CAN 标准通讯协议

- 1 通讯速率: 1M bits/s
- 2 指示灯和拨码开关

2.1 指示灯描述

指示灯用于指示驱动器和电机的工作状态,当警告和异常情况同时出现时,仅指示异常状态。若存在多个警告或者异常信息,指示灯将按照闪烁次数最少的进行提示。在异常状态下,驱动器会关闭输出。

正常状态	描述	
绿灯快闪	电机处于空闲状态	
绿灯慢闪	电机处于正常工作状态	
警告状态	描述	
橙灯每隔 1s 闪 1 次	未设置驱动器 ID	
橙灯每隔 1s 闪 2 次	未对电机进行过校准	
橙灯每隔 1s 闪 3 次	驱动器未激活	
橙灯每隔 1s 闪 4 次	电机发生堵转	
橙灯每隔 1s 闪 5 次	驱动板较高(大于 70℃)	
异常状态	描述	
异常状态 红灯每隔 1s 闪 1 次	描述 电流反馈信号异常	
-		
红灯每隔 1s 闪 1 次	电流反馈信号异常	
红灯每隔 1s 闪 1 次 红灯每隔 1s 闪 2 次	电流反馈信号异常 编码器反馈信号异常	
红灯每隔 1s 闪 1 次 红灯每隔 1s 闪 2 次 红灯每隔 1s 闪 3 次	电流反馈信号异常 编码器反馈信号异常 功率器件异常	
红灯每隔 1s 闪 1 次 红灯每隔 1s 闪 2 次 红灯每隔 1s 闪 3 次 红灯每隔 1s 闪 4 次	电流反馈信号异常 编码器反馈信号异常 功率器件异常 驱动板温度过高(大于 80℃)	

2.2 ID 设置

拨码开关的第 1 到第 3 位分别控制 ID 的 bit0、bit1、bit2。开关拨至 ON 为 1,否则为 0。bit[2:0]为电机的 ID 值,该 ID 值会影响 CAN 通信的标志符。

速度闭环控制模式下,帧 ID 0X0202 控制 $1\sim4$ 号电机,每 2 个字节控制一个电机,帧 ID 0X0203 控制 $5\sim7$ 号电机,每 2 个字节控制一个电机;

位置控制模式下,帧 ID 0X0204 控制 $1\sim4$ 号电机,每 2 个字节控制一个电机,帧 ID 0X0205 控制 $5\sim7$ 号电机,每 2 个字节控制一个电机;

力矩控制模式下,帧 ID 0X0206 控制 $1\sim4$ 号电机,每 2 个字节控制一个电机,帧 ID 0X0207 控制 $5\sim7$ 号电机,每 2 个字节控制一个电机;

具体对应关系如下:

bit[2:0]	000	001	010	011	100	101	110	111
电机 ID	无效	1	2	3	4	5	6	7
速度闭环控制模式报文帧 ID	-	0x202			0x203			
位置控制模式报文帧 ID	-	0x204				0x205		
力矩控制模式报文帧 ID	-		0x206				0x207	
状态反馈报文帧 ID	-	0x208 0x20a 0x20c 0x20e			0x210	0x212	0x214	
		0x209	0x20b	0x20d	0x20f	0x211	0x213	0x215

2.3 CAN 电阻设置

拨码开关第 4 位控制 CAN 终端 120 欧电阻的接入状态, 拨至 ON 为接入。

3 通信

3.1 配置指令接收报文格式

用于对驱动器进行各种配置,一条指令最多可以配置7个电机。

标识符: 0x300

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	配置命							
內谷	令字	-						
电机 ID	1	2	3	4	5	6	7	-

当配置命令字为以下值时,其表示的功能分别为:

0x00: 激活驱动模块,激活后电机才能正常接收速度/位置/力矩指令,该标志位会掉电保存;

0x01: 禁止驱动模块,禁止后电机不会接收电压/速度/位置指令,该标志位会掉电保存;

0x02: 执行电机角度校准命令,校准过程会持续4s左右,有的时间会更长;

执行电机角度校准值自动微调命令, 在此过程中电机会正反转, 当微调值满足要求时

0x03: 电机会停止,该命令必须在执行了"0x02"命令之后才能执行;此过程有的时间会长一

些,有些时间会短一些,取决于传感器和磁铁的安装位置;

0x04: 设置当前位置为零点,掉电后不会被保存;

0x05: 紧急刹车;

0x06: 恢复出厂设置(缓启动时间,堵转保护参数,负载惯量比等);

0x07: 软件复位;

0x08: 故障复位;

0x09~0xfe: 保留;

0xff: 无效;

3.2 速度闭环控制模式接收报文格式

用于给电机发送速度闭环控制指令,一条指令最多可以控制4个电机。

标识符: 0x202

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
	速度给							
内容	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位
电机 ID		1		2		3		1

