Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

Bernard Carrette

October 6, 2022

Figure 1: My copy, falling apart...

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution: I graduated in 1979, went straight in the industry (where I didn't have to use fancy maths), and picked mathematics and physics again after I retired, so my mathematics got rusty for sure. If you do find an error, typo's, I'd be happy to receive bug reports, suggestions, and the like, through Github. An overview of the material covered in the book can be found in the separate document "Synge overview.pdf".

Some notation conventions

- † means that the exercise has only been solved partially or contains i.m.o. a doubtful step
- †† means that the exercise has not been solved as it should.
- end of an exercise or proof.
- \Diamond end of Lemma or sub-task of an exercise.

As a rule, I followed the notation used in the book, except some which where easier to type in Latex.

$$\partial_r \equiv \frac{\partial}{\partial x^r}$$

$$\partial_{rs}^2 \equiv \frac{\partial^2}{\partial x^r \partial x^s}$$

$$\Gamma^r_{mn} \equiv \begin{Bmatrix} r \\ mn \end{Bmatrix}$$
 Christoffel symbol of the second kind

Contents

5	App	olications to Classical Mechanics	6
	5.1	p153 - Exercise	7
	5.2	p154 - Clarification to 5.226	8
	5.3	p155 - Exercise	9
	5.4	p156 - Clarification to 5.231	10
	5.5	p156 - Clarification to 5.234	11
	5.6	p158-159 - Clarification to 5.313	12
	5.7	p159 - Exercise	13
	5.8	p161 - Clarification to 5.325 and 5.326 \hdots	14
	5.9	p161 - Clarification to 5.329 and 5.330 \dots	15
	5.10	p166 - Exercise	16
	5.11	p166 - Exercise	17
	5.12	p168 - Exercise	18
	5.13	p169 - Exercise	23
	5.14	p174 - Exercise	27
	5.15	p174 - Clarification	28
	5.16	p176 - Exercise	29
	5.17	p176 - Exercise	30
	5.18	p181-p182 - Clarification Figures 13., 14. and 15	32
	5.19	p183 - Clarification for 5.561	33
	5.20	p186 - Exercise 1	36
	5.21	p186 - Exercise 2	39
	5.22	p186 - Exercise 3	40
	5.23	p186 - Exercise 4	42
	5.24	p186 - Exercise 5	44
	5.25	p186 - Exercise 6	46
	5.26	p187 - Exercise 7	48
	5.27	p187 - Exercise 8	49
	5.28	p187 - Exercise 9	50
	5.29	p188 - Exercise 10	52
	5.30	p188 - Exercise 11	53
	5.31	p188 - Exercise 12	54
	5.32	p188 - Exercise 13	56
	5.33	p188 - Exercise 14	57
	5.34	p188 - Exercise 15	59

CONTENTS 4

	5.35	p 188 - Exercise 16 †	60
	5.36	p189 - Exercise 17	66
	5.37	p189 - Exercise 18	69
	5.38	p189 - Exercise 19	73
	5.39	p189 - Exercise 20	77
_			0.0
5		lications to Hydrodynamics, Elasticity, and Electromagnetic radiation	80
	5.1	p191 - Exercise	81
	5.2	p191 - Exercise	83
	5.3	p193 - Exercise	85
	5.4	p193 - Clarification to 6.112	86
	5.5	p196 - Exercise	87
	5.6	p198 - Exercise	88
	5.7	p198 - Exercise	89
	5.8	p 199 - Clarification to pressure invariance to direction of the surface element. 	90
	5.9	p201 - Exercise	92
		p202 - Exercise	93
		p205 - Exercise	94
		p207 - Clarification	95
		p208 - Exercise	97
		p210 - Exercise	98
	5.15	p212 - Exercise	99
	5.16	p213 - Exercise	100
	5.17	p215 - Exercise	101
	5.18	p220 - Exercise	102
	5.19	p221 - Clarification	103
	5.20	p221 - Exercise	104
	5.21	p223 - Clarification	106
	5.22	p 223 - Clarification	107
	5.23	p226 - Clarification	109
	5.24	p227 - Exercise	110
	5.25	p228 - Exercise	111
	5.26	p229 - Clarification	113
	5.27	p231 - Exercise	114
	5.28	p234 - Exercise 1	117

