Floating Point

CSCI3240: Lecture 4 and 5

Dr. Arpan Man Sainju

Middle Tennessee State University

Representing Real Numbers in Binary

• What is 1111.0111101₂?

• Let's first understand what fixed point binary is.

Next, we will learn what floating point binary is.

Fixed Point Binary Fractions

Whole number portion of real number

- We can use an imaginary binary point to separate whole number from fractional part.
- The position of the binary point is fixed and can't be moved.
- In this example, 9-bits are used to represent whole number portion and 7 bits are used to represent fractional part.

Converting Fixed Point Binary to Denary

0	0	0	0	0	1	1	1	1	0	1	1	1	1	0	1
-2^{8}	2 ⁷	2 ⁶	2 ⁵	24	23	2 ²	2 ¹	2 ⁰	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}

Converting the whole portion:

$$= 2^{3} + 2^{2} + 2^{1} + 2^{0}$$

$$= 8 + 4 + 2 + 1$$

$$= 15$$

Converting the fractional portion:

$$= 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-7}$$
$$= \frac{1}{4} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128}$$

= 0.414063

 $(000001111.0111101)_2 = 15 + 0.414063 = 15.414063$

Another Example

1															
-2^{8}	27	26	2 ⁵	24	2 ³	2 ²	21	2 ⁰	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}

Converting the whole portion:

$$= -28 + 27 + 23 + 22$$

$$= -256 + 128 + 8 + 4$$

$$= -116$$

Converting the fractional portion:

$$= 2^{-1} + 2^{-2}$$

$$= \frac{1}{2} + \frac{1}{4}$$

$$= 0.75$$

$$(110001100.1100000)_2 = -116 + .75 = -115.25$$

Practice Questions

• The following binary numbers are stored using two's complement in a 12-bit register with 4 bits after the binary point. Convert them into decimal fraction.

• 010001111010

1111111111111

• 100001110010

Practice Questions

• Using two's complement, convert the following decimal numbers into fixed point binary to be stored in a 12 bit register with 4-bit after the binary point.

• 27.5

0	0	0	1	1	0	1	1	1	0	0	0
-128	64	32	16	8	4	2	1	0.5	0.25	0.125	0.0625

• -55.75

1	1	0	0	1	0	0	0	0	1	0	0
-128	64	32	16	8	4	2	1	0.5	0.25	0.125	0.0625

• -1.75

1	1	1	1	1	1	1	0	0	1	0	0
-128	64	32	16	8	4	2	1	0.5	0.25	0.125	0.0625

Observation

- Given a 4-bit register, with 1-bit before and 3-bit after the binary point, using two's complement, calculate:
- The largest positive number that can be represented is

	1			
-1	0.5	0.25	0.125	= 0.5 + 0.25 + 0.125 = 0.875

The smallest positive number that can be represented (not including 0)

		0	1	
-1	0.5	0.25	0.125	= 0.125

Observation

- Given a 4-bit register, with 1-bit before and 3-bit after the binary point, using two's complement, calculate:
- The smallest magnitude negative number that can be represented (closet to 0)

	1			
-1	0.5	0.25	0.125	= -1 + 0.5 + 0.25 + 0.125 = -0.12

The largest magnitude negative number that can be represented

1	0	0	0	
-1	0.5	0.25	0.125	= -

Summary

- Fixed point binary is used in digital signal processing.
- It is employed when performance is more important than accuracy.
 - Gaming
- Simple and cheaper processor hardware
- Faster processing
- Tradeoff between range and precision
- Some numbers can never be represented accurately. Such as 1/10.

Floating Point Binary

- Standard Scientific Notation
 - 2.99×10^8

Speed of light

• 6.02×10^{23}

Avogadro's number

• 1.60×10^{-19}

Charge of electron

Floating Point

Number written in scientific notation have three components:

- The number of digits that you are allowed to use in Mantissa governs the precision of values.
- The number of digits available for exponent governs the range. For 2 digits you can only float the point up to 99 places.

IEEE 754 Standard for Floating-Point Representation

Number written in scientific notation have three components:

- Three fields:
 - Single precision: 1-bit (sign), 8-bit (exponent), 23-bit (Mantissa): 32-bits total

Double precision: 1-bit (sign), 11-bit (exponent), 52-bit (Mantissa): 64-bits total

Mantissa: fraction part of a floating-point number

IEEE 754 Standard for Single Precision 32-bit floating point binary

Convert the real number 27.236875 into IEEE 7544 standard 32-bit floating point binary

Step 1: Determine the sign bit (0 if positive, 1 if negative)

Sign bit = 0

Step 2: Convert to pure binary

A. Converting whole number part.

$$27 = (11011)_2$$

$$27.2185 = (11011.00111)_2$$

B. Converting the fractional part

$$0.236875 \times 2 = 0.47375$$

$$0.47375 \times 2 = 0.875$$

$$0.875 \times 2 = 1.75$$

$$0.75 \times 2 = 1.50$$

$$0.50 \times 2 = 1.00$$

Stop when product is 1

IEEE 754 Standard for Single Precision 32-bit floating point binary

Convert the real number 27.2185 into IEEE 754 standard 32-bit floating point binary

Step 3: Normalize to determine the Mantissa and the unbiased exponent

- place the binary point after leftmost 1

$$11011.00111 = 1.101100111 \times 2^4$$
 Unbiased Exponent = 4 = 000000100

Step 4: Determine the biased exponent (K = number of bits in exponent)

- add bias $(2^{k-1} - 1 = 2^7 - 1)$ 127 then convert to an 8-bit unsigned binary integer

$$= 4 + 127 = 131 = (10000011)_2$$

Step 5: Remove the leading 1 from the Mantissa

- remove the leftmost 1

$$Mantissa = 101100111$$

Note:

- the left most bit of Mantissa is always going to be 1. (see step 3)
- No need to store it.
- We get extra 1-bit precision

Why do we need to add bias to the exponent?

