# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

Механико-математический факультет

Кафедра Теории функций и функционального анализа



# Курс лекций по функциональному анализу

Лектор — Олег Георгиевич Смолянов

Летописец — Павел Витальевич Бибиков (группа 303) телефон: 137-45-97 e-mail: tsdtp4u@proc.ru

III курс, 5 семестр, 1 поток (2007 - 2008 гг.)

#### Лекция 1.

### 1. МЕТРИЧЕСКИЕ ПРОСТРАНСТВА.

**Определение 1.1.** Пусть E — произвольное множество. Mempukoŭ (paccmoshuem) на E называется функция  $\rho \colon E \times E \to \mathbb{R}^+$ , обладающая следующим свойствам:

- 1)  $\rho(x,z) \ge 0$ ,  $\rho(x,z) = 0 \Leftrightarrow x = z$ ;
- 2)  $\rho(x,z) = \rho(z,x);$
- 3)  $\rho(x,y) \leq \rho(x,z) + \rho(y,z)$ .

*Метрическое пространство* — это пара  $(E, \rho)$ , где  $\rho$  — метрика на E.

#### Примеры.

1. 
$$E = \mathbb{R}^n$$
,  $\rho(x, y) = \sqrt{\sum_{j=1}^n (x_j - y_j)^2}$ .

- 2. Пусть  $\Omega$  произвольное множество. Положим  $E = \mathcal{B}(\Omega)$  множество всех ограниченных функций на  $\Omega$ , а также  $\rho(f,g) = \sup_{\omega \in \Omega} |f(\omega) g(\omega)|$ .
  - 3.  $E = C[a; b], \ \rho(f, g) = \max_{x \in [a; b]} |f(x) g(x)|.$
- 4.  $E=\mathbb{Q}$ . Определим p-адическую норму следующим образом. Пусть p фиксированное простое число. Рациональное число  $0 \neq r \in \mathbb{Q}$  представим в виде  $r=p^{\gamma}\frac{m}{n}$ , где  $\gamma \in \mathbb{Z}$  и (m;n)=1. p-адической нормой назовем величину  $|r|_p=\frac{1}{p^{\gamma}}$ , тогда p-адическая метрика вводится следующим образом:  $\rho_p(r_1,r_2)=|r_1-r_2|_p$ . Заметим, что в этом случае аксиома 3 выполнена в усиленной форме, а именно,  $\rho(x,z) \leqslant \max(\rho(x,y);\rho(y,z))$ . Метрические пространства с такими метриками называются ультраметрическими.

Определение 1.2. Пусть  $(E_1, \rho_1)$  и  $(E_2, \rho_2)$  — метрические пространства. Их *прямым произведением* называется метрическое пространство  $(E_1 \times E_2, \rho)$ , где метрика  $\rho$  вводится так, чтобы она индуцировала метрики  $\rho_1$  и  $\rho_2$  на пространствах  $E_1$  и  $E_2$  соответственно.

Замечание. Для прямого произведения нет канонической метрики, т.е. метрику  $\rho$  можно задавать разными способами, например, следующими:

$$\rho((x_1; x_2); (y_1; y_2)) = \rho_1(x_1; y_1) + \rho_2(x_2; y_2); 
\rho((x_1; x_2); (y_1; y_2)) = \max\{\rho_1(x_1; y_1); \rho_2(x_2; y_2)\}; 
\rho((x_1; x_2); (y_1; y_2)) = \sqrt{\rho_1^2(x_1; y_1) + \rho_2^2(x_2; y_2)}.$$

**Определение 1.3.** Пусть  $(E, \rho)$  — метрическое пространство и  $G \subset E$ . Тогда пара  $(G, \rho \mid_G)$  называется подпространством метрического пространства  $(E, \rho)$ .

**Определение 1.4.** Открытым шаром с центром в точке  $x \in E$  и радиусом r > 0 называется множество  $S(x, r) = \{z \in E \mid \rho(x; z) < r\}$ .

Замкнутым шаром с центром в точке  $x \in E$  и радиусом  $r \geqslant 0$  называется множество  $F(x,r) = \{z \in E \mid \rho(x;z) \leqslant r\}.$ 

**Определение 1.5.** Множество  $G \subset E$  называется *открытым*, если G — объединение семейства открытых шаров, или, что все равно,  $\forall x \in G$   $\exists r > 0 : S(x,r) \subset G$ . В частности, открытый шар — это открытое множество.

Пусть  $\tau_{\rho}$  — множество открытых подмножеств пространства  $(E,\rho)$ . Это множество обладает следующими свойствами:

- 1)  $\varnothing \in \tau_o$ ;
- 2)  $E \in \tau_{\rho}$ ;
- 3)  $\{V_{\alpha}\} \in \tau_{\rho} \Rightarrow \bigcup V_{\alpha} \in \tau_{\rho};$

4) 
$$V_1, \dots, V_n \in \tau_\rho \Rightarrow \bigcap_{j=1}^n V_j \in \tau_\rho$$
.

Определение 1.6. Множество T называется  $monoлогическим пространством, если в нем выделена совокупность <math>\tau$  подмножеств, обладающая свойствами 1)–4). В этом случае  $\tau$  называется monoлогией на T, а ее элементы — omkpытыми множесствами.

Замечание. Любая метрика порождает топологию согласно определению 1.5, но не наоборот. В дальнейшем, если не оговорено противное, мы будем считать, что в метрическом пространстве введена именно такая топология.

**Упражнение 1.** Проверьте условия 1) - 4) для системы открытых подмножеств метрического пространства.

**Упражнение 2.** Привести пример метрического пространства, в котором есть открытый шар, являющийся замкнутым множеством, но не замкнутым шаром, и пример метрического пространства, в котором есть замкнутый шар, являющийся открытым множеством, но не открытым шаром.

**Определение 1.7.** Множество  $F \subset E$  называется *замкнутым*, если множество  $E \setminus F$  открыто. В частности, замкнутый шар — замкнутое множество.

 $O\kappa pecmhocmью точки x$ топологического пространства называется всякое множество, содержащее открытое подмножество, которому принадлежит точка x.

Определение 1.8. Базой (или фундаментальной системой) окрестностей точки x называется такое множество  $\mathcal V$  окрестностей точки x, что  $\forall G \ni x \; \exists \, W \in \mathcal V : W \subset G$ , где G — открытое множество.

Рассмотрим примеры фундаментальных систем окрестностей точки x метрического пространства.

#### Примеры.

- 1.  $\mathcal{V} = \{ S(x, r) \mid r \in \mathbb{R}^+ \}.$
- 2.  $\mathcal{V} = \{ S(x,r) \mid r \in \mathbb{Q}^+ \}.$
- 3.  $\mathcal{V} = \{ S(x, 1/n) \mid r \in \mathbb{N} \}.$
- 4.  $\mathcal{V} = \{ F(x, 1/n) \mid r \in \mathbb{N} \}.$

Определение 1.9. Пусть  $A \subset E$  — произвольное множество. Точка  $x \in E$  называется точкой прикосновения множества A, если для каждой окрестности V(x) точки x имеем:  $V(x) \cap A \neq \emptyset$ . Замыканием множества A называется множество всех его точек прикосновения. Обозначение:  $\bar{A}$ .

Точка  $x \in E$  называется npedenьной точкой множества <math>A, если для каждой окрестности V(x) точки x пересечение  $V(x) \cap A$  бесконечно.

**Предложение 1.1.** *Множество А замкнуто*  $\Leftrightarrow A = \bar{A}$ .

Доказательство. 1. Пусть A замкнуто, тогда  $E \setminus A$  открыто. Значит,  $E \setminus A$  — окрестность точки x для любой точки  $x \in E \setminus A$ , кроме того,  $(E \setminus A) \cap A = \emptyset$ , а значит, x не точка прикосновения.

2. Обратно, пусть  $A=\bar{A}$ . Тогда каждая точка  $x\in E\setminus A$  — не точка прикосновения. Поэтому существует окрестность V(x) точки x, такая, что  $V(x)\cap A=\varnothing$ . Т.к.  $x\in V(x)$ , то  $\bigcup_{x\in E\setminus A}V(x)=E\setminus A$ . Значит, множество

 $E \setminus A$  открыто, а множество A замкнуто.

Определение 1.10. Последовательность  $\{x_n\}$  сходится  $\kappa$  x (обозначение:  $x_n \to x$ ), если  $\forall V(x) \exists n : \forall k > n \ x_k \in V(x)$  (где V(x) — окрестность точки x). В метрическом пространстве это эквивалентно следующему условию:  $\rho(x_n; x) \to 0$ .

Определение 1.11. Пусть E — метрическое пространство. Последовательность  $\{x_n\} \subset E$  называется  $\phi$ ундаментальной, если  $\forall \varepsilon > 0 \ \exists n : \forall k_1, k_2 > n \ \rho(x_{k_1}; x_{k_2}) < \varepsilon$ . В произвольном топологическом пространстве понятие фундаментальной последовательности не имеет смысла.

**Замечание.** Любая сходящаяся последовательность фундаментальна. Однако обратное неверно: например, это неверно в метрическом пространстве  $(\mathbb{Q}, \rho_p)$ .

**Определение 1.12.** Метрическое пространство называется *полным*, если любая его фундаментальная последовательность сходится.

Например, пространство  $\mathcal{B}(E)$  полно.

Определение 1.13. Пополнением метрического пространства  $(E, \rho)$  называется полное метрическое пространство  $(\bar{E}, \bar{\rho})$ , содержащее  $(E, \rho)$  в качестве подпространства и всюду плотного подмножества (т.е. замыкание E в  $\bar{E}$  совпадает с  $\bar{E}$ ).

Определение 1.14. Пространства  $(E, \rho_E)$  и  $(G, \rho_G)$  называются *изоморфными*, если  $\exists f \colon E \to G$ , где f — биекция, сохраняющая расстояния, т.е.  $\rho_G(f(x), f(z)) = \rho_E(x, z)$ .

#### Лекция 2.

**Теорема 1.1.** Всякое метрическое пространство E обладает пополнением, единственным с точностью до изоморфизма, тождественного на E.

Доказательство. Докажем сначала, что если E полно и  $A \subset E$  замкнуто, то пространство  $(A, \rho \mid_A)$  тоже полно<sup>1</sup>.

Пусть  $\{x_n\} \subset A$  — фундаментальная последовательность. Тогда эта последовательность фундаментальна и в E, поэтому  $\exists x \in E : x_n \to x$ . Т.к.  $A = \bar{A}$ , то  $x \in A$ , поэтому A полно.

Возьмем теперь пространство  $\mathcal{B}(E)$  всех ограниченных функций на E с метрикой  $\rho(f;g) = \sup_{x \in E} |f(x) - g(x)|$ . Докажем, что оно полно. В самом деле, пусть  $\{f_n\}$  — фундаментальная последовательность в  $\mathcal{B}(E)$ , тогда при всех  $z \in E$  последовательность  $\{f_n(z)\}$  тоже фундаментальна, т.к. для всех z имеем:  $\forall \varepsilon > 0 \ \exists n : \forall k, r > n$ 

$$\varepsilon > \rho(f_k; f_r) = \sup_{x \in E} |f_k(x) - f_r(x)| \geqslant |f_k(z) - f_r(z)|.$$

Отсюда следует, что  $\forall z \in E \ \exists f(z) = \lim_{n \to \infty} f_n(z)$ , поэтому, переходя в предыдущем неравенстве к пределу при  $r \to \infty$ , при всех z имеем:  $|f_k(z) - f(z)| \leqslant \varepsilon$ . Значит,  $\rho(f_k; f) = \sup_{z \in E} |f_k(z) - f(z)| \leqslant \varepsilon$ , и пространство  $\mathcal{B}(E)$  полно.

<sup>&</sup>lt;sup>1</sup>Если  $(A, \rho|_A)$  полно, то A замкнуто в E, даже если E не является полным.

Вложим E в  $\mathcal{B}(E)$ . А именно, пусть  $x_0 \in E$ , тогда  $E \ni x_1 \mapsto f_{x_1} \in \mathcal{B}(E)$ , где  $f_{x_1}(x) = \rho(x; x_1) - \rho(x; x_0)$ . Понятно, что  $f_{x_1} \in \mathcal{B}(E)$ , т.к. по неравенству треугольника  $|f_{x_1}(x)| \leq \rho(x_0; x_1)$ .

Проверим, что  $\rho_E(x_1; x_2) = \rho_{\mathcal{B}(E)}(f_{x_1}; f_{x_2})$ . В самом деле,

$$\rho_{\mathcal{B}(E)}(f_{x_1}; f_{x_2}) = \sup_{x \in E} |\rho(x; x_1) - \rho(x; x_2)| \leqslant \rho(x_1; x_2).$$

Кроме того, равенство достигается (например, при  $x = x_1$ ).

Таким образом, можно считать, что  $(E, \rho_E)$  — это подпространство в  $(\mathcal{B}(E), \rho_{\mathcal{B}(E)})$ . Рассмотрим  $\bar{E}$ , тогда  $E \subset \bar{E}$  и  $\bar{E}$  полно. Понятно, что  $\bar{E}$  — это искомое пополнение. Докажем, что оно единственно (с точностью до изоморфизма, тождественного на E).

Пусть G — другое пополнение E. Докажем, что  $\exists \, F \colon \bar{E} \to G$ , причем F(x) = x при всех  $x \in E$ . Для каждой точки  $z \in \bar{E}$  найдется такая последовательность  $\{x_n\} \subset E$ , что  $x_n \to z$ . Тогда  $\{x_n\}$  фундаментальна в  $\bar{E}$  и в E, а значит, и в G. Поэтому  $\exists \lim_{n \to \infty} F(x_n) = F(z)$ .

**Упражнение 3.** Докажите корректность определения функции F, т.е. тот факт, что она не зависит от выбора последовательности, сходящейся к z.

Если  $z_1, z_2 \in \bar{E}$ , то  $\rho_G(F(z_1); F(z_2)) = \lim_{n \to \infty} \rho_E(x_n^1; x_n^2) = \rho_E(z_1; z_2)$  (поскольку расстояние непрерывно по совокупности аргументов в силу неравенства треугольника). Таким образом, F — изометрия и отображение «на» (т.к. G тоже полно и E плотно в G).

**Определение 1.15.** Диаметром множества F называется величина  $\dim F = \sup_{x,y \in F} \rho(x;y).$ 

**Теорема 1.2** (Теорема о вложенных шарах). Пусть E полно u  $\{F_j\}$  — такая последовательность замкнутых множеств, что  $E\supset F_1\supset F_2\supset\ldots\supset F_j\supset\ldots u$  diam  $F_j\to 0$ . Тогда  $\bigcap_j F_j\neq\varnothing$ .

Доказательность  $\{x_j\}$  фундаментальна, а значит,  $\exists \lim_{j\to\infty} x_j = x$ . Т.к.  $F_j$  замкнуты, то  $\forall j \ x \in F_j$ , а значит,  $x \in \bigcap_i F_j$ .

