MAST30001 Stochastic Modelling

Lecturer: Nathan Ross

Administration

- ▶ LMS announcements, grades, course documents
- ► Lectures/Practicals
- Student-staff liaison committee (SSLC) representative

Modelling

We develop an imitation of the system. It could be, for example,

- a small replica of a marina development,
- a set of equations describing the relations between stock prices,
- ▶ a computer simulation that reproduces a complex system (think: the paths of planets in the solar system).

We use a model

- to understand the evolution of a system,
- to understand how 'outputs' relate to 'inputs', and
- to decide how to influence a system.

Why do we model?

We want to understand how a complex system works. Real-world experimentation can be

- too slow.
- too expensive,
- possibly too dangerous,
- may not deliver insight.

The alternative is to build a physical, mathematical or computational model that captures the essence of the system that we are interested in (think: NASA).

Why a stochastic model?

We want to model such things as

- traffic in the Internet
- stock prices and their derivatives
- waiting times in healthcare queues
- reliability of multicomponent systems
- interacting populations
- epidemics

where the effects of randomness cannot be ignored.

Good mathematical models

- capture the non-trivial behaviour of a system,
- are as simple as possible,
- replicate empirical observations,
- are tractable they can be analysed to derive the quantities of interest, and
- can be used to help make decisions.

Stochastic modelling

Stochastic modelling is about the study of random experiments. For example,

- toss a coin once, toss a coin twice, toss a coin infinitely-many times
- the lifetime of a randomly selected battery (quality control)
- lacktriangle the operation of a queue over the time interval $[0,\infty)$ (service)
- ► the changes in the US dollar Australian dollar exchange rate from 2006 onwards (finance)
- the positions of all iphones that make connections to a particular telecommunications company over the course of one hour (wireless tower placement)
- the network "friend" structure of Facebook (ad revenue)

Stochastic modelling

We study a random experiment in the context of a Probability Space (Ω, \mathcal{F}, P) . Here,

- ightharpoonup the sample space Ω is the set of all possible outcomes of our random experiment,
- ▶ the class of events \mathcal{F} is a set of subsets of Ω. We view these as events we can *see* or *measure*, and
- ightharpoonup P is a probability measure defined on the elements of \mathcal{F} .

The sample space Ω

We need to think about the sets of possible outcomes for the random experiments. For those discussed above, these could be

- ▶ $\{H, T\}$, $\{(H, H), (H, T), (T, H), (T, T)\}$, the set of all infinite sequences of Hs and Ts.
- ightharpoonup $[0,\infty)$.
- lacktriangle the set of piecewise-constant functions from $[0,\infty)$ to $\mathcal{Z}_+.$
- ▶ the set of continuous functions from $[0, \infty)$ to \mathbb{R}_+ .
- ▶ $\bigcup_{n=0}^{\infty} \{(x_1, y_1) \dots (x_n, y_n)\}$, giving locations of the phones when they connected.
- Set of simple networks with number of vertices equal to the number of users: edges connect friends.

Review of basic notions of set theory

- **▶** *A* ⊂ *B*.
 - ► A is a subset of B or if A occurs, then B occurs.
- $ightharpoonup A \cup B = \{\omega \in \Omega : \omega \in A \text{ or } \omega \in B\} = B \cup A.$
 - Union of sets (events): at least one occurs.
 - $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i.$
- ▶ $A \cap B = \{\omega \in \Omega : \omega \in A \text{ and } \omega \in B\} = B \cap A = AB.$
 - Intersection of sets (events): both occur.
 - $A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i.$
- $ightharpoonup A^c = \{\omega \in \Omega : w \notin A\}$
 - Complement of a set/event: event doesn't occur.
- ▶ ∅: the empty set or impossible event.

ightharpoonup For discrete sample spaces, $\mathcal F$ is typically the set of all subsets.

Example: Toss a coin once, $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$

► For continuous state spaces, the situation is more complicated:

- ► S equals circle of radius 1.
- ▶ We say two points on *S* are in the same family if you can get from one to the other by taking steps of arclength 1 around the circle.
- Each family chooses a single member to be head.
- ▶ If X is a point chosen uniformly at random from the circle, what is the chance X is the head of its family?

- $ightharpoonup A = \{X \text{ is head of its family}\}.$
- $ightharpoonup A_i = \{X \text{ is } i \text{ steps clockwise from its family head}\}.$
- ▶ $B_i = \{X \text{ is } i \text{ steps counterclockwise from its family head}\}.$
- ▶ By uniformity, $P(A) = P(A_i) = P(B_i)$, BUT
- law of total probability:

$$1 = P(A) + \sum_{i=1}^{\infty} (P(A_i) + P(B_i))!$$

The issue is that the event A is not one we can *see* or *measure* so should not be included in \mathcal{F} .

