Functions

COMP416 - Calculus Dennis Wong

Functions

A *function* f is a mapping between 2 sets A and B, denoted by $f: A \rightarrow B$, such that each $a \in A$ maps to exactly one element in B.

We write f(a) = b if the function f maps the element $a \in A$ to the element $b \in B$.

Domain and codomain

Let f be a function from the sets A to B.

Then we say that A is the *domain* of the function *f* and B is the *codomain* of the function *f*.

We also say b is an *image* of a (or a is a *preimage* of b) when f(a) = b.

Range

Let f be a function from the sets A to B.

The *range* of f is the subset of B defined as follows: $b \in B$ belongs to the range if and only if it has a preimage under f.

Example

Consider the function f: $\mathbb{R}^+ -> \mathbb{R}$ $x -> 2 - \sqrt{x}$

Domain is \mathbb{R}^+ and codomain is \mathbb{R} . Range is $]-\infty$, 2[.

Question: If the domain of *f* is changed to **R**, is *f* still a function? Why?

Graphs of functions

If *f* is a function with domain *D*, its *graph* consists of the points in the Cartesian plane whose coordinates are the input-output pairs for *f*.

In set notation, the graph is $\{(x, f(x)) \mid x \in D\}$.

Injective (one-to-one)

A function f is said to be *injective* (or *one-to-one*) if and only if f(a) = f(b) implies a = b.

That is, no two or more elements in the domain map to the same element in the codomain.

Is the function f(x) = floor(x) from **R** to **R** injective?

Surjective (onto)

A function $f: A \rightarrow B$ is said to be **surjective** (or **onto**) if and only if for every element $b \in B$, there is an element $a \in A$ such that f(a) = b.

That is, the range of *f* is equal to the codomain of *f*.

Is the function f(x) = floor(x) from **R** to **R** surjective?

Bijective (one-to-one correspondence)

A function *f* is said to be *bijective* (*one-to-one* correspondence) if and only if *f* is injective and surjective.

Theorem: When a function is bijective, the domain, codomain and the range are of equal size.

Inverse function

An *inverse function* f^{-1} is a mapping between elements in codomain to the domain of the function f.

Theorem: The inverse function is a function if and only if *f* is bijective.

Example: Let $f: \mathbb{Z} -> \mathbb{Z}$ be such that f(x) = x + 1, then $f^{-1}(x) = x - 1$.

Composition of functions

Let g be a function from A to B and let f be the function from B to C. The *composition* of the function f and g, denoted by $f \circ g$, is defined as $f \circ g(x) = f(g(x))$.

The composition $f \circ g$ is well-defined only if the range of g is a subset of the domain of f.

Trigonometric functions

Trigonometric functions are functions which relate an angle of a *right-angled triangle* to ratios of two side lengths.

There are six basic trigonometric functions with their definitions below:

Opp hyp

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}}$
 $\tan \theta = \frac{\text{opp}}{\text{adj}}$ $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Trigonometric functions

The functions are also related to each other as follows:

$$an \theta = \frac{\sin \theta}{\cos \theta}$$
 $an \theta = \frac{1}{\tan \theta}$
 $an \theta = \frac{1}{\cos \theta}$ $an \theta = \frac{1}{\sin \theta}$

In Calculus, we usually measures the angle in *radian*. The below table gives a translation between radian and degree.

Degrees θ (radians	-180) $-\pi$	-135 -3π 4		$\frac{-45}{-\pi}$			$\frac{\pi}{4}$			$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$		$\frac{270}{3\pi}$	
$\sin \theta$	0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \theta$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	0	1
$\tan \theta$	0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

Trigonometric functions

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

(a)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

(d)

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

(b)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

(e)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $-\infty < y < \infty$

Period: π (c)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \ldots$

Range: $-\infty < y < \infty$

Period: π

(f)

Exponential functions

An *exponential function* is a function in the form,

$$f(x) = b^{x}$$

where b is some constant greater than 0.

The most important exponential function used for modeling natural, physical, and economic phenomena is the *natural exponential function*, whose base is the special number e.

The number e is irrational, and its value is 2.718281828 to nine decimal places

Exponential functions

The exponential functions $y = e^{kx}$, where k is a nonzero constant, are frequently used for modeling **exponential growth or decay**. The function is a model for **exponential growth** if k > 0, and a model for **exponential decay** if k < 0.

Logarithmic functions

The *logarithm function* with base b, $y = log_b x$, is the inverse of the base b exponential function $y = b^x$ (b > 0 and $b \ne 1$).

Logarithms with base 2 are commonly used in computer science. Logarithms with base *e* have many important in applications in mathematics and simulation.

The function $y = \ln x$ is called the natural logarithm function,

that is $y = \ln x$ implies $e^y = x$.

Logarithmic functions

For any numbers b > 0 and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule:
$$\ln bx = \ln b + \ln x$$

2. Quotient Rule:
$$\ln \frac{b}{x} = \ln b - \ln x$$

3. Reciprocal Rule:
$$\ln \frac{1}{x} = -\ln x$$
 Rule 2 with $b = 1$

4. Power Rule:
$$\ln x^r = r \ln x$$

Every logarithmic function can be expressed as a constant multiple of the natural logarithm *ln x*.

$$\log_a x = \frac{\ln x}{\ln a} \qquad (a > 0, a \neq 1)$$