ML Journal Club

Graph Neural Networks 5/30

Content

- Topological Graph Neural Network
 - Define a graph
 - Topological graph
 - Geometrical graph
 - Graph convolutional network (GCN)
 - · General architectures
- Geometrical Graph Neural Networks
- DEMO

How to define a graph

1,3,7-trimethylpurine-2,6-dione

Laplacian matrix

Basics

Eigen-decomposition of graph Laplacian

Eigen-decomposition of graph Laplacian

```
class LapTransform:
   def call (self,data):
       num_nodes = data.num_nodes
        edge_index, edge_weight = get_laplacian(
        data.edge_index,
        data.edge_weight,
        normalization='sym',
       num_nodes=num_nodes,
       L = to_scipy_sparse_matrix(edge_index, edge_weight, num_nodes)
       eig_vals, eig_vecs = np.linalg.eigh(L.todense())
       eig_vecs = np.real(eig_vecs[:, eig_vals.argsort()])
        pe = torch.from_numpy(eig_vecs[:, 1:num_lap_vecs + 1])
        if pe.shape[1] < num_lap_vecs:</pre>
         pe = torch.nn.functional.pad(pe, (0, num_lap_vecs - pe.shape[1]), value=float(0))
        data = add_node_attr(data, pe, attr_name='pe')
        return data
```


Eigen-decomposition of graph Laplacian

```
def forward(self,data):
    x = data.x
    edge_index = data.edge_index
    pe = data.pe

x = torch.cat([x,pe],dim=-1)

x = self.conv1(x,edge_index)
    x = self.activation(x)
    x = self.conv2(x,edge_index)
    x = self.dropout(x)
    x = scatter(x,data.batch,dim=0,reduce='sum')

return x
```

```
def forward(self,data):
    x = self.mp_block(data)
    graph_readout = scatter(x,data.batch,reduce='sum',dim=0)
    src, mask = to_dense_batch(x,data.batch)
    pe, _ = to_dense_batch(data.pe,data.batch)
    src = torch.cat([src,pe],dim=-1)

if self.use_cls:
    cls_token = self.cls_token.expand(src.shape[0], -1, -1)
    src = torch.cat([cls_token, src], dim=1)
    mask = torch.cat([torch.ones(src.shape[0], 1).bool().to(soutput = self.encoder(src, src_key_padding_mask=~mask)
    output = output[:, 0, :]
```

Use as the positional encoding for GNN and GT

How to use conformational information?

1,3,7-trimethylpurine-2,6-dione

BasicsHow to define connectivity in dynamics?

Radius cutoff (R=5 Ang)

K-nearest neighbors (K=6)

Covalent radii

Message-Passing Neural Networks

Mechanism and virtual node

Graph Convolutional Network (GCN)

Abbreviation to the graph spectral convolution

$$g_{\theta}x = Ug_{\theta}U^{T}x$$
 (Graph Spectral Conv.)
 $g_{\theta} = \operatorname{diag}(\theta)$ in Fourier domain
 $L = I - D^{\frac{1}{2}}AD^{-\frac{1}{2}} = U\Lambda U^{T}$
 $g_{\theta}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{\Lambda})$
Insert back,
 $g_{\theta}x \approx \sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{L})x$, $\tilde{L} = \frac{2}{\lambda_{max}}L - I$

Truncate at order 1, assume $\lambda_{max} = 2$ $g_{\theta}x \approx \theta_{0}x + \theta_{1}(L-I)x$

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

Graph Convolutional Network (GCN)

Abbreviation to the graph spectral convolution

```
iev polynomials
               x = self_lin(x)
               # propagate type: (x: Tensor, edge weight: OptTensor)
                                                                                             f_0(x) = 1
               out = self.propagate(edge_index, x=x, edge_weight=edge_weight)
                                                                                             f_1(x) = x
               if self.bias is not None:
                                                                                             2xT_n(x) - T_{n-1}(x)
                    out = out + self.bias
                                                                                             T_{2}(x) - T_{3}(x) - T_{4}(x)
                return out
           def message(self, x_j: Tensor, edge_weight: OptTensor) -> Tensor:
               return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j
           def message and aggregate(self, adj t: Adj, x: Tensor) -> Tensor:
               return spmm(adj_t, x, reduce=self.aggr)
Z = f(X, A) = \operatorname{softmax}(\hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)}) W^{(1)})
```

Architectural design space of GNNs

MP and Graph Transformers

Fundamental symmetries

Trans/Roto/Perm. Invariance/equivariance

- Translation: $T(d) = \{w \in \mathbb{R}^d\}$
 - Can be achieved by using relative displacement
- Rotation: $SO(d) = \{Q \in \mathbb{R}^{d \times d} : Q^T Q = QQ^T = I_d, \det(Q) = 1\}$
 - Can be achieved by using scaler features (bond length, angle, etc.), vector features (relative displacement), and irreducible representations (spherical harmonics).
- Permutation: $S_n = \{\sigma: [n] \rightarrow [n] \ bijective\}$
 - MPNN/Transformer
- Invariance: (f(gx)) = f(x)
 - Energy
- Equivariance: (f(gx)) = gf(x)
 - Force, velocity, etc.

