Identifying the causes and contributing factors of road collisions with injuries and fatalities in the City of Seattle, USA

## Understanding the causes of serious road collisions leads to improvement

- Road collisions are the leading cause of death<sup>1</sup> in the USA for people aged <55</p>
- Associated costs and productivity losses >\$75 billion in 2017<sup>2</sup>
- By better understanding the causes, local Seattle Authorities can develop and implement policies and strategies to help reduce serious road collisions

### Data acquisition & cleaning

- ▶ Data obtained from the <u>City of Seattle Open Data portal</u>.
  - ▶ Downloaded on 6 September. Includes 221,266 records and 40 variables for road collisions 2004 to present, updated 5 September 2020.
- ▶ Unnecessary variables / keys as well as duplicate variables were discarded. Recorded with missing data were deleted. Some features were extracted.
- Cleaned data set consisted of 10 variables (DV & 9 IVs) with 174,452 observations.

### The target variable was processed to represent non-serious / serious collisions

Originally consisting of 5 values, these were consolidated into two categories representing collisions resulting in 'property damage only' (0) and those resulting in 'injury or death' (1):

#### <u>Before consolidation</u>

- 0 Unknown
- 1 Property damage (only)
- 2 Injury
- 2b Serious Injury
- 3 Fatality



### After consolidation



## 9 independent variables were used in the analysis



- These represented behaviours (e.g. inattention, under the influence) or conditions (weather, road and light conditions)
- Many variables had low levels of occurrence (i.e. few '1' values)
- Converted to dummy variables prior to modelling

# Several variables visually indicated a relationship with collision severity



- In particular, the following appeared (visually) to occur more frequently with serious collisions:
  - ▶ Intersections,
  - Driving under the Influence, and
  - Speeding

### Modelling

The data was analysed using 4 sample balancing strategies and 4 prediction algorithms

### Sample balancing strategies

- Original unbalanced sample
- Over-sampling minority class
- Under-sampling majority class
- Synthetic up-sampling of minority class using SMOTE

### <u>Prediction algorithms</u>

- K Nearest Neighbour (KNN)
- Support Vector Machines (SVM)
- Decision Tree
- Logistic Regression

### Logistic Regression using SMOTE sampling strategy was most accurate

| F1 Scores by Sample & Algorithm | Original Imbalanced | Oversampled | Undersampled | SMOTE upsampled |
|---------------------------------|---------------------|-------------|--------------|-----------------|
| KNN                             | 0.622836            | 0.609429    | 0.575888     | 0.614389        |
| SVM                             | 0.594983            | 0.610955    | 0.624016     | 0.614423        |
| Decision Tree                   | 0.593774            | 0.599331    | 0.611951     | 0.624390        |
| LogisticRegression              | 0.596860            | 0.625437    | 0.627413     | 0.627835        |

- While several accuracy metrics were calculated, the F1 score was used to compare all 16 combinations of sample balancing strategy and prediction algorithm.
- Logistic Regression on the SMOTE sample delivered the highest F1 score of 0.6278

## Overall the best model performed moderately well

- ► There was a relatively high level of false positives and false negatives.
- This may indicate that not all contributing factors are captured in the model or dataset.
- Further investigation is required to establish whether other potential factors can be collected from collisions.



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.74      | 0.66   | 0.70     | 23127   |
| 1            | 0.45      | 0.54   | 0.49     | 11764   |
| accuracy     |           |        | 0.62     | 34891   |
| macro avg    | 0.59      | 0.60   | 0.59     | 34891   |
| weighted avg | 0.64      | 0.62   | 0.63     | 34891   |

# Top 5 contributing factors for collisions causing injury / death

| Contributing factor                 | Logistic Regression<br>Coefficient |  |
|-------------------------------------|------------------------------------|--|
| Pedestrian Right of Way Not Granted | 2.314                              |  |
| Intersection location               | 0.602                              |  |
| Driver Under the Influence          | 0.529                              |  |
| Speeding                            | 0.475                              |  |
| Inattention                         | 0.303                              |  |

- Examining the LogisticRegression coefficients highlights5 top contributing factors
- 4 of these are 'human' factors, one is related to the location of collisions (Intersections)

### Conclusions

- ▶ Built useful models to identify contributing factors leading to road collisions causing injury or death.
- However the accuracy of the model has potential for improvement
- Need for additional data to be collected, representing other possible causes / factors.
- Some examples could include:
  - Reckless driving behaviour
  - Condition of the vehicle / mechanical issues
  - Condition of the road (e.g. potholes, impaired view)