PATENT SPECIFICATION

(11)

1 577 933

(22) Filed 11 Feb. 1976 (21) Application No. 5376/76

(23) Complete Specification Filed 9 Feb. 1977

(44) Complete Specification Published 29 Oct. 1980

(51) INT. CL.3 C11C 3/10

(52) Index at Acceptance C5C 3A9 9B9C1 9B9D

(72) Inventors: MICHAEL HERDER COLEMAN ALASDAIR ROBIN MACRAE

(54) FAT PROCESS AND COMPOSITION

(71) We, UNILEVER LIMITED, a company organised under the laws of Great Britain, of Unilever House, Blackfriars, London E.C.4, England, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in and by the following statement:

This invention relates to fats particularly for edible purposes and their preparation by

interesterification.

The rearrangement by interesterification of fatty acid radicals among triglyceride molecules is widely applied to meet the requirements, particularly the melting requirements, for fats, including glyceride oils, particularly for such edible applications as margarine and bakery applications.

The present invention proposes the use as the catalyst in interesterification reactions of a

lipase enzyme.

10

The invention comprises an interesterification process in which fatty acid moieties of a reactant composition comprising a fat are rearranged in liquid phase by interesterification in the presence of a lipase enzyme interesterification catalyst and an amount of water to

activate the enzyme.

The process of the invention is carried out at moderate temperatures, at which the enzyme is active and under mild conditions which avoid the need for strongly acidic or alkaline or other extreme conditions. Preferred temperatures are between 20 and 60°C particularly up to 50°C, according to the capacity of the enzyme adopted to withstand elevated temperatures. The reaction is in the liquid phase and may be facilitated by dissolving the reactants in an organic solvent, preferably low-boiling alkanes, e.g. petroleum ether (60-80°C B range). The solvent should not affect the enzyme.

In contrast to conventional interesterification processes where even 0.1% water is undesirable requiring additional amounts of the catalysts a small amount.

undesirable, requiring additional amounts of the catalyst, a small amount, usually up to 10% but preferably 0.2 to 1% water or buffer solution is necessary for the enzyme to function and excessive precautions to dry the fat or other materials used in the process are therefore not required since any moisture they contain may contribute to the water required in the reaction. More than 1% water or buffer is less desirable in the present invention as 30 the reverse hydrolysis reaction is thereby promoted, with the formation of partial

The water required in the reaction may be incorporated into the reaction medium adsorbed in a support agent such as kieselguhr, which may be used to aid dispersion also of the enzyme and, as explained later, preferably combined with the enzyme. Quantities are based on the weight of fatty reactants. The purpose of the buffer is to maintain the reactants

at a pH at which the lipase is reactive.

The process of the invention can be applied to achieve the results of conventional

interesterification processes.

Free fatty acid may be added to glyceride mixtures to contribute to the formation of glycerides in the rearrangement, together with other fatty acids liberated from the triglycerides themselves in the course of the reaction. Preferably a molar ratio of 0.3:1 to 7:1 acids to glycerides is used according to the extent of reaction required. A further advantage which the present invention provides is due to the specific reactivity of certain lipase enzymes. Whereas some will rearrange the fatty acid radicals on any position of the triglyceride molecule, others react only to change the radicals occupying specified positions,

15 .:

25

30

35

40

while yet others are reactive only to specific fatty acid species. For example, Candida cylindracae lipase is non-specific and provides a true randomisation of all fatty acid radicals on all the glyceride positions, whereas Rhizopus enzymes are specific to the 1,3 terminal acid radicals, giving very little change in any 2-position acid radicals. Geotrichum Candidum lipase on the other hand is specific to acids with a double bond in the 9-position, e.g. oleic and linoleic acids, regardless of their position on the glyceride radical.

Again, since the process of the invention usually takes from 20 to 72 hours to complete,

according to conditions, less with fixed catalyst beds, it is possible to halt reaction at any stage before a reaction is complete thus giving a further control in the modification of fats which has not hitherto been available in more rapid interesterification reactions.

A widely ranging facility is therefore provided by combining the variables applicable to

the invention, for obtaining a wide range of products with the advantages outlined.

