Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 3 по вычислительной математике

Численное интегрирование Вариант №10

Преподаватель: Малышева Татьяна Алексеева

Выполнил: Состанов Тимур Айратович

Группа: Р3214

Г. Санкт-Петербург

Оглавление

Цель работы	3
Порядок выполнения работы	4
Рабочие формулы используемых методов	5
Вычислительная реализация задачи	11
Программная реализация задачи	13
Метод прямоугольников	13
Метод трапеций	16
Метод Симпсона	17
Результат работы программы	18
Вывод	

Цель работы

Порядок выполнения работы

Обязательное задание (до 80 баллов)

Исходные данные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем.
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной (ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления.

Необязательное задание (до 20 баллов)

- 1. Установить сходимость рассматриваемых несобственных интегралов 2 рода (2-3 функции). Если интеграл расходящийся, выводить сообщение: «Интеграл не существует».
- 2. Если интеграл сходящийся, реализовать в программе вычисление несобственных интегралов 2 рода (заданными численными методами).
- 3. Рассмотреть случаи, когда подынтегральная функция терпит бесконечный разрыв:
- 1) в точке а, 2) в точке b, 3) на отрезке интегрирования

Рабочие формулы используемых методов

Метод прямоугольников

Обозначим:

$$f(x_i) = y_i$$
, $f(a) = y_0$, $f(b) = y_n$
 $\Delta x_i = x_i - x_{i-1} = h_i$

 $\int_a^b f(x) dx pprox h_1 y_0 + h_2 y_1 + \dots + h_n y_{n-1} = \sum_{i=1}^n h_i \ y_{i-1}$ - левые прямоугольники

 $\int_a^b f(x) dx pprox h_1 y_1 + h_2 y_2 + \dots + h_n y_n = \sum_{i=1}^n h_i y_i$ - правые прямоугольники

При
$$h_i = h = \frac{b-a}{n} = const$$
:

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i-1}$$

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{n} y_{i}$$

Метод прямоугольников. Метод средних

Для аналитически заданных функций более точным является использование значений в средних точках элементарных отрезков (полуцелых узлах):

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} h_{i} f(x_{i-1/2})$$

$$x_{i-1/2} = \frac{x_{i-1} + x_{i}}{2} = x_{i-1} + \frac{h_{i}}{2}, i = 1, 2, \dots n$$

При
$$h_i = h = \frac{b-a}{n} = const$$
:
$$\int_a^b f(x) dx = h \sum_{i=1}^n f(x_{i-1/2})$$

Метод трапеций

Подынтегральную функцию на каждом отрезке $[x_i; x_{i+1}]$ заменяют интерполяционным многочленом первой степени:

$$f(x) \approx \varphi_i(x) = a_i x + b$$

Используют линейную интерполяцию, т.е. график функции y=f(x) представляется в виде ломаной, соединяющий точки (x_i,y_i) . Площадь всей фигуры (криволинейной трапеции):

$$S_{\text{общ}} = S_1 + S_2 + \dots + S_n = \frac{y_0 + y_1}{2} h_1 + \frac{y_1 + y_2}{2} h_2 + \dots + \frac{y_{n-1} + y_n}{2} h_n$$
$$y_0 = f(a), \quad y_n = f(b), \quad y_i = f(x_i), \quad h_i = x_i - x_{i-1}$$

Складывая все эти равенства, получаем формулу трапеций для численного интегрирования:

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \sum_{i=1}^{n} h_{i}(y_{i-1} + y_{i})$$

При $h_i = h = \frac{b-a}{n} = const$ формула трапеций:

$$\int_{a}^{b} f(x)dx = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right)$$

или
$$\int\limits_a^b f(x)dx=rac{h}{2}\cdot\left(y_0+y_n+2\sum_{i=1}^{n-1}y_i
ight)$$

Метод Симпсон Томас (20.08.1710—14.05.1751) — английский математик)

Разобьем отрезок интегрирования [a,b] на четное число n равных частей с шагом h. На каждом отрезке $[x_0,x_2],[x_2,x_4]$, ..., $[x_{i-1},x_{i+1}]$, ..., $[x_{n-2},x_n]$ подынтегральную функцию заменим интерполяционным многочленом второй степени:

$$f(x) \approx \varphi_i(x) = a_i x^2 + b_i x + c_i, \quad x_{i-1} \le x \le x_{i+1}$$

Коэффициенты этих квадратных трехчленов могут быть найдены из условий равенства многочлена и подынтегральной функции в узловых точках.

