: 130: : 63 3 LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

State of California
THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

VOLUME III: CENTRAL COASTAL AREA

SEPTEMBER 1965

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ELECTRICAL CONDUCTANCE
DAILY MEAN
ALAMEDA CREEK NEAR NILES (STA 73)
1963

D-61

READINGS AT 1300 HOURS

BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207)

1963

ELECTRICAL CONDUCTANCE

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

VOLUME III: CENTRAL COASTAL AREA

SEPTEMBER 1965

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

TABLE OF CONTENTS

		Page
ORGANIZATION	OF BULLETIN NO. 130 SERIES	ii
AREA ORIENTAT	CION MAP	iii
LETTER OF TRA	NSMITTAL	vii
ORGANIZATION.		ix
ACKNOWLEDGMEN	TTS	x
	CHAPTER I. HYDROLOGIC CONDITIONS, 1962-63	1
California -	Statewide	. 2
Central Coast	cal Area	. 4
	CHAPTER II. DATA COLLECTION ACTIVITIES	10
Climate		. 10
Surface Water	Flow	. 11
Ground Water	Measurement	. 11
Surface Water	Quality	. 12
Ground Water	Quality	. 14
	FIGURES AND TABLES	
Figure 1	Water Year Precipitation in Percent of Normal, October 1, 1962 - September 30, 1963	. 3
Table 1	Ground Water Level Conditions in the Central Coastal Area, Spring 1963	. 7
Table 2	Summary of Ground Water Data Collected in the Central Coastal Area, July 1, 1962 - June 30, 1963	. 13

APPENDIXES

Page

А	Climate	A-]
В	Surface Water Flow	B- 1
С	Ground Water Measurement	C- I
D	Surface Water Quality	D-]
E	Ground Water Quality	E- !
	<u>PLATES</u> (Plates are bound at end of report)	
Plate No.		
1	Surface Water Stations in the Central Coastal Area	
2	Ground Water Basins or Units in the Central Coastal Area	а
3	Fluctuation of Water Level in Wells North Coastal Region	
4	Fluctuation of Water Level in Wells San Francisco Bay Region	
5	Fluctuation of Water Level in Wells Central Coastal Region	
6	Status of Sea-Water Intrusion Santa Clara Valley East Bay Area	

7 Climatological Stations in the Central Coastal Area

ARTMENT OF WATER RESOURCES

OX 388 MENTO

June 24, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is suspended.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes and appendixes.

This report is Volume III, "Central Coastal Area". It includes a text which summarizes hydrologic conditions in this part of California during the 1963 water year (October 1, 1962 through September 30, 1963) and five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurement", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality".

The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the Water Code of the State of California.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, timely hydrologic data to the public.

Collection of much of the data presented has been possible only because of the generous assistance of other agencies, private organizations and individuals. Without the data supplied by these people, Bulletin No. 130-63 should have been much less the valuable tool it is today.

Sincerely yours,

Mil Street

Director

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor
HUGO D. FISHER, Administrator, The Resources Agency
WILLIAM E. WARNE, Director, Department of Water Resources
ALFRED R. GOLZE', Chief Engineer
JOHN M. HALEY, Acting Assistant Chief Engineer

- - - - 0 - - - -

BAY AREA BRANCH

Charles A. McCullough
Vernon Bengal Chief, Water Supply and Quality Section
Activities covered by this report were under the supervision of
Glenn R. Peterson Supervisor, Water Supply Unit
Assisted by
ASSISTED by
John C. Etchells
John S. Bartok
John S. Bartok

Reviewed and coordinated by Division of Resources Planning Data Coordination Section

ACKNOWLEDGMENTS

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this bulletin.

Special mention is made of the following agencies:

Federal

United States Geological Survey
United States Bureau of Reclamation
United States Weather Bureau
United States Public Health Service

State

California Department of Public Health California Disaster Office

Loca1

Alameda County Flood Control and
Water Conservation District
Alameda County Water District
Campbell Water Company
Cupertino, City of
Gilroy, City of
Mendocino County
Monterey County Flood Control and
Water Conservation District
Mountain View, City of
Napa County
North Los Altos Water Company
Pacheco Pass Water District
Palo Alto, City of
San Benito County

San Jose Water Works

Santa Clara County Flood Control and
Water Conservation District
Santa Clara Valley Water Conservation
District
Santa Cruz County
Solano County
Sonoma County Flood Control and Water
Conservation District
South Santa Clara Valley Water
Conservation District
Stanford University
Sunnyvale, City of
Watsonville, City of

San Luis Obispo County Flood Control

and Water Conservation District

Santa Clara, City of

CHAPTER I

HYDROLOGIC CONDITIONS, 1962-63

California is an area that is unique in many respects. Its climate has always been exceptional and the range of land forms within the State sets it apart from neighboring areas. California has often been described as being set apart or isolated by features that prevail over wide areas adjoining the State. Perhaps, it would be more appropriate to consider the State as a link between dissimilar regions rather than isolated by them. California does, in fact, span all the dissimilarities of climate and topography from parched Death Valley to the marshy tidelands of the Pacific and the rain forests of northwestern California.

California climate is fostered by a balance between the slow forces of geology and the turbulent storms born of the Pacific Ocean. The massive walls of the Rocky Mountains and the Sierra Nevada protect the State from all but a few thrusts of the dry, cold, polar continental air masses. Maritime air masses, originating far out in the Pacific, receive some impetus and direction from wind patterns of the troposphere and move toward the California Coast. California lies in a transition zone between the prevailing westerlies that blow across the North Pacific and a calm high pressure zone, the horse latitudes, in the vicinity of 30 degrees north latitude. The horse latitudes, just south of California, buffer the State from many tropical storms which originate further to the south so that the north coast of California is crossed by more storms than the south coast. The Sierra Nevada and Cascade Mountains, along the eastern border of the great central valley, receive much of their precipitation by orographic lifting of the maritime air masses. The interior

lands of Southern California are shielded from maritime air masses by the Transverse Ranges and the northerly extension of the Peninsula Range.

California - Statewide

Average values, which sum up annual conditions for the whole State, show the 1962-63 water year to have been about normal. A closer look at this apparent normality shows a series of extreme conditions which in combination resulted in nearly normal averaged values. Figure 1, showing the water year precipitation in percent of normal, indicates that normal annual precipitation amounts were recorded in the latitude of San Luis Obispo and Bakersfield. Recorded annual precipitation south of that latitude was as low as 50 percent of normal in the vicinity of San Diego and north of the latitude rose as high as 150 percent of normal in the mountains along the northern boundary of the State.

During 1962-63, even these annual precipitation values were composed of extremes. In mid-October a series of storms drenched Northern California, Oregon, and Washington. Rivers in Northern California were near the flood level and the Feather River at Oroville reached the highest October stage of record, inundating construction work at the Oroville damsite. Southern California stayed dry. A midwinter drought followed, setting new records for lack of precipitation and for continuous days of fog in the Central Valley. Again, Southern California was dry.

The drought was broken by a three-day downpour at the end of January. Flood conditions prevailed again in Northern California and some areas, particularly the upper Yuba River basin, suffered from serious floods. Much of Southern California received moderate amounts of rain at this time.

During April, Northern California was covered by a series of storms; precipitation was moderate, but continued for almost two weeks. The April precipitation, along with a record late season snowfall during May, largely in the Northern Sierras, built up snowpacks and assured a normal water supply during the summer. Southern California gained some precipitation but had a less than normal wet season, which extended the dry trend that has prevailed in the southern part of the State since 1944.

Understandably, other hydrologic features showed abnormal responses. Streamflows alternated between extreme highs and extreme lows, but were about normal during the summer. With the recurring threat of floods, operation of reservoirs was difficult, yet the amount of water stored in reservoirs at the end of the water year was greater than year-end storage during most preceding years. In Southern California both surface runoff and reservoir storage were below normal.

Ground water conditions followed the pattern of precipitation. In the northern part of the State, the amount of water stored in the ground water basins generally increased. Because of the time distribution of precipitation, the increase of stored ground water was less than it would have been if the distribution was more uniform. Throughout Southern California, where precipitation was well below normal, ground water levels continued to drop.

Central Coastal Area

The Central Coastal Area, as delineated on the "Area Orientation Map", (frontispiece) includes all or parts of 14 counties extending from San Luis Obispo County on the south to Mendocino County on the north. Nearly half of the State's 1,190-mile open coastline is within the report area. It embraces

the major portion of the Coast Ranges, which consists of a series of mountain ranges paralleling the coast separated by many fertile valleys. The San Francisco Bay system is a central and unique feature.

Within the area is the metropolitan complex known as the Bay area. The Bay area is the second largest metropolitan area in the western half of the United States.

Surface water in the southern and central portions of the Central Coastal Area is highly developed. Extensive use is made of the numerous complex ground water basins and surface water is imported to the area. Several local ground water basins are deliberately recharged with stored or imported surface water. The basins are highly important to local economies and to the economy of the State. Consequently, ground water is emphasized in this bulletin.

In the Central Coastal Area average annual precipitation varies from areas of abundant rainfall along the coast and in the region north of San Francisco (up to 80 inches) to areas of very little rainfall in the southern Salinas River Valley (as low as 10 inches). During the 1962-63 season, which was noteworthy for its excesses in wet and dry periods, the final average result was an above normal precipitation for the report area with some areas recording 160 percent of normal.

The quality of surface waters in the report area is mostly good with the best waters draining the mountains adjacent to the coast. During the 1962-63 season the concentrations of dissolved solids generally decreased because of above normal precipitation and the corresponding increase in runoff.

Ground water occurs under diverse conditions and in a variety of rock types. Most of the readily available water exists in subsurface reservoirs composed of unconsolidated alluvial materials which underlie intermontane

valley floor areas. In many areas, the unconsolidated alluvial deposits are underlain and bordered by relatively extensive deposits of older, more consolidated alluvial materials which are also water bearing and act as recharge areas for the ground water reservoirs. Materials of lesser importance with respect to production of ground water in the Central Coastal Area but often of local significance are: The sedimentary materials which were deposited in lakes, lagoons, or as sand dunes; shallow water marine sediments from which sea water has been flushed; and some types of volcanic rocks. The ground waters are good to excellent in mineral quality and are suitable for most beneficial uses, except in localized areas where waters contain high concentrations of one or more of the following minerals: chlorides, sulfates, nitrates, sodium, and boron. The ground waters are bicarbonate and vary from moderately hard to very hard. Depths to water in wells range from about 350 feet to "flowing".

The raw ground water level data are made more meaningful when summarized into basin averages. Table 1, "Ground Water Level Conditions in the Central Coastal Area", presents average depths to ground waters and average changes by basin and region from the spring of 1962 to the spring of 1963.

During the spring of 1963 average depths to water in the monitored basins ranged from about 4.5 feet in Alexander Valley to about 123 feet in the Santa Clara Valley. The overall average depth to water in the basins monitored was 50.6 feet which was a decrease of 2.7 feet from the 1962 average. Significant rises of 23.4 feet and 2.0 feet occurred in the South Santa Clara County and San Benito County units of Gilroy-Hollister Valley, respectively. These rises were reversals of downward trends of the previous three years during which water levels had dropped approximately 39 feet in South Santa Clara

TABLE 1 GROUND WATER LEVEL CONDITIONS IN THE CENTRAL COASTAL AREA SPRING 1963

Ground Water Basin or Unit	Basin Number	: Average Change : in Ground Water Level <u>1/</u> :Spring 1962 to Spring 1963 (in feet)	: Average Depth : to Ground Water
	:	:Spring 1962 to Spring 1963 (in feet)	: Spring 1903 (in feet,
		Region 1	
Potter Valley	1-14.00	0.0	6.6
Ukiah Valley	1-15.00	-1.1	5.7
Sanel Valley	1-16.00	-0.6	5.3
Alexander Valley	1-17.00	+0.6	4.5
Santa Rosa Valley	1-18.00		
Santa Rosa Area Hesldsburg Area	1-18.01 1-18.02	+2.3 -0.2	13.0 12.5
•			
Lower Russisn River Valley	1-98.00	-2.4	9.4
	Region 1 Ave	rages: 2/ -0.6	9.6
		Region 2	
Petaluma Vailey	2-1.00	+1.3	23.2
Napa-Sonoma Valley	2-2.00		
Napa Valley	2-2.01	+0.9	12.0
Sonoma Valley	2-2.02	+1.1	16.5
Suisun-Fairfield Valley	2-3.00	+5.3	6.8
Ygnacio Valley	2-6.00	+1.1	15.1
Santa Clara Valley	2-9.00		
East Bay Area South Bay Area	2-9.01 2-9.02	+2.6 +12.6	59.3 123.2
•			
Livermore Valley	2-10.00	+3.3	63.5
Half Moon Bay Terrace	2-22.00	+3.4	18.7
San Gregorio Valley	2-24.00	-0.6	9.1
Pescadero Valley	2-26.00	+1.4	6.1
	Region 2 Ave	rages: 2/ +5.5	53.3
		Region 3	
Soquel Valley	3-1.00	-0.8	65.6
Pajaro Valley	3-2.00	+2.2	60.7
Gilroy-Hollister Valley	3-3.00		
South Santa Clara County	3-3.01	+23.4	47.3
San Benito County	3-3.02	+2.0	76.9
Salinas Valley	3-4.00	+0.1	55.2
Carmel Valley	3-7.00	+0.7	16.3
West Santa Cruz Terrace	3-26.00	No messurements in 1963	
	Region 3 Ave	rages: 2/ +1.5	56.9
Centr	al Constal Area Ave		50.6

^{1/ +} indicates rise in weter level.
- indicates decline in water level.

^{2/} Region Averages = ≤ (basin average x basin area) € basin areas

^{3/} Central Coastal Area Averages ≈ € (region average x region area) € region areas

County and 9 feet in San Benito County. Sea-water intrusion continued to be a problem in portions of Salinas and Pajaro Valleys and in the Niles Cone in Alameda County where ground water levels have remained below sea level.

During the period from July 1, 1962 through June 30, 1963, there were no significant changes in mineral concentrations. Some localized poor quality ground water, probably from deep-seated origin, is found in the northern portion of the Central Coastal Area. Data collected in portions of Petaluma Valley, Napa-Sonoma Valley and Suisun-Fairfield Valley, where ground water has been degraded by brackish waters from the bays, indicate no further degradation. Chloride concentrations in the Centerville aquifer in Alameda County decreased (Plate 6). This decrease was probably a direct result of above normal precipitation and deliberate recharge of the ground water basin with South Bay Aqueduct water by Alameda County Water District.

Boron concentrations in excess of that recommended for irrigation of some crops were present in water from some wells in the following areas:

- The vicinity of Newark in Alameda County and the proximity of the Mission fault.
- Southern and central portions of Petaluma Valley adjacent to Petaluma Creek.
- 3. East side of Napa Valley.
- Eastern portion of Santa Clara Valley, especially in the Penitencia Creek area.
- 5. Northern and eastern portions of Livermore Valley.
- 6. Eastern portion of Hollister Valley.

A number of wells drilled into the volcanic rocks on the east side of Napa Valley produce highly mineralized water, or water having undesirable

taste or odor. High nitrate concentrations occur in localized areas in Livermore Valley. Many wells in Clayton and Ygnacio Valleys yield water which, unless softened, is undesirable for domestic and some industrial uses because of extreme hardness. Some of the wells in Ygnacio Valley also yield water having concentrations of sulfates and nitrates exceeding amounts normally recommended as limits for drinking water.

Ground water samples collected in the sea-water intruded areas of Pajaro and Salinas Valleys contained about the same chloride concentrations as the samples collected the previous year. Water with nitrate concentrations above the normally recommended limit for drinking water is present in a few wells located near Monterey Bay in Pajaro Valley. Wells in the vicinity of Hollister yield water containing high concentrations of total dissolved solids, chlorides, sulfates, nitrates, and boron.

CHAPTER II

DATA COLLECTION ACTIVITIES

The Department of Water Resources, in cooperation with federal, state, and local agencies, as well as with the generous and public-spirited assistance of many individuals, has gradually developed a continuing program of basic hydrologic data collection. This continuity enables systematic and orderly handling, filing, and publication of the data for all uses both now and in the future.

The data collection activities involve the maintenance of a network of stations adequate to provide reliable, meaningful, representative and needed information. Water samples or water measurements are taken at these stations, chemical analyses of the samples are made, and the data are compiled, analyzed, summarized, and published. These data include information on climate, surface water flows, tidal stages, ground water levels, and on the chemical quality of surface and ground waters. The climate data include precipitation, air temperature, wind movement, and evaporation.

CLIMATE

The climatology station network shown on Plate 7, "Climatological Stations in the Central Coastal Area", was established by the U. S. Weather Bureau and the Department of Water Resources. The Department supplements the Weather Bureau network of 141 stations with a network of 74 selected stations which are and have been operated by individuals, private industry, and governmental agencies. Data from these 215 stations are tabulated in Appendix A of this report.

SURFACE WATER FLOW

The four surface water stations shown on Plate 1 are operated by the Department of Water Resources. The Department also cooperates with the United States Geological Survey in the operation of 62 of the 115 stations operated by that agency in the area covered by this report. Also, the United States Coast and Geodetic Survey operates two tide stations in the area. The United States Geological Survey publishes data from the 115 stations in its water supply papers. There are a number of surface water stations operated by local agencies for local purposes from which data are not routinely obtained by the Department.

GROUND WATER MEASUREMENT

The Department cooperates with the U. S. Geological Survey and many local agencies for the systematic observation of ground water levels. Wells at which water level measurements are made in the Central Coastal Area number approximately 1,700 of which 213 are presented in Appendix C of this report. These 213 wells were selected as representative of wells in the respective ground water basins or units. The wells were selected on the basis of a number of factors such as, geographical density of one or two wells per township; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, aquifer represented; and availability of a geologic log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made

with an air line and gauge or an electric sounder. Field work was performed by local cooperators, the U. S. Geological Survey, and department personnel. The Department has full responsibility for reviewing, editing, processing, and publishing ground water level data. An electronic computer program has been developed to perform a part of the processing and tabulating.

Ground water basins or units in the Central Coastal Area are shown on Plate 2. The number of wells measured in these areas and the measuring agency are shown in Table 2.

Water level fluctuations are depicted graphically on hydrographs of 22 wells distributed among significant basins of the Area. These wells were selected insofar as possible as representative of their respective basins or units. The hydrographs are presented in Plates 3 through 5 by region, basin, and well number.

Maps showing lines of equal elevation of water in wells in Napa Valley, Suisun-Fairfield Valley, Livermore Valley, Santa Clara Valley (East Bay and South Bay Areas), Gilroy-Hollister Valley (South Santa Clara and San Benito Counties), Salinas Valley and Pajaro Valley are prepared regularly. These maps are on file with the Department.

SURFACE WATER QUALITY

Surface water was sampled and analyzed both by the Department of Water Resources and by the U. S. Geological Survey in cooperation with the Department. The data from these sampling activities are shown in Appendix D of this report. The appendix includes data from a network of basic monitoring stations, operational stations on the South Bay Aqueduct, and investigational stations. It includes all of the surface water quality data collected by this

TABLE 2 SUMMARY OF GROUND WATER DATA COLLECTED IN THE CENTRAL COASTAL AREA July 1, 1962 - June 30, 1963

Ground Water Basin : or Unit :	Basin Number	: Measuring or Sampling : : Agency :	Number o Messured	: Sampled
		REGION 1		
Potter Valley	1-14.00	U. S. Geological Survey	2	
Jkiah Valley	1-15.00	U. S. Geological Survey Meadocino County	3	10
Sacel Valley	1-16.00	U. S. Geological Survey Mendocino County	3	6
Nexander Valley	1-17.00	U. S. Geological Survey Department of Water Resources	6	6
Santa Rosa Valley Santa Rosa Area	1-18.00 1-18.01 1-18.02	U. S. Geological Survey Department of Water Resources U. S. Geological Survey Department of Water Resources	3 7 4	20
Lower Russian River Valley	1-98.00	U. S. Geological Survey REGION 2	3	
Petaluma Valley	2-1.00	U. S. Geological Survey Sonoma County F. C. & W. C. D. Department of Water Resources	3	17 9
Napa-Sonoma Valley Napa Valley	2-2.00 2-2.01	U. S. Geological Survey Napa County Department of Water Resources	4 108	27
Soqoma Valley	2-2.02	U. S. Geological Survey Sonoma County F. C. & W. C. D. Department of Water Resources	2	14
Suisun-Fairfield Valley	2-3.00	U. S. Geological Survey Solano County Department of Water Resources	3 23 4	15
Pittaburg Plain	2-4.00	Department of Water Resources		3
Clayton Valley	2-5.00	Department of Water Resources		8
Ygnacio Valley	2-6.00	Department of Water Resources	5	7
Santa Clara Valley East Bay Area	2-9.00 2-9.01	Alameda County Water District Alameda County F. C. & W. C. D. Department of Water Resources	105 88 <u>1</u> / 3	46 24
South Bay Area	2-9.02	U. S. Geological Survey Santa Clara Valley W. C. D.	3 250	20
Livermore Valley	2-10.00	Alameda County F. C. & W. C. D.	160	30
Half Mood Bay Terrace	2-22.00	Department of Water Resources	9	
San Gregorio Valley	2-24.00	Department of Water Resources	5	
Pescadero Valley	2-26.00	Department of Water Resources <u>REGION 3</u>	7	
West Santa Cruz Terrace	3-26.00	Santa Cruz County	7	
Soquel Valley	3-1.00	Santa Cruz County Department of Water Resources	5 2	
Pajaro Valley	3-2.00	Monterey County F. C. & W. C. D. Santa Cruz County City of Watsonville	25 50 6 13	14
Gilroy-Hollister Valley South Sauta Clara County	3-3.00 3-3.01	Department of Water Resources South Santa Clara County W. C. D. Santa Clara Valley W. C. D. Department of Water Resources City of Gilroy	25 16 17 4	11
San Benito County	3-3.02	Pacheco Pass Water District and San Benito County Department of Water Resources	90 3	14
Salinas Valley	3-4.00	Monterey County F. C. & W. C. D. San Luis Obispo County	393 51	70 6
Carmel Valley	3-7.00	Monterey County F. C. & W. C. D.	33	5

 $[\]overline{\underline{1/}}$ An additional 110 wells were measured during spring 1963.

Department in the Central Coastal Area, except for data from investigational stations in the San Francisco Bay system below Antioch. The excluded data are specialized in nature and beyond the scope of this report. The stations for which data are reported in Appendix D are shown on Plate 1.

GROUND WATER QUALITY

During the year from July 1, 1962 through June 30, 1963, ground water samples were collected from 393 wells in the Central Coastal Area. These wells or stations were selected by the Department in the areas shown on Plate 2. Table 2 indicates the number of wells sampled in each basin and the sampling agency. The data from these stations are tabulated in Appendix E.

Ground water is sampled and analyzed to provide information on the quality characteristics, to identify problem areas, to determine the quality trends, and if possible, to identify the factors that control or affect the quality. Analyses made of ground water include mineral and radiological determinations. The frequency of sampling, types of analyses, and density of the station network depend largely on conditions in the monitored area.

APPENDIX A

CLIMATE

CLIMATOLOGIC DATA

This appendix contains station index, seasonal precipitation, monthly temperatures, and monthly evaporation tables. The data compiled are provided by governmental agencies, private industry and individuals. Symbols and abbreviations used in this appendix are:

- C Data from recorder stations.
- D Data unavailable for this report.
- E Evaporation.
- e Wholly or partially estimated.
- M All or part of record missing. When used in place of an average monthly temperature value, more than 10 days of record are missing.
- NR No record.
- P Precipitation.
- RB Beginning of record.
- SS Observation at sunset.
- T Temperature.
- T Trace, an amount too small to measure.
- V Observation time varied.

Climatological Station Index

Table A-I includes the station name, number, and the county in which each station is located. The letter and first digit of the station number represent hydrographic area and unit. The remaining digits are assigned in accordance with alphabetic sequence. It also includes the observer's name, station location, and elevation of the station. The time of observation, beginning of record, and cooperator number complete the information on this

table. The cooperator number indicates the source of the data. The cooperator numbers assigned are as follows:

- 000 Private Cooperator
- 403 Sonoma County Flood Control and Water Conservation District
- 407 San Benito County
- 411 Marin County
- 413 Marin Municipal Water District
- 414 Santa Clara Valley Water Conservation District
- 418 Vallejo Water Department
- 426 Santa Clara County Flood Control and Water Conservation District
- 801 Pomology Department, U. C., Davis
- 804 State Department of Beaches and Parks
- 806 State Department of Water Resources
- 808 State Division of Forestry
- 809 State Division of Highways
- 900 U. S. Weather Bureau
- 901 Corps of Engineers, San Francisco District
- 902 U.S. Air Force
- 907 State Climatologist (unpublished USWB)
- 909 U. S. Soil Conservation Service

Seasonal Precipitation

Table A-2 presents total monthly and annual precipitation in inches for the year from July 1, 1962 through June 30, 1963.

Monthly Temperatures

Table A-3 covers the same period and includes the maximum and minimum temperatures, the average of the daily maximum temperatures, the average of the daily minimum temperatures, and the average of the daily maximum and minimum temperatures recorded during the month. The temperatures are recorded in degrees Fahrenheit.

Monthly Evaporation

Table A-4 presents total evaporation during each month in inches, total wind movement during the month in miles, the monthly average of daily maximum and minimum water temperatures, monthly precipitation, the maximum air temperature, the minimum air temperature, the average minimum air temperature, and the average of the daily maximum and minimum air temperatures. Portions of these data are repetitions of data in Tables A-2 and A-3. These data are included herein because of their close connection with evaporation data.

TABLE A-1
CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LATITUDE	LONGITUOE	ELEV IN FEET	TOWNSHIP	SECTION	40 ACRE TRACT		IME OF RVATIO		COOP.
Alamitom Perc. Pond Alamo IN Almadan Remervoir Angwio Pec. Unico Col. Arroyo Seco	E6 0053 E4 0064 E6 0125 E3 0212 D2 0322	Sants Clara Contra Costa Santa Clara Napa Monterey	SCVWCD Cuzzello SCVWCD Pacific Union Col R. Billings	37 15 18 37 52 37 10 00 3B 34 1B 36 14	145 52 18 122 01 121 50 00 122 26 12 121 29	200 410 640 1815 800	8S 11 1S 21 9S 11 8N 55 19S 41	1 11	P Q E Q	9A 7A BA BP C	9A 9 7A 8P	1959 1957 1936 1939 1931	900 426 900
Atsecadero HMS Atles Road Bea Lomond Berkeley Berryessa IE (Toyoo Ave.)	D3 0360-01 E3 0372 00 0674 E4 0693 E6 0706	Sso Lule Obispo Naps Ssots Cruz Alameds Sauts Clara	J. Ellis G. Dutra N. Shew U. of Calif. B. Nitchell	35 27 30 38 25 37 05 37 52 37 23	120 3B 24 122 15 122 06 122 15 121 50	940 1735 504 299 205	28S 12I 7N 41 10S 25 1S 31 6S 1I	25	P	8A C SP C SP	8A 5P 8P	1948 1940 1937 1887 1921	900 900 900
Big Sur State Park Black Mountein 2 SW Blakes Landing Boonville BMS Boonville Fstrer	D4 0790 E6 0850 F9 0876 F8 0973 F8 0973-02	Mooterey Sants Clare Marin Mendocioo Mendocioo	Perk Ser. M. Incerpi B. Angress Div. of Highways J. Farrer	36 15 37 18 38 11 42 39 01 39 00 45	121 47 122 10 122 55 00 123 22 123 22 10	240 2330 40 342 395	19S 21 7S 31 4N 101 13N 141	36 13 2		8A 8A 8A 9A		1914 1943 1956 1936 1951	900 900 900
Boonville-Bell Valley Bouchers Gap Bradley Buena Vista Burlingame	F8 0973-D4 D4 0998-27 03 1034 D1 1170 E7 1206	Mendocino Monterey Monterey Sen Benito San Mateo	E. Mathison B. Alexander Div. of Forestry A. Churchill Burlingame	39 01 30 36 21 35 52 36 46 37 35	123 17 30 121 51 120 48 121 11 122 21	1580 2050 540 1640 10	14N 131 18S 11 24S 111 13S 71 4S 51	24 2 B 2 27	P K	SP BA BA C 4P	4P 4	1960 1960 1946 1932 P 1946	900
Burton Ranch Burzard Lagoon Calaversa Reservoir Calaro Reservoir Calistogs	E4 1216 D1 1247 E5 1281 E6 1285 E3 1312	Contra Costa Santa Crur Alameda Santa Clara Napa	K. Stirton D. Nohrden D. McCarthy SCVWCD J. Schou	37 52 37 02 37 29 12 37 10 48 38 35	122 05 121 50 121 49 06 121 45 48 122 35	530 1275 805 500 365	1S 21 10S 11 5S 11 9S 21 9N 7	26 24 4	H H E	8A 6F 7A 8A 7A		1955 1959 1874 1958 1873	900 914
Cambrien Fark Campbell Water Co Carmel Valley Carzadero Chittenden Poss	E6 1341-10 E6 1377-01 D4 1534 P9 1602 O1 1739	Sants Clara Santa Clara Monterey Sonoma San Benito	SCVWCD Campbell Weter Co A. Collins B. Borotra V. Haskin	37 15 12 37 17 36 29 38 32 36 54	121 55 24 121 57 121 44 123 07 121 36	225 192 425 1040 125	8S 1 7S 1 17S 2 8N 12 12S 3	35 E 5	B C	7A SP SP SP 8A	5 P	1962 1897 1957 1939 1945	900
Chittendea Cienage Cloverdale 3 SSE Cloverdale 11 W Concord 3 E	D1 1739-01 D1 1766 F9 1B38 F9 1840 E4 1962	Sente Cruz San Benito Sonoma Sonoma Contra Costa	H. Chadwell A. Smith J. Byrd F. Ornbaun B. Lep	36 54 08 36 42 54 38 46 38 46 37 58	121 36 17 121 20 48 122 59 123 13 121 59	104 900 320 1820 200	12S 3 14S 6 11N 10 11N 12 1N 1	E 18	K B	8A 8A C 8A	BA	1960 1950 1950 1939	900 900
Conn Coyote Dam-Lake Mendocino Coyote Reservoir Crest Ranch Crockett	E3 1976 F9 2105 E6 2109 D0 2159 E4 2177	Nape Mendocino Santa Clara Santa Cruz Contra Coata	City of Neps C.O.E. SCVWCO N. Nielson C & B Sugar	38 28 50 39 11 37 05 06 37 05 06 38 02	122 22 30 123 11 121 32 24 122 08 00 122 13	225 784 800 2640 12	7N 5 16N 12 10S 4 10S 3 3N 3	# 34 E 9	C K	BA 9A BA BA	BA E 9A 9		900
Davenport Del Monte Duttons Landing Evergreen-Silver Ck. Rd. Fairfield	00 2290 02 2362 E3 2580 E6 2919 E3 2933	Saots Crur Monterey Napa Santa Clars Solano	P. Tacke USN School O. Steele E. Long Co. Surveyor	37 01 36 36 38 12 37 19 38 15	122 12 121 52 122 18 122 02 122 03	273 46 20 340 15	10S 3 15S 1 4N 4 7S 2 5N 2	E 10 E 20	`	BA C 8A 7A C	BA BA E	1910 1911 A 1955 D	900 900 000
Fairfield Police Station Port Bragg Fort Bragg Aviation Port Ross Freedom 8 NNW	E3 2934 P8 3161 F8 3164 F8 3191 D1 3232	Solaco Mendocino Mendocino Sonoma Senta Cruz	Police Dept. Cal. West. RR WB Observer C. Call Westmineter	3B 15 39 27 39 24 38 21 37 03	122 03 123 48 123 49 123 15 121 49	19 80 61 116 1495	5N 2 18N 17 18N 18 8N 12 10S 1	W 25	D	4P 8A 11P 6P C	4P BA 11P 6P	1951 1895 1940 1874 1952	900
Fremont Pk. State Park Gerber Ranch Gilroy Gilroy 8 NE Gilroy 14 ENE	D1 3238-01 E5 33B7 01 3417 D1 3419 D1 3422	San Benito Sants Clars Santa Clara Senta Clara Senta Clars	L. Beaveque P. Gerber Pire Dist. W. Kickham S. Auser	36 46 18 37 22 00 37 00 37 02 37 06	121 28 54 121 29 12 121 34 121 26 121 20	2500 2140 194 1050 1350	13S 4 6S 4 11S 4 10S 5 10S 6	E 36 E 6	P	8A 9A C BA	BA 9A	1950 1913 1953 1943	900 900 900 900
Gonzeles 9 ENE Graton Graton 1 W Green Valley Gundalupe Reservoir	D2 3502 F9 3577 F9 3578 E3 3612-01 E6 3681	San Becito Sonoma Sonome Solano Saota Clars	A. Bogue L. Hallberg R. Parnell E. Mershell SCVWCD	36 33 38 25 54 38 26 38 17 37 12	121 18 122 51 48 122 53 122 10 121 53	2350 200 210 414 450	16S 6 7N 9 7N 9 5N 3 BS 1	W 21 W 22 W 3		7A 6P BA 8A	7A 6P	1943 1928 1898 1893	9 000 6 900 3 418
Guerneville Half Moon Bay 2 NNW Hamilton AFB Haywerd 6 ESE Healdsburg	F9 3683 E8 3714 E2 3734 E4 3863 F9 3875	Sonoma Sen Meteo Merin Alameda Sonoma	J. Buttner Dept. Agr. Air Porce M. Oreanea Fire Dept.	38 30 37 29 38 D4 37 39 38 37	123 00 122 27 122 31 121 58 122 50	115 60 -2 925 101	BN 10 9S 5 3N 6 3S 1 9N 9	W 19 W 28		8A 7A C C 6P	7A C 6P	1939 1939 1934 1946 1873	9 900 4 900 9 900
Heeldsburg 2 E Hernander 7 SE Kollister Boiltster Coeta Hollister No. 2	F9 3878 01 3928 D1 4022 D1 4022-10 01 4025	Sonoma Smo Benito San Benito San Benito San Benito	W. Iverson C. Akers Hollieter DWR - L & WU Nollieter	3B 37 36 18 36 51 36 55 15 36 51	122 50 120 42 121 24 121 26 46 121 24	102 2765 285 170 284	9N 9 19S 12 12S 5 11S 5 12S 5	E 6 E E 32		8A C SP V C	5 P	1940 1940 1874 1960 1938	900 900 900 806
Rollister 10 ENE Nopland Largo Statioo Inverces-Mery Kellogs Kentfield	01 4035 F9 4100 F9 4277 F9 4480 E2 4500	San Benito Mendocino Marin Sonoma Merin	E Rubbell C. Crswford M. Mery R. Rubinow H. Muller	36 55 39 01 38 05 24 38 40 37 57	121 14 123 07 122 51 06 122 40 122 33	3000 550 150 1800 90	12S 7 13N 12 3N 9 9N 7 1N 6	W W W S		2 8A 1 2N 8A 9A	5 P 9 A	0 1941 1951 1934 1888	000

TABLE A-1

CLIMATOLOGICAL STATION INDEX

				,	,				_			
STATION NAME	STA NUMBER	COUNTY	OBSERVER	LATITUDE	LONGITUOE	ELEV IN FEET	TOWNSHIP	SECTION 40 ACRE	TRACT	TIME OF OBSERVATION P I E	RECORO BEGAN	
King City Lafeyette 2 NNE Laguoites Lake La Honde Løke Curry	D2 4555 E4 4633 F9 4652 E8 4660 E3 4677	Monterey Contra Coste Mario San Mateo Soleno	Div. of Forestry B. Samborn MMWD J. Allen J. Lynch	36 12 37 55 37 56 48 37 19 38 21 18	121 08 122 06 122 35 42 122 16 122 07 18	320 540 785 670 396	20S 8W 1N 2W 1N 7W 7S 4W 6N 2W	14		5P 5P 8A C 6P 8A	1887 1956 1881 1950 1926	900 900 413 900 418
Leroy Anderson Dam Lexington Reservoir Linn Ranch Livermore Sewage Plent Livermore 2 SSM	E6 4916 E6 4922 D3 4963 E5 4996 E5 4997	Senta Clare Sente Clera Sen Luis Obiapo Alameda Alameda	SCVWCD SCVWCD O. Linn Livermore M. Quaterman	37 09 48 37 10 36 35 41 06 37 41 28 37 39	121 37 48 121 59 18 120 43 24 121 48 20 121 47	700 700 870 405 545	9S 3E 9S 1W 26S 12E 3S 1E 3S 2E	5 7 12		8A 8A 8A 5P 5P 7A 7A 7A 7A 7A	1950 1951 1925 1961 1871	414 414 000 000 900
Lockwood 2 N Loe Burros Los Gatos Los Gatos-Old Orchard Rd. Los Gatos 4 SW	D3 5017 D5 5120-03 E6 5123 E6 5123-04 00 5125	Monterey Honterey Santa Clara Senta Clara Santa Clara	A. Weferling D. Krenkel Los Gstos 8. Roll I. Miller	35 58 35 52 42 37 14 37 14 37 11	121 05 121 23 30 121 57 121 55 122 02	1104 2673 428 285 2215	22S 8E 24S 5E 8S 1W 8S 1W 9S 2W	2 21 23		8A 8A 5P 5P 7A 9A	1940 1957 1885 1963 1957	900 000 900 414 900
Mare Island Martinez 3 S Martinez 3 SSE Martinez Fire Station Mill Valley	E3 5333 E4 5371 E4 5372 E4 5377 E2 5647	Soleno Contra Costa Contra Costa Contra Costa Mario	W. Cavenough M. Plummer C. Woaver Pire Dept. County Engr.	38 06 00 37 58 37 58 38 01 37 53 48	122 16 12 122 08 122 06 122 08 122 31 36	52 225 280 26 10	3N 3W 2N 2W 2N 2W 2N 2W 1N 6W	31		C C C 8A 9A 9A 8A	1867 1941 1956 1891 1944	900 900 900 900 411
Monterey Morgan Hill 2 E Morgan Hill 6 WNW Morgan Nill SCS Morro Bay 3 N	D4 5795 E6 5844 E6 5846 D1 5853 D6 5869	Monterey Sente Clera Sente Clera Senta Clera Senta Clera Sen Luis Obiepo	R. Johnson T. Downer N. Rose Cons. Ser. Std. 011 Co.	36 36 37 08 37 09 37 08 35 25	121 54 121 37 121 46 121 39 120 51	335 225 660 350 670	15S 1E 9S 3E 9S 1E 9S 3E 29S 10E	28		SS SS 8A C C C	1878 1943 D 1945 1959	900 900 900 900 900
Mt. Dieblo North Cete Mt. Hamilton Mount Madonne Mt. Madonne Co. Park Mt. Tamalpeie 2 SW	E4 5915 E5 5933 D1 5973 D1 5973-11 E2 5996	Contra Costa Santa Clara Senta Cruz Santa Clara Mario	Bch. & Pks. WB Observer J. Schell W Foss Bch. & Pks.	37 52 37 20 37 01 37 01 37 54	121 56 121 39 121 43 121 43 122 36	2100 4206 1800 1880 1480	7S 3E	35		7A 7A 11P 11P C 8A C	1952 1881 1945 1937 1959	900 900 900 909 909
Muir Woode Napa Napa-Haven Napa State Koepital Navarro 1 NW	E2 6027 E3 6065 E3 6068 E3 6074 F9 6105	Marin Napa Nepa Napa Mendocino	Park Ser. E. Gipson D. Haven J. Allemant Hasonite Co.	37 54 38 18 38 17 30 38 17 39 10	122 34 122 17 122 17 48 122 16 123 34	170 16 30 60 220		3 10 14		9A 7A 8A 8A 5P 5P C	1940 1945 1931 1877 1958	900 900 000 900 900
Newark Noveto 8 WNW Noveto Fire Nouse Oakland WBAP Oakville 1 WNW	E5 6144 E2 6290 E2 6290-02 E4 6335 E3 6351	Alameda Marin Marin Alameda Napa	Leslie Salt E. Thompson S. Luders USWB A. Colkins	37 31 38 08 38 06 30 37 44 38 27	122 02 122 43 122 33 42 122 12 122 25	14 350 18 3 160	3N 6W 2S 3W	24		8A 8A 8A C D C C 6P	1891 1943 1957 1939 1906	900 900 411 900 900
Oakville 4 SW Occidental Paicines Ohrwall Ranch Palo Alto City Hall Paloma	E3 6354 P9 6370 D1 6110 E7 6646 D2 6650	Napa Sonoma San Benito Santo Clora Monterey	R. Pleiner A. Slaney J. Ohrwall Engr. Dept. J. Bell	38 23 38 25 36 44 37 27 36 21	122 28 122 59 121 22 122 08 121 30	1465 1000 950 23 1835	6S 3W	33		C 7A 8A 8A 8A 5P	1940 1940 1924 1953 1940	900 900 900 900 900
Parkfield 7 NNW Parkfield 7 NNW Penttencia Rain Gage Penngrove 2 N Petaluma F. S. No. 2	D3 6703 D3 6706 E6 6791-43 F9 6792-03 E2 6826	Monterey Monterey Sente Clara Socoma Socoma	N. Durham R. Morrison G. Dodson F. Riebli Fire Dept.	35 53 36 00 37 24 00 38 20 38 14	120 26 120 28 121 49 54 122 40 122 38	1482 3590 260 200 16				7A C 7A 7A 5P 5P	1938 D 1962 1930 1871	900 900 414 403 900
Petaluma-Burns Petaluma 1 N Pico 8lanco 8 S. Camp Pinnaclea Nationel Mon. Pleasanton Mursery	E2 6826-01 E2 6829 D4 6856 D2 6926 E5 6991-05	Sonoma Monterey San Benito	Surns V. Chaix P. Harlan Park Ser. J. F. Lopez	38 13 00 38 15 36 20 18 36 29 37 40	122 42 48 122 38 121 47 42 121 11 122 53	240 30 900 1310 345	17S 7E	30		8A C 8A 4P 4P 8A 4:30P	1959 1943 1957 1937 1939	901 900 000 900 000
Point Arena Point Piedras Blancas Port Chicago NAD Portole State Park Potter Vallay 3 NNW	F8 7009 D5 7024 E4 7070 E8 7086 F9 7107	Mendocino Sen Luis Obispo Contra Costs San Mateo Mendocino	J. Moungovan Coast Guard Navel Mag. Park Ranger W. Despain	38 55 35 40 38 01 37 14 42 39 22	123 42 121 17 122 01 122 12 42 123 08	122 59 50 422 1060	12N 17W 26S 6E 2N 1W 8S 3W 17N 11W	12 4 8	Q	8A 8A 11P 11P 8A 8A 8A	1940 1938 1946 1959 1953	900 900 900 901 900
Potter Valley 3 SE Potter Valley P. H. Priest Valley Quien Sabe-Hay Camp Rancho Quieu Sabe	F9 7108 F9 7109 02 7150 D1 7190 D1 7249	Mendocino Mendocino Monterey San Benito San Benito	R. Near P. G. & E. N. Palmer J. P. Berta R. Somavia	39 18 39 22 36 11 36 51 30 36 50 12	123 04 123 08 120 42 121 11 48 121 12 48	1100 1014 2300 1630 1800		√ 6 E 21	M D	C 3F 3P SS SS 7A 7A D	1952 1911 1898 1949 1931	900 900 900 000 000
Rancho Kico Redwood City Richmond Roogevelt Ranch Saint Nelena	D4 7249-21 E7 7339 E4 7414 D4 7539-01 E3 7643	San Mateo Contra Costa	B. Stiller Pire Dept. Richmond N. Roosevelt E. Paulson	36 14 24 37 29 37 56 36 10 48 38 30	171 47 24 122 14 122 21 121 41 48 122 28	900 31 55 1100 255	5S 3V 1N 4V 20S 2I		N	6A 5P 5P 8A 8A 8A 8A 6P 6P	1941 1899 1950 1946 1907	900 900 900 900 900
Saint Helena 4 WSW Seint Mary's College Solitose 2 E Salinas PAA Airport Selinas Dam	E3 7646 E4 7661 D2 7669 D2 7669 D3 7672	Nape Contre Coste Monterey Monterey Seo Luis Obispo	E. Learned Fr. Benedict Fire Dept. Fed. Av. Agency Dam Operator	38 30 37 50 36 40 36 40 35 20	122 32 122 06 121 37 171 36 120 30	1792 625 80 80 1386	14S 31	W 17 E 34 E		C 5P 5P 5P 5P C C	1939 1942 1958 1873 1942	900 900 900 900 900

TABLE A-1

CLIMATOLOGICAL STATION INDEX

STATION NAME	STA NUMBER	COUNTY	OBSERVER	LATITUOE	LONGITUDE	ELEV IN FEET	TOWNSHIP	RANGE	SECTION	40 ACRE TRACT		IME OF RVATI	- 12	ECORO BEGAN	COOP. NO
San Anselmo San Antonio Mission San Ardo San Benito San Clemente Dam	E2 7707-01 D3 7714 D2 7716 01 7719 D4 7731	Meria Monterey Monterey San Benito Monterey	Merin Co. Engr. San Antonio Msn. W. Rosenberg J. Shields Wtr 6 Tel Co	37 58 36 36 01 36 00 48 36 30 30 36 26 12	122 33 42 121 15 120 54 06 121 04 54 121 42 30	100 1060 440 1355 600		6W 7E 10E 8E 2E	7 18 16 27 23	K B	D 5F 8A C 7A	5 P		1957 1959 1894 1936 1940	411 900 900 900 900
San Felipa Highway Sts. San Fron. Bithmond Sunset San Francisco WBAP San Fran. Fed. Off. Bldg. San Gregorio 3 SE	D1 7755 E8 7767 E7 7769 E7 7772 E8 7807	Santa Clara San Pranciaco San Mateo San Franciaco San Mateo	Div. of Highways Sen Francisco USWB USWB Fomponio Rch	37 01 37 46 37 37 37 47 37 18	121 20 122 30 122 23 122 25 122 20	365 300 8 52 355	10S 2S 3S 2S 7S	6E 6W 5W 6W 4W	30		C C C C	SP C C SP		1943 1948 1928 1931 1954	900 900 900 900 900
San Jose San Jose Decid. F.F.S. San Juan Sautiste Hiss. San Lucas Guidici San Mateo	E6 7821 E6 7824 01 7835 D2 7845-10 E7 7864	Santa Clara Santa Clara San Benito Monterey San Mateo	E. 8illwiller A. Amstutz B. A. Farber DWR - L & WU Fire Dept.	37 21 37 19 36 50 42 36 07 25 37 34	121 54 121 57 121 32 00 121 01 09 122 19	70 90 200 380 30	7S 7S 12S 21S 4S	1E 1W 4E 9E 4W	15 8 29	J 8	C 8A 8A V 5F	C C 5F	v	1874 1935 1900 1962 1874	900 801 804 806 900
San Raisel San Raisel San Raisel Santa Clara University Santa Cruz Santa Bita Muther	82 7880 82 7880-08 86 7912 DO 7916 D2 7959-10	Merio Merio Santa Clera Santa Cruz Monterey	City Engr. Crocker-Cit. Bank Santa Clara Univ. R. Burton DWR - L 6 WU	37 58 37 58 24 37 21 36 59 36 45 00	122 32 122 31 30 121 56 122 01 121 41 24	31 25 88 125 80	2N 2N 7S 11S 14S	6W 6W 1W 1W 3E	12	я	5F 8A 5F 5F V	5F 5F 5P C	v	1948 1876 1881 1866 1962	900 413 900 900 806
Santa Rosa Sewage Plant Santa Rosa Santa Bosa Pedranzini Sarstoga-Clark Sarstoga-Kriege	F9 7964 F9 7965 F9 7965-03 E6 7998-01 E6 7998-03	Sonoma Sonoma Sonoma Santa Clara Santa Clara	M. McKinnie C. Newberry DWR - L 6 WU J. Clarke D. Kriege	38 26 24 38 27 38 21 38 37 16 48 37 15	122 45 12 122 42 122 44 31 121 59 42 122 02	20 167 90 272 240	7N 7N 6N 7S 8S	8 W 8 W 8 W 1 W 2 W	21 16 31 1	P R	8A 7A V 7A 7A	7A	8.A V	1956 1888 1962 1956 1960	000 900 806 414 414
Searsville Lake Sebestopol 4 SSE Skagge Spg. Las Lomas Rch. Slack Canyon Soledad CTF	E6 8068 F9 8072 F9 8272 D2 8276 O2 8338-01	San Mateo Sonoma Sonoma Monterey Monterey	A. Clapp G. Nahmens J. Leithold Oiv. of Forestry F.F. Bontadelli	37 24 38 21 38 41 36 05 36 28 26	122 14 122 49 123 08 120 40 121 22 34	350 150 1930 1730 230	6S 6N 10N 21S 17S	3W 9W 12W 12E 5E	12 6 36 22 12	9	8A C 8A C 9A	94	94	1949 1935 1939 1955 1961	900 900 900 900 000
Soledad Somoma Spreckela Hwy, L Spreckela Spreckela Hill - Laguna Seca	D2 8338 82 8351 02 8446 D2 8446-01 E6 8447	Monteray Sonoma Monterey Monterey Santa Clara	J. Francioni L. Dickey 3. Bennes Spreckels Sugar Co. SCYWCO	36 26 38 17 36 36 36 37 37 12	121 19 122 27 121 41 121 39 121 44	204 20 60 48 384	17S 5N 15S 15S -9S	6E 5W 3E 3E 3E	7		8A 5P 8A 8A 8A	5F 8A		1874 1952 1905 1905 D	900 900 900 000 414
Stevens Creek Reservoir Suey Ranch Sunset Seach St. Ferk Talmage Tammslpais Velley	E6 8519 D6 8627 01 8680 F9 8776-01 E2 8779	Santa Clara San Luis Obiapo Santa Cruz Mendociuo Mariu	SCVWCD Suey Ranca Bch. 6 Pke. L.G. Von Schriltz Glessner	37 18 34 59 40 36 54 39 08 37 52 42	122 05 120 22 35 121 50 123 11 122 32 36	600 390 85 413 250	7S 9N 11S 15N 1N	1E 12W	28	н	8A 5F C 8A 8A			1937 1909 1956 1953 1959	414 900 900 000 901
Templston The Geyaera Tiburon-Topham Travia Air Force Besa Ukiah	D3 8849 F9 8885 E2 8920-21 E3 9006 F9 9122	San Luis Obispo Sonoma Marin Solsno Mendocino	A. Willhoit F. Dewey H. Topham U.S.A.F. Fire Dept.	35 32 30 38 48 37 52 24 38 16 39 09	120 42 21 122 49 122 27 12 121 56 123 12	773 1600 400 50 623	27S 11N 1S 5N 15N	9W 5W 1W	29 23 4 24 17	E	8A C 9A 8A 5P	8A 5F		1886 1939 1960 1943 1877	900 900 900 902 900
Ukiah 4 WSW Upper Morro Creek Upper San Leandro Pilters Upper Trea Pinoa Valleton	F9 9124 D6 9179 E4 9185 D1 9189 D3 9221	Mendocino San Luia Obiapo Contra Coata San Benito Monterey	M. Dory E. Purser E. Esy MUD E. Francher A. Curtis	39 08 35 27 18 37 46 36 38 35 53	123 17 120 45 12 122 10 121 02 120 42	1900 1050 390 2050 950	15N 28S 2S 15S 23S	11E 3W 9E	27 35 11 7 32	8 G	8A 7A 7A C C	7≜		1951 1951 1944 1940 1940	900 900 900 900
Vasona Reservoir Venado Veterans Rome Walmar School Walmut Creek 2 ESE	E6 9270 F9 9273 E3 9305 E4 9420 E4 9423	Santa Clara Sonoma Napa Contra Costa Contra Costa	SCVWCD J. Harper 8. Barboza M. Dennis 8. Whittemore	37 14 36 38 37 38 23 37 57 37 53	121 58 00 123 01 122 22 122 05 122 02	300 1260 170 128 245		1W 10W 5W 2W 2W	15 19 1		8A C 8A 5P 8A	RA 8A		1962 1939 1912 1954 1887	414 900 000 900 900
Walout Craek 2 ENE Walnut Creek 4 E Watsonville Water Works Wilder Ranch Wild Horae Valley	E4 9426 E4 9427 D1 9473 DO 9675 E3 9675-41	Contra Costa Contra Costa Santa Cruz Santa Cruz Solano	T. Vanesek E. Irving L. Bechis O. R. Wilder G. Stiltz	37 54 37 54 36 56 36 57 36 38 17 53	122 01 121 59 121 46 122 05 24 122 11 13	220 400 95 50 1240	1N 1N 11S 11S 5N	2W 1W 2E 2W 3W	30 32 22 10	D	C 9A 8A 5F 8A	8A 2F		1944 1954 1880 1924 D	900 900 900 000 418
Wordacre Wrighta Yorkville Yountville Gamble	F9 9770 E6 9814 F8 9851 E3 9861	Marin Santa Clara Hendocino Napa	Oiv. of Forestry N. Ware L. Mulbert DWR - L 6 WU	38 00 24 37 08 38 55 38 26 05	122 38 30 121 57 123 16 122 22 05	430 1600 1100 120	2N 9S 1.2N 7N	7W 1W 13W 5W	23 2 24	P	2F 5F C V	2F C	v	1950 1918 1939 1962	808 900 900 806

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	007	>0N	DEC	JAN	FEB	MAR	APR	MAY	NOC
E6 0053	Alamitos Perc. Pond	23.92	0	0	EH	7.37	.13	2.11	4.45	2.91	3.27	3.26	715	₽
E4 0064	Alamo 1N	35.19	0	.07	€	12,67	84.	2.19	3.56	6.08	4.52	4.80	.71	1
E6 0125	Almaden Reservoir	53,10	0	.03	0	17,14	04.	3,15	9.75	8.18	7.14	6.71	9.	0
E3 0212	Angwin FUC	55.21	0	.09	.33	14.47	1.76	- 1	6.55 10.54	4.61	7.12	8.62	1,12	0
D2 0322	Arroyo Seco	13.88	0	0	0	.59	₽	EH	.81	6.55	2.50	2.51	• 05	.87
E3 0372	Atlas Road	53.62	0	.02	.37	11.52	1.83	4.80	4.80 13.40	3.66	7.90	8.92	1.08	.12
D3 0360-01	Atascadero H.M.S.	20.12	0	0	0	.71	0	1.46	2.33	6.57	4.47	4.8	.36	,14
DO 0674	Ben Lomond	67.81	0	.13	.12	12 14.97	.87	5.46	5.46 16.97	9.30	9.24	9.74	1.01	0
Е4 0693	Berkeley	30.05	0	.12	.41	7.05	\$	3.50	48.4	3.10	3.51	5.97	.53	8
E6 9706	Berryessa lE	25.16	0	0	0	3.95	.76	2.60	2,90	3.71	4.72	5.42	1.10	0
υ4 0790	Big Sur State Park	60.16	0	0	E	8.15	.35	6.61	13.89	11.67	7.80	11.08	.53	8
E6 0850	Black Mountain 2SW	42.84	H	.15	.16	11.44	.83	3.55	6.07	7.85	48.4	6.94	1.09	.02
F9 0876	Blakes Landing	31.32	0	.10	.25	8.72	8	70.7	5.05	2.21	4.8	5.64	.27	0
F8 0973	Boonville HMS	47.22	0	.37	.73	8.41	3.03	42.4	4.93	7.32	7.70	905	777	d
F8 0973-02	Boonville - Farrer	65.08	0	.25	.87	10.97	3.76	5.98	8.13	9.38	12.32	11.46	1.96	0
F8 0973-04	Boonville - Bell Valley	×	0	.30	.71	8.41	3.67	4.30	6.63	4.22	Q	Ω	D	0
D4 0998-27	Bouchers Gap	Σ	NR	NR.	Æ	N.	EB	4.22	9.79 10.33	10.33	9.20	9.58	.81	₽.
D3 1034	Bradley	15.78	0	0	8	8.	0	2.29	2.71	4.85	2.68	1.83	.41	П
D1 1170	Buena Vista	13.08	0	0	0	68.	e.27	e _{1.93}	2.34	1.69	2.60	2.64	.54	.18
E7 1206	Burlingeme	24.96	0	ਰ.	0	6.68	.37	2.81	3.63	3.15	4.17	3.66	.45	0
E4 1216	Burton Ranch	36.00	0	.05	.05	13.33	9.	2,69	3.83	5,68	4.38	4.68	99.	.05
D1 1247	Buzzard Lagoon	55.77	0	.25	٥	10.75	1.98	4.80	4.80 11.78	7.32	6.82	11.24	.83	0
E5 1281	Calaveras Reservoir	22.81	0	₫.	0	3.79	99.	2.26	1.65	₩. 1	4.10	5.24	99.	0
E6 1285	Calero Reservoir	33.72	0	0	0	9.10	.23	2.30	9.31	3.93	61-1	7.00	98	0
E3 1312	Calistoga	53.78	0	₫.	.36	.36 13.87	1.77	5.93	5.82	8,78	8,17	8.11	16	.02

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC
E6 1341-10	Cambrian Park	×	MR	MR	M	RB	.15	2.27	4.08	3.86	3.78	3.74	. 55	а
Еб 1377-01	Campbell Water Company	23.03	60 0	o _o	0 ₉	4.72	.13	2.49	5.24	2.55	3.65	3.69	.55	.01
D4 1534	Carmel Valley	19.72	0	0	0	1.09	.11	2.22	5.28	3.21	3.70	3.86	.22	.03
F9 1602	Cazadero	82.63	0	.65	.63	15.18	3.88	11.64	11.64 13.48	7.70	7.70 10.22	17.69	1.53	.03
D1 1739	Chittenden Pass	25.68	0	.50	.03	2.77	04.	2.86	5.08	4.48	3.92	5.35	.24	છ
D1 1739-01	Chittenden	24.95	0	0	0	2.64	.36	2.78	4.74	5.05	3.80	5.39	61.	E
DJ 1766	Cienaga	20.73	0	0	0	02.	.35	3.25	4.24	4.05	3,52	3.88	.57	.17
F9 1838	Cloverdale 3SSE	49.74	E	.26	14.	12.24	1.42	5.81	6.43	6.58	7.80	7.28	1.51	0
F9 1840	Cloverdale 11W	e73.52	0	.53	1.09	15.37	4.45	8.65	8.65 13.38	e5.42	10.02 12.00	12.00	2.61	0
E4 1962	Concord 3E	23.30	0	.01	0	8.12	.37	1.60	2.03	4.18	3.16	3.18	.58	-07
E3 1976	Conn	38.42	0	0	.10	9.90	1 9.	5.03	5.12	5.59	4.91	5.44	1.69	0
F9 2105	Coyote Dam - Lake Mendocino	40.60	0	.16	.51	8.60	2.72	5.15	4.20	5.04	5.87	7.37	8.	81.
E6 2109	Coyote Reservoir	27.79	0	0	E	2,42	.43	2,60	6.22	6.39	3,79	5.48	.45	20.
DO 2159	Crest Ranch	74.50	0	.50	.35	21.70	1.35	7.90	7.90 11.70 12.80	12.80	8.40	8.60	1.20	0
E4 2177	Crockett	28.88	0	.05	.01	8.88	₽8.	2.18	3.78	3.72	4.58	4.20	.59	.05
DO 2290	Davenport	29.15	8.	.15	4ι.	4.18	.41	3.03	3.48	5.79	90.9	5.16	.71	8
D2 2362	Del Monte	13.10	0	0	.03	.73	.13	1.91	2.64	1.87	3.0t	2.58	.17	0
E3 2580	Duttons Landing	28.67	0	.07	%	7.95	.78	2.61	4.12	3.36	5.07	4.46	.19	E
E6 2919	Evergreen - Silver Creek Rd.	Σ	NA.	Æ	M	Æ	MR	82	2.61	2.8	3.15	3.72	.57	EH
E3 2933	Fairfield	25.63	0	.02	0	7.27	.70	2.17	5.02	2.30	3.41	4.21	94.	.07
E3 2934	Fairfield Police Station	28.20	0	0	H	7,85	,16	2,58	5,32	2,67	3.59	5.49	.45	8
F8 3161	Fort Bragg	36.73	0	1.59	.83	5.82	e3.21	3.63	3.24	2.70	6.50	8.29	48.	8
F8 3164	Fort Bragg Avn	40.17	0	1.97	.79	6.23	3,32	4.35	3.87	2.51	6.67	9.50	96.	0
F8 3191	Fort Ross	38.58	.02	47.	1.36	7.23	1.93	5.78	4.79	3.89	5.33	6.43	1.05	.03
D1 3232	Freedom SNNW	e56.54	0	.19	0	11.61	1.51		4.78 915.84	e5.23	7.17	9.54	.67	0

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	100	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOS
D1 3238	Fremont Peak State Park	23,41	0	.03	.03	2,30	.50	2,30	4.72	3,99	3.38	5.25	.86	.05
E5 3387	Gerber Ranch	23.96	0	0	H	3.87	.22	1.78	ф° ф	5.47	3.17	4.10	.71	0
D1 3417	Gilroy	26.52	0	₽	EH	2.13	84.	2.36	6.15	5.85	3.97	5.19	•39	E.
D1 3419	Gilroy 8NE	e26.28	0	0	0	2.48	.32	2.27	e8.74	e3.20	3.67	5.11	.31	.18
D1 3422	Gilroy 14ENE	24.99	0	Ţ	T	2.55	.26	1.85	4.80	5.93	3.69	5.36	14.	.14
D2 3502	Gonzales 9ENE	13.14	0	0	0	.55	.15	2.30	2.07	1.69	3.04	2.56	99°	.12
F9 3577	Graton	19.94	0	.26	.51	10.47	1.17	6.03	6.63	6.19	6.26	8.27	.82	0
F9 3578	Graton 1W	147.60	П	.18	44.	10.90	1.34	6.30	20.6	3.65	6.89	8.06	.77	EH
E3 3612-01	Green Valley	×	Д	Ð	D	D	D	D	5.56	5.96	D	D	Q	D
E6 3681	Guadalupe Reservoir	46.97	0	.05	0	15.79	.35	2.48	9.25	6.92	6.02	5.37	ηZ.	0
F9 3683	Guerneville	48.81	0	.33	.63	9.59	1.74	6.47	5.89	6.62	7.36	9.25	.93	0
E8 3714	Half Moon Bay 2NNW	33.08	0	.29	.51	10.97	.60	3.57	3.44	3.65	4.33	5.08	79•	0
E2 3734	Hamilton Air Force Base	33.43	0	Ţ	H	8.07	.8	3.70	8.24	2,46	5.55	4.25	.36	0
E4 3863	Hayward 6ESE	e33.54	0	.03	0	10.90	1.05	2.44	5.22	2.65	4.73	5.58	e,92	.02
F9 3875	Healdsburg	50.32	H	.30	.26	10.83	2.06	6.40	6.40 10.75	3.99	7.74	6.85	1.14	0
F9 3878	Healdsburg 2E	46.35	0	.29	.23	9.92	1.93	5.98	6.65	6.33	7.04	6.80	1.18	0
D1 3928	Hernandez 7SE	19.09	0	0	0	.97	0	2.70	94.4	3.98	2.87	3.30	.52	.29
DJ 4022	Hollister	14.87	0	L	E	.72	.25	1.78	3.89	2.91	2.11	2.72	.39	.10
D1 4025	Hollister No. 2	14.39	0	0	0	69.	.22	1.73	4.45	2.03	2.12	2,61	.39	.15
D1 4035	Hollister lOENE	24.96	0	0	0	2.45	.31	2.15	6.02	3.21	4.23	5.79	.58	.22
F9 4100	Hopland Largo Station	41.85	0	.13	.57	8.42	2.57	4.75	4.86	4.36	7.85	7.54	8.	0
F9 4277	Inverness - Mery	45.70	0	.25	.50	50 12,90	1.30	5.35	6.20	4.10	6.10	8.05	.95	0
F9 4480	Kellogg	64.78	۲	.27	89	.89 15.79	3.07	7.19	8.67	7.31	8.16	91.11	2.24	0
E2 4500	Kentfield	57.65	0	.21	.28	.28 12.97	1.70	7.34	8.95	ह. १	8.19	8.97	.73	H
D2 4555	King City	15.61	0	0	0	.59	0	2.00	5.99	1.68	2.89	1.67	.42	.37

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	120	Ş Q Q	DEC	JAN	FEB	MAR	APR	MAY	S
E4 4633	Lafavette 2NNE	35.68	0	8	8	08 13.02	.70	2.58	4.72	5.04	3.65	4.97	8	9
F9 4652	Lagunitas Lake	. 64.86	0	.29	38	15.15	1.45	8.64	11.44	7.78	9.22	9.46	1.05	0
E8 4660	La Honda	40.05	.08	.29	.42	9.67	.83	3.87	6,69	5.01	5.38	6.33	1.38	01.
ЕЗ 4677	Lake Curry	e39.10	0 _a	o _o	1,14	9.99		2.67	6.02	5.75	6.36	6.51	.89	0
E6 4916	Leroy Anderson Dem	×	0	ਰੋ.	0	D	.21	2.18	7.08	4.78	4.20	4.28	.21	0
Еб 4922	Lexington Reservoir	54.92	0	8.	ਰ.	14.69	84.	4.19		9.71 10.02	7.8	8.00	8.	٥
D3 4963	Linn Ranch	Σ	0	0	0	99	0	3.8	4.63	Д	Д	3.29	.20	ਰਂ.
E5 4996	Livermore Sewage Plant	22,12	0	0	0	5.33	.30	1.93	2.03	5.60	3.10	3.35	74.	0.
E5 4997	Livermore 2SSW	18.14	0	E	0	3.64	.28	1.55	1.40	4.50	2.60	3.47	.70	Т
D3 5017	Lockwood 2N	17.31	0	0	0	.47	0	2.92	4.80	2.65	3.13	2.98	•30	%
D5 5120-03	Los Burros	W	NR	NR	MR	10.15	.10	5.70	5.70 16.05 15.65	15.65	18.70	D	1.56	.25
E6 5123	Los Gatos	59°0†	0	0	0	11.26	.28	3.09	5.02	10.00	е4.42	6.02	.56	0
E6 5123-04	Los Gatos - Old Orchard Road	W	NR	NR	M	Æ	MR	NA.	M	82	4.69	4.39	9.	.01
DO 5125	Los Gatos 4SW	98°42	0	.03	%	18.37	.72	5.91	1	15.77	8.99 15.77 10.85 12.91		1.25	EH
E3 5333	Mare Island	27.71	0	.05	.02	8.61	.83	2.34	₩.87	2.27	4.15	4.20	.37	0
E4 5371	Martinez 3S	32.59	0	.08	0	11.91	.54	2.11	5.68	2.73	5.12	3.96	.36	.10
E4 5372	Martinez 3SSE	31.15	0	8.	0	11.20	.59	2.13	3.84	4.51	4.59	3.79	.34	8.
E4 5377	Martinez Fire Station	27.63	0	.05	0	9.25	.62	1.89	3.15	4.39	4.11	3.73	. h2	8.
E2 5647	Mill Valley	35.37	0	.05	.78	8.61	1.00	4.75	5.32	3.99	5.09	5.27	.51	0
D4 5795	Monterey	M	0	.25	.15	1.33	.37	2.21	3.05	2.70	4.14	MR	NR	M.
E6 5844	Morgan Hill 2E	28.18	0	0	0	4.54	.31	2.28	6.77	5.18	74°4	4.38	.25	0
E6 5844	Morgan Hill GWNW	40.56	0	0	0	10.64	.22	2.58	14.37	2.45	5.07	4.93	.30	0
D1 5853	Morgan Hill SCS	e28.28	0	0	0	4.41	.22	2.27	910,16	2.20	4.49	4.33	.20	0
D6 5869	Morro Bay 3N	21.23	0	0	0	.92	0	ਰ ==	2.87	4.10	5.01	4.03	-62	‡.
E4 5915	Mt. Diablo North Gate	34.20	0	0	0	10.67	.65	2,16	3.62	7.8	3.64	5.38	-99	0

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	ОСТ	>ON NO	DEC	JAN	FEB	MAR	APR	MAY	NOS
E5 5933	Mt. Hamilton	17.93	0	0	E	1.71	₹9.	1.68	1.68	2.79	4.33	4.16	46.	0
D1 5973	Mt. Madonna	e _{51.10}	0	.10	.07	e9.90	1.71	4.20	4.20 94.20	4.35	5.76	5.76 10.56	.35	0
LL-5973-11	Mt. Madonna Co. Pk.	49.14	.01	.20	.05	9.45	1.75	3.91	8.66	7.93	5.79	10.55	88.	91.
E2 5996	Mt. Tamalpais 2SW	47.07	.03	14.	2.15	11.50	2.02	40°9	7.53	3.48	4.74	8.09	.97	7.
E2 6027	Muir Woods	43.80	.03	.22	1.75	01.01	1.65	5.72	5.28	4.88	5.30	7.98	.85	큥
E3 6065	Napa	33.76	0	0	91.	16 10.05	.80	3.33	3.93	5.02	4.18	5.63	99.	П
E3 6068	Napa - Haven	33,57	0	.02	.21	9.82	.79	3.22	4.11	4.74	4.45	5.84	.37	EH
ЕЗ 6074	Napa State Hospital	35.09	0	11.	•20	20 10.37	.97	3.93	4.71	3.79	4.91	5.66	ᡮ.	0
F9 6105	Navarro 1NW	40.97	0	.7 ⁴	.67	e7.19	e3.21	e3.95	5.18	2.23	7.15	9.68	.97	0
E5 6144	Newark	19.39	0	0	0	4.53	•34	2.20	1.51	2.88	3.09	4.19	.57	8
E2 6290	Novato 8WNW	37.79	0	90.	۰43	19.01 84.	1.04	4.39	6.61	2.76	5.01	6.39	64.	0
E2 6290-02	Novato Fire House	31.68	0	0	.05	8.12	04.	3.32	6.19	4.45	4.89	3.87	.39	0
E4 6335	Oakland WBAP	25.65	H	.05	91.	8.56	.61	2,47	2.68	2.64	3.31	4.60	.51	်
E3 6351	Oakville 1WWW		0	.03	.27	11.08	.79	42.4					.59	EH
ЕЗ 6354	Oakville 4SW	51.42	0	.07	.25	94.85	1.29	5.60	10.40	3.93	7.37	6.91	.75	0
F9 6370	Occidental	57.35	0	.47	1.40	1.40 11.44	1.93	9.44	7.85	6.12	7.48	9.90	1.24	8
D1 6610	Paicines Ohrwall Ranch	17.24	0	0	0	69:	.26	2.18	2.84	4.22	2.86	3.52	.55	.12
Е7 6646	Palo Alto City Hall	17.12	0	H	H	2.92	.41	2,30	1.88	3.66	2.37	3.05	.51	8
D2 6650	Paloma	25.72	0	0	T	2.09	٠٥٠	2.54	8.83	2.53	4.98	4.42	.18	8
D3 6703	Parkfield	16.44	0	0	0	.67	0	1.60	2.19	5.91	3.09	2.51	74.	E
D3 6706	Parkfield 7NNW	19.91	0	0	0	.82	0	2.77	4.25	3.48	2.14	2.50	.63	.02
Е6 6791-43	Penitencia Rain Gage	17.80	0	0	0	2.58	99.	1.91	1.35	3.15	3.20	4.13	-82	°o
F9 6792-03	Penngrove 2N	40.73	0	.07	•35	9.37	.88	3.80	5.50	9.6	5.07	5.53	.52	0
E2 6826	Petaluma Fire Station	28.96	0	.03	8	7.29	. 61	3.32	4.97	3.0	4.58	4.58	94.	0
E2 6826-01	Petaluma - Burns	37.50	0	0	.20	20 10.40	.85	3.60	5.30	5.35	5.25	6.03	.50	0

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	ОСТ	NO.	DEC	JAN	FEB	MAR	APR	MAY	NOS
E2 6829	Petaluma 1N	27.22	0	.05	1	7.21	.45	2,96	†8 ° †	2.74	4.43	7.00	.43	0
D4 6856	Pico Blanco Boy Scout Camp	×	0	0	0	01.11	.31	4.45	14.2911.67	79.11	9.84	10.22	Æ	Æ
D2 6926	Pinnacles National Monument	16.15	0	0	٥	.86	0	2.13	2.91	2,33	4.25	3.07	.15	.45
E5 6991-05	Pleasanton Nursery	26.35	0	ਰਂ.	0	6.83	.45	1.64	2.28	6.71	4.25	3.67	.51	Ţ
F8 7009	Point Arena	40.83	0	1.20	.86	7,31	3.51	5,18	3,72	3.59	6.83	7,65	92	90.
D5 7024	Point Piedras Blancas	29.26	Ţ	0	0	1.17	•23	5.80	6.12	5.32	4.32	5.85	.41	₹.
E4 7070	Port Chicago NAD	23.13	0	₽	٥	8.05	.41	1.64	1.93	4.18	2.83	3.44	59	90.
E8 7086	Portola State Park	43.84	E	E	E	0.29	E	4.38	4.31	7.68	6.97	8,98	1.723	Ţ
F9 7107	Potter Valley 3NNW	е ₁₄ .11	0	.52	.87	e8.92	3.73	5.63	6.88	2.56	6.61	7.61	99.	e,12
F9 7108	Potter Valley 3SE	33.53	0	.19	e.96	7.02	2.93	3.91	4.27	1.33	5.63	6.38	.81	.10
F9 7109	Potter Valley P.H.	47.89	0	.57	96.	9.56	3.98	6.19	6.51	3,47	7.63	8.28	.67	e.13
D2 7150	Priest Valley	22.09	0	0	EH	1.43	ં	2.99	4.42	4.54	4.36	3.59	.56	.15
0217 10	Quien Sabe - Hay Camp	17.55	0	0	0	1.02	.38	1,96	1.47	4.50	2,72	44.4	23	82
D1 7249	Rancho Quien Sabe	18.55	0	0	0	1.23	.38	2.07	1,89	79.4	2.96	4.43	-79	.18
D4 7249-21	Rancho Rico	63.14	٥	8.	10	9.05	74.	7.38	19.08	6.32	8.49	11.38	-72	.19
E7 7339	Redwood City	24.32	0	.01	٥.	6.39	.33	2.82	94.4	3.20	3.63	26.2	-55	£
E4 7414	Richmond	29.54	0	.10	8.	7.38	.99	3.48	4.20	3.47	4.20	5.14	.50	0
D4 7539-01	Roosevelt Ranch	59.85	0	0	0	9.30	.35	8.50	6.90 20.05	20.05	5.49	8.61	.53	8
E3 7643	Saint Helena	44.58	0	ਰੋ.	.23	11.77	1.07	5.38	8.58	4.63	6.07	6.24	.57	0
E3 7646	Saint Helena 4WSW	53.82	0	.12	.73	14.80	1.71	6.65	8.81	3.51	7.87	8.42	1.20	0
E4 7661	Saint Mary's College	40.56	0	8.	8.	13.84	%	3.07	5.82	4.99	4.90	5.96	92.	.13
D2 7668	Salinas 2E	14.53	0	8.	E	.61	.38	1.78	2.95	9.20	3.25	3.17	.17	0
D2 7669	Salinas FAA Airport	13.70	H	•03	ġ.	.65	07.	1.73	2.81	1.95	3.8	2.95	.16	.01
D3 7672	Salinas Dam	19.50	0	0	0	1.03	8	1.09	2.72	5.89	4.43	3.69	8	.03
E2 7701-01	San Anselmo	52.08	0	٠٥.	ы	12.99	₹8°	5.91	11.80	5.69	8.12	6.17	.55	0

