The Power of CRCW – Minima

- Two points of interest
 - Illustrate the power of CRCW models
 - Illustrate another optimality technique.
- Find the minima of n elements.
 - Input: An array A of n elements
 - Output: The minimum element in A.
- From what we already know:
 - Standard sequential algorithm not good enough
 - Can use an upward traversal, with min as the operator at each internal node. Time = O(log n), work = O(n).

The Power of CRCW - Minima

- - Gain optimality by sacrificing runtime to O(log hog n).

Kulmy

An O(1) Time Algorithm

A MINTAN

Use n² processors.

Compare A[i] with A[j] for each i and j.

Now can identify the minimum.

n2 proums

An O(1) Time Algorithm

	12	17	8	18	26	
12		1	0	1	1	
17	0		0	1	1	
8	1	1		1	1	
18	0	0	0		1	
26	0	0	0	0]	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?

O(1) Time Algorithm

		12	17	8	18	26
	12		1	0	1	1
	17	0		0	1	1
	8	1	1		1	1
	18	0	0	0		1
	26	0	0	0	0	

Use n² processors.

Use n² processors.

Compare A[i] with A[j] for each i and j. Times

Now can identify the minimum.

How?

Where did we need the CRCW model?

Towards Optimality

- The earlier algorithm is heavy on work.
- To reduce the work, we proceed as follows.
- We derive an O(nlog log n) work algorithm running in O(log log n) time.
- For this, use a doubly logarithmic tree.
 - Defined in the following.

$$\chi = O(n/\log n)$$

$$\chi = 0$$

Doubly Logarithmic Tree

Let there be $n = 2^{2^k}$ leaves, the root is level 0. The root has $\sqrt{n} = 2^{2^{k-1}}$ children

In general, a node at level i has 2^{2^{k-i-1}} children, for 0≤ i ≤ k-1.

• Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree

- · Some claims: induction on i
 - Number of nodes at level i is 2<sup>2^k 2^{k-i}.
 </sup>
 - Number of nodes at the kth level is n/2.
 - Depth of a doubly logarithmic tree of n nodes is $\frac{1}{1}$ $\frac{1$
- To compute the minimum using a doubly logarithmic tree:
 - Each internal node performs the min operation does not suffice.
 - Why?

Minima Using the Doubly Logarithmic Tree

- Should spend only O(1) time at each internal node.
- Use the O(1) time algorithm at each internal node.
- At each internal node of level i, if there are c_i children, use c_i^2 processors.
 - Minima takes O(1) time at each level.
 - Also, No. of nodes at level i x No. of processors used = $2^{2^{k}-2^{k-i}}$. $(2^{2^{k-i-1}})^2 = 2^{2^k} = n$.

depu = # Proc's at level i Processors

Minima Using a Doubly Logarithmic Tree

- Second, slightly improved result:
 - With n processors, can find the minima of n numbers in O(log log n) time.
 - Total work = O(n log log n) # Proces = n log log n

log logn +)
bevels

- Still suboptimal by a factor of O(log log n).
- We now introduce a technique to achieve optimality.

Accelerated Cascading

- Our two algorithms:
- Algorithm 2 Algorithm 1: A slow but optimal algorithm.
 - Binary tree based: O(log n) time, O(n) work.
 - Algorithm 2: A fast but non-optimal algorithm
 - Doubly Logarithmic tree based: O(log log n) time, O(nlog log n) work.
- The accelerated cascading technique suggests combining two such algorithms to arrive at an optimal algorithm for vocablem of for the same problem
 - Start with the slow but optimal algorithm till the problem is small enough
 - Switch over to the fast but non-optimal

Accelerated Cascading

non optimal by a factor of O (loglogn)

- The binary tree based algorithm starts with an input of size n.
- Each level up the tree reduces the size of the input by a factor of 2.
- In log log log n levels, the size of the input reduces to n/2^{logloglog n} = n/loglog n.
- Now switch over to the fast algorithm with n/loglog n processors, needing O(log log (n/log log n)) time. Nork-O(n' loglogn') = O(Toglogn')

Final Result

$$n' = \frac{n}{\log \log \log n} = \frac{n}{\log \log n}$$

- Total time = $O(\log \log \log n)$
- Total work = O(n).
- Need CRew Memodel
- Where did we need the CRCW model? input size after log log log lards of bintree = n

input size after (og log log n lavels of bin Free = n

Of tree alg on an input of size = n'

Ly work =
$$0 (n' \log \log n') = 0 (\frac{n}{\log \log n})$$

Nor log $\log n' = 0$

Nor log $\log n' = 0$
 $\log \log n' = 0$