Math 5601 Midterm Project

Jacob Hauck

October 11, 2023

Throughout this project, we consider the IVP

$$y' = f(t, y), a \le t \le b (1)$$

$$(a) = a_0, a_0 \in \mathbf{R}. (2)$$

$$y(a) = g_a, g_a \in \mathbf{R}. (2)$$

We also use the mesh with sample points $t_j = a + jh$, with $t_0 = a$, where h > 0 is the step size. Lastly, we assume that f is L-Lipschitz in y uniformly for $t \in [a, b]$ (so that the solution of (1-2) is unique).

Problem 1.

Using the Taylor expansion for y about t_j , we get

$$y(t_{j+1}) = y(t_j) + hy'(t_j) + \frac{h^2}{2}y''(t_j) + \mathcal{O}(h^3).$$
(3)

Similarly, expanding y about t_{j+1} gives

$$y(t_j) = y(t_{j+1}) - hy'(t_{j+1}) + \frac{h^2}{2}y''(t_{j+1}) + \mathcal{O}(h^3).$$
(4)

Further expanding y'' about t_i , we get

$$y(t_j) = y(t_{j+1}) - hy'(t_{j+1}) + \frac{h^2}{2} (y''(t_j) + \mathcal{O}(h)) + \mathcal{O}(h^3)$$
(5)

$$= y(t_{j_1}) - hy'(t_{j+1}) + \frac{h^2}{2}y''(t_j) + \mathcal{O}(h^3).$$
(6)

Rearranging (6) and (3) and substituting from (1), we get

$$\frac{y(t_{j+1}) - y(t_j)}{h} = y'(t_j) + \frac{h}{2}y''(t_j) + \mathcal{O}(h^2) = f(t_j, y(t_j)) + \frac{h}{2}y''(t_j) + \mathcal{O}(h^2), \tag{7}$$

$$\frac{y(t_{j+1}) - y(t_j)}{h} = y'(t_{j+1}) - \frac{h}{2}y''(t_j) + \mathcal{O}(h^2) = f(t_{j+1}, y(t_{j+1})) - \frac{h}{2}y''(t_j) + \mathcal{O}(h^2).$$
 (8)

If we take the average of both sides of (7) and (8), then we finally obtain

$$\frac{y(t_{j+1}) - y(t_j)}{h} = \frac{f(t_{j+1}, y(t_{j+1})) + f(t_j, y(t_j))}{2} + \mathcal{O}(h^2). \tag{9}$$

Thus, if $y_j = y(t_j)$ and we compute y_{j+1} using the trapezoidal scheme, that is, as the solution of

$$y_{j+1} = y_j + h \cdot \frac{f(t_{j+1}, y_{j+1}) + f(t_j, y_j)}{2},$$
(10)

then y_{j+1} (assuming the solution of (10) is unique) will satisfy the estimate

$$|y_{j+1} - y(t_{j+1})| = \frac{h}{2} \cdot |f(t_{j+1}, y(t_{j+1})) - f(t_{j+1}, y_{j+1})| + \mathcal{O}(h^3).$$
(11)

Using the Lipschitz property of f, we obtain

$$|y_{j+1} - y(t_{j+1})| \le \frac{hL}{2} \cdot |y_{j+1} - y(t_{j+1})| + \mathcal{O}(h^3), \tag{12}$$

so

$$|y_{j+1} - y(t_{j+1})| \cdot \left(1 - \frac{hL}{2}\right) \le \mathcal{O}(h^3).$$
 (13)

As $h \to 0$, the quantity $1 - \frac{hL}{2} \to 1$; therefore,

$$|y_{j+1} - y(t_{j+1})| = \mathcal{O}(h^3). \tag{14}$$

That is, the *local truncation error* of the trapezoidal scheme is of order 3, which means that the accuracy of the method as a whole is of order 2.

Problem 2.

