MATH6320 - Functions of a Real Variable

Joel Sleeba joelsleeba1@gmail.com

October 22, 2024

Contents

Contents					
1	1.1 1.2	Course Info	2 2 2		
2	2.1 2.2	Warm up	5 5		
3	3.1 3.2 3.3	Warm up	8 8 8 9		
4	4.1 4.2	Warm up	11 11 11		
5	5.1	Properties of Measures	14 15		
6	6.1	Integrals	17 17		
7	7.1	Properties of Integrals	20 21		
8			24		
9			27		

10	10.1	Measure Zero	29 30
11			32
12	12.1		34 34
13			36
14	14.1	Lebesgue Measure	38 39
15	15.1	Vitali Sets	41 41
16			42

1.1 Course Info

Bernhard Bodmann bgb@central.uh.edu PGH 641A Tue 10-11AM, Wed 1-2PM

Email for organizational stuff and meet for a course related conceptual stuff

- Canvas
- MS Teams

Textbook: Walter Rudin, Real & Complex Analysis, Chapters 1-9

Midterm test, October 10, in class

Grading: 30% HW, 30% Midterm, 40% Final

1.2 Notations and Basic Definitions

Definition 1.2.1. Let X be s set and P(X) be its power set. A subset $\tau \subset P(X)$ is called a topology on X provided

- $\emptyset, X \in \tau$
- If $E_1, E_2, \dots E_n \in \tau$, then $\bigcap_{j=1}^n E_j \in \tau$
- If J is any index set and for each $j \in J$, $E_j \in \tau$ then $\bigcup_{j \in J} E_j \in \tau$

Example 1.2.1. Given a set X, $\{\emptyset, X\}$ is a topology known as in-discrete topology.

Definition 1.2.2. Let (X, d) be a metric space with $d: X \times X \to \mathbb{R}^+$ satisfying positive definiteness, symmetry, and triangle inequality.

Definition 1.2.3. We say $E \subset X$ is open if for each $x \in E$, there is an $\epsilon \geq 0$ such that $\{y \in X : d(x,y) \leq \epsilon\} \subset E$

Example 1.2.2. Let τ be the set of all open subsets of X, where (X, d) is a metric space, then τ forms a topology. verify this

Definition 1.2.4. Let X be a set and τ a topology on X, then we call (X, τ) a topological space. Elements of τ are called open sets.

Definition 1.2.5. Let X be a set, $\beta \subset P(X)$ such that

- $\forall x \in X, \exists B \in \beta \text{ such that } x \in B$
- If $x \in X, B_1, B_2 \in \beta$ and if $x \in B_1 \cap B_2$, then there is $B_3 \in \beta$ such that $x \in B_3 \subset B_1 \cap B_2$

Then β is called a basis

Theorem 1.2.1. If β is a basis then, τ , the collection of all (empty or non-empty) unions of elements of β form a topology on X.

Proof. It is clear from the definition of τ that arbitrary unions of sets in τ is again in τ . Also the first property guarantees that $X \in \tau$. Since empty unions are also considered, $\emptyset \in \tau$. Hence all that remains is to show that finite intersections of sets in τ is again in τ .

Let $U_1, U_2 \in \tau$, once we show that $U_1 \cap U_2 \in \tau$, we can use induction to show $\bigcap_{i=1}^n U_i \in \tau$ when $U_1, U_2, \ldots, U_n \in \tau$. Let $x \in U_1 \cap U_2$. Since U_1, U_2 are unions of elements from β , there exists $B_1, B_2 \in \beta$ such that $x \in B_1 \subset U_1$ and $x \in B_2 \subset U_2$. Then by the second property of the basis, there exists $B_x \in \beta$ with $x \in B_x \subset B_1 \cap B_2 \subset U_1 \cap U_2$. Since $x \in U_1 \cap U_2$ was arbitrary, we get

$$U_1 \cap U_2 = \bigcap_{x \in U_1 \cap U_2} B_x$$

Thus $U_1 \cap U_2 \in \tau$ and hence τ is a topology.

Example 1.2.3. Let $\beta = \{(p,q) : p,q \in \mathbb{Q}, p < q\} \subset P(\mathbb{R})$. Then β is a basis and the topology generated by β is the usual euclidean topology on \mathbb{R} obtained from the metric d(x,y) = |x-y|.

Example 1.2.4. Let $X = [-\infty, \infty]$ and $\beta = \{(a, b) : a, b \in \mathbb{R}, a < b\} \cup \{[-\infty, b) : b \in \mathbb{R}\} \cup \{(a, \infty] : a \in \mathbb{R}\}$ Then β is a basis.

Example 1.2.5. Let J be a set and $\mathbb{R}^J = \{f : J \to \mathbb{R}\}$. Let β contain all the sets of the form $\{f : J \to \mathbb{R} : f(j_1) \in U_1, f(j_2) \in U_2, \dots, f(j_n) \in U_n\}$ where $n \in \mathbb{N}, j_1, j_2, \dots, j_n \in J$ and $U_1, U_2, \dots U_n$ are open sets in \mathbb{R} .

Then β is a basis and the topology generated by β is called the product topology in \mathbb{R}^J

If J is uncountable, then this topology \mathbb{R}^J is not metrizable. verify.

Definition 1.2.6. Let X be a set $\mathcal{M} \subset P(X)$ is a σ -algebra, if

- $X \in \mathcal{M}$
- If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$
- If $A_1, A_2, \ldots, A_j, \ldots \in \mathcal{M}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$

Then we call (X, \mathcal{M}) a measurable space, and \mathcal{M} contains measurable sets.

Theorem 1.2.2. Let X be a set, and $F \subset P(X)$, then there exists a unique σ -algebra \mathscr{M} such that,

- $F \subset \mathcal{M}$
- If \mathcal{N} is a σ -algebra on X, and $F \subset \mathcal{N}$, then $\mathcal{M} \subset \mathcal{N}$

Then \mathcal{M} is called a σ -algebra generated by F

Assignment 1 is posted. Submissions due Aug 29.

2.1 Warm up

Example 2.1.1. Let $X = \{1, 2, 3\}, F = \{\{1, 2\}, \{1, 3\}\}$. Then the smallest topology containing F is $\{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}$, and the σ -algebra generated by F is the power set, P(X).

2.2 continues

Proof. Proof of Theorem 1.2.2.

Consider all σ -algebras containing F, let $\Omega = \{ \mathcal{N} \subset P(X) : \mathcal{N} \supset F, \mathcal{N} \text{ is a } \sigma$ -algebra $\}$. Ω is non-empty since $P(X) \subset \Omega$. Let

$$\mathcal{M} = \bigcap_{\mathcal{N} \in \Omega} \mathcal{N}$$

Then we claim \mathcal{M} is a σ -algebra. To see this

- $X \in \mathcal{M}$, because $X \in \mathcal{N}$, for each $\mathcal{N} \in \Omega$.
- If $E \in \mathcal{M}$, then $E \in \mathcal{N}$ for each $\mathcal{N} \in \Omega$. Then $E^c \in \mathcal{N}$ for each $\mathcal{N} \in \Omega$ and thus $E^c \in \mathcal{M}$.
- If $A_1, A_2, \ldots \in \mathcal{M}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$ because since each $A_i \in \mathcal{N}$ and \mathcal{N} is a σ -algebra, $\bigcup_{j=1}^{\infty} A_j \in \mathcal{N}$ for each $\mathcal{N} \in \Omega$.

Moreover, $F \subset \mathcal{M}$ since $F \subset \mathcal{N}$ for each $\mathcal{N} \in \Omega$. Finally, if \mathcal{N} is a σ -algebra with $\mathcal{N} \supset F$, then $\mathcal{N} \in \Omega$. Then $\mathcal{M} \subset \mathcal{N}$. To prove uniqueness, let \mathcal{M}_0 be a σ -algebra which satisfies the required properties defining Ω . By intersection operation giving \mathcal{M} , and $\mathcal{M}_0 \in \Omega$, $M \subset M_0$. Additionally, if \mathcal{M}_0 satisfies that $\mathcal{M}_0 \subset \mathcal{N}$ for each $\mathcal{N} \in \Omega$, then $\mathcal{M}_0 \subset \mathcal{M}$. Thus $\mathcal{M}_0 = \mathcal{M}$.

We combine concepts of topologies and σ -algebras.

Definition 2.2.1. Let (X, τ) be any topological space. The σ -algebra, \mathcal{B} generated by the topology τ is called the Borel σ -algebra. Elements of \mathcal{B} are called Borel sets.

Definition 2.2.2. Let X, Y be topological spaces. A map $f: X \to Y$ is continuous if the inverse image of any open set is open. The map f is continuous at $x \in X$ if every open set $V \subset Y$ with $f(x) \in V$, there is an open set $W \subset X$ with $f(W) \subset V$.

Theorem 2.2.1. A map $f: X \to Y$ is continuous if and only if it is continuous at each $x \in X$.

Proof. (\Longrightarrow) If f is continuous and $x \in X$, $V \subset Y$ is open and $f(x) \in V$, then by continuity, $f^{-1}(V)$ is open and $x \in f^{-1}(V)$. This holds for any such x and V, thus f is continuous at $x \in X$. Since x was arbitrarily chosen, f is continuous at each $x \in X$.

