Insights from social media presence

Project Proposal for The Data Incubator Fellowship Program By Muluemebet G Ayalew Aug, 2019

```
In [1]: import pandas as pd  # data exploration and manupulation
import matplotlib.pyplot as plt # for ploting
import seaborn as sns  # for visualization

# to see the plot in the notebook
% matplotlib inline
```

Read files

```
In [27]: # facebook dataframe
    fb =pd.read_csv("temp_datalab_records_social_facebook.zip", compression="zip")
        C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2
        717: DtypeWarning: Columns (9) have mixed types. Specify dtype option on impo
        rt or set low_memory=False.
        interactivity=interactivity, compiler=compiler, result=result)

In [28]: # Linkedin dataframe
        ln=pd.read_csv("temp_datalab_records_linkedin_company.zip", compression="zip")
        C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2
        717: DtypeWarning: Columns (9,10) have mixed types. Specify dtype option on i
        mport or set low_memory=False.
        interactivity=interactivity, compiler=compiler, result=result)
```

Data Exploration

Facebook

```
In [4]: fb.shape # facebook dataframe shape
Out[4]: (3621391, 14)
```

In [5]: fb.head()

Out[5]:

	dataset_id	time	username	checkins	has_added_app	were_here_c
0	53088	2015-01-01 05:00:00+00	SodaStream	0	f	0
1	52642	2015-01-01 05:00:00+00	ANSYSInc	148	f	0
2	53656	2015-01-01 05:00:00+00	MyAquaAmerica	0	f	0
3	53033	2015-01-01 05:00:00+00	Qualcomm	173	f	0
4	52783	2015-01-01 05:00:00+00	eaglepharmaceuticals	0	f	0

In [6]: fb.info() # info about facebook dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3621391 entries, 0 to 3621390
```

Data columns (total 14 columns): dataset id int64 time object username object checkins int64 has_added_app object were_here_count int64 likes int64 talking_about_count int64 facebook_id int64 date_added object date_updated object entity_id float64 cusip float64

dtypes: float64(3), int64(6), object(5)

memory usage: 386.8+ MB

In [7]: fb.username.nunique() # number of unique usernames in the dataframe

float64

Out[7]: 4950

Linkedin

In [8]: | ln.shape # Linkedin dataframe shape

Out[8]: (2426196, 14)

In [9]:

ln.company_name.nunique() # number of unique companies in the dataframe

Out[9]: 5028

In [10]: | ln.head() # linkedin datafram

Out[10]:

	dataset_id	as_of_date	company_name	followers_count	employees_on_platform	
0	58329	2015-09-14	Goldman Sachs	552254	38124	httı
1	58329	2015-09-15	Goldman Sachs	552862	38141	httı
2	58363	2015-09-16	United Technologies	59157	14982	httı
3	58366	2015-09-16	Novo Nordisk	336175	26448	httı
4	58371	2015-09-16	Lowe's Companies, Inc.	134255	62574	httı

In [11]: ln.info() #info about linkedin dataframe

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2426196 entries, 0 to 2426195

Data columns (total 14 columns): dataset id int64 as_of_date object object company_name followers_count int64 employees_on_platform int64 link object industry object date_added object date_updated object description object object website float64 entity_id float64 cusip isin float64

dtypes: float64(3), int64(3), object(8)

memory usage: 259.1+ MB

Data Preparation: Make the name case insensitive

```
In [13]: # remove space from company name in linkedin dataframe to have similar format
          as facebook
         lnname= ln.company name.apply(lambda x: str(x).lower().replace(" ", ""))
In [14]: | lnname.head()
Out[14]: 0
                      goldmansachs
         1
                      goldmansachs
         2
                unitedtechnologies
                       novonordisk
         3
              lowe'scompanies, inc.
         Name: company_name, dtype: object
In [37]: ln.update(pd.DataFrame(lnname)) #update the naming format in the dataframe
In [38]: ln.shape
Out[38]: (2426196, 14)
In [39]: | fbname=fb.username.apply(lambda x: str(x).lower()) # make the username into Lo
         wercase
In [42]: fb["username"]=fbname
```

Data preparation : get similar date format