Consider the Taylor expansion of y about t_{j+1} at the points t_{j-1} , t_j and t_{j+1} :

$$y(t_{j-1}) = y(t_{j+1}) - 2hy'(t_{j+1}) + 2h^2y''(t_{j+1}) + \mathcal{O}(h^3)$$
(15)

$$y(t_j) = y(t_{j+1}) - hy'(t_{j+1}) + \frac{h^2}{2}y''(t_{j+1}) + \mathcal{O}(h^3)$$
(16)

$$y(t_{j+1}) = y(t_{j+1}). (17)$$

If we form the linear combination $3y(t_{j+1}) - 4y(t_j) + y(t_{j-1})$, then we get

$$3y(t_{j+1}) - 4y(t_j) + y(t_{j-1}) = 3y(t_{j+1})$$
(18)

$$-4y(t_{i+1}) + 4hy'(t_{i+1}) - 2y''(t_{i+1})h^2$$
(19)

$$+y(t_i) - 2hy'(t_i) + 2y''(t_i)h^2 + \mathcal{O}(h^3). \tag{20}$$

Therefore, canceling terms and substituting from (1), we have

$$3y(t_{j+1}) - 4y(t_j) + y(t_{j-1}) = hf(t_{j+1}, y(t_{j+1})) + \mathcal{O}(h^3)$$
(21)

Thus, if we know that $y_{j-1} = y(t_{j-1})$, and $y(t_j) = y_j$ and we compute y_{j+1} using the two-step backward differentiation scheme, that is, as the solution of

$$\frac{3y_{j+1} - 4t_j + y_{j-1}}{2h} = hf(t_{j+1}, y_{j+1}), \tag{22}$$

then the local truncation error $|y_{j+1} - y(t_{j+1})|$ will satisfy

$$|y_{j+1} - y(t_{j+1})| = h|f(t_{j+1}, y_{j+1}) - f(t_{j+1}, y(t_{j+1}))| + \mathcal{O}(h^3).$$
(23)

By the Lipschitz property of f,

$$|y_{j+1} - y(t_{j+1})| \le hL|y_{j+1} - y(t_{j+1})| + \mathcal{O}(h^3), \tag{24}$$

so

$$|y_{j+1} - y(t_{j+1})|(1 - hL) \le \mathcal{O}(h^3). \tag{25}$$

As $h \to 0$, the quantity $(1 - hL) \to 1$; therefore,

$$|y_{j+1} - y(t_{j+1})| = \mathcal{O}(h^3). \tag{26}$$

That is, the *local trunction error* of the two-step backward differentiation scheme is of order 3, and the accuracy of the method as a whole is of order 2.

Problem 3.

Consider the Taylor expansions of $y(t_{j+1})$, $y(t_j)$, $y(t_{j-1})$, and $y(t_{j-2})$ about t_{j+1} :

$$y(t_{j+1}) = y(t_{j+1}) (27)$$

$$y(t_j) = y(t_{j+1}) - hy'(t_{j+1}) + \frac{h^2}{2}y''(t_{j+1}) - \frac{h^3}{6}y'''(t_{j+1}) + \mathcal{O}(h^4)$$
(28)

$$y(t_{j-1}) = y(t_{j+1}) - 2hy'(t_{j+1}) + 2h^2y''(t_{j+1}) - \frac{4h^3}{3}y'''(t_{j+1}) + \mathcal{O}(h^4)$$
(29)

$$y(t_{j-2}) = y(t_{j+1}) - 3hy'(t_{j+1}) + \frac{9h^2}{2}y''(t_{j+1}) - \frac{9h^3}{2}y'''(t_{j+1}) + \mathcal{O}(h^4)$$
(30)

Then, for $\beta_1, \beta_2, \beta_3, \beta_4 \in \mathbf{R}$.

