Learning Plan

Student: Pollapaat Suttimala Student Id: 65340500046

Advisor: SURIYA NATSUPAKPONG

Problem Statement:

ต้องการพัฒนาระบบ "Physical Aimbot" ซึ่งเป็นหุ่นยนต์ที่ควบคุมเมาส์จริงเพื่อเล็งเป้าและยิงในเกม FPS โดยอาศัย
Computer Vision (สนใจใน Machine Learning Model) ในการตรวจจับตำแหน่งศัตรูบนหน้าจอแบบเรียลไทม์ จากนั้นจึงส่ง
คำสั่งให้มอเตอร์ขยับเมาส์และคลิกเพื่อโจมตี เป้าหมายของโครงการคือเพื่อศึกษาการผสานระหว่างวิศวกรรมหุ่นยนต์
(Robotics) การประมวลผลภาพ (Computer Vision) และการทำงานร่วมกับเกมคอมพิวเตอร์

Requirements and Scopes:

Hardware (Robot Mechanism)

- ออกแบบระบบมอเตอร์หรือชุดขับเคลื่อน (เช่น Stepper Motor, Servo Motor) เพื่อควบคุมการเคลื่อนที่ของเมาส์ บนพื้นผิว
- ควรมีการปรับแต่ง/ปรับเทียบ (Calibration) ให้เมาส์เคลื่อนที่สอดคล้องกับพิกัดบนหน้าจอ

Software (Computer Vision & Control)

- ใช้ Al Model ในการตรวจจับศัตรูในเกม FPS
- ประมวลผลแบบเรียลไทม์ (Real-time) เพื่อให้ตำแหน่งของศัตรูเปลี่ยนแล้วหุ่นยนต์ปรับเมาส์ได้เร็วพอ
- เขียนโปรแกรมควบคุมหุ่นยนต์ให้หมุน/เคลื่อนที่ตามตำแหน่ง Bounding Box และสั่งกดปุ่มยิง

System Integration

• ใช้ Capture Card หรือ Screen Capture ในการรับภาพจากเกม

Constraints

- คำนึงถึง Latency ระหว่างการตรวจจับภาพและการเคลื่อนที่ของเมาส์
- คำนึงถึงการที่เมาส์ตกแผ่นรองเมาส์
- ไม่ต้องการความแม่นยำระดับแข่งขัน แต่อย่างน้อยควรเล็งและยิงได้ในระดับพื้นฐาน

15-week Learning Plan/Work Schedule:

Week	Topics to Learn	Deliverables		
1		- แผนโครงงานโดยรวม - รายการอุปกรณ์ที่ต้องใช้		

	e e e e e e e e e e e e e e e e e e e			
	- ทบทวนพื้นฐาน Robotics			
	- ทิบทวน Computer Vision			
2	- ศึกษาโครงสร้าง/กลไกสำหรับการ	- โครงร่างการออกแบบชุดขับเคลื่อนเบื้องต้น		
	เคลื่อนที่ของเมาส์			
	- เลือกชนิดของมอเตอร์ที่เหมาะสม			
3	- เริ่มออกแบบ/เขียนแบบ ชุดยึดมอเตอร์	- แบบ CAD โครงสร้างเบื้องต้น		
4	- สร้าง Prototype ชุดขับเคลื่อน	- Prototype ระดับพื้นฐาน (ยังไม่สมบูรณ์)		
	- ทดสอบการขยับเมาส์บนพื้นผิวจริง	- รายงานผลการทดสอบการเคลื่อนที่เบื้องต้น		
5		у у у у у у у		
5	- เรียนรู้การติดตั้งและใช้งาน Computer Vision Model	- ได้ Machine Learning Model พร้อมรันบนข้อมูลตัวอย่าง		
	vision Model - เตรียม Dataset เบื้องต้น (ภาพในเกม)	- มี Dataset เวิ่มต้นสำหรับ Test		
6		- โมเดลตรวจจับ ที่ใช้ได้		
O	- เทรนหรือตั้งค่าการตรวจจับศัตรูในเกม	9,		
	- ปรับแต่งพารามิเตอร์เบื้องต้น	- รายงานค่า Precision/Accuracy เปื้องต้น		
7	- เขียนโปรแกรมเชื่อมโยงการตรวจจับ	- โปรแกรมพื้นฐานที่รับตำแหน่ง Bounding Box แล้ว		
	ภาพกับการควบคุมมอเตอร์	แปลงเป็นมุม/ระยะมอเตอร์		
	- ทดสอบระบบแบบยังไม่ใส่เมาส์จริง			
8	- ประกอบระบบ Robot + เมาส์จริง	- วิดีโอสาธิตการเล็ง		
	- ทดสอบการเล็งและเคลื่อนที่แบบ			
	เรียลไทม์			
9	- ทดสอบการยิงในเกมแบบอัตโนมัติ	- ระบบคลิก พร้อมยิง		
		- วิดีโอสาธิตการยิงในเกม		
10	- ปรับจูน (Calibration) ค่าต่างๆ เช่น	- รายงานการปรับจูนค่าต่าง ๆ		
	Sensitivity ของเกม	- ทดสอบความแม่นยำเพิ่มเติม		
	- แก้ปัญหาการเล็งคลาดเคลื่อน			
44		99		
11	- ทดสอบระบบในเกมสถานการณ์	- รายงานสถิติ		
	หลากหลาย (Map/Mode ต่าง ๆ)	- วิดีโอสาธิตเพิ่มเติม		
	- เก็บสถิติความแม่นยำ			

12	- ตรวจสอบความเสถียร และปรับปรุง	- รุ่นปรับปรุงของหุ่นยนต์
	ดีไซน์หุ่นยนต์ (ถ้าจำเป็น)	
	- ตรวจสอบระบบไฟและความปลอดภัย	
13	- ทดสอบใช้งานต่อเนื่อง (Stress Test) +	- รวบรวมปัญหาและแนวทางแก้ไข
	เก็บฟิดแบ็ก	- ร่างสไลด์นำเสนอ (Draft Presentation)
	- จัดเตรียมสไลด์/สรุปโครงการเบื้องต้น	
14	- สรุปผลการพัฒนาโครงการทั้งหมด	- เอกสารสรุปผล (Final Report Outline)
	- เตรียมไฟล์นำเสนอ	- สไลด์ Presentation พร้อม
15	- นำเสนอผลงาน (Project Presentation)	- Final Presentation
	- สรุปผลและข้อเสนอแนะสำหรับอนาคต	- Final Report + Future Work

หมายเหตุ:

• การปรับเปลี่ยนตารางหรือรายละเอียดอาจทำได้ตามความเหมาะสมของอุปกรณ์และสภาพแวดล้อมการ เรียน

	412	(例).	(1)	
dent's Signature:				
visor's Signature:	 530			
-	530		ΔV	