Física 2 - 2024

Instituto de Física Facultad de Ingeniería Universidad de la República

Mayo 2024

Bienvenidos!

- Docente: Elisa Castro ecastro@fing.edu.uy
 Lunes de 1800 a 2000 Virtual
 Jueves de 1200 a 1400 S. B21
- Docente: Facundo Gutiérrez fgutierrez@fing.edu.uy
 Martes de 1200 a 1400 S. 305

Docente: Matías Osorio Mirambell - mosorio@fing.edu.uy
 Martes de 1200 a 1400 - S. 305
 Jueves de 1200 a 1400 - S. B21

Cronograma del curso

9	29/04/24 -	08/05/24	Período de 1º parciales	
10	09/05/24 -	10/05/24	GAS IDEAL Y TEORIA CINÉTICA	Análisis/Resolución del Parcial
11	13/05/24 -	17/05/24	GAS IDEAL Y TEORIA CINÉTICA	5 DILATACIÓN TÉRMICA Y TERMOMETRÍA
12	20/05/24 -	24/05/24	CALOR Y PRIMERA LEY	6 PROCESOS EN GASES IDEALES
13	27/05/24 -		CALORIMETRÍA Y TRANFERENCIA DE CALOR	7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
14	03/06/24 -		SEGUNDA LEY. MÁQUINAS TÉRMICAS	7 CALOR Y PRIMERA LEY. TRANSF. DE CALOR
15	10/06/24 -		SEGUNDA LEY. MÁQUINAS TÉRMICAS	8 MÁQUINAS TÉRMICAS
16	17/06/24 -	21/06/24	ENTROPIA	8 MÁQUINAS TÉRMICAS
17	24/06/24 -	28/06/24	ENTROPIA	9 ENTROPIA
18	01/07/24 -	03/07/42	CONSULTA/REPASO	9 ENTROPIA
17	04/07/24 -	15/07/24	Período de 2º parciales	

USTED ESTÁ AQUÍ

Resumen

- A resolver: ¿Cómo describimos el estado de un fluido en reposo? $\checkmark \rightarrow$ mediante principios de Pascal, Arquímedes e hidroestática
- A resolver: ¿Cómo describimos el estado de un fluido en movimiento? $\checkmark \to$ mediante la Ec. de continuidad y Bernoulli, bajo ciertas hipótesis
- A resolver: ¿Cómo describimos el fenómeno ondulatorio? ✓ → mediante la ec. de onda, su solución y la interacción entre las perturbaciones en diferentes medios.
- A resolver: ¿Qué es la temperatura?

Termodinámica: motivación

• Energía \to concepto fundamental en ingeniería \to generación, almacenamiento, transporte...

Temperatura y Calor

- Descripción de sistemas termodinámicos: visión microscópica (átomos) y visión macroscópica ("¿Qué podemos medir?").
- ¿Qué es la temperatura? \rightarrow "frío", "caliente" \rightarrow ¡subjetividad!
- ¿Podemos decir algo de los siguientes sistemas termodinámicos?

Ley cero de la termodinámica

- Si A y B están cada uno en equilibrio térmico con un tercer sistema C, entonces A y B están en equilibrio térmico ($T_A = T_B$)
- **Temperatura (T):** Existe una cantidad escalar (T), que es una propiedad de los sist. termod. en equilibrio. Dos sistemas están en equilibrio térmico sí y solo sí tienen la misma temperatura.
- ¿Quién puede ser el cuerpo C? Un termómetro.
- Un termómetro es un sistema termodinámico que varía cierta propiedad termométrica con la temperatura (por ej.: dilatación).
- ¿En qué medimos T? \to escalas de T \to "Buscamos una sustancia que varía alguna propiedad con T y medimos esa propiedad al variar T" \to observamos puntos notables

Escala de d'Alencé

- Joachim d'Alencé (c. 1640 1707): científico francés conocido por instrumentación meteorológica.
- Presentó una escala tomando dos puntos de referencia: el punto de solidificación del agua y el punto de ebullición de la manteca.
- Luego, dividió dicho intervalo en diez partes iguales por debajo del punto de solidificación, por arriba del de ebullición de la manteca y entre ambos.

