Der Algorithmus von Dijkstra

(Berechnung kürzester Wege in bewerteten Graphen)

GIS Praxis II, Jan Hinzmann, Matr.-Nr.: 2068095

- Edsger Wybe Dijkstra
- Graphen
- Kürzester Weg?
- Algorithmus
- Beispiel
- Applet

Edsger Wybe Dijkstra

- Holländer (1930 Rotterdam- 2002)
- erster Programmierer der Niederlande
- 1972 Turing Preis
- "In der Informatik geht es genau so wenig um Computer wie in der Astronomie um Teleskope."
- Dijkstra-Algorithmus
 - findet kürzeste Wege in *Graphen*

Graphen

- Ein Graph G(N,E) hat
 - N (Node): Menge der Knoten
 - E (Edge): Menge der Kanten, die Knoten verbinden
 - Knoten N := $\{n_1, n_2, ..., n_n\}$
 - Kanten E := $\{e_1(n_i, n_i), ..., e_2(n_k, n_l)\}$

• es gibt gerichtete, gewichtete, benannte, ... Graphen

Graphen (2)

- Ein gerichteter Graph
 - gerichtete Kanten

- Ein gewichteter Graph
 - gewichtete Kanten

- Ein benannter Graph
 - benannte Knoten

• *kurze Wege* in Graphen?

Kürzester Weg?

- Oft gibt es mehrere Wege:
 - Was ist der kürzeste Weg vom Startknoten s zum Ziel z ?
 - Weg 1 kostet 9
 - Weg 2 kostet 6
 - **Weg 3** aber nur 5!

• Die Lösung berechnet der Algorithmus von Dijkstra ...

```
Knotenmenge s,k; //s = Startknoten
 Knotenmenge opti = {s};
 Knotenmenge rest = k{s};
 for (k aus rest) do
     D[k] = d[s,k] (es gibt Weg);
          = ∞ sonst:

↓ done;

→ while ( rest nicht leer ) do;

     wähle k aus rest mit min(D[k]);
     opti += \{k\};
     rest = rest -{k};
     for (alle Knoten n von k) do
         D[n] = min(D[n], D[k] + d[k,n]);
     done;
 done;
```

In Worten:

- 1. Der Startknoten kommt in *opti*
- 2. Alle anderen Knoten in rest
- 3. berechne alle Distanzen für die Knoten in *rest*
- 4. verschiebe den Knoten mit der kleinsten Distanz von *rest* nach *opti*
- 5. berechne die Distanzen für die Knoten in *rest* neu
- 6. wiederhole Schritt 4 und 5 solange, bis *rest* leer ist

Beispiel

Opt	D[2]	D[3]	D[4]	D[5]	Rest
{1}	4	1	∞	∞	{2,3,4,5}
{1,3}	4	_	2	∞	{2,4,5}
{1,3,4}	3	_	_	6	{2,5}
{1,3,4,2}	-	_	_	5	{5}
{1,3,4,2,5}	-	_	_	-	Ø

- Der Dijkstra-Algorithmus findet die kürzesten Distanzen zu allen anderen Knoten, wenn keine negativen Distanzen (Betrag) zugelassen sind
- Für die Navigation kann er abgebrochen werden, sobald der Zielknoten zu Opt hinzugefügt worden ist

Applet

- Dijkstra Applet
- http://carbon.cudenver.edu/~hgreenbe/session s/dijkstra/DijkstraApplet.html

Diskussion

- Edsger Wybe Dijkstra
- Graphen (gerichtet, gewichtet)
- Kürzester Weg?
- Algorithmus
- Beispiel
- Applet