

Urban Insights

better choices for healthier cities, one pixel at a time

Academic Advisors: Dr. Abinash Bhattachan, Professor of Environmental Science at Texas Tech Prof. Alberto Todeschini, Prof. Fred Nugen, UC Berkeley

Thank you!

Dr. Abinash Bhattachan

Professor of Environmental Science, Texas Tech University

Mark L. Shorett

Master of City Planning (MCP), MIT Regional Planning Program, Association of Bay Area Governments & Metropolitan Transportation Commission

IMA GINE

Urban Insights

Problem

Worst Drought in California in 1200 years!

Solution

Land Cover*
Detection &
Classification
Insights

Use Cases

Impact on Microclimate and Correlation with Median Household

Deliverables

Research Paper, API & Website

Contents

- 1 Data Sets
- 2 Model and Training
- 3 Results
- 4 Architecture
- 5 Summary

Data Sets

1. NAIP

Extract Aerial Images Containing 4 Channels:

- Red
- Green
- Blue
- Near-Infrared

Apply transformations to extract insights, e.g.:

3. Land Surface Temperature Data

^{*}NAIP: National Agriculture Imagery Program

^{*}NDVI: Normalized Difference Vegetation Index

Implementation

GEE Baseline Model

- 80/20 split on pixels → 80/20 split on polygons
- GEE* provided ML toolkit (Random Forest)
- Macro F₁

Classes Classified by the Model

- Water
- Trees
- Grass
- Turf
- Impervious
- Soil

Model Iterations

Satellite Image

NAIP Image

Neural Net V1

Biased towards impervious

Neural Net V2

Biased towards water

Neural Net Ensemble

Max probability class from both models

Neural Network Ensemble Model

Hyperparameters

Layers	3	
Nodes	32	
Dropout	0.05	
Learning Rate (Adam)	0.01	
Activation	ReLU	
Batch Size	120	

Model Performance Comparison

F ₁ Score	Baseline (RF)	Neural Net V1	Neural Net V2	Ensemble
grass	0.88	0.88	0.89	0.90
trees	0.85	0.80	0.86	0.85
turf	0.84	0.94	0.91	0.93
soil	0.92	0.92	0.94	0.94
impervious	0.86	0.87	0.89	0.89
natural water			0.77	
pool water			0.99	
all water	0.67	0.84		0.99
Macro F ₁ Average	0.84	0.88	0.89	0.92

Correlation with Median Household Income

2.97%

Area Increase for every 10K USD in Median Household Income

0.5%

Rate of Change Positive Increase for every 30K USD in Median House Income

Impact on Microclimate

-2.25° C

Grass areas are on average cooler than impervious

-2.16° C

Tree areas are on average cooler than impervious

Layered Architecture

Input

Modeling

Integration

Google Earth Engine

Live Demonstration

Summary

Worst climate crisis of generations

Urban Insights provides eco-friendly insights

Policy makers can use this to design incentives to curb outdoor residential water usage

Urban planners can use this to plan and redevelop cities

Carlos Ortiz-Gomez Data Scientist, Statistician, UI/UX

Diana Chacon Hydro Geologist, Data Scientist

Hassan Saad Data Scientist, **Backend Engineer**

Thank you!

~ from team Urban Insights

Jorge Dayer Data Scientist

Sam Temlock Data Scientist

Sudhrity Mondal Solutions Architect, **Project Manager**

GitHub https://github.com/urbaninsights

Vaishali Khandelwal **Data Scientist**