Corrigé TD N°3

Exercice1

Le transformateur à point milieu possède un enroulement primaire et deux enroulements secondaires identiques possédant une borne commune. Les deux enroulements secondaires délivrent chacun une tension de même valeur efficace mais en opposition de phases.

Le courant de charge d'un redresseur controlé à double alternance avec une charge RL peut etre continu ou discontinu

Cas discontinu:

le courant de charge atteint zéro δ $\omega t = \beta$ et $\beta < \pi + \alpha$

$$i_{s}(\omega t) = \frac{U_{m}}{Z} \left(\sin(\varphi - \alpha) e^{-\frac{(\omega t - \alpha)}{\tan \varphi}} + \sin(\omega t - \varphi) \right)$$

Cas continu:

le courant de charge est supérieor à zéro à $i>0 \,\grave{a} \,\omega t=\pi+\alpha \Longrightarrow i \big(\pi+\alpha\big)>0$

$$i_s(\pi + \alpha) = \frac{U_m}{Z} \left(\sin(\varphi - \alpha) e^{-\frac{(\pi + \alpha - \alpha)}{\tan \varphi}} + \sin(\pi + \alpha - \varphi) \right) > 0$$

$$\sin(\varphi - \alpha)e^{-\frac{(\pi)}{\tan\varphi}} + \sin(\varphi - \alpha) > 0 \Rightarrow \sin(\varphi - \alpha)\left(e^{-\frac{(\pi)}{\tan\varphi}} + 1\right) > 0$$

$$\Rightarrow \sin(\varphi - \alpha) > 0 \Rightarrow 0 < \varphi - \alpha < \pi \Rightarrow \varphi - \alpha > 0 \Rightarrow \alpha < \varphi$$

$$\Rightarrow \alpha < \tan^{-1} \left(\frac{L\omega}{R} \right) \Rightarrow \alpha < \tan^{-1} \left(\frac{0.1 \times 120\pi}{15} \right) \Rightarrow \alpha < 144^{\circ}$$

$$V_{smoy} = \frac{1}{\pi} \int_{\alpha}^{\pi+\alpha} V_{max} \sin \theta d\theta = -\frac{V_{max}}{\pi} (\cos(\pi+\alpha) - \cos\alpha)$$

$$=\frac{2V_{max}}{\pi}\cos\alpha=108V$$

$$i_{moy} = \frac{2V_{max}}{\pi R} \cos \alpha = 7.2A$$

$$V_{\text{seff}}^2 = \frac{1}{\pi} \int_{\alpha}^{\pi+\alpha} \left(V_{\text{max}} \sin \theta \right)^2 d\theta \Rightarrow V_{\text{seff}} = \frac{V_{\text{max}}}{\sqrt{2}} = \frac{339}{\sqrt{2}} = 240V$$

$$I_{eff} = \frac{V_{seff}}{Z} = \frac{V_{max}}{\sqrt{2}\sqrt{R^2 + (L\omega)^2}} = \frac{240}{\sqrt{15^2 + (0.1 \times 120\pi)^2}} = 6A$$

Exercice 2

Intervalles	$\left[\frac{\pi}{6} + \alpha, \frac{\pi}{2} + \alpha\right]$	$\left[\frac{\pi}{2} + \alpha, \frac{5\pi}{6} + \alpha\right]$	$\left[\frac{5\pi}{6} + \alpha, \frac{7\pi}{6} + \alpha\right]$	$\left[\frac{7\pi}{6}, \frac{9\pi}{6} + \alpha\right]$	$\left[\frac{9\pi}{6} + \alpha, \frac{11\pi}{6} + \alpha\right]$	$\left[\frac{11\pi}{6} + \alpha, \frac{13\pi}{6} + \alpha\right]$
Thyristors	T1 T6	T1 T2	T3 T2	T3 T4	T5 T4	T5 T6
Tension v_s	U_{ab}	U_{ac}	U_{bc}	$U_{\it ba}$	$U_{\it ca}$	U_{cb}
Tension	0	0	U_{ab}	U_{ab}	U_{ac}	U_{ac}
v_{T1}						

$$\begin{split} \left\langle v_{o} \right\rangle &= \frac{1}{T} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} U_{ab} d\theta = \frac{1}{\frac{\pi}{3}} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \sqrt{3} V_{\text{max}} \sin \left(\omega t + \frac{\pi}{6} \right) d\theta \\ &= \frac{3\sqrt{3} V_{\text{max}}}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left(\sin \omega t \cos \frac{\pi}{6} + \sin \frac{\pi}{6} \cos \omega t \right) d\theta = \frac{3\sqrt{3} V_{\text{max}}}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left(\frac{\sqrt{3}}{2} \sin \omega t + \frac{1}{2} \cos \omega t \right) d\theta \\ &= \frac{3\sqrt{3} V_{\text{max}}}{\pi} \cos \alpha \\ &V_{oeff} = \frac{1}{T} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} U_{ab}^{2} d\theta = \frac{1}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \left[\sqrt{3} V_{\text{max}} \sin \left(\omega t + \frac{\pi}{6} \right) \right]^{2} d\theta = 3V_{\text{max}} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} \frac{1}{2} + \frac{3\sqrt{3}}{4\pi} \cos 2\alpha \end{split}$$