

Aprendizado de Maquina para Qualidade de Vinhos

Arthur Bezerra Calado

Gabriel D'assumpção de Carvalho

Pedro Henrique Sarmento de Paula

Nome da variável	Papel	Tipo	Descrição	Valores ausentes
acidez fixa	Característica	Contínuo		Não
acidez volátil	Característica	Contínuo		Não
ácido cítrico	Característica	Contínuo		Não
açúcar residual	Característica	Contínuo		Não
Cloretos	Característica	Contínuo		Não
Dióxido de enxofre livre	Característica	Contínuo		Não
Dióxido de enxofre total	Característica	Contínuo		Não
densidade	Característica	Contínuo		Não
ph	Característica	Contínuo		Não
Sulfatos	Característica	Contínuo		Não
álcool	Característica	Contínuo		Não
qualidade	Alvo	Categórico	escore entre 0 e 10	Não
Cor	Característica	Categórico	vermelho (1) ou branco (0)	Não

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	color
count	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000	6497.0000
mean	7.2153	0.3397	0.3186	5.4432	0.0560	30.5253	115.7446	0.9947	3.2185	0.5313	10.4918	0.2461
std	1.2964	0.1646	0.1453	4.7578	0.0350	17.7494	56.5219	0.0030	0.1608	0.1488	1.1927	0.4308
min	3.8000	0.0800	0.0000	0.6000	0.0090	1.0000	6.0000	0.9871	2.7200	0.2200	8.0000	0.0000
25%	6.4000	0.2300	0.2500	1.8000	0.0380	17.0000	77.0000	0.9923	3.1100	0.4300	9.5000	0.0000
50%	7.0000	0.2900	0.3100	3.0000	0.0470	29.0000	118.0000	0.9949	3.2100	0.5100	10.3000	0.0000
75%	7.7000	0.4000	0.3900	8.1000	0.0650	41.0000	156.0000	0.9970	3.3200	0.6000	11.3000	0.0000
max	15.9000	1.5800	1.6600	65.8000	0.6110	289.0000	440.0000	1.0390	4.0100	2.0000	14.9000	1.0000

Agrupamento de Classes

Notas Baixas

Classe 0: [0, 4]

Notas Médias

Classe 1: [5, 7]

Notas Altas

Classe 2: [8, 10]

O objetivo é simplificar a previsão da qualidade do vinho agrupando as notas em categorias.

Metodologia

Separação dos dados em treino (70%) e teste (30%). Teste com diferentes valores de max_depth (10, 20, 40, 80, 160) e critérios (gini e entropy)

Treinamento

Usado o modelo DecisionTreeClassifier.

Ajuste de parâmetros como profundidade máxima e critérios de divisão para avaliar o impacto na precisão e cobertura.

Avaliação

- Resultados para o critério gini:
 - o max_depth = 10: Precisão de 88.78%, recall de 91.49%.
 - o max_depth = 20: Precisão de 90.79%, recall de 90.41%.
 - max_depth >= 40: Precisão estabilizada em 91.23%, recall decrescendo indicando possíveis sinais de overfitting à medida que a árvore se torna mais profunda.

Avaliação

- Resultados para o critério entropy:
 - o max_depth = 10: Precisão de 89.52%, recall de 91.44%.
 - max_depth = 20, 40, 80, 160: A precisão permanece relativamente estável em torno de 90.53%, independentemente da profundidade máxima da árvore. O recall diminui para cerca de 89.64% à medida que a profundidade aumenta.

Conclusões

- Árvores mais profundas podem levar a overfitting.
- Critério gini teve melhor desempenho geral que entropy.
- Gini: max_depth: 22; precision: 91.30%; recall: 90.56%;
- Entropy: max_depth: 8; precision: 90.25%; recall: 92.56%;

Metodologia e treinamento

Divisão dos dados em conjuntos de treino e teste (70-30)

Função para fornecer uma análise do comportamento do modelo (precisão, cobertura e F1-Score)

Naive Bayes Gaussiano foi escolhido para este experimento devido à sua capacidade de lidar com uma combinação de variáveis contínuas e binárias, como as presentes neste conjunto de dados

Resultados

Os resultados do primeiro experimento com o modelo mostram uma precisão de 88,96%, recall de 80,87% e F1-Score de 84,39%.

