Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/005765

International filing date: 28 March 2005 (28.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-099672

Filing date: 30 March 2004 (30.03.2004)

Date of receipt at the International Bureau: 14 July 2005 (14.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月30日

出 願 番 号

 Application Number:
 特願2004-099672

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-099672

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

コスモ石油株式会社

Applicant(s):

2005年 6月29日

特許庁長官 Commissioner, Japan Patent Office **小 (1)**


```
【書類名】
              特許願
【整理番号】
              P 0 1 9 0 1 6 0 3
【あて先】
             特許庁長官
                     殿
【発明者】
             埼玉県幸手市権現堂1134-2 コスモ石油株式会社中央研究
  【住所又は居所】
             所内
             立谷 尚久
  【氏名】
【発明者】
  【住所又は居所】
             埼玉県幸手市権現堂1134-2 コスモ石油株式会社中央研究
             所内
  【氏名】
              西川
                 誠司
【発明者】
  【住所又は居所】
             埼玉県幸手市権現堂1134-2 コスモ石油株式会社中央研究
             所内
  【氏名】
             肥後 麻衣
【発明者】
             東京都港区芝浦1-1-1 コスモ石油株式会社内
  【住所又は居所】
  【氏名】
              田中 徹
【特許出願人】
  【識別番号】
             000105567
  【氏名又は名称】
              コスモ石油株式会社
【代理人】
  【識別番号】
             1 1 0 0 0 0 0 8 4
  【氏名又は名称】
             特許業務法人アルガ特許事務所
  【代表者】
              中嶋 俊夫
【選任した代理人】
  【識別番号】
             100068700
  【弁理士】
  【氏名又は名称】
             有賀 三幸
【選任した代理人】
  【識別番号】
             100077562
  【弁理士】
  【氏名又は名称】
             高野 登志雄
【選任した代理人】
  【識別番号】
             100096736
  【弁理士】
  【氏名又は名称】
              中嶋 俊夫
【選任した代理人】
  【識別番号】
             100089048
  【弁理士】
  【氏名又は名称】
             浅野 康隆
【選任した代理人】
  【識別番号】
             100101317
  【弁理士】
  【氏名又は名称】
              的場 ひろみ
【選任した代理人】
  【識別番号】
             100117156
  【弁理士】
  【氏名又は名称】 村田 正樹
```

【選任した代理人】
 【識別番号】 100111028
 【弁理士】
 【氏名又は名称】 山本 博人
【手数料の表示】
 【予納台帳番号】 164232

【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲]

 【物件名】
 明細書
 1

 【物件名】
 要約書
 1

【書類名】特許請求の範囲

【請求項1】

下記一般式(1)

 $HOCOCH₂CH₂COCH₂NH₂ \cdot HOSO₂R¹$ (1)

(式中、R^Iは低級アルキル基で置換されたフェニル基を示す。)

で表わされる5-アミノレブリン酸スルホン酸塩。

【請求項2】

低級アルキル基で置換されたフェニル基が、4-メチルフェニル基、2,4-ジメチルフェニル基又は2,5-ジメチルフェニル基である請求項1記載の5-アミノレブリン酸スルホン酸塩

【請求項3】

陽イオン交換樹脂に吸着した5-アミノレブリン酸を溶出させ、その溶出液をスルホン酸類と混合することを特徴とする請求項1又は2記載の5-アミノレブリン酸スルホン酸塩の製造方法。

【請求項4】

アンモニア水で溶出させる請求項3記載の製造方法。

【書類名】明細書

【発明の名称】5-アミノレブリン酸スルホン酸塩及びその製造方法

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、微生物・発酵、動物・医療、植物等の分野において有用な5-アミノレブリン酸スルホン酸塩及びその製造方法に関する。

【背景技術】

[0002]

5-アミノレブリン酸は、微生物・発酵分野においては、VB₁₂生産、ヘム酵素生産、微生物培養、ポルフィリン生産など、動物・医療分野においては、感染症治療、殺菌、ヘモフィラス診断、誘導体原料、除毛、リュウマチ治療、がん治療、血栓治療、癌診断、動物細胞培養、UVカット、ヘム代謝研究、育毛効果、重金属中毒ポルフィリン症診断、貧血予防、植物分野においては農薬などに有用なことが知られている。

