Laboratorio Nº3

Convolución y respuesta en el tiempo

Martín Josemaría Vuelta Rojas

Problema 1

Sean

$$x(n) = \delta(n) + 2\delta(n-1) - \delta(n-3)$$

y

 $h(n) = 2\delta(n+1) + 2\delta(n-1).$

Calcule y haga la gráfica (usar el comando stem) de cada una de las siguientes convoluciones:

```
a) y_1(n) = x(n) * h(n)
```

b)
$$y_2(n) = x(n+2) * h(n)$$

c)
$$y_3(n) = x(n) * h(n+2)$$

Solución

Script 1 Función impulso unitario

Script 2 Función x(n)

```
function f = p1_X( n )
    f = impulso(n) + 2*impulso(n-1) - impulso(n-3);
end
```

Script 3 Función h(n)

```
function f = p1_H( n )
    f = 2*impulso(n+1) + 2*impulso(n-1);
end
```

Script 4 Convoluciones x(n) * h(n), x(n+2) * h(n) y x(n) * h(n+2) en MATLAB

```
n = -5:1:5;

y1 = conv(p1_X(n), p1_H(n));
y2 = conv(p1_X(n + 2), p1_H(n));
y3 = conv(p1_X(n), p1_H(n + 2));

fprintf('x(n)*h(n) : '); disp(y1)
fprintf('x(n+2)*h(n): '); disp(y2)
fprintf('x(n)*h(n+2): '); disp(y3)
```

Script 5 Resultados de ejecutar el script 4

```
>> problema01
x(n)*h(n) : 0 0 0 0 0 0 0 0 2
                                  4
                                     2
                                       2
                                         0 -2
x(n+2)*h(n): 0 0 0 0
                    0
                      0
                         0 2
                             4 2
                                  2
                                     0 -2
                                         0
                                              0
                                                       0
x(n)*h(n+2): 0 0 0 0 0 0 2
                               2
                                  2
                                     0 -2
                                            0
                                                0
                             4
                                         0
                                                  0
                                                     0
                                                       0
```

Figura 1 Gráfico de la función impulso unitario del script 1.

Figura 2 Gráfico de la función x(n) del script 2.

Figura 3 Gráfico de la función h(n) del script 3.

Figura 4 Gráfico de la función $y_1(n) = x(n) * h(n)$ calculada *script 4*.

Figura 5 Gráfico de la función $y_2(n) = x(n+2) * h(n)$ calculada *script 4*.

Figura 6 Gráfico de la función $y_3(n) = x(n) * h(n+2)$ calculada *script 4*.

De forma analítica, obtenemos las convoluciones solicitadas empleando la definición:

$$y(m) = x(n) * h(n) = \sum_{n} x(n) h(m-n)$$

Así obtenemos

$$y_{1}(m) = x(n) * h(n)$$

$$= \sum_{n} [\delta(n) + 2\delta(n-1) - \delta(n-3)] [2\delta(m-n+1) + 2\delta(m-n-1)]$$

$$= 2\delta(m+1) + 4\delta(m) + 2\delta(m-1) + 2\delta(m-2) - 2\delta(m-4)$$

$$y_{2}(m) = x (n + 2) * h (n)$$

$$= \sum_{n} [\delta (n + 2) + 2\delta (n + 1) - \delta (n - 1)] [2\delta (m - n + 1) + 2\delta (m - n - 1)]$$

$$= 2\delta (m + 3) + 4\delta (m + 2) + 2\delta (m + 1) + 2\delta (m) - 2\delta (m - 2)$$

$$y_3(n) = x(n) * h(n+2)$$

$$= \sum_{n} [\delta(n) + 2\delta(n-1) - \delta(n-3)] [2\delta(m-n+3) + 2\delta(m-n+1)]$$

$$= 2\delta(m+3) + 4\delta(m+2) + 2\delta(m+1) + 2\delta(m) - 2\delta(m-2)$$

Considere un sistema LIT cuya respuesta a la señal $x_{1}\left(t\right)$ es $y_{1}\left(t\right)$

Hallar las respuestas del sistema anterior a las siguientes excitaciones:

Solución

Las funciones $x_{2}\left(t\right)$ y $x_{3}\left(t\right)$ se pueden representar en función de $x_{1}\left(t\right)$ como

$$x_2(t) = x_1(t) + x_1(t-1)$$

y

$$x_3(t) = x_1(t) - x_1(t-2)$$
.