$$\beta_1 y(t_{j+1}) + \beta_2 y(t_j) + \beta_3 y(t_{j-1}) + \beta_4 y(t_{j-2}) =$$
(31)

$$(\beta_1 + \beta_2 + \beta_3 + \beta_4)y(t_{i+1}) \tag{32}$$

$$-(\beta_2 + 2\beta_3 + 3\beta_4)y'(t_{j+1})h \tag{33}$$

$$+\frac{1}{2}(\beta_2 + 4\beta_3 + 9\beta_4)y''(t_{j+1})h^2$$
(34)

$$-\frac{1}{6}(\beta_2 + 8\beta_3 + 27\beta_4)y'''(t_{j+1})h^3 + \mathcal{O}(h^4). \tag{35}$$

To cancel the lower-order terms, we must choose β_2 , β_3 , and β_4 such that

$$-1 = \beta_2 + \beta_3 + \beta_4$$

$$0 = \beta_2 + 4\beta_3 + 9\beta_4$$

$$0 = \beta_2 + 8\beta_3 + 27\beta_4,$$
(36)

then we get

$$\frac{y(t_{j+1}) + \beta_2 y(t_j) + \beta_3 y(t_{j-1}) + \beta_4 y(t_{j-2})}{-(\beta_2 + 2\beta_3 + 3\beta_4)h} = y'(t_{j+1}) + \mathcal{O}(h^4) = f(t_{j+1}, y(t_{j+1})) + \mathcal{O}(h^3). \tag{37}$$

To satisfy (36), we must have $4\beta_3 + 9\beta_4 = 8\beta_3 + 27\beta_4$, so $\beta_3 = -\frac{9}{2}\beta_4$. Then $\beta_2 = 18\beta_4 - 9\beta_4 = 9\beta_4$, and $-1 = 9\beta_4 - \frac{9}{2}\beta_4 + \beta_4 = \frac{11}{2}\beta_4$, so $\beta_4 = -\frac{2}{11}$. Then $\beta_3 = \frac{9}{11}$, and $\beta_2 = -\frac{18}{11}$. Lastly, $-(\beta_2 + 2\beta_3 + 3\beta_4) = \frac{6}{11}$.

If we set

$$\alpha_1 = \frac{1}{-(\beta_2 + 2\beta_3 + 3\beta_4)} = \frac{11}{6} \tag{38}$$

$$\alpha_2 = \frac{\beta_2}{-(\beta_2 + 2\beta_3 + 3\beta_4)} = -\frac{18}{6} \tag{39}$$

$$\alpha_3 = \frac{\beta_3}{-(\beta_2 + 2\beta_3 + 3\beta_4)} = \frac{9}{6} \tag{40}$$

$$\alpha_4 = \frac{\beta_4}{-(\beta_2 + 2\beta_3 + 3\beta_4)} = -\frac{2}{6},\tag{41}$$

then by (37),

$$\frac{\alpha_1 y(t_{j+1}) + \alpha_2 y(t_j) + \alpha_3 y(t_{j-1}) + \alpha_4 y(t_{j-2})}{h} = f(t_{j+1}, y(t_{j+1})) + \mathcal{O}(h^3). \tag{42}$$

If we had $y_{j-2} = y(t_{j-2})$, $y_{j-1} = y(t_{j-1})$, and $y_j = y(t_j)$, and we computed y_{j+1} as the solution of

$$\frac{\alpha_1 y(t_{j+1}) + \alpha_2 y(t_j) + \alpha_3 y(t_{j-1}) + \alpha_4 y(t_{j-2})}{h} = f(t_{j+1}, y_{j+1}), \tag{43}$$

then $|y_{i+1} - y(t_{i+1})|$ would satisfy

$$|y_{j+1} - y(t_{j+1})| = |f(t_{j+1}, y_{j+1}) - f(t_{j+1}, y(t_{j+1}))| + \mathcal{O}(h^3).$$