(\Leftarrow) Suppose f is continuous at each $x \in X$. Let V be an open subset of Y. Need to show that $W = f^{-1}(V)$ is open. For each $x \in W$, there is a $W_x \subset X$ which is open with $x \in W_x$ and $f(W_x) \subset V$ by the continuity of f at x. Now take

$$Y = \bigcup_{x \in W} W_x$$

Then Y is open being a union of open sets. Also it contains each $x \in W$. Hence $W \subset Y$. But again, $W_x \subset W = f^{-1}(V)$ for each $x \in W$ and taking the unions preserve the inclusion. Hence we get W = Y. Since we already know Y is open, this gives us $W = f^{-1}(V)$ is open.

Proposition 2.2.1. If $f: X \to Y$ and $f: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.

Proof. Let $V \subset Z$ be an open set. Then $f^{-1}(V)$ is open in Y by the continuity of f. Similarly, $g^{-1}(f^{-1}(V))$ is open in X by the continuity of g. But $g^{-1}(f^{-1}(V)) = (g \circ f)^{-1}(V)$. Since V was arbitrarily open, we get that $g \circ f$ is continuous. \square

Definition 2.2.3. Let X be a measurable space and Y a topological space. Then a map $f: X \to Y$ is called measurable, if all inverse images of open sets are measurable.

Proposition 2.2.2. Let X be a measurable space, Y be a topological space, then $f: X \to Y$ is measurable if and only if $f^{-1}(B)$ is measurable for each Borel set B.

Proof. (\Longrightarrow) Every open set is a Borel set. So this is true by inclusion.

(\iff) Suppose f is measurable. Let $M=\{E\subset Y: f^{-1}(E) \text{ is measurable }\}$. We know M contains all open sets (Since we assume f is measurable). Moreover since $f^{-1}(\cup_{j\in J}U_j)=\cup_{j\in J}f^{-1}(U_j)$ for any open sets $U_j\subset Y$ with index set J, and $f^{-1}(\cap_{i=1}^nU_i)=\cap_{i=1}^nf^{-1}(U_i)$, we get that M is a σ -algebra.

Since M contains all open sets, M contains the Borel σ -algebra in Y. Hence $f^{-1}(B)$ is measurable for every Borel set B.

3.1 Warm up

Example 3.1.1. Let \mathcal{M} be a σ -algebra on a set X and B be the Borel σ -algebra on \mathbb{R} . For any given set $A \subset X$, consider the function $\chi_A : X \to \mathbb{R}$ defined as

$$\chi_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

The function χ_A is measurable if and only if $A \in \mathcal{M}$.

To see this if χ_A is measurable, then inverse image of every Borel set is measurable. Consider the Borel set $(\frac{1}{2}, \frac{3}{2})$, then $\chi_A^{-1}(\frac{1}{2}, \frac{3}{2}) = A \in \mathcal{M}$.

Conversely, assume $A \in \mathcal{M}$, Take $B \in \mathcal{B}$, the Borel σ -algebra of \mathbb{R} . Consider $\chi_A^{-1}(B)$. We get

$$\chi_A^{-1}(B) = \begin{cases} X, & \{0,1\} \in B \\ A, & 0 \notin B, 1 \in B \\ A^c, & 0 \in B, 1 \notin B \\ \emptyset, & 0, 1 \notin B \end{cases}$$

In all these cases, we get $\chi_A^{-1}(B)$ to be an element of \mathcal{M} , since $\emptyset, X \in \mathcal{M}$. and if $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$. This implies χ_A is measurable.

3.2 Main Course

Definition 3.2.1. Let X, Y be topological spaces. We say that a function $f: X \to Y$ is Borel measurable if $f^{-1}(V)$ is a Borel set whenever V is an open set (or equivalently a Borel set because of Proposition 2.2.2)

Proposition 3.2.1. If $f: X \to Y$ is a continuous function, then it is Borel measurable.

Proof. For every open set $E \subset Y$, by assumption $f^{-1}(E)$ is open. So it is in the Borel σ -algebra on X.

3.3 Algebra of measurable functions

Theorem 3.3.1. Let X be a measurable space, Y, Z be topological spaces. If $f: X \to Y$ is measurable and $g: Y \to Z$ is Borel measurable, then $g \circ f: X \to Z$ is measurable.

Proof. Let $V \subset Z$ be an open set. We have $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$. Now since g is Borel measurable, we get $g^{-1}(V)$ is Borel measurable in Y. Again since f is measurable and $g^{-1}(V)$ is a Borel measurable, we get $f^{-1}(g^{-1}(V))$ is measurable in X.

Next we consider forming ordered pairs of measurable functions.

Lemma 3.3.1. If $V \subset \mathbb{R}^2$ is open, then there are open rectangles $\{R_j\}_{j\in\mathbb{N}}$, such that $R_j = (a_j, b_j) \times (c_j, d_j)$ and $V = \bigcup_{i=1}^{\infty} R_j$

Proof. Since rational $(a, b) \times (c, d)$, $a, b, c, d \in \mathbb{Q}$ generate the euclidean topology on \mathbb{R}^2 (product topology on $\mathbb{R} \times \mathbb{R}$ is the euclidean topology in \mathbb{R}^2), we obtain a countable union of all such rectangles contained in V.

Theorem 3.3.2. Let X be a measurable space. If $u, v : X \to \mathbb{R}$ are measurable, then $f : X \to \mathbb{R}^2$ defined as f(x) = (u(x), v(x)) is measurable.

Proof. Let $R = (a, b) \times (c, d) \subset \mathbb{R}^2$. Then

$$f^{-1}(R) = \{x \in X : u(x) \in (a,b), v(x) \in (c,d)\}$$
$$= \{x \in X : u(x) \in (a,b)\} \cap \{x \in X : v(x) \in (c,d)\}$$

Hence $f^{-1}(R)$ is measurable.

Given any open set $V \in \mathbb{R}^2$, consider appropriate $\{R_j\}_{j\in\mathbb{N}}$ such that $V = \bigcup_{j=1}^{\infty} R_j$. Then $f^{-1}(V) = f^{-1}(\bigcup_{j=1}^{\infty} R_j) = \bigcup_{j=1}^{\infty} f^{-1}(R_j)$. Thus $f^{-1}(V)$ is measurable.

Next we establish that measurability is preserved under algebraic operations.

Proposition 3.3.1. Let $f: X \to \mathbb{C}$ be such that f = u + iv with real valued $u, v: X \to R$. If u, v are measurable, then f is measurable. And conversely, if f is measurable, then so are u, v, and $|f| = \sqrt{u^2 + v^2}$.

Proof. Let u, v be measurable, then $h: X \to \mathbb{R}^2 := x \to (u(x), v(x))$ is measurable by Theorem 3.3.2. Also $g: \mathbb{R}^2 \to \mathbb{C}: (x,y) \to x+iy$ is continuous. Hence we get that $f=g\circ h$ is measurable.

For converse use that $\Re: \mathbb{C} \to \mathbb{R}$ is a continuous function. So is $\Im: \mathbb{C} \to \mathbb{R}$, and $|\cdot|: \mathbb{C} \to \mathbb{R}$. Then use that $u = \Re \circ f$, $v = \Im \circ f$, $|f| = |\cdot| \circ f$.

Proposition 3.3.2. If $f, g: X \to \mathbb{C}$ are measurable, then f+g and fg are measurable.

Proof. Suppose f, g are measurable. Then F(x) = (f(x), g(x)) defines a measurable function. Next consider $\phi : \mathbb{C}^2 \to \mathbb{C} := (a, b) = a + b$. By continuity of ϕ , $\phi \circ F$ is measurable, and we obtain $(\phi \circ F)(x) = f(x) + g(x)$

To show fg is measurable use the continuity of $\psi: \mathbb{C}^2 \to \mathbb{C} := (a, b) \to ab$ and compose it with F.

Can we find a simple test for measurability of a real-valued function?

4.1 Warm up

Let \mathcal{M} be a σ -algebra on X and $A_1, A_2, \ldots, A_n \in \mathcal{M}$. Why does

$$f(x) = \sum_{i=1}^{n} c_j \chi_{A_j}$$

define a measurable function?

Proof. Use Proposition 3.3.2. Interpreting $c_j\chi_{A_j}$ as product of χ_{A_j} with a constant function, we observe $c_j\chi_{A_j}$ is measurable. Then using that the sum of two measurable functions is measurable in an inductive fashion, we get that the finite sum defining f also measurable.

4.2 Continues

Lemma 4.2.1. Let $f: X \to [-\infty, \infty]$. Then f is measurable if and only if $f^{-1}((a, \infty])$ is measurable for each $a \in \mathbb{R}$

Proof. (\Longrightarrow) If f is measurable, then by $(a, \infty]$ being open, we get that $f^{-1}((a, \infty])$ is measurable. This is true for all $a \in \mathbb{R}$. So the claimed property holds.

(\iff) Suppose for each $a \in \mathbb{R}$, $f^{-1}((a, \infty])$ is measurable. Then since we also have that $(f^{-1}(a, \infty])^c = f^{-1}((a, \infty]^c) = f^{-1}([-\infty, a])$, Now therefore $f^{-1}([-\infty, a])$ is measurable for all $a \in \mathbb{R}$. Now

$$[-\infty, b) = \bigcup_{n=1}^{\infty} \left[-\infty, b - \frac{1}{n} \right]$$

so,

$$f^{-1}([-\infty, b)) = f^{-1}\left(\bigcup_{n=1}^{\infty} [-\infty, b - \frac{1}{n}]\right)$$
$$= \bigcup_{n=1}^{\infty} f^{-1}\left([-\infty, b - \frac{1}{n}]\right) \in \mathcal{M}$$

Next we use $(a,b) = [-\infty,b) \cap (a,\infty]$ so we get $f^{-1}(a,b)$ to be measurable. Thus we have shown measurability for inverse images of a basis. Now let $V \subset [-\infty,\infty]$ be an open set. Then there are four cases.

