CSE 4102

Intermediate Code Generation

Compilers principles, techniques, & tools-ULLMAN Chapter 06

Compiler Architecture

- m × n compliers can be built by writing m front ends and n back ends – save considerable amount of effort
- We assume parsing, static checking and IC generation is done sequentially
 - These can be combined and done during parsing
- Static checking
 - Operator operand compatibility
 - Proper placement of break/continue keywords etc.

Intermediate Code (IC)

- The given program in a source language is converted to an equivalent program in an intermediate language by the IC generator.
- Ties the front and back ends together
- Language and Machine neutral
- Many forms
- Level depends on how being processed
- More than one intermediate language may be used by a compiler

Intermediate Representations

- In most compilers, the parser builds an *intermediate representation* of the program
- Rest of the compiler transforms the IR to "improve" (optimize) it and eventually translates it to final code
 - Often will transform initial IR to one or more different IRs along the way

2/21/201

IR Design

- Decisions affect speed and efficiency of the rest of the compiler
- Desirable properties
 - Easy to generate
 - Easy to manipulate
 - Expressive
 - Appropriate level of abstraction
- Different tradeoffs depending on compiler goals
- Different tradeoffs in different parts of the same compiler

Types of IRs

- Three major categories
 - Structural
 - Linear
 - Hybrid
- Some basic examples now; more when we get to later phases of the compiler

Levels of Abstraction

- Key design decision: how much detail to expose
 - Affects possibility and profitability of various optimizations
 - Structural IRs are typically fairly high-level
 - Linear IRs are typically low-level
 - But these generalizations don't always hold

Intermediate language levels

High

T1 \leftarrow a[i,j+2]

Medium

$$t1 \leftarrow j + 2$$

Low

$$r2 \leftarrow r1 + 2$$

$$r5 \leftarrow r4 + r2$$

$$r7 \leftarrow fp - 216$$

Intermediate Languages Types

Graphical IRs:

- Syntax trees
- Abstract Syntax trees
- Directed Acyclic Graphs (DAGs)
- Control Flow Graphs

• Linear IRs:

- Stack based (postfix)
- Three address code (quadruples)

Graphical IRs

- Concrete Syntax Trees -Parse Trees
- Abstract Syntax Trees (AST) retain essential structure of the parse tree, eliminating unneeded nodes.
- Directed Acyclic Graphs (DAG) compacted AST to avoid duplication – smaller footprint as well
- Control flow graphs (CFG) explicitly model control flow

2/21/2017

Structural IRs

- Typically reflect source (or other higher-level) language structure
- Tend to be large
- Examples: syntax trees, DAGs
- Particularly useful for source-to-source transformations
- The full grammar is needed to guide the parser, but contains many extraneous details
- Typically the full syntax tree does not need to be used explicitly

ASTs and DAGs:

$$a := b *-c + b*-c$$

AST

DAG

Implementation of DAG/AST: Value Number Method

have one with the same info.

Unaryid b id C unarymult idb id œ. unarymult add id a assign

:=

Three-Address code

- Many different representations
- General form: $x \leftarrow y$ (op) z
 - One operator
 - Maximum of three names
- Example: x=2*(n+m); becomes

$$t1 \leftarrow n + m$$
 $t2 \leftarrow 2 * t1$
 $x \leftarrow t2$

2/21/2017

Three Address Code (cont)

- Advantages
 - Resembles code for actual machines
 - Explicitly names intermediate results
 - Compact
 - Often easy to rearrange
- Various representations
 - Quadruples, triples, SSA
 - Much more later...

Three-Address Code

A three-address code is:

where x, y and z are names, constants or compiler-generated temporaries; op is any operator.

 But we may also the following notation for three-address code (it looks like a machine code instruction)

apply operator op to y and z, and store the result in x.

 We use the term "three-address code" because each statement usually contains three addresses (two for operands, one for the result).

Linearized Representation of DAG/AST

Source Code

$$- a = b * -c + b * -c$$

Three address code

Each instruction has (up to) 3 operands.

$$t1 := -c$$
 neg c $\Rightarrow t1$ $t2 := b * t1$ $mult$ $b,t1$ $\Rightarrow t2$ $t3 := -c$ neg c $\Rightarrow t3$ $t4 := b * t3$ $mult$ $b,t3$ $\Rightarrow t4$ $t5 := t2 + t4$ add $t2,t4$ $\Rightarrow t5$ $a := t5$ $move$ $t5$ $\Rightarrow a$

Tree Representation

Three-Address Statements

```
Binary Operator: op y,z,result or
    result := y op z
```

where op is a binary arithmetic or logical operator. This binary operator is applied to y and z, and the result of the operation is stored in result.

