

第九讲 回归分析与回归模型

云南大学 孙正宝

zbsun@ynu.edu.cn

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- 宣 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

- •Prediction (预测): Useful when the input variable is readily available, but the output variable is not.
 - Example: Predict stock prices next month using data from last year.
- •Inference (推断): A model for f can help us understand the structure of the data which variables influence the output, and which don't? What is the relationship between each variable and the output, e.g. linear, non-linear?
 - •Example: What is the influence of genetic variations on the incidence of heart disease.

相关性与回归分析

- **回归**:一种确定关系,通过一个或多个变量(自变量)的取值能够得到另一个变量(因变量)的取值,可以通过回归方程(模型)实现。
- **相关**:非确定关系,当一个(多个)变量的取值发生变化时,与它(它们)相关的变量的取值也会发生变化,但变化值是不确定的。
- 相关关系主要用于考察分析两个或多个变量之间的相关情况。
 - Pearson相关系数
 - Spearman相关系数

相关性与回归分析

● Pearson相关系数

- 1. 适用条件
 - ✓ 两个变量分别服从正态分布(当数据量够大时,譬如 n>30,根据中心极限定理,可以假定服从正态分布);
 - ✓ 两个变量的标准差不为0(通常都满足)。
- 2. 计算方法

$$ho = rac{E[(X-\mu_x)(Y-\mu_y)]}{\sigma_x\sigma_y} = rac{\Sigma(x-ar{x})(y-ar{y})}{\sqrt{\Sigma(x-ar{x})^2}\sqrt{\Sigma(y-ar{y})^2}}$$

- 3. 显著性检验
 - ✓ 通常使用 † 检验来验证Pearson相关系数的显著性。

相关性与回归分析

● Spearman相关系数

- 1. 适用条件
 - ✓ 没有特殊的限制条件,只要求数据成对即可。
- 2. 计算方法
 - ✓ 原始数据: $X = [X_1, X_2, ... X_n], Y = [Y_1, Y_2, ... Y_n]$
 - ✓ 转换之后的等级数据: $x = [x_1, x_2, ... x_n], y = [y_1, y_2, ... y_n]$

$$ho = rac{\Sigma(x-ar{x})(y-ar{y})}{\sqrt{\Sigma(x-ar{x})^2}\sqrt{\Sigma(y-ar{y})^2}}$$

- 🗸 当等级数据都是整数时,公式可简化为: $ho=1-rac{6\Sigma d_i^2}{n(n^2-1)}$
- 3. 显著性检验: †检验。

变量与数据集——线代基础

● 离散变量

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \qquad x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$$

$$x_i^T = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{ip} \end{pmatrix}$$

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)\}$$

● 连续变量: 离散采样

模型的评价与选择

● 建模过程——模型的习得过程

Train

Validation

Test

● 方差-偏差分解

$$E(f; D) = \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - y_{D})^{2} \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}) + \bar{f}(\boldsymbol{x}) - y_{D})^{2} \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}))^{2} \right] + \mathbb{E}_{D} \left[(\bar{f}(\boldsymbol{x}) - y_{D})^{2} \right]$$

$$+ \mathbb{E}_{D} \left[2 \left(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}) \right) \left(\bar{f}(\boldsymbol{x}) - y_{D} \right) \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}))^{2} \right] + \mathbb{E}_{D} \left[(\bar{f}(\boldsymbol{x}) - y_{D})^{2} \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}))^{2} \right] + \mathbb{E}_{D} \left[(\bar{f}(\boldsymbol{x}) - y + y - y_{D})^{2} \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}))^{2} \right] + \mathbb{E}_{D} \left[(\bar{f}(\boldsymbol{x}) - y)^{2} \right] + \mathbb{E}_{D} \left[(y - y_{D})^{2} \right]$$

$$+ 2\mathbb{E}_{D} \left[(\bar{f}(\boldsymbol{x}) - y) (y - y_{D}) \right]$$

$$= \mathbb{E}_{D} \left[(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}))^{2} \right] + (\bar{f}(\boldsymbol{x}) - y)^{2} + \mathbb{E}_{D} \left[(y_{D} - y)^{2} \right]$$

模型的评价与选择

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon_0)$$

模型的评价与选择

● 模型评价指标

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$TSS = \sum (y_i - \bar{y})^2$$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$RSE = \sqrt{\frac{1}{n-p-1}}RSS,$$

MSE: Mean Squared Error

RSE: Residual Standard Error

TSS: Total Sum of Squares

提纲

- (一) 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- ▼ 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

● 一元线性回归

$$Y = \beta_0 + \beta_1 X + \epsilon$$

✓ 最小二乘法估计系数

RSS
$$(f) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

RSS: Residual Sum of Squares.

● 一元线性回归

■客观物理现象

■ 实验设想:

虽然不能给每一个x都做一次测量,但是可以选择一些不同的x进行实验,得到对应的实验结果F:

x/cm	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
F/N	0.1673	0.5232	0.8221	0.9997	0.9457	1.3028	1.486	1.6431	1.7646	2.143

● 一元线性回归

■ 算法设计: (*x*₁,*F*₁)

#用x计算F:

1. 获得实验数据集S,

$$S=\{(x_1,F_1), (x_2,F_2), (x_3,F_3),...\}$$

- 2. 利用S对x和F两个变量进行线性回归,得到模型(F=kx+b)
- 3. Input x=?
- 4. 利用获得的模型(F=kx+b) 求解对应的F
- 5. Return F

```
Xsum=0.0
   X2sum=0.0
   Fsum=0.0
   xF=0.0
   n=len(x)
   for i in range(n):
       Xsum+=x[i]
       Fsum+=F[i]
       xF+=x[i]*F[i]
       X2sum+=x[i]**2
   k=(Xsum*Fsum/n-xF)/(Xsum**2/n-X2sum)
   b=(Fsum-k*Xsum)/n
   print('the line is F=%f*x+%f' % (k,b) )
 ✓ 0.0s
the line is F=1.963158*x+0.100013
```


● 一元线性回归

■ 胡克定理:

1. #根据胡克定理,用x计算F,

$$k=2 //k = 2 N/cm$$

- 2. Input x=?
- 3. F=kx
- 4. Return F

● 多元线性回归

$$Y_k = \beta_{0k} + \sum_{j=1}^{p} X_j \beta_{jk} + \varepsilon_k$$

✓ 最小二乘法估计系数

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

● 多元线性回归

```
# 拟合二元线性回归模型
X = np.column_stack((X1, X2, np.ones_like(X1))) # 添加一列全1作为截距项
beta_hat = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) # 最小二乘法求解
# 构建回归方程
equation = f''y = \{beta_hat[0]:.2f\} + \{beta_hat[1]:.2f\} * x1 + \{beta_hat[2]:.2f\} * x2''
# 出图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X1, X2, y, label='Data') # 绘制散点图
# 创建网格来绘制回归面
x1_vals = np.linspace(X1.min(), X1.max(), 10)
x2_vals = np.linspace(X2.min(), X2.max(), 10)
x1_grid, x2_grid = np.meshgrid(x1_vals, x2_vals)
y_grid = beta_hat[0] + beta_hat[1] * x1_grid + beta_hat[2] * x2_grid
# 绘制回归面
ax.plot_surface(x1_grid, x2_grid, y_grid, alpha=0.5, color='red', label='Regression Plane')
# 设置轴标签和图标题
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set zlabel('y')
ax.set title('Multiple Linear Regression')
```

Multiple Linear Regression

$$y = 2.03 + 3.18 * x1 + 0.88 * x2$$

● 多元线性回归

```
# 创建一个线性回归模型

def fit_linear_model(X, y):
    X = sm.add_constant(X) # 添
    model = sm.OLS(y, X).fit()
    return model

# 拟合多元线性回归模型

model = fit_linear_model(X, y)

# 输出模型结果

print(model.summary())
```