$$(44)$$

Using the Lipschitz property of f, we obtain

$$|y_{j+1} - y(t_{j+1})|(1 - hL) \le \mathcal{O}(h^4). \tag{45}$$

As $h \to 0$, the quantity $1 - hL \to 1$; therefore,

$$|y_{j+1} - y(t_{j+1})| = \mathcal{O}(h^3). \tag{46}$$

That is, the implicit scheme

$$\frac{\alpha_1 y(t_{j+1}) + \alpha_2 y(t_j) + \alpha_3 y(t_{j-1}) + \alpha_4 y(t_{j-2})}{h} = f(t_{j+1}, y_{j+1})$$
(47)

with $\alpha_1 = \frac{11}{6}$, $\alpha_2 = -\frac{18}{6}$, $\alpha_3 = \frac{9}{6}$, and $\alpha_4 = -\frac{2}{6}$ has 3rd-order accuracy. Since we had to choose these values of α to cancel higher-order terms, these must be the coefficients in the third-order backward differentiation scheme.

We now consider Newton's method for finding the root of a function f:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}. (48)$$

Problem 4.

Suppose that f has a root z of multiplicity $m \ge 2$. Then, by definition, there exists a function r such $r(z) \ne 0$, and $f(x) = (x-z)^m r(x)$. Then $f'(x) = m(x-z)^{m-1} r(x) + (x-z)^m r'(x) = (x-z)^{m-1} (mr(x) + (x-z)r'(x))$. Then we can still safely define Newton's method despite the fact that f'(z) = 0 by setting

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-z)^m r(x)}{(x-z)^{m-1} (mr(x) + (x-z)r'(x))} = x - \frac{(x-z)r(x)}{mr(x) + (x-z)r'(x)}$$
(49)

and observing that the denominator in the last expression is nonzero when x = z because $r(z) \neq 0$. Then Newton's method becomes $x_{k+1} = g(x_k)$.

To apply the theory of convergence in the project description, we need to compute

$$g'(x) = 1 - \frac{(r(x) + (x-z)r'(x))(mr(x) + (x-z)r'(x)) - (x-z)r(x)(mr'(x) + r'(x) + (x-z)r''(x))}{(mr(x) + (x-z)r'(x))^2}$$

so that

$$g'(z) = 1 - \frac{m(r(z))^2}{(mr(z))^2} = 1 - \frac{1}{m}$$
(50)

since $r(z) \neq 0$. Since $g'(z) \neq 0$ if $m \geq 2$, but |g'(z)| < 1, it follows by the convergence theorem in the project description that Newton's method has *linear* convergence in this case.

Problem 5.

In the case that f has a root z of multiplicity $m \ge 2$, we saw that Newton's method defined by $x_{k+1} = g(x_k)$, where

$$g(x) = x - \frac{(x-z)r(x)}{mr(x) + (x-z)r'(x)}$$
(51)

had a linear convergence rate to the root z of f. We can fix this simply by adjusting Newton's method to

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)},\tag{52}$$

that is, by replacing g by g_m , where

$$g_m(x) = x - m \frac{(x-z)r(x)}{mr(x) + (x-z)r'(x)}.$$
(53)

This method has at least quadratic convergence by the convergence theorem in the project description because

$$g'_m(x) = 1 - m \frac{(r(x) + (x-z)r'(x))(mr(x) + (x-z)r'(x)) - (x-z)r(x)(mr'(x) + r'(x) + (x-z)r''(x))}{(mr(x) + (x-z)r'(x))^2}$$

so that

$$g'_m(z) = 1 - m \frac{m(r(z))^2}{(mr(z))^2} = 0.$$
 (54)

Then the iteration $x_{k+1} = g_m(x_k)$ converges at least quadratically to the root z of f by the convergence theorem in the project description.

Now we consider the implementation of the backward Euler method for (1, 2):

$$y_0 = y(a) = q_a, y_{j+1} = y_j + hf(t_{j+1}, y_{j+1}) if j \in \{0, 1, \dots, J-1\}.$$
 (55)

Problem 6.

