On the complete integrability of the geodesic flow on pseudo-*H*-type Lie groups

Wolfram Bauer

Joint work with Daisuke Tarama, Kyoto

Leibniz Universität. Hannover

Workshop - University of the Ryukyus 15.12.2018

1. Pseudo-*H*-type Lie groups

- 1. Pseudo-*H*-type Lie groups
- 2. Complete integrability of Pseudo-*H* type Lie groups

- 1. Pseudo-*H*-type Lie groups
- 2. Complete integrability of Pseudo-*H* type Lie groups
- 3. Explicit first integrals via the isometry group

- 1. Pseudo-*H*-type Lie groups
- 2. Complete integrability of Pseudo-H type Lie groups
- 3. Explicit first integrals via the isometry group
- 4. First integrals on compact nilmanifolds

- 1. Pseudo-*H*-type Lie groups
- 2. Complete integrability of Pseudo-H type Lie groups
- 3. Explicit first integrals via the isometry group
- 4. First integrals on compact nilmanifolds
- 5. Complete integrability versus isospectrality

Let $r, s \in \mathbb{N}_0$ and consider $\mathbb{R}^{r,s} = \mathbb{R}^{r+s}$ with bilinear form

$$\langle x, y \rangle_{r,s} = \sum_{i=1}^r x_i y_i - \sum_{j=1}^s x_{r+j} y_{r+j}.$$

Let $r, s \in \mathbb{N}_0$ and consider $\mathbb{R}^{r,s} = \mathbb{R}^{r+s}$ with bilinear form

$$\langle x, y \rangle_{r,s} = \sum_{i=1}^r x_i y_i - \sum_{j=1}^s x_{r+j} y_{r+j}.$$

Consider $q_{r,s}(x) := \langle x, x \rangle_{r,s}$ and define

 $C\ell_{r,s} := Clifford \ algebra \ generated \ by \ (\mathbb{R}^{r,s}, q_{r,s}).$

Let $r, s \in \mathbb{N}_0$ and consider $\mathbb{R}^{r,s} = \mathbb{R}^{r+s}$ with bilinear form

$$\langle x,y\rangle_{r,s}=\sum_{i=1}^r x_iy_i-\sum_{j=1}^s x_{r+j}y_{r+j}.$$

Consider $q_{r,s}(x) := \langle x, x \rangle_{r,s}$ and define

 $C\ell_{r,s} := Clifford$ algebra generated by $(\mathbb{R}^{r,s}, q_{r,s})$.

Clifford module

Let V be a Clifford module, i.e. V is a real vector space with Clifford module action

$$J: C\ell_{r,s} \times V \to V: J_z = J(z,\cdot): V \to V.$$

Let $r, s \in \mathbb{N}_0$ and consider $\mathbb{R}^{r,s} = \mathbb{R}^{r+s}$ with bilinear form

$$\langle x,y\rangle_{r,s}=\sum_{i=1}^r x_iy_i-\sum_{j=1}^s x_{r+j}y_{r+j}.$$

Consider $q_{r,s}(x) := \langle x, x \rangle_{r,s}$ and define

 $C\ell_{r,s} := Clifford$ algebra generated by $(\mathbb{R}^{r,s}, q_{r,s})$.

Clifford module

Let V be a Clifford module, i.e. V is a real vector space with Clifford module action

$$J: C\ell_{r,s} \times V \to V: J_z = J(z,\cdot): V \to V.$$

This means: $J_z J_{z'} + J_{z'} J_z = -2\langle z, z' \rangle_{r,s} \text{Id for all } z, z' \in \mathbb{R}^{r,s}$.

Assume: V carries a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_V$

Assume: V carries a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_V$

Definition

We call the module $(V, \langle \cdot, \cdot \rangle_V)$ admissible if

$$\langle J_z X, J_z Y \rangle_V = \langle z, z \rangle_{r,s} \langle X, Y \rangle_V$$

$$\langle J_z X, Y \rangle_V = -\langle X, J_z Y \rangle_V$$

$$J_z^2 = -\langle z, z \rangle_{r,s} \mathsf{Id}.$$

Assume: V carries a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_V$

Definition

We call the module $(V, \langle \cdot, \cdot \rangle_V)$ admissible if

$$\langle J_z X, J_z Y \rangle_V = \langle z, z \rangle_{r,s} \langle X, Y \rangle_V$$

$$\langle J_z X, Y \rangle_V = -\langle X, J_z Y \rangle_V$$

$$J_z^2 = -\langle z, z \rangle_{r,s} \text{Id.}$$

Note: the conditions are **not** independent.

Assume: V carries a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle_V$

Definition

We call the module $(V, \langle \cdot, \cdot \rangle_V)$ admissible if

$$\langle J_z X, J_z Y \rangle_V = \langle z, z \rangle_{r,s} \langle X, Y \rangle_V$$

$$\langle J_z X, Y \rangle_V = -\langle X, J_z Y \rangle_V$$

$$J_z^2 = -\langle z, z \rangle_{r,s} \text{Id.}$$

Note: the conditions are not independent.

Lemma

If s>0, then $(V,\langle\cdot,\cdot\rangle_V)$ has positive and negative definite sub-spaces of the same dimension. In particular, dim V is even.

Define a Lie bracket $[\cdot,\cdot]:V\times V\to\mathbb{R}^{r,s}$ through the relations:

$$\langle J_z X, Y \rangle_V = \langle z, [X, Y] \rangle_{r,s}, \quad z \in \mathbb{R}^{r,s}, X, Y \in V.$$

Define a Lie bracket $[\cdot,\cdot]:V\times V\to\mathbb{R}^{r,s}$ through the relations:

$$\langle J_z X, Y \rangle_V = \langle z, [X, Y] \rangle_{r,s}, \quad z \in \mathbb{R}^{r,s}, X, Y \in V.$$

Definition

Let V be an admissible $C\ell_{r,s}$ - module. With the bracket $[\cdot,\cdot]$ and the center $\mathbb{R}^{r,s}$ the sum

$$\mathcal{N}_{r,s} := V \oplus \mathbb{R}^{r,s}$$

defines a step-2 nilpotent Lie algebra called pseudo-*H*-type algebra.

Define a Lie bracket $[\cdot,\cdot]:V\times V\to\mathbb{R}^{r,s}$ through the relations:

$$\langle J_z X, Y \rangle_V = \langle z, [X, Y] \rangle_{r,s}, \quad z \in \mathbb{R}^{r,s}, X, Y \in V.$$

Definition

Let V be an admissible $C\ell_{r,s}$ - module. With the bracket $[\cdot,\cdot]$ and the center $\mathbb{R}^{r,s}$ the sum

$$\mathcal{N}_{r,s} := V \oplus \mathbb{R}^{r,s}$$

defines a step-2 nilpotent Lie algebra called pseudo-*H*-type algebra.

A. Kaplan, Fundamental solution for a class of hypo-elliptic PDE generated by composition of quadric forms, Trans. Amer. Math. Soc. 258 (1980) no. 1. 147-153.

Define a Lie bracket $[\cdot, \cdot]: V \times V \to \mathbb{R}^{r,s}$ through the relations:

$$\langle J_z X, Y \rangle_V = \langle z, [X, Y] \rangle_{r,s}, \quad z \in \mathbb{R}^{r,s}, X, Y \in V.$$

Definition

Let V be an admissible $C\ell_{r,s}$ - module. With the bracket $[\cdot,\cdot]$ and the center $\mathbb{R}^{r,s}$ the sum

$$\mathcal{N}_{r,s} := V \oplus \mathbb{R}^{r,s}$$

defines a step-2 nilpotent Lie algebra called pseudo-H-type algebra.

A. Kaplan, Fundamental solution for a class of hypo-elliptic PDE generated by composition of quadric forms, Trans. Amer. Math. Soc. 258 (1980) no. 1. 147-153.

P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras, Ann. Mat. Pura Appl. 178 (4) (2000), 1-31.

The following is known:

- there is a connected, simply connected Lie group $G_{r,s}$ with Lie algebra $\mathcal{N}_{r,s}$ diffeomorphic to $\mathcal{N}_{r,s}$ (via the exp), we call it "Pseudo-H-type group".
 - = generalization of Heisenberg or Heisenberg-type algebras.

The following is known:

- there is a connected, simply connected Lie group $G_{r,s}$ with Lie algebra $\mathcal{N}_{r,s}$ diffeomorphic to $\mathcal{N}_{r,s}$ (via the exp), we call it "Pseudo-H-type group".
 - = generalization of Heisenberg or Heisenberg-type algebras.
- existence of a lattice in a general pseudo-*H*-type group,

The following is known:

- there is a connected, simply connected Lie group $G_{r,s}$ with Lie algebra $\mathcal{N}_{r,s}$ diffeomorphic to $\mathcal{N}_{r,s}$ (via the exp), we call it "Pseudo-H-type group".
 - = generalization of Heisenberg or Heisenberg-type algebras.
- existence of a lattice in a general pseudo-H-type group,

Ex.: The Heisenberg group $\mathbb{H}_{2n+1} = G_{0,1}$ of dimension 2n+1 can be represented as a pseudo-H-type group.

The following is known:

- there is a connected, simply connected Lie group $G_{r,s}$ with Lie algebra $\mathcal{N}_{r,s}$ diffeomorphic to $\mathcal{N}_{r,s}$ (via the exp), we call it "Pseudo-H-type group".
 - = generalization of Heisenberg or Heisenberg-type algebras.
- existence of a lattice in a general pseudo-H-type group,

Ex.: The Heisenberg group $\mathbb{H}_{2n+1} = G_{0,1}$ of dimension 2n+1 can be represented as a pseudo-H-type group.

K. Furutani, I. Markina, *Complete classification of pseudo-H-type Lie algebras: I and II*, **Part I:** Geom. Dedicata, 190, 23-51, (2017).

The following is known:

- there is a connected, simply connected Lie group $G_{r,s}$ with Lie algebra $\mathcal{N}_{r,s}$ diffeomorphic to $\mathcal{N}_{r,s}$ (via the exp), we call it "Pseudo-H-type group".
 - = generalization of Heisenberg or Heisenberg-type algebras.
- existence of a lattice in a general pseudo-H-type group,

Ex.: The Heisenberg group $\mathbb{H}_{2n+1} = G_{0,1}$ of dimension 2n+1 can be represented as a pseudo-H-type group.

K. Furutani, I. Markina, *Complete classification of pseudo-H-type Lie algebras: I and II*, **Part I:** Geom. Dedicata, 190, 23-51, (2017).

K. Furutani, I. Markina, *Existence of lattice on general H-type groups*, J. Lie Theory 24, 979-1011, (2014).

Complete integrability in the sense of Liouville

Let (G,*) be a Lie group with Lie algebra \mathfrak{g} . Fix $\langle \cdot,\cdot \rangle := \textit{non-degenerate scalar product on } \mathfrak{g}, \qquad (+)$

which induces a left-invariant pseudo-Riemannian metric on G.

Complete integrability in the sense of Liouville

Let (G,*) be a Lie group with Lie algebra \mathfrak{g} . Fix

$$\langle \cdot, \cdot \rangle :=$$
 non-degenerate scalar product on \mathfrak{g} , $(+)$

which induces a left-invariant pseudo-Riemannian metric on G.