The invention may be used to upgrade fats for a wide variety of purposes. For example more highly unsaturated acids may be replaced in glycerides by less unsaturated or saturated acids and vice versa, according to requirements. Again, the exchange may be effected in specific positions of the glyceride residue and/or by specific acids by using enzymes of specific reactivity. Combinations of these various aspects of the invention may be adopted to achieve particular products with a notable decrease in the production of less desired glyceride fractions, thereby simplifying the separation of the required glyceride

species from the product mixture and increasing their yield. An important application of the upgrading of fats and glyceride oils by selective replacement of fatty acid residues in their glyceride molecules in accordance with the invention is in the provision of replacement fats for cocoabutter in the confectionary trade from less expensive vegetable oils and fats. Cocoabutter itself contains substantial quantities of 2-oleyl glycerides of palmitic and stearic acid and these confer the valuable melting characteristics for which the fat is so highly prized, providing in chocolate confectionary a sharp melting in the region of body temperature, from a hard solid resisting melting by handling to a mobile fluid flowing easily and quickly from the tongue. A few alternative sources of vegetable butters, notably shea fat and illipe are of similar constitution, but are themselves expensive and being largely uncultivated are of variable quality. Palm oil is much cheaper and contains significant amounts of dipalmityl 2-unsaturated glycerides and these are recovered by fractionation. The bulk of the glycerides of most vegetable oils however are unsaturated in at least one of the alpha-positions in addition to the beta or 2-position. Attempts to upgrade these glyceride oils for the production of chocolate fats therefore require the specific replacement of 1,3 outer, unsaturated fatty acid radicals by saturated acids to harden the product, particularly stearic acid, and where necessary also of any highly unsaturated acid radicals on the inner, 2-position by the oleyl radical. Both hydrogentaion and conventional interesterification processes which may be used for this purpose in hardening processes are however non-selective in affecting all the glyceride positions. Moreover, hydrogenation processes are investigably accompanied by isomerication of any unsaturated acid radicals remaining in are invariably accompanied by isomerisation of any unsaturated acid radicals remaining in the product from the natural cis-form to the trans-form, for example oleic acid to its isomer elaidic acid. This isomerisation confers a different melting point on a glyceride containing a trans-acid radical, the amount formed varying according to the catalyst and the reaction conditions, greatly adding to the complexity of the reaction and the uncertainty of the characteristics of the product. By the use of selective lipase the present invention provides selectively interesterified fats and a hardening process which is free from these defects,

enabling unsaturated acids or short-chain saturated acids in the 1- and 3-positions to be replaced by saturated acids conferring improved melting characteristics on the product. The invention therefore provides as products hardened but still unsaturated fats which are nevertheless free from elaidinisation, comprising glycerides of fatty acids, preferably from C_{12} to C_{22} and more particularly C_{16} and C_{18} saturated fatty acids. The hardened fats of the invention are good cocoabutter replacements and preferably have an Iodine Value of 25 to 40, reflecting a composition corresponding to an average in each glyceride molecule of a single monoethylenically-unsaturated acid residue. This is in the 2-position and the preferred hardened but unelaidinised and still unsaturated fats of the invention are therefore substantially free from saturated acids in the 2-position.

The invention is moreover applicable to upgrading fats by increasing the degree of unsaturation. This may be desirable for dietetic reasons, fully unsaturated fats being prized for their dietetic value. The replacement for this purpose may be particularly by linoleic acid and by the use of positionally-selective lipase catalysts, may be confined to either the outer or inner glyceride positions.

The upgrading of fats in accordance with the invention, whether by hardening or by increasing polyunsaturated acid content, is valuable for confectionary, margarine and culinary fats. In the former, preferably hardened fats contain at most 42% total unsaturated

