COMMUTATIVE ALGEBRA

RIPAN DAS

Contents

1. Rings and ideals	Ę
1.1. Prime avoidance lemma	3
2. Module	Ē
2.1. Tensor Product	E
2.2. Projective module	14
3. Integral Dependence and Valuation	$2\overline{2}$
4. Primary decomposition	28

1. Rings and ideals

1.1. Prime avoidance lemma.

Theorem 1.1. Let $P_1, \dots, P_n \in \operatorname{spec} R$ then

$$I \subseteq \bigcup_{i=1}^{n} P_i \Rightarrow I \subseteq P_i \text{ for some } i.$$

Proof. We have to prove that if $I \nsubseteq P_i$, $\forall \ 1 \le i \le n$ then $I \nsubseteq \bigcup_{i=1}^n P_i$. We proceed by induction on n. If n=1 then we are done. Suppose, the statement is true for n-1 ideals. We consider P_2, \cdots, P_n and we have $I \nsubseteq P_i$, $2 \le i \le n$ then by induction hypothesis $I \nsubseteq \bigcup_{i=2}^n P_i$ then $\exists x_i \in I$ such that $x \notin \bigcup_{i=2}^n P_i$ i.e., $x \notin P_i$, $2 \le i \le n$. If $x_1 \notin P_1$ then $x_1 \notin \bigcup_{i=1}^n P_i$ and hence $I \nsubseteq \bigcup_{i=1}^n P_i$ and we are done. So we may assume $x_1 \in P_1$ and $x_1 \notin P_i$, $2 \le i \le n$. Now we consider $\{P_1, P_2, \cdots, P_n\} \setminus \{P_2\}$ and by similar approach we get $x_2 \in I$ with $x_2 \in P_2$ and $x_2 \notin P_i$, $\{1, \ldots, n\} \setminus \{2\}$ and lastly we get $x_n \in I$ with $x_n \in P_n$ and $x_n \notin P_1$, $1 \le i \le n-1$. We consider

$$x = x_2 \cdots x_n + x_1 x_3 \cdots x_n + x_1 x_2 x_4 \cdots x_n + \cdots + x_1 \cdots x_{n-1}$$

then $x \in I$. We claim that $x \notin \bigcup_{i=1}^{n} P_i$ i.e., $x \notin P_1$, $1 \le i \le n$. If $x \in P_i$ for some i. Let

$$y_i = x_1 \cdots \widehat{x_i} \cdots x_n$$

then $x_i|y_j$ for $i \neq j \Rightarrow y_j \in P_i$ $[x_i \in P_i] \Rightarrow \sum_{\substack{j=1 \ j \neq i}}^n y_j \in P_i \Rightarrow x - \sum_{\substack{j=1 \ j \neq i}}^n y_j \in P_i$ $[\because x \in P_i] \Rightarrow y_i \in P_i \Rightarrow x = \sum_{\substack{j=1 \ j \neq i}}^n y_j \in P_i$

 $x_1 \cdots \widehat{x_i} \cdots x_n \in P_i$ but $x_j \notin P_i$, $j \neq i$ [since P_i is a prime ideal] $\Rightarrow x \notin \bigcup_{i=1}^n P_i$. Hence, $I \nsubseteq .$

Remark 1.2. Prime avoidance lemma is not true for infinite number of prime ideals.

Example 1.3. Let $R = K[x_1, \dots, x_n, \dots]$ (infinitely many variables). Let $I = (x_1, \dots, x_n, \dots), P_i = (x_1, \dots, x_i), i \in \mathbb{N}$ then $R/P_i \cong K[x_{i+1}, x_{i+2}, \dots,]$ (integral domain) then $P_i \in \operatorname{spec} R$. But $I \subseteq \bigcup_{i \in \mathbb{N}} P_i$ and $I \subseteq P_i \ \forall i \in \mathbb{N}$.

Theorem 1.4 (Prime avoidance lemma). Let R be a commutative ring with 1, I be an ideal of R and $f \in R$. Suppose $P_1, \dots, P_r \in \operatorname{spec} R$ such that $f + I = \bigcup_{i=1}^r P_k$ then $\langle f, I \rangle \subseteq P_i$ for some $i \in \{1, \dots, r\}$.

Proof. Let \sum be the collection of all $s \in \mathbb{N}$ such that there exist $t \in R$ and an ideal J of R such that $t+J \subseteq \bigcup_{i=1}^s P_i$ but $\langle t,J \rangle \not\subseteq P_i, 1 \le i \le s$. If $\sum \neq \emptyset$ then by well ordering principle of Natural numbers, \sum has a least element say $l \in \sum$. So there exist $g \in R$ and $\mathfrak{A} \subseteq R$ such that

 $g + \mathfrak{A} \subseteq \bigcup_{i=1}^{l} P_i$ but $\langle g, \mathfrak{A} \rangle \nsubseteq P_i, 1 \leq i \leq l$. We note that $l \geq 2$ and $P_i \nsubseteq P_j$. We claim that $g \in \bigcap_{i=1}^{l} P_i$.

If not, $g \notin P_{i_0}$ for some $i_0 \in \{1, \dots, l\}$, then $(g + P_{i_0}\mathfrak{A}) \cap P_{i_0} = \emptyset$ hence $g + P_{i_0}\mathfrak{A} \subseteq \bigcup_{\substack{j=1 \ j \neq i_0}}^{l} P_j$. Since

l is the minimal element of \sum , we have $\langle g, P_{i_0} \mathfrak{A} \rangle \subseteq P_{j_0}$ for some $j_0 \in \{1, \dots, l\}$ but $j_0 \neq i_0$. Then $P_{i_0} \mathfrak{A} \subseteq P_{j_0} \Rightarrow P_{i_0} \subseteq P_{j_0}$ which is a contradiction (since if $\mathfrak{A} \subseteq P_{j_0}$ then $\langle g, P_{j_0} \mathfrak{A} \rangle \subseteq P_{j_0}$ implies $g \in P_{j_0} \Rightarrow \langle g, \mathfrak{A} \rangle \subseteq P_{j_0}$ but $\langle g, \mathfrak{A} \rangle \not\subseteq P_i$ for all $1 \leq i \leq l$ so, $\mathfrak{A} \not\subseteq P_{j_0}$). Therefore, $g \in \bigcap_{i=1}^l P_i \Rightarrow \mathfrak{A} \subseteq \bigcup_{i=1}^l P_i \Rightarrow \mathfrak{A} \subseteq P_s$ for some $1 \leq s \leq l$. Then by our assumption $\langle g, \mathfrak{A} \rangle \subseteq P_s$ but $\sum f = \emptyset$ which is a contradiction. Hence our assumption is not true that is $\sum f = \emptyset$.

Proposition 1.5. Let I_1, \dots, I_r be ideals of R and $P \in spec R$. If $\bigcap_{k=1}^r I_k \subseteq P$ then $I_k \subseteq P$ for some $k \in \{1, \dots, r\}$.

Proof. Since $\prod_{k=1}^{r} I_k \subseteq \bigcap_{k=1}^{r} I_k \subseteq P$, by definition of prime ideal $I_k \subseteq P$ for some $1 \le k \le r$.

Theorem 1.6 (Module theoretic version). Let R be a commutative ring with 1 and $P_1, \dots, P_m \in spec R$, M be an R-module and $x_1, \dots, x_n \in M$. Consider the submodule $N = \langle x_1, \dots, x_n \rangle$ of M. If $N_{P_j} \nsubseteq P_j M_{P_j}$, $j = 1, \dots, m$ then there exist $a_2, \dots, a_n \in R$ such that $x_1 + \sum_{i=1}^n a_i x_i \notin P_j M_{P_j}$. Proof.

2. Module

2.1. Tensor Product.

Definition 2.1. Let M_1, \dots, M_k, N be R-modules. A map $f: M_1 \times \dots \times M_k \to N$ is said to be linear in ith variable if, given fixed $m_j, j \neq i$, the map

$$T:M_i\to N$$

defined by $T(m) = f(m_1, \dots, m_{i-1}, m, m_{i+1}, m_k)$ is linear. The map f is said to be multilinear if it is linear in each variable.

Let M, N be two R-modules. Consider the free module F generated by the $M \times N$ over R, then the elements of F are of the form $\sum_{\text{finite}} r_i x_i$ where $r_i \in R$ and $x_i \in M \times N$. Let D be the submodule

of F generated by the elements of the form

$$(m_1 + m_2, n) - (m_1, n) - (m_2, n)$$

 $(m, n_1 + n_2) - (m, n_1) - (m, n_2)$
 $(rm, n) - r(m, n)$
 $(m, rn) - r(m, n)$

where $m, m_1, m_2 \in M$, $n, n_1, n_2 \in N$ and $r \in R$. Let T = F/D. We denote $T = M \otimes_R N$ and T is said to be Tensor product of M and N. We denote $(m, n) + D \in F/D$ by $m \otimes n$ and we have a map

$$M \times N \stackrel{\pi}{\to} T$$

 $(m,n) \mapsto m \otimes n$

We will show that π is bilinear map. $\pi((m_1+m_2,n))=(m_1+m_2,n)+D$. Since

$$(m_1 + m_2, n) - (m_1, n) - (m_2, n) \in D$$

 $\pi((m_1+m_2,n))=(m_1+m_2,n)+D=(m_1,n)+D+(m_2,n)+D=\pi(m_1,n)+\pi(m_2,n)$ for all $m_1,m_2\in M$ and for all $n\in N$. Similarly we can show that θ satisfies the property of bilinear map.

Theorem 2.2 (Universal Property). For every bilinear map $\beta: M \times N \to P$ where P is an Rmodule, there exists an unique R-linear map $\tilde{\beta}: M \otimes_R N \to P$ such that the diagram commutes.

More over, if (T', θ') be another pair with such property then there exists a module isomorphism $M \otimes_R N \to T'$.

Proof. Define $\tilde{\beta}: M \otimes_R N \to P$ by $\tilde{\beta}(m \otimes n) = \beta(m,n)$ and extend it linearly. Let $m_1 \otimes n_1 = m_2 \otimes n_2 \Rightarrow (m_1, n_1) - (m_2, n_2) \in D$. Since

By our construction $\tilde{\beta}$ is bilinear. Suppose $\gamma: M \otimes_R N \to P$ be another R-linear map such that the diagram commutes. Then $\gamma(m \otimes n) = \beta(m, n) = \tilde{\beta}\pi(m, n) = \tilde{\beta}(m \otimes n)$. Hence $\gamma = \tilde{\beta}$.

Now we assume that there exists another pair (T', θ') with same property, then

where $\tilde{\pi}$ and $\tilde{\theta}'$ are R- linear map. Since the diagrams commutes, we have $\tilde{\pi} \circ \theta' = \pi$ (from first diagram) and $\tilde{\theta}' \circ \pi = \theta'$ (from second diagram). Hence $(\tilde{\theta}' \circ \tilde{\pi}) \circ \theta' = \theta'$ and $(\tilde{\pi} \circ \tilde{\theta}') \circ \pi = \pi$. Again we consider the following diagrams

By Universal property, we have $\tilde{\theta}' \circ \tilde{\pi} = id_{T'}$ and $\tilde{\pi} \circ \tilde{\theta}' = id_{M \otimes_R N}$.

Tensor product of algebras. Let A and B be R-algebra, We consider the module $C = A \otimes_R B$. Let us define a mapping $\beta: A \times B \times A \times B \to C$ by $\beta(a,b,a',b') = aa' \otimes bb'$. Since β is multilinear, β induce a mapping $\tilde{\beta}: C \otimes_R C \to C$. This $\tilde{\beta}$ corresponds a bilinear mapping $\gamma: C \times C \to C$ given by $\gamma(a \otimes b, a' \otimes b') = aa' \otimes bb'$. Since γ is well define, it defines a multiplication on C and therefore C becomes a commutative ring with unity, $1 \otimes 1$ being the multiplicative identity. Since A and B are R-algebra, there exists $f: R \to A$ and $g: R \to B$ two ring morphisms. Now we define $\psi: R \to A \otimes_R B$ by $\psi(r) = f(r) \otimes g(r)$. Let $r_1, r_2 \in R$ then $\psi(r_1 + r_2) = f(r_1 + r_2) \otimes g(r_1 + r_2) = f(r_1) \otimes g(r_1 + r_2) + f(r_2) \otimes g(r_1 + r_2)$.

