Vazamentos de Dados: Histórico, Impacto Socioeconômico e as Novas Leis de Proteção de Dados*

Rodrigo Bisso^{1,3}, Diego Kreutz^{1,2,3}, Gustavo Rodrigues^{1,3}, Giulliano Paz^{1,2,3}

¹Laboratório de Estudos Avançados (LEA)
² Mestrado Profissional em Engenharia de Software (MPES)
³ Universidade Federal do Pampa (UNIPAMPA)

{bisso, giulliano94, crod}@gmail.com, kreutz@unipampa.edu.br

Abstract. News and security reports about data leaks are becoming more frequent every day. Most of the data leaks are severely affecting companies and governments. This huge problem has gained political and media traction to the point that information security has become a top state priority in many countries. In this paper, we present the history and socioeconomic impact of some of the most notable data leaks of recent years. Additionally, we identify and discuss recent data protection laws conceived to help in addressing the lack of training, technical knowledge, IT management skill and investments in information security, which are some of the root causes of most data leaks.

Resumo. Notícias e relatórios de segurança sobre vazamentos de dados sensíveis têm surgido com uma frequência cada vez maior. Muitos desses vazamentos, cujo volume e criticidade são altos, vêm afetando empresas e governos de forma significativa. Este cenário, cuja perspectiva atual é piorar, tem chamado tanta atenção dos governos e empresas que segurança da informação virou uma das maiores prioridades de estado em muitos países. Este trabalho tem por objetivo apresentar um histórico e o impacto socioeconômico de alguns dos vazamentos de dados mais significativos dos últimos anos. Adicionalmente, identificar e discutir as recentes leis de proteção de dados, criadas com o intuito de ajudar a combater o problema de falta de formação e investimentos em segurança da informação, a principal causa desses vazamentos de dados.

1. Por que Leis Rígidas de Proteção de Dados?

Notícias e relatórios sobre vazamentos de dados sensíveis e privados têm surgido com uma frequência cada vez maior. As estatísticas mostram um volume enorme de dados vazados nos últimos anos. Além do número e da frequência dos vazamentos, outro aspecto estarrecedor é o impacto dos dados vazados, como o re-projeto de dezenas (e até centenas) de sistemas, como ocorreu recentemente nos EUA devido ao caso de vazamento da Equifax [Ng 2019].

Os incidentes de segurança têm afetado as mais diversas áreas e setores da sociedade. Recentemente, dados de mais de 60 universidades e colégios dos EUA foram comprometidos devido a um conjunto de vulnerabilidades existentes num único sistema [Muncaster 2019]. No setor alimentício, o aplicativo de pedidos EatStreet foi alvo de um

^{*}Este trabalho [Machado et al. 2019], um dos 8 melhores papers do WRSeg 2019, foi selecionado para publicação, desta versão estendida, em edição especial da ReABTIC.

vazamento que comprometeu dados de pagamento e cartões de crédito [Gatlan 2019a]. Apesar de não ter sido divulgado o número de clientes que tiveram seus dados comprometidos, o site oficial do aplicativo informa parcerias com mais de 15 mil restaurantes em 1100 cidades.

No setor bancário, em 2018, o Banco Inter vazou dados de 20 mil clientes segundo investigação do MP [Higa 2018]. Quase um ano depois, outra falha de sistema deixa dados de mais de 1,4 milhões de clientes expostos para acesso na Internet [Payao 2019]. Considerando que instituições bancárias, por via de regra, se preocupam mais e investem muito mais em segurança da informação, este é um cenário bastante crítico.

Na verdade, o cenário é tão crítico e preocupante que governos começaram a criar leis a fim de definir os direitos de privacidade dos dados dos usuários e penalidades explícitas para os casos onde as regulamentações não forem cumpridas. A exemplo disso, a União Européia e o Brasil propuseram a *General Data Protection Regulation* 2016/679 (GDPR)¹ e a Lei Geral de Proteção de Dados Pessoais (LGPD)², respectivamente. Estas leis aplicam multas severas às empresas que fazem mal uso dos dados de seus usuários.

O principal objetivo deste trabalho é apresentar dados e desafios do cenário atual. As principais contribuições do trabalho podem ser resumidas em: (a) um levantamento histórico de alguns dos principais vazamentos de dados de 2014 a 2019; (b) uma análise do impacto sócioeconômico dos vazamentos de dados; (c) uma síntese das principais leis de proteção de dados; (d) uma discussão sobre avanços tecnológicos recentes e desafios de pesquisa e desenvolvimento; e (e) informar e conscientizar empresas e profissionais da área de tecnologia sobre a extrema importância do assunto.

2. Vazamentos de Dados

No primeiro semestre de 2019, ocorreram vários vazamentos de grandes volumes de dados sensíveis [Turner 2019b]. Um exemplo é o vazamento de dados de 2,4 milhões de usuários da Blur, uma empresa de gerenciamento de senhas, incluindo nomes de usuários, emails, dicas de senhas, endereços de IP e senhas cifradas [Cimpanu 2019a]. Outros dois vazamentos marcantes de 2019 são os 540 milhões de registros de usuários do Facebook e as 773 milhões de senhas e dados de usuários da *Collection #1* [Hern 2019, Turner 2019a].

