

S P E C I F I C A T I O NTITLE OF THE INVENTION

5 COMBINED PREAMBLE DETECTION AND INFORMATION TRANSMISSION
METHOD FOR BURST-TYPE DIGITAL COMMUNICATION SYSTEMS

This application claims the benefit of priority of U.S.
Provisional Application No. 60/051,234, filed June 30, 1997.

BACKGROUND OF THE INVENTION1) Field of the Invention

This invention pertains to the field of digital
communication systems, and more particularly to digital
communication signal detection and synchronization.

2) Background of the Related Art

Many modern digital communications systems utilize burst
type transmissions in which a relatively small number of
information bits are transmitted by sending a sequence of a small
number of waveforms, say "N" in number, termed "symbols," each of
which symbols can assume one of "Q" possible shapes. As an
example, Q=4 for the case of quadraphase shift keying (QPSK).

In a burst-type communication system it is important to rapidly detect the onset of the signal at the receiver and to perform time synchronization to it. To facilitate this, in many burst-type communication systems a burst consists of a initial 5 set of symbols, termed a "preamble," which permits rapid synchronization, and a subsequent set of symbols, termed a "payload," which represents the actual message data. Some systems also include special data in the middle of the burst, or at the end, which is termed a "postamble."

TOP SECRET//COMINT

15

Time synchronization for a burst-type communication system includes two aspects: (1) determining the timing of the symbols, and (2) determining the onset of the actual payload data carried by the burst. It is important that such synchronization be performed using the preamble data so that the payload data may be correctly decoded. Determining the onset of payload data in a burst transmission is typically performed through the transmission during the preamble of a specific sequence of symbols, termed a "unique word."

20

Time synchronization is to be distinguished from determination of received signal carrier frequency and phase, which is termed "carrier synchronization."

In addition to allowing time synchronization, the preamble may be used to transmit a limited amount of information that describes the subsequent payload data. For example, such information may specify the length of the payload (number of 5 symbols), the modulation format of the payload data, or other information.

In conventional systems the above information is sent in the preamble by the normal manner of associating individual symbols with information bits. However, in situations in which the received signal level is low, such individual symbols may be obscured by noise such that this conventional approach will lead 10 to very high error rates.

Accordingly, it would be advantageous to provide a system 15 and method which will perform both time synchronization and information transmission via a preamble when the input signal level is low. Other and further objects and advantages will appear hereinafter.

SUMMARY OF THE INVENTION

The present invention comprises a combined synchronization
and information transfer method and system in a burst-type
5 communication system.

In one aspect of the invention, a burst-type communication
system employs differential encoding and decoding. Differential
decoding operates on the differentially encoded data to remove
the effects of signal carrier frequency uncertainty from the
10 signal and enables processing a large number of symbols by a
subsequent matched filter without the deteriorating effects of
such carrier frequency uncertainty.

15 In another aspect of the invention, a burst-type
communication system employs matched filtering, permitting
integration of a received signal over a large number of symbols,
thereby producing a strong detection output even when the
individual signal symbols are weak relative to the noise level.
20 This integration may permit detection even when, for example, the
power of the symbols equals the power of the noise.

In yet another aspect of the present invention, each burst
transmission in a burst-type communication system includes one of

a number "S" allowed synchronization sequences, $S > 1$. A receiver includes one or more multiple matched filters to decide which of the S allowed synchronization sequences was transmitted.

5 In a further aspect of the present invention, one of two synchronization sequences may be transmitted, such that after differential decoding, the two synchronization sequences only differ from one another by a polarity inversion. In this case a single matched filter may be used to detect both synchronization sequences.

10 In yet a further aspect of the present invention, one or more bits of preamble information is communicated in a synchronization sequence in a burst transmission. Each burst may include one of "S" allowed synchronization sequences. The selection of a particular synchronization sequence among the "S" allowed synchronization sequences communicates $\log_2(S)$ preamble information bits. Each synchronization sequence may be divided into two or more sections with one or more bits of information 15 communicated in each section.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows terminals in a burst-type communication system which may incorporate one or more aspects of the present
5 invention.

Figure 2 is a functional block diagram of a preferred embodiment of a preamble detector in a communication receiver for burst-type transmissions.

