

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutores @163.com

QQ: 749389476

https://tutorcs.com

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola

T3/2022

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Datatypes

程序代写代做 CS编程辅导

Example:

dataty| X 😹

: Nil | Cons 'a "'a list"

Properties:

→ Constructors: WeChat: cstutorcs

Assignment Project Exam Help Cons :: "a project Exam Help

→ Distinctness: NEin+aiCotstores@163.com

→ Injectivity: $(Cons \times xs = Cons y \ ys) = (x = y \land xs = ys)$

QQ: 749389476

More Examples

程序代写代做 CS编程辅导

Enumeration:

Polymorphic:

datatype ea hation (mt None | Some 'a **datatype** ('a,'b,'c) triple = Triple 'a 'b 'c Assignment Project Exam Help

Email: tutorcs@163.com Recursion:

datatype 'a list = Nil | Cons 'a "'a list" datatype 'a tree = Tip | Node 'a "'a tree" "'a tree"

https://tutorcs.com

Mutual Recursion:

datatype even = EvenZero | EvenSucc odd

Nested

程序代写代做 CS编程辅导

Nested recursion:

datatype 'a till Node 'a "'a tree list"

datatype 'a tree Chat! Ostundec's "'a tree option" "'a tree option"

Assignment Project Exam Help

→ Recursive call is under and type crosser ulos or .com

QQ: 749389476

The General Case

程序代写代做 CS编程辅导

- → Constructors:
- → Distinctness: $C_i \neq C_j$ if $i \neq j$ → Injectivity: $(C_i x_1 \dots x_{n_i} = C_i y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Assignment Project Exam Help

 $\bullet \mapsto \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1,\ldots,\alpha_n) \tau$

Distinctness and Injectivity applied automatically

OO: 749389476

How is this Type Defined?

程序代写代做 CS编程辅导

dataty| Nil | Cons 'a "'a list"

- → internally reduced constructor, using product and sum
- → constructor defined as an inductive set (like typedef)
- → recursion: least fix weithat: cstutorcs

Assignment Project Exam Help

More detail: Tutorial on (Co-)datatypes Definitions at isabelle.in.tum.de Email: tutorcs@163.com

QQ: 749389476

Datatype Limitations

程序代写代做 CS编程辅导

Must be as a (non-empty) set.

- → Infinitely branchin
- → Mutually recursive
- → Strictly positive (right of function arrow) occurrence ok.

 WeChat: cstutorcs

Not ok:

Assignment Project Exam Help datatype
$$t = C (t \Rightarrow bool)$$

Email tutorcos do $(53 \text{ com} \Rightarrow bool)$
OO: $749389476 \Rightarrow bool) \Rightarrow bool)$

Because: Cantors's/thetorem. (onset is larger than α)

Datatype Limitations

程序代写代做 CS编程辅导

Not ok (nested recursion): datatype ('a, \Rightarrow 'b" bpy = Fun "'a \Rightarrow 'b" datatype 'a the t, 'a) fun_copy"

- → recursion in ('a1, ...'an) t is only allowed on a subset of 'a1 ... 'an

 WeChat: cstutorcs

 these arguments are called *live* arguments
- → Mainly: in "'a ⇒ Abssignishdead Pande'eti Elivan Help
- → Thus: in ('a, 'b) fun_copy, 'a is dead and 'b is live
- → type constructors in the two stered las BNAST to have live arguments
- → BNF defines well-behaved type constructors, ie where recursion is allowed
- https://tutorcs.com

 datatypes automatically are BNFs (that's how they are constructed)
- → can register other type constructors as BNFs not covered here**

DNC - Daymand Matural Constant

Case

程序代写代做 CS编程辅导

Every datatype introduces a case construct, e.g.

(case xs o y y $ys \Rightarrow ... y ... ys ...)$

In general: one case per constructor hat: estutores

- → Nested patterns allowed in the Meroject Exam Help
- → Dummy and default patterns with _
- → Binds weakly, nee Brighth tutters @163.com

QQ: 749389476

Cases

程序代写代做 CS编程辅导

creates *k* subgoals

WeChat: cstutorcs

[tAssignment, Project Exam Help

Email: tutorcs@163.com

one for ϵ_0 gapstructor C_i

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Recursion Recursion

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Why nontermination can be harmful

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

All functions in HOL must be total https://tutorcs.com

Primitive Recursion

程序代写代做 CS编程辅导

weChat: cstutorcs app:: "'a list \Rightarrow 'a list" where Assignment Project Exam Help "app Nil ys = ys" | Email: tutorcs@163.com rapp (Cons x xs) ys = Cons x (app xs ys)"

OO: 749389476

The General Case

程序代写代做 CS编程辅导

```
If \tau is a datatype (w ctors C_1, \ldots, C_k) then f :: \tau \Rightarrow \tau'
                                 ::cursion:
can be defined by pri
                     f\left(C_1 \ y_{1,1} \ \dots \ y_{1,n_1}\right) = r_1
                       WeChat: cstutorcs
                     f Assignment Project Exam Help
                        Email: tutorcs@163.com
       The recursive calls in r_i must be structurally smaller
                   (of the form 988947.6 \ y_{i,i} \dots a_n)
```

How does this Work?