We note that C is both A and B algebra as $\mu_A : A \to A \otimes_R B$ is defined by $\mu_A(a) = a \otimes 1_B$ and $\mu_B : B \to A \otimes_R B$ is defined by $\mu_B(b) = 1_A \otimes b$. It is easy to check that both μ_A and μ_B is a ring homomorphism.

Theorem 2.3 (Properties of Tensor product). Let M, N, P and $\{M_i\}_{i \in \Lambda}$ be R-modules, $I \subseteq R$ be a ideal of R, S be a multiplicatively closed set in R then we have

- (1) $M \otimes_R N \cong N \otimes_R M$.
- (2) $(M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R) P$.
- (3) $M \otimes_R R \cong M$.
- (4) $M \otimes_R R/I \cong M/IM$.
- (5) $M \otimes_R S^{-1}R \cong S^{-1}M$.

(6)
$$\left(\bigoplus_{i\in\Lambda}M_i\right)\otimes_R N\cong\bigoplus_{i\in\Lambda}(M_i\otimes_R N).$$

Proof. (1) Consider the diagram

$$M \times N \xrightarrow{\alpha} N \times M$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\tilde{\pi}}$$

$$M \otimes_{R} N \xrightarrow{\alpha'} N \otimes_{R} M$$

where $\alpha((m,n)) = (n,m)$ and $\beta((n,m)) = (m,n)$. We claim that $\tilde{\pi} \circ \alpha$ is bilinear. Let $(m_1 + m_2, n) \in M \times N$, $\tilde{\pi}\alpha((m_1 + m_2, n)) = \tilde{\pi}(n, m_1 + m_2) = n \otimes (m_1 + m_2) = n \otimes m_1 + n \otimes m_2 = \tilde{\pi}\alpha((m_1,n)) + \tilde{\pi}\alpha((m_2,n))$ for all $m_1, m_2 \in M$ and for all $n \in N$. Similarly other properties can be shown. By Universal property, we have a module morphism α' : $M \otimes_R N \to N \otimes_R M$. Similarly the map $\beta \circ \pi$ is also bilinear so we have a R- linear map $\beta' : N \otimes_R M \to M \otimes_R M$. We just need to show that $\alpha' \circ \beta = \mathrm{id}_{N \otimes_R M}$ and $\beta' \circ \alpha' = \mathrm{id}_{M \otimes_R N}$ which is easy, $\alpha' \circ \beta'(n \otimes m) = \alpha'(m \otimes n) = n \otimes n$ and $\beta' \circ \alpha'(m \otimes n) = \beta'(n \otimes m) = m \otimes n$.

- (2)
- (3) Let $f: M \times R \to M$ be the map where f(m,r) = rm. Since M is an R-module, f is bilinear, hence f induce a map $\tilde{f}: M \otimes_R R \to R$ such that the diagram commutes

where $\tilde{f} \circ \pi = f \Rightarrow f(m,r) = \tilde{f}\pi(m,r) \Rightarrow rm = \tilde{f}(m \otimes r)$ and \tilde{f} is R-linear. Let $g: M \to M \otimes_R R$ defined as $g(m) = m \otimes 1$. It is easy to show that g is R-linear and $\tilde{f} \circ g = \mathrm{id}_M$ and $g \circ \tilde{f} = \mathrm{id}_{M \otimes_R R}$.

(4) Let $f: M \times R/I \to M/IM$ be the bilinear map defined by f(m, r+I) = rm + IM. By Universal property there exists a well define module morphism $\tilde{f}: M \otimes_R R/I \to M/IM$ such that the diagram commutes,

where $\tilde{f}(m \otimes (r+I)) = rm + IM$. Let $g: M/IM \to M \otimes_R R/I$ be the map $g(m+IM) = m \otimes (1+I)$. Then g is an R-linear map and $g \circ \tilde{f} = \mathrm{id}_{M \otimes_R R/I}$ and $\tilde{f} \circ g = \mathrm{id}_{M/IM}$.

(5) Consider

where $f\left(m,\frac{r}{s}\right)=rm/s$. First we need to check f is well defined. Let $\frac{r_1}{s_1}=\frac{r_2}{s_2}$ then there exists some $s\in S$ such that $s(r_1s_2-s_1r_2)=0\Rightarrow s(r_1s_2-s_1r_2)m=0\Rightarrow s(r_1s_2m-s_1r_2m)=0\Rightarrow \frac{r_1m}{s_1}=\frac{r_2m}{s_2}$. It is obvious that f is bilinear. Then there exits a unique module morphism $\tilde{f}:M\otimes_R S^{-1}R\to S^{-1}M$ where $\tilde{f}\left(m\otimes\frac{r}{s}\right)=\frac{rm}{s}$. Define $g:S^{-1}M\to M\times S^{-1}R$ by $g\left(\frac{m}{s}\right)=m\times\frac{1}{s}$. g is well defined module morphism and $g=\tilde{f}^{-1}$.

(6) Let $\theta_i: M_i \to \bigoplus_{i \in \Lambda} M_i$ be the inclusion map. Define

$$f: \left(\bigoplus_{i \in \Lambda} M_i\right) \times N \to \bigoplus_{i \in \Lambda} (M_i \otimes_R N)$$
$$((m_i)_{i \in \Lambda}, n) \mapsto (m_i \otimes n)_{i \in \Lambda}.$$

We will show that f is bilinear. $f((m_i)_{i\in\Lambda}+(m_i')_{i\in\Lambda},n)=f((m_i+m_i')_{i\in\Lambda},n)=((m_i+m_i')\otimes n)_{i\in\Lambda}=(m_i\otimes n)_{i\in\Lambda}+(m_i'\otimes n)_{i\times\Lambda}=f((m_i)_{i\in\Lambda},n)+f((m_i')_{i\in\Lambda},n).$ Similarly other properties can be shown. Hence we have a map $\tilde{f}:\left(\bigoplus_{i\in\Lambda}M_i\right)\otimes_RN\to\bigoplus_{i\in\Lambda}(M_i\otimes_RN)$ defined by $\tilde{f}((m_i)_{i\in\Lambda}\otimes n)=(m_i\otimes n)_{i\in\Lambda}.$ Define $g:\bigoplus_{i\in\Lambda}(M_i\otimes_RN)\to\left(\bigoplus_{i\in\Lambda}M_i\right)\otimes_RN$ by $g((m_i\otimes n_i)_{i\in\Lambda})=\sum_{i\in\Lambda}(\theta_i(m_i)\otimes n_i).$ Note that g is R-linear. Now, $g\circ\tilde{f}((m_i)_{i\in\Lambda}\otimes n)=g((m_i\otimes n_i)_{i\in\Lambda})=\sum_{i\in\Lambda}(\theta_i(m_i)\otimes n_i)=\sum_{i\in\Lambda}(\theta_i(m_i)\otimes n_i$

Remark 2.4. Let $f: A \to B$ be a ring homomorphism. Suppose M is an A-module and N is an B-module. Then $M \otimes_A N$ has both A and B module structure,

$$B \times M \otimes_A N \to M \otimes_A N$$
$$(n, m \otimes n) \mapsto m \otimes bm$$

Theorem 2.5. Let B be an A algebra, M be an A-module and N, P be B-modules. Then

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P).$$

Proof. It is suffices to establish the isomorphism as B-module.

Theorem 2.6 (Hom-Tensor adjunction). Let M, N, P be R-modules. Then

$$Hom_R(M \otimes_R N, P) \cong Hom_R(M, Hom_R(N, P))$$
.

Proof. Define

$$\psi: \operatorname{Hom}_{R}(M \otimes_{R} N, P) \to \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(N, P))$$

$$f \mapsto \psi(f)$$

where $\psi(f)(m)(n) = f(m \otimes n)$ and

$$\phi: \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)) \to \operatorname{Hom}_R(M \otimes_R N, P)$$

$$g \mapsto \phi(g)$$

where $\phi(q)(m \otimes n) = q(m)(n)$. We shall now show that $\phi(q)$ is well defined. Consider the diagram

where f(m,n)=g(m)(n). We claim that f is bilinear. $f(m_1+m_2,n)=g(m_1+m_2)(n)=g(m_1)(n)+g(m_2)(n)=f(m_1,n)+f(m_2,n)$ for all $m_1,m_2\in M$ and for all $n\in N$. Now $f(m,n_1+n_2)=g(m)(n_1+n_2)=g(m)(n_1)+g(m)(n_2)=f(m,n_1)+f(m,n_2)$ for all $m\in M$ and for all $n_1,n_2\in N$. Pick $r\in R,m\in M$ and $n\in N$, f(rm,n)=g(rm)(n)=rg(m)(n)=rf(m,n) and f(m,rn)=g(m)(rn)=rg(m)(n)=rf(m,n). By Universal property \tilde{f} is well defined map such that $\tilde{f}\circ\pi=f$ and $\tilde{f}=\phi(g)$. Now it is easy to show that $\phi\circ\psi=\mathrm{id}_{\mathrm{Hom}_R(M,\mathrm{Hom}_R(N,P))}$.

Theorem 2.7. Let B be an A algebra, M be an A-module and N, P be B modules. Then

$$Hom_B(M \otimes_A N, P) \cong Hom_A(M, Hom_B(N, P))$$
.

Proof. Note that $\operatorname{Hom}_A(M, \operatorname{Hom}_B(N, P))$ is an B-module,

$$B \times \operatorname{Hom}_{A}(M, \operatorname{Hom}_{B}(N, P)) \to \operatorname{Hom}_{A}(M, \operatorname{Hom}_{B}(N, P))$$

$$(b, f) \mapsto (bf)$$

where $(bf): M \to \operatorname{Hom}_B(N, P)$ is defined by $(bf)(m) := b \cdot (f(m))$. Now, we define

$$\theta: \operatorname{Hom}_A(M, \operatorname{Hom}_B(N, P)) \to \operatorname{Hom}_B(M \otimes_A N, P)$$

where $\theta(f)(m \otimes n) = f(m)(n)$. We will show that $\theta(f)$ is well defined.

Where $\alpha(m,n)=f(m)(n)$. We claim that α is A-linear in first component and B-linear in second component. Let $m_1, m_2 \in M$ and $m \in N$, $\alpha(m_1+m_2,n)=f(m_1+m_2)(n)=f(m_1)(n)+f(m_2)(n)=\alpha(m_1,n)+\alpha(m_2,n)$. Let $m \in M, n_1, n_2 \in N$ then $\alpha(m,n_1+n_2)=f(m)(n_1+n_2)=f(m)(n_1)+f(m)(n_2)=\alpha(m,n_1)+\alpha(m,n_2)$. Now, for all $a \in A, m \in M, n \in N, \alpha(am,n)=f(am,n)=af(m)(n)=a\alpha(m,n)$ and for all $b \in B, m \in M, n \in N, \alpha(m,bn)=f(m)(bn)=bf(m)(n)=b\alpha(m,n)$. Hence α is A-linear in first component and B-linear in second component. Hence $\theta(f)$ is a well defined B-linear map. Let

$$\psi: \operatorname{Hom}_{B}(M \otimes_{A} N, P) \to \operatorname{Hom}_{A}(M, \operatorname{Hom}_{B}(N, P))$$

$$g \mapsto \psi(g)$$

where $\psi(g): M \to \operatorname{Hom}_B(N, P)$ is the map $\psi(g)(m)(n) = g(m \otimes n)$. It is easy to show that ψ is a B-linear map and $\psi \circ \theta = \operatorname{id}_{\operatorname{Hom}_A(M, \operatorname{Hom}_B(N, P))}$ and $\theta \circ \psi = \operatorname{id}_{\operatorname{Hom}_B(M \otimes_A N, P)}$.

Corollary 2.8. Let

$$(1) 0 \to M' \to M \to M'' \to 0$$

be an exact sequence of R-modules. Let N be another R-module then the sequence

$$(2) M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0$$

is exact.

