Optimización de un modelo de segmentación de fonocardiogramas para su implementación en FPGAs de bajo coste

Daniel Enériz¹, Antonio J. Rodríguez-Almeida², Himar Fabelo^{2,3}, Gustavo M. Callicó², Nicolás Medrano¹, Belén Calvo¹

¹Instituto Universitario de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza (UZ) ² Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria (ULPGC) ³ Fundación Canaria Instituto de Investigación Sanitaria de Canarias

Introducción

- Sistema de ayuda al diagnóstico de soplos
- Fonocardiogramas PCG: sonidos corazón
- Segmentación de PCG: división en ciclos
- 4 estados cardiacos S1→Síst→ S2→ Días
- U-Net: Segmentación de imágenes
- Adaptación para señales 1D (PCG)
- Soporte Hardware: FPGA
 - Cómputo paralelo
 - Datos de punto fijo
 - Optimización

Bases de datos y preprocesado

- 2016 CinC Challenge
 - 135 sujetos
- 792 PCGs
- The CirCor dataset 2022 CinC Challenge
 - 942 sujetos
- 3163 PCGs
- Preprocesado:
 - BP 25-400 Hz
- Reducción de picos
- Decimado 50 Hz
- 4 envolventes

Arquitectura, validación, entrenamiento y reducción

• Training set 60%, Validation set 20% y Test set 20%

• Entrenamiento: Optimizador Adam, learning rate 10⁻⁴, batch size de 1 y 15 épocas

n_0)	8	7	6	5	4
n _{enc}	4	91.16	91.09	91.10	90.58	90.64
	3	90.73	90.62	90.59	90.35	90.32
	2	89.64	89.88	89.39	89.26	88.92
	1	85.76	84.92	84.85	85.33	83.09
Test set accuracy en modelos con N=64 sobre 2022						

 $n_{w} = 3k$ $n_{w} = 10k$ $n_{w} = 30k$ $n_{w} = 100k$ $n_{w} =$

Implementación

• Dos paradigmas de optimización: Memoria compartida (A) y streaming dataflow (B)

Primera capa

Segunda capa

Tercera capa

Menor consumo de recursos y menor latencia

Segunda capa

...

Desaparece la necesidad de bloques de memoria entre capas y permite operar en capas posteriores sin haber completado las anteriores

Efecto del tipo de dato de punto fijo en los recursos de la FPGA y la bajada de precisión del modelo

	A	D
BRAM (%)	97	99
DSP (%)	56	10
FF (%)	17	10
LUT (%)	93	44
Lat. (ms)	82.05	29.27

Resultados de las implementaciones optimizadas del modelo N=64 sobre XC7Z020 con Q8.8

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Instituto Universitario de Microelectrónica Aplicada

Contacto y más información

Daniel Enériz Orta

eneriz@unizar.es

IUMA

Instituto Universitario de Investigación en Ingeniería de Aragón (I3A)

Facultad de Ciencias, Universidad de Zaragoza