Induced Identifications

$$T^*G \cong G \times \mathfrak{g}^* \stackrel{(+)}{\cong} G \times \mathfrak{g} \cong TG$$
 (Lie groups).

with product pseudo-Riemannian metric on $G \times \mathfrak{g}$. Moreover,

$$T(T^*G) \cong T(TG) \cong T(G \times \mathfrak{g}) \cong \mathfrak{g} \times \mathfrak{g}.$$

Complete integrability in the sense of Liouville

Let (G, *) be a Lie group with Lie algebra \mathfrak{g} . Fix

$$\langle \cdot, \cdot \rangle := non-degenerate scalar product on \mathfrak{g},$$
 (+)

which induces a left-invariant pseudo-Riemannian metric on G.

Induced Identifications

$$T^*G \cong G \times \mathfrak{g}^* \stackrel{(+)}{\cong} G \times \mathfrak{g} \cong TG$$
 (Lie groups).

with product pseudo-Riemannian metric on $G \times \mathfrak{g}$. Moreover,

$$T(T^*G) \cong T(TG) \cong T(G \times \mathfrak{g}) \cong \mathfrak{g} \times \mathfrak{g}.$$

In order to simplify calculations we will:

• transfer the symplectic structure and Poisson bracket of T^*G to the Lie group $TG \cong G \times \mathfrak{g}$.

Let $(p, Y) \in TG \cong G \times \mathfrak{g}$ and $(U_1, V_1), (U_2, V_2) \in T_{(p, Y)}(G \times \mathfrak{g})$.

Symplectic form Ω on $T^*G\cong TG\cong G imes \mathfrak{g}$

$$\Omega_{(\rho,Y)}\Big(\big(U_1,V_1\big),\big(U_2,V_2\big)\Big)=\big\langle U_1,V_2\big\rangle-\big\langle V_1,U_2\big\rangle-\big\langle Y,[U_1,U_2]\big\rangle.$$

Let $(p, Y) \in TG \cong G \times \mathfrak{g}$ and $(U_1, V_1), (U_2, V_2) \in T_{(p, Y)}(G \times \mathfrak{g})$.

Symplectic form Ω on $T^*G\cong TG\cong G imes \mathfrak{g}$

$$\Omega_{(\rho,Y)}\Big(\big(U_1,V_1\big),\big(U_2,V_2\big)\Big)=\big\langle U_1,V_2\big\rangle-\big\langle V_1,U_2\big\rangle-\big\langle Y,[U_1,U_2]\big\rangle.$$

Let $f: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ be smooth and $(p, Y) \in G \times \mathfrak{g}$. The Hamiltonian vector field X_f of f on TG implicitly is defined via

$$df_{(p,Y)}(U,V) = \Omega_{(p,Y)}(X_f(p,Y),(U,V)).$$

Let
$$(p, Y) \in TG \cong G \times \mathfrak{g}$$
 and $(U_1, V_1), (U_2, V_2) \in T_{(p, Y)}(G \times \mathfrak{g})$.

Symplectic form Ω on $T^*G\cong TG\cong G imes \mathfrak{g}$

$$\Omega_{(p,Y)}\Big(\big(U_1,V_1\big),\big(U_2,V_2\big)\Big)=\big\langle U_1,V_2\big\rangle-\big\langle V_1,U_2\big\rangle-\big\langle Y,[U_1,U_2]\big\rangle.$$

Let $f: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ be smooth and $(p, Y) \in G \times \mathfrak{g}$. The Hamiltonian vector field X_f of f on TG implicitly is defined via

$$df_{(p,Y)}(U,V) = \Omega_{(p,Y)}(X_f(p,Y),(U,V)).$$

Hamiltonian vector field

More explicitly with $grad_{(p,Y)}f = (U, V)$:

$$X_f(p,Y) = (V, \operatorname{\sf ad}^t(V)(Y) - U) \in \mathfrak{g} imes \mathfrak{g} \cong T_{(p,Y)}(G imes \mathfrak{g}).$$

Hamiltonian

The Hamiltonian for the geodesic flow w.r.t. the left-invariant pseudo-Riemannian metric is given by

$$H: T^*G \cong TG \cong G \times \mathfrak{g} \to \mathbb{R}: H(p, Y) := \frac{1}{2} \langle Y, Y \rangle.$$

Hamiltonian

The Hamiltonian for the geodesic flow w.r.t. the left-invariant pseudo-Riemannian metric is given by

$$H: T^*G \cong TG \cong G \times \mathfrak{g} \to \mathbb{R}: H(p, Y) := \frac{1}{2} \langle Y, Y \rangle.$$

Lemma:

The Hamiltonian vector field to H at $(p, Y) \in T_pG$ has the form:

$$X_H(p, Y) = (Y, \operatorname{ad}^t(Y)(Y)) \in \mathfrak{g} \times \mathfrak{g}.$$

Hamiltonian

The Hamiltonian for the geodesic flow w.r.t. the left-invariant pseudo-Riemannian metric is given by

$$H: T^*G \cong TG \cong G \times \mathfrak{g} \to \mathbb{R}: H(p, Y) := \frac{1}{2} \langle Y, Y \rangle.$$

Lemma:

The Hamiltonian vector field to H at $(p, Y) \in T_pG$ has the form:

$$X_H(p,Y) = (Y,\operatorname{\sf ad}^t(Y)(Y)) \in \mathfrak{g} imes \mathfrak{g}.$$

Proof: Follows from the previous formula with U = 0 since:

$$\operatorname{grad}_{(p,Y)}H=(0,Y).$$

Take 2 smooth functions $f,g:TG\cong G imes \mathfrak{g} o \mathbb{R}$ and $p\in G$ with

Identifications and translations:

Take 2 smooth functions $f,g:TG\cong G\times \mathfrak{g}\to \mathbb{R}$ and $p\in G$ with

$$ext{grad } f_{(p,Y)} = (U_1,V_1) \in \mathfrak{g} imes \mathfrak{g} \cong T_{(p,Y)}(TG) ext{ and }$$
 $ext{grad } g_{(p,Y)} = (U_2,V_2) \in \mathfrak{g} imes \mathfrak{g}.$

Poisson bracket on T^*G

The Poisson bracket $\{f,g\} = \Omega(X_f,X_g)$ of f and g is given by:

$$\{f,g\}(p,Y) = \langle V_2, U_1 \rangle - \langle V_1, U_2 \rangle + \langle Y, [V_2, V_1] \rangle.$$

Identifications and translations:

Take 2 smooth functions $f, g : TG \cong G \times \mathfrak{g} \to \mathbb{R}$ and $p \in G$ with

$$\begin{array}{ll} \text{grad} \ \textit{f}_{(p,Y)} = (\textit{U}_1,\textit{V}_1) \in \mathfrak{g} \times \mathfrak{g} \cong \textit{T}_{(p,Y)}(\textit{TG}) \quad \textit{and} \quad , \\ \\ \text{grad} \ \textit{g}_{(p,Y)} = (\textit{U}_2,\textit{V}_2) \in \mathfrak{g} \times \mathfrak{g}. \end{array}$$

Poisson bracket on T^*G

The Poisson bracket $\{f,g\} = \Omega(X_f,X_g)$ of f and g is given by:

$$\{f,g\}(p,Y) = \langle V_2, U_1 \rangle - \langle V_1, U_2 \rangle + \langle Y, [V_2, V_1] \rangle.$$

Remark:

If G is a pseudo-H-type group we can use the relation

$$\langle J_z X, Y \rangle_V = \langle z, [X, Y] \rangle_{r,s}, \quad z \in \mathbb{R}^{r,s}, X, Y \in V$$

and apply the algebraic properties of the Clifford representation J_z .

Definition

A function $f \in C^{\infty}(TG)$ is called first integral of the geodesic flow if f is constant along integral curves of X_H . Equivalently, if

$$\big\{f,H\big\}=0.$$

Definition

A function $f \in C^{\infty}(TG)$ is called first integral of the geodesic flow if f is constant along integral curves of X_H . Equivalently, if

$$\big\{f,H\big\}=0.$$

"The group G has completely integrable geodesic flow in the sense of Liouville,"

if there are first integrals $f_1, \dots, f_{\dim G}$ of the geodesic flow with:

Definition

A function $f \in C^{\infty}(TG)$ is called first integral of the geodesic flow if f is constant along integral curves of X_H . Equivalently, if

$$\big\{f,H\big\}=0.$$

"The group G has completely integrable geodesic flow in the sense of Liouville,"

if there are first integrals $f_1, \dots, f_{\dim G}$ of the geodesic flow with:

(a) $\{f_i, f_j\} = 0$ for all $i, j = 1, \dots, \dim G$, (Poisson commuting),

Definition

A function $f \in C^{\infty}(TG)$ is called first integral of the geodesic flow if f is constant along integral curves of X_H . Equivalently, if

$$\big\{f,H\big\}=0.$$

"The group G has completely integrable geodesic flow in the sense of Liouville,"

if there are first integrals $f_1, \dots, f_{\dim G}$ of the geodesic flow with:

- (a) $\{f_i, f_j\} = 0$ for all $i, j = 1, \dots, \dim G$, (Poisson commuting),
- (b) the differentials $df_1, \dots, df_{\dim G}$ are linear independent on an open dense subset of TG.

Complete integrability \implies Liouville-Arnold theorem.

Questions:

Questions:

Let $G_{r,s}$ be a pseudo-H-type Lie group^a.

1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?

Questions:

- 1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?
- 2. Does complete integrability of the geodesic flow on $G_{r,s}$ in the sense of Liouville hold?

Questions:

- 1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?
- 2. Does complete integrability of the geodesic flow on $G_{r,s}$ in the sense of Liouville hold?
- 3. Let $L \subset G_{r,s}$ denote a lattice. How can one obtain (Poisson commuting) first integrals of the geodesic flow on $L \setminus G_{r,s}$?

Questions:

- 1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?
- 2. Does complete integrability of the geodesic flow on $G_{r,s}$ in the sense of Liouville hold?
- 3. Let $L \subset G_{r,s}$ denote a lattice. How can one obtain (Poisson commuting) first integrals of the geodesic flow on $L \setminus G_{r,s}$?
- 4. In which cases (lattice and metric) can we prove complete integrability of $L \setminus G_{r,s}$ in the sense of Liouville?

Questions:

- 1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?
- 2. Does complete integrability of the geodesic flow on $G_{r,s}$ in the sense of Liouville hold?
- 3. Let $L \subset G_{r,s}$ denote a lattice. How can one obtain (Poisson commuting) first integrals of the geodesic flow on $L \setminus G_{r,s}$?
- 4. In which cases (lattice and metric) can we prove complete integrability of $L \setminus G_{r,s}$ in the sense of Liouville?
- 5. Can we even choose real analytic first integrals?

