| Nome e Cognome: |                            |  |
|-----------------|----------------------------|--|
|                 | (IN STAMPATELLO MAIUSCOLO) |  |
|                 |                            |  |



# RETI LOGICHE

O Prof. William Fornaciari

Codice Persona o Matricola:

O Prof. Gianluca Palermo

O Prof. Fabio Salice

Appello del 26 Giugno 2024

# !!! CON BOZZA DI SOLUZIONI !!!

Prima di iniziare la prova si prega di leggere con attenzione i seguenti punti:

- Il tempo massimo a disposizione per svolgere la prova é di 1h:45min
- Non è permessa la consultazione di alcun materiale didattico durante lo svolgimento della prova. È severamente vietato colloquiare durante l'esame con i compagni di corso o utilizzare telefoni, PC, libri e appunti.
- In caso di necessità, il docente potrà richiedere lo svolgimento di una prova orale.
- Tutte le risposte devono essere riportate su questi fogli. Non saranno considerate valide le risposte fornite su fogli diversi da quelli contenuti in questo plico.
- Si segnali chiaramente sulla prima pagina il docente di riferimento
- Il punteggio degli esercizi è da considerarsi INDICATIVO
- LE PARTI SCRITTE IN FORMATO NON LEGGIBILE DAL DOCENTE SARANNO CONSIDERATE ERRATE IN FASE DI CORREZIONE

NOTA: Per un voto sufficiente sarà necessario avere almeno 7 punti sul totale degli Esercizi 1 e 2 e almeno 7 punti sul totale degli Esercizi 4 e 5

## ESERCIZIO 1 – Algebra di Boole

Facendo riferimento all'architettura riportata nella figura qui di seguito, si chiede di:



- a. Minimizzare F(a,b,c,d) (funzione riportata nel rettangolo) utilizzando il metodo della mappa Karnaugh; si scrivano tutti gli implicanti primi e si indichi quali tra questi sono anche essenziali. Nel caso ci sia più di una soluzione ottima, se ne scelga una e se ne calcoli il costo in termini di letterali e il fattore di riduzione del costo (Riduzione = (CostoIniziale-CostoFinale)/CostoIniziale);
- b. Ricavare le condizioni di indifferenza dovute alla controllabilità (a, b, c, d rispetto a Alfa, Beta e Gamma)
- c. Ricavare le condizioni di indifferenza dovute alla osservabilità di F<br/> rispetto a Z (riferito ad a,b,c,d)
- d. Sintetizzare F utilizzando tutte le condizioni di indifferenza (CD = CDC U ODC) mediante il metodo delle mappe di Karnaugh (si disegni e usi una nuova mappa di karnaugh). Si ricavi il costo finale in termini di letterali e il guadagno rispetto alla funzione di partenza (quella riportata nel rettangolo).

NOTA: Per garantire la validità di ogni risposta e dell'esercizio nel suo insieme, è essenziale che ogni richiesta sia soddisfatta in modo chiaro e esaustivo. Svolgere l'esercizio per punti evidenziando la soluzione per ogni punto.

### SOLUZIONE

a. 
$$F1 = a'c'd' + a'bd + ab'cd' + acd + abd$$
 oppure 
$$F2 = a'c'd' + a'bd + ab'cd' + acd + abc'd$$

Costo iniziale = 16 Costo finale = 8 riduzione = (16-8)/16 = 8/16 =0,5 - 50%

- b. CDC:  $\{m0, m3, m8, m9, m10, m11, m13, m14\}$
- c. quando Alfa = 1, F non è osservabile su Z. Quindi