**Теорема 1.3** (Бэр). Пусть E полно u  $E = \bigcup_{n=1}^{\infty} F_n$ , где множества  $F_n$  замкнуты. Тогда  $\exists n : F_n \supset S(x,r)$ .

 $<sup>^2</sup>$ На самом деле, сформулированное предложение является критерием полноты метрического пространства.

Доказательство. Предположим противное. Возьмем шар  $S(x_0,1)$ . Тогда множество  $S(x_0,1)\backslash F_1$  открыто и непусто, а значит,  $\exists S(x_1,r_1)\subset S(x_0,1)\backslash F_1$  (где  $r_1<1/2$ ), а значит,  $S(x_0,r_1/2)\subset S(x_0,1)\backslash F_1$ . Тогда  $S(x_1,r_1/2)\backslash F_2\neq\varnothing$ , поэтому  $\exists S(x_2,r_2)\subset S(x_1,r_1/2)\backslash F_2$  (где  $r_2<1/4$ ). Продолжая, получаем последовательность вложенных шаров:

$$S(x_0, 1) \supset S(x_1, r_1) \supset S(x_1, r_1/2) \supset S(x_2, r_2) \supset \dots$$

причем  $S(x_n,r_n)\cap F_n=\varnothing$ , поэтому  $\bar{S}(x_n,r_n/2)\cap F_n=\varnothing$ . Таким образом, мы получаем последовательность замкнутых вложенных шаров  $\bar{S}(x_1,r_1/2)\supset \bar{S}(x_2,r_2/2)\supset\dots$ , причем  $\dim \bar{S}(x_n,r_n/2)\to 0$  (т.к.  $r_n<<<2^{-n}$ ). По предыдущему следствию  $\bigcap_{n=1}^\infty \bar{S}(x_n,r_n/2)\neq\varnothing$  и не содержится в  $F_i$  при всех i — противоречие.

Топологическое пространство, в котором справедлива теорема 1.3, называется бэровским. Т.о., всякое полное метрическое пространство — бэровское.

**Упражнение 4.** Привести пример неполного метрического пространства, являющегося тем не менее бэровским.

## 2. Компактность.

**Определение 2.1.** Подмножество K топологического пространства E называется  $\kappa$ омпактным, если из любого его покрытия открытыми множествами можно извлечь конечное подпокрытие.

Подмножество K топологического пространства E называется *отно-* cumeльно komnakmhыm, если множество  $\bar{K}$  компактно.

Множество K топологического пространства E называется c четно-компактным, если всякое бесконечное подмножество K имеет предельную точку из K.

Множество K топологического пространства E называется ceквен- uuanьно-компактным, если из любой последовательности из K можно выделить подпоследовательность, сходящуюся к элементу из K.

Множество K метрического пространства E называется nped komnak-mhim (или вполне ограниченным), если  $\forall \varepsilon > 0 \; \exists \; S(x_j, \varepsilon) : \bigcup_{j=1}^n S(x_j, \varepsilon) \supset K$ . В этом случае последовательность  $\{x_j\}$  называется  $\varepsilon$ -сетью.

Упражнение 5. Очевидно, что из вполне ограниченности следует ограниченность. Покажите, что обратное неверно.

#### Лекция 3.

- **Теорема 2.1.** 1. В топологическом пространстве счетная компактность следует из секвенциальной компактности, а также из компактности.
- 2. В метрическом пространстве компактность равносильна секвенциальной компактности, а также счетной компактности, а также предкомпактности и полноте одновременно.

Доказательство. Сначала докажем п.1.

Докажем, что из секвенциальной компактности следует счетная компактность. Пусть K — секвенциально компактное множество в топологическом пространстве, и A — его бесконечное подмножество. Возьмем бесконечную последовательность  $\{x_n\} \subset A$  и выделим из нее сходящуюся подпоследовательность:  $\exists x_{n_k} \to x \in K$ . Значит, x — предельная точка множества A.

Теперь докажем, что из компактности следует секвенциальная компактность. Предположим противное: пусть  $A \subset K$  — бесконечное множество, у которого в K нет предельных точек. Значит,  $\forall x \in K \ \exists V(x)$ :  $|V(x) \cap A| < \infty$ .  $^3$  Т.к.  $K \subset \bigcup_x V(x)$ , то  $\exists x_1, \ldots, x_n : \bigcup_{k=1}^n V(x_k) \supset K \supset A$  — противоречие, т.к. A бесконечно.

Теперь докажем п.2.

Докажем, что из счетной компактности следует секвенциальная компактность. Пусть  $\{x_n\} \subset K \subset E$ . Возможны два случая.

- 1) Множество различных элементов последовательности  $\{x_n\}$  конечно. Тогда найдется точка  $x \in \{x_n\}$ , встречающаяся бесконечное количество раз, а значит, подпоследовательность  $x_{n_j}$ , где  $x_{n_j} = x$ , будет сходиться к точке x.
- 2) Множество различных элементов последовательности  $\{x_n\}$  бесконечно. Тогда найдется предельная точка  $z \in K$  этой последовательности. А значит,  $\forall k \in \mathbb{N} \ \exists x_{n_k} \in S(z, 1/k)$ . Можно считать, что  $n_1 < n_2 < \ldots$ , поэтому  $x_{n_k} \to z$  (т.к.  $\rho(x_{n_k}; z) \to 0$ ).

Докажем теперь, что из секвенциальной компактности следуют полнота и предкомпактность.

1) Пусть K секвенциально компактно и  $K \supset \{x_n\}$  — фундаментальная последовательность. Тогда  $\exists x_{n_j} \to x \in K$ . Докажем, что в этом случае  $x_n \to x$ . В самом деле, для любого  $\varepsilon > 0$  имеем:

$$\exists k_0: \forall m, r > k_0 \ \rho(x_m; x_r) < \varepsilon/2,$$

 $<sup>^3</sup>$ Если M — множество, то |M| — число его элементов.

а также

$$\exists j_0 : \forall j > j_0 \ \rho(x_{n_i}; x) < \varepsilon/2.$$

Среди таких j найдется  $j_1$ , для которого  $n_{j_1} > k_0$ . Тогда

$$\forall m > k_0 \ \rho(x_m; x) \leq \rho(x_m; x_{n_{j_1}}) + \rho(x_{n_{j_1}}; x) < \varepsilon.$$

2) Пусть теперь K секвенциально компактно и не предкомпактно, т.е.  $\exists \, \varepsilon > 0 : \forall \, x_1, \ldots, x_n \in K \, \bigcup_{j=1}^n S(x_j, \varepsilon) \not\supset K$ . Но тогда найдется бесконечное множество элементов  $\{z_j\} \subset K$ , таких, что  $\forall \, j_1, j_2 \, \, \rho(z_{j_1}; z_{j_2}) \geqslant \varepsilon$ , а значит, из последовательности  $\{z_j\}$  нельзя выделить фундаментальную подпоследовательность — противоречие.

Наконец, докажем, что из полноты и предкомпактности следует компактность. Предположим противное: Пусть K не компактно, тогда  $\exists V_\alpha: \bigcup_\alpha V_\alpha \supset K$  и нельзя выделить конечное подпокрытие. Т.к. K — предком-

пактно, то  $\forall\, k>0$   $\exists\, x_1^k,\ldots,x_{n(k)}^k:\bigcup_{j=1}^{n(k)}(F(x_j^k,1/k)\cap K)\supset K$  (как обычно, F(x,r) — это замкнутый шар радиуса r с центром в точке x), а значит,  $\exists\, F(x_{j_1}^1,1):F(x_{j_1}^1,1)\cap K$  не покрывается конечным числом  $\{V_\alpha\}$ . Аналогично, при k=2 имеем:

$$\bigcup_{j=1}^{n(2)} (F(x_j^2, 1/2) \cap F(x_{j_1}^1, 1) \cap K) \supset F(x_{j_1}^1, 1) \cap K,$$

а значит,  $\exists F(x_{j_2}^2,1/2): F(x_{j_2}^2,1/2)\cap F(x_{j_1}^1,1)\cap K$  не покрывается конечным числом  $\{V_{\alpha}\}$ . Проводя аналогичные рассуждения, получаем последовательность замкнутых вложенных множеств  $\bigcap_{n=1}^r F(x_{j_n}^n,1/n)\cap K$ , диа-

метры которых стремятся к 0. Т.к. K полно, то  $\exists x \in \bigcap_{n=1}^{\infty} F(x_{j_n}^n, 1/n) \cap K$ . Но тогда  $\exists V_{\alpha(x)} \ni x$  и  $\exists \varepsilon(x) : S(x, \varepsilon(x)) \subset V_{\alpha(x)}$ , поэтому  $\exists n : 1/n < \varepsilon(x)/2$  и  $F(x_{j_n}^n, 1/n) \subset S(x, \varepsilon(x)) \subset V_{\alpha(x)}$  — противоречие.

Определение 2.2. Пусть  $(E, \rho)$  — метрическое пространство. Отображение  $f: E \to E$  называется *сэнсимающим*, если  $\exists \alpha \in (0; 1) : \forall x_1, x_2 \in E$   $\rho(f(x_1); f(x_2)) \leqslant \alpha \rho(x_1; x_2)$ .

Всякое сжимающее отображение непрерывно (проверьте это).

**Теорема 2.2** (Пикар). Всякое сжимающее отображение f полного метрического пространства  $(E, \rho)$  в себя обладает ровно одной неподвиженой точкой.

Доказательство. Пусть  $x_0 \in E$ . Рассмотрим последовательность  $\{x_n\}$ , где  $x_{n+1} = f(x_n)$ . Легко видеть, что она фундаментальна:

$$\rho(x_n; x_{n+1}) = \rho(f(x_{n-1}); f(x_n)) \leqslant \alpha \rho(x_{n-1}; n_n) \leqslant \ldots \leqslant \alpha^n \rho(x_0; x_1),$$

поэтому

$$\rho(x_{n+k}; x_n) \leqslant \rho(x_n; x_{n+1}) + \ldots + \rho(x_{n+k-1}; x_{n+k}) \leqslant \frac{\alpha^{n+k}}{1 - \alpha} \rho(x_0; x_1) \to 0.$$

Значит,  $\exists\,z\in E:z=\lim_{n\to\infty}x_n$ . Докажем, что точка z неподвижна. В самом деле,

$$\rho(z; f(z)) = \rho(\lim x_n; \lim f(x_n)) = \rho(\lim x_n; \lim x_{n+1}) = \lim \rho(x_n; x_{n+1}) = 0,$$
так что  $z = f(z)$ .

Докажем, что неподвижная точка единственна. Пусть  $z_1$  и  $z_2$  — неподвижные точки. Тогда

$$\rho(z_1; z_2) = \rho(f(z_1); f(z_2)) \leqslant \alpha \rho(z_1; z_2),$$

откуда 
$$(1-\alpha)\rho(z_1;z_2)=0$$
, а значит,  $\rho(z_1;z_2)=0$  и  $z_1=z_2$ .

**Упражнение 6.** Привести пример неполного метрического пространства, в котором теорема Пикара неверна.

**Упражнение 7.** Привести пример неполного метрического пространства, в котором теорема Пикара верна.

**Упражнение 8.** Доказать, что отображение f метрического пространства E, для которого  $\rho(f(z_1); f(z_2)) < \rho(z_1; z_2)$ , может не иметь неподвижной точки, даже если пространство E полно.

**Упражнение 9.** Если E компактно, то отображение f, для которого  $\rho(f(z_1); f(z_2)) < \rho(z_1; z_2)$ , обладает ровно одной неподвижной точкой.

#### Лекция 4.

#### 3. Непрерывность.

**Определение 3.1.** Отображение  $f: E \to G$  называется непрерывным в точке x, если для каждой окрестности V(f(x)) точки f(x) существует такая окрестность W(x) точки x, что  $f(W(x)) \subset V(f(x))$ .

**Определение 3.2.** Отображение  $f \colon E \to G$  называется *непрерывным* на множестве E, если f непрерывно во всех точках множества E.

**Предложение 3.1.** Отображение  $f: E \to G$  непрерывно на  $E \Leftrightarrow npo-$ образ любого открытого множества в G открыт в E.

Доказательство. Пусть множество  $V \subset G$  — открытое, и  $x \in f^{-1}(V)$ . Тогда по определению непрерывности отображения f в точке x имеем:  $\forall V(f(x)) \; \exists W(x) : f(W(x)) \subset V(f(x))$ . Значит,  $W(x) \subset f^{-1}(V)$  и  $f^{-1}(V)$  представляется в виде объединения открытых множеств, а именно,  $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} W(x)$ .

Докажем обратное утверждение. Пусть  $x \in E$  и V(f(x)) — произвольная открытая окрестность точки f(x) в G. Тогда множество  $W = f^{-1}(V(f(x)))$  открыто и  $x \in W$ . Значит, f(W) = V(f(x)), что и доказывает непрерывность отображения f в точке x.

**Предложение 3.2.** Отображение f непрерывно  $\Leftrightarrow$  прообраз любого замкнутого множества в G замкнут в E.

Доказательство. Это утверждение следует из предыдущего предложения и следующей выкладки:

$$f^{-1}(F) = f^{-1}(G \setminus (G \setminus F)) = (f^{-1}(G)) \setminus (f^{-1}(G \setminus F))$$

(т.к. множество  $f^{-1}(G \setminus F)$  открыто).

**Определение 3.3.** Пусть E — топологическое пространство. В точке  $x \in E$  выполняется *первая аксиома счетности*, если существует не более чем счетная фундаментальная система окрестностей точки x.

Пространство, в каждой точке которого выполнена первая аксиома счетности, называется пространством с первой аксиомой счетности.

**Теорема 3.1.** Отображение f топологического пространства c первой аксиомой счетности в топологическое пространство непрерывно в точке  $x \in E \Leftrightarrow \forall \{x_n\} \subset E : x_n \to x \Rightarrow f(x_n) \to f(x)$ .

Доказательство. Пусть отображение f непрерывно и  $x_n \to x$ . Тогда  $\forall W(f(x)) \; \exists V(x) : f(V(x)) \subset W(f(x))$ . Поскольку  $\exists n_0 : \forall n > n_0 \; x_n \in V(x)$ , то  $f(x_n) \in W(f(x))$ , так что  $f(x_n) \to f(x)$ . (В этой части первая аксиома счетности не используется.)

Докажем утверждение в другую сторону. Предположим противное: пусть  $\exists W(f(x)): \forall V(x) \ \exists z \in f(V(x)): z \not\in W(f(x)).$  Т.к.  $\forall n \ \exists x_n: x_n \in V(x)$  и  $f(x_n) = z_n \not\in W(f(x))$ , то  $x_n \to x$ , но  $z_n \nrightarrow f(x)$  — противоречие.