Questions:

- 1. How to obtain (Poisson commuting) first integrals of the geodesic flow explicitly?
- 2. Does complete integrability of the geodesic flow on $G_{r,s}$ in the sense of Liouville hold?
- 3. Let $L \subset G_{r,s}$ denote a lattice. How can one obtain (Poisson commuting) first integrals of the geodesic flow on $L \setminus G_{r,s}$?
- 4. In which cases (lattice and metric) can we prove complete integrability of $L \setminus G_{r,s}$ in the sense of Liouville?
- 5. Can we even choose real analytic first integrals?
- 6. Is the property of "complete integrability" encoded in the spectrum of the Laplace-Beltrami operator?

^ai.e the Lie algebra of $G_{r,s}$ is of pseudo-H type $\mathcal{N}_{r,s}$.

Complete integrability of the Heisenberg group G and Heisenberg manifolds $L \setminus G$ via real analytic first integrals is shown here:

Complete integrability of the Heisenberg group G and Heisenberg manifolds $L \setminus G$ via real analytic first integrals is shown here:

A. Koscard, G. P. Ovando, S. Reggiani, *On first integrals of the geodesic flow on Heisenberg nilmanifolds*, Diff. Geom. Appl. 49, 469-509, (2016).

Complete integrability of the Heisenberg group G and Heisenberg manifolds $L \setminus G$ via real analytic first integrals is shown here:

A. Koscard, G. P. Ovando, S. Reggiani, *On first integrals of the geodesic flow on Heisenberg nilmanifolds*, Diff. Geom. Appl. 49, 469-509, (2016).

If the Lie algebra is of Heisenberg-Reiter type, then the smooth complete integrability of $L \setminus G$ is shown here:

L. Butler, *Integrable geodesic flows with wild first integrals:* the case of two-step nilmanifolds Ergod. Th. & Dynam. Sys. 23, 771-797, (2003).

Complete integrability of the Heisenberg group G and Heisenberg manifolds $L \setminus G$ via real analytic first integrals is shown here:

A. Koscard, G. P. Ovando, S. Reggiani, *On first integrals of the geodesic flow on Heisenberg nilmanifolds*, Diff. Geom. Appl. 49, 469-509, (2016).

If the Lie algebra is of Heisenberg-Reiter type, then the smooth complete integrability of $L \setminus G$ is shown here:

L. Butler, *Integrable geodesic flows with wild first integrals:* the case of two-step nilmanifolds Ergod. Th. & Dynam. Sys. 23, 771-797, (2003).

Question 6. is addressed here:

Dorothee Schueth, *Integrability of geodesic flows and isospectrality of Riemannian manifolds*, Math. Z. 260, 595-613, (2008).

Complete integrability of the Heisenberg group G and Heisenberg manifolds $L \setminus G$ via real analytic first integrals is shown here:

A. Koscard, G. P. Ovando, S. Reggiani, *On first integrals of the geodesic flow on Heisenberg nilmanifolds*, Diff. Geom. Appl. 49, 469-509, (2016).

If the Lie algebra is of Heisenberg-Reiter type, then the smooth complete integrability of $L \setminus G$ is shown here:

L. Butler, *Integrable geodesic flows with wild first integrals:* the case of two-step nilmanifolds Ergod. Th. & Dynam. Sys. 23, 771-797, (2003).

Question 6. is addressed here:

Dorothee Schueth, *Integrability of geodesic flows and isospectrality of Riemannian manifolds*, Math. Z. 260, 595-613, (2008).

Related Problem:

7. Which pseudo-H-type algebras $\mathcal{N}_{r,s}$ are Heisenberg-Reiter type?

Assumptions:

Assumptions:

• *G* := connected, simply connected step 2 nilpotent Lie group.

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = center$.

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = center$.
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on *G*.

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie algebra of } G \text{ with } [\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = \text{center}.$
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on G.

Known fact

The exponential exp : $\mathfrak{g} \to G$ is a diffeomorphism. Identify $g \cong G$.

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = center$.
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on G.

Known fact

The exponential $\exp : \mathfrak{g} \to G$ is a diffeomorphism. Identify $g \cong G$.

Examples for *G***:**

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = center$.
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on G.

Known fact

The exponential exp : $\mathfrak{g} \to G$ is a diffeomorphism. Identify $g \cong G$.

Examples for G:

• $G = \mathbb{H}_{2n+1}$, Heisenberg group of dimension 2n + 1,

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = center$.
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on G.

Known fact

The exponential exp : $\mathfrak{g} \to G$ is a diffeomorphism. Identify $g \cong G$.

Examples for G:

- $G = \mathbb{H}_{2n+1}$, Heisenberg group of dimension 2n + 1,
- G = free nilpotent group of dimension $\frac{n(n+1)}{2}$,

Assumptions:

- *G* := connected, simply connected step 2 nilpotent Lie group.
- $\mathfrak{g} := \text{Lie}$ algebra of G with $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{z} = \textit{center}$.
- $\langle \cdot, \cdot \rangle$ = non-degenerate scalar product on G.

Known fact

The exponential exp : $\mathfrak{g} \to G$ is a diffeomorphism. Identify $g \cong G$.

Examples for G:

- $G = \mathbb{H}_{2n+1}$, Heisenberg group of dimension 2n + 1,
- $G = \text{free nilpotent group of dimension } \frac{n(n+1)}{2}$,
- $G = \text{Pseudo-}H\text{-type group }G_{r,s}$.

Construction of first integrals

Source of first integrals

Let X^* be a Killing vector field ^a on G. A first integral on TG is given by:

$$f_{X^*}(p, v) = \langle X^*, v \rangle_p$$
 where $v \in T_pG$.

^aVector field with flow being a family of continuous isometries **or** $\mathcal{L}_{X^*}g=0$.

Construction of first integrals

Source of first integrals

Let X^* be a Killing vector field ^a on G. A first integral on TG is given by:

$$f_{X^*}(p,v) = \left\langle X^*,v \right\rangle_p \quad \text{where} \quad v \in T_pG.$$

^aVector field with flow being a family of continuous isometries **or** $\mathcal{L}_{X^*}g=0$.

Let $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}$ the decomposition above. Chose orthonormal bases:

- $[X_1, \cdots, X_{2n}]$ of \mathfrak{v} .
- $[Z_1, \cdots, Z_k]$ of \mathfrak{z} .

Construction of first integrals

Source of first integrals

Let X^* be a Killing vector field ^a on G. A first integral on TG is given by:

$$f_{X^*}(p,v) = \langle X^*, v \rangle_p$$
 where $v \in T_pG$.

^aVector field with flow being a family of continuous isometries **or** $\mathcal{L}_{X^*}g=0$.

Let $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}$ the decomposition above. Chose orthonormal bases:

- $[X_1, \dots, X_{2n}]$ of \mathfrak{v} .
- $[Z_1, \cdots, Z_k]$ of \mathfrak{z} .

First integrals via left-multiplication on G: Let $f \in C^{\infty}(G)$:

$$\left[X_{j}^{(r)}f\right](p)=\frac{d}{dt}\Big|_{t=0}f\Big(\exp\big(-tX_{j}\big)*p\Big), \quad (j=1,\cdots,2n).$$

Some Properties

• We can regard the right invariant vector fields $X_j^{(r)}$ as Killing vector fields of the action of G on itself from the left.

Some Properties

- We can regard the right invariant vector fields $X_j^{(r)}$ as Killing vector fields of the action of G on itself from the left.
- We have the relation:

$$X_j^{(r)}(p) = -X_j - \sum_{\ell=1}^k \frac{\left\langle J_{Z_\ell} X_j, W_{\mathfrak{v}} \right\rangle}{\left\langle Z_\ell, Z_\ell \right\rangle} Z_\ell, \qquad p = \exp(W) \in G.$$

(identifying X_j and Z_ℓ with left-invariant vector fields on G)

Some Properties

- We can regard the right invariant vector fields $X_j^{(r)}$ as Killing vector fields of the action of G on itself from the left.
- We have the relation:

$$X_j^{(r)}(p) = -X_j - \sum_{\ell=1}^k \frac{\left\langle J_{Z_\ell} X_j, W_{\mathfrak{v}} \right\rangle}{\left\langle Z_\ell, Z_\ell \right\rangle} Z_\ell, \qquad p = \exp(W) \in G.$$

(identifying X_j and Z_ℓ with left-invariant vector fields on G)

Lemma

First integrals $F_j: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ for $j=1,\cdots,2n$ induced by the Killing vector fields $X_j^{(r)}$ with $p=\exp(W)$ are:

$$F_j(p, Y) = \left\langle X_j^{(r)}(p), Y \right\rangle = \left\langle X_j, J_{Y_3} W_{\mathfrak{v}} - Y \right\rangle.$$

How to produce Poisson commuting first integrals?

Observation

Let $(p(t), Y(t)) \subset TG \cong G \times \mathfrak{g}$ be a solution of the geodesic flow equation

$$\frac{d}{dt}(p,Y) = X_H(p,Y) = (Y,\underbrace{J_{Y_3}Y_{\mathfrak{v}}}_{\in\mathfrak{v}}).$$

In particular,

$$\frac{d}{dt}Y_{\mathfrak{v}}=J_{Y_{\mathfrak{z}}}Y_{\mathfrak{v}} \quad \text{and} \quad \frac{d}{dt}Y_{\mathfrak{z}}=0.$$

How to produce Poisson commuting first integrals?

Observation

Let $(p(t), Y(t)) \subset TG \cong G \times \mathfrak{g}$ be a solution of the geodesic flow equation

$$\frac{d}{dt}(p,Y)=X_H(p,Y)=\big(Y,\underbrace{J_{Y_{\mathfrak{J}}}Y_{\mathfrak{v}}}_{\in\mathfrak{v}}\big).$$

In particular,

$$\frac{d}{dt}Y_{\mathfrak{v}}=J_{Y_{\mathfrak{J}}}Y_{\mathfrak{v}}\quad\text{and}\quad \frac{d}{dt}Y_{\mathfrak{J}}=0.$$

Idea: We still have first integrals of the geod. flow if we replace in

$$F_j(p, Y) = \langle X_j, J_{Y_{\bar{\mathfrak{d}}}} W_{\mathfrak{v}} - Y \rangle$$

 X_i by arbitrary non-constant smooth functions $\alpha: \mathfrak{z} \to \mathfrak{v}$. Put

How to produce Poisson commuting first integrals?

Observation

Let $(p(t), Y(t)) \subset TG \cong G \times \mathfrak{g}$ be a solution of the geodesic flow equation

$$\frac{d}{dt}(p,Y)=X_H(p,Y)=\big(Y,\underbrace{J_{Y_{\mathfrak{z}}}Y_{\mathfrak{v}}}_{\in\mathfrak{v}}\big).$$

In particular,

$$\frac{d}{dt}Y_{\mathfrak{v}}=J_{Y_{\mathfrak{z}}}Y_{\mathfrak{v}}\quad\text{and}\quad \frac{d}{dt}Y_{\mathfrak{z}}=0.$$

Idea: We still have first integrals of the geod. flow if we replace in

$$F_j(p, Y) = \langle X_j, J_{Y_{\bar{\mathfrak{d}}}} W_{\mathfrak{v}} - Y \rangle$$

 X_i by arbitrary non-constant smooth functions $\alpha: \mathfrak{z} \to \mathfrak{v}$. Put

$$F_{\alpha}(p, Y) = \langle \alpha(Y_{\mathfrak{z}}), J_{Y_{\mathfrak{z}}} W_{\mathfrak{v}} - Y \rangle.$$

Let $\alpha, \beta : \mathfrak{z} \to \mathfrak{v}$ be smooth functions.

