Расчет 2-фазного равновесия пар-жидкость смеси заданного состава

1. Постановка задачи

Заданы давление p, температура T и компонентный мольный состав смеси z_I , ..., z_N . Требуется определить мольные доли V, L и составы паровой y_i и жидкой x_i ($i=\overline{1,N}$) фаз, на которые разделяется исходная смесь при заданных термобарических условиях. Таким образом, требуется определить значения 2N+2 переменных. Соответствующая система 2N+2 уравнений имеет вид:

$$\begin{cases} f_{i,L} - f_{i,V} = 0, & i = \overline{1, N} \\ x_i L + y_i V - z_i = 0, & i = \overline{1, N} \\ L + V = 1 \\ \sum_{i=1}^{N} y_i - 1 = 0, \end{cases}$$
(1.1)

В системе (1.1) первые N уравнений описывают условия термодинамического равновесия — равенство летучестей компонентов в сосуществующих паровой и жидкой фазах. Следующие N уравнений описывают материальный баланс компонентов в фазах. Летучести компонентов в паровой $f_{i,V}$ и жидкой $f_{i,L}$ фазах рассчитываются на основе известных термодинамических соотношений с использованием уравнений состояния фаз.

Алгоритм расчетов

- 1. Задают исходную информацию: критические температуру T_c и давление p_c , а также ацентрический фактор ω для каждого компонента рассматриваемой системы; состав смеси в мольных долях; рабочее давление p температуру T.
- 2. Для каждого компонента смеси определяют значения параметров уравнения состояния Z^*_{c} , Ω_{c} , ψ на основе табл. 1.1.

Таблица 1.1 Значения параметров уравнения состояния для компонентов нефтегазоконденсатных систем

Вещество	$Z^*{}_c$	Ω_c ,	ψ	
Азот	0.34626	0.75001	0.37182	
Диоксид углерода	0.31933	0.75282	0.74212	
Сероводород	0.30418	0.78524	0.38203	
Метан	0.33294	0.75630	0.37447	
Этан	0.31274	0.77698	0.49550	
Пропан	0.31508	0.76974	0.53248	
изо-Бутан	0.30663	0.78017	0.63875	
н-Бутан	0.31232	0.76921	0.57594	
С5+ высшие	(см. 1.2)	0.75001	(см. 1.3)	

Отличительная особенность нефтегазоконденсатных систем — присутствие в их составе множества углеводородов различного строения (парафиновых, нафтеновых, ароматических), каждый из которых имеет в молекуле более четырех атомов углерода. Совокупность этих углеводородов принято называть "группа C_{5+} высшие". Учитывая количество и разнообразие углеводородов данной группы, значения параметров уравнения состояния для этих веществ представлены не в виде табличных значений, а рассчитываются по универсальным корреляционным зависимостям. В этих зависимостях параметром, характеризующим индивидуальные свойства вещества, принят

ацентрический фактор Питцера ω . Значения Z^*_c и ψ вычисляют следующим образом:

$$Z^*_{c} = 0.3357 - 0.0294\omega \tag{1.2}$$

$$\psi = \begin{cases} 1.050 + 0.105\omega + 0.482\omega^2, & \omega < 0.4489\\ 0.429 + 1.004\omega + 1.561\omega^2, & \omega \ge 0.4489 \end{cases}$$
 (1.3)

Отметим, что при $\omega = 0,4489$ оба выражения в (1.3) дают значение ψ равное 1.194.

Для парафиновых углеводородов от н-пентана до н-эйкозана оптимальные значения Ω_c составляют от 0,755 (для н-пентана) до 0,75 (для н-нонана и высших). На основе этих результатов значение Ω_c принято равным 0.75001 для всех веществ группы C_{5+} высшие.

