

1

Introduction and contextualization

2

Characterization of Porous Materials Through X-ray Micro-CT 3

Mathematical formulation of the problem

4

Brute Force Search

5

The SAMATA Algorithm

6

Conclusion

4

Introduction and contextualization

Importance of porous materials

- Crucial for the development of Thermal Protection Systems (TPS)
 - Provides thermal insulation for spacial reentry
 - Re-usable and ablative
- Ablative TPS
 - High mechanical stress and temperatures decompose the material (psycho-chemical reactions and erosion)
 - This study deals with transversely isotropic fibrous porous microstructures

Objectives of this study

- Determine the Representative Elementary Volume (REV)
 of a given porous material using an uncertainty
 quantification (UQ) methodology
- Discuss the necessary resolution of fibers and digitized domain size to obtain bulk values
- Serve as methodology guideline for future research

Porous Microstructure Analysis (PuMA) software

- Open source software
- Developed at the NASA Ames Research Center under a US & Foreign release
- Can import or artificially generate microstructures
- Perform numerical response simulations
- Able to parallelize computations

https://github.com/nasa/puma

2

Characterization of Porous Materials Through X-ray Micro-CT

How X-ray microtomography works

- Pulses of X-ray emitted while the sample is rotating
- Each pulse generates a 2D image, with fixed number of pixels
- 3D model of the sample can be reconstructed by using numerical algorithms

O'Sullivan, James D. B., Julia Behnsen, Tobias Starborg, Andrew S. MacDonald, Alexander T. Phythian-Adams, Kathryn J. Else, Sheena M. Cruickshank, and Philip J. Withers: X-ray micro-computed tomography (ct): an emerging opportunity in parasite imaging. Parasitology, 145(7):848–854, 2018.

Limitations

- Fixed number of voxels for 3D domain
- Trade-off between fiber resolution and physical domain size
 - Conversion between voxels and $\mu m o$ Voxel Length ℓ_{vx}^{phy}
- Minimal voxel length possible o ℓ_{min}

· Each material property has its own REV for computing

bulk property values

3

Mathematical formulation of the problem

PuMA wokspace variables

Geometrical parameters:

- Physical domain length: D_{phy}
- Average radius of the fiber: R_{phy}
- Average length of the fiber: L_{phy}

• Digitized parameters (given in voxels):

- Domain length: d_{vx}
- Average radius of the fiber: r_{vx}
- Average length of the fiber: l_{vx}

• Voxel Length:
$$\ell_{vx}^{phy} = \frac{R_{phy}}{r_{vx}}$$

PuMA wokspace variables

- Mechanical properties:
 - Fiber's thermal conductivity: k_{fiber}
 - Porosity: ε
 - Void phase thermal conductivity: k_{void}
- Other parameters for generating microstructure:
 - Angular variation of fibers: $\Delta\theta_i$, where *i* indicates the direction
 - Standard deviations:
 - $\sigma_{R_{phy}}$ and $\sigma_{L_{phy}}$
 - Solver's tolerance

PuMA wokspace variables

• Relation between D_{phy} and r_{vx}

$$D_{phy} = d_{vx} \ell_{vx}^{phy} = \frac{d_{vx} R_{phy}}{r_{vx}}$$

- X-ray micro-CT limitations on PuMA:
 - $\ell_{vx}^{phy} \ge \ell_{min} \Leftrightarrow r_{vx} \le r_{max}$
 - $d_{vx} = \text{constant}$
- Trade-off: $D_{phy} \propto \frac{1}{r_{vx}}$
- r_{vx} is the only geometric parameter that will influence the numerical study

Mathematical point of view

- Thermal properties obtained by PuMA: $h(r_{vx}, \xi)$ or $h(\ell_{vx}^{phy}, \xi)$
 - ξ : Uncertain parameters
- h is stochastic \rightarrow Compute statistical measures
- Compare results obtained by imposing X-ray micro-CT limitations on PuMA with reference values
- Computation of reference values using the PlaFRIM cluster
 - Greater fiber resolution and domain size than in real micro-CT scans