Let $\alpha, \beta : \mathfrak{z} \to \mathfrak{v}$ be smooth functions.

Lemma

If $f: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ is left- invariant and $(p, Y) \in G \times \mathfrak{g}$. Then

- (a) $\{F_{\alpha}, f\} = 0$.
- (b) $\{F_{\alpha}, F_{\beta}\} = \langle Y_{\mathfrak{z}}, [\alpha(Y_{\mathfrak{z}}), \beta(Y_{\mathfrak{z}})] \rangle$.

Let $\alpha, \beta : \mathfrak{z} \to \mathfrak{v}$ be smooth functions.

Lemma

If $f: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ is left- invariant and $(p, Y) \in G \times \mathfrak{g}$. Then

- (a) $\{F_{\alpha}, f\} = 0$.
- (b) $\{F_{\alpha}, F_{\beta}\} = \langle Y_{\mathfrak{z}}, [\alpha(Y_{\mathfrak{z}}), \beta(Y_{\mathfrak{z}})] \rangle$.

Idea: Choose smooth functions $\alpha, \beta: \mathfrak{z} \to \mathfrak{v}$ with

$$[\alpha(Y_3),\beta(Y_3)]=0.$$

Let $\alpha, \beta : \mathfrak{z} \to \mathfrak{v}$ be smooth functions.

Lemma

If $f: TG \cong G \times \mathfrak{g} \to \mathbb{R}$ is left- invariant and $(p, Y) \in G \times \mathfrak{g}$. Then

- (a) $\{F_{\alpha}, f\} = 0$.
- (b) $\{F_{\alpha}, F_{\beta}\} = \langle Y_{3}, [\alpha(Y_{3}), \beta(Y_{3})] \rangle$.

Idea: Choose smooth functions $\alpha, \beta: \mathfrak{z} \to \mathfrak{v}$ with

$$[\alpha(Y_3),\beta(Y_3)]=0.$$

Then, from the Lemma we have Poisson commuting first integrals which also commute with the Hamiltonian H.

$$\{F_{\alpha}, F_{\beta}\} = 0 = \{F_{\alpha}, H\}.$$

Complete integrability: H-type groups

Example: Let $[v_1, \dots, v_{2n}]$ be a basis of \mathfrak{v} in $\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z}$. Put

Complete integrability: *H*-type groups

Example: Let $[v_1, \dots, v_{2n}]$ be a basis of \mathfrak{v} in $\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z}$. Put

Complete integrability: *H*-type groups

Example: Let $[v_1, \dots, v_{2n}]$ be a basis of \mathfrak{v} in $\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z}$. Put

$$ilde{j}(Y_{\mathfrak{z}}) := T(Y_{\mathfrak{z}}) \circ J_{Y_{\mathfrak{z}}} \circ T^{-1}(Y_{\mathfrak{z}}) = \\ = \sqrt{\langle Y_{\mathfrak{z}}, Y_{\mathfrak{z}} \rangle} \left(egin{array}{cccc} 0 & 1 & & & & \\ -1 & 0 & & & & \\ & & 0 & 1 & & \\ & & & -1 & 0 & & \\ & & & & \ddots & & \\ & & & & & 0 & 1 \\ & & & & & -1 & 0 \end{array} \right).$$

Define functions $\alpha_i : \mathfrak{z} \to \mathfrak{v}$ for $i = 1, \dots, 2n$ by:

$$\alpha_i(Y_3) := T^{-1}(Y_3) v_i.$$

Complete integrability: the case $\mathfrak{g} = \mathcal{N}_{r,0}$.

Theorem, (W.-B., D. Tarama)

The geodesic flow on an H-type Lie group $G_{r,0}$ is completely integrable in the sense of Liouville.

A set of Poisson commuting functionally independent first integrals can be constructed explicitly.

Complete integrability: the case $\mathfrak{g} = \mathcal{N}_{r,0}$.

Theorem, (W.-B., D. Tarama)

The geodesic flow on an H-type Lie group $G_{r,0}$ is completely integrable in the sense of Liouville.

A set of Poisson commuting functionally independent first integrals can be constructed explicitly.

Remark:

This result generalizes to the pseudo-Riemannian geodesic flow on pseudo-H-type Lie groups.

s > 0: The map J_z can be non-invertible on v for some $z \neq 0$.

Let *G* be a step-two nilpotent Lie group and put:

Let G be a step-two nilpotent Lie group and put:

• I(G)= isometry group of G,

Let *G* be a step-two nilpotent Lie group and put:

- I(G)= isometry group of G,
- $K = isotropy group of G with Lie algebra \mathfrak{k}$.

Let *G* be a step-two nilpotent Lie group and put:

- I(G)= isometry group of G,
- $K = isotropy group of G with Lie algebra \mathfrak{t}$.

The following facts are well-known:

Lemma

Let G act by left translation. Then

$$I(G) = K \ltimes G$$
.

Let *G* be a step-two nilpotent Lie group and put:

- I(G)= isometry group of G,
- $K = isotropy group of G with Lie algebra <math>\mathfrak{k}$.

The following facts are well-known:

Lemma

Let G act by left translation. Then

$$I(G) = K \ltimes G$$
.

and

•
$$K = \left\{ (\Phi, T) \in O(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}}) \times O(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}}) : \right.$$
where $TJ_{Z}T^{-1} = J_{\Phi(Z)}, Z \in \mathfrak{z} \right\}.$

Let *G* be a step-two nilpotent Lie group and put:

- I(G)= isometry group of G,
- $K = isotropy group of G with Lie algebra <math>\mathfrak{k}$.

The following facts are well-known:

Lemma

Let *G* act by left translation. Then

$$I(G) = K \ltimes G$$
.

and

•
$$K = \left\{ (\Phi, T) \in O(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}}) \times O(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}}) : \right.$$
where $TJ_{Z}T^{-1} = J_{\Phi(Z)}, Z \in \mathfrak{z} \right\}.$

$$\bullet \ \mathfrak{k} = \Big\{ (A,B) \in \mathfrak{so}(\mathfrak{z},\langle \cdot,\cdot \rangle_{\mathfrak{z}}) \times \mathfrak{so}(\mathfrak{v},\langle \cdot,\cdot \rangle_{\mathfrak{v}}) \ :$$

where
$$BJ_Z - J_ZB = J_{AZ}$$
, $Z \in \mathfrak{z}$.

Notation:

$$K = \Big\{ (\Phi, T) \in O(\mathfrak{z}) \times O(\mathfrak{v}) \ : \ Tj(Z)T^{-1} = j(\Phi(Z)), \ Z \in \mathfrak{z} \Big\}.$$

¹Recall

Notation:

•
$$\exp_G : \mathfrak{g} \to G$$
,

$$K = \Big\{ (\Phi, T) \in O(\mathfrak{z}) \times O(\mathfrak{v}) \ : \ Tj(Z)T^{-1} = j(\Phi(Z)), \ Z \in \mathfrak{z} \Big\}.$$

¹Recall

Notation:

- $\exp_G : \mathfrak{g} \to G$,
- $\exp_K : \mathfrak{k} \to K = \text{isotropy group, } 1$

$$K = \Big\{ (\Phi, T) \in O(\mathfrak{z}) \times O(\mathfrak{v}) : Tj(Z)T^{-1} = j(\Phi(Z)), Z \in \mathfrak{z} \Big\}.$$

¹Recall

Notation:

- $\exp_G : \mathfrak{g} \to G$,
- $\exp_K : \mathfrak{k} \to K = \text{isotropy group, } 1$
- $\pi_{\mathfrak{z}}: K \to O(\mathfrak{z})$ and $\pi_{\mathfrak{v}}: K \to O(\mathfrak{v})$ the projections.

$$K = \Big\{ (\Phi, T) \in O(\mathfrak{z}) \times O(\mathfrak{v}) : Tj(Z)T^{-1} = j(\Phi(Z)), Z \in \mathfrak{z} \Big\}.$$

¹Recall

Notation:

Let G be a step-two nilpotent Lie group with Lie algebra \mathfrak{g} .

- \bullet exp_G : $\mathfrak{g} \to G$,
- $\exp_K : \mathfrak{k} \to K = \text{isotropy group, } ^1$
- $\pi_{\mathfrak{z}}: K \to O(\mathfrak{z})$ and $\pi_{\mathfrak{v}}: K \to O(\mathfrak{v})$ the projections.

Flow of isometries

Fix $k = (A, B) \in \mathfrak{k}$ and $s \in \mathbb{R}$. Define $\Phi_{k,s} : G \to G$ by

$$\Phi_{k,s}(p) := \exp_{G} \Big\{ \big(\pi_{\mathfrak{z}} \circ \exp_{K}(sk) \big) U_{\mathfrak{z}} + \big(\pi_{\mathfrak{v}} \circ \exp_{K}(sk) \big) U_{\mathfrak{v}} \big) \Big\},$$

where $p = \exp_G(U) \in G$ and $U \in \mathfrak{g}$.

$$\mathcal{K} = \Big\{ (\Phi, T) \in \textit{O}(\mathfrak{z}) \times \textit{O}(\mathfrak{v}) \; \colon \; \textit{Tj}(\textit{Z})\textit{T}^{-1} = \textit{j}\left(\Phi(\textit{Z})\right), \; \textit{Z} \in \mathfrak{z} \Big\}.$$

¹Recall

Proposition

For each $k = (A, B) \in \mathfrak{k}$ and $s \in \mathbb{R}$ the map $\Phi_{k,s}$ is a flow of isometries, i.e.

- $\Phi_{k,s}: G \to G$ is an isometric group homomorphism,
- $\Phi_{k,s} \circ \Phi_{k,t} = \Phi_{k,s+t}$ for alle $s,t \in \mathbb{R}$.

Proposition

For each $k = (A, B) \in \mathfrak{k}$ and $s \in \mathbb{R}$ the map $\Phi_{k,s}$ is a flow of isometries, i.e.

- $\Phi_{k,s}: G \to G$ is an isometric group homomorphism,
- $\Phi_{k,s} \circ \Phi_{k,t} = \Phi_{k,s+t}$ for alle $s, t \in \mathbb{R}$.

The Killing vector field corresponding to $k = (A, B) \in \mathfrak{k}$ is

$$X_k^*(p) = \frac{d}{ds}\Big|_{s=0} \Phi_{k,s}(p)$$
 where $p = \exp_G(W) \in G$.

Proposition

For each $k = (A, B) \in \mathfrak{k}$ and $s \in \mathbb{R}$ the map $\Phi_{k,s}$ is a flow of isometries, i.e.

- $\Phi_{k,s}: G \to G$ is an isometric group homomorphism,
- $\Phi_{k,s} \circ \Phi_{k,t} = \Phi_{k,s+t}$ for alle $s, t \in \mathbb{R}$.

The Killing vector field corresponding to $k = (A, B) \in \mathfrak{k}$ is

$$X_k^*(p) = \frac{d}{ds}\Big|_{s=0} \Phi_{k,s}(p)$$
 where $p = \exp_G(W) \in G$.

