CONCEITOS BÁSICOS 17

1.19 Determine as grandezas incógnitas nos circuitos mostrados na Fig. P1.19.

Figura P1.19

1.20 Repita o Problema 1.19 para os circuitos mostrados na Fig. P.20.

Figura P1.20

1.21 Determine a potência fornecida aos componentes mostrados na Fig. P1.21.

1.22 Determine a potência fornecida aos componentes mostrados na Fig. P1.22.

Figura P1.22

No circuito mostrado na Fig. P1.23 (a), $P_1 = 36$ W. Nesta condição, o componente 2 está absorvendo ou fornecendo potência? Qual é o valor desta potência?

(b) No circuito mostrado na Fig. P1.23 (b), P₂ = −48 W. Nesta condição, o componente 1 está absorvendo ou fornecendo potência? Qual é o valor desta potência?

Figura P1.23

1.24 Dois componentes são conectados em série, conforme mostrado na Fig. P1.24. O componente 1 fornece 24 W de potência. Nesta condição, o componente 2 está absorvendo ou fornecendo potência? Qual é o valor desta potência?

Figura P1.24

1.25 Dois componentes são conectados em série, conforme mostrado na Fig. P1.25. O componente 1 fornece 24 W de potência. Nesta condição, o componente 2 está absorvendo ou fornecendo potência? Qual é o valor desta potência?

Figura P1.25

1.26 Dois componentes são conectados em série, conforme mostrado na Fig. P1.26. O componente 1 absorve 36 W de potência. Nesta condição, o componente 2 está absorvendo ou fornecendo potência? Qual é o valor desta potência?

Figura P1.26

1.27 Determine o valor de I_F de modo que a potência absorvida pelo componente 2 da Fig. P1.27 seja de 7 W.

Figura P1.27

1.28 Determine a potência que é absorvida ou fornecida pelos componentes dos circuitos mostrados na Fig. P1.28.

Figura P1.28

1.29 Obtenha a potência que é absorvida ou fornecida pelos componentes dos circuitos mostrados na Fig. P1.29.

Figura P1.29

♣ 1.30 Obtenha a potência que é absorvida ou fornecida pelos componentes das redes mostradas na Fig. P1.30.

1.31 Calcule a potência que é absorvida ou fornecida pelos componentes das redes mostradas na Fig. P1.31.

1.32 Calcule a potência absorvida por cada componente do circuito mostrado na Fig. P1.32.

Figura P1.32

1.33 Determine o valor da tensão V_x no circuito mostrado na Fig. P1.33 utilizando o teorema de Tellegen.

Figura P1.33

1.34 Determine o valor da tensão V_x no circuito mostrado na **\P** Fig. P1.34 utilizando o teorema de Tellegen.

Figura P1.34

1.35 Determine o valor da tensão V_x no circuito mostrado na Fig. P1.35 utilizando o teorema de Tellegen.

Figura P1.35

Determine a potência absorvida pela fonte dependente da rede mostrada na Fig. P2.47.

Figura P2.48

Determine a resistência R_{AB} da rede mostrada na Fig.

Figura P2.49

Determine a resistência R_{AB} do circuito mostrado na Fig.

Figura P2.50

Determine a resistência R_{AB} do circuito mostrado na Fig. **2.51** Determine a resistência R_{AB} da rede mostrada na Fig. P2.51.

Figura P2.51

2.52 Determine a resistência R_{AB} do circuito mostrado na Fig.

Figura P2.52

2.53 Determine a resistência R_{AB} da rede mostrada na Fig. P2.53.

Figura P2.53

2.54 Determine a resistência R_{AB} do circuito mostrado na Fig. P2.54.

Figura P2.54

 \clubsuit 2.55 Determine a resistência equivalente R_{eq} da rede mostrada na Fig. P2.55.

Figura P2.55

2.56 Determine a resistência equivalente observando os terminais a-b do circuito mostrado na Fig. P2.56.

Figura P2.56

Dada a configuração de resistores mostrada na Fig. P2.57, determine a resistência equivalente entre os seguintes conjuntos de terminais: (1) a e b, (2) b e c, (3) a e c, (4) d e e, (5) a e e, (6) c e d, (7) a e d, (8) c e e, (9) b e d, e (10) b e e.

- Dezessete possíveis valores de resistência equivalente podem ser obtidos utilizando-se três resistores. Determine os dezessete valores distintos considerando os três valores de resistores padronizados: 47 Ω, 33 Ω e 15 Ω.
 - Determine a faixa de valores de resistência para os seguintes resistores:
 - (a) $1 \text{ k}\Omega$ com tolerância de 5%
 - **(b)** 470 Ω com tolerância de 2%
 - (c) $22 \text{ k}\Omega$ com tolerância de 10%
- Dada a rede mostrada na Fig. P2.60, determine a possível faixa de valores para a corrente e para a potência dissipada pelos seguintes resistores:
 - (a) 390 Ω com tolerância de 1%
 - **(b)** 560 k Ω com tolerância de 2%

Determine a corrente I_1 e a tensão V_3 do circuito mostrado na Fig. P2.61.

2.62 Determine a corrente I_1 e a tensão V_s do circuito mostrado na Fig. P2.62.

2.63 Determine as tensões V_{ab} e V_{dc} do circuito mostrado na Fig. P2.63.

Figura P2.63

2.64 Determine a tensão V_1 e a corrente I_A do circuito mostrado na Fig. P2.64.

2.65 Determine a corrente I_s da rede mostrada na Fig. P2.65. \bigoplus

2.66 Determine a corrente I_s do circuito mostrado na Fig. \bigcirc P2.66.