De forma que si consideramos la función de transferencia del sistema como $h\left(t\right)$ y

$$y_1(t) = x_1(t) * h(t),$$

entonces

$$y_{2}(t) = x_{1}(t) * h(t) + x_{1}(t-1) * h(t) = y_{1}(t) + y_{1}(t-1)$$

y

$$y_3(t) = x_1(t) * h(t) - x_1(t-2) * h(t) = y_1(t) - y_1(t-2).$$

Con estas observaciones escribimos las soluciones a este problema en MATLAB

Script 6 Función $x_1(t)$

Script 7 Función $y_1(t)$

Script 8 Función $x_2(t)$

```
function f = p2_X2( t )
    f = p2_X1( t ) + p2_X1( t-1 );
end
```

Script 9 Función $y_2(t)$

```
function f = p2_Y2( t )
    f = p2_Y1(t) + p2_Y1(t-1);
end
```

Script 10 Función $x_3(t)$

```
function f = p2_X3( t )
    f = p2_X1( t ) - p2_X1( t-2 );
end
```

Script 11 Función $y_3(t)$

```
function f = p2_Y3( t )
    f = p2_Y1(t) - p2_Y1(t-2);
end
```

Figura 7 Función $x_{2}\left(t\right)$ y respuesta $y_{2}\left(t\right)$ empleando los scripts 8 y 9.

Figura 8 Función $x_{3}\left(t\right)$ y respuesta $y_{3}\left(t\right)$ empleando los scripts 10 y 11.

Calcular la convolución entre los siguientes pares de señales:

a)
$$x(n) = (\frac{1}{2})^n u(n-4)$$
 y $h(n) = 4^n u(2-n)$

b)
$$x(n) = u(-n) - u(-n-2)$$
 y $h(n) = u(n-1) - u(n-4)$

c)
$$x(n) = u(n) y h(n) = (\frac{1}{2})^{-n} u(-n)$$

d)
$$x(t) = \exp(-at) u(t)$$
 y $h(t) = \exp(-at) u(t)$

Donde u(n) es la función escalón unitario.

Solución

a)
$$x(n) = (\frac{1}{2})^n u(n-4) y h(n) = 4^n u(2-n)$$

$$y(m) = x(n) * h(n)$$

$$= \sum_{n = -\infty}^{\infty} x(n) h(m - n)$$

$$= \sum_{n = -\infty}^{\infty} \left(\frac{1}{2}\right)^n u(n - 4) 4^{m - n} u(2 - m + n)$$

$$= \sum_{n = -\infty}^{\infty} 2^{2m - 3n} u(n - 4) u(n + 2 - m)$$

Cuando m < 6:

$$y(m) = \sum_{n=-\infty}^{\infty} 2^{2m-3n} u(n-4) u(n+2-m)$$

$$= \sum_{n=-\infty}^{\infty} 2^{2m-3n} u(n-4)$$

$$= \sum_{n=0}^{\infty} 2^{2m-3n}$$

$$= \sum_{n=0}^{\infty} 2^{2m-3(n+4)}$$

$$= \sum_{n=0}^{\infty} 2^{2m-3(n+4)}$$

$$= 2^{2m-12} \sum_{n=0}^{\infty} (2^{-3})^n$$

$$= 2^{2m-12} \sum_{n=0}^{\infty} \left(\frac{1}{8}\right)^n$$

$$= 2^{2m-12} \left(\frac{1}{1-\frac{1}{8}}\right)$$

$$= \frac{2^{2m-9}}{7}$$

Cuando $m \ge 6$:

$$y(m) = \sum_{n=-\infty}^{\infty} 2^{2m-3n} u(n-4) u(n+2-m)$$

$$= \sum_{n=-\infty}^{\infty} 2^{2m-3n} u(n+2-m)$$

$$= \sum_{n=m-2}^{\infty} 2^{2m-3n}$$

$$= \sum_{n=0}^{\infty} 2^{2m-3(n+m-2)}$$

$$= \sum_{n=0}^{\infty} 2^{6-m-3n}$$

$$= 2^{6-m} \sum_{n=0}^{\infty} (2^{-3})^n$$

$$= 2^{6-m} \sum_{n=0}^{\infty} \left(\frac{1}{8}\right)^n$$

$$= 2^{6-m} \left(\frac{1}{1-\frac{1}{8}}\right)$$

$$= \frac{2^{9-m}}{7}$$

Finalmente

$$y(m) = \begin{cases} \frac{2^{2m-3}}{7} & ; n < 6 \\ \frac{2^{9-m}}{7} & ; n \ge 6 \end{cases}$$
b) $x(n) = u(-n) - u(-n-2)$ y $h(n) = u(n-1) - u(n-4)$

