Problem Statement 1

BRAZIL HOUSE RENT PREDICTION

PROBLEM STATEMENT:

Explore the given Brazil house rent data set using EDA techniques visualize the results and build a suitable model to predict the house rent.

OBJECTIVE:

- Exploratory Data Analysis
- Data Pre-processing
- Feature Selection
- Model Building
- Validation

BACKGROUND:

The given dataset is based on classification where to predict the Brazil House Rent for new data. The dataset consists of 10692 rows and 13 columns.

EXPLORATORY DATA ANALYSIS:

1. How is the distribution of each city?

From the chart, São Paulo is the city with more houses

2. How many house owners accept animals in the home?

From the chart, most houses accept pet animals.

3. How many houses are furnished?

From the chart, most houses are not furnished.

4. Where is the accumulation point of total price?

The accumulation point is between 2000 and 3000.

5. How is the distribution of floors?

6. Which city has the most expensive rent prices?

It seems like Sao Paulo has the most expensive rent prices.

7. Which floor is the most expensive?

From the graph, the floors 5-8 are almost expensive. The answer could be either 5th or 7th floor.

8. Does the number of bathrooms affect the rent amount?

Yes, as the number of bathrooms in a house increases, the rent also increases.

9. How strong is the correlation between area, number of bathroom and rent amount?

All have positive correlation with the rent.

10. Which feature is correlated the most with rent amount: Area? Number of rooms? Parking Spaces?

Area is correlated the most with rent.

PREDICTIVE ANALYSIS:

• DATA PRE-PROCESSING

1. Cleansing the Data

The floor variable has an unwanted symbol '-' and it is removed.

2. Dealing with outliers

To treat the outliers, the interquartile range is used and performed this analysis in every city.

3. Data Wrangling

We used a labelencoder for furniture because it only has two values. For the cities we have used OneHotEncoder and dropped the first column to avoid the dummy variable trap.

• FEATURE SELECTION

We have used the columns that have more correlation with the variable that we want to predict.

MODEL BUILDING

I have used several models and analyzed the best among them. These are the models:

- Linear Regression
- Ridge Regression
- Decision Tree
- Random Forest
- Support Vector Regression (SVR)
- KNearestNeighbours (KNN)
- Lasso Regression
- GridSearch to find the best parameters on Lasso and Ridge

• VALIDATION:

For validation MAE, RMSE and R2 score is used.

Linear Regression MAE: 248.99289449586416 RMSE: 372.6152499362306 R2: 0.978435563565699 ************* Ridge Model MAE: 248.98912238422588 RMSE: 372.61549419180517 R2: 0.9784355352939869 ************ Decision Tree MAE: 141.2116552152166 RMSE: 346.8138229906298 R2: 0.9813185896505354 ********** Random Forest MAE: 141.08075583369595 RMSE: 295.98079124251603 R2: 0.9863935786362991 ************* SVR MAE: 1551.9569900522486 RMSE: 2569.299940825056 R2: -0.025289420627535364 ************ KNN MAE: 160.46795856999665 RMSE: 315.0206757145174 R2: 0.9845867231272063 ************** Lasso MAE: 247.54779770272793 RMSE: 372.82011833939237 R2: 0.9784118442672647 ************* GridSearchRidge MAE: 248.95527069031468 RMSE: 372.6177481766283 R2: 0.9784352744024033 *********** GridSearchLasso MAE: 248.99274499244535

ANALYSIS OF THE RESULTS:

RMSE: 372.6152612820053 R2: 0.9784355622524664

Visualization of the plot's for each regressor

	model	MAE	RMSE	R2
0	Random Forest	141.080756	295.980791	0.986394
1	Random Forest	141.080756	295.980791	0.986394
2	Random Forest	141.080756	295.980791	0.986394
3	Random Forest	141.080756	295.980791	0.986394
4	KNN	160.467959	315.020676	0.984587
5	KNN	160.467959	315.020676	0.984587
6	KNN	160.467959	315.020676	0.984587
7	KNN	160.467959	315.020676	0.984587
8	Decision Tree	140.383545	344.691739	0.981547

RandomForest it's our best performer in all three metrics