1 Regularization

The quadratic approximation of the objective function f(x) at iterate x_k is

$$\tilde{f}(x_k + \Delta x) = f(x_k) + \nabla f(x_k)' \Delta x + \frac{1}{2} \Delta x' H_k \Delta x,$$

where H_k is the Hessian $\nabla^2 f(x_k)$ or an approximation thereof. The search direction Δx from iterate x_k is computed by minimizing this function over the variable Δx resulting in the equation

$$H_k \Delta x = -\nabla f(x_k) := -y_k \tag{1}$$

for the search direction Δx . Clearly we can assume that $y_k = \nabla f(x_k) \neq 0$ since the search terminates at a zero gradient.

In our algorithms we can also assume that H_k is positive semidefinite, but not necessarily nonsingular. If H_k is nonsingular (i.e. positive definite), then the solution Δx is a descent direction:

$$\Delta x' \nabla f(x_k) = -\Delta x' H_k \Delta x < 0$$

and this is all we care about. We will solve (1) by Cholesky factorization $H_k = LL'$ with lower triangular L, by solving the triangular systems

$$Lv = -y_k, \quad L'\Delta x = v.$$
 (2)

The Cholesky factorization fails if H_k is singular. In that case we replace H_k with $H_k(\delta) := H_k + \delta I$, for some positive constant δ . This matrix is now positive definite, in fact

$$(H_k(\delta)u, u) = u'H_k(\delta)u = u'H_ku + \delta u'Iu \ge \delta \|u\|^2$$

so that (1) now yields a descent direction. Moreover it improves the conditioning of (1): if $H_k + \delta I = L(\delta)L(\delta)'$ is the Cholesky factorization of $H_k(\delta)$, then we have

$$|L(\delta)_{ii}| \geq \delta$$
.

Indeed, the diagonal element $L(\delta)_{ii}$ is an eigenvalue of the triangular matrix $L(\delta)'$. Let u be a corresponding eigenvector. Then we have

$$|L(\delta)_{ii}|^2 ||u||^2 = ||L(\delta)'u||^2 = (L(\delta)L(\delta)'u, u) = ((H_k(\delta)u, u) \ge \delta ||u||^2$$

from which it follows that

$$|L(\delta)_{ii}| \ge \sqrt{\delta}$$

with obvious implications for the numerical stability of the triangular systems (2). Moreover this suggests that we should replace H_k with $H_k + \delta I$ not only if the Cholesky factorization fails but rahter as soon as the minimal diagonal element (in absolute value) of the Cholesky factor L is below the threshold $\sqrt{\delta}$.

Trust region interpretation. The passage from the matrix H_k to the regularization $H_k + \delta I$ has an interpretation in terms of *trust regions*: the solution Δx^* of

$$H_k(\delta)\Delta x = -y_k$$
, where $y_k = \nabla f(x_k)$,

is the minimizer of the quadratic function

$$\phi(\Delta x) = f(x_k) + y_k' \Delta x + \Delta x' H_k(\delta) \Delta x$$

= $f(x_k) + y_k' \Delta x + \Delta x' H_k \Delta x + \delta \|\Delta x\|^2$
= $\tilde{f}(x + \Delta x) + \delta \|\Delta x\|^2$.

Now note that this minimizer Δx^* is automatically also the minimizer of the quadratic approximation $\tilde{f}(x_k + \Delta x)$ on the ball $B(x_k, r_k)$ with radius $r_k = \|\Delta x^*\|$. Indeed, if this ball contained a point u with $\tilde{f}(x_k + u) < \tilde{f}(x_k + \Delta x^*)$, then, since also $\|u\| \le \|\Delta x^*\|$ it follows that

$$\phi(u) = \tilde{f}(x_k + u) + \delta \|u\|^2 < \tilde{f}(x_k + \Delta x^*) + \delta \|\Delta x^*\|^2 = \phi(\Delta x^*).$$

In other words: passing from H_k to $H_k + \delta I$ we compute the search direction Δx by minimizing the quadratic approximation $\tilde{f}(x_k + \Delta x)$ not globally but instead on the ball $B(x_k, r_k)$ (the region in which we trust the approximation) where the trust radius r_k is defined implicitly as $r_k = ||\Delta x^*||$.

This indicates that the regularization $H_k \to H_k(\delta)$ is not unreasonable and in any case it solves the problem of nonsingularity of H_k for us, improves the conditioning and results in a descent direction Δx at iterate x_k .

2 Hessian

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function. The second order Taylor expansion of f centered at x has the form

$$f(x+h) = f(x) + L(h) + \frac{1}{2}B(h,h) + R(h),$$

where L is a linear function of $h \in \mathbb{R}^n$, B(u,v) is a bilinear function of $(u,v) \in \mathbb{R}^n \times \mathbb{R}^n$ and the remainder R(h) satisfies $R(h) = o(\|h\|^2)$. This condition on the remainder ensures that L and B are uniquely determined as

$$L(h) = \nabla f(x)'h$$
 and $B(u, v) = u'Hv$,

where $H := \nabla^2 f(x) \in Mat_{n \times n}(\mathbb{R})$ is the matrix with entries

$$H_{ij} = B(e_i, e_j) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x),$$

i.e. the Hessian matrix of f at x.

To compute the gradient and Hessian of a C^2 -function f we make use of the fact that the remaider condition $R(h) = o(\|h\|^2)$ in a quadratic expansion

$$f(x+h) = f(x) + \Delta' h + h' H h + R(h)$$

uniquely determines the "coefficients" Δ and H as $\Delta = \nabla f(x)$ and $H = \nabla^2 f(x)$. We only need to find such an expansion for f(x+h) and check that the remainder satisfies $R(h) = o(\|h\|^2)$. This is how we will derive our formulas below.

