

Exploiting Inferential Structure in Neural Processes

UNIVERSITY

Dharmesh Tailor¹, Emtiyaz Khan², Eric Nalisnick¹

¹University of Amsterdam (Netherlands) ²RIKEN AIP (Japan)

Main Takeaway

- > Problem: Neural processes (NPs) perform fastadaptation to new tasks at test-time but their training procedure is data-inefficient requiring a wide range of datasets to generalize well.
- > Main contribution: We propose to incorporate a structured-inference network (SIN) [1]
- > Technical contributions:
 - priors can be naturally incorporated
 - ii. leads to aggregation strategies in which context points are appropriately weighted
 - iii. interpretability of datapoint-wise encodings as neural sufficient statistics

Background: Meta-Learning

- Meta-learning: NPs generalize between multiple, related tasks by modelling task-relatedness using hierarchical Bayes [2]
- > Train-time:

> Test-time

$$\mathbb{E}_{z \sim \mathbf{q_{\phi}(z|D_*^c)}} \left[\prod_{(x,y) \in \mathcal{D}_*^t} p_{\theta}(y|x,z) \right]$$

Background: Sum-Decomposition Network

Amortised inference network needs to:

- process datasets of variable-size
- > permutation-invariant to the ordering of datapoints [3]

Aggregation:

$$\bar{\mathbf{r}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{r}_i$$

Datapoint-wise encodings:

$$\mathbf{r}_i = f_\phi(\mathcal{D}^{(i)})$$

Structured-Inference Network

Conjugate-exponential family

$$p(z|\mathcal{D}) = \frac{1}{p(\mathcal{D})} \prod_{i=1}^{N} p(y_i|z) \; p(z)$$

$$\propto h(z) \exp\left[\left\langle T(z), \sum_{i=1}^{N} \eta_i(y_i) + \eta_0 \right\rangle\right]$$
 Sufficient statistics Natural parameters of likelihood of prior Combine recognition networks with conjugate-semputations:

computations: $q_{\phi}(z|\mathcal{D}) = h(z) \exp \left[\left\langle T(z), \sum_{i=1}^{N} f_{\phi}(\mathcal{D}^{(i)}) + \eta_{0} \right\rangle \right]$

Neural Sufficient Statistics

Bayesian Aggregation

Given an exp-family prior, aggregation strategy naturally arises from the choice of parameterisation

For example, Gaussian prior & moment parameterisation recovers a recently proposed weighted aggregation strategy [4]

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{N} \mathbf{V}_{i}^{-1} + \mathbf{\Sigma}_{0}^{-1}$$

$$\boldsymbol{\mu} = \mathbf{\Sigma} \left(\sum_{i=1}^{N} \mathbf{V}_{i}^{-1} \mathbf{m}_{i} + \mathbf{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0} \right)$$

$$\{\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0\} \longleftrightarrow \eta_0$$

$$\mathbf{m}_i, \mathbf{V}_i = f_{\phi}(\mathcal{D}^{(i)})$$

Extension to structured priors such as mixture of Gaussian and Student's T via minimal conditional-EF form [5]

References

- 1. Lin, W., et al. Variational Message Passing with Structured Inference Networks. International Conference on Learning Representations, 2018.
- Heskes, T. Empirical Bayes for Learning to Learn. International Conference on Machine Learning, 2000.
- 3. Zaheer, M., et al. Deep Sets. Neural information processing systems, 2017.
- Volpp, M., et al. Bayesian Context Aggregation for Neural Processes. International Conference on Learning Representations, 2020.
- 5. Lin, W., et al. Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-Family Approximations. International Conference on Machine Learning 2019.