Ex:

```
add a,b,c
gt a,b,c
addr a,b,c
addi a,b,c
```

Unary Operator: op y, result or result := op y

where op is a unary arithmetic or logical operator. This unary operator is applied to y, and the result of the operation is stored in result.

Ex: uminus a,,c

Three-Address Code

Two concepts

- Address
- Instruction

Address

- Name: source-program names to appear as addresses
- Constant: Different types of constants
- Compiler Generated temporary:

Three-Address Instruction

op is a unary arithmetic or logical operationx and z are addresses

```
Copy Instruction: x := y
```

x and z are addresses and x is assigned the value of y

Three-Address Instructions

Unconditional Jump: goto L

We will jump to the three-address code with the label L, and the execution continues from that statement.

```
Ex: goto L1 // jump to L1 jmp 7 // jump to the statement 7
```

```
Conditional Jump 1: if x goto L and if False x goto L
```

We will jump to the three-address code with the label L if x is TRUE and FALSE, respectively. Otherwise, the following three-address instruction in sequence is executed next.

Conditional Jump 2:

if x relop y goto

L

We will jump to the three-address code with the label L if the result of y relop z is true, and the execution continues from that statement. If the result is false, the execution continues from the statement following this conditional jump statement.

Three-Address Statements (cont.)

Procedure Parameters: param x

Procedure Calls: call p,n

where \mathbf{x} is an actual parameter, we invoke the procedure \mathbf{p} with \mathbf{n} parameters.

```
Ex: param x_1

param x_2

param x_n

param x_n
```

Three-Address Statements (cont.)

Indexed Assignments:

```
x := y[i]
```

sets x to the value in location i memory units beyond location y

$$y[i] := x$$

sets contents of the location i memory units beyond location y to the value of x

Address and Pointer Assignments:

```
x := &y
```

sets the r-value of x to l-value of y x := xy where y is

where y is a pointer whose r-value is a location

sets the r-value of x equal to the contents of that location

$$*x := y$$

sets the r-value of the object pointed by x to the r-value of y

Three address code example

do i=i+1; while (a[i] < v)

L:
$$t_1=i+1$$

$$i=t_1$$

$$t_2 = i*8$$

$$t_3 = a[t_2]$$

if
$$t_3 < v$$
 goto L

(A) Symbolic Labels

100:
$$t_1 = i + 1$$

101:
$$i = t_1$$

102:
$$t_2=i*8$$

103:
$$t_3 = a[t2]$$

104: if
$$t_3 < v$$
 goto 100

(B) Position Numbers

Representing 3-Address Statements

- Quadruples ("Quads")
- Triples
- Indirect Triples

- •x = minus y
 - Does not use arg2
- $\bullet x = y$
 - Op is =
- •param a1
 - Uses neither arg2 nor result
- Conditional/Unconditional jumps
- Put the target label in result

Quadruples

Instr	Operation	Arg 1	Arg 2	Result
(0)	uminus	С		t_1
(1)	mult	Ъ	t_1	t_2
(2)	add	a	t_2	t_3
(3)	move	t ₃		a

Quadruples

Store each fields directly

Triples

Don't store the result directly.

Implicitly associate a temporary result with each triple.

Avoids creating the temporaries.

Saves storage.

Difficult to re-order instructions.

0	+	x	У
1	*	0	Z
2	:=	a	1
3			

The following instruction is difficult

$$x[i] := y$$

It takes 2 triples.

	ор	arg1	arg2
)	[]=	X	i
1		0	У

Indirect Triples

Get around the re-ordering problem

... by introducing another data structure.

0:	100 -	1 00:	+	ж	У
1:	101 —	1 01:	*	100	Z
2:	102 -	102:	:=	a	101
3:	103 -	1 03:	:=	b	w

Quadruples

Less indirection, simpler Easier to manipulate, reorder

<u>Triples</u>

Indirect Triples

About same amount of space as quadruples May save space when lots of shared sub-expressions More complex

Naïve representation of three address code

- Table of k * 4 small integers
- Simple record structure
- Easy to reorder
- Explicit names

The original FORTRAN compiler used "quads"

load	r1,	У	
loadl	r2,	2	
mult	r3,	r2,	r1
load	r4,	Χ	
sub	r5,	r4,	r3

load	1	У	
loadi	2	2	
mult	3	2	1
load	4	X	
sub	5	4	3

RISC assembly code

Quadruples

Comp 412, Fall 2010

11

Three Address Code: Triples

- Index used as implicit name
- 25% less space consumed than quads
- Much harder to reorder

(1)	load	у	
(2)	loadl	2	
(3)	mult	(1)	(2)
(4)	load	Х	
(5)	sub	(4)	(3)

