Numerical Methods For Ordinary Differential Equations

References: > 1. Chasnov, J. R. (2012). Numerical methods. Hong Kong University of Science and Technology. https://www.math.hkust.edu.hk/~machas/numerical-methods.pdf > 2. Liu, J., Spiegel, M. R. (1999). Mathematical Handbook of Formulas and Tables. United Kingdom: McGraw-Hill.

Here we give methods to solve the following initial-value problem of an ordinary differential equation:

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$
 (1)

The methods will use a computational grid:

$$t_n = t_0 + nh \tag{2}$$

where h is the grid size.

Example

```
Consider f(t,x) = rx(K-x), with the following parameters:
sage vscode={"languageId": "sage"} r = 0.15 \text{ K} = 100 \text{ t0} = 0 \text{ tf} = 1
x0 = 1 n = 10 \text{ step size} = (tf-t0)/n \text{ step size}
"'sage vscode={"languageId": "sage"} t = var(t')
x = function('x')(t)
ode = x.diff(t) == rx(K-x)
solution = desolve(ode, dvar=x, ivar=t, ics=[t0,x0])
solution
```sage vscode={"languageId": "sage"}
u = var('u')
solution = solution.subs({x: u})
solution
sage vscode={"languageId": "sage"} solution.solve(u, to_poly_solve=True)
sage vscode={"languageId": "sage"} x_exact = solution.solve(u,
to_poly_solve=True)[0].rhs() x_exact
sage vscode={"languageId": "sage"} custom_grid = [t0 + i*step_size
for i in range(n)] exact_solution = [[_t.n(), x_exact(t=_t).n()]
for _t in custom_grid]
```

sage vscode={"languageId": "sage"} t,x = var('t x') numerical\_solution
= desolve\_rk4( r\*x\*(K-x), x, ivar = t, ics=[t0,x0], end\_points=tf,
step=step\_size) sage\_solution = list\_plot(exact\_solution, plotjoined=True,
axes\_labels=['\$t\$', '\$x(t)\$'], gridlines=True, alpha=0.5, color="green")
sage\_solution += list\_plot(numerical\_solution, plotjoined=True,
alpha=0.5, color="red", linestyle=":") sage\_solution.show()

### Euler Method: Manual Reproduction of the Code

We consider the ODE:

$$\frac{dx}{dt} = 0.15 x(100 - x), \quad x(0) = 1$$

with parameters:

- r = 0.15
- K = 100
- $t_0 = 0, t_f = 1$
- $x_0 = 1$
- $n = 10, h = \frac{1-0}{10} = 0.1$

Euler's method iterates:

$$x_{n+1} = x_n + h \cdot f(t_n, x_n)$$
 where  $f(t, x) = 0.15 x(100 - x)$ 

#### **Iteration Table**

Step $n$	$t_n$	$x_n$	$f(t_n, x_n)$	$x_{n+1} = x_n + hf(t_n, x_n)$
0	0.0	1.000	14.850	2.485
1	0.1	2.485	36.3076	6.116
2	0.2	6.116	85.9874	14.714
3	0.3	14.714	188.442	33.558
4	0.4	33.558	335.419	67.100
5	0.5	67.100	329.207	100.021
6	0.6	100.021	-0.315	99.990
7	0.7	99.990	0.149	100.005
8	0.8	100.005	-0.075	99.998
9	0.9	99.998	0.003	100.000

<sup>&</sup>quot;'sage vscode={"languageId": "sage"} def euler\_method(f, x0, t0, t\_end, h): """ Implements the Euler method for solving x' = f(t, x)

#### Parameters:

f: a function of (t, x) x0: initial value x(t0)

