Linear Algebra

October 31, 2016

CONTENTS 2

Contents

1 Vector spaces		tor spaces	3
	1.1	Vector spaces	3
	1.2	Linear independence, bases, and the Steinitz exchange lemma $. $.	4
	1.3	Direct Sums	8
2	2 Linear maps		9
	2.1	Definitions and examples	9
	2.2	Linear maps and matrices	11
	2.3	The first isomorphism theorem, and the rank-nullity theorem $$	13
	2.4	Change of basis	16
	2.5	Elementary matrix and operations	17
3	Dua	Duality 1	
	3.1	Dual spaces	19
	3.2	Dual maps	21
4	Bili	near forms (I)	25
5	Det	erminants of matrices	20

1 Vector spaces

1.1 Vector spaces

Notation. We will use \mathbb{F} to denote an arbitrary field.

Definition. An \mathbb{F} -vector space is an abelian group (V,+) equipped with a function

$$\mathbb{F} \times V \to V$$
$$(\lambda, v) \to \lambda v$$

which is called scalar multiplication such that

•
$$\lambda (\mu v) = (\lambda \mu) v$$
 $\forall \lambda, \mu \in \mathbb{F}, v \in V$

$$\bullet (\lambda + \mu)(v) = \lambda v + \mu v$$

•
$$\lambda (v + u) = \lambda v + \lambda u \quad \forall \lambda \in \mathbb{F}, u, v \in V$$

•
$$1 \cdot v = v$$
 $\forall v \in V$

For convention, we will always write 0 for the identity in a vector space and by 'abuse' of notation, write 0 for the vector space $\{0\}$.

Definition. Suppose VS is a vector space on \mathbb{F} . If $U \subset V$, then U is a $(\mathbb{F}$ -linear) subspace if

- $\forall u_1, u_2 \in U, u_1 + u_2 \in U;$
- $\forall \lambda \in F, u \in U, \lambda u \in U;$
- $U \neq \phi$.

Remark. A subspace of a vector space is itself a vector space. $U \subset V$ is a subspace iff $0 \in U$, and $\lambda u_1 + \mu u_2 \in U \ \forall \lambda, \mu \in \mathbb{F}, u_1, u_2 \in U$.

Example. Let $V = \mathbb{R}^3$, $U = \{(x_1, x_2, x_3)^T | x_1 + x_2 + x_3 = t\}$, then U is a subspace if and only if t = 0.

Example. If X is a set and $f: X \to \mathbb{R}$, the *support* of f:

$$supp (f) = \{x \in X | f(x) \neq 0\}$$

Then

$$\{f \in \mathbb{R}^X | | \text{supp}(f) | < \infty \} \subset \mathbb{R}^X$$

is a subspace, since

$$\operatorname{supp} (f+g) \subseteq \operatorname{supp} (f) \cup \operatorname{supp} (g)$$

$$\operatorname{supp} (\lambda f) = \operatorname{supp} (f) \text{ if } \lambda \neq 0$$

$$\operatorname{supp} (0) = \phi$$

Proposition. If U and W are subspaces of a vector space V, then the sum of U and W,i.e. $U+W=\{u+w|u\in U,w\in W\}$ and the intersection $U\cap W$ are subspaces of V.

If X is a subspace of V containing U and W, then X contains U+W, i.e. U+W is the smallest subspace containing both U and W.

If Y is a subspace of V contained in U and W, then Y is contained in $U \cap W$, i.e. $U \cap W$ is the largest subspace contained in both U and W.

Proof. Certainly U+W and $U\cap W$ both contain 0. Now suppose $v_1,v_2\in U\cap W,u_1,u_2\in U,w_1,w_2\in W,\lambda,\mu\in\mathbb{F}$. Then

$$\lambda v_1 + \mu v_2 \in U \cap W$$

$$\lambda (u_1 + w_1) + \mu (u_2 + w_2) = (\lambda u_1 + \mu u_2) + (\lambda w_1 + \mu w_2) \in U + W$$

So $U \cap W$ and U + W are subspaces.

Suppose X is as in statement, then if $u \in U, w \in W$, then $u, w \in X$, so $u + w \in X$, so $U + W \subset X$.

Definition. Suppose V is a vector space and U is a subspace. Then the quotient space V/U is the abelian group V/U equipped with

$$\mathbb{F} \times V/U \to V/U$$
$$(\lambda, v + U) \to \lambda v + u$$

Proposition. V/U with this structure is a vector space.

Proof. To see scalar multiplication is well-defined:

Suppose $v_1 + U = v_2 + U \in V/U$. Then $(v_1 - v_2) \in U$. So $\lambda (v_1 - v_2) \in U$ for all $\lambda \in \mathbb{F}$. Thus $\lambda v_1 + U = \lambda v_2 + U$.

Now the four axioms follow easily.

1.2 Linear independence, bases, and the Steinitz exchange lemma

Definition. Suppose V is a vector field and $S \subset V$. Then the *span* of S in V is

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} \lambda_i s_i | \lambda_i \in \mathbb{F}, s_i \in S \right\}$$

Remark. Several points:

- $\langle S \rangle$ consists only of *finite* linear combination of elements of S.
- For any subset S of V, $\langle S \rangle$ is the smallest subspace of V that contains S.

Example. Suppose $V = \mathbb{R}^3$, $S = \{(1,0,0)^T, (0,1,1)^T, (1,2,2)^T\}$. Then

$$\langle S \rangle = \left\{ (a, b, b)^T | a, b \in \mathbb{R} \right\} = \left\{ (x_1, x_2, x_3)^T \in \mathbb{R}^3 | x_2 - x_3 = 0 \right\}$$

Note every subset of S of size 2 has the same span as S.

Example. Let X be a set, and

$$\delta_x : X \to \mathbb{F}$$

$$x \to 1$$

$$y \to 0 \quad (y \neq x)$$

Then $\langle \delta_x \rangle = \{ f \in \mathbb{F}^X | | \operatorname{supp}(f) | < \infty \}.$

1 VECTOR SPACES

5

Definition. Let V be a vector space on \mathbb{F} and $S \subset V$.

- (1) We say S spans V if $\langle S \rangle = V$.
- (2) We say S is linearly independent(LI) if, whenever $\sum_{i=1}^{n} \lambda_i s_i = 0$ with $s_i \in S$ distinct and $\lambda_i \in \mathbb{F}$, we must have $\lambda_i = 0$ for all i.
- If S is not LI, we say is linearly dependent (LD).
- (3) S is a basis for V if it spans V and is LI.
- (4) If V has a finite basis, we say V is finite-dimensional (f.d.).

Note it is not yet clear that every basis of a f.d. vector space has the same size.

Example. Let V and S be the same in the previous example. Then S is LD. Moreover S does not span V. But every subset of S of size 2 is LI and forms a basis for $\langle S \rangle$.

Remark. (1) 0=0 so no LI subset can contain 0. By convention, $\langle \phi \rangle = 0$.

Lemma. A subset S of a vector space V is LD if and only if there exists $s_0, ..., s_n \in S$ distinct such that $s_0 = \sum_{i=1}^n \lambda_i s_i$ for some $\lambda_i \in \mathbb{F}$.

Proof. Suppose S is LD. Then there exists $s_1,...s_n \in S$, $\lambda_1,...,\lambda_n \in \mathbb{F}$ with s_i distinct, $\sum \lambda_i s_i = 0$, and suppose $\lambda_i \neq 0$. then

$$s_j = \sum_{i \neq j} -\frac{\lambda_i}{\lambda_j} s_i$$

The converse is trivial.

Proposition. If S is a basis for V, then every element of V can be written uniquely as $\sum_{s \in S} \lambda_s s$ with $\lambda_s \in \mathbb{F}$ such that all but finitely many λ_s are 0.

Proof. By definition, S spans V if and only if every element of V can be written as at least one way like $\sum_{s \in S} \lambda_s s$ with all but finitely many $\lambda_s = 0$. So we want to show that S is LI if and only if every element $v \in V$ can be written in at most one way of such.

Suppose $v = \sum_{s \in S} \lambda_s s = \sum_{s \in S} \mu_s s$. Then

$$0 = \sum_{s \in S} (\lambda_s - \mu_s) s = \sum_{s \in S} 0s$$

So if some $\lambda_s \neq \mu_s$, then S is LD. Conversely, if S is LD, we can write

$$0 = \sum 0s = \sum \lambda_s s$$

for some $\lambda_s \in \mathbb{F}$.

Theorem. (Steinitz Exchange Lemma) Let V be a \mathbb{F} -vector space, and $S = \{e_1, ..., e_n\} \subset V$ is LI, and $T \subset V$ spans V. Then there exists $T' \subset T$ of size n such that $(T \setminus T') \cup S$ spans V. In particular, $|T| \geq n$.

Proof. Idea: replace elements of T one at a time.

