Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2021/22 (11. přednáška)

Parametrizované algoritmy

Vrcholové pokrytí

VRCHOLOVÉ POKRYTÍ (VP)

Instance: Neorientovaný graf G = (V, E) a celé číslo $k \ge 0$.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje alespoň jeden vrchol z každé hrany $\{u,v\} \in E$ (tedy $\{u,v\} \cap S \neq \emptyset$)?

Jednoduchý algoritmus pro Vrcholové pokrytí

G - u graf G po odstranění vrcholu u a incidentních hran

Funkce SearchVP (G, k)

```
Vstup: Graf G = (V, E), k \ge 0
```

Výstup: Vrcholové pokrytí $S \subseteq V$, $|S| \le k$ nebo NONE

- 1 if $E = \emptyset$ then return \emptyset
- 2 if k = 0 then return NONE
- **3** Vyber libovolnou hranu $\{u, v\} \in E$
- 4 if SearchVP (G u, k 1) vrátí množinu S' then
- **return** $S = S' \cup \{u\}$
- 6 else if SearchVP (G-v, k-1) vrátí množinu S'' then
- 7 | return $S = S'' \cup \{v\}$
- 8 return NONE

Uvažme následující graf

Vybereme hranu $\{v_1, v_4\}$

Vybereme v_1 pro větvení

Smažeme v_1 a snížíme k o 1

Vybereme hranu $\{v_2, v_3\}$

Vybereme v_2 pro větvení

Smažeme v_2 a snížíme k o 1

Vybereme hranu $\{v_3, v_5\}$

Vybereme v_3 pro větvení

Smažeme v_3 a snížíme k o 1

k = 0 a v grafu zbývají hrany, je třeba vrátit se o krok zpět

Po návratu o krok zpět vybereme \emph{v}_{5}

Smažeme v_5 a snížíme k o 1

I tato větev je neúspěšná, nyní je potřeba vrátit se o dva kroky zpět

Po návratu o krok zpět vybereme \emph{v}_{3}

Smažeme v_3 a snížíme k o 1

Vybereme hranu $\{v_2, v_5\}$

Vybereme v_5 pro větvení

Smažeme v_5 a snížíme k o 1

Našli jsme vrcholové pokrytí velikosti 3

Korektnost SearchVP (G, k)

Lemma

SearchVP (G, k) najde vrcholové pokrytí G velikosti nejvýš k, právě když takové vrcholové pokrytí existuje.

Důkaz.

Indukcí podle k...

Korektnost Search VP (G, k) (základní krok indukce)

Lemma

SearchVP (G, k) najde vrcholové pokrytí G velikosti nejvýš k, právě když takové vrcholové pokrytí existuje.

$$k = 0$$

- $E = \emptyset \implies S = \emptyset$ je pokrytí velikosti 0
- E ≠ ∅ ⇒ G nemá pokrytí velikosti 0

Korektnost SearchVP (G, k) (indukční krok)

Lemma

SearchVP (G, k) najde vrcholové pokrytí G velikosti nejvýš k, právě když takové vrcholové pokrytí existuje.

- Uvažme libovolnou hranu $\{u, v\} \in E$
- Každé vrcholové pokrytí S obsahuje u nebo v
- G má vrcholové pokrytí velikosti nejvýš k, právě když
 - G u má vrcholové pokrytí velikosti nejvýš k 1 nebo
 - G-v má vrcholové pokrytí velikosti nejvýš k-1

Časová složitost SearchVP (G, k)

Lemma

Předpokládejme, že n = |V|, m = |E| a G je reprezentován seznamem sousedů. Pak SearchVP (G, k) pracuje v čase $O(2^k(m + n))$.

Důkaz.