Proof. Let P be any R-module. Since (11) is exact, the sequence

(3) $\operatorname{Hom}_{R}\left(M'', \operatorname{Hom}_{R}\left(N, P\right)\right) \to \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}\left(N, P\right)\right) \to \operatorname{Hom}_{R}\left(M', \operatorname{Hom}_{R}\left(N, P\right)\right) \to 0$ is exact and by Theorem 14.53 we have

$$\operatorname{Hom}_{R}\left(M''\otimes_{R}N,P\right)\to\operatorname{Hom}_{R}\left(M\otimes_{R}N,P\right)\to\operatorname{Hom}_{R}\left(M'\otimes_{R}N,P\right)\to0$$

is exact. Hence we have (12).

2.1.1. Flat module.

Definition 2.9. A module N is said to be flat R-module if for every short exact sequence of R-modules

$$0 \to M' \to M \to M'' \to 0$$

we have the following short exact sequence

$$0 \to M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0.$$

Remark 2.10. (1) An R-mdoule N is said to be flat if and only if for every short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

of R-modules, we have the following exact sequence

$$0 \to M' \otimes_R N \to M \otimes_R N$$
.

(2) An R-module N is said to be flat if for every exact sequence

$$\sum \equiv \cdots \to M_i \to M_{i+1} \to M_{i+2} \to \cdots$$

of R-modules, we have the following exact sequence

$$\sum \otimes_R N \equiv \cdots \to M_i \otimes_R N \to M_{i+1} \otimes_R N \to M_{i+2} \otimes_R N \to \cdots$$

Definition 2.11. An R-module N is said to be faithfully flat module if it is a flat module and any sequence of

$$\sum \equiv \cdots \to M_i \to M_{i+1} \to M_{i+2} \to \cdots$$

of R-modules, $\sum \otimes_R N$ is exact implies \sum is an exact sequence.

Definition 2.12. Let S be an R-algebra. S is said to be flat over R if S is a flat R-module.

Example 2.13. Let S be a multiplicatively closed set of a ring R then $S^{-1}R$ is a flat R-module.

Question 2.14. Let I be an ideal of R. Is R/I flat?

Lemma 2.15. Let M, N be flat R-modules then $M \otimes_R N$ and $M \oplus N$ is also flat.

Proof. (1) Let

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

be an exact sequence of R-modules, since M is flat, the following sequence

$$0 \to M_1 \otimes_R M \to M_2 \otimes_R M \to M_3 \otimes_R M \to 0$$

is exact and so the sequence

$$0 \to (M_1 \otimes_R M) \otimes_R N \to (M_2 \otimes_R M) \otimes_R N \to (M_3 \otimes_R M) \otimes_R N \to 0.$$

Hence

$$0 \to M_1 \otimes_R (M \otimes_R N) \to M_2 \otimes_R (M \otimes_R N) \to M_3 \otimes_R (M \otimes_R N) \to 0$$

is exact. Therefore, $M \otimes_R N$ is flat.

(2) Since M and N are flat the sequences

$$0 \to M_1 \otimes_R M \xrightarrow{\alpha_M} M_2 \otimes_R M \xrightarrow{\beta_M} M_3 \otimes_R M \to 0$$

and

$$0 \to M_1 \otimes_R N \xrightarrow{\alpha_N} M_2 \otimes_R N \xrightarrow{\beta_N} M_3 \otimes_R N \to 0$$

are exact. Therefore the sequence

$$0 \to M_1 \otimes_R M \oplus M_1 \otimes N \xrightarrow{(\alpha_M, \alpha_N)} M_2 \otimes_R M \oplus M_2 \otimes N \xrightarrow{(\beta_M, \beta_N)} M_3 \otimes_R M \oplus M_3 \otimes N \to 0$$

is exact. So we have the following exact sequence,

$$0 \to M_1 \otimes_R (M \oplus N) \to M_2 \otimes_R (M \oplus N) \to M_3 \otimes_R (M \oplus N) \to 0.$$

Hence $M \oplus N$ is a flat R-module.

Remark 2.16. Let S be a flat R— algebra and N be a flat S—module. Then N is a flat R—module.

Proof. Let

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

be an exact sequence of R-modules. Since S is flat R-module,

$$0 \to M_1 \otimes_R S \to M_2 \otimes_R S \to M_3 \otimes_R S \to 0$$

is an exact sequence of R-module. Since S is an R-algebra, each $M_i \otimes_R S, 1 \leq i \leq 3$ also has S-module structure. So the above sequence is an exact sequence of S-module. Since N is flat S-module,

$$0 \to (M_1 \otimes_R S) \otimes_S N \to (M_2 \otimes_R S) \otimes_S N \to (M_3 \otimes_R S) \otimes_S N \to 0$$

is exact and so the sequences are

therefore, N is a flat R-module.

Theorem 2.17. Let M and N be two $S^{-1}R$ modules, then M, N are also R-modules via $\psi: R \to S^{-1}R$. Then $M \otimes_{S^{-1}R} N \cong M \otimes_R N$.

Proof. We note that $M \otimes_R N$ is an $S^{-1}R$ -module. We will show that $M \otimes_R N$ and $M \otimes_{S^{-1}R} N$ is same as $S^{-1}R$ -module, hence they are same as R-module also. In $M \otimes_R N$,

$$\frac{a}{s}(m\otimes n) = \frac{am}{s}\otimes n = \frac{am}{s}\otimes \frac{ns}{s} = \frac{sm}{s}\otimes \frac{an}{s} = m\otimes \frac{an}{s}.$$

Thus $\frac{a}{s}m \otimes n = m \otimes \frac{an}{s}$ in $M \otimes_R N$. So they are same as $S^{-1}R$ -module.

Theorem 2.18. Let S be an R-algebra and M be an S-module. A necessary and sufficient condition for M to be flat over R is that for every $p \in \operatorname{spec} S$, M_p is flat R_q -module where $q = p \cap R$.

Proof. First we note that M_p is an R_q module. As S is an R-algebra, there exists $f: R \to S$ and $f(p) \subseteq q$ then by Universal property of localization there exists an unique morphism $f_p: R_q \to S_p$ to make S_p an R_q -algebra. Now $S_p \otimes_S M \cong M_p$. Thus M_p is an S_p -module hence M_p is an A_q -module. Suppose M is flat. Consider the exact sequence of R_q -modules (also as R-modules)

$$(4) 0 \to M_1 \to M_2 \to M_3 \to 0$$

By previous theorem,

$$(5) M_p \otimes_{R_a} M_i \cong M_p \otimes_R M_i, 1 \leq i \leq 3.$$

Now From (14)

$$0 \to M_1 \otimes_R M \to M_2 \otimes_R M \to M_3 \otimes_R M \to 0$$

is an exact sequence of S-mdoule (since M is an S-module). As S_p is flat over S we have the following exact sequences

From (15) we have the following exact sequence

$$0 \to M_1 \otimes_{R_q} M_p \to M_2 \otimes_{R_q} M_p \to M_3 \otimes_{R_q} M_p \to 0.$$

Thus M_p is a flat R_q module.

Conversely, let M_p be flat over R_q for all $p \in \operatorname{spec} S$ and $q = p \cap R$. Consider the exact sequence of R-modules $0 \to N' \xrightarrow{\phi} N$ then

$$0 \to \operatorname{Ker}(\phi \otimes 1) \xrightarrow{i} N' \otimes_R M \xrightarrow{\phi \otimes 1} N \otimes_R M$$

where $\operatorname{Ker}(\phi \otimes 1)$, $N' \otimes_R M$ and $N \otimes_R M$ are S-modules and S_p is flat over S. Thus we have the exact sequence

Again we have the exact sequence $0 \to N_q \to N_q$, since R_q is flat over R. As M_p is flat over R_q , the following sequence

$$0 \to N_q' \otimes_{R_q} M_p \to N_q \otimes_{R_q} M_p$$

is exact. Therefore, $(\operatorname{Ker}(\phi \otimes 1))_p = 0$ for all $p \in \operatorname{spec} S$. By Local-global property, $\operatorname{Ker}(\phi \otimes 1) = 0$. So the sequence $0 \to N' \otimes_R M \to N \otimes_R M$ is exact.

Lemma 2.19. Let M be an R-module. For $p \in maxspec R$, we have the map $\theta_p : M \to M_p$ given by $m \mapsto \frac{m}{1}$. Let $x \in M$ such that $\theta_p(x) = 0$ for all $p \in maxspec R$ then x = 0.

Proof. Let $x \neq 0$ then $\operatorname{Ann}_R(x) \neq R$ so there exists $m \in \operatorname{maxspec} R$ such that $\operatorname{Ann}_R(x) \subseteq m$. Consider the map $\theta_m : M \to M_m$. Since $\theta_m(x) = 0 \Rightarrow \frac{x}{1} = \frac{0}{1} \Rightarrow u(x \cdot 1 - 0 \cdot 1) = 0 \Rightarrow ux = 0 \Rightarrow u \in \operatorname{Ann}_R(x)$ which is a contradiction. Hence x = 0.

Theorem 2.20 (Local-global property). Let M be an R-module. Then the followings are equivalent:

- (1) M = 0.
- (2) $M_p = 0$ for all $p \in \operatorname{spec} R$.
- (3) $M_m = 0$ for all $m \in maxspec R$.

Proof.
$$(3) \Rightarrow (1)$$

Lemma 2.21. Let $N \subseteq M$ be an R-module and P be a flat R-module. Then $\frac{M \otimes_R P}{N \otimes_R P} \cong M/N \otimes_R P$.

Proof. Consider the exact sequence $0 \to N \to M \to M/N \to 0$. Since P is flat, the resulting sequence

$$0 \to N \otimes_R P \to M \otimes_R P \to M/N \otimes_R P \to 0$$

is exact. \Box

Corollary 2.22. Let M, N be R-modules and $f \in Hom_R(M, N)$. Then the followings are equivalent.

- (1) f is injective (surjective).
- (2) f_p is injective (surjective) for all $p \in \operatorname{spec} R$.
- (3) f_m is injective (surjective) for all $m \in maxspec R$.

Proof.

2.2. Projective module.

Theorem 2.23. Let P be an R-module. Then the followings are equivalent:

(1) $Hom_R(P, -)$ is an exact functor that is given any exact sequence of R-modules,

$$0 \to M' \to M \to M'' \to 0$$

the sequence

(6)
$$0 \to \operatorname{Hom}_{R}\left(P, M'\right) \to \operatorname{Hom}_{R}\left(P, M\right) \to \operatorname{Hom}_{R}\left(P, M''\right) \to 0$$

is exact.

(2) Given

$$\begin{array}{c}
P \\
\downarrow \psi \\
M \xrightarrow{g} M'' \longrightarrow 0
\end{array}$$

we have $\phi: P \to M$ such that the diagram commutes that is $g \circ \phi = \psi$.

$$\begin{array}{cccc}
& P \\
& \downarrow \psi \\
M & \xrightarrow{g} M'' & \longrightarrow 0
\end{array}$$

- (3) There exist an R-module Q such that $P \oplus Q$ is free.
- (4) For any epimorphism $f: M \to P$, there exists $s: P \to M$ such that $f \circ s = id_P$.

Proof. (1) \Rightarrow (2) Since (16) is exact $g_*(\alpha) = \beta \Rightarrow g \circ \alpha = \beta$. Take $\alpha = \phi$ and $\beta = \psi$.

- $(2) \Rightarrow (1)$ We just need to show that g_* is surjective. Let $\gamma \in \operatorname{Hom}_R(P, M'')$. By (2) there exists $\phi \in \operatorname{Hom}_R(P, M)$ such that $g \circ \phi = \gamma \Rightarrow g_*(\phi) = \gamma$.
 - $(2) \Rightarrow (3)$ Given P, there exists a free module F and a surjective map $f: F \to P$.

$$0 \longrightarrow \operatorname{Ker} f \longrightarrow F \xrightarrow{g} \downarrow_{\operatorname{id}} P \longrightarrow 0$$

Since $f \circ g = \mathrm{id}_P$ the above sequence is split exact. Hence $F = P \oplus \mathrm{Ker}\, f$. So $Q = \mathrm{Ker}\, f$ is the desired module.