```
In [47]: ln.as of date.head() # linkedin date format
   Out[47]: 0
                 2015-09-14
            1
                 2015-09-15
            2
                 2015-09-16
            3
                 2015-09-16
            4
                 2015-09-16
            Name: as_of_date, dtype: object
   In [48]: # to extract only the date part of time column of the facebook dataframe
            def get date(date):
                date=str(date) # convert to string
                splited=date.split(" ") #this separates date and time
                date=splited[0] # get the date
                return date
   In [50]: fb["DATE"]=fb["time"].apply(get date) # the DATE collumn is created on faceboo
            k dataframe
Data Preparation: Extract Year, Month and Day
   In [49]:
            #functions to extract year, month and day from column name "time" in facebook
            dataframe
            def get year(date):
                date= str(date) # convert to string
                splited= date.split("-") # to get month, day, and year and time
                year= splited[0] # get year
                return year
            def get month(date):
                date= str(date) # convert to string
                splited= date.split("-") # to get month, day, and year and time
                month= splited[1] # get year
                return month
            def get_day(date):
                date= str(date) # convert to string
                splited= date.split("-") # to get month, day, and year and time
                day= splited[2][:2] # extract only the day
```

Analyze Facebook Dataframe

```
In [74]:
         def fb statistics(name):
              '''The function that provides the date when a company ,its username is "na
         me", was checkedin,
             liked and people talked about it most; and displays the trend in a single
          graph '''
             name=str(name)
             if name in fb["username"].values: # check if the username is in the datafr
         ame
                 fb_data=fb[fb["username"]==name]
                # plot the number of likes, checkins and talking about counts in a sing
         le graph
                 fig =plt.figure(figsize=(14,20))
                 # date vs numbers of likes
                 plt.subplot(5,1,1)
                  plt.plot_date(fb_data["DATE"].values ,fb_data["likes"].values , "b-")
                  plt.ylabel("Number of likes")
                 # date vs numbers of checkins
                 plt.subplot(5,1,2)
                 plt.plot_date(fb_data["DATE"].values ,fb_data["checkins"].values, "g-"
         )
                 plt.ylabel("Number of checkins")
                  # date vs talking about count
                  plt.subplot(5,1,3)
                 plt.plot_date(fb_data["DATE"].values ,fb_data["talking_about_count"].v
         alues, "r-")
                 plt.ylabel("Talking_about_count")
                 # date vs all
                  plt.subplot(5,1,4)
                 plt.plot_date(fb_data["DATE"].values ,fb_data["likes"].values , "b-")
                  plt.plot_date(fb_data["DATE"].values ,fb_data["checkins"].values, "g-"
         )
                 plt.plot_date(fb_data["DATE"].values ,fb_data["talking_about_count"].v
         alues, "r-")
                 plt.legend(["likes", "checkins","talking_about"])
                 plt.xlabel("Date")
                 # month vs talking_about count
                  plt.subplot(5,1,5)
                 sns.boxplot(x="Month", y="talking about count", hue="Year", data=fb da
         ta)
                 plt.ylabel("Talking_about_count")
                 plt.xlabel("Month")
                 # fig.show()
                 highest_like= fb_data[fb_data["likes"]==fb_data["likes"].max()][["DAT
         E", "likes"]]
                  highest_checkins= fb_data[fb_data["checkins"]==fb_data["checkins"].max
         ()][["DATE", "checkins"]]
```

```
highest_talking= fb_data[fb_data["talking_about_count"]==fb_data["talk
ing_about_count"].max()][["DATE", "talking_about_count"]]

#print the text in bold and newline
    print("\n \033[1m" +"The following table shows the date when the highe
st likes, checkins and talking_about_counts were observed for "+ name.capitali
ze())

return pd.concat((highest_like,highest_checkins,highest_talking), axis
=0)

else:
    print("Username not found! Please try a different username")
```

In [77]: fb_statistics ("google")

The following table shows the date when the highest likes, checkins and talk ing_about_counts were observed for Google

Out[77]:

	DATE	checkins	likes	talking_about_count
3617742	2018-07-16	NaN	26496281.0	NaN
226343	2015-11-22	455244.0	NaN	NaN
2890282	2017-12-20	NaN	NaN	683040.0

In [76]: fb_statistics("ford") # Ford company

The following table shows the date when the highest likes, checkins and talk ing_about_counts were observed for Ford

Out[76]:

	DATE	checkins	likes	talking_about_count
3618029	2018-07-16	NaN	8869326.0	NaN
3618029	2018-07-16	39524.0	NaN	NaN
1313687	2016-12-16	NaN	NaN	214924.0

Companies both in facebook and linkedin

