

Механико-математический факультет

Алгебра, 3 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Авторы: Соколов Егор

Группа: 208

Контакт: Мой телеграм для связи

Содержание

1	Группы			
	1.1	Основные понятия	2	
	1.2	Циклические группы	9	
	1.3	Смежные классы	11	
	1.4	Факторгруппа	16	
	1.5	Гомоморфизмы групп	17	
2	Сво	ободные группы	20	
	2.1	Задание группы порождающими и определяющими соотношениями	23	
3	Пря	имое произведение групп	27	
	3.1	Внешнее прямое произведение	27	
	3.2	Внутреннее прямое произведение	28	
	3.3	Связь между внутренним и внешним прямым произведением	31	
4	Кон	нечнопорождённые абелевы группы	33	
	4.1	Связь между базисами свободной абелевой группы	37	
	4.2	Элементарные преобразования свободных абелевых групп	38	

1 Группы

1.1 Основные понятия

Определение. Пусть G - множество. Бинарной операцией на G называется отображение $*: G \times G \to G$.

Определение. Множество G с бинарной операцией * называется группой, если выполнены следующие аксиомы:

- 1. $\forall a, b, c \in G \ \ a * (b * c) = (a * b) * c;$
- 2. $\exists e \in G : \forall a \in G \ a * e = e * a = a;$
- 3. $\forall a \in G \ \exists b \in G : a * b = b * a = e$

Различные формы записи группы:

1. Мультипликативная форма (терминология):

Операция - " · " (умножение);

Нейтральный элемент - единичный (1);

Элемент из аксиомы 3 - обратный $(a^{-1}$ для $a \in G)$;

2. Аддитивная форма (терминология):

Операция - " + " (сложение);

Нейтральный элемент - нулевой (0);

Элемент из аксиомы 3 - противоположный (-a для $a \in G)$;

Определение. Если G - группа и $\forall a,b \in G \ a \cdot b = b \cdot a,$ то G - абелева (коммутативная) группа.

Замечание. Обычно для обозначения абелевых групп будем использовать аддитивную форму записи, для иных - мультипликативную.

Утверждение (Простейшие свойства групп).

- 1. Единичный элемент единственный;
- 2. $\forall a \in G$ обратный к а элемент единственный;
- $\beta. (ab)^{-1} = b^{-1}a^{-1};$
- 4. Если $a,b \in G$, то решение уравнения ax = b (xa = b) единственно.

Доказательство.

- 1. (От противного) Допустим, что $\exists e_1, e_2 \in A$ единичные. Тогда $e_1 = e_1 * e_2 = e_2$ по определению единичного элемента.
- 2. Допустим $\exists b_1, b_2$ обратные к a элементы: $b_1 \neq b_2$ В силу ассоциативности:

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$

 $b_1 * e = e * b_2$
 $b_1 = b_2$

3.
$$abb^{-1}a^{-1} = aea^{-1} = e;$$

 $b^{-1}a^{-1}ab = b^{-1}eb = e \Longrightarrow (ab)^{-1} = b^{-1}a^{-1}$

4.
$$ax = b \iff a^{-1}ax = a^{-1}b \iff x = a^{-1}b;$$

 $xa = b \iff xaa^{-1} = ba^{-1} \iff x = ba^{-1};$

Определение. Мощность множества G называется порядком группы G. Обозначается |G|.

Если $|G| < \infty$, то группа называется конечной, иначе бесконечной.

Примеры.

- 1. $(\mathbb{Z}, +), (\mathbb{Z}_n, +);$
- 2. $GL_n(F)$ группа невырожденных матриц порядка n с коэффициентами из поля F:
- 3. Пусть Ω множество. Преобразованиями Ω назовём биекции $f:\Omega \to \Omega$. $S(\Omega)$ множество всех преобразований Ω образует группу относительно композиции.

Если $\Omega = \{1, ..., n\}$, то $S(n) = S_n$ - группа подстановок.

4. Если $G = \{a_1, ..., a_n\}$ - конечная группа, то её можно задать с помощью таблицы умножения (таблицы Кэли).

Например, для $Z_2 = \{0, 1\}$:

	0	1
0	0	1
1	1	0

5. Группа кватернионов: $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ Таблица Кэли для кватернионов:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	i	-1

Определение. Подмножество $H\subseteq G$ называется подгруппой группы G, если:

- 1. $\forall a, b \in H \ ab \in H$;
- $2. \ \forall a \in H \ a^{-1} \in H;$
- 3. $1 \in H$ (можно заменить на $H \neq \varnothing$)

Обозначается $H \leq G$.

Утверждение. Подгруппа H группы G является группой относительно бинарной операции группы G.

Примеры.

- 1. $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \ (\mathbb{N} \nleq \mathbb{Z},$ т.к. не группа);
- 2. $GL_n(F) \geq SL_n(F) = \{A \in GL_n(F) | \det A = 1\}$ унимодулярная группа.
- 3. $GL_n(F) \ge O_n(F) \ge SO_n(F) \ (O_n(F)$ ортогональная группа, $SO_n(F)$ специальная ортогональная группа);
- 4. $GL_n(F) \ge$ группа строго треугольных матриц.

Определение. Любая подгруппа группы $S(\Omega)$ называется группой преобразований множества Ω .

Примеры.

- 1. $GL(V) (\leq S(V))$ группа всех невырожденных линейных операторов векторного пространства V;
- 2. $Aff(\mathbb{A})$ группа всех невырожденных аффинных преобразований аффинного пространства \mathbb{A} ;

3. \mathcal{E}^2 - аффинно-евклидово двумерное пространство. Ізот \mathcal{E}^2 - группа изометрий (движений) на \mathcal{E}^2 . Ізот $\mathcal{E}^2 \geq O_2 \geq SO_2$, где O_2 - группа движений, сохраняющих точку O, SO_2 - группа поворотов вокруг точки O.

- 4. $T\subseteq \mathcal{E}^2$ некоторая фигура. Sym $T=\{f\in \mathrm{Isom}\ \mathcal{E}^2\mid f(T)=T\}$ - группа симметрий фигуры T.
 - Если T окружность с центром в точке O, то Sym $T = O_2$;
 - Если T правильный n-угольник с центром в точке O, то Sym $T=D_n$ группа Диэдра.

 $|D_n| = 2n$ - n поворотов и n симметрий.

Определение. Пусть $(G_1,*,e_1),(G_2,\circ,e_2)$ - группы. Отображение $\varphi:G_1\to G_2$ - изоморфизм, если

- 1. φ биекция;
- 2. $\forall a, b \in G_1 \ \varphi(a * b) = \varphi(a) * \varphi(b)$

Если между G_1 и G_2 существует изоморфизм, то G_1 и G_2 называются изоморфными. Обозначается $G_1 \simeq G_2$.

Пример. $D_3 \simeq S_3$.

 \mathcal{A} оказательство. D_3 - группа движений, переводящая равносторонний треугольник в себя. Если пронумеровать вершины изначального треугольника, то каждый элемент группы D_3 будет соответствовать подстановке, переводящей старый порядок вершин в новый. Определение изоморфизма проверяется очевидно.

Утверждение. Изоморфность групп - отношение эквивалентности на множестве групп.

Утверждение (Свойства изоморфизмов).

- 1. $\varphi(e_1) = e_2;$
- 2. $\varphi(a^{-1}) = (\varphi(a))^{-1};$
- 3. $G_1 \simeq G_2 \Longrightarrow |G_1| = |G_2|$.

3амечание. Обратное утверждение неверно (например, $S_3 \ncong \mathbb{Z}_6$).

Пример. $SO_2 \simeq (U, \cdot)$, где $U = \{z \in \mathbb{C} : |z| = 1\}$.

Определение. Пусть (G, \cdot, e) - группа, $k \in \mathbb{Z}, g \in G$. Мультипликативный термин - элемент g в степени k:

$$g^{k} = \begin{cases} \underbrace{g \cdot g \cdot \dots \cdot g, k > 0}_{k} \\ \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{-k}, k < 0 \\ \underbrace{e, k = 0} \end{cases}$$

Определение. Пусть (G, +, e) - группа, $k \in \mathbb{Z}, g \in G$. Аддитивный термин - кратное элемента g:

$$kg = \begin{cases} \underbrace{g + g + \dots + g, k > 0}_{k} \\ \underbrace{(-g) + (-g) + \dots + (-g)}_{-k}, k < 0 \\ e, k = 0 \end{cases}$$

Утверждение (Свойства $(k, m \in \mathbb{Z}, g \in G)$).

1.
$$g^k \cdot g^m = g^{k+m}$$
;

2.
$$(g^k)^m = g^{km}$$
;

3.
$$(g^k)^{-1} = g^{-k}$$
.

Утверждение. Множество всех элементов g^k , где $k \in \mathbb{Z}$, $g \in G$, образует подгруппу в G. Обозначается $\langle g \rangle = \{e, g, g^{-1}, g^2, g^{-2}, ...\}$.

Определение. $\langle g \rangle$ - циклическая подгруппа. порождённая элементом g.

Примеры.

1.
$$G=\mathbb{Z}:\langle 2\rangle=2\mathbb{Z}$$
 - чётные целые числа;

2.
$$G = \mathbb{Z}_6 : \langle 2 \rangle = \{0, 2, 4\};$$

3.
$$G = \mathbb{C} : \langle i \rangle = \{\pm 1, \pm i\}$$

Пусть (G, \cdot, e) - группа, $g \in G$. Если $\forall k, m \in \mathbb{Z} : k \neq m \Longrightarrow g^k \neq g^m$, то $\langle g \rangle$ - бесконечная (элемент g имеет бесконечный порядок).

Если $\exists k, m \in \mathbb{Z} : k \neq m, g^k = g^m \Longrightarrow g^{k-m} = e \Longrightarrow$ существует наименьшее $n \in \mathbb{N}$ такое, что $g^n = e$ (элемент g имеет порядок n)

Определение. Порядком элемента $g \in G$ называется наименьшее натуральное число n такое, что $g^n = e$, если такое существует. Иначе говорят, что элемент g имеет бесконечный порядок. Обозначается ord g.

Примеры.

- 1. $G = \mathbb{Z}$: ord $2 = \infty$;
- 2. $G = \mathbb{Z}_{12}$: ord 2 = 6;
- 3. $G = \mathbb{C}^*$: ord $2 = \infty$ (\mathbb{C}^* мультипликативная группа поля, $\mathbb{C} \setminus \{0\}$ относительно умножения).

Утверждение 1 (Свойства элементов конечного порядка).

- 1. $q^m = e \iff \text{ord } q \mid m$;
- 2. $g^m = g^l \iff k \equiv l \pmod{g}$

Доказательство.

1. Разделим m на $n = \operatorname{ord} g$ с остатком: m = nq + r, где $0 \leqslant r < n$. Тогда:

$$e = g^m = (g^n)^q \cdot g^r = g^r \Longrightarrow r = 0$$

так как r < n, где n - минимальное натуральное число такое, что $g^n = 0$.

2. Следует из 1.

Следствие. ord $g = |\langle g \rangle|$

Доказательство. Если ord $g=\infty: \forall k\neq l\ g^k\neq g^l\Longrightarrow$ подгруппа $\langle g\rangle=\{e,g^{\pm 1},g^{\pm 2},...\}$ бесконечна.

Если ord $g=n:\langle g\rangle=\{e,g^1,...g^{n-1}\}$ - все эти элементы различны из пункта 2 утверждения, а других нет по определению порядка.