Suppose we have found a set D_r of order r for some $0 \le r < n$ s.t. $(T \setminus D_r) \cup \{e_1, ..., e_r\}$ spans V. r = 0 is trivial and r = n is the statement of the theorem. We know

$$e_{r+1} \in \langle (T \backslash D_r) \cup \{e_1, ..., e_r\} \rangle$$

Call RHS (inside $\langle \rangle$) T_r . So we can find $t_1, ..., t_k \in T_r$ and $\lambda_1, ..., \lambda_k \in \mathbb{F}$ s.t.

$$e_{r+1} = \sum_{i=1}^{k} \lambda_i t_i$$

Since $\{e_1, ..., e_{r+1}\}$ is LI, $\exists j \text{ s.t. } \lambda_j \neq 0 \text{ and } t_j \notin \{e_1, ..., e_r\}$. Now

$$t_i \in \langle (T_r \setminus \{t_i\}) \cup \{e_{r+1}\} \rangle$$

Now let $D_{r+1} = D_r \cup \{t_j\}$ so that

$$(T \setminus D_{r+1}) \cup \{e_1, ..., e_{r+1}\} = (T_r \setminus \{t_j\}) \cup \{e_{r+1}\}$$

Then

$$\langle (T \backslash D_{r+1}) \cup \{e_1, ..., e_{r+1}\} \rangle = \langle T_r \cup \{e_{r+1}\} \rangle$$

 $(t_i \text{ is in LHS}); \text{ while RHS contains } \langle T_r \rangle = V. \text{ So we're done by induction.} \quad \Box$

Corollary. If $\{e_1,...,e_n\} \subset V$ is LI, and $\{f_1,...,f_m\}$ spans V, then $n \leq m$. Also, after re-ordering the f_i , $\{e_1,...,e_n,f_{n+1},...,f_m\}$ spans V.

Corollary. Suppose V is a finite dimension vector space with basis $S = \{e_1, ..., e_n\}$. Then

- (a) Every basis of V has order n;
- (b) Every spanning set of V of size n is a basis;
- (c) Every LI subset of V of size n is a basis;
- (d) Every LI subset of V is contained in a basis;
- (e) Every finite spanning set in V has a subset that is a basis.

Proof. (a) Suppose S is a finite basis and T is another basis, then any finite subset T' of T is LI. So $|T'| \leq |S|$ by the theorem. The other way is similar.

- (b) Suppose T spans VS and has size n. If T is LD then $\exists t_0, ..., t_k \in T$ distinct and $\lambda_1, ..., \lambda_n \in \mathbb{F}$ s.t. $t_0 = \sum_{i=1}^k \lambda_i t_i$. Then $\langle T \setminus \{t_0\} \rangle = \langle T \rangle = V$. So $T \setminus \{t_0\}$ spans V and has order n-1. Contradiction with the theorem.
- (c) Suppose T is LI and has order n. If $\langle T \rangle \neq V$, then $\exists v \in V \setminus \langle T \rangle$ and $T \cup \{v\}$ is LI (and has order n+1). Contradiction with the theorem.
- (d) Suppose $T \subset V$ is LI. Since S spans V, $\exists D \subset S$ with order |T| s.t. $(S \setminus D) \cup T$ spans V and has size $\leq n$ (in fact, = n by the theorem). By (b) $(S \setminus D) \cup T$ is a basis containing T.
- (e) Suppose T is a finite spanning set. Let $T' \subset T$ be of minimal size such that $\langle T' \rangle = V$. If |T'| < n we get a contradiction. If |T'| > n then T' is LD by the theorem, so we can reduce the number of vectors in T' by similar methods as above, contradiction. So |T'| = n, and by (b) we are done.

Definition. If V is a finite dimensional vector space on \mathbb{F} , the dimension of V is

$$\dim_{\mathbb{F}} V = \dim V = |S|$$

where S is any basis f of V.

Remark. • By the above corollary (a), this definition does not depend on S (so is well defined), but does depend on \mathbb{F} . For example, $\dim_{\mathbb{C}} \mathbb{C} = 1$ since $\{1\}$ is a basis, but $\dim_{\mathbb{R}} \mathbb{C} = 2$ since $\{1, i\}$ is a basis.

• we could also define the dimension of a non-finite dimensional vector space as the size of a basis, but we haven't proved that such a vector space has a basis, nor that all are? bijection.

Proposition. If V is a finite dimensional \mathbb{F} -vector space and $U \leq V$. Then

$$\dim V = \dim U + \dim V/U$$

Proof. First prove a lemma:

Lemma. If V is a finite dimensional vector space and $U \leq V$, then U is finite dimensional. Indeed dim $U \leq \dim V$.

Proof. Every LI subset of U is finite. So we choose one as large as possible. $|S| \leq \dim V$ by Steinitz.

If $\langle S \rangle \not \leq U$ then $\exists u \leq U \setminus \langle S \rangle$, and $S \cup \{u\}$ is still LI. Contradiction. So S is a basis for U. So dim $U = |S| \leq \dim V$.

We must prove that by choosing bases.

Let $\{u_1, ..., u_n\}$ be a basis for U, and extend (by some previous corollary) it to a basis $\{u_1, ..., u_m, v_{m+1}, ..., v_n\}$ for V.

We claim that $\{v_{m+1} + U, ..., v_n + U\} = S$ is a basis for V/U. This claim gives the result by counting.

First we prove that S spans V:

If $v + U \in V/U$, $\exists \lambda_1, ..., \lambda_n \in \mathbb{F}$ s.t.

$$v = \sum_{i=1}^{m} \lambda_i u_i + \sum_{i=m+1}^{n} \lambda_i v_i$$

Now

$$v + U = \sum_{i=1}^{m} \lambda_i (u_i + U) + \sum_{i=m+1}^{n} \lambda_i (v_i + U)$$

while the first term is zero.

Then we prove that S is LI:

Τf

$$\sum_{i=m+1}^{n} \lambda_i \left(v_i + U \right) = 0 + U$$

then

$$\sum_{i=m+1}^{n} \lambda_i v_i \in U$$

So $\exists \lambda_1, ..., \lambda_m \in \mathbb{F}$ s.t.

$$\sum_{i=m+1}^{n} \lambda_i v_i = \sum_{i=1}^{n} \lambda_i u_i$$

But since $\{u_1, ..., u_m, v_{m+1}, ..., v_n\}$ is LI, we must have $\lambda_1 = ... = \lambda_m = 0$.

Corollary. If $U \leq V$ is a proper subspace, then $\dim U < \dim V$.

Proof. We know that dim $V = \dim U + \dim V/U$. Since U is a proper subspace of $V, V/U \neq 0$. So ϕ does not span V/U. So dim $V/U \neq 0$. So dim $U < \dim V$. \square

1.3 Direct Sums

Definition. Suppose V is a \mathbb{F} -vector space, and $U, W \leq V$. Recall $U+W=\{u+w|u\in U, w\in W\}$. We say V is the *(internal) direct sum* of U and W if V=U+W and $U\cap W=0$; equivalently, if every element $v\in V$ can be written uniquely as u+w with $u\in U, w\in W$. We write $V=U\oplus W$. We say U and W are complementary subspaces of V.

Example. Let $V = \mathbb{R}^2$ and $U = \langle (0,1)^T \rangle$, and $W_1 = \langle (1,0)^T \rangle$ and $W_2 = \langle (1,1)^T \rangle$. Then W_1 and W_2 are both complementary to U in V. So complementary subspaces need *not* be unique.

Definition. If U, W are \mathbb{F} -vector space. The *(external) direct sum of U* and W,

$$U \oplus W = \{(u, w) | u \in U, w \in W\}$$

with addition

$$(u_1, w_1) + (u_2, w_2) = (u_1 + u_2, w_1 + w_2)$$

and scalar multiplication

$$\lambda_1(u, w) = (\lambda u, \lambda w)$$

For $\lambda \in \mathbb{F}$, $u_1, u_2, u \in U, w_1, w_2, w \in W$.

This defines a vector space.

Problem. Show $U \oplus W$ is a vector space and is the internal direct sum of $\{(u,0) | u \in U\}$ and $\{(0,w) | w \in W\}$.

Definition. If $U_1, ..., U_n \leq V$ are subspaces of an \mathbb{F} -fector space V. Then V is the (internal) direct sum of $U_1, ..., U_n$ written

$$V = U_1 \oplus ... \oplus U_n = \bigoplus_{i=1}^n U_i$$

if every $v \in V$ can be written uniquely as

$$v = \sum_{i=1}^{n} u_i$$

with $u_i \in U_i$.

See Example sheet 1 Q9.

Definition. If $U_1, ..., U_n$ be \mathbb{F} -vector spaces, then the external direct sum

$$\bigoplus_{i=1}^{n} U_i = \{(u_1, ..., u_n) \, u_i \in U_i\}$$

and coordinate-wise operations.

2 Linear maps

2.1 Definitions and examples

Definition. Suppose U and W are \mathbb{F} -vector spaces. Then $\alpha: U \to W$ is a linear map if:

(i) $\alpha(u_1 + u_2) = \alpha(u_1) + \alpha(u_2)$ for all $u_1, u_2 \in U$;

(ii) $\alpha(\lambda u) = \lambda \alpha(u)$ for all $\lambda \in \mathbb{F}$, $u \in U$;

Notation. We'll write $\mathcal{L}(U, V) = \{\alpha : U \to V | \alpha \text{ is linear} \}.$

Remark. (1) If α is linear, then $\alpha(0) = 0$.

(2) α is linear $\Leftrightarrow \alpha (\lambda u_1 + \mu u_2) = \lambda \alpha (u_1) + \mu \alpha (u_2)$ for all $\lambda, \mu \in \mathbb{F}, u_1, u_2 \in U$.