**Предложение 3.3.** Пусть E и G — топологические пространства, и отображение  $f \colon E \to G$  непрерывно и  $K \subset E$  — компакт. Тогда f(K) — компакт

 $\mathcal{A}$ оказательство. В самом деле, если  $\bigcup_{\alpha} W_{\alpha} \supset f(K)$ , то  $\bigcup_{\alpha} f^{-1}(W_{\alpha}) \supset f^{-1}(f(K)) \supset K$ . Т.к. K — компакт, то  $\exists \{W_{\alpha_j}\} : \bigcup_{j=1}^n f^{-1}(W_{\alpha_j}) \supset K$ . Но в таком случае  $\bigcup_{j=1}^n W_{\alpha_j} \supset f(K)$ , что и требовалось.

Определение 3.4. Топологическое пространство называется *хаусдорфовым*, если у любых двух его точек есть непересекающиеся окрестности.

**Лемма 3.1.** Пусть G- хаусдорфово пространство  $u\ K\subset G-$  компакт. Тогда K замкнуто.

Доказательство.  $\forall z \in K \ \exists V(z) : V(z) \cap V_z(x) = \varnothing$ , где  $x \notin K$ . Поскольку  $\bigcup_{z \in K} V(z) \supset K$ , то  $\exists \{V(z_j)\} : \bigcup_{j=1}^n V(z_j) \supset K$ . Поскольку множество  $\bigcap_{j=1}^n V_{z_j}(x) = W(x)$  открыто и  $W(x) \cap K = \varnothing$ , то K замкнуто.  $\square$ 

**Предложение 3.4.** Пусть  $f: E \to G$  — непрерывная биекция, E компактно, а G хаусдорфово. Тогда G тоже компактно и отображение  $f^{-1}$  тоже непрерывно.

Доказательство. Утверждение следует из предложения 3.2 и леммы 3.1, поскольку  $(f^{-1})^{-1}(F) = f(F)$  — замкнутое в G множество (т.к. если  $F \subset E$  замкнуто в компакте, то и само F компакт).

**Определение 3.5.** Пусть  $(E, \rho_E)$  и  $(G, \rho_G)$  — метрические пространства. Отображение  $f: E \to G$  равномерно непрерывно, если  $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x_1, x_2 \in E \; \rho(x_1; x_2) < \delta \Rightarrow \rho(f(x_1); f(x_2)) < \varepsilon$ .

**Предложение 3.5.** Непрерывное отображение компактного метрического пространства в произвольное метрическое пространство равномерно непрерывно.

Доказательство. Если отображение f не является равномерно непрерывным, то  $\exists \, \varepsilon > 0 : \forall \, n \in \mathbb{N} \, \exists \, x_n, z_n : \rho(x_n; z_n) < 1/n$ , но  $\rho(f(x_n); f(z_n)) > \infty$ . Пусть  $\{x_{n_k}\}$  — сходящаяся подпоследовательность последовательности  $\{x_n\}$ , т.е.  $x_{n_k} \to x$ . Тогда  $z_{n_k} \to x$ , т.к.  $\rho(x_{n_k}; z_{n_k}) \to 0$ . Поэтому последовательность  $x_{n_1}, z_{n_1}, x_{n_2}, z_{n_2}, \ldots$  тоже сходится к x. Но последовательность  $f(x_{n_1}), f(z_{n_1}), f(x_{n_2}), f(z_{n_2}), \ldots$  даже не является фундаментальной и потому сходиться не может.

#### 4. Нормированные пространства.

**Определение 4.1.** Пусть E — векторное пространство (над  $\mathbb{R}^1$  или  $\mathbb{C}^1$ ). Функция  $p \colon E \to \mathbb{R}^1$  называется *полунормой на* E, если выполнены следующие аксиомы:

- 1)  $p(x) \ge 0$ ;
- 2)  $p(\alpha x) = |\alpha| p(x);$
- 3)  $p(x_1 + x_2) \le p(x_1) + p(x_2)$ .

Если аксиому 1) усилить, а именно, потребовать к тому же, чтобы p(x)=0 тогда и только тогда, когда x=0, то функция p будет называться нормой на E.

Во всяком нормированном пространстве вводится расстояние с помощью равенства  $\rho(x,z)=p(x-z).$ 

**Определение 4.2.** Локально выпуклое пространство — это пара  $(E, \mathcal{P})$ , где  $\mathcal{P}$  — семейство полунорм на E.

Нормированное пространство — это пара (E,p), где p — норма на E. Нормированное пространство наделяется канонической метрикой:  $\rho(x_1;x_2)=p(x_1-x_2)$ . Если полученное метрическое пространство будет полным, то нормированное пространство E называется банаховым.

#### Примеры.

- 1.  $E = \mathbb{R}^1$ , ||x|| = |x|.
- 2.  $E = C[a; b], ||f|| = \max_{t \in [a; b]} |f(t)|.$

3. 
$$E = C_2[a; b], ||f|| = \left(\int_a^b |f(t)|^2 dt\right)^{1/2}.$$

- 4.  $E = c_0$  пространство всех последовательностей, сходящихся к 0,  $\|\{x_n\}\| = \max |x_n|$ .
- 5.  $E = l_{\infty}^n$  пространство всех ограниченных последовательностей,  $\|\{x_n\}\| = \sup_n |x_n|$ .

**Упражнение 10.** Докажите, что нормированные пространства в примерах 1, 2, 4, 5 банаховы, а в примере 3 нет.

**Определение 4.3.** Пусть  $f \colon E \to G$  — линейное непрерывное отображение. *Нормой* f называется величина  $\|f\| = \sup_{\|x\|_E \leqslant 1} \|f(x)\|_G$ . В случае,

когда  $G = \mathbb{R}^1$ , отображение f называется линейным функционалом. Множество всех непрерывных функционалов на пространстве E образуют линейное пространство (нормированное), которое называется сопряженным  $\kappa$  E. Обозначение —  $E^*$ .

#### Лекция 5.

**Определение 4.4.** Пусть E — нормированное пространство. Линейное отображение  $A \colon E \to G$  называется *ограниченным*, если образ любого ограниченного множества ограничен.

Множество называется *ограниченным*, если оно содержится в некотором шаре.

Нормой отображения A называется величина  $||A|| = \sup_{\|x\| \le 1} ||Ax||$ .

Предложение 4.1. 
$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{\|x\|}$$
.

Упражнение 11. Докажите это предложение.

Рассмотрим пространство  $\mathcal{L}(E,G)$  всех непрерывных линейных отображений из E в G. Введенная выше функция  $\|\cdot\|$  действительно является нормой. Проверим, например, неравенство треугольника. Имеем:

$$||A_1 + A_2|| = \sup_{\|x\|_E \le 1} ||(A_1 + A_2)x||_G \le \sup_{\|x\|_E \le 1} (||A_1x||_G + ||A_2x||_G) \le$$

$$\le \sup_{\|x\|_E \le 1} ||A_1x||_G + \sup_{\|x\|_E \le 1} ||A_2x||_G = ||A_1|| + ||A_2||.$$

**Предложение 4.2.** Если отображение A линейно, от его ограниченность равносильна непрерывности.

Доказательство. Пусть A ограничено, тогда  $A(S(0,1)) \subset S(0,r)$ , поэтому  $\forall \varepsilon \ A(S(0,\varepsilon/r)) \subset A(0,\varepsilon)$ .

Обратно, пусть A непрерывно, тогда  $\forall r > 0 \ \exists \varepsilon > 0 : A(S(0,\varepsilon)) \subset \subset S(0,r)$ , а значит,  $A(S(0,1)) \subset S(0,r/\varepsilon)$  и  $||A|| \leqslant r/\varepsilon$ .

Предложение 4.3. Пусть  $A \in \mathcal{L}(E,G)$ . Тогда  $||Ax|| \le ||A|| ||x|| \ u \ ||A|| = \inf\{M > 0 \ | \ \forall x \ ||Ax|| \le M||x|| \}$ .

Доказательство. Т.к.  $\|A\| = \sup_{\|x\| \leqslant 1} \|Ax\|$ , то  $\forall x \neq 0$   $\left\|\frac{Ax}{\|x\|}\right\| \leqslant \|A\|$ , откуда  $\|Ax\| \leqslant \|A\| \|x\|$ . Поэтому, если  $M_0 = \inf\{M>0 \mid \forall x \mid \|Ax\| \leqslant M \|x\|\}$ , то  $M_0 \leqslant \|A\|$ . Но если  $M_0 < \|A\|$ , то  $\exists \varepsilon > 0 : M_1 = M_0 + \varepsilon < \|A\|$ . Тогда  $\forall x \neq 0$   $\frac{\|Ax\|}{\|x\|} \leqslant M_1$ , а значит,  $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \leqslant M_1 < \|A\|$  — противоречие. Т.о.,  $\|A\| = M_0$ .

**Теорема 4.1.** Если G — банахово пространство, а E — нормированное пространство, то пространство  $\mathcal{L}(E,G)$  банахово.

Доказательство. Пусть  $\{A_n\} \subset \mathcal{L}(E,G)$  — фундаментальная по норме последовательность. Тогда  $\forall x \in E \ \|A_n x - A_k x\| \leqslant \|A_n - A_k\| \|x\|$ , поэтому при всех  $x \in E$  последовательность  $\{A_n x \subset G\}$  фундаментальна, а значит,  $\forall x \in E \ \exists \lim_{n \to \infty} A_n x = Ax$ . Докажем, что  $A \in \mathcal{L}(E,G)$ . В самом деле, понятно, что A линейно в силу линейности предела и отображений  $A_n$ , поэтому необходимо доказать только непрерывность.

 $\forall \, \varepsilon > 0 \, \exists \, n_0 : \forall \, n, k > n_0 \, \|A_n - A_k\| < \varepsilon$ , поэтому  $\forall \, x \, \|A_n x - A_k x\| \leqslant \varepsilon \|x\|$  и  $\|A_n - A\| \leqslant \varepsilon$ . Отсюда следует, что функционал  $A_n - A$  непрерывен. Но функционал  $A_n$  также непрерывен, поэтому  $A = A_n - (A - A_n)$  тоже будет непрерывным. Кроме того, понятно, что функционал A - предел последовательности  $\{A_n\}$ , т.к.  $\|A_n - A\| \to 0$ .

В частности, при  $G = \mathbb{R}^1$  получаем, что пространство  $E^*$  всегда банахово (в силу полноты пространства  $\mathbb{R}^1$ ).

**Определение 4.5.** Множество E называется выпуклым, если  $\forall x_1, x_2 \in E$ ,  $\forall \tau_1, \tau_2 \ge 0 : \tau_1 + \tau_2 = 1$   $\tau_1 x_1 + \tau_2 x_2 \in E$ .

**Теорема 4.2** (Банах–Штейнхаус). Пусть E полно, G нормировано u  $\{A_{\alpha}\}\subset\mathcal{L}(E,G)\ u\ \forall\ x\in E\ \sup_{\alpha}\|A_{\alpha}x\|_{G}<\infty$ . Тогда  $\sup_{\alpha}\|A_{\alpha}\|<\infty$ .

Доказательство. Для каждого натурального n рассмотрим множество  $M_n = \{x \in E \mid \forall \alpha \mid ||A_{\alpha}x|| \leq n\}$ . Тогда  $\bigcup_{n=1}^{\infty} M_n = E$ . Представим

множества  $M_n$  в следующем виде:  $M_n = \bigcap_{\alpha} \{x \in E \mid ||A_{\alpha}x|| \leqslant n\} = \prod_{\alpha} A_{\alpha}^{-1}(F(0,n))$ . Т.к.  $A_{\alpha}$  непрерывны, то множества  $M_n$  замкнуты, и по теореме Бэра  $\exists n : M_n \supset S(z,r)$ .

Множество  $M_n$  выпукло, содержит шар S(z,r) и симметрично относительно точки 0. Т.к.  $M_n$  симметрично, то  $M_n \supset S(-z,r)$ , а т.к.  $M_n$  выпукло, то  $M_n \supset \frac{1}{2}S(-z,r) + \frac{1}{2}S(z,r) = S(0,r)$ . Т.о.,  $M_n$  содержит шар S(0,r) радиуса r с центром в 0. Отсюда следует, что  $\forall \alpha \ \forall x : \|x\| \leqslant r \Rightarrow \|A_{\alpha}x\| \leqslant n$ , поэтому  $\sup_{\|x\| \leqslant r} \|A_{\alpha}x\| \leqslant n$ , т.е.  $\forall \alpha \ \|A_{\alpha}\| \leqslant \frac{n}{r}$ .

#### Лекция 6.

**Теорема 4.3** (Хан-Банах). Пусть E — произвольное линейное пространство, u p:  $E \to \mathbb{R}^1$  — такая функция на нем, что выполняются следующие свойства:

- 1)  $p(\alpha x) = \alpha p(x)$ ;
- 2)  $p(x_1 + x_2) \le p(x_1) + p(x_2)$ .

Пусть также  $E_1 \subset E$  — подпространство  $u f: E_1 \to \mathbb{R}^1$  — линейный функционал на нем, причем  $\forall x \in E_1 \ f(x) \leqslant p(x)$ . Тогда  $\exists \ \bar{f}: E \to \mathbb{R}^1$  — такое линейное отображение, что  $\forall x \in E \ \bar{f}(x) \leqslant p(x) \ u \ \forall x \in E_1 \ \bar{f}(x) = f(x)$ .

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$ 

Пусть  $z \in E \setminus E_1$  и  $E^z = \text{conv}(E_1, z)$  — линейная оболочка. Докажем, что существует искомое продолжение функционала f на пространство  $E^z$ .  $\forall v \in E^z$  v = tz + x, где  $z \in E_1$ , а  $t \in \mathbb{R}^1$ . Понятно, что  $\bar{f}(tz + x) = t\bar{f}(z) + f(x) \leqslant p(tz + x)$ . Найдем величину  $C = \bar{f}(z)$ . Возможны два случая.

- 1) t>0. Тогда  $tC+f(x)\leqslant p(tz+x)$ , а значит,  $C\leqslant p(z+x/t)-f(x/t)$  для всех x.
- 2) t<0. Тогда  $tC+f(x)\leqslant p(tz+x)$  для всех x. разделив обе части неравенства на -t>0, получим:  $-C-f(x/t)\leqslant -\frac{1}{t}p(tz+x)=p(-z-x/t)$ , т.е.  $C\geqslant -f(x/t)-p(-z-x/t)$ .

Но  $\forall x_1, x_2 - p(-x_2 - z) - f(x_2) \leqslant -f(x_1) + p(z + x_1)$ . В самом деле,

$$f(x_1) - f(x_2) = f(x_1 - x_2) \le p(x_1 - x_2) = p((x_1 + z) - (x_2 + z)) \le p(x_1 + z) + p(-x_2 - z).$$

Поэтому можно выбрать произвольное C, удовлетворяющее двойному неравенству

$$-p(-z - x_1/t) - f(x_1/t) \le C \le -f(x_2/t) + p(z + x_2/t) \qquad (\forall x_1, x_2)$$

Для завершения доказательства нам потребуется лемма Куратовского-Цорна.

Определение 4.6. Множество  $\Omega$  называется упорядоченным (или частично упорядоченным), если на нем введено отношение порядка « $\leq$ », удовлетворяющее следующим аксиомам:

- 1)  $x \leq x$  (рефлексивность);
- 2)  $x \leqslant y, y \leqslant z \Rightarrow x \leqslant z$  (транзитивность);
- 3)  $x \leqslant y, y \leqslant x \Rightarrow x = y$  (антисимметричность).

