Transistor Lab 3 Preparation

Class B amplifier

Preparation1: Look up the datasheet of the BD139 and BD140.

• Note down the pinning of these transistors.

- How much is the maximum allowed collector current?
 - o BD139: 1.5 A
 - o BD140: -1.5 A
- How much is maximum allowed emitter-collector voltage?
 - o BD139: 80 V
 - o BD140: -80 V
- How much is β ? Compare to the β of the BC547 transistor
 - o BD139:
 - o BD140:

h _{FE} ⁽¹⁾	h _{FE} groups	NPN	I _C = 150 mA, V _{CE} = 2 V BD139-10 BD135-16/BD139-16	63 100	160 250	
		PNP	$I_C = -150 \text{ mA}, V_{CE} = -2 \text{ V}$ BD140-10 BD136-16/BD140-16	63 100	160 250	

 β is represented by the symbol h_{FE} . This term refers to the ratio of the collector current (I_C) to the base current (I_B) under certain conditions. The datasheet provides h_{FE} values under specific test conditions, such as a particular collector current (I_C) and a collector-emitter voltage (V_{CE}).

Preparation2: How much is the voltage gain of this circuit?

The voltage gain is 1.

Preparation3: The load resistor available in the lab is rated 50W, but this is overkill. What's the minimal power needed for the load resistor?

$$R_L = 12 \Omega$$

Maximum allowed current is 1.5 A

$$Power = R * I^2$$

$$Power = 12 * 1.5^2 = 27 W$$

Audio amplifier

Preparation4: How much is the voltage gain of the total circuit?

This is a non inverting amplifier

$$A = 1 + \frac{R13}{R14}$$

$$A = 1 + \frac{10 \, k\Omega}{1 \, k\Omega} = 11 \, V/V$$

Current Source

LED of 1W ($I_{LED} = 300 \text{mA}$). Active region. Base-emitter voltage of almost 0.6 V

Preparation5: Calculate R2 with the info you can find above.

$$R_2 = \frac{0.6 V}{300 mA}$$
$$R_2 = 2 \Omega$$

Preparation6: Build the circuit in Multisim and check the operation of the circuit.

