DEXs: An Analysis of AMM Alternatives

Jared Israel Jacob Queiser

The Ohio State University

April 19, 2023

Automated Market Maker Refresher

UniswapV3

Prices are determined by a relationship between two assets in a liquidity pool.

- Bonding curves.
- Constant Product Market Maker (CPMM).
- Smart Order routers.
- And many more.

UniswapV3 marries CPMM with ticks [1]

- Ticks are price ranges liquidity providers can insert their assets in.
- Lowers slippage
- Lowers risk of impermanent loss.
- Makes things more complicated for inexperienced users.
- Ticks are fixed ranges (Still no stop-loss orders)

AMM Downsides

- Must provide liquidity to both sides.
- Pools can be volatile [1]
 - Frequent fluctuations in asset prices.
 - Requires complex calculations to determine a zero-loss liquidity position.
 - Providers will encounter more slippage.
- Impermanent Loss
 - Practically inherent with any exchange but can be mitigated.
- Must trade at market price. No deciding ...
 - Prices
 - Bids
 - Direction (movement of the market)
 - Size

Serum

Solana

Serum uses the Solana Blockchain [2]

- Proof-of-stake
- stateless = faster
- Nodes in clusters with rotating validator roles = more centralization
- cheap: a "few cents" per transaction
- A block is mined every 400-600 ms [3]

The Serum Protocol

- Base protocol for exchanges that wish to build on Solana.
- Fully on-chain.
- Decentralized Central Limit Order Book (CLOB)
- No price oracles.
- Highly Composable: multiple applications can access the same liquidity.
- Non-Custodial
 - Users are responsible for their private keys
 - No custody of funds.
- uses the SRM utility token.
- Cross-chain swaps without requiring arbitrators.
- Decentralized Autonomous Organization (DAO) Governance

Order Book

- Make Limit and Stop-Loss orders.
 - set price
 - set size
 - set direction
- Matching engine based on price and time priority.
- Solana allows for an efficient and high-throughput automatic matching engine.
- Market prices determined by bids/asks (like a Stock Exchange).
- Only taker fees. Makers do not pay a fee.
- Trading of custom cryptocurrency contracts also supported.

Utility Token and Staking

- SRM and MSRM (1,000,000 SRM)
- Fees for orders.
- Staked on Nodes
 - 80% towards a burn.
 - 20% redistributed to nodes.
- 10,000,000 SRM required to run a node.
- At least MSRM is also required to run a node.
- MSRM Capped at 1000
- 25,000 SRM required to participate in the DAO.
- Up to a 50% discount on fees if you stake SRM
 - 60% off fees if you stake 1 MSRM

Nodes

- Nodes receive rewards in the form of SRM for:
 - Providing insurance for cross chain swaps.
 - Optimizing throughput of the ecosystem
- Nodes are created by leaders who can receive an additional portion of the rewards.
- Penalties are also possible.

Serum Cross-Chain swaps

- Parties enter smart contract with collateral.
- If one party (Bob) doesn't send their part of the exchange, the other (Alice) can open a dispute with the Smart Contract.
- Both parties send their Blockchain histories to the contract.
- Alice can receiver her swap amount, collateral, and some of Bob's collateral.
- Vice versa can occur also if Alice lied except with the swap being performed.
- If both parties behaved honestly, swap is performed and collateral is returned.

Downfall

- FTX hacked around time of its collapse.
- Hack revealed update authority keys may have been stolen, causing many exchange front-ends to migrate.
- Alameda also held complete authority in the DAO and made all the decisions, if any were made in the first place.
- Serum team has forked the code base and hopes to re-release it with improvements to the DAO system.

Airswap

Overview

- A peer-to-peer network.
- A mix of second-layer technology and smart contracts on the Etherium blockchain.
- Market participants discover others on the network and complete trustless atomic swaps.
- Discovery done through 1 of 3 protocols:
 - Request for Quote (RFQ)
 - LastLook
 - Over-the-counter (OTC)
- A utility token for governance only.
- Non-custodial
- No slippage.
- No front-running.
- Simple logic is gas cost-effective.

