

Programme: DT008 / 2 ELEK2108 Electronics 1 Laboratory Technical Report

	Name	Student Number
Author:	Talha Tallat	D18124645
Collaborator 1:	-	-
Collaborator 2:	-	-
Collaborator 3:	-	-

Laboratory Number:	E
Semester Week Number:	10
Date:	25/03/2019

Submission Checklist and Declaration

To ensure that the focus of the assessment of your laboratory report can include the development of higher order skills and competences associated with a Level 7 qualification, please complete the checklist and declaration below.

I declare that the report that I am submitting: • is my original work, with secondary sources acknowledged; • was proofread thoroughly for typographical errors; • contains citations with references formatted in the IEEE citation style. I understand that my work can be returned uncorrected if the criteria are unfulfilled.

Signature:

1.0 Laboratory Aim

• Describe the purpose of the laboratory or the research.

The Purpose of this lab was to create a memory NAND cell. This diagram that is shown below shows the states of the NAND cells and how they operate.

2.0 Laboratory Procedure

Describe the actions taken during the work.

The NAND cell circuit contains 2 NAND gates connected together a pair of cross-coupled 2-inputs to simply make basic single bit set-rest SR flip-flop.

The Memory circuit functions by storing the voltage present on an input signal whenever they are triggered by a control signal and they keep store voltage until the next true state of the control (or trigger) signal.

Time		Time + 1
$\bar{\mathcal{S}}$	$ar{R}$	Q
0	0	1
0	1	1
1	0	0
1	1	NO CHANGE

If two inputs S and R of the NAND cell are active low (0) at the same time output Q goes high (1). If both inputs S and R of the NAND cell are high same time then the feedback loop can become unstable and the memory device can get temporary stuck in a stable region.

3.0 Results

• Present the results recorded from the investigation.

Figure 1 - Test simulator

NAND			
S	R	Q	QN
0	0	1	1
0	1	1	0
1	1	1	0
1	0	0	1

Operation	Waveform Timing (ns)
A set operation	200 ns
A reset operation	100 ns
A '0' being stored in memory	
A state where the Q and QN outputs are both	300 ns
driven to the same value	
A metastable state	700ns

Operation	Waveform Timing (ns)
A set operation	300 ns
A reset operation	500 ns
A '0' being stored in memory	300 ns
A state where the Q and QN outputs are both driven to the same value	500 ns
A metastable state	700 ns

4.0 Analysis

• Provide some comments that interpret what the results indicate or prove.

When S and R change their state, it changes the state of Q.

5.0 Conclusions

The result met the conditions, and the simulation reflected the design.

6.0 References

NAND cell diagram:

http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/ietron/nandlatch.png

NAND cells Research:

https://www.electronics-tutorials.ws/sequential/seq_1.html

Submission Checklist

1.	The cover page is appropriately complete.	\boxtimes
2.	The six sections in the body of the report are complete.	\boxtimes
3.	The constructive feedback from a collaborator is addressed.	\boxtimes
4.	A final spell-check is completed.	\boxtimes
5.	A backup copy of the report is online.	\boxtimes