

# Specification & Installation

(**Rev.1**)

Product number: A120ID-01



B514, Daeduk Biz Center, 17, Techno 4-ro, Yuseong-gu,

Daejeon, Republic of Korea

Tel: +82 42 862 9411

Fax: +82 42 862 9412



## **Table of Contents**

| 1 | Intro | duction and Specifications                     | 3  |
|---|-------|------------------------------------------------|----|
|   | 1.1   | Introduction                                   | 3  |
|   | 1.2   | Specifications                                 | 3  |
|   | 1.3   | Dimensional Drawings                           | 4  |
|   | 1.4   | Center of Gravity Drawings                     | 5  |
| 2 | Syste | m Integration                                  | 6  |
|   | 2.1   | Water Connection                               | 6  |
|   | 2.2   | Power Connection                               | 6  |
|   | 2.3   | Remote-Control Connection                      | 7  |
|   | 2.4   | Digital-Control Connection                     | 10 |
| 3 | Oper  | ration Quick Manual                            | 16 |
|   | 3.1   | Front Panel Indicator                          | 16 |
|   | 3.2   | Pre-Operational Checkout                       | 16 |
|   | 3.3   | Operational Procedure                          | 16 |
|   |       | List of Figures                                |    |
|   | Fig   | gure 1 Dimensional drawings                    | 4  |
|   | Fig   | gure 2 Center of Gravity                       | 5  |
|   | Fig   | gure 3 Internal I/O interface diagram          | 9  |
|   | Fig   | gure 4 Interface schematic diagram example     | 9  |
|   |       | List of Tables                                 |    |
|   | Ta    | able 1 EN2RA® RPS, Technical Specifications    | 3  |
|   | Ta    | able 2 208 V <sub>AC</sub> Input Cable Pinouts | 6  |
|   | Ta    | able 3 Remote ontrol cable pinout              | 7  |
|   | Ta    | able 4 Hardwire Interlock Definitions          | 8  |
|   | Ta    | able 5 Digital control cable pinouts           | 10 |
|   | Та    | able 6 LCD Display indications                 | 16 |



## 1. Introduction and Specifications

## 1.1 **Introduction**

The EN2CORE technology EN2RA® RPS is self-contained atomic plasma generator.

# 1.2 **Specifications**

Table 1 EN2RA® RPS, Technical Specifications

| EN2RA® RPS, Technical Specifications                               |                                                                        |  |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| item                                                               | Specification                                                          |  |  |
| Electrical Serv                                                    | vice Requirements                                                      |  |  |
| AC power input                                                     | Nominal: 200/208VAC, 50/60Hz, 30A <sub>rms</sub>                       |  |  |
| Receptacle                                                         | MS Connector Panel mount                                               |  |  |
|                                                                    | MS Connector Male inserts, 22-22                                       |  |  |
| Mating Connector (Not Provided)                                    | MS Connector, Female inserts, 22-22                                    |  |  |
|                                                                    | MS Connector Hood                                                      |  |  |
| Pin A,B,C                                                          | Phases A-R, B-S,C-T respectively                                       |  |  |
| Pin D                                                              | Earth ground                                                           |  |  |
| Cooling F                                                          | Requirements                                                           |  |  |
| Ambient Air Temperature of Operation                               | 5-40°C.                                                                |  |  |
| Minimum Water Flow during operation                                | 8 lpm (min.)                                                           |  |  |
| Maximum Water Inlet Temperature                                    | 30°C                                                                   |  |  |
| External Water Connections                                         | 3/8" A-LOK TYPE UNION                                                  |  |  |
| Process C                                                          | Compatibility                                                          |  |  |
| Process Gas Feed                                                   | • 1/4 VCR Male inlet connection.(2EA. See Figure 1)                    |  |  |
|                                                                    | O-ring seal outlet connection.                                         |  |  |
|                                                                    | (sealing area Φ55mm~ Φ 70mm see Figure 1)                              |  |  |
|                                                                    | • External transport tube > 54mm ID recommended                        |  |  |
| Exposed Material Surfaces                                          | KALREZ O-ring                                                          |  |  |
|                                                                    | Ceramic Tube                                                           |  |  |
|                                                                    | • 6061-T6 aluminum                                                     |  |  |
|                                                                    | Performance                                                            |  |  |
| Max.Power                                                          | 7kW                                                                    |  |  |
| Control Interface                                                  | Rs-232, Analog                                                         |  |  |
| Ignition Gas                                                       | 100% Ar, CGA Grade D 99.998% or higher                                 |  |  |
| Operation Gas                                                      | Ar, H <sub>2</sub> , O <sub>2</sub> , N <sub>2</sub> , NF <sub>3</sub> |  |  |
| Ignition Pressure and Flow                                         | 1 – 5 Torr, Ar: 0.5 – 5 slm                                            |  |  |
| O                                                                  | < 10 Torr, @Ar 2 slm, H <sub>2</sub> 10slm                             |  |  |
| Operating Pressure and Flow                                        | < 10 Torr, @Ar 2 slm, O <sub>2</sub> 8slm                              |  |  |
| (Contact customer support division for different operating window) | < 10 Torr, @Ar 2 slm, N <sub>2</sub> 8slm                              |  |  |
| willdow)                                                           | < 10 Torr, @Ar 2 slm, NF <sub>3</sub> 6slm                             |  |  |
| Physical Characteristics                                           |                                                                        |  |  |
| Overall Chassis Size                                               | 378 Deep x 300 Wide x 351 High (mm)                                    |  |  |
| Weight (Dry)                                                       | Approximately 26.5 kg                                                  |  |  |
| O <sub>l</sub>                                                     | ptional                                                                |  |  |
| Analog Power control                                               | Accuracy: ≤±1% of Max.Power                                            |  |  |
| Additional gas nozzle                                              | 1/4 VCR Male inlet connection                                          |  |  |