Примеры.

1.
$$i \in \mathbb{C}^*$$
 - ord $i = 4$;

2. $\sigma \in S_n$:

Если
$$\sigma = (i_1, ..., i_k)$$
 - цикл длины k , то ord $\sigma = k$.

Так как любая подстановка раскладывается в произведение независимых циклов и независимые циклы коммутируют, если $\sigma = \tau_1...\tau_n$, где τ_i - независимые циклы, то верно: ord $\sigma = \text{HOK }\{|\tau_1|,...,|\tau_n|\}$.

Например,
$$\sigma = (23)(145) \Longrightarrow \text{ ord } \sigma = 6.$$

Утверждение 2. Пусть n = ord g. Тогда ord $g^k = \frac{n}{HOZ(n,k)}$.

Доказательство. Пусть ord $g^k = m$. Из утверждения 1: $g^{mk} = e \iff n|mk$, откуда $\frac{n}{\text{HOД}(n,k)}|m$, т.е. $m \geqslant \frac{n}{\text{HOД}(n,k)}$. Очевидно, что при $m = \frac{n}{\text{HOД}(n,k)} \, n|mk$.

Определение. Множество $S \subseteq G$ называется порождающим множеством для группы G, если $\forall g \in G \ \exists s_1,...,s_k \in S : g = s_1^{\varepsilon_1}...s_k^{\varepsilon_k}$, где $\varepsilon_i = \pm 1$ (s_i не обязательно различны).

При этом говорят, что G порождается множеством S.

Если \exists конечное множество S такое, что S порождает G, то G называется конечно порождённой, и бесконечно порождённой иначе.

Обозначается $\langle S \rangle = \{s_1^{\varepsilon_1}...s_k^{\varepsilon_k}|\varepsilon_i=\pm 1\}$ - группа, порождённая S.

Примеры.

- 1. $S_n = \langle \text{все транспозиции} \rangle;$
- 2. $GL_n(F) = \langle \text{все элементарные матрицы} \rangle$
- 3. $Q_8 = \langle i, j \rangle;$
- 4. $D_n = \langle \alpha, s \rangle$, где α поворот на $\frac{2\pi}{n}$, а s любая из симметрий.
- 5. Группа Клейна: $H = \{ \mathrm{id}, a = (12)(34), b = (13)(24), c = (14)(23) \} \leq S_4$ Это группа симметрий прямоугольника, не являющегося квадратом: a, c симметрии относительно средних линий, b поворот на π вокруг центра. Таблица Кэли для группы Клейна:

	e	a	b	$^{\mathrm{c}}$
е	е	a	b	c
a	a	е	c	b
b	b	c	е	a
С	\mathbf{c}	b	a	е

Отсюда $\{e,a,b,c\} = \langle a,b \rangle$.

6. Q - бесконечно порождённая.

1.2 Циклические группы

Определение. Группа G называется циклической, если G порождается одним элементом, т.е. $\exists g \in G : \forall h \in G \ \exists k \in \mathbb{Z} : h = g^k$. Элемент g также называется образующим элементом группы G.

Примеры.

- 1. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$, $\mathbb{Z}_n = \langle 1 \rangle$;
- 2. U_n множество всех комплексных корней степени n из 1. U_n группа относительно умножения, причём $U_n = \langle \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \rangle$.

Утверждение 3. Если $G = \langle g \rangle$, mo |G| = ord g.

3амечание. Далее циклическую группу порядка n обозначаем $\langle g \rangle_n$

Утверждение 4. Пусть $G = \langle g \rangle_n$. Тогда $G = \langle g^k \rangle \iff \operatorname{HOД}(k,n) = 1$.

Доказательство. Из утверждения 3 |G| = ord g. Тогда:

$$G = \langle g^k \rangle \iff \text{ord } g^k = \frac{n}{\text{HOД}(n,k)} = n \iff \text{HOД}(n,k) = 1$$

Теорема 1 (Классификация циклических групп).

- 1. Если циклическая группа G бесконечна, то $G \simeq \mathbb{Z}$;
- 2. Если циклическая группа G конечна и имеет порядок n, то $G \simeq \mathbb{Z}_n$.

Доказательство.

1. Пусть ord $g = \infty, \forall h \in g \; \exists k \in \mathbb{Z} : h = g^k$ Рассмотрим отображение $\varphi : G \to \mathbb{Z}$ такого вида: $\varphi : g^k \mapsto k$. Очевидно, что φ - сюръекция (в $k \in \mathbb{Z}$ перешёл $g^k \in G$). $\varphi(g^k) = \varphi(g^m) \Longrightarrow k = m \Longrightarrow g^k = g^m$ - отсюда φ - инъекция. Проверим сохранение операции:

$$\varphi(g^k \cdot g^m) = \varphi(g^{k+m}) = k + m = \varphi(g^k) + \varphi(g^m)$$

Отсюда φ - изоморфизм.

2. Пусть ord g=n. Рассмотрим отображение $\varphi:\mathbb{Z}_n\to G$ такого вида: $\varphi:k\mapsto g^k$. Очевидно, что φ - сюръекция (в $g^k\in G$ перешёл $k\in\mathbb{Z}_n$).

 $k \equiv m \pmod{n} \Longleftrightarrow g^k = g^m$ - отсюда φ - инъекция.

Сохранение операции - аналогично пункту 1.

Отсюда φ - изоморфизм.

Следствие. Если G_1, G_2 - циклические группы, то $G_1 \simeq G_2 \Longleftrightarrow |G_1| = |G_2|$.

Доказательство.

⇒: верно всегда;

 $\iff :$ из теоремы: если G_1 бесконечна, то $G_1 \simeq \mathbb{Z} \simeq G_2$, иначе $G_1 \simeq \mathbb{Z}_n \simeq G_2$, где $n = |G_1| = |G_2|$.

Теорема 2.

- 1. Любая подгруппа циклической группы является циклической.
- 2. Подгруппы циклической группы G порядка n находятся во взаимно однозначном соответствии c делителями n, m.e.

$$\forall H \le G \mid H \mid \mid n \mid u \mid \forall d \mid n \mid \exists ! \mid H \le G : \mid H \mid = d$$

3. Подгруппы группы $\mathbb Z$ исчерпываются группами $k\mathbb Z=\langle k\rangle,\ \epsilon\partial e\ k\in\mathbb N\cup\{0\}.$

Доказательство.

1. Пусть $G = \langle g \rangle, H \leq G$. Если $H = \{e\}$, то $H = \langle e \rangle$.

При $H \neq \{e\}$: $\forall h \in H \; \exists k \in \mathbb{Z} : h = g^k$. Так как $g^k \in H \Longrightarrow g^{-k} \in H$ и в H есть элемент, отличный от e, \exists наименьшее $k \in \mathbb{N} : g^k \in H$.

Докажем, что $H = \langle g^k \rangle$. Рассмотрим произвольный $g^m \in H$. Разделим m на k с остатком: $m = kq + r, 0 \leqslant r < k$. Тогда:

$$g^m = (g^k)^q \cdot g^r \Longrightarrow g^r = (g^k)^{-q} \cdot g^m \Longrightarrow r = 0$$
, т.к. k - наименьшее $\in \mathbb{N}$

2. $G = \langle g \rangle_n, H \leq G \Longrightarrow_{(1)} H = \langle g^k \rangle.$

Так как $g^n=e\in H$, то в силу рассуждений пункта 1 при m=n получаем $k|n\Longrightarrow n=kq.$

Отсюда $H = \{e, g^k, g^{2k}, ..., g^{(q-1)k}\} \Longrightarrow |H| = q$, где q|n.

Обратно, $\forall d | n \; \exists ! H = \langle g^{\frac{n}{d}} \rangle$ (в силу описания выше других подгрупп такого порядка нет).

3. Из пункта 1 в аддитивной форме получаем, что $H \leq \mathbb{Z} = \langle 1 \rangle \Longrightarrow H = \langle k \cdot 1 \rangle$

Следствие. В циклической группе простого порядка существуют ровно две подгруппы - тривиальная и сама группа.

Примеры.

- 1. $H \leq \mathbb{Z}_5 \Longrightarrow H = \{0\}, H = \mathbb{Z}_5;$
- 2. $H \leq \mathbb{Z}_6 \Longrightarrow H = \{0\}, H = \langle 2 \rangle, H = \langle 3 \rangle, H = \mathbb{Z}_6.$

1.3 Смежные классы

Определение. Пусть (G, \cdot, e) - произвольная группа, $H \leq G, g \in G$. Рассмотрим множества:

 $gH = \{gh|h \in H\}$ - левый смежный класс G по H с представителем g $Hg = \{hg|h \in H\}$ - правый смежный класс G по H с представителем g

Утверждение (Свойства смежных классов).

- 1. $\forall a \in G \ a \in aH$;
- 2. если $a \in bH$, то bH = aH; в частности, любые два смежных класса либо не пересекаются, либо совпадают.
- 3. $aH = bH \iff b^{-1}a \in H;$ (Верны аналогичные утверждения для правых смежных классов)

Доказательство.

- 1. Очевидно;
- 2. $a \in bH \Longrightarrow \exists h \in H : a = bh \Longrightarrow \forall \tilde{h} \in H \ a\tilde{h} = bh\tilde{h} \in bH \Longrightarrow aH \subseteq bH$. Аналогично $bH \subseteq aH \Longrightarrow aH = bH$.
- 3. \Longrightarrow : $aH = bH \Longrightarrow a \in bH (a \in aH) \Longrightarrow \exists h \in H : a = bh \Longrightarrow b^{-1}a = h \in H$ \Longleftrightarrow : $b^{-1}a = h \in H \Longrightarrow a = bh \Longrightarrow aH = bH$ по пункту 2.

Утверждение. Отношение $a \equiv b \pmod{H} \Leftrightarrow b^{-1}a \in H$ является отношением эквивалентности, причём классы эквивалентности совпадают с левыми смежными классами (аналогично $ab^{-1} \in H$ для правых).

Доказательство.

- Рефлексивность: $a^{-1}a = e \in H \Longrightarrow a \equiv a \pmod{H}$;
- Симметричность: $a \equiv b \pmod{H} \Rightarrow b^{-1}a \in H \Rightarrow a^{-1}b = (b^{-1}a)^{-1} \in H \Rightarrow b \equiv a \pmod{H}$;
- Транзитивность: $a \equiv b, b \equiv c \pmod{H} \Longrightarrow c^{-1}b, b^{-1}a \in H \Longrightarrow c^{-1}b \cdot b^{-1}a = c^{-1}a \in H \Longrightarrow a \equiv c \pmod{H}$.

Совпадение классов эквивалентности с левыми смежными классами следует из пункта 3 предыдущего утверждения.

Утверждение. Если G - абелева, то $\forall a \in G : aH = Ha$. (В общем случае данное утверждение неверно).

Доказательство. $\forall a \in G: \{ah: h \in H\} = \{ha: h \in H\} \Longrightarrow aH = Ha.$

Примеры.

- 1. $H = \langle (12) \rangle \leq S_3$ $(H = \{id, (12)\}), g = (13).$ (13)(12) = (123); (12)(13) = (132). Тогда $\{(13), (123)\} = gH \neq Hg = \{(13), (132)\}.$
- 2. $H = 3\mathbb{Z} \leq \mathbb{Z}$. Смежные классы $3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$.
- 3. $H = \mathbb{R} \leq \mathbb{C}$. Смежные классы $a + bi + \mathbb{R} = bi + \mathbb{R}$.

