

Funciones continuas

Definición

Sean U un conjunto abierto, $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$ función vectorial y a un punto de acumulación de U, entonces f es continua en a sí y sólo si:

$$\lim_{x \to a} f(x) = f(a)$$

La definición anterior trae implícita tres condiciones:

- 1) f(a) está definida (es decir, $a \in dom f$)
- 2) Existe $\lim_{x \to a} f(x)$
- $3) f(a) = \lim_{x \to a} f(x)$

Observaciones

Si cualquiera de estas tres condiciones no se cumple, se dice que f es discontinua en α y se presentan dos casos:

- 1.- Si no existe $\lim_{x\to a} f(x)$, se habla de una discontinuidad irreparable en a o discontinuidad esencial.
- 2.- Si existe $\lim_{x\to a} f(x)$ y se cumple 1) pero no se cumple 3), se dice que f es discontinua reparable en a. Ello se debe a que, en estos casos es

siempre posible obtener una nueva función, que se diferencia con f sólo en a, y que es continua en a.

3.- Una función vectorial $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, es continua en a sí y sólo si

$$\lim_{x \to a} f(x) = f(a) \text{ para } a \in U$$

$$\Leftrightarrow \forall \epsilon > 0 \text{ , } \exists \delta > 0 \text{ tal que para } x \in U,$$

$$\text{Si } \|x - a\| < \delta \Rightarrow \|f(x) - f(a)\| < \epsilon$$

$$\Leftrightarrow \forall \epsilon > 0 \text{ , } \exists \delta > 0 \text{ tal que para } x \in U,$$

$$\text{Si } x \epsilon B(a, \delta) \Rightarrow f(x) \in B(f(a), \epsilon)$$

La condición

$$\lim_{x\to a} f(x) = f(a)$$

dice que en las funciones continuas no es necesario el cálculo de límites, sólo hay que sustituir por el valor de la función en el punto.

Ejemplo

$$\lim_{(x,y)\to(-1,2)} (3x^2 + xy) = 3(-1)^2 + (-1)(2) = 1 = f(-1,2)$$

$$\lim_{(x,y)\to(2,-2)} \left(\frac{x - 3xy}{x^2 + y^2}\right) = \frac{2 - 3(2)(-2)}{4 + 4} = \frac{14}{8} = \frac{7}{4} = f(2,-2)$$

$$\lim_{(x,y,z)\to(5,-1,3)} \frac{\sqrt{x + y - z}}{xyz} = \frac{\sqrt{5 - 1 - 3}}{(5)(-1)(3)} = \frac{1}{-15} = f(5,-1,3)$$

$$\lim_{(x,y,z)\to(1,02)} (x - y^2 + z, xy - 4z, xyz)$$

$$= \left(\lim_{(x,y,z)\to(1,02)} x - y^2 + z, \lim_{(x,y,z)\to(1,02)} xy - 4z, \lim_{(x,y,z)\to(1,02)} xyz\right)$$

$$= (3, -8,0) = f(1,0,2)$$

Definición

Una función f es continua en un abierto U, si es continua en cada punto de dicho abierto.

Proposición

Sea f una función vectorial $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, f es continua en a sí y sólo si cada una de las funciones coordenadas f_1, \dots, f_m es continua en a.

En efecto : f es continua en $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

$$\Leftrightarrow \left(\lim_{x \to a} f_1(x), \dots, \lim_{x \to a} f_m(x)\right) = \left(f_1(a), \dots, f_m(a)\right)$$

$$\Leftrightarrow \lim_{x \to a} f_1(x) = f_1(a), \dots, \lim_{x \to a} f_m(x) = f_m(a)$$

 \Leftrightarrow las funciones coordenadas son continuas en a.

Ejemplos

- 1) Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ la función identidad, $f(x_1, \dots, x_n) = (x_1, \dots, x_n)$ es continua en \mathbb{R}^n .
- 2) Sea $p: \mathbb{R}^n \to \mathbb{R}^m$ tal que

$$p(x_1, \dots, x_n) = \sum_{i_1 + \dots + i_n = 0}^m a_{i_1} a_{i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

es función polinomial de grado m . Un polinomio es continuo en todo \mathbb{R}^n . Caso particular

$$p(x,y) = \sum_{i+j=0}^{m} a_{ij} x^{i} y^{j} \text{ es continua en } \mathbb{R}^{2}.$$

Sea $f(x) = \frac{p(x)}{q(x)}$, donde p(x) y q(x) son polinomios de n variables y $q(x) \neq 0$, $\forall x, f(x)$ es continua en \mathbb{R}^n .