- Hloubka rekurze je k
- Dvě rekurzivní volání v každé instanci
- Funkce SearchVP () je tedy volána nejvýš 2^k -krát
- Čas O(m+n) stačí k výběru hrany a odstranění vrcholu
- Exponenciální v parametru k, ale nikoli ve velikosti grafu G

VRCHOLOVÉ POKRYTÍ je řešitelné s pevným parametrem

Parametrizovaný problém

Definice

- Parametrizovaný problém je jazyk $L \subseteq \Sigma^* \times \mathbb{N}$, kde Σ je konečná abeceda
- k je parametrem instance $\langle I, k \rangle \in \Sigma^* \times \mathbb{N}$
- Velikost instance (I, k) definujeme jako

$$|\langle I, k \rangle| = |I| + k$$

Příklad

- Je-li $\langle G, k \rangle$ instance Vrcholového pokrytí, pak k je její parametr
- Můžeme uvažovat i jiné parametry
 - |V|-k
 - stromová šířka G

Problémy řešitelné s pevným parametrem

Definice

Parametrizovaný problém $L\subseteq \Sigma^* \times \mathbb{N}$ je řešitelný s pevným parametrem (fixed parameter tractable, FPT), právě když jej lze rozhodnout algoritmem \mathcal{A} , který pracuje v čase

$$O(f(k) \cdot |I|^c)$$

pro nějakou algoritmicky vyčíslitelnou funkci f a konstantu c.

- ¶ zveme parametrizovaným algoritmem pro L
- FPT označuje třídu problémů řešitelných s pevným parametrem

Věta

VRCHOLOVÉ POKRYTÍ s parametrem k patří do FPT

O*-notace

Definice

 $O^*(f(k))$ označuje třídu funkcí $O(f(k) \cdot n^c)$ pro libovolnou konstantu c.

- Předpokládejme, že algoritmus $\mathcal A$ má časovou složitost $O(f(k)\cdot n^c)$
- Chceme zachytit závislost na parametru k
- Pomíjíme při tom polynomiální faktor

Příklad

SearchVP(G, k) pracuje v čase $O(2^k(n+m)) = O^*(2^k)$

Možné parametrizace Vrcholového pokrytí

Obecné grafy

Parametr	Horní odhad
k	$O(1,28^k + kn)$
n-k	W[1]-úplné (nejspíš není v FPT)
stromová šířka w grafu G	$2^w \cdot n$

Rovinné grafy

Parametr	Horní odhad
k	$O(c^{\sqrt{k}} + kn), c \le 2^{4\sqrt{3}} \approx 121.8$

- Rovinný graf G má vrcholové pokrytí velikosti nejvýš ³/₄n.
- Lze uvažovat parametr $\frac{3}{4}n k$.
- Parametrizace nad/pod zaručenou hodnotu

Závislost času na funkci f

k	$f(k) = 2^k$	$f(k) = 1,32^k$	$f(k) = 1,28^k$
10	$\approx 10^3$	≈ 16	≈ 12
20	$\approx 10^6$	≈ 258	≈ 140
30	$\approx 10^9$	≈ 4140	≈ 1650
40	$\approx 10^{12}$	$\approx 6.6 \cdot 10^4$	$\approx 2.0 \cdot 10^4$
50	$\approx 10^{15}$	$\approx 1.1 \cdot 10^6$	$\approx 2.3 \cdot 10^5$
75	$\approx 10^{22}$	$\approx 1.1 \cdot 10^9$	$\approx 1.1 \cdot 10^8$
100	$\approx 10^{30}$	$\approx 1.1\cdot 10^{12}$	$\approx 5.3 \cdot 10^{10}$
500	$\approx 10^{130}$	$\approx 1.4 \cdot 10^{60}$	$\approx 4.1 \cdot 10^{53}$

Kernelizace

Idea kernelizace

Chceme v polynomiálním čase zredukovat instanci $\langle I,k\rangle$ parametrizovaného problému L na instanci $\langle I',k'\rangle$, pro kterou platí

• $\langle I', k' \rangle$ je ekvivalentní $\langle I, k \rangle$

$$\langle I, k \rangle \in L \iff \langle I', k' \rangle \in L$$

- Velikost (I', k') závisí jen na k
 - Pro nějakou algoritmicky vyčíslitelnou funkci g(k) platí

$$|I'| + k' \le g(k)$$

Výsledkem je kernel (jádro) velikosti g(k).

Kernel

Definice

- A je kernelizační algoritmus (kernel) pro problém L, pokud
 - A pracuje v polynomiálním čase
 - Pro instance $\langle I, k \rangle$ a $\langle I', k' \rangle = \mathcal{A}(I, k)$ platí

$$\langle I, k \rangle \in L \iff \langle I', k' \rangle \in L$$

Existuje vyčíslitelná funkce g(k) taková, že pro každé instance $\langle I,k\rangle$ a $\langle I',k'\rangle=\mathcal{A}(I,k)$ platí

$$|I'| + k' \le g(k)$$

- Funkce g(k) je velikostí kernelu
- Obvykle platí $k' \leq k$

Kernel pro jazyk *L*

Redukční pravidla pro Vrcholové pokrytí

- Popíšeme redukční pravidla pro Vrcholové pokrytí
- Kernelizační algoritmus pak aplikuje tato pravidla, dokud je to možné
- Jazyk asociovaný s problémem Vrcholového pokrytí označíme

```
VP = \{\langle G, k \rangle \mid G \text{ má vrcholové pokrytí velikosti nejvýš } k\}
```

Pro popis pravidel předpokládáme instanci (G, k)

Izolované vrcholy

Pravidlo VP1

Pokud G obsahuje izolovaný vrchol v, smaž v z grafu G.

- Výsledkem je nová instance ⟨G − v , k⟩
- Izolované vrcholy nemohou pokrýt žádnou hranu, tedy

$$\langle G-v,k\rangle\in\mathrm{VP}\iff\langle G,k\rangle\in\mathrm{VP}$$

Vrcholy s velkým stupněm

Pravidlo VP2

Pokud G obsahuje vrchol v stupně alespoň k+1, smaž v a sniž hodnotu k o 1.

Pokud k < 6, pak $v \in S$

- Dostaneme instanci $\langle G v, k 1 \rangle$
- Uvažme vrcholové pokrytí S
- Je-li v ∉ S, pak všichni sousedi v patří do S
- Je-li $|S| \le k$ a $\deg(v) \ge k + 1$, pak $v \in S$

$$\langle G-v,k-1\rangle\in \mathrm{VP}\iff \langle G,k\rangle\in \mathrm{VP}$$

Redukovaná instance

Lemma

Předpokládejme, že na instanci $\langle G, k \rangle \in \mathrm{VP}$ nelze aplikovat žádné z pravidel VP1 and VP2, pak $|V| \leq k^2 + k$ a $|E| \leq k^2$.

- $\langle G, k \rangle \in VP$, tedy G má vrcholové pokrytí S velikosti nejvýš k
- VP1 nelze použít ⇒ G nemá izolované vrcholy
- Každý vrchol $v \in V \setminus S$ má souseda v S
- VP2 nelze použít \implies každý vrchol $v \in V$ má stupeň nejvýš k
- Tedy $|V \setminus S| \le k|S|$
- Protože $|S| \le k$, platí $|V| k \le |V \setminus S|$, tedy

$$|V| \le |V \setminus S| + k \le k|S| + k \le k^2 + k$$

Redukovaná instance (hrany)

- Každá hrana je pokryta vrcholem z S
- Každý vrchol v S pokrývá nejvýš k hran, tedy

$$|E| \le k|S| \le k^2$$

Poslední pravidlo a kernel

Pravidlo VP3

Předpokládejme, že žádné z pravidel VP1 a VP2 nelze aplikovat na $\langle G, k \rangle$. Předpokládejme, že

$$k < 0$$
 nebo $|V| > k^2 + k$ nebo $|E| > k^2$.

Pak *G* nemá vrcholové pokrytí velikosti nejvýš *k*.

Kernelizační algoritmus pro Vrcholové pokrytí

Kernelizační algoritmus pro Vrcholové pokrytí

```
Vstup: Graf G = (V, E) a celé číslo k
   Výstup: Kernel pro \langle G, k \rangle
1 repeat
       while G obsahuje izolovaný vrchol v do // Pravidlo VP1
2
        G \leftarrow G - v
3
      while v G je vrchol v stupně \deg(v) > k do // Pravidlo VP2
4
        G \leftarrow G - vk \leftarrow k - 1
7 until hodnota k se nezměnila
8 if k < 0 or |V| > k^2 + k or |E| > k^2 then
                                                // Pravidlo VP3
      return negativní instanci (např. graf s jednou hranou a k = 0)
10 return \langle G, k \rangle
```

Algoritmus vrátí kernel s $O(k^2)$ vrcholy a $O(k^2)$ hranami.