5

10

15

20

30

35

50

55

60

	fatty acids more than 85% of those which are in the 2-position being disadulated. The enzyme catalyst may be from animal, vegetable or microbial sources, preferably the	
	The enzyme catalyst may be from animal, vegetable of interval and sales, represented as latter. Commercially available enzyme compositions may be suitable. These are provided as latter. Commercially available enzyme compositions may be suitable. These are provided as latter. Commercially available enzyme and sugar materials and salts in addition to varying	
	powdered solids, incorporating protein and subscenting the equivalent to 1 to 500 units of	5
5	amounts of the active enzyme and protocological unit releasing 1 micro mole of	•
	activity/mg, based on the standard generally and are standard conditions. According to	
	fatty acid from olive oil substrate in 1 minute under standard contents of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these, the olive oil is dispersed to form a 5% emulsion in a 5% aqueous emulsion of gum these.	
	these, the olive oil is dispersed to form a 3% emulsion in a 2% added to the arabic containing 50 mM calcium chloride, the pH of the reaction being 6.0 and the arabic containing 50 mM calcium chloride, the pH of the reaction being 6.0 and the arabic containing 50 mM calcium chloride, the pH of t	10
10	arabic containing 50 mM calcium chloride, the pH of the reaction string the string str	10
10	weight of fatty reactants.	
	weight of fatty reactants. The reagents comprising fatty reactants including glyceride, water including buffer if	
	desired, and enzyme, are preferably agricultured to prevent the ingress of moisture.	
	the enzyme dispersed, preferably in a closed by including in the reagents an	15
15	Dispersion of the water and enzyme that such as a g kieselouhr which adsorbs the	
	adsorbent, inert powder, for example a filter and such as e.g. kiesergain water and attaches to the enzyme, preferably in an amount from 1% to 10% of the fatty water and attaches to the enzyme, preferably acid.	•
	reactants, i.e. fat or oil and their fatty acid.	
	reactants, i.e. fat or oil and their fatty acid. In many cases a small amount of free fatty acid and partial glycerides may be formed by In many cases a small amount of free fatty acid and partial glycerides may be formed by In many surplus free fatty acid by	20
20	In many cases a small amount of free fatty acid and partial grysother acid by hydrolysis. These may be removed, together with any surplus free fatty acid by hydrolysis. These may be removed, together with any surplus free fatty acid by hydrolysis.	20
20	hydrolysis. These may be removed, together with any surplus field larger hydrolysis. These may be removed, together with any surplus field larger hydrolysis. These may be removed, together with any surplus field hydrolysis. These may be removed, together with any surplus field hydrolysis. These may be removed, together with any surplus field hydrolysis.	
	molecular distillation. Sincic acid cinomatographic	
	also be removed by crystallisation of absorber to solvent fractionation or other	
	The purified glyceride product may be supported as required. The economy of the	25
25	conventional processes to recover preferred components as required. The conventional processes to recover preferred components as required. The conventional processes may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds, process may be also improved by enzyme recovery and re-use or by use in fixed beds.	
	process may be also improved by enzyme recovery and re-use of by also improved by enzyme recovery and re-use of by also injure particularly if it is carried on a support agent. Enzymes supported on a wide variety of inert particularly if it is finally divided form for recovery and re-use are well known. Such	
	particularly if it is carried on a support agent. Enzymes supported on a support agent. Enzymes support	
	materials include carbon, centuose, glass, or a significant in head form and synthetic	30
30	silica-based ausorption agents, in a silica-based and enzyme Enzymes can	
	resins. These may be used as described to the described are well known in enzyme	
	also be stabilised for re-use in an insoluble form. Such techniques are wen known as also be stabilised for re-use in an insoluble form. Such techniques are wen known as a large stabilised for re-use in an insoluble form. Such techniques are wen known as a large stabilised for re-use in an insoluble form. Such techniques are wen known as the stabilised for re-use in an insoluble form. Such techniques are wen known as the stabilised for re-use in an insoluble form. Such techniques are wen known as the stabilised for re-use in an insoluble form. Such techniques are wen known as the stabilised for re-use in an insoluble form. Such techniques are wen known as the stabilised for re-use in an insoluble form.	
	from alucase	35
35	from glucose. The invention may be applied to rearrangement of fatty acids commonly occurring in The invention may be applied to rearrangement of fatty acids commonly occurring in the invention of a propositively short chain length from C ₆ to C ₁₄ , or of longer chain acids	برد
33	The invention may be applied to rearrangement of latty acids common longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats, e.g. acids of comparatively short chain length from C ₆ to C ₁₄ , or of longer chain acids fats acids	
	e.g. Cie to Cig of even longer, c.g. 20 or 22 married or they may be saturated.	
	more ethylenic bolid, whether on or compined	40
40	The fatty reagents of the invention complete and vegetable	40
40	in glycerides. The invention may be applied to glycerides in all all all all all all all all all al	
	fats and oils. These chiefly comprise glycerides of C ₁₆ and C ₁₈ fatty acids, or examples of shorter and longer chain acids, for example lauric fats, crucifera oils. Particular examples of shorter and longer chain acids, for example lauric fats, crucifera oils. Particular examples of shorter and longer chain acids, for example lauric fats, crucifera oils. Particular examples	_
	of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, for example lauric tats, crucineta ons. I arrived the of shorter and longer chain acids, crucineta on the original acids and their of shorter and longer chain acids, crucineta on the original acids and crucineta on the original acids acids and crucineta on the original acids and crucineta on the original acids acids acids acids and crucineta on the original acids	
	of vegetable oils include palm, cottonseed, onve, soyabean and sunflowed and illipe. derivatives. Vegetable butters are also suitable including in particular shea and illipe.	45
45		
	Example 1 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours 25 gms each of coconut oil and olive oil were stirred in a closed vessel at 40°C for 66 hours	
	25 gms each of coconut oil and olive oil were stirred in a closed vesser at weight of Candida with 5% of their weight of Celite and approximately 2.5% of their weight of Candida with 5% of their weight of Celite and approximately 2.5% of their weight of Candida with 5% of their weight of Celite and approximately 2.5% of their weight of Candida with 5% of their wei	
	with 5% of their weight of Celite and approximately 2.5% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.7% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.5% of a 20 millimolar cylindracae lipase (1200 mgms equivalent to 45,000 units) and 0.5% of a 20 milli	50
50	buffer solution of N-trishydroxymetry, in the oil lover decanted leaving a pellet	•
-	buffer solution of N-trishydroxymethyl methyl-2-aminoethale subjoints. The reaction mixture obtained was centrifuged and the oil layer decanted, leaving a pellet which was washed with 80 vol. % of the original oil mixture, using a petroleum ether of which was washed with 80 vol. % of the original oil mixture, using a petroleum ether of which was washed with 80 vol. washings being added to the oil layer.	
	which was washed with do vot. 70 of the she oil layer	
	which was washed with 80 vol. % of the original boiling range 40 to 60°C; washings being added to the oil layer. After removing the solvent by evaporation a reaction product was obtained in 96% yield	55
55	of the original oil mixture.))
در	of the original oil mixture. A portion of the reaction product was analysed by application to a silicic acid thin layer A portion of the reaction product was analysed by application to a silicic acid thin layer	
	plate which was solvent-developed using as developed using as deferming acid. From the plate 12% of	•
•	plate which was solvent-developed using as developing solvent to parts of parts of plate 72% of (40-60°C fraction), 40 parts of diethyl ether and 1 part of formic acid. From the plate 72% of (40-60°C fraction), 40 parts of diethyl ether and 1 part of formic acid. From the plate 72% of (40-60°C fraction), 40 parts of diethyl ether with 16.5% of diglyceride, 0.5% monoglyceride	
	a triglyceride range was obtained together with a second respective to the second respective to	60
60	and 10.3% free fatty actu.	
	The composition of the triglyceride fraction was determined by gas industries of the compared in Table 1 with that of the original coconut oil/olive oil mixture and the phy and is compared in Table 1 with that of the original coconut oil/olive oil mixture and the phy and is compared in the presence of a conventional alkali metal catalyst.	
	phy and is compared in Table 1 with that of the original cocontrol original	

