pysal Documentation

Release 1.13.0

PySAL Developers

1 User Guide	3
2 Developer Guide	73
3 Library Reference	99
Bibliography	543
Python Module Index	54:

Releases

- Stable 1.13.0 (Released 2016-12-9)
- Development

PySAL is an open source library of spatial analysis functions written in Python intended to support the development of high level applications. PySAL is open source under the BSD License.

CHAPTER 1

User Guide

Introduction

Contents

- Introduction
 - History
 - Scope
 - Research Papers and Presentations

History

PySAL grew out of a collaborative effort between Luc Anselin's group previously located at the University of Illinois, Champaign-Urbana, and Serge Rey who was at San Diego State University. It was born out of a recognition that the respective projects at the two institutions, PySpace (now GeoDaSpace) and STARS - Space Time Analysis of Regional Systems, could benefit from a shared analytical core, since this would limit code duplication and free up additional developer time to focus on enhancements of the respective applications.

This recognition also came at a time when Python was starting to make major inroads in geographic information systems as represented by projects such as the Python Cartographic Library, Shapely and ESRI's adoption of Python as a scripting language, among others. At the same time there was a dearth of Python modules for spatial statistics, spatial econometrics, location modeling and other areas of spatial analysis, and the role for PySAL was then expanded beyond its support of STARS and GeoDaSpace to provide a library of core spatial analytical functions that could support the next generation of spatial analysis applications.

In 2008 the home for PySAL moved to the GeoDa Center for Geospatial Analysis and Computation at Arizona State University.

Scope

It is important to underscore what PySAL is, and is not, designed to do. First and foremost, PySAL is a **library** in the fullest sense of the word. Developers looking for a suite of spatial analytical methods that they can incorporate into application development should feel at home using PySAL. Spatial analysts who may be carrying out research projects requiring customized scripting, extensive simulation analysis, or those seeking to advance the state of the art in spatial analysis should also find PySAL to be a useful foundation for their work.

End users looking for a user friendly graphical user interface for spatial analysis should not turn to PySAL directly. Instead, we would direct them to projects like STARS and the GeoDaX suite of software products which wrap PySAL functionality in GUIs. At the same time, we expect that with developments such as the Python based plug-in architectures for QGIS, GRASS, and the toolbox extensions for ArcGIS, that end user access to PySAL functionality will be widening in the near future.

Research Papers and Presentations

- Rey, Sergio J. (2012) PySAL: A Python Library for Exploratory Spatial Data Analysis and Geocomputation (Movie) SciPy 2012.
- Rey, Sergio J. and Luc Anselin. (2010) PySAL: A Python Library of Spatial Analytical Methods. In M. Fischer and A. Getis (eds.) Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer, Berlin.
- Rey, Sergio J. and Luc Anselin. (2009) PySAL: A Python Library for Spatial Analysis and Geocomputation. (Movie) Python for Scientific Computing. Caltech, Pasadena, CA August 2009.
- Rey, Sergio J. (2009). Show Me the Code: Spatial Analysis and Open Source. *Journal of Geographical Systems* 11: 191-2007.
- Rey, S.J., Anselin, L., & M. Hwang. (2008). Dynamic Manipulation of Spatial Weights Using Web Services. GeoDa Center Working Paper 2008-12.

Install PySAL

Windows users can download an .exe installer here on Sourceforge.

PySAL is built upon the Python scientific stack including numpy and scipy. While these libraries are packaged for several platforms, the Anaconda and Enthought Python distributions include them along with the core Python library.

- Anaconda Python distribution
- Enthought Canopy

Note that while both Anaconda and Enthought Canopy will satisfy the dependencies for PySAL, the version of PySAL included in these distributions might be behind the latest stable release of PySAL. You can update to the latest stable version of PySAL with either of these distributions as follows:

- 1. In a terminal start the python version associated with the distribution. Make sure you are not using a different (system) version of Python. To check this use *which python* from a terminal to see if Anaconda or Enthought appear in the output.
- 2. pip install -U pysal

If you do not wish to use either Anaconda or Enthought, ensure the following software packages are available on your machine:

• Python 2.6, 2.7 or 3.4

- numpy 1.3 or later
- scipy 0.11 or later

Getting your feet wet

You can start using PySAL right away on the web with Wakari, PythonAnywhere, or SageMathCloud.

wakari http://continuum.io/wakari

PythonAnywhere https://www.pythonanywhere.com/

SageMathCloud https://cloud.sagemath.com/

Download and install

PySAL is available on the Python Package Index, which means it can be downloaded and installed manually or from the command line using *pip*, as follows:

```
pip install pysal
```

Alternatively, grab the source distribution (.tar.gz) and decompress it to your selected destination. Open a command shell and navigate to the decompressed pysal folder. Type:

```
pip install .
```

Development version on GitHub

Developers can checkout PySAL using git:

```
git clone https://github.com/pysal/pysal.git
```

Open a command shell and navigate to the cloned pysal directory. Type:

```
pip install -e .[dev]
```

The '-e' builds the modules in place and symlinks from the python site packages directory to the pysal folder. The advantage of this method is that you get the latest code but don't have to fuss with editing system environment variables.

To test your setup, start a Python session and type:

```
>>> import pysal
```

Keep up to date with pysal development by 'pulling' the latest changes:

```
git pull
```

Windows

To keep up to date with PySAL development, you will need a Git client that allows you to access and update the code from our repository. We recommend GitHub Windows for a more graphical client, or Git Bash for a command line client. This one gives you a nice Unix-like shell with familiar commands. Here is a nice tutorial on getting going with Open Source software on Windows.

1.2. Install PySAL 5

After cloning pysal, install it in develop mode so Python knows where to find it.

Open a command shell and navigate to the cloned pysal directory. Type:

```
pip install -e .[dev]
```

To test your setup, start a Python session and type:

```
>>> import pysal
```

Keep up to date with pysal development by 'pulling' the latest changes:

```
git pull
```

Troubleshooting

If you experience problems when building, installing, or testing pysal, ask for help on the OpenSpace list or browse the archives of the pysal-dev google group.

Please include the output of the following commands in your message:

1. Platform information:

```
python -c 'import os,sys;print os.name, sys.platform'
uname -a
```

2. Python version:

```
python -c 'import sys; print sys.version'
```

3. SciPy version:

```
python -c 'import scipy; print scipy.__version__'
```

3. NumPy version:

```
python -c 'import numpy; print numpy.__version__'
```

4. Feel free to add any other relevant information. For example, the full output (both stdout and stderr) of the pysal installation command can be very helpful. Since this output can be rather large, ask before sending it into the mailing list (or better yet, to one of the developers, if asked).

Getting Started with PySAL

Introduction to the Tutorials

Assumptions

The tutorials presented here are designed to illustrate a selection of the functionality in PySAL. Further details on PySAL functionality not covered in these tutorials can be found in the *API*. The reader is **assumed to have working knowledge of the particular spatial analytical methods** illustrated. Background on spatial analysis can be found in the references cited in the tutorials.

It is also assumed that the reader has already installed PySAL.

Examples

The examples use several sample data sets that are included in the pysal/examples directory. In the examples that follow, we refer to those using the path:

```
../pysal/examples/filename_of_example
```

You may need to adjust this path to match the location of the sample files on your system.

Getting Help

Help for PySAL is available from a number of sources.

email lists

The main channel for user support is the openspace mailing list.

Questions regarding the development of PySAL should be directed to pysal-dev.

Documentation

Documentation is available on-line at pysal.org.

You can also obtain help at the interpreter:

```
>>> import pysal
>>> help(pysal)
```

which would bring up help on PySAL:

Note that you can use this on any option within PySAL:

```
>>> w=pysal.lat2W()
>>> help(w)
```

which brings up:

```
Help on W in module pysal.weights object:
class W(__builtin__.object)
  Spatial weights
  Parameters
  neighbors
                  : dictionary
                     key is region ID, value is a list of neighbor IDS
                     Example: {'a':['b'],'b':['a','c'],'c':['b']}
| weights = None : dictionary
                     key is region ID, value is a list of edge weights
                     If not supplied all edge wegiths are assumed to have a weight,
\hookrightarrow of 1.
                      Example: {'a':[0.5],'b':[0.5,1.5],'c':[1.5]}
  id_order = None : list
                      An ordered list of ids, defines the order of
                      observations when iterating over W if not set,
                      lexicographical ordering is used to iterate and the
                      id_order_set property will return False. This can be
                      set after creation by setting the 'id_order' property.
```

Note that the help is truncated at the bottom of the terminal window and more of the contents can be seen by scrolling (hit any key).

An Overview of the FilelO system in PySAL.

Contents • An Overview of the FileIO system in PySAL. — Introduction — Examples: Reading files * Shapefiles * DBF Files * CSV Files * WKT Files * GeoDa Text Files * GAL Binary Weights Files * GWT Weights Files * ArcGIS Text Weights Files * ArcGIS DBF Weights Files

- * ArcGIS SWM Weights Files
- * DAT Weights Files
- * MATLAB MAT Weights Files
- * LOTUS WK1 Weights Files
- * GeoBUGS Text Weights Files
- * STATA Text Weights Files
- * MatrixMarket MTX Weights Files
- Examples: Writing files
 - * GAL Binary Weights Files
 - * GWT Weights Files
 - * ArcGIS Text Weights Files
 - * ArcGIS DBF Weights Files
 - * ArcGIS SWM Weights Files
 - * DAT Weights Files
 - * MATLAB MAT Weights Files
 - * LOTUS WK1 Weights Files
 - * GeoBUGS Text Weights Files
 - * STATA Text Weights Files
 - * MatrixMarket MTX Weights Files
- Examples: Converting the format of spatial weights files
- Alternative Tabular API

Introduction

PySAL contains a file input-output API that stands as a reference pure python implementation for spatial IO. The design goal for this API is to abstract file handling and return native PySAL data types when reading from known file types. A list of known extensions can be found by issuing the following command:

pysal.open.check()

Note that in some cases the FileIO module will peek inside your file to determine its type. For example "geoda_txt" is just a unique scheme for ".txt" files, so when opening a ".txt" pysal will peek inside the file to determine it if has the necessary header information and dispatch accordingly. In the event that pysal does not understand your file IO operations will be dispatched to python's internal open.

PySAL can also fully leverage Geopandas in analyses. It also provides an alternative, tabular data IO system, pdio.

Examples: Reading files

Shapefiles

```
>>> import pysal
>>> shp = pysal.open('../pysal/examples/10740.shp')
>>> poly = shp.next()
>>> type(poly)
<class 'pysal.cg.shapes.Polygon'>
>>> len(shp)
195
>>> shp.get(len(shp)-1).id
195
>>> polys = list(shp)
>>> len(polys)
195
```

DBF Files

```
>>> import pysal
>>> db = pysal.open('../pysal/examples/10740.dbf','r')
>>> db.header
['GIST_ID', 'FIPSSTCO', 'TRT2000', 'STFID', 'TRACTID']
>>> db.field_spec
[('N', 8, 0), ('C', 5, 0), ('C', 6, 0), ('C', 11, 0), ('C', 10, 0)]
>>> db.next()
[1, '35001', '000107', '35001000107', '1.07']
>>> db[0]
[[1, '35001', '000107', '35001000107', '1.07']]
>>> db[0:3]
[[1, '35001', '000107', '35001000107', '1.07'], [2, '35001', '000108', '35001000108',
→'1.08'], [3, '35001', '000109', '35001000109', '1.09']]
>>> db[0:5,1]
['35001', '35001', '35001', '35001', '35001']
>>> db[0:5,0:2]
[[1, '35001'], [2, '35001'], [3, '35001'], [4, '35001'], [5, '35001']]
>>> db[-1,-1]
['9712']
```

CSV Files

```
>>> import pysal
>>> db = pysal.open('../pysal/examples/stl_hom.csv')
>>> db.header
['WKT', 'NAME', 'STATE_NAME', 'STATE_FIPS', 'CNTY_FIPS', 'FIPS', 'FIPSNO', 'HR7984',
→ 'HR8488', 'HR8893', 'HC7984', 'HC8488', 'HC8893', 'P07984', 'P08488', 'P08893',
→ 'PE77', 'PE82', 'PE87', 'RDAC80', 'RDAC85', 'RDAC90']
>>> db[0]
[['POLYGON ((-89.585220336914062 39.978794097900391,-89.581146240234375 40.
→094867706298828,-89.603988647460938 40.095306396484375,-89.60589599609375 40.
→136119842529297,-89.6103515625 40.3251953125,-89.269027709960938 40.329566955566406,
\rightarrow -89.268562316894531 40.285579681396484, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.154655456542969 40.285774230957031, -89.1546655456542969 40.285774230957031, -89.154665545654969
→152763366699219 40.054969787597656,-89.151618957519531 39.919403076171875,-89.
→224777221679688 39.918678283691406,-89.411857604980469 39.918041229248047,-89.
→412437438964844 39.931644439697266,-89.495201110839844 39.933486938476562,-89.
→4927978515625 39.980186462402344,-89.585220336914062 39.978794097900391))', 'Logan',
→ 'Illinois', 17, 107, 17107, 17107, 2.115428, 1.290722, 1.624458, 4, 2, 3, 189087, □
 $\text{-154952}, 184677, 5.10432, 6.59578, 5.832951, -0.991256, -0.940265, -0.845005]]
```

```
>>> fromWKT = pysal.core.util.wkt.WKTParser()
>>> db.cast('WKT',fromWKT)
>>> type(db[0][0][0])
<class 'pysal.cg.shapes.Polygon'>
>>> db[0][0][1:]
['Logan', 'Illinois', 17, 107, 17107, 17107, 2.115428, 1.290722, 1.624458, 4, 2, 3, 4.89087, 154952, 184677, 5.10432, 6.59578, 5.832951, -0.991256, -0.940265, -0.845005]
>>> polys = db.by_col('WKT')
>>> from pysal.cg import standalone
>>> standalone.get_bounding_box(polys)[:]
[-92.70067596435547, 36.88180923461914, -87.91657257080078, 40.329566955566406]
```

WKT Files

```
>>> import pysal
>>> wkt = pysal.open('../pysal/examples/stl_hom.wkt', 'r')
>>> polys = wkt.read()
>>> wkt.close()
>>> print len(polys)
78
>>> print polys[1].centroid
(-91.19578469430738, 39.990883050220845)
```

GeoDa Text Files

```
>>> import pysal
>>> geoda_txt = pysal.open('../pysal/examples/stl_hom.txt', 'r')
>>> geoda_txt.header
['FIPSNO', 'HR8488', 'HR8893', 'HC8488']
>>> print len(geoda_txt)
78
>>> geoda_txt.dat[0]
['17107', '1.290722', '1.624458', '2']
>>> geoda_txt._spec
[<type 'int'>, <type 'float'>, <type 'int'>]
>>> geoda_txt.close()
```

GAL Binary Weights Files

```
>>> import pysal
>>> gal = pysal.open('../pysal/examples/sids2.gal','r')
>>> w = gal.read()
>>> gal.close()
>>> w.n
100
```

GWT Weights Files

```
>>> import pysal
>>> gwt = pysal.open('../pysal/examples/juvenile.gwt', 'r')
>>> w = gwt.read()
>>> gwt.close()
>>> w.n
168
```

ArcGIS Text Weights Files

```
>>> import pysal
>>> arcgis_txt = pysal.open('../pysal/examples/arcgis_txt.txt','r','arcgis_text')
>>> w = arcgis_txt.read()
>>> arcgis_txt.close()
>>> w.n
```

ArcGIS DBF Weights Files

```
>>> import pysal
>>> arcgis_dbf = pysal.open('../pysal/examples/arcgis_ohio.dbf','r','arcgis_dbf')
>>> w = arcgis_dbf.read()
>>> arcgis_dbf.close()
>>> w.n
88
```

ArcGIS SWM Weights Files

```
>>> import pysal
>>> arcgis_swm = pysal.open('../pysal/examples/ohio.swm','r')
>>> w = arcgis_swm.read()
>>> arcgis_swm.close()
>>> w.n
88
```

DAT Weights Files

```
>>> import pysal
>>> dat = pysal.open('../pysal/examples/wmat.dat','r')
>>> w = dat.read()
>>> dat.close()
>>> w.n
49
```

MATLAB MAT Weights Files

```
>>> import pysal
>>> mat = pysal.open('../pysal/examples/spat-sym-us.mat','r')
>>> w = mat.read()
>>> mat.close()
>>> w.n
46
```

LOTUS WK1 Weights Files

```
>>> import pysal
>>> wk1 = pysal.open('../pysal/examples/spat-sym-us.wk1','r')
>>> w = wk1.read()
>>> wk1.close()
>>> w.n
46
```

GeoBUGS Text Weights Files

```
>>> import pysal
>>> geobugs_txt = pysal.open('../pysal/examples/geobugs_scot','r','geobugs_text')
>>> w = geobugs_txt.read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]
>>> geobugs_txt.close()
>>> w.n
56
```

STATA Text Weights Files

```
>>> import pysal
>>> stata_txt = pysal.open('../pysal/examples/stata_sparse.txt','r','stata_text')
>>> w = stata_txt.read()
WARNING: there are 7 disconnected observations
Island ids: [5, 9, 10, 11, 12, 14, 15]
>>> stata_txt.close()
>>> w.n
56
```

MatrixMarket MTX Weights Files

This file format or its variant is currently under consideration of the PySAL team to store general spatial weights in a sparse matrix form.

```
>>> import pysal
>>> mtx = pysal.open('../pysal/examples/wmat.mtx','r')
>>> w = mtx.read()
>>> mtx.close()
```

```
>>> w.n
49
```

Examples: Writing files

GAL Binary Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> gal = pysal.open('../pysal/examples/virginia_queen.gal','w')
>>> gal.write(w)
>>> gal.close()
```

GWT Weights Files

Currently, it is not allowed to write a GWT file.

ArcGIS Text Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_txt = pysal.open('../pysal/examples/virginia_queen.txt','w','arcgis_text')
>>> arcgis_txt.write(w, useIdIndex=True)
>>> arcgis_txt.close()
```

ArcGIS DBF Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_dbf = pysal.open('../pysal/examples/virginia_queen.dbf','w','arcgis_dbf')
>>> arcgis_dbf.write(w, useIdIndex=True)
>>> arcgis_dbf.close()
```

ArcGIS SWM Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> arcgis_swm = pysal.open('../pysal/examples/virginia_queen.swm','w')
>>> arcgis_swm.write(w, useIdIndex=True)
>>> arcgis_swm.close()
```

DAT Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> dat = pysal.open('../pysal/examples/virginia_queen.dat','w')
>>> dat.write(w)
>>> dat.close()
```

MATLAB MAT Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> mat = pysal.open('../pysal/examples/virginia_queen.mat','w')
>>> mat.write(w)
>>> mat.close()
```

LOTUS WK1 Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> wk1 = pysal.open('../pysal/examples/virginia_queen.wk1','w')
>>> wk1.write(w)
>>> wk1.close()
```

GeoBUGS Text Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> geobugs_txt = pysal.open('../pysal/examples/virginia_queen','w','geobugs_text')
>>> geobugs_txt.write(w)
>>> geobugs_txt.close()
```

STATA Text Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> stata_txt = pysal.open('../pysal/examples/virginia_queen.txt','w','stata_text')
>>> stata_txt.write(w,matrix_form=True)
>>> stata_txt.close()
```

MatrixMarket MTX Weights Files

```
>>> import pysal
>>> w = pysal.queen_from_shapefile('../pysal/examples/virginia.shp',idVariable='FIPS')
>>> w.n
136
>>> mtx = pysal.open('../pysal/examples/virginia_queen.mtx','w')
>>> mtx.write(w)
>>> mtx.close()
```

Examples: Converting the format of spatial weights files

PySAL provides a utility tool to convert a weights file from one format to another.

From GAL to ArcGIS SWM format

```
>>> from pysal.core.util.weight_converter import weight_convert
>>> gal_file = '../pysal/examples/sids2.gal'
>>> swm_file = '../pysal/examples/sids2.swm'
>>> weight_convert(gal_file, swm_file, useIdIndex=True)
>>> wold = pysal.open(gal_file, 'r').read()
>>> wnew = pysal.open(swm_file, 'r').read()
>>> wold.n == wnew.n
True
```

For further details see the *FileIO API*.

Alternative Tabular API

For shapefile input and output, the dataframe API constructs a dataframe similar to that constructed by Geopandas, but populated by PySAL's own shape classes. This is provided as a convenience method for users who have shapefile-heavy workflows and would like to get Geopandas-style interaction. This API is only a frontend to the existing PySAL api documented above, and users who have heavier spatial data needs may find Geopandas useful.

Spatial Weights

- Spatial Weights
 - Introduction
 - PySAL Spatial Weight Types
 - * Contiguity Based Weights
 - * Distance Based Weights
 - * k-nearest neighbor weights
 - * Distance band weights

- * Kernel Weights
- Weights from other python objects
- A Closer look at W
 - * Attributes of W
 - * Weight Transformations
- W related functions
 - * Generating a full array
 - * Shimbel Matrices
 - * Higher Order Contiguity Weights
 - * Spatial Lag
 - * Non-Zero Diagonal
- WSets
 - * Union
 - * Intersection
 - * Difference
 - * Symmetric Difference
 - * Subset
- WSP
- Further Information

Introduction

Spatial weights are central components of many areas of spatial analysis. In general terms, for a spatial data set composed of n locations (points, areal units, network edges, etc.), the spatial weights matrix expresses the potential for interaction between observations at each pair i,j of locations. There is a rich variety of ways to specify the structure of these weights, and PySAL supports the creation, manipulation and analysis of spatial weights matrices across three different general types:

- Contiguity Based Weights
- Distance Based Weights
- · Kernel Weights

These different types of weights are implemented as instances or subclasses of the PySAL weights class W.

In what follows, we provide a high level overview of spatial weights in PySAL, starting with the three different types of weights, followed by a closer look at the properties of the W class and some related functions.¹

PySAL Spatial Weight Types

PySAL weights are handled in objects of the pysal.weights.W. The conceptual idea of spatial weights is that of a nxn matrix in which the diagonal elements (w_{ij}) are set to zero by definition and the rest of the cells (w_{ij}) capture

¹ Although this tutorial provides an introduction to the functionality of the PySAL weights class, it is not exhaustive. Complete documentation for the class and associated functions can be found by accessing the help from within a Python interpreter.

the potential of interaction. However, these matrices tend to be fairly sparse (i.e. many cells contain zeros) and hence a full nxn array would not be an efficient representation. PySAL employs a different way of storing that is structured in two main dictionaries²: neighbors which, for each observation (key) contains a list of the other ones (value) with potential for interaction ($w_{ij} \neq 0$); and weights, which contains the weight values for each of those observations (in the same order). This way, large datasets can be stored when keeping the full matrix would not be possible because of memory constraints. In addition to the sparse representation via the weights and neighbors dictionaries, a PySAL W object also has an attribute called sparse, which is a scipy.sparse CSR representation of the spatial weights. (See WSP for an alternative PySAL weights object.)

Contiguity Based Weights

To illustrate the general weights object, we start with a simple contiguity matrix constructed for a 5 by 5 lattice (composed of 25 spatial units):

```
>>> import pysal
>>> w = pysal.lat2W(5, 5)
```

The w object has a number of attributes:

```
>>> w.n
25
>>> w.pct_nonzero
12.8
>>> w.weights[0]
[1.0, 1.0]
>>> w.neighbors[0]
[5, 1]
>>> w.neighbors[5]
[0, 10, 6]
>>> w.histogram
[(2, 4), (3, 12), (4, 9)]
```

n is the number of spatial units, so conceptually we could be thinking that the weights are stored in a 25x25 matrix. The second attribute (pct_nonzero) shows the sparseness of the matrix. The key attributes used to store contiguity relations in W are the neighbors and weights attributes. In the example above we see that the observation with id 0 (Python is zero-offset) has two neighbors with ids [5, 1] each of which have equal weights of 1.0.

The histogram attribute is a set of tuples indicating the cardinality of the neighbor relations. In this case we have a regular lattice, so there are 4 units that have 2 neighbors (corner cells), 12 units with 3 neighbors (edge cells), and 9 units with 4 neighbors (internal cells).

In the above example, the default criterion for contiguity on the lattice was that of the rook which takes as neighbors any pair of cells that share an edge. Alternatively, we could have used the queen criterion to include the vertices of the lattice to define contiguities:

```
>>> wq = pysal.lat2W(rook = False)
>>> wq.neighbors[0]
[5, 1, 6]
```

The bishop criterion, which designates pairs of cells as neighbors if they share only a vertex, is yet a third alternative for contiguity weights. A bishop matrix can be computed as the *Difference* between the rook and queen cases.

The lat2W function is particularly useful in setting up simulation experiments requiring a regular grid. For empirical research, a common use case is to have a shapefile, which is a nontopological vector data structure, and a need to carry

² The dictionaries for the weights and value attributes in W are read-only.

out some form of spatial analysis that requires spatial weights. Since topology is not stored in the underlying file there is a need to construct the spatial weights prior to carrying out the analysis.

In PySAL, weights are constructed by default from any contiguity graph representation. Most users will find the .from_shapefile methods most useful:

```
>>> w = pysal.weights.Rook.from_shapefile("../pysal/examples/columbus.shp")
>>> w.n
49
>>> print "%.4f"%w.pct_nonzero
0.0833
>>> w.histogram
[(2, 7), (3, 10), (4, 17), (5, 8), (6, 3), (7, 3), (8, 0), (9, 1)]
```

If queen, rather than rook, contiguity is required then the following would work:

```
>>> w = pysal.weights.Queen.from_shapefile("../pysal/examples/columbus.shp")
>>> print "%.4f"%w.pct_nonzero
0.0983
>>> w.histogram
[(2, 5), (3, 9), (4, 12), (5, 5), (6, 9), (7, 3), (8, 4), (9, 1), (10, 1)]
```

In addition to these methods, contiguity weights can be built from dataframes with a geometry column. This includes dataframes built from geopandas or from the PySAL pandas IO extension, pdio. For instance:

```
>>> import geopandas as gpd
>>> test = gpd.read_file(pysal.examples.get_path('south.shp'))
>>> W = pysal.weights.Queen.from_dataframe(test)
>>> Wrook = pysal.weights.Rook.from_dataframe(test, idVariable='CNTY_FIPS')
>>> pdiodf = pysal.pdio.read_files(pysal.examples.get_path('south.shp'))
>>> W = pysal.weights.Rook.from_dataframe(pdiodf)
```

Or, weights can be constructed directly from an interable of shapely objects:

The .from_file method on contigutive weights simply passes down to the parent class's .from_file method, so the returned object is of instance W, not Queen or Rook. This occurs because the weights cannot be verified as contiguity weights without the original shapes.

```
>>> W = pysal.weights.Rook.from_file(pysal.examples.get_path('columbus.gal')
>>> type(W)
pysal.weights.weights.W
```

Distance Based Weights

In addition to using contiguity to define neighbor relations, more general functions of the distance separating observations can be used to specify the weights.

Please note that distance calculations are coded for a flat surface, so you will need to have your shapefile projected in advance for the output to be correct.

k-nearest neighbor weights

The neighbors for a given observations can be defined using a k-nearest neighbor criterion. For example we could use the the centroids of our 5x5 lattice as point locations to measure the distances. First, we import numpy to create the coordinates as a 25x2 numpy array named data:

```
>>> import numpy as np

>>> x,y=np.indices((5,5))

>>> x.shape=(25,1)

>>> y.shape=(25,1)

>>> data=np.hstack([x,y])
```

then define the KNN weight as:

```
>>> wknn3 = pysal.weights.KNN(data, k = 3)
>>> wknn3.neighbors[0]
[1, 5, 6]
>>> wknn3.s0
75.0
```

For efficiency, a KDTree is constructed to compute efficient nearest neighbor queries. To construct many K-Nearest neighbor weights from the same data, a convenience method is provided that prevents re-constructing the KDTree while letting the user change aspects of the weight object. By default, the reweight method operates in place:

```
>>> w4 = wknn3.reweight(k=4, inplace=False)
>>> w4.neighbors[0]
[1,5,6,2]
>>> l1norm = wknn3.reweight(p=1, inplace=False)
>>> l1norm.neighbors
[1,5,2]
>>> set(w4.neighbors[0]) == set([1, 5, 6, 2])
True
>>> w4.s0
100.0
>>> w4.weights[0]
[1.0, 1.0, 1.0, 1.0]
```

Alternatively, we can use a utility function to build a knn W straight from a shapefile:

Or from a dataframe:

```
>>> import geopandas as gpd
>>> df = gpd.read_file(ps.examples.get_path('baltim.shp'))
>>> k5 = pysal.weights.KNN.from_dataframe(df, k=5)
```

Distance band weights

Knn weights ensure that all observations have the same number of neighbors.³ An alternative distance based set of weights relies on distance bands or thresholds to define the neighbor set for each spatial unit as those other units falling

³ Ties at the k-nn distance band are randomly broken to ensure each observation has exactly k neighbors.

within a threshold distance of the focal unit:

```
>>> wthresh = pysal.weights.DistanceBand.from_array(data, 2)
>>> set(wthresh.neighbors[0]) == set([1, 2, 5, 6, 10])
True
>>> set(wthresh.neighbors[1]) == set( [0, 2, 5, 6, 7, 11, 3])
True
>>> wthresh.weights[0]
[1, 1, 1, 1, 1]
>>> wthresh.weights[1]
[1, 1, 1, 1, 1, 1, 1]
```

As can be seen in the above example, the number of neighbors is likely to vary across observations with distance band weights in contrast to what holds for knn weights.

In addition to constructing these from the helper function, Distance Band weights. For example, a threshold binary W can be constructed from a dataframe:

```
>>> import geopandas as gpd
>>> df = gpd.read_file(ps.examples.get_path('baltim.shp'))
>>> ps.weights.DistanceBand.from_dataframe(df, threshold=6, binary=True)
```

Distance band weights can be generated for shapefiles as well as arrays of points.⁴ First, the minimum nearest neighbor distance should be determined so that each unit is assured of at least one neighbor:

```
>>> thresh = pysal.min_threshold_dist_from_shapefile("../pysal/examples/columbus.shp")
>>> thresh
0.61886415807685413
```

with this threshold in hand, the distance band weights are obtained as:

Distance band weights can also be specified to take on continuous values rather than binary, with the values set to the inverse distance separating each pair within a given threshold distance. We illustrate this with a small set of 6 points:

```
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wid = pysal.weights.DistanceBand.from_array(points,14.2,binary=False)
>>> wid.weights[0]
[0.1000000000000001, 0.089442719099991588]
```

If we change the distance decay exponent to -2.0 the result is so called gravity weights:

⁴ If the shapefile contains geographical coordinates these distance calculations will be misleading and the user should first project their coordinates using a GIS.

Kernel Weights

A combination of distance based thresholds together with continuously valued weights is supported through kernel weights:

The bandwidth attribute plays the role of the distance threshold with kernel weights, while the form of the kernel function determines the distance decay in the derived continuous weights (the following are available: 'triangular','uniform','quadratic','epanechnikov','quartic','bisquare','gaussian'). In the above example, the bandwidth is set to the default value and fixed across the observations. The user could specify a different value for a fixed bandwidth:

which results in fewer neighbors for the first unit. Adaptive bandwidths (i.e., different bandwidths for each unit) can also be user specified:

```
[ 14.5],
[ 25. ]])
```

Alternatively the adaptive bandwidths could be defined endogenously:

Finally, the kernel function could be changed (with endogenous adaptive bandwidths):

More details on kernel weights can be found in *Kernel*. All kernel methods also support construction from shapefiles with Kernel.from_shapefile and from dataframes with Kernel.from_dataframe.

Weights from other python objects

PySAL weights can also be constructed easily from many other objects. Most importantly, all weight types can be constructed directly from geopandas geodataframes using the .from_dataframe method. For distance and kernel weights, underlying features should typically be points. But, if polygons are supplied, the centroids of the polygons will be used by default:

```
>>> import geopandas as gpd
>>> df = gpd.read_file(pysal.examples.get_path('columbus.shp'))
>>> kw = pysal.weights.Kernel.from_dataframe(df)
>>> dbb = pysal.weights.DistanceBand.from_dataframe(df, threshold=.9, binary=False)
>>> dbc = pysal.weights.DistanceBand.from_dataframe(df, threshold=.9, binary=True)
>>> q = pysal.weights.Queen.from_dataframe(df)
>>> r = pysal.weights.Rook.from_dataframe(df)
```

This also applies to dynamic views of the dataframe:

```
>>> q2 = pysal.weights.Queen.from_dataframe(df.query('DISCBD < 2'))
```

Weights can also be constructed from NetworkX objects. This is easiest to construct using a sparse weight, but that can be converted to a full dense PySAL weight easily:

```
>>> import networkx as nx
>>> G = nx.random_lobster(50,.2,.5)
>>> sparse_lobster = ps.weights.WSP(nx.adj_matrix(G))
>>> dense_lobster = sparse_lobster.to_W()
```

A Closer look at W

Although the three different types of spatial weights illustrated above cover a wide array of approaches towards specifying spatial relations, they all share common attributes from the base W class in PySAL. Here we take a closer look at some of the more useful properties of this class.

Attributes of W

W objects come with a whole bunch of useful attributes that may help you when dealing with spatial weights matrices. To see a list of all of them, same as with any other Python object, type:

```
>>> import pysal
>>> help(pysal.W)
```

If you want to be more specific and learn, for example, about the attribute s0, then type:

```
>>> help(pysal.W.s0)
Help on property:
```

float

$$s0 = \sum_{i} \sum_{j} w_{i,j}$$

Weight Transformations

Often there is a need to apply a transformation to the spatial weights, such as in the case of row standardization. Here each value in the row of the spatial weights matrix is rescaled to sum to one:

$$ws_{i,j} = w_{i,j} / \sum_{j} w_{i,j}$$

This and other weights transformations in PySAL are supported by the transform property of the W class. To see this let's build a simple contiguity object for the Columbus data set:

```
>>> w = pysal.rook_from_shapefile("../pysal/examples/columbus.shp")
>>> w.weights[0]
[1.0, 1.0]
```

We can row standardize this by setting the transform property:

```
>>> w.transform = 'r'
>>> w.weights[0]
[0.5, 0.5]
```

Supported transformations are the following:

• 'b': binary.

- 'r': row standardization.
- 'v': variance stabilizing.

If the original weights (unstandardized) are required, the transform property can be reset:

```
>>> w.transform = 'o'
>>> w.weights[0]
[1.0, 1.0]
```

Behind the scenes the transform property is updating all other characteristics of the spatial weights that are a function of the values and these standardization operations, freeing the user from having to keep these other attributes updated. To determine the current value of the transformation, simply query this attribute:

```
>>> w.transform
'O'
```

More details on other transformations that are supported in W can be found in pysal.weights.W.

W related functions

Generating a full array

As the underlying data structure of the weights in W is based on a sparse representation, there may be a need to work with the full numpy array. This is supported through the full method of W:

```
>>> wf = w.full()
>>> len(wf)
2
```

The first element of the return from w.full is the numpy array:

```
>>> wf[0].shape (49, 49)
```

while the second element contains the ids for the row (column) ordering of the array:

```
>>> wf[1][0:5]
[0, 1, 2, 3, 4]
```

If only the array is required, a simple Python slice can be used:

```
>>> wf = w.full()[0]
```

Shimbel Matrices

The Shimbel matrix for a set of n objects contains the shortest path distance separating each pair of units. This has wide use in spatial analysis for solving different types of clustering and optimization problems. Using the function *shimbel* with a W instance as an argument generates this information:

```
>>> w = pysal.lat2W(3,3)
>>> ws = pysal.shimbel(w)
>>> ws[0]
[-1, 1, 2, 1, 2, 3, 2, 3, 4]
```

Thus we see that observation 0 (the northwest cell of our 3x3 lattice) is a first order neighbor to observations 1 and 3, second order neighbor to observations 2, 4, and 6, a third order neighbor to 5, and 7, and a fourth order neighbor to observation 8 (the extreme southeast cell in the lattice). The position of the -1 simply denotes the focal unit.

Higher Order Contiguity Weights

Closely related to the shortest path distances is the concept of a spatial weight based on a particular order of contiguity. For example, we could define the second order contiguity relations using:

```
>>> w2 = pysal.higher_order(w, 2)
>>> w2.neighbors[0]
[4, 6, 2]
```

or a fourth order set of weights:

```
>>> w4 = pysal.higher_order(w, 4)
WARNING: there are 5 disconnected observations
Island ids: [1, 3, 4, 5, 7]
>>> w4.neighbors[0]
[8]
```

In both cases a new instance of the W class is returned with the weights and neighbors defined using the particular order of contiguity.

Spatial Lag

The final function related to spatial weights that we illustrate here is used to construct a new variable called the spatial lag. The spatial lag is a function of the attribute values observed at neighboring locations. For example, if we continue with our regular 3x3 lattice and create an attribute variable y:

```
>>> import numpy as np
>>> y = np.arange(w.n)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
```

then the spatial lag can be constructed with:

```
>>> yl = pysal.lag_spatial(w,y)
>>> yl
array([ 4., 6., 6., 10., 16., 14., 10., 18., 12.])
```

Mathematically, the spatial lag is a weighted sum of neighboring attribute values

$$yl_i = \sum_j w_{i,j} y_j$$

In the example above, the weights were binary, based on the rook criterion. If we row standardize our W object first and then recalculate the lag, it takes the form of a weighted average of the neighboring attribute values:

One important consideration in calculating the spatial lag is that the ordering of the values in y aligns with the underlying order in W. In cases where the source for your attribute data is different from the one to construct your weights you may need to reorder your y values accordingly. To check if this is the case you can find the order in W as follows:

```
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
```

In this case the lag_spatial function assumes that the first value in the y attribute corresponds to unit 0 in the lattice (northwest cell), while the last value in y would correspond to unit 8 (southeast cell). In other words, for the value of the spatial lag to be valid the number of elements in y must match w.n and the orderings must be aligned.

Fortunately, for the common use case where both the attribute and weights information come from a shapefile (and its dbf), PySAL handles the alignment automatically:⁵

```
>>> w = pysal.rook_from_shapefile("../pysal/examples/columbus.shp")
>>> f = pysal.open("../pysal/examples/columbus.dbf")
>>> f.header
['AREA', 'PERIMETER', 'COLUMBUS_', 'COLUMBUS_I', 'POLYID', 'NEIG', 'HOVAL', 'INC',
→'CRIME', 'OPEN', 'PLUMB', 'DISCBD', 'X', 'Y', 'NSA', 'NSB', 'EW', 'CP', 'THOUS',
>>> y = np.array(f.by_col['INC'])
>>> w.transform = 'r'
>>> y
                          , 15.956
                                                , 11.252
array([ 19.531 , 21.232
                                       4.477
                          , 11.337
                                       17.586
       16.028999,
                 8.438
                                                  13.598
        7.467 ,
                 10.048
                             9.549
                                        9.963
                                                   9.873
                            13.185 ,
                                       11.618
        7.625
                  9.798
                                                   31.07
                         , 21.155001, 14.236
                 11.709
       10.655
                                                   8.461
        8.085 , 10.822 , 7.856 , 8.681
                                                  13.906
       16.940001, 18.941999,
                                               , 12.814
                             9.918 , 14.948
       18.739 , 17.017 , 11.107 , 18.476999, 29.833
                                     , 16.961 , 14.135
       22.207001, 25.872999, 13.38
                                       18.796
       18.323999, 18.950001, 11.813
                                                ])
>>> yl = pysal.lag_spatial(w,y)
>>> yl
                 , 13.32133333, 14.123
array([ 18.594
                                            14.94425
       11.817857 , 14.419 , 10.283
                                             8.3364
       11.7576665 , 19.48466667, 10.0655
                                              9.1882
                   10.07716667, 11.231
                                             10.46185714,
        9.483
                   10.8605 , 12.46133333,
       21.94100033,
                                             15.39877778,
                            , 19.93666633,
       14.36333333, 15.0838
                                             10.90833333,
             , 11.403
                            , 15.13825 , 10.448
        9.7
                                        , 26.0662505 ,
       11.81
                , 12.64725 , 16.8435
                                          , 18.9123996 ,
       15.6405 , 18.05175 , 15.3824
       12.2418 , 12.76675 , 18.5314995 , 22.79225025,
                , 16.8435
                             , 14.2066 , 14.20075 ,
       22.575
                 , 18.6079995 , 26.0200005 , 15.818
       15.2515
>>> w.id order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
→ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

→ 45, 46, 47, 48]
```

⁵ The ordering exploits the one-to-one relation between a record in the DBF file and the shape in the shapefile.

Non-Zero Diagonal

The typical weights matrix has zeros along the main diagonal. This has the practical result of excluding the self from any computation. However, this is not always the desired situation, and so PySAL offers a function that adds values to the main diagonal of a W object.

As an example, we can build a basic rook weights matrix, which has zeros on the diagonal, then insert ones along the diagonal:

```
>>> w = pysal.lat2W(5, 5, id_type='string')
>>> w['id0']
{'id5': 1.0, 'id1': 1.0}
>>> w_const = pysal.weights.insert_diagonal(w)
>>> w_const['id0']
{'id5': 1.0, 'id0': 1.0, 'id1': 1.0}
```

The default is to add ones to the diagonal, but the function allows any values to be added.

WSets

PySAL offers set-like manipulation of spatial weights matrices. While a W is more complex than a set, the two objects have a number of commonalities allowing for traditional set operations to have similar functionality on a W. Conceptually, we treat each neighbor pair as an element of a set, and then return the appropriate pairs based on the operation invoked (e.g. union, intersection, etc.). A key distinction between a set and a W is that a W must keep track of the universe of possible pairs, even those that do not result in a neighbor relationship.

PySAL follows the naming conventions for Python sets, but adds optional flags allowing the user to control the shape of the weights object returned. At this time, all the functions discussed in this section return a binary W no matter the weights objects passed in.

Union

The union of two weights objects returns a binary weights object, W, that includes all neighbor pairs that exist in either weights object. This function can be used to simply join together two weights objects, say one for Arizona counties and another for California counties. It can also be used to join two weights objects that overlap as in the example below.

```
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.w_union(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[19, 11, 14]
```

Intersection

The intersection of two weights objects returns a binary weights object, W, that includes only those neighbor pairs that exist in both weights objects. Unlike the union case, where all pairs in either matrix are returned, the intersection

only returns a subset of the pairs. This leaves open the question of the shape of the weights matrix to return. For example, you have one weights matrix of census tracts for City A and second matrix of tracts for Utility Company B's service area, and want to find the W for the tracts that overlap. Depending on the research question, you may want the returned W to have the same dimensions as City A's weights matrix, the same as the utility company's weights matrix, a new dimensionality based on all the census tracts in either matrix or with the dimensionality of just those tracts in the overlapping area. All of these options are available via the w_shape parameter and the order that the matrices are passed to the function. The following example uses the all case:

```
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.w_intersection(w1, w2, 'all')
WARNING: there are 8 disconnected observations
Island ids: [16, 17, 18, 19, 20, 21, 22, 23]
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>> w2.neighbors[16]
[12, 20, 17]
>>> w.neighbors[16]
[]
```

Difference

The difference of two weights objects returns a binary weights object, W, that includes only neighbor pairs from the first object that are not in the second. Similar to the intersection function, the user must select the shape of the weights object returned using the w_shape parameter. The user must also consider the constrained parameter which controls whether the observations and the neighbor pairs are differenced or just the neighbor pairs are differenced. If you were to apply the difference function to our city and utility company example from the intersection section above, you must decide whether or not pairs that exist along the border of the regions should be considered different or not. It boils down to whether the tracts should be differenced first and then the differenced pairs identified (constrained=True), or if the differenced pairs should be identified based on the sets of pairs in the original weights matrices (constrained=False). In the example below we difference weights matrices from regions with partial overlap.

```
>>> w1 = pysal.lat2W(6,4)
>>> w2 = pysal.lat2W(4,4)
>>> w1.neighbors[15]
[11, 14, 19]
>>> w2.neighbors[15]
[11, 14]
>>> w = pysal.w_difference(w1, w2, w_shape = 'w1', constrained = False)
WARNING: there are 12 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> w.neighbors[15]
[19]
>>> w.neighbors[19]
[15, 18, 23]
>>> w = pysal.w_difference(w1, w2, w_shape = 'min', constrained = False)
>>> 15 in w.neighbors
False
>>> w.neighbors[19]
[18, 23]
```

```
>>> w = pysal.w_difference(w1, w2, w_shape = 'w1', constrained = True)
WARNING: there are 16 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.neighbors[15]
[]
>>> w.neighbors[19]
[18, 23]
>>> w = pysal.w_difference(w1, w2, w_shape = 'min', constrained = True)
>>> 15 in w.neighbors
False
>>> w.neighbors[19]
[18, 23]
```

The difference function can be used to construct a bishop *contiguity weights matrix* by differencing a queen and rook matrix.

```
>>> wr = pysal.lat2W(5,5)
>>> wq = pysal.lat2W(5,5,rook = False)
>>> wb = pysal.w_difference(wq, wr,constrained = False)
>>> wb.neighbors[0]
[6]
```

Symmetric Difference

Symmetric difference of two weights objects returns a binary weights object, W, that includes only neighbor pairs that are not shared by either matrix. This function offers options similar to those in the difference function described above.

```
\rightarrow \rightarrow w1 = pvsal.lat2W(6, 4)
>>> w2 = pysal.lat2W(2, 4)
>>> w_lower = pysal.w_difference(w1, w2, w_shape = 'min', constrained = True)
>>> w_upper = pysal.lat2W(4, 4)
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'all', False)
>>> w_lower.id_order
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w_upper.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w.neighbors[11]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'min', False)
WARNING: there are 8 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7]
>>> 11 in w.neighbors
False
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'all', True)
WARNING: there are 16 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w.neighbors[11]
>>> w = pysal.w_symmetric_difference(w_lower, w_upper, 'min', True)
WARNING: there are 8 disconnected observations
Island ids: [0, 1, 2, 3, 4, 5, 6, 7]
```

```
>>> 11 in w.neighbors
False
```

Subset

Subset of a weights object returns a binary weights object, W, that includes only those observations provided by the user. It also can be used to add islands to a previously existing weights object.

```
>>> w1 = pysal.lat2W(6, 4)
>>> w1.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
>>> ids = range(16)
>>> w = pysal.w_subset(w1, ids)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
```

WSP

A thin PySAL weights object is available to users with extremely large weights matrices, on the order of 2 million or more observations, or users interested in holding many large weights matrices in RAM simultaneously. The pysal. weights.WSP is a thin weights object that does not include the neighbors and weights dictionaries, but does contain the scipy.sparse form of the weights. For many PySAL functions the W and WSP objects can be used interchangeably.

A WSP object can be constructed from a Matrix Market file (see *MatrixMarket MTX Weights Files* for more info on reading and writing mtx files in PySAL):

```
>>> mtx = pysal.open("../pysal/examples/wmat.mtx", 'r')
>>> wsp = mtx.read(sparse=True)
```

or built directly from a scipy.sparse object:

```
>>> import scipy.sparse

>>> rows = [0, 1, 1, 2, 2, 3]

>>> cols = [1, 0, 2, 1, 3, 3]

>>> weights = [1, 0.75, 0.25, 0.9, 0.1, 1]

>>> sparse = scipy.sparse.csr_matrix((weights, (rows, cols)), shape=(4,4))

>>> w = pysal.weights.WSP(sparse)
```

The WSP object has subset of the attributes of a W object; for example:

```
>>> w.n
4
>>> w.s0
4.0
>>> w.trcWtW_WW
6.394999999999999
```

The following functionality is available to convert from a W to a WSP:

```
>>> w = pysal.weights.lat2W(5,5)
>>> w.s0
80.0
>>> wsp = pysal.weights.WSP(w.sparse)
>>> wsp.s0
80.0
```

and from a WSP to W:

```
>>> sp = pysal.weights.lat2SW(5, 5)
>>> wsp = pysal.weights.WSP(sp)
>>> wsp.s0
80
>>> w = pysal.weights.WSP2W(wsp)
>>> w.s0
80
```

Further Information

For further details see the Weights API.

Spatial Autocorrelation

Contents • Spatial Autocorrelation - Introduction - Global Autocorrelation * Gamma Index of Spatial Autocorrelation * Join Count Statistics * Moran's I * Geary's C * Getis and Ord's G - Local Autocorrelation * Local Moran's I * Local G and G* - Further Information

Introduction

Spatial autocorrelation pertains to the non-random pattern of attribute values over a set of spatial units. This can take two general forms: positive autocorrelation which reflects value similarity in space, and negative autocorrelation or value dissimilarity in space. In either case the autocorrelation arises when the observed spatial pattern is different from what would be expected under a random process operating in space.

Spatial autocorrelation can be analyzed from two different perspectives. Global autocorrelation analysis involves the study of the entire map pattern and generally asks the question as to whether the pattern displays clustering or not. Local autocorrelation, on the other hand, shifts the focus to explore within the global pattern to identify clusters or so called hot spots that may be either driving the overall clustering pattern, or that reflect heterogeneities that depart from global pattern.

In what follows, we first highlight the global spatial autocorrelation classes in PySAL. This is followed by an illustration of the analysis of local spatial autocorrelation.

Global Autocorrelation

PySAL implements five different tests for global spatial autocorrelation: the Gamma index of spatial autocorrelation, join count statistics, Moran's I, Geary's C, and Getis and Ord's G.

Gamma Index of Spatial Autocorrelation

The Gamma Index of spatial autocorrelation consists of the application of the principle behind a general cross-product statistic to measuring spatial autocorrelation. The idea is to assess whether two similarity matrices for n objects, i.e., n by n matrices A and B measure the same type of similarity. This is reflected in a so-called Gamma Index $\Gamma = \sum_i \sum_j a_{ij}.b_{ij}$. In other words, the statistic consists of the sum over all cross-products of matching elements (i,j) in the two matrices.

The application of this principle to spatial autocorrelation consists of turning the first similarity matrix into a measure of attribute similarity and the second matrix into a measure of locational similarity. Naturally, the second matrix is the a spatial *weight* matrix. The first matrix can be any reasonable measure of attribute similarity or dissimilarity, such as a cross-product, squared difference or absolute difference.

Formally, then, the Gamma index is:

$$\Gamma = \sum_{i} \sum_{j} a_{ij}.w_{ij}$$

where the w_{ij} are the elements of the weights matrix and a_{ij} are corresponding measures of attribute similarity.

Inference for this statistic is based on a permutation approach in which the values are shuffled around among the locations and the statistic is recomputed each time. This creates a reference distribution for the statistic under the null hypothesis of spatial randomness. The observed statistic is then compared to this reference distribution and a pseudo-significance computed as

$$p = (m+1)/(n+1)$$

where m is the number of values from the reference distribution that are equal to or greater than the observed join count and n is the number of permutations.

The Gamma test is a two-sided test in the sense that both extremely high values (e.g., larger than any value in the reference distribution) and extremely low values (e.g., smaller than any value in the reference distribution) can be considered to be significant. Depending on how the measure of attribute similarity is defined, a high value will indicate positive or negative spatial autocorrelation, and vice versa. For example, for a cross-product measure of attribute similarity, high values indicate positive spatial autocorrelation and low values negative spatial autocorrelation. For a squared difference measure, it is the reverse. This is similar to the interpretation of the *Moran's I* statistic and *Geary's C* statistic respectively.

Many spatial autocorrelation test statistics can be shown to be special cases of the Gamma index. In most instances, the Gamma index is an unstandardized version of the commonly used statistics. As such, the Gamma index is scale

¹ Hubert, L., R. Golledge and C.M. Costanzo (1981). Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis 13, 224-233.

dependent, since no normalization is carried out (such as deviations from the mean or rescaling by the variance). Also, since the sum is over all the elements, the value of a Gamma statistic will grow with the sample size, everything else being the same.

PySAL implements four forms of the Gamma index. Three of these are pre-specified and one allows the user to pass any function that computes a measure of attribute similarity. This function should take three parameters: the vector of observations, an index i and an index j.

We will illustrate the Gamma index using the same small artificial example as we use for the *Join Count Statistics* in order to illustrate the similarities and differences between them. The data consist of a regular 4 by 4 lattice with values of 0 in the top half and values of 1 in the bottom half. We start with the usual imports, and set the random seed to 12345 in order to be able to replicate the results of the permutation approach.

```
>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)
```

We create the binary weights matrix for the 4 x 4 lattice and generate the observation vector y:

```
>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0
```

The Gamma index function has five arguments, three of which are optional. The first two arguments are the vector of observations (y) and the spatial weights object (w). Next are operation, the measure of attribute similarity, the default of which is operation = 'c' for cross-product similarity, $a_{ij} = y_i.y_j$. The other two built-in options are operation = 's' for squared difference, $a_{ij} = (y_i - y_j)^2$ and operation = 'a' for absolute difference, $a_{ij} = |y_i - y_j|$. The fourth option is to pass an arbitrary attribute similarity function, as in operation = func, where func is a function with three arguments, def func (y, i, j) with y as the vector of observations, and i and j as indices. This function should return a single value for attribute similarity.

The fourth argument allows the observed values to be standardized before the calculation of the Gamma index. To some extent, this addresses the scale dependence of the index, but not its dependence on the number of observations. The default is no standardization, standardize = 'no'. To force standardization, set standardize = 'yes' or 'y'. The final argument is the number of permutations, permutations with the default set to 999.

As a first illustration, we invoke the Gamma index using all the default values, i.e. cross-product similarity, no standardization, and permutations set to 999. The interesting statistics are the magnitude of the Gamma index g, the standardized Gamma index using the mean and standard deviation from the reference distribution, g_z and the pseudo-p value obtained from the permutation, g_s . In addition, the minimum (min_g), maximum (max_g) and mean ($mean_g$) of the reference distribution are available as well.

Note that the value for Gamma is exactly twice the BB statistic obtained in the example below, since the attribute similarity criterion is identical, but Gamma is not divided by 2.0. The observed value is very extreme, with only two

replications from the permutation equalling the value of 20.0. This indicates significant positive spatial autocorrelation.

As a second illustration, we use the squared difference criterion, which corresponds to the BW Join Count statistic. We reset the random seed to keep comparability of the results.

```
>>> np.random.seed(12345)
>>> g1 = pysal.Gamma(y,w,operation='s')
>>> g1.g
8.0
>>> "%.3f"%g1.g_z
'-3.706'
>>> g1.p_sim_g
0.001
>>> g1.min_g
14.0
>>> g1.max_g
48.0
>>> g1.mean_g
25.623623623623622
```

The Gamma index value of 8.0 is exactly twice the value of the BW statistic for this example. However, since the Gamma index is used for a two-sided test, this value is highly significant, and with a negative z-value, this suggests positive spatial autocorrelation (similar to Geary's C). In other words, this result is consistent with the finding for the Gamma index that used cross-product similarity.

As a third example, we use the absolute difference for attribute similarity. The results are identical to those for squared difference since these two criteria are equivalent for 0-1 values.

```
>>> np.random.seed(12345)
>>> g2 = pysal.Gamma(y,w,operation='a')
>>> g2.g
8.0
>>> "%.3f"%g2.g_z
'-3.706'
>>> g2.p_sim_g
0.001
>>> g2.min_g
14.0
>>> g2.max_g
48.0
>>> g2.mean_g
25.623623623623622
```

We next illustrate the effect of standardization, using the default operation. As shown, the value of the statistic is quite different from the unstandardized form, but the inference is equivalent.

```
>>> np.random.seed(12345)
>>> g3 = pysal.Gamma(y,w,standardize='y')
>>> g3.g
32.0
>>> "%.3f"%g3.g_z
'3.706'
>>> g3.p_sim_g
0.001
>>> g3.min_g
-48.0
>>> g3.max_g
20.0
```

```
>>> "%.3f"%g3.mean_g
'-3.247'
```

Note that all the tests shown here have used the weights matrix in binary form. However, since the Gamma index is perfectly general, any standardization can be applied to the weights.

Finally, we illustrate the use of an arbitrary attribute similarity function. In order to compare to the results above, we will define a function that produces a cross product similarity measure. We will then pass this function to the operation argument of the Gamma index.

As expected, the results are identical to those obtained with the default operation.

Join Count Statistics

The join count statistics measure global spatial autocorrelation for binary data, i.e., with observations coded as 1 or B (for Black) and 0 or W (for White). They follow the very simple principle of counting joins, i.e., the arrangement of values between pairs of observations where the pairs correspond to neighbors. The three resulting join count statistics are BB, WW and BW. Both BB and WW are measures of positive spatial autocorrelation, whereas BW is an indicator of negative spatial autocorrelation.

To implement the join count statistics, we need the spatial weights matrix in binary (not row-standardized) form. With y as the vector of observations and the spatial weight as $w_{i,j}$, the three statistics can be expressed as:

$$BB = (1/2) \sum_{i} \sum_{j} y_{i} y_{j} w_{ij}$$

$$WW = (1/2) \sum_{i} \sum_{j} (1 - y_{i})(1 - y_{j}) w_{ij}$$

$$BW = (1/2) \sum_{i} \sum_{j} (y_{i} - y_{j})^{2} w_{ij}$$

By convention, the join counts are divided by 2 to avoid double counting. Also, since the three joins exhaust all the possibilities, they sum to one half (because of the division by 2) of the total sum of weights $J=(1/2)S_0=(1/2)\sum_i\sum_j w_{ij}$.

Inference for the join count statistics can be based on either an analytical approach or a computational approach. The analytical approach starts from the binomial distribution and derives the moments of the statistics under the assumption of free sampling and non-free sampling. The resulting mean and variance are used to construct a standardized z-variable which can be approximated as a standard normal variate. However, the approximation is often poor in practice. We therefore only implement the computational approach.

² Technical details and derivations can be found in A.D. Cliff and J.K. Ord (1981). Spatial Processes, Models and Applications. London, Pion, pp. 34-41.

Computational inference is based on a permutation approach in which the values of y are randomly reshuffled many times to obtain a reference distribution of the statistics under the null hypothesis of spatial randomness. The observed join count is then compared to this reference distribution and a pseudo-significance computed as

$$p = (m+1)/(n+1)$$

where m is the number of values from the reference distribution that are equal to or greater than the observed join count and n is the number of permutations. Note that the join counts are a one sided-test. If the counts are extremely smaller than the reference distribution, this is not an indication of significance. For example, if the BW counts are extremely small, this is not an indication of *negative* BW autocorrelation, but instead points to the presence of BB or WW autocorrelation.

We will illustrate the join count statistics with a simple artificial example of a 4 by 4 square lattice with values of 0 in the top half and values of 1 in the bottom half.

We start with the usual imports, and set the random seed to 12345 in order to be able to replicate the results of the permutation approach.

```
>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)
```

We create the binary weights matrix for the 4 x 4 lattice and generate the observation vector y:

```
>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0
```

We obtain an instance of the joint count statistics BB, BW and WW as (J is half the sum of all the weights and should equal the sum of BB, WW and BW):

```
>>> jc=pysal.Join_Counts(y,w)
>>> jc.bb
10.0
>>> jc.bw
4.0
>>> jc.ww
10.0
>>> jc.J
```

The number of permutations is set to 999 by default. For other values, this parameter needs to be passed explicitly, as in:

```
>>> jc=pysal.Join_Counts(y,w,permutations=99)
```

The results in our simple example show that the BB counts are 10. There are in fact 3 horizontal joins in each of the bottom rows of the lattice as well as 4 vertical joins, which makes for bb = 3 + 3 + 4 = 10. The BW joins are 4, matching the separation between the bottom and top part.

The permutation results give a pseudo-p value for BB of 0.003, suggesting highly significant positive spatial autocorrelation. The average BB count for the sample of 999 replications is 5.5, quite a bit lower than the count of 10 we obtain. Only two instances of the replicated samples yield a value equal to 10, none is greater (the randomly permuted samples yield bb values between 0 and 10).

```
>>> len(jc.sim_bb)
999
>>> jc.p_sim_bb
```

The results for BW (negative spatial autocorrelation) show a probability of 1.0 under the null hypothesis. This means that all the values of BW from the randomly permuted data sets were larger than the observed value of 4. In fact the range of these values is between 7 and 24. In other words, this again strongly points towards the presence of positive spatial autocorrelation. The observed number of BB and WW joins (10 each) is so high that there are hardly any BW joins (4).

```
>>> len(jc.sim_bw)
999
>>> jc.p_sim_bw
1.0
>>> np.mean(jc.sim_bw)
12.811811811811811
>>> np.max(jc.sim_bw)
24.0
>>> np.min(jc.sim_bw)
7.0
```

Moran's I

Moran's I measures the global spatial autocorrelation in an attribute y measured over n spatial units and is given as:

$$I = n/S_0 \sum_{i} \sum_{j} z_i w_{i,j} z_j / \sum_{i} z_i z_i$$

where $w_{i,j}$ is a spatial weight, $z_i = y_i - \bar{y}$, and $S_0 = \sum_i \sum_j w_{i,j}$. We illustrate the use of Moran's I with a case study of homicide rates for a group of 78 counties surrounding St. Louis over the period 1988-93.³ We start with the usual imports:

```
>>> import pysal
>>> import numpy as np
```

Next, we read in the homicide rates:

```
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
```

To calculate Moran's I we first need to read in a GAL file for a rook weights matrix and create an instance of W:

```
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
```

The instance of Moran's I can then be obtained with:

```
>>> mi = pysal.Moran(y, w, two_tailed=False)
>>> "%.3f"%mi.I
'0.244'
```

³ Messner, S., L. Anselin, D. Hawkins, G. Deane, S. Tolnay, R. Baller (2000). An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh, PA, National Consortium on Violence Research (NCOVR)

```
>>> mi.EI
-0.012987012987012988
>>> "%.5f"%mi.p_norm
'0.00014'
```

From these results, we see that the observed value for I is significantly above its expected value, under the assumption of normality for the homicide rates.

If we peek inside the mi object to learn more:

```
>>> help(mi)
```

which generates:

```
Help on instance of Moran in module pysal.esda.moran:
class Moran
  Moran's I Global Autocorrelation Statistic
   Parameters
                   : array
  У
                     variable measured across n spatial units
                     spatial weights instance
   permutations : int
                     number of random permutations for calculation of pseudo-p_values
   Attributes
                : array
                  original variable
                : W
                  original w object
   permutations : int
                 number of permutations
                : float
  Т
                  value of Moran's I
                : float
   EΤ
                  expected value under normality assumption
   VI_norm
                : float
                  variance of I under normality assumption
  seI_norm
                : float
                  standard deviation of I under normality assumption
  z_norm
                : float
                  z-value of I under normality assumption
  p_norm
                : float
                  p-value of I under normality assumption (one-sided)
                  for two-sided tests, this value should be multiplied by 2
  VI_rand
                : float
                  variance of I under randomization assumption
   seI_rand
                : float
                  standard deviation of I under randomization assumption
   z_rand
                : float
                  z-value of I under randomization assumption
   p_rand
                : float
```

```
p-value of I under randomization assumption (1-tailed) sim : array (if permutations>0)
```

we see that we can base the inference not only on the normality assumption, but also on random permutations of the values on the spatial units to generate a reference distribution for I under the null:

```
>>> np.random.seed(10)
>>> mir = pysal.Moran(y, w, permutations = 9999)
```

The pseudo p value based on these permutations is:

```
>>> print mir.p_sim 0.0022
```

in other words there were 14 permutations that generated values for I that were as extreme as the original value, so the p value becomes (14+1)/(9999+1).⁴ Alternatively, we could use the realized values for I from the permutations and compare the original I using a z-transformation to get:

```
>>> print mir.EI_sim
-0.0118217511619
>>> print mir.z_sim
4.55451777821
>>> print mir.p_z_sim
2.62529422013e-06
```

When the variable of interest (y) is rates based on populations with different sizes, the Moran's I value for y needs to be adjusted to account for the differences among populations.⁵ To apply this adjustment, we can create an instance of the Moran_Rate class rather than the Moran class. For example, let's assume that we want to estimate the Moran's I for the rates of newborn infants who died of Sudden Infant Death Syndrome (SIDS). We start this estimation by reading in the total number of newborn infants (BIR79) and the total number of newborn infants who died of SIDS (SID79):

```
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> b = np.array(f.by_col('BIR79'))
>>> e = np.array(f.by_col('SID79'))
```

Next, we create an instance of W:

```
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
```

Now, we create an instance of Moran Rate:

```
>>> mi = pysal.esda.moran.Moran_Rate(e, b, w, two_tailed=False)
>>> "%6.4f" % mi.I
'0.1662'
>>> "%6.4f" % mi.EI
'-0.0101'
>>> "%6.4f" % mi.p_norm
'0.0042'
```

From these results, we see that the observed value for I is significantly higher than its expected value, after the adjustment for the differences in population.

⁴ Because the permutations are random, results from those presented here may vary if you replicate this example.

⁵ Assuncao, R. E. and Reis, E. A. 1999. A new proposal to adjust Moran's I for population density. Statistics in Medicine. 18, 2147-2162.

Geary's C

The fourth statistic for global spatial autocorrelation implemented in PySAL is Geary's C:

$$C = \frac{(n-1)}{2S_0} \sum_{i} \sum_{j} w_{i,j} (y_i - y_j)^2 / \sum_{i} z_i^2$$

with all the terms defined as above. Applying this to the St. Louis data:

```
>>> np.random.seed(12345)
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> gc = pysal.Geary(y, w)
>>> "%.3f"%gc.C
'0.597'
>>> gc.EC
1.0
>>> "%.3f"%gc.z_norm
'-5.449'
```

we see that the statistic C is significantly lower than its expected value EC. Although the sign of the standardized statistic is negative (in contrast to what held for I, the interpretation is the same, namely evidence of strong positive spatial autocorrelation in the homicide rates.

Similar to what we saw for Moran's I, we can base inference on Geary's C using random spatial permutations, which are actually run as a default with the number of permutations=999 (this is why we set the seed of the random number generator to 12345 to replicate the result):

```
>>> gc.p_sim
0.001
```

which indicates that none of the C values from the permuted samples was as extreme as our observed value.

Getis and Ord's G

The last statistic for global spatial autocorrelation implemented in PySAL is Getis and Ord's G:

$$G(d) = \frac{\sum_{i} \sum_{j} w_{i,j}(d) y_{i} y_{j}}{\sum_{i} \sum_{j} y_{i} y_{j}}$$

where d is a threshold distance used to define a spatial weight. Only pysal.weights.Distance. DistanceBand weights objects are applicable to Getis and Ord's G. Applying this to the St. Louis data:

Although we switched the contiguity-based weights object into another distance-based one, we see that the statistic G is significantly higher than its expected value EG under the assumption of normality for the homicide rates.

Similar to what we saw for Moran's I and Geary's C, we can base inference on Getis and Ord's G using random spatial permutations:

```
>>> np.random.seed(12345)
>>> g = G(y, dist_w, permutations=9999)
>>> print g.p_z_sim
0.000564384586974
>>> print g.p_sim
0.0065
```

with the first p-value based on a z-transform of the observed G relative to the distribution of values obtained in the permutations, and the second based on the cumulative probability of the observed value in the empirical distribution.

Local Autocorrelation

To measure local autocorrelation quantitatively, PySAL implements Local Indicators of Spatial Association (LISAs) for Moran's I and Getis and Ord's G.

Local Moran's I

PySAL implements local Moran's I as follows:

$$I_i = \frac{(n-1)z_i \sum_j w_{i,j} z_j}{\sum_j z_j^2}$$

which results in n values of local spatial autocorrelation, 1 for each spatial unit. Continuing on with the St. Louis example, the LISA statistics are obtained with:

```
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> np.random.seed(12345)
>>> lm = pysal.Moran_Local(y,w)
>>> lm.n
78
>>> len(lm.Is)
```

thus we see 78 LISAs are stored in the vector lm.Is. Inference about these values is obtained through conditional randomization⁶ which leads to pseudo p-values for each LISA:

```
>>> lm.p_sim
array([ 0.176,  0.073,  0.405,  0.267,  0.332,  0.057,  0.296,  0.242,
       0.055, 0.062, 0.273, 0.488, 0.44, 0.354,
                                                   0.415, 0.478,
       0.473, 0.374, 0.415, 0.21, 0.161, 0.025,
                                                  0.338, 0.375,
       0.285, 0.374, 0.208, 0.3 , 0.373, 0.411,
                                                   0.478, 0.414,
       0.009, 0.429, 0.269, 0.015, 0.005, 0.002,
                                                   0.077, 0.001,
       0.088, 0.459, 0.435,
                             0.365, 0.231, 0.017,
                                                   0.033, 0.04,
       0.068, 0.101, 0.284,
                             0.309, 0.113, 0.457,
                                                   0.045,
                                                          0.269,
                             0.379, 0.342, 0.39,
       0.118, 0.346, 0.328,
                                                   0.376,
                                                          0.467.
       0.357, 0.241, 0.26,
                             0.401, 0.185, 0.172,
                                                   0.248,
                                                          0.4
       0.482, 0.159, 0.373,
                             0.455, 0.083,
                                            0.128])
```

⁶ The n-1 spatial units other than i are used to generate the empirical distribution of the LISA statistics for each i.

To identify the significant ⁷ LISA values we can use numpy indexing:

and then use this indexing on the q attribute to find out which quadrant of the Moran scatter plot each of the significant values is contained in:

```
>>> lm.q[sig]
array([4, 1, 3, 1, 3, 1, 1, 3, 3, 3])
```

As in the case of global Moran's I, when the variable of interest is rates based on populations with different sizes, we need to account for the differences among population to estimate local Moran's Is. Continuing on with the SIDS example above, the adjusted local Moran's Is are obtained with:

```
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> b = np.array(f.by_col('BIR79'))
>>> e = np.array(f.by_col('SID79'))
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> np.random.seed(12345)
>>> lm = pysal.esda.moran.Moran_Local_Rate(e, b, w)
>>> lm.Is[:10]
array([-0.13452366, -1.21133985, 0.05019761, 0.06127125, -0.12627466, 0.23497679, 0.26345855, -0.00951288, -0.01517879, -0.34513514])
```

As demonstrated above, significant Moran's Is can be identified by using numpy indexing:

Local G and G*

Getis and Ord's G can be localized in two forms: G_i and G_i^* .

$$G_i(d) = \frac{\sum_j w_{i,j}(d)y_j - W_i \overline{y}(i)}{s(i)\{[(n-1)S_{1i} - W_i^2]/(n-2)\}(1/2)}, j \neq i$$

$$G_i^*(d) = \frac{\sum_j w_{i,j}(d)y_j - W_i^* \bar{y}}{s\{[(nS_{1i}^*) - (W_i^*)^2]/(n-1)\}^{(1/2)}}, j = i$$

where we have $W_i = \sum_{j \neq i} w_{i,j}(d)$, $\bar{y}(i) = \frac{\sum_j y_j}{(n-1)}$, $s^2(i) = \frac{\sum_j y_j^2}{(n-1)} - [\bar{y}(i)]^2$, $W_i^* = W_i + w_i$, $i, S_{1i} = \sum_j w_{i,j}^2 (j \neq i)$, and $S_{1i}^* = \sum_j w_{i,j}^2 (\forall j)$, \bar{y} and s^2 denote the usual sample mean and variance of y.

Continuing on with the St. Louis example, the G_i and G_i^* statistics are obtained with:

```
>>> from pysal.esda.getisord import G_Local
>>> np.random.seed(12345)
>>> lg = G_Local(y, dist_w)
>>> lg.n
```

⁷ Caution is required in interpreting the significance of the LISA statistics due to difficulties with multiple comparisons and a lack of independence across the individual tests. For further discussion see Anselin, L. (1995). "Local indicators of spatial association – LISA". Geographical Analysis, 27, 93-115.

```
78
>>> len(lg.Gs)
78
>>> lgstar = G_Local(y, dist_w, star=True)
>>> lgstar.n
78
>>> len(lgstar.Gs)
78
```

thus we see 78 G_i and G_i^* are stored in the vector lg.Gs and lgstar.Gs, respectively. Inference about these values is obtained through conditional randomization as in the case of local Moran's I:

```
>>> lg.p_sim
array([ 0.301, 0.037, 0.457, 0.011, 0.062, 0.006, 0.094, 0.163,
       0.075, 0.078, 0.419, 0.286, 0.138, 0.443, 0.36, 0.484,
       0.434, 0.251, 0.415, 0.21, 0.177, 0.001,
                                                  0.304, 0.042,
       0.285, 0.394, 0.208,
                            0.089, 0.244, 0.493,
                                                   0.478, 0.433,
       0.006, 0.429, 0.037,
                            0.105, 0.005, 0.216,
                                                   0.23, 0.023,
       0.105, 0.343, 0.395,
                            0.305, 0.264, 0.017,
                                                   0.033, 0.01,
       0.001, 0.115, 0.034,
                            0.225, 0.043, 0.312,
                                                   0.045, 0.092,
       0.118, 0.428, 0.258,
                            0.379, 0.408, 0.39,
                                                   0.475, 0.493,
                            0.454,
       0.357, 0.298,
                     0.232,
                                   0.149,
                                           0.161,
                                                   0.226, 0.4
       0.482, 0.159, 0.27,
                            0.423, 0.083,
                                           0.128])
```

To identify the significant G_i values we can use numpy indexing:

Further Information

For further details see the ESDA API.

Spatial Econometrics

Comprehensive user documentation on spreg can be found in Anselin, L. and S.J. Rey (2014) Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press, Chicago.

spreg API

For further details see the *spreg API*.

Spatial Smoothing

```
Contents

• Spatial Smoothing

— Introduction
```

- Age Standardization in PySAL
 - * Crude Age Standardization
 - * Direct Age Standardization
 - * Indirect Age Standardization
- Spatial Smoothing in PySAL
 - * Mean and Median Based Smoothing
 - * Non-parametric Smoothing
 - * Empirical Bayes Smoothers
 - * Excess Risk
- Further Information

Introduction

In the spatial analysis of attributes measured for areal units, it is often necessary to transform an extensive variable, such as number of disease cases per census tract, into an intensive variable that takes into account the underlying population at risk. Raw rates, counts divided by population values, are a common standardization in the literature, yet these tend to have unequal reliability due to different population sizes across the spatial units. This problem becomes severe for areas with small population values, since the raw rates for those areas tend to have higher variance.

A variety of spatial smoothing methods have been suggested to address this problem by aggregating the counts and population values for the areas neighboring an observation and using these new measurements for its rate computation. PySAL provides a range of smoothing techniques that exploit different types of moving windows and non-parametric weighting schemes as well as the Empirical Bayesian principle. In addition, PySAL offers several methods for calculating age-standardized rates, since age standardization is critical in estimating rates of some events where the probability of an event occurrence is different across different age groups.

In what follows, we overview the methods for age standardization and spatial smoothing and describe their implementations in PySAL.¹

Age Standardization in PySAL

Raw rates, counts divided by populations values, are based on an implicit assumption that the risk of an event is constant over all age/sex categories in the population. For many phenomena, however, the risk is not uniform and often highly correlated with age. To take this into account explicitly, the risks for individual age categories can be estimated separately and averaged to produce a representative value for an area.

PySAL supports three approaches to this age standardization: crude, direct, and indirect standardization.

Crude Age Standardization

In this approach, the rate for an area is simply the sum of age-specific rates weighted by the ratios of each age group in the total population.

To obtain the rates based on this approach, we first need to create two variables that correspond to event counts and population values, respectively.

¹ Although this tutorial provides an introduction to the PySAL implementations for spatial smoothing, it is not exhaustive. Complete documentation for the implementations can be found by accessing the help from within a Python interpreter.

```
>>> import numpy as np
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

Each set of numbers should include n by h elements where n and h are the number of areal units and the number of age groups. In the above example there are two regions with 4 age groups. Age groups are identical across regions. The first four elements in b represent the populations of 4 age groups in the first region, and the last four elements the populations of the same age groups in the second region.

To apply the crude age standardization, we need to make the following function call:

```
>>> from pysal.esda import smoothing as sm
>>> sm.crude_age_standardization(e, b, 2)
array([ 0.2375 , 0.26666667])
```

In the function call above, the last argument indicates the number of area units. The outcome in the second line shows that the age-standardized rates for two areas are about 0.24 and 0.27, respectively.

Direct Age Standardization

Direct age standardization is a variation of the crude age standardization. While crude age standardization uses the ratios of each age group in the observed population, direct age standardization weights age-specific rates by the ratios of each age group in a reference population. This reference population, the so-called standard million, is another required argument in the PySAL implementation of direct age standardization:

The outcome of direct age standardization includes a set of standardized rates and their confidence intervals. The confidence intervals can vary according to the value for the last argument, alpha.

Indirect Age Standardization

While direct age standardization effectively addresses the variety in the risks across age groups, its indirect counterpart is better suited to handle the potential imprecision of age-specific rates due to the small population size. This method uses age-specific rates from the standard million instead of the observed population. It then weights the rates by the ratios of each age group in the observed population. To compute the age-specific rates from the standard million, the PySAL implementation of indirect age standardization requires another argument that contains the counts of the events occurred in the standard million.

The outcome of indirect age standardization is the same as that of its direct counterpart.

Spatial Smoothing in PySAL

Mean and Median Based Smoothing

A simple approach to rate smoothing is to find a local average or median from the rates of each observation and its neighbors. The first method adopting this approach is the so-called locally weighted averages or disk smoother. In this method a rate for each observation is replaced by an average of rates for its neighbors. A *spatial weights object* is used to specify the neighborhood relationships among observations. To obtain locally weighted averages of the homicide rates in the counties surrounding St. Louis during 1979-84, we first read the corresponding data table and extract data values for the homicide counts (the 11th column) and total population (the 13th column):

```
>>> import pysal
>>> stl = pysal.open('../pysal/examples/stl_hom.csv', 'r')
>>> e, b = np.array(stl[:,10]), np.array(stl[:,13])
```

We then read the spatial weights file defining neighborhood relationships among the counties and ensure that the *order* of observations in the weights object is the same as that in the data table.

```
>>> w = pysal.open('../pysal/examples/stl.gal', 'r').read()
>>> if not w.id_order_set: w.id_order = range(1,len(stl) + 1)
```

Now we calculate locally weighted averages of the homicide rates.

A variation of locally weighted averages is to use median instead of mean. In other words, the rate for an observation can be replaced by the median of the rates of its neighbors. This method is called locally weighted median and can be applied in the following way:

In this method the procedure to find local medians can be iterated until no further change occurs. The resulting local medians are called iteratively resmoothed medians.

The pure local medians can also be replaced by a weighted median. To obtain weighted medians, we need to create an array of weights. For example, we can use the total population of the counties as auxiliary weights:

```
>>> rate = sm.Spatial_Median_Rate(e, b, w, aw=b)
>>> rate.r
```

When obtaining locally weighted medians, we can consider only a specific subset of neighbors rather than all of them. A representative method following this approach is the headbanging smoother. In this method all areal units are represented by their geometric centroids. Among the neighbors of each observation, only near collinear points are considered for median search. Then, triples of points are selected from the near collinear points, and local medians are computed from the triples' rates.² We apply this headbanging smoother to the rates of the deaths from Sudden Infant Death Syndrome (SIDS) for North Carolina counties during 1974-78. We first need to read the source data and extract the event counts (the 9th column) and population values (the 9th column). In this example the population values correspond to the numbers of live births during 1974-78.

```
>>> sids_db = pysal.open('../pysal/examples/sids2.dbf', 'r')
>>> e, b = np.array(sids_db[:,9]), np.array(sids_db[:,8])
```

Now we need to find triples for each observation. To support the search of triples, PySAL provides a class called Headbanging_Triples. This class requires an array of point observations, a spatial weights object, and the number of triples as its arguments:

```
>>> from pysal import knnW
>>> sids = pysal.open('../pysal/examples/sids2.shp', 'r')
>>> sids_d = np.array([i.centroid for i in sids])
>>> sids_w = knnW(sids_d, k=5)
>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order
>>> triples = sm.Headbanging_Triples(sids_d, sids_w, k=5)
```

The second line in the above example shows how to extract centroids of polygons. In this example we define 5 neighbors for each observation by using nearest neighbors criteria. In the last line we define the maximum number of triples to be found as 5.

Now we use the triples to compute the headbanging median rates:

As in the locally weighted medians, we can use a set of auxiliary weights and resmooth the medians iteratively.

Non-parametric Smoothing

Non-parametric smoothing methods compute rates without making any assumptions of distributional properties of rate estimates. A representative method in this approach is spatial filtering. PySAL provides the most simplistic form of spatial filtering where a user-specified grid is imposed on the data set and a moving window withi a fixed or adaptive radius visits each vertex of the grid to compute the rate at the vertex. Using the previous SIDS example, we can use Spatial_Filtering class:

² For the details of triple selection and headbanging smoothing please refer to Anselin, L., Lozano, N., and Koschinsky, J. (2006). "Rate Transformations and Smoothing". GeoDa Center Research Report.

The first and second arguments of the Spatial_Filtering class are a minimum bounding box containing the observations and a set of centroids representing the observations. Be careful that the bounding box is NOT the bounding box of the centroids. The fifth and sixth arguments are to specify the numbers of grid cells along x and y axes. The last argument, r, is to define the radius of the moving window. When this parameter is set, a fixed radius is applied to all grid vertices. To make the size of moving window variable, we can specify the minimum number of population in the moving window without specifying r:

```
>>> rate = sm.Spatial_Filtering(bbox, sids_d, e, b, 10, 10, pop=10000)
>>> rate.r
array([ 0.00157398,  0.00157398,  0.00157398,  0.00157398,  0.00166885,  0.00166885,  0.00166885,  0.00166885,  0.00166885,  0.00166885,  0.00166885,  0.00202977,  0.00215322,  0.00207378,  0.00207378,  0.00217173,  0.00232408,  0.00222717,  0.00245399,  0.00267857,  0.00267857])
```

The spatial rate smoother is another non-parametric smoothing method that PySAL supports. This smoother is very similar to the locally weighted averages. In this method, however, the weighted sum is applied to event counts and population values separately. The resulting weighted sum of event counts is then divided by the counterpart of population values. To obtain neighbor information, we need to use a spatial weights matrix as before.

Another variation of spatial rate smoother is kernel smoother. PySAL supports kernel smoothing by using a kernel spatial weights instance in place of a general spatial weights object.

Age-adjusted rate smoother is another non-parametric smoother that PySAL provides. This smoother applies direct age standardization while computing spatial rates. To illustrate the age-adjusted rate smoother, we create a new set of event counts and population values as well as a new kernel weights object.

```
>>> e = np.array([10, 8, 1, 4, 3, 5, 4, 3, 2, 1, 5, 3])
>>> b = np.array([100, 90, 15, 30, 25, 20, 30, 20, 80, 80, 90, 60])
```

```
>>> s = np.array([98, 88, 15, 29, 20, 23, 33, 25, 76, 80, 89, 66])
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw=Kernel(points)
>>> if not kw.id_order_set: kw.id_order = range(0,len(points))
```

In the above example we created 6 observations each of which has two age groups. To apply age-adjusted rate smoothing, we use the Age_Adjusted_Smoother class as follows:

Empirical Bayes Smoothers

The last group of smoothing methods that PySAL supports is based upon the Bayesian principle. These methods adjust a raw rate by taking into account information in the other raw rates. As a reference PySAL provides a method for a-spatial Empirical Bayes smoothing:

In the first line of the above example we aggregate the event counts and population values by observation. Next we applied the Empirical_Bayes class to the aggregated counts and population values.

A spatial Empirical Bayes smoother is also implemented in PySAL. This method requires an additional argument, i.e., a spatial weights object. We continue to reuse the kernel spatial weights object we built before.

Excess Risk

Besides a variety of spatial smoothing methods, PySAL provides a class for estimating excess risk from event counts and population values. Excess risks are the ratios of observed event counts over expected event counts. An example for the class usage is as follows:

Further Information

For further details see the Smoothing API.

Regionalization

Introduction

PySAL offers a number of tools for the construction of regions. For the purposes of this section, a "region" is a group of "areas," and there are generally multiple regions in a particular dataset. At this time, PySAL offers the max-p regionalization algorithm and tools for constructing random regions.

max-p

Most regionalization algorithms require the user to define a priori the number of regions to be built (e.g. k-means clustering). The max-p algorithm¹ determines the number of regions (p) endogenously based on a set of areas, a matrix of attributes on each area and a floor constraint. The floor constraint defines the minimum bound that a variable must reach for each region; for example, a constraint might be the minimum population each region must have. max-p further enforces a contiguity constraint on the areas within regions.

To illustrate this we will use data on per capita income from the lower 48 US states over the period 1929-2010. The goal is to form contiguous regions of states displaying similar levels of income throughout this period:

```
>>> import pysal
>>> import numpy as np
>>> import random
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
>>> pci = pci.transpose()
>>> pci.shape
(48, 81)
```

We also require set of binary contiguity *weights* for the Maxp class:

```
>>> w = pysal.open("../pysal/examples/states48.gal").read()
```

Once we have the attribute data and our weights object we can create an instance of Maxp:

```
>>> np.random.seed(100)
>>> random.seed(10)
>>> r = pysal.Maxp(w, pci, floor = 5, floor_variable = np.ones((48, 1)), initial = 99)
```

Here we are forming regions with a minimum of 5 states in each region, so we set the floor_variable to a simple unit vector to ensure this floor constraint is satisfied. We also specify the initial number of feasible solutions to 99 - which are then searched over to pick the optimal feasible solution to then commence with the more expensive swapping component of the algorithm.²

The Maxp instance s has a number of attributes regarding the solution. First is the definition of the regions:

```
>>> r.regions
[['44', '34', '3', '25', '1', '4', '47'], ['12', '46', '20', '24', '13'], ['14', '45',

| '35', '30', '39'], ['6', '27', '17', '29', '5', '43'], ['33', '40', '28', '15', '41']
| ', '9', '23', '31', '38'], ['37', '8', '0', '7', '21', '2'], ['32', '19', '11', '10']
| ', '22'], ['16', '26', '42', '18', '36']]
```

¹ Duque, J. C., L. Anselin and S. J. Rey. 2011. "The max-p-regions problem." *Journal of Regional Science* DOI: 10.1111/j.1467-9787.2011.00743.x

² Because this is a randomized algorithm, results may vary when replicating this example. To reproduce a regionalization solution, you should first set the random seed generator. See http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html for more information.

which is a list of eight lists of region ids. For example, the first nested list indicates there are seven states in the first region, while the last region has five states. To determine which states these are we can read in the names from the original csv file:

```
>>> f.header
['Name', 'STATE_FIPS', '1929', '1930', '1931', '1932', '1933', '1934', '1935', '1936',
→ '1937', '1938', '1939', '1940', '1941', '1942', '1943', '1944', '1945', '1946',
→'1947', '1948', '1949', '1950', '1951', '1952', '1953', '1954', '1955', '1956',
→'1957', '1958', '1959', '1960', '1961', '1962', '1963', '1964', '1965', '1966',
→'1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976',
→'1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986',
→'1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996',
→'1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',
→'2007', '2008', '2009']
>>> names = f.by_col('Name')
>>> names = np.array(names)
>>> print names
['Alabama' 'Arizona' 'Arkansas' 'California' 'Colorado' 'Connecticut'
 'Delaware' 'Florida' 'Georgia' 'Idaho' 'Illinois' 'Indiana' 'Iowa'
'Kansas' 'Kentucky' 'Louisiana' 'Maine' 'Maryland' 'Massachusetts'
'Michigan' 'Minnesota' 'Mississippi' 'Missouri' 'Montana' 'Nebraska'
'Nevada' 'New Hampshire' 'New Jersey' 'New Mexico' 'New York'
 'North Carolina' 'North Dakota' 'Ohio' 'Oklahoma' 'Oregon' 'Pennsylvania'
 'Rhode Island' 'South Carolina' 'South Dakota' 'Tennessee' 'Texas' 'Utah'
 'Vermont' 'Virginia' 'Washington' 'West Virginia' 'Wisconsin' 'Wyoming']
```

and then loop over the region definitions to identify the specific states comprising each of the regions:

```
>>> for region in r.regions:
...    ids = map(int,region)
...    print names[ids]
...
['Washington' 'Oregon' 'California' 'Nevada' 'Arizona' 'Colorado' 'Wyoming']
['Iowa' 'Wisconsin' 'Minnesota' 'Nebraska' 'Kansas']
['Kentucky' 'West Virginia' 'Pennsylvania' 'North Carolina' 'Tennessee']
['Delaware' 'New Jersey' 'Maryland' 'New York' 'Connecticut' 'Virginia']
['Oklahoma' 'Texas' 'New Mexico' 'Louisiana' 'Utah' 'Idaho' 'Montana'
'North Dakota' 'South Dakota']
['South Carolina' 'Georgia' 'Alabama' 'Florida' 'Mississippi' 'Arkansas']
['Ohio' 'Michigan' 'Indiana' 'Illinois' 'Missouri']
['Maine' 'New Hampshire' 'Vermont' 'Massachusetts' 'Rhode Island']
```

We can evaluate our solution by developing a pseudo pvalue for the regionalization. This is done by comparing the within region sum of squares for the solution against simulated solutions where areas are randomly assigned to regions that maintain the cardinality of the original solution. This method must be explicitly called once the Maxp instance has been created:

```
>>> r.inference()
>>> r.pvalue
0.01
```

so we see we have a regionalization that is significantly different than a chance partitioning.

Random Regions

PySAL offers functionality to generate random regions based on user-defined constraints. There are three optional parameters to constrain the regionalization: number of regions, cardinality and contiguity. The default case simply

takes a list of area IDs and randomly selects the number of regions and then allocates areas to each region. The user can also pass a vector of integers to the cardinality parameter to designate the number of areas to randomly assign to each region. The contiguity parameter takes a *spatial weights object* and uses that to ensure that each region is made up of spatially contiguous areas. When the contiguity constraint is enforced, it is possible to arrive at infeasible solutions; the maxiter parameter can be set to make multiple attempts to find a feasible solution. The following examples show some of the possible combinations of constraints.

```
>>> import random
>>> import numpy as np
>>> import pysal
>>> from pysal.region import Random_Region
>>> nregs = 13
>>> cards = range(2,14) + [10]
>>> w = pysal.lat2W(10,10,rook = False)
>>> ids = w.id_order
>>>
>>> # unconstrained
>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = Random_Region(ids)
>>> t0.regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]
>>> # cardinality and contiguity constrained (num_regions implied)
>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Region(ids, num_regions = nregs, cardinality = cards,...
>>> t1.regions[0]
[88, 97, 98, 89, 99, 86, 78, 59, 49, 69, 68, 79, 77]
>>> # cardinality constrained (num_regions implied)
>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = Random_Region(ids, num_regions = nregs, cardinality = cards)
>>> t2.regions[0]
[37, 62]
>>> # number of regions and contiguity constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t3 = Random_Region(ids, num_regions = nregs, contiquity = w)
>>> t3.regions[1]
[71, 72, 70, 93, 51, 91, 85, 74, 63, 73, 61, 62, 82]
>>> # cardinality and contiguity constrained
>>> random.seed(60)
>>> np.random.seed(60)
>>> t4 = Random_Region(ids, cardinality = cards, contiguity = w)
>>> t4.regions[0]
[88, 97, 98, 89, 99, 86, 78, 59, 49, 69, 68, 79, 77]
>>> # number of regions constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = Random_Region(ids, num_regions = nregs)
>>> t5.regions[0]
[37, 62, 26, 41, 35, 25, 36]
>>> # cardinality constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = Random_Region(ids, cardinality = cards)
>>> t6.regions[0]
```

```
[37, 62]
>>> # contiguity constrained
>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = Random_Region(ids, contiguity = w)
>>> t7.regions[0]
[37, 27, 36, 17]
>>>
```

Further Information

For further details see the Regionalization API.

Spatial Dynamics

Contents • Spatial Dynamics - Introduction - Markov Based Methods * Classic Markov * Spatial Markov * LISA Markov - Rank Based Methods * Spatial Rank Correlation * Rank Decomposition - Space-Time Interaction Tests * Knox Test * Modified Knox Test * Mantel Test * Jacquez Test Spatial Dynamics API

Introduction

PySAL implements a number of exploratory approaches to analyze the dynamics of longitudinal spatial data, or observations on fixed areal units over multiple time periods. Examples could include time series of voting patterns in US Presidential elections, time series of remote sensing images, labor market dynamics, regional business cycles, among many others. Two broad sets of spatial dynamics methods are implemented to analyze these data types. The first are Markov based methods, while the second are based on Rank dynamics.

Additionally, methods are included in this module to analyze patterns of individual events which have spatial and temporal coordinates associated with them. Examples include locations and times of individual cases of disease or

crimes. Methods are included here to determine if these event patterns exhibit space-time interaction.

Markov Based Methods

The Markov based methods include classic Markov chains and extensions of these approaches to deal with spatially referenced data. In what follows we illustrate the functionality of these Markov methods. Readers interested in the methodological foundations of these approaches are directed to¹.

Classic Markov

We start with a look at a simple example of classic Markov methods implemented in PySAL. A Markov chain may be in one of k different states at any point in time. These states are exhaustive and mutually exclusive. For example, if one had a time series of remote sensing images used to develop land use classifications, then the states could be defined as the specific land use classes and interest would center on the transitions in and out of different classes for each pixel.

For example, let's construct a small artificial chain consisting of 3 states (a,b,c) and 5 different pixels at three different points in time:

So the first pixel was in class 'b' in period 1, class 'a' in period 2, and class 'c' in period 3. We can summarize the overall transition dynamics for the set of pixels by treating it as a Markov chain:

The Markov instance m has an attribute class extracted from the chain - the assumption is that the observations are on the rows of the input and the different points in time on the columns. In addition to extracting the classes as an attribute, our Markov instance will also have a transitions matrix:

indicating that of the four pixels that began a transition interval in class 'a', 1 remained in that class, 2 transitioned to class 'b' and 1 transitioned to class 'c'.

This simple example illustrates the basic creation of a Markov instance, but the small sample size makes it unrealistic for the more advanced features of this approach. For a larger example, we will look at an application of Markov

¹ Rey, S.J. 2001. "Spatial empirics for economic growth and convergence", 34 Geographical Analysis, 33, 195-214.

methods to understanding regional income dynamics in the US. Here we will load in data on per capita income observed annually from 1929 to 2010 for the lower 48 US states:

```
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> pci.shape
(81, 48)
```

The first row of the array is the per capita income for the first year:

```
>>> pci[0, :]
                                   634, 1024, 1032,
                                                        518,
                                                                     507,
                                                                            948,
array([ 323,
               600,
                      310,
                             991,
                                                               347,
         607,
               581,
                      532,
                             393,
                                   414, 601,
                                                768,
                                                        906,
                                                               790,
                                                                     599,
                                                                            286,
               592,
                      596,
                             868,
                                   686,
                                          918,
                                                 410, 1152,
                                                               332,
                                                                     382,
                                                                            771,
         621.
                             874,
                                          426,
                                                 378,
        455,
               668,
                      772,
                                   271,
                                                       479,
                                                               551,
                                                                     634,
                                                                            434,
        741,
                      673,
                             675])
               460.
```

In order to apply the classic Markov approach to this series, we first have to discretize the distribution by defining our classes. There are many ways to do this, but here we will use the quintiles for each annual income distribution to define the classes:

A number of things need to be noted here. First, we are relying on the classification methods in PySAL for defining our quintiles. The class Quantiles uses quintiles as the default and will create an instance of this class that has multiple attributes, the one we are extracting in the first line is yb - the class id for each observation. The second thing to note is the transpose operator which gets our resulting array q5 in the proper structure required for use of Markov. Thus we see that the first spatial unit (Alabama with an income of 323) fell in the first quintile in 1929, while the last unit (Wyoming with an income of 675) fell in the fourth quintile².

So now we have a time series for each state of its quintile membership. For example, Colorado's quintile time series is:

indicating that it has occupied the 3rd, 4th and 5th quintiles in the distribution at different points in time. To summarize the transition dynamics for all units, we instantiate a Markov object:

```
>>> m5 = pysal.Markov(q5)
>>> m5.transitions
                                0.,
array([[ 729.,
                71.,
                         1.,
                                        0.1,
               567.,
                                3.,
       72.,
                        80.,
                                       0.],
               81., 631.,
           0.,
                               86.,
                                       2.1,
           0.,
                  3.,
                      86., 573.,
                                      56.1,
                               57.,
                                     741.]])
                  0.,
```

² The states are ordered alphabetically.

Assuming we can treat these transitions as a first order Markov chain, we can estimate the transition probabilities:

```
>>> m5.p
matrix([[ 0.91011236, 0.0886392 , 0.00124844, 0.
                                                        0.
                                 0.11080332, 0.00415512,
       [ 0.09972299,
                    0.78531856,
                                                         0.
                                                                  ],
       [ 0.
                     0.10125 , 0.78875 , 0.1075 ,
                                                         0.0025
                                                                  ],
       [ 0.
                    0.00417827, 0.11977716, 0.79805014,
                                                        0.077994431,
       [ 0.
                        , 0.00125156, 0.07133917,
                                                        0.9274092611)
                   0.
```

as well as the long run steady state distribution:

With the transition probability matrix in hand, we can estimate the first mean passage time:

```
>>> pysal.ergodic.fmpt(m5.p)
                                          29.60921231,
matrix([[ 4.81354357,
                          11.50292712,
                                                          53.38594954,
          103.59816743],
        [ 42.04774505,
                           5.34023324,
                                          18.74455332,
                                                         42.50023268,
           92.71316899],
          69.25849753,
                                           4.82147603,
                          27.21075248,
                                                         25.27184624,
           75.433056721,
           84.90689329,
                          42.85914824,
                                          17.18082642,
                                                          5.31299186,
           51.60953369],
          98.41295543,
                          56.36521038,
                                          30.66046735,
                                                         14.21158356,
            4.77619083]])
```

Thus, for a state with income in the first quintile, it takes on average 11.5 years for it to first enter the second quintile, 29.6 to get to the third quintile, 53.4 years to enter the fourth, and 103.6 years to reach the richest quintile.

Spatial Markov

Thus far we have treated all the spatial units as independent to estimate the transition probabilities. This hides a number of implicit assumptions. First, the transition dynamics are assumed to hold for all units and for all time periods. Second, interactions between the transitions of individual units are ignored. In other words regional context may be important to understand regional income dynamics, but the classic Markov approach is silent on this issue.

PySAL includes a number of spatially explicit extensions to the Markov framework. The first is the spatial Markov class that we illustrate here. We first are going to transform the income series to relative incomes (by standardizing by each period by the mean):

```
>>> import pysal
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)])
>>> pci = pci.transpose()
>>> rpci = pci / (pci.mean(axis = 0))
```

Next, we require a spatial weights object, and here we will create one from an external GAL file:

```
>>> w = pysal.open("../pysal/examples/states48.gal").read()
>>> w.transform = 'r'
```

Finally, we create an instance of the Spatial Markov class using 5 states for the chain:

```
>>> sm = pysal.Spatial_Markov(rpci, w, fixed = True, k = 5)
```

Here we are keeping the quintiles fixed, meaning the data are pooled over space and time and the quintiles calculated for the pooled data. This is why we first transformed the data to relative incomes. We can next examine the global transition probability matrix for relative incomes:

```
>>> sm.p
matrix([[ 0.91461837,
                       0.07503234, 0.00905563,
                                                  0.00129366,
        [ 0.06570302,
                       0.82654402,
                                     0.10512484,
                                                  0.00131406,
                                                                0.001314061,
        [ 0.00520833,
                       0.10286458,
                                    0.79427083,
                                                  0.09505208,
                                                                0.002604171,
        [ 0.
                       0.00913838,
                                    0.09399478,
                                                 0.84856397.
                                                                0.048302871,
        [ 0.
                                     0.
                                                  0.06217617,
                                                                0.9378238311)
```

The Spatial Markov allows us to compare the global transition dynamics to those conditioned on regional context. More specifically, the transition dynamics are split across economies who have spatial lags in different quintiles at the beginning of the year. In our example we have 5 classes, so 5 different conditioned transition probability matrices are estimated:

```
>>> for p in sm.P:
      print p
. . .
[[ 0.96341463  0.0304878
                       0.00609756 0.
                                             0.
[ 0.06040268  0.83221477  0.10738255  0.
                                             0.
                                                      ]
                       0.74
                                  0.12
                                             0.
ΓΟ.
            0.14
[ 0.
            0.03571429 0.32142857
                                  0.57142857
                                            0.07142857]
                       0.
                                  0.16666667
                                            0.8333333311
ΓΟ.
             0.
[[ 0.79831933  0.16806723  0.03361345  0.
                                             0.
[ 0.0754717
            0.88207547 0.04245283 0.
                                             0.
                                                      1
[ 0.00537634  0.06989247  0.8655914  0.05913978
                                            Ο.
[ 0.
            0.
                       0.06372549 0.90196078 0.03431373]
             0.
                       0.
                                 0.19444444 0.80555556]]
[ 0.
[[ 0.84693878  0.15306122  0.
                                 0.
                                            0.
[ 0.08133971  0.78947368  0.1291866  0.
[ 0.
                       0.09411765 0.87058824 0.035294121
            0.
                       0.
                                  0.10204082 0.8979591811
[ 0.
            0.
[[ 0.8852459
            0.09836066 0.
                                  0.01639344 0.
[ 0.03875969  0.81395349  0.13953488  0.
                                             0.00775194]
[ 0.0049505
            0.09405941
                       0.77722772 0.11881188 0.0049505 ]
             0.02339181
                       0.12865497
[ 0.
                                  0.75438596
                                            0.09356725]
             0.
                       0.
                                  0.09661836
                                            0.90338164]]
[ 0.
0.
                                             0.
            0.77419355 0.16129032 0.01612903 0.
[ 0.0483871
[ 0.01149425  0.16091954  0.74712644  0.08045977  0.
[ 0.
             0.01036269 0.06217617 0.89637306 0.03108808]
[ 0.
                                  0.02352941 0.97647059]]
```

The probability of a poor state remaining poor is 0.963 if their neighbors are in the 1st quintile and 0.798 if their neighbors are in the 2nd quintile. The probability of a rich economy remaining rich is 0.977 if their neighbors are in the 5th quintile, but if their neighbors are in the 4th quintile this drops to 0.903.

We can also explore the different steady state distributions implied by these different transition probabilities:

```
>>> sm.S
array([[ 0.43509425,  0.2635327 ,  0.20363044,  0.06841983,  0.02932278],
        [ 0.13391287,  0.33993305,  0.25153036,  0.23343016,  0.04119356],
```

```
[ 0.12124869, 0.21137444, 0.2635101, 0.29013417, 0.1137326 ],
[ 0.0776413, 0.19748806, 0.25352636, 0.22480415, 0.24654013],
[ 0.01776781, 0.19964349, 0.19009833, 0.25524697, 0.3372434 ]])
```

The long run distribution for states with poor (rich) neighbors has 0.435 (0.018) of the values in the first quintile, 0.263 (0.200) in the second quintile, 0.204 (0.190) in the third, 0.0684 (0.255) in the fourth and 0.029 (0.337) in the fifth quintile. And, finally the first mean passage times:

```
>>> for f in sm.F:
       print f
    2.29835259
] ]
                 28.95614035
                              46.14285714
                                            80.80952381 279.42857143]
   33.86549708
                3.79459555
                              22.57142857
                                            57.23809524 255.85714286]
   43.60233918
                 9.73684211
                               4.91085714
                                            34.66666667 233.28571429]
   46.62865497
                12.76315789
                               6.25714286
                                            14.61564626 198.619047621
Γ
   52.62865497
                18.76315789
                              12.25714286
                                            6.
                                                          34.1031746 ]]
    7.46754205
                 9.70574606
                              25.76785714
                                            74.53116883 194.23446197]
] ]
  27.76691978
                  2.94175577
                              24.97142857
                                            73.73474026 193.4380334 ]
   53.57477715
                 28.48447637
                               3.97566318
                                            48.76331169
                                                        168.46660482]
[
   72.03631562
                 46.94601483
                              18.46153846
                                             4.28393653
                                                        119.703293141
   77.17917276
                52.08887197
                              23.6043956
                                             5.14285714
                                                         24.2756403311
] ]
    8.24751154
                 6.53333333
                              18.38765432
                                            40.70864198 112.767320261
                              11.85432099
  47.35040872
                 4.73094099
                                            34.17530864 106.23398693]
Γ
                               3.794921
  69.42288828
                24.76666667
                                            22.32098765
                                                        94.379665941
[
                                            3.44668119
                                                        76.36702977]
  83.72288828
               39.06666667
                              14.3
   93.52288828
                48.86666667
                              24.1
                                            9.8
                                                          8.7925540611
                              19.83446328
[[ 12.87974382
                13.34847151
                                            28.47257282 55.82395142]
99.46114206
                 5.06359731
                              10.54545198 23.05133495 49.689444231
[ 117.76777159
                 23.03735526
                               3.94436301
                                            15.0843986
                                                         43.579272471
                                                          31.63099455]
[ 127.89752089
                 32.4393006
                              14.56853107
                                            4.44831643
[ 138.24752089
                 42.7893006
                                                          4.05613474]]
                              24.91853107
                                            10.35
[[ 56.2815534
                 1.5
                              10.57236842
                                            27.02173913 110.54347826]
   82.9223301
                  5.00892857
                               9.07236842
                                            25.52173913 109.043478261
   97.17718447
                 19.53125
                               5.26043557
                                            21.42391304 104.94565217]
[ 127.1407767
                 48.74107143
                              33.29605263
                                             3.91777427
                                                          83.521739131
[ 169.6407767
                 91.24107143
                              75.79605263
                                            42.5
                                                           2.96521739]]
```

States with incomes in the first quintile with neighbors in the first quintile return to the first quintile after 2.298 years, after leaving the first quintile. They enter the fourth quintile 80.810 years after leaving the first quintile, on average. Poor states within neighbors in the fourth quintile return to the first quintile, on average, after 12.88 years, and would enter the fourth quintile after 28.473 years.

