FUNDAÇÃO GETÚLIO VARGAS

Escola de Pós-Graduação em Economia

Teoria Macroeconômica III

Professor: Ricardo de Oliveira Cavalcanti Monitora: Kátia Aiko Nishiyama Alves Alunos: Samuel Barbosa e Gustavo Bulhões

Exercício 01

Neste exercício temos um modelo de search no mercado de trabalho com as seguintes funções/parâmetros:

```
f = @(w, alpha_1, alpha_2) alpha_1 + alpha_2 * w;
u = @(c, gamma) c .^ gamma;

beta = 0.98;
pi = 0.1;
b = 0;
wmin = 0;
wmax = 20;
gamma = 1/2;
```

Item (i)

No item (i) vamos usar que $f(0) = 2f(\overline{w})$. Como $\int_0^{\overline{w}} f(w)dw = 1$, resolvemos para α_1, α_2 e obtemos:

```
alpha_1 = 1/15;

alpha_2 = -1/600;
```

Neste modelo o agente escolhe entre aceitar uma oferta de trabalho a um salário w ou continuar procurando por uma oferta no próximo período a um salário w'. Escrevemos o problema do agente na forma recursiva, e resolvemos para obter a função valor V(w), a função política G(w) e o preço de reserva R do agente (o salário que o torna indiferente entre aceitar ou não uma oferta de trabalho).

Para aproximar numericamente a função valor, criamos um grid para a variável de estado w, entre 0 e 20, contendo n=1000 pontos, e aplicamos aplicamos um algoritmo de iteração buscando o ponto fixo do operador

$$T(V)(w) = \max_{I(w) \in \{0,1\}} I(w) \{u(w) + \beta[(1-\pi)V(w) + \pi V(0)]\} + [1-I(w)][u(b) + \beta E[V(w')]].$$

```
n = 1000;
w = linspace(wmin, wmax, n)';
V = ones(n, 1); % chute inicial para a funcao valor
G = ones(n, 1); % chute inicial para a funcao politica
% inicia variaveis do algoritmo de iteracao
err = 1;
tol = 10^-5;
itmax = 2000;
iter = 1;
% fdp discretizada e funcao valor esperado
fw = f(w, alpha.1, alpha.2) ./ sum(f(w, alpha.1, alpha.2));
E = @(fw, V, n) V' * fw;
```

Definimos N como o payoff de recusar uma oferta w e seguir a política ótima a partir do próximo período, e A como o payoff de aceitar w e seguir a política ótima a partir do próximo período. Deste modo o algoritmo de iteração é dado por

```
% algoritmo de iteracao
while err > tol && iter < itmax
    N = u(b, gamma) + beta * E(fw, V, n);
    N = repmat(N, n, 1);
    A = u(w, gamma) + beta * ((1-pi) * V + pi * N);
    [TV, G] = max([N A], [], 2);
    err = abs(max(TV - V));
    V = TV;
    iter = iter + 1;
end

G = G-1;
R = min(w(G == 1));</pre>
```

Utilizado o código descrito obtemos $R\approx 8.8088$ e as seguintes funções valor e política:

Item (ii)

No item (ii) refazemos o exercício usando $f(\overline{w})=2f(0)$ em oposição a $f(0)=2f(\overline{w})$ tal como no item (i). Agora obtemos

```
alpha_1 = 1/30;
alpha_2 = 1/600;
```

A distribuição de w passa a ter maior densidade em valores mais altos, implicando em maior probabilidade de ofertas de trabalho com salários maiores. Aplicando o algoritmo para os novos valores de α_1 e α_2 , obtemos $R\approx 10.3904$, e as funções valor e política se alteram para

Item (iii)

Nesta economia temos apenas um tipo de desemprego, que resulta de uma escolha ótima do agente enquanto busca uma melhor oferta de salário.

Item (iv)

Conforme visto, o salário de reserva do agente dados os parâmetros do item (i) é de $R \approx 8.8088$.

Exercício 02

Neste exercício temos o modelo clássico de crescimento econômico, cujo problema do planejador é escolher sequências de consumo $\{c_t\}_{t=0}^{\infty}$ e de capital $\{k_t\}_{t=0}^{\infty}$ que resolvem

$$\max \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$
s.a.
$$c_{t} + k_{t+1} \leq f(k_{t}) + (1 - \delta)k_{t}$$

$$k_{t+1} \geq 0, c_{t} \geq 0 \ \forall t \geq 0$$

$$k_{0} \text{ dado}$$

$$(1)$$

com
$$f(k) = k^{\alpha}$$
 e $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$.