Nos anos anteriores não foi diferente. A Tabela 1 apresenta um resumo dos 5 maiores vazamentos de dados ocorridos em cada ano, de 2014 a julho de 2019. Em 2018, o maior vazamento de dados comprometeu mais de 1 bilhão e 100 milhões de registros de dados pessoais de cidadãos da Índia [Leskin 2018]. Dadas as proporções, algo similar pode ser observado em 2017 [AO Kaspersky Lab. 2017], 2015 [LEVINGSTON 2015] e 2014 [Williams 2014]. A única excessão foi 2016 [AO Kaspersky Lab. 2016], cujo maior vazamento registrado foi de 5 milhões de registros de usuários. É interessante observar também que apenas em 2014 e 2016 houveram incidentes com menos de 1 milhão de registros entre os 5 maiores vazamentos de dados.

Outro aspecto a ressaltar é o fato de os vazamentos de dados atingirem os mais diversos ramos e setores da sociedade. Recentemente, dois grandes vazamentos de dados, ambos envolvendo empresas de assistência médica, chamaram a atenção. No pri-

http://bit.ly/EUR-GDPR

²http://bit.ly/Planalto-LGPD

	2019	2018	2017	2016	2015	2014
#1	773M	1,1B	145,5M	5M	78,8M	145M
#2	200M	500M	5,5M	2,2M	25M	2,6M
#3	24M	340M	2,2M	1,5M	15M	1,3M
#4	12M	150M	1,8M	950m	11M	774m
#5	7,7M	100M	1,6M	320m	10M	550m

Tabela 1. Vazamentos de dados sensíveis (B = bilhão, M = milhão, m = mil)

meiro caso, a empresa Quest Diagnostics teve dados de 12 milhões de clientes vazados [McKay 2019]. Em outro caso similar, a empresa LabCorp teve dados de 7,7 milhões de clientes vazados [Lam 2019]. Os dados vazados incluem nomes, endereços, data de nascimento, informações de pagamento e dados de seguro social. Além de empresas laboratoriais, hospitais também têm sido vítimas de *hackers* [Riley 2019]. Em um caso recente, dados do setor de pesquisa do *Massachusetts General Hospital* foram roubados, envolvendo aproximadamente 10 mil pacientes.

No ramo alimentício, um caso que chamou bastante atenção foi o da franquia Ceckers and Rally's, no qual 103 pontos de venda foram vítimas de um *malware* que roubava dados de cartões de crédito dos clientes. O detalhe estarrecedor: o *malware* estava ativo há três anos sem ter sido descoberto [Khandelwal 2019b]. O número de pontos de venda, verificados e comprovadamente afetados até o momento, representa 15% do total de lojas. Como as investigações ainda estão em andamento, existe a possibilidade de mais pontos de venda terem sido afetados pelo *malware*. A empresa recomenda a verificação detalhada dos extratos e a substituição dos cartões dos clientes que passaram pela franquia (ou seja, todas as centenas de lojas) durante os últimos três anos.

Na área governamental, o caso recente da Bulgária ganhou as manchetes. Segundo relatórios, um hacker roubou dados de mais de 5 milhões de cidadãos, sendo que o país possui uma população aproximada de 7 milhões de pessoas [Cimpanu 2019b]. Os dados (e.g., nomes, endereços, informações sobre renda) foram extraídos de aproximadamente 110 bases de dados governamentais, totalizando 21 GB. De forma similar, por conta de uma má configuração de um servidor, a população inteira do Equador foi posta em risco, onde aproximadamente 20,8 milhões de registros foram vazados, totalizando 18 GB de dados [Winder 2019c]. Entre as informações contidas nos registros, estavam estado civil, data de casamento e morte, nível de educação, nome do empregador e informações sobre salário. Além disso, se o indivíduo tivesse conta no banco nacional do Equador, existiam informações adicionais sobre esses registros, como estado da conta, balanço atual da conta, quantidade financiada e tipo de crédito. Segundo os pesquisadores que descobriram este banco de dados, é possível, inclusive, construir árvores genealógicas dos cidadãos utilizando os dados vazados. Ainda segundo a reportagem, o responsável pela empresa Novaestrat, responsável pelos dados, foi tomado sob custódia. Estes casos são exemplos da dimensão e sofisticação dos ataques atuais.

Um caso envolvendo a *Australian National University*(ANU) ganhou as manchetes final de 2018 [Borys 2019]. A Universidade foi vítima de um grupo de hackers por

vários meses. O grupo foi capaz de recuperar informações sobre estudantes, professores e funcionários da universidade. Segundo um dos professores da universidade, foi um dos casos mais elaborados já vistos até hoje pela complexidade de técnicas, persistência e tempo do ataque. Os bancos de dados aos quais os atacantes tiveram acesso mantinham informações de 19 anos atrás. Porém, segundo as investigações, os atacantes apenas pegaram uma fação dos dados disponíveis.

No contexto do Brasil, recentemente foi descoberta uma página contendo dados de mais de 200 mil brasileiros [de Souza 2019b]. Dentre os dados contidos nos registros estão nome completo, endereço residencial e documentos de identificação (e.g., CPF e RG). Não foi possível identificar a quem pertenciam os dados, porém, foi identificado que o IP de origem apontava para um servidor da Microsoft, nos EUA.

