

LINUX操作系统(双语)

双语课一课件内容中英混排

Lecture 1

Introduction

本讲内容

- ₾ 什么是操作系统?
- ② 计算机系统的组成
- ② 计算机系统体系结构
- ₾ 操作系统结构

什么是操作系统?

随处可见的电子设备

所有的设备都有操作系统

- ② 智能手机、平板电脑、智能手表、智能汽车
- ☞ 物联网设备
- ₫ 机器人
- ② 甚至洗衣机、微波炉
- 母 我们关心的是: Computer Operating System

COMPUTER SYSTEM

ALTAIR 8800

ALTAIR 8800 SIMULATION

计算机系统层次结构

INTERFACE (接口、界面、介面)

- ② 接口是连接两个物体的边界,通过这个界面,两边 可以很好地对话。
 - 亞 硬件-硬件
 - ₾ 软件-硬件
 - 亞 软件-软件

VIRTUAL MACHINE

②操作系统向用户提供一个容易理解和使用的"计算机"(虚拟的),用户对这个"计算机"的操作都将被操作系统转成对计算机硬件的操作。

Application	
Operating System	Virtual Machine Interface
	— Physical Machine Interface
Hardware	

操作系统能做什么?

₾ 从用户的角度

- @ 提供良好的用户界面
- @ 标准的函数库
- ② 使得编程更加方便并且不 容易出错

₾ 从系统的角度

- ② 管理资源
 - 亞 硬件资源(处理机,存储器,设备)
 - ₾ 信息资源(文件)
- 解决申请资源时产生的冲突
- 阻止错误的产生和对计算机不正当的使用

定义操作系统

- An operating system acts an intermediary between user of a computer and the computer hardware.
- The purpose of an operating system is to provide an environment in which a user can execute programs in a convenient and efficient manner.
- An operating system is software that manages the computer hardware.

计算机系统的组成

COMPUTER SYSTEM ORGANIZATION

Which component does OS reside in?

HARD DISK (硬盘)

硬盘内部结构

盘片 Platter

主轴 Spindle

磁臂 Actuator Arm

磁头 Head

硬盘运转状态

磁头如何读写盘片数据

- @ 磁臂移动到指定的圈道
- 等待要访问的数据点旋转到磁头下方
- @ 读写操作:
 - ② 读:将从磁盘上读到的磁性转化0或1
 - □ 写:将0或1转化成相应的磁性写入磁盘

盘片不止一块,磁头不止一个

磁盘参数

亞 盘片:磁性数据载体,分单面和双面

☆ 磁道:能被磁头访问的一组同心圆

@ 扇区:数据存放的基本单位

@ 柱面: 所有盘片相同磁道构成的立体面

亞 磁头+磁道

主引导扇区(BOOT SECTOR)

- 母盘的0柱面、0磁头、1扇区称为主引导扇区,在这扇区里存放着一段代码:主引导记录MBR(Main Boot Record),它用于硬盘启动时将系统控制权转给用户指定的、在分区表中登记了某个操作系统分区。
- △ MBR的内容是在硬盘分区时由分区软件写入该扇区的,MBR不属于任何一个操作系统,不随操作系统的不同而不同,即使不同,MBR也不会夹带操作系统的性质,具有公共引导的特性。

BOOTSTRAP

Pull oneself up by one's bootstraps.

BOOTSTRAP OF COMPUTER

- ₾ 打开电源
- ② CPU将控制权交给BIOS (基本输入输出系统,存放在CMOS中)
- @ BIOS运行一个程序: 通电自测试程序
- @ BIOS确认所有外部设备: 硬盘或扩充卡
- ② BIOS找到磁盘的引导区,将其中的主引导程序bootloader装入内存。(主引导程序是一段代码,它可以将OS余下部分装入内存)
- ② 引导操作系统结束,操作系统接管计算机
- @ 操作系统等待事件发生……

中断

- 当有事件(Event)发生时,CPU会收到一个中断 (Interrupt)信号,可以是硬中断也可以是软件中断。
- ② CPU会停下正在做的事,转而执行中断处理程序, 执行完毕会回到之前被中断的地方继续执行。
- Operating System is an INTERRUPT driven system.

STORAGE SYSTEM(存储系统)

- ② CPU负责将指令(Instruction)从内存(Memory)读入,所以程序必须在内存中才能运行。
- ② 内存以字节为存储单位,每个字节都有一个地址与 之对应。通过load/store指令即可访问指定地址的内 存数据:
 - ② load: 将内存数据装入寄存器(Register)
 - ② store: 将寄存器数据写入内存

存储层次图

易失性存储 Volatile Memory Nonvolatile Memory 非易失性存储

I/O结构

- ② 存储器只是众多IO设备中的一种,IO设备是计算机体系结构中种类最丰富的设备类型,而且他有着很强的扩展性。
- ② 管理IO设备是操作系统非常重要的组成部分,操作系统中有一个专门的IO子系统负责完成这项工作。

计算机系统体系结构

单处理器系统

- Single-processor System
- ② 只有一颗主CPU, 执行通用指令集。
- ② 带有其他专用处理器,为特定设备服务,如:磁 盘、键盘、图形控制器等。
 - @ 它们能够执行的指令有限,不处理用户进程
 - @操作系统会向它们发出任务,并监控它们的状态

多处理器系统

- Multiprocessor/Multicore System
- ② 有两个或多个紧密通信的CPU,它们共享计算机总线、时钟、内存和外设等。
 - ∰ 非对称处理 (Asymmetric multiprocessing)
 - ② 对称处理 (Symmetric MuliProcessing)

集群系统

- Clustered System
- ③ 该系统由若干节点(node)通过网络连接在一起,每个节点可为单处理器系统或多处理器系统,节点之间是松耦合(loosely coupled)关系。
 - 圖 高可用性 (high availability)
 - △ 高性能计算 (high-performance computing)

操作系统结构

单用户单道模式

□ 输入500个字符(花78ms), 经CPU处理52ms后, 将结果 2000个字符存到磁带上(花20ms), 重复进行。

多道程序设计

- 型操作系统最重要的一点是具有多道程序(multiprogramming)能力。
- ② 单道程序不能让CPU和IO设备始终忙碌,多道程序设计通过 安排任务使用得CPU总有一个执行任务,从而提高CPU利用 率。
- ② 实现的硬件保证:处理器和IO设备具备并行工作的能力

分时系统

- ②分时系统(time sharing)也称多任务系统(multitasking),是多道程序设计的自然延伸。
- ② 允许多个用户共享一台计算机
 - @ 用户只有输入和输出设备
 - ② 分时系统为每个用户轮流分配等量的CPU时间
 - @ 用户从发出指令到得到即时结果的时间称为响应时间
- ☺ 第一个分时系统CTSS由MIT于1962年开发出来

引发的其他模式

- ◎ 处理器调度 (CPU Scheduling)
- ② 交换 (Swapping)
- 亞 虚拟内存(Virtual Memory)
- ◎ 磁盘管理 (Disk Management)
- ③ 同步 (Synchronization)
- 亞 死锁 (Deadlock)

Lecture 1

The End