

-	NOW,	Grow -	the	matlat) æ	t. we	CCO
	deduce	the	value		point	t, we	

$$A \Rightarrow (-4.31 \times 10^{-6}, 0)$$

$$|A| = a (K)(4.31 \times 10^{6})$$

So, gain margin =
$$1 = 10^6$$

[A) $K(4-31)$

≈ © (For small disturbance)

Jush	2018 ABPSO 507P
	Care J

Here the Final T.F. we get is :-

Also, we will take sel => [u(t) or 1/5]

- Comparing the egno with std egn,

$$w_n = \sqrt{50 \text{ kp} - 20}$$
 $A = \sqrt{50 \text{ kp} - 20}$

$$\frac{3}{2} = \frac{25 \,\mathrm{Kp}}{\sqrt{50 \,\mathrm{Kp} - 20}} \quad \omega_{\mathrm{d}} = \sqrt{50 \,\mathrm{Kp} - 20 - 625 \,\mathrm{K}_{\mathrm{O}}^{2}}$$

Now, the secondades asponse is:

$$out(t) = A \int_{1-\frac{2}{3}}^{1-\frac{3}{4}} sin(\omega_{dt} + 0) \cdot inp(t)$$

Here, $Q = \tan^{-1} \left[\sqrt{1-3^2} \right]$

$$\delta$$
 int(t) = $\upsilon(t)$

Toledance band = 5:1 | Peak overshoot = 6%.

$$\Rightarrow$$
 1.05 to 0.95 \Rightarrow \leq 0.06

"Neem has anti-bactural properties which remove pimple-causing bacturia"

Scanned with CamScanne

Given
$$7.F = \frac{K}{5(5^2+25+9)}$$
 This is for open 1009.

To
$$F = \frac{G(S)}{1 + G(S)}$$
 $\int_{-\infty}^{\infty} (G(S)) = \frac{1}{(S^2 + 2S + 9)} \frac{1}{3}$

For root locus, we need to fixus on the poles of closed loop T.F.

1.e.
$$1 + K = 0$$
 $\frac{3(s^2 + 2s + 9)}{s(s^2 + 2s + 9)}$

So, the ehonacteristic equation is
$$3^{3} + 25^{2} + 95 + K = 0$$

Now, poles of
$$G_1(S) \Rightarrow -1 \pm (2\sqrt{2})^2$$
, O zeroes of $G_1(S) \Rightarrow None$.

2) Angle of deposituse,
For
$$P(0) = 180^{\circ}$$

For $P(-1 \pm 25i) = \pm (-90 + 150^{\circ})$

Centroid asymptote =
$$-\frac{2}{3}$$

Angle at asymptote \Rightarrow $(29+1)$ 180°
$$= 60^{\circ}, 180^{\circ}, 300^{\circ}$$

JASH	2018 ABPS 0507
/ Pagetta	

1	
6>	Stability
0/	JUDITIO
<i>•</i>	- ()

R-H way?: - 3+252+ 99+K=0.

5³ 1 9 5² 2 K 5¹ K-18 0 5° K 0

we have K = [0,18]But marginal stability => K=18

Using auxillary eqn.

 $25^{2} + K = 0$ $\Rightarrow 9^{2} = -9$ $\Rightarrow 3 = t3j \quad \text{Antercepts}$

So, For Stability, OCK < 18 [Ans].

(closed loop) marginally stable at K=18.

7) Plotting the soot locus,

would be symmetric.

Also, using tell the previous that we found we develop a locus.

$$\frac{g_4}{(5s+1)} = \frac{K(s+1)}{(5s+1)(s^2+2s+4)}$$
 {open loop?

$$E = R(S) - C(S) = \begin{bmatrix} R(S) \\ 1 + G \end{bmatrix}$$

So,
$$\lim_{S \to 0} \frac{(S)(V_S)}{1 + k(S+1)} = 0.2$$

 $\frac{(5S+1)(5^2+2S+4)}{(5S+1)(5^2+2S+4)}$

Now, we know that

$$TF = \frac{16(S+1)}{5(S+1+i\sqrt{3})(S+1-i\sqrt{3})} | Poles \Rightarrow -1/5, -1 \pm i\sqrt{3}$$

Joh (2018/18/202020

Cross to

15

```
> Black diagram

(5) - (6) - (6) - (7) - (7) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (8) - (
```


[A, B, C, D] = connect[0, b, c, d, q, input, cutput); [num, den] = SS2tF(A, B, e, D); Paintsys (num, den, 's');

Dutput displayed :-

State model [a, b, c, d] of the block diagram has 6 inputs and 6 outputs.

num $dem = \frac{6+3}{5^5+95^4+1315^3+8505^2+121425+1820}$

> Result :-

 $\frac{C(5)}{R(5)} = \frac{5+3}{5^5+95^4+1315^3+8505^2+21425+820}$