Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao January 18, 2023

What we have shown last week

- Binary linear Diophantine equation
- (Euclidean) Division Algorithm
- Bézout's identity
- Greatest common divisor
- Homogeneous linear equation
- Least common multiple
- Solution set of the linear Diophantine equation

Part II

Prime Numbers

Today's topics

- Hasse diagram
- Division network of positive integers
- Prime numbers
- Prime factorization

We want to illustrate the divisibility relation between positive integers. The first attempt is to list all the positive integers and whenever $a \mid b$ draw an arrow from a to b. But the result diagram is cluttered and confusing

Divisibility of integers from 1 to 9

To simplify the diagram, we introduce the following omission:

- We may choose a global direction (for example, from left to right) to assemble the integers and omit the heads of arrows.
- We may omit the self-loops corresponding to the *reflexivity*: $a \mid a \ (a \in \mathbb{Z}_+)$.
- By the **transitivity**, we may only draw the arrows connecting **adjacent** nodes. Here, saying **a** and **b** are adjacent means **a** | **b** and there is no other positive integer **c** between them in the sense **a** | **c** and **c** | **b**.
- By the antisymmetry, after above simplifications, the diagram contains no loops and crossings.

The diagram obtained through previous simplification is called a **Hasse diagram (of divisibility of positive integers)**.

Hasse diagram of integers from 1 to 9 (from left to right)

Hasse diagram of 1 and multiples of 2, 3, 7 (from inner to outer)

Prime factorization

Prime numbers

Definition 4.1

A **prime number**³ is a positive integer having no divisors other than 1 and itself. If a positive integer is not 1 and is not a prime number, then it is called a **composite number**.

In the Hasse diagram of divisibility of positive integers, the above notions can be interpreted as follows:

- 1 is the root/origin;
- prime numbers are nodes adjacent to 1;
- composite number are other nodes.

³There is no standard notation for the set of prime numbers. But many use \mathbb{P} .

Prime numbers

Theorem 4.2 (Primarity, fundamental property of primes)

Let p be a prime number. Then for any integers a, b, if $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Prime numbers

Theorem 4.2 (Primarity, fundamental property of primes)

Let p be a prime number. Then for any integers a, b, if $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Proof. We may assume $p \nmid a$. Then since there is no other divisor of p than 1 and p, we must have gcd(p, a) = 1.

By **Bézout's identity**, there are integers x_0 , y_0 such that $px_0 + ay_0 = 1$. Lets multiple both sides by b, we get

$$pbx_0 + aby_0 = b$$
.

Since $p \mid ab$, by **2-out-of-3 principle**, we must have $p \mid b$.

Prime factorization
$$a^{x}b^{y}c^{z} = a^{x'}b^{y'}c^{z'}$$

$$* x = x', y = y', z = z'$$

$$2^{3}3^{6} = 2^{3}$$

Theorem 4.3 (Fundamental Theorem of Arithmetic)

Let n be any positive integer.

1. (existence) n admits a prime factorization, i.e. there exist natural numbers e_p for each prime p such that⁴

$$n = 2^{e_2} \cdot 3^{e_3} \cdots p^{e_p} \cdots$$
 product.

2. (uniqueness) Suppose n admits another prime factorization, say

$$\mathbf{n}=2^{\mathbf{f}_2}\cdot 3^{\mathbf{f}_3}\cdots p^{\mathbf{f}_p}\cdots.$$

Then, for every prime p, we have $e_p = f_p$.

4 Note that this is a finite product.

$$eg. \ 42 = 2' \cdot 3' \cdot 7' = 2^{e_1} \cdot 3^{e_2} \cdot 5^{e_3} \dots$$

$$= 2^{e_1} \cdot 3^{e_2} \cdot 5^{e_3} \cdot 5^{e_4} \cdot 5^{e_5} \cdot 6^{e_4} \cdot 5^{e_5} \cdot 6^{e_5} \cdot 6^{e_$$

Proof of uniqueness

We first prove the uniqueness.

Suppose we have two distinct prime factorizations of n, say

$$n = 2^{e_2} \cdot 3^{e_3} \cdots p^{e_p} \cdots,$$

$$n = 2^{f_2} \cdot 3^{f_3} \cdots p^{f_p} \cdots.$$

Then there is a prime p such that $e_p \neq f_p$, say $e_p > f_p$.

Proof of uniqueness

We first prove the uniqueness.

Suppose we have two distinct prime factorizations of n, say

$$n = 2^{e_2} \cdot 3^{e_3} \cdot \cdot \cdot p^{e_p} \cdot \cdot \cdot ,$$

$$n = 2^{f_2} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{a} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{a} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{a} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{a} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{a} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{b} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot p^{f_p} \cdot \cdot \cdot p^{f_p} \cdot .$$

$$\mathbf{c} = 2^{f_1} \cdot 3^{f_3} \cdot \cdot p^{f_p} \cdot$$

Then there is a prime p such that $e_p \neq f_p$, say $e_p > f_p$.