These kinds of issues are technical to resolve and are dealt with in later probability or analysis subjects which use *measure theory*.

The probability measure P

The probability measure P on (Ω, \mathcal{F}) is a set function from \mathcal{F} satisfying

- P1. $P(A) \ge 0$ for all $A \in \mathcal{F}$ [probabilities measure long run %'s or certainty]
- P2. $P(\Omega) = 1$ [There is a 100% chance something happens]
- P3. Countable additivity: if A_1 , A_2 ··· are disjoint events in \mathcal{F} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ [Think about it in terms of frequencies]

How do we specify P?

The modelling process consists of

- ▶ defining the values of P(A) for some 'basic events' in $A \in \mathcal{F}$,
- ▶ deriving P(B) for the other 'unknown' more complicated events in $B \in \mathcal{F}$ from the axioms above.

Example: Toss a fair coin 1000 times. Any length 1000 sequence of H's and T's has chance 2^{-1000} .

- ▶ What is the chance there are more than 600 H's in the sequence?
- ▶ What is the chance the first time the proportion of heads exceeds the proportion of tails occurs after toss 20?

Properties of P

- $ightharpoonup P(\emptyset) = 0.$
- $P(A^c) = 1 P(A).$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Conditional probability

Let $A, B \in \mathcal{F}$ be events with P(B) > 0. Supposing we know that B occurred, how likely is A given that information? That is, what is the conditional probability P(A|B)?

For a frequency interpretation, consider the situation where we have n trials and B has occurred n_B times. What is the relative frequency of A in these n_B trials? The answer is

$$\frac{n_{A\cap B}}{n_B} = \frac{n_{A\cap B}/n}{n_B/n} \sim \frac{P(A\cap B)}{P(B)}.$$

Hence, we define

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

We need a more sophisticated definition if we want to define the conditional probability P(A|B) when P(B) = 0.

Example:

Tickets are drawn consecutively and without replacement from a box of tickets numbered 1-10. What is the chance the second ticket is even numbered given the first is

- even?
- ▶ labelled 3?

Bayes' formula

Let B_1, B_2, \dots, B_n be mutually exclusive events with $A \subset \bigcup_{j=1}^n B_j$, then

$$P(A) = \sum_{j=1}^{n} P(A|B_j)P(B_j).$$

With the same assumptions as for the Law of Total Probability,

$$P(B_j|A) = \frac{P(B_j \cap A)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^{n} P(A|B_k)P(B_k)}.$$

Example:

A disease affects 1/1000 newborns and shortly after birth a baby is screened for this disease using a cheap test that has a 2% false positive rate (the test has no false negatives). If the baby tests positive, what is the chance it has the disease?

Independent events

Events A and B are said to be independent if

$$P(A \cap B) = P(A)P(B).$$

If $\mathbb{P}(B) \neq 0$ or $\mathbb{P}(A) \neq 0$ then this is the same as P(A|B) = P(A) and P(B|A) = P(B).

Events A_1, \dots, A_n are independent if, for any subset $\{i_1, ..., i_k\}$ of $\{1, ..., n\}$,

$$P(A_{i_1}\cap\cdots\cap A_{i_k})=P(A_{i_1})\times\cdots\times P(A_{i_k}).$$

Random variables

A random variable (rv) on a probability space (Ω, \mathcal{F}, P) is a function $X : \Omega \to \mathbb{R}$.

Usually, we want to talk about the probabilities that the values of random variables lie in sets of the form $(a,b) = \{x : a < x < b\}$. The smallest σ -algebra of subsets of $\mathbb R$ that contains these sets is called the set $\mathcal B(\mathbb R)$ of Borel sets, after Emile Borel (1871-1956).

The probability that $X \in (a, b)$ is the probability of the subset $\{\omega : X(\omega) \in (a, b)\}$. In order for this to make sense, we need this set to be in \mathcal{F} and we require this condition for all a < b and we say the function X is *measurable* with respect to \mathcal{F} .

So X is measurable with respect to \mathcal{F} if $\{\omega: X(\omega) \in B\} \in \mathcal{F}$ for all Borel sets $B \subset \mathbb{R}$.

Distribution Functions

The function $F_X(t) = P(X \le t) = P(\{\omega : X(\omega) \in (-\infty, t]\})$ that maps R to [0, 1] is called the distribution function of the random variable X.

