Appending and concatenating Series

MERGING DATAFRAMES WITH PANDAS

Anaconda Instructor

append()

- append(): Series and DataFrame method
- Invocation:
 - s1.append(s2)
 - Stacks rows of s2 below s1
 - Method for Series and DataFrames

concat()

- concat(): pandas module function
- Invocation:
 - o pd.concat([s1, s2, s3])
 - Can stack row-wise or column-wise

concat() and .append()

- Equivalence of concat() and .append():
- result1 = pd.concat([s1, s2, s3])
- result2 = s1.append(s2).append(s3)
- result1 == result2 elementwise

Series of US states

```
import pandas as pd
northeast = pd.Series(['CT', 'ME', 'MA', 'NH', 'RI', 'VT',
    'NJ', 'NY', 'PA'])
south = pd.Series(['DE', 'FL', 'GA', 'MD', 'NC', 'SC', 'VA',
    'DC', 'WV', 'AL', 'KY', 'MS', 'TN', 'AR', 'LA', 'OK', 'TX'])
midwest = pd.Series(['IL', 'IN', 'MN', 'MO', 'NE', 'ND',
    'SD', 'IA', 'KS', 'MI', 'OH', 'WI'])
west = pd.Series(['AZ', 'CO', 'ID', 'MT', 'NV', 'NM',
    'UT', 'WY', 'AK', 'CA', 'HI', 'OR', 'WA'])
```

Using .append()

```
east = northeast.append(south)
print(east)
```

```
0
      CT
                        DC
      ME
                        WV
                  8
                  9
      MA
                        AL
      NH
                  10
                        KY
      RΙ
                        MS
                  11
      VT
                  12
                        TN
      NJ
                  13
                        AR
      NY
                  14
                        LA
                        OK
      PA
                  15
                        TX
      DE
                  16
                  dtype: object
      FL
      GA
      MD
      NC
      SC
      VA
```


The appended Index

Using .reset_index()

```
new_east = northeast.append(south).reset_index(drop=True)
print(new_east.head(11))
```

```
0 CT
1 ME
2 MA
3 NH
4 RI
5 VT
6 NJ
7 NY
8 PA
9 DE
10 FL
dtype: object
```

```
print(new_east.index)
```

```
RangeIndex(start=0, stop=26, step=1)
```


Using concat()

```
east = pd.concat([northeast, south])
print(east.head(11))
```

```
CT
    ME
    MA
    NH
    RI
5
    VT
    NJ
    NY
8
    PA
    DE
    FL
dtype: object
```


Using ignore_index

```
CT
      ME
      MA
3
      NH
      RI
      VT
6
      NJ
      NY
      PA
8
9
      DE
      FL
10
dtype: object
```


Let's practice!

MERGING DATAFRAMES WITH PANDAS

Appending and concatenating DataFrames

MERGING DATAFRAMES WITH PANDAS

AnacondaInstructor

Loading population data

```
import pandas as pd
pop1 = pd.read_csv('population_01.csv', index_col=0)
pop2 = pd.read_csv('population_02.csv', index_col=0)
print(type(pop1), pop1.shape)
<class 'pandas.core.frame.DataFrame'> (4, 1)
print(type(pop2), pop2.shape)
<class 'pandas.core.frame.DataFrame'> (4, 1)
```

Examining population data

print(pop1)

	2010 Census Population
Zip Code ZCTA	
66407	479
72732	4716
50579	2405
46241	30670

print(pop2)

	2010 Census Population	
Zip Code ZCTA		
12776	2180	
76092	26669	
98360	12221	
49464	27481	

Appending population DataFrames

```
pop1.append(pop2)
```

```
2010 Census Population
Zip Code ZCTA
66407
                                    479
72732
                                   4716
50579
                                   2405
46241
                                  30670
12776
                                   2180
76092
                                  26669
98360
                                  12221
49464
                                  27481
```

```
print(pop1.index.name, pop1.columns)
```

```
Zip Code ZCTA Index(['2010 Census Population'], dtype='object')
```


Population and unemployment data

```
2010 Census Population
Zip Code ZCTA
57538 322
59916 130
37660 40038
2860 45199
```


Population and unemployment data

print(unemployment)

unemployment	participants
0.11	34447
0.02	4800
0.33	42
0.07	4310
	0.11 0.02 0.33

Appending population and unemployment

population.append(unemployment)

