

Support Vector Machine (SVM)

Machine Learning

What is SVM?

Introduction:

- Support Vector Machine is a supervised machine learning problem where to try to find a hyperplane that best separates two classes.
- It is considered as one of the best algorithm as it can handle high-dimensional data, is effective in cases with limited training samples, and can handle nonlinear classification using kernel functions.
- SVM can be used for both regression and classification tasks, but generally work best in classification problem.

Types of SVM Algorithm:

- Simple or Linear SVM: When the data is perfectly linearly separable only then we
 can use Linear SVM. Perfectly linearly separable means that the data points can be
 classified into 2 classes by using a single straight line(if 2D).
- 1. Kernel or Non-Linear SVM: When the data is not linearly separable then we can use Non-Linear SVM, which means when the data points cannot be separated into 2 classes by using a straight line (if 2D) then we use some advanced techniques like kernel tricks to classify them. In most real-world applications we do not find linearly separable data points hence we use kernel trick to solve them.

Important Terms:

- 000
- Support Vectors: These are the points that are closest to the hyperplane. A separating line will be defined with the help of these data points.
- Margin: it is the distance between the hyperplane and the observations closest to the hyperplane (support vectors). There are two types of margins hard margin and soft margin.
- Hyperplane: The best-line or decision boundary that can segregate N-dimensional space into classes so that we can easily put the new data point in the correct category.

Hyper Plane:

Hyperplanes are decision boundaries that help classify the data points. Data points falling on either side of the hyperplane can be attributed to different classes.

dimension of the hyperplane = the number of features

If, number of input features is 2, hyperplane is just a line. number of input features is 3, hyperplane becomes a two-dimensional plane.

Objective:

Objective of the SVM algorithm is to find a hyperplane that, to the best degree possible, separates data points of one class from those of another class.

SVMS OPTIMIZE MARGIN BETWEEN SUPPORT VECTORS OR CLASSES

How does SVM work?

Suppose we have a dataset that has two classes (green and blue). We want to classify that the new data point as either blue or green.

How does SVM work?

Best Hyperplane = Finding different hyperplanes which classify the labels in the best way then it will choose the one which is farthest from the data points or the one which has a maximum margin.

Hard Margin SVM (Dot Product):

- Consider a random point X and we want to know whether it lies on the right side of the plane or the left side of the plane (positive or negative).
- First we assume this point is a vector (X) and then we make a vector (w) which is perpendicular to the hyperplane.

Decision Rule:

$$\overrightarrow{X}.\overrightarrow{w} = c$$
 (the point lies on the decision boundary)

$$\overrightarrow{X} \cdot \overrightarrow{w} > c$$
 (positive samples)

$$\overrightarrow{X} \cdot \overrightarrow{w} < c \text{ (negative samples)}$$

$$\overrightarrow{X} \cdot \overrightarrow{w} - c \ge 0$$
putting $-c$ as b, we get
$$\overrightarrow{X} \cdot \overrightarrow{w} + b \ge 0$$
hence
$$y = \begin{cases} +1 & \text{if } \overrightarrow{X} \cdot \overrightarrow{w} + b \ge 0 \\ -1 & \text{if } \overrightarrow{X} \cdot \overrightarrow{w} + b < 0 \end{cases}$$

We all know the equation of a hyperplane is w.x+b=0 where w is a vector normal to hyperplane and b is an offset.

Soft margin SVM:

- In real-life applications, we rarely encounter datasets that are perfectly linearly separable. Instead, we often come across datasets that are either nearly linearly separable or entirely non-linearly separable.
- To tackle this problem what we do is modify that equation in such a way that it allows few misclassifications that means it allows few points to be wrongly classified.

Kernel in SVM:

Kernels = functions that helps to convert lower dimension space to a higher dimension space using some quadratic functions.

Types of Kernel Functions:

- Polynomial Kernel = Separate data of Degree 2.
- RBF Kernel = (Most used) Lift our samples onto a higher-dimensional feature
- Bessel function Kernel: Used for eliminating the cross term in mathematical functions
- Anova Kernel: Multidimensional regression problems

Right Kernel = What type of Dataset we are working on?

Linear Dataset = Linear Kernel Function

Complex Dataset = RBF Kernel Function

Import Necessary Libraries

Load Data from CSV file

```
    Load Data from CSV file

     cell df = pd.read csv('cell samples.csv')
     cell df.tail()
     cell df.shape
     cell df.size
     cell df.count()
     cell df['Class'].value counts()
         458
         241
     Name: Class, dtype: int64
```

Distribution of the Classes

Identification of the unwanted rows

```
    Identifying the unwanted rows

     cell df.dtypes
     Wremove the non numerical datas / discard non numeric data
     #convert the values to numeric
     cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]
     cell df['BareNuc'] = cell df['BareNuc'].astype('int')
     cell df.dtypes
▣
                    int64
     Clump
                    int64
     UnifSize
                    int64
     UnifShape
                    int64
     MargAdh
                    int64
                    int64
     SingEpiSize
     BareNuc
                    int64
     81andChrom
                    int64
     NormNuc1
                    int64
                    int64
     Class
                    int64
     dtype: object
```

Remove unwanted Columns

```
    Remove of unwanted columns

     cell df.columns
     feature df = cell df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize',
            'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]
     #Independent variable X
     X = np.asarray(feature df)
     #Dependent variable -> y
     y = np.asarray(cell df['Class'])
     y[0:5]
     array([2, 2, 2, 2, 2])
```

Divide data as Train/Test

Divide the data as Train/Test dataset from sklearn.model_selection import train_test_split X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=4) #546 X 9 X train.shape #546 X 1 y train.shape #137 X 9 X test.shape #137 X 1 y test.shape (137,)

Modeling

Modeling (SVM with Scikit-learn)

```
[] from sklearn import svm
#Support Vector Classifier
classifier = svm.SVC(kernel='linear', gamma='auto', C=2)
classifier.fit(X train, y train)
```

y predict = classifier.predict(X test)

Model Output:

Evaluation of Results

Evaluation (Results)

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_predict))
```

		precision	Lecall	11-score	support
	2	1.00	0.94	0.97	96
	4	0.90	1.00	0.95	47
accuracy				0.96	137
macro	avg	0.95	0.97	0.96	137
weighted	avg	0.97	0.96	0.96	137

Metrics:

- Accuracy: The portion of correctly classified instances among the total instances.
- Precision and recall: Precision measures the portion of true positive predictions among all positive predictions while recall measures the portion of true positive predictions among all actual positives.
- F1 Score: The harmonic mean of precision and recall, which provides a balance between the two metrics.
- Support: Support refers to the number of occurrences of each class in the actual data. It represents the number of samples belonging to each class.

Advantages of SVM

- SVM works better when the data is linear
- It is more effective in high dimensions
- With the help of the kernel trick, we can solve any complex problem
- SVM is not sensitive to outliers
- Can help us with Image Classification

Disadvantage of SVM

- Choosing a good kernel is not easy
- It does not show good result on a big dataset
- The SVM hyperparameters are Cost -C and gamma.
- It is not easy to fine-tune these hyper-parameters.
- It is hard to visualize their impact

Conclusion:

- We have demonstrated SVM by segregation two different classes.
- We discussed its concept of working, math intuition behind SVM, implementation in python, the tricks to classify non-linear datasets, Pros and cons, and finally, we solved a problem with the help of SVM.

Support vector machine is an elegant and powerful algorithm.

THANK YOU!

Any Questions?

