DBMSL-GROUP A Assignments A1-A4

Assignment No 1

Please find below references for MySql Architecture and also refer Korth book for Relational database architecture. Also you can added some more reference.

- 1. http://www.datadisk.co.uk/html
- 2. https://s2.smu.edu/~rkotamarti

Comparative study of Mysql and Oracle (Added as per FDP discussion)

Assignment No 2 Create following tables in MYSQL

Customer(<u>cust_no</u>,cust_fname,cust_lname,cust_company,cust_addr,city,cust_phone) order(<u>order_no</u>,cust_no,ISBN,qty,odate); book(<u>ISBN</u>,title,unit_price,author_no,publisher_no,pub_year); author(<u>author_no</u>,author_name,country) publisher(<u>publisher_no</u>,publisher_name,publisher_addr,year);

Note: Use referential integrity constraints while creating tables with on delete cascade options.

Create view, index, sequence and synonym based on above tables.

Assignment No 3

Use the tables created in assignment no 2 and execute the following queries:

- 1. Insert at least 10 records in customer table and insert other tables accordingly.
- **2.** Display all customer details with city pune and mumbai and customer first name starting with 'p' or 'h'.
- **3.** lists the number of different customer cities.(use of distinct)
- **4.** Give 5% increase in price of the books with publishing year 2015. (use of update)
- **5.** Delete customer details living in pune.
- **6.** Find the names of authors living in India or Australia (use of UNION)
- **7.** Find the publishers who are established in year 2015 as well as in 2016 (use of INTERSECT)
- **8.** Find the book having maximum price and find titles of book having price between 300 and 400. (use of max and between)
- **9.** Display all titles of books with price and published year in decreasing order of publishing year.
- **10.** Display title, author_no and publisher_no of all books published in 2000,2004,2006. (use of IN)

Assignment No 2

Consider the following relational Schema.

Departments (<u>dept_id</u>, dept_name)
Professors (<u>prof_id</u>,prof_fname, prof_lname, dept_id,designation,salary,doj,email,phone,city)
works(prof_id,dept_id,duration)
Shift (<u>prof_id</u>,shift,working_hours)

Note: Use referential integrity constraints while creating tables with on delete cascade options.

Create view, index, sequence and synonym based on above tables.

Assignment No 3

Use the tables created in assignment no 2 and execute the following queries:

- 1. Insert atleast 10 records in professors table and insert other tables accordingly.
- 2. Display all professors details with city pune and mumbai and professor first name starting with 'a' or 'd'.
- 3. list the number of different cities of professors.(use of distinct)
- 4. Give 5% increase in salary of the professors with date of joining 1-1-2015. (use of update)
- 5. Delete professor details living in pune.
- 6. Find the names of professors belonging to pune or mumbai(use of UNION)
- 7. Find the professors who joined on date 1-1-2015 as well as in 1-1-2016 (use of INTERSECT)
- 8. Find the professor having maximum salary and names of professors having salary between 10,000 and 20,000. (use of max and between)
- 9. Display all professors name with salary and date of joining with decreasing order of salary.
- 10. Display professors name, date of joining and dept_id with salary 30000, 40000 and 50000 (use of IN).

A2: Guidelines

- Synonym not supported in MySql. Required to include example from oracle in write-up.
- Sequence should be implemented with AUTO_INCREMENT. Concept of sequence from oracle must be included in write-up.
- Take JDBC connectivity for A2. (Front-end : Java, Back-End: MySql)
- Simple view, Index(simple,unique,composite and text show index after creation) and sequence implementation can be shown using JDBC with any sample table.

Assignment No 4 (based on Book schema)

Use the tables created in assignment no 2 and execute the following queries:

- 1. Find Customer details and order details using NATURAL JOIN.
- 2. Find the book_title, author_name, country. (INNER JOIN)
- 3. Find the customer ID, name and order_no of customers who have never placed an order. (LEFT/RIGHT)
- 4. Find the Title, ISBN, order_no of the books for which order is not placed. (LEFT/RIGHT)
- 5. Display cust_fname, title,author_no,publisher_year where ISBN=1234. (JOINING more than 2 tables)
- 6. Display the total number of books and customer name.(USE OF COUNT, ANY JOIN)
- 7. List the cust_id, order_no and ISBN with books having title 'mysql'. (sub query- IN)
- 8. Find the names of all the companies that ordered books in the year 2015. (sub query, Between)
- 9. Create view showing the author and book details. (COMPLEX VIEW)
- 10. Perform Manipulation on simple view-Insert, update, delete, drop view.

OR

Assignment No 4(based on professor schema)

Use the tables created in assignment no 2 and execute the following queries:

- 1. Find the professor details and department details using NATURAL JOIN.
- 2. Find the prof_id, prof_name and shift. (INNER JOIN)
- 3. List all the department details and the corresponding names of professors in the same department.(left outer join)
- 4. List all the professors and the corresponding names of department.(right outer join)
- 5. Display professor name, dept_name, shift, salary where prof_id = 101;(multitable join)
- 6. list the total number of professor in each department.(count and any join, groupby)
- 7. List the prof_id associated department and the dept_name having name 'computer';(subquery)
- 8. Find the names of all departments where the professors joined in year 2015 (or date of joining is 1-1-2015).(subquery)
- 9. Create view showing the professor and shift details. (COMPLEX VIEW)
- 10. Perform Manipulation on simple view-Insert, update, delete, drop view.

A4: Guidelines

Natural Join, Inner Join/Equi Join, Left Outer Join, Right Outer Join, Count+Join, 2 queries on Subquery, complex view and manipulation on simple view must be covered.