Assignment 3 - Solutions

1. a) $f(z) - f(z_0) = z^n - z_0^n = (z - z_0)(z^{n-1} + z^{n-2}z_0 + ... + z_0^{n-1})$ so using the limit definition of derivative we have:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} z^{n-1} + z^{n-2} z_0 + \ldots + z_0^{n-1} = z_0^{n-1} + \ldots + z_0^{n-1} = n z_0^{n-1}$$

b) $h(z)-h(z_0)=(af(z)+bg(z))-(af(z_0)-bg(z_0))=a(f(z)-f(z_0))+b(g(z)-g(z_0)),$ so using the limit definition of derivative we have:

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{a(f(z) - f(z_0)) + b(g(z) - g(z_0))}{z - z_0}$$

$$= a \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} + b \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = af'(z_0) + bg'(z_0)$$

2. By problem 1a). we know $f_k(z) = z^k$ is entire for any $k \in \mathbb{N}$ as the derivative exists everywhere so, by a result seen in class, $p(z) = a_0 + a_1 z + ... + a_n z^n = a_0 + a_1 f_1(z) + ... + f_n(z)$ must be entire.

By problem 1b) we know that $p' = (a_0 + a_1 f_1 + ... + a_n f_n)' = a_0(1)' + a_1 f_1' + ... + a_n f_n'$. By problem 1b) we know $f_k'(z) = kz^{k-1}$ for any $k \in \mathbb{N}$ and by example seen in class we know (1)' = 0, completing the proof.

3. $\frac{i^3-i^2+i-1}{i^3+i^2+i+1}=\frac{0}{0}$ so we can use L'Hopital's rule. Using the formula from problem 2 we have

$$\lim_{z \to i} \frac{z^3 - z^2 + z - 1}{z^3 + z^2 + z + 1} = \lim_{z \to i} \frac{3z^2 - 2z + 1}{3z^2 + 2z + 1} = \frac{3(-1) - 2i + 1}{3(-1) + 2i + 1} = \frac{-2 - 2i}{-2 + 2i} = i$$

- 4. We have $u(x,y) = x^2$ and $v(x,y) = y^2$, so $u_x = 2x$, $u_y = 0$, $v_x = 0$ and $v_y = 2y$. $u_y = 0 = -v_x$ everywhere, so to be differentiable we must have $u_x = v_y \Rightarrow 2x = 2y \Rightarrow x = y$. It follows that f is only differentiable only on the straight line x = y, analytic nowhere since the straight line contains no disks and where it is differentiable $f'(x + iy) = u_x + iv_x = 2x$.
- 5. Let $f(re^{i\theta}) = re^{i2\theta}$. Use the polar Cauchy-Riemann equations to determine where f is differentiable, where it is analytic and what the derivative is where it exists. We have $U(r,\theta) = r\cos 2\theta$ and $V(r,\theta) = r\sin 2\theta$ so $U_r = \cos 2\theta$, $U_\theta = -2r\sin 2\theta$, $V_r = \sin 2\theta$ and $V_\theta = 2r\cos 2\theta$. To be differentiable we must have that $U_r = \frac{1}{r}V_\theta \Rightarrow \cos 2\theta = 2\cos 2\theta \Rightarrow \cos 2\theta = 0$ and $V_r = \frac{-1}{r}U_\theta \Rightarrow \sin 2\theta = 2\sin 2\theta \Rightarrow \sin 2\theta = 0$. Since we can never satisfy both equations simultaneously, f is nowhere differentiable or analytic and the derivative doesn't exist.