Course Code	PCS21C08J	Course Name	THEORY OF COMPUTATION				(Course Categor		С	Professional Core				L T P C 4 0 2 5						
Pre-r	requisite Courses	Nil	Co-requisite Courses				Nil						Progr	essive C	ourses				Nil		
Course Offering Department Computer Science					Data Book / Codes/Standards Nil																
Course Lea (CLR):	rning Rationale The	purpose of learning	this course is to:	T	Learni	ng	-44	3/	ta	7	7	Progra	m Lear	ming Ou	tcomes	(PLO)					
CLR-1: Understand the importance of theory of computation.				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the applications of TOC in various fields.					>-	=				9	- FO					S	S				
CLR-3: Learn the basics of pushdown automata.					enc	neu	10		-		zati		-	t	8	Skills	Skills				
CLR-4:	Get Familiarity with th			Çi.	fici	- i	the		ate		12	9	iji	pre	Ski	ing.	5	8			
CLR-5: Learn about the computable languages and functions.			Thinking	d Proficiency	d Attainment	ental	on of s	with Related iplines	ural	Specialization	Utilize	Mode	Intel	ative	Solving	nicati	al Skills				
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:				Expected (%)	Expected (%)	Fundamental Knowledge	Application Concepts	Link with Re Disciplines	Procedural Knowledge	Skills in	Ability to Ut Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem	Communication	Analytical	PS0 1	PSO 2	PSO 3	
CLO-1:	Understand the role of	f a TOC in the <mark>indu</mark>	stry.	3	80	70	L,	Н	-	Н	L	-	-								
CLO-2: Understand the applications of TOC in various fields.			3	85	75	M	- H -	L	M	L	-	-							- 1	-	
CLO-3:	.O-3 : To understand and discuss selected advanced topics.			3	75	70	M	H	M	Н	L	-	-						-	-	-
CLO-4:	.O-4: To describe about the topics in TOC.			3	85	80	M	Н	M	Н	L	-) -								170
LO-5: Understand the concept of a construction of programming languages.				3	85	75	Н	Н	M	Н	L	-	-							_	-

Duration	(Hour)	18	18	18	18	18
S-1	SLO-1	An introduction to finite automata	Grammar introduction	Pushdown automata	Turing machines	Decidability and Recursively Enumerable
CHES AGE	SLO-2	Basic mathematical notation and techniques	Types of grammar	Instantaneous descriptions	Definitions of Turing machines	The Definition of an Algorithm
S-2	SLO-1	Finite State systems	Context free grammar and languages	Deterministic pushdown automata	Representations of turing machine	Decidability
3-2	SLO-2	Basic Definitions	Moves	Examples	Representation of transition table	Decidable Languages
	SLO-1	Finite automation	Derivations and languages	Definitions	Representation of Transition diagram	Undecidable Languages
S3	SLO-2	Transistion systems	Simplification of CFG	PDA	Language acceptability by Turing Machines	Problems
S4	SLO-1	Equivalence of NFA and DFA	Operations on Languages	Acceptance by pda	Design of turing machines	Halting Problems of Turing Machine
34	SLO-2	Example problems Has to be solved.	Examples	CFL-Introduction	Description of turing machines	Example
S 5- 6	SLO-1	toelerministic imile automate which accent to		Laboratory 7: Construct a PDA for language L = {ww' w={0, 1}*} where w' is the reverse		Laboratory 13: Design a deterministic finite automata (DFA)
000	SLO-2	and 11 at the end of a string containing 0, 1 in it, e.g., 01010100 but not 000111010.	> n+2}		Computation	for accepting any language.
S7 -	SLO-1	Regular languages	Elimination of useless symbols	Pushdown automata	Techniques for TM Constructions	The p9ost Correspondence Problemn
31	SLO-2	Identities for regular expressions	Context-free Languages and Derivation Trees	context-free languages	Turing Machine with stationary Head	Problems to solve
	SLO-1	Finite automation with €	Ambiguity	Parsing and pushdown Automata	Storage in the State	Computability
S 8	SLO-2	Transition system containing A- moves	Normal forms for context-free Grammars	Problems	Examples	Introduction and Basic Concepts