$$y(m) = x(n) * h(n)$$

$$= \sum_{n=-\infty}^{\infty} x(n) h(m-n)$$

$$= \sum_{n=-\infty}^{\infty} [u(-n) - u(-n-2)] [u(m-n-1) - u(m-n-4)]$$

$$= \sum_{n=-\infty}^{\infty} u(-n) u(m-n-1) - \sum_{n=-\infty}^{\infty} u(-n-2) u(m-n-1) - \sum_{n=-\infty}^{\infty} u(-n) u(m-n-4) + \sum_{n=-\infty}^{\infty} u(-n-2) u(m-n-4)$$

Cuando m < 0:

$$y(m) = \sum_{n=-\infty}^{m-1} 1 - \sum_{n=-\infty}^{m-1} 1 - \sum_{n=-\infty}^{m-4} 1 + \sum_{n=-\infty}^{m-4} 1$$

= 0

Cuando m = 0:

$$y(m) = \sum_{n=-\infty}^{-1} 1 - \sum_{n=-\infty}^{-2} 1 - \sum_{n=-\infty}^{-3} 1 + \sum_{n=-\infty}^{-3} 1$$
$$= 1$$

Cuando $0 < m \land m < 3$:

$$y(m) = \sum_{n=-\infty}^{0} 1 - \sum_{n=-\infty}^{-2} 1 - \sum_{n=-\infty}^{-2} 1 + \sum_{n=-\infty}^{-2} 1$$
$$= 2$$

Cuando m = 3:

$$y(m) = \sum_{n = -\infty}^{0} 1 - \sum_{n = -\infty}^{-2} 1 - \sum_{n = -\infty}^{-1} 1 + \sum_{n = -\infty}^{-2} 1$$
$$= 1$$

Cuando m > 3:

$$y(m) = \sum_{n=-\infty}^{0} 1 - \sum_{n=-\infty}^{-1} 1 - \sum_{n=-\infty}^{0} 1 + \sum_{n=-\infty}^{-1} 1$$
$$= 0$$

Finalmente

$$y(m) = \begin{cases} 0 & ; m < 0 \lor 3 < m \\ 1 & ; m = 0 \lor m = 3 \\ 2 & ; 0 < m \land m < 3 \end{cases}$$

c)
$$x(n) = u(n) y h(n) = (\frac{1}{2})^{-n} u(-n)$$

$$y(m) = x(n) * h(n)$$

$$= \sum_{n = -\infty}^{\infty} x(n) h(m - n)$$

$$= \sum_{n = -\infty}^{\infty} u(n) \left(\frac{1}{2}\right)^{n - m} u(n - m)$$

$$= \sum_{n = -\infty}^{\infty} \left(\frac{1}{2}\right)^{n - m} u(n) u(n - m)$$

Cuando m < 0:

$$y(m) = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{n-m} u(n) u(n-m)$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n-m}$$
$$= 2^m \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
$$= 2^{1+m}$$

Cuando $0 \le m$:

$$y(m) = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^{n-m} u(n) u(n-m)$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n-m}$$
$$= 2^m \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
$$= 2^{1+m}$$

d)
$$x(t) = \exp(-at) u(t)$$
 y $h(t) = \exp(-at) u(t)$

$$y(\tau) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} x(t) h(\tau - t) dt$$

$$= \int_{-\infty}^{\infty} \exp(-at) u(t) \exp(-a\tau + at) u(t - \tau) dt$$

$$= \int_{0}^{\tau} \exp(-a\tau) dt$$

$$= \exp(-a\tau) \tau$$

Para el diagrama de bloques mostrado

Donde

$$h_1(n) = \beta \delta(n-1)$$

y

$$h_2(n) = \exp(\alpha) \delta(n)$$

- a) Escribir la ecuación en diferencias que relaciona la entrada con la salida
- b) Hallar α y β , de tal forma que la salida sea el promedio entre la entrada en el instante n y la entrada en el instante n-1.

