

Sequence Listing

<110> Botstein,David

Desnoyers,Luc

Ferrara,Napoleone

Fong,Sherman

Gao,Wei-Qiang

Goddard,Audrey

Gurney,Austin L.

Pan,James

Roy,Margaret Ann

Stewart,Timothy A.

Tumas,Daniel

Watanabe,Colin K.

Wood,William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> P2930R1C12

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150> 60/113,511

<151> 1998-12-22

<150> 60/115,558

<151> 1999-01-12

<150> 60/115,565

<151> 1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

TOEPLITZ

<151> 2000-03-03
<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/32678
<151> 2000-12-01

<140> US 09/866,034
<141> 2001-05-25

<160> 38

<210> 1
<211> 1283
<212> DNA
<213> Homo sapiens

<400> 1
cgacgcgtg ggaccatac ttgttgtct gatccatgca caaggcgggg 50
ctgttaggcc tctgtgccccg ggcttggaat tcggtgccga tggccagctc 100
cgggatgacc cgccgggacc cgctcgaaaa taagggtggcc ctggtaacgg 150
cctccaccga cgggatcggc ttcgccatcg cccggcggtt ggcccaggac 200
ggggcccatg tggtcgtcag cagccggaag cagcagaatg tggaccaggc 250
ggtgccacg ctgcaggggg aggggctgag cgtgacgggc accgtgtgcc 300
atgtgggaa ggccggaggac cgggagcggc tggtgccac ggctgtgaag 350

YODA'S DNA

cttcatggag gtatcgatat cctagtctcc aatgctgctg tcaaccctt 400
ctttggaaagc ataatggatg tcactgagga ggtgtgggac aagactctgg 450
acattaatgt gaaggccccca gccctgatga caaaggcagt ggtgccagaa 500
atggagaaaac gaggaggcgg ctcaagtggtg atcggtgtt ccatacgac 550
cttcagtcca tctcctggct tcagtcctta caatgtcagt aaaacagcct 600
tgctgggcct gaccaagacc ctggccatag agctggcccc aaggaacatt 650
agggtgaact gcctagcacc tggacttatac aagactagct tcagcaggat 700
gctctggatg gacaaggaaa aagagggaaag catgaaagaa accctgcgga 750
taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtcttcctg 800
tgctctgaag atgccagcta catcaactggg gaaacagtgg tggtgggtgg 850
aggaaccccg tcccgccctct gaggaccggg agacagcccc caggccagag 900
ttgggctcta gctcctggtg ctgttccctgc attcacccac tggccttcc 950
cacctctgtc caccttactg ttcacctcat caaatcagtt ctgccctgtg 1000
aaaagatcca gccttcctg ccgtcaaggt ggcgtcttac tcgggattcc 1050
tgctgttgtt gtggccttgg gtaaaggcct cccctgagaa cacaggacag 1100
gcctgctgac aaggctgagt ctaccttggc aaagaccaag atattttcc 1150
ctgggccact ggtaatctg aggggtgatg ggagagaagg aacctggagt 1200
ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250
atgcagatga ttgcgcggct ttgaaaaaaaaaaa aaa 1283

<210> 2
<211> 278
<212> PRT
<213> Homo sapiens

<400> 2
Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn
1 5 10 15
Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu
20 25 30
Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45
Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60
Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

Leu Gln Gly Glu Gly Leu Ser Val Thr Gly Thr Val Cys His Val
80 85 90

Gly Lys Ala Glu Asp Arg Glu Arg Leu Val Ala Thr Ala Val Lys
95 100 105

Leu His Gly Gly Ile Asp Ile Leu Val Ser Asn Ala Ala Val Asn
110 115 120

Pro Phe Phe Gly Ser Ile Met Asp Val Thr Glu Glu Val Trp Asp
125 130 135

Lys Thr Leu Asp Ile Asn Val Lys Ala Pro Ala Leu Met Thr Lys
140 145 150

Ala Val Val Pro Glu Met Glu Lys Arg Gly Gly Ser Val Val
155 160 165

Ile Val Ser Ser Ile Ala Ala Phe Ser Pro Ser Pro Gly Phe Ser
170 175 180

Pro Tyr Asn Val Ser Lys Thr Ala Leu Leu Gly Leu Thr Lys Thr
185 190 195

Leu Ala Ile Glu Leu Ala Pro Arg Asn Ile Arg Val Asn Cys Leu
200 205 210

Ala Pro Gly Leu Ile Lys Thr Ser Phe Ser Arg Met Leu Trp Met
215 220 225

Asp Lys Glu Lys Glu Glu Ser Met Lys Glu Thr Leu Arg Ile Arg
230 235 240

Arg Leu Gly Glu Pro Glu Asp Cys Ala Gly Ile Val Ser Phe Leu
245 250 255

Cys Ser Glu Asp Ala Ser Tyr Ile Thr Gly Glu Thr Val Val Val
260 265 270

Gly Gly Gly Thr Pro Ser Arg Leu
275

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 3
gcataatgga tgtcactgag g 21

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 4
agaacaatcc tgctgaaagc tag 23

<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gaaacgagga ggccggctcg tagtgatcgt gtcttccata gcagcc 46

<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens

<400> 6
gcgcctgag ctccgcctcc gggcccata gcccgcata gagcgcctcc 50
gtcgaggacc aggccggcga gggggccgca gggcgaaagg agatgaggg 100
ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150
agaaccgaga ctttctggct ggcgtggagg acgcgcata gcaatcacaa 200
ctgcagagcg accggctgcg tgacgcagcag gaggagatgg tggactgcg 250
gctgcgtta gagctggcgc ggcaggctg gggggccctg cgctccctga 300
atggcctgcc tcccggtcc ttgtgcctc gacccatac agccccctg 350
gggggtgccc acgcgcata gctggccatg gtgcgcctg cctgcctccc 400
tggagatgaa gttggctctg agcagagggg agagcaggctg acaaattggca 450
gggaggctgg agctgagttg ctgactgagg tgaacaggct ggaagtggc 500
tcttcagctg cttcagagga ggaagaggag gaggaggagc cgcccgaggcg 550
gacccctacac ctgcgcagaa ataggatcag caactgcagt cagagggcgg 600
ggcacgccc agggagctg ccagagagga agggcccaga gctttgcctt 650
gaggagttgg atgcagccat tccagggtcc agagcagttg gtggagcaa 700
ggcccgagtt caggcccgcc aggtcccccc tgccacagcc tcagagtggc 750
ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
atgaaggagg agcttattgg cgagctggc cgcacaggaa aggcagctca 850
ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900

