

Conteúdo

Resumos de Matemática	1
12º Ano	1
ANÁLISE COMBINATÓRIA	6
Triângulo de pascal	
Binómio de Newton O termo de ordem p+1	
PROBABILIDADES	8
Operações com Conjuntos	8
Tabela de Propriedades	8
Acontecimentos B ⊂ C	8
Probabilidade de $A \cup B$	9
As três formulas mais usadas	9
Leis de Morgan	9
Acontecimento Certo	10
Acontecimentos contrários	10
Acontecimentos disjuntos	10
Acontecimentos independentes	10
SUCESSÕES	11
Definição do limite finito de uma sucessão	11
Limites aplicáveis	12
Exemplos para aplicar	12
Propriedades da função exponencial (k >1)	
Propriedades da função logarítmica (k >1)	
TEOREMAS IMPORTANTES	15

Teorema de Bolzano-Cauchy15
Teorema de Weiertrass
Teorema de Lagrange
LIMITES E INDETERMINAÇÕES NUMÉRICAS
Tipos de indeterminações
Funções Polinomiais (Regras Práticas)18
Funções Racionais (Regras Práticas)18
Funções irracionais (Regras Práticas)18
Funções trigonométricas19
ASSÍNTOTAS
Assíntotas Verticais
Assíntotas Horizontais20
ASSÍNTOTAS NÃO VERTICAIS21
CONTINUIDADE DE UMA FUNÇÃO
Continuidade de uma função num ponto22
Continuidade lateral22
Nota Importante23
Continuidade de uma função num intervalo24
DERIVADAS
Derivada de uma função num ponto25
Importante25
Regras de derivação
Importante
TRIGONOMETRIA
A paridade da função
Círculos Trigonométricos28

Fórmula Fundamental da Trigonometria
Fórmulas Trigonométricas28
Equações trigonométricas29
Derivadas da funções trigonométricas
Tabela trigonométrica30
Limite Notável30
NÚMEROS COMPLEXOS31
Forma Algébrica31
Forma Trigonométrica
Argumentos de um número complexo
Operações com números complexos na forma trigonométrica
Auxiliar
Raízes de Números Complexos33
GEOMETRIA
Equação reduzida da reta34
Formulas para calcular o declive de uma reta34
Equação vetorial da reta34
Equações paramétricas da reta35
Equação da circunferência35
Inequação do círculo36
Distancia entre dois pontos
Ponto médio
Equação vetorial da reta37
Equações paramétricas da reta
Equação da superfície esférica37
Inequação da esfera
Distancia entre dois pontos
Produte escalar

Como saber o angulo entre dois vetores ?	39
Equação geral do plano	39
Mapa Mental da matéria	40
https://ricardodsr.github.io	40

Análise Combinatória

Triângulo de pascal

Linha 0

 C_0^0

Linha 1

 C_0^1 C_1^1

Linha 1

 C_0^2 C_1^2 C_2^2

Propriedades do triângulo de Pascal

• $C_0^n = C_n^n = 1$ $n \in N_0$

• $C_p^n = C_{n-p}^n$ $n, p \in N_0 e p \le n$

• $C_p^n + C_{p+1}^n = C_{p+1}^{n+1}$ $n, p \in N_0 e p \le n$

• $C_0^n + C_1^n + C_2^n + \dots + C_n^n = 2^n$ $n \in N_0$

Binómio de Newton

$$(x+a)^n = \sum_{k=0}^n C_k^n x^k a^{n-k}$$

 $(a+x)^n = C_0^n a^n + C_1^n a^{n-1}x^2 + \dots + C_{n-1}^n a x^{n-1},$

 $n \in$

 N_0

O termo de ordem p+1

 $T_{p+1} = C_p^n a^{n-p} b^p$, $0 \le p \le n$

Probabilidades

Operações com Conjuntos

Tabela de Propriedades

Propriedade	Intersecção	União	
Elemento Neutro	$A \cap \Omega = A$	$A \cup \bigcirc = A$	
Elemento Absorvente	$A\cap \bigcirc = \bigcirc$	$A \cup \Omega = \Omega$	
Comutativa	$A \cap B = B \cap A$	$A \cup B = B \cup A$	
Associativa	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$	
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		

Acontecimentos B ⊂ C

Os acontecimentos B e C pertencem, estão no mesmo universo.

