- 50 -

ABSTRACT

The invention provides a process, catalyst and apparatus for carrying out the water-gas shift reaction comprising employing a low-pyrophoricity water-gas shift reaction catalyst; wherein the low-pyrophoricity water-gas shift reaction catalyst comprises a solid high heat capacity particulate support impregnated with: (i) a reducible metal oxide and (ii) a catalytic agent.

UNITED STATES PATENT AND TRADEMARK OFFICE DOCUMENT CLASSIFICATION BARCODE SHEET

Drawings

7

Figure 1

Activities (lines) and pyrophoricity (columns) of FeCr, CuO/ZnO/Al₂O₃, CuO/CeO₂ and CuO/CeO₂/Al₂O₃

Comparison of activity (lines) and pyrophoricity (columns) of Pt/CeO₂ and Pt/CeO₂/Al₂O₃ catalysts

Dependence of WGS activity on Ce- and Cu-loading (18,846-29+38, samples WR-66,75, exp. WR-67,76,78)

Crush strength of catalyst support particles Average and standard deviation of 20 samples

FIG. 6

711 no Cr₂O₃ 712 2%wt. Cr₂O₃ 713 8%wt. Cr₂O₃ 350 Figure 7: Effect of Cr₂O₃ Level on the Catalytic Activity of CuO/Al₂O₃ WGS Reaction Catalysts 300 Temperature (degrees C) 250 200 713 150 75% 50% 25% CO Conversion

Temperature (degrees C)

811 0%wt. Cr₂O₃
 812 2.1%wt. Cr₂O₃
 813 5%wt. Cr₂O₃

Figure 9: Effect of the Sequence of Synthetic Steps on the Catalytic Activity of CuO/Cr₂O₃/CeO₂/Al₂O₃ WGS

Temperature (degrees C)