Circuitos digitais

André Furlan - andre.furlan@unesp.br

Universidade Estadual Paulista Júlio de Mesquita Filho

2024

Sistema binário, álgebra de Boole e lógica

Números binários

Vantagens

- ► Dois estados (mais difícil deteriorar)
- Discretos
- Manipulação algébrica (álgebra de Boole)
 Mundo ideal: Junção do analógico com o digital

Desantagens

- Dois estados em oposição a infinitos estados
- Discretos em oposição a contínuo

Sistema numérico posicional

Dada a base com uma certa quantidade de elementos B e símbolos $d \in D = \{d_0, \ldots, d_n\}$, então um valor numérico decimal V **posicional** pode ser representado por

$$V(B) = \sum_{i=0}^{n} d_{i}.B^{n-i}$$
 (1)

Sendo $\mid\mid$ o operador de cardinalidade então n=|D|-1

Por exemplo, para o número decimal 249:

$$B = 10$$

$$D = \{2, 4, 9\} \implies |D| = 3 \implies n = 2$$

2.100 + 4.10 + 9.1 = 249

$$V(10) = \sum_{i=0}^{2} d_i \cdot 10^{2-i} =$$

$$d_0 \cdot 10^{2-0} + d_1 \cdot 10^{2-1} + d_2 \cdot 10^{2-2} = (2)$$

$$2 \cdot 10^2 + 4 \cdot 10^1 + 9 \cdot 10^0 =$$

Sistema numérico posicional

Dada a base com uma certa quantidade de elementos B e símbolos $d \in D = \{d_0, \ldots, d_n\}$, então um valor numérico decimal V **posicional** pode ser representado por

$$V(B) = \sum_{i=0}^{n} d_i . B^{n-i}$$
 (1)

Sendo $\mid\mid$ o operador de cardinalidade então n=|D|-1

Por exemplo, para o número binário 11:

$$B = 2$$

 $D = \{1, 1\} \implies |D| = 2 \implies n = 1$

$$V(2) = \sum_{i=0}^{1} d_i \cdot 2^{1-i} =$$

$$d_0 \cdot 2^{1-0} + d_1 \cdot 2^{1-1} =$$

$$1 \cdot 2^1 + 1 \cdot 2^0 =$$
(2)

$$2 + 1 = 3$$

Circuitos lógicos e algébra Booleana

Antes de avançarmos no estudo e na representação de circuitos lógicos, vamos entender como os estados de "ligado" e "desligado" dos componentes podem ser utilizados para gerar resultados úteis. Portanto, antes de abordarmos esses tópicos, faremos uma imersão na álgebra booleana, explorando tabelas verdade e formas de composição.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

AND denotado como . ou \land

O operador **AND** é uma função de 2 variáveis definida como:

$$AND(a, b) = a.b$$

 $AND(a, b) = 1, \forall a = b = 1$ (3)
 $AND(a, b) = 0, \forall a \neq b$

а	b	a . b
0	0	0
0	1	0
1	0	0
1	1	1

Tabela: Tabela verdade para AND.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

 \mathbf{OR} denotado com + ou \lor

O operador **OR** é uma função de 2 variáveis definida como:

$$OR(a, b) = a + b$$

 $OR(a, b) = 0, \forall a = b = 0$ (3)
 $OR(a, b) = 1, \forall a \neq b, a = b = 1$

b	a+b
0	0
1	1
0	1
1	1
	0

Tabela: Tabela verdade para OR.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

NOT denotado com \overline{a} ou $\neg a$

O operador **NOT** é uma função de 1 variável definida como:

$$NOT(a) = \overline{a}$$

 $NOT(a) = 0, \forall a = 1$
 $NOT(a) = 1, \forall a = 0$ (3)

a	a
0	1
1	0

Tabela: Tabela verdade para NOT.

Álgebra de Boole: Composição de de operadores

É importante destacar que assim com na álgebra tradicional os operadores tem prioridade no momento de sua aplicação na seguinte ordem: **NOT**, **AND** e por fim **OR**. Se usarmos os sinais as regras ficam bem parecidas com a álgebra tradicional: \bar{a} , . e +.

A partir dos operadores apresentados vamos brincar um pouquinho com eles:

$$(a+b).c (4)$$

а	b	С	a+b	a+b . c
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

Álgebra de Boole: Composição de operadores NAND e NOR

Alguns operadores comuns são compostos:

O operador **NAND** (NOT AND) é definido segundo a seguinte tabela verdade:

а	b	a . b	a.b
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Tabela: Tabela verdade para NAND.

O operador **NOR** (NOT OR) é definido segundo a seguinte tabela verdade:

а	b	a + b	$\overline{a+b}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Tabela: Tabela verdade para NOR.

Álgebra de Boole: Expressão booleanas equivalentes

Uma expressão boleana equivalente é aquela que, dada uma mesma entrada, retorna exatamente o mesmo resultado. Expressões boleanas equivalentes podem ser ou não a versão otimizada uma da outra.

O que foi dito acima só é possível se alguns axiomas¹ forem definidos.

A partir desses axiomas podemos definir **teoremas**².

Veremos ambos no próximo slide.

