Evergreen Surveillance

Senior Project

Primary Advisor: Mr. Salman Chaudhry Secondary Advisor: Mr. Akheem Yousaf

Presented by:

22-10293	Bareera Malik
22-11345	Bilal Saddique
22-11108	Mahad Rashid Khurshid

Department of Computer Science

Forman Christian College (A Chartered University)

Evergreen Surveillance

Ву

Bareera Malik Bilal Saddique Mahad Rashid Khurshid

Project submitted to:

Mr. Salman Chaudhry

Department of Computer Science,

Forman Christian College (A Chartered University),

Lahore, Pakistan.

In partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE (Honors)

Primary Project Advisor	Secondary Project Advisor
Senior Project Management	
Committee Representative	

Abstract

Trees are crucial for countless human services and it won't be wrong to label them as the life support systems for the planet. It is an undoubted fact that urban areas experience higher levels of air pollution due to the "human impact" which involves releasing of harmful gases and urban sprawling. Many pollutants, such as SO2, NO2, CO2, NO, CO, NOx, PM2.5, and PM10 can be found in the atmosphere. Trees are much crucial assets than we imagine them to be against the harmful air quality which propose threatening diseases for us humans. As essential as they are for us and the environment we breathe in, it is equally important for us to be aware of the trees we live with or the urban forest that surrounds us. From individually standing street trees, greenspaces, and groves to suburban forest all put together make up the green infrastructure of our community. In order to ensure an excellently breathable Air Quality Index, tracking tree count and regularly monitoring them is the main step to achieving the goal. After going through a number of researches, facts and figures, we found that presence of trees is directly proportional to the improvement in AQI given the kind of area targeted is a constant factor. To serve the purpose, this paper "Evergreen Surveillance" presents a "tree detection & monitoring system to predict AQI" using google maps API. The approach of our system is such that it works by comparing satellite images of a targeted area where trees or any green area is detected and the green covered area (sqkm) is constantly recorded in the data log. The data log is regularly being updated as a newer image comes in and is compared with the previous image in account of the green covered area. And thus by comparing the value of green covered area over a certain period of time, we can derive where plantation needs to be done in order to improve the AQI eventually. The next part of our project involves predicting the Air Quality Index for which we have used the prediction model of python essentially by collecting and analyzing past data. We have trained a model that will detect patterns in order to predict the final outcome. The results of our project will highlight the importance of trees/greenery in the improvement of Air Quality Index and is a specific solution for all the organizations and institutes who need to be aware of the vegetation, trees or the green area condition in order to improve and maintain the air quality.

Acknowledgement

The completion of this project would not have been possible without the expertise of Sir Salman Chaudhry, our respected project advisor. We would like to express our deepest appreciation and give our warmest thanks to him. His guidance, persistent help and overall insights in this field has carried us through all the stages of our final year project and has made this an inspiring experience for us. We especially acknowledge him for his involvement with originality which has nourished our intellectual maturity that will help us for a long time to come.

In addition, we'd also like to thank Sir Akheem Yousaf, whose invaluable feedback and encouragement greatly influenced the course of our project. Both our advisors, Sir Salman Chaudhry and Sir Akheem Yousaf, have been incredible mentors and we are grateful to them. Also, deep sense of gratitude for the Faculty of Computer Science at Forman Christian College (A Chartered University) for providing us with the resources and knowledge to pursue graduate study in this department.

Most importantly, we owe this project to our parents. We are forever indebted to them for their love and emotional as well as financial support. Without their constant presence and support, this day would not have been possible. Last but the most significant, we would like to praise and thank Allah, the almighty, who has granted countless blessing, knowledge, and opportunities to us, so that we have been finally able to witness this accomplishment.

List of Figures

Figure 1	Use Case Diagram	18
Figure 2	Component Diagram	21
Figure 3	Entity-Relationship Diagram	22
Figure 4	Class Diagram	23
Figure 5	Sequence Diagram	24
Figure 6	Data Flow Diagram	25
Figure 7	System Architecture	26
Figure 8	Sign Up Page	30
Figure 9	Login Page	31
Figure 10	HomePage	31
Figure 11	HomePage	32
Figure 12	HomePage	32
Figure 13	HomePage	33
Figure 14	Result Page	33
Figure 15	Result Page	34
Figure 16	Blog Page	34
Figure 17	Contact Form	35

List of Tables

Table 1	UC-1	
Table 2	UC-2	7
Table 3	UC-3	8
Table 4	UC-4	9
Table 5	UC-5	10
Table 6	UC-6	11
Table 7	UC-7	12
Table 8	UC-8	13
Table 9	UC-9	14
Table 10	UC-10	15
Table 11	UC-11	16
Table 12	UC-12	17
Table 6.1	TC-1	30
Table 6.2	TC-2	31
Table 6.3	TC-3	32
Table 6.4	TC-4	33
Table 6.5	TC-5	34
Table 6.6	TC-6	35
Table 6.7	TC-7	36
Table 6.8	TC-8	37
Table 6.9	TC-9	38
Table 6.10	TC-10	39
Table 6.11	TC-11	40
Table 6.12	TC-12	41
Table 6.2	Summary of All Test Results	42

