

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Numéro de publication: **0 095 986**
B1

⑫

FASCICULE DE BREVET EUROPEEN

⑯ Date de publication du fascicule du brevet: **01.06.88**

⑰ Numéro de dépôt: **83401107.4**

⑱ Date de dépôt: **01.06.83**

⑮ Int. Cl.⁴: **C 12 N 15/00, C 12 P 21/00,**
C 12 N 1/16 // C12R1/645

④ Nouveau vecteur de clonage et d'expression, levure transformée par ce vecteur et leur application.

⑩ Priorité: **02.06.82 FR 8209564**
06.09.82 FR 8215114

⑭ Date de publication de la demande:
07.12.83 Bulletin 83/49

⑯ Mention de la délivrance du brevet:
01.06.88 Bulletin 88/22

⑮ Etats contractants désignés:
BE CH DE FR GB IT LI NL SE

⑯ Documents cités:
GB-A-2 094 341

PATENTS ABSTRACTS OF JAPAN, vol. 5, no.
98, 25 juin 1981, page (C-80)770r & JP - A - 56
39099 (**MITSUBISHI KASEI KOGYO K.K.**) 14-04-
1981

JOURNAL OF BACTERIOLOGY, vol. 147, no. 1,
juillet 1981, pages 155-160, Tokyo, JP. N.
GUNGE et al.: "Intergeneric transfer of
deoxyribonucleic acid killer plasmids, pGK11
and pGK12, from **KLUYVEROMYCES LACTIS**
into **SACCHAROMYCES CEREVIAE** by cell
fusion"

⑩ Titulaire: **SOCIETE NATIONALE ELF AQUITAIN**
Société anonyme dite
Tour Elf 2, Place de la Coupole La Défense 8
F-92078 Courbevoie (FR)

⑩ Inventeur: **de Louvenccourt, Laurence**
65 rue E. Vaillant
F-92300 Levallois (FR)
Inventeur: **Fukuhara, Hiroshi**
160 Avenue du Général Leclerc
F-91190 Gif-sur-Yvette (FR)
Inventeur: **Heslot, Henri**
29 rue Rousselot
F-75007 Paris (FR)
Inventeur: **Wasolowski, Micheline**
102 Bd Kellermann
F-75013 Paris (FR)

⑩ Mandataire: **Warcoin, Jacques et al**
Cabinet Régimbeau 26, avenue Kléber
F-75116 Paris (FR)

EP 0 095 986 B1

Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance du brevet européen toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition. (Art. 99(1) Convention sur le brevet européen).

Courier Press, Leamington Spa, England.

B2

0 095 986

(B) References cited:

- JOURNAL OF BACTERIOLOGY, vol. 148, no. 3,
décembre 1981, pages 988-990, Tokyo, J.P. O.**
**NIWA et al.: "Curing of the killer
deoxyribonucleic acid plasmids of
KLUYVEROMYCES LACTIS"**
**CURRENT GENETICS, vol. 5, 1982, pages
199-203, Springer-Verlag M. WESOLOWSKI et
al.: "Killer DNA plasmids of the yeast
KLUYVEROMYCES LACTIS. II. Restriction
Endonuclease maps"**

Description

La présente invention concerne de nouveaux vecteurs de clonage et d'expression dans les levures, ainsi que les levures transformées grâce à ces vecteurs et leur application à la synthèse de protéines.

Certaines souches de levures de l'espèce *Kluyveromyces lactis* contiennent un couple de plasmides linéaires dont la présence confère à la cellule le caractère "killer", cette cellule produit une toxine qui empêche la croissance d'autres cellules dites sensibles.

Parmi les cellules sensibles, il faut citer les cellules de *K. lactis* dépourvues de plasmides, mais également les cellules d'espèces différentes comme *Saccharomyces cerevisiae*.

Ces plasmides ont d'abord été décrits par Gunje et coll. (J. Bacteriol., 145, 382—390 (1981), 147, 155—168 (1981), puis indépendamment par H. Fukuhara et coll. (Current Genetics, sous presse).

Il s'agit de deux plasmides d'ADN double brin linéaires appelés k_1 (8,8 kb) et k_2 (13,4 kb).

Les études génétiques faites au Laboratoire de M. Fukuhara montrent une grande analogie avec le système "killer" de *S. cerevisiae*, excepté le fait que celui-ci contient deux plasmides à ARN.

Le plasmide k_1 est indispensable pour l'expression du caractère "killer" et de l'immunité à la toxine car la perte de ce plasmide entraîne la disparition de ces deux caractères. Il semble que le plasmide k_2 soit nécessaire pour la maintenance de k_1 dans la cellule.