[00003]

一方、5-アミノレブリン酸は塩酸塩として製造されており、原料として馬尿酸(特許文献 1 参照)、コハク酸モノエステルクロリド(特許文献 2 参照)、フルフリルアミン(例 えば、特許文献 3 参照)、ヒドロキシメチルフルフラール(特許文献 4 参照)、オキソ吉草酸メチルエステル(特許文献 5 参照)、無水コハク酸(特許文献 6 参照)を使用する方法が報告されている。

 $[0\ 0\ 0\ 4\]$

しかしながら、5-アミノレブリン酸塩酸塩は塩酸を含んでいるため、製造過程、調剤・分封過程で気化した塩化水素による装置腐食や刺激臭を発生する。そのため、これらを防止する措置を講ずることが望ましい。また、5-アミノレブリン酸塩酸塩は、 $130 \sim 156 \mathbb{C}$ では部分的に分解し、 $156 \mathbb{C}$ 以上では完全に分解する性質を有しており、高温加熱殺菌処理に耐えにくいという問題点を有する。

【特許文献1】特開昭48-92328号公報

【特許文献2】特開昭62-111954号公報

【特許文献3】特開平2-76841号公報

【特許文献4】特開平6-172281号公報

【特許文献5】特開平7-188133号公報

【特許文献6】特開平9-316041号公報

【発明の開示】

【発明が解決しようとする課題】

[0005]

従って、本発明は、安全性・環境保全性が高く、しかも高温加熱殺菌処理にも耐えられる5-アミノレブリン酸の新規な塩及びその製造方法を提供することにある。

【課題を解決するための手段】

[0006]

本発明者らは、かかる実情に鑑み鋭意検討を行った結果、陽イオン交換樹脂に吸着した5-アミノレブリン酸を溶出させ、その溶出液をスルホン酸類と混合することにより、上記要求が満たされる特定の5-アミノレブリン酸スルホン酸塩が得られることを見出し、本発明を完成させた。

すなわち、本発明は、下記一般式(1)

 $[0\ 0\ 0\ 7\]$

 $HOCOCH₂CH₂COCH₂NH₂ \cdot HOSO₂R¹$ (1)

[0008]

(式中、R¹は低級アルキル基で置換されたフェニル基を示す。)

で表わされる5-アミノレブリン酸スルホン酸塩を提供するものである。

[0009]

本発明は更に、陽イオン交換樹脂に吸着した5-アミノレブリン酸を溶出させ、その溶出

液をスルホン酸類と混合することを特徴とする前記一般式(1)で表される5-アミノレブリン酸スルホン酸塩の製造方法を提供するものである。

【発明の効果】

[0010]

本発明の5-アミノレブリン酸スルホン酸塩は、臭気が全くなく、そのため取り扱いが簡便で、安全性・環境保全性が高い。しかも、塩酸塩と比較して分解点が高く、高温耐性を有する。また、本発明の製造方法によれば、簡便かつ効率よく5-アミノレブリン酸スルホン酸塩を製造することができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 1]$

一般式(1)中、 R^1 で示されるフェニル基を置換する低級アルキル基とは炭素数 $1 \sim 6$ のアルキル基を意味する。低級アルキル基は、直鎖、分岐鎖又は環状鎖のいずれでもよい。直鎖又は分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、tert-ブチル基、tert-ブチル基、tert-ブチル基、tert-ブチル基、tert-ブチル基、tert-ベンチル基、tert-ベ

$[0\ 0\ 1\ 2]$

低級アルキル基で置換されたフェニル基としては、例えば、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2, 3-ジメチルフェニル基、2, 4-ジメチルフェニル基、2, 4-ジメチルフェニル基、3, 4-ジメチルフェニル基、3, 5-ジメチルフェニル基、2, 4, 6-トリメチルフェニル基、3, 4, 5-トリメチルフェニル基、2-エチルフェニル基、2-エール基、2-エール基、2-エール基、2-エール基、2-エール基、2-エール基等が挙げられ、2-メチルフェニル基、2-メチルフェニル基又は2, 2-ジメチルフェニル基が特に好ましい。

