

Kontest 3 - 30.09.2022

Rozwiązania Finaliści

Zadanie 1. Liczby całkowite dodatnie pokolorowano dwoma kolorami: czerwonym i niebieskim.

Udowodnij, że istnieje ciąg liczb całkowitych dodatnich $a_1 < a_2 < a_3 < \ldots$, taki, że: $a_1, \frac{a_1+a_2}{2}, a_2, \frac{a_2+a_3}{2}, a_3, \ldots$ są jednokolorowe.

Rozwiązanie: Załóżmy nie wprost, że nie istnieje taki nieskończony jednokolorowy ciąg. Niech $a_1, \frac{a_1+a_2}{2}, \dots, \frac{a_{n-1}+a_n}{2}, a_n$, będzie najdłuższym czerwonym ciągiem w tej formie, dla którego a_1 jest nieparzyste.

Analogicznie zdefiniujmy niebieski ciąg $b_1, \frac{b_1+b_2}{2}, \dots, \frac{b_{m-1}+b_m}{2}, b_m$, ponadto załóżmy bez straty ogólności, że $b_m > a_n$.

Weźmy dowolną czerwoną liczbę x spełniającą $x > b_m$ (jeśli wszystkie liczby spełniające tą nierówność są niebieskie to będzie istniał nieskończony ciąg z zadania i otrzymamy sprzecznosć).

Zauważmy, że $a_n, x, 2x - a_n$ nie mogą być wszystkie czerwone, gdyż wtedy będziemy mogli "przedłużyć" ciąg (a_n) i otrzymamy sprzeczność.

Zatem $2x - a_n$ będzie niebieskie. Podobnie $b_m, x + \frac{b_m - a_n}{2}, 2x - a_n$ nie mogą być wszystkie niebieskie, dlatego $x + \frac{b_m - a_n}{2}$ jest czerwone.

Powtarzając ten argument możemy pokazać, że wyrażenia $x + \frac{b_m - a_n}{2} k$ są czerwone dla każdego $k \in \mathbb{N}$, więc możemy stworzyć z nich nieskończony jednokolorowy ciąg z treści zadania. Otrzymana sprzeczność kończy dowód.

Zadanie 2. Dany jest trójkąt ABC, gdzie H jest jego ortocentrum, a M środkiem boku BC. Przypuśćmy, że punkty P,Q leżą na okręgu o średnicy AH, są różne od A. M leży na prostej PQ. Udowodnij, że ortocentrum trójkąta APQ leży na okręgu opisanym na trójkącie ABC.

Dla ułatwienia oznaczmy okrąg opisany na trójkącie ABC jako ω_1 , a okrąg o średnicy AH jako ω_2 .

Rozwiązanie 1: Niech R będzie przecięciem ω_1 i ω_2 oraz niech D, E, F będą odpowiednio ortocentrum trójkąta APQ, spodkiem wysokości z wierzchołka A w tym trójkącie oraz odbiciem D względem E. Zauważmy, że F leży na ω_2 , a E leży na okręgu o średnicy AM. Niech S i H' będą przecięciami AH z kolejno BC oraz ω_1 . Zauważmy R jest środkiem podobieństwa spiralnego przekształcającego DEF na H'SH zatem D leży ω_1 .

Rozwiązanie 2: Niech N i S będą środkami kolejno odcinków PQ i AH. Wtedy MS jest średnicą okręgu dziewięciu punktów, a NS symetralną odcinka PQ zatem N leży na okręgu dziewięciu punktów. Teraz zauważmy, że ortocentrum trójkąta APQ jest odbiciem H względem N, zatem skoro w jednokładności o skali 2 okrąg dziewięciu punktów przechodzi na ω_1 to ortocentrum trójkąta APQ leży na ω_1 .

Zadanie 3. Znajdź wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$, spełniające dla wszystkich x,y rzeczywistych:

$$f(f(x) + y) = f(x^2 - y) + 4f(x)y.$$

Rozwiązanie: Zróbmy sobie kilka podstawień:

• (x,y) = (0,0):

$$f(f(0)) = f(0)$$

•
$$(x,y) = (0, -f(0))$$
: $f(f(0) - f(0)) = f(f(0)) - 4f(0)f(0) \iff f(0) = f(0) - 4f(0)f(0) \iff f(0) = 0 \iff f(0) = 0$

• (x,y) = (0,y)

$$f(f(0) + y) = f(-y) + 4f(0)y \iff f(y) = f(-y)$$

•
$$(x,y) = (x, -f(x))$$

 $f(f(x) - f(x)) = f(x^2 + f(x)) - 4f(x)f(x) \iff f(x^2 + f(x)) = 4f(x)^2$

•
$$(x,y) = (x,x^2)$$

$$f(f(x) + x^2) = f(x^2 - x^2) + 4f(x)x^2 \iff f(f(x) + x^2) = 4f(x)x^2$$

Z dwóch ostatnich równań wynika, że dla dowolnego $x \in \mathbb{R}$ mamy

$$4f(x)^2 = 4f(x)x^2 \iff f(x) = 0 \lor f(x) = x^2$$

Chcemy teraz pokazać, że nie może się zdażyć, że dla pewnych $a, b \neq 0$ mamy f(a) = 0 oraz $f(b) = b^2$ (funkcja albo jest kwadratowa albo stała). Dowiedziemy tego nie wprost (ponownie poprzez podstawienia).

