Algebraic Geometry, Assessed Coursework 2

- Available from 12:00 PM on March 11 to 12:00 PM on March 20
- Please submit your work in PDF format directly on Blackboard
- Q1. (a) (15 marks) Find all the elements of $\max \operatorname{Spec}(\mathbb{C}[x])$, $\max \operatorname{Spec}(\mathbb{C}[x,1/x])$, and $\max \operatorname{Spec}(\mathbb{C}[x,1/x,y])$ explicitly.
 - (b) (5 marks) Consider the isomorphism $\varphi: \mathbb{A}^1 \setminus \{0\} \longrightarrow \mathbb{A}^1 \setminus \{0\}$, $a \longmapsto b = 1/a$, and the pullback map on the coordinate rings $\varphi^*: \mathbb{C}[x,1/x] \longmapsto \mathbb{C}[y,1/y]$. Compute $\varphi^*(1/x), \ \varphi^*(2x^2 + \frac{2x^3 + 4x}{x^5}), \ \varphi^*(2-x)$.
- Q2. (20 marks) Consider the affine algebraic hypersurface $V := \mathbb{V}(y ux) \subseteq \mathbb{A}^3$.
 - (a) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, u)$ restricts to an isomorphism from V to \mathbb{A}^2 .
 - (b) Prove that the projection $\mathbb{A}^3 \longrightarrow \mathbb{A}^2$, $(x, y, u) \longmapsto (x, y)$ does not restrict to isomorphism from V to \mathbb{A}^2 .

Q3. (25 marks)

- (a) Prove that if $g \in \mathbb{C}[x,y]$ then the projective closure of its variety $\overline{\mathbb{V}(g)} = \mathbb{V}(\tilde{g}) \subseteq \mathbb{P}^2$ where $\tilde{g} \in \mathbb{C}[x,y,z]$ is the homogenisation of g.
- (b) Consider the polynomials $f_1(x,y) = x + y + 1$, $f_2(x,y) = x^2 + 6y^2 + 1$, $f_3(x,y) = x^2 + 3y + 1$, $f_4(x,y) = x^3 + 3xy^2 + 4$. Determine whether or not each of the projective closures includes the points
 - (i) [1:0:0];
 - (ii) [0:1:0];
 - (iii) [0:0:1].
- (c) Can you find a general necessary and sufficient condition on $g \in \mathbb{C}[x,y]$ such that its homogenisation $\tilde{g} \in \mathbb{C}[x,y,z]$ does not pass through any of the three points in item (b)?

Q4. (15 marks)

- (a) Prove that \mathbb{P}^n is compact with respect to the quotient Euclidean topology from $\mathbb{A}^{n+1} \setminus \{0\}$.
- (b) What is the projective Zariski-closure of the $\mathbb{V}(y-\sin(x))$ in \mathbb{P}^2 ? How do you compare this to the Chow's Lemma? **Hint.** In Example 3.44 we have seen that this curve is not algebraic.

Q5. (20 marks)

(a) The variety of a polynomial of the form $ax + by + cz \in \mathbb{C}[x, y, z]$ for $a, b, c \in \mathbb{C}$ is called a *line* in \mathbb{P}^2 . Prove that any two distinct lines in \mathbb{P}^2 intersect exactly at one point.

- (b) Assume that $C_1, C_2 \subseteq \mathbb{A}^2$ are two closed affine algebraic curves.
 - (i) Prove that we have the inclusion $\overline{C_1 \cap C_2} \subseteq \overline{C_1} \cap \overline{C_2}$ of projective closures.
 - (ii) Find two curves such that the above inclusion is strict.

Q6. (Bonus 10 marks)

- (a) Let Y be a closed affine algebraic variety and $O \subseteq Y$ an open subset. Prove that $\mathcal{O}_Y(O)$ is a \mathbb{C} -algebra.
- (b) A sheaf \mathcal{F} of rings associated to a topological space X consists of the following data:
 - (i) To each open set $U \subseteq X$, it associates a ring $\mathcal{F}(U)$.
 - (ii) To each inclusion of open sets $U \hookrightarrow V$, there exists a map $\operatorname{res}_{V,U} : \mathcal{F}(V) \longrightarrow \mathcal{F}(U)$ called the restriction map from $\mathcal{F}(V)$ to $\mathcal{F}(U)$. These maps satisfy the property that $\operatorname{res}_{U,U} = \operatorname{id}_{\mathcal{F}(U)}$ and $\operatorname{res}_{V,U} \circ \operatorname{res}_{W,V} = \operatorname{res}_{W,U}$, where $U \subseteq V \subseteq W$ are open sets.

These data satisfy the following properties:

- (iii) Suppose that $f_i \in \mathcal{F}(U_i)$ are a collection of sections that agree on overlaps (formally, $\operatorname{res}_{U_i,U_i\cap U_j}f_i = \operatorname{res}_{U_j,U_i\cap U_j}f_j$ whenever the intersection exists). Then they lift to a section $f \in \mathcal{F}(U)$ which has the property that $\operatorname{res}_{U,U_i}f = f_i$ for all $i \in I$.
- (iv) Suppose that $f, f' \in \mathcal{F}(U)$ and that $\operatorname{res}_{U,U_i} f = \operatorname{res}_{U,U_i} f'$ for all $i \in I$. Then f = f'.

Let X be an irreducible quasi-projective variety.

- (i) Assume that U and V are open subsets of X with $U \subseteq V$. Briefly explain why $f \in \mathcal{O}_X(V)$ implies that $f_{|_U} \in \mathcal{O}_X(U)$.
- (ii) Briefly explain why the collection of sets of functions $\mathcal{O}_X(U)$, where U ranges over all open subsets of X, forms a sheaf on X.