La réplication de ces ADN fait intervenir plusieurs gènes chromosomiques de la levure; l'expression de la toxine dépend également de gènes nucléaires. Il y a donc des interactions entre les deux plasmides et entre plasmides et noyau.

Or, on a découvert qu'il était possible d'utiliser le plasmide k_1 à titre de vecteur de clonage et d'expression.

La présente invention propose donc un vecteur de clonage et d'expression d'un gène hétérologue dans une levure, caractérisé en ce qu'il comporte au moins:

— tout ou partie de l'ADN du plasmide k_1 de *K. lactis*,

— un segment d'ADN incorporant le gène hétérologue ainsi que les séquences assurant l'expression dudit gène dans ladite levure.

L'utilisation d'un tel vecteur de clonage et d'expression est particulièrement intéressante, tout d'abord parce qu'il existe peu de vecteurs utilisables dans les levures. En outre, le plasmide k_1 présente plusieurs sites de restriction uniques, en particulier EcoRI, BamHI et Cial, ce qui est particulièrement intéressant pour la construction d'hybrides recombinés.

Enfin, on sait que les plasmides k_1 sont présents à un nombre élevé de copies par cellule, ce nombre de copies pouvant atteindre 100 à 150. Dans ces conditions, on peut espérer une amplification du gène qui sera inséré dans le vecteur.

Les gènes hétérologues plus particulièrement envisagés dans le cadre de la présente invention sont des gènes codant pour la synthèse de peptides ou de protéines présentant un intérêt industriel.

Bien entendu, dans certains cas, le vecteur pourra comporter différents gènes hétérologues qui pour certains ne seront pas exprimés mais dont certains séquences assureront l'expression d'un autre gène.

De préférence, le gène à cloner et à exprimer est inséré dans l'un des sites de restriction uniques, notamment dans le site Cial.

Il est bien entendu possible d'insérer dans un site approprié du vecteur (c'est-à-dire en général en aval des éléments principaux assurant l'expression), si cela est intéressant, une séquence comportant de multiples sites uniques de restriction comme cela est connu dans ce domaine, afin de pouvoir commodément insérer des gènes hétérologues.

Parmi les vecteurs selon la présente invention, il faut citer ceux incorporant à titre de gène hétérologue le gène URA₃ de levure, en particulier sous forme d'un segment d'ADN d'environ 1,1 kb limité par deux sites HindIII.

Des expériences ont démontré que l'intégralité du plasmide k_1 n'était pas indispensable pour le clonage et l'expression. Ainsi, on a pu utiliser à titre de vecteur le plasmide $k_1\delta$ que provient d'un mutant de *K. lactis* NK2 "non-killer" et qui est résistant à la toxine secrétée. Ce plasmide $k_1\delta$ présente, par rapport au plasmide k_1 , une délétion de 2,9 kb entre les deux sites HindIII.

Les vecteurs selon l'invention peuvent comporter également des fragments d'ADN bactérien, en particulier des fragments d'ADN bactériens comportant une origine de réplication et/ou un gène de résistance à un antibiotique, ceci notamment afin de permettre la sélection des clones dans les souches bactériennes.

Ainsi, on peut insérer un fragment de restriction de pBR322 comportant l'origine de réplication et le gène de résistance à l'ampicilline.

Parmi les vecteurs selon l'invention certains présentent un intérêt particulier, il s'agit des plasmides circulaires tels que pL3 qui comporte à titre d'ADN du plasmide k_1 un fragment de restriction Cial du plasmide $k_1\delta$ et en outre de préférence un fragment de restriction Cial du plasmide clone 6.

Bien entendu, les différents plasmides évoqués précédemment peuvent être préparés par la mise en œuvre de techniques connues.

La présente invention concerne également les levures transformées incorporant un vecteur selon la présente invention et en particulier, bien que non uniquement, les souches du genre *Kluyveromyces* et notamment *K. lactis*.

0 095 986

L'invention concerne également l'application des levures transformées à l'expression de la protéine codée par le gène hétérologue porté par le vecteur.

Enfin l'invention concerne un procédé de préparation d'une protéine ou d'un peptide dans lequel on cultive sur un milieu nutritif une levure transformée par un vecteur selon l'invention comportant comme gène hétérologue le gène codant pour ladite protéine ou ledit peptide.