Consider $a = \frac{n}{p^{fp}}$. By the first factorization, we have $p \mid a$. By the second factorization and theorem 4.2, $p \nmid a$ (indeed, 4.2 implies: if each factor of a product is not a multiple of p, then the product is not a multiple of p). This gives a contradiction. Therefore, we must have $e_p = f_p$ for all prime p.

Proof of existence

Now we prove the existence.

For each prime p. Consider the sequence

1 =
$$p^0$$
, p , p^2 , ...

Among them, there is a largest one, say p^{e_p} , such that $p^{e_p} \mid n$.

Proof of existence

Now we prove the existence.

For each prime p. Consider the sequence

$$1 = p^0, p, p^2, \cdots$$

Among them, there is a largest one, say p^{e_p} , such that $p^{e_p} \mid n$.

In next lecture, we will show that, from $p^{e_p} \mid n$ for all prime p, we can conclude that

$$2^{e_2} \cdot 3^{e_3} \cdots p^{e_p} \cdots \mid \mathbf{n}$$
.

Let's say $n = d \cdot 2^{e_2} \cdot 3^{e_3} \cdots p^{e_p} \cdots$. Then if $d \neq 1$, there must be a prime divisor p_0 of d (e.g. the smallest divisor of d other than 1). Then we have $p_0^{e_{p_0}+1} \mid n$, which contradicts with the maximality of e_{p_0} .

After Class Work

Terminology i

Terminology

Given an ordered set (S, \leq) , we can illustrate the partial order by a **Hasse diagram**:

- the nodes are the elements of S, listed from smaller to larger;
- if two elements a, b are **adjacent**, namely $a \le b$ and there is no other elements c between them ($a \le c$ and $c \le b$), we draw an arrow (omitting the head) from a to b.

We can read out the partial order from the Hasse diagram as follows: $a \le b$ if and only if there is a path from a to b.

Terminology ii

Exercise 4.1

Consider the set of integers \mathbb{Z} equipped with the usual order \leq , show that the Hasse diagram looks as follows:

Exercise 4.2

In the definition of Hasse diagram, we implied assumed that every pair (a, b) with the partial order relation $a \le b$ can be decomposed into a chain of adjacent ones: $a = x_0 \le x_1 \le \cdots \le x_n = b$. However, this is NOT true in general:

Show that in (\mathbb{R}, \leq) , every pair $a \leq b$ is NOT adjacent.

Terminology iii

Terminology

A partial order \leq on a set S is called a *linear order* if every two elements of S is comparable: namely, either $a \leq b$ or $b \leq a$. If this is the case, we say (S, \leq) is a *linear ordered set*.

Exercise 4.3 (†)

If an ordered set (S, \leq) is linear ordered set (and if it has a Hasse diagram), then we can assemble its Hasse diagram as a line (for example, exercise 4.1). To see this, show that there is no **branch** in the Hasse diagram, namely for every element $a \in S$, there can be at most one inward edge and one outward edge adjacent to a.

Notations

We will use the following notations for *indexed sum* and *product*:

```
\sum_{a \in S} S := \text{the sum of elements of } S, \sum_{a \in S} f(a) := \text{the sum of values of } f(a) \text{ when } a \text{ is taken over } S, \prod_{a \in S} S := \text{the product of elements of } S, \prod_{a \in S} f(a) := \text{the product of values of } f(a) \text{ when } a \text{ is taken over } S.
```

Example 4.4

The prime factorization can be written as $n = \prod_{p \in \mathbb{P}} p^{e_p}$.

Notations

When a presentation of a set S is given:

$$S = \{expression | rule\},\$$

we usually write indexed sum and product in a more compact way:

$$\sum_{\text{rule}} f(\text{expression}) := \begin{cases} \text{the sum of values of } f(\text{expression}) \text{ when the value of expression is specified by rule,} \end{cases}$$

$$\prod_{\text{rule}} f(\text{expression}) := \begin{cases} \text{the product of values of } f(\text{expression}) \text{ when the } \\ \text{value of expression is specified by rule.} \end{cases}$$

Example 4.5

The prime factorization can be written as $n = \prod_{p \text{ is prime}} p^{e_p}$

Notations

It is worth to point out that a **sequence** and a **map** are more or less the same thing.

- A sequence (a_1, \dots, a_n) is the same as a map from $\{1, \dots, n\}$ mapping i to a_i .
- Similarly, a sequence (a_1, \cdots) is the same as a map from \mathbb{Z}_+ mapping $i \in \mathbb{Z}_+$ to a_i .
- More generally, a sequence $(x_i)_{i \in I}$ is a map from I mapping $i \in I$ to x_i .
- Conversely, a map from a set I to some target set T is the same as a sequence $(x_i)_{i \in I}$ with each $x_i \in T$.