Unit 1 What is Machine Learning?

EE-UY4563/ EL-GY6143: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Learning Objectives

- □ Identify data-driven learning vs. expert or domain knowledge-based approaches
- ☐ Provide examples of machine learning used today
- □Given a new problem, qualitatively describe how machine learning can be used
 - Formulate a potential machine learning task
 - Identify the data needed for the task
 - Identify objectives
- □Classify a machine learning task:
 - Supervised vs. unsupervised, regression vs. classification
- ☐ For supervised learning, identify the predictors and target variables

Outline

- What is Machine Learning?
 - ☐ Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning
 - ☐ Why the hype today?
 - ■Some slides from:
 - A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

What is Machine Learning?

Learn to improve algorithms from data.

Image from Christoph Molnar, https://christophm.github.io/interpretable-ml-book

Traditional approach

Domain or expert knowledge

Machine Learning

Data-driven

Why?

- Human expertise does not exist (ex: complex medical processes we don't fully understand)
- Humans are unable to explain their expertise (speech recognition)
- Solution change or adapt in time (routing on a computer network)

Example 1: Digit Recognition

Images are 28 x 28 pixels

- □ Problem: Recognize a digit from the image
- ■MNIST dataset challenge
 - Dataset developed in 1990s to spur AI research on a challenging problem for the time
 - Data taken from census forms
 - Became a classic benchmark for machine vision problems
 - We will see this dataset extensively in this class

Classical "Expert" Approach

- □ Idea: Use your knowledge about digits
 - You are an "expert" since you can do the task
- ☐ Construct simple rules and code them
- Expert rule example: "Image is a digit 7 if...":
 - There is a single horizontal line, and
 - There is a single vertical line
- ☐ Rule seems simple and reasonable
- ■But,...

Images are 28 x 28 pixels

```
def count_vert_lines(image):
    ...
def count_horiz_lines(image):
    ...

def classify(image):
    ...
    nv = count_vert_lines(image)
    nh = count_horiz_lines(image)
    ...

if (nv == 1) and (nh == 1):
    digit = 7
    ...

return digit
```

Problems with Expert Rules

- ☐ Simple expert rule breaks down in practice
 - Hard to define a "line" precisely
 - Orientation, length, thickness, ...
 - May be multiple lines...

- ☐ General problem: We cannot easily code our knowledge
 - We can do the task
 - But it is hard to translate to simple mathematical formula

```
def count_vert_lines(image):
    ...
def count_horiz_lines(image):
    ...

def classify(image):
    ...
    nv = count_vert_lines(image)
    nh = count_horiz_lines(image)
    ...

if (nv == 1) and (nh == 1):
    digit = 7
    ...

return digit
```


ML Approach: Learn from Data

Training inputs images x_i (ex. 5000 ex per class)

Training output labels $y_i \in \{0,1,...,9\}$

- ☐ Do not use your "expert" knowledge
- Learn the function from data!
- ■Supervised learning:
 - \circ Get many labeled examples (x_i, y_i) , i = 1, ..., N (Called the training data)
 - \circ Each example has an input x_i and output y_i
 - Learn a function f(x) such that: $f(x_i) = y_i$ for "most" training examples

ML Approach Benefits and Challenges

- ☐ Learned systems do very well on image recognition problems
 - On MNIST, <u>current systems</u> get <0.21% errors (as of 1/20/2018)
 - Used widely in commercial systems today (e.g. OCR)
 - Cannot match this performance with an expert system
- ☐ But there are challenges:
 - How do we acquire data? Someone has to manually label examples.
 - How do we parametrize a set of functions f(x) to search?
 - How do we fit the function to data?
 - If a function works on training example, will it generalize on new data?
- ☐ This is what you will learn in this class

Example 2: Face Detection

- □ Problem: For each image region, determine if face or non-face
- ☐ More challenging than digit recognition
 - Even harder to describe a face via "rules" in a robust way

Supervised Learning Approach

- □ Data: Get large number of face and non-face examples
- ☐ Typical early dataset
 - 5000 faces (all near frontal, vary age, race, gender, lighting)
 - 10^8 non faces
 - Faces are normalized (scale, translation)
- Learn a classifier from a class of functions
 - Each function maps image to binary value "face" or "non-face"
 - Select function that works well on training data
 - For good performance, functions may be complex
 - Many parameters
- ☐ Many more datasets are available now:
 - See http://www.face-rec.org/databases/
 - You can use this for your project!

Rowley, Baluja and Kanade, 1998

Example 3: Spam Detection

- □Classification problem:
 - Is email junk or not junk?
- ☐ For ML, must represent email numerically
 - Common model: bag of words
 - Enumerate all words, i = 1, ..., N
 - Represent email via word count x_i = num instances of word i
- ☐ Challenge:
 - Very high-dimensional vector
 - System must continue to adapt (keep up with spammers)

Example 4: Stock Price Prediction

- □ Can you predict the price of a stock?
- ☐What variables would you use?
- ☐ What is a non-machine learning approach?