A titre d'exemple, on décrira ci-après le clonage et l'expression du gène URA₃ de *S. cerevisiae*, en se référant en tant que de besoin aux figures annexées sur lesquelles:

- la figure 1 représente les plasmides k₁ et k₁δ,
- la figure 2 représente le plasmide clone 6,
- la figure 3 représente le plasmide p^U3.

I — Construction des plasmides hybrides k₁-URA₃

Les plasmides k₁ et k₁δ ont déjà été décrits dans les articles mentionnés précédemment.

Sur la figure 1 annexée, on a représenté la carte de restriction des plasmides k₁ et k₁δ.

15 Comme on peut le constater, le plasmide k₁ porte trois sites de restriction uniques EcoRI, BamHI et ClaI alors qu'il porte un site de restriction double HindIII.

Par contre, le plasmide k₁δ, qui porte une délétion de 2,9 kb, ne comporte qu'un seul site de restriction unique ClaI mais a conservé les deux sites de restriction HindIII.

Ceci explique pourquoi, lorsque l'on voudra cloner un gène sur le site ClaI, on pourra effectuer une 20 restriction totale alors que, lorsque l'on voudra effectuer une restriction par HindIII, il conviendra de n'effectuer qu'une restriction partielle.

Afin d'éviter d'inactiver une région nécessaire à la réplication, le marqueur URA₃ a été introduit dans différents sites de k₁ et de k₁δ.

25 Premier mode de clonage: par HindIII

On effectue une restriction partielle des plasmides k₁ et k₁δ par HindIII.

Le gène URA₃ est obtenu par restriction totale par HindIII du plasmide clone 6 (décrit par Bach et coll., 1979, PNAS, 76, 386—390).

30 On obtient ainsi le gène URA₃ entier porté par un fragment d'ADN de 1,1 kb. Ce fragment est traité par la phosphatase alcaline afin d'empêcher la recircularisation de ce dernier plasmide.

Les ligations suivantes sont effectuées:

- 1) k₁ coupé par HindIII + clone 6 coupé par HindIII,
- 2) K₁δ coupé par HindIII + clone 6 coupé par HindIII.

35 Deuxième mode de clonage: par ClaI

Le site ClaI étant unique sur les deux plasmides utilisés, k₁δ et clone 6, on peut effectuer la restriction totale des deux plasmides.

La ligation suivante est effectuée: 1) k₁δ coupé par ClaI + clone 6 coupé par ClaI.

L'ensemble de ces mélanges de ligation contiennent une certain proportion de plasmides hybrides.

40 Afin de pouvoir mettre en évidence le clonage et l'expression du gène URA₃, il convient de disposer d'une souche mutante de *K. lactis* uraA⁻. En outre, afin d'assurer le maintien du vecteur selon l'invention, il est intéressant que cette souche réceptrice possède également le plasmide k₂.

II — Construction d'une souche mutante de *K. lactis* uraA⁻ sans k₁

45 On est parti de la souche de *K. lactis* CBS 2360—6 uraA⁻ dépourvue d'activité OMP décasé et qui a été obtenue par une mutagénèse aux UV à partir de la souche CBS 2360.

Le taux de réversion de la mutation est inférieur à 1.10⁻⁵ cellules.

Cette souche est "killer" et résistante à la toxine. Elle possède les deux plasmides k₁ et k₂, elle est notée (k₁+, k₂+).

50 De cette souche on a éliminé le plasmide k₁ par un croisement avec la souche VM2 "non-killer" qui a été isolée par mutagénèse et qui présente le caractère k₁O, k₂+

Le croisement suivant:

$$2360-6 \text{ a } \text{ura}^- \times \text{VM2 a lys}^- \\ (k_1^+, k_2^+) \quad (k_1^0, k_2^+)$$

55 conduit à environ 1% de cellules diploïdes ayant perdu k₁ par ségrégation mitotique et qui sont devenues "non-killer".

On obtient, après sporulation de ces souches diploïdes, une souche haploïde "non-killer" ura⁻ dont on peut vérifier par extraction de l'ADN qu'elle a perdu k₁ et possède toujours k₂.

On a ainsi obtenu une souche uraA⁻ "non-kill r" (k₁⁰, k₂⁺) qui sera utilisée pour mettre en évidence l'expression du gène cloné sur le vecteur selon la présente invention.

III — Transformation de *K. lactis*

65 La souche réceptrice construite précédemment est cultivée sur un milieu minimum (YNB 0.67%,

0 095 986

glucose 2%) supplémenté en uracile, jusqu'à une concentration de 1 à 2.10^8 cellules/ml.