TABLE 1

•		•			•				
				Wt	% triglyce	eride		·	
Triglyc carbon (excl.g residue	no. Iycerol	In oil		In by enzy	teresterifie me	ed oil by alka catalyst	li metal	· ·	
26 28		0.1 0.3		0.1 0.2		0.3 0.5	:		
30		1.1	}	0.5	}	0.7	}		
32		5.0	{	1.4	{ ·	2.1	\ ·		
34	-	6.7	28.8	2.1	14.9	2.1	15.4		
36	•	8.4	{	4.2	{	4.0	{		
38		7.6	}	6.7	<u> </u>	6.5	<u>}</u>		_
40		4.5	}	7.2	}	6.6	}		
42		3.4	{	13.1	{	12.6	}		
44		1.9	12.0	11.6	60.9	11.4	60.9°		
46		1.2	{	11.6	}	11.7	}	٠.	
48		1.0	<u>}</u>	17.4	<u>) </u>	18.0)	- : -	- .
50	-	4.7	}	6.8	}	7.4	}		
52		21.2	5 58.7	7.4)) 23.9	7.2) 23.5	•	•
54		31.8	{	9.3)	8.4	}		
56		1.0	<u> </u>	0.4)	0.5	<u>)</u>		_
Total		99.9		100		100			
higher the er this E	r and lowe rzyme-cat xample sh	alysed and now the eff	alkali-met	occurs betwa result of in al-catalysed resterification il are predoff olive oil	processes on particula	The parti arly well, si of lauric ar	cular oils nce on th	selected e one ha fatty acid	iń nd
0.004	parts of parts of R	nizopus ae	temar lipas	oil, 1.5 partie (200 units	a range 6) to 80°C a	nd 0.02 t	parts of t	he
buffer Aft boilin residu the fa comp	er 48 hou g range 40 ge analyse atty acid cared with	in the presents the mix to 60°C, a das before omposition that of the	ture obtaind centrifu by thin lay of which palm mid	ned was dil iged. The so yer chromate was determ -fraction sta	uted with olvent was a ography, re ined by ga arting mate	10 parts of removed by ecovering a liquid cherial in Tab	f petroleum evaporate triglyceri romatograle 2. The	im ether tion and to de fraction aphy and triglycer 8% of	of the on, i is ide the
mole	porated si cules.	earate resi	aid distrib	present in ution in the ar details fo	original pa	ılm mid-fra	ction and	triglycer	ide