Утверждение. Множество $\{aH : a \in G\}$ находится во взаимно однозначном соответствии с множеством $\{Ha : a \in G\}$.

Доказательство.
$$gH \leftrightarrow Hg^{-1}: x = gh \in gH \leftrightarrow x^{-1} = h^{-1}g^{-1} \in Hg^{-1}.$$

Следствие. $|\{aH: a \in G\}| = |\{Ha: a \in G\}|$

Определение. Мощность множества левых смежных классов группы G по подгруппе H называется индексом H в G. Обозначение: |G:H|

Пример. $|\mathbb{Z}: 3\mathbb{Z}| = 3$, т.к. смежные классы - $\{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}$.

Теорема. (Теорема Лагранжа)

Пусть G - конечная группа, $H \leq G$. Тогда $|G| = |H| \cdot |G:H|$.

Доказательство. Так как $|G| < \infty$, то $|H| < \infty$, т.е. $H = \{h_1, \dots, h_k\}$. $\forall g \in G, \ gH = \{gh_1, \dots, gh_k\}$, причем $gh_i = gh_j \Rightarrow h_i = h_j \Rightarrow |gH| = |H|$. Отсюда, если |G:H| = n:

$$G = \bigsqcup_{i=1}^{n} a_i H \Longrightarrow |G| = \sum_{i=1}^{n} |a_i H| = |G: H| \cdot |H|$$

Следствие 1. Если G - конечная группа, $H \leq G$, то $|H| \mid |G|$. (Обратное утверждение неверно).

Упражнение. Пусть $G = A_4$ (группа чётных перестановок). $|A_4| = \frac{4!}{2} = 12$. Докажем, что в A_4 нет подгруппы порядка 6.

Предположим, что $H \leq A_4$ и |H| = 6. A_4 состоит из элемента id, 3 элементов вида (ab)(cd) и восьми элементов вида (abc). Значит, H содержит хотя бы один элемент вида (abc) (с точностью до перенумерования - (123)). Тогда H содержит и $(123)^{-1} = (132)$. Также знаем, что группа чётного порядка содержит элемент порядка 2 (иначе в группе все элементы, кроме e, разбиваются на пары обратных, и элементов нечётное число), поэтому H содержит $\sigma = (**)(**)$.

Рассмотрим $\omega = \sigma(123)\sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3))$ (это равенство легко проверить, подставив в него $\sigma(1), ..., \sigma(4)$). Очевидно, что это цикл длины 3, не оставляющий на месте 4 (т.к. σ не оставляет на месте 4). Значит, ω и ω^{-1} принадлежат H и не совпадают с предыдущими элементами (и друг с другом), т.е.

$$H = \{id, (123), (132), \sigma, \omega, \omega^{-1}\}\$$

Осталось перебрать возможные значения σ :

•
$$\sigma = (12)(34) \Longrightarrow (123)(12)(34)(132) = (14)(23) \notin H$$
;

•
$$\sigma = (13)(24) \Longrightarrow (123)(13)(24)(132) = (12)(34) \notin H$$
;

•
$$\sigma = (14)(23) \Longrightarrow (123)(14)(23)(132) = (13)(24) \notin H$$
;

Отсюда таких H не существует.

Следствие 2. Если G - конечная группа, то $\forall g \in G : \mathrm{ord}\ g \mid |G|$

Доказательство. ord
$$g = |\langle g \rangle| \mid |G|$$
.

Следствие 3. Если G - конечная группа порядка n, то $\forall g \in G : g^n = e$ в G.

Доказательство. По следствию 2: $n = \operatorname{ord} g \cdot k \Rightarrow g^n = g^{(\operatorname{ord} g) \cdot k} = e^k = e$.

Пример. Пусть $G = \mathbb{Z}_p^*$, p - простое, $|\mathbb{Z}_p^*| = p-1$. По следствию 3: $\forall a \in \mathbb{Z}_p^* : a^{p-1} = 1$ в \mathbb{Z}_p^* , отсюда $\forall a \in \mathbb{Z}, \ p \nmid a : a^{p-1} \equiv 1 \pmod p$ - малая теорема Ферма.

Следствие 4. Любая группа G простого порядка p является циклической.

Доказательство.
$$\forall a \in G, \ a \neq e : \text{ord } a \neq 1, \text{ ord } a \mid |G| = p \Rightarrow \text{ord } a = |G| \Rightarrow G = \langle a \rangle.$$

Упражнение. Доказать, что с точностью до изоморфизма существует ровно две группы порядка 4 - \mathbb{Z}_4 и V_4 .

Доказательство. Пусть G - группа порядка 4. Заметим, что по следствию 2 порядок неединичного элемента в G может быть равен либо 2, либо 4. Если в G есть элемент порядка 4, то G циклическая, а тогда по теореме о классификации циклических групп $G \simeq \mathbb{Z}_4$.

Пусть $G = \{e, a, b, c\}$, ord a = ord b = ord c = 2. Посмотрим, чему может быть равно ab:

- $ab = e \Longrightarrow aab = a \Longrightarrow b = a$ противоречие;
- $ab = a \Longrightarrow aab = aa \Longrightarrow b = e$ противоречие;
- $ab = b \Longrightarrow abb = bb \Longrightarrow a = e$ противоречие.

Отсюда ab=c - аналогично произведение любых двух различных неединичных элементов равно третьему. Отсюда таблица Кэли для G имеет вид

	e	a	b	c
е	е	a	b	c
a	a	е	c	b
b	b	c	е	a
c	$^{\mathrm{c}}$	b	a	е

откуда видно, что $G \simeq V_4$.

Упражнение. Доказать, что если в группе G все неединичные элементы имеют порядок 2, то G - абелева.

Доказательство. ord
$$a=2\Longrightarrow a=a^{-1}\Longrightarrow \forall a,b\in G:ab=(ab)^{-1}=b^{-1}a^{-1}=ba.$$

Пример.
$$H = \langle (12) \rangle \leq S_3, \ g = (13) \Rightarrow gH \neq Hg$$

Определение. Подгруппа H группы G называется нормальной, если

$$\forall g \in G : gH = Hg \Longleftrightarrow \forall g \in G : gHg^{-1} = H \Longleftrightarrow$$

$$\iff \forall g \in G : gHg^{-1} \subseteq H \Longleftrightarrow \forall g \in G, \ \forall h \in H : ghg^{-1} \in H$$

Обозначение: $H \leq G$.

Эквивалентность определений:

- 1 ⇔ 2 очевидно;
- $2 \iff 3$: $\iff gHg^{-1} \subseteq H \Leftrightarrow H \subseteq g^{-1}Hg$ из условия на всевозможные g получаем равенство; \implies очевидно;

• 3 \iff 4 - из определения смежного класса.

Примеры.

1. $A_n \subseteq S_n$, так как $\forall \sigma \in S_n$, $\forall \tau \in A_n : \sigma \tau \sigma^{-1} \in A_n$.

2.
$$SL_n(\mathbb{R}) \leq GL_N(\mathbb{R})$$
, так как $\forall A \in GL_n(\mathbb{R})$, $\forall B \in SL_n(\mathbb{R}) : \det(ABA^{-1}) = \det B = 1 \Rightarrow ABA^{-1} \in SL_n(\mathbb{R})$.

Утверждение. В абелевой группе любая подгруппа является нормальной.

Упражнение. Докажите, что если |G:H|=2, то $H \le G$ для произвольной группы G и произвольной подгруппы $H \le G$.

Доказательство. Если |G:H|=2, то G разбивается на два непересекающихся левых (правых) смежных класса по H. Очевидно, что один из этих классов в обоих случаях - сама подгруппа H. Тогда $\forall g \in G \setminus H$ группа G разбивается на левые смежные классы H и gH, а также на правые смежные классы H и Hg, откуда gH=Hg. Также очевидно, что $\forall h \in H: hH=H=Hh$. Значит, $\forall g \in G: gH=Hg \Longrightarrow H \unlhd G$.

1.4 Факторгруппа

Утверждение. Пусть G - группа, $H \leq G$. Тогда множество всех смежных классов G по $H: G/H = \{eH, aH, ...\}$ образует группу относительно операции $aH \cdot bH = abH$.

Доказательство.

1. Проверим корректность операции, т.е. $\begin{cases} aH = \tilde{a}H \\ bH = \tilde{b}H \end{cases} \implies abH = \tilde{a}\tilde{b}H.$

Действительно, если $\begin{cases} a = \tilde{a}h_a \\ b = \tilde{b}h_b \end{cases}$ из равенства смежных классов, то:

$$\forall x \in abH \Longrightarrow \exists h \in H : x = abh = \tilde{a}h_a\tilde{b}h_bh = \tilde{a}\tilde{b}h'h_bh \in \tilde{a}\tilde{b}H$$
$$(H \leq G \Longrightarrow Hb = bH \Longrightarrow \exists h' \in H : h_a\tilde{b} = \tilde{b}h')$$

- 2. Проверим, что это группа:
 - Ассоциативность:

$$aH(bH \cdot cH) = aH(bcH) = a(bc)H = (ab)cH = (abH)cH = (aH \cdot bH)cH$$

• Нейтральный элемент:

$$eH = H : aH \cdot eH = aeH = aH = eaH = eH \cdot aH$$

• Обратный элемент:

$$\forall aH \exists a^{-1}H : aH \cdot a^{-1}H = eH = a^{-1}H \cdot aH$$

Определение. Группа G/H называется факторгруппой G по H.

3 aмечание. Если $H \not \supseteq G$, то операция $aH \cdot bH = abH$ некорректна:

$$\langle (12) \rangle \le S_3$$
: $(13)H = (132)H, (23)H = (123)H$;
 $(13)(23)H = (132)H \ne H = (123)(123)H$

Примеры.

- 1. $\mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}_3 = \{0, 1, 2\};$
- 2. $S_n \leq A_n, S_n/A_n \simeq \mathbb{Z}_2$ (по чётности);
- 3. $\mathbb{R} \leq \mathbb{C}, \mathbb{C}/\mathbb{R} \simeq \mathbb{R} \ (bi + \mathbb{R} \mapsto b).$

1.5 Гомоморфизмы групп

Определение. Пусть $(G, \cdot, e), (\tilde{G}, \cdot, \tilde{e})$ - группы. Отображение $\varphi : G \to \tilde{G}$ называется гомоморфизмом групп G и \tilde{G} , если $\forall a, b, \in G$ $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

Замечание. В частности, изоморфизм - биективный гомоморфизм.

Утверждение (Свойства гомоморфизмов).

1.
$$\varphi(e) = \tilde{e}$$
;

2.
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$

Определение. Множество Im $\varphi = \{b \in \tilde{G} \mid \exists a \in G : \varphi(a) = b\}$ - образ гомоморфизма. Множество Ker $\varphi = \{a \in G \mid \varphi(a) = \tilde{e}\}$ - ядро гомоморфизма.

Утверждение 1.

- 1. Im $\varphi \leq \tilde{G}$;
- 2. Ker $\varphi \leq G$.

Доказательство.

- 1. Im $\varphi \subseteq \tilde{G}$
 - $x, y \in \text{Im } \varphi \Rightarrow \exists a, b \in G : x = \varphi(a), y = \varphi(b) \Longrightarrow xy = \varphi(a)\varphi(b) = \varphi(ab) \in \text{Im } \varphi;$
 - $\tilde{e} = \varphi(e) \in \text{Im } \varphi$;
 - $\forall x \in \text{Im } \varphi \ \exists a \in G : \varphi(a) = x \Longrightarrow x^{-1} = (\varphi(a))^{-1} = \varphi(a^{-1}) \in \text{Im } \varphi$

Отсюда Im $\varphi \leq \tilde{G}$.