E(n)-GNN Satorras et al. 2021

	GNN	Radial Field	TFN	Schnet	EGNN
Edge	$ \mathbf{m}_{ij} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, a_{ij}) $	$oxed{\mathbf{m}_{ij} = \phi_{ ext{rf}}(\ \mathbf{r}_{ij}^l\)\mathbf{r}_{ij}^l}$	$\mid \mathbf{m}_{ij} = \sum_k \mathbf{W}^{lk} \mathbf{r}^l_{ji} \mathbf{h}^{lk}_i$	$ \mathbf{m}_{ij} = \phi_{\mathrm{cf}}(\ \mathbf{r}_{ij}^l\)\phi_{\mathrm{s}}(\mathbf{h}_j^l) $	$ \begin{vmatrix} \mathbf{m}_{ij} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, \mathbf{r}_{ij}^l ^2, a_{ij}) \\ \hat{\mathbf{m}}_{ij} = \mathbf{r}_{ij}^l \phi_x(\mathbf{m}_{ij}) \end{vmatrix} $
Agg	$ \qquad \mathbf{m}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij} $	$\mathbf{m}_i = \sum_{j \neq i} \mathbf{m}_{ij}$	$\mathbf{m}_i = \sum_{j eq i} \mathbf{m}_{ij}$	$\mathbf{m}_i = \sum_{j eq i} \mathbf{m}_{ij}$	$\mathbf{m}_{i} = \sum_{j \neq i} \mathbf{m}_{ij}$ $\hat{\mathbf{m}}_{i} = C \sum_{j \neq i} \hat{\mathbf{m}}_{ij}$
Node		$\mathbf{x}_i^{l+1} = \mathbf{x}_i^l + \mathbf{m}_i$	$\mathbf{h}_i^{l+1} = w^{ll}\mathbf{h}_i^l + \mathbf{m}_i$	$\mathbf{h}_i^{l+1} = \phi_h(\mathbf{h}_i^l, \mathbf{m}_i)$	$\begin{vmatrix} \mathbf{h}_{i}^{l+1} = \phi_{h} \left(\mathbf{h}_{i}^{l}, \mathbf{m}_{i} \right) \\ \mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + \hat{\mathbf{m}}_{i} \end{vmatrix}$
	Non-equivariant	$\operatorname{E}(n)$ -Equivariant	SE(3)-Equivariant	E(n)-Invariant	$\mathrm{E}(n)$ -Equivariant

Table 1. Comparison over different works from the literature under the message passing framework notation. We created this table with the aim to provide a clear and simple way to compare over these different methods. The names from left to right are: Graph Neural Networks (Gilmer et al., 2017); Radial Field from Equivariant Flows (Köhler et al., 2019); Tensor Field Networks (Thomas et al., 2018); Schnet (Schütt et al., 2017b); and our Equivariant Graph Neural Network. The difference between two points is written $\mathbf{r}_{ij} = (\mathbf{x}_i - \mathbf{x}_j)$.

E(n)-GNN Forward pass

EGNN

$$\mathbf{m}_{ij} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, ||\mathbf{r}_{ij}^l||^2, a_{ij})$$
$$\hat{\mathbf{m}}_{ij} = \mathbf{r}_{ij}^l \phi_x(\mathbf{m}_{ij})$$

$$\mathbf{m}_{i} = \sum_{j \neq i} \mathbf{m}_{ij}$$
$$\hat{\mathbf{m}}_{i} = C \sum_{j \neq i} \hat{\mathbf{m}}_{ij}$$

$$\mathbf{h}_{i}^{l+1} = \phi_{h} \left(\mathbf{h}_{i}^{l}, \mathbf{m}_{i} \right)$$
$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + \hat{\mathbf{m}}_{i}$$

```
def coord2radial(self, edge_index, coord):
    row, col = edge_index
    coord_diff = coord[row] - coord[col]
    radial = torch.sum(coord_diff**2, 1).unsqueeze(1)

if self.normalize:
    norm = torch.sqrt(radial).detach() + self.epsilon
    coord_diff = coord_diff / norm

return radial, coord_diff

def forward(self, h, edge_index, coord, edge_attr=None, node_attr=None):
    row, col = edge_index
    radial, coord_diff = self.coord2radial(edge_index, coord)

edge_feat = self.edge_model(h[row], h[col], radial, edge_attr)
    coord = self.coord_model(coord, edge_index, coord_diff, edge_feat)
    h, agg = self.node_model(h, edge_index, edge_feat, node_attr)

return h, coord, edge_attr
```