Implicit names occupy no space

Remember, for a long time, 640Kb was a lot of RAM

Comp 412, Fall 2010

Three Address Code: Indirect Triples

- List first triple in each statement
- Implicit name space
- Uses more space than triples, but easier to reorder

Stmt List	Implicit Names	Indirect Triples		
(100)	(100)	load	У	
(105)	(101)	loadl	2	
	(102)	mult	(100)	(101)
	(103)	load	X	
	(104)	sub	(103)	(102)

- Major tradeoff between quads and triples is compactness versus ease of manipulation
 - In the past compile-time space was critical
 - Today, speed may be more important

Comparison

- By using quadruples, we can move a statement that computes A without requiring any changes in the statements
 using A, because the result field is explicit.
- However, in a triple representation, if we want to move a statement that defines a temporary value, then we must change all of the pointers in the operand1 and operand2 fields of the records in which this temporary value is used.
- Thus, quadruple representation is easier to work with when using an optimizing compiler, which entails a lot of
 code movement.
- Indirect triple representation presents no such problems, because a separate list of pointers to the triple structure
 is maintained.
- When statements are moved, this list is reordered, and no change in the triple structure is necessary; hence, the
 utility of indirect triples is almost the same as that of quadruples.

Goal

Take a source statement and produce a sequence of IR quads:

Example:

```
x := y + z;

IR Ouads:

t1 := y + z

x := t1
```

x := t3

Example:

```
x := (y + z) * (u + v);

IR Quads:

t1 := y + z

t2 := u + v

t3 := t1 * t2
```

Addressing Array Elements

 Elements of arrays can be accessed quickly if the elements are stored in a block of consecutive locations.

A one-dimensional array **A**:

base_A is the address of the first location of the array A,
width is the width of each array element. Iow is the index of the first array element

location of A[i] → base_A+(i-low)*width

Addressing Array Elements (cont.)

```
base<sub>A</sub>+(i-low)*width

can be re-written as i*width + (base<sub>A</sub>-low*width)

should be computed at run-time can be computed
```

- So, the location of A[i] can be computed at the run-time by evaluating the formula i*width+c where c is (base_A-low*width) which is evaluated at compile-time.
- Intermediate code generator should produce the code to evaluate this formula i*width+c (one multiplication and one addition operation).

Two-Dimensional Arrays

- A two-dimensional array can be stored in
 - either row-major (row-by-row) or
 - column-major (column-by-column).
- Most of the programming languages use row-major method.
- Row-major representation of a two-dimensional array:

Layout of Two-Dimensional Arrays

a Row Major

b Column Major

Two-Dimensional Arrays (cont.)

• The location of $A[i_1,i_2]$ is

$$base_A + ((i_1-low_1)*n_2+i_2-low_2)*width$$

base_A is the location of the array
Pow₁ is the index of the first row
low₂ is the index of the first column
n₂ is the number of elements in each row
width is the width of each array element

Again, this formula can be re-written as

$$\frac{((i_1*n_2)+i_2)*width}{((low_1*n_1)+low_2)*width)} + \frac{(base_A-}{(low_1*n_1)+low_2)*width)}{can be computed}$$
at run-time at compile-time

Multi-Dimensional Arrays

- In general, the location of $A[i_1,i_2,...,i_k]$ is
- $((...((i_1*n_2)+i_2)...)*n_k+i_k)*width + (base_A-((...((low_1*n_1)+low_2)...)*n_k+low_k)*width)$
- So, the intermediate code generator should produce the codes to evaluate the following formula (to find the location of $A[i_1,i_2,...,i_k]$):
- $((... ((i_1*n_2)+i_2)...)*n_k+i_k)*width + c$
- To evaluate the $((... (i_1*n_2)+i_2)...)*n_k+i_k$ portion of this formula, we can use the recurrence equation:
- $\mathbf{e}_1 = \mathbf{i}_1$
- $\mathbf{e}_{\mathbf{m}} = \mathbf{e}_{\mathbf{m-1}} * \mathbf{n}_{\mathbf{m}} + \mathbf{i}_{\mathbf{m}}$

Translation of Array Elements

One dimensional

- base $+ i \times w$
- w: width of each array element

Two Dimensional

- base + $\mathbf{i}_1 \times \mathbf{w}_1 + \mathbf{i}_2 \times \mathbf{w}_2$
- w₁: width of a row
- w₂: width of an element in a row
- k dimensional (generalized)
 - base + $\mathbf{i}_1 \times \mathbf{w}_1 + \mathbf{i}_2 \times \mathbf{w}_2 + \dots + \mathbf{i}_k \times \mathbf{w}_k$

• Let a denote a 2x3 array of integers, and let c, i, j all integers. Then, type of a is array(2, array(3, integer)). $w_1 = 12$, $w_2 = 4$.

Any Question?