¹hipóteses básicas ou pré-supostos baseados na experiência empírica ou filosófica

²Teoremas são proposições demonstráveis a partir dos axiomas

Axiomas:

- 1. 0.0 = 0
- 211 = 1
- 3. 0.1 = 1.0 = 0
- 4. 1+1=1
- 5. 0+0=0
- 6. 1+0=0+1=1
- 7. $x = 0 \implies \overline{x} = 1$
- 8. $x = 1 \implies \overline{x} = 0$

Teoremas para AND

- 1. x.0 = 0
- 2. x.1 = x
- 3. x.x = x
- 4. $x.\overline{x} = 0$

Teoremas para OR

- 1. x + 1 = 1
- 2. x + 0 = x
- 3. x + x = x
- 4. $x + \overline{x} = 1$

Teorema para NOT

1.
$$\overline{(\overline{x})} = x$$

Álgebra de Boole: Expressão booleanas equivalentes

Princípio da dualidade

Dada uma expressão lógica que expressa uma igualdade então é possível criar uma expressão dual na qual a igualdade continua verdadeira.

Uma expressão dual é obtida quando se troca os valores de 0 para 1, de 1 para 0 e os operadores de and para or e de or para and. Perceba que **o resultado da expressão pode mudar** porém a **igualdade é preservada**.

Voltando ao slide 10 você perceberá que os teoremas para *OR* são **dualidades de uma variável** dos teoremas de *AND* e vice-versa.

$$x.y = y.x \Leftrightarrow x + y = y + x \text{ comutacao}$$

$$x + (x.y) = x \Leftrightarrow x.(x + y) = x \text{ absorcao}$$

$$(x.y) + (x.\overline{y}) = x \Leftrightarrow (x + y).(x + \overline{y}) = x \text{ combinacao}$$

$$(5)$$
Teorema de De Morgan: $\overline{(x.y)} = \overline{x} + \overline{y} \Leftrightarrow \overline{(x + y)} = \overline{x}.\overline{y}$

$$x + (\overline{x}.y) = x + y \Leftrightarrow x.(\overline{x} + y) = x.y$$

$$x.(y.z) = (x.y).z \Leftrightarrow x + (y + z) = (x + y) + z \text{ associação}$$

$$x.(y + z) = (x.y) + (x.z) \Leftrightarrow x + (y.z) = (x + y).(x + z) \text{ distribuição}$$

$$(x.y) + (y.z) + (\overline{x}.z) = (x.y) + (\overline{x}.z) \Leftrightarrow (x + y).(y + z).(\overline{x} + z) = (x + y).(\overline{x} + z)$$

$$\text{consenso (sumiço :D)}$$

$$(6)$$

Em tempo: Eu sei que em alguns lugares tem parenteses sobrando, isso foi intencional pra facilitar a visualização das relações.

Teorema de D.Morgan

Tabela: Prova exaustiva do teorema de De Morgan: $\overline{(x.y)} = \overline{x} + \overline{y}$

X	у	x.y	$\overline{x.y}$	\overline{X}	\overline{y}	$\overline{x} + \overline{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Tabela: Prova exaustiva para o dual do teorema de De Morgan: $\overline{(x+y)} = \overline{x}.\overline{y}$

X	у	x + y	$\overline{x+y}$	\overline{X}	\overline{y}	$\overline{x}.\overline{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Provas de expressões na álgebra de Boole

- Indução perfeita: Devido a pequena quantidade de valores possíveis (0 ou 1) geralmente é viável provar as igualdades dessa forma. A indução perfeita (prova exaustiva) se dá ao fazer a tabela verdade da igualdade, verificando se os valores literais realmente coincidem. Quando a expressão começa a ter muitas variáveis e/ou se tornar muito grande, esse método pode se tornar inviável devido a grande quantidade de estados possíveis que o sistema pode ter.
- manipulação algébrica: Levando em consideração os axiomas e teoremas é possível manipular as igualdades de forma que a igualdade seja provada.
- diagrama de Ven: Nos próximos capítulos.

Provas de expressões na álgebra de Boole com diagrama de Venn

Se interpretarmos **AND** ou . como \cap e **OR** ou + como \cup é possível fazer a prova de uma igualdade usando o diagrama de Venn.

Para começar, uma dica interessante é representar as relações do espaço para identificar cada uma das regiões de acordo com a expressão avaliada.

Figura: Relações de um espaço com duas variáveis

A partir disso é possível escrever outras relações:

$$(x.\overline{y}) + (x.y) = x$$

$$(\overline{x}.y) + (x.y) = y$$

$$(x.\overline{y}) + (x.y) + (\overline{x}.y) = x + y$$
(7)

Provas de expressões na álgebra de Boole com diagrama de Venn

Como exemplo provaremos o do teorema de DeMorgan: $\overline{(x.y)} = \overline{x} + \overline{y}$

Lado esquerdo da igualdade.

Figura: (x.y)

Figura: $\overline{(x.y)}$

Lado direito da igualdade.

