Condensé de la MPSI Physique

> Ewen Le Bihan MPSI – Daudet

Contents

1	App	proche cinématique du mouvement d'un point
	1.1	Travail d'une force
	1.2	Puissance d'une force
	1.3	Énergie cinétique
		1.3.1 Théorème de l'énergie cinétique
		1.3.2 Pendule
	1.4	Énergie potentielle
		1.4.1 Stabilité d'un équilibre
	1.5	Force conservative
	1.6	Énergie mécanique
		1.6.1 Interprétations

1 Approche cinématique du mouvement d'un point

1.1 Travail d'une force

$$\delta W = \overrightarrow{\text{la force}} \cdot d\overrightarrow{OM}$$

$$d\overrightarrow{OM} = \overrightarrow{v} \cdot dt$$

$$\delta W > 0 \implies$$
travail moteur

$$\delta W < 0 \implies$$
 travail résistant

$$W_{AB}(\overrightarrow{F}) = \int_{A}^{B} \delta W \, \mathrm{d} \, t = \int_{A}^{B} \overrightarrow{F} \cdot \mathrm{d} \, \overrightarrow{OM}$$

$$\overrightarrow{F} = \overrightarrow{0} \implies W_{AB}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB}$$

$$W(\overrightarrow{R_n}) = 0$$

1.2 Puissance d'une force

$$\mathcal{P}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v}$$

1.3 Énergie cinétique

$$E_c(M/\mathcal{R}) = \frac{1}{2} m v(M/\mathcal{R})^2$$

1.3.1 Théorème de l'énergie cinétique

- \mathcal{R} galiléen $\Longrightarrow \dot{E}_c(M/\mathcal{R})$
- $\Delta_{i \to f} E_c = W_{i \to f}(\overrightarrow{F})$

1.3.2 Pendule

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

1.4 Énergie potentielle

 $E_{p_p} = mgz + \text{const}$ si (Oz) vertical ascendant

$$E_{p_e} = \frac{1}{2}k(x - l_0)^2 + \text{const}$$

1.4.1 Stabilité d'un équilibre

 $x_e := \operatorname{extremum}(E_p, x)$ (i.e. x_e est une position d'équilibre)

$$-(x-x_e)\frac{\mathrm{d}^2 E_p}{\mathrm{d}\,x^2}(x_e) \quad \begin{cases} >0 &\Longrightarrow \text{ stable} \\ <0 &\Longrightarrow \text{ instable} \end{cases}$$

1.5 Force conservative

$$\overrightarrow{F} \text{ conservative} \iff \begin{cases} \overrightarrow{W}(\overrightarrow{F}) & \text{ indépendante du chemin suivi} \\ \overrightarrow{F} & = F(x) \operatorname{d} x \\ \exists E_p & / \begin{cases} W(\overrightarrow{F}) & = -\Delta E_p \\ \delta W & = -\operatorname{d} E_p \end{cases} \end{cases}$$

Contraire: force dissipative ou non-conservative

1.6 Énergie mécanique

En référentiel Galiléen

$$\Delta E_m = W(\overrightarrow{F_{\text{dissipative}}})$$

1.6.1 Interprétations

$$\Delta E_m = 0$$
 $\iff E_m = \text{const}$
 $\iff E_m \text{ se conserve}$
 $\iff M \text{ est conservatif}$

$$\Delta E_m = W(\overrightarrow{F_{ ext{dissipative}}}) < 0$$
 $\implies E_m \text{ décroissante}$
 $\implies \text{Il y a dissipation de l'énergie}$