cagagcaggt gcgggcccag ctgagtgaag gccagaggca gctgcgggag 950
ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000
gttccgcagg agggtcgctg cggcccagag ccaggtgcag gtgctgaagg 1050
agaagaagca ggctacggag cggtctgggt cactgtcggc ccagagttag 1100
aagcgactgc aggagctcga gcgaaacgtg cagctcatgc ggcagcagca 1150
gggacagctg cagaggcggc ttgcgcgagga gacggagcag aagcggcgcc 1200
tggaggcaga aatgagcaag cggtcggcacc gctgtcaagga gctggagctg 1250
aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300
ggccttccag aggaagaggc gcagtggcag caacggctct gtggtcagcc 1350
tggaacagca gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400
atggagaagg tgctacagca gcgccggcg ctggaggagc tgggggagga 1450
gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500
agaagacggg gctggagagc aagcgctga gatccagcca gcccctaacc 1550
gaggacatcg tgcgagtgtc cagccggctg gagcacctgg agaaggagct 1600
gtccgagaag agcgggcagc tgccggcaggc cagcgcccg agccagcagc 1650
agatccgcgg ggagatcgac agcctgcgcc aggagaagga ctgcgtgctc 1700
aagcagcggc tggagatcga cggcaagctg aggcaggggc gtctgctgtc 1750
ccccgaggag gagcggacgc tggccagtt ggatgaggcc atcgaggccc 1800
tggatgctgc cattgagtat aagaatgagg ccatcacatg ccgcagcgg 1850
gtgcttcggg cctcagcctc gttgctgtcc cagtgcgaga tgaacctcat 1900
ggccaagctc agctacccct catcctcaga gaccagagcc ctccctctgca 1950
agtattttga caaggtggtg acgctccgag aggacgagca ccagcagcag 2000
attgccttct cggaaactgga gatgcagctg gaggacgagc agaggctgg 2050
gtactggctg gaggtggccc tggagcggca ggcgcctggag atggaccgccc 2100
agctgaccct gcagcagaag gagcacgagc agaacatgca gctgcctctg 2150
cagcagagtc gagaccaccc cggtaaggg ttagcagaca gcaggaggca 2200
gtatgaggcc cggattcaag ctctggagaa ggaactgggc cgttacatgt 2250
ggataaacca ggaactgaaa cagaagctcg gcggtgtgaa cgctgttaggc 2300
cacagcaggg gtggggagaa gaggagcctg tgctcggagg gcagacagggc 2350

HOMO SAPIENS

tcctggaaat gaagatgagc tccacacctgc acccgagctt ctctggctgt 2400
ccccccctcac tgagggggcc ccccgcaccc gggaggagac gcgggacttg 2450
gtccacgctc cgttaccctt gacctggaaa cgctcgagcc tgtgtggtga 2500
ggagcagggg tcoccccgagg aactgaggca gcgggaggcg gctgagcccc 2550
tggtgcccccg ggtgcttcct gtgggtgagg caggcctgcc ctggaaacttt 2600
gggcctttgt ccaagccccg ggggaactg cgacgagcca gcccgggat 2650
gattgatgtc cggaaaaacc ccctgttaagc cctcgccccca gaccctgcct 2700
tggagggaga ctccgagccct gctgaaaggg gcagctgcct gtttgcttc 2750
tgtgaagggc agtccttacc gcacacccta aatccaggcc ctcatctgta 2800
ccctcaactgg gatcaacaaa ttggccat ggcccaaaag aactggaccc 2850
tcatttaaca aaataatatg caaattccca ccacttactt ccatgaagct 2900
gtggtaacca attgcccct tgggtcttgc tcgaatctca ggacaattct 2950
ggtttcaggc gtaaatggat gtgctttagt ttccagggtt tggccaagaa 3000
tcatcacgaa agggtcggtg gcaaccaggt tgggtttaa atggtcttat 3050
gtatataggg gaaactggga gacttttagga tcttaaaaaaa ccatttaata 3100
aaaaaaaaatc tttgaaggga c 3121

<210> 7
<211> 830
<212> PRT
<213> Homo sapiens

<400> 7
Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln
1 5 10 15

Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro
20 25 30

Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser
35 40 45

Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala
50 55 60

His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu
65 70 75

Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu
80 85 90

Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly
95 100 105

Ser Ser Ala Ala Ser Glu Glu Glu Glu Glu Glu Pro Pro
 110 115 120
 Arg Arg Thr Leu His Leu Arg Arg Asn Arg Ile Ser Asn Cys Ser
 125 130 135
 Gln Arg Ala Gly Ala Arg Pro Gly Ser Leu Pro Glu Arg Lys Gly
 140 145 150
 Pro Glu Leu Cys Leu Glu Glu Leu Asp Ala Ala Ile Pro Gly Ser
 155 160 165
 Arg Ala Val Gly Gly Ser Lys Ala Arg Val Gln Ala Arg Gln Val
 170 175 180
 Pro Pro Ala Thr Ala Ser Glu Trp Arg Leu Ala Gln Ala Gln Gln
 185 190 195
 Lys Ile Arg Glu Leu Ala Ile Asn Ile Arg Met Lys Glu Glu Leu
 200 205 210
 Ile Gly Glu Leu Val Arg Thr Gly Lys Ala Ala Gln Ala Leu Asn
 215 220 225
 Arg Gln His Ser Gln Arg Ile Arg Glu Leu Glu Gln Glu Ala Glu
 230 235 240
 Gln Val Arg Ala Glu Leu Ser Glu Gly Gln Arg Gln Leu Arg Glu
 245 250 255
 Leu Glu Gly Lys Glu Leu Gln Asp Ala Gly Glu Arg Ser Arg Leu
 260 265 270
 Gln Glu Phe Arg Arg Arg Val Ala Ala Gln Ser Gln Val Gln
 275 280 285
 Val Leu Lys Glu Lys Lys Gln Ala Thr Glu Arg Leu Val Ser Leu
 290 295 300
 Ser Ala Gln Ser Glu Lys Arg Leu Gln Glu Leu Glu Arg Asn Val
 305 310 315
 Gln Leu Met Arg Gln Gln Gln Gly Gln Leu Gln Arg Arg Leu Arg
 320 325 330
 Glu Glu Thr Glu Gln Lys Arg Arg Leu Glu Ala Glu Met Ser Lys
 335 340 345
 Arg Gln His Arg Val Lys Glu Leu Glu Leu Lys His Glu Gln Gln
 350 355 360
 Gln Lys Ile Leu Lys Ile Lys Thr Glu Glu Ile Ala Ala Phe Gln
 365 370 375
 Arg Lys Arg Arg Ser Gly Ser Asn Gly Ser Val Val Ser Leu Glu
 380 385 390
 Gln Gln Gln Lys Ile Glu Glu Gln Lys Lys Trp Leu Asp Gln Glu

TOP SECRET - DNA

Asn Gln Glu Leu Lys Gln Lys Leu Gly Gly Val Asn Ala Val Gly
695 700 705
His Ser Arg Gly Gly Glu Lys Arg Ser Leu Cys Ser Glu Gly Arg
710 715 720
Gln Ala Pro Gly Asn Glu Asp Glu Leu His Leu Ala Pro Glu Leu
725 730 735
Leu Trp Leu Ser Pro Leu Thr Glu Gly Ala Pro Arg Thr Arg Glu
740 745 750
Glu Thr Arg Asp Leu Val His Ala Pro Leu Pro Leu Thr Trp Lys
755 760 765
Arg Ser Ser Leu Cys Gly Glu Glu Gln Gly Ser Pro Glu Glu Leu
770 775 780
Arg Gln Arg Glu Ala Ala Glu Pro Leu Val Gly Arg Val Leu Pro
785 790 795
Val Gly Glu Ala Gly Leu Pro Trp Asn Phe Gly Pro Leu Ser Lys
800 805 810
Pro Arg Arg Glu Leu Arg Arg Ala Ser Pro Gly Met Ile Asp Val
815 820 825
Arg Lys Asn Pro Leu
830

<210> 8
<211> 662
<212> DNA
<213> Homo sapiens

<400> 8
attctccttag agcatctttg gaagcatgag gccacgatgc tgcacatcttgg 50
ctcttgtctg ctggataaca gtcttcctcc tccagtgttc aaaaggaact 100
acagacgctc ctgttggtctc aggactgtgg ctgtgccagc cgacacccag 150
gtgtggaaac aagatctaca acccttcaga gcagtgtgt tatgtatgtg 200
ccatcttatac cttaaaggag acccgccgct gtggctccac ctgcacacctc 250
tggccctgct ttgagctctg ctgtcccggag tctttggcc cccagcagaa 300
gtttcttgtg aagttgaggg ttctgggtat gaagtctcag tgtcaacttat 350
ctccccatctc ccggagctgt accaggaaca ggaggcacgt cctgtaccca 400
taaaaaacccc aggctccact ggcagacggc agacaagggg agaagagacg 450
aagcagctgg acatcgaga ctacagttga acttcggaga gaagcaactt 500
gacttcagag ggatggctca atgacatagc tttggagagg agcccgactg 550

