## Отчёт по лабораторной работе №12

Дисциплина: Основы администрирования операционных систем

Верниковская Екатерина Андреевна

## Содержание

| 1 | Цель работы                                                           | 6                  |
|---|-----------------------------------------------------------------------|--------------------|
| 2 | Задание                                                               | 7                  |
| 3 | Выполнение лабораторной работы         3.1 Проверка конфигурации сети | 8<br>8<br>14<br>16 |
| 4 | Контрольные вопросы + ответы                                          | 22                 |
| 5 | Выводы                                                                | 25                 |
| 6 | Список литературы                                                     | 26                 |

# Список иллюстраций

| 3.1  | Режим суперпользователя                                       | 8  |
|------|---------------------------------------------------------------|----|
| 3.2  | Информация о существующих сетевых подключениях                | 8  |
| 3.3  | Информация о текущих маршрутах                                | 9  |
| 3.4  | Информация о текущих назначениях адресов для сетевых интер-   |    |
|      | фейсов на устройстве                                          | 10 |
| 3.5  | Отправка четырёх пакетов на IP-адрес 8.8.8.8                  | 11 |
| 3.6  | Добавление дополнительного адреса к интерфейсу                | 12 |
| 3.7  | Проверка добавлнеия адреса                                    | 12 |
| 3.8  | Вывод информации от утилиты ір                                | 12 |
| 3.9  | Вывод информации от команды ifconfig                          | 13 |
| 3.10 | Список всех прослушиваемых системой портов UDP и TCP          | 14 |
| 3.11 | Информация о текущих соединениях (1)                          | 14 |
| 3.12 | Добавление Ethernet-соединения с именем dhcp                  | 14 |
| 3.13 | Добавление Ethernet-соединения с именем static                | 15 |
| 3.14 | Информация о текущих соединениях (2)                          | 15 |
| 3.15 | Переключение на статическое соединение                        | 15 |
| 3.16 | Проверка успешного переключения при помощи nmcli connection   |    |
|      | show (1)                                                      | 15 |
| 3.17 | Проверка успешного переключения при помощи ip addr (1)        | 15 |
| 3.18 | Переключение на соединение dhcp                               | 16 |
| 3.19 | Проверка успешного переключения при помощи nmcli connection   |    |
|      | show (2)                                                      | 16 |
| 3.20 | Проверка успешного переключения при помощи ip addr (2)        | 16 |
| 3.21 | Отключение автоподключения статического соединения            | 16 |
|      | Добавление DNS-сервера в статическое соединение               | 17 |
| 3.23 | Добавление второго DNS-сервера в статическое соединение       | 17 |
| 3.24 | Изменение IP-адреса статического соединения                   | 17 |
| 3.25 | Добавление другого IP-адреса для статического соединения      | 17 |
|      | Активирование соединения static                               | 17 |
| 3.27 | Проверка успешного переключения при помощи nmcli con show (3) | 18 |
|      | Проверка успешного переключения при помощи ip addr (3)        | 18 |
|      | Koaндa nmtui                                                  | 18 |
|      | Грфический интерфейс операционной системы                     | 19 |
|      | Настройки сетевого соединения static                          | 20 |
|      | Переключение на первоначальное сетевое соединение             | 20 |
| 3.33 | Проверка успешного переключения при помощи nmcli connection   |    |
|      | show (4)                                                      | 21 |

| 3.34 | Проверка ус | пе  | Ш | H | ΟI | О | Π | ep | eı | ζЛ | Ю | че | HI | ЯΝ | Π | рı | 1 I | O | M | OL | ЦΙ | ı i | р | ad | dı | (4 | 4) | • | • | • | • | 21 |
|------|-------------|-----|---|---|----|---|---|----|----|----|---|----|----|----|---|----|-----|---|---|----|----|-----|---|----|----|----|----|---|---|---|---|----|
| 4.1  | Вопрос №1   | (1) |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 22 |
| 4.2  | Вопрос №1   | (2) |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 22 |
| 4.3  | Вопрос №3   | (1) |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 23 |
| 4.4  | Вопрос №3   | (2) |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 23 |
| 4.5  | Вопрос №6   |     |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 23 |
| 4.6  | Вопрос №7   |     |   |   |    |   |   |    |    |    |   |    |    |    |   |    |     |   |   |    |    |     |   |    |    |    |    |   |   |   |   | 24 |

## Список таблиц

## 1 Цель работы

Получить навыки настройки сетевых параметров системы.