Lemma

With the left translation L_p on G and $p = \exp_G(W) \in G$:

$$X_k^*(p) = dL_p \Big(BW_{\mathfrak{v}} - \frac{1}{2} \big[W_{\mathfrak{v}}, BW_{\mathfrak{v}}\big] + AW_{\mathfrak{z}}\Big).$$

Recall: the isometry group of *G* has the form

$$I(G) = K \ltimes G$$
 where $K = \text{isotropy group}$.

Recall: the isometry group of *G* has the form

$$I(G) = K \ltimes G$$
 where $K = \text{isotropy group}$.

Lemma (first integral via the isotropy group)

To $k = (A, B) \in \mathfrak{k}$ (Lie algebra of K) we assign the Killing vector field X_k^* and the first integral:

$$f_{X_k^*}: TG \cong G \times \mathfrak{g} \to \mathbb{R}: f_{X_k^*}(p, Y) = \Big\langle Y, dL_{p^{-1}}(X_k^*(p)) \Big\rangle.$$

Recall: the isometry group of *G* has the form

$$I(G) = K \ltimes G$$
 where $K = \text{isotropy group}$.

Lemma (first integral via the isotropy group)

To $k = (A, B) \in \mathfrak{t}$ (Lie algebra of K) we assign the Killing vector field X_k^* and the first integral:

$$f_{X_k^*}: TG \cong G \times \mathfrak{g} \to \mathbb{R}: f_{X_k^*}(p, Y) = \langle Y, dL_{p^{-1}}(X_k^*(p)) \rangle.$$

It has the explicit form:

$$f_{X_k^*}(p, Y) = \left\langle Y, BW - \frac{1}{2} \left[W, BW \right] + AW \right\rangle.$$

Recall: the isometry group of *G* has the form

$$I(G) = K \ltimes G$$
 where $K = \text{isotropy group}$.

Lemma (first integral via the isotropy group)

To $k = (A, B) \in \mathfrak{t}$ (Lie algebra of K) we assign the Killing vector field X_k^* and the first integral:

$$f_{X_k^*}: TG \cong G \times \mathfrak{g} \to \mathbb{R}: f_{X_k^*}(p, Y) = \langle Y, dL_{p^{-1}}(X_k^*(p)) \rangle.$$

It has the explicit form:

$$f_{X_k^*}(p, Y) = \langle Y, BW - \frac{1}{2} [W, BW] + AW \rangle.$$

Notation: We extend A from \mathfrak{F} to \mathfrak{g} and B from \mathfrak{v} to \mathfrak{g} by zero.

Proposition

Let $k_j = (A_j, B_j) \in \mathfrak{k}$ where j = 1, 2 and assume that

$$g: TG \cong G \times \mathfrak{g} \to \mathbb{R}$$

is a left-invariant function with grad (p, Y) = (0, V).

Proposition

Let $k_j = (A_j, B_j) \in \mathfrak{k}$ where j = 1, 2 and assume that

$$g: TG \cong G \times \mathfrak{g} \to \mathbb{R}$$

is a left-invariant function with grad (p, Y) = (0, V). Then

(a)
$$\{f_{X_{k_1}^*},g\}=\langle Y_{\mathfrak{v}},BV_{\mathfrak{v}}\rangle+\langle Y_{\mathfrak{z}},AV_{\mathfrak{z}}\rangle$$
,

Proposition

Let $k_j = (A_j, B_j) \in \mathfrak{k}$ where j = 1, 2 and assume that

$$g: TG \cong G \times \mathfrak{g} \to \mathbb{R}$$

is a left-invariant function with grad (p, Y) = (0, V). Then

(a)
$$\{f_{X_{k_1}^*},g\}=\langle Y_{\mathfrak{v}},BV_{\mathfrak{v}}\rangle+\langle Y_{\mathfrak{z}},AV_{\mathfrak{z}}\rangle$$
,

(b)
$$\{f_{X_{k_1}^*}, f_{X_{k_2}^*}\} = f_{X_{[k_1, k_2]}^*}$$
,

Proposition

Let $k_j = (A_j, B_j) \in \mathfrak{k}$ where j = 1, 2 and assume that

$$g: TG \cong G \times \mathfrak{g} \to \mathbb{R}$$

is a left-invariant function with grad (p, Y) = (0, V). Then

(a)
$$\{f_{X_{k_1}^*},g\}=\langle Y_{\mathfrak{v}},BV_{\mathfrak{v}}
angle+\langle Y_{\mathfrak{z}},AV_{\mathfrak{z}}
angle$$
,

(b)
$$\{f_{X_{k_1}^*}, f_{X_{k_2}^*}\} = f_{X_{[k_1, k_2]}^*}$$
,

where $[\cdot, \cdot]$ is the Lie bracket in \mathfrak{k} .

Proposition

Let $k_j = (A_j, B_j) \in \mathfrak{k}$ where j = 1, 2 and assume that

$$g: TG \cong G \times \mathfrak{g} \to \mathbb{R}$$

is a left-invariant function with grad (p, Y) = (0, V). Then

(a)
$$\{f_{X_{k_1}^*},g\}=\langle Y_{\mathfrak{v}},BV_{\mathfrak{v}}
angle+\langle Y_{\mathfrak{z}},AV_{\mathfrak{z}}
angle$$
,

(b)
$$\{f_{X_{k_1}^*}, f_{X_{k_2}^*}\} = f_{X_{[k_1, k_2]}^*}$$

where $[\cdot, \cdot]$ is the Lie bracket in \mathfrak{k} . With the Hamiltonian H = g:

$$\{f_{X_{\nu}^*}, H\} = 0$$
 since grad $H(p, Y) = (0, Y)$.

A Lie algebra homomorphisms

Note: the equation:

$$\left\{f_{X_{k_1}^*}, f_{X_{k_2}^*}\right\} = f_{X_{[k_1, k_2]}^*}$$

says that the map:

$$\Psi: \mathfrak{k} \to \left(C^{\infty}(TG), \{\cdot, \cdot\}\right): k = (A, B) \mapsto f_{X_k^*}$$

is a Lie algebra homomorphism with range consisting of first integrals of the geodesic flow.

A Lie algebra homomorphisms

Note: the equation:

$$\left\{f_{X_{k_1}^*}, f_{X_{k_2}^*}\right\} = f_{X_{[k_1, k_2]}^*}$$

says that the map:

$$\Psi: \mathfrak{k} \to \left(C^{\infty}(TG), \{\cdot, \cdot\}\right): k = (A, B) \mapsto f_{X_k^*}$$

is a Lie algebra homomorphism with range consisting of first integrals of the geodesic flow.

Question

Is there a natural extension of Ψ to a larger Lie algebra?

A Lie algebra homomorphismus

Let $Der(\mathfrak{g})$ denote the Lie algebra of derivations on \mathfrak{g} .

Lemma

A Lie algebra homomorphism is obtained by

$$\tau: \mathfrak{k} \to \mathsf{Der}(\mathfrak{g}): (A,B) \mapsto \left[\mathfrak{g} \ni U = U_{\mathfrak{z}} + U_{\mathfrak{v}} \mapsto AU_{\mathfrak{z}} + BU_{\mathfrak{v}} \in \mathfrak{g}\right].$$

In particular, that means: for $U, W \in \mathfrak{g}$:

$$\tau(A,B)[U,W] = \left[U,\tau(A,B)W\right] + \left[\tau(A,B)U,W\right].$$

A Lie algebra homomorphismus

Let $Der(\mathfrak{g})$ denote the Lie algebra of derivations on \mathfrak{g} .

Lemma

A Lie algebra homomorphism is obtained by

$$\tau:\mathfrak{k}\to \mathsf{Der}(\mathfrak{g}):(A,B)\mapsto \Big[\mathfrak{g}\ni U=U_{\mathfrak{z}}+U_{\mathfrak{v}}\mapsto AU_{\mathfrak{z}}+BU_{\mathfrak{v}}\in\mathfrak{g}\Big].$$

In particular, that means: for $U, W \in \mathfrak{g}$:

$$\tau(A,B)[U,W] = \left[U,\tau(A,B)W\right] + \left[\tau(A,B)U,W\right].$$

Definition: With respect to τ we can form the semi-direct product

$$\mathfrak{k} \ltimes_{\tau} \mathfrak{g}$$

with Lie brackets:

$$[(A,B),U] = \tau(A,B)(U), \qquad (A,B) \in \mathfrak{k}, \ U \in \mathfrak{g}.$$

A Lie algebra homomorphismus

Consider the natural extension $\tilde{\Psi}$ of $\Psi: \mathfrak{k} \to C^{\infty}(TG)$:

$$\tilde{\Psi}: \mathfrak{k} \oplus \mathfrak{g} \to C^{\infty}(TG): \Psi(k, U) := f_{X_k^*} + \sum_{i=1}^n a_i F_{X_i} + \sum_{\ell=1}^j b_{\ell} F_{Z_{\ell}},$$

where $U \in \mathfrak{g}$ has the expansion:

$$U=\sum_{i=1}^n a_i X_i + \sum_{\ell=1}^j b_\ell Z_\ell \in \mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}.$$

A Lie algebra homomorphismus

Consider the natural extension $\tilde{\Psi}$ of $\Psi: \mathfrak{k} \to C^{\infty}(TG)$:

$$\tilde{\Psi}: \mathfrak{k} \oplus \mathfrak{g} \to C^{\infty}(TG): \Psi(k, U) := f_{X_k^*} + \sum_{i=1}^n a_i F_{X_i} + \sum_{\ell=1}^j b_{\ell} F_{Z_{\ell}},$$

where $U \in \mathfrak{g}$ has the expansion:

$$U = \sum_{i=1}^n a_i X_i + \sum_{\ell=1}^j b_\ell Z_\ell \in \mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}.$$

Theorem, (W. B., D. Tarama)

Let $G = G_{r,s}$ be a pseudo-H-type Lie group. The the map Ψ defines an injective Lie algebra homomorphism

$$\Psi: \mathfrak{k} \ltimes_{\tau} \mathfrak{g}
ightarrow \left(\mathit{C}^{\infty}(\mathit{TG}), \left\{ \cdot, \cdot \right\} \right)$$

into a set of first integrals of the geodesic flow.

Let $G_{r,s}$ be a pseudo-H-type group with lattice $L \subset G_{r,s}$.

Let $G_{r,s}$ be a pseudo-H-type group with lattice $L \subset G_{r,s}$.

Definition

The left-coset space $L \setminus G_{r,s}$ is called a pseudo-H-type nilmanifold.

Let $G_{r,s}$ be a pseudo-H-type group with lattice $L \subset G_{r,s}$.

Definition

The left-coset space $L \setminus G_{r,s}$ is called a pseudo-H-type nilmanifold.

Problems:

Let $G_{r,s}$ be a pseudo-H-type group with lattice $L \subset G_{r,s}$.

Definition

The left-coset space $L \setminus G_{r,s}$ is called a pseudo-H-type nilmanifold.

Problems:

• Complete integrability of the geodesic flow on $L \setminus G_{r,s}$.