Any distribution function F

- F1. is non-decreasing,
- F2. is such that $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to \infty$, and
- F3. is 'right-continuous', that is $\lim_{h\to 0^+} F(t+h) = F(t)$ for all t.

Distribution Functions

We say that

- ▶ the random variable X is discrete if it can take only countably-many values, with $P(X = x_i) = p_i > 0$ and $\sum_i p_i = 1$. Its distribution function $F_X(t)$ is commonly a step function.
- ▶ the random variable X is continuous if $F_X(t)$ is absolutely continuous, that is if there exists a function $f_X(t)$ that maps R to R_+ such that $F_X(t) = \int_{-\infty}^t f_X(u) du$.

A mixed random variable has some points that have positive probability and also some continuous parts.

Examples of distributions

- Examples of discrete random variables: binomial, Poisson, geometric, negative binomial, discrete uniform http://en.wikipedia.org/wiki/Category: Discrete_distributions
- Examples of continuous random variables: normal, exponential, gamma, beta, uniform on an interval (a, b) http://en.wikipedia.org/wiki/Category: Continuous_distributions

Random Vectors

A random vector $\mathbf{X}=(X_1,...,X_d)$ is a measurable mapping of (Ω,\mathcal{F}) to $\mathrm{I\!R}^d$, that is, for each Borel set $B\subset\mathrm{I\!R}^d$, $\{\omega:X(\omega)\in B\}\in\mathcal{F}.$

The distribution function of a random vector is

$$F_{\mathbf{X}}(\mathbf{t}) = P(X_1 \leq t_1, \cdots, X_d \leq t_d), \ \mathbf{t} = (t_1, \cdots, t_d) \in \mathbf{R}^d.$$

It follows that

$$P(s_1 < X_1 \le t_1, s_2 < X_2 \le t_2)$$

$$= F(t_1, t_2) - F(s_1, t_2) - F(t_1, s_2) + F(s_1, s_2).$$

Independent Random Variables

The random variables X_1, \dots, X_d are called independent if $F_{\mathbf{X}}(\mathbf{t}) = F_{X_1}(t_1) \times \dots \times F_{X_d}(t_d)$ for all $\mathbf{t} = (t_1, \dots, t_d)$. Equivalently,

- ▶ the events $\{X_1 \in B_1\}$, ..., $\{X_d \in B_d\}$ are independent for all Borel sets $B_1, \dots, B_d \subset R$,
- or, in the absolutely-continuous case, $f_{\mathbf{X}}(\mathbf{t}) = f_{X_1}(t_1) \times \cdots \times f_{X_d}(t_d)$ for all $\mathbf{t} = (t_1, \cdots, t_d)$.

Revision Exercise

For bivariate random variables (X, Y) with density functions

- f(x,y) = 2x + 2y 4xy for 0 < x < 1, 0 < y < 1, and
- $f(x,y) = 4 4x 4y + 8xy \text{ for } 0 < x < 1, \ 0 < y < 1, \ 0 < x + y < 1,$
 - check f is a true density.
 - find the marginal probability density functions $f_X(x)$ and $f_Y(y)$,
 - find the probability density function of Y conditional on the value of X.

Expectation of X

For a discrete, continuous or mixed random variable X that takes on values in the set S_X , the expectation of X is

$$E(X) = \int_{S_X} x dF_X(x)$$

The integral on the right hand side is a Lebesgue-Stieltjes integral. It can be evaluated as

$$= \left\{ \begin{array}{ll} \sum_{i=1}^{\infty} x_i P(X=x_i), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx, & \text{if } X \text{ is absolutely continuous.} \end{array} \right.$$

In second year, we required that the integral be absolutely convergent. We can allow the expectation to be infinite, provided that we never get in a situation where we have ' $\infty-\infty$ '.

Expectation of g(X)

For a measurable function g that maps S_X to some other set S_Y , Y = g(X) is a random variable taking values in S_Y and

$$E(Y) = E(g(X)) = \int_{S_X} g(x) dF_X(x).$$

We can also evaluate E(Y) by calculating its distribution function $F_Y(y)$ and then using the expression

$$E(Y) = \int_{S_Y} y dF_Y(y).$$

Properties of Expectation

- E(aX + bY) = aE(X) + bE(Y).
- ▶ If $X \le Y$, then $E(X) \le E(Y)$.
- ▶ If $X \equiv c$, then E(X) = c.

