

Week 14 Lecture - Replication and Transparency

Undergraduate Research Methods in Psychology

Quinton Quagliano, M.S., C.S.P

Department of Psychology

Table of Contents	
1 Learning Objectives 1.1 Textbook Objectives	2 2 2
2 Chapter Overview 2.1 Chapter Overview	2 2
3 Replication 3.1 Overview 3.2 Types of Replication 3.3 Real Projects 3.4 Meta-analysis 3.5 In Popular Culture	2 2 3 4 5 5
4 Transparency and Credibility 4.1 Overview	6 6 7
5 When Do We Need (Really) External Validity 5.1 Overview	8 8 8 9 9

1 Learning Objectives

1.1 Textbook Objectives

- Explain why it is essential for a study to be replicated.
- Describe why transparent research practices help ensure credible science.
- Evaluate, in a nuanced way, a study's quality in the context of scientific progress and external validity

1.2 Professor's Objectives

 Appreciate science as an ongoing and continuous process of improvement, guided by replication

2 Chapter Overview

2.1 Chapter Overview

As we've	e learned over the course of this o	class,	of scientific work
can look	a lot of different ways.		
	, valid studies are those that pe epresents a real effect, change,		that ane fluke.
	the best ways to ngs can be produced again undo		to demonstrate that onditions.

3 Replication

3.1 Overview

•	Replication is a subtype of	validity, where we determine whether
	a finding can be reproduced or if it appears to	be a statistical anomaly
•	Recall: Our findings are often judged against of some room for "random	lpha=0.05, which means we do leave

Often, we evaluate as being of core importance to a study's value - because we want to know if the results tell a consistent story
3.2 Types of Replication
• "Replication" is a fairly loose term, and actually applies to many scientific
We may separate study replications into a few different types
Direct
type of replication, where we attempt to largely keep all factors, measures, and circumstances consistent with the original study
• It is, of course, done on a new, but from the same theoretical population.
Design issues are forward in direct replications, as we attempt to stay largely the same (even when that may be a bad thing)
 Example: Imagine if I re-did the Harlow Monkey study exactly the same way Harlow did it.
Conceptual
Our central hypothesis stays the same as the study, but we may change minor procedures, designs, and how we operationalize our latent constructs.
This can be a useful way to some glaring validity issues in an original study and do a more refined investigation
 However, it should be viewed critically as a version of the original, so corrections to the original's effects may not be as cleare
 Example: Harlow's Monkey's again, but this time I've changed the food with the wire mother to be more appealing and I have turned up the heating element on the felt mother just a little bit more
Replication and Extension
• In this type, we add conditions or variables to add more nuance and context to findings.

 Such procedures could reveal other relevant outcomes for conve 	and mediators, or just present
 Like any replication, this type ma study, and also add their own new 	•
 Examples: Harlow's Monkeys, but see if their behavior differs. 	t instead, I am also going to add baby gorillas in to
3.3 Real Projects	
A replication effort/project can loc consuming and	ok different ways, but is almost always very time
It is beneficial to have multiple an effect to reduce the chance that	and sets of researchers replicate at a single experimenter's bias affects results.
One Study, Many Labs	
In this scenario, one research lab " to a single central	fleads" numerous other labs in applying replications and research design.
• Then, all labs' their convergence or divergence.	are looked together at once and examined for
 Because the scope of such an focused on just one original study extent, conceptual replications. 	effort tends to be very and y, we are more likely to see direct and, to a lesser
Many Studies, Many Labs	
This is largely an broader issue or topic and try difference.	of the above type, where we now focus on a erent studies within that area.
of conceptual and extension re	ue by approaching a hypothesis with a variety plications, to see how different outcomes and ute to significant findings (or not)
When It Doesn't Work	
Some replications find study!	or even opposite results from the original

•	One possibility is that the two studi i.e., if you change many things, it		way, ults are different
•	Or, either the	or original study is flawe	ed or a fluke
•	So what next? Replicate some near likely to not be sufficient to full of finding.		replication is dience from the original
3.4	Meta-analysis		
•	Instead of embarking on running summarize	g many replications oursel the existing evidence.	ves, we may choose to
•	We have previously learned about to synthesize many original studescience in an area		riews, where we attempt escribe the state of the
•	-analyses q studies to determine an aggregat	uantitatively averages rest e/composite average.	ults across many similar
•	The averaging can be done with Cohen's d and r.	n any	of effect size, such as
Stre	ngths and Limitations		
•	Meta-analyses can be an area with a clear number, informithat time.		e a summary of certain e state of the science at
•	However, this all relevant studies.	lives and dies by its atter	ntion to detail and finding
•	Especially, null findings may be su and may be obscured from being	-	drawer problem",
3.5	In Popular Culture		
•	Rarely, does popular journalism changing nature of science.	adequately capture the _	andand
•	Journalism is also partially drawn give less emphasis to historical, I		d new research, but may

