

MESTERSÉGES INTELLIGENCIA

A kategória támogatója: Ulyssys Kft.

Ismertető a feladathoz

A 3.forduló feladatait a hosszú hétvége miatt kivételesen szerda (11.02.) éjfélig tudod megoldani!

Érdemes ebben a fordulóban is játszanod, mert a következő forduló kezdetekor, 11.03-án 18 órától kiosztjuk az 1.-2.-3. fordulóban megszerzett badgeket!

A verseny közben az alábbi teljesítményeket díjazzuk:

- fordulógyőztes
- átlagnál jobb időeredmény
- átlag feletti pontszám
- hibátlan forduló

Szeretnénk rá felhívni figyelmedet, hogy az egyszer megkapott badge-eket nem vonjuk vissza, akkor sem, ha esetleg az adott fordulóban a visszajelzések alapján változások vannak.

Jó játékot!

Üdvözlünk a Mesterséges Intelligencia feladatsor harmadik fordulójában!

Ebben a fordulóban 3 főbb feladat lesz, amiből kettőt akár papíron is kiszámolhatsz. Saját GPU-ra nem lesz szükséged, helyette nyugodtan használj Colab-ot (https://colab.research.google.com/.)!

Hogy ne fuss ki az időből, érdemes lehet előre ismerkedned:

- Hugging Face-en a Transformerekkel https://huggingface.co/docs/transformers/pipeline tutorial
- jelszóval védett adatállományok letöltése és kitömörítése notebookban (a jelszót majd bekéri az output cella) pl:

!wget https://github.com/oitm-mi/datasets/raw/main/kar_ady.7z
!7z x kar_ady.7z

Felhasznált idő: 00:00/40:00

Elért pontszám: 0/28

1. feladat 0/2 pont

Max pooling a gyakorlatban

Az alábbi mátrix bemenete egy MaxPool2D(2,2) műveletnek mely 2×2 maxpooling filterrel, 2-es stride-al rendelkezik padding nélkül.

Mi lesz a művelet kimenete?

2	3	1	0
6	1	5	-1
-1	2	-3	0
-1	2	2	1

Válasz

3	1.75
0.5	0

6	5	
2	2	

Ez a válasz helyes, de nem jelölted meg.

6	6
6	6

Magyarázat

Max pooling a fenti paraméterekkel 4 db 2x2-es tömbre fut le, tömbönként számít maximumot:

max(2,3,6,1) = 6

max(1,0,5,-1) = 5

max(-1, -1, 2, 2) = 2

max(-3, 0, 2, 1) = 2

2. feladat 0/8 pont

CNN számolás

Hány paramétere van az alábbi konvolúciós hálónak az utolsó (FC-3) rétegében?

(papíron is számolhatsz vagy implementálhatod a hálót)

A nevezéktan a következő:

- CONV-K-N: konvolúciós réteg N db K x K méretű kernellel. Padding 0 (azaz nincs) és stride 1 minden esetben.
- POOL-K: K x K méretű max pooling, stride K, padding 0 (azaz nincs)
- FLATTEN : kilapító réteg, tf.layers.flatten vagy torch.flatten -nel egyenértékű
- FC-N: fully-connected réteg N neuronnal

Layer	Activation map dimension	Number of parameters
INPUT	128 x 128 x 3	0
CONV-9-32		
POOL-2		
CONV-5-64		
POOL-2		
CONV-5-64		
POOL-2		
FLATTEN		
FC-3		

Válasz

A helyes válasz:			
27651			

Magyarázat

Papíron is számolható:

Layer	Activation map dimension	Number of parameters
NPUT	128 x 128 x 3	0
CONV-9-32	120 x 120 x 32	32 x (9 x 9 x 3 + 1) = 7'808
POOL-2	60 x 60 x 32	0
CONV-5-64	56 x 56 x 64	64 x (5 x 5 x 32 + 1) = 51'264
POOL-2	28 x 28 x 64	0
CONV-5-64	24 x 24 x 64	64 x (5 x 5 x 64 + 1) = 102'464
POOL-2	12 x 12 x 64	0
FLATTEN	9216	0
FC-3	3	3 x (9216+1) = 27'651

vagy tf.keras-ban implementálva:

```
import tensorflow as tf
from tensorflow.keras
from tensorflow.keras import layers

input_shape = (128,128,3)
model = keras.Sequential()
model.add(keras.Input(shape=input_shape))
model.add(layers.Conv2D(32, 9, strides=1, padding='valid',activation="relu"))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(64, 5, strides=1, padding='valid',activation="relu"))
model.add(layers.Conv2D(64, 5, strides=1, padding='valid',activation="relu"))
model.add(layers.MaxPooling2D())
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(3))
```

```
      model.compile()

      model.summary()

kimenet:
Model: "sequential"
Layer (type)
        Output Shape
Param #
conv2d (Conv2D)
        (None, 120, 120, 32)
7808
max_pooling2d (MaxPooling2D (None, 60, 60, 32)
)
conv2d_1 (Conv2D)
        (None, 56, 56, 64)
51264
max_pooling2d_1 (MaxPooling (None, 28, 28, 64)
0
```

102464

27651

conv2d_2 (Conv2D) (None, 24, 24, 64)

max_pooling2d_2 (MaxPooling (None, 12, 12, 64)

flatten (Flatten) (None, 9216)

dense (Dense) (None, 3)

Total params: 189,187
Trainable params: 189,187
Non-trainable params: 0

3. feladat 0/18 pont

Így írtok ti

Karinthy az ismertségét az 1912-es Így írtok ti című kötetének köszönheti, mely más szerzők stílusában írt műveket tartalmaz. Mindenkinek más a véleménye, hogy melyik a legjobban sikerült utánzat, ezért most egy Ady és más magyar költők versein betanított BERT modell segítségét hívjuk. A modell kiválóan el tudja dönteni egy műről, hogy azt Ady írta-e vagy sem, ezt fogjuk most használni a Karinthy által írt "Ady" verseken.

A betanított modell a Hugging Face Hub-on érhető el a "<u>szabob-uly/ady_classifier</u>" tag alatt. Ezt a TFBertForSequenceClassification modellt kell beüzemelni és megtudni, hogy a megadott versek közül, melyiket gondolja leginkább Ady versnek.

Az adatokat itt éred el:

https://github.com/oitm-mi/datasets/raw/main/kar_ady.7z

Jelszó: penicillin

A megoldáshoz használhatod az alábbi notebook-ot:

https://colab.research.google.com/drive/1YHsnXI52JhKgyJpIkX9HsQeXC_yRyT_B?usp=sharing

Válasz

ZÁPOLYA ÚR VALLATÁSA

MOSLÉK-ORSZÁG

Legfontosabb tudnivalók ☑ Kapcsolat ☑ Versenyszabályzat ☑ Adatvédelem ☑

© 2023 Human Priority Kft.

KÉSZÍTETTE C⇔NE

Megjelenés

• Világos ≎