Math & Stat for Data Science

Graduate School of Data Science Seoul National University

Before starting convergence...

- Some inequalities are very useful to investigate the convergence of random variables.
- We will skip through the followings
 - Markov's inequality
 - Chebyshev's inequality
 - Cauchy Schwartz
 - Jensen's inequality

Probability Inequalities (Extra)

4.1 Theorem (Markov's inequality). Let X be a non-negative random variable and suppose that $\mathbb{E}(X)$ exists. For any t > 0,

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t}.\tag{4.1}$$

Get probability inequality using expectation

Probability Inequalities (Extra)

4.2 Theorem (Chebyshev's inequality). Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$. Then,

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$$
 and $\mathbb{P}(|Z| \ge k) \le \frac{1}{k^2}$ (4.2)

where $Z = (X - \mu)/\sigma$. In particular, $\mathbb{P}(|Z| > 2) \le 1/4$ and $\mathbb{P}(|Z| > 3) \le 1/9$.

Easily derived from Markov Inequality Very useful in asymptotic

Inequalities in Expectation (Extra)

4.8 Theorem (Cauchy-Schwartz inequality). If X and Y have finite variances then $\mathbb{E} \left| XY \right| \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}. \tag{4.5}$

It shows why correlation is between -1 and 1

Inequalities in Expectation (Extra)

4.9 Theorem (Jensen's inequality). If
$$g$$
 is convex, then
$$\mathbb{E} g(X) \geq g(\mathbb{E} X). \tag{4.6}$$
 If g is concave, then
$$\mathbb{E} g(X) \leq g(\mathbb{E} X). \tag{4.7}$$

• g is convex function if for each x, y and $\alpha \in [0,1]$ $g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y).$

Jensen inequality (Extra)

Here, f is the g in the previous slides From Wikipedia

- Basic question
 - What we can say about the limiting behaviors of random variables
- Ex. Suppose you gather data and get the sample mean. What will happen if we gather more and more data?
 - Will the sample mean converge a certain number? Then which number?
 - Law of large number
 - Can we know the distribution of the sample mean?
 - Central limit theorem

 Convergence of RV can be different from convergence of numbers

- Sequence of random variables (X₁, X₂, X₃,...)
 - Ex. $X_n \sim N(0,1/n)$. It seems like X_n converges to zero, but $Pr(X_n = 0)$ for all n
 - Ex. $X_n \sim N(0,1)$. Suppose $X_n \rightarrow X$. All have the same distribution (so converge to N(0,1)) but $Pr(X = X_n) = 0$ for all n
- Need different definitions

Two types of convergence

- **5.1 Definition.** Let $X_1, X_2, ...$ be a sequence of random variables and let X be another random variable. Let F_n denote the CDF of X_n and let F denote the CDF of X.
- 1. X_n converges to X in probability, written $X_n \xrightarrow{P} X$, if, for every $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0 \tag{5.1}$$

as $n \to \infty$.

2. X_n converges to X in distribution, written $X_n \rightsquigarrow X$, if

$$\lim_{n \to \infty} F_n(t) = F(t) \tag{5.2}$$

at all t for which F is continuous.

Convergence in quadratic mean

5.2 Definition. X_n converges to X in quadratic mean (also called convergence in L_2), written $X_n \xrightarrow{\operatorname{qm}} X$, if

$$\mathbb{E}(X_n - X)^2 \to 0 \tag{5.3}$$

as $n \to \infty$.

Stronger than in probability convergence

• Example: Let $X_n \sim N(0,1/n)$, then does X_n converges to zero?

FIGURE 5.2. Relationship between types of convergence.

5.4 Theorem. The following relationships hold:

- (a) $X_n \xrightarrow{\operatorname{qm}} X$ implies that $X_n \xrightarrow{\operatorname{P}} X$.
- (b) $X_n \xrightarrow{P} X$ implies that $X_n \rightsquigarrow X$.
- (c) If $X_n \leadsto X$ and if $\mathbb{P}(X = c) = 1$ for some real number c, then $X_n \xrightarrow{P} X$.

5.5 Theorem. Let X_n, X, Y_n, Y be random variables. Let g be a continuous function.

- (a) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.
- (b) If $X_n \xrightarrow{\operatorname{qm}} X$ and $Y_n \xrightarrow{\operatorname{qm}} Y$, then $X_n + Y_n \xrightarrow{\operatorname{qm}} X + Y$.
- (c) If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n + Y_n \leadsto X + c$.
- (d) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$.
- (e) If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n Y_n \leadsto cX$.
- (f) If $X_n \xrightarrow{P} X$, then $g(X_n) \xrightarrow{P} g(X)$.
- (g) If $X_n \leadsto X$, then $g(X_n) \leadsto g(X)$.

c) and e) are known as Slutsky's theorem

Law of large number

```
5.6 Theorem (The Weak Law of Large Numbers (WLLN)). <sup>3</sup> If X_1, \ldots, X_n are IID, then \overline{X}_n \stackrel{P}{\longrightarrow} \mu.
```

 As the sample size increases, sample mean will be more concentrated around the mean

Law of large number

 Generate 100 datasets for each with n=10, 100, 1000, 10000

Law of large number

5.8 Theorem (The Central Limit Theorem (CLT)). Let X_1, \ldots, X_n be IID with mean μ and variance σ^2 . Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$Z_n \equiv \frac{\overline{X}_n - \mu}{\sqrt{\mathbb{V}(\overline{X}_n)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto Z$$

where $Z \sim N(0,1)$. In other words,

$$\lim_{n \to \infty} \mathbb{P}(Z_n \le z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

- Whatever distribution X comes from, sample mean asymptotically follows normal distribution
 - kind of magic!!