	2010 Census Population	participants	unemployment
57538	322.0	NaN	NaN
59916	130.0	NaN	NaN
37660	40038.0	NaN	NaN
2860	45199.0	NaN	NaN
2860	NaN	34447.0	0.11
46167	NaN	4800.0	0.02
1097	NaN	42.0	0.33
80808	NaN	4310.0	0.07

Repeated index labels

population.append(unemployment)

	2010 Census Population	participants	unemployment
57538	322.0	NaN	NaN
59916	130.0	NaN	NaN
37660	40038.0	NaN	NaN
2860	45199.0	NaN	NaN
2860	NaN	34447.0	0.11
46167	NaN	4800.0	0.02
1097	NaN	42.0	0.33
80808	NaN	4310.0	0.07

Concatenating rows

pd.concat([population, unemployment], axis=0)

- (
		2010 Census Population	participants	unemployment
	57538	322.0	NaN	NaN
	59916	130.0	NaN	NaN
	37660	40038.0	NaN	NaN
	2860	45199.0	NaN	NaN
	2860	NaN	34447.0	0.11
	46167	NaN	4800.0	0.02
	1097	NaN	42.0	0.33
	80808	NaN	4310.0	0.07

Concatenating columns

pd.concat([population, unemployment], axis=1)

	2010 Census Population	unemployment	participants
1097	NaN	0.33	42.0
2860	45199.0	0.11	34447.0
37660	40038.0	NaN	NaN
46167	NaN	0.02	4800.0
57538	322.0	NaN	NaN
59916	130.0	NaN	NaN
80808	NaN	0.07	4310.0

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Concatenation, keys, and Multilndexes

MERGING DATAFRAMES WITH PANDAS

AnacondaInstructor

Loading rainfall data

```
import pandas as pd
file1 = 'q1_rainfall_2013.csv'
rain2013 = pd.read_csv(file1,
                       index_col='Month',
                       parse_dates=True)
file2 = 'q1_rainfall_2014.csv'
rain2014 = pd.read_csv(file2,
                       index_col='Month',
                       parse_dates=True)
```

Examining rainfall data

```
print(rain2013)
```

```
Precipitation
Month
Jan 0.096129
Feb 0.067143
Mar 0.061613
```

print(rain2014)

	Precipitation
Month	
Jan	0.050323
Feb	0.082143
Mar	0.070968

Concatenating rows

```
pd.concat([rain2013, rain2014], axis=0)
```

```
Precipitation

Jan 0.096129

Feb 0.067143

Mar 0.061613

Jan 0.050323

Feb 0.082143

Mar 0.070968
```


Using multi-index on rows

```
rain1314 = pd.concat([rain2013, rain2014], keys=[2013, 2014], axis=0)
print(rain1314)
```


Accessing a multi-index

```
print(rain1314.loc[2014])
```


Concatenating columns

```
rain1314 = pd.concat([rain2013, rain2014], axis='columns')
print(rain1314)
```

```
Precipitation Precipitation

Jan 0.096129 0.050323

Feb 0.067143 0.082143

Mar 0.061613 0.070968
```


Using a multi-index on columns

```
rain1314 = pd.concat([rain2013, rain2014], keys=[2013, 2014], axis='columns')
print(rain1314)
```

```
2013 2014
Precipitation Precipitation

Jan 0.096129 0.050323

Feb 0.067143 0.082143

Mar 0.061613 0.070968
```

```
rain1314[2013]
```

```
Precipitation

Jan 0.096129

Feb 0.067143

Mar 0.061613
```


pd.concat() with dict

```
rain_dict = {2013: rain2013, 2014: rain2014}
rain1314 = pd.concat(rain_dict, axis='columns')
print(rain1314)
```

```
2013 2014
Precipitation Precipitation
Jan 0.096129 0.050323
Feb 0.067143 0.082143
Mar 0.061613 0.070968
```

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Outer and inner joins

MERGING DATAFRAMES WITH PANDAS

Anaconda Instructor


```
import numpy as np
import pandas as pd
A = np.arange(8).reshape(2,4) + 0.1
print(A)
[[ 0.1 1.1 2.1 3.1]
[ 4.1 5.1 6.1 7.1]]
B = np.arange(6).reshape(2,3) + 0.2
print(B)
[[ 0.2 1.2 2.2]
[ 3.2 4.2 5.2]]
C = np.arange(12).reshape(3,4) + 0.3
print(C)
   0.3 1.3 2.3 3.3]
  4.3 5.3 6.3 7.3]
   8.3 9.3 10.3 11.3]]
```