Множество  $\Omega$  называется линейно упорядоченным, если каждые два его элемента сравнимы (т.е. если  $\forall x, z \in \Omega$  или  $x \leqslant z$  или  $z \leqslant x$ ).

Пусть  $\Omega_1 \subset \Omega$ . Тогда элемент  $\omega \in \Omega$  называется мажорантой  $\Omega_1$ , если  $\forall x \in \Omega_1 \ x \leqslant \omega$ .

Элемент  $a\in\Omega$  называется максимальным элементом  $\Omega,$  если  $\forall\,x\in\Omega$   $x\geqslant a\Rightarrow x=a.$ 

**Лемма 4.1** (Куратовский–Цорн). Если для каждого линейно упорядоченного подмножества  $\Omega_1 \subset \Omega$  существует мажсоранта  $\omega \in \Omega$ , то в  $\Omega$  есть максимальные элементы.<sup>4</sup>

Теперь мы готовы завершить доказательство. Пусть  $\Omega=(G,f_G)$ , где  $E_1\subset G\subset E$  и  $f_{G_1}$  — продолжение f на  $G_1$  для которого  $\forall\,x\in G$   $f_G(x)\leqslant p(x)$ . Введем на  $\Omega$  следующее отношение порядка:  $(G_1,f_{G_1})\leqslant (G_2,f_{G_2})$ , если  $G_1\subset G_2$  и  $f_{G_2}$  — продолжение  $f_{G_1}$  на  $G_2$ . Пусть  $\Omega_1\subset \Omega$  — линейно упорядоченное подмножество, тогда найдется мажоранта  $\omega=(G_{\Omega_1},f_{\Omega_1})$ , где  $G_{\Omega_1}=\bigcup_{G_{\alpha}\in\Omega_1}G_{\alpha}$  и  $f_{\Omega_1}$  — продолжение f на  $G_{\Omega_1}$ , определенное следую-

щим образом: если  $x \in G_{\alpha}$ , то  $f_{\Omega_1}(x) = f_{G_{\alpha}}(x)$  (из линейной упорядоченности  $\Omega_1$  вытекает корректность этого определения). По лемме Цорна в  $\Omega$  есть максимальный элемент  $(G_{\max}, f_{\max})$ .

В силу первой части доказательства  $G_{\max} = E$ . Действительно, если  $G_{\max} \neq E$ , то  $\exists z \in E \setminus G_{\max}$ , и согласно первой части,  $f_{\max}$  можно продолжить на подпространство  $\operatorname{conv}(G_{\max},z)$  в противоречие с максимальностью  $(G_{\max},f_{\max})$ .

 $<sup>^{4}</sup>$ Ее доказательство можно найти, например, в книге Н. Бурбаки «Теория множеств».

Следствие 4.1. Пусть E — нормированное пространство  $u f: E_1 \to \mathbb{R}^1$  — непрерывный линейный функционал на пространстве  $E_1 \subset E$ , причем ||f|| = C > 0. Тогда  $\exists \ \bar{f}: E \to \mathbb{R}^1: \bar{f} \mid_{E_1} = f \ u \ ||\bar{f}|| = ||f||$ .

Доказательство. Пусть  $p(x) = C\|x\|$ , тогда  $\forall x \in E_1 \quad |f(x)| \leqslant C\|x\| = p(x)$ , а значит, по теореме Хана-Банаха  $\exists \, \bar{f} \colon E \to \mathbb{R}^1 \colon \bar{f} \mid_{E_1} = f$ , причем  $\bar{f}(x) \leqslant C\|x\|$ . Но неравенство  $\bar{f}(x) \leqslant C\|x\|$  влечет  $-\bar{f}(x) = \bar{f}(-x) \leqslant C\|x\|$ , а из этих двух неравенств вытекает, что  $|\bar{f}(x)| \leqslant C\|x\|$ , т.е. что  $\|\bar{f}\| \leqslant C$ . Значит,  $\|\bar{f}\| = C$  (поскольку  $\|\bar{f}\| \geqslant \|f\|$  ввиду того, что  $\bar{f} \mid_{E_1} = f$ ).

Предложение 4.4.  $\forall x \in E \ \exists f^x \in E^* : ||f^x|| = 1 \ u \ f^x(x) = ||x||.$ 

Доказательство. Положим  $E_1 = \{\lambda x \mid \lambda \in \mathbb{R}^1\}$  и  $f_0 \colon E_1 \to \mathbb{R}^1$ ,  $f_0(\lambda x) = \lambda \|x\|$ . Тогда  $\|f_0\| = 1$ . Тогда продолжение этого функционала без увеличения нормы будет искомым.

Рассмотрим пространство  $E^{**}$ . Можно считать, что  $E \subset E^{**}$ ; а именно, рассмотрим отображение  $x \mapsto F_x \in E^{**}$ , где  $F_x(g) = g(x)$ . Это отображение — вложение: если  $x \neq 0$ , то  $F_x \neq 0$  по предыдущему предложению. Поскольку  $|F_x(g)| = |g(x)| \leqslant \|g\| \|x\|$ , то  $\|F_x\| \leqslant \|x\|$ , причем равенство достигается при  $g = f^x$ . Значит,  $\|F_x\| = \|x\|$ . Т.о., вложение  $E \hookrightarrow E^{**}$ ,  $x \mapsto F_x$  является изометрическим на образ f(E).

**Определение 4.7.** Пространство E называется *рефлексивным*, если образ E при этом вложении совпадает с  $E^{**}$ .

**Определение 4.8.** Нормированные пространства  $E_1$  и  $E_2$  называются *изоморфными*, если существует линейная биекция между этими пространствами, сохраняющая норму.

**Определение 4.9.** Пополнением нормированного пространства E называется такое нормированное пространство  $\bar{E} \supset E$ , что E всюду плотно в  $\bar{E}$ .

**Теорема 4.4.** Для любого нормированного пространства E существует его пополнение  $\bar{E}$ , однозначное с точностью до изоморфизма, тожедественного на E.

Доказательство. Вложим E в банахово пространство  $E^{**}$  и рассмотрим его замыкание  $\bar{E}$  в  $E^{**}$ . Оно и будет искомым. Доказательство единственности аналогично доказательству единственности в теореме о пополнении метрического пространства.

**Определение 4.10.** Графиком отображения  $f \colon E \to G$  называется множество  $\Gamma_f = \{(x, f(x)) \mid x \in E, f(x) \in G\} \subset E \times G.$ 

Норма в произведении  $E \times G$  вводится так, чтобы ее сужения на подпространства  $E \times \{0\}$  и  $\{0\} \times G$ , изоморфные (как линейные пространства) соответственно, пространствам E и G, совпадали с нормами, порожденными нормами пространств E и G.

# Примеры.

- 1. ||(x,z)|| = ||x|| + ||z||;
- 2.  $\|(x,z)\| = \max\{\|x\|, \|z\|\};$ 3.  $\|(x,z)\| = \sqrt{\|x\|^2 + \|z\|^2}.$

**Предложение 4.5.** Если отображение f непрерывно, то его график замкнут.

Упражнение 12. Докажите это предложение.

#### Лекция 7.

**Теорема 4.5** (Банах). Если f — линейное непрерывное биективное отображение, то отображение  $f^{-1}$  непрерывно.

Теорема Банаха равносильна следующему утверждению.

**Теорема 4.6.** Пусть E и G — банаховы пространства и  $f: E \to G$  — линейное отображение, график  $\Gamma_f$  которого замкнут. Тогда отображение f непрерывно.

Доказательство равносильности теорем 4.5 и 4.6. Докажем, сначала, что теорема 4.5 влечет теорему 4.6. Т.к. график отображения f является замкнутым линейным пространством в  $E \times G$ , то он является банаховым пространством. Рассмотрим отображение  $F \colon (x, f(x)) \mapsto x$ . Оно линейно, биективно и непрерывно, поэтому по теореме Банаха об обратном отображении получаем, что и  $F^{-1}$  непрерывно. Значит, непрерывно отображение f как композиция непрерывных отображений  $x \mapsto (x, f(x)) \mapsto f(x)$  (первое из них — это  $F^{-1}$ , а второе — проекция  $E \times G$  на G).

Теперь докажем, что из теоремы 4.6 следует теорема 4.5. Пусть отображение  $f \colon E \to G$  линейно и непрерывно, тогда  $\Gamma_f \subset E \times G$  замкнут. Пусть  $\varphi = f^{-1}$ , тогда  $\Gamma_\varphi = \{(z, \varphi(z))\} = \{(f(x), x)\} \subset G \times E$ . Отображение  $E \times G \to G \times E$ ,  $(x, z) \mapsto (z, x)$  биективно и непрерывно, причем  $\Gamma_f$  отображается на  $\Gamma_\varphi$ . Значит,  $\Gamma_\varphi$  замкнут вместе с  $\Gamma_f$  и  $\varphi$  непрерывно по теореме 4.6.

**Теорема 4.7.** Пусть  $f: E \to G$  — линейное непрерывное сюръективное отображение банаховых пространств. Тогда образ всякого открытого подмножества из E открыт в G.

Доказательство. Пусть  $V \subset E$  — открытое подмножество. Сначала докажем теорему для случая, когда V = S(0,r) — открытый шар.

Докажем, что  $\overline{f(S(0,\varepsilon))} \supset S(0,\eta)$ . В самом деле,

$$\bigcup_{n=1}^{\infty} n \cdot \overline{f(S(0,\varepsilon))} \supset \bigcup_{n=1}^{\infty} n \cdot f(S(0,\varepsilon)) =$$

$$= f\Big(\bigcup_{n=1}^{\infty} n \cdot S(0,\varepsilon)\Big) = f\Big(\bigcup_{n=1}^{\infty} S(0,n\varepsilon)\Big) = f(E) = G.$$

По теореме Бэра  $\exists n: \overline{n\cdot f(S(0,\varepsilon))}\supset S(x,r)$ . Т.к. слева стоит выпуклое симметричное множество, то  $\overline{f(S(0,n\varepsilon))}\supset S(0,r)$  и  $\overline{f(S(0,\varepsilon))}\supset S(0,r/n)$ .

Докажем, что  $f(S(0,2\varepsilon))\supset S(0,\eta)$ . Возьмем последовательность  $\{\varepsilon_j\}$ , такую, что  $\sum\limits_{j=1}^\infty \varepsilon_j < \varepsilon$ , и произвольное  $z\in S(0,\eta)$ . Найдем такое  $x\in S(0,2\varepsilon)$ , что z=f(x). По доказанному ранее  $\forall\,j\,\exists\,\eta_j:\,\overline{f(S(0,\varepsilon_j))}\supset S(0,\eta_j)$ , причем  $\eta_j\to 0$ . Поэтому  $\exists\,x_0\in S(0,\varepsilon):\|z-f(x_0)\|<\eta_1$ , т.е.  $z-f(x_0)\in S(0,\eta_1)$ . Аналогично,  $\exists\,x_1\in S(0,\varepsilon_1):\|z-f(x_0)-f(x_1)\|<<\eta_2$ , т.е.  $z-f(x_0)-f(x_1)\in S(0,\eta_2)$ , и т.д. Таким образом, мы получаем последовательность  $\{x_n\}$ , где  $x_0\in S(0,\varepsilon)$ ,  $x_j\in S(0,\varepsilon_j)$  и  $z-\sum\limits_{j=0}^n f(x_j)\in S(0,\eta_{n+1})$ . Последовательность  $\{x_n\}$  фундаментальна в E, т.к.

$$\left\| \sum_{j=0}^{n+k} x_j - \sum_{j=0}^n x_j \right\| \le \left\| \sum_{j=n+1}^{n+k} x_j \right\| \le \sum_{j=n+1}^{n+k} \|x_j\| < \sum_{j=n+1}^{n+k} \varepsilon_j < \sum_{j=n+1}^{\infty} \varepsilon_j \to 0.$$

Поэтому  $\exists E \ni x_{\infty} = \lim_{n \to \infty} \sum_{j=0}^{n} x_{j}$ . Кроме того,  $\sum_{j=0}^{n} f(x_{j}) \to z$ , и в силу непрерывности f получаем:  $f\left(\sum_{j=0}^{n} x_{j}\right) = \sum_{j=0}^{n} f(x_{j}) \to f(x_{\infty})$ , откуда  $z = f(x_{\infty})$ .

Таким образом,  $\forall \, \delta > 0 \; \exists \, r(\delta) : f(S(0,\delta)) \supset S(0,r(\delta))$ , откуда получаем, что  $f(S(x,\delta)) \supset S(f(x),r(\delta))$ .

Теперь докажем теорему для произвольного открытого подмножества V. Пусть  $z \in f(V)$ , тогда z = f(x), где  $x \in V$ . Т.к.  $\exists \, \delta > 0 : S(x, \delta) \subset V$ , то  $S(f(x), r(\delta)) \subset f(S(x, \delta)) \subset V$ .

#### 5. Локально выпуклые пространства.

**Определение 5.1.** Локально выпуклое пространство — это пара  $(E, \mathcal{P})$ , где  $\mathcal{P}$  — семейство полунорм на E.

**Определение 5.2.** На локально выпуклом пространстве  $(E, \mathcal{P})$  можно *задать топологию*: множество  $V \subset E$  назовем открытым, если

$$\forall x \in E \ \exists n \in \mathbb{N}, \ p_1, \dots, p_n \in \mathcal{P}, \ \varepsilon_1, \dots, \varepsilon_n > 0 : \bigcap_{j=1}^n \{z \mid p_j(x-z) < \varepsilon_j\} \subset V.$$

Если E и  $G \subset E^*$  — линейные пространства, то  $p \in \mathcal{P}_G \Leftrightarrow \exists f \in G : \forall x \in E \ p_f(x) \equiv p(x) = |f(x)|$ . Тогда пространство  $(E, \mathcal{P}_G)$  будет локально выпуклым.

**Определение 5.3.** Топология на пространстве  $(E, \mathcal{P}_G)$  называется *сла- бой топологией на* E, *порожеденной* G, и обозначается через  $\sigma(E, G)$ .

Если E нормировано и  $G=E^*$ , то топология  $\sigma(E,E^*)$  называется слабой топологией нормированного пространства E.

Для пространства  $E^*$  возьмем  $G = \{F_x \mid x \in E\}$ , тогда топология  $\sigma(E^*, E^{**})$  называется \*слабой на  $E^*$ .

#### ЛЕКЦИЯ 8.

**Лемма 5.1.** Пусть  $f_{12}$  и  $f_{13}$  — линейные отображения, причем  $\ker f_{13} \supset \ker f_{12}$ . Тогда существует такое линейное отображение  $f_{23}$ , что следующая диаграмма коммутативна:

$$K_1 \xrightarrow{f_{12}} K_2$$

$$K_3 \xrightarrow{f_{23}} K_3$$

Доказательство. Пусть  $K_2 = f_{12}(K_1) \oplus K$ . Тогда положим

$$f_{23}(x) = \begin{cases} f_{13}(f_{12}^{-1}(x)), & \text{если } x \in f_{12}(K_1); \\ 0, & \text{если } x \in K. \end{cases}$$

Это определение корректно ввиду того, что  $\ker f_{13} \supset \ker f_{12}$ .

