Danny Abraham

CMPS 351

Assignment 7

In [1]: import numpy as np
 from numpy import linalg as la
 from scipy.optimize import linprog as lp
 import matplotlib.pyplot as plt
 import scipy.fftpack
 import random
 import cvxpy as cvx

LP Solution

Lagrangian

$$L(x,\lambda) = 5x_1 + 8x_2 + \lambda_1(-x_1 + 2) + \lambda_2(-x_1 - 2x_2 + 5) + \lambda_3(-2x_1 - 5x_2 + 8)$$

Primal Problem

$$\min_{x} 5x_1 + 8x_2$$
subject to
$$-x_1 + x_3 + 2 = 0$$

$$-x_1 - 2x_2 + x_4 + 5 = 0$$

$$-2x_1 - 5x_2 + x_5 + 8 = 0$$

$$x_i \ge 0 \ \forall i: 1 \to 5$$

Primal Problem Matrix Notation

$$\min_{x} \begin{bmatrix} 5 & 8 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$subject \ to \ \begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 1 & 0 \\ -2 & -5 & 0 & 0 & 1 \\ x \ge 0 \end{bmatrix} x = \begin{bmatrix} -2 \\ -5 \\ -8 \end{bmatrix}$$

Dual Problem

$$\max_{x} [-2 \quad -5 \quad -8]v$$

$$subject to \begin{bmatrix} -1 & -1 & -2 \\ 0 & -2 & -5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} v + \lambda = \begin{bmatrix} 5 \\ 8 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda > 0$$

KKT Conditions

```
In [120]: def kkt(x, 1):
              kkt = []
              kkt.append(-x[0] \leftarrow -2)
              kkt.append(-x[0] - 2*x[1] <= -5)
              kkt.append(-2*x[0] -5*x[1] <= -8)
              kkt.append((1 >= 0).all())
              kkt.append(1[0]*(-x[0] + 2) == 0)
              kkt.append([1]*(-x[0] - 2*x[1] + 5) == 0)
              kkt.append(1[2]*(-2*x[0] -5*x[1] + 8) == 0)
              return kkt
In [124]: x = np.array([2, 1.5])
          1 = np.array([1, 4, 0])
          kkt(x, 1)
Out[124]: [True, True, True, True, True, True]
In [129]: p = np.array([5, 8])
          b = np.array([-2, -5, -8])
```

0.0

The duality gap is equal to zero, both problems have the same optimal value

Perturbation

duality_gap = p@x + b@l
print(duality gap)

Considering a perturbation of the right hand side of the first constraint to -1.9. We are given I[0] as 1. Therefor we expect a change of +0.1 in the constraint to cause a change of -0.1 in the optimal value which will be 21.9

Considering a perturbation of the right hand side of the third constraint to -8.1. We are given I[1] as 0. Therefor we expect a change of +0.1 in the constraint to cause a no change in the optimal value which will still be 22.0