E(n)-GNN Node model

$$\mathbf{h}_{i}^{l+1} = \phi_{h} \left(\mathbf{h}_{i}^{l}, \mathbf{m}_{i} \right)$$
$$\mathbf{x}_{i}^{l+1} = \mathbf{x}_{i}^{l} + \hat{\mathbf{m}}_{i}$$

```
self.node_mlp = nn.Sequential(
    nn.Linear(hidden_nf + input_nf, hidden_nf),
    act_fn,
    nn.Linear(hidden_nf, output_nf))

def node_model(self, x, edge_index, edge_attr, node_attr):
    row, col = edge_index
    agg = unsorted_segment_sum(edge_attr, row, num_segments=x.size(0))
    if node_attr is not None:
        agg = torch.cat([x, agg, node_attr], dim=1)
    else:
        agg = torch.cat([x, agg], dim=1)
    out = self.node_mlp(agg)
    if self.residual:
        out = x + out
    return out, agg
```


E(n)-GNN Edge model (scaler)

$$\mathbf{m}_{ij} = \phi_e(\mathbf{h}_i^l, \mathbf{h}_j^l, \|\mathbf{r}_{ij}^l\|^2, a_{ij})$$

```
self.edge_mlp = nn.Sequential(
    nn.Linear(input_edge + edge_coords_nf + edges_in_d, hidden_nf),
    act_fn,
    nn.Linear(hidden_nf, hidden_nf),
    act_fn)

def edge_model(self, source, target, radial, edge_attr):
    if edge_attr is None: # Unused.
        out = torch.cat([source, target, radial], dim=1)
    else:
        out = torch.cat([source, target, radial, edge_attr], dim=1)
    out = self.edge_mlp(out)
    if self.attention:
        att_val = self.att_mlp(out)
        out = out * att_val
    return out
```


E(n)-GNN Edge model (Vector)

```
\hat{\mathbf{m}}_{ij} = \mathbf{r}_{ij}^l \phi_x(\mathbf{m}_{ij})
```

```
coord_mlp = []
                                                   def coord model(self, coord, edge index, coord diff, edge feat):
coord_mlp.append(nn.Linear(hidden_nf, hidden_nf))
                                                       row, col = edge index
coord_mlp.append(act_fn)
                                                       trans = coord diff * self.coord mlp(edge feat)
coord_mlp.append(layer)
                                                       if self.coords_agg == 'sum':
if self.tanh:
                                                            agg = unsorted_segment_sum(trans, row, num_segments=coord.size(0))
    coord_mlp.append(nn.Tanh())
                                                       elif self.coords_agg == 'mean':
self.coord_mlp = nn.Sequential(*coord_mlp)
                                                            agg = unsorted_segment_mean(trans, row, num_segments=coord.size(0))
if self.attention:
                                                           raise Exception('Wrong coords_agg parameter' % self.coords_agg)
    self.att_mlp = nn.Sequential(
                                                       coord = coord + agg
        nn.Linear(hidden_nf, 1),
                                                       return coord
        nn.Sigmoid())
```

That's being saying, scaler * vector is still a vector, as long as you update the vector 'separately' on top of scaler features, your model is 'equivariant'

Group equivariant NN.

$$f(g\rhd_X x) \ = \ g\rhd_Y f(x) \qquad \forall \ g\in G, \ \ x\in X, \qquad g\rhd_X \bigg| \ \ \int\limits_{X} \frac{f}{\int} Y \\ \downarrow g \rhd_Y \\ X \xrightarrow{f} Y$$

$$\mathcal{F}_0 \xrightarrow{L_1} \mathcal{F}_1 \xrightarrow{L_2} \mathcal{F}_2 \xrightarrow{L_3} \dots \xrightarrow{L_{N-1}} \mathcal{F}_{N-1} \xrightarrow{L_N} \mathcal{F}_N$$

$$\mathcal{F}_0 \xrightarrow{L_1} \mathcal{F}_1 \xrightarrow{L_2} \mathcal{F}_2 \xrightarrow{L_3} \dots \xrightarrow{L_{N-1}} \mathcal{F}_{N-1} \xrightarrow{L_N} \mathcal{F}_N$$

$$g \bowtie_0 \downarrow g \bowtie_1 \downarrow g \bowtie_2 \downarrow g \bowtie_2 \downarrow g \bowtie_{N-1} \downarrow g \bowtie_N \downarrow$$

