

tx. Find th	e uper	poruj at	the erro	conier ni	It to approximate
f(x) = Jx	if Xe				
Since We assu	14 /F"/x) < m, ve	must Fin	it find w	
THE MC OBSU		1) - 00, 40	10021 111	\$1 1 m3 V	
* / ~ - 0.	s <u> </u>				
f'(x) = 1/2 x-0.	22×				
=, [f = f[4] +	\$'(4)(x-4)	$\int = 2 + \left(\frac{1}{2 \sqrt{1}} \right)$	= (x - x) =	2+ 4x-1=	1 4 1
$f''(x) = \frac{d}{dx} \left(\frac{1}{2} x^{-1} \right)$	0.5) = -1 x	72			
Since our	poruge	are II, 6	J,)f"(x)) = 1 > v	$M = \frac{1}{4}$ (at $x = 1$)
$6(lol < \frac{3}{M})$	$(x-\alpha)^2 = \frac{1}{x^2}$	$\frac{\sqrt{4}}{2}\left(1-\frac{1}{2}\right)^2 =$	8	-	m is maximized when your sub 1 into 4"(x). To get the lower tound use 6
Estinating Cl	lange				
$\Delta F \approx F'(\alpha) \Delta C$	×				
Ex. You are inflating a	a spherical ball	oon. At some p	oint, the radiu	ıs is 20 m. If y	ou exhale once and the
radius increases to 2					
$V(r) = \frac{4}{3}\pi r^3$	→ V'(() =	4π ₁ ²			
AF = 47. (?	202) · (0.0	1) = 1622 m	3		
F'C	+				

Inverse Function Theorem - assume:
· y = f(x) is continuous and invertible on [c, d] • f is differentiable on any a e [c, d]
Tonses For all on any a e [c, d]
· Inverse Fxn: x = gly)
If f'(a) × 0, then g is differentiable at b-flaj, and:
$9'(b) = \frac{1}{f'(a)} = \frac{1}{f'(a)(b)}$
L_{a}^{f} is also invertible: $(L_{a}^{f})^{-1}(x) = L_{b}^{g}(x)$
tx. d sog, (7+sinx)
= \frac{1}{2} \left[\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \log_{10} \left(7 + \sin \times \right)^{\frac{1}{2}} \cdot \left(\log_{10} \lo
= \frac{1}{2} \left[\log_{10} \left(\frac{7+\sin\times}{1} \right)^2 \cdot \frac{\log_{10} \times \frac{7+\sin\times}{100}}{\log_{10} \times \frac{1}{100}} \right) \qquad \text{Note that loga \times \frac{\log_{10} \times \frac{1}{100}}{\log_{10} \times \frac{1}{100}} \qquad \text{Note that loga \times \frac{\log_{10} \times \frac{1}{100}}{\log_{10} \times \frac{1}{100}} \qquad \text{Note that loga \times \frac{\log_{10} \times \frac{1}{100}}{\log_{10} \times \frac{1}{100}} \qquad \text{Note that loga \times \frac{1}{100}} \qquad Note that loga \text{Note that
12+53-~/
() 9 SIAX 3 W(()
= <u>(0</u> \$X
(7+5mx)1n10
=> 1/10. (log 10 (7+sinx)) -> cosx (7+sinx)) -> (7+sinx)
2/11/0 (108/10 (7, 2/1x)) (5+22/1)
Decivatives of Inverse Functions:
$\frac{d}{dx}$ arcsinx = $\frac{d}{\sqrt{1-x^2}}$ $\frac{d}{dx}$ arctanx = $\frac{d}{\sqrt{2}+1}$
$\frac{d}{dx}$ arccosx = $\frac{1}{\sqrt{1-x^2}}$

Proof of dx ausinx:
$ \mathcal{U} f(g(x)) = sin(arcsmx) = x$
Note that $f(x) = g^{-1}(x)$. So:
g'(x) = F'(g(x)) = cos (arcsinx)
Note that $Sin^2x + cas^2x = 1 \Rightarrow cosx = \sqrt{1-sin^2x}$
$So g'(x) = \frac{1}{1 - \sin^2(\alpha r \cos n x)} = \frac{1}{\sqrt{1 - x^2}}$
Using the fact that $(\ln(x))' = \frac{1}{x}$, prove that $(\log_a(x))' = \frac{1}{x \ln(a)}$ for $a > 0$, $a \neq 1$.
$(\log_a x)' = (\ln x)' - (\ln x)' -$
$f(x) = \frac{6x+1}{3x+5}$ Neuton's method: $x_n - \frac{F(x_n)}{F'(x_n)}$
$f'(x) = \frac{(3x+5)(6-(6x+1)(3))}{(3x+5)^2} = \frac{18x+30-8x-3}{(3x+5)^2} = \frac{27}{(3x+5)^2}$
$ \chi_{N+1} = \chi_{N} - \frac{6\chi_{N}+1}{27} = \chi_{N} - \frac{(6\chi_{N}+1)(3\chi_{N}+5)}{27} $
1741 1 27 = 1.h 27 (3x+5) = 1.h
We know that $x_2 < 0$. So, if x_n is decreasing from x_2 ,
the soquence will never converge to 0.

Proof: Expand x = xn
$\frac{(6\times n+1)(3\times n+5)}{27}$
(6×n+1)(3×n+5)
27
$(6\times_{n}+1)(3\times_{n}+5)=0$
$\chi_{n} = \frac{1}{3}$ $\chi_{n} = \frac{1}{6}$
$\chi \in (-\infty, -\frac{5}{3}) \cup (\frac{1}{6}, +\frac{1}{2})$
$\chi_2 \in [-\infty, -\frac{5}{3}]$. Then, since $\chi_1 \in [-\infty, -\frac{5}{3}]$, $\chi_{n+1} = \tau_n$. By Such,
the segulary is indeed decreasing and since
$0 \times (-\infty, -\frac{3}{3})$ the soquence news
convergee to 0.
de arcsin (tanx + x3/ex
Using the product rule:
Using the product rule:
arcsin (tanx + x3/ex -> arcsin (tanx + x3/(ex) + [arcsin (tanx + x3)] ex
Solving [arcsin (tenx + x3)]:
$(arcsinx)' = \frac{1}{\sqrt{1-x^2}} \frac{d}{dx} tanx + x^3 = sec^2x + 3x^2$
sec x + 3x
$\Rightarrow \frac{3ec \times 100}{\int [-[tan \times 1 \times 3]^2]}$
S. The Function becomes arcsin (tanx + x3/ex + sec x + 3x2 - ex
J - (tan-x + x >)2