

1 Honors Seminor S

DEPT. OF PHYS., GRADUATE SCHOOL OF SCI., PROF. ONOGI, TETSUYA

1.1 The Quantization of Monopole and Symmetricity

DEPT. OF PHYS., FACULTY OF SCI., B2 KIM, DOHYUN

1.2 Summary

Our group studied about following two models: U(1) gauge model on interaction of identity particles¹ and SU(2) gauge model on general interactions.

U(1) Gauge groups Here we suppose that each electron, dyon, monopole are spin $s = \frac{1}{2}$ particle system. Then we denote the Lagrangian density of system by considering interaction with scalar particles² like:

$$\mathcal{L}_{\mathrm{U}(1)} = -\frac{1}{4(q_e^2 + q_q^2)} [D^{\mu}, D^{\nu}]^2 + \bar{\psi}(i\not D - m)\psi + (D_{\mu}\Phi)^*(D^{\mu}\Phi) - m^2(\Phi^*\Phi). \tag{1}$$

Here we define the Covariant derivate:

$$D_{\mu} \equiv \partial_{\mu} + iq_e A_{\mu} + iq_g B_{\mu}. \tag{2}$$

where, A_{μ} , B_{μ} are each four-vectors from electron and monopole.

SU(2) Gauge groups Here we define the SU(2) gauge field \mathbf{W}_{μ} of general interaction model following:

$$\mathbf{W}_{\mu} = (W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}) = (q_{e}A_{\mu} + q_{g}B_{\mu}, 0, q_{e}A_{\mu} + q_{g}B_{\mu}) , \qquad (3)$$

$$D_{\mu} = \partial_{\mu} + i \begin{pmatrix} W_{\mu}^{3} & W_{\mu}^{1} - iW_{\mu}^{2} \\ W_{\mu}^{1} + iW_{\mu}^{2} & -W_{\mu}^{3} \end{pmatrix}.$$
 (4)

Then, the Lagrangian density also given by:

$$\mathcal{L}_{\mathrm{SU}(2)} = \bar{\psi}_e \left(i \partial \!\!\!/ - q_e \!\!\!/ \!\!\!A - q_g \!\!\!/ \!\!\!B - m \right) \psi_e - \bar{\psi}_e (q_e \!\!\!/ \!\!\!A + q_g \!\!\!/ \!\!\!B) \psi_{\nu_{eg}}$$

$$+ \, \bar{\psi}_{\nu_{eg}} \left(i \partial \!\!\!/ + q_e A \!\!\!/ + q_g B \!\!\!/ - m \right) \psi_{\nu_{eg}} - \bar{\psi}_{\nu_{eg}} (q_e A \!\!\!/ + q_g B \!\!\!/) \psi_e - \frac{1}{4 (q_e^2 + q_g^2)} [D^\mu, D^\nu]^2.$$

From using Hamilton's principles, we get the generalized Maxwell equations.

¹electron-electron or dyon-dyon, etc.

²But, we ignore Yukawa interaction.