East West University

Spring-2021

Assignment-02

Name: Bijoy Basak

ID No: 2018-2-60-033

Section: 04

Course Instructor: Dr. Maheen Islam, Associate Professor,

Department of Computer Science & Engineering

Course Title: Computer Networks

Course Code: CSE405

Date of Submission: 08th May 2021

Answer to the question no. 1

1 (a)

Given, abbset = 200

HLEN = 5

Total length bield = 120

We know,

First byte = oktoet x 8

= 200 x 8

Number of thirst byte = 1600 bytes

headen length = (5 x4) = 20 bytes

. payload size = 120 - 20

= 100 '

That's mean have is 100 bytes in this datagram.

... Number of last byte = (1600+100-1)

= 1699 bytes

1(b)

Given, M=0

M=0 indicates that, this packet is the tast packet among all brigments of original packet. There is no morre

bolagment, the bolagment is the last one.

Answer to the question no. 2

2(a)

Given, payload size=1400 bytes and headen=20 bytes So, original packet size=1400+20=1420 bytes

Link AB.

here, LL1, maximum Transmission Unit (MTU) = 1500B which is greater than data packet size.

So, here is no totagmentation.

Link Be:

Given, LL2, Maximum Townsmission Unit (MTU) = 700B. And

own data size 1420B.

so, anthis townsmission we needed towagmentation.

... Number ob sonagmentation = $\frac{1420}{700} = 3$

1st Fragmentation:

Flag Field = 1 = 001; This Is MF and DF Flag not set.

Fragment oktset (0000 0000) = (0)10

The brigament obbset bield is set to zero as this birist brigament.

A total length kield is 696. The maximum possible 700 bytes packet has not been used, because the knagment obliset field in the tollowing knagment must be a multiple of 8 bytes - as the header is 20 bytes.

So, this packet contains 676 bytes at data, with (1420-676) = 744 bytes viernaining.

2nd Fagments

Here, The DF blag not set and MF = 1. So, Flag Field = 1 = 001

The brigament obbset dield is set to (74418) = 93
.: Friagment obbset :(0101 1101) = (93)10

A total length Itield of 696. This packet also contains 676 bytes of data with (744-676) = 68 bytes remaining.

351d Fragments

Here DF Stag not set and MF=0

so, Flag Fied = 0 = 000

The bragment obbset dield is set to (676+676)=13521 = 169

: Friagment obkset : (1010 1001)2 = (169)10

A total length bield is 68. This packet contains 48 bytes ob data.

Link CD:

Given, LL3, Maximum Tolansmission unit (MTU) = 2048B which is greated than own packet size. So, here is no bragmentation.

Limk	Total Length	9dentikication	DF	MF	Friagment.	Time to Live
AB	1420	45654	0	0	0	255
BC 1st	696		0	1	0	254
BC 2nd	696	45654	0	1	93	254
86 324	68		0	0	169	254
CD	1420	45654	0	0	0	253

2(b)

We know, The fragments are reassembled by the receiving host.

In this whole tolansmission, only orower a needed to bringment viewssembled.

Because, totansmitted the packet along Be path; LLZ maximum totansmission unit (MTU) is 700B, which is lower than own packet size.

On the other side Router A is the sending host. In this violeter packet is non-briggment type.

And,

Router B and D do not need to vieassemble the packet.

Because the LLI maximum townsmission unit (MTU) and

LL3 maximum townsmission Unit (MTU) is larger than

the packet size. Router B and D vieceive non-bragment

packet.

Answer to the question no. 3 3(0)

Given, administration wants to areate 512 subnets

50, 2n = 512 n = log (512)

m = 9

dakault mask = 16

Total subnet mask = 16+9 = 25

In binary notation:

1111111 1111111 1111111 10000000

... The subnet mask = 255.255.255.128/25

3(6)

IP address length is 32.

Remaining bits bor addressing = 32-25 = 7 bits

.: Total address = 27 = 128

we know that, 1st and last address can not allocated.

so, The number of address in each subnet is 126.

