T2TRG: Thing-to-Thing Research Group

Joint Meeting with ICNRG November 13, 2016, Seoul, KR

Chairs: Carsten Bormann & Ari Keränen

WiFi

SSID: 63_banquet-CYPRESS

• Pass: a123456789

Note Well

- You may be recorded
- The IPR guidelines of the IETF apply: see http://irtf.org/ipr for details.

Administrivia (I)

- Pink Sheet
- Note-Takers
- Off-site (Jabber, Hangout?)
 - · xmpp:t2trg@jabber.ietf.org?join
- Mailing List: <u>t2trg@irtf.org</u> subscribe at: <u>https://www.ietf.org/mailman/listinfo/t2trg</u>
- Repo: https://github.com/t2trg/2016-11-icnrg

Agenda

Morning

Presentations 9:00-10:15

- Research and Development of the Hyper-connected IoE Network Technology Taewan You
- Device and Network naming structures and ICN for IoT applications Lopez Jairo
- A RESTful, Distributed and Enhanced ICN System for IoT GQ Wang
- I3: some thoughts towards an Industrial Information-Centric Internet of Things Thomas Schmidt

Break 10:15-10:40 [coffee, cookies -- thanks, ETRI]

- Discussion 10:40-12:00
- Introduction to discussion Chairs
- Discussion

Next steps, Next meeting?, etc

12:00 Lunch

Move to NMRG Workshop for the afternoon (Kensington Yoido)

T2TRG scope & goals

- Open research issues in turning a true "Internet of Things" into reality
 - Internet where low-resource nodes ("things", "constrained nodes") can communicate among themselves and with the wider Internet
- Focus on issues with opportunities for IETF standardization
 - Start at the IP adaptation layer
 - End at the application layer with architectures and APIs for communicating and making data and management functions, including security

Done so far

- Chartered in December 2015. Multiple meetings before official chartering co-located with IETF meetings and with W3C Web of Things (WoT) group
- 2016: RG meetings at Nice and Lisbon co-located with W3C WoT, at San Jose co-located with IAB IoTSI WS, at Buenos Aires and Berlin with the IETF meetings; participated in Dublin IAB IoTSU WS; RIOT summit in Berlin; Implementers' meeting in Ludwigsburg (Stuttgart)
- Three RG deliverable documents in progress on REST and security; multiple new documents on REST interaction
- Outreach (e.g., organizations like OCF and Bluetooth SIG)

Where are we going

- Work on RG deliverables and outreach continues
- Future meetings co-located with good research venues (2017)
- Meetings co-located with open source activity
 - RIOT summit in Berlin (July)
 - Eclipse IoT meeting (October)
- Benchmark/reference scenarios
 - Initial discussion in various drafts and slides
 - More elaborate documentation by end of 2016

Next meetings

• 2017 planning TBD

Thank you, ETRI!

Agenda

Morning

Presentations 9:00-10:15

- Research and Development of the Hyper-connected IoE Network Technology Taewan You
- Device and Network naming structures and ICN for IoT applications Lopez Jairo
- A RESTful, Distributed and Enhanced ICN System for IoT GQ Wang
- 13: some thoughts towards an Industrial Information-Centric Internet of Things Thomas Schmidt

Break 10:15-10:40 [coffee, cookies -- thanks, ETRI]

- Discussion 10:40-12:00
- Introduction to discussion Chairs
- Discussion

Next steps, Next meeting?, etc

12:00 Lunch

Move to NMRG Workshop for the afternoon (Kensington Yoido)

Research and Development of the Hyper-connected IoE Network Technology Taewan You

Device and Network naming structures and ICN for IoT applications Lopez Jairo

A RESTful, Distributed and Enhanced ICN System for IoT *GQ Wang*

I3: some thoughts towards an Industrial Information-Centric Internet of Things
Thomas Schmidt

Discussion

ICN & IoT

Dirk Kutscher

ICN & IoT

IoT one of the use cases for ICN Several claimed benefits

Location-independent access to named data/actuators

Data-oriented security model

Data availability due to caching, in-network forward strategies

Ad-Hoc communication features

Stack implementation simplification

Implementations

RIOT (CCNLite)

NDN-IoT

Cisco

Others?

Research Questions

Naming in uncoordinated IoT networks

IoT interaction semantics in ICN (push, updates)

Security

Security bootstrapping (onboarding, key distribution)

Feasibility of ICN PK crypto

Other security approaches: ABE

Semantic interoperability

Discovery: how to know what to ask for etc.

Semantics and properties of named data and dynamic computation results

Internet picture

Connecting ICN IoT networks to the Internet

Role of gateways, translators etc.