## 1.3 **Dimensional Drawings**

Dimensional drawings for the EN2RA® RPS are shown in Figure 1 below



Figure 1 Dimensional drawings

Note: All the dimensions are in mm scale.

Note: Mounting Features: Tapped holes M4 by 7 deep, 8 locations.

Note: For proper operation, water inlet / outlet protocol must be adhered to.



## 1.4 Center of Gravity Drawings





Figure 2 Center of Gravity



## 2. System Integration

## 2.1 Water Connection

The EN2RA® RPS equipment is cooled by recirculating water according to the specifications provided in Table 1 on page 3.

#### **WARNING**

Installation of an external water flow switch is required to protect the unit from permanent damage in the event of a low water flow condition.

- Securely connect a water line to the input 3/8" A-LOK type union water connector. This water line will carry cooling water to the EN2RA® RPS equipment. Refer to Table 1 on page 3 for the cooling water temperature requirements.
- Securely connect a water line to the output 3/8" A-LOK type union water connector. This water line will carry heated water away from the EN2RA® RPS equipment. The cooling water system must be capable of dissipating the maximum cooling load listed in Table 1 on page 3 while provided a maximum inlet temperature of 30°C.

#### **WARNING**

To avoid damage to the equipment, it is extremely important that the circulating water is filtered to 20 microns or better condition.

### 2.2 **Power Connection**

Refer to the technical specifications provided in Table 1 on page 3 for the power requirements.

Table 2 208 VAC Input Cable Lead Out

| 208 V <sub>AC</sub> Input Cable Pinouts |                            |  |  |
|-----------------------------------------|----------------------------|--|--|
| Type: MS Con                            | nector Panel mount         |  |  |
| MS Con                                  | nector Male inserts, 22-22 |  |  |
| Pin No.                                 | Name                       |  |  |
| A                                       | 200 - 208 VAC              |  |  |
| В                                       | 200 - 208 VAC              |  |  |
| С                                       | 200 - 208 VAC              |  |  |
| D                                       | Power Ground               |  |  |



- Make sure the facility power cable circuit breaker is in the OFF position.
- Follow local guidelines for wire size and type.



## 2.3 Remote-Control Connection

The EN2RA® RPS equipment is operated with a remote control by means of a 25-pin cable terminating in a male DB-25 connector. The inputs and outputs are configured for externally sourced 24V logic. Attach the 25-pin connector to the 25pin female D connector on the front panel. Refer to Table 3 for cable pinouts and Figure 3 and 4 for the internal circuit interface and an example of a remote-control interface, respectively.