List of Figures

1	My copy, falling apart	1
5.1	Interpretation of the tensor moment M_{12}	10
5.2	Composition of absolute and relative velocities of a chain of rods	24
5.3	Physical components of the gravitational force tensor acting on a mass ${\bf m}$ on a sphere	29
5.4	Map of the configuration space of a rigid body with fixed point	32
5.5	Euler angles	34
5.6	Physical components of the gravitational force tensor acting on a mass ${\bf m}$ on a sphere	42
5.7	Angular velocity vectors in mirrored axis	55
5.8	Physical components of the gravitational force tensor acting on a mass ${\bf m}$ on a sphere	61
5.1	Eulerian viewpoint of a spinning fluid	82
5.2	Pressure on a trirectangular tetrahedron	90
5.3	Polarization of light	103
5.4	Integral form of Hertz vectors	109

Applications to Classical Mechanics

5.1 p153 - Exercise

If μ^{α} are the contra-variant components of a unit vector in a surface S, show that $\mu^{\alpha} f_{\alpha}$ is the physical component of acceleration in the direction tangent to S defined by μ^{α} .

As we are in an Euclidean space we can interpret $a_{mn}\mu^{\alpha}f^{\alpha}$ as $|\mu||f|\cos\theta$ with θ the angle between the two vectors. As $|\mu|=1$ we have

$$a_{mn}\mu^{\alpha}f^{\alpha} = \mu^{\alpha}f_{\alpha} \tag{1}$$

$$= |f|\cos\theta \tag{2}$$

which is the projection of the vector f on the unit vector μ .

5.2 p154 - Clarification to 5.226.

5.226.
$$\mathbf{v} \frac{\mathbf{d} \mathbf{v}}{\mathbf{d} \mathbf{s}} = \mathbf{0}, \quad \overline{\kappa} \mathbf{v}^2 = \mathbf{0}$$

Assuming that the particle is not at rest $v \neq 0$, and therefore $\overline{\kappa} = 0$. Since this implies that the curve is a geodesic...

The assertion in bold is a direct consequence

$$2.513. \qquad \frac{\delta \frac{dx^r}{ds}}{\delta s} = 0$$

As in **5.233** we have $\frac{\delta \lambda^{\alpha}}{\delta s} = \frac{\delta \frac{dx^{\alpha}}{ds}}{\delta s} = 0$, the considered curve follows the geodesic curve.

5.3 p155 - Exercise

Show that in relativity the force 4-vector X^r lies along the first normal of the trajectory in space-time. Express the first curvature in terms of the proper mass m of the particle and the magnitude X of X^r .

Let us recall the first Frenet formula 2.705 without forgetting that the metric form is not positive-definite,

$$\frac{\delta \lambda^r}{\delta s} = \kappa \nu^r, \quad \epsilon_{(1)} \nu_n \nu^n = 1$$

As 5.299

$$m\frac{\delta\lambda^r}{\delta s} = X^r$$

it is clear that $X^r = m\kappa \nu^r$ and is collinear with the first normal.

$$X^r = m\kappa \nu^r \tag{1}$$

$$\times a_{mr}X^{m} \Rightarrow \underbrace{a_{mr}X^{m}X^{r}}_{=(X^{1})^{2}+(X^{2})^{2}-(X^{4})^{2}} = m\kappa \underbrace{a_{mr}\nu^{m}\nu^{r}}_{=\epsilon_{(1)}}$$
(2)

$$\Rightarrow \qquad \kappa = \epsilon_{(1)} \frac{\left(X^{1}\right)^{2} + \left(X^{2}\right)^{2} + \left(X^{3}\right)^{2} - \left(X^{4}\right)^{2}}{m}$$

♦

5.4 p156 - Clarification to 5.231

Interpretation of $\mathbf{5.231}. \hspace{1cm} M_{rs} = \epsilon_{rsn} M_n = z_r F_s - z_s F_r$

What do the M_{rs} represent?

Figure 5.1: Interpretation of the tensor moment M_{12}

Let's consider a mass point P on which a force \overrightarrow{F} is acting. The force has components (F_x, F_y, F_z) in the space $V_3^{'}$ (which is by the way not the space V_3 of the considered mass point).

Let's investigate the element M_{12} of the tensor moment.

 $P_1F_2\overrightarrow{e_3}$ is the vector product $\overrightarrow{P_1}\times\overrightarrow{F_2}$ and is as such the torque of the component F_2 of \overrightarrow{F} acting on the mass point situated at P_1 . The origin being fixed, $\overrightarrow{F_2}$ tries to move P_1 , clockwise along the z_3 axis. The same is true for the component $\overrightarrow{F_1}$ acting on the mass point situated at P_2 , and is represented here by the vector $-\overrightarrow{P_2}\times\overrightarrow{F_1}$ ($\overrightarrow{F_1}$ tries to move P_2 , counter clockwise along the z_3 axis). Hence, $P_1F_2-P_2F_1$ is the net force trying to move the point P along the z_3 axis (i.e. in the plane || with the $z_3=0$ plane).

