一维问题 (作业: 20230324)

- 1. 高斯积分: $\int e^{-x^2} dx = \sqrt{\pi}$;
- 2. 厄米共轭: 算符 \hat{A} 的厄米共轭算符 \hat{A}^{\dagger} 定义为 $\int (\hat{A}^{\dagger}f)^* g dx = \int f^* \hat{A} g dx$;
- 3. 厄米多项式:
 - (a) 厄米多项式可由母函数 $e^{-\xi^2}$ 生成, $H_n(\xi) = (-1)^n e^{\xi^2} \frac{d^n}{d\xi^n} e^{-\xi^2} = \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k n!}{k!(-2k)!} (2\xi)^{n-2k};$
 - (b) 在力学量期望值时, 有以下递推公式: $\frac{dH_n}{d\xi} = 2nH_{n-1}, H_{n+1} 2\xi H_n + 2nH_{n-1} = 0$;
 - (c) 厄米多项式最高幂次为 n, 最高幂次项的系数为 2n;
 - (d) 厄米多项式的正交归一性: $\int_{-\infty}^{\infty} e^{-\xi^2} H_n(\xi) H_n(\xi) d\xi = \begin{cases} 0 & m \neq n \\ 2^n n! \sqrt{\pi} & m = n \end{cases}$
- 4. 产生湮灭算符: $\hat{a}_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega\hat{x})$, 产生湮灭算符是一对厄米共 轭算符;
 - (a) 产生湮灭算符的作用: $\hat{a}_+\psi_n = \sqrt{n+1}\psi_{n+1}$, $\hat{a}_-\psi_n = \sqrt{n}\psi_{n-1}$;
 - (b) 粒子数算符: $\hat{n} = \hat{a}_{+}\hat{a}_{-}$, $\bar{h}\omega(\hat{a}_{\pm}\hat{a}_{\mp}\pm\frac{1}{2})\psi_{n} = E_{n}\psi_{n} = (n+1)\bar{h}\omega\psi_{n}$;
- 5. 对易式: $[\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A};$
 - (a) 正则对易关系: $[\hat{a}_{-}, \hat{a}_{+}] = 1$;
 - (b) 如果波函数 ψ 能满足能量为 E 的薛定谔方程,则 $\hat{a}_+\psi$ 满足能量为 $E + \hbar\omega$ 的薛定谔方程 $(E + \hbar\omega)(\hat{a}_+\psi)$;
 - (c) 测不准关系: $[\hat{x}, \hat{p}] = i\bar{h}$;
- 6. 一维谐振子: 势函数 $V(x) = \frac{1}{2}\omega^2 x^2$, 波函数 $\psi_n(\xi) = \sqrt{\frac{\alpha}{\sqrt{\pi}2^n n!}} e^{-\frac{\xi^2}{2}} H_n(\xi)$, $\xi = \sqrt{\frac{m\omega}{\hbar}} x = \alpha x$;
 - (a) 谐振子哈密顿量的二次量子化形式: $\hat{H} = \overline{h}\omega(\hat{a}_-\hat{a}_+ \frac{1}{2}) = \overline{h}\omega(\hat{a}_+\hat{a}_- + \frac{1}{2})$;
 - (b) 最低能量 $\hat{a}^-\psi_0 = 0$: $\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}$;