Contact Problem in 1D

```
In [7]: k = np.array([1, 10, 2])
                                                   1 = 1
                                                   W = 0.2
    In [8]: def f_obj(x):
                                                                       return 0.5*k[0]*(x[0]**2) + 0.5*k[1]*((x[1] - x[0])**2) + 0.5*k[2]*((1 - x[1])**2) + 0.5*k[2]*((1 - 
    In [9]: x = cvx.Variable(2)
In [10]: def constraints_(x):
                                                                       c = []
                                                                       c.append(x[0] >= 0.5*w)
                                                                       c.append(x[1] - x[0] >= w)
                                                                       c.append(1 - x[1] >= 0.5*w)
                                                                       return c
In [11]:
                                                 constraints = constraints_(x)
                                                   obj = cvx.Minimize(f obj(x))
                                                   prob = cvx.Problem(obj, constraints)
                                                   prob.solve()
Out[11]: 0.41333333333333333
In [12]: | x.value
Out[12]: array([0.53333333, 0.73333333])
In [13]: | for c in constraints:
                                                                       print(c.dual_value)
                                                 0.0
                                                  1.46666666666655
                                                 0.0
                                                 These multipliers represent the sesitivity of the objective function to a change in the width of the
                                                 blocks
In [14]:
                                             c = np.array([2, 4])
In [15]: def f_obj_deform(x, w_):
                                                                       return 0.5*k[0]*(x[0]**2) + 0.5*k[1]*((x[1] - x[0])**2) + 0.5*k[2]*((1 - x[1])**2) + 0.5*k[0]*(0)**2) + 0.5*k[0)**2) + 0.5*k[
                                                                                                                 + (1/2*c[0])*((w_[0] + w_[1] - w)**2) 
                                                                                                                  + (1/2*c[1])*((w_[2] + w_[3] - w)**2)
In [16]: x = cvx.Variable(2)
                                                   w = cvx.Variable(4)
```

```
In [17]: def constraints_(x, w_):
             c = []
              c.append(x[0] >= w_[0])
              c.append(x[1] - x[0] >= w_[1] + w_[2])
              c.append(1 - x[1] >= w_[3])
              c.append(w_[0] \leftarrow 0.1)
              c.append(w_{1} = 0.1)
              c.append(w [2] <= 0.1)</pre>
              c.append(w_{[3]} \le 0.1)
              c.append(w_[0] >= 0)
              c.append(w_[1] >= 0)
              c.append(w_[2] >= 0)
              c.append(w_[3] >= 0)
              return c
In [18]: | constraints = constraints_(x, w_)
          obj = cvx.Minimize(f_obj_deform(x, w_))
          prob = cvx.Problem(obj, constraints)
         prob.solve()
Out[18]: 0.32370370370370366
In [19]: x.value
Out[19]: array([0.61481481, 0.69259259])
In [20]: | w .value
Out[20]: array([0.1
                           , 0.01851852, 0.05925926, 0.1
                                                                 ])
In [21]: | for c in constraints:
              print(c.dual value)
         0.0
         0.1629629629629
         0.0
         0.1629629629629
         0.0
         0.0
         0.1629629629629629
         0.0
         0.0
         0.0
         0.0
```

Image Reconstruction Revisited

```
In [2]: # Read a sample image
        U0 = plt.imread('bwicon.png')
        m, n = U0.shape
        # Create 50% mask of known pixels and use it to obscure the original
        np.random.seed(7592)
                                              # seed the randonm number generator (for rep
        unknown = np.random.rand(m,n) < 0.5
        U1 = U0*(1-unknown) + 0.5 *unknown
        # Display images
        plt.figure(1)
        plt.subplot(1, 2, 1)
        plt.imshow(U0, cmap='gray')
        plt.title('Original image')
        plt.subplot(1, 2, 2)
        plt.imshow(U1, cmap='gray')
        plt.title('Obscured image')
        plt.show()
```



```
In [3]: ux, uy = U1.shape
```

```
In [4]: def L1_norm(u):
    s = 0
    for i in range(1, ux):
        for j in range(1, uy):
            s += abs(u[i][j] - u[i-1][j]) + abs((u[i][j] - u[i][j-1]))
    return s
```

```
In [5]: B = np.zeros([ux*uy, ux*uy])
for i in range(uy, ux*uy):
    if i%uy != 0:
        B[i][i] = 1
        B[i][i-1] = -1
```

```
In [6]: C = np.zeros([ux*uy, ux*uy])
for i in range(uy, ux*uy):
    if i%uy != 0:
        C[i][i] = 1
        C[i][i-uy] = -1
```

```
In [7]: | x = U1.flatten()
 In [8]:
         B ub = np.zeros(4*ux*uy)
         A_ub = np.zeros([4*ux*uy, 3*ux*uy])
         A ub[0:ux*uy, 0:ux*uy] = B
         A_ub[ux*uy:2*ux*uy, 0:ux*uy] = -B
         A_ub[0:ux*uy, ux*uy:2*ux*uy] = -np.identity(ux*uy)
         A ub[ux*uy:2*ux*uy, ux*uy:2*ux*uy] = -np.identity(ux*uy)
         A ub[2*ux*uy:3*ux*uy, 0:ux*uy] = C
         A ub[3*ux*uy:4*ux*uy, 0:ux*uy] = -C
         A ub[2*ux*uy:3*ux*uy, 2*ux*uy:3*ux*uy] = -np.identity(ux*uy)
         A ub[3*ux*uy:4*ux*uy, 2*ux*uy:3*ux*uy] = -np.identity(ux*uy)
 In [9]: A eq = np.zeros([ux*uy, 3*ux*uy])
         B_eq = np.zeros([ux*uy])
         unknown2 = unknown.flatten()
         x = U1.flatten()
         for i in range(ux*uy):
             if not unknown2[i]:
                 A eq[i][i] = 1
                  B_eq[i] = x[i]
In [10]:
         obj = np.zeros(3*ux*uy)
         obj[ux*uy:] = np.ones(2*ux*uy)
In [12]: res = lp(obj, A_eq=A_eq, b_eq=B_eq, A_ub=A_ub, b_ub=B_ub, options={"disp": True},
         Primal Feasibility Dual Feasibility
                                                  Duality Gap
                                                                                        Pa
                                                                      Step
         th Parameter
                           Objective
         1.0
                              1.0
                                                  1.0
                                                                                        1.
         0
                            6018.0
         0.6375661631591
                              0.6375661631591
                                                  0.6375661631591
                                                                      0.3758205487603
                                                                                        0.
         6375661631591
                            3425.658411165
         0.2727436078755
                              0.2727436078755
                                                  0.2727436078755
                                                                      0.5836467223876
                                                                                        0.
         2727436078755
                            1629.29439874
                                                                      0.6312325037131
         0.1054429048606
                              0.1054429048606
                                                  0.1054429048606
                                                                                        0.
         1054429048606
                            994.0502499014
         0.01791546604316
                             0.01791546604317
                                                  0.01791546604317
                                                                      0.8391015706486
                                                                                        0.
         01791546604317
                           710.1659140639
         3.634504843227e-05 3.634504843231e-05
                                                  3.634504843226e-05
                                                                      0.9997322587388
                                                                                        3.
         634504843236e-05 656.117741571
         1.818497659929e-09 1.818497680763e-09 1.818497711278e-09
                                                                      0.9999499658404
                                                                                        1.
         818497699082e-09 656.0000058909
         Optimization terminated successfully.
                  Current function value: 656.000006
                  Iterations: 6
```

```
In [13]: print(res)
              con: array([0., 0., 0., ..., 0., 0., 0.])
              fun: 656.0000058908898
          message: 'Optimization terminated successfully.'
              nit: 6
            slack: array([5.74883491e-10, 5.74883491e-10, 5.74883491e-10, ...,
                1.21679381e-09, 1.19136634e-09, 1.11164683e-09])
           status: 0
          success: True
                x: array([4.74686056e-01, 1.00000000e+00, 1.00000000e+00, ...,
                1.14668589e-09, 1.14231159e-09, 1.13962290e-09])
         x = res.x[:ux*uy]
In [14]:
         x = x.reshape([ux,uy])
In [15]:
         plt.imshow(x, cmap='gray')
```

