21 Serre classes

The motivation for this chapter is to show that the following holds.

21.1 Theorem. The homotopy groups $\pi_n(S^m)$ are finitely generated for all $n, m \ge 1$.

This will follow from a more general result that will be stated in terms of Serre classes.

21.2 Definition. A *Serre class* is a non-empty collection ${\mathfrak C}$ of abelian groups satisfying the property that if

$$0 \to A \to B \to C \to 0$$

is a short exact sequence of abelian groups then $B \in \mathcal{C}$ if and only if $A, C \in \mathcal{C}$

We will say that a Serre class \mathcal{C} is a *Serre ring* if in addition it satisfies that if $A, B \in \mathcal{C}$ then $A \otimes B \in \mathcal{C}$ and $Tor(A, B) \in \mathcal{C}$.

We will also say that a Serre class is *acyclic* if for every group $A \in \mathbb{C}$ we have $H_q(K(A, 1)) \in \mathbb{C}$ for all q > 0.

- **21.3 Proposition.** Let $\mathcal C$ is a Serre class. The following hold:
 - 1) $0 \in \mathcal{C}$.
 - 2) If $A \in \mathcal{C}$ and $A' \cong A$ then $A' \in \mathcal{C}$.
 - 3) If $B \subseteq A$ then $A \in \mathcal{C}$ if and only if $B, A/B \in \mathcal{C}$.
 - 4) If $A \to B \to C$ is an exact sequence and $A, C \in \mathcal{C}$ then $B \in \mathcal{C}$.
 - 5) If $0 = A_{-1} \subseteq A_1 \subseteq A_2 \subseteq ... \subseteq A_n$ then $A_n \in \mathcal{C}$ if and only if $A_i/A_{i-1} \in \mathcal{C}$ for all i.

Proof. Exercise. □

21.4 Proposition. Let $\mathbb C$ is a Serre ring. If X is a path connected space such that $H_q(X) \in \mathbb C$ for all 0 < q < p then $H_p(X; G) \in \mathbb C$ for any group $G \in \mathbb C$.

21. Serre classes 98

Proof. By the Universal Coefficient Theorem we have

$$H_p(X; G) \cong (H_p(X) \otimes G) \oplus \text{Tor}(H_{p-1}(X), G)$$

This immediately gives that $H_p(X;G) \in \mathbb{C}$ for $p \geq 2$ For p = 0 we gave $H_0(X;G) \cong G \in \mathbb{C}$ while for p = 1 we obtain $H_1(X;G) \cong H_1(X) \otimes G \in \mathbb{C}$.

21.5 Proposition. All of the following are acyclic Serre rings:

- C_{fin} = the class of all finite abelian groups.
- C_{fq} = the class of all finitely generated abelian groups.
- $C_{tor} = the class of all torsion abelian groups.$
- C_p = the class of all p-torsion abelian groups for a given prime p.

21.6 Theorem. Let $F \to E \xrightarrow{p} B$ be a Serre fibration with a simply connected space B, and let $\mathbb C$ be a Serre ring. If for two of the spaces F, E, B the homology groups $H_q(-)$ are in $\mathbb C$ for all q > 0 then the same holds for the third space.

Proof. There are three cases to consider.

Case 1: $H_q(F)$, $H_q(B) \in \mathcal{C}$ for all q > 0.

Consider the Serre spectral sequence of the fibration p. We have $E_{p,q}^2 = H_p(B, H_q(F))$ so by Proposition 21.4 we get that $E_{p,q}^2 \in \mathcal{C}$ for all $(p,q) \neq (0,0)$. Next, since groups $E_{p,q}^3$ are obtained by taking quotients of subgroups of the groups $E_{p,q}^2$, we get that $E_{p,q}^3 \in \mathcal{C}$ for all $(p,q) \neq (0,0)$. Inductively, we obtain that $E_{p,q}^r \in \mathcal{C}$ for all $r \geq 2$ and $(p,q) \neq (0,0)$, and so also $E_{p,q}^{\infty} \in \mathcal{C}$ for $(p,q) \neq (0,0)$. For q > 0 the groups $H_q(E)$ admit a finite filtration such filtration quotients are isomorphic to groups $E_{p,q}^{\infty}$ with $(p,q) \neq 0$. This implies that $H_q(E) \in \mathcal{C}$.

Case 2: $H_q(F)$, $H_q(E) \in \mathcal{C}$ for all q > 0.

Since all groups $E_{p,q}^{\infty}$ are quotients of subgroups of $H_{p+q}(E)$, we have $E_{p,q}^{\infty} \in \mathcal{C}$ for all $(p,q) \neq (0,0)$. We will show that $E_{p,q}^2 \in \mathcal{C}$ for $(p,q) \neq (0,0)$ by induction with respect to p. For p=0 this holds since $E_{0,q}^2 \cong H_q(F)$. Assume that it also holds for $E_{i,q}^2$ for all i < p. It follows that $E_{i,q}^r \in \mathcal{C}$ for all i < p and all $r \geq 2$.

