Distributions

Distribution

- A mathematical function that provides the probabilities of occurrence of different possible outcomes in an experiment.
- The probability distribution is a description of a random phenomenon in terms of the probabilities of events

Distribution Parameters

- Probability Mass Function (PMF) Discrete /
 Probability Density Function (PDF) Continous
 - Function that gives a probability that a random variable is equal to some value
- Cummulative Distribution Function (CDF)
 - Function evaluating the probability that X will take a value less than or equal to x

Simulation of a Tossing a coin

- Consider that a fair coin in tossed 6 times.
- The goal is to count the number of HEADS

```
# Importing basic libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
sns.set()
```

Simualting the coin toss for 10 Lakhs time

Finding the frequency of each HEAD's possibility

```
1 | np.unique(data, return_counts=True)
In [32]:
Out[32]: (array([0, 1, 2, 3, 4, 5, 6]),
           array([ 15516, 94613, 233949, 311535, 234917, 93874, 15596],
                 dtype=int64))
In [33]:
              Heads,counts=np.unique(data,return_counts=True)
              df=pd.DataFrame({"Heads":Heads, "Frequency":counts})
              df
Out[33]:
             Heads Frequency
                       15516
          0
                 0
          1
                       94613
                 1
          2
                 2
                      233949
          3
                 3
                      311535
          4
                      234917
                 4
                 5
          5
                       93874
          6
                 6
                       15596
```

Plot - Frequency Distribution plot

```
plt.figure(dpi=120)
sns.barplot(x="Heads",y="Frequency",data=df)
plt.title("Frequency Distribution Plot")
plt.show()
```


Calculating the probabilites for each outcomes

```
In [42]: 1 #Calculating the propbabilities
2 df["Probability"]=df["Frequency"]/no_trials
3 df
```

Out[42]:

	Heads	Frequency	Probability
0	0	15516	0.015516
1	1	94613	0.094613
2	2	233949	0.233949
3	3	311535	0.311535
4	4	234917	0.234917
5	5	93874	0.093874
6	6	15596	0.015596

Probability Distribution Plot

```
plt.figure(dpi=120)
sns.barplot(x="Heads",y="Probability",data=df)
plt.title("Probability Distribution Plot")
plt.show()
```


Types of Distribution

- Discrete Distribution
 - -Binomial Distribution
 - Poisson Distribution

- Continious Distribution
 - -Normal Distribution