No ramo financeiro, dois casos graves, envolvendo as empresas Mastercard e Capital One, merecem destaque. No caso da Mastercard, clientes do programa de fidelidade *Priceless Specials* da Alemanha e da Bélgica tiveram seus dados distribuídos na Internet [Gatlan 2019b]. Dois arquivos com 84 mil e 90 mil registros foram encontrados contendo informações como nome, endereço, email e número do cartão de crédito. Já no caso da Capital One, estima-se que clientes que realizaram o seu cadastro entre 2005 e 2019 estejam entre os 140 milhões de cidadãos americanos e 6 milhões de cidadãos canadenses que tiveram seus dados vazados [Serrels 2019]. Os dados vazados seguem o mesmo padrão no caso da Mastercard.

O interessante é observar que nem as empresas de alta tecnologia, que supostamente possuem times especializados e preparados para proteger suas infraestruturas, escapam das manchetes de incidentes de segurança. Recentemente, foram descobertos dados (e.g., nomes, senhas, comentários e outras informações) de 540 milhões de usuários do Facebook armazenados em servidores da Amazon [Cimpanu 2019e]. Os dados, descobertos por pesquisadores especializados em vazamentos de dados, estavam em um servidor que pertencia à empresa mexicana Cultura Colectiva.

3. Impacto Socioeconômico

Em 2018, o custo envolvendo vazamentos de dados, apenas nos EUA, somaram 654 bilhões de dólares e expuseram 2,4 bilhões de dados de usuários [Security 2018]. Segundo o relatório, os tipos de dados mais vazados são data de nascimento e número de seguro social (21,6%) e nome e endereço (20%). Com relação aos tipos de ataques, os que aparecem em maiores percentuais são de acesso não autorizado (34,2%) e *malware* (17,3%).

A Tabela 2 apresenta alguns casos onde foram aplicadas (ou estão em processo de aplicação) multas devido a vazamentos de dados. No caso dos EUA, como ainda não existe uma regulamentação federal específica, fica a cargo da *Federal Trade Commission* (FTC), responsável pelos direitos do consumidor, a definição e aplicação das multas.

O Facebook está sendo multado em US\$5 bilhões pelo governo americano [Wong 2019]. O principal motivo é o caso envolvendo a empresa Cambridge Analytica, no qual haviam especulações sobre a relação de vendas e o uso indevido de dados na campanha eleitoral de Donald Trump, em 2016. O caso veio a público pela primeira vez em dezembro de 2015 e chegou a corte americana no início de 2018.

Valor	Empresa	País	Ano
US\$ 5 B	Facebook	EUA	2019
·		EUA	2019
£ 183,39 M	British Airways	Reino Unido	2019
US\$ 148 M	Uber	EUA	2018
US\$ 85 M	Yahoo	EUA / Israel	2018
€ 50 M	Google	França	2019
US\$ 22,5 M	Google	EUA	2012
US\$ 10 M	Blue Cross Blue Shield	EUA	2019
US\$ 3,8 M	AMCA	EUA	2019
R\$ 1.5 M	Banco Inter	Brasil	2018
€ 600 m	Uber	Holanda	2018
£ 385 m	Uber	Reino Unido	2018

Tabela 2. Penalidades aplicadas a empresas (B = bilhão, M = milhão, m = mil)

A companhia hoteleira Marriott está sendo multada em £100 milhões pelo vazamento de dados de 339 milhões de clientes [Guardian 2019]. Entre os dados vazados estão números de cartão de crédito e dados de passaporte. A falha é decorrente de um sistema adotado pela empresa após a compra de outra rede hoteleira, a Starwood, que já havia sido notificada de problemas de segurança em seus sistemas em 2014.

A companhia aérea British Airways foi vítima de um ataque que afetou mais de 500 mil clientes em 2018 [News 2019]. Os dados roubados incluem histórico de compras de passagens, informações de pagamento e informações pessoais dos usuários como nome e endereço. A empresa está sendo multada em £183 milhões.

Os vazamentos envolvendo as empresas Quest Diagnostics e LabCorp, que utilizavam a empresa AMCA para realizar os pagamentos, afetaram mais de 20 milhões de clientes. O impacto foi tamanho que AMCA pediu proteção contra falência depois de ter sido condenada a pagar mais de 3,8 milhões de dólares em multas [Osborne 2019]. De maneira similar, o grupo Disjardins, um dos maiores grupos de crédito da América do Norte, sofreu recentemente um vazamento de dados que irá afetar os seus negócios [Montpetit 2019]. Segundo os relatórios recentes, vazaram dados de 2,7 milhões de pessoas e mais de 173 mil empresas.

Até pouco tempo, pouco se dava atenção à privacidade e a segurança de dados. Entretanto, os dados e exemplos de penalidades mostram que o cenário mudou drasticamente nos últimos anos, isto é, estes assuntos tornaram-se uma prioridade de estado. Diferentes países já possuem leis estabelecidas de proteção de dados. Os que ainda não possuem, como os EUA, estão aplicando penalidades caso-a-caso e caminhando para criar as suas leis de proteção de dados. Empresas como a Google e a Uber já foram multadas em diferentes países. Esta é uma tendência que veio para ficar e vai atingir todas as empresas, de todos os portes. Entretanto, a maioria absoluta das empresas ainda não está preparada para este novo cenário. É preciso informar e conscientizar empresas e profissionais da

área sobre a importância e necessidade de atenção do assunto.

