4. Модели на разпределена софтуерна архитектура

Васил Георгиев

ci.fmi.uni-sofia.bg/ v.georgiev@fmi.uni-sofia.bg

Модели софтуерна архитектура

→ Софтуерната архитектура представя – т.е. моделира – програмния проект (процес на обслужване) като съставен т.е. разпределен процес от софтуерни компоненти

- моделирането на РСА е първата и най-важна фаза на проектиране, настройка, тестване, разгръщане и документация на разпределени среди за обслужване
- моделът на дадена софтуерна архитектура описва
 - декомпозицията на процеса на компоненти
 - функционалната им композиция
 - → прилагания архитектурен стил напр. процедурен, обектен, потоков (data flow), йерархичен или не-йерархичен, информационен (data centric), интерактивен (interaction oriented), базиран на изгледи (views) и др.
 - → качествените (нефункционалните) атрибути на услугата QoS

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 3

UML-модели на CA

- използва се за ОО-спецификация, анализ, проектиране и документиране на софтуерни проекти
- спецификациите са в две групи диаграми:
- стуктурни диаграми статично описание (изреждане) на елементите в системата
 - йерархична библиотека класове йерархична оиолиотела половете
 статични връзки между класовете
 - - наследяване ("is a")
 наследяване ("is a")
 асоциация ("uses a")
 агрегация ("has a")
 обмен (method invocation)
- функционални (behavioral) диаграми динамично описание функциите ("поведението") на инстанциите на класовете (т.е. обектите) с диаграми на

 - интеракц<mark>и</mark>ята, колаборацията,
 - акцията и
 - конкурентността между обектите
- ▶ UML диаграмите могат да се транслират до HLL с общо приложение

ФМИ/СУ * СИ * РСА 4. Модели софтуерна архитектура

Функционални UML диаграми...

Use case	Диаграма на случай на употреба – потребителските сценарии на заявки към системата и техните реакции – за описание на функционалните и нефункционалните изисквания към системата
Activity	Диаграма на дейностите – описание на контролния и контекстния обмен между класовете като мрежа от акции, които системата изпълнява за да осъществи реакциите по потребителския сценарий – оркестрация на акциите
State Machine	Диагарама на машна на състоянията – описание на жизнения цикъл на обектите като машина на състоянията – диаграми на състоянията и преходите (активни вътрешно-обусловени и реактивни външнообусловени преходи)

ФМИ/СУ * СИ * РСА

tra militars de dicione las trafficars de militar des de maior de montre de montre de maior de m

Съдържание

- Модели софтуерна архитектура
- → Спецификации с UML
- Структурни и функционални диаграми

- Модели на изгледи
- → Спецификации с ADL

ФМИ/СУ * СИ * РСА архитектура

Представяне на софтуерните модели

- Използват се графи и техни разширения
- описанието е чрез диаграми или техни текстови еквиваленти
- цели на описанието са
 - визуализация
 - спецификация
- → конструиране
 → документация
 © следователно обикновено моделът включва мн. повече от една диаграма
- описанието (моделирането) стартира от по-упростените концепции на бизнес-модела или потребителския сценарий
 - → напр. едномерен модел с блокова диаграма (ненасочен граф) 4.4
- за по пълно функцианално и нефункционално описание на проекта се прилагат многомерни модели
 - → напр. «4+1» модели, включващи
 - логически изглед
 - изглед процеси
 - изглед проектиране

 - физически изглед
 потребителски интерфейсни изгледи

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА

Структурни UML диаграми

Class	Изброяване и статични връзки между класовете (независещи от взаимодействието им по вр. на изпълнение)
Object	Извлечение от клас диаграмата за обектите и тяхното взаимодействие в определени специфични моменти от изпълнението на системата
Compo- site	Диаграма на съставни структури – описание на структурата на даден компонент като съставящи го класове и компонентните интерфейси
Compo- nent	Описание на системата като структура от компоненти, интерфейсите между тях, и общите системни интерфейси
Package	Йерархична пакетна структура на организацията класовете в директории (т.е. групирани файлове) – пакети от класове и пакети от пакети
Deply- ment	Диаграма на разгръщането - описание на изпълнителната инфраструктура: сървери, изпълняващи компонентите, системно осигуряване и мидълуер, интерфейси и протоколи, вътрешна и външна мрежова свързаност

