- ✓ Half adder is a combinational logic circuit with two inputs and two outputs.
- ✓ It is a basic building block for addition of two single bit numbers.

Truth Table for Half Adder

Input		Output		
Α	В	Sum (S)	Carry (C)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

K-map for Sum Output:

$$S = \overline{A}B + A\overline{B}$$

$$S = A \oplus B$$

K-map for Carry Output:

$$C = AB$$

Logic Diagram:

Logic Diagram using Basic Gates:

Combinational Logic Circuits

- ✓ Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm ,
 Conversion between SOP and POS forms, realization using NAND/NOR gates.
- ✓ K-map reduction technique for the Boolean expression:
 Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

✓ Full adder is a combinational logic circuit with three inputs and two outputs.

Truth Table

Inputs			Outputs	
Α	В	Cin	Sum (S)	Carry (C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-map for Sum Output:

$$S = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$

$$S = \overline{ABC} + ABC + \overline{ABC} + A\overline{BC}$$

$$S = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + A\overline{B})$$

$$Let \quad \overline{AB} + A\overline{B} = X$$

$$\therefore S = C(\overline{X}) + \overline{C}(X)$$

$$S = C \oplus X$$

$$Let \quad X = A \oplus B$$

$$\therefore S = C \oplus A \oplus B$$

K-map for Carry Output:

$$C = AB + BC + AC$$

Logic Diagram:

Full Adder using Half Adders

Combinational Logic Circuits

- ✓ Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm ,
 Conversion between SOP and POS forms, realization using
 NAND/NOR gates.
- ✓ K-map reduction technique for the Boolean expression:
 Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half Subtractor and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

- ✓ Half subtractor is a combinational logic circuit with two inputs and two outputs.
- ✓ It is a basic building block for subtraction of two single bit numbers.

Truth Table

Input		Output		
A	В	Difference (D)	Borrow (B)	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

K-map for Difference Output:

$$D = \overline{A}B + A\overline{B}$$

$$D = A \oplus B$$

K-map for Borrow Output:

$$B = \overline{A}B$$

Logic Diagram:

Logic Diagram using Basic Gates:

Combinational Logic Circuits

- ✓ Standard Boolean representation: Sum of Product (SOP)
 & Product of Sum (POS), Maxterm and Minterm,
 Conversion between SOP and POS forms, realization using
 NAND/NOR gates.
- ✓ K-map reduction technique for the Boolean expression:
 Minimization of Boolean functions up to 4 variables (SOP & POS form)
- ✓ Design of Airthmetic circuits and code converter using K-map: Half and Full Adder, Half and Full Subtractor, Gray to Binary and Binary to Gray Code Converter (up to 4 bit).

✓ Full subtractor is a combinational logic circuit with three inputs and two outputs.

Truth Table

Inputs			Outputs	
Α	В	Bin (C)	Difference (D)	Borrow (B0)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map for Difference Output:

$$D = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC}$$

$$D = \overline{ABC} + ABC + \overline{ABC} + A\overline{BC}$$

$$D = C(\overline{AB} + AB) + \overline{C}(\overline{AB} + A\overline{B})$$

$$Let \quad \overline{AB} + A\overline{B} = X$$

$$\therefore D = C(\overline{X}) + \overline{C}(X)$$

$$D = C \oplus X$$

$$Let \quad X = A \oplus B$$

$$\therefore D = C \oplus A \oplus B$$

K-map for Borrow Output:

$$B_0 = \overline{A}B + BC + \overline{A}C$$

Logic Diagram:

Full Subtractor using Half Subtractor

