## **Optimal Control Framework**

Matthew M. Peet Illinois Institute of Technology

Lecture 21: Optimal Control

## 2-input 2-output Framework



We introduce the control framework by separating internal signals from external signals.

#### **Output Signals:**

- z: Output to be controlled/minimized
  - Regulated output
- y: Output used by the controller
  - Must be measured in real-time by sensor
  - May replicate signals from regulated output

M. Peet Lecture 21: 2 / 21

## 2-input 2-output Framework



### **Input Signals:**

- w: Disturbance, Tracking Signal, etc.
  - exogenous input
- u: Output from controller
  - Input to actuator
  - Not related to external input

M. Peet Lecture 21: 3 / 21

## The Optimal Control Framework

The controller closes the loop from y to u.



For a linear system P, we have 4 subsystems.

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}$$

All  $G_{ij}$  are MIMO

 $P_{11}: w \mapsto z$   $P_{12}: u \mapsto z$  $P_{21}: w \mapsto y$   $P_{22}: u \mapsto y$ 

M. Peet Lecture 21: 4 / 21

## The Regulator



#### If we define

$$z_2 = u q = w_1 + w_2$$
  

$$z_1 = y_p y = r + w_2$$



# The Regulator



The reconfigured plant P is given by

$$\begin{bmatrix} z_1(t) \\ z_2(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} P_0 & 0 & P_0 \\ 0 & 0 & I \\ P_0 & I & P_0 \end{bmatrix} \begin{bmatrix} w_1(t) \\ w_2(t) \\ u(t) \end{bmatrix}$$

If  $P_0 = (A, B, C, D)$ , then

$$P = \begin{bmatrix} A & B & 0 & B \\ \hline C & D & 0 & D \\ 0 & 0 & 0 & I \\ C & D & I & D \end{bmatrix}$$

M. Peet Lecture 21: 6 / 21

# Diagnostics





M. Peet Lecture 21: 7 / 21

# Tracking Control



| $r={ m \ tracking \ input}$  | $w_2 = n_{proc}$   | $w_1 = r$   |
|------------------------------|--------------------|-------------|
| $e={ m tracking}{ m error}$  | $w_3 = n_{sensor}$ | u = u       |
| $n_{proc} = $ process noise  | $z_1 = e$          | $y_1 = r$   |
| $n_{sensor} = $ sensor noise | $z_2 = u$          | $y_2 = y_p$ |

M. Peet Lecture 21: 8 / 21

# Tracking Control



$$P = \begin{bmatrix} I & -P_0 & 0 & -P_0 \\ 0 & 0 & 0 & I \\ I & 0 & 0 & 0 \\ 0 & P_0 & I & P_0 \end{bmatrix}$$

$$z_1 = r - P_0(n_{proc} + u)$$

$$z_2 = u$$

$$y_1 = r$$

$$y_2 = w_3 + P_0(n_{proc} + u)$$

M. Peet Lecture 21: 9 / 21

### Linear Fractional Transformation

### Close the loop



#### Plant:

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix} \quad \text{where} \quad P = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

### Controller:

$$u = Ky \qquad \text{where} \qquad K = \left[ \begin{array}{c|c} A_K & B_K \\ \hline C_K & D_K \end{array} \right]$$

M. Peet Lecture 21: 10 / 21

### Linear Fractional Transformation

$$z = P_{11}w + P_{12}u$$
$$y = P_{21}w + P_{22}u$$
$$u = Ky$$

Solving for u,

$$u = KP_{21}w + KP_{22}u$$

Thus

$$(I - KP_{22})u = KP_{21}w$$
  
 $u = (I - KP_{22})^{-1}KP_{21}w$ 

Now we solve for z:

$$z = [P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}] w$$

M. Peet 11 / 21 Lecture 21:

### Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P, K), denoted

$$\underline{\mathsf{S}}(P,K) := P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}$$

AKA: Lower Star Product



M. Peet Lecture 21: 12 / 21

## Other Fractional Transformations

#### Lower LFT:



$$\underline{\mathsf{S}}(P,K) := P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}$$

### **Upper LFT:**



$$\bar{S}(P,K) := P_{22} + P_{21}Q(I - P_{11}K)^{-1}P_{12}$$

M. Peet Lecture 21: 13 / 21

### Other Fractional Transformations

#### Star Product:



$$S(P,K) := \begin{bmatrix} \underline{\mathsf{S}}(P,K_{11}) & P_{12}(I-K_{11}P_{22})^{-1}K_{12} \\ K_{21}(I-P_{22}K_{11})^{-1}P_{21} & \bar{S}(K,P_{22}) \end{bmatrix}$$

M. Peet Lecture 21: 14 / 21

### Well-Posedness

The interconnection doesn't always make sense.

