

Renata Carolina Castro Olmos S22019640

Luis Gerardo León Salamanca S22002209

Daniel Gutiérrez Contreras S22019646

José Alexis González Chávez S22002189

Othon Lozano Vidal S22019632

Sistemas Operativos

M.C. Josué Shinoe Munguía Tiburcio

Proyecto Final
Mini Sistema Operativo Académico

Veracruz, 30 de mayo de 2025

ÍNDICE

1. NOMBRE Y LOGO DEL SISTEMA OPERATIVO		
1.1 Nombre del Sistema Operativo	3	
1.2 Significado y Justificación del Nombre	3	
1.3 Versión Inicial	3	
1.4 Logo del Sistema Operativo	3	
2. TIPO DE SISTEMA OPERATIVO	4	
2.1 Clasificación Principal	4	
2.2 Características Específicas	4	
2.3 Comparación con Tipos de SO Reales	5	
2.4 Justificación del Tipo Seleccionado	5	
3. DIAGRAMA DE ARQUITECTURA GENERAL	6	
3.1 Arquitectura Global del Sistema	6	
3.2 Componentes Detallados del Sistema	7	
3.3 Flujo de Datos del Sistema	8	
4. JUSTIFICACIÓN DEL DISEÑO Y ENFOQUE PEDAGÓGICO	9	
4.1 Objetivos Educativos Específicos	9	
4.2 Enfoque Pedagógico Aplicado	9	
5. BITÁCORA DE USO DE IA	11	
5.1 Información General del Uso de IA	11	
5.2 Registro Detallado de Consultas	11	

1. NOMBRE Y LOGO DEL SISTEMA OPERATIVO

1.1 Nombre del Sistema Operativo

QueSO

1.2 Significado y Justificación del Nombre

- "Que": Representa la pregunta "Qué" importante en el educativo del sistema
- "SO": Acrónimo de Sistema Operativo
- Combinación: Refleja un juego de palabras al igual el uso de la palabra "qué" la cual tiene relevancia en el contexto académico ya que permite establecer objetivos claros en el aprendizaje y asegurar la adquisición de saberes significativos

1.3 Versión Inicial

QueSO v1.0 "Pioneer"

- Nombre clave "Pioneer" simboliza el primer paso en el desarrollo de sistemas operativos educativos

1.4 Logo del Sistema Operativo

2. TIPO DE SISTEMA OPERATIVO

2.1 Clasificación Principal

Sistema Operativo Educativo Simulado

2.2 Características Específicas

2.2.1 Por su Propósito

- Tipo: Sistema Educativo/Académico
- Objetivo: Demostración y aprendizaje de conceptos fundamentales de SO
- Alcance: Prototipo funcional para fines pedagógicos

2.2.2 Por su Estructura

- Arquitectura: Monolítica Simplificada
- Núcleo: Integrado con módulos bien definidos
- Modularidad: Alta separación de responsabilidades

2.2.3 Por el Número de Usuarios

- Tipo: Multiusuario Básico
- Usuarios soportados: Administrador e Invitado
- Gestión: Sistema de autenticación con roles diferenciados

2.2.4 Por el Número de Procesos

- Tipo: Multitarea Simulada
- Planificación: Algoritmos educativos (FIFO, Round Robin, Prioridades)
- Concurrencia: Simulación de ejecución paralela

2.2.5 Por la Interfaz de Usuario

- Tipo: Híbrido (CLI + GUI)
- Terminal: Línea de comandos funcional
- Gráfica: Interfaz visual para monitoreo y gestión

2.2.6 Por el Manejo de Recursos

- Memoria: Gestión simulada con paginación básica

- Almacenamiento: Sistema de archivos jerárquico virtual
- CPU: Planificación por tiempo compartido simulado

