Andrea Madotto

Email: andreamad8@gmail.com Tel: +39 340 3119572Website: andreamad8.github.io Add: Pisa, Italy

EDUCATION University of Pisa, Italy

> M.Sc. in Computer Science, 2015 - now Current GPA: 30/30

Hong Kong Baptist University, Hong Kong

M.Sc. in Advanced Information Systems, 2014 - 2015 GPA: 3.86/4

University of Perugia, Italy

B.Sc. in Computer Science, 2011 - 2014 Final mark: 110/110 (Honours)

EXPERIENCE Adjunct Lecturer

UniPi

Jan 2017 - Mar 2017

Pisa, IT

Taught Databases course in the Specialization School in Medical Physics of Pisa Uni-

- developed course material, including lab exercises and class slides
- created writing assignments
- evaluated student course work, as well as grading the final project

Research Assistant **HKBU**

Aug 2015 - Feb 2016 Hong Kong, HK

Conducted research on algorithms to predict disease spreading in Complex Networks.

- analysed Optimization Algorithms and basic Statistical Learning Theory
- designed and implemented novel algorithms for middle size Complex Networks
- deployed several data visualizations
- teacher assistant for several courses, mainly lab classes and paper grading

PUBLICATIONS Madotto, A and Liu, J. Super-Spreader Identification Using Meta-Centrality. Nature Scientific Report 6, 38994; DOI: 10.1038/srep38994 (2016).

> Chiancone, A. and Madotto, A., 2015. A Multistrain Bacterial Model for Link Prediction. In Proc. 11th International Conference on Natural Computation (ICNC'15).DOI: 10.1109/ICNC.2015.7378141. (Co-author and slides presentation)

SKILLS

Theoretical Background: Algorithms • Statistical Learning • Optimization Methods • Natural Language Processing • Machine Learning

Programming: Python (Scipy, Numpy, Theano, Keras, Pandas, SciKit learn) • C++

• LATEX• JavaScript • Matlab (basic) • Java (basic)

Data bases: SQL • MySQL • PostgreSQL • Xquery • neo4j Operating Systems: Unix • Linux • Windows • Mac OSX.

Languages: Italian (mother tongue) • English (IELTS 6.5) • Chinese (basic)

PROJECTS

SemEval: A group project where we designed and implemented a model for Community Question Answering. This model has been used for SemEval-2017 Task 3.

- proposed a semantic decomposition of a dependency parse tree
- designed and implemented a Recurrent Neural Network model based on such decomposition
- wrote and submitted a description paper to SemEval-2017 conference

Neural Network: An implementation of a Feed-Forward Neural Network using Theano.

- implemented Momentum and L2 regularization
- benchmarked using MONKs datasets, and compared to a Keras implementation, a linear model and a SVM/SVR (using scikit-learn)
- implemented a K-cross fold validation

Jacobi Method: A parallel version of the Jacobi Iterative Method.

- implemented three versions of the code using C++: sequential, Pthread based, and using FastFlow library
- evaluated code version using different matrix sizes, and measures (e.g., Completion Time, Scalability, Speed up, and Efficiency).
- conducted experiments using a Xeon Phi coprocessor (60 cores 4 contexts)

PythonITA: A fork of the Cpython repository to use Italian keywords as native constructors.

- modified the language interpreter, such as: the EBNF grammar (i.e. adding new production), the AST, and the built-in functions.
- modified the IDLE to highlight and predict the new added words.

Dynamic HTML render and a Recursive Descent Parser: Implementation of a Web Components library similar to React.JS.

- implemented an efficient representation of a Virtual DOM
- optimised the DOM element render in the HTML page.
- implemented a recursive descent parser to express components in JSX.

TagCloud Sentimental Analysis: A data visualization challenge organised by FWD Hong Kong.

- designed a Tagcloud visualization based on Google Books Ngram.
- showed the word size based on chronological relevance, and displayed the words polarity (positive or negative sentiments) with colours.

Others have a look on my personal website and my GitHub.

THESIS

Facility location problem in a bi-dimensional mesh: Bachelor degree thesis: finding the optimal position of one or more facilities in a bi-dimensional mesh, using the Manhattan distance.

- found the optimal position of a maximum of two facilities with a closed formula
- placed three facilities using two heuristic algorithms: one finds an almost optimal solution with a quadratic cost, and the other one finds a good approximation with a linear cost

Human Mobility and Disease Spread Simulation: Master degree final project: a disease spread simulation based on SIR model.

- implemented a computational model for contact social network.
- experimented with countermeasures to control the propagation, with a focus on the individual vaccination decision.
- simulated human mobility by flights to analyse how diseases spread in the world.

VOLUNTEER ACTIVITIES

Mentor

CODERDOJO

Feb 2016 - Present

Pisa, IT

A volunteering activity to teach programming languages to children (mostly Scratch and Python). Pisa CoderDojo is part of the CoderDojo international initiative. I was also one of the organizers of the first Toscana DojoCon held in Pisa.

AWARDS

2015 HKBU M.Sc. AIS Best student award, ranked 1st of 100 students

2014 FWD Challenge Award

2014 HKBU M.sc. Fellowship Award

2014 UNIPG B.Sc. First Class Honor Award