LISA Markov

The Spatial Markov conditions the transitions on the value of the spatial lag for an observation at the beginning of the transition period. An alternative approach to spatial dynamics is to consider the joint transitions of an observation and its spatial lag in the distribution. By exploiting the form of the static *LISA* and embedding it in a dynamic context we develop the LISA Markov in which the states of the chain are defined as the four quadrants in the Moran scatter plot. Continuing on with our US example:

```
>>> import numpy as np
>>> f = pysal.open("../pysal/examples/usjoin.csv")
>>> pci = np.array([f.by_col[str(y)] for y in range(1929, 2010)]).transpose()
>>> w = pysal.open("../pysal/examples/states48.gal").read()
>>> lm = pysal.LISA_Markov(pci, w)
```

```
>>> lm.classes array([1, 2, 3, 4])
```

The LISA transitions are:

```
>>> lm.transitions
array([[ 1.08700000e+03,
                            4.40000000e+01,
                                              4.00000000e+00,
          3.40000000e+011,
                            4.70000000e+02,
       [ 4.10000000e+01,
                                              3.60000000e+01,
          1.00000000e+00],
         5.00000000e+00,
                            3.40000000e+01,
                                              1.42200000e+03,
          3.90000000e+011,
         3.00000000e+01,
                          1.00000000e+00,
                                              4.00000000e+01,
          5.52000000e+02]])
```

and the estimated transition probability matrix is:

The diagonal elements indicate the staying probabilities and we see that there is greater mobility for observations in quadrants 1 and 3 than 2 and 4.

The implied long run steady state distribution of the chain is

again reflecting the dominance of quadrants 1 and 3 (positive autocorrelation).³ Finally the first mean passage time for the LISAs is:

```
>>> pysal.ergodic.fmpt(lm.p)
matrix([[ 3.50121609, 37.93025465, 40.55772829, 43.17412009],
        [ 31.72800152, 7.04710419, 28.68182751, 49.91485137],
        [ 52.44489385, 47.42097495, 2.46952168, 43.75609676],
        [ 38.76794022, 51.51755827, 26.31568558, 5.96851095]])
```

Rank Based Methods

The second set of spatial dynamic methods in PySAL are based on rank correlations and spatial extensions of the classic rank statistics.

Spatial Rank Correlation

Kendall's τ is based on a comparison of the number of pairs of n observations that have concordant ranks between two variables. For spatial dynamics in PySAL, the two variables in question are the values of an attribute measured at

³ The complex values of the steady state distribution arise from complex eigenvalues in the transition probability matrix which may indicate cyclicality in the chain.

two points in time over n spatial units. This classic measure of rank correlation indicates how much relative stability there has been in the map pattern over the two periods.

The spatial τ decomposes these pairs into those that are spatial neighbors and those that are not, and examines whether the rank correlation is different between the two sets.⁴ To illustrate this we turn to the case of regional incomes in Mexico over the 1940 to 2010 period:

```
>>> import pysal
>>> f = pysal.open("../pysal/examples/mexico.csv")
>>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)]
>>> y = np.transpose(np.array([f.by_col[v] for v in vnames]))
```

We also introduce the concept of regime weights that defines the neighbor set as those spatial units belonging to the same region. In this example the variable "esquivel99" represents a categorical classification of Mexican states into regions:

```
>>> regime = np.array(f.by_col['esquive199'])
>>> w = pysal.weights.block_weights(regime)
>>> np.random.seed(12345)
```

Now we will calculate the spatial tau for decade transitions from 1940 through 2000 and report the observed spatial tau against that expected if the rank changes were randomly distributed in space by using 99 permutations:

```
>>> res=[pysal.SpatialTau(y[:,i],y[:,i+1],w,99) for i in range(6)]
>>> for r in res:
        ev = r.taus.mean()
. . .
        "%8.3f %8.3f %8.3f"%(r.tau_spatial, ev, r.tau_spatial_psim)
    0.397
           0.659
                      0.010'
   0.492
             0.706
                      0.010'
   0.651
             0.772
                      0.020'
   0.714
             0.752
                      0.210'
             0.705
                      0.270'
    0.683
    0.810
             0.819
                      0.280'
```

The observed level of spatial concordance during the 1940-50 transition was 0.397 which is significantly lower (p=0.010) than the average level of spatial concordance (0.659) from randomly permuted incomes in Mexico. Similar patterns are found for the next two transition periods as well. In other words the amount of rank concordance is significantly distinct between pairs of observations that are geographical neighbors and those that are not in these first three transition periods. This reflects the greater degree of spatial similarity within rather than between the regimes making the discordant pairs dominated by neighboring pairs.

Rank Decomposition

For a sequence of time periods, θ measures the extent to which rank changes for a variable measured over n locations are in the same direction within mutually exclusive and exhaustive partitions (regimes) of the n locations.

Theta is defined as the sum of the absolute sum of rank changes within the regimes over the sum of all absolute rank changes.⁴

```
>>> import pysal
>>> f = pysal.open("../pysal/examples/mexico.csv")
>>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)]
>>> y = np.transpose(np.array([f.by_col[v] for v in vnames]))
```

⁴ Rey, S.J. (2004) "Spatial dependence in the evolution of regional income distributions," in A. Getis, J. Mur and H.Zoeller (eds). Spatial Econometrics and Spatial Statistics. Palgrave, London, pp. 194-213.

Space-Time Interaction Tests

The third set of spatial dynamic methods in PySAL are global tests of space-time interaction. The purpose of these tests is to detect clustering within space-time event patterns. These patterns are composed of unique events that are labeled with spatial and temporal coordinates. The tests are designed to detect clustering of events in both space and time beyond "any purely spatial or purely temporal clustering", that is, to determine if the events are "interacting." Essentially, the tests examine the dataset to determine if pairs of events closest to each other in space are also those closest to each other in time. The null hypothesis of these tests is that the examined events are distributed randomly in space and time, i.e. the distance between pairs of events in space is independent of the distance in time. Three tests are currently implemented in PySAL: the Knox test, the Mantel test and the Jacquez k Nearest Neighbors test. These tests have been widely applied in epidemiology, criminology and biology. A more in-depth technical review of these methods is available in⁶.

Knox Test

The Knox test for space-time interaction employs user-defined critical thresholds in space and time to define proximity between events. All pairs of events are examined to determine if the distance between them in space and time is within the respective thresholds. The Knox statistic is calculated as the total number of event pairs where the spatial and temporal distances separating the pair are within the specified thresholds⁷. If interaction is present, the test statistic will be large. Significance is traditionally established using a Monte Carlo permuation method where event timestamps are permuted and the statistic is recalculated. This procedure is repeated to generate a distribution of statistics which is used to establish the pseudo-significance of the observed test statistic. This approach assumes a static underlying population from which events are drawn. If this is not the case the results may be biased⁸.

Formally, the specification of the Knox test is given as:

$$X = \sum_{i}^{n} \sum_{j}^{n} a_{ij}^{s} a_{ij}^{t}$$

$$a_{ij}^{s} = \begin{cases} 1, & \text{if } d_{ij}^{s} < \delta \\ 0, & \text{otherwise} \end{cases}$$

$$a_{ij}^{t} = \begin{cases} 1, & \text{if } d_{ij}^{t} < \tau \\ 0, & \text{otherwise} \end{cases}$$

Where n = number of events, a^s = adjacency in space, a^t = adjacency in time, d^s = distance in space, and d^t = distance in time. Critical space and time distance thresholds are defined as δ and τ , respectively.

⁵ Kulldorff, M. (1998). Statistical methods for spatial epidemiology: tests for randomness. In Gatrell, A. and Loytonen, M., editors, GIS and Health, pages 49–62. Taylor & Francis, London.

⁶ Tango, T. (2010). Statistical Methods for Disease Clustering. Springer, New York.

⁷ Knox, E. (1964). The detection of space-time interactions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 13(1):25–30.

⁸ R.D. Baker. (2004). Identifying space-time disease clusters. Acta Tropica, 91(3):291-299.

We illustrate the use of the Knox test using data from a study of Burkitt's Lymphoma in Uganda during the period 1961-759. We start by importing Numpy, PySAL and the interaction module:

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
```

The example data are then read in and used to create an instance of SpaceTimeEvents. This reformats the data so the test can be run by PySAL. This class requires the input of a point shapefile. The shapefile must contain a column that includes a timestamp for each point in the dataset. The class requires that the user input a path to an appropriate shapefile and the name of the column containing the timestamp. In this example, the appropriate column name is 'T'.

```
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')
```

Next, we run the Knox test with distance and time thresholds of 20 and 5, respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

```
>>> result = interaction.knox(events.space, events.t ,delta=20,tau=5,permutations=99)
```

Finally we examine the results. We call the statistic from the results dictionary. This reports that there are 13 events close in both space and time, based on our threshold definitions.

```
>>> print(result['stat'])
13
```

Then we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. Here, 99 permutations were used, but an alternative number can be specified by the user. In this case, the results indicate that we fail to reject the null hypothesis of no space-time interaction using an alpha value of 0.05.

```
>>> print("%2.2f"%result['pvalue'])
0.17
```

Modified Knox Test

A modification to the Knox test was proposed by Baker¹⁰. Baker's modification measures the difference between the original observed Knox statistic and its expected value. This difference serves as the test statistic. Again, the significance of this statistic is assessed using a Monte Carlo permutation procedure.

$$T = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij} g_{ij} - \frac{1}{n-1} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{j=1}^{n} f_{kj} g_{lj} \right)$$

Where n = number of events, f = adjacency in space, g = adjacency in time (calculated in a manner equivalent to a^s and a^t above in the Knox test). The first part of this statistic is equivalent to the original Knox test, while the second part is the expected value under spatio-temporal randomness.

Here we illustrate the use of the modified Knox test using the data on Burkitt's Lymphoma cases in Uganda from above. We start by importing Numpy, PySAL and the interaction module. Next the example data are then read in and used to create an instance of SpaceTimeEvents.

⁹ Kulldorff, M. and Hjalmars, U. (1999). The Knox method and other tests for space- time interaction. Biometrics, 55(2):544-552.

¹⁰ Williams, E., Smith, P., Day, N., Geser, A., Ellice, J., and Tukei, P. (1978). Space-time clustering of Burkitt's lymphoma in the West Nile district of Uganda: 1961-1975. British Journal of Cancer, 37(1):109.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')
```

Next, we run the modified Knox test with distance and time thresholds of 20 and 5, respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

Finally we examine the results. We call the statistic from the results dictionary. This reports a statistic value of 2.810160.

```
>>> print("%2.8f"%result['stat'])
2.81016043
```

Next we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. Here, 99 permutations were used, but an alternative number can be specified by the user. In this case, the results indicate that we fail to reject the null hypothesis of no space-time interaction using an alpha value of 0.05.

```
>>> print("%2.2f"%result['pvalue'])
0.11
```

Mantel Test

Akin to the Knox test in its simplicity, the Mantel test keeps the distance information discarded by the Knox test. The unstandardized Mantel statistic is calculated by summing the product of the spatial and temporal distances between all event pairs¹¹. To prevent multiplication by 0 in instances of colocated or simultaneous events, Mantel proposed adding a constant to the distance measurements. Additionally, he suggested a reciprocal transform of the resulting distance measurement to lessen the effect of the larger distances on the product sum. The test is defined formally below:

$$Z = \sum_{i}^{n} \sum_{j}^{n} (d_{ij}^{s} + c)^{p} (d_{ij}^{t} + c)^{p}$$

Where, again, d^s and d^t denote distance in space and time, respectively. The constant, c, and the power, p, are parameters set by the user. The default values are 0 and 1, respectively. A standardized version of the Mantel test is implemented here in PySAL, however. The standardized statistic (r) is a measure of correlation between the spatial and temporal distance matrices. This is expressed formally as:

$$r = \frac{1}{n^2 - n - 1} \sum_{i}^{n} \sum_{j}^{n} \left[\frac{d_{ij}^s - \bar{d}^s}{\sigma_{d^s}} \right] \left[\frac{d_{ij}^t - \bar{d}^t}{\sigma_{d^t}} \right]$$

Where d^s refers to the average distance in space, and d^t the average distance in time. For notational convenience σ_{d^t} and σ_{d^t} refer to the sample (not population) standard deviations, for distance in space and time, respectively. The same constant and power transformations may also be applied to the spatial and temporal distance matrices employed by the standardized Mantel. Significance is determined through a Monte Carlo permuation approach similar to that employed in the Knox test.

Again, we use the Burkitt's Lymphoma data to illustrate the test. We start with the usual imports and read in the example data.

¹¹ Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2):209–220.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')
```

The following example runs the standardized Mantel test with constants of 0 and transformations of 1, meaning the distance matrices will remain unchanged; however, as recommended by Mantel, a small constant should be added and an inverse transformation (i.e. -1) specified.

Next, we examine the result of the test.

```
>>> print("%6.6f"%result['stat'])
0.014154
```

Finally, we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistic for each of the 99 permutations. Again, note, the number of permutations can be changed by the user. According to these parameters, the results fail to reject the null hypothesis of no space-time interaction between the events.

```
>>> print("%2.2f"%result['pvalue'])
0.27
```

Jacquez Test

Instead of using a set distance in space and time to determine proximity (like the Knox test) the Jacquez test employs a nearest neighbor distance approach. This allows the test to account for changes in underlying population density. The statistic is calculated as the number of event pairs that are within the set of k nearest neighbors for each other in both space and time¹². Significance of this count is established using a Monte Carlo permutation method. The test is expressed formally as:

$$J_k = \sum_{i=1}^n \sum_{j=1}^n a^s_{ijk} a^t_{ijk}$$

$$a^s_{ijk} = \begin{cases} 1, & \text{if event } j \text{ is a } k \text{ nearest neighbor of event } i \text{ in space} \\ 0, & \text{otherwise} \end{cases}$$

$$a^t_{ijk} = \begin{cases} 1, & \text{if event } j \text{ is a } k \text{ nearest neighbor of event } i \text{ in time} \\ 0, & \text{otherwise} \end{cases}$$

Where n = number of cases; $a^s =$ adjacency in space; $a^t =$ adjacency in time. To illustrate the test, the Burkitt's Lymphoma data are employed again. We start with the usual imports and read in the example data.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spatial_dynamics.interaction as interaction
>>> np.random.seed(100)
>>> path = "../pysal/examples/burkitt"
>>> events = interaction.SpaceTimeEvents(path,'T')
```

¹² Jacquez, G. (1996). A k nearest neighbour test for space-time interaction. Statistics in Medicine, 15(18):1935–1949.

The following runs the Jacquez test on the example data for a value of k = 3 and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time. The significance of this can be assessed by calling the p-value from the results dictionary. Again, there is not enough evidence to reject the null hypothesis of no space-time interaction.

```
>>> result = interaction.jacquez(events.space, events.t ,k=3,permutations=99)
>>> print result['stat']
13
>>> print "%3.1f"%result['pvalue']
0.2
```

Spatial Dynamics API

For further details see the Spatial Dynamics API.

Using PySAL with Shapely for GIS Operations

New in version 1.3.

Introduction

The Shapely project is a BSD-licensed Python package for manipulation and analysis of planar geometric objects, and depends on the widely used GEOS library.

PySAL supports interoperation with the Shapely library through Shapely's Python Geo Interface. All PySAL geometries provide a __geo_interface__ property which models the geometries as a GeoJSON object. Shapely geometry objects also export the __geo_interface__ property and can be adapted to PySAL geometries using the pysal.cg. asShape function.

Additionally, PySAL provides an optional contrib module that handles the conversion between pysal and shapely data structures for you. The module can be found in at, pysal.contrib.shapely_ext.

Installation

Please refer to the Shapely website for instructions on installing Shapely and its dependencies, without which PySAL's Shapely extension will not work.

Usage

Using the Python Geo Interface...

```
>>> import pysal
>>> import shapely.geometry
>>> # The get_path function returns the absolute system path to pysal's
>>> # included example files no matter where they are installed on the system.
>>> fpath = pysal.examples.get_path('stl_hom.shp')
>>> # Now, open the shapefile using pysal's FileIO
>>> shps = pysal.open(fpath , 'r')
>>> # We can read a polygon...
>>> polygon = shps.next()
>>> # To use this polygon with shapely we simply convert it with
>>> # Shapely's asShape method.
```

```
>>> polygon = shapely.geometry.asShape(polygon)
>>> # now we can operate on our polygons like normal shapely objects...
>>> print "%.4f"%polygon.area
0.1701
>>> # We can do things like buffering...
>>> eroded_polygon = polygon.buffer(-0.01)
>>> print "%.4f"%eroded_polygon.area
0.1533
>>> # and containment testing...
>>> polygon.contains(eroded_polygon)
True
>>> eroded_polygon.contains(polygon)
False
>>> # To go back to pysal shapes we call pysal.cg.asShape...
>>> eroded_polygon = pysal.cg.asShape(eroded_polygon)
>>> type(eroded_polygon)
<class 'pysal.cg.shapes.Polygon'>
```

Using The PySAL shapely_ext module...

```
>>> import pysal
>>> from pysal.contrib import shapely_ext
>>> fpath = pysal.examples.get_path('stl_hom.shp')
>>> shps = pysal.open(fpath , 'r')
>>> polygon = shps.next()
>>> eroded_polygon = shapely_ext.buffer(polygon, -0.01)
>>> print "%0.4f"%eroded_polygon.area
0.1533
>>> shapely_ext.contains(polygon,eroded_polygon)
True
>>> shapely_ext.contains(eroded_polygon,polygon)
False
>>> type(eroded_polygon)
<class 'pysal.cg.shapes.Polygon'>
```

PySAL: Example Data Sets

PySAL comes with a number of example data sets that are used in some of the documentation strings in the source code. All the example data sets can be found in the **examples** directory.

10740

Polygon shapefile for Albuquerque New Mexico.

- 10740.dbf: attribute database file
- 10740.shp: shapefile
- 10740.shx: spatial index
- 10740_queen.gal: queen contiguity GAL format
- 10740_rook.gal: rook contiguity GAL format

book

Synthetic data to illustrate spatial weights. Source: Anselin, L. and S.J. Rey (in progress) Spatial Econometrics: Foundations.

• book.gal: rook contiguity for regular lattice

• book.txt: attribute data for regular lattice

calempdensity

Employment density for California counties. Source: Anselin, L. and S.J. Rey (in progress) Spatial Econometrics: Foundations.

• calempdensity.csv: data on employment and employment density in California counties.

chicago77

Chicago Community Areas (n=77). Source: Anselin, L. and S.J. Rey (in progress) Spatial Econometrics: Foundations.

• Chicago77.dbf: attribute data

• Chicago77.shp: shapefile

• Chicago77.shx: spatial index

desmith

Example data for autocorrelation analysis. Source: de Smith et al (2009) Geospatial Analysis (Used with permission)

• desmith.txt: attribute data for 10 spatial units

• desmith.gal: spatial weights in GAL format

juvenile

Cardiff juvenile delinquent residences.

• juvenile.dbf: attribute data

• juvenile.html: documentation

• juvenile.shp: shapefile

• juvenile.shx: spatial index

• juvenile.gwt: spatial weights in GWT format

mexico

State regional income Mexican states 1940-2000. Source: Rey, S.J. and M.L. Sastre Gutierrez. "Interregional inequality dynamics in Mexico." Spatial Economic Analysis. Forthcoming.

• mexico.csv: attribute data

• mexico.gal: spatial weights in GAL format

rook31

Small test shapefile

• rook31.dbf: attribute data

• rook31.gal: spatia weights in GAL format

rook31.shp: shapefilerook31.shx: spatial index

sacramento2

1998 and 2001 Zip Code Business Patterns (Census Bureau) for Sacramento MSA

· sacramento2.dbf

sacramento2.sbn

· sacramento2.sbx

· sacramento2.shp

sacramento2.shx

shp_test

Sample Shapefiles used only for testing purposes. Each example include a ".shp" Shapefile, ".shx" Shapefile Index, ".dbf" DBase file, and a ".prj" ESRI Projection file.

Examples include:

• Point: Example of an ESRI Shapefile of Type 1 (Point).

• Line: Example of an ESRI Shapefile of Type 3 (Line).

• Polygon: Example of an ESRI Shapefile of Type 5 (Polygon).

sids2

North Carolina county SIDS death counts and rates

• sids2.dbf: attribute data

• sids2.html: documentation

• sids2.shp: shapefile

• sids2.shx: spatial index

• sids2.gal: GAL file for spatial weights

stl hom

Homicides and selected socio-economic characteristics for counties surrounding St Louis, MO. Data aggregated for three time periods: 1979-84 (steady decline in homicides), 1984-88 (stable period), and 1988-93 (steady increase in homicides). Source: S. Messner, L. Anselin, D. Hawkins, G. Deane, S. Tolnay, R. Baller (2000). An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh, PA, National Consortium on Violence Research (NCOVR).

pysal Documentation, Release 1.13.0

• stl_hom.html: Metadata

• stl_hom.txt: txt file with attribute data

• stl_hom.wkt: A Well-Known-Text representation of the geometry.

• stl_hom.csv: attribute data and WKT geometry.

• stl.hom.gal: GAL file for spatial weights

US Regional Incomes

Per capita income for the lower 48 US states, 1929-2010

• us48.shp: shapefile

us48.dbf: dbf for shapefileus48.shx: index for shapefile

• usjoin.csv: attribute data (comma delimited file)

Virginia

Virginia Counties Shapefile.

· virginia.shp: Shapefile

· virginia.shx: shapefile index

• virginia.dbf: attributes

• virginia.prj: shapefile projection

Next Steps with PySAL

The tutorials you have (hopefully) just gone through should be enough to get you going with PySAL. They covered some, but not all, of the modules in PySAL, and at that, only a selection of the functionality of particular classes that were included in the tutorials. To learn more about PySAL you should consult the documentation.

PySAL is an open source, community-based project and we highly value contributions from individuals to the project. There are many ways to contribute, from filing bug reports, suggesting feature requests, helping with documentation, to becoming a developer. Individuals interested in joining the team should send an email to pysal-dev@googlegroups.com or contact one of the developers directly.

CHAPTER 2

Developer Guide

Go to our issues queue on GitHub NOW!

Guidelines

Contents

- Guidelines
 - Open Source Development
 - Source Code
 - Development Mailing List
 - Release Schedule
 - Governance
 - Voting and PEPs

PySAL is adopting many of the conventions in the larger scientific computing in Python community and we ask that anyone interested in joining the project please review the following documents:

- Documentation standards
- Coding guidelines
- Testing guidelines

Open Source Development

PySAL is an open source project and we invite any interested user who wants to contribute to the project to contact one of the team members. For users who are new to open source development you may want to consult the following

documents for background information:

Contributing to Open Source Projects HOWTO

Source Code

PySAL uses git and github for our code repository.

Please see our procedures and policies for development on GitHub as well as how to configure your local git for development.

You can setup PySAL for local development following the installation instructions.

Development Mailing List

Development discussions take place on pysal-dev and the gitter room.

Release Schedule

As of version 1.11, PySAL has moved to a rolling release model. Discussions about releases are carried out during the monthly developer meetings and in the gitter room.

Governance

PySAL is organized around the Benevolent Dictator for Life (BDFL) model of project management. The BDFL is responsible for overall project management and direction. Developers have a critical role in shaping that direction. Specific roles and rights are as follows:

Title	Role	Rights
BDFL	Project Director	Commit, Voting, Veto, Developer Approval/Management
Developer	Development	Commit, Voting

Voting and PEPs

During the initial phase of a release cycle, new functionality for PySAL should be described in a PySAL Enhancment Proposal (PEP). These should follow the standard format used by the Python project. For PySAL, the PEP process is as follows

- 1. Developer prepares a plain text PEP following the guidelines
- 2. Developer sends PEP to the BDFL
- 3. Developer posts PEP to the PEP index
- 4. All developers consider the PEP and vote
- 5. PEPs receiving a majority approval become priorities for the release cycle

PySAL Testing Procedures

Contents

- PySAL Testing Procedures
 - Integration Testing
 - Generating Unit Tests
 - Docstrings and Doctests
 - Tutorial Doctests

As of PySAL release 1.6, continuous integration testing was ported to the Travis-CI hosted testing framework (http://travis-ci.org). There is integration within GitHub that provides Travis-CI test results included in a pending Pull Request page, so developers can know before merging a Pull Request that the changes will or will not induce breakage.

Take a moment to read about the Pull Request development model on our wiki at https://github.com/pysal/pysal/wiki/GitHub-Standard-Operating-Procedures

PySAL relies on two different modes of testing [1] integration (regression) testing and [2] doctests. All developers responsible for given packages shall utilize both modes.

Integration Testing

Each package shall have a directory *tests* in which unit test scripts for each module in the package directory are required. For example, in the directory *pysal/esda* the module *moran.py* requires a unittest script named *test_moran.py*. This path for this script needs to be *pysal/esda/tests/test_moran.py*.

To ensure that any changes made to one package/module do not introduce breakage in the wider project, developers should run the package wide test suite using nose before making any commits. As of release version 1.5, all tests must pass using a 64-bit version of Python. To run the new test suite, install nose, nose-progressive, and nose-exclude into your working python installation. If you're using EPD, nose is already available:

```
pip install -U nose
pip install nose-progressive
pip install nose-exclude
```

Then:

```
cd trunk/
nosetests pysal/
```

You can also run the test suite from within a Python session. At the conclusion of the test, Python will, however, exit:

```
import pysal
import nose
nose.runmodule('pysal')
```

The file setup.cfg (added in revision 1050) in trunk holds nose configuration variables. When nosetests is run from trunk, nose reads those configuration parameters into its operation, so developers do not need to specify the optional flags on the command line as shown below.

To specify running just a subset of the tests, you can also run:

```
nosetests pysal/esda/
```

or any other directory, for instance, to run just those tests. To run the entire unittest test suite plus all of the doctests, run:

```
nosetests --with-doctest pysal/
```

To exclude a specific directory or directories, install nose-exclude from PyPi (pip install nose-exclude). Then run it like this:

```
nosetests -v --exclude-dir=pysal/contrib --with-doctest pysal/
```

Note that you'll probably run into an IOError complaining about too many open files. To fix that, pass this via the command line:

```
ulimit -S -n 1024
```

That changes the machine's open file limit for just the current terminal session.

The trunk should most always be in a state where all tests are passed.

Generating Unit Tests

A useful development companion is the package pythoscope. It scans package folders and produces test script stubs for your modules that fail until you write the tests – a pesky but useful trait. Using pythoscope in the most basic way requires just two simple command line calls:

```
pythoscope --init
pythoscope <my_module>.py
```

One caveat: pythoscope does not name your test classes in a PySAL-friendly way so you'll have to rename each test class after the test scripts are generated. Nose finds tests!

Docstrings and Doctests

All public classes and functions should include examples in their docstrings. Those examples serve two purposes:

- 1. Documentation for users
- 2. Tests to ensure code behavior is aligned with the documentation

Doctests will be executed when building PySAL documentation with Sphinx.

Developers *should* run tests manually before committing any changes that may potentially effect usability. Developers can run doctests (docstring tests) manually from the command line using nosetests

```
nosetests --with-doctest pysal/
```

Tutorial Doctests

All of the tutorials are tested along with the overall test suite. Developers can test their changes against the tutorial docstrings by cd'ing into /doc/ and running:

make doctest

PySAL Enhancement Proposals (PEP)

PEP 0001 Spatial Dynamics Module

Author	Serge Rey <sjsrey@gmail.com>, Xinyue Ye <xinyue.ye@gmail.com></xinyue.ye@gmail.com></sjsrey@gmail.com>
Status	Approved 1.0
Created	18-Jan-2010
Updated	09-Feb-2010

Abstract

With the increasing availability of spatial longitudinal data sets there is an growing demand for exploratory methods that integrate both the spatial and temporal dimensions of the data. The spatial dynamics module combines a number of previously developed and to-be-developed classes for the analysis of spatial dynamics. It will include classes for the following statistics for spatial dynamics, Markov, spatial Markov, rank mobility, spatial rank mobility, space-time LISA.

Motivation

Rather than having each of the spatial dynamics as separate modules in PySAL, it makes sense to move them all within the same module. This would facilitate common signatures for constructors and similar forms of data structures for space-time analysis (and generation of results).

The module would implement some of the ideas for extending LISA statistics to a dynamic context ([Anselin2000] [ReyJanikas2006]), and recent work developing empirics and summary measures for comparative space time analysis ([ReyYe2010]).

Reference Implementation

We suggest adding the module pysal.spatialdynamics which in turn would encompass the following modules:

- · rank mobility rank concordance (relative mobility or internal mixing) Kendall's index
- spatial rank mobility add a spatial dimension into rank mobility investigate the extent to which the relative mobility is spatially dependent use various types of spatial weight matrix
- Markov empirical transition probability matrix (mobility across class) Shorrock's index
- Spatial Markov adds a spatial dimension (regional conditioning) into classic Markov models a trace statistic
 from a modified Markov transition matrix investigate the extent to which the inter-class mobility are spatially
 dependent
- Space-Time LISA extends LISA measures to integrate the time dimension combined with cg (computational geometry) module to develop comparative measurements

References

PEP 0002 Residential Segregation Module

Author	David C. Folch <david.folch@asu.edu> Serge Rey <srey@asu.edu></srey@asu.edu></david.folch@asu.edu>
Status	Draft
Created	10-Feb-2010
Updated	

Abstract

The segregation module combines a number of previously developed and to-be-developed measures for the analysis of residential segregation. It will include classes for two-group and multi-group aspatial (classic) segregation indices along with their spatialized counterparts. Local segregation indices will also be included.

Motivation

The study of residential segregation continues to be a popular field in empirical social science and public policy development. While some of the classic measures are relatively simple to implement, the spatial versions are not nearly as straightforward for the average user. Furthermore, there does not appear to be a Python implementation of residential segregation measures currently available. There is a standalone C#.Net GUI implementation (http://www.ucs.inrs.ca/inc/Groupes/LASER/Segregation.zip) containing many of the measures to be implanted via this PEP but this is Windows only and I could not get it to run easily (it is not open source but the author sent me the code).

It has been noted that there is no one-size-fits-all segregation index; however, some are clearly more popular than others. This module would bring together a wide variety of measures to allow users to easily compare the results from different indices.

Reference Implementation

We suggest adding the module pysal.segregation which in turn would encompass the following modules:

- · globalSeg
- localSeg

References

PEP 0003 Spatial Smoothing Module

Author	Myunghwa Hwang <mhwang4@gmail.com> Luc Anselin <luc.anselin@asu.edu> Serge Rey</luc.anselin@asu.edu></mhwang4@gmail.com>
	<pre><srey@asu.edu></srey@asu.edu></pre>
Status	Approved 1.0
Created	11-Feb-2010
Up-	
dated	

Abstract

Spatial smoothing techniques aim to adjust problems with applying simple normalization to rate computation. Geographic studies of disease widely adopt these techniques to better summarize spatial patterns of disease occurrences. The smoothing module combines a number of previously developed and to-be-developed classes for carrying out spatial smoothing. It will include classes for the following techniques: mean and median based smoothing, nonparametric smoothing, and empirical Bayes smoothing.

Motivation

Despite wide usage of spatial smoothing techniques in epidemiology, there are only few software libraries that include a range of different smoothing techniques at one place. Since spatial smoothing is a subtype of exploratory data analysis method, PySAL is the best place that host multiple smoothing techniques.

The smoothing module will mainly implement the techniques reported in [Anselin2006].

Reference Implementation

We suggest adding the module pysal.esda.smoothing which in turn would encompass the following modules:

- · locally weighted averages, locally weighted median, headbanging
- spatial rate smoothing
- · excess risk, empricial Bayes smoothing, spatial empirical Bayes smoothing
- · headbanging

References

[Anselin2006] Anselin, L., N. Lozano, and J. Koschinsky (2006) Rate Transformations and Smoothing, GeoDa Center Research Report.

PEP 0004 Geographically Nested Inequality based on the Geary Statistic

Author	Boris Dev
Status	Draft
Created	9-Aug-2010
Updated	

Abstract

I propose to extend the Geary statistic to describe inequality patterns between people in the same geographic zones. Geographically nested associations can be represented with a spatial weights matrix defined jointly using both geographic and social positions. The key class in the proposed geographically nested inequality module would sub-class from class pysal.esda.geary with 2 extensions: 1) as an additional argument, an array of regimes to represent social space; and 2) for the output, spatially nested randomizations will be performed for pseudo-significance tests.

Motivation

Geographically nested measures may reveal inequality patterns that are masked by conventional aggregate approaches. Aggregate human inequality statistics summarize the size of the gaps in variables such as mortality rate or income level between different groups of people. A geographically nested measure is computed using only a pairwise subset of the values defined by common location in the same geographic zone. For example, this type of measure was proposed in my dissertation to assess changes in income inequality between nearby blocks of different school attendance zones or different racial neighborhoods within the same cities. Since there are no standard statistical packages to do this sort of analysis, currently such a pairwise approach to inequality analysis across many geographic zones is tedious for researchers who are non-hackers. Since it will take advantage of the currently existing pysal.esda.geary and pysal.weights.regime_weights(), the proposed module should be readable for hackers.

Reference Implementation

I suggest adding the module pysal.inequality.nested.

References

[Dev2010] Dev, B. (2010) "Assessing Inequality using Geographic Income Distributions: Spatial Data Analysis of States, Neighborhoods, and School Attendance Zones" http://dl.dropbox.com/u/408103/dissertation.pdf.

PEP 0005 Space Time Event Clustering Module

Author	Nicholas Malizia <nmalizia@gmail.com>, Serge Rey <sjsrey@gmail.com></sjsrey@gmail.com></nmalizia@gmail.com>
Status	Approved 1.1
Created	13-Jul-2010
Updated	06-Oct-2010

Abstract

The space-time event clustering module will be an addition (in the form of a sub-module) to the spatial dynamics module. The purpose of this module will be to house all methods concerned with identifying clusters within spatio-temporal event data. The module will include classes for the major methods for spatio-temporal event clustering, including: the Knox, Mantel, Jacquez k Nearest Neighbors, and the Space-Time K Function. Although these methods are tests of global spatio-temporal clustering, it is our aim to eventually extend this module to include to-be-developed methods for local spatio-temporal clustering.

Motivation

While the methods of the parent module are concerned with the dynamics of aggregate lattice-based data, the methods encompassed in this sub-module will focus on exploring the dynamics of individual events. The methods suggested here have historically been utilized by researchers looking for clusters of events in the fields of epidemiology and criminology. Currently, the methods presented here are not widely implemented in an open source context. Although the Knox, Mantel, and Jacquez methods are available in the commercial, GUI-based software ClusterSeer, they do not appear to be implemented in an open-source context. Also, as they are implemented in ClusterSeer, the methods are not scriptable¹. The Space-Time K function, however, is available in an open-source context in the splanes

^{7.} Jacquez, D. Greiling, H. Durbeck, L. Estberg, E. Do, A. Long, and B. Rommel. ClusterSeer User Guide 2: Software for Identifying Disease Clusters. Ann Arbor, MI: TerraSeer Press, 2002.

package for R². The combination of these methods in this module would be a unique, scriptable, open-source resource for researchers interested in spatio-temporal interaction of event-based data.

Reference Implementation

5

We suggest adding the module pysal.spatialdynamics.events which in turn would encompass the following modules:

Knox The Knox test for space-time interaction sets critical distances in space and time; if the data are clustered, numerous pairs of events will be located within both of these critical distances and the test statistic will be large³. Significance will be established using a Monte Carlo method. This means that either the time stamp or location of the events is scrambled and the statistic is calculated again. This procedure is permuted to generate a distribution of statistics (for the null hypothesis of spatio-temporal randomness) which is used to establish the pseudo-significance of the observed test statistic. Options will be given to specify a range of critical distances for the space and time scales.

Mantel Akin to the Knox test in its simplicity, the Mantel test keeps the distance information discarded by the Knox test. The Mantel statistic is calculated by summing the product of the distances between all the pairs of events⁴. Again, significance will be determined through a Monte Carlo approach.

Jacquez This test tallies the number of event pairs that are within k-nearest neighbors of each other in *both* space and time. Significance of this count is established using a Monte Carlo permutation method⁵. Again, the permutation is done by randomizing either the time or location of the events and then running the statistic again. The test should be implemented with the additional descriptives as suggested by⁶.

SpaceTimeK The space-time K function takes the K function which has been used to detect clustering in spatial point patterns and expands it to the realm of spatio-temporal data. Essentially, the method calculates K functions in space and time independently and then compares the product of these functions with a K function which takes both dimensions of space and time into account from the start⁷. Significance is established through Monte Carlo methods and the construction of confidence envelopes.

```
2. Rowlingson and P. Diggle. splancs: Spatial and Space-Time Point Pattern Analysis. R Package. Version 2.01-25, 2009.
```

14. Mantel. The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2):209-220, 1967.

7. Jacquez. A k nearest neighbour test for space-time interaction. Statistics in Medicine, 15(18):1935–1949, 1996.

5. Mack and N. Malizia. Enhancing the results of the Jacquez k Nearest Neighbor test for space-time interaction. In Preparation

 Diggle, A. Chetwynd, R. Haggkvist, and S. Morris. Second-order analysis of space-time clustering. Statistical Methods in Medical Research, 4(2):124, 1995.

^{5.} Knox. The detection of space-time interactions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 13(1):25-30, 1964.

References

PEP 0006 Kernel Density Estimation

Author	Serge Rey <sjsrey@gmail.com> Charles Schmidt <schmidtc@gmail.com></schmidtc@gmail.com></sjsrey@gmail.com>
Status	Draft
Created	11-Oct-2010
Updated	11-Oct-2010

Abstract

The kernel density estimation module will provide a uniform interface to a set of kernel density estimation (KDE) methods. Currently KDE is used in various places within PySAL (e.g., <code>Kernel, Kernel_Smoother</code>) as well as in STARS and various projects within the GeoDA Center, but these implementations were done separately. This module would centralize KDE within PySAL as well as extend the suite of KDE methods and related measures available in PySAL.

Motivation

KDE is widely used throughout spatial analysis, from estimation of process intensity in point pattern analysis, deriving spatial weights, geographically weighted regression, rate smoothing, to hot spot detection, among others.

Reference Implementation

Since KDE would be used throughout existing (and likely future) modules in PySAL, it makes sense to implement it as a top level module in PySAL.

Core KDE methods that would be implemented include:

- · triangular
- uniform
- quadratic
- quartic
- · gaussian

Additional classes and methods to deal with KDE on restricted spaces would also be implemented.

A unified KDE api would be developed for use of the module.

Computational optimization would form a significant component of the effort for this PEP.

References

in progress

PEP 0007 Spatial Econometrics

Au-	Luc Anselin Luc Anselin @asu.edu Serge Rey <sjsrey@gmail.com>,David Folch</sjsrey@gmail.com>
thor	<pre><dfolch@asu.edu>,Daniel Arribas-Bel <daniel.arribas.bel@gmail.com>,Pedro Amaral</daniel.arribas.bel@gmail.com></dfolch@asu.edu></pre>
	<pvmda2@cam.ac.uk>,Nicholas Malizia <nmalizia@gmail.com>,Ran Wei <rwei5@asu.edu>,Jing Yao</rwei5@asu.edu></nmalizia@gmail.com></pvmda2@cam.ac.uk>
	<pre><jyao13@asu.edu>,Elizabeth Mack <elizabeth.a.mack@asu.edu></elizabeth.a.mack@asu.edu></jyao13@asu.edu></pre>
Sta-	Approved 1.1
tus	
Cre-	12-Oct-2010
ated	
Up-	12-Oct-2010
dated	

Abstract

The spatial econometrics module will provide a uniform interface to the spatial econometric functionality contained in the former PySpace and current GeoDaSpace efforts. This module would centralize all specification, estimation, diagnostic testing and prediction/simulation for spatial econometric models.

Motivation

Spatial econometric methodology is at the core of GeoDa and GeoDaSpace. This module would allow access to state of the art methods at the source code level.

Reference Implementation

We suggest adding the module pysal.spreg. As development progresses, there may be a need for submodules dealing with pure cross sectional regression, spatial panel models and spatial probit.

Core methods to be implemented include:

- OLS estimation with diagnostics for spatial effects
- 2SLS estimation with diagnostics for spatial effects
- spatial 2SLS for spatial lag model (with endogeneity)
- GM and GMM estimation for spatial error model
- · GMM spatial error with heteroskedasticity
- spatial HAC estimation

A significant component of the effort for this PEP would consist of implementing methods with good performance on very large data sets, exploiting sparse matrix operations in scipy.

References

- [1] Anselin, L. (1988). Spatial Econometrics, Methods and Models. Kluwer, Dordrecht.
- [2] Anselin, L. (2006). Spatial econometrics. In Mills, T. and Patterson, K., editors, Palgrave Handbook of Econometrics, Volume I, Econometric Theory, pp. 901-969. Palgrave Macmillan, Basingstoke.
- [3] Arraiz, I., Drukker, D., Kelejian H.H., and Prucha, I.R. (2010). A spatial Cliff-Ord-type model with heteroskedastic innovations: small and large sample results. Journal of Regional Science 50: 592-614.

- [4] Kelejian, H.H. and Prucha, I.R. (1998). A generalized spatial two stage least squares procedure for estimationg a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17: 99-121.
- [5] Kelejian, H.H. and Prucha, I.R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40: 509-533.
- [6] Kelejian, H.H. and Prucha, I.R. (2007). HAC estimation in a spatial framework. Journal of Econometrics 140: 131-154.
- [7] Kelejian, H.H. and Prucha, I.R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics (forthcoming).

PEP 0008 Spatial Database Module

Author	Phil Stephens <phil.stphns@gmail.com>, Serge Rey <sjsrey@gmail.com></sjsrey@gmail.com></phil.stphns@gmail.com>
Status	Draft
Created	09-Sep-2010
Updated	31-Aug-2012

Abstract

A spatial database module will extend PySAL file I/O capabilities to spatial database software, allowing PySAL users to connect to and perform geographic lookups and queries on spatial databases.

Motivation

PySAL currently reads and writes geometry in only the Shapefile data structure. Spatially-indexed databases permit queries on the geometric relations between objects¹.

Reference Implementation

We propose to add the module <code>pysal.contrib.spatialdb</code>, hereafter referred to simply as spatialdb. spatialdb will leverage the Python Object Relational Mapper (ORM) libraries SQLAlchemy² and GeoAlchemy³, MIT-licensed software that provides a database-agnostic SQL layer for several different databases and spatial database extensions including PostgreSQL/PostGIS, Oracle Spatial, Spatialite, MS SQL Server, MySQL Spatial, and others. These lightweight libraries manage database connections, transactions, and SQL expression translation.

Another option to research is the GeoDjango package. It provides a large number of spatial lookups⁵ and geo queries for PostGIS databases, and a smaller set of lookups / queries for Oracle, MySQL, and SpatiaLite.

¹ OpenGeo (2010) Spatial Database Tips and Tricks. Accessed September 9, 2010.

² SQLAlchemy (2010) SQLAlchemy 0.6.5 Documentation. Accessed October 4, 2010.

³ GeoAlchemy (2010) GeoAlchemy 0.4.1 Documentation. Accessed October 4, 2010.

⁵ GeoDjango (2012) GeoDjango Compatibility Tables. Accessed August 31, 2012.

References

PEP 0009 Add Python 3.x Support

Author	Charles Schmidt <schmidtc@gmail.com></schmidtc@gmail.com>
Status	Approved 1.2
Created	02-Feb-2011
Updated	02-Feb-2011

Abstract

Python 2.x is being phased out in favor of the backwards incompatible Python 3 line. In order to stay relevant to the python community as a whole PySAL needs to support the latest production releases of Python. With the release of Numpy 1.5 and the pending release of SciPy 0.9, all PySAL dependencies support Python 3. This PEP proposes porting the code base to support both the 2.x and 3.x lines of Python.

Motivation

Python 2.7 is the final major release in the 2.x line. The Python 2.x line will continue to receive bug fixes, however only the 3.x line will receive new features ([Python271]). Python 3.x introduces many backward incompatible changes to Python ([PythonNewIn3]). Numpy added support for Python 3.0 in version 1.5 ([NumpyANN150]). Scipy 0.9.0 is currently in the release candidate stage and supports Python 3.0 ([SciPyRoadmap], [SciPyANN090rc2]). Many of the new features in Python 2.7 were back ported from 3.0, allowing us to start using some of the new feature of the language without abandoning our 2.x users.

Reference Implementation

Since python 2.6 the interpreter has included a '-3' command line switch to "warn about Python 3.x incompatibilities that 2to3 cannot trivially fix" ([Python2to3]). Running PySAL tests with this switch produces no warnings internal to PySAL. This suggests porting to 3.x will require only trivial changes to the code. A porting strategy is provided by [PythonNewIn3].

References

PEP 0010 Add pure Python rtree

Author	Serge Rey <sjsrey@gmail.com></sjsrey@gmail.com>
Status	Approved 1.2
Created	12-Feb-2011
Updated	12-Feb-2011

Abstract

A pure Python implementation of an Rtree will be developed for use in the construction of spatial weights matrices based on contiguity relations in shapefiles as well as supporting a spatial index that can be used by GUI based applications built with PySAL requiring brushing and linking.

Motivation

As of 1.1 PySAL checks if the external library ([Rtree]) is installed. If it is not, then an internal binning algorithm is used to determine contiguity relations in shapefiles for the construction of certain spatial weights. A pure Python implementation of Rtrees may provide for improved cross-platform efficiency when the external Rtree library is not present. At the same time, such an implementation can be relied on by application developers using PySAL who wish to build visualization applications supporting brushing, linking and other interactions requiring spatial indices for object selection.

Reference Implementation

A pure Python implementation of Rtrees has recently been implemented ([pyrtree]) and is undergoing testing for possible inclusion in PySAL. It appears that this module can be integrated into PySAL with modest effort.

References

PEP 0011 Move from Google Code to Github

Author	Serge Rey <sjsrey@gmail.com></sjsrey@gmail.com>
Status	Draft
Created	04-Aug-2012
Updated	04-Aug-2012

Abstract

This proposal is to move the PySAL code repository from Google Code to Github.

Motivation

Git is a decentralized version control system that brings a number of benefits:

- · distributed development
- off-line development
- · elegant and lightweight branching
- · fast operations
- · flexible workflows

among many others.

The two main PySAL dependencies, SciPy and NumPy, made the switch to GitHub roughly two years ago. In discussions with members of those development teams and related projects (pandas, statsmodels) it is clear that git is gaining widespread adoption in the Python scientific computing community. By moving to git and GitHub, PySAL would benefit by facilitating interaction with developers in this community. Discussions with developers at SciPy 2012 indicated that all projects experienced significant growth in community involvement after the move to Github. Other projects considering such a move have been discussing similar issues.

Moving to GitHub would also streamline the administration of project updates, documentation and related tasks. The Google Code infrastructure requires updates in multiple locations which results in either additional work, or neglected changes during releases. GitHub understands markdown and reStructured text formats, the latter is heavily used in PySAL documentation and the former is clearly preferred to wiki markup on Google Code.

Although there is a learning curve to Git, it is relatively minor for developers familiar with Subversion, as all PySAL developers are. Moreover, several of the developers have been using Git and GitHub for other projects and have expressed interest in such a move. There are excellent on-line resources for learning more about git, such as this book.

Reference Implementation

Moving code and history

There are utilities, such as svn2git that can be used to convert an SVN repo to a git repo.

The converted git repo would then be pushed to a GitHub account.

Setting up post-(commit|push|pull) hooks

Migration of the current integration testing will be required. Github has support for Post-Receive Hooks that can be used for this aspect of the migration.

Moving issues tracking over

A decision about whether to move the issue tracking over to Github will have to be considered. This has been handled in different ways:

- keep using Google Code for issue tracking
- move all issues (even closed ones) over to Github
- freeze tickets at Google Code and have a breadcrumb for active tickets pointing to issue tracker at Github

If we decide to move the issues over we may look at tratihubus as well as other possibilities.

Continuous integration with travis-ci

Travis-CI is a hosted Continuous Integration (CI) service that is integrated with GitHub. This sponsored service provides:

- testing with multiple versions of Python
- testing with multiple versions of project dependencies (numpy and scipy)
- · build history
- integrated GitHub commit hooks
- testing against multiple database services

Configuration is achieved with a single YAML file, reducing development overhead, maintenance, and monitoring.

Code Sprint for GitHub migration

The proposal is to organize a future sprint to focus on this migration.

PySAL Documentation

Contents

- PySAL Documentation
 - Writing Documentation
 - Compiling Documentation
 - * Note
 - * Lightweight Editing with rst2html.py
 - * Things to watch out for
 - Adding a new package and modules
 - Adding a new tutorial: spreg
 - * Requirements
 - * Where to add the tutorial content
 - * Proper Reference Formatting

Writing Documentation

The PySAL project contains two distinct forms of documentation: inline and non-inline. Inline docs are contained in the source code itself, in what are known as *docstrings*. Non-inline documentation is in the doc folder in the trunk.

Inline documentation is processed with an extension to Sphinx called napoleon. We have adopted the community standard outlined here.

PySAL makes use of the built-in Sphinx extension *viewcode*, which allows the reader to quicky toggle between docs and source code. To use it, the source code module requires at least one properly formatted docstring.

Non-inline documentation editors can opt to strike-through older documentation rather than delete it with the custom "role" directive as follows. Near the top of the document, add the role directive. Then, to strike through old text, add the :strike: directive and offset the text with back-ticks. This strikethrough is produced like this:

```
.. role:: strike
...
...
This :strike:`strikethrough` is produced like this:
```

Compiling Documentation

PySAL documentation is built using Sphinx and the Sphinx extension napoleon, which formats PySAL's docstrings.

Note

If you're using Sphinx version 1.3 or newer, napoleon is included and should be called in the main conf.py as sphinx.ext.napoleon rather than installing it as we show below.

If you're using a version of Sphinx that does not ship with napoleon (Sphinx < 1.3), you'll need napoleon version 0.2.4 or later and Sphinx version 1.0 or later to compile the documentation. Both modules are available at the Python Package Index, and can be downloaded and installed from the command line using *pip* or *easy install*.:

```
$ easy_install sphinx
$ easy_install sphinxcontrib-napoleon
```

or

\$ pip sphinx \$ pip sphinxcontrib-napoleon

If you get a permission error, trying using 'sudo'.

The source for the docs is in *doc*. Building the documentation is done as follows (assuming sphinx and napoleon are already installed):

```
$ cd doc; ls
build Makefile source
$ make clean
$ make html
```

To see the results in a browser open *build/html/index.html*. To make changes, edit (or add) the relevant files in *source* and rebuild the docs using the 'make html' (or 'make clean' if you're adding new documents) command. Consult the Sphinx markup guide for details on the syntax and structure of the files in *source*.

Once you're happy with your changes, check-in the *source* files. Do not add or check-in files under *build* since they are dynamically built.

Changes checked in to Github will be propogated to readthedocs within a few minutes.

Lightweight Editing with rst2html.py

Because the doc build process can sometimes be lengthy, you may want to avoid having to do a full build until after you are done with your major edits on one particular document. As part of the docutils package, the file *rs2html.py* can take an *rst* document and generate the html file. This will get most of the work done that you need to get a sense if your edits are good, *without* having to rebuild all the PySAL docs. As of version 0.8 it also understands LaTeX. It will cough on some sphinx directives, but those can be dealt with in the final build.

To use this download the doctutils tarball and put *rst2html.py* somewhere in your path. In vim (on Mac OS X) you can then add something like:

```
map ;r ^[:!rst2html.py % > ~/tmp/tmp.html; open ~/tmp/tmp.html^M^M
```

which will render the html in your default browser.

Things to watch out for

If you encounter a failing tutorial doctest that does not seem to be in error, it could be a difference in whitespace between the expected and received output. In that case, add an 'options' line as follows:

Adding a new package and modules

To include the docstrings of a new module in the API docs the following steps are required:

- 1. In the directory /doc/source/library add a directory with the name of the new package. You can skip to step 3 if the package exists and you are just adding new modules to this package.
- 2. Within /doc/source/library/packageName add a file index.rst
- 3. For each new module in this package, add a file *moduleName.rst* and update the *index.rst* file to include *modulename*.

Adding a new tutorial: spreg

While the *API docs* are automatically generated when compiling with Sphinx, tutorials that demonstrate use cases for new modules need to be crafted by the developer. Below we use the case of one particular module that currently does not have a tutorial as a guide for how to add tutorials for new modules.

As of PySAL 1.3 there are API docs for *spreg* but no *tutorial* currently exists for this module.

We will fix this and add a tutorial for *spreg*.

Requirements

- · sphinx
- napoleon
- · pysal sources

You can install sphinx or napoleon using easy_install as described above in Writing Documentation.

Where to add the tutorial content

Within the PySAL source the docs live in:

```
pysal/doc/source
```

This directory has the source reStructuredText files used to render the html pages. The tutorial pages live under:

```
pysal/doc/source/users/tutorials
```

As of PySAL 1.3, the content of this directory is:

```
autocorrelation.rst fileio.rst next.rst smoothing.rst dynamics.rst index.rst region.rst weights.rst examples.rst intro.rst shapely.rst
```

The body of the *index.rst* file lists the sections for the tutorials:

```
Introduction to the Tutorials <intro>
File Input and Output <fileio>
Spatial Weights <weights>
Spatial Autocorrelation <autocorrelation>
Spatial Smoothing <smoothing>
Regionalization <region>
Spatial Dynamics <dynamics>
```

```
Shapely Extension <shapely>
Next Steps <next>
Sample Datasets <examples>
```

In order to add a tutorial for *spreg* we need the to change this to read:

```
Introduction to the Tutorials <intro>
File Input and Output <fileio>
Spatial Weights <weights>
Spatial Autocorrelation <a href="autocorrelation">autocorrelation</a>
Spatial Smoothing <smoothing>
Spatial Regression <spreg>
Regionalization <region>
Spatial Dynamics <dynamics>
Shapely Extension <shapely>
Next Steps <next>
Sample Datasets <examples>
```

So we are adding a new section that will show up as *Spatial Regression* and its contents will be found in the file *spreg.rst*. To create the latter file simpy copy say *dynamics.rst* to *spreg.rst* and then modify *spreg.rst* to have the correct content.

Once this is done, move back up to the top level doc directory:

```
pysal/doc
```

Then:

```
$ make clean
$ make html
```

Point your browser to *pysal/doc/build/html/index.html*

and check your work. You can then make changes to the spreg.rst file and recompile until you are set with the content.

Proper Reference Formatting

For proper hypertext linking of reference material, each unique reference in a single python module can only be explicitly named once. Take the following example for instance:

```
References
-----
.. [1] Kelejian, H.R., Prucha, I.R. (1998) "A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances". The Journal of Real State Finance and Economics, 17, 1.
```

It is "named" as "1". Any other references (even the same paper) with the same "name" will cause a Duplicate Reference error when Sphinx compiles the document. Several work-arounds are available but no concensus has emerged.

One possible solution is to use an anonymous reference on any subsequent duplicates, signified by a single underscore with no brackets. Another solution is to put all document references together at the bottom of the document, rather than listing them at the bottom of each class, as has been done in some modules.

PySAL Release Management

Contents

- PySAL Release Management
 - Prepare the release
 - Tag
 - Make docs
 - Make and Upload and Test Distributions
 - Announce
 - Put master back to dev

Prepare the release

- Create a branch out of the dev branch
- Check all tests pass. See PySAL Testing Procedures.
- Update CHANGELOG:

```
$ python tools/github_stats.py days >> chglog
```

- where days is the number of days to start the logs at
- Prepend chglog to CHANGELOG and edit
- Edit THANKS and README and README.md if needed.
- Edit the file version.py to update MAJOR, MINOR, MICRO
- Bump:

```
$ cd tools; python bump.py
```

- · Commit all changes.
- Push your branch up to your GitHub repos
- On github issue a pull request, with a target of **upstream master**. Add a comment that this is for release.

Tag

With version 1.10 we changed the way the tags are created to reflect our policy of not pushing directly to upstream. After you have issued a pull request, the project maintainer can create the release on GitHub.

Make docs

As of version 1.6, does are automatically compiled and hosted.

Make and Upload and Test Distributions

On each build machine, clone and checkout the newly created tag (assuming that is v1.10 in what follows):

```
$ git clone http://github.com/pysal/pysal.git
$ cd pysal
$ git fetch --tags
$ git checkout v1.10
```

• Make and upload to the **Testing** Python Package Index:

```
$ python setup.py sdist upload -r https://testpypi.python.org/pypi
```

• Test that your package can install correctly:

```
$ pip install --extra-index-url https://testpypi.python.org/pypi pysal
```

If all is good, proceed, otherwise fix, and repeat.

• Make and upload to the Python Package Index in one shot!:

```
$ python setup.py sdist (to test it)
$ python setup.py sdist upload
```

- if not registered, do so. Follow the prompts. You can save the login credentials in a dot-file, pypirc
- Make and upload the Windows installer to SourceForge. On a Windows box, build the installer as so:

```
$ python setup.py bdist_wininst
```

Announce

- Draft and distribute press release on geodacenter.asu.edu, openspace-list, and pysal.org
 - On GeoDa center website, do this:
 - Login and expand the wrench icon to reveal the Admin menu
 - Click "Administer", "Content Management", "Content"
 - Next, click "List", filter by type, and select "Featured Project".
 - Click "Filter"

Now you will see the list of Featured Projects. Find "PySAL".

- Choose to 'edit' PySAL and modify the short text there. This changes the text users see on the homepage slider.
- Clicking on the name "PySAL" allows you to edit the content of the PySAL project page, which
 is also the "About PySAL" page linked to from the homepage slider.

Put master back to dev

- Change MAJOR, MINOR version in setup script.
- Change pysal/version.py to dev number
- Change the docs version from X.x to X.xdev by editing doc/source/conf.py in two places.

• Update the release schedule in doc/source/developers/guidelines.rst

Update the github.io news page to announce the release.

PySAL and Python3

Contents

• PySAL and Python3

Starting with version 1.11, PySAL supports both the Python 2.x series (version 2.6 and 2.7) as well as Python 3.4 and newer.

Projects Using PySAL

This page lists other software projects making use of PySAL. If your project is not listed here, contact one of the team members and we'll add it.

GeoDa Center Projects

- GeoDaNet
- GeoDaSpace
- · GeoDaWeights
- STARS

Related Projects

- Anaconda
- StatsModels
- PythonAnywhere includes latest PySAL release
- CartoDB includes PySAL through a custom PostgreSQL extension

Known Issues

1.5 install fails with scipy 11.0 on Mac OS X

Running python setup.py install results in:

```
Referenced from:
/Users/serge/Documents/p/pysal/virtualenvs/python1.5/lib/python2.7/site-packages/
scipy/special/_cephes.so
Expected in: dynamic lookup
```

This occurs when your scipy on Mac OS X was complied with gnu95 and not gfortran. See this thread for possible solutions.

weights.DistanceBand failing

This occurs due to a bug in scipy.sparse prior to version 0.8. If you are running such a version see Issue 73 for a fix.

doc tests and unit tests under Linux

Some Linux machines return different results for the unit and doc tests. We suspect this has to do with the way random seeds are set. See Issue 52

LISA Markov missing a transpose

In versions of PySAL < 1.1 there is a bug in the LISA Markov, resulting in incorrect values. For a fix and more details see Issue 115.

PIP Install Fails

Having numpy and scipy specified in pip requiretments.txt causes PIP install of pysal to fail. For discussion and suggested fixes see Issue 207.

2.8. Known Issues 93

CHAPTER 3

Library Reference

Release 1.13.0 **Date** Mar 15, 2017

Python Spatial Analysis Library

The Python Spatial Analysis Library consists of several sub-packages each addressing a different area of spatial analysis. In addition to these sub-packages PySAL includes some general utilities used across all modules.

Sub-packages

```
pysal.cg - Computational Geometry
```

```
cg.locators — Locators
```

The cg.locators module provides

New in version 1.0. Computational geometry code for PySAL: Python Spatial Analysis Library.

```
class pysal.cg.locators.IntervalTree (intervals)
```

Representation of an interval tree. An interval tree is a data structure which is used to quickly determine which intervals in a set contain a value or overlap with a query interval. [DeBerg2008]

```
\mathtt{query}\left(q
ight)
```

Returns the intervals intersected by a value or interval.

```
query((number, number) or number) \rightarrow x list
```

Parameters q (a value or interval to find intervals intersecting) -

```
>>> intervals = [(-1, 2, 'A'), (5, 9, 'B'), (3, 6, 'C')]
>>> it = IntervalTree(intervals)
>>> it.query((7, 14))
['B']
>>> it.query(1)
```

class pysal.cg.locators.Grid (bounds, resolution)

Representation of a binning data structure.

add (item, pt)

Adds an item to the grid at a specified location.

```
add(x, Point) \rightarrow x
```

Parameters

- item(the item to insert into the grid)-
- pt(the location to insert the item at)-

Examples

```
>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((4.2, 8.7)))
'A'
```

bounds (bounds)

Returns a list of items found in the grid within the bounds specified.

bounds(Rectangle) -> x list

Parameters

- item (the item to remove from the grid) -
- pt (the location the item was added at) -

Examples

```
>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.bounds(Rectangle(0, 0, 3, 3))
['A']
>>> g.bounds(Rectangle(2, 2, 5, 5))
['B']
>>> sorted(g.bounds(Rectangle(0, 0, 5, 5)))
['A', 'B']
```

in_grid(loc)

Returns whether a 2-tuple location _loc_ lies inside the grid bounds.

Test tag: <tc>#is#Grid.in_grid</tc>

nearest (pt)

Returns the nearest item to a point.

```
nearest(Point) -> x
```

Parameters pt (the location to search near) -

Examples

```
>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.nearest(Point((2.0, 1.0)))
'A'
>>> g.nearest(Point((7.0, 5.0)))
'B'
```

proximity(pt, r)

Returns a list of items found in the grid within a specified distance of a point.

proximity(Point, number) -> x list

Parameters

- pt (the location to search around) -
- r(the distance to search around the point)-

Examples

```
>>> g = Grid(Rectangle(0, 0, 10, 10), 1)
>>> g.add('A', Point((1.0, 1.0)))
'A'
>>> g.add('B', Point((4.0, 4.0)))
'B'
>>> g.proximity(Point((2.0, 1.0)), 2)
['A']
>>> g.proximity(Point((6.0, 5.0)), 3.0)
['B']
>>> sorted(g.proximity(Point((4.0, 1.0)), 4.0))
['A', 'B']
```

remove (item, pt)

Removes an item from the grid at a specified location.

```
remove(x, Point) \rightarrow x
```

- item (the item to remove from the grid) -
- pt (the location the item was added at)-

```
>>> g = Grid(Rectangle(0, 0, 10, 10), 1)

>>> g.add('A', Point((4.2, 8.7)))

'A'

>>> g.remove('A', Point((4.2, 8.7)))

'A'
```

class pysal.cg.locators.BruteForcePointLocator (points)

A class which does naive linear search on a set of Point objects.

```
nearest (query_point)
```

Returns the nearest point indexed to a query point.

nearest(Point) -> Point

Parameters query_point (a point to find the nearest indexed point to)-

Examples

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> n = pl.nearest(Point((1, 1)))
>>> str(n)
'(0.0, 0.0)'
```

proximity (origin, r)

Returns the indexed points located within some distance of an origin point.

proximity(Point, number) -> Point list

Parameters

- origin (the point to find indexed points near) -
- r (the maximum distance to find indexed point from the origin point)-

Examples

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> neighs = pl.proximity(Point((1, 0)), 2)
>>> len(neighs)
1
>>> p = neighs[0]
>>> isinstance(p, Point)
True
>>> str(p)
'(0.0, 0.0)'
```

region (region rect)

Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

```
Parameters region_rect (the rectangular range to find indexed points in)-
```

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = BruteForcePointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3
```

class pysal.cq.locators.PointLocator(points)

An abstract representation of a point indexing data structure.

```
nearest (query_point)
```

Returns the nearest point indexed to a query point.

nearest(Point) -> Point

```
Parameters query_point (a point to find the nearest indexed point
     to) -
```

Examples

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> n = pl.nearest(Point((1, 1)))
>>> str(n)
'(0.0, 0.0)'
```

overlapping(region_rect)

Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

```
Parameters region_rect (the rectangular range to find indexed points in)-
```

Examples

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3
```

polygon (polygon)

Returns the indexed points located inside a polygon

proximity (origin, r)

Returns the indexed points located within some distance of an origin point.

proximity(Point, number) -> Point list

- origin (the point to find indexed points near) -
- r (the maximum distance to find indexed point from the origin point)-

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> len(pl.proximity(Point((1, 0)), 2))
1
```

region (region_rect)

Returns the indexed points located inside a rectangular query region.

region(Rectangle) -> Point list

```
Parameters region_rect (the rectangular range to find indexed points in)-
```

Examples

```
>>> points = [Point((0, 0)), Point((1, 6)), Point((5.4, 1.4))]
>>> pl = PointLocator(points)
>>> pts = pl.region(Rectangle(-1, -1, 10, 10))
>>> len(pts)
3
```

class pysal.cg.locators.PolygonLocator(polygons)

An abstract representation of a polygon indexing data structure.

contains_point (point)

Returns polygons that contain point

```
Parameters point (point (x,y))-
```

Returns

Return type list of polygons containing point

Examples

```
>>> p1 = Polygon([Point((0,0)), Point((6,0)), Point((4,4))])
>>> p2 = Polygon([Point((1,2)), Point((4,0)), Point((4,4))])
>>> p1.contains_point((2,2))
1
>>> p2.contains_point((2,2))
1
>>> p1 = PolygonLocator([p1, p2])
>>> len(p1.contains_point((2,2)))
2
>>> p2.contains_point((1,1))
0
>>> p1.contains_point((1,1))
```

```
>>> len(pl.contains_point((1,1)))

1

>>> pl.centroid
(3.33333333333335, 1.3333333333333)

>>> pl.contains_point((1,1))[0].centroid
(3.33333333333333333, 1.3333333333333)
```

inside (query_rectangle)

Returns polygons that are inside query_rectangle

Examples

```
>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))])
>>> pl = PolygonLocator([p1, p2, p3])
\Rightarrow qr = Rectangle(0, 0, 5, 5)
>>> res = pl.inside( qr )
>>> len(res)
\Rightarrow qr = Rectangle(3, 7, 5, 8)
>>> res = pl.inside( qr )
>>> len(res)
>>> qr = Rectangle(10, 10, 12, 12)
>>> res = pl.inside( qr )
>>> len(res)
>>> qr = Rectangle(0, 0, 12, 12)
>>> res = pl.inside( qr )
>>> len(res)
3
```

Notes

inside means the intersection of the query rectangle and a polygon is not empty and is equal to the area of the polygon

```
nearest (query_point, rule='vertex')
```

Returns the nearest polygon indexed to a query point based on various rules.

nearest(Polygon) -> Polygon

- query_point(a point to find the nearest indexed polygon to)-
- rule (representative point for polygon in nearest query.) vertex measures distance between vertices and query_point centroid measures distance between centroid and query_point edge measures the distance between edges and query_point

overlapping (query_rectangle)

Returns list of polygons that overlap query_rectangle

Examples

```
>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> p3 = Polygon([Point((7, 1)), Point((8, 7)), Point((9, 1))])
>>> pl = PolygonLocator([p1, p2, p3])
\rightarrow \rightarrow qr = Rectangle(0, 0, 5, 5)
>>> res = pl.overlapping( qr )
>>> len(res)
\Rightarrow qr = Rectangle(3, 7, 5, 8)
>>> res = pl.overlapping( gr )
>>> len(res)
>>> qr = Rectangle(10, 10, 12, 12)
>>> res = pl.overlapping( qr )
>>> len(res)
>>> gr = Rectangle(0, 0, 12, 12)
>>> res = pl.overlapping( qr )
>>> len(res)
\rightarrow \rightarrow qr = Rectangle(8, 3, 9, 4)
>>> p1 = Polygon([Point((2, 1)), Point((2, 3)), Point((4, 3)), Point((4,1))])
>>> p2 = Polygon([Point((7, 1)), Point((7, 5)), Point((10, 5)), Point((10, ...
\hookrightarrow 1)))))
>>> pl = PolygonLocator([p1, p2])
>>> res = pl.overlapping(qr)
>>> len(res)
```

Notes

overlapping means the intersection of the query rectangle and a polygon is not empty and is no larger than the area of the polygon

proximity (origin, r, rule='vertex')

Returns the indexed polygons located within some distance of an origin point based on various rules.

proximity(Polygon, number) -> Polygon list

- origin (the point to find indexed polygons near) -
- ullet ${f r}$ (the maximum distance to find indexed polygon from the origin point)-
- rule (representative point for polygon in nearest query.) vertex measures distance between vertices and query_point centroid measures distance between centroid and query_point edge measures the distance between edges and query_point

region (region_rect)

Returns the indexed polygons located inside a rectangular query region.

region(Rectangle) -> Polygon list

```
Parameters region_rect (the rectangular range to find indexed polygons in)-
```

Examples

```
>>> p1 = Polygon([Point((0, 1)), Point((4, 5)), Point((5, 1))])
>>> p2 = Polygon([Point((3, 9)), Point((6, 7)), Point((1, 1))])
>>> p1 = PolygonLocator([p1, p2])
>>> n = p1.region(Rectangle(0, 0, 4, 10))
>>> len(n)
```

cg.shapes — Shapes

The cg. shapes module provides basic data structures.

New in version 1.0. Computational geometry code for PySAL: Python Spatial Analysis Library.

```
class pysal.cg.shapes.Point (loc)
   Geometric class for point objects.
```

None

```
class pysal.cg.shapes.LineSegment (start_pt, end_pt)
    Geometric representation of line segment objects.
```

- start_pt (Point) Point where segment begins
- end_pt (Point) Point where segment ends

Line – The line on which the segment lies

bounding_box

Returns the minimum bounding box of a LineSegment object.

Test tag: <tc>#is#LineSegment.bounding_box</tc> Test tag: <tc>#tests#LineSegment.bounding_box</tc> bounding_box -> Rectangle

Examples

```
>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> ls.bounding_box.left
1.0
>>> ls.bounding_box.lower
2.0
>>> ls.bounding_box.right
5.0
>>> ls.bounding_box.upper
6.0
```

get_swap()

Returns a LineSegment object which has its endpoints swapped.

```
get_swap() -> LineSegment
```

Test tag: <tc>#is#LineSegment.get_swap</tc> Test tag: <tc>#tests#LineSegment.get_swap</tc>

Examples

```
>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> swap = ls.get_swap()
>>> swap.p1[0]
5.0
>>> swap.p1[1]
6.0
>>> swap.p2[0]
1.0
>>> swap.p2[1]
2.0
```

intersect (other)

Test whether segment intersects with other segment

Handles endpoints of segments being on other segment

```
>>> ls = LineSegment(Point((5,0)), Point((10,0)))
>>> ls1 = LineSegment(Point((5,0)), Point((10,1)))
>>> ls.intersect(ls1)
True
>>> ls2 = LineSegment(Point((5,1)), Point((10,1)))
>>> ls.intersect(ls2)
False
>>> ls2 = LineSegment(Point((7,-1)), Point((7,2)))
>>> ls.intersect(ls2)
True
>>>
```

is ccw(pt)

Returns whether a point is counterclockwise of the segment. Exclusive.

```
is_ccw(Point) -> bool
```

Test tag: <tc>#is#LineSegment.is_ccw</tc> Test tag: <tc>#tests#LineSegment.is_ccw</tc>

```
Parameters pt (point lying ccw or cw of a segment) -
```

Examples

```
>>> ls = LineSegment(Point((0, 0)), Point((5, 0)))
>>> ls.is_ccw(Point((2, 2)))
True
>>> ls.is_ccw(Point((2, -2)))
False
```

$is_cw(pt)$

Returns whether a point is clockwise of the segment. Exclusive.

```
is_cw(Point) -> bool
```

Test tag: <tc>#is#LineSegment.is_cw</tc> Test tag: <tc>#tests#LineSegment.is_cw</tc>

```
Parameters pt (point lying ccw or cw of a segment) -
```

Examples

```
>>> ls = LineSegment(Point((0, 0)), Point((5, 0)))
>>> ls.is_cw(Point((2, 2)))
False
>>> ls.is_cw(Point((2, -2)))
True
```

len

Returns the length of a LineSegment object.

Test tag: <tc>#is#LineSegment.len</tc> Test tag: <tc>#tests#LineSegment.len</tc> len() -> number

```
>>> ls = LineSegment(Point((2, 2)), Point((5, 2)))
>>> ls.len
3.0
```

line

Returns a Line object of the line which the segment lies on.

Test tag: <tc>#is#LineSegment.line</tc> Test tag: <tc>#tests#LineSegment.line</tc>

line() -> Line

Examples

```
>>> ls = LineSegment(Point((2, 2)), Point((3, 3)))
>>> l = ls.line
>>> l.m
1.0
>>> l.b
0.0
```

p1

HELPER METHOD. DO NOT CALL.

Returns the p1 attribute of the line segment.

```
_get_p1() -> Point
```

Examples

```
>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> r = ls._get_p1()
>>> r == Point((1, 2))
True
```

p2

HELPER METHOD. DO NOT CALL.

Returns the p2 attribute of the line segment.

```
_{get}_{p2()} \rightarrow Point
```

Examples

```
>>> ls = LineSegment(Point((1, 2)), Point((5, 6)))
>>> r = ls._get_p2()
>>> r == Point((5, 6))
True
```

$\mathbf{sw_ccw}\:(pt)$

Sedgewick test for pt being ccw of segment

Returns

- 1 if turn from self.p1 to self.p2 to pt is ccw
- -1 if turn from self.p1 to self.p2 to pt is cw
- -1 if the points are collinear and self.p1 is in the middle
- 1 if the points are collinear and self.p2 is in the middle
- 0 if the points are collinear and pt is in the middle

```
class pysal.cg.shapes.Line (m, b)
```

Geometric representation of line objects.

```
m float – slopeb float – y-intercept
```

Returns the x-value of the line at a particular y-value.

x(number) -> number

Parameters y (the y-value to compute x at) -

Examples

```
>>> 1 = Line(0.5, 0)
>>> 1.x(0.25)
0.5
```

 $\mathbf{y}(x)$

 $\mathbf{x}(y)$

Returns the y-value of the line at a particular x-value.

```
y(number) -> number
```

Parameters \mathbf{x} (the x-value to compute y at)-

Examples

```
>>> 1 = Line(1, 0)
>>> 1.y(1)
1.0
```

class pysal.cg.shapes.Ray (origin, second_p)

Geometric representation of ray objects.

• *Point* – Origin (point where ray originates)

Point – Second point on the ray (not point where ray originates)

class pysal.cg.shapes.Chain (vertices)

Geometric representation of a chain, also known as a polyline.

vertices

p

list – List of Points of the vertices of the chain in order.

len

float – The geometric length of the chain.

arclen

Returns the geometric length of the chain computed using arcdistance (meters).

len -> number

Examples

bounding_box

Returns the bounding box of the chain.

bounding_box -> Rectangle

Examples

```
>>> c = Chain([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))])
>>> c.bounding_box.left
0.0
>>> c.bounding_box.lower
0.0
>>> c.bounding_box.right
2.0
>>> c.bounding_box.upper
1.0
```

len

Returns the geometric length of the chain.

len -> number

Examples

parts

Returns the parts of the chain.

parts -> Point list

Examples

segments

Returns the segments that compose the Chain

vertices

Returns the vertices of the chain in clockwise order.

vertices -> Point list

Examples

```
>>> c = Chain([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((2, 1))])
>>> verts = c.vertices
>>> len(verts)
4
```

class pysal.cg.shapes.Polygon (vertices, holes=None)

Geometric representation of polygon objects.

vertices

list – List of Points with the vertices of the Polygon in clockwise order

len

int – Number of vertices including holes

perimeter

float – Geometric length of the perimeter of the Polygon

bounding_box

Rectangle - Bounding box of the polygon

bbox

List – [left, lower, right, upper]

area

float – Area enclosed by the polygon

centroid

tuple – The 'center of gravity', i.e. the mean point of the polygon.

area

Returns the area of the polygon.

area -> number

Examples

```
>>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> p.area
1.0
>>> p = Polygon([Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, 0))], [Point((2,1)), Point((2,2)), Point((1,2)), Point((1,1))])
>>> p.area
99.0
```

bbox

Returns the bounding box of the polygon as a list

See also bounding_box

bounding_box

Returns the bounding box of the polygon.

bounding_box -> Rectangle

Examples

```
>>> p = Polygon([Point((0, 0)), Point((2, 0)), Point((2, 1)), Point((0, 1))])
>>> p.bounding_box.left
0.0
>>> p.bounding_box.lower
0.0
>>> p.bounding_box.right
2.0
>>> p.bounding_box.upper
1.0
```

centroid

Returns the centroid of the polygon

centroid -> Point

Notes

The centroid returned by this method is the geometric centroid and respects multipart polygons with holes. Also known as the 'center of gravity' or 'center of mass'.

Examples

```
>>> p = Polygon([Point((0, 0)), Point((10, 0)), Point((10, 10)), Point((0, \( \to 10)))], [Point((1, 1)), Point((1, 2)), Point((2, 2)), Point((2, 1))])
>>> p.centroid
(5.035353535353555, 5.03535353535355)
```

contains_point (point)

Test if polygon contains point

Examples

```
>>> p = Polygon([Point((0,0)), Point((4,0)), Point((4,5)), Point((2,3)), Point((0,5))])
>>> p.contains_point((3,3))
1
>>> p.contains_point((0,6))
0
>>> p.contains_point((2,2.9))
1
>>> p.contains_point((4,5))
0
>>> p.contains_point((4,0))
0
>>> p.contains_point((4,0))
```

Handles holes

```
>>> p = Polygon([Point((0, 0)), Point((0, 10)), Point((10, 10)), Point((10, ..., ..., ..., ...))], [Point((2, 2)), Point((4, 2)), Point((4, 4)), Point((2, 4))])
>>> p.contains_point((3.0,3.0))
False
>>> p.contains_point((1.0,1.0))
True
>>>
```

Notes

Points falling exactly on polygon edges may yield unpredictable results

holes

Returns the holes of the polygon in clockwise order.

holes -> Point list

Examples

len

Returns the number of vertices in the polygon.

len -> int

Examples

```
>>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))])
>>> p1.len
4
>>> len(p1)
4
```

parts

Returns the parts of the polygon in clockwise order.

parts -> Point list

Examples

perimeter

Returns the perimeter of the polygon.

```
perimeter() -> number
```

Examples

```
>>> p = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> p.perimeter
4.0
```

vertices

Returns the vertices of the polygon in clockwise order.

vertices -> Point list

Examples

```
>>> p1 = Polygon([Point((0, 0)), Point((0, 1)), Point((1, 1)), Point((1, 0))])
>>> len(p1.vertices)
4
```

class pysal.cg.shapes.Rectangle(left, lower, right, upper)

Geometric representation of rectangle objects.

left

float – Minimum x-value of the rectangle

lower

float – Minimum y-value of the rectangle

right

float – Maximum x-value of the rectangle

upper

float – Maximum y-value of the rectangle

area

Returns the area of the Rectangle.

area -> number

Examples

```
>>> r = Rectangle(0, 0, 4, 4)
>>> r.area
16.0
```

height

Returns the height of the Rectangle.

height -> number

```
>>> r = Rectangle(0, 0, 4, 4)
>>> r.height
4.0
```

set centroid(new center)

Moves the rectangle center to a new specified point.

set_centroid(Point) -> Point

```
Parameters new_center (the new location of the centroid of the polygon) -
```

Examples

```
>>> r = Rectangle(0, 0, 4, 4)
>>> r.set_centroid(Point((4, 4)))
>>> r.left
2.0
>>> r.right
6.0
>>> r.lower
2.0
>>> r.upper
6.0
```

set_scale (scale)

Rescales the rectangle around its center.

```
set_scale(number) -> number
```

Parameters scale (the ratio of the new scale to the old scale (e.g. 1.0 is current size))-

Examples

```
>>> r = Rectangle(0, 0, 4, 4)
>>> r.set_scale(2)
>>> r.left
-2.0
>>> r.right
6.0
>>> r.lower
-2.0
>>> r.upper
6.0
```

width

Returns the width of the Rectangle.

width -> number

```
>>> r = Rectangle(0, 0, 4, 4)
>>> r.width
4.0
```

pysal.cg.shapes.asShape (obj)

Returns a pysal shape object from obj. obj must support the __geo_interface__.

cg.standalone — Standalone

The cg.standalone module provides ...

New in version 1.0. Helper functions for computational geometry in PySAL

```
pysal.cg.standalone.bbcommon(bb, bbother)
```

Old Stars method for bounding box overlap testing Also defined in pysal.weights._cont_binning

Examples

```
>>> b0 = [0,0,10,10]
>>> b1 = [10,0,20,10]
>>> bbcommon(b0,b1)
1
```

pysal.cg.standalone.get_bounding_box(items)

Examples

```
>>> bb = get_bounding_box([Point((-1, 5)), Rectangle(0, 6, 11, 12)])
>>> bb.left
-1.0
>>> bb.lower
5.0
>>> bb.right
11.0
>>> bb.upper
12.0
```

pysal.cg.standalone.get_angle_between(ray1, ray2)

Returns the angle formed between a pair of rays which share an origin get_angle_between(Ray, Ray) -> number

Parameters

- ray1 (a ray forming the beginning of the angle measured) -
- ray2 (a ray forming the end of the angle measured) -

Examples

```
>>> get_angle_between(Ray(Point((0, 0)), Point((1, 0))), Ray(Point((0, 0)), Point((1, 0))))
0.0
```

pysal.cg.standalone.is_collinear(p1, p2, p3)

Returns whether a triplet of points is collinear.

is_collinear(Point, Point, Point) -> bool

Parameters

- p1 (a point (Point)) -
- p2 (another point (Point)) -
- p3 (yet another point (Point)) -

Examples

```
>>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 5)))
True
>>> is_collinear(Point((0, 0)), Point((1, 1)), Point((5, 0)))
False
```

pysal.cg.standalone.get_segments_intersect (seg1, seg2)

Returns the intersection of two segments.

get_segments_intersect(LineSegment, LineSegment) -> Point or LineSegment

Parameters

- seg1 (a segment to check intersection for) -
- seg2 (a segment to check intersection for) -

Examples

```
>>> seg1 = LineSegment(Point((0, 0)), Point((0, 10)))
>>> seg2 = LineSegment(Point((-5, 5)), Point((5, 5)))
>>> i = get_segments_intersect(seg1, seg2)
>>> isinstance(i, Point)
True
>>> str(i)
'(0.0, 5.0)'
>>> seg3 = LineSegment(Point((100, 100)), Point((100, 101)))
>>> i = get_segments_intersect(seg2, seg3)
```

pysal.cg.standalone.get_segment_point_intersect (seg, pt)

Returns the intersection of a segment and point.

get_segment_point_intersect(LineSegment, Point) -> Point

Parameters

- seg(a segment to check intersection for)-
- pt (a point to check intersection for) -

```
>>> seg = LineSegment(Point((0, 0)), Point((0, 10)))
>>> pt = Point((0, 5))
>>> i = get_segment_point_intersect(seg, pt)
>>> str(i)
'(0.0, 5.0)'
>>> pt2 = Point((5, 5))
>>> get_segment_point_intersect(seg, pt2)
```

pysal.cg.standalone.get_polygon_point_intersect (poly, pt)

Returns the intersection of a polygon and point.

get_polygon_point_intersect(Polygon, Point) -> Point

Parameters

- poly(a polygon to check intersection for)-
- pt (a point to check intersection for)-

Examples

```
>>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> pt = Point((0.5, 0.5))
>>> i = get_polygon_point_intersect(poly, pt)
>>> str(i)
'(0.5, 0.5)'
>>> pt2 = Point((2, 2))
>>> get_polygon_point_intersect(poly, pt2)
```

pysal.cg.standalone.get_rectangle_point_intersect (rect, pt)

Returns the intersection of a rectangle and point.

get_rectangle_point_intersect(Rectangle, Point) -> Point

Parameters

- rect (a rectangle to check intersection for) -
- pt (a point to check intersection for) -

Examples

```
>>> rect = Rectangle(0, 0, 5, 5)
>>> pt = Point((1, 1))
>>> i = get_rectangle_point_intersect(rect, pt)
>>> str(i)
'(1.0, 1.0)'
>>> pt2 = Point((10, 10))
>>> get_rectangle_point_intersect(rect, pt2)
```

pysal.cg.standalone.get_ray_segment_intersect (ray, seg)

Returns the intersection of a ray and line segment.

get_ray_segment_intersect(Ray, Point) -> Point or LineSegment

Parameters

- ray (a ray to check intersection for) -
- seg(a line segment to check intersection for)-

```
>>> ray = Ray(Point((0, 0)), Point((0, 1)))
>>> seg = LineSegment(Point((-1, 10)), Point((1, 10)))
>>> i = get_ray_segment_intersect(ray, seg)
>>> isinstance(i, Point)
True
>>> str(i)
'(0.0, 10.0)'
>>> seg2 = LineSegment(Point((10, 10)), Point((10, 11)))
>>> get_ray_segment_intersect(ray, seg2)
```

pysal.cg.standalone.get_rectangle_rectangle_intersection(r0, r1, checkOver-lap=True)

Returns the intersection between two rectangles.

Note: Algorithm assumes the rectangles overlap. checkOverlap=False should be used with extreme caution. get_rectangle_intersection(r0, r1) -> Rectangle, Segment, Point or None

Parameters

- r0 (a Rectangle) -
- r1 (a Rectangle) -

Examples

```
>>> r0 = Rectangle(0,4,6,9)
>>> r1 = Rectangle(4,0,9,7)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:]
[4.0, 4.0, 6.0, 7.0]
>>> r0 = Rectangle(0,0,4,4)
>>> r1 = Rectangle(2,1,6,3)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:]
[2.0, 1.0, 4.0, 3.0]
>>> r0 = Rectangle(0,0,4,4)
>>> r1 = Rectangle(2,1,3,2)
>>> r1 = get_rectangle_rectangle_intersection(r0,r1)
>>> r1 = Rectangle(2,1,3,2)
>>> ri = get_rectangle_rectangle_intersection(r0,r1)
>>> ri[:] == r1[:]
True
```

pysal.cg.standalone.get_polygon_point_dist(poly, pt)

Returns the distance between a polygon and point.

get_polygon_point_dist(Polygon, Point) -> number

Parameters

- poly(a polygon to compute distance from) -
- pt (a point to compute distance from) -

```
>>> poly = Polygon([Point((0, 0)), Point((1, 0)), Point((1, 1)), Point((0, 1))])
>>> pt = Point((2, 0.5))
>>> get_polygon_point_dist(poly, pt)
1.0
>>> pt2 = Point((0.5, 0.5))
>>> get_polygon_point_dist(poly, pt2)
0.0
```

pysal.cg.standalone.get_points_dist(pt1, pt2)

Returns the distance between a pair of points.

get_points_dist(Point, Point) -> number

Parameters

- **pt1** (a point) -
- pt2 (the other point) -

Examples

```
>>> get_points_dist(Point((4, 4)), Point((4, 8)))
4.0
>>> get_points_dist(Point((0, 0)), Point((0, 0)))
0.0
```

```
pysal.cq.standalone.get_segment_point_dist(seg, pt)
```

Returns the distance between a line segment and point and distance along the segment of the closest point on the segment to the point as a ratio of the length of the segment.

get_segment_point_dist(LineSegment, Point) -> (number, number)

Parameters

- seq(a line segment to compute distance from) -
- pt (a point to compute distance from) -

Examples

```
>>> seg = LineSegment(Point((0, 0)), Point((10, 0)))
>>> pt = Point((5, 5))
>>> get_segment_point_dist(seg, pt)
(5.0, 0.5)
>>> pt2 = Point((0, 0))
>>> get_segment_point_dist(seg, pt2)
(0.0, 0.0)
```

```
pysal.cg.standalone.get_point_at_angle_and_dist (ray, angle, dist)
```

Returns the point at a distance and angle relative to the origin of a ray.

get_point_at_angle_and_dist(Ray, number, number) -> Point

Parameters

• ray(the ray which the angle and distance are relative to)-

- angle (the angle relative to the ray at which the point is located)-
- dist (the distance from the ray origin at which the point is located)-

```
>>> ray = Ray(Point((0, 0)), Point((1, 0)))
>>> pt = get_point_at_angle_and_dist(ray, math.pi, 1.0)
>>> isinstance(pt, Point)
True
>>> round(pt[0], 8)
-1.0
>>> round(pt[1], 8)
0.0
```

pysal.cg.standalone.convex_hull (points)

Returns the convex hull of a set of points.

convex_hull(Point list) -> Polygon

Parameters points (a list of points to compute the convex hull for)-

Examples

```
>>> points = [Point((0, 0)), Point((4, 4)), Point((4, 0)), Point((3, 1))]
>>> convex_hull(points)
[(0.0, 0.0), (4.0, 0.0), (4.0, 4.0)]
```

pysal.cg.standalone.is_clockwise(vertices)

Returns whether a list of points describing a polygon are clockwise or counterclockwise.

is_clockwise(Point list) -> bool

Parameters vertices (a list of points that form a single ring) -

Examples

```
>>> is_clockwise([Point((0, 0)), Point((10, 0)), Point((0, 10))])
>>> is_clockwise([Point((0, 0)), Point((0, 10)), Point((10, 0))])
>>> v = [(-106.57798, 35.174143999999998), (-106.583412, 35.174141999999996), (-
→106.58417999999999, 35.17414300000001), (-106.58377999999999, 35.
→175542999999998), (-106.58287999999999, 35.180543), (-106.58263099999999, 35.
\hookrightarrow181455), (-106.58257999999999, 35.18164300000001), (-106.58198299999999, 35.
→184615000000001), (-106.58148, 35.18724299999995), (-106.58127999999999, 35.
→188243), (-106.58138, 35.188243), (-106.58108, 35.189442999999997), (-106.58104,
→ 35.189644000000001), (-106.58028, 35.19344299999995), (-106.580029, 35.
→194541000000001), (-106.57974399999999, 35.19578599999998), (-106.579475, 35.
→19696199999999), (-106.57922699999999, 35.198042999999998), (-106.578397, 35.
\rightarrow201665999999996), (-106.57827999999999, 35.201642999999997), (-106.
→5773799999999, 35.20164299999999), (-106.5769799999999, 35.201543000000001), □
\leftarrow (-106.56436599999999, 35.200311999999997), (-106.56058, 35.19994299999999), (-
<del>⊶</del>106.56048, 35.197342999999996), (-106.56048, 35.195842999999996), (-106.56048, _
→35.194342999999996), (-106.56048, 35.19314299999999), (-106.56048, 35.
```

```
>>> is_clockwise(v)
True
```

pysal.cg.standalone.point_touches_rectangle(point, rect)

Returns True if the point is in the rectangle or touches it's boundary.

point_touches_rectangle(point, rect) -> bool

Parameters

- point (Point or Tuple) -
- rect (Rectangle) -

Examples

```
>>> rect = Rectangle(0,0,10,10)
>>> a = Point((5,5))
>>> b = Point((10,5))
>>> c = Point((11,11))
>>> point_touches_rectangle(a,rect)
1
>>> point_touches_rectangle(b,rect)
1
>>> point_touches_rectangle(c,rect)
0
```

pysal.cg.standalone.get_shared_segments(poly1, poly2, bool_ret=False)

Returns the line segments in common to both polygons.

get_shared_segments(poly1, poly2) -> list

Parameters

- poly1 (a Polygon) -
- poly2 (a Polygon) -

Examples

```
>>> x = [0, 0, 1, 1]
>>> y = [0, 1, 1, 0]
>>> poly1 = Polygon( map(Point, zip(x,y)) )
>>> x = [a+1 for a in x]
>>> poly2 = Polygon( map(Point, zip(x,y)) )
>>> get_shared_segments(poly1, poly2, bool_ret=True)
True
```

pysal.cg.standalone.distance_matrix (X, p=2.0, threshold=50000000.0)

Distance Matrices

XXX Needs optimization/integration with other weights in pysal

Parameters

• **X** (An, n by k numpy.ndarray) – Where n is number of observations k is number of dimmensions (2 for x,y)

- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- **threshold** (positive integer) If (n**2)*32 > threshold use scipy.spatial.distance_matrix instead of working in ram, this is roughly the ammount of ram (in bytes) that will be used.

```
>>> x,y=[r.flatten() for r in np.indices((3,3))]
>>> data = np.array([x,y]).T
>>> d=distance matrix(data)
>>> np.array(d)
                                              , 1. , 1.41421356,
                                , 2.
array([[ 0.
                    , 1.
       2.23606798, 2. , 2.23606798, 2.82842712],
[1. , 0. , 1. , 1.41421356, 1.
                                               , 2.23606798],
         1.41421356, 2.23606798, 2.
       [ 2. , 1. , 0.
                                                , 2.23606798, 1.41421356,
                    , 2.82842712, 2.23606798, 2. ],
               , 1.41421356, 2.23606798, 0.
       Γ 1.
                    , 1. , 1.41421356, 2.23606798],
6, 1. , 1.41421356, 1. ,
       [ 1.41421356, 1. , 1.41421356, 1. , 0. 

1. , 1.41421356, 1. , 1.41421356], [ 2.23606798, 1.41421356, 1. , 2. , 1. 

0. , 2.23606798, 1.41421356, 1. , 2. , 1. 

1. , 2.23606798, 1.41421356, 1. ],
                                                            ],
, 1.41421356,
                   , 2.23606798, 2.82842712, 1.
         2.23606798, 0. , 1. , 2.
                                                               ],
       [ 2.23606798, 2. , 2.23606798, 1.41421356, 1. 1.41421356, 1. , 0. , 1. ],
                                               , 2.23606798, 1.41421356,
       [ 2.82842712, 2.23606798, 2.
                                               , 0. ]])
                  , 2. , 1.
>>>
```

cg.rtree - rtree

The cg.rtree module provides a pure python rtree.

New in version 1.2. Pure Python implementation of RTree spatial index

Adaptation of http://code.google.com/p/pyrtree/

R-tree. see doc/ref/r-tree-clustering-split-algo.pdf

```
class pysal.cg.rtree.Rect (minx, miny, maxx, maxy)
```

A rectangle class that stores: an axis aligned rectangle, and: two flags (swapped_x and swapped_y). (The flags are stored implicitly via swaps in the order of minx/y and maxx/y.)

cg.kdtree — KDTree

The cq.kdtree module provides kdtree data structures for PySAL.

New in version 1.3. KDTree for PySAL: Python Spatial Analysis Library.

Adds support for Arc Distance to scipy.spatial.KDTree.

pysal.cq.kdtree.KDTree (data, leafsize=10, distance_metric='Euclidean', radius=6371.0)

kd-tree built on top of kd-tree functionality in scipy. If using scipy 0.12 or greater uses the scipy.spatial.cKDTree, otherwise uses scipy.spatial.KDTree. Offers both Arc distance and Euclidean distance. Note that Arc distance is only appropriate when points in latitude and longitude, and the radius set to meaningful value (see docs below).

Parameters

- data (array) The data points to be indexed. This array is not copied, and so modifying this data will result in bogus results. Typically nx2.
- **leafsize** (*int*) The number of points at which the algorithm switches over to brute-force. Has to be positive. Optional, default is 10.
- distance_metric (string) Options: "Euclidean" (default) and "Arc".
- radius (float) Radius of the sphere on which to compute distances. Assumes data in latitude and longitude. Ignored if distance_metric="Euclidean". Typical values: pysal.cg.RADIUS_EARTH_KM (default) pysal.cg.RADIUS_EARTH_MILES

cg.sphere - Sphere

The cg.sphere module provides tools for working with spherical distances.

New in version 1.3. sphere: Tools for working with spherical geometry.

Author(s): Charles R Schmidt schmidtc@gmail.com Luc Anselin@asu.edu Xun Li xun.li@asu.edu pysal.cg.sphere.arcdist(pt0, pt1, radius=6371.0)

Parameters

- pt0 (point) assumed to be in form (lng,lat)
- **pt1** (point) assumed to be in form (lng,lat)
- radius (radius of the sphere) defaults to Earth's radius

Source: http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Returns

Return type The arc distance between pt0 and pt1 using supplied radius

Examples

```
>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == math.pi*RADIUS_EARTH_MILES
True
```

pysal.cg.sphere.arcdist2linear(arc_dist, radius=6371.0)

Convert an arc distance (spherical earth) to a linear distance (R3) in the unit sphere.

Examples

```
>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == math.pi*RADIUS_EARTH_MILES
True
>>> arcdist2linear(d,RADIUS_EARTH_MILES)
2.0
```

```
pysal.cg.sphere.brute_knn (pts, k, mode='arc')
valid modes are ['arc', 'xrz']
```

 $\verb"pysal.cg.sphere.fast_knn" (\textit{pts}, k, \textit{return_dist=False})$

Computes k nearest neighbors on a sphere.

Parameters

- pts(list of x,y pairs)-
- **k** (int) Number of points to query
- return_dist (bool) Return distances in the 'wd' container object

Returns

- wn (list) list of neighbors
- wd (list) list of neighbor distances (optional)

pysal.cg.sphere.linear2arcdist (linear_dist, radius=6371.0)

Convert a linear distance in the unit sphere (R3) to an arc distance based on supplied radius

Examples

```
>>> pt0 = (0,0)
>>> pt1 = (180,0)
>>> d = arcdist(pt0,pt1,RADIUS_EARTH_MILES)
>>> d == linear2arcdist(2.0, radius = RADIUS_EARTH_MILES)
True
```

pysal.cg.sphere.toXYZ (pt)

Parameters

- pt0 (point) assumed to be in form (lng,lat)
- **pt1** (point) assumed to be in form (lng,lat)

Returns

Return type x, y, z

pysal.cq.sphere.lonlat (pointslist)

Converts point order from lat-lon tuples to lon-lat (x,y) tuples

```
Parameters pointslist (list of lat-lon tuples (Note, has to be a list, even for one point))-
```

Returns newpts

Return type list with tuples of points in lon-lat order

```
>>> points = [(41.981417, -87.893517), (41.980396, -87.776787), (41.980906, -87.

-696450)]
>>> newpoints = lonlat(points)
>>> newpoints
[(-87.893517, 41.981417), (-87.776787, 41.980396), (-87.69645, 41.980906)]
```

pysal.cg.sphere.harcdist(p0, p1, lonx=True, radius=6371.0)

Alternative arc distance function, uses haversine formula

Parameters

- p0 (first point as a tuple in decimal degrees) -
- pl(second point as a tuple in decimal degrees) -
- lonx (boolean to assess the order of the coordinates,) for lon,lat (default) = True, for lat,lon = False
- radius (radius of the earth at the equator as a sphere) default: RADIUS_EARTH_KM (6371.0 km) options: RADIUS_EARTH_MILES (3959.0 miles)

None (for result in radians)

Returns d

Return type distance in units specified, km, miles or radians (for None)

Example

```
>>> p0 = (-87.893517, 41.981417)

>>> p1 = (-87.519295, 41.657498)

>>> harcdist(p0,p1)

47.52873002976876

>>> harcdist(p0,p1,radius=None)

0.007460167953189258
```

Note: Uses radangle function to compute radian angle

pysal.cg.sphere.geointerpolate(p0, p1, t, lonx=True)

Finds a point on a sphere along the great circle distance between two points on a sphere also known as a way point in great circle navigation

Parameters

- p0 (first point as a tuple in decimal degrees) -
- pl(second point as a tuple in decimal degrees) -
- t (proportion along great circle distance between p0 and p1) e.g., t=0.5 would find the mid-point
- lonx (boolean to assess the order of the coordinates,) for lon,lat (default) = True, for lat,lon = False

Returns x,y – depending on setting of lonx; in other words, the same order is used as for the input **Return type** tuple in decimal degrees of lon-lat (default) or lat-lon,

```
>>> p0 = (-87.893517, 41.981417)
>>> p1 = (-87.519295, 41.657498)
>>> geointerpolate(p0,p1,0.1)  # using lon-lat
(-87.85592403438788, 41.949079912574796)
>>> p3 = (41.981417, -87.893517)
>>> p4 = (41.657498, -87.519295)
>>> geointerpolate(p3,p4,0.1,lonx=False)  # using lat-lon
(41.949079912574796, -87.85592403438788)
```

pysal.cg.sphere.geogrid(pup, pdown, k, lonx=True)

Computes a k+1 by k+1 set of grid points for a bounding box in lat-lon uses geointerpolate

Parameters

- pup (tuple with lat-lon or lon-lat for upper left corner of bounding box) -
- pdown (tuple with lat-lon or lon-lat for lower right corner of bounding box)-
- k(number of grid cells (grid points will be one more))-
- lonx (boolean to assess the order of the coordinates,) for lon,lat (default) = True, for lat,lon = False

Returns grid – starting with the top row and moving to the bottom; coordinate tuples are returned in same order as input

Return type list of tuples with lat-lon or lon-lat for grid points, row by row,

Example

```
>>> pup = (42.023768,-87.946389)  # Arlington Heights IL

>>> pdown = (41.644415,-87.524102)  # Hammond, IN

>>> geogrid(pup,pdown,3,lonx=False)

[(42.023768, -87.946389), (42.02393997819538, -87.80562679358316), (42.

-02393997819538, -87.66486420641684), (42.023768, -87.524102), (41.897317, -87.

-94638900000001), (41.8974888973743, -87.80562679296166), (41.8974888973743, -87.

-66486420703835), (41.897317, -87.524102), (41.770866000000005, -87.

-94638900000001), (41.77103781320412, -87.80562679234043), (41.77103781320412, -

-87.66486420765956), (41.770866000000005, -87.524102), (41.644415, -87.946389), 

-(41.64458672568646, -87.80562679171955), (41.64458672568646, -87.

-666486420828045), (41.644415, -87.524102)]
```

pysal.core — Core Data Structures and IO

Tables - DataTable Extension

New in version 1.0.

```
class pysal.core.Tables.DataTable (*args, **kwargs)
```

DataTable provides additional functionality to FileIO for data table file tables FileIO Handlers that provide data tables should subclass this instead of FileIO

by_col

```
by_col_array(*args)
```

Return columns of table as a numpy array.

Parameters *args(any number of strings of length k) - names of variables to extract

Returns implicit

Return type numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those columns will be constructed.

If only one list of strings is passed, the output is identical to those strings being passed.