$[0\ 0\ 1\ 3\]$

一般式(1)で表わされる本発明の5-アミノレブリン酸スルホン酸塩は、固体でも溶液でもよい。固体とは、結晶を示すが、水和物でもよい。溶液とは、水をはじめとする溶媒に溶解又は分散した状態を示すが、そのpHがpH調整剤等によって調整されたものでもよい。また、水をはじめとする溶媒は、2種以上を混合して使用してもよい。pH調整剤としては、リン酸、ホウ酸、フタル酸、クエン酸、コハク酸、トリス、酢酸、乳酸、酒石酸、シュウ酸、フタル酸、マレイン酸やそれらの塩などを用いた緩衝液又はグッドの緩衝液が挙げられる。

$[0\ 0\ 1\ 4]$

本発明の5-アミノレブリン酸スルホン酸塩は、陽イオン交換樹脂に吸着した5-アミノレブリン酸をイオン含有水溶液で溶出させ、その溶出液をスルホン酸類と混合することにより5-アミノレブリン酸スルホン酸塩を固体として得ることができる。陽イオン交換樹脂に吸着させる5-アミノレブリン酸としては、特に制限されず、純度なども制限されない。すなわち、特開昭48-92328号公報、特開昭62-111954号公報、特開平2-76841号公報、特開平6-172281号公報、特開平7-188133号公報、特開平11-42083号公報等に記載の方法に準じて製造したもの、それらの精製前の化学反応溶液や発酵液、また市販品なども使用することができる。尚、好ましくは、5-アミノレブリン酸塩酸塩が用いられる。

$[0\ 0\ 1\ 5]$

陽イオン交換樹脂としては、強酸性陽イオン交換樹脂又は弱酸性陽イオン交換樹脂のいずれでもよい。また、キレート樹脂も好適に使用できる。これらのうちで、強酸性陽イオ

ン交換樹脂が好ましい。強酸性陽イオン交換樹脂の種類としては、ポリスチレン系樹脂に スルホン酸基が結合したものが好ましい。

$[0\ 0\ 1\ 6]$

5-アミノレブリン酸の陽イオン交換樹脂への吸着は、適当な溶媒に溶解した5-アミノレブリン酸溶液を陽イオン交換樹脂に通液することにより実施できる。このような溶媒としては、5-アミノレブリン酸が溶解すれば特に制限されないが、水;ジメチルスルホキシド;メタノール、エタノール、プロバノール、イソプロバノール、ブタノール、イソブタノール、デ系;ピリジン系などが挙げられ、水、ジメチルスルホキシド、メタノール又はエタノールが好ましく、水、メタノール又はエタノールが特に好ましい。また、2種以上の溶媒を混合して用いてもよい。また、精製前の化学反応溶液や発酵液を使用する場合には、反応溶媒の除去や適当な溶媒による希釈を行ってもよい。なお、上記溶媒、精製前の化学反応溶液や発酵液は、前記pH調整剤により、pH調整してもよい。

[0017]

イオン含有水溶液としては特に限定されないが、スルホン酸類、アルカリ金属もしくはアルカリ土類金属の水酸化物又は炭酸塩、アンモニア、アミン、アミノ基を有する化合物を水に溶解したものが好ましく、水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム、水酸化バリウム、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムナトリウム、炭酸水素カリウム、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミンを水に溶解したものがより好ましく、アンモニアを水に溶解したものが特に好ましい。これらの水溶液は2種以上を組み合わせて使用してもよい。アンモニア水の濃度は、0.01~10Nが好ましく、0.1~3Nが特に好ましい。

[0018]

