Encoder-Decoder - Seq2Seq Models

Saturday, October 23, 2021 1:08 PM

Input		Target		
Type	Elements	Type	Elements	Use Cases
Scalar	One	Trends	Many	Pattern generation
		Audio	Many	Music Generation
		Text	Many	Text Generation
		Image	Many	Image generation
Trends	Many	Scalar	One	Stock Trading decisions
			One	Forecasting KPI for fixed duration
		Trends		DNA Sequence analysis
			Many	Time series forecasts
Text	Many	Scalar	One	Sentiment Classification
				Topic Classification
				Answer Selection
		Text		Text Summarization
				Machine translation
				Chatbots
			Many	Name Entity Recognition
			Iviany	Subject Extraction
				Part of Speech Tagging
				Textual Entailment
				Relation Classification
		Trends	Many	Path Query Answering
		Audio	Many	Speech Generation
Image	Many	Scalar	One	Facial expression tagging
			one	Entity classification
		Text	Many	Image Captioning
		Image	Many	Image Modification
Audio	Many	Scalar		Sentiment Classification
			One	Number of speaker tagging
				Topic Classification
		Text	Many	Speech Recognition
				Conference Summarization
		Audio	Many	Speech Assistant
Video	Many	Scalar	One	Activity Recognition
		Text	Many	Subtitle generation

Source https://www.analyticsvidhya.com/blog/2018/04/sequence-modelling-an-introduction-with-practical-

YK-ember of K time & tep

EN WACE LS I ME)

Input sentence (English) => "Rahul is a good boy" — **O** — How to represent each word as a vector ??

Output sentence (Marathi) => "राहुल चांगला मुलगा आहे"

hi, ci = ??

Ranging" till now - summary to 3 previous steps EncoderLSTM - Read the input sequence word by

Word and preserve the internal states Post hx. Cx - encoding the input sequence

De Goder LSTH = O Training (1) Inference Phase Ly output squence word by word

Start _ < > - END - Like language

Models

Decodes depends upon the information received by encoder Thought vectors

Teacher Forcing & griph from previous time atop is not the Bredictione its actual
to train the Model faster

De coder LSTM - Sonference Mode > No prediction is happening in Encoder But decoder has to predict the output

Step 1: Encode the input sequence into the Thought Vectors:

Summary of the training process

Encode the input sequence into thought vectors

Step 2: Start generating the output sequence in a loop, word by word:

At t = 1

At t = 2

Decoder at t = 2

At t = 3

Decoder at t = 3

At t = 4

Decoder at t = 4

At t = 5

Decoder at t = 5

Done word at a time presiden via loop - each time step

(1) at each time step, the Bredicted output is fed as input inthe next-time step

(1) Break the loop when we present END word token

Decoder

Code - Move to Notebook

Dataset link - http://www.manythings.org/anki/