	r a financia	2 was repeated u	sing a sui	pported er	izyme, A.	niger in Ex	ample 3, R.	
	The procedu	re for preparing the lipase of the lipase	ne suppor were diss	ted enzyn olved in 20	parts of d	follows:- istilled wate	r and 5 parts	5
5 .	stirring continu	ed for 30 minutes m reduced pressure. f the Celite lipase	LOIC. THO	0011 P				
10	0.25 parts of otherwise was The origins	of the lipase mate	rial used	were as f	ollows:-			10
	A. niger R. arrhizus R. japonicus	Soc	Ranidas	maceutical se, France o. Ltd., J	Co., Japa apan.	in;		15
15	R. Jupomo		TA	BLE 2				F.
	,							
		Timaka		· 	Fatty A		10.0	20
20	Triglyceride	Lipase	14:0	16:0	18:0	18:1	18:2	
	PMF	Mark State	0.8	58.7	6.6	31.2	2.7	25
25	Example 2 3	R. delemar A. niger	1.0 0.3 (0.0	37.4 34.8 16.1	29.6 30.9 2.7	30.0 31.5 77.6	2.0 2.5 3.6)	
30	4 5	R. arrhizus R. japonicus	0.3 0.3	37.4 37.2	30.5 32.3	29.8 28.6	2.0 1.6	30
35	decrease in participation of the data in t	d increase in stearic trent, with no substoalmitic acid conte n parenthesis for I rom this the amount	nt is also Example 3 ant of inc	evident. 3 refers to dividual tr	analysis o	f the acids	occupying the he triglyceride is (I.A.O.C.S.	35
40	product recov	rom this the amouvered was calculated & 40 242 (1963) an pared with corresp	d Adv. Li conding d	pid Res. I ata for pa	-1 (1963)).	Results app	pear in Table 3	40
, ,		•	TA	ABLE 3			• 4 .	45
45	Triglyceride	species	·PM	F 1	interesterifi	ed triglyce: %	nde	, 45
50	POP POSt StOSt Other glyce	rides	57 13 1 29			18.7 36.7 17.0 27.6		50
	St = Stea	ıryl						55
55	occure in the	le 3 it is evident that 2-oleyl symmetrics palmitostearyl 2-ole	at misates a	6.7		•		22
60	Analysis showed that substantially	palmitostearyl 2-ole of the 2-position of t 95-97% stearic at no removal of of 3 was repeated at bined stearic acid	cid radica leic acid 1 50° and 6	ls incorporadicals from 0°C, yieldi	1 7	adition		60
65		3 was repeated e	•		yme powde	er was also	recovered and	65

re-incubated several times with fresh starting materials. These were 2.5 parts each stearic acid and palm oil with water instead of buffer.