- 1. V is a countable union of rational open intervals. i.e $-\infty, \infty \notin V$
- 2. $-\infty \in V, \infty \notin V$. Then $V = [-\infty, b) \cup V_o$, where V_o is of case 1, and $[-\infty, b)$ is the union of countable sequence of rational half-infinite intervals. (Let b_n be a rational sequence monotonically increasing to b, then $\bigcup_{n=1}^{\infty} [-\infty, b_n] = [-\infty, b)$.
- 3. $-\infty \notin V, \infty \in V$. Then $V = V_o \cup (a, \infty]$, where V_o is a countable union of open intervals in \mathbb{R} .
- 4. $-\infty, \infty \in V$. Then $V = [-\infty, b) \cup V_o \cup (a, \infty]$, where V_o is a countable union of open intervals in \mathbb{R} .

In all these cases, we get $f^{-1}(V)$ to be measurable.

Remark 4.2.1. Given a sequence (a_n) in $[-\infty, \infty]$, let $b_j = \sup_{n \le j} a_n$. Then for each $j, b_{j+1} \le b_j$. So $\beta = \lim_{n \to \infty} b_j$ exists in $[-\infty, \infty]$.

Definition 4.2.1. Let (a_n) be a sequence in $[-\infty, \infty]$ and (b_j) be as above, then $\beta = \inf_{j \in \mathbb{N}} b_j$ is known as the $\lim_{j \to \infty} \sup a_j$ or $\overline{\lim_{n \to \infty}} a_j$

Similarly defining $c_j = \inf_{n \geq j} a_n$ gives $\lim_{j \to \infty} \inf a_j = \sup_{j \neq j} c_j$

Definition 4.2.2. Let $f_n: X \to [-\infty, \infty]$ be a sequence of functions, define the limit supremum of the sequence of functions as

$$(\lim_{n\to\infty}\sup f_n)(x) = \lim_{n\to\infty}\sup f_n(x)$$

Remark 4.2.2. If $(f_n(x))$ converges for each x, then we say the sequence of functions converges pointwise.

Proposition 4.2.1. Let (f_n) be a sequence of $[-\infty, \infty]$ value functions, then

$$g(x) = \sup_{n \ge n_0} f_n(x), \quad h(x) = \lim_{n \to \infty} \sup f_n(x)$$

are measurable functions.

Proof. We only need to show that $g^{-1}(a, \infty]$ is measurable for each $a \in \mathbb{R}$. We consider

$$g^{-1}((a,\infty]) = \{x \in X : g(x) > a)\}$$

Now g(x) > a, then $f_n(x) \ge a$ for all $n \ge n_0$. Thus we get

$$g^{-1}((a,\infty]) = \bigcup_{n=n_0}^{\infty} \{x \in X : f_n(x) > a\}$$
$$= \bigcup_{n=n_0}^{\infty} f^{-1}((a,\infty])$$

Thus we see g is measurable. Similarly we can show this holds true if we replace sup with inf in the definition of g

Now since we know that composition of measurable functions are measurable, we get that $\inf \sup f_n(x) = h(x)$ is measurable.

Similarly we can also show that sup inf f_n is also measurable.

Definition 4.2.3. Let X be a set, a function $s: X \to \mathbb{C}$ is called a simple function if the range of s is finite.

Proposition 4.2.2. A function $s: X \to \mathbb{C}$ is simple if and only if there exists mutually disjoint sets $A_1, A_2, \ldots, A_n \subset X$, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ with

$$s = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

Proof. (\Longrightarrow) by definition.

(\iff) Let s be a simple function with range $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Then take $A_j = s^{-1}(\alpha_j)$. Then A_j s partition X and

$$s(x) = \sum_{j=1}^{n} \alpha_j \chi_{A_j}(x)$$

Theorem 5.0.1. If $f: X \to [0, \infty]$ is measurable, then there exists a sequence $(s_n)_{n\in\mathbb{N}}$ of simple non-negative real valued functions such that

i each s_n is measurable

ii sequence (s_n) is non-decreasing

 $iii (s_n)$ converge pointwise to f

Proof. Define a 'staircase to plateau' functions, (defined in the homework-2, question 3) defined as

$$\phi_n(x) = \begin{cases} 0, & x < 0 \\ k2^{-n}, & k2^{-n} \le x < (k+1)2^{-n}, & k \in \{0, 1, 2, \dots, \} \\ n, & x \ge n \end{cases}$$

and then let $s_n = \phi_n \circ f$. We first prove the theorem for the special case $f = \phi$: $[0, \infty) \to [0, \infty) := \phi(t) = t$.

We have $0 \le \phi_1(t) \le \phi_2(t) \le \dots$ for each $t \in \mathbb{R}$ and for $t \le n$,

$$|\phi_n(t) - \phi(t)| \le \frac{1}{2^n}$$

so since $\phi(t) < \infty$, $\phi_n(t) \to \phi(t)$ for each fixed $t \in \mathbb{R}$. We also known from he homework that each ϕ_n are Borel measurable.

For the general case, we take $s_n = \phi_n \circ f$. Then similar to what we got above, we get $0 \le s_1 \le s_2 \le \ldots$ while each s_n is simple. Also for each $t \in \mathbb{R}$, $s_n(t) \to f(t)$.

Definition 5.0.1. Let (X, \mathcal{M}) be a measurable space, and $Z = [0, \infty]$ or $Z = \mathbb{C}$. A function $\mu : \mathcal{M} \to Z$ is called countably additive (or σ -additive) if given $A_1, A_2, \ldots \in \mathcal{M}$ such that $A_i \cap A_j = \emptyset$ if $i \neq j$, we have

$$\mu\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{j=1}^{n} \mu(A_j)$$

If $Z = [0, \infty]$ and if there is a $A \in \mathcal{M}$ such that $\mu(A) \leq \infty$, then we say that μ is a measure (or a positive measure). And we call (X, \mathcal{M}, μ) a measure space. If $Z = \mathbb{C}$, then we call μ a complex measure.

Example 5.0.1. We give examples of different measures.

- $X = \mathbb{N}, \mathcal{M} = P(\mathbb{N}), \mu(S) = |S|$. This is called the counting measure.
- $X = \mathbb{N}, \mathcal{M} = P(\mathbb{N}), \mu(S) = \sum_{j \in S} \frac{1}{2^j}$

5.1 Properties of Measures

Proposition 5.1.1. Let μ be a (positive) measure on a σ -algebra \mathcal{M} . Then

- (1) $\mu(\emptyset) = 0$
- (2) A_1, A_2, \ldots, A_n with $A_i \cap A_j = \emptyset$ for each $i \neq j$, then

$$\mu\Big(\cup_{j=1}^n A_j\Big) = \sum_{j=1}^n \mu(A_j)$$

(3) If $A, B \in \mathcal{M}$ with $A \subset B$, then $\mu(A) \leq \mu(B)$. And if $\mu(B) \leq \infty$, then

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

(4) If $A_1 \subset A_2 \subset \dots$ with all $A_j \in \mathcal{M}$, then

$$\mu\Big(\cup_{j=1}^{\infty} A_j\Big) = \lim_{j \to \infty} \mu(A_j)$$

(5) If $A_1 \supset A_2 \supset \dots$ with all $A_j \in \mathcal{M}$, and ther is $j_o \in \mathbb{N}$ with $\mu(A_{j_o}) \leq \infty$, then

$$\mu\Big(\cap_{j=1}^{\infty} A_j\Big) = \lim_{j \to \infty} \mu(A_j)$$

Proof. 1 Let $A \in \mathcal{M}$ with $\mu(A) \leq \infty$.

2

3

4 WLOG assume $j_o = 1$. Consider the sets $B_j = A_1 \setminus A_j$. Then we apply the above property to get

$$\mu\Big(\bigcup_{j=1}^{\infty} (A_1 \setminus A_j)\Big) = \mu(A_1) - \lim_{j \to \infty} \mu(A_j)$$

But we see that $\bigcup_{j=1}^{\infty} (A_1 \setminus A_j) = \bigcup_{j=1}^{\infty} (A_1 \cap A_j^c)$. Now since each $A_j \subset A_1$, we get this to be equal to $A_1 \setminus \bigcup_{j=1}^{\infty} A_j^c = A_1 \cap$

6.1 Integrals

Definition 6.1.1. Define the integral of a measurable simple function $s: X \to [0, \infty]$ defined in the standard form as

$$s = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

with $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ as the range of S and $A_j = s^{-1}(\{\alpha_j\})$ by

$$\int s \ d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i})$$

We adopt the convention $0 \times \infty = 0$ from now onwards.