Moments

- ▶ The *k*th moment of *X* is $E(X^k)$.
- ▶ The kth central moment of X is $E[(X E(X))^k]$.
- ► The variance V(X) of X is the second central moment $E(X^2) (E(X))^2$.
- $V(cX) = c^2 V(X).$
- If X and Y have finite means and are independent, then E(XY) = E(X)E(Y).
- If X and Y are independent (or uncorrelated), then $V(X \pm Y) = V(X) + V(Y)$.

Conditional Probability

The conditional probability of event A given X is a random variable (since it is a function of X). We write it as P(A|X).

- ▶ for a real number x, if P(X = x) > 0, then $P(A|x) = P(A \cap \{X = x\})/P(\{X = x\})$.
- ightharpoonup if P(X=x)=0, then

$$P(A|x) = \lim_{\epsilon \to 0^+} P(A \cap \{X \in (x - \epsilon, x + \epsilon)\}) / P(\{X \in (x - \epsilon, x + \epsilon)\}).$$

Conditional Distribution

- ▶ The conditional distribution function $F_{Y|X}(y|X)$ of Y evaluated at the real number y is given by $P(\{Y \le y\}|X)$, where $P(\{Y \le y\}|X)$ is defined on the previous slide.
- ▶ If (X, Y) is absolutely continuous, then the conditional density of Y given that X = x is $f_{Y|X}(y|x) = f_{(X,Y)}(x,y)/f_X(x)$.

Conditional Expectation

The conditional expectation $E(Y|X) = \eta(X)$ where

$$\begin{split} \eta(x) &= E(Y|X=x) \\ &= \left\{ \begin{array}{l} \sum_j y_j P(Y=y_j|X=x) \text{ if } Y \text{ is discrete} \\ \int_{S_Y} y f_{Y|X}(y|x) dy \text{ if } Y \text{ is absolutely continuous.} \end{array} \right. \end{split}$$

Properties of Conditional Expectation

- ► Linearity: $E(aY_1 + bY_2|X) = aE(Y_1|X) + bE(Y_2|X)$,
- ▶ Monotonicity: $Y_1 \le Y_2$, then $E(Y_1|X) \le E(Y_2|X)$,
- ightharpoonup E(c|X)=c,
- ightharpoonup E(E(Y|X)) = E(Y),
- ▶ For any measurable function g, E(g(X)Y|X) = g(X)E(Y|X)
- ▶ E(Y|X) is the best predictor of Y from X in the mean square sense. This means that, for all random variables Z = g(X), the expected quadratic error $E((g(X) Y)^2)$ is minimised when g(X) = E(Y|X) (see Borovkov, page 57).

Exercise

Let
$$\Omega = \{a, b, c, d\}$$
, $P(\{a\}) = \frac{1}{2}$, $P(\{b\}) = P(\{c\}) = \frac{1}{8}$ and $P(\{d\}) = \frac{1}{4}$.

Define random variables,

$$Y(\omega) = \begin{cases} 1, & \omega = a \text{ or } b, \\ 0, & \omega = c \text{ or } d, \end{cases}$$
$$X(\omega) = \begin{cases} 2, & \omega = a \text{ or } c, \\ 5, & \omega = b \text{ or } d. \end{cases}$$

Compute E(X), E(X|Y) and E(E(X|Y)).

Example

The number of storms, N, in the upcoming rainy season is distributed according to a Poisson distribution with a parameter value Λ that is itself random. Specifically, Λ is uniformly distributed over (0,5). The distribution of N is called a mixed Poisson distribution.

- 1. Find the probability there are at least two storms this season.
- 2. Calculate $E(N|\Lambda)$ and $E(N^2|\Lambda)$.
- 3. Derive the mean and variance of N.

Exercise

The joint density of X and Y is given by

$$f_{X,Y}(x,y) = \frac{e^{-x/y}e^{-y}}{y}, \ x > 0, \ y > 0.$$

Calculate E[X|Y] and then calculate E[X].

Limit Theorems (Borovkov §2.9)

The Law of Large Numbers (LLN) states that if X_1, X_2, \cdots are independent and identically-distributed with mean μ , then

$$\overline{X_n} \equiv \frac{1}{n} \sum_{j=1}^n X_j \to \mu$$

as $n \to \infty$.

In the strong form, this is true almost surely, which means that it is true on a set A of sequences x_1, x_2, \ldots that has probability one. In the weak form, this is true in probability which means that, for all $\epsilon > 0$,

$$P(|\overline{X_n} - \mu| > \epsilon) \to 0$$

as $n \to \infty$.