If at least one list is passed and other strings or lists are passed, this returns a tuple containing arrays constructed from each positional argument.

Examples

```
>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[ 0.
      [ 0.
                      8.85582713],
                   , 17.20874204],
       [ 1.91515848, 3.4507747 ],
[ 1.28864319, 3.26381409],
         1.28864319,
      [ 0.
                       7.7700077711)
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[ 8.85582713, 0.
                                ],
       [ 17.20874204, 0.
                                 ],
       [ 3.4507747 , 1.91515848],
       [ 3.26381409, 1.28864319],
       [ 7.77000777, 0.
                                 ]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[ 8.85582713],
       [ 17.20874204],
       [ 3.4507747 ],
         3.263814091,
      [ 7.77000777]])
```

Numpy only supports homogeneous arrays. See Notes above.

```
['Washington', '7.77000777']],
dtype='|S20')
```

```
>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
       ['Washington'],
       ['Washington'],
       ['Washington'],
       ['Washington']],
      dtype='|S20')
>>> X[0:5]
array([[
          8.85582713,
                         0.
                                    ],
       [ 17.20874204,
                         0.
                                    ],
          3.4507747 ,
                         1.91515848],
                         1.28864319],
          3.26381409,
         7.77000777,
                                   11)
```

to_df (n=-1, read_shp=None, **df_kws)

FileIO - File Input/Output System

New in version 1.0. FileIO: Module for reading and writing various file types in a Pythonic way. This module should not be used directly, instead... import pysal.core.FileIO as FileIO Readers and Writers will mimic python file objects. .seek(n) seeks to the n'th object .read(n) reads n objects, default == all .next() reads the next object

```
class pysal.core.FileIO.FileIO (dataPath='', mode='r', dataFormat=None)
```

How this works: FileIO.open(*args) == FileIO(*args) When creating a new instance of FileIO the .__new__ method intercepts .__new__ parses the filename to determine the fileType next, .__registry and checked for that type. Each type supports one or more modes ['r','w','a',etc] If we support the type and mode, an instance of the appropriate handler is created and returned. All handlers must inherit from this class, and by doing so are automatically added to the .__registry and are forced to conform to the prescribed API. The metaclass takes cares of the registration by parsing the class definition. It doesn't make much sense to treat weights in the same way as shapefiles and dbfs,for now we'll just return an instance of W on mode='r' on mode='w', .write will expect an instance of W

```
cast (key, typ)
    cast key as typ

classmethod check ()
    Prints the contents of the registry

close ()
    subclasses should clean themselves up and then call this method

flush ()

get (n)
    Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset

static getType (dataPath, mode, dataFormat=None)
    Parse the dataPath and return the data type

ids
```

next()

A FileIO object is its own iterator, see StringIO

classmethod open (*args, **kwargs)

Alias for FileIO()

rIds

read(n=-1)

Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns None if EOF is reached before any objects.

seek(n)

Seek the FileObj to the beginning of the n'th record, if ids are set, seeks to the beginning of the record at id. n

tell()

Return id (or offset) of next object

truncate (size=None)

Should be implemented by subclasses and redefine this doc string

write (obj)

Must be implemented by subclasses that support 'w' subclasses should increment .pos subclasses should also check if obj is an instance of type(list) and redefine this doc string

pysal.core.IOHandlers — Input Output Handlers

IOHandlers.arcgis_dbf - ArcGIS DBF plugin

New in version 1.2.

```
class pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO(*args, **kwargs)
```

Opens, reads, and writes weights file objects in ArcGIS dbf format.

Spatial weights objects in the ArcGIS dbf format are used in ArcGIS Spatial Statistics tools. This format is the same as the general dbf format, but the structure of the weights dbf file is fixed unlike other dbf files. This dbf format can be used with the "Generate Spatial Weights Matrix" tool, but not with the tools under the "Mapping Clusters" category.

The ArcGIS dbf file is assumed to have three or four data columns. When the file has four columns, the first column is meaningless and will be ignored in PySAL during both file reading and file writing. The next three columns hold origin IDs, destinations IDs, and weight values. When the file has three columns, it is assumed that only these data columns exist in the stated order. The name for the origin IDs column should be the name of ID variable in the original source data table. The names for the destination IDs and weight values columns are NID and WEIGHT, respectively. ArcGIS Spatial Statistics tools support only unique integer IDs. Therefore, the values for origin and destination ID columns should be integer. For the case where the IDs of a weights object are not integers, ArcGISDbfIO allows users to use internal id values corresponding to record numbers, instead of original ids.

An exemplary structure of an ArcGIS dbf file is as follows: [Line 1] Field1 RECORD_ID NID WEIGHT [Line 2] 0 72 76 1 [Line 3] 0 72 79 1 [Line 4] 0 72 78 1 ...

Unlike the ArcGIS text format, this format does not seem to include self-neighbors.

References

```
FORMATS = ['arcgis_dbf']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
seek (pos)
tell()
     Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
varName
write(obj, useIdIndex=False)
         Parameters
             • write(weightsObject) -
             • a weights object (accepts) -
         Returns
             • an ArcGIS dbf file
```

• write a weights object to the opened dbf file.

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.dbf')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w','arcgis_dbf')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r','arcgis_dbf').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.arcgis_swm — ArcGIS SWM plugin

New in version 1.2.

```
class pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO(*args, **kwargs)
```

Opens, reads, and writes weights file objects in ArcGIS swm format.

Spatial weights objects in the ArcGIS swm format are used in ArcGIS Spatial Statistics tools. Particularly, this format can be directly used with the tools under the category of Mapping Clusters.

The values for [ORG_i] and [DST_i] should be integers, as ArcGIS Spatial Statistics tools support only unique integer IDs. For the case where a weights object uses non-integer IDs, ArcGISSwmIO allows users to use internal ids corresponding to record numbers, instead of original ids.

The specifics of each part of the above structure is as follows.

4*m

8*m

8

Part	Data type	Description	Length
ID_VAR_NAME	ASCII TEXT	ID variable name	Flexible (Up to the 1st;)
ESRI_SRS	ASCII TEXT	ESRI spatial reference system	Flexible (Btw the 1st; and n)
NO_OBS	l.e. int	Number of observations	4
ROW_STD	l.e. int	Whether or not row-standardized	4
WGT_i			
ORG_i	l.e. int	ID of observaiton i	4
NO_NGH_i	l.e. int	Number of neighbors for obs. i (m)	4
NGHS_i			

IDs of all neighbors of obs. i

Sum of weights for "

Weights for obs. i and its neighbors

Table 3.1: ArcGIS SWM Components

```
FORMATS = ['swm']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
seek (pos)
tell()
     Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
varName
write (obj, useIdIndex=False)
     Writes a spatial weights matrix data file in swm format.
```

Parameters

DSTS_i

W_SUM_i

WS i

l.e. int

1.e. float

l.e. float

- write(weightsObject) -
- a weights object (accepts) -

Returns

- an ArcGIS swm file
- write a weights object to the opened swm file.

Examples

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('ohio.swm'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.swm')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.arcgis_txt - ArcGIS ASCII plugin

New in version 1.2.

```
class pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO(*args, **kwargs)
    Opens, reads, and writes weights file objects in ArcGIS ASCII text format.
```

Spatial weights objects in the ArcGIS text format are used in ArcGIS Spatial Statistics tools. This format is a simple text file with ASCII encoding. This format can be directly used with the tools under the category of "Mapping Clusters." But, it cannot be used with the "Generate Spatial Weights Matrix" tool.

The first line of the ArcGIS text file is a header including the name of a data column that holded the ID variable in the original source data table. After this header line, it includes three data columns for origin id, destination id, and weight values. ArcGIS Spatial Statistics tools support only unique integer ids. Thus, the values in the first two columns should be integers. For the case where a weights object uses non-integer IDs, ArcGISTextIO allows users to use internal ids corresponding to record numbers, instead of original ids.

An exemplary structure of an ArcGIS text file is as follows: [Line 1] StationID [Line 2] 1 1 0.0 [Line 3] 1 2 0.1 [Line 4] 1 3 0.14286 [Line 5] 2 1 0.1 [Line 6] 2 3 0.05 [Line 7] 3 1 0.16667 [Line 8] 3 2 0.06667 [Line 9] 3 3 0.0 ...

As shown in the above example, this file format allows explicit specification of weights for self-neighbors. When no entry is available for self-neighbors, ArcGIS spatial statistics tools consider they have zero weights. PySAL ArcGISTextIO class ignores self-neighbors if their weights are zero.

References

http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Modeling_spatial_relationships

Notes

When there are an dbf file whose name is identical to the name of the source text file, ArcGISTextIO checks the data type of the ID data column and uses it for reading and writing the text file. Otherwise, it considers IDs are strings.

```
FORMATS = ['arcgis_text']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
```

• write a weights object to the opened text file.

Examples

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.txt')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w','arcgis_text')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r','arcgis_text').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.csvWrapper — CSV plugin

New in version 1.0.

```
class pysal.core.IOHandlers.csvWrapper.csvWrapper(*args, **kwargs)
```

DataTable provides additional functionality to FileIO for data table file tables FileIO Handlers that provide data tables should subclass this instead of FileIO

```
FORMATS = ['csv']
MODES = ['r', 'Ur', 'rU', 'U']
READ_MODES = ['r', 'Ur', 'rU', 'U']
by_col
by_col_array(*args)
```

Return columns of table as a numpy array.

Parameters *args (any number of strings of length k) - names of variables to extract

Returns implicit

Return type numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those columns will be constructed.

If only one list of strings is passed, the output is identical to those strings being passed.

If at least one list is passed and other strings or lists are passed, this returns a tuple containing arrays constructed from each positional argument.

Examples

```
[ 1.91515848, 3.4507747 ],
      [ 1.28864319, 3.26381409],
             , 7.77000777]])
      [ 0.
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[ 8.85582713, 0.
                              ],
      [ 17.20874204, 0.
                              ],
      [ 3.4507747 , 1.91515848],
      [ 3.26381409, 1.28864319],
      [ 7.77000777, 0.
                          ]])
>>> hr = dbf.by_col_array(['HR80'])
>>> hr[0:5]
array([[ 8.85582713],
      [ 17.20874204],
      [ 3.4507747 ],
      [ 3.26381409],
      [ 7.77000777]])
```

Numpy only supports homogeneous arrays. See Notes above.

```
>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
      ['Washington'],
      ['Washington'],
      ['Washington'],
      ['Washington']],
     dtype='|S20')
>>> X[0:5]
array([[ 8.85582713,
                     0.
                                ],
      [ 17.20874204, 0.
                                ],
                     1.91515848],
      [ 3.4507747 ,
      [ 3.26381409, 1.28864319],
      [ 7.77000777, 0.
                           ]])
```

```
by_row
cast (key, typ)
    cast key as typ

check()
    Prints the contents of the registry

close()
    subclasses should clean themselves up and then call this method

flush()

get (n)
    Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
```

```
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
     Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns
     None if EOF is reached before any objects.
     Seek the FileObj to the beginning of the n'th record, if ids are set, seeks to the beginning of the record at
     id, n
tell()
     Return id (or offset) of next object
to_df (n=-1, read_shp=None, **df_kws)
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
write (obj)
     Must be implemented by subclasses that support 'w' subclasses should increment .pos subclasses should
     also check if obj is an instance of type(list) and redefine this doc string
```

IOHandlers.dat — DAT plugin

New in version 1.2.

```
class pysal.core.IOHandlers.dat.DatIO(*args, **kwargs)
     Opens, reads, and writes file objects in DAT format.
```

Spatial weights objects in DAT format are used in Dr. LeSage's MatLab Econ library. This DAT format is a simple text file with DAT or dat extension. Without header line, it includes three data columns for origin id, destination id, and weight values as follows:

```
[Line 1] 2 1 0.25 [Line 2] 5 1 0.50 ...
```

Origin/destination IDs in this file format are simply record numbers starting with 1. IDs are not necessarily integers. Data values for all columns should be numeric.

```
FORMATS = ['dat']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
```

```
flush()
qet(n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
seek (pos)
shpName
tell()
     Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
varName
write(obj)
         Parameters
             • write (weightsObject) -
             • a weights object (accepts) -
         Returns
             • a DAT file
             • write a weights object to the opened DAT file.
     Examples
```

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('wmat.dat'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.dat')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created dat file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.gal — GAL plugin

```
New in version 1.0.
```

```
class pysal.core.IOHandlers.gal.GalIO(*args, **kwargs)
     Opens, reads, and writes file objects in GAL format.
     FORMATS = ['gal']
     MODES = ['r', 'w']
     by_row
     cast (key, typ)
          cast key as typ
     check()
          Prints the contents of the registry
     close()
     data_type
     flush()
     get(n)
          Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
     getType (dataPath, mode, dataFormat=None)
          Parse the dataPath and return the data type
     ids
     next()
           A FileIO object is its own iterator, see StringIO
```

```
open (*args, **kwargs)
    Alias for FileIO()

rIds

read (n=-1, sparse=False)
    sparse: boolean If true return scipy sparse object If false return pysal w object

seek (pos)

tell()
    Return id (or offset) of next object

truncate (size=None)
    Should be implemented by subclasses and redefine this doc string

write (obj)

Parameters
    • write (weightsObject) -
    • a weights object (accepts) -
    Returns
```

- a GAL file
- write a weights object to the opened GAL file.

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('sids2.gal'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.gal')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created gal file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.geobugs_txt — GeoBUGS plugin

New in version 1.2.

```
class pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO(*args, **kwargs)
```

Opens, reads, and writes weights file objects in the text format used in GeoBUGS. GeoBUGS generates a spatial weights matrix as an R object and writes it out as an ASCII text representation of the R object.

An exemplary GeoBUGS text file is as follows. list([CARD],[ADJ],[WGT],[SUMNUMNEIGH]) where [CARD] and [ADJ] are required but the others are optional. PySAL assumes [CARD] and [ADJ] always exist in an input text file. It can read a GeoBUGS text file, even when its content is not written in the order of [CARD], [ADJ], [WGT], and [SUMNUMNEIGH]. It always writes all of [CARD], [ADJ], [WGT], and [SUMNUMNEIGH]. PySAL does not apply text wrapping during file writing.

In the above example,

[CARD]: num=c([a list of comma-splitted neighbor cardinalities])

[ADJ]: adj=c([a list of comma-splitted neighbor IDs]) if caridnality is zero, neighbor IDs are skipped. The ordering of observations is the same in both [CARD] and [ADJ]. Neighbor IDs are record numbers starting from one.

[WGT]: weights=c([a list of comma-splitted weights]) The restrictions for [ADJ] also apply to [WGT].

[SUMNUMNEIGH]: sumNumNeigh=[The total number of neighbor pairs] the total number of neighbor pairs is an integer value and the same as the sum of neighbor cardinalities.

Notes

For the files generated from R spdep nb2WB and dput function, it is assumed that the value for the control parameter of dput function is NULL. Please refer to R spdep nb2WB function help file.

References

```
Thomas, A., Best, N., Lunn, D., Arnold, R., and Spiegelhalter, D. 2004. GeoBUGS User Manual.
```

R spdep nb2WB function help file.

```
FORMATS = ['geobugs_text']
MODES = ['r', 'w']
by_row
```

```
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get(n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
     Reads GeoBUGS text file
         Returns
```

Examples

Type 'dir(w)' at the interpreter to see what methods are supported. Open a GeoBUGS text file and read it into a pysal weights object

Get the number of observations from the header

Return type a pysal.weights.weights.W object

```
>>> w.n
56
```

Get the mean number of neighbors

```
>>> w.mean_neighbors
4.1785714285714288
```

Get neighbor distances for a single observation

```
>>> w[1]
{9: 1.0, 19: 1.0, 5: 1.0}
```

```
seek (pos)
```

tell()

Return id (or offset) of next object

truncate (size=None)

Should be implemented by subclasses and redefine this doc string

write (obj)

Writes a weights object to the opened text file.

Parameters

- write(weightsObject) -
- a weights object (accepts) -

Returns

Return type a GeoBUGS text file

Examples

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w','geobugs_text')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r','geobugs_text').read()
WARNING: there are 3 disconnected observations
Island ids: [6, 8, 11]
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.geoda_txt - Geoda text plugin

New in version 1.0.

```
class pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader(*args, **kwargs)
```

DataTable provides additional functionality to FileIO for data table file tables FileIO Handlers that provide data tables should subclass this instead of FileIO

```
FORMATS = ['geoda_txt']
MODES = ['r']
by col
by_col_array(*args)
    Return columns of table as a numpy array.
```

Parameters *args (any number of strings of length k) - names of variables to extract

Returns implicit

Return type numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those columns will be constructed.

If only one list of strings is passed, the output is identical to those strings being passed.

If at least one list is passed and other strings or lists are passed, this returns a tuple containing arrays constructed from each positional argument.

Examples

```
>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[ 0.
                      8.85582713],
                   , 17.20874204],
       [ 0.
       [ 1.91515848,
                      3.4507747 ],
         1.28864319,
                      3.26381409],
                       7.77000777]])
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[ 8.85582713,
                     0.
                                 ],
      [ 17.20874204, 0.
                                 ],
      [ 3.4507747 , 1.91515848],
       [ 3.26381409,
                      1.28864319],
```

Numpy only supports homogeneous arrays. See Notes above.

```
>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
       ['Washington'],
      ['Washington'],
      ['Washington'],
      ['Washington']],
     dtype='|S20')
>>> X[0:5]
array([[ 8.85582713,
                        0.
                                  ],
       [ 17.20874204,
                      0.
                                 ],
                       1.91515848],
       [ 3.4507747 ,
                       1.28864319],
       [ 3.26381409,
       [ 7.77000777,
                                  ]])
```

```
cast (key, typ)
cast key as typ

check ()
Prints the contents of the registry

close ()

flush ()

get (n)
Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset

get Type (dataPath, mode, dataFormat=None)
Parse the dataPath and return the data type

ids

next ()
A FileIO object is its own iterator, see StringIO

open (*args, **kwargs)
```

Alias for FileIO()

```
rIds
     read(n=-1)
           Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns
           None if EOF is reached before any objects.
     seek(n)
           Seek the FileObj to the beginning of the n'th record, if ids are set, seeks to the beginning of the record at
           id, n
     tell()
           Return id (or offset) of next object
     to_df (n=-1, read_shp=None, **df_kws)
     truncate (size=None)
           Should be implemented by subclasses and redefine this doc string
     write (obj)
           Must be implemented by subclasses that support 'w' subclasses should increment .pos subclasses should
           also check if obj is an instance of type(list) and redefine this doc string
IOHandlers.gwt — GWT plugin
New in version 1.0.
class pysal.core.IOHandlers.gwt.GwtIO(*args, **kwargs)
     FORMATS = ['kwt', 'gwt']
     MODES = ['r', 'w']
     by_row
     cast (key, typ)
           cast key as typ
     check()
           Prints the contents of the registry
     close()
     flush()
     get (n)
           Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
     getType (dataPath, mode, dataFormat=None)
           Parse the dataPath and return the data type
     ids
     next()
           A FileIO object is its own iterator, see StringIO
     open (*args, **kwargs)
           Alias for FileIO()
     rIds
     read(n=-1)
     seek (pos)
```

shpName

tell()

Return id (or offset) of next object

truncate (size=None)

Should be implemented by subclasses and redefine this doc string

varName

write(obj)

Parameters

- write(weightsObject) -
- a weights object (accepts) -

Returns

- a GWT file
- write a weights object to the opened GWT file.

Examples

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('juvenile.gwt'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.gwt')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created gwt file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.mat — MATLAB Level 4-5 plugin

New in version 1.2.

```
class pysal.core.IOHandlers.mat.MatIO(*args, **kwargs)
   Opens, reads, and writes weights file objects in MATLAB Level 4-5 MAT format.
```

MAT files are used in Dr. LeSage's MATLAB Econometrics library. The MAT file format can handle both full and sparse matrices, and it allows for a matrix dimension greater than 256. In PySAL, row and column headers of a MATLAB array are ignored.

PySAL uses matlab io tools in scipy. Thus, it is subject to all limits that loadmat and savemat in scipy have.

Notes

If a given weights object contains too many observations to write it out as a full matrix, PySAL writes out the object as a sparse matrix.

References

MathWorks (2011) "MATLAB 7 MAT-File Format" at http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf.

scipy matlab io http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

```
FORMATS = ['mat']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
```

- a MATLAB mat file
- write a weights object to the opened mat file.

Examples

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('spat-sym-us.mat'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.mat')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created mat file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.mtx — Matrix Market MTX plugin

New in version 1.2.

```
class pysal.core.IOHandlers.mtx.MtxIO(*args, **kwargs)
    Opens, reads, and writes weights file objects in Matrix Market MTX format.
```

The Matrix Market MTX format is used to facilitate the exchange of matrix data. In PySAL, it is being tested as a new file format for delivering the weights information of a spatial weights matrix. Although the MTX format supports both full and sparse matrices with different data types, it is assumed that spatial weights files in the mtx format always use the sparse (or coordinate) format with real data values. For now, no additional assumption (e.g., symmetry) is made of the structure of a weights matrix.

With the above assumptions, the structure of a MTX file containing a spatial weights matrix can be defined as follows: %%MatrixMarket matrix coordinate real general <— header 1 (constant) % Comments starts <— % | 0 or more comment lines % Comments ends <— M N L <— header 2, rows, columns, entries I1 J1 A(I1,J1) <— ... | L entry lines IL JL A(IL,JL) <—

In the MTX foramt, the index for rows or columns starts with 1.

PySAL uses mtx io tools in scipy. Thus, it is subject to all limits that scipy currently has. Reengineering might be required, since scipy currently reads in the entire entry into memory.

References

MTX format specification http://math.nist.gov/MatrixMarket/formats.html

scipy matlab io http://docs.scipy.org/doc/scipy/reference/tutorial/io.html

```
FORMATS = ['mtx']
MODES = ['r', 'w']
by_row
cast (key, typ)
      cast key as typ

check ()
      Prints the contents of the registry

close ()

flush ()

get (n)
      Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset

getType (dataPath, mode, dataFormat=None)
      Parse the dataPath and return the data type
ids
```

```
A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
    Alias for FileIO()
rIds
read (n=-1, sparse=False)
    sparse: boolean if true, return pysal WSP object if false, return pysal W object
seek (pos)
tell()
    Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
write (obj)
         Parameters
             • write(weightsObject) -
             • a weights object (accepts) -
         Returns
             • a MatrixMarket mtx file
             • write a weights object to the opened mtx file.
     Examples
     >>> import tempfile, pysal, os
     >>> testfile = pysal.open(pysal.examples.get_path('wmat.mtx'),'r')
     >>> w = testfile.read()
     Create a temporary file for this example
     >>> f = tempfile.NamedTemporaryFile(suffix='.mtx')
     Reassign to new var
     >>> fname = f.name
     Close the temporary named file
```

Open the new file in write mode

>>> f.close()

next()

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created mtx file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

Go to the beginning of the test file

```
>>> testfile.seek(0)
```

Create a sparse weights instance from the test file

```
>>> wsp = testfile.read(sparse=True)
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the sparse weights object into the open file

```
>>> o.write(wsp)
>>> o.close()
```

Read in the newly created mtx file

```
>>> wsp_new = pysal.open(fname,'r').read(sparse=True)
```

Compare values from old to new

```
>>> wsp_new.s0 == wsp.s0
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.pyDbfIO - PySAL DBF plugin

New in version 1.0.

This DBF handler implements the PySAL DataTable interface.

header

list – A list of field names. The header is a python list of strings. Each string is a field name and field name must not be longer than 10 characters.

field_spec

list – A list describing the data types of each field. It is comprised of a list of tuples, each tuple describing a field. The format for the tuples is ("Type",len,precision). Valid Types are 'C' for characters, 'L' for bool, 'D' for data, 'N' or 'F' for number.

Examples

```
>>> import pysal
>>> dbf = pysal.open(pysal.examples.get_path('juvenile.dbf'), 'r')
>>> dbf.header
['ID', 'X', 'Y']
>>> dbf.field_spec
[('N', 9, 0), ('N', 9, 0), ('N', 9, 0)]
```

```
FORMATS = ['dbf']
MODES = ['r', 'w']
by_col
by_col_array(*args)
```

Return columns of table as a numpy array.

Parameters *args(any number of strings of length k) - names of variables to extract

Returns implicit

Return type numpy array of shape (n,k)

Notes

If the variables are not all of the same data type, then numpy rules for casting will result in a uniform type applied to all variables.

If only strings are passed to the function, then an array with those columns will be constructed.

If only one list of strings is passed, the output is identical to those strings being passed.

If at least one list is passed and other strings or lists are passed, this returns a tuple containing arrays constructed from each positional argument.

Examples

```
>>> import pysal as ps
>>> dbf = ps.open(ps.examples.get_path('NAT.dbf'))
>>> hr = dbf.by_col_array('HR70', 'HR80')
>>> hr[0:5]
array([[ 0.
                      8.85582713],
                   , 17.208742041,
       0.
       [ 1.91515848, 3.4507747 ],
      [ 1.28864319, 3.26381409],
                       7.77000777]])
        0.
>>> hr = dbf.by_col_array(['HR80', 'HR70'])
>>> hr[0:5]
array([[ 8.85582713,
                       0.
                                 ],
```

Numpy only supports homogeneous arrays. See Notes above.

```
>>> y, X = dbf.by_col_array('STATE_NAME', ['HR80', 'HR70'])
>>> y[0:5]
array([['Minnesota'],
       ['Washington'],
       ['Washington'],
       ['Washington'],
      ['Washington']],
     dtype='|S20')
>>> X[0:5]
array([[ 8.85582713,
                        0.
                                  ],
       [ 17.20874204,
                      0.
                                  ],
                       1.91515848],
       [ 3.4507747 ,
       [ 3.26381409,
                       1.28864319],
       [ 7.77000777,
                       0.
                                  ]])
```

```
by_row

cast (key, typ)
    cast key as typ

check()
    Prints the contents of the registry

close()

flush()

get (n)
    Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset

getType (dataPath, mode, dataFormat=None)
    Parse the dataPath and return the data type

ids

next()
    A FileIO object is its own iterator, see StringIO
```

```
open (*args, **kwargs)
    Alias for FileIO()

rIds

read (n=-1)
    Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns
    None if EOF is reached before any objects.

read_record (i)

seek (i)

tell ()
    Return id (or offset) of next object

to_df (n=-1, read_shp=None, **df_kws)

truncate (size=None)
    Should be implemented by subclasses and redefine this doc string

write (obj)
```

IOHandlers.pyShpIO - Shapefile plugin

The IOHandlers.pyShpIO Shapefile Plugin for PySAL's FileIO System

New in version 1.0. PySAL ShapeFile Reader and Writer based on pure python shapefile module.

```
class pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper(*args, **kwargs)
    FileIO handler for ESRI ShapeFiles.
```

Notes

This class wraps _pyShpIO's shp_file class with the PySAL FileIO API. shp_file can be used without PySAL.

Formats

list – A list of support file extensions

Modes

list – A list of support file modes

Examples

```
>>> import os
      >>> os.remove(fname); os.remove(fname.replace('.shp','.shx'))
     FORMATS = ['shp', 'shx']
     MODES = ['w', 'r', 'wb', 'rb']
     by_row
     cast (key, typ)
           cast key as typ
     check()
           Prints the contents of the registry
     close()
     flush()
     get (n)
           Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
     getType (dataPath, mode, dataFormat=None)
           Parse the dataPath and return the data type
     ids
     next()
           A FileIO object is its own iterator, see StringIO
     open (*args, **kwargs)
           Alias for FileIO()
     rIds
     read(n=-1)
           Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns
           None if EOF is reached before any objects.
     seek(n)
           Seek the FileObj to the beginning of the n'th record, if ids are set, seeks to the beginning of the record at
           id, n
     tell()
           Return id (or offset) of next object
     truncate (size=None)
           Should be implemented by subclasses and redefine this doc string
     write (obj)
           Must be implemented by subclasses that support 'w' subclasses should increment .pos subclasses should
           also check if obj is an instance of type(list) and redefine this doc string
IOHandlers.stata_txt — STATA plugin
New in version 1.2.
class pysal.core.IOHandlers.stata_txt.StataTextIO(*args, **kwargs)
     Opens, reads, and writes weights file objects in STATA text format.
```

Spatial weights objects in the STATA text format are used in STATA sppack library through the spmat command. This format is a simple text file delimited by a whitespace. The spmat command does not specify which file extension to use. But, txt seems the default file extension, which is assumed in PySAL.

The first line of the STATA text file is a header including the number of observations. After this header line, it includes at least one data column that contains unique ids or record numbers of observations. When an id variable is not specified for the original spatial weights matrix in STATA, record numbers are used to identify individual observations, and the record numbers start with one. The spmat command seems to allow only integer IDs, which is also assumed in PySAL.

A STATA text file can have one of the following structures according to its export options in STATA.

Structure 1: encoding using the list of neighbor ids [Line 1] [Number_of_Observations] [Line 2] [ID_of_Obs_1] [ID_of_Neighbor_1_of_Obs_1] [ID_of_Neighbor_2_of_Obs_1] [ID_of_Neighbor_m_of_Obs_1] [Line 3] [ID_of_Obs_2] [Line 4] [ID_of_Obs_3] [ID_of_Neighbor_1_of_Obs_3] [ID_of_Neighbor_2_of_Obs_3] ... Note that for island observations their IDs are still recorded.

Structure 2: encoding using a full matrix format [Line 1] [Number_of_Observations] [Line 2] [ID_of_Obs_1] [w_11] [w_12] ... [w_1n] [Line 3] [ID_of_Obs_2] [w_21] [w_22] ... [w_2n] [Line 4] [ID_of_Obs_3] [w_31] [w_32] ... [w_3n] ... [Line n+1] [ID_of_Obs_n] [w_n1] [w_n2] ... [w_nn] where w_ij can be a form of general weight. That is, w_ij can be both a binary value or a general numeric value. If an observation is an island, all of its w columns contains 0.

References

Drukker D.M., Peng H., Prucha I.R., and Raciborski R. (2011) "Creating and managing spatial-weighting matrices using the spmat command"

Notes

The spmat command allows users to add any note to a spatial weights matrix object in STATA. However, all those notes are lost when the matrix is exported. PySAL also does not take care of those notes.

```
FORMATS = ['stata_text']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get(n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
```

Returns

- a STATA text file
- write a weights object to the opened text file.

Examples

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.txt')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w','stata_text')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r','stata_text').read()
WARNING: there are 7 disconnected observations
Island ids: [5, 9, 10, 11, 12, 14, 15]
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.wk1 — Lotus WK1 plugin

New in version 1.2.

```
class pysal.core.IOHandlers.wk1.Wk1IO(*args, **kwargs)
```

MATLAB wk1read.m and wk1write.m that were written by Brian M. Bourgault in 10/22/93

Opens, reads, and writes weights file objects in Lotus Wk1 format.

Lotus Wk1 file is used in Dr. LeSage's MATLAB Econometrics library.

A Wk1 file holds a spatial weights object in a full matrix form without any row and column headers. The maximum number of columns supported in a Wk1 file is 256. Wk1 starts the row (column) number from 0 and uses little endian binary endcoding. In PySAL, when the number of observations is n, it is assumed that each cell of a n*n(=m) matrix either is a blank or have a number.

The internal structure of a Wk1 file written by **PySAL** follows: [BOF][DIM][CPI][CAL][CMODE][CORD][SPLIT][SYNC][CURS][WIN] [HCOL][MRG][LBL][CELL_1]...[CELL_m][EOF] where [CELL_k] equals [DTYPE][DLEN][DFORMAT][CINDEX][CVALUE]. The parts between [BOF] and [CELL_1] are variable according to the software program used to write a wk1 file. While reading a wk1 file, PySAL ignores them. Each part of this structure is detailed below.

160

margins rec

Table 3.2: Lotus WK1 fields

	Tal	ble 3.2: Lotus WK1 fie	elds	
Part	Description	Data Type	Length	Value
[BOF]	Begining of field	unsigned character	6	0,0,2,0,6,4
[DIM]	Matrix dimension			
[DIMDTYPE]	Type of dim. rec	unsigned short un-	228	6 8 0,0,n,n
[DIMLEN] [DIM-	Length of dim. rec	signed short un-		
VAL]	Value of dim. rec	signed short		
[CPI]	CPI		ı	
[CPITYPE]	Type of cpi rec	unsigned short un-	226	150 6 0,0,0,0,0,0
[CPILEN] [CPI-	Length of cpi rec	signed short un-		
VAL]	Value of cpi rec	signed char		
[CAL]	calcount			
[CALTYPE]	Type of calcount	unsigned short un-	2 2 1	47 1 0
[CALLEN] [CAL-	rec Length cal-	signed short un-		
VAL]	count rec Value of	signed char		
,	calcount rec	3-8		
[CMODE]	calmode			
[CMODETYP]	Type of calmode	unsigned short un-	221	2 1 0
[CMODELEN]	rec Length of	signed short signed		
[CMODEVAL]	calmode rec Value	char		
	of calmode rec	Jiiui		
[CORD]	calorder			
[CORDTYPE]	Type of calorder	unsigned short un-	221	3 1 0
[CORDLEN]	* *	signed short signed	221	310
-		-		
[CORDVAL]	calorder rec	char		
	Value of calorder			
[CDI IT]	rec			
[SPLIT]	split		2.2.1	4.1.0
[SPLTYPE]	Type of split rec	unsigned short un-	2 2 1	4 1 0
[SPLLEN]	Length of split rec	signed short signed		
[SPLVAL]	Value of split rec	char		
[SYNC]	sync			
[SYNCTYP]	Type of sync rec	unsigned short un-	2 2 1	5 1 0
[SYNCLEN]	Length of sync rec	signed short singed		
[SYNCVAL]	Value of sync rec	char		
[CURS]	cursor			
[CURSTYP]	Type of cursor rec	unsigned short un-	2 2 1	49 1 1
[CURSLEN]	Length of cursor	signed short signed		
[CURSVAL]	rec Value of cursor	char		
	rec			
[WIN]	window	1	ı	1
[WINTYPE]	Type of window	unsigned short	2 2 4 2 26	7 32 0,0 113,0
[WINLEN]	rec Length of win-	unsigned short		10,n,n,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
[WINVAL1]	dow rec Value 1 of	unsigned short		-,,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,
[WINVAL2]	window rec Value	signed char un-		
[WINVAL3]	2 of window rec	signed short		
[Value 3 of window	3.5		
	rec			
[HCOL]	hidcol			
[HCOLTYP]	Type of hidcol rec	unsigned short un-	2 2 32	100 32 0*32
		_	2232	100 34 0 34
[HCOLVAL]	Length of hideol	signed short signed		
[HCOLVAL]	rec Value of hidcol	char		
D (DC)	rec			
[MRG]	margins		Chanter 3	Library Reference
[MRGTYPE]	Type of margins	unsigned short un-	2 2 10 Chapter 3.	Library Reference
[MRGLEN]	rec Length of mar-	signed short un-		
[MRGVAL]	gins rec Value of	signed short		
	marging rec	1	1	1

```
FORMATS = ['wk1']
MODES = ['r', 'w']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open (*args, **kwargs)
     Alias for FileIO()
rIds
read(n=-1)
seek (pos)
tell()
     Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
varName
write (obj)
         Parameters
              • write(weightsObject) -
              • a weights object (accepts) -
         Returns
              · a Lotus wk1 file
              • write a weights object to the opened wk1 file.
```

Examples

```
>>> import tempfile, pysal, os
>>> testfile = pysal.open(pysal.examples.get_path('spat-sym-us.wkl'),'r')
>>> w = testfile.read()
```

Create a temporary file for this example

```
>>> f = tempfile.NamedTemporaryFile(suffix='.wk1')
```

Reassign to new var

```
>>> fname = f.name
```

Close the temporary named file

```
>>> f.close()
```

Open the new file in write mode

```
>>> o = pysal.open(fname,'w')
```

Write the Weights object into the open file

```
>>> o.write(w)
>>> o.close()
```

Read in the newly created text file

```
>>> wnew = pysal.open(fname,'r').read()
```

Compare values from old to new

```
>>> wnew.pct_nonzero == w.pct_nonzero
True
```

Clean up temporary file created for this example

```
>>> os.remove(fname)
```

IOHandlers.wkt - Well Known Text (geometry) plugin

New in version 1.0.

PySAL plugin for Well Known Text (geometry)

```
class pysal.core.IOHandlers.wkt.WKTReader(*args, **kwargs)
```

Parameters

- Well-Known Text (Reads) -
- a list of PySAL Polygon objects (Returns) -

Examples

Read in WKT-formatted file

```
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path('stl_hom.wkt'), 'r')
```

Convert wkt to pysal polygons

```
>>> polys = f.read()
```

Check length

```
>>> len(polys)
78
```

Return centroid of polygon at index 1

```
>>> polys[1].centroid
(-91.19578469430738, 39.990883050220845)
```

Type dir(polys[1]) at the python interpreter to get a list of supported methods

also check if obj is an instance of type(list) and redefine this doc string

```
FORMATS = ['wkt']
MODES = ['r']
by_row
cast (key, typ)
     cast key as typ
check()
     Prints the contents of the registry
close()
flush()
get (n)
     Seeks the file to n and returns n If .ids is set n should be an id, else, n should be an offset
getType (dataPath, mode, dataFormat=None)
     Parse the dataPath and return the data type
ids
next()
     A FileIO object is its own iterator, see StringIO
open()
rIds
read(n=-1)
     Read at most n objects, less if read hits EOF if size is negative or omitted read all objects until EOF returns
     None if EOF is reached before any objects.
seek(n)
tell()
     Return id (or offset) of next object
truncate (size=None)
     Should be implemented by subclasses and redefine this doc string
write (obj)
     Must be implemented by subclasses that support 'w' subclasses should increment .pos subclasses should
```

pysal.esda — Exploratory Spatial Data Analysis

esda.gamma — Gamma statistics for spatial autocorrelation

New in version 1.4. Gamma index for spatial autocorrelation

class pysal.esda.gamma.**Gamma** (*y*, *w*, *operation='c'*, *standardize='no'*, *permutations=999*)

Gamma index for spatial autocorrelation

Parameters

- y (array) variable measured across n spatial units
- w (W) spatial weights instance can be binary or row-standardized
- operation ({'c', 's', 'a'}) attribute similarity function where, 'c' cross product 's' squared difference 'a' absolute difference
- **standardize** ({ 'no', 'yes'}) standardize variables first 'no' keep as is 'yes' or 'y' standardize to mean zero and variance one
- **permutations** (*int*) number of random permutations for calculation of pseudo-p_values

```
Y array – original variable
```

W

W – original w object

op

{'c', 's', 'a'} – attribute similarity function, as per parameters attribute similarity function

stand

{'no', 'yes'} - standardization

permutations

int – number of permutations

σamma

float - value of Gamma index

sim_g

array – (if permutations>0) vector of Gamma index values for permuted samples

p_sim_g

array – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Gamma is more extreme than under randomness implemented as a two-sided test

mean_g

float – average of permuted Gamma values

min_g

float - minimum of permuted Gamma values

max_g

float - maximum of permuted Gamma values

Examples

use same example as for join counts to show similarity

```
>>> import pysal, numpy as np
>>> w=pysal.lat2W(4,4)
>>> y=np.ones(16)
>>> y[0:8]=0
>>> np.random.seed(12345)
>>> g = pysal.Gamma(y,w)
>>> g.g
20.0
>>> round(g.g_z, 3)
3.188
>>> g.p_sim_g
0.0030000000000000001
>>> g.min_g
0.0
>>> g.max_g
20.0
>>> g.mean_g
11.093093093093094
>>> np.random.seed(12345)
>>> g1 = pysal.Gamma(y,w,operation='s')
>>> g1.g
8.0
>>> round(g1.g_z, 3)
-3.706
>>> g1.p_sim_g
0.001
>>> g1.min_g
14.0
>>> g1.max_g
48.0
>>> g1.mean_g
25.623623623623622
>>> np.random.seed(12345)
>>> g2 = pysal.Gamma(y,w,operation='a')
>>> g2.g
8.0
>>> round(g2.g_z, 3)
-3.706
>>> g2.p_sim_g
0.001
>>> g2.min_g
14.0
>>> g2.max_g
48.0
>>> g2.mean_g
25.623623623623622
>>> np.random.seed(12345)
>>> g3 = pysal.Gamma(y,w,standardize='y')
>>> g3.g
32.0
>>> round(g3.g_z, 3)
3.706
>>> g3.p_sim_g
0.001
>>> g3.min_g
-48.0
>>> g3.max_g
20.0
```

p_sim

new name to fit with Moran module

esda.geary — Geary's C statistics for spatial autocorrelation

New in version 1.0. Geary's C statistic for spatial autocorrelation

class pysal.esda.geary.**Geary** (*y*, *w*, *transformation='r'*, *permutations=999*) Global Geary C Autocorrelation statistic

Parameters

- **y** (array) (n, 1) attribute vector
- w (W) spatial weights
- transformation ({'B', 'R', 'D', 'U', 'V'}) weights transformation, default is binary. Other options include "R": row-standardized, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo-p_values

p_norm floa

float – p-value under normality assumption (one-tailed)

p_rand

float – p-value under randomization assumption (one-tailed)

sim

array – (if permutations!=0) vector of I values for permutated samples

p sim

float – (if permutations!=0) p-value based on permutations (one-tailed) null: sptial randomness alternative: the observed C is extreme it is either extremely high or extremely low

EC_sim

float – (if permutations!=0) average value of C from permutations

VC sim

float – (if permutations!=0) variance of C from permutations

seC_sim

float – (if permutations!=0) standard deviation of C under permutations.

z sim

float – (if permutations!=0) standardized C based on permutations

p z sim

float – (if permutations!=0) p-value based on standard normal approximation from permutations (one-tailed)

Examples

```
>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("book.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("book.txt"))
>>> y = np.array(f.by_col['y'])
>>> c = Geary(y,w,permutations=0)
>>> print round(c.C,7)
0.3330108
>>> print round(c.p_norm,7)
9.2e-05
>>>
```

classmethod by_col (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a Geary statistic on a dataframe

Parameters

- df (pandas.DataFrame) a pandas dataframe with a geometry column
- **cols** (*string or list of string*) name or list of names of columns to use to compute the statistic
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- inplace (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, with default configurations, the derived columns will be named like 'column_geary' and 'column_p_sim'

- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Geary statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Geary statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Geary statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

esda.getisord — Getis-Ord statistics for spatial association

New in version 1.0. Getis and Ord G statistic for spatial autocorrelation

```
class pysal.esda.getisord.G(y, w, permutations=999)
```

Global G Autocorrelation Statistic

Parameters

- **y** (array (n, 1)) Attribute values
- w (W) DistanceBand W spatial weights based on distance band
- **permutations** (*int*) the number of random permutations for calculating pseudo p_values

```
y array – original variable
```

W

W – DistanceBand W spatial weights based on distance band

permutation

int – the number of permutations

G

float - the value of statistic

EG

float – the expected value of statistic

VG

float – the variance of G under normality assumption

z_norm

float – standard normal test statistic

p norm

float – p-value under normality assumption (one-sided)

sim

array – (if permutations > 0) vector of G values for permutated samples

p_sim

float – p-value based on permutations (one-sided) null: spatial randomness alternative: the observed G is extreme it is either extremely high or extremely low

EG sim

float – average value of G from permutations

VG sim

float – variance of G from permutations

seG sim

float – standard deviation of G under permutations.

z_sim

float – standardized G based on permutations

p_z_sim

float – p-value based on standard normal approximation from permutations (one-sided)

Notes

Moments are based on normality assumption.

Examples

```
>>> from pysal.weights.Distance import DistanceBand
>>> import numpy
>>> numpy.random.seed(10)
```

Preparing a point data set \gg points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]

Creating a weights object from points >>> w = DistanceBand(points,threshold=15) >>> w.transform = "B"

Preparing a variable $\gg y = \text{numpy.array}([2, 3, 3.2, 5, 8, 7])$

Applying Getis and Ord G test >>> g = G(y,w)

Examining the results >>> print "%.8f" % g.G 0.55709779

```
>>> print "%.4f" % g.p_norm 0.1729
```

classmethod by_co1 (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a G statistic on a dataframe

Parameters

- df (pandas.DataFrame) a pandas dataframe with a geometry column
- cols (string or list of string) name or list of names of columns to use to compute the statistic
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_g'

- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the G statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the G statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the G statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

class pysal.esda.getisord.**G_Local** (*y*, *w*, *transform='R'*, *permutations=999*, *star=False*) Generalized Local G Autocorrelation Statistic [Getis1992], [Ord1995], [Getis1996].

Parameters

- **y** (array) variable
- w (W) DistanceBand, weights instance that is based on threshold distance and is assumed to be aligned with y
- transform ({'R', 'B'}) the type of w, either 'B' (binary) or 'R' (row-standardized)
- permutations (int) the number of random permutations for calculating pseudo p values
- star (boolean) whether or not to include focal observation in sums (default: False)

Y *array* – original variable

w

DistanceBand W – original weights object

permutations

int – the number of permutations

Gs

array – of floats, the value of the orignal G statistic in Getis & Ord (1992)

EGs

float – expected value of Gs under normality assumption the values is scalar, since the expectation is identical across all observations

VGs

array - of floats, variance values of Gs under normality assumption

Zs

array – of floats, standardized Gs

p_norm

array – of floats, p-value under normality assumption (one-sided) for two-sided tests, this value should be multiplied by 2

sim

array – of arrays of floats (if permutations>0), vector of I values for permutated samples

p_sim

array – of floats, p-value based on permutations (one-sided) null - spatial randomness alternative - the observed G is extreme it is either extremely high or extremely low

EG sim

array – of floats, average value of G from permutations

VG sim

array – of floats, variance of G from permutations

seG sim

array – of floats, standard deviation of G under permutations.

z sim

array - of floats, standardized G based on permutations

p_z_sim

array – of floats, p-value based on standard normal approximation from permutations (one-sided)

Notes

To compute moments of Gs under normality assumption, PySAL considers w is either binary or row-standardized. For binary weights object, the weight value for self is 1 For row-standardized weights object, the weight value for self is 1/(the number of its neighbors + 1).

Examples

```
>>> from pysal.weights.Distance import DistanceBand
>>> import numpy
>>> numpy.random.seed(10)
```

Preparing a point data set

```
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
```

Creating a weights object from points

```
>>> w = DistanceBand(points,threshold=15)
```

Prepareing a variable

```
>>> y = numpy.array([2, 3, 3.2, 5, 8, 7])
```

Applying Getis and Ord local G test using a binary weights object >>> lg = G_Local(y,w,transform='B')

Examining the results >>> lg.Zs array([-1.0136729, -0.04361589, 1.31558703, -0.31412676, 1.15373986,

1.77833941])

```
>>> lg.p_sim[0]
0.1010000000000001
```

```
>>> numpy.random.seed(10)
```

Applying Getis and Ord local G* test using a binary weights object >>> lg_star = G_Local(y,w,transform='B',star=True)

Examining the results >>> lg_star.Zs array([-1.39727626, -0.28917762, 0.65064964, -0.28917762, 1.23452088, 2.02424331])

```
>>> lg_star.p_sim[0]
0.1010000000000001
```

```
>>> numpy.random.seed(10)
```

Applying Getis and Ord local G test using a row-standardized weights object >>> lg = G_Local(y,w,transform='R')

Examining the results >>> lg.Zs array([-0.62074534, -0.01780611, 1.31558703, -0.12824171, 0.28843496, 1.77833941])

```
>>> lg.p_sim[0]
0.1010000000000001
```

```
>>> numpy.random.seed(10)
```

Applying Getis and Ord local G* test using a row-standardized weights object >>> lg_star = G_Local(y,w,transform='R',star=True)

Examining the results >>> lg_star.Zs array([-0.62488094, -0.09144599, 0.41150696, -0.09144599, 0.24690418, 1.28024388])

```
>>> lg_star.p_sim[0]
0.1010000000000001
```

classmethod by_col (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a G_Local statistic on a dataframe

Parameters

- **df** (pandas.DataFrame) a pandas dataframe with a geometry column
- cols (string or list of string) name or list of names of columns to use to compute the statistic
- **w** (*pysal weights object*) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_g_local'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the G_Local statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the G_Local statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the G_Local statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

esda.join_counts — Spatial autocorrelation statistics for binary attributes

```
New in version 1.0. Spatial autocorrelation for binary attributes
```

```
class pysal.esda.join_counts.Join_Counts(y, w, permutations=999)
    Binary Join Counts
```

Parameters

- y (array) binary variable measured across n spatial units
- w (W) spatial weights instance
- **permutations** (*int*) number of random permutations for calculation of pseudo-p_values

```
y array – original variable
```

W

W – original w object

permutations

int – number of permutations

bb

float – number of black-black joins

WW

float – number of white-white joins

bw

float - number of black-white joins

J

float – number of joins

sim_bb

array – (if permutations>0) vector of bb values for permuted samples

p_sim_bb

array –

(**if permutations>0**) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed bb is greater than under randomness

mean bb

float – average of permuted bb values

min_bb

float – minimum of permuted bb values

max bb

float – maximum of permuted bb values

sim_bw

array – (if permutations>0) vector of bw values for permuted samples

p_sim_bw

array – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed bw is greater than under randomness

mean bw

float – average of permuted bw values

min bw

float – minimum of permuted bw values

max bw

float – maximum of permuted bw values

Examples

Replicate example from anselin and rey

```
>>> import numpy as np
>>> w = pysal.lat2W(4, 4)
\rightarrow \rightarrow y = np.ones(16)
>>> y[0:8] = 0
>>> np.random.seed(12345)
>>> jc = pysal.Join_Counts(y, w)
>>> jc.bb
10.0
>>> jc.bw
4.0
>>> jc.ww
10.0
>>> jc.J
24.0
>>> len(jc.sim_bb)
999
>>> jc.p_sim_bb
0.003000000000000001
>>> np.mean(jc.sim_bb)
5.5465465465465469
>>> np.max(jc.sim_bb)
10.0
>>> np.min(jc.sim_bb)
0.0
>>> len(jc.sim_bw)
999
>>> jc.p_sim_bw
1.0
>>> np.mean(jc.sim_bw)
12.811811811811811
>>> np.max(jc.sim_bw)
>>> np.min(jc.sim_bw)
7.0
>>>
```

classmethod by_col (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a Join_Count statistic on a dataframe

Parameters

• **df** (pandas.DataFrame) – a pandas dataframe with a geometry column

- cols (string or list of string) name or list of names of columns to use to compute the statistic
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_join_count'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Join_Count statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Join_Count statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Join_Count statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

esda.mapclassify — Choropleth map classification

New in version 1.0. A module of classification schemes for choropleth mapping.

 ${f class}$ pysal.esda.mapclassify. ${f Map_Classifier}$ (y)

Abstract class for all map classifications [Slocum2008]

For an array y of n values, a map classifier places each value y_i into one of k mutually exclusive and exhaustive classes. Each classifier defines the classes based on different criteria, but in all cases the following hold for the classifiers in PySAL:

$$C_j^l < y_i \le C_j^u \ \forall i \in C_j$$

where C_j denotes class j which has lower bound C_i^l and upper bound C_i^u .

Map Classifiers Supported

- •Box_Plot
- •Equal_Interval
- •Fisher Jenks
- •Fisher_Jenks_Sampled
- •HeadTail_Breaks
- •Jenks_Caspall
- Jenks_Caspall_Forced
- •Jenks_Caspall_Sampled
- •Max_P_Classifier
- •Maximum_Breaks

- •Natural Breaks
- •Quantiles
- •Percentiles
- •Std Mean
- •User Defined

Utilities:

In addition to the classifiers, there are several utility functions that can be used to evaluate the properties of a specific classifier for different parameter values, or for automatic selection of a classifier and number of classes.

- gadf
- •K_classifiers

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

classmethod make (*args, **kwargs)

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- rolling (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.

- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME INC
       8 0
0
1
       7
             1
                   8
2
       2
             3
                   5
3
             4
                   0
                    3
       1
              6
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
       0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1 3
   0
       4
           0
           0
   0
       4
2
   1
       4
           0
3
   1
       3
           0
4
   2
       2
           1
5
   2
       1
           2
```

```
3
        0
   3
        0
            4
8
   4
        0
            4
        0
            4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 21)1
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional)-
- of the class. For documentation, check the class constructor. (function) -

pysal.esda.mapclassify.quantile(y, k=4)

Calculates the quantiles for an array

Parameters

- $\mathbf{y}(array) (n,1)$, values to classify
- **k** (*int*) number of quantiles

Returns implicit -(n,1), quantile values

Return type array

Examples

```
>>> x = np.arange(1000)
>>> quantile(x)
array([ 249.75,  499.5 ,  749.25,  999. ])
>>> quantile(x, k = 3)
array([ 333., 666., 999.])
>>>
```

Note that if there are enough ties that the quantile values repeat, we collapse to pseudo quantiles in which case the number of classes will be less than k

```
>>> x = [1.0] * 100
>>> x.extend([3.0] * 40)
>>> len(x)
140
```

```
>>> y = np.array(x)
>>> quantile(y)
array([ 1., 3.])
```

class pysal.esda.mapclassify.Box_Plot (y, hinge=1.5)

Box_Plot Map Classification

Parameters

- y (array) attribute to classify
- hinge (float) multiplier for IQR

yb

array - (n,1), bin ids for observations

bins

array - (n,1), the upper bounds of each class (monotonic)

k

int – the number of classes

counts

array - (k,1), the number of observations falling in each class

low_outlier_ids

array – indices of observations that are low outliers

high_outlier_ids

array - indices of observations that are high outliers

Notes

The bins are set as follows:

```
bins[0] = q[0]-hinge*IQR
bins[1] = q[0]
bins[2] = q[1]
bins[3] = q[2]
bins[4] = q[2]+hinge*IQR
bins[5] = inf (see Notes)
```

where q is an array of the first three quartiles of y and IQR=q[2]-q[0]

If q[2]+hinge*IQR > max(y) there will only be 5 classes and no high outliers, otherwise, there will be 6 classes and at least one high outlier.

```
>>> cal[bp.high_outlier_ids]
                            370.5 ,
array([ 329.92, 181.27,
                                      722.85,
                                                192.05,
                                                          110.74,
        4111.45,
                  317.11,
                             264.931)
>>> bx = Box_Plot(np.arange(100))
>>> bx.bins
                           49.5 ,
array([-49.5],
                 24.75,
                                    74.25,
                                           148.5 ])
```

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- · the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- rolling (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME
        8
              0
        7
              1
1
                     8
        2.
               3
                     5
2
                     0
3
               4
        4
        1
               6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556
           8.888889 -2.777778
2 4.111111
            7.777778 -0.555556
3 4.666667
            6.666667
                       1.666667
           5.555556
                       3.888889
4 5.222222
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1
          3
   0
        4
           0
   0
        4
           0
   1
        4
           0
3
   1
        3
            0
   2
        2
            1
6
   3
        0
           4
   3
        0
           4
        Ω
8
   4
            4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
```

```
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
...
2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- **y** (array) (n,1) array of data to classify
- inplace (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Equal_Interval (y, k=5)

Equal Interval Classification

Parameters

- **y** (array) (n,1), values to classify
- k (int) number of classes required

yb

array - (n,1), bin ids for observations, each value is the id of the class the observation belongs to yb[i] = j for j>=1 if bins[j-1] < y[i] <= bins[j], yb[i] = 0 otherwise

bins

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

```
>>> cal = load_example()
>>> ei = Equal_Interval(cal, k = 5)
>>> ei.k
5
>>> ei.counts
array([57, 0, 0, 0, 1])
>>> ei.bins
array([ 822.394, 1644.658, 2466.922, 3289.186, 4111.45 ])
>>>
```

Notes

Intervals defined to have equal width:

$$bins_i = min(y) + w * (j+1)$$

with
$$w = \frac{max(y) - min(j)}{k}$$

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- rolling (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME
        8
              0
        7
1
               1
                     8
        2.
               3
                     5
2
                     0
3
               4
        4
        1
               6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
                    1
0 3.000000 10.000000 -5.000000
                      -2.777778
1 3.555556
           8.888889
2 4.111111
            7.777778 -0.555556
3 4.666667
            6.666667
                       1.666667
4 5.222222
           5.555556
                       3.888889
5 5.777778
           4.444444 6.111111
           3.333333
                      8.333333
6 6.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1
           3
   0
        4
           0
   0
        4
           0
   1
        4
           0
3
   1
        3
            0
   2
        2
            2
6
   3
        0
           4
   3
        0
           4
        \cap
8
   4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
```

```
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3, ...
2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- **y** (array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Fisher_Jenks (y, k=5)

Fisher Jenks optimal classifier - mean based

Parameters

- **y** (array) (n,1), values to classify
- **k** (*int*) number of classes required

yb

array - (n,1), bin ids for observations

bins

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

Examples

```
>>> cal = load_example()
>>> fj = Fisher_Jenks(cal)
>>> fj.adcm
799.24000000000001
>>> fj.bins
array([ 75.29, 192.05, 370.5, 722.85, 4111.45])
>>> fj.counts
array([49, 3, 4, 1, 1])
>>>
```

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

- a bin index or array of bin indices that classify the input into one of
- · the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

Examples

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake(k=9))
>>> classifications.head()
   HOVAL CRIME
                 INC
       8
          0
0
       7
                    8
1
              1
2
              3
                    5
3
       1
              6
                    3
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.44444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
      1 3
   0
       4
           0
   0
       4
           0
2
   1
       4
           0
3
       3
           0
   1
4
   2
       2
           1
5
   2
       1
          2
6
  3
       0
7
   3
       0
8
  4
       0
   4
       0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

update (y=None, inplace=False, **kwargs)

Add data or change classification parameters.

- y (array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.**Fisher_Jenks_Sampled** (*y*, *k*=5, *pct*=0.1, *truncate*=*True*) Fisher Jenks optimal classifier - mean based using random sample

Parameters

- **y** (array) (n,1), values to classify
- **k** (*int*) number of classes required
- **pct** (float) The percentage of n that should form the sample If pct is specified such that n*pct > 1000, then pct = 1000./n, unless truncate is False
- truncate (boolean) truncate pct in cases where pct * n > 1000., (Default True)

yb

array - (n,1), bin ids for observations

bins

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

Examples

(Turned off due to timing being different across hardware)

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

```
get_tss()
```

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
    HOVAL CRIME
                  TNC
\cap
        8
               0
        7
                      8
1
               1
2
        2
               3
                      5
3
               4
                      0
               6
>>> import pandas as pd; from numpy import linspace as lsp
```

```
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
        0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
2.222222 10.555556
7 6.888888
           1.111111 12.777778
8 7.444444
          0.000000 15.000000
9 8.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1 3
   0
       4
           0
           0
   Ω
       4
1
          0
2
   1
       4
3
   1
       3
          0
4
          1
5
   3
       0
   3
          4
       0
8
       0
           4
   4
       0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

update (*y=None*, *inplace=False*, **kwargs)
Add data or change classification parameters.

Parameters

- **y** (array) (n,1) array of data to classify
- inplace (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.**Jenks_Caspall** (y, k=5) Jenks Caspall Map Classification

- **y** (array) (n,1), values to classify
- **k** (*int*) number of classes required

```
yb array - (n,1), bin ids for observations,
```

bins

array – (k,1), the upper bounds of each class

k

int – the number of classes

counts

array - (k,1), the number of observations falling in each class

Examples

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.qet_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME
       8
             0
        7
               1
                     8
2
        2
               3
                     5
3
               4
               6
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                    1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
            7.777778 -0.555556
2 4.111111
                       1.666667
3 4.666667
            6.666667
4 5.222222
            5.555556
                       3.888889
5 5.777778
            4.44444
                        6.111111
6 6.333333
            3.333333
                       8.333333
7 6.888888
           2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
       1
```

```
0
    0
        4
            0
2
    1
        4
            0
3
        3
   1
            0
4
    2
        2
            1
5
   2
        1
            2
6
    3
        0
    3
        0
        0
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Jenks_Caspall_Forced (y, k=5) Jenks Caspall Map Classification with forced movements

Parameters

- $\mathbf{y}(array) (\mathbf{n}, 1)$, values to classify
- k (int) number of classes required

yb

array - (n,1), bin ids for observations

bins

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

Examples

```
>>> cal = load_example()
>>> jcf = Jenks_Caspall_Forced(cal, k = 5)
>>> jcf.k
>>> jcf.bins
array([[ 1.3400000e+00],
       [ 5.9000000e+001,
       [ 1.67000000e+01],
      [ 5.06500000e+01],
       [ 4.11145000e+03]])
>>> jcf.counts
array([12, 12, 13, 9, 12])
>>> jcf4 = Jenks_Caspall_Forced(cal, k = 4)
>>> jcf4.k
>>> jcf4.bins
array([[ 2.51000000e+00],
       [ 8.7000000e+00],
       [ 3.66800000e+01],
      [ 4.11145000e+03]])
>>> jcf4.counts
array([15, 14, 14, 15])
```

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- rolling (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake(k=9))
>>> classifications.head()
   HOVAL CRIME INC
       8 0
0
1
       7
              1
                    8
2
              3
3
              4
                    0
       1
              6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
        0
                   1
                               2
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
```

```
9 8.000000
             0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
    0
        1
            3
    0
        4
            0
0
    0
        4
            0
1
2
        4
            Ω
   1
3
        3
   1
            0
        2
            1
    2
            2
    3
        0
            4
    3
        0
            4
        0
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- **y** (array) (n,1) array of data to classify
- inplace (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.**Jenks_Caspall_Sampled** (y, k=5, pct=0.1) Jenks Caspall Map Classification using a random sample

Parameters

- **y** (array) (n,1), values to classify
- **k** (*int*) number of classes required
- pct (float) The percentage of n that should form the sample If pct is specified such that n*pct > 1000, then pct = 1000./n

```
yb array - (n,1), bin ids for observations, bins array - (k,1), the upper bounds of each class k
```

int – the number of classes

counts

array - (k,1), the number of observations falling in each class

Examples

```
>>> cal = load_example()
>>> x = np.random.random(100000)
>>> jc = Jenks_Caspall(x)
>>> jc.bins
array([ 0.19770952,  0.39695769,  0.59588617,  0.79716865,  0.99999425])
>>> jcs.bins
array([ 0.18877882,  0.39341638,  0.6028286,  0.80070925,  0.99999425])
>>> jc.counts
array([19804, 20005, 19925, 20178, 20088])
>>> jcs.counts
array([18922, 20521, 20980, 19826, 19751])
>>>
```

not for testing since we get different times on different hardware # just included for documentation of likely speed gains #>>> t1 = time.time(); jc = Jenks_Caspall(x); t2 = time.time() #>>> t1s = time.time(); jcs = Jenks_Caspall_Sampled(x); t2s = time.time() #>>> t2 - t1; t2s - t1s #1.8292930126190186 #0.061631917953491211

Notes

This is intended for large n problems. The logic is to apply Jenks_Caspall to a random subset of the y space and then bin the complete vector y on the bins obtained from the subset. This would trade off some "accuracy" for a gain in speed.

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME
        8
               0
0
        7
1
               1
                     8
2
        2
               3
                     5
3
                     0
        4
               4
               6
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
                     1
                                2
```

```
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
6 6.333333 3.333333 8.333333
7 6.888888 2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000 0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1 3
           0
   0
       4
   0
       4
           0
       4
           0
   1
   1
4
   2
           1
5
          2
   2
       1
6
   3
      Ω
   3
       0
          4
8
       0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
   2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- **y** (array) (n,1) array of data to classify
- inplace (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Max_P_Classifier (y, k=5, initial=1000) Max_P Map Classification

Based on Max_p regionalization algorithm

- y(array) (n,1), values to classify
- **k** (int) number of classes required
- initial (int) number of initial solutions to use prior to swapping

Examples

```
>>> import pysal
>>> cal = pysal.esda.mapclassify.load_example()
>>> mp = pysal.Max_P_Classifier(cal)
>>> mp.bins
array([ 8.7 , 16.7 , 20.47, 66.26, 4111.45])
>>> mp.counts
array([29, 8, 1, 10, 10])
```

find bin (x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.qet_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME INC
       8
            0
        7
              1
                    8
2
        2
               3
                     5
3
              4
               6
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                    1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
            7.777778 -0.555556
2 4.111111
           6.666667
                       1.666667
3 4.666667
4 5.222222
            5.555556
                       3.888889
5 5.777778
            4.44444
                        6.111111
6 6.333333
            3.333333
                       8.333333
7 6.888888
           2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
       1
```

```
0
    0
        4
            0
2
    1
        4
            0
3
        3
   1
            0
4
   2
        2
            1
5
   2
            2
        1
6
   3
        0
    3
        0
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Maximum_Breaks (y, k=5, mindiff=0) Maximum Breaks Map Classification

Parameters

- y (array) (n, 1), values to classify
- k (int) number of classes required
- mindiff (float) The minimum difference between class breaks

```
yb
```

array - (n, 1), bin ids for observations

bins

array - (k, 1), the upper bounds of each class

k

int – the number of classes

counts

array – (k, 1), the number of observations falling in each class (numpy array k x 1)

Examples

```
>>> cal = load_example()
>>> mb = Maximum_Breaks(cal, k = 5)
>>> mb.k
5
>>> mb.bins
array([ 146.005, 228.49 , 546.675, 2417.15 , 4111.45 ])
>>> mb.counts
array([50, 2, 4, 1, 1])
>>>
```

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- · the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not

- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake(k=9))
>>> classifications.head()
   HOVAL CRIME
0
            0
1
       7
             1
                   8
                   5
2
       2
             3
3
                    0
       4
              4
              6
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
        0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778
           4.444444 6.111111
           3.333333 8.333333
6 6.333333
           2.222222 10.555556
7 6.888888
8 7.444444
            1.111111 12.777778
           0.000000 15.000000
9 8.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1
           3
           0
0
   \cap
       4
           0
1
   0
       4
2
   1
       4
           0
3
   1
       3
           0
4
   2
       2
           1
5
   2.
       1
           2
6
   3
       0
           4
7
    3
       0
            4
8
       0
            4
```

```
9  4  0  4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3, ...
2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional)-
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Natural_Breaks (y, k=5, initial=100)

Natural Breaks Map Classification

Parameters

- **y** (array) (n,1), values to classify
- **k** (*int*) number of classes required
- initial (int) number of initial solutions to generate, (default=100)

yb

array - (n,1), bin ids for observations,

bins

array - (k, 1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

```
>>> import numpy
>>> import pysal
>>> numpy.random.seed(123456)
>>> cal = pysal.esda.mapclassify.load_example()
>>> nb = pysal.Natural_Breaks(cal, k=5)
>>> nb.k
5
```

```
>>> nb.counts
array([41, 9, 6, 1,
                       1])
>>> nb.bins
                           370.5 ,
                                      722.85, 4111.45])
array([ 29.82, 110.74,
>>> x = numpy.array([1] * 50)
>>> x[-1] = 20
>>> nb = pysal.Natural_Breaks(x, k = 5, initial = 0)
Warning: Not enough unique values in array to form k classes
Warning: setting k to 2
>>> nb.bins
array([ 1, 20])
>>> nb.counts
array([49, 1])
```

Notes

There is a tradeoff here between speed and consistency of the classification If you want more speed, set initial to a smaller value (0 would result in the best speed, if you want more consistent classes in multiple runs of Natural_Breaks on the same data, set initial to a higher value.

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.qet_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
   HOVAL CRIME INC
       8
            0
        7
              1
                     8
2
        2
               3
                     5
3
              4
               6
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                    1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
            7.777778 -0.555556
2 4.111111
           6.666667
                       1.666667
3 4.666667
4 5.222222
            5.555556
                       3.888889
5 5.777778
            4.44444
                        6.111111
6 6.333333
            3.333333
                       8.333333
7 6.888888
           2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
       1
```

```
0
        4
1
    0
        4
            0
2
    1
        4
            0
3
        3
   1
            0
4
    2
        2
            1
5
   2
        1
            2
6
   3
        0
    3
        0
        0
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Quantiles (y, k=5)

Quantile Map Classification

Parameters

- y (array) (n,1), values to classify
- **k** (*int*) number of classes required

yb

array - (n,1), bin ids for observations, each value is the id of the class the observation belongs to yb[i] = j for j>=1 if bins[j-1] < y[i] <= bins[j], yb[i] = 0 otherwise

bins

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

Examples

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) - a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not

- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake(k=9))
>>> classifications.head()
   HOVAL CRIME
0
            0
1
       7
             1
                   8
                   5
2
       2
              3
3
                    0
       4
              4
              6
>>> import pandas as pd; from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
        0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778
           4.444444 6.111111
           3.333333 8.333333
6 6.333333
           2.222222 10.555556
7 6.888888
8 7.444444
            1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
   0
       1
           3
           0
0
   Ω
       4
           0
1
   0
       4
2
   1
       4
           0
3
   1
       3
           0
4
   2
       2
           1
5
   2.
       1
           2
6
   3
       0
           4
7
    3
       0
           4
8
       0
           4
```

```
9  4  0  4
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
3
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3, ...
2, 2, 2, 2])]
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Percentiles (y, pct=[1, 10, 50, 90, 99, 100])
 Percentiles Map Classification

Parameters

- y (array) attribute to classify
- **pct** (array) percentiles default=[1,10,50,90,99,100]

yb

array – bin ids for observations (numpy array n x 1)

bins

array – the upper bounds of each class (numpy array k x 1)

k

int – the number of classes

counts

int – the number of observations falling in each class (numpy array k x 1)

```
array([ 9.365, 4111.45 ])
>>> p2.counts
array([29, 29])
>>> p2.k
2
```

find bin (x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
    HOVAL CRIME
                  TNC
        8
             0
        7
               1
                     8
2
               3
3
               4
        1
               6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
                   1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
2 4.111111
            7.777778 -0.555556
           6.666667
                       1.666667
3 4.666667
4 5.222222
            5.555556
                       3.888889
                      6.111111
5 5.777778
            4.44444
6 6.333333
            3.333333
                       8.333333
7 6.888888 2.222222 10.555556
8 7.44444
           1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
       1
    0
0
   0
        4
1
   0
        4
           0
2
        4
           0
   1
3
        3
   1
           0
    2
        2
4
            1
5
    2
        1
            2
6
        Ω
8
    4
        0
9
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
```

```
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
...
2, 2, 2, 2])]
```

update (y=None, inplace=False, **kwargs)

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

class pysal.esda.mapclassify.Std_Mean (y, multiples=[-2, -1, 1, 2])

Standard Deviation and Mean Map Classification

Parameters

- y (array) (n,1), values to classify
- **multiples** (*array*) the multiples of the standard deviation to add/subtract from the sample mean to define the bins, default=[-2,-1,1,2]

yb

array - (n,1), bin ids for observations,

bins

array – (k,1), the upper bounds of each class

k

int – the number of classes

counts

array – (k,1), the number of observations falling in each class

```
array([ 0, 0, 57, 0, 1])
>>>
```

find bin(x)

Sort input or inputs according to the current bin estimate

Parameters **x** (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- rolling (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- return_counts (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
    HOVAL CRIME
                  TNC
        8
               0
0
        7
               1
                     8
2
        2
               3
                     5
3
        4
               4
                     0
        1
               6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                    1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
2 4.111111
            7.777778 -0.555556
3 4.666667
           6.666667
                       1.666667
            5.555556
4 5.222222
                        3.888889
5 5.777778
             4.44444
                        6.111111
6 6.333333
             3.333333
                       8.333333
7 6.888888
            2.222222 10.555556
8 7.44444
           1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
        1
           3
        4
            0
1
    \cap
        4
            Ω
2
   1
        4
            0
3
   1
        3
            0
4
    2
        2
            1
    2
        1
            2
6
    3
        0
            4
        0
            4
8
    4
        0
        \cap
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

```
update (y=None, inplace=False, **kwargs)
```

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

 ${\bf class} \; {\tt pysal.esda.mapclassify.User_Defined} \, (y, bins)$

User Specified Binning

Parameters

- y (array) (n,1), values to classify
- bins (array) (k,1), upper bounds of classes (have to be monotically increasing)

yb

array - (n,1), bin ids for observations,

bins

array – (k,1), the upper bounds of each class

k

int – the number of classes

counts

array - (k,1), the number of observations falling in each class

```
>>> cal = load_example()
>>> bins = [20, max(cal)]
>>> bins
[20, 4111.4499999999998]
>>> ud = User_Defined(cal, bins)
>>> ud.bins
array([ 20. , 4111.45])
>>> ud.counts
array([37, 21])
>>> bins = [20, 30]
>>> ud = User_Defined(cal, bins)
>>> ud.bins
                  30. , 4111.45])
array([ 20.
>>> ud.counts
array([37, 4, 17])
>>>
```

Notes

If upper bound of user bins does not exceed max(y) we append an additional bin.

find bin (x)

Sort input or inputs according to the current bin estimate

Parameters x (array or numeric) – a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- · the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

get_tss()

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
    HOVAL CRIME
                 INC
        8
              0
0
        7
               1
                     8
2
        2
               3
                     5
3
        4
               4
                     0
        1
               6
                     3
>>> import pandas as pd; from numpy import linspace as lsp
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
         0
                   1
0 3.000000 10.000000 -5.000000
           8.888889 -2.777778
1 3.555556
2 4.111111
            7.777778 -0.555556
3 4.666667
           6.666667
                       1.666667
            5.555556
                       3.888889
4 5.222222
5 5.777778
             4.44444
                        6.111111
6 6.333333
            3.333333
                       8.333333
7 6.888888
           2.222222 10.555556
8 7.444444 1.111111 12.777778
9 8.000000
           0.000000 15.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
        1
           3
        4
            0
1
    \cap
        4
2
   1
        4
           0
3
   1
        3
            \cap
4
    2
        2
            1
   2
        1
            2
6
    3
        0
            4
    3
        0
            4
8
   4
        0
        0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

update (y=None, inplace=False, **kwargs)

Add data or change classification parameters.

Parameters

- y(array) (n,1) array of data to classify
- **inplace** (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

```
pysal.esda.mapclassify.gadf (y, method='Quantiles', maxk=15, pct=0.8)
```

Evaluate the Goodness of Absolute Deviation Fit of a Classifier Finds the minimum value of k for which gadf>pct

Parameters

- y (array) (n, 1) values to be classified
- method ({'Quantiles, 'Fisher_Jenks', 'Maximum_Breaks', 'Natrual_Breaks'})-
- maxk (int) maximum value of k to evaluate
- pct (float) The percentage of GADF to exceed

Returns

- **k** (*int*) number of classes
- cl (object) instance of the classifier at k
- gadf (float) goodness of absolute deviation fit

Examples

```
>>> cal = load_example()
>>> qgadf = gadf(cal)
>>> qgadf[0]
15
>>> qgadf[-1]
0.37402575909092828
```

Quantiles fail to exceed 0.80 before 15 classes. If we lower the bar to 0.2 we see quintiles as a result

```
>>> qgadf2 = gadf(cal, pct = 0.2)

>>> qgadf2[0]

5

>>> qgadf2[-1]

0.21710231966462412

>>>
```

Notes

The GADF is defined as:

$$GADF = 1 - \sum_{c} \sum_{i \in c} |y_i - y_{c,med}| / \sum_{i} |y_i - y_{med}|$$

where y_{med} is the global median and $y_{c,med}$ is the median for class c.

See also:

```
K_classifiers
```

class pysal.esda.mapclassify.K_classifiers (y, pct=0.8)

Evaluate all k-classifers and pick optimal based on k and GADF

Parameters

- **y** (array) (n,1), values to be classified
- pct (float) The percentage of GADF to exceed

best

object – instance of the optimal Map_Classifier

results

dictionary - keys are classifier names, values are the Map_Classifier instances with the best pct for each classifer

Examples

```
>>> cal = load_example()
>>> ks = K_classifiers(cal)
>>> ks.best.name
'Fisher_Jenks'
>>> ks.best.k
4
>>> ks.best.gadf
0.84810327199081048
>>>
```

Notes

This can be used to suggest a classification scheme.

See also:

gadf

 ${\bf class} \; {\tt pysal.esda.mapclassify.HeadTail_Breaks} \; (y)$

Head/tail Breaks Map Classification for Heavy-tailed Distributions

Parameters y(array) - (n,1), values to classify

yb

array - (n,1), bin ids for observations,

bins array - (k,1), the up

array - (k,1), the upper bounds of each class

k

int – the number of classes

counts

array - (k,1), the number of observations falling in each class

Examples

```
>>> import numpy as np
>>> np.random.seed(10)
>>> cal = load_example()
>>> htb = HeadTail_Breaks(cal)
>>> htb.k
3
>>> htb.counts
array([50, 7, 1])
>>> htb.bins
array([ 125.92810345, 811.26
                                , 4111.45
                                                   1)
>>> np.random.seed(123456)
\rightarrow > x = np.random.lognormal(3, 1, 1000)
>>> htb = HeadTail_Breaks(x)
>>> htb.bins
array([ 32.26204423, 72.50205622, 128.07150107, 190.2899093,
       264.82847377, 457.88157946, 576.76046949])
>>> htb.counts
array([695, 209, 62, 22, 10,
                                1,
                                      11)
```

Notes

Head/tail Breaks is a relatively new classification method developed and introduced by [Jiang2013] for data with a heavy-tailed distribution.

Based on contributions by Alessandra Sozzi <alessandra.sozzi@gmail.com>.

$find_bin(x)$

Sort input or inputs according to the current bin estimate

Parameters * (array or numeric) - a value or array of values to fit within the estimated bins

Returns

- a bin index or array of bin indices that classify the input into one of
- · the classifiers' bins

get_adcm()

Absolute deviation around class median (ADCM).

Calculates the absolute deviations of each observation about its class median as a measure of fit for the classification method.

Returns sum of ADCM over all classes

get_gadf()

Goodness of absolute deviation of fit

```
get_tss()
```

Total sum of squares around class means

Returns sum of squares over all class means

```
make (*args, **kwargs)
```

Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.

Note that this like a *partial application* of the relevant class constructor. *make* creates a function that returns classifications; it does not actually do the classification.

If you want to classify data directly, use the appropriate class constructor, like Quantiles, Max_Breaks, etc.

If you have a classifier object, but want to find which bins new data falls into, use find_bin.

Parameters

- *args (required positional arguments) all positional arguments required by the classifier, excluding the input data.
- **rolling** (bool) a boolean configuring the outputted classifier to use a rolling classifier rather than a new classifier for each input. If rolling, this adds the current data to all of the previous data in the classifier, and rebalances the bins, like a running median computation.
- return_object (bool) a boolean configuring the outputted classifier to return the classifier object or not
- return_bins (bool) a boolean configuring the outputted classifier to return the bins/breaks or not
- **return_counts** (bool) a boolean configuring the outputted classifier to return the histogram of objects falling into each bin or not

Returns

- A function that consumes data and returns their bins (and object,
- bins/breaks, or counts, if requested).

Note: This is most useful when you want to run a classifier many times with a given configuration, such as when classifying many columns of an array or dataframe using the same configuration.

```
>>> import pysal as ps
>>> df = ps.pdio.read_files(ps.examples.get_path('columbus.dbf'))
>>> classifier = ps.Quantiles.make(k=9)
>>> classifier
>>> classifications = df[['HOVAL', 'CRIME', 'INC']].apply(ps.Quantiles.
\rightarrowmake (k=9))
>>> classifications.head()
    HOVAL CRIME
                  TNC
\cap
        8
               0
        7
                      8
1
               1
2
        2
               3
                      5
3
               4
                      0
               6
>>> import pandas as pd; from numpy import linspace as lsp
```

```
\rightarrow \rightarrow data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pd.DataFrame(data).T
>>> data
        0
                   1
0 3.000000 10.000000 -5.000000
1 3.555556 8.888889 -2.777778
2 4.111111 7.777778 -0.555556
3 4.666667 6.666667 1.666667
4 5.222222 5.555556 3.888889
5 5.777778 4.444444 6.111111
2.222222 10.555556
7 6.888888
           1.111111 12.777778
8 7.444444
          0.000000 15.000000
9 8.000000
>>> data.apply(ps.Quantiles.make(rolling=True))
       1 3
   0
       4
           0
           0
   Ω
       4
1
          0
   1
       4
3
   1
       3
          0
4
   3
       0
   3
       0
          4
       0
   4
           4
       0
>>> dbf = ps.open(ps.examples.get_path('baltim.dbf'))
>>> data = dbf.by_col_array('PRICE', 'LOTSZ', 'SQFT')
>>> my_bins = [1, 10, 20, 40, 80]
>>> classifications = [ps.User_Defined.make(bins=my_bins)(a) for a in data.T]
>>> len(classifications)
>>> print(classifications)
[array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 2, 3, 4, 4, 3, 3,
    2, 2, 2, 2])]
```

update (y=None, inplace=False, **kwargs)

Add data or change classification parameters.

Parameters

- y (array) (n,1) array of data to classify
- inplace (bool) whether to conduct the update in place or to return a copy estimated from the additional specifications.
- parameters provided in **kwargs are passed to the init (Additional) -
- of the class. For documentation, check the class constructor. (function) -

esda.moran — Moran's I measures of spatial autocorrelation

New in version 1.0.

Moran's I global and local measures of spatial autocorrelation Moran's I Spatial Autocorrelation Statistics

Parameters

- y (array) variable measured across n spatial units
- **w** (W) spatial weights instance
- **transformation** (*string*) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo-p_values
- two_tailed (boolean) If True (default) analytical p-values for Moran are two tailed, otherwise if False, they are one-tailed.

```
У
     array – original variable
     W – original w object
permutations
     int – number of permutations
     float – value of Moran's I
ΕI
    float – expected value under normality assumption
VI_norm
     float – variance of I under normality assumption
seI norm
    float – standard deviation of I under normality assumption
    float – z-value of I under normality assumption
p_norm
     float – p-value of I under normality assumption
VI rand
    float – variance of I under randomization assumption
     float – standard deviation of I under randomization assumption
z_rand
     float – z-value of I under randomization assumption
     float – p-value of I under randomization assumption
two_tailed
     boolean – If True p_norm and p_rand are two-tailed, otherwise they are one-tailed.
sim
     array – (if permutations>0) vector of I values for permuted samples
```

p_sim

array – (if permutations>0) p-value based on permutations (one-tailed) null: spatial randomness alternative: the observed I is extreme if it is either extremely greater or extremely lower than the values obtained based on permutations

EI sim

float – (if permutations>0) average value of I from permutations

VI sim

float – (if permutations>0) variance of I from permutations

seI sim

float – (if permutations>0) standard deviation of I under permutations.

z_sim

float – (if permutations>0) standardized I based on permutations

p_z_sim

float – (if permutations>0) p-value based on standard normal approximation from permutations

Examples

```
>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> mi = Moran(y, w)
>>> "%7.5f" % mi.I
'0.24366'
>>> mi.EI
-0.012987012987012988
>>> mi.p_norm
0.00027147862770937614
```

SIDS example replicating OpenGeoda

```
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> SIDR = np.array(f.by_col("SIDR74"))
>>> mi = pysal.Moran(SIDR, w)
>>> "%6.4f" % mi.I
'0.2477'
>>> mi.p_norm
0.0001158330781489969
```

One-tailed

```
>>> mi_1 = pysal.Moran(SIDR, w, two_tailed=False)
>>> "%6.4f" % mi_1.I
'0.2477'
>>> mi_1.p_norm
5.7916539074498452e-05
```

classmethod by_col (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a Moran statistic on a dataframe

Parameters

• **df** (pandas.DataFrame) – a pandas dataframe with a geometry column

- cols (string or list of string) name or list of names of columns to use to compute the statistic
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column moran'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

class pysal.esda.moran.Moran_Local(y, w, transformation='r', permutations=999, $geoda_quads=False$)

Local Moran Statistics

Parameters

- **y** (array) (n,1), attribute array
- $\mathbf{w}(\mathbb{W})$ weight instance assumed to be aligned with y
- **transformation** ({ 'R', 'B', 'D', 'U', 'V'}) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo p_values
- **geoda_quads** (boolean) (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

```
y array – original variable
```

w

W – original w object

permutations

int – number of random permutations for calculation of pseudo p_values

Is array – local Moran's I values

q array – (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

sim

array (permutations by n) – (if permutations>0) I values for permuted samples

p_sim

array – (if permutations>0) p-values based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated values. It is either extremelyihigh or extremely low in the distribution of simulated Is.

EI sim

array – (if permutations>0) average values of local Is from permutations

VI sim

array – (if permutations>0) variance of Is from permutations

seI sim

array – (if permutations>0) standard deviations of Is under permutations.

z sim

arrray – (if permutations>0) standardized Is based on permutations

p_z_sim

array – (if permutations>0) p-values based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2

Examples

Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures

classmethod by_col (*df*, *cols*, *w=None*, *inplace=False*, *pvalue='sim'*, *outvals=None*, ***stat_kws*) Function to compute a Moran Local statistic on a dataframe

Parameters

- df (pandas.DataFrame) a pandas dataframe with a geometry column
- **cols** (*string* or *list* of *string*) name or list of names of columns to use to compute the statistic
- **w** (*pysal weights object*) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- inplace (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local'

- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran Local statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran_Local statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran Local statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

```
For, refer
```

class pysal.esda.moran.**Moran_BV** (x, y, w, transformation='r', permutations=999)Bivariate Moran's I

Parameters

- **x** (array) x-axis variable
- y (array) wy will be on y axis
- w (W) weight instance assumed to be aligned with y
- transformation ({'R', 'B', 'D', 'U', 'V'}) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo p_values

2xarray – original x variable standardized by mean and std

zyarray – original y variable standardized by mean and std

W – original w object

permutation

int – number of permutations

I float – value of bivariate Moran's I

sim

array – (if permutations>0) vector of I values for permuted samples

p_sim

float – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed I is extreme it is either extremely high or extremely low

EI_sim

array – (if permutations>0) average value of I from permutations

VI_sim

array – (if permutations>0) variance of I from permutations

```
seI sim
```

array – (if permutations>0) standard deviation of I under permutations.

z_sim

array – (if permutations>0) standardized I based on permutations

p_z_sim

float – (if permutations>0) p-value based on standard normal approximation from permutations

Notes

Inference is only based on permutations as analytical results are none too reliable.

Examples

```
>>> import pysal
>>> import numpy as np
```

Set random number generator seed so we can replicate the example

```
>>> np.random.seed(10)
```

Open the sudden infant death dbf file and read in rates for 74 and 79 converting each to a numpy array

```
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> SIDR74 = np.array(f.by_col['SIDR74'])
>>> SIDR79 = np.array(f.by_col['SIDR79'])
```

Read a GAL file and construct our spatial weights object

```
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
```

Create an instance of Moran_BV

```
>>> mbi = Moran_BV(SIDR79, SIDR74, w)
```

What is the bivariate Moran's I value

```
>>> print mbi.I
0.156131961696
```

Based on 999 permutations, what is the p-value of our statistic

```
>>> mbi.p_z_sim
0.0014186617421765302
```

```
classmethod by_col (df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None, **<math>stat_k ws)
```

Function to compute a Moran_BV statistic on a dataframe

Parameters

- **df** (pandas.DataFrame) a pandas dataframe with a geometry column
- **X** (list of strings) column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead.

- Y (list of strings) column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead.
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- inplace (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column moran local'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran_BV statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran_BV statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran_BV statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For refer

pysal.esda.moran.Moran_BV_matrix (variables, w, permutations=0, varnames=None)
Bivariate Moran Matrix

Calculates bivariate Moran between all pairs of a set of variables.

Parameters

- variables (list) sequence of variables
- w (₩) a spatial weights object
- **permutations** (*int*) number of permutations
- varnames (list) strings for variable names. If specified runtime summary is printed

Returns results – (i, j) is the key for the pair of variables, values are the Moran_BV objects.

Return type dictionary

Examples

```
>>> import pysal
```

open dbf

```
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
```

pull of selected variables from dbf and create numpy arrays for each

```
>>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79']
>>> vars = [np.array(f.by_col[var]) for var in varnames]
```

create a contiguity matrix from an external gal file

```
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
```

create an instance of Moran_BV_matrix

```
>>> res = Moran_BV_matrix(vars, w, varnames = varnames)
```

check values

```
>>> print round(res[(0, 1)].I,7)
0.1936261
>>> print round(res[(3, 0)].I,7)
0.3770138
```

class pysal.esda.moran.Moran_Local_BV $(x, y, w, transformation='r', permutations=999, geoda_quads=False)$

Bivariate Local Moran Statistics

Parameters

- **x** (array) x-axis variable
- y(array) (n,1), wy will be on y axis
- **w** (W) weight instance assumed to be aligned with y
- **transformation** ({ 'R', 'B', 'D', 'U', 'V'}) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo p_values
- **geoda_quads** (boolean) (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

zx

array – original x variable standardized by mean and std

zy

array - original y variable standardized by mean and std

w

W – original w object

permutations

int – number of random permutations for calculation of pseudo p_values

Is

float – value of Moran's I

q

array – (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL

sim

array – (if permutations>0) vector of I values for permuted samples

p_sim

array – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated values. It is either extremelyihigh or extremely low in the distribution of simulated Is.

EI sim

array – (if permutations>0) average values of local Is from permutations

VI_sim

array – (if permutations>0) variance of Is from permutations

seI sim

array – (if permutations>0) standard deviations of Is under permutations.

z sim

arrray – (if permutations>0) standardized Is based on permutations

p_z_sim

array – (if permutations>0) p-values based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2

Examples

```
>>> import pysal as ps
>>> import numpy as np
>>> np.random.seed(10)
>>> w = ps.open(ps.examples.get_path("sids2.gal")).read()
>>> f = ps.open(ps.examples.get_path("sids2.dbf"))
\rightarrow > x = np.array(f.by_col['SIDR79'])
>>> y = np.array(f.by_col['SIDR74'])
>>> lm = ps.Moran_Local_BV(x, y, w, transformation = "r",
         permutations = 99)
>>> lm.q[:10]
array([3, 4, 3, 4, 2, 1, 4, 4, 2, 4])
>>> lm.p_z_sim[0]
0.0017240031348827456
>>> lm = ps.Moran_Local_BV(x, y, w, transformation = "r",
         permutations = 99, geoda_quads=True)
>>> lm.q[:10]
array([2, 4, 2, 4, 3, 1, 4, 4, 3, 4])
```

Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures

```
classmethod by_col (df, x, y=None, w=None, inplace=False, pvalue='sim', outvals=None,

**stat_kws)

Function to compute a Moran_Local_BV statistic on a dataframe
```

Parameters

- df (pandas.DataFrame) a pandas dataframe with a geometry column
- **X** (list of strings) column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead.
- Y (list of strings) column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead.
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata

- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local_bv'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran_Local_BV statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran Local BV statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran_Local_BV statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

class pysal.esda.moran.Moran_Rate (e, b, w, adjusted=True, transformation='r', permutations=999, two tailed=True)

Adjusted Moran's I Global Autocorrelation Statistic for Rate Variables [Assuncao1999]

Parameters

- e (array) an event variable measured across n spatial units
- **b** (array) a population-at-risk variable measured across n spatial units
- w (₩) spatial weights instance
- adjusted (boolean) whether or not Moran's I needs to be adjusted for rate variable
- **transformation** ({ 'R', 'B', 'D', 'U', 'V'}) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- two_tailed (boolean) If True (default), analytical p-values for Moran's I are two-tailed, otherwise they are one tailed.
- **permutations** (*int*) number of random permutations for calculation of pseudo p_values

```
y
array – rate variable computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates
```

W – original w object

permutations

int – number of permutations

I float – value of Moran's I

float – expected value under normality assumption

VI_norm

ΕI

float – variance of I under normality assumption

sel_norm float - standard deviation of I under normality assumption z_norm float - z-value of I under normality assumption p_norm float - p-value of I under normality assumption VI_rand float - variance of I under randomization assumption sel_rand float - standard deviation of I under randomization assumption z_rand float - z-value of I under randomization assumption p_rand float - p-value of I under randomization assumption

two tailed

boolean – If True, p_norm and p_rand are two-tailed p-values, otherwise they are one-tailed.

sim

array – (if permutations>0) vector of I values for permuted samples

p_sim

array – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed I is extreme if it is either extremely greater or extremely lower than the values obtained from permutaitons

EI_sim

float – (if permutations>0) average value of I from permutations

VI_sim

float – (if permutations>0) variance of I from permutations

seI sim

float – (if permutations>0) standard deviation of I under permutations.

z_sim

float – (if permutations>0) standardized I based on permutations

p_z_sim

float – (if permutations>0) p-value based on standard normal approximation from

```
>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("sids2.gal")).read()
>>> f = pysal.open(pysal.examples.get_path("sids2.dbf"))
>>> e = np.array(f.by_col('SID79'))
>>> b = np.array(f.by_col('BIR79'))
>>> mi = pysal.esda.moran.Moran_Rate(e, b, w, two_tailed=False)
>>> "%6.4f" % mi.I
'0.1662'
>>> "%6.4f" % mi.p_norm
'0.0042'
```

classmethod by_col (df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)

Function to compute a Moran_Rate statistic on a dataframe

Parameters

- **df** (pandas.DataFrame) a pandas dataframe with a geometry column
- events (string or list of strings) one or more names where events are stored
- **populations** (*string or list of strings*) one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised.
- **w** (*pysal weights object*) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- **inplace** (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_moran_rate'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran Rate statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

Parameters

- e(array) (n,1), an event variable across n spatial units
- **b** (array) (n,1), a population-at-risk variable across n spatial units
- w (W) weight instance assumed to be aligned with y
- adjusted (boolean) whether or not local Moran statistics need to be adjusted for rate variable
- **transformation** ({ 'R', 'B', 'D', 'U', 'V'}) weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing.
- **permutations** (*int*) number of random permutations for calculation of pseudo p_values
- **geoda_quads** (boolean) (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4

```
У
     array – rate variables computed from parameters e and b if adjusted is True, y is standardized rates other-
     wise, y is raw rates
     W – original w object
permutations
     int – number of random permutations for calculation of pseudo p_values
I
     float – value of Moran's I
q
     array – (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL
sim
     array – (if permutations>0) vector of I values for permuted samples
p_sim
     array – (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alterna-
     tive: the observed Ii is further away or extreme from the median of simulated Iis. It is either extremely
     high or extremely low in the distribution of simulated Is
```

EI sim

float – (if permutations>0) average value of I from permutations

VI sim

float – (if permutations>0) variance of I from permutations

seI sim

float – (if permutations>0) standard deviation of I under permutations.

z_sim

float – (if permutations>0) standardized I based on permutations

p_z_sim

float – (if permutations>0) p-value based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2

```
>>> import pysal as ps
>>> import numpy as np
>>> np.random.seed(10)
>>> w = ps.open(ps.examples.get_path("sids2.gal")).read()
>>> f = ps.open(ps.examples.get_path("sids2.dbf"))
>>> e = np.array(f.by_col('SID79'))
>>> b = np.array(f.by_col('BIR79'))
>>> lm = ps.esda.moran.Moran_Local_Rate(e, b, w,
               transformation = "r",
    permutations = 99)
>>> lm.q[:10]
array([2, 4, 3, 1, 2, 1, 1, 4, 2, 4])
>>> lm.p_z_sim[0]
0.39319552026912641
>>> lm = ps.esda.moran.Moran_Local_Rate(e, b, w,
               transformation = "r",
    permutations = 99,
                                                                         geoda_
→quads=True)
```

```
>>> lm.q[:10]
array([3, 4, 2, 1, 3, 1, 1, 4, 3, 4])
```

Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures

classmethod by_col (df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)

Function to compute a Moran_Local_Rate statistic on a dataframe

Parameters

- **df** (pandas.DataFrame) a pandas dataframe with a geometry column
- events (string or list of strings) one or more names where events are stored
- **populations** (*string or list of strings*) one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised.
- w (pysal weights object) a weights object aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata
- inplace (bool) a boolean denoting whether to operate on the dataframe inplace or to return a series containing the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local_rate'
- **pvalue** (*string*) a string denoting which pvalue should be returned. Refer to the the Moran_Local_Rate statistic's documentation for available p-values
- outvals (list of strings) list of arbitrary attributes to return as columns from the Moran_Local_Rate statistic
- **stat_kws (keyword arguments) options to pass to the underlying statistic. For this, see the documentation for the Moran Local Rate statistic.

Returns

- If inplace, None, and operation is conducted on dataframe in memory. Otherwise,
- returns a copy of the dataframe with the relevant columns attached.

See also:

For, refer

esda.smoothing — Smoothing of spatial rates

```
New in version 1.0.
```

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units

 \mathbf{r} array(n, 1) – execess risk values

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating an instance of Excess Risk class using stl e and stl b

```
>>> er = Excess_Risk(stl_e, stl_b)
```

Extracting the excess risk values through the property r of the Excess_Risk instance, er

class pysal.esda.smoothing.Empirical_Bayes (e, b)

Aspatial Empirical Bayes Smoothing

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units

r

array (n, 1) – rate values from Empirical Bayes Smoothing

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating an instance of Empirical_Bayes class using stl_e and stl_b

```
>>> eb = Empirical_Bayes(stl_e, stl_b)
```

Extracting the risk values through the property r of the Empirical_Bayes instance, eb

 $\textbf{class} \; \texttt{pysal.esda.smoothing.Spatial_Empirical_Bayes} \; (e,b,w)$

Spatial Empirical Bayes Smoothing

Parameters

- **e** (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- w(spatial weights instance)-

r

array (n, 1) – rate values from Empirical Bayes Smoothing

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating a spatial weights instance by reading in stl.gal file.

```
>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()
```

Ensuring that the elements in the spatial weights instance are ordered by the given sequential numbers from 1 to the number of observations in stl_hom.csv

```
>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)
```

Creating an instance of Spatial_Empirical_Bayes class using stl_e, stl_b, and stl_w

```
>>> s_eb = Spatial_Empirical_Bayes(stl_e, stl_b, stl_w)
```

Extracting the risk values through the property r of s_eb

class pysal.esda.smoothing.Spatial_Rate (e, b, w)

Spatial Rate Smoothing

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- w(spatial weights instance) -

r

array(n, 1) – rate values from spatial rate smoothing

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating a spatial weights instance by reading in stl.gal file.

```
>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()
```

Ensuring that the elements in the spatial weights instance are ordered by the given sequential numbers from 1 to the number of observations in stl hom.csv

```
>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)
```

Creating an instance of Spatial_Rate class using stl_e, stl_b, and stl_w

```
>>> sr = Spatial_Rate(stl_e,stl_b,stl_w)
```

Extracting the risk values through the property r of sr

class pysal.esda.smoothing.Kernel_Smoother (e, b, w)

Kernal smoothing

Parameters

- **e** (array (n, 1)) event variable measured across n spatial units
- b (array (n, 1)) population at risk variable measured across n spatial units
- w(Kernel weights instance) -

r

array(n, 1) – rate values from spatial rate smoothing

Examples

Creating an array including event values for 6 regions

```
>>> e = np.array([10, 1, 3, 4, 2, 5])
```

Creating another array including population-at-risk values for the 6 regions

```
>>> b = np.array([100, 15, 20, 20, 80, 90])
```

Creating a list containing geographic coordinates of the 6 regions' centroids

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
```

Creating a kernel-based spatial weights instance by using the above points

```
>>> kw=Kernel(points)
```

Ensuring that the elements in the kernel-based weights are ordered by the given sequential numbers from 0 to 5

```
>>> if not kw.id_order_set: kw.id_order = range(0,len(points))
```

Applying kernel smoothing to e and b

```
>>> kr = Kernel_Smoother(e, b, kw)
```

Extracting the smoothed rates through the property r of the Kernel_Smoother instance

class pysal.esda.smoothing.Age_Adjusted_Smoother (e, b, w, s, alpha=0.05)Age-adjusted rate smoothing

Parameters

- e(array (n*h, 1)) event variable measured for each age group across n spatial units
- **b** (array (n*h, 1)) population at risk variable measured for each age group across n spatial units
- w(spatial weights instance) -
- s(array (n*h, 1)) standard population for each age group across n spatial units

 \mathbf{r} array (n, 1) – rate values from spatial rate smoothing

Notes

Weights used to smooth age-specific events and populations are simple binary weights

Examples

Creating an array including 12 values for the 6 regions with 2 age groups

```
>>> e = np.array([10, 8, 1, 4, 3, 5, 4, 3, 2, 1, 5, 3])
```

Creating another array including 12 population-at-risk values for the 6 regions

```
>>> b = np.array([100, 90, 15, 30, 25, 20, 30, 20, 80, 80, 90, 60])
```

For age adjustment, we need another array of values containing standard population s includes standard population data for the 6 regions

```
>>> s = np.array([98, 88, 15, 29, 20, 23, 33, 25, 76, 80, 89, 66])
```

Creating a list containing geographic coordinates of the 6 regions' centroids

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
```

Creating a kernel-based spatial weights instance by using the above points

```
>>> kw=Kernel(points)
```

Ensuring that the elements in the kernel-based weights are ordered by the given sequential numbers from 0 to 5

```
>>> if not kw.id_order_set: kw.id_order = range(0,len(points))
```

Applying age-adjusted smoothing to e and b

```
>>> ar = Age_Adjusted_Smoother(e, b, kw, s)
```

Extracting the smoothed rates through the property r of the Age_Adjusted_Smoother instance

classmethod by col (df, e, b, w=None, s=None, **kwargs)

Compute smoothing by columns in a dataframe.

Parameters

- **df** (pandas.DataFrame) a dataframe containing the data to be smoothed
- e (string or list of strings) the name or names of columns containing event variables to be smoothed
- **b** (*string or list of strings*) the name or names of columns containing the population variables to be smoothed
- **w** (*pysal.weights.W* or *list* of *pysal.weights.W*) the spatial weights object or objects to use with the event-population pairs. If not provided and a weights object is in the dataframe's metadata, that weights object will be used.
- **s** (*string or list of strings*) the name or names of columns to use as a standard population variable for the events *e* and at-risk populations *b*.
- **inplace** (bool) a flag denoting whether to output a copy of df with the relevant smoothed columns appended, or to append the columns directly to df itself.
- **kwargs (optional keyword arguments) optional keyword options that are passed directly to the smoother.

Returns

- a copy of df containing the columns. Or, if *inplace*, this returns
- None, but implicitly adds columns to df.

class pysal.esda.smoothing.Disk_Smoother (e, b, w)

Locally weighted averages or disk smoothing

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- w(spatial weights matrix)-

 \mathbf{r} array (n, 1) – rate values from disk smoothing

Examples

Reading data in stl hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating a spatial weights instance by reading in stl.gal file.

```
>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()
```

Ensuring that the elements in the spatial weights instance are ordered by the given sequential numbers from 1 to the number of observations in stl_hom.csv

```
>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)
```

Applying disk smoothing to stl e and stl b

```
>>> sr = Disk_Smoother(stl_e,stl_b,stl_w)
```

Extracting the risk values through the property r of s_eb

class pysal.esda.smoothing.Spatial_Median_Rate (e, b, w, aw=None, iteration=1)Spatial Median Rate Smoothing

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- w(spatial weights instance) -
- aw (array (n, 1)) auxiliary weight variable measured across n spatial units
- iteration (integer) the number of interations

 \mathbf{r} array (n, 1) – rate values from spatial median rate smoothing

spatial weights instance

aw array(n, 1) – auxiliary weight variable measured across n spatial units

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Creating a spatial weights instance by reading in stl.gal file.