3. Рассчитывают значения коэффициентов уравнения состояния α , β , σ , δ по (1.4) - (1.7).

$$\alpha = \Omega_c^3, \tag{1.4}$$

$$\beta = Z^*_c + \Omega_c - 1 \tag{1.5}$$

$$\sigma = -Z^*_c + \Omega_c (0.5 + (\Omega_c - 0.75)^{0.5}) \tag{1.6}$$

$$\delta = -Z^*_c + \Omega_c (0.5 - (\Omega_c - 0.75)^{0.5})$$
(1.7)

Затем вычисляют величины a, b, c, d для каждого компонента смеси по выражениям (1.8), (1.9), (1.10), (1.11), (1.12), (1.13). В уравнении (1.10) вместо коэффициента m используют параметр ψ .

$$a_i = a_{c_i} \cdot \alpha_i(T_r, \omega), \tag{1.8}$$

где

$$a_{c_i} = \alpha \cdot R^2 T^2_{c_i} / p_{c_i} \tag{1.9}$$

$$\alpha_i(T_r,\omega) = (1 + m(1 - \left(\frac{T}{T_{c_i}}\right)^{0.5}))^2$$
 (1.10)

$$b_i = \beta R T_{c_i} / p_{c_i} \tag{1.11}$$

$$c_i = \sigma R T_{c_i} / p_{c_i} \tag{1.12}$$

$$d_i = \delta R T_{c_i} / p_{c_i} \tag{1.13}$$

4. Рассчитывают начальные приближения значений коэффициентов распределения компонентов смеси по формуле (1.14) с использованием выражения (1.15).

$$K_i = p_{Si}(T)/p \tag{1.14}$$

т. е. при принятых предположениях коэффициент распределения зависит только от общего давления и давления насыщенного пара чистого i-го компонента при данной температуре.

Значения коэффициентов распределения, рассчитываемые с использованием выражения (1.14), называют идеальными константами равновесия. Они применяются как начальные приближения коэффициентов распределения при решении задач расчета парожидкостного равновесия многокомпонентных систем. Например, если для упругости насыщенных паров использовать формулу

$$p_{Si}(T) = exp\left(5.373(1+\omega_i)\left(1-\frac{T_{Ci}}{T}\right)\right)p_{Ci}$$
 (1.15)

то, подставив ее в уравнение (1.14) и зная такие характеристики веществ, как ацентрический фактор ω , критические температура T_C и давление p_C , можем рассчитать идеальные константы равновесия.

5. Решают уравнение фазовых концентраций (1.16) и определяют мольную долю паровой фазы V смеси z_i , при найденных значениях K_i .

$$F(V) = \sum_{i=1}^{N} \frac{z_i(K_i - 1)}{V(K_i - 1) + 1} = 0$$
 (1.16)

В зависимости от значения корня функции F(V) получают следующие критерии фазового состояния смеси состава z_i , соответствующие заданным коэффициентам распределения.

1. V < 0. Этот случай соответствует однофазному ненасыщенному жидкому состоянию. F(V) < 0 и, следовательно, необходимым критерием того, что при заданных значениях коэффициентов распределения смесь находится в ненасыщенном жидком состоянии является выполнение условия

$$\sum_{i=1}^{N} z_i K_i < 1. {(1.17)}$$

2. V=0. Этот случай соответствует насыщенному жидкому состоянию (точка кипения). F(0)=0. Имеем следующее необходимое условие однофазного насыщенного жидкого состояния:

$$\sum_{i=1}^{N} z_i K_i = 1. (1.18)$$

3. 0 < V < 1. Этот случай соответствует двухфазному парожидкостному состоянию. F(0) > 0, F(1) < 0. Следовательно, необходимые условия двухфазного состояния имеют вид:

$$\sum_{i=1}^{N} z_i K_i > 1; \sum_{i=1}^{N} \frac{z_i}{K_i} > 1.$$
 (1.19)

4. V=1. Этот случай соответствует однофазному насыщенному паровому (газовому) состоянию (точка росы). F(1)=0. Отсюда следует необходимое условие существования смеси в насыщенном паровом (газовом) состоянии

$$\sum_{i=1}^{N} \frac{z_i}{K_i} = 1. {(1.20)}$$

5. V > 1. Этот случай соответствует однофазному ненасыщенному газовому состоянию. F(1) > 0. Отсюда вытекает необходимое условие существования смеси в ненасыщенном газовом состоянии

$$\sum_{i=1}^{N} \frac{z_i}{K_i} < 1. \tag{1.21}$$

Подчеркнем, что полученные критерии идентификации фазового состояния смеси являются необходимыми, но не достаточными. Критерии (1.18), (1.19), (1.20) являются достаточными только в том случае, если коэффициенты распределения соответствуют составам равновесных фаз, т. е. тем составам, при которых летучести каждого компонента в паровой и жидкой