Après deux lavages, les cellules sont remises en suspension à la concentration de 10^9 cellules/ml dans un tampon de formation des protoplastes (KCl 0,6 M, pH 5).

On ajoute de la zymolyase 5 000 (0,5 mg/ml) et on obtient les protoplastes en 5 à 10 minutes à 34°C.

Après deux lavages, on met en présence 2.10^8 cellules et 1 à 10 µg d'ADN des mélanges de ligation.

On ajoute 2 ml de PEG 40%, CaCl₂ 10 mM et on laisse à la température ambiante pendant 20 minutes.

Après élimination du PEG on met en incubation 1 heure en milieu complet tamponné osmotiquement; les protoplastes sont inclus dans de la gélose en surfusion et étalés sur un milieu minimum KCl.

Les colonies apparaissent après une semaine d'incubation à 30°C, elles sont de petites tailles et beaucoup ne poussent pas après replqueage sur milieu minimum.

L'efficacité de transformation est de 1 transformant par µg d'ADN et le taux de régénération des protoplastes est de 10% environ.

Les résultats observés sont les suivants:

15

20

25

30

35

40

45

50

55

60

65

0 095 986

TABLEAU I

ADN transformant	Nombre de colonies par μ g ADN poussant après repliqueage	$k_1\delta$ et clone 6 par ClaI	$k_1\delta$ et clone 6 par HindIII	Stabilité en milieu sélectif (%)	
				Nom des transformants	"Killer" résistant "non-killer" sensible
L1	3			L2	35 "
L3				L3	28 "
L4	4			L4	35 "
L5				L5	61 "
L6				L6	1,5 "
L7				L7	0,5 "
L8	1			L8	50 "

0 095 986

Tous les transformants figurant au tableau I sont UPA⁺ puisqu'ils poussent sur un milieu u minimum sans uracile. Ceci démontre que le gène URA₃ de *S. cerevisiae* complémente la mutation uraA⁻ déficiente en OMP décarboxylase de *K. lactis*.

- 5 Les transformants ainsi obtenus ont une stabilité variable :
— cultivés en milieu u minimum sans uracile, ils ségrègent entre 40 et 99% d'ura⁻ n 15 générations;
— cultivé pendant le même nombre de générations sur milieu minimum + uracile, ils ségrègent entre
94 et 99% d'ura⁻.

10 Il est toutefois possible de stabiliser le caractère URA⁺ par des repiquages successifs sur milieu minimum.

15 La présence de plasmides portant k₁ et un ADN étranger, soit pBR322, soit URA₃, a été confirmée par des résultats d'hybridation sur gel ou in situ.

20 L'emploi de trois sondes radioactives, k₁, pBR325 et URA₃, a permis de montrer que :
L4 porte un plasmide libre de 4,4 kb visible sur gel contenant une partie de k₁ et le gène URA₃;
L3 porte un plasmide libre de 9 kb contenant une partie de k₁ et une partie de l'ADN de pBR322.

25 On extrait l'ADN total des transformants L₂ et L₃ et on utilise cet ADN pour transformer une souche de *E. coli* pyr F (mutation complémentée par le gène URA3 de *S. cerevisiae*). On sélectionne ensuite les transformants URA⁺ et Amp^r sur les milieux appropriés et on obtient des transformants qui ont incorporé des plasmides selon l'invention.

30 L'extraction des plasmides issus des souches *E. coli* transformées par l'ADN de L₃ montre qu'il s'agit de plasmides conformes à la représentation de la figure annexée, ces plasmides sont dénommés p^{L3}. Il s'agit de plasmides circulaires ayant une taille de l'ordre de 7,3 kb qui possèdent une extrémité de k₁ coupée par Clal.

35 La figure ci-annexée représente la carte de restriction du plasmide p L₃ telle qu'elle a pu être déterminée par analyse.

40 Ce plasmide comprend un fragment bactérien provenant du plasmide pBR 322 et un fragment de restriction HindIII correspondant au gène URA3⁺ de la levure *S. cerevisiae*, (ces deux fragments d'ADN proviennent de la restriction par Clal du plasmide clone 6), et enfin un fragment de restriction Clal du plasmide k₁ de *K. lactis*.

45 Il convient de remarquer que dans p L₃ comme cela a été indiqué sur la figure l'un des sites Clal a disparu au voisinage de l'ADN du gène URA3.

Dans ces conditions, le plasmide p^{L3} comporte un grand nombre de sites de restriction uniques: Clal, EcoRI, BamHI, ce qui le rend particulièrement apte comme vecteur de clonage de gène dans *K. lactis*.