ФМИ/СУ * СИ * РСА

... функционални UML диаграми

Inter- action Overview	Диаграма за преглед на взаимодействието – описва потока команди между обектите (control flow) и е комбинация от Action и Sequence диаграмите
Sequence	Диаграма на последователност - нареден (т.е. времеви) списък от съобщенията между обектите
Communi- cation	Аналогично на Sequence диаграмата, но структурирана като като комуникационни канали, които съдържат определен брой последователности
Time Sequence	Времево описание на преходите между вътрешните състояния на обектите и на различимите външни събития (от потребителския сценарий) като последователност от съобщения

ФМИ/СУ * СИ * РСА

Class диаграми

- най-разпространеното описание при всеки модел
- → статично изброяване на съставните блокове на модела като класове

- → задава «речника» на модела в съответствие с проблемната област
- класовете се описват с техните атрибути
 - ♦ тип
 - интерфейс
 - методи
 - свойства
- достъпността (видимостта) на атрибутите се описва като
 - public
 - private
 - protected
- → описва се и отношенията между класовете наследяване, асоциация, агрегация (чрез дъги)
 - ◆ а също и мощността на тези отношения 1:1, 1:много и т.н. (чрез маркировки в края на лъгите)

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 9

Object диаграми

- извлича се от клас-диаграмата
- описва обектите като инстанции на класовете т.е. примерно подмножество обекти за дадена клас-диаграма конкретен момент на работа на системата
- пример фиг. 4.11

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 11

Component диаграми

- → компонентите са изпълними SW-модули за многократно използване при проектиране, които се представят със своя интерфейс
- ▶ в UML те са със скрита структура (черна кутия) [но при различните технологии се прилагат и компоненти тип "сива" и "стъклена кутия"]
- напр.
 - jar в компонентната библиотека JavaBean
 - dll B .Net
- компонентната диаграма представя съответствието между изискваните (полукръгче) и имплементираните (кръгче) интерфейси - фиг. 4.13
- компонентите в даден проект може да са готови СОТЅ и специфични

ФМИ/СУ * СИ * РСА 4. Модели софтуерна архитектура

- Use case диаграми описва потребителските сценарии на приложение на системата като граф от актори, случаи на употреба (потребителски функции) и връзките между тях
- акторите са крайни потребители или други системи, приложения и устройства
- → случаите (Use Cases) са комплексни функционални модули от разпределеното приложение/проекта, които описват отделни стъпки от цялостната бизнес-логика
- описанието на случаите се допълва в други диаграми с пред- и следусловията на изпълнението им като последователности от стъпките на общото приложение при конкретно негово изпълнение
- → връзките между сценариите (фиг. 4.15) се маркират с
 - ◆ «include» от случай, който използва друг случай за изпълнение на дадена функция (насочена дъга)
 - «extend» от случай, който извиква друг такъв за изпълнение на функция по изключение (т.е. като опция, която се изпълнява само по изключение)
- диаграмите на случаите на употреба са основа на описанието и [началните] им версии се използват за основа на структурните и sequence диаграмите

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 15

Class диаграма - пример

- → фиг. 4.10
- система за потребителски заявки
- наследственост (стрелка към родителя/базовия клас)

- агрегация (ромб към корена)
- асоциация (нейерархична дъга)
- маркировка на мощността в двата края на дъгите

Composite Structure диаграми

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА

- → описва връзката между обектите (runtime), с което разширява "речника" на модела
- обектите и връзката се анотират с етикети съответно на ролята (бизнес- или функционална логика) и отношението им ("колаборацията")
- пример фиг. 4.12