Group function transform

Feature:
$$f(ec{r}) = ec{x}$$

$$f(x,y,z) = (r,g,b)$$

A group element g can act on a function:

$$\mathbb{T}_g: f(\mathcal{X}) \to f'(\mathcal{X})$$
$$f'(x) = f\left(g^{-1}x\right)$$

A neural network is a map with an input of a function and an output of another function:

$$\psi: f(\mathcal{X}_1) \to f'(\mathcal{X}_2)$$

$$T_{g}$$

$$T_{g}$$

$$T'_{g}$$

 $\psi\left[\mathbb{T}_g f(x)\right] = \mathbb{T'}_g \psi[f(x)]$

 $\psi[f(x)]$

 $\psi \left[\mathbb{T}_q f(x) \right] = \mathbb{T}'_q \psi[f(x)] \quad \forall f(x)$

Linear transformation in group equivariant NN.

Spatial weight sharing implies the translation equivariance of convolutional networks

$$(f * g)(x) = \int f(x - y)g(y)dy$$

A neural network layer (linear map) ψ is Gequivariant **if and only if** its form is a convolution operator:

$$\psi(f) = (f * \omega)(u) = \sum_{g \in G} f \uparrow^G (ug^{-1}) \omega \uparrow^G (g)$$

It is complicated! It can be simplified using irreps:

$$f(g) = f_0 \cdot \rho_0(g) + \vec{f_1} \cdot \rho_1(g) + \ldots + \vec{f_k} \cdot \rho_k(g)$$

$$\psi(f) = f_0 w_0 \oplus \vec{f_1} w_1 \oplus \ldots \oplus \vec{f_k} w_k$$

For SO(3), spherical harmonics transforms in the same manner as irreps

Nonlinearity in group equivariant NN.

Clebsch-Gordan tensor product

$$\vec{f}_i' = \sum_j \sum_k \mathrm{CG}_{j,k,i} \cdot \vec{f}_j \vec{f}_k$$

Gated nonlinearity:

$$\sigma_{
m gated} \, \left(ec{f_i}
ight) = \sigma \left(\left| ec{f_i} \right|
ight) ec{f_i}$$

A "layer" of equivariant NN (Linear & nonlinear transformations)

Equivariant NN for molecular systems

Roto-invariant/equivariant GNNs

Architectures

- Roto-invariant GNNs:
 - SchNet, DimeNet(++), PhysNet, GemNet, etc.
 - Increasing expressive power by using higher order scaler features
- Roto-equivariant GNNs
 - Scaler features + vectors features (my personal taste)
 - EGNN, GVP-GNN, PaiNN, Equivariant Transformer, ViSNet, TensorNet
 - Increasing expressive power by using higher-order feature and interactively update of scaler and vector features
 - Spherical harmonics + tensor product
 - TensorField Network, Cormorant, NequIP, Allegro, MACE, EquiFormer
 - Increasing expressive power by higher rank tensors or more complicated tensor operations

Roto-invariant/equivariant GNNs

Personal opinions (don't take too much)

- Roto-invariant GNNs:
 - SchNet, DimeNet(++), PhysNet, GemNet, etc.
 - DON'T USE, OUT-OF-DATE
- Roto-equivariant GNNs
 - Scaler features + vectors features (my personal taste)
 - EGNN, GVP-GNN, PaiNN, Equivariant Transformer, ViSNet, TensorNet
 - Increasing expressive power by using higher-order feature and interactively update of scaler and vector features
 - Spherical harmonics + tensor product
 - TensorField Network, Cormorant, NequIP, Allegro, MACE, EquiFormer
 - DON'T USE, 10x slower and memory-costly than what you expect (not joking)

Roto-invariant/equivariant GNNs

Personal opinions (don't take too much)

Not final results for PT models, just for a preview

	•	, meV, meV/A	ng)
Validation S	_		٠,
Validation Set		Test Set	
E	F	E	F
39	248	722	283
84	150	300	173
68	140	260	168
393	119	1754	129
06	98	174	110
257	71	292	85
23	94	253	124
82	92	179	120
45	66	88	78
50	61	86	75
	E 539 84 68 393 06 257 23 82	E F 639 248 84 150 168 140 893 119 106 98 257 71 123 94 82 92 45 66	E F E 639 248 722 844 150 300 868 140 260 893 119 1754 806 98 174 257 71 292 823 94 253 82 92 179 45 66 88

Trajectories promoted by surface hopping, SA4-CASSCF(6e,6o)/6-31g, ground state energy and forces recomputed with uM06/6-31g

