இத்த இத்தை அச்செரும் பதிப்புரிமையுடையது/All Rights Reserved

(නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus

இது நிழை என்ற இதன் நிறுவ ஒருக்கு இது இது இது இது இது இது இது இதன் குறுக்கு இதன் குறைக்கு குறுக்கு குறிக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குற

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்றி General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය I இணைந்த கணிதம் **I** Combined Mathematics **I**

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $p \in \mathbb{R}$ හා $0 යැයි ගනිමු. <math>p^2 x^2 + 2x + p = 0$ සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. α හා β යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමු. α හා β දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් $\alpha + \beta$ හා $\alpha\beta$ ලියා දක්වා

$$\frac{1}{(\alpha - 1)} \cdot \frac{1}{(\beta - 1)} = \frac{p^2}{p^2 + p + 2}$$

බව පෙන්වන්න

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සම්කරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මූල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශත** තාත්ත්වික සංඛණ දෙකක් යැයි ද $f(x) = x^3 + 2x^2 dx + cd$ යැයි ද ගනිමු. (x c) යන්න f(x) හි සාධකයක් බවත්, (x d) මගින් f(x) බෙදු විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x + 2)^2$ මගින් f(x) බෙදු විට ශේෂය සොයන්න.
- 12. (a) P_1 හා P_2 යනු පිළිවෙළින් $\left\{A,B,C,D,E,1,2,3,4\right\}$ හා $\left\{F,G,H,I,J,5,6,7,8\right\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛනාංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සෑදීමට අවශාව ඇත. පහත එක් එක් අවස්ථාවේ දී සෑදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P ුන් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.
 - $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6U_r$ බව පෙන්වන්න.

ජ නයින්, $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{5}{144} - \frac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගතිමු.

 $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n W_r = \frac{5}{144} - \frac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව අපෝකනය කරන්න.

ඒ නගීන්, $\sum_{r=1}^{\infty}W_{r}$ අපරිමිත ශ්‍රේණිය අභිසාරී බව පෙන්වා එහි ඓකාය සොයන්න.

[අවවැනි පිටුව බලන්න

13.(a)
$$A = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$ ေ $C = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ ထည္ $AB^T = C$ ေစ ေစဂို မွာ စာစစ အဖြစ

ගනිමු; මෙහි $a,b\in\mathbb{R}$ වේ.

a = 2 හා b = 1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොපවතින බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු, ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදී ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය 2 වන ඒකක නාහසය වේ.

- (b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.
 - (i) Re $z \le |z|$, so

(ii)
$$z_2 \neq 0 \text{ with } \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

බව පෙන්වන්න.

$$z_1+z_2\neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)\leq \frac{\left|z_1\right|}{\left|z_1+z_2\right|}$ බව **අපෝගනය** කරන්න.

$$z_1 + z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) + \operatorname{Re}\left(\frac{z_2}{z_1 + z_2}\right) = 1$ බව සභාවනය කර,

$$z_1,z_2$$
 \in \mathbb{C} සඳහා $\left|z_1+z_2\right|\leq \left|z_1\right|+\left|z_2\right|$ බව පෙන්වන්න.

$$(c)$$
 $\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$ යැයි ගනිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියන වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගනිමු.

 $x \neq 3$ සඳහා f(x) හි වයුත්පන්නය, f'(x) යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුබ, y – අන්තෘඛණ්ඩය හා හැරුම් ලක්ෂx දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

$$x \neq 3$$
 සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ බව දී ඇත. $y = f(x)$ හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල $x - 0$ ණ්ඩාංක

සොයන්න.

(b) යාබද රූපයෙන් පතුලක් සහිත සෘජු වෘත්තාකාර කේතු ජින්නකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග 30 cm ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය r cm යැයි ගනිමු.

බෙසමේ පරිමාව $V\,\mathrm{cm}^3$ යන්න $0\!<\!r\!<\!30$ සඳහා

$$V = \frac{7}{3}\pi r^2 \sqrt{900 - r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.
බෙසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

[තවවැනි පිටුව බලන්න.

15. (a)
$$0 \le \theta \le \frac{\pi}{4}$$
 සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int_3^4 \sqrt{\frac{x-3}{5-x}} \, \mathrm{d}x$ අගයන්න.

(b) හින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න.

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{(t)^{2+1}} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ බව **අපෝහනය** කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියතයකි. ඒ නයින්, $\int f(t)\,\mathrm{d}t$ සොයන්න.

(c) a හා b නියන වන $\int\limits_a^b f(x)\mathrm{d}x=\int\limits_a^b f(a+b-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ට නගින්,
$$\int\limits_{-\infty}^{\pi} \frac{\cos^2 x}{1+e^x} \, \mathrm{d}x$$
 හි අගය සොයන්න.

16. 12x-5y-7=0 හා y=1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි ඛණ්ඩාංක ලියා දක්වන්න.

/ යනු මෙම රේඛාවලින් සැදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගනිමු. / සරල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායක් යැයි ගනිමු. P හි ඛණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ $\in \mathbb{R}$ වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

 $S\!=\!0$ යනු AB විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහනය** කරන්න.

 $U\!=\!0$ යනු I ට ලම්බව, B හරහා යන සරල රේඛාවේ සමීකරණය බව පෙන්වන්න.

සියලු λ \in \mathbb{R} සඳහා $S+\lambda U=0$ සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුහින්න වූ ද අචල ලක්ෂායෙහි බණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

[දහවැනි පිටුව බලන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

 $2\sin A\cos B = \sin (A+B) + \sin (A-B)$

 $2\cos A\sin B = \sin(A+B) - \sin(A-B)$

බව **අපෝහනය** කරන්න,

ඒ නයින්. $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විසඳන්න.

- (b) ABC තිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=\beta$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහත (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- (c) $2 an^{-1} x + an^{-1} (x+1) = \frac{\pi}{2}$ විසඳන්න. ඒ නයින්, $\cos \left(\frac{\pi}{4} \frac{1}{2} an^{-1} \left(\frac{4}{3} \right) \right) = \frac{3}{\sqrt{10}}$ බව පෙන්වන්න.