Stacking arrays horizontally

```
np.hstack([B, A])
array([[ 0.2, 1.2, 2.2, 0.1, 1.1, 2.1, 3.1],
      [3.2, 4.2, 5.2, 4.1, 5.1, 6.1, 7.1]
np.concatenate([B, A], axis=1)
array([[ 0.2, 1.2, 2.2, 0.1, 1.1, 2.1, 3.1],
      [3.2, 4.2, 5.2, 4.1, 5.1, 6.1, 7.1]
```

Stacking arrays vertically

```
np.vstack([A, C])
array([[ 0.1, 1.1, 2.1, 3.1],
     [4.1, 5.1, 6.1, 7.1],
       0.3, 1.3, 2.3, 3.3],
     [ 4.3, 5.3, 6.3, 7.3],
     [ 8.3, 9.3, 10.3, 11.3]])
np.concatenate([A, C], axis=0)
array([[ 0.1, 1.1, 2.1, 3.1],
     [4.1, 5.1, 6.1, 7.1],
       0.3, 1.3, 2.3, 3.3],
     [ 4.3, 5.3, 6.3, 7.3],
     [ 8.3, 9.3, 10.3, 11.3]])
```

```
np.concatenate([A, B], axis=0) # incompatible columns
```

```
ValueError Traceback (most recent call last)

1 np.concatenate([A, B], axis=0) # incompatible columns

ValueError: all the input array dimensions except for
the concatenation axis must match exactly
```

np.concatenate([A, C], axis=1) # incompatible rows

```
ValueError Traceback (most recent call last)

1 np.concatenate([A, C], axis=1) # incompatible rows

ValueError: all the input array dimensions except for

the concatenation axis must match exactly
```



```
population = pd.read_csv('population_00.csv', index_col=0)
unemployment = pd.read_csv('unemployment_00.csv', index_col=0)
print(population)
print(unemployment)
```

	2010	Census Population	n
Zip Co	de ZCTA		
57538		322	2
59916		130	0
37660		40038	8
2860		45199	9
	unemployment	participants	
Zip			
2860	0.11	34447	
46167	0.02	4800	
1097	0.33	42	
80808	0.07	4310	

Converting to arrays

```
population_array = np.array(population)
print(population_array) # Index info is lost
   322]
   130]
 [40038]
 [45199]]
unemployment_array = np.array(unemployment)
print(population_array)
   1.10000000e-01
                    3.44470000e+04]
   2.00000000e-02
                    4.80000000e+03]
    3.30000000e-01
                    4.20000000e+01]
    7.0000000e-02
                     4.31000000e+03]]
```


Manipulating data as arrays

```
[[ 3.22000000e+02 1.10000000e-01 3.44470000e+04]
  [ 1.30000000e+02 2.00000000e-02 4.80000000e+03]
  [ 4.00380000e+04 3.30000000e-01 4.20000000e+01]
  [ 4.51990000e+04 7.00000000e-02 4.31000000e+03]]
```

Joins

- Joining tables: Combining rows of multiple tables
- Outer join
 - Missing fields filled with NaN
 - Union of index sets (all labels, no repetition)
- Inner join
 - Intersection of index sets (only common labels)

Concatenation and inner join

```
pd.concat([population, unemployment], axis=1, join='inner')
```

```
2010 Census Population unemployment participants
2860 45199 0.11 34447
```


Concatenation and outer join

pd.concat([population, unemployment], axis=1, join='outer')

	2010 Census Population	unemployment	participants
1097	NaN	0.33	42.0
2860	45199.0	0.11	34447.0
37660	40038.0	NaN	NaN
46167	NaN	0.02	4800.0
57538	322.0	NaN	NaN
59916	130.0	NaN	NaN
80808	NaN	0.07	4310.0

Inner join on other axis

```
pd.concat([population, unemployment], join='inner', axis=0)
```

```
Empty DataFrame
Columns: []
Index: [2860, 46167, 1097, 80808, 57538, 59916, 37660, 2860]
```


Let's practice!

MERGING DATAFRAMES WITH PANDAS

