

Básicos N Sesión by Abii Snn

Dado un vector ordenado y un número,

imprime 1 si el número existe en el arreglo.

 15
 20
 22
 24
 25
 26
 32
 40

 15
 15
 20
 22
 24
 25
 26
 32
 40

Número = 100 ----> No

Posible solución

→ Buscar elemento por elemento y preguntar si ese elemento es igual al que busco. O(n)

Dado un vector ordenado y una serie de números, dime si los números existen en el arreglo (query).

¿Cuál sería la complejidad?

Posible solución

→ Para cada número, buscar elemento por elemento y preguntar si ese elemento es igual al que busco.

O(n * q)

n: Tamaño del arreglo

q: Número de preguntas

Búsqueda binaria

¿Qué sabemos? / Requisitos

secuencia monótona creciente.

Es por eso que quizá, has escuchado que para hacer una búsqueda binaria el vector debe estar ordenado.

Para el problema...

¿De qué me sirve que el vector esté ordenado?

15	15	20	22	24	25	26	32	40
F	F	F	F	F	F	V		

La búsqueda binaria te dice: si ya tienes una secuencia monótona creciente, no busques en todos los elementos, busca en segmentos que te sirvan.

0 1 2 3 4 5	6	7	8

¿Qué conocemos? Left y Right, podemos sacar middle

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

¿De qué nos sirve conocer a middle?

15	15	20	22	24	25	26	32	40	
0	1	2	3	4	5	6	7	8	
A				A				A	
								 Right	
Left	Middle								

¿De qué nos sirve conocer a middle? Nos ayuda a decidir a qué dirección movernos.

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] < 26 ?

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] < 26 ?

Como es un arreglo ordenado, el número que estoy buscando debería estar a la derecha.

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] < 26 ? BUSCO A LA DERECHA. (L cambia)

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] > 26 ?

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] > 26 ?

Como es un arreglo ordenado, el número debería estar a la izquierda.

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] > 26 ? BUSCO A LA IZQUIERDA. (Cambia R)

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] == 26 ?

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Si estoy buscando a 26, ¿qué pasa si vector[middle] == 26 ? ENCONTRÉ LA RESPUESTA.

CASOS:

vector[m] == target:
 SALIR

vector[m] < target:</pre>

Moverme a la derecha.

vector[m] > target:

Moverme a la izquierda.

Ejemplo: Cuando el número **si** existe en

Cuando el número **si** existe en el arreglo.

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Right

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8
					A	A		A
					Left	Middle		Right

Cuando el número no existe en el arreglo

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

Right

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

15	15	20	22	24	25	26	32	40
0	1	2	3	4	5	6	7	8

¿Cuál es la complejidad?

O(log(N))

N: tamaño del vector

Posible solución: Búsqueda binaria

→ Para cada número, usar búsqueda binaria para saber si el vector tiene el número.

O(q * log(n))

q: Número de queries

n: Tamaño del arreglo

¿Qué puede pasar con esta fórmula? mid = (l + r) / 2

SE PUEDE DESBORDAR LA VARIABLE.

Sí mid es un entero mid = (l + r) / 2mid = (1e18 + 1e18)/2

Solución: mid = L + (R - L) / 2

Motivación

- Entrevistas
- Tema súper básico
- Gran ayuda para muchos problemas

Tip personal:

Siempre piensa en los 3 casos que analizamos, pregúntate: ¿A dónde debo caminar/buscar?

PROBLEMA

Dado un vector ordenado y un número, dime la frecuencia del número en el arreglo.

15	15 20	22 24	25 26	32 40	40	40	40	50	55	
----	-------	-------	-------	-------	----	----	----	----	----	--

Número = 15, frecuencia = 2 Número = 40, frecuencia = 4 Número = 20, frecuencia = 1 Número = 99, frecuencia = 0

Posible solución

→ Pasar por todos los elementos y contar cuáles son iguales al que estoy buscando. O(n)

n: Tamaño del arreglo

Primer elemento que **no** se compara como **menor** al número que buscamos.

Si buscamos el lower bound de 40: Es como si empezáramos desde el principio preguntando: ¿Eres menor a 40? Lower bound retorna el PRIMER FALSO.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
V	V	V	V	V	V	V	V	F	F	F	F	F	F

Si buscamos el lower bound de 45: Es como si empezáramos desde el principio preguntando: ¿Eres menor a 45? Lower bound retorna el PRIMER FALSO.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
V	V	V	V	V	V	V	V	V	V	V	V	F	F

Primer elemento que **no** se compara como **menor** al número que buscamos.