- 2. Ker $\varphi \subseteq G$
 - $\forall a, b \in \text{Ker } \varphi : \varphi(a) = \varphi(b) = \tilde{e} \Longrightarrow \varphi(ab) = \varphi(a)\varphi(b) = \tilde{e} \Longrightarrow ab \in \text{Ker } \varphi;$
 - $\tilde{e} = \varphi e \Longrightarrow e \in \text{Ker } \varphi;$
 - $\forall a \in \text{Ker } \varphi \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1} = \tilde{e}^{-1} = \tilde{e} \Longrightarrow a^{-1} \in \text{Ker } \varphi$

Отсюда Ker $\varphi \leq G$.

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = \tilde{e} \Rightarrow ghg^{-1} \in \operatorname{Ker} \varphi \Longrightarrow \operatorname{Ker} \varphi \trianglelefteq G.$$

Утверждение 2. $\varphi(a) = \varphi(b) \iff a \operatorname{Ker} \varphi = b \operatorname{Ker} \varphi$. В частности, φ инъективно $\iff \operatorname{Ker} \varphi = \{e\}$.

Доказательство.

$$\varphi(a) = \varphi(b) \Longleftrightarrow \varphi(a)\varphi(b)^{-1} = \tilde{e} \Longleftrightarrow \varphi(ab^{-1}) = \tilde{e} \Longleftrightarrow$$
$$ab^{-1} \in \operatorname{Ker} \varphi \Longleftrightarrow a\operatorname{Ker} \varphi = b\operatorname{Ker} \varphi$$

Пример. $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^* : \varphi(A) = \det A.$ Кег $\varphi = SL_n(\mathbb{R})$, Іт $\varphi = \mathbb{R}^* \Longrightarrow R^* \simeq GL_n(\mathbb{R})/SL_n(\mathbb{R}).$

Теорема (О гомоморфизме). Пусть G, \tilde{G} - группы, $\varphi : G \to \tilde{G}$ - гомоморфизм. Тогда $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$.

Доказательство. Для начала заметим, что Кег $\varphi \unlhd G$, поэтому факторгруппа $G/\mathrm{Ker}\ \varphi$ определена.

Рассмотрим $\psi: g \operatorname{Ker} \varphi \mapsto \varphi(g)$:

- Корректность: По утверждению 2: $g_1 \text{Ker } \varphi = g_2 \text{Ker } \varphi \Longrightarrow \varphi(g_1) = \varphi(g_2);$
- Биективность:

Сюръективность: $\forall b \in \tilde{G} \ \exists a \in G : \varphi(a) = b \Longrightarrow \psi(a \operatorname{Ker} \varphi) = b;$ Инъективность: по утверждению 2: $\psi(a \operatorname{Ker} \varphi) = \psi(b \operatorname{Ker} \varphi) \Longrightarrow \varphi(g_1) = \varphi(g_2) \Longrightarrow a \operatorname{Ker} \varphi = b \operatorname{Ker} \varphi;$

• Сохранение операции:

$$\psi((g_1 \operatorname{Ker} \varphi)(g_2 \operatorname{Ker} \varphi)) = \psi(g_1 g_2 \operatorname{Ker} \varphi) = \varphi(g_1 g_2) =$$
$$= \varphi(g_1) \varphi(g_2) = \psi(g_1 \operatorname{Ker} \varphi) \psi(g_2 \operatorname{Ker} \varphi)$$

Отсюда $\psi:G/\mathrm{Ker}\ arphi o\mathrm{Im}\ arphi$ - изоморфизм.

Пример. Пусть $G = S_n, \tilde{G} = \mathbb{R}^*, \varphi(\sigma) = \operatorname{sgn} \sigma.$

Тогда из теоремы о гомоморфизме:

Im
$$\varphi = \{\pm 1\}$$
, Ker $\varphi = A_n \Longrightarrow S_n/A_n \simeq \{\pm 1\} \simeq \mathbb{Z}_2$

Доказательство.

⇒ - очевидно из биективности;

 \longleftarrow - изоморфизм из теоремы совпадёт с φ .

Следствие 2. $Ecnu |G| < \infty$, $mo |G| = |Ker \varphi| \cdot |Im \varphi|$.

Доказательство. $|G| = |G/\operatorname{Ker} \varphi| \cdot |\operatorname{Ker} \varphi| = |\operatorname{Im} \varphi| \cdot |\operatorname{Ker} \varphi|.$

Утверждение. Пусть G - группа, $H \leq G$. Тогда \exists такая группа \tilde{G} , что \exists сюръективный гомоморфизм $\pi: G \to \tilde{G}$, причём $\ker \pi = H$.

Доказательство. Подходят $\tilde{G}=G/H, \pi:g\mapsto gH.$

Определение. Приведённый выше гомоморфизм $\pi: G \mapsto G/H$ называется естественным (натуральным) гомоморфизмом из G в G/H.

Определение. Эпиморфизм - сюръективный гомоморфизм.

Утверждение. Пусть $\varphi: G \to \tilde{\tilde{G}}$ - произвольный эпиморфизм с ядром H. Тогда \exists изоморфизм $\psi: G/H \to \tilde{\tilde{G}}$ такой, что $\varphi = \psi \circ \pi$, где π - натуральный гомоморфизм из G в G/H.

Доказательство. По теореме о гомоморфизме $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$.

Так как φ - сюръекция, Im $\varphi=\tilde{\tilde{G}}$, также по условию ${\rm Ker}\ \varphi=H.$ Тогда $\psi:G/H\to \tilde{\tilde{G}}$ - изоморфизм, заданный в доказательстве теоремы о гомоморфизме: $\psi:gH\mapsto \varphi(g).$

Взяв этот изоморфизм, получим $\varphi = \psi \circ \pi$ (так как $q \stackrel{\pi}{\mapsto} qH \stackrel{\tau}{\mapsto} \varphi(q)$).

2 Свободные группы

Определение. Тривиальные (групповые) соотношения - соотношения, которые выводятся из аксиом группы (и, соответственно, есть в любой группе).

Построим группу, в которой нет других соотношений.

Определение. Пусть A - множество символов (букв), A^{-1} - множество символов (букв) a^{-1} , где $a \in A$.

Условия на эти множества:

- 1. $\forall a^{-1} \in A^{-1} \Longrightarrow a^{-1} \notin A;$ $\forall a \in A \Longrightarrow a \notin A^{-1};$
- 2. $(a^{-1})^{-1} = a;$ Буквы a, a^{-1} назовём взаимно обратными.

Множество $A^{\pm 1} = A \sqcup A^{-1}$ называется алфавитом.

Слово в алфавите $A^{\pm 1}$ - конечная последовательность букв $X=x_1...x_k$, где $x_i\in A^{\pm 1}$.

Длина слова X (обозначается |X|) - количество букв в X.

Пример. $A = \{a, b\} : X = abaab^{-1} \Rightarrow |X| = 5.$

Определение. Слово $X = x_1...x_k$ - сократимое, если $\exists i \in \overline{1,...,k-1} : x_i = x_{i+1}^{-1}$. Сокращением взаимно обратных букв назовём вычёркивание пары x_i, x_{i+1} из X (получим слово длины |X|-2).

За конечное число сокращений получим слово \tilde{X} , не являющееся сократимым - такое \tilde{X} называется результатом полного сокращения слова X.

Определение. Рассмотрим множество F(A) всех несократимых слов в $A^{\pm 1}$.

Введём бинарную операцию на F(A): пусть $X=x_1...x_k, Y=y_1...y_m$.

Если $x_k \neq y_1^{-1}$, то XY - конкатенация (приписывание) X и Y:

$$XY = x_1...x_k y_1...y_m, |XY| = k + m.$$

Если $x_k = y_1^{-1}$, то XY - результат полного сокращения слова $x_1...x_ky_1...y_m$.

Пример. $(abcda^{-1}b)(b^{-1}ad^{-1}aab) = abcaab$.

Определение. Если |X|=0, то X называется пустым словом (обозначим λ). Пустое слово по определению несократимо и лежит в F(A).

Теорема. F(A) с приведённой выше бинарной операцией - группа.

Доказательство.

1. Ассоциативность:

Пусть
$$X = x_1...x_k, Z = z_1...z_m$$
.

Случай
$$|Y| = 0 \Longrightarrow Y = \lambda$$
 очевиден $(XZ = XZ)$;

Индукция по длине слова Y:

База индукции: $|Y|=1\Longrightarrow Y=a\in A^{\pm 1}$. Индукция по |X|+|Z|:

База внутренней индукции:

$$|X| + |Z| = 0$$
 - очевидно $(a = a)$;

$$|X| + |Z| = 1$$
 - очевидно (одно из слов X, Z пустое);

Шаг внутренней индукции $(k+m-2 \to k+m)$ - рассмотрим случаи:

- $a^{-1} \neq x_k, a^{-1} \neq z_1 : X(YZ) = x_1...x_k a z_1...z_m = (XY)Z;$
- $a^{-1} = x_k, a^{-1} \neq z_1 : X(aZ) = X(az_1...z_m) =$ = результат полного сокращения $x_1...x_{k-1}a^{-1}az_1...z_m =$ = результат полного сокращения $x_1...x_{k-1}z_1...z_m = (Xa)Z$;
- $a^{-1} \neq x_k, a^{-1} = z_1$ аналогично предыдущему;
- $a^{-1} = x_k, a^{-1} = z_1$: пусть $X = X'a^{-1}, Z = a^{-1}Z'$. Тогда: $X(aZ) = X(a(a^{-1}Z')) = XZ' = (X'a^{-1})Z'$ $(Xa)Z = (X'a^{-1}a)Z = X'Z = X'(a^{-1}Z')$ При этом |X'| + |Y'| = k + m 2, то есть $X'(a^{-1}Z') = (X'a^{-1})Z'$ по предположению внутренней индукции.

Во всех случаях $X(aZ)=(Xa)Z\Longrightarrow$ база доказана.

Шаг индукции: Пусть $Y = y_1...y_l$. Тогда:

$$X(YZ) = X(y_1...y_l \cdot Z) = X((y_1...y_{l-1} \cdot y_l)Z) \stackrel{1}{=} X((y_1...y_{l-1}) \cdot (y_lZ)) \stackrel{2}{=}$$

$$\stackrel{2}{=} ((X \cdot y_1...y_{l-1})y_l)Z \stackrel{3}{=} (X \cdot y_1...y_l)Z = (XY)Z$$

- 1, 3 из утверждения базы индукции; 2 по предположению индукции.
- 2. λ нейтральный элемент;
- 3. обратный элемент к $x_1...x_k$ элемент $x_k^{-1}...x_1^{-1}$.

Определение. Построенная группа F(A) называется свободной группой с базисом A. (A также называется свободной порождающей системой группы). Любая группа, изоморфная F(A), также называется свободной.

Утверждение. Пусть $H \leq SL_2(\mathbb{Z}): H = \langle \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} \rangle.$ Тогда $H \simeq F(A)$ с базисом $A = \{a,b\}.$

Доказательство. Без доказательства.

Утверждение. Все базисы свободной группы равномощны.

Доказательство. Без доказательства.

