

Introdução à Engenharia Química e Bioquímica

Aula 4
MIEQB
ano lectivo de 2020/2021

Sumário da aula

Processo e variáveis de um processo

- > Massa e volume. Densidade
- Caudal
- Composição química

Processos e Variáveis do processo

Um processo é qualquer série de operações unitárias que ocasiona uma alteração física e/ou química de uma substância pura ou de uma mistura.

Materiais de entrada no processo → input ou alimentação

Materiais que saem do processo → output ou produto

As operações unitárias estão interligadas entre si pelas correntes ou fluxos

Dimensionar um processo implica conhecer quantidades, composições e condições de cada uma das correntes do processo (as variáveis do processo)

Diagrama de um processo (Flowsheet)

Refinaria de petróleo

Variáveis de um processo

Questão? Como saber se os valores indicados (massas e composições) estão certos?

=> BALANÇO!

MASSA E VOLUME. DENSIDADE

Densidade (ρ) de uma substância é a massa contida numa unidade de volume dessa substância (kg/m^3 , g/cm^3 , $lbm/ft^3...$)

Volume especifico é o inverso da densidade...

As densidades dos sólidos e líquidos são essencialmente independentes da pressão e moderadamente dependentes da temperatura $\rho_{líquidos}$ \searrow com T \nearrow

Verdade? Alguma excepção?

MASSA E VOLUME. DENSIDADE

Densidade (ρ) de uma substância é a massa contida numa unidade de volume dessa substância (kg/m^3 , g/cm^3 , $lbm/ft^3...$)

Volume especifico é o inverso da densidade...

As densidades dos sólidos e líquidos são essencialmente independentes da pressão e

moderadamente dependentes da temperatura

Excepção: Água!

 $\rho_{\text{água}} = 0.999868 \text{ g/cm}^3 \text{ a } 0^{\circ}\text{C}$

7 1.00000 g/cm³ a 3.98ºC

> 0.95838 g/cm³ a 100ºC

A densidade pode ser usada como factor de conversão entre a massa e o volume de uma substância

Exemplo:

$$\rho_{CCI4} = 1.595 \text{ g/cm}^3 \text{ a } 20^{\circ}\text{C}$$

- A massa de 20 cm³ de $CCl_4 \Leftrightarrow (20 \text{ cm}^3) \times (1.595 \text{ g/cm}^3) = 31.9 \text{ g}$
- O volume ocupado por 2815 g de $CCl_4 \Leftrightarrow (2815 \text{ g}) / (1.595 \text{ g/cm}^3) = 1760 \text{ cm}^3$

A massa específica de uma substância é a razão entre a densidade dessa substância e a densidade da água a 4ºC (que serve de referência)

$$SG = \rho/\rho_{ref}$$

$$\rho_{ref} = \rho_{H_2O}(4^{\circ}C) = 1.000 \ g/cm^3$$

Caudal

A maior parte dos processos envolvem movimento de material de uma etapa para outra

A velocidade à qual esse material é movimentado denomina-se de

caudal

 $m \equiv massa$

m ≡ caudal mássico

 $n \equiv mole$

n ≡ caudal molar

 $V \equiv volume$

V≡ caudal volúmico (ou volumétrico)

$$\dot{m} \equiv Q_{mlpha ssico} = rac{massa de fluido}{tempo}$$

$$\dot{n} \equiv Q_{molar} = \frac{mole \, de \, fluido}{tempo}$$

$$\dot{V} \equiv Q_{volum\'etrico} = \frac{volume\,de\,fluido}{tempo}$$

$$\rho = densidade = \frac{massa}{volume}$$

$$M = Massa\ molar = \frac{massa}{mole}$$

$$V_m = Volume \ molar = \frac{volume}{mole}$$

Problema 2.1) Caudal mássico e caudal volumétrico

O caudal mássico de uma corrente de n-hexano é de 6.59 g.s⁻¹.

Calcule o seu caudal volumétrico sabendo que a densidade do n-

hexano é igual a 0.659 g.cm⁻³.