ODC: {m4, m7, m12, m15}







Essenziali Non Essenziali

F = a'c'd' + b d + a b' c

| alfa | beta | gamma |
|------|------|-------|
| 0    | 0    | 0     |
| 0    | 0    | 1     |
| 0    | 1    | 0     |
| 0    | 1    | 1     |
| 1    | 0    | 0     |
| 1    | 0    | 1     |
| 1    | 1    | 0     |
| 1    | 1    | 1     |

| a | b | С | d |     |
|---|---|---|---|-----|
| 0 | 0 | 0 | 1 | m1  |
| 0 | 0 | 1 | 0 | m2  |
| 0 | 1 | 0 | 1 | m5  |
| 0 | 1 | 1 | 0 | m6  |
| 0 | 1 | 1 | 1 | m7  |
| 0 | 1 | 0 | 0 | m4  |
| 1 | 1 | 1 | 1 | m15 |
| 1 | 1 | 0 | 0 | m12 |
|   |   |   |   |     |

Table 1: CDC (a, b, c, d rispetto a Alfa, Beta e Gamma)

| beta | gamma                      |
|------|----------------------------|
| 0    | 0                          |
| 0    | 1                          |
| 1    | 0                          |
| 1    | 1                          |
| 0    | 0                          |
| 0    | 1                          |
| 1    | 0                          |
| 1    | 1                          |
|      | 0<br>0<br>1<br>1<br>0<br>0 |

| F               | ]   |
|-----------------|-----|
| osservabile     | ml  |
| osservabile     | m2  |
| osservabile     | m5  |
| osservabile     | m6  |
| non osservabile | m7  |
| non osservaible | m4  |
| non oassevabile | m15 |
| non osservabile | m12 |
|                 |     |

Table 2:

d. DC = CDC U ODC :  $\{m0, m3, m4, m7, m8, m9, m10, m11, m12m13, m14, m15\}$ 

| cd\ab | 00 | 01 | 11 | 10 |
|-------|----|----|----|----|
| 00    | х  | X  | ×  | x  |
| 01    |    | 1  | X  | х  |
| 11    | ×  | /x | ×  | х  |
| 10    |    |    | х  | x  |

F' = bc' oppure bd

#### ESERCIZIO 2 - Quine McCluskey

Data la seguente funzione di uscita multipla F(a, b, c, d) e non completamente specificata.

F1:  $ON1_{set} = \{m0, m4, m5, m7, m8, m12, m13, m14, m15\} - DC1_{set} = \{\}$ 

F2:  $ON2_{set} = \{\}$  -  $DC2_{set} = \{m4, m7, m12, m13, m14, m15\}$ 

- (A) Si descrivano le funzioni mediante le mappe di Karnaugh (disegnandole), si identifichino gli implicanti primi e primi ed essenziali e, si ricavino le funzioni algebriche minime di F1 e F2.
- (B) Dopo aver ragionato bene sulle caratteristiche della funzione di uscita multipla F, identificare con il metodo di Quine-McCluskey tutti gli implicanti primi. Motivare con precisione quali aspetti teorici hanno determinato la scelta del procedimento utilizzato. NOTA: la tabella riportata qui di seguito è ESCLUSIVAMENTE di supporto; la si completi secondo convenienza.
- (C) Identificare, con il metodo di Quine-McCluskey, una copertura minima usando come funzione di costo il numero di letterali della copertura. Si applichino ordinatamente, ESSENZIALITA' ⇒ DOMINANZA DI RIGA ⇒ DOMINANZA DI COLONNA per poi ripartire dalla essenzialità. Per ogni passaggio, utilizzare una tabella esclusivamente per l'applicazione della ESSENZIALITA' e una tabella esclusivamente per l'applicazione delle DOMINANZE (non utilizzare una sola tabella per applicare ESSENZIALITA' e DOMINANZA; prima di ripartire con una nuova essenzialità, si riporti la tabella delle dominanze e vice versa). Per ogni passo riportare chiaramente le trasformazioni avvenute sia un forma testuale che grafica.
- (D) Si scriva la funzione minima identificata e si indichi il costo in termini di letterali.

