シンクロトロン振動の いるは

加速器のビーム運動

- Transverse motion (水平, 垂直方向)
 - ・四極電磁石による収束力
 - ・ベータトロン振動
 - ・比較的速い振動
- Longitudinal motion (進行方向)
 - ・高周波加速による収束力
 - ・シンクロトロン振動
 - ・比較的遅い振動

シンクロトロン

シンクロトロンの種類

• 陽子シンクロトロン

- 普通?のシンクロトロン
- 加速した陽子を取出し

• 電子シンクロトロン

- ・速度は光速で一定
- 加速周波数も一定
- 放射光を放出
- 蓄積リング(放射光)

運動エネルギー vs 速度

東海キャンパスの加速器

つくばキャンパスの加速器

同期粒子

【例】SuperKEKBの場合

SuperKEKBの主リングでは電子と陽電子はほぼ 光速で回っており、周長は3016.315 [m] なので 周回周波数は

$$f_{rev} = \frac{1}{T_{rev}} = \frac{c}{C_0} = \frac{2.99792458 \times 10^8 \,[\text{m/s}]}{3016.315 \,[\text{m}]} = 99.39 \,\text{kHz}$$

一方、加速周波数は508.887 [MHz] なので

$$f_{RF} = 5120 \times f_{rev}$$

となり h = 5120 となっている。

分散 (dispersion)

transverse & longitudinal Ocoupling

運動量圧縮率

高周波加速空洞で加速

運動量の増加

速度の増加

$$\frac{\Delta v}{v_s} = \frac{1}{\gamma_s^2} \frac{\Delta p}{p_s}$$

偏光電磁石で曲げる

分散で軌道が変わる $\frac{\Delta C}{C_0} = \alpha_p \frac{\Delta p}{p_s}$

軌道長の増加

momentum compaction factor

 $C_0 + \Delta C$

Transition energy

鬩ぎ合い

$$\frac{\Delta T}{T_{rev}} = \left(\frac{\Delta C}{C_0}\right) - \left(\frac{\Delta v}{v_s}\right) = \eta_p \frac{\Delta p}{p_s}$$

$$\begin{cases} \eta_p < 0, & \Delta p \uparrow \Delta T \downarrow \\ \eta_p = 0, & \Delta p \uparrow \Delta T = 0 \\ \eta_p > 0, & \Delta p \uparrow \Delta T \uparrow \end{cases}$$

Phase slip factor

$$\eta_p \equiv \alpha_p - \frac{1}{\gamma_s^2} = \frac{1}{\gamma_t^2} - \frac{1}{\gamma_s^2}$$

Transition energy

位相安定性の原理

シンクロトロン振動

 $\phi_s = 0, B = \text{const.}, \eta_p < 0$

位相空間

Synchrotron motion

シンクロトロンの方程式

・振動の振幅が十分小さい場合

$$\dot{\Delta\phi} = \frac{eVh\eta\omega_{rev}^2}{2\pi\beta_s^2 E_s}\cos\phi_s\Delta\phi = -\omega_s^2\Delta\phi$$

単振動

$$\omega_s = \sqrt{-\frac{eVh\eta\omega_{rev}^2\cos\phi_s}{2\pi\beta_s^2E_s}}$$

シンクロトロン振動数

【例】SuperKEKBの場合

 $f_{RF} = 508.887 \,[\text{MHz}]$ h = 5120

Machine Parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
Ī	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ϵ_x/ϵ_y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α_{p}	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
V _c	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
U ₀	1.76	2.43	MeV	
$ au_{x,y}/ au_s$	45.7/22.8	58.0/29.0	msec	
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

Synchrotron tune

$$u_{s} = -\frac{\omega_{s}}{\omega_{rev}}$$

LERで約41周 HERで約36周 で1回振動する

Betatron tune

http://www-superkekb.kek.jp/

実際のビームを見る

- 1. 加速周波数の確認
- 2. 周回周波数の確認
- 3. シンクロトロン振動数の測定
- 4. その他

バックアップ

Mapping equations

$$\delta_p(n+1) = \delta_p(n) + \frac{eV}{\beta_0^2 E_0} (\sin \phi(n) - \sin \phi_s)$$

$$\phi(n+1) = \phi(n) + 2\pi h\eta \delta_p(n+1)$$

シンクロトロンの方程式

$$\frac{\delta_p(n+1) - \delta_p(n)}{T_{rev}(n+1)} \approx \frac{d\delta_p}{dt} = \dot{\delta_p}, \quad \frac{\phi(n+1) - \phi(n)}{T_{rev}(n+1)} \approx \frac{d\phi}{dt} = \dot{\phi}$$

$$\dot{\delta}_{p} = \frac{eV\omega_{rev}}{2\pi\beta_{s}^{2}E_{s}}(\sin\phi - \sin\phi_{s}) \qquad \dot{\phi} = h\omega_{rev}\eta\delta_{p}$$

$$\ddot{\phi} = \frac{eVh\eta\omega_{rev}^2}{2\pi\beta_s^2 E_s} (\sin\phi - \sin\phi_s)$$

 $\sin \phi = \sin(\phi_s + \Delta\phi) \approx \sin \phi_s + \cos \phi_s \Delta\phi$

$$\dot{\Delta\phi} = \frac{eVh\eta\omega_{rev}^2}{2\pi\beta_s^2 E_s}\cos\phi_s\Delta\phi = -\omega_s^2\Delta\phi$$