In general, it is much better to start with a peer- meta-analysis or literature review new area.	
4 Transparency and Credibility	
4.1 Overview	
 Even well-meaning scientists (and malicious actors) can make truthfully reporting results 	ein
It should always be our goal to make designs - not making changes just for beneficial results.	-driven predictions and -
We have a variety of questionable practices to practices to try to stick to which aid in reproducability	and transparent
4.2 Questionable Practices	
Under-report Null Findings	
"Real" research tends to involve more than one outcome sometimes more than one	variable of interest, and
But, some authors may downplay many null on the shiny significant findings.	in favor of focusing
This creates a narrative of importanc findings, when the majority of evidence in a study actually particle.	e and reproducability of points to the contrary.
HARKing	
This stands for "Hypothesis After Results are	"
Generally, we want to make predictions and hypothe and analyses	eses prior to our data
 As a general ethical rule, it is bad to say "I knew it all along literature driven. 	g!" - as it is not theory or

P-hac	kina

	multiple analysis methods are and, and usually only the final	
	eporting null findings, this tenerstate otherwise weak findings	
Early decisions or foremost by	n design, hypotheses, and an	alyses need to be guided first-and
4.3 Transparent F	Practices	
• To strategies to incre	the previous, questiona ase public and scientific confid	able techniques - we may use a few dence in our results.
	n" methods intentionally mal roader public - but this is good	
Open Data and Open I	Materials	
• Openre-analyzed by an	is when we publicly yone to ensure results were c	share anonymized data that can be orrect
 Open materials pr any 	ovide all in-depth procedures	, measures, and tools to be used in
• Both of these may	be posted on repositories like	e https://github.com or https://osf.io
Preregistration		
 As previously me 	ntioned, this is the	announcement of one's

- hypothesis and plans prior to completing a study.
- Doing this helps discourage any desire to HARK or p-hack, as any interested party could easily point out that you changed your future analysis.

5 When Do We Need (Really) External Validity

5.1	Overview			
•	Replication (especially spread and generalizable e) can help us establish just how wide just our original sample of individuals	
•	As we people and contexts they c		we are able to better see just wha	t
•	External validity is one of validities - therefore we mu		and difficult to establish calance our priorities with it	1
5.2	Generalization to Ot	her People		
•	Remember that our sample chose, not just everyone in		population that we	9
•	Samples are primarily stro size!	ng by virtue of the	ir, not only thei	r
•	Samples can be easily the impact that it is likely to		by convenience - think carefully abou	t
•	Results may not generalize this is vitally important to us		, but we must consider whethe	r
5.3	Generalization to Ot	her Settings		
•	Many world" settings	-based studies ma -	ay benefit from replication in more "rea	l-
•	On the other hand, we may be havior within the confines of		if we can isolate a	be
•	More broadly, we likely als geographic and		e how our studies look outside of the ney are conducted.	9

5.4 Do We Always Need to Generalize

Than	rv, to	CtIDA	$NA \cap A$	ุกก
Theo	1 V-1 C	211110	IVICI	
	. , .	O		

This is the "first" stage, where we at theory accurately under more control	·		
We work knowing external validity is lish other strong validity.	, but taking care to estab-		
In this scenario, often	validity is treated as most important.		
Association and	_claims usually work in a "theory-testing" mode.		
Generalization Mode			
• claims more oft	en aim to be widely applicable and relevant.		
Generalization mode places a special emphasis on making sure theories have strong validity, putting less focus on internal, like when theory-testing			
	a sub-discipline almost entirely determined to and similarities, working in generalization mode.		
5.5 Do We Always Need to be in the Real World?			
Valuable research happens in completely ecological (i.e., the "real value")	setting, both lab-controlled, and world")!		
 Researchers in these separate setti mutual shared knowledge. 	ng often greatly from the		