Table of contents

ABST	RACT		
ACKN	OWLEI	OGEMENT	
LIST (OF FIGU	JRES	II
LIST (OF TABI	LES	II
СНАРТ	ER 1. II	NTRODUCTION	1
1.1	Introdu	JCTION	1
1.2	Овјесті	VES	2
1.3	PROBLE	и Statement	2-3
1.4	SCOPE		
СНАРТ	ER 2. R	EQUIREMENTS ANALYSIS	
2.1	LITERATI	JRE REVIEW	
2.2	USER CL	ASSES AND CHARACTERISTICS	4-5
2.3	DESIGN A	AND IMPLEMENTATION CONSTRAINTS	5-6
2.4		TIONS AND DEPENDENCIES	
2.5	FUNCTIO	onal Requirements	7-18
2.6		E DIAGRAM	
2.7		ictional Requirements	
2.8	OTHER F	REQUIREMENTS	21
СНАРТ	ER 3. S	YSTEM DESIGN	22
3.1	APPLICA	TION AND DATA ARCHITECTURE	22-24
3.2	Сомрог	NENT INTERACTIONS AND COLLABORATIONS	25-26
3.3	System	Architecture	27-28
3.4	ARCHITE	CTURE EVALUATION	29
3.5	Сомрог	NENT-EXTERNAL ENTITIES INTERFACE	29
3.6	SCREENS	SHOTS/PROTOTYPE	29-35
3.7	OTHER [Design Details	36
СНАРТ	ER 4. T	EST SPECIFICATION AND RESULTS	37
4.1	TEST CA	se Specification	37-48
4.2	Summa	RY OF TEST RESULTS	49
CHAPT	ER 5. C	ONCLUSION AND FUTURE WORK	50
5.1	PROJECT	SUMMARY	50
5.2	PROBLE	VIS FACED AND LESSONS LEARNED	50
5.3		WORK	
REFERI	NCES		52
APPEN	DIX A	GLOSSARY	53
APPEN	DIX B	DEPLOYMENT/INSTALLATION GUIDE	
APPEN	DIX C	USER MANUAL	54
APPEN	DIX D	STUDENT INFORMATION SHEET	55
APPEN	DIX E	PLAGIARISM FREE CERTIFICATE	56
APPENDIX F PLAGIARISM REPORT			

Revision History

Name	Date	Reason For Changes	Version

Chapter 1. Introduction

1.1 Introduction

According to an official study, Pakistan has five trees per person while the world average is 422. Other than just producing cleaner air for us to breathe, trees are also responsible for reduction in energy use, improvement in water quality, increased carbon capture and storage, and an improvement in individual and community wellbeing. According to the International Society of Arboriculture, the largest type of existing pollutants are called "particulates" which are less than 2.5 microns in size normally generated by combustion of fossil fuels, construction and complex reactions between sunlight and gaseous pollutants. These particulates have been associated with respiratory and cardiopulmonary diseases, and cancer. The good thing is even though they are not fully absorbed by trees because of their tiny size, leaves are able to collect them on the surface and remove them from the atmosphere.

The motivation behind proposing our project is to spread awareness and monitor our environment because only then can a change be brought about on an individual as well as the state level. Our meticulously designed system is using image processing to analyze satellite images and then predict AOI (Air Quality Index) for future days. It uses techniques such as color thresholding and image segmentation to extract the green covered area from satellite images. The extracted green area is then used as a feature to align with the predicted AQI levels. The predictor model is trained using historical AQI data and meteorological data to have it working. We have used python libraries such as OpenCV, scikit-learn, numpy and pandas. The project can be run on a local machine or on a remote server, and the user can request predicted AQI value of 1th day, 15th day, and 30th day as well. The user can request for AQI predicted value using location and latitude longitude as well. In return, our system will show the map view as well as the satellite view of the requested location with the covered area and AOI value against the two views. It is worth noting that such predictions are usually approximate, and that the accuracy of these predictions may vary depending on other environmental factors and the quality of the data used for training and testing and the complexity of the model. Moreover, to make the system precise, we are taking satellite images that are of different zoom levels for detailed and meticulous results. Improving the urban forest around us provides a baseline to start monitoring patterns and trends as things change with climate change. Our proposed project is intended to act as a kick-start for different institutes and organizations in Pakistan to overcome problems that require tree count to be known as the first thing.

1.2 Objectives

Our main objectives for our system are:

- Utilize image processing techniques(OpenCV) and machine learning techniques(TensorFlow) to analyze satellite images and identify the amount of green coverage present in a specific area
- Train a model that can accurately predict future AQI levels for different days (1th, 15th and 30th day in our case)
- Monitor the green coverage and AQI in a specific area and forecast the AQI for future days.
- Provide insights to authorities and organizations that can help in making decisions on environmental policies, urban planning and public health measures.
- Visualizations of the data collected and analyzed, such as satellite images of the area showing green coverage
- Results of the AQI predictions over time.

Overall, this project aims to use image processing and machine learning techniques to gain a better understanding of the relationship between green coverage and air quality index through the results. Moreover, what is even more crucial is the fact that there are many other factors involved in determining the AQI of an area, and so this can be deduced if AQI of a particular area remains the same even after green covered area has increased over time.

1.3 Problem Statement

Urban areas need trees to be environmentally sustainable. Urban forestry management can be a challenging task with uncountable trees in our environment. We are all aware that Afforestation is critical to mitigate climate change but Pakistan's rapid deforestation still remains the second highest in Asia. Being a climate-vulnerable country where deadly heat waves are becoming more common, Pakistan's forest cover is among the lowest in the world (5% compared with the global average of 31%). According to environmentalists, our cities are becoming completely concretized and town planners don't keep plantations in mind ignoring the fact that urban plantation is equally important as it provides shade, beauty but most importantly a cooling effect. While it should be the other way around, it is seen that town planners sometimes cut down trees in order to construct buildings. Other than this, while it is true that buildings and infrastructure experience a cooling effect from urban green spaces, old and dead trees are a hazard as they pose safety risks and can spread diseases so cutting down trees is also something that needs to be taken care of.

By highlighting the significance of these problems, it can be easily concluded that the solution to all these problems is only possible if rigorous monitoring is done of urban trees and our project aims to do exactly that.

With the department of climate change and meteorology being the primary body that will need this system, there are other organizations and institutes that need this update in account of the problems listed above. Plantation drive initiators and urban forest projects also require this system so they are aware of the current situation of the depleting green cover in an area and can plan out their projects accordingly.