Figure 3 is a simulated output of a unique word matched filter when receiving a unique word synchronization sequence.
10

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments and other aspects of the invention described
15 herein, including the system embodiments described below, may be made or used in conjunction with inventions described, in whole or in part, in co-pending U.S. Patent Application Serial No. 09/050,114 filed March 30, 1998 in the name of inventors Philip Freiden, David Decker, Michael Serrone and Norman Krasner
20 entitled "Correlator Method and Apparatus" which is hereby incorporated by reference as if fully set forth herein.,

Figure 1 shows a burst-type communication system 100 comprising a plurality of communication terminals 110. Each

communication terminal 110 comprises a transmitter 120 and a receiver 130. As shown in Figure 1, the burst-type communication system 100 may also have a communication hub 140 which may simultaneously communicate with a plurality of the communication terminals 110. In that case, the communication hub 140 may comprise a plurality of communication receivers 150 and a transmitter 160.

PCT/US2001/022727

Some burst-type communication systems may use symbols which are very simple in nature, such as binary phase shift keying (BPSK) using a simple sinusoid or its inverse with duration "T." Other systems may use a direct sequence spread spectrum (DSSS) signal with a more complex symbol, for example, consisting of a sequence of "v" subsymbols, termed "chips." In the latter case, a sequence of subsymbols, or a "PN frame," produced by a PN spreading sequence, makes up a single symbol, which in turn typically conveys one or two bits of information.

In a preferred embodiment of a burst-type communication system according to the present invention, the system may operate 20 in both a "non-spread" (e.g., BPSK) mode and a "spread" (i.e., DSSS) mode.

In the case of operation with BPSK, a transmitter transmits a bi-phase modulated signal of the form,

$$s(t) = \sum_{k=1}^N m_k(t - kT) \cos(\omega_0 t) \quad (1)$$

where $m_k(t)$ is a symbol of length T, which takes the value of either +1, corresponding to a logical zero, or -1 corresponding to a logical one, and where ω_0 is the carrier frequency. At a receiver, the received signal appears much like the transmitted signal of equation (1) except that it includes noise, the time of arrival is unknown a priori, and the carrier frequency and phase may be somewhat in error (due to equipment oscillator differences, Doppler shift, etc.).

In a burst-type communication system, the first "P"

transmitted symbols in a burst transmission comprise a preamble.

In a preferred embodiment of a burst-type communication system according to the present invention, P=96.

In a preferred embodiment of a burst-type communication

system according to the present invention, a burst communication transmitter differentially encodes data prior to transmission. A preamble synchronization sequence, termed a "base synchronization

sequence" or "base message" is differentially encoded to produce an "encoded synchronization sequence" or "encoded message" m_k .

In a preferred embodiment, a burst-type communication system

5 uses one of "S" allowed base synchronization sequences as a preamble for each burst transmission. The use of "S" base synchronization sequences allows communication of $\log_2(S)$ bits of information, which may be used to specify one of "S" packet lengths (or other information). In a preferred embodiment, S=4, allowing two bits of information to be communicated by the preamble synchronization sequence. By associating preamble data bits with the selection and transmission of a synchronization sequence, the preamble data may be received by determining which of the allowed preamble synchronization sequences was transmitted. Typically, the preamble synchronization sequence is recovered by integrating over many received symbols. In this way, the preamble data may be received even when the received signal level is very low and when individual symbols are obscured by noise.

20

A base synchronization sequence may be divided into two or more sections. In a preferred embodiment, a base synchronization sequence includes a first section comprising an initial detection sequence of length "I," and a second section comprising a unique

word of length "U." In a preferred embodiment, I = 48 and U = 47.

In a preferred embodiment, a burst-type communication system
5 uses four base synchronization sequences (base messages) :

Message 0:	[D0 W0]
Message 1:	[~D0 W0]
Message 2:	[D0 ~W0]
Message 3:	[~D0 ~W0]

where the notation $\sim W_0$ and $\sim D_0$ means the logical inverse of W_0 and D_0 respectively.

15 In a preferred embodiment, a base synchronization sequence is of length 95 symbols, which is differentially encoded to produce an encoded synchronization sequence with a length of 96 symbols. The first 48 symbols of the base synchronization sequence, comprising an initial detection sequence, are used for 20 initial signal detection and symbol timing synchronization. The latter 47 symbols, comprising a unique word, are used for message synchronization to the onset of payload data.