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	0CT	NOV	DEC	JAN	FEB	MAR	APR	MAY	SUN
D3 7714	San Antonio Mission	24.35	0	0	ĘΨ	1.09	%	2.83	8.05	3.94	3.71	4.06	.50	1
D2 7716	San Ardo	14.41	0	0	0	•33	0	2.26	2.99	4.19	2.65	1.77	.25	0
D1 7719	San Benito	14.48	0	0	0	.56	0	2.25	3.28	1.89	3.42	2.39	.35	•34
D4 7731	San Clemente Dam	22.79	0	0	0	1.81	51.	2.29	5.37	4.53	4.27	4.14	.23	.05
D1 7755	San Felipe Highway Station	21.20	0	0	0	1.67	-28	1.68	6.16	2.89	3.29	4.75	.37	.11
E8 7767	San Francisco Richmond Sunser	26.72	T	O	.15	7.94	0	3.75	4.45	2.00	4.65	3.23	.55	0
E7 7769	San Francisco WBAP	25.39	E	.03	8,	7.30	•36	2.97	4.47	2.03	3.94	3.70	.50	EH
E7 7772	San Francisco FOB	22,15	EH	20,	.22	5,51	.60	2.81	3,35	1,92	3,87	3,35	45	E
E8 7807	San Gregorio 3SE	37.68	%	.27	-34	8.47	48.	4.07	6.10	4.16	6.14	6.15	1.01	.07
E6 7821	San Jose	20.24	0	E⊣	EH	4.59	.28	2.00	3.99	2.23	3.53	3.08	.52	8
E6 7824	San Jose Decid FFS	21.24	0	H	E	4.14	.25	2.06	2.97	3.67	3.63	3.80	.72	0
D1 7835	San Juan Bautista Mission	19.22	0	0	0	1.36	65.	2.46	4.20	4.8	3.31	3.33	-24	9
E7 7864	San Mateo	27.93	0	.05	E	9.48	.31	2.60	2.87	3.32	3.72	5.02	.56	E
E2 7880	San Rafael	47.02	0	e.10	٥.	10.04	-86	6.56	11.60	4.41	6.87	6.16	.41	0
E2 7880-08	San Rafael National Bank	16.71	0	s.	۵.	11.13	.91	5.09	8.69	6.77	7.41	6.12	.50	0
E6 7912	Santa Clara University	18.83	0	0	0	4.16	8.	2.01	3.30	1.90	3.56	3,31	.51	T
DO 7916	Santa Cruz	33.86	0	છે.	.31	2.95	8.	3.70	7.15	4.91	5.81	7.41	.55	•03
F9 7964	Santa Rosa Sewage Plant	31.24	0	8.	42.	7.81	.83	04.4	4.87	2.88	4.94	5.42	.56	0
F9 7965	Santa Rosa	35.64	0	8.	.36	74.6	.95	49.4	3.75	4.22	4.94	6.57	99.	0
E6 7998-01	Saratoga - Clark	27.81	0	0	0	6.87	.19	2.37	4.68	4.60	4.36	4.22	.52	I
E6 7998-03	Saratoga - Kriege	30.06	0	0	0	7.01	92.	2.73	5.85	5.36	4.30	4.02	.53	T
E6 8068	Searsville Lake	34.98	0	ਰੋ.	.05	8.65	1.02	3.43	3.99	5.58	5.66	5.88	.68	0
F9 8072	Sebastopoi 48SE	33.15	0	8.	•39	8.75	•73	3.60	4.96	2.59	5.48	5.87	69.	0
F9 8272	Skagg Spg. Las Lomas Ranch	70,81	0	.59	•56	.56 15,42	2.75	7.95	9.0	9.71	9.72	-	2,42	.02
D2 8276	Slack Canyon	18.29	0	0	0	.87	•03	2,86	3.75	4.33	2,86	2.81	99.	.12

NUMBER	STATION NAME	TOTAL	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	S
D2 8338-01	Soledad C.T.F.	04.11	0	0	0	.25	ਰੈ.	1.78	94.5	टा ट	2,65	1.73	41.	.23
D2 8338	Soledad	12,36	0	٥.	6.	.33	9	1,82	2,67	2,32	2,62	2,13	139	20
E2 8351	Soncma	34.40	0	E	94.	9,12	69	4.57	5.77	2,94	4.86	5.28	77	0
D2 8446	Spreckels Highway Br.	14.02	0	E	٥	.63	.29	1.87	1.67	2.84	3.31	3.16	,2 ⁴	.01
D2 8446-01	Spreckels	12.99	0	0	0	•55	.31	1.86	2.26	1.90	3.22	2.68	.21	0
E6 8447	Spreckels Hill - Laguna Seca	27.02	0	0	0	6.81	.23	1.92	6.57	3.94	3.63	3.58	.34	e ^o
E6 8519	Stevens Creek Reservoir	34.84	0	H	H	7.87	.34	3.18	5.40	6.59	5.20	5.20	1.06	e ₀
D6 8627	Suey Ranch	13.53	0	0	0	.54	0	.42	1.01	4.05	3.53	3.10	88	0
D1 8680	Sunset Beach State Park	23,89	٥	8	0	2.22	.27	2.93	6.24	3,17	4.30	84,4	19	0
F9 8776-01	Талладе	37.34	0	.15	92.	7.19	2.81	4.53	4.07	14.51	6,26	6.21	.85	0
E2 8779	Temalpais Valley	40,19	0	.12	1.05	9.28	1.47	5.15	5.35	4.14	5.48	7.06	.75	0
рз 8849	Templeton	17.70	0	0	0	0	Ţ	2.32	2.67	5.65	3.58	3.08	.39	.01
F9 8885	The Geysers	90 ° 89 ₉	0	.19	74.	47 14.85	2.26	8.14	14.30	4.58	10,10	10.10 10.59 2.58	5.58	0
E2 8920-21	Tiburon - Topham	148.03	0	٥.	.87	11.15	.75	6.18	7.10	6.72	7.65	47.9	-87	0
E3 9006	Travis Air Force Base	24.55	0	٠.	٥.	47.4	.48	2,45	4.56	2.83	4.60	4.1	-72	큥
F9 9122	Ukiah	144.22	0	.20	.68	7.74	3.09	5.25	7.75	3.22	7.61	7.61	1.07	EH
F9 9124	Ukiah 4WSW	e54.93	e ₀	.36	.87	9.24	3.64	5.60	4.36	99.9	9.05	9.87	1.28	E
D6 9179	Upper Morro Creek	30.47	0	0	0	2.26	01.	3.18	5.79	6.03	6.26	5.72	-81	.32
E4 9185	Upper San Leandro Filters	35.13	0	.14	·43	13.13	.95	2,97	2,62	4.47	4.0	5.64	8	0
D1 9189	Upper Tres Pinos	13.38	0	0	0	.71	.16	2.19	2.29	2.13	3.30	2.30	.30	0
D3 9221	Valleton	14.56	0	0	0	.29	0	2.47	3.37	3.49	2.64	1.89	.41	0
E6 9270	Vasona Reservoir	×	Д	9.	Д	Д	А	2.66	6.19	4.54	4.31	4.35	∄.	Д
F9 9273	Venado	e70.54	0	64.	9.	13.52	3.20	8.78	£5.97	5.62		17.01 57.6	1.90	0
E3 9305	Veterans Home	41.37	0	8	EH	11.76	1.02	5.18	7.07	2.75	6.97	5.97	.63	0
Е4 9420	Walmar School	31.98	0	8.	EH	10.99	64.	2.19	6.27	3.34	3.82	4.10	.72	0

NUMBER	STATION NAME		JUL	AUG	SEP	000	NON	DEC	JAN	FEB	MAR	APR	MAY	S
E6 0053	Alamitos Perc. Pond	Max	90	96	93	88	82	73	65	77	75	73	89	93
		Σ	48	47	37	37	31	28	22	37	34	35	39	44
		Avg Max	80.7	82.3	78.4	71.7	66.3	59.4	55.7	67.0	63.5	63.4	70.5	80.0
		Avg Min	51.6	53.6	49.1	47.1	43.3	39.0	34.0	45.7	40.3	44.3	49.4	50.4
		Avg	66.2	68.0	63.8	59.4	54.8	49.2	44.9	56.0	51.9	53.9	0°09	65.2
E4 0064	Alamo 1N	Max	66	100	93	90	78	65	09	71	71	73	88	97
		Min	49	48	47	44	32	25	24	37	32	33	40	44
		Avg Max	78.2	86.1	82.0	70.8	65,1	53,9	51.2	65,3	63.2	64.5	71.6	79.3
		Avg Min	50.0	53,3	51.2	51.1	43.2	38.5	32.2	45.7	38.7	45.4	49.1	50.8
		Avg	64.1	69°7	9°99	61.0	54.1	46.2	42.2	55.5	51.0	53.5	60.4	65.1
E3 0212	Angwin Pacific Union College	Max	97	100	94	82	78	99	99	71	89	69	85	98
		Min	46	45	42	07	35	29	27	38	26	27	34	41
		Avg Max	87.5	86.1	81.6	68.7	61.5	55.7	52.8	60,5	55.5	55.7	62.9	79.5
		Avg Min	53,3	51.7	49.4	50°2	45.3	42.6	35.7	45.8	36.7	36.9	45.9	48.4
		Avg	70.4	68.9	65.5	59.6	53,4	49.2	44.3	53,2	46,1	46.3	56.9	64.0
D3 0360-01	Atascadero H.M.S.	Max	D	D	D	Q	Q	Q	20	62	92	80	92	100
		M.i.	D	D	D	D	Q	D	17	34	30	32	38	94
		Avg Max	D	D	Ω	D	Д	D	9.09	68,4	65.4	4.99	74.8	82,3
		Avg Min	D	D	Q	D	Ω	Ω	31.8	45.9	37.7	40.3	47.8	50.0
		Avg	D	D	D	D	D	Ω	46.2	57.2	51,6	53,4	61.3	66.2
DO 0674	Ben Lomond	Max	88	66	87	98	82	89	64	75	74	73	83	85
		Z.	43	94	42	38	31	25	22	32	30	33	39	42
		Avg Max	78.1	84.6	78.4	73.0	68.8	58,1	56.4	62.9	60.1	61.4	69.2	75.6
		Avg Min	47.3	49.3	47.7	44.8	40°6	38.4	32.9	43.4	37,8	6.04	45.2	9.94
		Avg	62.7	67.0	63,1	58.9	54.7	48,3	44.7	54.7	49.0	51.2	57.2	61.1

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV.	DEC	JAN	FEB	MAR	APR	MAY	JUN
E4 0693	Berkeley	Max	72	87	78	62	77	- 69	63	7.0	89	72	78	77
		Min	50	87	51	48	39	34	33	45	39	39	45	65
		Avg Max 66.	66.2	70.5	66.5	67°3	64.1	58.4	54.2	63.9	60.4	60.7	6.49	68.2
		Avg Min	52.0	54.8	53.4	52.6	48.9	0.44	39.5	50.8	6.44	9.94	51.4	52.6
		Avg	59,1	62.7	0.09	0.09	56.5	51,2	6°97	57.4	52.7	53.7	58.2	60.4
E7 1206	Burlingame	Max	85	86	98	78	9/	65	79	69	69	7.1	84	79
		Z.	47	47	777	41	34	29	25	36	34	35	41	42
		Avg Max	Max 72.6	76,3	72,3	69.2	65,3	26°6	55,1	64.5	62.7	63,3	69.2	72.6
		Avg Min	Min 52.6	54.0	50,5	50.1	45.7	42.2	35.4	47.7	41.2	43,3	49.7	48.2
		Avg	62.6	65.2	61,4	59.7	55.5	7.67	45.3	56.1	52.0	53.5	59°5	60°4
D4 1534	Carmel Valley	Мох	87	104	92	92	96	83	77	81	75	73	80	83
		Ž.	39	42	40	36	30	27	23	38	32	36	37	39
		Avg Max 75.0	75.0	82.2	76.5	77.7	70.9	7°99	62.8	68.7	63°2	63.0	66.4	71,6
		Avg Min	Min 46.0	48.5	47.1	47.2	42.8	39.4	35.0	45.0	38.1	41.4	7.97	46.7
		Avg	60.5	65,4	61.8	62.5	56.9	52.9	48.9	56.9	50.8	52,2	56.4	59.2
F9 1838	Cloverdale 3 SSE	Мах	103	104	66	92	98	69	89	78	9/	М	93	98
		Σi	47	4.5	47	95	37	26	26	38	32	Σ	37	94
		Avg Max	89,1	89.0	84.5	73.4	67.5	58.6	58.9	66.3	61.8	Σ	73.6	81.2
		Avg Min	50,5	54.3	50.8	50.2	45.7	39°6	33.5	8.94	40.9	Σ	47.8	50.3
		Avg	8.69	71.7	67,7	61.8	56,6	49,1	46.2	56.6	51.4	Σ	60.7	65.8
F9 2105	Coyote Dam (Lake Mendocino)	Max	104	103	102	94	87	74	89	75	71	74	90	102
		ž	45	43	43	38	32	20	15	30	25	30	34	40
		Avg Max 95	95	90.7	89.9	76.7	4°69	65.9	58.0	9°49	61,3	59.4	71.9	83.8
		Avg Min	52.2	52.5	48.2	44.1	39.5	37.3	27.8	43.2	33.9	37.5	43.7	48.4
		Avg	73,6	71.6	69.1	60.4	54.5	50.1	42.9	53.9	47.6	48.5	57,8	66.1
										!				

NUMBER STATION NAME UUL AUG SEP OCT NOV DEC JAN FEB MA CD 100 98 95 95 100 98 95 10 10 98 95 10 96 10 98 95 10 66 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 10 96 96 10 96 10 96 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>															
2109 Coyote Reservoir Mox 96 100 98 95 85 72 66 74 2109 Coyote Reservoir Min 45 45 41 37 28 23 18 35 1 Avg Mnn 48.3 50.7 48.1 45.6 60.0 50.2 56.2 65.0 60.0 56.3 65.0 60.0 56.3 65.0 60.0 56.3 65.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 56.0 60.0 60.0 56.0 60.0 60.0 56.0 60.0 60.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	NUMBER	- 1		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
Min 45 45 41 37 28 23 18 35 Avg Mox 86.1 87.8 82.1 72.3 66.0 60.0 56.3 65.2 1 Avg Min 48.3 50.7 48.1 45.6 60.0 56.0 56.0 60.0 56.0 <	E6 2109	Coyote Reservoir	Mox	96	100	98	95	85	72	99	74	70	72	90	94
Avg Mox 86.1 87.8 82.1 72.3 66.0 60.0 66.0 67.0			Min	45	45	41	37	28	23	18	35	30	32	35	40
Avg Min 48.3 50.7 48.1 45.6 40.2 35.9 48.6 40.2 40.6 40.2 40.6 40.2 40.6 40.2 40.6				86.1	87.8	82.1	72.3	0.99	0.09	56.3	65.2	8.09	61.6	69.3	77.7
Ayg 67.2 69.2 65.1 59.0 63.1 48.0 42.9 54.9 2177 Crockett Max 91 99 90 87 77 62 77 1 Ayg 1 99 90 87 77 62 77 1 Ayg 81.9 52 50 47 37 90 24 42 2 Ayg 81.9 84.4 79.3 70.9 66.8 54.5 51.5 64.6 2 Ayg 81.9 64.4 79.3 70.9 66.8 54.5 51.5 64.6 64.8 49.5 51.5 64.6 64.8 49.5 51.5 64.6 61.8 64.7 49.5 66.6 61.8 64.7 49.5 64.6 61.8 61.9 62.6 61.8 61.9 62.6 61.8 61.9 62.6 61.8 61.0 62.8 61.7 62.8 61.0 62.8 61.0<					50.7	48.1	45.6	40.2	35.9	29.5	44.6	37.1	41.0	46.5	47.6
2177 Crockett Max 91 99 90 87 77 60 62 77 2177 Crockett Min 49 52 50 47 37 30 24 42 218 Avg 81,9 84,4 79,3 70,9 66,8 54,5 51,5 64,6 2290 Davenport Avg 67,5 70,5 66,6 61,8 70,2 48,6 43,2 56,9 2290 Davenport Max 62 88 70 76 72 48,6 43,2 56,9 2290 Davenport Max 62 88 70 76 43,2 56,9 43,2 56,9 2290 Davenport Max 62 88 70 76 43,2 56,9 43,2 56,9 43,2 56,9 43,2 56,9 57,8 56,9 57,8 61,7 43,2 56,9 57,8 61,7 43,2 43,2 58,8 58,9 58,9 43,2 58,1 58,9 58,9 <td< th=""><th></th><th></th><th>Avg</th><th>67.2</th><th>69.2</th><th>65,1</th><th>59.0</th><th>53,1</th><th>48.0</th><th>42.9</th><th></th><th>49.0</th><th>51.3</th><th>57.9</th><th>62.6</th></td<>			Avg	67.2	69.2	65,1	59.0	53,1	48.0	42.9		49.0	51.3	57.9	62.6
Avg Mox 81.9 52 50 47 37 30 24 42 Avg Mox 81.9 84.4 79.3 70.9 66.8 54.5 51.5 64.6 2290 Davenport Avg 67.5 70.5 66.6 61.8 57.2 48.6 49.2 56.9 2290 Davenport Max 62 88 70 76 67.5 73.9 67.5 67.9 67.5 73.9 73.6 66.6 61.8 57.2 48.6 49.2 56.9 56.9 67.5 67.9 67.6 61.8 57.2 48.6 49.2 56.9 57.0 49.2 56.9 57.0 67.0 49.2 56.9 57.8 61.7 49.8 61.7 49.3 56.2 61.8 61.7 49.8 61.7 49.3 61.8 61.7 49.8 61.7 49.8 61.7 49.8 61.7 49.8 61.7 49.8 61.7 49.8 62.9 62.8 62.9 </th <th></th> <th>Crockett</th> <th>Max</th> <th>91</th> <th>66</th> <th>90</th> <th>87</th> <th>77</th> <th>00</th> <th>62</th> <th>77</th> <th>73</th> <th>73</th> <th>98</th> <th>88</th>		Crockett	Max	91	66	90	87	77	00	62	77	73	73	98	88
Avg Max 81.9 84.4 79.3 70.9 66.8 54.5 51.5 64.6 2290 Avg Min 53.1 56.5 53.9 52.6 47.5 48.6 49.2 2290 Davenport Max 62 88 70 76 72 48.6 43.2 56.9 2290 Davenport Min 46 47 45 45 47 48.6 49.2 56.9 67 73 49.2 56.9 2290 Davenport Min 46 47 45 45 47 48.6 43.2 67 48.6 47.3 48.6 47 48.6 47 48.6 47 48.6 48.			Min	49	52	20	47	37	30	24	42	34	38	42	84
Avg Min 53.1 56.5 53.9 52.6 47.5 42.6 34.9 49.2 2290 Davenport Max 62.5 70.5 66.6 61.8 57.2 48.6 43.2 56.9 2290 Davenport Max 62 88 70 76 72 67.8 73.7 73 73 2580 Davenport Avg Min 48.9 51.6 49.3 50.7 50.0 45.7 43 43 2580 Duttons Landing May 54.1 58.4 55.6 50.7 50.0 45.7 40.8 61.7 49.8 61.7 40.8 61.8 62.4 40.8 61.7 62.6 50.8 61.7 40.8 61.7 62.6 58.0 55.8 61.7 62.6 62.6 62.6 62.8 62.7 62.6 62.6 62.8 62.6 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8			Avg Mox	81.9	84.4	79.3	70.9	8.99	54.5	51.5	9*+9	62.7	62.4	6.69	76.8
2290 Davemport Mox 62. 88 70. 66.6 61.8 57.2 48.6 43.2 56.9 2290 Davemport Mox 62 88 70 76 72 67 73 73 4 Avg 47 45 45 41 38 34 43 73 73 5 Avg 47 45 45 41 38 34 43 73 73 73 5 Avg 40 47 45 45 41 38 34 43 44 43 44 <				53,	56.5	53.9	52.6	47.5	42.6	34.9	49.2	43.5	45.8	51.5	53.2
2290 Davenport Max 62 88 70 76 72 67 73 73 73 2290 Davenport Min 46 47 45 45 41 38 34 43 4 Avg 59.3 65.2 61.8 63.4 62.6 58.0 55.8 61.7 4 Avg Min 48.9 51.6 49.3 50.0 45.0 64.0 49.8 4 Avg 54.1 58.4 55.6 57.0 56.3 51.8 49.2 55.8 4 Avg 84 51 47 43 64 61 72 49.8 4 Avg Mor 48.9 51.7 47 43 40.2 51.8 47.2 47			Avg	67.5	70°5	9.99	61.8	57.2	48.6	43.2	56.9	53.1	54.1	60.7	65.0
Min 46 47 45 45 41 38 34 43 2580 Avg Mox 59.3 65.2 61.8 63.4 62.6 58.0 55.8 61.7 2580 Duttons Landing Max 83 94 55.6 57.0 50.0 45.7 49.2 64.8 61.7 2580 Duttons Landing Max 83 94 52 87 79 64 61.7 72.8 4 Avg Mox 74.5 78.3 74.3 17.9 67.5 55.8 65.0 4 Avg Mox 74.5 78.3 74.3 74.3 77.9 64.0 67.0 65		Davenport	Max	62	88	70	76	72	67	73	73	62	99	65	99
Avg Mox 59.3 65.2 61.8 63.4 62.6 58.0 55.8 61.7 2580 Duttons Landing Avg Min 48.9 51.6 49.3 50.7 50.0 45.7 42.6 49.8 2580 Duttons Landing Max 83 94 92 87 79 64 61 72 Min 48 51 47 43 36 26 24 40 Avg Min 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 2934 Fairfield Police Station Mox 100 102 98 94 78 67.9 67.9 56.1 76 2934 Fairfield Police Station Mox 100 102 98 94 78 65.6 67.9 54.6 76 67.6 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.0 67			Min	97	47	45	45	41	38	34	43	39	41	43	43
Avg Min 48.9 51.6 49.3 50.7 50.0 45.7 42.6 49.8 2580 Duttons Landing Max 83 94 55.6 57.0 56.3 51.8 49.2 55.8 2580 Duttons Landing Max 83 94 92 87 79 64 61 72 55.8 4 Avg Max 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 Avg Min 52.5 55.6 51.7 50.8 42.8 40.1 33.2 47.2 2934 Fairfield Police Station Max 100 102 98 94 78 65 64 76 Avg Max 86.9 88.8 84.6 74 31 23 24 46.3 Avg Min 53.8 55.5 53.0 51.5 54.4 54.6 67.4 67.9 67.9 67.4 67.4 67.6 67.4 67.6 67.6 67.6 67.6 67.6 67.6 67.6 67.6 <t< th=""><th></th><th></th><th>Avg Mox</th><th>59,</th><th>65.2</th><th>61.8</th><th>63.4</th><th>62.6</th><th>58.0</th><th>55.8</th><th>61.7</th><th>57.5</th><th>57.8</th><th>59.0</th><th>61,0</th></t<>			Avg Mox	59,	65.2	61.8	63.4	62.6	58.0	55.8	61.7	57.5	57.8	59.0	61,0
2580 Duttons Landing Max 83 94 55.6 57.0 56.3 51.8 49.2 55.8 2580 Duttons Landing Max 83 94 92 87 79 64 61 72 4 Min 48 51 47 43 36 26 24 40 Avg Max 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 2934 Fairfield Police Station Max 100 102 98 94 78 65 64 76 409 Min 50 43 49 44 31 23 24 46 409 Min 50 43 86.9 88.8 84.6 74 31 23 24 46 40 40 78 67.9 54.4 54.6 54.6 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9			Avg Min	48.9	51.6	49.3	50.7	50.0	45.7		49.8	44.3	45.7	49.0	49.4
2580 Duttons Landing Max 83 94 92 87 79 64 61 72 Min 48 51 47 43 36 26 24 40 Avg Mox 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 Avg Min 52.5 55.6 51.7 50.8 42.8 47.1 33.2 47.2 2934 Fairfield Police Station Mox 100 102 98 94 78 65 64 76 Min 50 43 49 44 31 23 24 34 Avg Mox 86.9 88.8 84.6 74.8 67.9 54.6 67.4 67.9 67.6 67.9 67.6 67.6 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 <td< th=""><th></th><th></th><th>Avg</th><th>54.1</th><th>58.4</th><th></th><th>57.0</th><th>56,3</th><th>51.8</th><th>49.2</th><th>55.8</th><th>50.9</th><th>51.7</th><th>54.0</th><th>55.2</th></td<>			Avg	54.1	58.4		57.0	56,3	51.8	49.2	55.8	50.9	51.7	54.0	55.2
Min 48 51 47 43 36 26 24 40 Avg Max 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 2934 Fairfield Police Station Max 100 102 98 94 78 56.1 76 Avg Max 86.9 43 49 44 31 23 44 76 Avg Max 86.9 88.8 84.6 74.8 67.9 54.6 67.4 67.6 67.4 67.4 54.6 67.4	E3 2580	Duttons Landing	χα W	83	96	92	87	62	64	61	72	70	70	88	84
Avg Max 74.5 78.3 74.3 71.9 67.5 59.9 53.8 65.0 2934 Fairfield Police Station Max 100 102 98 94 78 65.0 67.4 56.1 76 76 4 y g Max 100 102 98 94 78 65 64 76 Avg Max 86.9 88.8 84.6 74.8 67.9 54.4 54.6 67.4 Avg Min 53.8 55.5 53.0 51.5 43.7 38.5 54.6 67.9			Z.	48	51	47	43	36	26	24	40	33	34	39	47
Avg Min 52.5 55.6 51.7 50.8 42.8 42.1 33.2 47.2 2934 Fairfield Police Station Max 100 102 98 94 78 65 64 76 Min 50 43 49 44 31 23 24 34 Avg Max 86.9 88.8 84.6 74.8 67.9 54.4 54.6 67.4			Max	74.			71.9	67.5	59.9	53.8	65.0	63.3	62.4	7.69	74.2
Avg 63.5 67.0 63.0 61.4 55.2 51.0 43.5 56.1 2934 Fairfield Police Station Max 100 102 98 94 78 65 64 76 Min 50 43 49 44 31 23 24 34 Avg Max 86.9 88.8 84.6 74.8 67.9 54.6 67.4 67.6 67.4 67.6 67.4 67.6 67.4 67.6 67.4 67.6 67.6 67.6 67.4 67.6 67.7 67.7 <th></th> <th></th> <th>Avg Min</th> <th>52.5</th> <th>55.6</th> <th>51.7</th> <th>50.8</th> <th>42.8</th> <th>42.1</th> <th>33.2</th> <th>47.2</th> <th>41.1</th> <th>42.2</th> <th>0.65</th> <th>51.0</th>			Avg Min	52.5	55.6	51.7	50.8	42.8	42.1	33.2	47.2	41.1	42.2	0.65	51.0
2934 Fairfield Police Station Max 100 102 98 94 78 65 64 76 76 Min 50 43 49 44 31 23 24 34 84 Min 50 88.8 84.6 74.8 67.9 54.4 54.6 67.4 Avg Min 53.8 55.5 53.0 51.5 43.7 38.5 25 46.3			Avg	63.5	67.0	63.0	61.4	55.2	51.0	43.5	56.1	52.2	52.3	59.2	62.6
Max 86.9 88.8 84.6 74.8 67.9 54.4 54.6 67.4 Min 53.8 55.5 53.0 51.5 43.7 38.5 32.5 46.3			Χα×	100	102	86	94	78	65	99	9/	74	74	91	97
Mox 86.9 88.8 84.6 74.8 67.9 54.4 54.6 67.4 Min 53.8 55.5 53.0 51.5 43.7 38.5 32.5 46.3			Z.	50	43	65	44	31	23	24	34	33	34	39	45
Min 53.8 55.5 53.0 51.5 43.7 38.5 32.5 46.3			Avg Mox	86.9	88.8	9, 48	74.8	6.79	54.4	54.6	67.4	0.49	64.3	73.5	82.0
			Avg Min	53.8	55.5	53.0	51.5	43.7	38.5	32.5	46.3	41.7	43.7	50.1	52.5
Avg 70.4 72.2 68.8 63.2 55.8 46.5 43.6 56.9 52.			Avg	70.4	72.2	\neg	63.2	55.8	46.5	43.6	56.9	52.9	54.0	61.8	67.3

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOS
F8 3161	Fort Bragg	Max	72	71	92	73	29	89	65	70	89	99	69	89
		Min	777	43	77	41	32	32	29	39	33	35	41	43
		Avg Max	62.6	65.2	64.2	65.9	9°09	56.9	56.1	61.7	58.4	59.9	63.5	63,1
		Avg Min	47.9	50.8	49.9	48.0	44.5	42.3	37.5	48.0	41.4	43.4	47.9	47.8
		Avg	55.3	58.0	57.1	55,5	52.6	49.6	46.8	54.9	49.9	51.7	55.7	55.5
F8 3164	Fort Bragg Aviation	Max	67	69	70	69	65	99	09	70	65	79	29	67
		Z.	40	40	41	38	33	28	24	37	31	33	38	39
		Avg Max	60,5	62.5	61.7	61,3	59.8	56.2	55.3	60.7	57.9	58,3	60.3	61.6
		Avg Min	45.9	49.0	47.7	6.94	43.3	41.6	36,2	46.5	9.04	42.6	46.5	45.7
		Avg	53.2	55.8	54.7	54.1	51,6	48.9	45.8	53.6	49.3	50.5	53.4	53:7
F8 3191	Fort Ross	Max	29	7.0	71	92	72	61	62	70	61	99	65	69
		Min	42	42	43	43	38	36	30	41	34	37	41	43
		Avg Max	61,5	64.5	64.1	62.7	61.0	55.5	54.7	8.09	57.0	58.0	61,0	62.6
		Avg Min	46.9	49.2	6.94	49.2	46.6	44.3	40.0	47.9	45.4	43.8	47.2	47.4
		Avg	54.2	56.9	55.5	56.0	53.8	49.9	47.4	54.4	49.7	50.9	54.1	55.0
D1 3238-01	Fremont Peak State Park	Max	76	96	76	92	90	80	74	77	73	72	98	92
		Z.	. 44	52	95	40	30	28	20	40	30	29	34	41
		Avg Max	85.2	82.1	81,1	69.3	9.99	61.2	55.7	62.7	54.9	53.2	62.9	72.7
		Avg Min	66.5	33.9	61.7	52.0	47.2	45.3	38,1	47.6	39.7	9.04	50.0	53.9
		Avg	75.9	58.0	71.4	60.7	56.9	53.3	6.94	55.2	47.3	6.94	58.0	63.3
D1 3417	Gilroy	Max	98	102	101	96	86	75	69	78	78	9/	89	94
		Ē	95	48	45	41	32	25	18	36	31	33	38	43
		Avg Max	84.8	88.2	82.5	75.9	69.3	61.7	57.6	68.0	64.9	64.5	72.7	80.3
		Avg Min	49.7	52.2	6.64	47.8	42.2	36.8	29.8	45.7	37.9	45.4	48.1	49.8
		Avg	67.3	70.2	66.2	61.9	55.8	49.3	43.7	56.9	51.4	53.5	4.09	65.1

F9 3577	STALLON NAME		JUL	AUG	SEP	007	ò N	DEC	NAC	PEB	MAR	APR	Σ	200
1	Graton	Max	93	86	96	06	79	79	62	72	69	71.	85	98
		Z.	777	43	77	07	32	25	24	36	32	33	38	43
		Avg Max	Max 79.1	84.0	79.1	71.5	67.2	53.9	52.8	63.1	60,3	60.1	68,1	74.9
		Avg Min	49.8	52.1	50.2	50.6	45.0	41.4	34.7	46.5	39.7	42.2	48.1	48.6
		Avg	4.49	68.0	9.49	61.0	56.1	47.6	43.8	54.8	50.0	51.2	58,1	61.8
F9 3578	Graton 1 W	Μοχ	95	98	94	85	9/	61	61	7.4	7.1	71	88	87
		Z.	40	42	40	39	29	23	21	34	30	31	36	43
		Avg Max	80.9	83.7	77.1	69.2	64.2	53,7	52.4	64.1	60.7	61.4	7°69	76.5
		Avg Min	46.2	49.1	4.94	47.7	42.2	39.5	32.1	45.8	38.2	41.0	47.7	47.8
		Avg	63.6	66.4	61.8	58°2	53.2	9.94	42.3	55.0	49.5	51.2	58.6	62.2
E8 3714 H	Half Moon Bay 2 NNW	Μοχ	64	98	69	75	81	69	99	89	63	64	69	99
		Μ	43	47	48	45	35	33	32	70	36	39	70	42
		Avg Max	61.2	64.8	63.2	8.49	62.8	57.7	56.2	61.1	57.5	58.3	59.7	61,7
		Avg Min	49.8	52.4	51.2	49.1	45.5	4.44	39°6	48.0	42.5	45.9	49.3	48.7
		Avg	55,5	58°6	57.2	57.0	54.2	51.1	48.1	54°6	50.0	52,1	54,5	55,2
E2 3734 H	Hamilton Air Force Base	χοχ	90	95	88	82	74	62	61	71	89	7.0	82	83
	purder * transmission to sensore transmission and the end of the e	Z.	45	45	45	41	36	26	23	39	31	35	40	94
		Avg Max	Max 74.0	79.5	73.0	68.7	63.8	53.3	51.5	0°49	61.5	59.8	67.8	73.5
		Avg Min	48.8	52.1	49.2	50.1	45.3	41.0	33.2	6.74	45.4	9.44	50.4	50° 9
		Avg	61.4	65.8	61.1	59.4	54°6	47.2	45.4	56.0	52.0	52.2	59.1	62.2
F9 3875 H	Healdsburg	Max	101	105	101	95	83	62	69	78	76	9/	93	97
		Z.	94	45	777	42	37	26	23	38	32	34	39	44
		Avg Max	87.6	89.9	85.0	74.5	8°89	56.9	56.9	67.8	64.4	0°49	73.7	82.6
		Avg Min	50°2	52.9	50.0	48,8	6.44	40°4	33.7	48.4	41.0	43.0	49.2	51.9
		Avg	68.9	71.4	67.5 61.7 56.9	61.7	56.9	48.7	45,3	58, 1	52,7	53,5	61,5	67,3

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	NAN	FEB	MAR	APR	MAY	JUN
D1 4022	Hollister	Max	89	102	95	92	89	77	69	78	78	92	87	98
		Min	42	777	40	34	26	20	16	35	30	32	37	42
		Avg Max	77.6	83.3	78.0	76,1	69.7	64.3	59.8	68,3	64.5	0.49	68.9	73.8
		Avg Min	45.9	48.1	45.6	43.2	37.6	33.8	29.3	6.97	38.4	42.1	47.9	48.1
		Avg	61.8	65.7	61.8	59.7	53.7	49.1	9°47	57.6	51.5	53.1	58.4	61.0
E2 4500	Kentfield	Μα×	89	86	98	89	80	99	65	72	72	72	87	88
	The second secon	M. n	45	07	45	43	38	27	25	39	33	35	04	45
		Avg Max	79.4	82.0	77.77	71.1	67.0	58.0	54.4	65.0	61.9	62.2	9.89	75.6
		Avg Min	48.5	50°9	0.65	49.6	45.8	40°7	34.0	47.5	41.4	44.3	49.4	49.8
		Avg	0°49	66.5	63.4	4.09	56.4	49.4	44.2	56.3	51,7	53,3	59.0	62.7
D2 4555	King City	Μα×	88	102	56	96	89	79	75	78	78	79	88	92
		Min	41	45	42	38	27	23	18	34	30	32	37	39
		Avg Max	81.0	85.7	80.3	79.2	72.3	67,4	9.19	70.9	67.8	67.5	74.7	80,1
		Avg Min	6.65	51,0	49°5	46.3	38.6	36,7	30.9	45.6	37.8	41.7	47.5	48.7
		Avg	65,5	68,4	6.49	62.8	55.5	52.1	46.3	58°3	52.8	54.6	61,1	64.4
E6 4922	Lexington Reservoir	Max	95	86	91	91	80	9	9	73	72	78	88	89
		Z.	43	45	42	37	32	26	22	35	31	32	38	41
	The second secon	Avg Max	85.1	85.9	81.5	70.5	6.49	58,1	54.7	64.7	61.2	61.7	4.69	78.5
		Avg Min	48.5	50.0	6.74	45.4	43.5	39.6	33.8	45.9	38.5	41.4	47.8	48.0
		Avg	8.99	68.0	64.7	0.09	54.2	48.8	44.2	55,3	49.8	51.6	58.6	63,2
D3 4963	Linn Ranch	Max	101	103	96	98	82	71	97	Д	Д	75	90	98
		Z.	45	45	43	07	26	22	17	D	Д	32	37	44
		Avg Max	92.8	91,5	86.2	75.2	6.99	61,2	55,8	Д	Q	63,4	72,5	81,6
		Avg Min	50°3	54.2	50.4	47.8	39,5	35.8	30.8	Д	D	39,2	48.0	6.65
		Avg	71.6	72.8	68.3	61.5	53,2	48.5	43,3	Q	Д	51.3	60.2	65.8

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E5 4996	Livermore Sewage Plant	Max	66	100	97	98	78	29	65	74	72	72	88	97
		Αi	717	45	41	38	30	20	19	33	29	24	35	43
		Avg Max	85.5	85.6	82.2	72.7	0.79	58,3	54.4	9.99	62.8	62,3	71.0	80.7
		Avg Min	49.4	50.7	6.74	46.5	38.8	35.8	28.3	44.1	37.1	39.1	45.8	46.9
		Avg	4.79	68.2	65.0	59.6	52.9	47.0	41.4	55.4	50.0	50.7	58.4	63.8
E5 4997	Livermore 2 SSW	Max	101	103	86	95	78	89	65	7.5	71	72	91	100
		Z.	45	47	45	41	30	22	21	33	30	31	37	42
		Avg Max	Max 89.3	88.0	83.9	72.6	7.99	58.7	54.4	65.3	61.8	61,1	71,2	81,4
		Avg Min	50°2	52.0	50.2	9.94	39.9	33.8	28.9	44.1	36.6	40.1	46.8	47.7
		Avg	6.69	70.0	67.1	59.6	53.3	46.3	41.7	54°7	49.2	50.6	59.0	64.6
E6 5123	Los Gatos	Max	91	97	06	87	78	29	63	75	73	70	87-	89
		Min	84	84	45	41	33	29	25	38	34	30	41	45
		Avg Max 83.0	83.0	83.1	79.4	71.6	66.3	58.5	55.6	65.8	62.5	62.1	70.5	78.0
		Avg Min	50.9	52.3	49.7	47.4	43.6	38,7	32.4	45.7	37.7	39.2	47.8	49.2
		Avg	0.29	67.7	9° 49	59,5	55.0	48.6	44.0	55.8	50,1	50.7	59.2	63,6
E3 5333	Mare Island Naval Ship Yard	Mox	85	95	89	85	71	65	69	71	70	79	92	88
		Z.	54	55	54	51	70	31	33	47	39	40	94	54
		Avg Max	Max 78.2	82,3	75.9	71.7	66.5	54.1	51.9	8.49	62.7	0.99	74°3	78.8
		Avg Min	56.2	59.9	58.1	56.3	51.5	45.0	40.0	52.3	6.94	49.0	59.4	57.6
		Avg	67.2	71.1	67.0	0.49	59.0	49.6	46.0	58.6	54.8	57.5	66.8	68.2
E4 5377	Martinez Fire Station	Max	76	100	95	90	80	64	61	72	73	74	89	93
	, and the second	Z.	67	64	49	777	36	28	26	39	33	36	41	48
		Avg Max	84.8	85.7	80.2	71.4	0.99	53,5	50.8	64°5	62,7	62.7	71.9	80.0
		Avg Min	53.4	55.4	52.2	50.7	45.0	40°5	32.4	46.9	41.8	44°4	50.2	52.9
		Avg	69.1	70°6	66.2	61,1	55.5	47.0	41,6	55.6	52,3	53.6	61,1	66.5

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
D4 5795	Monterey	W dx	75	95	85	87	90	80	76	72	7.0	NR	NR	NR
		Min	47	64	47	94	41	32	28	42	37	NR	NR	NR
		Avg Max	64.5	71,5	0.79	71,4	6.79	63°6	9.09	66.2	62,6	NR	NR	NR
		Avg Min	9.65	51.9	50.0	50.6	47.0	43.8	40°5	48.9	45.9	NR	NR	NR
		Avg	57.1	61,7	58.5	61.0	57.5	53,9	50.6	57.6	52.8	NR	NR	NR
E4 5915	Mt. Diablo North Gate	Ψα×	96	100	95	06	81	72	89	72	71	70	98	96
		Min	43	42	41	41	36	29	24	41	29	30	37	43
		Avg Max	88.7	86.2	83.6	6.69	65,3	59.7	53.8	61.9	57.8	55.7	6.99	78.5
		Avg Min	62,4	57.7	53.0	49.8	46.5	44.0	37.2	47,1	38.7	38.3	45.0	50.2
		Avg	75.6	72.0	68,3	59.9	55.9	51,9	45.5	54,5	48,3	47.0	56.0	64.4
E5 5933	Mt. Hamilton	Μα×	D	89	84	80	62	70	62	65	62	62	78	87
		M in	D	77	7 7	35	28	24	18	35	25	24	32	37
1		Avg Max	D	7.77	75.3	65.0	57,1	54.7	49.5	55.6	9.95	45.4	61,1	68.8
		Avg Min	Д	60,5	58.2	51,0	43,2	43.2	36.5	45.9	33°0	33,4	45,3	50.2
		Avg	D	69,1	8,99	58.0	50,2	49.0	43.0	49,3	39,8	39.4	53.2	59.6
E3 6068	Napa - Haven	Max	96	104	86	06	82	79	79	72	72	73	89	90
		⊼	95	94	41	09	30	22	20	36	30	30	36	42
		Avg Max	81	84.5	79,1	73.2	67.7	57.8	54.3	65,2	63.2	63.2	70,2	79,0
		Avg Min	49,3	51,0	49.0	48,3	45.4	37,9	30°2	44.7	37.5	40.4	6.94	48.1
		Avg	65,2	67,8	0.49	8.09	55.0	47.8	45.4	55.0	50.4	51.8	58.6	63.6
E3 6074	Napa State Hospital	¥ax	91	66	97	92	84	65	79	75	74	74	89	89
		Ξ	48	94	45	40	34	25	20	38	25	30	37	42
		Avg Max	Max 78.5	83,1	78.5	74.1	67.8	58.4	55.2	6.99	64,2	64,1	71,4	78.4
		Avg Min	50,7	51,2	50°2	50,3	43,7	40,1	32.0	9.94	38.0	38°6	47.9	49.2
		Avg	9,49	67.2	64,5	62,2	55,8	55.8 49.3	43.6	56.8	51.1	51.4	59.7	63.8

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	SGN
E5 6144	Newark	Mox	82	95	89	98	83	69	63	74	69	69	84	85
		Min	49	52	48	77	33	28	24	040	37	37	43	94
		Avg Max	Max 74.5	77.9	73.6	70.9	66,2	56,7	53,6	7,49	62,0	61,4	67,3	73.1
		Avg Min	52.3	54.8	53.8	52.6	46.1	41.8	35.1	49.0	42.6	46.5	51.6	52.3
		Avg	63.4	66.4	63.7	61.8	56.2	49.3	44.4	56.7	52,3	54.0	59.5	62.7
E4 6335	Oakland WB AP	Max	79	95	88	84	77	63	63	72	89	29	98	80
		Z.	50	53	50	48	37	32	30	42	37	38	45	67
		Avg Max	Max 69.5	74.1	6.69	68.2	6.49	56.0	54.3	64.4	8.09	60.09	65.7	6.69
		Avg Min	53.8	56,3	54.9	53.1	47.1	43.0	37.9	49.8	44.2	47.3	52.7	53.4
		Avg	61.7	65.2	62.4	60.7	26.0	49.5	46.1	57.1	52.5	54.1	59.2	61.7
E3 6646	Palo Alto City Hall	Max	81	96	87	83	62	99	63	14	70		87	84
		Min	47	64	9†	41	30	26	21	37	32	34	04	44
		Avg Max 73.8	73.8	78.8	73.2	70.1	9°49	26.0	53.4	64.8	62.6	62.5	0.69	75.5
		Avg Min	53.8	5,3,5	51.3	48.5	42.5	40.7	33.4	47.4	40.7	45.6	50.5	52.1
		Avg	63.8	66.2	62,3	59.3	53.6	48.4	43.4	56.1	51.7	54.1	59.8	63.8
E2 6826	Petaluma F.S. No. 2	Max	90	100	86	95	78	99	29	72	71	74	98	89
		Αi	43	41	7,5	42	34	24	20	35	29	32	37	45
		Avg Max	82.1	84.4	82.0	73.3	68,4	57.5	55.9	65.4	63.2	62.6	0.69	76.4
		Avg Min	49.0	51.4	49.2	49.4	43.5	39.8	31.4	9°97	38.3	41.7	47.7	49.3
		Avg	65.6	67.9	65.6	61,4	56.0	48.7	43.7	56.0	50.8	52.2	58.4	65.9
D2 6926	Pinnacles National Mon.	Max	103	105	66	96	92	81	74	79	78	78	95	101
		Σi	40	43	40	35	28	19	15	33	27	28	33	34
		Avg Max 96.4	96.4	95.9	91,7	82.1	73.0	67.8	62.6	69.5	4.49	64.2	76.5	85.2
		Avg Min	47.8	50.0	46.7	43.8	39.0	35.0	28.1	41.8	34.4	37.5	44.3	44.5
		Avg	72,1	73,0 69,2	_	63.0	56.0	51.4	45.4	55.7	49.4	50.9	7,09	6,49

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E5 6991-05	Pleasanton Narsery	Max	104	102	98	92	82	89	99	7.7	74	7.4	90	100
		Σ	917	1717	643	38	28	2.1	61	33	28	32	36	4.2
		Avg Max	90,3	89,1	84.2	72.1	8.99	58°2	52.5	8.99	62.7	8.19	71.6	82,3
		Avg Min	50.7	52.0	9.81	46.5	38.7	37.4	28.7	45.6	38,1	41.8	48,3	0,64
		Avg	70.5	70.6	4,099	59.3	52.8	48.0	42.1	56.2	50.4	51.8	0.09	65.6
F8 7009	Point Arena	Мах	89	72	7.5	7.4	69	63	65	99	62	65	99	67
	,	Min	44	43	1 17	38	38	30	28	37	31	33	38	4.2
		AVQ Max	62.8	1.59	63.6	62.9	4.09	55.9	55.4	60,2	57.4	58.3	61.7	62,4
		Avg Min	8.74	50.4	48.5	47.1	43.4	41.8	36,3	47.3	0.17	42.5	8,91	47.0
		Avg	55.3	57.8	56,1	55.0	51.9	48.9	45.9	53.8	49.2	50.4	54.3	54.7
p5 7024	Point Pledras Blancas	Max	89	7.1	89	73	97		7.3	7.0	89	65	65	7.0
	1	Min	949	847	64	47	047		38	4.5	39	38	4747	43
		Avg Max	9.69	66.5	62.8	65.1	62.8	60.1	0.09	63.0	8.09	60.5	8.19	64.5
		Avg Min	51.1	51.6	51.4	9.15	0.64	48,1	0.94	50.5	45,2	46.3	48.7	49.5
		Avg	57.4	59.1	57.1	58.4	55.9	54.1	53.0	56.8	53.0	53,4	55,3	57.0
E4 7070	Port Chicago NAD	×σΨ	476	101	9.1	83	9/	49	62	72	7/4	73	89	97
		M.	1717	81/2	40	38	30	23	21	31	30	31	37	4.5
		AVQ MOX	82.7	87.6	77.4	69.2	65.0	54.6	52.6	65.4	62.9	63.3	71.7	80.1
		Avg Min	50.0	53.3	47.7	46.3	40.2	38.5	29.5	43.5	36,8	40.8	6.74	50.6
		Avg	66.4	70.5	62.6	57.8	52.6	9.94	41.1	54.5	6.64	52.1	59.8	65.4
F9 7109	Potter Valley P.H.	X D X	105	101	100	9.1	85	73	69	75	73	7,5	92	NR
		Z.	42	42	141	36	24	18	17	28	24	29	34	NR
		Avg Max	Z	93,3	91.5	75.4	66.2	Z,	61.6	4.99	9.19	59.2	75.8	NR
		Avg Min	Σ	8.64	46.2	42.7	37.0	34.6	25.4	42.5	34.6	39.4	44.7	NR
		Avg	Σ	71.6	68,9	59,1	51,6	Z	43,5	54.5	48,1	49,3	60,3	NR

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOS
D2 7150	Priest Valley	Max	100	105	86	94	82	78	99	75	72	72	91	98
		Min	40	39	35	31	16	17	6	26	21	25	30	33
		Avg Max	94.1	93.5	88.9	76.4	4.99	62,1	57.0	65.2	59.9	59.9	72.0	82.1
		Avg Min	47.4	47.2	43.1	38.3	29.5	29.3	21.5	37.4	30,1	34.0	41.5	42.9
		Avg	70.8	70.4	0.99	57.4	48.0	45.7	39,3	51.3	45.0	47.0	56,8	62.5
DI 7190	Quien Sabe Hay Camp	X D X	97	97	56	91	89	75	7.1	80	7.1	74	89	92
		Σ.	42	40	38	32	27	20	10	27	19	26	28	30
		AVQ MOX	88.6	86.0	81.3	74.9	65.0	62,7	57.8	65.9	59.2	0.09	67.4	73.5
		Avg Min	47.5	47.0	44.8	41.0	36.9	33.1	25.0	39.8	31.7	37,3	42.7	43.0
		Avg	0.89	66.5	63.0	58.0	51,0	48.0	44.4	52.8	45.4	48.6	55.0	58.2
E7 7339	Redwood City	×	89	98	92	85	82	29	29	74	72	74	90	91
		Z.	94	48	94	43	34	27	24	38	34	36	41	94
		Avg Max	80°7	84.5	79.2	72.2	67.8	58.9	56.1	67.1	65.2	65.6	73.2	79.6
		Avg Min	52.8	52,1	50.9	49.3	44.4	41.3	35.2	4.74	41.3	44.7	50.1	51.2
		Avg	8.99	68.3	65,1	60.8	56.1	50.1	45.7	57.3	53,3	55,2	61.7	65.4
D4 7539-01	Roosevelt Ranch	¥ O W	78	95	98	88	84	9/	72	75	72	7.0	9/	81
		Min	64	50	51	50	44	44	42	47	41	41	81/	49
		Avg Max 66.1	1.99	9.9/	71.2	71.4	66.3	4.09	4.09	63.7	60,2	61,1	63.9	67.1
		Avg Min	52.8	60°2	56.4	54.1	54.7	50.0	47.5	51.8	47.2	48.2	53,3	53,3
		Avg	59.4	68.4	63.8	62.8	60.5	55.2	54.0	57.8	53.7	54.6	58.6	60.2
E4 7414	Richmond	Max	7.1	16	82	82	82	70	65	7.1	70	71	82	77
		M.	52	53	52	50	39	32	30	41	36	38	4.5	51
		Avg Max 65.3	65,3	8.69	8°19	69.5	66.5	59.4	55,3	65.5	62.4	61.4	66.3	68.3
		Avg Min	53.4	56.4	54.4	53.4	49.1	43.9	38.4	49.8	45.2	6.94	53.4	54.4
		Avg	59.4	63.1	61.1	61.5	57.8		51.7 46.9	57.7	53.8	54.2	59.9	61.4

TABLE A-3

Mon 101 106 101 94 86 67 70 Born 46 42 42 38 31 22 21 Are 46 42 42 38 31 22 21 Are 86 89 89.2 84.2 74.4 67.6 57.3 56 Are Are 88 89 89.2 84.2 74.4 67.6 57.3 56 61 37.8 47.6 47.	NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
Min 46 42 42 38 31 22 Avg Mox 88.9 89.2 84.2 74.4 67.6 57.3 Avg Min 49.2 51.1 48.4 48.5 41.4 37.9 7661 Saint Mary's College Mox 98 100 94 89.7 75.6 47.6 47.6 7661 Saint Mary's College Min 48 46 43 38 77 21 7661 Saintas Z E Min 48 46 43 38 77 21 7668 Salinas Z E Moy 82.2 83.5 78.3 70.8 64.4 54.2 57.8 44.9 7668 Salinas Z E Mox 74 95 88 92 81 65.5 64.6 57.8 10.8 81 68.5 68.5 81 64.6 64.6 64.6 64.6 64.6 64.6 64.8 68.6 64.6 64.6	E3 7646		Мох	101	106	101	94	98	67	7.0	75	75	77	92	96
Avg Mox 88.9 89.2 84.2 74.4 67.6 57.3 7661 Saint Mary's College Avg 69.1 70.2 66.3 61.5 54.5 47.6 7661 Saint Mary's College Mox 98 100 94 89 75 65.5 47.6 7661 Saint Mary's College Mox 48 46 48 75 65.5 47.6 77.6 65.3 47.6 47.7 47.8 47.7 47.7 47.7 47.7 47.7 47.7 47.7 47.7 47.7 <td< th=""><th></th><th></th><th>Ξ</th><th>94</th><th>42</th><th>42</th><th>38</th><th>31</th><th>22</th><th>21</th><th>35</th><th>28</th><th>31</th><th>35</th><th>45</th></td<>			Ξ	94	42	42	38	31	22	21	35	28	31	35	45
Avg Min 49.2 51.1 48.4 48.5 41.4 37.9 7661 Saint Mary's College Mox 98 100 94 89 75 65.5 47.6 7661 Saint Mary's College Mox 98 100 94 89 75 67.6 67.8 75.5 47.6 47.6 47.6 47.8 47.6 47.6 47.8 47.6 47.6 47.8 47.6 47.6 47.8 47.6 47.6 47.8 47.6 47.8 47.6 47.8 47.7 47.6 47.8 47.7 47.8 47.8 47.7 47.8			Mox	88.9	89.2	-	74.4	9.79	57,3	56,2	67.0	63,4	63,3	73.0	82,5
Avg 69.1 70.2 66.3 61.5 54.5 47.6 7661 Saint Mary's College Mox 98 100 94 89 75 65 7661 Saint Mary's College Min 48 46 43 38 27 21 Avg Min 48 46 43 38 27 21 Avg Min 51.2 22.3 78.3 78.8 54.6 54.2 54.2 7668 Salinas 2 E Min 49 46 46 41 37.9 35.6 7668 Salinas 2 E Min 49 46 46 41 32 29 7669 Salinas FAA Airport Avg Min 51.6 52.5 51.1 49.4 42.3 40.8 40.8 7669 Salinas FAA Airport Mox 75 95 87 89 27 43.9 42.4 7144 San Antonio Mission Avg Mox 67.7			Μ	49.2	51,1		48.5	41.4	37.9	30°7	44.8	37.1	9°04	48.7	50°4
7661 Saint Mary's College Mox 98 100 94 89 75 65 Min 48 46 43 38 27 21 Avg Mox 82.2 83.5 78.3 70.8 64.4 54.2 Avg Mox 82.2 83.5 78.3 70.8 64.4 54.2 7668 Salinas 2 E Mox 74 95 88 89 92 81 7669 Salinas EAA Alrport Min 49 46 41 32 29 7669 Salinas FAA Alrport Mox 75 95 87 89 92 81 7669 Salinas FAA Alrport Mox 75 95 87 60.6 62.1 56.7 53.2 7669 Salinas FAA Alrport Mox 75 95 87 89 92 81 Avg Salinas FAA Alrbort Mox 67.5 60.5 76.6 62.0			Avg	69.1	70.2	3	- 0	54.5	47.6	43.5	55.9	50.3	52.0	6.09	66.5
Min 48 46 43 38 27 21 Avg Mox 82.2 83.5 78.3 70.8 64.4 54.2 Avg Min 51.2 52.3 50.9 44.8 37.9 35.6 7668 Salinas 2 E Mox 74 95 88 89 92 81 7668 Salinas 2 E Mox 74 95 88 89 92 81 7669 Salinas FAA Airport Avg Mox 66.5 75.1 70.0 74.8 71.1 65.5 7669 Salinas FAA Airport Mox 75 95 87 89 92 81 7669 Salinas FAA Airport Mox 75 95 87 40.8 8.3 83		Mary's	Max	86	100	94	89	75	65	61	71	72	7.0	91	96
Avg Mox 82.2 83.5 78.3 70.8 64.4 54.2 Avg Min 51.2 52.3 50.9 44.8 37.9 35.6 7668 Salinas 2 E Mox 74 95 88 89 92 81 7668 Salinas 2 E Min 49 46 46 41 32 29 7669 Salinas FAA Airport Avg Min 51.6 52.5 51.1 49.4 42.3 40.8 7669 Salinas FAA Airport Mox 75 95 87 89 92 81 7669 Salinas FAA Airport Mox 75 95 87 40.6 8.3 32 7669 Salinas FAA Airport Mox 75 95 87 87 89 92 81 7669 Salinas FAA Airport Mox 75 95 87 43.9 42.4 Avg Mac FA 46 47 43 39 42.4 </th <th></th> <th></th> <th></th> <th>48</th> <th>9†</th> <th>43</th> <th>38</th> <th>27</th> <th>21</th> <th>20</th> <th>33</th> <th>27</th> <th>29</th> <th>36</th> <th>41</th>				48	9†	43	38	27	21	20	33	27	29	36	41
Avg Min 51.2 52.3 50.9 44.8 37.9 35.6 7668 Salinas 2 E Mox 74 95 88 89 92 81 7668 Salinas 2 E Min 49 46 46 41 32 29 Min 49 46 46 41 32 29 Avg Max 66.5 75.1 70.0 74.8 71.1 65.5 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 40.8 Avg Max 7.5 95 87 89 92 81 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Max 77.5 74.6 69.2 73.6 68.1 79.4 Avg Max 10.5 10.7 10.2 97 88 79 A			Mox	82	83.5	-	70.8	4.49	54.2	52.0	0.49	60.3	60°5	68.6	76.6
Avg 66.7 67.9 64.6 57.8 51.2 44.9 7668 Salinas 2 E Max 74 95 88 92 81 8 Salinas 2 E Min 49 46 46 41 32 29 8 Avg Max 66.5 75.1 70.0 74.8 71.1 65.5 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 714 San Antonio Mission Max 105 102 73 62.6 56.1 52.8 714 San Antonio Mission Max 105 102 97 88 79 Avg Mox 70 38 38 32 20 19 714 80 38 32 20 19			Š	51.2	52,3		44.8	37.9	35.6	29.6	44.1	37,0	9.04	47.7	49.8
7668 Salinas 2 E Mox 74 95 88 89 92 81 7669 Salinas FAA Airport Avg Max 66.5 75.1 70.0 74.8 71.1 65.5 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 88.3 63.2 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Max 10.5 10.7 10.2 75.1 56.1 52.8 714 San Antonio Mission Max 105 102 97 88 79 Min 40 38 38 32 20 19 Avg Max 105 97.5 93.2 80.2 73.0				66.7	6.79			51.2	6°47	8.04	54.1	48.7	50.6	58.2	63,2
Min 49 46 46 41 32 29 Avg Max 66.5 75.1 70.0 74.8 71.1 65.5 Avg Min 51.6 52.5 51.1 49.4 42.3 40.8 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg Min 50.7 63.7 60.6 62.0 56.1 52.8 Avg Min 40 38 38 32 20 19 Avg Mox 40 38 38.2 2		2 E		74	95	88	89	92	81	74	81	75	72	9/	75
Avg Max 66.5 75.1 70.0 74.8 71.1 65.5 7669 Salinas FAA Airport Avg 59.1 63.8 60.6 62.1 56.7 53.2 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19				49	95		41	32	29	22	36	29	36	39	43
Avg S1.6 52.5 51.1 49.4 42.3 40.8 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg 60.6 62.0 56.1 52.8 7114 San Antonio Mission Max 105 107 102 97 88 79 Avg Mox 98.7 93.2 80.2 73.0 67.0			Š	66.5	75,1		74.8	71.1	65,5	8.09	67.8	63.2	63.4	9.99	68.5
Avg 59.1 63.8 60.6 62.1 56.7 53.2 7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg 59.7 63.7 60.6 62.0 56.1 52.8 714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Mox 98.7 93.2 80.2 73.0 67.0			Σ	51.6	52,5	ĺ	-	42.3	8°04	35.1	7.97	39.9	0°44	49.7	51,2
7669 Salinas FAA Airport Max 75 95 87 89 92 81 Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg Min 59.7 63.7 60.6 62.0 56.1 52.8 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Mox 98.7 93.2 80.2 73.0 67.0				59,1		- 1	62,1	56,7		48.0	57,1	51,6	53,7	58,2	59,9
Min 47 46 47 43 33 32 Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg 59.7 63.7 60.6 62.0 56.1 52.8 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Max 98.7 97.5 93.2 80.2 73.0 67.0	n2 7669	Salinas FAA Airport		75	95		89	92	81	74	92	92	73	79	76
Avg Max 67.5 74.6 69.2 73.6 68.3 63.2 Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 Avg 59.7 63.7 60.6 62.0 56.1 52.8 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Max 98.7 97.5 93.2 80.2 73.0 67.0				47	94		43	33	32	25	38	32	37	07	44
Avg Min 51.9 52.7 51.9 50.4 43.9 42.4 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Mox 98.7 97.5 93.2 80.2 73.0 67.0			Max	67.5	74.6		73.6	68.3	63.2	60.2	67.0	63.6	64.2	0.89	70.1
Avg 59.7 63.7 60.6 62.0 56.1 52.8 7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Max 98.7 97.5 93.2 80.2 73.0 67.0			ž	51.9	52.7			43.9	45.4	37.3	48,1	40.8	45,2	51,2	52,4
7714 San Antonio Mission Max 105 107 102 97 88 79 Min 40 38 38 32 20 19 Avg Max 98.7 97.5 93.2 80.2 73.0 67.0				59.7	63.7	- 1	-	56.1	52.8	48.8	57.6	52.2	54.7	59.6	61,3
40 38 32 20 19 Max 98.7 97.5 93.2 80.2 73.0 67.0	D3 7714	San Antonio Mission		105	107	102	97	88	79	70	79	77	77	92	102
Max 98.7 97.5 93.2 80.2 73.0 67.0				04	38		32	20	19	12	30	27	28	30	36
			Ψox	98.7	97.5		80.2	73.0	67.0	62.8	70°4	68.0	65.7	76.9	87.5
Avg Min 46.0 46.1 42.4 39.5 33.1 31.2 25			Avg Min	\rightarrow	46.1	- 1	_	33,1	31,2	25.0	39,3	32,5	36.7	0.44	43,4
Avg 72,4 71,8 67.8 59.0 53.1 49.1 43				72,4			59.0	53.1	49.1	43.9	54.9	50,3	51,2	60,5	65,5

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	N N
E8 7767	San Francisco Richmond SunsetMox	Μοχ	70	73	69	74	83	99	89	72	79	72	77	89
		₹in	47	50	50	45	35	32	30	42	37	39	43	45
		Avg Max	60.2	65.3	61.2	64.4	63,3	59,3	57.7	61.6	58,4	61,3	61,5	61.7
		Avg Min	50.9	54.4	53.1	50.3	48.4	45.3	39.9	6.64	42.7	47.6	50.8	50.9
		Avg	55.6	59.9	57.2	57.4	55.9	52.3	48.8	55.8	50.6	54.5	56.2	56.3
E7 7769	San Francisco WB AP	Max	78	92	98	80	62	64	99	70	89	29	78	92
		™	64	51	48	47	37	31	29	41	38	39	43	9†
		Avg Mox	69.1	73.2	7.69	67.2	63.8	55.7	53,5	62.8	59.7	59.4	63.6	67.5
		Avg Min	51.2	53.9	52.5	52.0	47.6	43.5	37.6	48.9	44.0	46.5	50.0	49.7
		Avg	60,2	63.6	61.0	59°6	55.7	9.65	45.6	55.9	51.9	53.0	56.8	58.6
E7 7772	San Francisco F.O.B.	Max	67	98	77	79	81	65	99	72	89	67	77	71
		Min	67.	50	50	52	9†	41	41	47	41	42	64	67
		Avg Max	60,5	62°6	63.4	66.7	6.49	57.7	55,4	63.9	59.8	59.2	62.1	63.7
		Avg Min	51,4	54.0	53.2	54.8	52.7	48.0	45.4	52.8	48.4	49.5	52,3	52,4
		Avg	56.0	60.0	58.3	60.8	58.8	52,9	50.4	58.4	54.1	54.5	57.2	58,1
E8 7807	San Gregorio 3 SE	Mox	72	90	85	82	86	75	70	75	65	29	73	75
		Z.	38	41	41	38	28	27	23	35	30	33	38	38
		Avg Max	62.9	71.2	9.99	68.3	65.4	61.1	57.9	9.49	59.8	59.4	61.6	64.6
		Avg Min	46.3	49.0	48.1	45.7	41.0	39.8	34.0	46.3	38.2	42.7	48.2	47.4
		Avg	56,1	60,1	57.4	57.0	53.2	50,5	46.0	55.5	49.0	51,1	54.9	56.0
E6 7821	San Jose	Max	88	95	92	87	84	71	89	92	74	72	84	89
		Z.	51	52	50	47	36	31	27	42	38	38	44	65
		Avg Max	79.0	81.7	77°6	71.6	67.2	58.8	57.1	67.3	64.2	63.4	9°02	77.6
		Avg Min	54.2	56.7	54.4	53.1	48.4	43.8	38.7	50°6	44.5	47.3	52.8	53,4
		Avg	9.99	69.2	66.0 62.4	62,4	57,8	51,3	47,9	59.0	54,4	55.4	61,7	65,5

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	SUN
E6 7824	San Jose Decid. F.F.S.	Mox	90	86	87	91	85	69	89	7.8	75	74	91	91
		Σ	64	50	48	44	33	30	27	07	36	37	45	95
		Avg Max	82.0	83.7	78.5	72.7	68,3	58.6	57.1	68.5	65.2	65.7	71.2	79.2
		Avg Min	53.2	54.9	52.6	51.3	43.6	42.1	36.3	49.4	42.5	9.94	52.4	52.2
		Avg	9°29	69.3	65.6	62.0	56.0	50,4	46.7	59.0	53.8	56.2	61,8	65.7
E7 7864	San Matec	Max	85	95	95	85	83	29	29	75	71	71	85	83
		Min	50	65	50	48	39	30	31	42	39	41	94	65
		Avg Max 74.8	_	78,3	74.1	70.4	8,99	59.5	56.6	4.99	63.3	62.6	0.89	72.1
		Avg Min	53.1	55.2	53.7	53.5	48.7	9*45	39.2	50.3	45.5	47.1	52,2	52.3
		Avg	64.0	66.8	63.9	62.0	57.8	52,1	47.9	58.4	54.4	54.9	60.1	62.2
E2 7880	San Rafael	Max	88	NR	89	89	80	99	67	74	73	73	89	90
		Min	45	NR	48	9†	39	31	29	43	36	38	42	94
		Avg Max 79.4	79.4	NR	77.3	74.0	9.19	59.4	56.4	67.1	63.6	62,7	71.0	75.6
		Avg Min	50.6	NR	52.0	52.5	48.1	42.9	37.8	6.65	43.3	46.2	50.1	51.2
		Avg	65.0	NR	64.7	63.3	57.9	51,2	47.1	58°2	53.5	54.5	9.09	63.4
E6 7912	Santa Clara University	Max	88	95	91	88	83	07	67	92	73	73	89	90
		Min	65	52	48	42	33	30	25	40	36	35	42	97
		Avg Max	80.5	82.3	77.77	72.3	67.3	57,9	57.0	68,1	64.2	64.7	72.3	78.8
		Avg Min	52.8	54.9	52,1	50.7	45.1	40.9	35.1	48.0	41.7	9.44	50.5	51,8
		Avg	66.7	68.6	6.49	61,5	56.2	49.4	46.1	58.1	53.0	54.7	61.4	65.3
DO 7916	Santa Cruz	Max	9/	103	89	84	88	77	9/	75	73	73	78	86
		M.	44	45	43	38	33	26	22	35	32	31	07	41
		Avg Max	9.69	79.1	72.7	73.2	67.2	60.7	59.3	66.2	63.7	62.8	67.6	72.5
		Avg Min	Min 49.9	49.8	47.2	45.5	41.7	40.0	34.6	45.7	39.5	42.2	47.9	47.9
		Avg	59.8	64.5	0.09	59.4	54.5	50.4	47.0	56.0	51.6	52.5	57.8	60.2

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	So N	DEC	JAN	FEB	MAR	APR	MAY	NOS
F9 7965	Santa Rosa	χοχ	94	66	66	92	83	68	67	7.5	75	74	89	91
	1	Σ	43	42	43	39	30	23	21	36	29	31	36	77
		Avg Max	Max 81.2	84.8	81.4	72.9	68.5	57.0	55.4	66.5	64.5	63.5	70.5	78,5
		Avg Min	48,1	50.5	47.8	46.9	39.8	37.3	30.6	44.5	36.5	39°5	47.3	48.3
		Avg	64.7	67.7	9.49	59.9	54.2	47.2	43.0	55.5	50.5	51.5	58.9	63.4
F9 7964	Santa Rosa Sewage Plant	Max	86	95	91	85	9/	61	09	89	63	71	80	83
		Min	42	39	40	36	29	21	20	33	28	31	34	43
		Avg Mox	Max 73.4	78.0	73.3	67.2	62.3	53,3	50.4	8°09	55.8	55.6	61.5	72.3
		Avg Min	9.74	9.65	46,2	47.0	40.5	36.5	31.5	44.0	36.3	39°4	44.7	47.6
		Avq	60.5	63.8	59.8	57.1	51,4	6°44	41.0	52.4	0°94	47.5	53,1	60.0
F8 8162	Shelter Cove	Max	98	74	7.1	70	63	62	89	99	62	09	65	74
		Σi	36	47	47	45	42	41	39	45	38	39	43	44
		Avg Max	65.1	7*79	61,5	60.5	58.2	56.7	55.6	59.0	55.8	55.6	59.7	66.3
		Avg Min	49.4	52.6	50.0	50.5	48.3	46.7	43.5	6.65	45.2	47.2	50°2	51.6
		Avg	57.3	58,5	55,8	55.5	53.3	51.7	9.64	54.5	50.5	51.4	55.0	59.0
D2 8446-01	Spreckels Sugar Company	Mox	69	96	78	98	06	80	69	7.5	7.5	7.1	92	9/
		™ in	97	45	47	40	32	28	22	36	30	38	04	42
		Avg Max 65.	65.7	73,2	68.7	72.6	9.99	64.3	60.7	66,1	63.4	62.8	66.5	67.7
		Avg Min	50°9	52.3	51.0	48.5	42.7	41.3	33.5	46.1	39.5	44.2	49.5	51.7
		Avg	58.3	62.8	59.8	9.09	54.6	52.8	47.1	56,1	51.4	53.5	58.0	59.7
D2 8338-01	Soledad C.T.F.	Max	80	95	81	89	89	80	70	9/	74	73	79	82
		Min	42	43	42	39	30	27	20	36	29	32	38	07
1000		Avg Max 72	72,7	77.5	71.9	74.7	69°5	64.5	59.1	6,99	63.6	63.6	68.1	71.8
		Avg Min	50,3	51.0	0°65	45.5	41.8	39,1	33,2	48.2	38,3	42.0	47.5	49.2
		Avg	61.5	64.2	60,4 60,1 55,6	60.1	55,6	51,8	46.2	57.6	50.0	52.8	57.8	60.5

NUMBER	STATION NAME		JUL	AUG	SEP	OCT	NON	DEC	JAN	FEB	MAR	APR	MAY	NON.
E2 8351	Sonoma	Max	100	102	100	93	80	99	62	76	72	75	89	98
		M in	43	42	40	38	30	22	20	35	29	30	35	42
		Avg Mox	88.5	89.2	84.0	73.5	67.1	56.3	54.4	67.6	64.2	64.3	73.2	82.3
		Avg Min	47.6	49.5	47.1	48.4	41.1	38.9	30.9	45.3	37.8	9.05	47.2	48.3
		Avg	68.1	69.4	65.6	61.0	54.1	47.6	42.7	56.5	51.0	52.5	60.2	65.3
D3 8849	Templeton	Max	103	105	100	95	87	77	72	79	9/	78	92	98
		Z i	45	43	40	39	22	19	17	37	29	31	38	42
		Avg Mox	89.3	92.5	9,98	77.2	69.5	63.9	60.0	68.3	63.5	63.6	71.9	79.9
		Avg Min	49.0	50.4	47.3	45.8	37.8	36.4	31.0	46.7	37.5	40.8	48.8	
		Avg	69.2	71.4	67.0	61.5	53.7	50.2	45.5	57.5	50.5	52,2	60.4	40
F9 9122	Ukiah	Mox	104	103	101	93	85	70	89	77	73	78	95	104
		Min	65	97	9†	38	28	21	19	33	29	32	38	42
		Avg Max	95.1	90.6	89.5	74.6	65.8	60.9	59.0	9.99	61.7	62.0	75.9	84.0
		Avg Min	53.7	54.2	50.5	47.0	41.3	37.3	31.1	45.6	37.0	39.7	48.0	51,0
		Avg	74.4	72.4	70.0	8.09	53.6	49.1	45.1	56.1	49.4	50.9	62.0	
E4 9185	Upper San Leandro Filters	×	80	92	87	88	79	69	63	74	72	69	85	84
		™	47	52	67	45	34	32	31	41	35	35	42	47
		Avg Max	71.1	74.4	71.1	4.69	65.2	58.5	54.7	64.7	61.7	60.4	66.0	70.3
		Avg Min	50.1	53.7	52.2	50.7	46.3	41.9	37.9	48.9	41.9	43.6	49.5	50.4
		Avg	9.09	64.1	61.7	60.1	55.8	50.2	46.3	56.8	51.8	52.0	57.8	60.4
E3 9305	Veterans Home	Max	100	102	96	90	9/	89	09	80	72	9/	92	98
		Z.	48	05	444	07	36	26	26	40	32	32	40	46
		Avg Max	87.8	88.1	81.5	72.4	66.1	58.1	54.5	64.7	61.8	65.8	76.8	
		Avg Min	51.5	52.9	51.6	51.4	6.44	40.7	34.8	48.2	41.6	42.7	50.7	51.6
		Avg	69.6	70.5	9.99	61.9	55.5	49.4	44.6	- 1	56.4 51.7 54.2	54.2	63.8	63 8 68 6

