Caso de Aplicación: Electromobility Plus

Diplomado en Python y Ciencia de Datos

Curso: Herramientas Básicas de Programación en Python

Docente: Patricia Andrea Moller Acuña

Integrantes:

- Margarita Isabel Barrales Quintero
- Cristofer Edgardo Carvajal García
- Fernando Andrés Gaete Velásquez
- Camilo Roberto Maldonado Valderrama
- Sebastian Andrés Saez Saez

```
In [1]: # Cargar Librerias necesarias
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: # 2. Cargar los datos desde archivo CSV public_transportation_statistics_by_zip_cod
        data = pd.read_csv('public_transportation_statistics_by_zip_code-1.csv')
        # Mostrar las primeras filas y verificar el encabezado
        print(data.head())
          zip_code public_transportation_pct public_transportation_population
                                          3.3
                                                                             13
              1379
       1
              1440
                                          0.4
                                                                             34
       2
              1505
                                          0.9
                                                                             23
       3
                                                                             20
              1524
                                          0.5
       4
              1529
                                          1.8
                                                                             32
In [3]: # 3. Verificar el tipo de datos y los valores nulos
        print("Información del conjunto de datos:")
        print(data.info())
```

3 Descripción estadística del dataset para conocer max y min

print("\nDescripción estadística del dataset:")

print(data.describe())

```
Información del conjunto de datos:
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 33120 entries, 0 to 33119
      Data columns (total 3 columns):
       # Column
                                             Non-Null Count Dtype
       --- -----
       0 zip code
                                             33120 non-null int64
           public_transportation_pct
                                            33120 non-null float64
           public transportation population 33120 non-null int64
      dtypes: float64(1), int64(2)
      memory usage: 776.4 KB
      None
      Descripción estadística del dataset:
                 zip_code public_transportation_pct \
      count 33120.000000
                                       3.312000e+04
      mean 49666.334209
                                     -1.115137e+07
      std
             27564.925769
                                       8.549920e+07
      min
              601.000000
                                     -6.666667e+08
      25% 26634.750000
                                       0.000000e+00
      50% 49739.000000
                                      0.000000e+00
      75% 72123.500000
                                      1.100000e+00
                                      1.000000e+02
      max 99929.000000
             public_transportation_population
      count
                                 33120.000000
      mean
                                   230.352748
      std
                                  1313.382153
      min
                                     0.000000
      25%
                                     0.000000
      50%
                                     0.000000
      75%
                                    41.000000
                                 35139.000000
      max
In [4]: # 3. Eliminar valores negativos y nulos en columnas importantes
        data = data[data['public_transportation_pct'] >= 0]
        data.dropna(subset=['public_transportation_pct', 'public_transportation_population'
        # Verificar el tipo de datos y los valores nulos después de la limpieza
        print("\nInformación del conjunto de datos después de la limpieza:")
        print(data.info())
        # Descripción estadística después de la limpieza
        description = data.describe()
        # Formatear la tabla con pandas Styler
        styled description = description.style\
            .set_caption("Descripción Estadística del Dataset después de la Limpieza")\
            .format("{:.2f}")\
            .set properties(**{'text-align': 'right'})\
            .set_table_styles([dict(selector="th", props=[('text-align', 'right')])])\
            .background_gradient(cmap='viridis', axis=0)
        # Mostrar la tabla formateada
        display(styled_description)
```

Descripción Estadística del Dataset después de la Limpieza

zip_code public_transportation_pct public_transportation_population

count	32566.00	32566.00	32566.00
mean	49661.29	1.94	234.27
std	27509.63	6.10	1324.16
min	601.00	0.00	0.00
25%	26775.50	0.00	0.00
50%	49775.50	0.00	0.00
75%	72064.75	1.20	43.00
max	99929.00	100.00	35139.00

```
In [5]: # 4. Definir categorías de ventas potenciales (High/Low) basadas en el porcentaje d
   data['potential_sales_category'] = np.where(data['public_transportation_pct'] > 10,
    print(data.head())
```

	zip_code	<pre>public_transportation_pct</pre>	<pre>public_transportation_population</pre>	,
0	1379	3.3	13	
1	1440	0.4	34	
2	1505	0.9	23	
3	1524	0.5	20	
4	1529	1.8	32	

Explicación de la Aproximación Utilizada para Calcular Ventas Potenciales

Para abordar la pregunta sobre las ventas potenciales promedio en zonas de alto y bajo uso del transporte público, hemos utilizado el promedio de la población que utiliza transporte

público (public_transportation_population) como un proxy para las ventas potenciales de scooters.

