Name: Matthew Zaldana

CECS 225 – DD&CA Fall 2020 Assignment #05 Sequential Logic

Due: 29 OCT 2020 (8am)

Please download the software Logisim from http://www.cburch.com/logisim/download.html and install in your computer. Then open Logisim. Read the tutorials in the HELP tab if needed.

1. Design and implement a 3-bit sequential logic circuit using D flipflops that will perform a GRAY code count, i.e. a count of 0,1,3,2,4,5,7,6,0,1,3,2 ... Employ an asynchronous RESET to force the counter to 0 when asserted. Set the simulation clock of the counter at 1 Hz and check its operation. Include a picture (not the .circ Logisim code) of the Logisim implementation of your counter in the pdf of this assignment.

3-bit Gray Code Counter												
Logic Table												
		Input	t	Output								
#	S2	S1	S0	S2'	S1'	SO'						
0	0	0	0	0	0	1						
1	0	0	1	0	1	1						
2	0	1	1	0	1	0						
3	0	1	0	1	1	0						
4	1	1	0	1	1	1						
5	1	1	1	1	0	1						
6	1	0	1	1	0	0						
7	1	0	0	0	0	0						

PICTURE OF THE LOGISIM CIRCUIT SCHEMATIC:

2. Using Logisim, build this counter and determine its 4-bit output and complete the logic table below. Submit a picture of your Logisim logic circuit. The *Clear* input is asserted to reset the counter. The clock frequency for the FFs should be 1 Hz. Find the cycle time of the count before it repeats.

Logic Table for Johnson Counter Cycle time of the count = 8

eyele time of the country												
	Current State				Next State							
M	Q_{A}	Q_{B}	Q_{C}	Q_D	$Q_{\text{A}}{}^{\prime}$	Q_B'	Q_{C}^{\prime}	Q_D'				
0	0	0	0	0	1	0	0	0				
8	1	0	0	0	1	1	0	0				
12	1	1	0	0	1	1	1	0				
14	1	1	1	0	1	1	1	1				
15	1	1	1	1	0	1	1	1				
7	0	1	1	1	0	0	1	1				
3	0	0	1	1	0	0	0	1				
1	0	0	0	1	0	0	0	0				
2	0	0	1	0	Х	Х	Х	Χ				
4	0	1	0	0	Χ	X	X	Χ				
5	0	1	0	1	Χ	X	X	Χ				
6	0	1	1	0	Х	Х	X	Χ				
9	1	0	0	1	Х	Х	X	Χ				
10	1	0	1	0	Х	Х	X	Χ				
11	1	0	1	1	Х	Х	Х	Χ				
13	1	1	0	1	Χ	X	X	Χ				

PICTURE OF THE LOGISIM CIRCUIT SCHEMATIC:

