509 Project

Stephanie Daniella Hernandez Prado Nanzhu Li Serena Zhou

March 26, 2025

3. Data

3.1 Data Collection

We collected historical stock data for **Apple Inc.** (**AAPL**) using the yfinance. The dataset spans from **January 1, 2012 to March 15, 2025**, with data sampled at a daily interval. The raw dataset includes the following features:

- Open, High, Low, Close prices
- Adjusted Close price
- Daily trading volume

This financial time series serves as the basis for return calculations and trend prediction.

Data Processing

a) Return Calculation

Daily returns were computed using the percentage change in adjusted closing prices:

$$\operatorname{Return}_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \operatorname{pct_change}()$$

b) Features

To capture short-term return dynamics, we created sliding windows of **15 consecutive daily returns**. Each window forms a single input sample to the neural network:

$$Sample_1 = [r_1, r_2, \dots, r_{15}]$$

$$Sample_2 = [r_2, r_3, \dots, r_{16}]$$

$$\vdots$$

$$Sample_{3304} = [r_{3302}, r_{3303}, \dots, r_{3304}]$$

This resulted in a dataset of **3,304 samples**, each consisting of **15 features**.

c) Label

For each sample, we calculated the sum of returns over the following 5 days and labeled the trend based on a threshold defined as $0.3 \times$ standard deviation of future returns. The target variable was then classified into three categories:

- 0: Downtrend (future return < -threshold)
- 1: Neutral (within ±threshold)
- 2: Uptrend (future return > threshold)

Thus, each row in the final dataset consists of a 15-day return window (input) and a 3-class trend label (output).