Logistic Regression & Laplace Approximation

Mark van der Wilk

Department of Computing Imperial College London

>@markvanderwilk
m.vdwilk@imperial.ac.uk

February 20, 2023

Approximate Inference (Part III)

So far:

- ► How to use Bayes' rule to learn about unseen quantities (I)
 - Manipulating probability distributions, graphical models
 - Gaussian processes
- ► How to use uncertainty to make decisions (II)

In part III, we will look at:

- models that require intractable computations
- properties of intractable computations
- approximations to Bayes' rule

Today

Today we will discuss:

- ▶ Non-conjugate model: Logistic Regression
- ► Posterior approximation: Laplace Approximation
- Predictive approximation: Monte Carlo

Further Reading

- ▶ Pattern Recognition and Machine Learning, Chapter 4 (Bishop, 2006)
- Machine Learning: A Probabilistic Perspective, Chapter 8 (Murphy, 2012)

Binary Classification

- ▶ Supervised learning setting with inputs $x_n \in \mathbb{R}^D$ and binary targets $y_n \in \{0,1\}$ belonging to classes C_1, C_2 .
- Objective:
 - Given new test input \mathbf{x}_n^* , predict the label y_n^* .
 - Find a decision boundary/surface that separates the two classes

Class Posteriors

- ▶ Binary classification problem with two classes C_1 , C_2 .
- ▶ Posterior class probability $p(y = 1|x) = p(C_1|x)$:

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x})},$$

$$p(\mathbf{x}) = p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)$$

\blacktriangleright Learning from data requires figuring out what $p(\mathbf{x} \mid C_c)$ is from data.

Generative modelling

- ► Inputs can be high-dimensional (e.g. images)
- $p(\mathbf{x} \mid C_c)$ can be very complicated

Imagine learning how to create photorealistic images before being able to recognise them!

Density ratios

We only need the ratio of weighted likelihoods

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)},$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}},$$

Idea: Instead of learning $p(\mathbf{x} \mid C_c)$, can we just learn $\frac{p(\mathbf{x} \mid C_c)p(C_2)}{p(\mathbf{x} \mid C_1)p(C_1)}$?

$$p(\mathcal{C}_1 \mid \mathbf{x}, r(\cdot)) = \frac{1}{1 + r(\mathbf{x})} \quad \text{with } r : \mathbb{R}^D \to \mathbb{R}^+.$$
 (1)

Positive functions are a pain... Let's take logs to use $f : \mathbb{R}^D \to \mathbb{R}$:

$$p(C_1 \mid \mathbf{x}, f(\cdot)) = \underbrace{\frac{1}{1 + \exp(-f(\mathbf{x}))}}_{\text{Logistic sigmoid } \sigma(f(\mathbf{x}))}$$
(2)

Logistic Sigmoid

$$f(\mathbf{x}) := \log \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
$$\sigma(f(\mathbf{x})) := \frac{1}{1 + \exp(-f(\mathbf{x}))} = p(\mathcal{C}_1|\mathbf{x})$$

What type of function should $f(\cdot)$ be?

Assume Gaussian class conditionals

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_k, \, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

For K = 2 we get (Bishop, 2006)

$$\begin{aligned} p(\mathcal{C}_1|\mathbf{x}) &= \sigma(\mathbf{\theta}^{\top}\mathbf{x} + \theta_0), \\ \mathbf{\theta} &:= \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2), \quad \theta_0 := \frac{1}{2} \left(\boldsymbol{\mu}_2^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 \right) + \log \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{aligned}$$

- \rightarrow Argument of the sigmoid is linear in x
- \blacktriangleright Decision boundary is a surface along which the posterior class probabilities $p(\mathcal{C}_k|x)$ are constant
- \rightarrow Decision boundary is a linear function of x
- ▶ If covariances are not shared: Quadratic decision boundaries

@Imperial College London, February 20, 2023

Classifying from data samples

One approach (generative):

- 1. Define priors over two Gaussian distributions for $p(\mathbf{x} \mid C_c)$
- 2. Given data, find posteriors over Gaussians
- 3. Given our beliefs over $p(\mathbf{x} \mid C_c)$, apply Bayes' rule to get $p(C_c \mid \mathbf{x})$

Alternative approach (discriminative):

