

单元3.7 关系的性质

第七章 二元关系 7.4 关系的性质

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

内容提要

- 关系的性质
 - 自反、反自反
 - 对称、反对称
 - 传递

自反性(reflexivity)

- R⊆A×A
- R是自反的 ⇔ ∀x(x∈A→xRx) ⇔ (∀x∈A)xRx
- 例:非空集合上的恒等关系、全域关系, 正整数集合上的整除关系、小于等于关系, 集合的幂集上的包含关系和相等关系等

R是非自反的 ⇔∃x(x∈A∧¬xRx)

自反性举例

定理

• 定理:

R是自反的

- $\Leftrightarrow I_{\mathbf{A}} \subseteq \mathbf{R}$
- ⇔ R-1是自反的
- ⇔ M(R)主对角线上的元素全为1
- ⇔ G(R)的每个顶点处均有环. #

反自反性(irreflexivity)

- R⊆A×A
- R是反自反的 ⇔ ∀x(x∈A→¬xRx) ⇔
 (∀x∈A)¬xRx
- 例: 非空集合上的空关系,自然数集合上的小于关系,集合的幂集上的真包含关系

R是非反自反的 ⇔∃x(x∈A∧xRx)

反自反性举例

定理

• 定理:

R是反自反的

- $\Leftrightarrow I_{\mathbf{A}} \cap \mathbf{R} = \emptyset$
- ⇔ R-1是反自反的
- ⇔ M(R)主对角线上的元素全为0
- ⇔ G(R)的每个顶点处均无环. #

自反性与反自反性

(自反且反自反: Ø上的空关系)

存在非自反且非反自反的关系: R={<1,1>, <2,2>, <3,1>, <3,2>}

对称性(symmetry)

- R⊆A×A
- R是对称的 ⇔

 $\forall x \forall y (x \in A \land y \in A \land xRy \rightarrow yRx)$

- $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \rightarrow yRx]$
- 例: 非空集合上的全域关系(对称、非反对称)、恒等关系
- R是非对称的 ⇔ ∃x∃y(x∈A∧y∈A∧xRy∧¬yRx)

对称性举例

定理

• 定理:

R是对称的

- $\Leftrightarrow R^{-1}=R$
- ⇔ R-1是对称的
- ⇔M(R)是对称的
- ⇔ G(R)的任何两个相异顶点之间若有边,则必有两条方向相反的有向边. #

反对称性(anti-symmetry)

- R⊆A×A
- R是反对称的 ⇔

 $\forall x \forall y (x \in A \land y \in A \land xRy \land yRx \rightarrow x=y)$

- $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \land yRx \rightarrow x=y]$
- 例:非空集合上的恒等关系、空关系, 正整数集合上的整除关系小于等于关系、 小于关系(反对称,但非对称)
- R非反对称 ⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

反对称性举例

定理

- 定理:
 - R是反对称的
- $\Leftrightarrow R^{-1} \cap R \subseteq I_A$
- ⇔ R-1是反对称的
- ⇔在M(R)中,∀i∀j(i≠j∧r_{ij}=1→r_{ji}=0)
- ⇔在G(R)中, ∀a_i∀a_j(i≠j),若有有向边<a_i,a_j>,则 必没有<a_i,a_i>. #

对称性与反对称性

传递性(transitivity)

- R⊆A×A
- R是传递的 ⇔

 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land xRy \land yRz \rightarrow xRz)$ $\Leftrightarrow (\forall x \in A)(\forall y \in A)(\forall z \in A)[xRy \land yRz \rightarrow xRz]$

R非传递 ⇔
 ∃x∃y∃z(x∈A∧y∈A∧z∈A∧xRy∧yRz∧¬xRz)

传递性举例

定理

- 定理:
 - R是传递的
- ⇔ RoR⊆R ⇔ R-1是传递的
- $\Leftrightarrow \forall i \forall j, M(RoR)(i,j) \leq M(R)(i,j)$
- ⇔在G(R)中, ∀a_i∀a_j∀a_k, 若有有向边<a_i,a_j>和 <a_j,a_k>,则必有有向边<a_i,a_k>.

传递性

在N={0,1,2,...}上

- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递
- D={<x,y>|x∈N∧y∈N∧x|y}反对称,传递(¬0|0)
- I_N={<x,y>|x∈N∧y∈N∧x=y}自反,对称,反对称,传递
- E_N={<x,y>|x∈N∧y∈N}=N×N自反,对称,传递.