фазах равны. Неравенства (1.17) и (1.21) используются только как вспомогательные критерии в процессе решения задач расчета давления начала кипения и давления начала конденсации многокомпонентной системы методом последовательных приближений. Очевидно, что входящие в неравенства (1.17) и (1.21) значения коэффициентов распределения не могут соответствовать равновесным составам фаз, так как эти неравенства являются критериями однофазного ненасыщенного состояния смеси, т. е. того состояния, при котором фазовое равновесие невозможно.

6. Пусть N-компонентная смесь состава z_i разделилась на паровую фазу состава y_i и находящуюся с ней в равновесии жидкую фазу состава x_i . Мольная доля паровой фазы равна V, а жидкой фазы — L. Запишем уравнение материального баланса для i-го компонента смеси

$$x_i L + y_i V = z_i. (1.22)$$

Поскольку L+V=1, то заменим в уравнении (1.22) L на (1-V). Кроме того, учтем определение (1.23)

$$K_i \equiv \frac{y_i}{x_i} \tag{1.23}$$

и заменим y_i на произведение $z_i K_i$. Тогда из уравнения (1.22) получим

$$y_i = \frac{z_i K_i}{V(K_i - 1) + 1}. (1.24)$$

Уравнение (1.24) называют уравнением фазовой концентрации компонентов смеси. Оно позволяет определить мольные доли компонентов в паровой фазе смеси состава z_i при заданных значениях коэффициентов распределения K_i и известном значении мольной доли паровой фазы V.

7. По составу паровой фазы вычисляют коэффициенты уравнения состояния a_m , b_m по следующим формулам

$$a_m = \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j a_{ij}, \qquad (1.25)$$

$$b_m = \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j b_{ij}, \qquad (1.26)$$

где $a_{ij},\,b_{ij}$ – перекрёстные коэффициенты.

Исходя из молекулярной теории газов, при вычислении перекрестных коэффициентов, отражающих взаимодействие молекул, используют среднее геометрическое правило смешения, а характеризующих собственный объем молекул — среднее арифметическое правило смешения:

$$a_{ij} = \sqrt{a_i a_j}; \ b_{ij} = 0.5(b_i + b_j)$$
 (1.27)

Тогда получаем так называемые "правила Лоренца-Бертло":

$$a_m = \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j a_{ij} = \left(\sum_{i=1}^{N} y_i a_i^{0.5}\right)^2,$$
 (1.28)

$$b_m = \sum_{i=1}^{N} y_i b_i. {(1.29)}$$

Перекрестный коэффициент a_{ij} , отражающий влияние взаимодействия молекул, представляет собой среднюю геометрическую величину коэффициентов чистых компонентов i и j смеси. Однако среднее геометрическое правило смешения в общем случае является приближенным. Поэтому при проведении инженерных расчетов в выражение, определяющее коэффициент a для смеси, вводят эмпирические коэффициенты c_{ij} , уточняющие влияние парного взаимодействия молекул компонентов i и j и получившие название коэффициентов парного взаимодействия. В этом случае перекрестный коэффициент

$$a_{ij} = (1 - c_{ij})\sqrt{a_i a_j}. ag{1.30}$$

Этот способ был предложен Зудкевичем и Иоффе. Введение коэффициентов c_{ij} существенно повышает точность расчета парожидкостного равновесия с применением уравнения состояния.

В табл.1.2 приведены рассчитанные значения c_{ij} для азота, сероводорода, диоксида углерода и н-алканов от метана до н-декана включительно. Обратим внимание, что $c_{ij} = c_{ji}$. Кроме того, $c_{ii} = 0$. Поэтому табл.1.2 является полной для всевозможных бинарных смесей указанных

веществ. Для пар н-алканов значения коэффициентов c_{ij} равны нулю, если каждый из н-алканов тяжелее н-бутана. (в таблице приведены значения 0,005. Можно использовать и их).