(3) If we want to stress the \mathbb{F} we say \mathbb{F} -linear. For example, complex conjugation $\mathbb{C} \to \mathbb{C}$ is \mathbb{R} -linear but not \mathbb{C} -linear.

Example. Let A be an $m \times n$ matrix with coefficients in \mathbb{F} (write $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$). Then $\alpha : \mathbb{F}^n \to \mathbb{F}^m$, $\alpha(v) = Av$ defines a linear map. To see this, let $\lambda, \mu \in \mathbb{F}$, $u, v \in \mathbb{F}^n$, and A_{ij} the i, j^{th} entry of A, and u_j (resp v_j) for the j^{th} coordinate of u (resp v) etc., Then for $1 \le i \le m$,

$$(\alpha (\lambda u + \mu v))_i = \sum_{j=1}^n A_{ij} (\lambda u_j + \mu v_j)$$
$$= \lambda \sum_{j=1}^n A_{ij} u_j + \mu \sum_{j=1}^n A_{ij} v_j$$
$$= \lambda \alpha (u)_i + \mu \alpha (v)_i$$

and α is linear as required.

Example. If X is any set, $g \in F^X$, then $Mg : \mathbb{F}^X \to \mathbb{F}^X$ by Mg(f)(x) = g(x) f(x) for all $x \in X$ is linear.

Example. For all $x \in [a, b]$, $C([a, b], \mathbb{R}) \to \mathbb{R}$, $f \to f(x)$ is linear.

Example. $D: C^{\infty}([a,b],\mathbb{R}) \to C^{\infty}([a,b],\mathbb{R}), f \to \frac{df}{dx}$ is linear.

Example. $I:C\left(\left[a,b\right],\mathbb{R}\right)\to\mathbb{R},\,f\to\int_{a}^{b}fdx$ is linear.

Example. If $\alpha, \beta: U \to V$ are linear, then $\alpha + \beta$ is linear (example sheet 1 Q4), and $\lambda \alpha$ is linear for all $\lambda \in \mathbb{F}$. In this way, $\mathcal{L}(U, V)$ is a \mathbb{F} -vector space. Also, If $\gamma: V \to W$ is linear, then $\gamma \beta: U \to W$ is linear.

Definition. We say a linear map $\alpha: U \to W$ is an *isomorphism* if $\exists \beta \in \mathcal{L}(W, U)$ s.t. $\alpha\beta = \iota_W$ and $\beta\alpha = \iota_V$, where ι is the identity map in the respective space. U and W are *isomorphic* if there is such an isomorphism between them.

Lemma. If $\alpha \in \mathcal{L}(U, V)$, then α is an isomorphism if and only if α is a bijection.

Proof. \implies is clear. If α is an isomorphism then it has an inverse as a function, so is a bijection.

 \Leftarrow Suppose α is a bijection, and $\beta:V\to U$ is its inverse. We must show β is linear.

Suppose $\lambda, \mu \in \mathbb{F}, v_1, v_2 \in V$. Then

$$\alpha\beta (\lambda v_1 + \mu v_2) = \lambda\alpha\beta (v_1) + \mu\alpha\beta (v_2)$$
$$= \alpha (\lambda\beta (v_1) + \mu\beta (v_2))$$

So

$$\beta \left(\lambda v_1 + \mu v_2\right) = \lambda \beta \left(v_1\right) + \mu \beta \left(v_2\right)$$

i.e. β is linear as required.

Proposition. Suppose $\alpha \in \mathcal{L}(U, V)$.

- (a) If α is injective and $S \subset U$ is LI, then $\alpha(S)$ is LI.
- (b) If α is surjective and $S \subset U$ s.t. S spans U then $\alpha(S)$ spans V.
- (c) If α is an isomorphism and $S \subset U$ is a basis, then $\alpha(S)$ is a basis.

Proof. (c) follows immediately form (a) and (b).

(a) Suppose $\alpha(S)$ is LD, so $\exists s_0, ..., s_n \in S$ distinct and $\lambda_1, ..., \lambda_n \in \mathbb{F}$ s.t.

$$\alpha(s_0) = \sum_{i=1}^{n} \lambda_i \alpha(s_i)$$
$$= \alpha\left(\sum_{i=1}^{n} \lambda_i s_i\right)$$

So

$$S_0 = \sum_{i=1}^n \lambda_i s_i$$

Since α is injective. Contradiction.

(b) Since α is surjective, $\forall v \in V \ \exists u \in U \ \text{s.t.} \ \alpha(u) = v$. Since S spans $U, \exists s_1, ..., s_n \in S \ \text{and} \ \lambda_i \in \mathbb{F} \ \text{s.t.} \ u = \sum \lambda_i s_i$.

Then
$$v = \alpha(u) = \sum \lambda_i \alpha(s_i)$$
, and $v \in \langle \alpha(S) \rangle$ as required.

Corollary. Any two finite dimensional vector spaces that are isomorphic must have the same dimension.

Proof. Suppose $U \cong v$ and both of them are finite dimensional. Let S be a basis for U and $\alpha \in \mathcal{L}(U, V)$ is an isomorphism then $\alpha(S)$ is a basis for V. Since α is injective, $|S| = |\alpha(S)|$ and $\dim U = \dim V$.

Proposition. Suppose V is an \mathbb{F} -vector space of dimension n, then there is a bijection from Φ : $\{$ isomorphisms $\alpha : \mathbb{F} \to V \}$ to the set of (ordered) bases for V. by $\alpha \to (\alpha(e_1), ..., \alpha(e_n))$, where $e_1, ..., e_n$ is the standard basis for \mathbb{F}^n .

Proof. \Box

That Φ is a function follows from above proposition (c). If $\Phi(\alpha) = \Phi(\beta)$ then

$$\alpha (x_1, ..., x_n)^T = \sum_{i=1}^n x_i \alpha (e_i)$$
$$= \sum_{i=1}^n x_i \beta (e_i)$$
$$= \beta (x_1, ..., x_n)^T$$

So $\alpha = \beta$.

Suppose $(v_1, ..., v_n)$ is a basis for V. Define $\alpha : \mathbb{F}^n \to V$ by $(x_1, ..., x_n)^T \to \sum_{i=1}^n x_i v_i$. Then α is linear, injective and surjective. So α is an isomorphism, and $\Phi(\alpha) = (\alpha(e_1), ..., \alpha(e_n)) = (v_1, ..., v_n)$.

2.2 Linear maps and matrices

Proposition. Suppose U and V are vector spaces on \mathbb{F} and $S = \{e_1, ..., e_n\}$ is a basis for U. Then every function $f: S \to V$ extends uniquely to a linear map $\alpha: U \to V$.

Proof. • Uniqueness: suppose $\alpha, \beta \in \mathcal{L}(U, V)$ that agree with f on S. Let $u \in U$. Then there exists $\lambda_1, ..., \lambda_n \in \mathbb{F}$ s.t. $u = \sum \lambda_i e_i$. Then $\alpha(u) = \sum \lambda_i f(e_i) = \beta(u)$. So $\alpha = \beta$.

• Existence: Every $u \in U$ can be written as $u = \sum \lambda_i e_i$ with $\lambda_i \in \mathbb{F}$ without ambiguity. So we can define $\alpha : U \to V$ by $u \to \sum \lambda_i f(e_i)$. Suppose $\lambda, \mu \in \mathbb{F}$ and $u_1, u_2 \in U$ s.t. $u_1 = \sum \lambda_i e_i, u_2 = \sum \mu_u e_i$. Then

$$\alpha (\lambda u_1 + \mu u_2) = \alpha \left(\sum (\lambda \lambda_i + \mu \mu_i) e_i \right)$$

$$= \sum (\lambda \lambda_i + \mu \mu_i) f(e_i)$$

$$= \lambda \sum \lambda_i f(e_i) + \mu \sum \mu_i f(e_i)$$

$$= \lambda \alpha (u_i) + \mu \alpha (u_2)$$

So $\alpha \in \mathcal{L}(U, V)$.

Finally $\alpha(e_i) = f(e_i)$ as required.

Remark. • With a little care, we can remove condition U is finite dimensional (and so S finite).

• It isn't too hard to see that $S \subset U$ satisfies the conclusion of the proposition only if S is a basis. This is a key motivation for the definition of basis.

Corollary. If U and V are finite dimensional vector spaces on \mathbb{F} with (ordered) bases $(e_1,...,e_n)$ and $(f_1,...,f_n)$ respectively, then there is a bijection

$$\mathcal{L}(U,V) \to \text{Mat } m,n(\mathbb{F})$$
 $\alpha \to A$

12

s.t.

$$\alpha\left(e_{i}\right) = \sum_{j=1}^{n} A_{ji} f_{j}$$

We interpret this as: the i^{th} column of A tells where i^{th} bases vector of U gets sent by α (as a linear combination of basis vectors in V).

Proof. If $\alpha \in \mathcal{L}(U, V)$, then we can write

$$\alpha\left(e_{i}\right) = \sum_{j=1}^{n} A_{ji} f_{j}$$

for $1 \leq i \leq n$ for unique $A_{ji} \in \mathbb{F}$. So function is injective and surjective as required.