34 9423 Wal	Walnut Greek 2 ESE											MAN ALM		
9473		Ψo×	100	102	96	94	81	64	65	9/	9/	92	91	100
9473		M.	97	87	77	40	27	21	20	33	30	31	38	41
9473		Avg Max	88.2	87.2	83.2	72.6	67.4	55.1	53.9		66.0 64.4	64.1	71.9	80.6
9473		Avg Min	50.9	52.7	50.4	46.5	39.5	36.9	29.1	44.6	37.8	41.6	48.4	48.8
9473		Avg	9.69	70.0	8.99	59.6	53.5	46.0	41.5	55.3	51.1	52.9	60.3	64.7
	Watsonville WW	Max	87	91	78	84	90	9/	70	9/	75	72	75	79
		Z.	97	45	45	42	33	27	26	37	33	34	38	41
		Avg Max	67.7	72.6	9.99	71.5	67.8	63.6	58.6		65.8 62.3	62.0	65.2	67.6
		Avg Min	50.3	51.5	50.2	48.3	42.7	40.3	34.7	47.1	40.4	43.2	48.1	48.9
		Avg	59.0	62.1	58.4	59.9	55.3	52.0	46.7	56.5	51.4	52.6	56.7	58.3
9 9770 Woo	Woodacre	χοχ	96	100	66	92	9/	99	65	73	71	72	88	95
		Αio	41	43	39	37	26	21	18	31	28	31	36	40
		Avg Max	85.0	85.6	81.4	70.1	65.1	56.6	54.0	64.3	9.09	57.6	67.6	75.9
		Avg Min	48.1	49.4	48.0	9.95	39.7	36.4	29.8	44.0	38.5	41.0	78.4	46.3
		Avg	9.99	67.5	64.7	58.4	52.4	46.5	41.9	54.2	49.6	49.3	58.0	61.1
3 9675 41 Wile	Wild Horse Valley	Max	92	96	63	98	.92	70	70	74	70	92	98	92
		Æ.	45	48	48	47	40	28	30	0+	32	34	41	48
		Avg Max	82.1	82.8	77.8	71.0	65.5	60,3	57.0	67.2	62.4	64.5	71.6	78.2
		Avg Min	55.5	56.5	53.4	50.5	47.5	43.5	37.5		49.0 42.9	44.5	48.3	53.1
		Avg	68.8	9.69	65.6	8.09	56.5	51.9	47.2	58.1	52.6	54.5	60.0	65,6
		Max												
		Z.												
		Avg Max												
		Avg Min												
		Ava												

TABLE A-4 MONTHLY EVAPORATION

NUMBER	STATION NAME		JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
E6 0053	Alamitos Perc. Pond	Evap	8.97	9.09	6,15	3,35	2.14	. 99	1,44	2.03	3.39	4,11	6.59	9.21
		Wind Movement	1486	1599	1329	1571	979	959	1470	1290	1571	1730	1663	1910
		Water Temp Avg Max	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg Min	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Precip.	υ	0	т	7.37	.13	2.11	4.45	2.91	3.27	3.26	.42	т
		Air Temp Max	90	96	93	88	82	73	65	77	75	73	89	93
		Air Temp Min	48	47	37	37	31	28	22	37	34	35	39	44
		Air Temp Avg Max	80.7	82.3	78.4	71.7	66.3	59,4	55.7	67.0	63,5	63.4	70.5	80.0
		Air Temp Avg Min	51.6	53.6	49.1	47.1	43.3	39.0	34.0	45.7	40.3	44.3	49.4	50.4
		Air Temp Avg	66.2	68.0	63.8	59.4	54.8	49.2	44.9	56.0	51.9	53.9	60.0	65.2
				,										
E7 1206	Burlingame	Evap	7.84	7.53	5.09	3.09	1.59	.89	1.32	1.46	2.98	3.70	5.58	7,29
		Movement	2908	1908	1142	1138	490	309	703	560	990	1200	1310	1390
		Water Temp Avg Max Water Temp	79.7	84.1	80.5	73.0	67.8	60,0	55,1	69,1	70.4	74.5	81.4	84.8
		Avg Min	53.3	55.5	55.7	53.5	47.9	45.7	40.5	51.1	45.4	48.5	53.5	55.3
		Precip Air Temp	0	.04	0	6,68	. 37	2,81	3,63	3,15	4,17	3.66	.45	0
-		Air Temp Max. Air Temp	85	86	86	78	76	65	64	69	69	71	84	79
		Min.	47	47	44	41	34	29	25	36	34	35	41	42
		Air Temp Avg Mox. Air Temp	72.6	76,3	72.3	69.2	65,3	56.6	55.1	64.5	62,7	63,3	69,2	72.6
		Avg Min	52.6	54.0	50.5	50.1	45.7	42.2	35.4	47.7	41.2	43.3	49.7	46.2
		Avg	62.6	65.2	61.4	59.7	55,5	49.4	45.3	56.1	52.0	53.5	59.5	60.4
		Even	12.75	9.95	7.77		1.80	1.10	1.20	2.11	3.11		5.97	9.28
F9 2105	Coyote Dam (Lake Mendocino)	Wind Movement	1654	1583	7.67	781	347	164	310	534	1146	3.63	1348	1692
		Water Temp	86.7	83.5	79.6	67.8	60.1	53.9	49.6	59.9	60.3	61.1	75.2	83.2
		Avg Mox Water Temp	54.0	54.6	50.8	48.5	41.0	41.0	32.1	47.5	37.3	41.5	48.2	51.6
		Avg Min Precip.	0	.16	.51	8.60	2,72	5,15	4.20	5.04	5.87	7.37	.80	.18
	İ	Air Temp	104	103	102	94	87	74	68	75	71	74	90	102
		Max Air Temp Mim.	45	43	43	38	32	20	15	30	25	30	34	40
		Air Temp Avg. Max	95.0	90.7	89.9	76.7	69.4	62.9	58.0	64,6	61.3	59.4	71.9	83,8
ļ		Air Temp Avg Min	52.2	52.5	48.2	44.1	39.5	37.3	27.8	43.2	33.9	37.5	43.7	48.4
		Air Temp Avg	73.6	71.6	69.1	60.4	54.5	50.1	42.9	53.9	47.6	48.5	57.8	66,1
							•						·	
E6 2109	Coyote Reservoir	Evop	7.34	8.09	5.09	3.11	1.75	.84	. 78	1.44	2.61	2.77	4.23	6.76
		Wind Movement	471	729	505	412	279	101	257	84	172	128	169	383
		Water Temp Avg Max	NR	NR	NR	NR	nr	NR	NR	NR	NR	NR	NR	NR
		Water Temp. Avg. Min	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Precip.	0	0	T	2.42	.43	2,60	6.22	6.39	3,79	5,48	.45	.01
		Air Temp. Mox.	96	100	98	95	85	72	66	74	70	72	90	94
		Air Temp Min.	45	45	41	37	28	23	18	35	30	32	35	40
		Air Temp.	86.1	87.8	62.1	72.3	66.0	60.0	56.3	65,2	60,8	61.6	69.3	77.7
		Air Temp. Avg. Min. Air Temp.	48.3	50.7	48.1	45.6	40.2	35.9	29.5	44.6	37.1	41.0	46.5	47.6
		Avg.	67.2	69.2	65.1	59.0	53.1	48.0	42.9	54.9	49.0	51,3	57.9	62.6
						Γ			T					
E3 2580	Duttons Landing	Evop	8.71	8.51	5.76	3.71	1.95	1.00	1.48	1.77	3,38	3.33	5,52	8.69
		Movement	3810	3916	3037	2846	1470	1151	1521	1379	1910	2071	2984	3834
		Water Temp Avg Max Water Temp	82.9	84.9	77.2	70.9	63.6	55.9	34.5	65.4	65.7	68.4	77.1	79.9
		Avg. Min. Precip.	52.2	54.8	53.0	51.4	43.8			48.1	42.0	43.5	-	
		Air Temp	0	.07 94	.06 92	7.95	.78	2.61	4.12 61	3.36 72	70	70	.19 88	T 84
		Mox. Air Temp Min.	83 48	51	92 47	67 43	36	26	24	40	33	34	39	47
		Air Temp.		78,3	74.3	71.9	67.5	59.9	53.8	65.0	63.3	62.4	69.4	74.2
1	1	Avg Max. Air Temp. Avg Min.	74.5 52.5	78.3 55.6	51.7	50.8	42.6	42.1	33.8	47.2	41.1	42.2	49.0	51.0
		Avg Min. Air Temp. Avg.	63.5	67,0	63.0	61.4	55.2	51.0	43.5	56.1	52.2	52.3	59.2	62.6
		I A V Q.	83,5	07.0	05.0	01.4	,,,,	21.0	13.5	30,.	22.2	72.5	<i></i>	ر پیدی

TABLE A-4

NUMBER	STATION NAME		JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN
01 4022-10	Bollieter Coeta	Evop	9.04	8.14	5.12	3.57	3.15	2.26	1.73	2.47	3.34	3.01	5.14	6,58
		Wind Movement	HR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	MR
		Water Temp Avg. Max	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Water Temp Avg Min	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
		Precep	.02	T	T	1.26	.26	2.16	4.42	3.23	2.57	3.82	.29	.13
		Air Temp.	NR	NB	NR	NR	HTR	NR	NR	NR	NR	NR	NR	NR
	†	Air Temp. Min	NR	NR	HR	NR	MR	NR	NR	NR	NR	NR	NR	NR
	1	Air Yemp. Avg Mox	HR	NR	NTR	NTR	NR	NR	NR	MR	₩R	NR	NR	NR
		Air Temp Avg. Min	NR	MR	NR	NR	NR	NR	NR	NR	NR	NR	NR	HTR
		Air Temp Avg	NR	NR	NR	NR	NR	NR	NR	HR	NR	HR	HTR	NR
E6 4922	Lexington Reservoir	Evap	8.81	8.32	6.10	3.01	1.76	.87	1.15	1.62	2.58	3.23	4.79	7.82
		Wind Movement	878	885	836	1252	800	779	943	NR	825	1127	697	924
		Woter Temp. Avg Max	NR	NR	NR	NTR	NR	NR	NR	NR	NR	NR	HR	NR
		Water Temp Avg Min	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	MR
		Precip	0	.02	.01	14.69	.48	4.19	9.71	10.02	7.00	8.00	.80	C
		Air Temp Mox	95	98	91	91	80	65	65	73	72	78	88	89
	1	Air Temp Min	43	45	42	37	32	26	22	35	31	32	38	4
		Air Temp. Avg. Moz. Air Temp.	85.1	85.9	81.5	70.5	64.9	58.1	54.7	64.7	61.2	61.7	69.4	78.5
		Air Temp. Avg Min	48.5	50.0	47.9	45.4	43.5	39.6	33.8	45.9	38.5	41.4	47.8	48.0
		Air Temp Avg.	66.8	68,0	64.7	60.0	54.2	48.6	44.2	55.3	49.8	51.6	58.6	63.2
E5 4996	Livermore Sewage Plant	Evap	12.72	9.77	7.22	4.03	2.16	1,11	1.24	2.25	2.95	3.21	4.72	9,9
		Wind Movement	3230	3160	2720	2680	1340	1300	1560	1340	1480	1230	1030	266
		Water Temp Avg Max	NR	NR	NR	NR	HR	NR	HR	NR	NR	NR	NR	NR
		Water Temp Avg. Min.	NR	NR	NR	NR	NR	NR	NR	MR	NR	NR	NR	NR
		Precip.	0	0	0	5.33	.30	1.93	2.03	5.60	3,10	3.35	.47	.0
		Air Temp Maz	99	100	97	98	78	67	65	74	72	72	88	9:
		Air Temp Min.	44	45	41	38	30	20	19	33	29	24	35	4:
			Air Temp Avg. Mox	85.5	85.6	82.2	72.7	67.0	58.3	54.4	66.6	62.8	62.3	71.0
		Air Temp Avg Min.	49.4	50.7	47.9	46.5	38.8	35.8	28.3	44.1	37.1	39,1	45.8	46.9
		Air Temp Avg	67.4	68.2	65.0	59.6	52.9	47.0	41.4	55.4	50.0	50.7	58.4	63.4
		Evop	8.38	8.30	6,12	4.34	1.79	8.50	1.24	1.68	3,49	4.11	5.59	8.6
E5 6144	Hewark	1		1562	1709	1671	748	507	865	780	1581	1651	1682	223
		Wind Movement Water Temp	1934		1709 NR	NR	NR.	NR.	NR.	NR.	NR.	WR.	NR.	NE
		Water Temp Avg. Max. Water Temp	NR NR	NR NR	HR.	RR RR	NR.	NR.	NR NR	NR NR	HTR.	NR.	HIR.	HR
		Avg. Min. Precip.	NR O	NK O	0	4.53	.34	2.20	1.51	2.88	3.09	4.19	.57	.08
			82	95	89	86	83	69	63	74	69	69	84	8:
		Air Temp. Moz.		+	+	44	33	28	24	40	37	37	43	4
		Air Temp Min. Air Temp.	74.5	77.9	73.6	70.9	66.2	56.7	53.6	64.4	62.0	61.4	67.3	73.
		Avg Mox	52.3	54.8	53.8	52.6	46.1	41.8	35.1	49.0	42.6	46.5	51.6	52.
		Air Temp. Avg. Min Air Temp	63,4	66.4	63.7	61.8	56.2	49.3	44.4	56.7	52.3	54.0	59.5	62.
		Avg	63,4	1 00.4	103.7	101.0	30.2	47.3	1	130.7	1,72.5	12.0	127.5	1
D2 7845-10	Sen Luces Guidici	Evop	9.01	8.32	5.82	4,56	3.48	2.67	3.18	3.67	3.78	4.33	6.78	7.2
		Wind Movement	HTR	HR	HR	NTR	HR	NR	HR	KR	NR	NR	NR	NR
		Water Temp	MR	NR	MR	NR	NCR	MR	HR	MR	NR	KR	NR	NR
		Water Temp Avg. Min.	MR	NR	HER	NR	KR	MR	MR	HR	WR	ETR	HIR	HR
		Precip.	0	0	.03	.21	T	2.24	3.34	3.41	2.86	1.75	. 32	.0
		Air Temp Max	KR	NR	NR	HR	MR	HR	BR	NR	NR	NR	NR	KR
		Air Temp Min.	ЖR	MR	HR	MR	HR	HR	HR	HR	NR	NR	NR	HR
		Air Temp Avg Mox	NR.	HCR	MR	NR	HR	MR.	HR	HR	NR	NR	KR	NR
	1	Air Temp. Avg. Min.	HR	BR	MR	KR	MR	MR	WR	NR	BR	HR	HTR	NR

MONTHLY EVAPORATION

NUMBER	STATION NAME		JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	
D2 7959-10	Santa Rita Muther	Evop	4.13	5.05	3,21	3.39	2,12	1.82	2.02	2.68	3.04	3,82	4.52	5.89	
D2 /939-10	Santa Arta Muther	Wind	NR	NR.	NR.	NR	NR	NR	NR	NR	NR	3,82 NR	4.52 NR	NR	
		Movement Water Temp Avg. Max	NR.	NR NR	HR	HR.	-			-	-			1	
		Water Temp. Avg. Min.	NR NR	NR NR	HR	NR.	NR	MK	NR	KK	NR	NR	NR	NR	
		Precip		_			NR	NR	NR	NR	NR	NR	NR	HR	
		Air Temp.	т	.01	.07	.97	.47	2.73	2.71	3.96	3,51	3.92	.16	T	
		Air Temp.	MR	NR	HR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
		Min	NR	NR	NR	NR	HR	NR	NR	NR	MR	NR	NR	NR	
		Air Temp. Avg Max	NR	NR	NR	HR	NR	HR	NR	FIR	NR	ĦR	NR	NR	
		Air Temp Avg Min	NR	NR	NR	NR	NR	NR	MR	NR	NR	HR	NR	NR	
		Air Temp. Avg	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR .	NR	NR	
F9 7964	Contra Programme Mark	Evop	8.16	7.94	6.03	3.41		1			1	T		1	
19 /964	Santa Rose Sewage Plent	Wind Movement	1	-	-		1.93	1,88	1.18	1.57	3.16	3,32	4,53	6,10	
		Water Temp. Avg. Max	2836	2898	2076	2319	1014	723	1533	1655	2488	2890	2639	2749	
		Avg. Max Water Temp. Avg. Min	NR	HR	HR	NR	NR	NR	NR	FIR	NR	HR	NR	NR	
		Avg Min Precip	NR	NR	HR	NR	NR	NR	NR	NR	NR	NR	MR	NR	
		Air Temp	0	.09	.24	7.81	.83	4.40	4.87	2.08	4.94	5.42	.56	-0-	
		Mox.	86	95	91	85	76	61	60	6B	63	71	80	83	
		Air Temp. Min. Air Temp. Avg Mox.	42	39	40	36	29	21	20	33	28	31	34	43	
		Avg Mox.	73.4	78.0	73.3	67.2	62.3	53,3	50,4	60.8	55.R	55.6	61.5	72.3	
		Avg. Min. Air Temp	47.6	49.6	46.2	47.0	40,5	36.5	31.5	44.0	36.3	39.4	44.7	47.6	
		Avg	60.5	63.8	59.8	57.1	51.4	44,9	41,0	52.4	46.0	47.5	53.1	60.0	
F9 7965-03		Evop	7.08	7.03				.78			T	1		Ι	
F9 7965-03	Sente Rosa Pedranzini	Wind	_		4.88	2.73	1.77		1.06	1,65	2,77	2,97	4.86	5.50	
		Movement Water Temp	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
		Water Temp. Avg. Max. Water Temp.	Nk	NR	NR	NR	NR	NR							
		Avg. Min.	NR .	NR	NR	NR	NR	HR	NR	NR	NR	NR	MR	NR	
		Precip.	0	.02	.15	8.19	.63	3,45	5.11	2.89	5.03	4.95	.46	T	
		Air Temp	NR	NR	MR	NR	NR	NR	NR	NR	NR	NR	HR	NR	
			Air Temp Min. Air Temp	NR	NR	NR	NR	NR	NR	HR	NR	NR	HR	NR	NR
		Avg. Mos.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
		Air Temp Avg Min. Air Temp	NR	NR	NR	NR	nr	NR	NR	NR	NR	NR	NR	NR	
		Avg	NR	NR	NR	NR	NR	NR	NI	NR	NR	NR	NR	NR	
		E., e.			T		Γ	1	T		T	I	I	T	
D2 8338-01	Soledad C.T.F.	Evap	7.95	7.79	5.56	5.16	3.24	2.67	2.65	2.85	4,17	4.79	6.40	7.75	
		Wind Movement Water Temp.	NR	NR	NR	NR	NR	NR .	NR .	NR	NR	NR	4218	4578	
		Water Temp. Avg Max Water Temp.	NR	NR	FIR	52,9	64.7	58.1	54.0	66,1	65,2	67.8	72.8	77.5	
	ļ	Avg Min.	NR	NR	NR	NR	43.7	40.7	35.7	46.5	40.0	43.4	47.1	47.4	
		Precip.	0	0	0	.25	.04	1,78	2,46	2,12	2,65	1.73	.14	.23	
		Air Temp. Mox.	80	95	81	89	89	80	70	76	74	73	79	82	
	1	Air Temp. Min Air Temp.	42	43	42	39	30	27	20	36	29	32	38	40	
		Avg. Mgx.	72.7	77.5	71.9	74.7	69.5	64.5	59.1	66.9	63.6	63.6	68.1	71.8	
		Air Temp. Avg. Min.	50.3	51.0	49.0	45.5	41.8	39.1	33.2	48.2	38.3	42.0	47.5	49.2	
		Air Temp. Avg	61.5	64.2	60,4	60,1	55.6	51.8	46.2	57.6	50,0	52.8	57.8	60,5	
=2 00/1		5		T		1			1.6					I	
E3 9R61	Yountville Gemble	Evop	8.33	7.75	5,53	3.35	2.72	.97	1,32	1.41	2.72	2,87	4.92	7.43	
		Wind Movement Water Temp	NR	NR	NR	NR	FIR	NR	NR	NR	NR	NR	NR	1682	
		Water Temp. Avg. Max Water Temp.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	MR	
	1	Avg Min	NR	NR	NR	NR	HR	NR	NR	NR	NR	HR	NR	NR	
		Precip.	0	02	.02	11.36	.63	3.96	8.92	2.62	5.66	4.64	. 52	т	
		Air Temp. Max.	NR	FR	NR	NR	NR	NR	NR	NR	69	73	84	91	
	1	Air Temp.	NR	NR	NR	HR	NR	NR	NR	NR	28	30	38	42	
	1								1	,	1	1	ı	1	
		Air Temp. Avg. Moz.	NR	NR	NR	NR	NR	NR	NR	FIR	60.9	61.2	69.5	78.0	
		Air Temp.	NR NR	NR NR	NR NR	NR HR	NR NR	NR NR	NR NR	NR NR	35.8	39.7	69.5 46.8	47.9	

APPENDIX B

SURFACE WATER FLOW

SURFACE WATER FLOW

This appendix presents surface water measurement data collected and assembled by the Department of Water Resources. It contains information collected in the Central Coastal Area during the 1963 water year covering the period from October 1, 1962 through September 30, 1963.

Maximum and Minimum Tides

There are usually two high and two low waters in a day. Tides follow the moon more closely than they do the sun, and the lunar or tidal day is about 50 minutes longer than the solar day. This causes the tide to occur later each day, and a tide which has occurred near the end of one calendar day will be followed by a corresponding tide that may skip the next day and occur in the early morning of the third day. Also, the two high and two low tides are usually unequal. They are commonly designated as higher high, lower high, higher low, and lower low tides.

Table B-1 on pages B-6 and B-7 lists maximum and minimum tides at the Sacramento River at Collinsville and Suisun Bay at Benicia Arsenal, respectively. These data are obtained from graphical charts plotted by continuous water stage recorders. The values are in feet above -13.05 feet USC&GS mean sea level datum of 1929 at Collinsville and above -10.00 feet at Benicia Arsenal. The values in most cases represent higher high water and lower low water. During a calendar day in which three instead of four tides occurred the high value represents lower high water in the case where higher high tide did not occur and the low value represents higher low water in the case where lower low tide did not occur. The maximum and minimum values at the bottom of each monthly column represent the extremes observed during that month.

At the bottom of each table the maximum gage height of record shown is measured from the same datum as the daily high and low values.

Daily Mean Discharge

Table B-2 on pages B-8 and B-9 presents daily mean discharges in Arroy de los Coches near Milpitas and in Butano Creek near Pescadero. Each of these stream gaging stations is equipped with a continuous water stage recorder. Each has a stage discharge relationship or rating developed. The rating gives the flow or discharge in cubic feet per second (cfs) for each water stage or gage height at a station.

The rating is developed by making streamflow measurements with a current meter at various water stages ranging from near minimum to near maximum. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand and gravel or where vegetative growth builds up in the channel changing the flow regime. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the discharge.

The mean, maximum, and minimum values at the bottom of each monthly column are representative of that month and year only. The acre-feet value for each month is a total of the daily values which are converted to acre-feet for the computation. The mean discharge under "Water Year Summary" is an average of the monthly means. The maximum and minimum discharges are absolute instantaneous extremes that occurred during the year. The total acre-feet is the sum of the monthly acre-feet values.

The streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. The results are affected by inherent inaccuracies in procedures and equipment. It is, therefore, necessary to establish limits of accuracy for the reported data. The following is a listing of significant figures used in reporting streamflow data:

- 1. Daily flows cubic feet per second
 - 0.0 9.9 Tenths
 - 10 99 2 significant figures
 - 100 up 3 significant figures
- 2. Means cubic feet per second
 - 0.0 99.9 Tenths
 - 100 999 3 significant figures
 - 1000 above 4 significant figures

 $\label{thm:water year totals are reported to a maximum of four significant figures.$

TABLE B-1

DAILY MAXIMUM AND MINIMUM TIDES SACRAMENTO RIVER AT COLLINSVILLE

STRFIGG MA	A3400 MA3Y
891110	1963

DA7E 1	ост. 14:00	NOV	DEC.	JAN.	FEe	MAR	APR	MAY	JUNE	JULY	406	SEPT	DATE
1	14-99								_				VM/E
		11:33	11:91	13:12	13:89	12:83	12:38	12:25	11:18 _m	11:23	13:23	2	1
2	19:29	13:61	17:22	11:21	13:33	12:17	11:17	13:28	13:35a	14:23	12:38	2	2
3	13:37	12:88	17:22	12:51	12:13	11:33	11:23	12:23	13:75	16.62 12.25	11:33	#	3
4	12:33	13:89	12:22	11:22	12:33	17:37	17:37	11:22	16:41 12:508	12:24	15:13	17,600	1
9	12:33	13:33	11:53	13:37	13:22	17:58	19:93	19:22	16.61 12.358	16.61	11:22	#	5
•	12:22	17:12	17:82	19:19	13:23	11:13	12:33	12:56	12:18a		11:33	-	
7	12:83	12:21	12:53	12:23	13:35	11:53	15:37	15:22	17.08 12.158	12	13:33	#	١,
•	11:83	12:06	12:39	12:82	13:23	12:33	13:32	15:52	17.20 11.85E	**	12:33	*	
,	10.20	11:23	16.74	11:11	17:23	10:20	15:02	11:33	17.10 11.90g		13:12	25	,
10	14:10	12:16	12.00	11:93	17:22	13:88	15:33	12:13	17.36 12.20g		12:22	#	10
-11	12:37	13:88	12:17	11:33	13:17	13:33	13:18	15:1%	16.90 12.05E	15	12:33	==	
12	17:13	13:17	13:87	17:22	12:32	13:83	13:39	16.24 11.95E	16.72 12.13E	=	12:18	=	12
13	17:22	12.00	19:52	13:83	13:33	13:38	15:15	16.21 12.20E	16,30 12,158	11:28	12:37	=	1 13
1.0	11:23	13:28	11:17	13:23	13:23	13:23	15:73	16.00 12.21E	12:38	11:22	11:13	=	14
15	17:00	16.40	13:18	13:33	18:33	15:37	13:00	15.80 12.23E	12:33	11:2	111:33	*	15
16	17:50	17:27	12:12	17:28	15:23	11:22	13:85	15.60E 12.25E	12:53	13:23	13:13		16
17	13:38	18:33	15:33	13:14	12:11	13:13	13:32	15:11 _m	12:37	13:53	13:18	=	17
18	13:32	13:33	13:52	13:33	12:15	13:27	15:85	12:3de	11:43	17:87	11:33	=	
19	13:16	13:49	12.50	13:82	12:35	ll:ste	13:27	12:38 _e	17:25	11:78	13:H	#	19
20	13:42	11:36	12.73	12:81	15:51	ll:He	13:78	13:82	17:23	11:81	18:31	=	20
21	13:33	15.60 11.95	12:51	11:18	12:87	11:93	15:35	12:3)	17:59	17:82	15:33		21
22	13:23	13:23	15:22	11:33	11:43	11:11	13:78	11:11	11:31	15:12		=	22
23	19:47	19:33	13:28	11:33	11:47	11:33	13:88	13:12	13:38	11:17	=		23
24	12:37	19:39	11:17	11:55	12:87	11:78	13:33	17.61 12.058	11: 1 1	11:17	=	=	24
25	19:31	11:82	11:33	15:33	12:18	17:#8	13:88	11:334	11:23	13:83		=	25
26	12:21	19:35	lt:33	11:32	19:93	13:13	=	17.22 12.35F	19:18	13:33		重	26
27	13:20	11:58	12:09	11:55	13:98	15:53	=	16.90 12.45E	11:13	12:39	=	11:21	27
20	12.10	11:73	11:75	15:18	11:11	12:39	#	11:12	11:15	11:11	=	13:35	28
20	12:15	11:22	13:22	13:22		13:23	**	11:13.	11:23	11:17	=	13:53	29
30	12:17	13:42	11:31	11:28		15:33	#	13:32	11:47	12:23	17.46E	11:32	30
34	13:83		13:22	17:38.		12:31		16.41 13.70s		11:72		L	- 3ı
MA K HARA	17:55	11:37	17:87	17:22	11:33	11:23°	17:28	17:51	17:13	17:34	17,462	7,60g	
-													

E - Estimated NR- No Record

In order to machine process the data in this table, it was necessar to avoid negative gage heights. Subtract 10.00 feet to obtain recorder gage height.

LOCATION	ı		MAXIMUM		PERIOD (F RECORD	DATUM OF GAGE			
LONGITUDE	1/4 SEC T 8 R		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO	REF
LONGITODE	M D B B M	C.FS	GAGE HT	DATE		ONLY	FROM TO		GAGE	DATUM
121°51'18"	SW27 3N 1E	9.2 4/6/58			June 29-Date	1929		0.00	USED	
							1929		-3.05	USCGS
	LONGITUDE	LONGITUDE M D B 8 M	LONGITUDE 1/4 SEC T 8 R M D B BM C.FS	LONGITUDE 1/4 SEC T 8 R OF RECORD M D B BM C.FS GAGE HT	LONGITUDE 1/4 SEC T & R OF RECORD M D B & C.F.S GAGE HT DATE	LONGITUDE 1/4 SEC T & R M D B & M C.F.S GAGE HT DATE OISCHARGE	LONGITUDE 1/4 SEC T & R OF RECORD OISCHARGE GAGE HEIGHT ONLY CFS GAGE HT DATE OISCHARGE ONLY	LONGITUDE 1/4 SEC T & R OF RECORD OISCHARGE GAGE HEIGHT PER ONLY FROM	LONGITUDE	LONGITUDE

Station located 0.4 mi. SW of Collinsville, 3.3 mi. NE of Pittsburg. Maximum gage height does not indicate maximum discharge.

TABLE B-1

DAILY MAXIMUM AND MINIMUM TIDES SUISUN BAY AT BERICIA ARSENAL

in feet

STATION NO WATER YEAR E03300 1963

OATE	OCT.	NOV	OEC.	JAN	FEB	MAR	APR	MAY	JUNE	JULY	ΔUG	SEPT	OATE
1	12:86	13:23	12:87	18:31	19:20	17:39	12.87	17:39	12:97	13.20	13.56	15.49 7.65	-
ž	13.04	12.60	12.70	12.71	13.87	13:11	12:41	12.70	12.99	13.32	13.63	15.57 7.56	2
3	12.96	12.57	12:22	13.08	14.39	12.90-	12.24	12:17	13:01	13.45	13:70	12.66 7.61	3
4	12.67	12.38	12.36	13.27	14.59	12.66	12.28	12.90	13.23 7.60	13.55	12:25	13.67	4
,	12.75	12.25	12.45	13.46	14.41 7.56	12:47	12.71	13.00	19.49	12.07	13.64 7.36	13.51	5
6	12.72	12.39	12:00	13.62 7.39	14.38 7.40	13.02	12.94	12.93	12.43 7.30	13.70	13.66 7.38	13.23 0.15	6
7	12.54	12.57	15:15	MR MR	14.50 7.50	13.16	13:13	13.10	13.76 7.50	13.77 7.15	13.52 7.51	13.39 0.45	7
8	12.67	12.98	13:47	HR MR	14:40	13.16 7.21	13.11	13.24	13.84 7.24	13:70	13.24 7.68	13.53	6
,	12.88	13.49	13.73 7.21E	H.F.	14.51	13.08	13.20 7.90	13.19	15.77 7.32	13.50 7.13	12.97 7.85	13.56	9
10	12.95	13:62	13.89E 7.10E	MR MR	14:30	12.87	19.27	19.01	14:05	13:29	13.20 9.19	15.44 8.06	10
- 11	13.50	13.72	14.00 7.198	MR MR	13.51	12.60	13.23	13:10	13:62	13:21	13:39	13.45	"
12	14.09	13.99 7.31	13.63E 7.17E	#R NR	13:14	12:30	13.33	12.89	13.36 7.63	13.09	13.42	13.38 7.60	12
13	14.25	13.91 7.34	13.66	NR NR	12.92	12.30 7.91	13.28	12:01	12.97 7.65	13:29	13.52	13.46 7.67	13
14	14.14 7.98	13.79 7.19	13.50 7.31E	MR MR	12.79	12.50	13.44	12.66 7.38	12.99	13.62	13.65	13.60	14
15	14.07	13.29	12.95E 7.48E	MR MR	12.61 9.36	12.70	12.91 6.10	12.33	13.31	13.04	13.05 7.41	13.62	15
16	14.06 7.55	12.71 7.06	12.44E 7.61E	MR MR	12:71	13.05	12.53	12.38 7.50	13:71	13.91	17:91	13.48	16
17	14.07	12.21	12.11E 9 93	MR MR	12.70	12.75	12.59	12.60 7.76	14.02	13.98 7.56	12.60 7.58	13.00	17
16	13.89	12:10	13.02 8.35	MR MR	12:71	12.09	13.07 7.90	13:21	12.45 7.96	14:13	13.06	13.35	18
19	13.40	17:97	12.69	17.50	12.89 7.51	12.05	13:15	13.67	14:20	17:37	13.66	13.09	19
20	12.77	12:28 7:55	12:71	12.50 7.48	13:14	12.22	13:27	13.96 8.08	14:42	14:12	13.39	HR MR	20
21	12.54	12:55	12.76	12:22	13.28	12.88 7.17	13:51	12.71 7.59	14.51	14:01	13.19	HR HR	21
22	12:50	12:86 8:43	13.00	13:14	13.45	13.39 7.58	13:36	14.10	14:31	13.91	13.04	NR NR	22
23	12.74 8.10	13.09	13:32E	13.30 7.05	13.54	13.34 7.10	13.75	14.34 6.80	14.09	13.63	12.03	NR NR	23
24	12.76 8.18	12.95	13:44 7:41	13:57	13.52	12.97 6.90	14:10	14.40	13.70	13:16	12.75	MR MR	24
25	12.80 8.31	12.96 7.50	13.53	13.59	13.34	12.87	14.44 7.26	14.22	13.21 7.01	12.62	12.70	NR NR	25
26	12.86 8.15	13:35	13.62	13.53	12:95	13.05	14.45	13.48	17:30	12.85	18:33	MR	26
27	12.74	17:16	13:30	13:33	13.03	19.46 7.69	13.89	13.58	17:72	13:13	12:71	NR RR	27
28	12.73E 7.86	13:11	17:43	13:16	13.04 7.56	14.08 7.77	13.37	13.20	12.83	13.20	12.35	M.R.	28
29	12.97	12.96	13.17	12.88		13.77	12.92	12.75	12.82	13:19	13.27	NR NR	29
30	13:95	13.00	13.01	13.69		13.52	12.50	12.83	12.96	13.26	13.34	NA NA	30
31	12:90		13:93	10.60		13:35	-	13.00		13.41	13.44 7.60	ļ	31
MA X I MUM	14:73E	12:27	14.00	14.35	14.59	14.08	14.40	14.40	14.51	14:13	17:31	13.67 7.58	M X MA, M
MUM MINUM				L								L	

^{*} In order to machine process the data in this table, it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain recorder gage height.

	LOCATION	4		MAXIMUM		PERIOD	OF RECORD		DATUM	OF GAGE	
		1/4 SEC. T. B. R		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	м рвам.	C.FS	GAGE HT.	DATE	Distribution	ONLY	FROM	то	GAGE	DATUM
38°02'26"	122°08'44"	SW6 ZN ZW		6.72	3/5/62	}	Jun 29-Apr 40 Apr 40-Date	1929 1940 1942	1940 1942	-2.21 -5.00 0.00	USCGS USCGS USCGS

Station located on inshore side of wharf, immediately SE of Senicia.
Meximum gage height listed does not indicate maximum discharge.
Period of record intermittent from 1929-1940.

E - Estimated NR- No Record

TABLE B-2

DAILY MEAN DISCHARGE ARROYD DE LOS COCHES MEAR MILPITAS IN SECOND FEET

WATER TEAR 1963 STATION NO E64050

OAY	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OAY
-,	0.0	0.0	0.0	0.0	0.44	0.0	0.3	0.1*	0.1	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.1	0 • 1	0.0	0.0	0.0	2
3	0.00	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.1*	0 • 1	0.1	0.0	0.0	0.0	٥
5	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	3
6	0.0	0.0	0.0	0.0	0.04	0.1	1.1	0.1	0.10	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.1	0 • 1	0.0	0.0	0.0	7
6	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0+1	0.1	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0 - 1	0.1	0.2	0.1	0.1	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.2	0 • 1	0.1	0 • 2	0.1	0.0	0.0	0+0	10
11	0.0	0.0	0.0	0.0	0.1	0.10	0.1	0.1	0.1	0.0	0.0	0.0	-11
12	0.0	0.0	0.0	0.0	1.0	0.0	0.1	0.1	0+1	0.04	0.0	0.0	12
13	0.0	0.0	0.0	0.0	2.4	0.0	0.2	0.1	0 • 1	0.0	0.0	0.0	13
14	0.0*	0.0	0.0	0.0	0.5	0.1	1.0	0.1	0.1	0.0	0.0	0.0	14
15	0.0	0.0	0.0	0.0	0.2	0 • 1	1.2	0.1	0 • 1	0.0	0.0	0.0	15
16	0.0	0.0	0.0	0.0	0.2	0.4	0.3	0.1	0.1	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0 • 1	0.1	0 • 2	0.1	0.1	0.0	0.0	0.0	17
16	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.1	0.0	0.0	0.0	0.0	16
19	0.0	0.0	0.00	0.0	0.00	0.0	0.9	0.1	0.0	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0*	1.6	0 • 1	0.0	0.0	0.0	0.0	2 0
2 1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.1	0.0	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0 • 1	0.3	0.1	0.0	0.0	0.00	0.0	2 2
23	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.1	0.0	0.0	0.0	0.0	2 3
24	0.0	0.0	0.0	0.0	0.1	0.3	0.2	0.1	0.0	0.0	0.0	0.0	24
2.5	0.0	0.0*	0.0*	0.0	0.0	0.2	0.3	0.1	0.0	0.0	0.0	0.0	2.5
26	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0 • 1	0.0	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	27
26	0.0	0.0	0.0	0.0	0.00	1.9	0.2	0.1	0.0	0.0	0.0	0.0	
29	0.0	0.0	0.0	0.00		0.8	0.2	0.1	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.14		0.5	0.1	0.1	0.0	0.04	0.0	0.0	30
31	0.0*		0.0	1.0		0+4		0.1		0.0	0.0		3 1
MEAN	0.0	0.0	0.0	0.0	0.2	0.2	0.4	0.1	0+1	0+0	0.0	0.0	MEA
MAX	0.0	0.0	0.0	1.0	2.4	1.9	1.8	0.2	0.1	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	MIN
AC.FT.	,,,,		""	2	11	13	24	6	3				ACF

E - Estimated
NR - No Record
& - Oischarge measurement or observation
of no flow mode on this day

= E and **

			٧	VAT	ER 1	EAR	SUM	MARY			
MEAN		MAXIMU						MINIM			
DISCHARGE	DISCHARGE	GAGE HT	MO	DAY	TIME	DISCH	ARGE	GAGE HT	MO	DAY	TIME
0.1	14+0	2+67	2	12	2400		0.0		10	1	0000

(TOTAL	
- 1	ACRE-FEET	
Į	60	
'		

	LOCATION	N	MAXI	MUM DISCH	HARGE	PERIOD C	F RECORD	DRD DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC T 8 R		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF
CATTOOL	LONGITODE	мовам	CFS GAGE HT DATE		DATE		ONLY	FROM	TO	GAGE	DATUM
17 16 155 T	121 511 45"	M44 6 1E	16.7E	2.71	5, 14,60	9-16-59 D-te	Jept. 59 Date	1959		0.00	Local

Station located 200 ft. above Calaveras Road Bridge. 2.6 miles NE of Milpitas. Tributary to Coyote Creek via Penitencia Creek.
Recorder installed Sep. 16, 1959. New control installed 7-27-60 with V-notch for small flows.

TABLE B-2

DAILY MEAN DISCHARGE SUTAMO CREEK MR PESCAMENO STATION NO. WATER VEAR NEXTON 1965

BÁY	OCT	NOK	DEC.	JARL	FEB.	MAR.	APR	MAY	JUNE	JULY	AUG.	BEPL	OAY
\Box	0.80	6.2	0.2	0.1	192 •	25.	44	40	14	6.7	2.7	3.9 3.4 2.9 2.4 2.9	1
	0.00	5.4	0.4	7.9	107	24 22	40	37	14	6.4	2.0	3.6	1.5
	0.0	9.0	1.0	7.6	107	22	36	34	19	5.9	2.0	2.9	1:
! ! I	0.7	5.0	1.1	7.2	96 73	21 19	22 4	34	19	9.3	3.0	2.6	1 :
•	0.7	4.3	1.1	4.0	73	19	21	32	19	9.1	3.1	2.9	١.
 6	0.7	9.7	1.7	*.*	47 52	19 4 10 10	69	21 29 29	:: .	4.9	2.9 2.7 3.9	1,3 1,2 3,4 2,2 1,0	
7	0.7	9.4	2.1	6.4	42	10	106	29	11 4	4.9	2.7	3.2	1 ?
•	0.9	2.4	2.6	6.0	27	10	46 4	29	11	4.3	3.9	3.4	
•	0.9	3.4	3.1	9.6	124	17 17	35	27	11	4.1	2.0	3.2	
10	2.4	2.6	1.7 2.1 2.6 3.1 9.7	9.6	209	17	92	26	11 10	4.0	2.0	1.0	
	4.1	2.3	4.5	5.4	110	17 4	27	26	9.4	3.5	3.4	9.2	
**	19	2.5	3.4	9.4	109	17	20	n 11	9.1	3.4 3.1	5.0	3.7	12
19	405	2.1	7.7	9.4	223	17 27	24	22	9.3	3.1	3.7	3.4	13
14	241 .	1.6	6.9	5.4	194	17	96	20	10	5.4	3.3	9.4	14
10	49 •	1.0	30	5.4	192	17	107	20 19	10 11	4.5	2.2	9.2 3.7 3.4 9.4 3.9	10
*	**	1.4	••	5.4	87		92	1 10 4	11	4.4	9.1	2.0	16
17	93 23	i	134	9.4	79	93 22	44	1 10	11	4.0	3.4	3.2	17
10	16	:::	199	9.4	64	110	67	1 77	11 19.7	3.7	3.5	9.4	18
10	12	1.5	55	• • • • • • • • • • • • • • • • • • • •	94	17	99	1 17	9.7	3.9	3.2	2.0	19
24	16	1.2	41	9.2	44 *	10 17 17	94	10 20 27 17 17	9.5	9.7	3.2	2.8 3.2 3.4 2.0 3.6	20
e:	(1.1	••	9.0	43	10	79	1.0	9.1	3.4	3.4	3.1	81
66	129	• • •	34 33	9.0	39	19	44	10	8.4	9.2 5.1	3.4	2.4	22
23	ii l	6.7	52	4.5	34	;;	ii	1 16	7.7	9.1	3.4	9.5	22
84	** .		51	4.5		16	99	1 16	7.7 7.1	2.4	3.7	8.2	24
80	7:7	0.5	ii	4.3	99 91	25 39 10	99	19 19 19	8,04	2.6 3.0	3.7 4.1	9.1 9.4 9.3 9.2 9.2	20
	•.•	0.5	21 •	4.3	29	10	98	ا ہو!	7.9	3.0	4.1	2.9 2.4 2.0 2.9	24
27	:::	1.70	29	3.3	27	49	97	15 15	6.2	2.6	3.0	2.4	27
20	7:4	0.5	20	4.2	34	180	44	19	9.7	7.0	2.6	2.0	28
29	7:3	1.3	13	4.0		41	- H	1 16	5.7	2.9	3.2	2.0	29
10		0.2	ii	***	i	1 34		;;	3.6	12.0	3.0	2.2	80
31	1:	•••	ر رون	999 +		57	_	15 15 15		12.9	2.0		91
	44,62			44.5	97.9	29.9	34.4	22.1	9.7	2.9	3.2	3.1	MAX
MAX	445	2.2	25.0	884	992	190	107	40.0	14.0	6.9	4.1	3.7	MAX
MARK.		6.2	134			16.0	21.0	10.0	7.4	3.4	2.7	2.6	MITTEL
100	3419	139	1929	4.2 2725	26.0	1027	1266	19.0 1997	2.0 570	2+6 242	170	102	ACFI

E	-	Estimated	
-	-	No Record	

mm - no moore

⊕ - Disoberge measurement or observable
of to flow made on this day.

S - E and ⊕

			WAT	ER Y	EAR SU	MMARY			
MEAN		MAXIMU	M			Mit Poper	UN		
BISCHARGE	DO RANDOIO	TH BOAD	96 241	THE	DISCHARG	S CAME IT	-	DAY	7102
29,25	919QHAR 9E 1340	16.21	1 31	1359	0.0	1.3.12	Ŀ	30	0740

TOTAL ACRE-FEET 20000

			MAAI	MUM DISCH	ARGE	PERIOD O	F RECORD	· '	DATUM	OF GAGE	-
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERD	REF
LATITUDE LONG	SITUDE	M.D.B.8 M	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE D	DATUM
37° 13' 49" 122° 3	21' 51"	SW14 8S 4W	1340	16.21	1/31/63	June 62-Date	June 62-Date	1962		0.00	Local

Station located 1.7 mi. SW intersection Pescsdero Road and Old Stage Road in Pescsdero. Tributary to Pescsdero Creek. Recorder installed June 22, 1962.

APPENDIX C

GROUND WATER MEASUREMENT

GROUND WATER MEASUREMENT

This appendix includes two tables. Table C-1 "Description of Selected Wells", provides a description of 213 wells for which ground water level data are presented in Table C-2, "Ground Water Levels at Wells". A description of the items in the tables follows.

DESCRIPTION OF SELECTED WELLS

Table C-1, "Description of Selected Wells", is arranged in region, basin, and well number order. The water pollution control board regions used in this report and shown on Plate 2, "Ground Water Basins or Units in the Central Coastal Area", are geographic areas defined in Section 13040 of the Water Code. The regions, ground water basins, or units and subareas are listed by a numbering system as follows:

State Well Number

The state well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations made by the Department of Water Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number. Under the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	K	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/12W-17K,M would be in Township 16 North, Range 12 West, Section 17, Mount Diablo Base and Meridian and would be further designated as the first well assigned a State Well Number in Tract K.

Agency Well Number

The agency well number is the number assigned to a well by any agency other than the Department of Water Resources in accordance with the numbering system used by that agency. Agencies that use the state well numbering system normally coordinate assignment of well numbers with the Department. These numbers, when common, are not shown in the "Agency Well Number" column; when different, the last five digits are shown in the "Agency Well Number" column.

Agency Supplying Data

Each number in this column is the code number for a cooperating agency. The agency code consists of a five digit number, the first of which

is a region number. Thus, 32100 refers to Agency 2100 in Region 3. Because of the limitations of punch-card space, the agency code has been shown as a four digit number without the region number. Therefore, the four digit agency code should always be referred to the region in which the well is located.

The first digit of the four digit agency code, as listed below, designates the type of well numbering system used by the agency.

Code	Well Numbering System
1	Location numbers
2	Monterey County Flood Control and Water Conservation
	District or Santa Clara Valley Water Conservation District
3	Serial numbers
4	Local numbers
5	State or U. S. Geological Survey
6	U. S. Bureau of Reclamation
7	South San Joaquin Irrigation District

The last three digits of the agency code, as listed below, are numbers that designate, within specified limits, the type of agency from which the data were obtained.

Code	Type of Agency
000-049	Federal
050-099	State
100-199	County
200-399	Municipal
400-699	District - Water, Irrigation, Conservation, etc.
700-999	Private

The agencies and code numbers assigned to them in each of the regions are listed in the following tabulation:

Agency Code :	Agency
	North Coastal Region
5000	U. S. Geological Survey
5050	Department of Water Resources
	San Francisco Bay Region
2400	Santa Clara Valley Water Conservation District
5000	U. S. Geological Survey
5050	Department of Water Resources
5100	Alameda County Flood Control and Water Conservation District
5101	Napa County
5109	Solano County
5401	Alameda County Water District
	Central Coastal Region
2100 and 5100 <u>1</u> /	Monterey County Flood Control and Water Conservation
2400	Santa Clara Valley Water Conservation District
5050	Department of Water Resources
5101	San Benito County
5102	Santa Cruz County
5400	South Santa Clara Valley Water Conservation District

 $[\]underline{1}/$ In the Paso Robles subbasin of Salinas Valley (3-4.06), this agency number refers to the San Luis Obispo County Flood Control and Water Conservation District.

Well Use

The well use is indicated as follows:

Code	Well Use
1	Domestic
2	Irrigation
3	Municipal
4	Industrial
5	Injection
6	Drainage
7	Domestic and Irrigation
8	Test
9	Stock
0	Unused

Well Depth in Feet

Well depths shown were reported by the owner, obtained from a driller's log, or measured at the time of the well canvass.

Data Available

Under this heading, code numbers, as listed below, indicate the type of data that are available with respect to well logs, water analyses, and production records.

<u>Data</u>	Code
Log record	
Log	1
Confidential log (Sec. 7076, Water Code)	2

Water Analyses

Mineral

<u>Data</u>	Code
Water Analyses	
Sanitary	2
Heavy Metals	3
Mineral and Sanitary	4
Production record	
Available	1
Pump test available	2

Record Begins and Record Ends

The last two digits of the year the record began or ended are shown.

GROUND WATER LEVELS AT WELLS

Table C-2, "Ground Water Levels at Wells", is arranged in region, basin, well number, and date order. It includes measurements of depths to water in wells made from July 1, 1962 through June 30, 1963. Table headings discussed below are only those that were not discussed under "Description of Selected Wells".

Ground Surface Elevation in Feet

The numbers in this column give the elevation in feet above mean sea level (USC&GS datum) of the ground surface from which depth to water is measured. Elevations of ground surface are usually taken from topographic maps and the accuracy is controlled by topographic standards.

Date

The date shown in the column is the date on which the depth measurement, shown in the next column, was made.

Ground Surface to Water Surface in Feet

This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk which indicates a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gauge measurement, or, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained from the Department of Water Resources.

Other symbols used are:

Measurement discontinued

#

Well destroyed

@

No measurement for other reasons

Water Surface Elevation in Feet

This is the elevation in feet above mean sea level (USC&GS datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation.

The words FLOW and DRY are shown in this column to indicate a flowing or a dry well.

Agency Supplying Data

Each number in this column is the code number for the agency from which the water level data were obtained.

TABLE C-1

DESCRIPTION OF SELECTED WELLS

STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING DATAQ ATAQ ATAQ ATAQ	MEET MEET MEET MATER	ENDS BEGINS BEGINS BECOBO BECOBO BECOBO	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING ATAO JUSW JUSE	WELL DEPTH IN FEET AVAILABLE MATER ANAL ANAL PROD.	ENDS BECORO BECORO BECORO
NORTH CE	NORTH CDASTAL REGION			-					
POTTER VALLEY			1-14.00		SANTA ROSA AREA	?E.A		1-18-01	
17N/11W-18J01 M		5000 1	35	5.1	7N/09W-35D02 M		5050 1	167	20
17N/11W-32J01 M		5000 1	12	5.1	8N/09W-36N01 M		0 0005	68	5 4
UKIAH VALLEY			1-15.00		HEALDSBURG AREA	?E.A		1-18.02	
15N/12W-08L01 M		5000 1	62	51	8N/09W-03P01 M		5000 1	110	90
15N/12W-21M01 M		5 000 7	94	51	8N/09W-22L01 M		5000 1	1 1 1	51
15N/12W-35M01 M		5000 2	190	5.1	9N/09W-28N01 M		5000 2	53	53
HOPLAND VALLEY			1-16.00		10N/10W-35001 M		0 0005	285	54
13N/11W-18E01 M		5 000 7	52	53	LOWER RUSSIAN RIVER VALLEY	FR VALLEY		1-98.00	
13N/11W-19P01 M		5 000 5	7 7 7	53	7N/1'0W-06N01 M	7001	5000 3	120	58
13N/11W-20G01 M		5000 1	135	53	7N/11W-14E01 M		5000 1	47	5.1
ALEXANDER VALLEY			1-17.00						
10N/09W-18B01 M		5000 2	180	90					
10N/09W-26L02 M		5000 1	04	90					
10N/09W-33C01 M	33801	5000 1	20	20					
11N/10W-08P01 M		5000 1	30	51					
11N/10W-17P02 M		5 000 5	36	5.3					
11N/10W-19F02 M		5000 1	334	52					
SANTA ROSA VALLEY			1-18.00						
SANTA ROSA AREA	?E.A		1-18.01						
6N/08W-07P02 M		2 0005	120	4.5					
6N/08W-13R01 M		5000 1	250	42					
7N/07W-06R01 M		5050 7	133	51					

DESCRIPTION OF SELECTED WELLS

	FINDS	
	BECORD BECORD	
	DATA AVAILER AVAILER AVAILER AVAILER	
	WELL DEPTH IN FEET	
	ATAQ ATAQ 32U 32U	
	SUPPLYING	
)	AGENCY WELL NUMBER	
	STATE WELL NUMBER	
	ENDS BECOBD BECINS	
	7 0089 238 080238	
	AVAILABLE ANAL ANAL ANAL	
	WELL HT930 1333 NI	
•	350 713#	
	AGENCY SUPPLING ATAQ	
	ENCY WELL NUMBER	

	BECORD BECORD BECORD			59	8 7	64	8	6 7	64	64	18		5.8	9 6	9 5	5.8			20	6 7	5.8	9 7	9.0	6 7	6 7	15	9.0
	WELL DATA MATER IN FEET ANAL ANAL ANAL ANAL ANAL ANAL ANAL ANA		2-03.00	9 38	9 33	1 40	2 70	09 0	2 120	2 220	1 282	2-06.00	1	1 81 2	1 131	1 40	2-09-00	2-09-01	1 85	9 80	4 160	2 180	0 145	2 180	2	16 0	09 6
	AGENCY SUPPLYING ATAQ			5109	5109	5109	6015	2000	6015	9000	5109		9050	9090	9090	2050			5100	5 100	5401	5 100	5401	5401	5 100	5401	5100
WELLS	AGENCY WELL SONDMBER		D VALLEY														LEY	SOUTH ALAMEDA COUNTY UPR AGUIFER									
SELECIED WE	STATE WELL NUMBER		SUISUN-FAIRFIELD VALLEY	5N/01E-36A01 M	5N/01W-07E01 M	5N/01W-28P01 M	5N/02W-17D02 M	5N/02W-27J02 M	5N/02W-29R01 M	5N/02W-30J01 M	5N/03W-26F02 M	YGNACIO VALLEY	IN/OIW-07K01 M	IN/02W-IINOI M	2N/02W-27R01 M	2N/02W-36E01 M	SANTA CLARA VALLEY	SOUTH ALAME	35/02W-08R05 M	35/03W-24002 M	45/01W-18501 M	45/01W-22P05 M	45/01W-29C04 M	45/02W-13C02 M	45/02W-24002 M	55/01W-04F01 M	55/01W-09001 M
5	ENDS BECOND BECOND BECOND			20	53	65	50	67			30	50	64	67	64	67	64	67		20	94	51		20	8 7	18	
	DATA AVAILABLE WATER ANAL		2-01.00	v	80	2	80	80	2-02.00	2-02.01	80	9 1	0 1	3 1	2	2	6	4 1	2-02.02	0	0 1	0	2-03.00	6.	,	2	
7	WELL 0EPTH 1333 NI		5.	225	158	92	428	18	2.	5	96	66	250	333	232	25	129	184	2	10	130	100	2-	3.9	3.7	19	
	AGENCY SUPPLYING DATA WELL WELL			5050 1	6 0005	5000 1	0 0005	5050 2			5000 9	5000 1	0 000 9	5101 2	0 0006	5101 1	5101 2	6 0005		1 0005	5050 2	5000 2		5109 9	5109 0	5109 1	
			5																								
	AGENCY WELL NUMBER		PETALUMA VALLEY	Σ	Σ	7	2	Σ	NAPA-SONOMA VALLEY	NAPA VALLEY	Σ	Σ	Σ	5	M 16602	2	Σ	Σ	SONOMA VALLEY	Σ	2	Σ	SUISUN-FAIRFIELD VALLEY	2	Σ	Σ	

DESCRIPTION OF SELECTED WELLS

STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING DATA WELL USE	WELL DEPTH IN FEET LOG AAAEA	PATA PATA PECORD PE	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING ATAQ ATAQ JAELL JSU	WELL DEPTH IN FEET LOG ATANAL ANAL ANAL ANAL ANAL ANAL ANAL AN	RECORD BEGINS BEGINS BEGINS BECORD BECORD
SOUTH ALAMEDA	34 COUNTY LWR AQUIFER	ER	2-09-01		NORTH SANTA CLARA COUNTY	CLARA COUNTY		2-09-02	
25/03W-36R01 M		5 100 2	601	65	75/02E-07P01 M	100 403	2400 3	525	2.5
35/02W-07D01 M		0 0015		49 62	75/02E-17H01 M	110 304	2400	007	31
35/02W-19A02 M		0 0505	218	90	75/02E-33C01 M	12E 398	2400	61	55
35/03W-24J01 M		5 100 7	511	64	75/01W-35C01 M	8н 117	2400 3	438	36
45/02W-02001 M		5100 2	475	90	75/02W-03Q01 M	4H 023A	2400 2	008	36
45/02W-35R02 M		5401 7	224 2	9.8	75/02W-04B01 M	3н 013	2400 2	450	36
45/02W-36K01 M		5401 0	241	64	75/02W-22A01 M	41 037	2400 2	620	36
55/01W-09M01 M		5100 2	297 1	67	85/01E-07H02 M	9н 1664	2400	350	54
NORTH SANTA	CLARA COUNTY		2-09.02		85/01E-13H01 M	126 257	2400 7	110	36
65/01E-07E01 M	5C 059	2400 0	525	36	85/02E-20F03 M	136 297	2400		0 4
65/01E-21R01 M	8D 342A	2400 2	5 099	5.1	85/02E-22D01 M	13F 233	2400 7		36
65/01E-23P02 M	8C 127	2400 0	295	36	85/01W-15801 M	81 129	2400	79	36
65/01E-30M01 M	7E 084	2400 7	250	30	95/02E-01J01 M	15G 238B	2400 7	135	36
65/01W-10P02 M		9 0009	410	84	95/02E-01M01 M	15G 279	2400	114	3.7
65/01W-23E01 M		5000 2	425	5.8	LIVERMORE VALLEY			2-10.00	
65/02W-16R01 M	20 005	2400 2		36	25/02E-25N01 M		5100		84
65/02W-25C01 M	4F 030	2400]	200	30	25/01W-26C01 M		5 100 2	360	8
65/02W-35C01 M	36 020	2400 2	480	30	35/01E-02E01 ₩		9100		8 7
75/01E-01K01 M	9D 180A	2400 7	400	36	35/01E-11H01 M		5 100 7	303	67
75/01E-08L01 M	8F 274	2400	235	36	35/02E-02R01 M		5 100 2	437 1	8 7
75/01E-09D02 M	8E 120	2400 3		36	35/02E-10H01 M		5100 2	376	87
75/01E-16C05 M		5000 3	806	5.8					
75/01E-31A02 M	96 148	2 400 5		36					
75/01E-31R01 M	9G 147A	2400	700	5.0					

	44053# 20N3
	AVALLABLE ANATER AND AND AND AND AND AND AND AND AND AND
	WELL 06PTH 1M FEET
	ATAO ATEUL ATEUL ATEUL ATEUL ATEUL ATEUL
2	AGENCY WELL NUMBER
SELECTED WELLS	STATE WELL NUMBER
ILLION OF SEL	A 1 C A 1 C

			DESCRIPT	ION OF	DESCRIPTION OF SELECTED WELLS	-LS	
STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING OATA USE USE	202 A DATE TO BE T	ENOS BECORO BECORO RECORO	STATE WELL NUMBER	AGENCY WELL NUMBER	AGENCY SUPPLYING ATAQ WELL USE
HALF MOON BAY TERRACE	RACE		2-22.00		CENTRAL	CENTRAL COASTAL REGION	
55/05W-20L01 M		5050 0	69	53	SOQUEL VALLEY		
55/05W-29F03 M		5050 1		53	115/01W-09L01 M		0 0505
55/05W-29N01 M		5050 2	8.2	53	115/01W-15H01 M		5050 0
65/05W-06B01 M		5050 2	8.5	53	PAJARO VALLEY		
SAN GREGORIO VALLEY	ĒY		2-24.00		125/01E-24601 M		5050 2
75/05W-13E01 M		5050 0	4.5	58	125/02E-16J01 M		5050 2
75/05W-15C01 M		5050 2	85	5.8	125/02E-31K01 M		5050 2
75/05W-15E01 M		5050 7		53	135/02E-05801 M		5050 0
75/05W-15E02 M		5050 1		53	GILROY-HOLLISTER VALLEY	VALLEY	
75/05W-15H02 M		5050 1		09	SOUTH SANTA	SOUTH SANTA CLARA COUNTY	
PESCADERO VALLEY			2-26.00		95/03E-27C02 M	186 374	2400 7
85/05W-09H01 M		5050 2		53	95/03E-29801 M		5050 0
85/05W-11M01 M		5050 1	36	53	105/03E-34L01 M		5050 2

CENIKAL CORSTAL KEGION				
SOQUEL VALLEY		3-01.00		
115/01W-09L01 M	5050		4	897
115/01w-15H01 M	5050 0		4	8 7
PAJARO VALLEY		3-02.00		
125/01E-24601 M	5050 2	200	4	1.7
125/02E-16J01 M	5050 2		4	1.4
125/02E-31K01 M	5050 2	219	7	1.7
135/02E-05801 M	5050 0	225	ď.	58
GILROY-HOLLISTER VALLEY		3-03.00		
SOUTH SANTA CLARA COUNTY		3-03.01		
95/03E-27C02 M 18G 374	2400 7	300	4	£ 3
95/03E-29801 M	5050 0	170	4	80 7
105/03E-34L01 M	5050 2	1	4	8 7
105/04E-18G02 M	5050 7	184	4	8 7
105/04E-35E01 M	5050 2	447	4	8 7
115/03E-01801 M	5400 2		u ·	5.7
SAN BENITO COUNTY		3-03.02		
115/05E-13D01 M	5050 2	125	2	3.7
125/04E-20C01 M	5 101 2	736 1	7	64
125/05E-12F01 M	5050 0	88	•	51 63
125/05E-33A01 M	5050 2	150		54
135/05E-11001 M	5101 0	7 7	. •	54

OF SELECTED WELLS

WELLS	NAMER RELL OF FELL OF STATE OF		3-04.06	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100	5100
SELECTED WE	STATE WELL NUMBER		PASO ROBLES	245/10E-11C01 M	245/11E-25N01 M	245/11E-33R01 M	245/11E-35J01 M	245/12E-17N01 M	245/15E-33C01 M	255/11E-35G01 M	255/12E-17J01 M	255/12E-17R01 M	255/12E-26K01 M	255/13E-11E01 M	255/16E-17L01 M	255/16E-30M01 M	265/12E-04N01 M	265/12E-26E01 M	265/12E-35M01 M	265/13E-10D01 M	265/13E-34801 M	265/14E-16L01 M	26S/14E-35D01 M	265/15E-02801 M	265/15E-28002 M
OF	ENDS BECOND BECOND BECOND			31	16	31	31	31	31		31	31		16		31		31	77		31	16	16	31	31
DESCRIPTION	WATER LOG AVAILABLE AVAILABLE AVAILABLE PROD SEC.	3-04.00	3-04.01		176	1 96 1		279 1		3-04-01	500 1	513 1	3-04.02	599	3-04.03	238 1	3-04.04	288 1	320	3-04.05	245	372			
	ATAG SUPPLYING ATAG WELL 32U			2100 2	2100 2	2100 7	2100 2	2100 2	2100 1		2100 2	2 100 2		2100 2		2100 2		2100 2	2100 2		2100 2	2100 2	2100 2	2 100 2	2 100 2
	AGENCY WELL NUMBER		PRESSURE AREA 180 FOOT AQUIFER	28 001	2C 025A	2D 023	30 040	4D 056	4E 030D	A 400 FOOT AQUIFER	18 011A	2C 119	EA	5E 026.		6F 017	CONE	76 029	7H 036	AREA	8Н 031	91 004	100 001	11K 002	12K 003
	STATE WELL NUMBER	SALINAS VALLEY	SSURE ARE	145/02E-03C01 M	145/02E-15L01 M	155/02E-01001 M	155/03E-16M01 M	155/04E-33A01 M	165/04E-11D01 M	PRESSURE AREA	135/02E-31001 M	145/03E-18J01 M	EAST SIDE ARE	165/05E-17R01 M	FOREBAY AREA	175/05E-11C01 M	ARROYO SECO (185/06E-15M01 M	195/06E-11C01 M	UPPER VALLEY	195/07E-10P01 M	205/08E-05R01 M	215/09E-06K01 M	215/10E-32N01 M	225/10E-16K01 M

5 100

265/15E-29N01 M

WELL DEPTH IN FEET

AGENCY SUPPLYING ATAQ WELL WELL USE

AGENCY WELL NUMBER

STATE WELL NUMBER

			5		אירו בו בר אברי		MLLLO				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ΟN	NORTH COASTAL REGION	REGION				ON	NORTH COASTAL REGION	EG10N			
POTTER VALLEY			1-14.00			UKIAH VALLEY			1-15.00		
17N/11W-18J01 M	0.556	7-23-62	1.0	954.0	0005	15N/12W-21M01 M	290.0	11-15-62	0.0	581.0	9000
		79-07-8	4 a	400.00		• •		79-40-71	u .	1004	
		79-18-67	o n	7.466				1-03-03 03-64 63-64	5 . 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		10-22-62	• •	777				50-13-63	• -		
		12-20-62	o or	0.00				4-17-63	2 4	0 0 0 0	
		1-21-63		955.7				5-14-63	1.4	588.6	
		2-18-63	FLOW					6-07-63	2.1	581.3	
		3-19-63	FLOW								
		4-23-63	FLOW			15N/12W-35M01 M	0.009	7-12-62	ti		2000
		5-20-63	٠.	955.7				8-16-62	В		
		6-18-63	4.	9.456				9-01-62	80 E	590.2	
	9	1 11.67	4	0 000	3			11-15-67		0 0 0 0	
1/N/11W-32J01 M	0.668	70-67-1	• • •	, co	2000			12-07-12	2001	0 0 0 0	
		20-12-0	* 1 * 7	7 700				1-03-63	.0.0	502.6	
		70-01-6	• -	803.7				2-13-63	. 0	507.1	
		11-00-62						3-06-63	6.7	505. R	
		12-00-05	3 1	403.4				4-17-63	2.0	598.0	
		1-21-63	0.	893.1				5-14-63	3.5	596.5	
		2-18-63	6.	894.1				6-01-63	4.5	595.5	
		3-19-63	1.5	893.5							
		4-23-63	1.	894.3		HOPLAND VALLEY			1-16.00		
		5-20-63	2.3	892.7					1		
		6-18-63	3.6	891.4		ISN/IIW-IBEUI M	0.074	8-16-62	0 5		2000
VALLE AH VALLEY			1-15.00					9-01-62	1 5		
								10-10-62	12.1	477.9	
15N/12W-08L01 W	665.0	7-12-62	22.9	642.1	2000			11-15-62	11.4	478.6	
		8-16-62		640.5				12-04-62	8.6	480.2	
		9-01-62		642.7				1-03-63	1.1	6.877	
		10-10-62	24.0	641.0				2-13-63		482.3	
		11-15-62	21.1	643.9				3-00-03	0.4	0.000	
		12-04-62	70.7	0.440				5-11-63		1007	
		1-03-65	1/•6	4.0.4				6-07-63	11.6	478.4	
		2-13-63	13.	0.640						•	
		3-00-03	11.2	04 / 00		13N/11W-19P01 M	0.884	7-12-62	16.0	477.0	000
		5-14-63	17.5	647.5				8-16-62	18.2	469.8	
		6-07-63	19.0	0.949				9-01-62	18.3	469.7	
								10-10-62	18.3	469.7	
15N/12W-21M01 M	290•0	7-12-62	8 • 3	581.7	2000			11-15-62	13.2	474.8	
		8-16-62	12.9	577.1				12-04-62	7.5	480.5	
		9-01-65	13.5	576.5				1-03-63	0 r	4.78.5	
		79-01-01	0 • 6 1	1.010				00-01-3	•	•	

GRD SUR TO WATER	GRD SUR TO WATER	•	WATER SURFACE ELEVATION	AGENCY	STATE WELL NUMBER	GROUND SURFACE ELEVATION	DATE	GRD SUR TO WATER		AGENCY
		SUR IN FEET	ELEVATION IN FEET	DATA	NUMBER	ELEVATION IN FEET	2	SUR IN FEET	ELEVATION IN FEET	DATA
										i
H COASTAL REGION	_				Ox	NORTH COASTAL REGION	REGION			
		1-16.00			ALEXANDER VALLEY			1-17.00		
3-0	3-06-63	11.3	476.7	2000	10N/09W-33C01 M	180.0	1-11-62	2.5	172.5	2000
5-14	5-14-63	9 • •	478.9				9-06-62		171.3	
0-9	6-01-63	12.1	475.9				10-10-62		171.0	
7-1	2-62	8.3	506.7	5000			12-04-62		173.4	
8-1	8-16-62	11.7	503.3				1-03-63		174.3	
0-6	1-62		502.4				2-13-63	1.0	1 / 8 - 4	
10-10-62	29-0		502.5				4-16-63	0 00	178.2	
12-07	201		510.6				5-13-63	9.7	175.4	
1-0	1-03-63	4.1	510.9				6-06-63	7.3	172.7	
2-1	2-13-63	3.7	511.3					-	0	6
3-0	3-06-63	7 • 7	510.6		IIN/IOW-OBPCI M	105.0	9-14-62		202.0	2000
4-17-63	4-17-63	D • 6	511.1				9-01-6		292.2	
6-01-63	6 6		509.4	-			10-10-62		292.2	
))	,	1					11-15-62	11.0	294.0	
		1-17.00					12-04-62	10.0	294.2	
				0			2-13-63	7 • 4	300-6	
A-11-62	200	0 0					3-06-63	8.6	296.4	
9-01-6	2 6		209.8				4-17-63	3.4	301.6	
10-10-62	62	21.6	208.4				5-14-63	4.8	596.6	
11-15-62	62	19.6	210.4				6-01-63	0		
12-04-62	-62		211.7		M 2005 L-MO 17 N L L	0.000	7-11-62			0
1-03-63	5 6		216.4			0.763	8-16-62	םנ		
3-04	2 4		213.0				9-01-62		282.6	
4-17-63	2 4		217.4				10-10-62		282.2	
5-14	-63		213.2				11-15-62	8.7	283.3	
6-06-63	-63		210.3				12-04-62		279.5	
							2-13-63	0 0 0	2 - 1 - 1 - 2 - 2	
-	7-11-62	13.9	1.161	2000			00-01-7	3 6		
8-16	29-6		187.0				4-06-63	n ɔ	280-1	
9-06-62	-62	0					6017119	0 7	207	
10-10-62	-62	20.1	184.3				6-07-63	• =	1 • 6 0 7	
11-15-62	79-		193.2					ı		
12-04	79-		- 44		M COMPLETED W	346-0	7-12-62	6	936.9	5,000
0-1	50-0		5002				8-16-62			
7-7	2-13-63		1.402				0+01-62	-	7 - 7 - 2	
310	3-06-63		203.4				10-10-62		20.0	
[+]	4-16-63		204.1				11-15-62	· E		
5-1	4-63		7.04.1				12-04-62		340.5	
0	0-00-0									

TABLE C-2

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ON	NORTH COASTAL REGION	REGION				NOR	NORTH COASTAL REGION	EGION			
ALEXANDER VALLEY			1-17.00			SANTA ROSA AREA	A I		1-18.01		
11N/10W-19F02 M CONT.	346.0	1-03-63 2-13-63 3-06-63 4-17-63 5-14-63 6-07-63	0	3423.6 3425.6 3455.6 340.0 340.0	2000	8N/09W-36N01 M CONT.	0.06	9-04-62 10-09-62 11-14-62 12-03-62 1-02-63 3-05-63	12.0 12.6 11.4 11.2 9.1	7 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2000
SANTA ROSA VALLEY			1-18.00					4-16-63	2 • 5	87.5	
SANTA ROSA AREA	REA		1-18.01					6-06-63	9.6	84.4	
6N/08W-07P02 M	0.56	7-10-62	26.7	68.3	2000	HEALDSBURG AREA	E A		1-18.02		
		9-14-62	26.1	6.89		8N/09W-03P01 M	77.0	7-11-62	_ ·	71.2	2000
		10-09-62	25.5	75.5				9-06-62	3.4	73.6	
		12-03-62	20.7	74.3				10-10-62	5 • 4	71.6	
		1-02-63	16.0	79.0				11-14-62	D E		
		3-05-63	19.5	75.5				1-03-63			
		4-16-63	12.1	82.9				2-12-63	٦.	1,4	
		5-13-63	ם <u>.</u>	- 0				4-16-63	6 • 2	• • •	
		6-00-93	13.1	A • 1 0	_			5-13-63			
6N/08W-13R01 M	115.0	7-10-62	20.1	6.46	2000			6-06-63	5.5	71.5	
		8-14-62	22.5*	92.5		8N/09W-22L01 M	67.0	7-11-62	п		5000
		10-09-62	24.2	90.8				8-15-62	0		
		11-14-62	23.8	91.2	-			9-06-62	27.6	39.4	
		12-03-62	21.4	93.6				11-14-62	26.7	40.3	
		2-12-63	16.9	900				12-03-62	26.0	41.0	
		3-05-63	16.9	98.1				1-03-63	25.3	41.7	
		4-16-63	13.8	101.2				2-12-63	21.3	45.7	
		5-13-63	12.1	102.9				4-16-63	20.0	0 0 4	
		6-06-63	13.6	101.4				5-13-63	22.8	44.2	
7N/07W-06R01 M	275.0	4-12-63	14.1	560.5	5050			6-06-63	23.9	43.1	
7N/08W-31C01 M	85.0	4-12-63	80	76.2	5050	9N/09W-28N01 M	0.06	7-11-62	18.5	71.5	2000
			,	6	0			29-10-6	21.4	68.6	
7N/09W-35D02 M	1350	60-71-4	96.0	0.601	0000			10-10-62	21.8	68.2	
	4 4 0	() ()	9	60.0	000			11-12-67	15.0	7.2.0	

WELLS
Α
LEVELS
RLE
WATER
GROUND
GRC

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TD WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ž	NORTH COASTAL REGION	REGION			*	Z	NORTH COASTAL REGION	REG10N			
HEALDSBURG AREA	A S		1-18.02			LOWER RUSSIAN RIVER VALLEY	VER VALLEY		1-98.00		
9N/09W-28N01 M	0.06	1-03-63 2-13-63 3-05-63 4-16-63 5-13-63	13.8 10.8 13.8 10.4 12.6	76.2 79.2 76.2 79.3 76.4	2000	7N/11W-14E01 M CONT.	25.0	5-13-63 6-06-63	16.6 18.4	8 9 4 • 0	2000
10N/10W-35G01 M	142.0	7-00-62		136.9	2000						
		9-06-67 10-10-62 11-15-62 12-04-62 1-03-63 2-13-63 3-05-63	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	135.2 135.7 135.7 139.7 140.9 140.8							
	> u 	5-13-63 6-06-63	1.8 2.7 1-98.00	140°2 139°3							
LOWER RUSSIAN RIVER VALLET	VER VALLET		•								
7N/10W-06N01 M	25.0	7-11-62 8-15-62 9-06-62 10-10-6-5 11-14-62 12-03-62 12-03-62 12-03-63 13-03-63 13-03-63 13-03-63 13-03-63	21.0 222.1 222.5 220.3 150.0 1150.0 1140.2 1140.2	2.9 2.9 2.9 2.9 2.9 10.0 10.0 10.0 10.3 10.3	0000						
7N/11W-14E01 M	25.0	7-11-62 8-15-62 9-06-62 10-10-62 11-14-62 12-03-63 1-03-63 1-03-63 3-05-63 4-16-63		- 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	0 0 0						

