Week1

section 1.4 and 1.5

propositions:

predicates: a property that the subject of a statement can have.

using p(x) to annotate

once the variable x has been assigned, the statement P(x) becomes a proposition

when we have multiple variables, called P(x1,x2,x3...xn)

Quantification

• universal: "all" whether is always true

• existential: "some" one or more elements is true

P(x) for all valuables of x is in the domain

$$\forall x P(x)$$

true if all the domain of x makes P(x) true

Existential quantifier

$$\exists x P(x)$$

true if some of x make P(x) true

Restricted domain

$$\forall x < 0 (x^2 > 0) == \forall x (x < 0 \longrightarrow x^2 > 0)$$

$$\exists z>0(z^2>0)==\exists z(z>0\longrightarrow z^2=2)$$

the restriction of an universal quantification is the same as conditional statement

the restriction of an existential quantification is the same as conjunction

Precedence

annotation like

 \exists

 \forall

have a higher procedure than other annotations

Binding Variables

$$\forall x(x+y=z)$$

x: bound

y,x: free

the scope of
$$\forall$$
 is $(x + y = z)$

Logical Equivalences

Statements involving predicates and quantififiers are *logically equivalent* if and only if they **have the same truth value** no matter which predicates are substituted into these statements and which **domain of discourse is used** for the variables in these propositional functions. We use the notation $S \equiv T$ to indicate that two statements S and T involving predicates and quantififiers are logically equivalent.

$$orall x(P(x) \wedge Q(x)) \equiv orall x(P(x)) \wedge orall Q(x)$$
 $De\ Morgan's\ Law$
 $eg \forall x P(x) \equiv \exists x \neg P(x)$
 $eg \exists x P(x) \equiv \forall x \neg P(x)$

All logical laws

	Equivalence	Name
1	$p \wedge T \equiv p$	Identity laws
2	$ oldsymbol{ ho} ee \mathcal{F} \equiv \mathcal{p}$	
3	$p \lor T \equiv T$	Domination laws
4	$p \wedge F \equiv F$	
5	$p \lor p \equiv p$	Idempotent laws
6	$p \wedge p \equiv p$	
7	$ eg(eg p) \equiv p$	Double negation law
8	$p \lor q \equiv q \lor p$	Commutative laws
9	$p \wedge q \equiv q \wedge p$	

	Equivalence	Name
10	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
11	$(p \land q) \land r \equiv p \land (q \land r)$	
12	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
13	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
14	$ eg(p \land q) \equiv eg p \lor eg q$	De Morgan's laws
15	$ eg(p \lor q) \equiv eg p \land eg q$	
16	$m{ ho}ee(m{ ho}\wedgem{q})\equivm{ ho}$	Absorption laws
17	$p \wedge (p ee q) \equiv p$	
18	$ \rho \lor \neg \rho \equiv T $	Negation laws
19	$oldsymbol{ ho} \wedge eg oldsymbol{ ho} \equiv oldsymbol{F}$	

$$\begin{array}{c|c}
20 & p \rightarrow q \equiv \neg p \lor q \\
21 & p \rightarrow q \equiv \neg q \rightarrow \neg p \\
22 & p \lor q \equiv \neg p \rightarrow q \\
23 & p \land q \equiv \neg (p \rightarrow \neg q) \\
24 & \neg (p \rightarrow q) \equiv p \land \neg q \\
25 & (p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r) \\
26 & (p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r \\
27 & (p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r) \\
28 & (p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r
\end{array}$$

$$\begin{array}{|c|c|c|c|}\hline 29 & p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \\ \hline 30 & p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ \hline 31 & p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \\ \hline 32 & \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q \\ \hline \end{array}$$

Nested Quantifiers

$$\forall x \exists y (x + y = 0)$$

both x and y are bound

When quantifiers are of the same quantity (all universal or all existential), the order does not matter.

But when they are mixed, the order becomes crucial.

Negating Nested Quantifiers

example

$$\neg \forall x \exists y (xy = 1)$$

$$\exists x \neg \exists y (xy = 1)$$

$$\exists x \forall y (xy ! = 1)$$

Homework

prove that

$$\forall x (P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x)$$

the proof should use twice that is from left to right and from right to left.

the proof is just using natural language but not using logical annotation