Proposition. Show that this bijection is an isomorphism, and deduce that if U and V are finite dimensional, then $\dim \mathcal{L}(U,V) = (\dim U)(\dim V)$. Show also that if $U_1, ..., U_n$ are vector spaces, then

$$\mathcal{L}\left(\bigoplus_{i=1}^{n} U_{i}, V\right) \cong \bigoplus_{i=1}^{n} \mathcal{L}\left(U_{i}, V\right)$$

and

$$\mathcal{L}\left(V, \bigoplus_{i=1}^{n} U_{i}\right) \cong \bigoplus_{i=1}^{n} \mathcal{L}\left(V, U_{i}\right)$$

We leave this as an exercise.

Definition. If $\alpha \in \mathcal{L}(U, V)$ and $(u_1, ..., u_r)$ is a basis for U and $(v_1, ..., v_s)$ is a basis for V, and A is the matrix s.t.

$$\alpha\left(u_{i}\right) = \sum_{j=1}^{s} A_{ji} v_{j}$$

then we call A the matrix associated to α with respect to the basis $(u_1,...,u_r)$ and $(v_1,...,v_s)$.

Lemma. Suppose U, V, W are vector spaces on \mathbb{F} and $R : \{u_1, ..., u_r\}$ is a basis for $U, S = \{v_1, ..., v_s\}$ is a basis for V, and $T = \{w_1, ..., w_t\}$ is a basis for W. Let $\alpha \in \mathcal{L}(U, V)$ and $\beta \in \mathcal{L}(V, W)$. Then if α is represented by A with respect to R and S and S and S are represented by S with respect to S and S and S are represented by S with respect to S and S and S are represented by S with respect to S and S and S are represented by S with respect to S and S.

Proof.

$$\beta \alpha (u_i) = \beta \left(\sum_{j=1}^s A_{ji} v_j \right)$$
$$= \sum_{j=1}^s A_{ji} \sum_{k=1}^t B_{kj} w_k$$
$$= \sum_{k=1}^t [BA]_{ki} w_k$$

as required.

13

2.3 The first isomorphism theorem, and the rank-nullity theorem

Definition. Suppose $\alpha \in \mathcal{L}(U, V)$ (U, V are vector spaces on \mathbb{F}). Then the kernel of α ,

$$\ker \alpha = \{ u \in U | \alpha(u) = 0 \}$$

the image of α ,

$$\operatorname{im} \alpha = \{\alpha(u) | u \in U\}$$

Note: α is injective if and only if $\ker \alpha = 0$, α is surjective if and only if $\operatorname{im} \alpha = V$.

Example. If $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$ and $\alpha : \mathbb{F}^n \to \mathbb{F}^m$ is the linear map $x \to Ax$. Then the system of equations

$$\sum_{j=1}^{n} A_{ij} x_j = b_i$$

for $1 \le i \le m$ has a solution if and only if $(b_1, ..., b_m)^T \in \operatorname{im} \alpha$. Also, $\ker \alpha$ is the set of solutions to the set of homogeneous equations

$$\sum_{j=1}^{n} A_{ij} x_j = 0$$

for $1 \leq i \leq m$.

Example. Let $\beta: C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R})$ given by

$$\beta(f(t)) = f''(t) + p(t) f'(t) + q(t) f(t)$$

for some $p, q \in C^{\infty}(\mathbb{R}, \mathbb{R})$. Then $g(t) \in \operatorname{im} \beta$ if and only if $\beta(f(t)) = g(t)$ has a solution in $C^{\infty}(\mathbb{R}, \mathbb{R})$, ker β is the set solutions to the homogeneous equation $\beta(f(t)) = 0$.

Theorem. (First Isomorphism Theorem) Suppose U, V are vector spaces on \mathbb{F} , and $\alpha \in \mathcal{L}(U, V)$, then $\ker \alpha$ is a subspace of U, $\operatorname{im} \alpha$ is a subspace of V, and α induces isomorphism $\bar{\alpha}$ by

$$\bar{\alpha}: U/\ker \alpha \to \operatorname{im} \alpha$$

 $\bar{\alpha}(u + \ker \alpha) \to \alpha(u)$

Proof. $\alpha(0) = 0$, so $0 \in \ker \alpha$.

If $\lambda, \mu \in \mathbb{F}$ and $u_1, u_2 \in \ker \alpha$, then

$$\alpha \left(\lambda u_1 + \mu u_2\right) = \lambda \alpha \left(u_1\right) + \mu \alpha \left(u_2\right) = 0 + 0 = 0$$

Similarly, if $\lambda, \mu \in \mathbb{F}$ and $u_1, u_2 \in u$, then

$$\lambda \alpha (u_1) + \mu \alpha (u_2) = \alpha (\lambda u_1 + \mu u_2) \in \operatorname{im} \alpha$$

(and $0 \in \operatorname{im} \alpha$) so $\operatorname{im} \alpha \leq V$ and $\bar{\alpha}$ is linear if it's well defined.

To show that α is well defined, suppose $u + \ker \alpha = u' + \ker \alpha \in U/\ker \alpha$. Then $u - u' \in \ker \alpha$, so $\alpha (u - u') = 0$. So $\bar{\alpha} (u + \ker \alpha) = \bar{\alpha} (u' + \ker \alpha)$ as required. $\bar{\alpha}$ surjective is clear.

If $\bar{\alpha}(u + \ker \alpha) = 0$ then $\alpha(u) = 0$. So $u \in \ker \alpha$. Thus $\ker \bar{\alpha} = 0$ as required. \Box

Definition. If $\alpha \in \mathcal{L}(U, V)$, the rank of α is $r(\alpha) = \dim \alpha$, and the nullity of α is $n(\alpha) = \dim \ker \alpha$.

Corollary. if U and V are finite dimensional vector spaces on \mathbb{F} and $\alpha \in \mathcal{L}(U, V)$,

$$\dim U = r(\alpha) + n(\alpha)$$

This is called the rank-nullity theorem.

Proof. $U/\ker\alpha\cong\operatorname{im}\alpha$, so $\dim U/\ker\alpha=\dim\operatorname{im}\alpha$. But we've seen $\dim U=$ $\dim \ker \alpha + \dim U / \ker \alpha$, so $\dim U = n(\alpha) + r(\alpha)$.

We'll give other less slick proofs but we've used the fact dim $V = \dim U + \dim V/U$ which required some work.

Exercise: deduce the above equation from the rank-nullity theorem.

Alternative proof:

Proposition. If U and V are finite dimensional vector spaces on \mathbb{F} and $\alpha \in$ $\mathcal{L}(U,V)$, then there are bases $(e_1,...,e_n)$ for U and $(f_1,...,f_m)$ for V s.t. α is represented by

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

(where I_r is a $r \times r$ identity matrix) with respect to $(e_1, ..., e_n)$ and $(f_1, ..., f_m)$ where $r = r(\alpha)$. In particular, dim $U = r(\alpha) + n(\alpha)$.

Proof. Let $(e_{k+1},...,e_n)$ be bases for ker α , and extend this to a basis $(e_1,...,e_n)$ for U. Define $f_i = \alpha(e_i)$ for $1 \le i \le k$.

Claim.
$$(f_1, ..., f_k)$$
 is a basis for im α .
Suppose $\sum_{i=1}^k \lambda_i f_i = 0$, then $\sum_{i=1}^k \lambda_i \alpha(e_i) = 0$ and $\alpha\left(\sum_{i=1}^k \lambda_i e_i\right) = 0$.

So
$$\sum_{i=1}^{k} \lambda_i e_i \in \ker \alpha$$
, but $\ker \alpha \cap \langle \{e_1, ..., e_k\} \rangle = 0$.
Thus $\sum_{i=1}^{k} \lambda_i e_i = 0$. Since $\{e_1, ..., e_k\}$ are LI, each $\lambda_i = 0$.
Now $\alpha (\sum_{i=1}^{n} \mu_i e_i) = \sum_{i=1}^{n} \mu_i \alpha (e_i) = \sum_{i=1}^{k} \mu_i \alpha (e_i) \in \langle \{f_1, ..., f_k\} \rangle$.

Now extend $(f_1,...,f_k)$ to a basis $(f_1,...,f_m)$ for V. So

$$\alpha(e_i) = \begin{cases} f_i & 1 \le i \le k \\ 0 & k+1 \le i \le n \end{cases}$$

So matrix representing α is as required, note $k = \dim \operatorname{im} \alpha = r$, and $n(\alpha) =$ n-k=n-r.

Note it follows from the statement that the only basis independent numerical invariants of α are dim U, dim V, $r(\alpha)$, or deducible from these.

Example. Suppose $W = \{x \in \mathbb{R}^5 | x_1 + x_2 + x_3 = 0, x_3 - x_4 - x_5 = 0\} \leq \mathbb{R}^5$. We want to find the dimension of W. Consider

15

$$\alpha: \mathbb{R}^5 \to \mathbb{R}^2$$

$$x \to \begin{pmatrix} x_1 + x_2 + x_5 \\ x_3 - x_4 - x_5 \end{pmatrix}$$

which is a linear map. Then $\dim W = n(\alpha) = 5 - r(\alpha)$. But α is surjective, $\alpha (1, 0, 0, 0, 0)^T = (1, 0)^T$, $\alpha (0, 0, 1, 0, 0)^T = (0, 1)^T$, so $r(\alpha) = 2$, and $\dim W = 3$.

More generally, the space of solutions of n linear equations in m unknowns has dimension at least m-n.

Example. Suppose U and W are subspaces of V.

