CS102

二分查找 binary search

典型二分查找问题

显性数组元素查找

身高查询

狙击装备

僵尸幸存者2

单调函数求零点

开二次方

特殊三次方程

最大化分组和的最小值

臭皮匠2

最小化分组和的最大值

高智商罪犯2

秘籍修复

最大化位置间隔最小值

高智商罪犯3

典型二分查找问题

二分答案

可行性问题

最大化分组和的最小值

臭皮匠2

最小化分组和的最大值

高智商罪犯2

秘籍修复

最大化位置间隔最小值

高智商罪犯3

最大化平均值问题

送礼就要体面

送礼讲究"体面",所以很多礼品包装都非常漂亮。而你的送礼哲学是"体面"体现在"体积"。从n个礼品里你需要挑选k个,第i件的体积是vi,价格是pi。请问对于选出的k件礼品,单位价格的体积最大是多少?(也就是总体积除以总价格希望最大化)输入第一行是n和k,之后n行每行是vi和pi。1<=k<=n<=100000输出有个浮点数,保留两位小数

输入样例:

3 2

22

35

12

输出样例:

0.75

思考:能否使用贪心算法

送礼就要体面

错误的贪心算法:

- 1.计算每件礼品i的性价比: vi除以pi
- 2.将所有礼品按照性价比排序
- 3.依次挑选性价比最高的k件礼品

输入样例:

32

22

35

1 2

输出样例:

0.75

礼品性价比列表:

2.0/2.0=1.0

3.0/5.0=0.6

1.0/2.0=0.5

如果选取最高性价比的两件

答案=5.0/7.0 =0.71

正确算法: 二分答案+判断可行性

二分枚举可能的答案:

答案x初始化范围为[0, max_v / max_p] 里的浮点数

对于特定的x,判断可行性: 能否选出k件礼品性价比不低于x?

不断二分缩小x的可能范围 直到待查找范围大小小于误差允许的范围

判断可行性

对于特定的x, 判断可行性:

能否选出k件礼品性价比不低于x?

$$\frac{\sum_{i \in S} v_i}{\sum_{i \in S} p_i} \ge x$$

是否存在礼品集合S,含有k个礼品:总体性价比满足左侧不等式

$$\sum_{i \in S} v_i \ge x \sum_{i \in S} p_i$$

$$\sum_{i \in S} v_i - x \sum_{i \in S} p_i \geq 0$$

$$\sum_{i \in S} (v_i - x \cdot p_i) \ge 0$$

是否存在礼品集合S,含有k个礼品:它们的(vi-x*pi)数值总和不小于0

容易判断!

判断可行性

对于特定的x, 判断可行性:

能否选出k件礼品性价比不低于x?

$$\sum_{i \in S} (v_i - x \cdot p_i) \ge 0$$

是否存在礼品集合S,含有k个礼品:它们的(vi-x*pi)数值总和不小于0

贪心算法判断可行性:

- 1.计算每件礼品i的剩余价值=(vi-x*pi)
- 2.将所有礼品按照剩余价值排序
- 3.依次挑选剩余价值最高的k件礼品
- 4.判断它们剩余价值总和是否非负

送礼就要体面

```
10 bool OK(double x){
11     for(int i=0;i<n;i++)z[i]=v[i]-x*p[i];
12     sort(z,z+n);
13     double sum=0;
14     for(int i=n-k;i<n;i++)sum+=z[i];
15     return sum>=0;
16 }
```

```
double maxv=*max_element(v,v+n);
20
        double minp=*min_element(p,p+n);
21
        double l=0,r=maxv/minp,ans=0;
22
23阜
        while(r-1>ERR){
            double mid=1+(r-1)/2;
24
            if(OK(mid)) ans=l=mid;
25
26
            else r=mid;
27
28
        cout<<ans<<endl;
```

二分查找 综合练习

课件下载链接:

链接: https://pan.baidu.com/s/1ei7f7w

密码: q66i

作业网站:

http://120.132.18.213:8080/thrall-web/main#home