Laws against cutting down trees can only be implemented if authorities are aware of when trees are cut down and where. Through our project, reports can be generated highlighting the spots wherever any sort of violation occurs.

1.4 Scope

We are trying to step up from the manual Tree/ Management System to the autonomous Web related interface. Our system will have two components, the first component includes detection of green covered area with justified accuracy using Google Maps. Second component includes a predictor that will predict the air quality index. Our objective is to propose a fully automated tree detection system that can process thousands of images using publicly available satellite images of Google Maps. We will be applying CNN (Convolutional Neural Networks) and LSTM (Long Short Term Memory Model) for image processing and prediction. Initial steps of our system are that satellite images of our area of interest are downloaded and then green covered are is detected per image. In addition to this, our system will also be predicting the air quality index in the targeted area. For instance, if our system shows the AQI of today, it is trained to predict the AQI for the very next day, after 15 days and then 30 days as well. This prediction will align (with other factors as well) since temperature, oxygen and carbon-monoxide levels, along with some other gasses are also affected by the number of trees in an area.

Chapter 2. Requirements Analysis

2.1 Literature Review

Tree detection in cities has gained attention since the early 2000s. Early methods for single tree delineation in cities were inspired by scale-space theory (initially also developed for forests by Brandtberg and Walter (1998)). A common strategy is to first segment data into homogeneous regions, respectively 3D clusters in point clouds, and then classify regions/clusters into tree or background, possibly followed by a refinement of the boundaries with predefined tree shape priors or active contours. For example, Straub (2003) segments aerial images and height models into consistent regions at multiple scales, then performs refinement with active contours. Recent work in urban environments (Lafarge and Mallet, 2012) creates 3D city models from dense aerial LiDAR point clouds, and reconstructs not only trees but also buildings and the ground surface. After an initial semantic segmentation with a breakline-preserving MRF, 3D templates consisting of a cylindrical trunk and an ellipsoidal crown are fitted to the data points. Similarly, tree trunks have been modeled as cylinders also at smaller scales but higher resolution, using LiDAR point clouds acquired either from UAVs (Jaakkola et al., 2010) or from terrestrial mobile mapping vehicles (Monnier et al., 2012).

2.2 User Classes and Characteristics

In a Python project that uses image processing to extract information about vegetation from satellite images and then uses that information, along with air quality data, to predict future AQI values.

There could be several user classes each with different characteristics since our system falls in the category of "environmental projects." The characteristics of these user classes are that they may have different levels of technical knowledge, different goals and different ways of accessing and using the system. The user classes are as follows:

General Public: These users will be interested in accessing the predictions to understand the air quality index in their particular area and how it may be affected by vegetation. They have a general interest in environmental issues and in improving the environmental condition around us to protect themselves from threatening diseases. They may not have a specific background in the field.

Government Officials: These users are interested in using the predictions regarding AQI and data about the green covered area to make decisions about air quality management and policy as well as urban forestry programs. Government officials will also halt urban town planning if they need to if a situation in an area gets alarming. These users are interested in using the predictions to support their decisions.

Environmental Scientist: These users are interested in using the predictions to understand the relationship between vegetation and air quality. These users are also expected to be familiar with AQI data and its implications.

Developers: These users are responsible for the development, maintenance, and testing of the system. They have a strong background in software development and are familiar with image processing, machine learning and web development technologies.

We have considered the user's needs and goals when designing the system, by making it user-friendly and accessible to a wide range of users.

2.3 Design and Implementation Constraints

There could be several design and implementation constraints that need to be taken into account:

Dataset Availability: The availability of high-quality satellite images and air quality data may be limited, which could impact the accuracy of the results. The project may need to incorporate data from multiple sources and pre-processing techniques to clean and organize the data.

Computational Technicalities/Resources: The image processing and machine learning tasks required for our system may require significant computational resources, especially if the project needs to process large amounts of data. The project may need to be designed to take advantage of distributed computing systems or cloud-based services to handle the computational load.

Data Privacy and Security: The project may need to handle sensitive data such as personal information of the users and location data, so the project must be designed with data privacy and security in mind. This can include using encryption to protect data, and implementing access controls to restrict access to sensitive data.

User Interface: The project should be designed with a user-friendly interface to make it easy for users to access the predictions and understand the results. This may include incorporating visualizations, interactive maps, and other tools to help users understand the predictions.

Scalability: The project should be designed to be scalable, so that it can handle increasing amounts of data and user demand as the project grows. This could include designing the project to be modular, so that new features can be easily added, and implementing load balancing and other techniques to handle increased traffic.

Testing and validation: The project should be thoroughly tested and validated to ensure that the predictions are accurate and that the system is reliable. This includes testing the image processing and machine learning algorithms, as well as the user interface, to ensure that the system is working as expected.

Hardware constraints: The project may have constraints on the hardware and operating system it can be deployed on, especially if it is intended to run on a specific platform.

2.4 Assumptions and Dependencies

- A person using the system should have a minimum understanding of the system and should have minimal qualifications.
- The images should be clear.
- The picture of vegetation should contain more subjects and minimum distractions.
- A crisp sharp image instead of blurry images should be scanned.
- The hardware and software requirements of the system should be up to the mark on which the Application has to run.

