Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

1

Contents

1 Definitions and Examples

2 T	The Yoneda Lemma 4
1	Definitions and Examples
Definition (Category). A category C consists of	
a.	a collection ob C of objects A, B, C, \ldots
<i>b</i> .	a collection mor C of morphisms f, g, h, \ldots
c.	two operations dom, cod from morphisms to objects. We write $f:A\to B$ or $A\xrightarrow{f} B$ to mean 'f is a morphism and dom $f=A$ and cod $f=B$ '
d.	an operation assigning to each object A a morphism $1_A:A\to A$
e.	a partial binary operation $(f,g)\mapsto gf$, s.t. gf is defined \iff $\mathrm{dom}g=\mathrm{cod}f$, and then $gf:\mathrm{dom}f\to\mathrm{cod}g$
satisfying	
f.	$f1_A = f \ and \ 1_B f = f \ \forall f : A \to B$
g.	h(fg) = (hg)f whenever gf and hg are defined
Definition (Functor). Let C and D be categories. A functor $C \to D$ consists	
of	
a.	a mapping $A \to FA$ from ob C to ob D
<i>b</i> .	a mapping $f \to Ff$ from $\operatorname{mor} \mathcal{C}$ to $\operatorname{mor} \mathcal{D}$

satisfying dom $Ff = F \operatorname{dom} f$, $\operatorname{cod} Ff = F \operatorname{cod} f$ for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition. By a contravariant functor $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be covariant.

Definition (Natural transformation). Let C and D be two categories and F, G: $C \Rightarrow D$ two functors. A **natural transformation** $\alpha : F \to G$ assigns to each $A \in \text{ob } C$ a morphism $\alpha_A : FA \to GA$ in D, such that

$$\begin{array}{ccc} FA & \xrightarrow{Ff} & FB \\ \downarrow^{\alpha_A} & & \downarrow^{\alpha_B} \\ GA & \xrightarrow{Gf} & GB \end{array}$$

commutes.

We can compose natural transformations: given $\alpha: F \to G$ and $\beta: G \to H$, the mapping $A \mapsto \beta_A \alpha_A$ is the A-component of a natural transformation $\beta \alpha: F \to H$.

Definition. Given categories C, D, we write [C, D] for the category of all functors $C \to D$ and natural transformations between them.

Lemma 1. Given $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \to G$, α is an isomorphism in $[\mathcal{C}, \mathcal{D}] \iff each \alpha_A$ is an isomorphism in \mathcal{D} .

Definition (Faithful and full). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say that F is **faithful** if, given $f, g \in \text{mor } C$, the equations dom f = dom g, cod f = cod g and Ff = Fg imply f = g.
- b. F is **full** if, given any $g: FA \to FB$ in \mathcal{D} , there exists $f: A \to B$ in \mathcal{C} with Ff = g.
- c. We say a subcategory \mathcal{C}' of \mathcal{C} is **full** if the inclusion $\mathcal{C}' \hookrightarrow \mathcal{C}$ is a full functor.

For example, \mathbf{Gp} is a full subcategory of the category \mathbf{Mon} of monoids, but \mathbf{Mon} is a non-full subcategory of the category \mathbf{Sgp} of semigroups.

Definition (Equivalence of categories). Let C and D be categories. An equivalence between C and D is a pair of functors $F: C \to D$, $G: D \to C$ together with natural isomorphisms $\alpha: 1_C \to GF$, $\beta: FG \to 1_D$. We write $C \simeq D$ to mean that C and D are equivalent.

We say a property P of categories is **categorical** if whenever C has P and $C \simeq D$ then D has P.

For example, being a groupoid is a categorical property, but being a group is not.

Definition (Slice category). Given an object B of a category C, define the slice category C/B to have morphisms $A \xrightarrow{f} B$ as objects, and morphisms $(A \xrightarrow{f} B) \to (A' \xrightarrow{f'} B)$ are morphisms $h : A \to A'$ making

commute.

Lemma 2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is part of an equivalence $\mathcal{C} \simeq \mathcal{D} \iff F$ is full, faithful and **essentially surjective**, i.e. for every $B \in \text{ob } \mathcal{D}$, there exists $A \in \text{ob } \mathcal{C}$ s.t. $FA \cong B$.

Definition. a. A **skeleton** of a category C is a full subcategory C' containing exactly one object from each isomorphism class of objects of C.

b. We say C is **skeletal** if it's a skeleton of itself. Equivalently, any isomorphism f in C satisfies dom $f = \operatorname{cod} f$.

For example, \mathbf{Mat}_K is skeletal. The full subgategory of standard vector spaces K^n is a skeleton of $\mathbf{fd}\ \mathbf{Mod}_K$.

Remark. The following statements are each equivalent to the Axiom of Choice:

- 1. Every small category has a skeleton
- 2. Any small category is equivalent to each of its skeletons
- 3. Any two skeletons of a given small category are isomorphic

Definition. Let $f: A \to B$ be a morphism in a category C.

- a. f is a monomorphism if, given $g, h : D \Rightarrow A$, the equation fg = fh implies g = h. We write $A \mapsto B$ if f is monic.
- b. Dually, f is an **epimorphism** if, given $k, l : B \Rightarrow C$, kf = lf implies k = l. We write $A \rightarrow B$ if f is epic.
- c. C is a balanced category if every $f \in \text{mor } C$ which is both monic and epic is an isomorphism.

2 The Yoneda Lemma

Definition. A category C is **locally small** if, for any two objects A, B of C, the morphism $A \to B$ are parametrised by a set C(A, B).

Given local smallness, $B \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}(A, \cdot) : \mathcal{C} \to \mathbf{Set}$: if $g: B \to B'$, the mapping $f \mapsto gf: \mathcal{C}(A, B) \to \mathcal{C}(A, B')$ is functorial since h(gf) = (hg)f for any $h: B' \to B''$.

Similarly, $A \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}^{op} \to \mathbf{Set}$.