Uvažme následující graf

Vrchol v_3 má $4 \ge k + 1$ sousedů

Smažeme v_3 a snížíme k o 1

 $oxed{Vrchol}\,v_7$ je izolovaný $oxed{v}$

Smažeme v_7

k = 2

Další pravidlo nelze aplikovat, máme kernel

$$|V| = 5 \le 6 = k^2 + k \text{ a } |E| = 4 = k^2$$

Parametrizované algoritmy a kernely

Lemma

Rozhodnutelný parametrizovaný problém L je v FPT , právě když má kernel.

Důkaz.

Důkaz ve dvou krocích

- **1** Kernel pro L implikuje L ∈ FPT
- 2 $L \in \text{FPT}$ implikuje existenci kernelu

Kernel pro L implikuje $L \in FPT$

• Nechť L má kernelizační algoritmus \mathcal{A} s velikostí g(k)

Parametrizovaný algoritmus pro L

Vstup: Instance $\langle I, k \rangle$ problému L

- 1 $\langle I', k' \rangle \leftarrow \mathcal{A}(I, k)$
- 2 Vyřeš $\langle I', k' \rangle$ hrubou silou
- Krok 1 pracuje v polynomiálním čase
- Krok 2 lze provést, protože L je rozhodnutelný
- Složitost kroku 2 závisí jen na k
 - Platí $|I'| + k' \le g(k)$
- Složitost algoritmu je tedy $O^*(f(k))$ pro nějakou vyčíslitelnou funkci f(k)

$L \in FPT$ implikuje kernel pro L

• Nechť $\mathcal A$ je algoritmus rozhodující, zda $\langle I,k\rangle\in L$ v čase $f(k)\cdot |I|^c$

Kernelizační algoritmus pro L

```
Vstup: Instance \langle I, k \rangle problému L
```

- 1 Proveď nejvýš $|I|^{c+1}$ kroků výpočtu $\mathcal{A}(I,k)$
- **2** if \mathcal{A} přijal během $|I|^{c+1}$ kroků then
- 3 **return** triviální instanci $\langle I', k' \rangle \in L$
- 4 if ${\mathcal H}$ odmítl během $|I|^{c+1}$ kroků then
- **return** triviální instanci $\langle I'', k'' \rangle \notin L$

```
// Výpočet \mathcal{A}(I,k) neskončil během |I|^{c+1} kroků
```

- 6 return $\langle I, k \rangle$
 - Algoritmus pracuje v polynomiálním čase
 - Zbývá odhadnout velikost instance (I, k) vrácené v kroku 6

Analýza kernelu

- Předpokládejme, že algoritmus dosáhl kroku 6
- Výpočet $\mathcal{A}(I,k)$ tedy neskončil během $|I|^{c+1}$ kroků
- Z toho plyne, že

$$|I|^{c+1} \le f(k) \cdot |I|^c$$

- Tedy $|I| \le f(k)$
- Dostáváme, že $|\langle I, k \rangle| = |I| + k \le f(k) + k$

 $\langle I, k \rangle$ je tedy kernel velikosti $g(k) \leq f(k) + k$

Prohledávání

s omezenou hloubkou

Prohledávání s omezenou hloubkou

Idea

Pro danou instanci $\langle I, k \rangle$ problému L

- Rozděl ⟨I, k⟩ do malé množiny podúloh
- Rekurzivně vyřeš podúlohy
- Hloubka rekurze je omezena v závislosti na parametru k
- Dělení na podúlohy by mělo proběhnout v polynomiálním čase
- Rekurzivní volání tvoří strom prohledávání
- Složitost $O^*(f(k))$ je pak rovna velikosti tohoto stromu
 - Počet uzlů
 - Celkový počet rekurzivních volání

Příklad

Jednoduchý algoritmus pro Vrcholové pokrytí se složitostí $O(2^k \cdot (m+n))$.

