Almost Beatty Partitions

Matthew Cho, Xiaomin Li, Yun Xie, Junxian Li (Graduate Student), A.J. Hildebrand (Faculty Advisor)

University of Illinois Undergraduate Research Symposium, April 19, 2018

Beatty Sequences

Definition

Let γ be an irrational number. The Beatty sequence B_{γ} is defined as

$$B_{\gamma} = \{ \lfloor n\gamma \rfloor, n = 1, 2 \dots, \},$$

where |x| is the floor function.

Example: Partition of Integers Let ϕ be the golden ratio.

n	1	2	3	4	5	6	7	8
$n\phi$	1.62	3.24	4.85	6.47	8.09	9.70	11.33	12.94
$\lfloor n\phi \rfloor$	1	3	4	6	8	9	11	12
$n\phi^2$	2.61	5.24	7.85	10.47	13.09	15.71	18.33	20.94
$ n\phi^2 $	2	5	7	10	13	15	18	20

Dootty acquirement of D and D

Beatty sequences of B_ϕ and B_{Φ^2} .										
1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	

Beatty Partition with B_{ϕ} and B_{ϕ^2} .

Samuel Beatty

- Published Beatty's Theorem as a problem in the American Mathematical Monthly in 1926.
- First person receiving a Ph.D degree in mathematics from a Canadian university.
- One of the founders and the first president of the Canadian Mathematical Congress.

Samuel Beatty (1881-1970)

John W. Strutt (3rd Baron Rayleigh)

- Stated Beatty's Theorem even earlier in his book "The Theory of Sound" in 1894.
- Received the Nobel Prize in Physics in 1904 for discovering Argon.

John William Strutt (1842-1919)

Partitions of the Integers with Beatty Sequences

Theorem (Beatty's Theorem)

Let α and β be two positive irrational numbers. B_{α} and B_{β} form a partition of the integers if and only if

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

Theorem (Uspensky's Theorem)

Beatty's Theorem does not hold for three (or more) sequences. That is, if α , β and γ are arbitrary positive numbers, then B_{α} , B_{β} and B_{γ} do **not** partition the positive integers.

How close can a 3-part partition be to three Beatty Sequences?

Theorem (3-part Almost Beatty Construction 1)

Let α and β be two irrational numbers such that B_{α} and B_{β} are disjoint. Let γ be the irrational number such that

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$$

Denote

$$B_{\gamma}^* = \mathbb{N} \backslash (B_{\alpha} \cup B_{\beta}).$$

Let $B_{\gamma}(n)$ be the *n*-th term of B_{γ} . Then

$$\max_{n} (B_{\gamma}^{*}(n) - B_{\gamma}(n)) = \max\left(\left\lfloor \frac{1}{\alpha - 1} \right\rfloor, \left\lfloor \frac{1}{\beta - 1} \right\rfloor\right) + 2.$$

$\alpha=\phi^2$, (red) $\beta=\phi^3$, (blue) $B_{\gamma}^*(n)-B_{\gamma}(n)\in\{1,2\}.$

Theorem (3-part Almost Beatty Construction 2)

Given $\alpha > 2$, let

$$B_{\alpha}^* = B_{\alpha} - 1.$$

Let γ be the irrational number such that

$$\frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{\gamma} = 1.$$

Denote

$$B_{\gamma}^* = \mathbb{N} \backslash (B_{\alpha} \cup B_{\alpha}^*).$$

Let $B_{\gamma}(n)$ be the n-th term of B_{γ} . Then

$$B_{\gamma}^{*}(n) - B_{\gamma}(n) \in \{0, 1\}$$

Numerical Data on Distribution of Errors: $B_{\gamma}^*(n) - B_{\gamma}(n)$

Greedy Construction

Let α , β , γ be positive irrational numbers such that

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$$

Construct sequences $B_{\alpha}^*, B_{\beta}^*, B_{\gamma}^*$ iteratively as follows:

• For each $n = 1, 2, 3, \ldots$ place n into the sequence for which the

$$B_{\alpha}^{*}(n) - B_{\alpha}(n)|, |B_{\beta}^{*}(n) - B_{\beta}(n)|, |B_{\gamma}^{*}(n) - B_{\gamma}(n)|$$

is smallest.

• By construction, the resulting sequences $B_{\alpha}^*, B_{\beta}^*, B_{\gamma}^*$ form a partition of the positive integers.

Conjecture

The partition generated by the Greedy Construction satisfies

$$|B_{\alpha}^{*}(n) - B_{\alpha}(n)|, |B_{\beta}^{*}(n) - B_{\beta}(n)|, |B_{\gamma}^{*}(n) - B_{\gamma}(n)| \le 2$$

for all positive integers n.

Numerical Example: Distribution of Errors

Future Work

- Determine the possible errors and their frequencies in terms of α and β .
- Classify the cases when the errors are 0.
- Investigate the possible relations between different types of constructions.
- Extend current constructions to partitions with more than three parts.

References

- John William Strutt, 3rd Baron Rayleigh (1894). The Theory of Sound. 1 (Second ed.). Macmillan. p. 123.
- Beatty, Samuel (1926). Problem 3173. American Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153
- Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp. 516–521.