✓ 参数显著性检验,参数显

著不为0:

$$t = rac{\hat{eta}_k - eta_k}{se(\hat{eta}_k)} \sim t(n-p-1)$$

OLS Regression Results									
=======================================									
Dep. Variable	: :		У	R-sq	uared:		0.713		
Model:			OLS	Adj.	R-squared:		0.681		
Method:		Least Squa	res	F-st	atistic:		22.15		
Date:	F	ri, 26 Apr 2	024	Prob	(F-statistic):		3.88e-20		
Time:		13:17	:13	Log-	Likelihood:		-126.38		
No. Observati	.ons:		100	AIC:			274.8		
Df Residuals:			89	BIC:			303.4		
Df Model:			10						
Covariance Ty	pe:	nonrob	ust						
========	=======	========	====	=====	=========	======	=======		
	coef	std err		t	P> t	[0.025	0.975]		
const	1.9673	0.502	3	3.920	0.000	0.970	2.965		
x1	1.3283	0.395	3	3.362	0.001	0.543	2.113		
x2	2.0805	0.318	6	5.534	0.000	1.448	2.713		
x3	-3.9698	0.331	-12	2.007	0.000	-4.627	-3.313		
x4	0.2970	0.347	(855	0.395	-0.393	0.987		
x5	0.0835	0.312	(268	0.789	-0.536	0.703		
х6	-0.1779	0.337	- (5.527	0.599	-0.848	0.492		
x7	0.6848	0.335	2	2.043	0.044	0.019	1.351		
x8	0.0736	0.315	(0.816	-0.553	0.700		
x9	-0.1818	0.334	- (.543	0.588	-0.846	0.483		
x10	-0.5218	0.337	-1	L.549	0.125	-1.191	0.148		
========	=======	=======	====	=====		======	=======		

● 需要注意的问题:

- 数据的非线性:线性回归模型假定预测变量和响应变量之间有直线关系。如果真实关系是非线性的,那么得出的几乎所有结论都是不可信的,而且模型的预测精度也可能显著降低。
- 残差图:理想情况下,残差图显示不 出明显的规律。若存在明显规律,则 表示线性模型的某些方面可能有问题。

● 需要注意的问题:

- **误差项自相关**:线性回归模型的一个重要假设是误差项不相关(理想情况下应为白噪声)。误差项相关关系经常出现在时间序列数据中。
- **自相关函数图(ACF/PACF)**: 为了确定某一给定的数据集是否有误差自相关问题,绘制作为时间函数的残差和ACF进行判断。

X = sm.add constant(X)

拟合线性模型,使用异方差性稳健的标准误差

Y = np.log10(Y)

● 需要注意的问题:

Residuals

• 误差项方差非恒定: 模型的假设检验和标准误差、置信区间的计算都依赖于误差项的方差是恒定的假设。某些情况下,误差项的方差不是恒定的。例如,误差项

的方差可能会随响应值的增加而增加(如图)。

· 用凹函数对响应值y做变换:如logY、\sqrt(Y)等。

● 需要注意的问题:

- **离群点**:指对于给定的特征值 x_i 来说,响应值 y_i 异常的点。
- 学生化残差: 由残差除以它的估 计标准误。一般地, 学生化残差 绝对值大于3的观测点可能是离群 点。如果能确信某个离群点是由 数据采集或记录中的错误导致的, 那么一个解决方案是直接删除此 观测点。

● 需要注意的问题:

- 高杠杆点:观测点 x_i 是异常的。
- 杠杆统计量:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}$$

杠杆统计量的取值总是在 l/n 之间,且所有观测的平均杠杆值总是等于(p+1)/n。因此,如果给定观测的杠杆统计量大大超过(p+1)/n 那么我们可能会怀疑对应点有较高的杠杆作用。

● 需要注意的问题:

- 共线性: 自变量之间存在高度相关性。
 模型的估计会变得不稳定,因为微小的数据变化可能导致估计的显著变化。
- 共线性问题有两种简单的解决方案:
 第一种是从回归中剔除一个问题变量;
 第二种解决方案是把共线变量组合成一个单一的变量,如PCA等。

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- (三) 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

二、多项式回归(Polynomial Regression)

- 非线性回归模型。
 - 一元多项式回归:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \epsilon_i$$

创建多项式回归模型,选择2次多项式 polynomial_regression = make_pipeline(PolynomialFeatures (degree=2), LinearRegression())

拟合模型 polynomial_regression.fit(X, y)

- ✓ 最小二乘法估计系数
- ✓ 比较: 一元多项式回归与 多元线性回归, 教材221-223页。

二、多项式回归(Polynomial Regression)

- 非线性回归模型。
 - 二元多项式回归:

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- (三) 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归(Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

- 在处理多个自变量时常用的非线性回归模型;
- 目的是使用最少的预测变量数来最大化预测 能力;
- 最佳子集是模型具有最小的残差平方和;
- 逐步回归法选择变量的过程包含两个基本步骤:
 - ✓ 一是从回归模型中剔出经检验不显著的 变量,
 - ✓ 二是引入新变量到回归模型中,常用的逐步回归方法有向前法和向后法。

向后逐步回归

MSE: 0.7767

 R^2 : 0.3570


```
# 向前选择函数
def forward selection(X, y, p value threshold=0.05):
    selected vars = []
    current_model = sm.OLS(y, sm.add_constant(X[:, 0])).fit()
   while len(selected vars) < X.shape[1] - 1:</pre>
       max_p_value = float('inf')
        variable to add = None
        for i in range(0, X.shape[1]):
            if i not in selected vars:
                model = sm.OLS(y, sm.add_constant(X[:, selected_vars + [i]])).fit()
                p value = model.pvalues[i-1]
                if p value < max p value:</pre>
                    max p value = p value
                    variable to add = i
                                                         向前逐步回归
        if max_p_value < p_value_threshold:</pre>
            selected vars.append(variable to add)
            current_model = model
        else:
            break
    return current model, selected vars
```

```
# 向后逐步回归函数
def backward stepwise regression(X, y, p value threshold=0.05):
   best model = sm.OLS(y, X).fit()
   best rsquared = best model.rsquared
   best_params = best_model.params
   best_pvalues = best_model.pvalues
   best_X = pd.DataFrame(X,columns=[:])
   while len(best X.columns) > 1:
       # 找到p值最大的变量
       worst_var = best_pvalues.argmax()
       if worst var == 0: # 如果是截距项,则跳过
           break
       # 移除最不显著的变量
       X reduced = best X.drop(best X.columns[worst var], axis=1)
       model = sm.OLS(y, X_reduced)
       results = model.fit()
       # 检查R方值是否下降
       if results.rsquared >= best rsquared:
           best rsquared = results.rsquared
           best params = results.params
           best pvalues = results.pvalues
           best X = X reduced
                                       向后逐步回归
       else:
           break
```


OLS Regression Results							
==========	=======================================		=======				
Dep. Variable:	У	R-squared:	0.167				
Model:	OLS	Adj. R-squared:	0.158				
Method:	Least Squares	F-statistic:	19.64				
Date:	Fri, 26 Apr 2024	<pre>Prob (F-statistic):</pre>	2.44e-05				
Time:	20:38:59	Log-Likelihood:	-146.56				
No. Observations:	100	AIC:	297.1				
Df Residuals:	98	BIC:	302.3				
Df Model:	1	向前逐步回归					
Covariance Type:	nonrobust						
=======================================							