Makers

- Can form their own pricing strategies.
- Run on traditional web servers
 - HTTP
 - Websocket
- Communicate with JSON protocols (JSON-RPC)
- Their URL is registered to a Registry: an Etherium contract
 - Clients will query this.
 - The protocol therefore relies on Makers to be their own nodes in the network and be online.
 - A Maker will have to program their own orders. Can be a good and bad thing depending on who they are.

Protocols

- Signers cryptographically sign the terms of an order.
- **Senders** Submit the signed terms to the contract for an atomic swap.
- The Maker can be a signer and the Taker a sender, or vice-versa
- Depends on the protocol.
- Senders therefore pay for execution.
- Protocols are off-chain matching engines.

RFQ

- Clients (takers) request orders through HTTP or WebSocket.
- Takers are senders, Makers are signers.
- Takers can accept/reject orders.
- Protocol fee hashed into signature.
- Fee must match that of the swap smart contract.

Figure: Courtesy of [7]

LastLook

- Clients (Takers) stream pricing info. from Makers.
- Takers are signers, Makers are senders.
- Makers can accept/reject orders.

Figure: Courtesy of [7]

OTC

- More manual trading
- Prices negotiated using third party chat apps, SMS, email, etc.
- Entering a third party complicates fairness, trust, and decentralization.
- Airswap is then used to perform an atomic swap.

Gridex

What we've seen so far

AMMs:

- Low resource consumption (especially on Etherium)
- Easy to implement on chain.
- Impermanent loss, Slippage are problematic, especially on volatile pools.
- Trading not as flexible.

Order Books and P2P Systems:

- More flexible for traders.
- Lower risk of loss for liquidity providers.
- Requires additional architecture that goes beyond the blockchain.
- Or requires a specific blockchain with high throughput and low latency.
- Potential risk of fragmented liquidity (implementation dependant).

Overview of Gridex

- On the Etherium blockchain.
- Based on CLOBs.
 - Grid Maker Order Book (GMOB).
 - No Slippage [9]
- And a matching engine: Grid Price Linear Movement Algorithm (GPLM)
 - Simple and easy.
 - Reduced resource consumption on Etherium.
 - Comparable gas costs to AMMs.
- Gridex is very new. D5 began to support it just a few months ago.

GMOB

Very similar to CLOB but with some differences:

- Maker orders are bounded within a specific price range called the resolution.
- Orders are not instantly fulfilled like with limit orders. Rather they just add liquidity.
- Manual collection required.
- Negative fees for liquidity providers (Makers) when their order is fulfilled.

GPLM

Numerous equations the Taker has at their disposal to determine:

- Price
- Size
- Direction

they wish to trade at. These equations effect the current price of assets.

Terminology	Notes		
token0	-		
token1	-		
zeroForOne	A taker uses token0 to exchange for token1		
oneForZero	A taker uses token1 to exchange for token0		
P	The price of token0 in terms of token1		
P_n	The new price after a taker order has been filled		
P _c	Current price		
P_{α}	The average transaction price of a taker order		
P_b	When the trading direction is $zeroForOne$, P_b is the lower boundary of the range. When the trading direction is $oneForZero$, P_b is the upper boundary of the range.		
М	When the trading direction is zeroForOne, M is the amount of token from all maker orders in the current range When the trading direction is omeForZero, M is the amount of token from all maker orders in the current range		
T _o	The amount of tokens received by the taker (outputted)		
T_i	The amount of tokens submitted by the taker (inputted)		
exactInput	Output calculated based on input by the taker		
exactOutput	Input calculated based on output by the taker		

GPLM

"Linear" as in price changes within a given range is linearly proportional to the taken coins.

Figure: Courtesy of [8]

GPLM

- B: Bundle of orders in this range.
- Each maker order filled by $\frac{T_o}{M}$
 - coins taken over the total amount in the pool
- Current price is adjusted.
- New bundles continue to form as Makers continue to add into the range.
- Once all bundles are filled in this range, the current price moves up into the next range's lower boundary.