标识符: 0x203

帧类型:标准帧

帧格式: DATA

DLC: 8字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
山家	速度给	速度给	速度给	速度给	速度给	速度给		
内容	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	-	-
电机 ID		5	(5	7	7		-

速度给定值范围为: -2048~2047,单位: rpm,齿轮箱末端速度,大部分电机速度都在1000rpm以内。 当速度给定值的十六进制数为0x7fff时,表示该指令无效。

3.3 位置模式接收报文格式

用于给电机发送位置闭环控制指令,一条指令最多可以控制4个电机。

标识符: 0x204

帧类型:标准帧

帧格式: DATA

DLC: 8字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	位置给							
內谷	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位
电机 ID		1		2	3	3	4	1

标识符: 0x205

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	位置给	位置给	位置给	位置给	位置给	位置给		
内谷	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	-	-
电机 ID		5	(5	,	7		-

位置给定值范围为: -18000~18000, 单位: 0.01 度, 齿轮箱末端位置。

当位置给定值的十六进制数为 0x7fff 时,表示该指令无效。

3.4 电流模式 (力矩模式) 接收报文格式

用于给电机发送电流闭环控制指令,一条指令最多可以控制 4 个电机。

标识符: 0x206

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
 内容	电流给							
內谷	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位

电机 ID	1	2	3	4

标识符: 0x207

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	电流给	电流给	电流给	电流给	电流给	电流给		
内谷	定高8位	定低8位	定高8位	定低8位	定高8位	定低8位	-	-
电机 ID				5	,	7		-

力矩电流给定值范围为: -2048~2047, 因为电流采样 ADC 为 12bit。给的是电机轴端的力矩, 不是齿轮箱末端的。实际使用时请不要用到极限值, 因为采样电路会有偏差, 往往无法做到极限值采样。

当力矩电流给定值的十六进制数为 0x7fff 时,表示该指令无效。

电流给定值=目标电流值/16*2048; 例如,目标电流值 1A,电流给定值=1/16*2048=128,对应十六进制为 0X0080.

3.5 状态反馈发送报文格式

电机向总线上发送反馈数据,包含行程、转速、电流、温度、状态信息。

标识符: 0x206+2*电机 ID

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	圈数高8	圏数低8	位置高8	位置低8	转速高8	转速低8	电流高 8	电流低 8
內谷	位	位	位	位	位	位	位	位

标识符: 0x207+2*电机 ID

帧类型:标准帧

帧格式: DATA

DLC: 3 字节

数据域	DATA0	DATA1	DATA2	-	-	-	-	-
H 宏	供电电	驱动板	状态标	-	-	-	-	-
内容	压	温度	志					

发送频率: 50Hz。

圈数范围: 0~65535。

位置范围: -18000~18000, 单位: 0.01度。

转速范围: -2048~2047, 单位: rpm。

电流范围: -2048~2047, 电流采样 ADC 为 12bit。

电压范围: 0~255, 单位: V。

温度范围: -128~127, 单位: 摄氏度。

状态标志: 11011000

bit7: 0-驱动器未被激活,1-驱动器处于激活状态;

bit6: 0- 电机未做过校准, 1- 电机做过校准;

bit5: 0- 电机未发生堵转,1- 电机发生堵转,需要发送故障复位信号后,才可以恢复工作;

bit4~3: 0- 电机处于开环电压控制模式, 1- 电机处于闭环速度控制模式, 2- 电机处于闭环

位置模式; 3- 电机处于闭环力矩控制模式

bit2~0: 0- 无故障, 1- 电流反馈信号故障, 2- 编码器反馈信号故障, 3- 功率器件故障, 4-

3.6 过流保护电流设置报文格式

设置电机的过流保护电流、时间参数。

标识符: 0x301

帧类型:标准帧

帧格式: DATA

DLC: 8 字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	电机 ID	命令 ID	过流保护	过流保护	过流保护时	过流保护	保存标	
			值高8位	值低8位	间高8位	时间低8位	志	-

电机 ID: 1~7。

命令 ID: 0x00。

过流值范围: 0~2047, 电流采样 ADC 为 12bit。

过流保护值=目标电流值/16*2048;例如,目标电流值 1A, 过流保护值=1/16*2048=128, 对应十六进制 为 0X0080.