```
>>> stl_w = pysal.open(pysal.examples.get_path('stl.gal'), 'r').read()
```

Ensuring that the elements in the spatial weights instance are ordered by the given sequential numbers from 1 to the number of observations in stl_hom.csv

```
>>> if not stl_w.id_order_set: stl_w.id_order = range(1,len(stl) + 1)
```

Computing spatial median rates without iteration

```
>>> smr0 = Spatial_Median_Rate(stl_e,stl_b,stl_w)
```

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

Recomputing spatial median rates with 5 iterations

```
>>> smr1 = Spatial_Median_Rate(stl_e,stl_b,stl_w,iteration=5)
```

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

Computing spatial median rates by using the base variable as auxilliary weights without iteration

```
>>> smr2 = Spatial_Median_Rate(stl_e,stl_b,stl_w,aw=stl_b)
```

Extracting the computed rates through the property r of the Spatial Median Rate instance

Recomputing spatial median rates by using the base variable as auxilliary weights with 5 iterations

```
>>> smr3 = Spatial_Median_Rate(stl_e,stl_b,stl_w,aw=stl_b,iteration=5)
```

Extracting the computed rates through the property r of the Spatial_Median_Rate instance

class pysal.esda.smoothing.Spatial_Filtering(bbox, data, e, b, x_grid , y_grid , r=None, pop=None)

Spatial Filtering

Parameters

- **bbox** (a list of two lists where each list is a pair of coordinates) a bounding box for the entire n spatial units
- data (array (n, 2)) x, y coordinates
- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- **x_grid** (integer) the number of cells on x axis
- y_grid (integer) the number of cells on y axis
- r (float) fixed radius of a moving window
- pop (integer) population threshold to create adaptive moving windows

grid

 $array (x_grid*y_grid, 2) - x$, y coordinates for grid points

r

 $array(x_grid*y_grid, 1)$ – rate values for grid points

Notes

No tool is provided to find an optimal value for r or pop.

Examples

Reading data in stl_hom.csv into stl to extract values for event and population-at-risk variables

```
>>> stl = pysal.open(pysal.examples.get_path('stl_hom.csv'), 'r')
```

Reading the stl data in the WKT format so that we can easily extract polygon centroids

```
>>> fromWKT = pysal.core.util.WKTParser()
>>> stl.cast('WKT',fromWKT)
```

Extracting polygon centroids through iteration

```
>>> d = np.array([i.centroid for i in stl[:,0]])
```

Specifying the bounding box for the stl_hom data. The bbox should includes two points for the left-bottom and the right-top corners

```
>>> bbox = [[-92.700676, 36.881809], [-87.916573, 40.3295669]]
```

The 11th and 14th columns in stl_hom.csv includes the number of homocides and population. Creating two arrays from these columns.

```
>>> stl_e, stl_b = np.array(stl[:,10]), np.array(stl[:,13])
```

Applying spatial filtering by using a 10*10 mesh grid and a moving window with 2 radius

```
>>> sf_0 = Spatial_Filtering(bbox,d,stl_e,stl_b,10,10,r=2)
```

Extracting the resulting rates through the property r of the Spatial_Filtering instance

Applying another spatial filtering by allowing the moving window to grow until 600000 people are found in the window

```
>>> sf = Spatial_Filtering(bbox,d,stl_e,stl_b,10,10,pop=600000)
```

Checking the size of the reulting array including the rates

```
>>> sf.r.shape (100,)
```

Extracting the resulting rates through the property r of the Spatial_Filtering instance

classmethod by_col (df, e, b, x_grid, y_grid, geom_col='geometry', **kwargs)

Compute smoothing by columns in a dataframe. The bounding box and point information is computed from the geometry column.

Parameters

- **df** (pandas. DataFrame) a dataframe containing the data to be smoothed
- **e** (string or list of strings) the name or names of columns containing event variables to be smoothed
- **b** (string or list of strings) the name or names of columns containing the population variables to be smoothed
- **x_grid** (integer) number of grid cells to use along the x-axis
- y_grid (integer) number of grid cells to use along the y-axis
- geom_col (string) the name of the column in the dataframe containing the geometry information.

• **kwargs (optional keyword arguments) - optional keyword options that are passed directly to the smoother.

Returns

- a new dataframe of dimension (x_grid*y_grid, 3), containing the
- coordinates of the grid cells and the rates associated with those grid
- · cells.

```
class pysal.esda.smoothing.Headbanging_Triples (data, w, k=5, t=3, angle=135.0, edgecor=False)
```

Generate a pseudo spatial weights instance that contains headbanging triples

Parameters

- data (array (n, 2)) numpy array of x, y coordinates
- w(spatial weights instance)-
- k(integer number of nearest neighbors)-
- t (integer) the number of triples
- angle (integer between 0 and 180) the angle criterium for a set of triples
- edgecorr (boolean) whether or not correction for edge points is made

triples

dictionary – key is observation record id, value is a list of lists of triple ids

extra

dictionary – key is observation record id, value is a list of the following: tuple of original triple observations distance between an original triple observation and its extrapolated point

Examples

importing k-nearest neighbor weights creator

```
>>> from pysal import knnW_from_array
```

Reading data in stl_hom.csv into stl_db to extract values for event and population-at-risk variables

```
>>> stl_db = pysal.open(pysal.examples.get_path('stl_hom.csv'),'r')
```

Reading the stl data in the WKT format so that we can easily extract polygon centroids

```
>>> fromWKT = pysal.core.util.WKTParser()
>>> stl_db.cast('WKT', fromWKT)
```

Extracting polygon centroids through iteration

```
>>> d = np.array([i.centroid for i in stl_db[:,0]])
```

Using the centroids, we create a 5-nearst neighbor weights

```
>>> w = knnW_from_array(d,k=5)
```

Ensuring that the elements in the spatial weights instance are ordered by the order of stl_db's IDs

```
>>> if not w.id_order_set: w.id_order = w.id_order
```

Finding headbaning triples by using 5 nearest neighbors

```
>>> ht = Headbanging_Triples(d, w, k=5)
```

Checking the members of triples

```
>>> for k, item in ht.triples.items()[:5]: print k, item

0 [(5, 6), (10, 6)]

1 [(4, 7), (4, 14), (9, 7)]

2 [(0, 8), (10, 3), (0, 6)]

3 [(4, 2), (2, 12), (8, 4)]

4 [(8, 1), (12, 1), (8, 9)]
```

Opening sids2.shp file

```
>>> sids = pysal.open(pysal.examples.get_path('sids2.shp'),'r')
```

Extracting the centroids of polygons in the sids data

```
>>> sids_d = np.array([i.centroid for i in sids])
```

Creating a 5-nearest neighbors weights from the sids centroids

```
>>> sids_w = knnW_from_array(sids_d,k=5)
```

Ensuring that the members in sids_w are ordered by the order of sids_d's ID

```
>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order
```

Finding headbaning triples by using 5 nearest neighbors

```
>>> s_ht = Headbanging_Triples(sids_d,sids_w,k=5)
```

Checking the members of the found triples

```
>>> for k, item in s_ht.triples.items()[:5]: print k, item
0 [(1, 18), (1, 21), (1, 33)]
1 [(2, 40), (2, 22), (22, 40)]
2 [(39, 22), (1, 9), (39, 17)]
3 [(16, 6), (19, 6), (20, 6)]
4 [(5, 15), (27, 15), (35, 15)]
```

Finding headbanging triples by using 5 nearest neighbors with edge correction

```
>>> s_ht2 = Headbanging_Triples(sids_d,sids_w,k=5,edgecor=True)
```

Checking the members of the found triples

```
>>> for k, item in s_ht2.triples.items()[:5]: print k, item

0 [(1, 18), (1, 21), (1, 33)]

1 [(2, 40), (2, 22), (22, 40)]

2 [(39, 22), (1, 9), (39, 17)]

3 [(16, 6), (19, 6), (20, 6)]

4 [(5, 15), (27, 15), (35, 15)]
```

Checking the extrapolated point that is introduced into the triples during edge correction

```
>>> extrapolated = s_ht2.extra[72]
```

Checking the observation IDs constituting the extrapolated triple

```
>>> extrapolated[0]
(89, 77)
```

Checking the distances between the extraploated point and the observation 89 and 77

```
>>> round(extrapolated[1],5), round(extrapolated[2],6) (0.33753, 0.302707)
```

 ${f class}$ pysal.esda.smoothing.Headbanging_Median_Rate (e, b, t, aw=None, iteration=1) Headbaning Median Rate Smoothing

Parameters

- e (array (n, 1)) event variable measured across n spatial units
- **b** (array (n, 1)) population at risk variable measured across n spatial units
- t (Headbanging_Triples instance) -
- aw (array (n, 1)) auxilliary weight variable measured across n spatial units
- iteration (integer) the number of iterations

array(n, 1) – rate values from headbanging median smoothing

Examples

r

importing k-nearest neighbor weights creator

```
>>> from pysal import knnW_from_array
```

opening the sids2 shapefile

```
>>> sids = pysal.open(pysal.examples.get_path('sids2.shp'), 'r')
```

extracting the centroids of polygons in the sids2 data

```
>>> sids_d = np.array([i.centroid for i in sids])
```

creating a 5-nearest neighbors weights from the centroids

```
>>> sids_w = knnW_from_array(sids_d, k=5)
```

ensuring that the members in sids_w are ordered

```
>>> if not sids_w.id_order_set: sids_w.id_order = sids_w.id_order
```

finding headbanging triples by using 5 neighbors return outdf

```
>>> s_ht = Headbanging_Triples(sids_d,sids_w,k=5)
```

reading in the sids2 data table

```
>>> sids_db = pysal.open(pysal.examples.get_path('sids2.dbf'), 'r')
```

extracting the 10th and 9th columns in the sids2.dbf and using data values as event and population-at-risk variables

```
>>> s_e, s_b = np.array(sids_db[:,9]), np.array(sids_db[:,8])
```

computing headbanging median rates from s_e, s_b, and s_ht

```
>>> sids_hb_r = Headbanging_Median_Rate(s_e,s_b,s_ht)
```

extracting the computed rates through the property r of the Headbanging_Median_Rate instance

recomputing headbanging median rates with 5 iterations

```
>>> sids_hb_r2 = Headbanging_Median_Rate(s_e,s_b,s_ht,iteration=5)
```

extracting the computed rates through the property r of the Headbanging_Median_Rate instance

```
>>> sids_hb_r2.r[:5]
array([ 0.0008285 ,  0.00084331,  0.00086896,  0.0018315 ,  0.00498891])
```

recomputing headbanging median rates by considring a set of auxilliary weights

```
>>> sids_hb_r3 = Headbanging_Median_Rate(s_e,s_b,s_ht,aw=s_b)
```

extracting the computed rates through the property r of the Headbanging Median Rate instance

classmethod by_col (df, e, b, t=None, geom_col='geometry', inplace=False, **kwargs)

Compute smoothing by columns in a dataframe. The bounding box and point information is computed from the geometry column.

Parameters

- **df** (pandas. DataFrame) a dataframe containing the data to be smoothed
- e (string or list of strings) the name or names of columns containing event variables to be smoothed
- **b** (*string or list of strings*) the name or names of columns containing the population variables to be smoothed
- t (Headbanging_Triples instance or list of Headbanging_Triples) list of headbanging triples instances. If not provided, this is computed from the geometry column of the dataframe.
- geom_col (string) the name of the column in the dataframe containing the geometry information.
- **inplace** (bool) a flag denoting whether to output a copy of df with the relevant smoothed columns appended, or to append the columns directly to df itself.

• **kwargs (optional keyword arguments) — optional keyword options that are passed directly to the smoother.

Returns

- a new dataframe containing the smoothed Headbanging Median Rates for the
- event/population pairs. If done inplace, there is no return value and
- df is modified in place.

```
pysal.esda.smoothing.flatten(l, unique=True)
flatten a list of lists
```

Parameters

- 1 (list) of lists
- unique (boolean) whether or not only unique items are wanted (default=True)

Returns of single items

Return type list

Examples

Creating a sample list whose elements are lists of integers

```
>>> 1 = [[1, 2], [3, 4, ], [5, 6]]
```

Applying flatten function

```
>>> flatten(1)
[1, 2, 3, 4, 5, 6]
```

```
pysal.esda.smoothing.weighted_median(d, w)
```

A utility function to find a median of d based on w

Parameters

- **d** (array) (n, 1), variable for which median will be found
- w (array) (n, 1), variable on which d's median will be decided

Notes

d and w are arranged in the same order

Returns median of d

Return type float

Examples

Creating an array including five integers. We will get the median of these integers.

```
>>> d = np.array([5,4,3,1,2])
```

Creating another array including weight values for the above integers. The median of d will be decided with a consideration to these weight values.

```
>>> w = np.array([10, 22, 9, 2, 5])
```

Applying weighted_median function

```
>>> weighted_median(d, w)
4
```

```
pysal.esda.smoothing.sum_by_n (d, w, n)
```

A utility function to summarize a data array into n values after weighting the array with another weight array w

Parameters

- d(array) (t, 1), numerical values
- w (array) (t, 1), numerical values for weighting
- \mathbf{n} (integer) the number of groups $\mathbf{t} = \mathbf{c} \cdot \mathbf{n}$ (c is a constant)

Returns (n, 1), an array with summarized values

Return type array

Examples

Creating an array including four integers. We will compute weighted means for every two elements.

```
>>> d = np.array([10, 9, 20, 30])
```

Here is another array with the weight values for d's elements.

```
>>> w = np.array([0.5, 0.1, 0.3, 0.8])
```

We specify the number of groups for which the weighted mean is computed.

```
>>> n = 2
```

Applying sum_by_n function

```
>>> sum_by_n(d, w, n) array([ 5.9, 30.])
```

pysal.esda.smoothing.crude_age_standardization (e, b, n)

A utility function to compute rate through crude age standardization

Parameters

- e (array) (n*h, 1), event variable measured for each age group across n spatial units
- **b** (array) (n*h, 1), population at risk variable measured for each age group across n spatial units
- n (integer) the number of spatial units

Notes

e and b are arranged in the same order

Returns (n, 1), age standardized rate

Return type array

Examples

Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

Specifying the number of regions.

```
>>> n = 2
```

Applying crude_age_standardization function to e and b

```
>>> crude_age_standardization(e, b, n) array([ 0.2375 , 0.26666667])
```

pysal.esda.smoothing.direct_age_standardization(e, b, s, n, alpha=0.05)

A utility function to compute rate through direct age standardization

Parameters

- **e** (array) (n*h, 1), event variable measured for each age group across n spatial units
- **b** (array) (n*h, 1), population at risk variable measured for each age group across n spatial units
- \mathbf{s} (array) (\mathbf{n} * \mathbf{h} , 1), standard population for each age group across \mathbf{n} spatial units
- n (integer) the number of spatial units
- alpha (float) significance level for confidence interval

Notes

e, b, and s are arranged in the same order

Returns a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rates and confidence intervals

Return type list

Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([1000, 1000, 1100, 900, 1000, 900, 1100, 900])
```

For direct age standardization, we also need the data for standard population. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., population distribution for Arizona and California). Another array including standard population is created.

```
>>> s = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])
```

Specifying the number of regions.

```
>>> n = 2
```

Applying direct_age_standardization function to e and b

```
>>> [i[0] for i in direct_age_standardization(e, b, s, n)] [0.023744019138755977, 0.026650717703349279]
```

pysal.esda.smoothing.indirect_age_standardization (e, b, s_e, s_b, n, alpha=0.05) A utility function to compute rate through indirect age standardization

Parameters

- e (array) (n*h, 1), event variable measured for each age group across n spatial units
- **b** (array) (n*h, 1), population at risk variable measured for each age group across n spatial units
- **s_e** (array) (n*h, 1), event variable measured for each age group across n spatial units in a standard population
- **s_b** (array) (n*h, 1), population variable measured for each age group across n spatial units in a standard population
- **n** (integer) the number of spatial units
- alpha (float) significance level for confidence interval

Notes

e, b, s e, and s b are arranged in the same order

Returns a list of n tuples; a tuple has a rate and its lower and upper limits age standardized rate

Return type list

Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

For indirect age standardization, we also need the data for standard population and event. Standard population is a reference population-at-risk (e.g., population distribution for the U.S.) whose age distribution can be used as a benchmarking point for comparing age distributions across regions (e.g., population distribution for Arizona and California). When the same concept is applied to the event variable, we call it standard event (e.g., the number of cancer patients in the U.S.). Two additional arrays including standard population and event are created.

```
>>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80])
>>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])
```

Specifying the number of regions.

```
>>> n = 2
```

Applying indirect_age_standardization function to e and b

```
>>> [i[0] for i in indirect_age_standardization(e, b, s_e, s_b, n)] [0.23723821989528798, 0.2610803324099723]
```

pysal.esda.smoothing.standardized_mortality_ratio (e, b, s_e, s_b, n)

A utility function to compute standardized mortality ratio (SMR).

Parameters

- e (array) (n*h, 1), event variable measured for each age group across n spatial units
- **b** (array) (n*h, 1), population at risk variable measured for each age group across n spatial units
- **s_e** (array) (n*h, 1), event variable measured for each age group across n spatial units in a standard population
- **s_b** (array) (n*h, 1), population variable measured for each age group across n spatial units in a standard population
- **n** (integer) the number of spatial units

Notes

e, b, s_e, and s_b are arranged in the same order

Returns (nx1)

Return type array

Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

To compute standardized mortality ratio (SMR), we need two additional arrays for standard population and event. Creating s_e and s_b for standard event and population, respectively.

```
>>> s_e = np.array([100, 45, 120, 100, 50, 30, 200, 80])
>>> s_b = np.array([1000, 900, 1000, 900, 1000, 900, 1000, 900])
```

Specifying the number of regions.

```
>>> n = 2
```

Applying indirect_age_standardization function to e and b

```
>>> standardized_mortality_ratio(e, b, s_e, s_b, n) array([ 2.48691099,  2.73684211])
```

pysal.esda.smoothing.choynowski(e, b, n, threshold=None)

Choynowski map probabilities [Choynowski1959].

Parameters

- e(array(n*h, 1)) event variable measured for each age group across n spatial units
- **b** (array (n*h, 1)) population at risk variable measured for each age group across n spatial units
- n (integer) the number of spatial units
- threshold (float) Returns zero for any p-value greater than threshold

Notes

e and b are arranged in the same order

Returns

Return type array (nx1)

Examples

Creating an array of an event variable (e.g., the number of cancer patients) for 2 regions in each of which 4 age groups are available. The first 4 values are event values for 4 age groups in the region 1, and the next 4 values are for 4 age groups in the region 2.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same two regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

Specifying the number of regions.

```
>>> n = 2
```

Applying indirect_age_standardization function to e and b

```
>>> print choynowski(e, b, n)
[ 0.30437751  0.29367033]
```

```
pysal.esda.smoothing.assuncao_rate (e, b)
```

The standardized rates where the mean and stadard deviation used for the standardization are those of Empirical Bayes rate estimates The standardized rates resulting from this function are used to compute Moran's I corrected for rate variables [Choynowski1959].

Parameters

- e (array (n, 1)) event variable measured at n spatial units
- **b** (array (n, 1)) population at risk variable measured at n spatial units

Notes

e and b are arranged in the same order

Returns

Return type array (nx1)

Examples

Creating an array of an event variable (e.g., the number of cancer patients) for 8 regions.

```
>>> e = np.array([30, 25, 25, 15, 33, 21, 30, 20])
```

Creating another array of a population-at-risk variable (e.g., total population) for the same 8 regions. The order for entering values is the same as the case of e.

```
>>> b = np.array([100, 100, 110, 90, 100, 90, 110, 90])
```

Computing the rates

```
>>> print assuncao_rate(e, b)[:4]
[ 1.04319254 -0.04117865 -0.56539054 -1.73762547]
```

pysal.inequality — Spatial Inequality Analysis

inequality.gini - Gini inequality and decomposition measures

```
The inequality gini module provides Gini inequality based measures
```

New in version 1.6. Gini based Inequality Metrics

```
class pysal.inequality.gini.Gini (x)
```

Classic Gini coefficient in absolute deviation form

```
Parameters y (array (n, 1)) – attribute
```

g

float – Gini coefficient

```
class pysal.inequality.gini.Gini_Spatial(x, w, permutations=99)
```

Spatial Gini coefficient

Provides for computationally based inference regarding the contribution of spatial neighbor pairs to overall inequality across a set of regions. [Rey2013]

Parameters

- y (array (n, 1)) attribute
- w(binary spatial weights object) -
- permutations (int (default = 99)) number of permutations for inference

g

float - Gini coefficient

wg

float – Neighbor inequality component (geographic inequality)

wcq

float – Non-neighbor inequality component (geographic complement inequality)

wcg_share

float – Share of inequality in non-neighbor component

If Permuations > 0

p_sim

float – pseudo p-value for spatial gini

e_wcg

float – expected value of non-neighbor inequality component (level) from permutations

s_wcg

float – standard deviation non-neighbor inequality component (level) from permutations

z_wcg

float – z-value non-neighbor inequality component (level) from permutations

p_z_sim

float - pseudo p-value based on standard normal approximation of permutation based values

Examples

```
>>> import pysal
>>> import numpy as np
```

Use data from the 32 Mexican States, Decade frequency 1940-2010

```
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
```

Define regime neighbors

```
>>> regimes=np.array(f.by_col('hanson98'))
>>> w = pysal.block_weights(regimes)
>>> np.random.seed(12345)
>>> gs = pysal.inequality.gini.Gini_Spatial(y[:,0],w)
>>> gs.p_sim
0.040000000000000001
>>> gs.wcg
4353856.0
>>> gs.e_wcg
4170356.7474747472
```

Thus, the amount of inequality between pairs of states that are not in the same regime (neighbors) is significantly higher than what is expected under the null of random spatial inequality.

inequality.theil - Theil inequality and decomposition measures

The inequality.theil module provides Theil inequality based measures

New in version 1.0. Theil Inequality metrics

```
class pysal.inequality.theil.Theil (y)
    Classic Theil measure of inequality
```

$$T = \sum_{i=1}^{n} \left(\frac{y_i}{\sum_{i=1}^{n} y_i} \ln \left[N \frac{y_i}{\sum_{i=1}^{n} y_i} \right] \right)$$

Parameters y (array (n,t) or (n,)) – with n taken as the observations across which inequality is calculated. If y is (n,) then a scalar inequality value is determined. If y is (n,t) then an array of inequality values are determined, one value for each column in y.

Т

array(t,) or(1,) – Theil's T for each column of y

Notes

This computation involves natural logs. To prevent ln[0] from occurring, a small value is added to each element of y before beginning the computation.

Examples

```
>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
```

class pysal.inequality.theil.TheilD (y, partition)

Decomposition of Theil's T based on partitioning of observations into exhaustive and mutually exclusive groups

Parameters

- **y** (array (n,t) or (n,)) with n taken as the observations across which inequality is calculated If y is (n,) then a scalar inequality value is determined. If y is (n,t) then an array of inequality values are determined, one value for each column in y.
- partition (array (n,)) elements indicating which partition each observation belongs to. These are assumed to be exhaustive.

```
    array (n,t) or (n,) – global inequality T
    array (n,t) or (n,) – between group inequality
    array (n,t) or (n,) – within group inequality
```

Examples

class pysal.inequality.theil.TheilDSim(y, partition, permutations=99)

Random permutation based inference on Theil's inequality decomposition.

Provides for computationally based inference regarding the inequality decomposition using random spatial permutations. [Rey2004b]

Parameters

- y(array (n,t) or (n,)) with n taken as the observations across which inequality is calculated If y is (n,) then a scalar inequality value is determined. If y is (n,t) then an array of inequality values are determined, one value for each column in y.
- partition (array (n,)) elements indicating which partition each observation belongs to. These are assumed to be exhaustive.
- **permutations** (*int*) Number of random spatial permutations for computationally based inference on the decomposition.

observed

array(n,t) or (n,t) – TheilD instance for the observed data.

bq

array (permutations+1,t) – between group inequality

bg_pvalue

array(t,1) – p-value for the between group measure. Measures the percentage of the realized values that were greater than or equal to the observed bg value. Includes the observed value.

wg

array (size=permutations+1) – within group inequality Depending on the shape of y, 1 or 2-dimensional

Examples

```
>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regimes=np.array(f.by_col('hanson98'))
>>> np.random.seed(10)
>>> theil_ds=TheilDSim(y,regimes,999)
>>> theil_ds.bg_pvalue
array([ 0.4  ,  0.344,  0.001,  0.001,  0.034,  0.072,  0.032])
```

pysal.region — Spatially Constrained Clustering

region.maxp - maxp regionalization

New in version 1.0. Max p regionalization

Heuristically form the maximum number (p) of regions given a set of n areas and a floor constraint.

class pysal.region.maxp.Maxp(w, z, floor, floor_variable, verbose=False, initial=100, seeds=[])

Try to find the maximum number of regions for a set of areas such that each region combines contiguous areas that satisfy a given threshold constraint.

Parameters

- w (W) spatial weights object
- **z** (array) n*m array of observations on m attributes across n areas. This is used to calculate intra-regional homogeneity
- floor (int) a minimum bound for a variable that has to be obtained in each region
- floor_variable (array) n*1 vector of observations on variable for the floor
- initial (int) number of initial solutions to generate
- verbose (binary) if true debugging information is printed
- **seeds** (list) ids of observations to form initial seeds. If len(ids) is less than the number of observations, the complementary ids are added to the end of seeds. Thus the specified seeds get priority in the solution

area2region

dict – mapping of areas to region. key is area id, value is region id

```
regions
    list - list of lists of regions (each list has the ids of areas in that region)

p
    int - number of regions

swap_iterations
    int - number of swap iterations

total_moves
    int - number of moves into internal regions
```

Setup imports and set seeds for random number generators to insure the results are identical for each run.

```
>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
```

Setup a spatial weights matrix describing the connectivity of a square community with 100 areas. Generate two random data attributes for each area in the community (a 100x2 array) called z. p is the data vector used to compute the floor for a region, and floor is the floor value; in this case p is simply a vector of ones and the floor is set to three. This means that each region will contain at least three areas. In other cases the floor may be computed based on a minimum population count for example.

```
>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w = pysal.lat2W(10,10)
>>> z = np.random.random_sample((w.n,2))
>>> p = np.ones((w.n,1), float)
>>> floor = 3
>>> solution = pysal.region.Maxp(w, z, floor, floor_variable=p, initial=100)
>>> solution.p
29
>>> min([len(region) for region in solution.regions])
3
>>> solution.regions[0]
[76, 66, 56]
>>>
```

cinference (nperm=99, maxiter=1000)

Compare the within sum of squares for the solution against conditional simulated solutions where areas are randomly assigned to regions that maintain the cardinality of the original solution and respect contiguity relationships.

Parameters

- nperm (int) number of random permutations for calculation of pseudo-p_values
- maxiter (int) maximum number of attempts to find each permutation

pvalue

float – pseudo p_value

feas sols

int – number of feasible solutions found

Notes

it is possible for the number of feasible solutions (feas_sols) to be less than the number of permutations requested (nperm); an exception is raised if this occurs.

Examples

Setup is the same as shown above except using a 5x5 community.

```
>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w=pysal.weights.lat2W(5,5)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones((w.n,1),float)
>>> floor=3
>>> solution=pysal.region.Maxp(w,z,floor_tloor_variable=p,initial=100)
```

Set nperm to 9 meaning that 9 random regions are computed and used for the computation of a pseudo-p-value for the actual Max-p solution. In empirical work this would typically be set much higher, e.g. 999 or 9999.

```
>>> solution.cinference(nperm=9, maxiter=100)
>>> solution.cpvalue
0.1
```

inference (nperm=99)

Compare the within sum of squares for the solution against simulated solutions where areas are randomly assigned to regions that maintain the cardinality of the original solution.

Parameters nperm (int) – number of random permutations for calculation of pseudop_values

pvalue

float - pseudo p_value

Examples

Setup is the same as shown above except using a 5x5 community.

```
>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
>>> w=pysal.weights.lat2W(5,5)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones((w.n,1),float)
>>> floor=3
>>> solution=pysal.region.Maxp(w,z,floor_variable=p,initial=100)
```

Set nperm to 9 meaning that 9 random regions are computed and used for the computation of a pseudo-p-value for the actual Max-p solution. In empirical work this would typically be set much higher, e.g. 999 or 9999.

```
>>> solution.inference(nperm=9)
>>> solution.pvalue
0.1
```

class pysal.region.maxp.**Maxp_LISA** (w, z, y, floor, floor_variable, initial=100) Max-p regionalization using LISA seeds

Parameters

- w (₩) spatial weights object
- **z** (array) nxk array of n observations on k variables used to measure similarity between areas within the regions.
- y (array) nx1 array used to calculate the LISA statistics and to set the intial seed order
- **floor** (float) value that each region must obtain on floor_variable
- floor_variable (array) nx1 array of values for regional floor threshold
- initial (int) number of initial feasible solutions to generate prior to swapping

area2region

dict - mapping of areas to region. key is area id, value is region id

regions

list – list of lists of regions (each list has the ids of areas in that region)

swap_iterations

int – number of swap iterations

total moves

int – number of moves into internal regions

Notes

We sort the observations based on the value of the LISAs. This ordering then gives the priority for seeds forming the p regions. The initial priority seeds are not guaranteed to be separated in the final solution.

Examples

Setup imports and set seeds for random number generators to insure the results are identical for each run.

```
>>> import numpy as np
>>> import pysal
>>> np.random.seed(100)
```

Setup a spatial weights matrix describing the connectivity of a square community with 100 areas. Generate two random data attributes for each area in the community (a 100x2 array) called z. p is the data vector used to compute the floor for a region, and floor is the floor value; in this case p is simply a vector of ones and the floor is set to three. This means that each region will contain at least three areas. In other cases the floor may be computed based on a minimum population count for example.

```
>>> w=pysal.lat2W(10,10)
>>> z=np.random.random_sample((w.n,2))
>>> p=np.ones(w.n)
>>> mpl=pysal.region.Maxp_LISA(w,z,p,floor=3,floor_variable=p)
>>> mpl.p
```

```
30
>>> mpl.regions[0]
[99, 98, 89]
```

region.randomregion - Random region creation

New in version 1.0. Generate random regions

Randomly form regions given various types of constraints on cardinality and composition.

Generate a list of Random_Region instances.

Parameters

- **area_ids** (list) IDs indexing the areas to be grouped into regions (must be in the same order as spatial weights matrix if this is provided)
- num_regions (integer) number of regions to generate (if None then this is chosen randomly from 2 to n where n is the number of areas)
- **cardinality** (list) list containing the number of areas to assign to regions (if num_regions is also provided then len(cardinality) must equal num_regions; if cardinality=None then a list of length num_regions will be generated randomly)
- contiguity (W) spatial weights object (if None then contiguity will be ignored)
- maxiter (int) maximum number attempts (for each permutation) at finding a feasible solution (only affects contiguity constrained regions)
- compact (boolean) attempt to build compact regions, note (only affects contiguity constrained regions)
- max_swaps (int) maximum number of swaps to find a feasible solution (only affects contiguity constrained regions)
- **permutations** (*int*) number of Random_Region instances to generate

solutions

list – list of length permutations containing all Random_Region instances generated

solutions feas

list – list of the Random_Region instances that resulted in feasible solutions

Examples

Setup the data

```
>>> import random
>>> import numpy as np
>>> import pysal
>>> nregs = 13
>>> cards = range(2,14) + [10]
>>> w = pysal.lat2W(10,10,rook=True)
>>> ids = w.id_order
```

Unconstrained

```
>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = pysal.region.Random_Regions(ids, permutations=2)
>>> t0.solutions[0].regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]
```

Cardinality and contiguity constrained (num regions implied)

```
>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Regions(ids, num_regions=nregs, cardinality=cards,______
contiguity=w, permutations=2)
>>> t1.solutions[0].regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]
```

Cardinality constrained (num_regions implied)

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = pysal.region.Random_Regions(ids, num_regions=nregs, cardinality=cards, permutations=2)
>>> t2.solutions[0].regions[0]
[37, 62]
```

Number of regions and contiguity constrained

Cardinality and contiguity constrained

Number of regions constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = pysal.region.Random_Regions(ids, num_regions=nregs, permutations=2)
>>> t5.solutions[0].regions[0]
[37, 62, 26, 41, 35, 25, 36]
```

Cardinality constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = pysal.region.Random_Regions(ids, cardinality=cards, permutations=2)
>>> t6.solutions[0].regions[0]
[37, 62]
```

Contiguity constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = pysal.region.Random_Regions(ids, contiguity=w, permutations=2)
>>> t7.solutions[0].regions[1]
[62, 61, 71, 63]
```

class pysal.region.randomregion.Random_Region (area_ids, num_regions=None, cardinal-ity=None, contiguity=None, maxiter=1000, compact=False, $max_swaps=1000000$)

Randomly combine a given set of areas into two or more regions based on various constraints.

Parameters

- area_ids (list) IDs indexing the areas to be grouped into regions (must be in the same order as spatial weights matrix if this is provided)
- num_regions (integer) number of regions to generate (if None then this is chosen randomly from 2 to n where n is the number of areas)
- **cardinality** (list) list containing the number of areas to assign to regions (if num_regions is also provided then len(cardinality) must equal num_regions; if cardinality=None then a list of length num_regions will be generated randomly)
- contiguity (W) spatial weights object (if None then contiguity will be ignored)
- maxiter (int) maximum number attempts at finding a feasible solution (only affects contiguity constrained regions)
- **compact** (boolean) attempt to build compact regions (only affects contiguity constrained regions)
- max_swaps (int) maximum number of swaps to find a feasible solution (only affects contiguity constrained regions)

feasible

boolean - if True then solution was found

regions

list – list of lists of regions (each list has the ids of areas in that region)

Examples

Setup the data

```
>>> import random
>>> import numpy as np
>>> import pysal
>>> nregs = 13
>>> cards = range(2,14) + [10]
>>> w = pysal.weights.lat2W(10,10,rook=True)
>>> ids = w.id_order
```

Unconstrained

```
>>> random.seed(10)
>>> np.random.seed(10)
>>> t0 = pysal.region.Random_Region(ids)
>>> t0.regions[0]
[19, 14, 43, 37, 66, 3, 79, 41, 38, 68, 2, 1, 60]
```

Cardinality and contiguity constrained (num_regions implied)

```
>>> random.seed(60)
>>> np.random.seed(60)
>>> t1 = pysal.region.Random_Region(ids, num_regions=nregs, cardinality=cards,__

contiguity=w)
>>> t1.regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]
```

Cardinality constrained (num_regions implied)

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t2 = pysal.region.Random_Region(ids, num_regions=nregs, cardinality=cards)
>>> t2.regions[0]
[37, 62]
```

Number of regions and contiguity constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t3 = pysal.region.Random_Region(ids, num_regions=nregs, contiguity=w)
>>> t3.regions[1]
[62, 52, 51, 63, 61, 73, 41, 53, 60, 83, 42, 31, 32]
```

Cardinality and contiguity constrained

```
>>> random.seed(60)
>>> np.random.seed(60)
>>> t4 = pysal.region.Random_Region(ids, cardinality=cards, contiguity=w)
>>> t4.regions[0]
[62, 61, 81, 71, 64, 90, 72, 51, 80, 63, 50, 73, 52]
```

Number of regions constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t5 = pysal.region.Random_Region(ids, num_regions=nregs)
>>> t5.regions[0]
[37, 62, 26, 41, 35, 25, 36]
```

Cardinality constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t6 = pysal.region.Random_Region(ids, cardinality=cards)
>>> t6.regions[0]
[37, 62]
```

Contiguity constrained

```
>>> random.seed(100)
>>> np.random.seed(100)
>>> t7 = pysal.region.Random_Region(ids, contiguity=w)
>>> t7.regions[0]
[37, 36, 38, 39]
```

pysal.spatial dynamics — Spatial Dynamics

spatial_dynamics.directional - Directional LISA Analytics

New in version 1.0. Directional Analysis of Dynamic LISAs

```
pysal.spatial_dynamics.directional.rose(Y, w, k=8, permutations=0) Calculation of rose diagram for local indicators of spatial association.
```

Parameters

- Y (array) (n, 2), variable observed on n spatial units over 2 time. periods
- w (W) spatial weights object.
- **k** (*int*, *optional*) number of circular sectors in rose diagram (the default is 8).
- **permutations** (*int*, *optional*) number of random spatial permutations for calculation of pseudo p-values (the default is 0).

Returns

- **results** (*dictionary*) (keys defined below)
- counts (array) (k, 1), number of vectors with angular movement falling in each sector.
- **cuts** (array) (k, 1), intervals defining circular sectors (in radians).
- random_counts (array) (permutations, k), counts from random permutations.
- pvalues (array) (k, 1), one sided (upper tail) pvalues for observed counts.

Notes

Based on [Rey2011].

Examples

Constructing data for illustration of directional LISA analytics. Data is for the 48 lower US states over the period 1969-2009 and includes per capita income normalized to the national average.

Load comma delimited data file in and convert to a numpy array

```
>>> f=open(pysal.examples.get_path("spi_download.csv"),'r')
>>> lines=f.readlines()
>>> f.close()
>>> lines=[line.strip().split(",") for line in lines]
>>> names=[line[2] for line in lines[1:-5]]
>>> data=np.array([map(int,line[3:]) for line in lines[1:-5]])
```

Bottom of the file has regional data which we don't need for this example so we will subset only those records that match a state name

```
>>> sids=range(60)
>>> out=['"United States 3/"',
         '"Alaska 3/"',
         '"District of Columbia"',
. . .
         '"Hawaii 3/"',
. . .
         '"New England"',
. . .
         '"Mideast"',
. . .
         '"Great Lakes"',
. . .
         '"Plains"',
         '"Southeast"',
. . .
         '"Southwest"',
. . .
         '"Rocky Mountain"',
. . .
         '"Far West 3/"']
. . .
>>> snames=[name for name in names if name not in out]
>>> sids=[names.index(name) for name in snames]
>>> states=data[sids,:]
>>> us=data[0]
>>> years=np.arange(1969,2009)
```

Now we convert state incomes to express them relative to the national average

```
>>> rel=states/(us*1.)
```

Create our contiguity matrix from an external GAL file and row standardize the resulting weights

```
>>> gal=pysal.open(pysal.examples.get_path('states48.gal'))
>>> w=gal.read()
>>> w.transform='r'
```

Take the first and last year of our income data as the interval to do the directional directional analysis

```
>>> Y=rel[:,[0,-1]]
```

Set the random seed generator which is used in the permutation based inference for the rose diagram so that we can replicate our example results

```
>>> np.random.seed(100)
```

Call the rose function to construct the directional histogram for the dynamic LISA statistics. We will use four circular sectors for our histogram

```
>>> r4=rose(Y,w,k=4,permutations=999)
```

What are the cut-offs for our histogram - in radians

How many vectors fell in each sector

```
>>> r4['counts']
array([32, 5, 9, 2])
```

What are the pseudo-pvalues for these counts based on 999 random spatial permutations of the state income data

```
>>> r4['pvalues']
array([ 0.02 , 0.001, 0.001, 0.001])
```

Repeat the exercise but now for 8 rather than 4 sectors

```
>>> r8=rose(Y,w,permutations=999)
>>> r8['counts']
array([19, 13, 3, 2, 7, 2, 1, 1])
>>> r8['pvalues']
array([ 0.445,  0.042,  0.079,  0.003,  0.005,  0.1 ,  0.269,  0.002])
```

spatial_dynamics.ergodic - Summary measures for ergodic Markov chains

New in version 1.0. Summary measures for ergodic Markov chains

```
pysal.spatial_dynamics.ergodic.steady_state(P)
```

Calculates the steady state probability vector for a regular Markov transition matrix P.

Parameters P (matrix) - (k, k), an ergodic Markov transition probability matrix.

Returns (k, 1), steady state distribution.

Return type matrix

Examples

Taken from Kemeny and Snell. Land of Oz example where the states are Rain, Nice and Snow, so there is 25 percent chance that if it rained in Oz today, it will snow tomorrow, while if it snowed today in Oz there is a 50 percent chance of snow again tomorrow and a 25 percent chance of a nice day (nice, like when the witch with the monkeys is melting).

Thus, the long run distribution for Oz is to have 40 percent of the days classified as Rain, 20 percent as Nice, and 40 percent as Snow (states are mutually exclusive).

```
pysal.spatial_dynamics.ergodic.fmpt(P)
```

Calculates the matrix of first mean passage times for an ergodic transition probability matrix.

Parameters P (matrix) - (k, k), an ergodic Markov transition probability matrix.

Returns M - (k, k), elements are the expected value for the number of intervals required for a chain starting in state i to first enter state j. If i=j then this is the recurrence time.

Return type matrix

Examples

Thus, if it is raining today in Oz we can expect a nice day to come along in another 4 days, on average, and snow to hit in 3.33 days. We can expect another rainy day in 2.5 days. If it is nice today in Oz, we would experience a change in the weather (either rain or snow) in 2.67 days from today. (That wicked witch can only die once so I reckon that is the ultimate absorbing state).

Notes

Uses formulation (and examples on p. 218) in [Kemeny1967].

```
pysal.spatial_dynamics.ergodic.var_fmpt (P)
```

Variances of first mean passage times for an ergodic transition probability matrix.

Parameters P (matrix) - (k, k), an ergodic Markov transition probability matrix.

Returns (k, k), elements are the variances for the number of intervals required for a chain starting in state i to first enter state j.

Return type matrix

Examples

Notes

Uses formulation (and examples on p. 83) in [Kemeny1967].

spatial_dynamics.interaction - Space-time interaction tests

New in version 1.1. Methods for identifying space-time interaction in spatio-temporal event data.

```
class pysal.spatial_dynamics.interaction.SpaceTimeEvents(path, time_col, in-
fer_timestamp=False)
```

Method for reformatting event data stored in a shapefile for use in calculating metrics of spatio-temporal interaction.

Parameters

• path (string) – the path to the appropriate shapefile, including the file name and extension

- time (string) column header in the DBF file indicating the column containing the time stamp.
- **infer_timestamp** (bool, optional) if the column containing the timestamp is formatted as calendar dates, try to coerce them into Python datetime objects (the default is False).

```
n int – number of events.
```

 \mathbf{x} array - (n, 1), array of the x coordinates for the events.

 \mathbf{y} array - (n, 1), array of the y coordinates for the events.

t array – (n, 1), array of the temporal coordinates for the events.

space

array - (n, 2), array of the spatial coordinates (x,y) for the events.

time

array - (n, 2), array of the temporal coordinates (t, 1) for the events, the second column is a vector of ones.

Examples

Read in the example shapefile data, ensuring to omit the file extension. In order to successfully create the event data the .dbf file associated with the shapefile should have a column of values that are a timestamp for the events. This timestamp may be a numerical value or a date. Date inference was added in version 1.6.

```
>>> path = pysal.examples.get_path("burkitt.shp")
```

Create an instance of SpaceTimeEvents from a shapefile, where the temporal information is stored in a column named "T".

```
>>> events = SpaceTimeEvents(path,'T')
```

See how many events are in the instance.

```
>>> events.n
188
```

Check the spatial coordinates of the first event.

```
>>> events.space[0]
array([ 300., 302.])
```

Check the time of the first event.

```
>>> events.t[0]
array([ 413.])
```

Calculate the time difference between the first two events.

```
>>> events.t[1] - events.t[0] array([ 59.])
```

New, in 1.6, date support:

Now, create an instance of SpaceTimeEvents from a shapefile, where the temporal information is stored in a column named "DATE".

```
>>> events = SpaceTimeEvents(path,'DATE')
```

See how many events are in the instance.

```
>>> events.n
188
```

Check the spatial coordinates of the first event.

```
>>> events.space[0]
array([ 300., 302.])
```

Check the time of the first event. Note that this value is equivalent to 413 days after January 1, 1900.

```
>>> events.t[0][0]
datetime.date(1901, 2, 16)
```

Calculate the time difference between the first two events.

```
>>> (events.t[1][0] - events.t[0][0]).days
59
```

Knox test for spatio-temporal interaction. [Knox1964]

Parameters

- **s_coords** (array) (n, 2), spatial coordinates.
- **t_coords** (array) (n, 1), temporal coordinates.
- **delta** (*float*) threshold for proximity in space.
- tau (float) threshold for proximity in time.
- **permutations** (*int*, *optional*) the number of permutations used to establish pseudo- significance (the default is 99).
- **debug** (bool, optional) if true, debugging information is printed (the default is False).

Returns

- **knox_result** (*dictionary*) contains the statistic (stat) for the test and the associated p-value (pvalue).
- stat (float) value of the knox test for the dataset.
- **pvalue** (*float*) pseudo p-value associated with the statistic.
- **counts** (*int*) count of space time neighbors.

```
>>> import numpy as np
>>> import pysal
```

Read in the example data and create an instance of SpaceTimeEvents.

```
>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')
```

Set the random seed generator. This is used by the permutation based inference to replicate the pseudo-significance of our example results - the end-user will normally omit this step.

```
>>> np.random.seed(100)
```

Run the Knox test with distance and time thresholds of 20 and 5, respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

```
>>> result = knox(events.space, events.t, delta=20, tau=5, permutations=99)
```

Next, we examine the results. First, we call the statistic from the results dictionary. This reports that there are 13 events close in both space and time, according to our threshold definitions.

```
>>> result['stat'] == 13
True
```

Next, we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. In this case, the results indicate there is likely no space-time interaction between the events.

```
>>> print("%2.2f"%result['pvalue'])
0.17
```

Standardized Mantel test for spatio-temporal interaction. [Mantel1967]

Parameters

- **s_coords** (array) (n, 2), spatial coordinates.
- t_coords (array) (n, 1), temporal coordinates.
- permutations (int, optional) the number of permutations used to establish pseudo- significance (the default is 99).
- scon (float, optional) constant added to spatial distances (the default is 1.0).
- **spow** (*float*, *optional*) value for power transformation for spatial distances (the default is -1.0).
- tcon (float, optional) constant added to temporal distances (the default is 1.0).
- **tpow** (*float*, *optional*) value for power transformation for temporal distances (the default is -1.0).

Returns

- mantel_result (dictionary) contains the statistic (stat) for the test and the associated p-value (pvalue).
- **stat** (*float*) value of the knox test for the dataset.

• **pvalue** (*float*) – pseudo p-value associated with the statistic.

Examples

```
>>> import numpy as np
>>> import pysal
```

Read in the example data and create an instance of SpaceTimeEvents.

```
>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')
```

Set the random seed generator. This is used by the permutation based inference to replicate the pseudo-significance of our example results - the end-user will normally omit this step.

```
>>> np.random.seed(100)
```

The standardized Mantel test is a measure of matrix correlation between the spatial and temporal distance matrices of the event dataset. The following example runs the standardized Mantel test without a constant or transformation; however, as recommended by Mantel (1967) [2], these should be added by the user. This can be done by adjusting the constant and power parameters.

Next, we examine the result of the test.

```
>>> print("%6.6f"%result['stat'])
0.048368
```

Finally, we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistic for each of the 99 permutations. According to these parameters, the results indicate space-time interaction between the events.

```
>>> print("%2.2f"%result['pvalue'])
0.01
```

pysal.spatial_dynamics.interaction.jacquez(s_coords, t_coords, k, permutations=99)

Jacquez k nearest neighbors test for spatio-temporal interaction. [Jacquez1996]

Parameters

- **s_coords** (array) (n, 2), spatial coordinates.
- **t_coords** (array) (n, 1), temporal coordinates.
- **k** (*int*) the number of nearest neighbors to be searched.
- **permutations** (*int*, *optional*) the number of permutations used to establish pseudo- significance (the default is 99).

Returns

- **jacquez_result** (*dictionary*) contains the statistic (stat) for the test and the associated p-value (pvalue).
- stat (float) value of the Jacquez k nearest neighbors test for the dataset.
- **pvalue** (*float*) p-value associated with the statistic (normally distributed with k-1 df).

```
>>> import numpy as np
>>> import pysal
```

Read in the example data and create an instance of SpaceTimeEvents.

```
>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path,'T')
```

The Jacquez test counts the number of events that are k nearest neighbors in both time and space. The following runs the Jacquez test on the example data and reports the resulting statistic. In this case, there are 13 instances where events are nearest neighbors in both space and time.

turning off as kdtree changes from scipy < 0.12 return 13 #>>> np.random.seed(100) #>>> result = jacquez(events.space, events.t,k=3,permutations=99) #>>> print result['stat'] #12

The significance of this can be assessed by calling the p- value from the results dictionary, as shown below. Again, no space-time interaction is observed.

#>>> result['pvalue'] < 0.01 #False

```
pysal.spatial_dynamics.interaction.modified_knox(s_coords, t_coords, delta, tau, permutations=99)
```

Baker's modified Knox test for spatio-temporal interaction. [Baker2004]

Parameters

- **s_coords** (array) (n, 2), spatial coordinates.
- **t_coords** (*array*) (n, 1), temporal coordinates.
- **delta** (float) threshold for proximity in space.
- tau (float) threshold for proximity in time.
- **permutations** (*int*, *optional*) the number of permutations used to establish pseudo- significance (the default is 99).

Returns

- modknox_result (dictionary) contains the statistic (stat) for the test and the associated p-value (pvalue).
- stat (float) value of the modified knox test for the dataset.
- **pvalue** (*float*) pseudo p-value associated with the statistic.

Examples

```
>>> import numpy as np
>>> import pysal
```

Read in the example data and create an instance of SpaceTimeEvents.

```
>>> path = pysal.examples.get_path("burkitt.shp")
>>> events = SpaceTimeEvents(path, 'T')
```

Set the random seed generator. This is used by the permutation based inference to replicate the pseudo-significance of our example results - the end-user will normally omit this step.

```
>>> np.random.seed(100)
```

Run the modified Knox test with distance and time thresholds of 20 and 5, respectively. This counts the events that are closer than 20 units in space, and 5 units in time.

Next, we examine the results. First, we call the statistic from the results dictionary. This reports the difference between the observed and expected Knox statistic.

```
>>> print("%2.8f" % result['stat'])
2.81016043
```

Next, we look at the pseudo-significance of this value, calculated by permuting the timestamps and rerunning the statistics. In this case, the results indicate there is likely no space-time interaction.

```
>>> print("%2.2f" % result['pvalue'])
0.11
```

spatial_dynamics.markov - Markov based methods

New in version 1.0.

class pysal.spatial_dynamics.markov.Markov(class_ids, classes=None)
 Classic Markov transition matrices.

Parameters

- **class_ids** (array) (n, t), one row per observation, one column recording the state of each observation, with as many columns as time periods.
- **classes** (array) (k, 1), all different classes (bins) of the matrix.

P

matrix – (k, k), transition probability matrix.

steady_state

matrix – (k, 1), ergodic distribution.

transitions

matrix – (k, k), count of transitions between each state i and j.

Examples

US nominal per capita income 48 states 81 years 1929-2009

```
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
```

set classes to quintiles for each year

```
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = Markov(q5)
>>> m.transitions
array([[ 729., 71.,
                      1.,
                            0.,
                                   0.],
      [ 72., 567.,
                    80.,
                            3.,
                                  0.],
        0., 81., 631.,
                          86.,
                                  2.1,
              3., 86., 573.,
0., 1., 57.,
                                 56.],
        0.,
                           57., 741.]])
        0.,
>>> m.p
matrix([[ 0.91011236, 0.0886392 , 0.00124844, 0.
       [ 0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.
                                                                  ],
       [ 0. , 0.10125 , 0.78875 , 0.1075 , 0.0025
                                                                 ],
                 , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
       ΓΟ.
       [ 0.
                  , 0. , 0.00125156, 0.07133917, 0.92740926]])
>>> m.steady_state
matrix([[ 0.20774716],
       [ 0.18725774],
       [ 0.20740537],
       [ 0.18821787],
       [ 0.20937187]])
```

Relative incomes

```
>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> rq = pysal.Quantiles(rpci.flatten()).yb
>>> rq.shape = (48,81)
>>> mq = Markov(rq)
>>> mq.transitions
                       7., 1., 0.],
array([[ 707., 58.,
                     80.,
      [ 50., 629.,
                             1.,
                                    1.],
         4., 79., 610.,
                            73.,
                                    2.],
               7., 72., 650.,
0., 0., 48.,
                                   37.],
      Γ
         0.,
                       0.,
                             48., 724.]])
         0.,
>>> mq.steady_state
matrix([[ 0.17957376],
       [ 0.21631443],
       [ 0.21499942],
       [ 0.21134662],
       [ 0.17776576]])
```

class pysal.spatial_dynamics.markov.LISA_Markov(y, w, permutations=0, significance_level=0.05, geoda_quads=False)

Markov for Local Indicators of Spatial Association

Parameters

- **y** (array) (n, t), n cross-sectional units observed over t time periods.
- w (W) spatial weights object.
- **permutations** (*int*, *optional*) number of permutations used to determine LISA significance (the default is 0).
- **significance_level** (*float*, *optional*) significance level (two-sided) for filtering significant LISA endpoints in a transition (the default is 0.05).
- **geoda_quads** (bool) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4. If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4. (the default is False).

chi_2

tuple – (3 elements) (chi square test statistic, p-value, degrees of freedom) for test that dynamics of y are independent of dynamics of wy.

classes

array - (4, 1) 1=HH, 2=LH, 3=LL, 4=HL (own, lag) 1=HH, 2=LL, 3=LH, 4=HL (own, lag) (if geoda_quads=True)

expected t

array – (4, 4), expected number of transitions under the null that dynamics of y are independent of dynamics of wy.

move_types

matrix – (n, t-1), integer values indicating which type of LISA transition occurred (q1 is quadrant in period 1, q2 is quadrant in period 2).

.. Table:: Move Types

q1	q2	move_type	
1	1	1	
1	2	2	
1		3	
1	4	4	
2	1	5	
2 2 2 2 3	2	6	
2	3	7	
2	4	8	
	1	9	
3	3	10	
3	3	11	
3	4	12	
4	1	13	
4	2	14	
4	3	15	
4	4	16	

р

matrix – (k, k), transition probability matrix.

p_values

matrix – (n, t), LISA p-values for each end point (if permutations > 0).

significant_moves

matrix – (n, t-1), integer values indicating the type and significance of a LISA transition. st = 1 if significant in period t, else st=0 (if permutations > 0).

.. Table:: Significant Moves

(s1,s2)	move_type
(1,1)	[1, 16]
(1,0)	[17, 32]
(0,1)	[33, 48]
(0,0)	[49, 64]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1	q1	q2	s1	s2	move_type
1 3 1 1 3 1 4 1 1 4 2 1 1 1 5 2 2 1 1 6 2 3 1 1 7 2 4 1 1 8 3 1 1 10 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 1 4 2 1 1 14 4 3 1 1 1 4 4 1 1 16 1 1 1 1 16 1 1 1 1 16 1 1 1 1 16 1 1 0 17 18 	1	l	1	1	1
1 4 1 1 4 2 1 1 1 5 2 2 1 1 6 2 3 1 1 7 2 4 1 1 8 3 1 1 1 9 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 1 4 2 1 1 14 4 3 1 1 16 1 1 1 1 16 1 1 1 1 16 1 1 1 1 16 1 1 1 1 16 1 1 1 0 18 <	1		1	1	
2 1 1 1 5 2 2 1 1 6 2 3 1 1 7 2 4 1 1 8 3 1 1 1 9 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 1 4 2 1 1 14 4 3 1 1 1 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 <t< td=""><td>1</td><td></td><td>1</td><td>1</td><td></td></t<>	1		1	1	
2 2 1 1 6 2 3 1 1 7 2 4 1 1 8 3 1 1 1 9 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 	1	4	1	1	4
2 3 1 1 7 2 4 1 1 8 3 1 1 10 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 	2	1			
2 4 1 1 8 3 1 1 1 9 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 1 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 		2	1	1	6
3 1 1 1 9 3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 	2	3			
3 2 1 1 10 3 3 1 1 11 3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 	2				1
3 3 1 1 11 3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 <	3		1	1	
3 4 1 1 12 4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 <t< td=""><td>3</td><td>2</td><td></td><td></td><td></td></t<>	3	2			
4 1 1 1 13 4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 4 3 1 0 31 4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 					
4 2 1 1 14 4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 4 3 1 0 31 4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 </td <td></td> <td>l</td> <td></td> <td>1</td> <td></td>		l		1	
4 3 1 1 15 4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 					13
4 4 1 1 16 1 1 1 0 17 1 2 1 0 18 				1	14
1 1 1 0 17 1 2 1 0 18 4 3 1 0 32 1 1 0 1 33 1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 					15
1 2 1 0 18 4 3 1 0 32 1 1 0 1 33 1 2 0 1 34 <td></td> <td></td> <td></td> <td>1</td> <td>16</td>				1	16
. 4 3 1 0 31 4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 <	1	1		0	
. 4 3 1 0 31 4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 <	1	2	1	0	18
4 3 1 0 31 4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63					
4 4 1 0 32 1 1 0 1 33 1 2 0 1 34 					
1 1 0 1 33 1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63	4		1	0	31
1 2 0 1 34 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63					
. 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63					
. 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63	1	2	0	1	34
. 4 3 0 1 47 4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63					•
4 4 0 1 48 1 1 0 0 49 1 2 0 0 50 4 3 0 0 63					•
1 1 0 0 49 1 2 0 0 50 4 3 0 0 63	1			1	
1 2 0 0 50 · · · · · · · · · · · · · · · · · · ·				1	
				1	
 4 3 0 0 63	1	2	0	0	50
 4 3 0 0 63					
4 3 0 0 63					
4 4 0 0 64	1	3	0	1	
	4	4	0	0	64

steady_state [matrix] (k, 1), ergodic distribution.

transitions [matrix] (4, 4), count of transitions between each state i and j.

spillover [array] (n, 1) binary array, locations that were not part of a cluster in period 1 but joined a prexisting cluster in period 2.

```
>>> import pysal as ps
>>> import numpy as np
>>> f = ps.open(ps.examples.get_path("usjoin.csv"))
>>> years = range(1929, 2010)
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
>>> w = ps.open(ps.examples.get_path("states48.gal")).read()
>>> lm = ps.LISA_Markov(pci,w)
>>> lm.classes
array([1, 2, 3, 4])
>>> lm.steady_state
matrix([[ 0.28561505],
       [ 0.14190226],
       [ 0.40493672],
       [ 0.16754598]])
>>> lm.transitions
array([[ 1.08700000e+03,
                           4.40000000e+01,
                                             4.00000000e+00,
         3.40000000e+01],
       [ 4.10000000e+01,
                           4.70000000e+02,
                                              3.60000000e+01,
         1.00000000e+00],
       [ 5.00000000e+00,
                           3.40000000e+01,
                                              1.42200000e+03,
         3.90000000e+011,
       [ 3.00000000e+01,
                           1.00000000e+00,
                                             4.00000000e+01,
         5.52000000e+0211)
>>> lm.p
matrix([[ 0.92985458, 0.03763901, 0.00342173, 0.02908469],
       [0.07481752, 0.85766423, 0.06569343, 0.00182482],
        [ 0.00333333, 0.02266667, 0.948
                                          , 0.026
                                                         1.
       [ 0.04815409, 0.00160514, 0.06420546, 0.88603531]])
>>> lm.move_types[0,:3]
array([11, 11, 11])
>>> lm.move_types[0,-3:]
array([11, 11, 11])
```

Now consider only moves with one, or both, of the LISA end points being significant

```
>>> np.random.seed(10)
>>> lm_random = pysal.LISA_Markov(pci, w, permutations=99)
>>> lm_random.significant_moves[0, :3]
array([11, 11, 11])
>>> lm_random.significant_moves[0, -3:]
array([59, 43, 27])
```

Any value less than 49 indicates at least one of the LISA end points was significant. So for example, the first spatial unit experienced a transition of type 11 (LL, LL) during the first three and last tree intervals (according to lm.move_types), however, the last three of these transitions involved insignificant LISAS in both the start and ending year of each transition.

Test whether the moves of y are independent of the moves of wy

```
>>> "Chi2: %8.3f, p: %5.2f, dof: %d" % lm.chi_2
'Chi2: 1058.208, p: 0.00, dof: 9'
```

Actual transitions of LISAs

```
>>> lm.transitions array([[ 1.08700000e+03, 4.40000000e+01, 4.00000000e+00,
```

Expected transitions of LISAs under the null y and wy are moving independently of one another

```
>>> lm.expected_t
array([[ 1.12328098e+03,
                            1.15377356e+01,
                                              3.47522158e-01,
          3.38337644e+011,
       [ 3.50272664e+00,
                            5.28473882e+02,
                                              1.59178880e+01,
         1.05503814e-011,
        1.53878082e-01,
                            2.32163556e+01,
                                              1.46690710e+03,
          9.72266513e+00],
        9.60775143e+00,
                            9.86856346e-02,
                                              6.23537392e+00,
          6.07058189e+02]])
```

If the LISA classes are to be defined according to GeoDa, the geoda_quad option has to be set to true

```
>>> lm.q[0:5,0]
array([3, 2, 3, 1, 4])
>>> lm = ps.LISA_Markov(pci,w, geoda_quads=True)
>>> lm.q[0:5,0]
array([2, 3, 2, 1, 4])
```

spillover (quadrant=1, neighbors_on=False)

Detect spillover locations for diffusion in LISA Markov.

Parameters

- quadrant (int) which quadrant in the scatterplot should form the core of a cluster.
- **neighbors_on** (binary) If false, then only the 1st order neighbors of a core location are included in the cluster. If true, neighbors of cluster core 1st order neighbors are included in the cluster.

Returns results – two keys - values pairs: 'components' - array (n, t) values are integer ids (starting at 1) indicating which component/cluster observation i in period t belonged to. 'spillover' - array (n, t-1) binary values indicating if the location was a spill-over location that became a new member of a previously existing cluster.

Return type dictionary

Examples

```
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> years = range(1929, 2010)
>>> pci = np.array([f.by_col[str(y)] for y in years]).transpose()
>>> w = pysal.open(pysal.examples.get_path("states48.gal")).read()
>>> np.random.seed(10)
>>> lm_random = pysal.LISA_Markov(pci, w, permutations=99)
>>> r = lm_random.spillover()
>>> r['components'][:,12]
array([ 0.,  0.,  0.,  2.,  0.,  1.,  1.,  0.,  0.,  2.,  0.,  0.,  0.,
```

```
0.,
                         0.,
                               1.,
                                    1.,
                                          0.,
                                                0.,
                                                     0.,
                                                           0.,
                   0.,
                         1.,
                               0.,
                                     0.,
                                          1.,
                                                0.,
                                                           1.,
                                                                 1.,
        1.,
             1.,
                                                     2.,
                                                                      0.,
                                                                            0.,
                         1.,
        0.,
                                    2.,
             0.,
                   0.,
                               0.,
                                          1.,
                                                0.,
                                                     0.1)
>>> r['components'][:,14]
array([ 0., 2., 0.,
                        2.,
                               0.,
                                          1.,
                                                     0.,
                                                           2.,
                                                0.,
                                                                            0.,
                                    1.,
                                                                 0.,
                                                                      0..
                         0.,
              0.,
                   0.,
                               1.,
                                          0.,
                                                0.,
                                                     0.,
                                                          0.,
                                                                 0.,
                                                                      0.,
                                                                            2.,
                                    1.,
        0.,
                   0.,
                         1.,
                               0.,
                                    0.,
                                          1.,
                                                0.,
                                                           1.,
        0.,
              1.,
                                                      2.,
                                                                 1.,
              0.,
                   0.,
                         1.,
                               0.,
                                     2.,
                                          1.,
                                                0.,
                                                      0.])
        0.,
>>> r['spill_over'][:,12]
array([ 0., 1.,
                   0.,
                         0.,
                               1.,
                                     0.,
                                          0.,
                                                0.,
                                                     0.,
                                                           0.,
                                                                 0., 0.,
        0.,
                   0.,
                         0.,
                               0.,
                                    0.,
                                          0.,
                                                0.,
                                                     0.,
                                                                            0.,
                                                           0.,
                                                                      0.,
              0.,
                                                                 1.,
                               0.,
                                          0.,
                                                0.,
                                                           0.,
                                                                 0.,
              0.,
                         0.,
        0.,
                   1.,
                                     0.,
                                                     0.,
                                                                      0.,
        0.,
              0.,
                    1.,
                         0.,
                               0.,
                                     0.,
                                          0.,
                                                0.,
                                                      1.])
```

Including neighbors of core neighbors

```
>>> rn = lm_random.spillover(neighbors_on=True)
>>> rn['components'][:,12]
array([ 0., 2., 0.,
                             0.,
                                   1.,
                                        1.,
                                             0., 0.,
                                                        2.,
                                                             0.,
                       1.,
                                        1.,
                             1., 1.,
                                             0., 0.,
                                                        0.,
                                                             2.,
        0.,
             1.,
                  0.,
                                                                  0.,
                                                                        2.,
                  0.,
                       1.,
                            0., 0.,
                                        1.,
                                             0., 2.,
                                                        1.,
                                                             1.,
        1., 1.,
                                                                  0.,
                                                                        0.,
        0.,
                        1.,
             0.,
                  2.,
                             1.,
                                   2.,
                                        1.,
                                             0.,
                                                  2.1)
>>> rn["components"][:,13]
array([ 0., 2., 0.,
                       2.,
                             2.,
                                             0.,
                                                   0.,
                                                        2.,
                                   1.,
                                        1.,
                                                             0.,
        2.,
             1.,
                  0.,
                        1.,
                             1.,
                                  1.,
                                        1.,
                                             0.,
                                                  0.,
                                                        0.,
                                                             2.,
        1.,
             1.,
                  2.,
                       1.,
                             0.,
                                   2.,
                                        1.,
                                             2.,
                                                   2.,
                                                        1.,
                                                             1.,
                                        1.,
                       1.,
        0.,
             2.,
                  2.,
                             1.,
                                   2.,
                                             0.,
                                                  2.1)
>>> rn["spill_over"][:,12]
                       0.,
                                                       0.,
                                                                 0.,
                                                                        0.,
                                        0.,
                                             0.,
                                                  0.,
                                                            0.,
array([ 0., 0., 0.,
                             1.,
                                  0.,
                       0.,
                                        0.,
                                             0.,
                                                       0.,
                  0.,
                             0.,
                                                                        0.,
        1., 0.,
                                  0.,
                                                  0.,
                                                            0., 1.,
                                        0.,
                                                        0.,
                        0.,
                             0.,
        0., 0.,
                  1.,
                                  1.,
                                             1.,
                                                  0.,
                                                             0.,
                                                                  0.,
        0.,
            1.,
                  0.,
                        0.,
                             0.,
                                   0.,
                                        0.,
                                             0.,
                                                   0.1)
```

 $\textbf{class} \ \texttt{pysal.spatial_dynamics.markov.Spatial_Markov} (y, \quad w, \quad k = 4, \quad \textit{permutations} = 0, \\ \textit{fixed=False, variable_name} = None)$

Markov transitions conditioned on the value of the spatial lag.

- **y** (array) (n,t), one row per observation, one column per state of each observation, with as many columns as time periods.
- w (₩) spatial weights object.
- **k** (integer) number of classes (quantiles).
- **permutations** (*int*, *optional*) number of permutations for use in randomization based inference (the default is 0).
- **fixed** (bool) If true, quantiles are taken over the entire n*t pooled series. If false, quantiles are taken each time period over n.
- variable_name (string) name of variable.
- \mathbf{p} $matrix (\mathbf{k}, \mathbf{k})$, transition probability matrix for a-spatial Markov.
- \mathbf{s} matrix (k, 1), ergodic distribution for a-spatial Markov.

transitions

matrix – (k, k), counts of transitions between each state i and j for a-spatial Markov.

т

matrix - (k, k, k), counts of transitions for each conditional Markov. T[0] is the matrix of transitions for observations with lags in the 0th quantile; T[k-1] is the transitions for the observations with lags in the k-1th.

Р

matrix – (k, k, k), transition probability matrix for spatial Markov first dimension is the conditioned on the lag.

s

matrix – (k, k), steady state distributions for spatial Markov. Each row is a conditional steady_state.

F

matrix – (k, k, k), first mean passage times. First dimension is conditioned on the lag.

shtest

list – (k elements), each element of the list is a tuple for a multinomial difference test between the steady state distribution from a conditional distribution versus the overall steady state distribution: first element of the tuple is the chi2 value, second its p-value and the third the degrees of freedom.

chi2

list – (k elements), each element of the list is a tuple for a chi-squared test of the difference between the conditional transition matrix against the overall transition matrix: first element of the tuple is the chi2 value, second its p-value and the third the degrees of freedom.

x2

float – sum of the chi2 values for each of the conditional tests. Has an asymptotic chi2 distribution with k(k-1)(k-1) degrees of freedom. Under the null that transition probabilities are spatially homogeneous. (see chi2 above)

x2 dof

int – degrees of freedom for homogeneity test.

x2_pvalue

float – pvalue for homogeneity test based on analytic. distribution

x2_rpvalue

float – (if permutations>0) pseudo p-value for x2 based on random spatial permutations of the rows of the original transitions.

x2 realizations

array – (permutations,1), the values of x2 for the random permutations.

Q

float – Chi-square test of homogeneity across lag classes based on Bickenbach and Bode (2003) [Bickenbach2003].

Q_p_value

float – p-value for Q.

LR

float – Likelihood ratio statistic for homogeneity across lag classes based on Bickenback and Bode (2003) [Bickenbach2003].

LR_p_value

float – p-value for LR.

dof hom

int – degrees of freedom for LR and Q, corrected for 0 cells.

Notes

Based on Rey (2001) [Rey2001].

The shtest and chi2 tests should be used with caution as they are based on classic theory assuming random transitions. The x2 based test is preferable since it simulates the randomness under the null. It is an experimental test requiring further analysis.

This is new

Examples

```
>>> import pysal as ps
>>> f = ps.open(ps.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> pci = pci.transpose()
>>> rpci = pci/(pci.mean(axis=0))
>>> w = ps.open(ps.examples.get_path("states48.gal")).read()
>>> w.transform = 'r'
>>> sm = ps.Spatial_Markov(rpci, w, fixed=True, k=5, variable_name='rpci')
>>> for p in sm.P:
     print(p)
[[ 0.96341463  0.0304878  0.00609756  0.
                                   0.
                                          1
[ 0.06040268  0.83221477  0.10738255  0.
                                   0.
                                  0.
[ 0. 0.14 0.74 0.12
         0.03571429 0.32142857 0.57142857 0.07142857]
[ 0.
     0. 0.16666667 0.833333333]]
ΓΟ.
0.
                                         1
0.
                                          1
[ 0.00537634  0.06989247  0.8655914  0.05913978  0.
         0.005.

0. 0.005.25

0. 0.053.25
                 0.06372549 0.90196078 0.034313731
[ 0.
     0.
                          0.19444444 0.8055555611
[ 0.
[[ 0.84693878  0.15306122  0.
                          0.
                                   0.
[ 0.08133971  0.78947368  0.1291866  0.
                                   0.
0. 0.09411765 0.87058824 0.03529412]
0. 0.10204082 0.897959181
[ 0.
[ 0.03875969  0.81395349  0.13953488  0.
                                   0.00775194]
0.02339181 0.12865497 0.75438596 0.09356725]
[ 0.
                 0. 0.09661836 0.90338164]]
[ 0.
         0.
0.
                                   0.
                                          1
]
[ 0.
          0.01036269 0.06217617 0.89637306 0.031088081
[ 0.
                          0.02352941 0.97647059]]
```

The probability of a poor state remaining poor is 0.963 if their neighbors are in the 1st quintile and 0.798 if their neighbors are in the 2nd quintile. The probability of a rich economy remaining rich is 0.976 if their neighbors are in the 5th quintile, but if their neighbors are in the 4th quintile this drops to 0.903.

The Q and likelihood ratio statistics are both significant indicating the dynamics are not homogeneous across the lag classes:

```
>>> "%.3f"%sm.LR
'170.659'
>>> "%.3f"%sm.Q
'200.624'
>>> "%.3f"%sm.LR_p_value
'0.000'
>>> "%.3f"%sm.Q_p_value
'0.000'
>>> sm.dof_hom
60
```

The long run distribution for states with poor (rich) neighbors has 0.435 (0.018) of the values in the first quintile, 0.263 (0.200) in the second quintile, 0.204 (0.190) in the third, 0.0684 (0.255) in the fourth and 0.029 (0.337) in the fifth quintile.

```
>>> sm.S
array([[ 0.43509425,  0.2635327 ,  0.20363044,  0.06841983,  0.02932278],
        [ 0.13391287,  0.33993305,  0.25153036,  0.23343016,  0.04119356],
        [ 0.12124869,  0.21137444,  0.2635101 ,  0.29013417,  0.1137326 ],
        [ 0.0776413 ,  0.19748806,  0.25352636,  0.22480415,  0.24654013],
        [ 0.01776781,  0.19964349,  0.19009833,  0.25524697,  0.3372434 ]])
```

States with incomes in the first quintile with neighbors in the first quintile return to the first quartile after 2.298 years, after leaving the first quintile. They enter the fourth quintile after 80.810 years after leaving the first quintile, on average. Poor states within neighbors in the fourth quintile return to the first quintile, on average, after 12.88 years, and would enter the fourth quintile after 28.473 years.

```
>>> for f in sm.F:
     print(f)
. . .
   2.29835259
            28.95614035 46.14285714
                                 80.80952381 279.42857143]
33.86549708 3.79459555 22.57142857 57.23809524 255.85714286]
ſ
 43.60233918
             9.73684211 4.91085714 34.66666667 233.28571429]
  46.62865497 12.76315789 6.25714286 14.61564626 198.61904762]
  52.62865497 18.76315789 12.25714286 6.
                                           34.1031746 ]]
  7.46754205 9.70574606 25.76785714 74.53116883 194.23446197]
] ]
  27.76691978
             2.94175577 24.97142857 73.73474026 193.4380334 ]
Γ
  53.57477715 28.48447637
                       3.97566318 48.76331169 168.466604821
           46.94601483 18.46153846 4.28393653 119.70329314]
  72.03631562
           52.08887197 23.6043956
                                  5.14285714
  77.17917276
                                           24.27564033]]
             6.53333333 18.38765432 40.70864198 112.76732026]
   8.24751154
  47.35040872
             4.73094099
                      11.85432099 34.17530864 106.23398693]
                       3.794921
                                 22.32098765
  69.42288828
            24.76666667
                                            94.379665941
  83.72288828 39.06666667
                      14.3
                                 3.44668119 76.36702977]
  93.52288828 48.86666667 24.1
                                  9.8
                                            8.7925540611
[ 99.46114206 5.06359731 10.54545198 23.05133495 49.68944423]
4.05613474]]
[[ 56.2815534
             1.5
                      10.57236842 27.02173913 110.54347826]
  82.9223301
             5.00892857 9.07236842 25.52173913 109.04347826]
  97.17718447 19.53125
                       5.26043557 21.42391304 104.94565217]
[ 127.1407767
                                 3.91777427
            48.74107143 33.29605263
                                           83.52173913]
[ 169.6407767
            91.24107143 75.79605263
                                 42.5
                                            2.96521739]]
```

pysal.spatial_dynamics.markov.kullback(F)
Kullback information based test of Markov Homogeneity.

Parameters F (array) – (s, r, r), values are transitions (not probabilities) for s strata, r initial states, r terminal states.

Returns

```
Results – (key - value)
```

Conditional homogeneity - (float) test statistic for homogeneity of transition probabilities across strata.

Conditional homogeneity pvalue - (float) p-value for test statistic.

Conditional homogeneity dof - (int) degrees of freedom = r(s-1)(r-1).

Return type dictionary

Notes

Based on Kullback, Kupperman and Ku (1962) [Kullback1962]. Example below is taken from Table 9.2.

Examples

```
>>> s1 = np.array([
            [ 22, 11, 24, 2, 2,
                                    71,
            [ 5, 23, 15, 3, 42, 6],
            [ 4, 21, 190, 25, 20, 34],
            [0, 2, 14, 56, 14, 28],
            [32, 15, 20, 10, 56, 14],
. . .
            [5, 22, 31, 18, 13, 134]
. . .
       1)
. . .
>>> s2 = np.array([
        [3, 6, 9, 3, 0, 8],
        [1, 9, 3, 12, 27, 5],
        [2, 9, 208, 32, 5, 18],
. . .
        [0, 14, 32, 108, 40, 40],
. . .
        [22, 14, 9, 26, 224, 14],
. . .
        [1, 5, 13, 53, 13, 116]
. . .
        1)
. . .
>>>
>>> F = np.array([s1, s2])
>>> res = kullback(F)
>>> "%8.3f"%res['Conditional homogeneity']
' 160.961'
>>> "%d"%res['Conditional homogeneity dof']
>>> "%3.1f"%res['Conditional homogeneity pvalue']
0.0'
```

pysal.spatial_dynamics.markov.prais(pmat)

Prais conditional mobility measure.

Parameters pmat (matrix) - (k, k), Markov probability transition matrix.

Returns pr - (1, k), conditional mobility measures for each of the k classes.

Return type matrix

Notes

Prais' conditional mobility measure for a class is defined as:

$$pr_i = 1 - p_{i,i}$$

Examples

```
>>> import numpy as np
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = pysal.Markov(q5)
>>> m.transitions
                      1.,
array([[ 729., 71.,
                            0.,
                                   0.],
      [ 72., 567., 80.,
                            3.,
                                 0.],
         0., 81., 631.,
                          86.,
                                  2.],
             3., 86., 573.,
        0.,
        0.,
              0., 1., 57., 741.]])
>>> m.p
matrix([[ 0.91011236, 0.0886392 , 0.00124844, 0.
                                                                  ],
       [ 0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.
                                                                  ],
       [ 0. , 0.10125 , 0.78875 , 0.1075 , 0.0025
                                                                  ],
                , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
       [ 0.
                 , 0. , 0.00125156, 0.07133917, 0.92740926]])
       [ 0.
>>> pysal.spatial_dynamics.markov.prais(m.p)
matrix([[ 0.08988764, 0.21468144, 0.21125
                                         , 0.20194986, 0.07259074]])
```

pysal.spatial_dynamics.markov.shorrock(pmat)

Shorrock's mobility measure.

Parameters pmat (matrix) - (k, k), Markov probability transition matrix.

Returns sh – Shorrock mobility measure.

Return type float

Notes

Shorock's mobility measure is defined as

$$sh = (k - \sum_{j=1}^{k} p_{j,j})/(k-1)$$

Examples

```
>>> import numpy as np
>>> import pysal
>>> f = pysal.open(pysal.examples.get_path("usjoin.csv"))
>>> pci = np.array([f.by_col[str(y)] for y in range(1929,2010)])
>>> q5 = np.array([pysal.Quantiles(y).yb for y in pci]).transpose()
>>> m = pysal.Markov(q5)
```

```
>>> m.transitions
                          0.,
array([[ 729.,
              71.,
                     1.,
                                   0.],
      72.,
                                   0.],
             567.,
                     80.,
                           3.,
         0., 81., 631.,
                           86.,
             3., 86.,
         0.,
                          573.,
                                 56.1,
               0.,
                      1.,
                           57.,
         0.,
                                741.]])
>>> m.p
matrix([[ 0.91011236, 0.0886392 , 0.00124844, 0.
                                                                 ],
       [ 0.09972299, 0.78531856, 0.11080332, 0.00415512, 0.
                                                                 ],
       [ 0.
               , 0.10125 , 0.78875 , 0.1075 , 0.0025
            , 0.00417827, 0.11977716, 0.79805014, 0.07799443],
       [ 0.
                 , 0. , 0.00125156, 0.07133917, 0.92740926]])
       [ 0.
>>> pysal.spatial_dynamics.markov.shorrock(m.p)
0.19758992000997844
```

Test for homogeneity of Markov transition probabilities across regimes.

Parameters

- **transition_matrices** (*list*) of transition matrices for regimes, all matrices must have same size (r, c). r is the number of rows in the transition matrix and c is the number of columns in the transition matrix.
- regime_names (sequence) Labels for the regimes.
- class_names (sequence) Labels for the classes/states of the Markov chain.
- **title** (*string*) name of test.

Returns an instance of Homogeneity_Results.

Return type implicit

spatial_dynamics.rank - Rank and spatial rank mobility measures

New in version 1.0. Rank and spatial rank mobility measures.

```
class pysal.spatial_dynamics.rank.SpatialTau (x, y, w, permutations=0) Spatial version of Kendall's rank correlation statistic.
```

Kendall's Tau is based on a comparison of the number of pairs of n observations that have concordant ranks between two variables. The spatial Tau decomposes these pairs into those that are spatial neighbors and those that are not, and examines whether the rank correlation is different between the two sets relative to what would be expected under spatial randomness.

Parameters

- \mathbf{x} (array) (n,), first variable.
- **y** (array) (n,), second variable.
- w (₩) spatial weights object.
- **permutations** (*int*) number of random spatial permutations for computationally based inference.

tau

float – The classic Tau statistic.

tau spatial

float – Value of Tau for pairs that are spatial neighbors.

taus

array – (permtuations, 1), values of simulated tau_spatial values under random spatial permutations in both periods. (Same permutation used for start and ending period).

pairs_spatial

int – Number of spatial pairs.

concordant

float – Number of concordant pairs.

concordant_spatial

float – Number of concordant pairs that are spatial neighbors.

extraX

float – Number of extra X pairs.

extraY

float – Number of extra Y pairs.

discordant

float – Number of discordant pairs.

discordant spatial

float – Number of discordant pairs that are spatial neighbors.

taus

float – spatial tau values for permuted samples (if permutations>0).

tau_spatial_psim

float – pseudo p-value for observed tau_spatial under the null of spatial randomness (if permutations>0).

Notes

Algorithm has two stages. The first calculates classic Tau using a list based implementation of the algorithm from Christensen (2005) [Christensen2005]. Second stage calculates concordance measures for neighboring pairs of locations using a modification of the algorithm from Press et al (2007) [Press2007]. See Rey (2014) [Rey2014] for details.

Examples

```
>>> import pysal
>>> import numpy as np
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regime=np.array(f.by_col['esquive199'])
>>> w=pysal.weights.block_weights(regime)
>>> np.random.seed(12345)
>>> res=[pysal.SpatialTau(y[:,i],y[:,i+1],w,99) for i in range(6)]
>>> for r in res:
        ev = r.taus.mean()
        "%8.3f %8.3f %8.3f"%(r.tau_spatial, ev, r.tau_spatial_psim)
. . .
    0.397
             0.659
                      0.010'
    0.492
             0.706
                      0.010'
```

```
' 0.651 0.772 0.020'
' 0.714 0.752 0.210'
' 0.683 0.705 0.270'
' 0.810 0.819 0.280'
```

```
class pysal.spatial_dynamics.rank.Tau (x, y)
```

Kendall's Tau is based on a comparison of the number of pairs of n observations that have concordant ranks between two variables.

Parameters

- \mathbf{x} (array) (n,), first variable.
- **y** (array) (n,), second variable.

tau

float – The classic Tau statistic.

tau p

float – asymptotic p-value.

Notes

Modification of algorithm suggested by Christensen (2005). [Christensen2005] PySAL implementation uses a list based representation of a binary tree for the accumulation of the concordance measures. Ties are handled by this implementation (in other words, if there are ties in either x, or y, or both, the calculation returns Tau_b, if no ties classic Tau is returned.)

Examples

from scipy example

```
>>> from scipy.stats import kendalltau
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> kt = Tau(x1,x2)
>>> kt.tau
-0.47140452079103173
>>> kt.tau_p
0.24821309157521476
>>> skt = kendalltau(x1,x2)
>>> skt
(-0.47140452079103173, 0.24821309157521476)
```

```
class pysal.spatial_dynamics.rank.Theta(y, regime, permutations=999)
   Regime mobility measure. [Rey2004a]
```

For sequence of time periods Theta measures the extent to which rank changes for a variable measured over n locations are in the same direction within mutually exclusive and exhaustive partitions (regimes) of the n locations.

Theta is defined as the sum of the absolute sum of rank changes within the regimes over the sum of all absolute rank changes.

- y (array) (n, k) with k>=2, successive columns of y are later moments in time (years, months, etc).
- **regime** (array) (n,), values corresponding to which regime each observation belongs to.
- **permutations** (*int*) number of random spatial permutations to generate for computationally based inference.

ranks

array – ranks of the original y array (by columns).

regimes

array – the original regimes array.

total

array – (k-1,), the total number of rank changes for each of the k periods.

max_total

int – the theoretical maximum number of rank changes for n observations.

theta

array - (k-1,), the theta statistic for each of the k-1 intervals.

permutations

int – the number of permutations.

pvalue_left

float – p-value for test that observed theta is significantly lower than its expectation under complete spatial randomness.

pvalue_right

float – p-value for test that observed theta is significantly greater than its expectation under complete spatial randomness.

Examples

```
>>> import pysal
>>> f=pysal.open(pysal.examples.get_path("mexico.csv"))
>>> vnames=["pcgdp%d"%dec for dec in range(1940,2010,10)]
>>> y=np.transpose(np.array([f.by_col[v] for v in vnames]))
>>> regime=np.array(f.by_col['esquive199'])
>>> np.random.seed(10)
>>> t=Theta(y,regime,999)
>>> t.theta
array([[ 0.41538462, 0.28070175, 0.61363636, 0.62222222, 0.333333333,
        0.47222222]])
>>> t.pvalue_left
array([ 0.307, 0.077, 0.823, 0.552, 0.045, 0.735])
>>> t.total
array([ 130., 114., 88., 90., 90.,
                                         72.1)
>>> t.max_total
512
```

pysal.spreg — Regression and Diagnostics

spreg.ols — Ordinary Least Squares

The spreg.ols module provides OLS regression estimation.

New in version 1.1. Ordinary Least Squares regression classes.

```
class pysal.spreg.ols.OLS (y, x, w=None, robust=None, gwk=None, sig2n_k=True, non-spat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name\_y=None, name\_x=None, name\_w=None, name\_gwk=None, name\_ds=None)
```

Ordinary least squares with results and diagnostics.

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w (pysal W object) Spatial weights object (required if running spatial diagnostics)
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- **gwk** (*pysal W object*) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.
- nonspat_diag (boolean) If True, then compute non-spatial diagnostics on the regression.
- **spat_diag** (boolean) If True, then compute Lagrange multiplier tests (requires w). Note: see moran for further tests.
- moran (boolean) If True, compute Moran's I on the residuals. Note: requires spat_diag=True.
- white_test (boolean) If True, compute White's specification robust test. (requires nonspat_diag=True)
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_gwk (string) Name of kernel weights matrix for use in output
- name_ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

 \mathbf{u} array – nx1 array of residuals

predy

array – nx1 array of predicted y values

```
n
     integer – Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
robust
     string - Adjustment for robust standard errors
mean_y
     float – Mean of dependent variable
std_y
     float – Standard deviation of dependent variable
vm
     array - Variance covariance matrix (kxk)
r2
     float - R squared
ar2
     float – Adjusted R squared
utu
     float - Sum of squared residuals
siq2
     float – Sigma squared used in computations
sig2ML
     float – Sigma squared (maximum likelihood)
     tuple - Statistic (float), p-value (float)
logll
     float - Log likelihood
aic
     float – Akaike information criterion
schwarz
     float - Schwarz information criterion
     array - 1xk array of standard errors of the betas
t stat
     list of tuples – t statistic; each tuple contains the pair (statistic, p-value), where each is a float
mulColli
     float - Multicollinearity condition number
jarque bera
     dictionary - 'jb': Jarque-Bera statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)
```

breusch pagan

dictionary - 'bp': Breusch-Pagan statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)

koenker bassett

dictionary - 'kb': Koenker-Bassett statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)

white

dictionary - 'wh': White statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)

lm error

tuple – Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float

lm_lag

tuple - Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float

rlm_error

tuple – Robust lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float

rlm_lag

tuple – Robust lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float

lm sarma

tuple - Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float

moran res

tuple – Moran's I for the residuals; tuple containing the triple (Moran's I, standardized Moran's I, p-value)

name_y

string – Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name_w

string – Name of weights matrix for use in output

name_gwk

string – Name of kernel weights matrix for use in output

name_ds

string - Name of dataset for use in output

title

string – Name of the regression method used

sig2n

float – Sigma squared (computed with n in the denominator)

sig2n_k

float – Sigma squared (computed with n-k in the denominator)

xtx

float – X'X

xtxi

 $float - (X'X)^{-1}$

Examples

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; also, the actual OLS class requires data to be passed in as numpy arrays so the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an nx1 numpy array.

```
>>> hoval = db.by_col("HOVAL")
>>> y = np.array(hoval)
>>> y.shape = (len(hoval), 1)
```

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). pysal.spreg.OLS adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

The minimum parameters needed to run an ordinary least squares regression are the two numpy arrays containing the independent variable and dependent variables respectively. To make the printed results more meaningful, the user can pass in explicit names for the variables used; this is optional.

pysal.spreg.OLS computes the regression coefficients and their standard errors, t-stats and p-values. It also computes a large battery of diagnostics on the regression. In this example we compute the white test which by default isn't ('white_test=True'). All of these results can be independently accessed as attributes of the regression object created by running pysal.spreg.OLS. They can also be accessed at one time by printing the summary attribute of the regression object. In the example below, the parameter on crime is -0.4849, with a t-statistic of -2.6544 and p-value of 0.01087.

Or we can easily obtain a full summary of all the results nicely formatted and ready to be printed:

	INARY LEAST SQUARES				
		-			
Data set : Dependent Variable :		Number of Observation		s:	r
→49 Mean dependent var :	38.4362	Number of Variables		:	
→ 3 G.D. dependent var :	18.4661	Degrees of Freedom		:	
⊶46 R-squared :	0.3495				
Adjusted R-squared :	0.3212				
Sum squared residual: →3582		F-statistic		:	12.
Sigma-square : →05	231.457	Prob(F-statistic)		:	5.064e
S.E. of regression :	15.214	Log likelihood		:	-201.
Sigma-square ML : →735	217.286	Akaike info criterion		:	408.
S.E of regression ML:	14.7406	Schwar	z criterion	:	414.
					
Variable ⊶Probability	Coefficient	Std.Error	t-Statistic	u	
CONSTANT →0009867	46.4281827				
crime →0108745					
income →2465669	0.6289840	0.5359104	1.1736736		0.
REGRESSION DIAGNOSTICS					
MULTICOLLINEARITY COND	ITION NUMBER	12.538			
CEST ON NORMALITY OF E	RRORS DF	VALUE	PROB		
Jarque-Bera	2	39.706	0.0000		
DIAGNOSTICS FOR HETERORANDOM COEFFICIENTS	SKEDASTICITY				
EST	DF	VALUE	PROB		
Breusch-Pagan test	2	5.767	0.0559		
Koenker-Bassett test	2	2.270	0.3214		
SPECIFICATION ROBUST T	EST	777 7 1112	PROB		
EST Nhite	DF. 5	VALUE 2.906	0.7145		

If the optional parameters w and spat_diag are passed to pysal.spreg.OLS, spatial diagnostics will also be computed for the regression. These include Lagrange multiplier tests and Moran's I of the residuals. The w parameter is a PySAL spatial weights matrix. In this example, w is built directly from the shapefile columbus.shp, but w can also be read in from a GAL or GWT file. In this case a rook contiguity weights matrix is built, but PySAL also offers queen contiguity, distance weights and k nearest neighbor weights among others. In the example, the Moran's I of the residuals is 0.204 with a standardized value of 2.592 and a p-value of 0.0095.

spreg.ols_regimes — Ordinary Least Squares with Regimes

The spreq.ols_regimes module provides OLS with regimes regression estimation.

New in version 1.5. Ordinary Least Squares regression with regimes.

```
class pysal.spreq.ols_regimes.OLS_Regimes (y,
                                                           regimes,
                                                                      w=None,
                                                                                 robust=None,
                                                 gwk=None, sig2n_k=True, nonspat_diag=True,
                                                  spat_diag=False, moran=False, white_test=False,
                                                  vm=False,
                                                                         constant_regi='many',
                                                  cols2regi='all',
                                                                          regime_err_sep=True,
                                                 cores=False,
                                                                               name x=None,
                                                              name_y=None,
                                                 name regimes=None,
                                                                               name w=None,
                                                 name_gwk=None, name_ds=None)
```

Ordinary least squares with results and diagnostics.

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object (required if running spatial diagnostics)
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- gwk (pysal W object) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.

- nonspat_diag (boolean) If True, then compute non-spatial diagnostics on the regression.
- **spat_diag** (boolean) If True, then compute Lagrange multiplier tests (requires w). Note: see moran for further tests.
- moran (boolean) If True, compute Moran's I on the residuals. Note: requires spat_diag=True.
- white_test (boolean) If True, compute White's specification robust test. (requires nonspat_diag=True)
- vm (boolean) If True, include variance-covariance matrix in summary results
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- **cores** (*boolean*) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_gwk (string) Name of kernel weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array – nx1 array of residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array - nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

robust

string – Adjustment for robust standard errors Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array – Variance covariance matrix (kxk)

r2

float – R squared Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

ar2

float – Adjusted R squared Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

utu

float - Sum of squared residuals

siq2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2ML

float – Sigma squared (maximum likelihood) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

f stat

tuple – Statistic (float), p-value (float) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

logl

float – Log likelihood Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

aic

float – Akaike information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

schwarz

float – Schwarz information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

t_stat

list of tuples – t statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mulColli

float – Multicollinearity condition number Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

jarque_bera

dictionary – 'jb': Jarque-Bera statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

breusch_pagan

dictionary – 'bp': Breusch-Pagan statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

koenker_bassett

dictionary – 'kb': Koenker-Bassett statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

white

dictionary – 'wh': White statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

1m error

tuple - Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float

Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

lm_lag

tuple – Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float

Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

rlm_error

tuple – **Robust lagrange multiplier test for spatial error model;** tuple contains the pair (statistic, p-value), where each is a float

Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

rlm_lag

tuple – **Robust lagrange multiplier test for spatial lag model;** tuple contains the pair (statistic, p-value), where each is a float

Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

lm sarma

tuple – Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float

Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

moran_res

tuple – Moran's I for the residuals; tuple containing the triple (Moran's I, standardized Moran's I, p-value)

name y

string - Name of dependent variable for use in output

name_x

list of strings - Names of independent variables for use in output

name w

string – Name of weights matrix for use in output

name_gwk

string - Name of kernel weights matrix for use in output

name_ds

string – Name of dataset for use in output

name regimes

string - Name of regime variable for use in the output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2n

float – Sigma squared (computed with n in the denominator)

sig2n_k

float – Sigma squared (computed with n-k in the denominator)

xtx

float – X'X Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

xtxi

 $float - (X'X)^{-1}$ Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

•'one': a vector of ones is appended to x and held constant across regimes

•'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean – If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int - Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = db.by_col(y_var)
>>> y = np.array(y).reshape(len(y), 1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

We can now run the regression and then have a summary of the output by typing: olsr.summary Alternatively, we can just check the betas and standard errors of the parameters:

spreg.probit — Probit

The spreg.probit module provides probit regression estimation.

New in version 1.4. Probit regression class and diagnostics.

Classic non-spatial Probit and spatial diagnostics. The class includes a printout that formats all the results and tests in a nice format.

The diagnostics for spatial dependence currently implemented are:

- •Pinkse Error [Pinkse2004]
- •Kelejian and Prucha Moran's I [Kelejian2001]
- •Pinkse & Slade Error [Pinkse1998]

Parameters

- **x** (array) nxk array of independent variables (assumed to be aligned with y)
- **y** (array) nx1 array of dependent binary variable
- w (W) PySAL weights instance aligned with y
- **optim** (*string*) Optimization method. Default: 'newton' (Newton-Raphson). Alternatives: 'ncg' (Newton-CG), 'bfgs' (BFGS algorithm)
- **scalem** (*string*) Method to calculate the scale of the marginal effects. Default: 'phimean' (Mean of individual marginal effects) Alternative: 'xmean' (Marginal effects at variables mean)
- maxiter (int) Maximum number of iterations until optimizer stops
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

x $array - \text{Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant$

Yarray – nx1 array of dependent variable

betas

array - kx1 array with estimated coefficients

predy

array – nx1 array of predicted y values

n

int – Number of observations

k

int – Number of variables

vm

array – Variance-covariance matrix (kxk)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float

xmean array – Mean of the independent variables (kx1) predpc float - Percent of y correctly predicted loal float – Log-Likelihhod of the estimation string – Method to calculate the scale of the marginal effects. scale *float* – Scale of the marginal effects. slopes array – Marginal effects of the independent variables (k-1x1) slopes_vm array – Variance-covariance matrix of the slopes (k-1xk-1) *tuple* – Likelihood Ratio test of all coefficients = 0 (test statistics, p-value) Pinkse_error float - Lagrange Multiplier test against spatial error correlation. Implemented as presented in [Pinkse2004] float – Moran's I type test against spatial error correlation. Implemented as presented in [Kelejian2001] PS error float - Lagrange Multiplier test against spatial error correlation. Implemented as presented in [Pinkse1998] warning boolean – if True Maximum number of iterations exceeded or gradient and/or function calls not changing. string - Name of dependent variable for use in output name_x list of strings – Names of independent variables for use in output name_w string – Name of weights matrix for use in output name ds string - Name of dataset for use in output title

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

string – Name of the regression method used

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> dbf = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the CRIME column (crime) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, 1) that other packages accept. Since we want to run a probit model and for this example we use the Columbus data, we also need to transform the continuous CRIME variable into a binary variable. As in [McMillen1992], we define y = 1 if CRIME y = 1 if CRIME

```
>>> y = np.array([dbf.by_col('CRIME')]).T
>>> y = (y>40).astype(float)
```

Extract HOVAL (home values) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> names_to_extract = ['INC', 'HOVAL']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T
```

Since we want to the test the probit model for spatial dependence, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use columbus.gal, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command.

```
>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. In PySAL, this can be easily performed in the following way:

```
>>> w.transform='r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them.

Since we have provided a spatial weigths matrix, the diagnostics for spatial dependence have also been computed. We can access them and their p-values individually:

Or we can easily obtain a full summary of all the results nicely formatted and ready to be printed simply by typing 'print model.summary'

spreg.twosls — Two Stage Least Squares

The spreq.twosls module provides 2SLS regression estimation.

New in version 1.3.

```
class pysal.spreg.twosls.TSLS (y, x, yend, q, w=None, robust=None, gwk=None, sig2n\_k=False, spat\_diag=False, vm=False, name\_y=None, name\_x=None, name\_yend=None, name\_q=None, name\_w=None, name gwk=None, name ds=None)
```

Two stage least squares with results and diagnostics.

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **yend** (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (required if running spatial diagnostics)
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- gwk (pysal W object) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.
- spat_diag (boolean) If True, then compute Anselin-Kelejian test (requires w)
- vm (boolean) If True, include variance-covariance matrix in summary results
- $name_y (string)$ Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output

```
• name_q(list of strings) - Names of instruments for use in output
           • name_w (string) - Name of weights matrix for use in output
           • name_gwk (string) - Name of kernel weights matrix for use in output
           • name_ds (string) - Name of dataset for use in output
summary
     string – Summary of regression results and diagnostics (note: use in conjunction with the print command)
betas
     array – kx1 array of estimated coefficients
     array – nx1 array of residuals
predy
     array – nx1 array of predicted y values
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
kstar
     integer - Number of endogenous variables.
У
     array – nx1 array for dependent variable
x
     array - Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array – Two dimensional array with n rows and one column for each endogenous variable
q
     array - Two dimensional array with n rows and one column for each external exogenous variable used as
     instruments
z
     array – nxk array of variables (combination of x and yend)
h
     array - nxl array of instruments (combination of x and q)
robust
     string – Adjustment for robust standard errors
mean_y
     float - Mean of dependent variable
     float – Standard deviation of dependent variable
٦٧m
     array – Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
```

```
utu
     float – Sum of squared residuals
siq2
     float – Sigma squared used in computations
std_err
     array – 1xk array of standard errors of the betas
     list of tuples - z statistic; each tuple contains the pair (statistic, p-value), where each is a float
ak test
     tuple – Anselin-Kelejian test; tuple contains the pair (statistic, p-value)
name_y
     string - Name of dependent variable for use in output
     list of strings - Names of independent variables for use in output
name yend
     list of strings – Names of endogenous variables for use in output
name_z
     list of strings - Names of exogenous and endogenous variables for use in output
     list of strings – Names of external instruments
name h
     list of strings - Names of all instruments used in ouput
name_w
     string – Name of weights matrix for use in output
     string - Name of kernel weights matrix for use in output
name_ds
     string – Name of dataset for use in output
title
     string – Name of the regression method used
sig2n
    float – Sigma squared (computed with n in the denominator)
     float – Sigma squared (computed with n-k in the denominator)
hth
     float - H'H
hthi
     float - (H'H)^{-1}
     array - (Z'H (H'H)^-1 H'Z)^-1
zthhthi
     array - Z'H(H'H)^{-1}
```

```
pfora1a2
array - n(zthhthi)'varb
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case we consider HOVAL (home value) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for HOVAL. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous) and the instruments. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
[ 0.5200379 ]
[ -1.58216593]]
```

spreg.twosls_regimes — Two Stage Least Squares with Regimes

The spreq.twosls_regimes module provides 2SLS with regimes regression estimation.

New in version 1.5.

```
 \textbf{class} \text{ pysal.spreg.twosls\_regimes.} \textbf{TSLS\_Regimes} (y, x, yend, q, regimes, w=None, robust=None, \\ gwk=None, sig2n\_k=True, spat\_diag=False, \\ vm=False, & constant\_regi='many', \\ cols2regi='all', & regime\_err\_sep=True, \\ name\_y=None, & name\_x=None, & cores=False, \\ name\_yend=None, & name\_q=None, \\ name\_regimes=None, & name\_w=None, \\ name\_gwk=None, & name\_ds=None, \\ summ=True) \\
```

Two stage least squares (2SLS) with regimes

- **y** (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. If 'ogmm', then Optimal GMM is used to estimate betas and the variance-covariance matrix. Default set to None.
- gwk (pysal W object) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.

- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.
- vm (boolean) If True, include variance-covariance matrix in summary
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_regimes (string) Name of regimes variable for use in output
- name_w (string) Name of weights matrix for use in output
- name_gwk (string) Name of kernel weights matrix for use in output
- name_ds (string) Name of dataset for use in output

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

vm

array - Variance covariance matrix (kxk)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

[False, 'one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

name_y

string – Name of dependent variable for use in output

name x

list of strings - Names of independent variables for use in output

name yend

list of strings – Names of endogenous variables for use in output

name_q

list of strings – Names of instruments for use in output

name_regimes

string - Name of regimes variable for use in output

name_w

string - Name of weights matrix for use in output

name_gwk

string - Name of kernel weights matrix for use in output

name_ds

string - Name of dataset for use in output

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

In this case we consider RD90 (resource deprivation) as an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for RD90. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to perform tests for spatial dependence, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We can now run the regression and then have a summary of the output by typing: model.summary Alternatively, we can just check the betas and standard errors of the parameters:

```
>>> tslsr = TSLS_Regimes(y, x, yd, q, regimes, w=w, constant_regi='many', spat_
diag=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_
regimes=r_var, name_ds='NAT', name_w='NAT.shp')
```

```
>>> tslsr.betas
array([[ 3.66973562],
```

```
[ 1.06950466],
  [ 0.14680946],
  [ 2.45864196],
  [ 9.55873243],
  [ 1.94666348],
  [-0.30810214],
  [ 3.68718119]])
```

spreg.twosls_sp — Spatial Two Stage Least Squares

The spreg.twosls_sp module provides S2SLS regression estimation.

New in version 1.3. Spatial Two Stages Least Squares

```
class pysal.spreg.twosls_sp.GM_Lag (y, x, yend=None, q=None, w=None, w\_lags=1, lag\_q=True, robust=None, gwk=None, sig2n\_k=False, spat\_diag=False, vm=False, name\_y=None, name\_x=None, name\_yend=None, name\_q=None, name\_w=None, name\_gwk=None, name\_ds=None)
```

Spatial two stage least squares (S2SLS) with results and diagnostics; Anselin (1988) [Anselin1988]

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x); cannot be used in combination with h
- w (pysal W object) Spatial weights object
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- gwk (pysal W object) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.
- spat_diag (boolean) If True, then compute Anselin-Kelejian test
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output

```
• name_x (list of strings) - Names of independent variables for use in output
           • name_yend (list of strings) - Names of endogenous variables for use in output
           • name_q(list of strings) - Names of instruments for use in output
           • name_w (string) - Name of weights matrix for use in output
           • name qwk (string) - Name of kernel weights matrix for use in output
           • name_ds (string) - Name of dataset for use in output
summary
     string – Summary of regression results and diagnostics (note: use in conjunction with the print command)
betas
     array – kx1 array of estimated coefficients
u
     array – nx1 array of residuals
e_pred
     array – nx1 array of residuals (using reduced form)
     array – nx1 array of predicted y values
predy_e
     array – nx1 array of predicted y values (using reduced form)
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
kstar
     integer – Number of endogenous variables.
У
     array - nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array – Two dimensional array with n rows and one column for each endogenous variable
q
     array – Two dimensional array with n rows and one column for each external exogenous variable used as
     instruments
     array – nxk array of variables (combination of x and yend)
h
     array – nxl array of instruments (combination of x and q)
robust
     string - Adjustment for robust standard errors
    float – Mean of dependent variable
```

```
std v
     float – Standard deviation of dependent variable
vm
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
pr2 e
     float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
     float – Sum of squared residuals
siq2
     float – Sigma squared used in computations
std_err
     array – 1xk array of standard errors of the betas
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
ak test
     tuple – Anselin-Kelejian test; tuple contains the pair (statistic, p-value)
     string - Name of dependent variable for use in output
name x
     list of strings - Names of independent variables for use in output
name_yend
     list of strings – Names of endogenous variables for use in output
     list of strings - Names of exogenous and endogenous variables for use in output
name\_q
     list of strings – Names of external instruments
name h
     list of strings – Names of all instruments used in ouput
name w
     string – Name of weights matrix for use in output
name gwk
     string – Name of kernel weights matrix for use in output
name_ds
     string – Name of dataset for use in output
     string – Name of the regression method used
     float – Sigma squared (computed with n in the denominator)
sig2n_k
     float – Sigma squared (computed with n-k in the denominator)
```

```
hth
    float - H'H

hthi
    float - (H'H)^-1

varb
    array - (Z'H (H'H)^-1 H'Z)^-1

zthhthi
    array - Z'H(H'H)^-1

pforala2
    array - n(zthhthi)'varb
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. Since we will need some tests for our model, we also import the diagnostics module.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as D
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Extract the HOVAL column (home value) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

This class runs a lag model, which means that includes the spatial lag of the dependent variable on the right-hand side of the equation. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. The default most basic model to be run would be:

Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module:

But we can also run models that incorporates corrected standard errors following the White procedure. For that, we will have to include the optional parameter robust='white':

And we can access the standard errors from the model object:

```
>>> reg.std_err
array([ 20.47077481,  0.50613931,  0.20138425,  0.38028295])
```

The class is flexible enough to accomodate a spatial lag model that, besides the spatial lag of the dependent variable, includes other non-spatial endogenous regressors. As an example, we will assume that CRIME is actually endogenous and we decide to instrument for it with DISCBD (distance to the CBD). We reload the X including INC only and define CRIME as endogenous and DISCBD as instrument:

```
>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))
```

And we can run the model again:

Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module:

```
>>> D.se_betas(reg)
array([ 53.0829123 , 1.02511494, 0.57589064, 0.59891744])
```

spreg.twosls_sp_regimes — Spatial Two Stage Least Squares with Regimes

The spreg.twosls_sp_regimes module provides S2SLS with regimes regression estimation.