2.1) Caudal mássico e caudal volumétrico

$$Q_{m\acute{assico}} = \frac{massa}{tempo}$$

$$Q_{volumétrico} = \frac{volume}{tempo} = \frac{massa}{tempo} * \frac{volume}{massa}$$

$$Q_{volum \'{e}trico} = \frac{volume}{tempo}$$

$$\rho = densidade = \frac{massa}{volume}$$

$$Q_{volum\'etrico} = rac{Q_{mcute{assico}}}{
ho}$$

$$Q_v = 10 \, cm^3.s^{-1}$$

$$Q_{\rm m}$$
= 6.59 g/s ρ = 0.659 g/cm3

$$6.59 \frac{g}{s} \frac{1 cm^3}{0.659 g} = 10 cm^3 . s^{-1}$$

2.2) Caudal volumétrico e caudal molar

O caudal volumétrico de uma corrente de tetracloreto de carbono é de 100 ml.min⁻¹.

Calcule o caudal molar desta corrente considerando que:

- a) O tetracloreto de carbono se encontra <u>líquido</u> a 25ºC;
- b) O tetracloreto de carbono se encontra gasoso a 300ºC e 1 atm.

Dados:

Densidade do tetracloreto de carbono líquido a 25ºC: 1.595 g.cm⁻³

Massa molar do tetracloreto de carbono: 154 g.mol⁻¹

 $R = 82.05 \text{ cm}^3.\text{atm.mol}^{-1}.\text{K}^{-1}$

2.2 a) Caudal volumétrico e caudal molar

$$Q_{volum \acute{e}trico} = rac{volume}{tempo}$$

$$Q_{molar} = \frac{moles}{tempo}$$

$$Q_{molar} = \frac{moles}{tempo} = \frac{volume}{tempo} * \frac{massa}{volume} * \frac{moles}{massa}$$

$$Q_{molar} = \frac{Q_{v} * \rho}{M}$$

$$Q_v = 100 ml/min$$

$$\rho$$
 = 1.595 g/cm³

$$M(CCl_{A}) = 154g / mol$$

$$Q_{molar} = \frac{100cm^3 \times 1.595g/cm^3}{154g/mol} = 1.036mol/min$$

$$100 \frac{cm^3}{min} \frac{1.595 g}{1cm^3} \frac{1 mol}{154 g} = 1.036 mol. min^{-1}$$

2.2 b) Caudal volumétrico e caudal molar

$$T = 300^{\circ}C$$

$$P = 1atm$$

$$PV = nRT$$
 \longrightarrow $n = \frac{PV}{RT} \iff \dot{n} = \frac{PV}{RT}$

$$Q_v = 100 mI / min$$

$$T = 300 + 273 = 573K$$

$$\dot{n} = \frac{1 \times 100}{82.05 \times 573} = 2.1 \times 10^{-3} \, mol/min$$

$$R = 82.05 \text{ cm}^3.\text{atm.mol}^{-1}.\text{K}^{-1}$$

$$Q_{molar} = 2.1 \times 10^{-3} mol/min$$

O caudal volumétrico de uma corrente de tetracloreto de carbono é de 100 ml.min⁻¹.

Calcule o caudal molar desta corrente considerando que o tetracloreto de carbono se encontra:

$$Q_{molar} = 1.036 \text{ mol/min}$$

b) Gasoso a 300°C e 1 atm

$$Q_{molar} = 2.1 \times 10^{-3} \text{mol/min}$$

DISCUSSÃO: COMPARAR OS VALORES ENTRE SI!

Composição química

As correntes de processo contém ocasionalmente uma só substância, mas normalmente consistem em misturas de vários compostos.

Assim é conveniente definir-se:

- Fracção mássica. x_A = massa de A / massa total (kg A / kg total)
- Fracção molar. y_A= moles de A / moles totais (mol A / mol total)
- A percentagem mássica de A é dada por $100 \times x_A$ (%)
- A percentagem molar de A é dada por 100 × y_A (%)

A massa molar média, \overline{M} , de uma mistura é a razão entre a massa de uma amostra da mistura (m_t) e o número de moles de todas as espécies (n_t) da amostra.

$$\overline{M} = y_1 M_1 + y_2 M_2 + \dots + y_n M_n = \sum_{i=1}^n y_i M_i$$

Uma mistura de gases tem a seguinte composição mássica: O_2 : 16%; CO: 4%; CO_2 :17%; N_2 :63%. Calcule a respectiva composição molar.

Dados: massas molares (g/mol) do O_2 : 32; CO: 28; CO₂: 44; N_2 : 28.