- 1. Define prior on linear functions for $f(\cdot)$
- 2. Given data, find posterior over $f(\cdot)$, which directly translates to $p(C_c \mid \mathbf{x})$

Classifying from data samples

One approach:

- 1. Define priors over two **general** distributions for $p(\mathbf{x} \mid C_c)$
- 2. Given data, find posteriors over distributions
- 3. Given our beliefs over $p(\mathbf{x} \mid C_c)$, apply Bayes' rule to get $p(C_c \mid \mathbf{x})$

Alternative approach:

- 1. Define prior on **general, non-linear** functions for $f(\cdot)$
- 2. Given data, find posterior over $f(\cdot)$, which directly translates to $p(C_c \mid \mathbf{x})$

Model Specification – Logistic regression

► Bernoulli likelihood

$$y \in \{0, 1\}$$

 $p(y|x, \theta) = \text{Ber}(y|\mu(x)),$
 $\mu(x) = p(y = 1|x) = \sigma(\theta^{\top}x)$

- Label *y* depends on input location *x*, i.e., $\mu(x)$ needs to be a function of *x*
- ▶ Idea: Linear model $\theta^{\top}x$ (as in linear regression)
- Ensure $0 \le \mu(x) \le 1$
- Squash the linear combination through a function that guarantees this: $\mu(x) = \sigma(\theta^{T}x)$

$$\implies p(y|\mathbf{x}, \boldsymbol{\theta}) = \operatorname{Ber}(y|\sigma(\boldsymbol{\theta}^{\top}\mathbf{x}))$$

Model fitting

Model is very similar to **linear regression**, but with a different likelihood.

Can we find the posterior?

$$p(\boldsymbol{\theta} \mid X, \mathbf{y}) = \frac{\prod_{n=1}^{N} p(y_n \mid \sigma(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x})) p(\boldsymbol{\theta})}{p(\mathbf{y} \mid X)}$$
(3)

Can we find the predictive distribution?

$$p(y^* \mid X, \mathbf{y}, \mathbf{x}^*) = \int p(y^* \mid \boldsymbol{\theta}, \mathbf{x}^*) p(\boldsymbol{\theta} \mid X, \mathbf{y}) d\boldsymbol{\theta}$$
 (4)

15

Logistic regression posterior

$$p(\boldsymbol{\theta} \mid X, \mathbf{y}) = \frac{\prod_{n=1}^{N} p(y_n \mid \sigma(\boldsymbol{\theta}^\mathsf{T} \mathbf{x})) p(\boldsymbol{\theta})}{p(\mathbf{y} \mid X)}$$
(5)

$$= \frac{1}{p(\mathbf{y} \mid X)} \prod_{n=1}^{N} \text{Ber}(y_n | \sigma(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x})) \mathcal{N}(\boldsymbol{\theta}; 0, v\mathbf{I}), \qquad (6)$$

$$p(\mathbf{y} \mid X) = \int p(\mathbf{y} \mid X, \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$
 (7)

Problem 1:

- 1. No closed-form solution for the marginal likelihood
- 2. Can only evaluate the posterior up to a constant

Logistic regression predictive distribution

$$p(y^* | X, \mathbf{y}, \mathbf{x}^*) = \int p(y^* | \boldsymbol{\theta}, \mathbf{x}^*) p(\boldsymbol{\theta} | X, \mathbf{y}) d\boldsymbol{\theta}$$

$$= \frac{1}{p(\mathbf{y} | X)} \int p(y^* | \boldsymbol{\theta}, \mathbf{x}^*) \cdot$$

$$\prod_{n=1}^{N} \operatorname{Ber}(y_n | \sigma(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x})) \mathcal{N}(\boldsymbol{\theta}; 0, v\mathbf{I}) d\boldsymbol{\theta}$$
(9)

Problem 2:

- No closed-form solution to integral (similar to marginal likelihood)
- Also need to normalise by the marginal likelihood

Point Estimate

- Estimate model parameters θ as a point, not a distribution (MLE or MAP)
- ► Likelihood (training data *X*, *y*):

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{n=1}^{N} \operatorname{Ber}(y_n | \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n)) = \prod_{n=1}^{N} (\sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n))^{y_n} (1 - \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n))^{1 - y_n}$$
$$= \prod_{n=1}^{N} \mu_n^{y_n} (1 - \mu_n)^{1 - y_n}$$
$$\mu_n := \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n)$$