	15	15	20	22	24	25	26	32	40	40	40	40	50	55
-1														

Lower bound de 39: 40 (primer 40)
Lower bound de 40: 40 (primer 40)
Lower bound de 45: 50
Lower bound de 60: No existe

PENSEMOS EN LOS 3 CASOS

¿Qué hago cuando… v[mid] > target

- 1								32						
	0	1	2	3	4	5	6	7	8	9	10	11	12	13

Ejemplo, si busco lower de 40 y el middle es 50, => 50 > 40

¿Qué hago cuando... v[mid] > target: camino a la izquierda

1	.5	15	20	22	24	25	26	32	40	40	40	40	50	55
(0	1	2	3	4	5	6	7	8	9	10	11	12	13

Ejemplo, si busco 40 y 50 > 40

¿Qué hago cuando… v[mid] < target

	15												
0	1	2	3	4	5	6	7	8	9	10	11	12	13

¿Qué hago cuando... v[mid] < target: camino a la derecha

							32						
0	1	2	3	4	5	6	7	8	9	10	11	12	13

¿Qué hago cuando… v[mid] == target:

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

¿Qué hago cuando… v[mid] == target:

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

¿Qué hago cuando... v[mid] == target: camino a la izquierda

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Ejemplo: Cuando el lower bound del

número si existe.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

$$l = middle + 1 = 7$$

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	15	15	20	22	24	25	26	32	40	40	40	40	50	55
I	0	1	2	3	4	5	6	7	8	9	10	11	12	13

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Ejemplo: Cuando el lower bound del

número no existe.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

$$l = middle + 1 = 7$$

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Buscando lower bound de 60

15	15	20	22	24	25	26	32	40	40	40	40	50	55
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Primer número mayor a NUMBER.

Si buscamos el upper bound de 40: Es como si empezáramos desde el principio preguntando: ¿Eres mayor a 40? Upper bound retorna el PRIMER VERDADERO.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
F	F	F	F	F	F	F	F	F	F	F	F	V	V

Si buscamos el upper bound de 23: Es como si empezáramos desde el principio preguntando: ¿Eres mayor a 23? Upper bound retorna el PRIMER VERDADERO.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
F	F	F	F	V	V	V	V	V	V	V	V	V	V

Si buscamos el upper bound de 100: Es como si empezáramos desde el principio preguntando: ¿Eres mayor a 100? Upper bound retorna el PRIMER VERDADERO.

15	15	20	22	24	25	26	32	40	40	40	40	50	55
F	F	F	F	F	F	F	F	F	F	F	F	F	F

En este caso la respuesta el -1, porque no existe.

Primer número mayor a NUMBER.

	15	15	20	22	24	25	26	32	40	40	40	40	50	55
- 1														

Upper bound de 39: 40

Upper bound de 40: 50

Upper bound de 45: 50

Upper bound de 60: No existe

PROGRAMA UPPER BOUND. PIENSA EN LOS 3 CASOS.

Posible solución al problema de frecuencia: Búsqueda binaria

- → Usar dos binarias:
- Lower bound. // O(log(n))
- Upper bound. // O(log(n))O(log(n) + log(n))

n: Tamaño del arreglo

Buscando frecuencia de 40

15													
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Frecuencia = Upper bound - lower bound = 12 - 8 = 4


```
27
     int main() {
28
         // Sacar la frecuencia de un número
29
         int n; cin >> n;
30
         vector<int> v(n);
31
         for(int i = 0; i < n; i++) cin >> v[i];
32
33
         int number; cin >> number;
34
         int low = lowerBound(v, number);
35
         int upper = upperBound(v, number);
36
         cout << upper - low << endl;
37
```

Dado un número n, imprime verdadero si tiene raíz cuadrada exacta.

No puedes usar funciones de sqrt.

 $0 < n < 10^{9}$

Número = 20,	no, su raíz es 4.47

Número = 16, si, porque su raíz es 4

Posible solución

```
→ Iterar desde 1 hasta n preguntando si:
i * i == n
Complejidad O(n)
TLE
```

Posible solución: Búsqueda binaria

→ Usar búsqueda binaria para encontrar la respuesta.

Complejidad O(log(n))

CASOS:

m*m == target:

SALIR

m * m < target:

Moverme a la derecha.

m *m > target:

Moverme a la izquierda.

Ejemplo: Cuando el número tiene raíz

entera.

Ejemplo: Cuando el número no tiene

raíz entera.

Observaciones para implementación:

No es necesario crear el arreglo hasta n, trabajamos con middle.