Mathematical point of view

- Statistical measures:
 - $\mu(\cdot)$: Arithmetic mean, or average
 - $Var(\cdot)$: Umbiased estimator of the variance
- The problem writes as follows:
 - Minimize: $f_1(k_{ii}) = |\mu(k_{ii}) \mu^{ref}(k_{ii})|$
 - Minimize: $f_2(k_{ii}) = |Var(k_{ii}) Var^{ref}(k_{ii})|$
 - Satisfying: $\ell_{vx}^{phy} = \frac{R_{phy}}{r_{vx}}$, $\ell_{vx}^{phy} \ge \ell_{min}$, $d_{vx} = \text{constant}$
 - By changing: r_{vx}
- Search the Pareto-optimal designs in all directions

4

Brute Force Search

Fixed input parameters:

- $R_{phv} = 5 \, \mu m$
- $\sigma_{R_{phy}} = 0.625 \, \mu m$
- $L_{phy} = 800 \, \mu m$
- $\sigma_{L_{phy}} = 500 \, \mu m$
- $\Delta\theta_x = \Delta\theta_y = 90^\circ$
- $\Delta\theta_z = 20^\circ$
- $\varepsilon = 0.89$
- Tolerance = 1×10^{-4}
- $k_{fiber} = 12 W/(m \cdot K)$

- Fixed thermal conductivity solver options:
 - Explicit-jump finite difference solver
 - Periodic boundary conditions
 - Bi-Conjugate Gradient Stabilized Method for solving linear systems
- This setup is the fastest for generating results

- Void phase:
 - $k_{void} = 0.02587 W/(m \cdot K)$, since this is a proof of concept
- Variable input parameters:
 - $r_{vx} \in \{2,4,6,8,10\}$ voxels
 - $D_{phy} \in \{50,100,150,200,250,300\} \mu m$
- Compute thermal conductivities k_{xx} , k_{yy} and k_{zz} for all possible configuration pairs $\left(r_{vx}, D_{phy}\right)$
- 1000 simulations per configuration

Results:

- $\mu^{ref}(k_{xx}) = 0.604182 \text{ W/(m} \cdot K)$
- $\mu^{ref}(k_{xx}) = 0.593596 \text{ W/(m} \cdot K)$
- $\mu^{ref}(k_{xx}) = 0.117677 \text{ W/(m} \cdot K)$
- $Var^{ref}(k_{xx}) = 1.821063 \times 10^{-3} (W/(m \cdot K))^2$
- $Var^{ref}(k_{xx}) = 1.789927 \times 10^{-3} (W/(m \cdot K))^2$
- $Var^{ref}(k_{\chi\chi}) = 3.835413 \times 10^{-4} (W/(m \cdot K))^2$
- Sidenote: the coefficient of variation ($\mathcal{C}V$) follows exponential behaviour, due to strong linear correlation in log scale

- Consider $\ell_{min} = 0.75 \, \mu m / \text{voxel} \rightarrow r_{max} = 7 \, \text{voxels}$
- Three different levels of domain resolution:
 - $d_{vx} \in \{200,250,300\}$ voxels
- For better visualization of results, consider

$$f_1^{rel}(k_{ii}) = \frac{|\mu(k_{ii}) - \mu^{ref}(k_{ii})|}{\mu^{ref}(k_{ii})}$$

- Objective space
 - Search for the pareto front P in each direction analysis

- Objective space
 - Search for the pareto front P in each direction analysis

- Objective space
 - Search for the pareto front P in each direction analysis

Pareto front

		$\mathbb{P}_x(X)$	$\mathbb{P}_y(X)$	$\mathbb{P}_z(X)$
	200	{3,4,5,6}	${3,4,5}$	$\{4,5,6\}$
300	250	{4,5,6,7}	$\{4,5,6\}$	$\{5,\!6\}$
	300	{5,6,8}	{5,6}	{5}

Computing the optimal values of D_{phy}

• Estimation of optimal D_{phy} :

- 1) Obtain range of D_{phy} values for a given direction and d_{vx} value
- 2) Average out the limits of this range $\rightarrow D_{phy}^{avg}$
- 3) Compute arithmetic mean of these averages, considering all d_{vx} values

Results:

•
$$\left(D_{phy}^{opt}\right)_{x} = 256.85 \, \mu m$$
• $\left(D_{phy}^{opt}\right)_{y} = 267.36 \, \mu m$
• $\left(D_{phy}^{opt}\right)_{y} = 245.83 \, \mu m$
• $\left(D_{phy}^{opt}\right)_{y} = 245.83 \, \mu m$