Hessian of affine transformation. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 -function and $\overline{f}(u) = f(x_0 + Fu)$, where $x_0 \in \mathbb{R}^n$ and $F: \mathbb{R}^m \to \mathbb{R}^n$ is a linear map, i.e. $F \in Mat_{n \times m}$.

We want to compute the gradient and Hessian of h at any point u from those of f. To get these do a second order Taylor expansion of f about x:

$$f(x+h) = f(x) + h^{T}g + h^{T}Hh + o(\|h\|^{2}),$$

where $g = \nabla f(x)$ and $H = \nabla^2 f(x)$ are uniquely determined by the fact that the residual is $o(\|h\|^2)$. Applying this to the point $x = x_0 + Fu$ this implies that

$$\overline{f}(u+h) = f(x_0 + Fu + Fh) = f(x_0 + Fu) + (Fh)^T g + (Fh)^T HFh + o(||Fh||^2).$$

Since $o(\|Fh\|^2)$ is $o(\|h\|^2)$ we conclude from this that

$$\nabla \overline{f}(u) = F^T g$$
 and $\nabla^2 \overline{f}(u) = F^T H F$,

or, more explicitly

$$\nabla \overline{f}(u) = F^T \nabla f(x_0 + Fu) \quad \text{and} \quad \nabla^2 \overline{f}(u) = F^T \nabla^2 f(x_0 + Fu) F.$$
 (3)

Hessian of composition. With a similar approach we can compute the Hessian of a composition g(f(x)), where here $g: \mathbb{R} \to \mathbb{R}$ is a scalar function of one variable (more general g are much harder to handle and we do not need them). Indeed, set

$$y = f(x), \quad \nabla = \nabla f(x) \quad H = \nabla^2 f(x) \quad \text{and} \quad k = h^T \nabla + \frac{1}{2} h^T H h$$

and use second order Taylor approximations on f at the point x and g at the point y = f(x) to obtain:

$$g(f(x+h))) = g(f(x) + h^{T}\nabla + \frac{1}{2}h^{T}Hh)$$

$$= g(y+k) = g(y) + g'(y) + \frac{1}{2}g''(y)k^{2} + o(k^{2})$$

$$= g(y) + g'(y) \left(h^{T}\nabla + \frac{1}{2}h^{T}Hh\right) + \frac{1}{2}g''(y) \left(h^{T}\nabla + \frac{1}{2}h^{T}Hh\right)^{2} + o(\|h\|^{2}).$$

Here we have used that $o(k^2) = o(\|h\|^2)$. Collect terms of first and second order in h together and sticking all terms of higher order into the residual $o(\|h\|^2)$. Note that the squared term contributes no first order terms and only one second order term, this being the term

$$(\boldsymbol{h}^T \nabla)^2 = (\boldsymbol{h}^T \nabla)(\boldsymbol{h}^T \nabla) = (\boldsymbol{h}^T \nabla)(\boldsymbol{h}^T \nabla)^T = \boldsymbol{h}^T (\nabla \nabla^T) \boldsymbol{h}.$$

We obtain

$$g(f(x+h))) = g(y) + h^{T}[g'(y)\nabla] + \frac{1}{2}h^{T}[g'(y)H + g''(y)\nabla\nabla^{T}]h + o(\|h\|^{2}).$$

and from this we can read off that

$$\nabla(g \circ f)(x) = g'(f(x))\nabla f(x), \quad \text{and}$$
(4)

$$H(g \circ f)(x) = g'(f(x))H + g''(f(x))\nabla f(x)\nabla f(x)^{T}$$
(5)

Note that here $d = \nabla f(x)$ is viewed as a column vector and so $\nabla f(x)\nabla f(x)^T$ is the *outer product*

$$\nabla f(x)\nabla f(x)^T = dd^T = (d_i d_j)_{ij}.$$

We will need the following example to construct test functions for unconstrained minimization:

Example 2.1. Let $\phi: G \subseteq \mathbb{R} \to \mathbb{R}$ be a function of one variable defined on an open subset $G \subseteq \mathbb{R}$, fix $a \in \mathbb{R}^n$ and set $g(x) = \phi(a \cdot x)$, for all $x \in \mathbb{R}^n$ such that $a \cdot x \in G$.

Since $f(x) = a \cdot x$ satisfies $\nabla f(x) = a$ and $H = \nabla^2 f(x) = 0$, for all $x \in \mathbb{R}^n$, the formulas (4) and (5) yield

$$\nabla g(x) = \phi'(a \cdot x)a$$
 and $\nabla^2 g(x) = \phi''(a \cdot x)aa'$.

The idea is to construct test functions of the form

$$objF(x) = \sum_{j} \phi_{j}(a_{j} \cdot x)$$

where all the $\phi_j = \phi_j(u)$ have a unique minimum at u = 0. Then objF(x) assumes its global minimum at all points x satisfying $a_j \cdot x = 0$, for all j, equivalently Ax = 0, where A is the matrix with rows a_j , provided such a solution exists.

If the functions ϕ_j are all convex, the same is true of our objective function objF (sums and compositions of convex functions are again convex) With this we can construct examples with well conditioned, poorly conditioned and even singular Hessians $(ker(A) \neq \{0\})$ with known minimizers. The conditioning of $\nabla^2 f(x)$ is closely related to that of the matrix A.