Modèle linéaire, économétrie

Interrogation n°3

Soit Z un vecteur aléatoire de R^5 admettant une espérance M et une matrice de covariance Σ . Soit A une matrice de format (2,5).

Quelle est la dimension de la matrice de covariance de AZ ?

Soit Z un vecteur aléatoire de R^5 admettant une espérance M et une matrice de covariance Σ . Soit A une matrice de format (2,5).

Quelle est l'expression de la matrice de covariance de AZ ?

- 1. a. A $(\Sigma M) A^{-1}$
- 2. b. $A^{-1/2} \Sigma A^{1/2}$
- 3. c. $A \Sigma A^{t}$
- 4. d. $A^t\Sigma A$

1

4

Soit Z un vecteur aléatoire réel admettant une espérance M et une matrice de covariance Σ .

Quel est le vecteur aléatoire centré et réduit issu de Z?

1.
$$(\Sigma - M)^{-1}Z$$

2.
$$(Z - M) \Sigma^{-1}$$

3.
$$\Sigma^{\frac{1}{2}} (Z - M)$$

4.
$$\Sigma^{-\frac{1}{2}} (Z - M)$$

5.
$$\Sigma^{\frac{-1}{2}}$$
 Z

2

3

4

.

Soit $1_3 = (1 \ 1 \ 1)^t$. On note e_i les vecteurs de la base canonique : $e_1 = (1,0,0)$; $e_2 = (0,1,0)$; $e_3 = (0,0,1)$

Quelle est l'expression de la matrice de projection Π_{1_3} ?

1%

$$\begin{array}{cccc}
2. & \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}
\end{array}$$

2%

3.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

3%

Soit
$$Z \sim N_2(\begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix})$$
.

Quelle est la loi de
$$\frac{1}{\sqrt{7}}\begin{pmatrix} 4 & -1 \\ -1 & 2 \end{pmatrix}^{1/2} \begin{pmatrix} Z - {2 \choose 3} \end{pmatrix}$$
?

1.
$$N_3(0, Id)$$
 1%

2.
$$N_2(0,Id)$$
 2%

5.
$$\chi^2(3)$$
 5%

6.
$$\chi^2(2)$$
 6%

Soit $Z \sim N_4(M, A)$, avec A déterministe et inversible de format (4,4).

Quelle est la loi de $(Z - M)^t A^{-1}(Z - M)$?

1.	$N_2(0,Id)$	1
<i>2.</i>	$N_3(0,I)$	2
3.	T(3)	3
4.	T(2)	4
<i>5.</i>	$\chi^{2}(3)$	5
6.	$\chi^{2}(4)$	6
7.	$\chi^{2}(2)$	7

Soit $Z \sim N_3(0, Id)$. On note $1_3 = (1 \ 1 \ 1)^t$. On note e_i les vecteurs de la base canonique : $e_1 = (1,0,0)$; $e_2 = (0,1,0)$; $e_3 = (0,0,1)$

Le vecteur \bar{Z} 1_3 est égale à :

Soit $Z \sim N_3(0, Id)$. On note $1_3 = (1 \ 1 \ 1)^t$

6

Quelle est la loi de $Z - Z 1_3$?

1.
$$N_3(0, \Pi_{1_3})$$
2. $N_3(0, \Pi_{1_3^{\perp}})$
3. $T(3)$
4. $T(2)$
5. $\chi^2(3)$
6. $\chi^2(1)$

7. $\chi^2(2)$

Soit $Z \sim N_5(0, Id)$.

Quelle est la loi de $||\mathbf{Z} - \overline{Z}\mathbf{1}_5||_2^2$?

1. $N_2(0, Id)$ 1
2. $N_3(0, I)$ 2
3. T(3) 3
4. T(2) 4
5. $\chi^2(3)$ 5
6. $\chi^2(4)$ 6
7. $\chi^2(2)$ 7

Soit $Z \sim N_5(0, Id)$.

Quelle est la loi de
$$(Z - \bar{Z}1_5)^t (Z - \bar{Z}1_5)$$
 ?

1.
$$N_2(0, Id)$$

- 2. $N_3(0,I)$
- 3. T(4)
- 4. T(5)
- 5. $\chi^2(3)$
- 6. $\chi^2(4)$
- 7. $\chi^2(5)$

- 1
- 2
- 3
 - 4
- .

Soit $Z \sim N_5(m1_5, \sigma^2 Id)$.

Quelle est la loi de $(Z - \bar{Z}1_5)^t (Z - \bar{Z}1_5) / \sigma^2$?

- 1. $N_5(m, Id)$
- 2. T(4)
- 3. T(5)
- 4. $\chi^2(5)$
- 5. $\chi^2(4)$
- 6. Rien de tout cela

- 1
- 2
- 3
- 4
- 5
- 6

Soit $X_1,...,X_n$ n variables aléatoires gaussiennes indépendantes d'espérance m et de variance σ^2 . On note S_n l'estimateur empirique classique sans biais de la variance.

Quelle est la loi de $\sqrt{n}(\bar{X}-m)/\sqrt{S_n}$?

1.
$$N_{n-1}(0, Id)$$
 1
2. $N_n(0, I)$ 2
3. $T(n-1)$ 3
4. $T(n)$ 5
6. $\chi^2(n)$ 6
7. $F(n, 1)$ 7

Soit Z un vecteur gaussien centré et réduit . Soient V_1 et V_2 deux sous espace-vectoriels orthogonaux entre eux.

Quelle est la loi de
$$\frac{||\Pi_{V_1}z||_2^2}{||\Pi_{V_2}z||_{22}} \frac{\dim(V_2)}{\dim(V_1)}$$
?

- 1. $T(\dim(V_1))$ 2. $T(\dim(V_2))$
- 3. $\chi^2(\dim(V_1))$
- 4. $\chi^2(\dim(V_2))$
- 5. $F(\dim(V_1), \dim(V_2))$
- 6. $F(\dim(V_2), \dim(V_1))$