Continuous Time Multi-State Models and Microsimulation

Devin Incerti

Overview

- 1. What are multi-state models?
- 2. How can multi-state models be estimated?
- 3. How can an estimated model be used to derive quantities of interest for health technology evaluation?

What is a Multi-State Model?

- Model of how individuals move through multiple states in continuous time
- 3 types of states
 - Initial state
 - Intermediate state
 - Absorbing state
- Competing risk models are a special case with one initial state and several mutually exclusive absorbing states
- Survival analysis is a special case with one initial state (alive) and one absorbing state (dead)

Canonical Example: The (Reversible) Illness-Death Model

Advantages for Parameter Estimation

- Properly accounts for competing risks
 - Individuals experiencing an event are no longer "at risk", which decreases transition intensities
- Flexible modeling of hazard rates
 - Time homogeneous markov models: transition intensities are constant over time
 - Time inhomogeneous (dock-forward) markov models: transition intensities depends on time since entering the initial state
 - Semi-markov (dock-reset) models: transition intensities depends on time since entering the <u>current</u> state

Advantages for Health-Economic Modeling

- Model is in continuous time
 - Predicts exact length of time in states
 - Do not need to worry about multiple events occurring during intervals
- Model is at the individual level
 - Can account for treatment heterogeneity
 - lacktriangleright Transition intensities can depend on prior history o fewer states than in cohort models

Software for Estimating Multi-State Models

- Nearly all of it is written in R
- Prominent R packages
 - mstate: non-parametric and semi-parametric models
 - flexsurv: parametric models
 - msm: missing information (e.g. do not know exact time of each transition)

A Liver Cirrhosis Example

- To illustrate methods, lets consider a clinical trial where patients received "Placebo"" or "Prednisone"
- Reversible illness death model with 3 states
 - State 1: Normal prothrombin levels
 - State 2: Low prothrombin levels
 - ▶ State 3: Death
- 4 possible transitions
 - Normal to Low
 - Low to Normal
 - Low to Death
 - Normal to Death

Examining the Data

• A patient treated with Prednisone

treat	status	years	Tstop	Tstart	trans	to	from	id
Prednisone	1	0.25	0.25	0.00	3	1	2	33
Prednisone	0	0.25	0.25	0.00	4	3	2	33
Prednisone	0	8.96	9.21	0.25	1	2	1	33
Prednisone	0	8.96	9.21	0.25	2	3	1	33

• Summarizing the transitions

-	to						
from	Normal	Low	Death	no	event	total	entering
Normal	0	272	100		117		489
Low	313	0	179		32		524
Death	0	0	0		279		279

Fitting Multi-State Models

- Joint model if constraints in parameters across transitions; otherwise transition specific models are more computationally efficient
- Individuals entering "competing" states treated as censored
- Types of models
 - Non-parametric: fit separate Cox model to treatment and control
 - ► Semi-parametric: clock-forward or clock-reset Cox models
 - Parametric: clock-forward or clock-reset model with standard survival distributions (e.g. Weibull, Gompertz)

Why do we Need Parametric Models?

- We have Kaplan-Meier curves and Cox models so why use parametric models?
- Some advantages of parametric approaches
 - Extrapolation beyond time periods in data
 - Prediction for new individuals
 - Less prone to overfitting
 - Faster simulations
 - Time dependent effects (e.g. non-proportional hazards)
- Estimates from flexible parametric models are very similar to non-parametric and semi-parametric alternatives
- Model checking is essential though!

Some Model Checking

Transition Probabilities in Multi-State Models

• A transition probability is the probability of being in state X(T) = s at time T given that an individual is in state r at time t_0

$$P_{rs}(t_0, T) = P(X(T) = s | X(t_0) = r)$$
 (1)

• Given discount rate, $\beta(t)$, and quality of life weight, $q_s(t)$, discounted QALYs in state s given being in state r at time t_0 are

$$\int_{t_0}^{T} q_s(t)\beta(t)P_{rs}(t_0,t)dt$$
 (2)

 Total QALYs are calculated by adding up QALYs in each non-absorbing state

Estimating Transition Probabilities

- Illness-death model example:
 - Probability of transitioning from state 2 at time t₀ to state 3 at time T is given by multiplying:
 - 1. Probability of transitioning to state 3 at some time before T
 - 2. Probability of remaining in state 2 until making the transition to 3
- General case for Markov models
 - Transition probabilities can be estimated by solving the Kolmogorov forward equation
 - Solution can be approximated by the Aelen-Johansen estimator
- Simulation needed for Semi-Markov Models
 - Aelen-Johansen estimator does not apply because transition probabilities from intermediate states depend on when the state was entered

Transition Probabilities in Clock-Forward Cox Models

Using R function probtrans from mstate package

Transition Probabilities in Clock-Reset Cox Models

Using R function mssample from mstate package

Lifetime Simulation

- Parametric models can be used to simulate outcomes beyond time in data
- I've created function simMS for parametric Semi-Markov models
 - Time (and age) move forward as individuals jump from one event to the next
 - Simulates outcomes for a population of individuals with differing covariate values
 - Simulation stops when all individuals reach absorbing states or time has reached preset ending time
 - Can be used with any distribution by supplying a function to generate random numbers and using the custom distribution framework in flexsury
 - Allows analyst to specify different distributions for each transition
 - Only valid for semi-Markov models; use probtrans for clock-forward Markov models

Benefits of Simulation

- Can calculate standard quantities of interest
 - Discounted QALYs (dQALYs)
 - ► Length of stay (LOS) in each state

	Plo	acebo	Prednisone		
	LOS	dQALYs	LOS	dQALYs	
Low	1.21	1.06	0.86	0.76	
Normal	4.59	3.95	6.26	5.23	

- Don't need analytical expressions to estimate other more complicated quantities
- Assess uncertainty (e.g. probabilistic sensitivity analysis)

mean 2.5% 50% 97.5%

dQALYs using Prednisone 6.12 5.14 6.07 7.34

When Can Multi-State Models be Used?

Requirements

- Individual time to event data must be available for each transition
- Scenarios in which it is most useful
 - Individuals spend a lot of time in each state
 - Risks of new events depend on time in state
 - Chance of multiple events within an interval
 - Need estiamtes for representative patient populations

Some examples

- ► Transplantation: functioning transplant ⇔ failed transplant ⇒ death
- ➤ Oncology: surgery ⇒ local recurrence, distant metastasis ⇒ death