Podúlohy Vrcholového pokrytí

- Uvažme graf G = (V, E)
- lacktriangle Označme množinu sousedů vrcholu $v \in V$ pomocí

$$N(v) = \{u \in V \mid \{u, v\} \in E\}$$

Pro každý vrchol v a minimální vrcholové pokrytí S platí

Bud' $v \in S$ nebo $N(v) \subseteq S$

Základní případ

- Předpokládejme, že G = (V, E) je graf s maximálním stupněm 1
- Pak každá komponenta G je buď
 - izolovaný vrchol, nebo
 - hrana
- Právě |E| vrcholů je potřeba k pokrytí hran G
- V polynomiálním čase lze rozhodnout, zda $\langle G, k \rangle \in VP$

Ne tak jednoduchý algoritmus pro Vrcholové pokrytí

Funkce SearchVP2 (G, k)

```
Vstup: Graf G = (V, E), k \ge 0
```

Výstup: Vrcholové pokrytí $S \subseteq V$, $|S| \le k$ nebo NONE

- 1 if $k \le 1$ then
- 2 Vyřeš základní případ
- 3 $d \leftarrow \max_{v \in V} \deg v$ // Maximální stupeň G
- 4 if $d \leq 1$ then
- 5 Vyřeš základní případ
- 6 $v \leftarrow$ nějaký vrchol s maximálním stupněm // $\deg(v) = d \ge 2$
- 7 if SearchVP2 (G-v, k-1) vrátí množinu S' then
- 8 return $S = S' \cup \{v\}$
- 9 if SearchVP2 $(G (N(v) \cup \{v\}), k d)$ vrátí množinu S' then
- 10 return $S = S' \cup N(v)$

11 return NONE

Korektnost SearchVP2 (G, k)

SearchVP2 (G, k) najde vrcholové pokrytí G velikosti nejvýš k, právě když existuje.

Plyne z předchozích úvah

Časová složitost SearchVP2 (G, k)

- Nechť n = |V| a m = |E|
- Základní případy lze vyřešit v čase O(m + n)
- Podúlohy lze zkonstruovat v čase O(m + n)
- Rekurzivní volání SearchVP2 (G, k) tvoří strom prohledávání \mathcal{T}
- Označme $\tau(k)$ počet uzlů stromu \mathcal{T}

Časová složitost SearchVP2 (G, k) je

$$O(\tau(k)(m+n))$$

Počet uzlů stromu \mathcal{T}

- Označme ℓ počet listů $\mathcal T$
- Vnitřní uzly stromu mají 2 syny, tedy

$$\tau(k) \le 2\ell - 1$$

Definujme rekurentní funkci

$$T(i) = \begin{cases} T(i-1) + T(i-2) & i \ge 2\\ 1 & \text{jinak} \end{cases}$$

• \mathcal{T} má nejvýš T(k) listů

Časová složitost SearchVP2 (G, k) je

$$O(T(k)(m+n))$$

Počet listů ${\mathcal T}$

Jaká je hodnota T(k)?

Krátká odpověď: $T(k) \le 1.6181^k$

Důkaz indukcí dle k

První krok Pro $k \le 1$ platí $T(k) = 1 \le 1.6181^k$ Indukční krok Pro k > 1 platí

$$T(k) = T(k-1) + T(k-2) \le 1.6181^{k-1} + 1.6181^{k-2}$$

$$\le 1.6181^{k-2} (1.6181 + 1) \le 1.6181^{k-2} 1.6181^{2}$$

$$\le 1.6181^{k}$$

Proč $T(k) = 1.6181^k$?