Assume 4-bit exponent		-bit	Only +ve exponents	Two's complement	Changi	ng range	IEEE	754 Standard	
0	0	0	0	0	0	-5	-9	-7	
0	0	0	1	1	1	-4	-8	-6	e Cliabelly for one
0	0	1	0	2	2	-3	-7	-5	 Slightly favors positive numbers
0	0	1	1	3	3	-2	-6	-4	 Here, bias is 7
0	1	0	0	4	4	-1	-5	-3	because we have
0	1	0	1	5	5	0	-4	-2	7 -ve numbers.
0	1	1	0	6	6	1	-3	-1	 We have to add bias to convert
0	1	1	1	7	7	2	-2	0	the number into
1	0	0	0	8	-8	3	-1	1	unsinged binary
1	0	0	1	9	-7	4	0	2	for IEEE 754
1	0	1	0	10	-6	5	1	3	standard.
1	0	1	1	11	-5	6	2	4	• -7 +7 = 0
1	1	0	0	12	-4	7	3	5	-6 +7 = 1
1	1	0	1	13	-3	8	4	6	• -5+7 = 2
1	1	1	0	14	-2	9	5	7	• 6 + 7 = 13
1	1	1	1	15	-1	10	6	8	
MIDDLE TENNESSEE STATE UNIVERSITY.				Bryant and O'Ha	llaron, Computer Sys	tems: A Prog	grammer's Per	spective, Th	nird Edition 17 BLUE

Exponent bias

IEEE 754 Format	Sign	Exponent	Mantissa	Exponent Bias
32 bit single precision	1 bit	8 bit	23 bits (+1 not stored)	$2^{8-1} - 1 = 127$
64 bit double precision	1 bit	11 bit	52 bits (+1 not stored)	$2^{11-1} - 1023$

Why not use Two's complement instead of IEEE 754 Standard for exponent?

				Two's complement	IEEE 754 Standa	rd
0	0	0	0	0	-7	
0	0	0	1	1	-6	
0	0	1	0	2	-5	
0	0	1	1	3	-4	
0	1	0	0	4	-3	With IEEE 754 standard
0	1	0	1	5	-2	the computer can easily identify if one number is
0	1	1	0	6	-1	bigger then another by
0	1	1	1	7	0	just looking at the bit
1	0	0	0	-8	1	pattern.
1	0	0	1	-7	2	It is not possible with 2's complement.
1	0	1	0	-6	3	See 7 and -8.
1	0	1	1	-5	4	
1	1	0	0	-4	5	
1	1	0	1	-3	6	
1	1	1	0	-2	7	
DLE ¹	1	1	1	-1	8	LAM TO A

STATE UNIVERSITY.

Practice Questions

- Convert 0.6875 into IEEE 754 single precision floating point binary
 - Step 1: Determine the sign
 - Step 2: Convert to pure binary

Step 3: Normalize for Mantissa and unbiased exponent

Step 4: Determine biased exponent

Step 5: Remove leading 1 from Mantissa

Practice Question

- Convert -123.84375 into IEEE 754 single precision floating point binary
 - Step 1: Determine the sign
 - Step 2: Convert to pure binary

• Step 3: Normalize for Mantissa and unbiased exponent

• Step4: Determine biased exponent

Step5: Remove leading 1 from Mantissa

Converting back to decimal

- 1. Determine the sign in decimal
- 2. Determine the exponent in decimal
- 3. Remove the exponent bias
 - Subtract $(2^{k-1} 1)$, where k is number of bits in exponent field.
- 4. Convert the Mantissa to decimal
- 5. Add 1 to the Mantissa and include the sign
- 6. Compute the final result.

Practice Question

Practice Question

Reserved Exponent Values

Exponent Values	Mantissa	Represents
11111111	All zeros	Infinity
11111111	Not all zeros	Not a number (NAN)
0000000	All zeros	Zero

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into Mantissa fraction

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down $(-\infty)$	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- \blacksquare $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- **Exact Result:** $(-1)^s M 2^E$
 - Sign *s*: *s1* ^ *s2*
 - Mantissa M: M1 x M2
 - Exponent *E*: *E1* + *E2*

Fixing

- Normalize (move decimal point after first 1)
- If *E* out of range, overflow
- Round M to fit Mantissa fraction precision

■ Implementation

Biggest chore is multiplying Mantissas

Floating Point Addition

- - **A**ssume *E1* > *E2*
- Exact Result: $(-1)^s M 2^E$
 - ■Sign *s*, Mantissa *M*:
 - Result of signed align & add
 - Exponent *E*: *E*1

Get binary points lined up

Fixing

- Normalize (move decimal point after first 1)
- Overflow if E out of range
- Round M to fit Mantissa fraction precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

- No
- Overflow and inexactness of rounding
- \bullet (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?

Yes

- Every element has additive inverse?
 - Yes, except for infinities & NaNs

Almost

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

■ Compare to Commutative Ring

Closed under multiplication?

Yes

But may generate infinity or NaN

• Multiplication Commutative?

Yes

Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

• Ex: (1e20*1e20)*1e-20=inf, 1e20*(1e20*1e-20)=1e20

1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

 \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Floating Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double) (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```