Méthodes de mapping de reads avec indexation des reads

Pierre Morisse¹, Thierry Lecroq², Arnaud Lefebvre³

 1 LITIS 2 LITIS

Université de RouenUniversité de RouenUniversité de Rouen76000 Rouen, France76000 Rouen, France76000 Rouen, France

e-mail: pierre.morisse1@etu.univ-rouen.fr e-mail: thierry.lecroq@univ-rouen.fr e-mail: arnaud.lefebvre@univ-rouen.fr

Introduction

Depuis le milieu des années 2000 et le développement des séquenceurs à très haut débit (Next Generation Sequencing), la biologie doit faire face au traitement d'énormes quantités de données, formées par des millions de très courtes séquences appelées reads. Dans un papier relativement récent, Philippe et al. ont souligné l'importance de l'indexation de ces reads afin de résoudre des problèmes de correction ou de mapping, et ont développé un index supportant les 7 requêtes suivantes :

- Dans quels reads f apparaît?
- Dans combien de reads f apparaît?
- Quelles sont les occurrences de f?
- Quel est le nombre d'occurrences de f?
- Dans quels reads f n'apparaît qu'une fois?
- Dans combien de $reads\ f$ n'apparaît qu'une fois? — Quelles sont les occurrences de f dans les reads où f n'apparaît qu'une fois?

De nombreux outils utilisant une structure d'index sur les reads existent, et permettent aussi bien de résoudre des problèmes de mapping, de correction, que de traiter les 7 requêtes présentées ci-dessus. Un bref résumé de l'état-de-l'art est donné ci-dessous.

Séquenceurs à très haut débit

De nombreuses technologies et plateformes ont été développées pour permettre le séquençage de reads. Elle se différencient principalement par la longueur des reads qu'elles produisent, par leur débit, ainsi que par le taux et le type d'erreurs qu'elles introduisent le plus fréquemment. Le tableau ci-dessous dresse un bref récapitulatif des technologies disponibles.

Technologie	Technique de séquençage	Plateforme	Nombre de reads	Longueur	Précision (%)	Temps	Débit	Coût	Erreurs
Illumina	Synthèse basé sur polymères	HiSeq 2500/1500	3 milliards	36 - 100	99	2 - 11 jours	600	740 000	Substitutions
IIIuIIIIIa		MiSeq	17 millions	25 - 250	>99	4 - 27 heures	8,5	125 000	
Roche	Polyséquençage	454 GS FLX+	1 million	700	99,997	23 heures	0,7	450 000	Indels.
Koche		454 GS Junior	1 million	400	>99	10 heures	0,4	108 000	
ABI Life Technologies	Ligatures	5500xl SOLiD	2,8 millions	75	99,99	7 jours	180	595 000	95 000 Indels.
	Détection de protons	Ion Proton Chip I/II	60 - 80 millions	jusqu'à 200	>99	2 heures	10 - 100	243 000	mueis.
Pacific Biosciences	Simple molécule en temps réel	PacBio RS	50 000	3 000 en moyenne	85	2 heures	13	750 000	Indels.
Oxford Nanopore	anopore Exonucléase par Nanopore	GridION	4 - 10	plusieurs milliers	96	variable	quelques dizaines	variable	Indels.
		MinION	70 000	1 665	70	48 heures	0,132	1 000	muels.

Correction de reads

Le tableau ci-dessous dresse un récapitulatif des différents outils de correction de reads utilisant une structure d'index sur ces reads, des structures de données sur lesquelles ils reposent, et de leur efficacité.

Outil	Structure de données	Erreurs corrigées	Nombre de $reads$ (longueur)	Espace mémoire (en Mo)	Temps (en min)	reads corrigés (en %)	
SHREC	Arbre des suffixes	subs.	1 090 946 (70)	1 500	183	88,56	
HybridSHREC	Arbre des suffixes	subs. + indels	977 971 (178)	15 000	28	98,39	
HiTEC	Table des suffixes	subs.	1 090 946 (70)	757	28	94,43	
			4 639 675 (70)	3 210	125	74,43	
Fiona	Table des suffixes échantillonnée	subs. + indels	977 971 (178)	2 000	15	66,76	
			2 464 690 (142)	3 000	32	00,70	
Coral	Table de hachage	subs. + indels	977 971 (178)	8 000	5	92,88	
RACER	Table de hachage	subs.	2 119 404 (75)	1 437	23	76,65	
BLESS	Filtres de Bloom	subs. + indels	1 096 140 (101)	11	6	84,38	
Lordec	Graphe de De Bruijn	subs + indels	33 360 reads longs (2 938)	960	10	85 78	

et 2 313 613 *reads* courts (100)

Mapping de reads

Le tableau ci-dessous dresse un récapitulatif des différentes outils de mapping de reads utilisant une structure d'index sur ces reads, des structures de données sur lesquelles ils reposent, et de leur efficacité.

Outil	Structure de données	Erreurs prises en compte	Nombre de $reads$ (longueur)	Espace mémoire (en Mo)	Temps (en min)	reads mappés (en %)
MAQ	Table de hachage	subs. + indels	1 000 000 (44)	1 200	331	92,53
MrsFAST	Table de hachage	subs.	1 000 000 (100)	20 000	169	90,70
MrcEACT Illtro	Table de hachage	cube	2,000,000,(100)	2,000	57	01.41

Peu d'outils sont présentés ici, mais de nombreuses méthodes de mapping de reads, n'utilisant pas de structure d'index sur les reads, existent cependant et produisent de très bons résultats, aussi bien en espace et en temps, qu'en qualité de mapping.

Traitement des 7 requêtes

La tableau ci-dessous dresse un récapitulatif des différents outils de traitement des 7 requêtes utilisant une structure d'index sur les reads, des structures de données sur lesquelles ils reposent, et et leur efficacité. Les requêtes 5-7 sont exclues du comparatif, car non implémentées dans GkA et CGkA lors des tests réalisés dans l'article introduisant PgSA.

Outil	Structure de données	Nombre de reads (longueur)	Espace mémoire (en Go)	Temps R1 (en ms)	Temps R2 (en ms)	Temps R3 (en ms)	Temps R4 (en ms)
	Table des suffixes modifiée						
	+						
GkA	Table des suffixes modifiée inverse	42 400 000 (75)	20	16	25	25	0,1
	+						
	Table associant k -mer - nombre d'occurrences						
	Table de suffixes échantillonnée						
CGkA	+	42 400 000 (75)	3 - 7	1203	28	1278	28
	3 vecteurs de bits						
	Table des suffixes échantillonnée						
PgSA	+	42 400 000 (75)	1 - 4	70	58	70	58
T	bhla auxiliaira d'information cur les mande et k mars						

Correction de reads longs

Comme il peut-être remarqué dans le tableau présentant les différentes technologies et plateformes de séquençage, de nouvelles technologies, permettant de séquencer des reads de plus
en plus longs, se développent. Les reads séquencés par ces nouvelles technologies présentent
cependant un taux d'erreur bien plus important que les reads plus courts. Ainsi, au vu de la
faible efficacité des méthodes de correction existantes sur ces reads longs, notre travail s'est
principalement porté sur ce problème. Nous présentons donc ici une méthode déjà existante, et
la méthode que nous avons développé.

NaS (Nanopore Synthetic-long reads)

Du blabla sur les NaS, il faut partir de seeds et recruter des reads courts Illumina, approche hybride, tout ça tout ça.

Notre méthode

Du blabla sur notre méthode. On garde la même idée que NaS, mais on essaye d'améliorer le temps d'exécution (car recrutement très long) en utilisant une autre technique pour recruter les reads courts.