2.5 Functional Requirements

Use Cases:

2.5.1 User opens the website

Ident	tifier	UC-1: User opens the website		
Purp	ose	To collect the satellite images for database.		
Prior	rity	High		
Pre-c	conditions	Internet connection is requi	red.	
Post-	conditions	User allows software to tak	te the picture.	
		Typical Course	of Action	
S#	A	ctor Action	System Response	
1	User opens the we	ebsite	Login	
2	2 Open their dashboard		Dashboard opened	
3	3 Click on "Take Snapshot"		Website asks the user to access its geolocation	
•••	The user selects the geolocation		Website asks the user to take the snapshot	
		Alternate Course	of Action	
S#	Actor Action		System Response	
1				
2				
3				
•••				

Table 1: UC-1

2.5.2 Give Access to API

Ident	tifier	UC-1: Give Access to API		
Purp	ose	The user gives access to the application		
Prior	rity	High		
Pre-o	conditions	Internet connection is requi	ired.	
Post-	conditions	The user will give access to	o the application	
		Typical Course	of Action	
S#	A	actor Action	System Response	
1	User gives access	s to the application	System gets the access of the geolocation	
2				
3				
		Alternate Course	e of Action	
S#	A	actor Action	System Response	
1	User denies givin	ng access to the Map API.	System does not get access to the Map API.	
2			System displays information "Map API access is required".	
3				
•••				

Table 2: UC-2

2.5.3 Give Access to Location

Iden	tifier	UC-3: Give Access to Location		
Purp	oose	The user gives access to the application to get the geolocation		
Prior	rity	High		
Pre-	conditions	Internet connection is requ	ired.	
Post-	-conditions	The geolocation of the user	will be known to the application	
		Typical Course	of Action	
S#	1	Actor Action	System Response	
1	User gives acces	ss to the location	System gets the access of the location	
2				
3				
•••				
		Alternate Course	e of Action	
S#	1	Actor Action	System Response	
1	User denies givi	ng access to the location	System does not get access to the Map API.	
2			System displays information "Location access is required".	
3				
•••				

Table 3: UC-3

2.5.4 Take Snapshot

Ident	tifier	UC-4: Take Snapshot		
Purp	ose	To take snapshot of green covered area		
Prior	rity	High		
Pre-c	conditions	A connection to theAccess to user's MAccess to user's lo	ap API	
Post-	conditions	The user will have to retake	e snapshot of the trees	
		Typical Course	of Action	
S#	A	ctor Action	System Response	
1	1 The user takes a snapshot of trees		The system gets the user the option to upload or retake snapshot	
2				
3				
•••				
		Alternate Course	e of Action	
S#	S# Actor Action		System Response	
1				
2				
3				
•••				

Table 4: UC-4

2.5.5 Retake snapshot

Identifier		UC-4: Retake Snapshot			
Purpose		The user retakes the snapshot			
Priority		High			
		A connection to the internet			
Pre-c	conditions	Access to user's Map API			
		Access to user's location			
Post-	conditions	The user will have a retaken snapshot of trees			
		Typical Course	of Action		
S#	Actor Action		System Response		
1	The user retakes a snapshot of trees		The system gives the user the option to upload or retake the snapshot		
2					
3					
•••					
	Alternate Course of Action				
S#	S# Actor Action		System Response		
1					
2					
3					
•••					

Table 5: UC-5

2.5.6 Upload the Snapshot

Identifier		UC-4: Upload the Snapshot		
Purpose		The user uploads the snapshot of the green covered area		
Priority		High		
Pre-conditions		 A connection to the internet Access to user's location 		
Post-	-conditions	The image is uploaded to the server		
		Typical Course	of Action	
S#	Actor Action		System Response	
1	The user uploads the image2.		The application tells the user that the image has been successfully uploaded.	
2				
3				
		Alternate Course	e of Action	
S#	Actor Action		System Response	
1	The user uploads the image		The application tells the user that the image has not been successfully uploaded.	
2				
3				
•••				

Table 6: UC-6

2.5.7 Analyze Image

Identifier		UC-4: Analyze Image				
Purpose		The image is analyzed to see whether or not it has green covered area.				
Priority		High				
Pre-conditions		The user has uploaded the snapshot				
Post-	-conditions	The geolocation of the image is either stored or discarded				
		Typical Course	of Action			
S#			System Response			
1	The image is analyzed by the server and green covered area is found.		The geolocation of the user is stored in the database.			
2						
3						
•••						
	Alternate Course of Action					
S#	Actor Action		System Response			
1	The image is analyzed by the server and green area is not found.		The geolocation of the user is discarded.			
2						
3						
•••						

Table 7: UC-7

2.5.8 Admin Login

Identifier		UC-8: Admin Login			
Purpose		To manage the server			
Priority		High			
Pre-conditions		Admin should have valid credentials.			
Post-conditions		Admin will be logged in to the server.			
		Typical Course	of Action		
S#	Actor Action		System Response		
1	Admin enters Username/Email				
2	Admin enters Password				
3			Display Main Page		
•••					
	Alternate Course of Action				
S#	Actor Action		System Response		
1			If admin enters invalid details, show an error message.		
2					
3					
•••					

Table 8: UC-8

2.5.9 Store Geolocation and Image

Identifier		UC-9: Store geolocation and image			
Purpose		To store the geolocation and image of the green covered area			
Prior	rity	High			
Pre-c	conditions	The analyzed image			
Post-conditions		The geolocation and image of the green covered area is stored on the server.			
		Typical Course	of Action		
S#	A	ctor Action	System Response		
1	The analyzed image contains green covered area		The geolocation is stored on the server database		
2			The image is stored on the server database		
3					
•••					
	Alternate Course of Action				
S#	Actor Action		System Response		
1	The analyzed image does not contain any green covered area.		The geolocation is not stored on the server.		
2			The image is not stored on the server database.		
3					
•••					

Table 9: UC-9

2.5.10 Accessing the AQI database

Identifier		UC-10: Accessing the AQI database		
Purpose		The application accesses the AQI database		
Priority		High		
Pre-conditions				
Post-	conditions	Access to the AQI database		
		Typical Course	of Action	
S#	Actor Action		System Response	
1	Admin will ask the server to access the AQI database		Access to AQI database will be granted	
2				
3				
•••				
Alternate Course of Action				
S#	Actor Action		System Response	
1				
2				
3				
•••				

