Big data essentials

Big data, cloud computing, data warehousing

1.Fundamentals of Big Data:

• Data storage, batch processing, introduction to distributed computation

2.Big Data in Decision Analytics and Scalability:

• Importance of data in decisions, frameworks for analytics and AI, resource elasticity

3.Big Data vs Data Science:

• Differences in focus between Big Data and Data Science

4. Technology Evolution and Job Roles:

 Distributed computing revolution, roles like Data Engineers, Data Scientists, and DevOps

5.Governance in Big Data:

Security, confidentiality, and legal ethics

6.Roles in Big Data Environment:

 Responsibilities of Data Engineers, Data Scientists, ML Engineers, Data Analysts (BI), and DevOps

7.The 5 V's of Big Data:

Variety, Volume, Value, Velocity, Veracity

8. Challenges in Big Data:

• Handling IoT evolution, big data volume, velocity, and variety.

9. Cloud Computing and Big Data Architecture:

 Data Lake vs Data Warehouse, scalable storage solutions, security, costefficiency

10.Batch Processing and ETL vs ELT:

 Definition, use-cases, and benefits of batch processing, differences between ETL and ELT

11.Distributed Computing Principles:

Parallel processing, fault tolerance, scalability (scale in vs scale out),
MapReduce, resource managemen

12.Spark Framework:

 Advantages over Hadoop/HDFS, architecture, features like in-memory analytics, fault tolerance, integration

13.Data Formats and Technologies:

• Columnar storage, parquet, ACID transactions in data management

14.Databricks Platform:

Unified analytics platform, features, and basic operations

15.Glossary and Essential Concepts:

 Definitions of key terms like BI, Data Lake, Data Warehouse, Batch vs Realtime processing, Distributed computing, Node/Worker, MapReduce

Big data essentials

Data streaming

1. Data Streaming Introduction:

Real-time processing, continuous data flow from multiple sources, timeliness, request/response vs event-driven models.

2. Batch vs Streaming:

Differences in processing methods, continuous vs periodic data handling

3. Characteristics and Challenges of Data Streams:

• Size, velocity, volume, variety, scalability, and veracity.

4. Use Cases in Various Industries:

• Applications in finance, health, media, retail

5. Data Streaming Methods:

• RESTful API, event-driven approaches, pros and cons.

6. Apache Kafka Overview:

 Introduction, architecture, key features like scalability, fault tolerance, realtime processing

03/01/2024 © Saegus | 2023 2

Big data essentials

Data mining

1. Introduction to Data Mining:

Defining the problem, examples of data mining applications

2. Data Sources and Preprocessing:

• Importance of quantitative variables, data cleaning, normalization, transformation, missing value imputation, category coding, dimensionality reduction.

3. Pandas crash course

4. Data Analysis Techniques:

• Supervised machine learning, classification problems, generalization, overfitting vs underfitting.

5. Descriptive Analysis Applications:

 Factors influencing price in different contexts like investment, mortgage lending, insurance, urban planning

6. Handling Categorical Variables:

 Techniques like ordinal mapping, dummy coding, and their impact on model compatibility and interpretability

7. Understanding Correlation:

• Overview, coefficient values, positive vs negative correlation, correlation vs causation

03/01/2024 © Saegus | 2023 3