В качестве $\varphi_i(x)$ можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки $(x_{i-1}, y_{i-1}), (x_i, y_i), (x_{i+1}, y_{i+1}).$

Формула Симпсона

$$\int_{a}^{b} f(x) = \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n) \right]$$

Формула Ньютона - Котеса

Вводим коэффициенты Котеса: $c_n^i = \int_a^b L_n^i(x) dx$

Формула Ньютона-Котеса порядка n:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} L_{n}(x)dx = \sum_{i=0}^{n} f(x_{i})c_{n}^{i}$$

Ро́джер Котс (1682-1716) Английский математик, астроном и философ, помощник Исаака Ньютона. «По своим математическим способностям из его поколения в Англии он уступал только Ньютону».

Пример: Вычислить коэффициенты Котеса $c_1^0 = c_1^1$

Пусть значения функции f(x) заданы в двух узлах: $x_0 = a$, $x_1 = b$

Аппроксимируем функцию полиномом Лагранжа первой степени:

$$f(x) \approx L_{1}(x) = f(x_{0})L_{1}^{0}(x) + f(x_{1})L_{1}^{1}(x) = f(x_{0})\frac{x - x_{1}}{x_{0} - x_{1}} + f(x_{1})\frac{x - x_{0}}{x_{1} - x_{0}}$$

$$= f(a)\frac{x - b}{a - b} + f(b)\frac{x - a}{b - a}$$

$$\int_{a}^{b} f(x)dx = \frac{f(a)}{a - b}\int_{a}^{b} (x - b)dx + \frac{f(b)}{b - a}\int_{a}^{b} (x - a)dx = \int_{a}^{b} f(a)\frac{b - a}{2} + f(b)\frac{b - a}{2}$$

$$f(a)$$

Тогда коэффициенты Котеса $c_1^0 = c_1^1 = \frac{b-a}{2}$

Коэффициенты Котеса для равноотстоящих узлов

n	Коэффициенты Котеса c _i ⁿ				
1	$c_1^0 = c_1^1 = \frac{b - a}{2}$				
2	$c_2^0 = c_2^2 = \frac{b - a}{6}$	$c_2^1=\frac{4(b-a)}{6}$			
3	$c_3^0 = c_3^3 = \frac{b - a}{8}$	$c_3^1 = c_3^2 = \frac{3(b-a)}{8}$			
4	$c_4^0 = c_4^4 = \frac{7(b-a)}{90}$	$c_4^1 = c_4^3 = \frac{32(b-a)}{90}$	$c_4^2 = \frac{12(b-a)}{90}$		
5	$c_5^0 = c_5^5 = \frac{19(b-a)}{288}$	$c_5^1 = c_5^4 = \frac{75(b-a)}{288}$	$c_5^2 = c_5^3 = \frac{50(b-a)}{288}$		
6	$c_6^0 = c_6^6 = \frac{41(b-a)}{840}$	$c_6^1=c_6^5=\frac{216(b-a)}{840}$	$c_6^2 = c_6^4 = \frac{27(b-a)}{840}$	$c_6^3 = \frac{272(b-a)}{840}$	

Коэффициенты Котеса для равноотстоящих узлов

n	Коэффициенты Котеса c _i					
7	$c_7^0 = c_7^7 = \frac{751(b-a)}{17280}$	$c_7^1 = c_7^6 = \frac{3577(b-a)}{17280}$	$c_7^2 = c_7^5 = \frac{1323(b-a)}{17280}$	$c_7^3 = c_7^4 = \frac{2989(b-a)}{17280}$		
8	$c_8^0 = c_8^8 = \frac{989(b-a)}{28350}$ $c_8^4 = -\frac{4540(b-a)}{28350}$	$c_8^1 = c_8^7 = \frac{5888(b-a)}{28350}$	$c_8^2 = c_8^6 = -\frac{928(b-a)}{28350}$	$c_8^3 = c_8^5 = \frac{10496(b-a)}{28350}$		
9	$c_9^0 = c_9^9 = \frac{2857(b-a)}{89600}$ $c_9^4 = c_9^5 = \frac{5778(b-a)}{89600}$	$c_9^1 = c_9^8 = \frac{15741(b-a)}{89600}$	$c_9^2 = c_9^7 = \frac{1080(b-a)}{89600}$	$c_9^3 = c_9^6 = \frac{19344(b-a)}{89600}$		
10	$c_{10}^0 = c_{10}^{10} = \frac{16067(b-a)}{598752}$	$c_{10}^1 = c_{10}^9 = \frac{106300(b-a)}{598752}$ $c_{10}^5 = \frac{427368(b-a)}{598752}$	$c_{10}^2 = c_{10}^8 = -\frac{48525(b-a)}{598752}$	$c_{10}^3 = c_{10}^7 = \frac{272400(b-a)}{598752}$		

