

American International University-Bangladesh (AIUB)

Department of Computer Science Faculty of Science & Technology (FST)

Crime Reporting and Safety

A Software Engineering Project Submitted By Group 03, Section - H

Semester: Summer_23_24		Section:	Group Number:	
SN	Student Name	Student ID	Contribution (CO3+CO4)	Individual Marks
1	Foysal Munsy	22-47225-1		
2	Ananna Monjur	22-47243-1		
3	Abu Nayem Md. Arman	22-47249-1		
4	Brishav Mondal	22-47278-1		
5	Tasik Ahmed	22-47258-1		

The project will be evaluated for the following Course Outcomes

S
S

Risk Management

Risks	Category	Probability	Impact	RMMM
Size estimate may be significantly low	PS	60%	2	Mitigation: Use expert judgment andhistorical data for better estimation. Monitoring: Regularly review task progress against estimates. Management: Adjustscope and timelinesbased on revised estimates.
Larger number of users than planned	PS	30%	3	Mitigation: Design scalable systemarchitectures. Monitoring: Keeptrack of user registration andactivity. Management: Increase servercapacity and optimize software.
Less reuse than planned	PS	70%	2	Mitigation: Promote modular design. Monitoring: Track code reuse metrics.Management: Allocate time for refactoring and module generalization.
End-users resist system	BU	40%	3	Mitigation: Involve users early in requirement and design phases. Monitoring: Gather user feedback frequently. Management: Conduct usability enhancements based on feedback.

Delivery deadline will be tightened	BU	50%	2	Mitigation: Add buffer periods in the schedule. Monitoring: Regularmilestone reviews. Management: Re- prioritize features based on availabletime.
Funding will be lost	CU	40%	1	Mitigation: Secure funding agreementsand explore contingency funds. Monitoring: Regular financial health checks. Management: Scaleproject scope based on available budget.
Customer will change requirements	PS	80%	2	Mitigation: Use agile methods to accommodatechanges. Monitoring: Regularly review changes and their impacts. Management: Formal change control processes and re-estimation.
Technology will not meet expectations	TE	30%	1	Mitigation: Conduct early prototype testing. Monitoring: Continual technology performanceevaluations. Management: Havebackup technologies and vendors in case of failure.

Lack of training on tools	DE	80%	3	Mitigation: Scheduleregular training sessions. Monitoring: Assess team competency levels. Management: Provide resourcesfor ongoing education and support.
Staff inexperienced	ST	30%	2	Mitigation: Mix teams with juniorand senior developers. Monitoring: Reviewwork quality regularly. Management: Provide mentorshipand further training.
Staff turnover will be high	ST	60%	2	Mitigation: Enhance job satisfaction andwork environment. Monitoring: Keep track of staff morale and turnover rates. Management: Prepare for quick replacements and knowledge transfer.
Integration complexities	TE	60%	2	Mitigation: Design integration tests early. Monitoring: Regular integrationtesting sessions. Management: Allocate extra time and resources for potential integration issues.

Legal and compliance issues	BU	25%	2	Mitigation: Consult compliance expertsduring design. Monitoring: Regular compliance reviews.Management: Adjustproject practices based on legal advice.
Data security breaches	TE	50%	1	Mitigation: Implement robust security protocols. Monitoring: Conductregular security audits. Management: Immediate responseteam for breaches.
Hardware failures	TE	30%	3	Mitigation: Use high-quality, redundant hardware. Monitoring: Regular hardware checks. Management: Quickhardware replacement strategy.

Impact Values

- 1. Catastrophic
- 2. Critical
- 3. Marginal
- 4. Negligible
- 5. The work product is called a Risk Mitigation, Monitoring, And Management plan (RMMM)

Allocation

Project Management

Project Manager: Oversees the entire project, ensuring proper planning, coordination,
 and stakeholder communication.

Development Team

- Crime Reporting System Developer: Develops the software for reporting crimes, including user interfaces and backend systems.
- o Database Administrator: Manages the database of crime reports and safety data.
- Mobile App Developer: Creates a mobile application for users to report crimes and access safety information.
- o *UI/UX Designer*: Designs user-friendly web and mobile application interfaces.
- o **Security Specialist**: Ensures that the system is secure and that user data is protected.

Testing and Quality Assurance

- QA Lead: Leads the testing efforts to ensure the crime reporting system functions correctly and securely.
- Test Analyst: Writes and executes test cases for both functional and non-functional requirements.
- o **QA Engineers**: Assist in executing tests and tracking defects.

Deployment and Maintenance

- Deployment Manager: Plans and coordinates the deployment of the crime reporting system.
- o System Administrators: Maintain the server infrastructure and ensure system uptime.
- o **Deployment Engineers**: Assist in deployment activities and software updates.

Customer Support and Training

- Training Specialist: Develops user guides and conducts training sessions for law enforcement and community users.
- Support Engineers: Provide ongoing support, address user feedback, and resolve issues.