Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Introduction

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_1_I1_introduction

Google Cloud

Architecting ML Systems

Max Lotstein

Quiz: What percent of system code does the ML model account for?

- (a) 5%
- (b) 25%
- (c) 50%
- (d) 90%

Quiz: What percent of system code does the ML model account for?

- (a) 5%
- (b) 25%
- (c) 50%
- (d) 90%

MACHINE DATA DATA RESOURCE COLLECTION VERIFICATION MANAGEMENT SERVING FEATURE **ANALYSIS TOOLS** ML CODE **EXTRACTION** INFRASTRUCTURE **PROCESS** CONFIGURATION MONITORING MANAGEMENT TOOLS

Agenda

What's in a Production ML System

Training Design Decisions

Serving Design Decisions

Serving on CMLE

Designing an Architecture from Scratch

Learn how to...

Choose the appropriate training paradigm

Choose the appropriate serving paradigm

Serve ML models scalably

Design an architecture from scratch

What's the other 95% of system code?

Other Components in a Production ML System

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data **Evaluation and** Analysis + Trainer Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Reuse generic software frameworks whenever you can

Managed services handle infrastructure for you

Cloud Dataproc

Cloud Dataflow

Cloud Machine Learning Engine Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_1_I2_the_components_of_an_ml_system

Production ML System Component: Data Ingestion

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

Tuner Model Data Data Data Analysis + Trainer **Evaluation and** Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Streaming Data Ingestion Pipeline Architecture

Structured Batch Data Ingestion with BigQuery

```
# Assume a BigQuery has the following schema,
                STRING,
      name
                INT,
      age
# Create the parse_examples list of features.
features = dict(
  name=tf.FixedLenFeature([1], tf.string),
  age=tf.FixedLenFeature([1], tf.int32))
# Create a Reader.
reader = bigquery_reader_ops.BigQueryReader(project_id=PROJECT,
                                             dataset_id=DATASET,
                                            table_id=TABLE,
                                            timestamp_millis=TIME,
                                             num_partitions=NUM_PARTITIONS,
                                            features=features)
# Populate a queue with the BigQuery Table partitions.
queue = tf.train.string_input_producer(reader.partitions())
# Read and parse examples.
row_id, examples_serialized = reader.read(queue)
examples = tf.parse_example(examples_serialized, features=features)
# Process the Tensors examples["name"], examples["age"], etc...
```


Structured Batch Data Ingestion with Cloud DataFlow

General Data Ingestion

Production ML System Component: Data Ingestion

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Data Analysis and Validation

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-0_1_I3_the_components_of_an_ml_system:_data_analysis_and_validation_

Data Analysis and Validation

Production ML System Component: Data Analysis and Validation

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + **Evaluation and** Trainer Serving Logging **Transformation** Ingestion **Validation** Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Product Number	Product Name
112	Blue T-Shirt
231	Dog Frisbee
1333	Mobile Phone Charge

Product Number	Product Number	Product Name
112	231	Blue T-Shirt
231	231231231	Dog Frisbee
1333	112	Mobile Phone Charger

Data Validation: Is the data healthy or not?

Data Validation: Is the data healthy or not?

- 1) Is the new distribution similar enough to the old one?
- 2) Are all expected features present?
- 3) Are any unexpected features present?
- 4) Does the feature have the expected type?
- 5) Does an expected proportion of the examples contain the feature?
- 6) Do the examples have the expected number of values for feature?

Data Validation

Data Validation

Quiz: Which tests would catch this error?

- 1) Is the new distribution similar enough to the old one?
- 2) Are all expected features present?
- 3) Are any unexpected features present?
- 4) Does the feature have the expected type?
- 5) Does an expected proportion of the examples contain the feature?
- 6) Do the examples have the expected number of values for the feature?

Production ML System Component: Data Analysis and Validation

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Data Transformation + Trainer

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-0_1_I4_the_components_of_an_ml_system:_data_transformation_+_trainer

Production ML System Component: Data Transformation

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + Trainer **Evaluation and** Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Production ML System Component: Data Transformation

Production ML System Component: Trainer

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + **Trainer Evaluation** and Serving Logging Transformation Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Production ML System Component: Trainer

Cloud ML Engine

- 1) Scalable
- Integrated with Tuner,
 Logging, Serving
 components
- 3) Experiment-oriented
- 4) Open

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Tuner + Model Evaluation and Validation

Presenter: Max Lotstein

Format: Talking Head

Video Name T-PSML-0_1_I5_the_components_of_an_ml_system:_tuner_+_mo del_evaluation_and_validation:

Production ML System Component: Tuner

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

Data | Data | Analysis + Validation | Transformation | Trainer | Trainer | Trainer | Serving | Logging | Validation | Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Production ML System Component: Tuner