 $(3) \Rightarrow (2)$ Consider the diagram

Let $S \subseteq F$ be a basis, define $\alpha: S \to M$ given by $\alpha(x) = \tau_x$ where $\tau_x \in g^{-1}(\psi \circ (x))$ is a fixed element. Then there exists $\tilde{\alpha}: F \to M$ such that $\tilde{\alpha} \circ g = \psi \circ \pi$. Then $\tilde{\alpha}|_P: P \to M$ is the required map.

- $(2) \Rightarrow (4)$ Obvious.
- $(4) \Rightarrow (3)$ Given P, there exists a free module F and $f: F \to P$ is a surjection. Then there is also a map $s: P \to F$ such that $f \circ s = \mathrm{id}_P$. Since the following sequence

$$0 \to \operatorname{Ker} f \to F \to P \to 0$$

is split exact, $F \cong P \oplus \operatorname{Ker} f$.

Definition 2.24. Any R-module P which satisfies any one of the above condition is called projective module.

Remark 2.25. Any free module F is projective since $F = F \oplus 0$. But converse is not true. Let $R = \mathbb{Z}/6\mathbb{Z}$ and $P = \mathbb{Z}/3\mathbb{Z}$. Note that P is an R-module, take $Q = \mathbb{Z}/2\mathbb{Z}$. Then $P \oplus Q = R$ hence P is a projective module over R but P is not free. If P is free R module then $\mathbb{Z}/3\mathbb{Z} \cong (\mathbb{Z}/6\mathbb{Z})^{|S|}$ where S is a basis of P. Therefore $3 = |\mathbb{Z}/3\mathbb{Z}| = |S||\mathbb{Z}/6\mathbb{Z}| = 6|S|$ which is impossible.

Note 2.26. Therefore we have the following implication

$$Free \Longrightarrow Projective \Longrightarrow Flat$$

but the reverse implications are not true. Let F be a free module, then $F \cong \bigoplus_{i \in \Lambda} R_i$ where $R_i = R$ for all $i \in \Lambda$ and

$$(7) 0 \to M' \to M \to M'' \to 0$$

be an exact sequence of R-modules. Then we have

$$0 \to M' \otimes_R R_i \to M \otimes_R R_i \to M'' \otimes_R R_i \to 0$$

is an exact sequence of R-modules for all $i \in \Lambda$. Hence

$$0 \to \bigoplus_{i \in \Lambda} (M' \otimes_R R_i) \to \bigoplus_{i \in \Lambda} (M \otimes_R R_i) \to \bigoplus_{i \in \Lambda} (M'' \otimes_R R_i) \to 0$$

is exact. Therefore

$$0 \to M' \otimes_R F \to M \otimes_R F \to M'' \otimes_R F \to 0$$

is exact that is F is a flat module. Now let P be a projective module then there exist an R-module Q such that $P \oplus Q$ is free. By previous result we have

$$0 \to (M' \otimes_R P) \oplus (M' \otimes_R Q) \to (M \otimes_R P) \oplus (M \otimes_R Q) \to (M'' \otimes_R P) \oplus (M'' \otimes_R Q) \to 0$$

is exact. Therefore

$$0 \to M' \otimes_R P \to M \otimes_R P \to M'' \otimes_R P \to 0$$

is exact and P is flat. Note that \mathbb{Q} is flat \mathbb{Z} module since $\mathbb{Q} = S^{-1}\mathbb{Z}$ where $S = \mathbb{Z} \setminus \{0\}$ but \mathbb{Q} is not projective. Suppose \mathbb{Q} is projective \mathbb{Z} -module then \mathbb{Q} is a free \mathbb{Z} -module which is a contradiction.

Definition 2.27. Let R- be a ring.n A projective module is said to be stably free if there exists a free module Q such that $P \oplus Q$ is free.

Example 2.28. (1) Any free module.

Question 2.29. Give an example of a module M and a free module F such that $F \oplus M \cong M$.

Ans. Let
$$F = \mathbb{R}^n$$
, $M = \bigoplus_{i \in \mathbb{N}} \mathbb{R}_i$ where $\mathbb{R}_i = \mathbb{F}^n$ for all $i \in \mathbb{N}$.

Theorem 2.30. Let (R, m) be a local ring. Then any finitely generated projective R-module P is free over R.

Proof. Let $S \subseteq P$ be a minimal generating set. Let $S = \{x_1, \dots, x_n\}$ then $\overline{S} = \{x_1 + mP, \dots, x_n + mP\}$ is the basis of P/mP over R/m. Since $P = \langle S \rangle$ there exists a surjective map $\phi : R^n \to P$. Consider the exact sequence

(8)
$$0 \to \operatorname{Ker} \phi \xrightarrow{i} R^n \xrightarrow{\phi} P \to 0.$$

Then we have

$$\begin{split} \operatorname{Ker} \phi \otimes_R R/m & \stackrel{\tilde{i}}{\longrightarrow} R^n \otimes_R R/m & \stackrel{\tilde{\phi}}{\longrightarrow} P \otimes_R R/m & \longrightarrow 0 \\ & & & & & & & & \\ \mathbb{R} & & & & & & & \\ \frac{\operatorname{Ker} \phi}{m \operatorname{Ker} \phi} & \stackrel{\tilde{i}}{\longrightarrow} (R/m)^n & \stackrel{\tilde{\phi}}{\longrightarrow} P/mP & \longrightarrow 0 \end{split}$$

Since $\dim(R/m)^n = n = \dim P/mP$, $\tilde{\phi}$ is an isomorphism $\frac{\operatorname{Ker} \phi}{m \operatorname{Ker} \phi} = 0$. Since P is projective (17) is split exact. Therefore $R^n \cong \operatorname{Ker} \phi \oplus P$ and hence $\operatorname{Ker} \phi$ is finitely generated. By NAK, $\operatorname{Ker} \phi = 0$. Hence P is free.

Proposition 2.31. Let R be a commutative ring with 1 and $\phi: \mathbb{R}^k \to \mathbb{R}^n$ be an endomorphism. Then $n \leq k$.

Proof. Let $m \in \text{maxspec } R$. Consider the exact sequence

$$(9) 0 \to \operatorname{Ker} \phi \xrightarrow{i} R^k \xrightarrow{\phi} R^n \to 0.$$

of R- modules. We have

$$\operatorname{Ker} \phi \otimes_{R} R/m \xrightarrow{\tilde{i}} R^{k} \otimes_{R} R/m \xrightarrow{\tilde{\phi}} R^{n} \otimes_{R} R/m \longrightarrow 0$$

$$\| \mathcal{K} \qquad \| \mathcal{K} \qquad \| \mathcal{K}$$

$$\operatorname{Ker} \phi \otimes_{R} R/m \xrightarrow{\tilde{i}} (R/m)^{k} \xrightarrow{\tilde{\phi}} (R/m)^{n} \longrightarrow 0$$

Since $(R/m)^k$ is vector space over R/m and the map $\tilde{\phi}$ is onto, by Rank-Nullity theorem $n \leq k$.

Theorem 2.32. Let R be a commutative ring with 1 such that $R^m \cong R^n$ then m = n.

Proof. Let $\psi: R^m \to R^n$ be the isomorphism then there exists $\phi: R^n \to R^m$ such that $\phi \circ \psi = \mathrm{id}_{R^m}$ and $\psi \circ \phi = \mathrm{id}_{R^n}$. Since ψ is onto, $n \le m$ and ϕ is onto implies $m \le n$. Hence m = n.

For a commutative ring R with 1, we define rank $R^n = n$. For a finitely generated free module F, there exists $n \in \mathbb{R}$ such that $F \cong R^n$. So we define rank F = n. Let P be a finitely generated projective module over R. Define rank: spec $R \to P$ given by $p \mapsto \text{rank } (P_p)$.

Note 2.33. Let P be a projective module, then there exists Q such that $P \oplus Q \cong F$ where F is a free module. Let $p \in \operatorname{spec} R$, then $(P \oplus Q) \otimes_R R_p \cong F \otimes_R R_p \Rightarrow P_p \otimes_R Q_p \cong F_p$. Since P_p is a finitely generated over a local ring in R_p , and F_p is free R_p module, therefore P_p is projective R_p module and hence P_p is free over R_p . So rank (P_p) is well defined. Note that if R is local then the rank function is constant.

Theorem 2.34. Let R be a semi local ring and P be a finitely generated projective module over R of constant rank then P is free.

Proof. Let maxspec $R = \{m_1, \dots, m_r\}$ and $J = \bigcap_{i=1}^r m_i$ be the Jacobson radical. By Chinese Remainder theorem $P/JP \cong P/m_1P \times \dots \times P/m_rP$ and $R/J \cong R/m_1 \times \dots \times R/m_r$ and P/JP

is R/J module. Let $S=\{s_1,\cdots,s_k\}$ be a minimal generating set of P over R. We claim that $\overline{S}=\{s_1+JP,\cdots,s_k+JP\}$ be the minimal generating set of P/JP over R/J. If not, we assume that P/JP is generated by $\{s_1+JP,\cdots,s_{k-1}+JP\}$. Let $N=\langle s_1,\cdots,s_{k-1}\rangle$. Pick $x\in P$ then $x+JP=\sum_{i=1}^{k-1}(r_i+J)(s_i+JP)\Rightarrow x-\sum_{i=1}^{k-1}r_is_i\in JP\Rightarrow x\in N+JP\Rightarrow P=N+JP$. By NAK, P=N which is a contradiction. So our claim is proved. Thus P/JP is free R/J module. Now we consider the exact sequence

$$(10) 0 \to \operatorname{Ker} f \to R^k \to P \to 0.$$

Since P is projective, this above sequence is split exact and therefore Ker f is finitely generated. From (19)

$$\operatorname{Ker} f \otimes_R R/J \xrightarrow{i \otimes 1} R^k \otimes_R R/J \xrightarrow{f \otimes 1} P \otimes_R R/J \longrightarrow 0$$

$$\| \mathcal{E} \otimes_R R/J \xrightarrow{i \otimes 1} \| \mathcal{E} \otimes_R R/J \xrightarrow{f \otimes 1} P/JP \longrightarrow 0$$

We claim that $\{s_1 + JP, \dots, s_k + JP\}$ is a R/J basis of P/JP. If we prove the claim then $f \otimes 1$ is an isomorphism and $\operatorname{Ker} f/J \operatorname{Ker} f = 0 \Rightarrow \operatorname{Ker} f = 0$ by NAK and $P \cong R^k$ hence P is free.

Proof of the claim.

Note 2.35. Let F_i be free R_i module of same rank for all $1 \le i \le k$, then $F = F_1 \times \cdots \times F_k$ is free $R_1 \times \cdots \times R_k$ module. That is $F_i \cong (R_i)^l$ for some $l \in \mathbb{N}, 1 \le i \le n$. Then $F = F_1 \times \cdots \times F_k \cong (R_1)^l \times \cdots \times (R_k)^l \cong (R_1 \times \cdots \times R_k)^l$. We will prove this by induction on k. Let $\theta : R_1^l \times R_2^l \to (R_1 \times R_2)^l$ defined by $((x_1, \dots, x_l), (x_1', \dots, x_l')) \mapsto ((x_1, x_1'), \dots, (x_l, x_l'))$ be the required isomorphism.

Note 2.36. Since P is projective of constant rank, let $P_m \cong (R_m)^l$ for all $m \in mspecR$ and for some $l \in \mathbb{N}$. Let $P/mP \cong (R/m)^s$ for some $s \in \mathbb{N}$. Then $P/mP \otimes_R R_m \cong (R/m)^s \otimes_R R_m \Rightarrow \frac{P_m}{mP_m} \cong \left(\frac{R_m}{mR_m}\right)^s \cong \left(\frac{R_m}{mR_m}\right)^l \Rightarrow l = s$. Hence for any $m \in maxspecR$, $P/mP \cong (R/m)^l$. Therefore $P/JP \cong \prod_{i=1}^r P/m_i P \cong \prod_{i=1}^r (R/m_i)^l \cong \left(\prod_{i=1}^r R/m_i\right)^l \cong (R/J)^l$.

