[L]Math 347 [C]HW2 [R]Lanxiao Bai(lbai5)

1.21 Solution: $ax^2 + bx + c = 0$, $ay^2 + by + c = 0 \Rightarrow a(x^2 - y^2) + b(x - y) = 0$, but $a(x^2 - y^2) + b(x - y) = 0$ and $a(x^2 - y^2) + b(x - y) = 0$ and $a(x^2 - y^2) + b(x - y) = 0$ holds does not necessarily make $ax^2 + bx + c = 0$ hold.

2.4 Solution:

- (a) There exists at least one $x \in A$, for all $b \in B$, that $b \le x$.
- (b) For all $x \in A$, there is at least one $b \in B$, $b \le x$.
- (c) There is at least one pair of $x, y \in R$, $(f(x) \neq f(y) \lor x = y)$.
- (d) There's at least one $b \in R$, for all $x \in R$ such that $f(x) \neq b$.
- (e) There's at least one group of $x, y \in R, \epsilon \in P$, for all $\delta \in P$ such that $|x y| \ge \delta$ or $|f(x) f(y)| < \epsilon$.
- (f) There's at least one $\epsilon \in P$, for all $\delta \in P$ such that there's at least one pair of $x, y \in R$, $|x y| \ge \delta$ implies $|f(x) f(y)| < \epsilon$.
- **2.21 Solution:** Negation: There exists at least one $n \in \mathbb{Z}, n > 0$, that for all $x \in \mathbb{R}, x > 0$ that $x \ge 1/n$. And the original statement is true.

2.28 Solution:

- (a) $x^4y + ay + x = 0 \Leftrightarrow y(x^4 + a) = -x$, that is saying, if we wang to show the equation does not hold for every a and x, we can just construct a pair of (x,a) that $x^4 + a = 0$ and $x \neq 0$. And it can be verified that x = 1, a = -1 satisfy this requirement. As a result, the statement is proved to be false.
- (b) Since $y(x^4 + a) = -x$, if $x^4 + a = 0$, then the equation holds only when x = 0. So it can't be 0. If not, $y = -x/(x^4 + a) \in R$ is guaranteed by the closure of real number. Since $x^4 \ge 0$, just a > 0 can make sure that $x^4 + a > 0$.

Thus, the set is $\{a \in R | a > 0\}$.

2.31 Solution:

- (a) Believable
- (b) Believable
- (c) Not believable
- (d) Not believable

2.34 Solution:

(a) Claim: It is true that if $n \in N$ and $n^2 + (n+1)^2 = (n+2)^2$, then n = 3.

Proof: $n^2 + (n+1)^2 = (n+2)^2 \Leftrightarrow 2n^2 + 2n + 1 = n^2 + 4n + 4 \Leftrightarrow n^2 - 2n - 3 = 0$, thus (n-3)(n+1) = 0, since $n \in \mathbb{N}$, $n \neq -1$. As a result, n = 3.

(b) Claim: It is true that $\forall n \in N$, it is false that $(n-1)^3 + n^3 = (n+1)^3$.

Proof: $(n-1)^3 + n^3 = (n+1)^3 \Leftrightarrow n^2(n-6) = 2$. Since we can only factorize $2 = 2 \times 1$. It is only possible that $n^2 = 2 \wedge n - 6 = 1$ or $n^2 = 2 \wedge n - 6 = 1$ to make this equation holds. However, neither group of equations has solution.

Thus it is true that $\forall n \in \mathbb{N}$, it is false that $(n-1)^3 + n^3 = (n+1)^3$.

2.35 **Proof:**

Prove sufficiency first:

If $x, y \in R$, $x \neq y$ and $(x+1)^2 = (y+1)^2$, then $x^2 + 2x + 1 = y^2 + 2y + 1 \Leftrightarrow x^2 + 2x - y^2 - 2y = 0$. Thus (x+y+2)(x-y) = 0. Since $x \neq y$, x+y+2 = 0, and x+y=-2

Then we can prove necessity:

If $x+y = -2 \land x \neq y, \ x+y+2 = 0$ and $x-y \neq 0$, thus $(x+y+2)(x-y) = 0 \Leftrightarrow x^2 + 2x = y^2 + 2y \Leftrightarrow x^2 + 2x + 1 = y^2 + 2y + 1 \Leftrightarrow (x+1)^2 = (y+1)^2$. Thus, $x,y \in R, x \neq y, \ (x+1)^2 = (y+1)^2 \Leftrightarrow x+y = -2$.

If x = y is possible, although $x + y = -2 \Rightarrow (x + 1)^2 = (y + 1)^2$, but $(x + 1)^2 = (y + 1)^2$ may not imply x + y = -2.

2.41 Solution: Since a k-cycle permutation can guarantee that k people get wrong hats and the minimum number of people required to form a cycle is 2, thus the interval is $2 \le k \le n$. Also when k = 0, no one have wrong hat is obviously true.

Thus k=0 or $2 \le k \le n$ if and only if k people get wrong hat.