Limit Theorems (Borovkov §2.9)

The Central Limit Theorem (CLT) states that if X_1, X_2, \cdots are independent and identically-distributed with mean μ and variance σ^2 , then for any x,

$$P\left(\frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} < x\right) \to \Phi(x) \equiv \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

as $n \to \infty$.

That is, a suitably-scaled variation from the mean approaches a standard normal distribution as $n \to \infty$.

Limit Theorems (Borovkov §2.9)

The Poisson Limit Theorem states that that if X_1, X_2, \cdots are independent Bernoulli random variables with $P(X_i=1)=1-P(X_i=0)=p_i$, then $X_1+X_2+\cdots+X_n$ is well-approximated by a Poisson random variable with parameter $\lambda=p_1+\cdots+p_n$. Specifically, with $W=X_1+X_2+\cdots+X_n$, then, for any Borel set $B\subset R$.

$$P(W \in B) \approx P(Y \in B)$$

where $Y \sim Po(\lambda)$.

There is, in fact, a bound on the accuracy of this approximation

$$|P(W \in B) - P(Y \in B)| \le \frac{\sum_{i=1}^{n} p_i^2}{\max(1, \lambda)},$$

Example

Suppose there are three ethnic groups, A (20%), B (30%) and C (50%), living in a city with a large population. Suppose 0.5%, 1% and 1.5% of people in A, B and C respectively are over 200cm tall. If we know that of 300 selected, 50, 50 and 200 people are from A, B and C, what is the probability that at least four will be over 200 cm?

Stochastic Processes (Borovkov §2.10)

A collection of random variables $\{X_t, t \in T\}$ (or $\{X(t), t \in T\}$) on a common prob space (Ω, \mathcal{F}, P) is called a stochastic process. The index variable t is often called 'time'.

- ▶ If $T = \{1, 2, \dots\}$ or $\{\dots, -2, -1, 0, 1, 2, \dots\}$, the process is a discrete time process.
- ▶ If $T = \mathbb{R}$ or $[0, \infty)$, the process is a continuous time process
- ▶ If $T = \mathbb{R}^d$, then the process is a spatial process, for example temperature at $t \in T \subset \mathbb{R}^2$, which could be, say, the University campus.

If X_t has the normal distribution for all t, then X_t is called a *Gaussian* process. Different processes can be modelled by making different assumptions about the dependence between the X_t for different t.

Standard Brownian Motion is a Gaussian process where

- ▶ For any $0 \le s1 < t_1 \le s_2 < \cdots \le s_k < t_k$, $X(t_1) X(s_1)$, ..., $X(t_k) X(s_k)$ are independent.
- ▶ We also have $V(X(t_1) X(s_1)) = t_1 s_1$ for all $s_1 < t_1$.

 X_t is the number of sales of an item up to time t.

 $\{X_t, t \geq 0\}$ is called a counting process.

 X_t is the number of people in a queue at time t.

Interpretations

We can think of Ω as consisting of the set of sample paths $\Omega = \{X_t : t \in T\}$, that is a set of sequences if T is discrete or a set of functions if T is continuous. Each $\omega \in \Omega$ has a value at each time point $t \in T$. With this interpretation,

- ▶ For a fixed ω , we can think of t as a variable, $X_t(\omega)$ as a deterministic function (realisation, trajectory, sample path) of the process.
- If we allow ω to vary, we get a collection of trajectories.
- ▶ For fixed t, with ω varying, we see that $X_t(\omega)$ is a random variable.
- ▶ If both ω and t are fixed, then $X_t(\omega)$ is a real number.

If X_t is a counting process:

- ▶ For fixed ω , $X_t(\omega)$ is a non-decreasing step function of t.
- ▶ For fixed t, $X_t(\omega)$ is a non-negative integer-valued random variable.
- For s < t, $X_t X_s$ is the number of events that have occurred in the interval (s, t].

If X_t is the number of people in a queue at time t, then $\{X_t: t \geq 0\}$ is a stochastic process where, for each t, $X_t(\omega)$ is a non-negative integer-valued random variable but it is NOT a counting process because, for fixed ω , $X_t(\omega)$ can decrease.

Finite-Dimensional Distributions

Knowing just the one-dimensional (individual) distributions of X_t for all t is not enough to describe a stochastic process.

To specify the complete distribution of a stochastic process $\{X_t, t \in T\}$, we need to know the finite-dimensional distributions.

That is, the family of joint distribution functions

$$F_{t_1,t_2,\cdots,t_k}(x_1,\cdots,x_k)$$

of X_{t_1}, \cdots, X_{t_k} for all $k \geq 1$ and $t_1, \cdots, t_k \in T$.