Таблица 1.2 Значения коэффициентов парного взаимодействия c_{ij} в (1.30) для уравнения состояния Пенга — Робинсона

Компонент і	Компонент ј						
	N ₂	CO_2	H_2S	CH ₄	C_2H_6	C_3H_8	n - C_4H_{10}
N_2	0	0	0.130	0.025	0.010	0.090	0.095
CO_2		0	0.135	0.105	0.130	0.125	0.115
H_2S			0	0.070	0.085	0.080	0.075
CH_4				0	0.005	0.010	0.010
C_2H_6					0	0.005	0.010
C_3H_8						0	0
n – C_4H_{10}							0
n – C_5H_{12}	0.100	0.115	0.070	0.030	0.010	0.020	0.005
$n - C_6 H_{14}$	0.110	0.115	0.070	0.030	0.020	0.005	0.005
$n-C_7H_{16}$	0.115	0.115	0.060	0.035	0.020	0.005	0.005
n – C_8H_{18}	0.120	0.115	0.060	0.040	0.020	0.005	0.005
n – C_9H_{20}	0.120	0.115	0.060	0.040	0.020	0.005	0.005
$n - C_{10}H_{22}$	0.125	0.115	0.055	0.045	0.020	0.005	0.005

Очевидно, что при использовании уравнения состояния Ван-дер-Ваальсового типа в обобщенной форме (1.31) (*v* – мольный объем)

$$p = \frac{RT}{v - b} - \frac{a}{(v + c)(v + d)}$$
 (1.31)

коэффициенты c_m , d_m вычисляют аналогично выражению (1.29):

$$c_m = \sum_{i=1}^{N} y_i c_i, (1.32)$$

$$d_m = \sum_{i=1}^{N} y_i d_i. {(1.33)}$$

Уравнение состояния (1.31) можно записать также в кубическом относительно мольного объема виде:

$$v^{3} + \left(c + d - b - \frac{RT}{p}\right)v^{2} + \left(\frac{a}{p} - bc + cd - bd - \frac{RTd}{p} - \frac{RTc}{p}\right)v - \left(bcd + \frac{RTcd}{p} + \frac{ab}{p}\right) = 0.$$
 (1.34)

Введем обозначения

$$A_{m}=rac{a_{m}p}{R^{2}T^{2}}$$
, $B_{m}=rac{b_{m}p}{RT}$, $C_{m}=rac{c_{m}p}{RT}$, $D_{m}=rac{d_{m}p}{RT}$, $B_{i}=rac{d_{i}p}{RT}$, $C_{i}=rac{c_{i}p}{RT}$, $D_{i}=rac{d_{i}p}{RT}$ (1.35) представим уравнение состояния относительно z —фактора (фактор сжимаемости) $z=rac{PV}{RT}$:

$$z^{3} + (C + D - B - 1)z^{2} +$$

$$(A - BC + CD - BD - D - C)z - (BCD + CD + AB) = 0$$
(1.36)

- 8. Решают уравнение (1.36). Коэффициенту сверхсжимаемости (z-фактору) паровой фазы соответствует **максимальный** из положительных действительных корней.
- 9. По формуле (1.37) рассчитывают $ln(f_{i,V})$ <u>логарифм летучести</u> компонентов в <u>паровой фазе</u> $(i = \overline{1,N})$.

$$ln(f_{i,v}) = ln(y_i p) - ln(z - B_m) - \frac{A_m}{C_m - D_m} \left(\frac{2\sum_{j=1}^N y_j a_{ij}}{a_m} - \frac{c_i - d_i}{c_m - d_m} \right) ln\left(\frac{z + C_m}{z + D_m} \right) + \frac{B_i}{z - B_m} - \frac{A_m}{C_m - D_m} \left(\frac{C_i}{z + C_m} - \frac{D_i}{z + D_m} \right).$$
(1.37)

10. Находят по формуле (1.38) мольные доли компонентов смеси в жидкой фазе.

$$x_i = \frac{z_i}{V(K_i - 1) + 1} \tag{1.38}$$

11. По составу <u>жидкой фазы</u> вычисляют коэффициенты уравнения состояния аналогично п.7, заменяя y_i на x_i .