Consider $\alpha: U \oplus W \to V: (u,w) \to u+w$, a linear map. Then im $\alpha=U+W$, $\ker \alpha = \{(u,-u) | u \in U \cap W\} \cong U \cap W$.

So $\dim U + \dim W = \dim U \oplus W = \dim (U + W) + \dim (U \cap W)$ (rank-nullity).

Corollary. (of rank-nullity) If $\alpha \in \mathcal{L}(U, V)$, then the following are equivalent if $\dim U = \dim V = n < \infty$:

- (a) α is injective;
- (b) α is surjective;
- (c) α is an isomorphism.

Proof. We've already seen (a)+(b) \iff (c). So we just need to prove (a) \iff (b).

 α ijective $\iff n(\alpha) = 0$

 $\iff r(\alpha) = \dim U = n = \dim V \text{ (by rank-nullity)}$

 $\iff \alpha \text{ is surjective.}$

Lemma. Suppose $A \in \operatorname{Mat}_n(\mathbb{F}) := \operatorname{Mat}_{n,n}(\mathbb{F})$. Then the following are equivalent:

- (a) $\exists B \in \operatorname{Mat}_n(\mathbb{F}) \text{ s.t. } BA = I_n;$
- (b) $\exists C \in \operatorname{Mat}_n(\mathbb{F}) \text{ s.t. } AC = I_n.$

If (a) and (b) hold, then B = C, and we write $A^{-1} = B(=C)$ and say A is invertible.

Proof. Let α, β, γ and ι be the linear maps represented by A, B, C and I_n respectively with respect to standard bases.

Now (a) holds $\implies \exists \beta : \mathbb{F}^n \to \mathbb{F}^n \text{ s.t. } \beta \alpha = \iota$

- $\implies \alpha \text{ injective}$
- $\implies \alpha$ is an isomorphism
- $\implies \exists \beta : \mathbb{F}^n \to \mathbb{F}^n \text{ s.t. } \beta \alpha = \iota$
- \implies (a) holds $\iff \alpha$ is an isomorphism.
- (b) holds $\implies \exists \gamma : \mathbb{F}^n \to \mathbb{F}^n \text{ s.t. } \alpha \gamma = \iota$
- $\implies \alpha$ is surjective
- $\implies \alpha$ is an isomorphism
- $\implies \exists \gamma : \mathbb{F}^n \to \mathbb{F}^n \text{ s.t. } \alpha \gamma = \iota$
- \implies (b) holds.

So (b) holds $\iff \alpha$ is an isomorphism \iff (a) holds.

Note if α is an isomorphism, then β and γ are the (set-the??) inverse to α . So $\beta = \gamma$ and B = C.

2.4 Change of basis

Theorem. Suppose $(e_1, ..., e_m)$ and $(u-1, ..., u_m)$ be bases for an \mathbb{F} -vector space U and $(f_1, ..., f_n)$ and $(v_1, ..., v_n)$ are bases for another \mathbb{F} -vector space V. Let $\alpha \in \mathcal{L}(U, V)$, A be the matrix representing α with respect to $(e_1, ..., e_m)$ and $(f_1, ..., f_n)$ and B be the matrix representing α with respect to $(u_1, ..., u_m)$ and $(v_1, ..., v_n)$. Then

$$B = Q^{-1}AP$$

where

$$u_{i} = \sum_{k} P_{ki} e_{k},$$

$$v_{j} = \sum_{l} Q_{lj} f_{l}$$

$$U \quad \overrightarrow{\iota} U \quad \overrightarrow{\alpha} V \quad \overleftarrow{v} V$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

$$\mathbb{F}^{m} \quad \overrightarrow{P} \mathbb{F}^{m} \quad \overrightarrow{A} \mathbb{F}^{n} \quad \overleftarrow{Q} \mathbb{F}^{n}$$

Proof. Both AP and QB represent linear map $\alpha: U \to V$ with respect to $(u_1, ..., u_n)$ and $(f_1, ..., f_n)$, so AP = QB. But P and Q are invertible, as ι is an isomorphism and $Q^{-1}AP = B$ as required.

Definition. We say $A, B \in \operatorname{Mat}_{m,n}(\mathbb{F})$ are equivalent if $\exists P \in \operatorname{Mat}_n(\mathbb{F})$ and $Q \in \operatorname{Mat}_n(\mathbb{F})$ both invertible s.t. $B = Q^{-1}AP$.

Corollary. (of 2nd proof of rank-nullity theorem) If $A \in \operatorname{Mat} m, n(\mathbb{F})$, there are invertible $P \in \operatorname{Mat}_n(\mathbb{F})$ and $Q \in \operatorname{Mat}_m(\mathbb{F})$ s.t.

$$Q^{-1}AP = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Moreover, r is uniquely determined by A, i.e. every equivalence class contains precisely one matrix of the above block form.

Definition. If $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$, then the *column rank* of A is the dimension of span of the column vectors of A as a subspace of \mathbb{F}^n . The *row rank* of A is the column rank of A^T .

Note the column rank of A, r(A) is just the rank of the linear map $\mathbb{F}^m \to \mathbb{F}^n$ represented by A with respect to the standard bases. So equivalent matrices have the same column rank.

Corollary. (row-rank = column-rank) If $A \in \operatorname{Mat} n, m(F)$, then

$$r\left(A\right) = r\left(A^{T}\right)$$

Proof. $\exists P, R$ invertible s.t.

$$Q^{-1}AP = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

17

Then

$$P^T A^T \left(Q^{-1} \right)^T = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

and

$$P^T \left(P^{-1} \right)^T = \left(\left(P^{-1} \right) P \right)^T = I^T = I$$

So $(P^T)^{-1}$ and Q^T are invertible. So $r(A^T) = r(A)$.

2.5 Elementary matrix and operations

Definition. We call the following types of invertible $n \times n$ matrices elementary:

$$E_{ij}^{n} = \begin{pmatrix} 1 & & & & \\ & 1 & & & & \\ & & \cdots & & & \\ & & & \cdots & \lambda & \\ & & & \cdots & \ddots & \\ & & & & 1 \end{pmatrix}$$

for $i \neq j$,

$$T_{ij}^n = \left(egin{array}{cccc} 1 & & & & & \\ & 1 & & & & \\ & & \cdots & & & \\ & & & \lambda & & \\ & & & & \cdots & \\ & & & & 1 \end{array}
ight)$$

for $\lambda \in \mathbb{F} \setminus \{0\}$.

Observation: If $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$, then $AS_{ij}^n(S_{ij}^nA)$ is obtained from A by swapping column (row) i and j.

 $AE_{ij}^{n}\left(\lambda\right)\left(E_{ij}^{m}\left(\lambda\right)A\right)$ is obtained from A by adding λ times of column (row) i to column (row) j.

 $AT_{i}^{n}(\lambda)$ $(T_{i}^{n}(\lambda)A)$ is obtained from A by multiplying column (row) i by λ .

Recall:

Proposition. If $A \in \operatorname{Mat} m, n(\mathbb{F})$, then there exists an invertible $P \in \operatorname{Mat}_n(\mathbb{F})$ and $Q \in \operatorname{Mat}_m(\mathbb{F})$ s.t.

$$Q^{-1}AP = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

for some $r \geq 0$. Now we prove this purely by matrices:

Proof. We will prove that there exists elementary matrices $E_1^n,...,E_k^n$ and $F_1^m,...,F_l^m$ s.t.

$$F_l^m ... F_1^m A E_1^n ... E_k^n = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

for some $r \geq 0$ which is sufficient.

In fact, equivalently we will prove that there exists elementary row and column operations transforming A into the desired block matrix form.

If A=0 then we are done. Otherwise, $\exists i,j$ s.t. $A_{ij}\neq 0$. By swapping columns 1 and j, and then rows 1 and i, we may assume $A_{11}\neq 0$. By multiplying row 1 by $1/A_{11}$ we may assume $A_{11}=1$.

By adding $-A_{1j}$ times column 1 to column j for each j > 1, and $-A_{i1}$ times row 1 to row i for each i > 1, we can assume A is of the form

$$\begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix}$$

where $B \in \operatorname{Mat}_{m-1,n-1}(\mathbb{F})$. We can complete by induction on $\min(m,n)$.

The elementary row and column operations preserve the rank of A and A^T . We leave this as an exercise.

3 Duality

3.1 Dual spaces

To specify a subspace of \mathbb{F}^n , we can write down a set of suitable linear equations that each vector in the subspace satisfies.

Example. Let $U = \left\langle (1, 2, 1)^T \right\rangle \subset \mathbb{F}^3$, then

$$U = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid 2x_1 - x_2 = 0, \ x_1 - x_3 = 0 \right\}$$

The choice of equations is not caconical (i.e. no best choice).

Each equation can be (conceived?) as defining the kernel of a linear map

$$g: \mathbb{F}^n \to \mathbb{F} \text{ e.g. } x_1 - x_3 = 0 \iff x \in \ker \left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \to x_1 - x_3 \right).$$

If $g_1, g_2 \in \mathcal{L}(\mathbb{F}^n, \mathbb{F})$ s.t. $g_1(U) = g_2(U) = 0$, then $(\lambda g_1 + \mu g_2)(U) = 0$ for all $\lambda, \mu \in \mathbb{F}$.