Escala de Newton (1701): 18 puntos de referencia en progresión geométrica

0		el calor del aire en invierno al que el agua comienza a congelarse. Este punto puede determinarse con precisión presionando el termómetro en la nieve derretiente.				
0,1,2		los calores del aire en invierno				
2,3,4		los calores del aire en primavera y otoño				
4,5,6		el calor del aire en verano				
6		el calor al mediodía alrededor del mes de julio				
12	1	el mayor calor que ocupa un termómetro cuando está en contacto con el cuerpo humano				
14	11 y 4	el mayor calor de un baño que uno puede soportar durante algún tiempo cuando la mano se sumere y se mantiene en constante movimiento				
17	11 y 2	el mayor calor de un baño que uno puede soportar durante algún tiempo cuando la mano se sumere y se mantiene quieta				
20		el calor de un baño en el que la cera líquida se vuelve lentamente sólida y asume la transparencia				
24	2	el calor de un baño en el que la cera sólida se derrite y se conserva en estado líquido sin hervir				
28	21/4	punto intermedio entre el punto de ebulnte del agua y el punto de fusión de la cera				
34		el calor en el que hierve el agua con vehemente (la temperatura a la que el agua comienza a hervir se da como un valor adicional el descripción, como 33)				
40		punto de fusión de una aleación de plomo de una parte, cuatro partes de estaño y cinco partes bismutth				
48	3	punto de fusión de una aleación de partes iguales de bismuto y estaño				
57	31/4	punto de deshimiento de una aleación de una parte bismuta y dos partes de hojalata				
68	31 y 2	punto de fusión de una aleación de una parte bismuta y ocho partes de hojalata				
81		punto de fusión de bismuto				
96	4	punto de fusión de plomo				
114	41/4	el calor de los cuerpos que apenas se puede ver brillando por la noche				
	41 v					

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0 °C) y ebullición del agua (100 °C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.
- Kelvin: escala que no depende de las propied. de un material específico.

Escalas Celsius, Farenheit y Kelvin (SI)

- **Celsius**: toma los puntos de fusión (0 °C) y ebullición del agua (100 °C) como referencias, y divide entre 100 (grado) dicho rango.
- Farenheit: toma los puntos de fusión (32°F) y ebullición 212°F del agua como referencias, y divide entre 180 (grado F) dicho rango.

$$T({}^{\circ}F) = (9/5)T({}^{\circ}C) + 32$$

• Kelvin: escala que no depende de las propied. de un material específico.

$$T(K) = T(^{\circ}C) + 273, 15$$

Dilatación térmica

- ullet Al variar la T de un material, es posible observar que el mismo puede variar su tamaño.
- Ej.: Juntas de asfalto.

• Ej.: desalineaciones en engranajes

Dilatación térmica

• Modelo (cerca de un rango de temp. a T_o , $\alpha(T) \approx$ cte):

$$\frac{dL}{dT} = \alpha L_o \to L(T) = L_o[1 + \alpha(T - T_o)]$$

a) Para cambios de temperatura moderados, ΔL es directamente proporcional a ΔT .

b) ΔL también es directamente proporcional a L_0 .

Material	$\alpha [\mathrm{K^{-1} o} (\mathrm{C^o})^{-1}]$
Aluminio	2.4×10^{-5}
Latón	2.0×10^{-5}
Cobre	1.7×10^{-5}
Vidrio	$0.4 - 0.9 \times 10^{-5}$
Invar (aleación níquel-hierro)	0.09×10^{-5}
Cuarzo (fundido)	0.04×10^{-5}
Acero	1.2×10^{-5}

Dilatación térmica lineal

• Modelo (cerca de un rango de temp. a T_o , $\alpha(T) \approx$ cte):

$$\frac{dL}{dT} = \alpha L_o \to L(T) = L_o[1 + \alpha(T - T_o)]$$

a) Para cambios de temperatura moderados, ΔL es directamente proporcional a ΔT .

b) ΔL también es directamente proporcional a L_0 .