New in version 1.5. Spatial Two Stages Least Squares with Regimes

```
class pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes (y,
                                                                   x,
                                                                        regimes,
                                                                                   yend=None,
                                                                         w=None,
                                                              q=None,
                                                                                     w_{lags=1},
                                                              lag\_q = True,
                                                                                  robust=None,
                                                              gwk=None,
                                                                                sig2n_k=False,
                                                              spat_diag=False,
                                                                                          con-
                                                              stant_regi='many', cols2regi='all',
                                                              regime_lag_sep=False,
                                                              regime_err_sep=True, cores=False,
                                                              vm=False,
                                                                                 name_y=None,
                                                              name_x=None,
                                                                              name_yend=None,
                                                              name_q=None, name_regimes=None,
                                                              name_w=None,
                                                                              name_gwk=None,
                                                              name ds=None
```

Spatial two stage least squares (S2SLS) with regimes; Anselin (1988) [Anselin1988]

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (*list*) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x); cannot be used in combination with h
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w (pysal W object) Spatial weights object

- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- regime_lag_sep (boolean) If True (default), the spatial parameter for spatial lag is also computed according to different regimes. If False, the spatial parameter is fixed accross regimes. Option valid only when regime_err_sep=True
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- **robust** (*string*) If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. If 'ogmm', then Optimal GMM is used to estimate betas and the variance-covariance matrix. Default set to None.
- gwk (pysal W object) Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k (boolean) If True, then use n-k to estimate sigma^2. If False, use n.
- spat_diag (boolean) If True, then compute Anselin-Kelejian test
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_gwk (string) Name of kernel weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regimes variable for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

υ

array – nx1 array of residuals

e_pred

array – nx1 array of residuals (using reduced form)

predy

array – nx1 array of predicted y values

predy_e

array – nx1 array of predicted y values (using reduced form)

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

kstar

integer – Number of endogenous variables. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array - nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

h

array – nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

robust

string – Adjustment for robust standard errors Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array – Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2_e

float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

utu

float – Sum of squared residuals

sig2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

ak test

tuple – Anselin-Kelejian test; tuple contains the pair (statistic, p-value) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name x

list of strings - Names of independent variables for use in output

name_yend

list of strings – Names of endogenous variables for use in output

name z

list of strings – Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name h

list of strings – Names of all instruments used in ouput

name_w

string – Name of weights matrix for use in output

name_gwk

string - Name of kernel weights matrix for use in output

name ds

string – Name of dataset for use in output

name_regimes

string – Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2n

float – Sigma squared (computed with n in the denominator)

sig2n_k

float – Sigma squared (computed with n-k in the denominator)

hth

float – H'H Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

hthi

float – (H'H)^-1 Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

varb

array – (Z'H (H'H)^-1 H'Z)^-1 Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

zthhthi

array – Z'H(H'H)^-1 Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pfora1a2

array – n(zthhthi)'varb Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

This class runs a lag model, which means that includes the spatial lag of the dependent variable on the right-hand side of the equation. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once the model is run, we can have a summary of the output by typing: model.summary . Alternatively, we can obtain the standard error of the coefficient estimates by calling:

In the example above, all coefficients but the spatial lag vary according to the regime. It is also possible to have the spatial lag varying according to the regime, which effective will result in an independent spatial lag model estimated for each regime. To run these models, the argument regime_lag_sep must be set to True:

Alternatively, we can type: 'model.summary' to see the organized results output. The class is flexible enough to accommodate a spatial lag model that, besides the spatial lag of the dependent variable, includes other non-spatial endogenous regressors. As an example, we will add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And we can run the model again:

Once the model is run, we can obtain the standard error of the coefficient estimates. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> model.std_err
array([ 0.49163311,  0.12237382,  0.05633464,  0.72555909,  0.17250521,  0.06749131,  0.27370369,  0.25106224,  0.05804213])
```

spreg.diagnostics-Diagnostics

The spreq.diagnostics module provides a set of standard non-spatial diagnostic tests.

New in version 1.1. Diagnostics for regression estimations.

```
pysal.spreq.diagnostics.f_stat(reg)
```

Calculates the f-statistic and associated p-value of the regression. [Greene2003] (For two stage least squares see f_stat_tsls)

Parameters reg (regression object) - output instance from a regression model

Returns fs_result – includes value of F statistic and associated p-value

Return type tuple

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the F-statistic for the regression.

```
>>> testresult = diagnostics.f_stat(reg)
```

Print the results tuple, including the statistic and its significance.

```
>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1])
('28.385629224695', '0.000000009341')
```

```
pysal.spreg.diagnostics.t_stat(reg, z_stat=False)
```

Calculates the t-statistics (or z-statistics) and associated p-values. [Greene2003]

Parameters

- reg (regression object) output instance from a regression model
- **z_stat** (boolean) If True run z-stat instead of t-stat

Returns ts_result – each tuple includes value of t statistic (or z statistic) and associated p-value

Return type list of tuples

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate t-statistics for the regression coefficients.

```
>>> testresult = diagnostics.t_stat(reg)
```

Print the tuples that contain the t-statistics and their significances.

```
pysal.spreg.diagnostics.r2 (reg)
```

Calculates the R^2 value for the regression. [Greene2003]

Parameters reg (regression object) – output instance from a regression model

Returns r2_result – value of the coefficient of determination for the regression

Return type float

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the R^2 value for the regression.

```
>>> testresult = diagnostics.r2(reg)
```

Print the result.

```
>>> print("%1.8f"%testresult)
0.55240404
```

```
pysal.spreg.diagnostics.ar2(reg)
```

Calculates the adjusted R^2 value for the regression. [Greene2003]

Parameters reg (regression object) - output instance from a regression model

Returns ar2_result – value of R^2 adjusted for the number of explanatory variables.

Return type float

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
```

```
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the adjusted R² value for the regression. >>> testresult = diagnostics.ar2(reg)

Print the result.

```
>>> print("%1.8f"%testresult)
0.53294335
```

```
pysal.spreg.diagnostics.se_betas(reg)
```

Calculates the standard error of the regression coefficients. [Greene2003]

Parameters reg(regression object) - output instance from a regression model

Returns se_result – includes standard errors of each coefficient (1 x k)

Return type array

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the standard errors of the regression coefficients.

```
>>> testresult = diagnostics.se_betas(reg)
```

Print the vector of standard errors.

```
>>> testresult array([ 4.73548613, 0.33413076, 0.10319868])
```

pysal.spreg.diagnostics.log_likelihood(reg)

Calculates the log-likelihood value for the regression. [Greene2003]

Parameters reg (regression object) – output instance from a regression model

Returns Il_result – value for the log-likelihood of the regression.

Return type float

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the log-likelihood for the regression.

```
>>> testresult = diagnostics.log_likelihood(reg)
```

Print the result.

```
>>> testresult -187.3772388121491
```

```
pysal.spreg.diagnostics.akaike(reg)
```

Calculates the Akaike Information Criterion. [Akaike1974]

Parameters reg (regression object) – output instance from a regression model

Returns aic_result – value for Akaike Information Criterion of the regression.

Return type scalar

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the Akaike Information Criterion (AIC).

```
>>> testresult = diagnostics.akaike(reg)
```

Print the result.

```
>>> testresult 380.7544776242982
```

```
pysal.spreg.diagnostics.schwarz(reg)
```

Calculates the Schwarz Information Criterion. [Schwarz1978]

Parameters reg (regression object) – output instance from a regression model

Returns bic_result – value for Schwarz (Bayesian) Information Criterion of the regression.

Return type scalar

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y, X)
```

Calculate the Schwarz Information Criterion.

```
>>> testresult = diagnostics.schwarz(reg)
```

Print the results.

```
>>> testresult 386.42993851863008
```

```
pysal.spreg.diagnostics.condition_index(reg)
```

Calculates the multicollinearity condition index according to Belsey, Kuh and Welsh (1980) [Belsley1980].

Parameters reg (regression object) - output instance from a regression model

Returns ci_result – scalar value for the multicollinearity condition index.

Return type float

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the condition index to check for multicollinearity.

```
>>> testresult = diagnostics.condition_index(reg)
```

Print the result.

```
>>> print("%1.3f"%testresult)
6.542
```

```
pysal.spreg.diagnostics.jarque_bera(reg)
```

Jarque-Bera test for normality in the residuals. [Jarque1980]

Parameters reg (regression object) – output instance from a regression model

Returns

- **jb_result** (*dictionary*) contains the statistic (jb) for the Jarque-Bera test and the associated p-value (p-value)
- **df** (*integer*) degrees of freedom for the test (always 2)
- **jb** (*float*) value of the test statistic
- **pvalue** (*float*) p-value associated with the statistic (chi^2 distributed with 2 df)

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the Jarque-Bera test for normality of residuals.

```
>>> testresult = diagnostics.jarque_bera(reg)
```

Print the degrees of freedom for the test.

```
>>> testresult['df']
2
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['jb'])
1.836
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.3994
```

```
pysal.spreg.diagnostics.breusch_pagan (reg, z=None)
```

Calculates the Breusch-Pagan test statistic to check for heteroscedasticity. [Breusch1979]

Parameters

- reg (regression object) output instance from a regression model
- **z** (array) optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X**2) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values.

Returns

- **bp_result** (*dictionary*) contains the statistic (bp) for the test and the associated p-value (p-value)
- **bp** (*float*) scalar value for the Breusch-Pagan test statistic
- **df** (*integer*) degrees of freedom associated with the test (k)
- **pvalue** (*float*) p-value associated with the statistic (chi^2 distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the Breusch-Pagan test for heteroscedasticity.

```
>>> testresult = diagnostics.breusch_pagan(reg)
```

Print the degrees of freedom for the test.

```
>>> testresult['df']
2
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['bp'])
7.900
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0193
```

```
pysal.spreg.diagnostics.white(reg)
```

Calculates the White test to check for heteroscedasticity. [White1980]

Parameters reg (regression object) – output instance from a regression model

Returns

- white_result (dictionary) contains the statistic (white), degrees of freedom (df) and the associated p-value (pvalue) for the White test.
- white (float) scalar value for the White test statistic.
- **df** (*integer*) degrees of freedom associated with the test
- pvalue (float) p-value associated with the statistic (chi^2 distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the White test for heteroscedasticity.

```
>>> testresult = diagnostics.white(reg)
```

Print the degrees of freedom for the test.

```
>>> print testresult['df']
5
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['wh'])
19.946
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0013
```

```
pysal.spreg.diagnostics.koenker_bassett (reg, z=None)
```

Calculates the Koenker-Bassett test statistic to check for heteroscedasticity. [Koenker1982] [Greene2003]

Parameters

- reg (regression output) output from an instance of a regression class
- **z** (array) optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X**2) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values.

Returns

- **kb_result** (*dictionary*) contains the statistic (kb), degrees of freedom (df) and the associated p-value (pvalue) for the test.
- **kb** (*float*) scalar value for the Koenker-Bassett test statistic.
- **df** (*integer*) degrees of freedom associated with the test
- **pvalue** (*float*) p-value associated with the statistic (chi^2 distributed)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the Koenker-Bassett test for heteroscedasticity.

```
>>> testresult = diagnostics.koenker_bassett(reg)
```

Print the degrees of freedom for the test.

```
>>> testresult['df']
2
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['kb'])
5.694
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0580
```

```
pysal.spreg.diagnostics.vif(reg)
```

Calculates the variance inflation factor for each independent variable. For the ease of indexing the results, the constant is currently included. This should be omitted when reporting the results to the output text. [Greene2003]

Parameters reg (regression object) – output instance from a regression model

Returns vif_result – each tuple includes the vif and the tolerance, the order of the variables corresponds to their order in the reg.x matrix

Return type list of tuples

Examples

```
>>> import numpy as np
>>> import pysal
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the variance inflation factor (VIF). >>> testresult = diagnostics.vif(reg)

Select the tuple for the income variable.

```
>>> incvif = testresult[1]
```

Print the VIF for income.

```
>>> print("%12.12f"%incvif[0])
1.333117497189
```

Print the tolerance for income.

```
>>> print("%12.12f"%incvif[1])
0.750121427487
```

Repeat for the home value variable.

```
>>> hovalvif = testresult[2]
>>> print("%12.12f"%hovalvif[0])
1.333117497189
>>> print("%12.12f"%hovalvif[1])
0.750121427487
```

pysal.spreg.diagnostics.likratiotest(reg0, reg1)

Likelihood ratio test statistic [Greene2003]

Parameters

- reg0 (regression object for constrained model (H0)) -
- reg1 (regression object for unconstrained model (H1))-

Returns

- **likratio** (*dictionary*) contains the statistic (likr), the degrees of freedom (df) and the p-value (pvalue)
- **likr** (*float*) likelihood ratio statistic
- **df** (*integer*) degrees of freedom
- **p-value** (*float*) p-value

Examples

```
>>> import numpy as np
>>> import pysal as ps
>>> import scipy.stats as stats
>>> import pysal.spreg.ml_lag as lag
```

Use the baltim sample data set

```
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM", "NBATH", "PATIO", "FIREPL", "AC", "GAR", "AGE", "LOTSZ", "SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w.transform = 'r'
```

OLS regression

```
>>> ols1 = ps.spreg.OLS(y,x)
```

ML Lag regression

```
>>> mllag1 = lag.ML_Lag(y,x,w)
```

```
>>> lr = likratiotest(ols1,mllag1)
```

```
>>> print "Likelihood Ratio Test: \{0:.4f\} df: \{1\} p-value: \{2:.4f\}". \rightarrow format(lr["likr"],lr["df"],lr["p-value"]) Likelihood Ratio Test: 44.5721 df: 1 p-value: 0.0000
```

spreg.diagnostics_sp — Spatial Diagnostics

The spreg.diagnostics_sp module provides spatial diagnostic tests.

New in version 1.1. Spatial diagnostics module

```
class pysal.spreg.diagnostics_sp.LMtests (ols, w, tests=['all'])
    Lagrange Multiplier tests. Implemented as presented in Anselin et al. (1996) [Anselin1996a]
```

... ols

OLS – OLS regression object

W

W – Spatial weights instance

tests

list – Lists of strings with the tests desired to be performed. Values may be:

- 'all': runs all the options (default)
- •'lme': LM error test
- •'rlme': Robust LM error test
- •'lml': LM lag test
- •'rlml': Robust LM lag test

Parameters

- **lme** (tuple) (Only if 'lme' or 'all' was in tests). Pair of statistic and p-value for the LM error test.
- lml (tuple) (Only if 'lml' or 'all' was in tests). Pair of statistic and p-value for the LM lag test.
- rlme (tuple) (Only if 'rlme' or 'all' was in tests). Pair of statistic and p-value for the Robust LM error test.
- rlml (tuple) (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the Robust LM lag test.
- sarma (tuple) (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the SARMA test.

Examples

```
>>> import numpy as np
>>> import pysal
>>> from ols import OLS
```

Open the csv file to access the data for analysis

```
>>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively

```
>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T
```

Create the weights object from existing .gal file

```
>>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read()
```

Row-standardize the weight object (not required although desirable in some cases)

```
>>> w.transform='r'
```

Run an OLS regression

```
>>> ols = OLS(y, x)
```

Run all the LM tests in the residuals. These diagnostics test for the presence of remaining spatial autocorrelation in the residuals of an OLS model and give indication about the type of spatial model. There are five types: presence of a spatial lag model (simple and robust version), presence of a spatial error model (simple and robust version) and joint presence of both a spatial lag as well as a spatial error model.

```
>>> lms = pysal.spreg.diagnostics_sp.LMtests(ols, w)
```

LM error test:

```
>>> print round(lms.lme[0],4), round(lms.lme[1],4)
3.0971 0.0784
```

LM lag test:

```
>>> print round(lms.lml[0],4), round(lms.lml[1],4)
0.9816 0.3218
```

Robust LM error test:

```
>>> print round(lms.rlme[0],4), round(lms.rlme[1],4)
3.2092 0.0732
```

Robust LM lag test:

```
>>> print round(lms.rlml[0],4), round(lms.rlml[1],4)
1.0936 0.2957
```

LM SARMA test:

```
>>> print round(lms.sarma[0],4), round(lms.sarma[1],4)
4.1907 0.123
```

class pysal.spreg.diagnostics_sp.MoranRes (ols, w, z=False)

Moran's I for spatial autocorrelation in residuals from OLS regression

...

Parameters

- ols (OLS) OLS regression object
- w (W) Spatial weights instance
- **z** (boolean) If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False.

```
    I float – Moran's I statistic
    eI float – Moran's I expectation
    vI float – Moran's I variance
    zI float – Moran's I standardized value
```

Examples

```
>>> import numpy as np
>>> import pysal
>>> from ols import OLS
```

Open the csv file to access the data for analysis

```
>>> csv = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively

```
>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T
```

Create the weights object from existing .gal file

```
>>> w = pysal.open(pysal.examples.get_path('columbus.gal'), 'r').read()
```

Row-standardize the weight object (not required although desirable in some cases)

```
>>> w.transform='r'
```

Run an OLS regression

```
>>> ols = OLS(y, x)
```

Run Moran's I test for residual spatial autocorrelation in an OLS model. This computes the traditional statistic applying a correction in the expectation and variance to account for the fact it comes from residuals instead of an independent variable

```
>>> m = pysal.spreg.diagnostics_sp.MoranRes(ols, w, z=True)
```

Value of the Moran's I statistic:

```
>>> print round(m.I,4)
0.1713
```

Value of the Moran's I expectation:

```
>>> print round(m.eI,4)
-0.0345
```

Value of the Moran's I variance:

```
>>> print round(m.vI,4)
0.0081
```

Value of the Moran's I standardized value. This is distributed as a standard Normal(0, 1)

```
>>> print round(m.zI,4)
2.2827
```

P-value of the standardized Moran's I value (z):

```
>>> print round(m.p_norm,4)
0.0224
```

class pysal.spreg.diagnostics_sp.AKtest(iv, w, case='nosp')

Moran's I test of spatial autocorrelation for IV estimation. Implemented following the original reference Anselin and Kelejian (1997) [Anselin1997] ...

Parameters

- iv (TSLS) Regression object from TSLS class
- w (W) Spatial weights instance
- **case** (*string*) Flag for special cases (default to 'nosp'):
 - 'nosp': Only NO spatial end. reg.
 - 'gen': General case (spatial lag + end. reg.)

mi

float – Moran's I statistic for IV residuals

ak

float –

Square of corrected Moran's I for residuals:

```
.. math::
    ak = \dfrac{N imes I^*}{\phi^2}

Note: if case='nosp' then it simplifies to the LMerror
```

p

float – P-value of the test

Examples

We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. The TSLS is required to run the model on which we will perform the tests.

```
>>> import numpy as np
>>> import pysal
>>> from twosls import TSLS
>>> from twosls_sp import GM_Lag
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Before being able to apply the diagnostics, we have to run a model and, for that, we need the input variables. Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case, we consider HOVAL (home value) as an endogenous regressor, so we acknowledge that by reading it in a different category.

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
```

In order to properly account for the endogeneity, we have to pass in the instruments. Let us consider DISCBD (distance to the CBD) is a good one:

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Now we are good to run the model. It is an easy one line task.

```
>>> reg = TSLS(y, X, yd, q=q)
```

Now we are concerned with whether our non-spatial model presents spatial autocorrelation in the residuals. To assess this possibility, we can run the Anselin-Kelejian test, which is a version of the classical LM error test adapted for the case of residuals from an instrumental variables (IV) regression. First we need an extra object, the weights matrix, which includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are good to run the test. It is a very simple task:

```
>>> ak = AKtest(reg, w)
```

And explore the information obtained:

```
>>> print('AK test: %f P-value: %f'%(ak.ak, ak.p))
AK test: 4.642895 P-value: 0.031182
```

The test also accommodates the case when the residuals come from an IV regression that includes a spatial lag of the dependent variable. The only requirement needed is to modify the case parameter when we call AKtest. First, let us run a spatial lag model:

```
>>> reg_lag = GM_Lag(y, X, yd, q=q, w=w)
```

And now we can run the AK test and obtain similar information as in the non-spatial model.

```
>>> ak_sp = AKtest(reg, w, case='gen')
>>> print('AK test: %f P-value: %f'%(ak_sp.ak, ak_sp.p))
AK test: 1.157593 P-value: 0.281965
```

${\tt spreg.diagnostics_tsls} - {\tt Diagnostics} \ {\tt for} \ {\tt 2SLS}$

The spreq.diagnostics_tsls module provides diagnostic tests for two stage least squares based models.

New in version 1.3. Diagnostics for two stage least squares regression estimations.

```
pysal.spreg.diagnostics_tsls.t_stat (reg, z_stat=False)

Calculates the t-statistics (or z-statistics) and associated p-values. [Greene2003]
```

Parameters

- reg (regression object) output instance from a regression model
- **z_stat** (boolean) If True run z-stat instead of t-stat

Returns ts_result - each tuple includes value of t statistic (or z statistic) and associated p-value

Return type list of tuples

Examples

We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. The diagnostics module is used for the tests we will show here and the OLS and TSLS are required to run the models on which we will perform the tests.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as diagnostics
>>> from pysal.spreg.ols import OLS
>>> from twosls import TSLS
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Before being able to apply the diagnostics, we have to run a model and, for that, we need the input variables. Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and HOVAL (home value) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression. Since it is a non-spatial model, all we need is the dependent and the independent variable.

```
>>> reg = OLS(y,X)
```

Now we can perform a t-statistic on the model:

```
>>> testresult = diagnostics.t_stat(reg)
>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"

-%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.

-12f"%testresult[2][1])
('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.

-654408642718', '0.010874504910')
```

We can also use the z-stat. For that, we re-build the model so we consider HOVAL as endogenous, instrument for it using DISCBD and carry out two stage least squares (TSLS) estimation.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Once the variables are read as different objects, we are good to run the model.

```
>>> reg = TSLS(y, X, yd, q)
```

With the output of the TSLS regression, we can perform a z-statistic:

```
>>> testresult = diagnostics.t_stat(reg, z_stat=True)
>>> print("%12.10f"%testresult[0][0], "%12.10f"%testresult[0][1], "%12.10f"

$$\testresult[1][0], "%12.10f"%testresult[1][1], "%12.10f"%testresult[2][0], "%12.

$$\testresult[2][1]$)
('5.8452644705', '0.00000000051', '0.3676015668', '0.7131703463', '-1.9946891308',

$$\testresult[2][1]$)
```

pysal.spreg.diagnostics_tsls.pr2_aspatial(tslsreg)

Calculates the pseudo r^2 for the two stage least squares regression.

Parameters tslsreg (two stage least squares regression object) – output instance from a two stage least squares regression model

Returns pr2_result – value of the squared pearson correlation between the y and tsls-predicted y vectors

Return type float

Examples

We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. The TSLS is required to run the model on which we will perform the tests.

```
>>> import numpy as np
>>> import pysal
>>> from twosls import TSLS
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Before being able to apply the diagnostics, we have to run a model and, for that, we need the input variables. Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case, we consider HOVAL (home value) as an endogenous regressor, so we acknowledge that by reading it in a different category.

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
```

In order to properly account for the endogeneity, we have to pass in the instruments. Let us consider DISCBD (distance to the CBD) is a good one:

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Now we are good to run the model. It is an easy one line task.

```
>>> reg = TSLS(y, X, yd, q=q)
```

In order to perform the pseudo R^2, we pass the regression object to the function and we are done!

```
>>> result = pr2_aspatial(reg)
>>> print("%1.6f"%result)
0.279361
```

```
pysal.spreg.diagnostics_tsls.pr2_spatial(tslsreg)
```

Calculates the pseudo r² for the spatial two stage least squares regression.

```
Parameters stslsreg (spatial two stage least squares regression object) – output instance from a spatial two stage least squares regression model
```

Returns pr2_result – value of the squared pearson correlation between the y and stsls-predicted y vectors

Return type float

Examples

We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. The GM_Lag is required to run the model on which we will perform the tests and the pysal.spreg.diagnostics module contains the function with the test.

```
>>> import numpy as np
>>> import pysal
>>> import pysal.spreg.diagnostics as D
>>> from twosls_sp import GM_Lag
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Extract the HOVAL column (home value) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
```

In this case, we consider CRIME (crime rates) as an endogenous regressor, so we acknowledge that by reading it in a different category.

```
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
```

In order to properly account for the endogeneity, we have to pass in the instruments. Let us consider DISCBD (distance to the CBD) is a good one:

```
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))
```

Since this test has a spatial component, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

Now we are good to run the spatial lag model. Make sure you pass all the parameters correctly and, if desired, pass the names of the variables as well so when you print the summary (reg.summary) they are included:

Once we have a regression object, we can perform the spatial version of the pesudo R^2. It is as simple as one line!

```
>>> result = pr2_spatial(reg)
>>> print("%1.6f"%result)
0.299649
```

spreg.error_sp — GM/GMM Estimation of Spatial Error and Spatial Combo Models

The spreg.error_sp module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables; based on Kelejian and Prucha (1998 and 1999).

New in version 1.3. Spatial Error Models module

GMM method for a spatial error model, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

n

k

У

x

mean y

pr2

vm

sig2

std_err

```
• y (array) – nx1 array for dependent variable
           • x (array) - Two dimensional array with n rows and one column for each independent
             (exogenous) variable, excluding the constant
           • w (pysal W object) - Spatial weights object (always needed)
           • vm (boolean) – If True, include variance-covariance matrix in summary results
           • name_y (string) - Name of dependent variable for use in output
           • name_x (list of strings) - Names of independent variables for use in output
           • name_w (string) - Name of weights matrix for use in output
           • name_ds (string) - Name of dataset for use in output
summary
     string – Summary of regression results and diagnostics (note: use in conjunction with the print command)
     array - kx1 array of estimated coefficients
     array - nx1 array of residuals
e filtered
     array - nx1 array of spatially filtered residuals
     array - nx1 array of predicted y values
     integer - Number of observations
     integer - Number of variables for which coefficients are estimated (including the constant)
     array – nx1 array for dependent variable
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
     float – Mean of dependent variable
     float – Standard deviation of dependent variable
     float – Pseudo R squared (squared correlation between y and ypred)
     array – Variance covariance matrix (kxk)
```

float – Sigma squared used in computations

array – 1xk array of standard errors of the betas

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_y

string – Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name w

string - Name of weights matrix for use in output

name ds

string – Name of dataset for use in output

title

string – Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import pysal
>>> import numpy as np
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> dbf = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array([dbf.by_col('HOVAL')]).T
```

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> names_to_extract = ['INC', 'CRIME']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use columbus.gal, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command.

```
>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform='r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> model = GM_Error(y, x, w=w, name_y='hoval', name_x=['income', 'crime'], name_ 

ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas).

GMM method for a spatial error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

- **y** (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (always needed)
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- $name_x$ (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output

```
• name_q(list of strings) - Names of instruments for use in output
            • name_w (string) - Name of weights matrix for use in output
            • name_ds (string) - Name of dataset for use in output
summary
     string – Summary of regression results and diagnostics (note: use in conjunction with the print command)
betas
     array – kx1 array of estimated coefficients
     array – nx1 array of residuals
e filtered
     array – nx1 array of spatially filtered residuals
predy
     array – nx1 array of predicted y values
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array – Two dimensional array with n rows and one column for each endogenous variable
z
     array – nxk array of variables (combination of x and yend)
mean_y
     float – Mean of dependent variable
std y
     float – Standard deviation of dependent variable
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
sig2
     float – Sigma squared used in computations
     array – 1xk array of standard errors of the betas
z_stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
     string – Name of dependent variable for use in output
```

name x

list of strings - Names of independent variables for use in output

name yend

list of strings – Names of endogenous variables for use in output

name z

list of strings - Names of exogenous and endogenous variables for use in output

name q

list of strings – Names of external instruments

name h

list of strings – Names of all instruments used in ouput

name w

string – Name of weights matrix for use in output

name_ds

string – Name of dataset for use in output

title

string - Name of the regression method used

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import pysal
>>> import numpy as np
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> dbf = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array([dbf.by_col('CRIME')]).T
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x = np.array([dbf.by_col('INC')]).T
```

In this case we consider HOVAL (home value) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yend = np.array([dbf.by_col('HOVAL')]).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for HOVAL. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = np.array([dbf.by_col('DISCBD')]).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use columbus.gal, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command.

```
>>> w = pysal.open(pysal.examples.get_path("columbus.gal"), 'r').read()
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform='r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the endogenous variables included.

GMM method for a spatial lag and error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable

- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (always needed)
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

hetas

array – kx1 array of estimated coefficients

u

array – nx1 array of residuals

e_filtered

array – nx1 array of spatially filtered residuals

e pred

array – nx1 array of residuals (using reduced form)

predy

array – nx1 array of predicted y values

predy_e

array – nx1 array of predicted y values (using reduced form)

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend

array - Two dimensional array with n rows and one column for each endogenous variable

z

array – nxk array of variables (combination of x and yend)

```
mean_y
     float – Mean of dependent variable
std y
     float – Standard deviation of dependent variable
vm
     array – Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
pr2_e
     float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
siq2
     float – Sigma squared used in computations (based on filtered residuals)
std_err
     array – 1xk array of standard errors of the betas
z stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
name_y
     string - Name of dependent variable for use in output
     list of strings - Names of independent variables for use in output
name yend
     list of strings - Names of endogenous variables for use in output
name_z
     list of strings – Names of exogenous and endogenous variables for use in output
     list of strings – Names of external instruments
name_h
     list of strings – Names of all instruments used in ouput
name_w
     string – Name of weights matrix for use in output
name ds
     string - Name of dataset for use in output
     string – Name of the regression method used
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),'r')
```

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Combo(y, X, w=w, name_y='crime', name_x=['income'], name_ds='columbus (+)')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the spatial lag of the dependent variable. We can check the betas:

And lambda:

```
>>> print 'lambda: ', np.around(reg.betas[-1], 3) lambda: [-0.048]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include HOVAL (home value) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> print 'lambda: ', np.around(reg.betas[-1], 3) lambda: [ 0.254]
```

spreg.error_sp_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

The spreg.error_sp_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables; based on Kelejian and Prucha (1998 and 1999).

New in version 1.5. Spatial Error Models with regimes module

```
class pysal.spreq.error_sp_regimes.GM_Combo_Regimes (y,
                                                                  х,
                                                                       regimes,
                                                                                 vend=None,
                                                                       w=None,
                                                             q=None,
                                                                                  w_{lags=1},
                                                             lag_q=True, cores=False, con-
                                                             stant_regi='many', cols2regi='all',
                                                             regime_err_sep=False,
                                                             regime_lag_sep=False, vm=False,
                                                             name y=None,
                                                                              name x=None,
                                                             name_yend=None, name_q=None,
                                                             name w=None,
                                                                             name ds=None,
                                                             name regimes=None)
```

GMM method for a spatial lag and error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- q (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (always needed)
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name **x** (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u array – nx1 array of residuals e_filtered array – nx1 array of spatially filtered residuals e pred array – nx1 array of residuals (using reduced form) predy array - nx1 array of predicted y values predy_e array – nx1 array of predicted y values (using reduced form) n integer - Number of observations k integer - Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) У array - nx1 array for dependent variable x array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) yend array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) z array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) mean_y float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array - Variance covariance matrix (kxk)

pr2

float - Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2_e

float - Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

siq2

float - Sigma squared used in computations (based on filtered residuals) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std_err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name y

string - Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name yend

list of strings – Names of endogenous variables for use in output

name_z

list of strings – Names of exogenous and endogenous variables for use in output

name_q

list of strings - Names of external instruments

name_h

list of strings – Names of all instruments used in ouput

name w

string - Name of weights matrix for use in output

name ds

string – Name of dataset for use in output

name_regimes

string – Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

• 'one': a vector of ones is appended to x and held constant across regimes

•'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> model = GM_Combo_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_

--regimes=r_var, name_ds='NAT')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the spatial lag of the dependent variable. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

```
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_

HR90', 'lambda']
>>> print np.around(model.betas,4)
[[ 1.4607]
[ 0.958 ]
[ 0.5658]
[ 9.113 ]
[ 1.1338]
[ 0.6517]
[-0.4583]
[ 0.6136]]
```

And lambda:

```
>>> print 'lambda: ', np.around(model.betas[-1], 4) lambda: [ 0.6136]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> model = GM_Combo_Regimes(y, x, regimes, yd, q, w=w, name_y=y_var, name_x=x_

var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_

ORD90', '_Global_W_HR90', 'lambda']
>>> print model.betas
[[ 3.41963782]
[ 1.04065841]
```

```
[ 0.16634393]
[ 8.86544628]
[ 1.85120528]
[ -0.24908469]
[ 2.43014046]
[ 3.61645481]
[ 0.03308671]
[ 0.18684992]]
>>> print np.sqrt(model.vm.diagonal())
[ 0.53067577  0.13271426  0.06058025  0.76406411  0.17969783  0.07167421  0.28943121  0.25308326  0.06126529]
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [ 0.1868]
```

```
class pysal.spreq.error sp regimes.GM Endog Error Regimes (y, x, yend, q, regimes, w,
                                                                      cores=False,
                                                                                    vm=False,
                                                                      constant regi='many',
                                                                      cols2regi='all',
                                                                      regime err sep=False,
                                                                      regime_lag_sep=False,
                                                                      name_y=None,
                                                                      name\_x=None,
                                                                      name_yend=None,
                                                                      name_q=None,
                                                                      name_w=None,
                                                                      name\_ds=None,
                                                                      name_regimes=None,
                                                                      summ=True,
                                                                      add_lag = False)
```

GMM method for a spatial error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **yend** (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (*list*) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)

- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e filtered

array - nx1 array of spatially filtered residuals

predv

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

Z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array – Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2

float – Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) Sigma squared used in computations

std_err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string – Name of dependent variable for use in output

name x

list of strings - Names of independent variables for use in output

name_yend

list of strings - Names of endogenous variables for use in output

name z

list of strings - Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name_h

list of strings – Names of all instruments used in ouput

name_w

string - Name of weights matrix for use in output

name_ds

string – Name of dataset for use in output

name_regimes

string - Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import pysal
>>> import numpy as np
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the endogenous variables included. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', 'lambda']
>>> np.around(model.betas, decimals=5)
array([[ 3.59718],
       [ 1.0652 ],
       [ 0.15822],
      [ 9.19754],
       [ 1.88082],
       [-0.24878],
       [ 2.46161],
       [ 3.57943],
       [0.25564]])
>>> np.around(model.std_err, decimals=6)
array([ 0.522633, 0.137555,
                             0.063054, 0.473654, 0.18335, 0.072786,
        0.300711, 0.2404131)
```

GMM method for a spatial error model with regimes, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [Kelejian1998] [Kelejian1999].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- $name_x (list of strings)$ Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e filtered

array – nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

vm

array - Variance covariance matrix (kxk)

sig2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std_err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name y

string - Name of dependent variable for use in output

name_x

list of strings - Names of independent variables for use in output

name_w

string – Name of weights matrix for use in output

name ds

string - Name of dataset for use in output

name_regimes

string – Name of regime variable for use in the output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean – If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import pysal
>>> import numpy as np
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> model = GM_Error_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_

regimes=r_var, name_ds='NAT.dbf')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print model.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(model.betas, decimals=6)
array([[ 0.074807],
       [ 0.786107],
       [ 0.538849],
      [ 5.103756],
      [ 1.196009],
       [ 0.600533],
       [ 0.364103]])
>>> np.around(model.std_err, decimals=6)
                                        0.471285, 0.19867, 0.057252])
array([ 0.379864, 0.152316, 0.051942,
>>> np.around(model.z_stat, decimals=6)
array([[ 0.196932,
                      0.843881],
        5.161042,
                      0.
                              ],
       [ 10.37397 ,
                      0.
                              ],
       [ 10.829455,
                      0.
                              ],
       [ 6.02007 ,
                      0.
```

```
[ 10.489215, 0. ]])
>>> np.around(model.sig2, decimals=6)
28.172732
```

spreg.error_sp_het — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity

The spreg.error_sp_het module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables, and allowing for heteroskedasticity; based on Arraiz et al (2010) and Anselin (2011).

New in version 1.3. Spatial Error with Heteroskedasticity family of models

```
class pysal.spreg.error_sp_het.GM_Error_Het (y, x, w, max\_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_ds=None)
```

GMM method for a spatial error model with heteroskedasticity, with results and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w (pysal W object) Spatial weights object
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- step1c (boolean) If True, then include Step 1c from Arraiz et al.
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e_filtered

array - nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

```
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
iter_stop
     string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.
iteration
     integer – Number of iterations of steps 2a and 2b from Arraiz et al.
mean_y
    float – Mean of dependent variable
     float – Standard deviation of dependent variable
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
vm
     array – Variance covariance matrix (kxk)
std_err
     array - 1xk array of standard errors of the betas
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
xtx
     float - X'X
name_y
     string – Name of dependent variable for use in output
     list of strings - Names of independent variables for use in output
name w
     string – Name of weights matrix for use in output
name ds
     string – Name of dataset for use in output
title
     string - Name of the regression method used
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Error_Het(y, X, w=w, step1c=True, name_y='home value', name_x=[
    'income', 'crime'], name_ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter.

```
>>> print reg.name_x
['CONSTANT', 'income', 'crime', 'lambda']
```

Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

GMM method for a spatial error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **yend** (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **step1c** (boolean) If True, then include Step 1c from Arraiz et al.
- inv_method (string) If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array - kx1 array of estimated coefficients

```
u
     array – nx1 array of residuals
e_filtered
     array - nx1 array of spatially filtered residuals
predy
     array – nx1 array of predicted y values
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array - Two dimensional array with n rows and one column for each endogenous variable
     array - Two dimensional array with n rows and one column for each external exogenous variable used as
     instruments
     array – nxk array of variables (combination of x and yend)
h
     array – nxl array of instruments (combination of x and q)
iter_stop
     string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.
     integer - Number of iterations of steps 2a and 2b from Arraiz et al.
mean_y
     float – Mean of dependent variable
     float – Standard deviation of dependent variable
vm
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
std_err
     array – 1xk array of standard errors of the betas
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
     string – Name of dependent variable for use in output
name x
```

list of strings – Names of independent variables for use in output

```
name_yend
    list of strings - Names of endogenous variables for use in output

name_z
    list of strings - Names of exogenous and endogenous variables for use in output

name_q
    list of strings - Names of external instruments

name_h
    list of strings - Names of all instruments used in ouput

name_w
    string - Name of weights matrix for use in output

name_ds
    string - Name of dataset for use in output

title
    string - Name of the regression method used

hth
    float - H'H
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Endog_Error_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

• y (array) – nx1 array for dependent variable

- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (always needed)
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (float) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **step1c** (boolean) If True, then include Step 1c from Arraiz et al.
- inv_method (string) If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

υ

array – nx1 array of residuals

e_filtered

array - nx1 array of spatially filtered residuals

e pred

array – nx1 array of residuals (using reduced form)

predy

array – nx1 array of predicted y values

predy_e

array – nx1 array of predicted y values (using reduced form)

```
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array - Two dimensional array with n rows and one column for each endogenous variable
q
     array - Two dimensional array with n rows and one column for each external exogenous variable used as
     instruments
     array – nxk array of variables (combination of x and yend)
h
     array - nxl array of instruments (combination of x and q)
iter_stop
     string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.
     integer - Number of iterations of steps 2a and 2b from Arraiz et al.
mean_y
     float – Mean of dependent variable
     float – Standard deviation of dependent variable
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
pr2_e
     float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
     array – 1xk array of standard errors of the betas
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
name_y
     string – Name of dependent variable for use in output
     list of strings - Names of independent variables for use in output
name_yend
     list of strings – Names of endogenous variables for use in output
name z
     list of strings – Names of exogenous and endogenous variables for use in output
```

```
name_q
    list of strings - Names of external instruments

name_h
    list of strings - Names of all instruments used in ouput

name_w
    string - Name of weights matrix for use in output

name_ds
    string - Name of dataset for use in output

title
    string - Name of the regression method used

hth
    float - H'H
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

```
>>> print reg.name_z
['CONSTANT', 'income', 'W_hoval', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4, -1))), 4)
[[ 9.9753    14.1435]
[ 1.5742    0.374 ]
[ 0.1535    0.3978]
[ 0.2103    0.3924]]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

spreg.error_sp_het_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Heteroskedasticity with Regimes

The spreg.error_sp_het_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables, and allowing for heteroskedasticity; based on Arraiz et al (2010) and Anselin (2011).

New in version 1.5. Spatial Error with Heteroskedasticity and Regimes family of models

```
class pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes (y,
                                                                                 х,
                                                                                        regimes,
                                                                          vend=None.
                                                                                       q=None,
                                                                          w=None,
                                                                                      w_{lags=1},
                                                                          lag\_q = True,
                                                                          max_iter=1,
                                                                          epsilon=1e-05,
                                                                          step1c=False,
                                                                          cores=False,
                                                                          inv_method='power_exp',
                                                                          constant_regi='many',
                                                                          cols2regi='all',
                                                                          regime_err_sep=False,
                                                                          regime_lag_sep=False,
                                                                          vm=False,
                                                                          name y=None,
                                                                          name_x=None,
                                                                          name yend=None,
                                                                          name q=None,
                                                                          name w=None,
                                                                          name ds=None,
                                                                          name regimes=None)
```

GMM method for a spatial lag and error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

- **v** (array) nx1 array for dependent variable
- **x** (*array*) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object (always needed)
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)

- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- step1c (boolean) If True, then include Step 1c from Arraiz et al.
- inv_method (string) If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e filtered

array - nx1 array of spatially filtered residuals

e_pred

array – nx1 array of residuals (using reduced form)

predy

array – nx1 array of predicted y values

predy_e

array - nx1 array of predicted y values (using reduced form)

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

h

array – nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter_stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float - Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array - Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2 e

float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std_err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name_yend

list of strings – Names of endogenous variables for use in output

name_z

list of strings - Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name_h

list of strings – Names of all instruments used in ouput

name w

string - Name of weights matrix for use in output

name ds

string – Name of dataset for use in output

name_regimes

string – Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

• 'one': a vector of ones is appended to x and held constant across regimes

•'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial combo model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> reg = GM_Combo_Het_Regimes(y, x, regimes, yd, q, w=w, step1c=True, name_y=y_
→var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds=
→ 'NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', '_Global_W_HR90', 'lambda']
>>> print req.betas
[[ 3.41936197]
[ 1.04071048]
 [ 0.16747219]
 [ 8.85820215]
 [ 1.847382
 [-0.24545394]
 [ 2.43189808]
 [ 3.61328423]
 [ 0.03132164]
```

```
[ 0.29544224]]

>>> print np.sqrt(reg.vm.diagonal())

[ 0.53103804   0.20835827   0.05755679   1.00496234   0.34332131   0.10259525

   0.3454436   0.37932794   0.07611667   0.07067059]

>>> print 'lambda: ', np.around(reg.betas[-1], 4)

lambda: [ 0.2954]
```

```
class pysal.spreq.error sp het regimes. GM Endog Error Het Regimes (y, x, yend, q,
                                                                                  regimes,
                                                                                  max iter=1,
                                                                                  epsilon=1e-05,
                                                                                  step1c=False,
                                                                                  con-
                                                                                  stant_regi='many',
                                                                                  cols2regi='all',
                                                                                  regime_err_sep=False,
                                                                                  regime_lag_sep=False,
                                                                                  inv_method='power_exp',
                                                                                  cores=False,
                                                                                  vm = False,
                                                                                  name_y=None,
                                                                                  name\_x=None,
                                                                                  name yend=None,
                                                                                  name_q=None,
                                                                                  name w=None,
                                                                                  name_ds=None,
                                                                                  name regimes=None,
                                                                                  summ=True,
                                                                                  add lag=False)
```

GMM method for a spatial error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **yend** (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi**(['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)

- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **step1c** (boolean) If True, then include Step 1c from Arraiz et al.
- inv_method (string) If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e filtered

array – nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

h

array – nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter_stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float - Standard deviation of dependent variable

vm

array - Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std_err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name_x

list of strings – Names of independent variables for use in output

name_yend

list of strings - Names of endogenous variables for use in output

name_z

list of strings - Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name_h

list of strings – Names of all instruments used in ouput

name w

string – Name of weights matrix for use in output

name ds

string - Name of dataset for use in output

name_regimes

string - Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_v such as x_v = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_

$\text{GRD90'}, 'lambda']
```

```
>>> print np.around(reg.betas,4)
[[ 3.5944]
  [ 1.065 ]
  [ 0.1587]
  [ 9.184 ]
  [ 1.8784]
  [-0.2466]
  [ 2.4617]
  [ 3.5756]
  [ 0.2908]]
```

```
>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5043  0.2132  0.0581  0.6681  0.3504  0.0999  0.3686  0.3402  0.028 ]
```

```
class pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes (y,
                                                                                       regimes,
                                                                                    max iter=1,
                                                                         epsilon=1e-05,
                                                                         step1c=False,
                                                                                          con-
                                                                         stant_regi='many',
                                                                         cols2regi='all',
                                                                         regime_err_sep=False,
                                                                         regime_lag_sep=False,
                                                                         cores=False, vm=False,
                                                                         name_y=None,
                                                                         name_x=None,
                                                                         name_w=None,
                                                                         name\_ds=None,
                                                                         name_regimes=None)
```

GMM method for a spatial error model with heteroskedasticity and regimes; based on Ārraiz et al [Arraiz2010], following Anselin [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (*list*) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes

- 'many': a vector of ones is appended to x and considered different per regime (default)
- cols2regi (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- step1c (boolean) If True, then include Step 1c from Arraiz et al.
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array - kx1 array of estimated coefficients

u

array – nx1 array of residuals

e_filtered

array – nx1 array of spatially filtered residuals

predy

array - nx1 array of predicted y values

n

integer – Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

vm

array – Variance covariance matrix (kxk)

sig2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name_x

list of strings – Names of independent variables for use in output

name_w

string - Name of weights matrix for use in output

name_ds

string - Name of dataset for use in output

name regimes

string – Name of regime variable for use in the output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean – If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_v such as x_v = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Alternatively, we can have a summary of the output by typing: model.summary

spreg.error_sp_hom — GM/GMM Estimation of Spatial Error and Spatial Combo Models

The spreg.error_sp_hom module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with and without endogenous variables, and includes inference on the spatial error parameter (lambda); based on Drukker et al. (2010) and Anselin (2011).

New in version 1.3. Hom family of models based on: [Drukker2013] Following: [Anselin2011]

```
class pysal.spreg.error_sp_hom.GM_Error_Hom (y, x, w, max\_iter=1, epsilon=1e-05, A1='hom\_sc', vm=False, name_y=None, name_x=None, name_ds=None)
```

GMM method for a spatial error model with homoskedasticity, with results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w (pysal W object) Spatial weights object
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (float) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (*string*) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc' (default), then as in Drukker, Egger and Prucha (2010) and Drukker, Prucha and Raciborski (2010).
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array - nx1 array of residuals

e filtered

array - nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer - Number of variables for which coefficients are estimated (including the constant)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

iter_stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al.

mean_y

float – Mean of dependent variable

```
std v
     float – Standard deviation of dependent variable
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
vm
     array – Variance covariance matrix (kxk)
siq2
     float – Sigma squared used in computations
std err
     array – 1xk array of standard errors of the betas
z stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
     float - X'X
name_y
     string – Name of dependent variable for use in output
name_x
     list of strings - Names of independent variables for use in output
     string – Name of weights matrix for use in output
name ds
     string - Name of dataset for use in output
title
     string - Name of the regression method used
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent

variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Error_Hom(y, X, w=w, A1='hom_sc', name_y='home value', name_x=[

--'income', 'crime'], name_ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. This is why you obtain as many coefficient estimates as standard errors, which you calculate taking the square root of the diagonal of the variance-covariance matrix of the parameters:

GMM method for a spatial error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable

- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (float) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (*string*) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc' (default), then as in Drukker, Egger and Prucha (2010) and Drukker, Prucha and Raciborski (2010).
- vm (boolean) If True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

u

array – nx1 array of residuals

e_filtered

array – nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend

array – Two dimensional array with n rows and one column for each endogenous variable

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments

```
z
     array – nxk array of variables (combination of x and yend)
h
     array - nxl array of instruments (combination of x and q)
iter stop
     string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.
     integer - Number of iterations of steps 2a and 2b from Arraiz et al.
mean_y
     float – Mean of dependent variable
     float – Standard deviation of dependent variable
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
siq2
     float – Sigma squared used in computations
     array - 1xk array of standard errors of the betas
z stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
name_y
     string – Name of dependent variable for use in output
     list of strings - Names of independent variables for use in output
name_yend
     list of strings – Names of endogenous variables for use in output
name_z
     list of strings – Names of exogenous and endogenous variables for use in output
     list of strings – Names of external instruments
name h
     list of strings – Names of all instruments used in ouput
name_w
     string – Name of weights matrix for use in output
     string - Name of dataset for use in output
     string - Name of the regression method used
hth
     float – H'H
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_

-y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

```
 \begin{array}{c} \textbf{class} \text{ pysal.spreg.error\_sp\_hom.GM\_Combo\_Hom} \ (y, x, yend=None, q=None, w=None, w\_lags=1, \\ lag\_q=True, \quad max\_iter=1, \quad epsilon=1e-05, \\ Al='hom\_sc', \quad vm=False, \quad name\_y=None, \\ name\_x=None, \quad name\_yend=None, \\ name\_q=None, \quad name\_w=None, \\ name\_ds=None) \end{array}
```

GMM method for a spatial lag and error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w (pysal W object) Spatial weights object (always necessary)
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (string) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc' (default), then as in Drukker, Egger and Prucha

```
(2010) and Drukker, Prucha and Raciborski (2010).
           • vm (boolean) – If True, include variance-covariance matrix in summary results
           • name_y (string) - Name of dependent variable for use in output
           • name_x (list of strings) - Names of independent variables for use in output
           • name yend (list of strings) - Names of endogenous variables for use in output
           • name_q(list of strings) - Names of instruments for use in output
           • name_w (string) - Name of weights matrix for use in output
           • name_ds (string) - Name of dataset for use in output
summary
     string – Summary of regression results and diagnostics (note: use in conjunction with the print command)
betas
     array - kx1 array of estimated coefficients
     array – nx1 array of residuals
e filtered
     array - nx1 array of spatially filtered residuals
e_pred
     array – nx1 array of residuals (using reduced form)
     array - nx1 array of predicted y values
predy_e
     array – nx1 array of predicted y values (using reduced form)
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
yend
     array – Two dimensional array with n rows and one column for each endogenous variable
q
     array – Two dimensional array with n rows and one column for each external exogenous variable used as
     instruments
z
     array – nxk array of variables (combination of x and yend)
h
     array – nxl array of instruments (combination of x and q)
iter stop
```

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al.

```
iteration
     integer – Number of iterations of steps 2a and 2b from Arraiz et al.
mean y
     float – Mean of dependent variable
std_y
     float – Standard deviation of dependent variable
vm
     array - Variance covariance matrix (kxk)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
pr2_e
     float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
sig2
     float – Sigma squared used in computations (based on filtered residuals)
     array – 1xk array of standard errors of the betas
z stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
     string - Name of dependent variable for use in output
name x
     list of strings - Names of independent variables for use in output
name_yend
     list of strings – Names of endogenous variables for use in output
     list of strings - Names of exogenous and endogenous variables for use in output
name_q
     list of strings – Names of external instruments
name h
     list of strings – Names of all instruments used in ouput
name w
     string – Name of weights matrix for use in output
name ds
     string – Name of dataset for use in output
     string - Name of the regression method used
hth
     float - H'H
```

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on Columbus neighborhood crime (49 areas) using pysal.open(). This is the DBF associated with the Columbus shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("columbus.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc', name_ds=
    'columbus')
>>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']])
>>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.
    diagonal()).reshape(5,1))),5)))
[['CONSTANT' '111.7705' '67.75191']
['inc' '-0.30974' '1.16656']
['crime' '-1.36043' '0.6841']
['W_hoval' '-0.52908' '0.84428']
['lambda' '0.60116' '0.18605']]
```

spreg.error_sp_hom_regimes — GM/GMM Estimation of Spatial Error and Spatial Combo Models with Regimes

The spreg.error_sp_hom_regimes module provides spatial error and spatial combo (spatial lag with spatial error) regression estimation with regimes and with and without endogenous variables, and includes inference on the spatial error parameter (lambda); based on Drukker et al. (2010) and Anselin (2011).

New in version 1.5. Hom family of models with regimes.

```
x,
class pysal.spreq.error_sp_hom_regimes.GM_Combo_Hom_Regimes(y,
                                                                                       regimes,
                                                                          vend=None,
                                                                                       q=None,
                                                                          w=None.
                                                                                      w_{lags=1},
                                                                          lag\_q = True,
                                                                          cores=False,
                                                                          max iter=1,
                                                                          epsilon=1e-05,
                                                                          A1='het',
                                                                                           con-
                                                                          stant_regi='many',
                                                                          cols2regi='all',
                                                                          regime_err_sep=False,
                                                                          regime_lag_sep=False,
                                                                          vm=False,
                                                                          name_y=None,
                                                                          name_x=None,
                                                                          name_yend=None,
                                                                          name_q=None,
                                                                          name_w=None,
                                                                          name_ds=None,
                                                                          name regimes=None)
```

GMM method for a spatial lag and error model with homoskedasticity, regimes and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

• y (array) – nx1 array for dependent variable

- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object (always needed)
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (list, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- w_lags (integer) Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q (boolean) If True, then include spatial lags of the additional instruments (q).
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (*string*) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc', then as in Drukker, Egger and Prucha (2010) and Drukker, Prucha and Raciborski (2010).
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name w (string) Name of weights matrix for use in output

- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

11

array – nx1 array of residuals

e_filtered

array – nx1 array of spatially filtered residuals

e pred

array – nx1 array of residuals (using reduced form)

predv

array – nx1 array of predicted y values

predy_e

array – nx1 array of predicted y values (using reduced form)

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

h

array – nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array – Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2_e

float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2

float – Sigma squared used in computations (based on filtered residuals) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string – Name of dependent variable for use in output

name_x

list of strings - Names of independent variables for use in output

name vend

list of strings - Names of endogenous variables for use in output

name_z

list of strings – Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name h

list of strings - Names of all instruments used in ouput

name w

string – Name of weights matrix for use in output

name_ds

string – Name of dataset for use in output

name_regimes

string - Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep

boolean - If True, a separate regression is run for each regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial combo model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, yd, q, w=w, A1='hom_sc', name_y=y_
→var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds=
→ 'NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', '_Global_W_HR90', 'lambda']
>>> print req.betas
[[ 3.4196478 ]
[ 1.04065595]
[ 0.16630304]
[ 8.86570777]
[ 1.85134286]
[-0.24921597]
[ 2.43007651]
[ 3.61656899]
[ 0.03315061]
[ 0.22636055]]
>>> print np.sqrt(req.vm.diagonal())
[ \ 0.53989913 \ \ 0.13506086 \ \ 0.06143434 \ \ 0.77049956 \ \ 0.18089997 \ \ 0.07246848 
 >>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [ 0.2264]
```

```
class pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes (y,
                                                                                     x, yend,
                                                                                       regimes,
                                                                                 q,
                                                                                          con-
                                                                                 w.
                                                                                 stant regi='many',
                                                                                 cols2regi='all',
                                                                                 regime_err_sep=False,
                                                                                 regime_lag_sep=False,
                                                                                 max\_iter=1,
                                                                                 epsilon=1e-
                                                                                 05, A1='het',
                                                                                 cores=False,
                                                                                 vm=False,
                                                                                 name_y=None,
                                                                                 name_x=None,
                                                                                 name_yend=None,
                                                                                 name q=None,
                                                                                 name w=None,
                                                                                 name_ds=None,
                                                                                 name_regimes=None,
                                                                                 summ=True,
                                                                                 add lag=False)
```

GMM method for a spatial error model with homoskedasticity, regimes and endogenous variables. Based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

• y (array) – nx1 array for dependent variable

- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend (array) Two dimensional array with n rows and one column for each endogenous variable
- **q** (array) Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (*float*) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (*string*) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc', then as in Drukker, Egger and Prucha (2010) and Drukker, Prucha and Raciborski (2010).
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name yend (list of strings) Names of endogenous variables for use in output
- name_q(list of strings) Names of instruments for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array - kx1 array of estimated coefficients

 \mathbf{u} array – nx1 array of residuals

e_filtered

array – nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array – nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

yend

array – Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

q

array – Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

Z

array – nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

h

array – nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter_stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

vm

array – Variance covariance matrix (kxk)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

siq2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

hth

float – H'H Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name x

list of strings - Names of independent variables for use in output

name_yend

list of strings – Names of endogenous variables for use in output

name_z

list of strings - Names of exogenous and endogenous variables for use in output

name_q

list of strings – Names of external instruments

name h

list of strings – Names of all instruments used in ouput

name_w

string - Name of weights matrix for use in output

name ds

string - Name of dataset for use in output

name_regimes

string – Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

•'one': a vector of ones is appended to x and held constant across regimes

•'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime err sep

boolean – If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int - Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_

RD90', 'lambda']
```

```
>>> print np.around(reg.betas,4)
[[ 3.5973]
  [ 1.0652]
  [ 0.1582]
  [ 9.198 ]
  [ 1.8809]
  [-0.2489]
  [ 2.4616]
  [ 3.5796]
  [ 0.2541]]
```

```
>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5204  0.1371  0.0629  0.4721  0.1824  0.0725  0.2992  0.2395  0.024 ]
```

```
class pysal.spreq.error_sp_hom_regimes.GM_Error_Hom_Regimes(y,
                                                                                       regimes,
                                                                                x,
                                                                                   max iter=1,
                                                                         w.
                                                                         epsilon=1e-05,
                                                                         A1='het', cores=False,
                                                                         constant regi='many',
                                                                         cols2regi='all',
                                                                         regime err sep=False,
                                                                         regime_lag_sep=False,
                                                                         vm=False.
                                                                         name_y=None,
                                                                         name_x=None,
                                                                         name_w=None,
                                                                         name ds=None,
                                                                         name regimes=None)
```

GMM method for a spatial error model with homoskedasticity, with regimes, results and diagnostics; based on Drukker et al. (2013) [Drukker2013], following Anselin (2011) [Anselin2011].

Parameters

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w (pysal W object) Spatial weights object
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency, ignored.
- max_iter (int) Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** (float) Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.
- **A1** (*string*) If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in Anselin (2011). If A1='hom_sc', then as in Drukker, Egger and Prucha (2010) and Drukker, Prucha and Raciborski (2010).
- vm (boolean) If True, include variance-covariance matrix in summary results
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y (string) Name of dependent variable for use in output

- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regime variable for use in the output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – kx1 array of estimated coefficients

11

array – nx1 array of residuals

e filtered

array – nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array - nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iter_stop

string – Stop criterion reached during iteration of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration

integer – Number of iterations of steps 2a and 2b from Arraiz et al. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

vm

array – Variance covariance matrix (kxk)

sig2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

xtx

float – X'X Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string – Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name_w

string - Name of weights matrix for use in output

name ds

string – Name of dataset for use in output

name regimes

string – Name of regime variable for use in the output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime err sep

boolean – If True, a separate regression is run for each regime.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var , such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = pysal.rook_from_shapefile(pysal.examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from pysal.spreg.error_sp, it allows for inference on the spatial parameter. This is why you obtain as many coefficient estimates as standard errors, which you calculate taking the square root of the diagonal of the variance-covariance matrix of the parameters. Alternatively, we can have a summary of the output by typing: model.summary >>> print reg.name_x ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '1ambda']

```
>>> print np.around(reg.betas,4)
[[ 0.069 ]
  [ 0.7885]
  [ 0.5398]
  [ 5.0948]
  [ 1.1965]
  [ 0.6018]
  [ 0.4104]]
```

spreg.regimes — Spatial Regimes

The spreq.regimes module provides different spatial regime estimation procedures.

New in version 1.5.

```
class pysal.spreg.regimes.Chow(reg)
```

Chow test of coefficient stability across regimes. The test is a particular case of the Wald statistic in which the constraint are setup according to the spatial or other type of regime structure

...

Parameters reg (regression object) – Regression object from PySAL.spreg which is assumed to have the following attributes:

- betas : coefficient estimates
- vm : variance covariance matrix of betas
- kr : Number of variables varying across regimes
- kryd : Number of endogenous variables varying across regimes
- kf : Number of variables fixed (global) across regimes
- nr : Number of regimes

joint

tuple – Pair of Wald statistic and p-value for the setup of global regime stability, that is all betas are the same across regimes.

regi

array – kr x 2 array with Wald statistic (col 0) and its p-value (col 1) for each beta that varies across regimes. The restrictions are setup to test for the global stability (all regimes have the same parameter) of the beta.

Examples

```
>>> import numpy as np
>>> import pysal
>>> from ols_regimes import OLS_Regimes
>>> db = pysal.open(pysal.examples.get_path('columbus.dbf'),'r')
>>> y_var = 'CRIME'
>>> y = np.array([db.by_col(y_var)]).reshape(49,1)
>>> x_var = ['INC', 'HOVAL']
>>> x = np.array([db.by_col(name) for name in x_var]).T
>>> r_var = 'NSA'
>>> regimes = db.by_col(r_var)
>>> olsr = OLS_Regimes(y, x, regimes, constant_regi='many', nonspat_diag=False,...
⇒spat_diag=False, name_y=y_var, name_x=x_var, name_ds='columbus', name_regimes=r_
→var, regime_err_sep=False)
>>> print olsr.name_x_r #x_var
['CONSTANT', 'INC', 'HOVAL']
>>> print olsr.chow.regi
[[ 0.01020844  0.91952121]
 [ 0.46024939  0.49750745]
[ 0.55477371  0.45637369]]
>>> print 'Joint test:'
Joint test:
>>> print olsr.chow.joint
(0.6339319928978806, 0.8886223520178802)
```

Setup framework to work with regimes. Basically it involves:

- Dealing with the constant in a regimes world
- Creating a sparse representation of X
- Generating a list of names of X taking into account regimes

...

- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (*list*) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** ([False, 'one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - False: no constant term is appended in any way
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.

names (None, list of strings) – Names of independent variables for use in output

Returns

- x (csr sparse matrix) Sparse matrix containing X variables properly aligned for regimes regression. 'xsp' is of dimension (n, k*r) where 'r' is the number of different regimes The structure of the alignent is X1r1 X2r1 ... X1r2 X2r2 ...
- names (*None*, *list of strings*) Names of independent variables for use in output conveniently arranged by regimes. The structure of the name is "regimeName_-_varName"
- **kr** (*int*) Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** (*int*) Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr (int) Number of different regimes in the 'regimes' list

```
class pysal.spreq.regimes.Wald(reg, r, q=None)
```

Chi sq. Wald statistic to test for restriction of coefficients. Implementation following Greene [Greene2003] eq. (17-24), p. 488

...

Parameters

- reg (regression object) Regression object from PySAL.spreg
- r (array) Array of dimension Rxk (R being number of restrictions) with constrain setup.
- q(array) Rx1 array with constants in the constraint setup. See Greene [1]_ for reference.

W

float - Wald statistic

pvalue

float – P value for Wald statistic calculated as a Chi sq. distribution with R degrees of freedom

```
pysal.spreg.regimes.buildR (kr, kf, nr)
```

Build R matrix to globally test for spatial heterogeneity across regimes. The constraint setup reflects the null every beta is the same across regimes

Note: needs a placeholder for kryd in builR1var, set to 0

•••

Parameters

- **kr** (*int*) Number of variables that vary across regimes ("regimized")
- kf (int) Number of variables that do not vary across regimes ("fixed" or global)
- **nr** (*int*) Number of regimes

Returns R – Array with constrain setup to test stability across regimes of one variable

Return type array

```
pysal.spreg.regimes.buildR1var(vari, kr, kf, kryd, nr)
```

Build R matrix to test for spatial heterogeneity across regimes in one variable. The constraint setup reflects the null betas for variable 'vari' are the same across regimes

•••

Parameters

- vari (int) Position of the variable to be tested (order in the sequence of variables per regime)
- **kr** (*int*) Number of variables that vary across regimes ("regimized")
- **kf** (int) Number of variables that do not vary across regimes ("fixed" or global)
- kryd (Number of endogenous variables varying across regimes) -
- **nr** (*int*) Number of regimes

Returns R – Array with constrain setup to test stability across regimes of one variable

Return type array

Checks if dimensions of list cols2regi match number of variables.

```
pysal.spreg.regimes.regimeX_setup(x, regimes, cols2regi, regimes_set, constant=False)
Flexible full setup of a regime structure
```

NOTE: constant term, if desired in the model, should be included in the x already

...

Parameters

- **x** (np.array) Dense array of dimension (n, k) with values for all observations IMPORTANT: constant term (if desired in the model) should be included
- **regimes** (list) list of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **cols2regi** (*list*) List of k booleans indicating whether each column should be considered as different per regime (True) or held constant across regimes (False)
- regimes_set (list) List of ordered regimes tags
- **constant** ([False, 'one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - False: no constant term is appended in any way
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime

Returns

xsp – Sparse matrix containing the full setup for a regimes model as specified in the arguments passed NOTE: columns are reordered so first are all the regime columns then all the global columns (this makes it much more efficient) Structure of the output matrix (assuming X1, X2 to vary across regimes and constant term, X3 and X4 to be global):

Return type csr sparse matrix

Generate the set of variable names in a regimes setup, according to the order of the betas

NOTE: constant term, if desired in the model, should be included in the x already

•••

Parameters

- name_x (list/None) If passed, list of strings with the names of the variables aligned with the original dense array x IMPORTANT: constant term (if desired in the model) should be included
- **regimes** (list) list of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** ([False, 'one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - False: no constant term is appended in any way
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime
- **cols2regi** (*list*) List of k booleans indicating whether each column should be considered as different per regime (True) or held constant across regimes (False)
- regimes_set (list) List of ordered regimes tags

Returns

```
Return type name_x_regi
```

```
pysal.spreg.regimes.w_regime(w, regi_ids, regi_i, transform=True, min_n=None)
     Returns the subset of W matrix according to a given regime ID
     pysal.spreg.regimes.w
          pysal W object – Spatial weights object
     pysal.spreg.regimes.regi_ids
          list – Contains the location of observations in y that are assigned to regime regi_i
     pysal.spreq.regimes.regi_i
          string or float - The regime for which W will be subset
          Returns w_regi_i – Subset of W for regime regi_i
          Return type pysal W object
pysal.spreg.regimes.w_regimes(w, regimes, regimes_set, transform=True, get_ids=None,
                                       min n=None)
     ####### DEPRECATED ######## Subsets W matrix according to regimes
     pysal.spreg.regimes.w
          pysal W object - Spatial weights object
     pysal.spreg.regimes.regimes
          list – list of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
     pysal.spreg.regimes.regimes_set
          list – List of ordered regimes tags
          Returns w_regi – Dictionary containing the subsets of W according to regimes: [r1:w1, r2:w2, ...,
```

rR:wR]

Return type dictionary

```
pysal.spreq.regimes.w_regimes_union(w, w_regi_i, regimes_set)
     Combines the subsets of the W matrix according to regimes
     pysal.spreg.regimes.w
          pysal W object - Spatial weights object
     pysal.spreg.regimes.w_regi_i
           dictionary – Dictionary containing the subsets of W according to regimes: [r1:w1, r2:w2, ..., rR:wR]
     pysal.spreg.regimes.regimes_set
           list - List of ordered regimes tags
           Returns w_regi – Spatial weights object containing the union of the subsets of W
           Return type pysal W object
pysal.spreg.regimes.wald_test(betas, r, q, vm)
     Chi sq. Wald statistic to test for restriction of coefficients. Implementation following Greene [Greene2003] eq.
     (17-24), p. 488
           Parameters
                 • betas (array) – kx1 array with coefficient estimates
                 • r (array) - Array of dimension Rxk (R being number of restrictions) with constrain setup.
                 • q(array) – Rx1 array with constants in the constraint setup. See Greene [1] for reference.
                 • vm (array) – kxk variance-covariance matrix of coefficient estimates
           Returns
                 • w (float) – Wald statistic
                 • pvalue (float) – P value for Wald statistic calculated as a Chi sq. distribution with R degrees
                   of freedom
pysal.spreq.regimes.x2xsp(x, regimes, regimes_set)
     Convert X matrix with regimes into a sparse X matrix that accounts for the regimes
     pysal.spreg.regimes.x
           np.array - Dense array of dimension (n, k) with values for all observations
     pysal.spreq.regimes.regimes
           list – list of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
     pysal.spreg.regimes.regimes_set
           list – List of ordered regimes tags
           Returns xsp – Sparse matrix containing X variables properly aligned for regimes regression. 'xsp'
               is of dimension (n, k*r) where 'r' is the number of different regimes The structure of the alignent
```

is X1r1 X2r1 ... X1r2 X2r2 ...

Return type csr sparse matrix

spreg.ml_error — ML Estimation of Spatial Error Model

The spreg.ml_error module provides spatial error model estimation with maximum likelihood following Anselin (1988).

New in version 1.7. ML Estimation of Spatial Error Model

ML estimation of the spatial lag model with all results and diagnostics; Anselin (1988) [Anselin1988]

Parameters

- **y** (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w (Sparse matrix) Spatial weights sparse matrix
- **method** (string) if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition
- **epsilon** (float) tolerance criterion in mimimize_scalar function and inverse_product
- **spat_diag** (boolean) if True, include spatial diagnostics
- vm (boolean) if True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name w(string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

betas

array – (k+1)x1 array of estimated coefficients (rho first)

lam

float – estimate of spatial autoregressive coefficient

u

array – nx1 array of residuals

e_filtered

array - nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer - Number of variables for which coefficients are estimated (including the constant, excluding lambda)

У

array – nx1 array for dependent variable

```
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
method
     string – log Jacobian method if 'full': brute force (full matrix computations)
epsilon
     float – tolerance criterion used in minimize_scalar function and inverse_product
mean_y
     float – Mean of dependent variable
std_y
     float – Standard deviation of dependent variable
     array – Variance covariance matrix (k+1 x k+1) - includes var(lambda)
vm1
     array – variance covariance matrix for lambda, sigma (2 x 2)
siq2
     float – Sigma squared used in computations
     float – maximized log-likelihood (including constant terms)
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
utu
     float - Sum of squared residuals
std err
     array – 1xk array of standard errors of the betas
z_stat
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
     string – Name of dependent variable for use in output
name x
     list of strings - Names of independent variables for use in output
name w
     string – Name of weights matrix for use in output
name ds
     string – Name of dataset for use in output
title
     string - Name of the regression method used
```

Examples

```
>>> import numpy as np
>>> import pysal as ps
>>> np.set_printoptions(suppress=True) #prevent scientific format
>>> db = ps.open(ps.examples.get_path("south.dbf"),'r')
```

```
>>> ds_name = "south.dbf"
>>> y_name = "HR90"
>>> y = np.array(db.by_col(y_name))
>>> y.shape = (len(y),1)
>>> x_names = ["RD90", "PS90", "UE90", "DV90"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("south_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "south_q.gal"
>>> w.transform = 'r'
>>> mlerr = ML_Error(y,x,w,name_y=y_name,name_x=x_names,
                                                                       name_w=w_
→name, name_ds=ds_name)
>>> np.around(mlerr.betas, decimals=4)
array([[ 6.1492],
      [ 4.4024],
      [ 1.7784],
      [-0.3781],
      [ 0.4858],
      [ 0.2991]])
>>> "{0:.4f}".format(mlerr.lam)
'0.2991'
>>> " {0:.4f}".format (mlerr.mean_y)
'9.5493'
>>> "{0:.4f}".format(mlerr.std_y)
'7.0389'
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([ 1.0648, 0.0555, 0.0454, 0.0061, 0.0148, 0.0014])
>>> np.around(mlerr.sig2, decimals=4)
array([[ 32.4069]])
>>> "{0:.4f}".format(mlerr.logll)
'-4471.4071'
>>> "{0:.4f}".format(mlerr.aic)
'8952.8141'
>>> "{0:.4f}".format(mlerr.schwarz)
'8979.0779'
>>> "{0:.4f}".format(mlerr.pr2)
'0.3058'
>>> "{0:.4f}".format(mlerr.utu)
'48534.9148'
>>> np.around(mlerr.std_err, decimals=4)
array([ 1.0319, 0.2355, 0.2132, 0.0784, 0.1217, 0.0378])
>>> np.around(mlerr.z_stat, decimals=4)
array([[ 5.9593, 0. ],
      [ 18.6902,
                  0.
                        ],
                        ],
      [ 8.3422,
                  0.
      [-4.8233,
                  0.
                        ],
      [ 3.9913,
                  0.0001],
      7.9089,
                  0. 11)
>>> mlerr.name_y
'HR90'
>>> mlerr.name_x
['CONSTANT', 'RD90', 'PS90', 'UE90', 'DV90', 'lambda']
>>> mlerr.name_w
'south_q.qal'
>>> mlerr.name_ds
'south.dbf'
>>> mlerr.title
```

'MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)'

spreg.ml_error_regimes — ML Estimation of Spatial Error Model with Regimes

The spreg.ml_error_regimes module provides spatial error model with regimes estimation with maximum likelihood following Anselin (1988).

New in version 1.7. ML Estimation of Spatial Error Model

ML estimation of the spatial error model with regimes (note no consistency checks, diagnostics or constants added); Anselin (1988) [Anselin 1988]

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (*list*) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w (Sparse matrix) Spatial weights sparse matrix
- **method** (*string*) if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue computation if 'LU', LU sparse matrix decomposition
- **epsilon** (float) tolerance criterion in mimimize_scalar function and inverse_product
- regime_err_sep (boolean) If True, a separate regression is run for each regime.
- regime_lag_sep (boolean) Always False, kept for consistency in function call, ignored.
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- spat_diag (boolean) if True, include spatial diagnostics

- vm (boolean) if True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name ds (string) Name of dataset for use in output
- name_regimes (string) Name of regimes variable for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – (k+1)x1 array of estimated coefficients (lambda last)

lam

float – estimate of spatial autoregressive coefficient Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

u

array – nx1 array of residuals

e filtered

array - nx1 array of spatially filtered residuals

predy

array – nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant, excluding the rho) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array - nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

method

string – log Jacobian method if 'full': brute force (full matrix computations) if 'ord', Ord eigenvalue computation if 'LU', LU sparse matrix decomposition

epsilon

float – tolerance criterion used in minimize_scalar function and inverse_product

mean_y

float – Mean of dependent variable

std_y

float – Standard deviation of dependent variable

VI

array – Variance covariance matrix (k+1 x k+1), all coefficients

vm1

array – variance covariance matrix for lambda, sigma (2 x 2) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

siq2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

loall

float – maximized log-likelihood (including constant terms) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name y

string – Name of dependent variable for use in output

name_x

list of strings – Names of independent variables for use in output

name_w

string - Name of weights matrix for use in output

name ds

string – Name of dataset for use in output

name_regimes

string - Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- •'one': a vector of ones is appended to x and held constant across regimes
- 'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

```
>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM", "AGE", "SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
```

Since in this example we are interested in checking whether the results vary by regimes, we use CITCOU to define whether the location is in the city or outside the city (in the county):

```
>>> regimes = db.by_col("CITCOU")
```

Now we can run the regression with all parameters:

```
'0.617707'
>>> " {0:.6f}".format (mlerr.mean_y)
'44.307180'
>>> "{0:.6f}".format(mlerr.std_y)
'23.606077'
>>> np.around(mlerr.vm1, decimals=4)
array([[ 0.005, -0.3535],
      [-0.3535, 441.3039]
>>> np.around(np.diag(mlerr.vm), decimals=4)
                                      0.0639, 80.5925,
array([ 58.5055, 2.4295,
                           0.0072,
                                                         3.161 ,
        0.012, 0.0499,
                           0.005])
>>> np.around(mlerr.sig2, decimals=4)
array([[ 209.6064]])
>>> "{0:.6f}".format(mlerr.logll)
'-870.333106'
>>> "{0:.6f}".format(mlerr.aic)
'1756.666212'
>>> "{0:.6f}".format(mlerr.schwarz)
'1783.481077'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES (METHOD = full)'
```

spreg.ml_lag — ML Estimation of Spatial Lag Model

The spreg.ml_lag module provides spatial lag model estimation with maximum likelihood following Anselin (1988).

New in version 1.7. ML Estimation of Spatial Lag Model

```
class pysal.spreg.ml_lag.ML_Lag(y, x, w, method='full', epsilon=1e-07, spat\_diag=False, vm=False, name\_y=None, name\_x=None, name\_w=None, name\_ds=None)
```

ML estimation of the spatial lag model with all results and diagnostics; Anselin (1988) [Anselin1988]

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w (pysal W object) Spatial weights object
- **method** (*string*) if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method
- epsilon (float) tolerance criterion in mimimize_scalar function and inverse_product
- **spat_diag** (boolean) if True, include spatial diagnostics
- vm (boolean) if True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output
- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output

```
betas
     array - (k+1)x1 array of estimated coefficients (rho first)
rho
     float – estimate of spatial autoregressive coefficient
u
     array – nx1 array of residuals
predy
     array - nx1 array of predicted y values
n
     integer - Number of observations
k
     integer - Number of variables for which coefficients are estimated (including the constant, excluding the
     rho)
У
     array – nx1 array for dependent variable
x
     array – Two dimensional array with n rows and one column for each independent (exogenous) variable,
     including the constant
method
     string – log Jacobian method if 'full': brute force (full matrix computations)
     float – tolerance criterion used in minimize_scalar function and inverse_product
mean_y
    float – Mean of dependent variable
std v
     float – Standard deviation of dependent variable
     array – Variance covariance matrix (k+1 x k+1), all coefficients
vm1
     array – Variance covariance matrix (k+2 x k+2), includes sig2
siq2
    float – Sigma squared used in computations
logll
     float – maximized log-likelihood (including constant terms)
aic
    float – Akaike information criterion
schwarz
    float – Schwarz criterion
predy_e
     array - predicted values from reduced form
     array – prediction errors using reduced form predicted values
pr2
     float – Pseudo R squared (squared correlation between y and ypred)
```

```
pr2_e
     float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
utu
     float - Sum of squared residuals
std_err
     array – 1xk array of standard errors of the betas
     list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float
name_y
     string – Name of dependent variable for use in output
name_x
     list of strings – Names of independent variables for use in output
name_w
     string - Name of weights matrix for use in output
name ds
     string – Name of dataset for use in output
title
     string - Name of the regression method used
```

Examples

```
>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM", "NBATH", "PATIO", "FIREPL", "AC", "GAR", "AGE", "LOTSZ", "SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
>>> mllag = ML_Lag(y,x,w,name_y=y_name,name_x=x_names,
                                                                       name_w=w_
→name, name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[ 4.3675],
       [ 0.7502],
       [ 5.6116],
       [ 7.0497],
       [7.7246],
       [ 6.1231],
       [ 4.6375],
       [-0.1107],
       [ 0.0679],
       [ 0.0794],
       [0.4259]]
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
```

```
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([ 23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
         2.8684,
                  0.0026,
                             0.0002,
                                        0.0266,
                                                  0.0032, 220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([ 23.8716, 1.1222, 3.0593, 7.3416, 5.6695,
                                                         5.4698,
        2.8684, 0.0026,
                          0.0002, 0.0266, 0.0032])
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.4f}".format(mllag.pr2_e)
'0.7062'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([ 4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
       0.0508, 0.0146, 0.1631, 0.057])
>>> np.around(mllag.z_stat, decimals=4)
array([[ 0.8939, 0.3714],
      [ 0.7082, 0.4788],
      [ 3.2083, 0.0013],
      [ 2.6018, 0.0093],
      [ 3.2442, 0.0012],
      [ 2.6181, 0.0088],
      [ 2.7382, 0.0062],
      [-2.178, 0.0294],
      [ 4.6487, 0. ],
      [ 0.4866, 0.6266],
      [ 7.4775, 0. ]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ',
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)'
>>> mllag = ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names,
→name_w=w_name, name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[ 4.3675],
      [ 0.7502],
      [ 5.6116],
      [ 7.0497],
      [7.7246],
```

```
[ 6.1231],
      [ 4.6375],
      [-0.1107],
      [ 0.0679],
      [ 0.0794],
      [ 0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> " {0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vml), decimals=4)
                             3.0593, 7.3416, 5.6695,
                                                             5.4698,
array([ 23.8716,
                   1.1222,
                                        0.0266,
                                                 0.0032, 220.1292])
         2.8684,
                   0.0026,
                              0.0002,
>>> np.around(np.diag(mllag.vm), decimals=4)
                                             5.6695, 5.4698,
array([ 23.8716, 1.1222, 3.0593, 7.3416,
                0.0026,
                          0.0002, 0.0266, 0.0032])
        2.8684,
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.6f}".format(mllag.pr2_e)
'0.706198'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([ 4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
       0.0508, 0.0146, 0.1631, 0.057 ])
>>> np.around(mllag.z_stat, decimals=4)
array([[ 0.8939, 0.3714],
      [ 0.7082, 0.4788],
      [ 3.2083, 0.0013],
      [ 2.6018, 0.0093],
      [ 3.2442, 0.0012],
      [ 2.6181, 0.0088],
      [ 2.7382, 0.0062],
      [-2.178, 0.0294],
      [ 4.6487, 0. ],
      [ 0.4866, 0.6266],
      [ 7.4775, 0. ]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ',
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)'
```

spreg.ml_lag_regimes — ML Estimation of Spatial Lag Model with Regimes

The spreg.ml_lag_regimes module provides spatial lag model with regimes estimation with maximum likelihood following Anselin (1988).

New in version 1.7. ML Estimation of Spatial Lag Model with Regimes

```
class pysal.spreg.ml_lag_regimes.ML_Lag_Regimes (y,
                                                                               w=None.
                                                                    regimes,
                                                                                           con-
                                                          stant_regi='many',
                                                                                 cols2regi='all',
                                                          method='full',
                                                                                    epsilon=1e-
                                                          07.
                                                                          regime_lag_sep=False,
                                                                                   cores=False,
                                                          regime_err_sep=False,
                                                          spat_diag=False,
                                                                                     vm=False.
                                                                                 name x=None,
                                                          name_y=None,
                                                          name w=None,
                                                                                name ds=None,
                                                          name regimes=None)
```

ML estimation of the spatial lag model with regimes (note no consistency checks, diagnostics or constants added); Anselin (1988) [Anselin 1988]

- y (array) nx1 array for dependent variable
- **x** (array) Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** (list) List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** (['one', 'many']) Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** (*list*, 'all') Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w (Sparse matrix) Spatial weights sparse matrix
- **method** (*string*) if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition
- epsilon (float) tolerance criterion in mimimize_scalar function and inverse_product
- regime_lag_sep (boolean) If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- **cores** (boolean) Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- spat_diag (boolean) if True, include spatial diagnostics
- vm (boolean) if True, include variance-covariance matrix in summary results
- name_y (string) Name of dependent variable for use in output
- name_x (list of strings) Names of independent variables for use in output

- name_w (string) Name of weights matrix for use in output
- name_ds (string) Name of dataset for use in output
- name_regimes (string) Name of regimes variable for use in output

summary

string – Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas

array – (k+1)x1 array of estimated coefficients (rho first)

rho

float – estimate of spatial autoregressive coefficient Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

u

array - nx1 array of residuals

predy

array - nx1 array of predicted y values

n

integer - Number of observations

k

integer – Number of variables for which coefficients are estimated (including the constant, excluding the rho) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

У

array - nx1 array for dependent variable

x

array – Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

method

string – log Jacobian method if 'full': brute force (full matrix computations) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition

epsilon

float – tolerance criterion used in minimize_scalar function and inverse_product

mean_y

float - Mean of dependent variable

std y

float – Standard deviation of dependent variable

vm

array - Variance covariance matrix (k+1 x k+1), all coefficients

vm1

array – Variance covariance matrix (k+2 x k+2), includes sig2 Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

sig2

float – Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

logll

float – maximized log-likelihood (including constant terms) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

aic

float – Akaike information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

schwarz

float – Schwarz criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

predy_e

array – predicted values from reduced form

e_pred

array - prediction errors using reduced form predicted values

pr2

float – Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

pr2_e

float – Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

std err

array – 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

z_stat

list of tuples – z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

name_y

string - Name of dependent variable for use in output

name x

list of strings – Names of independent variables for use in output

name_w

string – Name of weights matrix for use in output

name ds

string - Name of dataset for use in output

name regimes

string – Name of regimes variable for use in output

title

string – Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

regimes

list – List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

constant_regi

['one', 'many'] – Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:

- 'one': a vector of ones is appended to x and held constant across regimes
- •'many': a vector of ones is appended to x and considered different per regime

cols2regi

list, 'all' – Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_lag_sep

boolean – If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

regime_err_sep

boolean - always set to False - kept for compatibility with other regime models

kr

int – Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)

kf

int – Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate

nr

int – Number of different regimes in the 'regimes' list

multi

dictionary – Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

```
>>> import numpy as np
>>> import pysal as ps
>>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
```

Since in this example we are interested in checking whether the results vary by regimes, we use CITCOU to define whether the location is in the city or outside the city (in the county):

```
>>> regimes = db.by_col("CITCOU")
```

Now we can run the regression with all parameters:

```
[ 4.496 ],
      [-0.0318],
      [ 0.35 ],
       [-4.5404],
      [ 3.9219],
       [-0.1702],
       [ 0.8194],
       [ 0.5385]])
>>> "{0:.6f}".format(mllag.rho)
'0.538503'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vml), decimals=4)
array([ 47.42 ,
                    2.3953,
                              0.0051,
                                          0.0648,
                                                     69.6765,
                                                                3.2066,
         0.0116,
                    0.0486,
                              0.004 , 390.7274])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([ 47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
         0.0116,
                 0.0486,
                           0.004])
>>> "{0:.6f}".format (mllag.sig2)
'200.044334'
>>> "{0:.6f}".format(mllag.logll)
'-864.985056'
>>> "{0:.6f}".format(mllag.aic)
'1747.970112'
>>> "{0:.6f}".format(mllag.schwarz)
'1778.136835'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)'
```

spreg.sur — Seeming Unrelated Regression

The spreq.sur module provides SUR estimation.

New in version 1.11. SUR and 3SLS estimation

User class for SUR estimation, both two step as well as iterated

- bigy (dictionary with vector for dependent variable by equation) -
- bigX (dictionary with matrix of explanatory variables by equation) (note, already includes constant term)
- w(spatial weights object, default = None) -
- nonspat_diag (boolean; flag for non-spatial diagnostics, default = True)-
- **spat_diag** (boolean; flag for spatial diagnostics, default = False) -

- iter (boolean; whether or not to use iterated estimation) default = False
- maxiter(integer; maximum iterations; default = 5)-
- epsilon (float; precision criterion to end iterations) default = 0.00001
- **verbose** (boolean; flag to print out iteration number and value) of log det(sig) at the beginning and the end of the iteration
- name_bigy (dictionary with name of dependent variable for each equation) default = None, but should be specified is done when sur_stackxy is used
- name_bigX (dictionary with names of explanatory variables for each) equation default = None, but should be specified is done when sur_stackxy is used
- name_ds(string; name for the data set)-
- name w(string; name for the weights file) -

bigy

dictionary with y values

biqX

dictionary with X values

bigXX

dictionary with X_t'X_r cross-products

bigXy

dictionary with X_t'y_r cross-products

n_eq

number of equations

n

number of observations in each cross-section

bigK

vector with number of explanatory variables (including constant) - for each equation

bols

dictionary with OLS regression coefficients for each equation

olsE

N x n_eq array with OLS residuals for each equation

bSUR

dictionary with SUR regression coefficients for each equation

varb

variance-covariance matrix

sig

Sigma matrix of inter-equation error covariances

ldetS1

log det(Sigma) for SUR model

bigE

n by n_eq array of residuals

sig ols

Sigma matrix for OLS residuals (diagonal)

ldetSO

log det(Sigma) for null model (OLS by equation)

niter

number of iterations (=0 for iter=False)

corr

inter-equation error correlation matrix

llik

log-likelihood (including the constant pi)

sur_inf

dictionary with standard error, asymptotic t and p-value, – one for each equation

1rtest

Likelihood Ratio test on off-diagonal elements of sigma – (tuple with test,df,p-value)

1mtest

Lagrange Multipler test on off-diagonal elements of sigma – (tuple with test,df,p-value)

lmEtest

Lagrange Multiplier test on error spatial autocorrelation in SUR – (tuple with test, df, p-value)

surchow

list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

name_bigy

dictionary with name of dependent variable for each equation

name_bigX

dictionary with names of explanatory variables for each – equation

name_ds

string; name for the data set

name_w

string; name for the weights file

Examples

First import pysal to load the spatial analysis tools.

```
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. In this example, equation 1 has HR80 as dependent variable and PS80 and UE80 as exogenous regressors. For equation 2, HR90 is the dependent variable, and PS90 and UE90 the exogenous regressors.

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
```

Although not required for this method, we can load a weights matrix file to allow for spatial diagnostics.

```
>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'
```

The SUR method requires data to be provided as dictionaries. PySAL provides the tool sur_dictxy to create these dictionaries from the list of variables. The line below will create four dictionaries containing respectively the dependent variables (bigy), the regressors (bigX), the dependent variables' names (bigyvars) and regressors' names (bigXvars). All these will be created from th database (db) and lists of variables (y_var and x_var) created above.

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
```

We can now run the regression and then have a summary of the output by typing: 'print(reg.summary)'

```
>>> reg = SUR(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,spat_diag=True,
→name_ds="nat")
>>> print (reg.summary)
REGRESSION
SUMMARY OF OUTPUT: SEEMINGLY UNRELATED REGRESSIONS (SUR)
_____
Data set
                   nat
                :
Data set : Mac Weights matrix : unknown Number of Equations : 2
                                Number of Observations:
→3085
Log likelihood (SUR): -19902.966
                                       Number of Iterations :
\hookrightarrow 1
SUMMARY OF EQUATION 1
Dependent Variable :
                      HR80
                                        Number of Variables :
Mean dependent var : 6.9276
                                       Degrees of Freedom
→3082
S.D. dependent var :
                      6.8251
         Variable Coefficient
                                  Std.Error
                                              z-Statistic
→Probability
       Constant_1 5.1390718
                                  0.2624673 19.5798587 0.
→0000000
            PS80 0.6776481 0.1219578 5.5564132 0.
→0000000
            UE80 0.2637240 0.0343184 7.6846277 0.
→0000000
SUMMARY OF EQUATION 2
______
Dependent Variable :
                      HR90
                                        Number of Variables :
Mean dependent var : 6.1829
                                        Degrees of Freedom
→3082
```

S.D. dependent	var :	6.6403			
Va →Probability	riable	Coefficient	Std.Error	z-Statistic	<u>.</u>
<pre></pre>	tant_2	3.6139403	0.2534996	14.2561949	0.
	PS90	1.0260715	0.1121662	9.1477755	0.
→0000000 →0000000	UE90	0.3865499	0.0341996	11.3027760	0.
					
REGRESSION DIA	GNOSTICS	TROT.	D.F.	777 T T T T	DDOD
				VALUE	
		LM test on Sigma LR test on Sigma			
OTHER DIAGNOST	ICS - CHOW	TEST			
			DF		PROB
	Const	ant_1, Constant_2			
			1 1	8.241 9.384	0.0041 0.0022
DIAGNOSTICS FO	R SPATIAL	DEPENDENCE			
TEST		DF	VALUE	PROB	
Lagrange Multi	plier (err	or) 2	1333.625	0.0000	
	EQUATION 2 0.469548 1.000000		EPORT_		

class pysal.spreg.sur.ThreeSLS (bigy, bigX, bigyend, bigq, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None)

User class for 3SLS estimation

- bigy (dictionary with vector for dependent variable by equation)-
- bigX (dictionary with matrix of explanatory variables by equation) (note, already includes constant term)
- bigyend (dictionary with matrix of endogenous variables by equation) -
- bigq(dictionary with matrix of instruments by equation) -
- nonspat_diag (boolean; flag for non-spatial diagnostics, default = True)-

- name_bigy (dictionary with name of dependent variable for each equation) default = None, but should be specified is done when sur_stackxy is used
- name_bigX (dictionary with names of explanatory variables for each) - equation default = None, but should be specified is done when sur_stackxy is used
- name_bigyend (dictionary with names of endogenous variables for each) equation default = None, but should be specified is done when sur_stackZ is used
- name_bigq (dictionary with names of instrumental variables for each) equations default = None, but should be specified is done when sur_stackZ is used
- name_ds(string; name for the data set)-

bigy

dictionary with y values

bigZ

dictionary with matrix of exogenous and endogenous variables – for each equation

bigZHZH

dictionary with matrix of cross products Zhat_r'Zhat_s

biqZHy

dictionary with matrix of cross products Zhat_r'y_end_s

n_eq

number of equations

n

number of observations in each cross-section

biqK

vector with number of explanatory variables (including constant, - exogenous and endogenous) for each equation

b2SLS

dictionary with 2SLS regression coefficients for each equation

tslsE

N x n_eq array with OLS residuals for each equation

b3SLS

dictionary with 3SLS regression coefficients for each equation

varb

variance-covariance matrix

sig

Sigma matrix of inter-equation error covariances

bigE

n by n_eq array of residuals

corr

inter-equation 3SLS error correlation matrix

tsls inf

dictionary with standard error, asymptotic t and p-value, - one for each equation

surchow

list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

name ds

string; name for the data set

name bigy

dictionary with name of dependent variable for each equation

name_bigX

dictionary with names of explanatory variables for each – equation

name_bigyend

dictionary with names of endogenous variables for each – equation

name bigg

dictionary with names of instrumental variables for each - equations

Examples

First import pysal to load the spatial analysis tools.

```
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. In this example, equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors, RD80 as endogenous regressor and FP79 as additional instrument. For equation 2, HR90 is the dependent variable, PS90 and UE90 the exogenous regressors, RD90 as endogenous regressor and FP99 as additional instrument

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides two tools to create these dictionaries from the list of variables: sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and additional instruments (q).

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> reg.tsls_inf
{0: array([[ 0.23220853, 29.81916157,
                                         0.
                                                   ],
      [ 0.10373417, 13.77770036,
                                    0.
         0.03086193,
                     0.01601807,
                                    0.98721998],
      [ 0.11131999, 32.18584124,
                                    0.
                                               ]]), 1: array([[ 0.28739415,

→52753638,

                      ],
             0.
      [ 0.09597031, 17.19606554,
                                     0.
                                               ],
         0.04089547, -5.30204786,
                                     0.00000011],
      [
         0.13586789, 28.79638723,
                                     0.
                                               ]])}
```

spreg.sur_error — Spatial Error Seeming Unrelated Regression

The spreg.sur_error module provides SUR estimation for spatial error model

New in version 1.11. Spatial Error SUR estimation

```
class pysal.spreg.sur_error.BaseSURerrorML (bigy, bigX, w, epsilon=1e-07)
Base class for SUR Error estimation by Maximum Likelihood
```

requires: scipy.optimize.minimize_scalar and scipy.optimize.minimize

Parameters

- bigy (dictionary with vectors of dependent variable, one for)— each equation
- \bullet $\mbox{\bf bigX}$ (dictionary with matrices of explanatory variables,) one for each equation
- w(spatial weights object)-
- epsilon (convergence criterion for ML iterations) default 0.0000001

n
number of observations in each cross-section

n2 n/2

n_eq

number of equations

bigy

dictionary with vectors of dependent variable, one for - each equation

bigX

 ${\it dictionary\ with\ matrices\ of\ explanatory\ variables, -one\ for\ each\ equation}$

bigK

 $n_{eq} \times 1$ array with number of explanatory variables – by equation

bigylag

spatially lagged dependent variable

bigXlag

spatially lagged explanatory variable

lamols

spatial autoregressive coefficients from equation by – equation ML-Error estimation

clikerr

concentrated log-likelihood from equation by equation – ML-Error estimation (no constant)

bSUR0

SUR estimation for betas without spatial autocorrelation

llik

log-likelihood for classic SUR estimation (includes constant)

lamsur

spatial autoregressive coefficient in ML SUR Error

bSUR

beta coefficients in ML SUR Error

varb

variance of beta coefficients in ML SUR Error

sig

error variance-covariance matrix in ML SUR Error

corr

error correlation matrix

bigE

n by n_eq matrix of vectors of residuals for each equation

cliksurerr

concentrated log-likelihood from ML SUR Error (no constant)

User class for SUR Error estimation by Maximum Likelihood

- bigy (dictionary with vectors of dependent variable, one for)— each equation
- bigX (dictionary with matrices of explanatory variables,) one for each equation
- w(spatial weights object)-
- epsilon (convergence criterion for ML iterations) default 0.0000001
- nonspat_diag (boolean; flag for non-spatial diagnostics, default = True)-
- **spat_diag** (boolean; flag for spatial diagnostics, default = False) -
- vm (boolean; flag for asymptotic variance for lambda and Sigma,)-default = False

- name_bigy (dictionary with name of dependent variable for each equation) default = None, but should be specified is done when sur_stackxy is used
- name_bigX (dictionary with names of explanatory variables for each) - equation default = None, but should be specified is done when sur_stackxy is used
- name_ds(string; name for the data set)-
- name_w(string; name for the weights file)-

n

number of observations in each cross-section

n2

n/2

n_eq

number of equations

bigy

dictionary with vectors of dependent variable, one for – each equation

biqX

dictionary with matrices of explanatory variables, - one for each equation

biqK

 $n_{eq} x 1 array with number of explanatory variables – by equation$

bigylag

spatially lagged dependent variable

bigXlag

spatially lagged explanatory variable

lamols

spatial autoregressive coefficients from equation by – equation ML-Error estimation

clikerr

 $concentrated\ log-likelihood\ from\ equation\ by\ equation\ -\ ML-Error\ estimation\ (no\ constant)$

bSUR0

SUR estimation for betas without spatial autocorrelation

llik

log-likelihood for classic SUR estimation (includes constant)

lamsur

spatial autoregressive coefficient in ML SUR Error

bSUR

beta coefficients in ML SUR Error

varb

variance of beta coefficients in ML SUR Error

siq

error variance-covariance matrix in ML SUR Error

bigE

n by n_eq matrix of vectors of residuals for each equation

cliksurerr

concentrated log-likelihood from ML SUR Error (no constant)

sur inf

inference for regression coefficients, stand. error, t, p

errllik

log-likelihood for error model without SUR (with constant)

surerrllik

log-likelihood for SUR error model (with constant)

1rtest

likelihood ratio test for off-diagonal Sigma elements

likrlambda

likelihood ratio test on spatial autoregressive coefficients

vm

asymptotic variance matrix for lambda and Sigma (only for vm=True)

lamsetp

inference for lambda, stand. error, t, p (only for vm=True)

lamtest

tuple with test for constancy of lambda across equations – (test value, degrees of freedom, p-value)

joinlam

tuple with test for joint significance of lambda across - equations (test value, degrees of freedom, p-value)

surchow

list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

name_bigy

dictionary with name of dependent variable for each equation

name_bigX

dictionary with names of explanatory variables for each – equation

name_ds

string; name for the data set

name_w

string; name for the weights file

Examples

First import pysal to load the spatial analysis tools.

```
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. Equation 1 has HR80 as dependent variable, and PS80 and UE80 as exogenous regressors. For equation 2, HR90 is the dependent variable, and PS90 and UE90 the exogenous regressors.

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides the tool sur_dictxy to create these dictionaries from the list of variables. The line below will create four dictionaries containing respectively the dependent variables (bigy), the regressors (bigX), the dependent variables' names (bigyvars) and regressors' names (bigXvars). All these will be created from th database (db) and lists of variables (y_var and x_var) created above.

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
```

To run a spatial error model, we need to specify the spatial weights matrix. To do that, we can open an already existing gal file or create a new one. In this example, we will create a new one from NAT.shp and transform it to row-standardized.

