TUTORIAL 3 BASE CONVERSION AND INTEGER REPRESENTATION

Overview

- We will review the following concept in this tutorial:
- Base conversion
 - Between base 2 (binary) and base 10 (decimal)
 - Between base 2 (binary) and base 16 (hexadecimal)
- Representation of integers
 - Signed magnitude representation
 - One's complement
 - Two's complement

The Decimal (Base 10) representation

- We are using the decimal (base 10) number system to represent numbers in our daily lives.
- For example when we say a year has $365_{(10)}$ days, this decimal number $365_{(10)}$ really means the following:

$$365_{(10)} = 300 + 60 + 5$$

$$365_{(10)}^{(10)} = 3 \times 100 + 6 \times 10 + 5 \times 1$$

$$365_{(10)}^{(10)} = 3 \times 10^{2} + 6 \times 10^{1} + 5 \times 10^{0}$$

When we represent a fractional number in the decimal (base 10) format like in the following, it really means:

$$365.25_{(10)} = 3 \times 10^{2} + 6 \times 10^{1} + 5 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2}$$

The General Base r Representation

In general we can represent a number using any base (or radix) r:

$$\underbrace{(a_n \dots a_5 a_4 a_3 a_2 a_1 a_0}_{\text{Integer part}} \underbrace{a_{-1} a_{-2} a_{-3} a_{-4} \dots a_{-m}}_{\text{Fractional part}})_r \qquad a_i < r$$

For example: the following fractional number represented in base r is really:

$$(a_n \dots a_5 a_4 a_3 a_2 a_1 a_0 \dots a_{-1} a_{-2} a_{-3} a_{-4} \dots a_{-m})_r$$

$$= a_n \times r^n + a_{n-1} \times r^{n-1} + a_{n-2} \times r^{n-2} + \dots + a_0 \times r^0 + a_{-1} \times r^{-1} + \dots + a_{-m} \times r^{-m}$$

- Convert number from binary to decimal
- \blacksquare Q1. $(111.01)_2 = (?)_{10}$
- Solution
- $(111.01)_2 = 1 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^{-1} + 1 \times 2^{-2} = (7.25)_{10}$

- Convert number from decimal to binary
- $Q2. (26)_{10} = (?)_2$
- Solution

Division	Quotient	Generated Remainder
$\frac{26}{2}$	13	0
$\frac{13}{2}$	6	1
$\frac{6}{2}$	3	0
$\frac{3}{2}$	1	1
$\frac{1}{2}$	0	1

Hence the converted binary number is 11010.

- Convert number from decimal to hexadecimal
- Q3. $(426)_{10} = (?)_{16}$
- Solution

Division	Quotient	Generated Remainder
$\frac{426}{16}$	26	10
$\frac{26}{16}$	1	10
$\frac{1}{16}$	0	1

Hence the converted hexadecimal number is 1AA.

- Convert number from binary to hexadecimal
- \blacksquare Q4. $(11010110)_2 = (?)_{16}$
- Solution

1	1	0	1	0	1	1	0
D			6				

Hence the converted hexadecimal number is D6.

Different notation of base 16

They are all representing a same hexadecimal number

$$2BC_{16} = 2BC_{hex} = 0x2BC$$

Extra exercises

- Convert $37_{(10)}$ to the binary format.
- **100101**
- Convert $1034_{(10)}$ to the binary format.
- **10000001010**
- Convert the positive integer $101001_{(2)}$ to the decimal format.
- **41**
- Convert $10111001_{(2)}$ to the hexadecimal format.
- **B9**
- Convert $A7_{(16)}$ to the binary format.
- **1010 0111**

Signed magnitude representation

- Humans use a signed-magnitude system: we add + or in front of a magnitude to indicate the sign.
- We could do this in binary as well, by adding an extra sign bit to the front of our numbers.
 - A 0 sign bit represents a positive number.
 - ☐ A 1 sign bit represents a negative number.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

01101 = +13_{10} (a positive number in 5-bit signed magnitude)