Lemma 6.1.1. Let (X, \mathcal{M}, μ) be a measure space. Let $A_1, A_2, \ldots, A_n \in \mathcal{M}$ and $B_1, B_2, \ldots, B_{n'} \in \mathcal{M}$ with the A_js are mutually disjoint, as well as B_js , and

$$\bigcup_{j=1}^{n} A_j = X = \bigcup_{j=1}^{n'} B_j$$

Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in [0, \infty]$ and $\beta_1, \beta_2, \ldots, \beta'_n \in [0, \infty]$ such that

$$t = \sum_{j=1}^{n'} \beta_j \chi_{B_j} \le s = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

then

$$\sum_{j=1}^{n'} \beta_j \mu(B_j) \le \sum_{j=1}^n \alpha_j \mu(A_j)$$

Proof.

$$\sum_{j=1}^{n'} \beta_j \mu(B_j) = \sum_{j=1}^n \beta_j \mu(B_j \cap (\bigcup_{l=1}^n A_l))$$

$$= \sum_{j=1}^{n'} \beta_j \mu(\bigcup_{l=1}^n B_j \cap A_l)$$

$$= \sum_{j=1}^{n'} \sum_{l=1}^n \beta_j \mu(B_j \cap A_l)$$

By a similar deduction, we get that

$$\sum_{l=1}^{n} \alpha_j \mu(A_j) = \sum_{l=1}^{n} \sum_{j=1}^{n'} \alpha_l \mu(A_l \cap B_j)$$

Since we know that $t \leq s$, comparing the values of the function at $A_l \cap B_j$, we get that $\beta_j \leq \alpha_l$. This immediately gives us our needed result.

Corollary 6.1.0.1. If a measurable simple function has two representations

$$s = \sum_{j=1}^{n} \alpha_j \chi_{A_j} = \sum_{j=1}^{n'} \beta_j \chi_{B_j}$$

with disjoint measurable sets as before, then

$$\int s \ d\mu = \sum_{j=1}^{n} \alpha_j \mu(A_j) = \sum_{j=1}^{n'} \beta_j \mu(B_j)$$

Proof. Use the fact that a=b is equivalent to $a \leq b$ and $b \leq a$ and use above lemma.

Definition 6.1.2. Let (X, \mathcal{M}, μ) be a mesurable space, $s: X \to [0, \infty]$ a measurable simple function,

$$s = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

with $\{A_j\}_{j=1}^n$ disjoint, measurable, then we define for $E \in \mathcal{M}$

$$\int_{E} s \ d\mu = \sum_{j=1}^{n} \alpha_{j} \mu(A_{j} \cap E)$$

Lemma 6.1.2. If s, t are non-negative measurable, simple functions and $t \leq s$ and $E \in \mathcal{M}$, then

$$\int_{E} t \ d\mu \le \int_{E} s \ d\mu$$

Proof. Proof is exactly like before lemma, just replacing $\mu(A_j)$ with $\mu(A_j \cap E)$. \square Remark 6.1.1. If $s: X \to [0, \infty]$ is simple and measurable, then

$$\int s \ dx = \sup \{ \int_E t d\mu \ : \ 0 \le t \le s \text{ is measurable and simple.} \}$$

Definition 6.1.3. For $f: X \to [0, \infty]$ measurable, we define

$$\int_{E} f d\mu = \sup_{\substack{0 \le t \le f \\ t \text{ is simple}}} \int_{E} t \ d\mu$$

Example 6.1.1. We will give some examples of measurable functions.

• $X = \mathbb{N}, \mathcal{M} = P(\mathbb{N}), \mu$ is the counting measure. $f : \mathbb{N} \to [0, \infty]$. Then let

$$s_N(n) = \begin{cases} f(n), & n \le N \\ 0, & \text{otherwise} \end{cases}$$

Now if $\sum_{j=1}^{\infty} f(j) \leq \infty$, then $f(j) \to \infty$ as $j \to \infty$. Thus if $t \leq f$ and t is simple, then there is $N \in \mathbb{N}$ such that t(j) = 0 for each $j \geq N$. Then by comparison, $0 \leq t \leq s_n \leq f$ and finally, we have

$$\sum_{j=1}^{\infty} t(j) \le \sum_{j=1}^{\infty} s_N(j) \le \sum_{j=1}^{\infty} f(j)$$

so taking supremums, we get

$$\sup_{\substack{0 \le t \le f \\ t \text{ is simple}}} \sum_{j=1}^{\infty} t(j) = \sup_{N \in \mathbb{N}} \sum_{j \in \mathbb{N}} s_N(j) = \sum_{j=1}^{\infty} f(j)$$

Remark 7.0.1. Let (X, \mathcal{M}, μ) be a measure space, a simple function $s: X \to [0, \infty]$, then $\phi: \mathcal{M} \to [0, \infty]$ defined as

$$\phi(E) = \int_E s \ d\mu$$

is a measure.

Proof. Since our definiton demands that measure of some set should be finite, we verify this first. We see that

$$\phi(\emptyset) = \int_{\emptyset} s \ d\mu = 0$$

Now to prove countable disjoint additivity, consider the disjoint collection $\{E_l\}_{l\in\mathbb{N}}$. And assume that $s=\sum_{j=1}^n\alpha_j\chi_{A_j}$ with $\alpha_j\in[0,\infty]$, with A_j s disjoint. Then for $E=\bigcup_{l=1}^\infty E_l$, we have

$$\phi(E) = \sum_{j=1}^{n} \alpha_{j} \mu(A_{j} \cap E)$$

$$= \sum_{j=1}^{n} \sum_{l \in \mathbb{N}} \alpha_{j} \mu(A_{j} \cap E_{l})$$

$$= \sum_{l \in \mathbb{N}} \sum_{j=1}^{n} \alpha_{j} \mu(A_{j} \cap E_{l})$$

$$= \sum_{l \in \mathbb{N}} \int_{E_{l}} s \ d\mu$$

7.1 Properties of Integrals

Theorem 7.1.1. The interal of a non-negative measurable function from a measure space (X, \mathcal{M}, μ) has the following properties

- (1) If $0 \le f \le g$, then $\int_E f(x) dx \le \int_E g d\mu$
- (2) If $A \subset B$, $A, B \in \mathcal{M}$, then $\int_A f \ d\mu \leq \int_B f \ d\mu$
- (3) If $c \in [0, \infty)$, $E \in \mathcal{M}$, then $\int_E cf \ d\mu = c \int_E f \ d\mu$
- (4) If f = 0, or $\mu(E) = 0$, then $\int_{E} f \ d\mu = 0$
- (5) For all $E \in \mathcal{M}$,

$$\int_{E} f \ d\mu = \int_{X} f \chi_{E} \ d\mu$$

Proof. (1) By definition

$$\int f \ d\mu = \sup_{\substack{t \text{ is simple} \\ t \text{ is measurable} \\ 0 \le t \le f}} \int_E t \ d\mu$$

then the simple function $t \leq f$ is also $t \leq g$. Hence suping over simple functions under g, every simple function under f is included.

(2) Let $s = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ be a simple function $0 \le s \le f$ with $\int s \, dx + \epsilon > \int f \, d\mu$. Using the inclusion $A \subset B$, we get

$$\int_A s \ d\mu = \sum_{n \in \mathbb{N}} \alpha_n$$

(3) Suppose $s = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$ is a simple function with disjoint A_j s. Then $s\chi_E = \sum_{j=1}^{n} \alpha_j \chi_{A_j \cap E}$ is also simple (and measurable), and

$$\int_{E} s \ dx = \sum_{j=1}^{n} \alpha_{j} \mu(A_{j} \cap E) = \int s \chi_{E} \ dx$$

Hence the statement is true for simple measurable functions. Next, consider f non-negative measurable, then for $\epsilon \geq 0$, we have a simple measurable function s with $\int_E s \ d\mu + \epsilon > \int_E f \ d\mu$. Then by preceding part,

$$\int s\chi_E \ d\mu + \epsilon > \int_E f \ d\mu$$

Also $s\chi_E \leq f\chi_E$. So

$$\int f\chi_E \ d\mu + \epsilon \ge \sup_{t \text{ is simple}} \int s\chi_E \ d\mu + \epsilon > \int f \ d\mu$$

Taking $\epsilon \to 0$ gives

$$\int f\chi_E \ d\mu \ge \int_E f \ d\mu$$

For the reverse inequalty, note that $f\chi_E \leq f$, and use similar circus.

Theorem 7.1.2 (Monotone convergence theorem). Let (X, \mathcal{M}, μ) be a measure space, given a sequence $f_n: X \to [0, \infty]$ of measurable functions and they are monotone increasing, i.e for each $x \in X$, $0 \le f_1(x) \le f_2(x) \le \ldots$, then

$$\lim_{n \to \infty} \int f_n \ d\mu = \int \lim_{n \to \infty} f_n \ d\mu$$

Proof. Let $f = \lim_{n \to \infty} f_n$ be the pointwise limit. Then f is measurable. From $f_n \leq f_{n+1}$, we get that

$$\int f_n \ d\mu \le \int f_{n+1} \ d\mu$$

so both sides of the claimed identity exist, and from $f_n \leq f$, we also know that

$$\int f_n \ d\mu \le \int f \ d\mu$$

which taking the limits give us,

$$\lim_{n \to \infty} \int f_n \ d\mu \le \int f \ d\mu$$

Now let $s: X \to [0, \infty]$ be a simple measurable function $s \leq f$. Choose $0 \leq c < 1$, and define $E_n = \{x \in X : f_n(x) \geq cs(x)\} = (f_n - s)^{-1}([0, \infty])$. Verify that difference between an extended real valued function and a real valued function is measurable, then E_n is measurable. This gives a nested sequence $E_1 \subset E_2 \subset \ldots$ If f(x) > 0, then by f(x) > cs(x) and $f_n(x) \to f(x)$, there is $n \in \mathbb{N}$ such that $x \in E_n$. On the other hand if f(x) = 0, then cs(x) = 0 = f(x), so $x \in E_n$ for all $n \in \mathbb{N}$. We see that each $x \in X$ is in the union $\bigcup_{n=1}^{\infty} E_n$. Hence $X = \bigcup_{n=1}^{\infty} E_n$. Now we define $\phi: \mathcal{M} \to [0, \infty]$ by

$$\phi(E) = \int_{E} s \ d\mu$$

which is a measure and $\phi(X) = \phi(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \phi(E_n)$ by Theorem 7.1.1. We rewrite this as

$$\int_X s \ d\mu = \lim_{n \to \infty} \int_{E_n} s \ d\mu$$

$$= \lim_{n \to \infty} \int_X s \chi_{E_n} \ d\mu$$

$$\leq \lim_{n \to \infty} \int_X \frac{1}{c} f_n \ d\mu$$

Now take sup over all such simple (bounded) functions $s \leq f$ and let $c \to 1$. Finish this proof.