 \overline{B} e \overline{C} são acontecimentos contrários a B e C respectivamente

$$B \subset C \Rightarrow \begin{cases} \overline{B} \cap \overline{C} = \overline{C} \\ \overline{B} \cup \overline{C} = \overline{B} \\ B \cap C = B \\ B \cup C = C \end{cases}$$

Probabilidade de $A \cup B$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

As três formulas mais usadas

•
$$P(A \setminus B) = P(A) - P(A \cap B)$$

•
$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
, $P(b) \neq 0$

Leis de Morgan

$$\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Resumos de Matemática

Acontecimento Certo

$$P(\Omega) = 1$$

$$P(\bigcirc) = 0$$

Acontecimentos contrários

$$P(A) = 1 - P(\overline{A})$$

Acontecimentos disjuntos

$$P(A \cap B) = 0$$

$$P(A \cup B) = P(A) + P(B)$$

Acontecimentos independentes

$$P(A \cap B) = P(A) \times P(B) \Rightarrow P(A \mid B) = P(A)$$

Sucessões

Uma sucessão u de números reais é uma função real que vai de \mathbb{N} para \mathbb{R} .

Domínio

$$u: \mathbb{N} \to \mathbb{R}$$
 $n \to u(n)$

Contradomínio da sucessão de u_n é o conjunto $\{u_n:n\in\mathbb{N}\}$

Definição do limite finito de uma sucessão

 $\lim u_n = a \in \mathbb{R} \ (u_n \to a)$ se, para todo o número real δ positivo existir uma ordem $p \in \mathbb{N}$ tal que:

$$\forall_n \in \mathbb{N}, n \ge p \implies |u_n - a| < \delta$$

NÚMERO DE NEPER

Neper é um número irracional e é representado por e (\approx 2,7)

Limites aplicáveis

$$Lim\left(1+\frac{1}{n}\right)^n=e$$

$$k \in \mathbb{R} e \ u_n \to \pm \infty$$

$$Lim(1+\frac{k}{u})^u = e^k$$

Exemplos para aplicar

•
$$\lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^{n+2} = \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n x \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^2 = e^3 x 1 = e^3$$

•
$$\lim (1 - \frac{1}{n})^{3n} = \lim \left[\left(\left(1 - \frac{1}{n} \right)^n \right) \right]^3 = (e^{-1})^3 = e^{-3}$$

FUNÇÃO EXPONENCIAL

Propriedades da função exponencial (k >1)

- $k^x > 0$, $\forall x \in \mathbb{R}$
- $k^x < k^y \Leftrightarrow x < y$
- $k^x = k^y \Leftrightarrow x = y$
- $k^x \times k^y \Leftrightarrow k^{x+y}$
- $\bullet \quad \frac{k^x}{k^y} = k^{x-y}$
- $\bullet \quad (k^x)^y = k^{x \times y}$
- $\bullet \quad k^{-x} = \frac{1}{k^x}$

Relação entre Função exponencial e logarítmica

$$k^y = x \iff y = \log_k x$$

FUNÇÃO LOGARÍTMICA

Propriedades da função logarítmica (k >1)

- $\log_k k^x = x$
- $k^{\log_k x} = x$
- $\log_k k = 1$
- $\log_k 1 = 0$
- $\log_k(x \times y) = \log_k x + \log_k y$
- $\log_k(\frac{x}{y}) = \log_k x \log_k y$
- $\log_k x^p = p \log_k x$

Relação entre Função exponencial e logarítmica

$$k^y = x \Leftrightarrow y = \log_k x$$

Teoremas Importantes

Teorema de Bolzano-Cauchy

Seja f uma função real de variável real contínua num intervalo $[a,b] \subset D_f$

Então para qualquer $k \in \mathbb{R}$ do intervalo aberto de extremos f(a) e f(b), existe pelo menos um $c \in [a,b[$, tal que f(c)=k.

Compreensão:

- Se uma função contínua assume dois valores distintos em um intervalo fechado, então ela deve assumir todos os valores entre esses dois valores no mesmo intervalo.
- A função "cruza" o eixo x em algum ponto do intervalo aberto entre os pontos onde ela assume os dois valores distintos.

Corolário do Teorema de Bolzano-Cauchy

Se f é contínua num intervalo $[a,b] \subset D_f$ e se $f(a) \times f(b) < 0$, então existe pelo menos um c \in]a, b[, tal que f(c) = 0.

