Total N	Roll No
B.E.	5th Sem. (CGPA) Mechanical Engineering (Zero Sem.), Examination-2019 NUMERICAL ANALYSIS
	Paper— M- 501
Time:	3 hours] [Maximum marks: 6
n Wadnak	each questions. All questions carry equal marks Explain algorithm with basic properties effectivenes and efficiency. Define the following with example:
	 (i) Round-off error (ii) Truncation error (iii) Absolute error (iv) Relative error
(c)	Given that, $u = \frac{4x^2y^3}{z^4} \Delta x$, Δy and Δz denotes the errors in x, y and z respectively such that $x = y = z = z$

(c) Given that, $u = \frac{4x^2y^3}{x^4}$ errors in x, y and z respectively such and $\Delta x = \Delta y = \Delta z = 0.001$. Find the relative Maximum error in u.

EGS-141

(1)

Turn Over

- 2. (a) Find a real root of the the equation $x^2 + 4\sin x = 0$, correct to five place of decimal.
 - (b) Find a quadric factor of the polynomial $x^4 + 5x^3 + 3x^2 5x 9 = 0.$ Starting with $p_0 = 3$, $q_0 = -5$ using Bairstow's method.
 - (c) Find the approximation value for the real root of $x \log_{10} x = 1.2$ correct to five decimal places.
- 3, (a) Evaluate f(22) and f(42) from the following data:
- x: 20 25 30 35 40 45 f(x): 354 332 291 260 231 204
 - (b) Given $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$. Find y_{25} by using Bessel's formula. x = y = z
 - (c) Find an approximate value of the log_e 5 by calculating to four decimal places by Simpson's 1/3rd rule.
 - $\int_{0}^{5} \frac{dx}{4x+5}$ dividing the range into 10 equal parts.
- 4. (a) Use Picard's method to approximate y when x = 0.1,

given that
$$y = 1$$
 when $x = 0$ and $\frac{dy}{dx} = \frac{y-x}{y+x}$.

(b) Given that $\frac{dy}{dx} = x^2 + y$, and y = 1 at x = 0. Find an

approximate value of y at x = 0.1 by Euler's modified method.

EGS-141

(2)

- (c) Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3, given that $y' = xy + y^2$, y(0) = 1. Continue the solution at x = 0.4 using Milne's method.
- 5. (a) Solve the Linear system by Gauss Jordan method 10x + y + z = 12, 2x + 10y + z = 13 and x + y + 5z = 7
 - (b) Solve by triangularization method 3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7
 - (c) Solve the equations by Gauss-Seidal method 54x + y + z = 110, 2x + 15y + 6z = 72 and -x + 6y + 27z = 85