Quiz 1

- (1) Let S,, S2 ES be arbi., & be the binary operation

 Commutative binary operation: S, \$52 = \$2\$ \$5,
- (2) Identity element: e&v=v=v&e \(\forall \(\ell -13\)\\

 Let e=0\(\ell (\frac{12}{5})\)\ve(Q\(\frac{1}{5}-13\)\)

e & v = ev + e+ v = 0 v + 0 + v = v v⊗e=ve+v+e =v(0)+v+0 = v

(3) Prove $\forall v \in \mathbb{R}^2, \exists u \in \mathbb{R}^2 \text{ st } v + u = \hat{0}$

Let $v, \in \mathbb{R}^2$ be arbi. $v = (v_1, v_2)$ Let $u, \in \mathbb{R}^2$, u = -v $u = (-v_1, v_2)$

 $V+u = (v_1,v_2)+(-v_1,v_2)$ $= (v_1-v_1,v_2-v_2) \quad \text{by standard vector addition}$ = (0,0) $= 0 \quad \text{zero element in } \mathbb{R}^2$