Mit dem Sinus modellieren

Kirill Heitzler

16. Januar 2021

Inhaltsverzeichnis

1	Rüc	ekblick	3
	1.1	Rechtwinkliges Dreieck - Beschriftung	3
	1.2	Der Sinus	3
	1.3	Der Sinus - Beispiel Aufgabe	4
	1.4	Der Kosinus und der Tangens	
2	Einheitskreis		
	2.1	Einheitskreis - Beispiel	6
	2.2	Der Sinus und Kosinus am Einheitskreis	7
	2.3	Beziehungen zwischen Sinus, Kosinus und Tangens	8
	2.4	Einheitskreis - Definition	
	2.5	Einheitskreis - Aufgabe	
3	Mit dem Sinus modellieren		10
	3.1	Mit dem Sinus modellieren - Beispiel	10
	3.2	Mit dem Sinus modellieren - Wertetabelle	10
	3.3	Mit dem Sinus modellieren - Zeichnung	10
	3.4	Mit dem Sinus modellieren - Winkel α mit 0 ° $<$	
	3.5	Mit dem Sinus modellieren - Zeichnung	10
	3.6	Mit dem Sinus modellieren - Zeichnung	
	3.7	Sinusfunktion im Gradmaß - Definition	
	3.8	Mit dem Sinus modellieren - Aufgabe	
4	Zus	ammenfassung	10
5	5 Anwendungsbeispiele / Weiter Anwendungen		10
6	Que	ellen	10

1 Rückblick

1.1 Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

Das Rechtwinklige Dreieck wird folgendermaßen wie in Abbildung 1 beschriftet.

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Die anliegende Kathete zu Winkel α wir 'Ankathete von α ' genannt und die Kathete gegenüber von Alpha wird 'Gegenkathete von α ' genannt.

Die Hypothenuse liegt gegenüber des Rechten Winkel γ .

1.2 Der Sinus

Definition: In einem rechtwinkligen Dreieck nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

den Sinus von α

Abbildung 2: Rechtwinkliges Dreieck

Der Sinus - Beispiel Aufgabe 1.3

Gegenkathete von α mithilfe des Sinus berechnen:

Aufgabe: Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in Abbildung 3 besitzt einen rechten Winkel(90°), die Hyptenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namen's x. Rechnung:

Abbildung 3: Rechtwinkliges Dreieck am Münster

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}}$$

$$\sin(45) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
(2)

$$\sin(45) = \frac{x}{164,05m} \qquad |\cdot 164,05m$$
 (2)

$$\sin(45) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort: Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

1.4 Der Kosinus und der Tangens

Sinus von α :

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

Abbildung 4: Rechtwinkliges Dreieck

Cosinus von α :

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypothenuse}} \tag{1}$$

Abbildung 5: Rechtwinkliges Dreieck

Tangens von α :

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} \tag{1}$$

Abbildung 6: Rechtwinkliges Dreieck

2 Einheitskreis

2.1 Einheitskreis - Beispiel

Aufgaben-Text: Auf einem kresiförmigen Koordinatensystem eines Radarschirms Abbildung 7 wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Aufgabe: Ein Schiff A ist mit dem Kurs 30° gegenüber der x-Achse einen Kilometer weit gefahren. Welche Koordinaten im x-y-Kooradinatensystem hat es? Welche Koordinaten hat das Schiff B, das mit dem Kurs 75° textbfeinen Kilometer weit gefahren ist?

Abbildung 7: Radar

Lösung:

Das Schiff A mit dem Kurs 30° befindet sich auf der x-Achse: etwa 0,86 Kilometer und y-Achse: 0,5 Kilometer. Also auf dem Punkt A(0,86|0,5)

Das Schiff **B** mit dem Kurs **75°** befindet sich auf der x-Achse: etwa **0,25 Kilometer** und y-Achse: **0,96 Kilometer**. Also auf dem Punkt **A(0,25|0,96)**

Abbildung 8: Radar Lösung

2.2Der Sinus und Kosinus am Einheitskreis

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

- Die Endpunkte der **Hypotenuse** sind der **2.** Kreis O mit dem Radius 1 liegt. Diesen Kreis P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$ nennt man den Einheitskreis.
- Die Ecke mit dem rechten Winkel liegt auf Ursprung O und ein Punkt P, der auf einem der x-Achse senkrecht unter P. Der Punkt

Abbildung 9: Sinus und Kosinus am Einheitskreis

2.3 Beziehungen zwischen Sinus, Kosinus und Tangens

$$< \alpha < 90$$
 (b) $sin(0) = 0, cos(0) = 1$

(c) sin(90) = 1, cos(90) = 1

Abbildung 10: Beziehung 1

- **1.** Für $0 < \alpha < 90$ nimmt $sin(\alpha)$ mit wachsendem α zu und $cos(\alpha)$ ab(Abbildung 10a). sin(0) = 0, cos(0) = 1 (Abbildung 10b), sin(90) = 1, cos(90) = 0 (Abbildung 10c).
- 2. Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an(Abbildung 11), so erhält man den für jede Winkelweite gültigen Zusammenhang $sin^2(\alpha) + cos^2(\alpha) = 1$.

Abbildung 12: $\sin(90^{\circ} - \alpha)$, $\cos(90^{\circ} - \alpha)$

- 3. In Abbildung 12 sieht man: $sin(90 \alpha) = x = cos(\alpha)$ und $cos(90 \alpha) = y = sin(\alpha)$
- **4.** Ebenfalls in Abbildung 12: $tan(\alpha) = \frac{y}{x} = \frac{sin(\alpha)}{cos(\alpha)}$.

Abbildung 11: Einheitskreis Dreieck Satz des Pythagoras

2.4 Einheitskreis - Definition

Definition: Es gilt:

$$sin^2(\alpha) + cos^2(\alpha) = 1$$

$$\sin(90 - \alpha) = \sin(\alpha)$$

$$tan(\alpha) = \frac{sin(\alpha)}{\cos(\alpha)}, \alpha \neq 90$$
, weil: $tan(90) = \frac{sin(90)}{\cos(90)} = \frac{1}{0} = !$.

2.5 Einheitskreis - Aufgabe

- 3 Mit dem Sinus modellieren
- 3.1 Mit dem Sinus modellieren Beispiel
- 3.2 Mit dem Sinus modellieren Wertetabelle
- 3.3 Mit dem Sinus modellieren Zeichnung
- 3.4 Mit dem Sinus modellieren Winkel α mit 0°...<
- 3.5 Mit dem Sinus modellieren Zeichnung
- 3.6 Mit dem Sinus modellieren Zeichnung
- 3.7 Sinusfunktion im Gradmaß Definition
- 3.8 Mit dem Sinus modellieren Aufgabe
- 4 Zusammenfassung
- 5 Anwendungsbeispiele / Weiter Anwendungen
- 6 Quellen

 $Freiburger\ M\"{u}nster-https://freiburg-schwarzwald.de/fotos06feb/freiburg12-060227.jpg$