Remark 8.0.1. Suppose A_1, A_2, \ldots Consider their characteristic functions χ_{A_n} and let $\limsup_{k\geq n} = \chi_A$. What is A?

$$\limsup \chi_{A_n} = \lim_{n \to \infty} \sup_{k \ge N} \chi_{A_k}$$
$$= \lim_{n \to \infty} \chi_{\cup_{k \ge n} A_k}$$

Theorem 8.0.1. Let (X, \mathcal{M}, μ) be a measurable space, $f, g: X \to [0, \infty]$ be measurable, then

$$\int (f+g) \ d\mu = \int f \ d\mu + \int g \ d\mu$$

Proof. For $s,t:X\to [0,\infty]$ simple and measurable, by definition

$$\int (s+t) \ d\mu = \int s \ d\mu + \int t \ d\mu$$

Considering sequences of simple measurable functions $(s_n)_{n=1}^{\infty}$, $(t_n)_{n=1}^{\infty}$ such that $s_n(x) \nearrow f(x), t_n(x) \nearrow g(x)$ for each $x \in X$. Then by monotone convergence theorem

$$\int s_n \ d\mu \to \int f \ d\mu \quad \int t_n \ d\mu \to \int g \ d\mu$$

and since $s_n(x) + t_n(x) \nearrow f(x) + g(x)$ for each $x \in X$ then again by MCT we get

$$\int (s_n + t_n) \ d\mu \to \int (f + g) \ d\mu$$

Corollary 8.0.1.1. If $(f_n)_{n=1}^{\infty}$ is a sequence of functions $f_n: X \to [0, \infty]$, then

$$\int \sum_{i=1}^{\infty} f_n \ d\mu = \sum_{i=1}^{\infty} \int f \ d\mu$$

Proof. Let $g_m = \sum_{n=1}^m f_n$. Then (g_m) forms an incrasing sequence, so

$$\int \sum_{n \in \mathbb{N}} f_n \ d\mu = \int \lim_{n \to \infty} g_m d\mu$$
$$= \lim_{m \to \infty} \int \sum_{i=1}^m f_i \ d\mu$$

Theorem 8.0.2. If $f:[0,\infty]$ is maeasurable on (x,\mathcal{M},μ) , then $\phi:\mathcal{M}\to[0,\infty]$,

$$\phi(E) = \int_{E} f d\mu$$

defines a measure ϕ and for any $g: X \to [0, \infty]$, and for any measurable $g: X \to [0, \infty]$

$$\int g \ d\phi = \int g f \ d\mu$$

Proof. $\phi(\emptyset) = 0$ since the integral of every simple measurable function $s \leq f$ over \emptyset is 0.

Let $(E_n)_{n=1}^{\infty}$ be a disjoint seque of sets $E = \bigcup_{j=1}^{\infty} E_j$, then

$$\phi(E) = \int f \, d\mu = \int f \chi_{X_E} \, dx = \int f \chi_{\bigcup_{n=1}^{\infty} E_n} \, d\mu = \int f(\sum_{n \in \mathbb{N}} \chi_{E_n}) \, d\mu = \sum_{n \in \mathbb{N}} \int_{E_n} f \, d\mu$$

which is exactly $\sum_{n\in\mathbb{N}} \phi(E_n)$. This gives that ϕ is a measure.

To see the claimed identity, we first show that

$$\int s \ d\phi = \int s f \ d\mu$$

for $s: X \to [0, \infty)$ simple measurable, with

$$s(x) = \sum_{j=1}^{n} \alpha_j \chi_{A_j}(x)$$

Then we see that

$$\int s \ d\mu = \sum_{j=1}^{n} \alpha_{i} \phi(A_{j})$$

$$= \sum_{j=1}^{n} \alpha_{j} \int_{A_{j}} f \ d\mu$$

$$= \int \left(\sum_{j=1}^{n} \alpha_{j} \chi_{A_{j}}\right) f \ d\mu$$

$$= \int sf \ d\mu$$

Now for any given $g: X \to [0, \infty]$, we approximate g with a simple measurable sequence $s_n \nearrow g$. Then by monotone functions, we get

$$\int g \ d\phi = \lim_{n \to \infty} \int s_n \ d\phi$$

$$= \lim_{n \to \infty} \int s_n f \ d\mu$$

$$= \int \lim_{n \to \infty} s_n f \ d\mu$$

$$= \int \phi \ d\mu$$

Definition 8.0.1. We define the space $L^1(\mu)$ of integrable functions on a measurable functions (X, \mathcal{M}, μ) to consist of all measurable $f: X \to \mathbb{C}$ such that

$$\int |f| \ d\mu \le \infty$$

Remark 8.0.2. If f is measurable, $\mathbb C$ valued, such that f=u+iv where u,v are real valued measurable functions. Then let $u^+=\max\{0,u\}, u^-=\max\{0,-u\}$. Then u^+,u^- are measurable functions. Similarly, we get v^+,v^- also to be measurable functions. Then we get $f=u^+-u^-+i(v^+-v^-)$ and we define the integral as

$$\int f \ d\mu = \int u^{+} \ d\mu - \int u^{-} \ d\mu + i \int v^{+} \ d\mu - i \int v^{-} \ d\mu$$

Remark 9.0.1 (Warm up). Assume there is a measure μ on \mathbb{R}^+ , for all Borel-measurable functions, and $\mu([a,b]) = b-a$ for each $a \leq b$ and for continuous function f,

$$\int_{[a,b]} f \ d\mu = \int_a^b f \ dx$$

Is the function

$$f(x) = \begin{cases} 1, & x = 0\\ \frac{\sin(x)}{x}, & x > 0 \end{cases}$$

Theorem 9.0.1. $L^1(\mu)$ is a vector space for $f, g \in L^1(\mu)$. Moreover

$$\int f + g \ d\mu = \int f \ d\mu + \int g \ d\mu$$

Proof. We know that for $\alpha, \beta \in \mathbb{C}$,

$$|\alpha f + \beta g| \le |\alpha||f| + |\beta||g|$$

Then using the properties of integration, we get that

$$\int |\alpha f + \beta g| d\mu \le \int |\alpha| |f| d\mu + \int |\beta| |g| d\mu = |\alpha| ||f||_1 + \beta ||g||_1 \le \infty$$

Now to prove the rest, we'll assume f, g are \mathbb{R} -valued functions and let h = f + g. Then we have $h^+ - h^- = f^+ - f^- + g^+ - g^- = f^+ + g^+ - (f^- + g^-)$, which gives

$$\int h^{+} d\mu + \int f^{+} d\mu + \int g^{+} d\mu = \int h^{+} + f^{-} + g^{-} d\mu$$

$$= \int h^{-} + f^{+} + g^{+} d\mu$$

$$= \int h^{-} d\mu + \int f^{-} d\mu + \int g^{-} d\mu$$

Now rearranging things up, we get what we need for reals. verify similarly for Complex case. \Box

Note. What can we say about f?

Theorem 9.0.2. If $f \in L^1(\mu)$, then

$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu$$

Proof. If f was \mathbb{R} -valued, then

$$\left| \int f \ d\mu \right| = \left| \int f^+ \ d\mu + \int f^- \ d\mu \right| \le \left| \int f^+ \ d\mu \right| + \left| \int f^- \ d\mu \right| = \int |f| \ d\mu$$

Now in general, if f is a \mathbb{C} -valued function, then let the integral be equal to z. Now if z=0, we have nothing to prove. If $z\neq 0$, then multiply f with $\alpha=\frac{\bar{z}}{|z|}$. Then integral of αf will be real and we'll be good.

Theorem 10.0.1 (Fatou's Lemma). If (f_n) is a sequence of measurable functions $f_n: X \to [0, \infty]$, then

$$\int \lim_{n \to \infty} \inf f_n \ d\mu \le \lim_{n \to \infty} \inf \int f_n \ d\mu$$

Proof. Let $g_m(x) = \inf_{n \geq m} f_n(x)$. Then $0 \leq g_1(x) \leq g_2(x) \leq \dots$ Then by MCT, we get

$$\int \lim_{m \to \infty} g_m \ d\mu = \lim_{n \to \infty} \int g_m \ d\mu(x)$$

Also see that if $n \geq m$, then $f_n \geq g_m$ and therefore, we get

$$\int f_n \ d\mu \ge \int g_m \ d\mu$$

So

$$\inf_{n \ge m} \int f_n \ d\mu \ge \int g_m \ d\mu$$

Now taking $m \to \infty$ on both sides, we get

$$\lim_{n\to\infty}\inf\int f_n\ d\mu\geq\int\lim_{n\to\infty}\inf f_n\ d\mu$$

which proves the theorem.