More over, $0 \in \mathcal{L}(\mathbb{F}^n, \mathbb{F})$ and 0(U) = 0. So $\{\theta \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}) | \theta(U) = 0\} \leq \mathcal{L}(\mathbb{F}^n, \mathbb{F})$.

Definition. If V is an \mathbb{F} -vector space, then the dual of V is

$$V^* = \mathcal{L}(V, \mathbb{F}) = \{\alpha : V \to \mathbb{F} \mid \alpha \text{ is linear } \}$$

Elements of V^* are often called *linear-forms* or *linear functions*.

Example.

$$\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \to x_1 - x_3 \right) \in \left(\mathbb{R}^3 \right)^*$$

Example. If X is a set, $x \in X$, then

$$(f \to f(x)) \in (\mathbb{F}^X)^*$$

Example.

$$f \to \int_0^1 \sin(2n\pi x) f(x) dx \in (C[0,1], \mathbb{R})^*$$

Example.

$$\operatorname{tr}:\operatorname{Mat}_{n}\left(\mathbb{F}\right)\to\mathbb{F}$$

$$A\to\sum_{i=1}^{n}A_{ii}$$

is in $\operatorname{Mat}_n(\mathbb{F})^*$.

Lemma. If V is a finite dimensional \mathbb{F} -vector space with basis $(e_1, ..., e_n)$, there is a basis $(\varepsilon_1, ..., \varepsilon_n)$ of V^* s.t. $\varepsilon_i(e_j) = \delta_{ij}$ for $1 \leq i, j \leq n$. We say $(\varepsilon_1, ..., \varepsilon_n)$ is the basis dual to $(e_1, ..., e_n)$.

Proof. Since a linear map is determined by its value on a basis, $\varepsilon_1, ..., \varepsilon_n$ are uniquely determined by $\varepsilon_i(e_j) = \delta_{ij}$.

Suppose $\theta \in V^*$. Let $\lambda_i = \theta(e_i)$, then $\theta(e_i) = (\sum_{v=1}^n \lambda_j \varepsilon_j)(e_i)$ for $1 \le i \le n$.

Since $(e_1, ..., e_n)$ is a basis, $g = \sum \lambda_j \varepsilon_j$ and $\theta \in \langle \varepsilon_1, ..., \varepsilon_n \rangle$.

Next, suppose $\sum_{i=1}^{n} \lambda_i \varepsilon_i = 0$. Then

$$\left(\sum_{i=1}^{n} \lambda_i \varepsilon_i\right) (e_j) = \lambda_j = 0$$

for $1 \le j \le n$. So $\varepsilon_1, ..., \varepsilon_n$ is LI as required.

Remark. If $(a_1, ..., a_n)$ is a row vector and $(x_1, ..., x_n)^T$ is a column vector, then $(a_1, ..., a_n) (x_1, ..., x_n)^T = \sum_{i=1}^n a_i x_i = (\sum a_i \varepsilon_i) (\sum x_j e_j)$ where $e_1, ..., e_j$ is the standard basis for \mathbb{F}^n and $\varepsilon_1, ..., \varepsilon_n$ is the dual basis for $(\mathbb{F}^n)^*$. So ε_i is the row vector with 1 in entry i and 0 elsewhere.

Corollary. If V is finite dimensional, then $\dim V = \dim V^*$.

Definition. If $U \subset V$, the annihilator of U is $U^{\circ} = \{\theta \in V^* \mid \theta(u) = 0 \forall u \in U\}$.

Example. If
$$U = \left\langle \left(1, 2, 1\right)^T \right\rangle \subset \mathbb{F}^3$$
, then $U^{\circ} = \left\langle \left(1, 0, -1\right), \left(2, -1, 0\right) \right\rangle \in \left(\mathbb{F}^3\right)^*$.

Proposition. Suppose V is a finite dimensional \mathbb{F} -vector space, and $U \leq V$. Then

$$\dim U + \dim U^{\circ} = \dim V$$

Proof. Let $(e_1,...,e_k)$ be a basis for U and extend to a basis $(e_1,...,e_n)$ for V. Let $(\varepsilon_1,...,\varepsilon_n)$ be dual basis to $(e_1,...,e_n)$ in V^* . We claim that $(\varepsilon_{k+1},...,\varepsilon_n)$ is a basis for U° .

To show this, since $\varepsilon_i(e_j) = 0$ for $1 \le j \le k$ and $k+1 \le i \le n$, so $\varepsilon_{k+1}, ..., \varepsilon_n \in U^{\circ}$. So it's enough to show that they span U° .

If $\theta \in U^{\circ}$, then $\theta(e_i) = 0$ for $1 \leq i \leq k$. But $\theta = \sum_{j=1}^{n} \lambda_j \varepsilon_j$ for some $\lambda_j \in \mathbb{F}$, and $\lambda_1, ..., \lambda_k = 0$. So $\theta \in \langle e_{k+1}, ..., e_n \rangle$.

So
$$\dim U^{\circ} + \dim U = (n-k) + k = n = \dim V$$
.

Another proof:

Proof. Let $r: V^* \to U^*$ by $\theta \to \theta|_U$. This is a linear surjection since every linear map $U \to \mathbb{F}$ can be extended to a linear map $V \to \mathbb{F}$. Moreover, ker $r = U^{\circ}$. So

by rank-nullity theorem,

$$\dim V^* = \dim U^* + \dim U^\circ,$$

$$\dim V^* = \dim V,$$

$$\dim U^* = \dim U$$

So done. \Box

Another proof:

Proof. There is a linear isomorphism $U^{\circ} \to (V/U)^*$ by $\theta \to \bar{\theta}$ where $\bar{\theta}(v+U) = \theta(v)$.

So
$$\dim U^{\circ} = \dim (V/U)^* = \dim V/U = \dim V - \dim U.$$

Proposition. (Change of dual basis) If V is finite dimensional \mathbb{F} -vector space with bases $(e_1,...,e_n)$ and $(f_1,...,f_n)$ and change of basis matrix from (e_k) to (f_k) given by P, i.e. $f_i = \sum_{k=1}^n P_{ki}e_k$ for $1 \le i \le n$, then if $(\varepsilon_1,...,\varepsilon_n)$ and $(\eta_1,...,\eta_n)$ are the corresponding dual bases, then the change of basis matrix from $(\varepsilon_1,...,\varepsilon_n)$ to $(\eta_1,...,\eta_n)$ is $(P^{-1})^T$, i.e.

$$\varepsilon_i = \sum_{k=1}^n \left(p_{ki}^T \right) \eta_k$$

Proof. Let $Q = P^{-1}$ so $e_i = \sum_k Q_{ki} f_k$.

$$\left(\sum_{k=1}^{n} (P_{ki})^{T} \eta_{k}\right) (e_{j}) = \sum_{k,l} (P_{ik} \eta_{k}) (Q_{lj} f_{l})$$

$$= \sum_{k,l} P_{ik} \delta_{kl} Q_{lk}$$

$$= [PQ]_{ij} = \delta_{ij} = \varepsilon_{i} (e_{j})$$

for $1 \le j \le n$. So

$$\sum_{k=1}^{n} \left(P_{ki} \right)^{T} \eta_{k} = \varepsilon_{i}$$

as required.

3.2 Dual maps

Definition. If $\alpha \in \mathcal{L}(V, W)$ where V, W are \mathbb{F} -vector spaces, the dual map

$$\alpha^*: W^* \to V^*$$

is given by

$$\alpha^* (\theta) = \theta \circ \alpha$$

Note $\alpha^*(\theta) \in V^*$ for all $\theta \in W^*$ since composite of linear map is linear. Moreover, $\alpha^* \in \mathcal{L}(W^*, V^*)$ since $f : \lambda, \mu \in \mathbb{F}, \theta_1, \theta_2 \in W^*$ and $v \in V$, then

$$\alpha^* (\lambda \theta_1 + \mu \theta_2) (v) = (\lambda \theta_1 + \mu \theta_2) (\alpha (v))$$
$$= \lambda \theta_1 (\alpha (v)) + \mu \theta_2 (\alpha (v))$$
$$= \lambda \alpha^* (\theta_1) (v) + \mu \alpha^* (\theta_2) (v)$$

as required.

Proposition. Suppose V and W are vector spaces with bases $(e_1, ..., e_n)$ and $(f_1, ..., f_n)$ and $\alpha \in \mathcal{L}(V, W)$ represented by A with respect to these bases. Then $\alpha^* \in \mathcal{L}(W^*, V^*)$ is represented by A^T with the dual bases $(\varepsilon_1, ..., \varepsilon_n)$ and $(\eta_1, ..., \eta_n)$.

Proof. We have $\alpha(e_i) = \sum_{k=1}^n A_{ki} f_k$ and $\varepsilon_i(e_j) = \delta_{ij} = \eta_i(f_j)$. We want to show

$$\alpha^* \left(\eta_i \right) = \sum_{k=1}^n \left(A^T \right)_{ki} \varepsilon_k$$

Then

$$\alpha^* (\eta_i) (e_j) = \eta_i (\alpha (e_j))$$

$$= \eta_i \left(\sum_{k=1}^n A_{kj} f_k \right)$$

$$= \sum_k A_{kj} \delta_{ik}$$

$$= A_{ij}$$

$$= \sum_{k=1}^n (A^T)_{ki} \varepsilon_k (e_j)$$

So $\alpha^*(\eta_i)$ and $\sum (A^T)_{ki} \varepsilon_k$ agree on a basis, so are equal.