En outre ce plasmide présente l'énorme avantage, de pouvoir être amplifié dans *E. coli* et extrait facilement, ce qui en fait un plasmide particulièrement disponible.

50 Enfin, le plasmide p^{L3} extrait de *E. coli* transforme les levures *K. lactis* ura⁻ pour le caractère ura⁺ avec une efficacité dix fois supérieure à celle obtenue avec les mélanges de ligation tel que cela est décrit dans le brevet principal.

55 Les modes opératoires ci-après sont destinés à illustrer la préparation détaillée de vecteurs selon l'invention sans pour autant la limiter.

40 Les souches

Les souches de levures *K. lactis* utilisées sont :

55 — la souche CBS 2360 a (k₁⁺ k₂⁺) sauvage et le mutant CBS 2360 a uraA⁻ obtenu par induction aux UV, dépourvu d'activité OMP décarboxylase;

60 — la souche VM2 a lys⁻ (k₁⁰, k₂⁺) dérivée de la souche CBS 2359.

La souche de *Escherichia coli* HB 101 Ap^R Tets^R contenant le plasmide clone 6 portant le fragment URA₃ de *S. cerevisiae* de 1,1 kb.

50 Les milieux

Les levures sont cultivées en milieu minimum (glucose 2%, "yeast nitrogen base" Difco dépourvu d'acides aminés 0,67%, Agar Difco 2%). Ce milieu peut être supplémenté en uracile (50 mg/l) ou lysine (40 mg/l). Le milieu YPG contient du glucose 2%, extrait de levure 1%, bacto peptone 1%. Le milieu de croisement et de sporulation est le milieu ME composé d'extrait de malt: 5% et Agar Difco 2%. Le test "killer" se fait sur le milieu GAL: galactose 2%, bacto peptone 1%, extrait de levure 1%, KP₂PO₄ 0,05 M, Agar 2%.

55 Extraction de plasmides

60 L'extraction du plasmide bactérien clone 6 se fait d'après Guerry et coll. 1973 (J. Bact. 116, 1064—1066).

65 L'extraction et la purification des plasmides de *K. lactis* ont été mises au point par M. Wesolowski, P. Dumaz et H. Fukuhara, 1982, Curr. Opin. Genetics (sous presse).

70 Les cellules d'une culture de 200 ml d'YPG en fin de phase exponentielle sont lavées une fois à l'eau, pesées et suspendues dans du sorbitol 1 M (2 ml/g cellules) avec de la zymolyase 60 000 (0,5 mg/g cellules).

75 Après 45 minutes d'incubation à 30°C, les cellules sont centrifugées et suspendues dans une solution de NaCl 0,15 M, EDTA 0,10 M (2 ml/g cellules). On ajoute 0,5 mg/g cellules de pronase et du SDS 1% final.

0 095 986

Après 1 heure d'incubation à 37°C et 1 heure à 50°C, on refroidit le tout et on ajoute de l'acétate de potassium 0,5 M final. On laisse au froid pendant ½ heure au moins.

Après centrifugation, le surnageant est traité à la RNase pendant ½ heure à 37°C. Une extraction au Sevag (chloroforme:isoamyl alcool, 24:1, vol/vol) est suivie d'une précipitation à l'éthanol (1,2 vol).

Les fibres d'ADN collectées à la pipette Pasteur sont dissoutes dans du TE (Tris 10 mM, EDTA 1 mM, pH 8). On reprécipite les fibrés d'ADN avec 0,56 volume d'isopropanol redistillé et on les redissout dans du TE. Cette solution additionnée d'un colorant (bleu de bromophénol) est déposée sur un gel d'agarose à 0,6%.

Après 18 heures de migration à 60 V, on excise les bandes révélées au bromure d'éthidium correspondant à chaque plasmide. On les électro-élue pendant une nuit à 100 mA.

L'ADN est passé ensuite sur colonne DEAE-cellulose, lavé avec NaCl 0,3 M et élué avec NaCl 2 M. L'ADN est ensuite centrifugé en gradient de CsCl, dialysé et précipité à l'éthanol.

Restrictions ligations

Les ADN sont restreints par les enzymes de restriction pendant 1 heure à 37°C dans le tampon correspondant à chaque enzyme. Les restrictions partielles sont réalisées avec une quantité limitante d'enzyme, pendant 5 à 10 minutes à 37°C.

La déphosphorylation est réalisée à 80°C pendant ½ heure avec la phosphatase bactérienne alcaline.