Item (i)

Observe que u(c) é monótona crescente em c e, portanto satisfaz a propriedade de não saciedade local. Logo vale a Lei de Walras, e podemos reescrever a primeira restrição com igualdade, resolver para c_t e substituir na função objetivo. Desta forma o problema se torna

$$\max \sum_{t=0}^{\infty} \beta^{t} u(f(k_{t}) + (1-\delta)k_{t} - k_{t+1})$$
s.a.
$$k_{t+1} \ge 0, c_{t} \ge 0 \ \forall t \ge 0$$

$$k_{0} \text{ dado}$$

$$(2)$$

Item (ii)

Reescrevemos o problema sequencial na forma recursiva, transformando-o na equação funcional

$$V(k) = \max_{k'} \quad u(c) + \beta V(k')$$
s.a.
$$c + k' = f(k) + (1 - \delta)k$$

$$k' \ge 0, c \ge 0$$

$$(3)$$

Item (iii)

 ${\cal O}$ operador de Bellman associado à equação funcional obtida no item anterior é justamente

$$T(V)(k) = \max_{k'} \quad u(c) + \beta V(k')$$
 s.a.
$$c + k' = f(k) + (1 - \delta)k$$

$$k' \ge 0, c \ge 0 \ \forall t \ge 0$$
 (4)

Item (iv)

Vamos criar um grid para a variável de estado k no intervalo $[0, 1.25k_{ss}]$, em que k_{ss} é o nível de capital de estado estacionário.

Resolvendo o lado direito da equação funcional (3), já substituindo as funções dadas u() e f(), obtemos a equação de Euler

$$c^{-\gamma} = \beta c'^{-\gamma} [\alpha k'^{\alpha - 1} + 1 - \delta].$$

No estado estacionário temos que c'=c e k'=k. Substituindo na equação anterior obtemos

$$k_{ss} = \left(\frac{1 + \beta(\delta - 1)}{\alpha\beta}\right)^{\frac{1}{\alpha - 1}}.$$
 (5)

Dado k_{ss} podemos construir nosso algoritmo de iteração:

```
% Parametros
alpha = 0.70;
beta = 0.98;
gamma = 2.00;
delta = 0.10;
k_ss = ((1 + beta * (delta - 1)) / alpha * beta )^(1 / (alpha - 1));
% Funcoes
f = @(k) k .^ alpha;
c = Q(k, k_{linha}) \max(f(k) + (1 - delta) * k - k_{linha}, 0);
u = @(c) (c .^ (1 - gamma)) ./ (1 - gamma);
% Grid
n = 1000;
k = linspace(1, 1.25 * k.ss, n);
k_{linha} = k';
K = repmat(k, n, 1);
K_linha = repmat(k_linha, 1, n);
% Possibilidades de consumo e utilidade
C = c(K, K_{linha});
U = u(C);
% Chutes iniciais:
V = zeros(1, n);
g = zeros(1, n);
```

```
% Variaveis iteracao
err = 1;
tol = 10^-5;
it = 1;
itmax = 1000;
% Algoritmo de iteracao
while err > tol && it < itmax
       [TV, I] = max(U + beta * repmat(V',1, n));
       err = max(abs((TV - V)));
       V = TV;
       it = it + 1;
end
G = k(I);</pre>
```

Assim, obtemos as seguintes funções valor e política:

Item (v)

Com $k_0 = 2$, obtemos um nível de capital de estado estacionário $k_{ss} \approx 349.31$, ao qual estão associados o nível de produto $y_{ss} \approx 60.29$ e consumo $c_{ss} \approx 25.36$. O gráfico a seguir mostra a trajetória das escolhas de k' até o k_{ss} , quando $k_0 = 2$.

Item (vi)

Na equação (5) temos k_{ss} em função de β . Avaliando esta equação para valores de β entre 0.7 e 0.99 obtemos o gráfico a seguir.

Item (vii)

Conforme a equação 5, k_{ss} não depende de γ .

Exercício 03

Item (i)

O problema do planejador é dado por

$$\max \quad \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$
s.a.
$$c_{t} + k_{t+1} \leq z_{t} k_{t}^{\alpha} + (1 - \delta) k_{t}$$

$$k_{t+1} \geq 0, c_{t} \geq 0 \ \forall t \geq 0$$

$$k_{0} \ dado$$
(6)

Item (ii)

As variáveis de estado desta economia são k e z. Reescrevendo o problema na forma recursiva, temos

$$V(k,z) = \max_{c,k'} \quad u(c) + \beta \sum_{j} \pi_{ij} V(k', z'_{j})$$
s.a.
$$c + k' = zk^{\alpha} + (1 - \delta)k$$

$$k' \ge 0, c \ge 0$$

$$(7)$$

Item (iii)