Production ML System Component: Model Evaluation and Validation

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + **Evaluation and** Trainer Serving Logging Transformation Ingestion Validation **Validation** Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

A good model is hard to find

Model Safeness

Likeliness to crash

Prediction Quality

Accuracy vs Time

Model Validation

Production ML System Component: Model Evaluation and Validation

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Serving

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-0_1_l6_the_components_of_an_ml_system:_serving:

Production ML System Component: Serving

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + Trainer **Evaluation and** Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Low-latency

- Low-latency
- Highly efficient

- Low-latency
- Highly efficient
- Scale Horizontally

- Low-latency
- Highly efficient
- Scale Horizontally
- Reliable and robust

- Low-latency
- Highly efficient
- Scale Horizontally
- Reliable and robust
- Easy to update versions

High-level component overview of a machine learning platform.

Production ML System Component: Logging

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data **Evaluation and** Analysis + Trainer Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

High-level component overview of a machine learning platform.

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Orchestration + Workflow

Presenter: Max Lotstein

Format: Talking Head

Video Name:

T-PSML-O_1_l8_the_components_of_an_ml_system:_orchestration_+_workflow

Production ML System Component: Shared Config and Utilities

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

Tuner

Data Ingestion Data
Analysis +
Validation

Data Transformation

Trainer

Model Evaluation and Validation

Serving

Logging

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Quiz: If changes are made to the trainer, what component(s) might also need to change?

Answer:

Potentially all of them

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + **Trainer Evaluation and** Serving Logging Transformation Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + Evaluation and Serving Trainer Logging Transformation Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Evaluation and Analysis + Trainer Serving Logging Transformation Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

Configuration: A Potential Source of Debt

Configuration Remedies

Configuration Remedies

1) Establish a common architecture for both R&D and production deployment

Configuration Remedies

- 1) Establish a common architecture for both R&D and production deployment
- 2) Embed the teams together, so that engineering can influence the design of code from its inception

Orchestration glues all the components together

Production ML System Component: Orchestration

Cloud Composer, Argo (GKE)

___Integrated Frontend for Job Management, Monitoring, Debugging, Dat

Shared Configuration Framework and Job Orchestration

Tuner

Data Ingestion Data
Analysis +
Validation

Data Transformation

Trainer

Model Evaluation and Validation

Serving

Logging

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Steps to Compose a Workflow in Cloud Composer

1) Define the Ops

- 1) Define the Ops
- 2) Arrange into a DAG

- 1) Define the Ops
- 2) Arrange into a DAG
- 3) Upload to Environment

- 1) Define the Ops
- 2) Arrange into a DAG
- 3) Upload to Environment
- 4) Explore DAG Run in Web UI

A basic workflow

```
# BigQuery training data query
t1 = BigQueryOperator(params)

# BigQuery training data export to GCS
t2 = BigQueryToCloudStorageOperator(params)

# ML Engine training job
t3 = MLEngineTrainingOperator(params)

# App Engine deploy new version
t4 = AppEngineVersionOperator(params)

# Establish dependencies
t1 >> t2 >> t3 >> t4
```


Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: The Components of an ML System: Integrated Frontend + Storage

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-0_1_I9_the_components_of_an_ml_system:_integrated_frontend_+_storage

Production ML System Component: Integrated Frontend

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization Shared Configuration Framework and Job Orchestration Tuner Model Data Data Data Analysis + Trainer **Evaluation** and Serving Logging **Transformation** Ingestion Validation Validation Shared Utilities for Garbage Collection, Data Access Controls Pipeline Storage

ML Engine, TensorBoard

High-level component overview of a machine learning platform.

TensorBoard Provides Rich and Extendible Visualizations

Debug TensorFlow in real-time

Production ML System Component: Pipeline Storage

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

Tuner

Data Ingestion Data
Analysis +
Validation

Data Transformation

Trainer

Model Evaluation and Validation

Serving

Logging

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Production ML System Component: Pipeline Storage

Integrated Frontend for Job Management, Monitoring, Debugging, Data/Model/Evaluation Visualization

Shared Configuration Framework and Job Orchestration

Tuner

Data Ingestion Data
Analysis +
Validation

Data Transformation

Trainer

Model Evaluation and Validation

Serving

Logging

Shared Utilities for Garbage Collection, Data Access Controls

Pipeline Storage

Cloud Storage

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Training Design Decisions

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_1_I10_training_design_decisions

Agenda

What's in a Production ML System

Training Design Decisions

Serving Design Decisions

Serving on CMLE

Designing an Architecture from Scratch

Physics vs Fashion

Static vs Dynamic Training

Static vs Dynamic Training

Static vs Dynamic Training

Statically Trained Models	Dynamically Trained Models
Trained once, offline	Add training data over time
Easy to build and test	Engineering is harder Have to do progressive validation
Easy to let become stale	Regularly sync out updated version Will adapt to changes

