SEC.0467

3

1

2

3

1

2

What is claimed is:

1		1. A ferroelectric random access memory (FRAM) device comprising:				
2		a lower electrode;				
3		a lower seed layer formed on the lower electrode;				
4		a ferroelectric layer formed on the lower seed layer;				
5		an upper seed layer formed on the ferroelectric layer; and				
6 (1)		an upper electrode formed on the upper seed layer.				
15		2. The FRAM device according to claim 1, wherein the ferroelectric layer				
5	a PZT	layer.				
u C C		3. The FRAM device according to claim 1, wherein the upper and lower s				
24	lavers	make characteristics of an upper interface and a lower interface of the ferroelec				

- The FRAM device according to claim 1, wherein the ferroelectric layer is 2. a PZT layer.
- 3. The FRAM device according to claim 1, wherein the upper and lower seed layers make characteristics of an upper interface and a lower interface of the ferroelectric match each other.
- The FRAM device according to claim 1, wherein the upper and lower seed layers are composed of a material having a crystallization temperature lower than that of a material of the ferroelect fic layer.
- The FRAM device according to claim 1, wherein the upper and lower seed 5. layers are composed of a ferroelectric material having a lattice constant similar to that of

a material of the ferroelectric layer.

3

1

2

3

5

- 6. The FRAM device according to claim 2, wherein the upper and lower seed layers are composed of PbTiO₃, TiO₂ or PZT having at least one of a higher Pb content and a higher Ti composition ratio than the PZT of the ferroelectric layer.
- 7. The FRAM device according to claim 1, wherein the upper and lower electrodes include a Pt-group metal layer, a conductive oxide layer or a dual layer of the Pt-group metal layer and the conductive oxide layer.
 - 8. The FRAM device according to claim 1, further comprising: a switching element electrically connected to the lower electrode.
 - 9. The FRAM device according to claim 1, further comprising: a gate/insulating layer under the lower electrode;
 - a semiconductor substrate under the gate insulating layer; and
- source and drain regions in a portion of the semiconductor substrate adjacent to a periphery of the gate insulating layer.
- 10. The FRAM device according to claim 6, wherein the upper and lower electrodes include of a Pt-group metal layer, a conductive oxide layer or a dual layer of

7

8

9

10

Taker
2=
89
3/3
W
(2)
455 A
(3)
5 10
Ψ.1
_ \ \ f
0 4

11.	The FRAM device accord	ng to claim 1,	wherein the upp	per and lowe
		/		
electrodes ha	we the same structure.	/		

- 12. The FRAM device according to claim 1, wherein the upper and lower seed layers are composed of the same material.
- A method for fabricating a ferroelectric random access memory (FRAM) device comprising:
 - a) forming a lower electrode;
 - b) forming a lower seed layer on the lower electrode;
 - c) forming a ferroelectric layer on the lower seed layer;
 - d) forming an upper seed layer on the ferroelectric layer;
- e) annealing a structure resulting from a)-d), including making characteristics of a lower face and an upper face of the ferroelectric layer be the same and completing a stable perovskite crystal structure of the ferroelectric layer; and
 - f) forming an upper electrode on the upper seed layer.
- The method according to claim 13, wherein forming a ferroelectric layer 14. comprises forming a PZT ferroelectric layer on the lower seed layer. 2

1

2

3

- 1 15. The method according to claim 13, wherein the forming the upper and
 2 lower seed layers includes using a material having a crystallization temperature lower
 3 than that of a material for forming the ferroelectric layer.
 - 16. The method according to claim 13, wherein the forming the upper and lower seed layers includes using a ferroelectric material having a lattice constant similar to that of a material for forming the ferroelectric layer.
 - 17. The method according to claim 14, wherein the forming the upper and lower seed layers includes using PbTiO₃, TiO₂ or PZT having at least one of a higher Pb content and a higher Ti composition ratio than a PZT to be used to form the ferroelectric layer.
 - 18. The method according to claim 13, wherein the forming the lower electrode and the upper electrode includes using a Pt-group metal layer, a conductive oxide layer or a dual layer of the Pt-group metal layer and the conductive oxide layer.
 - 19. The method according to claim 13, further comprising, prior to the forming the lower electrode, forming a switching element to be electrically connected to the lower electrode.

2

3

20. The method according to claim 17, further comprising: before the forming the lower electrode

providing a semiconductor substrate; and

forming a gate insulating layer on the semiconductor substrate, and after the forming the upper/electrode

forming source and drain regions in a portion of the semiconductor substrate adjacent to a periphery of the gate insulating layer.