Propiedades

- 1.- Para funciones vectoriales, la suma y multiplicación por escalares de funciones continuas en a son funciones continuas en a.
- 2.- Para funciones escalares la multiplicación de funciones en a es continua en a y la división de funciones continuas en a es continua en a siempre que en a el denominador no sea igual a 0.
- 3.- Sean f y g dos funciones tales que la función compuesta $g \circ f$ esta definida en a, siendo $(g \circ f)(x) = g(f(x))$.

Si f es continua en a y g es continua en f(a), la función compuesta $g \circ f$ es continua en a. $(g \circ f)(a) = g(f(a))$

Ejemplo 1

Las funciones $f(x,y) = \frac{x}{y-1}$ y $g(x,y) = \frac{3x+2}{y-1}$ son continuas en (5,0) pues:

$$(5,0) \in Dom f = \{(x,y) \in \mathbb{R}^2 / y - 1 \neq 0\} = Dom g$$

Además $f(x,y) + g(x,y) = \frac{4x+2}{y-1}$ es continua en $(5,0)$, pues $(5,0) \in Dom(f+g) = \{(x,y) \in \mathbb{R}^2 / y - 1 \neq 0\}$

Ejemplo 2

Sea la función $z = f(x,y) = \frac{x+y}{y}$ y g(z) = sen z, analizar la continuidad de w = g(f(x,y)) en (-1,-2).

Solución

Siendo f(x,y) continua en (-1,-2) pues $(-1,-2) \in Dom f = \{(x,y) \in \mathbb{R}^2 \mid y \neq 0\}$, se tiene que $z_1 = f(-1,-2) = \frac{3}{2}$, entonces como $sen\ z_1$ es continua en $\frac{3}{2}$, la función compuesta $w = g(f(x,y)) = sen\frac{x+y}{y}$ es continua en (-1,-2) $g(z_1) = g(f(-1,-2)) = g(z_2) = sen\frac{3}{2} \Rightarrow g \circ f$ es continua en (-1,-2)

Analizar la región del plano en que la función $f(x,y) = \frac{x^2 + y - 4}{4x - y}$ es continua.

Solución

 $Dom f = \{(x, y) \in \mathbb{R}^2/4x - y \neq 0\}$ luego la función es continua en $\mathbb{R}^2 - \{(x, y) \in \mathbb{R}^2/4x - y = 0\}$ = todo el plano menos la recta.

Ejemplo 4

Analizar la región del plano en que la función

$$f(x,y) = ln(x^2 + y^2)$$

es continua.

Solución

 $Dom f = \{(x, y) \in \mathbb{R}^2/x^2 + y^2 > 0\}$ luego la función es continua en $\mathbb{R}^2 - \{(0,0)\}$ = todo el plano menos el oigen.

Plano perforado en el origen

Ejemplo 5

Sea f la función definida por

$$f(x,y) = \begin{cases} x^2 + y^2 & \text{si } x^2 + y^2 \le 1\\ 0 & \text{si } x^2 + y^2 > 1 \end{cases}$$

Determinar la continuidad de f . ¿Cuál es la región de continuidad de f?

Solución

Dom
$$f = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 < 1\}$$

$$\cup \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 > 1\}$$

$$\cup \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = 1\}$$

Sean

$$A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 < 1\}$$

$$B = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 > 1\}$$

$$C = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = 1\}$$

Luego

$$Dom \ f = A \cup B \cup C = \mathbb{R}^2$$

Por lo tanto, la condición

$$f(a,b)$$
 existe $\forall (a,b) \in A \cup B \cup C$

Consideremos ahora los puntos (a,b) tal que $a^2 + b^2 \neq 1$, entonces se tiene dos casos:

Si
$$a^2 + b^2 < 1$$
, entonces $\forall (x, y) \in A$

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(x,y)\to(a,b)} (x^2 + y^2)$$
$$= a^2 + b^2 = f(a,b)$$

Si
$$a^2 + b^2 > 1$$
, entonces $\forall (x, y) \in B$

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(x,y)\to(a,b)} 0 = 0 = f(a,b)$$

De este modo, f es continua en todo los puntos (a, b) para los cuales $a^2 + b^2 \neq 1$ eso es, continua en $A \cup B$.

