Appendix **G**

Statistical Tables

TABLE G.1

Cumulative Areas Under the Standard Normal Distribution

0 3 5 7 1 $-3.0\ 0.0013\ 0.0013\ 0.0013\ 0.0012\ 0.0012\ 0.0011\ 0.0011\ 0.0011\ 0.0011\ 0.0010$ $-2.9\ 0.0019\ 0.0018\ 0.0018\ 0.0017\ 0.0016\ 0.0016\ 0.0015\ 0.0015\ 0.0014\ 0.0014$ $-2.8 \ 0.0026 \ 0.0025 \ 0.0024 \ 0.0023 \ 0.0023 \ 0.0022 \ 0.0021 \ 0.0021 \ 0.0020 \ 0.0019$ $-2.7\ 0.0035\ 0.0034\ 0.0033\ 0.0032\ 0.0031\ 0.0030\ 0.0029\ 0.0028\ 0.0027\ 0.0026$ $-2.6\ 0.0047\ 0.0045\ 0.0044\ 0.0043\ 0.0041\ 0.0040\ 0.0039\ 0.0038\ 0.0037\ 0.0036$ -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 $-2.4\ 0.0082\ 0.0080\ 0.0078\ 0.0075\ 0.0073\ 0.0071\ 0.0069\ 0.0068\ 0.0066\ 0.0064$ $-2.3 \ 0.0107 \ 0.0104 \ 0.0102 \ 0.0099 \ 0.0096 \ 0.0094 \ 0.0091 \ 0.0089 \ 0.0087 \ 0.0084$ $-2.2 \ 0.0139 \ 0.0136 \ 0.0132 \ 0.0129 \ 0.0125 \ 0.0122 \ 0.0119 \ 0.0116 \ 0.0113 \ 0.0110$ $-2.1 \ 0.0179 \ 0.0174 \ 0.0170 \ 0.0166 \ 0.0162 \ 0.0158 \ 0.0154 \ 0.0150 \ 0.0146 \ 0.0143$ $-2.0\ 0.0228\ 0.0222\ 0.0217\ 0.0212\ 0.0207\ 0.0202\ 0.0197\ 0.0192\ 0.0188\ 0.0183$ $-1.9\ 0.0287\ 0.0281\ 0.0274\ 0.0268\ 0.0262\ 0.0256\ 0.0250\ 0.0244\ 0.0239\ 0.0233$ $-1.8 \ 0.0359 \ 0.0351 \ 0.0344 \ 0.0336 \ 0.0329 \ 0.0322 \ 0.0314 \ 0.0307 \ 0.0301 \ 0.0294$ -1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 $-1.6\ 0.0548\ 0.0537\ 0.0526\ 0.0516\ 0.0505\ 0.0495\ 0.0485\ 0.0475\ 0.0465\ 0.0455$ $-1.5 \ 0.0668 \ 0.0655 \ 0.0643 \ 0.0630 \ 0.0618 \ 0.0606 \ 0.0594 \ 0.0582 \ 0.0571 \ 0.0559$ $-1.4\ 0.0808\ 0.0793\ 0.0778\ 0.0764\ 0.0749\ 0.0735\ 0.0721\ 0.0708\ 0.0694\ 0.0681$ $-1.3\ 0.0968\ 0.0951\ 0.0934\ 0.0918\ 0.0901\ 0.0885\ 0.0869\ 0.0853\ 0.0838\ 0.0823$ $-1.2 \ 0.1151 \ 0.1131 \ 0.1112 \ 0.1093 \ 0.1075 \ 0.1056 \ 0.1038 \ 0.1020 \ 0.1003 \ 0.0985$ -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 $-1.0 \ 0.1587 \ 0.1562 \ 0.1539 \ 0.1515 \ 0.1492 \ 0.1469 \ 0.1446 \ 0.1423 \ 0.1401 \ 0.1379$ $-0.9 \ 0.1841 \ 0.1814 \ 0.1788 \ 0.1762 \ 0.1736 \ 0.1711 \ 0.1685 \ 0.1660 \ 0.1635 \ 0.1611$ $-0.8 \ 0.2119 \ 0.2090 \ 0.2061 \ 0.2033 \ 0.2005 \ 0.1977 \ 0.1949 \ 0.1922 \ 0.1894 \ 0.1867$ $-0.7 \,\, 0.2420 \,\, 0.2389 \,\, 0.2358 \,\, 0.2327 \,\, 0.2296 \,\, 0.2266 \,\, 0.2236 \,\, 0.2206 \,\, 0.2177 \,\, 0.2148$

