Assignment 2.

Definition of the 2-norm of a matrix A: $\|A\|_2 = \sigma_{max}(A)$, where $\sigma_{max}(A)$

Represents the largest singular value of matrix A.

Theorem

Let $A = U\Sigma V^T$ be the singular value decomposition of $A \in \mathbb{R}^{m \times n}$, and let $U = (u^1, \dots, u^m)$ and $V = (v^1, \dots, v^n)$.

Then for k < n

$$A_k := \sum_{j=1}^k \sigma_j u^j (v^j)^T$$

is the best approximation of A with rank $(A_k) = k$ with respect to the spectral norm, and it holds that

$$\|A-A_k\|_2=\sigma_{k+1}.$$

It holds that

$$||A - A_k||_2 = ||\sum_{j=k+1}^n \sigma_j u^j (v^j)^T||_2$$
$$= ||U \text{diag}\{0, \dots, 0, \sigma_{k+1}, \dots, \sigma_n\} V^T||_2 = \sigma_{k+1},$$

and it remains to show, that there does not exist a matrix of rank k, the distance to A of which is less than σ_{k+1} .

Let B be any matrix with rank(B) = k. Then the dimension of the null space of B is n-k. The dimension of span{ v^1, \ldots, v^{k+1} } is k+1, and therefore the intersection of these two spaces contains a nontrivial vector w with $\|w\|_2 = 1$.

Hence,

$$||A - B||_{2}^{2} \geq ||(A - B)w||_{2}^{2} = ||Aw||_{2}^{2}$$

$$= ||U\Sigma V^{T}w||_{2}^{2} = ||\Sigma (V^{T}w)||_{2}^{2}$$

$$\geq \sigma_{k+1}^{2} ||V^{T}w||_{2}^{2} = \sigma_{k+1}^{2}. \square$$

1.
$$||A_k||_F^2 = \sum_{i=1}^k \sigma_i^2$$

2.
$$||A - A_k||_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

3. $||A_k||_2^2 = \sigma_i^2$

3.
$$||A_k||_2^2 = \sigma_i^2$$

4.
$$||A - A_k||_2^2 = \sigma_{k+1}^2$$

Assignment 3.

1. Prove
$$\sigma_k \leq \frac{\|A\|_F}{\sqrt{k}}$$

As we considered above, we will use $||A_k||_F^2 = \sum_{i=1}^k \sigma_i^2$.

$$\tfrac{\|A\|_F}{\sqrt{k}} \geq \ \sqrt{\tfrac{\sum_{l=1}^k \sigma_l^2}{k}} \geq \sqrt{\tfrac{k\sigma_k^2}{k}} = \sigma_k$$

$$\sigma_k \leq \frac{\|A\|_F}{\sqrt{k}} \blacksquare$$

2. Prove that there exists a matrix B of rank at most k such that $\|A - B\|_2 \le \frac{\|A\|_F}{\sqrt{k}}$

Here we will use $\|A-A_k\|_2^2=\sigma_{k+1}^2$, as it is known A_k with rank k, so we can say by using property $\sigma_{k+1} \leq \sigma_k$ that:

$$||A - B||_2 \le \sigma_{k+1} \le \sigma_k \le \frac{||A||_F}{\sqrt{k}} \blacksquare$$