Table 3 Remote control cable pinouts

| Remote control cable pinout |                           |        |                   |                             |                            |
|-----------------------------|---------------------------|--------|-------------------|-----------------------------|----------------------------|
| Pin no.                     | Name                      | Туре   | Active state      | In-active<br>state          | Remark                     |
| 2                           | +24V return for input     |        |                   |                             | use with 4                 |
| 14                          | +24V return for output    |        |                   |                             | use with 15,16,17,20,21,22 |
| 4                           | POR(Plasma On<br>Request) | input  | plasma on request | plasma off<br>request/reset |                            |
| 15                          | READY                     | output | ready             | not ready                   |                            |
| 16                          | Plasma OK                 | output | plasma ok         | plasma off                  |                            |
| 17                          | AC ON                     | output | AC supply on      | AC supply malfunction       |                            |
| 18                          | Power Set Input(+)        | input  |                   |                             |                            |
| 3                           | Power Set Input(-)        | input  |                   |                             |                            |
| 19                          | Power monitor Output(+)   | output |                   |                             |                            |
| 11                          | Power monitor Output(-)   | output |                   |                             |                            |
| 20                          | Fault bit 0               | output | Lo                | Pulled Hi                   |                            |
| 21                          | Fault bit 1               | output | Lo                | Pulled Hi                   |                            |
| 13                          | Interlock                 | output |                   |                             | Connected to pin 25.       |
| 25                          | Interlock return          | input  |                   |                             | Connected to pin 13.       |

Active state: current flows through the semiconductor (diode for inputs, transistors for outputs)



Table 4 Hardwire Interlock Definitions

| Hardwire Interlock         |                                                                      |  |  |
|----------------------------|----------------------------------------------------------------------|--|--|
| Fault name                 | Remark                                                               |  |  |
| Insufficient Cooling Water | Operated when cooling water flow is lower than 5.6 slm (1.5 gal/min) |  |  |
| Over Heat at RF MOSFET     | Operated when temperature at RF MOSFET exceeds 70°C                  |  |  |
| Over Heat at RF Capacitor  | Operated when temperature at RF capacitor exceeds 80°C               |  |  |

Hardwire interlocks are not linked to the internal digital controller, thus independently operates with the software interlock. See Figure 4.

The EN2RA® RPS unit provides a system interlock through its Analog control port. Closing the interlock(13 pin to pin 25) energizes the DC bus through. Integrate this interlock into your control system so the unit functions only when FET temp and cooling water flow specifications are satisfied.



## EN2RA® RPS plasma generator



Figure 3 Internal I/O interface diagram

Note: 25pin D Connector, Control I/O

- 1. Maximum current allowed on the input pin = 20mA
- 2. Maximum current allowed on the output pin = 20mA
- 3. Maximum operating voltage for  $I/O = 24V_{DC}$



Figure 4 Interface schematic diagram example



## 2.4 **Digital-Control Connection**

The RPS equipment provides digital control for setting and reading the RF power in real-time. Attach the RS-232 9-pin connector to the 9pin female D connector on the front panel. Refer to Table 1.2.1 for cable pinouts and RS-232 serial communication protocol.

Table 1.2.1 Digital control cable pinouts

| Remote control cable pinout (Host) |                 |             |               |  |
|------------------------------------|-----------------|-------------|---------------|--|
| Pin no.                            | Name (RPS Unit) | Name (Host) | Remark (Host) |  |
| 2                                  | TXD             | RXD         | Receive Data  |  |
| 3                                  | RXD             | TXD         | Transmit Data |  |
| 5                                  | GND             | GND         | Ground        |  |
| Others                             | RESERVED        | RESERVED    | RESERVED      |  |

## 1. Serial Interface Setting

• Baud rate : 9600

Data bit: 8Parity: noneStop bit: 1

• Flow control: none

• All command and response packet is ASCII code.

• Transmit delay: 10msec/char, 60msec/line

• It is Recommended to use an electrically separated(isolated) cable for RS232 cable.

## 2. Serial Command Scheme

• Carrige return : {CR}, Line feed : {LF}

• Basic Operation

If the command doesn't exist or doesn't fit the rules, A question mark (?) will be returned at the terminal.

Response Packet: ?{CR}{LF}

A question mark (?) is returned, check the following

- 1. Set the character transmission delay.
- 2. Invalid command input.

All commands are case-insensitive. (Don't care Uppercase and Lowercase letters.) Add {CR} or {LF} or {CR}{LF} after the command.





Figure 1.2.1 RPS Communications transaction

## • $T_0$ : Host Transmits Message Packet

The host computer sends a message packet to the RPS unit. The packet contains one of the following:

- A command that requests data or status information
- A command and data that change a parameter setting
- An executable command
- Transmit delays between command characters must be respected.
- if Tx 'CMD' command :
   char \*data = "CMD{CR}";
   for i=0 to data.length do
   Serial.print(\*data) // Tx 1 character of data
   delay(10) // delay 10 milliseconds between characters of data
   data++ // to the next character of data
  end for

### • $T_1$ : Unit Verifies Host Transmission Packet

Once the RPS unit receives the host computer transmission message packet, It analyzes the message and sends an ACK message if it is a valid message. If the message packet is different from the specified rule, the ACK message will be returned with A question mark (?).

