第四次课程作业

张浩然 023082910001

2023年10月25日

题目 1. 5. 设

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix}$$

求 A 的四个相关子空间.

解答.
$$(A,I) = \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 4 & 0 & 0 & 1 \end{pmatrix}$$
 $\stackrel{elementary transformation}{\longrightarrow} \begin{pmatrix} 1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -2 & 1 \end{pmatrix} = (H_A, P)$ 由此, $PA = H_A, r(A) = 2$ 可知 A 前两列线性无关 因此 $R(A) = span[(1,0,1)^T, (1,1,3)^T]$ $R(A^T) = R(H_A^T) = span[(1,0,1)^T, (0,1,1)^T]$ $N(A) = N(H_A) = span[(1,0,1)^T, (0,1,1)^T]$ $N(A^T) = \{x|xA = 0\} = span[(1,2,-1)^T]$

题目 2. 7. 设 V 是所有 n 阶实数矩阵按矩阵的加法和数乘作成的实线性空间,U 是 V 中所有迹为零的矩阵的集合. 证明 U 是 V 的子空间,并求 U 的维数和一个补空间.

解答.

证明.
$$\forall A, B \in U, tr(A+B) = tr(A) + tr(B) = 0$$

$$\therefore A+B \in U$$

$$\forall C \in U, \lambda \in \mathbb{F}, tr(\lambda C) = \lambda tr(C) = 0$$

$$\therefore \lambda C \in U$$

$$\therefore U \not\equiv V \text{ 的子空间.}$$

$$\dim(V) = n^2$$
由于 $trace = 0$ 是线性限制,因此 U 的自由度减小 1 $\dim(U) = n^2 - 1$
考虑 $W = \{cI | c \in \mathbb{R}\}$
显然 $W \not\equiv V$ 的子空间,且 U 和 W 正交 $\dim(W) = 1$ $\dim(V) = \dim(U) + \dim(W)$

题目 3. 8. 设 V 是所有次数小于 n 的实系数多项式组成的实线性空间, $U = \{f(x) \in V : f(1) = 0\}$. 证明 U 是 V 的子空间,并求 V 的一个补空间.

解答.

证明.
$$\forall f_1, f_2 \in U, f_1(1) + f_2(1) = 0$$

 $\therefore f_1 + f_2 \in U$
 $\forall f_3 \in U, \lambda \in \mathbb{F}, \lambda f_3(1) = 0$

 $\lambda f_3 \in U$

因此 $U \neq V$ 的一个子空间.

设 $W: \{cx^n | c \in \mathbb{R}\}$

易知 W 是 V 的一个子空间

$$dim(V) = n, dim(U) = n - 1, dim(W) = 1$$

$$\therefore dim(V) = dim(U) + dim(W)$$

因此 W 即为所求子空间.

题目 4. 9. 设 $U = [(1,2,3,6)^T, (4,-1,3,6)^T, (5,1,6,12)^T], W =$ $[(1,-1,1,1)^T,(2,-1,4,5)^T]$ 是 \mathbb{R}^4 的两个子空间.

- 1. 求 $U \cap W$ 的基;
- 2. 扩充 $U \cap W$ 的基, 使其成为 U 的基;
- 3. 扩充 $U \cap W$ 的基, 使其成为 W 的基;
- 4. 求 U+W 的基.

解答. (1).
$$\diamondsuit V = U + W$$

$$A = \begin{pmatrix} 1 & 4 & 5 & 1 & 2 \\ 2 & -1 & 1 & -1 & -1 \\ 3 & 3 & 6 & 1 & 4 \\ 6 & 6 & 12 & 1 & 5 \end{pmatrix}$$

$$\cancel{\text{E}}$$

$$\cancel{\text{E}}$$

$$\cancel{\text{E}}$$

$$\cancel{\text{E}}$$

$$\cancel{\text{E}}$$

$$\cancel{\text{E}}$$

$$A \to \begin{pmatrix} 1 & 0 & 1 & 0 & \frac{7}{9} \\ 0 & 1 & 1 & 0 & -\frac{4}{9} \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

由此得出 $(1,2,3,6)^T$, $(4,-1,3,6)^T$, $(1,-1,1,1)^T$ 是 V 的一组基.

$$dim(V) = 3$$

易知
$$dim(U) = 2, dim(W) = 2$$

因此
$$dim(U \cap W) = dim(U) + dim(W) - dim(V) = 1$$

因此要求 $U \cap W$ 的基,只需要求其一个非零向量即可;

设
$$U = [\alpha_1, \alpha_2, \alpha_3], W = [\beta_1, \beta_2]$$

因此 β_2 可以由 $\alpha_1, \alpha_2, \beta_1$ 线性表示.

$$x_1\alpha_1 + x_2\alpha_2 + x_3\beta_1 = \beta_2$$

方程组解为 $(\frac{7}{9}, -\frac{4}{9}, 3)$

因此 $-3\beta_1 + \beta_2 = (-1, 2, 1, 2)^T$ 是 $U \cap W$ 的基.

$$(2).(-1,2,1,2)^T,(1,2,3,6)^T$$

$$(3).(-1,2,1,2)^T,(1,-1,1,1)^T$$

$$(4).(-1,2,1,2)^T,(1,2,3,6)^T,(1,-1,1,1)^T$$

题目 5. 10. 设 $U = \{(x,y,z,w): x+y+z+w=0\}, W = \{(x,y,z,w): x-y+z-w=0\}$ 求 $U\cap W, U+W$ 的维数与基.

解答. dim(U) = dim(W) = 3

设
$$\alpha \in U \cap W$$

$$\begin{cases} x + y + z + w = 0 \\ x - y + z - w = 0 \end{cases}$$

- $\therefore U \cap W$ 的一组基为 (1,0,-1,0),(0,1,0,-1)
- $\therefore dim(U \cap W) = 2$
- $\therefore dim(U+W)=4$
- $\therefore U + W$ 的一组基为 \mathbb{F}^4 的一组标准基.