進捗報告

1 今週やったこと

- ネルダーミード法の調査
- ネルダーミード法でベンチマークを解く

2 ネルダーミード法の調査

2.1 ネルダーミード法

ネルダーミード法 [1] は 1965 年に Nelder らが発表した最適化アルゴリズムである .n+1 個の頂点からなる n 次元の単体を反射,膨張,収縮させながら関数の最小値を探索する .

3 ネルダーミード法でベンチマーク を解く

3.1 実験設定

ネルダーミード法の実験設定を表1に示す.

表 1: ネルダーミード法の実験設定

1. 1707 - 172	
step	1.0
no_improv_break	1000
no_improv_thr	10^{-12}
max_iter	0
α	1.0
γ	2.0
ρ	-0.5
σ	0.5

x の初期位置は-100 から 100 のランダムな実数とする .

3.1.1 評価関数と制約違反

取り扱うベンチマーク問題では制約違反を考慮する必要があり、今実験ではその許容量を 1.0×10^{-10} と

する.また,制約違反の合計値Vを式1のようにネルダーミード法の目的関数Fに組み込む.

$$F(x) = f(x) + 10^{10}V \tag{1}$$

ただし,ベンチマークの目的関数をfとする.

3.2 結果

上記の実験の結果を表2に示す.

表 2: 実験結果

目的関数値	制約違反
4225738.328	4667.910409

制約違反が大きく許容量を超えており,目的関数の最小化も上手くいっていない.パラメーターを変えるなど予備実験を行ったがその結果は同等であった.120次元という次元数の高い問題にネルダーミード法が適していないことが原因ではないかと考えた.

4 今後の予定

● 他の最適化手法を試す.

参考文献

 J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. *The Computer Journal*, Vol. 7, No. 4, pp. 308–313, 01 1965.