ACK consists of Command, Response packet and EOP({CR}{LF}).

- Start of packet detection: Tx command
- End of packet detection : {CR}{LF}

### • $T_2$ : Host Acknowledges Unit Response

When the host receives the message, the RPS returns to its normal standby state. In the case of monitoring parameters, the parameter values are transmitted continuously.



Figure 1.2.2 Communications transaction example



```
The command transmission/reception rule is as follows
if Tx, VPO Command, Tx Packet: VPO1{CR} and
Rx Packet : VPO,on{CR}{LF}
                            [TX] - VPO<CR><LF>
                            [RX] - VPO,0<CR><LF>
                            [TX] - VSP1<CR><LF>
                            [RX] - VSP,on<CR><LF>
            Figure 1.2.3 VSP Command test example of terminal program
if Tx, VSP Command, Tx Packet: VSP=15{CR} and
Rx Packet: VSP,15{CR}{LF}
                            [TX] - VSP=15<CR><LF>
                            [RX] - VSP,15<CR><LF>
                            [TX] - VSP<CR><LF>
                            [RX] - VSP,15<CR><LF>
                            [TX] - VSP1<CR><LF>
                            [RX] - VSP,on<CR><LF>
            Figure 1.2.4 VSP Command test example of terminal program
if Tx CMD Command, Tx Packet: CMD{CR} and
Rx Packet : CMD,response packet{CR}{LF}
[TX] - CMD<CR>
[RX] - CMD,9,10,2.7,3.4,3.0,0.2,0.0,2830000,1.0,0.8,0.0,4,0,1,1,1,10<CR><LF>
[TX] - CMD<LF>
[RX] - CMD,9,10,2.7,3.4,3.0,0.2,0.0,2830000,1.0,0.8,0.0,4,0,1,1,1,10<CR><LF>
[TX] - CMD<CR><LF>
[RX] - CMD,9,10,2.7,3.4,3.0,0.2,0.0,2830000,1.0,0.8,0.0,4,0,1,1,1,10<CR><LF>
            Figure 1.2.6 CMD Command test example of terminal program
```

### 3. Command List

#### 3.1 Set Power Command

- -VSP: Print the value stored in Digital Set Power
- -VSPn: Turn Digital Set Power on (n = 1) or off (n = 0)

Be sure to turn it off(n = 0) when setting power through analog 25 pins.

-VSP=z : Set to Digital Set Power (z in watt)

An example of using the command is as follows.

- if set 'Digital Set Power On'

Tx command: VSP1, response packet: VSP, on

- if set 'Digital Set Power to 3500W'

Tx command: VSP=3500, response packet: VSP,3500

- if print 'the value stored in Digital Set Power'

Tx command: VSP, response packet: VSP,3500

- if set 'Digital Set Power Off'

Tx command: VSP0, response packet: VSP,off

#### 3.2 Plasma On Enable Command

-VPO: Print the value stored in Digital Plasma On Enable

-VPOn: Turn Plasma On Enable on (n = 1) or off (n = 0)

Be sure to turn it off(n = 0) when setting plasma on enable through analog 25 pins.

-VPO=z : Set to Plasma On Enable Output High(z = 1) or Low(z = 0)

An example of using the command is as follows.

- if set 'Turn Plasma On Enable on'

Tx command: VPO1, response packet: VPO, on

- if set to 'Plasma On Enable Output High'

Tx command: VPO=1, response packet: VPO,1



- if print 'the value stored in Digital Set Power'

Tx command: VPO, response packet: VPO,1

- if set 'Turn Plasma On Enable off'

Tx command: VPO0, response packet: VPO,off

### 3.3 Monitor Command

-CMD: Print all Parameters Readbacks

The number of bytes of one data can range from 1 to 10 bytes. It depends on the output value. The ASCII code '.' of the decimal point that separates integers and decimals is also included in the data.(Except for integer type)

When data is a negative value, ASCII code '-' is appended to the front of the data.