395	400	405
Met Glu Lys Val Leu Gln Gln Arg Arg Ala	Leu Glu Glu Leu Gly	
410	415	420
Glu Glu Leu His Lys Arg Glu Ala Ile	Leu Ala Lys Lys Glu Ala	
425	430	435
Leu Met Gln Glu Lys Thr Gly Leu Glu Ser	Lys Arg Leu Arg Ser	
440	445	450
Ser Gln Ala Leu Asn Glu Asp Ile Val	Arg Val Ser Ser Arg Leu	
455	460	465
Glu His Leu Glu Lys Glu Leu Ser Glu	Lys Ser Gly Gln Leu Arg	
470	475	480
Gln Gly Ser Ala Gln Ser Gln Gln Ile	Arg Gly Glu Ile Asp	
485	490	495
Ser Leu Arg Gln Glu Lys Asp Ser Leu	Leu Lys Gln Arg Leu Glu	
500	505	510
Ile Asp Gly Lys Leu Arg Gln Gly Ser	Leu Leu Ser Pro Glu Glu	
515	520	525
Glu Arg Thr Leu Phe Gln Leu Asp Glu	Ala Ile Glu Ala Leu Asp	
530	535	540
Ala Ala Ile Glu Tyr Lys Asn Glu Ala Ile	Thr Cys Arg Gln Arg	
545	550	555
Val Leu Arg Ala Ser Ala Ser Leu Leu Ser	Gln Cys Glu Met Asn	
560	565	570
Leu Met Ala Lys Leu Ser Tyr Leu Ser	Ser Ser Glu Thr Arg Ala	
575	580	585
Leu Leu Cys Lys Tyr Phe Asp Lys Val Val	Thr Leu Arg Glu Glu	
590	595	600
Gln His Gln Gln Gln Ile Ala Phe Ser	Glu Leu Glu Met Gln Leu	
605	610	615
Glu Glu Gln Gln Arg Leu Val Tyr Trp	Leu Glu Val Ala Leu Glu	
620	625	630
Arg Gln Arg Leu Glu Met Asp Arg Gln	Leu Thr Leu Gln Gln Lys	
635	640	645
Glu His Glu Gln Asn Met Gln Leu Leu	Leu Gln Ser Arg Asp	
650	655	660
His Leu Gly Glu Gly Leu Ala Asp Ser	Arg Arg Gln Tyr Glu Ala	
665	670	675
Arg Ile Gln Ala Leu Glu Lys Glu Leu	Gly Arg Tyr Met Trp Ile	
680	685	690

ggatggcca gactcaggg gaagaatgcc ttccctgttc atccccttc 600
cagctccct tcccgctgag agccacttgc atcggcaata aaatccccca 650
catttaccat ct 662

<210> 9
<211> 125
<212> PRT
<213> Homo sapiens

<400> 9
Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr
1 5 10 15
Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val
20 25 30
Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn
35 40 45
Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile
50 55 60
Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75
Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln
80 85 90
Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln
95 100 105
Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg
110 115 120
His Val Leu Tyr Pro
125

<210> 10
<211> 1942
<212> DNA
<213> Homo sapiens

<400> 10
cccacgcgtc cgcccacgcg tccgggtgcc actcgcgcgc cggccgcgtc 50
ccgggcttct ctttccctc cgacgcgcga cggctgccca gacattccgg 100
ctgccgggtc tggagagctc cccgaacccc tccgcggaga ggagcgaggc 150
ggcgccaggg tggcccccgg ggcgcgcttg gtctcgaga agcggggacg 200
aggccggagg atgagcgact gagggcgacg cgggcactga cgcgagttgg 250
ggccgcgact accggcagct gacagcgcga tgagcgactc cccagagacg 300
ccctagcccg gtgtgcgcgc caggcggagc gcgcaggtgg ggctggctg 350

F00E2B0D-412E-49D0-B5A0-000000000000

ttagtggtcc gccccacgcg ggtcgccggc cggcccagga tgggcgtgg 400
caacccgggc tcgcgcggc cgctgtacc cctgcggccg ctgcgagccc 450
ggcggtccggc cgcgcgcctg cgctcatgga cggcggtcc cggctggcgg 500
cggcgcgcgc cgggctgtg aatgcgactc gcccctcggc cgcgcgtcccc 550
gcccgccccgc cgcgcggac gtggtagggg atgcccagct ccactgcgt 600
ggcagttggc gcgcgttcga gttccctctt ggtcacccgtc tgccgtatgg 650
tggctctgtg cagtccgagc atcccgctgg agaagctggc ccaggcacca 700
gagcagccgg gccaggagaa gcgtgagcac gccactcggg acggcccg 750
gcgggtgaac gagctcgggc gcccgccgag ggacgagggc ggacgccc 800
gggactggaa gagcaagagc ggcgtggc tcgcccggc tgagccgtgg 850
agcaagctga agcaggcctg ggtctccag ggccggggcg ccaaggccgg 900
ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950
ccgcagccgc ccaggacgcg attggcccg aactcgegcc cacgcccag 1000
ccacccgagg agtacgtgta cccggactac cgtggcaagg gctgcgtgga 1050
cgagagcggc ttctgttacg cgatcgggaa gaagttcgcg ccggccctt 1100
cgccctgccc gtgcctgtgc accgaggagg ggcgcgttg cgcgcagccc 1150
gagtccccga ggctgcaccc gcgtgcatac caegtcgaca cgagccagtg 1200
ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250
cctatcagac tttggaggag ttctgttgtt ctccatgcga gaggtgtcgc 1300
tgtgaagcca acggtgaggt gctatgcaca gtgtcagcgt gtccccagac 1350
ggagtgtgtg gaccctgtgt acgagcctga tcagtgtgt cccatctgca 1400
aaaatggtcc aaactgcattt gcagaaaccg cggtgatccc tgctggcaga 1450
gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500
cacatggaga atcgagcggc aggccatgtg caagagacat gaatgcaggg 1550
aaatgttagac gcttccaga acacaaaactc tgacttttc tagaacattt 1600
tactgatgtg aacattctag atgactctgg gaactatcag tcaaagaaga 1650
cttttgcgtga ggaataatgg aaaattgttg gtactttcc ttttcttgat 1700
aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750
aactttgggc ataaaatctt tctctaaata aatgtgttat ttccacagta 1800

agtacacaaa agtacactat tatatatcaa atgtattct ataatccctc 1850
cattagagag cttatataag tgtttctat agatgcagat taaaaatgct 1900
gtgttgtcaa cogtcaaaaa aaaaaaaaaa aaaaaaaaaa aa 1942

<210> 11
<211> 325
<212> PRT
<213> Homo sapiens

<400> 11
Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser
1 5 10 15

Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser
20 25 30

Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45

Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60

Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75

Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp
80 85 90

Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys
95 100 105

Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala
110 115 120

Glu Ala Leu Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu
125 130 135

Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150

Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile
155 160 165

Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys
170 175 180

Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu
185 190 195

His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln
200 205 210

Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr
215 220 225

Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

230 235 240

Cys Glu Ala Asn Gly Glu Val Leu Cys Thr Val Ser Ala Cys Pro
245 250 255

Gln Thr Glu Cys Val Asp Pro Val Tyr Glu Pro Asp Gln Cys Cys
260 265 270

Pro Ile Cys Lys Asn Gly Pro Asn Cys Phe Ala Glu Thr Ala Val
275 280 285

Ile Pro Ala Gly Arg Glu Val Lys Thr Asp Glu Cys Thr Ile Cys
290 295 300

His Cys Thr Tyr Glu Glu Gly Thr Trp Arg Ile Glu Arg Gln Ala
305 310 315

Met Cys Thr Arg His Glu Cys Arg Gln Met
320 325

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 12
gagggtgtcgcc tgtgaagccca acgg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 13
cgctcgattc tccatgtgcc ttcc 24