Вычислительная реализация задачи

$$\int_{2}^{4} (x^3 - 3x^2 + 7x - 10) dx$$

Вычисление интеграла точно:

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10) dx = \left(\frac{x^{4}}{4} - x^{3} + \frac{7x^{2}}{2} - 10x\right) \Big|_{2}^{4} = 26$$

Вычисление интеграла по формуле Ньютона-Котеса:

$$h = \frac{4-2}{6} = \frac{1}{3}$$

$$x = \left[2; \frac{7}{3}; \frac{8}{3}; 3; \frac{10}{3}; \frac{11}{3}; 4\right]$$

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx = f(2)c_{6}^{0} + f\left(\frac{7}{3}\right)c_{6}^{1} + f\left(\frac{8}{3}\right)c_{6}^{2} + f(3)c_{6}^{3} + f\left(\frac{10}{3}\right)c_{6}^{4} + f\left(\frac{11}{3}\right)c_{6}^{5} + f(4)c_{6}^{6}$$

$$c_{6}^{0} = c_{6}^{6} = \frac{41 \cdot (4-2)}{840} = \frac{41}{420}$$

$$c_{6}^{1} = c_{6}^{5} = \frac{216(4-2)}{840} = \frac{18}{35}$$

$$c_{6}^{2} = c_{6}^{4} = \frac{27(4-2)}{840} = \frac{9}{140}$$

$$c_{6}^{3} = \frac{272(4-2)}{840} = \frac{68}{105}$$

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10) dx$$

$$= (0) \frac{41}{420} + (\frac{73}{27}) \frac{18}{35} + (\frac{170}{27}) \frac{9}{140} + (11) \frac{68}{105} + (\frac{460}{27}) \frac{9}{140} + (\frac{665}{27}) \frac{18}{35} + (34) \frac{41}{420}$$

$$= 26$$

Совпало с точным значением Относительная погрешность: 0 %

Вычисление интеграла по формуле средних прямоугольников:

$$n = 10$$

$$h = \frac{4-2}{10} = \frac{1}{5}$$

$$x = [2.1; 2.3; 2.5; 2.7; 2.9; 3.1; 3.3; 3.5; 3.7; 3.9]$$

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx = h \sum_{i} f(x_{i})$$

$$= h (f(2.1) + f(2.3) + f(2.5) + f(2.7) + f(2.9) + f(3.1) + f(3.3) + f(3.5) + f(3.7)$$

$$+ f(3.9))$$

$$= 0.2 \left(\frac{731}{1000} + \frac{2397}{1000} + \frac{35}{8} + \frac{6713}{1000} + \frac{9459}{1000} + \frac{12661}{1000} + \frac{16367}{1000} + \frac{165}{8} + \frac{25483}{1000} + \frac{30989}{1000} \right)$$

$$= 25.96$$

Погрешность вычислений: -0.04

Относительная погрешность: $\frac{0.04}{26} = \frac{1}{650} = 0.00(153846)\%$

Вычисление интеграла по формуле трапеций:

$$h = \frac{10}{4 - 2} = \frac{1}{5}$$

x = [2.2; 2.4; 2.6; 2.8; 3; 3.2; 3.4; 3.6; 3.8]