Question 2.37. Let R be a semi local ring and F be a finitely generated free module over R. Is any minimal generating set of F an R-basis of F?.

Definition 2.38. Let M be an R-module. M is said to be finitely presented if there exists finitely generated free modules F_1 and F_2 such that the following sequence is exact

$$F_1 \to F_2 \to M \to 0$$
.

Note 2.39. Suppose M is a finitely generated module over R. If Kerf is finitely generated then we have the following sequence

is exact because $Ker \phi = Im \phi = Im(i \circ \phi)$. Thus a finitely generated module may not be finitely presented. If R is Noetherian then it is true. Conversely any finitely presented module is finitely generated.

Theorem 2.40. Let R be a ring and M, N be R-modules and S be a flat R-algebra. Suppose M is of finite presentation then we have

$$Hom_R(M, N) \otimes_R S \cong Hom_S(M \otimes_R S, N \otimes_R S)$$
.

Proof. Since M is of finite presentation, there exists two finitely generated free module \mathbb{R}^p and \mathbb{R}^q such that

$$(11) R^p \to R^q \to M \to 0$$

is exact. Then for any R-module N the following sequence

(12)
$$0 \to \operatorname{Hom}_{R}(M, N) \to \operatorname{Hom}_{R}(R^{q}, N) \to \operatorname{Hom}_{R}(R^{p}, N)$$

is exact. As S is flat,

$$0 \to \operatorname{Hom}_R(M,N) \otimes_R S \to \operatorname{Hom}_R(R^q,N) \otimes_R S \to \operatorname{Hom}_R(R^p,N) \otimes_R S$$

is exact. Now consider the diagram

$$0 \longrightarrow \operatorname{Hom}_{R}(M,N) \otimes_{R} S \longrightarrow \operatorname{Hom}_{R}(R^{q},N) \otimes_{R} S \longrightarrow \operatorname{Hom}_{R}(R^{p},N) \otimes_{R} S$$

$$\downarrow^{\lambda_{M}} \qquad \qquad \downarrow^{\lambda_{R^{q}}} \qquad \qquad \downarrow^{\lambda_{R^{p}}}$$

$$0 \longrightarrow \operatorname{Hom}_{S}(M \otimes_{R} S, N \otimes_{R} S) \longrightarrow \operatorname{Hom}_{S}(R^{q} \otimes_{R} S, N \otimes_{R} S) \longrightarrow \operatorname{Hom}_{S}(R^{p} \otimes_{R} S, N \otimes_{R} S)$$

where λ_M : $\operatorname{Hom}_R(M,N) \otimes_R S \to \operatorname{Hom}_S(M \otimes_R S, N \otimes_R S)$ is defined by $\lambda_M(f \otimes s) = \tilde{f}$ and $\tilde{f}: M \otimes_R S \to N \otimes_R S$ is defined by $\tilde{f}(m \otimes s) = f(m) \otimes s$. By Universal property \tilde{f} is well defined. Since $\operatorname{Hom}_R(R^q,N) \otimes_R S \cong (\operatorname{Hom}_R(R,N))^q \otimes S \cong N^q \otimes S = (N \otimes_R S)^q$ and $\operatorname{Hom}_S(R^q \otimes_R S, N \otimes_R S) \cong \operatorname{Hom}_S(S^q, N \otimes_R S) \cong (N \otimes_R S)^q$. Thus the mappings λ_{R^q} and λ_{R^p} are isomorphism. Since the bottom sequence of the above diagram is exact and the diagram is commutative, λ_M is also an isomorphism.

Corollary 2.41. Let M and N be R-modules with M be of finite presentation. Then for each $p \in \operatorname{spec} R$,

$$(Hom_R(M,N)_p \cong Hom_{R^p}(M_p,N_p).$$

Proof. Take
$$S = R_p$$
.

Theorem 2.42. Let R be any ring and M be a finitely presented. Then the followings are equivalent:

- (1) The map $\theta: M \otimes_R M^* \to R$ defined by $\theta(m, f) = f(m)$ is an isomorphism.
- (2) There exists an R-module N such that $M \otimes_R N \cong R$.
- (3) $M_m \cong R_m$ for all $m \in maxspec R$.
- (4) $M_p \cong R_p$ for all $p \in \operatorname{spec} R$.
- (5) M is projective of rank 1.

Proof. (1) \Rightarrow (2) Take $N = M^*$.

$$(2) \Rightarrow (3) \ M \otimes_{R} N \cong R \Rightarrow M_{m} \otimes_{R} N_{m} \cong R_{m} \Rightarrow M_{m} \otimes_{R_{m}} N_{m} \cong R_{m} \Rightarrow (M_{m} \otimes_{R_{m}} N_{m}) \otimes_{R_{m}} \frac{R_{m}}{mR_{m}} \cong \frac{R_{m}}{mR_{m}} \Rightarrow M_{m} \otimes_{R_{m}} \frac{N_{m}}{mN_{m}} \cong \frac{R_{m}}{mR_{m}} \otimes_{R_{m}} \frac{N_{m}}{mN_{m}} \cong \frac{R_{m}}{mR_{m}}^{1}. \text{ Therefore, } \frac{M_{m}}{mM_{m}} \cong \frac{R_{m}}{mR_{m}}.$$
By NAK $M_{m} = \langle x \rangle, x \in M_{m} \Rightarrow M_{m} \cong \frac{R_{m}}{Ann_{R_{m}}(x)} \Rightarrow Ann_{R_{m}}(x)(M_{m} \otimes_{R_{m}} N_{m}) = 0 \Rightarrow Ann_{R_{m}}(x)(M_{m} \otimes_{R_{m}$

- $(3) \Rightarrow (4)$ Further localization.
- $(4) \Rightarrow (5)$ By definition.
- $(5) \Rightarrow (1)$ Since M is of finite presentation, $(\operatorname{Hom}_R(M,R))_m \cong \operatorname{Hom}_{R_m}(M_m,R_m)$ for all $m \in \max \operatorname{spec} R$, that is $(M^*)_m \cong (M_m)^*$. Now M is projective of rank 1 so $M_m \cong R_m$. So we have $M_m \otimes_{R_m} (M_m)^* \cong R_m \otimes_{R_m} (R_m)^* \cong R_m$. Again from the above equation,

$$M_{m} \otimes_{R_{m}} (M_{m})^{*} \cong M_{m} \otimes_{R_{m}} (M^{*})_{m}$$

$$\cong M_{m} \otimes_{R} (M^{*})_{m}$$

$$\cong M_{m} \otimes_{R} (M^{*} \otimes_{R} R_{m})$$

$$\cong (M \otimes_{R} R_{m}) \otimes_{R} (M^{*} \otimes_{R} R_{m})$$

$$\cong (M \otimes_{R} M^{*}) \otimes_{R} (R_{m} \otimes_{R} R_{m})$$

$$\cong (M \otimes_{R} M^{*}) \otimes_{R} R_{m}$$

$$\cong (M \otimes_{R} M^{*})_{m}$$

Hence $(M \otimes_R M^*)_m \cong R_m$ for all $m \in \text{maxspec } R$. By Local-global property $M \otimes_R M^* \cong R$.

Note 2.43. Let I and J be two ideals of R then $R/I \otimes_R R/J \cong \frac{R/I}{J(R/I)} \cong \frac{R/I}{(J+I)/I} \cong \frac{R}{I+J}$. (Check this isomorphism as ring.)

Picard group. Let \sum be the isomorphism classes of projective R-modules of rank 1. Define

$$\cdot: \sum \times \sum \to \sum ([P], [Q]) \mapsto [P \otimes_R Q]$$

 $[\]overline{{}^{1}\text{As }K(m) := \frac{R_{m}}{mR_{m}} \text{ and } K(m)^{l} \otimes_{K(m)} K(m)^{s} \cong K(m)^{ls}.}$

We need to show that (\sum, \cdot) is a group with inverse of [P] is $[P^*]$. This group is called Picard group of R and it is denoted by $Pic\ R$. Let P,Q be two projective module of rank 1 then

$$(P \otimes_R Q) \otimes_R R_m \cong P_m \otimes_R Q_m \cong P_m \otimes_{R_m} Q_m \cong R_m \otimes_{R_m} R_m \cong R_m.$$

Thus $P \otimes_R Q$ is also a projective module of rank 1. By Corollary 14.88 $(M^*)_p \cong (M_p)^* \cong (R_p)^* \cong R_p$ for all $p \in \operatorname{spec} R$. Therefore M is projective of rank 1 implies M^* is also projective of rank 1.

Free, Projective and Flat resolution.

Definition 2.44. Let M be an R-module. A free (or projective or flat) resolution of M over R is an exact sequence of R-modules

$$\cdots \rightarrow P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \rightarrow 0$$

where each P_i is a free (or projective or flat respt.) R-module.

Lemma 2.45. Let M be an R-module. Then projective resolution of M over R exists.

Proof. For any module M, there exists a free module F and a surjective map $F_0 \xrightarrow{f_0} M \to 0$. Consider the Ker f_0 , then there exists a free module F_1 with the diagram

The above diagram is exact since $\operatorname{Ker} f_0 = \operatorname{Im} \pi_1 = \operatorname{Im} i \circ \pi_1 = \operatorname{Im} f_1$ since i is the inclusion map and π_1 is onto. Next we consider $\operatorname{Ker} f_1$, then there exists F_2 such that

Inductively we can construct a free resolution of M. Since every free module is projective and therefore flat, we have a projective (or flat) resolution.

Tor and Ext.

Definition 2.46. Let M be an R-module. We consider a projective resolution of M that is

$$\mathcal{C} \equiv \cdots \rightarrow P_2 \xrightarrow{f_2'} P_1 \xrightarrow{f_1'} P_0 \xrightarrow{f_0'} M \rightarrow 0.$$

Let N be another R-module. We consider,

(1)
$$\mathcal{C} \otimes_{R} N \equiv \cdots \rightarrow P_{2} \otimes_{R} N \xrightarrow{f_{2}} P_{1} \otimes_{R} N \xrightarrow{f_{1}} P_{0} \otimes_{R} N \xrightarrow{f_{0}} M \otimes_{R} N \rightarrow 0$$

$$where \ f_{i} = f'_{i} \otimes 1 \ for \ all \ i \in \mathbb{N}. \ Then \ we \ define \ Tor_{i}^{R}(M, N) := H_{i}(\mathcal{C} \otimes_{R} N) = \frac{Ker f_{i}}{Im f_{i+1}}.$$
(2)
$$Hom_{R}(\mathcal{C}, N) \equiv \cdots \xleftarrow{f_{2}^{*}} Hom_{R}(P_{1}, N) \xleftarrow{f_{1}^{*}} Hom_{R}(P_{0}, N) \xleftarrow{f_{0}^{*}} Hom_{R}(M, N) \leftarrow 0.$$

$$we \ define \ Ext_{R}^{i}(M, N) := H^{i}(Hom_{R}(\mathcal{C}, \mathcal{N})) = \frac{Ker f_{i+1}^{*}}{Im f_{i}^{*}}.$$

Remark 2.47. These definition doesn't depend on the choice of resolution of M.

3. Integral Dependence and Valuation

Definition 3.1. Let B be a ring and $A \subseteq B$ be a subring. An element $x \in B$ is said to be integral over A if x is a root of a monic polynomial in A[T].

Proposition 3.2. Let $A \subseteq B$ where A and B are commutative ring with 1. Then the followings are equivalent:

- (1) $x \in B$ is integral over A.
- (2) A[x] is a finitely generated A- module.

Proof. (1) \Rightarrow (2) We note that $A[x] = \text{span } \{1, x, x^2, \dots\}$ over A. As $x \in B$ is integral over A, there exist $f(T) = T^n + a_{n-1}T^{n-1} + \dots + a_0 \in A[T]$ such that f(x) = 0. Let $g(T) \in A[T]$ then by division algorithm,

$$g(T) = q(T)f(T) + r(T), r(T) = 0$$
 or $\deg r(T) < \deg f(T) = n$.

