

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-1331/16-01-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

LAVORAZIONI SISTEMI - LASI s.r.I

Via Bergamo,11

21013 Gallarate (VA) / ITALY
Phone: +39 3 35 26 71 85
Fax: +39 03 31 77 44 74
Contact: Pietro Cirrincione

e-mail: <u>p.cirrincione@lasigroup.com</u>

Phone: +39 3 35 26 71 85

Manufacturer

LAVORAZIONI SISTEMI - LASI s.r.I

Via Bergamo,11

21013 Gallarate (VA) / ITALY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Remote control 4 key

Model name:COD. 345049FCC ID:2AI8CTXFrequency:433.5 MHzTechnology tested:Proprietary

Antenna: Integrated PCB antenna

Power supply: 6 V DC by 2*Li battery type CR 2016

Temperature range: 22°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Andreas Luckenbill	Tobias Wittenmeier

Lab Manager
Radio Communications & EMC

Testing Manager Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	ral information	
	2.1	Notes and disclaimer	
	2.2	Application details	
3	Test s	standard/s and references	
4	Test o	environment	
5		item	
•	5.1	General description	
	5.1 5.2	Additional information	
6	Test I	aboratories sub-contracted	
7		ription of the test setup	
•		·	
	7.1 7.2	Shielded semi anechoic chamberShielded fully anechoic chamber	
	7.3	Conducted measurements	
8	Meas	urement uncertainty	
9	Sequ	ence of testing	10
	9.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	10
	9.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	9.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	
10	Sui	mmary of measurement results	13
	10.1	Additional comments	13
11	Me	asurement results	14
	11.1	Timing of the transmitter	14
	11.2	Switch off time	
	11.3	Emission bandwidth	17
	11.4	Field strength of the fundamental	19
	11.5	Field strength of the harmonics and spurious	20
Anı	nex A	Document history	24
Anı	nex B	Further information	24
Δnı	nev C	Accreditation Certificate	21

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-07-21
Date of receipt of test item: 2016-08-01
Start of test: 2016-08-11

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature		T _{nom} T _{max}	+22 °C during room temperature tests No tests under extreme conditions required.
		T_{min}	No tests under extreme conditions required.
Relative humidity content :			55 %
Barometric pressure :			not relevant for this kind of testing
		V_{nom}	6.0 V DC by 2*Li battery type CR 2016
Power supply	:	V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Remote control 4 key
Type identification :	COD. 345049
S/N serial number :	No information available
HW hardware status :	No information available
SW software status :	No information available
Frequency band :	433.5 MHz
Type of radio transmission: Use of frequency spectrum:	modulated carrier
Type of modulation :	No information available
Number of channels :	1
Antenna :	Integrated PCB antenna
Power supply :	6V DC by 2*Li battery type CR 2016
Temperature :	22°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1331/16-01-02_AnnexA

1-1331/16-01-02_AnnexB 1-1331/16-01-02_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKl!	20.05.2015	20.05.2017
2	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	В	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	I Serial No	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	26.01.2016	26.01.2017
2	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
3	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 600918	400001185	ev	-/-	-/-

8 Measurement uncertainty

Measurement uncertainty							
Test case Uncertainty							
Occupied bandwidth	± RBW						
Field strength of the fundamental	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15	See table!	2016-08-12	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c)	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					
§ 15.231 (a) (1)	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c)	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b)	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

11 Measurement results

11.1 Timing of the transmitter

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Used equipment:	See chapter 7.3A		

Limits:

FCC

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Result:

Transmit time (Tx on) = 0.352 ms (Plot 1) Tx on + Tx off = 0.756 ms (Plot 1)

The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)].

Hereby the peak-to-average correction factor is -6.6 dB.

Plots:

Plot 1: Transmit burst

Date: 9.AUG.2016 10:02:25

11.2 Switch off time

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	See plot			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	Zero			
Trace-Mode:	Single sweep			
Used equipment:	See chapter 7.3A			

Limits:

FCC

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Results:

Plot 1: TX on time

Date: 9.AUG.2016 10:20:47

The EUT automatically ceases transmission within 146 ms after releasing the switch.

