1 Conceptos previos:

- Partiendo de la base de si los sensores no van a cubrir toda la superficie, entonces: si el robot no es detectado pueden pasar 2 cosas:
 - Se encontrará como mínimo a una distancia calculable.
 - Estará fuera del alcance de los sensores.
- $\frac{180}{\pi}$ es el factor de conversión de grados a radianes.

Vamos a trabajar con que se encontrará a una distancia calculable.

1.1 Grados de diferencia entre los infrarrojos

Suponiendo que el otro robot va a medir 20 cm, definimos la función

$$f(x) = \frac{180}{\pi} arctg\left(\frac{20}{x}\right)$$

, donde x es la distancia mínima a la que vamos a querer medir.

Es decir, si colocamos 12 infrarrojos (equidistantes) vamos a tener cubierta una circunferencia de R=34.64cm (el robot no podrá estar más cerca de nosotros que eso, porque lo detectaría algún sensor)

Para hallar el número de infrarrojos necesarios: simplemente definimos

$$g(x) = \frac{360}{f(x)} = \frac{2\pi}{arctg\left(\frac{20}{x}\right)}$$

Esta función nos da el número de sensores de infrarrojos necesarios para tener cubierta la circunferencia de R=x.

1.2 Utilizando ultrasonidos también

Un sensor de ultrasonidos mide en un ángulo de 30 grados y un infrarrojo en línea recta. Pero antes teníamos que con 12 infrarrojos teníamos controlada la circunferencia de radio R=34.64, esto es como tomar que un sensor de infrarrojos mide en ángulo. Este mismo razonamiento nos sirve para los sensores de ultrasonidos.

Si definimos la función

$$h(x,y) = \frac{360 - y \cdot (30 + f(x))}{f(x)} = \frac{360 - y \cdot (30 + \frac{180}{\pi} \cdot arctg\left(\frac{20}{x}\right))}{\frac{180}{\pi} \cdot arctg\left(\frac{20}{x}\right)}$$

 \boldsymbol{x} es la distancia mínima a la que queremos asegurar que el otro robot no está si no es detectado.

El 360 es porque queremos cubrir una circunferencia entera.

y es el número de ultrasonidos que queremos poner, y $y \cdot (30 + f(x))$ son los grados que nos cubren los y sensores ultrasonidos (sus 30 grados + el "ángulo muerto" que no cubren directamente), por lo que nos quedan por cubrir $360 - y \cdot (30 + f(x))$ grados por sensores infrarrojos.

Para 4 sensores ultrasonidos tenemos la función (que no he conseguido pintar... pero si pegas el chorizo en google te lo pinta)

 $f(x) = (360 - 4(30 + (180/pi)\arctan(20/x)))/((180/pi)\arctan(20/x))$

Que representa radio de la circunferencia frente a sensores infrarrojos necesarios (complementarios a los ultrasonidos)

1.3 Utilidad

He hecho un programita de octave/matlab esta en el repo (f.m) en el que le pasa como argumentos radio_mínimo,radio_máximo,ultrasonidos_mínimos,ultrasonidos_máximos (o si no le pasas nada y ejecutas "f" simplemente tiene unos valores por defecto)

Este programa da una tablita con (distancia que mieden, x infrarrojos, y ultrasonidos)

Con	100	valores	nor	defecto	tenemos:
$O_{\rm III}$	105	valutes	DOL	detecto	rememos.

`	JOH TOD VAL	ores per derect	o concinos.
	Radio	Infrarrojos	Ultrasonidos
	0.00000	0.00000	0.00000
_	34.64000	8.00000	2.00000
_	42.89000	10.00000	2.00000
_	46.94000	11.00000	2.00000
_	20.00000	3.00000	3.00000
	29.93000	5.00000	3.00000
_	34.64000	6.00000	3.00000
_	39.25000	7.00000	3.00000
	43.79000	8.00000	3.00000
	48.28000	9.00000	3.00000
	61.55000	12.00000	3.00000
_	65.93000	13.00000	3.00000
_	23.83000	2.00000	4.00000
_	29.33000	3.00000	4.00000
_	34.64000	4.00000	4.00000
_	39.82000	5.00000	4.00000
	44.92000	6.00000	4.00000
	28.56000	1.00000	5.00000
_	34.64000	2.00000	5.00000
_	46.36000	4.00000	5.00000
_	52.10000	5.00000	5.00000
_	63.43000	7.00000	5.00000
_	41.53000	1.00000	6.00000
	48.28000	2.00000	6.00000
	61.55000	4.00000	6.00000
	68.11000	5.00000	6.00000
	66.80000	2.00000	7.00000