过流保护时间范围: 0~60000, 单位: ms。

保存标志: 0- 不保存, 1- 保存, 保存时请确保电机处于静止状态。

上电后,驱动器默认保护电流为最大硬件采样电流,保护时间为6s。

3.7 速度闭环控制模式缓启动设置报文格式

设置闭环速度控制指令的缓起缓停时间。

标识符: 0x301

帧类型:标准帧

帧格式: DATA DLC: 8字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	电机 ID	命令 ID	缓起缓	缓起缓	缓起缓	缓起缓	保存标志	
			停时间	停时间	停时间	停时间		-
			bit31~24	bit23~16	bit15~8	bit7~bit0		

电机 ID: 1~7。

命令 ID: 0x02。

缓起缓停时间范围: 0~2^32-1,0表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默 认为5000。

保存标志: 0-不保存, 1-保存,保存时请确保电机处于静止状态。

当处于速度闭环模式时,举例说明启停时间计算,假设速度指令缓启动参数 α ,当前速度指令为0, 目标速度指令(齿轮箱末端)为 n_{ref} (单位为rpm),齿轮比为r,那么需要经过时间 t 之后当前的速度 指令才会达到目标速度指令,时间 t 的计算公式为:

$$t = 2\sqrt{\frac{rn_{ref}}{9.55\alpha}}\tag{2}$$

下面再以实际测试为例,设置 $\alpha=5000$, $n_{ref}=133~{
m rpm}$, 齿轮比 r=3.75 , 则理论规划时间 $t = 0.2047 \, \text{s.}$ 实际测试结果如图 3 所示,其中第一通道波形代表换算到电机末端的速度指令(单位:rad/s),

第二通道波形代表规划后的速度指令,第三通道波形代表实际速度,采样频率为1kHz。从图中可知,指令规划时间为0.2047s,实际速度上升时间约为0.207s。

图 3 速度模式测试 $\alpha=5000$, $~n_{qref}=133\mathrm{rpm}$

设置 $\alpha=10$, $n_{ref}=133$ rpm,齿轮比 r=3.75 ,则理论规划时间 t=4.5765 s。实际测试结果 如图 4 所示,其中第一通道波形代表换算到电机末端的速度指令(单位:rad/s),第二通道波形代表规划后 的速度指令,第三通道波形代表实际速度,采样频率为 $1 \, \mathrm{kHz}$ 。从图中可知,指令规划时间为 $4.5765 \, \mathrm{s}$,实际速度上升时间约为 $4.617 \, \mathrm{s}$ 。

图 4 速度模式测试 lpha=10 , $n_{qref}=133 ext{rpm}$

3.8 位置模式缓启动设置报文格式

设置闭环位置控制指令的缓起缓停时间。

标识符: 0x301

帧类型:标准帧

帧格式: DATA

DLC: 8字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	电机 ID	命令 ID	缓起缓	缓起缓	缓起缓	缓起缓	保存标志	
			停时间	停时间	停时间	停时间		-
			bit31~24	bit23~16	bit15~8	bit7~0		

电机 ID: 1~7。

命令 ID: 0x03。

缓起缓停时间范围: $0 \sim 2^3 2 - 1$, 0表示不用缓启动功能,数值越大,缓起缓停时间越短,上电后默认为 500。

保存标志: 0-不保存, 1-保存,保存时请确保电机处于静止状态。

当处于位置闭环模式时,举例说明启停时间计算,假设位置指令缓启动参数 α ,当前位置指令为 0,目标位置指令(齿轮箱末端)为 θ_{ref} (单位为 $^{\circ}$),齿轮比为 r ,那么需要经过时间 t 之后当前的位置指令才会达到目标位置指令,时间 t 的计算公式为:

$$t = 2\sqrt{\frac{\pi r \theta_{ref}}{180\alpha}} \tag{3}$$

下面再以实际测试为例,设置 $\alpha=200$, $\theta_{ref}=180^\circ$,齿轮比 r=3.75,则理论规划时间 t=0.2507 s。实际测试结果如图 5 所示,其中第一通道波形代表换算到电机末端的位置指令(单位:rad),第二通道波形代表规划后的位置指令,第三通道波形代表实际位置,采样频率为 1 kHz。从图中可知,指令规划时间为 0.2507 s,实际速度上升时间约为 0.275 s。

图 5 位置模式测试 lpha=200 , $\; heta_{\it ref}=180^\circ$

设置 $\alpha=10$, $\theta_{ref}=180^{\circ}$,齿轮比 r=3.75 ,则理论规划时间 $t=1.121\,\mathrm{s}$ 。实际测试结果如图

6 所示,其中第一通道波形代表换算到电机末端的位置指令(单位:rad),第二通道波形代表规划后的位置指令,第三通道波形代表实际位置,采样频率为1kHz。从图中可知,指令规划时间为1.121s,实际速度上升时间约为1.125s。

图 6 位置模式测试lpha=10, $heta_{ref}=180^\circ$

3.9 负载惯量比设置报文格式

设置电机负载和电机本体的惯量比,默认为1。

标识符: 0x301

帧类型:标准帧

帧格式: DATA

DLC: 8字节

数据域	DATA0	DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7
内容	电机 ID	命令 ID	惯量比	惯量比	保存标	-	-	-
			高8位	低 8 位	志			

电机 ID: 1~7。

命令 ID: 0x04。

惯量比范围: $1\sim65535$,表示负载惯量是电机本体惯量的多少倍,该参数会影响速度闭环和位置闭环 控制效果。

保存标志: 0-不保存, 1-保存,保存时请确保电机处于静止状态。