Provas de expressões na álgebra de Boole com diagrama de Venn

Como exemplo provaremos
$$(x.y) + (y.z) + (\overline{x}.z) = (x.y) + (\overline{x}.z) \Leftrightarrow (x+y).(y+z).(\overline{x}+z) = (x+y).(\overline{x}+z)$$
 consenso (sumiço :D)

Lado esquerdo da igualdade.

Figura: (x.y) + (y.z)

Figura: $(x.y) + (y.z) + (\overline{x}.z)$

Lado direito da igualdade.

Figura: $(x.y) + (\overline{x}.z)$

Mini prova 02

A partir dos teoremas e propriedades apresentados mostre que (x + y).(x + z) = x + y.z. Indique quais os teoremas e/ou propriedades usados na solução.

Crie dualidades para

- ▶ 0.0
- ▶ 1.1
- $x = 0 \implies \overline{x} = 0$

Prática dirigida

Crie a tabela verdade para a porta lógica AND. Crie a tabela verdade para a porta lógica OR. Crie a tabela verdade para a porta lógica NOT.

Prática dirigida

Dada a tabela verdade a seguir, construa a expressão lógica correspondente:

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Prática dirigida

Dada a expressão lógica $F = A \cdot \overline{B}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $F = A \cdot B + \overline{A} \cdot \overline{B}$, construa a tabela verdade correspondente.

Circuitos combinacionais

Introdução

Até agora, revisamos a lógica, as tabelas-verdade e a álgebra booleana. No entanto, ainda não abordamos os circuitos digitais propriamente ditos. A partir de agora, exploraremos a correlação entre as expressões lógicas da álgebra booleana e o projeto de circuitos elétricos.

Circuitos combinacionais

Chave binária

A chave binária é um componente que permite ou impede a passagem da corrente elétrica dado seus estado. A partir dela criaremos circuitos mais complexos.

Figura: Chave binária

A chave binária pode ser representada de outra forma:

Figura: Chave binária

Circuitos combinacionais

Circuito identidade

Agora considere uma função que depende um argumento x para definir seu estado. Tal função pode ser representada no circuito abaixo:

Figura: Função lógica de uma variável. No circuito *F* pode ser ligada a qualquer elemento de saída com um led ou outro circuito.

$$F=1 \forall x=1$$

 $F=0 \forall x=0$
Portanto F é uma função lógica de
uma variável tal que $F(x)=x$

Circuitos combinacionais Circuito OR e AND

A partir de agora é possível construir circuitos mais complexos como OR e AND.

Figura: Circuito **AND**: *a* e *b* são suas entradas. Aqui se pode constatar que este circuito pode receber de 2 a *n* entradas.

Figura: Circuito **OR**: $a \in b$ são suas entradas. Aqui se pode constatar que este circuito pode receber de 2 a n entradas.

Circuitos combinacionais Circuito NOT

Figura: Circuito **NOT**: Inverte a entrada a.

Nada aqui por questões estéticas...

Circuitos combinacionais

E assim como vimos na álgebra de Boole **OR** e **AND** podem ser combinados.

Figura: O \mathbf{OR} recebe as entradas a e b, o circuito \mathbf{AND} recebe c e a saída de \mathbf{OR}

Aumento da abstração: Definição das portas

Para representar circuitos simples os símbolos já vistos são suficientes, porém, quando a complexidade aumenta pode ficar beeeeeemmmm complicado entender o que se passa. Então precisamos aumentar o nível de abstração encapsulando esse componentes.

Figura: Abstração de circuito AND para a porta AND

Figura: Abstração de circuito **OR** para a porta **OR**

Figura: Abstração de circuito NOT para a porta NOT

Veja como fica o circuito (a + b).c com as novas abstrações.

Figura: Circuito correspondente a expressão lógica (a+b).c

Agora que temos acesso a novos circuitos que foram abstraídos em portas podemos, combinando essas portas, criar outras como a seguir.

XOR:
$$\overline{a}.b + a.\overline{b} = a \oplus b$$

Figura: Porta XOR

NOR:
$$\overline{a+b} = a \downarrow b$$

Figura: O circuito da porta NOR

Figura: Porta NOR

NAND:
$$\overline{a.b} = a \uparrow b$$

Figura: O circuito da porta NAND

Figura: Porta NAND

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade:

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade:

Expressão:
$$f = \overline{(a+b)}$$

Tabela verdade:

Χ	У	Z
0	0	1
0	1	0
1	0	1
1	1	1

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade:

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade:

Expressão: $f = \overline{(a.b)}$

Tabela verdade:

a	b	X
0	0	1
0	1	1
1	0	1
1	1	0

Dada a expressão lógica $f=a\cdot \overline{b}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $f = a \cdot \overline{b}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $f=a\cdot b+\overline{a}\cdot\overline{b}$, construa a tabela verdade correspondente.

Dada a expressão lógica $f = a \cdot b + \overline{a} \cdot \overline{b}$, construa a tabela verdade correspondente.

Tabela verdade:

	· · ·	
a	b	f
0	0	1
0	1	0
1	0	0
1	1	1
,		1

Dada a expressão lógica $f = (a \cdot b + \overline{c}) \cdot (a + c)$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $f = (a \cdot b + \overline{c}) \cdot (a + c)$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $f = a + b \cdot \overline{c}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $f = a + b \cdot \overline{c}$, desenhe o circuito combinacional correspondente.