OLS Regression Results							
=======================================	=======================================		=======				
Dep. Variable:	У	R-squared:	0.357				
Model:	OLS	Adj. R-squared:	0.344				
Method:	od: Least Squares F-statistic:						
Date:	Fri, 26 Apr 2024	Prob (F-statistic):	4.98e-10				
Time:	21:00:27	Log-Likelihood:	-129.26				
No. Observations:	100	AIC:	264.5				
Df Residuals:	97	BIC: 向后逐步回归	272.3				
Df Model:	2	内加足少口妇					
Covariance Type:	nonrobust						

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- 宣 逐步回归(Stepwise Regression)
- 回 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

四、岭回归(Ridge Regression)

- 岭回归是线性回归的重要改进,增加了误差容忍度。
- 如果数据集合矩阵存在多重共线性(数学上称为病态矩阵),那么线性回归模型对输入变量中的噪声非常的敏感,如果输入变量x有一个微小的变动,其反应在输出结果上会变得非常大,方程的解表现出极为不稳定。为了解决这个问题,就有了优化算法——岭回归。
- 岭回归通过对系数的施加惩罚(正则化参数λ)来解决线性回归的一些问题。
- 岭回归的λ参数是一个正则化参数,它控制模型的复杂度。 λ值越大,正则化强度越大,模型越简单。在实际应用中,通常需要通过交叉验证来选择最佳的λ值。

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}.$$

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

四、岭回归(Ridge Regression)


```
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=42)
# 岭回归模型
ridge_reg = Ridge(alpha=1.0) # alpha是正则化强度的倒数
ridge reg.fit(X train, y train)
# 预测
y train pred = ridge reg.predict(X train)
y_test_pred = ridge_reg.predict(X_test)
```

尝试通过交叉验证或网格搜索的 方法选择最佳惩罚系数。

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- 宣 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

五、套索回归(Lasso Regression)

套索回归与岭回归类似,会对回归系数的绝对值添加一个罚值。此外,它能降低偏差并提高线性回归模型的精度。与岭回归有一点不同,它在惩罚部分使用的是绝对值,而不是平方值。这导致惩罚(即用以约束估计的绝对值之和)值使一些参数估计结果等于零。使用的惩罚值越大,估计值会越趋近于零。

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

$$\text{subject to} \left(\sum_{j=1}^{p} |\beta_j| \le t. \right)$$

五、套索回归(Lasso Regression)


```
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=42)
# 套索回归模型
lasso_reg = Lasso(alpha=0.1) # alpha是正则化强度的倒数
lasso_reg.fit(X_train, y_train)
# 预测
y_train_pred = lasso_reg.predict(X_train)
y_test_pred = lasso_reg.predict(X_test)
```


提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- 宣 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

六、贝叶斯回归(Bayesian Regression)

- 贝叶斯回归是一种基于贝叶斯定理的回归分析方法,它提供了对回归系数的后验分布估计,而不仅仅是点估计。
- 假设贝叶斯网络结点包含的属性为 $\{X_1, X_2, ..., X_n, Y\}$ 。如果 X_i (i = 1, ..., n)是连续随机变量,并且 X_i 相对于Y条件独立,则有

$$p(y | x_1, x_2, \dots, x_n) = \frac{p(y, x_1, x_2, \dots, x_n)}{p(x_1, x_2, \dots, x_n)} = \frac{p(x_1, x_2, \dots, x_n | y) p(y)}{p(x_1, x_2, \dots, x_n)}$$
$$= \frac{\prod_{i=1}^{n} p(x_i | y) p(y)}{p(x_1, x_2, \dots, x_n)} = \alpha \prod_{i=1}^{n} p(x_i | y) p(y)$$

其中, $\alpha = 1/p(x)$ 是正则化参数,贝叶斯回归以后验概率密度作为回归分析指示,即输出条件概率密度最大的回归值作为目标值。结合上式可以得到其等价形式:

$$Y^* = \arg\max p(y | x_1, x_2, \dots, x_n) = \arg\max \prod_{i=1}^n p(x_i | y) p(y)$$

