CD4514BM/CD4514BC, CD4515BM/CD4515BC 4-Bit Latched/4-to-16 Line Decoders

latched inputs implemented with complementary MOS (CMOS) circuits constructed with N- and P-channel enhancement mode transistors. These circuits are primarily used in decoding applications where low power dissipation and/or high noise immunity is required.

The CD4514B (output active high option) presents a logical "1" at the selected output, whereas the CD4515B presents a logical "0" at the selected output. The input latches are R-S type flip-flops, which hold the last input data presented prior to the strobe transition from "1" to "0". This input data is decoded and the corresponding output is activated. An output inhibit line is also available.

Features

3.0V to 15V ■ Wide supply voltage range ■ High noise immunity 0.45 V_{DD} (typ.) ■ Low power TTL fan out of 2 compatibility driving 74L

- Low quiescent power dissipation $0.025~\mu\text{W/package}$ @ 5.0 V_{DC}
- Single supply operation
- Input impedance = $10^{12}\Omega$ typically
- Plug-in replacement for MC14514, MC14515

Logic and Connection Diagrams

TI /F/5994-2

TL/F/5994-1

CD4514BM/CD4514BC, CD4515BM/CD4515BC 4-Bit Latched/4-to-16 Line Decoders

4-TO-16 DECODER

Top View

Dual-In-Line Package

Order Number CD4514B or CD4515B

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Supply Voltage (V_{DD}) -0.5V to +18V Input Voltage (V_{IN}) $-0.5V \text{ to } V_{DD} + 0.5V$ Storage Temperature Range (T_S) $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Power Dissipation (PD)

 Dual-In-Line
 700 mW

 Small Outline
 500 mW

Lead Temperature (T_L)
(Soldering, 10 seconds)

260°C

Recommended Operating

Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to V_{DD}

Operating Temperature Range (T_A) CD4514BM, CD4515BM CD4514BC, CD4515BC

-55°C to +125°C -40°C to +85°C

DC Electrical Characteristics CD4514BM, CD4515BM (Note 2)

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$\begin{array}{l} V_{DD} = 5V, V_{IN} = V_{DD} \text{or} V_{SS} \\ V_{DD} = 10V, V_{IN} = V_{DD} \text{or} V_{SS} \\ V_{DD} = 15V, V_{IN} = V_{DD} \text{or} V_{SS} \end{array}$		5 10 20		0.005 0.010 0.015	5 10 20		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$\begin{array}{l} V_{IH} = V_{DD}, I_O < 1 \; \mu A \\ V_{DD} = 5 V, V_{IL} = 0 V \\ V_{DD} = 10 V \\ V_{DD} = 15 V \end{array}$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$\begin{array}{l} V_{IH} = V_{DD}, I_O < 1 \; \mu A \\ V_{DD} = 5 V, V_{IL} = 0 V \\ V_{DD} = 10 V \\ V_{DD} = 15 V \end{array}$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V
V _{IL}	Low Level Input Voltage	$\begin{array}{l} V_O = 0.5 V \text{ or } 4.5 V \\ V_{DD} = 5 V, \left I_O \right < 1 \ \mu A \\ V_{DD} = 10 V, V_O = 1.0 V \text{ or } 9.0 V \\ V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V \end{array}$		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$\begin{array}{l} V_O = 0.5 V \text{ or } 4.5 V \\ V_{DD} = 5 V, \left I_O \right < 1 \ \mu A \\ V_{DD} = 10 V, V_O = 1.0 V \text{ or } 9.0 V \\ V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V \end{array}$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		V V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.80		0.36 0.90 2.40		mA mA mA
I _{OH}	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-0.88 -2.25 -8.80		-0.36 -0.90 -2.40		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.1 0.1		-10 ⁻⁵ 10 ⁻⁵	-0.1 0.1		-1.0 1.0	μΑ μΑ

DC Electrical Characteristics CD4514BC, CD4515BC (Note 2)

Symbol	Parameter Conditions -	Conditions	−40°C		+ 25°C			+ 85°C		Units
- Cynnbon		Min	Max	Min	Тур	Max	Min	Max	Oto	
I _{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$		20 40 80		0.005 0.010 0.015	20 40 80		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$V_{IL} = 0V, V_{IH} = V_{DD}, \ I_{O} < 1 \mu A \ V_{DD} = 5V \ V_{DD} = 10V \ V_{DD} = 15V$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V
V _{OH}	High Level Output Voltage	$V_{IL} = 0V, V_{IH} = V_{DD}, \ I_{O} < 1 \ \mu A \ V_{DD} = 5V \ V_{DD} = 10V \ V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10.0 15.0		4.95 9.95 14.95		V V

DC Electrical Characteristics CD4514BC, CD4515BC (Note 2) (Continued)