			IA.	BLE 4	-		
	 		W	t % fatty	acid		
Fatty acid	in palm oil	in inter	esterified t	riglyceride			
iciu	Oil	Incubati 1	ion 2	3	4	5	6 .
14:0	1.0	0.5 24.0	0.5 24.8	0.3 24.7	0.4 28.1	0.3 29.5	0.5 29.8
16:0 18:0	45.1 5.1	38.1	38.3	40.3	34.8	31.5	30.9
18:1	39.3	29.8	29.2	28.1	29.6	31.0	31.1
18:2	9.5	7.6	7.2	6.6	7.1	7.7	7.7
Incubati time (da		2	2	3	2	2	3
Parts of water a	•	0.020	0.020	0.015	0.015	0.010	0.015
		-fraction we	ere reacted	for 2 days a	400C	A 75	
agitation Example tube.	chidic acid, n with 0.25 p e 2 and previo	parts Asp.	niger lipased by shaking	e/kieselguhi g for 30 min	r powder, nutes with 0	prepared a .02 parts w	s described in ater in a sealer and 42% fre
agitation Example tube. The f fatty aci C ₁₄ 0.3;	chidic acid, n with 0.25 pe 2 and previous atty products d with less th C ₁₆ 31.3; C	parts Asp. busly wetter were compan 1% mon	niger lipased by shaking posed of 47 oglyceride.	e/kieselguhig for 30 mir % triglyce The triglyce 30.0 oleic a	r powder, nutes with 0 ride, 11%. ceride containd 3.7 line	prepared a .02 parts will diglyceride ained as %: sleic acid. A at 97% of the state	s described in a sealed and 42% fresaturated acid Analysis of the the stearic and
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cand acetone parts lir	chidic acid, a with 0.25 pe 2 and previous dwith less the C ₁₆ 31.3; C the 2-position cresidues in e 8 dida cylindrace onto kieselgioleic acid w	grants Asp. ously wetter were com an 1% mon 18 19.5; C ₂₀ on by pancr corporated ae lipase e uhr by the n ere dissolve	n 10 parts niger lipas d by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr	ekieselguhi g for 30 mir 9% triglyce The triglyce 30.0 oleic a treatment iglyceride p angyo Com tribed in Exts of 60-80°	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit cample 2. 2 °C petroleuture of 0.1	prepared a .02 parts widiglyceride ained as % leic acid. A .a at 97% of aupied 1- ar at ed was presented was presented was presented as at each was presented as at	s described in a sealer and 42% free saturated acid Analysis of the stearic and 3-positions decipitated with a solution the supporte
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in the 8 ida cylindrace onto kieselgy noleic acid wwith agitation d 0.113 part e 7. After re	parts Asp. ously wetter were compan 1% mon 18 19.5; C _{2r} on by pancr corporated ae lipase e uhr by the n ere dissolve on for 2 day s kieselguhi covery the	n 10 parts niger lipas d by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa method desc d in 8 par ys at 40°C r. previousl product con	ekieselguhig for 30 mir merkieselguhig for 30 mir merkiese The triglyce 30.0 oleic a treatment iglyceride parties of 60-80 with a mix y wetted with a mix y wetted with a mix of solveride	r powder, nutes with 0 ride, 11% ceride containd 3.7 line showed the product occupany Limit cample 2. 2 °C petrolet ture of 0.1 ith 0.02 par The fatty	prepared a full prepared as well as we	s described in a sealer and 42% fre saturated acid Analysis of the the stearic and 3-positions decipitated with supporte as described iglyceride, 39% osition of the solution
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position c residues in the 8 ida cylindrace onto kieselgy noleic acid w with agitation d 0.113 part	parts Asp. ously wetter were compan 1% mon 18 19.5; C _{2r} on by pancr corporated ae lipase e uhr by the n ere dissolve on for 2 day s kieselguhi covery the	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 1 eatic lipase into the tr x Meito Sa method desc ed in 8 par ys at 40°C r. previousl product con 1% mono compared in	ekieselguhig for 30 mir merkieselguhig for 30 mir merkiese The triglyce 30.0 oleic a treatment iglyceride parties of 60-80 with a mix y wetted with a mix y wetted with a mix of solveride	r powder, nutes with 0 ride, 11% ceride containd 3.7 line showed the product occupany Limit cample 2. 2 °C petrolet ture of 0.1 ith 0.02 par The fatty	prepared a full prepared as well as we	s described in a sealer and 42% fresaturated acid Analysis of the stearic and 3-positions decipitated with supporte as described iglyceride, 39% osition of the solution of th
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in the 8 ida cylindrace onto kieselgy noleic acid wwith agitation d 0.113 part e 7. After re	parts Asp. ously wetter were compan 1% mon 18 19.5; C _{2r} on by pancr corporated ae lipase e uhr by the n ere dissolve on for 2 day s kieselguhi covery the	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa nethod desc ed in 8 par ys at 40°C r. previousl product cor 1% mono ompared ir	ekieselguhig for 30 mir // triglyce The triglyce 30.0 oleic a treatment iglyceride parties of 60-80 with a mix y wetted with the state of 60-80 glyceride. Table 5	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit (ample 2. 2°C petroleuture of 0.1 ith 0.02 par & triglyceri The fatty with the o	prepared a full prepared as well as we	s described in a sealer and 42% fresaturated acid Analysis of the stearic and 3-positions decipitated with supporte as described iglyceride, 39% osition of the solution of th
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in the 8 ida cylindrace onto kieselgy noleic acid wwith agitation d 0.113 part e 7. After re	parts Asp. ously wetter were compan 1% mon 18 19.5; C _{2r} on by pancr corporated ae lipase e uhr by the n ere dissolve on for 2 day s kieselguhi covery the	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa nethod desc ed in 8 par ys at 40°C r. previousl product cor 1% mono ompared ir	g for 30 mir g for 30 mir g for 30 mir g for 30 mir g triglyce 30.0 oleic a treatment iglyceride p ingyo Com tribed in Exts of 60-80 with a mix y wetted w trained 50 glyceride. Table 5	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit (ample 2. 2°C petroleuture of 0.1 tith 0.02 par & triglyceri The fatty with the o	prepared a .02 parts widiglyceride ained as % oleic acid. A at 97% of aupied 1- ar ted was presented was presented was presented ained ained ained ained compriginal oliveresterified	s described in a sealer and 42% fresaturated acid Analysis of the stearic and 3-positions decipitated with supporte as described iglyceride, 39% osition of the solution of th
