Agenda Análisis de algoritmos

- Introducción al concepto T(n)
 - Tiempo, entrada, peor caso, etc.
- Cálculo del T(n)
 - En algoritmos iterativos
 - En algoritmos recursivos
- Notación Big-Oh
 - Definición y ejemplos
 - Reglas (suma, producto)
- Ejemplo de optimización de algoritmos

Análisis de algoritmos

 Nos permite comparar algoritmos en forma independiente de una plataforma en particular

• Mide la eficiencia de un algoritmo, dependiendo del tamaño de la entrada

Análisis de algoritmos

Pasos a seguir:

- Caracterizar los datos de entrada del algoritmo
- Identificar las operaciones abstractas, sobre las que se basa el algoritmo
- Realizar un análisis matemático, para encontrar los valores de las cantidades del punto anterior

Adivinar número - Búsqueda lineal o binaria-

https://es.khanacademy.org/computing/computer-science/algorithms/in tro-to-algorithms/a/a-guessing-game

- Hemos analizado la búsqueda lineal y la búsqueda binaria al contar el número máximo de intentos que necesitamos hacer.
- Pero lo que en realidad queremos saber es *cuánto tiempo tardan* estos algoritmos.
- Estamos interesados en el *tiempo*, no sólo en la cantidad máxima de *intentos*.

Debemos enfocarnos en cuán rápido crece una función T(n) respecto al tamaño de la entrada. A esto lo llamamos la **tasa o velocidad de crecimiento** del tiempo de ejecución.

Por ejemplo, supongamos que un algoritmo, que corre con una entrada de tamaño n, tarda $6n^2+100n+300$ instrucciones de máquina. El término $6n^2$ se vuelve más grande que el resto de los términos, 100n+300 una vez que n se hace suficientemente grande, 20 en este caso.

Gráfica que muestra los valores de 6n² y de 100n+300 para valores de n de 0 a 100:

Al descartar los términos menos significativos y los coeficientes constantes, podemos enfocarnos en la parte importante del tiempo de ejecución de un algoritmo, su tasa o velocidad de crecimiento, sin involucrarnos en detalles que complican nuestro entendimiento.

Cuando descartamos los coeficientes constantes y los términos menos significativos, usamos **notación asintótica**.

Cuadro comparativo del tiempo para diferentes funciones

Costo		n=10 ³	Tiempo	n=10 ⁶	Tiempo
Logarítmico	log ₂ (n)	10	10 segundos	20	20 segundos
Lineal	n	10 ³	16 minutos	10^6	11 días
Cuadrático	n ²	10 ⁶	11 días	10 ¹²	30.000 años
	1	\downarrow	↓		↓
Orden de ejecución del algoritmo		Cantidad de operaciones	•	Cantidad de operaciones	•
$n = 10^3$		= 10 ³	$n = 10^6$		

Algunas funciones

Ordenadas en forma creciente	Nombre
1	Constante
log n	Logaritmo
n	Lineal
n log n	n Log n
n ²	Cuadrática
n^3	Cúbica
c^n $c > 1$	Exponencial

Algunas funciones

Problema

Considerando que un algoritmo requiere f(n) operaciones para resolver un problema y la computadora procesa 100 operaciones por segundo.

Si
$$f(n)$$
 es:
a.- $\log_{10} n$
b.- \sqrt{n}

Determine el tiempo en segundos requerido por el algoritmo para resolver un problema de tamaño *n*=10000.

Problema

Suponga que Ud. tiene un algoritmo ALGO-1 con un tiempo de ejecución exacto de $10n^2$. ¿En cuánto se hace más lento ALGO-1 cuando el tamaño de la entrada n aumenta:.....?

- a.- El doble
- b.- El triple

Estructuras de Control

- SecuenciaCondicional:
 - if/else
 - switch
- Iteración:
 - for
 - while
 - do-while

Condicional:

```
a) if (boolean expression) {
    statement(s)
}
```

```
b) if (boolean expression) {
     statement(s)
     } else {
        statement(s)
     }
```

Condicional:

```
c) switch (integer expression) {
    case integer expression : statement(s) ; break;
    ...
    case integer expression : statement(s) ; break;
    default : statement(s) ; break;
}
```

Iteración:

```
for (initialization; termination; increment) {
   statement(s)
while (boolean expression) {
   statement(s)
do {
   statement(s)
} while (boolean expression);
```

Iteración:

```
a) For \sum_{\text{parametro}}^{\text{Viene como}} comparametro

int sum = 0;

int [] a = new int [n];

for (int i = 1; i \le n; i + +)

sum += a[i];
```

Iteración:

a) For
$$\sum_{\text{parametro}}^{\text{Viene como}} como$$
 $\sum_{\text{parametro}}^{\text{Viene como}} como$ $\sum_{\text{parametro}}^{\text{Viene como}} como$

$$T(n) = cte_1 + \sum_{i=1}^{n} cte_2 =$$

$$= cte_1 + n * cte_2$$

$$\Rightarrow O(n)$$

```
a) For
  int sum = 0;
int [] a = new int [n][n];
for (int i =1; i<= n; i++) {
  for (int j =1; j<= n; j++)
    sum += a[i][j];
}</pre>
```

```
a) For
  int sum = 0;
int [] a = new int [n][n];
for (int i =1; i <= n; i++) {
  for (int j =1; j <= n; j++)
    sum += a[i][j];
}</pre>
```