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade correspondente:

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade correspondente:

Expressão: f = a.b + a

Tabela verdade:

		cidade.	
a	Ь	f	
0	0	0	
0	1	0	
1	0	1	
1	1	1	
1	1	1	

Diagrama de Tempo (Waveform)

Diagrama de Tempo (Waveform)

Quando fazemos o diagrama de tempo ou o *waveform* apresentamos ao circuito uma sequência de sinais de forma que o circuito responde a essa sequência gerando outras sequências.

- Mostra os estados do circuito ao longo do tempo.
- Permite a visualização do comportamento do circuito durante o tempo.

Nome do sinal	Valor do sinal	9 ns	20,0 μι	1	9,0 µх	60,0 µx		80,0 µs	100,0 με	120,0 με	140,0 με	160,0 με	180,0 με 19499
□ - Entrada(190,		0		0 1	0	1 0		1	0 1 0 1 0	1	0 1 0	1 0 1 0	1
□ Entrada(190,	1	0 1	0 /1	0	1 0	1	0	1 0		1 0 1	0	1	0 /1
□ Saída(360,200)	0	0 1	1 0	1 0 1	0 1 0	1 0 /1	0	1 \0 /1	0 1 0 1 0	1 0 1 0	1 0 1 0	1 0 /1 0 /1	0 1 0

Figura: Consegue saber qual porta é esta?

Construção de Circuito a partir de Expressão Algébrica

- ▶ Dada a expressão algébrica $f(x, y, z) = \overline{x} \cdot y + x \cdot \overline{y} \cdot z$, construa:
 - 1. O circuito correspondente usando portas lógicas básicas (AND, OR, NOT).
 - 2. A tabela verdade que representa o comportamento da função.
 - 3. O diagrama de tempo (waveform) que mostra os estados do circuito para todas as combinações de x, y e z ao longo do tempo.

Construção de Circuito a partir de Expressão Algébrica

- ▶ Dada a expressão algébrica $f(x, y, z) = \overline{x} \cdot y + x \cdot \overline{y} \cdot z$, construa:
 - 1. O circuito correspondente usando portas lógicas básicas (AND, OR, NOT).
 - 2. A tabela verdade que representa o comportamento da função.
 - 3. O diagrama de tempo (waveform) que mostra os estados do circuito para todas as combinações de x, v e z ao longo do tempo.

Nome do sinal	Valor do sinal	9 m	20,0 με		0,0 ра	60,0 µs 80,	0 μι 100,0 γ		120,0 µх	140,0 με	160,0 μs	1699991
⊃- x	0	0	1			0	1 0	1	0	1	0	
□- y	1	0	1	0	1	0	1	0	1	0 /1		
D- z	0	0 1	0 /1	0	1 0/1	0 /1 \0	1	0	1	0	1 0	
Ðf	1	0	/1 0	1 0	1 0	1 0	1 0 1	0 /1 \0	1	0 /1 0	1	

Talasta and all

rabe	era	vera	ade:	
X	У	Z	f	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	0.	nesp
1	1	4 ∄ →	_0 _u	nesp
	$ \begin{array}{c} x \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	x y 0 0 0 0 0 1 1 0 1 1 1 1 1 1	x y z 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1	0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0

Análise de Diagrama de Tempo

- ► Considerando o diagrama dado:
 - O circuito que pode gerar o comportamento mostrado no diagrama.
 - 2. A tabela verdade associada ao circuito.
 - 3. A expressão algébrica correspondente ao circuito.

Análise de Diagrama de Tempo

- ► Considerando o diagrama dado:
 - O circuito que pode gerar o comportamento mostrado no diagrama.
 - 2. A tabela verdade associada ao circuito.
 - 3. A expressão algébrica correspondente ao circuito.

Tabela verdade:

У	Z
0	1
1	0
0	1
1	1
	1

Expressão:

$$z = \overline{y} + x$$

Até agora, determinamos as expressões algébricas de forma intuitiva, analisando os circuitos e os resultados das tabelas verdade para, geralmente, identificar a expressão lógica correspondente ao circuito. A partir de agora, utilizaremos ferramentas que oferece um método bem definido para montar a expressão algébrica correspondente ao circuito analisado.

Tais ferramentas se chamam *Mintermos* e *Maxtermos* que, embora não produzam uma expressão otimizada, fornecem uma função inicial que pode ser manipulada e minimizada se assim o desejarmos.

- Mintermos (Soma de Produtos Canônica (SOP)): A função é expressa como a soma (OR) das linhas onde a função vale 1.
- ► Maxtermos (Produto de Somas Canônica (POS)): A função é expressa como o produto (AND) das linhas onde a função vale 0.

Definição e propriedades da soma de produtos canônica (SOP)

- ► A implementação canônica de uma função booleana que seleciona os produtos das variáveis onde o resultado é 1.
- Propriedades:
 - Unicidade: Existe uma única SOP canônica para cada função booleana.
 - Importância: Útil na análise e síntese de circuitos digitais.
 - Minimização: Pode ser simplificada com Mapas de Karnaugh ou Quine-McCluskey.

