NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for materialteknologi

Faglig kontakt under eksamen: Dagfinn Bratland, tlf. 93976

EKSAMEN I EMNE TMT4110 KJEMI

Lørdag 11. august 2007 kl. 0900-1300

Hjelpemidler: C

Trykte hjelpemidler: Aylward & Findlay: "SI Chemical Data" Formelark (siste ark i oppgaveteksten).

Sensuren faller uke 36 2007.

Skriv kort! Angi fremgangsmåte og vesentlig mellomregning ved løsning av regneoppgaver. Nødvendige data hentes fra "SI Chemical Data" dersom annet ikke er angitt.

Oppgave 1

- a) Definer begrepene pH og p K_a .
 - 0,020 mol eddiksyre, kjemisk formel CH₃COOH, forkortet HAc, løses i vann og fortynnes til 1 liter. Beregn hydrogenionkonsentrasjonen og pH i løsningen.
 - Beregn også pH i en løsning som er fremstilt ved å løse 0,020 mol HAc og 0,010 mol NaOH i vann og fortynne til 1 liter.
- b) Forklar kort hva vi mener med en bufferløsning (1-2 setninger).
 - Hva blir pH i en løsning som er laget ved å løse 1 mol eddiksyre og 1 mol natriumacetat, NaAc, i 1 liter vann? (Løsning b1.)
 - Hva blir pH i en løsning laget ved å løse opp 0,1 mol NaOH i 1 liter vann?
 - Hva blir pH i en løsning laget ved å løse opp 0,1 mol NaOH i 1 liter av løsning b1?
 - Kommenter pH-verdiene i de tre siste løsningene. (2-3 setninger.)

Oppgave 2

- a) Definer begrepet løselighetsprodukt.
 - Skriv opp løselighetsproduktet for Ca(OH)₂, og den tilhørende likevektsligningen.
 - Beregn konsentrasjonen av Ca²⁺ i vann i likevekt med fast kalsiumhydroksid.
 - Beskriv hvorledes likevekten endres når ammoniumioner, NH₄⁺, tilsettes løsningen. Er ammoniumionet surt eller basisk?
 - Beregn likevektskonstanten for reaksjonen $Ca(OH)_2(s) + 2 NH_4^+ = Ca^{2+} + 2 NH_3 + 2 H_2O$
- b) Noen ioner har sure eller basiske egenskaper når de løses i vann. Andre er nøytrale. Forklar de sure egenskapene hos et positivt ion (kation). (3-4 setninger.)
 - Forklar hva som gir negative ioner (anioner) basiske egenskaper. (2-3 setninger.)
 - Angi om saltene nedenfor gir sur, basisk eller nøytral løsning når de løses i vann: NaCl, NaAc, K₂SO₄, NH₄Cl, KCl, FeCl₃, AlCl₃, NaNO₃, Na₂CO₃.

Oppgave 3

a) Sort Ag₂S(s) som dannes på overflaten av sølvgjenstander, kan fjernes ved å legge gjenstanden i en varm natriumkarbonatløsning i en aluminiumkasserolle. Reaksjonen som finner sted, er

$$3 \text{ Ag}_2S(s) + 2 \text{ Al}(s) = 6 \text{ Ag}(s) + 3 \text{ S}^{2}(aq) + 2 \text{ Al}^{3+}(aq)$$

- Beregn ΔG° , likevektskonstanten K og E° for reaksjonen ved 25 °C.
- b) Troutons regel sier at forholdet mellom den molare fordampningsvarmen til en væske (ΔH_{van}) og kokepunktet i kelvin er omtrent 90 J K⁻¹ mol⁻¹.
 - Bruk dataene i tabellen nedenfor til å vise at regelen stemmer her, og gi en forklaring på hvorfor den gjør det. (1-2 setninger.)

	t _{kp} /°C	$\Delta H_{\rm vap}/({\rm kJ~mol}^{-1})$
Benzen	80,1	31,0
Heksan	68,7	30,8
Kvikksølv	357	59,0
Toluen	110,6	35,2

- Beregn det samme forholdet for etanol og vann. (Slå opp de aktuelle verdier i "SICD".) Gi en forklaring på hvorfor Troutons regel ikke gjelder like godt for disse stoffene som for væskene i tabellen. (1-2 setninger.)

