Задача А. Без совершенного паросочетания

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан двудольный граф. Мы знаем теорему Холла. Попробуйте предоставить сертификат того, что не существует паросочетания, покрывающего правую долю.

Найдите подмножество вершин правой доли A, что |A| > |f(A)|.

Формат входных данных

Входные данные состоят из не более чем 10 тестов. Первая строка каждого теста состоит из двух чисел n_L и n_R — число вершин в левой и правой доле, соответственно $(1 \le n_L, n_R \le 10^4)$. Следующая строка содержит число m — число ребер $(1 \le m \le 10^5)$. Каждая из следующих m строк содержит ребро, описанное двумя целыми числами: v и u — номера вершин в левой и правой доле соответственно $(1 \le v \le n_L; 1 \le u \le n_R)$.

Формат выходных данных

Для каждого теста выведите одну строку, содержащее множество A, в соответствии с форматом, описанным в примерах, либо сообщить о том, что его не существует. Следуйте формату настолько близко, насколько можно.

Если есть несколько множеств A, выведите любое.

стандартный ввод	стандартный вывод
3 3	0
6	
1 2	2
1 3	1 3
2 3	
2 1	3
3 1	1 2 3
3 2	
2 3	
2	
1 3	
2 2	
1 3	
3	
1 1	
1 2	
1 3	

Задача В. Максимальный поток

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, \ 1 \le m \le 1000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^5 .

Формат выходных данных

В выходной файл выведите одно число — величину максимального потока из вершины с номером 1 в вершину с номером n.

стандартный ввод	стандартный вывод
4 5	3
1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача С. Минимальный разрез

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Задан неориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Вершина с номером 1 — исток. Вершина с номером n — сток. Требуется найти минимальный S-T разрез в этом графе.

Напомним, что S-T разрезом в графе называется пара дизъюнктных множеств вершин S и T, таких что $S \cup T = V$, $s \in S$, $t \in T$. Мощностью разреза называется сумма пропускных способностей ребер, один из концов которого принадлежит S, а другой T.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и ребер графа соответственно $(2 \leqslant n \leqslant 500, \ 1 \leqslant m \leqslant 10^4)$. В следующих m строках содержатся по три числа: номера вершин u и v, которые соединяет ребро (u, v) и его пропускная способность. Пропускные способности не превосходят 10^9 .

Формат выходных данных

В первой строке выходного файла выведите натуральное число k — количество вершин в множестве S. В следующей строке выведите k чисел, разделенных пробелом — номера вершин в множестве S.

стандартный ввод	стандартный вывод
4 4	2
1 2 2	1 2
2 4 1	
1 3 1	
3 4 2	

Задача D. Максимальный поток — 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — число вершин и ребер в графе ($2 \le n \le 500$, $1 \le m \le 10\,000$). Последующие строки описывают ребра. Каждое ребро задается тремя числами: начальная вершина ребра, конечная вершина ребра и пропускная способность ребра. Пропускные способности не превосходят 10^9 .

Формат выходных данных

Выведите величину максимального потока между вершинами 1 и п.

стандартный ввод	стандартный вывод
4 5	3
1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача Е. Декомпозиция потока

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n и постройте декомпозицию этого потока.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 500, 1 \le m \le 10000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^9 .

Формат выходных данных

В первую строку выходного файла выведите одно число — количество путей в декомпозции максимального потока из вершины с номером 1 в вершину с номером n. Следующий строки должны содержать описания элементарых потоков, на который был разбит максимальный. Описание следует выводить в следующем формате: величина потока, количество ребер в пути, вдоль которого течет данный поток и номера ребер в этом пути. Ребра нумеруются с единицы в порядке появления во входном файле.

стандартный ввод	стандартный вывод
4 5	3
1 2 1	1 2 1 4
1 3 2	1 3 2 3 4
3 2 1	1 2 2 5
2 4 2	
3 4 1	

Задача F. Циркуляция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Назовем *циркуляцией* поток величины 0. Дан ориентированный граф с нижними и верхними пропускными способностями, то есть для любых вершин i и j должно быть верно, что $l_{ij} \leqslant f_{ij} \leqslant c_{ij}$, где l_{ij} — нижняя граница, а c_{ij} — верхняя. Требуется найти циркуляцию в данном графе, удовлетворяющую данным ограничениям.

Формат входных данных

В первой строке входного файла 2 целых числа N и M ($1 \le N \le 200$, $0 \le M \le 15000$). Далее следуют M строк, описывающие ребра графа. Каждая строка содержит 4 целых положительных числа i, j, l_{ij} и c_{ij} ($0 \le l_{ij} \le c_{ij} \le 10^5$), что означает, что ребро ведет из вершины с номером i в вершину с номером j с нижней границей l_{ij} и верхней c_{ij} . Гарантируется, что если в графе есть ребро из i в j, то нет ребра из j в i.

Формат выходных данных

Если не существует циркуляции удовлетворяющей данным ограничения, выведите NO. Иначе на первой строке выведите YES. Далее в M строках должно содержаться по одному числу. В i-ой строке — величина потока по ребру на i-ой строке во входном файле. Напомним, что для любых i и j должно быть верно, что $l_{ij} \leqslant f_{ij} \leqslant c_{ij}$.