Calcule também <u>a massa molar média</u> da mistura gasosa.

$$\%(p/p)$$
 $(\frac{Xg}{100g}) \times 100$ Base de cálculo: 100 g

M (g/mol)
32
28
44
28

Gas	%(p/p)	m _i (g)	n _i (mol)
02	16	16	0.5
СО	4	4	0.14
CO2	17	17	0.39
N2	63	63	2.25

Base de cálculo: 100 g

 $n_i = m_i / M_i$

Gas	%(p/p)	m _i (g)	n _: (mol)
02	16	16	0.5
СО	4	4	0.14
CO2	17	17	0.39
N2	63	63	2.25

$$n_{\rm t}$$
 = 3.28 mol

Gas	S	%(p/p)	m _i (g)	n, (mol)	%(mol/mol)
02		16	16	0.5	15.2
CO		4	4	0.14	4.3
CO	2	17	17	0.39	11.9
N2		63	63	2.25	68.6
				$=(n_i)$	n_t)×100

$$n_{\rm t}$$
 = 3.28 mol

Gas	%(p/p)	m _i (g)	n _i (mol)	%(mol/mol)
02	16	16	0.5	15.2
СО	4	4	0.14	4.3
CO2	17	17	0.39	11.9
N2	63	63	2.25	68.6

M (g/mol)
32
28
44
28

DISCUSSÃO:

COMPARAR OS VALORES ENTRE SI!

Gas	%(p/p)	m _i (g)	n _i (mol)	%(mol/mol)
02	16	16	0.5	15.2
СО	4	4	0.14	4.3
CO2	17	17	0.39	11.9
N2	63	63	2.25	68.6

M (g/mol)
32
28
44
28

Base de cálculo: 100 g

 $n_{t} = 3.28 \text{ mol}$

 \overline{M} : Massa molar média da mistura gasosa

$$\overline{M} = \frac{100 \ g}{3.28 \ mol} = 30.5 \text{g/mol}$$

$$\overline{M} = \sum y_i . M_i$$

 $y_i = fracção\ molar\ do\ componente\ i$

Gas	%(p/p)	M (g/mol)	%(mol/mol)
02	16	32	15.2
CO	4	28	4.3
CO2	17	44	11.9
N2	63	28	68.6

Gas	y i	y _i .M _i
02	0.152	4.864
СО	0.043	1.204
CO2	0.119	5.236
N2	0.686	19.208

$$\overline{M} = \sum y_i . M_i = 30.5 \text{g/mol}$$

Em casa, provem que:

$$\frac{1}{\bar{M}} = \sum \frac{X_i}{M_i}$$

 X_i = fracção mássica do componente i

Qual a massa molar média do ar? Considere que o ar é constituído por 21% (v/v) de oxigénio e 79% (v/v) de azoto.

21%(v/v) de
$$O_2$$

79%(v/v) de N_2 Composição volumétrica $\frac{volumeX}{V_{total}}*100$

$$\overline{M} = \sum y_i . M_i$$

$$y_i = fracção_molar$$

$$PV = nRT$$

$$%molar = \frac{n_i}{n_t} * 100$$

$$molar = \frac{PV_i}{RT} * 100 = \frac{V_i}{V_t} * 100$$

%molar = %volumétric a

Vi- volume ocupado por ni moles do componente puro i na mistura de pressão total P a T constante

 $21\%(v/v) \text{ de } O_2$ $79\%(v/v) \text{ de } N_2$ Composição volumétrica = Composição molar

- -Temos as fracções molares dos componentes
- -Temos as massas molares

$$21\%(v/v)$$
 de O_2
 $79\%(v/v)$ de N_2 Composição volumétrica = Composição molar

$$\overline{M} = \sum y_i . M_i$$

$$\overline{M}(ar) = 0.79 * M(N_2) + 0.21 * M(O_2)$$

$$\overline{M}(ar) = 28.84g/mol$$

2.4) Qual a composição mássica do ar?

Composição Molar = Composição Volumétrica

Composição Mássica

Base de cálculo = 100 moles de Ar

100 moles de Ar = 79 moles de N_2 + 21 moles de O_2

100 moles de Ar → 79 mol x 28 g/mol + 21 mol x 32 g/mol

100 moles de Ar → 2212 g + 672 g = 2884 g de AR

$$%(m/m) = \frac{massaX}{massa_total} * 100$$

$$\frac{2212}{2884} \times 100 = 76.7 \% N_2$$

$$\frac{672}{2884} \times 100 = 23.3 \% O_2$$