程序代写代做 CS编程辅导

primrec just ax for a recursion operator $\mathsf{rec_list} | \mathbf{a} = \mathbf{a} + \mathbf{b} = \mathbf{a} +$ Example: rec list $\text{rec_list} \left(\frac{f_0}{f_0} \left(\frac{Cons \times xs}{cstutores} \right) \right) = f_2 \times xs \left(\frac{f_1}{f_0} \left(\frac{f_2}{f_0} \right) \right) = f_2 \times xs \left(\frac{f_1}{f_0} \left(\frac{f_2}{f_0} \right) \right)$ app $\equiv \text{rec list (}\lambda ys. ys); (\lambda x xs. xs' H \ ys. Cons x (xs' ys))$ primrec napp. "" a list" > 'a list" where "app **QQ**is749389476 "app (Cons x xs) ys = Cons x (app xs ys)" https://tutorcs.com

rec_list

程序代写代做 CS编程辅导

Defined: automatice ductively (set), then by epsilon

 $(xs, xs') \in list_rel f_1 f_2$

 $(Nil, f_1) \in list_rel \ f_1 \ f_2 \ (Cons \ x \ xs, f_2 \ x \ xs \ xs') \in list_rel \ f_1 \ f_2 \ WeChat: cstutorcs$

Assignment Project Exam Help

rec_list f_1 f_2 Automatic proof that set defindeed is total function (the equations f_1 f_2 f_3 f_4 f_5 f_6 f_6 f_6 f_6 f_7 f_8 f_8

程序代写代做 CS编程辅导

Predefined Datatypes

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

nat is a datatype

程序代写代做 CS编程辅导

WeChat: cstutorcs primrec

Assignment Project Exam Help f (Suc n) = ... f n ... Email: tutorcs@163.com

QQ: 749389476

Option

程序代写代做 CS编程辅导

dataty ion = None | Some 'a

Important application:

'b \Rightarrow a option \sim partial function:

Wellow: cstutores esult

Some $a \sim$ result aAssignment Project Exam Help

Example: Email: tutorcs@163.com
primrec lookup :: 'k \Rightarrow ('k \times 'v) list \Rightarrow 'v option
where QQ: 749389476
lookup k [] = None |
lookup k (x #xs) = https://tutorcs.com/some (snd x) else lookup k xs)

Demo WeChat: cstutorcs

<u>pr</u>imrec

程序代写代做 CS编程辅导

Induction VecChat: estutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Structural induction

程序代写代做 CS编程辅导

P xs holds for all lists ve if

- → P Nil
- → and for arbitrary $xs \implies P(x\#xs)$ Induction theorem $xs \implies P(x\#xs)$ $xs \implies P(x\#xs)$ $xs \implies P(x\#xs)$ $y \implies P(x\#xs)$ $y \implies P(x\#xs)$ $y \implies P(x\#xs)$
- → General proof method for induction: (induct x)
 - x must be a Areei variable tipthe first Example lep
 - type of x must be a datatype.

Email: tutorcs@163.com

QQ: 749389476

Basic heuristics

程序代写代做 CS编程辅导

Theorems about rections are proved by induction

Inductive Chargument cumber i of f if f is defined by recursion on argument number iAssignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Example

程序代写代做 CS编程辅导

程序代写代做 CS编程辅导

Demo WeChat: estutores

Assignment Project Exam Help

Proof Attempt 163.com

QQ: 749389476

Generalisation

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help Quantify free variables by ∀

(Email: htutorcs@163rcom)

lemma $\forall ys$. itrev xs ys = rev xs@ys

https://tutorcs.com
Or: apply (induct xs arbitrary: ys)

We have seen today ...

程序代写代做 CS编程辅导

- → Datatypes
- → Primitive recursion
- → Case distinction
- → Structural Induction

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Exercises

程序代写代做 CS编程辅导

- → define a primitive unction lsum :: nat list ⇒ nat that returns the state elements in a list.
- ⇒ show "2 * Isum [0] = n * (n+1)"
- → show "lsum (replicate $n \ a$) = n * a"
- → define a function lighten hasing autoir recursive version of listsum.
- → show that the two functions are equivalent: lsum xs = lsumT xs Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476