Problem	Training style (static or dynamic?)
Predict whether email is spam	
Android voice to text	
Shopping ad conversion rate	

Problem	Training style (static or dynamic?)
Predict whether email is spam	Static or Dynamic (How quickly spammers change)
Android voice to text	
Shopping ad conversion rate	

Problem	Training style (static or dynamic?)
Predict whether email is spam	Static or Dynamic (How quickly spammers change)
Android voice to text	Static or Dynamic (Global vs personalized)
Shopping ad conversion rate	

Problem	Training style (static or dynamic?)
Predict whether email is spam	Static or Dynamic (How quickly spammers change)
Android voice to text	Static or Dynamic (Global vs personalized)
Shopping ad conversion rate	Static

Reference architecture for static training

Three potential architectures for dynamic training

Reference architecture for dynamic training

Use Cloud Composer to Orchestrate Jobs

AppEngine can be used for user-triggered training jobs

Dataflow can be used for continuous training

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Serving Design Decisions

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_1_l11_serving_design_decisions

Agenda

What's in a Production ML System

Training Design Decisions

Serving Design Decisions

Serving on CMLE

Designing an Architecture from Scratch

Static vs Dynamic Serving

Static	Dynamic
Higher Storage Cost	Lower Storage Cost
Low, Fixed Latency	Variable Latency
Lower Maintenance	Higher Maintenance
Space intensive	Compute intensive

Peakedness is how concentrated the distribution is

Cardinality is the number of values in the set

Peakedness and Cardinality space

Peakedness

Cardinality

Peakedness and Cardinality space

Peakedness and Cardinality space

Cardinality High

Hybrid solutions
optimize for both types
of prediction

Problem	Inference style (static or dynamic?)
Predict whether email is spam	
Android voice to text	
Shopping ad conversion rate	

Problem	Inference style (static or dynamic?)
Predict whether email is spam	Dynamic
Android voice to text	
Shopping ad conversion rate	

Problem	Inference style (static or dynamic?)
Predict whether email is spam	Dynamic
Android voice to text	Dynamic / Hybrid
Shopping ad conversion rate	

Problem	Inference style (static or dynamic?)
Predict whether email is spam	Dynamic
Android voice to text	Dynamic / Hybrid
Shopping ad conversion rate	Static

Dynamic

Architecting a Static Serving Model

- Change Cloud MLE from online to batch prediction job
- 2. Model accepts and passes keys as input
- 3. Write predictions to a data warehouse (e.g. BigQuery)

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Serving on CMLE

Presenter: Max Lotstein

Format: Talking Head

Video Name: T-PSML-O_1_I12_serving_on_cloud_mle

Agenda

What's in a Production ML System

Training Design Decisions

Serving Design Decisions

Serving on CMLE

Designing an Architecture from Scratch

Lab: Invoking ML Predictions with AppEngine

Lab

Build an AppEngine app to serve ML predictions

Max Lotstein

Title Safe >

< Action Safe

Google App Engine is a fully-managed service for building web backends

Supports Java,
Node.js, Ruby, C#,
Go, Python, and PHP

The lab's App Engine application uses Flask to build backend

Flask is a
Python framework
that allows you
to build web
applications

Flask Logo

https://en.wikipedia.org/wiki/File:Flask_logo.svg

Baby weight predictor

Mother's race		Select ▼
Mother's age	0-	
Gestation weeks	0-	
Plurality		Select -
Baby's gender	O Male	O Female
Unmarried		
Cigarette use		
Alcohol use		
		PREDICT

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Lab Intro: Serving CMLE

Presenter: Max Lotstein

Format: Screencast

Video Name:

T-PSML-O_1_l13_lab_intro:_serving_on_cloud_mle

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Lab Solution: Serving CMLE

Presenter: Max Lotstein

Format: Screencast

Video Name:

T-PSML-O_1_l14_lab_solution:_serving_on_cloud_mle

Use Apigee Edge for full-fledged APIs

Serving ML Models Using Apigee Edge and Cloud ML Engine

Course 2: Production ML Systems

Module 1: Architecting Production ML Systems

Lesson Title: Designing from Scratch

Presenter: Max Lotstein

Format: Screencast

Video Name: T-PSML-O_1_l15_designing_from_scratch

Agenda

What's in a Production ML System

Training Design Decisions

Serving Design Decisions

Serving on CMLE

Designing an Architecture from Scratch

Available data: Traffic sensors deployed all over the city

2

Is the cardinality of the set of all prediction requests likely to be low, moderate, high, need more info?

What does it depend on?

- A) Historical traffic data
- B) Problem framing
- C) Variance of Traffic Levels

Is the cardinality of the set of all prediction requests likely to be low, moderate, high, need more info?

What does it depend on?

- A) Historical traffic data
- B) Problem framing
- C) Variance of Traffic Levels