## 2 Задание

- 1. Продемонстрировать навыки использования утилиты ір
- 2. Продемонстрировать навыки использования утилиты nmcli

## 3 Выполнение лабораторной работы

## 3.1 Проверка конфигурации сети

Запускаем терминала и получаем полномочия суперпользователя, используя su - (рис. 3.1)

```
[eavernikovskaya@eavernikovskaya ~]$ su -
Password:
[root@eavernikovskaya ~]#
```

Рис. 3.1: Режим суперпользователя

Выведим на экран информацию о существующих сетевых подключениях, а также статистику о количестве отправленных пакетов и связанных с ними сообщениях об ошибках: ip -s link (puc. 3.2)

```
[root@eavernikovskaya ~] # ip -s link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
RX: bytes packets errors dropped missed mcast
2172 18 0 0 0 0
TX: bytes packets errors dropped carrier collsns
2172 18 0 0 0 0
2: enp03: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
link/ether 08:00:27:93:db:bc brd ff:ff:ff:ff:ff:
RX: bytes packets errors dropped missed mcast
18892 118 0 0 0 3
TX: bytes packets errors dropped carrier collsns
17432 170 0 0 0 0
[root@eavernikovskaya ~] #
```

Рис. 3.2: Информация о существующих сетевых подключениях

Пояснения к выведенной информации об интерфейсе enp0s3:

1. Тип: Ethernet

2. Состояние: UP (активный)

3. Группы: DEFAULT

4. MTU: 1500

5. MAC-адрес: 08:00:27:93:db:bc (реальный адрес)

6. Статистика:

• RX (Received):

- Байты: 18892

- Пакеты: 118

Ошибки: 0

- Пакеты, потерянные в процессе: 0

- Мультикаст: 3

• TX (Transmitted):

- Байты: 17432

- Пакеты: 170

Ошибки: 0

- Пакеты, потерянные в процессе: 0

- Коллизии: 0

Выведим на экран информацию о текущих маршрутах: *ip route show* (рис. 3.3)

```
[root@eavernikovskaya ~]# ip route show
default via 10.0.2.2 dev enp0s3 proto dhcp src 10.0.2.15 metric 100
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100
[root@eavernikovskaya ~]#
```

Рис. 3.3: Информация о текущих маршрутах

Пояснения к выведенной информации о текущих маршрутах:

- 1. default via 10.0.2.2 dev enp0s3 proto dhcp src 10.0.2.15 metric 100:
- default: обозначает маршрут по умолчанию, который используется для передачи трафика в сети, если нет более специфического маршрута

- via 10.0.2.2: указывает на шлюз (gateway), через который осуществляется выход в другие сети
- dev enp0s3: показывает сетевой интерфейс, который используется для этого маршрута (в данном случае — enp0s3)
- proto dhcp: маршрут был добавлен динамически через протокол DHCP
- src 10.0.2.15: указывает IP-адрес источника (адрес вашего устройства), который будет использоваться при исходящем трафике через этот маршрут
- metric 100: определяет приоритет маршрута. Чем меньше значение метрики,
   тем выше приоритет маршрута
- 2. 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100:
- 10.0.2.0/24: это маршрут для локальной подсети с диапазоном адресов от 10.0.2.0 до 10.0.2.255 (маска подсети /24)
- dev enp0s3: указывает, что подсеть доступна через интерфейс enp0s3
- proto kernel: маршрут был добавлен ядром операционной системы автоматически, при конфигурировании интерфейса
- scope link: определяет, что маршрут доступен только через этот интерфейс (локально)
- src 10.0.2.15: показывает IP-адрес устройства в этой подсети
- metric 100: метрика маршрута (приоритет)