Example 10.0.1. Let μ be the counting measure on $X = \{0, 1\}$. Let

$$f_{2n}(x) = \begin{cases} 0, & x = 0 \\ 1, & x = 1 \end{cases}$$
 $f_{2n+1} = \begin{cases} 1, & x = 0 \\ 0, & x = 1 \end{cases}$

Then $\int \lim_{n\to\infty} \inf f_n \ d\mu = 0 \le 1 = \lim_{n\to\infty} \inf \int f_n \ d\mu$

Theorem 10.0.2 (Lebesgue dominated convergence theorem). Let (X, \mathcal{M}, μ) be a measurable space. If $f_n : X \to \mathbb{C}$ defines a sequence of measurable functions pointwise converging to f, and there is a $g \in L^1(\mu)$ such that

$$|f_n| \le g, \quad \forall n \in \mathbb{N}$$

Then $f \in L^1(\mu)$ and

$$\int |f_n - f| \ d\mu \to 0$$

So we exchange limits and integral and write

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu$$

Proof. We have $|f| \leq g$ since $|f_n| \leq g$ for all $n \in \mathbb{N}$ and $f_n \to f$ pointwise. Consider $h_n = 2g - |f_n - f| \geq 0$ (Use triangle inequality to show that $h_n \geq 0$). Fatou's lemma gives

$$\lim_{n \to \infty} \inf \int (2g - |f_n - f|) \ d\mu \ge \int \lim_{n \to \infty} (2g - |f_n - f|) \ d\mu$$

$$= 2 \int g \ d\mu + \int \lim_{n \to \infty} \inf(-|f_n - f|) \ d\mu$$

$$= 2 \int g \ d\mu - \int \lim_{n \to \infty} \sup(|f_n - f|) \ d\mu$$

But we also have

$$\lim_{n \to \infty} \inf \int (2g - |f_n - f|) \ dx \le 2 \int g \ d\mu + \lim_{n \to \infty} \inf \int |f_n - f| \ d\mu$$

Hairy logic. Verify with Rudin.

10.1 Measure Zero

Definition 10.1.1. We say that a property P holds almost everywhere if

$$\mu(\lbrace x \in X : P \text{ does not hold } atx \rbrace) = 0$$

Theorem 10.1.1. If $f: X \to [0, \infty]$ and $\int f \ d\mu = 0$, then f = 0 almost everywhere. Conversely, if f = 0 almost everywhere then $\int f \ d\mu = 0$.

Proof. Let $E_n = \{s \in X : f(x) \ge \frac{1}{n}\}$ and $E = \bigcup_{n=1}^{\infty} E_n = \{x \in X : f(x) > 0\}$. Note that E is measurable since each of E_i is measurable. So

$$0 = \int f \ d\mu \ge \int f \chi_{E_n} \ d\mu$$
$$\ge \int \frac{1}{n} \chi_{E_n} \ dx$$
$$= \frac{1}{n} \mu(E_n) \ge 0$$

Hence $\mu(E_n) = 0$ for each $n \in \mathbb{N}$. Hence E is a measure zero set. Therefore f is zero almost everywhere.

Conversely if f = 0 almost everywhere, then let

$$g(x) = \begin{cases} 0, & f(x) = 0\\ \infty, & \text{otherwise} \end{cases}$$

Then g is a measurable simple function with g > f and $\int g \ d\mu =$. Hence $\int f \ d\mu = 0$.

Theorem 10.1.2. If $f_n: X \to \mathbb{C}$ defines a sequence of measurable functions and if

$$\sum_{n\in\mathbb{N}} |f_n| \in L^1(\mu).$$

Then

$$\sum_{n\in\mathbb{N}} f_n \in L^1(\mu)$$

and the series $\sum_{n\in\mathbb{N}} f_n$ converges almost everywhere. See theorem

Proof. We assume each f_n is defined on $X \setminus S_n$ with $\mu(S_n) = 0$. We have to show that there exist a set S with $\mu(S) = 0$ and $\forall x \notin S$, $\sum_{n \in \mathbb{N}} f_n(x)$ converges. Let

$$f(x) = \sum_{n \in \mathbb{N}} |f_n(x)|$$

By MCT

$$\sum_{n \in \mathbb{N}} \int |f_n| \ d\mu = \int f \ d\mu \le \infty$$

This implies $\{x : f(x) = \infty\}$ has measure zero. Hence if $x \notin S_n$ nad $x \notin \{x : f(x) = \infty\}$, then $\sum_{n \in \mathbb{N}} f_n(x)$ converges absolutely. Thus $S = \bigcup_{n=1}^{\infty} S_n \cup \{x : f(x) = \infty\}$ is measure zero and $x \in S^c$

Definition 10.1.2. Let (X, \mathcal{M}, μ) be a measure space. If for any $E \in \mathcal{M}$ and $F \subset E$, $\mu(E) = 0$ implies $F \subset \mathcal{M}$, then μ is called complete.

Note (Warm up). Let (X, \mathcal{M}, μ) be a measure space and $f : X \to [0, \infty]$, with $f \in L^1(\mu)$. Let $E = \{x \in X : f(x) \ge 1\}$. Then show $\mu(E) < \infty$.

This is Chebyshev's inequality for general measures.

Remark 11.0.1. Consider the distance (semi-metric) between sets in \mathcal{M} , defined as $\mu(A\Delta B)$. Let $f: X \to [0, \infty]$ be a function $f \in L^1(\mu)$. Now let ϕ be a measure defined as $d\phi = fd\mu$. Then define $\tilde{d}(A, B) = \phi(A\Delta B) = \int_{A\Delta B} f \ d\mu$. Then if $d(A_n, B) \to 0$ will imply $\tilde{d}(A_n, B) \to 0$.

Theorem 11.0.1. Any measure space (X, \mathcal{M}, μ) can be equipped with a complete extension of μ on the collection of sets, $\mathcal{M}^* = \{E \subset X : \exists A, B \in \mathcal{M}, \mu(B \setminus A) = 0\}$ in which case we define $\mu^*(E) = \mu(A)$, which gives a complete measure on \mathcal{M}^* .

Proof. First, we establish μ^* is well defined, that is it does not depend on the particular choice of the subset $A \subset E$. To see this, let $A' \subset E \subset B'$ such that $\mu(B' \setminus A') = 0$. By the inclusions, $A \subset E \subset B'$. So we get

$$A \setminus A' \subset E \setminus A' \subset B' \setminus A'$$

Thus by monotonicity of μ , we get $\mu(A \setminus A') = 0$. Moreover by symmetry of A and A', we get $\mu(A' \setminus A) = 0$. Thus we get $\mu(A) = \mu(A \setminus A') + \mu(A \cap A') = \mu(A' \setminus A) + \mu(A' \cap A) = \mu(A')$. Hence we see that the definition of μ^* is well defined.

Now we show that \mathcal{M}^* is actually a σ -algebra. We immediately see that $\mu^*(\emptyset) = 0$.

- $\mathcal{M} \subset \mathcal{M}^*$ implies $X \in \mathcal{M}^*$
- Let $E \in \mathcal{M}^*$, then there are $A, B \in \mathcal{M}$ with $A \subset E \subset B$ and $\mu(B \setminus A) = 0$. Thus $B^c \subset E^c \subset A^c$. Then $\mu(A^c \setminus B^c) = \mu(A^c \cap B) = \mu(B \cap A) = 0$ shows $E^c \in \mathcal{M}^*$.

• Let (E_j) be a countable collection of disjoint sets in \mathcal{M}^* . Then there are subsets $A_j, B_j \in \mathcal{M}$ with $A_j \subset E_j \subset B_j$, with $\mu(B_j \setminus A_j) = 0$. Then let

$$A = \bigcup_{j=1}^{\infty} A_j$$
 $E = \bigcup_{j=1}^{\infty} E_j$ $B = \bigcup_{j=1}^{\infty} B_j$

Then we have $A \subset E \subset B$. Moreover since each E_j are disjoint, we get A_j are disjoint.

Now show μ^* is countably additive and then show μ^* is complete. verify

Remark 11.0.2. Consider C([0,1]) equipped with the sup norm. Recall that this is a Banach space. Let $\lambda: C([0,1]) \to \mathbb{C}$ be defined as

$$\lambda(f) = \int_0^1 f(x) \ dx$$

Recall also that $|\lambda(f)| \leq \lambda(|f|) \leq ||f||_{\infty}$. Hence we see λ is a bounded linear functional. Therefore we see that we can associate the Riemann integral with a linear functional. We ask if we can go back i.e if we have a linear functional on C([0,1]), can we get a measure to integrate functions on C([0,1])

12.1 Recap on topology

Definition 12.1.1. Let (X, τ) be a topological space. A set E is called closed if its complement is open. The closure of E is the smallest closed subset containing E.

$$\overline{E} = \bigcap_{\substack{F^c \in \tau \\ E \subset F}} F$$

We can check \overline{E} is closed by looking at \overline{E}^c .

