High-Dimensional Optimization in Adaptive Random Subspaces

Jonathan Lacotte, Mert Pilanci and Marco Pavone Stanford University

Convex, Smooth Optimization Problem

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a convex and μ -strongly smooth function, i.e., $\nabla^2 f(w)\preceq \mu I_n$ for all $w\in\mathbb{R}^n$, and $A\in\mathbb{R}^{n\times d}$ a high-dimensional matrix. We are interested in solving the primal problem

$$x^* = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(Ax) + \frac{\lambda}{2} ||x||_2^2.$$
 (1)

Approximate Recovery in Low-dimensional Space

Given a random matrix $S \in \mathbb{R}^{d \times m}$ with $m \ll d$, we consider instead the sketched primal problem

$$\alpha^* \in \underset{\alpha \in \mathbb{R}^m}{\operatorname{argmin}} f(AS\alpha) + \frac{\lambda}{2} \alpha^\top S^\top S \alpha ,$$
 (2)

where we effectively restrict the optimization domain to a lower m-dimensional subspace. In this work, we explore the following questions: How can we estimate the original solution x^* given the sketched solution α^* ? Is a uniformly random subspace the optimal choice, e.g., $S \sim \text{Gaussian i.i.d.}$? Or, can we come up with an adaptive sampling distribution that is related to the matrix A, which yields stronger guarantees?

Let $f^*(z):=\sup_{w\in\mathbb{R}^n}\left\{w^{\top}z-f(w)\right\}$ be the Fenchel conjugate of f. Standard Fenchel duality holds,

$$\min_{x} f(Ax) + \frac{\lambda}{2} ||x||_{2}^{2} = \max_{z} -f^{*}(z) - \frac{1}{2\lambda} ||A^{\top}z||_{2}^{2}.$$

Strong duality also holds for the sketched program

$$\min_{\alpha} f(AS\alpha) + \frac{\lambda}{2} ||S\alpha||_{2}^{2} = \max_{z} -f^{*}(z) - \frac{1}{2\lambda} ||P_{S}A^{\top}z||_{2}^{2},$$

where $P_S = S(S^{\top}S)^{\dagger}S^{\top}$ is the orthogonal projector onto the range of S. Intuitively, provided that S is well-chosen, the regularizers of the dual programs are close to each other

$$\|A^{\top}z\|_{2}^{2} \approx \|P_{S}A^{\top}z\|_{2}^{2}$$
.

Key quantity to control the error between the two programs:

$$Z_f(A,S) = \sup_{\Delta \in (\text{dom} f^* - z^*)} \left(\frac{\Delta^\top A P_S^\perp A^\top \Delta}{\|\Delta\|_2^2} \right)^{\frac{1}{2}}, \tag{3}$$

where z^* is the optimal dual solution of the original optimization problem, and $P_S^{\perp} = I - P_S$.

Deterministic Guarantee

We consider the candidate solution $\widetilde{x}=-\lambda^{-1}A^{\top}\nabla f(AS\alpha^*)$. Then, under the condition $\lambda\geqslant 2\mu Z_f^2$, we have

$$\|\widetilde{x} - x^*\|_2 \leqslant \sqrt{\frac{\mu}{2\lambda}} Z_f \|x^*\|_2,$$
 (4)

High-Probability Guarantee

Let $k \geqslant 2$, and $R_k(A) = \left(\sigma_k^2 + \frac{1}{k} \sum_{j=k+1}^{\rho} \sigma_j^2\right)^{\frac{1}{2}}$, where $\rho = \operatorname{rank}(A)$ and $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_\rho$ its singular values. We set m = 2k and choose a sketching matrix $S = A^{\top} \widetilde{S}$, (5)

with $\widetilde{S} \in \mathbb{R}^{n \times m}$ Gaussian i.i.d. Then, for some universal constant $c_0 \leqslant 36$, provided $\lambda \geqslant 2\mu c_0^2 R_k^2(A)$, it holds with probability at least $1-12e^{-k}$ that

$$\|\widetilde{x} - x^*\|_2 \le c_0 \sqrt{\frac{\mu}{2\lambda}} R_k(A) \|x^*\|_2.$$
 (6)

The above result is a consequence of (4) and classical results [2] on randomized low-rank approximations.

Adaptive versus Oblivious Sketching

Let $\nu_k = \sigma_k^2$ be the eigenvalues of AA^{\top} . We compare our theoretical predictions for different types of spectral decays: low rank ρ ; κ -exponential decay $\nu_j \sim e^{-\kappa j}$ with $\kappa > 0$, and, β -polynomial decay $\nu_k \sim j^{-2\beta}$ with $\beta > 1/2$.