11.3 Emission bandwidth

Measurement:

Measurement of the 20 dB bandwidth of the modulated signal

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	About 1 % of the 20 dB bandwidth			
Video bandwidth:	3 x RBW			
Span:	See plot			
Trace-Mode:	Max. hold			
Used equipment:	See chapter 7.3A			
Measurement uncertainty:	See chapter 8			

Limits:

	FCC		

The 20 dB bandwidth shall not be wider than 0.25% of the center frequency, here maximum 1084.95 kHz.

Result:

TEST CONDITIONS		20 dB bandwidth [kHz]	
Mo	ode	Modulated carrier	
T _{nom} V _{nom}		6.6	

Plot 1: Emissions bandwidth

20 dB emission bandwidth:

Date: 12.AUG.2016 12:03:36

11.4 Field strength of the fundamental

Measurement:

Measurement parameter				
Detector:	Peak / pulse averaging / quasi peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	Zero			
Trace-Mode:	Max. hold			
Used equipment:	See chapter 7.1A			
Measurement uncertainty:	See chapter 8			

Limits:

FCC

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of Fundamental (µV/m)	Measurement distance (m)
40.66 – 40.70	2,250	3
70-130	1,250	3
130-174	1,250 to 3,750	3
174-260	3,750	3
260-470	3,750 to 12,500	3
Above 470	12,500	3

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.
- for 433.98 MHz: 10999.18 μ V/m at 3 meters (80.82 dB μ V/m)

Result:

TEST CONDITIONS		MAXIMUM POWER (de	βμV/m at 3 m distance)
Frequ	uency	433.5 MHz	433.5 MHz
Mo	ode	Peak	Average
T _{nom}	V _{nom}	62.9	56.3*

^{*}Value recalculated from Peak-to-Average correction factor described in 11.1

11.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector:	Peak / average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace-Mode:	Max. hold		
Used equipment:	See chapter 7.2A & 7.2A,B		
Measurement uncertainty:	See chapter 8		

Limits:

FCC

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of spurious (µV/m)	Measurement distance (m)
40.66 – 40.70	225	3
70-130	125	3
130-174	125 to 375	3
174-260	375	3
260-470	375 to 1,250	3
Above 470	1,250	3

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC						
Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30	30	30				
30 – 88	100	3				
88 – 216	150	3				
216 – 960	200	3				
above 960	500	3				

Results:

See table below the 30 MHz to 1 GHz plot. All other emissions are more than 10 dB below the limit.

Plots:

Plot 1: 9 kHz to 30 MHz

Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.909850	10.06	30.00	19.94	1000.0	120.000	174.0	Н	98.0	13.6
38.712150	14.85	30.00	15.15	1000.0	120.000	174.0	٧	50.0	14.0
460.989450	14.02	36.00	21.98	1000.0	120.000	103.0	٧	275.0	17.9
622.620750	18.25	36.00	17.75	1000.0	120.000	200.0	Н	185.0	20.9
763.025550	20.14	36.00	15.86	1000.0	120.000	400.0	٧	252.0	22.7
868.019700	33.67	36.00	2.33	1000.0	120.000	272.0	Н	208.0	23.7

Plot 3: 1 GHz to 12.75 GHz, vertical & horizontal polarization

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2016-08-12	

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

Deutsche Akkreditierungsstelle GmbH

Reichene gemäß 9 f. Abust 1 Aktsoeller (J. V.m. 9 1 Abust 1 Aktsoeller (BV)
Untereichnerin der Multilaterungsstelle GmbH

Reichene gemäß 9 f. Abust 2 Aktsoeller (J. V.m. 9 1 Abust 1 Aktsoeller (BV)
Untereichnerin der Multilaterungsstelle GmbH

Akkreditierung

Deutsche Akkreditierungsstelle GmbH

Stander Fareliner am Main
Special (J. V.m. 9 1 Abust 2 Aktsoeller (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (BV)
Untereichnerin eine Stande (J. V.m. 9 1 Abust 2 Aktsoeller (J. V.m. 9 1 A

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.