Hledáme řešení typu

$$T(k) \le c \cdot \lambda^k$$

• Pak hledáme konstanty c a λ splňující

$$T(k) = T(k-1) + T(k-2) \le c \cdot \lambda^{k-1} + c \cdot \lambda^{k-2} \le c \cdot \lambda^k$$

Potřebujeme tedy vyřešit

$$c \cdot \lambda^{k-1} + c \cdot \lambda^{k-2} \le c \cdot \lambda^k$$

To je ekvivalentní

$$\lambda + 1 < \lambda^2$$

Řešením je zlatý řez

Řešíme rovnici

$$\lambda^2 = \lambda + 1$$

Největší kořen tohoto výrazu je zlatý řez

$$\lambda = \frac{1 + \sqrt{5}}{2} < 1.6181$$

Časová složitost SearchVP2 (G, k) je

$$O(1.6181^k(m+n))$$

Přidáme kernel

- VRCHOLOVÉ POKRYTÍ má kernel s O(k²) vrcholy a hranami
- Kernel lze zkonstruovat v čase $O(n^c)$ pro nějakou konstantu c
 - Lepší kernel s nejvýš 2k vrcholy lze nalézt v čase $n\sqrt{m}$
- Použijeme následující postup
 - 1 Zkonstruuj kernel
 - 2 Aplikuj SearchVP2 (G, k) na zkonstruovaný kernel

Časová složitost SearchVP2 (G, k) je

$$O(1.6181^k k^2 + n^c)$$

Vylepšený základní případ

Lemma

Pro grafy s nejvyšším stupněm 2 lze najít minimální vrcholové pokrytí v polynomiálním čase.

Důkaz.

- Každá komponenta G je buď cesta nebo cyklus
- V obou případech lze minimální vrcholové pokrytí nalézt v polynomiálním čase

V druhém rekurzivním volání lze předpokládat, že maximální stupeň G je alespoň 3.

Vylepšený algoritmus pro Vrcholové pokrytí

```
Funkce SearchVP3 (G, k)
   Vstup: Graf G = (V, E), k \ge 0
   Výstup: Vrcholové pokrytí S \subseteq V, |S| \le k nebo NONE
1 if k \leq 2 then
2 Vyřeš základní případ
3 d \leftarrow \max_{v \in V} \deg v
                                       // Maximální stupeň G
4 if d \leq 2 then
5 Vyřeš základní případ
6 v \leftarrow nějaký vrchol s maximálním stupněm // deg(v) = d \ge 3
7 if SearchVP3 (G-v, k-1) vrátí množinu S' then
  return S = S' \cup \{v\}
9 if SearchVP3 (G - (N(v) \cup \{v\}), k - d) vrátí množinu S' then
10 return S = S' \cup N(v)
11 return NONE
```

Časová složitost SearchVP3 (G, k)

- Odhad provedeme podobně jako v případě funkce SearchVP2 (G, k)
- Počet listů $\mathcal T$ lze odhadnout shora funkcí T(i) definované pomocí

$$T(i) = \begin{cases} T(i-1) + T(i-3) & i \ge 3\\ 1 & \text{otherwise} \end{cases}$$

Hledáme řešení nerovnosti

$$\lambda^{k-1} + \lambda^{k-3} \le \lambda^k$$

Řešením je největší kořen rovnice

$$\lambda^3 = \lambda^2 + 1$$

• Největší kořen této rovnice je $\lambda \leq 1.4656$

Časová složitost SearchVP3 (G, k)

Časová složitost SearchVP3 (G, k) je

$$O(1.4656^k k^2 + n^c)$$

Použijeme-li lepší kernel, lze ukázat

Věta

Vrcholové pokrytí lze vyřešit v čase $O(n\sqrt{m} + 1.4656^k k^{O(1)})$

Poznámky k parametrizovaným algoritmům

- Parametrizace umožňuje lepší porozumění některým problémům
 - Které části problému jsou těžké
 - Kterých parametrů je třeba si všímat
- Lepší algoritmy
 - Lze použít k řešení instancí s malými hodnotami parametrů
 - Dokazatelné horní odhady složitosti
 - Narozdíl od většiny heuristických algoritmů
- Jemnější rozlišení složitosti NP-úplných problémů
 - Některé NP-úplné problémy mají dobré parametrizované algoritmy
 - Jiné nikoli

Introduction to Parameterized Algorithms — NTIN103