Given $\varepsilon > 0$ and $\eta \in (0,1)$, denote by m_A (resp. m_O , m_S) a sufficient dimension for which adaptive (resp. oblivious, leverage score) sketching yields

$$\|\widetilde{x} - x^*\|_2 / \|x^*\|_2 \leqslant \varepsilon$$

with probability at least $1 - \eta$. Bounds for oblivious sketching leverage results in [3] and bounds for Nystrom methods leverage results in [1].

	ho-rank matrix	κ -exponential decay	eta-polynomial decay
	$(\rho \ll n \wedge d)$	$(\kappa > 0)$	$(\beta > 1/2)$
Adaptive Gaussian (m_A)	$\rho + 1 + \log\left(\frac{12}{\eta}\right)$	$\kappa^{-1}\log\left(\frac{1}{\lambda\varepsilon}\right) + \log\left(\frac{12}{\eta}\right)$	$\lambda^{-12\beta} \varepsilon^{-1\beta} + \log\left(\frac{12}{\eta}\right)$
Oblivious Gaussian (m_O)	$\left((\rho+1)\varepsilon^{-2}\log\left(\frac{2\rho}{\eta}\right)\right)$	$\kappa^{-1} \varepsilon^{-2} \log \left(\frac{1}{\lambda}\right) \log \left(\frac{2d}{\eta}\right)$	$\lambda^{-\frac{1}{2\beta}} \varepsilon^{-2} \log \left(\frac{2d}{\eta}\right)$
Leverage score (m_S)	$(\rho+1)\log\left(\frac{4\rho}{\eta}\right)$	$ \kappa^{-1} \log \left(\frac{1}{\lambda \varepsilon} \right) \log \left(\frac{1}{\eta} \right) $	$\left \left(\lambda^{-\frac{1}{2\beta}} \varepsilon^{-\frac{1}{\beta}} \right)^{2 \wedge \frac{\beta}{\beta - 1}} \log \left(\frac{1}{\eta} \right) \right $
Lower bound on $\frac{m_O}{m_A}$	$\varepsilon^{-2}\log\rho$	$\varepsilon^{-2+h} \log 2d$, $\forall h > 0$	$\varepsilon^{1\beta-2}\log(2d/\eta)$
Lower bound on $\frac{m_S}{m_A}$	$\log ho$	$\min\left(\log\left(\frac{1}{\eta}\right), \kappa^{-1}\log\left(\frac{1}{\lambda\varepsilon}\right)\right)$	$\left(\lambda^{-\frac{1}{2\beta}}\varepsilon^{-\frac{1}{\beta}}\right)^{-1+2\wedge\frac{\beta}{\beta-1}}$

We compare numerically adaptive versus oblivious sketching. We use n=1000 and d=2000, $A^{\rm exp}$ and $A^{\rm poly}$, satisfying respectively $\nu_j\sim ne^{-0.1j}$ (exponential) and $\nu_i\sim nj^{-2}$ (polynomial). We consider two loss functions:

- 'Logistic': $f(Ax) = n^{-1} \sum_{i=1}^{n} \ell_{y_i}(a_i^{\top}x)$ where $\ell_{y_i}(z) = y_i \log(1 + e^{-z}) + (1 y_i) \log(1 + e^z)$, $y \in \{0, 1\}^n$.
- 'ReLU': $f(Ax) = (2n)^{-1} \sum_{i=1}^{n} (a_i^\top x)_+^2 2(a_i^\top x) y_i$.

Fig. 1: In red, adaptive Gaussian sketching. In green, oblivious Gaussian sketching.

Iterative and Power Methods

Iterative method: Set $\widetilde{x}^{(0)} = 0$. At each iteration, compute $a^{(t)} = A\widetilde{x}^{(t-1)}$, and, $b^{(t)} = (S^{\top}S)^{-\frac{1}{2}}S^{\top}\widetilde{x}^{(t-1)}$, and solve

$$\alpha_{\dagger}^{(t)} = \underset{\alpha_{\dagger} \in \mathbb{R}^m}{\operatorname{argmin}} f(A_{S,\dagger} \alpha_{\dagger} + a^{(t)}) + \frac{\lambda}{2} \|\alpha_{\dagger} + b^{(t)}\|_{2}^{2}, \tag{7}$$

where $A_{S,\dagger} = AS(S^{\top}S)^{-\frac{1}{2}}$. Update the solution by $\widetilde{x}^{(t)} = -\frac{1}{\lambda}A^{\top}\nabla f(A_{S,\dagger}\alpha_{\dagger}^{(t)} + a^{(t)})$. Then, after T iterations, provided that $\lambda \geqslant 2\mu Z_f^2$, it holds that

$$\|\widetilde{x}^{(T)} - x^*\|_2 \leqslant \left(\frac{\mu Z_f^2}{2\lambda}\right)^{\frac{T}{2}} \|x^*\|_2.$$
 (8)

Power method [2]: Use the sketching matrix

$$S = (A^{\top}A)^q A^{\top}\widetilde{S}$$
, for some $q \geqslant 1$.

Fig. 2: Benefits of iterative and power methods, evaluated on MNIST dataset.

Simulations on MNIST and CIFAR10 Datasets

Acknowledgements

This work was partially supported by the Office of Naval Research, ONR YIP Program, under contract N00014-17-1-2433, and, by the National Science Foundation under grant IIS-1838179.

References

- [1] Alex Gittens and Michael W Mahoney. "Revisiting the Nyström method for improved large-scale machine learning". In: *The Journal of Machine Learning Research* 17.1 (2016), pp. 3977–4041.
- [2] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions". In: *SIAM review* 53.2 (2011), pp. 217–288.
- [3] Lijun Zhang et al. "Recovering the optimal solution by dual random projection". In: Conference on Learning Theory. 2013, pp. 135–157.