Suppose that y_j , t_{j+1} and h are known at the jth step of the backward Euler method. Then y_{j+1} can be obtained by solving the nonlinear equation

$$y_{j+1} = y_j + hf(t_{j+1}, y_{j+1}) (56)$$

for y_{j+1} . Since our methods for numerically solving nonlinear equations work only for equations of the form $\tilde{f}(x) = 0$ (for the bisection, Netwton's and secant methods) and $\tilde{g}(x) = x$ (for the fixed point method), we need to recast (56) in these forms. In other words, we need to define \tilde{f} and \tilde{g} such that

$$\tilde{f}(y_{j+1}) = 0 \iff y_{j+1} = y_j + hf(t_{j+1}, y_{j+1}) \iff \tilde{g}(y_{j+1}) = y_{j+1}.$$
 (57)

There are many ways to do this, but perhaps the simplest is to choose

$$\tilde{f}(x) = x - y_j - hf(t_{j+1}, x), \qquad \tilde{g}(x) = y_j + hf(t_{j+1}, x).$$
 (58)

Problem 7.

Suppose that we wanted to use the bisection method or the secant method to solve $x = y_j + hf(t_{j+1}, x)$ for x.

- (a) To use the bisection method, we would need to know
 - (1) the initial interval [a, b] that contains the root, and
 - (2) the stopping conditions (error tolerances and maximum iterations).

As mentioned in the project description, the stopping conditions can be set according to the accuracy requirements determined by the step size h. The initial interval, however, would be more difficult to determine.

- (b) To use the secant method, we would need to know
 - (1) the initial points x_0 and x_1 , and
 - (2) the stopping conditions (error tolerances and maximum iterations).

As with the bisection method, the stopping conditions here can be determined fairly easily. The two initial points, however, would be more difficult to choose. Perhaps $x_0 = y_{j-1}$ and $x_1 = y_j$ would work, but we would still need to answer the question of how to choose x_0 when j = 0.

Problem 8.

(a) In order to avoid duplicate code, I have implemented an abstract version of the backward Euler method that takes as input the initial condition g_a , the interval [a, b], and the step size h. The function f is specified implicitly by the function argument solver, defined by

$$solver(x_0, t, h) = solution x of [x = x_0 + hf(t, x)].$$
(59)

I define two solver functions, one that uses Newton's method, and one that uses the fixed point method. In Listing 1 is the abstract backward Euler method implementation (copied from backward_euler.m). In Listing

Listing 1: Abstract backward Euler method

```
function result = backward_euler(solver, q_a, a, b, h)
2
3
    % get as close to b as possible without going past on the last step
4
   num_steps = floor((b - a) / h);
5
6
   t = zeros(1, num_steps);
7
   y = zeros(1, num_steps);
8
9
   t(1) = a;
10
   y(1) = y_a;
11
12
   for j = 2:num_steps
13
        t(j) = t(j-1) + h;
14
15
        % solver : (x_0, t, h) -> solution of x = x_0 + h * f(t, x)
16
        y(j) = solver(y(j-1), t(j), h);
17
   end
18
19
   result = [t, y];
```

Listing 2: solver using Newton's method

```
function result = be_newton( ...
    f, dfdy, epsilon, epsilon_f, epsilon_f_prime, max_it, log_iterations ...
}

f, dfdy, epsilon, epsilon_f, epsilon_f_prime, max_it, log_iterations ...
}

creates a backward Euler solver function for y' = f(t,y)

that maps (x_0, t, h) to the solution of x = x_0 + h * f(t,x)

using Newton's method with initial point x_0

result = @(x_0, t, h) newton( ...

@(x) x - x_0 - h * f(t, x), @(x) 1 - h * dfdy(t, x), ...

x_0, epsilon, epsilon_f, epsilon_f_prime, max_it, log_iterations ...
};
```

Listing 3: solver using the fixed point method

```
function result = be_fixed(f, epsilon, max_it, log_iterations)

function function for y' = f(t,y)

function function for y' = f(t,y)

function funct
```