La ligation se fait après purification de l'ADN au phénol et précipitation à l'alcool, en présence de la ligase de T4 pendant une nuit à 10°C.

La transformation de K. lactis

Nous nous sommes inspirés des travaux de Hinnen et coll. (1978) PNAS, 75, 1929—1933 et Gerbaud, Fournier, Blanc, Aigle, Heslot, Guérineau (1979) Gene 5, 233—253. Les cellules cultivées en milieu minimum + uracile jusqu'en phase exponentielle ($1-2 \cdot 10^9/\text{ml}$) sont lavées une fois à l'eau distillée et une fois avec le tampon de protoplastisation (KCl 0,6 M pH 5).

Les cellules sont resuspendues à 10^9 cellules/ml dans ce tampon avec 0,5 mg/ml de zymolyase 5000 et incubées un temps bref (5 à 10 minutes) à 34°C.

On obtient plus de 90% de protoplastes.

On lave deux fois les protoplastes avec un tampon Tris HCl, pH 7,5, KCl 0,6 M, CaCl_2 10 mM en centrifugeant à 1800 g, 5 minutes et en resuspendant les cellules délicatement; elles sont concentrées à 10^9 cellules/ml dans ce dernier tampon. On ajoute 1 à 10 µg de mélange de ligation à 0,2 ml de cellules ($2 \cdot 10^8$ cellules) et on mélange bien.

Après 15 minutes d'incubation à la température ambiante, on ajoute 2 ml de PEG 4000 à 30% (en poids/volume) et on laisse 15 minutes à température ambiante.

Après centrifugation à 1800 g, 6 minutes, on resuspend dans 2 ml de KCl 0,6 M, glucose 6 g/l, Bacto peptone 6 g/l, extrait de levure 4 g/l, et on agite doucement à 30°C pendant 1 heure.

Les cellules sont ensuite centrifugées et resuspendues dans 0,2 ml de tampon de protoplastisation. On ajoute 5 ml de gélose en surfusion à 48°C (KCl, 0,6 M, glucose 2%, YNB "sans aminoacides" Difco 0,87%, Agar Difco qualité "purified" 30 g/l). Le tout est coulé sur une boîte préchauffée à 55°C contenant un milieu de même composition que la gélose ci-dessus mais avec un Agar Difco normal.

L'hybridation

1) Préparation des filtres d'hybridation sur colonie (in situ), (Grünstein M. et Hogness D. S. (1975) PNAS 72, 3961—3965).

Les colonies poussant sur W sont répliquées sur un filtre Schleicher et Schüll BA 85 posé sur une boîte de W et mises à incuber à 30°C pendant 2 jours.

La protoplastisation se fait en ½ heure à 30°C avec de la zymolyase 60 000 (1 mg/ml), en KCl 0,6 M. Après séchage sur papier Whatman, les filtres sont transférés successivement sur papier Whatman imbibé de:

- NaOH 0,5 N (5 minutes)
- Tris HCl pH 7,5 1 M (2 x 2 minutes)
- NaCl 1,5 M, Tris HCl 0,5 M pH 7,5 (2 x 5 minutes).

Les filtres sont séchés sous vide à 80°C pendant 3 heures.

2) L'hybridation sur gel est réalisée suivant Southern E. M. (1975) J. mol. Biol. 98, 503—517.

3) Les filtres sont traités à 65°C dans différents bains:

la préhybridation se fait pendant 30 minutes dans du 3 x SSC (20 x SSC = 3 M NaCl 0,3 M Na citrate) puis pendant 3 heures dans le tampon 3 x SSC, 10 x Denhardt (Denhardt = Ficoll 400 0,2%, serum albumine bovine 0,2%, polyvinylpyrrolidone 0,2%), enfin, pendant 2 heures dans le même tampon additionné de 50 µg/ml d'ADN compétiteur, 0,1% SDS, 0,1 M NaH_2PO_4 , pH 5,6, 10% dextrane sulfate.

Pour l'hybridation des filtres avec la sonde radioactive marquée au ^{32}P par nick-translation, on ajoute la sonde dénaturée au dernier bain de préhybridation et on laisse incuber une nuit à 65°C. La nick-translation est décrite par Cameron et coll. 1979, Cell, 16, 739-751, ainsi que par les données du Centre de Radiochimie d'Amersham.

Les 6 premiers lavages des filtres se font dans du 3 x SSC, 10 x Denhardt, 0,1% SDS (avec 50 µg/ml d'ADN compétiteur lors du premier lavage seulement) puis les deux derniers lavages dans du 1 x SSC. Les

filtres sont séchés et révélés par des films Kodak.