Выведим на экран информацию о текущих назначениях адресов для сетевых интерфейсов на устройстве: *ip addr show* (рис. 3.4)

Рис. 3.4: Информация о текущих назначениях адресов для сетевых интерфейсов на устройстве

Пояснения к выведенной информации о текущих назначениях адресов для сетевых интерфейсов на устройстве:

- 1. Состояние интерфейса: Указано как BROADCAST, MULTICAST, UP, LOWER\_UP, что означает, что интерфейс активен, способен к широковещательной и мультикастовой передаче и успешно работает
- 2. Максимальный размер передаваемого пакета (MTU): В данном случае MTU равен 1500, что является стандартным значением для Ethernet интерфейсов
- 3. MAC-адрес: 08:00:27:93:db:bc, который уникален для данного сетевого адаптера
- 4. IPv4-адрес: 10.0.2.15, что является частью подсети. Адрес указывает на то, что устройство может взаимодействовать в локальной сети
- 5. Сетевой префикс: 15, обозначающий, что сеть поддерживает 10.0.0.0/15 (это означает, что в этой сети может быть 2048 адресов)
- 6. Широковещательная адрес: 10.0.2.255, используемый для отправки данных всем устройствам в пределах подсети
- 7. Настройки маршрутизации: Указание noprefixroute говорит о том, что для данного адреса не установлены маршрутные префиксы
- 8. Название сетевого адаптера: enp0s3
- 9. IPv4-адрес устройства: 10.0.2.15

Далее используем команду ping для проверки правильности подключения к Интернету. Например, для отправки четырёх пакетов на IP-адрес 8.8.8.8 введём ping -c 4 8.8.8.8 (рис. 3.5)

```
[root@eavernikovskaya ~]# ping -c 4 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=255 time=21.2 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=255 time=21.7 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=255 time=20.1 ms

64 bytes from 8.8.8.8: icmp_seq=4 ttl=255 time=19.8 ms

--- 8.8.8.8 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3004ms

rtt min/avg/max/mdev = 19.794/20.682/21.657/0.756 ms

[root@eavernikovskaya ~]#
```

Рис. 3.5: Отправка четырёх пакетов на IP-адрес 8.8.8.8

Добавим дополнительный адрес к нашему интерфейсу: *ip addr add* 10.0.0.10/24 *dev yourdevicename* Здесь *yourdevicename* — название интерфейса, которому добавляется IP-адрес. В нашем случаем это enp0s3 (рис. 3.6)

```
[root@eavernikovskaya ~]# ip addr add 10.0.0.10/24 dev enp0s3 [root@eavernikovskaya ~]#
```

Рис. 3.6: Добавление дополнительного адреса к интерфейсу

Проверим, что адрес добавился: *ip addr show* (рис. 3.7)

```
[root@eavernikovskaya ~]# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000 link/ether 08:00:27:93:db:bc brd fff:fff:fff:fff:ff inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3 valid_lft 85374sec preferred_lft 85374sec inet 10.0.0.10/24 scope global enp0s3 valid_lft forever preferred_lft forever inet6 fd00::a00:27ff:fe93:dbbc/64 scope global dynamic noprefixroute valid_lft 86202sec preferred_lft 1202sec inet6 fe80::a00:27ff:fe93:dbbc/64 scope link noprefixroute valid_lft forever preferred_lft forever [root@eavernikovskaya ~]# ■
```

Рис. 3.7: Проверка добавлнеия адреса

Теперь сравним вывод информации от утилиты *ip* и от команды *ifconfig* (рис. 3.8), (рис. 3.9)

Рис. 3.8: Вывод информации от утилиты ір

```
[root@eavernikovskaya ~]# ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
         inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
         inet6 fe80::a00:27ff:fe93:dbbc prefixlen 64 scopeid 0x20<link>
inet6 fd00::a00:27ff:fe93:dbbc prefixlen 64 scopeid 0x0<global>
         ether 08:00:27:93:db:bc txqueuelen 1000 (Ethernet)
         RX packets 160 bytes 22862 (22.3 KiB)
         RX errors 0 dropped 0 overruns 0 frame 0
TX packets 219 bytes 22090 (21.5 KiB)
         TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
         inet 127.0.0.1 netmask 255.0.0.0
         inet6 ::1 prefixlen 128 scopeid 0x10<host>
         loop txqueuelen 1000 (Local Loopback)
         RX packets 18 bytes 2172 (2.1 KiB)
         RX errors 0 dropped 0 overruns 0 frame 0
         TX packets 18 bytes 2172 (2.1 KiB)
         TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@eavernikovskaya ~]#
```