Table 10: UC-10

2.5.11 Access the predicted AQI value

Iden	dentifier UC-11: Access predicted AQI value			
Purp	Purpose The application generates the predicted AQI value			
Prior	rity	High	-	
Pre-conditions		AQI database is granted		
Post-	-conditions			
		Typical Course	of Action	
S#	A	actor Action	System Response	
1	Admin will ask to share the predicted AQI value.		The server will send the AQI value.	
2				
3				
•••				
	•	Alternate Course	e of Action	
S#	Actor Action		System Response	
1				
2				
3				
•••				

Table 11: UC-11

2.5.12 Generating graphs

Identifier		UC-12: Generating graphs		
Purpose		To visualize the AQI value over time		
Priority		High		
Pre-conditions		We have the results for comparison		
Post-	-conditions	The graphs are shown on the website		
		Typical Course	of Action	
S#			System Response	
1	The user will be able to see the results and derive conclusions and suggestions.		The website will show the result graphs on the webpage.	
2				
3				
		Alternate Course	e of Action	
S#	Actor Action		System Response	
1				
2				
3				
•••				

Table 12: UC-12

2.6 Use Case Diagram

Figure 1: Use Case Diagram

2.7 Nonfunctional Requirements

2.7.1 Performance Requirements

The image processing tasks required for the project must be performed quickly, as the user may need to process a large number of images in a short period of time.

The predictions made by the system must be as accurate as possible as different user classes will be relying on them to make major decisions about air quality management and policy.

The system should be able to handle huge amounts of data under user demand as the project grows. This means the system should be able to handle increased traffic.

The system should be able to intelligently use the memory and storage resources, as the user will need to process and run a large number data in the form of images and store the predictions and the data.

The system should be responsive and available to the user requests most of the time, as the user may be relying on the predictions in real-time.

2.7.2 Safety Requirements

The system should ensure that the data used for image processing and machine learning is accurate and reliable. This might require to implement data validation and error checking to ensure error free data.

The system should be able to protect the privacy and confidentiality of the user's data, such as personal information and location data by implementing encryption.

The system should ensure that the data and predictions are backed up regularly, and that the system can recover from any failures. This may include installing a disaster recovery procedures.

The project should be thoroughly tested and validated to ensure that the predictions are accurate and that the system is reliable. This should include testing the image processing and machine learning algorithms, as well as the user interface to make sure that the system is working as expected.

2.7.3 Security Requirements

The project should make sure that the system is secure and protects the user's sensitive data from unauthorized access and breaches. This may include implementing firewalls and monitoring the system for potential security threats.

The project should ensure that the system complies with any relevant regulations and standards. This may include implementing auditing and other mechanisms to track user access and system activity and make sure that the system meets the industry standards for data security and privacy.

Machine learning models used in the system should also be safe and should not produce any unintended and harmful results. For this, testing of the model with diverse data may be required to monitor the model for any unexpected behavior.

2.7.4 Additional Software Quality Attributes

The application is reusable as it can be reused to fit a different role.

The application is reliable.

The application can be used at any time of the day.

No high end / expensive hardware or third party app is being used.

2.8 Other Requirements

The system should have low latency as the user may need the predictions in real-time. This might require to optimize the system architecture and implementing caching mechanisms to reduce latency.

Chapter 3. System Design

3.1 Application and Data Architecture

3.1.1 Component Diagram

Figure 2: Component Diagram

3.1.2 Entity-Relationship Model

Figure 3: Entity-Relationship model

3.1.3 Class Diagram

Figure 4: Class Diagram

3.2 Component Interactions and Collaborations

3.2.1 Design Level Sequence Diagram

Figure 5: Sequence Diagram

3.2.2 Data Flow Diagram

Figure 6: Data Flow Diagram

3.3 System Architecture

There are different components of our proposed system. To begin with, our front-end complies of a web-based user interface built using Django's built-in template engine and front-end libraries such as Bootstrap that allows user to visualize the predictions, request new location, and access historical data. The back-end of our system which is the server side application is built using Django web framework using tailwind CSS, HTMLwhich handles the image processing, data preparation, LSTM model training and prediction tasks. The back-end is also using libraries such as OpenCV, Pandas, numpy, matplotlib, and TensorFlow to have the system functioning. SQLite is used as a database which is supported by Django framework. Moreover, for machine learning model which incorporates data processing, model selection, training, evaluation, and deployment of ML models, we have used sickitlearn etc. There are many ways to collect data to run machine learning algorithms on it. For our project, we have collected dataset from more than just one authentic website. As an image is fetched through Google API, it is converted to a NumPy array, and then read into OpenCV format. The green covered area is detected and scanned through hues. The data has to be preprocessed in order to remove the unwanted data and to make the data useful. The preprocessing stage is important because it helps us to transform the data into a useful format. Our main step involved in data preprocessing has been feature scaling. By using sickit-learn library, we have used this method to normalize the range of our independent variables or the features of our data. This method is specifically used to bring all the features in the same range. There are a range of methods to scale your data. We have used Normalization. The general formula for normalization is:

$$X' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

The data is transformed to improve the structure and format for better data driven decision making.

After collecting the dataset, and performing data pre-processing techniques like feature scaling and data transformation. After the data is ready to be used, we put our data in arrays with two parameters with one having the air particles composition and the other one having the AQI data. We have considered PM2.5 variable for the prediction of our AQI variable. This is how the data is reshaped. The machine learning algorithm of Time-Series Analysis has been used to build a model for prediction. This particular method obtains inferences through observing occurrences based on past data with the data point series and predicts what is going to happen in the future. It is specifically used to for

prediction. The same preprocessed data is used to train the model with the identified algorithms. The built models will then be tested by calculating performance metrics. The performance metrics will test how well the model is predicting the AQI.

Since our project deals with prediction, we have considered Mean Absolute Error and Root Mean Square Error. We are validating our machine learning models by comparing the performance metrics. The lower the MAE, RSME, the machine learning model performs better.

