Cubics & Quartics

$$f(x) = x^3 + ax^2 + bx + c = y^3 + py + q \in F(x), \text{ (her } F \neq 2,3.$$

f is irreducible over F.

$$\sqrt[3]{1} = \frac{1+\sqrt{-3}}{2}$$

Ossume √-3 € F

D-discriminant of f,

$$D = -4 p^3 - 27q^2$$

Let G = Gal(f/F). $\alpha_1, \alpha_2, \alpha_3$ be roots of f.

G ≤ S3 since G permutes {x1, x2, x3}.

G acts transitively on the roots, so the only possible subgroups are G ≈ Z₃ or G ≈ S₃.

G=A3 iff VD EF.

for Az:

for S3:

1 1 7 $K = F(Y_1, \alpha_2, \alpha_3)$

1 11

Note:
$$b_1 = -\frac{27}{2} + \frac{3}{2}\sqrt{-3D}$$
 Recall: $f(x) = x^3 + px + q$

$$b_2 = -\frac{27}{7} - \frac{3}{2}\sqrt{-3D}$$

Cardano for mulas:

$$\alpha_{1} = \frac{1}{3}(b_{1} + b_{2})$$

$$\alpha_{2} = \frac{1}{3}(\omega b_{1} + \omega^{2}b_{2})$$

$$\alpha_{3} = \frac{1}{3}(\omega^{2}b_{1} + \omega b_{2})$$

Obtained by 80 lying
$$\alpha_1 + \omega_2 + \omega_2^2 = \sqrt{b_1}$$

$$\alpha_2 + \omega_3 + \omega_2^2 = \sqrt{b_2}$$
Since $\alpha_1 + \alpha_2 + \alpha_3 = \delta$
try add
up to
voeff of α_2^2 .

$$G \cong S_3$$
 if $\sqrt{D} \notin F$

$$G \cong A_3$$
 if $D \in F$

$$Z_3$$

If f hoo 2 non-real roots,

complex conjugation $\in G$, So $G \cong S_3$.

If all roots are real, then $G \cong \mathbb{Z}_3$ or $G \cong S_3$.

Lemma: f has 3 real roots iff D > 0. $pf \quad D = \prod_{i>j} (\alpha_i - \alpha_j)^2 > 0 \text{ if } \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}.$

If D > 0, then $\overline{D} \in \mathbb{R}$, so $\mathbb{Q}(\overline{D}) \subseteq \mathbb{R}$, and $(K = \mathbb{Q}(\kappa_1, \kappa_2, \kappa_3))$ $K/\mathbb{Q}(\overline{D}) \stackrel{\sim}{=} \mathbb{Z}_3$ is a belian. If χ_1 is real, then $K = \mathbb{Q}(\overline{D})(\chi_1)$, so χ_2 , χ_3 are also real.

Casus Irreducibilis

If cubic f is irreducible $\alpha \alpha_1, \alpha_2, \alpha_3$ are real, There is no tower of real raducal extensions containing $\alpha_1, \alpha_2, \alpha_3$.

Quartics

 $f(x) = x^4 + Px^2 + qx + r \in F(x)$, then $F \neq 2,3$, $\sqrt{-3} \in F$.

f is rr-le, $\alpha_1,...,\alpha_4$ -roots, $K = F(\alpha_1,...,\alpha_4)$,

 $D = -27 p^4 - 108 p^3 q - 162 p^2 q^2 - 108 p q^3 - 27 q^4 + 256 r^3.$

$$G = Gal(f/F)$$
, $4|G|$ since $|G| = [K:F]$.
 $G \le S_4$
 G acts transitively on $\{x_1, \dots, x_4\}$.

Possibilities for G

transitive subgroups of S4:

$$S_{4}$$
, A_{4} , $H_{1} = \langle (1324), (12) \rangle_{1}$
 D_{8}
 $H_{2} = \langle (1234), (13) \rangle_{1}$ $H_{3} = \langle (1243), (14) \rangle_{1}$

$$V = \{1, (12)(34), (13)(24), (14)(23)\} \cong \mathbb{Z}_2^2$$

Normal in S_4

$$C_1 = \langle (1234) \rangle \cong C_2 = \langle (1324) \rangle \cong C_3 = \langle (1243) \rangle \cong \mathbb{Z}_4$$
all 3 are conjugate.

fixed
$$\theta_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)$$
 $\theta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_1$

Page 5

Fixed by
$$V$$

$$\Theta_{1} = (\alpha_{1} + \alpha_{2}) (\alpha_{3} + \alpha_{4})$$

$$\Theta_{2} = (\alpha_{1} + \alpha_{3}) (\alpha_{2} + \alpha_{4})$$

$$\Theta_{3} = (\alpha_{1} + \alpha_{4}) (\alpha_{2} + \alpha_{3})$$

$$\vdots$$

They are roots of
$$R(x)$$
,
$$R(x) = (x - \theta_1)(x - \theta_2)(x - \theta_3)$$

$$= x^3 - 2px^2 + (p^2 - 4r)x + g^2$$
(aubi'c resolvent of f).

Lemma Discriminant of R = Discriminant of f

roots of f are:

$$\alpha_{1} = \frac{1}{2} \left(\sqrt{-\theta_{1}} + \sqrt{-\theta_{2}} + \sqrt{-\theta_{3}} \right), \quad \alpha_{2} = \frac{1}{2} \left(\sqrt{-\theta_{1}} - \sqrt{-\theta_{2}} - \sqrt{-\theta_{3}} \right)$$

$$\alpha_{3} = \frac{1}{2} \left(\sqrt{-\theta_{1}} + \sqrt{-\theta_{2}} - \sqrt{-\theta_{3}} \right), \quad \alpha_{4} = \frac{1}{2} \left(-\sqrt{\theta_{1}} - \sqrt{-\theta_{2}} + \sqrt{-\theta_{3}} \right)$$