Oppgave 4

- a) Komplettér og balansér følgende reaksjonsligninger:
 - $CuS + HNO_3 \rightarrow Cu(NO_3)_2 + S + NO + H_2O$
 - $-SO_3^{2-} + CrO_4^{2-} + H_2O \rightarrow SO_4^{2-} + Cr(OH)_4^{-} + OH^{-}$
 - Angi endring av oksidasjonstall ved reaksjonene. Bruk formularet:

Grunnstoff _____ oksideres/reduseres fra oksidasjonstall ____ til ___

- Hva er forskjellen mellom en galvanisk celle og en elektrolysecelle? Hvorfor bruker vi likestrøm ved elektrolyse?
- Et produksjonsanlegg for aluminium drives med en strømstyrke på 305 000 A. Hvor mye aluminiummetall kan det teoretisk produseres pr. døgn?
- b) En galvanisk celle består av en halvcelle der en strimmel kadmiummetall står i en 1 M løsning av CdSO₄, og en annen halvcelle der en platinatråd står i en løsning som inneholder 0,1 M FeSO₄ og 0,05 M Fe₂(SO₄)_{3.} (Det vil si at [Fe²⁺] = Fe³⁺] = 0,1 M.) Temperaturen er 25 °C.
 - Skisser cellen, og angi de to halvcellereaksjonene med tilhørende standard reduksjonspotensial.
 - Skriv balansert ligning for cellereaksjonen, og angi standard cellepotensial. Vis på skissen hvilken elektrode som er positiv pol.
 - Vi lar strømmen gå så lenge at forholdet [Fe³⁺]/[Fe²⁺] i den ene halvcellen avtar til 0,001 mens [Cd²⁺] i den andre halvcellen øker til 1,05 M. (Vi antar at volumet er like stort i begge halvceller.) Hvor stort er cellepotensialet nå?

Oppgave 5

a) Du studerer dekomponering av N₂O₅(g)

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$
 (1)

ved konstant temperatur. Dette er en reaksjon av første orden med hensyn på $N_2O_5(g)$, og hastighetskonstanten har du bestemt til å være $k = 6.93 \times 10^{-3} \text{ s}^{-1}$

- Hva kjennetegner en første ordens reaksjon?
- Beskriv hvordan du ville gå frem for å bevise at reaksjonen er av første orden, når du kjenner data for konsentrasjonen av N_2O_5 som funksjon av tiden.
- Utled et uttrykk for halveringstiden for reaksjon (1).
- b) Hva mener vi med aktiveringsenergien for en reaksjon?
 - Skriv opp en ligning som gir sammenhengen mellom en reaksjons hastighetskonstant og aktiveringsenergi

Reaksjon (1) ble studert ved flere temperaturer, og følgende verdier for k ble bestemt:

$k (s^{-1})$	T(°C)
2,0×10 ⁻⁵	20
7,3×10 ⁻⁵	30
2,7×10 ⁻⁴	40
9,1×10 ⁻⁴	50
$2,9 \times 10^{-3}$	60

- Beregn aktiveringsenergien, E_a , for denne reaksjonen.

Oppgave 6

- a) Gjennom studiet av tallrike kjemiske forbindelser har det vist seg at elektronkonfigurasjonen i atomene nesten alltid følger visse enkle regler. Hva går disse regler ut på? (5-6 setninger.)
 - Skriv opp lewisstrukturen for molekylene AsH₃ og OF₂, samt de negative ionene AlCl₄ og CO₃²⁻.
 - Bruk elektronparfrastøtnings-modellen for molekylstrukturer (VSEPR) og foreslå molekylgeometri og bindingsvinkler for de samme spesier.
- b) Beskriv med skisse de tre hybridiseringsmåtene for karbonatomet.
 - Hvilke tre typer organiske forbindelser danner de?
 - Tegn de to konformasjonene for sykloheksan. Hvilken er mest stabil? Gi en forklaring.

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum_i P_i)$	Partialtrykk av i
$C = q / \Delta T$	Varmekapasitet
$\Delta E = q + w$	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant <i>P</i> . Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$ \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) $	ΔH og ΔS konstant
$dS = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Entropiendring
$\Delta S_T^\circ = \Delta S_{298}^\circ + \Delta C_P^\circ \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T \Delta S$	Endring i fri energi ved konstant <i>T</i>
$\Delta G_T^{\circ} = \Delta H_{298}^{\circ} - T\Delta S_{298}^{\circ}$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^o + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^o = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^{o} - \frac{RT}{nF} \ln Q = E^{o} - \frac{0,0592}{n} \log Q, 25^{\circ} \text{ C}$	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$ $Total orden = l + m + n + p$	Reaksjonshastighet for $aA + bB \rightarrow cC + dD$
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a