Material	α [K ⁻¹ o (C ⁰) ⁻¹]
Aluminio	2.4×10^{-5}
Latón	2.0×10^{-5}
Cobre	1.7×10^{-5}
Vidrio	$0.4 - 0.9 \times 10^{-5}$
Invar (aleación níquel-hierro)	0.09×10^{-5}
Cuarzo (fundido)	0.04×10^{-5}
Acero	1.2×10^{-5}

• Es posible demostrar que para superficies A o volúmenes V:

$$A(T) = A(T_o)[1 + 2\alpha(T - T_o)]$$

$$V(T) = V(T_o)[1 + 3\alpha(T - T_o)]$$

Física 2 - Exámen 13 de diciembre de 2013

Ejercicio 2

El sistema de la figura consiste de una cuerda de densidad lineal $\mu=1,2$ g/m, cuyo largo es siempre igual al largo de una barra de sección transversal despreciable y cuyo coeficiente de dilatación lineal es $\alpha=1\times10^{-3}/^{o}C$. Se sabe que la tensión F en la cuerda depende de su largo

según la relación $F=F_0+\beta(L-L_0)$, con $\beta=1500$ N/m y $L_0=1$ m. Cuando la temperatura de la barra es de 20 °C, la cuerda de nylon vibra a una frecuencia $f_0=440$ Hz en su modo fundamental y tiene 1 m de longitud. La barra y la cuerda están aislados térmicamente y la temperatura de la cuerda se mantiene sempre constante.

- a) Halle el valor de la constante F_0 .
- b) Si la barra está a 80 °C y la cuerda vibra en un modo de orden 2, ¿cuál es su frecuencia de vibración?

Física 2 - Primer semestre

Segundo Parcial, 13 de Julio de 2013

Problema 2 (10 puntos)

Una chapa de aluminio tiene un orificio circular de 2,000 cm de diámetro sobre el cual reposa un disco de cobre de 2,005 cm de diámetro. Ambos objetos están inicialmente a 0°C y el centro del disco coincide con el centro del agujero. Se empieza a calentar ambos objetos hasta que, para una dada temperatura, el disco se encaja perfectamente al agujero.

- (a) Determine a qué temperatura se da ese efecto.
- (b) ¿Cuál es el diámetro del disco a esa temperatura?

Física 2 – Segundo Parcial-23 de noviembre de 2023

PROBLEMA 1

Un cubo de acero macizo a una temperatura de 700 K tiene 10 cm de lado. La densidad del acero a temperatura ambiente (T= 25°C) es ρ_{acero} = 8,05 g/cm³ y su coeficiente de dilatación térmica lineal es α_{acero} = 11 × 10⁻⁶ K⁻¹.

a) Calcule la masa del cubo de acero.

Ahora se sumerge el cubo de acero en un recipiente perfectamente adiabático, con 500 g de agua a T=296 K.

b) Calcule la temperatura final del sistema, luego de alcanzado el equilibrio térmico.

Modelo de Gas Ideal (GI)

- El Gl es un modelo que permite bajo ciertas hipótesis (baja densidad) describir el comportamiento de un gas en función de variables macroscópicas.
- Ecuación de estado \rightarrow se llega experimentalmente:

Modelo de Gas Ideal (GI)

- El Gl es un modelo que permite bajo ciertas hipótesis (baja densidad) describir el comportamiento de un gas en función de variables macroscópicas.
- Ecuación de estado \rightarrow se llega experimentalmente:

$$PV = NkT, \ k = 1.38 \times 10^{-23} \,\mathrm{J\,K^{-1}}$$

• Número de moles: $n=N/N_A,\ N_A=6.02\times 10^{23}\ \mathrm{molec\ mol}^{-1}$

$$PV = kN_AT, \ kN_A = R = 8.3145 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1} \to PV = nRT$$

• Número de moles: $n=m/\overline{M}$

$$PV = \frac{m}{\overline{M}}RT \to P\overline{M} = \rho RT$$

Modelo de Gas Ideal (GI) - diagramas P-V

Cada curva representa la presión como una función del volumen para un gas ideal a una temperatura única.

Teoría cinética de Gl

- Modelo que vincula la descripción macroscópica ("lo que podemos medir") y la microscópica ("partículas").
- Veamos las hipótesis del modelo...