11101 = -13_{10} (a negative number in 5-bit signed magnitude)

0100_2 = 4_{10} (a 4-bit unsigned number)

00100 = +4_{10} (a positive number in 5-bit signed magnitude)

10100 = -4_{10} (a negative number in 5-bit signed magnitude)
```

Arithmetic with signed magnitude

- Adding numbers is difficult, though. You can't do bit-by-bit addition directly.
- It's based on comparing the signs of the augend and addend:
 - ☐ If they have the same sign, add the magnitudes and keep that sign.
 - ☐ If they have different signs, then subtract the smaller magnitude from the larger one. The sign of the number with the larger magnitude is the sign of the result.
- This method of subtraction would lead to a rather complex circuit.
 - A decimal example

because

One's complement representation

- A different approach, one's complement, negates numbers by complementing each bit of the number.
- We keep the sign bits: 0 for positive numbers, and 1 for negative. The sign bit is complemented along with the rest of the bits.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

01101 = +13_{10} (a positive number in 5-bit one's complement)

10010 = -13_{10} (a negative number in 5-bit one's complement)

0100_2 = 4_{10} (a 4-bit unsigned number)

0100 = +4_{10} (a positive number in 5-bit one's complement)

11011 = -4_{10} (a negative number in 5-bit one's complement)
```

Arithmetic with one's complement

- To add one's complement numbers:
 - ☐ First do unsigned addition on the numbers, including the sign bits.
 - ☐ Then take the carry out and add it to the sum.
- **Examples:**

- This is simpler and more uniform than signed magnitude addition. Drawbacks of one's complement:
 - ☐ Two representations of 0: 00000000 (+0) and 11111111 (-0)
 - □ Need to take care of the carry for addition.

Two's complement representation

- Our final idea is two's complement. To negate a number, complement each bit (just as for ones' complement) and then add 1.
 - Or, from LSB to MSB, don't negate any bit upto-and-including the least significant '1' bit, and then negate the rest.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

01101 = +13_{10} (a positive number in 5-bit two's complement)

1\ 0010 = -13_{10} (a negative number in 5-bit ones' complement)

1\ 0011 = -13_{10} (a negative number in 5-bit two's complement)

0100_2 = 4_{10} (a 4-bit unsigned number)

00100 = +4_{10} (a positive number in 5-bit two's complement)

1\ 1011 = -4_{10} (a negative number in 5-bit ones' complement)

1\ 1000 = -4_{10} (a negative number in 5-bit two's complement)
```

Arithmetic with two's complement

- Negating a two's complement number takes a bit of work, but addition is much easier than with the other two systems.
- To find A + B, you just have to:
 - Do unsigned addition on A and B, including their sign bits.
 - ☐ Ignore any carry out.
- For example, to find 0111 + 1100, or (+7) + (-4):
 - ☐ First add 0111 + 1100 as unsigned numbers:

- Discard the carry out (1).
- \square The answer is 0011 (+3).

Why does it work?

For n-bit numbers, the negation of B in two's complement is $2^n - B$ (this is one of the alternative ways of negating a two's-complement number).

$$A - B = A + (-B)$$

= $A + (2^n - B)$
= $(A - B) + 2^n$

- If $A \ge B$, then (A B) is a positive number, and 2^n represents a carry out of 1. Discarding this carry out is equivalent to subtracting 2^n , which leaves us with the desired result (A B).
- If A < B, then (A B) is a negative number and we have 2^n (B A). This corresponds to the desired result in two's complement form.

Overflow and underflow of signed integer

- Overflow (signed integer)
 - The value is bigger than the largest integer that can be represented
- Underflow (signed integer)
 - The value is smaller than the smallest integer that can be represented

Exercises

- Convert decimal number to 2's complement number on 6 bits
- $Q1. (19)_{10} = (?)_2$
- Solution: 010011₂
- Q2. $(-32)_{10} = (?)_2$
- Solution: 100000₂
- Q3. $(32)_{10} = (?)_2$
- Solution: Cannot be represented (overflowed)