```
t0: initial time
 t_end: final time
 h: step size
Returns:
 A list of (t, x) points
steps = int((t_end - t0) / h)
t_vals = [t0]
x_vals = [x0]
t = t0
x = x0
for _ in range(steps):
 x = x + h * f(t, x)
 t = t + h
 t_vals.append(t)
 x_vals.append(x)
return list(zip(t_vals, x_vals))
```sage vscode={"languageId": "sage"}
t, x = var('t x')
f(t, x) = r * x * (K - x)  # logistic equation
solution = euler_method(f, x0=x0, t0=t0, t_end=tf, h=step_size)
# Plot
euler_solution = list_plot(solution, plotjoined=True, axes_labels=['$t$', '$x(t)$'], gridling
compare_euler = sage_solution + euler_solution
compare_euler.plot()
"'sage vscode={"languageId": "sage"} def modified_euler_method(f, x0, t0,
t_end, h): """ Implements the Modified Euler method (Heun's Method) for
solving x' = f(t, x)
Parameters:
    f: a function of (t, x)
    x0: initial value x(t0)
    t0: initial time
    t_end: final time
    h: step size
Returns:
    A list of (t, x) points
```

```
steps = int((t_end - t0) / h)
t_vals = [t0]
x_vals = [x0]
t = t0
x = x0
for _ in range(steps):
    k1 = h*f(t, x)
    k2 = h*f(t + h, x + k1)
    x = x + 1/2 * (k1 + k2)
    t = t + h
    t vals.append(t)
    x_vals.append(x)
return list(zip(t_vals, x_vals))
```sage vscode={"languageId": "sage"}
solution = modified_euler_method(f, x0=x0, t0=t0, t_end=tf, h=step_size)
Plot the numerical approximation
heun_solution = list_plot(solution, plotjoined=True, axes_labels=['t', '$x(t)$'], gridling
compare_heun = sage_solution + heun_solution
compare_heun.plot()
"'sage vscode={"languageId": "sage"} def rk2_general_form(f, x0, t0, t_end,
h=0.01, alpha=1/2, beta=1/2, a=0, b=1): """ General second-order Runge-
Kutta method using parameters alpha, beta, a, b.
Solves x' = f(t, x) over [t0, t_end] with initial condition x(t0) = x0.
Parameters:
 f: right-hand side function f(t, x)
 x0: initial condition x(t0)
 t0: initial time
 t_end: final time
 h: time step size
 alpha: time increment coefficient for k2
 beta: slope coefficient for k2
 a, b: weights for k1 and k2 in the update
Returns:
 List of (t, x) points approximating the solution
steps = int((t_end - t0) / h)
t_vals = [t0]
```

```
x_vals = [x0]
t = t0
x = x0
for _ in range(steps):
 k1 = h * f(t, x)
 k2 = h * f(t + alpha * h, x + beta * k1)
 x = x + a * k1 + b * k2
 t = t + h
 t_vals.append(t)
 x_vals.append(x)
return list(zip(t_vals, x_vals))
```sage vscode={"languageId": "sage"}
sol = rk2_general_form(f, x0=x0, t0=t0, t_end=tf, h=step_size)
heun_solution = list_plot(sol, plotjoined=True, axes_labels=['$t$', '$x(t)$'], gridlines=True
compare_heun = heun_solution + sage_solution
compare_heun.plot()
"'sage vscode={"languageId": "sage"} sol = rk2_general_form(f, x0=x0, t0=t0,
t_end=tf, h=step_size, alpha=3/4, beta=3/4, a=1/3, b=2/3)
ralston_solution = list_plot(sol, plotjoined=True, axes_labels=['t', 'x(t)'], grid-
lines=True, linestyle="-.") compare_heun = ralston_solution + sage_solution
compare_heun.plot()
```sage vscode={"languageId": "sage"}
def rk4(f, x0, t0, t_end, h=0.01):
 Fourth-order Runge-Kutta method as specified in the image.
 Solves x' = f(t, x) over [t0, t_end] with initial condition x(t0) = x0.
 Parameters:
 f: right-hand side function f(t, x)
 x0: initial condition x(t0)
 t0: initial time
 t_end: final time
 h: time step size
 Returns:
 List of (t, x) points approximating the solution
 steps = int((t_end - t0) / h)
```

```
t_vals = [t0]
 x_vals = [x0]
 t = t0
 x = x0
 for _ in range(steps):
 # Calculate the four k values according to the formulas
 k1 = h * f(t, x)
 k2 = h * f(t + 0.5 * h, x + 0.5 * k1)
 k3 = h * f(t + 0.5 * h, x + 0.5 * k2)
 k4 = h * f(t + h, x + k3)
 # Update x using the weighted average
 x = x + (1/6) * (k1 + 2*k2 + 2*k3 + k4)
 # Increment time
 t = t + h
 # Store results
 t_vals.append(t)
 x_vals.append(x)
 return list(zip(t_vals, x_vals))
"'sage vscode={"languageId": "sage"} sol = rk4(f, x0=x0, t0=t0, t_end=tf,
h=step_size)
{\tt ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(sol, plotjoined = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(solution = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(solution = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = list_plot(solution = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = True, axes_labels = [`t', `x(t)'], grid-ralston_solution = [`t', `x(t)'], grid-ralst
lines=True, linestyle="-.") compare_heun = ralston_solution + sage_solution
compare_heun.plot() "'
```