- 12. Решают уравнение (1.36). Коэффициенту сверхсжимаемости (z–фактору) жидкой фазы соответствует **минимальный** из положительных действительных корней.
- 13. По формуле (1.37) рассчитывают $ln(f_{i,L})$ <u>логарифм летучести</u> компонентов в <u>жидкой фазе</u> $(i = \overline{1,N})$.
 - 14. Корректируют значения коэффициентов распределения по формуле

$$K_i^{(m)} = K_i^{(m-1)} f_{i,L} / f_{i,V}, (i = \overline{1, N}),$$
 (1.39)

где m — номер итерации.

15. Проверяют неравенство

$$\left| \frac{f_{i,L}}{f_{i,V}} - 1 \right| > \varepsilon, (i = \overline{1,N}), \tag{1.40}$$

где ε – точность соблюдения равенства летучести (обычно ε = 10^5).

Если условие (1.40) соблюдается хотя бы для одного компонента, то возвращаются к п.5. В противном случае система (1.1) решена, и рассчитанные составы паровой y_i и жидкой x_i , фаз являются равновесными.

Рассмотрим поведение функции F(V), стоящей в левой части уравнения (5.8), при всех возможных значениях параметров V. Эта функция имеет разрывы в точках $V_i = 1/(1-K_i)$, которые показаны на рис. 5.2. Точки V_i^- соответствуют "легким" компонентам, а V_i^+ — "тяжелым". В интервалах между разрывами функция F(V) монотонно

убывает, так как dF/dV < 0 (см. формулу (5.9)). Отрезок (0; 1), на котором параметр V имеет физический смысл, лежит внутри интервала, границами которого являются точки V^- и V^+ :

$$V^{-} = \max V_{i}^{-} = 1/(1 - \max K_{i}) < 0,$$
 (5.56)

$$V^{+} = \min V_{i}^{+} = 1/(1 - \min K_{i}) > 0.$$
 (5.57)

Поскольку функция F(V) внутри $(V^-;V^+)$ непрерывна и монотонна, то уравнение (5.8) в этом интервале имеет единственный корень V, возможно отрицательный или превышающий 1.

Расчет летучести можно проводить лишь в том случае, если вычисленные на каждой итерации составы фаз имеют физический смысл, т.е. $0 < x_i^{(m)} < 1$, $0 < y_i^{(m)} < 1$ (m — номер итерации). Покажем, что при вычислении составов фаз по уравнениям фазовых концентраций (5.6), (5.7) эти условия всегда выполняются. Для этого разделим числитель и знаменатель правой части выражения (5.6) на $(1 - K_i)$ и полученное выражение перепишем с учетом обозначения $V_i = 1/(1 - K_i)$. В результате получим следующее равенство: $x_i = z_i V_i / (V_i - V)$.

Если $K_i > 1$, то $V_i < 0$; $(V_i - V) < 0$, так как $V > V^-$. Если $K_i < 1$, то $V_i > 0$; $(V_i - V) > 0$, так как $V < V^+$. Следовательно, при любых значениях K_i (кроме $K_i = 1$, но этот случай особый) значение $x_i > 0$ $\left(i = \overline{1, N}\right)$. Поскольку $K_i > 0$, то и значение $y_i = K_i x_i > 0$ $\left(i = \overline{1, N}\right)$. Поскольку V является корнем уравнения (5.8) и $\sum_{i=1}^N z_i = 1$, справедливы следующие равенства:

$$\sum_{i=1}^{N} x_{i} - 1 = \sum_{i=1}^{N} \left[\frac{z_{i}}{V(K_{i} - 1) + 1} - z_{i} \right] = -V \sum_{i=1}^{N} \frac{z_{i}(K_{i} - 1)}{V(K_{i} - 1) + 1} = -VF(V) = 0$$
(5.58)