### Definition 1.

The interconnection  $\underline{S}(P,K)$  is **well-posed** if for any smooth w and any x(0) and  $x_K(0)$ , there exist functions  $x,x_K,u,y,z$  such that

$$\dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t) 
z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t) 
y(t) = C_2 x(t) + D_{21} w(t) + D_{22} u(t)$$

$$\dot{x}_K(t) = A_K x(t) + B_K y(t) 
u(t) = C_K x(t) + D_K y(t)$$

**Note:** The solution does not need to be in  $L_2$ .

• Says nothing about stability.

M. Peet Lecture 21: 15 / 21

### Well-Posedness

In state-space format:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{x}_K(t) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w(t)$$
$$z(t) = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} + D_{11}w(t)$$

From

$$u(t) = D_K y(t) + C_K x_K(t)$$
  
$$y(t) = D_{22} u(t) + C_2 x(t) + D_{21} w(t)$$

We have

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w(t)$$

Because the rest is state-space, the interconnection is well-posed if and only if the matrix  $\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}$  is invertible.

M. Peet Lecture 21: 16 / 21

### Well-Posedness

Question: When is

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}$$

invertible?

Answer: 2x2 matrices have a closed-form inverse

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} I + D_K Q D_{22} & D_K Q \\ Q D_{22} & Q \end{bmatrix}$$

where  $Q = (I - D_{22}D_K)^{-1}$ .

### Proposition 1.

The interconnection  $\underline{S}(P,K)$  is well-posed if and only if  $(I-D_{22}D_K)$  is invertible.

- Equivalently  $(I D_K D_{22})$  is invertible.
- Sufficient conditions:  $D_K = 0$  or  $D_{22} = 0$ .
- To optimize over K, we will need to enforce this constraint somehow.

M. Peet Lecture 21:

#### Definition 2.

The Optimal  $H_{\infty}$ -Control Problem is

$$\min_{K\in H_\infty} \lVert \underline{\mathsf{S}}(P,K) \rVert_{H_\infty}$$

ullet Also Optimal  $H_{\infty}$  dynamic-output-feedback Control Problem

#### Definition 3.

The **Optimal**  $H_2$ -Control Problem is

$$\min_{K\in H_\infty} \|\underline{\mathbf{S}}(P,K)\|_{H_2} \quad \text{such that}$$
 
$$\underline{\mathbf{S}}(P,K)\in H_\infty.$$

M. Peet Lecture 21: 18 / 21

Choose K to minimize

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||$$

Equivalently choose  $\left[ \begin{array}{c|c} A_K & B_K \\ \hline C_K & D_K \end{array} \right]$  to minimize

$$\left\| \begin{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} & B_1 + B_2 D_K Q D_{21} \\ B_K Q D_{21} \\ \hline \begin{bmatrix} C_1 & 0 \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} & D_{11} + D_{12} D_K Q D_{21} \end{bmatrix} \right\|_{H_{\infty}}$$

where  $Q = (I - D_{22}D_K)^{-1}$ .

In either case, the problem is Nonlinear.

M. Peet Lecture 21: 19 /

There are several ways to address the problem of nonlinearity.

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||$$

Variable Substitution: The easiest way to make the problem linear is by

declaring a new variable  $R := (I - KP_{22})^{-1}K$ 

The optimization problem becomes: Choose  ${\it R}$  to minimize

$$||P_{11} + P_{12}RP_{21}||_{H_{\infty}}$$



M. Peet Lecture 21: 20 / 21

We optimize

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||_{H_{\infty}} = ||P_{11} + P_{12}RP_{21}||_{H_{\infty}}$$

Once, we have the optimal R, we can recover the optimal K as

$$K = R(I + RP_{22})^{-1}$$

#### **Problems:**

- how to optimize  $\|\cdot\|_{H_{\infty}}$ .
- Is the controller stable?
  - ▶ Does the inverse  $(I + RP_{22})^{-1}$  exist? Yes.
  - Is it a bounded linear operator?
  - ▶ In which space?
- An important branch of control.
  - Coprime factorization
  - ▶ Youla parameterization
- We will sidestep this body of work.

M. Peet Lecture 21: 21 / 21