**Теорема 5.1.** Пусть E — линейное пространство и f — линейный функционал на E. Тогда он непрерывен в слабой топологии  $(E, \sigma(E, G))$   $\Leftrightarrow f \in G^5$ .

Доказательство. Если  $x \in E$  таково, что  $p_g(x) < \varepsilon$ , где  $g \in G$ , то  $|g(x)| = p_g(x) < \varepsilon$ , а значит, g непрерывен в 0.

Обратно, пусть  $g \in (E, \sigma(E, G))^*$ . Тогда g непрерывен в 0, поэтому  $\forall \varepsilon \ \exists \ V(0) \subset V : \forall \ x \in V \ |g(x)| < \varepsilon$ . Отсюда следует, что

$$\exists g_k : \{x \in E \mid p_{q_i}(x) < 1\} = \{x \in E \mid |g_i(x)| < 1\} \subset V.$$

Поэтому, если  $|g_k(x)|<1$ , то  $|g(x)|<\varepsilon$ , а значит, т.к.  $\ker g\supset \bigcap_{k=1}^n\ker g_k$ , то  $\exists\,\lambda_k:g=\sum\lambda_kg_k$ , откуда  $g\in G$ .

Существование таких  $\lambda_k$  следует из леммы 5.1. В самом деле, возьмем  $K_1 = E, K_2 = \mathbb{R}^n, K_3 = \mathbb{R}^1, f_{12}(x) = (g_1(x), \dots, g_n(x))$  и  $f_{13} = g$ . Тогда  $\exists f_{23}: f_{23}((x_1, \dots, x_n)) = \sum \lambda_k x_k$ , что и требовалось.

**Теорема 5.2.** Пусть E — нормированное пространство и  $B \subset E$ . Тогда B ограничено в топологии  $\sigma(E, E^*) \Leftrightarrow B$  ограничено по норме.

Доказательство. Пусть B ограничено по норме и  $g \in E^*$ . Тогда  $\forall x \in B \ |g(x)| \le \|g\| \cdot \|x\|$ , откуда  $\|x\| < \infty$  и  $\sup_{x \in B} |g(x)| < \infty$ .

Докажем обратное утверждение. Вложим E в  $E^{**}$  и применим ко множеству  $B \subset E \subset E^{**}$  теорему Банаха–Штейнхауса. Тогда B ограничено в топологии  $\sigma(E,E^*) \Leftrightarrow \forall \, f \in E^* \, \sup_{x \in B} |f(x)| < \infty,$  т.е.  $\sup_{x \in B} |F_x(f)| < \infty,$  т.к. B поточечно ограничено на банаховом пространстве  $E^*$ . Значит, B ограничено по норме в  $E^{**}$ . Но вложение  $E \hookrightarrow E^{**}$  является изометрией, поэтому B ограничено и в пространстве E.

**Теорема 5.3.** Пусть E — нормированное пространство u  $V \subset E$  — выпуклое подмножество в нем. Тогда V замкнуто по норме  $\Leftrightarrow V$  замкнуто в топологии  $\sigma(E, E^*)$ .

Доказательство. В одну сторону утверждение очевидно, т.к. топология по норме сильнее слабой.

Докажем обратное утверждение. Для этого рассмотрим следующее понятие.

**Определение 5.4.** Функционалом Минковского множества W называется функционал  $p_W(x) = \inf\{\lambda > 0 \mid x/\lambda \in W\}.$ 

 $<sup>^{5}</sup>$ По другому утверждение теоремы можно записать так:  $(E, \sigma(E, G))^{*} = G$ .

Функционал Минковского обладает следующими свойствами.

- 1)  $p_W(0) = 0$  (обратное неверно!);
- 2)  $p_W(\alpha x) = \alpha p_W(x)$ , где  $\alpha > 0$ ;
- 3)  $p_W(x_1 + x_2) \leq p_W(x_1) + p_W(x_2)$ .

Докажем свойство 3) (остальные очевидны). Нам будет достаточно доказать его в случае, когда  $\forall \, x \in E \ W \cap \{\lambda x\}$  открыто в  $\{\lambda x\}$  и  $0 \in W$ . Пусть  $x_1, x_2 \in E$ , тогда  $\forall \, \varepsilon > 0 \ \frac{x_j}{p_W(x_j) + \varepsilon} \in W \ (j=1,2)$ . Т.к. W выпукло, то при  $\tau_j = \frac{p_W(x_j) + \varepsilon}{p_W(x_1) + p_W(x_2) + 2\varepsilon}$  и  $z_j = \frac{x_j}{p_W(x_j) + \varepsilon}$  имеем:  $\tau_1 x_1 + \tau_2 x_2 \in V$ . Но тогда

$$p_W(\tau_1 x_1 + \tau_2 x_2) = p_W\left(\frac{x_1 + x_2}{p_W(x_1) + p_W(x_2) + 2\varepsilon}\right) < 1,$$

откуда  $p_W(x_1 + x_2) < p_W(x_1) + p_W(x_2) + 2\varepsilon$ , что и требовалось.

Теперь докажем обратное утверждение теоремы. Можно считать, что  $0 \in V$ . Тогда  $\exists S(z,\varepsilon): S(z,\varepsilon) \cap V = \varnothing$ , поэтому  $(V+S(0,\varepsilon/2)) \cap (S(z,\varepsilon/2)) = \varnothing$ . Положим  $W=V+S(0,\varepsilon/2)$ . Тогда W — это выпуклое открытое множество, поскольку  $W=\bigcup_{v\in V}(S(0,\varepsilon/2)+v)$ . Пусть  $p_W$  — функционал Минковского множества W, тогда  $\exists \delta > 0: p_W(z) \geqslant 1+\delta$ .

На одномерном пространстве  $\{\lambda z\}$  определим функционал  $f(\lambda z) = \lambda p_W(z)$ . Тогда  $\forall x \in \{\lambda z\}$   $f(x) \leqslant p_W(x)$ . Значит, по теореме Банаха—Штейнхауса функционал f можно продлить до функционала  $\bar{f}$  на E, такого, что  $\bar{f}(x) \leqslant p_W(x)$ . Этот функционал непрерывен: пусть  $S(0, \varepsilon/2) \subset W$ , тогда  $\forall x \in S(0, \varepsilon/2)$   $p_W(x) < 1$ , поэтому  $\bar{f}(x) \leqslant p_W(x) < 1$  и  $\bar{f}(-x) < 1$ , откуда  $|\bar{f}(x)| < 1$ .

Рассмотрим множество  $U = \{x \in E \mid \bar{f}(x) > 1 + \delta/2\}$ . Тогда  $z \in U$  и  $U \cap W = \varnothing$  (т.к.  $\bar{f}(x) < p_W(x)$ , откуда  $U \subset \{x \in E \mid p_W(x) > 1 + \delta/2\}$ , а последнее множество не пересекается с W). Но отсюда следует, что  $U \cap V = \varnothing$ , т.е. V содержит вместе с каждой точкой некоторую ее окрестность в слабой топологии топологии, что и означает открытость V.

#### Лекция 9.

#### 6. Гильбертовы пространства.

**Определение 6.1.** Пусть E — линейное пространство над  $\mathbb{R}^1$  или  $\mathbb{C}^1$ . *Скалярным произведением на* E называется функция  $b \colon E \times E \to \mathbb{C}^1$ , удовлетворяющая следующим аксиомам:

1) 
$$b(\lambda x, z) = \lambda b(x, z)$$
 и  $b(x, \lambda z) = \overline{\lambda}b(x, z)$ ;

- 2)  $b(x_1 + x_2, z) = b(x_1, z) + b(x_2, z)$  и  $b(x, z_1 + z_2) = b(x, z_1) + b(x, z_2)$ ;
- 3)  $b(x,z) = \overline{b(z,x)}$ ;
- 4)  $b(x,x) \geqslant 0$ , причем  $b(x,x) = 0 \Leftrightarrow x = 0$ .

Если пространство E вещественное, аксиомы немного другие, а именно, в аксиоме 1)  $b(x, \lambda z) = \lambda b(x, z)$ , и в аксиоме 3) b(x, z) = b(z, x).

Если (E,b) — евклидово пространство, то на нем можно ввести норму, а именно,  $||x||^2 = b(x,x)$ .

В дальнейшем скалярное произведение будем обозначать через (x, z).

Предложение 6.1 (Неравенство Коши-Буняковского-Шварца).

$$|(x,z)| \leq ||x|| ||z||.$$

Доказательство. При z=0 утверждение очевидно. Пусть теперь  $z\neq 0$ . Поскольку неравенство

$$0 \le (x - \lambda z, x - \lambda z) = ||x||^2 - 2(x, z)\lambda + \lambda^2 ||z||^2$$

верно при всех  $\lambda$ , то дискриминант квадратного трехчлена, стоящего в правой части, должен быть отрицательным. А он как раз равен  $(x,z)^2 - \|x\|^2 \|z\|^2$ .

**Замечание.** В этом доказательстве предполагалось, что пространство E вещественно. Доказательство для комплексного случая будет дано в теореме 7.5.

**Определение 6.2.** Полное евклидово пространство называется *гильбер- товым.* В дальнейшем мы будем обозначать его через H.

#### Примеры.

- 1. Пространство  $\mathcal{L}_2(\Omega,\mathfrak{B},\nu)$  со скалярным произведением  $(f,g)=\int\limits_{\Omega}f(x)g(x)\,\nu(dx)$  является гильбертовым. 2. Пространство  $l_2$  суммируемых последовательностей со скалярным
- 2. Пространство  $l_2$  суммируемых последовательностей со скалярным произведением  $(\{x_n\}, \{z_n\}) = \sum x_n z_n$  является гильбертовым (на самом деле, это частный случай пространства  $\mathcal{L}_2(\Omega, \mathfrak{B}, \nu)$ , когда  $\Omega = \mathbb{N}$ , а  $\nu$  считающая мера).

**Определение 6.3.** Вектора  $a, b \in H$  называются *ортогональными*, если (a, b) = 0.

Вектор a называется *нормированным*, если ||a|| = 1.

**Предложение 6.2.** Если  $\{x_j\} \subset E$  — линейно независимая система векторов, то  $\exists \{e_j\} \subset E : e_j$  — ортонормированная система векторов  $u \ \forall k \ \langle e_1, \dots, e_k \rangle = \langle x_1, \dots, x_k \rangle$ .

Доказательство. Для доказательства воспользуемся процессом ортогонализации  $\Gamma$ рама-Шмидта: положим  $e_1 = \frac{x_1}{\|x_1\|}$  и

$$e_n = \frac{x_n - \sum_{j=1}^{n-1} (x_n, e_j) e_j}{\left\| x_n - \sum_{j=1}^{n-1} (x_n, e_j) e_j \right\|}.$$

Легко видеть, что система векторов  $\{e_i\}$  искомая.

**Определение 6.4.** Ортонормированная система векторов  $\{e_i\}$  пространства E называется *томальной*, если  $\overline{\langle e_i \rangle} = E$ .

Ортонормированная система векторов  $\{e_i\}$  пространства E называется замкнутой, если  $\forall x \in E \ \|x\|^2 = \sum_{i=1}^{\infty} (x, e_i)^2$ .

Ортонормированная система векторов  $\{e_i\}$  пространства E называется *полной*, если  $\forall x \in E : (x, e_n) = 0 \Rightarrow x = 0$ .

Ортонормированная система векторов  $\{e_j\}$  называется *базисом* пространства E, если  $\forall x \in E$   $x = \sum_{n=1}^{\infty} (x, e_n) e_n$ .

#### Лекция 10.

**Предложение 6.3** (Неравенство Бесселя).  $\forall x \in E \ \|x\|^2 \geqslant \sum_n (x, e_n)^2$ .

Доказательство. В самом деле,

$$0 \leqslant \left\| x - \sum_{n=1}^{k} (x, e_n) e_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{k} (x, e_n)^2,$$

откуда следует, что при всех k выполнено неравенство  $\sum_{n=1}^k (x, e_n)^2 \leqslant ||x||^2$ ,

а значит, 
$$\sum_{n=1}^{\infty} (x, e_n)^2 \leqslant ||x||^2$$
.

Предложение 6.4. 
$$\inf_{\{\alpha_n\}} \|x - \sum \alpha_n e_n\| = \|x - \sum (x, e_n) e_n\|.$$

Доказательство. Несложно убедиться, что

$$\left\|x - \sum \alpha_n e_n\right\|^2 = \left\|x - \sum (x, e_n)e_n\right\| + \left\|\sum (x, e_n)e_n - \sum \alpha_n e_n\right\|,$$

откуда следует искомое неравенство.

#### Теорема 6.1. Имеет место следующая диаграмма:

(1) тотальность 
$$\iff$$
 (2) замкнутость  $\qquad \qquad \downarrow$  (4) базисность  $\implies$  (3) полнота

Доказательство. Сначала докажем, что (2)  $\Leftrightarrow$  (4). Пусть система векторов  $\{e_n\}$  замкнута. Тогда  $\left\|x - \sum_{n=1}^k (x, e_n) e_n\right\|^2 = \|x\|^2 - \sum_{n=1}^k (x, e_n)^2 \to 0$  при  $k \to \infty$ , поэтому  $x = \lim_{k \to \infty} \sum_{n=1}^k (x, e_n) e_n = \sum (x, e_n) e_n$ .

Обратно, пусть система векторов  $\{e_n\}$  является базисом, тогда получаем, что  $x=\lim_{k\to\infty}\sum_{n=1}^k(x,e_n)e_n$ , откуда  $\left\|x-\sum_{n=1}^k(x,e_n)e_n\right\|^2=\|x\|^2-\sum_{n=1}^k(x,e_n)^2\to 0$ , а значит,  $\|x\|^2=\sum(x,e_n)^2$ . Теперь докажем, что  $(1)\Leftrightarrow (4)$ . Пусть система векторов  $\{e_n\}$  тоталь-

Теперь докажем, что (1)  $\Leftrightarrow$  (4). Пусть система векторов  $\{e_n\}$  тотальна. Тогда  $\forall x \in E, \forall \varepsilon > 0 \; \exists k \in \mathbb{N}, \{\alpha_n\}_{n=1}^k : \left\|x - \sum_{n=1}^k \alpha_n e_n\right\| < \varepsilon$ . В силу предложения 6.4, отсюда следует, что  $\left\|x - \sum_{n=1}^k (x, e_n) e_n\right\| < \varepsilon$ , а значит,  $x = \sum (x, e_n) e_n$ .

Обратная импликация очевидна.