In a preferred embodiment, a burst-type communication system uses a first set of four base synchronization sequences, or base messages, when operating in a non-spread, BPSK, mode and a second set of four base synchronization sequences, or base messages,
5 when operating in a PN spread, DSSS, mode.

In a preferred embodiment, in the case of operation in a DSSS mode, D0 is a sequence of 48 logical zeros, i.e.,

10 $D_0_{DSSS} = [0\ 0\ \dots\ 0]$ (i.e., 48 0's);

and W0 is a 47 symbol unique word:

15 $W_0 = [1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0]$

The above unique word W0 has very good correlation properties, however the choice of unique word can be made programmable.

20 In a preferred embodiment, a communication receiver uses the initial portion of the preamble, comprising an initial detection sequence, to provide an symbol timing synchronization. However, when D0 is transmitted as a sequence of 48 consecutive logical zeros, then there are no transitions between symbols and hence no

information to determine symbol timing. When DSSS is employed with a PN spreading sequence, a communication receiver may utilize a PN matched filter, matched to the PN spreading sequence, to convert the DSSS signal into a series of correlation spikes, one per PN frame. The timing of these correlation spikes provides symbol timing information for synchronizing the receiver. However in the non-spread case, a different D0 sequence must be used to provide symbol timing information.

Docket No. GES.025

In a preferred embodiment, in the case of operation in a non-spread BPSK mode, D0 is a sequence wherein every other symbol is set to a logical zero, i.e.:

$$D0_{BPSK} = [\text{off } 0 \text{ off } 0 \dots 0 \text{ off } 0],$$

15

wherein an "off" symbol corresponds to m_k having a value of 0, that is, the carrier is turned off for this symbol; and W0 is the same as for the case of operation in the DSSS mode. In this case, to determine $\sim D0$, an " \sim off" symbol is the same as an "off."

20

In a preferred embodiment, a burst-type communication system employs differential encoding of the four base synchronization sequences to produce four encoded synchronization sequences.

In the case of operation in a PN spread (DSSS) mode, to perform the differential encoding, the first encoded symbol in the encoded synchronization sequence is defined as a logical zero, i.e., the encoded message begins with a logical zero. The 5 polarity of each succeeding message symbol is reversed if the next symbol of the base message is a one, and the polarity is unchanged if the next symbol of the base message is a zero. Differential decoding of the received encoded synchronization sequence produces the original base synchronization sequence.

10
15
20

As an example, if Message 0 is used as a base synchronization sequence, it is differentially encoded to produce an encoded synchronization sequence, or encoded message:

15 Encoded Message: [0 D0_{DSSS} W_{DSSS}]

where W_{DSSS} is the length 47 sequence:

```
[1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0  
1 1 0 0 1 1 1 0 0 1 1 0 0 0 0]
```

20

If this message is differentially decoded, it produces the base Message 0, i.e. [D0_{DSSS} W0_{DSSS}]. The other three messages are encoded similarly. Conveniently, an encoded message may be

differentially decoded by a differential detector which exclusive-or's adjacent bits in the encoded message.

It should be noted that even though W and ~W are logic
5 inverses of one another, after differentially encoding each of these to create transmitted sequences, they are not either logical or arithmetic inverses of one another.

10 15

DRAFT EDITION

In the case of operation in a non-spread (BPSK) mode, the first encoded symbol in the encoded synchronization sequence is defined as a logical zero, i.e., the encoded message begins with a logical zero. Unlike the case with DSSS, when operating in a non-spread BPSK mode, the data is encoded by using symbols spaced apart by two to accommodate the "off" symbols in the $D_{0_{BPSK}}$ sequence. The encoded message may be formed by splitting the base synchronization sequence into two streams of even and odd symbols, differentially encoding each stream, and then interlacing the result.

20 As an example, if Message 0 is used as a base synchronization sequence, it is differentially encoded to produce an encoded synchronization sequence, or encoded message:

Encoded Message: [0 D0_{BPSK} W_{BPSK}]

where W_{BPSK} is the length 47 sequence:

[1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1
5 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0]

To differentially decode this message, the convention is used that an "off" is treated as a logical zero and that differential encoding of two "offs" always produces another "off."

When this message is differentially decoded with respect to every other symbol, as described above, it produces the base Message 0, i.e. [D0_{BPSK} W0_{BPSK}]. The other three messages are encoded similarly. Conveniently, a differentially encoded message may be differentially decoded by a differential detector which exclusive-or's together every other bit in the encoded message.