continued

TABLE G.1 (concluded)

z	0	1	2	3	4	5	6	7	8	9
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
							0.6026			
							0.6406			
							0.6772			
							0.7123			
							0.7454			
							0.7764			
							0.8051			
							0.8315			
							0.8554			
							0.8770			
							0.8962			
							0.9131			
							0.9279			
							0.9406			
							0.9515			
							0.9608			
							0.9686			
							0.9750			
							0.9803			
							0.9846 0.9881			
							0.9881			
							0.9909			
							0.9931			
							0.9948			0.9952
							0.9901			0.9904
							0.9971			
							0.9979			
							0.9989			
5.0	0.7707	0.7707	0.7707	0.7700	0.7700	0.7707	0.7707	0.7707	0.7770	0.7770

Examples: If $Z \sim \text{Normal}(0,1)$ then $P(Z \le -1.32) = .0934$ and $P(Z \le 1.84) = .9671$.

Source: This table was generated using the Stata® function normd.

TABLE G.2

Critical Values of the t Distribution

	Significance Level									
	Tailed:	.10 .20	.05 .10	.025 .05	.01 .02	.005 .01				
	1 2 3 4 5	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032				
D e g	6 7 8 9 10	7 1.415 8 1.397 9 1.383	1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169				
r e e s	12 13 14			2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947				
f F r e	16 17 18 19 20	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845				
e d o m	21 22 23 24 25	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787				
	26 27 28 29 30	1.315 1.314 1.313 1.311 1.310	1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750				
	40 60 90 120 ∞	1.303 1.296 1.291 1.289 1.282	1.684 1.671 1.662 1.658 1.645	2.021 2.000 1.987 1.980 1.960	2.423 2.390 2.368 2.358 2.326	2.704 2.660 2.632 2.617 2.576				

Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical for a two-tailed test with large (> 120) df is 1.96.

Source: This table was generated using the Stata® function invt.

TABLE G.3a

10% Critical Values of the F Distribution

	Numerator Degrees of Freedom										
		1	2	3	4	5	6	7	8	9	10
	10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32
D	11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25
e	12	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19
n	13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14
o m	14	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10
i	15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06
n a	16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03
t	17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00
0	18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98
r	19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96
D	20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94
e g	21	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92
r	22	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90
e	23	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89
e s	24	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88
o	25	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87
f	26	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86
	27	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85
F	28	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84
r e	29	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83
e d	30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82
0	40	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76
m	60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71
	90	2.76	2.36	2.15	2.01	1.91	1.84	1.78	1.74	1.70	1.67
	120	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65
	∞	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60

Example: The 10% critical value for numerator df = 2 and denominator df = 40 is 2.44. *Source*: This table was generated using the Stata[®] function invfprob.