Definição e Propriedades do produto de somas canônica (POS)

- Forma canônica que seleciona as somas das variáveis onde o resultado é 0.
- Propriedades:
 - Unicidade: Existe uma única POS canônica para cada função booleana.
 - Importância: Utilizada em design digital para implementar lógica com portas OR e AND.
 - Minimização: Pode ser simplificada como a SOP canônica.

Exemplo de determinação de função lógica

Vamos determinar a função lógica a partir da tabela verdade abaixo:

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Determinação da função lógica usando Mintermos

Mintermos: Linhas onde f(a, b, c) = 1. Maxtermos Linhas onde f(a, b, c) = 0.

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	
1	0	1	
1	1	0	0
1	1	1	0

Passo 1: Identifique as linhas onde f(a, b, c) = 1.

- ▶ 02: a = 0, b = 0, $c = 1 \rightarrow \text{Mintermo: } \overline{a}.\overline{b}.c$
- ▶ 04: a = 0, b = 1, $c = 1 \rightarrow \text{Mintermo}$: $\overline{a}.bc$
- ▶ 05: a = 1, b = 0, $c = 0 \rightarrow Mintermo$: $a\overline{b}.\overline{c}$
- ▶ 06: a = 1, b = 0, c = 1 → Mintermo: $a\overline{b}.c$

Passo 2: Escreva a função como a soma (OR) desses mintermos.

A função lógica pode ser expressa como a soma dos mintermos correspondentes:

$$f(a,b,c) = \overline{a}.\overline{b}.c + \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c}$$

Determinação da função lógica usando Maxtermos

Mintermos: Linhas onde f(a, b, c) = 1. Maxtermos Linhas onde f(a, b, c) = 0.

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1 1 1 1	1	0	0
1	1	1	0

Passo 1: Identifique as linhas onde f(a, b, c) = 0.

- ▶ 01: a = 0, b = 0, c = 0 → Maxtermo: a + b + c
- ▶ 03: a = 0, b = 1, c = 0 → Maxtermo: $a + \overline{b} + c$
- ▶ 07: a = 1, b = 1, c = 0 → Maxtermo: $\overline{a} + b + c$
- ▶ 08: a = 1, b = 1, $c = 1 \rightarrow \mathsf{Maxtermo}$: $\overline{a} + b + \overline{c}$

Passo 2: Escreva a função como o produto (AND) desses maxtermos.

A função lógica pode ser expressa como o produto dos maxtermos correspondentes: f(a, b, c) =

$$(a+b+c)\cdot(a+\overline{b}+c)\cdot(\overline{a}+b+c)\cdot(\overline{a}+b+\overline{c})$$

SOP - Prática guiada 01

Considere a função f(a, b, c) definida pela tabela verdade:

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

tabela verdade:

- **▶** Mintermos:
 - $ightharpoonup \overline{abc}, \overline{abc}, ab\overline{c}, ab\overline{c}, abc$
- ▶ SOP Canônica: $f(a,b,c) = \overline{a}\overline{b}c + \overline{a}bc + a\overline{b}\overline{c} + ab\overline{c} + abc$

POS - Prática guiada 02

Considere a função f(a, b, c) definida pela tabela verdade:

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

tabela verdade:

Maxtermos:

$$(a+b+c), (a+\overline{b}+c), (\overline{a}+b+\overline{c})$$

POS Canônica:
$$f(a,b,c) = (a+b+c)\cdot(a+\overline{b}+c)\cdot(\overline{a}+b+\overline{c})$$

Exercício

Criação de Circuito a partir da tabela verdade

▶ Dada a seguinte tabela verdade:

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- 1. Construa o circuito digital que implementa essa função.
- 2. Derive a expressão algébrica na forma de Soma de Produtos Canônica (SOP) a partir da tabela verdade.
- 3. Crie o diagrama de tempo correspondente ao circuito.

Exercício - Resolução

Selecionando os mintermos (Soma de Produtos Canônica)

X	У	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$f(x,y,z) = (\overline{xy}z) + (\overline{x}yz) + (x\overline{y}\overline{z}) + (xyz)$$

Agrupando

$$(\overline{x}yz)+(xyz)=(yz).(\overline{x}+x)=(yz).1=\overline{yz}$$

Agrupando yz com o restante da expressão $\overline{yz}+(\overline{xy}z)+(x\overline{yz}).$

Fatorando z:
$$z.(y + \overline{xy}) + (x\overline{yz}) = z.(\overline{x} + y) + (x\overline{yz}) = |\overline{x}z + yz + x\overline{yz}|$$

Mini prova 03

- Dado o circuito abaixo, determine:
 - 1. A tabela verdade correspondente ao circuito não simplificado.
 - 2. A expressão algébrica **simplificada** que representa a função lógica do circuito.
 - 3. O circuito simplificado.
 - 4. O diagrama de tempo (waveform) que reflete o comportamento do circuito.

