Assignment1(Group 18)

Wang Dingkun/Qian Shuaicun/Hua Bingsheng/Xu Ke

Ex.1

(i)Consider using unbounded array to realise the list. We only consider append(insert) and delete operations since other operations rely on them.

Each append/insert operation is O(1) and we assume the cost is 1 and we consider the delete operation as the last operation. Suppose there are n_0 elements in the list now, we consider the sequence of append/insert operations after the previous delete operation.

There is at least n_0 append/insert operations and the total cost is n_0 .

The delete operation has a cost k and $k <= n_0$, so we let the cost be n_0 . And if the delete operation makes a deallocation (before or after), which will copy at most n_0 to a new list, so the cost is also n_0 . We can deallocate at most $log_2(n_0)$ times each time the cost will be $n_0/2$, $n_0/4...$ The total cose of deallocate is no more than $2n_0$. Thus for the operation sequence before last delete (or from an empty list), the total cost is no more than $4n_0$, the amortised complexity is $O(\frac{4n_0}{n_0}) = O(1)$ for each operation.

For double-linked list, the insert cost is the same n_0 from one delete to the next, and the cost of delete is n_0 because no deallocation we need to do. The total cost of at most n_0 operations are $2n_0$, thus the amortised complexity is $O(\frac{2n_0}{n_0}) = O(1)$. In both cases, the complexity is O(1), independent of k.

Ex.2

(i)Since if the list l and parameters [e, f, g] are determined, the result of src[e, f, g] is also uniquely defined, the well-defined conditions are those that ensure the uniqueness of the result with given parameters.

For any split of a list l, $l=l_1+l_2$, $g(src[e,f,g](l_1),src[e,f,g](l_2))=src[e,f,g](l)$ must be the same.

Or we can see g is associative with respect to the concatenation of the same (sub)list l.

$$l = l_1 + l_2 + l_3 \text{ then } g(src[e,f,g](l_1),g(src[e,f,g](l_2),src[e,f,g](l_3))) = src[e,f,g](l_1 + l_2 + l_3) = g(g(src[e,f,g](l_1),src[e,f,g](l_2)),src[e,f,g](l_3))$$

Also we have a netural element e of g such that g(src[e,f,g](l),e)=g(e,src[e,f,g](l))=g(src[e,f,g](l),src[e,f,g](l))=src[e,f,g](l).

(ii)(1) Let the length function len(l)=src[0,1,+](l), we let

$$len([]) = e = 0$$
 $len([x]) = f(x) = 1$ $len(l_1 + l_2) = g(len(l_1), len(l_2)) = len(l_1) + len(l_2)$ $T' = N_{\geq 1}$

(2) Let the function implemented is $F: T \to P$, let func(l) = src[[], [F(x)], +](l), which +operation concatenates two lists. Then we have

$$func([]) = e = [] \ func([x]) = f(x) = [F(x)] \ func(l_1 + l_2) = g(func(l_1), func(l_2)) = func(l_1) + func(l_2) \ T' = \{l'\}$$

where l' are lists with elements $\in P$.

(3) Let the sub function sub(l)=src[[],f(x),+](l) , we have

$$sub([])=e=[]$$
 $sub([x])=f(x)=egin{cases} [x],&arphi(x)\ [],&else \end{cases}$ $sub(l_1+l_2)=g(sub(l_1),sub(l_2))=sub(l_1)+sub(l_2)$ $T'=\{l''|l''\subset l\}$

(iii) Let the length of the whole list be n, let $x,x\in T$ be a single element of the list, let $y_1,y_2\in T'$.

We apply f(x) exactly n times and $g(y_1,y_2)$ exactly n-1 times, suppose each time cost of f(x) is T_f , each time cost of $g(y_1,y_2)$ is T_g , the total complexity is $O(n*T_f+(n-1)*T_g)=O(n*max(T_f,T_g))$

Since the complexity of g may depend on how the list is realised and how to do the structural recursion (e.g. When we want to combine sublists, the complexity of g varies with your strategies), the real complexity will improve if choosing more effective ways to implement f and g.

Furthermore, the complexity of f(x) and $g(y_1, y_2)$ also changes with different parameters, so we use the average time, the total complexity is $O(n*max(\overline{T_f}, \overline{T_g}))$.

Ex.3

(i) pushback(l,x) can be expressed by append(l,x). pushfront(l,x) can be expressed by insert(l,1,x). popback(l) can be expressed by n=l.getlength() and l.getitem(n) and remove(l,n). popfront(l) can be expressed by l.getitem(1) and remove(l,1).