Remark. • If $\alpha \in \mathcal{L}(U, V)$ and $\beta \in \mathcal{L}(V, W)$, then $(\beta \alpha)^* = \alpha^* \beta^*$.

- If $\alpha, \beta \in \mathcal{L}(U, V)$, $\lambda, \mu \in \mathbb{F}$, then $(\lambda \alpha + \mu \beta)^* = \lambda \alpha^* + \mu \beta^*$.
- If $B = Q^{-1}AP$ with P, Q invertible, then

$$B^T = P^T A^T \left(Q^{-1}\right)^T = \left(\left(P^{-1}\right)^T\right)^{-1} A^T \left(Q^{-1}\right)^T$$

as we should expect.

Lemma. Suppose $\alpha = \mathcal{V}, \mathcal{W}$ and V, W are finite dimensional vector spaces. Then

- (a) $\ker \alpha^* = (\operatorname{im} \alpha)^{\circ}$;
- (b) $r(\alpha) = r(\alpha^*)$; and
- (c) im $\alpha^* = (\ker \alpha)^{\circ}$.

Proof. (a) Suppose $\theta \in W^*$. Then $\theta \in \ker \alpha^* \iff \theta \alpha = 0 \iff \theta \alpha(v) = 0 \forall v \in V \iff \theta \in (\operatorname{im} \alpha)^{\circ}$.

(b) We've seen $\dim \operatorname{im} \alpha + \dim (\operatorname{im} \alpha)^{\circ} = \dim W$ since $\operatorname{im} \alpha \leq W$. Using (a), we deduce $r(\alpha) + n(\alpha^*) = \dim W = \dim W^*$. But rank-nullity theorem implies $r(\alpha^*) + n(\alpha^*) = \dim W^*.$

(c) If $\theta \in \text{im } \alpha^*$, then there exists $\phi \in W^*$ s.t. $\alpha^*(\phi) = \theta$ i.e. $\phi \alpha = \theta$. So if $v \in \ker \theta$, then $\theta(v) = \phi \alpha(v) = 0$. Thus $\theta \in (\ker \alpha)^{\circ}$, i.e. $\operatorname{im} \alpha^{*} \leq (\ker \alpha)^{\circ}$. But dim $(\ker \alpha)^{\circ} + n(\alpha) = \dim V$, and $r(\alpha) + n(\alpha) = \dim V$. So $r(\alpha) = \dim V$. $\dim (\ker \alpha)^{\circ} = r(\alpha^*)$ by (b). So dim im $\alpha^* = \dim (\ker \alpha)^{\circ}$ and the inclusion is an equality.

Lemma. Let V be a \mathbb{F} -vector space. There is a canonical linear map $ev: V \to \mathbb{F}$ $(V^*)^*$ given by $ev(v)(\theta) = \theta(v)$ for all $\theta \in V^*, v \in V$.

Proof. We need to prove: (a) $ev(v) \in (V^*)^*$ for all $v \in V$, and (b) ev is actually a linear map.

ev(v) is a function $V^* \to \mathbb{F}$, we want $ev(v)(\lambda\theta_1 + \mu\theta_2) = \lambda ev(v)(\theta_1) + \mu ev(v)(\theta_2)$ for all $\lambda, \mu \in \mathbb{F}, \theta_1, \theta_2 \in V^*$.

LHS =
$$(\lambda \theta_1 + \mu \theta_2)(v)$$

= $\lambda \theta_1(v) + \mu \theta_2(v)$ = RHS.

Moreover, if $\lambda, \mu \in \mathbb{R}$ and $v_1, v_2 \in V$ and $\theta \in V^*$, then

$$ev (\lambda v_1 + \mu v_2) (\theta) = \theta (\lambda v_1 + \mu v_2)$$

$$= \lambda \theta (v_1) + \mu \theta (v_2)$$

$$= \lambda ev (v_1) (\theta) + \mu ev (v_2) (\theta)$$

$$= (\lambda ev (v_1) + \mu ev (v_2)) (\theta)$$

So $ev(\lambda v_1 + \mu v_2) = \lambda ev(v_1) + \mu ev(v_2)$ as required.

Lemma. If V is finite dimensional on \mathbb{F} , then $ev: V \to V^{**}$ is an isomorphism.

Proof. We know dim $V^{**} = \dim V^* = \dim V$, so it suffices to show ev is an injection, i.e. $ev(v) = 0 \implies v = 0$.

Suppose ev(v) = 0. Then $\theta(v) = ev(v)(\theta) = 0$ for all $\theta \in V^*$, i.e. $V^* = \langle v \rangle^{\circ}$. But $\dim \langle v \rangle + \dim \langle v \rangle^{\circ} = \dim V = \dim V^{*}$. So $\dim \langle v \rangle = 0$, i.e. v = 0.

Remark. If V is any vector space with a basis, then ev(v) can be shown to be injective but it will not be surjective unless V is finite dimensional.

Lemma. Suppose V, W are vector spaces on \mathbb{F} and $\alpha \in \mathcal{L}(V, W)$. Then

$$\alpha^{**} \circ ev = ev \circ \alpha$$

where α^{**} is the corresponding map from V^{**} to W^{**} .

Proof. Suppose $v \in V$, $\theta \in W^*$. Then

$$\alpha^{**} \circ ev(v)(\theta) = ev(v) \circ \alpha^{*}(\theta)$$
$$= ev(v)(\theta \circ \alpha)$$
$$= \theta(\alpha(v))$$
$$= ev(\alpha(v))(\theta)$$

i.e. $\alpha^{**} \circ ev(v) = ev(\alpha(v))$ for all $v \in V$.

Proposition. Suppose V is finite dimensional vector space over \mathbb{F} , and U, U_1 , $U_2 \leq V$.

- (a) $U^{\circ\circ} = ev(U)$;
- (b) $ev(U^{\circ}) = ev(U^{\circ});$
- (c) $(U_1 + U_2)^{\circ} = U_1^{\circ} \cap U_2^{\circ};$ (d) $(U_1 \cap U_2)^{\circ} = U_1^{\circ} + U_2^{\circ}.$

Proof. (a) Let $u \in U$ and $\theta \in V^*$. Then $\theta(u) = 0 \iff ev(u)(\theta) = 0$. So $\theta \in U^{\circ} \implies ev(u)(\theta) = 0$, and $ev(u) \in (U^{\circ})^{\circ}$, i.e. $ev(U) \subset U^{\circ \circ}$. But $\dim(ev(U))\dim U = \dim V - \dim U^{\circ} = \dim V - (\dim V^* - \dim U^{\circ\circ}) =$ $\dim U^{\circ \circ}$ and $ev(U) = U^{\circ \circ}$ as desired.

- (b) $ev(U^{\circ}) = (U^{\circ})^{\circ \circ} = (U^{\circ \circ})^{\circ} = ev(U)^{\circ}$.
- (c) Suppose $\theta \in V^*$, then $\theta \in (U_1 + U_2)^{\circ} \iff \theta (u_1 + u_2) = 0$ for all $u_1 \in U_1$, $u_2 \in U_2, \iff \theta(u_1) = 0 \text{ for all } u_1 \in U_1 \text{ and } \theta(u_2) = 0 \text{ for all } u_2 \in U_2 \iff$ $\theta \in U_1^{\circ} \cap U_2^{\circ}$.
- (d) By (c), $U_1^{\circ\circ} \cap U_2^{\circ\circ} = (U_1^{\circ} + U_2^{\circ})^{\circ}$. Thus $(ev(U_1) \cap ev(U_2))^{\circ} = ev(U_1^{\circ} + U_2^{\circ}) = ev(U_1^{\circ}) + ev(U_2^{\circ})$, $ev(U_1 \cap U_2)^{\circ} = ev(U_1^{\circ}) + ev(U_2^{\circ})$, and $(ev(U_1 \cap U_2))^{\circ} = ev(U_1^{\circ}) + ev(U_2^{\circ})$ $ev(U_1)^{\circ} + ev(U_2)^{\circ}$ by part (b). So $(U_1 \cap U_2)^{\circ} = U_1^{\circ} + U_2^{\circ}$ since ev is an isomorphism and commute with $^{\circ}$.

4 Bilinear forms (I)

Suppose U, V are vector spaces on \mathbb{F} .

Definition. A bilinear form on $U \times V$ is a function $\phi : U \times V \to \mathbb{F}$ that is linear in each variable, i.e.

$$\phi\left(u,-\right):V\to\mathbb{F}\in V^{*}\ \forall u\in U,$$

$$\phi\left(-,v\right):U\to\mathbb{F}\in U^{*}\ \forall v\in V$$

Example.

$$V \times V^* \to \mathbb{F}$$

 $(v, \theta) \to \theta(v)$

is a bilinear form.

Example. If $V = W = \mathbb{R}^n$, then

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

 $(x,y) \to \sum_{i=1}^n x_i y_i$

is a bilinear form.

Example. If $A \in \operatorname{Mat}_{m,n}(\mathbb{F})$, then

$$\mathbb{F}^m \times \mathbb{F}^n \to \mathbb{F}$$
$$(v, w) \to v^T A w$$

is a bilinear form.

Example. If $V = W = C([0,1], \mathbb{R})$, then

$$(f,g) \rightarrow \int_{0}^{1} f(t) g(t) dt$$

is a bilinear form.

