Dual de $\mathcal{M}_n(\mathbb{K})$:

I Le développement

Le but de ce développement est de trouver le dual de $\mathcal{M}_n(\mathbb{K})$ et d'en déduire divers résultats.

Dans toute ce développement, on considère $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Théorème 1 : [Caldero, p.5]

L'application :

$$f: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K})^* \\ A & \longmapsto & f_A: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ X & \longmapsto & \mathrm{Tr}(AX) \end{array} \right.$$

réalise un isomorphisme de $\mathcal{M}_n(\mathbb{K})$ dans sur son dual.

Preuve:

On considère l'application :

$$f: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K})^* \\ A & \longmapsto & f_A: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ X & \longmapsto & \operatorname{Tr}(AX) \end{array} \right.$$

Par linéarité de la trace et bilinéarité du produit matriciel, les applications f_A et f sont linéaires. L'application f est donc bien définie et puisque $f\left(0_{\mathcal{M}_n(\mathbb{K})}\right) = 0_{\mathcal{M}_n(\mathbb{K})^*}$ on a que f est un morphisme.

De plus, puisque $\mathcal{M}_n(\mathbb{K})$ est un \mathbb{K} -espace vectoriel de dimension finie égale à n^2 , son dual est aussi de dimension finie et de dimension n^2 également. Il nous suffit donc de montrer que f est injective.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $f(A) = f_A = 0$.

On a donc que pour tout $X \in \mathcal{M}_n(\mathbb{K})$, $\operatorname{Tr}(AX) = 0$ et donc en particulier pour tous $i, j \in [1; n]$ on a $\operatorname{Tr}(AE_{i,j}) = 0$. Or :

$$\operatorname{Tr}(AE_{i,j}) = \sum_{k=1}^{n} (AE_{i,j})_{k,k} = \sum_{k=1}^{n} \left(\sum_{\ell=1}^{n} a_{k,\ell} \delta_{i,\ell} \delta_{j,k} \right) = a_{j,i}$$

Ainsi, A est nulle et donc f est bien injective.

Par conséquent, l'application f est un isomorphisme et on a le résultat voulu.

Lemme 2: [Francinou, p.41]

Les matrices $A \in \mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$ sont exactement les matrices scalaires.

Preuve:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que A commute avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$.

En particulier, on a pour tous $i, j \in [1; n]$ que $AE_{i,j} = E_{i,j}A$. Or, la matrice $AE_{i,j}$ a tous ses coefficients nuls sauf sur la j-ième colonne et la matrice $E_{i,j}A$ a tous ses coefficients nuls sauf sur la i-ième ligne. Ainsi, en identifiant les coefficients, on trouve que le seul coefficient éventuellement non nul est $a_{i,i} = a_{j,i}$.

Donc il existe $\lambda \in \mathbb{K}$ tel que $A = \lambda I_n$ et réciproquement, toute matrice scalaire commute avec n'importe quelle matrice de $\mathcal{M}_n(\mathbb{K})$.

Corollaire 3: [Caldero, p.5]

Soit $f \in \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ une forme linéaire.

Si f est telle que pour tous $X, Y \in \mathcal{M}_n(\mathbb{K})$ on ait f(XY) = f(YX), alors il existe $\lambda \in \mathbb{K}$ tel que pour tout $X \in \mathcal{M}_n(\mathbb{K})$ on ait $f(X) = \lambda \operatorname{Tr}(X)$.

Preuve:

Soit $f \in \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ une forme linéaire.

Supposons que f est telle que pour tous $X, Y \in \mathcal{M}_n(\mathbb{K})$ on ait f(XY) = f(YX). D'après le théorème précédent, il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $X \in \mathcal{M}_n(\mathbb{K})$ on ait f(X) = Tr(AX). De plus, pour tous $X, Y \in \mathcal{M}_n(\mathbb{K})$, on a:

$$\operatorname{Tr}(AXY) \stackrel{=}{\underset{\text{hyp.}}{=}} \operatorname{Tr}(AYX) = \operatorname{Tr}(XAY)$$

Donc $\operatorname{Tr}(AXY) - \operatorname{Tr}(XAY) = \operatorname{Tr}((AX - XA)Y) = 0$ et puisque cette égalité est vraie pour tout $Y \in \mathcal{M}_n(\mathbb{K})$, on a par injectivité de f que AX - XA = 0. Ceci donne que A commute avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$ et donc A est une matrice scalaire.

Finalement, il existe $\lambda \in \mathbb{K}$ tel que $A = \lambda I_n$ et donc pour tout $X \in \mathcal{M}_n(\mathbb{K})$ on a $f(X) = \text{Tr}(AX) = \text{Tr}(\lambda X) = \lambda \text{Tr}(X)$.

Corollaire 4: [Caldero, p.5]

Si $n \geq 2$, alors tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $\mathrm{GL}_n(\mathbb{K})$.

Preuve:

On suppose que $n \geq 2$ et on considère H un hyperplan de $\mathcal{M}_n(\mathbb{K})$.

