Functions as relations

- Read carefully pages 216 through 219 (sections 9.1, 9.2)
- Some key questions to answer:
 - 1. A function from a set A to B is a special kind of relation from A to B. What special property does it need to satisfy?
 - 2. What other name do we use for a function?
 - 3. How do we call the sets A and B in relation to a function $f: A \to B$?
 - 4. Explain why when we think of a function f as a relation, i.e. a subset of $A \times B$, then the cardinality (number of elements) of that relation must equal the cardinality of A.
 - 5. What do we define as the *range* of a function *f*? How does it differ from the *codomain*?
 - 6. Consider the empty relation. When can that relation be a function?
 - 7. Consider the full relation $A \times B$. When can that relation be a function?
 - 8. When do we say that two functions are *equal*? Prove that this condition is equivalent to asking for the two functions to be equal as subsets of $A \times B$.
 - 9. Think about the following sentence: "If we have a real function y = f(x) from Calculus, then its graph, a subset of $\mathbb{R} \times \mathbb{R}$ is exactly what this function is thought of as a relation".
 - 10. How many functions are there from the set $A = \{1, 2, 3\}$ to the set $B = \{x, y\}$?
 - 11. In general, how many functions are there from a set with k elements to a set with n elements?
 - 12. Given a function $f: A \to B$ and a subset C of A, what do we denote as the *image set* f(C)?
 - 13. Given a function $f: A \to B$ and a subset D of B, what do we denote as the inverse image set $f^{-1}(D)$? Note that this is defined regardless of whether the function f has an "inverse" in the sense learned in Calculus.
 - 14. What is $f(\emptyset)$? What is $f^{-1}(\emptyset)$?
 - 15. True or False: $x \in f^{-1}(D)$ if and only if $f(x) \in D$.
 - 16. Food for thought: The set of all functions $f: A \to \{0,1\}$ is in correspondence with the subsets of A:
 - **-** Given such a function, we can associate it to the set $B = f^{-1}(\{1\}) \subseteq A$.
 - Given a subset $B\subseteq A$, we can build a function $f\colon A\to\{0,1\}$ so that f(x)=1 if $x\in B$ and f(x)=0 if $x\not\in B$.
 - This is often called the "incidence function" or "characteristic function" of the subset.
 - 17. Suppose $f: A \to B$ is a function, thought of as a relation, i.e. subset of $A \times B$. Suppose $C \subseteq A$ is a subset of A. Consider the relation $f \cap (C \times B)$. Show that this defines a function from C to B. This is known as the restriction of the domain of f to C.
- Practice problems from section 9.1 (page 234): 9.1, 9.3, 9.5, 9.7, 9.8, 9.9, 9.11, 9.12
- Practice problems from section 9.2 (page 235): 9.15, 9.16