Multicast

A note on the use of these ppt slides:

The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 2007

Computer Networking: A Top Down Approach 4th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Broadcast Routing

Deliver packets from source to all other nodes Source duplication is inefficient:

Source duplication: how does source determine recipient addresses?

In-network Duplication

- Flooding: when node receives brdcst pckt, sends copy to all neighbors
 - > Problems: cycles & broadcast storm
- Controlled flooding: node only brdcsts pkt if it hasn't brdcst same packet before
 - Node keeps track of pckt ids already brdcsted Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source
- Spanning tree
 - > No redundant packets received by any node

Spanning Tree

- □ First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A

(b) Broadcast initiated at D

Spanning Tree: Creation

- Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

(a) Stepwise construction of spanning tree

(b) Constructed spanning tree

Why Multicast

- When sending same data to multiple receivers
 - Better bandwidth utilization
 - Less host/router processing
 - Quicker participation
- Application
 - Video/Audio broadcast (One sender)
 - Video conferencing (Many senders)
 - > Real time news distribution
 - > Interactive gaming

Unicast/Multicast

<u>Unicast</u>

Multicast

One to Many Communication

- Application-level one to many communication
- Multiple unicasts

☐ IP multicast

Two Major Issues

■Who are the multicast members?

How to send the packets to the members?

IGMP

Designated router queries LAN for group membership

Host informs router with IGMP report

IGMP — Joining a Group

R: Receiver

DR: Designated Router

Example: R joins to Group 224.2.0.1

- R sends IGMP Membership-Report to 224.2.0.1
- DR receives it. DR will start forwarding packets for 224.2.0.1 to Network A
- DR periodically sends IGMP Membership-Query to 224.0.0.1
- R answers IGMP Membership-Report to 224.2.0.1

IGMP – Leaving a Group

Example: R leaves from a Group 224.2.0.1

- R sends IGMP Leave-Group to 224.0.0.2
- DR receives it.
- DR stops forwarding packets for 224.2.0.1 to Network A if no more 224.2.0.1 group members on Network A
- Leave-Group is optional

Multicast Routing: Problem Statement

- □ <u>Goal</u>: find a tree (or trees) connecting routers having local mcast group members
 - > tree: not all paths between routers used
 - > <u>source-based</u>: different tree from each sender to rcvrs
 - shared-tree: same tree used by all group members

Shared tree

Source-based trees

Approaches for Building Mcast Trees

Approaches:

- ▶ Source-based tree: one tree per source
 - Shortest path trees
 - Reverse path forwarding
- Group-shared tree: group uses one tree
 - Minimal spanning (Steiner)
 - Center-based trees

...We first look at basic approaches, then specific protocols adopting these approaches

Shortest Path Tree

- Mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

LEGEND

i indicates order link added by algorithm

Reverse Path Forwarding

- Rely on router's knowledge of unicast shortest path from it to sender
- □ Each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)then flood datagram onto all outgoing links else ignore datagram

Reverse Path Forwarding: Example

- Result is a source-specific reverse SPT
 - May be a bad choice with asymmetric links

Reverse Path Forwarding: Pruning

- □ Forwarding tree contains subtrees with no mcast group members
 - > No need to forward datagrams down subtree
 - "Prune" msgs sent upstream by router with no downstream group members

Shared-Tree: Steiner Tree

- Steiner Tree: minimum cost tree connecting all routers with attached group members
- Problem is NP-complete
- Excellent heuristics exists
- Not used in practice:
 - > Computational complexity
 - > Information about entire network needed
 - Monolithic: rerun whenever a router needs to join/leave

Center-based Trees

- Single delivery tree shared by all
- □ One router identified as "center" of tree
- □ To join:
 - Edge router sends unicast join-msg addressed to center router
 - Join-msg "processed" by intermediate routers and forwarded towards center
 - Join-msg either hits existing tree branch for this center, or arrives at center
 - Path taken by join-msg becomes new branch of tree for this router

Center-based Trees: an Example

□ Suppose R6 chosen as center:

LEGEND

router with no attached group member

path order in which join messages generated

Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- Flood and prune: reverse path forwarding, source-based tree
 - PRPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
 - > No assumptions about underlying unicast
 - Initial datagram to meast group flooded everywhere via RPF
 - > Routers not wanting group: send upstream prune msgs

DVMRP: continued...

- Soft state: DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - > Mcast data again flows down unpruned branch
 - Downstream router: reprune or else continue to receive data
- Routers can quickly regraft to tree
 - Following IGMP join at leaf
- Odds and ends
 - > Commonly implemented in commercial routers
 - Mbone routing done using DVMRP

Tunneling

Q: How to connect "islands" of multicast routers in a "sea" of unicast routers?

- Mcast datagram encapsulated inside "normal" (non-multicastaddressed) datagram
- Normal IP datagram sent thru "tunnel" via regular IP unicast to receiving mcast router
- Receiving mcast router unencapsulates to get mcast datagram

PIM: Protocol Independent Multicast

- Not dependent on any specific underlying unicast routing algorithm (works with all)
- Two different multicast distribution scenarios:

Dense:

- □ Group members densely packed, in "close" proximity.
- Bandwidth more plentiful

Sparse:

- # Networks with group members small wrt # interconnected networks
- ☐ Group members "widely dispersed"
- Bandwidth not plentiful

Consequences of Sparse-Dense Dichotomy:

Dense:

- Group membership by routers assumed until routers explicitly prune
- □ Data-driven construction on mcast tree (e.g., RPF)
- Bandwidth and nongroup-router processing profligate

Sparse:

- No membership until routers explicitly join
- Receiver- driven
 construction of mcast
 tree (e.g., center-based)
- Bandwidth and nongroup-router processing conservative

PIM- Dense Mode

Flood-and-prune RPF, similar to DVMRP but

- Underlying unicast protocol provides RPF info for incoming datagram
- Less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- Has protocol mechanism for router to detect it is a leaf-node router

PIM - Sparse Mode

- Center-based approach
- Router sends join msg to rendezvous point (RP)
 - Intermediate routers update state and forward join
- After joining via RP, router can switch to source-specific tree
 - Increased performance: less concentration, shorter paths

PIM - Sparse Mode

- □ Sender(s):
- Unicast data to RP, which distributes down RP-rooted tree
- PRP can extend mcast tree upstream to source
- RP can send stop msg if no attached receivers
 - "no one is listening!"