Il existe alors $\varphi : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ une forme linéaire non nulle telle que $H = \operatorname{Ker}(\varphi)$. D'après le théorème précédent, il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $X \in \mathcal{M}_n(\mathbb{K})$ on ait $\varphi(X) = \operatorname{Tr}(AX)$.

Il nous suffit donc de trouver $X \in GL_n(\mathbb{K})$ tel que Tr(AX) = 0.

En notant r = rg(A), il existe $P, Q \in GL_n(\mathbb{K})$ tels que $A = PJ_rQ$, avec J_r la matrice diag $(I_r, 0_{n-r})$. Pour tout $X \in \mathcal{M}_n(\mathbb{K})$, on a alors la relation :

$$\operatorname{Tr}(AX) = \operatorname{Tr}(PJ_rQX) = \operatorname{Tr}(J_rQXP)$$

Il nous suffit donc de trouver $Y \in GL_n(\mathbb{K})$ tel que $Tr(J_rY) = 0$ et en posant $X = Q^{-1}YP^{-1}$ on aura bien que $X \in H \cap GL_n(\mathbb{K})$.

Par exemple, la matrice:

$$Y = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0 \end{pmatrix}$$

convient puisque $\det(Y) = (-1)^{n-1} \neq 0$ (on reconnaît une matrice de permutation correspondant à un *n*-cycle) et $\operatorname{Tr}(J_r Y) = 0$ (car la diagonale de $J_r Y$ est nulle).

II Remarques sur le développement

II.1 Pour aller plus loin...

II.1.1 Retour sur les résultats

Il est possible de donner une démonstration directe du corollaire 3. En effet, pour tous $i, j \in [1; n]$ distincts, on a :

$$f(E_{i,j}) = f(E_{i,i}E_{i,j}) = f(E_{i,j}E_{i,i}) = f(0) = 0$$

et:

$$f(E_{i,i}) = f(E_{i,j}E_{j,i}) = f(E_{j,i}E_{i,j}) = f(E_{j,j})$$

En notant alors λ la valeur commune des $f(E_{i,i})$, on obtient alors que les applications f et $\lambda \operatorname{Tr}()$ coïncident sur une base de $\mathcal{M}_n(\mathbb{K})$ et donc elles sont égales.

Remarque 5: [Francinou, p.42]

Le corollaire 3 nous donne alors une caractérisation de la trace parmi les formes linéaires (les formes linéaires permettant de caractériser l'appartenance à un hyperplan).

Il est également possible d'améliorer le résultat du corollaire 4. En effet, on peut naturellement se demander quelle est la dimension maximale d'une sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ ne rencontrant pas $\mathrm{GL}_n(\mathbb{K})$.

C'est au moins n(n-1) puisque le sous-espace formé des matrices dont la dernière colonne est nulle convient. On peut montrer que tout sous-espace de $\mathcal{M}_n(\mathbb{K})$ de codimension strictement plus grande que n contient au moins une matrice inversible.

II.1.2 Hyperplans de $\mathcal{M}_n(\mathbb{K})$ et $O_n(\mathbb{R})$

Proposition 6 : [Caldero, p.5]

Si $n \geq 2$, alors tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $O_n(\mathbb{R})$.

Preuve:

On suppose que $n \geq 2$ et on considère H un hyperplan de $\mathcal{M}_n(\mathbb{K})$.

Il existe alors $\varphi : \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ une forme linéaire non nulle telle que $H = \operatorname{Ker}(\varphi)$. D'après le théorème précédent, il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $X \in \mathcal{M}_n(\mathbb{K})$ on ait $\varphi(X) = \operatorname{Tr}(AX)$.

Par la décomposition polaire, il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$ telles que A = OS. De plus, par le théorème spectral, il existe une matrice diagonale D et $P \in \mathrm{GL}_n(\mathbb{R})$ telles que $S = PDP^{-1}$. Cela implique, par propriété de la trace, que :

$$\operatorname{Tr}(AX) = \operatorname{Tr}(OSX) = \operatorname{Tr}(OPDP^{-1}X) = \operatorname{Tr}(P^{-1}XOPD)$$

En posant $Y=P^{-1}XOD$, on voit que X est orthogonale si, et seulement si, Y est orthogonale (car l'ensemble des matrices orthogonales est un groupe pour le produit matriciel). Trouver une matrice orthogonale dans H revient donc à trouver une matrice orthogonale X telle que Tr(AX)=0, c'est-à-dire trouver Y orthogonale telle que Tr(YD)=0.

Il suffit de prendre la même matrice Y que dans le corollaire 4. Effectivement, toute matrice de permutation permute la base canonique, et donc transforme une base orthonormée (en l'occurrence la base canonique) de l'espace euclidien \mathbb{R}^n en une base orthonormée (la base canonique permutée) : la matrice Y est donc bien orthogonale. De plus, la diagonale de YD est nulle, donc sa trace est bien nulle.

II.2 Recasages

Recasages: 159.

III Bibliographie

- Philippe Caldero, Carnet de voyage en Algébrie.
- Serge Francinou, Exercices de mathématiques, Oraux X-ENS, algèbre 2.