Homework for Lecture 8

- 1. Write a module called solver.py that contains well written codes with docstrings for the following three algorithms:
 - Newton's method
 - The Secant Method
 - The bisection Method

Each algorithm should be written with a while loop that stops when a certain tolerance is reached (each algorithm should take an input called TOL). Then, for each algorithm, find the first n for which

$$|x_n - x_{n-1}| < 10^{-10}$$

Use the following initializations:

Newton: $x_0 = 0$

Secant: $x_0 = 0$ and $x_1 = 0.1$ Bisection: [a, b] = [0, 1]

Complete the table below:

	Newton	Secant	Bisection
nb of iterations needed			
to reach 10^{-10} tolerance			

2. Let's consider the equation

$$x - \sqrt{x} = 0$$

Obviously this can be solved by hand (what are the true solutions?). Let x^* be one of the solutions, the goal will be to find what is the smallest n such that

$$|x_n - x^*| < 10^{-10}$$

Note that this is different from the previous problem in which the stopping criterion was $|x_n - x_{n-1}| < 10^{-10}$.

- (a) Compute the 2 solutions of $x \sqrt{x} = 0$ with pen and paper.
- (b) Plot $y = x \sqrt{x}$. Answer the following question just by watching the picture.
 - i. Toward which solution will Newton's method converge if the initial iterate is $p_0 = 0.5$?
 - ii. Explain what is going to happen if you use Newton's method with initial iterate $p_0 = 0.1$.
 - iii. Toward which solution will the secant method converge if the initial iterates are $p_0 = 0.5$ and $p_1 = 0.55$?
- (c) This is the important question. Initialize each of the four methods as follow:

Newton: $x_0 = 0.5$

Secant: $x_0 = 0.5$ and $x_1 = 0.55$

Fixed point¹: $x_0 = 0.5$ Bisection: [a, b] = [0.5, 1.1]

Note that with these initializations, each method will converges to the same solution x^* . For each algorithm, find the number of iterations needed to be within 10^{-10} of the true solution. That is, what is the smallest n so that $|x_n - x^*| < 10^{-10}$.

	Newton	Secant	fixed point	Bisection
nb of iterations needed				
to reach desired accuracy				

Which method converge the fastest? the slowest?

The successive iterates of the fixed point method are defined by $x_{n+1} = \sqrt{x_n}$. It turns out that these iterates will converge toward the desired solution (we haven't discuss this method in class, just trust me).