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx = h\left(\frac{f(2) + f(4)}{2} + \sum_{i} f(x_{i})\right)$$

$$= h\left(\frac{f(2) + f(4)}{2} + f(2.2) + f(2.4) + f(2.6) + f(2.8) + f(3) + f(3.2) + f(3.4)\right)$$

$$+ f(3.6) + f(3.8)$$

$$= 0.2\left(\frac{0 + 34}{2} + \frac{191}{125} + \frac{418}{125} + \frac{687}{125} + \frac{1004}{125} + 11 + \frac{1806}{125} + \frac{2303}{125} + \frac{2872}{125} + \frac{3519}{125}\right)$$

$$= 26.08$$

Погрешность вычислений: 0.08

Относительная погрешность: $\frac{0.08}{26} = \frac{1}{325} = 0.00(307692)\%$

Вычисление интеграла по формуле Симпсона:

$$h = \frac{10}{4 - 2} = \frac{1}{5}$$

x = [2; 2.2; 2.4; 2.6; 2.8; 3; 3.2; 3.4; 3.6; 3.8; 4]

$$\int_{2}^{4} (x^{3} - 3x^{2} + 7x - 10)dx$$

$$= \frac{h}{3} \Big(f(2) + 4 \Big(f(2,2) + f(2,6) + f(3) + f(3,4) + f(3,8) \Big) + 2 \Big(f(2,4) + f(2,8) + f(3,2) + f(3,6) \Big) + f(4) \Big)$$

$$= \frac{1}{15} \Big(0 + 4 \Big(\frac{191}{125} + \frac{687}{125} + 11 + \frac{2303}{125} + \frac{3519}{125} \Big) + 2 \Big(\frac{418}{125} + \frac{1004}{125} + \frac{1806}{125} + \frac{2872}{125} \Big) + 34 \Big)$$

$$= 26$$

Совпало с точным значением

Относительная погрешность: 0 %

Программная реализация задачи

Метод прямоугольников

```
def midpoint_rectangle_method(func, left, right, initial_n, accuracy):
   n = initial_n
   h = (right - left) / n
   iter_count = 1
   integral = 0
   for i in range(n):
       x_{left} = left + i * h
        x_right = left + (i + 1) * h
        integral += func((x_right + x_left) / 2) * h
   integral_prev = integral
   table.append([iter_count, n, integral, " "])
   while True:
       iter_count += 1
       integral = 0
       for i in range(n):
            x_left = left + i * h
            x_right = left + (i + 1) * h
            integral += func((x_right + x_left) / 2) * h
        runge = abs((integral - integral_prev) / (2 ** 2 - 1))
        table.append([iter_count, n, integral, runge])
        if runge < accuracy:</pre>
            break
        integral_prev = integral
```

```
def left_rectangle_method(func, left, right, initial_n, accuracy):
   table = [["N", "n", "I", "runge"]]
   n = initial_n
   h = (right - left) / n
   iter_count = 1
   integral = 0
    for i in range(n):
        x_{eft} = left + i * h
       x_right = left + (i + 1) * h
        integral += func(x_left) * h
   integral_prev = integral
   table.append([iter_count, n, integral, " "])
   while True:
        iter_count += 1
        integral = 0
        for i in range(n):
            x_{eft} = left + i * h
           x_right = left + (i + 1) * h
            integral += func(x_left) * h
        runge = abs((integral - integral_prev) / (2 ** 1 - 1))
        table.append([iter_count, n, integral, runge])
        if runge < accuracy:</pre>
            break
        integral_prev = integral
```

```
def right_rectangle_method(func, left, right, initial_n, accuracy):
   table = [["N", "n", "I", "runge"]]
   n = initial_n
   h = (right - left) / n
   iter_count = 1
   integral = 0
    for i in range(n):
        x_{left} = left + i * h
       x_right = left + (i + 1) * h
        integral += func(x_right) * h
    integral_prev = integral
    table.append([iter_count, n, integral, " "])
   while True:
        iter_count += 1
        h /= 2
        integral = 0
        for i in range(n):
            x_{\text{left}} = \text{left} + i * h
            x_right = left + (i + 1) * h
            integral += func(x_right) * h
        runge = abs((integral - integral_prev) / (2 ** 1 - 1))
        table.append([iter_count, n, integral, runge])
        if runge < accuracy:</pre>
            break
        integral_prev = integral
```

```
def trapezoidal_method(func, left, right, initial_n, accuracy):
   table = [["N", "n", "I", "runge"]]
   n = initial_n
   h = (right - left) / n
   iter_count = 1
    integral = (func(left) + func(right)) / 2
    for i in range(1, n):
       x = left + i * h
       integral += func(x)
    integral *= h
    integral_prev = integral
    table.append([iter_count, n, integral, " "])
   while True:
       iter_count += 1
        integral = (func(left) + func(right)) / 2
        for i in range(1, n):
            x = left + i * h
            integral += func(x)
        integral *= h
        runge = abs((integral - integral_prev) / (2 ** 2 - 1))
        table.append([iter_count, n, integral, runge])
        if runge < accuracy:</pre>
           break
        integral_prev = integral
```