亦可作为 分类模型

六、贝叶斯回归(Bayesian Regression)


```
# 步骤3: 标准化特征 (对于贝叶斯回归很重要)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X test scaled = scaler.transform(X test)
# 步骤4: 使用BayesianRidge进行贝叶斯回归
model = BayesianRidge()
model.fit(X_train_scaled, Y_train)
# 步骤5: 评估模型性能
Y_pred_train = model.predict(X_train_scaled)
mse train = mean squared error(Y train, Y pred train)
r2 train = r2 score(Y train, Y pred train)
print(f"Train MSE: {mse_train}")
print(f"Train R^2 score: {r2 train}")
Y_pred = model.predict(X test scaled)
mse test = mean squared error(Y test, Y pred)
r2_test = r2_score(Y_test, Y_pred)
print(f"Test MSE: {mse test}")
print(f"Test R^2 score: {r2 test}")
```

优化:马尔可夫链蒙特卡洛(MCMC) 采样以估计模型的后验分布。

Train MSE: 105.1293, Test MSE: 85.7537

Train R²: 0.3731, Test R²: 0.00523

提纲

- 线性回归 (Linear Regression)
- 三 多项式回归(Polynomial Regression)
- 宣 逐步回归(Stepwise Regression)
- 四 岭回归 (Ridge Regression)
- 五 套索回归 (Lasso Regression)
- 六 贝叶斯回归 (Bayesian Regression)
- 七 随机森林回归(Random Forest Regression)

七、随机森林回归(Random Forest Regression)

- 随机森林以<mark>决策树</mark>为基础,用随机的方式排列建立,森林里每棵决策树之间都是没有关联的。
- 集成学习的基本思想就是将多个模型组合,从而实现一个更好的预测效果。集成算法大致可以分为: Bagging, Boosting 和 Stacking 三大类型。
- 随机森林属于Bagging集成算法。通过组合多个弱模型,集思广益,使得整体模型具有较高的精确度和泛化性能。
- Bagging是一种在原始数据集上,通过有放回抽样分别选出k个新数据集,来训练模型的集成算法。
- 随机森林可以应用在分类和回归问题上。实现这一点,取决于随机森林的每颗cart树 是分类树还是回归树。如果是回归树,则cart树是回归树,采用的原则是最小均方差。

七、随机森林回归(Random Forest Regression)

● 随机森林的随机性:

- 数据集的随机选取: 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。
- **待选特征的随机选取:** 与数据集的随机选取类似, 随机森林中的子树的每一个分裂过程并未用到所有的待选特征, 而是从所有的待选特征中随机选取一定的特征, 之后再在随机选取的特征中选取最优的特征。

七、随机森林回归(Random Forest Regression)


```
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建随机森林回归模型
rf_reg = RandomForestRegressor(n_estimators=100, random_state=42)
# 训练模型
rf_reg.fit(X_train, y_train)
# 进行预测
```

Train MSE: 0.03047, Test MSE: 0.0951

Train R^2 : 0.9999, Test R^2 : 0.9996

计算精度评价指标 mse_train = mean_squared_error(y_train, y_train_pred) r2_train = r2_score(y_train, y_train_pred) mse_test = mean_squared_error(y_test, y_test_pred) r2_test = r2_score(y_test, y_test_pred)

y_train_pred = rf_reg.predict(X_train)
y_test_pred = rf_reg.predict(X_test)

回归模型实验

- 数据: 教材270页, 习题4。
- 实验要求:
 - 根据给定数据构建回归模型;
 - 考虑题目给定情形: 固定其中两个变量, 例如固定P和K分别为196 kg/ha、 372 kg/ha;
 - 考虑不固定N、P、K任一变量的情形;
 - 尝试多种回归模型,并进行模型评估,选择最佳模型;
 - 实验分析与评价。

思考题

- 1. 简述回归模型的主要步骤, 并以一种方法为例说明其求解过程。
- 2. 简述回归模型的评价与选择。
- 3. 试比较一元多项式回归与多元回归。
- 4. 试比较岭回归与套索回归。