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SA	SAN FRANCISCO BAY REGION	BAY REGION				SAN	SAN FRANCISCO BAY REGION	AY REGION			
PETALUMA VALLEY			2-01.00			NAPA-SONOMA VALLEY			2-05-00		
3N/06W-01001 M	2 • 0	4-12-63	1 • 4	9.0	5050	NAPA VALLEY			2-02-01		
5N/07W-20602 M	4 1 • 0	8-14-62 9-04-62 10-09-62 11-14-62 12-03-62	92.3 80.7* 77.2 12.6 69.3		2000	4N/04W-13E01 M	4 1 • 0	7-10-62 8-16-62 9-04-62 10-09-62 11-15-62	0000*		9000
		1-02-63 2-12-63 3-05-63 4-16-63 5-13-63	66.6 63.8 63.2 63.2 61.7	25.6 22.8 1 22.4 1 22.7 1 20.7 2 6.0		5N/04W-11M01 M	13.0	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62	~ ~ & & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2000
5N/07W-21H01 M	6.5	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62	4444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00	2000			1-02-63 2-12-63 3-05-63 4-16-63 5-13-63 6-06-63	7 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90 / 00 / 00 / 00 / 00 / 00 / 00 / 00 /	
5N/07W-26R01 M	53.6	1-02-63 2-02-63 3-05-63 4-16-63 5-03-63 6-06-63 7-10-62 8-14-62 10-09-62 11-1-14-62 11-03-62	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		000	6N/04W-17A01 M	0 - 7 - 9	7-12-62 9-16-62 10-11-62 11-15-62 12-04-62 12-04-63 1-104-63 1-104-63 1-104-63 1-104-63	112.6 114.6 114.6 22.2 9.99.9 9.66.9 11.94.6 2.2	5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000
		1-02-63 2-12-63 3-05-63 4-16-63 5-13-63	28.1 27.2 24.8 21.7 20.3	25 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		7N/05W-09001 M 7N/05W-09002 M	155.0	7 - 109 - 63 7 - 112 - 62 8 - 116 - 62 9 - 118 - 62	24.2* 14.6 26.6*	148.4	5101
5N/07W-35K01 M	18.	4-12-63	7•2	11.6	9090			11-15-62 12-04-62 1-04-63 2-13-63	110000000000000000000000000000000000000	144.6 144.6 142.6 146.0	

AGENCY SUPPLYING DATA			2000			5109	5109	5109	5109	5109	5109	5109	00005	5000	5109	0006
WATER SURFACE ELEVATION IN FEET			- 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.4		25.9	3.9	33.4	14.3	101.9	9.1	8.96	0 4 0 0 4 4 0 0 4 4 0 0 4 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 10 1 V V 2 10	36.4	38.0 40.0 40.0 38.0 41.0 2
GRD SUR TO WATER SUR IN FEET		2-02-02	11.4 20.5* 6.3 7.0 4.0	6.6	2-03.00	9•1	3•1	3.6	1.6	13.1	6.5	4.2		19.5 15.5 16.4 18.2	9.6	26.9 24.7 24.2 26.1 23.8
DATE	AY REGION		12-03-62 1-02-63 2-12-63 3-05-63 4-16-63	5-13-63		3-30-63	3-19-63	3-19-63	3-19-63	3-18-63	3-19-63	3-18-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62 12-03-62 1-02-63 2-12-63	3-19-63 4-16-63 5-13-63 6-06-63	3-18-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		16.0		ALLEY	35.0	7.0	37.0	24.0	115.0	15.0	101.0	24.0		0.94	0 • 5 • 0
STATE WELL NUMBER	NAN	SONOMA VALLEY	5N/05W-29N01 M CONT.		SUISUN-FAIRFIELD VALLEY	4N/02W-06A01 M	4N/02W-09A01 M	4N/03W-01D01 M	5N/01E-36A01 M	5N/01W-07E01 M	5N/01W-28P01 M	5N/02W-17002 M	5N/05W-27J02 M		5N/02W-29R01 M	5N/02W-30J01 M
AGENCY SUPPLYING DATA			5101	5101	5101	5000							2000	5050	2050	2000
WATER SURFACE ELEVATION IN FEET			148.8 149.1 147.6 146.5	152•1	126.8	284.1	280.4	284.2	289.1	288.9	288.5		71.6 65.9 65.4 65.1 67.6 70.5	72.6 72.6 65.9 69.3	4.2	VW 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4
GRD SUR TO WATER SUR IN FEET		2-02-01	6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.9	• 2	5.00 9.00 9.00 9.00	10.2	0 4 .	2.5	1.5	1.5	2-02-02	13 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	12.4 12.4 19.1 15.7	6 • 8	10.5 12.5 12.0 13.6 11.5
DATE	AY REGION		4-09-63 4-17-63 5-14-63 6-07-63	4-09-63	4-10-63	7-12-62	9-18-62 10-11-62	11-15-62	2-13-63	3-06-63	5-14-63		7-10-62 8-14-62 9-04-62 10-09-62 11-14-62 12-03-62 1-02-63	5-03-03 4-12-63 4-16-63 5-13-63 6-06-63	4-12-63	7-10-62 8-14-62 9-04-62 10-09-62 11-14-62
GROUND SURFACE ELEVATION IN FEET	SAN FRANCISCO BAY REGION		155.0	155.0	121.0	290•0							O •		11.0	16.0
ω -	N A N	NAPA VALLEY	7N/05W-09002 M CONT+	M 60060-M50/N2	7N/05W+23D02 M	8N/06W-10001 M						SONOMA VALLEY	5N/05W-17C01 M		5N/05W-28N01 M	5N/05W-29N01 M

)				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
						-					
78	SAN FRANCISCO	FRANCISCO BAY REGION				SAP	SAN FRANCISCO BAY REGION	AY REGION			
SUISUN-FAIRFIELD VALLEY	VALLEY		2-03.00			SANTA CLARA VALLEY			2-09-00		
5N/02W-30J01 M	0 • 6 9	12-03-62	24.0	41.0	2000	SOUTH ALAMEDA COUNTY UPR AGUIFER	COUNTY UPR	AQUIFER	2-09-01		
•		2-12-63	21.3	1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		35/02W-08R05 M	0.49	9-00-62	37.5	26.5	5100
		3-18-63	20.4	9.44	5109			4-00-63	32.5	31.5	
		5-13-63	18.9	46.1	0000	35/03W-24002 M	7.0	9-00-62	7.8	0.8	5100
		6-06-63	9.07	1 1 1				69-00-7	6.7	4	
5N/03W-26F02 M	1111.0	3-19-63	3.2	107.8	5109	45/01W-18601 M	41.0	7-20-62	104.0	- 63.0	5401
YGNACIO VALLEY			2-06.00					9-14-62	104.6	63.6	
M 10750	0.6	7-19-62	11.7	71.3	5050			11-23-62	101.1		
TO VIOLETO VII		8-15-62	12.0	71.0	,			12-21-62	95.3		
		9-20-62	11.6	71.4				1-18-63	92.3		
		10-19-62	10.8	72.2				2-15-63	2.68		
		11-14-62	٥,	13.1				3-15-63	1019	1 40 1	
		1-31-62	17.0	73.5				5-24-63	75.8		
		2-20-63	7.1	15.3				6-21-63	78.1		
		3-20-63	7.4	75.6							
		4-25-63	4.9	16.6		45/01W-22P05 M	80.0	9-00-62	0.84	32.0	5100
		5-25-63	9.0	75.2				4-00-63	. T	28.5	
				1		45/01W-29C04 M	55.0	7-20-62	104.3	- 49.3	5401
1N/02W-11N01 M	63.0	3-20-63	12.2	50.8	5050			8-17-62	107.2		
2N/02W-27R01 M	15.0	7-19-62	6.2	8.8	5050			10-19-62	108.7	- 53.7	
		8-15-62	6.9	8.7				3-22-63	6.88		
		10-19-62	1 4	10.1		45/02W-13C02 M	36.4	7-20-62	82.9		5401
		11-19-62		12.7				8-17-62	84.9	- 48.5	
		12-16-62	1.7	13.3				9-00-6	æ		
		1-21-63	2.0	13.0							
		2-20-63	1.4	13.6		45/02W-24002 M	33.4	9-00-6	87.9	- 54.5	5100
		3-21-63	0.0	0.41				4-00-4	13.1		
		5-20-63	2.2	12.8		55/01W-04F01 M	42.0	7-20-62	74.6		5401
		6-20-63	0.9	0.6				8-24-62	15.4		
		;						9-21-62	75.8		
2N/02W-36E01 M	48.0	3-21-63	13.7	34•3	2050			10-19-62	75.9	34.0	
								12-14-62	75.9		
								1-25-63	15.4		

n
WELLS
ш
⋝
_
A
S
_
7
LEVELS
_
œ
WATER
\vdash
⋖
3
2
Z
_

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
24	FRANCISCO BAY REGION	AY REGION				SAA	SAN FRANCISCO BAY REGION	SAY REGION			
SOUTH ALAMEDA		AQUIFER	2-09-01			SOUTH ALAMED	SOUTH ALAMEDA COUNTY LWR AGUIFER	AQUIFER	2-09-01		
55/01W-04F01 M CONT•		2-22-63 3-22-63 4-19-63 5-17-63	75.1 74.5 73.9 73.4	- 33.1 - 32.5 - 31.9 - 31.4	5401	45/02W-35R02 M CONT.	15.0	1-111-63 2-22-63 3-22-63 4-19-63 5-17-63	69 61 61 51 51 8	1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5401
55/01W-09001 M	19.8	9-00-62	44	- 24.7 - 24.7	5100	45/02W-36K01 M	24•0	7-20-62 8-24-62 9-21-62			5401
SOUTH ALAMEDA 25/03W-36R01 M	COUNTY LWR	AQUIFER 9-00-62 4-00-63	82.1 90.0	- 37.1	5100			10-19-62 11-16-62 12-14-62	100.3 91.9 84.7		
35/02W-07D01 M 35/02W-19A02 M	31.0	9-00-62 7-20-62 8-15-62		6.9	5100			2-22-63 3-22-63 4-19-63 5-17-63		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		9-20-62 10-00-62 10-17-62 11-19-62 12-19-62		2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5100	M 109M01 M	15.0	9-00-62	1111.3 57.8 2-09.02	- 96.3	5 1.00
		1-21-63 2-20-63 3-20-63 4-00-63 4-24-63 5-20-63	22.2 20.6 20.0 19.5 18.9 19.1	100.00 100.00 100.00 100.00	5100 5050		15.8	7-24-62 8-21-62 9-21-62 10-22-62 11-21-62		123.0 123.1 123.0 123.0 105.3	2400
35/03W-24J01 M 45/02W-02001 M	11.0	9-00-62 4-00-63 9-00-62 9-28-62	86.5 72.0 167.0*	- 75.5 - 61.0 - 141.0 - 121.6	5100 5100 5401			1-22-63 2-20-63 3-20-63 4-22-63 5-21-63		1 72.9 1 72.9 1 66.4 1 105.0	
45/02W-35R02 M	15.0	10-26-62 4-00-63 7-20-62 8-24-62 9-21-62 10-19-62 11-16-62		11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5401	65/01E-21R01 M	138.0	7-23-62 8-20-62 9-20-62 10-19-62 11-20-62 12-20-62	248.4 253.0 249.3 242.8 232.1 218.4	- 1110 - 1115 - 104.8 - 104.8 - 94.1	2400

IABLE C=2

			GRO	UND W	ATER L	GROUND WATER LEVELS AT WELLS	SLLS				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
4 9	AN FRANCISCO RAY REGION	× 4 8				4	CAN FRANCISCO BAY REGION	AY REGION			
i n	00010000										
NORTH SANTA CLARA COUNTY	CLARA COUNTY		2-09-02			NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09.02		
65/01E-21P01 M CONT.	138.0	2-19-63 3-13-63 4-22-63 5-21-63	217•3 213•1 213•1	- 79.3 - 75.1 - 75.1	2400	65/01W-23E01 M CONT.	21.0	1-23-63 2-21-63 3-22-63 4-00-63	107.7 99.9 98.1	- 86.7 - 78.9 - 77.1	2000
		6-24-63						5-20-63 6-17-63	93.8 152.8*	- 72.8	
65/01E-23P02 M	240.5	7-23-62 8-17-62	167.3	73.2	2400	65/02W-16R01 M	0.84	7-27-62	В		2400
		9-18-62	168.6	71.9				8-21-62	153.3	- 105.3	
		11-19-62	170.8	59.7				10-29-62			
		12-19-62	170.6	6.69				11-28-62	137.1	- 89•1	
		2-18-63	1/1.6	4 0 0				1-78-63	-		
		3-19-63	170.7	8.69				2-26-63	130.2		
		4-18-63	166.2	74.3				3-27-63	121.5	19.5	
		5-20-63	155.0	00 00 0.4 0.4				5-27-63	130.9	82.9	
				•	•			6-26-63	141.8	- 93.8	
65/01E-30M01 M	43.0	7-25-62	171.0*	- 128.0	2400	M 10785-W50794	0.57	7-26-62	158.	7 85.7	2400
		9-21-62	165.1*	- 122.1		1000		8-24-62	154.9	- 81.9	
		10-23-62	141.1	- 98.1				9-25-62		84.3	
		11-26-62	131.9					10-24-62	149.3	- 10.3 - 72.8	
		12-24-62	123.8	- 80.8				12-26-62			
		2-21-63	115.8	- 72.8				1-25-63	_	- 51.4	
		3-21-63	105.2	- 62.2				2-26-63	135.3	- 62.3	
		4-23-63	102.7	- 59.7 - 61.8				4-25-63	137.9	6.49	
		6-25-63						5-24-63	143.7	1.00 -	
								6-26-63	150.3	- 77.3	
65/01W-10P02 M	0 • 6	7-18-62	0 121	7 661 -	2000	M [0]58-35(0] M	140.1	1-71-62	271.4	- 131•3	2400
		9-11-62	• • •	** 771				8-24-62	1.417	- 134.6	
		10-17-62	D					9-25-62	271.5	- 131.4	
		11-14-62	Б					10-25-62		- 120.0	
		12-21-62	æ					11-28-62	259.9	- 119.8	
65701W-23F01 M	0-10	7-18-62	174.6*	- 153.6	000			1-28-63		- 93.2	
		8-13-62	145.1	- 124.7				2-26-63		9.76 -	
		9-11-62	149.6	-				3-25-63		- 96.3	
		10-17-62	119.0					4-72-63	225.0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		12-21-62	106.3	- 85.3				6-26-63		,	

"	
۔	
_	
שַ	
WELLS	
A	
⋖	
Ŋ	
ب	
ய	
_	
LEVELS	
WATER	
ш	
5	
9	
5	
Δ	
Z	
GROUND	
Ó	
œ	
ਨ	
_	

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
A S	SAN FRANCISCO BAY REGION	AY REGION				SA	SAN FRANCISCO BAY REGION	AY REGION			
NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09-02			NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09.02		
75/01E-01K01 M	179.0	7-20-62 8-16-62 9-18-62	207.1	- 28•1 - 33•4 - 27•9 - 25•2	2400	75/01E-16C0,5 M CONT.	105.0	1-23-63 2-21-63 3-22-63 4-00-63	217.0 198.2 182.4	+ 112.0 - 93.2 - 77.4	2000
		10-10-10-10-10-10-10-10-10-10-10-10-10-1	205-1 205-1 201-8 201-8 200-7 199-3	25.1 25.1 25.3 22.8 22.8 22.9		75/01E-31A02 M	151.6	5-20-63 6-17-63 7-31-62 8-03-62 9-05-62 10-04-62	179.8 212.7* 199.2 199.2 211.5* 201.7	_	2400
75/01E-08L01 M	O 88	7 - 5 - 1 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5	173 8 171 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2400			12-04-62 1-03-63 2-04-63 3-05-63 4-02-63 5-06-63	198.7 168.8 161.7 142.9 144.8 144.3	- 47.1 - 17.2 - 100.1 - 80.7 - 5.8	
		1-23-63 1-23-63 2-26-63 3-26-63 4-26-63 5-24-63	151.1 147.2 154.6 144.9 140.4			75/01E-31R01 M	160.0	7-04-62 8-06-62 9-06-62 10-01-62 11-06-62	159.4 154.8 151.2 143.8 148.3	0.6 5.2 8.8 16.2	2400
75/01E-09002 M	6*56	7-01-62 9-01-62 10-01-62 11-01-62 12-01-63 12-01-63 12-01-63 13-01-63 13-01-63 13-01-63 13-01-63 13-01-63	199.0 205.0 206.0 206.0 185.0 192.0 185.0 172.0 165.0	1 1 1 1 1 1 1 1 1 1	2 4 0 0	75/02E-07P01 M	130.0	7-20-62 8-16-62 9-18-62 10-18-62 11-19-62 12-18-63 1-15-63 3-18-63 3-18-63 3-18-63	105 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	111111111111111111111111111111111111111	2400
75/01E-16C05 M	105.0	7-18-62 8-13-62 9-11-62 10-17-62 11-14-62 12-21-62	249 • 0 253 • 3 242 • 5 232 • 0	- 144.0 - 148.3 - 137.5 - 127.0	0005	75/02E-17H01 M	349•0	7-19-62 8-29-62 8-29-62 9-18-62 10-17-62 11-16-62	102 - 1 99 - 4 104 - 5 100 - 7 99 - 1	244	2400

			;	THE TAIL AND	ון הוי ר	LEVEES A! WE					
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
75	SAN FRANCISCO BAY REGION	3AY REGION				SAA	SAN FRANCISCO BAY REGION	Y REGION			
NORTH SANTA	NORTH SANTA CLARA COUNTY		2-09.02			NORTH SANTA CLARA COUNTY	CLARA COUNTY		2-09.02		
75/02E-17H01 M CONT.	349.0	12-18-62 1-15-63	95.3	253.7	2400	75/02W-03Q01 M CONT.	216.7	6-02-63	345.0	- 128.3	2400
		3-18-63 4-17-63 5-17-63 6-13-63	96.3 95.7 99.1 100.5	252°7 253°3 249°9 248°5		75/02W-04B01 M	218.0	7-30-62 8-28-62 9-26-62 10-29-62	248.6 254.8 248.7 232.3	- 30.6 - 36.8 - 14.3	2400
75/02E-33C01 M	462.0	7-19-62 8-15-62 9-17-62 10-17-62 11-16-62 12-14-62	23.7 22.3 22.0 22.0 20.0 3	4338.0 4338.0 430.0 4410.0 4411.1	2400			11-28-62 12-18-62 1-28-63 2-27-63 3-27-63 4-27-63	213.4 200.9 195.7 194.9 195.2 193.7	4.6 17.1 22.3 23.1 22.8 24.3 24.9	
		1-14-63 2-14-63 3-15-63 4-17-63 5-17-63	21.7 20.3 20.7 18.8 18.3	440.3 441.7 441.3 443.2 443.7		75/02W-22A01 M	340•0	6-27-63 7-30-62 8-28-62 9-26-62 10-29-62	193•9 a a a	24.1	2400
75/01W-35C01 M	202.0	7-02-62 8-01-62 9-01-62 10-02-62 11-01-62 12-03-62 1-02-63	245.0 232.0 227.0 236.0 242.0 247.0		2400			111-29-62 12-28-62 1-29-63 2-27-63 3-28-63 4-27-63 5-28-63	26.1 23.2 25.6 15.8 14.1 13.3	313.9 316.8 314.4 3254.2 3256.7 325.1	
		2-01-63 3-01-63 4-01-63 5-01-63 6-01-63	245.0 232.0 217.0 204.0	- 43.0 - 30.0 - 15.0 - 7.0		85/01E-07H02 M	207.0	7-09-62 8-06-62 9-06-62 10-16-62	98.1 92.0 89.1	108.9 115.0 117.9	2400
75/02W-03G01 M	216.7	7-07-62 8-28-62 9-01-62 10-06-62 11-05-62 12-03-62 12-03-63	350.0 347.0 347.0 350.0 352.0 342.0	136.3 136.3 146.3 136.3 135.3 135.3 125.3 125.3 135.3	2400			11-07-62 12-05-62 1-04-63 2-05-63 3-06-63 4-03-63 5-08-63 6-05-63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	117.6 1121.4 1125.1 133.6 139.6 142.1	
		3-07-63 4-02-63 5-07-63	338.0 338.0	- 122.3 - 121.3 - 116.3		85/01E-13H01 M	184.6	7-31-62 8-08-62 9-11-62	47.8 45.1 41.8	136.8 139.5 142.8	2400

State with State												
SAN FRANCISCO BAY REGION 1 C. CLARA COUNTY 1 EN-6 1 1 C.	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET		GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SAN FRANCISCO BAY REGION 1 CLARA COUNTY 1 B44.6												,
184-6	SAN	FRANCISCO B	AY REGION				18	N FRANCISCO	BAY REGION			
18446 11-09-02 39-1	NORTH SANTA C	LARA COUNTY		2-09-02			NORTH SANTA	CLARA COUNTY		2-09-02		
209-0 10-0-1 2-0-1 10-0		184.5	11-08-62	39•1 39•8	145.5	2400		331.2	5-07-63	31.5	299.7	2400
209-0			1-07-63 2-06-63 3-07-63	35.4	143.9 149.2 152.6			314.6	7-17-62	30.2 38.1	284.4	2400
209-0 7-11-62 44-7 164-3 24-00			5-04-63	32.7	151.9				9-13-62 10-10-62 11-13-62	44.3 57.1* 41.7	270•3 257•5 272•9	
299.7 7-11-62 23.9 23.9 23.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2		6				00%			12-12-62	43.7	270.9	
10-26-62 50.0 159.	85/02E-20F03 M	209•0	7-11-62 8-08-62	, D	164 • 3	7 4 00			2-08-63	34.1	279.9	
12-07-62 159-0 1			9-11-62	48.2 50.0	160.8				4-11-63	22.9	291.7	
1-08-63 51.9 157.1 95/02E-01MO1 M 287.6 7-12-62 25.1 262.5 262.5			11-08-62	50.0	159.0				5-10-63	34.6	287.9	
239.7 7-11-62 12.6 22.7 1 24.0 10.06.3 38.8 170.2 25.1 26.0 25.1 26.2 29.9 25.1 26.0 20.0 25.1 26.0 20.0 25.1 26.0 20.0 25.1 26.0 20.0 25.1 26.0 2			1-08-63	51.9	157.1		95/02F-01M01 M	287.6	7-12-62	75.1	26.26	24.00
4-08-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-8 177-2 5-00-7 5-10-63 38-9 38-9 38-9 38-9 38-9 38-9 38-9 38-			2-07-63	50.0	159.0				8-09-62	25.1	262.5	200
5-10-63 35.3 173.7 5-10-63 35.3 173.7 5-10-63 35.3 173.7 5-10-63 35.3 173.7 110.90-62 30.3 257.3 256.5 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 170.6 257.3 257			4-08-63	38.8	179.2				10-08-62	20.00	260.1	
239.7 7-11-62 12:6 227.1 2400 29-62 19-3 220.4 215.3 10-10-62 23.9 220.4 215.3 10-10-62 23.9 220.4 215.3 11-10-62 23.9 220.4 215.3 11-10-62 23.9 21.6 227.1 24.6 11-10-62 23.9 21.6 22.1 214.6 11-10-62 23.9 21.6 22.1 22.6 22.1 214.6 11-10-62 23.9 21.6 22.6 22.1 214.6 11-10-62 23.9 21.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6			5-10-63	35.3	173.7				11-09-62	30.3	257.3	
239.7 7-11-62 12.6 227.1 2400 29.97 7-11-62 12.6 227.1 2400 29.962 2 12.9 3 220.4 26.0 213.4 29-10-62 26.3 26.3 213.4 11-08-62 26.3 213.4 11-08-62 26.3 213.4 11-08-62 26.3 213.4 11-08-62 26.3 213.4 11-08-62 26.3 17.11 270.5 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 26.0 213.7 11-08-63 10.2 226.7 11			0-00-0	* / * 6 7	6.601				12-10-62	31.1	256.5	
9-11-6-2 24-4 215-	85/02E-22D01 M	239.7	7-11-62	12.6	227.1	2400			1-08-63	30.2	257.4	
111006-62 26.34 213.4 215.8 21006-53 21.8 255.8 255.8 21006-53 21.8 255.8 21006-53 21.8 255.8 21006-53 21.8 255.8 21006-53 21.8 250.5 213.7 213.7 213.7 220.6			8-09-62	19.3	220.4				3-11-63	23.0	264.6	
1-08-62 23.9 215.8 5-10-63 17.1 270.5 1-08-62 25.1 214.6 226.9 225.9 1-08-63 12.8 225.9 225.9 1-08-63 12.8 225.9 225.9 2-07-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 14.7 225.9 2-08-63 24.2 225.9 2-08-63 23.9 227.9 2-08-68 23.9 227.9 2-08-68 23.9 227.9 2-08-68 23.9			10-10-62	26.3	213.4				4-08-63	21.8	265.8	
1207-062 1207-062 1207-062 1207-062 1207-062 1207-062 1207-062 1207-062 1207-062 1207-062 1208-063 1208 1208-063 1208-063 1208-063 1208-063 1208-063 1208-062 1208-063 12			11-08-62	23.9	215.8				5-10-63	17.1	269.6	
2-07-63 12.8 226.9 LIVERMORE VALLEY 2-07-63 12.8 226.9 LIVERMORE VALLEY 2-07-63 12.8 226.9 LIVERMORE VALLEY 4-08-63 14.7 225.6 25.9 25.0 25.02E-25.01 M 555.3 9-01-62 12.0 544.1 5-10-63 10.2 229.5 25.0 25.01W-26.01 M 416.9 9-01-62 112.3 304.6 5-10-63 10.2 229.5 25.01W-26.01 M 416.9 9-01-62 112.3 304.6 7-06-62 33.3 207.9 24.00 35.01E-02E.01 M 361.0 9-00-62 M 324.5 11-06-62 33.9 297.3 35.01E-02E.01 M 372.9 9-01-62 150.5 222.4 12-04-62 33.9 297.3 35.01E-02E.01 M 562.2 9-01-62 139.4 422.8 2-04-63 30.1 300.9 35.02E-10H01 M 551.0 9-01-62 139.4 422.8			12-01-62	25.1	213.7)	
4-08-63 14.7 225.0 25.02E-25.01 M 555.3 9-01-62 12.0 5443.3 4-08-63 14.7 225.0 225.0 25.02E-25.01 M 555.3 9-01-62 12.0 5443.3 4-08-63 14.7 225.0			2-07-63	12.8	226.9		LIVERMORE VALLEY			2-10-00		
M 331.2 7-06-62 33.3 297.9 2400 25.01W-26C01 M 416.9 9-01-62 112.3 304.6 324.5 3-07-62 33.3 297.9 2400 35.01E-02E01 M 361.0 9-00-62 M 3-00-63 34.2 297.9 2400 35.01E-02E01 M 361.0 9-00-62 M 3-00-62 33.9 297.3 35.01E-02E01 M 372.9 9-01-62 150.5 222.4 17.5 297.2 17.01-62 33.9 297.3 35.01E-02E01 M 372.9 9-01-62 150.5 222.4 17.5 297.2 17.01-62 33.9 297.3 35.01E-02R01 M 562.2 9-01-62 139.4 4.22.8 3-05-63 30.7 300.5 35.02E-02R01 M 551.0 9-01-62 139.4 4.22.8 3-05-63 30.7 300.5			4-08-63	14.7	225.0			555+3	9-01-62	12.0	543.3	5100
M 331.2 7-06-62 33.3 297.9 2400 35/01E-02E01 M 361.0 9-00-62 M 324.5 324.5 305-62 35.1 297.9 2400 35/01E-02E01 M 361.0 9-00-62 M 3-00-62 M 3-05-62 33.9 297.3 35/01E-11H01 M 372.9 9-01-62 150.5 2222.4 12-04-62 33.9 299.2 299.2 35/01E-11H01 M 372.9 9-01-62 150.5 2222.4 12-04-62 33.9 2.0 299.2 35/01E-11H01 M 372.9 9-01-62 150.5 222.4 3-00-63 30.3 30.3 30.3 30.3 30.3 30.3 30.3 30			6-07-63	11.0	228.7			416.9	9-01-62	112.3	304.6	5100
8-05-62 35.1 297.0 35.01E-02E01 M 361.0 9-00-62 # 10-29-62 35.1 295.4 10-29-62 35.9 297.3 35.01E-02E01 M 372.9 9-01-62 150.5 2222.4 11-06-62 32.9 297.3 35.01E-11H01 M 372.9 9-01-62 150.5 2222.4 12-04-62 32.2 299.2 35.02E-02R01 M 562.2 9-01-62 139.4 4.22.8 3-05-63 30.7 300.5 35.02E-02R01 M 551.0 9-01-62 0		331.2	7-06-62	33.3	597.9	2400			3-00-63	95.4	324.5	
33.9 277.3 35/01E-11H01 M 372.9 9-01-62 150.5 222.4 32.2 299.0 32.2 299.2 35/02E-02R01 M 562.2 9-01-62 139.4 422.8 30.3 300.5 35/02E-10H01 M 551.0 9-01-62 0			8-03-62	34.2	297.0			361.0	9-00-65	ŧ		5130
33.9 297.3 35/01E-11H01 M 372.9 9-01-62 150.5 222.4 32.2 299.0 35/02E-02R01 M 562.2 9-01-62 139.4 422.8 39.1 292.1 35/02E-02R01 M 562.0 9-01-62 139.4 422.8 30.3 300.9 35/02E-10H01 M 551.0 9-01-62 п			10-29-62	0.00 0.00 0.00	297.3							
32.0 299.2 35/02E-02R01 M 562.2 9-01-62 139.4 422.8 30.3 300.9 3 35/02E-10H01 M 551.0 9-01-62 0			11-06-62	33.9	297.3			372.9	9-01-62	150.5	222.4	5100
30.3 300.5 35/02E=10H01 M 551.0 9-01-62 B			1-03-63	32.0 39.1	299.2			562.2	9-01-62	139.4	422.8	5100
30./ 300.5 35/02E-10H01 M 551.0 9-01-62 m			3-05-63	30.3	300.9				3-00-63			
			4-05-63	7000	300.5			551.0	9-01-62	Þ		5100

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SAN	SAN FRANCISCO BAY REGION	BAY REGION				SA	SAN FRANCISCO BAY REGION	BAY REGION			
LIVERMORE VALLEY			2-10.00			SAN GREGORIO VALLEY	F		2-24.00		
35/02E-10H01 M CONT.	551.0	3-00-63	94.3	456.7	5100	75/05W-15E02 M CONT.	30•0	10-18-62		19.3	5050
HALF MOON BAY TERRACE	ACE		2-22-00					1-23-63	12.0	18.0	
M 10 100 - 1140 x 3 4	73.0	7-18-62	24.00	0.64	5050			3-19-63		17.5	
	•	8-17-62	24.2	80 - 80				4-24-63		19.0	
		9-18-62	21.6	51.4 53.5				6-19-63	13.6	16.4	
		11-21-62	17.5	55.5		75/05W-15H02 M	0.04	3-19-63	15.4	24.6	4050
		1-23-63	15.2	57.8		PESCADERO VALLEY			2-26-00		
		3-18-63	13.2	59.8							
		4-24-63	10.9	62.1		85/05W-09H01 M	20.0	7-18-62	6 • 4	15.1	5050
		5-23-63	11.5	61.5				8-17-62	2 4 4 4	14.6	
		6-19-63	15.5	60.0				10-18-62	4 .	15.9	
55/05W-29F03 M	20.0	3-19-63	*		5050			11-21-62	6.4	15.1	
	,	:	6	:				12-21-62	w r	16.5	
5S/05W-29N01 M	0.94	3-19-63	8.62	16.2	0404			2~23~63	0 4	16.0	
65/05W-08501 M	108.0	3-19-63	2.65	48.8	9090			3-19-63	6.4	15.7	
SAN GREGORIO VALLEN	>		2-24.00					5-23-63	4	15.4	
								6-19-63	7.7	15.3	
75/05W-13E01 M	80.0	7-18-62 8-17-62	12.6	67.4 66.8	5050	85/05W-11M01 M	45.0	3-19-63	13.1	31.9	5050
		9-18-62	E. 6.	65.7	•						
		10-18-62	13.5	66.5							
		11-21-62	100	0.04	•						
		1-33-63	10.7	60.3							
		2-20-63	0.00	71.1							
		3-19-63	1.6	70.3							
		4-24-63	10.3	69.7							
		5-23-63	11:	6.89							
		6-19-63	11.4	69.6							
75/05W-15C01 M	80.0	3-19-63	11:5	68.5	5050						
75/05W-15E01 M	15.2	3-19-63	3 • 3	71.9	5050						
75/05W-15E02 M	30.0	7-18-62	12.6	17.4	9090						
		9-18-62	13.6	15.4							

3		
7	ון נו	
1	į	
3	(
Š)	

			21100110	:	1						
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
730 CEP	CENTRAL COASTAL REGION	REGION				30	CENTRAL COASTAL REGION	REGION			
SOQUEL VALLEY			3-01.00			PAJARO VALLEY			3-02-00		
115/01W-09L01 M	124.2	7-18-62 8-17-62 9-18-62 10-18-62 11-20-62 12-20-62 12-20-63 13-19-63 4-21-63 6-19-63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000000 0000000000000 000000000	5050	125/02E-31K01 M CONT.	30.0	9-101-120-16-2-101-120-16-2-101-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-16-2-10-1-120-	31.0 30.1 30.1 30.1 28.0 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26	2 ~	5 050 5 100 5 050 5 100 5 050
115/01W-15H01 M PAJARO VALLEY	91.7	6-19-53	3-02.00	31.4	5050	135/02E-05801 M	136.0	7-18-62 8-16-62 9-18-62 10-18-62			5050
125/01E-24601 M	7*6	7-18-62 8-16-62 9-16-62 10-18-62 11-20-62 11-20-62 12-20-62 12-20-63 1-22-63 1-23-63 1-23-63 1-23-63 1-23-63	9 4 8 8 9 9 4 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5050	GILROY-HOLLISTER VALLEY	Y-HOLLISTER VALLEY	11-20-62 12-20-62 1-20-63 1-12-63 2-19-63 3-19-63 4-23-63 5-21-63 6-18-63	1388.3 1376.2 1376.2 1376.2 1376.2 1376.2 1376.3 13	0.711100.934	
125/02E-16J01 M	20*5	6-181-6-5 10-18-6-5 9-19-6-5 11-20-6-5 11-20-6-5 11-20-6-5 11-20-6-3 1		1 1	5050	95/03E-27C02 M	347.0	7-16-62 8-10-62 10-09-62 11-13-10-62 12-10-62 12-10-63 3-12-63 3-12-63 5-13-63		235.3 235.3 231.0 231.0 235.0 235.0 235.0 235.0 235.0 255.0 255.0	7 4 00
125/02E-31K01 M	30.0	7-18-62			5050	95/03E-29801 M 105/03E-34L01 M	397.6	4-03-63	8 • 1	389.5	0505

TABLE C-2

GROUND WATER LEVELS AT WELLS

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CE	CENTRAL COASTAL REGION	REGION				O.E.	CENTRAL COASTAL REGION	L REGION			
SOUTH SANTA	SOUTH SANTA CLARA COUNTY		3-03-01			SAN BENITO COUNTY	OUNTY		3-03-02		
_05/03E-34L01 M CONT.	249.3	8-16-62		240.4	5050	115/05E-13D01 M CONT.	255.7	6-18-63			5050
		11-19-62	9 • 1	240.9	•••	125/04E-20C01 M	152.9	3-00-63	27.2	125.7	5101
		1-23-63	-	239.0		125/05E-12F01 M	216.3	7-17-62	95.2*	121.1	5050
		2-18-63	6.4 8.4	242.6				8-16-62	88.3	128.0	
		4-03-63	7.2	242.1				10-17-62	91.5*	124.8	
		4-23-63	0 00 4 0	242.9				11-19-62	88°9	127.4	
		6-18-63	8 .0	241.3				1-21-63	80.6	135.7	
105/04E-18602 M	259.5	1-17-62	101.4	158.1	5050			3-00-63	77.0	139.3	5101
		8-16-62	98.6	160.9				3-20-63	78.2	138.1	5050
		9-09-62	E	154.7				4-23-63	□ @		
		11-19-62	_	171.2				0	D		
		12-19-62		176.6		125/05E-33A01 M	280.0	7-17-62	90.1	189.9	5050
		1-21-63	86.7	172.8				8-16-62	91.4	188.6	
		2-18-63	76.5	183.0	-			10-18-62	000	191.5	
		4-03-63	64.5	195.0				11-19-62	*6*66	180.1	
		4-23-63	54.2	205.3				12-20-62	88.2	191.8	
		5-20-63	50.3	209.2				1-21-63	101.9*	178.1	
		6-18-63	0°E9	196.5				3-20-63	93.2	186.8	
105/04E-35E01 M	248.0	4-03-63	81.7	166.3	2050			4-23-63	81.5	198.5	
115/03E-01861 M	227.0	4-00-63	54.1	172.3	2400			6-18-63	п		
SAN BENITO	COUNTY		3-03-02			135/05E-11001 M	325.5	3-00-63	24.0	271.5	5101
115/05E-13001 M	255.1	7-17-62	25.2	230.5	5050	SALINAS VALLEY			3-04-00		
		9-19-62	25.1	230.6		PRESSURE AREA 180 FOOT AQUIFER	A 180 FOOT AG	DUIFER	3-04.01		
		10-17-62		227.2		145/02F-03/01 M	4.01	12-07-62	17.6	7.0	2100
		12-20-62		0.022				3-22-63	10.1	0.5	
		1-21-63	31.1	224.6		M 10151-15101 M	03.0	12-05-62	24.5	- 1.5	2100
		3-20-63	23.4	232.3				3-19-63	18.0	2.0	
		4-00-63		235.7	5050	155/02E-01001 M	42.0	7-18-62			2100
		5-21-63		231.9				8-15-62	<u> </u>		

GROUND WATER LEVELS AT WELLS

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
	CENTRAL COASTAL REGION	AL REGION				CE	CENTRAL COASTAL REGION	, REGION			
PRESSURE AR	PRESSURE AREA 180 FOOT AGUIFER	AQUIFER	3-04-01			FOREBAY AREA	_		3-04-03		
155/22E-01001 M CONT.	42.0	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 7.7 - 10.7 2.9 7.1 13.3 11.3	2100	175/05E-11CO1 M	172.0	7-17-62 9-14-62 9-17-62 10-19-62 11-19-62 12-14-62 12-14-62 12-14-62 12-14-62 12-14-62 13-15-63 13-25-63 13-25-63	62 62 53 53 53	109.8 109.7 110.6 112.3 113.8 115.3	2100
155/03E-16M01 M	58.0	12-24-62	41.0	17.0	2100			5-14-63 6-13-63	U *		
155/04E-33A01 M	125.0	12-07-62	7 * 68	35.3	2100	ARROYO SECO CONE	CONE		3-04-04		
165/04E-11D01 M	110.0	12-06-62		0 40 40 40 40 40 40 40 40 40 40 40 40 40	2100	185/06E-15M01 M	277.0	12-12-62 3-21-63	97.3	179.7	2100
PRESSURE AREA	3-23 REA 400 FOOT AQUIFER	AQUIFER	6	•		195/06E-11C01 M	373.0	7-17-62 8-13-62 9-17-62		178.0	2100
135/02E-31001 M	11.0	12-06-62 3-21-63	20.2	9.2	2100			10-18-62 11-19-62 12-17-62		179.8 187.0 199.8	
145/03E-18J01 M	0.69	7-19-62 8-15-62 9-18-62 10-22-62 11-20-62 12-10-62 1-18-63		- 27.3 - 22.5 - 11.5 - 7.8 - 2.9 - 1.7 5.4	2100	UPPER VALLEY AREA	. AREA	1-17-63 2-18-63 3-20-63 4-17-63 5-15-63 6-13-63	168.0 161.5 153.2 147.0 146.0 B	205.0 211.5 219.8 226.0 227.0	
		3-18-63 4-16-63 5-14-63 6-14-63	65.1 60.6 68.0 93.0	3.9 8.4 1.0 - 24.0		195/07E-10P01 M	315.0	7-16-62 8-16-62 9-17-62 10-18-62	88 6 6 8 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8	228.2	2100
EAST SIDE AREA	IREA		3-04.02		-			11-15-62		230.9	
165/05E-17R01 M	181.0	12-14-62 3-22-63	113.3	72.0	2100			1-17-63 2-18-63 3-20-63 4-17-63 5-15-63		230.7 231.3 233.1 233.5	

TABLE C-2

GROUND WATER LEVELS AT WELLS

					,	אין בוי בבינבט או אי	***				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CEI	CENTRAL COASTAL	. REGION				CE	CENTRAL COASTAL REGION	REGION			
UPPER VALLEY	AREA		3-04.05			PASO ROBLES			3-04-06		
205/08E-05R01 M	337.0	12-18-62 3-19-63	64.2	272.8	2100	265/12E-26E01 M	839.0	4-11-62	190.2	648.8 643.3	5100
215/09E-06K01 M	344.0	12-03-62	12.3	331.7	2100	265/12E-35M01 M	818.0	4-10-62	135.9	682.1 673.6	5100
215/10E-32NO1 M	0.004	12-03-62 3-18-63	21.2	378.8 380.8	2100	265/13E-10D01 M	0.661	4-09-62	8 • 1 8 • 6	790.9	5100
225/10E-16K01 M	472.0	12-04-67	74.1	397.9	2100	265/13E-34801 M	1005.0	4-12-63	153.7	851•3	5100
PASO ROBLES			3-04-06			265/14E-16L01 M	1018.0	4-09-62	55.6	962.4 954.1	5100
245/10E-11C01 M	618.0	4-12-63	50.5	567.5	5100	265/14E-35D01 M	1134.5	4-11-62	114.9	1019.6	5100
245/11E-25N01 M	603.0	4-12-63	37.1	565.9	5 100	2 (0000)	3		30.00	1 7 8 0 1	-
245/11E-33R01 M	264.0	4-12-63	19.1	6.446	5100	E 1055-051/507	1114.0	4-09-62	28.0	1086.0	2100
245/11E-35J01 M	616.8	4-12-63	0.69	547.8	5100	265/15E-28002 M	11111.4	4-11-62	60.1	1062.3	5 100
245/12E-17N01 M	169.5	4-12-63	14.9	154.6	5100	265.15F-29N01 M	1134.4	29-11-4	7-77	1057-0	2.00
245/15E-33C01 M	1225.0	4-15-63	29.6	1195.4	5100			4-15-63	76.4	1058.0	
255/11E-35601 M	8.618	4-12-63	40.5	839.3	5100	275/12E-21N01 M	141.5	4-10-62	1.2	740.3	5100
255/12E-17J01 M	639.0	4-12-63	7.77	9.469	5100	275/13E-24N01 M	1030•0	4-10-62	17.5	1012.5	5100
255/12E-17R01 M	639.0	4-12-63	9.97	592.4	5100			4-12-63	0.8	1022.0	
255/12E-26K01 M	147.5	4-15-63	109.0	638.5	5100	275/13E-32801 M	1103.5	4-10-62	48.5	1055.0	5100
255/13E-11E01 M	1184.0	4-09-62	39•1 39•1	1144.9	5100	275/15E-10R02 M	1130.0	4-11-62	45.1	1084.3	5100
255/16E-17L01 M	1164.5	4-09-62	29.5	1135.0	5100	275/15E-13A01 M	1155	4-10-62	11.2	1142.3	5100
255/16E-30M01 M	1218.0	4-09-62	12.8	1145.2	5100	275/16E-21E02 M	1253.0	4-10-62		1197.2	5100
265/12E-04N01 M	674.5	4-09-62	43.5 44.5	631.0	5100	285/12E-10601 M	825.0		- 1.2	1195•1 825•2	5100

ഗ
WELL
m
℥
_
ΑT
~
LEVELS
ب
ш
>
Ĭπ
٦,
_
~
Ľ.
w
-
d
WATER
-
ROUND
=
=
\mathbf{Q}
œ

			GROOND		WAIER LEVELS	ī	WELES				
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	OATE	GRD SUR TO WATER SUR IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CE	CENTRAL COASTAL REGION	. REGION				30	CENTRAL COASTAL REGION	REGION			
PASO ROBLES			3-04.06			CARMEL VALLEY			3-07.00		
285/12E-10G01 M	825.0	4-12-63	7.7	816.3	5100	165/01E-25801 M	140.0	3-00-63	13.0	127.0	9100
285/12E-10R02 M	805.0	4-09-62	9.2	795.8	9100			5-21-63 6-17-63		126.2 125.3	
285/12E-13N01 M	850.3	4-11-62	6.1	844.2	5100	WEST SANTA CRUZ TERRACE	TERRACE	0	3-26.00	30.7	0,00
285/12E-14G01 M	824.6	4-11-62	1	817.2 825.9	5100	115/02W-22K01 M	30•0	79-67-11			
285/13E-04K01 M	1199.5	4-10-62	62.2	1137.3	5100						
285/13E-04K02 M	1195.0	4-10-62	0.69	1126.0	5100						
285/14E-07E01 M	1150.0	4-10-62	10.0	1140.0	5100						
285/16E-23M01 M	1439.0	4-10-62	39.6	1399.4	5100						
295/13E-05F03 M	915.6	4-11-62	12.1	903.5	5100						
295/13E-05K02 M	928.5	4-11-62	6.7	921.8	5100						
295/13E-06A01 M	920.0	4-11-62	38.3	881.7	5100						
295/13E-19H01 M	1002.5	4-10-62	8.1	9.766	5100						
CARMEL VALLE			3-07.00								
165/01E-25801 M	140.0	7-20-62 3-14-62 9-18-62	15.3 15.4	124.7	5050						
		10-16-62		124.9							
		1-18-63		124.0	5100						

		- 1
		- 1
		-
		1

APPENDIX D

SURFACE WATER QUALITY

TABLE OF CONTENTS

		Page
Table D-1	Sampling Station Data and Index	D -9
Table D-2	Analyses of Surface Water North Coastal Region (No. 1) San Francisco Bay Region (No. 2) Central Coastal Region (No. 3) South Bay Aqueduct	D-11 D-11 D-19 D-31 D-48
Table D-3	Summary of Coliform Analyses	D-52
Table D-4	Spectrographic Analyses of Surface Water	D-53
Table D-5	Radioassays of Surface Water	D - 54
Table D-6	Description of Salinity Observation Stations and Maximum Observed Salinity at Bay and Delta Stations	D - 57
Table D-7	Salinity Observations at Bay and Delta Stations	D-58
Figure D-1	Electrical Conductance Alameda Creek near Niles	D-61
Figure D-2	Electrical Conductance Bethany Forebay at South Bay Pumping Plant	D-62

SURFACE WATER QUALITY

This appendix contains data pertaining to the quality of surface waters in the Central Coastal Area. The data presented are the observed physical, chemical, bacteriological, and radiological characteristics of surface waters sampled during the 1963 water year, which covers the period from October 1, 1962 through September 30, 1963.

Laboratory Methods and Procedures

Methods of mineral and bacterial analysis, in general, are those described in the American Public Health Association publication, "Standard Methods for the Examination of Water and Sewage", 11th Edition, 1960. In some cases, the methods described in U. S. Geological Survey, "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454, 1960, have been employed.

Types of analyses normally made of surface water samples collected by the Department are mineral, bacterial, radiological, and trace element.

Sampling Station Data and Index

Table D-1, "Sampling Station Data and Index", is an alphabetic listing of stations from which surface water samples were collected. The analyses of these samples are reported in subsequent tables. The station number is an arbitrary number that has been assigned to each station. The location pertains to either the township, range, and section of the Public Land Survey or to latitude and longitude. The stations are classified into monitoring, investigational, and operational types.

Analyses of Surface Water

Table D-2, "Analyses of Surface Water", includes physical characteristics of the water and the results of mineral and bacterial analyses. The data are presented by region and by stream from north to south within a region. At the time the samples were collected for laboratory examination, field determinations were made for dissolved oxygen (DO) by the modified Winkler method, water temperature, and pH. Visual inspections were made of the streams and the physical conditions were noted. Field measurements of DO and temperature are reported in Table D-2.

Samples collected for bacterial examination were mailed or delivered to the laboratory. Every effort was made to get the samples to the laboratory as quickly as possible. Results of bacterial determinations presented in this appendix should be considered as qualitative. Undue weight should not be given to the values for quantitative purposes.

Data from operational stations are shown separately at the end of the table. These data consist of analyses of South Bay Aqueduct water.

Summary of Coliform Analyses

Coliform data included in Table D-2 are made more usable by summarizing the results of the analyses of the 24 samples collected at each station during the year. Table D-3 is a summary of these analyses.

Spectrographic Analyses of Surface Water

Spectrographic analyses were made to determine the concentration of 17 different metals in surface water samples. Most of these metals are present in very small amounts and are often called trace metals. The concentrations indicated in Table D-4 are in parts per billion instead of parts per million

which is commonly used in reference to concentrations of mineral constituents.

The symbols included with the constituent quantities are:

- < Less than the amount indicated.
- \leq Equal to or slightly less than the amount indicated.

Radioassays of Surface Water

Table D-5, "Radioassays of Surface Water", presents the radioactivity of surface water samples collected at 24 monitoring stations. The samples were collected in May and September at the same time that samples were collected for standard mineral analyses shown on Table D-2. The methods and procedures of sample preparation and determination of radioactivity in surface water are described in "Standard Methods for the Examination of Water and Sewage, 11th Edition".

Results are expressed as pico curies per liter (pc/l). The term pico curies is also written micro-micro curies and is further defined as 10^{-12} curies. Four values are reported for each sample: (a) beta activity in the solids retained on the filter (suspended material), (b) beta activity in the filtrate (dissolved material), (c) alpha activity in the solids, and (d) alpha activity in the filtrate. Sample counts are corrected for background and geometric efficiency. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as $x \pm y$ pc/l. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y 90 percent of the time.

Salinity Observations at Bay and Delta Stations

Table D-6 describes the ten stations for which salinity data are listed in Table D-7 and includes maximum observed salinity at bay and delta stations.

Table D-7 presents chloride concentrations of samples collected at ten stations between Sobrante Beach and Collinsville for the period October 1, 1962 through June 30, 1963. From July 1, 1963 through September 30, 1963, samples were collected from only six of the stations.

Electrical Conductance

Data from two electrical conductivity recorders are present in Figures D-1 and D-2. These data are machine prepared graphs. Daily mean values are plotted in Figure D-1 and single daily reading at 1300 hours are plotted in Figure D-2. Each figure or graph presents the data from a station. The beginning of the continuous conductivity record occurred during 1963 and is indicated by the beginning of the graph on each figure.

TABLE D-1 SAMPLING STATION DATA AND INDEX

Station	Station Number	Location	Beginning of Record	Station ^C Type	Sampled ^d by	Analysis on page
ALAMEDA CREEK NEAR NILES	73	4S/1W-15	Dec., 1951	м	DWR	D-23
ALAMEDA CREEK NEAR NILES	73	4S/1W+15	Dec., 1959	М	USGS	D-20
ALISAL CREEK ON OLD STAGE ROAD NEAR SALINAS	200	14S/4E-30	e	м	MCFCWCD	D-40
ALTAMONT CREEK AT ALTAMONT TURNOUT OF SOUTH BAY AQUEDUCT	201	2S/3E+31	June, 1962	0	DWR	D-27
ARROYO DE LA LAGUNA AT VERONA	202	3S/1E-29	Dec., 1959	М	USGS	D-23
ARROYO DEL VALLE NEAR LIVERMORE	71	4S/2E-4	July, 1958	м	DWR	D-26
ARROYO SECO RIVER NEAR SOLEDAD	203	19S/6E-16	е	м	MCFCWCD	D-42
BEAN CREEK ONE MILE EAST OF FELTON	204	10S/2W-22	Aug., 1963	I	DWR	D-32
BEAR CREEK AT BOULDER CREEK	205	9S/2W+30	Aug , 1963	1	DWR	D-34
BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK	206	9S/2W-10	Aug , 1963	1	DWR	D+34
BENICIA	235	38°02' Lat ^b 122°09' Long	1944	н	DWR	D-57
BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT	207	2S/3E-10	April, 1962	0	DWR	D-48
BIG RIVER NEAR MOUTH	8 c	17N/17W-24	Jan., 1959	м	DWR	D+12
BOULDER CREEK AT BOULDER CREEK	208	9S/2W-30	Aug., 1963	I	DWR	D-34
BRANCIFORTE CREEK NEAR SANTA CRUZ	209	11S/1W-7	Aug , 1963	I	DWR	D-31
CARMEL RIVER AT ROBLES DEL RIO	83	17S/2E-2	Jan., 1952	м	DWR	D-47
CLEAR CREEK AT BROOKDALE	210	9S/2W-32	Aug., 1963	I	DWR	D-34
COLLINSVILLE	236	38°04' Lat ^b 121°51' Long	1924	м	DWR	D-57
COYOTE CREEK NEAR MADRONE	82	9S/3E-9	Jan., 1952	м	DWR	D-29
CROCKETT	237	38°03' Lat ^b 122°13' Long	1946	м	DWR	D-57
FALL CREEK ONE-HALF MILE NORTH OF FELTON	211	10S/2W-16	Aug., 1963	1	DWR	D-33
GABILAN CREEK ON OLD STAGE ROAD NEAR SALINAS	212	13S/3E-35	е	м	MCFCWCD	D+39
GUALALA RIVER, SOUTH FORK, NEAR ANNAPOLIS	9 a	10N/14W	Jan., 1959	м	DWR	D-14
INNISFAIL FERRY	238	38°11 ° L at ^b 121°58 ° Long	1929	м	DWR	D+57
KINGS CREEK TWO MILES NORTH OF BOULDER CREEK	213	9S/2W-18	Aug , 1963	1	DWR	D-35
LIVERMORE CANAL AT PATTERSON RESERVOIR	214	3S/3E+6	Aug., 1962	0	DWR	₽=50
LOMPICO CREEK ONE MILE NORTH OF OLYMPIA	215	10S/2W-11	Aug., 1963	1	OWR	D-33
LOS GATOS CREEK NEAR LOS GATOS	74	8S/1W-29	Dec., 1951	м	DWR	D+28
LOVE CREEK AT SEN LOMOND	216	10S/2W-+	Aug., 1963	I	DWR	D-34
MARTINEZ	239	38°02' Lat ^b 122°08' Long	1926	м	DWR	D-57
NACIMIENTO LAKE AT DAM NEAR SAN MIGUEL	217	25S/10E-15	e	м	MCF CWCD	D+46
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	25S/11E-4	July, 1958	м	DWR	D=45
NAPA RIVER NEAR ST. HELENA	7.2	8N/5W-33	Dec., 1951	M	DWR	D-19
NATIVIDAD CREEK ON OLD STAGE ROAD NEAR SALINAS	218	14S/3E-12	е	м	MCFCWCD	D-40
NAVARRO RIVER NEAR NAVARRO	8ъ	15N/16W-7	Jan., 1959	м	DWR	D-13
NEWELL CREEK ONE MILE NORTHEAST OF BEN LOMOND	219	10\$/2W-3	Aug., 1963	1	DWR	D-33
NOYO RIVER NEAR FORT BRACG	10c	18N/17W-10	Jan., 1959	м	DWR	D-11

a Locations are referenced to Mt. Diablo Sase and Meridian.
b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.
c M-Monitoring, I-Investigational, 0-Operational.
d DMR-Department of Water Resources, USGS-United States Geological Survey, MCFMCD-Monterey County Flood Control and Water Conservation District.

e Beginning of record prior to 1950.

TABLE D-1 SAMPLING STATION DATA AND INDEX

Station	Station Number	Location ^a	Beginning of Record	Station ^C Type	Sampled ^d by	Analysis on page
PAJARO RIVER NEAR CHITTENDEN	77	12S/3E-12	Dec., 1951	м	DWR	D-36
PANCHU RICU CREEK NEAR SAN ARDO	220	22S/10E-16	e	м	MCF CWCD	D-42
PITTSBURG	240	38°02' Lat ^b 121°53' Long	1945	М	DWR	D-57
PORT CHICAGO	241	38°04' Lat ^b 122°02' Long	1946	M	DWR	D=57
RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE	1Da	17N/11W-6	May, 1951	М	DWR	D-18
RUSSIAN RIVER AT GUERNEVILLE	10	8N/10W-32	Aprıl, 1951	M	DWR	D-15
RUSSIAN RIVER NEAR HEALDSBURG	9	9N/9W=22	April, 1951	М	DWR	D-16
RUSSIAN RIVER NEAR HOPLAND	8 a	14N/12W-36	April, 1951	м	DWR	D-17
SALINAS RIVER NEAR BRADLEY	43c	23S/10E-15	July, 1958	м	DWR	D-42
SALINAS RIVER AT CHUALAR BRIDGE NEAR CHUALAR	221	16S/4E-8	e	M	MCF CWCD	D-41
SALINAS RIVER AT HILLTOWN BRIDGE NEAR SPRECKELS	222	15S/3E-18	е	м	MCFCWCD	D-41
SALINAS RIVER AT PASO ROBLES	43a	26S/12E-28	April, 1951	м	DWR	υ-46
SALINAS RIVER AT SAN ARDO BRIDGE NEAR SAN ARDO	223	22S/10E-17	e	м	MCFCWCD	D-42
SALINAS RIVER AT SAN LUCAS BRIDGE NEAR SAN LUCAS	224	21S/9E-8	e	м	MCFCWCD	D-42
SALINAS RIVER NEAR SPRECKELS	43	15S/3E-18	Apr 11, 1951	М	DWR	D-40
SAN ANTONIO RIVER AT PLEYTO BRIDGE NEAR PLEYTO	225	24S/9E-3	e	M	MCFCWCD	D-43
SAN ANTONIO RIVER NEAR PLEYTO	43d	24S/9E-3	July, 1958	м	DWR	D-44
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	15S/7E-28	July, 195B	M	DWR	D-37
SAN LORENZO RIVER AT BIG TREES	226	10S/2W-27	Aug., 1963	I	DWR	D-31
SAN LURENZO RIVER AT BIG TREES NEAR FELTON	75	10S/2W-27	Dec , 1951	M	DWR	D-31
SAN LORENZO RIVER AT BOULDER CREEK	227	9S/2W-30	Aug , 1963	I	DWR	D-35
SAN LORENZO RIVER SIX MILES NORTH OF BOULDER CREEK	228	8S/3W-25	Aug., 1963	1	DWR	D-35
SAN LORENZO RIVER AT FELTON	229	10S/2W-22	Aug., 1963	I	DWR	D-33
SAN LORENZO RIVER AT SANTA CRUZ	230	11S/2W-12	Aug., 1963	I	DWR	D-31
SOBRANTE BEACH	242	38°00' Latb 122° 20' Long	1961	М	DWR	D-57
SOQUEL CREEK AT SOQUEL	76	1122° 20' Long 11S/1W-10	Dec., 1951	М	DWR	D-35
SPOONBILL CREEK	243	38°D4' Lat ^b 121°54' Long	1957	М	DWR	D-57
TORO CREEK AT HIGHWAY 117 BRIDGE NEAR SALINAS	231	15S/2E-35	е	м	MCFCWCD	D-40
TWO BAR CREEK ONE MILE NORTH OF BOULDER CREEK	23.2	9S/2W-19	Aug., 1963	ĭ	DWR	D-35
UVAS CREEK NEAR MORGAN HILL	96	10S/3E-17	July, 1952	М	DWR	D-38
WEST SUISUN	244	38°05' Lat ^b 122°06' Long	1946	M	DWR	D-57
ZAYANTE CREEK AT FELTON	233	10S/2W-22	Aug , 1963	I	DWR	D-32
ZAYANTE CREEK AT ZAYANTE	234	10S/2W-2	Aug , 1963	1	DWR	D-33

a Locations are interenced to Mt. Diablo Base and Meridian
b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section.
c M-Monitoring, I-Investigational, 0-Operational.
d DWR-Department of Witer Resources, USGS-United States Geological Survey, MCPMCD-Moniterey County Flood Control and Water Conservation District.

e Beginning of recording to to 1950

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

_	_		_														
		Andly 8 4			USGS												
		n opm			13.	23.	62 13.	2.3	62.	62 6 2	21.	230.	23.	2 3	2.3	2.3	
	5	- L.	1		۰	~	•	5	20	7	35	4		2	-	7	
Γ		0 z	Ę		0	0	0	0	0	0	0	0	0	0	0	0	
		Total N C	£00		63	9	20	52	07	53	31	47	55	65	59	61	
	į	5 5			29	27	27	56	38	24	27	25	27	27	27	36	
	Total	Polyde cod -	1		112	113e	88 _e	95 _e	77e	95e	965	798	102	107	110	1058	
		Other constituents										PO₄ =0.05			As = 0.01	ABS = 0.0 PO4 = 0.10	
	Ì	Stice (SOS)	1									20				81	
	5	Boron S	1		0.1	0.2	1.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
m.llton	squivolents per million	Fluo-	3	10c)								0.03				0.01	
ports per milion	innis	trota	(80a)	(SIA. 10								0.0				0.0	
٩	a doive	ride-	(CI)	BRAGG	0.27	0.21	0.17	0.21	6.0	8.6	0.17	5.8	0.21	8.6	9.0	9.2	
	5	Sul -	(30%)	R PORT								0.10				0.10	
	stituanta	Bicor - bonote	(HCO)H)	RIVER NEAR PORT	1.43	88	1 13	1.21	56 0.92	$\frac{72}{1.18}$	41	1.05	1.31	1.33	8 I	1.36	
	Mineral constituents	Cerbon -	(\$0.0)	NOYD R	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00	0.00	0.00	
	ž	Potos-	Ξ.									0.03				0.02	
l		Sodium (No)			0.52	0.44	0.37	0.37	0.35	7.8	5.2	0.33	9.3	11 0.48	0.44	0.44	
		Mogne.	(6M 0)		1 26	1.20	0.99	1.040	0.80	1.06	0.610	4.1	1.10	1.30	1.19	5.1	
		Colcium (Co)										0.60				0.80	
		Į.,	Þ		7.3	7.3	9.0	7.3	7.2	7.3	7.6	7.2	7.	7.2	8.1	8.0	
	Specific	(micrombos pH ot 25°C) e			168	170	134	142	116	143	68	128	153	160	165	170	
T		7,5	% So1		06	86	103	93	66	104	96	66	96	96	106	95	
		Dissolved	E de		9.0	11.11	11.9	10.8	10.5	11.5	10.5	10.4	9.6	9.0	9.7	6.8	
+		<u> </u>			0,	- 05	67	87	\$5	52	52	95	09	99	99	\$	
		Osschorge Temp			51	54	125	72	280	63	1,600	122	36	20	12	5.7	
		ond time	P.S. 9		10-9-62	11-14-62	12-11-62	1-3-63	2-12-63 1220	3-12-63	4-10-63	5-7-63 1030	6-13-63 0815	7-10-63	8-7-63	9-13-63	

b Loboratory pH

Sum of colcium and magnesium in apm.

Sum of colcium and magnesium in opm.

Ion (Fe), alumnum (A1), assenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C1 *6), reparted here as $\frac{0}{0}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Amoul medion and insparently. Calculated from anoityses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, or United Stores Public Health Service.

Hinned anoityses made by United Stores Carlogories Survey, Doelty of Meter Branch USCS, United Stores Department for the International Stores Carlogories Survey, Doelty of Meter Branch Stores Stores Carlogories Survey, Doelty of Meter Branch Stores Carlogories Survey, Doelty of Meter Branch Stores Carlogories, Inc. (TLL) and Carlogories Stores
TABLE D-2

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

	_		_	 	_		_	_										
		Anolyzed by i				nscs												
		bid - Californ ify MPN/mi																
Г	1	- piq				2	-7	35	10	25	-	09	25	~	'n	-	2	
		* O	∪ € 2 d			0	0	0	0	د،	0	0	0	m	0	0	•	
L			Poto mod			85	88	65	7.1	55	67	07	9	106	92	88	8	
L		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				25	23	25	23	25	23	23	22	26	22	ឧ	21	
L	Total	solios solios	E 0 0			138	141e	105e	116	926	1118	, es	101	186	136	138¢	1278	
		Other constituents	- 1										Po4.=0.10				As = 0.01 ABS = 0.0 Pot = 0.05	
		Silica	i i										18				91	
	million	Boron	9			0.3	9.0	0.2	0.1	0.0	0.1	0.0	0.1	0.5	7.0	0.1	0.2	
million	par mil	Flua-											0.0				0.0	
ports per million	squivalents p	N:-	(NO ₃)	() % %()									0.0				0.4	
٩	*inbs	Chio-	(CI)	DUTH (ST		9.6	0.20	0.03	0.28	0.14	0.20	4.8	5.8 0.16	0.54	8.0	9.5	9.5	
	<u> </u>	Sul -	(80%)	NEAR M									0.15				0.12	
	canefituants	Bicar- bonate	(e 00H)	BIG RIVER NEAR MOUTH (STA		2.00	2.05	1.46	1.57	1.21	1.46	0.87	1.43	2.00	11.93	119	2.02	
	Winerol can	Carban -	(603)	. ия		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.03	0.00	
:	Win	Polas-	(x										0.04				0.04	
		Sodium	ĵ			13	12 0.52	9.8	9.9	0.37	9.0	5.5	0.37	0.74	0.52	0.52	0.48	
		Magns-	(M)			1.70	1.76¢	1 31c	1.43	1.10¢	1.34	0.80	0.50	2.12c	1.84	1.72	0.70	
		Calcium	60										16				22	
		Ĕ el				7.3	7.4	8.0	7.3	7.2	7.2	7.7	7.3	8.3	$\frac{7.2}{8.1}$	8.3	8.0	
	Spacific	(micramhos at 25°C)				216	222	165	182	144	175	102	166	292	214	217	226	
			%Sot	 		76	95	66	91	26	66	104	97	107	103	611	88.	
		Dissalvad axygen	mad			9.3	10.5	10.6	10.7	10.6	11.2	11.2	8.6	10.0	9.5	10.6	8.2	
		Tamp In OF			_	09	51	67	4.7	52	80	S	82	- 65	3	69	99	
		Discharge Tamp				25 (est)	20 (est)	380 (881)	130 (set)	600 (est)	120 (sst)	400 (sat)	170 (est)	50 (sst)	15 (est)	10 (684)	5 (est)	
		Dots ond time	P.S.T			10-9-62	11-14-62	12-11-62	1-3-63	2-12-63 1110	3-12-63 1125	4-10-63	5-7-63 1025	6-12-63 1530	7-10-63 1130	8-7-63 1515	9-13-63 1000	

a Field pH.

b Loborotory pH.

Sum of calcium and magnesium in epm.

Jam or cucking on understanding open (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (Ct⁺⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Darivad from conductivity vs TDS curves

Datemined by addition of analyzed constituents.

Grovimetric determination.

Dote and time sompled P.S.T.

		Anolyted by 1		uscs												
		bid - Coliform		2.3	6.2	230.	2.3	23	62.	230.	23.	6.2	2.1	2.3	.62	
	Tor	- Pid u		-	2	•	5	70	2	190	т.	~	~	-	۰	
Г		Hordness es CoCO ₃ Total M.C.		0	0	0	0	0	0	0	0	0	0	0	0	
		Hordness es CoCO ₃ Total N.C. ppm ppm		Ξ	118	76	96	65	96	50	83	106	117	112	112	
		5 2 5		21	19	20	21	23	19	23	20	20	20	20	20	
	Total	police in pom		162	167	138°	142 ^e	100e	141 ^e	76°	122 ⁸	152 ^e	157 ^e	163 ^e	1548	
		Other constituents									PO ₄ = 0.10				As = 0.00 ABS = 0.0 PO ₄ = 0.05	
	l	Silico (SiO ₂)									17				18	
	LO.	Boron (B)		0.1	0.5	0.1	0.1	0.0	0.1	0.0	0.1	0.1	0.2	0.0	0.1	
million	Ė	Fluo- ride (F)	_								0.02				0.01	
ports per million	equivalents per million	Ns- trote (NO ₃)	NAVARRO RIVER NEAR NAVAERO (SIA. Bb)								0.02				0.0	
۵	Ainb s	Chio- ride (CI)	AVARRO (12 0.34	9.0	7.5	10 0.28	0.14	$\frac{7.3}{0.21}$	0.19	0.17	$\frac{7.6}{0.21}$	9.4	10 0.28	9.5	
	٠	Sul - fote (SO ₄)	NEAR N								7.0				0.21	
:	1110801	Bicar- bonote (HCO ₃)	O RIVER	152	154	121 1 98	126 2.07	1.38	2.05	1.03	111	$\frac{142}{2.33}$	$\frac{139}{2.28}$	148 2.43	2.43	
	Minarol constituents	Corbon – 016 (CO ₃)	NAVARR	0.00	00.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.00	
:	Wil	Potas- Sium (K)									0.04				0.05	
		Sodium (NO)		14 0.61	13	0.48	0.52	9.8	0.44	6.7	9.6	0.52	13	0.57	0.57	
		Magne- Sium (Mg)		2.230	2.36	1.88	1.96	1.30	1.92	0.990	8.0	2.12c	2.346	2.24	0.90	
		Colcium (Co)									1.00				1.35	
		돌 이스		7.3	7.7 8.0	7.3	7.3	7.4	7 5	8.0	7.4	8.2	8.4	7.7	7.8	
	Specific	conductance (micromhos of 25°C)		266	275	227	234	164	232	125	203	250	259	268	268	
r		%Sot		76	92	76	91	95	86	66	96	66	118	112	66	
		Osygen ppm %Sot		1.6	0.01	10.8	10.5	10.2	10.8	10.8	9.6	4.6	10.5	10.0	6.9	
H						76 67	7 67	54	52	53	09	9	17	71	70	
-		Orschorge Tamp		22	20	165	140	050,1	205	2,830	363	06	45	18	13	

b Laboratary pH

o Field pH

c. Sum at calcium and magnesium in ethin.
d. Iron (Fe), altuminum (A1), areaica (As), capaer (Cu), lead (Pb), manganese (Mn), 2 inc (Zn), and hexavalent chromium (Gr *5), reparted here as $\frac{0}{0}$ 0 except as shown d. Iron (Fe), altuminum (A1), areaica (As), capaer (Cu), lead (Pb), manganese (Mn), 2 inc (Zn), and hexavalent chromium (Gr *5), reparted here as $\frac{0}{0}$ 0 except as shown c Sum of calcium and magnesium in epm.

Derived fram conductivity vs TDS curves

Determined by addition of analyzed constituents.

9 Gravimetric determination

i Mineal analyses angle by United States Geological Survey, Quality of Water Branch (USCS), United States Department of the International States Department of Managers and Power (LADPH), City of Las Angeles, Department of Water and Power (LADPH), City of Las Angeles, Department of Water and Power (LADPH), City of Las Angeles, Department of Water and Power (LADPH), City of Las Angeles, Department of Water and Power (LADPH), City of Las Angeles, Department of Managers (DWR), as indicated the Managers and City of Las Angeles, Department of Managers (DWR), as indicated the Managers and City of Las Angeles, Department of Managers (DWR), as indicated to the Managers (DWR), Tarming Testing Laboratories, Inc. (TIL), or California Department of Water Resources (DWR), as indicated to the Managers (DWR), Tarming Testing Laboratories, Inc. (TIL), or California Department of Water Resources (DWR), as indicated to the Managers (DWR), Tarming Testing Las Angeles, Department of Managers (DWR), Tarming L h Annual median and range, respectively. Calculated from analyses of dualicate monthly samples made by Calculated Department of Public Health, Division of Laboratories, or United Stones Public Health Service

32505-DH 6+61 200 JR

2-12-63 3-12-63 1020 4-10-63

1-3-63 0950

6-13-63 7-10-63 1200

8-7-63

5-7-63

11-14-62 12-11-62 1045

TABLE D-2

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

$\overline{}$													_				\neg
		Anolyzed by i			uses												
		MPN/mi			6.2	0.62	2.3	0.62	620.	23.	130. 23.	6.2	6.2	2.3	23.	2.3	
	100	- ye			7	7	4	٧.	70	7	20	m	4	~	-	-	
		S O N E			0	0	0	0	0	0	•	>		0	0	0	
		Totol Pom			118	114	96	95	99	76	59	89	104	118	110	113	
	Per	00 g			20	19	19	18	20	18	18	17	19	18	18	18	
	9	solved solids in ppm			172	166 ^e	139 ^e	135	976	136 ^e	888	1258	151	156	160	1558	
		Other constituents							ro ₄ = 0.15			PO4 = 0.10				\$3.4° \$3.4°	
	ľ	(Silico										18				17	
	- Hilion	Boron (B)			0.0	0.2	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
million	E is	F100-	 A. 98)									0.0				0.1	
I ii I	- 1	rrote (NO ₃)	S) SITO									0.7				0.0	
ă	squivalents	Chio- rids (CI)	R ANNAR		12 0.34	0.20	6.6	0.21	0.13	6.21	0.12	5.0	0.20	0.22	8.0	9.8	
Ē		Sul - fors (SO ₄)	DRK NEA									$\frac{11}{0.23}$				0.21	
constituents		Bicar - banate (HCO ₃)	SOUTH FO		2.61	2.49	2.03	119	84	171	75	115	136	144 2.36	143	148	
Minarol con		Corban- ate (CO _{\$})	GUALALA KIVER, SOUTH FORK NEAR ANNAPOLIS (STA. 98)		00.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	
Mo		Potas (X)	GUALALA									0.04				0.05	
		Sodium (Na)	-		0.61	12 0.52	10	9.9	0.33	07.0	0.26	8.8	0.48	12 0.52	0.48	0.52	
		Mogna- mun (Mg)	 -		2.37	2.28	1.93	1.90	1.32c	1.88	1.18c	9.5	2.08	2.36	2.20	0.91	
		(Ca)										20				1.35	
		를 하다			7.2 8.0	8.0	7.4	7.5 8.2	7.2	8 1 8 1	7.8	$\frac{7.1}{7.9}$	8.0	8.2	7.7	2.8 8.1	
	Specific	conductance (micrombos at 25°C)			280	270	226	220	159	222	144	207	246	255	261	268	
		%Sat	 		62	96	76	76	68	103	66	102	120	130	83	119	
		Dissolved osygen ppm %Sal	 		6.1	10.1	10.8	10.8	4.6	10.7	10.4	6.6	11.5	11.7	8.1	10.5	
	_			_	62	26	67	67	99	57	99	63	79	70	69	72	
		Dischorge Tamp in cfs in aF			9.1	35	52	82	050,	108	076	248	52	28	17	7.7	
	_	ond time sompled P.S.T.			10-9-62 0915	11-13-62	12-10-62 1500	1-2-63	2-11-63 1610	3-11-63 1525	4-10-63	5-6-63 1540	6-13-63 1130	7-10-63	8-7-63 1915	9-13-63 1330	

o Field pH.

27°C5-0-8 6-61 200 59°C

b Laboratory pH.

c Sum of calcium and magnesium in opm.

c. Sum at calcium and magnesium in opm. d. Iran (Fe), aluminum (A1), argenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (G⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shrwin. d. Iran (Fe), aluminum (A1), argenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (G⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shrwin.

