INTERROGATION 2

Physique 3. Groupe

Nom:	
Prénom:	

Questions

Le système ci-contre peut tourner librement autour du point $O.~(\theta\ll1.)$

La boule est supposée ponctuelle et la tige sans masse. $(\sin \theta \approx \theta)$. $\cos \theta \approx 1 - \frac{\theta^2}{2}$.

- 1. Trouver l'énergie cinétique T, l'énergie potentielle U, et l'énergie totale E.
- 2. Trouver l'équation du mouvement à l'aide de l'équation de conservation.
- **3.** Trouver la pulsation propre ω_0 sachant que m=1kg, L=1m, k=36N/m, g=10m/s².

Le système précédent est modifié comme le montre la figure ci-contre.

Le système est soumis à présent à un frottement de coefficient α . ($\theta \ll 1$.)

- 1. Trouver l'énergie cinétique T, l'énergie potentielle U, et le Lagrangien \mathcal{L} .
- **2.** Trouver la fonction de dissipation \mathcal{D} puis l'équation du mouvement en utilisant \mathcal{L} .
- **3.** Trouver la nature du mouvement sachant que α =4N.s/m.
- 4. Trouver le temps τ au bout duquel l'amplitude est divisée par 2 si α =2N.s/m.

Réponses

1.
$$T = \frac{1}{2}m(L\theta)^2$$
. (0.25)
 $U = U_{ressort} + U_m \approx \frac{1}{2}k(L\sin\theta)^2 - mg(L - L\cos\theta)$ (0.25) $\approx \frac{1}{2}k(L\theta)^2 - \frac{1}{2}mgL\theta^2$. (0.25)
 $E = T + U = \frac{1}{2}mL^2\theta + \frac{1}{2}(kL^2 - mgL)\theta^2$ (0.25)

- 2. L'équation de conservation $\frac{dE}{dt} = 0$ (0.25) nous donne $mL^2\theta\theta + (kL^2 mgL)\theta\theta = 0 \Rightarrow \theta + \frac{kL mg}{mL}\theta = 0$. (0.5)
- 3. La pulsation propre est donc $\omega_0 = \sqrt{\frac{kL mg}{mL}}$ (Q25). A.N: $\omega_0 = \sqrt{\bf 26} {\rm rad/s.}$ (2)

1.
$$T = \frac{1}{2}m(2L\theta)^2$$
. (0.25)
 $U = U_{ressort} + U_m \approx \frac{1}{2}k(L\sin\theta)^2 - mg(2L - 2L\cos\theta)$ (0.25) $\approx \frac{1}{2}k(L\theta)^2 - mgL\theta^2$. (0.25)
 $\mathcal{L} = T - U = 2mL^2 \theta^2 - \frac{1}{2}(kL^2 - 2mgL)\theta^2$ (0.25)

2.
$$\mathcal{D} = \frac{1}{2}\alpha v^2 = \frac{1}{2}\alpha(2L\dot{\theta})^2$$
 (0.25). L'équation du mouvement est $\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}) - \frac{\partial \mathcal{L}}{\partial \theta} = -\frac{\partial \mathcal{D}}{\partial \dot{\theta}} \Rightarrow \ddot{\theta} + \frac{\alpha}{m}\dot{\theta} + \frac{kL - 2mg}{4mL}\dot{\theta} = 0$. (0.5)

3. La nature du mouvement est donnée par le signe de $\lambda^2 - \omega_0^2$. Q25 $\lambda = \frac{\alpha}{2m}$ Q5, $\omega_0 = \sqrt{\frac{kL - 2mg}{4mL}}$ Q5. A.N: $\lambda^2 - \omega_0^2 = 4 - 4 = 0$. Q5 \Rightarrow Le mouvement est en régime critique. Q5

4. Le temps nécessaire est τ tel que $Ae^{-\lambda(t+\tau)} = \frac{1}{2}Ae^{-\lambda t} \Rightarrow \tau = \frac{\ln 2}{\lambda}$. (05) A.N: $\tau = \frac{\ln 2}{1} \approx 0.7s$.