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in the 8 ida cylindrace onto kieselgy noleic acid wwith agitation d 0.113 part e 7. After re	grants Asp. Sously wetter Sously mon Sously wetter Sously mon Sously wetter Sously mon Sously wetter So	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa nethod desc ed in 8 par ys at 40°C r. previousl product cor 1% mono ompared ir	g for 30 mir g for 30 mir g for 30 mir g for 30 mir g triglyce 30.0 oleic a treatment iglyceride p ingyo Com tribed in Exts of 60-80 with a mix y wetted w trained 50 glyceride. Table 5	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit (ample 2. 2°C petroleuture of 0.1 tith 0.02 par & triglyceri The fatty with the o	prepared a .02 parts w diglyceride ained as % leic acid. A at 97% of aupied 1- ar ted was pre .5 parts of c material arter at at 1% di acid comp riginal oliv	s described in a sealer and 42% fresaturated acid Analysis of the stearic and 3-positions decipitated with supporte as described iglyceride, 39% osition of the solution of th
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in e 8 ida cylindrace onto kieselg noleic acid w with agitatic and 0.113 part e 7. After retry acid and erified trigly	dissolved in parts Asp. cously wetter as 1% mon as 19.5; C _{2r} on by pancr corporated are lipase eathr by the nere dissolved in for 2 days kieselguhr covery the less than ceride is co	n 10 parts niger lipass d by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa nethod desc ed in 8 par ys at 40°C r, previousl previousl 1% mono compared ir Fatty Olive Oil	g for 30 mir g for 30 mir g for 30 mir g for 30 mir g triglyce 30.0 oleic a treatment iglyceride p ingyo Com tribed in Exts of 60-80 with a mix y wetted w trained 50 glyceride. Table 5	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit (ample 2. 2°C petroleuture of 0.1 tith 0.02 par & triglyceri The fatty with the o	prepared a .02 parts widiglyceride ained as % leic acid. A at 97% of supied 1- at the was pressed at 15 parts of commether ar 37 parts of the soft water de, 11% diacid compriginal oliveresterified yceride	and 42% free saturated acid Analysis of the stearic and 3-positions decipitated with supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported in glyceride in glyceride in glyceride, 39% osition of the supported in glyceride in
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in the 8 ida cylindrace onto kieselgy noleic acid wwith agitation d 0.113 part e 7. After re	dissolved in parts Asp. Dously wetter as 1% mon as 19.5; C _{2r} on by pancr corporated are lipase eather by the nere dissolved in for 2 days kieselguhicovery the less than ceride is co	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 3 eatic lipase into the tr x Meito Sa method desc ed in 8 par ys at 40°C r. previousl product con 1% mono compared in TA Fatty Dive Oil 1.5 0.2	g for 30 mir g for 30 mir g for 30 mir g for 30 mir g triglyce 30.0 oleic a treatment iglyceride p ingyo Com tribed in Exts of 60-80 with a mix y wetted w trained 50 glyceride. Table 5	r powder, nutes with 0 ride, 11%. eride contained 3.7 lind showed the product occupany Limitample 2. 2 °C petroleuture of 0.1 ith 0.02 par triglyceri The fatty with the o	prepared a .02 parts word diglyceride as % leic acid. A at 97% of aupied 1- ar at ed was prospected was prospected was prospected was prospected was prospected acid. 20 was prospected with acid compriginal oliveresterified yceride	and 42% free saturated acid Analysis of the stearic and 3-positions decipitated with supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported as described in glyceride, 39% osition of the supported in glyceride in glyceride in glyceride, 39% osition of the supported in glyceride in
agitation Example tube. The f fatty aci C ₁₄ 0.3; acids in arachidi Example Cande acetond acetond in reacted lipase an Example	chidic acid, a with 0.25 pe 2 and previous atty products d with less the C ₁₆ 31.3; C the 2-position cresidues in e 8 ida cylindrace onto kieselg noleic acid w with agitation d 0.113 part e 7. After retty acid and erified trigly	dissolved in parts Asp. cously wetter an 1% mon as 19.5; C ₂₀ on by pancr corporated are lipase eathr by the nere dissolved in for 2 days kieselguhicovery the less than ceride is co	n 10 parts niger lipas i by shaking posed of 47 oglyceride. 15.2 and 1 eatic lipase into the tr x Meito Sa method desc ed in 8 par ys at 40°C r, previousl product con 1% mono compared ir Fatty Dlive Oil 1.5	g for 30 mir g for 30 mir g for 30 mir g for 30 mir g triglyce 30.0 oleic a treatment iglyceride p ingyo Com tribed in Exts of 60-80 with a mix y wetted w trained 50 glyceride. Table 5	r powder, nutes with 0 ride, 11% ceride contained 3.7 line showed the product occupany Limit cample 2. 2 °C petrolecture of 0.1 ith 0.02 part tries for triglyceri The fatty with the o	prepared a .02 parts word in ed as % leic acid. A leic acid. Compriginal oliveresterified yceride	each of stearicing range) by a described in a sealed and 42% free saturated acid. Analysis of the stearic and 3-positions. The supporter as described in the supporter as described in the solution of the supporter as described in the supporter as