Рис. 3.9: Вывод информации от команды ifconfig

#### Сравнение:

#### 1. Команда ір:

- Используется для получения инструкций по использованию и расширенной функциональности
- Применяется для управления сетевым стеком более комплексно и детально
- Поддерживает как IPv4, так и IPv6, и предоставляет больше информации о взгляде на состояние всей сети

#### 2. Koмaндa ifconfig:

- Регулярно используется для быстрого доступа к основным данным о сетевых интерфейсах
- Выводит подробные статистические данные и состояние интерфейсов, но предоставляет меньше информации по сравнению с ір
- В основном используется для простых операций и поддерживается данными о сетевых интерфейсах без дополнительных параметров

Выведим на экран список всех прослушиваемых системой портов UDP и TCP: ss -tul (рис. 3.10)

```
[root@eavernikovskaya ~] # ss -tul
Netid State Recv_Q Send_Q Local Address:Port Peer Address:Port Process
udp UNCONN 0 0 0.0.0.0:mdns 0.0.0.0:*
udp UNCONN 0 0 0.27.0.0.1:323 0.0.0.0:*
udp UNCONN 0 0 0.0.0.0.46573 0.0.0.0:*
udp UNCONN 0 0 [::]:mdns [::]:*
tcp LISTEN 0 128 0.0.0.0:ssh 0.0.0.0:*
tcp LISTEN 0 4096 127.0.0.1:ipp 0.0.0.0:*
tcp LISTEN 0 511 *:http *:*
tcp LISTEN 0 32 *:ftp *:*
tcp LISTEN 0 128 [::]:ssh [::]:*
tcp LISTEN 0 4096 [::]:ssh [::]:*
tcp LISTEN 0 4096 [::]:ssh [::]:*
```

Рис. 3.10: Список всех прослушиваемых системой портов UDP и TCP

# 3.2 Управление сетевыми подключениями с помощью nmcli

Выведим на экран информацию о текущих соединениях: *nmcli connection show* (рис. 3.11)

```
[root@eavernikovskaya ~]# nmcli connection show

NAME UUID TYPE DEVICE
enp0s3 a652cbc9-d394-3640-b89d-c31bb60a6548 ethernet enp0s3
lo 6312c9e5-0dd3-45ee-be73-cbdb1291da63 loopback lo
[root@eavernikovskaya ~]#
```

Рис. 3.11: Информация о текущих соединениях (1)

Добавим Ethernet-соединение с именем dhcp к интерфейсу: *nmcli connection* add con-name "dhcp" type ethernet ifname ifname. Здесь вместо ifname должно быть указано название интерфейса. В нашем случае это enp0s3 (рис. 3.12)

```
[root@eavernikovskaya ~]# nmcli connection add con-name "dhcp" type ethernet ifname enp0s3
Connection 'dhcp' (lcbd2c5b-b4bd-4195-88f9-83b9ea8b13e3) successfully added.
[root@eavernikovskaya ~]#
```

Рис. 3.12: Добавление Ethernet-соединения с именем dhcp

Теперь добавим к этому же интерфейсу Ethernet-соединение с именем static, статическим IPv4-адресом адаптера и статическим адресом шлюза: nmcli connection add con-name "static" ifname ifname autoconnect no type ethernet ip4 10.0.0.10/24 gw4 10.0.0.1 ifname ifname (puc. 3.13)

```
[root@eavernikovskaya ~]# nmcli connection add con-name "static" ifname enp0s3 autoconnect no type ethernet ip4 10.0.0 .10/24 gw4 10.0.0.1 ifname enp0s3 Connection 'static' (0f2d47c5-f288-45e0-ad40-a7faec5b4c92) successfully added. [root@eavernikovskaya ~]#
```

