ПОПРАВИТЕЛЕН ИЗПИТ

по Числени методи, 09.02.2023 г.

Указание: Задачите се решават на лист, на който е записано име и Ф№. Ако използвате софтуер, на листа се записват отговорите на поставените въпроси от изхода на софтуера. След приключване на работата изпращате на kulina@uni-plovdiv.bg всички работни файлове, които сте създали от Wolfram Mathematica. Без тях решенията не се зачитат! Желателно е файловете да са с име Ф№_фамилия (например 1901681005_Nikolov_zad1.nb).

Отбележете с X кои четири задачи желаете да Bи се проверят:

1 2 3	4	5	6
-------	---	---	---

Задача 1. (**15 m**.) Да се намери с точност 10^{-4} най-големият положителен реален корен на уравнението e^x - x^3 - $\cos(x+1) = 0$ по метода на Нютон (на допирателните) :

- а) (2 т.) Определете подходящ интервал [a, b], в който е локализиран коренът: a = ?, b = ?;
- б) (**3т.**) Проверете условията за прилагане на метода на Нютон, като запишете знаците на първата и втората производна в избрания интервал;
- в) (**1т**.) Определете началното приближение $x_0 = ?$;
- г) (8т.) Запишете първите три итерации и грешките.
- д) (1т.) Запишете приближеното решение с посочената точност.

Задача 2. (**15 m**.) Дадена е системата:

$$8x_1 - 2x_2 + x_3 + x_4 = 2$$

$$-x_1 + 10x_2 + x_3 + 2x_4 = 3$$

$$2x_1 - x_2 - 9x_3 + 2x_4 = 11$$

$$x_1 + 3x_2 + 2x_3 + 11x_4 = 5$$

- а) (**5 т**.) Подгответе системата във вид за прилагане на МПИ (проста итерация). Запишете преобразуваната матрица C = ? и свободния стълб d = ?;
- б) (**8 т**.) Решете системата по метода на проста итерация с точност 10^{-4} с нулево начално приближение и запишете резултата (1^{-8a} , 2^{-pa} и последната итерации) в таблица:

k	X ₁	X ₂	X ₃	X4	err
0					
1					
2					
n					

в) (2 т.) Покажете, че метода е сходящ.

Задача 3.

а) (5 *m.*) Да се табулира функцията $f(x) = \sqrt{2x^3 + 1}$ в интервала [1, 2] със стъпка h=0.1

Х	1	 	 	 	
f(x)					

б) (10 m.) Да се построи натуралния сплайн S_2 за възлите 1, 1.2, 1.4, 1.6 на f(x) и да се използва за намиране на приближената стойност $\mathbf{f(1.55)}$:

$$S_2 = \begin{cases} f_1 = \\ f_2 = \\ f_3 = \end{cases}$$
 $f(1.55) =$

Задача 4. (15 m.) За таблично зададената функция да се намери полином от първа или втора степен на най-добро приближение по метода на най-малките квадрати. За получения полином пресметне стойността в точката **x'= 2.1**;

7	X _i	1.2	1.5	1.9	2.3	2.7	3.1	3.5	3.8	4.3	4.5	5.1	5.4
,	y i	3.47	4.019	4.89	5.91	6.56	8.292	9.349	9.975	11.665	12.164	13.223	15.59

Задача 5. (15 m) Изчислете приближената стойност на интеграла $\int\limits_2^5 \sqrt{x^3+4x-1}\,dx$.

- а) **(5 m.)** По методите на средните правоъгълници при n = 4 и оценете грешката;
- б) (5 m.) Да се определи големината на стъпката h, така че метода на средните правоъгълници да гарантира точност на резултата 10^{-4} .
- в) (5 m.) По метода на средните правоъгълници да се пресметне стойността на интеграла с точност 10^{-4} .

3ada4a 6. (15 m) Дадена е началната задача за система ОДУ от І-ви ред в [0,1]:

$$y' = z$$

 $z' = (x+1)z - y + \frac{2}{(x+1)^3}, \ y(0) = 2, \ z(0) = 1$

Да се реши задачата при h=0.2 с модифицирания метод на Ойлер и се запишат $y_0, z_0, y_1, z_1, ... y_n, z_n$.

y_i	 •••••	 •••••	•••••	•••••	 	
Z_i						