PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Simulacro Examen Final Primer semestre 2024

Indicaciones generales:

- Duración: 180 minutos.
- Materiales o equipos a utilizar: 2 hojas A4 con apuntes de clase (físicos).
- No está permitido el uso de ningún material o equipo electrónico adicional al indicado (no celulares, no tablets, no libros).
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Pregunta 1 (4 puntos)

1.1) En el contexto del modelo de equilibrio parcial, demuestre que Demuestre que

$$v_i(x_i^*(p)) + m^*(p, I) = \int_p^\infty x_i^*(s)ds + I.$$

Puede imponer las condiciones que crea convenientes sobre $v(\cdot)$.

- **1.2)** Sea $u(\cdot)$ una función de utilidad que representa una relación de preferencias \succeq sobre \mathbb{R}^L_+ . Si \succeq es convexa y fuertemente monótona, ¿qué propiedad(es) le impondría a $u(\cdot)$?
- 1.3) Resuelva el problema de minimización del costo para $p_1, p_2 > 0$, $\overline{u} > 0$ y $u(x_1, x_2) = x_1^{1/2} x_2^{1/2}$.

Pregunta 2 (6 puntos)

- **2.1)** Resuelva el problema de minimización del costo para $f(x_1, x_2) = \alpha_1 x_1^{1/2} + \alpha_2 x_2^{1/2}$ con $\alpha_1, \alpha_2 > 0$ y $w_1, w_2 > 0$.
- 2.2) Para el caso de una economía de intercambio puro donde

$$u_1(x_1, x_2) = \min\{x_1, x_2\}, \ \omega_1 = (1, 3)$$

$$u_2(x_1, x_2) = x_1^{3/4} x_2^{1/4}, \ \omega_2 = (2, 4)$$

encuentre:

- 1. Las asignaciones Pareto eficientes.
- 2. Un equilibrio Walrasiano.

Pregunta 3 (4 puntos)

3.1) Considere dos individuos en una economía de puro intercambio cuyas utilidades indirectas son

$$v_1(p_1, p_2, I) = \ln I - a \ln p_1 - (1 - a) \ln p_2$$

$$v_2(p_1, p_2, I) = \ln I - b \ln p_1 - (1 - b) \ln p_2$$

1

Las dotaciones son $\omega_1 = (1,1)$ y $\omega_2 = (1,1)$. Obtenga los precios que «limpian» el mercado.

3.2) Considere una economía con 3 consumidores y 2 bienes. Las utilidades y dotaciones se dan por:

$$\begin{aligned} u_1(x_{11},x_{21}) &= x_{11}^{1/2} + x_{21}^{1/2}, \ (\omega_{11},\omega_{21}) = (1,2) \\ u_2(x_{12},x_{22}) &= \min\{x_{12},x_{22}\}, \ (\omega_{12},\omega_{22}) = (3,4) \\ u_3(x_{13},x_{23}) &= x_{23}e^{x_{13}}, \ (\omega_{13},\omega_{23}) = (1,1). \end{aligned}$$

Demuestre que las demandas óptimas son

$$x_{11} = \frac{p_2 p_1 + 2p_2^2}{p_1^2 + p_2 p_1}, \ x_{21} = \frac{p_1^2 + 2p_2 p_1}{p_2 p_1 + p_2^2}$$
$$x_{12} = x_{22} = \frac{3p_1 + 4p_2}{p_1 + p_2}$$
$$x_{13} = \frac{p_2}{p_1}, \ x_{23} = \frac{p_1}{p_2}.$$

Pregunta 4 (3 puntos)

Considere la siguiente función de utilidad intertemporal

$$u(x) = \sum_{t=1}^{T} \delta^t \sqrt{x_t}.$$

- 1. Para $\delta=1$, obtenga la demanda Walrasiana y la función de utilidad indirecta. Asuma que $p_1=p_2=\cdots=p_T=1$ y I=1.
- 2. Para $\delta \in (0,1)$, demuestre que

$$x_t^* = \frac{\delta^t (1 - \delta^2)}{1 - \delta^{2(T+1)}}.$$

Asuma nuevamente que $p_1 = p_2 = \cdots = p_T = 1$ e I = 1.

Pregunta 5 (3 puntos)

5.1) Considere la siguiente función de costos:

$$c(w,q) = q^{1/2}w_1^{1/4}w_2^{3/4}.$$

Obtenga la función de producción asociada.

5.2) Demuestre la existencia de un equilibrio Walrasiano en una economía de intercambio puro en donde las preferencias de los consumidores son racionales, convexas, continuas y fuertemente monótonas¹. Sugerencia: recuerde el teorema del punto fijo de Brouwer, dado $X \subset \mathbb{R}^n$ convexo y compacto, y $f: X \to \overline{X}$ continua, existe $x^* \in X$ tal que $f(x^*) = x^*$.

 $^{^{1}}$ No son los supuestos más débiles necesariamente