Un 'proxy' es una medida que se utiliza para representar o estimar otra variable que no se puede medir directamente. En este caso, estamos asumiendo que el número de personas que usan transporte público en una zona postal (public_transportation_population) puede servir como una indicación de cuántas ventas potenciales de scooters podría haber en esa zona.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# 4. Calcular ventas potenciales promedio para zonas de alto y bajo uso del transpo
average_sales_high = data[data['potential_sales_category'] == 'High']['public_trans
average_sales_low = data[data['potential_sales_category'] == 'Low']['public_transpo
print(f'\nVentas potenciales promedio en zonas de alto uso de transporte público: {
   print(f'Ventas potenciales promedio en zonas de bajo uso de transporte público: {av
    # 6. Crear un diagrama de dispersión para visualizar la relación entre el uso del t
   plt.figure(figsize=(10, 6))
   sns.scatterplot(data=data, x='public_transportation_pct', y='public_transportation_
   plt.title('Relación entre Uso del Transporte Público y Ventas Potenciales')
   plt.xlabel('Porcentaje de Uso del Transporte Público')
   plt.ylabel('Ventas Potenciales (Unidades)')
   plt.show()
```

Ventas potenciales promedio en zonas de alto uso de transporte público: 3346.69 unid ades

Ventas potenciales promedio en zonas de bajo uso de transporte público: 79.47 unidad

Relación entre Uso del Transporte Público y Ventas Potenciales

In [7]: # 5. Histograma de distribución del porcentaje de uso del transporte público
plt.figure(figsize=(12, 7))
sns.histplot(data['public_transportation_pct'], kde=True, bins=30, color='skyblue',
plt.axvline(x=10, color='red', linestyle='--', linewidth=2, label='10% Uso Alto')
plt.title('Distribución del Porcentaje de Uso del Transporte Público', fontsize=16)
plt.xlabel('Porcentaje de Uso del Transporte Público', fontsize=14)
plt.ylabel('Frecuencia', fontsize=14)
plt.legend()
plt.grid(True)
plt.show()

Distribución del Porcentaje de Uso del Transporte Público


```
# 6. Exportar a excel

# Seleccionar las columnas necesarias
columns_to_export = ['zip_code', 'potential_sales_category', 'public_transportation

# Crear un nuevo dataframe con las columnas seleccionadas
export_data = data[columns_to_export].copy()

# Exportar el dataframe a un archivo Excel
export_data.to_excel('datos_completos.xlsx', index=False)

print("Los datos han sido exportados a 'datos_completos.xlsx'")
```

Los datos han sido exportados a 'datos_completos.xlsx'

```
In [9]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Supongamos que ya tienes el dataframe 'data' cargado y limpiado

# Seleccionar Las variables para el clustering
features = data[['public_transportation_pct', 'public_transportation_population']]