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents. g Gravimetric determination.

h Annol median and mage, respectively, Colculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division and Laboratories, or United States Public Health, Service (USPHS); San Bernardine Carelly and Service (USPHS); Laboratories and the International States Geological Servey, Obelity of Wester Barnel, USP, United States Carelly Service (USPHS); San Bernardine Carelly Compared to Service (USPHS); San Bernardine Carelly Carelly Service (USPHS); San Bernardine (Mage and Power (LADPP); City of Los Angeles, Department of Public Health, Edphy; City of Los Angeles, Department of Public Health, Edphy; City of Los Angeles, Department of Public Health, Edphy; City of Los Angeles, Department of Public Health, Edphy; City of Los Angeles, Department of Public Health, Edphy; Carelly of Los Angeles, Department of Public Health, Edphy; Taylor Carelly Service (USPHS); Carelly Serv

NORTH COASTAL REGION (NO. 1)

ARALISES OF SOUTHER SALES

_															
	Anolyzed by i		USGS												
	tty MPN/mi		2.1	23.	2.3	62. 23.	7,000.	23.	130. 620.	13.	6.2	2.3	2.3	2.3	
	- Kdd			n -	50	20	70	6	98	30	5	30	4	30	
	\$ 00 Z				0	0	0	-	2	0	0	2	۰	0	
			-	118	116	131	86	129	73	112	138	148	143	126	
	5 5			2 2	15	15	11	14	14	13	13	17	12	14	
Į,	solids in ppm		9,	159 ^e	153	172 ^e	118	168e	103	1468	179 ^e	184	180€	1638	
	Other constituents									PO4 = 0.20 AB = 0.00 ABS = 0.00			00 0	ABS = 0.0 PO4 = 0.10	
	Silico (SiO ₂)			-						17				91	
6	Boron (8)		0.3	0.5	0.3	0.2	0.1	0.3	0.0	0.1	7.0	0.4	0.1	0.3	
ports par million	Ftuo- rids (F)	6	· · · · ·							0.3				0.0	
arts par	rote (NOs)	(STA. 1								0.03				0.8	
od oviue	Chlo- CiO)	RUSSIAM RIVER AT CUERNEVILLE (STA. 10)	9.0	7.2	6.2	9.7	4.8	7.0	3.5	0.12	0.19	0.17	0.21	0.14	
5	Sul - fots (\$0 ₄)	AT GUERR								13 0.27				0.23	
st.tuent:	Bicor- bonote (HCO ₃)	RIVER	150	2.40 2.31	2.36	160	108	2.56	1.41	2.25	160 2.62	178 2.92	174 2.85	150	
Mineral constituents	Carbon- ote (CO _S)	RUSSIAM		0.00	0.00	00.0	0.00	0.00	0.00	0 0	0.23	0.00	0.00	0.17	
1	Potos- (X)									0.03				0.03	
	Sodium (No)		10	9.8	9.3	11 0.48	0.34	9.8	5.5	8 0	9.5	0.48	8.9	9.3	
	Mogne-			2.36	2.31¢	2.62	1.720	2.57	1.46	13	2.76c	2.96€	2.85	14	
	Colcium (Co)									23				27	
	¥ e14		7.9	8.3 7.7 8.0	7.3	8.0	7.3	7.8 8.0	8.0	7.4	7.8	8.1	7. 8.1	8.4	
3	conductonce (micrombos or 25°C)			265	258	291	200	284	174	245	302	310	304	275	
	ben de		•	109	87	06	76	115	9.6	102	109	122	114	92	
	Dissolved osygen ppm %Sot			10.0	4.6	10.0	7.6	11.5	6.6	6.6	8.6	10.2	10.1	8.1	
				89 79	54	52	3	09	98	63	02	7.7	11	72	
	Dischorge Temp in cfs in of			188	730	069	7,310	576	11,700	2,130	077	216	142	216	
	ond time eampled P.S.T.		10-8-62	1700 11-13-62 1230	12-10-62 1210	1-2-63	2-11-63 1425	3-11-63	4-9-63	5-6-63 1250	6-13-63	7-11-63 1600	8-7-63 2100	9-13-63	

b Loborotory pH. o Field pH.

Som of colcium and magnessum in spm. I sopper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chramium (Cr. ¹⁶), reported here as $\frac{0.0}{0}$ except as shown. Iran (Fe), aluminum (A), assanic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chramium (Cr. ¹⁶), reported here as $\frac{0.0}{0}$ except as shown. c Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

h. Annoal median and maga, respectively, Calculoted from goal yeas of deplicate monthly samples made by Caldiannia Department of Public Health, Division of Lobarotaries, or United States Public Health, Service (USPHS); Son Bernardian Cannel Public Health, United States Gealogical Survey, Quality of Messee Brack, MCSPU, United States Gealogical Survey, Quality of Messee Brack, MCSPU, United States Gealogical Survey, Quality of Messee Brack, MCSPU, United States Gealogical Survey, Quality of Messee Brack, Cannel (MCDP), Los Angeles, Department of Messee (LADPR), City of Los Angeles, Department of Public Health, EdDPR), City of Los Angeles, Department of Public Messee (MCDPP), Control Cannel Messee (MCDPP),

SCHOOL OF BELL AND JRO

-			_	_															_
		Andlyzed by 1					uses												
		bid - Coliform ity MPN/ml					62.	2.1	23.	6.2	7,000.	50.	230.	6.2	2.3	1.2	23.	2.1	_
	- 10	- piq	1				m	4	20	- 50	20	50	160	٠,	~	~	2	2	
		Marghees ee CaCO _s	0 E				0	0	0	2	7	0	0	0	0	0	2	0	
			ppm ppm				112	107	116	134	96	111	79	111	138	137	133	114	
	-	2005	T				15	14	14	13	13	12	13	12	12	13	13	12	
	Total	a office below	E 08				144	141e	149e	170e	120e	151	104	1478	170 ^e	171	170e	1388	
		Other constituents												PO4 = 0.10				As = 0.00 ABS = 0.0 Po4 = 0.05	
		Slice	P. Control											77				গ্ৰ	
-	million	Baron	9				0.3	0.5	0.4	0.3	0.3	0.3	0.0	0.2	0.4	0.5	0.2	0.3	
million	per m	Fluo-			÷									0.2				0.01	
parts per million	aguivolents	- in	(NO3)		(STA. 9									$\frac{2.1}{0.03}$				0.7	
ă	aguive	Chlo-	(c)		LDSBURG		0.21	0.14	0.14	8.0	3.2	0.15	3.5	3.8	3.0	$\frac{5.1}{0.14}$	7.6	0.16	
	<u>.</u>	Sul -			EAR HEAD									$\frac{11}{0.23}$				0.19	
	constituents	Bicar-	(HCO 3)		RIVER N		2.36	136	143 2.34	161	115	2.36	98	$\frac{137}{2.25}$	168 2.75	168 2.75	160 2.62	2.31	
	Winerol con	Carban	(500)		RUSSIAN RIVER NEAR HEALDSBURG (STA. 9)		00.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00	
	Min	Potos	(K)		, да.									0.03				0.03	
		Sodium	(0 N				9.0	8.1	8.5	9.2	0.28	7.5	5.2	0.30	8.3	9.2	9.2	0.32	
		Mogne	(Mg)				2.25	2.140	2.32	2.68	1.92c	2.33	1.590	1.12	2.760	2.740	2.66	13	
		Colcium	(S)											22				25 1.25	
		Į,	ماه				7.8 8.0	8.3	8.1	8.1	7.6	7.8	8.0	7.8	8.2	8.2	8.0	8.2	
		conductonce (micrombos	D - C 2 10				242	237	252	286	202	255	175	235	287	288	287	245	
-		, s	%Sat		-		108	125	68	76	101	113	110	104	66	123	113	106	
		Dissolved oxygen	Edd			_	9.7	13.0	8.6	10.4	10.1	11.5	11.8	10.1	6.8	10.0	8.6	9.1	
		e e e					70	57	52	52	09	65	54	63	70	79	7.3	7.4	
		Discharge Temp					189	077	388	987	2,670	891	5,580	1,520	360	220	160	220	
		ond time	P.S.T				10-8-62	11-15-62	12-10-62 1055	1-2-63	2-11-63	3-11-63	4-11-63	5-6-63	6-11-63	7-9-63	8-6-63	9-11-63 1530	

o Freld pH

Sum of calcium and magnessum in 8pm.

Lond (Pb), manganese (Mn), zinc (Zn), and hexarelent chramium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Ion (Fe), aluminum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexarelent chramium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnessum in epm. b Laboratory pH.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Seprice.

32505-D-8 6-61 200 SPO Mineal analyses made by United States Geological Survey, Quality of Water Borach (USGS); United States Department of the Interior, Surveau of Reclamation (USGS); United States Department of Water Department of Water and Power (LADMP), City of Las Angeles, Department of Robbine (USDP); Marrapolitan Water Detarted of Southern Colifornia Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

_												_							
		Analyzed by				USGS													
		bid - Coliform				62.	21.	13.	2,400.	2.3	62.	620.	230.	230.	62. 5.	62.	6.2	23.	
Γ	Tur	- 25 26 4					7	15	25	۰	20	05	20	25	10	10	2	4	
Г		:0°	i E E				•	0	0	0	0	-	0	0	0	-	0	۰	
		101 101 101 101	E				81	11	11	105	67	77	3	98	89	88	90	79	
	į	,					19	97	18	19	17	16	15	15	14	21	15	14	
	Total	Palo				•	112	104e	996	143e	92 ^e	106 ^e	87 ^e	1188	118 ^e	113 ^e	107 ^e	1048	
		Other constituents												PO4 = 0.10				ABS = 0.00 PO4 = 0.25	
ļ		SIIc SiOs)	•											13	-			12	
	ion	Boros (8)				0.3	- 4	9	0.3	0.4	9.0	0.3	0.1	0.2	0.3	0.2	0.0	0.1	
million	per million	9 9	\neg		-			<u> </u>	<u></u>					0.0		•		0.0	
ports per million		trate.	Ç.		. 8a)									0.03				0.02	
1	equivolents	Chlo-	وَ		NO (SE	6.9	0.19	0.11	3.6	7.8	3.5	0.14	3.5	3.0	0.12	0.13	5.0	3.0	
	<u>.</u>	Sul	(20%)		A HOPLA									0.19				0.15	
	friuents.	Bicar -	HCO	_	MIVER NEAR HOPLAND (SIA. 8a)	103	1.69	1.67	90	2.13	1.38	93	1.31	1.74	1.77	1.74	1.61	1.57	
	Minarol constituents	Cerbon	(co)		RUSBIAN HI	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	00.00	00.00	
	Ž.	Potas- C	- 1	_	B.	-		_						0.03				0.0	- <u>-</u>
		Sodium (No)	1			8.9	0.39	0.29	0.31	0.48	6.4	6.7	0.23	0.31	6.8	0.30	6.6	0.25	
		Magne.	-				1.620	1.54	1.42€	2.10	1.34	1.54	1.28	8.1	1.780	1.76	1.61	0.63	
		Colcium (Co)												1.05				19	
		Ξ. •	مر			7.5	7.4	7:7	7.3	7.3	7.2	7.2	7.6	7.6	8.3	7.6	8.0	7.7	
	Specific	(micromhos of 25°C)					190	177	164	243	157	181	148	194	200	193	182	199	
r		25	%Set				102	66	06	96	93	101	96	68	113	114	114	111	
		D A		-			4.6	10.0	9.8	10.6	8.6	10.8	10.4	9.6	10.2	10.5	10.5	10.0	
r		7 e e					99	99	52	51	75	53	52	53	89	99	99	89	
		Dischorge Temp				-	236	345	006	124	1,300	897	3,820	527	156	185	163	244	
		and time	P.S.T.			10-10-62	1335	1315	12-12-62	1-4-63	2-13-63 1035	3-13-63 1130	4-11-63 1330	5-8-63	6-11-63 1000	7-9-63	8-6-63	9-11-63 1410	

b Laboratory pH.

c Sum of calcium and magnessum in epm.

c. Sum of calcium and magnessium in epim. defend (Pb), manganese (Mn), zinc (Zn), and heravident chromium (Gi⁺⁶), reported here as $\frac{0}{0}$ except as shown. d Iran (Fe), aluminum (Al), asseric (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravident chromium (Gi⁺⁶), reported here as $\frac{0}{0}$ except as shown.

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents 9 Gravimetric determination.

h Amusol median and range, respectively. Colculated from analyses at duplicate monthly samples and by California Department of Public Health, Dursian of Laboratories, or United Stones Public Health Service

^{32505-0-8 6-61 200 370} i Mineral analyses made by United States Geological Survey, Oudrity of Water Branch (USGS), United States Department of the Interior, Survey and Reclamation (USBR), United States Public Health Service (USPHS); San Bennadino Cunty Flood Control District (SBCFCD); Menopolitan Water District of Sunhern California (MWD), Las Angeles Department of Male and Power (LADMP), City al Las Angeles, Department of Public Health (LBDPH), City of Las Angeles, Department of Male Resources (DMR) as indicated.

TABLE D-2

ANALYSES OF SURFACE WATER

NORTH COASTAL RECION (NO

7

	70														
	Analyzed by 1		USGS												_
	bid - Caliform		620 23.	6.2	13.	0.23	62.	6.2	23.	23.	2.3	2 3	2.3	6.2	
	E		20	2	35	20	06	20	95	4.5	35	10	4	S	
Г	800 Z	# O	0	0	0	0	0	0	0		0	-	-	0	
L	Hord D 25	60	70	70	79	99	87	62	21	09	62	99	63	69	
	Fod - For		16	17	16	16	13	12	12	12	13	12	12	13	
ا ا	Solved sod -		97e	a06	87 ^e	₉ 06	65e	978	a69	808	9 ⁷ 8	82e	978	88	
	Other constituents									As = 0.00 ABS = 0.0 Po4 = 0.10				As = 0.00 ABS = 0.0 PO ₄ = 0.00	
	Silico (SiO ₂)	10a)								12				리	
lion million		(STA	0 3	9	0.4	0.3	0.1	0.2	0.0	0.2	0.3	0.3	0	0.3	
nullion par		HOUSE								0.2				0 0	
parts per million		EAST FORK AT POTTER VALLEY POWERHOUSE (STA								0.0		-		0.01	
0 200	Chio-	ER VALLI	5 4 0.15	3.5	2.8	0.16	0.03	0.08	0.00	0.05	0.05	2.4	2.6	2.0	
<u>e</u>	Sul -	T POT								$\frac{5.2}{0.11}$				0.12	
stituents	Bicar - bonate	T FORK	87	1.34	80	82	09 0.98	76	1.05	73	1.31	79	76	1 34	
Minsrol constituents	Carban-	VER, EAS	0.00	0.00	0.00	00.0	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.10	
ž	Patos-	RUSSIAN RIVER,								0.01				0.02	
	Sodium (No)	RUS	6.2	0.0	5.5	6.0	3.3	3.9	3.3	4.0	0.19	0.18	4.2	0 21	
	Mogne-		1 405	1 28c	1.27	1.32c	96.0	1.245	1.03	5.5	1.23	1.320	1.27c	9.38	
	Calcium (Ca)									0.75				1.00	
	등 하	•	7.5	7.6	7.2	7 3	7.3	7.3	9 1	7.4	7.9	7.6	7.8	8 3	
Specific	conductonce (micromhos at 25°C)		161	150	145	149	108	139	114	129	140	136	140	154	
	gen 9.Sat		36	2.6	06	9.5	102	96	9.7	102	100	100	107	101	
	Dissolved oxygen		4	10.1	10.4	10.9	11.2	10 7	10 9	0.01	9 6	9 7	8 6	6.	
	Temp In OF		63	54	97	7,7	50	64	80 7	59	- 59	09	6.5	69	
	D.schorge Temp in cfs in 0F		338	309	302	307	568	185	384	300	267	263	284	278	
	ond time sampled		10-10-62 1155	11-15-62	12-12-62 0905	1-4-63	2-13-63 0905	3-13-63	4-11-03 1130	5-7-63	6-11-63	7-9-63	8-6-63	9-11-63 1245	

o Freid pH

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Ion (Fe), outnament (A), assume (As), capper (Cu), lead (Pb), manganese (Inh), zinc (Zn), and heravolent chromium (Gr⁻¹⁶), reported here as $\frac{0}{0.00}$ except as shown. a Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Strate Public Health Service.

Hunted interior Strate Seedingsoil Servey, Quality of Varier Branch (1925), United Strate Department of Public Health Service (1924). United Strate Seedingsoil Service (1924), United Strate Seedingsoil Service (1924), United Strate Seedingsoil Service (1924). United Strate Seedingsoil Service (1924), Son Bannadino County Ft. Ad Country (1924). United Strate Seedingsoil Service (1924), Son Bannadino County Ft. Ad Country (1924). United Strate Seedingsoil Service (1924). Son Bannadino County Ft. Ad Country (1924). United Strate Seedingsoil Service (1924). Son Bannadino County Ft. Ad Country (1924). United Strate Seedingsoil Service (1924). Son Bannadino Country (1924). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH). City of Los Angeles, Department of Public Health (LADPH).

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

_																	
		Anolyzed by i			USGS												
		bid - Colform			620.	62.	230.	230.	2,400.	130.	2,400.	7,000.+	130.	23.	62. 230.		
	5	- × 6			57	m	2	٠	170	2	30	00	5	-	6		
r		0 L			10	0	0	7	0	0	0	2	0	80	7		
		Total			169	93	93	78	41	92	67	82	80	126	145		
	į	5 2 5			19	4.1	34	29	28	28	27	25	23	25	22		
	Totel	solids formal			261 ^e	211 ^e	182 ^e	158e	75e	168 ^e	906	1588	134 ^e	221 ^e	234 ^e		
		Other constituents										ABS = 8:84 PO4 = 8:30					
	Ì	Since (SiO ₂)										38					
-	101	Boron (B)			0.1	6.0	0.5	0.2	0.0	0.2	0.1	0.3	0.2	0.5	7.0		
e lie	E	Fluo- ride (F)		(2)								0.02					
parts par million	equivalents per million	trote (NO ₃)		(STA.								0.07					
١	equivo	P & (2)		HELENA	0.34	30	18	16	0.13	0.34	6.12	9.0	8.6	20	0.45		
	٩	Sul - fots (\$04)		AR ST.								0.27					
	tituants	Brcor- bonots (HCD ₃)		NAPA RIVER NEAR ST, HELENA (STA. 72)	3.18	$\frac{120}{1.97}$	11.85	1.54	0.82	1.80	1.05	1.69	11.84	2.26	2.75		
	Minarol constituents	Corbon- ote (CO ₃)		NAPA F	0.00	00.00	00.00	00.00	00.0	0.00	0.00	0.00	0.00	0.10	0.00		
1	¥	Potos- (K)										0.05					
		Sodium (No)			18 0.78	30	22	0.70	0.32	0.70	0.35	0.57	0.48	0.83	19		
		Magne- sium (Mg)			3.38€	1.86€	1.870	1.680	0.820	1.840	0.97	8.3	1.60	2.52	2.90c		
		Calcium (Co)										19					
		E e			7.0	7.3	7.0	7.1	7.3	7.2	7.9	7.1	7.8	7.3	7.9		
	Specific	Conductonce pH (micromhos pH of 25°C) a			395	319	275	240	114	255	137	220	203	335	354		
\mid		% Sat			57	122	78	98	86	140	97	93	113	151	112		
		Dissolved osygen apm %Sat	\vdash		4.2	12.6	9.6	4.6	10.0	13.9	10.2	9.6	9.5	12.6	4.6		
\dagger			T		65	57	52	52	58	-09	55	57	75	9/	75		
		Dischorge Temp			1.3	ı	15	38	835	36	370	57	16	5.2	2.4	Ponded	
		Ond time compled P.S.T.			10-10-62 1605	11-15-62	12-12-62 1230	1-4-63	2-13-63	3-13-63	4-11-63	5-8-63 1000	6-11-63	7-9-63	8-6-63	9-11-63 1645	

b Laboratory pH. o Field pH

c Sum of calcium and magnessum in epm.

c. Sum of calcium and magnessum in opm.

4 Iron (Fa), aluminum (A), arsanic (As), copper (Cu), lead (Pb), manganese (Mn), and cavaralant chromium (Cr*6), reported here as $\frac{0.0}{0.0}$ except as shown d Iron (Fa), arsanic (As), arsanic (As) Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

TABLE D-2

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2)

													ŏ	ports per million	million					ŀ				
				Specific					Mins	rol con	Minarol constituents	ē	equiva	equivalents per million	er mili	6			Total			Ī		
sompled P.S.T.	Discharge Temp in ofs in of Mean	- e e e e	Dissalvsd osygen ppm %Sat	conductance (micromhos at 25°C)	I 0/0	Calcium (Ca)	Mogne- sium (Mg)	Sodium (Na)	Potos- (K)	Corbon- (CO ₃)	Breor- bonote (HCO ₃)	Sul- fors (\$0 ₄)	Chlo- ride (Ct)	rots (NO ₃)	-01-1 148 (F)	Baron S (B)	Silic (So)	Other canstituents	solids mod el	¥ 8 0 8	Hordness es CoCOs Totol N C	- A E	bid - Coliform	Analyzed by i
										ALAME	ALAMBOA CREEK NEAR NILES	NEAR N	TLES (S	(SIA, 73)										
10/1-12/62	24			645	7.8	35	1.57	67	0.10	0.00	168	41 0.96	2.65	0.03	0.04	0.4	19	Fe = 0.00 Color = 9	3678	97	166 28			nscs
10/13-15/62	323			363	8.2	26 1.30	06.0	30	0.0	00.00	116	37	31 0.87	0.16	0.0	6.9	9]	Fe = 0.04 Color = 70	2358	36	110 115			
10/16-31/6	2 21			710	ŗ.	2.20	1.81	2.87	0.12	0.00	3.16	36	91 2.57	80.0	0.3	4.0	21	Fe = 0.00 Color 20	8927	41 2	200 42			
11/5-15/62	17			829	8.0	45	1.81	3.70	0.12	0.00	3.02	1.39	128 3.61	5.1	0.3	0.5	25	Fe = 0.00 Color = 15 •	8647	47 2	203 52			
11/16-30/62	2 20			890	8.2	49	24	3.96	5.2	00.00	3.11	1.54	3.70	0.11	0.0	0.5	22	Fe = 0.01 Color = 5	5168	47 2	221 65			
12/1-10/62	3.1			903	8.2	3.04	27	3.74	0.11	00.00	250	87 1.81	3.44	0.02	0.0	9.0	91	Fe = 0.00 Color = 10	5348	41 2	264 59			
12/11-20/62	6.6			988	8.1	3.09	31 2.59	3.13	6.3	0.00	280	83	100	9.4	0.0	9.0	21	Fe = 0.00 Color = 40	8617	35	284 54			
12/21-31/62	2 5.8			1,030	8.1	3.09	38	96	0.21	0.00	296	1.81	3.67	16,0	0.03	0.4	20	Fe = 0.01 Color = 25	5748	39	311 68			
1/1-12/63	2.9			1,220	7.5	3.79	3.29	5.44	0.23	0.00	325	99 2.06	169	18	0.0	6.0	22	Fe = 0.0 Color = 20	7438	43	354 88			
1/14-18/63	15			898	7.9	45	24	4.13	4.8	0.00	2.98	1.35	135 3.81	8.2	0.07	9.0	22		512 ⁶	49 2	210 61			
1/19-30/63	ı			1,000	7.4	2.69	25 2.05	113	0.17	0.00	3.21	1.67	161	0,31	0.07	0.7	21	Fe = 0.00 Color = 7	8 709	50 2.	237 76			
1/31/63	850			977	7.0	33	1.15	38	0.19	0.00	2.82	30	38	0.03	0.03	0.3	18			36 1.	140	0		_
2/1-2/63	2,420			251	8.0	1.20	0.70	0.57	0.07	00.00	115	0.40	0.28	3.2	0.02	6.0	12			22	- 56			
Ma Clark]		1	1	1	1	1	1	1	1	1	1	1			$\left\{ \right.$		1		

o Field pH

32505-0-8 6-61 200 sPo

b Loboratory pH.

c Sum of colcium and magnessum in apm.

L. Sam or cuctom our impairm of the control of the

[·] Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

Gravimetric determination.

i Manael analyses made by United Stores Geological Survey, Quality of Warer Branch (USGS), United Stores Department of the Interior, Survey and Reference of Stores (USPHS), Son Bernardines County Flood
Cannel Density (BEDP): Child Managed Managed Stores (USPHS), Son Bernardines County Flood
Cannel Chemistric (BEDP): The Stores of Stores (USPHS) of Stores (USPHS), Son Stores (USPHS), City of Los Angeles, Department of Poblic Health
Stores (USPHS) of Stores (USPHS), Son Stores (USPHS), Son Indicated Stores (USPHS) or Indicated Sto Annual median and rague trively. Colculated from analyses of duplicate manthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service.

					L				T S	Mineral constituents	stituents	5	og Anna	garts per million aquivolents per million	million r milli	6			, <u>\$</u>	-	_			
Ont time	•	F. E.	- 1	(micromhos of 25°C)	. \$ 80	Coleium (Co)	- Brogna	Sodium (Ne)	Potos-	Cerbon-	Bicor- bonets	Sul -	Chio-	1 Prote	-00- 8	8	Silico	Other constituents	2000			Herdnese es CeCO ₃	 bid - Coliform	Analyzed by i
P.S.T.	Meen		ppm %Sat	5	ما		(6 N 0)				(HCO)H)	(804)	\dashv	\neg			-				2 6	10101 1000		
										_							_							
										ALAM	ALAMEDA CREEK NEAR NILES	X NEAR		(STA. 73)										
											_		_	_						_				
2/4-12/63	87			542	7.6	43	1.69	39	3.7	00.00	198 3.25	1.27	38	0.08	0.03	7:	81 8	Fe = 0.0 Color = 30	3458		30 192	30		uscs
2/13-18/63	162			373	7.7	32	1.18	1.04	3.7	00.00	160 2.62	35	22 0.62	3.7	0.07	7.0	14 Co	Fe = 0.0 Calor = 35	2408		27 139			
2/19-28/63	32			744	7.7	2.77	30	58 2.52	4.6	0.00	258	91	1.64	6.07	0.0	5.0	5 S	Fe = 0.0 Color = 20	760 ⁸		32 261	67		
3/1-15-63	274			953	b;	2.84	2.36	97	4.7	00.00	3.70	2.19	3.67	9.0	0.0	0.7	17 Fe	Fe • 0.0 Color • 15	8688		44 260	75		
3/16-26/63	31			836	7.8	2.64	$\frac{26}{2.10}$	3.52	0.13	0.00	3.44	1.81	2.93	0.18	0.3	0.7	16 8 8	Fe = 0.01 Color = 14	520 ⁸		42 237	65		
3/28-31/63	367			097	7.7	37	1.53	30	3.4	0.00	3.05	47	0.73	0.08	0.03	0.3	9 S	Fe = 0.06 Color = 35	290g		27 169	16		
4/1-6/63	63			979	ŗ	2.59	27.23	2.00	0.09	0.10	3.84	1.52	52	0.10	0.03	0.5	2 3	Fe = 0.02 Color = 18	g007		29 241	777		
4/7-17/63	336			430	8.3	1.85	1.51	26	2.8	0.10	181 2.97	0.92	0.62	3.5	0.0	0.3	18 Co	Fe = 0.08 Calor = 38	265 ⁸		25 168	15		
4/18-27/63	270			757	8.2	2.00	1.58	28	0.13	00.00	3.20	0,83	0.71	0.05	0.03	6.3	18 Co	Fe = 0.07 Color = 28	2778		25 179	19		
4/28-30/63	7.5			657	7.6	3.04	25 2.02	1.91	0.07	0.00	4.08	1.58	1.16	3.0	0.0	5.0	19 Fe	• 0.01	401g		27 253	67		
5/1-10/63	33			776	7.8	3.24	34 2.82	2.39	3.1	00.00	283	94	55 1.55	3.2	0.3	9.0	17 Fe	- 0.03	8597		28 303	17		
5/11-26/63	18			1,150	8.2	3.59	4.17	100	5.0 0.13	0.00	340	138	3.50	90.0	0.0	6.0	# 3	Fe = 0.02 Color = 10	8969		36 388	109		
5/27-30/63	21			8 90	7.6		5.14	3.48	3.7	0.00	3.49	2.02	3.13	0.07	0.0	0.7	21 Fe	- 0.02			40 257	82		

b Leboratory pH.

c. Sum at solctum and magnessum in spin. d in the control of the c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Duality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Duality of Water Branch District (SBCFCD), Materiopolitan Water District of Southern Colifornia (MMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Water Department of Water Resources (DMR), as indicated. Annual median and range, respectively, Colculated from analyses of duplicate manify samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service.

32505-6-8 6-61 200 SPO

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) TABLE D-2

_	_	, T															
		by 1			uscs									_			
		tty MPN/mi															
	Į,	- E															
		Totol N.C.			76	59	26	55	53	47	0,	33	1 28	28	30	35	
L	-	es Totol			262	258	222	189	237	228	205	175	171	175	170	176	
L	ě	2 2			39	37	37	0,7	35	33	31	3,5	35	36	0,7	7,7	
L	10,00	solids m sp m			5028	4708	4028	380 ⁸	4348	3918	3438	316 ⁸	3098	3378	3458	389 ⁸	
		Other constituents			Fe = 0.04 Color = 7	Fe = 0.02 Calar = 6	Fe = 0.02 Color = 7	Fe = 0.00 Color = 10	Fe = 0.00 Color = 10	Fe = 0.03 Color = 8	Fe = 0.02 Color = 15	Fe = 0.00 Color = 15	Fe = 0.00 Color = 15	Fe = 0.01 Color = 10	Fe = 0.01 Color = 5	Fe = 0.01 Color = 10	
		(SiO ₂)			21	21	91	82	19	17	18	18	17	20	17	22	
	lo1	Boron (B)			8 0	8	9.0	9.0	0.5	9.0	7.0	0.3	7.0	0.2	0.2	0 3	
millian	ne vec	Flue- rids (F)		_	0.0	0.4	0.02	0.02	0.03	0.02	0.03	0.0	0.3	0.0	0.0	0.0	
ports per million	aquivalents per million	trats (NO ₃)		(SIA, 73)	0.08	4.3	0.08	0.08	0.09	0.08	0.07	3.0	2.8	3.1	2.8	3.0	
8	BAINDE	Chid- rids (Ci)	_	NILES (3	100 2 82	92	2.26	2.31	2.40	65	57	26	$\frac{61}{1.72}$	1.86	2.09	92 2 60	
	Ē	Sul - fore (SO ₄)		NEAR N	1 83	1.67	65	47	1.33	1.37	44 0.52	44	44	33	0.98	1.04	
	ittuente	Bicar- bonate (HCD _S)		ALAMEDA CREEK NEAR	3.47	3.61	3.31	176 2.88	3.67	3.39	3.29	176 2 88	2.85	79 2.93	171 2.80	2.82	
	Mineral canetituents	Carban- ats (CO ₃)		ALAME	0.23	7 0.23	00.0	0.00	0.00	0.23	0.00	00.0	0.00	0.00	0.00	0.00	
	Min	Potos- (K)			0.10	4 2 0.11	3.7	3.9	0.12	3.1	3.4	3.0	2.4	3.1	3.1	3.3	
		Sodium (Na)			3.39	3.09	62 2.70	2.61	61 2.65	2.26	16.1	42	16.1	47	2.35	2.87	
		Magne- sium (Mg)			25 2.06	29.2	25 2.08	22	27 24	25	23	1.60	1.57	1 60	1.50	20 1 62	
		Catcium (Ca)			3.19	2.74	2.35	2.00	2.50	2.50	2.20	38	37	38	38	38	
		F 0 0			7 80	9 80	0.8	7.6	7.7	4.8	7.8	8.0	8.0	8.1	1.8	8.2	
	Sascific	conductance (micrambos at 25°C)			845	822	708	979	728	663	597	538	247	574	592	661	
		9% Sat															
		Disso osy ppm															
		Te of															
		Discharge Temp in cfs in 0F Mean			21	16	20	16	23	17	21	28	28	25	22	35	
		Dote admpts d P.S.T			6/1-9/63	6/10-22/63	6/23-30/63	7/1-10/63	7/11-20/63	7/22-31/63	8/1-10/63	8/11-20/63	8/21-31/63	9/1-10/63	9/11-20/63	9/21-30/63	

o Field pH.

b Laboratory pH.

Sum of colcium and magnessum in 8pm.
Iran (Fe), alumnium (AI), arsenic (As), capper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown Iran (Fe), alumnium (AI), arsenic (As), capper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

^{32505-0-8 6-61 200 3}FO h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labarianies, or United States Public Health Service. (USS): United States Department of the Interior. Survice (USS): United States Department of the Interior. Survice (USS): United States Department of Water and Pewer (LADMP), City of Los Angeles, Department of Public Health (LADMP), City of Los Angeles, Department of Public Health (LADMP), City of Long Beach, Department of Public Health (LADMP), Terminal Testing Labarianies, Inc. (TTL), or California Department of Message (BMR), as indicated.

~	
(NO.	
UEC10	
BAY	
RANC1 SC	
SAN	

					South					¥.	Mineral constituents	stituents	5	ports pe		per milion	6			Total	Γ.			_	_
ond time	Dischorge Temp	E e		% So	conductorea (micromboa at 25°C)	g a 2	Coleiu a (Co)	Mogne (gM)	Sodium P	Potos.	Corban- ote (CO ₃)	Bicor - bonote (HCO ₃)	Sul - fore (50 ₄)	Chlo- ride (CI)	N:- trote (NO _S)	F1.00-8	1 5	Since (\$0:S)	Other constituents	evice bevice in ppm	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Hordness es CoCO ₃ Totol N C ppm ppm	10 UE	bid - Coliform 11y MPN/ml	Anolyzed in
											ALAMED	ALAMEDA CREEK	NEAR N	NEAR NILES (STA. 73)	th. 73)			-						_	
10-1-62 1340	39	69	9.6	108	585	8.0		3.04c	3,00		00.0	2,39		2.45	_		0.5			352°	20	152	32	90 2,400.	USGS
11-7-52 1625	4.5	258	10.7	104	797	8.0		4.206	3.65		0.00	3.16		3.27		<u> </u>	0.4			480¢	919	210	52	25 6	6.2
12-5-62	2.1	50	11.2	66	910	0.8		5.450	3.92		0.00	253		3.22			7*0			548"	42	273	99	5 6	2.8
1-10-63	2,5	5.5	14.3	118	1,180	8,3		7.370	4.78		0.00	332		166		-	9.0			710°	39	368	96	15 65	62.
2-5-03 1140	120	28	10.3	100	512	7.8		3.800	34		0,00	3.06		3.4	-	· ·	0.2	8<	A85 4 0 10	308"	28	190	37	1,300.	
3-6-63 1930	199	52	14.4	130	883	8.1		5,300	3.39		0,00	3.90		2,96			0.0	ABS	15 = (+ 1:	532	39	265	70	230.	2.5
4-8-63 1305	366	65	10.0	9.6	457	8.1		3,696	$\frac{26}{1.13}$		0.0	3,34		0.54		-	5.0	ABS.		275°	23	184	1.1	230.	
5-14-63 1330	33	99	6.6	101	1,010	8. b	4.54	32,50	3.83	0.11	26	4.62	131	2.71	0.06	0.3	# 	11 ABS PO _t	S - 0.01	621 ^K	35	357	18	2 2	2.3
5-5-53 1640	12	72	12.0	136	808	8.7		5.440	2.96		16	3.54		2.54			9,0	ABS	0 = (1 20	,82,	35	272	69	10 230.	2
7-1-63 2230	34	99	11.5	123	590	8.2		3,440	56		0.00	165		1.95		<u> </u>	7.0	ABS	s = 0.1	3596	17	172	37	9 620.	
8-6-63 1820	31	72	8.3	9.6	543	8.1		3.520	1.91		0.00	3.02		56		•	0.4	ABS	S = 0.2	327°	35	176	25	2,400.	
9-4-63	28	70	30	86	570	8.0	36	19	2.09	2.7	0.00	2.80	# 75°	58	0.08	0.03	7 0	14 ABS PO4	S = 0.02 5 = 0.05 7 = 0.05	3228	38	169	29	75 23.	2::
											ARRO	ARROYO DE LA LACUTA AL VERONA (STA, 202)	A EAGURA	A'L VER	ONA (STA	, 202)	_								
10/1-12/62	: E = E				620	7.8	1,00	1.38	2,91	3,3	0.00	2.44	30	2.71	0.04	0.2	7	23 El	Fc = 0.00 Color = 15	3558	67	149	27		nses
10/13-15/62	169				376	7.1	27	0.91	28 1,22	0.17	0.00	1.97	37	28	0.13	0.0	7	# 3 9	Fc = 0.05 Color = 100	243%	33	=	15		
																1	1					1	-		

b Loboratory pH o Freld pH

SCHOOL FOR AN AN

c. Sum of calcium and magnessum in epm

e. Sum at calcium and magnesium in semi de mongrames (Ma), and constant (Pa), and hazardoan chromium (Gr²⁷), reported here as 0 0 except as shawn d from (Fe), alumnum (Al), area. e Derived from conductivity vs TDS curves

g Gravimetric determination

Determined by addition of analyzed constituents

Minated analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey of Rectination (USBR), United States Geological Survey, Quality of Water Branch Children (USBR), Los Angeles, Department of Water (SBCFCD), Memoral Deservices (USBR), City of Los Banch, Department of Public Health (LADPH), City of Los Banch, Department of Water Recourses (DWR), as indicated h Annual median and range, respectively. Calculated from analyses of dualicate mountily samples mande by California Organisma of Public Health, Division of Laboratories, or United States Public Health Service

TABLE D-2

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

	Anolyzed by i		SDSO													
	bid - Coliform															
Ę	P P P															
	Hordness os CaCO ₃ Total N C ppm ppm		44	53	99	67		7	701	137	57	77	0	0	- 17	
			190	198	212	200	323	267	324	436	216	254	136	93	134	208
ď	- 20° -		- 43	67	52	20	6 41	9,7	56	5 45	67	5 48	57	24	26	31
Total	solved solids in ppm		4388	4778	550 ⁸	5028	6738	6768	g698	g066	524 B	621 ⁸				370 ⁸
	Other constituents		Fe = 0.00 Color = 20	Fe = 0.000 Color = 10	Fe = 0.001 Color = 5	Fe ≈ 0.00 Color = 15	Fe = 0.00 Color = 10	Fe = 0.00 Color = 50	Fe = 0.01 Color = 45	Fe = 0.01 Color = 30	Fe = 0.00	Fe = 0.00 Color = 1				Fe = 0.00 Color = 35
	Silico (SiO ₂)		23	23	22	21	23	23	33	31	23	56	61	13	10	3%
million	(B)		9,0	0.5	7 0	1.0	9.8	0.8	0.8	1.3	0.5	0.7	4.0	0.2	0 3	0.5
per mil	Fluo- ride (F)	202)	0.3	0.02	0.4	0.3	0.8	0.7	0.13	0.08	0.03	0.03	0.03	0.0	0.3	0.03
equivalents per million	rote (NO ₃)	NA (STA.	5.6	0.12	0.10 0.16	9.8	0.13	35	51	37	9.8	0.26	0.10	3.7	5.0	9.0
4 0.00	Chio- ride (CI)	AT VERONA	2.99	3.78	161	144	168	148	266	7.64	148	171	1 35	0.14	3.1	1.33
ē	Sul - fote (SO ₄)	LAGUNA	54	1.06	73	67	71	1.39	81	95	71	$\frac{82}{1.71}$	38	0.35	34	1.35
constituents	Bicor- bonote (HCO ₃)	DE L'A	170	2.74	178	162	322 5.28	274	268	365	$\frac{194}{3.18}$	$\frac{202}{3.31}$	2.79	113	2.44	3.49
Mineral con	Corbon- 010 (CO ₃)	ARROYO	00.0	0.00	00.7	00.00	00.00	00.00	00.00	00.00	00.00	7	00 0	00.00	00.00	0 00
Ñ.	Potos- sium (K)		5.4	4 b	5.9	5.2	8 8	18	3.1	18	4.8	7.2	0.26	3.0	3.2	0.13
	Sodium (No)		3.00	3.78	4.70	95	108	4 96	8.48	7.57	4.35	4.87	2 44	14	0.96	1.91
	Mogne.		22	22	24	22	3.06	35	55.4.53	5 18	24	31 2.57	2.72	1 86	1.18	23
	Calcium (Ca)		2.0	2.00	45	43	3.44	2.50	39	3.54	2.35	2.50			30	45
	مات کے		7.5	t	7.5	7.9	7 9	7.5	7.2	7.9	8.2	\mathcal{m}{\infty}	7.0	7.6	7 8.	7 7
Spacific	conductonce (micromhos		730	810	945	979	1,130	1,090	1,580	1,630	906	1,050	522	23.9	362	60.2
	Dissolved oxygen ppm %Sot															
	Discharge Temp in cfs in OF Mean		e .					70		10		2				
	Dischorg in cfs Mean		5	12	27	~i	2	7	v,	2.5	15	9	140	8,070	119	3.7
	Dote and time sompled P S T		10/16-31/62	11/1-12/62	11/13-22/62	11/23-30/62	12/1-10/62	12/11-19/62	12/20-31/62	1/1-12/63	1/13-18/63	1/19-30/63	1/31/63	2/1-2/63	2/3-5/63	2/6-12/63

o FreidpH

c. Sum at solicum and magnessium in epim d. Iron (Fe), alumnium (A1), arsence (A2), capper (Cu), Irod (Pb), manganese (Mn), 2 nc (Zn), and hexavalent chromium (Cr ¹⁶), reparted hare as $\frac{0.0}{0}$ except as shown. c Sum of colcium and magnesium in epm b Laboratory pH

Determined by addition of analyzed constituents Perived from conductivity vs TDS curves

Gravimetric determination

Amusl median and range, respectively. Calculated from analyses of duplicate manify samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Sevice.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior of Reclimation (USBR); United States Geological Survey, Quality of Water Benardino County Flood
Connal District (SBCFCD), Metropolitan Water District of Southern California (WMD), Los Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Water Resources (DWR), as indicated.

		Anolysed by 1		uses	_											
H		MPN/mi			_											
	5	bid - Colif														
	-	0 E		•	37	80	83	69	18	35	14	- J	88	111	62	09
		Total N.C.		140	242	355	244	235	179	220	181	216	280	391	193	191
	Par	1 Po		28	33	07	6.7	47	32	28	28	26	29	42	87	77
	Total	solide in ppm		230 ⁸	429 ⁸	7148	6168	565 ⁸	3238		3008	3398	452 ⁸	7978	8197	4338
		Other constituents		Fe = 0.02	Fe = 0.00 Color = 20	Fe = 0.00 Color = 17	Fe = 0.01 Color = 13	Fe = 0.02 Color = 30	Fe = 0.05 Color = 40	Fe = 0.04 Color = 22	Fe = 0.06 Color = 45	Fe = 0.02 Color = 18	Fe = 0.00 Color = 8	Fe = 0.01 Color = 14	Fe = 0.01 Color = 12	Fe = 0.06 Color = 15
	Ì	Silico (SiO _B)		17	81	19	19	16	16	16	61	17	91	18	21	24
	100	Boron (B)	ล	9.0	0 5	6.0	0 8	0.7	0.5	0.5	0.3	0.3	7,0	6.0	0.5	9.0
eoillie.	per million	Fluo- ride (F)	TA. 20	0.02	0.3	0.0	0.01	0.0	0.07	0.2	0.2	0.0	0.3	0.02	0.01	0.01
ports per million	equivolents	trots (NO ₃)	ERONA (S	0.00	0.11	9.2	15	20	0.11	0.07	0.08	3.5	0.07	0.23	9.3	0.16
ă	equivo	Chio- rids (CI)	RROYO DE LA LAGUNA AT VERONA (STA. 202)	19	59	3.72	4.23	3.55	37	44	0.73	35	1.58	4.37	$\frac{110}{3.10}$	2.74
	<u>e</u>	Sul - fote (SO ₄)	LA LAGU	33	1 67	3.06	2.10	87	1.04	1.31	1.00	55	83	$\frac{153}{3.19}$	1.39	1.39
	constituents	Bicor- bonote (HCO ₃)	OYO DE	164	250	335	3.21	3.33	3.21	3.70	3.34	3.80	271	5.59	160 2,62	2.62
	Winerol con	Corbon- ote (CO ₃)	ARE	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00
:	Œ.	Potos- sium (K)		3.3	4.3	0.17	5.4	0.19	3.5	3.0	3.4	3.0	3.0	6.8	3.7	0.10
		Sodium (No)		25	2 48	112	4.87	99	39	39	33	36	2.31	5.70	3.65	$\frac{72}{3.13}$
		Mogna- sium (Mg)		15	2.34	3.76	2.29	2.20	20	25.05	1.67	25 2.07	32 2.67	50.4	$\frac{22}{1.81}$	22 1.78
		Colcium (Co)		31	2.50	3.34	2.59	2.50	39	2.35	39	4.5	2.94	3.74	41 2.05	41
		T O		8.0	7.9	7.9	7.4	7.4	7.8	7.5	7.6	7.8	7.9	8.2	7.6	8.0
	Specific	(micrambos of 25°C)		376	715	1,150	766	921	517	582	482	554	753	1,290	798	713
		Dissolved oxygen ppm %Sot														
		Te mp														
		Dischorgs Tamp in cfs in of Mean		181	29	9.2	17	18	81	15	128	28	15	9.0	21	19
	_	ond time sompled P.S.T.		2/13-18/63	2/19-22/63	2/23-28/63	3/1-12/63	3/13-24/63	3/25-30/63	4/1-3/63	4/7-20/63	4/21-30/63	5/1-8/63	5/9-25/63	5/26-31/63	6/1-10/63

b Laboratory pH o Field pH

c Sum of colcium and magnessum in epm.

c. Sum of calcum and magnessum in term. d.s.), capper (Cu), lead (Pb), manganese (Ma), 2 inc (Zn), and hexavalent chromium (Cr *5), reported here as $\frac{0.0}{0.00}$ except as shown. d. Iron (Fe), aluminum (Al), asserted. (As), asserted.

e Derivad from conductivity vs TDS curves

f Determined by addition of analyzed constituents

h Annual median and maps, respectively Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service

Land Control District SECT CO, Managorial Survey, College William Branch (2010), Los Angeles Department of March and Power (LLOPPI), City of Los Angeles, Department of Public Health (LADPI), City of Los Angeles, Department of Public Health (LADPI), City of Los Angeles, Department of Mater Resources (DMR) or indicated

Public Health (LBDPI), Taymor I sessing because (TLOPPI) and Control Control Department of Mater Resources (DMR) or indicated

TABLE D-2

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO 2)

	1	-	-			-	-								ports p	ports per million	r.				H		H		
	_		-		Soncif	0					101010	Mingrol constituents		5.0	equivolents		per million			Total			10,1		
Sompted sompted P S T		Discharge Temp		Dissolved oxygen ppm %Sot	conductonce (micromhos of 25°C)	hos pH CC c	(Ca) (Ca)	Mogne- sium (Mg)	(Na)	Sodium Potos- (Na) Sum (K)	Corbon -	n Bicor bondte	- Sul - le fate 3) (SO ₄)	Chio-	trate (NO _S)	Fluo-	Boron (B)	(S:02)	Other constituents	solved sod -		Hordness os CaCO _S Total N C ppm ppm	- Pido	Hordness bid - Coliform as CaCO ₃ 11y MPN/mi Total N C nopm	Analyzed by i
	_	-	-														L.								
						-						ARROY	DE 1.A	LAGUNA	ARROYO DE LA LAGUNA AT VERONA (STA. 202)	NA (STA	. 202)								
6/11-20/63		8 1	_				2 54	2 49	74	500	000	226 3.70	74	3.02	0 0 0	000	20	티	Fe = 0.03 Color = 12	305	38	254 6	5.9		USGS
6/21-30/63		12 mean			626							163					9	34	Fe = 0 04 Color = 11	3758	07	7 081	9,5		
											ARROY	O DEF V	ALLE NEA	'R LIVE	ARROYO DEL VALLE NEAR LIVERMORE (STA. 71)	TA. 71)	_								
10-1-62	-																								
11-5-62	010																								
0.540	Š,	Fonded																							
12-5-62	G4	Ponded													_										
1-10-63		0.7	80 7	0 70	050,1	7 8 8 4	201-7	8 320	20 3 31		0.50	397	1-	76 2 14	.]-7		-	-1		979	28	416	65 3		
2-5-63 1100	09		5 95	0 87	1 436	2 8 2	x01 C	3 78	20 8		0000	3.34	1.+	0.39	.16		0.5	.0.		2686	1 6	189 2	22 3		
3-6-63	20	-7	54 10	4	5.28	8 2	215	7 580	25 1 13	Im.	0 13	238	ı n	0.48	_ 1=0		0 5	.01		325 ^E	20	229 1	17 1		
4-8-63	207		59	10 4 Eli	159	3 %	al v	3.340	10 07	100	48	3.11	l	8-0 17	1		777	^#	10 0 + 54	2216	15	167 1	11 40		
5-14-63			80.00	9 5 1776	257.7	x x	3 2 79	1 75	37 = 6	0 15	7 5	3 97	51 1 06	137	0 01	0.03	0	21	A8S = 0.1 PO4 = 2.1	3088	17	227 1	14 110		
6-5-03	10		69	2 4 5 7	7 21/	20 20	1-7	7 7	29 1 26	10	1 20	3 93	Im	0.34	Ja		2 0	.01		318"	2.2	222	15 5		
0	┨,	+	+			\dashv		4	-			-	-	-	-	-					1	-	$\frac{1}{2}$		

o Field pH

except as shown

b Laboratory pH

c. Sum of calcium and magnesium in epm

c. Sum of cotrum and magnessyon in egm. d. Iron (Fe), aluminum (A1), arsenic (As), copper (Cu), tead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (Gr⁻⁵), reparted hers as 0 0 0.00 e Derived from conductivity vs TDS curves

h Annual median and range, respectively. Calculated from analyses of diplicate manthly samples made b, Caldunia Oppariment of Poblic Health, Divission of Laboratories, or United States Public Health Service 4 Determined by addition of analyzed constituents g Gravimetric determination

Marked analyses made by United States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interior, Survey of Rectionation (USSR), United States Continued (USCS), United States (USCS), USCS), United States (USCS), United States (USCS), United States (USCS), USCS), United States (USCS), United States (USCS), USCS), USCS, USC

Γ	-	pazk i		vo .												
-	_	Anoiyzad by i	_	nscs				DWR								
		bid - Coliforni ity MPN/mi n ppm														
	Tar.	n ppm		-7	~	7										
		SON SE		25	-7	20		30	0	0	0	31	0	0	22	0
L				258	289	336		187	270	307	139	138	292	264	83	146
L	-	pos P		23	27	58		09	7.2	76	70	- 58	75	80	90	- 8
L	1010	Perios Perios Portos Edeni		378 ^e	454	5148		7838	1,2908	1,5308	5858	409	1,321	1,5108	1988	1,0308
		Other constituents				As = 0.00 ABS = 0.0 PO4 = 0.05		ABS = 0.0	ABS = 0.0	A8S = L	ABS = 0.0	ABS = 0.02 Cu = 0.00 Zn = 0.00	Cu = 0.00 Zn = 0.00 Fe = 0.01	ABS = 0.01 Cu = 0.00 Zn = 0.00	A8S = 0.0 Cu = 0.00 Zn = 0.00	ABS = 0.0 Cu = 0.00 Zn = 0.00
		Silico (SiO ₂)				23	201)	175	20	7.5	9T	14	17	14	14	1.5
	million	Boron (B)		9.0	0.8	[:]	I (STA.	1.2	7.4	4.8	7.7	0.92	9.8	9.5	0.14	6.9
million	per mi	Flug- ride (F)	71)			0.3	AOUEDUCT	0.0	2.0	0.09	0.3	0.2	0.08	0.09	0.00	0.02
ports per million		rrate (NO ₃)	(STA. 71)			0.0	8.4%	0.2	0.09	0.02	0.02	2.0	4.5	5.1	1.4	0.00
ō	eguivalents	Chio- ride (CI)	TVERMORE	28	12	56 1.58	OF SUUTH	162	349	11.90	4.23	3.04	374	442	1.35	9.51
	<u>.</u>	Sul - fors (SO ₄)	NEAR L			1.58	TURNOUT	1.87	2.35	2.71	0.52	73	2.27	2.54	30	98
	constituents	Bicor- bondfe (HCO ₃)	T. VALLE	4.52	348	385	ALTAMONI T	2.95	8.33	650	4.92	2.13	656	10.14	1.21	3,88
	Mineral can	Carbon- ate (CO ₃)	ARROYO DEL VALLE NEAR LIVERMORE	0.13	0.00	0.00	AI	0.20	0.00	20 0.67	0.00	0.00	0.00	35	0.00	2.70
:	ž	Potas- Sium (K)	- w			3.2	ALTAMONT CREEK	3.0	0.19	3.8	0.17	0.07	0.05	3.0	0.05	3.4
		Sodium (NO)		36	50	62	ALTAM	5.83	338	462 20.10	157 b 83	3.83	412 17.92	492 21.40	36	351
		Mogne- sum (Mg)		5.16	5.78c	3.38		22	3.59	58 4.73	20	1.26	3.79	3.92	8.6	29
		Calcium (Ca)				3.34		38	36	28	1.15	30	41 2.04	1.35	19	0.55
		ī		8 4	8.2	8.2		8.5	8.3	8.5	7.9	7.9	8.2	8.6	7.9	9.2
	Specific	(micromhos at 25°C)		615	739	857		1,000	2,170	2,480	984	722	2,290	2,520	345	1,830
				986	90	76										
		Disse oxy oxy		8.2	7.0	8.3										
L		e o		63	17	70										
		Dischorge Temp		1.6	0.7	0.1						6.0				
		ond time sampled P.S.T		7-1-63	8-5-63	9-3-63 1045		3-1-63	3-18-63	4-1-63	4-15-63	5-27-63	6-10-63	7-8-63	7-22-63	8-5-63 1355

b Labaratary pH o Field pH

c Sum of calcium and magnesium in epm

Sum of colcum and magnesium in spin.
Iran (Fb.) aluminum (Al.), reported here as $\frac{0}{0}$ except as shown in the first sported here as $\frac{0}{0}$ except as shown and file.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h Annual median and range, respectively Calculated from analyses of duplicate manhly samples made by California Department of Public Health, Division of Laboratories, at United Strates Public Health, Service Gravimetric determination

SSUSSEM IN AU AU Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey of Control Office of States Geological Survey, Quality of Water Branch Office of States Office of States Control Office of States Office of

8

TABLE D-2

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

		9														
		Analyzed by i	DWR			USGS			- 2				3.1	m	 	
	-	Hordnese bid - Coliform oe CaCO ₃ ity MPN/ml Tatol N.C.				620.	50.	21.	6.2	23,	6.2	23.	0.21	62.		
	1	- pig c				4.5	005	200	30	240	420	95	20	55		
		Hardness Se CaCO ₃ Tatol N.C.	19			171	26	57	27	12	15	23	18	'n		
L			91	9.5	134	687	83	117	120	87	95	110	126	120	 	
	Per	- po -	77	- 50	- 50	e 14	17	15	18	e 17	15	18	71	14	 	
	Totol	solide n ppm	2168	2188	3428	611	124	172	179	132°	142	153	1908	173		
		Other constituents	ABS = 0.0 Cu = 0.03 Zn = 0.00	ABS = 0.0	ABS = 0.0								PO4 = 0.10			
uo	noillion	Boran Silica (B) (SiO ₂)	0.18 17			0.3	0.0	0.1	0.0	0.2	6.3	0.1	0.0	1.0		_
parts per million	equivalents per million	Flua- ride (F)	1 8AY AQU										0.02			
arts pe	sients	rrate (NO3)	F SOUTH 0.6			08 (SI							0,03			
•	equive	Chig- ride (CI)	RNOUT 0	52	2.54	LOS GATOS CREEK NEAR LOS GATOS (STA. 0.00 388 25 0.00 6.36 0.71	0.16	6.8	0.25	5.2	0.15	5.1	0.17	0.15		
- 1	ç	Sul - fote (SO ₄)	26 0.54	0.56	0.87	EK NEAR							0:56			
	stituents	Bicar- bonate (HCO ₃)	AT ALTA 88 1.44			388 6.36	1.15	114	114	91	98	1.74	$\frac{132}{2.16}$	2,23		
	Mineral constituents	Corbon ~ ote (CO ₃)	0.00			LOS GA	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07		
,	Win	Patas- Sium (X)	ALTAMON1 1.8 0.05	•									0.04			
		Sodium (Na)	34			36	0.33	9.3	0.52	9.2	7.8	0.48	9.8	9.3		
		Magne- sium (Mg)	10	1.90¢	2.68€	9.780	1.660	2.34€	2.40c	1.740	1.90¢	2.20c	0.92	2.406		
		Calcium (CO)	1.00										32		 	
-	_	I	7.7			8.0	7.4	7.6	7.4	7.7	7.7	7.5	8.0	8.5		_
	01,100	conductance (micrambos of 25°C)	367	375	582	096	195	270	281	208	224	240	285	272		_
+	V.					76	06	9.5	9.1	103	86	66	66	100		_
		Dissolved oxygen ppm %So				6.7	6.9	6.6	11.0	10.4	10.5	10.5	10.1	10.6	 	_
 						59	09	53	67	28	53	54	57	24		
		Dischorge Temp				9.0	3.0	37	105	300	53	250	23	52		
		Dote ond time sompled P.S.T	8-19-63 1330	9-3-63	9-30-63 1330	10-3-62	11-7-62	12-4-62 2000	1-9-63	2-7-63	3-6-63 1830	4-10-63	5-16-63	6-4-63		

e Field pH

b Laborotory pH.

c Sum of calcium and magnesium in epm.

c. Sum of calcum and magnessum in stim. I Han (Fe), alumnum (A1), arsenic (A2), copper (Cu), lead (Pb), manganese (Un), zinc (Zn), and havavalent chromium (Ci *5), reparted here as $\frac{0}{0}$ 0 except as shown

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

q Gravimetric determination

ANALYSES OF SURFACE WATER SAN PRANCISCO BAY REGION (NO. 2)

	8				 			 	-							
	Anolyzed by 1				ngcs n					uses						
	bid - Coliform					230.	2.3			23 6.2	6.2	0.045-	62.	6.2	230.	2 3
	Pid Pid Pid Pid Pid Pid Pid Pid Pid Pid				20	20	25			~		-	2	140	70	20
	Hordness os CoCOs	Total N C			 19	27	26			38	42	4.1	32	12	19	=
	9.5				122	144	157			283	339	348	341	78	126	118
<u> </u>	5 5				 15	14	- 1	 		119	50	- 23	81	59	19	3 20
Toroi	- sip of	č g			 176	197	2298			371	447e	787 _e	447	122	176	1748
	other constituents					A 0 02	ABS = 0.0 Pot = 0.00									ABS = 0.01 PO4 = 0.00
	Silico	(3.0)					15									12
1	5	ĵ)			0.0	1	0.1			0 2	0.2	0.2	0.2	0.1	0.3	0 1
miffion Fig.	F100-			(7/			0 0									0.0
ports per million	ż			(STA.			0 07	, 82)								3.2
00	Chlo-	(C)	_	S GATOS	0 20	0.20	7 6 0 21	CREEK NEAR MADRONE (STA.		0 28	33	1 24	27 0 , 76	0.18	9.1	8.0
Ē	- luS	(80°)		NEAR LO			40	AR MADE								30
stituents	Bicor	(HCO ₅)		S CRREK	2.07	137	160	CREEK NE		79 7	349	374 6.13	377 6.18	1.44	131	2.15
Mineral constituents	Corbon	(00)		LOS CATOS CREEK NEAR LOS CATOS (STA, 74)	0.00	0 10	00 0	COYOTE		8 0.27	0.20	00.00	0.00	0.00	0.00	0.00
ž		(K)					2.0									0.06
	Sodium	(S			9 8	11 0 48	12 0.52			31	33	2.04	34	0.70	0.61	0.61
		(S			2 440	2 889	1 18			5.66	6 789	96.9	6.820	1.689	2.520	0.96
	Cotour	(Co)					39									28
	Ĭ	٥٥			 8.2	9.7	7.4			8 4	8 3	8.1	8.0	7.6	8.1	8.0
	Specific conductance (micromhoe	01 25 C)			277	309	350			622	748	810	446	204	295	289
		%Sot			86	86	96			117	73	120	19	66	110	110
	Diesolved	maa			10.3	9 5	8 0			11 3	7.9	14 3	6.2	10.2	11.0	10.8
		_			55	19	8			79	53	97	58	57	59	61
	Dischorge Temp				9.5	89	69		0ry	16	1.2	1.1	0.5	25	12	90
	Dote and time	P S T			7-2-63 1145	8-6-63 1710	9-5-63		10-1-62 1510	11-5-62	12-3-62	1-7-63	2-5-63 1300	3-4-63	4-8-63	5-14-63

a Field pH

Ł Loboratory pH

c. Sum of colcum and magnessium in spin. 4 of (Pb), manganese (Mn), and (2n), and hexavolent chromium (Cr⁻⁶), reported here as $\frac{0.0}{0}$ except as shown. 4 Iran (Fe), oluminum (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), and (2n), area (2n), and (2n), a c Sum of colcium and magnesium in epm

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents

g Gravimetric determination

Monetol analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey of Accounter (USBR), United States Polic Health, Survey, Quality of Water California (MMD), Las Angeles Department of Water and Power (LADMP), City at Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Las Angeles, Department of Marie Resources (DWR) as indicated. h Annual median and range, respectively Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TABLE D-2

ANALYSES OF SURFACE WATER

SAN FRANCISCO BAY REGION (NO. 2)

		_							
	Anglyzed by i				USGS				
	Hordness bid - Coliform os CoCO3 ity MPN/ml				62.	620.	62.	2.3	
	- 4	E 00 c			57	25	2	0	
	.00	O E			10	1	18	7	
	Hord Os	Total N C ppm ppm			120	124	134	135	
	Cent 60d	Ē			20	20	19	19	
1	e vio	Edd u			176 ^e	179e	185 ^e	2078	
		Other constituents					0	ABS = 0.00 ABS = 0.0 Pot = 0.00	
	3	(20:5)						:	
Ţ		(8)			0 2	0	0 2	0.2	
million.	ē 1	(F)	-	5				0.2	
parts per million	_	(NOs)		(STA. 82				3.0	
2	Chio-	(C)		COYOTE CREEK NEAR MADRONE (STA. 82)	9 2	10	8.1	9.1	
٩	,	(SO ₄)		NEAR M				31	
tituents	- 10.04	(HCO ₃)		E CREEK	134	138	137	156 2 56	
Mineral constituents	hop	(,00)		COYOT	0.00	0.00	0.07	0.00	
¥.	9	ξŝ		-				0.05	
		E (0 N)		-	0.61	14 0	0.61	15	
	9000	(Mg)			2.400	2.480	2,680	13	
		(CO)						32	
	Ĭ	86			8.2	8.3	8.3	7.7	
	Spacific	at 25°C)			294	299	310	326	
	9	% Sot			103	103	114	103	
	Dissolved	Edd			10 5	10.2	10.7	5.6	
L	F. C				58	09	65	99	
	Oschorge Temp	;			06	139	9.5	06	
		P S.T			6-5-63	7-1-63	8-5-63	9-5-63 1100	

a Field pH

b Laboratory pH

c. Sum at occinum and magnessum in epim. depim. A sum of the control of the contr c Sum of colcium and magnesium in epm

f Determined by addition of analyzed constituents e Derived from conductivity vs TDS curves

⁹ Grovimetric determination

⁻ Mineral analyses mode by United States Geological Survey, Quality of Water Bronch (USGS), United States Department of the Interior, Surveau of Reciamation (USBR), United States Observed (USBN), Las Anagles, Department of Water and Power (LADMP), City of Las Anagles, Department of Water and Power (LADMP), City of Las Anagles, Department of Water and Power (LADMP), City of Las Anagles, Department of Water Resources (DMR), as indicated h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	Analyzed by i			DAR		8		EM.		nscs				
	Hordness bid - Coliform os CoCO ₃ ity MPN/mi									23.	6.2	23.	6.2	230. 130.
	E			15		0.3		-		4	-	2	5	15
	0003	Total N.C ppm ppm		22		28		21		20	30	21	30	34
				207		144		137		136	148	135	150	121
				28		24		26		30	27	31	26	22
3	solids solids	E 00 c		3908		2328		2328		242	253 ^e	242e	254	200
	Other constituents			6010r = 8581 FBS = 8:81 PO4 = 0.67		Color = 10 Fe = 0.01 ABS = 0.0 FO. = 0.46	,	Color = 10 Fe = 0.18 ABS = 0.0 F04 = 0.56						
	Silico	(3) (S		32		24	. 3	20						
ا ا	1 5	ĝ	209)	0.13	230)	0.10	STA. 7.	0.00	35	7 0	0.1	0.0	0.0	0.0
million	Fluo-	(F)	(STA.	0.0	SIA, 2	0.01	LTON (0.02	(SIA.					
parts par million		(NO3)	BRANCIFORIE CREEK NEAR SANIA CRUZ (STA. 209)	0.0	LORENZO RIVER AT SANTA CRUZ (STA,	0.01	TREES NEAR PELTON (STA. 75)	0.01	SAN LORENZO BIVER AT BIG TREES NEAR FELTON (STA. 75)					
٩	Chlo-	(C)	E-MK 3-MW	0.90	AT SANT	0.59	G TREES	21 0.59	SES NEAR	28	0.68	25	24	0.42
Ē	Sul -	- 1	CREEK N	1.14	RIVER	0.87	R AT BIG	38	BIG TRE					
trituent	Bicor- bonote	(HCO ₃)	IFORIE	3.70	LORENZO	141 2.31	ZO RIVE	2.31	EVER AT	2.31	2.36	139 2.28	146 2.39	1.74
Minarol constituents	Corbon-	(00)	BRANG	0.00	SAN	0.00	SAN LORENZO RIVER	0.00	RENZO R	00.00	0.00	0.00	0.00	0.00
ž	Potos-			3.1		0.06	-a-	0.06	San 10					
	Sodium			37		$\frac{21}{0.91}$		0.96		27	25	28	24	16 0.70
	Magns.			0.85		0.88		5.4		2.720	2 96 €	2.700	3.00	2.42
	Englos O			3.29		2.00		2.30						
	Ĩ.	م		8.1		8.3		8.1		8.0	8.0	7.6	7.6 8.0	7.7
	(micromhos pH			655		376		377		382	399	382	401	316
	• •	% Sot								100	109	87	102	66
	Dissolved	ppm %sot								9.7	11.4	9.7	11.8	10.3
	Te an	1		63		70		73		6.2	99	51	89,	26
	Dischorge Temp			1 (est)		10 (eet.)		15 (est.)		17	27	27	35	275
	Dots ond time sompled	P.S.T		8/28/63		8/28/63 1315		8/28/63		10/3/62	11-7-62	12-4-62	1-9-63	2-7-63

b Laboratory pH

c. Sum of calcium and magnesium in epm

c. Jam or calcular any magnessian in span. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr²⁵), reported here as 0.0 except as shown.

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents Gravimetric determination

Manuel analyses made by United States Geelogical Survey, Gooliny of Water Broach (USGS), United States Department of the Interior, Gueeno of Rectlomation (USBR), United States Capital States Capital States Department of the Capital States Capital Capital States h Annual median and array. Calculored from analyzes of duplicate manthly samples and by California Department of Pobic Meath, Division of Laboratories, or United States Public Health Service.

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

	9				-									
	Analyzed by i		USGS								SMC		DWR	
	in ppm MPN/ml		23.3	620.	23.	23.	62.	23.	62.					
,	- Page - c		30	190	0	2	-	-	-7		-		-	
	Hordness es CoCO _S Totol N C		32	31	29	26	28	76	22		34		34	
			138	106	134	138	140	143	142		142		132	
	- E		22	21	27	22	22	24	25		26		28	
1010	Police Police Police		226	172*	2328	223	230 ^e	231	2498		2538		2498	
	Other constituents				PO4 = 0.30				As = 0.00 ABS = 0.0 $PO_4 = 0.15$		Color = 10 Fe = 0.26 ABS = 0.0 FO ₄ = 1.1		Golor = 10 FE = 0.28 ABS = 0.0 PO ₄ = 1.2	
	(30.2) (5.02)				26				25		32		36	_
million	5 1	A. 75.	0.1	0.1	0.0	0.1	0.0	0.0	0.1		0.10	204)	0.09	
Dec m		NO (ST			0.02				0.03		0.03	(STA. 2	0.03	
		AR FELT			0.01				2.8	.A. 233)	0.02	ELTON (0.03	_
equivolents	Chio- ride (C!)	TREES NE	16	10	15	16	19	20	22 0.62	LS) NOT.	0.68	EAST OF FELTON	27	_
Ē	Sui - fote (SO ₄)	VT BIG	-		49				36	AT PE	1.00	MILE E	6.98	
stituenti	Bicar- bonote (HCO ₃)	HIVER	17.7	92	2.10	2.03	2.25	2.29	2.39		132 2.16	BEAN CREEK ONE MILE	119	
Mineral constituents	Corbon- ote (CO ₃)	SAN LOMENZO HIVDR AT BIG TREJES NEAR PLLTON (STA. 75)	00.0	0.00	00.0	0.20	00 0	0 03	0.00	ZAYAN	0.00	BEAN CR	0.00	
N.	Potos. (K)	SAN			0.05				2.0		0.05		0.04	_
	Sodium (No)		0 78	113	18	18 0.78	18	71 0 91	0.96		1.04		1.04	_
	Calcium Magne.		2 76°	2,120	8.3	2.765	2 795	2 870	7.8		0.60		0.50	
	Calcium (Co)				40			_	2.20		2.24		43	
	I alo		2.4	7.6	7 B	20 20	7.8	8.3	7.7		8.0		7.9	_
0.000	(micromhos of 25°C)		357	272	345	352	364	365	375		394		383	
_	ved (r		6.6	9.7	56	9.7	6.6	106	9.5			_		
	Dissolved oxygen ppm %Sot		11 4	10.9	9.6	9.5	9.2	9.6	0.6					_
	Temp in OF		10.7	20	62	7,0	99	8.9	6.1		- 62		88	_
	Discharge Temp in cfs in of		154	065	14.5	85	52	37	32		4 (cst.)		2 (est.) 58	
	ond time compled P S.T		3-6-63 1320	10-63	5-16-63	6-4-63 1600	7-2-63	8-6-63 1610	9-5-63 0830		8/29/63		8/30/ 6 3 1000	_

b Loborotory pH a Field pH

c Sum of colcium and magnosium in epm.

c. Sum of solicitum and analyzes one it report (Co.), lead (Pb.), manganese (Ida), zinc (Zo.), and heravariant chromium (G. ¹⁶), reported haro as 0 0 except as shown. o Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

⁹ Grovimetric determination

³²⁵⁰⁵⁻DH 0-61 200 JPU h Amual medion and range, respectively. Colculated from analyzes of duplicate monthly samples moit by Colculated by Colculated from analyzes of duplicate monthly samples moit by Colculated from analyzes of duplicate monthly samples moit by United States Designated (USSS), United States Colculated in the International Colculation (USSS), United States Colculated (USSS), United States (USSS), United States Colculated (USSS), United States (USSS), Un

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

	Anolyzed by 1		ж				*		×		æ	
			DWR		DWR		DWR		DWR	_	2048	
	Hardnass bid - Coliform os CaCO ₃ ify MPN/mi Total N C ppm ppm											
1	- pid - 11 mgg u		0.6		0.1		6.0		0 3		2	
	SOO S		21		99		47		~		74	
			269		256		146		118		172	
i	P0		18		23		22		15		17	
Totel	solved solids in ppm		388%		412 ^R		236 ^K		1678		2768	
	Other constituents		Color = 15 Fe = 0.10 A8S = 0.0 PO ₄ = 0.70		Color = 10 Fr = 0.11 ABS = 0.0 PO ₄ = 0.44		Color = 10 Fc = 0.11 ABS = 0.0 PO ₄ = 0.34		Golor = 10 Fe = 0.02 A8s = 0.0 PO ₄ = 0.09		Color = 35 Fc = 0.37 ABS = 0.0 PO ₄ = 0.33	
	Since (SiO ₂)	215)	32		26		23		23	219)	13	
00	Boron (B)		0.11		0.13	(62	0.00	TA. 21	0.05	(STA	60.0	
ports per million	Fluor E	YMPIA (0.3	234)	0.03	SAN LORENZO RIVER AT FELTON (STA. 229)	0.0	LTON (S	0.00	LOMONE N	0.03	
ports per	rrote (NO ₃)	H OF 01	0.0	TE (SIA	0.0	FELTON	0.01	H OF FE	0.0	OF BET	0.02	
d anbe	Chio- ride (CI)	LE NORT	0.56	I ZAYAN	0.70	VER AT	22 0.62	LE NORT	9.8	RTHEAS	0.34	
5	Sul - fota (SO ₄)	ONE MI	1.00	CREEK A	104	ENZO RI	40	HALF MI	9.7	MILE N	86	
strtusnts	Bicor- bonata (HCO ₃)	LOMPICO CREEK ONE MILE NORTH OF OLYMPIA (STA	303	ZAYANTE CREEK AT ZAYANTE (STA	3.80	SAN LOR	146	EK ONE-	140	EEK ONE	120	
Minaral constituents	Corbon-	LOMPIC	0.00	- 2 -	0.00		0.00	FALL CREEK ONE-HALF MILE NORTH OF FELTON (STA. 211)	00.00	NEWELL CREEK ONE MILE NORTHEAST OF BEN LOHOND (STA 219)	00.00	
¥.	Potos. (K)		0.05		2.6		2.3		0.06	- ž -	2.6	
	Sodium (No)		$\frac{27}{1.17}$		36	-	0.87		9.8		0.74	
	Mogns- Sum (Mg)		15		1.27		0.52		3.9		0.55	
	Calcium (Co)		4,14		3.84		48 2 40		4.1		2.89	
	돌이스		8.1		8 3		7.9		8.0		7 9	
Spacific	(micromhos of 25°C)		909		628		379		259		414	
_	% Sot											
	Otesoived oxygan ppm %Sot											
	T of		58		5.9		99		95		52	
	Discharge Tamp		0.5 (est.)		1 (cst.)		8 (rat.)		2 (cet.)			
	Date Dond time sompled P.S.T		8/30/63 0915		8/30/63 0853		8/29/63 1535 B		8/29/63 1520		8/29/63 1450	

o Field pH

ŝ

b Loborotory pH

c. Sum of calcum and magnessium in apm. 0 capper (Cu), lead (Pb), mangiumoye (Mn), zinc (Zn), and herivalent chromium (A1), arsenic (As), asported here as 0 0 except as shown d. Iran (Fe), aluminum (A1), arsenic (As).

