Курсовая работа по вычислительной математике Уравнение Бонгоффера-Ван-дер-Поля

Шеренешева Анастасия, гр.714 22 мая 2020 г.

Содержание

1	Постановка задачи			
2	Исследование системы уравнений			
3	Устойчивость разностных схем	7		
4	Оценка погрешности методов 4.1 Проверка программы на тестовом уравнении			
5	Расчет уравнения Бонгоффера-ван-дер-Поля	10		
6	Вывод	11		
7	Список литературы			

1 Постановка задачи

Решить жесткую систему уравнений, описывающую протекание тока через клеточную мембрану:

$$\begin{cases} y_1' = a(-(\frac{y_1^3}{3} - y_1) + y_2) \\ y_2' = -y_1 - by_2 - c \end{cases}$$

при начальных условиях $y_1(0)=2,\ y_2(0)=0,$ на отрезке $t\in[0,20]$ и ограничениях на коэффициенты $0< c<1,\ b>0$

2 Исследование системы уравнений

Особые точки определяются из системы уравнений:

$$\begin{cases} -\frac{y_1^3}{3} + y_1 + y_2 = 0\\ -y_1 - by_2 - c = 0 \end{cases}$$

Вблизи найденной особой точки систему можно лианеризовать:

$$\begin{cases} y_1' = ay_1 + ay_2 \\ y_2' = -y_1 - by_2 \end{cases}$$

Получим следующее характеристическое уравнение:

$$\lambda^{2} + (b-a)\lambda - a(b-a) = 0 \Rightarrow \lambda_{1,2} = \frac{a-b \pm \sqrt{(a+b)^{2}-4a}}{2}$$

Рассмотрим сначала грубые положения равновесия, когда $a \neq b \neq 0$. В этом случае корни характеристического уравнения всегда получаются одного знака, значит при условии $(a+b)^2 > 4a$ получим устойчивый или неустойчивый узел если a < b или a > b соответственно. Построим соответствующие фазовые траектории в программе MatLab. Например, a=1,b=3,c=1.

Рис. 1: a = 1, b = 3, c = 1

В случае же $(a+b)^2 > 4a$ корни характеристического уравнения становятся мнимыми и траектории принимают вид фокусов или предельных циклов. Исследование фазовых траекторий подобного рода нелинейных систем является отдельной сложной задачей, поэтому приведу лишь примеры коэффициентов, при которых получаются те или иные траектории.

Предельный цикл:

Рис. 2: a = 1, b = 0.5, c = 0

Рис. 3: a = 1000, b = 0.5, c = 0.5

Фокус:

Рис. 4: a = 0.7, b = 0.5, c = 0.5

Также можно рассмотреть зависимость устойчивости системы от параметров.

Рис. 5: $a = 0.6 \div 1.5, b = 0.7, c = 0$

Видно, что при увеличении а фазовая траектория стремится к предельному циклу. При варьировании параметров b и с интересных особенностей замечено не было.

Решив характеристическое уравнение для нелианеризованной системы получим условие жесткости: $\frac{\lambda_1}{\lambda_2}\sim \frac{a}{b}\gg 1\Rightarrow a\gg b$

3 Устойчивость разностных схем

- Неявный метод Эйлера $||\frac{\partial f}{\partial y}|| < 0 \Rightarrow$ схема безусловно устойчива
- ullet Формула дифференцирования назад 3 порядка $h < rac{1}{||rac{\partial f}{\partial y}||} \Rightarrow h < rac{1}{a}$
- Метод Рунге-Кутты 4 порядка $|1+z+\frac{z^2}{2}+\frac{z^3}{6}+\frac{z^4}{24}|<1, z=\lambda h \\ \Rightarrow |\lambda h|\lesssim 2.7 \Rightarrow h<\frac{2.7}{a}$

4 Оценка погрешности методов

4.1 Проверка программы на тестовом уравнении

Проверка проводилась на уравнении

$$\begin{cases} y_1' = y_2 \\ y_2' = -y_1 \end{cases}$$

решением которого являются функции: $y_1(t) = 2cos(t), y_2(t) = -2sin(t)$. К сожалению, верный порядок сходимости по правилу Рунге мне удалось определить только для метода Эйлера:

```
h = 0.001
RUNGE: p = 4.693535925516433 C = 3089.3644236232963
EILER: p = 0.9965696984135222 C = 18.34650562149176
BDF: p = 0.5000646140803456 C = 9.397270082112486
_____
h = 0.0005
RUNGE: p = 2.122797525662968 C = 1.008752379311179e-05
EILER: p = 0.9982839105531659 C = 18.587116627513886
BDF: p = 0.5000323487559151 C = 9.39496572570303
-----
h = 0.00025
RUNGE: p = 1.1178490237281802 C = 4.591464595150062e-08
EILER: p = 0.9991416949604025 C = 18.71982631090221
BDF: p = 0.5000161871436104 C = 9.393706459906214
h = 0.000125
RUNGE: p = 0.25668610731323194 C = 9.413845299043668e-11
EILER: p = 0.9995707829372779 C = 18.792154912257086
BDF: p = 0.5000080952259235 C = 9.393023340060308
______
h = 6.25e-05
RUNGE: p = 1.6070432701063706 C = 6.388089975299923e-05
EILER: p = 0.9997853753250692 C = 18.831232959262707
BDF: p = 0.5000040435777453 C = 9.392654940246448
_____
h = 3.125e-05
RUNGE: p = 0.8755180598267097 C = 3.0010739460625714e-07
EILER: p = 0.9998926843362851 C = 18.8522069772092
BDF: p = 0.50000201331623 C = 9.392457124563805
```