Symbol	Parameter	Conditions	−40°C		+ 25°C			+85°C		Units
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	
V _{IL}	Low Level Input Voltage	$\begin{array}{l} I_O < 1~\mu\text{A} \\ V_{DD} = 5\text{V}, V_O = 0.5\text{V or } 4.5\text{V} \\ V_{DD} = 10\text{V}, V_O = 1.0\text{V or } 9.0\text{V} \\ V_{DD} = 15\text{V}, V_O = 1.5\text{V or } 13.5\text{V} \end{array}$		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	>>>
V _{IH}	High Level Input Voltage	$\begin{array}{c} I_O < 1~\mu\text{A} \\ V_{DD} = 5\text{V}, V_O = 0.5\text{V or } 4.5\text{V} \\ V_{DD} = 10\text{V}, V_O = 1.0\text{V or } 9.0\text{V} \\ V_{DD} = 15\text{V}, V_O = 1.5\text{V or } 13.5\text{V} \end{array}$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.90 2.4		mA mA mA
Гон	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.52 -1.3 -3.6		-0.44 -1.1 -3.0	-0.88 -2.25 -8.8		-0.36 -0.90 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.3 0.3		-10 ⁻⁵	-0.3 0.3		-1.0 1.0	μA μA

AC Electrical Characteristics* All types $C_L=50$ pF, $T_A=25^{\circ}C$, $t_r=t_f=20$ ns unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{THL} , t _{TLH}	Transition Times	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{PLH} , t _{PHL}	Propagation Delay Times	$V_{DD} = 5V$		550	1100	ns
		$V_{DD} = 10V$		225	450	ns
		$V_{DD} = 15V$		150	300	ns
t _{PLH} , t _{PHL}	Inhibit Propagation	$V_{DD} = 5V$		400	800	ns
	Delay Times	$V_{DD} = 10V$		150	300	ns
		$V_{DD} = 15V$		100	200	ns
t _{SU}	Setup Time	$V_{DD} = 5V$		125	250	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		38	75	ns
t _{WH}	Strobe Pulse Width	$V_{DD} = 5V$		175	350	ns
		$V_{DD} = 10V$	1	50	100	ns
		$V_{DD} = 15V$		38	75	ns
C _{PD}	Power Dissipation Capacitance	Per Package (Note 5)		150		pF
C _{IN}	Input Capacitance	Any Input (Note 4)		5	7.5	pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

Note 4: Capacitance is guaranteed by periodic testing.

Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 54C and 74C Family Characteristics application note, AN-90.

Truth Table

Decode Truth Table (Strobe = 1)

		Data I	nputs		Selected Output
Inhibit	D	С	В	Α	CD4514 = Logic "1" CD4515 = Logic "0"
0	0	0	0	0	S0
0	0	0	0	1	S1
0	0	0	1	0	S2
0	0	0	1	1	S3
0	0	1	0	0	S4
0	0	1	0	1	S5
0	0	1	1	0	S6
0	0	1	1	1	S7
0	1	0	0	0	S8
0	1	0	0	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
0	1	1	0	0	S12
0	1	1	0	1	S13
0	1	1	1	0	S14
0	1	1	1	1	S15
1	Х	Х	Х	Х	All Outputs = 0, CD4514 All Outputs = 1, CD4515

X = Don't Care

AC Test Circuit and Switching Time Waveforms

Applications

Two CD4512 8-channel data selectors are used here with the CD4514B 4-bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a TRI-STATE® data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re-routed or intermixed according to patterns determined by data select and distribution inputs.

Data is placed into the routing scheme via the 8 inputs on both CD4512 data selectors. One register is assigned to each input. The signals on A0, A1 and A2 choose 1-of-8 inputs for transfer out to the TRI-STATE data bus. A fourth signal, labelled Dis, disables one of the CD4512 selectors, assuring transfer of data from only one register.

In addition to a choice of input registers, 1-16, the rate of transfer of the sequential information can also be varied. That is, if the CD4512 were addressed at a rate that is

8 times faster than the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for transfer to the data bus. Therefore, all of the most significant bits from all of the registers can be transferred to the data bus before the next most significant bit is presented for transfer by the input registers.

Information from the TRI-STATE bus is redistributed by the CD4514B 4-bit latch/decoder. Using the 4-bit address, INA-IND, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A-P. This distribution of data bits to the output registers can be made in many complex patterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizontal, vertical, or other methods of data slicing can be implemented

TL/F/5994-5

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J) Order Number CD4514BMJ, CD4514BCJ, CD4515BMJ or CD4515BCJ NS Package Number J24A

Molded Dual-In-Line Package (N) Order Number CD4514BMN, CD4514BCN, CD4515BMN or CD4515BCN **NS Package Number N24A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

CD4514 - http://www.ti.com/product/cd4514?HQS=TI-null-null-dscatalog-df-pf-null-wwe