Определение. Ранг свободной группы - мощность её базиса.

3амечание. Заметим, что в F(A) результат умножения определён однозначно \Longrightarrow однозначно определён элемент $x_1 \cdot ... \cdot x_k$, где $x_i \in A^{\pm 1}$.

Тогда если считать слово $x_1...x_k$ результатом умножения $x_1 \cdot ... \cdot x_k$, то можно опускать знак умножения, и в этом смысле работать и с сократимыми словами.

Пример.
$$abb^{-1}ba^{-1}a = a \cdot b \cdot b^{-1} \cdot b \cdot a^{-1} \cdot a = ab \in F(A)$$
.

Теорема 1 (Универсальное свойство свободной группы).

Пусть G - группа, $\{g_i \mid i \in I\} \subset G$ - произвольное множество её элементов. Рассмотрим свободную группу F(A) с базисом $A = \{a_i \mid i \in I\}$.

Тогда отображение $\varphi: a_i \mapsto g_i$ продолжается до гомоморфизма $\varphi: F(A) \to G$, причём единственным образом.

Доказательство. Пусть $W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}$ - несократимое слово из F(A), где $\varepsilon_i = \pm 1, a_{i_j} \in A$. Зададим $\varphi: F(A) \to G$ по правилу $\varphi(W) = g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k}$.

Проверим, что φ - гомоморфизм $(W, \tilde{W} \in F(A), W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}, \tilde{\tilde{W}} = a_{j_1}^{\tau_1}...a_{j_m}^{\tau_m})$:

$$\varphi(W\tilde{W}) = \varphi(a_{i_1}^{\varepsilon_1} ... a_{i_k}^{\varepsilon_k} \cdot a_{j_1}^{\tau_1} ... a_{j_m}^{\tau_m}) = g_{i_1}^{\varepsilon_1} ... g_{i_k}^{\varepsilon_k} \cdot g_{j_1}^{\tau_1} ... g_{j_m}^{\tau_m} = (g_{i_1}^{\varepsilon_1} ... g_{i_k}^{\varepsilon_k}) \cdot (g_{j_1}^{\tau_1} ... g_{j_m}^{\tau_m}) = \varphi(W) \varphi(\tilde{W})$$

Единственность такого гомоморфизма очевидна:

$$\varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})=\varphi(a_{i_1})^{\varepsilon_1}...\varphi(a_{i_k})^{\varepsilon_k}=g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k}$$
 - определено однозначно. \square

Пример. (несвободной группы)

 $S_3 = \langle (12), (123) \rangle : \forall g \in S_3 \ g^6 = id$. Попытаемся продолжить до гомоморфизма $S_3 \to Q_8$ отображение $\varphi : (12) \mapsto i, (123) \mapsto j$:

$$-1=i^2=arphi((12))^2=arphi((12)^2)=arphi(id)=1$$
 - противоречие.

Следствие 1. Пусть G - группа, $M = \{g_i \mid i \in I\}$ - порождающее множество G, F(A) - свободная группа c базисом $A = \{a_i \mid i \in I\}$.

Тогда $\exists !$ сюръективный гомоморфизм $\varphi: F(A) \to G$ такой, что $\forall i \in I: \varphi(a_i) = g_i.$

Доказательства теоремы сюръективен - это следует из того, что множество $\{g_i \mid i \in I\}$ порождает группу G (каждый элемент представим как $g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k} = \varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})$).

Следствие 2. Любая группа G изоморфна факторгруппе некоторой свободной группы по некоторой её нормальной подгруппе.

Доказательство. Пусть $\varphi: F(A) \to G$ - гомоморфизм из следствия 1. Так как $\ker \varphi \unlhd F(A)$, из теоремы о гомоморфизме $G = \operatorname{Im} \varphi \simeq F(A)/\operatorname{Ker} \varphi$. \square

Определение. Сюръективный гомоморфизм $\varphi: F(A) \to G$ - из следствия 1 называется копредставлением группы G.

3 aмечание. Копредставление зависит от выбора порождающего множества M.

2.1 Задание группы порождающими и определяющими соотношениями

По следствию 2: $G \simeq F(A)/N$, где $N \unlhd F(A)$. Отсюда задание группы G сводится к заданию A и N.

N - нормальная $\Longrightarrow \forall f \in F(A), \forall h \in N : fhf^{-1} \in N$.

Определение. Пусть $\mathcal{R} \subseteq F(A)$. Нормальным замыканием множества \mathcal{R} в группе F(A) называется наименьшая (по включению) нормальная подгруппа, содержащая \mathcal{R} . Обозначается $\langle\langle\mathcal{R}\rangle\rangle^{F(A)}$

Утверждение.

$$\langle \langle \mathcal{R} \rangle \rangle^{F(A)} = \{ (f_1 r_1^{\varepsilon_1} f_1^{-1}) ... (f_k r_k^{\varepsilon_k} f_k^{-1}) \mid r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i = \pm 1 \}$$

Доказательство.

Пусть $\{(f_1r_1^{\varepsilon_1}f_1^{-1})...(f_kr_k^{\varepsilon_k}f_k^{-1}) \mid r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i = \pm 1\} = H$. Тогда: $\langle \langle \mathcal{R} \rangle \rangle^{F(A)} \leq F(A) \Longrightarrow \forall r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i \in \{\pm 1\} : f_ir_i^{\varepsilon_i}f_i^{-1} \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)} \Longrightarrow H \subseteq \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$. Осталось показать, что $H \leq F(A)$:

$$\forall h \in H, g \in F(A) : ghg^{-1} = g(f_1r_1^{\varepsilon_1}f_1^{-1})...(f_kr_k^{\varepsilon_k}f_k^{-1})g^{-1} =$$

$$= ((gf_1)r_1^{\varepsilon_1}(f_1^{-1}g^{-1}))...((gf_k)r_k^{\varepsilon_k}(f_k^{-1}g^{-1})) =$$

$$= ((gf_1)r_1^{\varepsilon_1}(gf_1)^{-1})...((gf_k)r_k^{\varepsilon_k}(gf_k)^{-1}) \in H$$

Отсюда минимальная группа, содержащая \mathcal{R} , в точности равна H.

Утверждение. Любую нормальную подгруппу $N \leq F(A)$ можно задать как $N = \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$ для подходящего $\mathcal{R} \subset F(A)$.

Доказательство. Очевидно, подойдёт $\mathcal{R}=N$.

Элементарные преобразования над словами в F(A):

(под словами в F(A) подразумеваются любые произведения букв, а не только элементы F(A))

- ЭП1: $W=W_1a^{\varepsilon}a^{-\varepsilon}W_2\mapsto \tilde{W}=W_1W_2$, где $a\in A, \varepsilon=\pm 1$;
- ЭП2: $W=W_1r^{\varepsilon}W_2\mapsto \tilde{W}=W_1W_2$, где $r\in\mathcal{R}, \varepsilon=\pm 1$;
- $\Theta\Pi1'$ обратное к $\Theta\Pi1$;
- $\Theta\Pi2'$ обратное к $\Theta\Pi2$;

Определение. Назовём слова W и \tilde{W} \mathcal{R} -эквивалентными, если от W можно с помощью $\Im\Pi$ перейти к \tilde{W} .

Утверждение. *R-эквивалентность* - отношение эквивалентности.

Доказательство.

- Рефлексивность очевидно;
- Симметричность следует из обратимости каждого ЭП;
- Транзитивность очевидно;

Теорема 2. Следующие условия эквивалентны:

- 1. $W \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$;
- 2. W \mathcal{R} -эквивалентно пустому слову λ ;
- 3. Если для произвольной группы G с порождающим множеством $M = \{g_i \mid i \in I\}$ (т.е. заданным копредставлением $\varphi : F(A) \to G$) верно, что $\forall r \in \mathcal{R} : \varphi(r) = 1$ в G, то $\varphi(W) = 1$ в G.

Доказательство.

• $1 \Longrightarrow 2: W \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)} \Longrightarrow W = (f_1 r_1^{\varepsilon_1} f_1^{-1})...(f_k r_k^{\varepsilon_k} f_k^{-1}) \Longrightarrow_{\Im \Pi_2} W \sim \tilde{W} = (f_1 f_1^{-1})...(f_k f_k^{-1}) \Longrightarrow_{\Im \Pi_2} \lambda;$

- 2 \Longrightarrow 3 Пусть $\varphi: F(A) \to G$ взят из условия теоремы. Покажем, что при ЭП образ слова не меняется:
 - 1. $\varphi(W_1 a^{\varepsilon} a^{-\varepsilon} W_2) = \varphi(W_1) \varphi(a)^{\varepsilon} \varphi(a)^{-\varepsilon} \varphi(W_2) = \varphi(W_1) \varphi(W_2) = \varphi(W_1 W_2);$

2.
$$\varphi(W_1 r^{\varepsilon} W_2) = \varphi(W_1) \varphi(r)^{\varepsilon} \varphi(W_2) = \varphi(W_1) \cdot 1^{\varepsilon} \cdot \varphi(W_2) = \varphi(W_1 W_2);$$

При ЭП, обратных этим, образ слова аналогично не изменяется. Тогда если $W \underset{\ni\Pi}{\sim} \lambda$, то $\varphi(W) = \varphi(\lambda) = 1$.

• 3 \Longrightarrow 1 : $\forall r \in \mathcal{R} : \varphi(r) = 1 \Longrightarrow r \in \text{Ker } \varphi; \ \varphi(W) = 1 \Longrightarrow W \in \text{Ker } \varphi.$ Рассмотрим в качестве G группу F(A)/N, где $N = \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$, а в качестве φ - π (естественный гомоморфизм $F(A) \to F(A)/N$). $r \in N \Longrightarrow \pi(r) = 1$. Тогда по условию 3: $\pi(W) = 1 \Longrightarrow W \in \text{Ker } \varphi = N$.

Определение. Если $W \in F(A)$ удовлетворяет любому из условий теоремы 2, то говорят, что соотношение W=1 следует из соотношений $\{r=1 \mid r \in \mathcal{R}\}$ или является следствием соотношений \mathcal{R} .

Определение. Рассмотрим копредставление произвольной группы G, т.е. φ : $F(A) \to G$, где $A = \{a_i \mid i \in I\}$. Пусть слово $W \in F(A)(W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})$ такое, что $\varphi(W) = g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k} = 1$ в G.

Тогда говорят о соотношении W=1.

(Для упрощения записи вместо g_i пишут a_i).

Определение. Множество $\mathcal{R} \subset F(A)$ называется определяющим множеством соотношений группы G, если любое соотношение группы G следует из \mathcal{R} . При этом элементы \mathcal{R} называются определяющими соотношениями G. Обозначается $G = \langle A \mid \mathcal{R} \rangle$ (данная запись также называется копредставлением G).

Примеры.

- 1. $\mathbb{Z}_3 = \langle a | a^3 = 1 \rangle; a^{12} = 1$ следствие;
- 2. $V_4 = \langle a, b | a^2 = b^2 = 1, ab = ba \rangle; (ab)^2 = 1$ следствие.

Теорема (Теорема Дика).

Пусть G - группа, заданная копредставлением $\langle A \mid R \rangle$, где $A = \{a_i \mid i \in I\}$. Пусть H - произвольная группа, $\{h_i \mid i \in I\} \subset H$ - произвольное множество её элементов.

Тогда отображение φ на порождающих $\varphi: a_i \mapsto h_i \ \forall i \in I$ продолжается до

гомоморфизма $\varphi: G \to H$ тогда и только тогда, когда $\forall r \in \mathcal{R}: \ \varphi(r) = 1 \ в$ H.