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 12

Packet и Deployment диаграми

- ♦ фиг. 4.14.1
- ♦ фиг. 4.14.2

ФМИ/СУ * СИ * РСА 4. Модели софтуерна архитектура

Activity диаграми

• описват проекта като **потоков (workflow)** бизнес процес, състоящ се от дейности - activities

- дейностите капсулират
 - логиката на взимането на решение
 - конкурентното изпълнение на функции обработката на изключения
 - → прекратяването на процеса (termination)
- → потоковата activity диаграма (фиг. 4.16) се състои от
 - една начална точка и поне една крайна точка (плътен кръг и ограден кръг)
 - ◆ точките на решаване (означават се с ромбче)
 - другите дейности (заоблен правоъгълник)
 - ⋆ конкурентното разделяне и събиране на потоците (дебела черта); N.B. събирането на два и повече потока се счита за синхронизатор (следващите го дейности не могат да стартират без завършване на всички предхождащи го)
 - ♦ събития (events опция) представят обмена на съобщения (signals) между конкурентните акции (насочени многоъгълници с етикети)
- 4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 16

State Machine диаграми

 обикновено представят състоянието на обслужващите устройства или софтуерните модули в проекта – набор от състоянията им и преходите между тях

- логиката на състоянията е реактивна т.е. базира се на външни събития (events)
- състоянията се описват с блок, съдържащ
 - ▶ име,
 - списък променливи и
 - activity
- → State Machine диаграмата (фиг. 4.17) се състои от
 - една начална точка и поне една крайна точка (плътен кръг и ограден кръг)
 - насочени маркирани дъги на преходите
 - състоянията, които меже да са комплексни състояния, съставени от допълващи State Machine диаграми

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 17

Модел на изгледи

- → 4+1 моделиране представя РСА с 4 основни изгледа и един допълнителен – логически, развоен, процесен и физически + сценарий на приложние/функциониране, който често се придружава и от изглед на потребителските интерфейси – фиг. 4.19
- Сценарният изглед и асоциниираният с него интерфейсен изглед описват потребителските функции на приложението както и основните нефункционелни изсквания
 - произтича от потребителското задание
 - ▶ в UML се специфицира с диаграма на потребителските случаи (4.15)
- Логическият изглед описва декомпозицията на разпределеното приложение с оглед на реализираните функции
 - представя основните блокове или компоненти
 - в UML се специфицира с клас-диаграма (статична), допълнена с една или повече динамични диаграми – най-често последователностни

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 19

Потребителски интерфейсен изглед

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 21

Interaction Overview, последователностни и времеви диаграми

- диаграмите за преглед на взаимодействието се състоят от кадри (frames), които представляват други диаграми на проекта, маркирани с указател (reference) или със самите диаграми, маркирани с тип – напр. sd, cd, ad
- дъгите отразяват контролния поток на взаимодействието фиг.
 дъз 1
- sequence диаграмите отразяват относителната последователност от контролни съобщения между обектите – фиг. 4.18.2
- времевата диаграма описва графика на състоянията от машината на състоянията - прилага се за RТприложения и системи – RTOS, ES (4.18.3)

4. Модели софтуерна архитектура ФМИ/СУ * СИ * РСА 18

Развоен, процесен и физически изглед

- Развойният изглед и асоциираният с него интерфейсен изглед описват потребителските функции на приложението както и основните нефункционални изсквания
 - произтича от потребителското задание
 - → в UML се специфицира с диаграма на потребителските случаи (4.15)
- Процесният изглед описва декомпозицията на разпределеното приложение с оглед на реализираните функции
 - представя основните блокове или компоненти
 - → в UML се специфицира с клас-диаграма (статична), допълнена с една или повече динамични диаграми – най-често последователностни или на дейностите (4.20.1)
- Физическият изглед описва цялата РСА на платформата + приложението – инсталация, конфигурация, разгръщане
 - компонентите са на ниво процесори или поне процеси
 - връзките между тях са на ниво комуникационни канали
 - → представя нанасянето (или картирането mapping) на компонентите от развойния изглед върху инфраструктурните възли (4.20.2)