- i. 谐振子零点能: $E_0 = \frac{1}{2}\hbar\omega$, 是量子力学中所特有的纯量子现象:
- (c) 激发过程: $\psi_n(x) = A_n(\hat{a}^{\dagger})^n \psi_0(x), E_n = (n + \frac{1}{2}) \overline{h} \omega$;
 - i. 谐振子能级差: $\frac{1}{2}\hbar\omega$;
- 7. 半谐振子: 势函数 $V(x) = \begin{cases} \infty & x < 0 \\ \frac{1}{2}m\omega^2 x^2 & x > 0 \end{cases}$, 波函数 $\psi_n(\xi) = \begin{cases} 0 & x \\ \sqrt{\frac{\alpha}{\sqrt{\pi}2^{2n}(2n+1)!}}e^{-\frac{\xi^2}{2}}H_{2n+1}(\xi) & x \end{cases}$ 基态能量及能级差 $\frac{3}{5}\hbar\omega$;
- 8. 三维谐振子: 哈密顿算符 $\hat{H} = -\frac{\bar{h}^2}{2m} \vec{\nabla}^2 + \frac{1}{2} m\omega^2 |\vec{r}|^2$;
 - (a) 如果哈密顿量可以写为 $\hat{H}_x+\hat{H}_y+\hat{H}_z$, 则 $\psi(x,y,z)=\psi(x)\psi(y)\psi(z)$, $E=E_x+E_y+E_z$;
- 9. δ 函数与傅立叶变换的关系: $\delta(x) = \int_{-\infty}^{\infty} e^{ikx} dx$;
- 10. 自由粒子: 定态薛定谔方程 $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi$, 自由粒子的波函数不是平面波, 而是多个平面波的叠加;
 - (a) 误解: 设 $k = \frac{\sqrt{2mE}}{\hbar}$,解得本征函数 $\psi(x) = Ae^{ikx} + Be^{-ikx}$. 加入时间指数因子得到定态波函数 $\psi_k(x,t) = Ae^{ik(x-\frac{\hbar k}{2m}t)} + Be^{-ik(x+\frac{\hbar k}{2m}t)}$;
 - i. 这个波函数不可归一化,即单个平面波不是自由微观粒子的真 实状态,在量子力学中不存在一个自由粒子具有确定能量或动 量的事实;
 - (b) 自由粒子的归一化条件: $\delta(k-k') = \int_{-\infty}^{\infty} \psi_{k'}^* \psi_k dx$;
 - (c) 自由粒子含时薛定谔方程的通解可以分解为定态的叠加: $\psi(x,t)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}c(k)e^{i(kx-\frac{E_kt}{k})}dk$. 为了避免波包弥散到全空间, 因此 k 的范围有限;
 - i. 若假设 k 只在 k_0 附近非零, 对色散关系 (ω 对 k 的关系) 展开 到一次项 $\omega(k) \approx \omega_0 + \omega_0'(k k_0)$, 对积分变换 $s = k k_0$, 在 t = 0 时可消去不确定项得到 $\psi(x, 0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c(s + k_0)e^{i(s+k_0)x}ds$;
 - ii. 对比 $t \neq 0$ 的情况, 得到 $\psi(x,t) \approx e^{i(-\omega_0 + k_o \omega_0')t} \psi(x \omega_0' t, 0)$;
 - (d) 自由粒子波包的群速度: 由 $\omega = \frac{E_k}{\hbar} = \frac{\hbar k^2}{2m}$, 群速度就是经典速度 $v_{\text{group}} = \frac{d\omega}{dk} = \frac{\hbar k}{m}$, 相速度 $v_{\text{phase}} = \frac{\omega}{k} = \frac{\hbar k}{2m}$;

- i. 群速度是相速度的一半,自由粒子的经典速度是自由粒子波包的群速度;
- (e) 真实的归一化因子: $c(k) = \int_{-\infty}^{\infty} \frac{e^{-ikx}}{\sqrt{2\pi}} \psi(x,0) dx$;
- 11. 周期场: 周期场的特征 V(x+na)=V(x), n=1,2,...,n, 定态薛定谔方程 $\frac{d^2\psi(x)}{dx^2}+\frac{2m}{\hbar^2}(E-V(x))\psi(x)=0$;
 - (a) 对薛定谔方程进行变换 $x \to x + a$, 得到 $\frac{d^2\psi(x+a)}{dx^2} + \frac{2m}{\hbar^2}(E V(x))\psi(x+a) = 0$, 则 $\psi(x)$ 和 $\psi(x+a)$ 都是对应能量 E 的解;
 - (b) Floquet 定理: 在周期势场中, 给定能量 E, 则薛定谔方程存在这样的解满足 $\psi(x+a) = \lambda \psi(x)$, λ 为常数. 即波函数具有准周期性;
 - i. 由波函数的标准条件, $|\lambda| = 1$, $\lambda = e^{iKa}$, $K \in \mathbb{R}$, a 为晶格常数 (限制 Bloch 波数 K 在第一布里渊区 $-\pi \le Ka \le \pi$);
 - ii. 一维系统的简并度为 2, 则 $u_i(x+a) = \sum_{i,j}^2 c_{ji} u_j(x)$;
 - (c) Bloch 定理: 周期场中粒子的本征函数总可以表示为 $\psi(x) = e^{-iKx}\phi_k(x)$. 其中 $\phi_k(x)$ 是周期函数, 周期与周期场相同 $\phi_k(x+a) = \phi_k(x)$, K 是 Bloch 常数 (为实常数);
- 12. 狄拉克梳: 势场 $V(x)=\alpha\sum_{j=0}^{N-1}\delta(x-ja)$, 能谱方程 $\cos(Kx)=\cos(ka)+\frac{m\alpha}{\hbar^2k}\sin(ka)$;
 - (a) 对于宏观物体,可以采用周期性边界条件 $\psi(x+Na)=\psi(x)$, 其中 $N\approx 10^{23}$ 为阿伏加德罗常数;