ECO4010 Tutorial 2

- 1. This problem helps you review the basic concepts of utility representation and continuous preferences. Prove or disprove the following:
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is a strictly increasing function and $u: X \to \mathbb{R}$ is a utility function representing the preference relation \succeq , then the function $v: X \to \mathbb{R}$ defined by v(x) = f(u(x)) is also a utility function representing \succeq .
 - (b) If both u and v represent \succeq , then there is a strictly monotonic function $f: \mathbb{R} \to \mathbb{R}$ such that v(x) = f(u(x)).
 - (c) A continuous preference relation can be represented by a discontinuous utility function. [See HW2 Q4 as the same kind of problems.]
 - (d) In the case of $X = \mathbb{R}$, the preference relation that is represented by the discontinuous function $u(x) = \lfloor x \rfloor$ (the largest integer n such that $x \geq n$) is not a continuous relation.
 - (e) In the case of $X = \mathbb{N}$, any preference relation can be represented by a utility function that returns only integers as values.
- 2. Consider the following UMP with the utility function in a three-good setting:

$$u(x_1, x_2, x_3) = (x_1 - \beta_1)^{\alpha_1} (x_2 - \beta_2)^{\alpha_2} (x_3 - \beta_3)^{\alpha_3}$$
 s.t. $p \cdot x \le w$,

where $\beta_i \geq 0$, $\alpha_i > 0$ for all $i, p \gg 0$, and w > 0.

- (a) Explain why there is no loss of generality to assume that $\alpha_1 + \alpha_2 + \alpha_3 = 1$.
- (b) Write down the FOC for the UMP and derive the consumer's Walrasian demand and the indirect utility function.
- (c) Verify that the derived functions satisfy the following properties:
 - (1) Walrasian demand x(p, w) is homogeneous of degree zero and satisfies Walrasian Law:
 - (2) Indirect utility v(p, w) is homogeneous of degree zero;
 - (3) v(p, w) is strictly increasing in w and non-increasing in p_l for all l;
 - (4) v(p, w) is continuous in p and w.
- (d) Using different prices and incomes (i.e., p and p', w and w') and Walrasian demand to derive a condition (with some inequalities) that violates WARP.

- 3. Assume that x(p, w) is differentiable in $(p, w) \gg 0$ and that $x(p, w) \gg 0$.
 - (a) Show that whenever a consumer is maximizing a monotone utility function then, at any $(p, w) \gg 0$, there must exist some good k (which may depend on (p, w)) for which

$$\frac{\partial x_k(p,w)}{\partial w} > 0.$$

In other words, there must be some good k whose demand increases with income. [Hint: Walras' Law.]

Now further assume a consumer has the additive utility function

$$U(x_1,...x_l) = \sum_{i=1}^{l} u_i(x_i),$$

where u_i is C^2 , with $u_i'(x_i) > 0$ and $u_i''(x_i) < 0$ for all $x_i > 0$ and all i.

(b) Show that for the additive utility function, the marginal utility of income diminishes with income, i.e.,

$$\frac{\partial^2 v}{\partial w^2}(p, w) < 0 \text{ for all } (p, w) \gg 0.$$

[Hint: Recall that the marginal utility of income equals the Lagrange multiplier.]

(c) Show that for the additive utility function, we may strengthen the conclusion in (a) to the following:

$$\frac{\partial x_i(p,w)}{\partial w} > 0$$
 for all $(p,w) \gg 0$ and for every good i .

4. (Optional) Show that a preference relation \succeq on [0,1] is continuous and strictly convex iff there exists a continuous utility function u representing \succeq and a point $x^* \in [0,1]$ such that u is strictly increasing on $[0,x^*]$ and strictly decreasing on $[x^*,1]$. Graphically, one example is