# Estandarizar Las variables
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

# Método del codo para determinar el número óptimo de clusters
inertia = []
K = range(1, 11)
```

```
for k in K:
   kmeans = KMeans(n_clusters=k, random_state=42)
   kmeans.fit(scaled features)
   inertia.append(kmeans.inertia_)
# Graficar el método del codo
plt.figure(figsize=(10, 6))
plt.plot(K, inertia, 'bx-')
plt.xlabel('Número de Clusters (k)')
plt.ylabel('Inercia')
plt.title('Método del Codo para Determinar el Número Óptimo de Clusters')
plt.show()
# Seleccionar el número óptimo de clusters (por ejemplo, 3)
optimal k = 3
# Aplicar K-means con el número óptimo de clusters
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
kmeans.fit(scaled_features)
data['cluster'] = kmeans.labels_
# Visualizar los clusters
plt.figure(figsize=(10, 6))
scatter = plt.scatter(data['public_transportation_pct'], data['public_transportation_pct']
plt.colorbar(scatter)
plt.title('Segmentación de Mercado por Uso del Transporte Público y Ventas Potencia
plt.xlabel('Porcentaje de Uso del Transporte Público')
plt.ylabel('Población de Usuarios de Transporte Público (Ventas Potenciales)')
plt.show()
# Mostrar estadísticas de cada cluster
for i in range(optimal_k):
   cluster_data = data[data['cluster'] == i]
   print(f'\nEstadísticas del Cluster {i}:')
   print(cluster_data[['public_transportation_pct', 'public_transportation_populat
```