Наконец, докажем, что (4)  $\Rightarrow$  (3). Пусть система векторов  $\{e_n\}$  является базисом и  $\forall x, n \ (x, e_n) = 0$ . Тогда  $x = \lim_{k \to \infty} \sum_{n=1}^k (x, e_n) e_n = 0$ .

**Теорема 6.2** (Рисс-Фишер). *Если пространство Е гильбертово, то*  $(3) \Rightarrow (4)$ .

Доказательство. Поскольку  $\sum (x,e_n)^2 < \infty$ , то для всякого  $x \in E$  имеем:  $\left\|\sum_{n=k_1}^{k_2} (x,e_n)e_n\right\| = \sum_{n=k_1}^{k_2} (x,e_n)^2 \to 0$  при  $k_1,k_2 \to \infty$ . Т.к. E гильбертово,  $\exists \, z \in E : z = \sum (x,e_n)e_n$ . Остается доказать, что z = x. Это следует из следующей цепочки равенств и полноты:

$$(z - x, e_l) = (z, e_l) - (x, e_l) = \lim_{k \to \infty} \left( \sum_{n=1}^k (x, e_n) e_n, e_l \right) - (x, e_l) = 0,$$

что и требовалось.

**Определение 6.5.** Пространство называется *сепарабельным*, если оно обладает счетным всюду плотным множеством.

**Теорема 6.3.** Любые два бесконечномерных сепарабельных гильбертовых пространства изоморфны

Доказательство. Докажем, что в сепарабельном гильбертовом пространстве бесконечной размерности есть ортонормированный базис. Поскольку пространство сепарабельно, то в нем есть счетное всюду плотное множество  $\{x_n\}$ . Пусть  $z_1=x_{n_1}$  — первый ненулевой элемент этой системы. Далее,  $z_2=x_{n_2}$  — первый среди последующих элементов этой системы, независимый с  $z_1$ . Продолжая этот процесс, мы в конце концов получим систему независимых векторов  $\{z_n\}$ , причем мы всегда сумеем выбрать следующий элемент  $z_k$  в силу бесконечномерности пространства. Применяя процесс ортогонализации Грама—Шмидта, мы получаем тотальную ортонормированную систему векторов  $\{e_n\}$ . Т.к. пространство гильбертово, то по доказанному ранее эта система является базисом.

Докажем теперь утверждение теоремы. Пусть  $E_1$  и  $E_2$  — два пространства. Согласно доказанному выше, выберем в них ортонормированные базисы  $\{e_n^1\}$  и  $\{e_n^2\}$ . Тогда  $\forall x \in E_1$   $x = \sum (x, e_n^1) e_n^1$ . Положим  $F: E_1 \to E_2, x \mapsto F(x) = \sum (x, e_n^1) e_n^2$ . В силу неравенства Бесселя указанный ряд сходится, поэтому отображение определено корректно. Докажем, что оно является автоморфизмом. В самом деле,

$$(x_1, x_2) = \lim_{k \to \infty} \left( \sum_{n=1}^k (x_1, e_n^1) e_n^1, \sum_{n=1}^k (x_2, e_n^1) e_n^1 \right) =$$

$$= \lim_{k \to \infty} \sum_{n=1}^k (x_1, e_n^1) (x_2, e_n^1) = \sum_{n=1}^k (x_1, e_n^1) (x_2, e_n^1) = (F(x_1), F(x_2))^6.$$

**Лемма 6.1** (Равенство параллелограмма).  $\forall x, z \in E$  имеет место следующее равенство:  $\|\frac{1}{2}(x-z)\|^2 + \|\frac{1}{2}(x+z)\|^2 = \frac{1}{2}\|x\|^2 + \frac{1}{2}\|z\|^2$ .

Лемма 6.2. Пусть  $d > \delta \geqslant 0$ ,  $S = \{x \in E \mid d \leqslant \|x\|^2 \leqslant d + \delta\}$   $u \in A \subset S - выпуклое$  множество. Тогда  $\forall x_1, x_2 \in A \ \|x_1 - x_2\| \leqslant \sqrt{12d\delta}$ .

Доказательство. Т.к.  $\frac{1}{2}(x_1+x_2) \in A$ , то  $\|\frac{1}{2}(x_1+x_2)\| \geqslant d$ . Кроме того, согласно правилу параллелограмма,

$$\left\|\frac{1}{2}(x_1-x_2)\right\|^2 = \frac{1}{2}\|x_1\|^2 + \frac{1}{2}\|x_2\|^2 - \left\|\frac{1}{2}(x_1+x_2)\right\|^2 \leqslant (d+\delta)^2 - d^2 \leqslant 3d\delta,$$
откуда  $\|x_1-x_2\| \leqslant \sqrt{12d\delta}$ .

<sup>&</sup>lt;sup>6</sup>Это равенство называется *равенством Парсеваля*.

#### ЛЕКЦИЯ 11.

#### 7. ТЕОРЕМА РИССА.

**Замечание.** В дальнейшем, если не оговорено противное, мы будем считать, что основным полем является  $nubo \mathbb{R}$ ,  $nubo \mathbb{C}$ .

**Предложение 7.1.** Пусть V- выпуклое замкнутое множество гильбертова пространства  $u\ h \notin V$ . Тогда  $\exists ! x_h \in V : c = \|h-x_h\| = \inf_{z \in V} \|h-z\|$ .

**Определение 7.1.** Элемент  $x_h$  называется *проекцией элемента* h на V и обозначается через  $\operatorname{pr}_V h$ .

Доказательство. Пусть последовательность  $\{z_n\} \subset V$  такова, что  $\|h - z_n\| \to c$ , т.е.  $\forall \, \varepsilon > 0 \, \exists \, n_0 : \forall \, n \geqslant n_o \, z_n \in \{x : c \leqslant \|x - h\| \leqslant c + \varepsilon\} \cap V$ . По лемме 6.2 получаем, что  $\|z_n - z_k\| \leqslant \sqrt{12c\varepsilon}$  при  $n, k \geqslant n_0$ , а значит, последовательность  $\{z_n\}$  фундаментальна. Поэтому  $\exists \, x_h = \lim_{n \to \infty} z_n$ . Легко видеть, что элемент  $x_h$  искомый, т.е.  $\|h - x_h\| = c$ .

Докажем единственность. Пусть есть два элемента  $x_h$  и  $\bar{x}_h$ , удовлетворяющие условию. Тогда по лемме 6.2 имеем:  $\|\bar{x}_h - x_h\| \le \sqrt{12c\varepsilon}$  при всех  $\varepsilon > 0$ . Отсюда следует, что  $\bar{x}_h = x_h$ .

Предложение 7.2.  $\operatorname{Re}(h-x_h,z-x_h)\leqslant 0$  при  $\operatorname{scex}\,z\in V.$ 

Доказательство. Т.к. множество V выпукло, то при всех  $\lambda \in [0; 1)$  имеем:  $x_h + \lambda(z - x_h) \in V$ . В таком случае  $\|h - (x_h + \lambda(z - x_h))\|^2 \geqslant \|h - x_h\|^2$ , что равносильно следующему неравенству:

$$||h - x_h||^2 + \lambda^2 ||z - x_h||^2 - 2\lambda \operatorname{Re}(h - x_h, z - x_h) \ge ||h - x_h||^2.$$

Отсюда следует, что  $\text{Re}(h-x_h,z-x_h)\leqslant \frac{\lambda}{2}\|z-x_h\|^2$ . Устремляя  $\lambda$  к 0, получаем требуемое.

**Теорема 7.1.** Пусть  $G \subset H$  — замкнутое подпространство гильбертова пространства. Тогда  $\forall h \in H \ \exists ! \ x_h = \operatorname{pr}_G h \in G : h - \operatorname{pr}_G h \bot G$ .

Доказательство. Пусть  $x_h = \operatorname{pr}_{\mathbf{G}} h$ . При z = 0 по предыдущему предложению получаем, что  $\operatorname{Re}(h - x_h, -x_h) \leq 0$ . Отсюда следует, что при всех z выполнено неравенство  $\operatorname{Re}(h - x_h, z) \leq 0$ . Если теперь  $(h - x_h, z) = re^{i\theta}$ , где  $r \geq 0$ , то  $\operatorname{Re}(h - x_h, e^{i\theta}z) = r \leq 0$ . Поэтому r = 0, что и требовалось.

**Замечание.** На самом деле, условие теоремы является и достаточным, т.е. по условию теоремы вектор  $x_h$  определяется однозначно.

**Теорема 7.2** (Рисс). Пусть E -гильбертово пространство  $u f \in E^*$ . Тогда  $\exists ! h_f \in E : \forall x \in E \ f(x) = (x, h_f),$ причем  $||f|| = ||h_f||$ .

Доказательство. Если  $f \equiv 0$ , то утверждение очевидно.

Пусть  $f \not\equiv 0$ . Рассмотрим подпространство  $G = \ker f$ . Тогда  $\exists z \in H \setminus G : z - \operatorname{pr}_{G} z = h \bot G$ , причем  $h \not= 0$ . Рассмотрим функционал  $F : x \mapsto (x,h)$ . Тогда  $\ker F \supset \ker f = G$ , поэтому по лемме  $5.1 \exists \alpha \in \mathbb{C} : f = \alpha F$  и  $\alpha \not= 0$ . В таком случае положим  $h_f = \bar{\alpha}h$ . Легко проверить, что  $f(x) = (x,h_f)$ .

Докажем, что  $||f|| = ||h_f||$ . По неравенству Коши–Буняковского–Шварца  $|f(x)| = |(x, h_f)| \le ||x|| ||h_f||$ , поэтому  $||f|| \le ||h_f||$ . Кроме того, при  $x = \frac{h_f}{||h_f||}$  неравенство обращается в равенство, поэтому  $||f|| = ||h_f||$ .

Докажем единственность. Пусть есть два элемента  $h_f$  и  $\bar{h}_f$ , удовлетворяющие условию. Тогда  $\forall x \in H \ (x, h_f) = (x, \bar{h}_f)$ . Отсюда  $\forall x \in H \ (x, h_f - \bar{h}_f) = 0$ . Подставив  $x = h_f - \bar{h}_f$ , получим  $(h_f - \bar{h}_f, h_f - \bar{h}_f) = 0 \Rightarrow h_f - \bar{h}_f = 0 \Rightarrow h_f = \bar{h}_f$ .

#### Лекция 12.

**Теорема 7.3.** Пусть  $G \subset H$  — замкнутое подпространство гильбертова пространства,  $h \in H$ ,  $\exists \operatorname{pr}_{G} h \in G$  и  $\exists z \in G$ ,  $(h-z) \bot G$ . Тогда  $\operatorname{pr}_{G} h = z$ .

Доказательство.  $(h-\operatorname{pr}_{\mathbf{G}}h)\bot G$ ,  $(h-z)\bot G\Rightarrow (h-\operatorname{pr}_{\mathbf{G}}h)-(h-z)=(z-\operatorname{pr}_{\mathbf{G}}h)\bot G$ . Но  $(z-\operatorname{pr}_{\mathbf{G}}h)\in G$ . Следовательно,  $(z-\operatorname{pr}_{\mathbf{G}}h,z-\operatorname{pr}_{\mathbf{G}}h)=0\Rightarrow z-\operatorname{pr}_{\mathbf{G}}h=0\Rightarrow z=\operatorname{pr}_{\mathbf{G}}h$ .

Определение 7.2. Пусть  $E_1$  и  $E_2$  - линейные пространства над полем  $\mathbb{C}$ . Отображение  $f: E_1 \to E_2$  называется полулинейным, если  $\forall g_1, g_2 \in E_1$  и  $\lambda \in \mathbb{C}$  выполнено  $f(g_1 + g_2) = f(g_1) + (g_2)$  и  $f(\lambda g_1) = \bar{\lambda} f(g_1)$ .

Замечание. Пусть E — гильбертово пространство и  $f \in E^*$ . По теореме Рисса  $\exists ! h_f \in E : \forall x \in E \ f(x) = (x, h_f)$  Тогда отображение  $F \colon E^* \to E$ ,  $F(f) = h_f$  полулинейно.

**Теорема 7.4.** Пусть E — это произвольное линейное пространство, а  $p: E \to \mathbb{R}^+$  — такая функция на нем, что выполняются следующие свойства:

- 1)  $p(\alpha x) = |\alpha| p(x)$ ;
- 2)  $p(x_1 + x_2) \le p(x_1) + p(x_2)$ .

Пусть также  $G \subset E$  — подпространство u  $f: G \to \mathbb{C}$  — линейный функционал на нем, причем  $\forall x \in G \ |f(x)| \leqslant p(x)$ . Тогда  $\exists \ \tilde{f}: E \to \mathbb{C}$  — такое линейное отображение, что  $\forall x \in E \ |\tilde{f}(x)| \leqslant p(x)$   $u \ \forall x \in G \ \tilde{f}(x) = f(x)$ .

Доказательство. Положим  $\forall x \in G \ f_1(x) = \operatorname{Re} f(x)$ . Тогда  $f_1 \colon G_{\mathbb{R}} \to \mathbb{R}$  линеен и  $\forall x \in G \ f(x) = f_1(x) - i f_1(ix)$ . По условию  $\forall x \in G \ |f(x)| \leqslant g(x)$ , значит,  $\forall x \in G \ |f_1(x)| \leqslant p(x)$ . По теореме Хана-Банаха найдем такой линейный функционал  $\tilde{f}_1 \colon E_{\mathbb{R}} \to \mathbb{R}$ , что  $\forall x \in E_{\mathbb{R}} \ |\tilde{f}_1(x)| \leqslant p(x)$ . Положим  $\forall x \in E \ \tilde{f}(x) = \tilde{f}_1(x) - i \tilde{f}_1(ix)$ . Тогда  $\tilde{f}$  и будет искомым функционалом. Надо лишь проверить, что  $\forall x \in E \ |\tilde{f}(x)| \leqslant p(x)$ .

Допустим, что это не так, т.е.  $\exists x \in E : |\tilde{f}(x)| > p(x)$ . Пусть  $\tilde{f}(x) = \rho e^{i\theta}$ . Тогда  $\tilde{f}(e^{-i\theta}x) = e^{-i\theta}\tilde{f}(x) = e^{-i\theta}\rho e^{i\theta} = \rho > 0$ . Поэтому  $|\tilde{f}(e^{-i\theta}x)| = \tilde{f}(e^{-i\theta}x) = \tilde{f}_1(e^{-i\theta}x) \Rightarrow \tilde{f}_1(e^{-i\theta}x) > p(x) = p(e^{-i\theta}x)$ . Противоречие.  $\square$ 

Определение 7.3. Пусть Е и G — банаховы пространства и  $A: E \to G$  — линейный оператор. Тогда банахов сопряженный оператор  $A^*: G^* \to E^*$  определяется следующим образом:  $\forall g \in G^* \ \forall x \in E \ g(Ax) = (A^*g)(x)$ .