Teorema de Weiertrass

Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ contínua num intervalo $[a,b] \subset D_f$ admite um máximo e um mínimo absolutos em [a,b].

Compreensão:

- Toda função contínua em um intervalo fechado possui um ponto onde ela atinge seu maior valor (máximo) e outro ponto onde ela atinge seu menor valor (mínimo).
- Esses valores máximo e mínimo não precisam necessariamente ocorrer nas extremidades do intervalo.

Teorema de Lagrange

Dados uma função $f: D_f \subset \mathbb{R} \to \mathbb{R}$ e um intervalo $[a,b] \subset D_f$

(a < b) tais que:

- *f* é contínua em [*a*, *b*];
- f é diferenciável em a, b.

Então existe pelo menos um ponto $c \in]a, b[$ tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Compreensão:

- A taxa média de variação da função f(x) no intervalo fechado [a, b] é igual à derivada da função em um ponto c dentro do intervalo aberto (a, b).
- A derivada da função em um ponto dentro do intervalo nos fornece a inclinação da reta secante que passa pelas extremidades do intervalo, e essa inclinação é igual à taxa média de variação da função no intervalo.

Limites e Indeterminações Numéricas

12º Ano

Tipos de indeterminações

Funções Polinomiais (Regras Práticas)

• ∞ − ∞ -> Utilizar o termo de maior grau

Funções Racionais (Regras Práticas)

- $\frac{0}{0}$ -> Fatorizar o numerador e denominador
- $\frac{\infty}{\infty}$ -> Fazer o limite do termo de maior grau

Funções irracionais (Regras Práticas)

- $\infty \infty$ -> Multiplicar e dividir pelo conjugado e usar o caso notável
- $\frac{\infty}{\infty}$ -> Pôr em evidência x^2 dentro da raiz e usar $\sqrt{x^2} = |x|$

• $\frac{0}{0}$ -> Multiplicar e dividir pelo conjugado e usar o caso notável

Funções exponenciais e logarítmicas (Usar os limites notáveis)

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty$$

$$\bullet \lim_{x \to -\infty} \frac{\ln x}{x} = 0$$

Funções trigonométricas (Usar os limites notáveis)

•
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

Assíntotas

Assíntotas Verticais

A reta da equação x = k é assíntota vertical da função f(x) se e só se:

$$\bullet \lim_{x \to k^{-}} f(x) = \pm \infty$$

$$\bullet \lim_{x \to k^+} f(x) = \pm \infty$$

Assíntotas Horizontais

A reta da equação y = b ($b \in \mathbb{R}$) é assíntota horizontal da função f(x) se e só se:

$$\bullet \lim_{x \to +\infty} f(x) = b$$

$$\bullet \lim_{x \to -\infty} f(x) = b$$

Assíntotas Não Verticais

A reta y = mx + b $(m, b \in \mathbb{R})$ é assíntota oblíqua da função f se e só se $m, b \neq \infty$ e $m \neq 0$ onde:

$$\bullet \begin{cases}
 m = \lim_{x \to -\infty} \frac{f(x)}{x} \\
 b = \lim_{x \to -\infty} f(x) - mx
\end{cases}$$

$$\bullet \begin{cases}
 m = \lim_{x \to +\infty} \frac{f(x)}{x} \\
 b = \lim_{x \to +\infty} f(x) - mx
\end{cases}$$

Se m = 0 então o gráfico da função y = b é assíntota da função f.

Continuidade de uma função

Continuidade de uma função num ponto

Uma função f definida no intervalo]a, b[e seja c ∈]a, b[

Então, f é contínua no ponto c se e só se:

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = f(c)$$

Continuidade lateral

- fé contínua à direita de $c \to \lim_{x \to c^+} f(x) = f(c)$
- fé contínua à esquerda de c $\rightarrow \lim_{x \to c^{-}} f(x) = f(c)$

Nota Importante

O programa mudou!!! Agora usa-se a definição de limite de uma função real de variável real segundo HEINE.

Assim:

$$a \notin D_f \rightarrow \lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

$$a \in D_f \rightarrow \lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

= $f(a)$

Continuidade de uma função num intervalo

Uma função f é contínua num intervalo:

- aberto]a,b[, se é contínua em todos os pontos desse intervalo.
- fechado [a,b], se é contínua em]a,b[e f é contínua à direita em a e contínua à esquerda em b.