3(c)

The disst allocatable address in subnet 1: 142.242.0.0 is steserved.

And,
The last allocatable address in subnet 1:

142.242.0.126 because 142.242.0.127 is allocated tool
broadcast address.

3(d)

The birst allocatable address in subnet 28: 142.242.13.128 is deserved.

The last allocatable address in subnet 28:

142.242.13.254 because 142.242.13.255 is allocated box broadcast address.

Answer to the question no. 4.

Given Ip address = 198.15.128.0

Current mask = 255.255.255.0

For 25 hosts, number of address needed = 25+2=27Bits needed for 27 address = $2^5=32$ possible address Bits needed for 10 subnet = $2^4=16$ possible subnets

.: Final submet mask = 255.255.255.224

Hesse, Network part, Submet part, Host part, 23 bit 4 bit 5 bit

List the address on host 1 on subnet 0,1,2,3,10 below:

Subnet 0, host 1; 198.15.128.1

subnet 1, host 1: 198.15.128.33

subnet 2, host 1: 198.15.128.65

bubnet 3, host 1: 198.15.128.97

subnet 10, host 1: 198.15.129.65

Answer to the question mo. 5

Given

starting address 155.100.0.0/16

For disist group:

Each customen needs 256 address. Total customen = 80

mow, 256 = 28

so, & bits are needed each host.

.: Posebix length = 32-8 = 24

The address of first customer 1:

155.100.0.0/24 to 155.100.0.255/24

The address of last customes 80:

155.100.79.0/24 to 155.100,79.255/24

For second group?

Each eustomes needs 16 addoress. Total customes 400.

mow, 16=24

so, 4 bits are needed each host.

. posedix length = 32-4=28

The address of first eustomen 1:

155.100.80.0/28 to 155.100.80.15/28

The last customes (400) address: 155.100.104.255/28

Food third group:

Each customen needs 4 address. Total customen = 2000 mow, $4=2^2$

50, 2 bits are needed each host... preabix length = 30

The address ob linst customen 1: 155.100.105.0/30 to 155.100.105.3/30

The address at last customes 2000: 155.100.136.63/30

Design the subbbcks below:

Isp

First Ginoup:

customen 1 : 155.100.0.0/24

Address Length:

155.100.0.0 40 155.100.79.255

customes 80 : 155.100.79.0/24

second Gioroup:

customen 1 : 155.100.80.0/28

Address Length:

155.100.80.0 to 155.100.104.255

Customen 400:155.100.104.240/28

Thisid Gisloup:

Customen 1: 155.100.105.0/30

Address Length:

155.100.105.0 to 155.100.136.36

Customen 2000: 155.100.136.60/30

Total number ob aviailable address = 216 = 65,536

Total number of allocated address = (80x256) + (400×16) + (2000×4)

= 20480 + 6400 + 8000

= 34,880

.. Available address abten allocation = (65,536-34,880)

= 30,656

Answer to the question no. 6

6(a)

From the given router table: we can move A to B with the cost 1; Then we can move B to E with the cost 1.

So, total cost = 1+1 = 2

And, Taken path = $A \rightarrow B \rightarrow E$

6(6)

Forom the given mouter table:

we can move eto B with the cost 1; Then we can move B to D with the cost 1.

so, total cost = 1+1 = 2

And, Taken path = $e \rightarrow B \rightarrow D$

6(c)

Forom these given tables, possible network diagram belows

This diagram is similar to given table.

i.e. in stouting A; we can move to a with the cost 2 and next hop B and in this design same as own given network table.

so, this is the possible diagnam.