The encoded message is mapped to transmitted data by mapping a logical 0 to +A, a logical 1 to -A, and an "off" to a 0, where A is a peak signal amplitude. In the case where DSSS is employed, before transmission each of the symbols is multiplied by one PN frame, or sequence of subsymbols, to spread the signal.

Figure 2 shows a preferred embodiment of a communication receiver 200 for detecting the signal described by equation (1) in the presence of strong noise, as well as providing symbol and message timing synchronization, and preamble data extraction.

5

The transmitted signal of equation (1) is downconverted to near zero frequency using an in-phase/quadrature demodulator to produce I and Q signals as shown in Figure 2. At this point the signal may be represented in quadrature format as:

10

$$s_r(t) = A \sum_{k=1}^N m_k(t - kT - \tau) \exp(jw_1 t + j\theta) \quad (2)$$

where t represents the unknown arrival time, w_1 represents the near baseband frequency, and θ represents unknown carrier phase.

15

The downconverted signal is provided to a Nyquist matched filter 205, matched to the transmitted symbol. The Nyquist matched filter 205 enhances signal energy and reduces out-of-band noise energy. In the case of a non-spread BPSK transmission, the data into the Nyquist matched filter is sampled at four times per symbol, while the data out of the Nyquist matched filter is sampled at twice the symbol rate. In the case of a PN spread DSSS transmission, the data into the Nyquist matched filter is

20

sampled at four times per subsymbol, or $4V$ times per symbol, while the data out of the Nyquist matched filter is sampled at twice the subsymbol rate, or $2V$ samples per symbol, where " V " is the length of the PN spreading sequence.

5

When the burst-type communication system employs DSSS, the Nyquist matched filter output signal is provided to a separate subsequent PN matched filter 210 of length " V ." The PN matched filter 210 is tapped at every other sample and produces a PN correlation spike when the input signal matches the predetermined PN subsymbol sequence of length V stored in the matched filter. The time at which the PN correlation spike occurs may be used to provide subsymbol timing information to the receiver. As the data is processed at a rate of two samples per subsymbol ($2V$ samples per symbol), the PN correlation peak may provide timing information to an accuracy of $\pm 1/4$ of a subsymbol period.

10
15
20

When the system employs a non-spread BPSK signal, the PN matched filter is bypassed.

The output of the PN matched filter (for DSSS), or the Nyquist matched filter (for non-spread BPSK), is provided to a delay block 215. The delay block delays the filtered data by " X " symbol periods before providing it to a controlled gate 220. In

a preferred embodiment, "X" is 64 symbols, or 64V subsymbols.

The controlled gate provides the data to the rest of the receiver for further processing. The controlled gate 220 also provides a start signal and a data clock to a unique word detector 225 as will be described in more detail below.

5

The output of the PN matched filter (for DSSS), or the Nyquist matched filter (for non-spread BPSK), is also provided to a delay-multiplier block 230 comprising a delay 232 and a multiplier 234. In the case of a non-spread BPSK transmission, the delay 232 is two symbols in length, corresponding to four data samples. In the case of a spread DSSS transmission, the delay 232 is equal to "2V" subsymbols, corresponding to two data samples per subsymbol for the PN sequence of length V.

15

The delay-multiplier block 230: (1) performs a differential decoding operation on the symbols m_k , and (2) removes the effects of the carrier. In particular the delay-multiply operation produces the signal:

20

$$s_r(t) = A^2 \exp(jw_1 T) \sum_{k=1}^N m_k(t - kT - \tau) m_k(t - kT - T - \tau) \quad (3)$$

If $M(t) = m(t) * m(t-T)$, then (3) becomes:

$$s_r(t) = A^2 \exp(jw_1 T) \sum_{k=1}^N M(t - kT - \tau) \quad (4)$$

Because the signal (2) above is complex, the multiplication is also actually complex, with one of the terms conjugated. This
5 leads to equations (3) and (4). Note that differential decoding has removed the carrier phase uncertainty from the received
signal.

The data M corresponds to the original data that was
10 differentially encoded at the transmitter to construct the
encoded message that was transmitted.