Revendications

- 5 1. Vecteur de clonage et d'expression d'un gène hétérologue dans une levure, caractérisé en ce qu'il s'agit d'un plasmide circulaire qui comporte au moins:
— tout ou partie de l'ADN du plasmide k_1 de *Kluyveromyces lactis*,
--- un segment d'ADN incorporant le gène hétérologue ainsi que les séquences assurant l'expression dudit gène dans ladite levure.
- 10 2. Vecteur selon la revendication 1, caractérisé en ce qu'il comporte également des fragments d'ADN bactérien.
- 15 3. Vecteur selon la revendication 2, caractérisé en ce que les fragments d'ADN bactérien comportent une origine de réPLICATION.
- 20 4. Vecteur selon la revendication 3, caractérisé en ce que l'origine de réPLICATION est l'origine de réPLICATION de pBR322.
- 25 5. Vecteur selon l'une des revendications 1 à 4, caractérisé en ce que le segment d'ADN du gène hétérologue est un segment d'ADN du gène URA₃ de *Saccharomyces cerevisiae*.
- 30 6. Vecteur selon l'une des revendications 1 à 4, caractérisé en ce qu'il ne comporte qu'une partie de l'ADN du plasmide k_1 , correspondant à l'ADN du plasmide $k_1\delta$.
- 35 7. Vecteur selon l'une des revendications 1 à 3, caractérisé en ce qu'il s'agit d'un plasmide circulaire comportant à titre d'ADN du plasmide k_1 de *K. lactis* un fragment de restriction Clal du plasmide $k_1\delta$.
- 40 8. Vecteur selon la revendication 7, caractérisé en ce qu'il comporte un fragment de restriction Clal du plasmide clone 6 comportant un fragment de pBR322 et le gène URA₃.
- 45 9. Vecteur selon l'une des revendications 7 et 8, caractérisé en ce qu'il s'agit du plasmide p^{L3} comportant un fragment de pBR322, le gène URA₃⁺ et un fragment Clal du plasmide $k_1\delta$.
- 50 10. Levure transformée incorporant un vecteur selon l'une des revendications 1 à 9.
- 55 11. Levure selon la revendication 10, caractérisée en ce qu'il s'agit d'une souche de *Kluyveromyces*.
- 60 12. Levure selon la revendication 11, caractérisée en ce qu'il s'agit d'une souche de *Kluyveromyces lactis*.
- 65 13. Souche de *Kluyveromyces lactis* selon l'une des revendications 10 à 12, caractérisé en ce qu'il s'agit d'une souche de *K. lactis* (k_1^0 , k_2^+).
- 70 14. Souche de *Kluyveromyces lactis* transformée par un plasmide selon la revendication 1, caractérisée en ce que ledit plasmide vecteur comporte:
— un fragment de restriction Clal du plasmide $k_1\delta$,
— un fragment de restriction Clal du plasmide clone 6 portant le gène URA₃ et un fragment de pBR322, ladite souche de *K. lactis* étant uraA⁻, k_1^0 , k_2^+ .
- 75 15. Application d'une levure selon l'une des revendications 10 à 14 à la préparation d'une protéine codée par le gène hétérologue porté par le vecteur.

40 Patentansprüche

1. Klonierungs- und Expressionsvektor eines heterologen Gens in einer Hefe, dadurch gekennzeichnet, daß es sich um ein Ringplasmid handelt, das wenigstens:
— ganz oder teilweise die DNA des Plasmids k_1 von *Kluyveromyces lactis*,
— ein DNA-Segment, in welches das heterologe Gen sowie ein Sequenzen eingebaut sind, die die Expression besagten Gens in besagter Hefe sicherstellen, aufweist.
- 45 2. Vektor nach Anspruch 1, dadurch gekennzeichnet, daß er ebenfalls bakterielle DNA-Fragmente aufweist.
- 50 3. Vektor nach Anspruch 2, dadurch gekennzeichnet, daß die baktierischen DNA-Fragmente eine Replikationsquelle aufweisen.
- 55 4. Vektor nach Anspruch 3, dadurch gekennzeichnet, daß die Replikationsquelle die Replikationsquelle von pBR322 ist.
- 60 5. Vektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das DNA-Segment des heterologen Gens ein Segment der DNA des Gens URA₃ von *Saccharomyces cerevisiae* ist.
- 65 6. Vektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er nur einen Teil der DNA des Plasmids k_1 aufweist, der der DNA des Plasmids $k_1\delta$ entspricht.
- 70 7. Vektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es sich um ein Ringplasmid handelt, das als DNA des Plasmids k_1 von *K. lactis* ein Restriktionsfragment Clal des Plasmids $k_1\delta$ aufweist.
- 75 8. Vektor nach Anspruch 7, dadurch gekennzeichnet, daß er ein Restriktionsfragment Clal des Plasmids Klon 6 aufweist, das ein Fragment von pBR322 und das Gen URA₃ aufweist.
- 80 9. Vektortyp nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, daß es sich um das Plasmid p^{L3} handelt, das ein Fragment von pBR322, das Gen URA₃⁺ und ein Fragment Clal des Plasmids $k_1\delta$ aufweist.
- 85 10. Transformierte Hefe, in die ein Vektor nach einem der Ansprüche 1 bis 9 eingebaut ist.
- 90 11. Hefe nach Anspruch 10, dadurch gekennzeichnet, daß es sich um einen Stamm von *Kluyveromyces* handelt.