NOTA: Per garantire la validità delle risposte, è necessario mostrare tutti i passaggi fatti. Per la fase di generazione degli implicanti primi, si usino le tabelle qui sotto riportate. Evidenziare chiaramente la separazione tra le diverse sotto-parti delle tabelle.

|       |               | $m_x m_y$ |   | $\int_{1}^{\infty} f_{2}$ | o source partir c |   |                |
|-------|---------------|-----------|---|---------------------------|-------------------|---|----------------|
|       |               | - ToxTroy |   | 1112                      |                   |   |                |
|       |               |           | - |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |
| $m_x$ | $  f_1 f_2  $ |           |   |                           |                   |   |                |
| 0     | 0000          |           |   |                           | $m_x m_y m_z m_t$ |   | $\int f_1 f_2$ |
| 4     | 0100          |           |   |                           |                   |   |                |
| 8     | 1000          |           |   |                           |                   |   |                |
| 5     | 0101          | 7         |   |                           |                   |   |                |
| 12    | 1100          |           |   |                           |                   |   |                |
| 7     | 0111          | -4        |   |                           | - Annual Control  |   |                |
| 13    | 1101          |           |   |                           | -                 |   |                |
| 14    | 1110          |           |   |                           |                   |   |                |
| 15    | 1111          |           |   |                           |                   | 1 | I              |
|       |               |           |   |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |
|       |               |           |   |                           |                   |   |                |

SOLUZIONE



Figure 1: se risolvono senza considerare che una funzione è 1 o 0



Figure 2: se risolvono considerando che una funzione è 1 o 0 e non serve applicare QM

| lc!d     | m0m4m8m12     | 1                | 0                      | PO | camente pari a 1 (o 0) | 20 | 0   | 4   | 5      | T      | В        | 12   | 13     | 14     | 15        |         |
|----------|---------------|------------------|------------------------|----|------------------------|----|-----|-----|--------|--------|----------|------|--------|--------|-----------|---------|
| b!c      |               | -                |                        |    |                        | PO | - % | X   |        | -      | ×        | ×    | -      |        | -         | 2       |
|          | m4m5m12m13    | 1                | 0                      | P1 |                        | P1 |     | x   | ×      |        | 1.0      | x    | x      | 480    | -         | 2       |
| bd       | m5m7m13m15    | 1                | 0                      | P2 |                        | P2 | -   | _   | x      | X      |          |      | X      |        | х-        |         |
| ab       | m12m13m14m15  | 1                | 0                      | P3 |                        | Р3 |     |     |        |        |          | -X   | x      | ×      | x         |         |
| 20000000 |               | Name of the last | DOTTO SOCIO            |    |                        |    |     |     | Tutti  | esser  | ıziali - | Cope | tura u | nica   |           |         |
|          | QM su F1 e F2 | Name of the last | AND THE REAL PROPERTY. |    |                        |    | 0   | 4   | 5      | 7      | 8        | 12   | 13     | 14     | 15        |         |
| blcld    | m4m12         | 1                | 1                      | PO |                        | PO |     | x   | TA     |        |          | x    | T      | 1      |           | 2       |
| ocd      | m7m15         | 1                | 1                      | P1 |                        | P1 |     |     |        | x      | _        | 1    |        | 1 200  | v         | 2       |
| lc!d     | m0m4m8m12     | 1                | 0                      | P2 |                        | P2 | -x- | ×   |        |        | v        | v.   |        | 10.1   | 1         | 2       |
| olc      | m4m5m12m13    | 1                | 0                      | Р3 |                        | Р3 |     | x   | ×      |        | 1        | ×    | x      | 5 7    |           | 2       |
| bd       | m5m7m13m15    | 1                | 0                      | P4 |                        | P4 |     | 1   | x      | ×      | $\vdash$ | 1    | ×      |        | v         | 2       |
| ab de    | m12m13m14m15  | 1                | 1                      | P5 |                        | P5 |     |     |        |        |          | ×    | ×      | ×      | *         | 2       |
|          |               |                  |                        |    |                        |    |     | -   |        | Esser  | nzialitä | à    | 1.5    |        | ~         | -       |
|          |               |                  |                        |    |                        |    |     | 4   | -      |        |          |      |        |        |           |         |
|          |               |                  |                        |    |                        |    | 5   | 7   | _      |        | ٠.       |      |        | 5      | 7         |         |
|          |               |                  |                        |    |                        | P1 |     | x   | 2      |        | 1000     |      | P4     | x      | x         | 2       |
|          |               |                  |                        |    |                        | P3 | x   |     | 2      |        | 7        |      |        |        |           |         |
|          |               |                  |                        |    |                        | P4 | ×   | x   | 2      |        |          |      |        |        |           |         |
|          |               |                  |                        |    |                        |    |     | Dom | inanza | di rig | а        |      | F = P2 | 2 + P5 | + P4      |         |
|          |               |                  |                        |    |                        |    |     |     |        |        |          |      | Stess  | a solu | zione (co | me atte |