5.5 p156 - Clarification to 5.234

$$5.234. \qquad \frac{dh_r}{dt} = M_r$$

$$h_r = m\epsilon_{rmn} z_m v_n \tag{1}$$

$$\Rightarrow \frac{dh_r}{dt} = m\epsilon_{rmn}\frac{dz_m}{dt}v_n + m\epsilon_{rmn}z_m\frac{dv_n}{dt}$$
 (2)

$$= m \underbrace{\epsilon_{rmn} v_m v_n}_{=0} + \underbrace{\epsilon_{rmn} z_m F_n}_{=M_r}$$
(3)

$$=M_r \tag{4}$$

p158-159 - Clarification to 5.3135.6

5.313.
$$\omega_{rs} = -\omega_{sr}$$

From 5.310 and the vector character of v_r and z_r (for transformations which do not change the origin), it follows that ω_{rs} is a Cartesian tensor of second order.

Be

$$v_r = -\omega_{rn} z_n \tag{1}$$

Considering orthogonal transformation in a flat space $z_{m}^{'}=A_{mr}z_{r}+B_{m}$ with $B_{m}=0$ as we consider only transformations which do not change the origin. Differentiation with the parameter t gives

$$v_m' = A_{mr}v_r \tag{2}$$

$$= -\omega_{rn} A_{mr} z_n \tag{3}$$

(4)

But $z_q^{'} = A_{qr}z_r^{} \quad \Rightarrow \quad A_{qn}z_q^{'} = A_{qn}A_{qr}z_r^{} \quad \Rightarrow \quad A_{qn}z_q^{'} = z_n$ Hence

$$v_{m}^{'} = -\omega_{rn}A_{mr}z_{n} \tag{5}$$

$$v'_{m} = -\omega_{rn} A_{mr} z_{n}$$

$$= -\underbrace{\omega_{rn} A_{mr} A_{qn}}_{\stackrel{\text{def}}{=} \omega'_{mq}} z'_{q}$$

$$v'_{m} = -\omega'_{mq} z'_{q}$$

$$(5)$$

$$(6)$$

$$(7)$$

$$v_{m}^{'} = -\omega_{mq}^{'} z_{q}^{'} \tag{7}$$

5.7 p159 - Exercise

Show that if a rigid body rotates about the point $z_r = b_r$ as fixed point, the velocity of a general point of the body is given by

$$v_r = -\omega_{rm} \left(z_m - b_m \right)$$

By **5.302**.:

$$\left(z_m^{(1)} - z_m^{(2)}\right) \left(dz_m^{(1)} - dz_m^{(2)}\right) = 0 \tag{1}$$

At the fixed point we have $z_m^{(2)} = b_m$ and $dz_m^{(2)} = 0$, hence

$$\left(z_m^{(1)} - b_m\right) \left(dz_m^{(1)}\right) = 0$$
(2)

$$\Rightarrow z_m^{(1)} dz_m^{(1)} = b_m dz_m^{(1)} \tag{3}$$

As this is true for any point of the rigid mass, expanding (1) and using (3) we get when dividing by dt

$$\left(z_m^{(2)} - b_m \right) v_m^{(1)} + \left(z_m^{(1)} - b_m \right) v_m^{(2)} = 0$$
 (4)

Taking twice the partial derivative $\frac{\partial^2}{\partial z_p^{(1)}\partial z_q^{(1)}}$ we get

$$\left(z_m^{(2)} - b_m\right) \frac{\partial^2 v_m}{\partial z_p^{(1)} \partial z_q^{(1)}} = 0$$
(5)

As this is true for any arbitrary point in the rigid body we get

$$\frac{\partial^2 v_m}{\partial z_p^{(1)} \partial z_q^{(1)}} = 0 \tag{6}$$

$$\Rightarrow \qquad v_m = K_{mr} z_r + B_m \tag{7}$$

At the fixed point we have

$$K_{mr}b_r + B_m = 0 (8)$$

Plugging this in (7)

$$v_m = K_{mr} \left(z_r - b_m \right) \tag{9}$$

Putting $K_{mr} = -\omega_{mr}$ gives us indeed the asked expression.