Minimise negative log likelihood (cross-entropy):

$$NLL = -\sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n)$$

Model Fitting (2)

► Derivative of sigmoid w.r.t. its argument:

$$\sigma(z_n) = \frac{1}{1 + \exp(-z_n)}$$

$$\implies \frac{d\sigma(z_n)}{dz_n} = \frac{\exp(-z_n)}{(1 + \exp(-z_n))^2} = \sigma(z_n)(1 - \sigma(z_n))$$

► Gradient of the negative log-likelihood:

$$\frac{\mathrm{d}NLL}{\mathrm{d}\theta} = -\sum_{n=1}^{N} \left(y_n \frac{1}{\mu_n} - (1 - y_n) \frac{1}{1 - \mu_n} \right) \frac{\mathrm{d}\mu_n}{\mathrm{d}\theta}$$

$$\frac{\mathrm{d}\mu_n}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta} \sigma(\underbrace{\theta^{\top} x_n}_{z_n}) = \frac{\mathrm{d}\sigma(z_n)}{\mathrm{d}z_n} \frac{\mathrm{d}z_n}{\mathrm{d}\theta} = \sigma(z_n) (1 - \sigma(z_n)) x_n^{\top}$$

Model Fitting (3)

$$\frac{\mathrm{d}NLL}{\mathrm{d}\boldsymbol{\theta}} = (\boldsymbol{\mu} - \boldsymbol{y})^{\top} \boldsymbol{X} \\ \boldsymbol{X} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_N]^{\top}$$

- ► No closed-form solution ➤ Gradient descent methods
- ▶ Unique global optimum exists (NLL) is **convex**.

$$p(\boldsymbol{\theta} \mid \boldsymbol{X}, \mathbf{y}) \approx \delta(\boldsymbol{\theta} - \boldsymbol{\theta}^*)$$
 (10)

$$\theta^* = \underset{\bullet}{\operatorname{argmax}} \log p(\mathbf{y} \mid X, \theta) + \log p(\theta)$$
 (11)

Maximum likelihood solution

$$p(y|x, \theta) = Ber(\sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2))$$

Comments on Maximum Likelihood

- ► If the classes are linearly separable, the decision boundary is not unique and the predictions will become extreme
- Overfitting is a again a problem when we work with features $\phi(x)$ instead of x (or a GP for that matter)
- Maximum a posteriori estimation can address these issues to some degree

MAP Solution

► Log-posterior:

$$\log p(\theta|X, y) = \log p(y|X, \theta) + \log p(\theta) + \text{const}$$

No closed-form solution for θ_{MAP}
 Numerical maximization of the log-posterior

Predictive Labels

$$p(y = 1|x, \boldsymbol{\theta}_{MAP}) = Ber(\sigma(x^{\top}\boldsymbol{\theta}_{MAP}))$$

Approximate Inference

If we can't do the required integrals exactly, ... can we approximate them?

- ► The true posterior is intractable
- ► Can we find a manageable distribution that is close?

Gaussian distributions are manageable, so can we find a Gaussian approximation?

Laplace Approximation

For a distribution $p(\mathbf{x}) = \frac{1}{7}\tilde{p}(\mathbf{x})$

- ▶ Maximising $\tilde{p}(\mathbf{x})$ gives us the mode \mathbf{x}^*
- Can we find an approximation to the variance?2nd order Taylor-series approximation

$$\log p(\mathbf{x}) \approx -\log Z + \log \tilde{p}(\mathbf{x}^*) + \mathbf{J}(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^{\mathsf{T}} \mathbf{H}(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)$$

J: Jacobian, H: Hessian.

 $\log p(\mathbf{x}) \approx -\log Z + \log \tilde{p}(\mathbf{x}^*) + \mathbf{J}(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^\mathsf{T} H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)$ Logistic Regression & Laplace Approximation

Mark van der Wilk

@Imperial College London, February 20, 2023

27

Laplace Approximation: Marginal Likelihood

We can apply the Laplace approximation to approximate a posterior:

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{\int p(\mathbf{y}|\mathbf{x})p(\mathbf{x})d\mathbf{x}}$$
$$= \frac{1}{Z}\tilde{p}(\mathbf{x})$$

► *Z* is the marginal likelihood!