Figura: Passarinho... Resolve esse... Qual é a expressão desse?³

♪All you need is NAND/NOR... ♪

O que fazer se você não tem as portas lógicas que vc precisa

$$\overline{a} = a \downarrow a = a \uparrow a$$

$$a.b = (a \downarrow a) \downarrow (b \downarrow b) = (a \uparrow b) \uparrow (a \uparrow b)$$

$$a+b=(a\downarrow b)\downarrow(a\downarrow b)=(a\uparrow a)\uparrow(b\uparrow b)$$

O que mídia não quer que você saiba sobre o XOR ⁴

Equivalências do XOR

Até agora nos foram apresentadas as equivalências das portas AND e OR, porém, muitas vezes nos depararemos com portas XOR. Seria interessante sabermos sua equivalências também:

а	b	$a \oplus b$	$\overline{a}b + a\overline{b}$	$\overline{a}\overline{b} + ab$	ā	\overline{b}	ab	āb	$a\overline{b}$	$\overline{a}\overline{b}$
0	0	0	0	0	1	1	0	0	0	1
0	1	1	1	1	1	0	0	1	0	0
1	0	1	1	1	0	1	0	0	1	0
1	1	0	0	0	0	0	1	0	0	0

Tabela: Tabela verdade das equivalências de XOR

$$a \oplus b = \overline{a}b + a\overline{b} = \overline{\overline{a}\overline{b} + ab}$$

Equivalências do XOR - Exercício

Usando a tabela verdade prove que $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ e portanto que XOR é comutativo.

Revelação!

Que idade você tinha ao ficar sabendo que XOR só tem saída verdadeira quando o número de entradas verdadeiras é ímpar??

Bom... Agora vamos fazer algumas coisa legais: Somadores e subtratores.

Expressão de exemplo

Abaixo foi realizada uma operação de soma simples entre dois números binários, a e b, cujo resultado é mostrado na linha marcada com a palavra 'Sum'. ' C_{in} ' e ' C_{out} ' significa 'Carry in' e 'Carry out', o nosso famoso 'Vai um'. A partir deste exemplo, vamos criar uma tabela-verdade que nos permitirá formular a expressão algébrica booleana e, consequentemente, o circuito somador correspondente.

$\stackrel{C_{out}}{1}$	$\stackrel{C_{in}}{1}$			C _{in} / C _{out}
	1	1	0	а
	1	1	1	b
1	1	0	1	Sum

Tabela verdade da soma

Abaixo, representamos a tabela-verdade da soma binária. O objetivo da desta é modelar o comportamento da soma de dois bits. Como vimos na soma binária anterior, quando um bit 1 é somado a outro bit 1, o valor resultante é zero; no entanto, a próxima soma recebe um bit 1 adicional. Esse bit adicional é chamado de 'Carry in' quando é recebido, e de 'Carry out' quando é emitido. O objetivo da tabela-verdade abaixo é representar a soma e o 'Carry out' resultantes da soma de dois bits.

а	b	Sum	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tabela: Tabela verdade da soma binária

Prática dirigida - Tabela verdade da soma

Como Sum e C_{out} se comportam? O que C_{out} representa em termos de uma soma computacional? Qual o circuito correspondente?

а	b	Sum	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tabela: Tabela verdade da soma binária

Prática dirigida - Tabela verdade da soma

а	b	Sum	C_{out}	$a \oplus b$	a · b
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	1	0	1

Tabela: Tabela verdade da soma binária

Meio somador / Somador incompleto / Half adder

A tabela-verdade e o circuito mostrados abaixo representam o que chamamos de **meio somador**, **somador incompleto** ou ainda **Half Adder**. O meio somador tem essa denominação porque, apesar de realizar a soma de dois bits, não considera um bit que possa vir para complementar sua operação. Dessa forma, o circuito é capaz de trabalhar apenas com a soma de dois bits, informando se houve um bit C_{out} . Isso impede a criação de somadores para números maiores por meio da concatenação de vários circuitos

а	b	Sum	C_{out}	$a \oplus b$	a · b
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	1	0	1

Tabela: Tabela verdade da soma binária

Para determinar um somador completo, é necessário considerar não apenas as entradas a e b, mas também uma entrada C_{in} , que representa o possível bit vindo do C_{out} de outro circuito. Dessa forma, o resultado da soma é alterado, o que, por sua vez, modifica a expressão final e o circuito resultante.

а	b	Cin	Sum
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Tabela: Tabela verdade de um somador completo

Considerando a tabela verdade mostrada determine a expressão algébrica boleana e o circuito correspondentes.

а	b	Cin	Sum
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Tabela: Tabela verdade de C_{in} para somador completo

Considerando a tabela verdade mostrada determine a expressão algébrica boleana e o circuito correspondentes.

а	b	Cin	Sum
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Tabela: Tabela verdade de C_{in} para somador completo

Para facilitar a notação considerando $c = C_{in}$ Temos por *mimtermos*:

$$(\overline{a}\overline{b}c) + (\overline{a}b\overline{c}) + (a\overline{b}\overline{c}) + (abc) =$$

$$\overline{a}.(\overline{b}c + b\overline{c}) + a.(\overline{b}\overline{c} + bc) =$$

$$\overline{a}.(b \oplus c) + a.(\overline{b} \oplus c) =$$

$$(8)$$

$$a \oplus (b \oplus c)$$

Considerando a tabela verdade mostrada determine a expressão algébrica boleana e o circuito correspondentes.