Resultados

As transformações nos dados no segundo experimento resultaram em melhorias significativas nas métricas do modelo. A precisão manteve-se alta, passando de 88,96% para 88,78%, enquanto o recall aumentou de 80,87% para 83,08%, indicando que o modelo identificou mais instâncias positivas. Consequentemente, o F1-Score melhorou de 84,39% para 85,65%, refletindo um melhor equilíbrio entre precisão e recall.

Metodologia e treinamento

Divisão dos dados em conjuntos de treino e teste (70-30)

Função para fornecer uma análise do comportamento do modelo (precisão, cobertura e F1-Score)

SelectKBest com o critério f_classif para mostrar as pontuações de relevância de cada informação nos dados para a predição

5 características com maior relevância, baseado na influência na variável-alvo, focando nas características mais informativas

Resultados

No resultado final do experimento com o Modelo Bayesiano Ingênuo, obtivemos uma precisão de 88,45%, recall de 90,10% e F1-Score de 89,23%.

Regressão Logística 1

Metodologia

Aplicação de regressão logística para prever as classes de qualidade de vinho. Utilização da função sigmoide para transformar a saída linear em probabilidade de classe. Foram usados dados sem transformação e com transformação para comparação. Empregou-se a técnica de validação cruzada

Regressão Logística 1

Treinamento

- Divisão dos dados em conjuntos de treino e teste (80-20).
- Ajuste dos parâmetros do modelo.
- Treinamento do modelo com o conjunto de treino utilizando a função de custo loglikelihood.
- Ajuste dos parâmetros do modelo via métodos de otimização como gradiente descendente.
- Os resultados mostram que o modelo se ajustou bem aos dados.
- Score com base em validação cruzada (5 folds).

Regressão Logística 1

Avaliação

• Avaliação do modelo com base em precisão e recall.

Conclusões

- Desempenho aceitável em termos de precisão e recall.
- Regressão logística pode não capturar todas detalhes pela natureza linear do modelo.
- Os resultados mostram que o modelo se ajustou bem aos dados. Ele obteve uma precisão notável, alcançando aproximadamente 90,26% de acurácia com base na métrica F1. Além disso, durante a validação cruzada, o modelo manteve um desempenho consistente, com uma média de 93,05% nos diferentes agrupamentos.

Coeficientes para a classe 1: fixed acidity: 0.2706 volatile acidity: 0.1678 citric acid: -0.0494 residual sugar: -0.0500 chlorides: 0.0080 free sulfur dioxide: -0.0418 total sulfur dioxide: 0.0090 density: 0.0175 pH: 0.0567 sulphates: -0.0485 alcohol: -0.2595 color: -0.0622 Coeficientes para a classe 2: fixed acidity: 0.1721 volatile acidity: -0.0875 citric acid: 0.0291 residual sugar: -0.0011 chlorides: 0.0132 free sulfur dioxide: 0.0115 total sulfur dioxide: 0.0015 density: 0.0693 pH: 0.2443 sulphates: 0.1030 alcohol: -0.0355 color: 0.2448 Coeficientes para a classe 3: fixed acidity: -0.4427 volatile acidity: -0.0803 citric acid: 0.0202 residual sugar: 0.0511 chlorides: -0.0212 free sulfur dioxide: 0.0302 total sulfur dioxide: -0.0105 density: -0.0868 pH: -0.3010 sulphates: -0.0545 alcohol: 0.2950 color: -0.1825

K Vizinhos

Metodologia

Uso do algoritmo K-Nearest Neighbors (KNN) para classificação, testando diferentes valores de k. Uso das distâncias euclidianas.

Treinamento

Divisão dos dados (treino 70% e teste 30%), padronização (StandardScaler) e ajuste do número de vizinhos k (1 a 50). K=1 foi resultou na maior **acurácia (100%)** no treinamento, podendo indicar overfitting.

K Vizinhos

Avaliação

Análise de precisão, recall e matriz de confusão para diferentes valores de k.

Resultados

- Modelo sensível à escolha de, escala dos dados, e ruídos nos dados.
- Usando o melhor k (k=1), o modelo foi avaliado no conjunto de teste. Métricas de desempenho:
 - **Acurácia: 91.18%**; Precisão: 90.65%
 - Recall: 91.18%; F1 Score: 90.88%

