

Paolo Giaccone and Emilio Leonardi

Telecommunication Networks Group {name.surname}@polito.it http://www.telematica.polito.it/

General Info

- Paolo Giaccone and Emilio Leonardi
 - DET Dept. of Electronics and Telecommunications
 - Entrance to the department: first floor above classroom 12
 - paolo.giaccone@polito.it, emilio.leonardi@polito.it
 - Assistance either in the office or remotely
- Class web site
 - Linked from the Politecnico portal didattica.polito.it
- Teaching material
 - Slides, papers, notes, ... provided during the course
 - Pay attention during lectures and take notes

Objectives of the course

- Acquire basic knowledge and skills on performance evaluation of dynamic systems with the support of a computer
- Focus on methodologies that are fundamental for
 - Design of smart systems
 - ICT support to new services
 - Understanding complex phenomena in dynamic systems
 - Advanced data structures
 - Production systems
 - Epidemiological studies
 - **...**

Objectives of the course

- Two complementary approaches are discussed to study complex discrete systems such as computer networks and data processing systems
 - analytical modeling based on probability theory, queuing theory and stochastic processes
 - simulation techniques
- Lab activities to consolidate knowledge through experience on case studies

Outcomes

Knowledge of

- main elements of a simulator
- main methodological tools for design and performance evaluation of dynamic discrete systems
- basic analytical tools

Ability to

- evaluate the performance of a dynamic discrete system through simulation
- understand the fundamental behavior of a dynamic discrete system in terms of its stability, performance characteristics and limits, bottlenecks
- compare in a quantitative way two dynamic discrete systems

Background and preliminary notions

- As a background, we expect basic notions of
 - information technologies
 - probability theory
- As skills, we expect
 - basic programming skills
 - knowledge of python

Organization

- Two lectures
 - Monday 8:30-10:00 (classroom 3I)
 - Wednesday 11.30-13.00 (classroom 9T)
 - Friday 8:30-11:30 (classroom 7I)
 - mostly devoted to labs
- streaming on BBB/zoom + recorded version + last year video
 - during lab hours, the interaction will be within the classroom and the streaming/recorded version could be less effective
 - participation in presence is not mandatory but strongly recommended

Organization

- All teaching materials will be uploaded on the portal
 - Some material for the labs is under preparation: be patient with last minute material upload, possible inconsistencies, typos, ...
 - Provide feedbacks, comments and suggestions
- We appreciate questions and comments during lectures

Organization

- The course mixes lectures, problem solving and activities on the computer
- Lab activities
 - What we intend with lab activities is the design, coding, experimenting of simulations with your computer
 - Work will be individual
 - Discussions, brainstorming, problem solving among students are welcome
 - Simulations will be developed in python

Exam

- Examination
 - Lab reports (30%)
 - Bonus points for homework (20%)
 - Oral discussion (50%)
 - You have to deliver all Lab reports: otherwise they will be not evaluated

Grade expiration

- Lab reports are valid until Dec. 2023.
- it is not possible to "freeze" the grade for the future

Rejection of an (oral) exam

- the evaluation of the oral exam can be rejected and it can be taken again
- the lab report/code cannot be revised
 - no preliminary evaluation of the report before the report delivery
 - assistance on the code only during lab hours

Registration for an exam

- lab report + code
 - delivery by the end of the semester
 - upload on the portal (under "Elaborati")
- oral exam
 - Register by the official <u>registration deadline</u> on an online form that will be published on the portal
- note that the registration deadline is typically few days before the exam date

Labs

- "bring/use your own laptop" mode
 - just needed a python interpreter/IDE
 - jupiter notebook, PyCharm, Visual Studio Code, etc.
 - linux-like OS is recommended, but not required
- attending introductory classes before each lab is recommended
 - lab hours are aimed at implementing the solution, not at discussing the problem

Lab homeworks and reports

- weekly homeworks on the labs
 - with informal evaluation
 - based on peer grading
- partecipation to homeworks gives bonus points
 - to be defined
- report for some labs evaluated at the end of the course