SGN-13006 Introduction to Pattern Recognition and Machine Learning (5 cr)

Introduction

Joni-Kristian Kämäräinen

August 2018

Laboratory of Signal Processing Tampere University of Technology

Contents

Introduction

- Where machine learning is needed?
- Problem definition
- Motivation
- Examples of ML enabled technology

Introduction

Introduction

Where machine learning is needed?

A sub-field of artificial intelligence?

An application example: Apparent age estimation

An application example: Apparent age estimation¹ (cont.)

¹Rasmus Rothe, Radu Timofte, and Luc Van Gool. "Deep expectation of real and apparent age from a single image without facial landmarks". In: International Journal of Computer Vision (IJCV) (July 2016)

An application example: Apparent age estimation (cont.)

Figure 3. Examples of face images with good age estimation by DEX with a single CNN.

Machine learning is study of special algorithms

- You need to be a domain expert who knows how to use machine learning OR
- you need to be a machine learning expert who knows the domain BUT
- you anyway need to know how to program!

Introduction

Problem definition

What means machine learning or pattern recognition?

To scrutinise the otherwise too philosophical question about "what is learning" and "what is intelligence", we will use a definition that needs²:

- 1. Task (T) what needs to be solved?
- 2. Performance measure (P) how to measure success of a solution?
- 3. Experience (E) how to acquire experience to improve (e.g. training data)?

²T.M. Mitchell. *Machine Learning*. McGraw-Hill, 1997

Introduction

Motivation

Must in the modern CS curriculum

Certain problems - such us autonomous cars and social robots - cannot be solved by traditional software engineering, but perhaps they can be by ML algorithms

The goal is that you will learn to sketch a machine learning based solution for a problem X and then measure how well it works

• Al Robot which

- Al Robot which
 - Learns similar to human (e.g. by watching, practising and discovering)

- Al Robot which
 - Learns similar to human (e.g. by watching, practising and discovering)
 - Can replace or assist humans in almost any task

- Al Robot which
 - Learns similar to human (e.g. by watching, practising and discovering)
 - Can replace or assist humans in almost any task
- Mechanical, electrical and computational elements are pretty much ready - core algorithms to establish true artificial intelligence (AI) are not

- Al Robot which
 - Learns similar to human (e.g. by watching, practising and discovering)
 - Can replace or assist humans in almost any task
- Mechanical, electrical and computational elements are pretty much ready - core algorithms to establish true artificial intelligence (AI) are not

Example (Ultimate goal)

Figure 1: The ultimate goal (www.collinder.com) - t2-measure.avi

Introduction

Examples of ML enabled technology

Machine learning in robotics

 $^{^3}$ Alessandro Giusti et al. "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots". In: *IEEE Robotics and Automation Letters* (2016)

Machine learning in robotics

Example (Robocup 2050)

Video: RoboCup2017_final.mkv

 $^{^3}$ Alessandro Giusti et al. "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots". In: *IEEE Robotics and Automation Letters* (2016)

Machine learning in robotics

Example (Robocup 2050)

Video: RoboCup2017_final.mkv

Example (Learn to follow forest tracks³)

 $Video: \ Quadcopter_Navigation_in_Forest_using_DCNN.webm$

³Alessandro Giusti et al. "A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots". In: *IEEE Robotics and Automation Letters* (2016)

Machine learning in robotics (cont.)

 $^{^4}$ L. Pinto and A. Gupta. "Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours". In: *Int. Conf. on Robotics and Automation (ICRA)*. 2016

Machine learning in robotics (cont.)

Example (Urban challenge - Cars without drivers)

Video1: Self_Driving_GrandChallenge.avi Video2:

 $Junsheng_autonomous_driving_in_game.mp4\ Video 3:$

Junsheng_lane_detection_CNN.mp4

⁴L. Pinto and A. Gupta. "Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours". In: *Int. Conf. on Robotics and Automation (ICRA)*. 2016

Machine learning in robotics (cont.)

Example (Urban challenge - Cars without drivers)

Video1: Self_Driving_GrandChallenge.avi Video2:

 $Junsheng_autonomous_driving_in_game.mp4\ \ Video 3:$

Junsheng_lane_detection_CNN.mp4

Example (Learning to Grasp⁴)

Video: Supersizing_Self-supervision-Learning_to_grasp.mp4

⁴L. Pinto and A. Gupta. "Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours". In: *Int. Conf. on Robotics and Automation (ICRA)*. 2016

Example (Computer vision grand challenge: ImageNet)

URL: http://www.image-net.org/

Example (Computer vision grand challenge: ImageNet)

IM GENET

URL: http://www.image-net.org/

Example (RGB+D sensors: Kinect)

Video: 144455_project_natal.mp4

Example (Computer vision grand challenge: ImageNet)

IM GENET

URL: http://www.image-net.org/

Example (RGB+D sensors: Kinect)

Video: 144455_project_natal.mp4

Example (Real-Time Object Detection)

Video: YOLO_Watches_Nature_Part2.mkv

Light and Magic

Light and Magic

Example (2D to 3D conversion)

URL: https://github.com/piiswrong/deep3d

Light and Magic

Example (2D to 3D conversion)

URL: https://github.com/piiswrong/deep3d

Example (Photorealistic Image Synthesis)

Video: iccv2017_image_synthesis.mp4

Your idea?

1. Definition of pattern recognition / machine learning

- 1. Definition of pattern recognition / machine learning
- 2. The scientific importance of the topic

- 1. Definition of pattern recognition / machine learning
- 2. The scientific importance of the topic
- 3. The practical (engineering) importance of the topic application examples