Possibility of avoiding silo networks

Meeting Today

Leverage background and new ideas in T2T and ICN communities

Learn from current work in both groups

Chairs' suggestion: device/data naming & semantic interoperability

See mailing list discussion

Understand real-world problems and possible approaches

Identify relevant topics for follow-up work

Endpoints

- Endpoint: you | the other party that you are talking to
- Initiator (Client):
 Server learns about it when the request hits
- Responder (Server):
 Client needs to "find" it (from URI data)

Endpoints in HTTP

- Server endpoint: Scheme/Host/Port (Origin)
 - Translated to Address/Port by client (DNS)
 - HTTPS: Client verifies DNS name of Host (PKI)
- Client endpoint: anonymous
 - Can use Client Address/Port (usually considered ephemeral)
 - Client certs: rare
 - Put Client identity into Cookie (muddled up with application state)

What's different in CoAP

- DNS deemphasized
- Certs (and thus PKI) deemphasized
 - PKI Certs need CRLs/OCSP, secure absolute time, ...
- We don't have cookies
- Servients: Servers often have client component
 - how to link server and client identities?

Endpoints in CoAP/UDP

- Client uses **URI data** to look up server transport address
 - lookup mechanism intentionally not defined in RFC 7252
- Server uses request transport address to reply and send notifications

CoAP/UDP: Issues

- Endpoint transport addresses might not be stable
 - IP addresses change due to renumbering
 - Transport addresses change due to NAT timeouts
- Transport address change loses endpoint identity

CoAP/UDP: Issues

- Server address change:
 - New requests:
 Lookup mechanism likely to use cache → stale info
 - Observe, other long-running requests:
 Client cannot relate Notification from new address to the right server
- Client address change:
 - Observe, other long-running requests:
 Server cannot send Notification to the right client

Endpoints in CoAP/DTLS

- Client uses URI data to look up server transport address
- Client states (SNI) and verifies server identity (and server possibly verifies client identity)
- Endpoint is the peer in the resulting connection
 - Ephemeral: endpoint dies with connection
 - (but long-term endpoint "identity" doesn't)

"Identity"

- Most misunderstood word in security
- Identity = set of claims
 - But that's not how we use the term intuitively
- Need another word for the "real-world identity" of a Thing
 - But what is that? Owner change, role change, repairs (replace board/chip)...
- Where authorization is entirely identity-based: need "revocation"

Endpoint claims in HTTPS

- server: DNS name (tied into Authority and thus Origin)
 - Cert can actually have other claims, but those are rarely visible to application
- client: (could have cert, but usually:)
 established in-band, then reified into cookies

Endpoint claims in COAPS

- PSK mode: mutual verification
 - needs out of band channel; cf. DCAF
 - source, scope specified by those OOB mechanisms
- RPK mode: implicit server identity claim
 - OOB channel can be used (e.g., with directed identity)
- Cert mode: less well-defined (could use HTTPS model)

Implicit vs. Explicit Claims

- PSK: Implicit claim of existing security association
- RPK: Implicit claim of server possession of private key
 - Both can be augmented by OOB information
- Cert: Explicit claim of SNI possession (time-bounded)
- With CWT, have more fine-grained, explicit claims:
 - Issuer, Audience, Scope, ...

Identity confusion in APIs

- Very little of this makes it into APIs
- E.g., IoTivity uses the transport address as endpoint identity — even with DTLS
 - Application may send data via new, unrelated DTLS connection that happens to have the same transport address
- Issue: How to represent endpoints in APIs?

CoAP/DTLS: Issues

- DTLS connection tied to transport address pair
 - dies when either pair changes
- Current request/response matching includes "epoch"
 - does not even extend Observe across session resumption

Naming data

- (on an endpoint = server)
- resources, collections
- structured data: reach inside?
 - e.g., YANG data resource identifiers?
 COMI FETCH payloads?
- Names vs. semantics

Schemas

- Describe the possible structures (descriptive)
- Augment structures with semantics (

Securing data

- within a context (communication security)
- as a freestanding object (object security)
- Where are the trust anchors coming from?
- What is the relationship between resource discovery and setting up security associations?

ABE for ICN IoT

Börje Ohlman

Security requirements for IoT in an ICN context

- > An IoT security solution should *not rely on e2e connectivity*, i.e. it should provide secure communication with disconnected or sleeping devices
- After the information object leaves the sensor it should be secured without having to trust any intermediate device which it might be stored on.
- Access control to information object should be done off-sensor to avoid DoS attacks through illegitimate requests that will drain the sensor battery

ATTRIBUTE BASED ENCRYPTION (ABE)

Main benefit: Does not require communication with the key management server. Which would be a benefit for constrained devices (how heavy are the ABE operations?). Can encrypt to several selected recipients.

ABE Key Characteristics

Pros

- Does not require communication with the key management server.
- Very good match between ICN's need for secure objects and ABE's way of securing objects
- Can provide fine grained access control for to objects while the objects still are cacheable (not different encryption for different sets of users)
- Can provide good privacy by use of decentralized attribute authorities
- Attribute authorities can be well integrated with the organizations responsible for related activities, e.g. health care authorities are issuing the health related attributes

Cons

- Computationally heavy, scalability issue
- Expands data when encrypted

ERICSSON

Beyond "data"

- Support for actions (actuators), events (push)
- Actions natural in IETF IoT stack
- But REST has no direct support for the state implied by publish/subscribe → Rucksack design?
 - HTTP world: reverse POSTs
 - CoAP: Observe (closer to REST)