**Предложение** 7.3.  $A^*$  линеен и непрерывен.

Доказательство. Линейность очевидно вытекает из определения. Для проверки непрерывности докажем более сильное утверждение:  $||A^*|| = ||A||$ .

$$\begin{split} \|A\| &= \sup_{\substack{x \in F \\ \|x\| \leqslant 1}} \|Ax\| = \sup_{\|x\| \leqslant 1} \sup_{\substack{g \in G^* \\ \|g\| \leqslant 1}} |g(Ax)| = \sup_{\|g\| \leqslant 1} \sup_{\|x\| \leqslant 1} |g(Ax)| = \\ &= \sup_{\|g\| \leqslant 1} \sup_{\|x\| \leqslant 1} |(A^*g)(x)| = \sup_{\|g\| \leqslant 1} \|A^*g\| = \|A^*\|. \end{split}$$

Определение 7.4. Пусть H — гильбертово пространство и  $A: H \to H$  — линейный оператор. Тогда гильбертов сопряженный оператор  $A^*: H \to H$  определяется следующим образом:  $\forall x \in H \ \forall z \in H \ (A^*x, z) = (x, Az)$ .

#### Лекция 13.

**Теорема 7.5** (Неравенство Коши-Буняковского в комплексном случае). Пусть H — гильбертово пространство над  $\mathbb{C}$  и  $f,g \in H$ . Тогда верно неравенство  $|(f,g)| \leq ||f|| ||g||$ .

Доказательство. Если ||g|| = 0, то g = 0 и неравенство Коши-Буняковского выполнено.

Если же (f,g)=0, то неравенство Коши-Буняковского тоже выполнено.

Ну а если  $||g||(f,g) \neq 0$ , то пусть  $\lambda$  — произвольное действительное число. Тогда  $(f - \lambda(f,g)g, f - \lambda(f,g)g) \geqslant 0$ . Значит,  $(f,f) - 2\lambda|(f,g)|^2 + \lambda^2|(f,g)|^2||g||^2 \geqslant 0$ . Это квадратный трехчлен, неотрицательный при всех  $\lambda$ , поэтому его дискриминант неотрицателен. Таким образом, получаем, что  $|(f,g)|^4 \leqslant ||f|||g||(f,g)|^2$ , откуда следует  $|(f,g)| \leqslant ||f|||g||$ .  $\square$ 

**Теорема 7.6.** Пусть A — произвольный линейный непрерывный оператор в гильбертовом пространстве H. Тогда  $\ker A = (\operatorname{Im} A^*)^{\perp}$ , где  $A^*$  — оператор, сопряженный  $\kappa$  оператору A и  $\operatorname{Im} C = \{Cx \mid x \in H\}$ .

Доказательство. Проверим включение в одну сторону.  $x \in \ker A \Leftrightarrow \forall z \in H \ (Ax, z) = (x, A^*z)$ . Итак, любой элемент ядра оператора перпендикулярен любому элементу образа.

Обратно: 
$$x \perp \operatorname{Im} A^* \Leftrightarrow \forall z \in H \quad (x, A^*z) = 0 \Leftrightarrow \forall z \in H \quad (Ax, z) = 0 \Leftrightarrow Ax = 0 \Leftrightarrow x \in \ker A.$$

Следствие 7.1. 1.  $(\ker A)^{\perp} = (\operatorname{Im} A^*)^{\perp \perp} = \overline{\operatorname{Im} A^*}$ .

- $2. \ker A^* = (\operatorname{Im} A)^{\perp}.$
- 3.  $(\ker A^*)^{\perp} = \overline{\operatorname{Im} A}$ .

Упражнение 13. Докажите это следствие.

Пусть теперь  $A \colon E \to G$ , где E и G — банаховы пространства. Тогда для оператора  $A^* \colon G^* \to E^*$  верны те же свойства (здесь  $(\operatorname{Im} A^*)^{\perp} = \{x \in E \mid \forall g \in \operatorname{Im} A^*, \ g(x) = 0\}$ ).

Доказательства аналогичны предыдущим.

#### 8. Обобщенные функции.

Определим три пространства так называемых пробных функций:

1.  $D = D(\mathbb{R}^n)$  — пространство всех бесконечно дифференцируемых функций (действительнозначных или комплекснозначных) с компактным носителем.

- 2.  $S = S(\mathbb{R}^n)$  пространство всех бесконечно дифференцируемых быстро убывающих функций (действительнозначных или комплекснозначных).
- 3.  $\mathcal{E} = \mathcal{E}(\mathbb{R}^n)$  пространство всех бесконечно дифференцируемых функций (действительнозначных или комплекснозначных).

**Определение 8.1.** *Носителем функции*  $\varphi$  называется следующее множество: supp  $\varphi = \overline{\{x \mid \varphi(x) \neq 0\}}$ .

**Определение 8.2.** Функция  $\varphi$  называется быстро убывающей, если  $\forall n, k \ p_{n,k} = \sup_{x} (1 + ||x||^n) ||\varphi^{(k)}(x)|| < \infty.$ 

Определение 8.3. Здесь 
$$\|\varphi^{(k)}(x)\| = \sum_{\sum r_j = k} \Big| \frac{\partial^k \varphi(x)}{\partial x_1^{r_1} \dots \partial x_n^{r_n}} \Big|.$$

Каждое из пространств  $D, S, \mathcal{E}$  является линейным. В этих пространствах задается топология следующим образом.

Начнем с пространства S. В нем топологию определяет система полунорм  $P = \{p_{n,k} : n, k = 0, 1, 2, \ldots\}.$ 

Теперь рассмотрим пространство D.  $D = \bigcup_{r=1}^{\infty} D_r$ , где  $D_r = \{ \varphi \in D \mid$  $\sup \varphi \subset S(0,r)$ }. Но  $D_r \subset D \subset S$ . Получаем в  $D_r$  индуцированную топологию из S.

Определим фундаментальную систему окрестностей нуля:

 $W \in V \Leftrightarrow W$  выпукло и  $\forall r \in \mathbb{N}$   $W \cap D_r$  — открытая окрестность нуля в  $D_r$ .

Определение 8.4.  $V \subset D$  открыто тогда и только тогда, когда оно представляет собой объединение (возможно, сдвинутых) окрестностей нуля.

Теперь определим топологию  $P_E$  в  $\mathcal{E}$ . Для этого снабдим пространство  $\mathcal{E}$  семейством полунорм:  $p \in P_{\mathcal{E}} \Leftrightarrow \exists$  компакт  $K \subset \mathbb{R}^n$  и  $r, k \in \{0, 1, 2, \ldots\}$ :  $\forall \varphi \in E \ p_{r,k} = \sup_{x \in K} \sum_{r_j = r} \left| \frac{\partial^k \varphi(x)}{\partial x_1^{r_1} \dots \partial x_n^{r_n}} \right|.$ 

$$\forall \varphi \in E \ p_{r,k} = \sup_{x \in K} \sum_{\sum r_i = r} \left| \frac{\partial^k \varphi(x)}{\partial x_1^{r_1} \dots \partial x_n^{r_n}} \right|.$$

Это семейство полунорм и задает топологию.

**Теорема 8.1.** Пусть E хаусдорфовое и локально выпуклое пространство и топология может быть задана не более чем счетным семейством полунорм. Тогда Е метризуемо.

Доказательство. Если  $\{p_n\}$  — полунормы из условия, то метрика такова:  $\rho(\varphi,\phi)=\sum_{n=1}^{\infty}\frac{p_n(\varphi-\phi)}{2^n(1+p_n(\varphi-\phi))}$ . 

#### Лекция 14.

Предложение 8.1.  $F_g = 0 \Leftrightarrow g(x) = 0$  почти всюду.

Доказательство. Рассмотрим семейство гладких функций

$$\psi_{a,b,n}(x) = \begin{cases} 1, & x \in (a+1/n; b-1/n); \\ 0, & x \notin [a; b]. \end{cases}$$

Понятно, что  $\forall x \ 0 \leqslant \psi_{a,b,n}(x) \leqslant 1$ . Пусть теперь  $\int_{-\infty}^{+\infty} g(x)\varphi(x) dx = 0$ .

Докажем, что  $\forall a < b \in \mathbb{R}^1$   $\int_a^b g(x) dx = 0$ . В самом деле, поскольку  $\psi_{a,b,n} \to \gamma_{(a;b)}$  при  $n \to \infty$ , то, подставляя  $\varphi = \psi_{a,b,n}$  и переходя к пределу под знаком интеграла (это возможно по теореме Лебега), получаем:

$$0 = \int_{-\infty}^{+\infty} g(x)\psi_{a,b,n}(x) dx \to \int_{a}^{b} g(x) dx.$$

Докажем теперь, что для любого ограниченного измеримого подмножества A из  $\mathbb{R}^1$  верно равенство  $\int\limits_A g(x)\,dx=0$ . Действительно,  $\forall\,\varepsilon>0$   $\exists\,A_\varepsilon:\, \nu(A_\varepsilon\triangle A)<\varepsilon$  и  $\forall\,\nu>0$   $\exists\,\delta>0:\,\forall\,B\subset\mathbb{R}^1,\, \nu(B)<\delta,$   $B\subset[a-1;b+1]\Rightarrow\int\limits_B|g(x)|\,dx<\nu.$  Значит,  $\int\limits_{A_\varepsilon}g(x)\,dx=0$  и  $\int\limits_{A\triangle A_\varepsilon}g(x)\,dx<\nu,$  откуда  $\int\limits_Ag(x)\,dx=0$ .

Пусть  $\nu \colon \mathfrak{B}(\mathbb{R}^1) \to \mathbb{R}^1$  — мера. Построим следующее отображение этой меры в пространство обобщенных функций:  $\nu \mapsto F_{\nu} \in D^*$ ,  $F_{\nu}(\varphi) = \int_{\mathbb{R}^1} \varphi(x) \, \nu(dx)$ . Рассуждая так же, как и при доказательстве предыдущей теоремы, получаем, что  $\forall \, a < b \in \mathbb{R}^1 \quad \nu((a;b)) = 0$ . Если  $A \in \mathfrak{B}(\mathbb{R}^1)$ , то по теореме Хана  $\nu = \nu^+ - \nu^-$ , поэтому  $\forall \, \varepsilon > 0 \quad \exists \, A_{\varepsilon}^{\pm} : \nu^{\pm}(A \triangle A_{\varepsilon}^{\pm}) < \varepsilon$ . Отсюда следует, что  $\exists \, A_{\varepsilon} : \nu^{\pm}(A \triangle A_{\varepsilon}) < \varepsilon$  и  $\nu(A_{\varepsilon}) = 0$ . Отсюда получаем, что  $|\nu^+(A) - \nu^-(A)| < 2\varepsilon$ , а значит,  $\nu(A) = 0$ .

Введем теперь некоторые операции в пространстве обобщенных функций. Для этого прежде всего заметим, что  $D^*$  — это модуль над  $\mathcal{E}$ . Поэтому, например,  $\varphi F_g = F_{\varphi d}$ .

**Определение 8.5.** Производной обобщенной функции F называется такая обобщенная функция F', что  $(F',\varphi)=-(F,\varphi')$ 

#### 9. ПРЕОБРАЗОВАНИЕ ФУРЬЕ.

Сначала определим преобразование Фурье для функций из класса  $\mathcal{L}_1(\mathbb{R}^n)$ .

Определение 9.1. Пусть  $\varphi \in \mathcal{L}_1(\mathbb{R}^n)$ . Ее преобразованием Фурье называется функция  $\hat{\varphi}(x) = c_1 \int_{\mathbb{R}^n} e^{-i(x,z)} \varphi(z) \, dz$ , где  $c_1$  — некоторая ненулевая константа.

Замечание. В дальнейшем мы докажем т.н. формулу обращения:  $\varphi(x) = c_2 \int_{\mathbb{R}^n} e^{i(x,z)} \hat{\varphi}(z) dz$ . При этом константы  $c_1$  и  $c_2$  выбираются таким образом, чтобы  $c_1 c_2 = (2\pi)^n$ . В дальнейшем мы будем считать, что  $c_1 = 1$  и  $c_2 = \frac{1}{(2\pi)^n}$ .

Рассмотрим некоторые свойства преобразования Фурье.

**Теорема 9.1.** Преобразование Фурье  $\mathcal{L}_1(\mathbb{R}^n) \to C^0(\mathbb{R}^n)$  непрерывно.

Доказательство. В самом деле, функция  $\hat{\varphi}$  непрерывна по теореме Лебега и  $\|\hat{\varphi}\|_{C^0} = \max_x |\hat{\varphi}(x)| \leqslant \int_{\mathbb{R}^n} |\varphi(z)| \, dz = \|\varphi\|_{\mathcal{L}_1}$ . Кроме того,  $|\hat{\varphi}(x)| \to 0$  при  $x \to \infty$ : это верно для функций  $\varphi(x) = \gamma_{[a;b]}(x)$ , которые плотны в  $\mathcal{L}_1$ , а значит, ими можно приблизить любую другую функцию и применить теорему Лебега.

**Теорема 9.2.** Пусть  $g(x) \in C^1(\mathbb{R}^1) \cap \mathcal{L}_1(\mathbb{R}^1)$ , тогда  $\widehat{g'}(x) = ix\widehat{g}(x)$ .

Доказательство. Действительно,

$$\widehat{g'}(x) = \int_{\mathbb{R}^1} e^{-ixz} g'(z) dz = \lim_{n \to \infty} \int_{-n}^n e^{-ixz} g'(z) dz =$$

$$= \lim_{n \to \infty} \left( e^{-ixz} g(z) \Big|_{-n}^n + ix \int_{-n}^n e^{-ixz} g(z) dz \right) = ix \widehat{g}(x),$$

т.к.  $g(z)=g(0)+\int\limits_0^z g'(z)\,dz$ , откуда  $\exists\lim_{z\to\infty}g(z)=c_1$  и  $\exists\lim_{z\to-\infty}g(z)=c_2$ . Оба этих предела равны 0, т.к.  $g'\in\mathcal{L}_1(\mathbb{R}^1)$ , откуда и следует искомое равенство.

<sup>&</sup>lt;sup>7</sup>В дальнейшем мы для простоты часто будем считать, что n=1.

#### Лекция 15.

**Теорема 9.3.** Если  $f \in \mathcal{L}_1(\mathbb{R})$  и  $[x \mapsto xf(x)] \in \mathcal{L}_1(\mathbb{R})$ , то  $(\hat{f})'(z) = -ixf(x)$ .

Доказательство. 
$$\forall \alpha, \beta \mid e^{i\alpha} - e^{i\beta} \mid \leq |\alpha - \beta|$$
. Отсюда  $\left| \frac{e^{-ix(z + \Delta z)} - e^{-ixz}}{\Delta z} \right| \leq |x|$ . Поэтому  $\hat{f}'(z) = \lim_{\Delta z \to 0} \int_{\mathbb{R}} \left| \frac{e^{-ix(z + \Delta z)} - e^{-ixz}}{\Delta z} \right| dx = \int_{\mathbb{R}} -ixe^{-ixz} f(x) dx$ .