Answer to the question no. 6 (2nd)

6 (a)

Derive the initial routing table borr all the routers below:

t moutens:	u.
Dvint	DV
D+ (+)=0	Du
Dt (u)=2	Du
D+(v)=4	Du
Dt(w)=00	Du
D+(x) =∞	Da
Dt(Y)=7	Du
D+127=00	July

(e	
	u vioutesis
	Dr.in u
	Du (W=0
	Du(t)=2
	Du(v)=3
	Du(w)=3
	Du(X)=00
ı	Du(4)=0
	Du(2)=00
-	

Dv	inv
Dr	(t)=4
DV	(W)=3
Dv	(V)=0
Dv	$(W)^{24}$
D	v(x)=3
	(Y)=8
	v (Z)=0

-	eretwork w
1	Drinw
	Dw(+)=0
1	Dw(u)=3
-	Dw (V)=4
	Dm(M)=.0
	Dw(x)=6
-	Dw(Y)=00
-	Dw(2)=0
-	

Di	v in	×	
D	×(t))=d	7
D,	(u)=0	0
	xlu		
	x(V)		
D	x(X))=(C
	XCY		100
	x(Z		

γ	וט	61	ut	evs	
La	V.	~	-	00	100

Driny	energetents.
D, (+)=7	Section 1
Dy (u)=A	Delivery of the last
Dy (V)= 8	DISTRIBUTE OF STREET
Dy (W) = 8	NAME AND ADDRESS OF
Dy (x)=6	CONTRACTOR
Dy (y)=0	Appropries.
Dy(Z):12	-

Z ono utnews:

	Dvinz
C)z(t)=00
C	2 (W) = D
C	17(V) 200
C)z(W)=0
1) z (x) z ·8
	0z(y) = 12
	Dz(z) = 0

6(6)

Given, in the next time slot, sloutes t 'sleceives sloute u, v and y.

Drint	Drinu	Dvinv	Dviny
Dt(t)=0 Dt(t)=2 Dt(t)=4 Dt(w)= ∞ Dt(x)= ∞ Dt(x)= ∞ Dt(x)= ∞	$D_{u}(t)=0$ $D_{u}(u)=2$ $D_{u}(v)=3$ $D_{u}(w)=3$ $D_{u}(y)=\infty$ $D_{u}(x)=\infty$ $D_{u}(x)=\infty$	Dv(t) = 4 Dv(v) = 3 Dv(v) = 0 Dv(w) = 4 Dv(x) = 3 Dv(y) = 8 Dv(2) = 0	$D_{Y}(t) = 7$ $D_{Y}(w) = 60$ $D_{Y}(w) = 60$ $D_{Y}(x) = 60$

now compute L mouters

$$D_{t}(u) = mim(C_{d,u} + D_{u}(u); C_{t,v} + D_{v}(u), C_{t,y} + D_{y}(u))$$

= $min(2,7,10) = 2$

$$D_{\ell}(v) = \min (C_{\ell}, u + D_{\ell}(v); C_{\ell}, v + D_{\ell}(v), C_{\ell}, y + D_{\ell}(v))$$

= $\min (5, 4, 11) = 4$

$$D_{t}(x) = min(e_{t,u} + D_{u}(x), e_{t,v} + D_{v}(x), e_{t,v} + D_{y}(x))^{x}$$

= $min(\omega, 7, 13)$
= 7

Bijoy Basak

(16)

$$D_{t}(y) = min(c_{t,u} + D_{u}(y), c_{t,v} + D_{v}(y), c_{t,v} + D_{y}(y))$$

= $min(\omega, 12, 7) = 7$

$$D_{t}(z) = \min(C_{t,u} + D_{u}(z), C_{t,v} + D_{v}(z), C_{t,y} + D_{y}(z))$$

= $\min(\omega, \infty, 19) = 19$

.: t's new souter table :

Drint
D+(+)=0
D+(u)=2
Dt(V)=4
Dt(W)=5
Dt (x)=7
D+(Y)=7
Dt (2)=19

6(C)

Given. in next time slot, violater a vicceives violate t, v, and w.