Out[15]: <matplotlib.image.AxesImage at 0x24a397fe358>

Compressed Sensing

L2 Norm

```
In [38]: vx = cvx.Variable(n)
  objective = cvx.Minimize(cvx.norm(vx, 2))
  constraints = [A*vx == b]
  prob = cvx.Problem(objective, constraints)
  result = prob.solve(verbose=True)

C:\Users\Danny\Anaconda3\lib\site-packages\cvxpy\problems\problem.py:781: Runti
```

C:\Users\Danny\Anaconda3\lib\site-packages\cvxpy\problems\problem.py:781: Runti
meWarning: overflow encountered in long_scalars
 if self.max big small squared < big*small**2:</pre>

ECOS 2.0.4 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS

```
Ιt
      pcost
                  dcost
                                  pres
                                         dres
                                                k/t
                                                                     sigma
                            gap
                                                       mu
                                                              step
IR
         BT
0 +0.000e+00 -0.000e+00
                          +1e+03
                                  2e-01
                                         2e-06
                                                1e+00
                                                      7e+02
1 1 - | - -
1 +7.772e-03 +8.045e-02
                          +2e+01
                                  4e-03
                                         3e-08
                                               9e-02
                                                      1e+01
                                                             0.9849
                                                                    1e-04
  2 2 | 0 0
2 +4.133e+00 +4.299e+00
                          +4e+00
                                  6e-04
                                         4e-09
                                               2e-01
                                                      2e+00
                                                             0.8491
                                                                    2e-02
4 5 5 | 0 0
 3 +7.658e+00 +7.679e+00
                                  2e-05
                                         6e-11
                                              2e-02
                          +1e-01
                                                      6e-02
                                                             0.9890
                                                                    9e-03
4 6 6 | 0 0
4 +7.767e+00 +7.767e+00
                          +1e-03
                                  3e-07
                                         9e-13
                                               2e-04
                                                      7e-04
                                                             0.9890
                                                                    1e-04
4 4 4 | 0 0
5 +7.768e+00 +7.768e+00
                          +1e-05
                                  5e-09
                                         2e-14
                                               3e-06
                                                             0.9890
                                                      8e-06
                                                                    1e-04
4 3 3 | 0 0
6 +7.768e+00 +7.768e+00
                                         2e-16 3e-08
                          +1e-07
                                  2e-10
                                                      9e-08
                                                             0.9890
                                                                    1e-04
  3 3 | 0 0
 7 +7.768e+00 +7.768e+00
                          +2e-09 3e-11 1e-17 3e-10
                                                      9e-10
                                                             0.9890
                                                                    1e-04
4 2 2 | 0 0
```