Ranges, Resolutions, and Fees

- 3 ranges initially supported
 - Any exchange can choose from these 3.
 - Wider ranges can reduce impedance loss.
 - Wider ranges can be used for volatile coins, and thinner for stable coins.
- Resolutions define a step size that can create boundary values P_b for the range at some index i:

$$P_b(i) = 1.0001^{(100G)i}$$

Resolutions also define the fees of exchanges in that resolution, or
 Grid

Resolutions, Fees, and Gas Costs

Grid Resolution (6%)	Maker Fee	Taker Fee
0.01%	-0.01%	0.01%
0.05%	-0.05%	0.05%
0.3%	-0.3%	0.3%

Figure: Courtesy of [8]

?) grid ex	Swap in grid	Place maker order	Collect maker order
	120,000	132,000	69,000
Uniswap v3	Swap in pool	Add liquidity	Remove liquidity
	120,000	326,000	173,000

Figure: Courtesy of [9]

Issues

- Makers submitted smaller sized orders.
- This way they could get their rewards sooner.
- Caused a chain reaction of liquidity drop.
- Caused high liquidity concentration in a price range.
- They changed the rules to give partial rewards.

Our Implementation

A Lightweight Alternative

- Secure middleman contract for token/ETH trades
- Provides quick and lightweight platform to stage trades agreed upon off chain
- Useful for pain-free trades in a non-anonymized environment (eg. friends, coworkers)
- Avoids large exchanges or unsecure middleman
- One of the two traders proposes a trade that other trader can join
- Once both have deposited, currencies are swapped securely by the contract

Demonstration

Future Work

- Working with decimals of ERC20 tokens
- Add stronger filtering/failure logic for trades
- Mitigation mechanism
- Larger digital asset support
- Implementing checks for specific tokens (simplify workflow)
- Anonymization of addresses (ZK proofs)
- Time locking/expiration
- Multiple deposits of different currencies
- Working with other networks
 - BTC using BTC Relay (http://btcrelay.org/)

References I

- [1] L. Heimbach, E. Schertenleib, and R. Wattenhofer, "Risks and returns of uniswap v3 liquidity providers,", 2022, arXiv:2205.08904 [q-fin]. DOI: 10.1145/3558535.3559772. [Online]. Available: http://arxiv.org/abs/2205.08904.
- [2] Solana vs. polygon vs. ethereum the ultimate comparison, en-US, 2022. [Online]. Available: https://www.blockchain-council.org/blockchain/solana-vs-polygon-vs-ethereum/.
- [3] K. Jayaraj, Serum protocol: Solana defi solution you need to explore, en-GB, 2022. [Online]. Available: https://www.coinbureau.com/review/serum-solana/.
- [4] S. Foundation, Serum whitepaper, en-GB, 2020. [Online]. Available: https://assets.website-files.com/ 61382d4555f82a75dc677b6f/61384a6d5c937269dbed185c_ serum_white_paper.88d98f84.pdf.

References II

- [5] Serum: A decentralized on-chain central limit order book, en.
 [Online]. Available: https:
 //consensys.net/blog/cryptoeconomic-research/serum-adecentralized-on-chain-central-limit-order-book/.
- [6] D. Nelson, Ftx hack sparks revolution at serum dex as solana devs plot alameda's ouster, 2022. [Online]. Available:

 https://www.coindesk.com/business/2022/11/12/ftx-hack-spooks-solana-defi-community-igniting-revolution-at-alameda-controlled-serum-dex/.
- [7] Airswap, [Online]. Available: https://about.airswap.io/.
- [8] The gridex protocol, [Online]. Available: https://www.gdx.org/gridex-whitepaper.pdf.
- [9] Gridex, [Online]. Available: https://www.gdx.org.

References III

[10] Our analysis of the recent crash and subsequent changes to maker reward rule, [Online]. Available: https://blog.gdx.org/our-analysis-of-the-recent-crash-and-subsequent-changes-to-maker-reward-rules-f93a1650b573.