Рис. 3.13: Добавление Ethernet-соединения с именем static

Снова выведим информацию о текущих соединениях: *nmcli connection show* (рис. 3.14)

```
[root@eavernikovskaya ~] # nmcli connection show

NAME UUID TYPE DEVICE
enp0s3 a652cbc9-d394-3640-b89d-c31bb60a6548 ethernet enp0s3
lo 6312c9e5-0dd3-45ee-be73-cbdb1291da63 loopback lo
dhcp 1cbd2c5b-b4bd-4195-88f9-83b9ea8b13e3 ethernet --
static 0f2d47c5-f288-45e0-ad40-a7faec5b4c92 ethernet --
[root@eavernikovskaya ~] #
```

Рис. 3.14: Информация о текущих соединениях (2)

Переключимся на статическое соединение: nmcli connection up "static" (рис. 3.15)

```
[root@eavernikovskaya ~]# nmcli connection up "static"
Connection successfully activated (O-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/3)
[root@eavernikovskaya ~]#
```

Рис. 3.15: Переключение на статическое соединение

Проверим успешность переключения при помощи *nmcli connection show* и *ip addr* (рис. 3.16), (рис. 3.17)

```
[root@eavernikovskaya ~]# nmcli connection show
NAME UUID
TYPE DEVICE
static 0f2d47c5-f288-45e0-ad40-a7faec5b4c92 ethernet enp8s3
c 6312c0e5-0dd2-4195-88f9-8359ea8b1383 toopback to
dhcp 1cbd2c5b-b4bd-4195-88f9-8359ea8b1383 ethernet --
enp0s3 a652cbc9-d394-3640-b89d-c31bb60a6548 ethernet --
```

Рис. 3.16: Проверка успешного переключения при помощи nmcli connection show (1)

Рис. 3.17: Проверка успешного переключения при помощи ip addr (1)

Вернёмся к соединению dhcp: nmcli connection up "dhcp" (рис. 3.18)

```
[root@eavernikovskaya ~]# nmcli connection up "dhcp"
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/4)
[root@eavernikovskaya ~]# ■
```

Рис. 3.18: Переключение на соединение dhcp

Снова проверим успешность переключения при помощи *nmcli connection show* и *ip addr* (рис. 3.19), (рис. 3.20)

Рис. 3.19: Проверка успешного переключения при помощи nmcli connection show (2)

Рис. 3.20: Проверка успешного переключения при помощи ip addr (2)

### 3.3 Изменение параметров соединения с помощью nmcli

Отчлючим автоподключение статического соединения: nmcli connection modify "static" connection.autoconnect no (рис. 3.21)

```
[root@eavernikovskaya ~]# nmcli connection modify "static" connection.autoconnect no [root@eavernikovskaya ~]# █
```

Рис. 3.21: Отключение автоподключения статического соединения

Добавим DNS-сервер в статическое соединение: *nmcli connection modify "static" ipv4.dns 10.0.0.10*. При добавлении сетевого подключения используется ip4, а при

изменении параметров для существующего соединения используется ipv4 (рис. 3.22)

```
[root@eavernikovskaya ~]# nmcli connection modify "static" ipv4.dns 10.0.0.10
[root@eavernikovskaya ~]#
```

Рис. 3.22: Добавление DNS-сервера в статическое соединение

Добавим второй DNS-сервер: *nmcli connection modify "static"* +*ipv4.dns* 8.8.8.8. Для добавления второго и последующих элементов для тех же параметров используется знак +. Если его проигнорировать, то произойдёт замена, а не добавление элемента (рис. 3.23)

```
[root@eavernikovskaya ~]# nmcli connection modify "static" +ipv4.dns 8.8.8.8
[root@eavernikovskaya ~]#
```

Рис. 3.23: Добавление второго DNS-сервера в статическое соединение

Изменим IP-адрес статического соединения: nmcli connection modify "static" ipv4.addresses 10.0.0.20/24 (рис. 3.24)

```
[root@eavernikovskaya ~]# nmcli connection modify "static" ipv4.addresses 10.0.0.20/24 [root@eavernikovskaya ~]#
```

