Rotational motion

Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman

April 12, 2017

Announcements

- HW8 is due next Tuesday
- Group exam 3: Friday during recitation. You may bring a reference sheet.
- Exam 3: Tuesday during the normal time

Announcements

- HW8 is due next Tuesday
- Group exam 3: Friday during recitation. You may bring a reference sheet.
- Exam 3: Tuesday during the normal time
- Alternate date/time for Exam 3: Wednesday, 7:30 PM
- Review sessions:
 - Monday, 2PM-5PM: Physics Clinic (Walter)
 - Saturday or Sunday: reviews run by coaches (will announce by email)

W. Freeman Rotational motion April 12, 2017 3 / 12

Angular momentum of a single object

A single object moving in a straight line also has angular momentum.

$$L = mv_{\perp}r = mvr_{\perp}$$

If we are to trust this relation, then the angular momentum of an object moving with constant \vec{v} should be constant!

Is the angular momentum the same at points A and B?

Angular momentum of a single object

A single object moving in a straight line also has angular momentum.

$$L = mv_{\perp}r = mvr_{\perp}$$

Is the angular momentum the same at points A and B?

Yes: r_{\perp} (and v) are the same at both points.

Angular momentum demonstrations

What happens to the person on the platform if they catch the ball? What happens when they throw it?

Review: The work-energy theorem

• Translational work-energy theorem:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = \vec{F} \cdot \vec{d} = Fd\cos\theta \text{ (if this is constant)}$$

• Rotational work-energy theorem: $\frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = \tau\Delta\theta$

Potential energy is an alternate way of keeping track of the work done by conservative forces:

- $PE_{\text{grav}} = mgh$
- $PE_{\text{spring}} = \frac{1}{2}kx^2$

$$PE_i + \frac{1}{2}mv_i^2 + \frac{1}{2}I\omega_i^2 + W_{other} = PE_f + \frac{1}{2}mv_f^2 + \frac{1}{2}I\omega_f^2$$

$$PE_{i} + \frac{1}{2}mv_{i}^{2} + \frac{1}{2}I\omega_{i}^{2} + W_{other} = PE_{f} + \frac{1}{2}mv_{f}^{2} + \frac{1}{2}I\omega_{f}^{2}$$
(initial PE) + (initial KE) + (other work) = (final PE) + (final KE)

$$PE_{i} + \frac{1}{2}mv_{i}^{2} + \frac{1}{2}I\omega_{i}^{2} + W_{other} = PE_{f} + \frac{1}{2}mv_{f}^{2} + \frac{1}{2}I\omega_{f}^{2}$$
(initial PE) + (initial KE) + (other work) = (final PE) + (final KE)
(total initial mechanical energy) + (other work) = (total final mechanical energy)

$$PE_{i} + \frac{1}{2}mv_{i}^{2} + \frac{1}{2}I\omega_{i}^{2} + W_{other} = PE_{f} + \frac{1}{2}mv_{f}^{2} + \frac{1}{2}I\omega_{f}^{2}$$
(initial PE) + (initial KE) + (other work) = (final PE) + (final KE)
(total initial mechanical energy) + (other work) = (total final mechanical energy)

Since conservation of energy is the broadest principle in science, it's no surprise that we can do this!

Review: rotational motion

Translation	Rotation
Position \vec{s} Velocity \vec{v} Acceleration \vec{a}	Angle θ Angular velocity ω Angular acceleration α
Kinematics: $\vec{s}(t)\frac{1}{2}\vec{a}t^2 + \vec{v}_0t + \vec{s}_0$	$\theta(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$
Force \vec{F} Mass m Newton's second law $\vec{F} = m\vec{a}$	Torque τ Rotational inertia I Newton's second law for rotation $\tau = I\alpha$
Kinetic energy $KE = \frac{1}{2}mv^2$ Work $W = \vec{F} \cdot \Delta \vec{s}$ Power $P = \vec{F} \cdot \vec{v}$	Kinetic energy $KE=\frac{1}{2}I\omega^2$ Work $W=\tau\Delta\theta$ Power $P=\tau\omega$
Momentum $\vec{p} = m\vec{v}$	Angular momentum $L = I\omega$

W. Freeman Rotational motion

"Signpost problem" from recitation

"Yo-yo problem" from recitation

What would you like to talk about?