Assignment 6 Avinash Iyer

Solution (29.5):

(a) We have

which is a first-rank tensor.

- (b) Since $\vec{w} \cdot \vec{T}$ is a first-rank tensor, and we are taking the dot product of two first rank tensors the expression $\vec{w} \cdot \vec{T} \cdot \vec{v}$ is a scalar (or rank zero tensor).
- (c) We have

$$\begin{split} \stackrel{\leftrightarrow}{T} \stackrel{\leftrightarrow}{\cdot} \stackrel{\longleftrightarrow}{U} &= \left(\sum_{i,j} T_{ij} e_i \otimes e_j \right) \cdot \left(\sum_{k,\ell} U_{k\ell} e_k \otimes e_\ell \right) \\ &= \sum_{i,j,k,\ell} T_{ij} U_{k\ell} (e_k \cdot e_i) (e_j \cdot e_\ell), \end{split}$$

which is a scalar.

(d) The expression $\overrightarrow{T} \vec{v}$ expresses the operation of

$$\stackrel{\leftrightarrow}{\mathsf{T}} = \sum_{i,j} \mathsf{T}_{ij} e_i \otimes e_j$$

on

$$\vec{v} = \sum_{i} v_{i} e_{i},$$

meaning that $\overrightarrow{T}\overrightarrow{v}$ is a vector.

(e) The expression $\overset{\leftrightarrow}{T}\overset{\leftrightarrow}{U}$ is a composition of two linear maps on $V\otimes V$, so it is a rank 2 tensor (or another linear map on $V\otimes V$).

Solution (29.7): We have 2^4 or 16 components in A_{ijkl} .

Solution (29.10):

Solution (29.11):

(a)

Solution (29.12):

Solution (29.14):

Solution (29.23):

Solution (29.24):

Solution (29.25):