Definition 12.1.2. A set $K \subset X$ is called compact if every open cover of K has a finite subcover.

Definition 12.1.3. (X, τ) is Hausdorff (T_2) if for any $p \neq q \in X$ there are open sets $U, V \in \tau$ such that $p \in U, q \in V$ and $U \cap V = \emptyset$.

Definition 12.1.4. A neighborhood of $p \in X$ is an open set $U \in \tau$ containing p.

Definition 12.1.5. X is called locally compact if any point $p \in X$ has a neighborhood V with compact \overline{V} .

Theorem 12.1.1. Let X be a topological space. If $K \subset X$ is compact and $F \subset K$ is closed, then F is compact.

Proof. Make any covering of F into a covering of K, by adding F^c , the get a finite subcover for K, then remove F^c from this subcover if its there. Now you got a finite subcover for F.

Theorem 12.1.2. let X be a topological Hausdorff space. Then if $K \subset X$ is compact, $p \notin K$, then there are open set U, V such that $K \subset V$, $p \in U$, $U \cap V = \emptyset$. (not that we are not claiming regularity).

Proof. For each $q \in K$, there is an open set U_q, V_q with $q \in V_q, p \in V_q, V_q \cap U_q = \emptyset$. Then $K \subset \bigcap_{q \in K} V_q$. Then since K is compact, there is a finite subcover $V_{q_1}, V_{q_2}, \ldots V_{q_n}$ of K. Now let $V = \bigcup_{i=1}^n V_{q_i}$ and $U = \bigcap_{i=1}^n U_{q_i}$ both of which are open. Then $K \subset V, p \in U$ and $U \cap V = \emptyset$.

Theorem 12.1.3. If K_{α} is a collection of nonempty compact subsets of a topological Hausdorff space X indexed by A, and if for each finite subset $B \subset A$, $\bigcap_{\beta \in B} K_{\beta} \neq \emptyset$ then

$$\cap_{\alpha \in A} K_{\alpha} \neq \emptyset$$

Proof. If $\cap_{\alpha \in A} K_{\alpha} = \emptyset$, then K_{α}^{c} forms an open cover for $K_{\alpha_{0}}$. Now use the compactness property. verify

Theorem 12.1.4. If X, Y are topological spaces, if $f: X \to Y$ is continuous, and K is compact, then f(K) is compact.

Proof. Let U_{α} be an open cover for f(K), then $f^{-1}(U_{\alpha})$ forms an open cover for K. Now by the compactness there is a finite cover $f^{-1}(U_{\alpha_1}), f^{-1}(U_{\alpha_2}), \ldots, f^{-1}(U_{\alpha_n})$. Therefore $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$ is a finite subcover of f(K).

Definition 12.1.6. Let X be a topological space, $f: X \to \mathbb{C}$. Then the support of f is defined as $\operatorname{supp} f = \{x \in X : f(x) \neq 0\}$. See that $\operatorname{supp} (f+g) \subset \operatorname{supp} (f) \cup \operatorname{supp} (g)$

We denote $C_c(X)$ to be the set of continuous functions which have compact support. $C_c(X)$ is a subspace of the vector space C(X).

Theorem 12.1.5 (Urysohn Lemma). Let X be a locally compact Hausdorff space. If X is compact, V is open and $K \subset V$, then there is a function $f \in C_c(X)$ with

 $\chi_K \le f \le \chi_V$

Theorem 13.0.1 (Urysohn Lemma). Let X be a locally compact Hausdorff space. If X is compact, V is open and $K \subset V$, then there is a function $f \in C_c(X)$ with

$$\chi_K \leq f \leq \chi_V$$

.

Proof. Get a finite cover for K whose closure is contained in V

Definition 13.0.1. Let X be locally Hausdorff. A linear functional $\lambda: X \to \mathbb{C}$ is positive, if $\lambda(x) \geq 0$ for each $x \in X$.

П

Remark 13.0.1. Suppose X is locally compact, μ a measure on a σ -algebra \mathcal{M} , \mathcal{M} containing Borel sets. If $f \in C(X)$ and $f(x) \geq 0$ for each $x \in X$, then $\int f \ d\mu \geq 0$.

If every compact set has finite measure, then each $f \in C_c(X)$ is in $L^1(\mu)$. And $\lambda(f) = \int f \ d\mu$ defines a positive linear functional on $C_c(X)$. Conversely, if each $f \in C_c(X)$ is in $L^1(\mu)$, then we know for each compact K, we have $\mu(K) < \infty$. To see this, take V open with $K \subset V$, \overline{V} compact and use Urysohn's Lemma to construct $f \in C_c(X)$, $\chi_K \leq f \leq \chi_V$. Then by monotonicity,

$$0 \le \int X_k \ d\mu \le \int f \ d\mu < \infty$$

Theorem 13.0.2 (Reisz Representation Theorem). Let X be a locally compact Hausdorff space. If λ is a positive linear functional on $C_c(X)$, then there exists a σ -algebra \mathcal{M} and a complete (positive) measure μ , uniquely determined by λ such that

- (1) $\mathcal{M} \supset B(X)$, the Borel sigma algebra.
- (2) $\lambda(f) = \int f \ d\mu \text{ for each } f \in C_c(X).$
- (3) $\mu(K) < \infty$ for each compact K.

(4) for
$$E \in \mathcal{M}$$
,

$$\mu(E) = \inf_{\substack{V \text{ is open} \\ E \subset V}} \mu(V)$$

(5) If E is open or $E \in \mathcal{M}$ and $\mu(E) < \infty$, then

$$\mu(E) = \sup{\{\mu(K) : K \subset E, K \text{ is compact}\}}$$

Proof. We will only prove the uniqueness and refer Rudin for the proof. Assume μ_1, μ_2 satisfy these properties. Take K compact, $\epsilon > 0$, then from iv) we know that there exist open sets V_1, V_2 containing K and $\mu_i(V_i) - \epsilon < \mu_i(K)$. Take $V = V_1 \cap V_2 \cap V_3$ with V. prove the rest.

Theorem 14.0.1. Let X be a locally compact Hausdorff space. If X is σ -compact and a Borel measure ν , that assigns each compact set K the measure $\nu(K) < \infty$ then the μ given by Reisz representation theorem satisfies

- 1. If $E \in \mathcal{M}$, $\epsilon > 0$, there is an open set V and a closed set C with $C \subset E \subset V$ and $\mu(V \setminus C) < \epsilon$.
- 2. If $E \in \mathcal{M}$, then there is an F_{σ} set F (countable union of closed sets) and an G_{δ} set G (countable intersection of open sets) with $F \subset E \subset G$ and $\mu(G \setminus F) = 0$.
- 3. μ is regular
- Proof. 1. If $\mu(E) < \infty$, then it holds by Reisz representation theorem. Next consider $E \in \mathcal{M}$ with $\mu(E) = \infty$. Recall that $X = \bigcup_{j=1}^{\infty} K_j$, where each K_j is compact. Let $\epsilon > 0$. Take intersection with K_j , then we have $\mu(E \cap K_j) < \infty$. So we have open sets V_j such that $K_j \cap E \subset V_j$ and $\mu(V_j \setminus (K_j \cap E)) < \frac{\epsilon}{2^{j+1}}$. V_j s are guaranteed by the (4) in the Reisz representation theorem. Take $V = \bigcup_{j=1}^{\infty} V_j$. We have $V \setminus E \subset \bigcup_{j=1}^{\infty} (V_j \setminus (K_j \cap E))$. So we get $\mu(V \setminus E) < \frac{\epsilon}{2}$. Again consider E^c and using the same analysis, we get an open set W such that $E^c \subset W$ and $\mu(W \setminus E^c) < \epsilon/2$. Now let $C = W^c$, this gives $\mu(E \setminus C) = \mu(W \setminus E^c) = \frac{\epsilon}{2}$. Now show that $\mu(W \setminus C) < \epsilon$. Then we're done.
 - 2. Repeat i) for a sequence of $\epsilon_n = \frac{1}{n}$. Then we get a corresponding $C_n \subset E \subset V_n$. Take $V = \bigcap_{n=1}^{\infty} V_n$, $C = \bigcup_{n=1}^{\infty} C_n$. Then we're done.
 - 3. (4), (5) of Reisz representation theorem gives the outer regularity, and outer regularity when $\mu(E) < \infty$. We only need to show inner regularity when $\mu(E) = \infty$. Therefore, we need a sequence A_n of compact sets such that $A_n \subset E$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \mu(A_n) = \infty$. From (1), taking $\epsilon = 1$, we have $C \subset E$, where $\mu(E \setminus C) < 1$. Hence we see $\mu(C) = \infty$.

Now from the σ -compactness, we get $X = \bigcup_{n=1}^{\infty} K_n$ for K_n compact. We can further demand K_n s are increasing since if not we can take finite unions of everything below. Now let $C_n = K_n \cap C$ and we have

$$\infty = \mu(C) = \lim_{n \to \infty} \mu(C_n)$$

14.1 Lebesgue Measure

Definition 14.1.1. A k-cell in \mathbb{R}^n is a set of the form

$$A = \{ \lambda = (x_1, x_2, \dots, x_k) : a_j \le^{\circ} x_j \le^{\circ} b_j, \le^{\circ} \in \{ \le, < \} \}$$

We define $\operatorname{vol}(A) = \prod_{j=1}^k (b_j - a_j)$

Theorem 14.1.1. There is a σ -algebra \mathcal{M} including Borel sets on \mathbb{R}^n and measure m on \mathcal{M} such that

- (1) m(V) = vol(V) if V is a k-cell
- (2) m restricted to Borel sets is a regular measure
- (3) m is translation invariant

Proof. For any $f \in C_c(\mathbb{R}^k)$. Let $\Lambda(f) = \int f \, dV$ be the Riemann integral. Then Λ is a positive linear functional on $C_c(\mathbb{R}^k)$. Reisz representation theorem gives a measure m out of Λ which has regularity and defined on a σ -algebra \mathcal{M} which contains the Borel sets.