4. Leis de Proteção de Dados

Com o objetivo de mudar este cenário, indiscutivelmente crítico, governos têm tomado medidas para que as empresas aumentem os investimentos e a preocupação com a segurança dos dados dos usuários. A União Europeia (EU) criou, em 2016, uma nova regulamentação para a proteção de dados pessoais, a *General Data Protection Regulation* 2016/679 (GDPR). A GDPR é um marco legal para a proteção e privacidade de dados de todos os cidadãos da EU e do Espaço Econômico Europeu (EEE), tornando a proteção de dados pessoais um direito fundamental, assim como a liberdade. Inspirada na GDPR, em 2018, foi sancionada a Lei Geral de Proteção de Dados Pessoais (LGPD), nº 13.709, a qual entrará em vigor em agosto de 2020. Tanto a GDPR quanto a LGPD visam proteger e fortalecer a privacidade, dando um maior controle aos cidadãos sobre seus dados pessoais e determinando como devem acontecer a coleta e o tratamento desses dados por terceiros.

Dados pessoais, segundo ambas as leis, são informações que possam identificar, direta ou indiretamente, uma pessoa natural, como CPF, RG e nome completo. Além disso, dados não pessoais como profissão, localização e endereço IP podem se tornar dados pessoais, se utilizados em conjunto com outros dados, para identificar uma pessoa natural. Dados pessoais sensíveis são informações que podem violar a intimidade, honra e imagem das pessoas naturais, como origem racial e étnica, convicções religiosas, políticas e filosóficas, dados genéticos e biométricos e dados referentes à saúde e vida sexual.

Ambas as leis determinam que deverão responder às regulamentações toda e qualquer empresa, pública ou privada, ou pessoa, física ou jurídica, que: armazene ou trate dados pessoais em seu território; a coleta e tratamento de dados tenha como objetivo oferecer ou fornecer serviços em seu território; e colete e manipule dados de seus cidadãos, independente da nacionalidade ou localização da empresas e dados. As multas por violação das regulamentações podem chegar a €20 milhões ou 4% do faturamento anual da pessoa jurídica envolvida, no caso da GDPR, e 2% do faturamento anual da pessoa jurídica ou R\$50 milhões, pela LGPD.

Recentemente, no Brasil, o órgão de Proteção e Defesa do Consumidor (Procon), notificou o aplicativo FaceApp e as empresas Google e Apple, responsáveis pelas lojas de aplicativos para Android e iOS, respectivamente [InfoMoney 2019]. Segundo o Procon, as empresas deverão passar a detalhar as suas políticas de armazenamento, uso e coleta de dados dos usuários do aplicativo. Atualmente, o aplicativo contém clausulas que autoriza a coleta e o compartilhamento de imagens e dados do usuário sem deixar claro por quanto tempo e como serão usados.

Ainda no Brasil, além da LGDP, o governo estuda a possibilidade de criação de uma Lei Geral de Segurança Cibernética (LGSC) [de Souza 2019e]. A lei deve ser apresentada ao Congresso Nacional ainda em 2019. Segundo o coronel Arthur Pereira Sabbat, representante do Gabinete de Segurança Institucional, pelo menos 70 milhões de brasileiros foram vítimas de crimes cibernéticos em 2018. Este é mais um sinal de que a segurança e a privacidade de dados está se tornando uma prioridade de estado.

Tanto a GDPR quanto a LGPD estipulam que a coleta e o tratamento de dados pessoais, sensíveis ou não, se darão apenas mediante autorização explícita do titular dos

dados, ou seja, a quem os dados referem-se. Os termos de uso deverão ser sucintos e explícitos, informando com qual finalidade, por quanto tempo e quais empresas e serviços terão acesso aos dados. A autorização de utilização de dados poderá ser cancelada facilmente e a qualquer momento, assim como a modificação e deleção dos dados pessoais. Em suma, os dados pessoais pertencem única e exclusivamente aos seus titulares, cabendo a estes a decisão de utilização, deleção e comercialização.

5. Discussão

O que leva aos vazamentos de dados?

Eis alguns dados e exemplos reais dos principais motivos que levam a vazamentos de dados cada vez mais frequentes. De acordo com uma pesquisa recente, 81% dos vazamentos são resultado da utilização de credenciais (e.g., login e senha) fracas ou roubadas [Nachreiner 2019]. Em outras palavras, as credenciais de funcionários e usuários dos sistemas das empresas privadas e instituições públicas ainda representam a principal porta de entrada dos atacantes.

Em uma pesquisa recente, envolvendo 785 empresas em mais de 30 indústrias em 30 países, foi constatado que 53% das organizações continham mais de um mil arquivos sensíveis expostos e aproximadamente 40% das contas obsoletas ainda estavam ativas [de Souza 2019f]. A pesquisa identificou também que 17% de todos os dados confidencias estão disponíveis para todos os funcionários das respectivas organizações. Fica evidente que ter dados confidenciais com acesso irrestrito pode custar caro para a empresa e colocar a sua credibilidade em risco, como visto e discutido nas seções anteriores. Não obstante, foi constatado que 61% das organizações têm mais de 500 usuários com senhas que nunca expiram, isto é, que serão trocadas muito provavelmente somente após um incidente de segurança, quando já é tarde demais. Isto é preocupante uma vez que a maioria dos vazamentos, conforme relatado anteriormente, é resultado da utilização de credenciais fracas ou roubadas.

