Computer Architecture HW1

1

a.

$$10 * 2 * 10^9 = 2 * 10^{10}$$

b.

$$6 = rac{(clockCycle_B)}{(clockFreq_B)} = rac{1.2*(clockCycle_A)}{(clockFreq_B)} \Rightarrow clockFreq_B = 0.2*clockCycle_A = 0.2*2*10^{10} = 4*10^9 = 4GHz$$

2

a.

P1:
$$\frac{1}{\frac{1.5}{3*10^9}} = 2*10^9$$

P2:
$$\frac{1}{\frac{1.0}{2.5*10^9}} = 2.5*10^9$$

P3:
$$\frac{1}{\frac{2.2}{4*10^9}} = 2/1.1*10^9 \approx 1.82*10^9$$

Ans. P2

b.

$$Instruction_{P1} = 2 * 10^9 * 10 = 2 * 10^{10}$$

$$Cycle_{P1} = 2*10^{10}*1.5 = 3*10^{10}$$

$$Instruction_{P2} = 2.5 * 10^9 * 10 = 2.5 * 10^{10}$$

$$Cycle_{P2} = 2.5 * 10^{10} * 1.0 = 2.5 * 10^{10}$$

$$Instruction_{P3} = 2/1.1*10^9*10 \approx 1.82*10^{10}$$

$$Cycle_{P3} = 4/2.2 * 10^9 * 10 * 2.2 = 4 * 10^{10}$$

c.

$$0.7 = \frac{1.2}{c} \Rightarrow c \approx 1.71$$

So the Frequency should be 1.71 times the origin

$$Freq_{P1} = 1.71 * 3 = 5.13GHz$$

$$Freq_{P2} = 1.71 * 2.5 \approx 4.28 GHz$$

$$Freq_{P3} = 1.71 * 4 = 6.84GHz$$

3

2	50	54	1.85	0.93
4	25	29	3.45	0.86
8	12.5	16.5	6.06	0.76
16	6.25	10.25	9.76	0.61
32	3.13	7.13	14.03	0.44
64	1.56	5.56	18	0.28
128	0.78	4.78	20.92	0.16