```
Estadísticas del Cluster 0:
               public_transportation_pct public_transportation_population
                            31322.000000
                                                               31322.000000
        count
                                0.979842
                                                                  81.850457
        mean
        std
                                2.034399
                                                                 234.313849
                                0.000000
                                                                   0.000000
        min
        25%
                                0.000000
                                                                   0.000000
        50%
                                0.000000
                                                                   0.000000
                                0.900000
        75%
                                                                  31.000000
                                                                2891.000000
        max
                               14.600000
        Estadísticas del Cluster 1:
               public_transportation_pct public_transportation_population
        count
                              132.000000
                                                                 132.000000
                               58.000000
                                                               17417.984848
        mean
                               12.250571
        std
                                                                6173.350755
        min
                               30.000000
                                                                6468.000000
        25%
                               48.250000
                                                               12536.750000
        50%
                               60.050000
                                                               16422.500000
        75%
                               68.200000
                                                               21206.250000
                               78.300000
                                                               35139.000000
        max
        Estadísticas del Cluster 2:
               public_transportation_pct public_transportation_population
                             1112.000000
                                                                1112.000000
        count
        mean
                               22.324730
                                                                2487.759892
        std
                               11.809275
                                                                2129.008648
                                                                   4.000000
        min
                                8.400000
                                                                 912.250000
        25%
                               14.700000
        50%
                               19.000000
                                                                1999.000000
        75%
                               26.700000
                                                                3398.500000
                                                               10813.000000
        max
                              100.000000
In [10]: import pandas as pd
         # Filtrar el dataframe para obtener solo las filas del cluster 1
         cluster_1_data = data[data['cluster'] == 1]
         # Mostrar la cantidad de códigos postales del cluster 1
         print(f'Cantidad de códigos postales en el Cluster 1: {len(cluster_1_data)}')
         # Seleccionar las columnas deseadas y ordenar la tabla de forma descendente en la c
         cluster_1_data_sorted = cluster_1_data[['zip_code', 'public_transportation_pct', 'p
         # Mostrar los códigos postales del cluster 1 en una tabla formateada
         styled_table = cluster_1_data_sorted.style.set_caption('Códigos Postales del Cluste
         display(styled_table)
```

Cantidad de códigos postales en el Cluster 1: 132

Códigos Postales del Cluster 1 Ordenados por Población de Usuarios de Transporte Público

	zip_code	public_transportation_pct	public_transportation_population
2633	11226	73.600000	35139
2827	11368	65.200000	34292
2580	11373	70.200000	32724
2828	11385	60.000000	32041
2836	10025	68.200000	31983
2661	11211	62.800000	31877
2759	11377	67.200000	30936
2630	11215	67.800000	28443
2724	11221	70.600000	27740
2756	11220	61.800000	27737
2721	11208	67.500000	26422
2635	11236	54.300000	26229
3048	10467	62.500000	25842
2932	10031	76.900000	25530
30870	60657	50.900000	25244
2755	11214	59.900000	25152
2743	11207	67.600000	24830
2676	11206	68.000000	24485
2987	10128	65.500000	24312
2871	10024	70.700000	23677
2689	11201	68.600000	23253
3073	10468	69.900000	23234
2974	10462	62.600000	23121
2748	11238	71.800000	22998
2931	10029	69.900000	22840
2745	11216	72.600000	22549
2805	11375	62.000000	22534
3051	10456	67.500000	22254
2921	10458	66.200000	22164

	zip_code	public_transportation_pct	public_transportation_population
2662	11372	67.500000	22063
2626	11233	70.200000	21947
2094	7030	60.900000	21572
2746	11225	71.900000	21570
2973	10452	70.000000	21085
2870	10023	59.600000	20753
2872	10032	66.200000	20662
2577	11218	60.800000	20489
2720	11203	60.500000	20408
2922	10453	65.100000	20089
2983	10033	68.900000	20037
30921	60614	43.200000	19784
2895	10028	63.000000	19731
2723	11212	68.400000	19652
2781	11229	52.300000	19599
2754	11209	58.100000	19544
2892	10009	59.500000	19450
2636	11237	71.200000	19350
2782	11234	43.200000	19266
2913	10463	57.200000	19126
2744	11213	65.700000	18695
2893	10011	55.400000	18381
2578	11223	55.200000	18256
2937	10027	66.300000	18237
2930	10002	53.800000	17946
32173	60640	45.200000	17823
2757	11230	50.000000	17763
3041	10457	66.100000	17610
26853	94110	38.500000	17508
2891	10003	53.100000	17334

	zip_code	public_transportation_pct	public_transportation_population
3043	10472	66.500000	17239
2624	11235	49.400000	17207
2807	11435	58.700000	16902
2576	11204	53.100000	16856
2722	11210	56.100000	16727
30928	60647	32.300000	16495
2030	7302	59.500000	16468
2753	11103	72.300000	16377
30849	60613	46.300000	16214
2944	10466	50.600000	16048
2672	11217	71.600000	15964
2780	11106	71.400000	15721
30851	60618	30.000000	15641
2964	10040	72.400000	15535
2758	11355	43.300000	15510
2789	11432	54.300000	15504
2982	10026	78.300000	15355
30753	60625	34.400000	15308
2625	11222	66.700000	15305
26854	94112	34.100000	15252
1973	7087	43.000000	15166
1974	7093	45.800000	15113
6219	20009	40.000000	14788
2925	10469	46.400000	14763
779	2128	57.700000	14643
2963	10034	68.300000	14558
2632	11219	42.800000	14377
2859	10460	64.600000	14303
2076	7306	53.100000	14024
2730	11434	46.800000	13949

	zip_code	public_transportation_pct	public_transportation_population
2779	11105	64.500000	13798
2741	11102	71.500000	13316
2646	11419	51.900000	13111
26819	94109	35.400000	13016
6332	20011	36.600000	12767
2980	10016	38.700000	12761
2645	11374	59.100000	12723
6387	20002	35.900000	12690
2788	11421	60.100000	12603
2629	11205	61.200000	12568
2690	11231	63.500000	12443
32253	60622	34.600000	12343
2905	10451	68.300000	12198
30853	60626	43.900000	11903
3030	10019	43.200000	11836
3032	10021	45.600000	11787
26915	94117	39.200000	11728
2975	10473	50.800000	11569
2943	10459	67.900000	11544
2628	11101	76.200000	11483
2979	10010	56.500000	11362
27176	94122	31.700000	11129
2869	10014	52.700000	11060
2914	10475	57.100000	10815
1976	7305	37.500000	10649
6011	19143	43.200000	10645
2742	11104	71.200000	10631
2637	11354	40.600000	10541
2877	10461	44.900000	10464
6334	20010	48.600000	10358

	zip_code	public_transportation_pct	public_transportation_population
2924	10455	68.200000	10343
28821	90057	40.800000	10296
32254	60660	41.900000	10052
2837	10030	72.200000	9685
3066	10035	71.500000	9575
2747	11232	70.200000	9537
2787	11418	53.000000	9440
2923	10454	73.000000	9424
2634	11228	47.200000	9352
2579	11224	58.400000	9054
2785	11369	56.100000	8932
3034	10039	76.600000	8551
2121	7310	75.700000	6468