DEVOIR À LA MAISON 6

Nombres algébriques, nombres transcendants

À rendre pour le jeudi 28 novembre 2019

- En travaillant ce DM, vous vous entraı̂nerez à chercher, ce qui est fondamental!
- Organisez-vous pour chercher le DM dès que possible et, surtout, pas à la dernière minute.
- $\bullet\,$ Travaillez sur ce DM $\underline{\rm seul}$ et sur des plages de travail d'au moins 45 minutes à chaque fois.
- Si nécessaire, faites-vous des plannings.

Joseph Liouville (1809 – 1882), mathématicien français

Définitions

Soit $\alpha \in \mathbb{C}$.

- On dit que α est algébrique ssi $\exists P \in \mathbb{Z}[X] \setminus \{0\} : P(\alpha) = 0$.
- On dit que α est transcendant ssi α n'est pas algébrique.

On note $\overline{\mathbb{Q}} := \Big\{ x \in \mathbb{C} \ \Big| \ x \ \text{est alg\'ebrique} \Big\}.$

0. Pour commencer

- **0.** Pour chacune des questions de ce DM, dites si à votre avis la question est *a priori* :
 - facile;
 - moyenne;
 - dure;
 - très dure.

On pourra présenter les réponses dans un tableau.

I. Exemples

- **1.** Montrer que $\mathbb{Q} \subset \overline{\mathbb{Q}}$.
- **2.** a) Montrer que $\sqrt{5} \in \overline{\mathbb{Q}}$.
 - b) Montrer que $\sqrt{2} \sqrt{7} \in \overline{\mathbb{Q}}$.
 - c) Montrer que $i \in \overline{\mathbb{Q}}$.
- 3. Montrer que $\sqrt[3]{\frac{5\sqrt{17}+13}{2}} \in \overline{\mathbb{Q}}$.
- **4.** Soient $a, b, c \in \mathbb{Z}$. Montrer que $\sqrt{a} + \sqrt{b} + \sqrt{c} \in \overline{\mathbb{Q}}$.

II. Quelques propriétés des nombres algébriques

Soit $\alpha \in \mathbb{C}$.

- **5.** a) Montrer que $(\exists P \in \mathbb{Q}[X] \setminus \{0\} : P(\alpha) = 0) \implies \alpha \in \overline{\mathbb{Q}}$.
 - b) La réciproque est-elle vraie?
- **6.** On suppose que $\alpha \in \overline{\mathbb{Q}}$.
 - a) Montrer que $-\alpha \in \overline{\mathbb{Q}}$.
 - b) Montrer que $\frac{\alpha}{2} \in \overline{\mathbb{Q}}$.
- 7. On suppose que $\alpha \neq 0$ et que $\alpha \in \overline{\mathbb{Q}}$.
 - a) Montrer que $\exists P \in \mathbb{Z}[X] \setminus \{0\} : \begin{cases} P(\alpha) = 0 \\ P(0) \neq 0 \end{cases}$.
 - b) Montrer que $\frac{1}{\alpha}$.
- **8.** Montrer que $\alpha \in \overline{\mathbb{Q}} \implies \overline{\alpha} \in \overline{\mathbb{Q}}$.

Un résultat admis

Dans la suite, on pourra utiliser le résultat suivant.

Proposition. Soient $\alpha, \beta \in \overline{\mathbb{Q}}$. Alors, $\alpha + \beta \in \overline{\mathbb{Q}}$ et $\alpha\beta \in \overline{\mathbb{Q}}$.

On sera en mesure de démontrer ce résultat à partir du mois de mars.

III. Cosinus et nombres algébriques

- **9.** Montrer que $\forall k \in \mathbb{N}, \cos\left(\frac{\pi}{2^k}\right) \in \overline{\mathbb{Q}}.$
- **10.** a) Montrer que $\forall n \in \mathbb{N}^*$, $\cos\left(\frac{2\pi}{n}\right) \in \overline{\mathbb{Q}}$.
 - b) Montrer que $\forall x \in \mathbb{Q}, \cos(\pi x) \in \overline{\mathbb{Q}}.$

IV. Un processus d'extraction de racine

11. Soit $\alpha \in \mathbb{Q}$. Montrer que

$$\forall P \in \mathbb{Q}[X], \quad P(\alpha) = 0 \iff \exists Q \in \mathbb{Q}[X] : P = (X - \alpha)Q.$$

12. Soit $\alpha \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$.

Montrer que $\exists P \in \mathbb{Z}[X] : (P(\alpha) = 0 \text{ et } \forall x \in \mathbb{Q}, P(x) \neq 0).$

V. Théorème de Liouville

Dans cette partie, on fixe $\alpha \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$ un nombre algébrique irrationnel. Soit $P \in \mathbb{Z}[X]$ un polynôme non nul tel que $P(\alpha) = 0$ et tel que P n'ait pas de racine rationnelle. On note $d := \deg(P)$.

13. Soit I un intervalle tel que $\ell(I) > 0$ et soit $f \in \mathcal{C}^1(I, \mathbb{R})$.

Soit $M \in \mathbb{R}_+$ tel que $\forall t \in I, |f'(t)| \leq M$.

Montrer que

$$\forall a, b \in I, \quad |f(b) - f(a)| \leq M|b - a|.$$

14. Montrer qu'il existe M > 0 tel que

$$\forall t \in [\alpha - 1, \alpha + 1], |P'(t)| \leq M.$$

Dans la suite, on fixe un tel M.

15. Montrer le théorème de Liouville :

$$\forall p \in \mathbb{Z}, \ \forall q \in \mathbb{N}^*, \ \left| \alpha - \frac{p}{q} \right| \geqslant \frac{C}{q^d}.$$

où on a noté $C := \min \left(1, \frac{1}{M}\right)$.

VI. Un exemple de nombre transcendant

Pour $n \in \mathbb{N}^*$, on note $S_n := \sum_{k=1}^n 10^{-k!}$.

- **16.** Quelle est l'écriture décimale de S_n , pour $n \in \mathbb{N}^*$?
- 17. a) Montrer que la suite $(S_n)_n$ converge. On notera $S := \lim_{n \to \infty} S_n$.
 - b) Montrer que $\forall n \in N^*, S_n \leqslant S$.

Pour $n \in \mathbb{N}^*$, on note $T_n := S_n + 2 \times 10^{-(n+1)!}$.

- c) Étudier la monotonie de $(T_n)_{n\geqslant 1}$.
- d) Montrer que $\forall n \in \mathbb{N}^*, S_n \leqslant S \leqslant T_n$.

Dans les deux questions suivantes, on suppose que $S = \frac{p}{q}$, avec $p, q \in \mathbb{N}^*$.

- e) Montrer que $\forall n \in \mathbb{N}^*, \ qS10^{n!} qS_n10^{n!} \in \mathbb{N}.$
- f) Montrer que $qS10^{n!} qS_n10^{n!} \longrightarrow 0$.
- g) En déduire que $S \notin \mathbb{Q}$.
- 18. En utilisant le théorème de Liouville, montrer que S est transcendant.

On pourra raisonner par l'absurde, après avoir remarqué que pour $n \in \mathbb{N}^*$, on a $S_n \in \mathbb{Q}$.