Доказательство. Если $\varphi: a_i \mapsto h_i$ и φ - гомоморфизм, то должно выполняться $\varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}) = h_{i_1}^{\varepsilon_1}...h_{i_k}^{\varepsilon_k}$. Если это отображение корректно, то очевидно, что оно является искомым гомоморфизмом. Покажем корректность:

Пусть $W = \tilde{W}$ в G. Тогда $\tilde{W}W^{-1} = 1$ в $G \Longrightarrow \tilde{W}W^{-1} \in \langle\langle\mathcal{R}\rangle\rangle^{F(A)}$ (так как по определению копредставления соотношение $\tilde{W}^{-1}W = 1$ следует из R).

Отсюда $\tilde{W}W^{-1} \sim \lambda \Longrightarrow W \sim \tilde{W}W^{-1}W = \tilde{W}$. Из размышлений доказательства перехода $2 \Longrightarrow 3$ теоремы 2 видно, что из условия $\forall r \in \mathcal{R}: \varphi(r) = 1$ в H следует, что образ не изменяется при $\Im\Pi$, то есть $\varphi(W) = \varphi(\tilde{W})$, т.е. отображение корректно.

3 Прямое произведение групп

3.1 Внешнее прямое произведение

Пусть $G_1,...,G_k$ - группы. $G=G_1\times...\times G_k=\{(g_1,...,g_k)|g_i\in G_i\}.$ $(g_1,...,g_k)\cdot (\tilde{g}_1,...,\tilde{g}_k)=(g_1\tilde{g}_1,...,g_k\tilde{g}_k)$ $(g_i\tilde{g}_i$ перемножаются по правилу бинарной операции на G_i).

Утверждение. (G,\cdot) - rpynna.

Доказательство.

- 1. $(a_1, ..., a_k)((b_1, ..., b_k)(c_1, ..., c_k)) = (a_1(b_1c_1), ..., a_k(b_kc_k)) =$ = $((a_1b_1)c_1, ..., (a_kb_k)c_k) = ((a_1, ..., a_k)(b_1, ..., b_k))(c_1, ..., c_k)$
- 2. Нейтральный элемент $(e_1,...,e_k)$ $(e_i$ нейтральный в $G_i)$
- 3. $(g_1, ..., g_k)^{-1} = (g_1^{-1}, ..., g_k^{-1})$

Определение. Данная группа (G, \cdot) называется прямым произведением групп $G_1, ..., G_k$. Обозначается $G = G_1 \times ... \times G_k$; G_i называются множителями. В аддитивной терминологии те же рассуждения определяют прямую сумму $G = G_1 \oplus ... \oplus G_k$, где G_i - слагаемые.

Примеры.

- 1. $G_1 = \mathbb{Z}_3, G_2 = S_3, G = G_1 \times G_2.$ $(1, (12)) \cdot (2, (13)) = (1 + 2, (12)(13)) = (0, (132)).$
- 2. $D_n(\mathbb{F}) \simeq \underbrace{\mathbb{F}^* \times ... \times \mathbb{F}^*}_n$ ($D_n(\mathbb{F})$ группа диагональных матриц порядка n). **Утверждение.**
 - 1. Если (m,n)=1, то $\mathbb{Z}_m \times \mathbb{Z}_n \simeq Z_{nm}$ циклическая группа;
 - 2. Если $(m,n) \neq 1$, то $\mathbb{Z}_m \times \mathbb{Z}_n$ не циклическая.

Доказательство.

1. Обозначим за $[a]_s \in \mathbb{Z}_s$ класс вычетов по модудю s, содержащий a. Рассмотрим отображение $\varphi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ такое, что $\varphi : [a]_{mn} \mapsto ([a]_m, [a]_n)$. Очевидно, что это гомоморфизм:

$$\varphi([a]_{mn} \cdot [b]_{mn}) = ([ab]_m, [ab]_n) = ([a]_m, [a]_n)([b]_m, [b]_n) = \varphi([a]_{mn})\varphi([b]_{mn})$$

Найдём Ker φ :

$$\varphi([a]_{mn}) = ([0]_m, [0]_n) \Longleftrightarrow \begin{cases} m \mid a \\ n \mid a \end{cases} \xrightarrow{(m,n)=1} mn \mid a \Longrightarrow \operatorname{Ker} \varphi = \{[0]_{mn}\}$$

По теореме о гомоморфизме Im $\varphi = \mathbb{Z}_{mn}/\mathrm{Ker}\ \varphi = \mathbb{Z}_{mn} \Longrightarrow |\mathrm{Im}\ \varphi| = mn$. Так как $|\mathbb{Z}_m \times \mathbb{Z}_n| = mn$ и Im $\varphi \leq \mathbb{Z}_m \times \mathbb{Z}_n$, Im $\varphi = \mathbb{Z}_m \times \mathbb{Z}_n$. Отсюда φ - биекция (инъекция из $\mathrm{Ker}\ \varphi = \{e\}$), т.е. φ -изоморфизм.

2. Пусть $(m,n)=d\neq 1$ $(m=dk_1,n=dk_2)$. Тогда $\forall g=(g_1,g_2)\in\mathbb{Z}_m\times\mathbb{Z}_n$: $(g_1,g_2)^{dk_1k_2}=(g_1^{dk_1k_2},g_2^{dk_1k_2})=(0^{k_2},0^{k_1})=(0,0)$

Отсюда ord $(g_1,g_2)=dk_1k_2=\frac{mn}{d}< mn=|\mathbb{Z}_m\times\mathbb{Z}_n|$. Значит, $\mathbb{Z}_m\times\mathbb{Z}_n$ не является циклической.

Следствие. Пусть $n = p_1^{s_1}...p_k^{s_k}$ - разложение на простые множители. Тогда $\mathbb{Z}_n = \mathbb{Z}_{p_1^{s_1}} \times ... \times \mathbb{Z}_{p_k^{s_k}}.$

Доказательство. Очевидно следует из теоремы.

Следствие. (Китайская теорема об остатках) Если числа $a_1,...,a_n$ попарно взаимно просты, то для любых целых $r_1,...,r_n$ ($0 \le r_i < n$) $\exists !N$ ($0 \le N < a_1 \cdot ... \cdot a_n$) такой, что $N \equiv r_i \pmod{a_i}$

Доказательство. Из теоремы следует, что $\mathbb{Z}_{a_1} \times ... \times \mathbb{Z}_{a_n} \simeq \mathbb{Z}_a \ (a = a_1 \cdot ... \cdot a_n).$ Это означает, что набор остатков $(r_1, ..., r_n) \in \mathbb{Z}_{a_1} \times ... \times \mathbb{Z}_{a_n}$ изоморфизм из теоремы однозначно переводит в элемент $N \in \mathbb{Z}_a$ такой, что $r_i = [N]_{a_i}$, что и требовалось.

3.2 Внутреннее прямое произведение

Определение. Пусть G - группа, $H_1, ..., H_k \leq G$.

G раскладывается в прямое произведение подгрупп $H_1, ..., H_k$, если:

- 1. $\forall g \in G \; \exists ! \; h_i \in H_i : g = h_1...h_k;$
- 2. $\forall i \neq j : \forall h_i \in H_i, h_j \in H_j, h_i h_j = h_j h_i$.

Обозначается $G = H_1 \times ... \times H_k$ ($G = H_1 \oplus ... \oplus H_k$ в аддитивной терминологии).

3амечание. Из определения следует, что $(h_1...h_k)(\tilde{h}_1...\tilde{h}_k) = (h_1\tilde{h}_1)...(h_k\tilde{h}_k).$

Определение. Пусть $H, N \leq G$. Обозначим $NH = \{nh | n \in N, h \in H\}$

Утверждение. Пусть $N \unlhd G, H \subseteq G$. Тогда NH - подгруппа в G, причём NH = HN.

Доказательство. Рассмотрим $(n_1h_1)(n_2h_2) = \underbrace{n_1(h_1n_2h_1^{-1})h_1h_2}_{=\tilde{n}} = \tilde{n}\tilde{h} \in NH$. $e \in N \cap H \Longrightarrow e \cdot e = e \in NH$. $(nh)^{-1} = h^{-1}n^{-1} = (h^{-1}n^{-1}h)h \in NH$.

Отсюда NH - подгруппа. Покажем, что NH = HN:

$$\forall nh\in NH:\ nh=(hh^{-1})nh=h(h^{-1}nh)\in HN\Longrightarrow NH\subseteq HN$$

$$\forall hn\in HN:\ hn=hn(h^{-1}h)=(hnh^{-1})h\in NH\Longrightarrow HN\subseteq NH$$
 Отсюда $NH=HN$.

Лемма 1. Пусть $H, N \subseteq G, H \cap N = \{e\}$. Тогда $\forall h \in H, n \in N \ nh = hn$.

Доказательство. Рассмотрим выражение $(hn)(nh)^{-1} = hnh^{-1}n^{-1}$:

$$hnh^{-1}n^{-1} = h(nh^{-1}n^{-1}) \in H; \quad hnh^{-1}n^{-1} = (hnh^{-1})n^{-1} \in N$$

Значит,
$$hnh^{-1}n^{-1}\in H\cap N=\{e\}\Longrightarrow (hn)(nh)^{-1}=e\Longrightarrow hn=nh$$

Теорема 1. Пусть
$$H_1, H_2 \leq G$$
. Тогда $G = H_1 \times H_2 \iff \begin{cases} (1) \ H_1, H_2 \leq G \\ (2) \ H_1 \cap H_2 = \{e\} \end{cases}$ (3) $G = H_1 H_2$

Доказательство.

 \Longrightarrow : Пусть $G = H_1 \times H_2$.

(3) - очевидно из пункта 1 определения.

(1):
$$\forall h_1 \in H_1, g \in G: g = \tilde{h}_1 \tilde{h}_2 \ (\tilde{h}_1 \in H_1, \tilde{h}_2 \in H_2) \Longrightarrow$$

$$gh_1 g^{-1} = \tilde{h}_1 (\tilde{h}_2 h_1 \tilde{h}_2^{-1}) \tilde{h}_1^{-1} = \tilde{h}_1 h_1 \tilde{h}_1^{-1} \in H_1$$

Отсюда $H_1 \leq G$ (аналогично $H_2 \leq G$).

(2): Пусть $\exists h \in H_1 \cap H_2$. Тогда h = he = eh - два разложения на произведение

элементов подгрупп. Они совпадают только в случае h = e, т.е. $H_1 \cap H_2 = \{e\}$. \iff : Пусть даны условия (1) - (3).

По лемме 1 из (1), (2) очевидно следует пункт 2 определения.

Из (3): $\forall g \in G \ \exists h_i \in H_i : g = h_1 h_2$.

Допустим, что это разложение не единственно, т.е. $h_1h_2 = \tilde{h}_1\tilde{h}_2$.

Тогда
$$\tilde{h}_1^{-1}h_1=\tilde{h}_2h_2^{-1}$$
, а так как $H_1\cap H_2=\{e\}$, имеем $h_1=\tilde{h}_1,h_2=\tilde{h}_2$.

Теорема 2. Пусть $H_1, ..., H_k \leq G$.

Тогда
$$G = H_1 \times ... \times H_k \iff \begin{cases} (1) \ H_1, ..., H_k \le G \\ (2) \ \forall i \ H_i \cap \langle H_j \mid j \ne i \rangle = \{e\} \end{cases}$$

$$(3) \ G = H_1...H_k$$

Доказательство.