а	b	Cin	Sum
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Tabela: Tabela verdade de C_{in} para somador completo

Para facilitar a notação considerando $c = C_{in}$ Temos por *mimtermos*:

$$(\overline{a}\overline{b}c) + (\overline{a}b\overline{c}) + (a\overline{b}\overline{c}) + (abc) =$$

$$\overline{a}.(\overline{b}c + b\overline{c}) + a.(\overline{b}\overline{c} + bc) =$$

$$\overline{a}.(b \oplus c) + a.(\overline{b} \oplus c) =$$

$$(8)$$

а	b	Cin	C_{out}
0	0	0	

а	b	Cin	C_{out}
0	0	0	0
0	0	1	·

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	,

а	b	C_{in}	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	

а	b	C_{in}	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	·

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	'

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	'

Um somador completo deve não apenas receber um C_{in} como também gerar um C_{out} . Portanto, é necessário determinar como o C_{out} é obtido.

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Tabela: Tabela verdade de C_{out} para somador completo

Prática dirigida

A partir da tabela-verdade mostrada determine a expressão algébrica booleana correspondente e o respectivo circuito de C_{out}^{5} .

а	b	Cin	C_{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Para facilitar a notação considerando $c = C_{in}$ temos por *mimtermos*:

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
(9)

Tabela: Tabela-verdade de C_{out} para somador completo

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$

reorganizando:
 $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
 reorganizando: $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$ pondo **a** em evidência: $a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
 reorganizando: $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$ pondo \mathbf{a} em evidência: $a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$ pondo \mathbf{c} em evidência $a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
 reorganizando:
 $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$ pondo **a** em evidência:
 $a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$ pondo **c** em evidência
 $a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$
 $a.(c.1 + b\overline{c}) + (\overline{a}bc) =$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
 reorganizando:
 $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$ pondo **a** em evidência:
 $a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$ pondo **c** em evidência
 $a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$
 $a.(c.1 + b\overline{c}) + (\overline{a}bc) =$
 $a.(c + b\overline{c}) + (\overline{a}bc) =$

Prática dirigida

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
reorganizando:
$$(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$$
pondo **a** em evidência:
$$a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$$
pondo **c** em evidência
$$a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c.1 + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c + b\overline{c}) + (\overline{a}bc) =$$

usando o teorema: $x + \overline{x}y = x + y$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
reorganizando:
 $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$
pondo \mathbf{a} em evidência:
$$a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$$
pondo \mathbf{c} em evidência
$$a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c.1 + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c + b\overline{c}) + (\overline{a}bc) =$$

usando o teorema: $x + \overline{x}y = x + y$ $a.(c + b) + (\overline{a}bc) =$ $ac + ab + \overline{a}bc =$ colocando **b** em evidência:

Somador completo Prática dirigida

 $a.(c + b\overline{c}) + (\overline{a}bc) =$

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
reorganizando:
 $(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$
pondo \mathbf{a} em evidência:
 $a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$
pondo \mathbf{c} em evidência
 $a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$
 $a.(c.1 + b\overline{c}) + (\overline{a}bc) =$

usando o teorema:
$$x + \overline{x}y = x + y$$

 $a.(c + b) + (\overline{a}bc) =$
 $ac + ab + \overline{a}bc =$
colocando **b** em evidência:
 $ac + b.(a + \overline{a}c) =$
usando o teorema: $x + \overline{x}y = x + y$

Somador completo Prática dirigida

$$(\overline{a}bc) + (a\overline{b}c) + (ab\overline{c}) + (abc) =$$
reorganizando:
$$(a\overline{b}c) + (ab\overline{c}) + (abc) + (\overline{a}bc) =$$
pondo **a** em evidência:
$$a.(\overline{b}c + b\overline{c} + bc) + (\overline{a}bc) =$$
pondo **c** em evidência
$$a.(c.(\overline{b}b) + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c.1 + b\overline{c}) + (\overline{a}bc) =$$

$$a.(c + b\overline{c}) + (\overline{a}bc) =$$

usando o teorema:
$$x + \overline{x}y = x + y$$
 $a.(c + b) + (\overline{a}bc) =$
 $ac + ab + \overline{a}bc =$
colocando **b** em evidência:
 $ac + b.(a + \overline{a}c) =$
usando o teorema: $x + \overline{x}y = x + y$
 $ac + b.(a + c) =$

$$\boxed{ac + ba + bc}$$

Portanto o circuito do Cout fica assim:

Somador completo Prática dirigida

Portanto o circuito somador completo ou Full adder fica assim:

Somador completo - Gambiarra

Usando somadores incompletos podemos fazer um completo:

Subtração binária

Expressão de exemplo

Abaixo foi realizada uma operação de subtração simples entre dois números binários, a e b, cujo resultado é mostrado na linha marcada com a palavra 'Diff'. 'B_{out}' significa 'Borrow out', o nosso famoso 'emprestar'. A partir deste exemplo, vamos criar uma tabela-verdade que nos permitirá formular a expressão algébrica booleana e, consequentemente, o circuito subtrator correspondente.