Solución

a) La ecuación en diferencias se obtiene de calcular

$$y(n) = [(x + x * h_1) * h_2](n)$$

Resolviendo $[x * h_1](n)$, tenemos

$$y_1(n) = x(m) * h_1(m)$$

$$= \sum_{m = -\infty}^{\infty} x(m) h_1(n - m)$$

$$= \sum_{m = -\infty}^{\infty} x(m) \beta \delta(n - m - 1)$$

$$= \beta x(n - 1)$$

Haciendo $y_{2}\left(n\right)=y_{1}\left(n\right)+x\left(n\right)$, calculamos $\left[y_{2}*h_{2}\right]\left(n\right)$ como

$$y(n) = y_2(m) * h_2(m)$$

$$= \sum_{m=-\infty}^{\infty} y_2(m)h_2(n-m)$$

$$= \sum_{m=-\infty}^{\infty} [y_1(m) + x(m)] \exp(\alpha) \delta(n-m)$$

$$= \sum_{m=-\infty}^{\infty} [\beta x(m-1) + x(m)] \exp(\alpha) \delta(n-m)$$

$$= [\beta x(n-1) + x(n)] \exp(\alpha)$$

De modo que la ecuación en diferencias del sistema queda expresada como

$$y(n) = [\beta x(n-1) + x(n)] \exp(\alpha)$$

b) Para que la señal de salida sea igual al promedio de los valores de la señal de entrada en el instante n y en el instante n-1 se debe resolver el sistema

$$\begin{cases} \exp(\alpha) &= \frac{1}{2} \\ \exp(\alpha)\beta &= \frac{1}{2} \end{cases}$$
 (1)

De donde resulta

$$\alpha = \ln\left(\frac{1}{2}\right) \land \beta = 1$$

Dada la siguiente ecuación en diferencias

$$y(n) = -ay(n-1) + bx(n) + cx(n-1),$$

realizar una representación en diagrama de bloques.

Solución

Expresando la ecuación en diferencias como:

$$y\left(n\right) = -ay\left(n\right)*\delta\left(n-1\right) + bx\left(n\right)*\delta\left(n\right) + cx\left(n-1\right)*\delta\left(n-1\right)$$

De modo que el diagrama de bloques resultante es

Realizar en MATLAB la convolución del siguiente par de señales:

1.
$$x(n) = (-1)^n (u(n) - u(-n - 8))$$

2.
$$h(n) = u(n) - u(n-8)$$

Graficar la señal resultante, y(n) = x(n) * h(n). Usar el comando stem.

Solución

xpresamos las funciones x y h en términos de la función escalón unitario u.

Script 12 Función escalón unitario

```
function f = escalon(x,y,z)
    switch (nargin)
    case 1, f = 1.*(x>=0);
    case 2, f = 1.*(x>=y);
    case 3, f = z.*(x>=y);
    otherwise
        fprintf('Error: Revise los argumentos de entrada')
end
```

Script 13 Función x(n)

```
function f = p6_X(n)
f = ((-1).^n).*(escalon(n)-escalon(-n-8));
end
```

Script 14 Función h(n)

```
function f = p3_H( n )
    f = escalon(n)-escalon(n-8);
end
```

Figura 9 Gráfico de la función x(n) del *script 13*.

Figura 10 Gráfico de la función x(n) del script 14.

Script 15 Convlución de las señales x(n) y h(n)

```
n = -20:1:20;
X = p6_X(n);
H = p6_H(n);
Y = conv(X,H);
stem(-40:1:40,Y)
```

Figura 11 Gráfico de la función y(n) = x(n) * h(n) del *script 15*.

Considere un sistema lineal e invariante en el tiempo, causal, cuya entrada $x\left(n\right)$ y salida $y\left(n\right)$ estén relacionadas por la ecuación de diferencias:

$$y(n) = 0.25y(n-1) + x(n)$$

Determine y(n) si $x(n) = \delta(n-1)$.

Grafique en MATLAB la salida y(n), use el comando stem.

Solución

Para n = 1 tenemos

$$y(1) = 0.25y(0) + x(1)$$

= 0.25y(0) + \delta(0)
= 0.25y(0) + 1

Suponiendo que la señal y(n) es nula antes antes de n=1 tenemos

$$y\left(0\right) = 0$$

$$y(1) = 1$$

Con estos valores en la definición de $y\left(n\right)$ obtenemos que

$$y(n) = \frac{1}{4^{n-1}}u(n-1)$$

La implementación y la gráfica que se obtienen de MATLAB se muestran en el *script 16* y la *script 12* respectivamente.

Script 16 Función y(n)

```
function f = p7_Y(n)

f = ((0.25).^(n-1)).*escalon(n-1);

end
```

Figura 12 Gráfico de la función y(n) calculada figura 16.