O operador de Bellman associado à equação funcional obtida no item anterior é

$$T(V)(k,z) = \max_{c,k'} \quad u(c) + \beta \sum_{j} \pi_{ij} V(k', z'_{j})$$
s.a.
$$c + k' = zk^{\alpha} + (1 - \delta)k$$

$$k' \ge 0, c \ge 0$$

$$(8)$$

Item (iv)

Utilizando os parâmetros e funções dadas, alteramos o código do exercício anterior para incorporar a incerteza referente aos choques na variável z.

```
% Parametros
alpha = 0.70;
beta = 0.98;
gamma = 2.00;
delta = 0.10;

zh = 1.2;
zl = 0.8;
kssh = (1/(zh*alpha)*(1/beta-1+delta))^(1/(alpha-1));
```

```
kssl = (1/(zl*alpha)*(1/beta-1+delta))^(1/(alpha-1));
% Funcoes
f = @(k, z) z * k .^ alpha;
c = @(k, k_{linha}, z) max(f(k, z) + (1 - delta) * k - k_{linha}, 0);
u = @(c) (c .^ (1 - gamma)) ./ (1 - gamma);
% Grid
n = 1000;
k = linspace(0.7 * kssl, 1.3 * kssh, n);
k_{linha} = k';
K = repmat(k, n, 1);
K_linha = repmat(k_linha, 1, n);
% Chutes iniciais:
Vzh = zeros(1, n);
Vzl = zeros(1, n);
Gzh = zeros(1, n);
Gzl = zeros(1, n);
z = zh;
% Consumo e utilidade
Ch = c(K, K_{linha}, zh);
Cl = c(K, K\_linha, zl);
Uh = u(Ch);
Ul = u(Cl);
% Variaveis iteracao
err = 1;
tol = 10^-5;
it = 1;
itmax = 1000;
%% Algoritmo de iteracao
while err > tol && it < itmax</pre>
    if z == zh
        [TVzh, Izh] = max(Uh + beta * (0.7 * repmat(Vzh',1, n) + 0.3 * repmat(Vzl',1, n)));
        err = max(abs((TVzh - Vzh)));
        Vzh = TVzh;
        x = rand(1);
        if x \le 0.7, z = zh; else z = zl; end
        it = it + 1;
    else
        [TVzl, Izl] = max(Ul + beta * (0.8 * repmat(Vzh',1, n) + 0.2 * repmat(Vzl',1, n)));
        err = max(abs((TVzl - Vzl)));
        Vzl = TVzl;
        it = it + 1;
        x = rand(1);
        if x \le 0.8, z = zh; else z = zl; end
        it = it + 1;
    end
end
Gzh = k(Izh);
Gzl = k(Izl);
```

Item (v)

Executando o código acima obtemos as seguintes funções valor e polítca:

Exercício 04

Entrega facultativa.

Exercício 05

Neste exercício vamos buscar a solução do sistema de equações $A\mathbf{x} = \mathbf{b}$ para

$$A = \begin{pmatrix} 5 & -2 & 3 \\ -3 & 9 & 1 \\ 2 & -1 & -7 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

(a)

No item (a) utilizamos o método de Jacobi. A tabela a seguir apresenta cada passo das iterações e a solução final.

Iteração	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
1	-0.20000	0.22222	-0.42857
2	0.14603	0.20317	-0.51746
3	0.19175	0.32840	-0.41587
4	0.18088	0.33235	-0.42070
5	0.18536	0.32926	-0.42437
6	0.18633	0.33116	-0.42265
7	0.18605	0.33129	-0.42264
8	0.18610	0.33120	-0.42274
9	0.18612	0.33123	-0.42271

A solução final obtida é, portanto, $\mathbf{x} = (0.18612, 0.33123, -0.42271)'$.

(b)

Resolvendo o sistema pelo método de Gauss obtemos a mesma solução.

Exercício 06

Neste exercício vamos buscar a solução para o sistema de equações dado por $A\mathbf{x}=\mathbf{b}$ para

$$A = \begin{pmatrix} 1 & -5 \\ 7 & -1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}.$$

(a)

Aplicando o método de Jacobi escolhendo o chute inicial $\mathbf{x}_0 = (0,0)$ não obtemos convergência.

(b)

Escolhendo ainda outros valores iniciais para ${\bf x}$ como (1/2,1/2), ainda não obtemos convergência.

(c)

Utilizando a eliminação de Gauss, com chute inicial $\mathbf{x}_0 = (0,0)$, obtemos a convergência desejada, com solução final dada por $\mathbf{x} = (1,1)$.