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h Annual median and range, respectively. Colculated from analyses of duplicate monthly samples matchly samples matchly samples matchly samples matchly samples matchly samples matchly beneated by the control of Laboratories, or United States Public Health Sevice g. Gravimetric determination

the family that the Maneral analyses made by United States Goological Survey, Quality of Water Branch (USGS), United States Department of the Interior. Survey and Reclamation (USBR), United States Public Health Server (USPHS), Son Benearine County Flood County Flood District (SBCFCD), Managolism Water District of Southern Caldonina (MWD), Los Angelers, Department of Water and Power (LADMP), City of Los Angelers, Department of Public Health (LADMP), City of Los Angelers, Department of Mater Resources, (DWR) as indicated Public Health (LBDPH), City of Los Angelers, Department of Mater Resources, (DWR) as indicated to the County of
TABLE D-2

ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3)

		Anolyzed by 1		OMB.		DWZ		DAR		NA.		5	
	_	Hordness bid - Coliform es CoCO _S ity MPN/mi Totol N C.											
	Tur	- kg o		0.7		0.3		9.0		9.0		0.5	
		Hordness es CoCO _S Totol N.C. ppm		36		0		۰		80		17	
		1 1		151		69		7.7		230		260	
	i	200		23		25		26		56		22	
	Total	e pio ci		2538		1208		1328		3838		412 ⁸	
		Other constituents		Color = 10 Fe = 0.05 ABS = 0.0 PO4 = 0.73		Color = 5 Fe = 0.01 ABS = 0.0 Pot, = 0.04		Color = 10 Fe = 0.03 ABS = 0.0 PO ₄ = 0.16		Color = 15 Fe = 0.06 ABS = 0.0 FO ₄ = 0.27		Color = 20 Fe = 0.03 ABS = 0.0 PO ₄ = 0.25	
		Si co.		81		52		গ্ৰ		77	. 206	50	
	101	Beron (B)		0.10		0.04	(8)	0.04	2	0.13	(STA	0.15	
million	per million	Fluo- rids (F)	, 216)	0.03	. 210)	0.00	STA. 20	0.00	TA. 205	0.0	R CREED	0.0	
parts per million	aquivolents	rrots (NO ₃)	ND (STA	0.0	TS) IT	0.01	CREEK (0.0	REEK (S	0.01	BOULDE	0.0	_
١	Bquive	Chio- rids (CI)	HOT NEE	0.65	BROOKD/	8.8	OULDER	0.34	ULDER C	0.76	EAST OF	0.68	
	5	Sul - fors (SO ₄)	LOVE CREEK AT BEN LOMOND (STA, 216)	38	I I I I I I I I I I I I I I I I I I I	0.10	SEK AT E	9.0	SK AT BG	2.04	S NORTH	110	
	constituents	Bicor- bonote (HCO ₃)	LOVE CR	152	CLEAR CI	92	BOULDER CREEK AT BOULDER CREEK (STA. 208)	1.56	SEAR CREEK AT BOULDER CREEK (STA, 205)	3.44	OUR MILE	3.77	
	Minerol con	Corbon- ots (CO ₃)		0.00		0.00	BOU	0.00	. 60	0.00		0.00	
:	S.	Potos- sium (K)		0.05		0.00		0.05		0.06	BEAR	2.3	
		Sodium (No)		$\frac{21}{0.91}$		0.48		0.56		38		33	
		Mogne- sium (Mg)		0.62		0.33		5.4		1.06		1.35	
		Colcium (Co)		2.40		$\frac{21}{1.05}$		$\frac{22}{1.10}$		3.54		3.84	
		표하		8.0		7.7		7.9		8.1		8.0	
	Spacific	conductance (m.crambos of 25°C)		388		181		204		595		634	
		Dissolvsd osygen ppm %Sal				-							
		E E		63		58		09		59		58	
		Discharge Temp		0.25(est		1 (est.)		3 (est.)		2 (est.)		2 (est.)	
	_	ond fime sompled P.S.T		8/29/63 1330		8/29/63 1305		8/29/63 1240		8/29/63		8/29/63 1005	

o Field pH

b Laboratory pH

c. Sum of factorium and magnessum, in fight.

d. from (FP), alumnum (A1), arsence (A3), capper (Cu), lead (Pb), managenese (Mn), zince (Zn), and hexaerolent chromium (Ci**), reported have as $\frac{0.0}{0.00}$ except as shown c Sum of colcium and magnesium in epm.

f Determined by addition of analyzed constituents. · Derived from conductivity vs TDS curves

⁹ Gravimetric determination

h. Annual medion and ronge, respectively, Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service

i. Marrel analyses made by United Stores Geological Sarvice Water Borach (USSS). United Stores Department of Marrel Borach (USSS). United Stores California Stores (USPHS), San Bernadoro County Flood

Cornol Davier (SECC). Metapoplish after Davier of Southern California (MWD). Las Angeles Department of Marrel Marrel Public Medical Laboratory (USPHS), City of Lang Beach Department of Public Medical Esting Laboratory, Inc. (TTL.) or California Department of Medical Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER

3	
REC10N	
COASTAL	
CENTRAL	

\simeq	
KEC 10N	
COASTAL	
ENTRAL	

	Anolyzed by i		DWR	Ę.	N. W.	3.99 2.99 3.99 3.99		05.5		
	Hordness bid - Coilform as CoCO ₃ ify MPN/mi Total N C ppm							8.3	700	0.2
ا خ	- bid the		-		-	> -			~;	-1
	Hardness os COCO ₃ Total N C ppm ppm		50	5 T	5	7		ž	170	1: 9
	Poto P		577	28	30	757		~	327	324
à	000		- 5	=	3	=		- 5	90	ξ,
Total	Spilos		34507	, 808	1	3574		4.76	3376	1,75
	Other constituents		Fr = 11. ABS - 11. FO ₂	Color - 1: F. a. c.t. ABS = c.t. P. a. c.t.	Co. 1	Coffee # 10 Fer a 1 c ABS a c c PO ₄				
	\$0.5 \$10.5		司	ने ज	=1	<i>a</i>				
00	60.08		1	(510)	57	80 777		~	-	=
anthon ar	0 (F)		+ 3	# 1 TO	7 16	13 13				
parts per million valents per mill	N. Fluu- Boron Slico trate ride (B) (5:02) (NO ₃) (F)	S É		100	- 10	PER CREE	 E			
equivolents per million	Chio-		 	811F of Bot Library 0.01	RIII 01 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1	8 12	(STA.	83	10 1	7 8
		- 8		MILL AR	1 1 1 1		South			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NATE LONGENZO REVER SE BOUGLOOK CREEK (NE	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	We have true are will assume bounder refer (5) of $\frac{10}{100} = \frac{155 z}{2.5 z} = \frac{16 z}{2.10} = \frac{9 z}{100} = \frac{9 z}{1.02} = \frac{9 z}{1.02}$	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	AND THE CREEK ALSONGEL (STA. 70)	1 31	377	4 2 2
Mineral constituents	91 - Bic 15) (HC	LORLS	-1=	8	= 1			= =	0 0 0	200
Mineral	S- Carb	¾	5 5 5	INO BAR	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	# 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		= =	0 =	~ c
	Poto Siun			7 -	15	25 1083 - 2 1				
	Sodium (Na)			sc =	20	41-		11 7 P. 11 0	2	4.
	Mogne. Sign (Mg)		7	7 6	212	- 1.		0	2	7 2
	(Co)		9/ 5	45	7 2	60 T				
	Ĭ : -		20 1	-	- 50	20 20		- 00	x .	20 X
Specific	Conductonce pH (m.crombos pH or 25°C)		356	5/2	1			9	7.0	85.5
	oxygen ppm %S							11 3 III	-	ş
	Te oF		=	5				Ē		
	Oischarge Temp		3 (0.1)	G 3	3 3	(- F)		-	£	
	ond time sompled P S T		29/77	8,29/2	1 0 mm			1 - 1 - 0 - 1 - 1	100	1

b Laboratory pM

Freld pH

c. Sum of colcium and magnesium in epni

c. Sum of colcum-and magness with retime.

I grow the sum of colcum-and magness with the sum of the

e. Derived from conductivity is TDS curves

4. Determined by addition of analyzed constituents

Annual median and range, respectively. Calculated from analyses of Applicate monthly samples made by California Department at Public Health, Division of Educatories, or United Stores Public Health Service g. Gravimetric determination

Mineral analyses made by United States, Geological Survey, Quality of Water Branch (USGS), United States Department of this International Accountment of this International States (USPR), United States Problect Hoolith, Survey, Qualitational States of Management of Water and Prace (LATWP), City of Las Angeles, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Public Hoolith (LADPH), City of Long Beach, Department of Language (LADPH), City of Langu

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

Colour C	Mineral constituents in equivalents per million			
8.5 1.5	Sul - Chio- Ni - Fluo- fors ride trate ride (SO ₄) (CI) (NO ₃) (F)	Boron Silico (B) (SiO ₂) Other constituents	solide and os CaCO ₃ ify	ity MPN/mi by i
1.5 1.5	SOQUEL CREEK AT SOQUEL (STA. 76)			
1	23 1.50	1.0	502° 27 309 106 1	6.2 2.1
1.0 1.0	19 0.54	0.0	341° 20 222 88 50	62. 62.
1.00 1.00	25	0.1	402 ^e 20 250 89 10	0.62
8.0 7.2 1.1 3.2 3.0 0.0 8.4 5.59 1.13 1.39 0.0 0.43 8.5 5.32 1.51 0.43 13 8.8 5.32 1.21 0.43 8.4 5.00 2.18 0.30 8.4 3.99 1.91 2.2 2.18 8.4 3.99 1.91 2.2 0.10 8.6 3.58 1.25 0.13 0.30 8.6 3.58 1.25 0.13 0.13 8.7 3.56 12.53 0.13 0.10	0.28	0.1	216 ^e 19 148 56 600	2,400.
8 5 10 10 10 10 10 10 10	$\frac{111}{2.31} \frac{23}{0.65} \frac{0.8}{0.01} \frac{0.4}{0.02}$	$\frac{0.1}{0}$ 25 Pu ₄ = 0.20	3908 22 246 80 2	13.
8.2 4.2 1.6 8.4 5.486 1.85 0.55 8.4 6.026 2.18 0.30 8.4 3.99 1.91 2.2 5.2 8.4 3.99 1.91 2.26 0.13 8.2 9.586 12.53 0.00 8.3 2.38 0.00 8.3 2.9 1.25 8.3 1.2 1.2 8.3 1.2 1.2 8.3 1.2 1.2 8.4 1.2 1.2	31 0 87	0.1	417° 23 266 76 1	620.
8.2 2.0 0.30 8.4 5.02 2.18 0.30 8.4 3.99 1.31 2.25 0.13 8.4 3.99 1.31 2.25 0.13 8.0 3.99 1.36 2.88 0.00 8.1 2.26 2.15 0.00 8.3 2.40 0.00 0.00	42	0.1	442 ^e 24 284 90 1	23.
8.4 3.99 1.91 5.2 5.2 1.00 8.4 3.99 1.91 2.26 0.13 0.33 8.2 9.58c 12.58 0.00 0.00 8.2 2.86 12.53 1.20 0.00 8.3.7 1.1.72 1.2.6 1.2.6 0.00	<u>55</u> 1.55	0.1	477 ^e 27 301 100 1	62. 23.
8 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 62 2.4 0.4 2.06 1.75 0.04 0.02	0.2 33 A8S = 0.0 PO4 = 0.10	5098 27 295 88 3	6.2
8.2 2.86 0 8.0 9.586 12.55 0.00 8.2 2.58 12.55 12.60 8.3 2.58 2.58 12.55 8.3 2.58 0.40 0.40	RO RIVER NEAR CHITTENDEM (STA. 77)			_
$\frac{8.2}{8.3} \qquad \frac{258}{8.32^{\circ}} \qquad \frac{12}{11.22}$	375 10.58	0.1	1,288 ^e 57 479 0 15	130. USGS 620.
	289	1.6	1,1446 57 416 0 2	62 23.
2,060 $\frac{2.5}{8.4}$ $\frac{284}{9.50}$ $\frac{284}{12.35}$ $\frac{12}{0.40}$ $\frac{578}{9.47}$	332	1.8	1,288 ^e 57 475 0 1	62.

o Field pH

b Loborotory pH

c. Sum of colcum and magnesium in epm. 0 except (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*5), reported here as 0 0 except as shown d Iron (Fe), aluminum (Al), assence (As), casper (Cu), lead (Pb), manganese (Mn), are constant. c. Sum of colcium and magnesium in epm.

⁴ Determined by addition of analyzed constituents Derived from conductivity vs TDS curves

q. Grovimetric determination

h Annot median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

							L			N.	eral con	Mineral constituents	5	parts pe		million .				-			Γ'	_	
ond time	Dischorge Temp	Temp to OF	300	gen 0,50	conductance (micromhos)	Į o	Colcium (Co)	* Ggne	Sodium (Na)	Potos-	Carbon-	Brear	Sul - fore	Chlo-		Filuo-		Silic 8 (\$i0\$)	Other constituente	Police Page	5 6 5	Total N C	0 z	bid - Coliform	m Anolyzed
						٥					2	8						+				E Q	E		-
											PAJAE	PAJARO RIVER NEAR CHITTENDEN (STA.	NEAR C.	HITTENDE	N (STA.	(77)									
1-7-63 1710	1.5	47	9.0	76	2,030	8.0		209 6	268		12 0 40	548 8.98		338			6.1			1,269	55	780	=	2 23.	USGS
2-5-63	1,200	09	8.2	8.2	262	7.4		2.04c	15		0.00	106		12 0.34			0.0			1,638	24	102	15	240 7,000.	
3-4-63	97	59	9.6	95	165	7.5		7 640	34		00.00	3.34		0.93			0.3			369	54	232	6.5	25 230.	
4-8-63 1610	1,100	09	8.6	986	334	7.7		2.830	0.78		0.00	2.33		13			0.2			209	22	142	56	200 230.	
5-15-63 0900	57	62	œ 	3	847	7.6	3.34	3.48	2.35	0.06	13	249	2.87	1.35	0.10	0.3	0.3	19 A A M	As = 0.00 ABS = 0.1 PO ₄ = 1.4	519 ⁸	25	341	115	60 23.	2
6-5-63	6.7	99	8.5	66	1,280	8 4		9.990	100		0.40	5.77		94			0.7			800	30	200	192	20 21.	_
7-1-63 1815	14	70	7 6	85	1,500	8.0		10.40c	5.31		0 27	69.9		3.16			0.8			938	34	520	172	9 130.	2
8-5-63 1350	8.0	6.9	9 1	100	1,510	8 4		10 25c	142		7 0.23	8.28		3.53			0.8			9446	38	512	98	5 23.	
9-5-63 1315	3.0	89	9 1	66	1,440	8 4	3.64	5.94	151	5.6	0.13	8.90	3.44	3,67	0.04	0.03	6.0	21 PR	As = 0.02 ABS = 0.0 PO ₄ = 0.00	8948	0.7	479	58	9 62.	
										SAN 8E	NITO RIV	SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION (STA.	BEAR V.	ALLEY FE	RE STAT	- 10N (S	TA. 77a)	- ·							
10-2-62	0.2	63	9.5	86	2,120	8.2		12.940	274		00.0	9.08		260			1.7			1,361	89	249	193	620.	usgs 3
11-6-62 0915	0.1	95	10.9	107	2,180	8 8		13.640	270		18	9.24		186			2.0			1,413	977	682	190	2 6.	6.2
12-3-62 1415	1.0	65	12.0	131	1,860	8.2		12.00c	9.74		1.17	482		143			1.6			1,205	4.5	009	146	1 6.2	2

b Laboratory pH o Field pH.

c Sum of calcium and magnesium in epm.

c sum of conclum any magnessymmer, e.m... d from [Pb], manganese (Mn), zinc (Zn), and heravalent chromium (Cr⁻¹), reported here as 0 0 except as shown d from [Cr⁻¹), reported here as 0 00 except as shown Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination

Marked analyses made by United States Geological Survey, Quality of Water Broach (USCS); United States Department of the Interior, Bursow of Rectionation (USCR), United States Colorability of Water Broach States Colorability of States Colorability (States Colorability (States) States (States) States (States) Object Reports (DNR), as included Textury Department of Public Health (States) States (States) State h Annual median and arrays, respectively. Calculared from analyses of duplicate manthly samples made by California Department of Public health, Division of Laborationes, or United States Public Health Service

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

		Analyzed by 1			nsgs										nscs		
		hid - Coliform			23.	79	0.23	130.	62.	14.	130.	2.3	6.2		620.	62.	2.3
	Tor	- pid Liggu			2	0,7	64	10	20	0.5	_	-	~		-	20	30
		00 Z	E dd		7	980	119	126	75	Ξ	117	156	153		10	1,5	6
			Edd		618	526	596	602	358	408	566	969	598		174	97	131
	- 50	E 00 E			41	35	38	36	19	18	775	90,7	4.7		13	13	13
	Total	a of ved			1,199	927 ^e	1,076	9866	44.28	527 ^e	1,128	1,290	1,3108		216 ^e	126 ^e	173 ^e
		Other constituents							PO4 = 0.10				A85 = 0.00 PO4 = 0.00				
		Silica (SiO ₂)		- F					12				15		·		
	noillie	Boron (B)		CA. 77	9	1 4	2.5	1.5	7	0.6	17	22	2.1		0.0	0 1	0.0
E	per ail	-001 -001		10N (S7					0.0				0.02	_ 6			
ports per million	equivalents	-in-	(NO3)	RE STAT					0.03				0.03	— 16. KIT.S)			
٩	94014	Chio-	<u>(i)</u>	NEAR BEAR VALLEY FIRE STATION (STA. 77a)	149	85	104 2.93	2.65	18	0.62	3.33	162	163	MORGAN HILL	8 8	5.2	0.18
- 1	c.	Sol -		BEAR VA					72				9.62	R MORGA			
	constituents	Bicar-		ER NEAR	8 69	4.98 8.16	501 8.21	\$02 8 23	396	392	7.79	8.00	513	CREEK NEAR	3.15	101	2.44
	Mineral car	Corbon-	(603)	BENITO RIVER	0.73	23	1 33	38	0.40	45	35	0.80	0.50	TVAS CI	0.13	00.00	00.0
	M	Potas-	ĵ.	SAN BEI					0 07				0 10				
Ì	-	Sodium (No)			200	132	7.22	153	39	1 78	186	248	248		12	2 0	0 38
		Magne	(S		 12 364	10.52	11 929	12.04	5 61	8 16	11 32	11 92	120 9 86		3.480	1 94	2.62€
		Calcium (Ca)	-T						31				2.10				
		Z =	۵		7 7	8 5	8 7	7 to	20 00	9 9	8 4	8.5	8.3		8 3	7.3	7 6
	Spacific	(micramhos pH at 25°C)			1,850	1,430	1,660	1,540	758	813	1,740	1,990	2,110		354	207	283
1		D	%Sat	 	112	66	117	105	86	105	102	157	138		140	9.5	106
			bbm o		7	9 2	11 6	10 8	8 8	6 8	- 40	12.7	12 1		11 2	9.2	11 2
				 	67	75	58	55	67	7.2	7.1	77	6.9		0.8	65 0	55
		Oischarge Temp			9 0	5 0	0 -7	0 0	3 2	107	4 0	0.2	0.1		3 (cat)	125 (est)	15 (est)
		and time	2		1-8-63	2-5-63	3-5-63	4-9-63	5-15-63	6-5-63 1220	7-1-63	8-6-63	9-4-63		10-1-62	11-5-62	12-3-62

o Field pH

c. Sum at sate, am one analyses up in the production of the state of t

b Labaratory pH

c Sum of calcium and magnesium in epm

f Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves

g Gravimetric determination

h Annual median and range, respectively Calculated from analytics and duplicate manthly samples made by California Department of Public Health, Dursson of Labbrationes, or United States Public Health Service.

1. Mineral analyses made by United States Geological Survey, Quality of Water Broach (USS), United States Calculated to Water Broach (USS), United States Department of the Internation of the Internation of the Common California (SMC), Land States Department of Manter and Power (LADMP), City of Las Angeles, Department of Public Health Laddell, City of Lang Beach, Department of Build Health, City of Lang Beach, Department of Beach, Department of Build Health, City of Lang Beach, Department of Manter Beach, Department of Manter Beach, Department of Bea

Г	_	9													
		Anciyzed by I		0.868										nscs	
		bid - Coliform		2.3	230	1.3	6.2	0 62 0.62	6.2	2.3	230.	6.2			
	ž	- pig - 4- - u		2	96	09	15	2	~	-	Ś	15		06	
		Hardness es CaCO ₃ Totol N C pom pom		10	2	4	9	۰	00	20	۰	- 1		29	
L			 	163	76	92	103	128	146	148	152	162		136	
L	ě	100 E	 	=======================================	- 2	12	- 12	12	175	11	13	13		23	
L	Total	# # # # # # # # # # # # # # # # # # #		207	107	124e	137	1668	187 ^e	178 ^e	203	2148		2358	
		Other constituents						PO4 • 0.05			A 6 0 0 2	A8S = 0.0			
	1	Silic (SiO ₂)						91				23	212)	21	
	lo I	Boron (B)		0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.2		0.0	
million	per milion	Fluo- ride (F)						0 0				0.03	TINAS	0.01	
parts per million	equivolents	rrote (NO _S)	(STA. 96)					0 03				0.04	NEAR S.	0.12	
ă	o dank	Chio-		7 2 0 20	3 8	0.11	5.8	5.5	6 1	0.0	5.2 0.15	0 17	SE ROAD	26	
	ç	Sul - fote (SO _e)	MORCAN					0.37				25 0	T STW	30 0 62	
	110001	Bicor- bonote (HCO ₅)	CREEK NEAR MORGAN HILL	158	1 48	107	1 93	138	2.49	145 2 38	178 2 92	3.02	EEK AT	130	
	Mineral constituents	Corbon- ote (CO ₃)	UVAS CR.	14	00.00	00.00	0.00	0 20	0 27	0.20	00.00	00 0	CABILAN CREER AT OLD STACE ROAD NEAR SALINAS (STA.	0.00	
	2	Palas-						$\frac{1}{0.03}$				0 03	-	3.5	
		Sodium (Na)		11 0.48	0.26	5.9	0.27	0.37	9 0	0.37	0.44	0.48		0 83	
		Mogne- sum (Mg)		3.26€	1.526	1 84 0	2 065	11.1	2.93c	2.976	3.04€	1 40		8.8	
		Calcium (Ca)		_				29				37		40 2.00	
		e b		8 5	7 5	8.0	7.7	8.3	8 8	8 5	9.0	8 2		7 8	
	Specific	(micromhos		339	176	204	224	275	307	291	332	350		359	
		gen (n		154	101	106	9.7	125	119	115	113	102			
		P P P		16 9	10.3	10 8	2		10.0	11 0	9	00			
		E e		35	88	89.	5.9	2	70	63	74	7/		61	
		Oischorge Temp		l (est	300(est	lo(est	500 (est)	8 (est	S (est)	10 (est	30 (est	25 (est			
		ond time sompled P.S.T		1-7-63	2-5-63 1345	3-4-63	4-8-63	5-14-63	6-5-63	7-1-63	8-5-63	9-5-63		2-1-63 1430	

o Field pH

b Loborotory pH

c. Sum of colcum and magnessum in eam. 0 except (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (Gr¹⁶), reported here as 0 0 except as shown. d Iran (Fe), aluminum (A1), arsenic (A2), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), arsenic (A2), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A2), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A2), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A3), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A3), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A3), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A3), capper (Cu), Iead (Pb), manganese (Mn), sinc (Zn), and herovolent chromium (A1), orsenic (A3), capper (Cu), and herovolent chromium (A3), capper (Cu), c c Sum of colcium and magnesium in epm

Derived from conductivity vs TDS curves

f. Determined by addition of analyzed constituents

h Annual median and range, respectively Colculored from analyses of duplicate monthly samples made by Coldinana Department of Public Health, Division of Lobonaviers, or United States Public Health, Service (USPHS). San Bennadino County Flood in Mare properties of Southern Coldinana (MMD), Los Angeles Department of Health (LADMP), City of Los Angeles Orbitander of Public Health, City of Land Resources (DMR), as indicated Public Health, City of Los Angeles Orbitander of Public Health, City of Constant Orbitander of Public Health, City of Constant Orbitander of Public Health, City of Constant Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health, Terman City Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing Los Angeles Orbitander of Public Health (LBDPH), Termal Testing

SCHOOL ON THE SEC UP

TABLE D-2

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,					Specific				Min	Mineral constituents	stituents	=	parts pr equivalents		per milion	10		10,00					
See • 10	Discharg	Tem in of		kygen A 9/6 Sof	conductanc (m.c.rambar at 25°C)	I ala	Magne- sium (Mg)	Sodium (Na)	Potas- srum (K)	1	Bicar- bonate (HCO ₃)	Sul - fate (504)	Chlo- ride (CI)			Baron S (B) (S		polyed Bolde E D D D		os CoCC	- 5 OE	MPN/mi	Anolyzed by 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										TAN	O GAGIVI	REEK AT	TS OTO	AGE ROAD	NEAR S	SALINAS		218)						
Column C						663	7 7	 36 2 96	25	8 9 0 23	0.00	410	27 0.56	0.17	2 0 03	0.4		77	4328	14				USGS
										ALIS	AL CREEK	AT OLD	STAGE	ROAD NEA	R SALIA	las (Sī			 -					
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			ુ			821	8	 26 2.14	58	0.00	0.40	262	56	89	8.4	0.04	0.0	58	 890°S	29				S9Sn
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,										_ ` -	TORO CRE	EK AT HI	I GHWAY	 117 BRIO	GE NEAR	SALIN	AS (STA							
1, 12, 10 1, 12, 10 1, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14			6.2			1,330	80	2.39	138	0.11	10	3.70	113	220 6.21	2.1	0.07	0.1	7.2	8318	4.7				nses
0.6 6.0 1.0.6 1.0 2.3 1.60 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 4.23 1.50 2.00 1.43 1.												SALINAS	RIVER	NEAR SPR	ECKELS		(6,3)							
1 2 2 2 2 2 2 2 2 2		9.0				1,110	7.3	4.635	140		00.0	302		150			60		673°	57				
5.0 6.1 2.0 2.0 1,500 7.8 11.4 100 6.50 8.4 5.1 6.1 1.5 11.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		3 0		6.3		1,530	8.0	10.16c	5.87		0.00	11.47		35			0.2		927 ^e	37				
5.0 5. 6. 9. 1. 6. 7. 1.		5.0		2.0		1,500	7.4	9 920	5.26		0.00	11.06		143			0.3		ə606	35				
1,280 62 99 101 389 81 5.06c 0.87 0.00 2.33 0.42 0.42 13 0.44 0.83 0.44 0.89 8.4 5.16c 1.85 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49		5.0		4.0		1,690	7.5	11 400	120 5 22		00.00	770		146			0.1		9706	31				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,280	62	- 6		389	8.1	3.06€	20		0.00	2.33		0.42			0		236 ^e	22				
		210	51			650	8 1	5.160	38		13	3.34		33			7		394e	24				

b Laborotory pH

Jun of edicium and magnesium in epm Iron (Fe), aluminum (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavialent chromium (Cr⁺⁶), reported here as $\frac{0}{0}$ 0 except as shown Iron (Fe), aluminum (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavialent chromium (Cr⁺⁶), reported here as $\frac{0}{0}$ 0 except as shown Sum of calcium and magnesium in epm

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination

Minaral analyses made by United States Geological Survey, Quality of Water Barneh (USGS), United States Department of the Interior, Bureau of Rectamenton (USBR); United States Geological Survey, Quality of Memory Children (SAGCE), Materia of Memory Children (SAGCE), Materia of Memory Children (SAGCE), Materia of Memory Children (SAMP), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Water Resources (DWR), as indicated. Annual madian and mage, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobardanes, or United Stones Public Health Service

D-40

(NO.3)	
REGION	
COASTAL	
CENTRAL	

		Anolyzed by i			nscs							uses		nses	
					62. 62.	13.	230.	2400. 620.	2,400.	620.					
H		Hordness bid - Coliform as CaCO ₃ ify MPN/mi Total N C ppm ppm			05	01	ີ ກ	15	6 2,4	07		100		110	
H	-2	2 0 U E			19	88	24	114	0	0		27 1		28 1	
		Hordness os CaCO ₃ Totol N C ppm ppm			205	288	296	296	356	795		116		119	
r		# 0 5 0 5 0 5			22	25	97	95	94	36		19		21	
	Total	solids mod u			297 ^e	8097	661 ^e	80ee	818e	8948		1888		2008	
		Other constituents			Ac = 0.00	ABS = 0.0 PO4 = 0.00			00 0	ABS = 1.5 PO ₄ = 13					
		Silico (SiO ₂)				23				07	222)	22	221)	29	
	lion	Boron (B)			0.1	0.1	70.	9.0	4.0	0.3	S (STA.	0.0		0.1	
million	per million	Fluo- rids (F)		·····		0.02				0.03	RECKEL	0.1	UALAR	0.01	
ports par million		trote (NO ₃)	(STA.			3.1				2.0	NEAR SE	0.05	NEAR CHI	3.5	
9	squivalents	Chiq- ride (CI)	SECTION S		0.59	38	3.55	3.61	144	4.15	BRIDGE	9.8	GHUALAR BRIDGE NEAR CHUAJAR (STA.	10	
	5	Sut - form (SO ₄)	NEAR ST			2.69				46.0	TILTOWN	0.83	CHUMLAR	96*0	
	constituents	Bicar- bonata (HCO ₃)	SALIVAS RIVER NEAR SPRECKELS (STVA.		$\frac{165}{2.70}$	3.54	308	3.64	7.38	598 9.80	ER AT H	1.79	VER AT	1.72	
	Mineral can	Corban- 010 (CO ₃)	SALINAS		0.20	14 0.47	0.40	0.00	0.00	0.00	SALINAS RIVER AT HILLTOWN BRIDGE NEAR SFRECKELS (STA.	0.00	SALINAS RIVER AT	0.10	
	ž	Potas- sium (K)				3.0				0.89	SAL	0.07	- 88	2.9	
		Sodium (NO)			$\frac{26}{1.13}$	1.91	114	144	6.03	130		0.57		15	
		Mogna- sum (Mg)		*	4.10c	23	5.91	5.92°	7.120	3.90		9.8		9.5	
l		Calcium (Ca)				3.84				5.34		32		32	
		T 0 0			8.3	9.8	8.5	8.0	7.6	8.0		7.5		2.00	
	Source	(micromhos at 25°C)			065	217	1,090	1,330	1,350	1,440		296		304	
r		ved %Sat			86	139	210	218	191	110					
		Dissolved oxygen ppm %Sat		-	5.6	12.1	18.9	18.1	16.0	5.6					
		To a			63	73	70	78	77	74		09		61.5	
		Discharge Temp			240	120	3.5	2.0	1.4	3.3					
		ond time eampled P.S.T			4-9-63 1720	5-16-63	6-4-63 1630	7-2-63 1530	8-6-63 1315	9-5-03 1415		2-4-63		2-4-63	

32505-D-8 0-61 200 380

b Labaratory pM

c. Sum of calcium and magnesium in epm.

c. Sum of calcum and magnessum in epm. d lead (Pb), manganese (Mn), 2 inc (Zn), and hexavalent chramium (Gr⁻¹), reported here as $\frac{0}{0}$ except as shown d Iran (Fe), aluminum (A1), arsported here as $\frac{0}{0}$ except as shown

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents

g Gravimetric determination

h. Annual median and range, respectively. Calculated from analyses of dualicate monthly samples made by California Debalment of Public Health, Division of Laboratories, or United States Public Health Service.

Lament markets made by United States Geological Service (USPHS), Sam Bernadino Canaly Flood

Canalo District (SECC). Managoalina when District of Southern California (JAM), Las Angeles Department of Media (LADP), City of Los Angeles, Department of Public Health (LADP), City of Los Angeles, Department of Public Health (LADP), City of Los Angeles, Department of Public Health (LADP), Team (TILL) or California Department of Meter Resources (DMR), as indicated the public Health (LADP), Team (SECC) Managoalina (TILL) or California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of Meter Resources (DMR), as indicated to the California Department of

TABLE D-2

ANALYSES OF SURFACE WATER

CENIRAL COASTAL REGION (NO. 3)

	9													
L	Anolyzed by i		\$250 -		USCS		uscs		0808		0.868			
	Hordness bur- os CoCC ₃ 11 _y MPN/mJ foto! N C										23.	6.2	2.3	
	- p - c - c - c - c - c - c - c - c - c		20		30		07		120		15	'n	2	
Γ,	00 N		24		55		39		1,130		18	2	4	
	Hordnese oe CoCO ₃ Totol N C ppm ppm		105		10,		164		1,300		116	130	133	
	- 909		9,		21		21		0.7		17	17	18	
1000	solved cont		1688		270*		2668		3,160 ^b		173 ^e	192 ^e	201 ^e	
	Other constituente													
	Silic a (SiO _e)		22	224)	130	223)	52		28					
c c	8 or on	_	0.0	— SS (ST.)	<u>.</u>	O (STA.	0.1	_ 00 _	3		0.5	4.9	0.1	
01110	Flug- ride (F)	siA. 20	0.0	AN LUC	0.01	— AZN ARC	0.1	STA. 2:	0.05	T _				
gorts per million	rote (NO3)	LEDAD (S	0.02	LUCAS BRIDGE NEAR SAN LUCAS (STA.	0.05	NEAR S	2.2	ARDO (0.16	 STA. 43 				
3	Chia- ride (Ci)	NEAR SOI	0.16	BRIDGE	0.45	BRIDGE	0.45	EAR SAN	1,00	ADLEY (0.37	0.23	0.26	
ē	Sul . fate (50 ₄)	RIVER	37	N LUCAS	1.3	AN ARDO	58	CREEK N	34.15	NEAR BR				
constituents	Bicar- bondle (HCO ₃)	ARROYO SECO RIVER NEAR SOLEDAD (STA. 203)	1.62	R AT SA	2,33	EK AT S	2.36	PANCHO RICO CREEK NEAR SAN ARDO (STA. 220)	3.25	SALIWS RIVER NEAR BRADLEY (STA. 43c)	11.95	2.34	2.34	
Wineral con	Corbon - 01e (CO ₃)	ARRO.	0.0	SALINAS RIVER AT SAN	2001	SALIMAS RIVER AT SAN ARDO BRIDGE NEAR SAN ARDO (STA.	0.13	PANCE	0.13	SALINAS	0.0	0.0	0.0	
ž	Patas. Sium (K)		0.07	SALE	0.07	SAL	0.07		0.3.		_			
	Sodium (NO)		9.7		24		20		400		11 0.48	0.52	0.57	
	Magne- sium (Mg)		0.00		51 . 1 P		1 18		14.2		2,320	2,60€	2.67	
	Calcium (Ca)		30		4.2		42 2.10		285					
	P. 4		8.2		;;		 		 		8.2	2.5 e. 5	8.1	
	onductore pH (micromhos pH of 25°C)		253		907		403		3,550		270	300	3.14	
	9en %										104	101	100	
											. 7 . 5	9.7	6.6	
	Temp in OF		296		7 0		7				89	95	09	
	Dischorge Temp										470	24	260	
	Date and time sompled P S T		2-4-33		2-4-13		2-4-63		2-18-03		,0-2-02 ,215	11-6-62 ,200	.2-3-52	

o Field pH

c. Sum of salcum and magnessum in epin d. Iran (Fe), aluminum (A1), arsence (A2), capper (Cu), lead (Pb), manganese (Idn), zinc (Zn), and heravalent chromium (Ci⁻¹), reparted here as 0 00 except as shawn d. Iran (Fe), aluminum (A1), arsence (A2), capper (Cu), lead (Pb), manganese (Idn), zinc (Zn), and heravalent chromium (Ci⁻¹), reparted here as 0 00 except as shawn c. Sum of colcium and magnesium in epm. b Loborotory pH

f Determined by addition of analyzed constituents e Derived from conductivity vs TDS curves

q. Gravimetric determination

A Annual median and range, respectively Calculated from analyses of duplicate monthly samples made by Colitorino Department of Public Health, Durssan of Loboratories, or United States Dublic Health Service

Land District (SECTO), Managed that the Charted States College (USPHS), San Benardino County Flood

Control District (SECTO), Managed that the Charted States (USPHS), Los Angeles Department of Water and Power (LADPP), City of Los Angeles, Department of Water States and Power (LADPP), City of Los Angeles, Department of Water States and Power (LADPP), Taylor Chartes (USPHS), San Benardino County Flood

Public Health (LBDPH), Termon I Faring Loboratories, Inc. (TLL), an Caldinino Department of Water Resources (DWR), as indicated

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

_	_	•	_													
		Anolyzed by l			USCS										595.3	
		Hardness bid - Caliform as CaCO ₃ ify MPN/mi Total N C DPm			2.3	62. 230.	2.3	2,400.	0.23	23.	230.	6.2	13.			
	- 5	- Kd			m	2:	٥	55		~	٥	٠	£		30	
		0 L E			69	7	50	5,4	25	25	9	12	13		28	
					59	184	234	212	240	244	127	122	119		137	
	į	1005			28	21	2.5	23	2%	27	18	16	~		15	
	79101	D = E			431	289	383	326	401%	403	145	180	1778		218	
		Other constituents							PO = 0.30			2	AS 0.04 ABS 0.0 PO, 0.10			
		Sirico (SiO _e)							28				2	225)	34	
	1001	Boron (B)			0.1	0.1	0.2	0.1	<u>-</u>	0.7	0.0		0.0	STA. 2	0.0	
noillin.	per million	Fluo- ride (F)		<u> </u>					4.5				0.01	EYTO (S	0.00	
ports per million	ents	trate (NC _S)		STA. 43					9.0				0.0	MEAR PI	0.03	-
	equivolents	Chio- rida (Ci)		S) Julian	1,02	16	$\frac{26}{0.73}$	19	24	25	8.7	0.18	0.0	BRIDGE	0.19	
	٠	Sul - fate (50 ₄)		TEAR BRU	_				2,00				28 0.*3	PLEYTO BRIDGE NEAR FLEYTO (STA.	0.92	
	constituents	Bicor- banate (HCO ₃)		SALINAS RIVER NEAR BRADLIN (SIA, 43c)	3.47	172	202	3.15	212	3.84	2.1	2.20	124	RIVER AT	2.18	
	Wingro! con	Corbon- 010 (CO ₃)		SALILAS	0.33	0.1.0	0.37	0.21	95	0.00	2	0 18	- 0.0	SAN ANTONIO R	00	
:	Min.	Potos. C evum (K)							2.2				1.4	- VVS	2.6 0.07	
		Sodium (NO)			47	23	36	30	1.61	42	11	0.48	0.64		1.1 0.48	
	1	Mogne.			5.190	3.680	4.680	4.24	21	4.88	2.540	2.440	13		10	
		Colcie (Co.)							3.09				2,7		1.90	
		I 8 0			. 8 . 5	8.1	8.5	8.3	8.3	8.2	8.3	8.2	8.1		8.2	
	pecific	(micromhos at 25°C)			673	451	599	808	587	629	304	281	275		305	
\vdash	y,	\$ \$ \$ \$ \$ \$			132	66	116	101	.8	980	7,00	111	3			
		Discolved Osygen ppm %Sat			14.3	10.0	11.4	80,	7.0	, o	. 6	10.4	4.0			
					52	58	0	19	7	73	85	79	5.6		19	
		Dischorge Temp			77	1)95	150	331	200	70	077	534	200			
		ond time compled P S T			1-8-63	2-6-63 1100	1400	4+9-63 1210	5-15-63	6-4-63 1030	7-2-63 223n	8-6-63	9-4-63		2- 4-6 5	

b Loboratory pH

Sum of colicum and magnessium in Fight.

One of the sum c. Sum of calcium and magnesium in rpm

Derived from conductivity vs. TDS curves

Determined by addition of analyzed constituents

g. Gravimetric determination

h. Annual median and mage respectively. Categulared from malityees of diplicate monthly samples made by California Devision of Public Health. Devision of Laboratories, or United States Public Health. Service

Manage Institute States Geological Service. Conference of Recommendation (1988). United States Categories and Computed States (1984). San European Commy Flood

Computed States (1984). Comman Categories Conference (1987). Les Angeles Opportunent of Water and Power (1, ADPP). City of Los Angeles. Opportunent of Public Health Labelt). City of Los Angeles. Opportunent of Public Health Labelt). City of Los Angeles. Opportunent of Public Health Labelt, City of Los Angeles. Department of Public Health Labelt, City of Los Angeles. Opportunent of Public Health Labelt, City of Los Angeles.

32505-0-H 6-61 200 JRO Mineral lonalyses made by United States, Geological Survey, Quality of Water Boach (USCS), United States Department of the Interior, Survey and the States Geological Survey, Quality of Water Colonnol (WWD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Water Resources (USC), Managolitan Water UADMP), City of Los Angeles, Department of Water Resources (UMR), or national Mater Resources (UMR), or national Angeles
ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) TABLE D-2

	Anolyzed by i				0.865												
	bid - Coliform						2.3	0.62	62. 62.	0.62	6.2	6.2	2.3	62.			
	- p.d -						2	۳	5	-7	10	•	2	-			
	Hordness es CoCO ₃	Totol N C ppm ppm					34	43	30	31	35	32	38	42			
							201	202	148	169	156	170	186	190			
	0 0						24	18	15	14	13	16	15	16			
10101	- \$ 0 0 0 1 0 0 1 0	E G G					316	302	215	249	220	261 ⁸	261	276			
	Other constituents	- 1										PO ₄ = 0.20					
	Silica	(3 O(S)										28					
1100	Boron Silica	(g					0:0	0.0	0.1	0.0	0.1	0.0	0.0	0.0			
million sr mi	Fluo-		:	-								0.07					
squivalents per million	Z	-	:	C								0.02					
0 0 0 0 0 0	Chio-	(ĵ					0.54	16	2.5	0.22	0.17	0.21	8.8	0.28			
ē	- ing	(20°)	- 5	NEAK								35					
tituente	Bicar -		[SAN ANIONIO KIVEK NEAK KLETIO (SIA, 43d)			3.34	3.18	2.36	158	148	160	160 2.62	168			
Mineral constituents	Corbon-	(00)		AN ANION			0.00	0.00	0,00	0.17	0.00	0.13	0.33	0.2			
2	Potos-	E X		ā —								0.05					
	Sodium	(NO)					30 T.30	20	12	13	11	15	15	0.74			
	Mogne- S						4.02c	4.04c	2.96€	3,380	3,130	1,05	3.720	3.80€			 _
	Ę.	_ [47 2.35					
Г	£ ,	ما					8.2	8.0	2.7	9.0	8.1	0.8	9 8	8.2			
	Osselved conductonce pH Color	2000					887	499	332	385	340	379	707	427			
F,	" <u>3 5 '</u>	, Sat		_			66	100	66	- 6	86	86	68	80			
	Oissolv	% waa					9.6	10.5	6.6	9.6	7.6	8.0	7.8	8.2			
	7.0 PF	_					61	55	59	19	62	8 0	7.5	65			_
	Discharge Temp				Dry	Ponded	0.3	6,8	300	122	200	105	90	16	Ponded	Ę.	
	Dote and time	7.2 9			10-2-62	11-6-62 1250	12-3-62	1-8-63	2-6-63	3-5-63	4-9-63	5-15-63	6-4-63	7-2-63	8-6-63 0920	9-4-63	

c. Sum of calcum and magnessum in eem. 0 except (Cu), Iead (Pb), manganese (Mn), 2nac (Zn), and heravalent chromium (Cr^{-rs}), reported here as 0 0 except as shawn d Iran (Fe), alumnium (M), arsenic (As), capper (Cu), Iead (Pb), manganese (Mn), 2nac (Zn) c Sum of calcium and magnessum in epm b Laboratory pH

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents 9 Gravimetric determination

Annual median and range, respectively. Calculated from analyses of districtive manthy samples made by California Department of Public Health, Division of Labarolaires, at United States Public Health Service

		Anolyzed by i				uscs													
		as CoCO ₃ ity MPN/mi	1			62.	23.		23.5	23.	230.	0.21				23.	62. 23.	2.1	
	3	, kg				2	-		2	S	7	٥				~	5	4	
		, O Z	Edd			•	00	,	13	9	15	17				18	15	16	
			600			110	116		120	157	158	166				116	116	116	
		5 5				21	77		15	27	13	เม				Ω	13	ä	
L	1010	9 5 10 0 10 0 0 10 0 0				138	15.8		164e	211 ^e	209 ^e	220 ^e				156e	157 ^e	1578	
		Other constituents															8	ABS = 0.0	
	ŀ	Silic 8 (S:0 ₂)	+					_										্যা	-
1	uo,	Boros S (B)	1			0.5	0.0	-	0	0.0	0.1	0.1				0.0	0.1	0.0	
e	per million	- 00 - B	=	_	136)													0.0	
		200	-		(SIA.													0.02	
00	equivalents	Chiq.	-+		MIGUEL	6.4	8	5 .	0.19	0.31	8.2	0.25				0.17	0.17	0.16	
		Sui -	(304)		EAR SAN													217	
		Bicar	(HCO3)		RIVER ?	123	132	04.40	2.13	2.90	2.85	2.98				1.97	123	2.00	
at contract to the contract to	100	Carban-	(603)		NACIMIENTO RIVER NEAR SAN MIGUEL (STA. 436)	0	0	00.0	0.00	0.10	0.0	0.00				00.0	000	0.00	
1	2	Potos.	(K)		NAC													0.02	
		Sodium (No)				1.8	9.6	0.3/	0.41	0.52	11	0.48				0.34	0.34	0.34	
		Magne	(6M)			2 210		7.5.7	2,400	3,150	3.16	3,320				2.320	2,326	1.02	
		Calcum (Ca)																26 1.30	
		Ĭ .	٥			8.7	2.9	· ·	7.9	8.3	7.8	8.1				8.2	8.0	7.2	
	Specific	(m.cromhos pH at 25°C) a				800		197	272	349	346	364				258	260	259	
	3	0.5	%Sot			-		711	100	8.2	103	115				110	106	92.5	
		Dissolved	o^ € dd	-	_		7	7.01	8.6	8.7	6.6	10.8				11.1	11.1	8.6	
r			7					Ç.	09	25	9	79				5.8	55	54	
		Discharge Temp					2000	255	200(est.)	4(est.))(est.)	2(est.)	No flow	Ponded	Ponded	500(est.)	500 (est.)	500(est.)	
		ond time	P S.T			10-2-62			12-3-62 1800	1-8-63 1415	2-6-63 1255	3-5-63	4-9-63	5-15-63	6-4-63	7-2-63 2120	8-6-63	9-4-63 0815	

b Laboratory pH

UL US 6-64 B-0-2025

Sum of colcum and magnessum in spm 100, lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci ¹⁶), reparted here as $\frac{0}{0}$ except as shawn Iran (Fe), alumnum (Al), arsenic (As), cooper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Al), arsenic (As), cooper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Al), arsenic (As), cooper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci ¹⁶), reparted here as c. Sum of calcium and magnesium in epm

[·] Derived from conductivity vs TDS curves

g Gravimetric determination

Datemined by addition of analyzed constituents.

i Marter I analyses made by United States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interior, Survey and Recionation (USBR), United States Public Health Severe (USPH), San Beneadro County Flood Control District (SBCFCD), Marropolitan Water District of Southern California Department of Water Resources (USPR), City of Las Angeles, Department of Public Health (LADPH), City of Las Angeles, Department of Public Health (LADPH), City of Las Angeles, Department of Public Health (LADPH), City of Las Angeles, Department of Public Health (LADPH), City of Las Angeles, Department of Mater Resources (DMR), as indicated. h Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER TABLE D-2

AL. CHASSA

Specific Mineral constituents in	Mineral constituents in Sadum Palas- Corban Broom Sun (Na) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (M	Sucor- Bonate fate HCO3) (SO4)	Sicor Sul - Sul - Fote HCO3) (SO4)	Sul - fote (SO ₄)	° 5 € 5	equivolents Chio- ride (Ci) (NO3)	Fivo-	Boron Silico (SiO ₂)	Other constituents	Total dis- solved sod- in apm	Per- Cent Od - os	Hordnass os CoCO ₃ Totol N C	Hordnsss Did - Coirtormh as CoCO ₃ Lity MPN/mi Total N C	PN/ml by i
			MCDAIENTO	MACDILEYTO LAKE AT DAN NEAR SAN MIGUEL (STA. 217)	AM NEAR SAI	N MIGUEL (STA. 217	_			à	E .		
148	8.0 0.70 0.54 0.	5.2	0.00	1,02	0.31	3.8 4.1 0.11 0.07	0.00	=		lol ^K	15	62	35	0803
			SAL	SALINAS RIVER AT PASO ROBLES (STA. 43a)	AT PASO RC	DBLES (STA.	. 43a)							
	_													
			_											
	_													
n.28	7.7 8.1 5.58c 1.	28	00.00	236	···15	26 U.73		0.2		412ª	18 27	279 85	- 7	620. 23.
783	8.1 8.4 6.76c 1.	1,78	0,40	0 258		36		0.2		514 ^e	21 33	338 107	-	23.
019	8.0 5.49c 1.	26 1.13	0.00	246	, lo	23		0,1		9007	17 27	274 72	25	23. 2 JO.
169	8.1 82 28 3 8.5 4.09 2.31 1.	32 1. 1,39 0.	0.04	3 4.23	116 2,42 0,	29 1.0 0.82 0.02	0.2	0.0	PO_4 = 0.25	454K	18 32	320 92	21	190.
870	8.0	52.26	0,40	0 287		449		0,1		571 ^e	23 37	370 114	3 2,4	620. 2,400.
					-									
			_								-			

a Field pH

Journal or consumment of the state of the st Sum of calcium and magnesium in epm b Loborotory pH

Determined by addition of analyzed constituents Derived from conductivity vs TDS curves

h Annual median and range, respectively Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service g Gravimetric determination

i Mineral analyses made by United States Geological Survey, Quality all Water Branch (USGS), United States Department of the Interior. Survey and Rectamental William (MW), Leaving Computer of States Public Health Service (USPHS), San Bernardina County Flood Control Osneric Color of States Control County County and Description (MW), Leaving Control County County County County County County County (MR), County County and Description (MW), County Man Resources (DMR), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Man Resources (DMR), as indicated and County Coun

		_			2000					×	eral cor	Mineral constituents	=	parts p	16	million per million	LO.		Totol			-		
Date and time eampled P S T	Oischarge Temp	Temp in of	-	lved gen	(micromhos of 25°C)	E = 12	Cotcum (Co)	Magne sum (Mg)	Sodium (No)	Potos- srum (K)	Corban - (CO ₃)	Bicar- bonate (HCO ₃)	Sul fore (SO ₄)	Chio- ride (CI)	rrate (NO3)	Fluo- ride (F)	Boron Silica (B) (SiO ₂)	Other constituents	solved solved in ppm	- E	Hordness os CaCO ₃ Totol N C apm apm	S S S S S S S S S S S S S S S S S S S	Hordness bid - Coliform os CaCO ₃ 117 MPN/ml	Analyzed by i
			_	_																				
										· · ·	MRMEL R	CARMEL RIVER AT ROBLES DEL RIU (STA, 83)	ROBLES 1	NEL RIO	(STA. 8	3								
10-3-62	ž.																					_		
11-7-02	2.8	>,	10.8	105	959	8.1		3, 1, 1,	177		= =	100		7 5			2		2806	=	=		÷ 3	
12-4-02	4. B	3.6		=======================================	140	8.1		J.B.C	17		= =	7.84		1,0,1			=		3336	2	3		2I.	
1-9-63	0,1	3.	=	3	414	3(2		1	200		= (Š	136	-	3.7			-		255	2.0	14.5	- 86	24.3 U.h.2	
7-7-13	5	3	10.4	66		7.4		1.32c	5 5		=12	87.1		2 2		_	- I		1146	7.6	35		<u> </u>	
3-6-63	÷	2.5		3		2 1 2		1.84	= 2		= =	2		۵۱:					14,7	Č1	31		1.3	
4-9-4	5,40	35	10.4	36	Î	Ĵ.		1.70	= 177		= =	98		0.0			34		1336	7	÷	-	23.	
3-1h-443 1190	132	62	In.	183	242	/*B	4 5	= 3	7 2	100	= [=.	1.74	, 0 00	× =	7 000		0.0 0.0	61*0 **	1588	- 53	9.9	7 11	2970	.,
0.001	0.0	9	x x	£	6	2 2		1.94	11 748		2 11	1.07		ж. т					1396	Ē,	16		23.	
/=2=63 1640	2.3	2	10.5		74)	20,20		2.28c	16 17.		= =	2.07		1 1 2			2		182°	5	114	=	2,2	
8-6-3	0,7	7.4	9.01	125	158	8.1 H.4		2,080	133		- L	2,08		¥ 7.		-	0.0		27.16	12	3	2	23.	
9= 2=63 1515	ă,																							
												_												
																	-					_		
Halland .																								

o FreldpH

b Loboratory pH

e. Sum of calcum and magnessum in spm. 0 (Lu), Irad IPb), mangamese (Mn), zinc (Zn), and treavident chramium (Gr.), reported here as 0 0 except as shown d. Iran (Fe), aluminum (A1), arsenic (As), capper (Cu), Irad IPb), mangamese (Mn), zinc (Zn), and treavident chramium (Gr.), reported here as 0 0 except as shown

e. Derived from conductivity vs. TDS curves

f Determined by addition of analyzed constituents

h Annual median and range, respectively. Calculated from analyses at displicate manify samples made by California Oppartment of Publis Health, Division of Laboratories, or United Stress Public Health, Sevice g. Gravimetric determination

I Mineral analyses made by United Stores Geological Survey, Quality at Water Branch (USGS), United Stores Department of the Internal Stores Department of Man and Power (LADPR), City of Las Angeles, Department of Public Health (LADPR), City of Las Angeles, Department of LadProperty (LADPR), City of Las Angeles, Department of LadProperty (LADPR), City of Las Angeles, Department of LadProperty (LADPR), City of LadProperty (LADPROPE), C

TABLE D-2

ANALYSES OF SURFACE WATER

SOUTH BAY AQUEDUCT

_	_		_														
		Anolyzed by §		DWR													
	,	bid - Caliform ⁿ ity hopm MPN/ml															
r	1	- pa															-
		\$00 Z		35	52	09	59		57	63	69	70	63	28	72	89	6.9
				129	154	170	168	170	169	175	181	182	161	153	163	160	164
	9	- P00		51	53	2,5	53	23	54	35	24	55	57	53	53	51	5.2
L	Total	solved solids in ppm		349	424	685	6443	471	780	887	487	509	396	374	477	477	877
		Other constituents						A1=0.78 Mn=0.00 As=0.00 Zn=0.01 Cu=0.00 Se=0.000 Pb=0.00 Fe=1.4				A8S=0.00	ABS=0.0	A8S=0.0	A8S=0.0	A8S=0.0	ABS=0.03 Cu =0.00 Zn =0.01
		Silico (Silico		16	19		20	A A O W	19	92	88	18 18	17 A	57	- T	16 A	15 2
	ion	Boron (B)	207)	0,23	0.30	0.38	0.37	0.41	07.0	0.46	0.48	0.49	0.48	0.46	0.44	0.44	0.52
million	per million	Fluo- ride (F)	(SIA, 2	0.2	0.0		0.03	0.0	0.03	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.01
ports per million		rote (NO ₃)	PLANT (0.03	2.0		3.5		2.6	2.2	3.3	0.07	0.01	0.0	0.04	2.1	3.4
a	equivolents	Chio- ride (Ci)	PUMPING PLANT	95	3.36	3.78	3.67	3.75	3.72	3.92	3.84	3.95	3.75	3.10	3.36	3.21	3.27
		Sul - fors (SO ₄)		41	57		1.39	1.42	1.42	1.71	1.85	1.85	1.85	. 1.73	1.83	1.83	1.92
	constituents	Bicar- bonate (HCO ₃)	AT SOUTH BAY	115	125	134	133		137	136	137	137	120	1.90	111	112	116
	Mineral con	Corban- ote (CO ₃)	FOREBAY	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Mine	Potas-O	BETHANY	3.1	3 5	3.6	3.6	3.6	5.0	3.5	3.3	3.5	3.2	3.0	3.0	3.4	3.0
		Sodium (No)		2 78	3.52	96	3.87	92	96	98	98	104	99	3.57	3.83	3.48	3.65
		Magne- sium (Mg)		1.18	1.43	20	1.46	1.50.	20	17	20	20	20	18	1.61	18	1.53
		Calcium (Ca)		1.40	33	1.75	38	1.90	35	4.2	2.00	39	32	32	33	35	35
		Ŧ		7.9	7.9	8.0	7.8		8.1	7.8	7.9	8.1	7.8	7.7	7.8	8.0	8.0
	Specific	(micromhos or 25°C)		588	710	797	788	787	789	835	852	678	802	720	773	755	763
		Oseolved oxygen ppm %Sat															
		Oxy Oxy															
L		Ten or					E	2	-			N	-1	7			
		Water Temp 0 Elevation of (feet)			237.5	237.7	239.13	237.42	237.31	230.30	238.66	238.12	238.51	238.84			235.9
		ond time sampled P.S.T.		10-8-62	11-1-62	11-19-62	12-9-62	12-24-62	1-7-63	1-21-63	2-4-63	2-18-63 1350	3-1-63 1315	3-18-63 1420	4-1-63 1125	4-15-63 1515	4-29-63 1835

Preld pH

b Laborotory pH.

c Sum of calcium and magnesium in epm.

c Jum our of social manages up in the specific of (Lb.), lead (Pb.), manganese (Mn), zinc (Zn), and havaralent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown of (Fe), all the specific or shown as the specific or shown as the specific or shown as the specific or
Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annual median and iange, respectively. Calculated from analyses of duplicate mantily samples made by California Department of Public Health, Division of Laboratories, at United Stress Public Health Service. Gravimetric determination.

³²⁵⁰⁵⁻D-H 6-61 200 SPO Minecal analyses made by United States Geological Survey, Dodiny of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Coological Survey, Dodiny of Water Branch Asheries (Department of Policy Reposition (SIMP), Department of Souther Cological Souther (SEGFOR), Responsibility of Souther Cological Souther (SEGFOR), Cological Souther Cological Souther (SEGFOR), Cological Souther (SEGFOR), Cological Souther (SEGFOR), Cological Special Souther (SEGFOR), Cological Special Souther (SEGFOR), Cological Souther

ANALYSES OF SURFACE WATER

SOUTH BAY AQUEDUCT

Г		3	_						_				
		Analyzed by i											
	4	bid - Coliform" ity MPN/mi											
H	- Lo	0 ≥ × × × × × × × × × × × × × × × × × ×	_										
	_	SOZ		70	47	23	19	23	23	18	21	0	31
				168	126	7.1	99	7.5	83	9.8	91	149	136
L	Per	000		51	52	47	77	7.5	7,8	777	777	37	67
	To 10.	solids in ppm		700	340	157	156	170	200	182	214	339	332
		Other constituents		ABS=0.01 Cu =0.00 Zn =0.00	A8S=0.01 Cu =0.00 Zn =0.00	A8S=0.01 Cu =0.00 Zn =0.00	ABS=0.00 Cu =0.00 Zn =0.00	A8Sm0.00 Cu m0.00 Zn m0.00	Cu =0.00 Zn =0.00	Cu =0.00 Zn =0.00	Cu ⇒0.00 Zn =0.00	Cu =0.00 Zn =0.06	Cu =0.02
	1	Since (SiOg)		14 A	15 A	15	13	77	7	2.4	7	19	19
	lion	Baron (B)		0.49	0.39	0,19	0.17	0.14	0.14	0.14	0.14	0.1	0.23
parts per million	equivolents per million	Fluo- ride (F)	. 207)	0.03	0.01	0.00	0.00	0.0	0.0	0.2	0.00	0.00	0,02
rts per	lents	rrote (NO ₃)	AIS) IN	0.00	0.01	0.00	0.0	0.6	0.00	0.00	0.02	0.4	0.02
od.	equivo	Chlo- rids (Ct)	ING PLA	3,36	2.45	1.18	37	1.16	48	43	1.30	62	2.54
,	•	Sul - fats (SO ₄)	BAY FUMPING FLANT (STA. 207)	1.87	1.42	29	25.0	27	30	27	26	0.35	0.87
	Constituents	Bicar- banate (HCO ₃)	OUTH BZ	120	1.57	58	57	1.03	73	39	1.41	303	128 2.10
	di cons	Carbon - E	BETHANY FOREBAX AT SOUTH	0.00	0.00	0.00	0.00	0.00	0.00	0.70	0.00	0.00	00.00
3	Winerd	PotosC.	NY FORE	3.0	0.06	0.04	0.05	0.05	0.05	0.05	0.04	0.43	3.2
		Sodium (Na)	BETHA	3.57	2.78	1.30	1.09	1.13	36	32	34	2.04	63
		(gw)		1.46	1.17	0.57	6.9	0.60	8.6	9.5	10	20	1.17
		Calcium (Ca)		38	1.35	0.85	15 0.75	0.90	19	18	19	1.35	1.55
r	_	ĭ		7.9	0.8	7.4	7.7	7.4	7.9	9.4	7.1	6.3	7.7
	Specific	conductance (micromhas at 25°C)		787	593	314	280	307	344	334	364	812	593
		oxygen oxygen pm %Sol											
		T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
		Water Temp O Elevation in of (feet)		233.53	237.95	237.5	238.12	237.3	235.1	236.1	234.7	236.3	236.4
		ond tims sampled P.S.T.		5-13-63	5-27-63	6-10-63	6-24-63 1105	7-8-63 1050	7-23-63	8-5-63	8-19-63	9-3-63	1300 1300

o Field pH

b Laboratory pH.

Sum of calcium and magnesium in epm.

Sum of calcrum and magnessum in spm.
Iron (Fe), aluminum (A.), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (G.*6), reported here as $\frac{0}{0}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h. Annual median and range, respectively. Calculated from woulyses of duplicate monthly samples gode by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service in Managed Instituted Stores Gode Browney, Quality of Merels Browney, Mere

32505-LH 6-61 200 GPG

TABLE D-2

ANALYSES OF SURFACE WATER

SOUTH SAY AQUEDUCT

		Analyzed by i		DWR												
	- 1	Hordnese bid - Coliform os CaCO ₃ 11y MPN/ml Total N C ppm														
r	-	SO S		24	30	36	7		4.7	67	51	77	20	7.7	09	69
		Hordnese os CaCO ₃ Total N C ppm cpm		109	121	128	141	147	149	156	144	145	150	156	147	168
r	Per-	Pod -		87	20	21	5.2	53	52	54	95	55	5.2	53	75	52
	Toto!	spilos spilos u spilos		288	308	37.6	387	403	423	438	407	33.7	358	745	429	458
		Other constituents				Turb. = 2,0		Al=0.10 Pb=0.00 As=0.01 Mn=0.00 Cu=0.00 Zn=0.00 Se=0.001			ABS=0.00	A8S=0.0	ABS=0,0	ABS=0.0	8.8 ABS=0.0	A8S≈0.02 Cu ≈0.00 Zn ≈0.02
	-	Silico (SiO ₂)		16	21	(int	7	440	16	16	16 A	17 A	18 N	15 A	8,8	18 C
	LO1	Boron S (B)		0.18	0.23	0.27	0.27	0.30	0.27	0.30	0.29	0.28	0.32	0.39	0.34	0.52
million	per million	Fluo- ride (F)	A. 214)	0.2	0.0		0.2	0.0	0.2	0.2	0.02	00	0.00	0.2	0.1	0.0
parts per million		Ni- trote (NO ₃)	RESERVOIR (STA. 214)	0.02	0.0	İ	0.9		0.9	0.00	0.03	0.00	0.02	0.02	0.0	0.0
00	equivalents	Chio- ride (CI)		1.92	2.26	91	101	3.21	3.21	3.47	3.38	3.41	3.30	3.07	104	3.30
	١	Sul - fore (SO ₄)	PATTERSON	31	38		1.00	56	56	61	58	59	1.25	1.71	1.73	90
	Constituents	Bicor- bonote (HCO ₃)	A AT PA	1.70	111	112	122		1.75	114	11.3	123	1.90	112	1,54	126 2.06
	Mineral cons	Corbon- ote (CO ₃)	LIVERMORE CANAL AT	00.00	0.00	0.00	0.00		9	8	0,00	0.00	0.10	00.00	0.20	0.00
	Mine	Potos- C Sium (K)	LIVERM	2 6	2.7	2.9	3.2	3.4	3.4	3.7	3.6	3.5	3.5	3.0	3.2	3.7
		Sodium (No)		4.7	57	64	3.18	3.39	3,35	3.70	3.74	3.61	3.35	3.61	3.57	3.70
		Mogne- Sium (Mg)		11	13	1.26	1.17	1.24	1.28	15	1,43	1.30	17	1.42	1.34	17
		Calcium (Ca)		1.30	1.35	26 1.30	33	34	34	38	29	32	32	34	32	39
				7.9	-1	= ==	8.2		8.8	9.0	8.2	8.2	4.0	7.9	×.	7.9
	Specific	(micromhos of 25°C)		907	523	567	642	069	674	744	688	709	709	716	708	772
	Specific	Location of Collection		Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Reservoir	Canal	Canal	Canal
L		Temp in of														
	1000	Elevation in of		707 4	708.3	706.95	703.4	707.9		702.7	693.85	692.1	0.689			705.4
		sompted P S T		10-9-62 0935	11-1-62	11-20-62	12-9-62	12-24-62 1520	1-7-63	1-21-63	2-18-63 1525	3-1-63	3-18-63 1630	4-1-63	4-15-63 1620	4-29-63 1545

o Freld pH

b Loborotory pH

Sum of colcum and magnessian in spin.
Iron (Fe), alumnum (Al), respect (As), capper (Cu), lead (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr^{+S}), reparred here as 0 0 except as shown 0 0 00. c Sum of colcium and mognesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents Gravimetric determination

Amula median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Duvision of Laboratories, or United Strees Public Health Service.

³²⁵⁰⁵⁻EH e-el 210 JRD Mineral analyses made by United States Geological Survey, Duality of Water Branch (USCS), United States Department of the Interior, Bureavo of Rectimenton (USCR), United States Department of Many Angels Department of The Angels Department of Many of Los Angels Department of Prof. (LADPR), City of Los Angels Department of LadProf. (LADPROF.)