## ESERCIZIO 3 - Fattorizzazione

Data la seguente espressione logica, F(a,b,c,d,e) = a(b(c+de)+b'(cd+e))+b(ace'+c'd)

- a. Riportare F in una SoP applicare la sola proprietà distributiva. Non applicare semplificazioni. Sia G(a,b,c,d,e) il risultato ottenuto;
- b. Applicare la fattorizzazione a G(a,b,c,d,e) utilizzando l'algoritmo iterativo noto, mostrando per ogni passo le tabelle utilizzate e le scelte fatte per le variabili da raccogliere. Anche in questo caso, non si applichino semplificazioni.

Nota: a parità di peso, l'ordine è quello lessico grafico (a,b,c,d,e).

#### SOLUZIONE



Figure 3:

## ESERCIZIO 4 - Progetto FSM

Si richiede di progettare una macchina a stati finiti, tipo MEALY, dotata di 1 (uno) ingresso X da 1 (uno) bit e di 1 (una) uscita Z, sempre da 1 (uno) bit, il cui comportamento è di seguito descritto.

- la macchina riconosce (uscita Z=1 per un ciclo di clock) un numero pari di "0" consecutivi seguito esattamente da "10" (si veda l'esempio).
- La macchina inizialmente (stato di reset) ha una uscita Z=0.
- Le sequenze possono essere sovrapposte, ovvero lo "0" contenuto in "10" potrebbe essere quello di inizio di una nuova sequenza utile.
- L'uscita Z=0 in tutti gli altri casi

Alcuni esempi di comportamento sono riportati di seguito (X ingresso, Z uscita) Esempio:

X: 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 ... Y: 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ...

Si svolgano ordinatamente i seguenti passi:

- a. disegnare il diagramma degli stati e si scriva la relativa tabella degli stati;
- b. Minimizzare la macchina (si scriva obbligatoriamente la tabella delle implicazioni). Si indichi se la macchina identificata è minima o meno;
- c. sintetizzare la macchina minima ottenuta utilizzando FFD;
- d. disegnare il circuito (vedere la nota 2);

NOTA: Per garantire la validità della risposta è essenziale fornire una descrizione chiara, pulita ed esplicita del risultato e di averne verificato la funzionalità almeno sull'esempio fornito.

NOTA: Per il punto (c) si disegni il circuito mostrando con chiarezza i punti di connessone, le connessioni con i segnali di clock e reset e ogni altro elemento necessario.