```
fbln_merge=pd.merge(fb,ln, left_on=["DATE","username"], right_on=["as_of_date"
In [78]:
          ,"company name"])
In [ ]: fbln_merge.sort_values(by=["username"])
In [79]: | fbln_merge.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 515671 entries, 0 to 515670
         Data columns (total 32 columns):
         dataset id x
                                   515671 non-null int64
         time
                                   515671 non-null object
         username
                                   515671 non-null object
         checkins
                                   515671 non-null int64
                                   515671 non-null object
         has_added_app
         were here count
                                   515671 non-null int64
                                   515671 non-null int64
         likes
         talking_about_count
                                   515671 non-null int64
         facebook id
                                   515671 non-null int64
         date added x
                                   379153 non-null object
                                   515671 non-null object
         date updated x
                                   0 non-null float64
         entity id x
         cusip_x
                                   0 non-null float64
         isin_x
                                   0 non-null float64
         DATE
                                   515671 non-null object
                                   515671 non-null object
         Year
                                   515671 non-null object
         Month
         Day
                                   515671 non-null object
                                   515671 non-null int64
         dataset id y
         as_of_date
                                   515671 non-null object
                                   515671 non-null object
         company name
                                   515671 non-null int64
         followers_count
         employees_on_platform
                                   515671 non-null int64
         link
                                   515671 non-null object
         industry
                                   505864 non-null object
         date_added_y
                                   515671 non-null object
         date_updated_y
                                   515671 non-null object
         description
                                   127037 non-null object
                                   72971 non-null object
         website
                                   0 non-null float64
         entity_id_y
                                   0 non-null float64
         cusip y
         isin_y
                                   0 non-null float64
         dtypes: float64(6), int64(9), object(17)
         memory usage: 129.8+ MB
In [81]:
         #remove the following columns from the dataframe
         fbln_merge.drop(["cusip_x", 'isin_x','cusip_y', 'isin_y'], axis=1, inplace=Tr
         ue)
In [ ]:
```

In []:

```
In [ ]:
In [33]:
         # datafram containing companies that are available in both fb and ln
         lnfb= fb[(fb["username"].apply(lambda x: str(x).lower())).isin(lnname.values)]
        fbln=fb[fb["username"].isin(lnname.values)]
In [ ]:
In [34]: Infb.username.nunique()
Out[34]: 1026
In [ ]:
         lnfb=ln[ln.company_name.isin(fbname.values)]
In [ ]: | fb["username"].nunique() # 4950
In [ ]: lnfb["username"].nunique() # 590
In [ ]: lnfb["username"].nunique() # after space removed and made case insensitive , w
         e found 1026 companies both in fb and ln
        ln.company_name.nunique() # 5028
In [ ]:
In [ ]: ln.company_name.nunique() # 5025 unique companies
```

who has the most followers on Linkedin - google

In [86]: fbln_merge[fbln_merge.followers_count==fbln_merge.followers_count.max()] # goo
 gle has the most followers

Out[86]:

	dataset_id_x	time	username	checkins	has_added_app	were_here_cou
515003	62271	2018-07-16 04:00:00+00	google	410308	f	480

1 rows × 28 columns

Analyze Linkedin data

Which compnay has the most followers in linkedin - google

In [139]: ln[ln.followers_count==ln.followers_count.max()] # google has the most followr
 s on linkedin

Out[139]:

	dataset_id	as_of_date	company_name	followers_count	employees_on_platfo
2424659	58448	2018-07-17	google	7833967	140679

Statistics about employee on platform by month and industry

