Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data
- Homework/ Tutorial
- Things you should know from this lecture

Datasets = instances + features

- Datasets consists of instances (also known as examples or objects)
 - e.g., in a university database: students, professors, courses, grades,...
 - e.g., in a library database: books, users, loans, publishers,
 - e.g., in a movie database: movies, actors, director,...
- Instances are described through features (also known as attributes or variables)
 - E.g. a course is described in terms of a title, description, lecturer, teaching frequency etc.
 - An easy to visualize example: if our data are in a database table, the rows are the instances and the columns are the features.

ID	Gender	Height(cm)	Weight (kg)	Hair Color	Blood Grou	p Glasses	Smoker	GGS 787 Grade
67	Female	175	60	brown	Α	no	frequent	A+
68	Female	176	52	blond	AB	yes	frequent	Α
69	Female	176	63	black	A	yes	casual	A+
70	Female	179	65	brown	0	yes	no	В

Basic feature types

- Binary/ Dichotomous variables
- Categorical (qualitative)
 - Nominal variables
 - Ordinal variables
- Numeric variables (quantitative)
 - Interval-scale variables
 - Ratio-scaled variables

Binary/ Dichotomous variables

- The attribute can take two values, {0,1} or {true,false}
 - usually, 0 means absence, 1 means presence
 - e.g., smoker variable: $1 \rightarrow$ smoker, $0 \rightarrow$ non-smoker
 - e.g., true (1), false (0)
- Symmetric binary: both outcomes equally important:
 - e.g., gender (male, female)
- Asymmetric binary: outcomes not equally important.
 - e.g., medical tests (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Person	isSmoker
Eirini	0
Erich	1
Kostas	0
Jane	0
Emily	1
Markus	0

? Give me so	ome examples of bin	ary variables!
--------------	---------------------	----------------

ID	Gender	Height(cm)	Weight (kg)	Hair Color	Blood Group	Glasses	Smoker	GGS 787 Grade
67	Female	175	60	brown	Α	no	frequent	A+
68	Female	176	52	blond	AB	yes	frequent	Α
69	Female	176	63	black	Α	yes	casual	A+
70	Female	179	65	brown	0	yes	no	В

Categorical: Nominal variables

- The attribute can take values within a set of *M* categories/ states.
 - No ordering in the categories/ states.
 - Only distinctness relationships, i.e., equal (==) and different (!=), apply.
 - Examples:
 - Colors = {brown, green, blue,...,gray},
 - Occupation = {engineer, doctor, teacher, ..., driver}
 - Gender = {male, female}

Person	gender	occupation	
Eirini	female	professor	
Erich	male	engineer	
Kostas	male	doctor	
Jane	female	engineer	
Emily	female	teacher	
Markus	male	driver	

ID	Gender	Height(cm)	Weight (kg)	Hair Color	Blood Group	Glasses	Smoker	GGS 787 Grade
67	Female	175	60	brown	Α	no	frequent	A+
68	Female	176	52	blond	AB	yes	frequent	Α
69	Female	176	63	black	Α	yes	casual	A+
70	Female	179	65	brown	0	yes	no	В

Categorical: Ordinal variables

- Similar to categorical variables, but the *M* states are ordered/ranked in a meaningful way.
 - There is an ordering between the values.
 - □ Allows to apply order relationships, i.e., >, \ge , <, \le
 - However, the difference and ratio between these values has no (quantitative) meaning.

Examples:

- School grades: {A,B,C,D,F}
- Movie ratings: {hate, dislike, indifferent, like, love}
 - Also, movie ratings: {*, **, ***, ****, ****}
 - Also, movie ratings: {1, 2, 3, 4, 5}
- Medals = {bronze, silver, gold}
- ? Give me some examples of ordinal variables!

Hair Color	Blood Group Glasses	Smoker	GGS 787 Grade

A beautiful mind

Titanic

ID	Gender	Height(cm)	Weight (kg)	Hair Color	Blood Group	Glasses	Smoker	GGS 787 Grade
67	Female	175	60	brown	Α	no	frequent	A+
68	Female	176	52	blond	AB	yes	frequent	Α
69	Female	176	63	black	Α	yes	casual	A+
70	Female	179	65	brown	0	yes	no	В

Person

Eirini Erich Kostas

Jane

Emily Markus

Numeric: Interval-scale variables

- Measured on a scale of equal-sized units
 - □ It is assumed that the intervals keep the same importance throughout the scale.
- Differences between values are meaningful
 - □ The difference between 90° and 100° temperature is the same as the difference between 40° and 50° temperature.
- Ratio still has no meaning
 - A temperature of 2° Celsius is not much different than a temperature of 1° Celsius.
 - The issue is that the 0° point of the Celsius scale is in a physical sense arbitrary and therefore the ratio of two Celsius temperatures is not physically meaningful.
- No meaningful (unique and non-arbitrary) zero value
- Examples:
 - Temperature in Farenheit or Celsius
 - Calendar dates
- ?

Give me some examples of interval-scale variables!

Numeric: Ratio-scale variables

- Both differences and ratios have a meaning
 - E.g., a 100 Kgs person is twice heavy as a 50 Kgs person.
 - E.g., a 50 years old person is twice old as a 25 years old person.
- Meaningful (unique and non-arbitrary) zero value
- Examples:
 - age, weight, length, number of sales
 - temperature in Kelvin
 - When measured on the Kelvin scale, a temperature of 2° is, in a physical meaningful way, twice that of a 1°.

Give me some examples of ratio-scale variables!

ID	Gender	Height(cm)	Weight (kg)	Hair Color	Blood Group	Glasses	Smoker	GGS 787 Grade
67	Female	175	60	brown	Α	no	frequent	A+
68	Female	176	52	blond	AB	yes	frequent	Α
69	Female	176	63	black	A	yes	casual	A+
70	Female	179	65	brown	0	yes	no	В

Feature extraction

Feature extraction depends on the application

Image databases: Color histograms

Gene databases: gene expression level

Text databases: Word frequencies

Data	25
Mining	15
Feature	12
Object	7

But, the feature-approach allows uniform treatment of instances from different applications.

Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data