ANALYSES OF SURFACE WATER SOUTH SAY AQUEDUCT

				-				1					ports per million	million	-			L			-	L	L
	2	Specific Specific	Specifi					ž	nerol co.	at Tuent	<u>.</u>	*inba	equivalents	per million	11100			Toto	-		Tur		
admoted sampled P S.T	Elevation n of	Location conductance H of (micromics Collection at 25° C)	conductan (micrombo at 25°	10 2 C	Calcium (Ca)	Magne. Sign (Mg)	Sodium (No)	Potas- Sium (K)	Corbon- ote (CO ₃)	Bicor- bonate (HCO ₃)	Sul - fore (50 ₄)	Chio- ride (CI)	rrole (NO ₃)	Fluo- ride (F)	(B)	(S,O ₂)	Other constituents	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- POP		N C n pp	Hardness bid - Coliform" as CaCO ₃ ity MPN/mi Total N C Dpm pom	Andlyzed by i
								177	LIVERMORE CANAL AT PATTERSON RESERVOIR	CANAL AS	PATTER	SON RES	SERVOIR	(STA.	214)								
5-13-63 1425	707.8	 Canul	830	 	38	17	3.83	0.08	0.00	2.00	1.83	3.36	0.00	0.02	0.46	15 AB	ABS=0.01 Cu =0.00 Zn =0.00	434	23	166	99		DWR
5-27-63 1350	7.07.7	Canal	795	7.8	36	1.54	93	3.2	0.00	120	90	3.44	0.03	0.2	0.54	Z Zn Zzn	ABS=0.02 Cu =0.00 Zn =0.00	697	54	167	69		
6-10-63 1400	707.4	 Canul	359	7.4	$\frac{22}{1.10}$	0.64	34	0.05	0.00	1.18	34	1.35	0.0	0.00	0.22	15 Cu Zn AB	Cu =0.00 Zn =0.00 AB5=0.00	193	45	78	28		
5-24-63 1240	708.6	 Canal	310	7.5	0.90	0,60	1.17	0.05	0.00	1.05	0.58	1.13	0.01	0.01	0.17	I3 Zu Zu	ABS=0.00 Cu ≈0.00 Zn =0.00	173	43	75	23		
7-8-03 1250	7118.1	 Canal	318	7.9	19	7.2	81 1.1	0.05	0,01	1.06	26 U.54	1.16	0.4	0.01	0.19	E Zn Zn	ABS=0.01 Cu =0.00 Zn =0.00	175	7 7		77		
7-22-63	702.5	C.m.1	155		20.1	0.70	36	0.05	00.00	1.26	30	1.35	0.5	0.00	0.13	Tr Cri	00.00	201	47	50	22		
8-5-63	709.1	Cunal	337	4.8	19	8.9	31	2.0 II.05	00.0	1,31	27	43	0.1	0.00	0.15	9.0 Cu	9.0 Cu =0.00 Zn =0.00	188	33	84	18		
8-19-63	709.2	 Canal	368	7.7	1.05	9.8	35	0.05	00.00	1.44	27	50	0.01	0.0	0.18	15 Cu	Cu =0.01 Zn =0.00	212	7:7	25	2.1		
9-3-63		Canal	389			2.004					28	1.49						220		100			
9-30-63	706.0	 Canal	185			2.76					47	2.65						348		138			
											-												

b Laboratory pH a Field pH

c Sum of colcium and magnesium in epin

c. Jum of colcum and magnesium in Egni of Iron (Fe), olumnum (A1), "exerc (A5), capper (GU), Ieod (Pb), manganese (An), and less valent chromium (G⁻¹), reparted here as 0 0 except as shown 1000 columnum (A1), "exerc (A5), capper (GU), Ieod (Pb), manganese (An), and hexavalent chromium (G⁻¹), reparted here as 0 0 000 country (A1). e Derived from conductivity vs TDS curves

f. Determined by addition of analyzed constituents

h Annual median and angue, respectively. Calculated from analyses of displicate manthly samples made by California Department of Poblic Health, Division of Laboratories, or United States Public Health Service 9 Gravimetric determination

More in any year made by thirted States Geological Survey, Quality of Water Branch (1955), United States Department of the Interior, Survey and the States Department of States Department of States Department of States Department of States Observed States Observed States Observed States Observed Observed States Observed Observed States Observed

TABLE D-3
SUMMARY OF COLIFORM ANALYSES

Station	Station	Coli	Form MPN/	m1
	Number	Maximum	Median	Minimum
North Coastal Region (No. 1)				
Gualala River, South Fork, near Annapolis	9a	620	18.5	0.62
Navarro River near Navarro	8ъ	230	4.3	0.23
Noyo River near Fort Bragg	10c	230	13	0.23
Russian River, East Fork, at Potter Valley Powerhouse	10a	620	6.2	0.23
Russian River at Guerneville	10	7,000+	10.6	2.1
Russian River near Healdsburg	9	7,000+	14.6	0.23
Russian River near Hopland	8a	2,400	57.5	2.3
San Francisco Bay Region (No. 2)				
Alameda Creek near Niles	73	2,400	62	1.3
	82	620	6.2	0.045
Coyote Creek near Madrone			6.2	
Los Gatos Creek near Los Gatos	74	620		0.21
Napa River near St. Helena	72	7,000+	230	6.2
Central Coastal Region (No. 3)				
Carmel River at Robles del Rio	83	62	12.1	0.62
Nacimiento River near San Miguel	43ъ	230	23	0.21
Pajaro River near Chittenden	77	7,000+	62	2.3
Salinas River near Bradley	43c	2,400	6.2	0.23
Salinas River at Paso Robles	43a	2,400	126	5
Salinas River near Spreckels	43	7,000+	230	2.3
San Antonio River near Pleyto	43d	62	6.2	0.62
San Benito River near Bear Valley Fire Station	77a	620	13.8	0.23
San Lorenzo River at Big Trees near Felton	75	2,400	23	2.3
Soquel Creek at Soquel	76	2,400	39	0.62
Uvas Creek near Morgan Hill	96	620	6.2	0.62

TABLE D-4 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

									Cons	Constituents in ports per billion	n ports	per billi	6						
Station	S o	•	Alumi.	Beryl.	Bismuth	Codmium	Cobolt	_	Copper	1ron	Collium	Germo-	T	Molyb-	Nickel	Leod 1	-tonum	Titonium Vonodium	2m2
			(A)	(Be)	(B)	(Cd)	(00)	(2)	(Cv)	(Fe)	(00)		(Mu)	(Mo)	(N)	(Pb)	(£	ŝ	(uZ)
NORTH COASTAL REGION (NO. 1)																			
RUSSIAN RIVER, EAST PORK AT POTTER VALLEY POWERHOUSE	10a	5-7-63	247	< 1.3	< 1.3	< 3.3	< 1.3	× 1.3	< 3.3	23	< 6.7	< 1.3	3.3	< 1.3	2.6	< 3.3	< 1.3	< 1.3	< 6.7
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POFERHOUSE	10a	9-11-63	6.3	< 1.3	< 0.67	< 3.3	< 3.3	× 3.3	< 3.3	6.4	× 13	< 0.67		\$ 0.67	≤ 0.67	< 3.3	< 1.3	< 0.67	< 13
RUSSIAN RIVER AT GUERNEVILLE	10	5-6-63	73	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	01	< 6.7	< 1.3	3.3	< 1.3		< 3.3	< 1.3	< 1.3	< 6.7
RUSSIAN RIVER AT GUERNEVILLE	10	9-13-63	9.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	4.1	× 13	< 0.67	V*	\$ 0.67	\$ 0.67	< 3.3	< 1.3	5.3	< 13
SAN FRANCISCO BAY REGION (NO. 2)																_			
ALAMEDA CREEK NEAR NILES	73	5-14-63	41	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	5.2	< 6.7	< 1.3	< 3.3	≤ 1.3	3.5	< 3.3	< 1.3	8.7	< 6.7
ALAMEDA CREEK NEAR NILES	73	9-4-63	26	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	56	< 13	< 0.67	< 3.3	\$ 0.67	≥ 0.67	< 3.3	< 1.3	21	< 13
ARROYO DEL VALLE NEAR LIVERMORE	71	5-14-63	23	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	4.3	< 6.7	< 1.3	< 3.3	≤ 1.3 4	< 1.3	< 3.3	< 1.3	< 1.3	< 6.7
ARROYO DEL VALLE NEAR LIVERHORE	7.1	9-3-63	9.3	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	9.3	× 13	< 0.67	< 3.3	< 0.67	≥ 0.67	< 3.3	< 1.3	< 0.67	< 13
COYOTE CREEK NEAR MADRONE	82	5-14-63	193	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	31	< 6.7	< 1.3	< 3.3	< 1.3	4.1	< 3.3	0.8 >	< 1.3	< 6.7
COYOTE CREEK NEAR MADRONE	82	9-2-63	7.3	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	17	× 13	< 0.67	< 3.3	₹ 0.67	2.9	< 3.3	0.9	< 0.67	< 13
NAPA RIVER NEAR ST. HELENA	72	5-8-63	980	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	17	< 6.7	< 1.3	17	< 1.3	3.3	< 3.3	< 1.3	6.9	< 6.7
CENTRAL COASTAL REGION (NO. 3)																			
PAJARO RIVER AT CHITTENDEN	77	5-15-63	25	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	< 3.3	< 6.7	< 1.3	< 3.3	< 1.3	4.9	< 3.3	< 1.3	6.7	< 6.7
PAJARO RIVER AT CHITTENDEN	77	9-5-63	8.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	9.3	× 13	< 0.67	< 3.3	≥ 0.67	4.5	< 3.3	< 1 3	=	< 13
SALINAS RIVER NEAR SPRECKELS	43	5-16-63	45	< 1.3	< 1.3	< 3.3	< 1.3	< 1.3	< 3.3	5.7	< 6.7	<1.3	< 3.3	\$ 1.3	< 1.3	< 1.3	< 1.3	=	< 6.7
SALINAS RIVER NEAR BRADLEY	430	9-4-63	8.0	< 1.3	< 0.67	< 3.3	< 3.3	< 3.3	< 3.3	=	× 13	< 0.67	8.0	19	7.3	< 3.3	< 1.3	6.3	۲ ×
											_								
											-								
												-							

TABLE D-5 RADICASSAYS OF SURFAUE WATER

		1	1	Pico	Pico curies per liter	er liter	
REGION (NO. 1)							
BIG RIVER NEAR MOUTH	8c	5/7/63	0 + 0.2	0	+ 0.2	4.2 ± 4.7	0.8 ± 4.7
BIG RIVER NEAR MOUTH	8c	9/13/63	0.1 + 0.4	0	1+0.3	2.2 ± 6.2	0 ± 6.1
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	5/6/63	0 + 0.2	0	1+ 0.2	2.2 ± 4.2	0 ± 4.2
GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS	9a	9/13/63	4.0 + 4.0	0	1+0.3	0 ± 6.1	0 ± 6.1
NAVARRO RIVER NEAR NAVARRO	8b	5/7/63	0 ± 0.2	0	+ 0.2	7.9 ± 4.4	2.2 ± 4.3
NAVARRO RIVER NEAR NAVARRO	8b	9/13/63	0.3 ± 0.4	0.5	+ 0.4	4.0 ± 6.2	5.0 ± 6.2
NOYO RIVER NEAR FORT BRAGG	10c	5/1/63	0 ± 0.1	0	+ 0.1	6.4 ± 4.3	2.6 ± 4.3
NOYO RIVER NEAR FORT BRAGG	10c	9/13/63	0.2 ± 0.3	0.1	+ 0.2	2.9 ± 6.2	0.4 ± 6.1
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	5/7/63	0.2 ± 0.2	0.3	1+ 0.2	10.4 ± 4.4	19.8 ± 4.6
RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE	10a	9/11/63	4.0.4	0	7.0+	5.1 + 6.2	5.1 ± 6.2
RUSSIAN RIVER AT GUERNEVILLE	10	2/6/63	0.1 ± 0.2	0.1	+ 0.2	1.1 ± 4.3	7.7 + 7.9
RUSSIAN RIVER AT GUERNEVILLE	10	9/13/63	0.1 ± 0.3	0.3	+ 0·7	0.8 ± 6.2	0 ± 6.1
RUSSIAN RIVER NEAR HEALDSBURG	6	2/6/63	0 ± 0.2	0	+ 0.2	6.6 ± 4.2	7.8 ± 4.3
RUSSIAN RIVER NEAR HEALDSBURG	6	9/11/63	0.1 ± 0.3	0	1+ 0.3	4.1 ± 6.2	0 ± 6.1
RUSSIAN RIVER NEAR HOPLAND	88	5/8/63	0.1 ± 0.2	0	1+ 0.2	8.4 + 4.8	5.8 + 4.8

		1			Piccomies per liter	S ssolved Betu	Solid Serv
REGION (NO. 1)							
RUSSIAN RIVER NEAR HOPLAND	8a	9/11/63	0	1+0.3	0.3 ± 0.4	0 ± 6.2	3.3 ± 6.2
RECION (NO. 2)							
ALANEDA CREEK NEAR NILES	73	5/14/63	0	+ 0.3	0 + 0.3	6.4 ± 6.2	4.3 ± 6.2
ALANEDA CREEK NEAR NILES	73	9/4/63	0.1	+ 0.4	0.5 ± 0.5	7.0 ± 6.1	8.0 ± 6.1
ARROYO DEL VALLE NEAR LIVERMORE	71	5/14/63	0.2	+ 0.2	0.5 + 0.3	1.0 ± 6.2	13.4 ± 6.4
ARROYO DEL VALLE NEAR LIVERMORE	71	9/3/63	0	+ 0.3	0 + 0.3	11.2 ± 6.2	4.7 ± 6.1
COYOTE CREEK NEAR MADRONE	82	5/14/63	0.2	+ 0.3	0.4 ± 0.3	4.7 ± 6.4	8.8 + 6.5
COYOTE CREEK NEAR MADRONE	82	9/5/63	0.1	+ 0.4	7.0 + 0	0 + 6.3	0 ± 6.2
LOS GATOS CREEK NEAR LOS GATOS	74	5/16/63	0	± 0.4	4.0.4	4.9 + 6.0	7.9 + 0
LOS GATOS CREEK NEAR LOS GATOS	74	6/2/63	0.1	₹ 0.4	0 + 0.3	0 + 6.3	0 + 6.2
NAPA RIVER NEAR ST. HELENA	. 72	5/8/63	0	1+0.1	0 + 0.1	7.3 ± 4.5	4.8 ± 4.2
REGION (NO. 3)							
CARMEL RIVER AT ROBLES DEL RIO	83	2/16/63	0.3	+ 0.4	0 ± 0.3	6.9 + 6.3	1.9 ± 6.2
NACIMIENTO RIVER NEAR SAN MIGUEL	43b	69/4/63	0.4	+ 0.4	0.1 ± 0.4	0 + 6.1	0 ± 6.1
PAJARO RIVER NEAR CHITTENDEN	77	5/15/63	0.3	+ 0.2	0.1 ± 0.2	4.0 + 6.3	0.4 ± 6.2
PAJARO RIVER NEAR CHITTENDEN	77	9/5/63	0	+ 0.4	0 ± 0.3	8.4 ± 6.2	0.6 ± 6.5

TABLE D-5 RADIOASSAYS OF SURFACE WATER

	0.40			Pico curies per liter	er liter	
not.tion	No	Date	Dissolved Alpha	Sol. J. Alpha	D ssorved Beta	Solid Betu
REGION (NO. 3)						
SALINAS RIVER NEAR BRADLEY	43c	5/15/63	0 + 0.2	0.7 ± 0.4	6.8 ± 6.2	16.3 ± 6.3
SALINAS RIVER NEAR BRADLEY	43c	9/4/63	9.0 + 0	0 + 0.5	0 + 6.2	1.9 ± 6.2
SALINAS RIVER AT PASO ROBLES	43a	5/15/63	0.3 ± 0.5	0 + 0.3	1.5 ± 6.3	0 + 6.3
SALINAS RIVER NEAR SPRECKELS	43	5/16/63	0.6 ± 0.4	0.2 ± 0.3	13.1 ± 6.3	7.8 ± 6.2
SALINAS RIVER NEAR SPRECKELS	43	9/2/63	7.01	4.0.t	29.7 ± 6.5	0.5 ± 6.0
SAN ANTONIO RIVER NEAR PLEYTO	434	5/15/63	0.5 ± 0.5	7·0 - 0	0 + 6.1	0.1 ± 6.1
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	5/15/63	0.1 ± 0.3	0.1 ± 0.3	4.8 ± 6.2	3.6 ± 6.2
SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION	77a	9/4/63	0.5 ± 0.6	7·0 + 0	4.8 ± 6.2	0 + 6.1
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	5/16/63	4 0 + 0	7.0 + 0	0 + 6.3	0 + 6.3
SAN LORENZO RIVER AT BIG TREES NEAR FELTON	75	9/5/63	0.3 ± 0.4	4.0.4	5.8 ± 6.2	2.4 ± 6.1
SOQUEL CREEK AT SOQUEL	9/	5/16/63	0.1 ± 0.3	0 + 0.3	0 ± 6.2	0 + 6.1
SOQUEL CREEK AT SOQUEL	9/	9/2/63	7.0 + 0	0 + 0.4	5.9 + 6.2	6.9 ± 6.2
UVAS CREEK NEAR MORGAN HILL	96	5/14/63	7:0 - 0	7.0 - 0	8.5 ± 6.2	0.2 ± 6.1
UVAS CREEK NEAR MORGAN HILL	96	9/5/63	0 + 0.3	0 + 0.3	0 ± 6.1	0.9 +1

TABLE D-6

DESCRIPTION OF SALINITY OBSERVATION STATIONS 1963

STATION	Miles from Galder Gate	Tir Inte (t	rval	LOCATION
	(0)	Hours	Min	
Sobrante Seach - San Pablo Say	20.5	2	50	South shore of San Pablo Bay from wharf approximately 1.5 miles upatream from Point Pinole.
Crockett - San Pablo Bay	27.7	3	30	West end of Carquinez Strait, south shore, 0.2 mile east of Carquinez Bridge on wharf of C and H Sugar Refinery Corporation.
Benicis - Carquinez Strait	32.5	3	50	East end of Carquinez Strait, north shore, 1.1 miles west of Southern Pacific Company railroad bridge at Benicia Arsenal.
Martinez - Carquinez Strait	33.1	3	50	Sampled from Shell Oil Company dock, about 0.6 mile downstream from Southern Pacific Company railroad bridge.
West Suisun - Suisun Bay	37.0	4	10	West end of Suisun Bay, north shore, 2.5 miles northeast of Southern Pacific railroad bridge at service pier of U. S. Maritime Commission, Reserve Fleet mooring area.
Innisfail Ferry - Suisun Bay	47.3	4	50	Montezuma Slough, about one mile east of junction with Cutoff Slough near north end of Grizzly Island.
Port Chicago - Suisun Bay	41.0	4	20	South Shore of Suisun Bay at U. S. Naval ammunition loading wharf below Port Chicago.
Spoonbill Creek - Suisun Bay	48.9	5	05	At Sacramento Northern Railroad crossing.
Pittsburg - Suisun Bay	48.0	5	00	East end of Suisun Bay, south shore, at Pittsburg Yacht Harbor.
Collinaville - Sacramento River	50.8	5	25	Sacramento River, north bank at junction with San Joaquin River.

DELTA STATIONS OBSERVED SALINITY AT BAY AND MAXIMUM

In parts of chloride per million parts of water*

STATION					. \	WATER	YEAF	₹				
3 IM HUN	1931	1938	1939	1944 с	1952	1955	1956 d	1958	1959	1961	1962	1963
Sacromento — Son Joaquin System Unimpaired Runoff in Percent of Average (e)	34	188	49	62	168	63	175	166	66	61		
Sobrante Beach**					14200	19000	16200	13800	17200	15000	15600	13300
Crockett					13200	16600	15300	11900	15000	19900	13900	13100
Benicia**				13900	10400	15100	12300	12100	19200	14000	12300	9780
Martinez	16900	11600	16400		8900	11900	11900	7150	10200	11600	12700	11500
West Suisun***					7900	12600	11200	7520	13200	13200	11100	8280
Innisfail Ferry**	14000	3300	13600	7900	4200	5780	5200	3040	9640	13900	5690	2890
Port Chicago					6900	12500	9750	5830	15640	11900	9370	9200
Spoonbill Creek	13900	2560	11800	7300	2800	6400	4040	930	6270	5900	3540	2940
Pittsburg			}		1200	7800	3440	1200	5110	3920	3980	1350
Collinaville	12600	860	10400	4700	783	3880	2280	550	5430	4300	2430	1980
	I	1	1		1			1		1		

Ocean water contains approximately 18,200 parts per million.
 Station discontinued July 1963.

^{*} Station discontinued July 1903.

A Mileage measured to station along main channel. For stations off the main channel, the mileage shown is the same distance slong the main channel to a point whereon the time of the occurrence of the tidal phase is the same as that of the observation station.

The interval between high tide at Codien Gate and time for taking samples at station.

Releases of stored water from Shasta Lake commenced in 1944.

Releases of stored water from Folsom Reservoir commenced in 1956.

Average taken as mean annual unimpaired flow at foothill stations of major cributaries for 50-year period October 1907 through September 1957.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million parts of water

STATION				DAT	TE			
37471011	10-2-62	10-6-62	10-10-62	10-14-62	10-18-62	10-22-62	10-26-62	10-30-62
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoonbill Creek Pittsburg Collinsville	13300 11400 7820 a9000 7820 2740 6460 1010 492 a426	a12700 10700 9180 a8470 bd8280 a2890 6130 a1490 ad447	a14200 e11500 e9780 e9070 7080 d7830 a1250 a642 a382	11900 9910 7920 a8870 2080 1560	a4530 2640 944 1320 755 a1510 566 a212 a142 ab8	4490 4530 3580 ae 944 755 85 61	7520 4760 3970 2910 781 969 71 19	8680 6230 5190 33970 2470 55 29 31
CTATION				DAC	re .			
STATION	11-2-62	11-6-62	11-10-62	11-14-62	11-18-62	11-22-62	11-26-62	11-30-62
Sobrante Beach Crockett Benica Martinea West Suisun Innisial Ferry Port Chicago Spoonbill Creek Pittsburg Collinsville	8600 4200 7500 1730 843 1470 a56	9020 47190 4630 5820 2120 935 65 27 21	11000 9770 5960 36980 135 bd61 27	10400 8540 7340 7900 4400 d3170 260 136 a26	a9500 7130 4050 5710 1390 1080 138 53 26	13000 9220 8100 8960 5180 1040 4360 145 de63 25	11700 10000 4920 9250 6090 357 314 48	10200 7670 5200 8290 4000 1240 2640 280 81 a41
STATION				DAT	TE.			
STATION	12-2-62	12-6-62	12-10-62	12-14-62	12-18-62	12-22-62	12-26-62	12-30-62
Sobrante Beach Crockett Benicia Martinea West Suisun Immisfail Ferty For Sobrabil Creek Pittsburg Collinsville	9440 7330 4510 6860 2320 171	9890 7040 5070 7830 71 34 20	10200 8580 5130 7/10 d2630 2580 38	10200 7000 5460 5980 d3080 728 72 29 a10	81+0 7130 4740 5070 2410 1010 1450 46 d27	8790 5900 6520 1130 2760 23	7360 5670 3280 6360 1390 30 24	8350 5590 3080 810 713
CTATION				DA:	TE.			_
STATION	1-2-63	1-6-63	1-10-63	1-14-63	1-18-63	1-22-63	1-26-63	1-30-63
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicayo Spoonbill Creek Pittsburg Collinsville	8230 5780 2810 5130 1160 30 27	9060 d7480 5400 4470 2530 492 2330 32 bd27 22	9120 7340 4470 7110 2000 62	8680 5340 2540 2540 a5670 2140 641 443 42 d34 24	8250 7290 6070 7360 ae1840 4340 57 47 20	10600 7580 9180 856 4240 376 496 142	11000 6380 8020 4030 4070 431	11100 9250 bd6090 a8310 3790 1200 4070 444 146 106

^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide.
a Taken after low high tide.
b Taken on following day.
c Taken two days later.
d Taken on preceding day.
f Taken two days earlier.
S Station located above tidal action.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million parts of water

STATION				DA*	TE.			
STATION	2+2-63	2-6-63	2-10-63	2-14-63	2-18-63	2-22-63	2-26-63	
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoonbill Creek Pittsburg Collinsville	4700 3550 1910 2850 496 1050 bd37 173 d16	1440 763 54 38 142 8 14	4690 2400 514 935 76 226 35 14	2200 1670 1060 59 19 19	3470 1970 250 386 255 20 bd25 14	4490 3970 2800 492 337 e371 31 32 18	a6170 3370 810 a1870 178 a450 33 a29 a532 a48	
STATION				DA	TE			-:-
	3-2-63	3-6-63	3-10-63	3+14-63	3-18-63	3-22-63	3-26-63	3-30-63
Sobrante Beach Crockett Benicas Murcing Murcing Murcing Murcing Muncipal Muncipal Port Chicago Sponobill Creek Pittsburg Collinsville	6360 d3860 3030 1530 479 466 29	8060 6700 6890 1616 31 24 17	9090 5420 1690 32 30 27	a11200 7280 3750 5630 2800 a476 2620 a34 abd32 25	7860 5730 3650 6540 ae1070 524 ae1140 46 40 23	12300 11200 6700 9610 510 529 284	ad11400 10100 7090 a5730 2600 a752 2820 a2-6 a95 a30	5340 5920 3300 3980 849 a752 680 49 73 23
STATION				DA	TE			
	4-2-63	→=6=63	4-10-63	4-14-63	4-18-63	4-22-63	4-26-63	4-30-63
								1
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoombill Creek Pittsburg Collinsville	5150 1460 291 583 78 607 24 bd21	adf8450 4180 2620 2770 121 de308 a19	a3790 2230 158 a3570 46 a170 d20 a12 a16	a2010 874 85 801 48 ad121	a2670 1070 b655 a22 de29 b17 a7 a7 a6	a2960 1140 316 36 a86 a12 abd23	a2770 1260 de866 30 a109 d56 a10 a21	3610 807 277 221 ae70 ae61 8 16
Crockett Benicia Martinez West Suisum Innisfail Ferry Port Chicago Spoonbill Creek Pittsburg	1460 291 583 78 607 2- bd21	4180 2620 2720 121 de368 a19	2230 158 a3570 46 a170 d20 a12	874 85 801 48 ad121	1070 b655 a22 de29 b17 a7 a7 a6	1140 316 36 a86 a12	1260 de866 30 a109 d56 a10 a21	807 277 221 ae70 ae61 8
Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago Spoonbill Greek Pittsburg Collinsville	1460 291 583 78 607 2- bd21	4180 2620 2720 121 de368 a19	2230 158 a3570 46 a170 d20 a12	874 85 801 48 ad121	1070 b655 a22 de29 b17 a7 a7 a6	1140 316 36 a86 a12	1260 de866 30 a109 d56 a10 a21	807 277 221 ae70 ae61 8

^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide.
a Taken after low high tide.
c Taken too days later.
b Taken one preceding day.
c Taken one rone hour scheduled time.
c Taken one preceding day.
f Taken two days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In ports of chloride per million parts of water

STATION				TAC	:E			
	6-2-63	6-6-63	6-10-63	6-14-63	6-18-63	6-22-63	6-26-63	6-30-63
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Terry Port Chicago Spombill Creek Pittaburg Collinswille	a5440 4750 3370 1980 1240 bd495 e13 a10	a9110 5640 4750 5350 2480	e10500 6730 55540 5940 4010 2600 d19 13	a12100 e6630 e4750 e4950 e2970 e990 a30 a22 a15	al1500 9600 7330 6140 abd109 3910 ad109 a58 a41	a10300 8510 6930 6530 5440 a188 a64 a14	9920 7720 3370 6930 3860 96 abd62 a25	e11700 e5540 e7030 e3860
STATION				DAT	re			
	7-2-63	7-6-63	7-10-63	7-14-63	7-18-63	7-22-63	7-26-63	7-30-63
Crockett Martinez Port Chicago Spombill Creek Pittaburg Collinaville	9180 8700 a84 a56	8920 ad6450 5900 a409 cd426 a40	8820 88370 4470 4586 368	e10400 aed6250 aed4490 e1100 sbd353 a311	11700 9510 7330 4882 a445	12200 9530 7720 ebd 1720 d817 1090	10300 a8750 1270 a728	e11300 e9780 a4850 a1920 aed1170 a794
STATION				DA.	TE			
STATION	8-2-63	8-6-63	8-10-63	DA1 8-14-63	TE 8-18-63	8-22-63	8-26-63	8-30-63
Crockett Martinez Port Chicago Spoombill Creek Pittaburg Collinsville	8-2-63 12900 10600 a5640 a2450 a1260	8-6-63 13100 a8000 7830 a2640	8-10-63 12600 11500 6670 e2350			8-22-63 12400 9880 8530 2520 1980	8-26-63 10900 9710 7190 2250 a1350 s1030	8-30-63 e12100 e11400 9200 a2940 a1370
Crockett Martinez Port Chicago Spoonbill Creek Pittaburg	12900 10600 a5640 a2450	13100 a8000 7830	12600 11500 6670	8-14-63 e12400 s8180 e8120 s2500	8-18-63 13200 11400 8780 abd1130 a1720	12400 9880 8530 2520	10900 9710 7190 2250 a1350	e12100 e11400 9200 a2940
Crockett Martinez Port Chicago Spoonbill Creek Pittaburg Collinsville	12900 10600 a5640 a2450	13100 a8000 7830	12600 11500 6670	8-14-63 e124-00 a8180 e8120 a2500 a4906	8-18-63 13200 11400 8780 abd1130 a1720	12400 9880 8530 2520	10900 9710 7190 2250 a1350	e12100 e11400 9200 a2940

^{*} Samples taken at four-day intervals approximately one and one-helf bours after high high tide.

a Taken after low high tide.

t Taken two days leter.

b Taken over one bour off acheduled time.

Taken on preceding day.

f Taken two days earlier.

ELECTRICAL CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1963

ELECTRICAL CONDUCTANCE
DAILY READINGS AT 1300 HOURS
BETHANY FOREBAY AT
SOUTH BAY PUMPING PLANT (STA 207)

1963

APPENDIX E

GROUND WATER QUALITY

GROUND WATER QUALITY

Data presented in this appendix are measured values of selected quality characteristics of ground water samples collected in the Central Coastal Area during the period from July 1, 1962 through June 30, 1963. This appendix consists of a table showing results of analyses of ground water and a table showing results of radioassay of ground water. Wells and ground water basins are numbered in accordance with the system described in Appendix C. The data are presented in water pollution control board region, ground water basin, and well number order.

Analyses of Ground Water

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and water temperature is reported in degrees Fahrenheit. Values for temperature are those measured in the field at the time of sampling. Laboratory analyses of ground water were performed by the Department of Water Resources, the United States Geological Survey, and Lein Laboratory, all in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or in accordance with U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable results. Heavy metal concentrations were determined by "wet" analyses.

Table E-1 presents analyses of ground water. Definitions of abbreviations used in this table are as follows:

1. TDS---Total dissolved solids by gravimetric determination at 180° . The superscript "a" indicates a value determined by

summation of constituents.

- 2. T.O.--Odor.
- 3. ABS---Alkyl benzene sulfonate.
- 4. DWR---Department of Water Resources.
- 5. USGS--United States Geological Survey.
- 6. LL----Lein Laboratories.

Radioassay of Ground Water

Radioassay of ground water is presented in Table E-2. Determinations were made by the California Disaster Office of suspended and dissolved alpha and beta activities in some samples and for gross activity in other samples. The term pico curie used in this report is also written micro-micro curies and is further defined as 10^{-12} curies. The most probable error is reported along with the measured value. Results should be considered qualitative and undue emphasis should not be given to quantitative values.

Polary Composition Polary Polar	S	,	Specific	Specific				1 1		M inerc	al cons	Mineral constituents	<u>c</u>	parts per millian equivalents per millian	parts per millian valents per mill	millian millian			Total dis-	į į	Hardness as CaCO ,		2
No. No.	number and Date Temp once PH Calcium Magne- ather number sampled in F (Infora-PH Calcium Magne- mass in moss (Ca) (Mq)	Temp ance in *f (micra- pH Calcium mhas (Ca) at 25 °C)	ance (micra- mhos (Ca)	Calcium (Ca)	Calcium (Ca)	Ca) (Mg)	250	Sac	Sadium (No)	Mas-Carl	t pour							iso ₂) Other constituents ^d	saived eolids in ppm	0 E		_	9 c
1. 1. 1. 1. 1. 1. 1. 1.	समाप्त								UKINH	VAILUY	7	5)											
1. 1. 1. 1. 1. 1. 1. 1.	$\frac{2.7}{1487/1248-381} = \frac{9-29-62}{9-29} = \frac{62.0}{1834} = \frac{8.0}{3.34} = \frac{6.2}{1.884}$	620 8.0 67	8.0 67	8.0 67	3.34		-, -+							- 10		20.0	6.0	25	376				
1.0 1.0	1.67/12/5-11/31 10-62 294 7.46 18 18 20	294 7.6 18	7.6 18	7.6 18	06.0								1.35	7.8		20.0	2	911	75				a
1. 1. 1. 1. 1. 1. 1. 1.	145/120-26F1 10-2-62 65 348 8.4 23 23 2	65 348 8.4 23	348 8.4 23	8.4 23	1.15		- 1	- o' - 0 - 0				_	17.29	39		0.02	31	87	199				,
1.0 1.0	135/1215-161 10-62 66 287 7.9 28	287 7.9 28	287 7.9 28	7.9 28	82		- :						17.	2.0		0.03	7.0	91	170				
1.0 0.0	1.07/12W-21H1 10-2-02 257 8.44 25	25.7	7 20	7 20		5 5	-[=·	95.09					0.17	0.11		0.0	0,5	10	141				-ę
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	133/134-3341 14-62 386 8.3 34	386 8.3	۲.۶	۲.۶	_	3/2	-1:	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_					20		7.0	0	135	240		136		~
1.0 1.0	104/12h-50H 10-62 03 353 8.1 23 1.15	63 353 8.1	353 8.1			2 2	- -	19 1.53					0.00	1,10		0.0	0	82	202	20	13:		23
1.0 1.0	$10E(1)2W-5D2$ $10-62$ 62 348 7.2 $18 \over 0.90$	62 348 7.2	348 7.2	7.2		81 04.	- :	8 77					0.0	97 0.45		0.05	0.1	326	200		117		59
1	100/1200-991 10-2-62 61 408 813 28	61 408 8.3	807	ε, 30 Ε, 10 Ε, r>Ε, 10 Ε Ε, 10 Ε Ε, 10 Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε		740	-1:	1,38					0.12	0.20		0.05	0.2	56	250		139		-92
10, 10 10, 10 1,	175,128-18A1 10-62 63 1930 7.7 38 1.90	63 1930 7.7	1930 7.7	7.7		38	500	5.1				_		505		0.06	[8]	뒡	1270		116		53
1.3 0.00 2.10 2.11 2.0 2.21 2.12 2.12 2.12 2.12 2.13 2.15 2.13 2.15 2.	121/126-281 10-2-62 62 212 7.2 17 0.85	62 212 7.2	212 7.2	7.2		1,8,1	o lo	0.77 0					0,31	0,19		0.04	0.3	31	671	2.3			S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										VALLEY					_							-	
0.1 0.2 188 1.1 5.0 1.2 <td>0777</td> <td>708 8.3</td> <td>~ 00</td> <td>~ 00</td> <td></td> <td>17 DZ</td> <td>C1 -</td> <td>12.7</td> <td></td> <td></td> <td></td> <td></td> <td>20.42</td> <td>7.6</td> <td></td> <td>0,2</td> <td>0,32</td> <td>18</td> <td>239</td> <td>7</td> <td>20 5</td> <td></td> <td>25</td>	0777	708 8.3	~ 00	~ 00		17 DZ	C1 -	12.7					20.42	7.6		0,2	0,32	18	239	7	20 5		25
$\frac{0.9}{0.02} \frac{0}{0.00} \frac{184}{3.02} \frac{12}{0.25} \frac{7.4}{0.25} \frac{9.7}{0.21} \frac{0.3}{0.10} \frac{1.5}{0.02} \frac{19}{0.02} \frac{19}{0.2} \frac{190}{0.10} 21 141 0$	1.5./11u-/pl pl-62 62 314 8.1 21	62 314 8.1	314 8.1	8.1		12 2	1/~1	2.01			00.0		11	5.0		0.03	6,3	24	179	=	153		ć
	138/118-18B) 10-62 530 8.2 <u>13</u>	62 330 8.2	330 8.2	~± ∞		51.7	1	20 1.67					12 0.25	7,4	9.7	0.02	5.	61	190	2.1	171		- 6

TABLE E-1

	3									
	4	by c		0.868	USGS	USGS	 			
	Hardnass	N E GG		0	0	-			 	
	1 6	Totol		77	30 7	139				
	à	S S S		- 5	2.7			_		
	Total	solved cent		115	172	177				
		(SiO ₂) Other constituents ^d								
		Silico (SiO ₂)		16	91	9]				
	ig.	Boron (B)		0.4	0.0	0.3				
million	.e.	luo-		0.7	0.0	0.07		-		
parts per million	ents p	trate (NO ₃)		0.03	0.11	0.03				
ă	equivolents per million	Chlo-		0.12	0.39	0.21				
	5	Sul - fate (SO ₄)		9.0	0.02	0.29				
	Mineral constituents	Sum ofe bonote (K) (CO ₃) (HCO ₃)	(Cont.)	1.06	2,21	2,75				
	o lo	ofe (CO,)	(1-16)	0000	00.00	00.00				
	ž	Potas Sium (K)	ALLEY	0.9	0.0	0.05				
		Sadium (No)	SANEL VALLEY	0.31	0.74	0.44				
		Calcium Magne- (Co) (Mg)		0,83	15	1.58				
		Calcium (Co)		0,85	0.70	1,20				
		Ŧ.		8.1	8.0				 	
3,000	conduct-	(micro- mhos at 25° C)		194	261	304				
		Ten in of		63						
	9100	sampled		10-62	10-62	10-62				
	Stots well	other number	MDBAM	13N/11W-18Dt	13N/11W-19N1	13N/11W-30H1				
		Owner and use		J. H. Pomroy a Co. irrigation	Hopland Public Utility District municipal	Grace Kunch domestic, stock and irrigation				

					-								100	notilion ner million	or II ion						L
	State well			Spacific conduct-					2	Mineral constituents	tifuents	ē.	equivalents per million	nts pe	r milli	Ę		Total	į	for dness	
Owner and	ather number	Sampled	E c		Ŧ.	Caicium Mag	Magne - Si Sium (Mg)	Sadium (No)	Patas-Carbon- sium ate t (K) (CO ₃) (ofe bc	Bicar- banate ((HCO ₃)	Sul - fate (SO ₄)	Chlo- ride (CI)	rrate (NO ₃)	Flug-B	Boron Si (B) (S	Silica (SiO ₂) Other canstituented	spived spids in ppm	sod mm	os CaCO ₃ Total N.C Ppm Ppm	Analyzed by c
						_	_												_		
							SAN	FRANCIS	CO BAY	SAN FRANCISCO BAY REGION (NO.	(NO. 2)										
	MDBGM							PETA	LUMA V	PETALUMA VALLEY (2-1)	7										
, Cloakie domestic and stock	3N/6W-1Q1	10-25-62		1270									165								DWR
		4-17-63		1300 8	8.9	28 3	30 5	9.80	0.15	42	8.20	0,00	145	0.12	0.1	0.3	33	792	7.0	185	17 0
, Waste domestic and	3N/6W-3C1	10-29-62		7430								19	2270								DWR
irrigation		4-17-63		3700 8	8.4	5.85 16.	201	365	21 0.56	12 0.40	7.35	0.00	1080	9.6	0.1	7.0	28	2480	41	1118 730	11
. K. Herzog Co. domestic and stock	3N/6W-11B1	10-62		1920								I	369								DWR
		4-17-63		1900	8.4	60 2	2,21	325	0.18	0.20	555	0.00	346	0.18	0.1	7.0	37	1080	73 2	265	77 0
Strozzi	3N/6W-15M1	9-25-62	67	193									18 0.51				-	121			OWR
		5-8-63	95	365 7	7.2 4	42 2.09 0.	5.9	22	0.0	0.00	116	35	28	0.00	0.2	0.1	21	220	27 1	128 38	77
domestit, stock,	3N/6W-18M1	9-56-62		610			-				-		52	13				394			DWR
and arrigation		5-8-63		7000 7	7,8	39 5	51.7	29	10.0	0.00	168 0	43	50	130	0.1	0.1	16	510	17 3	304 166	13
domestre	3N/7W-14F1	9-26-62		658									73	-				370			DWR
		5-8-63		670 8		30	30	3.10	0.02	0.00	246	34	76	0.0	0,4	0.7	777	382	7	197	0
apes. domestra	1H/-M9/N5	10-26-62		484									50								DWR
		4-4-63		1120 8	3.5	3.26 5.	5.53	94	0.04	2105.0	980	34	60	31	10.0	2.0	118	718	7	₽ 17	3
ope irrigation and stock	411/611-7112	10-26-62		11877								ge-1	1120								DWR
		4-4-63		4800 8	8.2	8.76 0.	7.9	930	£	0,00	433 3	308	1260	0.12	0.0	0.0	1.5	2880	30	470 115	17

	200	by c			E		85	,	OWR	. 1	DVR	_	DUR		OWR	aul .	DUR	71	DWR	ıı
-					DWR	77 O	DWR	0 17	Ö	1522 LL	5	9158 LL	ō	0 11	ā	87 LL	٥	0	6	II ES7
	Hardness as CoCO.	Tata! N				32		189						192		295		126		615 4
Г	,	ğξ		_		66		15 18		36 1755		35 9238		1 09		35		53 1		27 6
	Total dis-	solved solids in ppm				524		278		3440		18100		580		260		334	•	1100
		Suica (5.0 ₂) Other constituents ^d																		
		Silica (SiO ₂)				34		[]		25		25		14		21		52		31
	uo	Baran (B)				0.8		1.0		0.4		0.7		0.5		-1		0.1		0.1
million	Ē	ride (F)				0.1		0.0		$\frac{0.1}{0.01}$		0.1		0.2		0.01		0,1		0.01
parts per million	ents	rrate (NO ₃)				0.00		3.9		8.3		00.00		00.00		0,00		0.00		110
š	equivalents per millian	Q 500			152	2.72	19	12	1720	1773	9700	9620 271.28	105	3,20	161	153	1.27	43	441	390
9		Sul - fate (SO ₄)				10 0.21		16		0.03		1020		0,23		29		29		34
1000	Mineral constituents	Bicar- banate (HCO ₃)	(Cont.)		-	345		3.77		284		98		342		3,75		3.55		3.05
	0.0	arbon- ate (CO ₃)	(2-1)			15	_	4.5		00.00		00.00		1.5		0,40		3.0		6.0
:	2	Potas - Carbon- sium ate (K) (CO ₃)	VALLES			0.03		2.4		19		4.5		0.05		3.9		2.6	_	2.3
		Sadium (No)	PETALUMA VALLEX			195		16		463		2800		5.87		7.5		2.40		107
		Magne - s.um (Mg)				5.9		24		307		2085		24		33		9.1		28 2.29
		(Calcium				3.0		36		9.85		266		37		3.22		36		200
L		£				9,8		4.8				7.6		8.5		2.8		10		x)
Spacific	conduct	ance (micra- mhas at 25° C)			1060	890	372	055	5560	5500	23800	23000	932	850	935	006	544	540	1910	1700
		Temp in P																		
	ě	sampled			10-29-62	4-4-63	10-25-62	4-17-63	10-29-62	4-17-03	10-26-62	4-4-63	10-26-62	+-4-63	10-26-62	4-4-63	11-29-62	6-5-5	10.24-62	4-4-43
	State well	other number	M M M M	Control of	4N/6W-21Q1		4N/6W-27R1		4N/6W-33Rl		4N/7W-2D1		SN/6W-30D1		5N/7W-8D3		3N/7W-19A1		5N/7W-201.3	
		Owner and use			1. A. Bourke domestic and stock		, K, Herzok Co.		White	0	"nion Oil Co. industrial		1. Riebli domestic and stock		N. J. Matzen domestic		Oberg Lumber Co.		Al's Barber Shop domestic	

	Anolyzed by c			DWR	DWR	11	DWR	T.		DWR	1263	DWR	DWR	DWR	1156*	DWR	USGS	DWR	DWR	USCS
		o E		٥		÷	딕	2			200				127		=			=
1	03 COCO 3	Totol		17.7		6.0	212	597			347				260		25			4.7
	- 50	Ē		77		£	-17	-5			35				33		62			47
2	Polog Polog	1000		35.5		53+	341	957			\$63				537		219			330
		(SiO ₂) Other constituents																		
	Silica	(20'5)		77		<u>=</u>	6.7	25			27				25		21			6.7
60	-	(8)		0.0		7.0	0	[]		0.24	0.1	0.19		0.20	0	0,14	ा		0, 12	01
million er mill	- on L	<u>6</u> E		0.5		~ E	7 0 0 0	-16.0			0.4				0.0		0.01			0.00
rts per	ż	trote (NO ₃)		0.02		= Gn	17	0.35		2.8	5, 0	2.72	3.13		0.3		20			- S - S
ports per million	- 6	ŧĵ.	-	1.30	25.7	89	. g 5	577		3.84	3.55	177	174	98	97	32	29	90	97	2.96
č	Sul	(SO ₄)		0.44		2 5	1.35	5/3			37				107		12 0.25			0.21
Mineral constituents	Bicor-	HCO ₃)	C court	28.2		351	3.5.1	1.00	(7-7)		347				162		87			2.07
rol co	orbon	.00	3	00.1		7,7	45	1,30	A1113		18.				0 8.0		00.00			0 8
N.	otos-C	(K) (CO ₃) (HCO ₃)	- All IVA	= 6 -1 6	_	- 15	2.7	3.15	SONA VALLEY		0,04				-410		1,3			0.10
	6	(Na)	TALIMA III	hq. 2.78		8.53	4	39	NAPA-	£ c	3.74	5.13		5.9	58	- R3	1.78		3.04	3.22
	90	£ 6		Z 27.		37	7 2	25			3, 110				8 1 2 . 1		6.8			12
	2	(Co) (Mg)		41 2.05		3 0	7 5	7.86			3.94				3.69		9.6			9 8 9
	¥.	3		200		2/0	7 %	† 20			8.6				 		2 0			=
Specific		mhos ot 25°C)		585	30 -7 20	888	180	302		1160	1000	0051	1680	782	776 8	540	303	760	2	60
S	Temp																			
	Oate			10-20-62	((1-30-p;	C	[114.2(b+b)]			79-61-6	5-7-43	79-61-6	5-7-63	79-51-5	5-1-63	9-14-62	1-8-h3	1-8-63	29.41.40	5 8 5
	number ond		NDBeM	W/W-2611	18/18-1417N		1			(11/46-1801)		38 / 38 - 180.2		3N/3M+21.E		1 11 -58+ 12+		44 - 45 - 45 E	45.748- Al	
	Owner and	9 50		Mirror on too		1 d 1 d 1 d 1 d 1				D. Num						2 2 2 2		= = =		

ANALYSES OF GROUND WATER 1963 TABLE E-1

	Analyzed by c			,		1	-	DWR	DMR	-	DWR		DWR	DWR	USGS	DWR	D. C.
				- 20	<u> </u>		ž	13 x	10	- -	ă	:	20	ă	5	<u></u>	0
Hordness	Total N			ž.			3	22.2		ż	_	£11.5			95		0.2
				±			7	7.7		ŝ		4			-		77
Total	solved sod-			2			=	259		6.17		=======================================			311		336
	Silico Other constituents ^d																
	Silco (SiO ₂)			<u>:</u>			39	27		20		77			37		21
uo.	Boron (B)		2	=1	0,27	3	21	[]	0.19	01	7.7	2.3	2	0.19	0.1	22	1.3
parts per million valents per mill	Ni- frote (NO ₃) (F)		_	9,0			0.0	= 8.		0.0		0.0			0.5		0,4
rts per ents p	trote (NO ₃)			24.0			5,8	12		2.3	0.37	9.15	0.9		0.0		0.13
parts per million equivalents per million	Cio - 010		2.85	3.47	362	9.08	8.77	67	3.47	3.33	930	621	671	45	44	92 2.59	1,86
č	Sul - fare (SO ₄)	-1		5.5			37	10.37		41		00.00			9.2		0.37
Mineral constituents in	Patas - Carbon - Bicor- sium ate bonote (K) (CO ₃) (HCO ₃)	2) (Conft		260			332	3,08		278		8.35			3.85		164
erol co	ate (CO ₃)	: :		0.13			0.00	0.20		13		15			0.00		0.00
2	Stum (K)	A VAI		0.8			0.0	0.04		3.2		14			0.8		3.1
	Sodium (No)	APA-SUMONA VAL EY (2-2) (Cont.	3.35	3,52	206 8.96	143	146	1.26		7.92		470		59	62 2.70	113	3.61
	Mogne - sium (Mg)	*		1.37			3.90	30		9 8		50			1.25		7.8
	Calcium (Ca)			46.79			5.13	200		0.55		407			27		0.75
	£			-7.			7.9	o .		2 20		5.5			8.2		
Specific	once (micro- mhos of 25° C)		5.29	453	2840	1560	1580	5.55	256	876	3630	2600	2900	30 00 7	507	680	545
	Temp in °F													59			
	Sampled		9-19-62	5-7-63	-9-19-62	6-14-62	5-7-63	1-7-03	10-25-62	4-2-63	10-25-62	4-17-63	10-25-62	9-18-62	5-7-63	9-18-62	5-7-63
State well	number and other number	MORDE	4N/4W-12M1		4N/4w-13E1	4N/3M-1-0.2		4N/4W-25KI	4N/5W-14D2		4N/5W-32BL		4N/5W-34DI	5N/4W-4Q2		SN/4W-11F3	
	Owner and		P. R. ct. dod stock		Jacobs	V Bassham domestic		H Mini domestic and stock	i S Navv municipal		Sonoma Ranch stock		Sonoma Ranch stock	M L George domestic		W. Gellenger domestic	

	Analyzed by c			DWR	Use	TWF	* 2	: :	DKF	1 1	DWK	DWK	DWK	IMR	1M/I	-	÷	-
Hardness	z.CO.s				0		0			=		-1			c	=		5
					3.5		<u>=</u>			÷ =		100			3	£		ŝ.
à	solved sod-	_			32		51			30		-			ž	20		1
Total					195		277			1280		5			 E	£0.2		-1
	Silico Other constituents ^d							-										
	Silico (SiO ₂)				59		77			2 R		=1			-2	21		9
100	Boron (B)			0.13	=	0,16	0.1		0,49	0.5	0.72	0		0.1,	=1	5		±
Ē	- 100 - 100 (F)				0.2		0,0	-		0.1		- 6.0			- 100	= =	-	= =
equivalents per million	rote (NO ₃)				3.5		3.1			0.04		0 0 0		51	-1-1	0.0		10.0
Paning	Sig- (Ci)			17	21.0	1,38	35	2.31	13.42	11.85	28	0.22	2.6	5,099	59.0	2.88	£ .	7 8
ē	Sul - fate (SO ₄)				5.2		9.0	-		- 3 2 2 2 2		9.1			9,19	21 97		0,16
Mineral canstituents		,	(Cost		112		3.18			342		120			3,28	1,10		3.27
ra! can	ote Ote (, O		2 2 2		180		0.00			8		0.00			80.07	21 °C.		0.20
¥	Potas - Carbon Bicor- sium ate banote (K) (CO 1) (HCO 1)		A VAILL		2.5		2.7			2.0		0.07			0.04	0.03		0.03
	Sodium (No)		APA-SONOTA VALLITY (2-2) (Cout.)	17	19	5 7	2.18		8775	+3.2	4,09	10			1.67	81.18		50
	Mogne - sum (Mg)		<u> </u>		0,36		2 6			1100		91 1.			2 2	0.80		1.22
	Calcium K				15 0		1.00			2 S		2/2			100.00	7 2		10.00
	Ĭ.				7.9		 			4		.1			-d 20	° .	-	×.
Specific conduct-	ance (micra- mhos			230	257	57	017	6188	2340	2210	27.0	5+7	374	516	S	1080	95*	398
0, 0	e e										21							
	Date sampled			9-18-52	5-7-63	9-18-62	5-7-63	1-8-63	9-19-62	5-8-63	4-19-62	9-119-67	1-8-63	79-57-07	4-2-63	+-2-63	101-11-62	5-1-5-11-3
Stote well	other number		MDBoM	JN/4W=14C1		58/48-15FE		38/46-2082	511/48-21P2		N/4W-22M1	SN/4W-2302	N/48-24III	3N/3W-1802		357 35-2 UKT	77/03-12F1	
	Owner and			P. A. Gasser demestic and stock		John Heal.		b, Looney done 11c	1. Poc done stac		stock	Sapa State Nospitul iffigation	Hamagan daya at ta	Trentugnar domestac		Miplioretti dom die and irrication	demonstrate and shick	

TABLE E-1

	3											_						
	Analyzed by c		DAVR	ŝ	DWR	11505	DWR	25	DKR	13	DWR	13	DWR	USG*	DWR	USCS	UNIK	DWR
Hardness	S D E G			51		-		=		0		0		7		4.7	=	ħ6
				5		ŝ		ž		\$		=		5.		213	50	261
à	200			23		38		20		99		20		~		2	ž	- T
Toto	salved sod- salids ium in ppm ium			271		350		7.00		930)		ŝ,		7.2		311	347	193
	Silica (SiO ₂)Other constituents ^d																	
	Silica (\$10 ₂)			71		21		25		21		껆	··*-	4		~1	90	31
101	Baron (B)		0,18	91	0.12	ा	0.21	0.1	1]	0,56	<u>-</u> :	0,03	01	0.41	0,3	0,65	0.4
É	Fluo- ride (F)			0.00		0,00		0.0		0.05	0.2	0.0		0.0		0.0	0.02	0.3
equivalents per million	trote (NO ₃)			11 0		0.05		0.18		00.00		0.00		1.5		14	0.04	90,08
o deivo	- 186° (C)		8.4	31	2.00	7.2	8.7.0	8.0	63	2.15	27	55	6,6	6.8	17	18	0.37	1.83
5	Sul - fote (SO ₄)	3		0.0		8.0		17 0.29		00.00		0.13		0.00		4.1 0.8.0	0.00	61
Mineral constituents	Sium of bonote (K) (CO ₃) (HCO ₃)	2) (Cont.)		135		2.64		1.88		166		140		0.44		3,26	248	3.24
eral co	orbon- ore (CO 3)	EY (2-2)		0.00		0,00		00.00		0,14		0.08		0,00		0.07	0.00	00.00
ž	Potos- Sium (K)	TA VAL		0.04		0.06		5.7		0.31		9.2		0.03		0.13	0.18	7.2
	Sodium (No)	CAPA-SONO		18		4.3	1.39	30		3.20		3, 55	0,30	0,18	0.87	0.7	[c] 20 27 27	33
	Magne - s.um (Mg)	- 151-		1.20		17		5, 8		10		2.1		5.3		2,31	13	3.21
	Calcium (Ca)			28		31		0,70		0.55		0.10		97.70	-	39	14.0	00:
_	Ŧ	-		2.2		7.		-:		-7 30		ž.		7.7		** **	20	70
Specific conduct-	ance (micro- mhas at 25° C)		205	339	505	512	1964	259	655	200	C4 C77	400	104	12	127	, · · · · · · · · · · · · · · · · · · ·	77	189
	Temp in °F														_			
	Sampled		10-24-62	4-2-63	10-26-62	4-2-63	9-18-62	5-8-63	10-23-01	4-3-63	10-24-62	4-3-63	9-18-62	5-5-63	9-18-b2	24-8-1	Sadabi	1-8-63
Stote wall	number and other number	Hibbar	5N/6W-24K1		5N/6W-25F1		611/412-1261		05,708-2382		n11/64-2611		73741-3011		N/ 45 - 3A0		857 62-320	857 15-3201
	Owner and		Kiser		onnilla dopu stie		1. Johnson dem 71. md stock		. Tarvid		1 max		Factoria		E. Wheeler donestre and stock		V. tudebaker domestic	connell.

	P	Т																
_	Analyzed by c	\perp		DWR	NSC.	DWR	0.808		DWR	115 GS	DWR	DWR	7	DWR	DWR	1	DWR	
800	os CoCO ₃ Toto! N.C				-		=			135			-			-		334
Ī	Toto!	E O			35		ī5			349			171			345		530
	solved sod-	\perp			31		-7 -0			÷			7.9			- 8		•
Totol					112		522			730			0.001			2200		1570
	Silica (SiO ₂) Other constituents ^d																	
					36		09			82			17			5		69
60	Boron (B)			0.14	c	2	9.6			0.6			3,4			77		6.0
a Hillor	- 05 E	5			0.0		5.3			0.8			- t - 0			0.2		0.5
ports per million	rote	(NO3)			4,7		2.8			0.71			33			00.00		0,21
ports per million	- oko	ĵ		8.6	4.2 0.12	186	159		7.25	5.56	5.16	280	232	247	825	860	160	5.15
5	Sul - fote	705)	ন		8.8		0.2			0.35			63			276:		1.83
Mineral constituents	Bicor- bonote	HCO ₃)	(Cont		0.67		3,00	N (2-8)		292			476			8.90		3.42
0 10	orbon		3		00.00		2 0.07	VAI		15			15			24		0.00
× .	Potos-Corbon-	§	TA VALLE		0.0		8.8	VIKETE		1.4			1.1			2.3		7.5
	Sodium (No)		APA-SONDMA VAILEY (2-2) (Cont.)	13	7.5	7,18	152	SUTSUN-FALKETED D VALLUX	4.96	100	412	13,35	305	300	334	700	5.35	248
			- 3		3.3		5.0			5.34			2.21			2 5		6.30
	Colcium Mogne				8.7		~2			5.3			24			55 2.75		86
	포				6.7		-7			°. 5			5.0			9, 6		0.8
Specific	once (micro-	ot 25° C)		152	109	927	860		1400	0171	1800	1770	1650	1710	3630	3600	667	2250
	Temp n of		-															
	Dote			9-18-62	5-8-63	9-18-62	5-8-63		9-25-62	5-4-63	5-9-63	9-25-62	5-9-63	9-25-62	9-25-62	5-4-63	9-25-62	5-6-63
Stotal atoms	number ond other number		MDB6M	9N/6W-31Q1		9N/7W-25N1			3N/16-481		3N/1E-2101	3H/1E-22F2		3N/1E-22F3	4N/1W-33A1		-N/14-8F1	
	Owner ond			J. Alcouffe domestic and stock		R. H. Archerd			Mis. Tavlor domestic		McDougal Livestock Co. stock	McDougal Livestock Co.		McDougal Livestock Co irrigation and stock	Fish & Game Commission domestic		donesta	

									2	,												
	State well		9, 0	Specific					Σ	eral car	Mineral constituents	Ē	pd	parts per million equivalents per million	million	١		Tatoi		Hordne		
Owner and use	number and ather number	Oate sampled	Temp in °F	ance (micro- mhos at 25° C)	F.	Calcium Magne -		Sodium (No)	Potas-(K)	Potas-Carbon- sium ote (K) (CO ₃) (Bicor- bonote (HCO ₃)	Sul - fate (SO ₄)	Chlo- ride (CI)	Ni- trate (NO ₃)	Fluo- B ride (F)	Boran Si (B) (§	Silico (SiO ₂) Other constituents ^d	dis- salved solids in ppm	Sod	as CoCO ₃ Total NC		Analyzed by c
																				-		
	MDBuM						SUISO	SUISGN-FAIRFILLD VALLEY (2-3) (Cont.)	LD VAL	TEN (3-	3) (Can		_									
W. F. Heally domestro	4N/2W-4Dl	5~8~63		1340 8	8.0	6.23	34	150	0.05	0.00	625	3.02	1,90	28 2	0.10	0.1	113	452	42	720	0	
Southern Pacific R.R. domestic	4N/2W-5Q2	9-25-62		378				1.87					4.2								DWR	25
		5-8-63	_	380 7	7.5	16	8.5	50	0.06	0,0	155	00.00	39	0.0	0,01	4.0	09	797	5.5	7.5	0 17	
F. P. Smith domestic and stock	4N/2W-18M1	9-25-62		1120				3.87					3.21								DWR	£5
		5-8-63		1100	8.2	93	44	93	0.1	0.00	403	124	98	0.16	0.0	0.7	22	708	33	412 8	82 1.1.	
D. R. Mangels irrigation	4N/3W-13G2	9-25-62		1070		-		103					79								DAVR	ρz
		5-8-63		8 (178	8.2	2,20	3,46	3.80	1.3	00.00	349	1.80	1.75	0.02	0.2	0.0	14	518	07	283	0 [[
H. J. Beck domestic	5N/2W-27J4	9-25-62		772			_	3.09					50							-	TWR.	æ
		5-8-63		870 8	E. 3	3.54	3.19	3.17	0.2	91.0	7.02	38	4.5	30 67.0	0.0	=	222	979	32	336	0 1.1	
domestic	5n/2w-34n1	9-25-62		1860				236					5,19								DWR	~
		5-8-63		1640 7	7.8	84. 32. 2	57	9.25	0.2	00.00	57.5	5,18	3.05	21 0	0,0	6.1	E1	0801	15	157	0	
Morris Truct domestic	5N/2W-34P4	9-25-62		1500				8.79					28								DWR	œ
		5-8-63		1540 8	8	4.83	3.78	223 9.70	10.0	0,00	720	3,00	1.85	1.40	0.0	9	16	0901	53	430	0	
								PITTER	SURG P	PITTSBUKG PLAIN (2-4)	9											
Continental Can Co. domestic	2N/1E-7H2	6-6-63		3200	0.8	8.00	9.76	415	0,31	0,00	3.65	645	658	00.0	0.0	0.7	777	2160	05	888 706	- DWR	~
Dow Chemical Co. irrigation	2N/1E-22G1	6-6-63	6.9	1480 8	o.*c			7.92			330		3.02						7 27	441	DWR	×
Fibreboard Products domestic	2N/2E-20Al	6-6-63	89	8 0671	e	3.02	54	7.60	4.8	0.20	293	140	236	0.44	0.1	0.6	777	168	20	372 122	2 DWR	œ

From the part of t				Ī		-									-				t		ŀ	
Figure Column C		Stote well			Specific ronduct-				M.	ral con	stituents	ē.	Polivole	ints per	III W	5		Total	į	Hardne	:	
	puo	number and ather number	Date sampled	Temp in of	ance (micra- mhas	£	(CO)	Eurbai	sium (K) (C	offe by						Soran S (B) (s	SiO ₂) Other constituents ^d	spilved colids in ppm	E OF	os CoC Pom		Analyzed by c
		MDBGM						CLAYTO	N VALL	EY (8-5	g!											
No. No.	in tric	1N/1W-4A1	7-11-62										0.76		0.00	0.37	5	386		762		Ę
SA/NH-3001 3-10-62 11-0 1-5 1-0-62 11-0 1-5 1-0-62 11-0 1-5 1-0-62 11-0 1-5 1-0-62 11-0-62 11-0-62 1	11 Foundation		7-11-62	65				 					173		0,02	0,36	36	989				E .
		2N/1W-30J1	7-10-62										54	_	0.2	0,53	34	698		109		ec.
SAVIM-3101 7-10-62 898 8.3 \$\frac{1}{24.9} \\ \frac{1}{24.9} \\ \frac{1}{2	3	2N/1W-30K1	7-10-62										45		0.2		6.7	238		571		<u>~</u>
SAVZW-ZBRI 7-10-62 777 8-2 3-5 3-16 1	111e	2N/1W-3101	7-10-62										88		0.0	0,26	31	553				¥
	vie	2N/2W-13P1	7-10-62					 					97		0.02	0,31	33	740				25
	inoia	2N/2W-26Bl	7-10-62				<u> </u>						47		0.00	0,13	5.4	214				M.
14/14 - 761 1 - 11 - 62	ua	2N/2W-36J1	7-11-62										3,41		0.03	0.37	32	655		327		N.
14. [14] [14] [15] [15] [15] [15] [15] [15] [15] [15								 YGNAC	IO VALL	-3												
	1111	1N/1W-7Kl	7-11-62										5.72		0.5	1,2	24	1450				E.
18/2w-11N1 7-11-62 984 8.2 3.7 5.6 6.7 5.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	60	1N/1W-2961	7-11-62										316	18	0.9	[:	20	1280				18 N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ok	1N/2W-11N1	7-11-62					 				23	3.55		0,3	1,6	41	555		220		W.
$\frac{2N/2W-27R1}{1.45} 7-10-62 \qquad 1780 8.3 \frac{2.9}{1.45} \frac{38}{3.15} \frac{301}{13.09} \frac{3.8}{0.10} \frac{0.0}{0.10} \frac{4.88}{6.00} \frac{6.7}{0.01} \frac{6.7}{0.01} \frac{6.2}{0.01} \frac{6.3}{0.01} \frac{4.3}{0.01} \frac{99}{0.01} 74 230 0$	and	lN/2W-13Pl	7-11-62										151		0.5	1,8	8	276		586		% %
	am	2N/2W-27R1	7-10-62						3.8				301		0.2	6.3	£73	866		230		NA.

	Đ	T										-					
	Anolyzed by c			DWR	DMR		USGS	uses	USGS	USGS	nses	usgs	USGS	USGS	USGS	USGS	USGS
Hardness	S S S S S S S S S S S S S S S S S S S			759	178		224	0	1350	0	228	1460	0	76	0	0	0
				1230	681		967	206	2400	210	430	1550	158	332	184	161	187
à	5 8 5 5 6 5 5 7 6 5 5 7 6 5 5 7 6 5 5 7 6 5 5 7 6 5 7 6 5 5 7 6 5 5 7 6 5 5 7 6 5 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7	_		31	2.5		30	5.7	23	95	75	2.6	20	2.2	41	57	55
Totol	spilos spilos un dd ui			2170	956		868	558	3770	757	836	2560	375	501	343	897	625
	Suica Other constituents ^d																
	Silico (SiO ₂)			36	25		24	4.2	36	37	36	139	35	28	23	29	58
lion	Boron (B)		_	2.	0.50		0,1	0.1	0,3	0,3	0,3	0,3	0.4	0.3	0.3	0.2	0.2
volents per mill	Fluo- ride (F)			0.5	0.2		0.2	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.1	0.1
equivolents per million	trote (NO ₃)			136	0,03		24	8.9	18 0.29	0.5	0.9	0.9	0.07	58 0.94	2.1	0.03	0.03
Minbe	OHO • GE)			534	241		217	160	2020	90 2.54	8.24	36,39	28	43	27 0.76	86	3.86
٠ ت	Sui - fore (SO ₄)			414	36	DF SAMTA CLARA VALLEY (2-9)	101	0.37	3.29	96.0	35	130	0,52	55	22 0.46	0.67	20
Mineral constituents	Bicor- bonote (HCO ₃)		(2-6) (Cont.	574	614	N VALL	332	256 4.20	1.05	260	3.87	1.77	288	284	284	266	3.72
nerol o	Potos-Corbon- (Sium ofe to (K) (CO ₃) ((5-6)	0,00	0.00	TA CLA	0.00	0.27	0.00	0.07	0.07	00.00	14	14	$\frac{12}{0,40}$	0.40	0.33
2			VALLEY	0.0	0.04		0.03	6.8	16	0.11	7.8 0.20	16	5.2	2.7	3.6	0.04	0.04
	Sodium (No)		YGNACIO VALLEY	250	106	BAY AKEA	100	129 5.61	328 14.27	3.74	103	254	3.26	16.1	5,65	100	4.57
	Magne -			156	93	EAST	5.48	28	251	1.56	35	149	1.41	3.15	20	1.47	22
	Calcium (Ca)			236	5,94		4,44	36	549	53	5.74	376	35	3.49	41 2.05	35	38
	Ŧ.			7.9	7.9		×.	0	7.8	 		7.9	20 -0	8,5	8.0	8.7	8.0
Specific conduct-	once (micro- mhos of 25° C)			3220	1650		1400	766	6240	777	1380	4330	609	795	575	765	857
	Ten in F						67	6.8	89	99				9		69	69
	sampled			7-10-62	7-10-62		6-17-63	6-17-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63	6-18-63
State well	other number		MDBGM	2N/2W-36L1	2N/2W-361.2		. 15/4W-4Al	1s/4W-34F2	2s/3w-21J1	2s/3W-28G1	25/3W-30A	2S/3W-30D2	2s/3w-33H3	2S/3W-34A2	28/3W-3403	2S/4W-3E1	2S/4W-3F1
	Owner and			A. Buscaklia domestic	domestic		Manass Block Tanning Co. 15/4W-4Al industrial	Red Star Yeast Co. industrial	General Metals industrial	A, Ratto irrigation	Alameda Municipal Golf Course irrigation	Soares	Hohener Packing Co. domestic and industrial	R. A. Zobel irrigation	J. A. Jacklich domestic	Alameda Naval Air Station municipal	Todd Ship Yards industrial

Company Comp		State well			Specific					Z C	iral con	Mineral constituents	ē	o d nbe	ports per million equivalents per million	million er mill	ē		Total	à	Hordn	5		
Figure F	Owner and	number and other number	Oate sampled	Temp in °F		Ŧ	(Co)		(oN)	Stuff (K)	orbon- Ote b	Bicor- ionote HCO ₃)	Sul - fote (SO ₄)	Chio-	rote (NO ₃)		Boron (Silico Other constituents	Solved Solved Solids in ppr	t og E			Analyzed by c	
State Stat		MORAN						F BAY AR		NIA QL/	VIGA VAL		(Can)	3										
Figure 14 Figu	Alameda High School domestic and irrigation	25/5W±12RI	6-18-63	6.7		0,0		= c.				148	13	38	0 0	- =	3	R ₇	218		3		1565	
Figure 14 Figure 15 Figu	patto	11/28-501	b=18-63										96.0	16.5	2	-15		£	0.75	3	891		2	
Figure 10 Figure 11 Figu	Haysade Sursery	11 87/36	6-20-63	6.5		*† 30		34.	3, 14				26.1	5.3	2/8.9	= 5	1	61	ž.		ă		3	
Figure 10.11 Figure 10.12 Figure 11.2	htinger / Nons.	8 755-1913	6-20-63	ž.				Z Z			- [ŝ.	168	00 5	150	20,0	: E	7	=1	702	-			-	
1	Al Mateus Tripation	3- /202-300.14	b=_U=63			m.		- -			-17	587	- J	5.1.5	54. 1.87	4	21	27	764	20	5		_	
Styling Styl			6-20-63	74		20		8, cl				85 g	# []	= -: 3	= =		5]	श	7		3		-1	
Figure F	Avansane Morten en te. 1111galion		0-20-03					e [~]			-16-	5,51	7 .	3, 7	9,0	- E	-	57	30		1.76		3	
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} $	Powder andrattral	35/38-1101	6-20-63	45		71		F. 10	7.48				37	16.9	4.0	1 5	5.5		57	7	<u> </u>		1	
Formation Form	ancili manjatren	357 80-1382	0-20-63					2 6.	216				2170	187	3 2	0,0	2	97	1,200	Ť	60 G		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pur 1	31/30-2502	b = 20 = 63		2050			7.72	55.1		0,00		2,55	2007 17.71	10.		ŝ.	71	1390	ŝ			4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sold and sol		>-14-43		858									2 3									-	
1	ordere .	1111111	3-17-13		978									6/2	15.0								24.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	actor Controlled dencire and interition	41 Alberton	3-7-415		627			_						4/3									- 5	
14.00	That	4 /10-1/15	2006					3,45		7 3	0 8		107	<u> </u>	2/2	; - -	0,46		671	=3			4	
			5 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		14.2	-								112									-	

	3													
	Analyzed by c		uses	DWR	DWR	DWR	uscs	DASR	DMR	DWR	OWR	DWR	NA NA	
Hardness	£ 00 € 00 € 00 € 00 € 00 € 00 € 00 € 00		9.7				1650		322			63		
I g	Totol Ppm		254	_			12 1690		244			252	222	
l à			31						1.5			27	2	
Total	dis- cent solved sod- in ppm inm		434				2500		\$69			431	371	
	Suica Other canstituents ^d								ABS 0.0			13 Cr ⁺⁶ 0,000 At 0,08 As 0,000 Cu 0,100 Pb 0,000 Mn 0,000 Zn 0,000 T 0,000 Zn 0,000	Cr. 1, 100 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
	Sinca (\$02)		21				17		디			2	12	
Ligu	Baron (B)		0.2				0,3		0.44			0,69	0.03	
Der mi	Fluo- ride (F)		0,1				0.3		0.1			0.3	0.3	
parts per million valents per milli	Ni- Fluo- trate ride (NO ₃) (F)		27				9.3		0.19		0.07	1,06	0.04	
parts per million equivalents per million	유 (C)	nt.)	76	2.71	245	635	1280	1460	246	3.58	84	1.75	$\frac{72}{2 \cdot 03}$	
۶. خ	Sul - fate (SO ₄)	o) (6-	1.42				23		1.37			1.39	1.02	
Mineral constituents in	Patas-Carbon- Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	TEEY (3.13				51		255			3.77	3.31	
eral co	Carbon ate (CO s)	ARA VA	00.00				00.00		0.27			0.00	00.00	
ž	Potas - RUIR (K)	NATA C	0.04				0.10		2.4			0.05	0.06	
	Sodium (Na)	HA OF SANTA CLAMA VALLEY (4-9) (CORT.)	53				108		46			1,87	4.6 1.91	
	Calcium Magne -	EAST BAY	3.33				184		50			27 2.19	22 1.85	
	Calcium (Ca)	5	35				374		135			2.84	2.59	
	Ŧ		8.2				7.5		.5.			7.7	7.9	
Specific	ance (micro- mhos at 25°C)		709	1060	1550	2430	3980	1830	1290	804	72.0	50 80 80	646	
	Temp in °F													
	Sampled sampled		9-62	5-7-63	5-7-63	5-7-63	70-6	5-7-63	9-62	5-9-63	5-17-63	9-6-62	12-5-62	
State well	number and other number	MDBAM	45/1W-18DL		48/10-1861	48/lw-1883	48/112-1817		45/1W-2002		48/18-201.1	4s/1W-21F2		
	Owner and use		J. M. Enos domestic and	irrigation	Pacific States Steel Company industrial	American Forge Co.	N. Rose domestic and	irrigation	Santa Cruz-Portland Cement Co.	irrigation	Viles Sand & Gravel industrial	Citizens Utilities Co. of California municipal		:

Г	Analyzed by c	1						
		-	DWR.	DWR	¥ 5	DWK	DWR	MAG .
	Hordness as CaCO ₃ Totol N.C		88		79	19	86	19
		:	265		265	269	276	243
H	solved sod-	-	30		20	52	1 29	4
			503		eq T	431	421	391
	Silco Other constituents ^d		Cr to 0.00 Cu 0.01 S 0.00 Cu 0.01 Pb 10.00 Nh 0.00 Z 0.00 Tr 0.00 S 0.00 Fe 0.00 (Total) Phenois 0.000 Phenois 0.000		Cr + 0,00 ABS 0,00 Al u,07 AS 0,00 Mu 0,00 Pb 0,00 Mu 0,00 Pb 0,00 T,0 1 Se 0,00 Fr 0,00 (Total) Prenols 0,000	Cr + 0 . 00 A1 0.10 As 0.00 A1 0.10 As 0.00 Mn 0.00 Rs 0.00 T.0. 50 Se 0.00 Cr 0.00 (Tetal) Fe 0.02 (Tetal) Phenols 0.000	Cr ⁺⁶ 0.00 A1 0.00 Ms 0.00 Pb 0.00 Mn 0.00 Cr 0.09 Se 0.00 Cr 0.00 (Tetal) Fe 0.02 Phenols 0.000	10 Cr +0 0.00 33 Cr +0 0.00 34 Cr +0 0.00 Cr
	Silco (SiO ₂	ļ	17		7	16	18	116
	Boron (B)		0.59		0.58	0.60	0.62	0,58
e l	- 100 (F)		0.03		0.02	0.0	0.02	0.00
ports per million	trofe (NO ₃)		8,4 U,14	0,08	4,10	0.03	0.03	0.03
ă	Chio-	[:	88 677	811	1.92	48	1.38	54
<u>c</u>		ANTA CLARA VALLEY (2-9) (Cont.)	1.39		72	85	85	1.71
American constituents	Polos - Corbon - Bicor- sium ote bonote (K) (CO ₃) (HCO ₃)	nrey (c	3.60		3.72	254	266	3,64
lore	orbon- (CO.)	ARA V	0.00		= 8.1	0.00	0.00	0.00
2	Pos X	ANTA C	2.2 0.0h		0.09	0.05	0.05	0,05
	Sodium (No)	REA OF 5	53 2.30		2,09	1.83	16.1	1.96
	Mogne -	EAST BAY	2.333		181	2,33	2.32	2.42
	Colc.um (Co)	ă	60.		3,84	3.04	3.19	24 24 24
	F		6.3			7.8	8.1	8
Specific	Temp conduct- in °F (micro- mhos		757	790	25.0	702	711	7
			65				9.5	999
	Dote sompled		3-7-63	5-17-63	6-6-03	9-6-62	12-5-62	3-7-63
	State well	MDRAM	48/1			45/14-2191		
	Owner ond		('itizens ('tilities Co. of Galifornia municipal			II. J. Katser in. industrial		

TABLE E-1

		Analyzed by c		DWR	DWR	DWR	nsgs	#WR	DVR	DWR	USGS	781	SSGS	DORR	OWR	DWR	USGS
	Hordness				- - - - - - - - - -		5		0		Ξ.		14		362		34
		1 1			293		158		103		2408		173		573		182
	å	Sod E			3		47		20		7.3		35		ž.		33
	Totol	spilos solids undd ui			£ 5.4		349		1020		347		304		769		325
		Silico Other constituents			Cr to 0.101 A1 0.00 As 0.00 Cu 0.100 Pb 0.00 In 0.100 A 0.00 Cr 0.01 (Total) Fe 0.00 (Total) Re 0.00 (Total) ABS 0.0		ABS U.O		ABS U.0		ABS 0.0		ABS 0.00		ABS 0.0		
		Silico (SiO ₂)			[1]		20		21		5		22		14		17
	ion	Boron (B)			0,63		20	1,43	3,8	0.4	0.8		0,3		0.63		0.6
	er millon	Fluo- ride (F)			0,0		0,02		700		0,4		0.2		0.1		0.3
	volents per million	trote (NO ₃)		0,03	0,0	20°C	5.7		0.3		2.0		3.5		0.07		3.7
	equivolents per million	OHO OCIO	(t.)	54	1.75	1.78	38	4.5	88	7.2	44	£.7	36	55	309	270	46
	5	Sul - fore (SO ₄)	-9) (cent.)		1.04 1.04		69 27		45.0		72		255	-	63		73
	Mineral constituents	Bicor- bonote (HCO ₃)	NITA CLARA VALLEY (2.58 4.23		3.38		13.64		4.26	·	3.18		257		180
3	o lo	ote (CO ₃)	ARA V		00.00		0.13		40		3		0.00		00.00		0,00
!	Z.	Potas-Carbon- sium ofe (K) (CO ₃) (AUTA G		0.02		0.04		8.8		0.03		2.0		0.06		1,6
		Sodium (Na)	TLA OF S		42 1,83		5.87		375		3.22		4.3		61		46 2.00
		Mogna- sium (Mg)	BA's		2		20		12		22		20		52		2.34
		Calcium (Co)	- 3		3.64		3.1		22		47		36		7.14		1.30
		£			5.8		8.3		8.7		ž.,3		8.1		8,3		8,2
	Specific conduct-	mhos ot 25°C)		728	39	734	49	729	1630	1310	674	826	515	625	1380	1370	562
		Temp in of															
		Date sompled		5-17-63	0-0-63	5-17-63		5-9-63	9-62	5-9-63	9-62	5-8-63	6-62	5-7-63	9-62	5-9-63	10-1-62
	State well	number and other number	1168411	41/14-21111		4s/1W-21P6	45/1W-21R2		4×/1W-22M2		4S/1U-28B2		4S/1W-28C14		45/1W-2804		4S/1W-2BD7
		Owner ond		l, karser to. Industrial		.c.w.p. municipal	Desalles trrigation	and domestic	J, Rezendes		. S. Dutra domestic and	irrigation	.C.W.D. municipal		. & M. Braga domestic and	irrigation	m. E. Edwards domestic

Part	Mineral constituents
1.55 1.250	Sodium Po (No)
1.5 1.5	SANT
0.0 286 83 173 27 0.2	137 4
1.5 2.86	139
13 186 184	
14 246 249	139 3
14 246 246 249 130 25 143 240	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 137 0.0 1.0	3.44 0.
$ \frac{5}{0,107} \frac{320_o}{2.88} \frac{21}{0.446} \frac{40_o}{0.446} \frac{8.1_o}{0.115} \frac{0.2}{0.416} \frac{22}{0.416} \frac{418_o}{0.406} \frac{0.2}{0.406} \frac{22}{0.406} \frac{81}{0.406} \frac{11}{0.406} \frac{11}{0$	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.9
10 289 -21 0.85 0.10 0.12 23 ABS 0.10 359 55 124 0 0.133 4.74 0.85 0.131 0.103 0.1	
$ \frac{0}{0.09} \frac{172}{2.82} \frac{33}{0.73} \frac{20}{1.786} \frac{20}{0.07} \frac{0.2}{0.07} \frac{23}{0.07} \frac{33}{0.07} \frac{333}{5.130} 53 130 0 $	3.52
$ \frac{0}{0.00} \frac{172}{2.82} \frac{33}{0.73} \frac{89}{0.73} \frac{4.1}{0.07} \frac{0.2}{0.01} \frac{23}{0.01} \frac{133}{0.01} \frac{333}{53} 53 130 0 $	
	2.96

Marcol Continuant in Marcol Continuant in	-
Note Superage Su	Specific
103	Temp ance DH Calcum Magne Sodium most (Na) at 25°C)
10 11 12 12 13 14 15 15 15 15 15 15 15	EAST BAY APLA OF SAS
1.52 246.4 2.56.5 1.5	1810 7.8 97 34 2.80 2.87
1.28 1.58 1.5 1.	1820
144 145 146 146 147	2480 7.9 175 138 137 8.73 11.37 5.46
11 11 11 11 11 11 11 1	2680
1.10 1.10	0877
117 117 117 118 118 119 118 119 119 118 119	755
112 112 113	813
314 112 113 114 113 114 113 114 113 114 113	775
113 97 114 1156	1290 7.9 99 54 94 1.09 1.
184, 444 1740 444 1740 444 444 4740	14.30
1,27 0,13 1,27 0,13 1,27	1450
1	617
$\frac{88}{1,42} \frac{444}{4,24} \frac{1290}{36.39} \frac{8,8}{0,14} \frac{0,2}{0,01} \frac{23}{0,01} \qquad 3170 .4 \ 1820 1750 .4 \ 182$	1130
$\frac{88}{1.44} \frac{444}{9.24} \frac{1290}{36.59} \frac{8.8}{0.114} \frac{0.2}{0.01} \frac{0.4}{0.01} \frac{23}{2} \qquad \qquad 3170 24.1820 1750$	893
	45.511 7.7 380 211 268 3.51 11.06 0.