5-アミノレブリン酸の溶出液と混合されるスルホン酸類としては、p-トルエンスルホン酸、2, 4-ジメルフェニルスルホン酸、2, 5-ジメチルフェニルスルホン酸、3, 5-ジメチルフェニルスルホン酸、2, 4, 6-トリメチルフェニルスルホン酸等が挙げられ、p-トルエンスルホン酸、2, 4-ジメチルフェニルスルホン酸又は2, 5-ジメチルフェニルスルホン酸が特に好ましい。スルホン酸類は、水和物又は塩のいずれでもよく、また適当な溶媒に溶解又は分散したものも好適に使用できる。スルホン酸類の混合量は、吸着した5-アミノレブリン酸量から想定される5-アミノレブリン酸溶出量に対して、 $1\sim5000$ 倍モル量が好ましく、より好ましくは $1\sim500$ 倍モル量、特に $1\sim50$ 6倍モル量が好ましい。なお、吸着した5-アミノレブリン酸量から想定される5-アミノレブリン酸溶出量は、陽イオン交換樹脂や溶出液の種類、溶出液の通流量によっても異なるが、通常、吸着した5-アミノレブリン酸量に対し、 $90\sim100\%$ である。

$[0\ 0\ 1\ 9]$

このような溶媒としては、水;ジメチルスルホキシド;メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、イソブタノール等のアルコール系;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系;ピリジン系などが挙げられ、水、ジメチルスルホキシド、メタノール又はエタノールが好ましく、水、メタノール又はエタノールが特に好ましい。また、2種以上の溶媒を混合して用いてもよい。

[0020]

資溶媒としては、固体が析出するものであれば特に制限されないが、このような溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、イソブタノール等のアルコール系;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、ジメトキシエタン等のエーテル系;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、ァーブチロラクトン等のエステル系;アセトン、メチルエチルケトン等のケトン系;アセトニトリル、ベンゾニトリル等のニトリル系などが挙げられ、酢酸メチル、酢酸エチル、ァーブチロラクトン、アセトン又はアセトニトリルが

好ましく、酢酸メチル、 γ -ブチロラクトン、アセトン又はアセトニトリルが特に好ましい。また、2種以上の溶媒を混合して用いてもよい。

[0021]

イオン含有水溶液による溶出及び溶出液とスルホン酸類との混合の温度は、溶出液及びスルホン酸類が固化しない状態において、 $-20 \sim 60$ でが好ましく、 $-10 \sim 30$ でが特に好ましい。

[0022]

本発明の5-アミノレブリン酸スルホン酸塩は、5-アミノレブリン酸のアミノ基がアシル基で保護されたものや、アミノ基に1,3-ジオキソ-1,3-ジヒドロ-イソインドール-2-イル型分子骨格となるような保護基が結合したもののように、アミノ基が加水分解可能な保護基で保護された5-アミノレブリン酸から製造してもよい。また、本発明の5-アミノレブリン酸スルホン酸塩は、本発明以外の製造方法、すなわち、2-フェニル-4-(β -アルコキシカルボニル-プロピオニル)-オキサゾリン-5-オンを所望のスルホン酸を用いて加水分解する方法や5-アミノレブリン酸塩酸塩等のスルホン酸塩以外の塩を溶媒中で所望のスルホン酸と接触させる方法によって得てもよい。スルホン酸類及び反応溶媒としては前記記載のものを使用することができる。

【実施例】

[0023]

以下実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。

[0024]

実施例1 5-アミノレブリン酸 p-トルエンスルホン酸塩の製造

強酸性イオン交換樹脂(AMBERLITE IR120B Na、オルガノ(株)製) 180 mLをカラムに詰めた。イオン交換樹脂は、塩酸処理してナトリウムイオン型から水素イオン型に変換してから使用した。次いで、当該カラムに、5-rミノレブリン酸塩酸塩 36.00 g (215 mmol)をイオン交換水 1800 mLに溶解したものを通液した後、イオン交換水 1000 mLを通液した。次に、1N アンモニア水をゆっくりと通液し、黄色の溶出液 555 mLを採取した。採取した溶出液をp-hルエンスルホン酸一水和物 81.72 g (430 mmol) と混合し、エバポレータで濃縮した。濃縮液にアセトン 400 mLを加え、スタラーで激しく攪拌してから4 $\mathbb C$ で16時間静置した。析出した固体を吸引ろ過で回収し、アセトン 400 mLで洗浄した。得られた固体を12時間減圧乾燥し、目的物 47.78 g (158 mmol)を得た。その物性データを以下に示す。