Рис. 6: Правило Рунге

Поэтому приведу погрешности (разность аналитического и полученного решений) каждого метода для тестового уравнения на сгущающихся сетках в конце временного отрезка (t=20):

h	Δ				
	y_1	y_2			
Неявный метод Эйлера					
0.0002	0.002	0.004			
0.0001	0.0008	0.002			
0.00005	0.0004	0.0009			
Формула дифференцирования назад 3 порядка					
0.0002	0.0007	0.0003			
0.0001	0.0004	0.0002			
0.00005	0.0002	0.00008			
Метод Рунге-Кутты 4 порядка					
0.001	3e-13	1e-13			
0.0005	2e-16	4e-15			

4.2 Теоретическая оценка

Оценим главный член погрешности каждого из методов, подставив сеточную проекцию точного решения в разностные схемы:

• Неявный метод Эйлера

$$r = \frac{u^{n+1} - u^n}{h} - f(u^{n+1}) = \frac{u^{n+1} - u^{n+1} + h(u'_x)^{n+1} - \frac{h^2}{2}(u''_{xx})^{n+1} + O(h^3)}{h} - f(u^{n+1}) = -\frac{h}{2}(u''_x)^{n+1} + O(h^2) = O(h)$$

• Неявная формула дифференцирования назад 3 порядка

$$r = \frac{\frac{11}{6}u^{n+1} - 3u^n + \frac{3}{2}u^{n-1} - \frac{1}{3}u^{n-2}}{h} - f(u^{n+1}) = \frac{\frac{11}{6}u^{n+1} - 3u^{n+1} + 3h(u_x')^{n+1} - 3\frac{h^2}{2}(u_{xx}'')^{n+1} + \frac{3h^3}{2}(u_{xx}'')^{n+1} - 3\frac{h^4}{24}(u_{xxxx}''')^{n+1}) + \frac{3}{2}u^{n+1} - \frac{3}{2}2h(u_x')^{n+1} + \frac{3}{2}\frac{(2h)^2}{2}(u_{xx}'')^{n+1} - \frac{3}{2}\frac{(2h)^3}{6}(u_{xxx}''')^{n+1} + \frac{1}{3}\frac{(3h)^2}{6}(u_{xxxx}''')^{n+1} - \frac{1}{3}\frac{(3h)^4}{24}(u_{xxxx}'''')^{n+1} - \frac{1}{3}\frac{(3h)^4}{24}(u_{xxxx}''''')^{n+1} - \frac{1}{3}\frac{(3h)^4}{24}(u_{xxxx}'''')^{n+1} - \frac{1}{3}\frac{(3h)^4}{24}(u_{xxx$$

$$+O(h^4) - f(u^{n+1}) = -\frac{h^3}{4}(u''''_{xxxx})^{n+1} + O(h^4) = O(h^3)$$

ullet Явный метод Рунге-Кутты 4 порядка $r=O(h^4)$

5 Расчет уравнения Бонгоффера-ван-дер-Поля

Проведем расчет в программе с шагом h=0.0005, коэффициентами a=1000, b=0.5, c=0.5. Получим следующие результаты:

Рис. 7: $y_1(t), y_2(t)$

Рис. 8: Фазовая траектория

Расчеты в последней точке (t=20):

h	y_1	y_2			
Неявный метод Эйлера					
0.0002	-1.578	0.269			
0.0001	-1.585	0.259			
0.0005	-1.589	0.254			
Формула дифференцирования назад 3 порядка					
0.0002	-1.5912	0.2495			
0.0001	-1.5916	0.2490			
0.0005	-1.5917	0.2488			
Метод Рунге-Кутты 4 порядка					
0.001	-1.5822	0.2632			
0.0005	-1.5894	0.2523			
0.00025	-1.5910	0.2498			

6 Вывод

Полученные с помощью программы результаты решения жесткой системы качественно совпадают с полученными в MatLab. На тестовом уравнении получена минимальная погрешность порядка 10^{-16} .

7 Список литературы

- А.М. Жаботинский "Коцентрационные автоколебания"
- \bullet Е.Н. Аристова, А.И. Лобанов "Практические занятие по вычислительной математике в МФТИ. Часть II"