5

The SAMATA Algorithm

Brief introduction to the algorithm

- Will explore the formulated problem with a probabilistic optimization framework
- Objective functions ightarrow Robustness measures ho_f
- ρ_f will be a statistical measure and considered as random vector from a random field ${\it P}$
- Advantages of using SAMATA:
 - Algorithm prioritizes computational power to most promising designs
 - Rank designs \rightarrow Pareto-optimal probability (POP)
 - Reduces the number of computations and designs to obtain optimal results

Brief introduction to the algorithm

- SAMATA relies on
 - Measure Approximation with Tunable Accuracy (MATA)
 - Surrogate-assisting model (SA)
- The MATA approach is designed to tune the accuracy of each computation of statistical measures ρ
 - Focus computational power on the best designs
- The SA strategy is designed to give predictions for robustness measures
 - Relies on heteroscedastic Gaussian Processes and Kernel Density Estimation (KDE) strategy
- Two used-defined thresholds to control the optimization process: s_1 and s_2

Brief introduction to the algorithm

Rivier, Mickael: Low-cost methods for constrained multi-objective optimization under uncertainty. PhD thesis, Institut Polytechnique de Paris, 2020.

New formulation:

- Minimize: $f_1(k_{zz}) = |\mu(k_{zz}) \mu^{ref}(k_{zz})|$
- Minimize: $f_2(k_{zz}) = |Var(k_{zz}) Var^{ref}(k_{zz})|$
- By changing: $(D_{phy}, \ell_{vx}^{phy}) \in [100,350] \times [0.75,2.5]$

SAMATA thresholds:

- s_1 and s_2 equal and belonging to $\{1,0.8,0.6,0.4\}$
- Decreased values are used to avoid bias introduced by an empirical choice of one threshold

1)
$$s_1 = s_2 = 1$$

1)
$$s_1 = s_2 = 1$$

2)
$$s_1 = s_2 = 0.8$$

1)
$$s_1 = s_2 = 1$$

$$2) s_1 = s_2 = 0.8$$

3)
$$s_1 = s_2 = 0.6$$

1)
$$s_1 = s_2 = 1$$

2)
$$s_1 = s_2 = 0.8$$

3)
$$s_1 = s_2 = 0.6$$

4)
$$s_1 = s_2 = 0.4$$

- Optimal results falls within a band of values
 - $D_{phy} \in [250,270] \, \mu m$
- Results close to the ones obtained by brute force
- More reliable analysis
- Reduction of approximately 90% in the number of needed simulations on PuMA
- Demonstrates that the REV is not dependent on d_{vx} of the machine
- Algorithm can analyse multiple machine powers at the same time, by letting $d_{\nu x}$ free

6

Conclusion

Conclusion

- This study provides a general guideline for coupling the UQ framework with PuMA
- PuMA demonstrates to have a huge potential for helping researchers in the aerospace field
- Having higher fiber resolution does not imply in having better results
- The probabilistic framework gave us a more reliability, together with reduction in time and costs
- The results obtained are strongly dependent on the reference values computed
- Further study can be done with latest version of PuMA

Thank you for your attention!

References

- Girault, Florian and Pietro Marco Congedo: Uncertainty Characterization of ablative materials for atmospheric reentry of spacecrafts using PuMA. PhD thesis, Inria Saclay-Île de France, 2021.
- Ferguson, Joseph C, Francesco Panerai, Arnaud Borner, and Nagi N Mansour: Puma: The porous microstructure analysis software. SoftwareX, 7:81–87, 2018.
- Ferguson, Joseph C, Federico Semeraro, John M Thornton, Francesco Panerai, Arnaud Borner, and Nagi N Mansour: Update 3.0 to "puma: The porous microstructure analysis software",(pii: \$2352711018300281). SoftwareX, 15:100775, 2021.
- Orero, J.B. Rico: Computational study on the effect of the microstrucutre on macroscopic properties for carbon fiber felts. Master's thesis, 2020.
- O'Sullivan, James D. B., Julia Behnsen, Tobias Starborg, Andrew S. MacDonald, Alexander T. Phythian-Adams, Kathryn J. Else, Sheena M. Cruickshank, and Philip J. Withers: X-ray microcomputed tomography (ct): an emerging opportunity in parasite imaging. Parasitology, 145(7):848–854, 2018.
- Rivier, Mickael: Low-cost methods for constrained multi-objective optimization under uncertainty. PhD thesis, Institut Polytechnique de Paris, 2020.