2.3 Comparación con Tipos de SO Reales

Caracteristicas	EduOS	Windows	Linux	macOS
Proposito	Educativo	Comercial	Libre/Comercial	Comercial
Arquitectura	Monolitica Simple	Híbrida	Mololítica	Híbrida
Usuarios	Básico (2 tipos)	Completo	Completo	Completo
Hardware	Simulado	Real	Real	Real
Complejidad	Baja (educativa)	Alta	Alta	Alta
Portabilidad	Java (multiplataforma)	x86/x64	Múltiple	Apple Silicon / Intel

2.4 Justificación del Tipo Seleccionado

2.4.1 Ventajas del Enfoque Educativo

- 1. Simplicidad Conceptual: Permite enfocarse en fundamentos sin complejidades innecesarias
- 2. Transparencia: Todos los procesos internos son visibles y explicables
- 3. Modificabilidad: Fácil adaptación para diferentes escenarios educativos
- 4. Seguridad: Entorno controlado sin riesgos para el sistema host

2.4.2 Beneficios de la Simulación

- 1. Control Total: Manipulación completa del comportamiento del sistema
- 2. Depuración: Capacidad de pausar, analizar y modificar estados
- 3. Experimentación: Prueba de diferentes algoritmos y configuraciones
- 4. Reproducibilidad: Resultados consistentes para evaluación académica

3. DIAGRAMA	DE ARQUI	TECTURA	GENERAL

3.1 Arquitectura Global del Sistema

3.2 Componentes Detallados del Sistema

3.2.1 Capa de Interfaz de Usuario

- // Componentes principales:
- InterfazUsuario.java // CLI principal
- MonitorSistema.java // GUI de monitoreo
- GestorComandos.java // Procesador de comandos
- VisualizadorProcesos.java // GUI de procesos

3.2.2 Núcleo del Sistema

- // Gestión de Procesos:
- GestorProcesos.java // Controlador principal
- Proceso.java // Estructura de proceso
- Planificador.java // Algoritmos de planificación
- EstadosProceso.java // Máquina de estados
- // Gestión de Memoria:
- GestorMemoria.java // Controlador de memoria
- BloqueMemoria.java // Estructura de bloques
- Paginador.java // Sistema de paginación
- MemoriaVirtual.java // Gestión virtual
- // Sistema de E/S y Archivos:
- SistemaArchivos.java // Controlador de archivos
- DirectorioSimulado.java // Estructura de directorios
- ArchivoSimulado.java // Estructura de archivos
- GestorES.java // Operaciones E/S

3.2.3 Capa de Servicios

- // Seguridad:
- SeguridadManager.java // Controlador seguridad
- Usuario.java // Estructura de usuario
- ControlAcceso.java // Permisos y autorización
- Encriptador.java // Funciones criptográficas

```
// Comunicación:
- ComunicacionIP.java // IPC básico
- Semaforo.java
                        // Sincronización
- Cola.java
                      // Colas de mensajes
// Utilidades:

    Logger.java

                   // Sistema de logs

    Monitor.java

                       // Monitoreo de recursos
- Configuracion.java // Gestión de configuración
3.3 Flujo de Datos del Sistema
3.3.1 Flujo de Creación de Proceso
Usuario \rightarrow CLI \rightarrow Gestor Procesos \rightarrow Planificador \rightarrow Gestor Memoria \rightarrow Proceso \ Creado
Logger ← Monitor ← EstadosProceso ← MemoriaAsignada ← BloqueMemoria
3.3.2 Flujo de Operación de Archivo
Usuario \rightarrow Comando \rightarrow Sistema Archivos \rightarrow Directorio Simulado \rightarrow Archivo Simulado
  \downarrow
SeguridadManager → ControlAcceso → VerificarPermisos → Operación Autorizada
3.3.3 Flujo de Autenticación
Usuario \rightarrow Credenciales \rightarrow SeguridadManager \rightarrow Hash \rightarrow Validaci\'onBD \rightarrow SesionCreada
Logger \rightarrow AuditoriaSeguridad \rightarrow PermisosSistema \rightarrow AccesoAutorizado
```