Finalmente veremos la continuidad de f en los puntos $(a,b) \in C$, esto es, en los puntos (a,b) para los cuales $x^2 + y^2 = 1$. Para ello hay que determinar si se verifica que

$$\lim_{(x,y)\to(a,b)} f(x,y) \text{ existe y es igual a 1.}$$

Sea S_1 el conjunto de todos los puntos (x, y) tales que se cumple, $x^2 + y^2 \le 1$ y S_2 el conjunto de todos los puntos (x, y) tales que se cumple, $x^2 + y^2 > 1$. Entonces

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(x,y)\to(a,b)} (x^2 + y^2) = a^2 + b^2 = 1$$

$$P \in S_1 \qquad P \in S_1$$

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(x,y)\to(a,b)} (0) = 0$$

$$P \in S_2 \qquad P \in S_2$$

Ya que

$$\lim_{(x,y)\to(a,b)} f(x,y) \neq \lim_{(x,y)\to(a,b)} f(x,y)$$

$$P \in S_1 \qquad P \in S_2$$

Concluimos que $\lim_{(x,y)\to(a,b)} f(x,y)$ no existe. Por tanto, f es discontinua en todos los puntos $(a,b)\in C$.

Resumiendo

La región de continuidad de la función f consta de todos los puntos en el plano XY excepto aquellos en la circunferencia unitaria, $x^2 + y^2 = 1$. En la figura siguiente se refleja claramente la discontinuidad.

Ejemplo 6

Sea
$$f(x, y, z) = \begin{cases} \frac{x - 2y + 3z}{4x^2 - y^2 + z^2} & si(x, y, z) \neq (1, 0, -1) \\ -\frac{2}{5} & si(x, y, z) = (1, 0, -1) \end{cases}$$

Determine si f es o no continua en (1,0,-1).

Solución

Como

$$\lim_{(x,y,z)\to(1,0,-1)} f(x,y,z) = \lim_{(x,y,z)\to(1,0,-1)} \frac{x-2y+3z}{4x^2-y^2+z^2} = -\frac{2}{5} ;$$

$$f(1,0,-1) = -\frac{2}{5}$$

Entonces se cumple que

$$\lim_{(x,y,z)\to(1,0,-1)} f(x,y,z) = -\frac{2}{5} = f(1,0,-1)$$

Por lo tanto, se concluye que f es continua en (1,0,-1)).

Ejemplo 7

Sea
$$f(x, y, z) = \begin{cases} \frac{x^2 + y^2 - z}{\sqrt{x^2 + y^2} - \sqrt{z}} & si(x, y, z) \neq (0,0,0) \\ 0 & si(x, y, z) = (0,0,0) \end{cases}$$

Determine si f es o no continua en (0,0,0).

Solución

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = \lim_{(x,y,z)\to(0,0,0)} \frac{x^2 + y^2 - z}{\sqrt{x^2 + y^2} - \sqrt{z}}$$

$$= \lim_{(x,y,z)\to(0,0,0)} \frac{(x^2 + y^2 - z)(\sqrt{x^2 + y^2} + \sqrt{z})}{(\sqrt{x^2 + y^2} - \sqrt{z})(\sqrt{x^2 + y^2} + \sqrt{z})}$$

$$= \lim_{(x,y,z)\to(0,0,0)} \frac{(x^2 + y^2 - z)(\sqrt{x^2 + y^2} + \sqrt{z})}{x^2 + y^2 - z}$$

$$= \lim_{(x,y,z)\to(0,0,0)} \sqrt{x^2 + y^2} + \sqrt{z} = 0$$

Y

$$f(0,0,0) = 0$$

Entonces se cumple

$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0 = f(0,0,0)$$

Y por tanto f es continua en (0,0,0).

Ejemplo 8

Sea
$$f(x, y, z) = \begin{cases} 4 + xyz & si(x, y, z) \neq (0,0,0) \\ -1 & si(x, y, z) = (0,0,0) \end{cases}$$
 función

Estudiar la continuidad en (0,0,0) de la función.

Solución

Se tiene f(0,0,0) = -1 y $\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 4$ luego la función es discontinua evitable en el origen.

Entonces definiendo la función

$$g(x,y,z) = \begin{cases} 4 + xyz & si(x,y,z) \neq (0,0,0) \\ 4 & si(x,y,z) = (0,0,0) \end{cases}$$

resulta ser esta continua en todo punto de \mathbb{R}^3 .

Nótese que g es casi igual a f salvo en el punto (0,0,0).

Ejemplo 9

Determinar el conjunto de los puntos (x, y, z) tal que la función $f(x, y, z) = \sqrt{9 - x^2 - y^2 - z^2}$ es continua.