<210> 14
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 14
gacggagtgt gtggaccctg tgtacgagcc tgatcagtgc tgtcc 45

<210> 15
<211> 1587
<212> DNA
<213> Homo sapiens

<400> 15

cagccacaga cgggtcatga gcgeggattt actgctggcc ctccctgggt 50
tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttggaca 100
gttcagcatg tgtggaaagg gtccgaccta ccccggaat ggaccctaa 150
gaacaccagc tgcgacacgcg gcttgggtg ccaggacacg ttgatgctca 200
ttgagagcgg accccaagtg agcttggtc tctccaaggg ctgcacggag 250
gccaaggacc aggagccccg cgtcaactgag cacggatgg gccccggct 300
ctccctgatc tcctacaccc tctgtgtccg ccaggaggac ttctgcaaca 350
acctcgtaa ctccctcccc ctttggccc cacagcccc agcagaccca 400
ggatccttga ggtccccagt ctgttgtct atggaggct gtctggaggg 450
gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500
tcctcaggct caggggagga ggcattttct ccaatctgag agtccaggaa 550
tgcatgcccc agccaggttt caacctgctc aatggacac agaaaattgg 600
gcccgtgggt atgactgaga actgcaatag gaaagattt ctgacctgtc 650
atcggggac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catgaatac cgagatgtc gaggtgggc aggtgtgtca 750
ggagacgctg ctgctcatag atgttaggact cacatcaacc ctgggtggga 800
caaaaggctg cagcactgtt gggctaaa attccagaa gaccaccatc 850
cactcagccc ctccctgggt gcttggcc tcctataaccc acttctgctc 900
ctcgacactg tgcaatagtg ccagcagcag cagcgtctg ctgaactccc 950
tcctcctca agctccccct gtcccaaggag accggcagtg tcctacctgt 1000
gtgcagcccc ttggAACCTG ttcaagtggc tccccccgaa tgacctgccc 1050
cagggcgcac actcattgtt atgatggta cattcatctc tcaggaggtg 1100
ggctgtccac caaaatgagc attcagggtc gcgtggccca accttccagc 1150
ttcttggta accacaccag acaaatcggtt atcttctctg cgcgtgagaa 1200
gcgtgtatgtc cagcctcctg cctctcagca tgagggaggt gggctgagg 1250
gcctggagtc tctcaacttgg ggggtggggc tggcactggc cccagcgctg 1300
tgggtgggag tggtttggcc ttccctgctaa ctctattacc cccacgatcc 1350
ttcaccgctg ctgaccaccc acactcaacc tcctctgac ctcataaccc 1400
aatggccttg gacaccagat tctttccat tctgtccatg aatcatcttc 1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550
gctgcatgtt tctgataata cagaccctgt cctttca 1587

<210> 16
<211> 437
<212> PRT
<213> Homo sapiens

<400> 16
Met Ser Ala Val Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
1 5 10 15
Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30
His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45
Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60
Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75
Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90
Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
95 100 105
Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120
Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
125 130 135
Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
140 145 150
Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
155 160 165
Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met
170 175 180
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
200 205 210
Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
215 220 225
Glu Pro Thr Asp Trp Thr Ser Asn Thr Glu Met Cys Glu Val

230	235	240
Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu		
245	250	255
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala		
260	265	270
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val		
275	280	285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn		
290	295	300
Ser Ala Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln		
305	310	315
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln		
320	325	330
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro		
335	340	345
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly		
350	355	360
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln		
365	370	375
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe		
380	385	390
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His		
395	400	405
Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val		
410	415	420
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro		
425	430	435

Ser Cys

<210> 17
<211> 2387
<212> DNA
<213> Homo sapiens

<400> 17
cgacgatgct acgcgcgcgg ggctgcctcc tccggacetc cgtagcgcct 50
gccgcggccc tggctgcggc gctgctctcg tcgcttgcgc gctgctctct 100
tcttagagccg agggaccggg tggcctcgtc gctcagcccc tatttcggca 150
ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250
gctggtcgcc ctcatcgcc acggcacccg ctaccccacg gtcaaacaga 300
tccgcaagct gaggcagctg cacgggttgc tgcaggcccg cgggtccagg 350
gatggcgggg cttagtagtac cggcagccgc gacctgggtg cagcgctggc 400
cgactggcct ttgtggtacg cggaactggat ggacgggcag cttagtagaga 450
agggacggca ggatatgcga cagctggcgc tgcgtctggc ctgcgtttc 500
ceggccctt tcagccgtga gaactacggc cgctgceggc tcatacaccag 550
ttccaagcac cgctgcattgg atagcagcgc cgcttcctg cagggctgt 600
ggcagcacta ccaccctggc ttgccgcgc cggacgtcgc agatatggag 650
tttggacotc caacagttaa tgataaaacta atgagatttt ttgatcaactg 700
tgagaagttt ttaactgaag tagaaaaaaa tgctacagct ctttatcagc 750
tggaaaggctt caaaactggc ccagaaatgc agaacatttt aaaaaaaagtt 800
gcagctactt tgcaagtgc agtaaatgat ttaaatgcag atttaattca 850
agtagccctt ttacacctgtt cattgacct ggcaattaaa ggtgttaaat 900
ctccttggtg ttagtgggg gacatagatg atgcaaagggt attagaatat 950
ttaaatgatc tggaaacaata ttggaaaaga ggatatgggt atactattaa 1000
cagtcgatcc agtcgaccc tggatggc tatcttcag cacttggaca 1050
aagcagttga acagaaacaa aggtctcagc caatttcttc tccagtcate 1100
ctccagtttg gtcatgcaga gactcttctt ccactgctt ctctcatggg 1150
ctacttcaaa gacaaggaac ccctaacagc gtacaattac aaaaaacaaaa 1200
tgcatcgaa gttccgaagt ggtctcattg taccttatgc ctcgaacctg 1250
atatttgtgc ttaccactg tgaaaatgct aagactccta aagaacaatt 1300
ccgagtgcag atgttattaa atgaaaagggt gttaccttg gcttactcac 1350
aagaaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400
cttcagagtt gtcaaaccag tgaagaatgt gaatttagcaa gggctaaacag 1450
tacatctgat gaactatgag taactgaaga acatttttaa ttctttagga 1500
atctgcaatg agtgattaca tgcttgcata aggtaggcaa ttcttgatt 1550
acaggaagct ttatattac ttgagttttt ctgtctttc acagaaaaac 1600
attgggtttc tctctgggtt tggacatgaa atgtaagaaa agattttca 1650

E022000000000000

ctggagcgc totcttaagg agaaacaaat ctat tagag aaacagctgg 1700
ccctgcaaat gtttacagaa atgaaattct tcctacttat ataagaaatc 1750
tcacactgag atagaattgt gattcataa taacacttga aaagtgctgg 1800
agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850
ggaactttac agattgttct gcagttctct cttctttcc tcaggttagga 1900
cagctctagc attttcttaa tcaggaatat tgtggtaagc tgggagtatc 1950
actctggaag aaagtaacat ctccagatga gaatttggaaa caagaaacag 2000
agtgttgtaa aaggacacct tcactgaagc aagtccggaaa gtacaatgaa 2050
aataaatatt tttggtattt atttatgaaa tatttgaaca tttttcaat 2100
aattccttt tacttcttagg aagtctcaa agaccatott aaattattat 2150
atgtttggac aattagcaac aagtcagata gttagaatcg aagttttca 2200
aatccattgc ttagctaact ttttcattct gtcacttggc ttgcatttt 2250
atatttcct attatatgaa atgtatctt tggttgggg atttttcttt 2300
ctttcttgc aaatagttct gagttctgtc aaatgccgtg aaagtatttg 2350
ctataataaa gaaaattctt gtgactttaa aaaaaaaa 2387

