Octava Clase 24/04

$$Y = (Y_1, Y_2, \dots, Y_n)^\mathsf{T}$$
, where $Y_i = \langle R, \psi_i \rangle$, $i = 1, \dots, n$.

We now face a hypothesis testing problem with prior $P_H(i)$, $i \in \mathcal{H}$, and observable Y distributed according to

$$f_{Y|H}(y|i) = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\left(-\frac{\|y - c_i\|^2}{2\sigma^2}\right),$$

where $\sigma^2 = \frac{N_0}{2}$. A MAP receiver that observes Y = y decides $\hat{H} = i$ for one of the $i \in \mathcal{H}$ that maximize $P_H(i)f_{Y|H}(y|i)$ or any monotonic function thereof. Since

Para este caso la matriz de covarianza esta implicita, se supone su valor de la diagonal $\sigma^2=\frac{N_0}{2}$. Si no fuera este el caso aparecerian otros terminos dentro de la ecuacion.

Norma MAP

I

$$rg \max_i P_H(i) \cdot f_{Y|H}(y|i) \ rg \max_i [\ln P_H(i) + (-rac{\|y-c_i\|^2}{2\sigma^2})] \ rg \min_i [\|y-c_i\|^2 - \ln f_H(i) \cdot 2\sigma^2]$$

Ш

$$y \nearrow \downarrow Z = y - c_i \ \longrightarrow \ c_i$$

$$Z=\{Z_1,Z_2,...,Z_n\}$$
 Ruido

$$Z_i = \langle N, \sigma_i
angle$$

$$\|a\|^2 = \langle a,a \rangle$$

$$\langle a,b \rangle = a \cdot b = \|a\| \|b\| \cos(\angle ab)$$

$$\|a-b\|^2 = \langle a-b,a-b \rangle = \langle a-b,a \rangle - \langle a-b,b \rangle = \langle a,a \rangle - \langle b,a \rangle - \langle a,b \rangle + \langle b,b \rangle$$

Norma de una señal integrada entre a y b: $\|lpha(t)\| = \sqrt{\int_a^b |lpha(t)|^2 dt}$

Producto interno de dos señales integrando entre a y b: $\langle eta(t), lpha(t) \rangle = \int_a^b [eta(t) lpha(t)] dt$

ORTONORMALIDAD: Los vectores $v_1, v_2, ..., v_n$ en V se llaman **ortogonales** y **normales** (**ortonormales**) cuando satisfacen:

1.
$$\|v_i\|=1$$
, $orall i\in\{1,2,...,n\}$
2. $\langle v_i,v_j
angle=0$, si $i
eq j$

El procedimiento de Gram-Schmidt para ortonormalización:

Teniendo un conjunto de vectores linealmente independientes $\{v_1,v_2,...,v_n\}$

- 1. Seleccionar el primer vector del conjunto y dividirlo por su norma para obtener el primer vector ortonormal u_1 : $u_1=rac{v_1}{\|v_1\|}$
- 2. Para cada vector v_k se proyecta v_k sobre los vectores ortonormales previamente calculados: $\mathrm{proy}_{u_i}(v_k) = (\frac{\langle v_k, u_i \rangle}{\langle u_i, u_i \rangle}) u_i$
- 3. Restar las proyecciones de v_k para obtener el componente ortogonal w_k : $w_k=v_k-\sum_{i=1}^{k-1}\mathrm{proy}_{u_i}(v_k)$
- 4. Normalizar w_k para obtener el siguiente vector ortonormal u_k : $u_k = \frac{w_k}{\|w_k\|}$
- 5. Repetir hasta que se hayan procesado todos los vectores.

Codigo para utilizar Gram-Schmidt:

(Este codigo solo ortogonaliza, falta normalizar)

```
def gramSchmidt(V):
    tam = V.shape
    m = tam[o]
    n = tam[1]
    U = np.zeros((m,n))
    U[0] = V[0]

    for k in range(1,m):
        U[k] = V[k]

        for j in range(k):
            U[k] = U[k] - (np.dot(V[k],U[j])/np.dot(U[j],U[j])

V = np.array(([],[],...,[]))
gramSchmidt(V)
```

Ш

Figure 3.6. Two ways to implement $\int r(t)b^*(t)dt$, namely via a correlator (a) and via a matched filter (b) with the output sampled at time T.

```
Rules (ii) and (iii) are equivalent since \int r(t)w_i^*(t)dt = \int r(t) \left(\sum_j c_{i,j}^* \psi_j^*(t)\right)dt = \sum_j y_j c_{i,j}^* = \langle y, c_i \rangle.
```

Si a es complejo la norma de a al cuadrado $\|a\|^2$ es igual a $\langle a,a^* \rangle$ siendo a^* el vector conjugado.

Muestreo filtrado. (??)

Una forma de expresar la convolución

$$y(T) = \int r(t)b(t)dt$$

_

$$y(lpha) = \int r(t) b^*(lpha - T + t) dt = r(t) * b^*(-t + T)$$
 $lpha = T
ightarrow y(T) = \int r(t) b^*(t)$

$$\int w_1 \psi$$

