Mattias Villani Department of Statistics Stockholm University Dept of Computer and Information Science Linköping University

Computer Lab 4 - Bayesian Model Inference

The labs are the only examination, so you should do the labs **individually**. You can use any programming language you prefer, but do **submit the code**. Submit a readable report in **PDF** (no Word documents!) or a **JuPyteR notebook**

1. **Robust regression modeling**. Consider the student-*t* regression model:

$$y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{iid}}{\sim} t_{\nu}(0, \sigma^2),$$

where $t_{\nu}(\mu, \sigma^2)$ is the student-t distribution with ν degrees of freedom, location μ and scale parameter σ^2 such that the variance is $\sigma^2 \nu/(\nu-2)$ whenever $\nu>2$. Assume that ν is known, and use the prior $\beta\sim N(0,\tau^2I_q)$ and non-informative prior for the scale: $p(\sigma)\propto 1/\sigma$. The file StudentTRegression.R contains the function GibbsTReg that implements a regression extension of the Gibbs sampler on Page 294 in the Bayesian Data Analysis book to simulate from the posterior $p(\beta,\sigma^2|\boldsymbol{y},\boldsymbol{X})$ for a given ν . The same file also contains the function PredTReg to simulate from the posterior predictive distribution.

- (a) Consider the dataset regression.csv (loaded from the code StudentTRegression.R). Let M_{ν} denote the above regression model with ν degrees of freedom, and let $\tau=1$. Compare the models M_2 , M_5 , M_{10} and M_{30} using the following Bayesian model inference criteria:
 - i. Posterior model probabilities using the BIC approximation of the marginal likelihood. Assume uniform prior over the set of models.
 - ii. Posterior model probabilities using the Laplace approximation of the marginal likelihood. Assume uniform prior over the set of models.
 - iii. WAIC
 - iv. Bayesian leave-one-out cross-validation (no need to do code up importance sampling or the Pareto smoothed version since the data set is relatively small).
- (b) Repeat 1a) using $\tau = 10$ and $\tau = 100$.

Good luck! May the Bayes be with you.