Laplace Approximation: Example

Unnormalized distribution:

$$\begin{split} \tilde{p}(x) &= \exp(-\frac{1}{2}x^2)\sigma(ax+b) \\ q(x) &= \mathcal{N}\left(x \,\middle|\, x^*, \, (1+a^2\mu_*(1-\mu_*))^{-1}\right), \quad \mu_* := \sigma(ax_*+b) \end{split}$$

Laplace Approximation: Properties

- Only need to know the unnormalized distribution \tilde{p}
- ► Finding the mode: numerical methods (optimization problem)
- Captures only local properties of the distribution
- Multimodal distributions: Approximation will be different depending on which mode we are in (not unique)
- For large datasets, we would expect the posterior to converge to a Gaussian (Bernstein-von Mises theorem)
 - ▶ Laplace approximation should work well in this case

Logistic Regression Posterior Approximation

- ► Left: true parameter posterior
- ► Right: Laplace approximation

Posterior Decision Boundary

- ▶ Parameter samples θ_i drawn from Laplace approximation $q(\theta)$ of posterior $p(\theta|X)$
- Decision boundary drawn for each θ_i

Predictions

Assume a Gaussian distribution $q(\theta) = \mathcal{N}(\mu, \Sigma)$ on the parameters (e.g., Laplace approximation of the posterior). Then:

$$p(y^* \mid X, \mathbf{y}, \mathbf{x}^*) = \int p(y^* \mid \boldsymbol{\theta}, \mathbf{x}^*) p(\boldsymbol{\theta} \mid X, \mathbf{y}) d\boldsymbol{\theta}$$
 (14)

$$\approx \int p(y^* \mid \boldsymbol{\theta}, \mathbf{x}^*) q(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
 (15)

▶ Integral intractable **▶** Use Monte Carlo approximation

$$\int p(y^* \mid \boldsymbol{\theta}, \mathbf{x}^*) q(\boldsymbol{\theta}) d\boldsymbol{\theta} \approx \frac{1}{S} \sum_{s=1}^{S} p(y^* \mid \boldsymbol{\theta}^{(s)}, \mathbf{x}^*)$$
 (16)

$$\boldsymbol{\theta}^{(s)} \sim q(\boldsymbol{\theta}) \tag{17}$$

Predictions (2)

- 1. Samples from Laplace approximation of the posterior
- 2. Monte-Carlo estimate of label prediction

Comparison with MAP Predictions

Predictive labels

Specifying Monte Carlo Approximations

A full specification of a MC procedure (e.g. in an exam) requires:

- ► Statement of what is to be computed, e.g. $\int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$.
- What we compute in our approximation, e.g. $\sum_{s=1}^{S} f(\mathbf{x}^{[s]})$
- ▶ What distribution we sample from, e.g. $\mathbf{x}^{[s]} \sim p(\mathbf{x})$.
- ► A sentence explaining how we sample from the distribution.

Sampling Procedures

You can assume that we can generate samples from categorical distributions, uniform distributions, and standard Normal distributions.

To generate samples, you can:

► Reparameterise a distribution. $x = t(\epsilon)$ (see MML [2]) E.g. Gaussian $\mathcal{N}(\mathbf{x}; \mu, \mathbf{K})$

$$\mathbf{x} = \operatorname{chol}(K)\boldsymbol{\epsilon} + \boldsymbol{\mu} \qquad \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(0, I_M)$$
 (18)

- Use rejection sampling (later)
- ► MCMC (later)

Accuracy of MC Estimate

Remember from MML:

- As $S \to \infty$, the MC estimate converges to the right value.
- ► Variance determines accuracy for finite *S* (Chebyshev's inequality).
- Want low variance!
- ▶ Can control this with *S*.
- ► Other techniques in future lectures.

Todo: Make nice notebook illustrating MC estiamte

Summary

- Binary classification problems
- Linear model with non-Gaussian likelihood
- ▶ Implicit modeling assumption: Gaussian $p(\mathbf{x} \mid C_c)$
- ► Parameter estimation (MLE, MAP) no longer in closed form
- Bayesian logistic regression with Laplace approximation of the posterior

References I

- [1] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
- [2] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for machine learning. Cambridge University Press, 2020.
- [3] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

41