Рис. 3.24: Изменение ІР-адреса статического соединения

Добавим другой IP-адрес для статического соединения: nmcli connection modify "static" +ipv4.addresses 10.20.30.40/16 (рис. 3.25)

```
[root@eavernikovskaya ~]# nmcli connection modify "static" +ipv4.addresses 10.20.30.40/16
[root@eavernikovskaya ~]#
```

Рис. 3.25: Добавление другого ІР-адреса для статического соединения

После изменения свойств соединения активируем его: *nmcli connection up "static"* (рис. 3.26)

```
[root@eavernikovskaya ~]# nmcli connection up "static"

Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/5)

[root@eavernikovskaya ~]#
```

Рис. 3.26: Активирование соединения static

Проверим успешность переключения при помощи *nmcli con show* и *ip addr* (рис. 3.27), (рис. 3.28)

```
[root@eavernikovskaya ~]# nmcli con show

NAME UUID TYPE DEVICE

static 0f2d47c5-f288-45e0-ad40-a7faec5b4c92 ethernet enp0s3
lo 6312c9e5-0dd3-45ee-be73-cbdb1291da63 loopback lo

dhcp 1cbd2c5b-b4bd-4195-88f9-83b9ea8b13e3 ethernet --
enp0s3 a652cbc9-d394-3640-b89d-c31bb60a6548 ethernet --
```

Рис. 3.27: Проверка успешного переключения при помощи nmcli con show (3)

Рис. 3.28: Проверка успешного переключения при помощи ip addr (3)

Используя *nmtui* посмотрим настройки сетевых соединений в графическом интерфейсе операционной системы (3.29), (3.30), (3.31)

[root@eavernikovskaya ~]# nmtui

Рис. 3.29: Koaндa nmtui



Рис. 3.30: Грфический интерфейс операционной системы



Рис. 3.31: Настройки сетевого соединения static

Переключимся на первоначальное сетевое соединение: *nmcli connection up* "*ifname*". В нашем случае на enp0s3 (3.32)

```
[root@eavernikovskaya ~]# nmcli connection up enp0s3
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/6)
[root@eavernikovskaya ~]#
```

Рис. 3.32: Переключение на первоначальное сетевое соединение

Проверим успешность переключения при помощи *nmcli connection show* и *ip addr* (рис. 3.33), (рис. 3.34)

```
[root@eavernikovskaya ~]# nmcli connection show

NAME UUID TYPE DEVICE
enp0s3 a652cbc9-d394-3640-b89d-c31bb60a6548 ethernet enp0s3
lo 6312c9e5-0dd3-45ee-be73-cbdb1291da63 loopback lo
dhcp 1cbd2c5b-b4bd-4195-88f9-83b9ea8b13e3 ethernet --
static 0f2d47c5-f288-45e0-ad40-a7faec5b4c92 ethernet --
```

Рис. 3.33: Проверка успешного переключения при помощи nmcli connection show (4)

```
[root@eavernikovskaya ~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
link/ether 08:00:27:93:db:bc brd ff:ff:ff:ff:ff:
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3
valid_lft 86376sec preferred_lft 86376sec
inet6 fd00::a00:27ff:fe93:dbbc/64 scope global dynamic noprefixroute
valid_lft 86378sec preferred_lft 14378sec
inet6 fd00::a00:27ff:fe93:dbbc/64 scope link noprefixroute
valid_lft forever preferred_lft forever
[root@eavernikovskaya ~]# ■
```

Рис. 3.34: Проверка успешного переключения при помощи ip addr (4)

## 4 Контрольные вопросы + ответы

1. Какая команда отображает только статус соединения, но не IP-адрес?

ip link или netstat (рис. 4.1), (рис. 4.2)

```
[root@eavernikovskaya ~]# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mo
de DEFAULT group default qlen 1000
link/ether 08:00:27:93:db:bc brd ff:ff:ff:ff:ff
[root@eavernikovskaya ~]#
```