In a preferred embodiment, the first symbols of a burst
transmission correspond to a base message (or base
15 synchronization sequence). In the case of DSSS transmission employing the base messages M0, M1, M2 and M3, the initial portion of the message corresponds to D_0_{DSSS} or $\sim D_0_{\text{DSSS}}$. In that case, the first 48 symbols are either logical zeros or logical ones, and the received and differentially decoded signal can be
20 integrated over these 48 symbols to detect the start of a received burst transmission.

In the case of non-spread BPSK transmission employing the base messages M₀, M₁, M₂ and M₃, the initial portion of the message corresponds to D_{0_{BPSK}} or ~D_{0_{BPSK}}. In that case, every other symbol among the first 48 symbols are either logical zeros or 5 logical ones, and the received and differentially decoded signal can be integrated over these 24 symbols to detect the start of a received burst transmission.

TOP SECRET//
REF ID: A6572

In the preferred embodiment of Figure 2, the output of the delay-multiplier 230 is provided to a delay line integrator 240, comprising an adder 242, a delay 244, a feedback summer 245, a multiplier 246, and a feedback ratio constant 248. In the case of a non-spread BPSK transmission, the delay 244 is two symbols in length, corresponding to four data samples. In the case of a spread DSSS transmission, the delay 244 is equal to "2V" subsymbols, corresponding to two data samples per subsymbol for the PN sequence of length V. The delay line integrator 240 is a leaky integrator with a time constant of "K" symbols and a feedback ratio constant 248 equal to (K-1)/K. The feedback 10 constant 248 may be programmable. In the case of DSSS transmission, K may be 32 symbols, whereas in the non-spread BPSK case, K may be 16 symbols.

The delay line integrator 240 integrates the received signal to produce an initial detection signal. When the received signal corresponds to the initial detection sequence D0 or ~D0, then the delay line integrator 230 produces an initial signal detection peak, which is either positive or negative in accordance with whether D0 or ~D0 is received.

The output of the delay line integrator 240 is provided to a threshold detector 250. The threshold detector 250 is also supplied with an initial detection threshold 255, which may be a programmable value from a microprocessor. The threshold detector 250 determines the timing of an initial signal detection peak to provide symbol (or subsymbol) timing information for the receiver 200. In response to an initial signal detection peak, the threshold detector produces an initial detection strobe signal 257 when both the absolute value of the initial signal detection peak exceeds the threshold 255, and is a local peak signal.

The threshold detector 250 also performs an interpolation to determine whether the initial detection strobe signal 257 corresponds to a "true peak." The threshold detector 250 provides a two-bit peak timing output signal 259 indicating whether the initial detection strobe signal 257 was "early," "late," or "punctual" with respect to the true peak.

When the threshold detector 250 qualifies the delay line integrator output as an initial detection peak, the threshold detector provides the initial detection strobe signal 257 to a first input of an initial detection gate 260. The second input 5 of the initial detection gate 260 is connected to the output of a flip-flop 270. The flip-flop 270 is reset to enable an Initial Detection Output Signal 265 from the gate 260 during time periods when the receiver is seeking a burst-type transmission, and is set to disable the Initial Detection Output Signal 265 during 10 time periods when the receiver is not seeking a burst-type transmission, for example because it is busy processing another signal. The Initial Detection Output Signal 265 indicates detection of an initial detection sequence for a burst 15 transmission and provides symbol timing for the burst. The Initial Detection Output Signal 265 may be provided to a microprocessor or to an arbitration circuit in a receiver which may control the flip-flop 270.

The threshold detector 250 is a double detector which 20 detects both positive and negative peaks, as the peak signal polarity is either positive or negative, depending upon whether D0 or ~D0 is transmitted. This polarity of the initial detection strobe provides a first preamble information bit, Bit0,

indicating whether D0 or ~D0 was received. The first preamble information bit, Bit0, is provided to the unique detector 225.

After the initial detection sequence of length I, the
5 symbols that follow represent a unique word of length U. In a preferred embodiment, I = 48 symbols and U = 47 symbols.

Detection of the unique word is performed by the unique word detector 225. Because the initial detection strobe is produced by integrating the received signal over many symbols, the first
10 preamble information bit may be received even when individual received symbols are weak relative to the noise level.