Teoría cinética de GI - colisiones y presión de un GI

- Con las leyes de Newton (momento, choque...), es posible entender la interacción entre las moléculas del GI y las paredes del recipiente que las contiene.
- Presión = "¡ qué tanto chocan las moléculas con las paredes del recipiente?"

18.11 Choque elástico de una molécula con la pared de un recipiente idealizado.

- a la pared (componente y) no cambia.
- · La componente perpendicular a la pared (componente x) invierte su dirección.
- La rapidez v no cambia.

18.12 Para que una molécula golpee la pared dentro del área A durante un intervalo de tiempo dt, debe moverse en dirección hacia la pared v estar dentro del cilindro sombreado de altura $|v_x| dt$ al principio del intervalo.

Se supone que todas las moléculas tienen la misma magnitud |v_| de la velocidad x.

Se puede demostrar que:

$$P = \frac{F}{A} = \frac{\rho \bar{v^2}}{3}$$

Vel. media cuardrática:

$$v_{\mathsf{rms}} = \sqrt{\bar{v^2}} = \sqrt{\frac{3P}{\rho}}$$

Teoría cinética de GI - temperatura de un GI

• "Hallar energías cinéticas promedio de las moléculas y ver si se relacionan con alguna variable macroscópica."

 En. cinética media de traslación de un GI:

$$\frac{1}{2}\bar{M}\bar{v^2} = \frac{3}{2}RT$$

Por molécula:

$$\frac{1}{2}m\bar{v^2} = \frac{3}{2}kT$$

Otros modelos para gases

• Van der Waals: ecuación de estado de un fluido compuesto de partículas con un tamaño no despreciable y con fuerzas intermoleculares.

$$\left(P + \frac{a}{(V/n)}\right)\left(\frac{V}{n} - b\right) = kT$$

Tablas termodinámicas → Física Térmica

	P = 200 kPa (120 kPa)			P = 300 kPa (133.55)				P = 400 kPa (143.63)				
\boldsymbol{T}	v	и	h	8	ν	и	h	s	y	и	h	5
900	2.70643	3854.5	4395.8	9.4565	1.80406	3854.2	4395.4	9.2691	1.35288	3853.9	4395.1	9.136
1000	2.93740	4052.5	4640.0	9.6563	1.95812	4052.3	4639.7	9.4689	1.46847	4052.0	4639.4	9.336
1100	3.16834	4257.0	4890.7	9.8458	2.11214	4256.8	4890.4	9.6585	1.58404	4256.5	4890.1	9.525
1200	3.39927	4467.5	5147.3	10.0262	2.26614	4467.2	5147.1	9.8389	1.69958	4467.0	5146.8	9.705
1300	3.63018	4683.2	5409.3	10.1982	2.42013	4683.0	5409.0	10.0109	1.81511	4682.8	5408.8	9.878
	P = 500 kPa (151.86)			P = 600 kPa (158.85)			P = 800 kPa (170.43)					
Sat.	0.37489	2561.2	2748.7	6.8212	0.31567	2567.4	2756.8	6.7600	0.24043	2576.8	2769.1	6.662
200	0.42492	2642.9	2855.4	7.0592	0.35202	2638.9	2850.1	6.9665	0.26080	2630.6	2839.2	6.815
250	0.47436	2723.5	2960.7	7.2708	0.39383	2720.9	2957.2	7.1816	0.29314	2715.5	2950.0	7.038
300	0.52256	2802.9	3064.2	7.4598	0.43437	2801.0	3061.6	7.3723	0.32411	2797.1	3056.4	7.232
350	0.57012	2882.6	3167.6	7.6328	0.47424	2881.1	3165.7	7.5463	0.35439	2878.2	3161.7	7.408
400	0.61728	2963.2	3271.8	7.7937	0.51372	2962.0	3270.2	7.7078	0.38426	2959.7	3267.1	7.571
500	0.71093	3128.4	3483.8	8.0872	0.59199	3127.6	3482.7	8.0020	0.44331	3125.9	3480.6	7.867
600	0.80406	3299.6	3701.7	8.3521	0.66974	3299.1	3700.9	8.2673	0.50184	3297.9	3699.4	8.133