600 gms each of palm oil and commercial stearic acid containing 95.8% C 18:0 were dissolved in 2880 gms of commercial hexane and stirred in a closed vessel to exclude air for

10

25

20

48 hours at 40°C with 100 gms of kieselguhr powder on which 60 gms of A. niger lipase was previously precipitated as described, the composition being previously wetted with 4.8 mls
of water. The powder was removed from the reaction mass by filtration and the hexane evaporated

to give 1175 gms of crude interesterified fat mixture. From a portion subjected to molecular distillation at 185°C and 4×10^{-2} atmospheres, 595.5 gms of a distillate was recovered containing free fatty acid and traces of glycerides, the residue containing 324.8 gms of triglyceride essentially free from fatty acid and 90.6 gms of diglycerides. The fatty acid analysis of the triglyceride fraction of the residue is compared with that of palm oil and the mid-fraction subsequently obtained, in Table 6, in which its

triglyceride analysis also appears.

325 gms of the glyceride mixture was fractionated twice by crystallisation from acetone. In the first fractionation the mixture was dissolved in 1216 gms of actone which was then cooled to 0°C and held there for an hour, giving a crystallised mass which after filtration and washing twice with 875 mls of acetone each time at 0°C, weighed 201.7 gms. This was recrystallised from 1000.8 gms of acetone at 18°C and the filtrate combined with 2 washes, each of 88.2 gms of acetone at 18°C and evaporated to remove acetone from 113,5 gms of mid-fraction, consisting of 91% triglyceride and 9% diglyceride. The latter was removed by molecular distillation and the triglyceride component of the mid-fraction recovered in 80% yield by molecular distillation for fatty acid analysis as given in Table 6.

The results show the enrichment of the 1- and 3-positions with stearic acid occurs in the reaction mixture and that solvent-fractionation yields a mid-fraction which, compared with

palm mid-fraction itself is enriched in stearic acid and consequently in the valuable POSt

and StOSt glycerides. 25

TABLE 6

		Composition wt %	<u> </u>
	Reaction	Palm	
Fatty Acid	Triglyceride residue	mid-fraction	Oil
16:0 18:0 18:1 18:2	23.2 38.2 30.6 8.0	20.5 44.5 30.3 4.7	44 5 40 10
Triglycerides		•	
S - Saturated U - Unsaturated L - Linoleic O - Oleic			
SSS SSO SLS SUU Others	13.4 4.5 12.5 22.5 3.7		
P - Palmitic St - Stearic			
StOSt POSt POP	17.5 20.1 5.8		•

Process according to Claim 9 or 10 in which from 1 to 10% support agent is present. Process according to Claim 9, 10 or 11 in which the agent comprises diatomaceous

Process according to any of the preceding claims in which the enzyme is recovered

earth, activated charcoal, alumina, glass, carboxymethylcellulose or hydroxylaptite.

use in the process.

	and re-used in the process.	
	14. Process according to any of the preceding claims in which the enzyme is distributed	
	in a colution in an inert organic solvent of the ISI.	
	15. Process according to Claim 14 in which the solvent comprises an alkane or	ï
5	netroleum oil fraction	5
	16. Process according to Claim 1 in which a fatty acid is present in a molar ratio of fat to	
	fatty acid from 0.3:1 to 7:1.	
	17 Process according to Claim 16 in which the acid comprises stearic acid.	
	19 Process according to Claim 16 in which the acid comprises linoleic acid.	
10	10 Process according to any of the preceding claims in which the lat comprises once,	10
	noim cottonseed soughean or sunflower oil of a derivative thereot.	
	20 Process according to Claim 10 in which the 1st comprises a mid-iraction of Dain oil.	
	21. Process according to any of Claims 1 to 18 in which the fat comprises a vegetable	
	hutter	15
15	22. Process for the preparation of 1,3-disaturated-2-unsaturated glycerides from	13
	glycerides containing at least two unsaturated fatty acid moieties by an interesterification	
	process according to any of the preceding claims in the presence of a saturated free fatty	
	acid using as catalyst a lipase enzyme which is specific in reactivity with respect to the	
	1,3-positions of the glycerides interesterified and separating a fraction comprising the	20
20	resulting 1,3-disaturated-2-unsaturated glyceride from the free fatty acid.	20
	23. Interesterification process substantially as hereinbefore described with reference to	
	the accompanying Examples.	
	24. Fats including glyceride oils whenever interesterified by a process as claimed in any	
~~	of the preceding claims. 25. Fats, including glyceride oils, interesterified selectively with respect to the	25
25	25. Fats, including glyceride oils, interestermed scientively with respect to the	2,5
	glycerides interesterified. 26. A hardened, unsaturated and unelaidinised fat substantially free from saturated	
	fatty acid radicals in the 2-position of the unsaturated glycerides thereof.	
	27. A hardened fat as claimed in Claim 26 comprising at most 42% unsaturated acid	
20	radicals in which more than 85% of the acid radicals in the 2-position are unsaturated.	30
30	28. A hardened fat as claimed in Claim 26 or 27 having an Iodine Value from 25 to 40.	
	20. A naturaled lat as claimed in Claim 20 of 27 maning and 12 maning an	

D. LITHERLAND, Chartered Patent Agent.

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1980.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY from which copies may be obtained.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING			
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES			
COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY			

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.