Algorytm *NEH* dla $F^*||C_{max}|$

Mariusz Makuchowski

25 listopada 2022

Sformułowanie problemu: $F||C_{max}|$

- Mamy do wykonania zbiór zadań J = (1, ..., n) na zbiorze maszyn M = (1, ..., m).
- Każde zadanie przechodzi kolejno przez wszystkie maszyny od 1 do m.
- Dane są $p_{i,k} \geqslant 0$ czasy trwania zadania $i \in J$ na maszynie $k \in M$.
- Analizujemy werję permutacyjną

Przykład:

Dane:
$$n = 4$$
, $m = 3$
 $p_{1,1} = 1$ $p_{2,1} = 4$ $p_{3,1} = 3$ $p_{4,1} = 2$
 $p_{1,2} = 1$ $p_{2,2} = 1$ $p_{3,2} = 4$ $p_{4,2} = 4$
 $p_{1,3} = 3$ $p_{2,3} = 2$ $p_{3,3} = 3$ $p_{4,3} = 1$

Przykład:

Dane:
$$n = 4$$
, $m = 3$
 $p_{1,1} = 1$ $p_{2,1} = 4$ $p_{3,1} = 3$ $p_{4,1} = 2$
 $p_{1,2} = 1$ $p_{2,2} = 1$ $p_{3,2} = 4$ $p_{4,2} = 4$
 $p_{1,3} = 3$ $p_{2,3} = 2$ $p_{3,3} = 3$ $p_{4,3} = 1$

Sformułowanie problemu: $F||C_{max}|$

- $C_{i,k}(\pi)$ moment zakończenia zadania i na maszynie k, dla kolejności π .
- $C_{max}(\pi)$ długość uszeregowania π .

$$C_{max}(\pi) = \max_{i \in J} \max_{k \in M} C_{i,k}(\pi) = C_{\pi(n),m}(\pi)$$

 Problem polega na wyznaczniu uszeregowania o najmniejszej długości

$$\pi^* \in \arg\min_{\pi \in \Pi} C_{max}(\pi)$$

Obliczenie $C_{max}(\pi)$

$$C_{\pi(i),k}(\pi) = \max\{C_{\pi(i-1),k}(\pi), C_{\pi(i),k-1}(\pi)\} + p_{\pi(i),k}(\pi)$$

gdzie:
$$\pi(0) = 0$$
, $C_{0,j}(\pi) = C_{\pi(i),0}(\pi) = 0$

$$\begin{array}{l} C_{\pi(1),1}(\pi) = C_{1,1}(\pi) = \max\{C_{0,1}(\pi), C_{1,0}(\pi)\} + p_{1,1} = \max\{0,0\} + 1 = 1 \\ C_{\pi(1),2}(\pi) = C_{1,2}(\pi) = \max\{C_{0,2}(\pi), C_{1,1}(\pi)\} + p_{1,2} = \max\{0,1\} + 1 = 2 \\ C_{\pi(1),3}(\pi) = C_{1,3}(\pi) = \max\{C_{0,3}(\pi), C_{1,2}(\pi)\} + p_{1,3} = \max\{0,2\} + 3 = 5 \\ C_{\pi(2),1}(\pi) = C_{3,1}(\pi) = \max\{C_{1,1}(\pi), C_{3,0}(\pi)\} + p_{3,1} = \max\{1,0\} + 3 = 4 \\ C_{\pi(2),2}(\pi) = C_{3,2}(\pi) = \max\{C_{1,2}(\pi), C_{3,1}(\pi)\} + p_{3,2} = \max\{2,4\} + 4 = 8 \\ C_{\pi(2),3}(\pi) = C_{3,3}(\pi) = \max\{C_{1,3}(\pi), C_{3,2}(\pi)\} + p_{3,3} = \max\{5,8\} + 3 = 11 \\ \dots \\ C_{\pi(4),3}(\pi) = C_{4,3}(\pi) = \max\{C_{2,3}(\pi), C_{4,2}(\pi)\} + p_{4,3} = \max\{13,14\} + 1 = 15 \\ \end{array}$$

Obliczenie $C_{max}(\pi)$

Algorytm NEH

Nawaz M., Enscore Jr. E.E., Ham I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA International Journal of Management Science, 11, 1983, str. 91-95.

Algorytm NEH

Algorytm buduje rozwiązanie poprzez dokładanie jeszcze nieuszeregowanych zadań do bieżącej kolejności.

Przykład: $J = \{1, 2, 3, 4\}$

- krok 1: $\pi = (3)$
- krok 2: $\pi = (3, 2)$
- krok 3: $\pi = (3, 4, 2)$
- krok 4: $\pi = (1, 3, 4, 2)$

Algorytm NEH

• Które zadanie szeregować ? Wybrać zadanie największe z nieuszeregowanych o największej wadze $w_i = \sum_{k \in M} p_{i,k}$

Na którą pozycję położyć ?
 Wybrać pozycję najlepszą, czyli o najmniejszym C_{max}
 w i tym kroku należy sprawdzić i próbnych rozwiązań i wybrać z nich najlepsze.

NEH: przykład

Dane:
$$n = 4$$
, $m = 3$
 $p_{1,1} = 1$ $p_{2,1} = 4$ $p_{3,1} = 3$ $p_{4,1} = 2$
 $p_{1,2} = 1$ $p_{2,2} = 1$ $p_{3,2} = 4$ $p_{4,2} = 4$
 $p_{1,3} = 3$ $p_{2,3} = 2$ $p_{3,3} = 3$ $p_{4,3} = 1$

 $w_1 = 5 \ w_2 = 7 \ w_3 = 10 \ w_4 = 7$

NEH: przykład krok 2

NEH: przykład krok 3

NEH: przykład krok 4