A seguir são apresentados quatro exemplos de dispositivos, aplicativos de usuários, aplicativos de servidores (infraestrutura) e bibliotecas de criptografia vulneráveis, isto é, que podem resultar (ou resultaram) em vazamentos de dados. O primeiro deles é um rastreador GPS da da empresa chinesa Shenzhen i365 Tech, que é utilizado para acompanhar em tempo real a localização de crianças, idosos e animais de estimação. Pesquisadores da Avast descobriram um conjunto de vulnerabilidades que podem expor em tempo real a localização exata do usuário dos dispositivos, o que representa um problema grave de segurança e privacidade [de Souza 2019a]. Além disso, as vulnerabilidades do rastreador GPS permitem ao atacante falsificar a localização do usuário. Os pesquisadores responsáveis pela descoberta estimam que existam cerca de 600 mil rastreadores sem proteção ao redor do mundo.

O segundo exemplo é o aplicativo Word with Friends, um jogo presente nas plataformas Android e iOs. Uma vulnerabilidade presente no aplicativo permitiu ao hacker Gnosticplayers ter acesso aos dados de mais de 200 milhões de usuários do jogo [Khandelwal 2019a]. Segundo a Zynga, responsável pelo aplicativo, a vulnerabilidade foi corrigida e a empresa aconselha todos os usuários a mudarem suas senhas. Entretanto, uma medida tardia uma vez que o hacker já teve acesso aos dados dos usuários do aplicativo. Um exemplo similar é o do aplicativo de gerenciamento de senhas LastPass,

com uma base de 16 milhões de usuários. Segundo pesquisadores do projeto *Google Project Zero*, uma falha na aplicação permite o vazamento da última credencial utilizada [Winder 2019b]. A falha é decorrente de uma falha de atualização da cache do navegador.

O terceiro exemplo é o software Exim, um agente de transferência de emails muito utilizado em infraestruturas de transporte de emails. Estima-se que mais de 5 milhões de servidores (e.g., Linux, BSD) de email utilizem o Exim. Recentemente, uma vulnerabilidade crítica do Exim permitia aos atacantes acesso remoto e controle total sobre os servidores [O'Donnell 2019]. Como existem milhões de servidores espalhados pelo mundo, eis o exemplo de um problema altamente crítico de segurança. Entre a divulgação e a atualização dos sistemas os atacantes puderam ter acesso a muitos milhões de emails em trânsito pelos servidores com o Exim vulnerável.

Já o quarto exemplo pode ser considerado o mais críticos de todos por afetar, indiretamente, milhares de sistemas que utilizam bibliotecas criptográficas como WolfSSL, MatrixSSL, Crypto++ e Oracle SunEC. Uma equipe de pesquisadores do Centro de Pesquisa em Criptografia e Segurança da Masaryk University, na Repúblia Tcheca, encontrou uma vulnerabilidade que permite recuperar a chave privada de *smart cards* [Cimpanu 2019d]. A vulnerabilidade impacta *smart cards* da Athena IDProtect, os quais são utilizados como controle de acesso em áreas governamentais e privadas, transporte público e assistência médica. Essa mesma falha foi encontrada em algumas bibliotecas de segurança como WolfSSL, MatrixSSL, Crypto++ e Oracle SunEC.

Configuração de servidores e sistemas é outro grande problema que leva, frequentemente, a vazamentos de dados. No caso do Banco Pan, foram encontrados 250GB (1.235.151 arquivos) de documentos de clientes do banco em um servidor desprotegido [de Souza 2019d]. Os arquivos continham informações sobre clientes de empresas como Safrá, Olé e Sabemi Seguradora. Segundo a investigação inicial, o provável responsável pelo servidor era um correspondente bancário que trabalhava com produtos e serviços para aposentados, pensionistas e militares. O Ministério Público abriu um inquérito para investigar o ocorrido. O caso está sendo classificado como o maior incidente de segurança envolvendo dados financeiros no país.

Num caso similar ao do Banco Pan, a empresa Atitude Grupo, terceirizadora de mão-de-obra que opera principalmente no Nordeste do Brasil, deixou expostos documentos sigilosos por conta de uma má-configuração em um servidor [de Souza 2019c]. Alguns dos clientes dessa empresa são o Banco Central do Brasil, Banco do Nordeste, Receita Federal, Receita Rodoviária Federal e Tribunais Regionais Eleitorais. Entre os documentos que ficaram expostos, estavam licitações, contratos, relatórios, folhas de pontos e documentos relativos a funcionários (e.g., RG e CPF). Segundo a Atitude Grupo, em sua defesa, todos os seus dados são públicos e podem ser acessados nos portais da transparência do governo.

Recentemente, na linha de frente em defesa das empresas e instituições governamentais dos EUA, o *Federal Bereau Investigation* (FBI) emitiu um aviso sobre os perigos de ataques cibernéticos [Winder 2019a]. O FBI destaca três das principais técnicas utilizadas pelos atacantes: (i) campanhas de *phishing* por email; (ii) vulnerabilidades em protocolos de acesso remoto; e (iii) vulnerabilidades de software.

Os dados e exemplos apresentados permitem concluir que as principais fon-

tes de vazamento de dados são: (a) credenciais de usuários; (b) falhas de projeto e implementação de aplicativos e sistemas; (c) falhas humanas (e.g., má configuração de servidores); e (d) falta de políticas e controle interno nas empresas (e.g., muitos funcionários com acesso irrestrito à documentos confidenciais).