**Теорема 9.4.**  $\widehat{f(\frac{x}{a})}(z) = a\widehat{f}(az)$ .

Доказательство. 
$$\widehat{f(\frac{x}{a})}(z)=\int\limits_{\mathbb{R}^n}f(\frac{x}{a})e^{-ixz}dx=\int\limits_{\mathbb{R}^n}af(y)e^{-iayz}dx=a\widehat{f}(az),$$
 где была сделана замена  $x=ay$ .

**Теорема 9.5.**  $\hat{f}(x+a)(z) = e^{iaz}f(z)$ .

Доказательство. 
$$\hat{f}(x+a)(z) = \int_{\mathbb{R}^n} f(x+a)e^{-ixz}dx = \int_{\mathbb{R}^n} f(y)e^{-i(y-a)z}dx =$$
  
=  $e^{iaz}\hat{f}(z)$ , где была сделана замена  $x=y+a$ .

**Теорема 9.6** (Равенство Парсеваля). *Если функции*  $f, g \in \mathcal{L}_1(\mathbb{R}), mo \int_{\mathbb{R}} \hat{f}(x)g(x)dx = \int_{\mathbb{R}} f(x)\hat{g}(x)dx.$ 

Доказательство. Согласно теореме Фубини, имеем:

$$\int_{\mathbb{R}} \hat{f}(x)g(x)dx = \int_{\mathbb{R}} \left( \int_{\mathbb{R}} f(z)e^{-ixz}dz \right) g(x)dx =$$

$$= \int_{\mathbb{R}} \left( \int_{\mathbb{R}} g(x)e^{-ixz}dx \right) f(z)dz = \int_{\mathbb{R}} \hat{g}(z)f(z)dz.$$

Применение теоремы Фубини возможно, поскольку  $\iint\limits_{\mathbb{R}^2}|f(x)||g(x)|dzdx==\int|f(z)|dz\cdot\int|g(x)|dx<\infty.$ 

#### Примеры.

Пусть  $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ . Тогда  $(\hat{f})'(z) = -ix\hat{f}(x)(z) = i\hat{f}' = i \cdot iz\hat{f}(z) = -z\hat{f}(z)$ . Получаем дифференциальное уравнение:  $(\hat{f})'(z) = -z\hat{f}(z)$ . Общее решение  $\hat{f}(z) = Ce^{-\frac{x^2}{2}}$ . Константа C определяется из условия  $\hat{f}(0) = C$ . Но  $\hat{f}(0) = \int_{\mathbb{D}} f(x)dx = 1$ . Поэтому  $\hat{f}(z) = e^{-\frac{z^2}{2}}$ .

Замечание.  $S \subset \mathcal{L}_1$ .

**Теорема 9.7.**  $\forall \varphi \in S \ \hat{\varphi} \in S \ u \ отображение <math>\varphi \mapsto \hat{\varphi}$  непрерывно.

Доказательство. Проверим, что  $\forall n, k = \sup_{x \in \mathbb{R}} (1 + |x|^{2k}) \cdot |\hat{\varphi}^{(n)}(x)| < \infty$ .  $(1 + x^{2k})(\widehat{-iz})^n \varphi(z)(x) + (\widehat{(-iz})^n \varphi)^{2k}(x) \cdot (-i)^{2k}$ . Оценивая по модулю это выражение, получаем требуемое.

**Теорема 9.8.**  $\varphi \in S \Rightarrow \forall P, \ \forall m = 0, 1, 2, \dots \ P(x)\varphi^m(x) \in S, \ \textit{где } P - MHOZOY \textit{лен$ 

**Теорема 9.9.** Если  $\varphi_n \xrightarrow[n \to \infty]{S} 0$ , то  $P\varphi_n^{(m)} \xrightarrow[n \to \infty]{S} 0$ .

Теорема 9.10.  $\varphi_n \xrightarrow[n \to \infty]{S} 0 \Rightarrow \varphi_n \xrightarrow[n \to \infty]{\mathcal{L}_1} 0.$ 

Доказательство.  $\varphi_n(x) = \frac{1}{1+x^2} \cdot (1+x^2)\varphi_n(x)$ .  $|\varphi_n(x)| = \left|\frac{1}{1+x^2} \cdot (1+x^2)\varphi_n(x)\right| \le ||\varphi|| \cdot \frac{1}{1+x^2}$ .  $||\varphi_n||_{\mathcal{L}_1} = \int_{\mathbb{R}} |\varphi_n(x)| dx =$  $= ||\varphi_n||_{2,0} \cdot \left(\int \frac{dx}{1+x^2}\right) \le C||\varphi_n||_{2,0}$ .

**Замечание.** Из этой теоремы следует, что отображение  $\varphi \mapsto \hat{\varphi}$  непрерывно.

**Теорема 9.11.** Пусть  $\Lambda \colon S \to S$  — преобразование Фурье. Тогда

$$\varphi(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(x,z)} \hat{\varphi}(z) dz.$$

Доказательство. Действительно,

$$\int\limits_{\mathbb{R}} \varphi(\frac{x}{a})\hat{\psi}(x)dx = a\int\limits_{\mathbb{R}} \varphi(y)\hat{\psi}(ay)dy = \int\limits_{\mathbb{R}} \varphi(y)\hat{\psi}(\frac{x}{a})(y)dy = \int\limits_{\mathbb{R}} \hat{\varphi}(x)\psi(\frac{x}{a})dx.$$

При  $a \to \infty$  получаем  $\varphi(0) \int\limits_{\mathbb{D}} \hat{\psi}(x) dx = \psi(0) \int\limits_{\mathbb{D}} \hat{\varphi}(x) dx.$ 

Если  $\psi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ , то  $\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{\varphi}(x) dx = \varphi(0) \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = \varphi(0) \sqrt{2\pi}$ . Отсюда  $\varphi(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\varphi}(x) dx$ . Положим  $\varphi_1(x) = \varphi(x+z)$ , тогда  $\varphi_1 \in S$ .  $\varphi(z) = \varphi_1(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\varphi}_1(x) dx = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi(x) dx = \frac{1}{2\pi} \int_{\mathbb{R}} e^{izx} \hat{\varphi}(x) dx$ .

Обозначим  $\check{\varphi}(z) = \frac{1}{2\pi} \int\limits_{\mathbb{R}} e^{izx} \varphi(x) dx.$ 

Предложение 9.1. Если  $\varphi \in S$ , то  $\check{\varphi} \in S$ .

Предложение 9.2.  $\Lambda - c \omega \rho \pi e \kappa u u s$ .

Доказательство. 
$$\varphi \in S \Rightarrow \check{\varphi} \in S$$
.  $\check{\hat{\varphi}} = \varphi \Rightarrow \varphi \in \operatorname{Im} \Lambda$ .

#### 10. Преобразование Фурье обобщенных функций.

**Определение 10.1.** Преобразованием Фурье для  $F \in S^*$  называется обобщенная функция  $\hat{F}: (\hat{F}, \varphi) = (F, \hat{\varphi}).$ 

**Предложение 10.1.**  $\hat{F}$  непрерывно на S.

Доказательство. Пусть 
$$\varphi_n \to \varphi$$
, проверим, что  $(\hat{F}, \varphi_n) \to (\hat{F}, \varphi)$ . 
$$(\hat{F}, \varphi_n) = (F, \widehat{\varphi_n}) \to (F, \widehat{\varphi}) = (\hat{F}, \varphi).$$

#### Лекция 16.

**Определение 10.2.** Преобразованием Фуръе функции  $F \in D^*$  называется обобщенная функция  $\hat{F}$ , такая, что  $(\hat{F}, \varphi) = (F, \hat{\varphi})$ . Здесь  $\varphi \in \mathcal{Z} = \hat{D}$  и  $\hat{\varphi} \in D$ . Т.е.,  $\hat{\mathcal{Z}} = \check{\mathcal{Z}} = D$  и  $\hat{F} \in \mathcal{Z}^*$ .

В дальнейшем мы будем использовать следующие обозначения:

$$(F,\varphi) = F(\varphi) = \int_{\mathbb{P}^1} F(x)\varphi(x) dx.$$

Если же  $g \in \mathcal{L}^{\mathrm{loc}}_{1}(\mathbb{R}^{1})$ , то положим

$$(F_g, \varphi) = F_g(\varphi) = (g, \varphi) = \int_{\mathbb{R}^1} g(x)\varphi(x) dx.$$

**Определение 10.3.** *Регуляризацией функции g* (или обобщенной функции  $F_g$ ) называется продолжение  $F_g$  на все пространство D с сохранением непрерывности.

Замечание. Продолжение вовсе не обязано быть единственным!

**Упражнение 14.** Докажите, то регуляризации функции  $g(x) = x^{-n}$  образуют подпространство размерности n в  $D^*$ .

**Упражнение 15.** Обозначим через  $D_0^k$  множество функций из D, которые равны 0 вместе со всеми своими производными порядка не больше kна некотором интервале  $(-\varepsilon;\varepsilon)$ . Пусть также  $g(x)=x^{-n}$ . Докажите, что

- 1. Обобщенная функция  $F_g$  непрерывна на  $D_0 = D_0^0$ .
- 2. Обобщенная функция  $F_g$  однозначно продолжается на  $D_0^{n-1}$ . 3.  $\exists\, K: K\oplus D_0^{n-1}=D$  и  $\dim K=n$ .

**Теорема 10.1.** Пусть  $F \in D^*$ . Тогда выполняются следующие свой-

1. 
$$\hat{F}' = -\widehat{izF(z)}$$
.

2. 
$$\widehat{F'} = ix\widehat{F}$$
.

Доказательство. В самом деле,

$$\begin{split} (\hat{F}',\varphi) &= -(\hat{F},\varphi') = -(F,\widehat{\varphi'}) = -\int\limits_{\mathbb{R}^1} F(z)(iz\hat{\varphi}(z)) \, dz = \\ &= -\int\limits_{\mathbb{R}^1} iz F(z)\hat{\varphi}(z) \, dz = -\int\limits_{\mathbb{R}^1} \widehat{izF(z)}(x)\varphi(x) \, dx = \widehat{(-izF(z),\varphi)}, \end{split}$$

а также

$$(\widehat{F'}, \varphi) = (F', \widehat{\varphi}) = -(F, \widehat{\varphi'}) = -(F, -ix\varphi(x)) = -\int_{\mathbb{R}^1} \widehat{F}(x)(-ix\varphi(x)) dx = \int_{\mathbb{R}^1} ix\widehat{F}(x)\varphi(x) dx = (ix\widehat{F}(x), \varphi).$$

**Предложение 10.2.** *Если*  $F \in D^*$  *и* F *обладает компактным носите*лем, то  $\hat{F}(z) = (F, [x \mapsto e^{-ixz}]).$ 

Строгое доказательство мы дадим позже, а пока что приведем правдоподобное рассуждение, позволяющее обосновать это предложение. А именно,  $\forall \varphi \in D$   $(\hat{F}, \varphi) = \int\limits_{\mathbb{R}^1} \hat{F}(z)\varphi(z) dz = \int\limits_{\mathbb{R}^1} \left(\int\limits_{\mathbb{R}^1} F(x)e^{-ixz} dx\right)\varphi(z) dz$ ; с другой стороны,  $(\hat{F}, \varphi) = (F, \hat{\varphi}) = \int\limits_{\mathbb{R}^1} F(x)\left(\int\limits_{\mathbb{R}^1} e^{-ixz}\varphi(z) dz\right) dx$ . Если бы речь шла об обычных функциях, то правые части этих равенств были бы равны в силу теоремы Фубини. Однако для обобщенных функций, формально говоря, применять эту теорему нельзя. Поэтому это рассуждение не может считаться строгим доказательством.

# Приложение. Экзаменационные вопросы.

- 1. Равносильность счетной компактности и секвенциальной компактности для подмножеств метрических пространств.
- 2. Доказательство того, что всякое секвенциально компактное подмножество метрического пространства полно и предкомпактно.
- 3. Доказательство того, что всякое компактное подмножество метрического пространства секвенциально компактно.
- 4. Доказательство того, что всякое полное предкомпактное подмножество метрического пространства компактно.
- 5. Теорема о вложенных шарах.
- 6. Теорема Бэра.
- 7. Теорема о пополнении метрического пространства.
- 8. Равносильность непрерывности и ограниченности для отображений метрических пространств.
- 9. Доказательство того, что непрерывный образ компактного множества является компактным множеством.
- 10. Доказательство того, что непрерывное отображение компактного метрического пространства в метрическое пространство равномерно непрерывно.
- 11. Теорема Банаха-Штейнхауза.
- 12. Теорема Хана–Банаха для линейных функционалов на линейных пространствах.
- 13. Теорема Хана–Банаха для линейных функционалов на линейных нормированных пространствах (над полем вещественных чисел).
- 14. Сохранение нормы при каноническом вложении нормированного линейного пространства в его второе сопряженное.
- 15. Теорема о пополнении нормированного линейного пространства.
- 16. Полнота нормированного линейного пространства линейных непрерывных отображений нормированного линейного пространства в банахово пространство.
- 17. Теорема Банаха о гомоморфизме.
- 18. Равносильность теорем Банаха об обратном отображении и о замкнутом графике.
- 19. Теорема Банаха о замкнутом графике.
- 20. Теорема Рисса-Фишера.
- 21. Теорема Рисса об общем виде линейного непрерывного функционала на гильбертовом пространстве.
- 22. Лемма о трех гомоморфизмах.

- 23. Всякий линейный функционал, непрерывный в слабой топологии, является элементом пространства, задающего слабую топологию.
- 24. Ограниченность слабо сходящейся последовательности в нормированном пространстве.
- 25. Для выпуклых множеств в нормированном пространстве замкнутость в слабой топологии и в топологии, определяемой нормой, равносильны.
- 26. Для подмножеств нормированного линейного пространства ограниченность по норме и слабая ограниченность равносильны.
- 27. Неравенство Бесселя.
- 28. Существование ортонормированного базиса в сепарабельном евклидовом пространстве.
- 29. Если A линейный непрерывный оператор в гильбертовом пространстве, то  $||A|| = ||A^*||$ .
- 30. Для счетной ортонормированной системы векторов в евклидовом пространстве тотальность, замкнутость и свойство быть базисом равносильны и каждое из этих свойств влечет полноту ортонормированной системы.
- 31. Пространства  $\mathcal{D}$ ,  $\mathcal{S}$ ,  $\mathcal{E}$ . Плотность образов при вложениях  $\mathcal{D} \subset \mathcal{S}$ ,  $\mathcal{S} \subset \mathcal{E}$ .
- 32. непрерывность преобразования Фурье в пространстве  $\mathcal{S}$ . Формула обращения для преобразования Фурье в пространстве  $\mathcal{S}$ .
- 33. Вложение локально интегрируемых функций и локально конечных мер в пространство  $\mathcal{D}^*$ .
- 34. Операции над обобщенными функциями. Связь дифференцирования и преобразования Фурье.
- 35. Прямые и обратные образы обобщенных функций при отображениях пространств.
- 36. Преобразование Фурье интегрируемых функций.
- 37. Теорема Хана-Банаха для отображения комплексных пространств.
- 38. Теорема о существовании ортогональной проекции.