Detection of overlapping cells in microscopic scans of GFP brain tissues

EE16B148: Arrman Anicket Saha

EE17B031: Subhankar Chakraborty

Problem Description

- Cell detection/annotation is an image processing problem
- Traditionally done manually with high accuracy
- With the large amount of data in Gigapixel images, it is not feasible to do it manually
- Deep learning and other conventional methods give upto only 92% performance, which is not sufficient.
- Multi stage method using DT and ridge filters to get an estimate of cell centres gave 97% accuracy.
- Our problem is to replicate stage 1 of this paper

Samples

Total 8 images

- 1 Dense (without enhancement, enhanced, ground truth) (3 images)
- 2 Overlapping (without enhancement, enhanced, ground truth) (3 images)
- 3 s12 (enhanced, ground truth) (2 images)

csv and mat files also provided for every image

Dense

Overlapping

Overview of phase 1

- Obtain a foreground region (FGR) using thresholding
- Get a distance transform (DT) on a Binary FGR
- Get a modulated distance transform (MDT) for better peaks
- Do a vessel filter on the mDT to get ridge lines
- Get the local maxima / peaks on the ridge lines
- Merge nearby local maxima
- Combine Bifurcation points and merged local maxima to get the phase 1 estimates for cell centres

Tested changes on stage 1 cell centers

- An optimization based method to improve the cell center detections from stage 1
- We take a region of size m×m around the centers from stage 1
- Improve it by fitting an ellipse using local optimization
- The ellipses are of the form

$$\frac{(x\cos\theta - y\sin\theta)^2}{a^2} + \frac{(y\cos\theta + x\sin\theta)^2}{a^2(1 - e^2)} = 1$$

The centers of the fit ellipse are considered as the improved center

Results compared to the paper in the next few slides

- Binary FGR
- Distance Transform (DT)
- Modulated DT (mDT)
- Merged local maxima
- Ridge Lines
- Ridge lines and Bifurcation + Ridge endings
- All centers from stage 1
- Residual Foreground Map (RFM)

Ellipse Fitting

- Approximate illustration of how ellipse fitting works
 - a. Detect an ellipse on the full image
 - b. No initialization
 - c. Global optimization methods were used
 - d. Relatively slow process even for small images
- Results when initialized on on stage 1
 - a. local optimisation used
 - b. Scales well with large images
 - c. Slight improvement on finding centers on some cells