Therefore, $g(x) = r(x) \in \text{span } \{1, x, \dots, x^{n-1}\}$. Hence A[x] is a finitely generated A-module and $A[x] = \langle 1, x, \dots, x^{n-1} \rangle$.

(2) \Rightarrow (1) Suppose A[x] is a finitely generated A-module. Let $\{f_1, \dots, f_r\}$ be a finite generating set of A[x] over A. Let $d > \deg f_i(T), 1 \le i \le r$. Since $x^d \in A[x]$,

$$x^{d} = c_{1}f_{1} + \dots + c_{r}f_{r}, c_{i} \in A[x]; 1 \leq i \leq r.$$

Therefore x satisfies a polynomial equation $T^d - \sum_{i=1}^r c_i f_i(T) \in A[T]$. So, x is integral over A. \square

Theorem 3.3 (Going up theorem). Let B be a ring and A be a subring of B such that B is integral over A. Then A is field if and only if B is field.

Proof. Suppose A is field. Pick $u \in B \setminus A$, since u is integral over $A, A[u] = A(u) \subseteq B$. Therefore $u^{-1} \in B$.

Conversely, Suppose B is a field. Let $a \in A \subseteq B \Rightarrow a^{-1} \in B$. Since B is integral over A, a^{-1} satisfies a monic polynomial in A that is $(a^{-1})^n + \cdots + a_1(a^{-1}) + a_0 = 0$. Clearing the denominator,

$$a^{-1} = -(a_{n-1} + \dots + a_0 a^{n-1}) \in A.$$

Lemma 3.4. Let D be an integral domain and $f \in D[X_1, \dots, X_n]$ and $N \ge 1$ be an integer such that N > total degree of f. Suppose $\phi \in Aut_D D[X_1, \dots, X_n]$ such that $\phi(X_i) = X_i + X_n^{N^i}, 1 \le i \le n-1$ and $\phi(X_n) = X_n$. Then the highest degree term of $\phi(f)$ involving X_n is of the form cX_n^p where $c \in D$.

Proof. We consider any non zero term of f which is of the form $c_{\alpha}X_1^{a_1}\cdots X_n^{a_n}$ where $\alpha=(a_1,\cdots,a_n)$ and $c_{\alpha}\neq 0$. Then

$$\phi(c_{\alpha}X_1^{a_1}\cdots X_n^{a_n}) = c_{\alpha}\left(X_1 + X_n^N\right)^{a_1}\left(X_2 + X_n^{N^2}\right)^{a_2}\cdots\left(X_{n-1} + X_n^{N^{n-1}}\right)^{a_{n-1}}X_n^{a_n}.$$

After expanding we get the highest degree term is $c_{\alpha}X_{n}^{a_{n}+a_{1}N+\cdots+a_{n-1}N^{n-1}}$. If there exist $\beta=(b_{1},\cdots,b_{n})$ such that $c_{\beta}X_{1}^{b_{1}}\cdots X_{n}^{b_{n}}$ is a term of f and the highest degree power of $\phi(c_{\beta}X_{1}^{b_{1}}\cdots X_{n}^{b_{n}})=c_{\beta}X_{n}^{b_{n}+b_{1}N+\cdots+b_{n-1}N^{n-1}}$ cancels $c_{\alpha}X_{n}^{a_{n}+a_{1}N+\cdots+a_{n-1}N^{n-1}}$ then $c_{\beta}=-c_{\alpha}$ and $b_{N}+b_{1}N+\cdots+b_{n-1}N^{n-1}=a_{n}+a_{1}N+\cdots+a_{n-1}N^{n-1}\Rightarrow(b_{1},\cdots,b_{n})=(a_{1},\cdots,a_{n})$ (by division algorithm) hence $\alpha=\beta$ and which implies $c_{\alpha}X^{\alpha}=-c_{\beta}X^{\beta}$ which is a contradiction as both are monomials of f.

Definition 3.5. Let K be a field. The elements y_1, \dots, y_q in some K-algebra are called algebraically independent if there is no polynomial $p \in K[X_1, \dots, X_q]$ such that $p(y_1, \dots, y_q) = 0$.

Observation 3.6. Suppose y_1, \dots, y_q are algebraically independent over K. Then the map θ : $K[X_1, \dots, X_q] \to K[y_1, \dots, y_q]$ defined by $X_i \mapsto y_i, 1 \leq i \leq q$ is an isomorphism. Conversely, suppose $K[X_1, \dots, X_q] \cong K[y_1, \dots, y_q]$ and $\phi: K[X_1, \dots, X_n] \to K[y_1, \dots, y_q]$ be an isomorphism. Let $\alpha: K[X_1, \dots, X_q] \to K[X_1, \dots, X_q]$ be a map where $\alpha(X_i) = p_i$ and $p_i = \phi^{-1}(y_i), 1 \leq i \leq q$. We note that $Im \phi^{-1} = Im \alpha = K[p_1, \dots, p_q]$. Because ϕ^{-1} is an isomorphism, we have $K[p_1, \dots, p_q] = K[X_1, \dots, X_q]$, hence α is surjective and thus α is an isomorphism. Now $\phi \circ \alpha(X_i) = y_i, 1 \leq i \leq q$ and $\phi \circ \alpha$ is an isomorphism. Suppose y_1, \dots, y_q are algebraically dependent so there exist $0 \neq f(X_1, \dots, X_q) \in K[X_1, \dots, X_q]$ such that $f(y_1, \dots, y_q) = 0 \Rightarrow \phi \circ \alpha(f) = 0 \Rightarrow f = 0$ which is a contradiction.

Lemma 3.7 (Vasconcelous). Let R be a ring and M be a finitely generated R-module. $\phi: M \to M$ is a surjective R-linear map then ϕ is an isomorphism.

Proof. We consider M as an R[X] module via ϕ , i.e., the scalar multiplication map $\cdot : R[X] \times M \to M$ is $(f,m) \mapsto f(\phi)m$. Since ϕ is surjective, $\phi(M) = M \Rightarrow X \cdot M = M$. Take $I = \langle X \rangle$, so by NAK there exist $f(X) \in I$ such that (1+f(X))M = 0. Let $m \in \text{Ker } \phi \Rightarrow \phi(m) = X \cdot m = 0$. So $(1+f(X)) \cdot m = m + 0 = m$ (as $f(x) \in I$). Therefore m = 0 as (1+f(X))M = 0.

Lemma 3.8. Let R be an Noetherian ring. If $\phi : R \to R$ is an epimorphism then ϕ is an isomorphism.

Proof. Note that we have the following ascending chain of ideals of R,

$$\operatorname{Ker} \phi \subseteq \operatorname{Ker} \phi^2 \subseteq \cdots$$
.

Since R is Noetherian, $\operatorname{Ker} \phi^{n_0} = \operatorname{Ker} \phi^{n_0+k}$ for some $n_0 \in \mathbb{N}$ and for all $k \in \mathbb{N}$. Let $x \in \operatorname{Ker} \phi$, as ϕ is surjective, ϕ^n is also surjective for all $n \in \mathbb{N}$, hence there is $y \in R$ such that $\phi^{n_0}(y) = x \Rightarrow \phi^{n_0+1}(y) = \phi(x) = 0 \Rightarrow y \in \operatorname{Ker} \phi^{n_0+1} = \operatorname{Ker} \phi^{n_0} \Rightarrow \phi^{n_0}(y) = 0 \Rightarrow x = 0$.

Corollary 3.9. Let M be an Noetherian R-module and $\phi: M \to M$ be a surjective R-linear map. Then ϕ is an isomorphism.

Note 3.10. Note that the statement is not true if surjectivity is replaced by injectivity. For example let $R = \mathbb{Z}$ and $\phi : \mathbb{Z} \to \mathbb{Z}$ be the map where $\phi(x) = 2x$. Here ϕ is injective but not surjective.

Theorem 3.11 (Noether Normalization lemma). Let K be a field and suppose $A = K[r_1, \dots, r_m]$ is a finitely generated K-algebra. Then for some $q, 0 \le q \le m$, there are algebraically independent elements $y_1, \dots, y_q \in A$ such that A is integral over $K[y_1, \dots, y_q]$.

Proof.

Example 3.12. Let $A = K[X,Y,Z]/\langle Y - X^2, Y^2 - XZ \rangle = K[r_1,r_2,r_3]$ where $r_1 = X + \langle Y - X^2, Y^2 - XZ \rangle$, $r_2 = Y + \langle Y - X^2, Y^2 - XZ \rangle$ and $r_3 = Z + \langle Y - X^2, Y^2 - XZ \rangle$. Let $\phi : K[X,Y,Z] \rightarrow K[T]$ be a map defined by $X \mapsto T,Y \mapsto T^2$ and $Z \mapsto T^3$. Then ϕ is a ring morphism and $Ker \phi = \langle Y - X^2, Y^2 - XZ \rangle$. By first isomorphism theorem $K[T] \cong A$.

Theorem 3.13 (Weak Nullstellensatz). Let K be an algebraically closed field. Then \mathfrak{m} is a maximal ideal in a polynomial ring $K[X_1, \dots, X_n]$ if and only if $\mathfrak{m} = \langle X_1 - a_1, \dots, X_n - a_n \rangle$ for some $a_1, \dots, a_n \in K$. Equivalently, there is a one to one correspondence between points in K^n and maximal ideals in $K[X_1, \dots, X_n]$.

Proof. It is easy to check that $\langle X_1-a_1,\cdots,X_n-a_n\rangle\in \operatorname{maxspec} K[X_1,\cdots,X_n]$. Conversely, suppose $\mathfrak{m}\in \operatorname{maxspec} K[X_1,\cdots,X_n]$ and denote $x_i=X_i+\mathfrak{m}\in A/\mathfrak{m}, 1\leq i\leq n$. Then A/\mathfrak{m} is a finitely generated K-algebra. By Noether normalization lemma, there exist $y_1,\cdots,y_q\in A/\mathfrak{m}; 0\leq q\leq n$, algebraically independent elements over K such that A/\mathfrak{m} is integral over $K[y_1,\cdots,y_q]$. Since A/\mathfrak{m} is field and $A/\mathfrak{m}|K[y_1,\cdots,y_q]$ is an integral extension, $K[y_1,\cdots,y_q]$ is also field. But $K[y_1,\cdots,y_q]\cong K[T_1,\cdots,T_q]$, therefore q=0 and $A/\mathfrak{m}|K$ is an algebraic extension. As K is algebraically closed, $A/\mathfrak{m}=K$ and therefore $x_i\in K$. Let $X_i+\mathfrak{m}=a_i+\mathfrak{m}\Rightarrow X_i-a_i\in \mathfrak{m}, 1\leq i\leq m\Rightarrow \langle X_1-a_1,\cdots,X_m-a_m\rangle\subseteq \mathfrak{m}$. Since both are maximal ideals of $K[X_1,\cdots,X_n]$. We have $\mathfrak{m}=\langle X_1-a_1,\cdots,X_n-a_n\rangle$.

Remark 3.14. The result is not true if K is not algebraically closed. For example take $K = \mathbb{R}$ and $m = \langle X^2 + 1 \rangle$.

Theorem 3.15 (Hilbert's Nullstellensatz-Zariski form). Let K be a field and E be a finitely generated K-algebra. If E is field then E|K is a finite algebraic extension.

Proof. Let $E = K[r_1, \dots, r_n]$. Since E is finitely generated K-algebra, by Noether normalization lemma, there exist $y_1, \dots, y_q \in E; 0 \leq q \leq n$ algebraically independent over K such that E is

integral over $K[y_1, \dots, y_q]$. But E is field and $E|K[y_1, \dots, y_q]$ is integral, this implies $K[y_1, \dots, y_q]$ is also a field and therefore q = 0. Hence E|K is algebraic. Since E is finitely generated, extension is also finite.

Definition 3.16. Let K be a field. An affine space over K of dimension n is just the set $K^n := \{(a_1, \dots, a_n) : a_i \in K, 1 \le i \le n\}.$

Notation. An affine space over K of dimension n will be denoted by \mathbb{A}_K^n .