Let $G_{r,s}$ be a pseudo-H-type group with lattice $L \subset G_{r,s}$.

Definition

The left-coset space $L \setminus G_{r,s}$ is called a pseudo-H-type nilmanifold.

Problems:

- Complete integrability of the geodesic flow on $L \setminus G_{r,s}$.
- Can we descend enough Poisson commuting first integrals from $G_{r,s}$ to $L \setminus G_{r,s}$?

Heisenberg-Reiter Lie Algebra

Heisenberg-Reiter Lie Algebra

Definition

A step-2 nilpotent Lie algebra ${\mathfrak g}$ is called Heisenberg-Reiter Lie algebra (HR) , if it admits a decomposition

$$\mathfrak{g}=\mathfrak{r}\oplus\mathfrak{n}\oplus\mathfrak{z},$$

such that

$$[\mathfrak{g},\mathfrak{g}]\subset\mathfrak{z}, \quad [\mathfrak{z},\mathfrak{g}]=0, \quad [\mathfrak{r},\mathfrak{r}]=0 \quad \text{and} \quad [\mathfrak{n},\mathfrak{n}]=0.$$

Heisenberg-Reiter Lie Algebra

Definition

A step-2 nilpotent Lie algebra ${\mathfrak g}$ is called Heisenberg-Reiter Lie algebra (HR) , if it admits a decomposition

$$\mathfrak{g}=\mathfrak{r}\oplus\mathfrak{n}\oplus\mathfrak{z},$$

such that

$$[\mathfrak{g},\mathfrak{g}]\subset\mathfrak{z}, \quad [\mathfrak{z},\mathfrak{g}]=0, \quad [\mathfrak{r},\mathfrak{r}]=0 \quad \text{and} \quad [\mathfrak{n},\mathfrak{n}]=0.$$

Theorem (L. Butler, 2003)

Let $\mathfrak g$ be a Heisenberg-Reiter Lie algebra. For each left-invariant Riemannian metric g on G and each lattice $L \subset G$ the geodesic flow of g is smoothly Liouville integrable on $T^*(L \setminus G)$.

Heisenberg-Reiter type algebras

Example

Let $n = h_3$ be the three-dimensional Heisenberg Lie algebra:

$$\mathfrak{h}_3 = \operatorname{span}\{X\} \oplus \operatorname{span}\{Y\} \oplus \operatorname{span}\{Z\},$$
 (*)

where [X, Y] = Z and all other brackets vanish. Then \mathfrak{h}_3 is of Heisenberg-Reiter type.

Heisenberg-Reiter pseudo-H-type algebras: Let s > 0, then the Lie algebra $\mathcal{N}_{0,s}$ is of Heisenberg-Reiter type.

Heisenberg-Reiter pseudo-H-type algebras: Let s > 0, then the Lie algebra $\mathcal{N}_{0,s}$ is of Heisenberg-Reiter type.

Question:

How to descend first integrals on $G_{r,s}$ to the quotients $L \setminus G_{r,s}$?

Heisenberg-Reiter pseudo-H-type algebras: Let s > 0, then the Lie algebra $\mathcal{N}_{0,s}$ is of Heisenberg-Reiter type.

Question:

How to descend first integrals on $G_{r,s}$ to the quotients $L \setminus G_{r,s}$?

Here we only treat s=0. Consider an integral basis in $\mathcal{N}_{r,0}$

$$\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z} = \operatorname{span}\{X_1, \cdots, X_{2n}\} \oplus \underbrace{\operatorname{span}\{Z_1, \cdots, Z_r\}}_{=\operatorname{center}}.$$

Heisenberg-Reiter pseudo-H-type algebras: Let s > 0, then the Lie algebra $\mathcal{N}_{0,s}$ is of Heisenberg-Reiter type.

Question:

How to descend first integrals on $G_{r,s}$ to the quotients $L \setminus G_{r,s}$?

Here we only treat s=0. Consider an integral basis in $\mathcal{N}_{r,0}$

$$\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z} = \operatorname{span}\{X_1, \cdots, X_{2n}\} \oplus \underbrace{\operatorname{span}\{Z_1, \cdots, Z_r\}}_{=\operatorname{center}}.$$

Let L be the lattice in $G_{r,0}$ generated by $\exp(X_i)$ and $\exp(Z_\ell)$, i.e.

Heisenberg-Reiter pseudo-H-type algebras: Let s > 0, then the Lie algebra $\mathcal{N}_{0,s}$ is of Heisenberg-Reiter type.

Question:

How to descend first integrals on $G_{r,s}$ to the quotients $L \setminus G_{r,s}$?

Here we only treat s=0. Consider an integral basis in $\mathcal{N}_{r,0}$

$$\mathcal{N}_{r,0} = \mathfrak{v} \oplus \mathfrak{z} = \operatorname{span}\{X_1, \cdots, X_{2n}\} \oplus \underbrace{\operatorname{span}\{Z_1, \cdots, Z_r\}}_{=\operatorname{center}}.$$

Let L be the lattice in $G_{r,0}$ generated by $\exp(X_i)$ and $\exp(Z_\ell)$, i.e.

$$L = \exp\left\{\sum \gamma_q X_q + \frac{1}{2} \sum \beta_\ell Z_\ell \ : \ \gamma_q, \beta_\ell \in \mathbb{Z}\right\}.$$

Recall the first integrals induced by left-multiplication

$$F_{X_i}(p,Y) = \left\langle X_i, J_{Y_{\mathfrak{z}}} W_{\mathfrak{v}} - Y_{\mathfrak{v}} \right
angle, \quad \textit{where} \quad p = \exp(W) \in G_{r,0}.$$

Recall the first integrals induced by left-multiplication

$$F_{X_i}(p,Y) = \left\langle X_i, J_{Y_{\mathfrak{z}}}W_{\mathfrak{v}} - Y_{\mathfrak{v}} \right\rangle, \quad \textit{where} \quad p = \exp(W) \in G_{r,0}.$$

Lemma

Fix an element in the lattice

$$g= \exp(V) \in L \quad ext{ where } \quad V_{\mathfrak v} = \sum_q \gamma_q X_q \in {\mathfrak v}, \ \ \gamma_q \in {\mathbb Z}.$$

Recall the first integrals induced by left-multiplication

$$F_{X_i}(p,Y) = \left\langle X_i, J_{Y_{\bar{\mathfrak{d}}}} W_{\mathfrak{v}} - Y_{\mathfrak{v}} \right\rangle, \quad \text{where} \quad p = \exp(W) \in G_{r,0}.$$

Lemma

Fix an element in the lattice

$$g=\exp(V)\in L \quad ext{ where } \quad V_{\mathfrak v}=\sum_q \gamma_q X_q \in {\mathfrak v}, \ \ \gamma_q \in {\mathbb Z}.$$

Then

$$\begin{pmatrix} F_{X_1} \\ \vdots \\ F_{X_{2n}} \end{pmatrix} (g * p, Y) = \begin{pmatrix} F_{X_1} \\ \vdots \\ F_{X_{2n}} \end{pmatrix} (p, Y) + M(Y_3) \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_{2n} \end{pmatrix},$$

where $M(Y_3) := (\langle J_{Y_3} X_q, X_i \rangle)_{q,i=1}^{2n}$ for $Y_3 \neq 0$ is invertible.

We multiply both sides of the last equation by $M(Y_3)^{-1}$ for $Y_3 \neq 0$:

$$\underbrace{M^{-1}(Y_{\mathfrak{z}})\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(g*p,Y)}_{=:\widetilde{F}(g*p,Y)}=\underbrace{M(Y_{\mathfrak{z}})^{-1}\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(p,Y)}_{=:\widetilde{F}(p,Y)}+\underbrace{\begin{pmatrix}\gamma_{1}\\\vdots\\\gamma_{2n}\end{pmatrix}}_{\in\mathbb{Z}^{2n}}.$$

We multiply both sides of the last equation by $M(Y_3)^{-1}$ for $Y_3 \neq 0$:

$$\underbrace{M^{-1}(Y_{\mathfrak{z}})\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(g*p,Y)}_{=:\widetilde{F}(g*p,Y)}=\underbrace{M(Y_{\mathfrak{z}})^{-1}\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(p,Y)}_{=:\widetilde{F}(p,Y)}+\underbrace{\begin{pmatrix}\gamma_{1}\\\vdots\\\gamma_{2n}\end{pmatrix}}_{\in\mathbb{Z}^{2n}}.$$

Corollary

The $i = 1, \dots, 2n$ functions

$$F_i^{L\setminus G_{r,0}}(p,Y) := \sin\left(2\pi\widetilde{F}(p,Y)_i\right), \quad \text{ for } \quad i=1,\cdots,2n$$

are invariant under the left action by L and they descend to first integrals on the compact quotient $L \setminus G_{r,0}$.

We multiply both sides of the last equation by $M(Y_3)^{-1}$ for $Y_3 \neq 0$:

$$\underbrace{M^{-1}(Y_{\mathfrak{z}})\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(g*p,Y)}_{=:\widetilde{F}(g*p,Y)}=\underbrace{M(Y_{\mathfrak{z}})^{-1}\begin{pmatrix}F_{X_{1}}\\\vdots\\F_{X_{2n}}\end{pmatrix}(p,Y)}_{=:\widetilde{F}(p,Y)}+\underbrace{\begin{pmatrix}\gamma_{1}\\\vdots\\\gamma_{2n}\end{pmatrix}}_{\in\mathbb{Z}^{2n}}.$$

Corollary

The $i = 1, \dots, 2n$ functions

$$F_i^{L\setminus G_{r,0}}(p,Y) := \sin\left(2\pi\widetilde{F}(p,Y)_i\right), \quad \text{for} \quad i=1,\cdots,2n$$

are invariant under the left action by L and they descend to first integrals on the compact quotient $L \setminus G_{r,0}$.

If F_j Poisson commutes with F_i , then also $F_j^{L \setminus G_{r,0}}$ Poisson commutes with $F_j^{L \setminus G_{r,0}}$.

Result: (W.-B. D. Tarama, 2018)

In some cases - including but exceeding the Heisenberg-Reiter type algebras among $\mathcal{N}_{r,s}$ - we can prove complete integrability of the (pseudo)-Riemannian geodesic flow on $L \setminus G_{r,s}$, where $L \subset G_{r,s}$ denotes an integral lattice.

However, we are not able to decide all possible cases.

W.-B., D. Tarama, *On the complete integrability of the geodesic flow of pseudo-H-type Lie groups*, Anal. Math. Phys. 8 (2018), no. 4, 493 - 520.

Complete integrability and isospectrality

Problem

Is the complete integrability property of a closed Riemannian manifold M determined by the spectral data, i.e. by the collection of eigenvalues of the Laplace operator acting on functions?