Figure 7: System

3.4 Architecture Evaluation

We have used CNN (Convolutional Neural Network) and LSTM (Long Short Term Memory) model as they will both work well together to perform image processing and prediction tasks. LSTM is designed to maintain memory over a long sequence of inputs. This allows LSTMs to capture long-term dependencies and patterns in the data, making them effective for prediction tasks. On the other hand, CNNs are better in image recognition and processing tasks because they are designed to capture local patterns and features in images. In prediction tasks, the data has a string temporal aspect, LSTM is a better choice than CNN because of their ability to maintain memory. In tasks where the data is visual or spatial in nature, we have taken CNNs as a better choice. Alternative model such as RNN (Recurrent Neural Network) is also used for prediction tasks. However, they are less sophisticated than LSTMs and struggle to capture long-term dependencies in the data. On the other hand, GRUs (Gated Recurrent Unit) are faster to train and more computationally efficient models but we have used LSTM because it is best suited for the size and structure of the data.

Moreover, we have not used the NASA's API even though the images in that API were of an extremely high definition. The reason behind this is that such HDR images require a lot of time to be processed which we could not afford.

We have used Django framework for our web interface for a couple of reasons. Django has a large number of built-in features, such as the templating engine and more. For our scope of project, Django was best suited for our scale web interface and handle the traffic.

3.5 Component-External Entities Interface

The satellite image provider is one external entity which is providing the system with satellite images, the interface is Goggle Maps API which accepts parameters such as location, date or resolution and returns an image. AQI data provider is another external entity in our system.

3.6 Screenshots/Prototype

3.6.1 Workflow

Our project "Evergreen Surveillance" uses image processing to detect the green covered area in sqkm from satellite images and then uses that information, along with air quality data to predict future AQI

values using an LSTM model and the Django web framework. The system starts by acquiring satellite images of a specific location and applies image processing techniques to extract information about vegetation, such as the green covered area using libraries like OpenCV and sickit-image. The system then organizes and pre-processes that data like cleaning and normalizing it and creating a time-series dataset. Then, the AQI data is used to train an LSTM model using TensorFlow. The model is then validated to ensure that it is accurate. The system then deploys the trained model in the back-end. When a user makes a request to the system through the front-end which is handled by Django's views and controllers, the system uses the deployed LSTM model to make a prediction about future AQI values for the location of user's interest. The results of predicted AQI are shown for three different days i.e. after 1st, 15th and 30th day of current AQI.

3.6.2 Screens

Figure 8: Sign Up Page

Figure 9: Login Page

Figure 10: Homepage

Figure 11: Homepage

Figure 12: Homepage

Figure 13: Homepage

Figure 14: Result Page

Figure 15: Result Page

Figure 16: Blog Page

Figure 17: Contact Form

3.7 Other Design Details

All the design details are covered in the previous sections respectively.

Chapter 4. Test Specification and Results

4.1 Test Case Specification

4.1.1 TC-1

Identifier	TC-1
Related requirements(s)	UC-1: User opens the website
Short description	The User opens the website
Pre-condition(s)	User has an internet connection and knows the url of the website.
Input data	User enters the correct URL.
Detailed steps	User will enter the correct URL to access the website
Expected result(s)	The website will open to its homepage and will be welcomed with a welcome message.
Post-condition(s)	The user will be able to use the website.
Actual result(s)	The user will be able to use the website.
Test Case Result	The user can use the website and interact with it and make use of the features.

Table 6.1: TC-1

4.1.2 TC-2

Identifier	TC-2
Related requirements(s)	UC-2: Give Access to API
Short description	The website requests the user to give access to the API.
Pre-condition(s)	User has an internet connection.
Input data	User clicks on the Get Started Button.
Detailed steps	A pop-up screen asks the user's permission to access the API. If the user has agreed, then the application proceeds as normal. If the user declines, then the user cannot proceed, and if the user exits the application, then the application is closed.
Expected result(s)	If the user has agreed to give access, he will be allowed to use the system further. If the user denied access, the website will inform the user that it needs to provide it with access first.
Post-condition(s)	The user will give access to the website.
Actual result(s)	The user can proceed further after giving access
Test Case Result	The user can use the website and interact with it and make use of the features.

Table 6.2: TC-2

4.1.3 TC-3

Identifier	TC-3
Related requirements(s)	UC-3: Give Access To Location
Short description	The website requests the user to give access to the geolocation.
Pre-condition(s)	User has an internet connection.
Input data	User clicked on "Get Started" button.
Detailed steps	A pop-up screen asks the user's permission to access the geolocation. If the user has agreed, then the application proceeds as normal. If the user declines, then the user cannot proceed, and if the user exits the application, then the application is closed.
Expected result(s)	If the user has agreed to give access, he will be allowed to use the system further. If the user denied access, the website will inform the user that it needs to provide it with location's access first.
Post-condition(s)	The system has access to the user's geolocation
Actual result(s)	The system has access to the user's geolocation
Test Case Result	The system has access to the user's geolocation

Table 6.3: TC-3

4.1.4 TC-4

Identifier	TC-4
Related requirements(s)	UC-4: Take Snapshot
Short description	The user takes a snapshot of green covered area.
Pre-condition(s)	 User has an internet connection. Access to API Access to user's geolocation
Input data	User presses on the take snapshot button
Detailed steps	 The user presses on the take snapshot button The user then either decides to take the snapshot or not The user takes the snapshot Otherwise if the user does not take the snapshot and presses the back button, the user quits the application.
Expected result(s)	The system gets the user the option to upload or retake snapshot.
Post-condition(s)	The user will have to retake snapshot of trees
Actual result(s)	The system gets the user the option to upload or retake snapshot.
Test Case Result	The system gets the user the option to upload or retake snapshot.

