- 1. a) Hur många booleska funktioner f(x,y,z) med 3 variabler uppfyller att f(0,0,0)=f(1,1,1)=f(0,1,0)
 - b) Hur många booleska funktioner f(x,y,z,w) med 4 variabler uppfyller att f(0,0,0,1)+f(0,0,1,0)=f(0,0,1,1) (boolesk addition)?
 - a) Lösning: Antalet sådana booleska funktioner är 2^6 , ty om vi väljer funktionsvärdet f(0,0,0), så har vi fixerat f(1,1,1) och f(0,1,0) också.
 - b) Lösning: Antalet sådana booleska funktioner är 2^{15} , ty om vi väljer funktionsvärdena f(0,0,0,1) och f(0,0,1,0), så är även f(0,0,1,1) entydigt bestämt.
- 2. Låt $f(x,y,z)=xy+xz+(x+y)\bar x\bar y$ vara en boolesk funktion med tre variabler. Skriv funktionen på fullständig konjunktiv normalform

Lösning: skriv först upp tabellen för f.

Х	y	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f = (x + y + z)(x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})(\bar{x} + y + z)$$

3. Ange värdetabellen för den booleska funktionen $f(x,y,z)=\overline{\bar x+yz}+\overline{y+x\bar z}$ Lösning: $\overline{\bar x+yz}+\overline{y+x\bar z}=\bar y+x\bar z$ ger tabellen

Х	y	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

4. Hur många booleska funktioner f med tre variabler uppfyller villkoren att f(0,0,1)=f(1,1,1)=f(1,0,0)=f(1,0,1)

5. Låt $f(x,y,z)=x\cdot y\cdot z+x\cdot z+y\cdot z$ vara en boolesk funktion av tre variabler. Skriv f på fullständig konjunktiv normalform

Svar: $f(x, y, z) = x \cdot y \cdot z + x \cdot z + y \cdot z$ ger tabellen

X	y	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Detta ger att $f=(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z)(\bar{x}+\bar{y}+z)$

6. Hur många booleska funktioner f(x,y,z) med 3 variabler x,y,z finns det som uppfyller villkoret att $f(0,0,1)+f(0,0,0)+f(1,1,1) \le f(1,0,1)$? (Vi adderar förstås booleskt.)

Lösning: Vi delar upp i två fall. Antag först att f(1,0,1)=0. Då är f(0,0,1)=f(0,0,0)=f(1,1,1)=0, och det finns 2^4 sådana funktioner. Antag nu att f(1,0,1)=1. Då är kravet i olikheten alltid uppfyllt, och det finns 2^7 sådana funktioner. Totalt finns alltså 2^4+2^7 sådana funktioner

7. Låt F_2 vara mängden av alla booleska funktioner med 2 variabler. Definiera en relation R på F_2 genom att sätta f(x,y)Rg(x,y) om $f(x,y) \leq g(x,y)$ gäller för alla olika värden på x och y. Visa att R är en partialordning och rita Hassediagrammet för (F_2,R) .

Lösning: Att relationen R är reflexiv och transitiv är uppenbart. Antisymmetrin kan motiveras på följande sätt: om $f(x,y) \leq g(x,y)$ och $g(x,y) \leq f(x,y)$ för alla $x,y \in \{0,1\}$, så måste f(x,y) = g(x,y) för alla $x,y \in \{0,1\}$. Hassediagrammet:

där t.ex. **1101** är funktionen f där $f(0,0)=\mathbf{1},\ f(0,1)=\mathbf{1},\ f(1,0)=\mathbf{0},\ f(1,1)=\mathbf{1}$ och **0100** är funktionen g där $g(0,0)=\mathbf{0},\ g(0,1)=\mathbf{1},\ g(1,0)=\mathbf{0},\ g(1,1)=\mathbf{0}.$ Generellt representerar en nod "abcd" funktionen h där $h(0,0)=a,\ h(0,1)=b,\ h(1,0)=c,\ h(1,1)=d.$

8. Skriv den booleska funktionen $f(x,y,z)=f(x,y,z)=\overline{x+\bar{yz}}+\overline{\bar{y}+xz}$ på fullständig disjunktiv normalform.

Lösning: $f(x,y,z)=\overline{x+y\overline{z}}+\overline{y}+\overline{x}z=\overline{x}yz+y\overline{x}z$ ger tabellen

X	y	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

och $f=\bar{x}y\bar{z}+\bar{x}yz+xy\bar{z}$ är disjunktiv normalform

- 9. a) Hur många booleska funktioner f(x, y, z) med 3 variabler som uppfyller villkoren f(0, 0, 0) = f(1, 1, 1) och $f(0, 0, 1) \neq f(1, 0, 0)$ finns det?
 - b) Hur många booleska funktioner f(x,y,z) med 3 variabler uppfyller att $f(0,0,0) \leq f(1,1,1)$ och $f(0,0,1) \leq f(1,0,0)$?
 - a) Lösning: Det finns 2 sätt att välja funktionsvärdet f(0,0,0) (och därmed även f(1,1,1)). Där efter finns 2 sätt att välja funktionsvärdet f(0,0,1) (och därmed även f(1,0,0). Övriga funktions-värden kan sedan väljas på 2^4 sätt. Alltså finns 2^6 booleska funktioner som uppfyller villkoren.
 - b) Lösning: Om f(0,0,0)=f(0,0,1)=0, så finns 2^6 sådana funktioner; om $f(0,0,0)\neq f(0,0,1)=0$, så finns 2^5 sådana funktioner; $f(0,0,0)\neq f(0,0,1)=1$ ger också 2^5 booleska funktioner; och f(0,0,0)=f(0,0,1)=1 ger 2^4 funktioner. Totalt finns alltså $2^6+2^5+2^5+2^4=144$ funktioner som uppfyller villkoren