- **18.13.** El volumen pulmonar total de una estudiante de física es de 6.00 L. Ella llena sus pulmones con aire a una presión absoluta de 1.00 atm y luego, deteniendo la respiración, comprime su cavidad torácica para reducir su volumen pulmonar a 5.70 L. ¿A qué presión está ahora el aire en sus pulmones? Suponga que la temperatura del aire no cambia.
- **18.15.** Un tanque metálico con un volumen de 3.10 L revienta si la presión absoluta del gas que contiene excede 100 atm. *a*) Si 11.0 moles de gas ideal se ponen en el tanque a 23.0 °C, ¿a qué temperatura podrá calentarse el gas antes de que se rompa el tanque? Desprecie la expansión térmica del tanque.

- **18.57.** Atmósfera de Titán. Titán, el satélite más grande de Saturno, tiene una gruesa atmósfera de nitrógeno. En su superficie, la presión es de 1.5 atmósferas terrestres y la temperatura es de 94 K. *a*) ¿Cuál es la temperatura de la superficie en °C? *b*) Calcule la densidad de la superficie en la atmósfera de Titán en moléculas por metro cúbico. *c*) Compare la densidad de la atmósfera superficial de Titán con la densidad de la atmósfera de la Tierra a 22 °C. ¿Cuál de ellos tiene la atmósfera más densa?
- **18.58. Presión en Venus.** En la superficie de Venus la temperatura media es de 460 °C como resultado del efecto de invernadero (¡calentamiento global!), la presión es de 92 atmósferas terrestres y la aceleración debida a la gravedad es de $0.894~g_{Tierra}$. La atmósfera es casi toda CO_2 (masa molar, 44.0 g/mol) y la temperatura permanece notablemente constante. Supondremos que la temperatura no cambia en lo absoluto con la altitud. *a*) ¿Cuál es la presión atmosférica 1.00 km arriba de la superficie de Venus? Exprese su respuesta en atmósferas de Venus y en atmósferas de la Tierra. *b*) ¿Cuál es la rapidez eficaz de las moléculas de CO_2 en la superficie de Venus y a una altura de 1.00 km?

Próxima clase...

- Ideal: terminar práctico 5
- Dudas: recuerden el uso del foro
- Próxima clase: vamos a comenzar a trabajar en el modelo de gas ideal (GI) y en procesos termodinámicos aplicados a GI.

Anexo: Recordando matemática...

- $\bullet \sin(-x) = -\sin(x)$
- $\bullet \sin(x + \pi/2) = \cos(x)$
- $\sin(\alpha) + \sin(\beta) = 2\sin((\alpha + \beta)/2)\cos((\alpha \beta)/2)$
- $\cos(\alpha) + \cos(\beta) = 2\cos((\alpha + \beta)/2)\cos((\alpha \beta)/2)$

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2\alpha))$$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2\alpha))$$

 $\sin^2(x) + \cos^2(x) = 1$

Anexo: SI - Unidades derivadas

Anexo: SI - Prefijos

Prefiks	Symbol	Multiplying factor				
yotta	Y	1 000 000 000 000 000 000 000 000 = 1024				
zetta	Z	1 000 000 000 000 000 000 000 = 1021				
exa	E	1 000 000 000 000 000 000 = 1018				
peta	Р	1 000 000 000 000 000 = 1015				
tera	Т	1 000 000 000 000 = 1012				
giga	G	1 000 000 000 = 10 ⁹				
mega	М	1 000 000 = 106				
kilo	k	1 000 = 10 ³				
hecto	h	100 = 10 ²				
deka	da	10 = 101				
deci	d	0,1 = 10-1				
centi	С	0,01 = 10-2				
milli	m	0,001 = 10 ⁻³				
mikro	μ	0,000 001 = 10 ⁻⁶				
nano	n	0,000 000 001 = 10 ⁻⁹				
piko	р	0,000 000 000 001 = 10-12				
femto	f	0,000 000 000 000 001 = 10-15				
atto	а	0,000 000 000 000 001 = 10-18				
zepto	z	0,000 000 000 000 000 001 = 10-21				
yocto	У	0,000 000 000 000 000 000 000 001 = 10-24				