Derivadas

Derivada de uma função num ponto

•
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ representa o declive da reta tangente ao gráfico de f(x) no ponto de coordenadas $(x_0, f(x_0))$

Importante

• f é diferenciável no ponto, quando os limites laterais são iguais, ou seja :

$$f'(x_0) = f'(x_{0^-}) = f'(x_{0^+})$$

 Toda a função com derivada finita num ponto é contínua nesse ponto.

Regras de derivação

- $\bullet \ (u \times v)' = u'v + v'u$
- $\bullet \left(\frac{u}{v}\right)' = \frac{u'v v'u}{v^2}$
- $(u^n)' = nu^{n-1}u'$
- $\bullet \ (f \ o \ u)'(x) = \ u'(x) \times f'(u(x))$
- $(e^u)' = u'e^u$
- $(a^u)' = u'^{a^u} \ln a$
- $(\ln u)' = \frac{u'}{u}$
- $(\log_a u) = \frac{u'}{u \ln a}$

Importante

- Com a primeira derivada da função f'(x) = 0, obtemos os Máximos e Mínimos (absolutos e relativos) da função f(x).
- Com a segunda derivada da função f''(x) = 0, obtemos os pontos de inflexão de f(x).
- Com a primeira derivada da função f'(x), obtemos a velocidade.
- Com a segunda derivada da função $f^{\prime\prime}(x)$, obtemos a aceleração.

Trigonometria

A paridade da função

Função par f(x) = f(-x)

Função ímpar f(x) = -f(-x)

Círculos Trigonométricos

- $cos(x) = cos(-x) \rightarrow A$ função cosseno é par
- $-\sin x = \sin (-x) \rightarrow A$ função seno é ímpar
- $-tan x = tan (-x) \rightarrow A$ função tan é ímpar

Fórmula Fundamental da Trigonometria

$$\sin^2 x + \cos^2 x = 1$$

Fórmulas Trigonométricas

$\tan x = \frac{\operatorname{sen} x}{\cos x}$	$\cos(a+b) = \cos a \cos b - \sin a \sin b$
$1 + \frac{1}{tan^2x} = \frac{1}{sen^2x}$	$\cos(a-b) = \cos a \cos b + \sin a \sin b$

$1 + tan^2x = \frac{1}{cos^2x}$	sen(a+b) = sen a cos b + sen b cos a
$\cos(2a) = \cos^2 a - \sin^2 a$	sen(a - b) = sen a cos b - sen b cos a
sen(2a) = 2 sen a cos a	$tan(a + b) = \frac{tan a + tan b}{1 - tan a tan b}$
$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$	$tan(a - b) = \frac{tan a - tan b}{1 + tan a tan b}$

Equações trigonométricas

•
$$\sin x = \sin \alpha <=> x = \alpha + 2k\pi \lor x = \pi - \alpha + 2k\pi, k \in Z$$

•
$$\cos x = \cos \alpha <=> x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi, k \in Z$$

•
$$tan x = tan \alpha <=> x = \alpha + k\pi, k \in Z$$

Derivadas da funções trigonométricas

•
$$(sen u)' = u' \cos u$$

•
$$(\cos u)' = -u' \sin u$$

•
$$(\tan u)' = \frac{u'}{\cos^2 u}$$

Tabela trigonométrica

	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)
Cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$
Seno	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Limite Notável

$$\lim_{x \to 0} \frac{\sin x}{x}$$

Números Complexos

Forma Algébrica

Conjugado

$$o$$
 $z \rightarrow \bar{z} = a - bi$

Simétrico

$$\circ \quad z \to -z = -(a+bi) = -a-bi$$

Número Real $\rightarrow z = a$

Imaginário Puro $\rightarrow z = bi$

Forma Trigonométrica

$$|z| = \sqrt{a^2 + b^2}$$

$$\begin{cases} tg \ \theta = \frac{b}{a} \\ \theta \in Quadrante \end{cases}$$

Transformação de forma trigonométrica para forma algébrica:

$$z = |z| e^{i\theta} = |z| (\cos \theta + i sen \theta)$$

Argumentos de um número complexo

- o Argumento positivo mínimo $\rightarrow [0,2\pi]$
- Argumento principal $\rightarrow]-\pi,\pi]$