Since all differentials terminating at $E_{p,0}^r$ are trivial, for each r we have an exact sequence

$$E_{p,0}^{r+1} \to E_{p,0}^r \xrightarrow{d^r} E_{p-r,r-1}^r$$

By assumption $E^r_{p-r,r-1} \in \mathcal{C}$, so if $E^{r+1}_{p,0} \in \mathcal{C}$ then the same is true for $E^r_{p,0}$. Since $E^{p+1}_{p,q} = E^{\infty}_{p,q} \in \mathcal{C}$, arguing inductively over decreasing values of r we obtain that $E^r_{p,0} \in \mathcal{C}$ for all $r \geq 2$. In particular, $H_p(B) = E^2_{p,0} \in \mathcal{C}$. Using Proposition 21.4 we obtain that $E^2_{p,q} = H_p(B, H_q(F)) \in \mathcal{C}$ for all $q \geq 0$.

Case 3: $H_q(B)$, $H_q(E) \in \mathcal{C}$ for all q > 0.

21. Serre classes 99

This is similar to case 2. \Box

21.7 Proposition. If $\mathbb C$ is an acyclic Serre ring then for every $A \in \mathbb C$ and $n \ge 1$ we have $H_q(K(A, n)) \in \mathbb C$.

Proof. We argue by induction with respect to n. The case n=1 holds by definition of acyclicity of a Serre class. Assume that the statement is true for some $n \ge 1$. For $A \in \mathcal{C}$ consider the homotopy fibration sequence $K(A,n) = \Omega K(A,n+1) \to * \to K(A,n+1)$. Since $H_q(K(A,n)), H_q(*) \in \mathcal{C}$ for all q > 0, by Theorem 21.6 we obtain that $H_q(K(A,n+1)) \in \mathcal{C}$.

- **21.8 Theorem.** Let \mathcal{C} be an acyclic Serre ring. If X is a simply connected space then the following conditions are equivalent:
 - 1) $\pi_n(X) \in \mathcal{C}$ for all $n \geq 1$
 - 2) $H_n(X) \in \mathcal{C}$ for all $n \geq 1$

The proof of Theorem 21.8 will make use of the notion of Postnikov sections:

- **21.9 Definition.** Let X be a path connected space. The n-th Postnikov section of X is a space X_n together with a map $f: X \to X_n$ such that
 - 1) $f_* : \pi_q(X) \to \pi_q(X_n)$ is an isomorphism for $q \le n$
 - 2) $\pi_q(X) = 0$ for q > n.

The *n*-th Postnikov section of a space X can be constructed glueing to X cells in dimensions n+1 and higher to kill all homotopy groups above $\pi_n(X)$. The map $f: X \to X_n$ is then given by the inclusion.

Proof of Theorem 21.8.

1) \Rightarrow 2) Let X_n denote the n-th Postnikov section of X. By Theorem 16.4 we have $H_q(X) \cong H_q(X_n)$ for all q < n, so it will be enough to show that $H_q(X_n) \in \mathcal{C}$ for all n, q > 0. We will prove this by induction with respect to n. For n = 2 we have $X_2 = K(\pi_2(X), 2)$, so the statement holds by Proposition 21.7. Assume that it also holds for some $n \ge 2$. Notice that we have a fibration sequence

$$K(\pi_{n+1}(X), n+1) \to X_{n+1} \to X_n$$

Using Proposition 21.7 again we get that $H_q(K(\pi_{n+1}(X), n+1)) \in \mathcal{C}$ for q > 0, so using Theorem 21.6 we obtain that $H_q(X_{n+1}) \in \mathcal{C}$ for q > 0.

2) \Rightarrow 1) We will show that $\pi_n(X) \in \mathcal{C}$ by induction with respect to n. Since X is simply connected, for n=2 by the Hurewicz Isomorphism Theorem we get $\pi_2(X) \cong H_2(X) \in \mathcal{C}$. Next, assume that $\pi_q(X) \in \mathcal{C}$ for all $q \leq n$ and consider the fibration sequence

hofib
$$f \to X \to X_n$$

21. Serre classes 100

where X_n is the n-th Postnikov section of X. Notice that

$$\pi_q(\mathsf{hofib}\, f) = egin{cases} 0 & \textit{if}\, q \leq n \ \pi_q(X) & \textit{if}\, q > n \end{cases}$$

Since $\pi_q(X_n) \in \mathcal{C}$ for all q, thus by part 1) \Rightarrow 2) we get that $H_q(X_n) \in \mathcal{C}$ for all q > 0. By assumption $H_q(X) \in \mathcal{C}$ for q > 0. Therefore, using Theorem 21.6 we obtain that $H_q(\mathsf{hofib}\,f) \in \mathcal{C}$ for q > 0. Since hofib f is n-connected, by the Hurewicz Isomorphism Theorem we get $H_{n+1}(\mathsf{hofib}\,f) \cong \pi_{n+1}(\mathsf{hofib}\,f) \cong \pi_{n+1}(X)$. This gives $\pi_{n+1}(X) \in \mathcal{C}$.