• (x,y) = (a,-b): $f(f(a)-b) = f(a^2+b) - 4f(a)b \iff f(-b) = f(a^2+b) \iff f(b) = f(a^2+b) \iff f(a^2+b) = b^2$ Oczywiście $f(a^2+b) = 0$ lub $f(a^2+b) = (a^2+b)^2$. W pierwszym przypadku otrzymujemy $b^2 = f(a^2+b) = 0$, zatem b = 0, więc otrzymujemy sprzeczność. Musi być zatem spełniony drugi przypadek. Otrzymujemy więc: $f(a^2+b) = (a^2+b)^2 = a^4+b^2+2a^2b \iff b^2 = a^4+b^2+2a^2b \iff a^2(a^2+2b) = 0$ Skoro $a \neq 0$ to $a^2+2b=0 \iff a^2=-2b$.

• (x,y) = (a,b) $f(f(a) + b) = f(a^2 - b) + 4f(a)b \iff f(b) = f(a^2 - b) \iff$ $\iff f(a^2 - b) = b^2 \iff f(-3b) = b^2$ Zauważmy, że $f(-3b) = (-3b)^2 = 9b^2$ lub f(-3b) = 0. W obu przypadkach rozważając równość $f(-3b) = b^2$ dochodzimy do wniosku, że b = 0, a zatem otrzymujemy sprzeczność, która dowodzi, że jedynymi rozwiązaniami mogą być $\forall_{x \in \mathbb{R}} f(x) = 0$ albo $\forall_{x \in \mathbb{R}} f(x) = x^2$. Pozostaje nam jedynie sprawdzić podstawiając do równania, że rzeczywiście obie te odpowiedzi są poprawne.

Zadanie 4. Niech P(x) będzie niestałym wielomianem o współczynnikach całkowitych.

Udowodnij, że nie istnieje funkcja $T: \mathbb{Z} \to \mathbb{Z}$, taka, że liczba rozwiązań: $T^n(x) = x$ jest równa P(n) dla każdego $n \ge 1$.

Rozwiązanie: Załóżmy, że istnieje wielomian P o stopniu co najmniej 1 o tych własnościach dla danej funkcji T. Oznaczmy jako A(n) zbiór wszystkich $x \in \mathbb{Z}$ takich, że $T^n(x) = x$ oraz jako B(n) zbiór wszystkich $x \in \mathbb{Z}$ takich, że $T^n(x) = x$ oraz $T^k(x) \neq x$ dla każdego $1 \leqslant k < n$. Zgodnie z przyjętym założeniem oba te zbiory są skończone. Dla każdego $x \in A(n)$ istnieje najmniejsze $k \geqslant 1$ takie, że $T^k(x) = x$, czyli $x \in B(k)$. Niech d = NWD(k,n). Istnieją takie dodatnie liczby całkowite r, s, że rk - sn = d, a zatem $x = T^{rk}(x) = T^{sn+d}(x) = T^d(T^{sn}(x)) = T^d(x)$. Z minimalność k wynika d = k, czyli $k \mid n$. Z drugiej strony $B(k) \subset A(n)$ jeśli $k \mid n$, więc mamy $A(n) = \bigcup_{d \mid n} B(d)$ jako sumę rozłączną a zatem:

$$|A(n)| = \sum_{d|n} |B(d)|$$

Co więcej, dla każdego $x \in B(n)$ wyrazy $x, T^1(x), T^2(x), \ldots, T^{n-1}(x)$ są n parami różnymi elementami B(n). Fakt, że są także w A(n) jest oczywisty. Jeśli dla pewnego k < n i dla pewnego $0 \le i < n$ mielibyśmy $T^k(T^i(x)) = T^i(x)$, czyli $T^{k+i}(x) = T^i(x)$, oznaczałoby to, że $x = T^n(x) = T^{n-i}(T^i(x)) = T^{n-i}(T^{k+i}(x)) = T^k(T^n(x)) = T^k(x)$ przecząc tym samym minimalności n. Zatem $T^i(x) \in B(n)$ oraz $T^i(x) \neq T^j(x)$ dla $0 \le i < j < n-1$.

Zatem w rzeczy samej T przestawia elementy B(n) w (rozłączne) cykle długości n, w szczególności $n \mid |B(n)|$.

Teraz niech $P(x) = \sum_{i=0}^{k} a_i x^i$, $a_i \in \mathbb{Z}$, $k \ge 1$, $a_k \ne 0$ i załóżmy, że |A(n)| = P(n) dla każdego $n \ge 1$.

Niech p będzie dowolną liczbą pierwszą. Wtedy:

$$p^2 | |B(p^2)| = |A(p^2)| - |A(p)| = a_1(p^2 - p) + a_2(p^4 - p^2) + \dots$$

Zatem $p \mid a_1$ a skoro jest to prawda dla każdej liczby pierwszej to $a_1 = 0$. Teraz rozważmy dowolne różne liczby pierwsze p i q. Skoro $a_1 = 0$ to zauważamy, że

$$|A(p^2q)| - |A(pq)| = a_2(p^4q^2 - p^2q^2) + a_3(p^6q^3 - p^3q^3) + \dots$$

jest wielokrotnością p^2q . Ale widzimy również, że:

$$p^2q \mid |B(p^2q)| = |A(p^2q)| - |A(pq) - |B(p^2)|$$

To implikuje:

$$p^2q \mid |B(p^2)| = |A(p^2)| - |A(p)| = a_2(p^4 - p^2) + a_3(p^6 - p^3) + \dots + a_k(p^{2k} - p^k)$$

Skoro jest to prawdą dla każdej liczby pierwszej q musimy mieć $a_2(p^4-p^2)+a_3(p^6-p^3)+\ldots+a_k(p^{2k}-p^k)=0$ dla każdej liczby pierwszej p. Wiedząc, że to wyrażenie jest wielomianem od p o stopniu 2k (ponieważ $a_k\neq 0$) otrzymujemy sprzeczność, ponieważ taki wielomian może mieć co najwyżej 2k miejsc zerowych.

5/5