0 095 986

12. Hefe nach Anspruch 11, dadurch gekennzeichnet, daß es sich um einen Stamm von *Kluyveromyces lactis* handelt.
13. Stamm von *Kluyveromyces lactis* nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß es sich um einen Stamm von *K. lactis* (k_1^o , k_2^+) handelt.
- 5 14. Stamm von *Kluyveromyces lactis*, transformiert von einem Plasmid nach Anspruch 1, dadurch gekennzeichnet, daß besagter Plasmidvektor.
- ein Restriktionsfragment Clal des Plasmids $k_1\delta$,
- ein Restriktionsfragment Clal des Plasmids Klon 6 mit dem Gen URA₃ und einem Fragment von pBR322, aufweist, wobei besagter Stamm von *K. lactis* uraA⁻, k_1^o , k_2^+ ist.
- 10 15. Verwendung einer Hefe nach einem der Ansprüche 10 bis 14 bei der Herstellung eines von dem auf dem Vektor befindlichen heterologen Gen kodierten Proteins.

Claims

- 15 1. A cloning and expression vector of a heterologous gene in a yeast, which is a circular plasmid containing at least:
- all or part of the DNA of plasmid k_1 of *Kluyveromyces lactis*,
- a DNA segment incorporating the heterologous gene and sequences which ensure expression of the said gene in the said yeast.
- 20 2. Vector according to claim 1 which contains also fragments of bacterial DNA.
3. Vector according to claim 2, in which the fragments of bacterial DNA contain an origin of replication.
4. Vector according to claim 3, in which the origin of replication is the origin of replication of pBR322.
5. Vector according to one of claims 1 to 4, in which the DNA segment of the heterologous gene is a DNA segment of the URA₃ gene of *Saccharomyces cerevisiae*.
- 25 6. Vector according to one of claims 1 to 4, which contains only one part of the DNA of plasmid k_1 corresponding to the DNA of plasmid $k_1\delta$.
7. Vector according to one of claims 1 to 3, which is a circular plasmid containing as the DNA of plasmid k_1 of *K. lactis* of Clal restriction fragment of plasmid $k_1\delta$.
- 30 8. Vector according to claim 7, which contains a Clal restriction fragment of the clone 6 plasmid containing a fragment of pBR322 and the URA₃ gene.
9. Vector according to one of claims 7 and 8, which is the plasmid p^{L3} containing a fragment of pBR322, the URA₃⁺ gene and a Clal fragment of the plasmid $k_1\delta$.
10. Transformed yeast incorporating a vector according to one of claims 1 to 9.
11. Yeast according to claim 10, which is a strain of *Kluyveromyces*.
- 35 12. Yeast according to claim 11, which is a strain of *Kluyveromyces lactis*.
13. Strain of *Kluyveromyces lactis* according to one of claims 10 to 12, which is a strain of *K. lactis* (k_1^o , k_2^+).
14. Strain of *Kluyveromyces lactis* transformed by a plasmid according to claim 1, in which said plasmid vector contains,
- 40 — a Clal restriction fragment of the plasmid $k_1\delta$,
- a Clal restriction fragment of the clone 6 plasmid carrying the URA₃ gene and a fragment of pBR322, said strain of *K. lactis* being uraA⁻, k_1^o , k_2^+ .
15. Use of a yeast according to one of claims 10 to 14 in the preparation of a protein encoded by the heterologous gene carried by the vector.

45

50

55

60

65

0 095 986

FIG.1

FIG.2

0 095 986

FIG. 3