VNIT Nagpur

Fault Analysis MATLAB Application Documentation

Department: Electrical Engineering

Laboratory: Programming

Techniques and Simulation

Title of Application: Transmission

Line Fault Analysis Tool

Developed by: Manjeet .A. Singh

Roll No.: BT23EEE112

Date: 5/04/2025

Brief Description

Objective:

This MATLAB application is designed to analyze and simulate different types of faults in transmission lines, helping users understand fault currents, severity, and mitigation strategies.

Features

- Balanced Fault Analysis: Computes three-phase symmetrical faults. Fault Power and Fault Current
- Unbalanced Fault Analysis: Supports Line-to-Ground (LG), Line-to-Line (LL), and Double Line-to-Ground (LLG) faults.
- Interactive GUI: User-friendly interface with input fields for system parameters.
- Visualization: Displays fault current magnitude and plots current waveforms.
- Educational Content: Includes theory sections explaining fault types and analysis methods.
- · Displays analysis report for the fault

Applications

- Useful for power system engineers, students, and researchers.
- Helps in designing protection systems (relays, circuit breakers).
- Provides insights into fault severity and mitigation.

3. Screenshots with Explanation

Screenshot 1: Main Menu

Fig 2: Home screen with options for fault analysis and theory.

Screenshot 2: Balanced Fault Input

Fault Analysis	-	×
Balanced Fault Analysis		
System Voltage (V) (kV):		
Source Resistance (Rs) (Ω):		
Source Reactance (Xs) (Ω):		
Line Resistance (Rl) (Ω):		
Line Reactance (XI) (Ω):		
Fault Resistance (Rf) (Ω):		
Submit		
Theory Back		

Fig 3: User inputs for balanced fault analysis (V, Rs, Xs, etc.). & can read the theory as well

■ Balanced Fault Theory —		×
Balanced (Symmetrical) Fault		<u> </u>
What is a Balanced Fault?		- 1
Affects all 3 phases equally,commonly all 3 phases short-circuited		1
Characteristics:		
- All phases see equal fault current magnitude		
- Phase angles remain 120° apart		
- Most severe in terms of fault current magnitude		
Analysis Method:		
These faults are analyzed by +ve sequence network only, calculation	ns:	
If = V / (Z1 + Zf)		
Where:		
V = System voltage		
Z1 = Positive sequence impedance Close		-

Screenshot 3: Unbalanced Fault Results after Giving inputs for LL fault

■ Fault Analysis	-	-
Line to Line Fault Ar	aalveie	
Line-to-Line Fault An		
System Voltage (V) (kV):	33	
Positive Sequence R (Ω):	200	
Positive Sequence X (Ω):	300	
Negative Sequence R (Ω):	200	
Negative Sequence X (Ω):	300	
Zero Sequence R (Ω):	200	
Zero Sequence X (Ω):	300	
Fault Resistance (Rf) (Ω):	30 0	
Submit Theory		
Back		
OC .		(3)
Fault Analysis		- 0 X
rault Alialysis		
Analysis R	esults:	
Fault Current (If): 62.00 A		
Fault Power: 3.54 MW Severity: LOW	Current Magnitude	
Interpretation: This line-to-line fault has lir	nited impact.	
Recommended Action: Monitor protection	system operation.	
View (I vs t	t) Plot	
Page to A	fain	
Back to M	rain .	

Fig 4: Results showing fault current, severity, and recommended actions with current gauge

Screenshot 4: Current Plot after clicking on View (I vs t) Plot

Fig 5: Fault current vs. time plot for visualization.

4. Conclusions & Remarks

- The app effectively calculates fault currents for both balanced and unbalanced scenarios.
- Provides actionable insights (e.g., "VERY HIGH severity check circuit breakers").
- Can help to recall the theory and formulae while doing analysis
- GUI makes it accessible for students and engineers.

Future Scope

- Add support for arc faults and transient analysis.
- Include a library of standard transmission line parameters.