Formal Methods for High-Assurance Software Engineering

HomeWork Assignment 02

Shahin Roozkhosh shahin@bu.edu U01670169

September 2020

Problem 1. [LCS, page 88]: Exercise 1.5.7

1.5.7 (a)
$$\phi_1 = (\neg p \lor \neg q) \land (p \lor \neg q) \land (\neg p \lor q)$$

1.5.7 (b)
$$\phi_2 = (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

1.5.7 (c)
$$\phi_3 = (\neg r \lor \neg s \lor \neg q) \land (\neg r \lor s \lor \neg q) \land (r \lor \neg s \lor \neg q) \land (r \lor \neg s \lor \neg q)$$

Problem 2.

[Lec. Slide 07]: part 1 We begin by parenthesizing the wff, clearly the original logic is being preserved.

Prove:
$$\neg (p \land (q \land r)) \rightarrow (\neg p \lor (\neg q \lor \neg r))$$

1	$\neg (p \land (q \land r))$	premise
2	$\neg(\neg p \lor (\neg q \lor \neg r))$	assume
3	$\neg p$	assume
4	$\neg p \lor (\neg q \lor \neg r))$	$\forall i_1, 3$
5	\perp	$\neg e, 2, 4$
6	$\neg \neg p$	$\neg i, 3-5$
7	$\neg q \lor \neg r$	assume
8	$\neg p \lor (\neg q \lor \neg r))$	$\forall i_2, 7$
9	Τ	$\neg e, 2, 8$
10	$\neg (\neg q \lor \neg r)$	$\neg i, 7-9$
11	$\neg q$	assume
12	$ eg q \lor (eg r))$	$\forall i_1, 11$
13	Τ	$\neg e, 10, 12$
14	eg -q	$\neg i, 11 - 13$
15	$\neg r$	assume
16	$\neg q \lor (\neg r)$	$\forall i_2, 15$
17	1	$\neg e, 10, 16$
18	$\neg \neg r$	$\neg i, 15 - 17$
19	q	$\neg \neg i, 14$
20	r	$\neg \neg i, 18$
21	$q \wedge r$	$\wedge i, 19, 20$
22	p	$\neg \neg e, 6$
23	$p \wedge (q \wedge r)$	$\wedge i, 21, 22$
24	Т	$\neg e, 1, 23$
25	$\neg\neg(\neg p\vee(\neg q\vee\neg r))$	$\neg i, 2-24$
26	$\neg p \lor (\neg q \lor \neg r)$	$\neg \neg e, 25$

[Lec. Slide 07]: part 2 We begin by parenthesizing the wff, clearly the original logic is being preserved.

Prove:
$$\neg (p \land (q \land r)) \rightarrow (\neg p \lor (\neg q \lor \neg r))$$

We show that the negation of the statement is unsatisfiable, hence the statement itself is tautology.

Problem 3.

Solution. Write the wff ψ_n and justify how it accomplishes the task.

By remembering the chess and Queen moves, We could easily write the requirements of N-Queen problem in English while writing it in propositional logic is was not easy.. (1) two queens cannot occupy the same row or column, we denote this requirement by ψ_n^{row} . (2) queens cannot be in adjacent rows and columns, We denote this by ψ_n^{col} . (3) a position (i,j) is preferred over position (n,m) if $\mathrm{diag}(\mathrm{i,j})_{\mathrm{i}}\mathrm{diag}(\mathrm{n,m})$ where $\mathrm{diag}(\mathrm{i,j})$ is defined to be the length of the longest diagonal passing through position (i,j). We formalize it by ψ_n^{diag1} . (4) Also we know that we have two types of diagonal, step (3) needs to be for the anti-diagonals as well. Denoted by ψ_n^{diag2} .

Then we can write ψ_n as:

$$\psi_n = \psi_n^{row} \wedge \psi_n^{col} \wedge \psi_n^{diag1} \wedge \psi_n^{diag2}$$

(a) ψ_n^{row} In each row there is at most one queen:

$$\psi_n n^{row1} = \bigwedge_{i=1}^n \bigwedge_{j=1}^{n-1} \bigwedge_{k=j+1}^n (x_{ij} \to \neg x_{ik})$$

Also there is a subtle point to check in each row there is at least one queen:

$$\psi_n^{row2} = \bigwedge_{i=1}^n \bigvee_{j=1}^n x_{ij}$$

$$\psi_n^{row} = \psi_n^{row1} \wedge \psi_n^{row2}$$

(b) ψ_n^{col}

$$\psi_n^{col} = \bigwedge_{j=1}^n \bigwedge_{i=1}^{n-1} \bigwedge_{k=i+1}^n (x_{ij} \to \neg x_{kj})$$

(c) ψ_n^{diag1}

$$\psi_n^{diag1} = \bigwedge_{i=2}^{n} \bigwedge_{j=1}^{n-1} \bigwedge_{k=1}^{\min\{i-1, n-j\}} (x_{ij} \to \neg x_{i-k, j+k})$$

(d) ψ_n^{diag2}

$$\psi_n^{diag2} = \bigwedge_{i=1}^{n-1} \bigwedge_{j=1}^{n-1} \bigwedge_{k=1}^{\min\{n-i, n-j\}} (x_{ij} \to \neg x_{i+k, j+k})$$

Problem 4.

Problem 5. This is my link to z3 code: https://github.com/ro0zkhosh/CS511/blob/master/HW2/parity.smt2

Problem 6. This is my link to z3py code: https://github.com/ro0zkhosh/CS511/blob/master/HW2/parity.py