Let's investigate consistency and convegence. We define the truncation error residual after plugging exact solution into discrete model $T_{n} = L_{N}(y(x_{n})) - f_{n}$ and the global error $e_n = y(x_n) - u_n.$ discrepancy between exact and discrete solutions By the definition of un, we have LN(en) = Tn. So to prove convergence (en $\rightarrow 0$) it's enough to prove consistency $(T_n \rightarrow 0)$ and stability $(T_n \rightarrow 0) = e_n \rightarrow 0$. This is another instance of the Lax-Richtmyer principle

Let's consider consistency first. Theorem: ((ansistency) Suppose that y: [o,x] -> IR is four times differentiable on [o,x] with y" bounded. Then $T(h) := \max_{n=1,\dots,N-1} |T_n| = O(h^2)$ as $h \to 0$. max $|T_{\Lambda}| = \max_{\Lambda=1,\dots,N-1} \left| -D^2(y(x_{\Lambda})) + r_{\Lambda} y(x_{\Lambda}) - f_{\Lambda} \right| \quad \forall_{\Lambda} = y(x_{\Lambda})$ Proof: $= \max_{N=1,...,N-1} |y''(sc_N) - D^2(y(sc_N))|$ (by ODE) = O(h²) as h-s 0. [by theoretical problem sheet]

So LN is a 2nd order approximation of L.

Now for stability, we need the following: Theorem (Discrete Maximum Principle) Let an, b_n , $c_n > 0$ with $b_n > a_n + c_n$ for n = 1, ..., N-1, and let $U_n \in \mathbb{R}$, n = 0, ..., N be such that $-a_{n}U_{n-1}+b_{n}U_{n}-c_{n}U_{n+1}\leq 0$, n=1,...,N-1. Then Un < max { Uo, Un, 0}, n=1, , N-1 Proof: See thearetical problem sheet 3 Theorem: (Stability) E(h):= max len (< X T(h) .

bust: Preliminary calculations: Define the "companion function" $Y(x) = \frac{x(x-x)}{2}$. This satisfies the BVP $\begin{cases} \psi'(x) = -1, x \in [0,x] \\ \psi(0) = \psi(x) = 0. \end{cases}$ Note also that Y(x) > 0 on [0,x], and that P(x) attains its maximum value of x2/8 at x= x/2. The discrete samples $Y_n := Y(x_n)$ satisfy $\begin{cases} D^{2} \Psi_{N} = -1, & N=1, N-1, N-1, \\ \Psi_{0} = \Psi_{N} = 0, \end{cases}$ and 0< en < x/g for n=0,..., N.

The point of introducing e is that it allows us to bound global errors in terms of truncation errors. Specifically, (H) | len (< T(h) en , n=0,..., N, which (since ln < x/8) proves the required stability bound $|E(h)| \leq \frac{x^2}{8} T(h)$ To prove (4), note that $L_N(2n) = 1 + r_n 2n > 1$, N=1, N=1, (linearity of LN) and LN (en = Tn) LN (ten-T(h) (n)= +Tn-T(h) LN (en) $\langle \pm T_n - T(h) \rangle$ (def'n of T(h))

Now, setting an = $c_n = \frac{1}{h^2}$, $b_n = \frac{2}{h^2} + r_n$ and $U_n = te_n - T(h) e_n$, $L_{N}(\pm e_{N}-T(h)\Psi_{N})=-a_{n}U_{N-1}+b_{n}U_{N}-c_{n}U_{N+1}\leq 0$ so that, by the DMP, Since the inequality holds for both + and - signs, we have (*), as claimed. Corollary: The method $E(h) = \max_{n=0, \ N} |e_n| = O(h^2)$ as $h \to O$ is 2nd order convergent Proof: Simply combine consistency with stability!