Solutions

Date:

Useful constants:

$$G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}$$

Mass of Earth= 5.98×10^{24} kg

Radius of Earth= 6.38 x 10⁶ m

1. State the formula for Newton's Law of Universal Gravitation. Define all terms and state the standard units for each term!!

2. What is the force of attraction between two objects, masses 2.0 imes 10 3 kg and 1.5 imes 10 5 kg respectively, if they are positioned so that their centres are 45.0 m apart?

$$M_{2} = 2.0 \times 10^{3} \text{Kg}$$
 $M_{2} = 1.5 \times 10^{5} \text{Kg}$
 $r = 45.0 \text{M}$

$$F_{G2} \frac{Gm_{1}m_{2}}{r^{2}} = \frac{(6.67 \times 10^{-11} \text{Nm}^{2})(2.0 \times 10^{3} \text{Kg})(1.5 \times 10^{5} \text{Kg})}{(45.0 \text{m})^{2}}$$

$$= 9.9 \times 10^{-6} \text{N}$$

3. A satellite, mass 550 kg, is orbiting the Earth at a radial distance of 6550 km (measured from the Earth's centre). What is the force of gravity acting on the satellite due to the Earth?

$$F_{G=} G M_{EM} = \frac{(6.67 \times 10^{11} \text{ Nm}^{2})}{(6.57 \times 10^{5} \text{ M})^{2}} (5.98 \times 10^{24} \text{ Kg}) (550 \text{ Kg})}{(6.55 \times 10^{5} \text{ M})^{2}}$$

$$= 5.113.4 \text{ N}$$

$$\approx 5.1 \times 10^{3} \text{ N}$$

4. The space shuttle (mass 2.0 \times 10 5 kg) is orbiting the Earth at an altitude of 240 km above the Earth's surface. What is the force of gravitational attraction between the shuttle and Earth? (Hint: Draw a picture!!!)

$$h = 240 \text{ km}$$
 $f^2 f = th$
= 2400000 = 6.38 x 10 m + 2.40 x 15 m
= 4.40 x 10 5 m

	162011610
	Y2
3	=(6,67×10" Nm2)(5,98×10"/4)(2.91
	140
	(6.62 ×10 m)2
	=1.8 X10 N
	(* 0

5. a) Calculate the force of gravitational attraction (F_6) between a boulder (mass 25.0 kg) and the Earth when the boulder is sitting on the Earth's surface.

b) Now find the weight (Fg) of the boulder when it is sitting on the Earth's surface.					
Fg =?	M225.0 kg	Fg=mg=(25,014) (9.807)	s) = 245N		
c) How do your answers for (a) and (b) compare? Why?					
The answers are the same as Fg is a simple way to Transfer					
c) How do your answers for (a) and (b) compare? Why? The answers are the same as Fg is a simple way to find the force of glavitational attraction between the Earth + objects on the Earth's surface. <u>Using Proportionalities with the Universal Gravitation Equation</u> 6. a) How does the magnitude of the gravitational force between two objects change as the					
distance between them is increased?					
As distance is irreversed, granitational tone decreases.					
b) What specific relationship describes this variation?					
FG	$\mathcal{L} = \frac{1}{2}$		p p		
c) A gravitational attractive force of 25.0 N exists between two objects when they are					
located a distance of 100.0 m apart. Determine the new force of gravitational attraction					
	iem if they are now move		ant .		
i) 200.0 m apart ii) 25.0 m apart					
FG= 25.0N	=) FG2 GM,M2				
r = 1000m	,				
,			CM 443		
1 ~ 2 200 dm	E GMM2	i) \(\gamma_3 = 25.0m\\ \gamma_3 = \frac{7}{4}\)	F-G3 = GM, M2		
.) 1222000	$F_{C2} = \frac{Gm_1m_2}{r_2^2}$	r22 4			
12221	= GM, M2	13	= GM, MZ		
	$\frac{1}{(2r)^2}$		(- 4) 2		
	C		= GM,MZ		
	= 1 Gm, M2 4 r2	-	= GM, M2 16		
	2 1 Fc				
	•		= 16 Fc		
	= 25.0N 4				
	4		= (6(25.0N)		
	- 6.25N		= 400. N		
	_				