```
>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> reg.sur_inf
                                     0.
{0: array([[ 0.36692181, 10.96224141,
                                               ],
      [ 0.14129077, 6.26294579, 0.
                                            ],
      [ 0.04267954, 9.93517021,
                                 0.
                                           ]]), 1: array([[ 0.33139969,
→20106497,
           0.
                     ],
      [ 0.13352591, 8.31094371,
                                 0.
                                            ],
      [ 0.04004097, 11.756878 ,
                                  0.
                                            ]])}
```

spreg.sur_lag — Spatial Lag Seeming Unrelated Regression

The spreg.sur_lag module provides SUR estimation for spatial lag model

New in version 1.11. Spatial Lag SUR estimation

```
class pysal.spreg.sur_lag.SURlagIV (bigy, bigX, bigyend=None, bigq=None, w=None, vm=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None)
```

User class for spatial lag estimation using IV

- bigy (dictionary with vector for dependent variable by equation) -
- bigX (dictionary with matrix of explanatory variables by equation) (note, already includes constant term)
- bigyend (dictionary with matrix of endogenous variables by equation) (optional)
- **bigq** (dictionary with matrix of instruments by equation) (optional)
- w(spatial weights object, required) -
- vm (boolean) listing of full variance-covariance matrix, default = False
- w_lags (integer) order of spatial lags for WX instruments, default = 1
- lag_q (boolean) flag to apply spatial lag to other instruments, default = True
- nonspat_diag (boolean; flag for non-spatial diagnostics, default = True)-
- **spat_diag** (boolean; flag for spatial diagnostics, default = False)-
- name_bigy (dictionary with name of dependent variable for each equation) default = None, but should be specified is done when sur_stackxy is used
- name_bigX (dictionary with names of explanatory variables for each) - equation default = None, but should be specified is done when sur_stackxy is used
- name_bigyend (dictionary with names of endogenous variables for each) equation default = None, but should be spedified is done when sur_stackZ is used
- name_bigq (dictionary with names of instrumental variables for each) equations default = None, but should be specified is done when sur_stackZ is used
- name_ds(string; name for the data set)-
- name_w(string; name for the spatial weights)-

W

spatial weights object

bigy

dictionary with y values

bigZ

dictionary with matrix of exogenous and endogenous variables - for each equation

bigyend

dictionary with matrix of endogenous variables for each – equation; contains Wy only if no other endogenous specified

bigq

dictionary with matrix of instrumental variables for each - equation; contains WX only if no other endogenous specified

bigZHZH

dictionary with matrix of cross products Zhat_r'Zhat_s

bigZHy

dictionary with matrix of cross products Zhat_r'y_end_s

n_eq

number of equations

n

number of observations in each cross-section

bigK

vector with number of explanatory variables (including constant, – exogenous and endogenous) for each equation

b2SLS

dictionary with 2SLS regression coefficients for each equation

tslsE

N x n_eq array with OLS residuals for each equation

b3SLS

dictionary with 3SLS regression coefficients for each equation

varb

variance-covariance matrix

sig

Sigma matrix of inter-equation error covariances

resids

n by n_eq array of residuals

corr

inter-equation 3SLS error correlation matrix

tsls_inf

dictionary with standard error, asymptotic t and p-value, - one for each equation

joinrho

test on joint significance of spatial autoregressive coefficient – tuple with test statistic, degrees of freedom, p-value

surchow

list with tuples for Chow test on regression coefficients – each tuple contains test value, degrees of freedom, p-value

name w

string; name for the spatial weights

name_ds

string; name for the data set

name_bigy

dictionary with name of dependent variable for each equation

name_bigX

dictionary with names of explanatory variables for each – equation

name_bigyend

dictionary with names of endogenous variables for each – equation

name bigg

dictionary with names of instrumental variables for each – equations

Examples

First import pysal to load the spatial analysis tools.

```
>>> import pysal
```

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format.

```
>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')
```

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. Although not required, in this example we will specify additional endogenous regressors. Equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors, RD80 as endogenous regressor and FP79 as additional instrument. For equation 2, HR90 is the dependent variable, PS90 and UE90 the exogenous regressors, RD90 as endogenous regressor and FP99 as additional instrument

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides two tools to create these dictionaries from the list of variables: sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and additional instruments (q).

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)
```

To run a spatial lag model, we need to specify the spatial weights matrix. To do that, we can open an already existing gal file or create a new one. In this example, we will create a new one from NAT.shp and transform it to row-standardized.

```
>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> reg.tsls_inf
{0: array([[ 0.49128435, 14.15620899,
                                                  ],
      [ 0.11516292, 12.50787151,
                                   0.
      [ 0.03204088, -0.2409087,
                                   0.80962588],
      [ 0.1876025 , 19.45875745,
                                   0.
                                              ],
      [ 0.05450628,
                     0.06653605,
                                   0.94695106]]), 1: array([[ 0.44969956,
                                                                           12.
47726211,
             0.
                      ],
      [ 0.10440241, 13.28674277,
                                    0.
                                              ],
                                    0.00018577],
        0.04150243, -3.73761961,
      [ 0.19133145, 16.66451427,
                                    0.
                                              ],
         0.04394024,
                      5.87893596,
                                    0.
                                              ]])}
```

pysal.weights — Spatial Weights

pysal.weights — Spatial weights matrices

The weights Spatial weights for PySAL

New in version 1.0. Weights.

```
 \begin{array}{c} \textbf{class} \text{ pysal.weights.weights.weights.weights.}, & \textit{weights=None}, & \textit{id\_order=None}, \\ & \textit{silent\_island\_warning=False}, \textit{ids=None}) \\ & \text{Spatial weights.} \end{array}
```

Parameters

- **neighbors** (*dictionary*) key is region ID, value is a list of neighbor IDS Example: {'a':['b'],'b':['a','c'],'c':['b']}
- weights (dictionary) key is region ID, value is a list of edge weights If not supplied all edge weights are assumed to have a weight of 1. Example: {'a':[0.5],'b':[0.5,1.5],'c':[1.5]}
- id_order (list) An ordered list of ids, defines the order of observations when iterating over W if not set, lexicographical ordering is used to iterate and the id_order_set property will return False. This can be set after creation by setting the 'id_order' property.
- **silent_island_warning** (boolean) By default PySAL will print a warning if the dataset contains any disconnected observations or islands. To silence this warning set this parameter to True.
- ids (list) values to use for keys of the neighbors and weights dicts

```
asymmetries
list - of

cardinalities
dictionary - of

diagW2
array - of

diagWtW
array - of

diagWtW_WW
array - of
```

```
histogram
     dictionary - of
id2i
     dictionary - of
id order
     list - of
id_order_set
     boolean - True if
islands
     list - of
max_neighbors
     int - maximum number of neighbors
mean_neighbors
     int – mean number of neighbors
min_neighbors
     int – minimum neighbor count
n
     int - of
neighbor_offsets
    list – ids of neighbors to a region in id_order
nonzero
     int – Number of non-zero entries
pct_nonzero
    float - Percentage of nonzero neighbor counts
s0
    float - of
s1
    float - of
s2
    float - of
s2array
     array - of
sd
    float - of
sparse
     sparse_matrix - SciPy sparse matrix instance
trcW2
    float - of
trcWtW
    float - of
trcWtW_WW
    float - of
```

transform

string - of

Examples

```
>>> from pysal import W, lat2W
>>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 4], 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
>>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1], 4: [1, 1, 1], 4: [1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]}
>>> w = W(neighbors, weights)
>>> "%.3f"%w.pct_nonzero
'29.630'
```

Read from external gal file

```
>>> import pysal
>>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
>>> w.n
78
>>> "%.3f"%w.pct_nonzero
'6.542'
```

Set weights implicitly

```
>>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
>>> w = W(neighbors)
>>> round(w.pct_nonzero,3)
29.63
>>> w = lat2W(100, 100)
>>> w.trcW2
39600.0
>>> w.trcWtW
39600.0
>>> w.transform='r'
>>> round(w.trcW2, 3)
2530.722
>>> round(w.trcWtW, 3)
```

Cardinality Histogram

```
>>> w=pysal.rook_from_shapefile(pysal.examples.get_path("sacramentot2.shp"))
>>> w.histogram
[(1, 1), (2, 6), (3, 33), (4, 103), (5, 114), (6, 73), (7, 35), (8, 17), (9, 9),
_ (10, 4), (11, 4), (12, 3), (13, 0), (14, 1)]
```

Disconnected observations (islands)

```
>>> w = pysal.W({1:[0],0:[1],2:[], 3:[]})
WARNING: there are 2 disconnected observations
Island ids: [2, 3]
```

asymmetries

List of id pairs with asymmetric weights.

```
Asymmetry (intrinsic=True)
Asymmetry check.

Parameters intrinsic (boolean) – default=True

intrinsic symmetry: w_{i,j} == w_{j,i}

if intrisic is False: symmetry is defined as i \in N_j AND j \in N_i where N_j is the set of neighbors for j.

Returns asymmetries – empty if no asymmetries are found if asymmetries, then a list of (i,j) tuples is returned

Return type list
```

```
>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, ...)
\hookrightarrow6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7),
\hookrightarrow (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W (neighbors, weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]
```

cardinalities

Number of neighbors for each observation.

diagW2

Diagonal of WW.

See also:

trcW2

diagWtW

Diagonal of W'W.

See also:

trcWtW

diagWtW_WW

Diagonal of W'W + WW.

full()

Generate a full numpy array.

Returns implicit – first element being the full numpy array and second element keys being the ids associated with each row in the array.

Return type tuple

See also:

ful1

get_transform()

Getter for transform property.

Returns transformation

Return type string (or none)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

histogram

Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit.

id2i

Dictionary where the key is an ID and the value is that ID's index in W.id_order.

id_order

Returns the ids for the observations in the order in which they would be encountered if iterating over the weights.

id_order_set

Returns True if user has set id_order, False if not.

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True
```

islands

List of ids without any neighbors.

max_neighbors

Largest number of neighbors.

mean_neighbors

Average number of neighbors.

min_neighbors

Minimum number of neighbors.

n

Number of units.

neighbor_offsets

Given the current id_order, neighbor_offsets[id] is the offsets of the id's neighbors in id_order.

Returns offsets of the id's neighbors in id_order

Return type list

Examples

```
>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors, weights)
>>> w.id_order = ['a', 'b', 'c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b', 'a', 'c']
>>> w.neighbor_offsets['b']
[2, 1]
```

nonzero

Number of nonzero weights.

pct_nonzero

Percentage of nonzero weights.

remap_ids (new_ids)

In place modification throughout W of id values from w.id_order to new_ids in all

•••

Parameters new_ids (list) – /ndarray Aligned list of new ids to be inserted. Note that first element of new_ids will replace first element of w.id_order, second element of new_ids replaces second element of w.id_order and so on.

```
>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']
```

s0

s0 is defined as

$$s0 = \sum_{i} \sum_{j} w_{i,j}$$

s1

s1 is defined as

$$s1 = 1/2 \sum_{i} \sum_{j} (w_{i,j} + w_{j,i})^2$$

s2

s2 is defined as

$$s2 = \sum_{j} (\sum_{i} w_{i,j} + \sum_{i} w_{j,i})^{2}$$

s2array

Individual elements comprising s2.

See also:

s2

sd

Standard deviation of number of neighbors.

set_shapefile (shapefile, idVariable=None, full=False)

Adding meta data for writing headers of gal and gwt files.

Parameters

- shapefile (string) shapefile name used to construct weights
- idVariable (string) name of attribute in shapefile to associate with ids in the weights
- **full** (boolean) True write out entire path for shapefile, False (default) only base of shapefile without extension

set_transform(value='B')

Transformations of weights.

Notes

Transformations are applied only to the value of the weights at instantiation. Chaining of transformations cannot be done on a W instance.

Parameters transform (string) – not case sensitive)

:param .. table::: :widths: auto

transform string	value
В	Binary
R	Row-standardization (global sum=n)
D	Double-standardization (global sum=1)
V	Variance stabilizing
0	Restore original transformation (from instantiation)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'0'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

sparse

Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be used. This is based on scipy.sparse.

to WSP()

Generate a WSP object.

Returns implicit - Thin W class

Return type pysal.WSP

```
3
>>> wsp.s0
4
```

See also:

WSP

towsp()

Generate a WSP object.

Returns implicit - Thin W class

Return type pysal.WSP

Examples

See also:

WSP

transform

Getter for transform property.

Returns transformation

Return type string (or none)

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'0'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

```
trcW2
          Trace of WW.
          See also:
          diagW2
     trcWtW
          Trace of W'W.
          See also:
          diagWtW
     trcWtW_WW
          Trace of W'W + WW.
class pysal.weights.weights.wsp (sparse, id_order=None)
     Thin W class for spreg.
          Parameters
                • sparse (sparse_matrix) – NxN object from scipy.sparse
                • id_order (list) - An ordered list of ids, assumed to match the ordering in sparse.
     n
          int - description
     s0
         float – description
     trcWtW_WW
         float - description
```

From GAL information

```
>>> import scipy.sparse
>>> import pysal
>>> rows = [0, 1, 1, 2, 2, 3]
>>> cols = [1, 0, 2, 1, 3, 3]
>>> weights = [1, 0.75, 0.25, 0.9, 0.1, 1]
>>> sparse = scipy.sparse.csr_matrix((weights, (rows, cols)), shape=(4,4))
>>> w = pysal.weights.WSP(sparse)
>>> w.s0
4.0
>>> w.trcWtW_WW
6.394999999999996
>>> w.n
```

diagWtW_WW

Diagonal of W'W + WW.

${\bf classmethod\ from_W}\,(W)$

Constructs a WSP object from the W's sparse matrix

Parameters W (pysal.weights.W) – a pysal weights object with a sparse form and ids

Returns

Return type a WSP instance

s0

s0 is defined as -

$$s0 = \sum_{i} \sum_{j} w_{i,j}$$

to_W (silent_island_warning=True)

Construct a W object from the WSP's sparse matrix

Parameters silence_island_warning (bool) – a flag governing whether to state when islands are encountered.

trcWtW WW

Trace of W'W + WW.

weights.util — Utility functions on spatial weights

The weights.util module provides utility functions on spatial weights.. versionadded:: 1.0

pysal.weights.util.lat2W(nrows=5, ncols=5, rook=True, id_type='int')
 Create a W object for a regular lattice.

Parameters

- **nrows** (*int*) number of rows
- ncols (int) number of columns
- rook (boolean) type of contiguity. Default is rook. For queen, rook =False
- id_type (string) string defining the type of IDs to use in the final W object; options are 'int' (0, 1, 2 ...; default), 'float' (0.0, 1.0, 2.0, ...) and 'string' ('id0', 'id1', 'id2', ...)

Returns w – instance of spatial weights class W

Return type W

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on.

```
>>> from pysal import lat2W

>>> w9 = lat2W(3,3)

>>> "%.3f"%w9.pct_nonzero

'29.630'

>>> w9[0]

{1: 1.0, 3: 1.0}

>>> w9[3]

{0: 1.0, 4: 1.0, 6: 1.0}

>>>
```

```
pysal.weights.util.block_weights (regimes, ids=None, sparse=False)
    Construct spatial weights for regime neighbors.
```

Block contiguity structures are relevant when defining neighbor relations based on membership in a regime. For example, all counties belonging to the same state could be defined as neighbors, in an analysis of all counties in the US.

Parameters

- regimes (list, array) ids of which regime an observation belongs to
- ids (list, array) Ordered sequence of IDs for the observations
- sparse (boolean) If True return WSP instance If False return W instance

Returns W

Return type spatial weights instance

Examples

```
>>> from pysal import block_weights
>>> import numpy as np
>>> regimes = np.ones(25)
>>> regimes[range(10,20)] = 2
>>> regimes[range(21,25)] = 3
>>> regimes
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2.,
       2., 2., 2., 2., 2.,
                            2., 2., 1., 3., 3., 3., 3.])
>>> w = block_weights(regimes)
>>> w.weights[0]
>>> w.neighbors[0]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
>>> regimes = ['n','n','s','s','e','e','w','w','e']
>>> n = len(regimes)
>>> w = block_weights(regimes)
>>> w.neighbors
{0: [1], 1: [0], 2: [3], 3: [2], 4: [5, 8], 5: [4, 8], 6: [7], 7: [6], 8: [4, 5]}
```

pysal.weights.util.comb (items, n=None)

Combinations of size n taken from items

Parameters

- items (list) items to be drawn from
- n (integer) size of combinations to take from items

Returns implicit – combinations of size n taken from items

Return type generator

```
>>> x = range(4)
>>> for c in comb(x, 2):
... print c
...
```

```
[0, 1]

[0, 2]

[0, 3]

[1, 2]

[1, 3]

[2, 3]
```

```
pysal.weights.util.order(w, kmax=3)
```

Determine the non-redundant order of contiguity up to a specific order.

Parameters

- w (W) spatial weights object
- kmax (int) maximum order of contiguity

Returns info – observation id is the key, value is a list of contiguity orders with a negative 1 in the ith position

Return type dictionary

Notes

Implements the algorithm in Anselin and Smirnov (1996) [Anselin1996b]

Examples

```
>>> from pysal import rook_from_shapefile as rfs
>>> w = rfs(pysal.examples.get_path('10740.shp'))
WARNING: there is one disconnected observation (no neighbors)
Island id: [163]
>>> w3 = order(w, kmax = 3)
>>> w3[1][0:5]
[1, -1, 1, 2, 1]
```

pysal.weights.util.higher_order(w, k=2)

Contiguity weights object of order k.

Parameters

- w (W) spatial weights object
- **k** (*int*) order of contiguity

Returns implicit – spatial weights object

Return type W

Notes

Proper higher order neighbors are returned such that i and j are k-order neighbors iff the shortest path from i-j is of length k.

```
>>> from pysal import lat2W, higher_order
>>> w10 = lat2W(10, 10)
>>> w10_2 = higher_order(w10, 2)
>>> w10_2[0]
{2: 1.0, 11: 1.0, 20: 1.0}
>>> w5 = lat2W()
>>> w5[0]
{1: 1.0, 5: 1.0}
>>> w5[1]
{0: 1.0, 2: 1.0, 6: 1.0}
>>> w5_2 = higher_order(w5,2)
>>> w5_2[0]
{10: 1.0, 2: 1.0, 6: 1.0}
```

pysal.weights.util.shimbel(w)

Find the Shimbel matrix for first order contiguity matrix.

Parameters w (₩) – spatial weights object

Returns info – list of lists; one list for each observation which stores the shortest order between it and each of the the other observations.

Return type list

Examples

```
>>> from pysal import lat2W, shimbel
>>> w5 = lat2W()
>>> w5_shimbel = shimbel(w5)
>>> w5_shimbel[0][24]
8
>>> w5_shimbel[0][0:4]
[-1, 1, 2, 3]
>>>
```

pysal.weights.util.remap_ids(w, old2new, id_order=[])

Remaps the IDs in a spatial weights object.

Parameters

- w (W) Spatial weights object
- old2new (dictionary) Dictionary where the keys are the IDs in w (i.e. "old IDs") and the values are the IDs to replace them (i.e. "new IDs")
- id_order (list) An ordered list of new IDs, which defines the order of observations when iterating over W. If not set then the id_order in w will be used.

Returns implicit – Spatial weights object with new IDs

Return type W

```
>>> from pysal import lat2W, remap_ids
>>> w = lat2W(3,2)
>>> w.id_order
[0, 1, 2, 3, 4, 5]
>>> w.neighbors[0]
[2, 1]
>>> old_to_new = {0:'a', 1:'b', 2:'c', 3:'d', 4:'e', 5:'f'}
>>> w_new = remap_ids(w, old_to_new)
>>> w_new.id_order
['a', 'b', 'c', 'd', 'e', 'f']
>>> w_new.neighbors['a']
['c', 'b']
```

pysal.weights.util.full2W(m, ids=None)

Create a PySAL W object from a full array.

Parameters

- m (array) nxn array with the full weights matrix
- ids (list) User ids assumed to be aligned with m

Returns w – PySAL weights object

Return type W

Examples

```
>>> import pysal as ps
>>> import numpy as np
```

Create an array of zeros

```
>>> a = np.zeros((4, 4))
```

For loop to fill it with random numbers

```
>>> for i in range(len(a)):
...     for j in range(len(a[i])):
...         if i!=j:
...         a[i, j] = np.random.random(1)
```

Create W object

Create list of user ids

```
>>> ids = ['myID0', 'myID1', 'myID2', 'myID3']
>>> w = ps.weights.util.full2W(a, ids=ids)
```

pysal.weights.util.full(w)

Generate a full numpy array.

Parameters w (₩) – spatial weights object

Returns (**fullw**, **keys**) – first element being the full numpy array and second element keys being the ids associated with each row in the array.

Return type tuple

Examples

pysal.weights.util.WSP2W(wsp, silent island warning=False)

Convert a pysal WSP object (thin weights matrix) to a pysal W object.

Parameters

- wsp (WSP) PySAL sparse weights object
- **silent_island_warning** (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns w – PySAL weights object

Return type W

Examples

```
>>> import pysal
```

Build a 10x10 scipy.sparse matrix for a rectangular 2x5 region of cells (rook contiguity), then construct a PySAL sparse weights object (wsp).

```
>>> sp = pysal.weights.lat2SW(2, 5)
>>> wsp = pysal.weights.WSP(sp)
>>> wsp.n
10
>>> print wsp.sparse[0].todense()
[[0 1 0 0 0 1 0 0 0 0]]
```

Convert this sparse weights object to a standard PySAL weights object.

```
>>> w = pysal.weights.WSP2W(wsp)
>>> w.n
10
>>> print w.full()[0][0]
[ 0. 1. 0. 0. 0. 1. 0. 0. 0. 0.]
```

pysal.weights.util.get_ids (shapefile, idVariable)

Gets the IDs from the DBF file that moves with a given shape file.

Parameters

- **shapefile** (*string*) name of a shape file including suffix
- idVariable (string) name of a column in the shapefile's DBF to use for ids

Returns ids – a list of IDs

Return type list

Examples

```
>>> from pysal.weights.util import get_ids
>>> polyids = get_ids(pysal.examples.get_path("columbus.shp"), "POLYID")
>>> polyids[:5]
[1, 2, 3, 4, 5]
```

pysal.weights.util.get_points_array_from_shapefile(shapefile)

Gets a data array of x and y coordinates from a given shapefile.

Parameters shapefile (string) – name of a shape file including suffix

Returns points -(n, 2) a data array of x and y coordinates

Return type array

Notes

If the given shape file includes polygons, this function returns x and y coordinates of the polygons' centroids

Examples

Point shapefile

```
>>> from pysal.weights.util import get_points_array_from_shapefile
>>> xy = get_points_array_from_shapefile(pysal.examples.get_path('juvenile.shp'))
>>> xy[:3]
array([[ 94., 93.],
       [ 80., 95.],
       [ 79., 90.]])
```

Polygon shapefile

pysal.weights.util.min_threshold_distance(data, p=2)

Get the maximum nearest neighbor distance.

Parameters

- data (array) (n,k) or KDTree where KDtree.data is array (n,k) n observations on k attributes
- **p** (*float*) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance

Returns nnd – maximum nearest neighbor distance between the n observations

Return type float

Examples

```
>>> from pysal.weights.util import min_threshold_distance
>>> import numpy as np
>>> x, y = np.indices((5, 5))
>>> x.shape = (25, 1)
>>> y.shape = (25, 1)
>>> data = np.hstack([x, y])
>>> min_threshold_distance(data)
1.0
```

 $\verb|pysal.weights.util.lat2SW| (nrows=3, ncols=5, criterion='rook', row_st=False)| \\$

Create a sparse W matrix for a regular lattice.

Parameters

- nrows (int) number of rows
- ncols (int) number of columns
- rook ({"rook", "queen", "bishop"}) type of contiguity. Default is rook.
- row_st (boolean) If True, the created sparse W object is row-standardized so every row sums up to one. Defaults to False.

Returns w – instance of a scipy sparse matrix

Return type scipy.sparse.dia_matrix

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on. This method directly creates the W matrix using the strucuture of the contiguity type.

```
pysal.weights.util.w_local_cluster(w)
```

Local clustering coefficients for each unit as a node in a graph. [ws]

Parameters w (W) – spatial weights object

Returns \mathbf{c} – (w.n,1) local clustering coefficients

Return type array

Notes

The local clustering coefficient c_i quantifies how close the neighbors of observation i are to being a clique:

$$c_i = |\{w_{i,k}\}|/(k_i(k_i-1)): j, k \in N_i$$

where N_i is the set of neighbors to i, $k_i = |N_i|$ and $\{w_{j,k}\}$ is the set of non-zero elements of the weights between pairs in N_i . [Watts1998]

Examples

```
>>> w = pysal.lat2W(3,3, rook=False)
>>> w_local_cluster(w)
array([[ 1.
                   ],
       [ 0.6
                    ],
       f 1.
                    ],
       [ 0.6
       [ 0.42857143],
       [ 0.6
       [ 1.
                    ],
       [ 0.6
                    ],
       [ 1.
                    11)
```

pysal.weights.util.higher_order_sp (w, k=2, $shortest_path=True$, diagonal=False) Contiguity weights for either a sparse W or pysal.weights.W for order k.

Parameters

- w (₩) sparse_matrix, spatial weights object or scipy.sparse.csr.csr_instance
- **k** (*int*) Order of contiguity
- **shortest_path** (boolean) True: i,j and k-order neighbors if the shortest path for i,j is k False: i,j are k-order neighbors if there is a path from i,j of length k

• diagonal (boolean) - True: keep k-order (i,j) joins when i==j False: remove k-order (i,j) joins when i==j

Returns wk – WSP, type matches type of w argument

Return type W

Notes

Lower order contiguities are removed.

Examples

```
>>> import pysal
>>> w25 = pysal.lat2W(5,5)
>>> w25.n
25
>>> w25[0]
{1: 1.0, 5: 1.0}
>>> w25_2 = pysal.weights.util.higher_order_sp(w25, 2)
>>> w25_2[0]
{10: 1.0, 2: 1.0, 6: 1.0}
>>> w25_2 = pysal.weights.util.higher_order_sp(w25, 2, diagonal=True)
>>> w25_2[0]
{0: 1.0, 10: 1.0, 2: 1.0, 6: 1.0}
>>> w25_3 = pysal.weights.util.higher_order_sp(w25, 3)
>>> w25_3[0]
{15: 1.0, 3: 1.0, 11: 1.0, 7: 1.0}
>>> w25_3 = pysal.weights.util.higher_order_sp(w25, 3, shortest_path=False)
>>> w25_3[0]
{1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0, 11: 1.0, 15: 1.0}
```

pysal.weights.util.hexLat2W(nrows=5, ncols=5)

Create a W object for a hexagonal lattice.

Parameters

- nrows (int) number of rows
- ncols (int) number of columns

Returns w – instance of spatial weights class W

Return type W

Notes

Observations are row ordered: first k observations are in row 0, next k in row 1, and so on.

Construction is based on shifting every other column of a regular lattice down 1/2 of a cell.

```
>>> import pysal as ps
>>> w = ps.lat2W()
>>> w.neighbors[1]
[0, 6, 2]
>>> w.neighbors[21]
[16, 20, 22]
>>> wh = ps.hexLat2W()
>>> wh.neighbors[1]
[0, 6, 2, 5, 7]
>>> wh.neighbors[21]
[16, 20, 22]
>>> wh.neighbors[21]
```

```
pysal.weights.util.regime_weights(regimes)
```

Construct spatial weights for regime neighbors.

Block contiguity structures are relevant when defining neighbor relations based on membership in a regime. For example, all counties belonging to the same state could be defined as neighbors, in an analysis of all counties in the US.

Parameters regimes (array, list) - ids of which regime an observation belongs to

Returns W

Return type spatial weights instance

Examples

```
>>> from pysal import regime_weights
>>> import numpy as np
>>> regimes = np.ones(25)
>>> regimes[range(10,20)] = 2
>>> regimes[range(21,25)] = 3
>>> regimes
array([ 1., 1., 1., 1., 1., 1., 1., 1., 2., 2.,
       2., 2., 2., 2., 2.,
                             2., 2., 1., 3., 3., 3.,
>>> w = regime_weights(regimes)
PendingDepricationWarning: regime_weights will be renamed to block_weights in_
→PySAL 2.0
>>> w.weights[0]
>>> w.neighbors[0]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
>>> regimes = ['n','n','s','s','e','e','w','w','e']
>>> n = len(regimes)
>>> w = regime_weights(regimes)
PendingDepricationWarning: regime_weights will be renamed to block_weights in...
→PySAL 2.0
>>> w.neighbors
\{0: [1], 1: [0], 2: [3], 3: [2], 4: [5, 8], 5: [4, 8], 6: [7], 7: [6], 8: [4, 5]\}
```

Notes

regime_weights will be deprecated in PySAL 2.0 and renamed to block_weights.

weights.user — Convenience functions for spatial weights

The weights.user module provides convenience functions for spatial weights..versionadded:: 1.0 Convenience functions for the construction of spatial weights based on contiguity and distance criteria.

```
pysal.weights.user.queen_from_shapefile (shapefile, idVariable=None, sparse=False)
Queen contiguity weights from a polygon shapefile.
```

Parameters

- **shapefile** (*string*) name of polygon shapefile including suffix.
- idVariable (string) name of a column in the shapefile's DBF to use for ids.
- sparse (boolean) If True return WSP instance If False return W instance

Returns w – instance of spatial weights

Return type W

Examples

```
>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"),"POLYID")
>>> "%.3f"%wq.pct_nonzero
'9.829'
>>> wq=queen_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wq.sparse.nnz *1. / wq.n**2
>>> "%.3f"%pct_sp
'0.098'
```

Notes

Queen contiguity defines as neighbors any pair of polygons that share at least one vertex in their polygon definitions.

See also:

```
pysal.weights.W
```

pysal.weights.user.rook_from_shapefile(shapefile, idVariable=None, sparse=False)
Rook contiguity weights from a polygon shapefile.

Parameters

- **shapefile** (*string*) name of polygon shapefile including suffix.
- idVariable (string) name of a column in the shapefile's DBF to use for ids
- sparse (boolean) If True return WSP instance If False return W instance

Returns w – instance of spatial weights

Return type W

```
>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), "POLYID")
>>> "%.3f"%wr.pct_nonzero
'8.330'
>>> wr=rook_from_shapefile(pysal.examples.get_path("columbus.shp"), sparse=True)
>>> pct_sp = wr.sparse.nnz *1. / wr.n**2
>>> "%.3f"%pct_sp
'0.083'
```

Notes

Rook contiguity defines as neighbors any pair of polygons that share a common edge in their polygon definitions.

See also:

```
pysal.weights.W

pysal.weights.user.knnW_from_array(array, k=2, p=2, ids=None, radius=None)
    Nearest neighbor weights from a numpy array.
```

Parameters

- data (array) (n,m) attribute data, n observations on m attributes
- **k** (*int*) number of nearest neighbors
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- ids (list) identifiers to attach to each observation
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance; Weights object with binary weights.

Return type W

```
>>> import numpy as np
>>> x,y=np.indices((5,5))
>>> x.shape=(25,1)
>>> y.shape=(25,1)
>>> data=np.hstack([x,y])
>>> wnn2=knnW_from_array(data,k=2)
>>> wnn4=knnW_from_array(data,k=4)
>>> set([1, 5, 6, 2]) == set(wnn4.neighbors[0])
True
>>> set([0, 1, 10, 6]) == set(wnn4.neighbors[5])
True
>>> set([1, 5]) == set(wnn2.neighbors[0])
True
>>> set([0, 6]) == set(wnn2.neighbors[5])
True
>>> set([0, 6]) == set(wnn2.neighbors[5])
```

```
>>> wnn4.pct_nonzero
16.0
>>> wnn4=knnW_from_array(data, k=4)
>>> set([ 1,5,6,2]) == set(wnn4.neighbors[0])
True
```

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also:

```
pysal.weights.W
```

```
pysal.weights.user.knnW_from_shapefile(shapefile, k=2, p=2, idVariable=None, radius=None)
```

Nearest neighbor weights from a shapefile.

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- **k** (*int*) number of nearest neighbors
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- idVariable (string) name of a column in the shapefile's DBF to use for ids
- **radius** (*float*) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance; Weights object with binary weights

Return type W

Examples

Polygon shapefile

```
>>> wc=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.4f"%wc.pct_nonzero
'4.0816'
>>> set([2,1]) == set(wc.neighbors[0])
True
>>> wc3=pysal.knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3)
>>> set(wc3.neighbors[0]) == set([2,1,3])
True
>>> set(wc3.neighbors[2]) == set([4,3,0])
True
```

1 offset rather than 0 offset

```
>>> set([4,1,8]) == set(wc3_1.neighbors[2])
True
```

Point shapefile

```
>>> w=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"))
>>> w.pct_nonzero
1.1904761904761905
>>> w1=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"),k=1)
>>> "%.3f"%w1.pct_nonzero
'0.595'
>>>
```

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

Ties between neighbors of equal distance are arbitrarily broken.

See also:

```
pysal.weights.W
```

pysal.weights.user.threshold_binaryW_from_array (array, threshold, p=2, radius=None) Binary weights based on a distance threshold.

Parameters

- array (array) (n,m) attribute data, n observations on m attributes
- threshold (float) distance band
- **p** (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance Weights object with binary weights

Return type W

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3, ], 2: [], 3: [1, 0], 4: [5], 5: [4]})
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w=threshold_binaryW_from_array(points,threshold=11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True
```

```
>>>
```

pysal.weights.user.threshold_binaryW_from_shapefile (shapefile, threshold, p=2, idVariable=None, radius=None)

Threshold distance based binary weights from a shapefile.

Parameters

- **shapefile** (*string*) **shapefile** name with shp suffix
- threshold (float) distance band
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- idVariable (string) name of a column in the shapefile's DBF to use for ids
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance Weights object with binary weights

Return type W

Examples

```
>>> w = threshold_binaryW_from_shapefile(pysal.examples.get_path("columbus.shp"),

$\to 0.62, idVariable="POLYID")$
>>> w.weights[1]
[1, 1]
```

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

```
pysal.weights.user.threshold_continuousW_from_array(array, threshold, p=2, alpha=-1, radius=None)
```

Continuous weights based on a distance threshold.

Parameters

- array (array) (n,m) attribute data, n observations on m attributes
- threshold (float) distance band
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- **alpha** (*float*) distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance.
- radius (If supplied arc_distances will be calculated) based on the given radius. p will be ignored.

Returns w – instance; Weights object with continuous weights.

Return type W

inverse distance weights

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wid=threshold_continuousW_from_array(points,11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> wid.weights[0]
[0.1000000000000001, 0.089442719099991588]
```

gravity weights

```
>>> wid2=threshold_continuousW_from_array(points,11.2,alpha=-2.0)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> wid2.weights[0]
[0.01, 0.00799999999999999984]
```

```
pysal.weights.user.threshold_continuousW_from_shapefile (shapefile, threshold, p=2, alpha=-1, id-Variable=None, radius=None)
```

Threshold distance based continuous weights from a shapefile.

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- threshold (float) distance band
- **p** (*float*) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- **alpha** (float) distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance.
- idVariable (string) name of a column in the shapefile's DBF to use for ids
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance; Weights object with continuous weights.

Return type W

Examples

```
>>> w = threshold_continuousW_from_shapefile(pysal.examples.get_path("columbus.shp \( \dots\)'),0.62,idVariable="POLYID")
>>> w.weights[1]
[1.6702346893743334, 1.7250729841938093]
```

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

pysal.weights.user.kernelW(points, k=2, function='triangular', fixed=True, radius=None, diagonal=False)

Kernel based weights.

Parameters

- points (array) (n,k) n observations on k characteristics used to measure distances between the n objects
- \mathbf{k} (int) the number of nearest neighbors to use for determining bandwidth. Bandwidth taken as $h_i = max(dknn) \forall i$ where dknn is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation).
- function ({'triangular', 'uniform', 'quadratic', 'epanechnikov', 'quartic', 'bisquare', 'gaussian'})-

$$z_{i,j} = d_{i,j}/h_i$$

triangular

$$K(z) = (1 - |z|) if|z| \le 1$$

uniform

$$K(z) = |z| if|z| \le 1$$

quadratic

$$K(z) = (3/4)(1 - z^2) if|z| \le 1$$

epanechnikov

$$K(z) = (1 - z^2) if|z| \le 1$$

quartic

$$K(z) = (15/16)(1-z^2)^2 if|z| < 1$$

bisquare

$$K(z) = (1 - z^2)^2 if|z| \le 1$$

gaussian

$$K(z) = (2\pi)^{(-1/2)} exp(-z^2/2)$$

- **fixed** (boolean) If true then $h_i = h \forall i$. If false then bandwidth is adaptive across observations.
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.
- **diagonal** (boolean) If true, set diagonal weights = 1.0, if false (default) diagonal weights are set to value according to kernel function.

Returns w – instance of spatial weights

Return type W

use different k

Diagonals to 1.0

```
>>> kg = kernelW(points,function='gaussian')
>>> kg.weights
{0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.
→35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758,...
→0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.
\rightarrow 31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.
\rightarrow 3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.
→31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327,...
→0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.
→39894228040143271}
>>> kqd = kernelW(points, function='gaussian', diagonal=True)
>>> kqd.weights
{0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0,...
\rightarrow 0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.
→2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.
\rightarrow 3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.
\hookrightarrow 31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.
→35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]}
```

pysal.weights.user.kernelW_from_shapefile(shapefile, k=2, function='triangular', idVariable=None, fixed=True, radius=None, diagonal=False)

Kernel based weights.

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- **k** (int) the number of nearest neighbors to use for determining bandwidth. Bandwidth taken as $h_i = max(dknn) \forall i$ where dknn is a vector of k-nearest neighbor distances (the

distance to the kth nearest neighbor for each observation).

• function ({'triangular', 'uniform', 'quadratic', 'epanechnikov', 'quartic', 'bisquare', 'gaussian'})-

$$z_{i,j} = d_{i,j}/h_i$$

triangular

$$K(z) = (1 - |z|) if|z| \le 1$$

uniform

$$K(z) = |z| if|z| \le 1$$

quadratic

$$K(z) = (3/4)(1-z^2) if|z| < 1$$

epanechnikov

$$K(z) = (1 - z^2) if|z| \le 1$$

quartic

$$K(z) = (15/16)(1-z^2)^2 if|z| \le 1$$

bisquare

$$K(z) = (1 - z^2)^2 if|z| \le 1$$

gaussian

$$K(z) = (2\pi)^{(-1/2)} exp(-z^2/2)$$

- idVariable (string) name of a column in the shapefile's DBF to use for ids
- fixed (binary) If true then $h_i = h \forall i$. If false then bandwidth is adaptive across observations.
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.
- diagonal (boolean) If true, set diagonal weights = 1.0, if false (default) diagonal weights are set to value according to kernel function.

Returns w – instance of spatial weights

Return type W

```
>>> kw = pysal.kernelW_from_shapefile(pysal.examples.get_path("columbus.shp"), 

--idVariable='POLYID', function = 'gaussian')
```

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

pysal.weights.user.adaptive_kernelW(points, bandwidths=None, k=2, function='triangular', radius=None, diagonal=False)

Kernel weights with adaptive bandwidths.

Parameters

- points (array) (n,k) n observations on k characteristics used to measure distances between the n objects
- bandwidths (float) or array-like (optional) the bandwidth h_i for the kernel. if no bandwidth is specified k is used to determine the adaptive bandwidth
- k (int) the number of nearest neighbors to use for determining bandwidth. For fixed bandwidth, $h_i = max(dknn) \forall i$ where dknn is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). For adaptive bandwidths, $h_i = dknn_i$
- function ({'triangular', 'uniform', 'quadratic', 'quartic', 'gaussian'}) kernel function defined as follows with

$$z_{i,j} = d_{i,j}/h_i$$

triangular

$$K(z) = (1 - |z|) if|z| \le 1$$

uniform

$$K(z) = |z| \; if|z| \leq 1$$

quadratic

$$K(z) = (3/4)(1-z^2) if|z| < 1$$

quartic

$$K(z) = (15/16)(1 - z^2)^2 if|z| \le 1$$

gaussian

$$K(z) = (2\pi)^{(-1/2)} exp(-z^2/2)$$

- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.
- **diagonal** (boolean) If true, set diagonal weights = 1.0, if false (default) diagonal weights are set to value according to kernel function.

Returns w – instance of spatial weights

Return type W

Examples

User specified bandwidths

Endogenous adaptive bandwidths

Endogenous adaptive bandwidths with Gaussian kernel

with diagonal

```
>>> kweag = pysal.adaptive_kernelW(points, function='gaussian')
>>> kweagd = pysal.adaptive_kernelW(points, function='gaussian', diagonal=True)
>>> kweag.neighbors[0]
[0, 1, 3]
>>> kweagd.neighbors[0]
[0, 1, 3]
>>> kweag.weights[0]
[0.3989422804014327, 0.2674190291577696, 0.2419707487162134]
>>> kweagd.weights[0]
[1.0, 0.2674190291577696, 0.2419707487162134]
```

pysal.weights.user.adaptive_kernelW_from_shapefile (shapefile, bandwidths=None, k=2, function='triangular', id-Variable=None, radius=None, diagonal=False)

Kernel weights with adaptive bandwidths.

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- bandwidths (float) or array-like (optional) the bandwidth h_i for the kernel. if no bandwidth is specified k is used to determine the adaptive bandwidth
- k (int) the number of nearest neighbors to use for determining bandwidth. For fixed bandwidth, $h_i = max(dknn) \forall i$ where dknn is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). For adaptive bandwidths, $h_i = dknn_i$
- function ({'triangular', 'uniform', 'quadratic', 'quartic', 'quassian'}) kernel function defined as follows with

$$z_{i,j} = d_{i,j}/h_i$$

triangular

$$K(z) = (1 - |z|) if|z| \le 1$$

uniform

$$K(z) = |z| \; if|z| \leq 1$$

quadratic

$$K(z) = (3/4)(1 - z^2) if|z| \le 1$$

quartic

$$K(z) = (15/16)(1-z^2)^2 if|z| \le 1$$

gaussian

$$K(z) = (2\pi)^{(-1/2)} exp(-z^2/2)$$

- idVariable (string) name of a column in the shapefile's DBF to use for ids
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

• **diagonal** (boolean) – If true, set diagonal weights = 1.0, if false (default) diagonal weights are set to value according to kernel function.

Returns w – instance of spatial weights

Return type W

Examples

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

pysal.weights.user.min_threshold_dist_from_shapefile (shapefile, radius=None, p=2) Kernel weights with adaptive bandwidths.

Parameters

- **shapefile** (*string*) shapefile name with shp suffix.
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance

Returns d – Maximum nearest neighbor distance between the n observations.

Return type float

```
>>> md = min_threshold_dist_from_shapefile(pysal.examples.get_path("columbus.shp \( \dots \)))
>>> md
0.61886415807685413
>>> min_threshold_dist_from_shapefile(pysal.examples.get_path("stl_hom.shp"), \( \dots \) \( \dots \
```

Notes

Supports polygon or point shapefiles. For polygon shapefiles, distance is based on polygon centroids. Distances are defined using coordinates in shapefile which are assumed to be projected and not geographical coordinates.

```
pysal.weights.user.build_lattice_shapefile (nrows, ncols, outFileName)
Build a lattice shapefile with nrows rows and ncols cols.
```

Parameters

- nrows (int) Number of rows
- ncols (int) Number of cols
- outFileName (str) shapefile name with shp suffix

Returns

Return type None

weights.Contiguity — Contiguity based spatial weights

The weights. Contiguity. module provides for the construction and manipulation of spatial weights matrices based on contiguity criteria.

New in version 1.0.

```
pysal.weights.Contiguity.buildContiguity (polygons, criterion='rook', ids=None)
This is a deprecated function.
```

It builds a contiguity W from the polygons provided. As such, it is now identical to calling the class constructors for Rook or Queen.

class pysal.weights.Contiguity.Queen (polygons, method='binning', **kw)

asymmetries

List of id pairs with asymmetric weights.

```
asymmetry (intrinsic=True)
```

Asymmetry check.

```
Parameters intrinsic (boolean) - default=True
```

```
intrinsic symmetry: w_{i,j} == w_{j,i}
```

if intrisic is False: symmetry is defined as $i \in N_j$ AND $j \in N_i$ where N_j is the set of neighbors for j.

Returns asymmetries – empty if no asymmetries are found if asymmetries, then a list of (i,j) tuples is returned

Return type list

Examples

```
>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
```

```
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 46), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W(neighbors, weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]
```

cardinalities

Number of neighbors for each observation.

diagW2

Diagonal of WW.

See also:

trcW2

diagWtW

Diagonal of W'W.

See also:

trcWtW

diagWtW_WW

Diagonal of W'W + WW.

classmethod from_dataframe (df, geom_col='geometry', **kwargs)

Construct a weights object from a pandas dataframe with a geometry column. This will cast the polygons to PySAL polygons, then build the W using ids from the dataframe.

Parameters

- **df** (DataFrame) a :class: pandas.DataFrame containing geometries to use for spatial weights
- $geom_col(string)$ the name of the column in df that contains the geometries. Defaults to geometry
- idVariable (string) the name of the column to use as IDs. If nothing is provided, the dataframe index is used
- ids (list) a list of ids to use to index the spatial weights object. Order is not respected from this list.
- id_order (list) an ordered list of ids to use to index the spatial weights object. If used, the resulting weights object will iterate over results in the order of the names provided in this argument.

See also:

```
pysal.weights.W, pysal.weights.Queen
```

classmethod from_iterable (iterable, sparse=False, **kwargs)

Construct a weights object from a collection of arbitrary polygons. This will cast the polygons to PySAL polygons, then build the W.

Parameters

- **iterable** (*iterable*) a collection of of shapes to be cast to PySAL shapes. Must support iteration. Contents should at least implement a <u>__geo_interface__</u> attribute or be able to be coerced to geometries using pysal.cg.asShape
- **kw (keyword arguments) optional arguments for pysal.weights.W

See also:

```
pysal.weights.W, pysal.weights.Queen
```

classmethod from_shapefile (filepath, idVariable=None, full=False, **kwargs)

Queen contiguity weights from a polygon shapefile.

Parameters

- **shapefile** (*string*) name of polygon shapefile including suffix.
- idVariable (string) name of a column in the shapefile's DBF to use for ids.
- sparse (boolean) If True return WSP instance If False return W instance

Returns w – instance of spatial weights

Return type W

Examples

Notes

Queen contiguity defines as neighbors any pair of polygons that share at least one vertex in their polygon definitions.

See also:

```
pysal.weights.W, pysal.weights.Queen
full()
```

Generate a full numpy array.

Returns implicit – first element being the full numpy array and second element keys being the ids associated with each row in the array.

Return type tuple

Examples

See also:

ful1

get_transform()

Getter for transform property.

Returns transformation

Return type string (or none)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

histogram

Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit.

id2i

Dictionary where the key is an ID and the value is that ID's index in W.id_order.

id_order

Returns the ids for the observations in the order in which they would be encountered if iterating over the weights.

id_order_set

Returns True if user has set id_order, False if not.

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True
```

islands

List of ids without any neighbors.

max_neighbors

Largest number of neighbors.

mean_neighbors

Average number of neighbors.

min_neighbors

Minimum number of neighbors.

n

Number of units.

neighbor_offsets

Given the current id_order, neighbor_offsets[id] is the offsets of the id's neighbors in id_order.

Returns offsets of the id's neighbors in id_order

Return type list

Examples

```
>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors, weights)
>>> w.id_order = ['a', 'b', 'c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b', 'a', 'c']
>>> w.neighbor_offsets['b']
[2, 1]
```

nonzero

Number of nonzero weights.

pct_nonzero

Percentage of nonzero weights.

remap_ids (new_ids)

In place modification throughout W of id values from w.id_order to new_ids in all

•••

Parameters new_ids (list) – /ndarray Aligned list of new ids to be inserted. Note that first element of new_ids will replace first element of w.id_order, second element of new_ids replaces second element of w.id_order and so on.

Example

```
>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']
```

s0

s0 is defined as

$$s0 = \sum_{i} \sum_{j} w_{i,j}$$

s1

s1 is defined as

$$s1 = 1/2 \sum_{i} \sum_{j} (w_{i,j} + w_{j,i})^2$$

s2

s2 is defined as

$$s2 = \sum_{j} (\sum_{i} w_{i,j} + \sum_{i} w_{j,i})^{2}$$

s2array

Individual elements comprising s2.

See also:

s2

sd

Standard deviation of number of neighbors.

set_shapefile (shapefile, idVariable=None, full=False)

Adding meta data for writing headers of gal and gwt files.

Parameters

- shapefile (string) shapefile name used to construct weights
- idVariable (string) name of attribute in shapefile to associate with ids in the weights
- **full** (boolean) True write out entire path for shapefile, False (default) only base of shapefile without extension

set_transform(value='B')

Transformations of weights.

Notes

Transformations are applied only to the value of the weights at instantiation. Chaining of transformations cannot be done on a W instance.

Parameters transform (string) – not case sensitive)

:param .. table::: :widths: auto

transform string	value
В	Binary
R	Row-standardization (global sum=n)
D	Double-standardization (global sum=1)
V	Variance stabilizing
0	Restore original transformation (from instantiation)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'0'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

sparse

Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be used. This is based on scipy.sparse.

to WSP()

Generate a WSP object.

Returns implicit – Thin W class

Return type pysal.WSP

Examples

```
>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second '']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
```

```
3
>>> wsp.s0
4
```

See also:

WSP

towsp()

Generate a WSP object.

Returns implicit – Thin W class

Return type pysal.WSP

Examples

See also:

WSP

transform

Getter for transform property.

Returns transformation

Return type string (or none)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'0'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

```
trcW2
          Trace of WW.
          See also:
          diagW2
     trcWtW
          Trace of W'W.
          See also:
          diagWtW
     trcWtW_WW
          Trace of W'W + WW.
class pysal.weights.Contiguity.Rook (polygons, method='binning', **kw)
     asymmetries
          List of id pairs with asymmetric weights.
     asymmetry (intrinsic=True)
          Asymmetry check.
              Parameters intrinsic (boolean) - default=True
                  intrinsic symmetry: w_{i,j} == w_{j,i}
                  if intrisic is False: symmetry is defined as i \in N_i AND j \in N_i where N_i is the set of
                    neighbors for j.
              Returns asymmetries – empty if no asymmetries are found if asymmetries, then a list of (i,j)
                  tuples is returned
              Return type list
```

Examples

```
>>> from pysal import lat2W
>>> w=lat2W(3,3)
>>> w.asymmetry()
[]
>>> w.transform='r'
>>> w.asymmetry()
[(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0), (3, 4), (3, 4)
\rightarrow6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4), (5, 8), (6, 3), (6, 7),
\hookrightarrow (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)]
>>> result = w.asymmetry(intrinsic=False)
>>> result
[]
>>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
>>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
>>> w=W(neighbors, weights)
>>> w.asymmetry()
[(0, 1), (1, 0)]
```

cardinalities

Number of neighbors for each observation.

diagW2

Diagonal of WW.

See also:

trcW2

diagWtW

Diagonal of W'W.

See also:

trcWtW

diagWtW_WW

Diagonal of W'W + WW.

Construct a weights object from a pandas dataframe with a geometry column. This will cast the polygons to PySAL polygons, then build the W using ids from the dataframe.

Parameters

- **df** (DataFrame) a :class: pandas.DataFrame containing geometries to use for spatial weights
- **geom_col** (*string*) the name of the column in *df* that contains the geometries. Defaults to *geometry*
- idVariable (string) the name of the column to use as IDs. If nothing is provided, the dataframe index is used
- ids (list) a list of ids to use to index the spatial weights object. Order is not respected from this list.
- id_order (list) an ordered list of ids to use to index the spatial weights object. If used, the resulting weights object will iterate over results in the order of the names provided in this argument.

See also:

```
pysal.weights.W,pysal.weights.Rook
```

classmethod from_iterable (iterable, **kwargs)

Construct a weights object from a collection of arbitrary polygons. This will cast the polygons to PySAL polygons, then build the W.

Parameters

- **iterable** (*iterable*) a collection of of shapes to be cast to PySAL shapes. Must support iteration. Contents should at least implement a <u>__geo_interface__</u> attribute or be able to be coerced to geometries using pysal.cg.asShape
- **kw (keyword arguments) optional arguments for pysal.weights.W

See also:

```
pysal.weights.W,pysal.weights.Rook
```

classmethod from_shapefile (filepath, idVariable=None, full=False, **kwargs)

Rook contiguity weights from a polygon shapefile.

Parameters

• **shapefile** (*string*) – name of polygon shapefile including suffix.

• sparse (boolean) - If True return WSP instance If False return W instance

Returns w – instance of spatial weights

Return type W

Examples

Notes

Rook contiguity defines as neighbors any pair of polygons that share a common edge in their polygon definitions.

See also:

```
\label{eq:pysal.weights.W} \verb"pysal.weights.Rook" \\ \textbf{full}()
```

Generate a full numpy array.

Returns implicit – first element being the full numpy array and second element keys being the ids associated with each row in the array.

Return type tuple

Examples

See also:

ful1

get_transform()

Getter for transform property.

Returns transformation

Return type string (or none)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

histogram

Cardinality histogram as a dictionary where key is the id and value is the number of neighbors for that unit.

id2i

Dictionary where the key is an ID and the value is that ID's index in W.id_order.

id order

Returns the ids for the observations in the order in which they would be encountered if iterating over the weights.

id_order_set

Returns True if user has set id_order, False if not.

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.id_order_set
True
```

islands

List of ids without any neighbors.

max_neighbors

Largest number of neighbors.

mean_neighbors

Average number of neighbors.

min_neighbors

Minimum number of neighbors.

n

Number of units.

neighbor_offsets

Given the current id_order, neighbor_offsets[id] is the offsets of the id's neighbors in id_order.

Returns offsets of the id's neighbors in id_order

Return type list

Examples

```
>>> from pysal import W
>>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
>>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
>>> w=W(neighbors, weights)
>>> w.id_order = ['a', 'b', 'c']
>>> w.neighbor_offsets['b']
[2, 0]
>>> w.id_order = ['b', 'a', 'c']
>>> w.neighbor_offsets['b']
[2, 1]
```

nonzero

Number of nonzero weights.

pct_nonzero

Percentage of nonzero weights.

remap_ids (new_ids)

In place modification throughout W of id values from w.id_order to new_ids in all

...

Parameters new_ids (list) – /ndarray Aligned list of new ids to be inserted. Note that first element of new_ids will replace first element of w.id_order, second element of new_ids replaces second element of w.id_order and so on.

Example

```
>>> import pysal as ps
>>> w = ps.lat2W(3, 3)
>>> w.id_order
[0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> w.neighbors[0]
[3, 1]
>>> new_ids = ['id%i'%id for id in w.id_order]
>>> _ = w.remap_ids(new_ids)
>>> w.id_order
['id0', 'id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7', 'id8']
>>> w.neighbors['id0']
['id3', 'id1']
```

s0

s0 is defined as

$$s0 = \sum_{i} \sum_{j} w_{i,j}$$

s1

s1 is defined as

$$s1 = 1/2 \sum_{i} \sum_{j} (w_{i,j} + w_{j,i})^2$$

s2

s2 is defined as

$$s2 = \sum_{j} (\sum_{i} w_{i,j} + \sum_{i} w_{j,i})^{2}$$

s2array

Individual elements comprising s2.

See also:

s2

sd

Standard deviation of number of neighbors.

set_shapefile (shapefile, idVariable=None, full=False)

Adding meta data for writing headers of gal and gwt files.

Parameters

- shapefile (string) shapefile name used to construct weights
- idVariable (string) name of attribute in shapefile to associate with ids in the weights
- **full** (boolean) True write out entire path for shapefile, False (default) only base of shapefile without extension

set_transform(value='B')

Transformations of weights.

Notes

Transformations are applied only to the value of the weights at instantiation. Chaining of transformations cannot be done on a W instance.

Parameters transform (string) – not case sensitive)

:param .. table::: :widths: auto

transform string	value
В	Binary
R	Row-standardization (global sum=n)
D	Double-standardization (global sum=1)
V	Variance stabilizing
0	Restore original transformation (from instantiation)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'O'
>>> w.transform='r'
>>> w.weights[0]
```

```
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

sparse

Sparse matrix object.

For any matrix manipulations required for w, w.sparse should be used. This is based on scipy.sparse.

to WSP()

Generate a WSP object.

Returns implicit - Thin W class

Return type pysal.WSP

Examples

See also:

WSP

towsp()

Generate a WSP object.

Returns implicit – Thin W class

Return type pysal.WSP

Examples

```
>>> import pysal as ps
>>> from pysal import W
>>> neighbors={'first':['second'],'second':['first','third'],'third':['second '']}
>>> weights={'first':[1],'second':[1,1],'third':[1]}
>>> w=W(neighbors,weights)
>>> wsp=w.towsp()
>>> isinstance(wsp, ps.weights.weights.WSP)
True
>>> wsp.n
```

```
3
>>> wsp.s0
4
```

See also:

WSP

transform

Getter for transform property.

Returns transformation

Return type string (or none)

Examples

```
>>> from pysal import lat2W
>>> w=lat2W()
>>> w.weights[0]
[1.0, 1.0]
>>> w.transform
'0'
>>> w.transform='r'
>>> w.weights[0]
[0.5, 0.5]
>>> w.transform='b'
>>> w.weights[0]
[1.0, 1.0]
>>>
```

trcW2

Trace of WW.

See also:

diagW2

trcWtW

Trace of W'W.

See also:

diagWtW

trcWtW_WW

Trace of W'W + WW.

${\tt weights.Distance} \ -- \ \textbf{Distance based spatial weights}$

The weights.Distance module provides for spatial weights defined on distance relationships.

New in version 1.0.

```
class pysal.weights.Distance.KNN (data, k=2, p=2, ids=None, radius=None, distance\_metric='euclidean')
```

Creates nearest neighbor weights matrix based on k nearest neighbors.

Parameters

- kdtree (object) PySAL KDTree or ArcKDTree where KDtree.data is array (n,k) n observations on k characteristics used to measure distances between the n objects
- **k** (*int*) number of nearest neighbors
- **p** (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance Ignored if the KDTree is an ArcKDTree
- ids (list) identifiers to attach to each observation

Returns w – instance Weights object with binary weights

Return type W

Examples

```
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kd = pysal.cg.kdtree.KDTree(np.array(points))
>>> wnn2 = pysal.KNN(kd, 2)
>>> [1,3] == wnn2.neighbors[0]
True
```

ids

```
>>> wnn2 = KNN(kd,2)

>>> wnn2[0]

{1: 1.0, 3: 1.0}

>>> wnn2[1]

{0: 1.0, 3: 1.0}
```

now with 1 rather than 0 offset

```
>>> wnn2 = KNN(kd, 2, ids=range(1,7))
>>> wnn2[1]
{2: 1.0, 4: 1.0}
>>> wnn2[2]
{1: 1.0, 4: 1.0}
>>> 0 in wnn2.neighbors
False
```

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also:

```
pysal.weights.W
```

```
classmethod from_array (array, **kwargs)
```

Creates nearest neighbor weights matrix based on k nearest neighbors.

Parameters

- **array** (np.ndarray) (n, k) array representing n observations on k characteristics used to measure distances between the n objects
- **kwargs(keyword arguments, see Rook)-

Returns w – instance Weights object with binary weights

Return type W

Examples

```
>>> points = [(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wnn2 = pysal.KNN.from_array(points, 2)
>>> [1,3] == wnn2.neighbors[0]
True
```

ids

```
>>> wnn2 = KNN.from_array(points,2)
>>> wnn2[0]
{1: 1.0, 3: 1.0}
>>> wnn2[1]
{0: 1.0, 3: 1.0}
```

now with 1 rather than 0 offset

```
>>> wnn2 = KNN.from_array(points, 2, ids=range(1,7))
>>> wnn2[1]
{2: 1.0, 4: 1.0}
>>> wnn2[2]
{1: 1.0, 4: 1.0}
>>> 0 in wnn2.neighbors
False
```

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also:

```
class pysal.weights.KNN
```

```
pysal.weights.W
```

classmethod from_dataframe (df, geom_col='geometry', ids=None, **kwargs)

Make KNN weights from a dataframe.

Parameters

- **df** (pandas.dataframe) a dataframe with a geometry column that can be used to construct a W object
- **geom_col** (string) column name of the geometry stored in df
- ids (string or iterable) if string, the column name of the indices from the dataframe if iterable, a list of ids to use for the W if None, df.index is used.

See also:

class pysal.weights.KNN

```
pysal.weights.W
```

classmethod from_shapefile (filepath, **kwargs)

Nearest neighbor weights from a shapefile.

Parameters

- data (string) shapefile containing attribute data.
- **k** (*int*) number of nearest neighbors
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- ids (list) identifiers to attach to each observation
- radius (float) If supplied arc_distances will be calculated based on the given radius. p will be ignored.

Returns w – instance; Weights object with binary weights.

Return type KNN

Examples

Polygon shapefile

```
>>> wc=knnW_from_shapefile(pysal.examples.get_path("columbus.shp"))
>>> "%.4f"%wc.pct_nonzero
'4.0816'
>>> set([2,1]) == set(wc.neighbors[0])
True
>>> wc3=pysal.knnW_from_shapefile(pysal.examples.get_path("columbus.shp"),k=3)
>>> set(wc3.neighbors[0]) == set([2,1,3])
True
>>> set(wc3.neighbors[2]) == set([4,3,0])
True
```

1 offset rather than 0 offset

Point shapefile

```
>>> w=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"))
>>> w.pct_nonzero
1.1904761904761905
>>> w1=knnW_from_shapefile(pysal.examples.get_path("juvenile.shp"),k=1)
>>> "%.3f"%w1.pct_nonzero
```

Notes

Ties between neighbors of equal distance are arbitrarily broken.

See also:

pysal.weights.KNN, pysal.weights.W

reweight (*k*=*None*, *p*=*None*, *new_data*=*None*, *new_ids*=*None*, *inplace*=*True*) Redo K-Nearest Neighbor weights construction using given parameters

Parameters

- new_data (np.ndarray) an array containing additional data to use in the KNN weight
- new_ids (list) a list aligned with new_data that provides the ids for each new observation
- inplace (bool) a flag denoting whether to modify the KNN object in place or to return a new KNN object
- **k** (*int*) number of nearest neighbors
- **p** (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance Ignored if the KDTree is an ArcKDTree

Returns

- A copy of the object using the new parameterization, or None if the
- object is reweighted in place.

class pysal.weights.Distance.Kernel (data, bandwidth=None, fixed=True, k=2, function='triangular', eps=1.0000001, ids=None, diagonal=False)

Spatial weights based on kernel functions.

Parameters

- data (array) (n,k) or KDTree where KDtree.data is array (n,k) n observations on k characteristics used to measure distances between the n objects
- bandwidth (float) or array-like (optional) the bandwidth h_i for the kernel.
- fixed (binary) If true then h_i = h∀i. If false then bandwidth is adaptive across observations.
- \mathbf{k} (int) the number of nearest neighbors to use for determining bandwidth. For fixed bandwidth, $h_i = max(dknn) \forall i$ where dknn is a vector of k-nearest neighbor distances (the distance to the kth nearest neighbor for each observation). For adaptive bandwidths, $h_i = dknn_i$
- **diagonal** (boolean) If true, set diagonal weights = 1.0, if false (default), diagonals weights are set to value according to kernel function.
- function ({'triangular', 'uniform', 'quadratic', 'quartic', 'quartic', 'gaussian'}) kernel function defined as follows with

$$z_{i,j} = d_{i,j}/h_i$$

triangular

$$K(z) = (1 - |z|) if|z| \le 1$$

uniform

$$K(z) = 1/2 \ if|z| \le 1$$

quadratic

$$K(z) = (3/4)(1 - z^2) if|z| \le 1$$

quartic

$$K(z) = (15/16)(1 - z^2)^2 if|z| \le 1$$

gaussian

$$K(z) = (2\pi)^{(-1/2)} exp(-z^2/2)$$

• eps (float) – adjustment to ensure knn distance range is closed on the knnth observations

weights

dict – Dictionary keyed by id with a list of weights for each neighbor

neighbors

dict - of lists of neighbors keyed by observation id

bandwidth

array - array of bandwidths

Examples

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> kw=Kernel(points)
>>> kw.weights[0]
[1.0, 0.500000049999995, 0.4409830615267465]
>>> kw.neighbors[0]
[0, 1, 3]
>>> kw.bandwidth
array([[ 20.000002],
       [ 20.000002],
       [ 20.000002],
       [ 20.000002],
       [ 20.000002],
       [ 20.000002]])
>>> kw15=Kernel (points, bandwidth=15.0)
>>> kw15[0]
{0: 1.0, 1: 0.3333333333333337, 3: 0.2546440075000701}
>>> kw15.neighbors[0]
[0, 1, 3]
>>> kw15.bandwidth
array([[ 15.],
       [ 15.],
       [ 15.],
       [ 15.],
       [ 15.],
       [ 15.]])
```

Adaptive bandwidths user specified

```
>>> bw=[25.0,15.0,25.0,16.0,14.5,25.0]
>>> kwa=Kernel(points,bandwidth=bw)
>>> kwa.weights[0]
[1.0, 0.6, 0.552786404500042, 0.10557280900008403]
```

Endogenous adaptive bandwidths

Endogenous adaptive bandwidths with Gaussian kernel

Diagonals to 1.0

```
>>> kq = Kernel(points, function='gaussian')
>>> kg.weights
{0: [0.3989422804014327, 0.35206533556593145, 0.3412334260702758], 1: [0.
→35206533556593145, 0.3989422804014327, 0.2419707487162134, 0.3412334260702758,...
→0.31069657591175387], 2: [0.2419707487162134, 0.3989422804014327, 0.
→31069657591175387], 3: [0.3412334260702758, 0.3412334260702758, 0.
\rightarrow 3989422804014327, 0.3011374490937829, 0.26575287272131043], 4: [0.
→31069657591175387, 0.31069657591175387, 0.3011374490937829, 0.3989422804014327,...
→0.35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 0.
→3989422804014327]}
>>> kqd = Kernel(points, function='qaussian', diagonal=True)
>>> kqd.weights
{0: [1.0, 0.35206533556593145, 0.3412334260702758], 1: [0.35206533556593145, 1.0,
→0.2419707487162134, 0.3412334260702758, 0.31069657591175387], 2: [0.
\rightarrow2419707487162134, 1.0, 0.31069657591175387], 3: [0.3412334260702758, 0.
→3412334260702758, 1.0, 0.3011374490937829, 0.26575287272131043], 4: [0.
→31069657591175387, 0.31069657591175387, 0.3011374490937829, 1.0, 0.
→35206533556593145], 5: [0.26575287272131043, 0.35206533556593145, 1.0]}
```

classmethod from_array (array, **kwargs)

Construct a Kernel weights from an array. Supports all the same options as pysal.weights.Kernel

See also:

```
pysal.weights.Kernel, pysal.weights.W
```

classmethod from_dataframe (df, geom_col='geometry', ids=None, **kwargs)

Make Kernel weights from a dataframe.

Parameters

- df (pandas.dataframe) a dataframe with a geometry column that can be used to construct a W object
- **geom_col** (string) column name of the geometry stored in df
- ids (string or iterable) if string, the column name of the indices from the dataframe if iterable, a list of ids to use for the W if None, df.index is used.

See also:

```
pysal.weights.Kernel,pysal.weights.W
```

classmethod from shapefile (filepath, idVariable=None, **kwargs)

Kernel based weights from shapefile

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- idVariable (string) name of column in shapefile's DBF to use for ids

Returns

Return type Kernel Weights Object

See also:

```
pysal.weights.Kernel, pysal.weights.W
```

class pysal.weights.Distance.DistanceBand(data, threshold, p=2, alpha=-1.0, binary=True, ids=None, $build_sp=True$, silent=False)

Spatial weights based on distance band.

Parameters

- data (array) (n,k) or KDTree where KDtree.data is array (n,k) n observations on k characteristics used to measure distances between the n objects
- threshold (float) distance band
- p (float) Minkowski p-norm distance metric parameter: 1<=p<=infinity 2: Euclidean distance 1: Manhattan distance
- binary (boolean) If true w_{ij}=1 if d_{i,j}<=threshold, otherwise w_{i,j}=0 If false wij=dij^{alpha}
- **alpha** (float) distance decay parameter for weight (default -1.0) if alpha is positive the weights will not decline with distance. If binary is True, alpha is ignored
- ids (list) values to use for keys of the neighbors and weights dicts
- build_sp (boolean) True to build sparse distance matrix and false to build dense distance matrix; significant speed gains may be obtained dending on the sparsity of the of distance_matrix and threshold that is applied

• **silent** (boolean) – By default PySAL will print a warning if the dataset contains any disconnected observations or islands. To silence this warning set this parameter to True.

weights

dict – of neighbor weights keyed by observation id

neighbors

dict - of neighbors keyed by observation id

Examples

```
>>> points=[(10, 10), (20, 10), (40, 10), (15, 20), (30, 20), (30, 30)]
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3], 2: [], 3: [0, 1], 4: [5], 5: [4]})
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w=DistanceBand(points,threshold=11.2)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True
>>> w=DistanceBand(points,threshold=14.2)
>>> wcheck = pysal.W({0: [1, 3], 1: [0, 3, 4], 2: [4], 3: [1, 0], 4: [5, 2, 1], 4: [5]; [4]})
>>> pysal.weights.util.neighbor_equality(w, wcheck)
True
```

inverse distance weights

```
>>> w=DistanceBand(points,threshold=11.2,binary=False)
WARNING: there is one disconnected observation (no neighbors)
Island id: [2]
>>> w.weights[0]
[0.10000000000000001, 0.089442719099991588]
>>> w.neighbors[0]
[1, 3]
>>>
```

gravity weights

Notes

This was initially implemented running scipy 0.8.0dev (in epd 6.1). earlier versions of scipy (0.7.0) have a logic bug in scipy/sparse/dok.py so serge changed line 221 of that file on sal-dev to fix the logic bug.

```
classmethod from_array (array, threshold, **kwargs)
```

Construct a DistanceBand weights from an array. Supports all the same options as pysal.weights. DistanceBand

See also:

```
pysal.weights.DistanceBand, pysal.weights.W
```

classmethod from_dataframe (*df*, *threshold*, *geom_col='geometry'*, *ids=None*, **kwargs) Make DistanceBand weights from a dataframe.

Parameters

- **df** (pandas.dataframe) a dataframe with a geometry column that can be used to construct a W object
- **geom_col** (string) column name of the geometry stored in df
- ids (string or iterable) if string, the column name of the indices from the dataframe if iterable, a list of ids to use for the W if None, df.index is used.

See also:

```
pysal.weights.DistanceBand, pysal.weights.W
```

classmethod from_shapefile (filepath, threshold, idVariable=None, **kwargs)

Distance-band based weights from shapefile

Parameters

- **shapefile** (*string*) shapefile name with shp suffix
- idVariable (string) name of column in shapefile's DBF to use for ids

Returns

Return type Kernel Weights Object

See also:

```
class pysal.weights.DistanceBand
class pysal.weights.W
```

weights. Wsets — Set operations on spatial weights

The weights.user module provides for set operations on weights objects .. versionadded:: 1.0 Set-like manipulation of weights matrices.

```
pysal.weights.Wsets.w_union(w1, w2, silent_island_warning=False)
```

Returns a binary weights object, w, that includes all neighbor pairs that exist in either w1 or w2.

Parameters

- w1 (W) object
- **w2** (W) object
- **silent_island_warning** (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns w - object

Return type W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is equivalent to the float ID 2.0. Returns a matrix with all the unique IDs from w1 and w2.

Examples

Construct rook weights matrices for two regions, one is 4x4 (16 areas) and the other is 6x4 (24 areas). A union of these two weights matrices results in the new weights matrix matching the larger one.

```
>>> import pysal
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.weights.w_union(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[19, 11, 14]
>>>
```

pysal.weights.Wsets.w_intersection(w1, w2, w_shape='w1', silent_island_warning=False)
Returns a binary weights object, w, that includes only those neighbor pairs that exist in both w1 and w2.

Parameters

- **w1** (W) object
- w2 (W) object
- w_shape (string) Defines the shape of the returned weights matrix. 'w1' returns a matrix with the same IDs as w1; 'all' returns a matrix with all the unique IDs from w1 and w2; and 'min' returns a matrix with only the IDs occurring in both w1 and w2.
- **silent_island_warning** (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns w - object

Return type W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is equivalent to the float ID 2.0.

Examples

Construct rook weights matrices for two regions, one is 4x4 (16 areas) and the other is 6x4 (24 areas). An intersection of these two weights matrices results in the new weights matrix matching the smaller one.

```
>>> import pysal
>>> w1 = pysal.lat2W(4,4)
>>> w2 = pysal.lat2W(6,4)
>>> w = pysal.weights.w_intersection(w1, w2)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14]
>>> w2.neighbors[15]
```

```
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>>
```

```
pysal.weights.Wsets.w_difference(w1, w2, w\_shape='w1', constrained=True, silent\_island\_warning=False)
```

Returns a binary weights object, w, that includes only neighbor pairs in w1 that are not in w2. The w_shape and constrained parameters determine which pairs in w1 that are not in w2 are returned.

Parameters

- **w1** (W) object
- **w2** (W) object
- w_shape (string) Defines the shape of the returned weights matrix. 'w1' returns a matrix with the same IDs as w1; 'all' returns a matrix with all the unique IDs from w1 and w2; and 'min' returns a matrix with the IDs occurring in w1 and not in w2.
- **constrained** (boolean) If False then the full set of neighbor pairs in w1 that are not in w2 are returned. If True then those pairs that would not be possible if w_shape='min' are dropped. Ignored if w_shape is set to 'min'.
- **silent_island_warning** (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns w – object

Return type W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is equivalent to the float ID 2.0.

Examples

Construct rook (w2) and queen (w1) weights matrices for two 4x4 regions (16 areas). A queen matrix has all the joins a rook matrix does plus joins between areas that share a corner. The new matrix formed by the difference of rook from queen contains only join at corners (typically called a bishop matrix). Note that the difference of queen from rook would result in a weights matrix with no joins.

```
>>> import pysal
>>> w1 = pysal.lat2W(4,4,rook=False)
>>> w2 = pysal.lat2W(4,4,rook=True)
>>> w = pysal.weights.w_difference(w1, w2, constrained=False)
>>> w1[0] == w[0]
False
>>> w1.neighbors[15]
[10, 11, 14]
>>> w2.neighbors[15]
[11, 14]
>>> w.neighbors[15]
[10]
>>>
```

```
pysal.weights.Wsets.w_symmetric_difference(w1, w2, w_shape='all', constrained=True, silent island warning=False)
```

Returns a binary weights object, w, that includes only neighbor pairs that are not shared by w1 and w2. The w_shape and constrained parameters determine which pairs that are not shared by w1 and w2 are returned.

Parameters

- w1 (W) object
- **w2** (W) object
- w_shape (string) Defines the shape of the returned weights matrix. 'all' returns a matrix with all the unique IDs from w1 and w2; and 'min' returns a matrix with the IDs not shared by w1 and w2.
- **constrained** (boolean) If False then the full set of neighbor pairs that are not shared by w1 and w2 are returned. If True then those pairs that would not be possible if w_shape='min' are dropped. Ignored if w_shape is set to 'min'.
- silent_island_warning (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns w - object

Return type W

Notes

ID comparisons are performed using ==, therefore the integer ID 2 is equivalent to the float ID 2.0.

Examples

Construct queen weights matrix for a 4x4 (16 areas) region (w1) and a rook matrix for a 6x4 (24 areas) region (w2). The symmetric difference of these two matrices (with w_shape set to 'all' and constrained set to False) contains the corner joins in the overlap area, all the joins in the non-overlap area.

```
>>> import pysal
>>> w1 = pysal.lat2W(4,4,rook=False)
>>> w2 = pysal.lat2W(6,4,rook=True)
>>> w = pysal.weights.w_symmetric_difference(w1, w2, constrained=False)
>>> w1[0] == w[0]
False
>>> w1.neighbors[15]
[10, 11, 14]
>>> w2.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[10, 19]
>>>
```

pysal.weights.Wsets.w_subset(w1, ids, silent_island_warning=False)

Returns a binary weights object, w, that includes only those observations in ids.

Parameters

- **w1** (W) object
- ids (list) A list containing the IDs to be include in the returned weights object.

silent_island_warning (boolean) – Switch to turn off (default on) print statements for every observation with islands

Returns w - object

Return type W

Examples

Construct a rook weights matrix for a 6x4 region (24 areas). By default PySAL assigns integer IDs to the areas in a region. By passing in a list of integers from 0 to 15, the first 16 areas are extracted from the previous weights matrix, and only those joins relevant to the new region are retained.

```
>>> import pysal
>>> w1 = pysal.lat2W(6,4)
>>> ids = range(16)
>>> w = pysal.weights.w_subset(w1, ids)
>>> w1[0] == w[0]
True
>>> w1.neighbors[15]
[11, 14, 19]
>>> w.neighbors[15]
[11, 14]
>>>
```

pysal.weights.Wsets.w_clip(w1, w2, outSP=True, silent_island_warning=False)

Clip a continuous W object (w1) with a different W object (w2) so only cells where w2 has a non-zero value remain with non-zero values in w1.

Checks on w1 and w2 are performed to make sure they conform to the appropriate format and, if not, they are converted.

Parameters

- w1 (W) pysal.W, scipy.sparse.csr.csr_matrix Potentially continuous weights matrix to be clipped. The clipped matrix wc will have at most the same elements as w1.
- w2 (W) pysal.W, scipy.sparse.csr.csr_matrix Weights matrix to use as shell to clip w1. Automatically converted to binary format. Only non-zero elements in w2 will be kept non-zero in wc. NOTE: assumed to be of the same shape as w1
- outSP (boolean) If True (default) return sparse version of the clipped W, if False, return pysal.W object of the clipped matrix
- **silent_island_warning** (boolean) Switch to turn off (default on) print statements for every observation with islands

Returns wc – pysal.W, scipy.sparse.csr.csr_matrix Clipped W object (sparse if outSP=Ture). It inherits id_order from w1.

Return type W

Examples

```
>>> import pysal as ps
```

First create a W object from a lattice using queen contiguity and row-standardize it (note that these weights will stay when we clip the object, but they will not necessarily represent a row-standardization anymore):

```
>>> w1 = ps.lat2W(3, 2, rook=False)
>>> w1.transform = 'R'
```

We will clip that geography assuming observations 0, 2, 3 and 4 belong to one group and 1, 5 belong to another group and we don't want both groups to interact with each other in our weights (i.e. $w_i = 0$ if i and j in different groups). For that, we use the following method:

```
>>> w2 = ps.block_weights(['r1', 'r2', 'r1', 'r1', 'r1', 'r2'])
```

To illustrate that w2 will only be considered as binary even when the object passed is not, we can row-standardize it

```
>>> w2.transform = 'R'
```

The clipped object we will contain only the spatial queen relationships that occur within one group ('r1' or 'r2') but will have gotten rid of those that happen across groups

```
>>> wcs = ps.weights.Wsets.w_clip(w1, w2, outSP=True)
```

This will create a sparse object (recommended when n is large).

```
>>> wcs.sparse.toarray()
array([[ 0.
                                       0.33333333,
                                                      0.33333333,
                     ],
         0.
       [ 0.
                        0.
                                                      0.
                                                                     0.
         0.
                     ],
       [ 0.2
                        0.
                                       0.
                                                      0.2
                                                                     0.2
         0.
                     ],
       [ 0.2
                        0.
                                                                     0.2
                                                      0.
         0.
                     ],
       [ 0.
                        0.
                                       0.333333333
                                                     0.333333333
                                                                     0.
         0.
                     ],
       [ 0.
                        0.
                                                      0.
                                                                    0.
                     ,
          0.
                     ]])
```

If we wanted an original W object, we can control that with the argument out SP:

```
>>> wc = ps.weights.Wsets.w_clip(w1, w2, outSP=False)
WARNING: there are 2 disconnected observations
Island ids: [1, 5]
>>> wc.full()[0]
array([[ 0.
                       0.
                                     0.33333333.
                                                  0.33333333.
                                                                 0.
         0.
                    ],
                       0.
       [ 0.
                                                                 0.
         0.
                    ],
       [ 0.2
                       0.
                                                   0.2
                                                                 0.2
         0.
                    ],
       [ 0.2
                       0.
                                                   0.
                                                                 0.2
         0.
                    ],
       [ 0.
                       0.
                                     0.33333333,
                                                  0.33333333,
                                                                 0.
         0.
                    ],
       [ 0.
                       0.
                                     0.
                                                  0.
                                                                 0.
         0.
                    ]])
```

You can check they are actually the same:

weights.spatial_lag — Spatial lag operators

The weights.spatial_lag Spatial lag operators for PySAL

New in version 1.0. Spatial lag operations.

If w is row standardized, returns the average of each observation's neighbors; if not, returns the weighted sum of each observation's neighbors.

Parameters

- w (W) PySAL spatial weightsobject
- y (array) numpy array with dimensionality conforming to w (see examples)

Returns wy – array of numeric values for the spatial lag

Return type array

Examples

Setup a 9x9 binary spatial weights matrix and vector of data; compute the spatial lag of the vector.

```
>>> import pysal
>>> import numpy as np
>>> w = pysal.lat2W(3, 3)
>>> y = np.arange(9)
>>> yl = pysal.lag_spatial(w, y)
>>> yl
array([ 4., 6., 6., 10., 16., 14., 10., 18., 12.])
```

Row standardize the weights matrix and recompute the spatial lag

Explicitly define data vector as 9x1 and recompute the spatial lag

```
[ 3. ],
[ 3.33333333],
[ 4. ],
[ 4.66666667],
[ 5. ],
[ 6. ],
[ 6. ]])
```

Take the spatial lag of a 9x2 data matrix

```
>>> yr = np.arange(8, -1, -1)
>>> yr.shape = (9, 1)
>>> x = np.hstack((y, yr))
>>> yl = pysal.lag_spatial(w, x)
>>> yl
array([[ 2.
                    6.
                               ],
      [ 2.
[ 3.
                  , 6.
                               ],
                  , 5.
                               ],
      [ 3.33333333, 4.66666667],
                  , 4.
      [ 4.66666667, 3.33333333],
       [5.,3.
                               ],
                     2.
       [ 6.
                               ],
       [ 6.
                     2.
                               11)
```

```
pysal.weights.spatial_lag.lag_categorical(w, y, ties='tryself') Spatial lag operator for categorical variables.
```

Constructs the most common categories of neighboring observations, weighted by their weight strength.

Parameters

- w (W) PySAL spatial weightsobject
- **y** (*iterable*) iterable collection of categories (either int or string) with dimensionality conforming to w (see examples)
- **ties** (str) string describing the method to use when resolving ties. By default, the option is "tryself", and the category of the focal observation is included with its neighbors to try and break a tie. If this does not resolve the tie, a winner is chosen randomly. To just use random choice to break ties, pass "random" instead.

Returns

Return type an (n x k) column vector containing the most common neighboring observation

Notes

This works on any array where the number of unique elements along the column axis is less than the number of elements in the array, for any dtype. That means the routine should work on any dtype that np.unique() can compare.

Examples

Set up a 9x9 weights matrix describing a 3x3 regular lattice. Lag one list of categorical variables with no ties.

```
>>> import pysal
>>> import numpy as np
>>> np.random.seed(12345)
>>> w = pysal.lat2W(3, 3)
>>> y = ['a','b','a','b','c','b','c']
>>> y_l = pysal.weights.spatial_lag.lag_categorical(w, y)
>>> np.array_equal(y_l, np.array(['b', 'a', 'b', 'c', 'b', 'c', 'b']))
True
```

Explicitly reshape y into a (9x1) array and calculate lag again

compute the lag of a 9x2 matrix of categories

pysal.network — Network Constrained Analysis

pysal.network — Network Constrained Analysis

The network Network Analysis for PySAL

New in version 1.9.

class pysal.network.network.Network(in_shp=None, node_sig=11, unique_segs=True)
 Spatially constrained network representation and analytical functionality.

Parameters

- in_shp (str) The input shapefile. This must be in .shp format.
- node_sig (int) Round the x and y coordinates of all nodes to node_sig significant digits (combined significant digits on the left and right of the decimal place) Default is 11 Set to None for no rounding
- unique_segs (bool) If True (default), keep only unique segments (i.e., prune out any duplicated segments). If False keep all segments.

in shp

str – The input shapefile. This must be in .shp format.

adjacencylist

list – List of lists storing node adjacency.

nodes

dict – Keys are tuples of node coords and values are the node ID.

edge_lengths

dict – Keys are tuples of sorted node IDs representing an edge and values are the length.

pointpatterns

dict – Keys are a string name of the pattern and values are point pattern class instances.

node coords

dict – Keys are the node ID and values are the (x,y) coordinates inverse to nodes.

edaes

list – List of edges, where each edge is a sorted tuple of node IDs.

node_list

list – List of node IDs.

alldistances

dict – Keys are the node IDs. Values are tuples with two elements:

1.A list of the shortest path distances

2.A dict with the key being the id of the destination node and the value being a list of the shortest path.

Examples

Instantiate an instance of a network.

```
>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
```

Snap point observations to the network with attribute information.

And without attribute information.

```
>>> ntw.snapobservations(ps.examples.get_path('schools.shp'), 'schools',_

attribute=False)
```

NetworkF (pointpattern, nsteps=10, permutations=99, threshold=0.2, distribution='uniform', lower-bound=None, upperbound=None)

Computes a network constrained F-Function

Parameters

- pointpattern (object) A PySAL point pattern object.
- nsteps (int) The number of steps at which the count of the nearest neighbors is computed.
- **permutations** (*int*) The number of permutations to perform (default 99).
- threshold (float) -

The level at which significance is computed. -0.5 would be 97.5% and 2.5%

• distribution (str) -

The distribution from which random points are sampled: - uniform or poisson

• **lowerbound** (float) – The lower bound at which the F-function is computed. (Default 0)

• **upperbound** (float) – The upper bound at which the F-function is computed. Defaults to the maximum observed nearest neighbor distance.

Returns NetworkF – A network F class instance.

Return type object

NetworkG (pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lower-bound=None, upperbound=None)

Computes a network constrained G-Function

Parameters

- pointpattern (object) A PySAL point pattern object.
- nsteps (int) The number of steps at which the count of the nearest neighbors is computed.
- **permutations** (*int*) The number of permutations to perform (default 99).
- threshold (float) -

The level at which significance is computed. -0.5 would be 97.5% and 2.5%

• distribution (str) -

The distribution from which random points are sampled: – uniform or poisson

- **lowerbound** (float) The lower bound at which the G-function is computed. (Default 0)
- **upperbound** (float) The upper bound at which the G-function is computed. Defaults to the maximum observed nearest neighbor distance.

Returns Network G – A network G class instance.

Return type object

NetworkK (pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution='uniform', lower-bound=None, upperbound=None)

Computes a network constrained K-Function

Parameters

- pointpattern (object) A PySAL point pattern object.
- **nsteps** (*int*) The number of steps at which the count of the nearest neighbors is computed.
- **permutations** (*int*) The number of permutations to perform (default 99).
- threshold(float)-

The level at which significance is computed. -0.5 would be 97.5% and 2.5%

• distribution (str) -

The distribution from which random points are sampled: – uniform or poisson

- **lowerbound** (*float*) The lower bound at which the K-function is computed. (Default 0)
- **upperbound** (*float*) The upper bound at which the K-function is computed. Defaults to the maximum observed nearest neighbor distance.

Returns Network K - A network K class instance.

Return type object

allneighbordistances (sourcepattern,

destpattern=None,

fill_diagonal=None,

n_processes=None)

Compute either all distances between i and j in a single point pattern or all distances between each i from a source pattern and all j from a destination pattern.

Parameters

- **sourcepattern** (*str*) The key of a point pattern snapped to the network.
- **destpattern** (str) (Optional) The key of a point pattern snapped to the network.
- **fill_diagonal** (*float*, *int*) (Optional) Fill the diagonal of the cost matrix. Default in None and will populate the diagonal with numpy.nan Do not declare a destpattern for a custom fill_diagonal.
- n_processes (int, str) (Optional) Specify the number of cores to utilize. Default is 1 core. Use (int) to specify an exact number or cores. Use ("all") to request all available cores.

Returns nearest – An array of shape (n,n) storing distances between all points.

Return type array (n,n)

compute_distance_to_nodes (x, y, edge)

Given an observation on a network edge, return the distance to the two nodes that bound that end.

Parameters

- **x** (float) x-coordinate of the snapped point.
- **y** (float) y-coordiante of the snapped point.
- **edge** (*tuple*) (node0, node1) representation of the network edge.

Returns

• **d1** (float) –

The distance to node0.

- always the node with the lesser id
- **d2** (float) –

The distance to node1.

- always the node with the greater id

contiguityweights (graph=True, weightings=None)

Create a contiguity based W object

Parameters

- **graph** (bool) {True, False} controls whether the W is generated using the spatial representation or the graph representation.
- weightings (dict) Dict of lists of weightings for each edge.

Returns W – A PySAL W Object representing the binary adjacency of the network.

Return type object

Examples

Using the W object, access to ESDA functionality is provided. First, a vector of attributes is created for all edges with observations.

Next, a standard call ot Moran is made and the result placed into res

```
>>> res = ps.esda.moran.Moran(y, w, permutations=99)
```

```
count_per_edge (obs_on_network, graph=True)
```

Compute the counts per edge.

```
\label{eq:parameters} \begin{tabular}{ll} \textbf{Parameters obs\_on\_network} & (\textit{dict}) - \textit{Dict of observations on the network.} \\ & \{(edge): \{pt\_id:(coords)\}\} \text{ or } \{edge: [(coord), (coord), (coord)]\} \end{tabular}
```

Returns counts – {(edge):count}

Return type dict

Example

Note that this passes the obs_to_edge attribute of a point pattern snapped to the network.

distancebandweights (threshold, n_proccess=None)

Create distance based weights

Parameters

- threshold (float) Distance threshold value.
- n_processes (int, str) (Optional) Specify the number of cores to utilize. Default is 1 core. Use (int) to specify an exact number or cores. Use ("all") to request all available cores.

enum links node $(v\theta)$

Returns the edges (links) around node

Parameters v0 (int) - Node id

Returns links – List of tuple edges adjacent to the node.

Return type list

extractgraph()

Using the existing network representation, create a graph based representation by removing all nodes with a neighbor incidence of two. That is, we assume these nodes are bridges between nodes with higher incidence.

nearestneighbordistances (sourcepattern, destpattern=None, n_processes=None)

Compute the interpattern nearest neighbor distances or the intrapattern nearest neighbor distances between a source pattern and a destination pattern.

Parameters

- **sourcepattern** (str) The key of a point pattern snapped to the network.
- **destpattern** (*str*) (Optional) The key of a point pattern snapped to the network.
- n_processes (int, str) (Optional) Specify the number of cores to utilize. Default is 1 core. Use (int) to specify an exact number or cores. Use ("all") to request all available cores.

Returns nearest – With column[:,0] containing the id of the nearest neighbor and column [:,1] containing the distance.

Return type ndarray (n,2)

node_distance_matrix (n_processes)

Called from: allneighbordistances() nearestneighbordistances() distancebandweights()

savenetwork (filename)

Save a network to disk as a binary file

Parameters filename (str) – The filename where the network should be saved. This should be a full path or the file is saved whereever this method is called from.

Example

```
>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> ntw.savenetwork('mynetwork.pkl')
```

segment_edges (distance)

Segment all of the edges in the network at either a fixed distance or a fixed number of segments.

Parameters distance (float) – The distance at which edges are split.

Returns sn – PySAL Network Object.

Return type object

Example

```
>>> ntw = ps.Network(ps.examples.get_path('streets.shp'))
>>> n200 = ntw.segment_edges(200.0)
>>> len(n200.edges)
688
```

simulate observations(count, distribution='uniform')

Generate a simulated point pattern on the network.

Parameters

- count (int) The number of points to create or mean of the distribution if not 'uniform'.
- **distribution** (*str*) {'uniform', 'poisson'} distribution of random points.

Returns random_pts – Keys are the edge tuple. Value are a list of new point coordinates.

Return type dict

Example

snapobservations (shapefile, name, idvariable=None, attribute=None)

Snap a point pattern shapefile to this network object. The point pattern is stored in the network.pointpattern['key'] attribute of the network object.

Parameters

- **shapefile** (str) The path to the shapefile.
- name (str) Name to be assigned to the point dataset.
- idvariable (str) Column name to be used as ID variable.
- attribute (bool) -

Defines whether attributes should be extracted. True for attribute extraction. False for no attribute extraaction.

class pysal.network.network.PointPattern (shapefile, idvariable=None, attribute=False)

A stub point pattern class used to store a point pattern. This class is monkey patched with network specific attributes when the points are snapped to a network.

In the future this class may be replaced with a generic point pattern class.

Parameters

- **shapefile** (str) The input shapefile.
- **idvariable** (str) Field in the shapefile to use as an id variable.

• attribute (bool) - {False, True} A flag to indicate whether all attributes are tagged to this class.

points

dict – Keys are the point ids. Values are the coordinates.

npoints

int – The number of points.

Compute a network constrained G statistic.

Compute a network constrained K statistic.

Compute a network constrained F statistic.

This requires the capability to compute a distance matrix between two point patterns. In this case one will be observed and one will be simulated

pysal.contrib - Contributed Modules

Intro

The PySAL Contrib library contains user contributions that enhance PySAL, but are not fit for inclusion in the general library. The primary reason a contribution would not be allowed in the general library is external dependencies. PySAL has a strict no dependency policy (aside from Numpy/Scipy). This helps ensure the library is easy to install and maintain.

However, this policy often limits our ability to make use of existing code or exploit performance enhancements from C-extensions. This contrib module is designed to alleviate this problem. There are no restrictions on external dependencies in contrib.

Ground Rules

- 1. Contribs must not be used within the general library.
- 2. Explicit imports: each contrib must be imported manually.
- 3. *Documentation*: each contrib must be documented, dependencies especially.

Contribs

Currently the following contribs are available:

- 1. World To View Transform A class for modeling viewing windows, used by Weights Viewer.
 - New in version 1.3.
 - Path: pysal.contrib.weights_viewer.transforms
 - Requires: None
- 2. Weights Viewer A Graphical tool for examining spatial weights.
 - New in version 1.3.

- Path: pysal.contrib.weights_viewer.weights_viewer
- Requires: wxPython
- 3. Shapely Extension Exposes shapely methods as standalone functions
 - New in version 1.3.
 - Path: pysal.contrib.shapely_ext
 - · Requires: shapely
- 4. Shared Perimeter Weights calculate shared perimeters weights.
 - New in version 1.3.
 - Path: pysal.contrib.shared_perimeter_weights
 - · Requires: shapely
- 5. Visualization Lightweight visualization layer (Project page).
 - New in version 1.5.
 - Path: pysal.contrib.viz
 - Requires: matplotlib
- 6. Clusterpy Spatially constrained clustering.
 - New in version 1.8.
 - Path: pysal.contrib.clusterpy
 - · Requires: clusterpy
- 7. Pandas utilities Tools to work with spatial file formats using *pandas*.
 - New in version 1.8.
 - Path: pysal.contrib.pdutilities
 - Requires: 'pandas'_
- 8. Spatial Interaction Tools for spatial interaction (SpInt) modeling.
- New in version 1.10.
- Path: pysal.contrib.spint
- Requires: 'pandas'_
- 9. Githooks Optional hooks for git to make development on PySAL easier
 - New in version 1.10.
 - Path: pysal.contrib.githooks (Note: not importable)
 - Requires: git
- 10. Handler A model ingester to standardize model extension
 - New in version 1.10.
 - Path: pysal.contrib.handler
 - · Requires: None
 - Optional: patsy

Bibliography

[Anselin2000] Anselin, Luc (2000) Computing environments for spatial data analysis. *Journal of Geographical Systems* 2: 201-220

[ReyJanikas2006] Rey, S.J. and M.V. Janikas (2006) STARS: Space-Time Analysis of Regional Systems, *Geographical Analysis* 38: 67-86.

[ReyYe2010] Rey, S.J. and X. Ye (2010) Comparative spatial dyanmics of regional systems. In Paez, A. et al. (eds) *Progress in Spatial Analysis: Methods and Applications.* Springer: Berlin, 441-463.

