Computing Genomic Offset Statistics with the R Package LEA

Olivier François

Université Grenoble-Alpes

SSMPG 2025, Aussois, Savoie

Genetic offset (GO)

 Genomic offset statistics evaluate maladaptation of populations to rapid habitat alteration based on association of genotypes with environmental factors.

• Gos predict whether sudden changes in a species ecological niche could be sustained by non-migrating natural populations or not.

Capblancq et al Genomic prediction of (mal)adaptation across current and future climatic landscapes 2020

Ecological predictors, $\mathbf{x} = (x_1, \dots, x_d)$

- Bioclimatic predictors: temperature, precipitation or solar radiation
- Biotic predictors: local abundance of species sharing ecological interactions with the studied organisms
- Altered environment, x*, could result from translocation in geographic space or represent future conditions at unchanged geographic location
- Predictors are unitless, and expressed as deviations from the sample mean (e.g., centered)

GO principles (2 stages)

 Adjust a genotype-environment association (GEA) model predicting allelic frequencies from environmental variables at many genetic loci.

2. Evaluate <u>dissimilarity</u> between allelic frequencies predicted under current conditions and altered conditions.

Capblancq et al Genomic prediction of (mal)adaptation across current and future climatic landscapes 2020

Background (main approaches)

GO	Authors	Predicted allelic frequencies	distance
Gradient Forest	Fitzpatrick & Keller 2015	Random forests	Quadratic distance between importance curves
Rona	Rellstab et al. 2016	Linear regression models	Absolute difference
RDA GO	Capblancq et al. 2021	Multivariate linear analysis	Euclidean distance in projection space
Geometric GO	Gain et al. 2023	Latent factor regression models	Quadratic distance

Goals of this tutorial

Genomic offset in the R package LEA

1. Modeling assumption

2. Basic usage

3. Advanced usage

Modeling assumption: relative fitness

 Gaussian stabilizing selection = A type of natural selection that favors the average local phenotype

z = phenotype, z_{opt} = average local value

$$\omega(z) = \exp\left(-\frac{\left(z - z_{\text{opt}}\right)^2}{2V_s}\right)$$

• Fitness decreases exponentially fast as the phenotype shifts away from the optimum

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT

FROM: Cavalli-Sforza & Bodmer 1971

Model assumptions

• Environmental effects: At any genetic locus, the allelic frequency, y, is linked to the ecological predictors, x, and some unobserved covariates, u, through a GEA model

$$y = \mathbf{x}\mathbf{b}^T + \mathbf{u}\mathbf{v}^T + \epsilon.$$

• Fisher's infinitesimal model: Traits are determined by a polygenic model in which allelic effects are « infinitesimally » small

Evolutionary mismatch ($\omega \star$)

 Evolutionary mismatch occurs when a trait at equilibrium in environment x is placed in an altered environment x*

$$\omega \star = \omega(\mathbf{x}, \mathbf{x} \star)$$

Offset along an environmental gradient

Theory

• The genomic offset in LEA is defined as

$$G^{2}(\mathbf{x}, \mathbf{x}^{*}) = (\mathbf{x} - \mathbf{x}^{*})\mathbf{C}_{b}(\mathbf{x} - \mathbf{x}^{*})^{T}$$

Covariance of environmental effect sizes

Relationship between altered fitness and GO

$$-\log \omega(\mathbf{x}, \mathbf{x}^*) \approx \alpha_s G^2(\mathbf{x}, \mathbf{x}^*) + \alpha_0$$

Basic usage: Starting a session

1. Start an R session with the LEA package

```
library(LEA)
```

2. Load the example dataset

```
# loading the simulated data in R
data("offset_example")

# Y contains venotypes for 200 individuals
Y <- offset_example$geno

# X contains 4 environmental variables for 200 individuals
X <- offset_example$env</pre>
```

Basic usage: GO statistics

1. Load future conditions (altered environmental variables)

```
## modified environment
X_pred <- offset_example$env.pred</pre>
```

2. Compute LEA's genomic offset

Results

Advanced usage: GEA study

1. Fit an LFMM with K = 3 latent factors

2. Compute *p*-values (one for each locus)

Advanced usage: candidate loci

1. Decide which loci to include in GO

```
# FDR control: computing qvalues
qv_lfmm2 <- qvalue::qvalue(pv_lfmm2, fdr.level = 0.2)
# the most interesting targets
candidates <- which(qv_lfmm2$significant)</pre>
```

2. Compute LEA's genomic offset

Advanced usage: maps

Required packages

```
# Required packages
# Loading worldclim/cimp6 bioclimatic data
library(terra)
library(geodata)

# displaying images and maps
library(fields)
library(maps)
```

Pearl millet common garden experiment

154 landraces of pearl millet grown in Niger

Whole Genome Pool-seq data (100 individuals)

27 bioclimatic variables

A. thaliana example: 1,096 European accessions

Climate change scenario: SSP2-4.5 from IPCC AR6. Climate model ACCESS-ESM1-5 (2041-2060)

Alpine plant communities (presence/absence data)

Compositional offset for translocation from the center of the climatic niche (ecological mismatch)

Resources

For basic GOs and maps, there are tutorials in the SSMPG 2025
 GitHub repository and in LEA's vignette

https://github.com/bcm-uga/SSMPG2025/blob/main/Tutorials/

 For more advanced questions on GEAs, GOs and maps, ask us during the practical sessions