## ESERCIZIO 5 – Minimizzazione FSM non completamente specificate

Data la seguente macchina a stati non completamente specificata

| L | $Stato\Ingresso$ | 0  | 1  | Z |
|---|------------------|----|----|---|
|   | S0               | S3 | -  | 1 |
|   | S1               | S0 | -  | 0 |
|   | S2               | S5 | -  | - |
|   | S3               | S5 | -  | - |
|   | S4               | S6 | S3 | 1 |
|   | S5               | S1 | S2 | - |
|   | S6               | S4 | S1 | 1 |

- (A) partendo dallo stato di reset S0, analizzare la raggiungibilità. Si utilizzi il metodo che si ritiene più efficiente e rapido;
- (B) eliminare gli eventuali stati irraggiungibili a partire dallo stato di reset S0 e riscrivere la tabella ridotta degli stati, senza modificare il nome originale degli stati;
- (C) analizzare la compatibilità;
- (D) identificare le classi di massima compatibilità utilizzando l'algoritmo da albero (NOTA: si suggerisce di utilizzare anche un metodo grafico per VERIFICARE la correttezza della soluzione identificata) ;
- (E) scrivere la tabella degli stati della macchina minima ottenuta mediante le classi di massima compatibilità.

NOTA: Per garantire la validità di ogni risposta e dell'esercizio nel suo insieme, è essenziale che ogni richiesta sia soddisfatta in modo chiaro e esaustivo e che i simboli utilizzati siano i simboli corretti.

A Raggiungibilità:

```
Stato iniziale: S0
0 { 3 } -> 0 { 3 }
0 { 3 { 5 } } -> 0 { 3 }
0 { 3 { 5 } } -> 0 { 3 { 5 } }
0 { 3 { 5 } } -> 0 { 3 { 5 } }
0 { 3 { 5 } { 1 ; 2 } } } -> 0 { 3 { 5 } { 1 ; 2 } } }
0 { 3 { 5 } { 1 } { 0 } 2 } } } -> 0 { 3 } { 5 } { 1 } { 2 } } }
0 { 3 } 5 { 1 } { 2 } } } -> 0 { 3 } 5 { 1 } { 2 } } }
Stati 4,6 irraggiungibili.
```

#### B Tabella Ridotta

| Stato — ingresso | 0  | 1  | OUT |
|------------------|----|----|-----|
| S0               | S3 | -  | 1   |
| S1               | S0 | -  | 0   |
| S2               | S5 | -  | -   |
| S3               | S5 | -  | _   |
| S5               | S1 | S2 | -   |

#### C Iniziale:

| S1 | X     | ]     |       |       |
|----|-------|-------|-------|-------|
| S2 | {3-5} | {0-5} |       |       |
| S3 | {3-5} | {0-5} | V     |       |
| S5 | {3-1} | {0-1} | {5-1} | {5-1} |
|    | S0    | S1    | S2    | S3    |

| S1 | X     | 1     |    |    |
|----|-------|-------|----|----|
| S2 | {3-5} | {0-5} | ]  |    |
| S3 | {3-5} | {0-5} | V  | ]  |
| S5 | {3-1} | X     | X  | X  |
|    | S0    | S1    | S2 | S3 |

D Identificazione delle classi di massima compatibilità:

Insieme degli stati: 0,1,2,3,5

Analizzo S0: incompatibile con 1,2,3 ->  $\{0,5\}$   $\{1,2,3,5\}$ ,

Analizzo S1: incompatibile con 5 ->  $\{0,5\}$ ,  $\{1,2,3\}$ ,  $\{2,3,5\}$ ,

Analizzo S2: incompatibile con 5 ->  $\{0,5\}$ ,  $\{1,2,3\}$ ,  $\{2,3\}$ ,  $\{3,5\}$ , Analizzo S3: incompatibile con 5 ->  $\{0,5\}$ ,  $\{1,2,3\}$ ,  $\{2,3\}$ ,  $\{3\}$ ,  $\{5\}$ ,

Classi: A: {0,5} B: {1,2,3}

E Macchina Minima

| S1 | X     |       |    |    |
|----|-------|-------|----|----|
| S2 | X     | {0-5} |    |    |
| S3 | X     | {0-5} | V  |    |
| S5 | {3-1} | X     | X  | X  |
|    | S0    | S1    | S2 | S3 |

| Stato — ingresso | 0 | 1 | OUT |
|------------------|---|---|-----|
| A                | В | В | 1   |
| В                | A |   | 0   |