<210> 18
<211> 487
<212> PRT
<213> Homo sapiens

<400> 18
Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro
1 5 10 15
Ala Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys
20 25 30
Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro
35 40 45
Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60
Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu
65 70 75
Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly
80 85 90
Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu
95 100 105
His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Gly Ala Ser

110	115	120
Ser Thr Gly Ser Arg Asp Leu Gly Ala Ala	Leu Ala Asp Trp Pro	
125	130	135
Leu Trp Tyr Ala Asp Trp Met Asp Gly Gln	Leu Val Glu Lys Gly	
140	145	150
Arg Gln Asp Met Arg Gln Leu Ala Leu	Arg Leu Ala Ser Leu Phe	
155	160	165
Pro Ala Leu Phe Ser Arg Glu Asn Tyr Gly	Arg Leu Arg Leu Ile	
170	175	180
Thr Ser Ser Lys His Arg Cys Met Asp Ser	Ser Ala Ala Phe Leu	
185	190	195
Gln Gly Leu Trp Gln His Tyr His Pro Gly	Leu Pro Pro Pro Asp	
200	205	210
Val Ala Asp Met Glu Phe Gly Pro Pro	Thr Val Asn Asp Lys Leu	
215	220	225
Met Arg Phe Phe Asp His Cys Glu Lys	Phe Leu Thr Glu Val Glu	
230	235	240
Lys Asn Ala Thr Ala Leu Tyr His Val Glu	Ala Phe Lys Thr Gly	
245	250	255
Pro Glu Met Gln Asn Ile Leu Lys Lys	Val Ala Ala Thr Leu Gln	
260	265	270
Val Pro Val Asn Asp Leu Asn Ala Asp	Leu Ile Gln Val Ala Phe	
275	280	285
Phe Thr Cys Ser Phe Asp Leu Ala Ile	Lys Gly Val Lys Ser Pro	
290	295	300
Trp Cys Asp Val Phe Asp Ile Asp Asp Ala	Lys Val Leu Glu Tyr	
305	310	315
Leu Asn Asp Leu Lys Gln Tyr Trp Lys Arg	Gly Tyr Gly Tyr Thr	
320	325	330
Ile Asn Ser Arg Ser Ser Cys Thr Leu Phe	Gln Asp Ile Phe Gln	
335	340	345
His Leu Asp Lys Ala Val Glu Gln Lys	Gln Arg Ser Gln Pro Ile	
350	355	360
Ser Ser Pro Val Ile Leu Gln Phe Gly His	Ala Glu Thr Leu Leu	
365	370	375
Pro Leu Leu Ser Leu Met Gly Tyr Phe	Lys Asp Lys Glu Pro Leu	
380	385	390
Thr Ala Tyr Asn Tyr Lys Lys Gln Met His	Arg Lys Phe Arg Ser	
395	400	405

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr
410 415 420
His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln
425 430 435
Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu
440 445 450
Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile
455 460 465
Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala
470 475 480
Asn Ser Thr Ser Asp Glu Leu
485

<210> 19
<211> 3554
<212> DNA
<213> Homo sapiens

<400> 19
gggactacaa gccgcgcgc gctgcgcgtg gcccctcagc aaccctcgac 50
atggcgctga ggccgcacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcctt tcagggcgtg cctgataggg gctgtaaatc 150
tcaaattccag caatcgaacc ccagtggcac aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcaggaga cttggcggtt cgtgcagaaa tactgggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gcccatttac gctgtgaggt 400
cgttgctcga aatgaccgca agggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tccccagattt cgcaattttt ctttccactt aaactctgaa 650
acaggcactt tggtgttac tgctgttac aaggacgact ctggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750
agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgtcccttg ctgtactggc cctgatcagc ttggcatact gctgtgcata 850

19. *Leucosia* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma* *leucostoma*

cagacgtggc tacttcatca acaataaaaca ggatggagaa agttacaaga 900
acccagggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtgatc tgagaccgc ggtgtggctg 1000
agagcgaca gagcgcacgt gcacataacct ctgctagaaa ctccctgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttgcgtttt gcccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttcacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcat cccggcgaaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500
tgatcggtgt tgcatgttcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtctgtt tatTTTataa aattttacat ctaaattttt gctaaggatg 1750
tatTTTgatt atgaaaaga aaatttctat taaaactgtt aatatattgt 1800
catacaatgt taaaataacct atTTTTtaa aaaagttcaa cttaaggtag 1850
aagtccaaag ctactagtgt taaaattggaa aatataaata attaagagta 1900
ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccctttct 1950
cacacaagtt ttagccttt tcacaaggga actcatactg tctacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagttt agcaatgtt 2050
aaatcagttt gcatctttc aaaagaaacc tctcaggtt gctttgaact 2100
gcctcttcct gagatgacta ggacagtctg taccaggagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagtcctgg ggttgccca 2200
ggcgcccccg ctctagctca ctgttgccctc gctgtctgccc aggagggcct 2250
gccatccttg ggcctggca gtggctgtgt cccagtgagc tttactcagc 2300

tggcccttgc ttcatccagc acagctctca ggtgggact gcagggacac 2350
tggtgttttc catgttagcgt cccagcttg ggctcctgta acagacctct 2400
ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450
tttaaagttt gttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctcttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggccggccagt ccagccttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggctggcg gggagggaaag 2700
tgaaacgcct gaatcaaaaag cagtttctta attttgactt taaattttc 2750
atccgcccga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaaggct gtgttcttca agagcaggtg ttctcagcct cacatgcct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggagcaactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gcttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctgggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctccttcttgc gttgtcatag tgataggta 3250
gccttattgc cccctcttct tataccctaa aaccttctac actagtgcac 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaataact cgtgtatTTT 3400
aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
gcctttggat ggtatgttgcgt gtacacagat gctacagact tgtactaaca 3500
caccgttaatt tggcatttgt ttaacctcat ttataaaaagc ttcaaaaaaaaa 3550
ccca 3554

<210> 20
<211> 310
<212> PRT
<213> Homo sapiens

<400> 20

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
 1 5 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly
 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
 35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
 50 55 60

Ser Asp Pro Arg Ile Glu Trp Lys Ile Gln Asp Glu Gln Thr
 65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly
 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val
 95 100 105

Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg
 110 115 120

Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val
 125 130 135

Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val
 140 145 150

Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
 155 160 165

His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu
 170 175 180

Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe
 185 190 195

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
 200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
 215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
 230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
 245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
 260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
 275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly

290

295

300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310

<210> 21

<211> 3437

<212> DNA

<213> Homo sapiens

<400> 21

caggaccagg tcttcctacg ctggagcagc ggggagacag ccaccatgca 50
catcctcgta gtccatgcca tggtgatcct gctgacgtg ggcccgccctc 100
gagccgacga cagcgagttc caggcgctgc tggacatctg gtttccggag 150
gagaagccac tgcccacccgc cttcctggtg gacacatcgg aggaggcgct 200
gctgcttctt gactggctga agctgcgcattt gatccgttctt gaggtgtcc 250
gcctggtgaa cgccgcctcg caggacctgg agccgcagca gctgctgtg 300
ttcgtgcagt cgtttggcat ccccggttcc agcatgagca aactcctcca 350
gttcctggac caggcagtgg cccacgaccc ccagactctg gaggcagaaca 400
tcatggacaa gaattacatg gcccacctgg tggaggttcca gcatgagcgc 450
ggcgccctcg gaggccagac ttccactcc ttgctcacag cctccctgcc 500
gccccgcccga gacagcacag aggcacccaa accaaagagc agcccgagac 550
agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgtg 600
ggccctgagg acgacctggc tggcatgttc ctccagatt tcccgcttag 650
cccgaccctt cgggtggcaga gctccagtcc ccggccctcg gcctcgccc 700
tgcagcagggc cctggccag gagctggccc gcgttgttcca gggcagcccc 750
gaggtggccgg gcatcacggt gcgtgtctcg caggccctcg ccaccctgt 800
cagctccccca cacggcggtg ccctgggtat gtccatgcac cgttagccact 850
tcctggcctg ccggctgtcg cgccagctctt gccagttacca gcgtgtgtg 900
ccacaggaca ccggcttctc ctgcgttttc ctgaagggtgc tcctgcagat 950
gctgcagtgg ctggacagcc ctggcgttgg gggcgccccc ctgcggccac 1000
agctcaggat gcttgccagc caggcctcag ccggggcgac gctcagtgtat 1050
gtgcgagggg ggctcctgcg cctggccag gcccctggccct tccgtcagga 1100
cctggaggtg gtcagcttcca ccgtccgtgc cgtcatcgcc accctgaggt 1150
ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200

Nucleotide sequence

gggctgatcg aggtgaggc ccccccacctg gaggagctgc tgactgcatt 1250
cttctctgcc actgcggatg ctgcctcccc gtttccagcc ttaagcccg 1300
tttgtgttgt gagctccctg ctgctgcagg aggaggagcc cctggctggg 1350
ggaaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400
ctcgtcaggc ctcctagtgg actggctgga aatgctggac cccgaggtgg 1450
tcagcagctg ccccgacactg cagctcaggc tgctcttctc ccggaggaag 1500
ggcaaaggc aggcccaggt gccctcggtc cgtccctacc tcctgaccct 1550
cttcacgcat cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600
tgctggcaa gagccggaa cagaggttcg acccctctgc ctctctggac 1650
ttcctctggg cctgcatcca tggctctgc atctggcagg ggccggacca 1700
gcgcaccccg cagaagcggc gggaggagct ggtgctgcgg gtccaggggcc 1750
cggagctcat cagcctggtg gagctgatecc tggccgaggc ggagacgcgg 1800
agccaggacg gggacacacgc cgccctgcagc ctcatccagg cccggctgcc 1850
cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaaggta 1900
cgagcacct gtcaggctgc atccagcagt gggagacag cgtgctggga 1950
aggcgctgcc gagaccttct cctgcagctc tacctacagc ggccggagct 2000
gcgggtgccc gtgcctgagg tcctactgca cagcgaaggg gctgccagca 2050
gcagcgtctg caagctggac ggactcatcc accgcttcat cacgctcatt 2100
gcggacacca gcgactcccg ggcgttggag aaccgagggg cgatgccag 2150
catggcctgc cgaaagctgg cggcggcgca cccgctgctg ctgctcaggc 2200
acctgcccatt gatcgccggcg ctccctgcacg gcccaccca cctcaacttc 2250
caggagttcc ggcagcagaa ccacctgagc tgcttcctgc acgtgctggg 2300
cctgctggag ctgctgcagc cgacgtgtt ccgcagcggag caccaggggg 2350
cgctgtggga ctgccttctg tccttcatcc gcctgctgct gaattacagg 2400
aagtctccc gccatctggc tgccttcattt aacaagttt tgcat 2450
ccataagtac attacctaca atgccccagc agccatctcc ttccctgcaga 2500
agcacgcccga cccgctccac gacctgtctt tcgacaacag tgacctggtg 2550
atgctgaaat ccctcatttc agggctcagc ctgcccagca gggacgacag 2600
gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

ccttgcacct ggtcagcgtc tccctgttca cccctctgac cgccggccgag 2700
atggccccct acatgaaacg gctttcccg ggccaaacgg tggaggatct 2750
gctggagggtt ctgagtgaca tagacgagat gtcccgccgg agacccgaga 2800
tcctgagctt cttctcgacc aacctgcagc ggctgatgag ctccggccgag 2850
gagtgttgcc gcaacacctgc cttcagectg gccctgcgct ccatgcagaa 2900
cagccccagc attgcagccg ctttcctgcc cacgttcatg tactgcctgg 2950
gcagccagga ctttgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000
tacgtctcc tgtgccaaga gcacgcggct gtgctgctcc accgggcctt 3050
cctgggtggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100
ccctgaggat cctgcatatg gaggccgtga tgtgagcctg tggcagccga 3150
ccccccctcca agccccggcc cgtccccgtcc ccggggatcc tcgaggcaaa 3200
gcccaggaag cgtgggcgtt gctggctgt ccgaggaggt gagggcgcgg 3250
agccctgagg ccaggcagc ccaggagcaa tactccgagc cctggggtgtg 3300
ctccggcccg gccgctggca tcagggcccg tccagcaagc cctcattcac 3350
cttctgggcc acagccctgc cgccgagccg cggatcccc cgggcatggc 3400
ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met	His	Ile	Leu	Val	Val	His	Ala	Met	Val	Ile	Leu	Leu	Thr	Leu
1				5				10					15	

Gly	Pro	Pro	Arg	Ala	Asp	Asp	Ser	Glu	Phe	Gln	Ala	Leu	Leu	Asp
					20				25					30

Ile	Trp	Phe	Pro	Glu	Glu	Lys	Pro	Leu	Pro	Thr	Ala	Phe	Leu	Val
				35					40					45

Asp	Thr	Ser	Glu	Glu	Ala	Leu	Leu	Leu	Pro	Asp	Trp	Leu	Lys	Leu
					50				55					60

Arg	Met	Ile	Arg	Ser	Glu	Val	Leu	Arg	Leu	Val	Asp	Ala	Ala	Leu
				65				70						75

Gln	Asp	Leu	Glu	Pro	Gln	Gln	Leu	Leu	Leu	Phe	Val	Gln	Ser	Phe
				80				85						90

Gly	Ile	Pro	Val	Ser	Ser	Met	Ser	Lys	Leu	Leu	Gln	Phe	Leu	Asp
				95					100					105

Gln Ala Val Ala His Asp Pro Gln Thr Leu Glu Gln Asn Ile Met
 110 115 120
 Asp Lys Asn Tyr Met Ala His Leu Val Glu Val Gln His Glu Arg
 125 130 135
 Gly Ala Ser Gly Gly Gln Thr Phe His Ser Leu Leu Thr Ala Ser
 140 145 150
 Leu Pro Pro Arg Arg Asp Ser Thr Glu Ala Pro Lys Pro Lys Ser
 155 160 165
 Ser Pro Glu Gln Pro Ile Gly Gln Gly Arg Ile Arg Val Gly Thr
 170 175 180
 Gln Leu Arg Val Leu Gly Pro Glu Asp Asp Leu Ala Gly Met Phe
 185 190 195
 Leu Gln Ile Phe Pro Leu Ser Pro Asp Pro Arg Trp Gln Ser Ser
 200 205 210
 Ser Pro Arg Pro Val Ala Leu Ala Leu Gln Gln Ala Leu Gly Gln
 215 220 225
 Glu Leu Ala Arg Val Val Gln Gly Ser Pro Glu Val Pro Gly Ile
 230 235 240
 Thr Val Arg Val Leu Gln Ala Leu Ala Thr Leu Leu Ser Ser Pro
 245 250 255
 His Gly Gly Ala Leu Val Met Ser Met His Arg Ser His Phe Leu
 260 265 270
 Ala Cys Pro Leu Leu Arg Gln Leu Cys Gln Tyr Gln Arg Cys Val
 275 280 285
 Pro Gln Asp Thr Gly Phe Ser Ser Leu Phe Leu Lys Val Leu Leu
 290 295 300
 Gln Met Leu Gln Trp Leu Asp Ser Pro Gly Val Glu Gly Gly Pro
 305 310 315
 Leu Arg Ala Gln Leu Arg Met Leu Ala Ser Gln Ala Ser Ala Gly
 320 325 330
 Arg Arg Leu Ser Asp Val Arg Gly Gly Leu Leu Arg Leu Ala Glu
 335 340 345
 Ala Leu Ala Phe Arg Gln Asp Leu Glu Val Val Ser Ser Thr Val
 350 355 360
 Arg Ala Val Ile Ala Thr Leu Arg Ser Gly Glu Gln Cys Ser Val
 365 370 375
 Glu Pro Asp Leu Ile Ser Lys Val Leu Gln Gly Leu Ile Glu Val
 380 385 390
 Arg Ser Pro His Leu Glu Glu Leu Leu Thr Ala Phe Phe Ser Ala

