

IN THE CLAIMS:

I claim:

1. (Previously withdrawn) A method of inducing apoptosis in cancer cells by administering alpha 1-acid glycoprotein to said cancer cells.
- 10 2. (Previously withdrawn) The method of claim 1 wherein said alpha 1-acid glycoprotein has been charged with zinc.
3. (Previously withdrawn) A method of inducing apoptosis in cancer cells by administering alpha 2-HS glycoprotein to said cancer cells.
- 15 4. (Previously withdrawn) The method of claim 3 wherein said alpha 2-HS glycoprotein has been charged with zinc.
5. (Previously withdrawn) A method of inducing apoptosis in cancer cells by administering alpha 1-antitrypsin to said cancer cells.
6. (Previously withdrawn) The method of claim 5 wherein said alpha 1-antitrypsin has been charged with zinc.
- 20 7. (Previously withdrawn) A method of inducing apoptosis in cancer cells by administering a peptide fragment of alpha 1-acid glycoprotein to said cancer cells.
8. (Previously withdrawn) The method of claim 7 wherein said peptide fragment of alpha 1-acid glycoprotein has been charged with zinc.
- 25 9. (Previously withdrawn) A method of inducing apoptosis in cancer cells by administering a peptide fragment of alpha 2-HS glycoprotein to said cancer cells.
10. (Previously withdrawn) The method of claim 9 wherein said peptide fragment of alpha 2-HS glycoprotein has been charged with zinc.
11. (Currently amended) A process for preparing zinc charged alpha 1-acid glycoprotein which is suitable for treatment onof cancer cells comprising:
 - 30 a. incubating said alpha 1-acid glycoprotein in solution with a chelating agent;
 - b. isolating naked alpha 1-acid glycoprotein from step a;
 - c. incubating said naked alpha 1-acid glycoprotein in solution with Zinc Acetatezinc acetate; and
 - d. isolating zinc charged alpha 1-acid glycoprotein from the solution in step c.
12. (Previously withdrawn) A process for preparing zinc charged alpha 2-HS glycoprotein, which is suitable for treatment on cancer cells comprising:

5 a. incubating said alpha 2-HS glycoprotein in solution with a chelating agent;
b. isolating naked alpha 2-HS glycoprotein from step a;
c. incubating said naked alpha 2-HS glycoprotein in solution with Zinc Acetate; and
d. isolating zinc charged alpha 2-HS glycoprotein from the solution in step c.

10 13. (Previously withdrawn) A process for preparing zinc charged alpha 1-antitrypsin, which is suitable for treatment on cancer cells comprising:
a. incubating said alpha 1-antitrypsin in solution with a chelating agent;
b. isolating naked alpha 1-antitrypsin from step a;
c. incubating said naked alpha 1-antitrypsin in solution with Zinc Acetate; and
d. isolating zinc charged alpha 1-antitrypsin from the solution in step c.

15 14. (Original) A method of preparing a peptide fragment having apoptotic activity isolated from alpha 1-acid glycoprotein comprising the following steps:
a. incubating said alpha 1-acid glycoprotein in solution with a chelating agent;
b. isolating naked alpha 1-acid glycoprotein from step (a);
c. incubating said naked alpha 1-acid glycoprotein in solution with zinc;
20 d. isolating zinc charged alpha 1-acid glycoprotein from the solution created in step (c);
e. drying said zinc charged alpha 1-acid glycoprotein from step (d);
f. isolating, from step (e), peptide fragments which have apoptotic activity in cancer cells.

25 15. (Previously withdrawn) A method of preparing a peptide fragment having apoptotic activity isolated from alpha 2-HS glycoprotein comprising the following steps:
a. incubating said alpha 2-HS glycoprotein in solution with a chelating agent;
b. isolating naked alpha 2-HS glycoprotein from step (a);
c. incubating said naked alpha 2-HS glycoprotein in solution with zinc;
30 d. isolating zinc charged alpha 2-HS glycoprotein from the solution created in step (c);
e. drying said zinc charged alpha 2-HS glycoprotein from step (d);
f. isolating, from step (e), peptide fragments which have apoptotic activity in cancer cells.

16. (Original) A method of preparing a peptide fragment having apoptotic activity isolated from alpha 1-acid glycoprotein comprising the following steps:
35 a. incubating said alpha 1-acid glycoprotein in solution with a chelating agent;

5 b. isolating naked alpha 1-acid glycoprotein from step (a);
c. incubating said naked alpha 1-acid glycoprotein in solution with zinc;
d. isolating zinc charged alpha 1-acid glycoprotein from the solution created in step (c);
e. incubating the zinc charged alpha 1-acid glycoprotein from step (d) with papain;
f. isolating, from step (e), peptide fragments which have apoptotic activity in cancer
10 cells.

17. (Previously withdrawn) A method of preparing a peptide fragment having apoptotic activity isolated from alpha 2-HS glycoprotein comprising the following steps:
a. incubating said alpha 2-HS glycoprotein in solution with a chelating agent;
b. isolating naked alpha 2-HS glycoprotein from step (a);
15 c. incubating said naked alpha 2-HS glycoprotein in solution with zinc;
d. isolating zinc charged alpha 2-HS glycoprotein from the solution created in step (c);
e. incubating the zinc charged alpha 2-HS glycoprotein from step (d) with papain;
f. isolating, from step (e), peptide fragments which have apoptotic activity in cancer
cells.

20