4. JUSTIFICACIÓN DEL DISEÑO Y ENFOQUE PEDAGÓGICO

4.1 Objetivos Educativos Específicos

- 4.1.1 Objetivos de Aprendizaje Conceptual
- 1. Comprensión de Componentes
 - Identificar y explicar los módulos principales de un SO
 - Entender las interacciones entre gestión de procesos, memoria y archivos
 - Reconocer la importancia de la seguridad en sistemas operativos
- 2. Comprensión de Procesos
 - Visualizar estados de procesos y transiciones
 - Comparar algoritmos de planificación
 - Analizar el impacto de diferentes políticas de gestión
- 3. Comprensión de Memoria
 - Entender técnicas de asignación de memoria
 - Visualizar fragmentación y compactación
 - Experimentar con memoria virtual y paginación

4.1.2 Objetivos de Aprendizaje Procedimental

- 1. Implementación de Algoritmos
 - Codificar planificadores de procesos
 - Implementar algoritmos de gestión de memoria
 - Desarrollar sistemas de archivos básicos
- 2. Resolución de Problemas
 - Identificar y resolver deadlocks
 - Optimizar rendimiento del sistema
 - Depurar problemas de concurrencia

4.2 Enfoque Pedagógico Aplicado

4.2.1 Constructivismo Educativo

Principio: Los estudiantes construyen conocimiento a través de la experiencia práctica.

Aplicación en QueSO:

- Construcción gradual: Cada fase añade complejidad al sistema base
- Experimentación activa: Posibilidad de modificar parámetros y observar efectos

5. BITÁCORA DE USO DE IA

5.1 Información General del Uso de IA

Herramienta de lA seleccionada: Claude (Anthropic)

Versión: Claude Sonnet 4

Período de uso: 16 de junio de 2025

Responsable del registro: Othon Lozano Vidal

5.2 Registro Detallado de Consultas

5.2.1 Consulta 1: Arquitectura del Sistema

Pregunta realizada:

"Necesito diseñar la arquitectura de un sistema operativo educativo en Java. ¿Cuáles son los componentes principales que debería incluir y cómo estructurarlos de manera modular?"

Respuesta obtenida (resumen):

- Sugerencia de arquitectura en capas
- Identificación de módulos principales: procesos, memoria, archivos, seguridad
- Recomendación de patrones de diseño como Singleton y Observer
- Estructura de clases en Java

5.2.2 Consulta 2: Enfoque Pedagógico

Pregunta realizada:

"¿Qué enfoques pedagógicos son más efectivos para enseñar sistemas operativos a través de un proyecto práctico? ¿Cómo puedo justificar educativamente el diseño de mi sistema?"

Respuesta obtenida (resumen):

- Recomendación de constructivismo y ABP
- Sugerencias sobre progresión de complejidad
- Ideas para evaluación formativa y sumativa
- Estrategias de aprendizaje visual

5.2.3 Consulta 3: Implementación Técnica

Pregunta realizada:

"¿Cómo puedo implementar un simulador de gestión de procesos en Java que sea educativo pero funcional? Necesito ejemplos de código para estructuras de datos y algoritmos básicos."

Respuesta obtenida (resumen):

- Estructura de clases para procesos
- Implementación de estados de proceso
- Algoritmos básicos de planificación
- Patrones para gestión de memoria

5.2.4 Consulta 4: Documentación y Diagramas

Pregunta realizada:

"¿Cómo puedo crear diagramas de arquitectura claros y documentación técnica efectiva para un proyecto académico de sistemas operativos?"

Respuesta obtenida (resumen):

- Formatos de diagramas de arquitectura
- Estructura de documentación técnica
- Mejores prácticas para documentación académica
- Herramientas recomendadas

Link de la Conversación Básica:

https://claude.ai/share/e346e9d9-c8f1-4ad4-9336-66505303a147