Ameaças internas

No caso do grupo Disjardins, discutido anteriormente, o vazamento ocorreu por conta de um funcionário mal intencionado. Este é, de fato, um problema bastante preocupante. Relatórios recentes apontam que mais de 90% das empresas têm medo de usuários internos maliciosos [Cybersecurity Insiders 2018]. Não é para menos, pois relatórios de segurança mostram que aproximadamente 50% dos incidentes de segurança são causados por funcionários ou ex-funcionários das empresas [Security 2019]. Entretanto, ainda há poucas alternativas tecnológicas para evitar incidentes internos.

Recentemente, foram investigados casos de venda de informações pessoais extraídas de fontes como INSS, Forças Armadas e outros serviços federais do Brasil. Os dados foram vendidos para empresas de *call center* [Dourado 2019]. Segundo as investigações, há diferentes empresas envolvidas no caso. Estas empresas oferecem serviços de dados que permitem a qualquer pessoas física ou jurídica obter informações como CPF, número de telefone e email de uma pessoa. A empresa responsável pelos dados do INSS já teve um de seus funcionários preso durante uma operação da Polícia Federal denominada de Data Leak.

Impacto a curto, médio e longo prazo

É interessante observar e discutir casos como o da Equifaz, que afetou 145,5 milhões de pessoas e dezenas de sistemas Governo americano. Em posse dos dados vazados (e.g., nome, número do seguro social, endereço), qualquer pessoa poderia realizar cadastros e usufruir de benefícios oferecidos por diferentes instituições públicas americanas. Assim que o vazamento veio a público, o Governo realizou uma campanha urgente de atualização dos seus sistemas. Entretanto, devido a quantidade e fragmentação dos órgãos e sistemas afetados, mesmo dois anos após o vazamento ainda existem sistemas vulneráveis aos dados vazados.

A maioria dos sistemas do Governo americano não seguem os métodos de verificação de identificação sugeridos pelo *National Institute of Standards and Technology* (NIST). Devido a isso, vazamentos como o do Equifax (em 2017) afetam diretamente várias dezenas de sistemas do Governo americano, que não exigem nada além dos dados vazados para a realização do cadastro online e a solicitação de diferentes benefícios.

Técnicas simples podem ser utilizadas para resolver o problema, como autenticação de múltiplos fatores, na qual os usuários recebem dados de autenticação distintos em diferentes meios de comunicação (e.g., SMS e email). Estes códigos de autenticação são, então, utilizados para confirmar a identidade da pessoa. Por mais simples que isto possa parecer, a maioria dos sistemas não implementa múltiplos fatores de autenticação e verificação de identidade.

Em um estudo recente, a Microsoft constatou que 99.9% dos ataques cibernéticos automáticos a contas e serviços dos usuários podem ser mitigados com a implementação

de autenticação de múltiplos fatores [Cimpanu 2019c]. Atualmente, somente senhas fortes já não garantem a segurança de acesso aos sistemas. Isto ocorre pelo fato de os ataques estarem cada vez mais sofisticados, incluindo diferentes formas de atacar o sistema ou roubar as credenciais de um usuário, sem envolver de forma direta a senha (e.g., *Manin-the-Midle*, *keystroke logging*). Vale ressaltar que uma pesquisa semelhante, conduzida pela Google, chegou a resultados similares [Cimpanu 2019c].

E se meus dados de autenticação insubstituíveis vazarem?

Alguns sistemas e empresas estão partindo para o uso de dados biométricos (e.g., digitais, íris) como sendo a solução da identificação e autenticação de pessoas. Entretanto, o que acontece se os meus dados biométricos vazarem? O que um atacante consegue fazer com dados biométricos vazados ou roubados/clonados? Dependendo da tecnologia utilizada, um atacante consegue, de forma rápida e simples, utilizar as credenciais biométricos vazadas para se passar pela pessoa que teve seus dados vazados [Mak 2019]. Em resumo, o simples fato de utilizar biometria como a única forma de autenticação traz mais insegurança do que segurança.

Eventualmente, dados biométricos podem ser utilizados como forma complementar de autenticação. Entretanto, mesmo assim, nem nesses casos é recomendado o uso de biometrica. Se uma senha comum vazar, eu posso rapidamente trocá-la. Entretanto, o problema com os dados biométricos é que eles não podem ser alterados depois de um vazamento. Recentemente, um grupo de pesquisadores encontrou uma enorme base de dados biométricos de dedos e faces, utiliza pela polícia, de milhões de pessoas [Pinkstone 2019]. Neste caso, além dos dados biométricos, vazaram também os metadados (informações associadas ao dados biométricos), como login e identificação. Em resumo, este é um exemplo onde todos os dados de segurança, de milhões de pessoas, mesmo utilizando dois fatores de autenticação (login/senha e biometria) foram vazados. Segundo os investigadores, a empresa responsável pelos dados não utiliza nenhum tipo de cifra sobre os dados, ou seja, assim como a maioria absoluta das empresas, armazena dados sensíveis de maneira absolutamente inapropriada sob a perspectiva da segurança da informação.