[Python271] http://www.python.org/download/releases/2.7.1/

[PythonNewIn3] http://docs.python.org/release/3.0.1/whatsnew/3.0.html

[Python2to3] http://docs.python.org/release/3.0.1/library/2to3.html#to3-reference

[NumpyANN150] http://mail.scipy.org/pipermail/numpy-discussion/2010-August/052522.html

[SciPyRoadmap] http://projects.scipy.org/scipy/roadmap#python-3

[SciPyANN090rc2] http://mail.scipy.org/pipermail/scipy-dev/2011-January/015927.html

[Rtree] http://pypi.python.org/pypi/Rtree/

[pyrtree] http://code.google.com/p/pyrtree/

544 Bibliography

Python Module Index

```
pysal.spatial_dynamics.interaction, 273
р
                                           pysal.spatial dynamics.markov, 279
pysal.cg.kdtree, 121
                                           pysal.spatial_dynamics.rank, 291
pysal.cq.locators, 95
                                           pysal.spreg.diagnostics, 328
pysal.cg.rtree, 121
                                           pysal.spreg.diagnostics_sp, 343
pysal.cg.shapes, 103
                                           pysal.spreq.diagnostics tsls, 348
pysal.cg.sphere, 122
                                           pysal.spreq.error_sp, 352
pysal.cg.standalone, 114
                                           pysal.spreg.error_sp_het,377
pysal.core.FileIO, 127
                                           pysal.spreq.error_sp_het_regimes, 388
pvsal.core.IOHandlers.arcgis dbf, 128
                                           pysal.spreg.error_sp_hom, 403
pysal.core.IOHandlers.arcgis_swm, 130
                                           pysal.spreq.error_sp_hom_regimes, 414
pysal.core.IOHandlers.arcgis_txt, 132
                                           pysal.spreq.error_sp_regimes, 362
pysal.core.IOHandlers.csvWrapper, 135
                                           pysal.spreq.ml_error, 436
pysal.core.IOHandlers.dat, 137
                                           pysal.spreg.ml_error_regimes, 439
pysal.core.IOHandlers.gal, 139
                                           pysal.spreg.ml_lag,443
pysal.core.IOHandlers.geobugs txt, 141
                                           pysal.spreg.ml_lag_regimes, 448
pysal.core.IOHandlers.geoda txt, 144
                                           pysal.spreg.ols, 295
pysal.core.IOHandlers.gwt, 146
                                           pysal.spreq.ols regimes, 300
pysal.core.IOHandlers.mat, 148
                                           pysal.spreq.probit, 305
pysal.core.IOHandlers.mtx, 150
                                           pysal.spreg.regimes, 430
pysal.core.IOHandlers.pyDbfIO, 152
                                           pysal.spreg.sur, 452
pysal.core.IOHandlers.pyShpIO, 155
                                           pysal.spreg.sur_error, 459
pysal.core.IOHandlers.stata_txt, 156
                                           pysal.spreq.sur lag, 463
pysal.core.IOHandlers.wk1, 159
                                           pysal.spreq.twosls, 309
pysal.core.IOHandlers.wkt, 162
                                           pysal.spreq.twosls_regimes, 313
pysal.core.Tables, 125
                                           pysal.spreq.twosls_sp, 317
pysal.esda.gamma, 164
                                           pysal.spreg.twosls_sp_regimes, 322
pysal.esda.geary, 166
                                           pysal.weights.Contiguity, 501
pysal.esda.getisord, 168
                                           pysal.weights.Distance, 516
pysal.esda.join_counts, 173
                                           pysal.weights.spatial_lag, 531
pysal.esda.mapclassify, 175
                                           pysal.weights.user, 488
pysal.esda.moran, 224
                                           pysal.weights.util, 477
pysal.esda.smoothing, 238
                                           pysal.weights.weights, 467
pysal.inequality.gini, 259
                                           pysal.weights.Wsets, 525
pysal.inequality.theil, 260
pysal.network.network, 533
pysal.region.maxp, 262
pysal.region.randomregion, 266
pysal.spatial_dynamics.directional, 270
pysal.spatial_dynamics.ergodic, 272
```

546 Python Module Index

adaptive_kernelW() (in module pysal.weights.user), 497 adaptive_kernelW_from_shapefile() (in module pysal.weights.user), 497 add() (pysal.cg.locators.Grid method), 96 adjacencylist (pysal.network.network.Network attribute), 533 Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 area (pysal.cg.shapes.Polygon attribute), 112 area2region (pysal.region.maxp.Maxp attribute), 262 area2region (pysal.region.maxp.Maxp_LISA attribute), 265 asShape() (in module pysal.cg.shapes), 114 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.weights.W attribute), 467,
adaptive_kernelW_from_shapefile() (in module pysal.weights.user), 499 add() (pysal.cg.locators.Grid method), 96 adjacencylist (pysal.network.network.Network attribute), 533 Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 area2region (pysal.region.maxp.Maxp_LISA attribute), 265 asShape() (in module pysal.cg.shapes), 114 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.weights.W attribute), 467,
pysal.weights.user), 499 add() (pysal.cg.locators.Grid method), 96 adjacencylist (pysal.network.network.Network attribute), 533 Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 area2region (pysal.region.maxp.Maxp_LISA attribute), 265 asShape() (in module pysal.cg.shapes), 114 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.weights.W attribute), 467,
add() (pysal.cg.locators.Grid method), 96 adjacencylist (pysal.network.network.Network attribute), 533 Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 265 asShape() (in module pysal.cg.shapes), 114 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.W attribute), 467,
adjacencylist (pysal.network.network.Network attribute), 533 Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 asShape() (in module pysal.cg.shapes), 114 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.W attribute), 467,
Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 assuncao_rate() (in module pysal.esda.smoothing), 258 assuncao_rate() (in module pysal.esda.smoothing), 258 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.Weights.Weights.W attribute), 467,
Age_Adjusted_Smoother (class in pysal.esda.smoothing), 242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 asymmetries (pysal.weights.Contiguity.Queen attribute), 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.Weights
242 aic (pysal.spreg.ml_lag.ML_Lag attribute), 444 aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 501 asymmetries (pysal.weights.Contiguity.Rook attribute), 509 asymmetries (pysal.weights.weights.W attribute), 467,
aic (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 asymmetries (pysal.weights.weights.W attribute), 467,
tribute), 450 asymmetries (pysal.weights.weights.W attribute), 467,
460
aic (pysal.spreg.ols.OLS attribute), 296 469
aic (pysal.spreg.ols_regimes.OLS_Regimes attribute), asymmetry() (pysal.weights.Contiguity.Queen method), 501
ak (pysal.spreg.diagnostics_sp.AKtest attribute), 346 asymmetry() (pysal.weights.Contiguity.Rook method),
ak_test (pysal.spreg.twosls.TSLS attribute), 311
ak_test (pysal.spreg.twosls.13L3 attribute), 319 asymmetry() (pysal.weights.W method), 469
ak_test (pysal.spreg.twosls_sp.cim_Lag_attribute), 319 ak_test (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes aw (pysal.esda.smoothing.Spatial_Median_Rate at-
attribute), 325 tribute), 244
alcoites (in module arrest diagnostics) 222
AKtest (class in pysal.spreg.diagnostics_sp), 346
alldistances (pysal.network.network.Network attribute), b (pysal.cg.shapes.Line attribute), 107
534 b2SLS (pysal.spreg.sur.ThreeSLS attribute), 457
allneighbordistances() (pysal.network.network.Network b2SLS (pysal.spreg.sur_lag.SURlagIV attribute), 465
method), 535 b3SLS (pysal.spreg.sur.ThreeSLS attribute), 457
ar2 (pysal.spreg.ols.OLS attribute), 296 b3SLS (pysal.spreg.sur_lag.SURlagIV attribute), 465
ar2 (pysal.spreg.ols_regimes.OLS_Regimes attribute), bandwidth (pysal.weights.Distance.Kernel attribute), 521
302 BaseSURerrorML (class in pysal.spreg.sur_error), 459
ar2() (in module pysal.spreg.diagnostics), 331 bb (pysal.esda.join_counts.Join_Counts attribute), 173
arcdist() (in module pysal.cg.sphere), 122 bbcommon() (in module pysal.cg.standalone), 114
arcdist2linear() (in module pysal.cg.sphere), 122 bbox (pysal.cg.shapes.Polygon attribute), 109
ArcGISDbfIO (class in best (pysal.esda.mapclassify.K_classifiers attribute), 221
pysal.core.IOHandlers.arcgis_dbf), 128 betas (pysal.spreg.error_sp.GM_Combo attribute), 359
ArcGISSwmIO (class in betas (pysal.spreg.error_sp.GM_Endog_Error attribute),
pysal.core.IOHandlers.arcgis_swm), 130 356
ArcGISTextIO (class in betas (pysal.spreg.error_sp.GM_Error attribute), 353
pysal.core.IOHandlers.arcgis_txt), 132 betas (pysal.spreg.error_sp_het.GM_Combo_Het at-
arclen (pysal.cg.shapes.Chain attribute), 108 tribute), 384

(pysal.spreg.error sp het.GM Endog Error Het bigK (pysal.spreg.sur.ThreeSLS attribute), 457 betas bigK (pysal.spreg.sur error.BaseSURerrorML attribute), attribute), 380 betas (pysal.spreg.error sp het.GM Error Het attribute), bigK (pysal.spreg.sur_error.SURerrorML attribute), 461 betas (pysal.spreg.error sp het regimes.GM Combo Het Rick (pysal.spreg.sur lag.SURlagIV attribute), 465 attribute), 389 bigq (pysal.spreg.sur lag.SURlagIV attribute), 464 betas (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_blgX_Reginlespreg.sur.SUR attribute), 453 attribute), 395 bigX (pysal.spreg.sur error.BaseSURerrorML attribute), betas (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute), 400 bigX (pysal.spreg.sur_error.SURerrorML attribute), 461 betas (pysal.spreg.error_sp_hom.GM_Combo_Hom atbigXlag (pysal.spreg.sur_error.BaseSURerrorML tribute), 411 tribute), 459 betas (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom bigXlag (pysal.spreg.sur error.SURerrorML attribute), attribute), 407 461 bigXX (pysal.spreg.sur.SUR attribute), 453 betas (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), 404 bigXy (pysal.spreg.sur.SUR attribute), 453 betas (pysal.spreg.error_sp_hom_regimes.GM_Combo_HorbigNegipywad.spreg.sur.SUR attribute), 453 bigy (pysal.spreg.sur.ThreeSLS attribute), 457 attribute), 416 betas (pysal.spreg.error sp hom regimes.GM Endog ErrorbildompRegispesg.sur error.BaseSURerrorML attribute), attribute), 421 betas (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_\textbf{Mggittpps}sal.spreg.sur_error.SURerrorML attribute), 461 attribute), 427 bigy (pysal.spreg.sur lag.SURlagIV attribute), 464 betas (pysal.spreg.error_sp_regimes.GM_Combo_Regimes bigyend (pysal.spreg.sur_lag.SURlagIV attribute), 464 (pysal.spreg.sur_error.BaseSURerrorML attribute), 363 bigylag tribute), 459 betas (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute), 369 bigylag (pysal.spreg.sur error.SURerrorML attribute), betas (pysal.spreg.error_sp_regimes.GM_Error_Regimes 461 attribute), 373 bigZ (pysal.spreg.sur.ThreeSLS attribute), 457 bigZ (pysal.spreg.sur_lag.SURlagIV attribute), 464 betas (pysal.spreg.ml_error.ML_Error attribute), 436 betas (pysal.spreg.ml_error_regimes.ML_Error_Regimes bigZHy (pysal.spreg.sur.ThreeSLS attribute), 457 attribute), 440 bigZHy (pysal.spreg.sur_lag.SURlagIV attribute), 465 betas (pysal.spreg.ml_lag.ML_Lag attribute), 443 bigZHZH (pysal.spreg.sur.ThreeSLS attribute), 457 betas (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes atbigZHZH (pysal.spreg.sur_lag.SURlagIV attribute), 464 bins (pysal.esda.mapclassify.Box_Plot attribute), 179 tribute), 449 betas (pysal.spreg.ols.OLS attribute), 295 bins (pysal.esda.mapclassify.Equal Interval attribute), betas (pysal.spreg.ols regimes.OLS Regimes attribute), 301 bins (pysal.esda.mapclassify.Fisher Jenks attribute), 185 betas (pysal.spreg.probit.Probit attribute), 306 bins (pysal.esda.mapclassify.Fisher Jenks Sampled atbetas (pysal.spreg.twosls.TSLS attribute), 310 tribute), 188 betas (pysal.spreg.twosls_regimes.TSLS_Regimes bins (pysal.esda.mapclassify.HeadTail_Breaks attribute), attribute), 314 betas (pysal.spreg.twosls sp.GM Lag attribute), 318 bins (pysal.esda.mapclassify.Jenks Caspall attribute), betas (pysal.spreg.twosls sp regimes.GM Lag Regimes attribute), 323 bins (pysal.esda.mapclassify.Jenks_Caspall_Forced atbg (pysal.inequality.theil.TheilD attribute), 261 tribute), 193 bg (pysal.inequality.theil.TheilDSim attribute), 262 bins (pysal.esda.mapclassify.Jenks_Caspall_Sampled attribute), 196 bg pvalue (pvsal.inequality.theil.TheilDSim attribute), 262 bins (pysal.esda.mapclassify.Max_P_Classifier attribute), bigE (pysal.spreg.sur.SUR attribute), 453 bigE (pysal.spreg.sur.ThreeSLS attribute), 457 bins (pysal.esda.mapclassify.Maximum_Breaks bigE (pysal.spreg.sur_error.BaseSURerrorML attribute), tribute), 202 bins (pysal.esda.mapclassify.Natural_Breaks attribute), bigE (pysal.spreg.sur error.SURerrorML attribute), 461 bigK (pysal.spreg.sur.SUR attribute), 453 bins (pysal.esda.mapclassify.Percentiles attribute), 211

bins (pysal.esda.mapclassify.Quantiles attribute), 208	235
bins (pysal.esda.mapclassify.Std_Mean attribute), 214	by_col() (pysal.esda.smoothing.Age_Adjusted_Smoother
bins (pysal.esda.mapclassify.User_Defined attribute), 217	class method), 243
block_weights() (in module pysal.weights.util), 477	by_col() (pysal.esda.smoothing.Headbanging_Median_Rate
bOLS (pysal.spreg.sur.SUR attribute), 453	class method), 251
bounding_box (pysal.cg.shapes.Chain attribute), 108	by_col() (pysal.esda.smoothing.Spatial_Filtering class
bounding_box (pysal.cg.shapes.LineSegment attribute),	method), 247
104	by_col_array() (pysal.core.IOHandlers.csvWrapper.csvWrapper
bounding_box (pysal.cg.shapes.Polygon attribute), 109	method), 135
bounds() (pysal.cg.locators.Grid method), 96	$by_col_array() (pysal.core.IOH and lers.geoda_txt.GeoDaTxtReader$
Box_Plot (class in pysal.esda.mapclassify), 179	method), 144
breusch_pagan (pysal.spreg.ols.OLS attribute), 296	by_col_array() (pysal.core.IOHandlers.pyDbfIO.DBF
breusch_pagan (pysal.spreg.ols_regimes.OLS_Regimes	method), 153
attribute), 303	by_col_array() (pysal.core.Tables.DataTable method),
breusch_pagan() (in module pysal.spreg.diagnostics), 337	126
brute_knn() (in module pysal.cg.sphere), 123	by_row (pysal.core.FileIO.FileIO attribute), 127
BruteForcePointLocator (class in pysal.cg.locators), 98	by_row (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
bSUR (pysal.spreg.sur.SUR attribute), 453	attribute), 129
bSUR (pysal.spreg.sur_error.BaseSURerrorML at-	by_row (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
tribute), 460	attribute), 131
bSUR (pysal.spreg.sur_error.SURerrorML attribute), 461	by_row (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
bSUR0 (pysal.spreg.sur_error.BaseSURerrorML at-	attribute), 133
tribute), 460	by_row (pysal.core.IOHandlers.csvWrapper.csvWrapper
bSUR0 (pysal.spreg.sur_error.SURerrorML attribute),	attribute), 136
461	by_row (pysal.core.IOHandlers.dat.DatIO attribute), 137
build_lattice_shapefile() (in module pysal.weights.user),	by_row (pysal.core.IOHandlers.gal.GalIO attribute), 139
501	by_row (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
buildContiguity() (in module pysal.weights.Contiguity),	attribute), 141
501	by_row (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
buildR() (in module pysal.spreg.regimes), 432	attribute), 145
buildR1var() (in module pysal.spreg.regimes), 432	by_row (pysal.core.IOHandlers.gwt.GwtIO attribute),
bw (pysal.esda.join_counts.Join_Counts attribute), 173	146
by_col (pysal.core.IOHandlers.csvWrapper.csvWrapper attribute), 135	by_row (pysal.core.IOHandlers.mat.MatIO attribute), 148
by_col (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader	by_row (pysal.core.IOHandlers.mtx.MtxIO attribute),
attribute), 144	150
by_col (pysal.core.IOHandlers.pyDbfIO.DBF attribute),	by_row (pysal.core.IOHandlers.pyDbfIO.DBF attribute),
by_col (pysal.core.Tables.DataTable attribute), 125	by_row (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper
by_col() (pysal.esda.geary.Geary class method), 167	attribute), 156
by_col() (pysal.esda.getisord.G class method), 169	by_row (pysal.core.IOHandlers.stata_txt.StataTextIO at-
by_col() (pysal.esda.getisord.G_Local class method), 172	tribute), 157
by_col() (pysal.esda.join_counts.Join_Counts class method), 174	by_row (pysal.core.IOHandlers.wk1.Wk1IO attribute),
by_col() (pysal.esda.moran.Moran class method), 226	by_row (pysal.core.IOHandlers.wkt.WKTReader at-
by_col() (pysal.esda.moran.Moran_BV class method), 230	tribute), 163
by_col() (pysal.esda.moran.Moran_Local class method),	C
228	C (pysal.esda.geary.Geary attribute), 166
by_col() (pysal.esda.moran.Moran_Local_BV class	cardinalities (pysal.weights.Contiguity.Queen attribute),
method), 233	502
by_col() (pysal.esda.moran.Moran_Local_Rate class method), 238	cardinalities (pysal.weights.Contiguity.Rook attribute), 509

 $by_col() \ (pysal.esda.moran.Moran_Rate \ class \ method),$

cardinalities (pysal.weights.weights.W attribute), 467, 470	method), 157 check() (pysal.core.IOHandlers.wk1.Wk1IO method),
cast() (pysal.core.FileIO.FileIO method), 127	161
cast() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO	check() (pysal.core.IOHandlers.wkt.WKTReader
method), 129	method), 163
cast() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO	check_cols2regi() (in module pysal.spreg.regimes), 433
method), 131	chi2 (pysal.spatial_dynamics.markov.Spatial_Markov at-
	tribute), 286
cast() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	
method), 133	chi_2 (pysal.spatial_dynamics.markov.LISA_Markov attribute), 281
cast() (pysal.core.IOHandlers.csvWrapper.csvWrapper	· · · · · · · · · · · · · · · · · · ·
method), 136	Chow (class in pysal.spreg.regimes), 430
cast() (pysal.core.IOHandlers.dat.DatIO method), 137	choynowski() (in module pysal.esda.smoothing), 257
cast() (pysal.core.IOHandlers.gal.GalIO method), 139	cinference() (pysal.region.maxp.Maxp method), 263
$cast() (pysal.core.IOH and lers.geobugs_txt.GeoBUGSTextIO) (pysal.core.IOH and lers.geobugs_txt.GeoBugs_txt.$	
method), 141	attribute), 281
$cast() (pysal.core.IOH and lers.geoda_txt.GeoDaTxtReader$	
method), 145	tribute), 460
cast() (pysal.core.IOHandlers.gwt.GwtIO method), 146	clikerr (pysal.spreg.sur_error.SURerrorML attribute), 461
cast() (pysal.core.IOHandlers.mat.MatIO method), 148	cliksurerr (pysal.spreg.sur_error.BaseSURerrorML
cast() (pysal.core.IOHandlers.mtx.MtxIO method), 150	attribute), 460
cast() (pysal.core.IOHandlers.pyDbfIO.DBF method),	cliksurerr (pysal.spreg.sur_error.SURerrorML attribute),
154	461
cast() (pysal.core.IOH and lers.pyShpIO.PurePyShpWrapper and and below a constant of the property of	close() (pysal.core.FileIO.FileIO method), 127
method), 156	close() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
cast() (pysal.core.IOHandlers.stata_txt.StataTextIO	method), 129
method), 157	close() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
cast() (pysal.core.IOHandlers.wk1.Wk1IO method), 161	method), 131
cast() (pysal.core.IOHandlers.wkt.WKTReader method),	close() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
163	method), 133
centroid (pysal.cg.shapes.Polygon attribute), 109, 110	close() (pysal.core.IOHandlers.csvWrapper.csvWrapper
Chain (class in pysal.cg.shapes), 107	method), 136
check() (pysal.core.FileIO.FileIO class method), 127	close() (pysal.core.IOHandlers.dat.DatIO method), 137
check() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO	close() (pysal.core.IOHandlers.gal.GalIO method), 139
method), 129	close() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
check() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO	
method), 131	close() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
check() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	method), 145
method), 133	close() (pysal.core.IOHandlers.gwt.GwtIO method), 146
check() (pysal.core.IOHandlers.csvWrapper.csvWrapper	close() (pysal.core.IOHandlers.mat.MatIO method), 148
method), 136	close() (pysal.core.IOHandlers.mtx.MtxIO method), 150
check() (pysal.core.IOHandlers.dat.DatIO method), 137	close() (pysal.core.IOHandlers.pyDbfIO.DBF method),
check() (pysal.core.IOHandlers.gal.GalIO method), 139	154
	tttose() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper
method), 142	method), 156
check() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReade	· • • •
method), 145	method), 157
check() (pysal.core.IOHandlers.gwt.GwtIO method), 146	close() (pysal.core.IOHandlers.wk1.Wk1IO method), 161
check() (pysal.core.IOHandlers.mat.MatIO method), 148	close() (pysal.core.IOHandlers.wkt.WKTReader
check() (pysal.core.IOHandlers.mtx.MtxIO method), 150	method), 163
check() (pysal.core.IOHandlers.pyDbfIO.DBF method), 154	cols2regi (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute), 391
check() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapp method), 156	erols2regi (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimestribute), 397
	cols2regi (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes

```
attribute), 401
                                                                   attribute), 450
cols2regi (pysal.spreg.error sp hom regimes.GM Combo HonstaRtegingespysal.spreg.ols regimes.OLS Regimes at-
                                                                   tribute), 304
         attribute), 418
cols2regi (pysal.spreg.error_sp_hom_regimes.GM_Endog_EwostdflomegRepisselsspreg.twosls_regimes.TSLS_Regimes
         attribute), 423
                                                                   attribute), 314
cols2regi (pysal.spreg.error sp hom regimes.GM Error HoonsRegimesi (pysal.spreg.twosls sp regimes.GM Lag Regimes
         attribute), 428
                                                                   attribute), 326
cols2regi (pysal.spreg.error_sp_regimes.GM_Combo_Regimentains_point()
                                                                                (pysal.cg.locators.PolygonLocator
         attribute), 365
                                                                   method), 100
cols2regi (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes_point() (pysal.cg.shapes.Polygon method), 110
         attribute), 371
                                                         contiguityweights()
                                                                                 (pysal.network.network.Network
cols2regi (pysal.spreg.error_sp_regimes.GM_Error_Regimes
                                                                   method), 536
         attribute), 375
                                                         convex hull() (in module pysal.cg.standalone), 119
cols2regi (pysal.spreg.ml_error_regimes.ML_Error_Regimesorr (pysal.spreg.sur.SUR attribute), 454
         attribute), 441
                                                         corr (pysal.spreg.sur.ThreeSLS attribute), 457
                                                         corr (pysal.spreg.sur_error.BaseSURerrorML attribute),
cols2regi (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
         attribute), 450
           (pysal.spreg.ols regimes.OLS Regimes
                                                         corr (pysal.spreg.sur lag.SURlagIV attribute), 465
cols2regi
                                                                                 (pysal.network.network.Network
         tribute), 304
                                                         count per edge()
cols2regi (pysal.spreg.twosls regimes.TSLS Regimes at-
                                                                   method), 537
         tribute), 314
                                                         counts (pysal.esda.mapclassify.Box_Plot attribute), 179
cols2regi (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimesounts (pysal.esda.mapclassify.Equal_Interval attribute),
         attribute), 326
                                                                   182
comb() (in module pysal.weights.util), 478
                                                         counts (pysal.esda.mapclassify.Fisher Jenks attribute),
compute distance to nodes()
                                                                   185
         (pysal.network.network.Network
                                              method).
                                                         counts (pysal.esda.mapclassify.Fisher Jenks Sampled at-
                                                                   tribute), 188
concordant (pysal.spatial_dynamics.rank.SpatialTau at-
                                                                   (pysal.esda.mapclassify.HeadTail_Breaks
         tribute), 292
                                                                   tribute), 222
concordant spatial (pysal.spatial dynamics.rank.SpatialTaucounts (pysal.esda.mapclassify.Jenks Caspall attribute),
         attribute), 292
condition_index() (in module pysal.spreg.diagnostics), counts (pysal.esda.mapclassify.Jenks_Caspall_Forced at-
                                                                   tribute), 193
constant_regi (pysal.spreg.error_sp_het_regimes.GM_Comboothtet_Regisabesda.mapclassify.Jenks_Caspall_Sampled
         attribute), 391
                                                                   attribute), 196
constant regi (pysal.spreg.error sp het regimes.GM Endogo Gintor Heptysallegischesmapclassify.Max P Classifier
         attribute), 397
                                                                   tribute), 200
constant_regi (pysal.spreg.error_sp_het_regimes.GM_Error_cHent_Regippysal.esda.mapclassify.Maximum_Breaks at-
                                                                   tribute), 202
         attribute), 401
constant_regi (pysal.spreg.error_sp_hom_regimes.GM_Comdom_ttlo(pyRat-gisrdesmapclassify.Natural_Breaks attribute),
         attribute), 417
                                                                   205
constant regi (pysal.spreg.error sp hom regimes.GM EndoguEtropyEdmsoRegiappeslassify.Percentiles attribute), 211
         attribute), 423
                                                         counts (pysal.esda.mapclassify.Ouantiles attribute), 208
constant_regi (pysal.spreg.error_sp_hom_regimes.GM_Error_bHotm(Reglmsda.mapclassify.Std_Mean attribute), 214
         attribute), 428
                                                         counts (pysal.esda.mapclassify.User_Defined attribute),
constant_regi (pysal.spreg.error_sp_regimes.GM_Combo_Regimes 217
         attribute), 365
                                                         crude age standardization()
                                                                                                         module
constant_regi (pysal.spreg.error_sp_regimes.GM_Endog_Error_Reginpassal.esda.smoothing), 253
                                                         csvWrapper (class in pysal.core.IOHandlers.csvWrapper),
         attribute), 370
constant_regi (pysal.spreg.error_sp_regimes.GM_Error_Regimes
         attribute), 375
constant_regi (pysal.spreg.ml_error_regimes.ML_Error Regimes
         attribute), 441
                                                         data_type (pysal.core.IOHandlers.gal.GalIO attribute),
constant regi (pysal.spreg.ml lag regimes.ML Lag Regimes
```

DataTable (class in pysal.core.Tables), 125 DatIO (class in pysal.core.IOHandlers.dat), 137	e_filtered (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), 404
DBF (class in pysal.core.IOHandlers.pyDbfIO), 152 diagW2 (pysal.weights.Contiguity.Queen attribute), 502	e_filtered (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 416
diagW2 (pysal.weights.Contiguity.Rook attribute), 509 diagW2 (pysal.weights.weights.W attribute), 467, 470	e_filtered (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Reattribute), 422
diagWtW (pysal.weights.Contiguity.Queen attribute), 502 diagWtW (pysal.weights.Contiguity.Rook attribute), 510	e_filtered (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute), 427
diagWtW (pysal.weights.weights.W attribute), 467, 470 diagWtW_WW (pysal.weights.Contiguity.Queen at-	e_filtered (pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute), 364
tribute), 502 diagWtW_WW (pysal.weights.Contiguity.Rook at-	e_filtered (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute), 369
tribute), 510 diagWtW_WW (pysal.weights.weights.W attribute), 467,	e_filtered (pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute), 373
diagWtW_WW (pysal.weights.weights.WSP attribute), 476	e_filtered (pysal.spreg.ml_error.ML_Error attribute), 436 e_filtered (pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute), 440
direct_age_standardization() (in module pysal.esda.smoothing), 254 discordant (pysal.spatial_dynamics.rank.SpatialTau at-	e_pred (pysal.spreg.error_sp.GM_Combo attribute), 359 e_pred (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384
tribute), 292 discordant_spatial (pysal.spatial_dynamics.rank.SpatialTau	e_pred (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute), 389
attribute), 292 Disk_Smoother (class in pysal.esda.smoothing), 243	e_pred (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411
distance_matrix() (in module pysal.cg.standalone), 120 DistanceBand (class in pysal.weights.Distance), 523	e_pred (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 416
	e_pred (pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute), 364
dof_hom (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286	e_pred (pysal.spreg.ml_lag.ML_Lag attribute), 444 e_pred (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
E	attribute), 450 e_pred (pysal.spreg.twosls_sp.GM_Lag attribute), 318
e_filtered (pysal.spreg.error_sp.GM_Combo attribute), 359	e_pred (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 323
e_filtered (pysal.spreg.error_sp.GM_Endog_Error attribute), 356	e_wcg (pysal.inequality.gini.Gini_Spatial attribute), 259 EC (pysal.esda.geary.Geary attribute), 166
e_filtered (pysal.spreg.error_sp.GM_Error attribute), 353	EC_sim (pysal.esda.geary.Geary attribute), 167
tribute), 384	edge_lengths (pysal.network.network.Network attribute), 533
	EG (pysal.esda.getisord.G attribute), 168
tribute), 377	EG_sim (pysal.esda.getisord.G attribute), 169 EG_sim (pysal.esda.getisord.G_Local attribute), 171 EG_(pysal.esda.getisord.G_Local attribute), 170
	EI (pysal.esda.moran.Moran attribute), 225
e_filtered (pysal.spreg.error_sp_het_regimes.GM_Endog_E attribute), 395	eI (pysal.spreg.diagnostics_sp.MoranRes attribute), 345
e_filtered (pysal.spreg.error_sp_het_regimes.GM_Error_He attribute), 400	EI_sim (pysal.esda.moran_BV attribute), 229
attribute), 411	EI_sim (pysal.esda.moran.Moran_Local attribute), 228 EI_sim (pysal.esda.moran.Moran_Local_BV attribute),
e_filtered (pysal.spreg.error_sp_hom.GM_Endog_Error_Hoattribute), 407	om 232 EI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237

EI_sim (pysal.esda.moran_Moran_Rate attribute), 235	find_bin() (pysal.esda.mapclassify.Map_Classifier
Empirical_Bayes (class in pysal.esda.smoothing), 239	method), 176
enum_links_node() (pysal.network.network.Network	find_bin() (pysal.esda.mapclassify.Max_P_Classifier
method), 537	method), 200
epsilon (pysal.spreg.ml_error.ML_Error attribute), 437	find_bin() (pysal.esda.mapclassify.Maximum_Breaks
epsilon (pysal.spreg.ml_error_regimes.ML_Error_Regimes	
attribute), 440	find_bin() (pysal.esda.mapclassify.Natural_Breaks
epsilon (pysal.spreg.ml_lag.ML_Lag attribute), 444	method), 206
epsilon (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 449	find_bin() (pysal.esda.mapclassify.Percentiles method), 212
Equal_Interval (class in pysal.esda.mapclassify), 182	find_bin() (pysal.esda.mapclassify.Quantiles method),
errllik (pysal.spreg.sur_error.SURerrorML attribute), 462	209
Excess_Risk (class in pysal.esda.smoothing), 238	find_bin() (pysal.esda.mapclassify.Std_Mean method),
$expected_t \ (pysal.spatial_dynamics.markov.LISA_Markov$	215
attribute), 281	find_bin() (pysal.esda.mapclassify.User_Defined
extra (pysal.esda.smoothing.Headbanging_Triples at-	method), 218
tribute), 248	Fisher_Jenks (class in pysal.esda.mapclassify), 185
extractgraph() (pysal.network.network.Network method), 538	Fisher_Jenks_Sampled (class in pysal.esda.mapclassify), 188
extraX (pysal.spatial_dynamics.rank.SpatialTau at-	flatten() (in module pysal.esda.smoothing), 252
tribute), 292	flush() (pysal.core.FileIO.FileIO method), 127
extraY (pysal.spatial_dynamics.rank.SpatialTau at-	flush() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
tribute), 292	method), 129
F	flush() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
	method), 131
F (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286	flush() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method), 133
f_stat (pysal.spreg.ols.OLS attribute), 296	flush() (pysal.core.IOHandlers.csvWrapper.csvWrapper
f_stat (pysal.spreg.ols_regimes.OLS_Regimes attribute),	method), 136
302	flush() (pysal.core.IOHandlers.dat.DatIO method), 137
f_stat() (in module pysal.spreg.diagnostics), 328	flush() (pysal.core.IOHandlers.gal.GalIO method), 139
fast_knn() (in module pysal.cg.sphere), 123	flush() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
feas_sols (pysal.region.maxp.Maxp attribute), 263	method), 142
feasible (pysal.region.randomregion.Random_Region at-	flush() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
tribute), 268	method), 145
field_spec (pysal.core.IOHandlers.pyDbfIO.DBF at-	flush() (pysal.core.IOHandlers.gwt.GwtIO method), 146
tribute), 152	flush() (pysal.core.IOHandlers.mat.MatIO method), 148
FileIO (class in pysal.core.FileIO), 127	flush() (pysal.core.IOHandlers.mtx.MtxIO method), 150
find_bin() (pysal.esda.mapclassify.Box_Plot method),	flush() (pysal.core.IOHandlers.pyDbfIO.DBF method),
180	154
find_bin() (pysal.esda.mapclassify.Equal_Interval	flush() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper
method), 183	method), 156
find_bin() (pysal.esda.mapclassify.Fisher_Jenks method), 185	flush() (pysal.core.IOHandlers.stata_txt.StataTextIO method), 157
find_bin() (pysal.esda.mapclassify.Fisher_Jenks_Sampled	flush() (pysal.core.IOHandlers.wk1.Wk1IO method), 161
method), 188	flush() (pysal.core.IOHandlers.wkt.WKTReader
find_bin() (pysal.esda.mapclassify.HeadTail_Breaks	method), 163
method), 222	fmpt() (in module pysal.spatial_dynamics.ergodic), 272
find_bin() (pysal.esda.mapclassify.Jenks_Caspall	FORMATS (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
method), 191	attribute), 129
find_bin() (pysal.esda.mapclassify.Jenks_Caspall_Forced	FORMATS (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
method), 194	attribute), 131
find_bin() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197	FORMATS (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute), 133
1110011001, 171	

FORMATS (pysal.core.IOHandlers.csvWrapper.csvWrappattribute), 135	perfrom_shapefile() (pysal.weights.Distance.Kernel class method), 523
FORMATS (pysal.core.IOHandlers.dat.DatIO attribute), 137	from_shapefile() (pysal.weights.Distance.KNN class method), 518
FORMATS (pysal.core.IOHandlers.gal.GalIO attribute), 139	from_W() (pysal.weights.wSP class method), 476
FORMATS (pysal.core.IOHandlers.geobugs_txt.GeoBUG attribute), 141	STuki(I)Qin module pysal.weights.util), 482 full() (pysal.weights.Contiguity.Queen method), 503
FORMATS (pysal.core.IOHandlers.geoda_txt.GeoDaTxtFattribute), 144	Reafider() (pysal.weights.Contiguity.Rook method), 511 full() (pysal.weights.weights.W method), 470
FORMATS (pysal.core.IOHandlers.gwt.GwtIO attribute), 146	full2W() (in module pysal.weights.util), 481
FORMATS (pysal.core.IOHandlers.mat.MatIO attribute), 148	G
FORMATS (pysal.core.IOHandlers.mtx.MtxIO attribute), 150	G (class in pysal.esda.getisord), 168 G (pysal.esda.getisord.G attribute), 168 g (pysal.inequality.gini.Gini attribute), 259
FORMATS (pysal.core.IOHandlers.pyDbfIO.DBF attribute), 153	g (pysal.inequality.gini.Gini_Spatial attribute), 259 G. Local (class in pysal.esda.getisord), 170
FORMATS (pysal.core.IOHandlers.pyShpIO.PurePyShpV	Vrapher) (in module pysal.esda.mapclassify), 220
attribute), 156	GalIO (class in pysal.core.IOHandlers.gal), 139
Formats (pysal.core.IOHandlers.pyShpIO.PurePyShpWrajattribute), 155	PGamma (class in pysal.esda.gamma), 164 gamma (pysal.esda.gamma.Gamma attribute), 164
FORMATS (pysal.core.IOHandlers.stata_txt.StataTextIO	Geary (class in pysal.esda.geary), 166
attribute), 157	GeoBUGSTextIO (class in
FORMATS (pysal.core.IOHandlers.wk1.Wk1IO at-	pysal.core.IOHandlers.geobugs_txt), 141
tribute), 160	GeoDaTxtReader (class in
FORMATS (pysal.core.IOHandlers.wkt.WKTReader at-	pysal.core.IOHandlers.geoda_txt), 144
tribute), 163	geogrid() (in module pysal.cg.sphere), 125
from_array() (pysal.weights.Distance.DistanceBand class method), 524	geointerpolate() (in module pysal.cg.sphere), 124
from_array() (pysal.weights.Distance.Kernel class	get() (pysal.core.FileIO.FileIO method), 127
method), 522	get() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO method), 129
from_array() (pysal.weights.Distance.KNN class method), 517	get() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO method), 131
from_dataframe() (pysal.weights.Contiguity.Queen class method), 502	get() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method), 133
from_dataframe() (pysal.weights.Contiguity.Rook class method), 510	get() (pysal.core.IOHandlers.csvWrapper.csvWrapper method), 136
$from_dataframe()\ (pysal.weights.Distance.DistanceBand$	get() (pysal.core.IOHandlers.dat.DatIO method), 138
class method), 525	get() (pysal.core.IOHandlers.gal.GalIO method), 139
from_dataframe() (pysal.weights.Distance.Kernel class method), 523	get() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIC method), 142
from_dataframe() (pysal.weights.Distance.KNN class method), 518	get() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method), 145
from_iterable() (pysal.weights.Contiguity.Queen class method), 502	get() (pysal.core.IOHandlers.gwt.GwtIO method), 146 get() (pysal.core.IOHandlers.mat.MatIO method), 148
from_iterable() (pysal.weights.Contiguity.Rook class	get() (pysal.core.IOHandlers.mtx.MtxIO method), 150
method), 510	get() (pysal.core.IOHandlers.pyDbfIO.DBF method), 154
from_shapefile() (pysal.weights.Contiguity.Queen class method), 503	get() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method), 156
from_shapefile() (pysal.weights.Contiguity.Rook class method), 510	get() (pysal.core.IOHandlers.stata_txt.StataTextIO method), 157
from_shapefile() (pysal.weights.Distance.DistanceBand class method), 525	get() (pysal.core.IOHandlers.wk1.Wk1IO method), 161

- get() (pysal.core.IOHandlers.wkt.WKTReader method), get adcm() (pysal.esda.mapclassify.Box Plot method), get_adcm() (pysal.esda.mapclassify.Equal Interval method), 183
- (pysal.esda.mapclassify.Fisher Jenks get_adcm() method), 186
- get_adcm() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 188
- get_adcm() (pysal.esda.mapclassify.HeadTail_Breaks method), 222
- (pysal.esda.mapclassify.Jenks Caspall get_adcm() method), 191
- get_adcm() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 194
- get_adcm() (pysal.esda.mapclassify.Jenks_Caspall_Sampledget_point_at_angle_and_dist() method), 197
- (pysal.esda.mapclassify.Map Classifier get_adcm() method), 176
- get_adcm() (pysal.esda.mapclassify.Max_P_Classifier method), 200
- (pysal.esda.mapclassify.Maximum_Breaks get_adcm() method), 203
- (pysal.esda.mapclassify.Natural_Breaks get_adcm() method), 206
- get_adcm() (pysal.esda.mapclassify.Percentiles method),
- get_adcm() (pysal.esda.mapclassify.Quantiles method),
- get_adcm() (pysal.esda.mapclassify.Std_Mean method), 215
- (pysal.esda.mapclassify.User_Defined get_adcm() method), 218
- get_angle_between() (in module pysal.cg.standalone),
- get bounding box() (in module pysal.cg.standalone), 114 get_gadf() (pysal.esda.mapclassify.Box_Plot method), 180
- (pysal.esda.mapclassify.Equal_Interval get_gadf() method), 183
- (pysal.esda.mapclassify.Fisher Jenks get_gadf() method), 186
- get_gadf() (pysal.esda.mapclassify.Fisher_Jenks_Sampled
- (pysal.esda.mapclassify.HeadTail_Breaks get_gadf() method), 222
- (pysal.esda.mapclassify.Jenks_Caspall get_gadf() method), 191
- get_gadf() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 194
- get_gadf() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197
- (pysal.esda.mapclassify.Map Classifier get_gadf()

- method), 176
- get_gadf() (pysal.esda.mapclassify.Max P Classifier method), 200
- (pysal.esda.mapclassify.Maximum_Breaks get_gadf() method), 203
- (pysal.esda.mapclassify.Natural Breaks get gadf() method), 206
- get_gadf() (pysal.esda.mapclassify.Percentiles method),
- get_gadf() (pysal.esda.mapclassify.Quantiles method),
- get_gadf() (pysal.esda.mapclassify.Std_Mean method),
- get_gadf() (pysal.esda.mapclassify.User_Defined method), 218
- get_ids() (in module pysal.weights.util), 483
- module pysal.cg.standalone), 118
- get points array from shapefile() (in module pysal.weights.util), 483
- get_points_dist() (in module pysal.cg.standalone), 118 get_polygon_point_dist() module pysal.cg.standalone), 117
- get_polygon_point_intersect() (in module pysal.cg.standalone), 116
- get_ray_segment_intersect() (in module pysal.cg.standalone), 116
- get_rectangle_point_intersect() (in module pysal.cg.standalone), 116
- get_rectangle_intersection() (in module pysal.cg.standalone), 117
- get_segment_point_dist() (in module pysal.cg.standalone), 118
- get_segment_point_intersect() module (in pysal.cg.standalone), 115
- get segments intersect() (in module pysal.cg.standalone), 115
- get_shared_segments() (in module pysal.cg.standalone),
- get_swap() (pysal.cg.shapes.LineSegment method), 104 (pysal.weights.Contiguity.Queen get transform() method), 504
- get transform() (pysal.weights.Contiguity.Rook method),
- get_transform() (pysal.weights.weights.W method), 471 get_tss() (pysal.esda.mapclassify.Box_Plot method), 180 (pysal.esda.mapclassify.Equal_Interval get_tss()
- get_tss() (pysal.esda.mapclassify.Fisher_Jenks method),

method), 183

- get_tss() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 188
- (pysal.esda.mapclassify.HeadTail Breaks get_tss() method), 222

get_tss()	(pysal.esda.mapclassify.Jenks_Caspall method), 191	Gini_Spatial (class in pysal.inequality.gini), 259 GM_Combo (class in pysal.spreg.error_sp), 358	
get_tss()	(pysal.esda.mapclassify.Jenks_Caspall_Forced method), 194	GM_Combo_Het (class in pysal.spreg.error_sp_het), 38 GM_Combo_Het_Regimes (class	in
get_tss()	(pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197	pysal.spreg.error_sp_het_regimes), 388 GM_Combo_Hom (class in pysal.spreg.error_sp_hom	1).
get_tss()	(pysal.esda.mapclassify.Map_Classifier method), 176	410	in
get_tss()	(pysal.esda.mapclassify.Max_P_Classifier	pysal.spreg.error_sp_hom_regimes), 414	
get_tss()	method), 200 (pysal.esda.mapclassify.Maximum_Breaks	pysal.spreg.error_sp_regimes), 362	in
	method), 203	GM_Endog_Error (class in pysal.spreg.error_sp), 355	_
get_tss()	(pysal.esda.mapclassify.Natural_Breaks method), 206	pysal.spreg.error_sp_het), 380	in
get_tss()	(pysal.esda.mapclassify.Percentiles method), 212	GM_Endog_Error_Het_Regimes (class pysal.spreg.error_sp_het_regimes), 394	in
get_tss()	(pysal.esda.mapclassify.Quantiles method), 209	GM_Endog_Error_Hom (class	in
get_tss()	(pysal.esda.mapclassify.Std_Mean method), 215	pysal.spreg.error_sp_hom), 406	
get_tss()	(pysal.esda.mapclassify.User_Defined method), 218	GM_Endog_Error_Hom_Regimes (class pysal.spreg.error_sp_hom_regimes), 420	in
getType() (pysal.core.FileIO.FileIO static method), 127		in
) (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIC method), 129		
getType(**	MGM_Error_Het (class in pysal.spreg.error_sp_het), 377	
	method), 131	GM_Error_Het_Regimes (class	in
getType() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO method), 133	pysal.spreg.error_sp_het_regimes), 399 GM_Error_Hom (class in pysal.spreg.error_sp_hom	n),
getType($) \ (pysal.core. IOH and lers. csvWrapper. csvWrapper$	403	
	method), 136	= = = & `	in
getType() (pysal.core.IOHandlers.dat.DatIO method), 138	pysal.spreg.error_sp_hom_regimes), 425 GM_Error_Regimes (class	in
getType(pysal.spreg.error_sp_regimes), 372	•••
	139	GM_Lag (class in pysal.spreg.twosls_sp), 317	
getType() (pysal.core.IOHandlers.geobugs_txt.GeoBUGST		in
	method), 142	pysal.spreg.twosls_sp_regimes), 322	
getType() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReamethod), 145		e),
getType() (pysal.core.IOHandlers.gwt.GwtIO method),	246	
gatTypa(146) (pysal.core.IOHandlers.mat.MatIO method),	Gs (pysal.esda.getisord.G_Local attribute), 170 GwtIO (class in pysal.core.IOHandlers.gwt), 146	
getType(148	Gwtio (class iii pysai.coie.ioriaildieis.gwt), 140	
getType() (pysal.core.IOHandlers.mtx.MtxIO method), 150	H h (pysal.spreg.error_sp_het.GM_Combo_Het attribute	2)
getType(385	
getTyne() (pysal.core.IOHandlers.pyShpIO.PurePyShpWra	h (pysal.spreg.error_sp_het.GM_Endog_Error_Het a	11-
getType(method), 156	11 4110410), 501	ъ :
getType() (pysal.core.IOHandlers.stata_txt.StataTextIO	h (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_attribute), 390	
getType(method), 157) (pysal.core.IOHandlers.wk1.Wk1IO method),	h (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_attribute), 396	_Het_Regimes
getType(h (pysal.spreg.error_sp_hom.GM_Combo_Hom a tribute), 411	at-
Cin: (-1-	method), 163	h (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom a	at-
OIIII (CIA	ss in pysal.inequality.gini), 259	tribute), 408	

h (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_l attribute), 416	Rightingsysal.weights.Contiguity.Queen attribute), 504 id2i (pysal.weights.Contiguity.Rook attribute), 512
h (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_F	
attribute), 422	id_order (pysal.weights.Contiguity.Queen attribute), 504
h (pysal.spreg.twosls.TSLS attribute), 310	id_order (pysal.weights.Contiguity.Rook attribute), 512
h (pysal.spreg.twosls_sp.GM_Lag attribute), 318	id_order (pysal.weights.weights.W attribute), 468, 471
h (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 324	id_order_set (pysal.weights.Contiguity.Queen attribute), 504
harcdist() (in module pysal.cg.sphere), 124	id_order_set (pysal.weights.Contiguity.Rook attribute),
Headbanging_Median_Rate (class in	512
pysal.esda.smoothing), 250	id_order_set (pysal.weights.weights.W attribute), 468,
Headbanging_Triples (class in pysal.esda.smoothing),	471
248	ids (pysal.core.FileIO.FileIO attribute), 127
header (pysal.core.IOHandlers.pyDbfIO.DBF attribute), 152	ids (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO attribute), 129
HeadTail_Breaks (class in pysal.esda.mapclassify), 221	ids (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
height (pysal.cg.shapes.Rectangle attribute), 112	attribute), 131
hexLat2W() (in module pysal.weights.util), 486 high_outlier_ids (pysal.esda.mapclassify.Box_Plot	ids (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute), 133
attribute), 179	ids (pysal.core.IOHandlers.csvWrapper.csvWrapper at-
higher_order() (in module pysal.weights.util), 479	tribute), 137
higher_order_sp() (in module pysal.weights.util), 485	ids (pysal.core.IOHandlers.dat.DatIO attribute), 138
histogram (pysal.weights.Contiguity.Queen attribute),	ids (pysal.core.IOHandlers.gal.GalIO attribute), 139
504	ids (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
histogram (pysal.weights.Contiguity.Rook attribute), 512	attribute), 142
histogram (pysal.weights.weights.W attribute), 467, 471	ids (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
holes (pysal.cg.shapes.Polygon attribute), 111	attribute), 145
homogeneity() (in module	ids (pysal.core.IOHandlers.gwt.GwtIO attribute), 146
pysal.spatial_dynamics.markov), 291	ids (pysal.core.IOHandlers.mat.MatIO attribute), 148
hth (pysal.spreg.error_sp_het.GM_Combo_Het attribute),	ids (pysal.core.IOHandlers.mtx.MtxIO attribute), 150
386	ids (pysal.core.IOHandlers.pyDbfIO.DBF attribute), 154
hth (pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute), 382	ids (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper attribute), 156
hth (pysal.spreg.error_sp_hom.GM_Combo_Hom at-	ids (pysal.core.IOHandlers.stata_txt.StataTextIO at-
tribute), 412	tribute), 157
	ids (pysal.core.IOHandlers.wk1.Wk1IO attribute), 161
attribute), 408	ids (pysal.core.IOHandlers.wkt.WKTReader attribute),
$hth\ (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_sp_hom_regimes.GM_Error_sp_hom_regimes.GM_Endog_Error_sp_hom_regimes.GM_Erro$	_Hom_Regimes
attribute), 423	in_grid() (pysal.cg.locators.Grid method), 96
hth (pysal.spreg.twosls.TSLS attribute), 311	in_shp (pysal.network.network.Network attribute), 533
hth (pysal.spreg.twosls_sp.GM_Lag attribute), 319	indirect_age_standardization() (in module
hth (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes	pysal.esda.smoothing), 255
attribute), 325	inference() (pysal.region.maxp.Maxp method), 264
hthi (pysal.spreg.twosls.TSLS attribute), 311	inside() (pysal.cg.locators.PolygonLocator method), 101
hthi (pysal.spreg.twosls_sp.GM_Lag attribute), 320	intersect() (pysal.cg.shapes.LineSegment method), 104
hthi (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes	IntervalTree (class in pysal.cg.locators), 95
attribute), 325	Is (pysal.esda.moran.Moran_Local attribute), 227
I	Is (pysal.esda.moran.Moran_Local_BV attribute), 232
	is_ccw() (pysal.cg.shapes.LineSegment method), 105
I (pysal.esda.moran.Moran attribute), 225	is_clockwise() (in module pysal.cg.standalone), 119
I (pysal.esda.moran_BV attribute), 229	is_collinear() (in module pysal.cg.standalone), 115
I (pysal.esda.moran_Moran_Local_Rate attribute), 237	is_cw() (pysal.cg.shapes.LineSegment method), 105
I (pysal.esda.moran_Rate attribute), 234	islands (pysal.weights.Contiguity.Queen attribute), 505
I (pysal.spreg.diagnostics_sp.MoranRes attribute), 345	islands (pysal.weights.Contiguity.Rook attribute), 512

islands (muss) visiahts visiahts W attributs) 469, 472	ionava hana (mysal amna ala OI C attributa) 206
islands (pysal.weights.weights.W attribute), 468, 472 iter_stop (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385	jarque_bera (pysal.spreg.ols.OLS attribute), 296 jarque_bera (pysal.spreg.ols_regimes.OLS_Regimes at- tribute), 303
$iter_stop \ (pysal.spreg.error_sp_het.GM_Endog_Error_Het\\ attribute), \ 381$	Jenks_Caspall (class in pysal.esda.mapclassify), 190
iter_stop (pysal.spreg.error_sp_het.GM_Error_Het attribute), 378	Jenks_Caspall_Forced (class in pysal.esda.mapclassify), 193
iter_stop (pysal.spreg.error_sp_het_regimes.GM_Combo_I attribute), 390	HetenRegGaspall_Sampled (class in pysal.esda.mapclassify), 196
iter_stop (pysal.spreg.error_sp_het_regimes.GM_Endog_E attribute), 396	rowinHelouRutgi(wass in pysal.esda.join_counts), 173 joinlam (pysal.spreg.sur_error.SURerrorML attribute),
iter_stop (pysal.spreg.error_sp_het_regimes.GM_Error_He attribute), 400	
iter_stop (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411	joinrho (pysal.spreg.sur_lag.SURlagIV attribute), 465 joint (pysal.spreg.regimes.Chow attribute), 430
iter_stop (pysal.spreg.error_sp_hom.GM_Endog_Error_Hoattribute), 408	k (pysal.esda.mapclassify.Box_Plot attribute), 179
iter_stop (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), 404	k (pysal.esda.mapclassify.Equal_Interval attribute), 182 k (pysal.esda.mapclassify.Fisher_Jenks attribute), 185
iter_stop (pysal.spreg.error_sp_hom_regimes.GM_Combo_attribute), 416	Hom (Pysaliesca.mapclassify.Fisher_Jenks_Sampled attribute), 188
iter_stop (pysal.spreg.error_sp_hom_regimes.GM_Endog_attribute), 422	Error Handstell, 1900 Error Handstell, 1900 222
iter_stop (pysal.spreg.error_sp_hom_regimes.GM_Error_Hattribute), 427	k (pysal.esda.mapclassify.Jenks_Caspall attribute), 191 k (pysal.esda.mapclassify.Jenks_Caspall_Forced at-
iteration (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385	tribute), 193 k (pysal.esda.mapclassify.Jenks_Caspall_Sampled
iteration (pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute), 381	attribute), 196 k (pysal.esda.mapclassify.Max_P_Classifier attribute),
iteration (pysal.spreg.error_sp_het.GM_Error_Het	200
attribute), 378 iteration (pysal.spreg.error_sp_het_regimes.GM_Combo_F	k (pysal.esda.mapclassify.Maximum_Breaks attribute), let_Regime ₂₀₂
attribute), 390 iteration (pysal.spreg.error_sp_het_regimes.GM_Endog_End	k (pysal.esda.mapclassify.Natural_Breaks attribute), 205
attribute), 396 iteration (pysal.spreg.error_sp_het_regimes.GM_Error_Het	k (pysal.esda.mapclassify.Quantiles attribute), 208
attribute), 401	k (pysal.esda.mapclassify.User_Defined attribute), 217
iteration (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411	k (pysal.spreg.error_sp.GM_Combo attribute), 359
iteration (pysal.spreg.error_sp_hom.GM_Endog_Error_Ho	k (pysal.spreg.error_sp.GM_Endog_Error attribute), 356 k (pysal.spreg.error_sp.GM_Error attribute), 353
attribute), 408 iteration (pysal.spreg.error_sp_hom.GM_Error_Hom at-	k (pysal.spreg.error_sp_het.GM_Combo_Het attribute),
tribute), 404	385 k (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-
iteration (pysal.spreg.error_sp_hom_regimes.GM_Combo_attribute), 416	Hom_Regimesute), 381 k (pysal.spreg.error_sp_het.GM_Error_Het attribute),
iteration (pysal.spreg.error_sp_hom_regimes.GM_Endog_I	Error_Hom3Regimes
attribute), 422 iteration (pysal.spreg.error_sp_hom_regimes.GM_Error_H	k (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes om_Regim@tribute), 390
attribute), 427	k (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regime attribute), 395
J	k (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
J (pysal.esda.join_counts.Join_Counts attribute), 173	attribute), 400
jacquez() (in module pysal.spatial_dynamics.interaction), 277	k (pysal.spreg.error_sp_hom.GM_Combo_Hom at- tribute), 411

```
k (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom at- kf (pysal.spreg.ml_error_regimes.ML_Error_Regimes at-
         tribute), 407
                                                                 tribute), 442
k (pysal.spreg.error sp hom.GM Error Hom attribute), kf (pysal.spreg.ml lag regimes.ML Lag Regimes at-
                                                                 tribute), 451
k (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Rkginpysal.spreg.ols_regimes.OLS_Regimes attribute), 304
         attribute), 416
                                                        kf (pysal.spreg.twosls regimes.TSLS Regimes attribute),
k (pysal.spreg.error sp hom regimes.GM Endog Error Hom Regimes5
         attribute), 422
                                                        kf (pysal.spreg.twosls sp regimes.GM Lag Regimes at-
k (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
                                                                 tribute), 326
         attribute), 427
                                                        KNN (class in pysal.weights.Distance), 516
   (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
                                                        knnW_from_array() (in module pysal.weights.user), 489
                                                        knnW_from_shapefile() (in module pysal.weights.user),
         attribute), 364
k (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
         attribute), 369
                                                        knox() (in module pysal.spatial_dynamics.interaction),
k (pysal.spreg.error_sp_regimes.GM_Error_Regimes at-
                                                                  275
         tribute), 374
                                                        koenker_bassett (pysal.spreg.ols.OLS attribute), 297
k (pysal.spreg.ml_error.ML_Error attribute), 436
                                                        koenker_bassett (pysal.spreg.ols_regimes.OLS_Regimes
k (pysal.spreg.ml error regimes.ML Error Regimes at-
                                                                 attribute), 303
                                                        koenker_bassett() (in module pysal.spreg.diagnostics),
         tribute), 440
k (pysal.spreg.ml lag.ML Lag attribute), 444
                                                                  339
k (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                                                        KP_error (pysal.spreg.probit.Probit attribute), 307
         tribute), 449
                                                        kr (pysal.spreg.error sp het regimes.GM Combo Het Regimes
k (pysal.spreg.ols.OLS attribute), 296
                                                                  attribute), 391
k (pysal.spreg.ols regimes.OLS Regimes attribute), 301
                                                        kr (pysal.spreg.error sp het regimes.GM Endog Error Het Regimes
k (pysal.spreg.probit.Probit attribute), 306
                                                                 attribute), 397
k (pysal.spreg.twosls.TSLS attribute), 310
                                                        kr (pysal.spreg.error sp het regimes.GM Error Het Regimes
k (pysal.spreg.twosls_sp.GM_Lag attribute), 318
                                                                 attribute), 402
k (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at-
                                                        kr (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
         tribute), 323
                                                                 attribute), 418
K_classifiers (class in pysal.esda.mapclassify), 221
                                                        kr (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes
KDTree() (in module pysal.cg.kdtree), 121
                                                                  attribute), 424
                                                        kr \, (pysal.spreg.error\_sp\_hom\_regimes.GM\_Error\_Hom\_Regimes
Kernel (class in pysal.weights.Distance), 520
Kernel_Smoother (class in pysal.esda.smoothing), 241
                                                                 attribute), 428
kernelW() (in module pysal.weights.user), 493
                                                        kr (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
kernelW_from_shapefile()
                                                                  attribute), 365
                                              module
         pysal.weights.user), 495
                                                        kr (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
kf (pysal.spreg.error sp het regimes.GM Combo Het Regimes
                                                                 attribute), 371
         attribute), 391
                                                        kr (pysal.spreg.error_sp_regimes.GM_Error_Regimes at-
kf (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimesribute), 375
         attribute), 397
                                                        kr (pysal.spreg.ml_error_regimes.ML_Error_Regimes at-
kf (pysal.spreg.error sp het regimes.GM Error Het Regimes
                                                                 tribute), 442
         attribute), 402
                                                        kr (pysal.spreg.ml lag regimes.ML Lag Regimes at-
kf (pysal.spreg.error sp hom regimes.GM Combo Hom Regimes tribute), 451
         attribute), 418
                                                        kr (pysal.spreg.ols_regimes.OLS_Regimes attribute), 304
kf (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hartip Regimesg.twosls_regimes.TSLS_Regimes attribute),
         attribute), 424
kf (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Rekin(pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at-
         attribute), 428
                                                                 tribute), 326
kf (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
                                                        kstar (pysal.spreg.twosls.TSLS attribute), 310
         attribute), 365
                                                        kstar (pysal.spreg.twosls_sp.GM_Lag attribute), 318
kf (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimesstar (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
         attribute), 371
                                                                 attribute), 324
kf (pysal.spreg.error_sp_regimes.GM_Error_Regimes at- kullback() (in module pysal.spatial_dynamics.markov),
         tribute), 375
                                                                  288
```

L	logll (pysal.spreg.ml_error_regimes.ML_Error_Regimes
lag_categorical() (in module pysal.weights.spatial_lag),	attribute), 441
532	logll (pysal.spreg.ml_lag.ML_Lag attribute), 444 logll (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
lag_spatial() (in module pysal.weights.spatial_lag), 531	tribute), 449
lam (pysal.spreg.ml_error.ML_Error attribute), 436	logll (pysal.spreg.ols.OLS attribute), 296
lam (pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute), 440	logll (pysal.spreg.ols_regimes.OLS_Regimes attribute),
lamols (pysal.spreg.sur_error.BaseSURerrorML attribute), 460	302 lonlat() (in module pysal.cg.sphere), 123
lamols (pysal.spreg.sur_error.SURerrorML attribute), 461	low_outlier_ids (pysal.esda.mapclassify.Box_Plot at-
lamsetp (pysal.spreg.sur_error.SURerrorML attribute),	tribute), 179 lower (pysal.cg.shapes.Rectangle attribute), 112
462	LR (pysal.spatial_dynamics.markov.Spatial_Markov at-
lamsur (pysal.spreg.sur_error.BaseSURerrorML attribute), 460	tribute), 286
lamsur (pysal.spreg.sur_error.SURerrorML attribute),	LR (pysal.spreg.probit.Probit attribute), 307
461	LR_p_value (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286
lamtest (pysal.spreg.sur_error.SURerrorML attribute),	lrtest (pysal.spreg.sur.SUR attribute), 454
462	lrtest (pysal.spreg.sur_error.SURerrorML attribute), 462
lat2SW() (in module pysal.weights.util), 484 lat2W() (in module pysal.weights.util), 477	
ldetS0 (pysal.spreg.sur.SUR attribute), 454	M
ldetS1 (pysal.spreg.sur.SUR attribute), 453	m (pysal.cg.shapes.Line attribute), 107
left (pysal.cg.shapes.Rectangle attribute), 112	make() (pysal.esda.mapclassify.Box_Plot method), 180
len (pysal.cg.shapes.Chain attribute), 107, 108	make() (pysal.esda.mapclassify.Equal_Interval method),
len (pysal.cg.shapes.LineSegment attribute), 104, 105	183
len (pysal.cg.shapes.Polygon attribute), 109, 111	make() (pysal.esda.mapclassify.Fisher_Jenks method),
likratiotest() (in module pysal.spreg.diagnostics), 342	186
likrlambda (pysal.spreg.sur_error.SURerrorML attribute), 462	make() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 189
Line (class in pysal.cg.shapes), 107	make() (pysal.esda.mapclassify.HeadTail_Breaks
line (pysal.cg.shapes.LineSegment attribute), 104, 106 linear2arcdist() (in module pysal.cg.sphere), 123	method), 223 make() (pysal.esda.mapclassify.Jenks_Caspall method),
LineSegment (class in pysal.cg.shapes), 103	191
LISA_Markov (class in pysal.spatial_dynamics.markov),	make() (pysal.esda.mapclassify.Jenks_Caspall_Forced
280	method), 194
llik (pysal.spreg.sur.SUR attribute), 454	make() (pysal.esda.mapclassify.Jenks_Caspall_Sampled
llik (pysal.spreg.sur_error.BaseSURerrorML attribute),	method), 197
460	make() (pysal.esda.mapclassify.Map_Classifier class
llik (pysal.spreg.sur_error.SURerrorML attribute), 461	method), 176
lm_error (pysal.spreg.ols.OLS attribute), 297	make() (pysal.esda.mapclassify.Max_P_Classifier
lm_error (pysal.spreg.ols_regimes.OLS_Regimes at-	method), 200
tribute), 303 lm_lag (pysal.spreg.ols.OLS attribute), 297	make() (pysal.esda.mapclassify.Maximum_Breaks method), 203
lm_lag (pysal.spreg.ols_regimes.OLS_Regimes at-	make() (pysal.esda.mapclassify.Natural_Breaks method),
tribute), 303	206
lm_sarma (pysal.spreg.ols.OLS attribute), 297	make() (pysal.esda.mapclassify.Percentiles method), 212
lm_sarma (pysal.spreg.ols_regimes.OLS_Regimes	make() (pysal.esda.mapclassify.Quantiles method), 209
attribute), 303	make() (pysal.esda.mapclassify.Std_Mean method), 215
lmEtest (pysal.spreg.sur.SUR attribute), 454	make() (pysal.esda.mapclassify.User_Defined method),
lmtest (pysal.spreg.sur.SUR attribute), 454	218
LMtests (class in pysal.spreg.diagnostics_sp), 343	mantel() (in module pysal.spatial_dynamics.interaction),
log_likelihood() (in module pysal.spreg.diagnostics), 333	276 Map_Classifier (class in pysal.esda.mapclassify), 175
logl (pysal.spreg.probit.Probit attribute), 307	Markov (class in pysal spatial dynamics markov) 279

```
MatIO (class in pysal.core.IOHandlers.mat), 148
                                                                 attribute), 422
max bb (pysal.esda.join counts.Join Counts attribute), mean y (pysal.spreg.error sp hom regimes.GM Error Hom Regimes
                                                                 attribute), 427
max_bw (pysal.esda.join_counts.Join_Counts attribute),
                                                        mean_y (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
         174
                                                                 attribute), 364
max g (pysal.esda.gamma.Gamma attribute), 164
                                                        mean y (pysal.spreg.error sp regimes.GM Endog Error Regimes
max neighbors
                 (pvsal.weights.Contiguity.Oueen
                                                                 attribute), 369
                                                   at-
         tribute), 505
                                                        mean_y (pysal.spreg.error_sp_regimes.GM_Error_Regimes
max_neighbors
                  (pysal.weights.Contiguity.Rook
                                                   at-
                                                                 attribute), 374
         tribute), 512
                                                        mean_y (pysal.spreg.ml_error.ML_Error attribute), 437
max_neighbors (pysal.weights.weights.W attribute), 468,
                                                        mean_y (pysal.spreg.ml_error_regimes.ML_Error_Regimes
                                                                 attribute), 440
Max P Classifier (class in pysal.esda.mapclassify), 199
                                                        mean_y (pysal.spreg.ml_lag.ML_Lag attribute), 444
max_total (pysal.spatial_dynamics.rank.Theta attribute),
                                                        mean_y (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                                                                 attribute), 449
Maximum_Breaks (class in pysal.esda.mapclassify), 202
                                                        mean_y (pysal.spreg.ols.OLS attribute), 296
Maxp (class in pysal.region.maxp), 262
                                                                  (pysal.spreg.ols_regimes.OLS_Regimes
                                                        mean_y
                                                                                                           at-
Maxp LISA (class in pysal.region.maxp), 265
                                                                 tribute), 302
mean_bb (pysal.esda.join_counts.Join_Counts attribute),
                                                        mean y (pysal.spreg.twosls.TSLS attribute), 310
                                                        mean y (pysal.spreg.twosls sp.GM Lag attribute), 318
mean_bw (pysal.esda.join_counts.Join_Counts attribute),
                                                        mean_y (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
         174
                                                                 attribute), 324
mean_g (pysal.esda.gamma.Gamma attribute), 164
                                                        method (pysal.spreg.ml_error.ML_Error attribute), 437
                                                        method (pysal.spreg.ml error regimes.ML Error Regimes
mean neighbors (pysal.weights.Contiguity.Oueen
                                                   at-
                                                                 attribute), 440
         tribute), 505
mean_neighbors
                  (pysal.weights.Contiguity.Rook
                                                   at-
                                                        method (pysal.spreg.ml lag.ML Lag attribute), 444
         tribute), 512
                                                        method (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
mean_neighbors (pysal.weights.weights.W attribute),
                                                                 attribute), 449
         468, 472
                                                        mi (pysal.spreg.diagnostics_sp.AKtest attribute), 346
mean_y (pysal.spreg.error_sp.GM_Combo attribute), 359
                                                        min_bb (pysal.esda.join_counts.Join_Counts attribute),
          (pysal.spreg.error_sp.GM_Endog_Error
mean_y
         tribute), 356
                                                        min_bw (pysal.esda.join_counts.Join_Counts attribute),
mean_y (pysal.spreg.error_sp.GM_Error attribute), 353
                                                                 174
                                                        min_g (pysal.esda.gamma.Gamma attribute), 164
mean_y (pysal.spreg.error_sp_het.GM_Combo_Het at-
                                                                         (pysal.weights.Contiguity.Queen
         tribute), 385
                                                        min neighbors
mean y (pysal.spreg.error sp het.GM Endog Error Het
                                                                 tribute), 505
         attribute), 381
                                                        min neighbors (pysal.weights.Contiguity.Rook attribute),
mean_y
         (pysal.spreg.error_sp_het.GM_Error_Het at-
                                                        min neighbors (pysal.weights.weights.W attribute), 468,
         tribute), 378
mean_y (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regime$72
         attribute), 390
                                                        min threshold dist from shapefile()
                                                                                                       module
mean y (pysal.spreg.error sp het regimes.GM Endog Error Het Repsinalsweights.user), 500
         attribute), 396
                                                        min threshold distance() (in module pysal.weights.util),
mean_y (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes 484
         attribute), 401
                                                        ML_Error (class in pysal.spreg.ml_error), 436
          (pysal.spreg.error_sp_hom.GM_Combo_Hom ML_Error_Regimes
                                                                                                           in
mean_y
                                                                                        (class
         attribute), 412
                                                                 pysal.spreg.ml error regimes), 439
mean_y (pysal.spreg.error_sp_hom.GM_Endog_Error_HomML_Lag (class in pysal.spreg.ml_lag), 443
                                                        ML_Lag_Regimes (class in pysal.spreg.ml_lag_regimes),
         attribute), 408
mean_y (pysal.spreg.error_sp_hom.GM_Error_Hom at-
         tribute), 404
                                                        MODES (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
mean_y (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regiatesibute), 129
                                                        MODES (pysal.core.IOHandlers.arcgis swm.ArcGISSwmIO
         attribute), 416
mean y (pysal.spreg.error sp hom regimes.GM Endog Error Hom alkerbinte), 131
```

$MODES\ (pysal.core.IOH and lers.arcgis_txt.ArcGISTextIO$	attribute), 402
attribute), 133	multi (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
MODES (pysal.core.IOHandlers.csvWrapper.csvWrapper attribute), 135	attribute), 418 multi (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regime
MODES (pysal.core.IOHandlers.dat.DatIO attribute),	attribute), 424
137	multi (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
MODES (pysal.core.IOHandlers.gal.GalIO attribute),	attribute), 428
139 MODES (mysel come JOHandlars graphycs, tyt Capplics To	multi (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
MODES (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTe attribute), 141	extIO attribute), 366 multi (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
MODES (pysal.core.IOHandlers.geoda_txt.GeoDaTxtRead	
attribute), 144	multi (pysal.spreg.error_sp_regimes.GM_Error_Regimes
MODES (pysal.core.IOHandlers.gwt.GwtIO attribute),	attribute), 375
146	multi (pysal.spreg.ml_error_regimes.ML_Error_Regimes
MODES (pysal.core.IOHandlers.mat.MatIO attribute), 148	attribute), 442
MODES (pysal.core.IOHandlers.mtx.MtxIO attribute),	multi (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 451
150	multi (pysal.spreg.ols_regimes.OLS_Regimes attribute),
MODES (pysal.core.IOHandlers.pyDbfIO.DBF at-	304
tribute), 153	multi (pysal.spreg.twosls_regimes.TSLS_Regimes
MODES (pysal.core.IOHandlers.pyShpIO.PurePyShpWrap	
attribute), 156	multi (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
Modes (pysal.core.IOHandlers.pyShpIO.PurePyShpWrappe attribute), 155	er attribute), 326
MODES (pysal.core.IOHandlers.stata_txt.StataTextIO at-	N
tribute), 157	n (pysal.spatial_dynamics.interaction.SpaceTimeEvents
MODES (pysal.core.IOHandlers.wk1.Wk1IO attribute),	attribute), 274
161	n (pysal.spreg.error_sp.GM_Combo attribute), 359
MODES (pysal.core.IOHandlers.wkt.WKTReader	n (pysal.spreg.error_sp.GM_Endog_Error attribute), 356
attribute), 163	n (pysal.spreg.error_sp.GM_Error attribute), 353
modified_knox() (in module pysal.spatial_dynamics.interaction), 278	n (pysal.spreg.error_sp_het.GM_Combo_Het attribute),
Moran (class in pysal.esda.moran), 224	384 n (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-
Moran_BV (class in pysal.esda.moran), 229	n (pysal.spreg.error_sp_het.GM_Endog_Error_Het at- tribute), 381
Moran_BV_matrix() (in module pysal.esda.moran), 231	n (pysal.spreg.error_sp_het.GM_Error_Het attribute),
Moran_Local (class in pysal.esda.moran), 227	377
Moran_Local_BV (class in pysal.esda.moran), 232	$n(pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes$
Moran_Local_Rate (class in pysal.esda.moran), 236	attribute), 390
Moran_Rate (class in pysal.esda.moran), 234 moran_res (pysal.spreg.ols.OLS attribute), 297	n (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes
moran_res (pysal.spreg.ols_regimes.OLS_Regimes at-	attribute), 395 n (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
tribute), 303	attribute), 400
MoranRes (class in pysal.spreg.diagnostics_sp), 344	n (pysal.spreg.error_sp_hom.GM_Combo_Hom at-
$move_types\ (pysal.spatial_dynamics.markov.LISA_Markov$	tribute), 411
attribute), 281	n (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom at-
MtxIO (class in pysal.core.IOHandlers.mtx), 150	tribute), 407
mulColli (pysal.spreg.ols.OLS attribute), 296 mulColli (pysal.spreg.ols_regimes.OLS_Regimes at-	n (pysal.spreg.error_sp_hom.GM_Error_Hom attribute),
tribute), 302	404 n (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
multi (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_	Regimes attribute) 416
attribute), 392	n (pysal.spreg.error sp hom regimes.GM Endog Error Hom Regimes
$multi\ (pysal.spreg.error_sp_het_regimes.GM_Endog_Error$	Het_Regimesbute), 422
attribute), 397	$n\ (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes$
multi (pysal.spreg.error_sp_het_regimes.GM_Error_Het_R	egimes attribute), 427

```
(pysal.spreg.error_sp_regimes.GM_Combo_Regimes name_bigyend (pysal.spreg.sur_lag.SURlagIV attribute),
         attribute), 364
n (pysal.spreg.error sp regimes.GM Endog Error Regimename ds (pysal.spreg.error sp.GM Combo attribute),
         attribute), 369
n (pysal.spreg.error_sp_regimes.GM_Error_Regimes at-
                                                        name ds
                                                                   (pysal.spreg.error_sp.GM_Endog_Error
         tribute), 374
                                                                  tribute), 357
n (pysal.spreg.ml error.ML Error attribute), 436
                                                        name ds (pysal.spreg.error sp.GM Error attribute), 354
n (pysal.spreg.ml error regimes.ML Error Regimes at-
                                                        name_ds (pysal.spreg.error_sp_het.GM_Combo_Het at-
         tribute), 440
                                                                  tribute), 386
n (pysal.spreg.ml_lag.ML_Lag attribute), 444
                                                        name_ds (pysal.spreg.error_sp_het.GM_Endog_Error_Het
n (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                                                                  attribute), 382
         tribute), 449
                                                        name_ds
                                                                       (pysal.spreg.error_sp_het.GM_Error_Het
n (pysal.spreg.ols.OLS attribute), 295
                                                                  attribute), 378
n (pysal.spreg.ols_regimes.OLS_Regimes attribute), 301
                                                        name_ds (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
                                                                  attribute), 391
n (pysal.spreg.probit.Probit attribute), 306
n (pysal.spreg.sur.SUR attribute), 453
                                                        name_ds (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regim
n (pysal.spreg.sur.ThreeSLS attribute), 457
                                                                  attribute), 397
n (pysal.spreg.sur error.BaseSURerrorML attribute), 459
                                                        name ds (pysal.spreg.error sp het regimes.GM Error Het Regimes
n (pysal.spreg.sur_error.SURerrorML attribute), 461
                                                                  attribute), 401
n (pysal.spreg.sur lag.SURlagIV attribute), 465
                                                        name_ds (pysal.spreg.error_sp_hom.GM_Combo_Hom
n (pysal.spreg.twosls.TSLS attribute), 310
                                                                  attribute), 412
n (pysal.spreg.twosls regimes.TSLS Regimes attribute),
                                                        name_ds (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
         314
                                                                  attribute), 408
n (pysal.spreg.twosls sp.GM Lag attribute), 318
                                                        name ds (pysal.spreg.error sp hom.GM Error Hom at-
n (pysal.spreg.twosls sp regimes.GM Lag Regimes at-
                                                                  tribute), 405
         tribute), 323
                                                        name ds (pysal.spreg.error sp hom regimes.GM Combo Hom Regimes
n (pysal.weights.Contiguity.Queen attribute), 505
                                                                  attribute), 417
n (pysal.weights.Contiguity.Rook attribute), 512
                                                        name_ds (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Reg
n (pysal.weights.weights.W attribute), 468, 472
                                                                  attribute), 423
n (pysal.weights.wSP attribute), 476
                                                        name_ds (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
n2 (pysal.spreg.sur_error.BaseSURerrorML attribute),
                                                                  attribute), 428
         459
                                                        name_ds (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
n2 (pysal.spreg.sur_error.SURerrorML attribute), 461
                                                                  attribute), 365
n_eq (pysal.spreg.sur.SUR attribute), 453
                                                        name_ds (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
n eq (pysal.spreg.sur.ThreeSLS attribute), 457
                                                                  attribute), 370
n_eq (pysal.spreg.sur_error.BaseSURerrorML attribute),
                                                        name ds (pysal.spreg.error sp regimes.GM Error Regimes
         459
                                                                  attribute), 374
n_eq (pysal.spreg.sur_error.SURerrorML attribute), 461
                                                        name_ds (pysal.spreg.ml_error.ML_Error attribute), 437
n eq (pysal.spreg.sur lag.SURlagIV attribute), 465
                                                        name ds (pysal.spreg.ml error regimes.ML Error Regimes
name_bigq (pysal.spreg.sur.ThreeSLS attribute), 458
                                                                  attribute), 441
name_bigq (pysal.spreg.sur_lag.SURlagIV attribute), 465
                                                        name_ds (pysal.spreg.ml_lag.ML_Lag attribute), 445
name bigX (pysal.spreg.sur.SUR attribute), 454
                                                        name ds (pysal.spreg.ml lag regimes.ML Lag Regimes
name bigX (pysal.spreg.sur.ThreeSLS attribute), 458
                                                                  attribute), 450
name_bigX
              (pysal.spreg.sur_error.SURerrorML
                                                        name_ds (pysal.spreg.ols.OLS attribute), 297
         tribute), 462
                                                        name_ds (pysal.spreg.ols_regimes.OLS_Regimes
                                                                                                            at-
                                                                  tribute), 304
name_bigX (pysal.spreg.sur_lag.SURlagIV attribute),
         465
                                                        name_ds (pysal.spreg.probit.Probit attribute), 307
name_bigy (pysal.spreg.sur.SUR attribute), 454
                                                        name_ds (pysal.spreg.sur.SUR attribute), 454
name_bigy (pysal.spreg.sur.ThreeSLS attribute), 458
                                                        name_ds (pysal.spreg.sur.ThreeSLS attribute), 458
name_bigy
             (pysal.spreg.sur_error.SURerrorML
                                                        name_ds (pysal.spreg.sur_error.SURerrorML attribute),
         tribute), 462
                                                                  462
name bigy (pysal.spreg.sur lag.SURlagIV attribute), 465
                                                        name_ds (pysal.spreg.sur_lag.SURlagIV attribute), 465
name bigyend (pysal.spreg.sur.ThreeSLS attribute), 458
                                                        name ds (pysal.spreg.twosls.TSLS attribute), 311
                                                        name ds (pysal.spreg.twosls regimes.TSLS Regimes at-
```

tribute), 315	$name_q \ (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom$
name_ds (pysal.spreg.twosls_sp.GM_Lag attribute), 319	attribute), 408
name_ds (pysal.spreg.twosls_sp_regimes.GM_Lag_Regime attribute), 325	ename_q (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 417
name_gwk (pysal.spreg.ols.OLS attribute), 297 name_gwk (pysal.spreg.ols_regimes.OLS_Regimes at-	name_q (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Reginattribute), 423
tribute), 304	name_q (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
name_gwk (pysal.spreg.twosls.TSLS attribute), 311	attribute), 365
name_gwk (pysal.spreg.twosls_regimes.TSLS_Regimes	name_q (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
attribute), 315	attribute), 370
name_gwk (pysal.spreg.twosls_sp.GM_Lag attribute),	name_q (pysal.spreg.twosls.TSLS attribute), 311
319	name_q (pysal.spreg.twosls_regimes.TSLS_Regimes at-
$name_gwk \ (pysal.spreg.twosls_sp_regimes.GM_Lag_Regi$	mes tribute), 315
attribute), 325	name_q (pysal.spreg.twosls_sp.GM_Lag attribute), 319
name_h (pysal.spreg.error_sp.GM_Combo attribute), 360	name_q (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
name_h (pysal.spreg.error_sp.GM_Endog_Error at-	attribute), 325
tribute), 357	name_regimes (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes.
name_h (pysal.spreg.error_sp_het.GM_Combo_Het at-	attribute), 391
tribute), 386	name_regimes (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_F
name_h (pysal.spreg.error_sp_het.GM_Endog_Error_Het	attribute), 397
attribute), 382	name_regimes (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
name_h (pysal.spreg.error_sp_het_regimes.GM_Combo_H	
attribute), 391	name_regimes (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Reg
name_h (pysal.spreg.error_sp_het_regimes.GM_Endog_Er	
attribute), 397	name_regimes (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hon
name_h (pysal.spreg.error_sp_hom.GM_Combo_Hom	attribute), 423
attribute), 412 name_h (pysal.spreg.error_sp_hom.GM_Endog_Error_Hor	name_regimes (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regin n attribute), 428
attribute), 408	name_regimes (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
name_h (pysal.spreg.error_sp_hom_regimes.GM_Combo_	
attribute), 417	name_regimes (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
name_h (pysal.spreg.error_sp_hom_regimes.GM_Endog_E	
attribute), 423	name_regimes (pysal.spreg.error_sp_regimes.GM_Error_Regimes
name_h (pysal.spreg.error_sp_regimes.GM_Combo_Regin	
attribute), 365	name_regimes (pysal.spreg.ml_error_regimes.ML_Error_Regimes
name_h (pysal.spreg.error_sp_regimes.GM_Endog_Error_	
attribute), 370	name_regimes (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
name_h (pysal.spreg.twosls.TSLS attribute), 311	attribute), 450
name_h (pysal.spreg.twosls_sp.GM_Lag attribute), 319	name_regimes (pysal.spreg.ols_regimes.OLS_Regimes
$name_h (pysal.spreg.twosls_sp_regimes.GM_Lag_Regime$	
attribute), 325	name_regimes (pysal.spreg.twosls_regimes.TSLS_Regimes
name_q (pysal.spreg.error_sp.GM_Combo attribute), 360	attribute), 315
name_q (pysal.spreg.error_sp.GM_Endog_Error at-	name_regimes (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
tribute), 357	attribute), 325
name_q (pysal.spreg.error_sp_het.GM_Combo_Het at-	name_w (pysal.spreg.error_sp.GM_Combo attribute),
tribute), 385	360
name_q (pysal.spreg.error_sp_het.GM_Endog_Error_Het	
attribute), 382	tribute), 357
name_q (pysal.spreg.error_sp_het_regimes.GM_Combo_H	
attribute), 391 name_q (pysal.spreg.error_sp_het_regimes.GM_Endog_Er	name_w (pysal.spreg.error_sp_het.GM_Combo_Het at-
attribute), 396	name_w (pysal.spreg.error_sp_het.GM_Endog_Error_Het
name_q (pysal.spreg.error_sp_hom.GM_Combo_Hom	attribute), 382
attribute), 412	name_w (pysal.spreg.error_sp_het.GM_Error_Het
,,	

```
attribute), 378
                                                                                                                               tribute), 378
name_w (pysal.spreg.error_sp_het_regimes.GM_Combo_Heta_Regimes_sl.spreg.error_sp_het_regimes.GM_Combo_Heta_Regimes
                  attribute), 391
                                                                                                                              attribute), 391
name_w (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes.GM_error_sp_het_regimes.GM_Endog_Error_Het_Regimes.GM_error_sp_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_regimes.GM_error_het_
                  attribute), 397
                                                                                                                               attribute), 396
name w(pysal.spreg.error sp het regimes.GM Error Het maximespysal.spreg.error sp het regimes.GM Error Het Regimes
                  attribute), 401
                                                                                                                              attribute), 401
name_w (pysal.spreg.error_sp_hom.GM_Combo_Hom name_x
                                                                                                                                (pysal.spreg.error_sp_hom.GM_Combo_Hom
                  attribute), 412
                                                                                                                               attribute), 412
name_w (pysal.spreg.error_sp_hom.GM_Endog_Error_Homame_x (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
                  attribute), 408
                                                                                                                              attribute), 408
name_w (pysal.spreg.error_sp_hom.GM_Error_Hom at- name_x
                                                                                                                             (pysal.spreg.error_sp_hom.GM_Error_Hom at-
                  tribute), 405
                                                                                                                               tribute), 405
name_w (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_Hom_Regimes.GM_combo_H
                  attribute), 417
                                                                                                                               attribute), 417
name_w (pysal.spreg.error_sp_hom_regimes.GM_Endog_Enron_Hom_Regimes.error_sp_hom_regimes.GM_Endog_Error_Hom_Regi
                  attribute), 423
                                                                                                                              attribute), 423
name_w (pysal.spreg.error_sp_hom_regimes.GM_Error_HomanRegitippssal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
                  attribute), 428
                                                                                                                              attribute), 428
name w (pysal.spreg.error sp regimes.GM Combo Regimesame x (pysal.spreg.error sp regimes.GM Combo Regimes
                  attribute), 365
                                                                                                                              attribute), 365
name_w (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
                                                                                                                              attribute), 370
                  attribute), 370
name w (pysal.spreg.error sp regimes.GM Error Regimesname x (pysal.spreg.error sp regimes.GM Error Regimes
                  attribute), 374
                                                                                                                              attribute), 374
name w (pysal.spreg.ml error.ML Error attribute), 437
                                                                                                            name x (pysal.spreg.ml error.ML Error attribute), 437
name_w (pysal.spreg.ml_error_regimes.ML_Error_Regimesname_x (pysal.spreg.ml_error_regimes.ML_Error_Regimes
                  attribute), 441
                                                                                                                              attribute), 441
name_w (pysal.spreg.ml_lag.ML_Lag attribute), 445
                                                                                                            name_x (pysal.spreg.ml_lag.ML_Lag attribute), 445
name_w (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                                                                                                            name_x (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                  attribute), 450
                                                                                                                              attribute), 450
name_w (pysal.spreg.ols.OLS attribute), 297
                                                                                                            name_x (pysal.spreg.ols.OLS attribute), 297
                    (pysal.spreg.ols_regimes.OLS_Regimes
                                                                                                                                (pysal.spreg.ols_regimes.OLS_Regimes
name_w
                                                                                                   at-
                                                                                                            name_x
                                                                                                                                                                                                               at-
                  tribute), 303
                                                                                                                              tribute), 303
name w (pysal.spreg.probit.Probit attribute), 307
                                                                                                            name x (pysal.spreg.probit.Probit attribute), 307
name_w (pysal.spreg.sur.SUR attribute), 454
                                                                                                            name_x (pysal.spreg.twosls.TSLS attribute), 311
name w (pysal.spreg.sur error.SURerrorML attribute),
                                                                                                            name x (pysal.spreg.twosls regimes.TSLS Regimes at-
                                                                                                                              tribute), 315
name_w (pysal.spreg.sur_lag.SURlagIV attribute), 465
                                                                                                            name_x (pysal.spreg.twosls_sp.GM_Lag attribute), 319
name_w (pysal.spreg.twosls.TSLS attribute), 311
                                                                                                            name_x (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
name w (pysal.spreg.twosls regimes.TSLS Regimes at-
                                                                                                                              attribute), 325
                  tribute), 315
                                                                                                            name y (pysal.spreg.error sp.GM Combo attribute), 360
name w (pysal.spreg.twosls sp.GM Lag attribute), 319
                                                                                                                                (pysal.spreg.error sp.GM Endog Error
                                                                                                            name v
name_w (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
                                                                                                                              tribute), 356
                  attribute), 325
                                                                                                            name_y (pysal.spreg.error_sp.GM_Error attribute), 354
name_x (pysal.spreg.error_sp.GM_Combo attribute), 360
                                                                                                            name_y (pysal.spreg.error_sp_het.GM_Combo_Het at-
                    (pysal.spreg.error_sp.GM_Endog_Error
name x
                                                                                                                              tribute), 385
                  tribute), 356
                                                                                                            name_y (pysal.spreg.error_sp_het.GM_Endog_Error_Het
name_x (pysal.spreg.error_sp.GM_Error attribute), 354
                                                                                                                               attribute), 381
name_x (pysal.spreg.error_sp_het.GM_Combo_Het at-
                                                                                                                               (pysal.spreg.error_sp_het.GM_Error_Het at-
                                                                                                            name_y
                  tribute), 385
                                                                                                                               tribute), 378
name_x (pysal.spreg.error_sp_het.GM_Endog_Error_Het
                                                                                                           name_y (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
                  attribute), 381
                                                                                                                              attribute), 391
name x (pysal.spreg.error sp het.GM Error Het at- name y (pysal.spreg.error sp het regimes.GM Endog Error Het Regime
```

```
attribute), 396
                                                                                                                                attribute), 417
name_y (pysal.spreg.error_sp_het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Hom_Ferror_sp_hom_regimes.GM_Error_Hom_Ferror_sp_hom_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_Error_Het_regimes.GM_
                                                                                                                                attribute), 423
                  attribute), 401
                    (pysal.spreg.error_sp_hom.GM_Combo_Hom name_yend (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
name_y
                  attribute), 412
                                                                                                                                 attribute), 365
name y (pysal.spreg.error sp hom.GM Endog Error Homname yend (pysal.spreg.error sp regimes.GM Endog Error Regimes
                  attribute), 408
                                                                                                                                attribute), 370
name_y (pysal.spreg.error_sp_hom.GM_Error_Hom at- name_yend (pysal.spreg.twosls.TSLS attribute), 311
                  tribute), 405
                                                                                                              name yend (pysal.spreg.twosls regimes.TSLS Regimes
name_y (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Reginteribute), 315
                  attribute), 417
                                                                                                              name_yend (pysal.spreg.twosls_sp.GM_Lag attribute),
name_y (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_R@gimes
                  attribute), 423
                                                                                                              name_yend (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
name_y (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimestribute), 325
                                                                                                              name_z (pysal.spreg.error_sp.GM_Combo attribute), 360
                  attribute), 428
name_y (pysal.spreg.error_sp_regimes.GM_Combo_Regimexame_z
                                                                                                                                  (pysal.spreg.error_sp.GM_Endog_Error
                  attribute), 365
                                                                                                                                 tribute), 357
name_y (pysal.spreg.error_sp_regimes.GM_Endog_Error_Requimes.c (pysal.spreg.error_sp_het.GM_Combo_Het at-
                  attribute), 370
                                                                                                                                tribute), 385
name_y (pysal.spreg.error_sp_regimes.GM_Error_Regimes name_z (pysal.spreg.error_sp_het.GM_Endog_Error_Het
                  attribute), 374
                                                                                                                                 attribute), 382
name y (pysal.spreg.ml error.ML Error attribute), 437
                                                                                                              name_z (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
name_y (pysal.spreg.ml_error_regimes.ML_Error_Regimes
                                                                                                                                 attribute), 391
                  attribute), 441
                                                                                                              name z (pysal.spreg.error sp het regimes.GM Endog Error Het Regime
name y (pysal.spreg.ml lag.ML Lag attribute), 445
                                                                                                                                attribute), 396
name y (pysal.spreg.ml lag regimes.ML Lag Regimes
                                                                                                              name z
                                                                                                                                  (pysal.spreg.error_sp_hom.GM_Combo_Hom
                  attribute), 450
                                                                                                                                 attribute), 412
name_y (pysal.spreg.ols.OLS attribute), 297
                                                                                                              name_z (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
                    (pysal.spreg.ols_regimes.OLS_Regimes
                                                                                                                                attribute), 408
name_y
                                                                                                    at-
                  tribute), 303
                                                                                                              name_z (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
name_y (pysal.spreg.probit.Probit attribute), 307
                                                                                                                                 attribute), 417
name_y (pysal.spreg.twosls.TSLS attribute), 311
                                                                                                              name_z (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regi
name_y (pysal.spreg.twosls_regimes.TSLS_Regimes at-
                                                                                                                                attribute), 423
                  tribute), 315
                                                                                                              name_z (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
name v (pysal.spreg.twosls sp.GM Lag attribute), 319
                                                                                                                                 attribute), 365
name_y (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimesname_z (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
                  attribute), 325
                                                                                                                                attribute), 370
name_yend (pysal.spreg.error_sp.GM_Combo attribute),
                                                                                                             name_z (pysal.spreg.twosls.TSLS attribute), 311
                                                                                                              name z (pysal.spreg.twosls sp.GM Lag attribute), 319
name_yend (pysal.spreg.error_sp.GM_Endog_Error at-
                                                                                                              name_z (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
                  tribute), 357
                                                                                                                                attribute), 325
name_yend (pysal.spreg.error_sp_het.GM_Combo_Het
                                                                                                             Natural Breaks (class in pysal.esda.mapclassify), 205
                  attribute), 385
                                                                                                              nearest()
                                                                                                                                         (pysal.cg.locators.BruteForcePointLocator
name\_yend \ (pysal.spreg.error\_sp\_het.GM\_Endog\_Error\_Het
                                                                                                                                method), 98
                  attribute), 381
                                                                                                              nearest() (pysal.cg.locators.Grid method), 97
name_yend (pysal.spreg.error_sp_het_regimes.GM_Combo_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netate_netat
                  attribute), 391
                                                                                                              nearest() (pysal.cg.locators.PolygonLocator method), 101
name_yend (pysal.spreg.error_sp_het_regimes.GM_Endog_haraorstHeig_Ragaidisetances()
                                                                                                                                (pysal.network.network.Network
                  attribute), 396
                                                                                                                                                                                                       method),
name_yend (pysal.spreg.error_sp_hom.GM_Combo_Hom
                                                                                                                                538
                  attribute), 412
                                                                                                              neighbor_offsets
                                                                                                                                                           (pysal.weights.Contiguity.Queen
name_yend (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
                                                                                                                                attribute), 505
                  attribute), 408
                                                                                                              neighbor offsets
                                                                                                                                                  (pysal.weights.Contiguity.Rook
name yend (pysal.spreg.error sp hom regimes.GM Combo Hom Rtribintes), 512
```

neighbor_offsets (pysal.weights.weights.W attribute),	540
468, 472	nr (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
neighbors (pysal.weights.Distance.DistanceBand at-	attribute), 392
tribute), 524	nr (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes
neighbors (pysal.weights.Distance.Kernel attribute), 521	attribute), 397
Network (class in pysal.network.network), 533	nr (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
NetworkF (class in pysal.network.network), 540	attribute), 402
NetworkF() (pysal.network.network.Network method), 534	nr (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 418
NetworkG (class in pysal.network.network), 540 NetworkG() (pysal.network.network.Network method),	nr (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute), 424
535 NetworkK (class in pysal.network.network), 540	nr (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute), 428
NetworkK() (pysal.network.network.Network method),	nr (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
535	attribute), 366
next() (pysal.core.FileIO.FileIO method), 127 next() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO	nr (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute), 371
method), 129 next() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO	nr (pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute), 375
method), 131	nr (pysal.spreg.ml_error_regimes.ML_Error_Regimes at-
next() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	tribute), 442
method), 133	nr (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
next() (pysal.core.IOHandlers.csvWrapper.csvWrapper	tribute), 451
method), 137	nr (pysal.spreg.ols_regimes.OLS_Regimes attribute), 304
next() (pysal.core.IOHandlers.dat.DatIO method), 138	nr (pysal.spreg.twosls_regimes.TSLS_Regimes attribute),
next() (pysal.core.IOHandlers.gal.GalIO method), 139	315
next() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextl	
method), 142	tribute), 326
next() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader method), 145	0
next() (pysal.core.IOHandlers.gwt.GwtIO method), 146	o (pysal.cg.shapes.Ray attribute), 107
next() (pysal.core.IOHandlers.mat.MatIO method), 148	observed (pysal.inequality.theil.TheilDSim attribute), 261
next() (pysal.core.IOHandlers.mtx.MtxIO method), 150	OLS (class in pysal.spreg.ols), 295
next() (pysal.core.IOHandlers.pyDbfIO.DBF method),	ols (pysal.spreg.diagnostics_sp.LMtests attribute), 343
154	OLS_Regimes (class in pysal.spreg.ols_regimes), 300
$next() \ (pysal.core.IOH and lers.pyShpIO.PurePyShpWrapper \ (pysal.core.IOH) \ (pysal.$	folsE (nysal spreg sur SUR attribute) 453
method), 156	op (pysal.esda.gamma.Gamma attribute), 164
next() (pysal.core.IOHandlers.stata_txt.StataTextIO	open() (pysal.core.FileIO.FileIO class method), 128
method), 157	open() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
next() (pysal.core.IOHandlers.wk1.Wk1IO method), 161	method), 129
next() (pysal.core.IOHandlers.wkt.WKTReader method),	open() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
163	method), 131
niter (pysal.spreg.sur.SUR attribute), 454	open() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
node_coords (pysal.network.network.Network attribute),	method), 133
534	open() (pysal.core.IOHandlers.csvWrapper.csvWrapper
<pre>node_distance_matrix() (pysal.network.network.Network</pre>	method), 137
method), 538	open() (pysal.core.IOHandlers.dat.DatIO method), 138
node_list (pysal.network.network.Network attribute), 534	open() (pysal.core.IOHandlers.gal.GalIO method), 139
nodes (pysal.network.network.Network attribute), 533	open() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
None (pysal.cg.shapes.Point attribute), 103	method), 142
nonzero (pysal.weights.Contiguity.Queen attribute), 505	open() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
nonzero (pysal.weights.Contiguity.Rook attribute), 513	method), 145
nonzero (pysal.weights.weights.W attribute), 468, 472	
, (F),,,,,	open() (pysal.core.IOHandlers.gwt.GwtIO method), 146

open() (pysal.core.IOHandlers.mtx.MtxIO method), 151 open() (pysal.core.IOHandlers.pyDbfIO.DBF method), 154	p_sim_g (pysal.esda.gamma.Gamma attribute), 164 p_values (pysal.spatial_dynamics.markov.LISA_Markov attribute), 281
open() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrappomethod), 156	
open() (pysal.core.IOHandlers.stata_txt.StataTextIO method), 157	p_z_sim (pysal.esda.getisord.G_Local attribute), 171 p_z_sim (pysal.esda.moran.Moran attribute), 226
open() (pysal.core.IOHandlers.wk1.Wk1IO method), 161	p_z_sim (pysal.esda.moran.Moran_BV attribute), 230
open() (pysal.core.IOHandlers.wkt.WKTReader	p_z_sim (pysal.esda.moran.Moran_Local attribute), 228
method), 163	p_z_sim (pysal.esda.moran.Moran_Local_BV attribute),
order() (in module pysal.weights.util), 479	233
overlapping() (pysal.cg.locators.PointLocator method), 99	p_z_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237
overlapping() (pysal.cg.locators.PolygonLocator method), 102	p_z_sim (pysal.esda.moran.Moran_Rate attribute), 235 p_z_sim (pysal.inequality.gini.Gini_Spatial attribute), 259
P	pairs_spatial (pysal.spatial_dynamics.rank.SpatialTau at-
p (pysal.cg.shapes.Ray attribute), 107	tribute), 292
p (pysal.region.maxp.Maxp attribute), 263	parts (pysal.cg.shapes.Chain attribute), 108
p (pysal.spatial_dynamics.markov.LISA_Markov at-	parts (pysal.cg.shapes.Polygon attribute), 111
tribute), 281 p (pysal.spatial_dynamics.markov.Markov attribute), 279	pct_nonzero (pysal.weights.Contiguity.Queen attribute), 505
P (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286	pct_nonzero (pysal.weights.Contiguity.Rook attribute), 513
p (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 285	pct_nonzero (pysal.weights.weights.W attribute), 468, 472
p (pysal.spreg.diagnostics_sp.AKtest attribute), 346	Percentiles (class in pysal.esda.mapclassify), 211
p1 (pysal.cg.shapes.LineSegment attribute), 104, 106	perimeter (pysal.cg.shapes.Polygon attribute), 109, 111
p2 (pysal.cg.shapes.LineSegment attribute), 104, 106	permutation (pysal.esda.getisord.G attribute), 168
p_norm (pysal.esda.geary.Geary attribute), 167	permutation (pysal.esda.moran.Moran_BV attribute), 229
p_norm (pysal.esda.getisord.G attribute), 168	permutations (pysal.esda.gamma.Gamma attribute), 164
p_norm (pysal.esda.getisord.G_Local attribute), 170	permutations (pysal.esda.geary.Geary attribute), 166
p_norm (pysal.esda.moran.Moran attribute), 225	permutations (pysal.esda.getisord.G_Local attribute), 170
p_norm (pysal.esda.moran.Moran_Rate attribute), 235	permutations (pysal.esda.join_counts.Join_Counts attribute), 173
p_rand (pysal.esda.geary.Geary attribute), 167	permutations (pysal.esda.moran.Moran attribute), 225
p_rand (pysal.esda.moran.Moran attribute), 225	permutations (pysal.esda.moran.Moran_Local attribute),
p_rand (pysal.esda.moran.Moran_Rate attribute), 235 p_sim (pysal.esda.gamma.Gamma attribute), 166	227
p_sim (pysal.esda.geary.Geary attribute), 167	permutations (pysal.esda.moran.Moran_Local_BV
p_sim (pysal.esda.getisord.G attribute), 168	attribute), 232
p_sim (pysal.esda.getisord.G_Local attribute), 170	permutations (pysal.esda.moran.Moran_Local_Rate at-
p_sim (pysal.esda.moran.Moran attribute), 225	tribute), 237
p_sim (pysal.esda.moran.Moran_BV attribute), 229	permutations (pysal.esda.moran.Moran_Rate attribute),
p_sim (pysal.esda.moran.Moran_Local attribute), 228	234
p_sim (pysal.esda.moran.Moran_Local_BV attribute), 232	permutations (pysal.spatial_dynamics.rank.Theta attribute), 294
p_sim (pysal.esda.moran.Moran_Local_Rate attribute),	pfora1a2 (pysal.spreg.twosls.TSLS attribute), 311
237	pfora1a2 (pysal.spreg.twosls_sp.GM_Lag attribute), 320
p_sim (pysal.esda.moran.Moran_Rate attribute), 235	pfora1a2 (pysal.spreg.twosls_sp_regimes.GM_Lag_Regime
p_sim (pysal.inequality.gini.Gini_Spatial attribute), 259	attribute), 326
p_sim_bb (pysal.esda.join_counts.Join_Counts attribute), 173	Pinkse_error (pysal.spreg.probit.Probit attribute), 307 Point (class in pysal.cg.shapes), 103
p_sim_bw (pysal.esda.join_counts.Join_Counts attribute), 173	point_touches_rectangle() (in module pysal.cg.standalone), 120