TABLE G.3b

5% Critical Values of the F Distribution

	10	1	_			Numerator Degrees of Freedom									
	10		2	3	4	5	6	7	8	9	10				
D e n	11 12 13	4.96 4.84 4.75 4.67	4.10 3.98 3.89 3.81	3.71 3.59 3.49 3.41	3.48 3.36 3.26 3.18	3.33 3.20 3.11 3.03	3.22 3.09 3.00 2.92	3.14 3.01 2.91 2.83	3.07 2.95 2.85 2.77	3.02 2.90 2.80 2.71	2.98 2.85 2.75 2.67				
0 m	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60				
i n a t o	15 16 17 18	4.54 4.49 4.45 4.41	3.68 3.63 3.59 3.55	3.29 3.24 3.20 3.16	3.06 3.01 2.96 2.93	2.90 2.85 2.81 2.77	2.79 2.74 2.70 2.66	2.71 2.66 2.61 2.58	2.64 2.59 2.55 2.51	2.59 2.54 2.49 2.46	2.54 2.49 2.45 2.41				
	19 20	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38				
e g r e e	21 22 23 24	4.32 4.30 4.28 4.26	3.47 3.44 3.42 3.40	3.07 3.05 3.03 3.01	2.84 2.82 2.80 2.78	2.68 2.66 2.64 2.62	2.57 2.55 2.53 2.51	2.49 2.46 2.44 2.42	2.42 2.40 2.37 2.36	2.37 2.34 2.32 2.30	2.32 2.30 2.27 2.25				
o f F r	25 26 27 28 29	4.24 4.23 4.21 4.20 4.18	3.39 3.37 3.35 3.34 3.33	2.99 2.98 2.96 2.95 2.93	2.76 2.74 2.73 2.71 2.70	2.60 2.59 2.57 2.56 2.55	2.49 2.47 2.46 2.45 2.43	2.40 2.39 2.37 2.36 2.35	2.34 2.32 2.31 2.29 2.28	2.28 2.27 2.25 2.24 2.22	2.24 2.22 2.20 2.19 2.18				
e e d o m	30 40 60 90 120	4.17 4.08 4.00 3.95 3.92 3.84	3.32 3.23 3.15 3.10 3.07	2.92 2.84 2.76 2.71 2.68	2.69 2.61 2.53 2.47 2.45	2.53 2.45 2.37 2.32 2.29	2.42 2.34 2.25 2.20 2.17	2.33 2.25 2.17 2.11 2.09	2.27 2.18 2.10 2.04 2.02	2.21 2.12 2.04 1.99 1.96	2.16 2.08 1.99 1.94 1.91				

Example: The 5% critical value for numerator df = 4 and large denominator $df(\infty)$ is 2.37. *Source*: This table was generated using the Stata® function invfprob.

TABLE G.3c

1% Critical Values of the F Distribution

	Numerator Degrees of Freedom										
		1	2	3	4	5	6	7	8	9	10
	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
	11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
D	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
e n	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
0	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
m i	15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80
n	16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
a	17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59
t o	18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51
r	19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
D	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
e	21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31
g	22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26
r e	23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21
e	24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
S	25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13
0	26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
f	27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06
F	28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
r	29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00
e e	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
d	40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80
0	60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63
m	90	6.93	4.85	4.01	3.54	3.23	3.01	2.84	2.72	2.61	2.52
	120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47
	8	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32

Example: The 1% critical value for numerator df = 3 and denominator df = 60 is 4.13. *Source*: This table was generated using the Stata® function invfprob.

TABLE G.4

Critical Values of the Chi-Square Distribution

		Significance Level						
		.10	.05	.01				
D e g r	1 2 3 4 5 6 7 8 9 10	2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99	3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31	6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21				
e e s o f F r e	12 13 14 15 16 17 18	18.55 19.81 21.06 22.31 23.54 24.77 25.99	21.03 22.36 23.68 25.00 26.30 27.59 28.87	26.22 27.69 29.14 30.58 32.00 33.41 34.81				
e d o m	19 20 21 22 23 24 25	27.20 28.41 29.62 30.81 32.01 33.20 34.38	30.14 31.41 32.67 33.92 35.17 36.42 37.65	36.19 37.57 38.93 40.29 41.64 42.98 44.31				
	26 27 28 29 30	35.56 36.74 37.92 39.09 40.26	38.89 40.11 41.34 42.56 43.77	45.64 46.96 48.28 49.59 50.89				

Example: The 5% critical value with df = 8 is 15.51. Source: This table was generated using the Stata[®] function

invchi.