Machine Learning in Many Fields

- ☐ Retail: Market basket analysis, Customer relationship management (CRM)
- ☐ Finance: Credit scoring, fraud detection
- ☐ Manufacturing: Control, robotics, troubleshooting
- ☐ Medicine: Medical diagnosis
- ☐ Telecommunications: Spam filters, intrusion detection
- ☐ Bioinformatics: Motifs, alignment
- ☐ Web mining: Search engines
- **...**

In-Class Exercise 1

For each of the proposed algorithms below, indicate whether the use a machine learning (i.e. data driven) approach or not (e.g. expert or domain knowledge)

Num	Algorithm	ML Approach?	
		Yes	No
1	A robot determines its route in a room using a shortest path algorithm combined with data on the obstacle locations.		
2	You predict the weather tomorrow using data on how whether has changed in the past.		
3	A computer program playing poker decides to fold or not fold in a game by calculating the probability that its poker hand is the best.		
4	A program estimates whether a customer will purchase a product from sales records of past customers and their attributes.		

Outline

- ☐ What is Machine Learning?
 - Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning
 - Reinforcement learning
- ☐ Why the hype today?
- ■Some slides from:
 - A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

Classification

□ Supervised learning

• Learn mapping from features x to target y

□Classification:

- Target is discrete. One of a finite number of values
- Ex: Binary $y \in \{0,1\}$
- ☐ Example: Credit assessment
 - Target: customer is high-risk or low-risk
 - Features: income & saving $x = (x_1, x_2)$
- ☐ Learn a function from features to target
 - Use past training data
 - Need to get this data
- ☐ The function on the right is an example of a decision tree.

Regression

- □ Also supervised learning
- ☐ Predicting a continuous-valued target
- ☐ Example:
 - Predict y = house price
 - From x = size, number of bedrooms, ...
 - Can use multiple predictors
- ☐ Assume some form of the mapping
 - Ex. Linear: $y = \beta_0 + \beta_1 x$
 - Find parameters β_0 , β_1 from data

Size

https://www.scribbr.com/statistics/simple-linear-regression/

Unsupervised Learning

- ☐ Learning "what normally happens"
- No output
 - Just values x. No target y
- □ Clustering: Grouping similar instances
- ☐ Example applications
 - Customer segmentation
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Example: Document classification
http://www.ibm.com/support/knowledgecenter
/SSBRAM_8.7.0/com.ibm.classify.ccenter.doc/
c_WBG_Taxonomy_Proposer.htm

Generative Al

- ☐ Type of unsupervised learning
- \square Given data $\{x_1, ..., x_N\}$ generate a similar sample x
- ☐ Many examples today

Synthetic faces generated by a GAN

Simple GAN

- ☐ Generative adversarial networks (GANs)
- ☐ Simple method to train generator
- ☐ Generating function:
 - Takes random input z
 - Output sample x
- \square By changing z, generate different x
- ☐GANs are relatively simple
 - More complex models are used today
 - More in the deep learning class

Reinforcement Learning

- ☐ Agent learns to make actions that interact with an environment to maximize a reward
 - Agent typically acts in a closed loop system
- ☐ Key tradeoffs:
 - Exploitation (Learn from past actions) vs. exploration (try new choices)
 - Credit assignment: Which actions in the past led to the current reward?

Types of Machine Learning

https://www.7wdata.be/visualizatio
n/types-of-machine-learningalgorithms-2/

In-Class Exercise 2

- ☐ For each of the problems below:
 - Determine type of ML problem (regression, classification, unsupervised, RL)
 - What data would be needed?
 - What attributes could you use?
- ☐ Problem 1: Estimate sales from attributes of an advertising campaign
- ☐ Problem 2: Predict if a tissue is cancerous or not from an image
- ☐ Problem 3: Train a computer to steer a car from camera data.
 - 3A: For training, assume you have recorded human steering along with video of what the human saw
 - 3B: For training, assume you no labeled data. The training must learn long-term consequence
- ☐ Problem 4: Write a song in the style of a given artist

Outline

- ☐ What is Machine Learning?
- ☐ Types of machine learning algorithms
 - Classification
 - Regression
 - Unsupervised learning
- Why the hype today?
 - ■Some slides from:
 - A. Zisserman, "Machine Learning Introduction"
 - Alpaydin, "Introduction to Machine Learning"

What ML is Doing Today?

- ☐ Navigation and map building
- □ Complex scene understanding
- ☐ Chat bots, natural language processing
- Machine translation
- □Virtually every product can benefit from Al

Why Now?

- ☐ Machine learning is an old field
 - Much of the pioneering statistical work dates to the 1950s
- ■So what is new now?
- ☐Big Data:
 - Massive storage. Large data centers
 - Massive connectivity
 - Sources of data from Internet and elsewhere
- ☐ Computational advances
 - Distributed machines, clusters
 - GPUs and hardware

Google Tensor Processing Unit (TPU)

Exercise

- ☐ Break into small groups
- ☐ Take a field that interests you:
 - Ex. Driving a car, social networks, recommend a movie to watch, ...
- □ Identify a specific task that can be done with machine learning
 - What is the objective of the task?
 - What is the data you need?
 - What type of ML problem is this? Classification, regression, ...
 - How would your approach compare to an expert-driven method?