```
In [99]: ln["Month_1"]=ln.as_of_date.apply(get_month) # extract the month

In [111]: employee=pd.pivot_table(ln, index=["industry", "Month_1"] , values="employees_on_platform",aggfunc=("min","mean", "median", "max"))
```

In [112]: employee

Out[112]:

		max	mean	median	min
industry	Month_I				
Accounting	01	6778	1344.496689	27.0	0
	02	6986	1980.900000	28.0	0
	03	7065	6652.523077	6970.0	0
	04	7103	6871.671429	6998.5	5790
	05	7090	6653.695652	7000.5	5800
	06	7108	6641.170455	7003.0	5760
	07	7099	6542.807692	7009.5	5624
	08	7095	6426.655172	7081.5	5634
	09	7102	6446.237288	5920.0	5642
	10	7105	6309.793651	6245.0	0
	11	7070	2106.242268	28.0	0
	12	7065	1401.639456	28.0	0
Airlines/Aviation	01	50558	9178.440617	2568.0	52
	02	50980	8895.937884	2366.5	54
	03	51381	8388.170149	2069.0	53
	04	51797	9303.010221	2669.0	54
	05	52343	9578.555724	2746.0	55
	06	52784	9714.781150	2792.5	55
	07	53055	9690.290284	3369.0	55
	08	48404	9622.855565	3381.0	58
	09	48877	9813.135774	3402.0	61
	10	49336	10469.502894	3993.0	62
	11	49919	10912.679134	3725.5	32
	12	50092	9483.760361	2542.0	52
Apparel & Fashion	01	15308	2900.005495	1793.5	56
	02	15405	3245.376597	2069.0	56
	03	19963	3457.734007	1941.0	62
	04	20263	3578.659076	2090.0	63
	05	20576	3653.960664	2169.0	125
	06	20857	3668.531726	2230.0	124

		max	mean	median	min
industry	Month_I				
Wine and Spirits	07	26866	8962.058577	3332.0	87
	08	20480	7540.840796	3350.0	87
	09	20572	7800.233871	3350.5	88
	10	21522	7894.495017	3163.0	89
	11	25430	7817.465798	3099.0	13
	12	25528	7834.829851	3129.0	13
Wireless	01	33119	4271.256724	425.0	11
	02	33329	4054.480959	423.0	11
	03	33522	3668.365101	424.0	14
	04	33726	3945.579762	433.0	14
	05	34039	4086.067929	443.0	14
	06	34070	4123.887719	463.0	14
	07	34042	4146.782192	449.0	14
	08	30967	4201.642447	398.0	14
	09	31094	5135.162879	411.0	14
	10	31364	5357.600324	415.0	14
	11	32676	5363.748792	420.0	11
	12	32880	4778.982289	421.0	11
Writing and Editing	01	18	7.148148	8.0	1
	02	18	8.186813	7.0	1
	03	18	8.623656	7.5	1
	04	18	8.666667	7.5	1
	05	18	8.698925	7.5	1
	06	18	8.836158	8.0	1
	07	18	8.881944	8.0	1
	08	18	9.000000	8.0	1
	09	18	8.849462	8.0	1
	10	18	7.897849	8.0	1
	11	18	8.680412	8.0	1
	12	18	7.558140	8.0	1

```
In [122]: employee.loc["Banking"]["median"].plot() #
    plt.xlabel("Month")
    plt.ylabel("Employee_on_platform_count")
    plt.title("Employee on platform for bank")
```

Out[122]: <matplotlib.text.Text at 0x291b32f7710>

Out[125]: <matplotlib.text.Text at 0x291b32e96d8>


```
In [126]: employee.loc["Information Technology and Services"]["median"].plot() #
    plt.xlabel("Month")
    plt.ylabel("Employee_on_platform_count")
    plt.title("Employee on platform for Information Technology and Services")
```

Out[126]: <matplotlib.text.Text at 0x291aaa1acc0>


```
In [133]:
          def ln statistics(name):
              '''The function that provides the date when a company ,its username is "na
          me",
              had most followers count and employee on platform"; and displays the tren
          d in a single graph '''
              name=str(name)
              if name in ln["company name"].values: # check if the name is in the datafr
          ame
                  ln_data=ln[ln["company_name"]==name]
                 # plot the number of followers and imployee on platform in a single gr
          aph
                  fig, axes=plt.subplots(nrows=3, ncols=1, figsize=(12,9))
                  axes[0].plot date(ln data["as of date"].values ,ln data["followers cou
          nt"].values ,"b-")
                  axes[0].set ylabel("Number of followers")
                  axes[1].plot date(ln data["as of date"].values ,ln data["employees on
          platform"].values, "r-" )
                  axes[1].set_ylabel("Number of employee on platform")
                  axes[2].plot_date(ln_data["as_of_date"].values ,ln_data["followers_cou
          nt"].values ,"b-")
                  axes[2].plot date(ln data["as of date"].values ,ln data["employees on
          platform"].values, "r-" )
                  axes[2].legend(["followers_count", "employees_on_platform"])
                 # fig.show()
              else:
                  print("Company name not found! Please try a different name")
```


who has the most likes on facebook

In [128]: fb[fb.likes==fb.likes.max()]

Out[128]: _

	dataset_id	time	username	checkins	has_added_app	were_here_cour
3617487	56196	2018-07-16 04:00:00+00	facebook	12	f	146272

In [129]: fb_statistics("2u")

The following table shows the date when the highest likes, checkins and talk ing_about_counts were observed for 2u

Out[129]:

	DATE	checkins	likes	talking_about_count
3617658	2018-07-16	NaN	5799.0	NaN
3614347	2018-07-14	3271.0	NaN	NaN
3617658	2018-07-16	3271.0	NaN	NaN
3396455	2018-04-17	NaN	NaN	4469.0

In []:

In []: