Assoc. Prof. Dr. Rimon Elias

Practice assignment 6 solution

Projections

Q 1: Consider a unit cube with two of its corners at $[0,0,0]^T$ and $[1,1,1]^T$. Given a view plane with a normal vector $[-1,1,1]^T$, determine the isometric projection of its corners onto the xy-plane.

Solution:

Using the isometric projection matrix

$$\begin{bmatrix} x' \\ y' \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(-45^\circ) & 0 & -\sin(-45^\circ) & 0 \\ -\sin(35.2644^\circ)\sin(-45^\circ) & \cos(35.2644^\circ) & -\sin(35.2644^\circ)\cos(-45^\circ) & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.7071 \\ 0.4082 \\ 0 \\ 1 \end{bmatrix}$$

$P = [x, y, z]^T$	$P' = [x', y']^T$
$[0,0,0]^T$	$[0,0]^T$
$[1,0,0]^T$	$[0.7071, 0.4082]^T$
$[0, 1, 0]^T$	$[0, 0.8165]^T$
$[1, 1, 0]^T$	$[0.7071, 1.2247]^T$
$[0,0,1]^T$	$[0.7071, -0.4082]^T$
$[1,0,1]^T$	$[1.4142, 0]^T$
$[0, 1, 1]^T$	$[0.7071, 0.4082]^T$
$[1, 1, 1]^T$	$[1.4142, 0.8165]^T$

Q 2: Consider a unit cube with two of its corners at $[0,0,0]^T$ and $[1,1,1]^T$. Given a view plane with a normal vector $[-1,-1,1]^T$, determine the isometric projection of its corners onto the yz-plane.

Solution:

The azimuth angle θ with the x-axis = 45°

The elevation angle $\varphi = 35.2644^{\circ}$

The first rotation of the normal is by the angle $-\theta$ about the y-axis. The second rotation of the normal is by the angle $-\varphi$ about the z-axis.

The overall axonometric projection onto the yz-plane for a point $[x, y, z]^T$ is estimated as

$$\begin{bmatrix} 0 \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(-\varphi) & -\sin(-\varphi) & 0 \\ \sin(-\varphi) & \cos(-\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(-\theta) & 0 & \sin(-\theta) \\ 0 & 1 & 0 \\ -\sin(-\theta) & 0 & \cos(-\theta) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ -0.4082 & 0.8165 & 0.4082 \\ 0.7071 & 0 & 0.7071 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$P = [x, y, z]^T$	$P' = [y', z']^T$
$[0,0,0]^T$	$[0,0]^T$
$[1,0,0]^T$	$[-0.4082, 0.7071]^T$
$[0,1,0]^T$	$[0.8165, 0]^T$
$[1, 1, 0]^T$	$[0.4082, 0.7071]^T$
$[0,0,1]^T$	$[0.4082, 0.7071]^T$
$[1,0,1]^T$	$[0, 1.4142]^T$
$[0,1,1]^T$	$[1.2247, 0.7071]^T$
$[1, 1, 1]^T$	$[0.8165, 1.4142]^T$

Q 3: Given a view plane with a normal vector $[3,3,4]^T$, determine the homogeneous diametric projection matrix (onto the xy-plane) that can be used with it.

Solution:

$$\theta = tan^{-1}(\frac{3}{4}) = 36.8699^{\circ}$$

 $\varphi = tan^{-1}(\frac{3}{5}) = 30.9638^{\circ}$

$$\begin{bmatrix} x' \\ y' \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) & 0 \\ -\sin(\varphi)\sin(\theta) & \cos(\varphi) & -\sin(\varphi)\cos(\theta) & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & 0 & -\frac{3}{5} & 0 \\ -\frac{9}{5\sqrt{34}} & \frac{5}{\sqrt{34}} & -\frac{12}{5\sqrt{34}} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Q 4: If the center of projection is placed at $[0.5, 0.5, -d]^T$. Determine the one-point perspective projection matrix onto the xy-plane.

Solution:

Translate using a translation vector $[-0.5, -0.5, 0]^T$

$$M1 = T([-\frac{1}{2}, -\frac{1}{2}, 0]^T) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Use the projection matrix where the view plane is the xy-plane

$$M2 = P_{per}' = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & rac{1}{d} & 1 \end{bmatrix}$$

Translate using a translation vector $[0.5, 0.5, 0]^T$

$$M3 = T(\begin{bmatrix} \frac{1}{2}, \frac{1}{2}, 0 \end{bmatrix}^T) = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

M=M3M2M1

$$= \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{1}{2d} & 0 \\ 0 & 1 & \frac{1}{2d} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix}$$

Q 5: If the center of projection is placed at $[0,0,0]^T$ and the view plane is placed at x=d, derive the projection matrix.

Solution:

Consider the similar triangles

$$\frac{y'}{d} = \frac{y}{x}$$
$$\frac{z'}{d} = \frac{z}{x}$$

$$y' = \frac{y}{x/d}$$
$$z' = \frac{z}{x/d}$$

$$P' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{d} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{x}{d} \end{bmatrix}$$

$$P' = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} d \\ \frac{y}{x/d} \\ \frac{z}{x/d} \end{bmatrix}$$