395	400	405
Thr Ala Asp Ala Ala Ser Pro Phe Pro Ala Cys Lys Pro Val Val 410	415	420
Val Val Ser Ser Leu Leu Leu Gln Glu Glu Glu Pro Leu Ala Gly 425	430	435
Gly Lys Pro Gly Ala Asp Gly Gly Ser Leu Glu Ala Val Arg Leu 440	445	450
Gly Pro Ser Ser Gly Leu Leu Val Asp Trp Leu Glu Met Leu Asp 455	460	465
Pro Glu Val Val Ser Ser Cys Pro Asp Leu Gln Leu Arg Leu Leu 470	475	480
Phe Ser Arg Arg Lys Gly Lys Gly Gln Ala Gln Val Pro Ser Phe 485	490	495
Arg Pro Tyr Leu Leu Thr Leu Phe Thr His Gln Ser Ser Trp Pro 500	505	510
Thr Leu His Gln Cys Ile Arg Val Leu Leu Gly Lys Ser Arg Glu 515	520	525
Gln Arg Phe Asp Pro Ser Ala Ser Leu Asp Phe Leu Trp Ala Cys 530	535	540
Ile His Val Pro Arg Ile Trp Gln Gly Arg Asp Gln Arg Thr Pro 545	550	555
Gln Lys Arg Arg Glu Glu Leu Val Leu Arg Val Gln Gly Pro Glu 560	565	570
Leu Ile Ser Leu Val Glu Leu Ile Leu Ala Glu Ala Glu Thr Arg 575	580	585
Ser Gln Asp Gly Asp Thr Ala Ala Cys Ser Leu Ile Gln Ala Arg 590	595	600
Leu Pro Leu Leu Leu Ser Cys Cys Cys Gly Asp Asp Glu Ser Val 605	610	615
Arg Lys Val Thr Glu His Leu Ser Gly Cys Ile Gln Gln Trp Gly 620	625	630
Asp Ser Val Leu Gly Arg Arg Cys Arg Asp Leu Leu Leu Gln Leu 635	640	645
Tyr Leu Gln Arg Pro Glu Leu Arg Val Pro Val Pro Glu Val Leu 650	655	660
Leu His Ser Glu Gly Ala Ala Ser Ser Ser Val Cys Lys Leu Asp 665	670	675
Gly Leu Ile His Arg Phe Ile Thr Leu Leu Ala Asp Thr Ser Asp 680	685	690

Ser Arg Ala Leu Glu Asn Arg Gly Ala Asp Ala Ser Met Ala Cys
 695 700 705
 Arg Lys Leu Ala Val Ala His Pro Leu Leu Leu Leu Arg His Leu
 710 715 720
 Pro Met Ile Ala Ala Leu Leu His Gly Arg Thr His Leu Asn Phe
 725 730 735
 Gln Glu Phe Arg Gln Gln Asn His Leu Ser Cys Phe Leu His Val
 740 745 750
 Leu Gly Leu Leu Glu Leu Leu Gln Pro His Val Phe Arg Ser Glu
 755 760 765
 His Gln Gly Ala Leu Trp Asp Cys Leu Leu Ser Phe Ile Arg Leu
 770 775 780
 Leu Leu Asn Tyr Arg Lys Ser Ser Arg His Leu Ala Ala Phe Ile
 785 790 795
 Asn Lys Phe Val Gln Phe Ile His Lys Tyr Ile Thr Tyr Asn Ala
 800 805 810
 Pro Ala Ala Ile Ser Phe Leu Gln Lys His Ala Asp Pro Leu His
 815 820 825
 Asp Leu Ser Phe Asp Asn Ser Asp Leu Val Met Leu Lys Ser Leu
 830 835 840
 Leu Ala Gly Leu Ser Leu Pro Ser Arg Asp Asp Arg Thr Asp Arg
 845 850 855
 Gly Leu Asp Glu Glu Gly Glu Glu Ser Ser Ala Gly Ser Leu
 860 865 870
 Pro Leu Val Ser Val Ser Leu Phe Thr Pro Leu Thr Ala Ala Glu
 875 880 885
 Met Ala Pro Tyr Met Lys Arg Leu Ser Arg Gly Gln Thr Val Glu
 890 895 900
 Asp Leu Leu Glu Val Leu Ser Asp Ile Asp Glu Met Ser Arg Arg
 905 910 915
 Arg Pro Glu Ile Leu Ser Phe Phe Ser Thr Asn Leu Gln Arg Leu
 920 925 930
 Met Ser Ser Ala Glu Glu Cys Cys Arg Asn Leu Ala Phe Ser Leu
 935 940 945
 Ala Leu Arg Ser Met Gln Asn Ser Pro Ser Ile Ala Ala Ala Phe
 950 955 960
 Leu Pro Thr Phe Met Tyr Cys Leu Gly Ser Gln Asp Phe Glu Val
 965 970 975
 Val Gln Thr Ala Leu Arg Asn Leu Pro Glu Tyr Ala Leu Leu Cys

980	985	990
Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly		
995	1000	1005
Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu		
1010	1015	1020
Arg Ile Leu His Met Glu Ala Val Met		
1025		

<210> 23
<211> 2186
<212> DNA
<213> Homo sapiens

<400> 23
ccgggcatg cagcctcgcc cccgcggcg cccgcccgc acccgaggag 50
atgaggctcc gcaatggcac ctccctgacg ctgctgtct tctgcctgtg 100
cgccttcctc tcgctgtctt ggtacgcggc actcagcggc cagaaaggcg 150
acgttgtgga cgtttaccag cggagattcc tggcgctgcg cgatcggtt 200
cacgcagctg agcaggagag cctcaagcgc tccaaggagc tcaaccttgt 250
gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300
gagacggcaa tcgcacctgg ggccgcctaa cagaggaccc cegattgaag 350
ccgtggaacg gtcacacccg gcacgtgctg cacctgccca ccgtttcca 400
tcacctgcca cacctgtctgg ccaaggagag cagtctgcag cccgcggc 450
gcgtggccca gggccgcacc ggagtgtcgg tggtgatggg catcccgagc 500
gtgcggcgcg aggtgcactc gtacacctgact gacactctgc actcgctcat 550
ctccgagctg agcccgccagg agaaggagga ctccgtcatac gtggtgctga 600
tcgcccagac tgactcacag tacacttcgg cagtacaga gaacatcaag 650
gccttgttcc ccacggagat ccattctggg ctccctggagg tcatctcacc 700
ctccccccac ttctaccctg acttctcccg cctccgagag tcctttgggg 750
accccaagga gagagtcaagg tggaggacca aacagaacct cgattactgc 800
ttcctcatga tgtacgcgcgt gtccaaaggc atctactacg tgtagctgg 850
ggatgacatc gtggccaagc ccaactaccc gggcaccatg aagaactttg 900
cactgcagca gccttcagag gactggatga tcctggatgtt ctccctggc 950
ggcttcatttg gtaagatgtt caagtcgtc gacctgagcc tgattgtaga 1000
gttcattctc atgttctacc gggacaagcc catcgactgg ctccctggacc 1050