#

R₂={<a,a>,<a,b>, <b,c>,<c,a>} 反对称

R₄={<a,a>,<a,b>, <b,a>,<c,c>} 对称

R₆={<a,b>,<b,a>, <b,c>,<a,a>}. 无任何性质 #

关系性质判别

•	自反性	反自反 性	对称性	反对称性	传递性
表达式	I _A ⊆R	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R \circ R \subseteq R$
关系 矩阵	主对角 线元素 全是 1	主对角 线元素 全是 0	矩阵是对称 矩阵	若 r_{ij} =1,且 $i \neq j$,则 r_{ji} =0	对 <i>M</i> ² 中1所在 位置, <i>M</i> 中相 应位置都是1
关系图	每个顶 点都有 环	每个顶 点都没 有环	如果两个顶 点之间有边, 一定是一对 方向相反的 边(无单边)	如果两点之间有边,一定是一条有向边(无双向边)	如果顶点 x_i 到 x_j 有边, x_j 到 x_k 有边,则从 x_i 到 x_k 也有边

关系性质与关系运算

• 定理: R₁,R₂⊆A×A具有某些共同性质。经过 运算后是否能保持原性质?

	自反	反自反	对称	反对称	传递
R_1^{-1}, R_2^{-1}				$\sqrt{(4)}$	
$R_1 \cup R_2$					
$R_1 \cap R_2$		$\sqrt{(2)}$			$\sqrt{(5)}$
$R_1 \circ R_2$, $R_2 \circ R_1$	$\sqrt{(1)}$				
			180		46-1
R_1-R_2 , R_2-R_1	(Industrial	1	¹ (3)		V.
$\sim R_1, \sim R_2$			√(3 ·)	NOTE TARRED S	2

定理(1)证明

- R_1, R_2 自反 $\Rightarrow R_1 \circ R_2$ 自反
- 证明:∀x,

 $x \in A$

 $\Rightarrow xR_1x \wedge xR_2x$

 \Rightarrow xR₁oR₂x

∴ R_1 , R_2 自反 \Rightarrow R_1 o R_2 自反.

定理(2)证明

- R_1, R_2 反自反 $\Rightarrow R_1 \cap R_2$ 反自反
- 证明:(反证)若R₁∩R₂非反自反,则
 ∃x∈A,

 $x(R_1 \cap R_2)x$

 $\Leftrightarrow xR_1x \wedge xR_2x$

与R₁,R₂反自反矛盾!

∴ R_1, R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反. #

定理(3)证明

- R_1, R_2 对称 $\Rightarrow R_1 R_2$ 对称
- 证明: $\forall x,y \in A$, $x(R_1-R_2)y$ $\Leftrightarrow xR_1y \land \neg xR_2y$ $\Rightarrow yR_1x \land \neg yR_2x \qquad (R_1,R_2)x$ $\Leftrightarrow y(R_1-R_2)x$
- ∴ R_1, R_2 对称 $\Rightarrow R_1 R_2$ 对称. #

定理(3′)证明

- R_1 对称 \Rightarrow *R_1 对称
- 证明: $\forall x,y \in A$, $x(^{\sim}R_1)y$ $\Leftrightarrow x(E_A-R_1)y \Leftrightarrow xE_Ay \land \neg xR_1y$ $\Rightarrow yE_Ax \land \neg yR_1x \Leftrightarrow y(E_A-R_1)x \qquad (E_A,R_1 对称)$ $\Leftrightarrow y(^{\sim}R_1)x$
- ∴ R_1 对称 \Rightarrow *R_1 对称. #

定理(4)证明

- R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称
- 证明: (反证) 若 R_1 -1非反对称,则 $\exists x,y \in A$, xR_1 -1 $y \land yR_1$ -1 $x \land x \neq y$
 - \Leftrightarrow $yR_1x \wedge xR_1y \wedge x\neq y$
 - 与R₁反对称矛盾!
- ∴ R_1 反对称 \Rightarrow R_1^{-1} 反对称. #

定理(5)证明

- R_1, R_2 传递 $\Rightarrow R_1 \cap R_2$ 传递
- 证明: ∀x,y,z∈A,

$$x(R_1 \cap R_2)y \wedge y(R_1 \cap R_2)z$$

- $\Leftrightarrow (xR_1y \land xR_2y) \land (yR_1z \land yR_2z)$
- $\Leftrightarrow (xR_1y \land yR_1z) \land (xR_2y \land yR_2z)$
- $\Rightarrow xR_1z \land xR_2z \Leftrightarrow x(R_1 \cap R_2)z$
- ∴ R₁,R₂传递 ⇒ R₁∩R₂传递. #

小结

• 自反,反自反,对称,反对称,传递