Let $(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}})$ and $(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}})$ be euclidean vector spaces with inner products. Consider a linear map:

$$j:\mathfrak{z}\to\mathfrak{so}(\mathfrak{v}).$$

Let $(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}})$ and $(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}})$ be euclidean vector spaces with inner products. Consider a linear map:

$$j:\mathfrak{z}\to\mathfrak{so}(\mathfrak{v}).$$

Define a metric Lie algebra

$$\mathfrak{n}(j) := \mathfrak{v} \oplus_{\perp} \mathfrak{z}$$

Let $(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}})$ and $(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}})$ be euclidean vector spaces with inner products. Consider a linear map:

$$j:\mathfrak{z}\to\mathfrak{so}(\mathfrak{v}).$$

Define a metric Lie algebra

$$\mathfrak{n}(j) := \mathfrak{v} \oplus_{\perp} \mathfrak{z}$$

Inner product: Define $\langle \cdot, \cdot \rangle_n$ by taking the inner products on \mathfrak{v} and \mathfrak{z} and assuming that \mathfrak{v} and \mathfrak{z} are orthogonal.

Let $(\mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}})$ and $(\mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}})$ be euclidean vector spaces with inner products. Consider a linear map:

$$j:\mathfrak{z}\to\mathfrak{so}(\mathfrak{v}).$$

Define a metric Lie algebra

$$\mathfrak{n}(j) := \mathfrak{v} \oplus_{\perp} \mathfrak{z}$$

Inner product: Define $\langle \cdot, \cdot \rangle_n$ by taking the inner products on \mathfrak{v} and \mathfrak{z} and assuming that \mathfrak{v} and \mathfrak{z} are orthogonal.

Lie bracket: Define $[\cdot,\cdot]^j$ by assuming that \mathfrak{z} is in the center and

$$\begin{split} \left[\mathfrak{v},\mathfrak{v}\right]^{j} \subset \mathfrak{z} \\ \left\langle j(Z)X,Y\right\rangle_{\mathfrak{v}} &= \left\langle Z,\left[X,Y\right]^{j}\right\rangle_{\mathfrak{z}}, \qquad X,Y \in \mathfrak{v},\ Z \in \mathfrak{z}. \end{split}$$

Definition

Let G(j) be the 2-step simply connected nilpotent Lie group with Lie algebra $\mathfrak{n}(j)$ and left-invariant Riemannian metric g^j which coincides with $\langle \cdot, \cdot \rangle_{\mathfrak{n}}$ on $\mathfrak{n}(j) = \mathcal{T}_e G(j)$.

Consider the exponential map:

$$\exp^j : \mathfrak{n}(j) \to G(j).$$

Definition

Let G(j) be the 2-step simply connected nilpotent Lie group with Lie algebra $\mathfrak{n}(j)$ and left-invariant Riemannian metric g^j which coincides with $\langle \cdot, \cdot \rangle_{\mathfrak{n}}$ on $\mathfrak{n}(j) = \mathcal{T}_e G(j)$.

Consider the exponential map:

$$\exp^j : \mathfrak{n}(j) \to G(j).$$

The Baker-Campbell-Hausdorff formula implies for all $X, Y \in \mathfrak{n}(j)$:

$$\exp^{j}(X) * \exp^{j}(Y) = \exp^{j}\left(X + Y + \frac{1}{2}[X, Y]^{j}\right).$$

Definition

Let G(j) be the 2-step simply connected nilpotent Lie group with Lie algebra $\mathfrak{n}(j)$ and left-invariant Riemannian metric g^j which coincides with $\langle \cdot, \cdot \rangle_{\mathfrak{n}}$ on $\mathfrak{n}(j) = \mathcal{T}_e G(j)$.

Consider the exponential map:

$$\exp^j : \mathfrak{n}(j) \to G(j).$$

The Baker-Campbell-Hausdorff formula implies for all $X, Y \in \mathfrak{n}(j)$:

$$\exp^{j}(X) * \exp^{j}(Y) = \exp^{j}\left(X + Y + \frac{1}{2}[X, Y]^{j}\right).$$

Lattice: Consider a lattice $\mathfrak{l} \subset \mathfrak{n}(j)$ with the property

$$[\mathfrak{l},\mathfrak{l}]^j\subset 2\mathfrak{l}.$$

Then

$$\Gamma = \exp^j(\mathfrak{l}) \subset G(j)$$

is a discrete subgroup.

Compact nilmanifolds

Definition

The left-coset space $\Gamma \setminus G(j)$ with the metric induced by g^j is called two-step nilmanifold. We assume that Γ is cocompact a , i.e. $(M^j = \Gamma \setminus G(j), g^j)$ is compact.

ai.e. l has full rank in n(j)

Compact nilmanifolds

Definition

The left-coset space $\Gamma \setminus G(j)$ with the metric induced by g^j is called two-step nilmanifold. We assume that Γ is cocompact a , i.e. $(M^j = \Gamma \setminus G(j), g^j)$ is compact.

^ai.e. I has full rank in n(j)

Compact two-step nilmanifolds are treatable examples of closed Riemannian manifolds.

Compact nilmanifolds

Definition

The left-coset space $\Gamma \setminus G(j)$ with the metric induced by g^j is called two-step nilmanifold. We assume that Γ is cocompact a , i.e. $(M^j = \Gamma \setminus G(j), g^j)$ is compact.

ai.e. l has full rank in n(j)

Compact two-step nilmanifolds are treatable examples of closed Riemannian manifolds.

Problem:

Under which conditions are two compact two-step nilmanifolds M_1 and M_2 isospectral, i.e the spectra of M_1 and M_2 coincide?

Isospectrality

Definition

Let \mathfrak{z} and \mathfrak{v} be as above:

Isospectrality

Definition

Let 3 and $\mathfrak v$ be as above:

(a) Two linear maps:

$$j,j':\mathfrak{z} o\mathfrak{so}(\mathfrak{v})$$

are called isospectral, if for each $Z \in \mathfrak{z}$ the maps

$$j(Z), j'(Z) \in \mathfrak{so}(\mathfrak{v})$$

have the same eigenvalues (with multiplicities).

Isospectrality

Definition

Let 3 and v be as above:

(a) Two linear maps:

$$j,j':\mathfrak{z}\to\mathfrak{so}(\mathfrak{v})$$

are called isospectral, if for each $Z \in \mathfrak{z}$ the maps

$$j(Z), j'(Z) \in \mathfrak{so}(\mathfrak{v})$$

have the same eigenvalues (with multiplicities).

(b) Two lattices ^a in a euclidean space are called isospectral, if the lengths of their elements counted with multiplicities coincide.

alattice in a vector space: $\mathfrak{l}=\{a_1b_1+\cdots+a_mb_m:(a_1,\cdots,a_m)\in\mathbb{Z}^m\}$ and $\{b_1,\cdots,b_m\}$ a basis of $\mathfrak{l}.$

Dual lattice: Let l_z be a cocompact lattice in \mathfrak{z} . Put:

$$\textit{dual lattice} := \mathfrak{l}_{\mathsf{z}}^* = \big\{ Z \in \mathfrak{z} \ : \ \langle Z, \mathfrak{l}_{\mathsf{z}} \big\rangle_{\mathfrak{z}} \subset \mathbb{Z} \big\} \subset \mathfrak{z}.$$

Here is a criterion for isospectrality:

Dual lattice: Let l_z be a cocompact lattice in \mathfrak{z} . Put:

$$\textit{dual lattice} := \mathfrak{l}_{\mathsf{z}}^* = \big\{ Z \in \mathfrak{z} \ : \ \langle Z, \mathfrak{l}_{\mathsf{z}} \big\rangle_{\mathfrak{z}} \subset \mathbb{Z} \big\} \subset \mathfrak{z}.$$

Here is a criterion for isospectrality:

Theorem (C. S. Gordon, D. Schueth, E. N. Wilson)

Let $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be isospectral and consider two cocompact lattices

$$l_v \subset \mathfrak{v}$$
 and $l_z \subset \mathfrak{z}$.

Assume that:

Dual lattice: Let l_z be a cocompact lattice in \mathfrak{z} . Put:

$$\textit{dual lattice} := \mathfrak{l}_{\mathsf{z}}^* = \big\{ Z \in \mathfrak{z} \ : \ \langle Z, \mathfrak{l}_{\mathsf{z}} \big\rangle_{\mathfrak{z}} \subset \mathbb{Z} \big\} \subset \mathfrak{z}.$$

Here is a criterion for isospectrality:

Theorem (C. S. Gordon, D. Schueth, E. N. Wilson)

Let $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be isospectral and consider two cocompact lattices

$$l_v \subset \mathfrak{v}$$
 and $l_z \subset \mathfrak{z}$.

Assume that:

(a)
$$[l_v, l_v]^j \subset 2l_z$$
 and $[l_v, l_v]^{j'} \subset 2l_z$,

Dual lattice: Let l_z be a cocompact lattice in \mathfrak{z} . Put:

$$\textit{dual lattice} := \mathfrak{l}_{\mathsf{z}}^* = \big\{ Z \in \mathfrak{z} \ : \ \langle Z, \mathfrak{l}_{\mathsf{z}} \big\rangle_{\mathfrak{z}} \subset \mathbb{Z} \big\} \subset \mathfrak{z}.$$

Here is a criterion for isospectrality:

Theorem (C. S. Gordon, D. Schueth, E. N. Wilson)

Let $j, j' : \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$ be isospectral and consider two cocompact lattices

$$l_v \subset \mathfrak{v}$$
 and $l_z \subset \mathfrak{z}$.

Assume that:

- (a) $[l_v, l_v]^j \subset 2l_z$ and $[l_v, l_v]^{j'} \subset 2l_z$,
- (b) For each $Z \in \mathfrak{l}_z^*$ the lattices

$$\ker(j(Z)) \cap \mathfrak{l}_{v}$$
 and $\ker(j'(Z)) \cap \mathfrak{l}_{v}$

are isospectral in l_v . (This happens e.g. if they are isometric).

Theorem (C. S. Gordon, D. Schueth, E. N. Wilson, (continued))

Consider the corresponding lattices in G(j) and G(j'):

$$\Gamma(j) = \exp^{j} (\mathfrak{l}_{v} + \mathfrak{l}_{z})$$
 and $\Gamma(j') = \exp^{j'} (\mathfrak{l}_{v} + \mathfrak{l}_{z}).$

Theorem (C. S. Gordon, D. Schueth, E. N. Wilson, (continued))

Consider the corresponding lattices in G(j) and G(j'):

$$\Gamma(j) = \exp^{j} (\mathfrak{l}_{v} + \mathfrak{l}_{z})$$
 and $\Gamma(j') = \exp^{j'} (\mathfrak{l}_{v} + \mathfrak{l}_{z}).$

Then the compact Riemannian manifolds

$$(\Gamma(j)\backslash G(j), g^j)$$
 and $(\Gamma(j')\backslash G(j'), g^{j'})$

are isospectral for the Laplace operator on functions.