	CO ₃ Anolyzed NC by c		ři.	59 USGS	DWR	7 nses	DWR	4.2 DWR	DWR	U DWR	DWR	51 DWR	DWR	31 Ubers	DWR	89 USGS	36 USGS	DWR
Hardnes	OS COCO 3 Totol N C DOM DPM			5 681		30 7 11		162 4		.7		224 5		141		161	250	
	Sod ium T			=		37 1		31		67		2.5		=		5	23	
Total	solved solved solids			326		276		297		366		356		272		344	361	
	Silica Other constituents ^d					ABS 0.0		ABS 0.0				ABS 0.0			-			
	Silica (SiO ₂)			5]		57		6		35		23		ଆ		20	22	
Lion	Boran (B)			2		210		0,34		0.37		0.37		7.0		0.3	0.2	
er mil	Fluo- ride (F)			0.02		0.2		0.1		0.3		0.01		0.0		0.0	0.4	
parts per million equivolents per million	rrote (NO ₃)			0.16		1.18		0.15		0.02		5.8		0,16		0,10	6.3	
d ninbe	Chio-	(,)	967	50	52	28	0.79	1.13	1.13	2.6	23	1.35	1.55	32	31	74	32	35
č.	Sul - fote (SO ₄)	16		57		1,92		52		0,83		55		0.98	.,	53	50	
Mineral constituents	Corbon Bicar- ate bonate (CO ₃) (HCO ₃)	NNTA CLARA NALLEY (2-9) ((dnt.)		145		178		147		4.11		3.46		159		1.93	3.72	
eral co	orbon- ofe CO ₃)	A Sid		7.1.23		00.00		0.00		5 0.17		00.00		00.00		0.10	17	
2	Potas - Corbon B sum ate b (K) (CO ₃) (F	NTA G		0.115		2.1		0.07		0.04		0.05		0.04		0.06	1.7	
	Sodium (Na)	WILL OF W		39		417.		35		3,46		35 T		34		36	32	
	fogne - Sium (Mg)	EV T BAY AN		2.08		71		18		5.8		1.09		21		2.22	20	
	Colcium Mogne-	3		34	_	1.35		35		1.40		3.39		3:-		32	3.34	
	£			m.						5.5		100				m. m.	æ.	
Specific conduct-	once (micro- mhos of 25°C)		10017	-7 -7 -0	77.2	50	900	£65	089	30.00	244	560	707	+54	621	551	580	626
0, 0	Temp in °F																	
	Sampled		5-13-63	54-6	5-7-63	74-6	5-7-43	-1 -1 -5	5-10-63	79-6	5-13-63	9-b2	5-13-63	9-62	5-7-63	74-6	9-62	5-8-63
State well	number and ather number	12.8412	1841-07.34	45/2W-1411		1.721-1301		48/50-1504		45/28-22F2		+* /2W-23F2		41./28-24154		48/2W-2431	48/2W-2416	
	Den nero		I. I. Barves arrigation	A, (autom ifrigation	and domestin	T. F. Harves domestic and	irrigation	Fing ifrigation		D. latterson urrigition		Patterson Ranch irrigation		L. Croce itrigation		J. A., Jr. and L. A. Macado irrigation	M, Kitani domestic and	irrigation

	Analyzed by c						s				60			19			
			DWR	9WR	DWR	DWR	USGS	DWR	D4.R	DWR	0 USGS	DAR	DWR	7 USGS	DWR	USGS	DWR
Hardnese	Z COCO 3		193				0		417				106			182	
			371				29		637		1119		33 477	7 278		37 380	
ě	P S E		2 27				4 81		0 32		360 61		792 3:	482 37		794 3	
5,	pevios pevios pevios		592				364		1030		36		7.9	87		22	
	Sitica (SiO ₂) Other canstituents ^d		ABS 0.0				ABS 0.0				ABS 0.0					ABS 0.0	
-	Silica (SiO ₂)		22				27		20		22		23	26		2.5	
ē	Boran (B)		0,40				0,3		2.1		0.2		0,46	0.3		0.2	
Him.	Flua- ride (F)		0.2				0.2		0.2		0.03		0.3	0.2		0.2	
equivalents per million	trole (NO ₃)		5.8				20		0.02		0.18		0.2	23		5.3	
PAINDE	Cide (CI)	ĵ	193	201 5.67	30	3,72	20	20	422	451	28	980	226	2.23	78	265	295
=	Sul - fate (SO ₄)	SANTA GLARA VALLEY (1-9) (CORt.)	54				39		2.42		29		37	49		28	
Mineral constituents	Bicar- banate (HCO ₃)	TEN (3-	3.56				269		269		253		453	312		3.97	
5	ate CO ₃)	RA VA	00.00				0,33		0.00		19 0.63		0.00	9		0.00	
ž	Potas-Carbon- sium ate (K) (CO ₃) (ANTA OL	0.06			_	0.05		3.0		0.05		2.4	3.2		0,13	-
	Sadium (Na)	REA OF S	64 2.78				114		139		3.92		108	3.31		106	
		EAST BAY A	27.22				4.6		60 4.95		9.4		3.94	33		40	
	Calcium Magne- (Ca) (Mg)	EAS	5.19				15 0.75		156		32		5.59	57		86 4.29	
	Ŧ		0.8				4.0		0.8		8.8		7.9	8.5		8.2	
Conduct-	ance (micro- mhas at 25°C)		1020	1120	586	916	571	589	1850	1930	557	3400	1410	840	910	1260	1360
	Ten P. r.																
	Sampled		9-62	5-13-63	5-8-63	5-9-63	9-62	5-7-63	9-62	5-9-63	9-62	5-8-63	5-9-63	9-62	5-8-63	9-62	5-8-63
State well	ather number	MDB6M	4S/2W-26A1		4S/2W-27L1	4S/2W-35L2	5s/1W-4D1		5S/1W+601		5S/1W-bG1		5s/1W-9J1	5S/1W-9K1		SS/1W-9011	
	Owner and		. H. and W. D.	irrigation	I, H, and W, D, acterson domestic and irrigation	E. Milani industrial	C.W.D. municipal		J. F. Trindade irrigation	and domestic	Milani Irrigation	and domestic	Alameda County East Bay Title Insurance Co	A. F. Brosius irrigation	and domestic	W. 8. Brinker Irrigation	

TABLE E-1

	Analyzed by c																
_				OWR	OWR	OWR	DWR	DWR	0 DAVR		0 DWR	O DWR	0 DWR	0 DWR	OWR	OWR	O DWR
rdness	ō 1	D E					0								20	. 88	
	- 1	Tatal					1 20		69		142	58 146	39 170	33 221	33 245	999	70 70
- E	salved Cent	Ē					276 90		510 83		355 54	797	336	380 3	442 3	1375 40	278 7
<u>.</u>				-			6				6	,	 	ñ	3	13.	2
		(20/S)					A8S 0.0										
ĺ	Salico	(20 _S)					28		18		16	2.5	22	22	22	17	21
lo o	Boron	<u>(B</u>					0.24		0.38		0.2	0.4	0.2	0.2	0.2	0.4	0,2
# H		<u>(</u>					0.2		0.1		0.1	0,1	0.0	0.0	0.01	0.01	0.0
parts per million equivalents per million		(NO ₃)					0.2		0.2		0.0	26	0.0	0.0	0.00	0.0	0.00
danke	Chlo-	(5)	걲	2.03	27	0.51	0.42	2.17	3.86	-1	0.57	1,35	23	49	52	631	16
ē.		(804)	OF SANTA CLARA VALLEY (2.9) (CORE.)	-			24 0.50		24	EV (2-9)	51	65	35	34	63	134	16
Mineral canstituents	Bicar-	(HCO ₃)	E (2				3.41		276	OF SANTA CLARA VAL.	253	3.63	3.80	266	3.90	101	3.54
ral ca	rbou	(CO ₃)	YA.				0.13		00.00	TA CLA	9.0	12	0.30	0.14	18	0.00	9.0
M	otas-C	(K) (CO ₃) (I	TA CLA				0.0		6.3	OF SAN	0.02	1.0	0.03	0.03	0.03	0.06	0.7
	muipos	(N)	A OF SAN				92		7,48	BAY AREA	3,40	4,13	50	51	55.2.40	210	3.25
		(Mg)	BAY AREA				0.00		1,02	SOUTH	15	24	1.55	2.30	30	85	5.7
	- Laicium	(Co)	NA.				0.4.0		7.3		32	18	37	4.2	48	126	19
	Ŧ						8.5		8.1		-7.	8,6	8.5	8.3	9.	7.9	c
Spacific	ance (micra-	mhas at 25°C)		976	999	570	433	738	606		260	099	9.00	909	079	2100	640
	Temp In °F										979	99	7.1	67	67	65	
	Sampled			5-9-63	5-9-63	5-13-63	9-62	5-8-63	11-30-62		8-20-62	8-30-62	8-22-62	8-20-62	8-20-62	7-26-62	8-62
Stats well	number and other number		MD86M	5S/1W-15C1	5s/1W-17A1	5S/2W-1B1	5s/2w-1n1		5S/2W-21L1		6S/1E-7C1	65/1E-21G1	65/1E-30M1	65/1W-11B1	65/14-1451	65/1W-16A1	65/1W-17M1
	Owner and	• • • • • • • • • • • • • • • • • • • •		Roland, Jr.	6. & E.	Encisco domestic and livestock	est Vaco Chemical Co.			-	insor Bros. domestic	drigley irrigation	. Muchado irrigation and domestic	. S. Garcia irrigation and domestic	irrigation	industrial	. W. Dunton irrigation

																				ŀ	l	ŀ	
	State			Specific					Z.	erat ca	Mineral canstifuents	ē	Ainbe	equivalents per millian	Ser millor	Light			Tatot		Hardne		
Owner and	ather number	Sampled	Temp in of	mico (micro- mhas at 25° C)	Ĭ.	Calcium (Ca)	Magne- sum (Mg)	Sodium (No)	Sium (K)	Potas-Carbon- sum ate (K) (CO ₃)	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)	₽ \$ \$ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	rate (NO ₃)	Flug- ride (F)	Boron (B)	Silica (50:8)	Silica Other constituentsd	solved solves in ppm	T T D E	as CaCO ₃ Total N.C		Analyzed by c
	MDBGM					8	TH BAY	AREA OF SANTA	SANTA	CLARA V	ALLEY	2-9) (Gnt.)	int.)										
I. A. Wilcox irrigation	68/1W-26D1	8-62		700	5.	35	7.7	49	0.0	0.20	3.35	21	0,30	0.05	0.1	0.2	21		274	47 1	1119	0	DWR
Sam Weston	68/10-2861	7-25-62	67	430	8.2	46	13	28	0.03	0.00	3.06	45.0	16	5.0	0.0	0,2	31		290	26 1	170	17 DI	DWR
G. H. Fukumoto domestic and irrigation	65/1W-29Cl	7-26-62	9.6	550	£	2.53	21,69	1.75	6.0	2 G	4.30	22	0,63	0.00	0.1	0.2	50		316	29 2	211	0	DWR
Rezentes domestic	65/2W-9H1	8-27-62	7.0	530	۵.	34	2 8	790	0.31	16	4.19	65.0	21	0.00	0.01	0.3	22	-	342	80 7	135	0	DWR
J. Joaquin	DH-M7/89	7-27-62	7.2	520	~! 	2.34	1,35	5.25	0.03	08	281	31	23	0.0	0.0	0,2	22		340	38	582	0	DWR
F. Ormonde	6S/2W-16R1	7-27-62	69	009	8.2	37	30	33	0.03	00.00	3.30	1.89	43	0.23	0.01	0.1	81		398	21 2	265 10	100	DWR
California Water Service Company municipal	6S/2W-20N1	8-27-62	7.0	630	8.1	46	2.22	58	0.03	00.00	296	0.31	43	0.60	0.1	24	24		007	36	226	0	DWR
Hommn Bros.	6S/2W-24M3	8-24-62	1/	799	√7.	30	1,40	47	0.02	3.6	3.57	28	21	0.00	0.1	0,2	2.5		310	17	146	0	DWR
Slonaker irrigation and domestic	6S/2W-29D2	8-27-62	99	720	8.2	3.42	29 2.36	49	0.03	0.00	324 5.30	23	45	45	0.01	0.1	138		977	27 2	687	24 D	DWR
H. Mantelli irrigation and domestic	6S/2W-34Ml	8~28-62	70	200	÷.	32 2.61	26 2.10	24 1.05	0.7	0.40	253	0.28	23	0,24	0.1	0.1	24		314	188	235	8	DWR
U. P. Gluhaich irrigation	65/2W-36H2	79-97-1	99	580	0.8	3.03	24	35	0.04	0.00	3.55	52	52	0,30	0.2	0,2	75		707	23 2	250	73 0	DWR
W. S. Bennet domestic and irrigation	78/14-5₽1	7-26-62	17	077	8.2	38	17.42	30	0.03	0.00	3.10	33 0.68	0.57	0.19	0.0	0.2	22		290	28	991	1	DWR
																				-	\dashv	\dashv	

CABLE E-1

	9]																
		by c		JWR.	DWR	uses	DWR	USGS	OWR	DWR	DWR	DWR	DWR	DWR	uses	DWR	DWR	DWR
	Hardness as CoCO ₃	D E		6	840	0	31	65	163	0	0	0	0	0	79	0	0	1249
L		! !		145	0.501	232	270	304	471	39	180	196	327	319	269	383	389	1510
1	ă	P E		63	02	89	79	. 36	20	88	38	74	52	77	22	53	51	37
	Total dis-	spines eolids ut		458	4070	2680	1450	549	629	459	337	849	767	650	376	643	861	2830
		(SiO ₂) Other constituents ^d		ABS 0.0	ABS 0.4		A8S 0.0	ABS 0.0	A8S 0.0 PC, 0.20 (Total	ABS 0.0 PO4 0.08 (Total		ABS 0.0 Po ₄ 0.08 (Total	A8S 0.0	A8S 0.0 PO4 0.39 (Total	ABS 0.0			ABS 0.0
		Silica (SiO ₂)		29	27	8.7	22	14	27	28	5]	27	326	27	21	29	25	30
	co	Boron (B)		0,3	36	36	6.5	0.2	0.20	0.47	0.34	1.6	1.6	0.39	0.3	2.7	2.8	3.4
parts per million		Ni- frote ride (NO ₃) (F)		0.02	3.5 1.0	0.18 0.08	22 0.35 0.06	3.1 0.6	8.1 0.13 0.02	0.08 0.02	0.0 0.0	12 0.5 0.19 0.03	28 0.5	0.02	0.08	30 0.3	31 0.4	26 0.1 0.42 0.00
part	eduivale	ogic ogic ogic ogic ogic ogic ogic ogic		168	63.47	32,16	079	2.60	93	55	20	181	160	102	1.92	178	172	31,03
1	<u> </u>	Sul- fate (SO ₄)		0,25	34	105	78	2.31	3.10	29	39	1.42	1,50	50	56	85	88	503
	T C C C C C C C C C C C C C C C C C C C	Bicar- bonate (HCO ₃)	(2-10)	173	3.60	8.10	289	286	375	277	280	524 8.59	7.24	454	3.34	9.18	473	318
	Mineral constituents	Sium ate (K) (CO ₃) (DRE VALLEY	2.3 0.06 0.00	0.07 0.00	2.9 96 0.07 3.20	0.04 0.03	0.04 3	0.5 0	0.02 0.00	2.3 0.06 0.00	0.04 0.00	0.04 5	0.05 0.00	0.05 0.47	0.09 0.00	2.1 0.05 0.57	3.3 0
	-	Sodium Pos	LIVERMORE	5.13	1100 2 47.85 0	920 2	480 1	3,44	54 2.35	5.96	51 2	258 11.22	163 1	114 1	36	202 8.79 1	186	412 3
		Magne-		17	3.12	3.44	3.94	3.29	4.07	2.8	1.56	26	3,44	2.18	54	63	61 5.03	20.44
		Calcium (Ca)		30	346	1,20	29	2.79	5.34	0.55	41 2.04	35	3,09	84	18	2.50	55	9.73
		£			8.1	6.9	4.8	8.3	.3	8.3	7.9	8.3	3.8	8.1	8.7	8.3	8.5	
Chacitic	conduct-	(micro- mhos at 25°C)		856	6700	4500	2640	920	1040	674	561	1440	1270	1070	599	1550	1440	4570
	Te a	č		99				62	59		89	89			63			
	Date	peidwor	-	6-21-63	6-24-63	6-24-63	6-24-63	6-21-63	3-6-63	2-28-63	2-28-63	2-28-63	6-21-63	2-26-63	6-21-63	7-3-62	6-24-63	6-24-63
	State well	ather number	MDBGM	2S/1W-22A1	2S/2E-27Kl	2S/2E-35C1	2S/2E-35G2	3s/1w-1G1	3s/1W-12G2	3S/1E-1F1	3S/1E-1K1	3S/1E-1Ml	3S/1E-3Q1	3S/1E-7E2	3S/1E-8H3	3S/1E-9A1		35/16-901
		Duner ond		T. P. Bishop Co. irrigation	City of Livermore industrial and stock	Henry Garaventa stock	F. Gustanich domestic	E. B. and J. Nevin domestic	R. M. Wing abandoned	Mrs. Berwick	L. Lupton	Inman School	Alameda County domestic	Volk-McLain	U. S. Air Force domestic and irrigation	Silva Bros.		Rose Brothers

	State well			Specific					Mineral	ral con	constituents	Ē	parts per million equivalents per million	parts per million valents per mill	million ir milli			Totoi		Hord	:	
Owner and	number and ather number	Sampled	5 c	conduct- ance (micra- mhas at 25° C)	F	Calcium (Ca)	Magne - S	(Na)	Potas - Carbon- sum ate (K) (CO ₃) (arbon B ate b (CO ₃)	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)	- OHO (C)	rote (NO ₃)	- oui'' B (f)	=	Silica (SiO ₂) Other canstituents ^d	aside solves solids in ppm	2 0 E	Tatal N.C.	N.C.	Analyzed by c
	W980W						-1	IVERMORE	VALLEY	(2-10	(2-10) (Cont.)											
eilson	3S/1E-9L1	6-24-63		1410	8.1	81 7	87 7,19	3.87	2.5	00.00	7.00	91	197 5.56	21	0.2	1.6	23	831	26	562	212	DWR
. Kause domestic	38/1E-10E2	2-27-63		1160	0.8	99 5	65	55	3.1	0000	6.13	66	100	0.44	0.2	[:]	20 ABS 0.0 PO ₄ 0.03 (Total)	800	19	516	601	DWR
amieson irrigation	38/1E-11E1	6-24-63		966	8.3	20 1.00	85	50	0.06	0000	4.57	51	148	19	0.2	0.7	26 A8S 0.0	551	21	400	171	DWR
domestic and	38/16-11H1	2-27-63	62	687	8.3	2,10 3	3.83	29	0.04	0000	297	39	1,32	19	0.00	0.42	24 ABS 0.0 PO ₄ 0.07 (Total)	461	13	297	53	DWR
irrigation		6-21-63		777	61	50 2	54.45	30	0.04	0.00	305	42	74 2.09	19	0.3	0.29	24 A8S 0.0	797	16	348	86	DWR
Ed Hageman abandoned	38/1Е-11Н3	3-6-63	69	1680	8.0	81 7	93	139	0.07	0.00	8.64	20	312	0.00	0.2	1.0	28 A8S 1.0 PO4 0.10 (Total)	985	34	586	154	DWR
i. H. Hageman drainage	3S/1E-1281	3-7-63	29	1610	8.3	2.99	788	166	0.07	00.00	7.82	25 0.52	319	0.4	0.2	0.	30 ABS 1.3 PO ₄ 0.09 (Total)	806	7.5	767	103	DWR
1. H. Hageman	3S/1E-12C2	2-27-63	52	1440	8.2	24	56	9.57	2.3	0000	8.92	31	5.75	1.3	0.0	3.0	3.4 A8S 0.0 PO4 0.01 (Total)	978	62	289	0	DWR
of Livermore domestic	3S/1E-12H1	2-28-63		751	8.3	47 4	53	30	0.04	0.00	334	38	55	15	0.00	0.43	26 A8S 0.0 PO ₄ 0.11 (Total)	534	16	337	63	DWR
i. Johnsan	3S/1E-12M1	3-7-63	999	1550	8.3	89 1	9.29	2.61	0.54	0000	8,16	56 1.16	262 7.39	$\frac{12}{0.19}$	0.2	0.70	25 A8S 0.1	921	15	687	279	DWR
1. Johnson	3S/1E-12P1	2-28-63	59	580	8.2	35 3	3,48	22 0.96	1.5	0.00	282	31	23	0.27	0.10	0.32	24	373	15	262	31	DWR
California Rock 6 Sravel Co. domestic	3S/1E-13P2	6-21-63		567	7.00	3.09	9.4	2.26	0.04	0000	3.46	51	47	2.1	5.8	0.32	26 A8S 0.0	358	37	193	20	DAR
domestic	38/16-1511	6-21-63	999	516	7.8	3,59	11 0.89	24	0.03	00.00	3.60	39	34	8.4	0.2	0.26	21 A8S 0.0°	284	19	224	777	DWR
a, c, Bush	3S/1E-16A1	3-6-63	61	683	0.8	3,09 3	3.06	29	0.06	0.00	316	50	36	7.2	0.2	0.31	18 A8S 0.0 PO4 0.0 (Total)	400	17	308	67	IN R
M. Kruse irrigation	3S/1E-17H2	6-21-63		860	7.9	5.84	17	39	2.0	0,00	282	67	103	0.19	0.1	0.46	22 A8S 0.0	424	61	363	132	DAZR
Pleasanton Twp. W. D. irrigation	3S/1E-17R1	6-25-63		426	5,	23	24	28	0.04	0.20	150	43	26	0.11	0.9	0.1	15 A8S 0.0	247	20	158	25	224
					-	1	1	1	1	1	1	1	1	1		1					1	

	Anolyzed	,																
	_			DWR	DWR	DWR	DWR	DWR	DWR	OWR	OWR	DWR	USGS	USGS	DWR	DWR	USGS	USGS
	as CaCO ₃	D E		71	86	78	0	0	89	0	35	134	28	210	134	67	69	30
		Tatal		305	522	572	366	563	105	394	572	553	260	522	424	867	344	265
		∞ E		2.2	32	35	35	34	47	9 7 7 9	37	31	28	51	18	30	7.	27
Tota	solved	- 1		809	813	056	897	856	1010	768	958	1030	392	1300	557	896	416	907
		(SiO ₂) Other constituents ^d		A8S 0.0 P0, 0.04 (Total)	ABS 0.0 PO ₄ 0.15 (Total)	A8S 0.0	A8S 0.00 PO ₄ 0.00 (Total)	ABS 0.4 PO ₄ 0.02 (Total)	ABS 0.0 PO ₄ 0.26 (Total)	A8S 0.00 PO4 0.01 (Total)	A8S 0.1 P0, 0.01 (Total	ABS 0.0 PO ₄ 0.03 (Total)	ABS 0.0	A8S 0.0	A8S 0.00		A8S 0.0	ABS 0.0
	2011.0	(\$,02		23	25	52	18	9	21	8.9	27	55	12]	32	56	27	22	8
ligh		Ē@		0.19	0,64	0.84	6.0	0.89	0.64	0.8	0,72	3,8	0.4	5.0	0.60	0.95	0.2	0.5
Ē	Fluo-	<u>\$</u> (£)		0.2	0.2	0.2	0.3	0.6	0.4	0.2	0.3	0.2	0.2	0.5	0.00	0.0	0.2	0.2
valents per millian	ż	(NO ₃)		41	1.22	1,42	0.0	0.10	102	0.27	1.03	0.03	0.45	0.03	28	0,19	27	28
equivalents per millian	Ę	\$ £ £ £ £		34	151	5.05	3.86	3.47	203	158	188 5.30	5,44	52	7.05	105	201	4.0	1.47
ē	i lii	(SO ₄)	<u>;</u>]	76	70	75	55	59	71	14 0.29	70	108	34	40b 8.45	36	4.2	41,0	0.69
constituents	P.C.O.F.	banate (HCO ₃)	(0) (Cont.)	285	532 8.72	9.88	760	724	381	605	655	511	247	356	354	489	300	247
Mineral c	or po	(CO ₃)	:X (2-	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	18	0.20	00.00	0.00	20	20
2	Datos	sturn ate (K) (CO ₃)	E VALLEY	0.6	0.06	0.03	0.6	0.6	0.03	7.5	0.04	3.4	0.04	0.05	2.3	2.9	0.05	0.04
		(Na)	LIVERMORE	40	5.05	137	139	5.78	166	158	158	4114	46	250	43	4:90	26	45
	- 6000	Sign (Mg)		31 2.55	73	86 7.04	85	82 6.71	51	79.47	7.14	5.36	3,50	9,54	5.28	95	56	3,60
		(Ca)		3,54	89	4.39	87	4.54	3.79	28	86	5.69	34	37	3.19	43	45	34
	Ŧ		-	4.	7.9	7,8	7.6	7.7	7.6	~:	7.9	0.8	20	ر. د.	7.9	7.7	00	80.00
Specific	ance	mhas at 25°C)		750	1400	1610	1530	1480	0651	1360	1650	1500	11/9	2000	156	1520	702	681
	Temp			55	61	65			62		19	62			47			
	Date			2-26-63	3-5-63	3-5-63	9-5-62	3-4-63	2-26-63	9-5-62	3-5-63	2-70-63	6-24-63	6-24-63	3-7-63	3-15-63	6-24-63	6-24-63
et of &	number and		MB80M	38/1E-18N3	38/16-2011	35/16-2001	38/10-2002		3S/1E-29A2	3s/1E-2981		3S/1E-32K2	38/214111	38/2Е-4М1	3S/2E-6P1	38/26-701	35/26-781	38/2Е-8Н1
	Owner and			H. Dana	ty of Pleasanton	ty of Pleasanton	ty of Pleasanton abandoned		bert Vomini domestic	ty of Pleasanton abandoned		s. Cohen	lifornia Water rvice municipal	Schenone domestic and irrigation	ndolfo domestic	R. Johnson	L. Hageman ırrıgatıon	slifornia Water ervice Co municipal

	2				
	Analyzed by c		DWR	DWR	DKR
:	S S E		35	2	=
Hord	Totol Ppm		248	86.7	E E
	50 E		35	6	© £
Totol	eolved sod- colids		431	697	65 6
	onts ^d				
	Constitu		9	0.0	3
	Silico (SiO ₂) Other constituents ^d		ABS 0.0	ABS 0	258
	Silico (\$10 ₂)		30	레	<u> </u>
rion	Baron (B)		3	2.0	
ar ai	Fluo- ride (F)		0.4	0.01	0, 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ports per million	rote (NO _S)		0.47	22	6.17
ports per million equivalents per million	Chio- ride (CI)		74	1.86	8110
ē	Sul - fate (SO ₄)	٥.	46	.3	# () () () () () () () () () (
Mineral constituents		VALLEY (2-0) (Cont.)	260	279	17.00 mg/s
cons		G 0	0.00	0 1,000	n
Minera	Potas-Corbon-Bicor- sium ate bonate (K) (CO ₃) (HCO ₃)	ALL SY	0.05	0.10	# P # P # P # P # P # P # P # P # P # P
	Sodium Po (No)	LIVERMOR			
		LIVE	2.70	2.13	11.25
	Calcium Mogne- sium (Ca) (Mg)		1.02	36	17. Ell
	Calciur (Ca)		3.94	2.49	11.56
U -	Ξ. 6		8.3	×0	ν.
Specifi	(micra- mhos of 25°C)		773	784	1610
	Temp in • F		_		
	Date sompled		6-25-63	6-24-63	10.25-03
Stote well	number and other number	NDBSM	38/21-1081	3S/2E-29D1	3: /3E-1 vc1
	esn esn		Amling-DeVore Mursery irrigation	B. C. Wood irrigation	irişatıon

TABLE E-1 analyses of ground water $$^{\rm 1963}$$

	Anolyzed by c	T			04		o4		05		05		ec.		ec		œ		ω
_		E			DWR	=======================================	DWR	0 1.1	DWR	#	DWR	=======================================	DWR	0 [17	DWR	11	DWR	0 11	DWR
Hardness	COCO 3					67				=		82				=			
		Edd				24 282		22 175		22 165		31 131		36 188		21 216		32 167	
d	solved sod-	+				434 2		258 2		282 2		250 3		322 3		314 2		286 3	
٦						-7				- 2		2		···		e		7	
	Silica Other canstituents ^d																		
	Sirca (SiO,	_				21		32		33		29		19		29		22	
Lion	Boron (B)					1.1		0:1		0.1		0.1		0,1		0.1		0,1	
parts per million valents per mill	- oul 7	=				0.4		0.2		$\frac{0.2}{0.01}$		$\frac{0.1}{0.01}$		0.1		0.2		0.1	
ents per	- iot	(NO3)				00.00		3.0		0.08		67		0.00		31		0.00	
parts per million equivalents per million	Chio-	Т			54 1.52	55	20	16	24	20	52	39	0.70	30	0.62	21	0.48	14	0.48
r. st	- Ing		ବା			65		24		19		26		32		24		42	
nstituer	Bicar-	HCO 3	. No.	(3-5)		275		3.38		$\frac{188}{3.08}$		09		4.25		3.90		3.67	
Mineral constituents	Sium ote bonate	3	RECION (No. 3)			4.2		3.0		00.00		00.00		6.0		0.20		0,00	-
M	Olas-C	ž	ASTAL	PADARO VALLEY		0.04		2.4		0.04		0.0		13		3.6		5.5	
	Sodium P		CENTRAL COASTAL	PAJ	1.74	40	22 0.96	23	21 0.91	22 0.95	33	1.17	44	2.17	27	28	34	37	22 0.96
	- eugow					24		20		19.1		1.57		30	-	30		21 1,70	
	Calcium (Ca)					3.68		37		34		21		$\frac{22}{1.11}$		36		33	
	Ŧ					8.3		8.3		7.6		7.9		7.8		7.00		8.2	
Specific conduct-		at 25° C			169	089	420	450	423	410	357	380	582	260	505	511	995	065	492
	Ten Ten																	_	63
	Sampled				9-6-62	5-21-63	9-5-62	5-21-63	9-5-62	5-21-63	9-5-62	5-22-63	9-5-62	5-22-63	9-5-62	5-21-63	9-5-62	5-22-63	9-5-62
Store eel)	number and other number			MDBGM	11S/2E-27A1		128/1E-11L1		12S/1E-11N1		12S/1E-14J1		125/1623R1		125/16-2461		125/16-240		12S/2E-7K1
	Owner and				S. H. Gandrup domestic and	irrigation	Frank T. Blake irrigation		Sunset Beach Park domestic		J. Roacha, Jr. irrigation		E. L. Padden domestic		H. Trafton irrigation		domestic		A. L. Waugamen irrigation

Colon Manne Mann	Stote well			, , ,	Specific conduct-			2	ineral	Mineral constituents	e i	inbe	parts pt	parts per million equivalents per million	Lion			Totol	á	Hardne		
1.00 1.00	Date Temp sampled in °F	Temp ance in F (micra- mhas at 25°C)	ance (micro- mhas at 25° C)		Ŧ	20		Potas- Sium (K)	Carbon ate (CO ₃)	Bicar- bonate (HCO ₃)			rote (NO ₃)	Flua-	Boron (B)	Silica (SiO ₂)	Other constituents ^d	salved colids in ppm	E SO	5 1		Analyze by c
1.8 1.8	MBRAM						PAJA	RO VALLE														
1. 1. 1. 1. 1. 1. 1. 1.	12S/2E-12E1 9-5-62 62 1260	62		1260			66					72 2.03										DWR
1. 1. 1. 1. 1. 1. 1. 1.	12S/2E-18K2 9-5-62 443		743	7443			24					14										DWR
4.2 3.5 3.0 2.5 3.8 3.5 3.6 3.5 3.6 3.5 3.6 3.7 3.5 3.7 3.5 3.7 3.5 3.5 3.5 3.6 3.7 3.6 3.7 <td>5-22-63 430 8.4</td> <td>430</td> <td></td> <td></td> <td>-7</td> <td>2.5</td> <td> </td> <td>0.05</td> <td></td> <td></td> <td>38</td> <td>12 0,32</td> <td>0 .</td> <td></td> <td></td> <td>27</td> <td></td> <td>290</td> <td>73</td> <td>183</td> <td></td> <td>73</td>	5-22-63 430 8.4	430			-7	2.5	 	0.05			38	12 0,32	0 .			27		290	73	183		73
4.6 5.0 1.3 1.6 1.85 1.8	12S/2E-19B1 9-5-62 67 530 8.2	67 530	530		. 2	T ci		2.3			38	25	0.00			36		374	52	227		DWR
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	12S/2E-19M1 9-5-62 67 700 8.2	67 700	700		2	4 5:	 	0.07			1.20	101	0.0			7.8		730	2.5			DWR
33 4.7 4.04 5.1 5.2 6.0 5.5 6.0	12S/2E-30E1 7-23-62 13500 7.4	13500			4.	60.		0.19				5452			0.1			10025	5.97			Et la
1.73 1.73	12S/2E-30%1 7-23-62 61 650 8.3	050	650		m,		 	0.05				1,70	0.88					707		226		DWR
1. 1. 1. 1. 1. 1. 1. 1.	12S/2E-31A1 9-5-62 692		692	692			 11.78					44										DWR
The contract of the contract	12S/2E-31Cl 7-23-62 61 495 8.0	61 495	565		c.		 					72 2.03	56.0					308	77	128		DWR
31 35 1.30 1.00 1.00 1.00 1.10	125/2E-31K1 7-24-62 68 1020 7.5	68 1020	1020		5.	, Ju	 	3.0				184	0.18					588	2.7			DUR
1 2,09	12S/2E-32C1 7-24-62 60 610 8.4	019 09	919		4	415	 					1.55	3.2					384		227		DWR
17 11 24 25 11 25	12S/2L-32K1 9-5-62 481		481	481			2,09					1.92										DIVE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-22-63 450 7.5	450			٥.			_					0.77				-	286	800	80	E E	11
68 138 3.0 0 357 2.83 16.0 0.1 0.1 0.2 2.1 0.2 2.1 0.2 2.1 0.2 2.1 0.2 2.1 0.2 2.1 0.2 2.1 0.2	125/3E-7B1 9-6-62 60 1250	09		1250			3.65					2,40										DAR
	125/35-941 5-22-63 1550 8.1	1550			3	14	 											1150			231	1

TABLE E-1

	State			Spacific					¥ e	ral con	Mineral constituents	5	parts per million equivalents per million	parts per million	million	-		Total		Hardne		
Dub Jawa	number and ather number	Sampled	Temp To Fr	micro- mhas at 25°C)	Ŧ	Calcium Magne - Sium (Ca) (Mg)		Sodium (NO)	Potas-Carbon- sum ate b (K) (CO ₃) ((Carbon-Bicar- ate banate (CO ₃) (HCO ₃)		Sul - fate (SO ₄)	Chio - oge (CI)	rate (NO ₃)	Fluo-Bc ride (F)	Baran Sil (B) (Si	Silica (SiO ₂) Other constituents ^d	solved solved in ppm	100 E	as CaCO ₃ Tatal N.C Ppm ppm		Analyzed by c
	MDBCM							PAJARO VALLEK		(3-2)	(Cont.)											
McGinnis domestic and irrigation	128/36-1911	7-30-62	69	350	1.	26.0	0.90	39	0.03	00.0	1.63	3.8	58	0.14	0.0	0.0	777	233	87	93	11	DWR
Fukuba	125/3E-30A1	7-30-62	99	9 597	÷.	30	12 0.98	44	0.05	00.00	1.33	16	72	36 0.58	0.01	0.0	36	288	73	125	58	OWR
irley irrigation and domestic	135/16-141	7-23-62	63	1320	-7	96	63	3.70	3.2	10.2	3.26	77	289 8.15	0.13	0.1	0.2	27	832	27	765	312 0	OWR
Vaughn domestic and irrigation	13S/2E-1K1	7-31-62	799	260	0.8	0.59	10	28	0.03	00.00	87	0.04	28	18 0.29	0.0	0.0	777	194	5 7	72	0	DWR
ırrıgatıon	13S/2E-5M1	8-15-62	63	0011	-7 -7	83	56	3.95	3.9	0.30	285	3.90	3.00	26.0	0.1	0.1	131	810	31	738	061	OWR
H. Hurley irrigation	13S/2F-6E2	7-24-62	79	1300	8.2	3,53	23	138	3.0	0.00	3.23	2.34	262	20 0.32	0.1	0.2	979	792	57	370	80	DWR
Capurro & Sons domestic and	13S/2G-6P1	9-5-62		666				8,35					148								-	OWR.
irrigation		5-22-63		1150	5, 8	0.80	5.2	225 9.80	0.12	0.24	3,22	88	202 5.70	00.00	0.2	0:1	277	999	80	62	0	TI
ıberson ırrıgation	135/21-681	8-15-62	67	740	 	51	3.03	51	3.9	9.0	3.85	54	2.43	00.00	0.0	E.	35	797	28	278	71 D	DWR
								GILKOY	HOLLIST	LK BASI	CILKOY-HOLLISTIK BASIN (3-5)											
. Andrade irrigation	95/31-2583	6-27-63		577	8.2	28	1.90	27	0.09	00.00	182	23	23	0.32	0.2	0.21	777	265	56	165	16	OWR
. L. Hudson irrigution	108/36-162	6-27-63		459	7.9	34	26 2.10	14	0.7	00.00	198	57 <u>65.</u>	0,39	13	0.2	0,26	25	258	2	061	28	DWR
. Orlando irrigation and domestic	10./3೬-2331	6-27-63		907	 	44.	1.36	18	0.5	0.00	3.11	0.25	20	28	0.01	0.13	38	252	2	178	22	DWR
. H. Henderson domestic and irrigation	105/3L-26J1	6-27-63		426	9.0	2.34	16	16	0.3	0.00	169	0,44	0.68	26	0.03	0.03	38	260	<u> </u>	184	97	DWR

Magnet Sodium Pages Corpor Bonds Corpor Cor	State well		Specific conduct-					Mineral	constituents	ints in	inbe	alents pe	equivalents per million	اوا		Total	ž	Hordness		
1.80	r sampled in *f (micro- pH mhos	ance (micro- mhos at 25°C)	£	(Ca)	5-5-€ I	-		Carbo	bonote (HCO ₃		유 () ()	trote (NO ₃)	Fiuo- ride (F)	Boron (B)	Silica (SiO ₂) Other constituents ^d	solved solids in ppm	2 8 5 E	Total		Anolyzed by c
1.2 0.0						100	A AVIA													
5.3 1.5 0.0 387 1.9 4.5 3.6 0.3 0.3 1.9 4.5 3.6 0.3 0.2 0.4 1.2 0.0 <td>TURGATI</td> <td></td> <td></td> <td></td> <td></td> <td>102</td> <td>1000</td> <td></td> <td></td> <td>Out.</td> <td></td>	TURGATI					102	1000			Out.										
1.5 1.0 0.0 0.5 1.4 1.7 1.0 0.0 0.5 1.4 0.1 0.2 0.1 0.2	10S/4E-17F1 6-27-63 735 8.3 43 2.14	e. 8		43	9						45	3.6		0.23	28	427	28	294	0	DWR
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	10s/4E-18G2 6-27-63 442 8.1 41 2.04	1.8		70.0	2 .						0.39	0.27		0.07	38	268	16	194	22	DWR
38	10S/4E-28D2 0-27-63 513 8.3 27 1.35	8.3		27	2 3						23	0.10		0.20	31	300	24	208	0	DWR
10 10 10 10 10 10 10 10	105/4F-34L5	7.3		51.54	. J.						1.18	35		0.20	30	738	27	284	19	DWR
156 1.6 1.6 0.0 2.7 2.5 2.1 2.8 0.2 0.2 1.1.	115/4E-4Q3 6-27-63 740 8.2 63 3.14	8.2		63							0.62	79.0		0.27	28	7466	12	361	78	DWR
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	115/4E-21B2 6-27-63 671 8.1 62 3.09	8.1		62 3,09	2 3						0,59	38		0.23	29	412	16	304	69	DWR
156	115/5E-27M1 6-28-63 582 7.8 57 2.84	7.8		57	2 2						26 0.73	3.9		0,40	81	335	19	253	30	OWR
152 3,2 0,0	12S/4E-34P2 6-27-63 2010 7.7 189	7.7		9.43	6.						241	26		0,64	27	1370	30	792	208	DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125/4E-35C1 6-27-63 1570 8.3 64 3.19	e		3,19	018					_	2.85	0.0		1:0	25	1040	36	582	142	OWR
19	12S/4E-36G1 6-27-63 1950 8.1 141 7.04	8.1		141	 						3,89	5.2		1.0	28	1360	34	774	262	DWR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2S/5E-9N2 6-28-63 1920 8.2 94	8.2		97,							5.33	0.60		<u>:</u>	28	1270	35	711	342	DWR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125/5E-33al 6-27-63 1810 7.9 148 7.38	7.9	7.9	7.38	7.						100	0.10		0.90	30	1150	31	764	0.9	DWR
$\frac{55}{2.39} \frac{4.0}{0.10} \frac{0}{0.00} \frac{235}{3.85} \frac{0.0}{0.00} \frac{25}{0.70} \frac{1.5}{0.02} \frac{0.2}{0.01}$	12S/5E-3bal 6-28-63 1330 8.2 <u>24</u> 1.20	8.2		1.20	9.						150	0.0		1.4	28	774	80	100	0	DWR
	125/6E-7½2 6-28-63 438 7.8 22 1.10 1.10	7.8		1.10	-lo						25	0.02		0,85	67	294	23	101	0	DWR

																					-	
	9 9		Vi .	Specific	_				2	ral can	Mineral constituents	ē	Dd	parts per millian	equivalents per million	00		Total	à	Hardness		
Owner and	number and ather number	Date	Temp in of	mhas or 25°C)	Ŧ	Calcium Sium (Ca) (Mg)		Sodium (No)	Pates - Carbon- sum afe (K) (CO ₃)	Carbon B ofe (CO ₃) (H	Bicor- bonote (HCO ₃)	Sui - fors (SO ₄)	Chio- ride (CI)	rrate (NO ₃)	Fluo- ride (F)	Boran S (B) (c)	Silica (SiO ₂) Other constituents ^d	solved solids folids	P P P	as CaC		Anolyzed by c
	1018621						10	10Y-HOLLI STEL		MASIA 3	3-3) 1Con	out.										
i. F. Broadtoot & 'on	128/61-191.2	6-28-63		1540	6.7	73	9.0	7,00	3.3	0 8	366	0 8	177	7/3	- 00	61	27	28.50	27	6117	ŝ	- 3
domestic C. T. Fillsbury domestic and	125/65-3181	6-28-63		2410	2.8								24.6	1.1	-	.*	61	1340	7.3	-1	=	<u> </u>
irrigation First Presbyterian (burch	135/51-331	6-27-63		1430	7.8	601	67 7	5.87	0.07	0.00	372 6.10 5	5.54	3.61	8.9	-5 2	3	티	51.5	38	2	2	ž
domestic V. Lompo irrigation	138/2F-1101	6-28-63		1380	7.9	100	45	141	3.0	00.00	374	251	3.10	15.0	20.0	1.00	*[855	3	436	671	958
								SALI	SALINAS WALLEY	LLEY (3	(3-4)											
	128/3E-19M1	7-30-62		350		19	1 06.1	39	0.8	0 000	1.63	3.8	58	8.5	0.2	0.0	77	5.7	87	93	=	DWR
	125/31-30A1	7-30-62	80 90	597	= .	8 2 2	12	1.911	0.05	0,00	1,33	0.35	72	36	-10.0	0.0	36	967	e,	57	5.8	DWR
Monterev Bay sait Co. domestic and industrial	13s/2L-7Rl	7-10-62	7.2	820	 	81.85	6. b	170	3.5	0.30	3,70	18.1	2,70	0.0	1.0.0	~	77	388	9	2	=	DWR
R, Bowen irrigation	13S/2F-10J1	7-31-62	7.2	1197	7	212.	1,15	54	1.1	0.20	2.75	5.3	1.71	0.0	770	0,1	7.1	296	7	5	=	DWR
R. M. Cheek Jomestic and irrigation	138/21-13N1	7~31-62	11	237	6.7	9.4	0.56	30	0.0	0.00	1.10	0.06	38	0.03	0.01	1.1	97	178	S	25	=	DWR
M. Minhoto irrigation	13S/2E-16E1	8-6-62	80	0601	7.7	3.116	34	110	5.7	0.00	3.58	31	0.30	3.1	0.0	0	136	610	4	291	112	DWR
Delfing & Calcagno irrigeron and domestic	138/2E-17H1	7-16-62	99	1350	8.3	3.12	36	7,55	8.3	3.0	162	37	362	2.2	0.1	0.2	38	798	ń	3,9	691	DVR
T. Leonardini domestic and irrigation	135/2E-19Ri	7-16-62	99	885	-7	2.76	25	4.17	2.8	0.14	3.16	26 0.55	184	0.0	0.01	0.1	37	564	97	241	76	DWR

TABLE E-1 $\label{eq:table_end} \mbox{Analyses of ground water} \\ \mbox{1963}$

					1								6	ports per million	Collina			L	_			
	Stote well			Specific conduct-					¥ in	rol con	Mineral constituents	č	equivo	ents p	equivalents per million	6		100 A	-		Hordness	
Owner and	number and other number	Date sampled	e c Ge	ence (mlcro- mhos et 25° C)	Ŧ	Colcium M	Magne -	Sodium (No)	Potas-Carbon- sium ote (K) (CO ₃) (Carbon B ote (CO ₃) (F	Bicar- bonate (HCO ₃)	Sul - fote (SO ₄)	Chlo-	trote (NO ₃)	Fluo- ride (F)	Boron (B)	Silico (SiO ₂) Other constituents ^d	solved bevios belios mygni	P S E		N W W	Analyzed by c
	MOBGM							SALINAS	VALLEY	VALLEY (3-4)	(Conf.)											
J. Tate domestic and irrigation	13S/2E-20J1	7-16-62	89	1130		3.24	3.05	4.55	0.06 0	0000	113	68	7.45	0.0	0.01	0.1	43	869	- 77	315	222	OWR
J. J. King irrigation	13S/2E-31D2	7-16-62	7.0	689	8.3	30	1.26	3.87	2.8	3.0	170	21	123	0.02	0.1	0.2	37	422	2 28	136	0	DWR
Molera Estate domestic	13S/2E-31K2	7-17-62	67	245	8.5	1.13	114	3,30	0.06	0.30	3.52	0.22	1.70	0.02	0,1	0,1	529	348	9 28	114	0	OWR
E. Ballone ırrigation	135/2E-31M2	7-17-62	7.0	800	21	38	19	4.47	0.07	00.00	3,00	19.0	162	0.0	0,1	0.2	31	518	8 55	176	26	DWR
E. Ballone irrigation	13S/2E-31N2	7-17-62	72	980	21.0	60 3	3.31	95	3.2	00.00	114	51	229	0.02	0.1	0.2	33	642	2 39	315	222	OWR
irrigation	13S/2E-32A2	7-10-62	7.2	200	4.8	19 10	16	62	0.07	3.0	2.45	0.29	73	0.0	0.1	0.1	33	288	8 53	115	=	DMR
O. P. Overhouse irrigation	13S/2E-32C1	7-16-62	99	567	2.8	58 2	0,22	2.20	2.3	0.20	3.25	12 0.24	53	0.4	0.1	0.1	31	332	2 41	154	С	DWR
Nolera Estate irrigation	13S/2E-32N1	7-17-62	7.0	067	7.8	24 1.23	0.88	67	2.4	3.6	2.73	22	60	0.9	0.1	0,1	33	334	4 57	106	63	DWR
C. Rissotta irrigation and domestic	135/2E-33R1	7-19-62	99	735	7.8	3.79	1.82	53	2.8	0.30	3.65	74	2.30	8.5	0.1	1.	34	767	4 29	280	82	DWR
R. Hollenbeck domestic and irrigation	138/3E-4L1	8-1-62	69	320	0.	0.72	9.5	37	0.03	00.0	87	3.4	46	9.8	0.1	0.2	777	230	0 52	73	-	DWR
F. 8. Taganas domestic and irrigation	138/3E-2082	7-26-62	99	285	7.9	0.82	0.50	34	0.02	00.00	86	0.10	43	3.2	0.1	0.0	37	81	186 52	99	٥	DWR
c. Lightfood domestic and irrigation	13S/3E-29A1	7-26-62	64	570	7.9	19 0.94 1	1.20	3,00	0.03	00.00	1,35	13	3.50	0.04	0.2	0.0	777	33	336 58	107	39	DWR
V. Coto domestic	14s/1E-24Q2	7-12-62	62	1060	7.0	3.20	35	103	2.0	0.00	46	73	145	3.35	0.01	0,1	29	72	720 47	300	262	DWR
Marina Del Mar School domestic and irrigation	14S/1E-25KI	7-12-62	0.9	500	7.0	26 1.30	1.28	49 2.13	0.05	0.00	37	0.43	2.35	1.25	0.1	0.1	23	29	290 45	129	66	DWR

ſ		p															
		Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	Hardness	N.C.		0	0	0	2	3	25	52	252	130	27	186	269	6.5	77.7
				127	133	142	152	202	195	188	345	238	197	434	625	110	137
	į	P P P		5.4	20	77	35	26	37	37	35	0.4	36	32	33	20	Š.
	Total	solved solids in ppm		366	348	304	298	334	384	408	738	512	388	808	828	308	284
		Silica (SiO ₂) Other constituents ^d													~~		
		Silica (SiO ₂)		35	35	34	क्ष	22	32	<u></u>	35	133	29	26	E	58	98
	Ligh	Boran (B)		0.1	0.1	0.1	0.1	0.0	0.1	0.2	0.2	0.2	0.1	0.3	0.0	0.1	0,1
	er mil	Fluo- ride (F)		0.1	0.1	0.2	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.01
	parts per millian equivalents per millian	trate (NO ₃)		0.02	0.02	0.02	0.03	3.6	0.0	0.0	0.0	0.00	2.2	5.3	0.0	73	0.9
	a viobe	Chia- ride (CI)		60 1.60	51	50	48	41	62	43	5,35	2.811	1.78	162 4.55	195	69	0.48
	ei si	Sul - fate (SO ₄)	 4	30	23	0,33	0.25	0,24	48	102	3.85	138	41 0.87	3.25	194	17	1.68
	Mineral constituents	Bicar- bonate (HCO ₃)	(Cont.)	3.17	$\frac{197}{3.23}$	3.38	180	3.98	3.30	148	113	132	3,20	302	3.20	0.90	1.75
	neral c	Patas-Carbon- I sium ate (K) (CO ₃) (7-6	0.30	6.0	0.00	0.00	0.00	3.0	0.20	0,00	0.00	6.0	0.00	0.00	0.00	3.0
	ž	Patas- sium (X)	SALINAS VALLE	3.2	2.3	23	0.06	0.05	3.7	3.0	0,10	4.2	2.7	3.8	0.12	0.05	0.07
		Sadium (Na)	SALINA	3.05	63	53	40	33	55	53	4.25	3,20	52.25	94 4.10	98	53	28
		Magne - sium (Mg)		0.84	0,94	$\frac{13}{1.12}$	1.75	0.56	13	1.54	35	27	15	3,17	3.47	13	0.59
		Caicium (Ca)		34	$\frac{34}{1.72}$	34	28	3,48	56	2,22	3.96	52 2,58	54	5,51	5.11	23	43
		F		4.8	7.0	7.8	8.2	8.2	8.3	4.	2.	 	3,	7.5	8.2	7.3	20
	Spacific	ance (micra- mhas at 25°C)		535	510	200	455	200	585	565	1055	750	580	1200	1180	510	450
		Te ri		72	72	72	99	79	99	99	99	7.0	6.8	79	99	63	70
		Date sampled		7-17-62	7-17-62	8-7-62	7-19-62	7-19-62	7-18-62	7-18-62	7-18-62	8-7-62	7-19-62	7-12-62	7-18-62	7-12-62	8-7-62
	State well	number and other number	NDBGM	148/28-601	14S/2E-6R2	145/26-892	14S/2E-11D1	145/26-1201	14S/2E-14N1	148/26-15L1	145/21-1801	148/28-2311	148/252461	145/2E-2581	14S/2E-26A1	145/2E-30P2	148/2E-3541
		Owner and		irs, L. Martin irrigation and domestic	E. Struve irrigation	J. Jefferson irrigation	J. P. Rogers domestic and irrigation	E. C. Eaton arragation	L. A. Wilder domestic	Conterey County Bank irrigation and domestic	 G. Armstrong Co. irrigation 	A. H. Bordges irrigation	M. T. DeSerpa irrigation	M. T. Deserpa irrigation	M. Bordgers arrigation and domestic	A. Goodall domestic	0. P. McFadden ırrigation

t
Specific
Temp ance pH Calcium Magnembas (Ca) (Mg)
66 1850 7.4 323
62 1420 7.9 78
70 625 8.4 50
63 705 8.2 49
72 226 7.2 11
67 500 7.5 20
66 450 8,3 49
64 1100 7.9 86 4.31
70 570 8.1 36
64 2000 8.0 107 5.35
68 1100 8.0 87
64 870 8.1 58
66 830 8.5 16
67 600 8.2 29
68 830 8.5 81 4.08

TABLE E-1

	Analyzad by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR
Hordness	N.C.		001	355	225	Ξ	7.5	243	55	383	97	866	157	184	750	689	253
			225	477	420	303	185	365	225	187	173	1128	277	328	985	878	430
ž	Sod i		57	35	34	18	70	38	53	24	22	22	28	07	52	(7	77
Totol	solids spilos ppilos		624	1044	810	450	432	816	632	812	300	2032	504	732	2980	2210	9601
	Silica (SiO ₂) Other constituents ^d																
	Silica (SiO ₂)		77	36	32	27	36	30	26	21	28	28	25	27	23	24	131
Light State	Boron (B)		0.1	0.4	0,3	0,1	0.2	0.4	0.5	0.1	0.1	0.4	0.3	0.6	2.0	1.8	<u> </u>
E L	Fluo- ride (F)		0.1	0.2	0.1	0.1	0.1	0.1	0.1	$\frac{0.1}{0.01}$	0.0	0.1	0.2	0.2	0.4	0.0	0.2
equivalents per million	frota (NO ₃)		0.10	57	0.0	0.0	4.9	5.8	33	0.92	3.4	37	0.18	0.60	24	25	0,28
ovinpa	Cide (CI)		254	3.30	74	280	62	94	50	87	0.35	287	3.05	1.81	316	279	144
c s	Sul- fots (SO ₄)	~	34	403	331	125	103	337	222	365	69	870	2,06	283	1335	1057	363
Mineral constituents	Bicar- banate (HCO ₃)	(Cont.)	152	148	3.90	3.61	134	149	3.40	119	180	159	146	176	260	3.08	3,55
erol co	Carbon- ofe (CO ₃)	(3-4)	00.00	0.00	00.00	7.2	0.00	00.00	00.00	00.00	00.00	00.00	00.00	00.0	13	3.0	00.00
2	Patas-(Stum (K)	VALLE	3.3	3.5	3.9	0.00	0.07	3.1	4.2	5.6	2.4	4.4	2.0	0.07	8.5	6.7	4.5
	Sodium (No)	SALINAS VALLEY	140 6,10	5.30	103	30	58	107	120 5,20	3,05	23 1,00	149	50	4,43	500	360	160
	Mogne- sium (Mg)		1.78	5,08	56	2.30	21	51	30	4.5	13	9,48	35	57	5.70	130	64
	Calcium (Ca)		54	95.4	3,84	3.76	40 2.02	62 3.08	40 2.02	5.97	48	263 13,08	53	37	281	125	3.34
	£		7, 8	8.2	8.2	à 20	8.2	8,1	7.6	7.9	8.2	8.0	8.2	8.2	4.8	8.3	7.9
Specific conduct-	oncs (micro- mhas at 25° C)		1060	1350	1120	610	620	1100	930	1170	077	2400	760	1020	3500	2900	1360
	Temp in • F		73	99	79	99	89	89	99	67	68	99	61	65	9	65	99
į	sampled		7-25-62	7-26-62	7-27-62	7-31-62	7-13-62	7-31-62	8-3-62	8-3-62	8-3-62	8-3-62	8-9-62	8-8-62	8-8-62	8-8-62	8-8-62
Stots wall	other number	MDBGM	16S/2E-12Gl	16S/4L-24A1	16S/4E-25K1	178/5E-9Q1	17S/6E-7Q1	17S/6E-27Kl	18S/6E-1E1	18S/6E-2N1	18S/6E-28J1	18S/7E-29G1	19S/7E-10P1	198/7E-13b2	19S/8E-32A1	19S/8E-33Rl	20s/8E-5Rl
	Owner and		C. Phillips domestic	K. R. Nutting irrigation	J. C. Twisselman irrigation	C. Doud irrigation	ırrigatıon	N. Baker irrigation	L. M. 6 V. Jacks irrigation	L. Jacks irrigation	F. W. Smith irrigation	E. Pincini irrigation	Salinas Land Co. irrigation	D. M. Bingaman domestic and irrigation	irrigation	G. Ross irrigation	A. Duarte irrigation

ANALYSES OF GROUND WATER 1963

Γ		P	П				_																											
		Analyzed				DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR		DWR													
	Hardness	000	N.C.			571	527	726	39	19	104	е	95								82													
		- 1	Tatai			671	674	106	176	198	157	86	248	511	541	257	144	172	332		265													
-	å	100	, E			88	30	32	30	7.3	20	34	21								20													
	Toto	- solved	- 1			2300	1328	2030	336	458	282	206	708	1075	1020	087	300	1060	520		097													
			(SiO ₂) Other constituents ^d		_																													
١		,	(SiO ₂)			29	32	29	25	34	35	130	136	20	07	47	07	32	9]		26													
	Ligh	0	(8)			2.8	0.4	0.8	0.2	0.4	0.1	0.1	1.0	0,46	1,35	0,35	0.00	2.00	0,06		0.1													
	er mil	Fluo-	Ę.(F.)			0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.6	0.5	0.7	0.5	1.2	0.5		0.02													
	valents per million	ż	(NO ₃)			2.7	36	33	2.3	4.1	0.25	0.12	0,10	5.5	0.0	15	10	52	0.31		0.02													
	parts per millian equivalents per millian	Chlos	(S & C)			754	158	170	25 0.70	62	36	0.62	38	47	145	1.92	43	3.02	99		1.72													
	nts in		1016 (SO ₄)			492	530	812	73	$\frac{123}{2.57}$	1.64	0,31	55	91.6	294 6,12	76	24	354	1.00		98													
	Mineral canstituents	P.Cor-	(HCO ₃)		Cont.)	122 2.00	180	3.50	160	161	1.07	116	3.85	320	525 8.60	303	176	339	312		3.35													
	eral c	Corbon	(CO ₃)		(3-4)	00.00	00.00	0.00	4.2	3.0	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0,00	00.00	3-7)	0.30													
	ž	Dotoe	Colcium Magne- Sadrum Faras- (Ca) (Mg) (K) (K) (K) (K)			0.29	5.7	0.16	0.04	3.4	0.07	0.04	0.06	0.13	01.0	3 0,08	4 0.10	0.05	3	TLEY (3.6													
				SALINAS V	445	5.73	195	35	3.05	18	24 1.05	30	140	180	3.48	42	310	40	CARMEL VALLEY (3-7)	47														
					63 5.20	80	61 4.97	$\frac{21}{1.70}$	2.36	$\frac{14}{1.15}$	7.2	$\frac{21}{1.72}$	5.18	100	40 3,29	10 0,82	$\frac{21}{1.73}$	17.40		23														
		(Ca)			(00) (00)	(Ca)														164 8.22	6.85	3.0 262	3.4 36	3.4 32 1.60	8.0 40 2.00	27	7.9 65	101	22.59	37	41 2.05	34	105	
		¥			0	8.2	8.1	8.0	8.4	8.	8.0	8.2	7.9	7.3	7.8	7.6	7.6	7.9	7.4	_	8.5													
	Specific		mhas at 25° (3200	1700	2230	520	700	410	300	009	1462	1664	814	478	1634	786		700												
		Temp	<u>.</u>			70	7.1			67				34	99	89	72	74			63													
		Date	sampiea			8-8-62	8-7-62	8-7-62	8-7-62	8-7-62	8-6-62	8-6-62	8-6-62	9-23-63	9-24-63	9-23-63	9-26-63	9-26-63	9-27-63		8-14-62													
	Stote well	number and	arner number		MDBGM	20S/8E-24J2	215/9E-7J1	218/95-2411	22S/10E-17N1	22S/10E-34G1	235/8E-2E1	23S/8E-8K1	23S/9E-29Cl	24S/12E-17L2	24S/15E-17F1	25S/12E-16N1	26S/14E-35D1	26S/16E-3181	27S/13E-36Rl		16S/1W-13L1													
		Owner and	esn			irrigation	irrigation	K. & H. Eade irrigation	W. C. Glau irrigation	L. Rosenberg irrigation	E. Weferling irrigation	J. Martinus irrigation	M. Martin, Jr.							-	R. Odello irrigation													

TABLE E-1

ANALYSES OF GROUND WATER 1963

	Analyzed by c		OWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR.
Hordness	N.C M.C		08	123	32	86	161	69	187	20
			270	306	125	233	451	236	287	162
Pa	Sod		33	30	24	32	31	2.7	0.4	8
Total	solved solved solved mdd ui		508	099	220	955	838	414	670	324
	Silico (SiO ₂) Other constituents ^d									
	(Sinco		26	29	23	21	6	27	131	18
lion	Boron (B)		0.1	0.1	0.0	0,1	0.2	0.1	0.2	0.1
per mi	Fluo- ride (F)		0.02	0.2	0.2	0.4	0.01	0.1	0.6	0.04
parts per million equivalents per million	trate (NO ₃)		2.3	21 0.33	0.0	0.0	0.0	0.4	0.00	0.00
Bquiv	Chio- ride (Ci)		85 2,40	78	14	58	3.75	48	84	30 0.85
nts in	Sul - fate (SO ₄)		1.76	127	45	118	3.33	85	247 5.15	80 1.66
Mineral constituents	Bicor- banote (HCO ₃)	CARMEL VALLEY (3-7) (Cont.)	3.70	$\frac{208}{3.41}$	114	165	354	3.21	$\frac{122}{2.00}$	137 2,25
neral c	Potos-Carbon- sium ote (K) (CO ₃)	(3-7)	3.0	0.24	00.00	00.00	00.00	4.2	00.00	00.00
ž	Potos- Sium (X)	VALLEY	0.07	4.1	$\frac{2.1}{0.05}$	2.3	3.7	3.4	3.5	0.07
	Sodium (Na)	CARMEL	64 2.80	2.60	18	51 2.20	94	41	3.83	37 1.60
	Magne - Sium (Mg)		23	23	8.6	25 2.06	1.53	130	32 2.59	1.18
	Calcium (Ca)		3.49	83	36	52 2.61	150	3.12	3.14	$\frac{42}{2.07}$
υ L	F 0		8.4	8.4	8.2		7.7	4.8	8.0	
Specific canduct-	(micro- mhos ot 25° C)		735	830	300	099	1180	019	880	760
	Temp in °F		62	62	73	7.1	99	62	99	59
	Sampled		7-11-62	8-14-62	7-10-62	7-10-62	7-10-62	7-11-62	7-10-62	7-9-62
Stpte well	ather aumber	NDBGN	16S/1W-13L2	16S/1W-13Q2	16S/1E-16L1	16S/1E-16N1	16S/1E-17G1	16S/1E-18K1	16S/1E-23F1	165/18-2581
	Owner ond use		Carmel Sewage Treatment Plant industrial	8. Odello irrigation		E. Haber irrigation	Harbert Irrigation and domestic	irrigation	R. Martin irrigation	irrigation

RADIOASSAY OF GROUND WATER 1963

				Radiaassoy	in Pico Curies. Per Liter	es.Per Liter	
Weil	Campled	Applicate A	Suspended	Activity	Dissolved Activity	Activity	Gross
	n in	22760	Aipho	Beto	Alpha	Beto	Activity
		V.	SAN FRANCISCO BAN REGION (No.	Y REGION (No. 2)			
		ST.	DOCTOR N		J		
			CLAYTON VALLEY 2-5	ALLEY 2-5			
							-
1N/1W-4A1	7-11-62	8-9-62					0 13.8
1N/1W-4R1	7-11-62	8-9-62					0 + 3.9
2N/1W-30J1	7-10-62	9-12-62					5.5 + 3.4
2N/1W-30K1	7-10-62	8-9-62					0 + 3.8
2N/1W-31D1	7-10-62	8-9-62					0 + 3.8
2N/2W-13Pl	7-10-62	8-9-62					2.4 + 3.9
2N/2W-26B1	7-10-62	8-9-62					2.9 ± 3.9
2N/2W-36J1	7-11-62	9-11-62					1.0 ± 3.4
			YGNACIO V	YGNACIO VALLEY 2-6			
1N/1W-7K1	7-11-62	8-9-62					0 + 3.9
1N/1W-29G1	7-11-62	8-9-62					0 + 3.8
1N/2W-11N1	7-11-62	8-9-62					4.0 + 3.9
1N/2W-13P1	7-11-62	8-9-62					1.9 ± 4.0

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

				Rodioossoy	y in Pico Curies Per Liter	ss Per Liter	
Well Number	Somoted	Andivzed	Suspended Activity	Activity	Dissolved Activity	Activity	Gross
			Alpho	Beta	Alpho	Beto	Activity
			YGNACIO VALLEY 2-6 (Cont.)	2-6 (Cont.)			
2N/2W-27R1	7-10-62	8-9-62					0 + 3.9
2N/2W-36E1	7-10-62	8-9-62					0.4 + 4.0
		SAI	SANTA CLARA VALLEK 2-9 (East Bay	Y 2-9 (East Bay	7		_
4S/1W-21F2	9-6-62	9-24-62	0 + 0.14	0 + 4.6	0.06 ± 0.16	9 + 4.0	
4S/1W-21F2	12-5-62	12-21-62 12-18-62	0 + 0.17	2.5 ± 4.5	0 + 0,16	0.4 + 4.5	
4S/1W-21F2	3-7-63	3-17-63	0.1 + 0.2	8.6 + 4.9	0.0 + 0.1	16.8 + 5.0	
4S/1W-21F2	6-6-63	7-28-63	0 + 0.1	0 + 4.5	0 + 0.2	6.6 + 4.6	
4S/1W-21M1	9-6-62	9-24-62	0 + 0.19	0 + 4.5	0 + 0.18	0 + 4.6	
4S/1W-21M1	12-5-62	12-21-62	0 ± 0.18		0 + 0.20	, , , , 6	

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

				Radioossov	v in Pico Curies Per Liter	es Per Liter	
Well Number	Some	Apply 2 and	Suspended	Activ	1	Activity	90.5
		226000	Alpho		Alpho	Beta	Activity
		SANTA	CLARA VALLEY 2-9 (East Bay)	-9 (East Bay)	(Cont.)		
4S/1W-21M1	3-7-63	3-17-63 3-15-63	0.0 + 0.1	11.7 ± 4.9	0.0 + 0.1	32.2 ± 5.2	
4S/1W-21M1	6-6-63	7-28-63	0 + 0 -1	0.6 + 4.6	0.2 + 0.2	1.0 + 4.6	
6S/1E-7C1	8-62	10-8-62					1.8 + 3.3
6S/1E-21G1	8-62	10-8-62					0 + 3.3
6S/1W-11B1	8-62	10-8-62					0 + 3.3
6S/IW-14El	8-62	10-8-62					0 + 3.3
6S/lW-16Al	8-62	10-8-62					0 + 3.4
6S/1W-17N2	8-62	10-8-62					0 + 3.4
6S/1W-26D2	9-13-62	10-8-62					2.0 ± 3.3
6S/IW-28R1	8-62	10-8-62					0 + 3.3
6S/1W-29C1	8-62	10-8-62					0 + 3.2
6S/1W-30M1	8-62	10-8-62					0 + 3.4
6S/2W-9H1	8-62	10-8-62					0 + 3.3
			4	Ţ	4		

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

	Date	Dote		Rodioossay	y in Pico Curies Per Liter	es Per Liter	
Well Number	Sampled	Anolyzed	Suspended	Activity	Dissolved Activity	Activity	Gross
			Alpho	Beto	Alpho	Beto	Activity
		SANTA	CLARA VALLEY 2-9	(East Bay)	(Cont.)		
6S/2W-9K2	8-62	10-8-62					0 ± 3.2
6S/2W-20N1	8-62	10-8-62					0 ± 3.1
6S/2W-21A	8-62	10-8-62					0 + 3.2
6S/2W-24M3	8-62	10-8-62					0 + 3.4
6S/2W-29D2	8-62	10-8-62					0 ± 3.2
6S/2W-34M1	8-62	10-8-62					0 ± 3.2
6S/2W-36H2	8-62	10-8-62					0 + 3.3
7S/1W-5L	8-62	10-8-62					0 ± 3.1
			LIVERMORE VALLEY 2-10	ALLEY 2-10			
2S/2W-27Kl	4-11-62	5-11-62					0 + + 0
2S/2W-35G2	4-11-62	5-11-62					0 + 3.84
3S/2E-8H1	4-11-62	5-11-62					0 + 3.8
4S/1E-3K1	4-4-62	5-11-62					0 + 3.9
4S/1E-10G1	4-10-62	5-11-62					1.28 ± 4.2
4S/1E-10H1	4-10-62	5-11-62					36.31 + 4.6

				Radioassay	in Pico Curies Per Liter	es Per Liter	
Well Number	Sampled	Analyzed	Suspended Activity	/11y	Dissolved Activity	1 Activity	Gross
			Alpha	Beto	Alpha	Beto	Activity
		CH	CENTRAL COASTAL REGION (No. 3)	(No. 3)			
		_	PAJARO VALLEY 3-2	3-2			
12S/2E-30E1	7-23-62	10-22-62					0 + 3.4
12S/2E-30N1	7-23-62	10-8-62					0 + 3.4
12S/2E-31C1	7-23-62	10-8-62					0 + 3.3
12S/2E-31K1	7-24-62	10-8-62					0 + 3.4
12S/2E-32C1	7-24-62	9-26-62					5.1 ± 3.5
13S/1E-1A1	7-23-62	10-8-62					0 + 3.4
13S/2E-6E2	7-24-62	9-26-62					4.2 ± 3.5
13S/2E-1K1	7-31-62	9-56-62					1.6 ± 3.5
13S/2E-10J1	7-31-62	9-26-62	SALINAS VALLEY 3-4	3-4			0 + 3.4
			CARMEL VALLEY 3-7	3-7			
15S/1E-22C1	7-11-62	9-56-62					0 + 3.4
15S/1E-23G1	7-11-62	9-26-62					0 + 3.4

TABLE E-2 RADIOASSAY OF GROUND WATER 1963

	Г											
	80.0	Activity		3.3 ± 3.9	1.6 ± 3.4	0 + 3.5	0 + 3.4	3.2 + 3.4	2.1 ± 3.4	0.1 ± 3.4	0 + 3.3	
s Per Liter	Activity	Beto										
Rodioassay in Pica Curies Per Liter	Dissolved Activity	Alpho										
Rodioassay	Activity	Beto	3-7 (Cont.)									
	Suspended Activity	Aipho	CARMEL VALLEY 3-7 (Cont.)				,					
0,00	0.000	2076		9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	9-26-62	
	S S S S S S S S S S S S S S S S S S S			7-11-62	7-10-62	7-10-62	7-10-62	7-11-62	7-10-62	7-9-62	7-11-62	
	Well Number			15S/1E-26N2	16S/1E-16L1	16S/1E-16N1	16S/1E-17G1	16S/1E-18K1	16S/1E-23F1	16S/1E-25Bl	16S/1W-13L2	

SACRAMENTO RIVER AT COLLINSVILLE SUISUN BAY AT BENICIA ARSENAL

- SUR SIAN RIVER NEAR HOPLAND

 SO NAVARRO RIVER NEAR NAVARRO

 SO BLE RIVER NEAR NAVARRO

 SO BLE RIVER NEAR MOUTH

 90 CUALALA RIVER, SOUTH FORE, NEAR

 100 RUSSIAN RIVER NEAR HEALISBURG

 101 RUSSIAN RIVER, SOUTH FORE, NEAR

 102 RUSSIAN RIVER, TAST FORE, ALL NOTY

 VALLEY POWERHOUSE

 103 SALINAS RIVER NEAR SPEECKELS

 104 SALINAS RIVER NEAR SPEECKELS

 105 SALINAS RIVER HAR SPEECKELS

 106 SALINAS RIVER NEAR SPEECKELS

 107 SALINAS RIVER NEAR SEALEY

 108 SALINAS RIVER NEAR SEALEY

 109 SALINAS RIVER NEAR SEALEY

 109 SALINAS RIVER NEAR ST. HELDYN

 109 SAL SOUTH SEALEY

 109 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS RIVER NEAR SILES

 100 SALINAS

Foldout too large for digitization

May be added at a

later date

	,

GROOMS WZ D

CENTRA

NORTH COASTAL REGION

1-14.0	Potter Vulle
1-15	Ukrah Valle.
1-16	Samer Valle.
1-11,7.	Alexander Val.
1-18	Sunt. R.s
1-18.11	Santa Ria Je L
1-18.02	neuloss pr Ar
1-98	Lower Russium R. e

SAN FRANCISCO BAY REGION

2-1, 1,	Petalum 11.
2-2.	Napa-S mu=u11c
1+2. 1	Napa V11.
2-22	Sinces Vill
2-3.0	Suisan-Fairice.
1-3	Claytor Fail.
1-6,00	Ygnacic Villi
2	Santa Claru 1 (1)
L=9.c1	East Eay Are
92	South Bar Dre
12.20	Livermore
2.00	Hali Moon ba. Ter
30	San Gregori
0,0	Festadero Vulle:

Foldout too large for digitization

May be added at a

later date

SANEL VALLEY (1-16.00) MENDOCINO COUNTY

WELLI3N/IIW - 18E1, MDB.8M GROUND SURFACE ELEVATION 490'

, SONOMA COUNTY (1-18.00) SA AREA (1-18.01) 8W - 13 RI, M D B. B M SURFACE ELEVATION 110

EASUREMENTS MADE AT INTERVALS PR MORE

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
BAY AREA BRANCH
HYDROLOGIC DATA
CENTRAL COASTAL AREA

FLUCTUATION OF WATER LEVEL
IN WELLS
NORTH COASTAL REGION
1963

UKIAH VALLEY (1-15.00) MENDOCINO COUNTY WELL ISN/12W-BLI, M.D.B. & M. OROUND SURFACE ELEVATION OOD

5

۷ ۵

S

ø

Li.

0

SANEL VALLEY (1-16.00) MENDOCING COUNTY

WELLIBN/IIW ~ IBEI, M.D.B. B.M. GROUND SURFACE ELEVATION 490"

SANTA ROSA VALLEY, SONOMA COUNTY (1-18.00) SANTA ROSA AREA (1-18.01) WELL 6N/BW-13R1, M.D.B. 8 M.

GROUND SURFACE ELEVATION IIB

---- CONNECTS MEASUREMENTS MADE AT INTERVALS OF A YEAR OR MORE

> STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES BAY AREA BRANCH HYDROLOGIC DATA CENTRAL COASTAL AREA

FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION

1963

STATE OF LAUFORMA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
BAY AREA BRANCH
HYOROLOGIC DATA
CENTRAL COASTAL AREA

STATUS OF SEA-WATER INTRUSION SANTA CLARA VALLEY EAST BAY AREA

1963

SCALE OF WILES

Foldout too large for digitization

May be added at a

later date

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

JUN 11 FC;)

JUN 11 FC;)

JUN 11 FC;)

JUN 11 FC;)

ALF 25 JYE

JUN 21 REC'D

MAR 1 9 1983

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6, 66 (G3855s4) 458

Nº 482505

3 1175 00670 0168

California. Dent. of Water Resources. Rulletin.

PHYSICAL SCIENCES LIBRARY mc°21₁ C2 A2 no.130:63 v.3 c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

TC 2 24

California Dept. of 42

A2 ... 0.130:t3

Taker desources.

Sulletin.

10/10