Example.

$$\mathbb{R}^{2} \times \mathbb{R}^{2} \to \mathbb{R}$$
$$\left(a,b\right)^{T}, \left(c,d\right)^{T} \to ad - bc$$

is a bilinear form.

Definition. Suppose U has basis $(e_1,...,e_n)$ and V has basis $(f_1,...,f_m)$ and $\phi: U \times V \to \mathbb{F}$ is a bilinear form. The matrix A representing ϕ with respect to $(e_1,...,e_n)$ and $(f_1,...,f_m)$ is given by

$$A_{ij} = \phi\left(e_i, f_j\right) \ \forall 1 \le i \le n, 1 \le j \le m$$

Remark. If $u = \sum \lambda_i e_i$ and $v = \sum \mu_j f_j$, then

$$\phi(u, v) = \phi\left(\sum \lambda_i e_i, \sum_j \mu_j f_j\right)$$

$$= \sum_{i=1}^n \lambda_i \phi\left(e_i, \sum_j \mu_j f_j\right)$$

$$= \sum_{i=1}^n \sum_{j=1^m} \lambda_i \mu_j \phi\left(e_i, f_j\right)$$

$$= \sum_{i,j} \lambda_i A_{ij} \mu_j$$

$$= \lambda^T A \mu$$

So ϕ is uniquely determined by A.

Definition. A bilinear form $\phi: U \times V \to \mathbb{F}$ determines two linear maps

$$\phi_L: U \to V^*$$

$$\phi_R: V \to U^*$$

given by

$$\phi_L(u)(v) = \phi(u, v) = \phi_R(v)(u)$$

Example. If

$$\phi: V \times V^* \to \mathbb{F}$$
$$(v, \theta) \to \theta(v)$$

then $\phi_L: V \to V^{**}$ is ev.

Moreover, $\phi_R: V^* \to V^*$ is ι_{V^*} (identity).

In fact, $\phi_R = \phi_L^* \circ ev$ and $\phi_L = \phi_R^* \circ ev$. That motives the following lemma:

Lemma. Suppose $(e_1,...,e_n)$ is a basis for U, and $(f_1,...,f_n)$ is a basis for V, and $\phi: U \times V \to \mathbb{F}$ is a bilinear form. Then if A represents ϕ with respect to these bases then A also represents ϕ_R with respect to $(f_1,...,f_m)$, and the basis $(\varepsilon_1,...,\varepsilon_n)$ that is dual to $(e_1,...,e_n)$ and A^T represents ϕ_L with respect to $(e_1,...,e_n)$, and the basis $(\eta_1,...,\eta_m)$ that is dual to $(f_1,...,f_m)$.

Proof.

$$\phi_R(f_i)(e_j) = \phi(e_j, f_i) = A_{ji}$$

So

$$\phi_R(f_i) = \sum_k A_{ki} \varepsilon_k$$

as required.

Similarly,

$$\phi_L(e_i)(f_j) = \phi(e_i, f_j) = A_{ij} = A_{ji}^T$$

So

$$\phi_L\left(e_i\right) = \sum_k \left(A^T\right)_{ki} \eta_k$$

as required.

We call ker ϕ_L the *left kernel* of ϕ , and ker ϕ_R the *right kernel* of ϕ .

Note

$$\ker \phi_L = \left\{ u \in U \mid \phi\left(u,v\right) = 0 \forall v \in V \right\},$$
$$\ker \phi_R = \left\{ v \in V \mid \phi\left(u,v\right) = 0 \forall u \in U \right\}$$

More generally, if $T \subset U$, then define

$$T^{\perp} = \{ v \in V \mid \phi(t, v) = 0 \forall t \in T \} \le V$$

and

$$^{\perp}S=\left\{ u\in U\mid\phi\left(u,s\right)=0\forall s\in S\right\}$$

Definition. We say ϕ is non-degenerate if ker $\phi_L = 0$ and ker $\phi_R = 0$. Otherwise we say ϕ is degenerate.

Lemma. If $\phi: U \times V \to \mathbb{F}$ is a bilinear form, $(e_1, ..., e_n)$ is a basis for U, $(f_1, ..., f_n)$ is a basis for V, and ϕ is represented by A with respect to the bases. Then ϕ is non-degenerate $\iff A$ is invertible. In particular, A has to be a square matrix (n = m).

Proof. ϕ is non-degenerate \iff $\ker \phi_L = 0$ and $\ker \phi_R = 0$ \iff $r\left(A^T\right) = n$ and $r\left(A\right) = n$ by rank-nullity \iff $n = m = r\left(A\right)$ since row rank = column rank \iff A is invertible.

So to define a bilinear form $\phi: U \times V \to \mathbb{F}$ that is non-degenerate is to define an isomorphism $\phi_L: U \to V^*$ (equivalently an isomorphism ϕ_R from V to U^*) when U and V are finite dimensional.

Proposition. (Change of basis) Suppose $(e_1, ..., e_n)$ and $(u_1, ..., u_n)$ are bases for U and $(f_1, ..., f_m)$ and $(v_1, ..., v_m)$ are bases for V s.t.

$$u_i = \sum_{k=1}^n P_{ki} e_k$$

for i = 1, ..., n,

$$v_j = \sum_{i=1}^n Q_{lj} f_l$$

for j = 1, ..., m. Let ϕ be a bilinear form $u \times V \to \mathbb{F}$ represented by A wrt $(e_1, ..., e_n)$ and $(f_1, ..., f_m)$ and by B wrt $(u_1, ..., u_n)$ and $(v_1, ..., v_m)$. Then $B = P^T A Q$.

Proof.

$$\begin{split} B_{ij} &= \phi \left(u_i, v_j\right) \\ &= \phi \left(\sum_k P_{ki} e_k, \sum_l Q_{lj} f_l\right) \\ &= \sum_{k,l} P_{ki} Q_{lj} \phi \left(e_k, f_l\right) \\ &= \sum_{k,l} P_{ik}^T A_{kl} Q_{lj} \\ &= \left[P^T A Q\right]_{ij} \end{split}$$

So now we can define

Definition. Let $\phi: U \times V \to \mathbb{F}$ be a bilinear form with U, V finite dimensional. The rank of ϕ , $r(\phi)$ is the rank of any matrix representing ϕ . By the above lemma, this does not depend on the choice of basis.

Remark. $r(\phi) = r(\phi_R) = r(\phi_L)$.

5 Determinants of matrices

Recall that S_n is the group of permutations of $\{1,...,n\}$ and there is a group homomorphism $\varepsilon: S_n \to (\{\pm 1\}, \cdot)$ s.t. $\varepsilon(\sigma) = 1$.

If σ is a product of an even number of transposition then $\varepsilon(\sigma) = -1$; otherwise $\varepsilon(\sigma) = 1$.

Definition. Let $A \in \operatorname{Mat}_n(\mathbb{F})$. The determinant of A is

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \left(\bigcap_{i=1}^n A_i \sigma(i) \right)$$

Example. Consider n = 2. We have

$$\det A = A_{11}A_{22} - A_{12}A_{21}$$

Lemma. $\det A = \det A^T$.

Proof.

$$\det A^{T} = \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \left(\bigcap_{i=1}^{n} A_{\sigma(i)i} \right)$$

$$= \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \left(\bigcap_{j=1}^{n} A_{j\varepsilon^{-1}(j)} \right)$$

$$= \sum_{\tau \in S_{n}} \varepsilon(\tau^{-1}) \left(\bigcap_{j=1}^{n} A_{j\tau(j)} \right)$$

$$= \det A$$

Definition. A volume form on \mathbb{F}^n is a function

$$d: \mathbb{F}^n \times ... \times \mathbb{F}^n \to \mathbb{F}$$

that is

(a) multilinear, i.e. if $v_1, ..., v_{i-1}, v_{i+1}, ..., v_n \in \mathbb{F}^n$, then

$$d(v_1, ..., v_{i-1}, -, v_{i+1}, ..., v_n) \in (\mathbb{F}^n)^*$$

For each $1 \le i \le n$;

(b) alternating, i.e. whenever $v_i = v_j$ for some $i \neq j$, then $d(v_1, ..., v_n) = 0$.

One may view a matrix $A \in \operatorname{Mat}_n(\mathbb{F})$ as an n-tuple of elements of \mathbb{F}^n (its columns):

$$A = (A^{(1)}, ..., A^{(n)})$$

Lemma. det is a volume form.

Proof. To see det is multi-linear, it suffices to see that

$$\bigcap_{i=1}^n A_{i\sigma(1)}$$

is multilinear for each $\sigma \in S_n$, since any linear combination of (multi)-linear functions is also (multi)-linear.

But $\bigcap_{i=1}^n A_{i\sigma(1)}$ contains one entry from each column, so is clearly multi-linear.

Suppose $A^{(k)} = A^{(l)}$ for some $k \neq l$. Let $\tau = (kl)$. Then $A_{ij} = A_{i\tau(j)}$ for all $1 \leq i, j \leq n$.

But S_n is the disjoint union of A_n and τA_n , and

$$\sum_{\sigma \in A_n} \cap_{i=1}^n A_{i\sigma(i)} = \sum_{\sigma \in \tau A_n} \cap_{i=1}^n A_{i\sigma(i)}$$

so

$$\det A = LHS - RHS = 0$$