TACCGATGTTCTTCAGGAA

atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100
gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctttcca 1150
gcacgtggc actcacttct cgctggctgg caagatccag aaactgaagg 1200
acaaaagactt tggaaagcag gcgctgcgga aggagcatgt gaacccgcca 1250
gcagaggtga gcacgagcct gaagacatac cagcacttca ccctggagaa 1300
agcctacctg cgcgaggact tcttctggc ctccacccct gccgcgggg 1350
acttcatccg cttccgttcc ttccaacctc taagactgga gcggtttttc 1400
ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450
tgtggaggtg ctgcccttcg acaaccctca gtcagacaag gaggccctgc 1500
aggagggccg caccgcacc ctccggtacc ctggagccc cgacggctac 1550
ctccagatcg gtccttcta caagggagtg gcagagggag aggtggaccc 1600
agccttcggc cctctggaaag cactgcgcct ctgcattccag acggactccc 1650
ctgtgtgggt gattctgagc gagatttcc taaaaaaaggc cgactaagct 1700
gcgggcttct gagggtaccc tgtggccage cctgaagccc acatttctgg 1750
gggtgtcgtc actgccgtcc cggagggcc agatacggcc cggccaaag 1800
ggttctgcct ggctcgggc ttggggcggc ctggggtccg cggctggccc 1850
ggagggcccta ggagctggtg ctgcggggc cggccggcc gggaggagg 1900
caggcggccc ccacactgtg cctgaggccc ggaaccgttc gcacccggcc 1950
tgccccagtc aggccgtttt agaagagctt ttacttggc gccggccgtc 2000
tctggcgca acactggaat gcatatacta ctatgtgc tgttttttt 2050
attcttgat acatttgatt tttcacgtt agtccacata tacttctata 2100
agagcgtgac ttgtataaaa gggttaatga agaaaaaaaaaaaaaaa 2150
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2186

<210> 24
<211> 548
<212> PRT
<213> Homo sapiens

<400> 24
Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Phe Cys
1 5 10 15
Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

Gln Lys Gly Asp Val Val Asp Val Tyr Gln Arg Glu Phe Leu Ala
 35 40 45
 Leu Arg Asp Arg Leu His Ala Ala Glu Gln Glu Ser Leu Lys Arg
 50 55 60
 Ser Lys Glu Leu Asn Leu Val Leu Asp Glu Ile Lys Arg Ala Val
 65 70 75
 Ser Glu Arg Gln Ala Leu Arg Asp Gly Asp Gly Asn Arg Thr Trp
 80 85 90
 Gly Arg Leu Thr Glu Asp Pro Arg Leu Lys Pro Trp Asn Gly Ser
 95 100 105
 His Arg His Val Leu His Leu Pro Thr Val Phe His His Leu Pro
 110 115 120
 His Leu Leu Ala Lys Glu Ser Ser Leu Gln Pro Ala Val Arg Val
 125 130 135
 Gly Gln Gly Arg Thr Gly Val Ser Val Val Met Gly Ile Pro Ser
 140 145 150
 Val Arg Arg Glu Val His Ser Tyr Leu Thr Asp Thr Leu His Ser
 155 160 165
 Leu Ile Ser Glu Leu Ser Pro Gln Glu Lys Glu Asp Ser Val Ile
 170 175 180
 Val Val Leu Ile Ala Glu Thr Asp Ser Gln Tyr Thr Ser Ala Val
 185 190 195
 Thr Glu Asn Ile Lys Ala Leu Phe Pro Thr Glu Ile His Ser Gly
 200 205 210
 Leu Leu Glu Val Ile Ser Pro Ser Pro His Phe Tyr Pro Asp Phe
 215 220 225
 Ser Arg Leu Arg Glu Ser Phe Gly Asp Pro Lys Glu Arg Val Arg
 230 235 240
 Trp Arg Thr Lys Gln Asn Leu Asp Tyr Cys Phe Leu Met Met Tyr
 245 250 255
 Ala Gln Ser Lys Gly Ile Tyr Tyr Val Gln Leu Glu Asp Asp Ile
 260 265 270
 Val Ala Lys Pro Asn Tyr Leu Ser Thr Met Lys Asn Phe Ala Leu
 275 280 285
 Gln Gln Pro Ser Glu Asp Trp Met Ile Leu Glu Phe Ser Gln Leu
 290 295 300
 Gly Phe Ile Gly Lys Met Phe Lys Ser Leu Asp Leu Ser Leu Ile
 305 310 315
 Val Glu Phe Ile Leu Met Phe Tyr Arg Asp Lys Pro Ile Asp Trp

320	325	330
Leu Leu Asp His Ile Leu Trp Val Lys Val Cys Asn Pro Glu Lys		
335	340	345
Asp Ala Lys His Cys Asp Arg Gln Lys Ala Asn Leu Arg Ile Arg		
350	355	360
Phe Lys Pro Ser Leu Phe Gln His Val Gly Thr His Ser Ser Leu		
365	370	375
Ala Gly Lys Ile Gln Lys Leu Lys Asp Lys Asp Phe Gly Lys Gln		
380	385	390
Ala Leu Arg Lys Glu His Val Asn Pro Pro Ala Glu Val Ser Thr		
395	400	405
Ser Leu Lys Thr Tyr Gln His Phe Thr Leu Glu Lys Ala Tyr Leu		
410	415	420
Arg Glu Asp Phe Phe Trp Ala Phe Thr Pro Ala Ala Gly Asp Phe		
425	430	435
Ile Arg Phe Arg Phe Phe Gln Pro Leu Arg Leu Glu Arg Phe Phe		
440	445	450
Phe Arg Ser Gly Asn Ile Glu His Pro Glu Asp Lys Leu Phe Asn		
455	460	465
Thr Ser Val Glu Val Leu Pro Phe Asp Asn Pro Gln Ser Asp Lys		
470	475	480
Glu Ala Leu Gln Glu Gly Arg Thr Ala Thr Leu Arg Tyr Pro Arg		
485	490	495
Ser Pro Asp Gly Tyr Leu Gln Ile Gly Ser Phe Tyr Lys Gly Val		
500	505	510
Ala Glu Gly Glu Val Asp Pro Ala Phe Gly Pro Leu Glu Ala Leu		
515	520	525
Arg Leu Ser Ile Gln Thr Asp Ser Pro Val Trp Val Ile Leu Ser		
530	535	540
Glu Ile Phe Leu Lys Lys Ala Asp		
545		

<210> 25

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 25

tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 26
caggaaacag ctatgaccac ctgcacacct gcaaattccat t 41

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 27
actcgggatt cctgctgtt 19

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 28
aggcctttac ccaaggccac aac 23

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 29
ggcctgtcct gtgttctca 19

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 30
tcccaccact tacttccatg aa 22

<210> 31
<211> 25
<212> DNA

<213> Artificial Sequence
<220> *
<223> Synthetic Oligonucleotide Probe
<400> 31
ctgtggtacc caattgccgc cttgt 25

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 32
attgtcctga gattcgagca aga 23

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 33
gtccagcaag ccctcatt 18

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 34
cttctgggcc acagccctgc 20

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 35
cagttcaggt cgtttcattc a 21

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 36
ccagtcaggc cgttttaga 19

<210> 37

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 37

cgggcgccc a gtaaaaagct c 21

<210> 38

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 38

cataaaagtag tatatgcatt ccagtgtt 28