 \Longrightarrow : Пусть $G = H_1 \times ... \times H_k$.

(3) - очевидно из пункта 1 определения.

(1): $\forall h_i \in H_i, g \in G: g = \tilde{h}_1...\tilde{h}_k \ (\tilde{h}_i \in H_i) \Longrightarrow$

$$gh_1g^{-1} = (\tilde{h}_1...\tilde{h}_k)h_i(\tilde{h}_k^{-1}...\tilde{h}_1^{-1}) \underset{(2 \text{ M3 off})}{=} \tilde{h}_ih_i\tilde{h}_i^{-1} \in H_i$$

Отсюда $H_i \subseteq G$.

(2): Пусть $\exists h \in H_i \cap \langle H_j \mid j \neq i \rangle$. Тогда h = he = eh - два разложения на произведение элементов подгрупп. Они совпадают только в случае h = e, т.е. $H_i \cap \langle H_j \mid j \neq i \rangle = \{e\}$.

=: Пусть даны условия (1) - (3).

По лемме 1 из (1), (2) очевидно следует пункт 2 определения.

Из (3): $\forall g \in G \ \exists h_i \in H_i : g = h_1...h_k$.

Допустим, что это разложение не единственно, т.е. $h_1...h_k = \tilde{h}_1...\tilde{h}_k$.

Тогда $\forall i: \tilde{h}_i^{-1}h_i = \prod\limits_{j \neq i} \tilde{h}_j h_j^{-1}$, а так как $H_i \cap \langle H_j \mid j \neq i \rangle = \{e\}$, имеем $h_i = \tilde{h}_i$. \square

Примеры.

1.
$$V_4 = \{e, a, b, c\} = \{e, a\} \times \{e, b\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2;$$

2.
$$\mathbb{C}^* = \mathbb{R}_+ \times U \ (z = r \cdot e^{iy}).$$

3. \mathbb{Z} не раскладывается в произведение нетривиальных подгрупп. Предположим противное, т.е. $\mathbb{Z} = H_1 \times ... \times H_m$. Подгруппы \mathbb{Z} имеют вид $k\mathbb{Z}$, т.е. $\mathbb{Z} = k_1\mathbb{Z} \times ... \times k_m\mathbb{Z}, k_i \neq 0$. Но тогда $k_1k_2 \in H_1 \cap H_2$ и $k_1k_2 \neq 0$, что противоречит теореме 2.

3.3 Связь между внутренним и внешним прямым произведением

Теорема 3.

- 1. Если группа G раскладывается в прямое произведение подгрупп $H_1, ..., H_k$, то G изоморфна прямому произведению групп $G_1, ..., G_k$, где $\forall i \ G_i \simeq H_i$;
- 2. Если группа G изоморфна прямому произведению групп $G_1, ..., G_k$, то $\exists H_i \leq G$ такие, что $G_i \simeq H_i$ и G раскладывается в прямое произведение $H_1, ..., H_k$.

Доказательство.

- 1. Имеем: $H_i \leq G, G = H_1 \times ... \times H_k$. Рассмотрим отображение $\varphi: G \to G_1 \times ... \times G_k$, где $G_i = H_i$, такое, что $\forall g = h_1 ... h_k \in G \ \varphi(h_1 ... h_k) \mapsto (h_1, ..., h_k)$. Это изоморфизм:
 - Биекция очевидна;
 - Гомоморфизм:

$$\varphi((h_1...h_k) \cdot (h'_1...h'_k)) = \varphi(h_1h'_1...h_kh'_k) = (h_1h'_1, ..., h_kh'_k) =$$

$$= (h_1, ..., h_k) \cdot (h'_1, ..., h'_k) = \varphi(h_1...h_k) \cdot \varphi(h'_1...h'_k)$$

2. Имеем: $G_1,...,G_k$ - группы, $G=\{(g_1,...,g_k)\mid g_i\in G_i\}$. Тогда $H_i=\{(e,...,e,g_i,e,...,e)\mid g_i\in G_i\}$ очевидно является подгруппой G, изоморфной G_i .

Покажем, что $G = H_1 \times ... \times H_k$:

- $\forall g = (g_1, ..., g_k) \in G \exists ! h_i = (e, ..., e, g_i, e, ..., e) : g = h_1...h_k;$
- $\forall i \neq j, h_i = ((e, ..., e, a_i, e, ..., e)) \in H_i, h_j = (e, ..., e, b_j, e, ..., e) \in H_j$:

$$h_i h_j = (e, ..., e, a_i, e, ..., e, b_j, e, ..., e) = h_j h_i$$

Теорема 4. Пусть $H_i \leq G, G = H_1 \times ... \times H_k, N_i \leq H_i$. Тогда:

1.
$$N_1 \times ... \times N_k \leq G$$
;

2.
$$G/(N_1 \times ... \times N_k) \simeq (H_1/N_1) \times ... \times (H_k/N_k)$$
.

Доказательство.

1. Очевидно, что $N_1 \times ... \times N_k = N \leq G$. Покажем нормальность: $\forall g = h_1 ... h_k \in G, n = n_1 ... n_k \in N$

$$gng^{-1} = (h_1...h_k)(n_1...n_k)(h_k^{-1}...h_1^{-1}) \underset{(n_i \in H_i)}{=} (h_1n_1h_1^{-1})...(h_kn_kh_k^{-1}) \in N$$

2. Рассмотрим гомоморфизм $\varphi: G \to (H_1/N_1) \times ... \times (H_k/N_k)$ такой, что $\varphi: h_1...h_k \mapsto (h_1N_1,...,h_kN_k)$. Это сюръективный гомоморфизм, причём $\operatorname{Ker} \varphi = N_1 \times ... \times N_k$. Отсюда по теореме о гомоморфизме получаем необходимое утверждение.

Следствие. Если $G = H_1 \times H_2$, то $G/H_1 \simeq H_2, G/H_2 \simeq H_1$.

4 Конечнопорождённые абелевы группы

Замечание. В данном разделе используется аддитивная терминология: (A, +) - абелева группа, $\forall a \in A, n \in \mathbb{Z}$:

$$na = \begin{cases} \underbrace{a + \dots + a, \ n > 0;}_{n} \\ 0, \ a = 0; \\ \underbrace{(-a) + \dots + (-a), \ n < 0}_{|n|} \end{cases}$$

Свойства. $(\forall a,b,\in A,\ n,m,\in\overline{\mathbb{Z})}$

1.
$$(n+m)a = na + ma;$$

2.
$$n(a+b) = na + nb$$
;

3.
$$(nm)a = n(ma)$$

Доказательство. Непосредственный разбор случаев - знаков m, n.

Определение. (Целочисленнной) линейной комбинацией элементов $a_1, ..., a_k \in A$ называется выражение $n_1a_1 + ... + n_ka_k \ (n_i \in \mathbb{Z})$.

Если элемент $b \in A$ равен некоторой линейной комбинации $a_1, ..., a_k \in A$, то говорят, что b выражается через $a_1, ..., a_k$.

Определение. Система элементов $a_1, ..., a_k$ называется линейно зависимой, если $\exists n_1, ..., n_k \in \mathbb{Z}$, не все равные 0, такие, что $n_1a_1 + ... + n_ka_k = 0$. В противном случае система $a_1, ..., a_k$ называется линейно независимой.

Пример. $A = \mathbb{Z}_3 \oplus \mathbb{Z}_4$. Система из одного элемента (1,1) - линейно зависима: $12 \cdot (1,1) = (0,0)$

Определение. Пусть A - абелева группа, $a_1, ..., a_k \in A$. Будем обозначать $\langle a_1, ..., a_k \rangle = \{n_1 a_1 + ... + n_k a_k \mid n_i \in \mathbb{Z}\}$ (для бесконечного числа a_k - всевозможные конечные линейные комбинации)

Утверждение. $\langle a_1,...,a_k \rangle$ - наименьшая подгруппа A, содержащая $a_1,...,a_k$.

Доказательство. Пусть H - наименьшая подгруппа, содержащая $a_1,...,a_k$. Тогда с одной стороны $\langle a_1,...,a_k \rangle \subseteq H$ по определению подгруппы, а с другой стороны $\langle a_1,...,a_k \rangle$, очевидно, подгруппа в A. Значит, $H = \langle a_1,...,a_k \rangle$

Определение. Если $A = \langle a_1, ..., a_k \rangle$, то говорят, что A порождается $a_1, ..., a_k$. Элементы $a_1, ..., a_k$ называются порождающими (образующими).

Определение. Если \exists конечное множество элементов $a_1, ..., a_k \in A$, что $A = \langle a_1, ..., a_k \rangle$, то A называется конечнопорождённой.

Примеры.

- 1. ℚ не конечнопорождённая;
- 2. U (комплексные корни из 1) не конечнопорождённая;
- 3. \mathbb{Z}, \mathbb{Z}_n конечнопорождённые (циклические);
- 4. $\mathbb{Z} \oplus \mathbb{Z}$ конечнопорождённая, не циклическая (примеры систем порождающих (1,0),(0,1) или (3,0),(4,5),(0,1))

Определение. Линейно независимая система порождающих группы A называется базисом (или свободной системой порождающих).

Утверждение. (не было в лекции)

 $a_1,...,a_k$ - базис \iff любой элемент A выражается через $a_1,...,a_k$ единственным образом.

Доказательство.

⇒: Из определения базиса любой элемент имеет разложение по базису.

$$\alpha_1 e_1 + \dots + \alpha_n e_n = a = \alpha'_1 e_1 + \dots + \alpha'_n e_n \Longrightarrow (\alpha_1 - \alpha'_1) e_1 + \dots + (\alpha_n - \alpha'_n) e_n = 0$$

Отсюда из линейной независимости $\alpha_i=\alpha_i'\ \forall i,$ т.е. разложение единственно.

 \iff : Любой элемент $a \in A$ имеет разложение по $a_1, ..., a_n$ - система $a_1, ..., a_n$ порождает A. Разложение любого элемента единственно $\implies 0$ имеет только тривиальное разложение $\implies a_1, ..., a_n$ линейно независимы.

Пример. $\mathbb{Z}_3 \oplus \mathbb{Z}_4$ - не имеет базиса: любая система элементов в ней линейно зависима $(12 \cdot a = 0 \ \forall a \in A)$.

Определение. Конечнопорождённая абелева группа, имеющая базис, называется свободной абелевой группой. По определению $A = \{0\}$ - свободная абелева группа.

Пример. $\mathbb{Z}^n = \underbrace{\mathbb{Z} \oplus ... \oplus \mathbb{Z}}_n$ - свободная абелева группа;

Базис - (1,0,...0),(0,1,...,0),...,(0,0,...,1). Проверим это:

1. Линейная независимость:

$$\alpha_1 e_1 + ... + \alpha_n e_n = 0 \Longrightarrow (\alpha_1, ..., \alpha_n) = (0, ..., 0) \Longrightarrow \alpha_i = 0 \ \forall i$$

2. Порождаемость группы:

$$\forall a \in \mathbb{Z}_n : a = (a_1, ..., a_n) = a_1 e_1 + ... + a_n e_n$$

Лемма. (Основная лемма о линейной зависимости для абелевых групп) Если абелева группа A обладает базисом из n элементов, то любая система из m > n элементов линейно зависима.