(1) Let V be an open k-cell. Pick compact k-cells nested increasing with with union $V = \bigcup_{j=1}^{\infty} V_j$. By Urysohn's lemma, there are $f_n \in C_c(\mathbb{R}^n)$ such that $\chi_{V_n} \leq f_n \leq \chi_V$ where V_n is compact and V is open. Then

$$m(V_n) = \int \chi_{V_n} dm \le \int f_n dm \le \int \chi_V dm = m(V)$$

Now taking $n \to \infty$, by monotone convergence theorem, we get $m(V_n) \to m(V)$. Hence by sandwich, we get $\int f_n dm \to m(V)$.

Similarly

$$\operatorname{vol}(V_n) \le \int f_n \ dV \le \operatorname{vol}(V)$$

Then we can choose V_k such that $\operatorname{vol}(V_k) \to \operatorname{vol}(V)$, then we get

- (2) Property of Reisz representation measure
- (3) Fix $a \in \mathbb{R}^k$ and define $\lambda : \mathcal{M} \to [0, \infty] := \lambda(E) = m(a + E)$. Verify that λ is a measure on \mathcal{M} .

Also define translation of functions $f \in C_c(\mathbb{R}^k)$ as $f \to f_a$, where $f_a(x) = f(x-a)$. We have seen for Riemann integrals that

$$\int_{\mathbb{R}^k} f \ dV = \int_{\mathbb{R}^k} f_a \ dV$$

By the extension (Reisz, i guess),

$$\int f \ dm = \int f_a \ dm$$

Moreover if K is compact, and V open with $K \subset V$, we have $f \in C_c(\mathbb{R}^k)$ with $\chi_K \leq f \leq \chi_V$. Then $\chi_{K+a} \leq f_a \leq \chi_{V+a}$.

Next choose any compact set K in \mathbb{R}^k . Define a distance from K as $\phi_k(x) = \inf_{y \in K} |x-y|$. Then ϕ_K is uniformly continuous on \mathbb{R}^k . Pick $V_k = \phi_K^{-1}((\frac{-1}{n}, \frac{1}{n}))$. Then $V_n \supset V_{n+1} \supset \ldots$ and $K = \bigcap_{n=1}^{\infty} V_n$.

Now choose a sequence $(f_n) \in C_c(\mathbb{R}^k)$ such that $\chi_k \leq f_n \leq \chi_{V_n}$ and $f_1 \geq f_2 \geq \ldots$ (By choosing minima among the first few functions).

Then we get

$$m(K) = \inf_{n \in \mathbb{N}} \int f_n \ dm$$

$$= \inf_{n \in \mathbb{N}} \int (f_n)_a \ dm$$

$$= \lambda(K)$$

Now we have showed that $\lambda = \mu$ for compact sets in \mathbb{R}^k . Now we should prove the same for the open sets of \mathbb{R}^k . Now by the σ -compactness of \mathbb{R}^k , we get our desired translation invariance.

15.1 Vitali Sets

Theorem 15.1.1. If \mathcal{M} is a σ -algebra on \mathbb{R} and $\lambda : \mathcal{M} \to [0, \infty]$ is a translation invariant measure with $0 < \lambda([0, 1)) < \infty$, then there is $E \subset [0, 1)$ such that $E \notin \mathcal{M}$.

Proof. Endow [0,1) with an equivalence relation $a \sim b \iff a-b \in \mathbb{Q}$. This gives a partition of [0,1) by the equivalence classes. Now from each of these classes pick (by AOC) one representative element and build the set E. Observe that for $r, s \in \mathbb{Q}$, $(E+s) \cap (E+r) = \emptyset$ if and only if r=s.

Also note that

$$[0,1) \subset \cup_{r \in \mathbb{Q} \cap [-1,1]} (E+r)$$

Therefore

$$E \subset [0,1) \subset \cup_{r \in \mathbb{Q} \cap [-1,1]} (E+r) \subset [-1,2)$$

verify the rest, its easy.

Theorem 15.1.2 (Luzin's theorem). Let X be a locally compact Hausdorff space.

- (1) μ is a regular measure on a σ -algebra $\mathcal M$ containing B(X)
- (2) $f: X \to \mathbb{C}$ is measurable
- (3) there is a $A \in \mathcal{M}$ such that $\mu(A) < \infty$ and f = 0 on A^c

Given $\epsilon > 0$ there is a $g \in C_c(X)$ such that $\mu(\{x \in X : f(x) \neq g(x)\}) < \epsilon$

Theorem 16.0.1 (Luzin's theorem). Let X be a locally compact Hausdorff space.

- (1) μ is a regular measure on a σ -algebra \mathcal{M} containing B(X)
- (2) $f: X \to \mathbb{C}$ is measurable
- (3) there is a $A \in \mathcal{M}$ such that $\mu(A) < \infty$ and f = 0 on A^c

Given $\epsilon > 0$ there is a $g \in C_c(X)$ such that $\mu(\{x \in X : f(x) \neq g(x)\}) < \epsilon$ and $\sup\{|g(x)| : x \in X\} \le \sup\{|f(x)| : x \in X\}.$

Proof. Suppose for now A is compact. (We can assume this since the measure is regular and we can find a compact set $K \subset A$ such that f = 0 almost everywhere in K^c .) We'll do the A not compact case later.

Choose V open such that $A \subset V$ and \overline{V} is compact. We'll first prove the existence of the desired g if f is simple. Let

$$f = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$

where each A_j is disjoint and $\bigcup_{j=1}^n A_j = A$. Again each of the $\mu(A_j) \leq \mu(A) < \infty$. Hence by the regularity of the measure there are compact sets $K_j \subset A_j$ such that $\mu(A_j \setminus K_j) < \frac{\epsilon}{2^{j+1}}$.

Since K_j are compact and disjoint, we can find collection of disjoint open sets V_j such that $K_j \subset V_j$. verify this, I am not sure.

Moreover by replacing V_j with $V_j \cap V$, we can assume $V_j \subset V$. Now by the outer regularity of the measure, we can assume $\mu(V_j \setminus K_j) < \frac{\epsilon}{2^{j+1}}$. Now by Urysohn, there is a $g_i \in C_c(X)$ such that $\chi_{K_j} \leq g_j \leq \chi_{V_j}$. Let

$$g = \sum_{j=1}^{n} \alpha_j g_j$$

Then g is continuous being the finite sum of continuous function. Moreover since $\bigcup_{i=1}^n V_i \subset V$, we get $\operatorname{supp}(g) \subset \overline{V}$. Also

$$|g(x)| \le \max\{|\alpha_j|\}$$

$$\max_{x \in A} |f(x)|$$

Now we see that f(x) = g(x) for all $x \in K_j$ and $x \in (A_j \cup V_j)^c$. Since $K_j \subset V_j$, the set where they possibly disagree is

Add a diagram for ease of reasoning

$$D = \bigcup_{j=1}^{n} (V_j \setminus K_j) \quad \cup \quad \bigcup_{j=1}^{n} (A_j \setminus K_j)$$

. Now by the subadditivity of μ , we get $\mu(D) < \epsilon$.

Now for the general case, assume $0 \le f < 1$ and s_n be the sequence of simple functions $0 \le s_1 \le s_2 \le \ldots \le \text{with } \lim_{n\to\infty} s_n(x) = f(x)$. Let $t_n = s_n - s_{n-1}$, where $s_0 = 0$. Each t_n is simple and $t_n = 0$ on A^c and by construction, we get

$$t_n \le \frac{1}{2^{n-1}} \chi_{B_n}$$

for some set B_n .

Now we use the first part of the proof on t_n s to get a corresponding $g_n \in C_c(X)$. Then g_n satisfy

- (1)
- (2)
- (3)

Let $g = \sum_{n \in \mathbb{N}} g_n$, which converges uniformly as $|g_n| \leq \frac{1}{2^{n-1}}$ by Wierestrass. Hence $g \in C_c(X)$ and $\operatorname{supp}(g) \subset \overline{V}$.

We know that $f = \sum_{n=1}^{\infty} t_n$ from the definition of t_n . So the set $D = \{x \in X : f(x) \neq g(x)\}$ is a subset of $\bigcup_{n=1}^{\infty} \{x \in X : t_n(x) \neq g_n(X)\}$. Now the subadditivity of μ gives that $\mu(D) < \epsilon$.

Next, if f is real valued, bounded, the result follows from scaling f. Again if $f \geq 0$ is measurable, then we have $\bigcap_{n=1}^{\infty} \{x \in X : f(x) \geq n\} = \emptyset$. Moreover $\mu(\{f \geq 1\}) \leq \mu(A) < \infty$. Hence by the continuity of the measure from above, we get $\mu(\{f \geq n\}) \to 0$. Hence we can replace f with $f\chi_{f< n}$ for some appropriate f.