Метод Симпсона

```
idef simpson_method(func, left, right, initial_n, accuracy):
    table = [["", "n", """, "runge"]]
    n = initial_n
    h = (right - left) / n
    iter_count = 1

    x_values = [left + i * h for i in range(n + 1)]
    y_values = [func(x) for x in x_values]
    integral = h / 3 * (y_values[0] + 4 * sum(y_values[1:n:2]) + 2 * sum(y_values[2:n-1:2]) + y_values[n])

integral_prev = integral
    table.append([iter_count, n, integral, " "])

while True:
    iter_count += 1
        n *= 2
        h /= 2

    x_values = [left + i * h for i in range(n + 1)]
    y_values = [func(x) for x in x_values]

integral = h / 3 * (y_values[0] + 4 * sum(y_values[1:n:2]) + 2 * sum(y_values[2:n-1:2]) + y_values[n])

runge = abs((integral - integral_prev) / (2 ** 4 - 1))
    table.append([iter_count, n, integral, runge])
    if runge < accuracy:
        break

integral_prev = integral</pre>
```

```
Выберите уравнение:
1-ое уравнение:
2-ое уравнение:
f(x) = cos(x^2) + sin(x)
3-тье уравнение:
f(x) = \exp(-x^2) * \sin(x)
Введите номер уравнения (1, 2 или 3): 1
Выбранное уравнение: variant_equation
Введите пределы интегрирования
Введите левый предел интегрирования:
Введите правый предел интегрирования:
Левый предел интегрирования: 2.0
Правый предел интегрирования: 4.0
Введите точность вычисления: 0.01
Выберите метод численного интегрирования:
1. Метод прямоугольников
2. Метод трапеций
3. Метод Симпсона
Введите номер метода (1, 2 или 3):
```


Метод левых прямоугольников:						
N n I runge						
+====+===+						
1 4 18						
2 8 21.875 3.875						
3 16 23.9062 2.03125						
4 32 24.9453 1.0390625						
5 64 25.4707 0.525390625						
6 128 25.7349 0.26416015625						
7 256 25.8673 0.1324462890625						
8 512 25.9336 0.066314697265625						
9 1024 25.9668 0.03318023681640625						
10 2048 25.9834 0.016595840454101562						
11 4096 25.9917 0.00829935073852539						
Значение интеграла: 25.991699695587158						
Число разбиений: 4096						

```
Выберите метод численного интегрирования:
1. Метод прямоугольников
2. Метод трапеций
3. Метод Симпсона
Введите номер метода (1, 2 или 3): 2
Метод трапеций
+----+
  N | n | I | runge |
+====+====+
| 1 | 4 | 26.5 |
| 2 | 8 | 26.125 | 0.125 |
3 | 16 | 26.0312 | 0.03125 |
| 4 | 32 | 26.0078 | 0.0078125 |
+----+
Значение интеграла: 26.0078125
Число разбиений: 32
Выберите метод численного интегрирования:
1. Метод прямоугольников
2. Метод трапеций
3. Метод Симпсона
Введите номер метода (1, 2 или 3): 3
Метод Симпсона
+----+
| N | n | I | runge |
+====++====++===++
| 1 | 4 | 26 | |
+----+
| 2 | 8 | 26 | 0.0 |
Значение интеграла: 26.0
Число разбиений: 8
```

Исходный код: https://github.com/tsostanov/CompMath3

Вывод

В ходе работы были изучены численные методы интегрирования, написана программа, использующая их, и решено несколько примеров "самостоятельно". Все методы дают хорошую точность и позволяют быстро посчитать интеграл.