← Natural Language Processing & Word Embeddings

Quiz, 10 questions

~	Congratulations!	You	passed!
----------	------------------	-----	---------

Next Item

1/1 points

1.

Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.

True

False

Correct

The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.

1/1 points

2.

What is t-SNE?

- A linear transformation that allows us to solve analogies on word vectors
- A non-linear dimensionality reduction technique

Correct

Yes

- A supervised learning algorithm for learning word embeddings
- An open-source sequence modeling library

1/1 points

3.

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

Natural Language Processing & Word Embeddings

Quiz, 10 questions

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

)
-	

True

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

False

1/1 points

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$$

Un-selected is correct

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$$

Un-selected is correct

1/1 points

5.

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?

-	

It is computationally wasteful.

₹orrect Natural Language Processing & Word Embeddings

Yes, the the menture is ensultiplication will be extremely inefficient.

- The correct formula is $E^T * o_{1234}$.
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.

1/1 points

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True

Correct

False

1/1 points

7.

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.

- \emph{c} is the sequence of all the words in the sentence before \emph{t} .

c and t are chosen to be nearby words.

Correct

- c is a sequence of several words immediately before t.
- \emph{c} is the one word that comes immediately before \emph{t} .

1/1 points

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

 $heta_t$ and e_c are both 500 dimensional vectors.

Correct

$ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word. Un-selected is correct
✓ 1/1 points
9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$
Which of these statements are correct? Check all that apply.
$ heta_i$ and e_j should be initialized to 0 at the beginning of training.
Un-selected is correct
θ_i and e_j should be initialized randomly at the beginning of training.
X_{ij} is the number of times word i appears in the context of word j.
The weighting function $f(.)$ must satisfy $f(0)=0.$
Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.
V 1/1 points
10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language tas for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

https://www.coursera.org/learn/nlp-sequence-models/exam/nlIU0/natural-language-processing-word-embeddings

 \bigcap $m_1 >> m_2$

Correct

Natural Language Processing & Word Embeddings

Quiz, 10 questions

