Triangle Count Estimation in Graph Streams: Space Bounds

Summary and Intuition

Overview

 $\Theta\Big(\min\{\,m^{3/2}/T,\;m/\sqrt{T}\}\Big).$

Two distinct "hard" regimes yield these bounds: when triangles are very sparse and when they are moderately abundant.

1. Sparse-Triangle Regime (T small)

When $T \ll m^{3/2}$, the dominant term is $m^{3/2}/T$. In this case, most "wedges" (two-hop paths) are not closed into triangles, so any algorithm that samples fewer than $\Theta(m^{3/2}/T)$ wedges will see almost none of the T true triangles. Formally, distinguishing a triangle-free graph from one with

When T grows so that $m/\sqrt{T} < m^{3/2}/T$, the bound m/\sqrt{T} takes over. Here one must detect "heavy" edges incident to many triangles. If an algorithm stores $o(m/\sqrt{T})$ edges, it will likely miss all such edges, making it impossible to approximate T. One can show a lower bound of $\Omega(m/\sqrt{T})$ by constructing graphs where a single edge participates in $\Theta(\sqrt{T})$ triangles [1].

- ullet For sparse triangles ($T\ll m$): $rac{m^{3/2}}{T}$ is the bottleneck.
- For dense triangles ($T\gg m$): $\frac{m}{\sqrt{T}}$ controls the space.
- Practical implication: Algorithms must adapt to which term is larger!

McGregor et al. (PODS 2016) give two constant-pass algorithms achieving

• $O(m^{3/2}/T)$ space by sampling random wedges. [1]

3. Matching Upper Bounds

Figure 2: Edge A-B involved in multiple triangles with shared neighbors

• $O(m/\sqrt{T})$ space by sampling edges and tracking heavy hitters. [1]

Bera and Seshadhri (STACS 2017) prove corresponding lower bounds for any constant-pass, arbitrary-order algorithm [2].

4. Conclusions

The $\min(m^{3/2}/T, m/\sqrt{T})$ barrier is both necessary and sufficient for $(1 \pm \epsilon)$ -approximate streaming estimation of triangle counts with a constant number of passes over an arbitrary-order stream.

References

- [1] A. McGregor, S. Vorotnikova, H. Vu. "Better Algorithms for Counting Triangles in Data Streams." PODS 2016.
- [2] S. Bera, C. Seshadhri. "Towards Tighter Space Bounds for Counting Triangles..." STACS 2017.
- [3] A. McGregor, M. Hu. "The Complexity of Counting Cycles in the Adjacency List Streaming Model." PODS 2019.