$$T(n) = cte_1 + \sum_{i=1}^{n} \sum_{j=1}^{n} cte_2 =$$

$$= cte_1 + n*n*cte_2$$

$$\Rightarrow O(n^2)$$

```
Viene como
a)For
                            parámetro
 int [] a = new int [n];
 int [] s = new int [n];
 for ( int i = 1; i <= n; i ++)
      S[i] = 0:
for ( int i = 1; i <= n; i + +) {
  for (int j =1; j<= i ; j++)
      s[i] += a[i];
```

a)For

Viene como parámetro

```
int [] a = new int [n];
int [] s = new int [n];
for ( int i =1; i<= n ; i++ )
     S[i] = 0;
for ( int i = 1; i <= n; i ++) {
 for (int j =1; j<= i ; j++)
     s[i] += a[i];
```

$$T(n) = cte_{1} + \sum_{i=1}^{n} cte_{2} + \sum_{i=1}^{n} \sum_{j=1}^{i} cte_{3} =$$

$$= cte_{1} + n * cte_{2} +$$

$$cte_{3} * \sum_{i=1}^{n} i =$$

$$\Rightarrow$$
 O(n²)

Iteración:

b) While

```
int x= 0;
int i = 1;
while ( i <= n) {
    x = x + 1;
    i = i + 2;
}</pre>
```

Iteración:

b) While

```
int x= 0;
int i = 1;
while ( i <= n) {
    x = x + 1;
    i = i + 2;
}</pre>
```

$$T(n) = cte_{1} + \sum_{i=1}^{(n+1)/2} cte_{2} =$$

$$= cte_{1} + cte_{2}/2 * (n+1)$$

$$\Rightarrow O(n)$$

☐Iteración:

b) While

```
int x=1;
while (x < n)
x = 2 *x;
```

□Iteración:

b) While

$$T(n) = cte_1 + cte_2 * log(n)$$

int
$$x=1$$
;
while $(x < n)$
 $x = 2 *x$;

$$\Rightarrow$$
 O(log(n))

Aclaración:

Si n es potencia de 2: realiza log(n) iteraciones

Si n no es potencia de 2: realiza log(n) + 1 iteraciones

Ejercicio

¿Cuál es la expresión correcta respecto al tiempo de ejecución del siguiente segmento de código?

Ejercicio

¿Cuál es la expresión correcta respecto al tiempo de ejecución del siguiente segmento de código?

- (a) $O(\sqrt{n})$ (b) O(n)

- (c) O(n log n)
- (d) $O(n^2)$
- (e) $O(n^3)$

Ejercicio

Considere el siguiente fragmento de código:

Suponga que tarda 1 seg cuando N=3500, ¿cuánto tardará *aproximadamente* para N=35000? Justifique su respuesta.

Ejemplo:

Ejemplo (cont.):

Desarrollo de la función T(n) del método imparesypares

- Asumiendo valor de "n" par.
- •El método esimpar tiene todas sentencias constantes

$$T_{esImpar}(n) = cte1$$

• El método *imparesypares* tiene un loop en el que: en cada iteración se llama al método *esImpar* y la mitad de las veces se ejecuta uno de los *for* (para valores de "i" impares) y la mitad restante el otro *for* (para valores de "i" pares)

ares)
$$T(n) = \sum_{i=1}^{n} cte1 + \sum_{i=1}^{n[paso2]} \left(\sum_{j=i}^{n} cte2 + \sum_{j=1}^{i+1} cte2 \right)$$
 Valores pares dados por el siguiente a los impares "*i*"

Es la llamada al método **esImpar**, que se ejecuta para todos los valores de "i"

Valores de "i" impares

Ejemplo (cont.):

Desarrollo de la función T(n) del método imparesypares

$$T(n) = \sum_{i=1}^{n} cte1 + \sum_{i=1}^{n/2} \left(\sum_{j=2*i-1}^{n} cte2 + \sum_{j=1}^{2*i} cte2 \right)$$

Como "i" ahora toma valores consecutivos entre 1 y n/2, entonces se hace un cambio de variable para seguir tomándose valores impares y pares en cada loop.

Ejemplo (cont.):

Resolviendo la función T(n)

$$T(n) = \sum_{i=1}^{n} cte1 + \sum_{i=1}^{n/2} \left(\sum_{j=2*i-1}^{n} cte2 + \sum_{j=1}^{2*i} cte2 \right)$$

$$T(n) = cte1*n + \sum_{i=1}^{n/2} cte2*(n-2*i+1+1+2*i-1+1) =$$

$$= cte1*n + cte2*(n+2)*n/2$$

$$= cte1*n + cte2/2*n^2 + cte2*n$$

$$T(n) = O(n^2)$$

Ejercicio

```
private int ejercicio3(int n) {
  int p=0; int j=1;

for (int i=1; i<=n; i++)
    if (esImpar(i))
        j:=j*2;

  else
    for (int k=1; k<=j; k++)
        p:= p+1;

  return p;</pre>

public boolean esImpar(int unNumero) {
    if (unNumero%2 != 0)
        return true;
    else
        return false;
}
```

Ejercicio

```
0  i = 0; j =0;
1  while(i<1000)
2      for( int k = i; k <= n; k++ ) {
3      i++;
4      j++; }
5  for( int p = 0; p < n*n; p++ )
6      for( int q = 0; q < p; q++ )
7      j-;</pre>
```

- 1. ¿Con qué valor termina la variable i ?
- 2. ¿Cuántas veces se ejecuta la sentencia 3?
 - a. O(n)
 - b. $O(n^2)$
 - c. $O(n^3)$
 - d. $O(n^4)$
 - e. Ninguna de las anteriores