	10	10	10	B_{out}
1	1	0	0	а
	1	1	1	Ь
	1	0	1	Diff

A tabela-verdade e o circuito mostrados abaixo representam o que chamamos de **meio subtrator**, **subtrator incompleto** ou ainda **Half subtrator**. O meio subtrator tem essa denominação porque, apesar de realizar a subtração de dois bits, não considera um bit que possa ter sido emprestado por uma operação de subtração anterior. Dessa forma, o circuito é capaz de trabalhar apenas com a subtração de dois bits, informando se houve necessidade de empréstimo de um bit B_{out} . Isso impede a criação de subtratores para números maiores por meio da concatenação de vários circuitos

а	b	Diff	B_{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Tabela: Tabela verdade da diferença binária

Prática dirigida - Tabela verdade da subtração

Como Diff e Bout se comportam? Qual o circuito correspondente?

а	b	Diff	B_{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Tabela: Tabela verdade da diferença binária

Prática dirigida - Tabela verdade da subtração

а	b	Diff	B_{out}	$a \oplus b$	ā.b
0	0	0	0	0	0
0	1	1	1	1	1
1	0	1	0	1	0
1	1	0	0	0	0

Tabela: Tabela verdade da diferença binária

Prática dirigida - Tabela verdade da subtração

а	b	Diff	B_{out}	$a \oplus b$	ā.b
0	0	0	0	0	0
0	1	1	1	1	1
1	0	1	0	1	0
1	1	0	0	0	0

Tabela: Tabela verdade da diferença binária

Para determinar um subtrator completo, é necessário considerar não apenas as entradas a e b, mas também uma entrada B_{in} , que representa o possível bit subtrator vindo do B_{out} de outro circuito. Dessa forma, o resultado da subtração é alterado, o que, por sua vez, modifica a expressão final e o circuito resultante.

Tenha em mente que $Diff = a - b - B_{in}$.

а	b	B_{in}	Diff	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Prática guiada

Considerando a tabela verdade mostrada determine as expressões algébricas boleanas e os circuitos de Diff e B_{out} correspondentes.

а	b	B_{in}	Diff	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Tabela: Tabela verdade de B_{in} para subtrator completo

Prática guiada

Considerando a tabela verdade mostrada determine as expressões algébricas boleanas e os circuitos de Diff e B_{out} correspondentes.

а	b	B_{in}	Diff	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Se você olhou bem, economizou tempo! Pois $Diff = a \oplus b \oplus c$. $Diff = a \oplus b \oplus B_{in}$

Tabela: Tabela verdade de B_{in} para subtrator completo

Prática guiada

Considerando a tabela verdade mostrada determine as expressões algébricas boleanas e os circuitos de Diff e B_{out} correspondentes.

а	b	B_{in}	Diff	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Tabela: Tabela verdade de B_{in} para subtrator completo

Se você olhou bem, economizou tempo! Pois $Diff = a \oplus b \oplus c$: $Diff = a \oplus b \oplus B_{in}$

Prática dirigida

A partir da tabela-verdade mostrada determine a expressão algébrica booleana correspondente e o respectivo circuito de B_{out} .

а	b	B_{in}	Diff	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Para facilitar a notação considerando $c=B_{in}$ temos por mimtermos:

$$(\overline{a}\overline{b}c) + (\overline{a}b\overline{c}) + (\overline{a}bc) + (abc)$$
 (12)

Tabela: Tabela-verdade de B_{out} para subtrator completo

Subtrator completo Prática dirigida

$$(\overline{abc}) + (\overline{a}b\overline{c}) + (\overline{a}bc) + (abc) =$$
pondo em evidência \overline{a} :
$$\overline{a}.(\overline{b}c + b\overline{c} + bc) + (abc) =$$

$$\overline{a}.(\overline{b}c + b.(\overline{c} + c)) + (abc) =$$

$$\overline{a}.(\overline{b}c + b.1) + (abc) =$$

$$\overline{a}.(\overline{b}c + b) + (abc) =$$
usando o teorema: $x + \overline{x}y = x + y$

$$\overline{a}.(b + c) + (abc) =$$

$$\overline{a}b + \overline{a}c + abc =$$

$$(13)$$

$$\overline{a}b + \overline{a}c + abc =$$
fatorando c :
 $\overline{a}b + c.(\overline{a} + ab) =$
usando o teorema: $x + \overline{x}y = x + y$ (14)
 $\overline{a}b + c.(\overline{a} + b) =$
 $\overline{a}b + \overline{a}c + bc$:
 $\overline{B_{out}} = \overline{a}b + \overline{a}B_{in} + bB_{in}$

Subtrator completo Prática dirigida

Portanto o circuito do B_{out} fica assim:

Subtrator completo Prática dirigida

Portanto o circuito subtrator completo ou Full subtractor fica assim:

Mas... mas... Oh... wait a fucking moment!

KKKKKKKK

Somador completo Demonstração

Vamos fazer um somador completo no logisim.

Mini prova 04

Altere o circuito somador completo para que o mesmo tenha um modo somador e um modo subtrator.