Рис. 4.1: Вопрос №1 (1)

```
ctive Internet connections (w/o servers)
roto Recv-Q Send-Q Local Address
                                                             Foreign Address
                                                                                               State
ESTABLISHED
                       0 eavernikovskaya.:bootpc _gateway:bootps
ctive UNIX domain sockets (w/o servers)
roto RefCnt Flags
                                  Type
DGRAM
                                                                                  Path
                                                                                  /run/user/1000/systemd/notify
                                                                                  /run/systemd/notify
/run/systemd/journal/dev-log
/run/systemd/journal/socket
/run/chrony/chronyd.sock
                                  DGRAM
                                                  CONNECTED
                                                 CONNECTED
                                                                      13305
                                  DGRAM
                                                  CONNECTED
                                                                      15307
```

Рис. 4.2: Вопрос №1 (2)

2. Какая служба управляет сетью в ОС типа RHEL?

#### NetworkManager

3. Какой файл содержит имя узла (устройства) в ОС типа RHEL?

файл /etc/hosts – список всех хостов (рис. 4.3) файл /etc/hostname – имя хоста локального устройства (рис. 4.4)



Рис. 4.3: Вопрос №3 (1)



Рис. 4.4: Вопрос №3 (2)

4. Какая команда позволяет вам задать имя узла (устройства)?

hostnamectl set-hostname

5. Какой конфигурационный файл можно изменить для включения разрешения имён для конкретного IP-адреса?

/etc/hosts

6. Какая команда показывает текущую конфигурацию маршрутизации?

ip route show (рис. 4.5)

```
[root@eavernikovskaya ~]# ip route show
default via 10.0.2.2 dev enp0s3 proto dhcp src 10.0.2.15 metric 100
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100
[root@eavernikovskaya ~]#
```

Рис. 4.5: Вопрос №6

7. Как проверить текущий статус службы NetworkManager?

systemctl status NetworkManager (рис. 4.5)

```
[root@eavernikovskaya ~]# systemctl status NetworkManager
*NetworkManager_service - Network Manager
Loaded: loaded (Jusr]Lib/systemd/system/NetworkManager_service; enabled; preset: enabled)
Active: active (running) since Tue 2024-11-19 15:34:29 MSK; 4min 57s ago
Docs: man:NetworkManager(8)
Main PID: 1033 (NetworkManager)
Tasks: 3 (limit: 10976)
Memory: 9.9M
CPU: 149ms
CGroup: /system.slice/NetworkManager.service
L1033 /usr/sbin/NetworkManager --no-daemon
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2446] device (enp0s3): state
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2487] device (enp0s3): state
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2499] device (enp0s3): state
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2490] device (enp0s3): state
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: NetworkManager
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: NetworkManager
Nov 19 15:34:30 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: NetworkManager
Nov 19 15:34:310 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: NetworkManager
Nov 19 15:34:310 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: statup compl.
Nov 19 15:34:34 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: agent[10]
Nov 19 15:34:34 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: agent[10]
Nov 19 15:34:34 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: agent[10]
Nov 19 15:34:34 eavernikovskaya.localdomain NetworkManager[1033]: <info> [1732019670.2500] manager: agent[10]
Nov 19 15:34:34 eavernikovskaya.localdomain NetworkManager[103]: <info> [1732019670.2500] manager: agent[10]
```

Рис. 4.6: Вопрос №7

- 8. Какая команда позволяет вам изменить текущий IP-адрес и шлюз по умолчанию для вашего сетевого соединения?
- nmcli con mod имя соединения ipv4.addresses "meкущий ip,новый ip" gw4 новый ip изменить текущий ip адрес и шлюз
- nmcli con mod имя соединения ipv4.addresses "текущий ip,новый ip" изменить текущий ip адрес
- route add default GW новый ip название интерфейса изменить шлюз по умолчанию

# 5 Выводы

В ходе выполнения лабораторной работы мы получили навыки настройки сетевых параметров системы

## 6 Список литературы

1. Лаборатораня работа №12 [Электронный ресурс] URL: https://esystem.rudn.ru/pluginfile.ph/network.pdf