[0025]

融点:186 ℃

¹H-NMR (D₂O, 400 MHz) δ ppm: 2.38 (s, 3H, CH₃), 2.67 (t, 2H, CH₂), 2.84 (t, 2H, CH₂), 4.10 (s, 2H, CH₂), 7.34 (d, 2H, ring H), 7.69 (d, 2H, ring H)

¹³C-NMR (D₂O, 100 MHz) δ ppm: 23 (CH₃), 30 (CH₂), 37 (CH₂), 50 (CH₂), 128 (ring C), 132 (ring C), 142 (ring C), 145 (ring C), 180 (CO), 207 (COO)

元素分析値:C5HqNO3・C7H8SO3として

理論値: C 47.52%; H 5.65%; N 4.62% 実測値: C 47.4%; H 5.6%; N 4.66%

[0026]

実施例2 5-アミノレブリン酸 p-トルエンスルホン酸塩の臭気測定

5人の被験者が、実施例1で製造した5-アミノレブリン酸 p-トルエンスルホン酸塩の水溶液(カラムからの溶出液とp-トルエンスルホン酸の混合液)及びその固体の臭気を直接嗅ぎ、下記の基準に従って臭気を評価した。結果を表1に示す。

[0027]

・評価基準

○:臭いがしない

△:臭いはするが不快ではない

X:非常に不快な臭いがする

[0028]

比較例1

5-アミノレブリン酸塩酸塩の水溶液及び固体を使用する以外は実施例2と同様にして、 臭気を評価した。なお、5-アミノレブリン酸塩酸塩の水溶液は、p-トルエンスルホン酸ー 水和物の代わりに塩酸を用いる以外は実施例1と同様にして製造した。結果を表1に示す

[0029]

【表 1 】

被験者		A	В	С	D	Е
実施例2	水溶液	0	0	0	0	0
	固体	0	0	0	0	0
比較例1	水溶液	×	×	×	×	×
	固体	\triangle	Δ		Δ	Δ

[0030]

実施例3

5-アミノレブリン酸 p-トルエンスルホン酸塩 0.5gを水1mLに溶解した水溶液を使用する以外は実施例 2 と同様にして、臭気を評価した。結果を表2に示す。

 $[0\ 0\ 3\ 1\]$

比較例2

5-アミノレブリン酸塩酸塩0.5gを水1mLに溶解した水溶液を使用する以外は実施例2と同様にして、臭気を評価した。結果を表2に示す。

[0032]

【表 2】

被験者	A	В	С	D	Е
実施例3	0	0	0	0	0
比較例2	\triangle	0	Δ	Δ	0

[0033]

表1、2より、5-アミノレブリン酸 p-トルエンスルホン酸塩の水溶液は、5-アミノレブリン酸塩酸塩の水溶液に比較して全く臭気が認められなかった。5-アミノレブリン酸塩酸塩の水溶液の製造に必要な臭気対策や腐食性ガス対策が不要であり、取り扱いがより簡便であった。また、5-アミノレブリン酸 p-トルエンスルホン酸塩の固体も、5-アミノレブリン酸塩酸塩の固体と比べると臭気が全く認められず、秤量、分封等の取り扱いがより簡便であった。

【書類名】要約書

【要約】

【課題】安全性・環境保全性が高く、高温耐性の5-アミノレブリン酸スルホン酸塩及びその製造方法を提供すること。

【解決手段】下記一般式(1)

 $HOCOCH₂CH₂COCH₂NH₂ \cdot HOSO₂R¹$ (1)

(式中、R^Iは低級アルキル基で置換されたフェニル基を示す。)

で表わされる5-アミノレブリン酸スルホン酸塩及びその製造方法。

【選択図】なし

出願人履歴

000010556719900828

東京都港区芝浦1丁目1番1号コスモ石油株式会社