Table 6.4: TC-4

4.1.5 TC-5

Identifier	TC-5
Related requirements(s)	UC-5: Retake Snapshot
Short description	The user retakes a snapshot of green covered area.
Pre-condition(s)	 User has an internet connection. Access to API Access to user's geolocation
Input data	User presses on the retake snapshot button
Detailed steps	 The user presses on the retake snapshot button The user then either decides to take the snapshot or not The user takes the snapshot Otherwise if the user does not take the snapshot and presses the back button, the user quits the application.
Expected result(s)	The system gets the user the option to upload or retake snapshot.
Post-condition(s)	The user will have to retake snapshot of trees
Actual result(s)	The system gets the user the option to upload or retake snapshot.
Test Case Result	The system gets the user the option to upload or retake snapshot.

Table 6.5: TC-5

4.1.6 TC-6

Identifier	TC-6
Related requirements(s)	UC-6: Upload the Snapshot
Short description	The user uploads the snapshot
Pre-condition(s)	 User has an internet connection. Access to the location
	User must have taken a snapshot
Input data	A snapshot and the geolocation of the user when the snapshot was taken
Detailed steps	 The user will press on the upload button The user will be informed if the snapshot has been uploaded or not.
Expected result(s)	The system tells the user that the image has been successfully uploaded.
Post-condition(s)	The image is uploaded to the server
Actual result(s)	The system tells the user that the image has been successfully uploaded.
Test Case Result	The system tells the user that the image has been successfully uploaded.

Table 6.6: TC-6

4.1.7 TC-7

Identifier	TC-7
Related requirements(s)	UC-7: Analyze Image
Short description	The server analyzes the image.
Pre-condition(s)	The user has uploaded the snapshot.
Input data	The image as well as the location set by the user.
Detailed steps	The image is analyzed by the server and green covered area is found.
Expected result(s)	The server will report the green covered area in sqkm
Post-condition(s)	The green covered area in sqkm will be on the screen.
Actual result(s)	The server will report the green covered area in sqkm
Test Case Result	The server will report the green covered area in sqkm

Table 6.7: TC-7

4.1.8 TC-8

Identifier	TC-8
Related requirements(s)	UC-8: Admin Login
Short description	The admin tries to log into the system
Pre-condition(s)	The user has an internet connection.
Input data	Admin's credentials
Detailed steps	The admin enters his credentials into the respective fields. If the credentials are valid, the admin is redirected to the server. Otherwise, an error message is shown
Expected result(s)	Login in case of success and an error message in case of failure
Post-condition(s)	The admin is logged into the server.
Actual result(s)	The user gets logged in and directed to the homepage.
Test Case Result	The user gets logged in and directed to the homepage.

Table 6.8: TC-8

4.1.9 TC-9

Identifier	TC-9
Related requirements(s)	UC-9: Store Geolocation and image
Short description	The geo location and image are saved
Pre-condition(s)	The image has been analyzed
Input data	
Detailed steps	The server returns the value of green covered area.
Expected result(s)	The green covered area is reported
Post-condition(s)	The area in sqkm is returned
Actual result(s)	The green covered area is reported
Test Case Result	The green covered area is reported

Table 6.9: TC-9

4.1.10 TC-10

Identifier	TC-10
Related requirements(s)	UC-10: Accessing the AQI database
Short description	The system access the AQI database
Pre-condition(s)	
Input data	
Detailed steps	The system gains access to the AQI data and trains a model
Expected result(s)	Access to the AQI data will be granted
Post-condition(s)	Access to the AQI database
Actual result(s)	Access to the AQI data will be granted
Test Case Result	Access to the AQI data will be granted

Table 6.10: TC-10

4.1.11 TC-11

Identifier	TC-11
Related requirements(s)	UC-11: Access the predicted AQI value
Short description	The system generates the predicted AQI value
Pre-condition(s)	AQI database is granted
Input data	AQI data
Detailed steps	The system predicts an AQI value for future days
Expected result(s)	The server will send the AQI value
Post-condition(s)	Access to the AQI database
Actual result(s)	The server will send the AQI value
Test Case Result	The server will send the AQI value

Table 6.11: TC-11

4.1.12 TC-12

Identifier	TC-12
Related requirements(s)	UC-12: Generating graphs
Short description	The AQI value is visualized
Pre-condition(s)	Results are present
Input data	AQI values
Detailed steps	The user sees the results in the form of graphs
Expected result(s)	The website will show the result graphs on the webpage
Post-condition(s)	The graphs are shown on the website
Actual result(s)	The website will show the result graphs on the webpage
Test Case Result	The website will show the result graphs on the webpage

Table 6.12: TC-12

4.2 Summary of Test Results

Module Name	Test cases run	Number of defects found	Number of defects corrected so far	Number of defects still need to be corrected
Website Module	TC1, TC2, TC3, TC4, TC5, TC6	None	None	None
Server Module	TC8, TC10, TC11, TC12	2	2	None
Database Module	TC7, TC9	3	1	2
Complete System	TC1 to TC12	5	3	2

Table 6.2: Summary of All Test Results

Chapter 5. Conclusion and Future Work

5.1 Project summary

With the department of climate change and meteorology being the primary body that will need this system, there are other organizations and institutes that need this update in account of the problems Listed above. Plantation drive initiators and urban forest projects also require this system so they are aware of the current situation of the depleting green cover in an area and can plan out their projects accordingly. Laws against cutting down trees can only be implemented if authorities are aware of when trees are cut down and where. Through our project, reports can be generated highlighting the spots wherever any sort of violation occurs. Other than this, monitoring AQI will awaken the concerned authorities so necessary actions can be taken to improve the quality of the air.

5.2 Problems faced and lessons learned

The major problems that we faced while designing and implementing our system were: Sometimes the quality of the satellite images varied and so it became necessary to clean and preprocess the data before using it to train the model, this can be time consuming and may require effort. It is difficult to achieve accurate predictions due to the complexity of the data. As the amount of data and user traffic increases, it may become necessary to scale the system to handle the load. This can be very challenging. One thing that we realized was that it is important to thoroughly test the system before deployment to ensure its reliability.