Доказательство. Пусть $e_1, ..., e_n$ - базис группы $A, a_1, ..., a_m \in A$ - произвольные элементы. Тогда из определения базиса:

$$\begin{cases} a_1 = \alpha_{11}e_1 + \dots + \alpha_{1n}e_n \longrightarrow (\alpha_{11}, \dots, \alpha_{1n}) \\ \vdots \\ a_m = \alpha_{m1}e_1 + \dots + \alpha_{mn}e_n \longrightarrow (\alpha_{m1}, \dots, \alpha_{mn}) \end{cases}$$

Строки $\overline{\alpha}_i = (\alpha_{i1}, ..., \alpha_{in})$ можно рассматривать как векторы из пр-ва \mathbb{Q}^n над \mathbb{Q} . Так как m > n, по ОЛЛЗ для векторных пространств система $\overline{\alpha}_1, ..., \overline{\alpha}_m$ линейно зависима, т.е. $\exists \lambda_1, ..., \lambda_m \in \mathbb{Q}$, не все равные нулю, что $\lambda_1 \overline{\alpha}_1 + ... + \lambda_m \overline{\alpha}_m = 0$. Тогда если d - НОК знаменателей ненулевых λ_i , то $(d\lambda_1)\overline{\alpha}_1 + ... + (d\lambda_m)\overline{\alpha}_m = 0$ - нетривиальная целочисленная линейная комбинация, равная нулю.

Тогда
$$(d\lambda_1)a_1 + ... + (d\lambda_m)a_m = 0$$
, т.е. $a_1, ..., a_m$ линейно зависимы.

Теорема 1. Все базисы свободной абелевой группы A равномощны.

Доказательство. Очевидно следует из ОЛЛЗ для абелевых групп.

Определение. Число элементов в базисе свободной абелевой группы A называется рангом группы A. Обозначается $\mathrm{rk}\ A$. По определению $A=\{0\}\Longrightarrow \mathrm{rk}\ A=0$.

Теорема 2. Все свободные абелевы группы ранга n изоморфны между собой (в частности, изоморфны \mathbb{Z}^n).

Доказательство.

Пусть A - свободная абелева группа, rk $A=n,\ e_1,...,e_n$ - базис. Рассмотрим отображение $\varphi:A\to\mathbb{Z}^n$ такое, что $\forall a=\alpha_1e_1+...+\alpha_ne_n\in A\ \varphi(a)=(\alpha_1,...,\alpha_n)$. Покажем, что φ - изоморфизм:

- 1. Биекция следует из единственности разложения по базису;
- 2. Гомоморфизм: пусть $a = \alpha_1 e_1 + ... + \alpha_n e_n, b = \beta_1 e_1 + ... + \beta_n e_n$. Тогда:

$$\varphi(a+b) = \varphi((\alpha_1 + \beta_1)e_1 + ... + (\alpha_n + \beta_n)e_n) = ((\alpha_1 + \beta_1), ..., (\alpha_n + \beta_n)) =$$

$$= (\alpha_1, ..., \alpha_n) + (\beta_1, ..., \beta_n) = \varphi(a) + \varphi(b)$$

Отсюда $A \simeq \mathbb{Z}^n$.

Если rk
$$A=\operatorname{rk} B=n$$
, то $A\simeq \mathbb{Z}^n\simeq B\Longrightarrow A\simeq B$.

Теорема 3. Любая подгруппа B свободной абелевой группы A ранга n является свободной абелевой, причём rk $B \leq n$.

База:
$$n = 1 \Longrightarrow A \simeq \mathbb{Z} \Longrightarrow A = \langle e \rangle$$
.

Знаем, что любая подгруппа циклической группы - циклическая.

Пусть $B = \langle ke \rangle, k \in \mathbb{N} \cup \{0\}$. Тогда:

$$k = 0 \Longrightarrow B = \{0\} \Longrightarrow \operatorname{rk} B = 0 < 1 = \operatorname{rk} A$$

$$k \neq 0 \Longrightarrow B = \langle ke \rangle \simeq \mathbb{Z} \Longrightarrow \operatorname{rk} B = 1 = \operatorname{rk} A$$

Шаг: пусть $e_1,...,e_n$ - базис свободной группы A.

Рассмотрим $\tilde{A}=\langle e_1,...,e_{n-1}\rangle\leq A$ - свободная абелева ранга n-1.

Рассмотрим $\tilde{B}=B\cap \tilde{A}$ - подгруппу B в \tilde{A} . По предположению индукции \tilde{B} - свободная абелева, причём rk $\tilde{B}\leqslant$ rk $\tilde{A}=n-1$.

Если $B = \tilde{B}$, то теорема доказана.

Иначе рассмотрим гомоморфизм (проекцию на $\langle e_n \rangle$)

$$\pi: A \to \mathbb{Z}: \forall a = \alpha_1 e_1 + ... + \alpha_n e_n \in A \ \pi(a) = \alpha_n \ (\text{Ker } \pi = \tilde{A}, \text{Im } \pi = \mathbb{Z}).$$

Знаем, что $\pi(B)$ - подгруппа в $\mathbb{Z} \Longrightarrow \pi(B) = \langle k \rangle \ (k \neq 0 \text{ из } B \neq \tilde{B}).$

Рассмотрим $b_0 \in B$ такой, что $\pi(b_0) = k$, т.е. $b_0 = \beta_1 e_1 + ... + \beta_{n-1} e_{n-1} + k e_n$. Докажем, что если $b_1, ..., b_s$ - базис \tilde{b} , то $b_0, b_1, ..., b_s$ - базис B (тогда B - свободная абелева, rk $B \leqslant n$)

1. Проверим линейную независимость:

$$\lambda_0 b_0 + \dots + \lambda_s b_s = 0 \Rightarrow \pi(\lambda_0 b_0 + \dots + \lambda_s b_s) = 0 \Rightarrow \lambda_0 \pi(b_0) + \dots + \lambda_s \pi(b_s) = 0 \Longrightarrow$$
$$\lambda_0 k = 0 \Rightarrow \lambda_0 = 0$$

Линейная комбинация $\lambda_1b_1+...+\lambda_sb_s=0$ тривиальна, так как $b_1,...,b_s$ - базис \tilde{B} . Отсюда $b_0,b_1,...,b_s$ линейно независимы.

2.
$$\langle b_0, b_1, ..., b_s \rangle \stackrel{?}{=} B$$
:

Рассмотрим произвольный $b \in B$. $\pi(b) \in \langle k \rangle \Longrightarrow \pi(b) = tk, \ t \in \mathbb{Z}$.

Пусть
$$\tilde{b} = b - tb_0$$
. Тогда $\pi(\tilde{b}) = \pi(b) - t\pi(b_0) = tk - tk = 0 \Longrightarrow \tilde{b} \in \text{Ker } \pi = \tilde{A} \Longrightarrow \tilde{b} \in \tilde{A} \cap B = \tilde{B} \Longrightarrow \tilde{b} = t_1b_1 + ... + t_sb_s \Longrightarrow b = tb_0 + t_1b_1 + ... + t_sb_s$.

4.1 Связь между базисами свободной абелевой группы

Определение. Пусть A - свободная абелева группа, $\mathcal{E} = \{e_1,...,e_n\},\ \tilde{\mathcal{E}} = \{\tilde{e}_1,...,\tilde{e}_n\}$ - базисы A.

$$\begin{cases} \tilde{e}_{1} = c_{11}e_{1} + \dots + c_{n1}e_{n} \\ \vdots \\ \tilde{e}_{n} = c_{1n}e_{1} + \dots + c_{nn}e_{n} \end{cases} \Longrightarrow (\tilde{e}_{1}, \dots, \tilde{e}_{n}) = (e_{1}, \dots, e_{n})C, \ C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix}$$

Такая $C \in M_n(\mathbb{Z})$ называется матрицей перехода от \mathcal{E} к $\tilde{\mathcal{E}}$.

Утверждение.

Пусть $C \in M_n(\mathbb{Z})$. Тогда C - матрица перехода \iff $\det C = \pm 1$.

Доказательство.

 \Longrightarrow : Пусть C - матрица перехода от $\mathcal E$ к $\widetilde{\mathcal E},\ D$ - от $\widetilde{\mathcal E}$ к $\mathcal E.$ Тогда:

$$\begin{cases} (\tilde{e}_1, ..., \tilde{e}_n) = (e_1, ..., e_n)C \\ (e_1, ..., e_n) = (\tilde{e}_1, ..., \tilde{e}_n)D \end{cases} \implies CD = DC = E \implies D = C^{-1}$$

$$\det C \cdot \det D = \det CD = \det E = 1$$

Так как $C, D \in M_n(\mathbb{Z})$, $\det C, \det D \in \mathbb{Z} \Longrightarrow \det C = \pm 1$.

 $\iff: C \in M_n(\mathbb{Z}), \det C = \pm 1.$ Рассмотрим некоторый базис $\mathcal{E} = \{e_1,...,e_n\}$ и докажем, что $(\tilde{e}_1,...,\tilde{e}_n) = (e_1,...,e_n)C$ - базис.

1. Проверим линейную независимость:

Если $\lambda_1 \tilde{e}_1 + ... + \lambda_n \tilde{e}_n = 0$, то линейная комбинация столбцов C с теми же λ_i также равна 0. Из $\det C \neq 0$ столбцы линейно независимы, т.е. $\lambda_i = 0 \ \forall i$.

2. $\langle \tilde{e}_1..., \tilde{e}_n \rangle \stackrel{?}{=} A$: Так как $\det C = \pm 1, \; \exists D = C^{-1} \in M_n(\mathbb{Z})$ (из формулы явного выражения элементов обратной матрицы элементы D целые) $\Longrightarrow (e_1,...,e_n) = (\tilde{e}_1,...,\tilde{e}_n)D$. $\forall a \in A$ целочисленно выражается через $e_1,...,e_n$, каждый e_i целочисленно выражается через $\tilde{e}_1,...,\tilde{e}_n \Longrightarrow a$ целочисленно выражается через $\tilde{e}_1,...,\tilde{e}_n$

4.2 Элементарные преобразования свободных абелевых групп

Определение. (ЭП свободных абелевых групп)

Пусть A - свободная абелева группа, $e_1,...,e_n$ - базис A.

- $\Im\Pi$ 1: $\tilde{e}_i = e_i + ke_j, \ i \neq j, k \in \mathbb{Z}; \quad \tilde{e}_s = e_s, \ s \neq i;$
- $\Im \Pi 2$: $\tilde{e}_i = e_j$; $\tilde{e}_j = e_i$; $\tilde{e}_s = e_s$, $s \neq i, j \ (i \neq j)$;
- $\Im \Pi 3$: $\tilde{e}_i = -e_i$; $\tilde{e}_s = e_s, \ s \neq i$;

Матрицы перехода при этих ЭП:

ЭП1:

ЭП2:

ЭП3:

$$\begin{pmatrix} 1 & & & \\ & & & \\ & & -1 & \\ & & & \ddots \\ & & & 1 \end{pmatrix}$$

называются (целочисленными) элементарными матрицами.

(нагло украденными у Славы, пожелайте ему удачно линал пересдать))

Определение. (ЭП строк целочисленных матриц)

- $\Im\Pi 1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}, \quad i \neq j, k \in \mathbb{Z};$
- $\ni \Pi 2: \overline{a_i} \leftrightarrow \overline{a_j}, i \neq j;$
- $\Im\Pi 3: \overline{a_i} \to (-1)\overline{a_i};$