ALM: Application Level Multicast

End-System Multicast

- □ IP multicast still is not widely deployed
 - > Technical and business challenges
 - > Should multicast be a *network*-layer service?
- Multicast tree of end hosts
 - > Allow end hosts to form their own multicast tree
 - > Hosts receiving the data help forward to others

Unicast Emulation of Multicast

IP Multicast

·Highly efficient bandwidth usage

Key Architectural Decision: Add support for multicast in IP layer

Key Concerns with IP Multicast

- Scalability with number of groups
 - > Routers maintain per-group state
 - > Analogous to per-flow state for QoS guarantees
 - > Aggregation of multicast addresses is complicated
- Supporting higher level functionality is difficult
 - > IP Multicast: best-effort multi-point delivery service
 - End systems responsible for handling higher level functionality
 - Reliability and congestion control for IP Multicast complicated
- Deployment is difficult and slow
 - > ISP's reluctant to turn on IP Multicast

End System Multicast

Potential Benefits

- Scalability
 - > Routers do not maintain per-group state
 - > End systems do, but they participate in very few groups
- Easier to deploy
- Potentially simplifies support for higher level functionality
 - > Leverage computation and storage of end systems
 - For example, for buffering packets, transcoding, ACK aggregation
 - Leverage solutions for unicast congestion control and reliability

Design Questions

- ☐ Is End System Multicast Feasible?
- Target applications with small and sparse groups
- □ How to Build Efficient Application-Layer Multicast "Tree" or Overlay Network?
 - Narada: A distributed protocol for constructing efficient overlay trees among end systems
 - Simulation and Internet evaluation results to demonstrate that Narada can achieve good performance

Performance Concerns

What is an Efficient Overlay Tree?

- The delay between the source and receivers is small
- Ideally,
 - > The number of redundant packets on any physical link is low
- ☐ Heuristic used:
 - > Every member in the tree has a small degree
 - > Degree chosen to reflect bandwidth of connection to Internet

Why is Self-Organization Hard?

- Dynamic changes in group membership
 - > Members may join and leave dynamically
 - > Members may die
- Limited knowledge of network conditions
 - > Members do not know delay to each other when they join
 - Members probe each other to learn network related information
 - > Overlay must self-improve as more information available
- Dynamic changes in network conditions
 - Delay between members may vary over time due to congestion

Narada Design

Step 1

"Mesh": Richer overlay that may have cycles and includes all group members

- Members have low degrees
- Shortest path delay between any pair of members along mesh is small

Step 2

- ·Source rooted shortest delay spanning trees of mesh
- ·Constructed using well known routing algorithms
 - Members have low degrees
 - Small delay from source to receivers

Narada Components

- Mesh Management:
 - > Ensures mesh remains connected in face of membership changes
- Mesh Optimization:
 - Distributed heuristics for ensuring shortest path delay between members along the mesh is small
- Spanning tree construction:
 - Routing algorithms for constructing data-delivery trees
 - Distance vector routing, and reverse path forwarding

Optimizing Mesh Quality

- Members periodically probe other members at random
- New Link added if
 Utility Gain of adding link > Add Threshold
- Members periodically monitor existing links
- Existing Link dropped if
 Cost of dropping link < Drop Threshold

The Terms Defined

- Utility gain of adding a link based on
 - > The number of members to which routing delay improves
 - How significant the improvement in delay to each member is
- Cost of dropping a link based on
 - > The number of members to which routing delay increases, for either neighbor
- Add/Drop Thresholds are functions of:
 - > Member's estimation of group size
 - > Current and maximum degree of member in the mesh

<u>Desirable Properties of Heuristics</u>

- Stability: A dropped link will not be immediately re-added
- □ Partition Avoidance: A partition of the mesh is unlikely to be caused as a result of any single link being dropped

Delay improves to Stan1, CMU but marginally.

Do not add link!

Delay improves to CMU, \bar{G} at each 1 and significantly.

Add link!

Used by Berk1 to reach only Gatech2 and vice versa.

Drop!!

An improved mesh!

Performance Metrics

- Delay between members using Narada
- Stress, defined as the number of identical copies of a packet that traverse a physical link

Factors Affecting Performance

□ Topology Model

- Waxman Variant
- Mapnet: Connectivity modeled after several ISP backbones
- > ASMap: Based on inter-domain Internet connectivity

□ Topology Size

> Between 64 and 1024 routers

□ Group Size

Between 16 and 256

□ Fanout range

Number of neighbors each member tries to maintain in the mesh

ESM Conclusions

- Proposed in 1989, IP Multicast is not yet widely deployed
 - > Per-group state, control state complexity and scaling concerns
 - > Difficult to support higher layer functionality
 - > Difficult to deploy, and get ISP's to turn on IP Multicast
- □ Is IP the right layer for supporting multicast functionality?
- □ For small-sized groups, an end-system overlay approach
 - > is feasible
 - > has a low performance penalty compared to IP Multicast
 - has the potential to simplify support for higher layer functionality
 - > allows for application-specific customizations