Response packet configuration of CMD command:

"CMD,offset00,offset01,offset02,offset03,offset04,offset05,offset06,offset07,

offset08,offset09,offset0a, offset0b, offset0c, offset0d, offset0e, offset0f, offset10"

| Address | Description                              | Data type          |  |
|---------|------------------------------------------|--------------------|--|
| offset  |                                          | (ASCII code)       |  |
| 00      | delivered power in Watt                  | integer            |  |
| 01      | set power in Watt                        | integer            |  |
| 02      | RF voltage in Volt                       | one decimal places |  |
| 03      | RF current in Ampere                     | one decimal places |  |
| 04      | DC voltage in Volt                       | one decimal places |  |
| 05      | DC current in Ampere                     | one decimal places |  |
| 06      | RF phase in degree                       | one decimal places |  |
| 07      | Frequency in Hz                          | integer            |  |
| 08      | QFR in no unit                           | one decimal places |  |
| 09      | Plasma Impedance, real part, in Ohm      | one decimal places |  |
| 0a      | Plasma Impedance, imaginary part, in Ohm | one decimal places |  |
| 0b      | Run Mode State                           | integer            |  |
|         | 1 = Ignition ready                       |                    |  |
|         | 2 = Ignition start                       |                    |  |
|         | 3 = Ignition failed                      |                    |  |
|         | 4 = Normal operation                     |                    |  |
|         | 5 = User off                             |                    |  |
|         | 6 = Interlock                            |                    |  |
|         | 7 = DC discharging                       |                    |  |
| 0c      | Interlock                                | integer            |  |
|         | 0 = None                                 |                    |  |



# EN2RA® RPS plasma generator

|    | 1 = Over power                          |         |  |
|----|-----------------------------------------|---------|--|
|    | 2 = Over operation time                 |         |  |
|    | 3 = Current fault                       |         |  |
|    | 4 = fan fault                           |         |  |
|    | 5 = Hardware fault                      |         |  |
| 0d | VPOn:                                   | integer |  |
|    | 1 : Turn Plasma On Enable on            |         |  |
|    | 0 : Turn Plasma On Enable off           |         |  |
| 0e | VPO=z:                                  | integer |  |
|    | 1 : Set to Plasma On Enable Output High |         |  |
|    | 0 : Set to Plasma On Enable Output Low  |         |  |
| Of | VSPn:                                   | integer |  |
|    | 1 : Turn Digital Set Power on           |         |  |
|    | 0 : Turn Digital Set Power off          |         |  |
| 10 | VSP=z:                                  | integer |  |
|    | Set to Digital Set Power in watt        |         |  |



## 3. Operation Quick Manual

#### 3.1 Front Panel Indicator

Table 4 below shows the front panel liquid crystal display used to record the power-up status of the EN2RA® RPS equipment. It is also used to indicate the status of plasma ignition and as a troubleshooting device.

Table 6 LCD Display Indications

| Display          | Description                                                         |
|------------------|---------------------------------------------------------------------|
| Ignition Ready   | Indicates that EN2RA® RPS is ready to ignite plasma                 |
| Ignition Start   | Ignition Start                                                      |
| Normal Operation | Indicates that plasma is successfully running                       |
| Ignition Fail    | Ignition Fail                                                       |
| User Off         | User Plasma Off                                                     |
| Interlock Locked | Indicates that a Interlock has occurred                             |
| DC Discharging   | Waits for EN2RA® RPS to be available for the next ignition (30 sec) |

## 3.2 Pre-Operational Checkout

Before operating the EN2RA® RPS equipment for the first time, perform the following procedure to assure operational readiness:

- 1) Perform a leak check using a helium leak detector, or a rate of rise method prior to operation.
- 2) Turn on facility water supply and allow water to circulate through En2ra-RPS equipment. Check for any visible leaks. Verify flow is as specified in Table 1 on page 3, or greater than 8 lpm(min.).
- 3) Check that all electrical and the remote-control connector is firmly seated.
- 4) Place facility dedicated circuit breaker to ON position.
- 5) Apply facility gas EN2RA® RPS equipment.

#### 3.3 Operational Procedure

Use the following procedure to apply power to the EN2RA® RPS equipment and to produce plasma:

- 1) Upon power up the front panel indicator should Ignition READY
- 2) Pump EN2RA® RPS and feed gas lines to base pressure.
- 3) Introduce Argon; assure pressure is within the ignition pressure specification as shown in Table 1 on page 3.
- 4) Activate remote plasma on request.
- 5) Front panel indicator should then indicate **Ignition Start**
- 6) Front panel indicator should then indicate **Normal Operation**
- 7) Introduce H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, and NF<sub>3</sub> at the desired flow rate. Assured pressure is within the operating pressure specification listed in Table 1 on page 3.

