Week 2: Differentiation

James Arthur

October 8, 2020

Contents

1	Definition of a Derivative	2
2	Rolles Theorem	2
3	Darboax's Theorem	2
4	Mean Value Theorem 4.1 Consequences	3

1 Definition of a Derivative

Definition 1.1: Derivative

A function f, is differentiable at an interior point, x_0 , of it's domain if the difference quotient:

$$\frac{f(x) - f(x_0)}{x - x_0}, \quad x \neq x_0$$

approaches a limit as x approaches x_0 , in which case the limit is called the derivative of f at x_0 and is denoted: $f'(x_0)$, thus:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Definition 1.2

We say that $f(x_0)$ is a local extreme value of f, if there is a $\delta > 0$, such that the sign of $f(x) - f(x_0)$ diesnt change:

$$(x_0 - \delta, x_0 + \delta) \subset D_f$$

or a local minimum of f if:

$$f(x_0) \le f(x)$$

if for all x in the set, these are true, then we have globals

Theorem 1.1

If f is differentiable at a local extreme point $x_0 \in D_f^0$, then $f(x_0) = 0$

Proof. We consider the case where x_0 is a local maximum. Then, $\exists \delta > 0$, $(x_0 - \delta, x_0 + \delta) \subset D_f$ and $f(x) \leq f(x_0)$ for all $x \in (x_0 - \delta, x_0 + \delta)$. We have:

$$0 \le \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}$$

and

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

So, as it exists,

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = 0$$

The case of a local minimum at x_0 is obtained by applying the above to -f.

2 Rolles Theorem

Theorem 2.1: Rolle's Theorem

Suppose that f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) and f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$

Proof. Since f is continuous on [a, b], then, by EVT, f attains both a min and max values.

$$\alpha = \min_{x \in [a, b]} f(x) \qquad \beta = \max_{x \in [a, b]} f(x)$$

If $\alpha = \beta$, then f is constant on (a, b), clearly $f'(x) = 0 \forall x \in [a, b]$.

If $\alpha \neq \beta$, then at least one α or β is attained at a point $c \in (a, b)$ (Since f(a) = f(b)), and hence f'(c) = 0.

3 Darboax's Theorem

Theorem 3.1: Darboax's Theorem

Suppose that f is differentiable on [a, b], $f'(a) \neq f'(b)$, and μ is between f'(a) and f'(b). Then $f'(c) = \mu$ for some $c \in (a, b)$.

Proof. Suppose that $f'(a) < \mu < f'(b)$ aand then define:

$$q(x) = f(x) - \mu x$$

Then

$$q'(x) = f'(x) - \mu$$

and then:

$$g'(a) < 0$$
 $0 < g'(b)$ (*)

Since g is continuous on [a, b], g attains a min, by EVT, at some point $c \in [a, b]$. Then, (*), implies $\exists \delta > 0$,

$$g(x) < g(a), \quad \forall a < x < a + \delta$$

and

$$g(x) < g(b), \quad b - \delta < x < b$$

therefore $c \neq a$ and $c \neq b$. Hence a < c < b, and therefore g'(c) = 0 since c is a min in D_g^0 , that is $f'(c) \neq \mu$

The proof when $f'(b) < \mu < f'(a)$ is obtained when you apply the above argument to -f.

4 Mean Value Theorem

Theorem 4.1: Cauchy's Mean Value Theorem

If f and g are continuous on a closed interval [a, b] nd differentiable on the open interval (a, b), then:

$$[g(b) - g(a)]f'(c) = [f(b) - f(a)]g'(c)$$

for some $c \in (a, b)$

Proof. Let h(x) = (g(b) - g(a))f(x) - (f(b) - f(a))g(x), then we can say h is continuous on [a, b] and differentiable on (a, b). Therefore Rolle's Theorem implies that h'(c) = 0 for some $c \in (a, b)$, that is:

$$h'(c) = (g(b) - g(a))f'(c) - (f(b) - f(a))g'(c) = 0$$

Theorem 4.2: Mean Value Theorem

If f is continuous on the closed interval [a, b] and differentiable on (a, b), then

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

for some $c \in (a, b)$

Proof. Apply Cauchy MVT and let g(x) = x

4.1 Consequences

Theorem 4.3

If f'(x) = 0 for all $x \in (a, b)$ then f is constant on (a b).

Theorem 4.4

If f' exists and does not change sign on (a, b), then f is monotonic on (a, b)

Theorem 4.5: Lipschitz Continuity

If $|f'(x)| \le M$ $\forall x \in (a, b)$, then |f(x) - f(x')| < M|x - x'| for all $x, x' \in (a, b)$.