Tecnologias promissoras

Algumas das alternativas existentes, cujo principal objetivo é reduzir a possibilidade ou o impacto de vazamentos de dados, são os bancos de dados cifrados, tecnologias como Intel SGX [Costan and Devadas 2016] e sistemas de prevenção de vazamentos de dados (DLPs) [Alneyadi et al. 2016]. Bancos de dados cifrados, como o CryptDB [Popa et al. 2011], foram criados para impedir que administradores do sistema e do banco de dados tenham acesso aos dados em texto plano. Entretanto, a utilização de bancos de dados como o CryptDB [Popa et al. 2011], que utilizam criptografia homomórfica, ainda é tecnicamente inviável devido ao alto custo computacional envolvido.

Tecnologias como Intel SGX surgiram para parcialmente resolver o problema de desempenho imposto por soluções como a CryptDB. Intel SGX permite criar uma região de memória isolada, onde nem o sistema operacional tem acesso aos dados. A partir da SGX, recentemente, começaram a surgir soluções de armazenamento e processamento de dados seguro como a EnclaveDB [Priebe et al. 2018]. Estas soluções limitam a superfície de ataque de agentes maliciosos internos. Entretanto, apesar de representarem uma evolução significativa em termos de arquitetura e desempenho, mantendo a

segurança, ainda há desafios pela frente até tornarem-se soluções de produção, como as limitações em termos de operações de I/O e memória interna (i.e. 80MB para dados).

Outra alternativa são Sistemas de Prevenção de Vazamentos de Dados (DLPSs) [Alneyadi et al. 2016]. Os DLPSs atuam em três principais frentes. A primeira é proteger dados pessoais armazenados, buscando identificá-los através de expressões regulares e análises estatísticas. A segunda trata de proteger dados em trânsito entre nós, sendo eles internos ou externos. Para isso, são utilizadas tecnologias como TLS, HTTPS, funções Hash e *Proxies*. A última frente é a tentativa de proteger dados sensíveis após um vazamento, utilizando notificações, audições, bloqueios, cifra e quarentena, visando amenizar os possíveis prejuízos. Como qualquer outro mecanismo de segurança, os DLPSs enfrentam diferentes desafios ao tentar proteger dados pessoais sensíveis. Por exemplo, há vários canais por onde esses dados podem vazar, incluindo DVDs, USBs, documentos impressos, Internet e o fator humano. Além disso, após os vazamentos, torna-se muito difícil identificar dados pessoais, já que estes podem ser modificados, mascarados e cifrados.

6. Conclusão

Este paper reúne informações (i.e., dados e consequências) sobre alguns dos maiores casos de vazamento de dados dos últimos anos. Os dados e exemplos apresentados permitem concluir que as principais fontes de vazamento de dados são: (a) credenciais de usuários; (b) falhas de projeto e implementação de aplicativos e sistemas; (c) falhas humanas (e.g., má configuração de servidores); (d) falta de políticas e controle interno nas empresas (e.g., muitos funcionários com acesso irrestrito à documentos confidenciais); e (e) funcionários mal intencionados (*malicious insiders*).

Os dados apresentados também evidenciam a importância da necessidade de conscientização das instituições e empresas, públicas e privadas, com a responsabilidade sobre os dados de seus clientes. Como a sofisticação dos ataques não para de aumentar e a tecnologia está em constante evolução, investir em capacitação de pessoas, tecnologia e pesquisa é um caminho necessário, sem volta, a fim de evitar as penalidades de leis de proteção de dados como a LGPD, lei nº 13.709.

Referências

- Alneyadi, S., Sithirasenan, E., and Muthukkumarasamy, V. (2016). A survey on data leakage prevention systems. *Journal of Network and Computer Applications*, 62:137–152.
- AO Kaspersky Lab. (2016). Top 5 data leaks. http://bit.do/e25No.
- AO Kaspersky Lab. (2017). Top 5 largest data leaks. http://bit.do/e25Nx.
- Borys, S. (2019). Inside a massive cyber hack that risks compromising leaders across the globe. https://ab.co/20obQEP.
- Cimpanu, C. (2019a). Data of 2.4 million blur password manager users left exposed online. http://bit.do/fbGLY.
- Cimpanu, C. (2019b). Hacker steals data of millions of Bulgarians, emails it to local media. http://bit.do/e25Qd.
- Cimpanu, C. (2019c). Microsoft: Using multi-factor authentication blocks 99.9% of account hacks. http://bit.do/e58Mc.