Duration	n (Hour)	18	18	18	18	18
S 9	SLO-1	Equivalence of NDFA'S with and without € moves	Relationship between derivation and derivation trees	Top- down parsing	Multiple Track Turing Machine	Primitive Recursive Functions
	SLO-2	Construction of finite automata equivalent	Explanation of derivative trees	Examples	Problems	Initial Functions
550,00563	SLO-1	basic definitions of PDA	null productions	Top-down parsing using deterministic pda's	Multitape Turing machine	Primitive Recursive Functions over N
S 10	SLO-2	Acceptance of PDA	Elimination for null productions	Problems	Problems	Primitive Recursive Functions Over {a,b}
S 11-12	SLO-1 SLO-2	Laboratory 2: Draw a deterministic and non- deterministic finite automata which accept a string containing "the" anywhere in a string of {a-z}, e.g., "there" but not "those".	Laboratory 5: Construct a PDA for language L = {0 ⁿ 1 ^m 2 ^m 3 ⁿ n>=1, m>=1}	Laboratory 8: Draw a deterministic finite automata which recognize a string containing binary representation 0, 1 in the form of multiple 3, e.g., 1001 but not 1000.	Laboratory 11Write a program to define The halting problem.	Laboratory 14: Design a deterministic finite automata(DFA) for accepting the language L = {a^nb^m n+m= even}
	SLO-1	DFA & NDFA	Unit productions,	Bottom-up parsing	Non – Deterministic Turing Machine	Recursive Functions
S 13	SLO-2	Equivalence of finite automation and regular expressions	Elimination for unit productions	Problems	Problems	Partial Recursive Functions and Turing Machines
C 14	SLO-1	Minimization of DFA	Greiback normal form	LR(K) Grammars	The Model of Linear Bounded Automation	Computability
S 14	SLO-2	Minimization of DFA prob <mark>lems</mark>	Examples	Examples	Relation Between LBA and Context Sensitive Languages	A Turing Model for Computation
	SLO-1	Pumping Lemma for regular sets	Chomsky normal form	Properties of LR(K) Grammars	TM and Type 0 Grammers	Turing – computable Functions
S 15	SLO-2	Problems based on pumping Lemma.	Problems	LEXIDADADO OF BACIL AND BUBIN NUMBER	IL ANSTRUCTION AT LETSTITHOT LATTOCKANONINA	Construction of the Turing Machine that can compute the Zero Function Z
S 16	SLO-1	regular expression	Problems related to CNF	Closure properties of languages	Linear bounded Auto <mark>mata and</mark> languages	Construction of the Turing Machine for Computing - The Successor function
	SLO-2	Identities for Regular Expressions	Problems related to GNF	Examples	Problems	Construction of Turing Machine that can perform Recursion
S 17-18	SLO-1	Laboratory 3: Draw a deterministic and non- deterministic finite automata which accept a string containing "ing" at the end of a string		Laboratory 9: Take an example to convert CFG to CNF. Consider the given grammar G1:	Laboratory 12 : Program to illustrate Chomsky Hierarchy in Theory of	Laboratory 15: Draw a deterministic finite automata which recognize a string containing binary
0 11-10	SLO-2	in a string of {a-z}, e.g., "anything" but not "anywhere".	w' is the reverse of w.	$S \rightarrow ASB$ $A \rightarrow aAS a \varepsilon$ $B \rightarrow SbS A bb$	Computation	representation 0, 1 in the form of multiple 2, e.g., 1010 but not 01101.

Learning
Resources

Jeffery D Ullman, Motwani R John E Hopcroft Introduction to Automata theory language and computation second edition Pearson education 2008.
 John C Matin "Introduction to language and the theory of Computation" third edition Tata Mc Graw Hill 2007.

	Bloom's			Contin	uous Learning Ass	essment (50% wei	ghtage)			Final Evamination	n /500/ waightage	
		CLA - 1 (10%)		CLA – 2 (10%)		CLA - 3 (20%)		CLA - 4 (10%)#		Final Examination (50% weightage)		
Leve	el of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Loyal 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 1	Understand	2070	20%	1370	1370	1370	1376	1376	13%	1576	1576	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	2070	2070	2070	20 70	2076	2070	2076	20%	20 /0	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 3	Create	1076	10%	13%	15%	15%	15%	13%	15%	1576	1376	
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0%	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. S. Karthik, Assistant Consultant, Tata Consultancy	Dr.S.Sasikala, Associate Professor and Head, Dept. of Computer Science, University of Madras	1. Mrs. E.Aarthi
Services	Dr. S. Sasikala, Associate Professor and Flead, Dept. of Computer Science, University of Madras	2. Dr. P. Muthulakshmi