By learning these lessons, we have tried to make the project improve its performance, accuracy, and user satisfaction.

5.3 Future work

The future work of our AQI prediction and green covered area detection project can include a number of different directions. The accuracy of the AQI prediction model could be improved by using more sophisticated machine learning algorithms or by incorporating additional data sources. The green covered area detection system could be expanded to other regions to provide a more comprehensive picture of the relationship between green spaces and air quality. Predictive maintenance could be integrated into the green covered area detection system to identify areas that need maintenance or intervention to maintain air quality. The AQI prediction and green covered area detection systems

could be combined with other environmental data sources, such as weather/temperature data and pollution data, to provide a more complete picture of the environmental conditions.			

References

- 1. https://www.researchgate.net/publication/285593710_Tree_Detection_and_Species_Identification_using_LiDAR_Data
- 2. <a href="https://www.globalforestwatch.org/dashboards/country/PAK/?category=summary&location=WyJjb3VudHJ5IiwiUEFLII0%3D&map=eyJjYW5Cb3VuZCI6ZmFsc2UsImRhdGFzZXRzIjpbeyJkYXRhc2V0IjoicG9saXRpY2FsLWJvdW5kYXJpZXMiLCJsYXIlcnMiOlsiZGlzcHV0ZWQtcG9saXRpY2FsLWJvdW5kYXJpZXMiLCJwb2xpdGljYWwtYm91bmRhcmllcyJdLCJib3VuZGFyeSI6dHJ1ZSwib3BhY2l0eSI6MSwidmlzaWJpbGl0eSI6dHJ1ZX0seyJkYXRhc2V0IjoidHJlZS1jb3Zlci1sb3NzIiwibGF5ZXJzIjpbInRyZWUtY292ZXItbG9zcyJdLCJvcGFjaXR5IjoxLCJ2aXNpYmlsaXR5Ijp0cnVlLCJ0aW1lbGluZVBhcmFtcyI6eyJzdGFydERhdGUiOiIyMDAxLTAxLTAxIiwiZW5kRGF0ZSI6IjIwMjEtMTItMzEiLCJ0cmltRW5kRGF0ZSI6IjIwMjEtMTItMzEifSwicGFyYW1zIjp7InRocmVzaG9sZCI6MzAsInZpc2liaWxpdHkiOnRydWV9fV19&showMap=true
- 3. https://www.mdpi.com/2072-4292/12/18/3017/htm
- 4. https://www.researchgate.net/publication/365875295 Detection and mapping of green-cover and landuse changes by advanced satellite image processing techniques a case study
- 5. https://www.sciencedirect.com/science/article/pii/S2214317316300154
- 6. https://www.nature.com/articles/s41598-022-12355-6
- 7. https://www.scirp.org/journal/paperinformation.aspx?paperid=120893

Appendix A Glossary

A

API – Application Program Interface (API) is a set of routines, protocols, and tools for building software applications.

AQI – Air Quality Index is the unit by which the quality of air of a specific area is measured.

Afforestation – It is an act of planting trees.

 \mathbf{C}

CNN – Convolutional Neural Network is a kind of artificial neural network used for image processing.

D

Data Preprocessing – It refers to cleaning, transforming and integration of data through various techniques to make the data more useful.

Deforestation – it is the act of cutting down trees.

I

Image Processing – It is the process of transforming an image into a digital form to perform certain operations to get required information out of it.

\mathbf{L}

LSTM – Long Short Term Memory is an artificial neural network used in deep learning used for entire sequences of data.

M

ML – Machine Learning is a part of artificial intelligence which has the capability to copy intelligent human behavior.

N

Normalization – It is a scaling technique and a stage in pre-processing to make all the values lie in the same scale.

Appendix B Deployment/Installation Guide

Our system is based on web-interface so the users do not need to download or install any file or resource in order to use our system.

Appendix C User Manual

The users of Evergreen Surveillance must follow the user manual below to fully make use of the system:

- Search for Evergreen Surveillance on the browser or open the website through URL.
- Create an account by entering First name, Last name, Username, email address and password.
- After signing up, you can login using your credentials.
- Once you have access to the homepage of the website, you will enter your desired location in the search bar.
- Location can be entered using longitude and latitude as well.
- After entering a location, a map and satellite view will appear on the screen.
- Under the maps, respective green covered areas, current AQI values and predicted AQI values will be shown.

Appendix D Student Information Sheet

Roll No	Name	Email Address (FC College)	Frequently Checked Email Address	Personal Cell Phone Number
22-	Bareera	22-	bareeramalik2000@gmail.com	0334
10293	Malik	10293@formanite.fcollege.edu.pk		4507296
22-	Bilal	22-	22-	0323
11345	Saddique	11345@formanite.fccollege.edu.pk	11345@formanite.fccollege.edu.pk	7813133
22-	Mahad	22-	mahadrashid0@gmail.com	0324
11108	Rashid	11108@formanite.fccollege.edu.pk		4479603

Appendix E Plagiarism Free Certificate

This is to certify that	t, I am _Mahad Rashid Khurshi	d S/D/o _Rashid Khurshi	id, group leader of FYP under
registration no2	2-11108 at C	omputer Science Departme	nt, Forman Christian College (A Chartered
University), Lahore.	I declare that my Final year pro	oject report is checked by m	ny supervisor and the similarity index is
% that is l	ess than 20%, an acceptable lim	it by HEC. Report is attach	ed herewith as Appendix F. To the best of
my knowledge and b	pelief, the report contains no ma	terial previously published	or written by another person except where
due reference is mad	le in the report itself.		
Date:	Name of Group Leader: _		Signature:
Name of Superviso	or:	Co-Supervisor (if any):	:
Designation:		Designation:	
Signature:		Signature:	
Senior Project Mar	nagement Committee Represe	entative:	
Signature:			

Appendix F	Plagiarism Report