• Ex. X_i ~ Bernoulli(0.1)

• Ex. $X_i \sim Exp(1)$

Several form of notation

$$\overline{X}_{n} \approx N(0,1)$$

$$\overline{X}_{n} \approx N\left(\mu, \frac{\sigma^{2}}{n}\right)$$

$$\overline{X}_{n} - \mu \approx N\left(0, \frac{\sigma^{2}}{n}\right)$$

$$\sqrt{n}(\overline{X}_{n} - \mu) \approx N\left(0, \sigma^{2}\right)$$

$$\frac{\sqrt{n}(\overline{X}_{n} - \mu)}{\sigma} \approx N(0,1).$$

• When σ is unknown, we can use the sample standard error.

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

5.10 Theorem. Assume the same conditions as the CLT. Then,

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \leadsto N(0, 1).$$

• Example: Coin toss 100 times. Can we get the distribution of the number of head?

Multivariate CLT

5.12 Theorem (Multivariate central limit theorem). Let X_1, \ldots, X_n be IID random vectors where

$$X_i = \begin{pmatrix} X_{1i} \\ X_{2i} \\ \vdots \\ X_{ki} \end{pmatrix}$$

with mean

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{pmatrix} = \begin{pmatrix} \mathbb{E}(X_{1i}) \\ \mathbb{E}(X_{2i}) \\ \vdots \\ \mathbb{E}(X_{ki}) \end{pmatrix}$$

and variance matrix Σ . Let

$$\overline{X} = \begin{pmatrix} \overline{X}_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_k \end{pmatrix}.$$

where $\overline{X}_j = n^{-1} \sum_{i=1}^n X_{ji}$. Then,

$$\sqrt{n}(\overline{X} - \mu) \rightsquigarrow N(0, \Sigma).$$

• Question: Suppose we know that Y_n asymptotically follows normal distribution. Then how about the distribution of $g(Y_n)$?

5.13 Theorem (The Delta Method). Suppose that

$$\frac{\sqrt{n}(Y_n - \mu)}{\sigma} \leadsto N(0, 1)$$

and that g is a differentiable function such that $g'(\mu) \neq 0$. Then

$$\frac{\sqrt{n}(g(Y_n) - g(\mu))}{|g'(\mu)|\sigma} \rightsquigarrow N(0, 1).$$

In other words,

$$Y_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 implies that $g(Y_n) \approx N\left(g(\mu), (g'(\mu))^2 \frac{\sigma^2}{n}\right)$.

Taylor expansion

$$f(x)=f(a)+f'(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+...$$

Expand f at a point a using polynomial terms

As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows $\sin x$ and its Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11, and 13.

$$\frac{\sqrt{n}(g(Y_n) - g(\mu))}{|g'(\mu)|\sigma} \leadsto N(0, 1)$$

• Example 5.15: Let $\frac{\sqrt{n}(Y_n - \mu)}{\sigma} \rightsquigarrow N(0,1)$, then distribution of $\exp(Y_n)$?

Ex. Y_i ~ Bernoulli(0.1)

Multivariate Delta method (Extra)

5.15 Theorem (The Multivariate Delta Method). Suppose that $Y_n = (Y_{n1}, \dots, Y_{nk})$ is a sequence of random vectors such that

$$\sqrt{n}(Y_n - \mu) \rightsquigarrow N(0, \Sigma).$$

Let $g: \mathbb{R}^k \to \mathbb{R}$ and let

$$\nabla g(y) = \begin{pmatrix} \frac{\partial g}{\partial y_1} \\ \vdots \\ \frac{\partial g}{\partial y_k} \end{pmatrix}.$$

Let ∇_{μ} denote $\nabla g(y)$ evaluated at $y = \mu$ and assume that the elements of ∇_{μ} are nonzero. Then

$$\sqrt{n}(g(Y_n) - g(\mu)) \rightsquigarrow N(0, \nabla_{\mu}^T \Sigma \nabla_{\mu}).$$

Multivariate Delta method (Extra)

$$\sqrt{n}(g(Y_n) - g(\mu)) \rightsquigarrow N(0, \nabla_{\mu}^T \Sigma \nabla_{\mu})$$

Multivariate Delta method (Extra)

5.16 Example. Let

$$\begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix}, \begin{pmatrix} X_{12} \\ X_{22} \end{pmatrix}, \ldots, \begin{pmatrix} X_{1n} \\ X_{2n} \end{pmatrix}$$

be IID random vectors with mean $\mu = (\mu_1, \mu_2)^T$ and variance Σ . Let

$$\overline{X}_1 = \frac{1}{n} \sum_{i=1}^n X_{1i}, \quad \overline{X}_2 = \frac{1}{n} \sum_{i=1}^n X_{2i}$$

and define $Y_n = \overline{X}_1 \overline{X}_2$. Thus, $Y_n = g(\overline{X}_1, \overline{X}_2)$ where $g(s_1, s_2) = s_1 s_2$. By the

Distribution of Y?

Summary

- Asymptotic:
 - Investigate the behaviors of sequence of random variables
- Convergence
 - In probability
 - In distribution
- Two most important results
 - Law of Large Numbers
 - Central Limit Theorem
- Delta method
 - Provide asymptotic distribution of transformed variables