стандартный ввод	стандартный вывод
4 6	NO
1 2 1 2	
2 3 1 2	
3 4 1 2	
4 1 1 2	
1 3 1 2	
4 2 1 2	
4 6	YES
1 2 1 3	1
2 3 1 3	2
3 4 1 3	3
4 1 1 3	2
1 3 1 3	1
4 2 1 3	1

Задача G. Задача о назначениях

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка и сумма значений в выбранных ячейках было минимальна.

Формат входных данных

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

стандартный ввод	стандартный вывод
2	2
1 2	1 1
2 1	2 2

Задача Н. Максимальный поток минимальной стоимо-

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \leqslant n \leqslant 100, 1 \leqslant m \leqslant 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Формат выходных данных

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63}-1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

стандартный ввод	стандартный вывод
4 5	12
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	

Задача І. k паросочетаний

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется выбрать k максимальных попарно не пересекающихся паросочетаний так, чтобы их суммарный вес был минимален.

Формат входных данных

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний ($2 \le n \le 50$, $1 \le k \le n$). Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомый суммарный вес паросочетаний. Следующие k строк должны содержать n чисел — номера вершины, правой доли, соответствующие вершинам левой.

стандартный ввод	стандартный вывод
3 2	6
1 2 1	1 2 3
1 1 2	3 1 2
2 1 1	

Задача Ј. Назначение на узкое место

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется найти полное паросочетание, в котором минимальное ребро максимально.

Формат входных данных

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний ($2 \le n \le 300, 1 \le k \le n$). Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — вес минимального ребра в паросочетании.

стандартный ввод	стандартный вывод
2	2
1 2	
2 1	

Задача К. Блокирующий поток

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задана слоистая сеть. Найдите блокирующий поток.

Формат входных данных

Первая строка содержит три целых числа n, m и L ($2 \le n \le 1500; 1 \le m \le 300\,000; 2 \le L \le n$). Вершины занумерованы числами от 1 до n. Вторая строка содержит n целых чисел: i-е из них l_i обозначает уровень i-й вершины ($1 \le l_i \le L$). Ровно одна вершина имеет уровень 1, это вершина исток. И ровно одна вершина имеет уровень L, это вершина сток.

Следующие m строк описывают ребра, каждая строка содержит три целых числа a, b и c — соединенные вершины и пропускная способность $(1 \le a, b \le N, l_b = l_a + 1, 1 \le c \le 10^6)$.

Две вершины могут быть соединены не более чем одним ребром.

Формат выходных данных

Выведите описание блокирующего потока. Вывод должен состоять из m строк. Каждая строка соответствует ребру, в том же порядке, что и во входных данных. Строка состоит из одного целого числа — величины потока по этому ребру.

стандартный ввод	стандартный вывод
6 7 4	3
1 2 3 4 3 2	3
1 2 3	4
2 3 3	4
3 4 4	1
1 6 4	3
6 3 2	3
5 4 3	
6 5 4	

Задача L. Автоматное программирование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В один замечательный день в компанию «X» завезли k автоматов. И не простых автоматов, а автоматов-программистов! Это был последний неудачный шаг перед переходом на андроидов-программистов, но это уже совсем другая история.

В компании сейчас n задач, для каждой из которых известно время начала ее выполнения s_i , длительность ее выполнения t_i и прибыль компании от ее завершения c_i . Любой автомат может выполнять любую задачу, ровно одну в один момент времени. Если автомат начал выполнять задачу, то он занят все моменты времени с s_i по $s_i + t_i - 1$ включительно и не может переключиться на другую задачу.

Вам требуется выбрать набор задач, которые можно выполнить с помощью этих k автоматов и который принесет максимальную суммарную прибыль.

Формат входных данных

В первой строке записаны два целых числа n и k $(1 \leqslant n \leqslant 1000, 1 \leqslant k \leqslant 50)$ — количество задач и количество автоматов, соответственно.

В следующих n строках через пробелы записаны тройки целых чисел s_i, t_i, c_i ($1 \le s_i, t_i \le 10^9$, $1 \le c_i \le 10^6$), s_i — время начала выполнения i-го задания, t_i — длительность i-го задания, а c_i — прибыль от его выполнения.

Формат выходных данных

Выведите n целых чисел x_1, x_2, \ldots, x_n . Число x_i должно быть равно 1, если задачу i следует выполнить, и 0 в противном случае.

Если оптимальных решений несколько, то выведите любое из них.

Примеры

стандартный ввод	стандартный вывод
3 1	0 1 1
2 7 5	
1 3 3	
4 1 3	
5 2	1 1 0 0 1
1 5 4	
1 4 5	
1 3 2	
4 1 2	
5 6 1	

Замечание

В первом примере задания требуют выполнения в моменты времени $2 \dots 8, 1 \dots 3$ и $4 \dots 4,$ соответственно. Первое задание пересекается со вторым и третьим, поэтому можно выполнять либо его одно (прибыль 5), либо второе и третье (прибыль 6).