Definition 3.17. (1) Let $S \subseteq \mathbb{A}^n_K$. Define

$$I(S) := \{ f \in K[X_1, \dots, X_n] : f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in S \}.$$

(2) Let $T \subseteq K[X_1, \dots, X_n]$. Then we define

$$Z(T) = \{(a_1, \dots, a_n) \in \mathbb{A}_K^n : f(a_1, \dots, a_n) = 0 \text{ for all } f \in T\}.$$

Note 3.18. (1) The set I(S) in the Definition 1.17. (1) is an ideal of $K[X_1, \dots, X_n]$ and (2) The set in the Definition 1.17. (2) is called 'Algebraic set'.

Observation 3.19 (Zariski topology on \mathbb{A}_K^n). We define a topology on \mathbb{A}_K^n whose closed sets are algebraic sets. Check that this is a topology on \mathbb{A}_K^n .

Theorem 3.20 (Nullstellensatz). Let K be an algebraically closed field and $I \subseteq K[X_1, \dots, X_n]$ be an ideal. Then $Z(I) = \emptyset$ if and only if $1 \in I$.

Proof. If $1 \in I$ then it is clear that $Z(I) = \emptyset$. Conversely, suppose $Z(I) = \emptyset$ but $1 \notin I$, then there exist a maximal ideal \mathfrak{m} of $K[X_1, \dots, X_n]$ such that $I \subseteq \mathfrak{m}$. Since K is algebraically closed, $\mathfrak{m} = \langle X_1 - a_1, \dots, X_n - a_n \rangle$ for some $a_1, \dots, a_n \in K$. But $(a_1, \dots, a_n) \in Z(\mathfrak{m}) \subseteq Z(I)$ which is a contradiction. Hence $1 \in I$.

Remark 3.21. It is not true if K is not algebraically closed. For example lets take $K = \mathbb{R}$ and $I = \langle X^2 + 1 \rangle$. Then I is a proper ideal of $\mathbb{R}[X]$ but $Z(I) = \emptyset$.

Theorem 3.22 (Strong Nullstellensatz). Let K be an algebraically closed field and $J \subseteq K[X_1, \dots, X_n]$ be an ideal. Then $I(Z(J)) = \sqrt{J}$.

Proof. Let $(a_1, \dots, a_n) \in Z(J)$ and $g \in \sqrt{J} \Rightarrow g^N \in J$ for some $N \in \mathbb{N}$. Then $g^N(a_1, \dots, a_n) = 0 \Rightarrow g(a_1, \dots, a_n) = 0 \Rightarrow g \in I(Z(J)) \Rightarrow \sqrt{J} \subseteq I(Z(J))$. Since $K[X_1, \dots, X_n]$ is Noetherian, J is finitely generated. Let $J = \langle f_1, \dots, f_r \rangle$ and $g \in I(Z(J))$. Introduce an extra variable Z and consider $f_1, \dots, f_r, 1 - Zg \in K[X_1, \dots, X_n, Z]$. Let $\mathfrak{A} = \langle f_1, \dots, f_r, 1 - Zg \rangle$. We claim that $Z(\mathfrak{A}) = \emptyset$. If $(a_1, \dots, a_n, b) \in Z(\mathfrak{A}) \Rightarrow (a_1, \dots, a_n) \in Z(J)$. Since $g \in I(Z(J)) \Rightarrow g(a_1, \dots, a_n) = 0 \Rightarrow 1 - bg(a_1, \dots, a_n) = 0$ leads to a contradiction. Hence our claim is proved and by Hilbert's Nullstellensatz, $1 \in \mathfrak{A}$. Let

(13)
$$1 = h_1 f_1 + \dots + h_r f_r + h(1 - Zg)$$

where $h_i \in K[X_1, \dots, X_n, Z], 1 \leq i \leq r, h \in K[X_1, \dots, X_n, Z]$. We consider the ring morphism $\theta : K[X_1, \dots, X_n, Z] \to K(X_1, \dots, X_n)$ defined by $X_i \mapsto X_i, 1 \leq i \leq n$ and $Z \mapsto 1/g$. We apply

$$\theta$$
 on (1) and we have $1 = \sum_{i=1}^r \theta(h_i)\theta(f_i) \Rightarrow \sum_{i=1}^r f_i \frac{\tilde{h_i}}{g^{n_i}}, \tilde{h_i} \in K[X_1, \cdots, X_n], 1 \leq i \leq n$. Clearing the denominator, $g^P = \sum_{i=1}^r f_i \alpha_i \Rightarrow g \in \sqrt{J}$. Therefore $I(Z(J)) = \sqrt{J}$.

Note 3.23. The above method is known as Rabinowitch's trick.

Theorem 3.24 (Artin-Tate). Let $A \subseteq B \subseteq C$ be rings. Suppose that A is Noetherian and C is finitely generated as an A-algebra and that C is either

- (1) finitely generated as a B-module or
- (2) integral over B

then B is finitely generated as an A-algebra.

Proof. Since (1) and (2) are equivalent, we assume (1). Let $C = A[x_1, \dots, x_n]$ $(x_1, \dots, x_n]$ generates C as an A-algebra) and y_1, \dots, y_m generates C as a B-module. As $x_i \in C, 1 \le i \le n$ we have

(*)
$$x_i = \sum_{j=1}^m b_{ij} y_j, b_{ij} \in B, 1 \le i \le n \text{ and } (**) \quad y_i y_j = \sum_{k=1}^m b_{ijk} y_k, 1 \le i \le m, \le j \le m.$$

Let B_0 be the algebra over A generated by b_{ij} and b_{ijk} . By Hilbert basis theorem, B_0 is Noetherian (since A is Noetherian). Let $f \in C = A[x_1, \dots, x_n]$. Substituting (*) and (**) repeatedly we can write $f = \sum_{i=1}^m h_i y_i, h_i \in B_0$. Therefore C is finitely generated as B_0 -module. Hence C is Noetherian B_0 -module. As B is a submodule of C, so B is finitely generated B_0 -module and B_0 is finitely generated A-algebra. \Box

Theorem 3.25. Let F|K be an algebraic extension and $S = \{\alpha_1, \dots, \alpha_n\} \subseteq F$, then $K[\alpha_1, \dots, \alpha_n] = K(\alpha_1, \dots, \alpha_n)$. Consider the map $\theta : K[X_1, \dots, X_n] \to K(\alpha_1, \dots, \alpha_n)$ is defined by $X_i \mapsto \alpha_i, 1 \le i \le n$. Then θ is a K-algebra homomorphism and $Ker\theta = \langle f_1(X_1), f_2(X_1, X_2), \dots, f_n(X_1, \dots, X_n) \rangle$.

Proof. Since $K(\alpha_1)|K$ is an algebraic extension, we consider the minimal polynomial $f_1(X_1) \in K[X_1]$ of α_1 over K. Again α_2 is algebraic over K so over $K(\alpha_1)$. Let $f_2(X_1, X_2) \in K[X_1, X_2]$ such that $f_2(\alpha_1, X_2) \in K(\alpha_1)[X_2]$ is the minimal polynomial of α_2 over $K(\alpha_1)$. Here we note that $K[\alpha_1] = K(\alpha_1)$. Therefore we can consider the coefficient of the minimal polynomial of α_2 over $K(\alpha_1)$ are in $K[\alpha_1]$. Therefore we have $K[X_1]/f_1(X_1) \cong K(\alpha_1)$ and $K(\alpha_1)[X_2]/f_2(\alpha_1, X_2) \cong K(\alpha_1, \alpha_2)$. Inductively we can consider $f_i(X_1, \dots, X_i)$ such that

$$K(\alpha_1, \dots, \alpha_{i-1})[X_i]/f_i(X_1, \dots, X_i) \cong K(\alpha_1, \dots, \alpha_i).$$

We observe that each $f_i(X_1, \dots, X_i) \in K[X_1, \dots, X_i]$ is monic in X_i . We claim that $\operatorname{Ker} \theta = \langle f_1(X_1), \dots, f_n(X_1, \dots, X_n) \rangle$. By construction of $f_i(X_1, \dots, X_i)$, we have $f_i(X_1, \dots, X_i) \in \operatorname{Ker} \theta$ for all $1 \leq i \leq n$. We assume that degree of X_i in $f_i(X_1, \dots, X_i)$ is $d_i, 1 \leq i \leq n$. Now pick $g(X_1, \dots, X_n) \in \operatorname{Ker} \theta$. By division algorithm

(14)
$$g(X_1, \dots, X_n) = q(X_1, \dots, X_n) f_n(X_1, \dots, X_n) + r_0^{(n)}(X_1, \dots, X_{n-1}) + \dots + r_{d_n-1}^{(n)}(X_1, \dots, X_{n-1}) X_n^{d_n-1}.$$

Again dividing
$$r_i^{(n)}(X_1,\cdots,X_{i-1})$$
 by $f_{n-1}(X_1,\cdots,X_{n-1}), 1\leq i\leq d_n-1$ we get

$$r_i^{(n)}(X_1, \dots, X_{n-1}) = q_i(x_1, \dots, X_{n-1}) f_{n-1}(X_1, \dots, X_{n-1}) + r_0^{(n-1)}(X_1, \dots, X_{n-2}) + \dots + r_{d_{n-1}-1}^{(n-1)}(X_1, \dots, X_{n-2}) X_{n-1}^{d_{n-1}-1}$$

for all $1 \le i \le d_n - 1$. Repeated application of division algorithm shows that

$$r_i^{(2)}(X_1) = q_i(X_1)f_1(X_1) + r_0^{(1)} + r_1^{(1)}X_1 + \dots + r_{d_1-1}^{(1)}X_1^{d_1-1}$$

for all $1 \leq i \leq d_2 - 1$. Putting all these together in (14) and applying θ both sides, we get $g(\alpha_1, \dots, \alpha_n) = 0$ that is $g \in \langle f_1(X_1), \dots, f_n(X_1, \dots, X_n) \rangle$. Therefore our claim is proved.

4. Primary decomposition

Definition 4.1. (1) Let A be a ring and M be an A-module. A prime ideal p is called associated prime ideal of M if there exists $x \in M$ such that $p = Ann_A(x)$. We define

$$Ass_A(M) = \{ p \in spec A : p \text{ is an associated prime of } M \}.$$

(2) For an ideal $I \subseteq A$, the associated primes of the A-modules A/I are referred to as the prime divisors of I.

Observation 4.2. Let A be a Noetherian ring and M be a non zero A-module. We consider

$$\sum = \{Ann_A(x) : x \in M \setminus \{0\}\}.$$

Since A is Noetherian, every chain of ideals has an upper bound. By Zorn's lemma, \sum has a maximal element. We claim that maximal elements of $\sum \subseteq Ass_A(M)$. In particular $Ass_A(M) \neq \emptyset$ if $M \neq 0$. Let $Ann_A(y)$ is a maximal element of \sum for some $y \in M \setminus \{0\}$. Let $ab \in Ann_A(y) \Rightarrow (ab)y = 0 \Rightarrow a(by) = 0$. If $by \neq 0$ then $a \in Ann_A(by)$. Since $Ann_A(y) \subseteq Ann_A(by)$ and $Ann_A(y)$ is a maximal element in \sum , we have $Ann_A(y) = Ann_A(by) \Rightarrow a \in Ann_A(y)$ that is $Ann_A(y) \in Ass_A(M)$.

Corollary 4.3. The set of all zero divisors of $M, Z(M) = \bigcup_{p \in Ass_A(M)} p$.

Proof. Let $a \in Z(M)$ then there is $x_0 \in M \setminus \{0\}$ such that $ax_0 = 0 \Rightarrow a \in \operatorname{Ann}_A(x_0)$. Consider a maximal element of \sum containing $\operatorname{Ann}_A(x_0)$. Since maximal elements of \sum are associated primes we have $Z(M) \subseteq \bigcup_{p \in \operatorname{Ass}_A(M)} p$. Now pick $b \in \bigcup_{p \in \operatorname{Ass}_A(M)} p \Rightarrow b \in p$ for some $p \in \operatorname{Ass}_A(M)$ that is bx = 0 for some non zero $x \in M \Rightarrow b \in Z(M)$. This completes the proof.