Número Complexo	Argumento Principal $]-\pi,0] \cup [0,\pi]$	Argumento positivo $[0,2\pi]$	Quadrante
$z_1 = 3 + \sqrt{3i}$	$\frac{\pi}{6}$	$\frac{\pi}{3}$	1º
$z_2 = 4e^{i\frac{4\pi}{3}}$	$-\frac{2\pi}{3}$	$\frac{4\pi}{3}$	3°
$z_3 = 1 - i$	$-\frac{\pi}{4}$	$\frac{7\pi}{4}$	4°
$z_2 = 2e^{i\frac{5\pi}{6}}$	$\frac{5\pi}{6}$	$\frac{5\pi}{6}$	2°

Operações com números complexos na forma trigonométrica

$$z_1 = |z_1| e^{i\theta_1}$$
 e $z_2 = |z_2| e^{i\theta_2}$

•
$$z_1 \times z_2 = |z_1| . |z_2| e^{i(\theta_1 + \theta_2)}$$

$$\bullet \quad z_1^n = |z_1|^n e^{i(n\theta_1)}$$

•
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}$$

•
$$\sqrt[n]{z_1} = \sqrt[n]{|z_1|} e^{i(\frac{\theta_1+2k\pi}{n})}, K\epsilon \mathbb{Z}$$

• Conjugado de
$$z_1 \to \bar{z_1} = |z_1| \ e^{-i\theta_1}$$

• Simétrico de
$$z_1 \rightarrow -z_1 = |z_1| e^{i(\theta_1 + \pi)}$$

Auxiliar

- $z \times \bar{z} = a^2 + b^2$
- $\sqrt{-a} = i \sqrt{a}$
- $i^n = i^r$, onde r é o resto da divisão inteira de n por 4

Raízes de Números Complexos

As raízes de índice $n \in \ \mathbb{N}$ de um número complexo w são os números complexos z tais que:

$$z^n = w$$
 implica $z = \sqrt[n]{w}$

Geometria

Equação reduzida da reta y = m*x +b

Formulas para calcular o declive de uma reta

$$\bullet m = (y_2 - y_1) / ((x_2 - x_1))$$

•
$$m = tg \alpha$$

• $m_r = -\frac{1}{m_s}$ (No caso de duas retas r e s serem perpendiculares)

Equação vetorial da reta

$$(\mathsf{x},\mathsf{y}) = \mathsf{P}\left(p_1,p_2\right) + \mathsf{k} \ \overrightarrow{V}\left(v_1,v_2\right),\,\mathsf{k} \in \mathbb{R}$$

- P → Ponto da reta
- \overrightarrow{V} \rightarrow Vetor diretor da reta

GEOMETRIA NO PLANO

Equações paramétricas da reta

$$\begin{cases} x = p_1 + k v_1 \\ y = p_2 + k v_2 \end{cases}, k \in \mathbb{R}$$

Equação da circunferência

$$(x - c_1)^2 + (y - c_2)^2 = r^2$$

Inequação do círculo

$$(x - c_1)^2 + (y - c_2)^2 \le r^2$$

Distancia entre dois pontos

- $\bullet \ P_1(x_1,y_1)$
- $\bullet \ P_2(x_2,y_2)$

$$d(P_1 P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Ponto médio

$$M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$$

GEOMETRIA NO ESPAÇO

Equação vetorial da reta

$$(x, y, z) = (p_1, p_2, p_3) + k(v_1, v_2, v_3), k \in \mathbb{R}$$

Equações paramétricas da reta

$$\begin{cases} x = p_1 + k v_1 \\ y = p_2 + k v_2, k \in \mathbb{R} \\ z = p_3 + k v_3 \end{cases}$$

Equação da superfície esférica

$$(x - c_1)^2 + (y - c_2)^2 + (z - c_3)^2 = r^2$$

Inequação da esfera

$$(x - c_1)^2 + (y - c_2)^2 + (z - c_3)^2 \le r^2$$

Distancia entre dois pontos

- $P_1(x_1, y_1, z_1)$
- $P_2(x_2, y_2, z_2)$

$$d(P_1P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)}$$

Ponto médio

$$M(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$$

OUTROS

Produto escalar

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\alpha)$$

O produto escalar de vetores perpendiculares ∟ é igual a 0!

Como saber o angulo entre dois vetores?

$$\cos(\alpha) = \frac{\vec{u}.\vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Se possuirmos as coordenadas, então:

$$(u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Equação geral do plano

Para encontrar o d, basta substituir por um ponto do plano

$$ax + by + cz + d = 0$$

Mapa Mental da matéria

https://ricardodsr.github.io