- Cimpanu, C. (2019d). Minerva attack can recover private keys from smart cards, cryptographic libraries. https://zd.net/2VdUpIP.
- Cimpanu, C. (2019e). Over 540 million Facebook records found on exposed AWS servers. http://bit.do/e25QX.
- Costan, V. and Devadas, S. (2016). Intel sgx explained. *IACR Cryptology ePrint Archive*, 2016(086):1–118.
- Cybersecurity Insiders (2018). Insider threat 2018 report. http://bit.do/e25Rf.
- de Souza, R. (2019a). Brechas em rastreador gps expõem localização de mais de meio milhão de crianças e idosos. http://bit.do/fbusg.
- de Souza, R. (2019b). Exclusivo: dados pessoais de 200 mil brasileiros estão expostos em servidor público. http://bit.do/fbuu6.
- de Souza, R. (2019c). Exclusivo: terceirizadora de mão-de-obra deixa vazar contratos e dados de funcionários. http://bit.do/fbtSe.
- de Souza, R. (2019d). Ministério público abre inquérito após reportagem da the hack. http://bit.do/fbuzd.
- de Souza, R. (2019e). Para frear cibercrime, brasil estuda criar lei geral de segurança cibernética. http://bit.do/fbukU.
- de Souza, R. (2019f). Pesquisa aponta que mais da metade das empresas expõem arquivos sigilosos aos funcionários. http://bit.do/fbuck.
- Dourado, M. (2019). Esquema de venda de dados no Brasil mostrava informações até mesmo do presidente Jair Bolsonaro. http://bit.do/e58d5.
- Gatlan, S. (2019a). Hacker Steals Customer Payment Info in EatStreet Data Breach. http://bit.do/e25PW.
- Gatlan, S. (2019b). Mastercard reports data breach to german and belgian dpas. http://bit.do/e5Jwg.
- Guardian, T. (2019). Marriott to be fined nearly £100m over gdpr breach.
- Hern, A. (2019). Largest collection ever of breached data found. https://bit.ly/2Hf3E7V.
- Higa, P. (2018). Banco Inter vazou dados de quase 20 mil clientes, diz investigação do MP. https://bit.ly/2039mZd.
- InfoMoney (2019). Procon notifica faceapp, apple e google. http://bit.do/fbx97.
- Khandelwal, S. (2019a). Exclusive hacker steals over 218 million zynga 'words with friends' gamers data. http://bit.do/fbtWw.
- Khandelwal, S. (2019b). Hackers Stole Customers' Credit Cards from 103 Checkers and Rally's Restaurants. http://bit.do/e25P6.
- Lam, K. (2019). LabCorp says 7.7 million customers may have been affected by data breach. http://bit.do/e25Pd.
- Leskin, P. (2018). The 21 scariest data breaches of 2018. http://bit.do/e25M2.
- LEVINGSTON, C. (2015). 5 largest data breaches. http://bit.do/e25M9.
- Machado, R., Kreutz, D., Paz, G., and Rodrigues, G. (2019). Vazamentos de Dados: Histórico, Impacto Socioeconômico e as Novas Leis de Proteção de Dados.

- dos. In 40 Workshop Regional de Segurança da Informação e de Sistemas Computacionais, Alegrete-RS, Brasil. http://errc.sbc.org.br/2019/wrseg/papers/machado2019vazamentos.pdf.
- Mak, A. (2019). What Can a Hacker Do With Your Stolen Fingerprints? http://bit.do/e5KSQ.
- McKay, T. (2019). Lab Testing Giant Quest Diagnostics Says Data Breach May Have Hit Nearly 12 Million Patients. http://bit.do/e25Ps.
- Montpetit, J. (2019). Personal data of 2.7 million people leaked from Desjardins. http://bit.do/e3az5.
- Muncaster, P. (2019). Over 60 US Colleges Compromised by ERP Exploit. https://bit.ly/2SC8zlm.
- Nachreiner, C. (2019). The top five cyber threats businesses face today, part 2. http://bit.do/fbx63.
- News, B. (2019). British Airways faces record £183m fine for data breach. http://bit.do/e25Q7.
- Ng, A. (2019). Thanks to Equifax breach, 4 US agencies don't properly verify your data. http://bit.do/e25LY.
- O'Donnell, L. (2019). Critical exim flaw opens millions of servers to takeover. http://bit.do/fbuip.
- Osborne, C. (2019). Data breach forces medical debt collector AMCA to file for bankruptcy protection. http://bit.do/e25Px.
- Payao, F. (2019). Dados de 1,4 milhão de clientes do Banco Inter estavam expostos para acesso. https://bit.ly/2LKotJR.
- Pinkstone, J. (2019). Huge data leak of system used by the police and banks has exposed the fingerprints and facial recognition scans of MILLIONS of people. http://bit.do/fbtHH.
- Popa, R. A., Redfield, C., Zeldovich, N., and Balakrishnan, H. (2011). CryptDB: protecting confidentiality with encrypted query processing. In *Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles*, pages 85–100. ACM.
- Priebe, C., Vaswani, K., and Costa, M. (2018). Enclavedb: A secure database using sgx. In 2018 IEEE Symposium on Security and Privacy (SP), pages 264–278. IEEE.
- Riley, D. (2019). Massachusetts general hospital data breach latest failure to protect patient data. http://bit.do/e5KZP.
- Security, H. N. (2018). 2018 in numbers: Data breaches cost \$654 billion, expose 2.8 billion data records in the U.S. http://bit.do/e25NV.
- Security, H. N. (2019). Human error still the cause of many data breaches. http://bit.do/e25LQ.
- Serrels, M. (2019). Capital one data breach involves 100 million credit card applications. http://bit.do/e5Jzf.
- Turner, S. (2019a). 2019 data breachers the worst so far. http://bit.do/e25MP.
- Turner, S. (2019b). 2019 Data Breaches The Worst So Far. http://bit.do/e25Ms.

- Williams, M. (2014). The 5 biggest data breaches. http://bit.do/e25NP.
- Winder, D. (2019a). Fbi issues 'high-impact' cyber attack warning—what you need to know. https://bit.ly/310iIiW.
- Winder, D. (2019b). Google Warns LastPass Users Were Exposed To 'Last Password' Credential Leak. http://bit.do/fa5mD.
- Winder, D. (2019c). Personal data of entire 16.6 million population of ecuador leaked online. http://bit.do/fa5is.
- Wong, Q. (2019). Facebook will reportedly be fined a record \$5 billion over privacy mishaps. http://bit.do/e25Qj.