Two Examples

With respect to the bases the maps

$$j(c_iZ_i+c_jZ_j+c_kZ_k)$$
 and $j'(c_iZ_i+c_jZ_j+c_kZ_k)$

with $c_i, c_j, c_k \in \mathbb{R}$ are expressed by the skew-symmetric matrices:

$$\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & -c_k & c_j \\ \mathbf{0} & \mathbf{0} & c_k & \mathbf{0} & -c_i \\ \mathbf{0} & -c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -c_j & c_i & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \text{ and } \begin{pmatrix} \mathbf{0} & -c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -c_k & c_j \\ \mathbf{0} & \mathbf{0} & c_k & \mathbf{0} & -c_i \\ \mathbf{0} & \mathbf{0} & -c_j & c_i & \mathbf{0} \end{pmatrix}.$$

Two Examples

With respect to the bases the maps

$$j(c_iZ_i + c_jZ_j + c_kZ_k)$$
 and $j'(c_iZ_i + c_jZ_j + c_kZ_k)$

with $c_i, c_j, c_k \in \mathbb{R}$ are expressed by the skew-symmetric matrices:

$$\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & -c_k & c_j \\ \mathbf{0} & \mathbf{0} & c_k & \mathbf{0} & -c_i \\ \mathbf{0} & -c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -c_j & c_i & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \text{ and } \begin{pmatrix} \mathbf{0} & -c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ c_k & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -c_k & c_j \\ \mathbf{0} & \mathbf{0} & c_k & \mathbf{0} & -c_i \\ \mathbf{0} & \mathbf{0} & -c_j & c_i & \mathbf{0} \end{pmatrix}.$$

Let $(G(j), g^j)$ and $(G(j'), g^{j'})$ be the corresponding 2-step nilpotent Lie groups with appropriate left-invariant metrics g^j and $g^{j'}$ and standard lattices $\Gamma(j)$ and $\Gamma(j')$, respectively.

Theorem (D. Schueth)

$$(\Gamma(j)\backslash G(j), g^j)$$
 and $(\Gamma(j')\backslash G(j'), g^{j'})$ are isospectral.

.

:

Theorem (L. Butler)

Let n be a Lie algebra of Heisenberg-Reiter type with corresponding simply connected Lie group G. Assume:

:

Theorem (L. Butler)

Let $\mathfrak n$ be a Lie algebra of Heisenberg-Reiter type with corresponding simply connected Lie group G. Assume:

(a) There exists a discrete cocompact subgroup (lattice) Γ in G.

:

Theorem (L. Butler)

Let n be a Lie algebra of Heisenberg-Reiter type with corresponding simply connected Lie group G. Assume:

- (a) There exists a discrete cocompact subgroup (lattice) Γ in G.
- (b) There is an injective presentation, i.e. j(Z) is injective on \mathfrak{r} for some $Z \in \mathfrak{z}$

$$\mathfrak{n}=\mathfrak{r}\oplus\mathfrak{m}\oplus\mathfrak{z}$$

such that $\mathfrak{r} \cup \mathfrak{m} \cup \mathfrak{z}$ contains a set of vectors which is mapped by the exponential map $\exp : \mathfrak{n} \to G$ to a generating set of Γ .

:

Theorem (L. Butler)

Let n be a Lie algebra of Heisenberg-Reiter type with corresponding simply connected Lie group G. Assume:

- (a) There exists a discrete cocompact subgroup (lattice) Γ in G.
- (b) There is an injective presentation, i.e. j(Z) is injective on \mathfrak{r} for some $Z \in \mathfrak{z}$

$$\mathfrak{n}=\mathfrak{r}\oplus\mathfrak{m}\oplus\mathfrak{z}$$

such that $\mathfrak{r} \cup \mathfrak{m} \cup \mathfrak{z}$ contains a set of vectors which is mapped by the exponential map $\exp : \mathfrak{n} \to G$ to a generating set of Γ .

Then, for **any** left-invariant metric g on G, the geodesic flow of $(\Gamma \backslash G, g)$ is completely integrable in the sense of Liouville.

Definition

Let $\mathfrak n$ be a two-step nilpotent Lie algebra. We define:

Definition

Let \mathfrak{n} be a two-step nilpotent Lie algebra. We define:

(a) With $\lambda \in \mathfrak{n}^*$ (dual space) let

$$\mathfrak{n}_{\lambda} := \left\{ X \in \mathfrak{n} \ : \ \lambda_{|_{[X,\mathfrak{n}]}} \right\} = 0.$$

Definition

Let $\mathfrak n$ be a two-step nilpotent Lie algebra. We define:

(a) With $\lambda \in \mathfrak{n}^*$ (dual space) let

$$\mathfrak{n}_{\lambda} := \left\{ X \in \mathfrak{n} \ : \ \lambda_{|_{[X,\mathfrak{n}]}} \right\} = 0.$$

(b) An element $\lambda \in \mathfrak{n}^*$ is called regular if \mathfrak{n}_{λ} has minimal dimension.

Definition

Let \mathfrak{n} be a two-step nilpotent Lie algebra. We define:

(a) With $\lambda \in \mathfrak{n}^*$ (dual space) let

$$\mathfrak{n}_{\lambda} := \left\{ X \in \mathfrak{n} \ : \ \lambda_{|_{[X,\mathfrak{n}]}} \right\} = 0.$$

- (b) An element $\lambda \in \mathfrak{n}^*$ is called regular if \mathfrak{n}_{λ} has minimal dimension.
- (c) $\mathfrak n$ is called non-integrable if there is a dense open subset U of $\mathfrak n^* \times \mathfrak n^*$ such that for each pair $(\lambda, \mu) \in U$ both λ and μ are regular and $[\mathfrak n_\lambda, \mathfrak n_\mu]$ has positive dimension.

Theorem (L. Butler)

Let $\mathfrak n$ be a two-step nilpotent Lie algebra with corresponding simply connected Lie group G. Assume that:

Theorem (L. Butler)

Let $\mathfrak n$ be a two-step nilpotent Lie algebra with corresponding simply connected Lie group G. Assume that:

(a) n be non-integrable.

Theorem (L. Butler)

Let $\mathfrak n$ be a two-step nilpotent Lie algebra with corresponding simply connected Lie group G. Assume that:

- (a) n be non-integrable.
- (b) There is a discrete co-compact subgroup Γ of G.

Theorem (L. Butler)

Let $\mathfrak n$ be a two-step nilpotent Lie algebra with corresponding simply connected Lie group G. Assume that:

- (a) n be non-integrable.
- (b) There is a discrete co-compact subgroup Γ of G.

For any left-invariant metric g on G the geodesic flow of $(\Gamma \backslash G, g)$ is not completely integrable in the sense of Liouville.

Recall $j: \mathfrak{z} \cong \mathbb{R}^3 \to \mathfrak{so}(\mathfrak{v})$ where $\mathfrak{v} \cong \mathbb{R}^5$:

$$j(c_iZ_i+c_jZ_j+c_kZ_k)\cong \left(egin{array}{ccccc} 0 & 0 & 0 & -c_k & c_j \ 0 & 0 & c_k & 0 & -c_i \ 0 & -c_k & 0 & 0 & 0 \ c_k & 0 & 0 & 0 & 0 \ -c_j & c_i & 0 & 0 & 0 \end{array}
ight).$$

Let $(G(j), g^j)$ be the corresponding two-step nilpotent Lie group with left-invariant metric g^j .

Lemma

Let $\Gamma(j)$ be a "standard lattice" in G(j). Then the two-step nilmanifold $(\Gamma(j)\backslash G(j), g^j)$ has completely integrable geodesic flow.

Recall $j: \mathfrak{z} \cong \mathbb{R}^3 \to \mathfrak{so}(\mathfrak{v})$ where $\mathfrak{v} \cong \mathbb{R}^5$:

$$j(c_iZ_i+c_jZ_j+c_kZ_k)\cong \left(egin{array}{ccccc} 0 & 0 & 0 & -c_k & c_j \ 0 & 0 & c_k & 0 & -c_i \ 0 & -c_k & 0 & 0 & 0 \ c_k & 0 & 0 & 0 & 0 \ -c_j & c_i & 0 & 0 & 0 \end{array}
ight).$$

Let $(G(j), g^j)$ be the corresponding two-step nilpotent Lie group with left-invariant metric g^j .

Lemma

Let $\Gamma(j)$ be a "standard lattice" in G(j). Then the two-step nilmanifold $(\Gamma(j)\backslash G(j), g^j)$ has completely integrable geodesic flow.

Proof: Show that $\mathfrak n$ is of Heisenberg-Reiter type + additional conditions.

Recall: $j': \mathfrak{z} \cong \mathbb{R}^3 \to \mathfrak{so}(\mathfrak{v})$ where $\mathfrak{v} \cong \mathbb{R}^5$:

$$j'(c_iZ_i+c_jZ_j+c_kZ_k)\cong \left(egin{array}{ccccc} 0 & -c_k & 0 & 0 & 0 \ c_k & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -c_k & c_j \ 0 & 0 & c_k & 0 & -c_i \ 0 & 0 & -c_j & c_i & 0 \end{array}
ight).$$

Let $(G(j'), g^{j'})$ be the corresponding two-step nilpotent Lie group with left-invariant metric $g^{j'}$.

Theorem

Let $\Gamma(j')$ be a "standard lattice" in G(j'). Then $(\Gamma(j')\backslash G(j'), g^{j'})$ does not have completely integrable geodesic flow.

Proof: Butler's non-integrability condition.

Recall: $j': \mathfrak{z} \cong \mathbb{R}^3 \to \mathfrak{so}(\mathfrak{v})$ where $\mathfrak{v} \cong \mathbb{R}^5$:

$$j'(c_iZ_i+c_jZ_j+c_kZ_k)\cong \left(egin{array}{ccccc} 0 & -c_k & 0 & 0 & 0 \ c_k & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -c_k & c_j \ 0 & 0 & c_k & 0 & -c_i \ 0 & 0 & -c_j & c_i & 0 \end{array}
ight).$$

Let $(G(j'), g^{j'})$ be the corresponding two-step nilpotent Lie group with left-invariant metric $g^{j'}$.

Theorem

Let $\Gamma(j')$ be a "standard lattice" in G(j'). Then $(\Gamma(j')\backslash G(j'), g^{j'})$ does not have completely integrable geodesic flow.

Proof: Butler's non-integrability condition.

Answer to the initial question:

Theorem (D. Schueth, 2008)

There is a pair of isospectral compact closed Riemannian manifolds: one has completely integrable geodesic flow and the other does not have completely integrable geodesic flow.

Answer to the initial question:

Theorem (D. Schueth, 2008)

There is a pair of isospectral compact closed Riemannian manifolds: one has completely integrable geodesic flow and the other does not have completely integrable geodesic flow.

or shortly:

Answer to the initial question:

Theorem (D. Schueth, 2008)

There is a pair of isospectral compact closed Riemannian manifolds: one has completely integrable geodesic flow and the other does not have completely integrable geodesic flow.

or shortly:

One cannot read complete integrability of the geodesic flow from the spectral data.

References

- W. -B., K. Furutani, M. Tamura, First integrals of bi-characteristic curves of a sub-Laplacian and related Grushin type operators, JNCA, 18(5), 893-917, (2017).
- W.-B., D. Tarama, On the complete integrability of the geodesic flow of pseudo-H-type Lie groups, Anal. Math. Phys. 8 (2018), no. 4, 493 520.
- L. Butler, Integrable geodesic flow with wild first integrals: the case of two-step nilmanifolds, Ergo. Th. & Dynam. Sys. (2003), 23, 771-797.
- D. Schueth, Integrability of geodesic flows and isospectrality of Riemannian manifolds. Math. Z. 260 (2008), no. 3, 595?613.

Thank you for your attention!