Observation 4.4. Let A be a ring and M be an A-module, $p \in spec A$. $p \in Ass_A(M)$ if and only if there is an exact sequence $0 \to A/p \to M$.

Proof. Let $p \in \operatorname{Ass}_A(M)$ then p is of the form $\operatorname{Ann}_A(x)$ for some $x \in M$. Define $\theta_x : A \to M$ by $\theta_x(a) = ax$. Then $\operatorname{Ker} \theta_x = p$ and by first isomorphism theorem $A/p \hookrightarrow M$.

Conversely, there is an exact sequence $0 \to A/p \xrightarrow{f} M$. Pick $a+p \in A/p$ such that $a \notin p$ and consider the element f(a+p)=m. We shall show that $\operatorname{Ann}_A(m)=p$. Let $s \in \operatorname{Ann}_A(m) \Rightarrow sm=0 \Rightarrow sf(a+p)=0 \Rightarrow f(sa+p)=0 \Rightarrow sa \in p \Rightarrow s \in p$ (since $a \notin p$). Similarly take $b \in p$. Now

$$sx = sf(a + p) = f(sa + p) = f(0 + p) = 0.$$

Therefore, $s \in \text{Ann}_A(x)$.

Observation 4.5. Let A be a ring, M be an A-module and S be a multiplicative set in A. Then $Ass_{S^{-1}A}(S^{-1}M) \supseteq \{S^{-1}p : p \in Ass_A(M) \text{ and } p \cap S = \emptyset\}.$

Equality occurs if A is Noetherian.

Proof. Let $p \in \mathrm{Ass}_A(M)$ and $p \cap S = \emptyset$. We have an exact sequence $0 \to A/p \to M$ of A-module. Since $S^{-1}A$ is flat,

Therefore by previous observation $S^{-1}p \in \mathrm{Ass}_{S^{-1}A}(S^{-1}M)$.

Suppose A is Noetherian. Let $S^{-1}p \in \operatorname{Ass}_{S^{-1}A}(S^{-1}M)$. Then $S^{-1}p$ is of the form $\operatorname{Ann}_{S^{-1}A}(x/s)$ and $p \cap S = \emptyset$. We observe that $\operatorname{Ann}_{S^{-1}A}(x/s) = \operatorname{Ann}_{S^{-1}A} = (x/1)$ as $\frac{x}{s} = \frac{1}{s} \cdot \frac{x}{1}$ and $\frac{1}{s}$ is unit in $S^{-1}A$. Consider the set

$$G = \{ \operatorname{Ann}_A(ux) : u \in S \text{ and } ux \neq 0 \}.$$

Corollary 4.6. Let A be a Noetherian ring and M be an A-module. Then $p \in Ass_A(M)$ if and only if $pA_p \in Ass_{A_p}(M_p)$.

Theorem 4.7. Let A be a ring and

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

be an exact sequence of A-module. Then $Ass_A(M) \subseteq Ass_A(M') \cup Ass_A(M'')$.

Proof. Let $p \in \mathrm{Ass}_A(M)$. Then there is an exact sequence $0 \to A/p \to M$. Let $\theta(A/p) = N$ be a submodule of M.

Case 1. If $N \cap f(M') \neq \{0\}$. Let $\theta(a+p) \in N \cap f(M')$. We know that $\operatorname{Ann}_A(\theta(a+p)) = p$. Let $\theta(a+p) = f(x')$ for some $x' \in M'$. Since f is injective, $\operatorname{Ann}_A(f(x')) = \operatorname{Ann}_A(x') \Rightarrow p \in \operatorname{Ass}_A(M')$. Case 2. If $N \cap f(M') = \{0\} \Rightarrow N \cap \operatorname{Ker} g = \{0\}$. Let $\theta(a+p) \in N$ where $a \notin p$. We claim that $\operatorname{Ann}_A(g \circ \theta(a+p)) = \operatorname{Ann}_A(\theta(a+p))$. It is quite obvious that $\operatorname{Ann}_A(\theta(a+p)) \subseteq \operatorname{Ann}_A(g \circ \theta(a+p))$. For the reverse inclusion, Let $\alpha \in \operatorname{Ann}_A(g \circ \theta(a+p)) \Rightarrow \alpha g(\theta(a+p)) = 0 \Rightarrow g(\alpha \theta(a+p)) = 0 \Rightarrow \alpha \theta(a+p) \in \operatorname{Ker} g \cap N = \{0\} \Rightarrow \operatorname{Ann}_A(\theta(a+p))$.

Corollary 4.8. Let A be a ring and M be an A-module, N a submodule of M. Then,

- (1) $Ass_A(M) \subseteq Ass_A(N) \cup Ass_A(M/N)$.
- (2) $Ass_A(N) \subseteq Ass_A(M)$.

When does the equality holds in (1)?

Let A be a Noetherian ring, M a finitely generated A-module. Then we know that $\mathrm{Ass}_A(M) \neq \emptyset$. Consider $p_1 \in \mathrm{Ass}_A(M)$, then there exists an exact sequence $0 \to A/p_1 \xrightarrow{\theta_1} M$. Let $\theta_1(A/p_1) = M_1 \subseteq M$. If $M/M_1 = 0$ then we stop. If not, then pick $p_2 \in \mathrm{Ass}_A(M/M_1)$ and we have an exact sequence $0 \to A/p_2 \xrightarrow{\theta_2} M/M_1$. Let $\theta_2(A/p_2) = M_2/M_1$ where $M_1 \subseteq M_2 \subseteq M$. If $\frac{M/M_1}{M_2/M_1} \cong M/M_2 = 0$ then we stop, otherwise pick $p_3 \in \mathrm{Ass}_A(M/M_2)$ and continue this process. Then we get a chain of submodules

$$(*) 0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$$

of M where $M_i/M_{i-1} \cong A/p_i$ and $p_i \in \mathrm{Ass}_A(M/M_{i-1})$. Since M is Noetherian, the chain (*) becomes stationary after some finite steps. So there exists $k \in \mathbb{N}$ such that $M_k = M$. For each

 $1 \le i \le k$ we have an exact sequence

$$0 \to M_{i-1} \to M_i \to M_i/M_{i-1} \to 0$$

and by the previous corollary we have $\operatorname{Ass}_A(M_i) \subseteq \operatorname{Ass}_A(M_{i-1}) \cup \operatorname{Ass}_A(M_i/M_{i-1})$. If we put i = k then

$$\operatorname{Ass}_{A}(M) \subseteq \operatorname{Ass}_{A}(M_{k-1}) \cup \operatorname{Ass}_{A}(M/M_{k-1})$$

$$\subseteq \operatorname{Ass}_{A}(M_{k-2}) \cup \operatorname{Ass}_{A}(M_{k-1}/M_{k-2}) \cup \operatorname{Ass}_{A}(M/M_{k-1})$$

$$\vdots$$

$$\subseteq \operatorname{Ass}_{A}(M_{0}) \cup \left(\bigcup_{i=1}^{k} \operatorname{Ass}(M_{i}/M_{i-1})\right).$$

Note that $\operatorname{Ass}_A(M_0) = \emptyset$ and since $M_i/M_{i-1} \cong A/p_i$, so $\operatorname{Ass}_A(M_i/M_{i-1}) = \{p_i\}$. Therefore $\operatorname{Ass}_A(M) \subseteq \{p_1, \dots, p_n\}$.

Corollary 4.9. If A is Noetherian and M is a finitely generated A-module then $Ass_A(M)$ is finite.

Theorem 4.10. Let A be a Noetherian ring and M be an A-module. Then $Ass_A(M) \subseteq Supp (M)$.

Proof. Let $p \in \mathrm{Ass}_A(M)$ then there is an exact sequence $0 \to A/p \to M$. Since A_p is flat,

$$0 \longrightarrow A/p \otimes_A A_p \longrightarrow M \otimes_A A_p \qquad \text{is exact}$$

$$\parallel \rangle \qquad \qquad \parallel \rangle$$

$$0 \longrightarrow \frac{A_p}{pA_p} \longrightarrow M_p \qquad \text{is exact}$$

Since pA_p is maximal in A_p , $A_p/pA_p \neq 0$ and therefore $M_p \neq 0 \Rightarrow p \in \text{Supp }(M)$.

Theorem 4.11. Let A be a Noetherian ring and M be an A-module. Then $\min Ass_A(M) = \min Supp(M)$ where $\min Ass_A(M)$ and $\min Supp(M)$ are the collection of minimal primes of $Ass_A(M)$ and Supp(M) respectively.

Proof. Let $p \in \min \operatorname{Ass}_A(M) \Rightarrow p \in \operatorname{Supp}(M)$. Suppose $p \notin \min \operatorname{Supp}(M)$ then there is a $q \in \operatorname{Supp}(M)$ such that $q \subsetneq p$. Since $q \in \operatorname{Supp}(M) \Rightarrow M_q \neq 0$ so there exists $p_1 \in \operatorname{spec} A$ such that $p_1 A_q \in \operatorname{Ass}_{A_q}(M_q) \Rightarrow p_1 \in \operatorname{Ass}_A(M)$ but $p_1 \subseteq q \subsetneq p$ which is a contradiction as p is a minimal prime in $\operatorname{Ass}_A(M)$. Therefore $\min \operatorname{Ass}_A(M) \subseteq \min \operatorname{Supp}(M)$.

Conversely, let $p \in \min \text{Supp } (M) \Rightarrow M_p \neq 0 \Rightarrow \text{Ass}_{A_p}(M_p) \neq 0$.

Claim. Ass_{Ap}(M_p) = {pA_p}. If $qA_p \in \operatorname{spec} A_p$ with $q \subseteq p$ such that $qA_p \in \operatorname{Ass}_{A_p}(M_p)$ then $q \in \operatorname{Ass}_A(M)$ so there exists an exact sequence $0 \to A/q \to M$. Flatness of A_q gives

but $M_q = 0$ gives us a contradiction as $q \subsetneq p$ and $p \in \min \operatorname{Supp}(M)$. Hence $\operatorname{Ass}_{A_p}(M_p) = \{pA_p\} \Rightarrow p \in \operatorname{Ass}_A(M)$. Since $p \in \min \operatorname{Supp}(M)$ and $\operatorname{Ass}_A(M) \subsetneq \operatorname{Supp}(M) \Rightarrow p \in \min \operatorname{Ass}_A(M)$.

Observation 4.12. Let A be a Noetherian ring and M a finitely generated A-module. Let $p \in Supp(M)$ and $p \subseteq q$ then we observe that $q \in Supp(M)$. If not then $M_q = 0$ so there exists $u \in A \setminus q$ such that $uM = \{0\}$ but $A \setminus q \subseteq A \setminus p \Rightarrow M_p = 0$ which is a contradiction. Suppose $\min Supp(M) = \{p_1, \dots, p_r\}$ then $Supp(M) = \bigcup_{i=1}^r V(p_i)$ and $V(p_i)$'s are the irreducible component of the closed set Supp(M) in Sup

Definition 4.13. The prime ideals $\{p_1, \dots, p_r\} = \min Supp (M) = \min Ass_A(M)$ are called isolated primes of M and the remaining assocoated primes are called embedded primes.

Definition 4.14. Let A be a ring and M be an A-module. A submodule N of M is said to be primary submodule of M if the following condition holds for all $a \in A$ and $m \in M, m \notin N$ and $am \in N \Rightarrow a^k M \subseteq N$ for some k > 0. Equivalently, if a is a zero divisor for M/N then $a \in \sqrt{Ann_A(M/N)}$.

If we take M=A and N=I and ideal of A then I is said to be primary ideal if $ab \in I$ with $b \notin I \Rightarrow a \in \sqrt{I}$ for all $a,b \in A$.

Example 4.15. Let A be a ring and $m \in maxspec A$. Then m^k is a primary ideal. Let $ab \in m^k$ with $b \notin m^k$. We need to show that $a \in \sqrt{m^k} = m$. As $ab \in m^k \subseteq m$, Since $b+m^k \neq 0+m^k$, $b+m^k \in m/m^k$ (notice that it is not an unit in A/m^k). Then there is an element $\alpha + m^k \in m/m^k$ such that