Folom (a)	Forom(b)	From (a)	Forom (a)
Dvinv	Drint	Dvin u	Dvin W
Dv (+) = 4	Dt (+)=0	Du (+) = 0	Dw(+) = 00
Dv (w) = 3	Dt (W)= 2	Du(le)=2	Dw(u) = 3
Dv (v)=0	D+(V)=4	Du(v)=3	Dw(v) = 4
Dv (W) = 4	Dt (w) = 5	Du(w) = 3	Du(w) =0
Dv (x)=3	D+ (x)=7	Du(x)=0	Dw (x) = 6
Dv (Y)=8	Dt (Y)=7	Ducy)= 0	Ducyjzo
Dv(Z)2 &	Dt(2)=19	Du (2) = 00	Dw(2)=0
			,

Now compute a mouter:

Du(t) = min (
$$cu,t+D_t(t)$$
; $cu,v+D_v(t)$, $cu,u+D_w(t)$)
= min ($2,7,\infty$) = 2

$$D_u(v) = min(C_{u,t} + D_t(v), C_{u,v} + D_v(v), C_{u,w} + D_w(v))$$

= $min(6,3,7)$

$$Du(\omega) = min(Cu,t+D_{\ell}(\omega), Cu,v+D_{\nu}(\omega), Cu,w+D_{\omega}(\omega))$$

= $min(7,7,3) = 3$

$$D_{u(x)} = \min(C_{u,t} + D_{t}(x), C_{u,v} + D_{v}(x), C_{u,w} + D_{w}(x))$$

= $\min(O, 6, 9)$
= 6

Answer to the question no. 7

Using the Dijkstona shootest-path algorithm, compute the shootest path below the table:

D(t) p(t)	D(V),P(V)	D(M) P(M)	D(x),p(x)	D(A) ba)	D(Z),C(Z)
	3,4	3,4	·w	. 2	2
	3,4	3,4	∞	9,t	80
	3,4	3,4	6,~	9,t	8
2, U	3,4	3,4	6,V	9,t	∞
2,4	3,4	3,4	6,2	9, t	14,2
2,4	3, u	3,4	6,2	9, Ł	14,2
	3, u	3,4	6.v	9,t	14, X
		2, u 3, u	2, u 3, u 3, u	2, u 3, u 3, u ∞	2, u 3, u 3, u ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞ 2, u 3, u 3, u ∞ ∞ ∞

shortest path:

node	path	cost
t	ut	2
~	uv	3
w	uw	3
χ	uvx	.6
y	uty	9
Z	WVXZ	14

Answess to the question no. 8

Show the all step below:

Step1:

The host 10.0.0,3 sends a packet to 142.122.40.180

Source: 10.0.0.3, 4334

Destination: 142.122.40.180,80

step 2 :

NAT violet changes the packet source address brom 10.0.0.3, 4334 to 138.76.29.7, 4032

source: 138.76.29.7, 4032

Destination: 142.122.40.180, 80

step 30

Now oneply the destination addoness:

Source: 142.122.40.180,80

Destination: 138.76.29.7, 4032

step 4:

Now NAT viouter send host message

source: 142.122.40.180, 80

Destination: 10.0.0.3, 4334

1			
N	AT Tolansmission Tabl	e 0	
	WAN eide Addoress	LAN side Addoness	
	138.76.29.7,4032	10.0.0.3, 4334	

Answest to the question no. 9

As A updates the slowling table and declare the new path "Ax" Loss destination x to B and C.

.: c learns a new poth to reach "CAx".

9(6)

96 B announces the new path too destination x to c. 94 will go through B. So, the new path is "CBAX".

9(0)

There are two way to reach the destination, one is "CBAx" and another one is "CAx".

There is a significant amount of delay for traffic to pass through B in addition to passing through c, A andx.

So, we will choose the shortest path too the too wording packets. The shortest path is "CAx" and it takes shorten delay will satisfy z betten.

9(d)

There are two path "CBAx" and "CAx". Forom(c) we know the shortest path "CAx", but a coaless of the customer's satisfaction and B charges less per unit totalitie to forward for a c and A charges-morre.

9n this situation "CBAx" path would a prieter to annouse to z because it will cost less for the same transfer, its does not metter the path is long.