PointLocator (class in pysal.cg.locators), 99	350
PointPattern (class in pysal.network.network), 539	pr2_e (pysal.spreg.error_sp.GM_Combo attribute), 360
pointpatterns (pysal.network.network.Network attribute), 534	pr2_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385
points (pysal.network.network.PointPattern attribute), 540	pr2_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute), 390
Polygon (class in pysal.cg.shapes), 109 polygon() (pysal.cg.locators.PointLocator method), 99	pr2_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 412
PolygonLocator (class in pysal.cg.locators), 100 pr2 (pysal.spreg.error_sp.GM_Combo attribute), 360	pr2_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 417
pr2 (pysal.spreg.error_sp.GM_Endog_Error_attribute), 356	pr2_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute), 364
pr2 (pysal.spreg.error_sp.GM_Error attribute), 353	pr2_e (pysal.spreg.ml_lag.ML_Lag attribute), 444
pr2 (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385	pr2_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450
pr2 (pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute), 381	pr2_e (pysal.spreg.twosls_sp.GM_Lag attribute), 319 pr2_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
pr2 (pysal.spreg.error_sp_het.GM_Error_Het attribute), 378	attribute), 324 pr2_spatial() (in module pysal.spreg.diagnostics_tsls),
pr2 (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Fattribute), 390	
pr2 (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_attribute), 396	
	gipnedy (pysal.spreg.error_sp.GM_Endog_Error attribute), 356
	predy (pysal.spreg.error_sp.GM_Error attribute), 353 predy (pysal.spreg.error_sp_het.GM_Combo_Het at-
pr2 (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute), 408	tribute), 384 predy (pysal.spreg.error_sp_het.GM_Endog_Error_Het
pr2 (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), 405	attribute), 381 predy (pysal.spreg.error_sp_het.GM_Error_Het at-
pr2 (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hon attribute), 417	n_Regimes tribute), 377
pr2 (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error	
attribute), 422 pr2 (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_	
attribute), 427 pr2 (pysal.spreg.error_sp_regimes.GM_Combo_Regimes	predy (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute), 400
attribute), 364 pr2 (pysal.spreg.error_sp_regimes.GM_Endog_Error_Reg	predy (pysal.spreg.error_sp_hom.GM_Combo_Hom atimes tribute), 411
attribute), 370	predy (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
pr2 (pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute), 374	attribute), 407 predy (pysal.spreg.error_sp_hom.GM_Error_Hom
pr2 (pysal.spreg.ml_error.ML_Error attribute), 437	attribute), 404
pr2 (pysal.spreg.ml_error_regimes.ML_Error_Regimes attribute), 441	predy (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 416
pr2 (pysal.spreg.ml_lag.ML_Lag attribute), 444 pr2 (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-	predy (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regime attribute), 422
tribute), 450 pr2 (pysal.spreg.twosls.TSLS attribute), 310	predy (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute), 427
pr2 (pysal.spreg.twosls_sp.GM_Lag attribute), 319	predy (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
pr2 (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 324	attribute), 364 predy (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
pr2_aspatial() (in module pysal.spreg.diagnostics_tsls),	attribute), 369

predy (pysal.spreg.ml error.Mt. Error attribute), 436 predy (pysal.spreg.ml error_regimes.ML_Error_Regimes attribute), 440 predy (pysal.spreg.ml lag.ML_Lag attribute), 444 predy (pysal.spreg.ml lag.ML_Lag attribute), 444 predy (pysal.spreg.ml lag.ml_Lag.Regimes attribute), 345 predy (pysal.spreg.dos_regimes.OLS_Regimes attribute), 306 predy (pysal.spreg.dos_regimes.OLS_Regimes attribute), 316 predy (pysal.spreg.dos_regimes.OLS_Regimes attribute), 316 predy (pysal.spreg.twosls.TSLS attribute), 316 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Combo_Het attribute), 339 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het attribute), 349 predy_e (pysal.spreg.error_sp_hom_GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 317 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 319 predy_e (pysal.spreg.gross.ml_lag.regimes.GM_Combo_Hom attribute), 319 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 310 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 310 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 311 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 312 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 313 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 314 predy_e (pysal.spreg.mosls_sp.GM_Lag attribute), 315 proximity () (pysal.eg.locators.BruteForcePointLocator method), 98 proximity () (pysal.eg.locators.BruteForcePointLocator method), 98 proximity () (pysal.eg.locators.BruteForcePointLocator method), 99 prox	predy (pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute), 374	pysal.cg.shapes (module), 103
predy (pysal.spreg.ml_lag.Ml_Lag attribute), 444 predy (pysal.spreg.ml_lag.ml_Lag attribute), 444 predy (pysal.spreg.ml_lag.ml_Lag attribute), 444 predy (pysal.spreg.ols.OLS attribute), 295 predy (pysal.spreg.ols.OLS attribute), 306 predy (pysal.spreg.probit.Probit attribute), 310 predy (pysal.spreg.mols.TSLS_Regimes attribute), 310 predy (pysal.spreg.wosls.TSLS attribute), 310 predy (pysal.spreg.wosls.rSTLS attribute), 310 predy (pysal.spreg.wosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.error_sp.GM_Combo attribute), 323 predy_e (pysal.spreg.error_sp.det.GM_Combo_Het attribute), 324 predy_e (pysal.spreg.error_sp.bnom_regimes.GM_Combo Het attribute), 348 predy_e (pysal.spreg.error_sp.bnom_regimes.GM_Combo Het attribute), 364 predy_e (pysal.spreg.error_sp.det.geimes.Ml_Lag.Regimes attribute), 364 predy_e (pysal.spreg.geror_sp.bnom_regimes.GM_Combo_Het attribute), 369 predy_e (pysal.spreg.geror_sp.bnom_regimes.GM_Combo_Hom attribute), 369 predy_e (pysal.spreg.geror_sp.geimes.GM_Combo_Hom attribute), 369 predy_e (pysal.spreg.geror_sp.geimes.ML_Lag.Regimes attribute), 360 predy_e (pysal.sp		pysal.cg.sphere (module), 122
attribute), 440 predy (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy (pysal.spreg.ml_lag.ms_ML_Lag attribute), 449 predy (pysal.spreg.ols_regimes.OLS attribute), 295 predy (pysal.spreg.ols_regimes.OLS Regimes attribute), 301 predy (pysal.spreg.ols_regimes.OLS Regimes attribute), 301 predy (pysal.spreg.ols_regimes.OLS Regimes attribute), 306 predy (pysal.spreg.probit.Probit attribute), 306 predy (pysal.spreg.probit.Probit attribute), 316 predy (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 318 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.error_sp.hom_Combo attribute), 329 predy_e (pysal.spreg.error_sp.het_regimes.GM_Combo Hom attribute), 384 predy_e (pysal.spreg.error_sp.hom_GM_Combo_Hom attribute), 384 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 319 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 340 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 341 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 344 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 347 probit (class in pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 345 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 345 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 346 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 347 probit (class in pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 348 predy_e (pysal.spreg.error_sp.hom_genimes.GM_Combo Hom attribute), 349 proximity() (pysal.eg.locators.BruteForcePointLocator method), 99 proximity() (pysal.eg.locators.Polityon.docator method), 97 proximity() (pysal.e		= -
predy (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy (pysal.spreg.ml_lag.ml_Lag regimes.ML_lag.Regimes attribute), 449 predy (pysal.spreg.ols.OLS attribute), 295 predy (pysal.spreg.orbit.Probit attribute), 306 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.STSLS attribute), 310 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.error_sp.fmC.Combo_Hotatribute), 323 predy_c (pysal.spreg.error_sp.fmC.Combo_Hotatribute), 384 predy_c (pysal.spreg.error_sp.fmC.Combo_Hotatribute), 384 predy_c (pysal.spreg.error_sp.fmC.Combo_Hotatribute), 389 predy_e (pysal.spreg.error_sp.fmC.Combo_Hotatribute), 416 predy_c (pysal.spreg.grobit.Probit attribute), 444 predy_c (pysal.spreg.grobit.probit.		
predy (pysal.spreg.ols.OLS attribute), 295 predy (pysal.spreg.ols.OLS attribute), 295 predy (pysal.spreg.orboit.Probit attribute), 306 predy (pysal.spreg.orboit.Probit attribute), 306 predy (pysal.spreg.orboit.Probit attribute), 310 predy (pysal.spreg.orboit.Probit attribute), 310 predy (pysal.spreg.orboit.Probit attribute), 310 predy (pysal.spreg.orboit.Probit attribute), 318 predy (pysal.spreg.orboit.Probit attribute), 318 predy (pysal.spreg.orboit.Probit attribute), 318 predy (pysal.spreg.orboit.Probit attribute), 318 predy (pysal.spreg.orboit.Probit attribute), 319 predy (pysal.spreg.orboit.Probit attribute), 319 predy (pysal.spreg.orboit.Probit attribute), 319 predy (pysal.spreg.orboit.Probit attribute), 341 predy (pysal.spreg.orboit.Probit attribute), 342 predy (pysal.spreg.orboit.Probit attribute), 344 predy (pysal.spreg.orboit.Probit attribute), 345 predy (pysal.spreg.orboit.Probit attribute), 346 predy (pysal.spreg.orboit.Probit attribute), 347 proximity() (pysal.eg.locators.PointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 99 proximity() (pysal.eg.locators.PointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 99 proximity() (pysal.eg.locators.PointLocator method), 99 proximity() (pysal.eg.locators.PointLocator method), 99 proximity() (pysal.eg.locators.PointLocator method), 90 proximity() (pysal.eg.locators.PointLocator method), 91 pysal.ore.IOHa		e e
attribute), 449 predy (pysal.spreg.ols. OLS attribute), 295 predy (pysal.spreg.ols regimes.OLS_Regimes attribute), 301 predy (pysal.spreg.probit.Probit attribute), 306 predy (pysal.spreg.probit.Probit attribute), 310 predy (pysal.spreg.probit.Probit attribute), 310 predy (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 312 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.error_sp.GM_Combo attribute), 319 predy_e (pysal.spreg.error_sp.het.GM_Combo_Het attribute), 332 predy_e (pysal.spreg.error_sp.het.gegimes.GM_Combo_Het attribute), 344 predy_e (pysal.spreg.error_sp.het.gegimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp.hom_regimes.GM_Combo Regimesyal.esda.getisord (module), 126 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ml_Lag.attribute), 345 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.prop.probit.Probit attribute), 307 predy_e (pysal.spreg.probit.Probit attribute), 307 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.prop.br.Probit point attribute), 307 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 pysal.spreg.error_sp.hom_regimes (module), 329 pysal.spreg.error_sp.hom_regimes (module), 329 pysal.spreg.error_sp.hom_regimes (module), 329 pysal.		
predy (pysal.spreg.ols.OLS attribute), 295 predy (pysal.spreg.ols.pregimes.OLS_Regimes attribute), 301 predy (pysal.spreg.probit.Probit attribute), 306 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.pregimes.TSLS_Regimes attribute), 314 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.error_sp.fd_Combo attribute), 329 predy_e (pysal.spreg.error_sp.het_GM_Combo_Heattribute), 334 predy_e (pysal.spreg.error_sp.het_regimes.GM_Combo_Heattribute), 389 predy_e (pysal.spreg.error_sp.het_regimes.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.gegimes.GM_Combo_Homattribute), 389 predy_e (pysal.spreg.error_sp.hom.gegimes.GM_Combo_Homattr		
predy (pysal.spreg.ols_regimes.OLS_Regimes attribute), 301 predy (pysal.spreg.probit.Probit attribute), 306 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Combo attribute), 329 predy_e (pysal.spreg.error_sp_het_GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het attribute), 389 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 419 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 412 predy_e (pysal.spreg.error_sp_het_gimes.GM_Combo_Hom attribute), 413 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 410 p		
predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Combo attribute), 323 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 389 predy_e (pysal.spreg.error_sp_het.gemies.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_nom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_nom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_nom_regimes.GM_Combo_Hom attribute), 364 predy_e (pysal.spreg.mol_lag_regimes.ML_Lag_Regimes_attribute), 426 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag_attribute), 318 predy_e (pysal.spreg.twosls_sp.gregimes.GM_Lag_Regimespysal.spreg.twosls_sp.gregimes.GM_Lag_Regimespysal.spreg.twosls_sp.gregimes.GM_Lag_Regimespysal.spreg.diagnostics_sp.gregimespysal.spreg.twosls_sp.gregimes.GM_Lag_Regimespysal.spreg.diagnostics_sp.gregimespysal.spreg.twosls_sp.gregimes.GM_Lag_Regimespysal.spreg.diagnostics_sp.gregimes.GM_Lag_Regimespysal.spreg.diagnostics_sp.gregimes.GM_Lag_Regimespysal.spreg.error_sp.het.gemic.markov (module), 239 proximity() (pysal.eg.locators.Polygonl.ocator method), 99 proximity() (pysal.eg.locators.Polygonl.ocator method), 97 proximity() (pysal.eg.locators.Polygonl.ocator method), 97 proximity() (pysal.eg.locators.Polygonl.ocator method), 97 proximity() (pysal.eg.locators.Polygonl.ocator method), 97 proximity() (pysal.eg.locators.Polygonl.o		
predy (pysal.spreg.probit.Probit attribute), 306 predy (pysal.spreg.twosls.TSLS attribute), 310 predy (pysal.spreg.twosls.gregimes.TSLS.Regimes attribute), 314 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls.sp.GM_Cambo attribute), 329 predy_e (pysal.spreg.error_sp.het.GM_Combo Het attribute), 389 predy_e (pysal.spreg.error_sp.het.gregimes.GM_Combo Hom attribute), 411 predy_e (pysal.spreg.error_sp.hom.GM_Combo Hom attribute), 416 predy_e (pysal.spreg.error_sp.hom.GM_Combo Hom attribute), 417 predy_e (pysal.spreg.error_sp.hom.gattribute), 418 predy_e (pysal.spreg.error_sp.hom.GM_Combo Hom attribute), 410 predy_e (pysal.spreg.error_sp.hom.gattribute), 418 predy_e (pysal.spreg.error_sp.hom.gattribute), 419 predy_e (pysal.spreg.error_sp.hom.gattribute), 419 predy_e (pysal.spreg.error_sp.hom.gattribute), 419 predy_e (pysal.spreg.error_sp.hom.gattribute), 419 predy_e (pysal.spreg.error_sp.hom.gattribute), 410 predy_e (pysal.spreg.error_sp.hom.gattribute)		
predy (pysal.spreg.twosls,TSLS attribute), 310 predy (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 314 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.error_sp.GM_Combo attribute), 323 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 332 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 334 predy_e (pysal.spreg.error_sp_het.gmis.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_ind_ga.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.twosls_sp_GM_Lag attribute), 348 proble (pysal.spreg.twosls_sp_GM_Lag attribute), 349 proximity() (pysal.eg.locators.BruteForcePointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 98 proximity() (pysal.eg.locators.PointLocator method), 99 proximity() (pysal.eg.locators.PointLocator method), 90 proximity() (pysal.eg.locators.PointLocator method), 91 proximity() (pysal.eg.locators.PointLocator method), 92 pysal.spreg.error_sp_het_regimes (module), 329 pysal.spreg.error_sp_het_r		
predy (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 314 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls_sp.GM_Combo attribute), 323 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom.gm_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_lom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_lom_gregimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_lom_gregimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_lom_regimes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_regimes.GM_Lag_Regimes attribute), 450 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp_GM_Lag attribute), 318 predy_e (pysal.spreg.emor_sp_hom_regimes.GM_Combo_Hom attribute), 450 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Hom attribute), 450 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Hom attribute), 450 predy_e (pysal.spreg.error_sp_regimes.GM_Lag_Regimes attribute), 450 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 323 proximity() (pysal.eg_locators.BruteForcePointLocator method), 98 proximity() (pysal.eg_locators.PointLocator method), 99 proximity() (pysal.eg_locators.PointLocator method), 91 pysal.spreg.error_sp_hom_regimes (module), 201 pysal.spreg.error_sp_hom_regimes (modul		
attribute), 314 predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (e (pysal.spreg.twosls_sp.GM_Combo attribute), 335 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het attribute), 318 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom_attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_attribute), 416 predy_e (pysal.spreg.error_sp_nom_regimes.GM_Combo_Regims_ysal.esda.goary (module), 168 pysal.esda.goary (module), 169 pysal.esda.goary (module), 169 pysal.esda.goary (module), 175 pysal.esda.goary (module), 175 pysal.esda.goary (module), 175 pysal.esda.goary (module), 299 pysal.spreg.ada.goary (module), 168 pysal.esda.goary (module), 168 pysal.esda.goary (module), 168 pysal.esda.goary (module), 169 pysal.esda.goary (module), 260 pysal.esda.g		
predy (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes		
predy (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 323 predy_e (pysal.spreg.error_sp_het.GM_Combo attribute), 359 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het.gmes.GM_Combo_Het attribute), 389 predy_e (pysal.spreg.error_sp_het.gmes.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 364 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 364 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimpysal.esda.moran (module), 173 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 364 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.gregimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue (pysal.spreines (module), 155 pval.spreg.error_sp_het_regimes (module), 439 pval.spreg.error_sp_het_regimes (module), 439 pval.spreg.error_sp_het_regimes (module), 439 pval.spreg.error_sp_het_regimes (module), 439 pval.spreg.ml_error(module), 430 pval.spreg.ml_error(module), 430 pval.spreg.ml_alg_regimes (module), 430 pval.spreg.ml_alg_mes (modul		- ·
predy_e (pysal.spreg.error_sp_het.GM_Combo_Hat attribute), 384 predy_e (pysal.spreg.error_sp_het.GM_Combo_Hat attribute), 384 predy_e (pysal.spreg.error_sp_het.ggmes.GM_Combo_Hatvale, 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hatvale, 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hatvale, 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hatvale, 416 predy_e (pysal.spreg.mol_lag_ML_Lag attribute), 444 predy_e (pysal.spreg.mol_lag_regimes.ML_Lag_Regimes_attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag_attribute), 318 predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimespysal.spatial_dynamics.airectional (module), 260 predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimespysal.spatial_dynamics.airectional (module), 270 proximity() (pysal.cg.locators.BruteForcePointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 91 pysal.spreg.error_sp_het_regimes (module), 348 pysal.spreg.error_sp_het_regimes (module), 349 pysal.spreg.error_sp_het_regimes (m		
predy_e (pysal.spreg.error_sp_het.GM_Combo_Het at tribute), 384 predy_e (pysal.spreg.error_sp_het.GM_Combo_Het at tribute), 384 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Het at tribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 410 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimapsal.esda.goin_counts (module), 173 pysal.esda.geary (module), 166 pysal.esda.geary (module), 166 pysal.esda.geary (module), 167 pysal.esda.geary (module), 168 pysal.esda.geary (module), 168 pysal.esda.geary (module), 168 pysal.esda.geary (module), 168 pysal.esda.geary (module), 169 pysal.esda.geary (module), 299 pysal.esda.geary (module), 299 pysal.esda.geary (module), 299 pysal.esda.geary (module), 299 py		
predy_e (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 384 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hom attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 364 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 316 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 364 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom pysal.esda.getisord (module), 168 pysal.esda.getisord (module), 169 pysal.esda.getisord (module), 126 pysal.esda.getisord (module), 169 pysal.esda.getisord (module), 126 pysal.esda.getisord (module), 169 pysal.esda.getisord (module), 126 pysal.esda.getisord (module), 229 pysal.esda.getisord (module), 2		_ ` '
tribute), 384 predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hqyx&dgiadsagsamma (module), 164 attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom) predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hysal.Regimapclassify (module), 173 pysal.esda.getisord (module), 28 pysal.esda.getisord (module), 294 pysal.preg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mlag.aspreg.mla		= -
predy_e (pysal.spreg.error_sp_het_regimes.GM_Combo_Hop_Rdgistdesgamma (module), 164 attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hop attribute), 411 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hop attribute), 416 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hopsal.esda.goin_counts (module), 173 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hopsal.esda.goin_counts (module), 173 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hopsal.esda.goin_counts (module), 173 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hopsal.esda.goin_counts (module), 175 pysal.esda.goin_counts (module), 126 pysal.esda.goin_counts (module), 224 pysal.esda.goin_counts (module), 239 pysal.esda.goin_counts (module), 238 pysal.esda.goin_counts (module), 238 pysal.esda.goin_counts (module), 238 pysal.esda.goin_counts (module), 239 pysal.esda.goin_counts (module), 239 pysal.esda.goin_counts (module), 239 pysal.esda.moran (module), 239 pysal.esda.moran (module), 239 pysal.esda.moran (module), 239 pysal.esda.smoran (module), 239 pysal.esda.smoran (module), 239 pysal.esda.smoran (module), 239 pysal.esda.smoran (module), 239 pysal.esda.spaile_dynamics.if (module), 259 pysal.spatial_dynamics.directional (module), 260 pysal.spatial_dynamics.maxp (module), 279 pysal.spatial_dynamics.maxp (module), 279 pysal.spreg.diagnostics (module), 349 pysal.spreg.error_sp_hom_regimes (module), 439 pysal.spreg.error_sp_hom (module), 439 pysal.spr		= -
attribute), 389 predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hysal.Regimeapclassify (module), 168 pysal.esda.gotisord (module), 173 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hysal.Regimeapclassify (module), 175 pysal.esda.moran (module), 224 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimeysal.esda.smoothing (module), 238 attribute), 364 predy_e (pysal.spreg.ml_lag_megimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 proximity() (pysal.spreg.probit), 305 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PolygonLocator method), 98 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class		· · · · · · · · · · · · · · · · ·
predy_e (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411 pysal.esda.getisord (module), 173 pysal.esda.gotisord (module), 173 pysal.esda.getisord (module), 173 pysal.esda.gotisor (module), 224 pysal.esda.moran (module), 224 pysal.esda.getisord (module), 224 pysal.esda.gotisoric (module), 224 pysal.esda.moran (module), 224 pysal.esda.moran (module), 229 pysal.esda.moran (module), 229 pysal.esda.moran (module), 229 pysal.esda.moran (module), 229 pysal.esda.moran (module), 239 pysal.esda.moran (module), 239 pysal.esda.moran (module), 239 pysal.esda.moran (module), 249 pysal.espeg.moran (module), 259 pysal.espeg.micmoran (module), 260 pysal.espeg.getion.randomregion (module), 262 pysal.spreg.diagnostics.markov (module), 272 pysal.spreg.diagnostics.markov (module), 272 pysal.spreg.diagnostics.getion (module), 294 pysal.spreg.getion.pysal.espeg.getion.pysal.espeg.getion.pysal.espe		
attribute), 411 predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_HymalRegimmapclassify (module), 175 attribute), 416 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimpsyal.esda.moran (module), 224 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimpsyal.esda.smoothing (module), 238 attribute), 364 predy_e (pysal.spreg.ml_lag_ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag_Regimes attribute), 323 Probit (class in pysal.spreg.probit), 305 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 PurePyShpWrapper (class in pysal.spreg.grion.maxp.Maxp attribute), 307 PurePyShpWrapper (class in pysal.spreg.rroj.sp_het_regimes (module), 328 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.spreg.regimes.Wald attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het (module), 352 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes (module), 436 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_ag_regimes (module), 448 pysal.spreg.ml_ag_regimes (module), 295 pysal.spreg.nlag (module), 295 pysal.spreg.nlag (module), 295 pysal.spreg.nlag (module), 295 pysal.spreg.nlag.gregimes (module), 448 pysal.spreg.nlag.gregimes (module), 295 pysal.spreg.nlag.gregimes (module), 448 pysal.spreg.nlag.gregimes (module), 295 pysal.spreg.nlag.gregimes (module), 295 pysal.spreg.ols_rodule, 295		
predy_e (pysal.spreg.error_sp_hom_regimes.GM_Combo_FissalReginmapclassify (module), 175 attribute), 416		
attribute), 416 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimpysal.esda.moran (module), 224 predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimpysal.esda.smoothing (module), 238		
predy_e (pysal.spreg.error_sp_regimes.GM_Combo_Regimeysal.esda.smoothing (module), 238 attribute), 364 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.mk_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PolygonLocator method), 97 proximity() (pysal.cg.locators.PolygonLocator method), 98 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 91 proximity() (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_hot_module), 328 pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols (module), 300		
attribute), 364 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag.mk_Lag attribute), 444 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.BruteForcePointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het_module), 329 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta atribute), 294 pysal.cg.kdtree (module), 259 pysal.inequality.theil (module), 260 pysal.network.network (module), 260 pysal.network.network (module), 260 pysal.network.network (module), 260 pysal.region.maxp (module), 262 pysal.spatial_dynamics.directional (module), 279 pysal.spatial_dynamics.rank (module), 279 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp_het (module), 349 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 382 pysal.spreg.error_sp_het_regimes (module), 382 pysal.spreg.error_sp_het_regimes (module), 382 pysal.spreg.error_sp_het_regimes (module), 383 pysal.spreg.error_sp_het_module), 384 pysal.spreg.error_sp_het_regimes (module), 384 pysal.spreg.error_sp_het_regimes (module), 384 pysal.spreg.error_sp_het_module), 382 pysal.spreg.error_sp_het_module), 382 pysal.spreg.error_sp_het_module), 383 pysal.spreg.error_sp_het_module), 384 pysal.spreg.err		= -
predy_e (pysal.spreg.ml_lag.ML_Lag attribute), 444 predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 90 PS_error (pysal.spreg.regimes.Wald attribute), 307 PurePyShpWrapper (class in pysal.spreg.diagnostics_tsls (module), 329 pvalue (pysal.spreg.regimes.Wald attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het_regimes (module), 329 pvalue (pysal.spreg.regimes.Wald attribute), 329 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pval.cg.locators (module), 95 pval.spreg.diagnostics sp (module), 329 pval.spreg.error_sp_het_regimes (module), 362 pvsal.spreg.error_sp_het_regimes (module), 377 pvsal.spreg.error_sp_hom_regimes (module), 436 pvsal.spreg.ml_error_regimes (module), 436 pvsal.spreg.ml_error_regimes (module), 439 pvsal.spreg.ml_lag_regimes (module), 448 pvsal.spreg.ml_lag_regimes (module), 448 pvsal.spreg.ml_lag_regimes (module), 448 pvsal.spreg.ols (module), 295 pvsal.spreg.ols_regimes (module), 300		= :
predy_e (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class pysal.spreg.error_sp.hom_regimes (module), 377 PurePyShpWrapper (class pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.region.maxp (module), 262 pysal.spatial_dynamics.arictional (module), 272 pysal.spatial_dynamics.erroriction (module), 272 pysal.spatial_dynamics.markov (module), 272 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics (module), 343 pysal.spreg.error_sp (module), 343 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_hom_regimes (module), 377 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_lag (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
attribute), 450 predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 prosinity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp.het (module), 348 pysal.spreg.error_sp.het (module), 352 pvalue (pysal.spatial_dynamics.rank.Theta attribute), 263, 264 pvalue (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 262 pysal.spreg.ols (module), 262 pysal.spreg.ols (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols (module), 300		
predy_e (pysal.spreg.twosls_sp.GM_Lag attribute), 318 predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimespysal.spatial_dynamics.directional (module), 266 predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimespysal.spatial_dynamics.directional (module), 272 probit (class in pysal.spreg.probit), 305 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class pysal.spreg.error_sp_het (module), 377 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta atribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols (module), 266 pysal.spatial_dynamics.directional (module), 27 pysal.spatial_dynamics.interaction (module), 27 pysal.spatial_dynamics.markov (module), 29 pysal.spreg.diagnostics (module), 348 pysal.spreg.error_sp (module), 345 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag (module), 295 pysal.spreg.ols (module), 300		- ·
predy_e (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimespysal.spatial_dynamics.directional (module), 27 attribute), 323 Probit (class in pysal.spreg.probit), 305 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.diagnostics (module), 348 pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 proximity() (pysal.cg.locators.BruteForcePointLocator pysal.spatial_dynamics.interaction (module), 27 pysal.spatial_dynamics.markov (module), 29 pysal.spreg.diagnostics (module), 348 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_het_regimes (module), 377 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_nom_regimes (module), 436 pysal.spreg.ml_ag_regimes (module), 448 pysal.spreg.ml_lag_regimes (module), 295 pysal.spreg.ols_regimes (module), 300		
proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PointLocator method), 97 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het_regimes (module), 348 pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.spreg.regimes.Wald attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300 pysal.spreid_dynamics.interaction (module), 279 pysal.spatial_dynamics.interaction (module), 279 pysal.spatial_dynamics.markov (module), 291 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_lag (module), 443 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
Probit (class in pysal.spreg.probit), 305 proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het (module), 377 PurePyShpWrapper (class in pysal.spreg.error_sp_het (module), 377 pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_lag (module), 439 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 436 pysal.spreg.ml_lag (module), 436 pysal.spreg.ml_lag (module), 439 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols_regimes (module), 499 pysal.spreg.ols_regimes (module), 295 pysal.spreg.ols_regimes (module), 300		
proximity() (pysal.cg.locators.BruteForcePointLocator method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 pysal.spreg.diagnostics (module), 343 pysal.spreg.diagnostics_sp (module), 343 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.diagnostics (module), 348 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp (module), 377 pysal.spreg.error_sp_hom_(module), 403 pysal.spreg.error_sp_nom_regimes (module), 403 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.gliagnostics_sp (module), 348 pysal.spreg.error_sp_hot (module), 403 pysal.spreg.error_sp_hom_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.gliagnostics_sp (module), 439 pysal.spreg.gliagnostics_sp (module), 443 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.error_sp_hot (module), 377 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.gliagnostics_sp (module), 403 pysal.spreg.gliagnostics_sp (module), 403 pysal.spreg.gliagnostics_sp (module), 429 pysal.spreg.gliagnostics_sp (module), 348 pysal.spreg.gliagnostics_sp (module), 403 pysal.spreg.gliag	Probit (class in pysal.spreg.probit), 305	
method), 98 proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class in pysal.spreg.error_sp_het (module), 377 PurePyShpWrapper (class in pysal.spreg.error_sp_het_regimes (module), 38 pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics (module), 328 pysal.spreg.diagnostics (module), 348 pysal.spreg.error_sp (module), 348 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_hom (module), 403 pysal.spreg.ml_error (module), 403 pysal.spreg.ml_error_regimes (module), 362 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
proximity() (pysal.cg.locators.Grid method), 97 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 pysal.spreg.diagnostics_sp (module), 343 pysal.spreg.diagnostics_tsls (module), 348 pysal.spreg.diagnostics_tsls (module), 348 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 389 pysal.spreg.error_sp_het_regimes (module), 380 pysal.spreg.error_sp_het_regimes (module), 377 pysal.spreg.error_sp_het_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hem_regimes (module), 362 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols_regimes (module), 300		
proximity() (pysal.cg.locators.PointLocator method), 99 proximity() (pysal.cg.locators.PolygonLocator method), 102 pysal.spreg.diagnostics_sp (module), 348 pysal.spreg.diagnostics_tsls (module), 348 pysal.spreg.diagnostics_tsls (module), 348 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 389 pysal.spreg.error_sp_hom (module), 403 pysal.spreg.error_sp_hom (module), 403 pysal.spreg.error_sp_hom_regimes (module), 362 pysal.spreg.error_sp_hom_regimes (module), 362 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ols_regimes (module), 300	proximity() (pysal.cg.locators.Grid method), 97	
proximity() (pysal.cg.locators.PolygonLocator method), 102 pysal.spreg.diagnostics_tsls (module), 348 pysal.spreg.error_sp (module), 352 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 38 pysal.core.IOHandlers.pyShpIO), 155 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class pysal.spreg.error_sp_het (module), 377 PurePyShpWrapper (class pysal.spreg.error_sp_het_regimes (module), 38 pysal.spreg.error_sp_het_regimes (module), 38 pysal.spreg.error_sp_het_regimes (module), 38 pysal.spreg.error_sp_hom_regimes (module), 403 pysal.spreg.error_sp_hom_regimes (module), 420 pysal.spreg.error_sp_hom_regimes (module), 362 pysal.spreg.error_sp_nom_regimes (module), 362 pysal.spreg.error_sp_nom_regimes (module), 362 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ml_lag_regimes (module), 399 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
PS_error (pysal.spreg.probit.Probit attribute), 307 PurePyShpWrapper (class pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta tribute), 294 pysal.cg.kdtree (module), 121 pysal.spreg.error_sp_het (module), 377 pysal.spreg.error_sp_het_regimes (module), 403 pysal.spreg.error_sp_hom (module), 403 pysal.spreg.error_sp_hom_regimes (module), 362 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
PurePyShpWrapper (class pysal.core.IOHandlers.pyShpIO), 155 pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta tribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 in pysal.spreg.error_sp_het_regimes (module), 38 pysal.spreg.error_sp_hom (module), 403 pysal.spreg.error_sp_hom_regimes (module), 362 pysal.spreg.ml_error (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300	PS_error (pysal.spreg.probit.Probit attribute), 307	
pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 pysal.spreg.error_sp_hom_regimes (module), 46 pysal.spreg.error_sp_negimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		pysal.spreg.error_sp_het_regimes (module), 388
pvalue (pysal.region.maxp.Maxp attribute), 263, 264 pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 pysal.spreg.error_sp_hom_regimes (module), 46 pysal.spreg.error_sp_negimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300	pysal.core.IOHandlers.pyShpIO), 155	pysal.spreg.error_sp_hom (module), 403
pvalue (pysal.spreg.regimes.Wald attribute), 432 pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 pysal.spreg.error_sp_regimes (module), 362 pysal.spreg.ml_error_regimes (module), 436 pysal.spreg.ml_error_regimes (module), 439 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		pysal.spreg.error_sp_hom_regimes (module), 414
pvalue_left (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pvalue_right (pysal.spatial_dynamics.rank.Theta attribute), 294 pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.cg.locators (module), 95 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		
294 pysal.spreg.ml_error_regimes (module), 439 pvalue_right (pysal.spatial_dynamics.rank.Theta tribute), 294 at pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.spreg.ols (module), 295 pysal.cg.locators (module), 95 pysal.spreg.ols_regimes (module), 300		
pvalue_right (pysal.spatial_dynamics.rank.Theta tribute), 294 at pysal.spreg.ml_lag (module), 443 pysal.spreg.ml_lag_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300		1.
tribute), 294 pysal.spreg.ml_lag_regimes (module), 448 pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.spreg.ols_regimes (module), 300	pvalue_right (pysal.spatial_dynamics.rank.Theta at-	
pysal.cg.kdtree (module), 121 pysal.spreg.ols (module), 295 pysal.cg.locators (module), 95 pysal.spreg.ols_regimes (module), 300		
pysal.cg.locators (module), 95 pysal.spreg.ols_regimes (module), 300		
pysaneg.ruce (module), 121	pysal.cg.rtree (module), 121	pysal.spreg.probit (module), 305

pysal.spreg.regimes (module), 430	R
pysal.spreg.sur (module), 452	r (pysal.esda.smoothing.Age_Adjusted_Smoother at-
pysal.spreg.sur_error (module), 459	tribute), 242
pysal.spreg.sur_lag (module), 463	r (pysal.esda.smoothing.Disk_Smoother attribute), 244
pysal.spreg.twosls (module), 309	r (pysal.esda.smoothing.Empirical_Bayes attribute), 239
pysal.spreg.twosls_regimes (module), 313	r (pysal.esda.smoothing.Excess_Risk attribute), 238
pysal.spreg.twosls_sp (module), 317	r (pysal.esda.smoothing.Headbanging_Median_Rate at-
pysal.spreg.twosls_sp_regimes (module), 322	tribute), 250
pysal.weights.Contiguity (module), 501	r (pysal.esda.smoothing.Kernel_Smoother attribute), 241
pysal.weights.Distance (module), 516	r (pysal.esda.smoothing.Spatial_Empirical_Bayes at-
pysal.weights.spatial_lag (module), 531	tribute), 240
pysal.weights.user (module), 488	r (pysal.esda.smoothing.Spatial_Filtering attribute), 246
pysal.weights.util (module), 477	r (pysal.esda.smoothing.Spatial_Median_Rate attribute),
pysal.weights.weights (module), 467	244
pysal.weights.Wsets (module), 525	r (pysal.esda.smoothing.Spatial_Rate attribute), 240
_	r2 (pysal.spreg.ols.OLS attribute), 296
Q	r2 (pysal.spreg.ols_regimes.OLS_Regimes attribute), 302
q (pysal.esda.moran.Moran_Local attribute), 227	r2() (in module pysal.spreg.diagnostics), 330
q (pysal.esda.moran.Moran_Local_BV attribute), 232	Random_Region (class in pysal.region.randomregion),
q (pysal.esda.moran.Moran_Local_Rate attribute), 237	268
Q (pysal.spatial_dynamics.markov.Spatial_Markov at-	Random_Regions (class in pysal.region.randomregion),
tribute), 286	266
q (pysal.spreg.error_sp_het.GM_Combo_Het attribute),	ranks (pysal.spatial_dynamics.rank.Theta attribute), 294
385	Ray (class in pysal.cg.shapes), 107
q (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-	read() (pysal.core.FileIO.FileIO method), 128
tribute), 381	read() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
q (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Reg	
attribute), 390	read() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
q (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_He	
attribute), 396	read() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
q (pysal.spreg.error_sp_hom.GM_Combo_Hom at-	method), 134
tribute), 411	read() (pysal.core.IOHandlers.csvWrapper.csvWrapper
q (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom at-	method), 137
tribute), 407	read() (pysal.core.IOHandlers.dat.DatIO method), 138
q (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_F	
attribute), 416	read() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO
q (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_H	= ''
attribute), 422	read() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
q (pysal.spreg.twosls.TSLS attribute), 310	method), 146
q (pysal.spreg.twosls_regimes.TSLS_Regimes attribute),	read() (pysal.core.IOHandlers.gwt.GwtIO method), 146
314	read() (pysal.core.IOHandlers.mat.MatIO method), 149
q (pysal.spreg.twosls_sp.GM_Lag attribute), 318	read() (pysal.core.IOHandlers.mtx.MtxIO method), 151
q (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 324	read() (pysal.core.IOHandlers.pyDbfIO.DBF method), 155
	vread() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper
attribute), 286	method), 156
quantile() (in module pysal.esda.mapclassify), 178	read() (pysal.core.IOHandlers.stata_txt.StataTextIO
Quantiles (class in pysal.esda.mapclassify), 208	method), 158
Queen (class in pysal.weights.Contiguity), 501	read() (pysal.core.IOHandlers.wk1.Wk1IO method), 161
queen_from_shapefile() (in module pysal.weights.user),	read() (pysal.core.IOHandlers.wkt.WKTReader method),
488	163
query() (pysal.cg.locators.IntervalTree method), 95	READ_MODES (pysal.core.IOHandlers.csvWrapper.csvWrapper attribute), 135

```
read record()
                          (pysal.core.IOHandlers.pyDbfIO.DBF
                                                                                                  attribute), 401
              method), 155
                                                                                   regimes (pysal.spreg.error sp hom regimes.GM Combo Hom Regimes
Rect (class in pysal.cg.rtree), 121
                                                                                                 attribute), 417
Rectangle (class in pysal.cg.shapes), 112
                                                                                   regimes (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regi
regi (pysal.spreg.regimes.Chow attribute), 430
                                                                                                  attribute), 423
regi i (in module pysal.spreg.regimes), 434
                                                                                   regimes (pysal.spreg.error sp hom regimes.GM Error Hom Regimes
regi ids (in module pysal.spreg.regimes), 434
                                                                                                 attribute), 428
regime_err_sep (pysal.spreg.error_sp_het_regimes.GM_CombginHest(pRegImpreg.error_sp_regimes.GM_Combo_Regimes
              attribute), 391
                                                                                                  attribute), 365
regime_err_sep (pysal.spreg.error_sp_het_regimes.GM_Endweginherso(pysal.spregimersor_sp_regimes.GM_Endog_Error_Regimes
             attribute), 397
                                                                                                 attribute), 370
regime_err_sep (pysal.spreg.error_sp_het_regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error_Regimes.GM_Error
             attribute), 402
                                                                                                  attribute), 375
regime_err_sep (pysal.spreg.error_sp_hom_regimes.GM_Combineds(optys_klespinegsml_error_regimes.ML_Error_Regimes
              attribute), 418
                                                                                                  attribute), 441
regime_err_sep (pysal.spreg.error_sp_hom_regimes.GM_EndgimEsropykkdnspdegimhekag_regimes.ML_Lag_Regimes
             attribute), 423
                                                                                                 attribute), 450
regime_err_sep (pysal.spreg.error_sp_hom_regimes.GM_Erreginhlem_Rpysalespreg.ols_regimes.OLS_Regimes
             attribute), 428
                                                                                                 tribute), 304
regime_err_sep (pysal.spreg.error_sp_regimes.GM_Combo_regimes(pysal.spreg.twosls_regimes.TSLS_Regimes at-
             attribute), 365
                                                                                                 tribute), 314
regime_err_sep (pysal.spreg.error_sp_regimes.GM_Endog_Faging&spreg.twosls_sp_regimes.GM_Lag_Regimes
              attribute), 371
                                                                                                 attribute), 326
regime_err_sep (pysal.spreg.error_sp_regimes.GM_Error_RRegimess_Frame (class in pysal.spreg.regimes), 431
                                                                                   regimes set (in module pysal.spreg.regimes), 434, 435
             attribute), 375
regime_err_sep (pysal.spreg.ml_lag_regimes.ML_Lag_Regimex_setup() (in module pysal.spreg.regimes), 433
             attribute), 451
                                                                                   region()
                                                                                                        (pysal.cg.locators.BruteForcePointLocator
regime_err_sep (pysal.spreg.ols_regimes.OLS_Regimes
                                                                                                 method), 98
             attribute), 304
                                                                                   region() (pysal.cg.locators.PointLocator method), 100
regime_err_sep (pysal.spreg.twosls_regimes.TSLS_Regimesregion() (pysal.cg.locators.PolygonLocator method), 103
              attribute), 315
                                                                                   regions (pysal.region.maxp.Maxp attribute), 262
regime_err_sep (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes (pysal.region.maxp.Maxp_LISA attribute), 265
             attribute), 326
                                                                                   regions (pysal.region.randomregion.Random_Region at-
regime_lag_sep (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Ritgite)es268
              attribute), 391
                                                                                   remap ids() (in module pysal.weights.util), 480
regime_lag_sep (pysal.spreg.error_sp_hom_regimes.GM_Combap Hids())_R(pg/stales/weights.Contiguity.Queen method),
             attribute), 418
regime_lag_sep (pysal.spreg.error_sp_regimes.GM_Combor_Regimists() (pysal.weights.Contiguity.Rook method),
              attribute), 365
regime_lag_sep (pysal.spreg.ml_error_regimes.ML_Error_Regingsids() (pysal.weights.weights.W method), 472
             attribute), 441
                                                                                   remove() (pysal.cg.locators.Grid method), 97
regime lag sep (pysal.spreg.ml lag regimes.ML Lag Regimeids (pysal.spreg.sur lag.SURlagIV attribute), 465
              attribute), 451
                                                                                   results (pysal.esda.mapclassify.K classifiers attribute),
regime_lag_sep (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes 221
             attribute), 326
                                                                                   reweight() (pysal.weights.Distance.KNN method), 520
                                                                                   rho (pysal.spreg.ml_lag.ML_Lag attribute), 444
regime_weights() (in module pysal.weights.util), 487
regimes (in module pysal.spreg.regimes), 434, 435
                                                                                   rho (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
regimes (pysal.spatial_dynamics.rank.Theta attribute),
                                                                                                 tribute), 449
                                                                                   rIds (pysal.core.FileIO.FileIO attribute), 128
regimes (pysal.spreg.error_sp_het_regimes.GM_Combo_HettleReqpipsat.core.IOHandlers.arcgis_dbf.ArcGISDbfIO at-
              attribute), 391
                                                                                                 tribute), 129
regimes (pysal.spreg.error_sp_het_regimes.GM_Endog_ErroldHatpRadimes.IOHandlers.arcgis_swm.ArcGISSwmIO
              attribute), 397
                                                                                                 attribute), 131
regimes (pysal.spreg.error sp het regimes.GM Error Het Regifpesal.core.IOHandlers.arcgis txt.ArcGISTextIO at-
```

tribute), 133 rIds (pysal.core.IOHandlers.csvWrapper.csvWrapper at-	s2 (pysal.weights.weights.W attribute), 468, 473 s2array (pysal.weights.Contiguity.Queen attribute), 506
tribute), 137	
**	s2array (pysal.weights.Contiguity.Rook attribute), 514
rIds (pysal.core.IOHandlers.dat.DatIO attribute), 138	s2array (pysal.weights.weights.W attribute), 468, 473
rlds (pysal.core.IOHandlers.gal.GalIO attribute), 140	s_wcg (pysal.inequality.gini.Gini_Spatial attribute), 259
rIds (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO attribute), 142	538
$rIds (pysal.core.IOH and lers.geoda_txt.GeoDaTxtReader$	scale (pysal.spreg.probit.Probit attribute), 307
attribute), 145	scalem (pysal.spreg.probit.Probit attribute), 307
rIds (pysal.core.IOHandlers.gwt.GwtIO attribute), 146	schwarz (pysal.spreg.ml_lag.ML_Lag attribute), 444
rIds (pysal.core.IOHandlers.mat.MatIO attribute), 148 rIds (pysal.core.IOHandlers.mtx.MtxIO attribute), 151	schwarz (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes attribute), 450
rIds (pysal.core.IOHandlers.pyDbfIO.DBF attribute), 155	schwarz (pysal.spreg.ols.OLS attribute), 296
$rIds\ (pysal.core.IOH and lers.pyShpIO.PurePyShpW rapper$	schwarz (pysal.spreg.ols_regimes.OLS_Regimes at-
attribute), 156	tribute), 302
rIds (pysal.core.IOHandlers.stata_txt.StataTextIO at-	schwarz() (in module pysal.spreg.diagnostics), 334
tribute), 158	sd (pysal.weights.Contiguity.Queen attribute), 506
rIds (pysal.core.IOHandlers.wk1.Wk1IO attribute), 161	sd (pysal.weights.Contiguity.Rook attribute), 514
rIds (pysal.core.IOHandlers.wkt.WKTReader attribute),	sd (pysal.weights.weights.W attribute), 468, 473
163	se_betas() (in module pysal.spreg.diagnostics), 332
right (pysal.cg.shapes.Rectangle attribute), 112	seC_sim (pysal.esda.geary.Geary attribute), 167
rlm_error (pysal.spreg.ols.OLS attribute), 297	seek() (pysal.core.FileIO.FileIO method), 128
rlm_error (pysal.spreg.ols_regimes.OLS_Regimes	seek() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
attribute), 303	method), 129
rlm_lag (pysal.spreg.ols.OLS attribute), 297	$seek() (pysal.core.IOH and lers.arcgis_swm.ArcGISSwmIO$
rlm_lag (pysal.spreg.ols_regimes.OLS_Regimes at-	method), 131
tribute), 303	seek() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
robust (pysal.spreg.ols.OLS attribute), 296	method), 134
robust (pysal.spreg.ols_regimes.OLS_Regimes attribute), 302	seek() (pysal.core.IOHandlers.csvWrapper.csvWrapper method), 137
robust (pysal.spreg.twosls.TSLS attribute), 310	seek() (pysal.core.IOHandlers.dat.DatIO method), 138
robust (pysal.spreg.twosls_sp.GM_Lag attribute), 318	seek() (pysal.core.IOHandlers.gal.GalIO method), 140
robust (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes attribute), 324	seek() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIO method), 142
Rook (class in pysal.weights.Contiguity), 509	seek() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
<pre>rook_from_shapefile() (in module pysal.weights.user),</pre>	method), 146
488	seek() (pysal.core.IOHandlers.gwt.GwtIO method), 146
rose() (in module pysal.spatial_dynamics.directional),	seek() (pysal.core.IOHandlers.mat.MatIO method), 149
270	seek() (pysal.core.IOHandlers.mtx.MtxIO method), 151
0	seek() (pysal.core.IOHandlers.pyDbfIO.DBF method),
S	155
S (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286	seek() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper method), 156
s (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 285	seek() (pysal.core.IOHandlers.stata_txt.StataTextIO method), 158
s0 (pysal.weights.Contiguity.Queen attribute), 506	seek() (pysal.core.IOHandlers.wk1.Wk1IO method), 161
s0 (pysal.weights.Contiguity.Rook attribute), 513	seek() (pysal.core.IOHandlers.wkt.WKTReader method),
s0 (pysal.weights.weights.W attribute), 468, 473	163
s0 (pysal.weights.wSP attribute), 476, 477	seG_sim (pysal.esda.getisord.G attribute), 169
s1 (pysal.weights.Contiguity.Queen attribute), 506	seG_sim (pysal.esda.getisord.G_Local attribute), 171
s1 (pysal.weights.Contiguity.Rook attribute), 513	segment_edges() (pysal.network.network.Network
s1 (pysal.weights.weights.W attribute), 468, 473	method), 538
s2 (pysal.weights.Contiguity.Queen attribute), 506	segments (pysal.cg.shapes.Chain attribute), 108
s2 (pysal.weights.Contiguity.Rook attribute), 514	seI_norm (pysal.esda.moran.Moran attribute), 225

seI_norm (pysal.esda.moran.Moran_Rate attribute), 234 seI_rand (pysal.esda.moran.Moran attribute), 225	sig2 (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes attribute), 417
seI_rand (pysal.esda.moran.Moran_Rate attribute), 235 seI_sim (pysal.esda.moran.Moran attribute), 226	sig2 (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes attribute), 422
sel_sim (pysal.esda.moran.Moran_BV attribute), 229	sig2 (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
seI_sim (pysal.esda.moran.Moran_Local attribute), 228	attribute), 427
seI_sim (pysal.esda.moran.Moran_Local_BV attribute),	sig2 (pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute), 364
seI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237	sig2 (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes attribute), 370
seI_sim (pysal.esda.moran.Moran_Rate attribute), 235 set_centroid() (pysal.cg.shapes.Rectangle method), 113	sig2 (pysal.spreg.error_sp_regimes.GM_Error_Regimes attribute), 374
set_name_x_regimes() (in module pysal.spreg.regimes), 433	sig2 (pysal.spreg.ml_error.ML_Error attribute), 437 sig2 (pysal.spreg.ml_error_regimes.ML_Error_Regimes
set_scale() (pysal.cg.shapes.Rectangle method), 113	attribute), 441
set_shapefile() (pysal.weights.Contiguity.Queen method), 506	sig2 (pysal.spreg.ml_lag.ML_Lag attribute), 444 sig2 (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
set_shapefile() (pysal.weights.Contiguity.Rook method),	tribute), 449
514	sig2 (pysal.spreg.ols.OLS attribute), 296
set_shapefile() (pysal.weights.weights.W method), 473	sig2 (pysal.spreg.ols_regimes.OLS_Regimes attribute),
set_transform() (pysal.weights.Contiguity.Queen	302
method), 506	sig2 (pysal.spreg.twosls.TSLS attribute), 311
set_transform() (pysal.weights.Contiguity.Rook method),	sig2 (pysal.spreg.twosls_sp.GM_Lag attribute), 319
514	sig2 (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
set_transform() (pysal.weights.weights.W method), 473	attribute), 324
shimbel() (in module pysal.weights.util), 480	sig2ML (pysal.spreg.ols.OLS attribute), 296
shorrock() (in module pysal.spatial_dynamics.markov), 290	sig2ML (pysal.spreg.ols_regimes.OLS_Regimes attribute), 302
shpName (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	
attribute), 134	sig2n (pysal.spreg.ols_regimes.OLS_Regimes attribute),
shpName (pysal.core.IOHandlers.dat.DatIO attribute),	304
138	sig2n (pysal.spreg.twosls.TSLS attribute), 311
shpName (pysal.core.IOHandlers.gwt.GwtIO attribute),	sig2n (pysal.spreg.twosls_sp.GM_Lag attribute), 319
146	sig2n (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
shtest (pysal.spatial_dynamics.markov.Spatial_Markov	attribute), 325
attribute), 286	sig2n_k (pysal.spreg.ols.OLS attribute), 297
sig (pysal.spreg.sur.SUR attribute), 453	sig2n_k (pysal.spreg.ols_regimes.OLS_Regimes attribute), 304
sig (pysal.spreg.sur.ThreeSLS attribute), 457 sig (pysal.spreg.sur_error.BaseSURerrorML attribute),	sig2n_k (pysal.spreg.twosls.TSLS attribute), 311
460	sig2n_k (pysal.spreg.twosls.13L3 attribute), 319
sig (pysal.spreg.sur_error.SURerrorML attribute), 461	sig2n_k (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
sig (pysal.spreg.sur_lag.SURlagIV attribute), 465	attribute), 325
sig2 (pysal.spreg.error_sp.GM_Combo attribute), 360	sig_ols (pysal.spreg.sur.SUR attribute), 453
sig2 (pysal.spreg.error_sp.GM_Endog_Error attribute),	significant_moves (pysal.spatial_dynamics.markov.LISA_Markov
356	attribute), 281
sig2 (pysal.spreg.error_sp.GM_Error attribute), 353	sim (pysal.esda.geary.Geary attribute), 167
sig2 (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Re	
attribute), 401	sim (pysal.esda.getisord.G_Local attribute), 170
sig2 (pysal.spreg.error_sp_hom.GM_Combo_Hom at-	sim (pysal.esda.moran.Moran attribute), 225
tribute), 412 sig2 (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom	sim (pysal.esda.moran.Moran_BV attribute), 229 sim (pysal.esda.moran.Moran_Local attribute), 227
attribute), 408	sim (pysal.esda.moran.Moran_Local_BV attribute), 232
sig2 (pysal.spreg.error_sp_hom.GM_Error_Hom at-	sim (pysal.esda.moran.Moran_Local_Rate attribute), 237
tribute), 405	sim (pysal.esda.moran.Moran_Rate attribute), 235

```
sim_bb (pysal.esda.join_counts.Join_Counts attribute), std_err (pysal.spreg.error_sp_hom.GM_Combo_Hom at-
                                                                  tribute), 412
sim bw (pysal.esda.join counts.Join Counts attribute),
                                                        std err (pysal.spreg.error sp hom.GM Endog Error Hom
                                                                  attribute), 408
sim_g (pysal.esda.gamma.Gamma attribute), 164
                                                        std err (pysal.spreg.error sp hom.GM Error Hom at-
simulate observations() (pysal.network.network.Network
                                                                  tribute), 405
         method), 539
                                                        std err (pysal.spreg.error sp hom regimes.GM Combo Hom Regimes
slopes (pysal.spreg.probit.Probit attribute), 307
                                                                  attribute), 417
slopes vm (pysal.spreg.probit.Probit attribute), 307
                                                        std_err (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regin
snapobservations()
                       (pysal.network.network.Network
                                                                  attribute), 423
         method), 539
                                                        std_err (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
solutions (pysal.region.randomregion.Random_Regions
                                                                  attribute), 427
         attribute), 266
                                                        std_err (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
solutions_feas (pysal.region.randomregion.Random_Regions
                                                                  attribute), 364
         attribute), 266
                                                         std_err (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
space (pysal.spatial_dynamics.interaction.SpaceTimeEvents
                                                                  attribute), 370
         attribute), 274
                                                        std_err (pysal.spreg.error_sp_regimes.GM_Error_Regimes
SpaceTimeEvents
                                                    in
                                (class
                                                                  attribute), 374
         pysal.spatial dynamics.interaction), 273
                                                        std err (pysal.spreg.ml error.ML Error attribute), 437
sparse (pysal.weights.Contiguity.Queen attribute), 507
                                                         std err (pysal.spreg.ml error regimes.ML Error Regimes
sparse (pysal.weights.Contiguity.Rook attribute), 515
                                                                  attribute), 441
                                                        std_err (pysal.spreg.ml_lag.ML_Lag attribute), 445
sparse (pysal.weights.weights.W attribute), 468, 474
Spatial_Empirical_Bayes (class in pysal.esda.smoothing),
                                                        std_err (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
                                                                  attribute), 450
Spatial_Filtering (class in pysal.esda.smoothing), 246
                                                        std err (pysal.spreg.ols.OLS attribute), 296
Spatial Markov
                                                    in
                                                        std err
                                                                   (pysal.spreg.ols regimes.OLS Regimes
                                                                                                            at-
         pysal.spatial_dynamics.markov), 285
                                                                  tribute), 302
Spatial_Median_Rate (class in pysal.esda.smoothing),
                                                        std_err (pysal.spreg.twosls.TSLS attribute), 311
                                                         std_err (pysal.spreg.twosls_sp.GM_Lag attribute), 319
Spatial_Rate (class in pysal.esda.smoothing), 240
                                                        std_err (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
SpatialTau (class in pysal.spatial_dynamics.rank), 291
                                                                  attribute), 324
spillover() (pysal.spatial_dynamics.markov.LISA_Markov
                                                        Std_Mean (class in pysal.esda.mapclassify), 214
         method), 284
                                                         std_y (pysal.spreg.error_sp.GM_Combo attribute), 360
stand (pysal.esda.gamma.Gamma attribute), 164
                                                        std_y (pysal.spreg.error_sp.GM_Endog_Error attribute),
standardized mortality ratio()
                                               module
         pysal.esda.smoothing), 256
                                                        std y (pysal.spreg.error sp.GM Error attribute), 353
StataTextIO (class in pysal.core.IOHandlers.stata txt),
                                                        std y
                                                                (pysal.spreg.error sp het.GM Combo Het
                                                                  tribute), 385
std_err (pysal.spreg.error_sp.GM_Combo attribute), 360
                                                        std_y
                                                                (pysal.spreg.error_sp_het.GM_Endog_Error_Het
std err
          (pysal.spreg.error_sp.GM_Endog_Error
                                                                  attribute), 381
         tribute), 356
                                                        std y
                                                                  (pysal.spreg.error sp het.GM Error Het
std_err (pysal.spreg.error_sp.GM_Error attribute), 353
                                                                  tribute), 378
std err (pysal.spreg.error sp het.GM Combo Het at-
                                                        std_y (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
         tribute), 385
                                                                  attribute), 390
std_err (pysal.spreg.error_sp_het.GM_Endog_Error_Het
                                                        std_y (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes
         attribute), 381
                                                                  attribute), 396
                                                        std_y (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
         (pysal.spreg.error_sp_het.GM_Error_Het at-
std err
         tribute), 378
                                                                  attribute), 401
std_err (pysal.spreg.error_sp_het_regimes.GM_Combo_Hetstdegin(pysal.spreg.error_sp_hom.GM_Combo_Hom_at-
         attribute), 390
                                                                  tribute), 412
std_err (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_thet_regimes.gm_error_sp_hom.GM_Endog_Error_Hom
         attribute), 396
                                                                  attribute), 408
std_err (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Redimes
                                                                     (pysal.spreg.error sp hom.GM Error Hom
         attribute), 401
                                                                  attribute), 404
```

```
std_y (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimesttribute), 416
                                                                                      summary (pysal.spreg.error sp hom regimes.GM Endog Error Hom Reg
              attribute), 417
std_y (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimberte), 421
              attribute), 422
                                                                                      summary (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
std_y (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute), 427
              attribute), 427
                                                                                      summary (pysal.spreg.error sp regimes.GM Combo Regimes
std y (pysal.spreg.error sp regimes.GM Combo Regimes
                                                                                                    attribute), 363
              attribute), 364
                                                                                      summary (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
std_y (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
                                                                                                    attribute), 369
              attribute), 370
                                                                                      summary (pysal.spreg.error_sp_regimes.GM_Error_Regimes
std_y (pysal.spreg.error_sp_regimes.GM_Error_Regimes
                                                                                                    attribute), 373
              attribute), 374
                                                                                      summary (pysal.spreg.ml_error_regimes.ML_Error_Regimes
std_y (pysal.spreg.ml_error.ML_Error attribute), 437
                                                                                                     attribute), 440
std_y (pysal.spreg.ml_error_regimes.ML_Error_Regimes
                                                                                      summary (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
              attribute), 440
                                                                                                    attribute), 449
std_y (pysal.spreg.ml_lag.ML_Lag attribute), 444
                                                                                      summary (pysal.spreg.ols.OLS attribute), 295
                                                                                      summary (pysal.spreg.ols_regimes.OLS_Regimes at-
std_y (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
              tribute), 449
                                                                                                    tribute), 301
std_y (pysal.spreg.ols.OLS attribute), 296
                                                                                      summary (pysal.spreg.twosls.TSLS attribute), 310
std y (pysal.spreg.ols regimes.OLS Regimes attribute),
                                                                                      summary (pysal.spreg.twosls sp.GM Lag attribute), 318
              302
                                                                                      summary (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
std y (pysal.spreg.twosls.TSLS attribute), 310
                                                                                                    attribute), 323
std_y (pysal.spreg.twosls_sp.GM_Lag attribute), 318
                                                                                      SUR (class in pysal.spreg.sur), 452
std y (pysal.spreg.twosls sp regimes.GM Lag Regimes
                                                                                      sur inf (pysal.spreg.sur.SUR attribute), 454
              attribute), 324
                                                                                      sur inf (pysal.spreg.sur error.SURerrorML attribute),
steady_state (pysal.spatial_dynamics.markov.Markov at-
              tribute), 279
                                                                                      surchow (pysal.spreg.sur.SUR attribute), 454
steady_state()
                                                                        module
                                                                                      surchow (pysal.spreg.sur.ThreeSLS attribute), 457
                                            (in
              pysal.spatial_dynamics.ergodic), 272
                                                                                      surchow (pysal.spreg.sur_error.SURerrorML attribute),
sum_by_n() (in module pysal.esda.smoothing), 253
summary (pysal.spreg.error_sp.GM_Combo attribute),
                                                                                      surchow (pysal.spreg.sur_lag.SURlagIV attribute), 465
              359
                                                                                      surerrllik (pysal.spreg.sur_error.SURerrorML attribute),
                (pysal.spreg.error_sp.GM_Endog_Error
                                                                                                    462
summary
              tribute), 356
                                                                                      SURerrorML (class in pysal.spreg.sur_error), 460
summary (pysal.spreg.error sp.GM Error attribute), 353
                                                                                      SURlagIV (class in pysal.spreg.sur lag), 463
summary (pysal.spreg.error sp het.GM Combo Het at-
                                                                                      sw ccw() (pysal.cg.shapes.LineSegment method), 106
              tribute), 384
                                                                                      swap iterations (pysal.region.maxp.Maxp attribute), 263
summary (pysal.spreg.error_sp_het.GM_Endog_Error_Het swap_iterations (pysal.region.maxp.Maxp_LISA
                                                                                                     tribute), 265
              attribute), 380
summary (pysal.spreg.error_sp_het.GM_Error_Het at-
              tribute), 377
summary (pysal.spreg.error_sp_het_regimes.GM_Combo_HetcpRegimeequality.theil.Theil attribute), 260
              attribute), 389
                                                                                      T (pysal.inequality.theil.TheilD attribute), 261
summary (pysal.spreg.error_sp_het_regimes.GM_Endog_Enror_HetalRegimetsdynamics.interaction.SpaceTimeEvents
              attribute), 395
                                                                                                    attribute), 274
summary\ (pysal.spreg.error\_sp\_het\_regimes.GM\_Error\_Het\underline{r}Regimes\underline{spysal.spatial\_dynamics.markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Markov.Spatial\_Ma
              attribute), 400
                                                                                                    attribute), 286
summary (pysal.spreg.error_sp_hom.GM_Combo_Hom
                                                                                      t stat (pysal.spreg.ols.OLS attribute), 296
              attribute), 411
                                                                                      t stat (pysal.spreg.ols regimes.OLS Regimes attribute),
summary (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
              attribute), 407
                                                                                      t stat() (in module pysal.spreg.diagnostics), 329
summary (pysal.spreg.error_sp_hom.GM_Error_Hom at-
                                                                                      t stat() (in module pysal.spreg.diagnostics tsls), 348
              tribute), 404
                                                                                      Tau (class in pysal.spatial_dynamics.rank), 293
summary (pysal.spreg.error sp hom regimes.GM Combo Hom Regimes
```

```
tau (pysal.spatial dynamics.rank.SpatialTau attribute),
                                                         title (pysal.spreg.error sp.GM Endog Error attribute),
tau (pysal.spatial dynamics.rank.Tau attribute), 293
                                                         title (pysal.spreg.error sp.GM Error attribute), 354
tau p (pysal.spatial dynamics.rank.Tau attribute), 293
                                                                (pysal.spreg.error_sp_het.GM_Combo_Het
                                                                                                              at-
tau spatial (pysal.spatial dynamics.rank.SpatialTau at-
                                                                   tribute), 386
         tribute), 291
                                                         title (pysal.spreg.error sp het.GM Endog Error Het at-
tau spatial psim (pysal.spatial dynamics.rank.SpatialTau
                                                                   tribute), 382
         attribute), 292
                                                         title (pysal.spreg.error sp het.GM Error Het attribute),
taus (pysal.spatial dynamics.rank.SpatialTau attribute),
                                                         title (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
tell() (pysal.core.FileIO.FileIO method), 128
                                                                   attribute), 391
       (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO
                                                         title (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes
tell()
         method), 129
                                                                   attribute), 397
tell() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO
                                                         title (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
         method), 131
                                                                   attribute), 401
tell()
       (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
                                                         title
                                                                    (pysal.spreg.error_sp_hom.GM_Combo_Hom
         method), 134
                                                                   attribute), 412
        (pysal.core.IOHandlers.csvWrapper.csvWrapper
                                                         title (pysal.spreg.error sp hom.GM Endog Error Hom
tell()
         method), 137
                                                                   attribute), 408
tell() (pysal.core.IOHandlers.dat.DatIO method), 138
                                                         title
                                                                (pysal.spreg.error sp hom.GM Error Hom
tell() (pysal.core.IOHandlers.gal.GalIO method), 140
                                                                   tribute), 405
tell() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSTextIOtitle (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
         method), 142
                                                                   attribute), 417
tell() (pysal.core.IOHandlers.geoda txt.GeoDaTxtReader
                                                         title (pysal.spreg.error sp hom regimes.GM Endog Error Hom Regimes
         method), 146
                                                                   attribute), 423
tell() (pysal.core.IOHandlers.gwt.GwtIO method), 147
                                                         title (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
tell() (pysal.core.IOHandlers.mat.MatIO method), 149
                                                                   attribute), 428
tell() (pysal.core.IOHandlers.mtx.MtxIO method), 151
                                                         title (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
tell() (pysal.core.IOHandlers.pyDbfIO.DBF method), 155
                                                                   attribute), 365
tell() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper title (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
         method), 156
                                                                   attribute), 370
            (pysal.core.IOHandlers.stata_txt.StataTextIO
tell()
                                                         title (pysal.spreg.error_sp_regimes.GM_Error_Regimes
         method), 158
                                                                   attribute), 374
tell() (pysal.core.IOHandlers.wk1.Wk1IO method), 161
                                                         title (pysal.spreg.ml_error.ML_Error attribute), 437
tell() (pysal.core.IOHandlers.wkt.WKTReader method),
                                                         title (pysal.spreg.ml error regimes.ML Error Regimes
                                                                   attribute), 441
tests (pysal.spreg.diagnostics sp.LMtests attribute), 343
                                                         title (pysal.spreg.ml lag.ML Lag attribute), 445
Theil (class in pysal.inequality.theil), 260
                                                         title (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
TheilD (class in pysal.inequality.theil), 261
                                                                   tribute), 450
TheilDSim (class in pysal.inequality.theil), 261
                                                         title (pysal.spreg.ols.OLS attribute), 297
Theta (class in pysal.spatial dynamics.rank), 293
                                                         title (pysal.spreg.ols regimes.OLS Regimes attribute),
theta (pysal.spatial dynamics.rank.Theta attribute), 294
ThreeSLS (class in pysal.spreg.sur), 456
                                                         title (pysal.spreg.probit.Probit attribute), 307
threshold_binaryW_from_array()
                                      (in
                                                module
                                                         title (pysal.spreg.twosls.TSLS attribute), 311
         pysal.weights.user), 491
                                                         title (pysal.spreg.twosls_sp.GM_Lag attribute), 319
threshold_binaryW_from_shapefile()
                                                         title (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
                                                module
                                        (in
         pysal.weights.user), 491
                                                                   attribute), 325
threshold_continuousW_from_array()
                                        (in
                                                module
                                                         to_df() (pysal.core.IOHandlers.csvWrapper.csvWrapper
         pysal.weights.user), 492
                                                                   method), 137
threshold_continuousW_from_shapefile() (in
                                               module to_df() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader
         pysal.weights.user), 493
                                                                   method), 146
time (pysal.spatial dynamics.interaction.SpaceTimeEvents to df() (pysal.core.IOHandlers.pyDbfIO.DBF method),
         attribute), 274
                                                                   155
title (pysal.spreg.error sp.GM Combo attribute), 360
                                                         to df() (pysal.core.Tables.DataTable method), 127
```

to_W() (pysal.weights.weights.WSP method), 477 to_WSP() (pysal.weights.Contiguity.Queen method), 507	truncate() (pysal.core.IOHandlers.mat.MatIO method), 149
to_WSP() (pysal.weights.Contiguity.Rook method), 515 to_WSP() (pysal.weights.weights.W method), 474	truncate() (pysal.core.IOHandlers.mtx.MtxIO method), 151
total (pysal.spatial_dynamics.rank.Theta attribute), 294	truncate() (pysal.core.IOHandlers.pyDbfIO.DBF
total_moves (pysal.region.maxp.Maxp attribute), 263	method), 155
total_moves (pysal.region.maxp.Maxp_LISA attribute),	truncate() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrapper
265	method), 156
towsp() (pysal.weights.Contiguity.Queen method), 508	truncate() (pysal.core.IOHandlers.stata_txt.StataTextIO
towsp() (pysal.weights.Contiguity.Rook method), 515	method), 158
towsp() (pysal.weights.Weights.W method), 475	truncate() (pysal.core.IOHandlers.wk1.Wk1IO method),
toXYZ() (in module pysal.cg.sphere), 123	161
transform (pysal.weights.Contiguity.Queen attribute), 508	
	truncate() (pysal.core.IOHandlers.wkt.WKTReader
transform (pysal.weights.Contiguity.Rook attribute), 516	method), 163
transform (pysal.weights.weights.W attribute), 468, 475	TSLS (class in pysal.spreg.twosls), 309
transitions (pysal.spatial_dynamics.markov.Markov at-	tsls_inf (pysal.spreg.sur.ThreeSLS attribute), 457
tribute), 279	tsls_inf (pysal.spreg.sur_lag.SURlagIV attribute), 465
transitions (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 285	313
trcW2 (pysal.weights.Contiguity.Queen attribute), 508	tslsE (pysal.spreg.sur.ThreeSLS attribute), 457
trcW2 (pysal.weights.Contiguity.Rook attribute), 516	tslsE (pysal.spreg.sur_lag.SURlagIV attribute), 465
trcW2 (pysal.weights.weights.W attribute), 468, 475	two_tailed (pysal.esda.moran.Moran attribute), 225
trcWtW (pysal.weights.Contiguity.Queen attribute), 509	two_tailed (pysal.esda.moran.Moran_Rate attribute), 235
trcWtW (pysal.weights.Contiguity.Rook attribute), 516	
trcWtW (pysal.weights.weights.W attribute), 468, 476	U
trcWtW_WW (pysal.weights.Contiguity.Queen at-	u (pysal.spreg.error_sp.GM_Combo attribute), 359
tribute), 509	u (pysal.spreg.error_sp.GM_Endog_Error attribute), 356
trcWtW_WW (pysal.weights.Contiguity.Rook attribute),	u (pysal.spreg.error_sp.GM_Error attribute), 353
516	u (pysal.spreg.error_sp_het.GM_Combo_Het attribute),
trcWtW_WW (pysal.weights.weights.W attribute), 468,	384
476	
trcWtW_WW (pysal.weights.weights.WSP attribute),	u (pysal.spreg.error_sp_het.GM_Endog_Error_Het at- tribute), 380
476, 477	
triples (pysal.esda.smoothing.Headbanging_Triples at-	
tribute), 248	377
truncate() (pysal.core.FileIO.FileIO method), 128	u (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes
	attribute), 389
method), 129	u (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute), 395
truncate() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwm method), 131	Physal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes attribute), 400
truncate() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	u (pysal.spreg.error_sp_hom.GM_Combo_Hom at-
method), 134	tribute), 411
truncate() (pysal.core.IOHandlers.csvWrapper.csvWrapper	
method), 137	a (p) samspregion of a primary and a primary
truncate() (pysal.core.IOHandlers.dat.DatIO method),	tribute), 407
138	u (pysal.spreg.error_sp_hom.GM_Error_Hom attribute),
	404
truncate() (pysal.core.IOHandlers.gal.GalIO method),	u (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
140	attribute), 416
truncate() (pysal.core.IOHandlers.geobugs_txt.GeoBUGS I	ex (p) sal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes
method), 143	attribute), 421
truncate() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtRea	de (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
method), 146	attribute), 427
truncate() (pysal.core.IOHandlers.gwt.GwtIO method), 147	u (pysal.spreg.error_sp_regimes.GM_Combo_Regimes attribute), 363

u (pysal.spreg.mc.eror.pregimes.GM_Error_Regimes at tribute), 373 u (pysal.spreg.ml_error_regimes.ML_Error_Regimes at tribute), 440 u (pysal.spreg.ml_error_regimes.ML_Error_Regimes at tribute), 440 u (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at tribute), 449 u (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at tribute), 449 u (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at tribute), 449 u (pysal.spreg.mosls_TSLS_attribute), 310 u (pysal.spreg.twosls_rSLS_attribute), 310 u (pysal.spreg.twosls_preg.tw	u (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regime attribute), 369	
tribute), 374 u (pysal.spreg.ml_error/ML_Error attribute), 436 u (pysal.spreg.ml_lag.ML_Lag attribute), 444 u (pysal.spreg.ml_lag.ML_Lag attribute), 444 u (pysal.spreg.ml_lag.ML_Lag attribute), 444 u (pysal.spreg.ml_lag.ML_Lag attribute), 445 u (pysal.spreg.ols.Ol.S attribute), 295 u (pysal.spreg.ols.Ol.S attribute), 295 u (pysal.spreg.ols.Ol.S attribute), 295 u (pysal.spreg.twosls.STSLS_Regimes attribute), 310 u (pysal.spreg.twosls.Spreg.mes.Ol.S.Regimes attribute), 318 u (pysal.spreg.twosls.sp.egimes.TSLS_Regimes attribute), 318 u (pysal.spreg.twosls.sp.egimes.STSLS_Regimes attribute), 318 u (pysal.spreg.twosls.sp.egimes.STSLS_Regimes attribute), 318 u (pysal.spreg.twosls.sp.egimes.SGM_Lag_Regimes attribute), 329 update() (pysal.esda.mapclassify.Box_Plot method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 206 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapcla	**	utu (pysal.spreg.twosls_sp.GM_Lag attribute), 319
u (pysal.spreg.ml_error_regimes.ML_Error_Regimes at tribute), 440 u (pysal.spreg.ml_lag.ML_Lag_attribute), 444 u (pysal.spreg.ml_lag.ML_Lag_attribute), 444 u (pysal.spreg.ml_lag.ML_Lag_attribute), 445 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.twosls.TSLS_Regimes attribute), 310 u (pysal.spreg.twosls_sp.GM_Lag attribute), 310 u (pysal.spreg.twosls_sp.GM_Lag attribute), 310 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks_method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_broced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_sampled method), 178 update() (pysal.esda.mapclassify.Max_p_Classifier method), 202 update() (pysal.esda.mapclassify.Max_p_Classifier method), 208 update() (pysal.esda	tribute), 373	
u (pysal.spreg.ml. lag. ML_Lag attribute), 444 u (pysal.spreg.ml. lag. Facilitation (pysal.spreg.ml. lag. Regimes attribute), 457 u (pysal.spreg.ml. lag. gregimes.ML_Lag. Regimes attribute), 459 u (pysal.spreg.ols_regimes.OLS_Regimes attribute), 310 u (pysal.spreg.ols_regimes.OLS_Regimes attribute), 314 u (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 318 u (pysal.spreg.twosls_preg.ms.STLS_A gregimes attribute), 318 u (pysal.spreg.twosls_p.GM_Lag attribute), 318 u (pysal.spreg.twosls_p.GM_Lag attribute), 318 u (pysal.spreg.twosls_p.GM_Lag attribute), 318 u (pysal.spreg.twosls_p.GM_Lag.Regimes attribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 193 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_mum_Breaks method), 205 update() (pysal.esda.mapclassify.Max_p_Classifier method), 208 update() (pysal.esda.mapclassify.Max_p_Classifier method), 208 update() (pysal.esda.mapclassify.Max_p_Classifier method), 208 update() (pysal.esda.mapclassify.Max_p_Classifier method), 208 update() (pysal.esda.mapclassify.Max_p_Classifier method), 205 update() (pysal.esda.mapclassify.Max_p_Classifier method), 210 update() (pysal.esda.mapclassify.Max_p_Classifier method), 210 update() (pysal.esda.mapclassify.Max_p_Classifier method), 210 update() (pysal.esda.mapclassify.Max_p_Classifier method), 210 update() (pysal.esda.mapclassify.Max_	1. 1 -	V
u (pysal.spreg.ml lag_regimes.ML_Lag_Regimes at tribute), 449 u (pysal.spreg.gols.OLS attribute), 295 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.ols.OLS attribute), 310 u (pysal.spreg.twosls_regimes.OLS_Regimes attribute), 310 u (pysal.spreg.twosls_regimes.OLS_Regimes attribute), 311 u (pysal.spreg.twosls_sp.GM_Lag_attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag_Regimes attribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Fisher_Jenks method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall sampled method), 196 update() (pysal.esda.mapclassify.Max_P_Classifier method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (py		•
tribute), 449 u (pysal.spreg.ols.OLS attribute), 295 u (pysal.spreg.ols. regimes.OLS_Regimes attribute), 301 u (pysal.spreg.twosls. regimes.OLS_Regimes attribute), 314 u (pysal.spreg.twosls. regimes.TSLS_Regimes attribute), 314 u (pysal.spreg.twosls. pregimes.GM_Lag attribute), 318 u (pysal.spreg.twosls. sp.GM_Lag attribute), 318 u (pysal.spreg.twosls. pregimes.GM_Lag. Regimes attribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Fisher_Jenks method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks semethod), 187 update() (pysal.esda.mapclassify.Fisher_Jenks Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 196 update() (pysal.esda.mapclassify.Max_P_Classifier method), 196 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Percentiles method), 220 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.mapclassify.Denks_Caspall_Forced method), 190 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 206 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Percentiles method), 215 update() (pysal.esda.mapclassify.Percentiles method), 216 update() (pysal.esda.mapclassify.Percentiles method), 217 update() (pysal.esda.mapclassify.Percentiles method), 218 update() (pysal.esda.mapclassify.Percentiles method), 219 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.	u (pysal.spreg.ml_lag.ML_Lag attribute), 444	
vu (pysal.spreg.ols.OLS attribute), 295 vu (pysal.spreg.twosls.TSLS attribute), 310 vu (pysal.spreg.twosls.TSLS attribute), 310 vu (pysal.spreg.twosls.TSLS attribute), 318 vu (pysal.spreg.twosls.pregimes.TSLS_Regimes attribute), 314 vu (pysal.spreg.twosls.pregimes.TSLS_Regimes attribute), 318 vu (pysal.spreg.twosls.sp.GM_Lag attribute), 318 vu (pysal.spreg.twosls.sp.GM_Lag attribute), 318 vu (pysal.spreg.twosls.sp.GM_Lag attribute), 318 vu (pysal.spreg.twosls.sp.GM_Lag attribute), 319 vupdate() (pysal.esda.mapclassify.Box_Plot method), 182 vupdate() (pysal.esda.mapclassify.Fisher_Jenks method), 187 vupdate() (pysal.esda.mapclassify.Fisher_Jenks_Caspall_breaks method), 214 vupdate() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 190 vupdate() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 190 vupdate() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 190 vupdate() (pysal.esda.mapclassify.Max_P_Classifier method), 178 vupdate() (pysal.esda.mapclassify.Max_P_Classifier method), 205 vupdate() (pysal.esda.mapclassify.Max_P_Classifier method), 206 vupdate() (pysal.esda.mapclassify.Gunatiles method), 214 vupdate() (pysal.esda.mapclassify.Gunatiles method), 217 vupdate() (pysal.esda.mapclassify.Std_Mean method), 218 vupdate() (pysa		
u (pysal.spreg.ols_regimes.OLS_Regimes attribute), 301 u (pysal.spreg.twosls_TSLS_attribute), 310 u (pysal.spreg.twosls_sp.GM_Lag_attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag_Regimes attribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 190 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 190 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 190 update() (pysal.esda.mapclassify.Max_P_Classifier method), 190 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 203 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Percentiles method), 205 update() (pysal.esda.mapclassify.Percentiles method), 207 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 207 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 207 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 2	u (pysal.spreg.ols.OLS attribute), 295	
u (pysal.spreg.twosls_regimes.TSLS_Regimes attribute), 314 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.gemes.GM_Lag_Regimes attribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 202 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197 update() (pysal.esda.mapclassify.Map_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 206 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 209 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 207 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 208 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 209 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 205 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 205 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 207 update() (pysal.esda.mapclassify.Wax_P_Classifier method), 208 update		varb (pysal.spreg.sur_error.BaseSURerrorML attribute),
u (pysal.spreg.twosls_sp.GM_Lag attribute), 318 u (pysal.spreg.twosls_sp.GM_Lag attribute), 323 update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 199 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 207 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier		
u (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at tribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks_method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 199 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Vercentiles method), 220 update() (pysal.esda.mapclassify.Vercentiles method), 210 update() (pysal.esda.mapclassify.Vercentiles method), 220 update() (pysal.esda.mapclassify.Vercentiles method), 221 update() (pysal.esda.mapclassify.Vercentiles method), 222 update() (pysal.esda.mapclassify.Vercentiles method), 223 update() (pysal.esda.mapclassify.Vercentiles method), 225 update() (pysal.esda.mapclassify.Vercentiles method), 226 update() (pysal.esda.mapclassify.Vercentiles method), 227 update() (pysal.esda.mapclassify.Vercentiles method), 228 update() (314	varb (pysal.spreg.sur_lag.SURlagIV attribute), 465
tribute), 323 update() (pysal.esda.mapclassify.Box_Plot method), 182 update() (pysal.esda.mapclassify.Fisher_Jenks method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esd		
update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197 update() (pysal.esda.mapclassify.Map_Classifier method), 198 update() (pysal.esda.mapclassify.Map_Classifier method), 202 update() (pysal.esda.mapclassify.Map_Classifier method), 205 update() (pysal.esda.mapclassify.Map_Classifier method), 217 update() (pysal.esda.mapclassify.Map_Classifier method), 218 update() (pysal.esda.mapclassify.Map_Classifier method), 219 update() (pysal.esda.mapclassify.Map_Classifier method), 210 update() (pysal.esda.mapclassify.Map_Classifier method), 210 update() (pysal.esda.mapclassify.Map_Classifier method), 210 update() (
update() (pysal.esda.mapclassify.Equal_Interval method), 185 update() (pysal.esda.mapclassify.Fisher_Jenks method), 187 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Map_Classifier method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.map		
update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.Fisher_Jenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 197 update() (pysal.esda.mapclassify.Map_Classifier method), 197 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Max_P_Classifier method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.esda.mapclassify.Defined method), 220 upper (pysal.esda.mapclassify.Defined method), 220 upper (pysal.esda.mapclassify.Defined method), 220 upper (pysal.esda.mapclassify.Defined method), 210 uu (pysal.spreg.ml_error.ML_Error attribute), 437 uu (pysal.spreg.ml_erg.ML_Lag attribute), 437 uu (pysal.spreg.ml_ag.ML_Lag attribute), 436 uu (pysal.spreg.ols.OLS_Regimes attribute), 237 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 236 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
attribute), 131 attribute), 131 varName (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO attribute), 134 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 138 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 138 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 138 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 149 varName (pysal.core.IOHandlers.gwt.GwtIO attribute), 149 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 247 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 247 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 247 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 247 varName (pysal.core.IOHandlers.agut.GwtIO attribute), 149 varName (pysal.core.IOHandlers.agut.GutIO attribute), 160 VC.sim (pysal.esda.geary.Geary attribute), 160 VC.sim (pysal.esda.geary.Geary attribute), 160 VG.sim (pysal.esda.geary.Geary attribute), 170 vI (pysal.esda.geary.Geary	185	
update() (pysal.esda.mapclassify.Fisher_lenks_Sampled method), 190 update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 196 update() (pysal.esda.mapclassify.Map_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Maximum_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 218 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Max_P_Classifier method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 210 update() (pysal.esda.mapclassify.Percentiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Ver_centiles method), 218 update() (pysal.esda.mapclassify.Ver_centiles method), 219 update() (pysal.esda.mapclassify.Ver_centiles method), 211 update() (pysal.esda.mapclassify.Ver_centiles method), 211 update() (pysal.esda.mapclassify.Ver_centiles method), 211 update() (pysal.esda.mapclassify.Ver_centiles method), 211 update() (pysal.esda		•
update() (pysal.esda.mapclassify.HeadTail_Breaks method), 224 update() (pysal.esda.mapclassify.Jenks_Caspall method), 193 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Map_Classifer method), 199 update() (pysal.esda.mapclassify.Map_Classifer method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Maximum_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.mapclassify.User_Defined class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols_ols_regimes.OLS_Regimes attribute), 345 VarName (pysal.core.IOHandlers.dat.DatlO attribute), 149 varName (pysal.core.IOHandlers.mat.MatlO attribute), 168 VC (pysal.esda.geary.Geary attribute), 166 VC sim (pysal.esda.mapclassify.Usel posal.esda.maps.Polygon attribute), 107, 109 vertices (pysal.cg.shapes.Chain attribute), 169 VG (pysal.esda.getisord.G attribute), 169 VG sim (pysal.esda.getisord.G Local attribute), 170 vI (pysal.esda.moran.Moran_Rate attribute), 345 VI_norm (pysal.esda.moran.Moran_Rate attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 225 VI_sim (pysal.esda.moran.Moran_Rate attribute), 225 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		varName (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO
update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Map_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Quantiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.User_Defined method), 218 update() (pysal.esda.mapclassify.User_Defined method), 219 update() (pysal.esda.mapclassify.Us	update() (pysal.esda.mapclassify.HeadTail_Breaks	varName (pysal.core.IOHandlers.dat.DatIO attribute),
update() (pysal.esda.mapclassify.Jenks_Caspall_Forced method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 196 update() (pysal.esda.mapclassify.Map_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Dercentiles method), 218 update() (pysal.esda.mapclassify.Dercentiles method), 219 update() (pysal.esda.mapclassify.Dercentiles method), 211 update() (pysal.esda.mapclassify.Dercentiles method), 217 update	update() (pysal.esda.mapclassify.Jenks_Caspall method),	varName (pysal.core.IOHandlers.gwt.GwtIO attribute),
method), 196 update() (pysal.esda.mapclassify.Jenks_Caspall_Sampled method), 199 update() (pysal.esda.mapclassify.Max_P_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Dercentiles method), 217 update() (pysal.esda.mapclassify.Quantiles metho		117
method), 199 update() (pysal.esda.mapclassify.Map_Classifier method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.mapclassify.Yercentiles method), 217 update() (pysal.esda.mapclassify.Yercentiles method), 217 update() (pysal.esda.mapclassify.Yercentiles method), 217 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Yercentiles method), 217 update()	method), 196	149
method), 178 update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 214 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esd	method), 199	- -
update() (pysal.esda.mapclassify.Max_P_Classifier method), 202 vertices (pysal.cg.shapes.Chain attribute), 107, 109 vertices (pysal.cg.shapes.Polygon attribute), 109, 112 VG (pysal.esda.mapclassify.Maximum_Breaks method), 205 vertices (pysal.esda.getisord.G attribute), 169 vertices (pysal.esda.getisord.G attribute), 169 vertices (pysal.esda.getisord.G attribute), 169 vG_sim (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.mapclassify.Percentiles method), 214 vpdate() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 220 vI_norm (pysal.esda.moran.Moran attribute), 225 vI_sim (pysal.esda.moran.Moran_Rate attribute), 225 vI_sim (pysal.esda.moran.Moran_BV attribute), 226 vI_sim (pysal.esda.moran.Moran_Local attribute), 228 vI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
method), 202 update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.moran.Moran_Acte attribute), 225 VI_sim (pysal.esda.moran.Moran_Bv attribute), 226 VI_sim (pysal.esda.moran.Moran_Local_Bv attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
update() (pysal.esda.mapclassify.Maximum_Breaks method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 214 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 210 upper (pysal.esda.mapclassify.User_Defined method), 211 upper (pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VG (pysal.esda.getisord.G attribute), 169 VG_sim (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.moran.Moran_Rate attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 225 vI_rand (pysal.esda.moran.Moran_Bv attribute), 226 vI_sim (pysal.esda.moran.Moran_Bv attribute), 229 vI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
method), 205 update() (pysal.esda.mapclassify.Natural_Breaks method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.esda.mapclassify), 217 upper (pysal.esda.mapclassify), 217 upper (pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VG_sim (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.getisord.G_Local attribute), 345 VI_norm (pysal.esda.moran.Moran attribute), 225 VI_norm (pysal.esda.moran.Moran attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 235 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 VI_sim (pysal.esda.getisord.G_Local attribute), 345 VI_norm (pysal.esda.moran.Moran_Acta attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 225 VI_sim (pysal.esda.moran.Moran_Local_attribute), 229 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237	update() (pysal.esda.mapclassify.Maximum_Breaks	
method), 208 update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.cg.shapes.Rectangle attribute), 112 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VGs (pysal.esda.getisord.G_Local attribute), 170 vI (pysal.esda.moran.Moran attribute), 225 VI_norm (pysal.esda.moran.Moran_Rate attribute), 234 VI_rand (pysal.esda.moran.Moran_Rate attribute), 225 VI_sim (pysal.esda.moran.Moran_BV attribute), 226 VI_sim (pysal.esda.moran.Moran_Local attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237	method), 205	
update() (pysal.esda.mapclassify.Percentiles method), 214 update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 220 update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.cg.shapes.Rectangle attribute), 112 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols_OLS_attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 vI (pysal.spreg.diagnostics_sp.MoranRes attribute), 225 vI_norm (pysal.esda.moran.Moran_Attribute), 225 vI_rand (pysal.esda.moran.Moran_Rate attribute), 235 vI_rand (pysal.esda.moran.Moran_BV attribute), 226 vI_sim (pysal.esda.moran.Moran_Local_attribute), 228 vI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 vI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237	1 "	VG_sim (pysal.esda.getisord.G_Local attribute), 171
update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.moran.Moran_Attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 235 VI_sim (pysal.esda.moran.Moran_BV attribute), 226 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 VI_sim (pysal.esda.moran.Moran_Local attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 233		
update() (pysal.esda.mapclassify.Quantiles method), 211 update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 217 update() (pysal.esda.moran.Moran_Rate attribute), 225 VI_rand (pysal.esda.moran.Moran_Rate attribute), 226 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 VI_sim (pysal.esda.moran.Moran_Local_attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_attribute), 233		vI (pysal.spreg.diagnostics_sp.MoranRes attribute), 345
update() (pysal.esda.mapclassify.Std_Mean method), 217 update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.cg.shapes.Rectangle attribute), 112 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ols_OLS_attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 217 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 228 VI_rand (pysal.esda.moran.Moran_Attribute), 225 VI_rand (pysal.esda.moran.Moran_Attribute), 225 VI_rand (pysal.esda.moran.Moran_Attribute), 226 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 VI_sim (pysal.esda.moran.Moran_Local_attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233		VI_norm (pysal.esda.moran.Moran attribute), 225
update() (pysal.esda.mapclassify.User_Defined method), 220 upper (pysal.cg.shapes.Rectangle attribute), 112 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VI_rand (pysal.esda.moran.Moran_Rate attribute), 226 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 VI_sim (pysal.esda.moran.Moran_Local attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233		
220 VI_sim (pysal.esda.moran.Moran attribute), 226 upper (pysal.cg.shapes.Rectangle attribute), 112 VI_sim (pysal.esda.moran.Moran_BV attribute), 229 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VI_sim (pysal.esda.moran.Moran_Local_attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233		**
upper (pysal.cg.shapes.Rectangle attribute), 112 User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VI_sim (pysal.esda.moran.Moran_Local_attribute), 228 VI_sim (pysal.esda.moran.Moran_Local_attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_attribute), 233		**
User_Defined (class in pysal.esda.mapclassify), 217 utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
utu (pysal.spreg.ml_error.ML_Error attribute), 437 utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_BV attribute), 233 VI_sim (pysal.esda.moran.Moran_Local_Rate attribute), 237		
utu (pysal.spreg.ml_lag.ML_Lag attribute), 445 utu (pysal.spreg.ols.OLS attribute), 296 utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 233 VI_sim (pysal.esda.moran_Moran_Local_Rate attribute), 237		
utu (pysal.spreg.ols.OLS attribute), 296 VI_sim (pysal.esda.moran_Local_Rate attribute), utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237		= -
utu (pysal.spreg.ols_regimes.OLS_Regimes attribute), 237		
		
		VI_sim (pysal.esda.moran.Moran_Rate attribute), 235

vif() (in module pysal.spreg.diagnostics), 341 vm (pysal.spreg.error_sp.GM_Combo attribute), 360 vm (pysal.spreg.error_sp.GM_Endog_Error attribute),	vm1 (pysal.spreg.ml_lag.ML_Lag attribute), 444 vm1 (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at- tribute), 449
356	W
vm (pysal.spreg.error_sp.GM_Error attribute), 353	
vm (pysal.spreg.error_sp_het.GM_Combo_Het attribute),	W (class in pysal.weights.weights), 467
385	w (in module pysal.spreg.regimes), 434, 435
vm (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-	w (pysal.esda.gamma.Gamma attribute), 164
tribute), 381	w (pysal.esda.geary.Geary attribute), 166
vm (pysal.spreg.error_sp_het.GM_Error_Het attribute),	w (pysal.esda.getisord.G attribute), 168
378	w (pysal.esda.getisord.G_Local attribute), 170
vm (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_R attribute), 390	w (pysal.esda.moran.Moran attribute), 173 w (pysal.esda.moran.Moran attribute), 225
vm (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_l	Het (Resimesta moran Moran RV attribute) 220
attribute), 396	w (pysal.esda.moran.Moran_Local attribute), 227
vm (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Reg	imessysal esda moran Moran I ocal RV attribute) 222
attribute), 401	w (pysal.esda.moran.Moran_Local_Rate attribute), 237
vm (pysal.spreg.error_sp_hom.GM_Combo_Hom at-	w (pysal.esda.moran.Moran_Rate attribute), 234
tribute), 412	w (pysal.esda.smoothing.Spatial_Median_Rate attribute),
vm (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom	w (pysai.esua.sinootiniig.spatiai_wediaii_kate attribute),
attribute), 408	w (pysal.spreg.diagnostics_sp.LMtests attribute), 343
vm (pysal.spreg.error_sp_hom.GM_Error_Hom at-	w (pysal.spreg.regimes.Wald attribute), 432
tribute), 405	w (pysal.spreg.sur_lag.SURlagIV attribute), 464
vm (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom	Regimes(in modula pysic) weights Wests), 520
attribute), 417	w_difference() (in module pysal.weights.Wsets), 527
vm (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_	Homat Regimes () (in module pysat. weights Wests), 527
attribute), 422	w_local_cluster() (in module pysal.weights.util), 485
vm (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_I	Regimes i (in module pysal enrag regimes) 435
attribute), 427	w_regime() (in module pysal.spreg.regimes), 434
vm (pysal.spreg.error_sp_regimes.GM_Combo_Regimes	w_regimes() (in module pysal.spreg.regimes), 434
attribute), 364	w_regimes_union() (in module pysal.spreg.regimes), 434
vm (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regi	mes subset() (in module pysal weights Weets), 528
attribute), 370	w_symmetric_difference() (in module
vm (pysal.spreg.error_sp_regimes.GM_Error_Regimes	pysal.weights.Wsets), 527
attribute), 374	w_union() (in module pysal.weights.Wsets), 525
vm (pysal.spreg.ml_error_regimes.ML_Error_Regimes	Wald (class in pysal.spreg.regimes), 432
attribute), 440	wald_test() (in module pysal.spreg.regimes), 432
vm (pysal.spreg.ml_lag.ML_Lag attribute), 444	waruing (pysal.spreg.probit.Probit attribute), 307
vm (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-	wcg (pysal.inequality.gini.Gini_Spatial attribute), 259
tribute), 449	wcg_share (pysal.inequality.gini.Gini_Spatial attribute),
vm (pysal.spreg.ols.OLS attribute), 296	weg_share (pysar.mequanty.gnn.Onn_spatial attribute),
vm (pysal.spreg.ols_regimes.OLS_Regimes attribute),	
302	weighted_median() (in module pysal.esda.smoothing), 252
vm (pysal.spreg.probit.Probit attribute), 306	
vm (pysal.spreg.sur_error.SURerrorML attribute), 462	weights (pysal.weights.Distance.DistanceBand attribute), 524
vm (pysal.spreg.twosls.TSLS attribute), 310	
vm (pysal.spreg.twosis_regimes.TSLS_Regimes at-	weights (pysal.weights.Distance.Kernel attribute), 521
tribute), 314	wg (pysal.inequality.gini.Gini_Spatial attribute), 259
vm (pysal.spreg.twosls_sp.GM_Lag attribute), 319	wg (pysal.inequality.theil.TheilD attribute), 261
vm (pysal.spreg.twosis_sp.GM_Lag_attribute), 317 vm (pysal.spreg.twosis_sp_regimes.GM_Lag_Regimes	wg (pysal.inequality.theil.TheilDSim attribute), 262
attribute), 324	white (pysal spreg ols OLS attribute), 297
vm1 (pysal.spreg.ml_error.ML_Error attribute), 437	white (pysal.spreg.ols_regimes.OLS_Regimes attribute),
vm1 (pysal.spreg.ml_error_regimes.ML_Error_Regimes	303
attribute), 440	white() (in module pysal.spreg.diagnostics), 338 width (pysal.cg shapes Rectangle attribute) 113
autionic, TTO	WIGHT LOVSAL CO SHADES KECLANGIE AHTTINITEL 115

Wk1IO (class in pysal.core.IOHandlers.wk1), 159 WKTReader (class in pysal.core.IOHandlers.wkt), 162	x (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute), 407
write() (pysal.core.FileIO.FileIO method), 128 write() (pysal.core.IOHandlers.arcgis_dbf.ArcGISDbfIO	x (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), 404
method), 129	x (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
write() (pysal.core.IOHandlers.arcgis_swm.ArcGISSwmIO	
method), 131	x (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regimes
write() (pysal.core.IOHandlers.arcgis_txt.ArcGISTextIO	attribute), 422
method), 134	x (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
write() (pysal.core.IOHandlers.csvWrapper.csvWrapper	attribute), 427
method), 137	x (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
write() (pysal.core.IOHandlers.dat.DatIO method), 138	attribute), 364
write() (pysal.core.IOHandlers.gal.GalIO method), 140	x (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
write() (pysal.core.IOHandlers.geobugs_txt.GeoBUGSText	
method), 143	x (pysal.spreg.error_sp_regimes.GM_Error_Regimes at-
write() (pysal.core.IOHandlers.geoda_txt.GeoDaTxtReader	
method), 146 write() (pysal.core.IOHandlers.gwt.GwtIO method), 147	x (pysal.spreg.ml_error.ML_Error attribute), 436 x (pysal.spreg.ml_error_regimes.ML_Error_Regimes at-
write() (pysal.core.IOHandlers.mat.MatIO method), 147	tribute), 440
write() (pysal.core.IOHandlers.mtx.MtxIO method), 151	x (pysal.spreg.ml_lag.ML_Lag attribute), 444
write() (pysal.core.IOHandlers.pyDbfIO.DBF method),	x (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
155	tribute), 449
write() (pysal.core.IOHandlers.pyShpIO.PurePyShpWrappe	
method), 156	x (pysal.spreg.ols_regimes.OLS_Regimes attribute), 301
write() (pysal.core.IOHandlers.stata_txt.StataTextIO	x (pysal.spreg.probit.Probit attribute), 306
method), 158	x (pysal.spreg.twosls.TSLS attribute), 310
write() (pysal.core.IOHandlers.wk1.Wk1IO method), 161	x (pysal.spreg.twosls_regimes.TSLS_Regimes attribute),
write() (pysal.core.IOHandlers.wkt.WKTReader	314
method), 163	x (pysal.spreg.twosls_sp.GM_Lag attribute), 318
WSP (class in pysal.weights.weights), 476	x (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at-
WSP2W() (in module pysal.weights.util), 482	tribute), 324
ww (pysal.esda.join_counts.Join_Counts attribute), 173	x() (pysal.cg.shapes.Line method), 107
Χ	x2 (pysal.spatial_dynamics.markov.Spatial_Markov at-
	tribute), 286
x (in module pysal.spreg.regimes), 435 x (pysal.spatial_dynamics.interaction.SpaceTimeEvents	x2_dof (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286
attribute), 274	x2_pvalue (pysal.spatial_dynamics.markov.Spatial_Markov
x (pysal.spreg.error_sp.GM_Combo attribute), 359	attribute), 286
x (pysal.spreg.error_sp.GM_Endog_Error attribute), 356	x2_realizations (pysal.spatial_dynamics.markov.Spatial_Markov
x (pysal.spreg.error_sp.GM_Error attribute), 353	attribute), 286
x (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385	x2_rpvalue (pysal.spatial_dynamics.markov.Spatial_Markov attribute), 286
x (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-	x2xsp() (in module pysal.spreg.regimes), 435
tribute), 381	xmean (pysal.spreg.probit.Probit attribute), 306
x (pysal.spreg.error_sp_het.GM_Error_Het attribute),	xtx (pysal.spreg.error_sp_het.GM_Error_Het attribute),
378	378
x (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regattribute), 390	tribute), 405
x (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_He attribute), 395	txtxegyssel.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes attribute), 428
x (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regin	
attribute), 400	xtx (pysal.spreg.ols_regimes.OLS_Regimes attribute),
x (pysal.spreg.error_sp_hom.GM_Combo_Hom at-	304
tribute), 411	xtxi (pysal.spreg.ols.OLS attribute), 297

```
xtxi (pysal.spreg.ols_regimes.OLS_Regimes attribute), y (pysal.spreg.ols.OLS attribute), 296
                                                         y (pysal.spreg.ols_regimes.OLS_Regimes attribute), 301
                                                         y (pysal.spreg.probit.Probit attribute), 306
Y
                                                         y (pysal.spreg.twosls.TSLS attribute), 310
                                                         y (pysal.spreg.twosls_regimes.TSLS_Regimes attribute),
y (pysal.esda.gamma.Gamma attribute), 164
y (pysal.esda.geary.Geary attribute), 166
y (pysal.esda.getisord.G attribute), 168
                                                         y (pysal.spreg.twosls sp.GM Lag attribute), 318
                                                         y (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at-
y (pysal.esda.getisord.G Local attribute), 170
y (pysal.esda.join_counts.Join_Counts attribute), 173
                                                                  tribute), 324
                                                         y() (pysal.cg.shapes.Line method), 107
y (pysal.esda.moran.Moran attribute), 225
y (pysal.esda.moran.Moran Local attribute), 227
                                                         yb (pysal.esda.mapclassify.Box_Plot attribute), 179
                                                         yb (pysal.esda.mapclassify.Equal_Interval attribute), 182
y (pysal.esda.moran.Moran Local Rate attribute), 236
                                                         yb (pysal.esda.mapclassify.Fisher_Jenks attribute), 185
y (pysal.esda.moran.Moran_Rate attribute), 234
                                                                  (pysal.esda.mapclassify.Fisher_Jenks_Sampled
y (pysal.spatial_dynamics.interaction.SpaceTimeEvents
                                                                  attribute), 188
         attribute), 274
y (pysal.spreg.error_sp.GM_Combo attribute), 359
                                                         yb (pysal.esda.mapclassify.HeadTail_Breaks attribute),
y (pysal.spreg.error_sp.GM_Endog_Error attribute), 356
                                                         yb (pysal.esda.mapclassify.Jenks Caspall attribute), 190
y (pysal.spreg.error_sp.GM_Error attribute), 353
                                                             (pysal.esda.mapclassify.Jenks Caspall Forced
y (pysal.spreg.error_sp_het.GM_Combo_Het attribute),
                                                                  tribute), 193
   (pysal.spreg.error_sp_het.GM_Endog_Error_Het at-
                                                        yb (pysal.esda.mapclassify.Jenks_Caspall_Sampled at-
                                                                  tribute), 196
         tribute), 381
   (pysal.spreg.error_sp_het.GM_Error_Het attribute), yb (pysal.esda.mapclassify.Max_P_Classifier attribute),
y (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regiphes(pysal.esda.mapclassify.Maximum_Breaks attribute),
         attribute), 390
y (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_HetyRegyradsesda.mapclassify.Natural_Breaks attribute), 205
                                                         yb (pysal.esda.mapclassify.Percentiles attribute), 211
         attribute), 395
y (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimy) (pysal.esda.mapclassify.Quantiles attribute), 208
                                                         yb (pysal.esda.mapclassify.Std_Mean attribute), 214
         attribute), 400
    (pysal.spreg.error_sp_hom.GM_Combo_Hom
                                                    at- yb (pysal.esda.mapclassify.User_Defined attribute), 217
         tribute), 411
                                                         yend (pysal.spreg.error_sp.GM_Combo attribute), 359
                                                        yend (pysal.spreg.error_sp.GM_Endog_Error attribute),
y (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom at-
                                                                  356
         tribute), 407
                                                                (pysal.spreg.error sp het.GM Combo Het
y (pysal.spreg.error_sp_hom.GM_Error_Hom attribute), yend
                                                                  tribute), 385
y (pysal.spreg.error\_sp\_hom\_regimes.GM\_Combo\_Hom\_R \underline{\texttt{regind}} es (pysal.spreg.error\_sp\_het.GM\_Endog\_Error\_Het)
                                                                  attribute), 381
         attribute), 416
y (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hymn_Regimesspreg.error_sp_het_regimes.GM_Combo_Het_Regimes
                                                                  attribute), 390
         attribute), 422
y (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes
                                                                  attribute), 396
         attribute), 427
   (pysal.spreg.error_sp_regimes.GM_Combo_Regimes yend (pysal.spreg.error_sp_hom.GM_Combo_Hom at-
                                                                  tribute), 411
         attribute), 364
y (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimeyend (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom
                                                                  attribute), 407
         attribute), 369
y (pysal.spreg.error_sp_regimes.GM_Error_Regimes at- yend (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
                                                                  attribute), 416
         tribute), 374
y (pysal.spreg.ml_error.ML_Error attribute), 436
                                                         yend (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regime
                                                                  attribute), 422
y (pysal.spreg.ml_error_regimes.ML_Error_Regimes at-
                                                         yend (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
         tribute), 440
                                                                  attribute), 364
y (pysal.spreg.ml_lag.ML_Lag attribute), 444
y (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes at-
                                                         yend (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
                                                                  attribute), 369
         tribute), 449
```

yend (pysal.spreg.twosls.TSLS attribute), 310 yend (pysal.spreg.twosls_regimes.TSLS_Regimes at-	z_stat (pysal.spreg.error_sp.GM_Endog_Error attribute), 356
tribute), 314 yend (pysal.spreg.twosls_sp.GM_Lag attribute), 318 yend (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes	z_stat (pysal.spreg.error_sp_GM_Error attribute), 353 z_stat (pysal.spreg.error_sp_het.GM_Combo_Het attribute), 385
attribute), 324	z_stat (pysal.spreg.error_sp_het.GM_Endog_Error_Het attribute), 381
Z	z_stat (pysal.spreg.error_sp_het.GM_Error_Het at-
z (pysal.spreg.error_sp.GM_Combo attribute), 359	tribute), 378
z (pysal.spreg.error_sp.GM_Endog_Error attribute), 356 z (pysal.spreg.error_sp_het.GM_Combo_Het attribute),	z_stat (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regimes attribute), 390
385 z (pysal.spreg.error_sp_het.GM_Endog_Error_Het	z_stat (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_Het_Regimes attribute), 396
attribute), 381	z_stat (pysal.spreg.error_sp_het_regimes.GM_Error_Het_Regimes
z (pysal.spreg.error_sp_het_regimes.GM_Combo_Het_Regattribute), 390	zimes attribute), 401 z_stat (pysal.spreg.error_sp_hom.GM_Combo_Hom at-
z (pysal.spreg.error_sp_het_regimes.GM_Endog_Error_He	t_Regimestribute), 412
attribute), 396	z_stat (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom attribute), 408
z (pysal.spreg.error_sp_hom.GM_Combo_Hom attribute), 411	z_stat (pysal.spreg.error_sp_hom.GM_Error_Hom
z (pysal.spreg.error_sp_hom.GM_Endog_Error_Hom at-	attribute), 405
tribute), 407	z_stat (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_Regimes
z (pysal.spreg.error_sp_hom_regimes.GM_Combo_Hom_I	Regimes attribute), 417
attribute), 416	z_stat (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hom_Regim
z (pysal.spreg.error_sp_hom_regimes.GM_Endog_Error_Hattribute), 422	z_stat (pysal.spreg.error_sp_hom_regimes.GM_Error_Hom_Regimes
z (pysal.spreg.error_sp_regimes.GM_Combo_Regimes	attribute), 428
attribute), 364	z_stat (pysal.spreg.error_sp_regimes.GM_Combo_Regimes
z (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regime	· · · · · · · · · · · · · · · · · · ·
attribute), 369	z_stat (pysal.spreg.error_sp_regimes.GM_Endog_Error_Regimes
z (pysal.spreg.twosls.TSLS attribute), 310	attribute), 370
z (pysal.spreg.twosls_sp.GM_Lag attribute), 318	z_stat (pysal.spreg.error_sp_regimes.GM_Error_Regimes
z (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes at-	attribute), 374
tribute), 324	z_stat (pysal.spreg.ml_error.ML_Error attribute), 437 z_stat (pysal.spreg.ml_error_regimes.ML_Error_Regimes
z_norm (pysal.esda.geary.Geary attribute), 166 z_norm (pysal.esda.getisord.G attribute), 168	attribute), 441
z_norm (pysal.esda.moran.Moran attribute), 225	z_stat (pysal.spreg.ml_lag.ML_Lag attribute), 445
z_norm (pysal.esda.moran.Moran_Rate attribute), 235	z_stat (pysal.spreg.ml_lag_regimes.ML_Lag_Regimes
z_rand (pysal.esda.geary.Geary attribute), 166	attribute), 450
z_rand (pysal.esda.moran.Moran attribute), 225	z_stat (pysal.spreg.probit.Probit attribute), 306
z_rand (pysal.esda.moran.Moran_Rate attribute), 235	z_stat (pysal.spreg.twosls.TSLS attribute), 311
z_sim (pysal.esda.geary.Geary attribute), 167	z_stat (pysal.spreg.twosls_sp.GM_Lag attribute), 319
z_sim (pysal.esda.getisord.G attribute), 169	z_stat (pysal.spreg.twosls_sp_regimes.GM_Lag_Regimes
z_sim (pysal.esda.getisord.G_Local attribute), 171	attribute), 325
z_sim (pysal.esda.moran.Moran attribute), 226	z_wcg (pysal.inequality.gini.Gini_Spatial attribute), 259
z_sim (pysal.esda.moran.Moran_BV attribute), 230	zI (pysal.spreg.diagnostics_sp.MoranRes attribute), 345 Zs (pysal.esda.getisord.G_Local attribute), 170
z_sim (pysal.esda.moran.Moran_Local attribute), 228	zthhthi (pysal.spreg.twosls.TSLS attribute), 311
z_sim (pysal.esda.moran.Moran_Local_BV attribute),	zthhthi (pysal.spreg.twosls_sp.GM_Lag attribute), 320
233 z_sim (pysal.esda.moran.Moran_Local_Rate attribute),	zthhthi (pysal.spreg.twosis_sp.GM_Lag_attrioute), 320 zthhthi (pysal.spreg.twosis_sp_regimes.GM_Lag_Regimes
z_siii (pysai.esda.iioraii.Moraii_Locai_kate attribute),	attribute), 325
z_sim (pysal.esda.moran.Moran_Rate attribute), 235	zx (pysal.esda.moran_BV attribute), 229
z_stat (pysal.spreg.error_sp.GM_Combo attribute), 360	zx (pysal.esda.moran_Moran_Local_BV attribute), 232
	zy (pysal.esda.moran.Moran_BV attribute), 229

zy (pysal.esda.moran.Moran_Local_BV attribute), 232