OPTIMAL (within feastol=3.1e-11, reltol=2.0e-10, abstol=1.6e-09). Runtime: 4.468852 seconds.

```
In [39]: x = np.array(vx.value)
x = np.squeeze(x)
sig = scipy.fftpack.idct(x, norm='ortho', axis=0)
```

```
In [40]: plt.plot(t, sig)
   plt.plot(t[k], b, 'ko', markersize=3, color='red') # plot data to use to reconst
   plt.xlim((0,0.05))
```

Out[40]: (0, 0.05)

L1 Norm

```
In [41]:
         vx = cvx.Variable(n)
         objective = cvx.Minimize(cvx.norm(vx, 1))
         constraints = [A*vx == b]
         prob = cvx.Problem(objective, constraints)
         result = prob.solve(verbose=True)
         C:\Users\Danny\Anaconda3\lib\site-packages\cvxpy\problems\problem.py:781: Runti
         meWarning: overflow encountered in long scalars
           if self.max big small squared < big*small**2:</pre>
         C:\Users\Danny\Anaconda3\lib\site-packages\cvxpy\problems\problem.py:782: Runti
         meWarning: overflow encountered in long scalars
           self.max_big_small_squared = big*small**2
                    OSQP v0.5.0 - Operator Splitting QP Solver
                       (c) Bartolomeo Stellato, Goran Banjac
                 University of Oxford - Stanford University 2018
               -----
         problem: variables n = 5000, constraints m = 5250
                   nnz(P) + nnz(A) = 634948
         settings: linear system solver = qdldl,
                   eps abs = 1.0e-04, eps rel = 1.0e-04,
                   eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04,
                   rho = 1.00e-01 (adaptive),
                   sigma = 1.00e-06, alpha = 1.60, max iter = 10000
                   check termination: on (interval 25),
                   scaling: on, scaled_termination: off
                   warm start: on, polish: on
         objective
                      pri res
                                dua res
                                           rho
                                                      time
              -2.0000e+04
            1
                            8.00e+00
                                       1.39e+05
                                                  1.00e-01
                                                             4.61e-01s
                                       4.31e-03
          200
                1.0758e+02
                            1.17e-02
                                                  1.00e-01
                                                             1.28e+00s
          400
                1.0819e+02
                            4.08e-03
                                       1.10e-03
                                                  1.00e-01
                                                             1.88e+00s
          600
                1.0834e+02
                            2.19e-03
                                       5.39e-04
                                                  1.00e-01
                                                             2.44e+00s
                                       4.00e-04
          800
                1.0838e+02
                            1.14e-03
                                                  1.00e-01
                                                             3.00e+00s
         1000
                1.0839e+02
                            7.74e-04
                                       2.10e-04
                                                  1.00e-01
                                                             3.54e+00s
         1025
                            8.46e-04
                                       1.88e-04
                                                  1.00e-01
                                                             3.60e+00s
                1.0840e+02
         status:
                               solved
         solution polish:
                              unsuccessful
         number of iterations: 1025
         optimal objective:
                              108.3985
         run time:
                              3.94e+00s
         optimal rho estimate: 3.58e-02
In [42]: x = np.array(vx.value)
         x = np.squeeze(x)
         sig = scipy.fftpack.idct(x, norm='ortho', axis=0)
```

In [43]: plt.plot(t, sig)
 plt.plot(t[k], b, 'ko', markersize=3, color='red') # plot data to use to reconst
 plt.xlim((0,0.05))

Out[43]: (0, 0.05)