Solución

La función es continua en la región cuyos puntos cumplen la condición $9 - x^2 - y^2 - z^2 \ge 0$ luego f es continua en su dominio:

$$Dom f = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 9\}$$

Ejemplo 10

Sea
$$f(x,y) = \begin{cases} \frac{3x^2y^2}{x^4 + y^4} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

Estudiar la continuidad de la función entorno al punto (0,0).

Solución

Mediante límites sucesivos

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{3x^2y^2}{x^4 + y^4} \right) = \lim_{x \to 0} \left(\frac{0}{x^4} \right) = 0$$

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{3x^2y^2}{x^4 + y^4} \right) = \lim_{x \to 0} \left(\frac{0}{y^4} \right) = 0$$

Nada se puede concluir.

Mediante trayectorias radiales: y = mx

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y^2}{x^4 + y^4} = \lim_{x\to 0} \frac{3x^2m^2x^2}{x^4 + m^4x^4}$$
$$= \lim_{x\to 0} \frac{3x^4m^2}{x^4(1+m^4)} = \frac{3m^2}{1+m^4}$$

Para diversos valores de m existen diversos límites luego se concluye que no existe límite, por tanto, la función f presenta una discontinuidad esencial en el punto (0,0).

Ejemplo 11

Sea
$$f(x,y) = \begin{cases} \frac{5x^2y}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 5 & si(x,y) = (0,0) \end{cases}$$

Estudiar la continuidad de la función entorno al punto (0,0).

Solución

1. f(0,0) = 5 por tanto, la condición 1) de la definición se cumple.

2.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2 + y^2} = 0$$

Esto último se cumple pues

$$0 \le \left| \frac{5x^2y}{x^2 + y^2} \right| = \frac{5x^2|y|}{x^2 + y^2} \le \frac{5x^2|y|}{x^2} = 5|y|$$

Como

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0)$$

entonces se deduce que f es discontinua en el punto (0,0). Sin embargo, esta discontinuidad es evitable pues es posible redefinir la función f de la siguiente manera:

$$g(x,y) = \begin{cases} f(x,y) & si \ (x,y) \neq (0,0) \\ 0 & si \ (x,y) = (0,0) \end{cases}$$

Esta función es continua en el origen y observe que es casi igual a f salvo en el punto (0,0).

Ejemplo 12

Determine un valor para $k \in \mathbb{R}$ de tal manera que la función

$$f(x,y) = \begin{cases} \frac{(x-1)^3(y+2)^3}{(x-1)^2 + (y+2)^2} & si(x,y) \neq (1,-2) \\ k & si(x,y) = (1,-2) \end{cases}$$

sea continua en (1, -2).

Solución

$$\lim_{(x,y)\to(1,-2)} \frac{(x-1)^3(y+2)^3}{(x-1)^2 + (y+2)^2} = \lim_{(u,v)\to(0,0)} \frac{u^3v^3}{u^2 + v^2}$$

$$= \lim_{\rho \to 0} \frac{(\rho \cos \theta)^3 (\rho \sin \theta)^3}{(\rho \cos \theta)^2 + (\rho \sin \theta)^2}$$

$$= \lim_{\rho \to 0} \frac{\rho^3 \cos^3 \theta \cdot \rho^3 \sin^3 \theta}{\rho^2 \cos^2 \theta + \rho^2 \sin^3 \theta}$$

$$= \lim_{\rho \to 0} \frac{\rho^6 \cos^3 \theta \cdot \sin^3 \theta}{\rho^2 (\cos^2 \theta + \sin^3 \theta)}$$

$$= \lim_{\rho \to 0} \frac{\rho^6 \cos^3 \theta \cdot \sin^3 \theta}{\rho^2}$$

$$= \lim_{\rho \to 0} \frac{\rho^6 \cos^3 \theta \cdot \sin^3 \theta}{\rho^2}$$

$$= \lim_{\rho \to 0} \rho^4 \cos^3 \theta \cdot \sin^3 \theta = 0$$

$$0 \le |F(\rho, \theta) - 0| = |\rho^4 \cos^3 \theta \cdot \sin^3 \theta|$$

$$= \rho^4 |\cos^3 \theta| |\sin^3 \theta| \le \rho^4 (1)(1) = \rho^4 = \varphi(\rho)$$

Ahora

$$\lim_{\rho \to 0} \varphi(\rho) = \lim_{\rho \to 0} \rho^4 = 0$$

Por consiguiente

$$\lim_{(x,y)\to(1,-2)} \frac{(x-1)^3(y+2)^3}{(x-1)^2+(y+2)^2} = 0$$

 \therefore para k = 0 f es continua en (1, -2)