The controlled gate 220 receives an Enable Unique Word Detect signal 221 from an arbitration circuit or a microprocessor in the communication receiver, synchronized to the symbol timing determined by the threshold detector 250 and provided in the Initial Detection Output Signal 265. The controlled gate uses an internal counter to produce a unique word data clock signal 223, providing one clock cycle per data symbol in the received base
20 synchronization sequence. The counter is synchronized to the received symbols by the Enable Unique Word detect signal 221 which in turn is synchronized to the time of occurrence of the peak in the initial detection strobe signal 257. For the DSSS case, the counter produces one clock cycle per PN frame.

The delay-multiplier 230 provides the differentially decoded base synchronization sequence data to the unique word detector 225 for detection of the unique word. The base synchronization sequence data is clocked into the unique word detector 225 by the 5 unique word data clock signal 223 provided by the controlled gate 220. The unique word detector 225 may adjust the timing of the unique word data clock signal 223 using the two-bit peak timing output signal 259.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485

The polarity of the peak in the unique word detector 225 provides a second preamble information bit, Bit1, indicating whether W_0 or $\sim W_0$ was received. Thus two total bits of information are communicated in the preamble synchronization sequence. The unique word detector 225 provides the first and second preamble information bits as an output 290. These bits may be used to provide four possible payload lengths, or other formatting details regarding the following payload data. Figure 3 shows a simulated output of a matched filter matched to the aforementioned base unique word W_0 . If $\sim W_0$ were utilized instead, then the peak in Figure 3 would be negative going.

In a preferred embodiment, the controlled gate 220 provides a start signal 227 which opens a detection time window in the unique word detector 225 to detect the reception of a valid unique word beginning "Y" symbols after the initial signal detection peak. The detection time window is "Z" symbol periods long, with the unique word detector including a counter to count the "Z" symbol periods. The unique word detector 225 provides a unique word detection output signal 280 containing a valid unique word detection peak only during the interval of the detection time window. In a preferred embodiment, Y may be 32 symbols and Z may be 64 symbols.

Significantly, the actually transmitted differentially encoded data $m_A(t)$, corresponding to the unique word sequence W_0 , and the transmitted differentially encoded data $m_B(t)$, corresponding to the unique word sequence $\sim W_0$, are not sign-
5 inverted versions of one another. Only after differential decoding are the base sequences W_0 or $\sim W_0$ produced. Similarly the initial detection sequences, D_0 and $\sim D_0$, do not produce transmitted sequences which are logical or arithmetic inverses of one another.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

In the preferred embodiment, each section of the preamble synchronization sequence contains one of two possible base sequences of waveforms. Processing each section requires, in general, two matched filters. However, in a preferred embodiment, in each section the two base sequences differ from one another by a polarity inversion, so that only one matched filter is required in each section.

In the more general case, a burst-type communication terminal may select among more than two allowed base preamble sequences of waveforms. This allows communication of additional bits of information. In general, one of $S/2$ allowed base sequences of waveforms may be transmitted as an initial detection sequence in the preamble (e.g. the first 48 symbols),

communicating $\log_2(S/2)$ first preamble information bits.

Similarly, one of $S/2$ sequences of waveforms may be transmitted as a unique word in the preamble (e.g. the last 47 symbols), communicating $\log_2(S/2)$ second preamble information bits.

5

For example, one of four allowed sequences of waveforms may be transmitted during an initial detection portion of the preamble (e.g. the first 48 symbols). In general, this requires the use of up to four matched filters in the receiver, although this may be reduced to two matched filters if the four allowed sequences are selected as two pairs, such that the base sequences in each pair differ from each other by a polarity inversion. This allows communication of two bits of information in the initial detection sequence.

15

More generally, the preamble may be divided into R sections. transmitting one of say L base sequences of symbols in each section. In that case, the total number of bits of information communicated in the preamble is $\log_2(L*R)$. For simplicity one might choose the same set of base sequences for each section, thus limiting the number of matched filters to at most L , and perhaps $L/2$ if the base sequences are chosen as pairs of sequences which are inverses of each another.

The transmitted symbols do not have to be simply bi-phase shifted data, as in equation (1). More complex data, such as quadra-phase shifted data may be utilized. In this case, however, the unique word detector of Figure 2 may be more complex 5 since it must detect the more complex waveforms created by differentially decoding these more complex symbols.

While preferred embodiments are disclosed herein, many variations are possible which remain within the concept and scope 10 of the invention. Such variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended 15 claims.