٨

p161 - Clarification to 5.325 and 5.326 **5.8**

5.325.
$$\Omega_{np} \sum (mf_n z_p) = \Omega_{np} \sum F_n z_p$$

and hence, since Ω_{np} is arbitrary,

5.326.
$$\sum m (f_n z_p - f_p z_n) = \sum (F_n z_p - F_p z_n)$$

To be complete the following step should be inserted

$$\Omega_{np} \sum (m f_n z_p) = \Omega_{np} \sum F_n z_p \tag{1}$$

As
$$\Omega_{np}$$
 is skew-symmetric:
$$-\Omega_{np} \sum_{np} (mf_p z_n) = -\Omega_{np} \sum_{np} F_p z_n$$
 (2)
$$(1)+(2) \qquad \Omega_{np} \sum_{np} m (f_n z_p - f_p z_n) = \Omega_{np} \sum_{np} (F_n z_p - F_p z_n)$$
 (3)

(1)+(2)
$$\Omega_{np} \sum_{p} m (f_n z_p - f_p z_n) = \Omega_{np} \sum_{p} (F_n z_p - F_p z_n)$$
 (3)

and hence, since Ω_{np} is arbitrary,

5.326.
$$\sum m (f_n z_p - f_p z_n) = \sum (F_n z_p - F_p z_n)$$

p161 - Clarification to 5.329 and 5.3305.9

5.329.
$$h_{np} = \sum_{npqr} m \left(\omega_{nq} z_q z_p - \omega_{pq} z_q z_n \right)$$
$$= J_{npqr} \omega_{rq}$$

where

5.330.
$$J_{npqr} = \sum_{npqr} m \left(\delta_{nr} z_q z_p - \delta_{pr} z_n z_q \right)$$

$$h_{np} = \sum m \left(\omega_{nq} z_q z_p - \omega_{pq} z_q z_n \right) \tag{1}$$

$$h_{np} = \sum_{m} m \left(\omega_{nq} z_q z_p - \omega_{pq} z_q z_n \right)$$

$$= \sum_{m} m \left(\omega_{rq} \delta_{rn} z_q z_p - \omega_{rq} \delta_{rp} z_q z_n \right)$$

$$= \omega_{rq} \sum_{m} m \left(\delta_{rn} z_q z_p - \delta_{rp} z_q z_n \right)$$

$$(3)$$

$$=\omega_{rq}\sum m\left(\delta_{rn}z_qz_p-\delta_{rp}z_qz_n\right) \tag{3}$$

$$=J_{npqr}\omega_{rq} \tag{4}$$

5.10 p166 - Exercise

Deduce immediately from 5.420. that the Coriolis force is perpendicular to the velocity.

$$G_{s}^{'}=2m\omega_{sm}^{'}(S^{'},S)v_{m}^{'}(S^{'}) \tag{1}$$

$$\times v_{s}^{'}(S^{'}) \quad : \qquad \qquad G_{s}^{'}v_{s}^{'}(S^{'}) = m\left(\omega_{sm}^{'}(S^{'},S)v_{m}^{'}(S^{'})v_{s}^{'}(S^{'}) + \omega_{ms}^{'}(S^{'},S)v_{m}^{'}(S^{'})v_{s}^{'}(S^{'})\right) \tag{2}$$

$$=0$$
 as ω'_{ms} is skew-symmetric (3)

5.11 p166 - Exercise

Show that if N=3 and $\dot{\omega}_r'(S',S)=0$, then the centrifugal force may be written

5.422.
$$C'_{s} = m\omega'_{n}(S', S)\omega'_{n}(S', S)z'_{s} - m\omega'_{n}(S', S)z'_{n}\omega'_{s}(S', S)$$

Deduce that C_s' is coplanar with the vectors $\omega_s'(S',S)$ and z_n' and perpendicular to the former.

By **5.420**. with $\dot{\omega}_r^{'}(S^{'},S)=0$ and using **5.316**. $(\omega_{rs}^{'}=\epsilon_{rsn}\omega_n^{'})$

$$C_{s}^{'} = m\omega_{sm}^{'}(S^{'}, S)\omega_{nm}^{'}(S^{'}, S)z_{n}^{'} \tag{1}$$

$$= m\epsilon_{smk}\omega_{k}'(S',S)\epsilon_{nmp}\omega_{n}'(S',S)z_{n}'$$
(2)

$$= m\epsilon_{msk}\epsilon_{mnp}\omega_{k}'(S',S)\omega_{p}'(S',S)z_{n}'$$
(3)

$$= m \left(\delta_{sn}\delta_{kp} - \delta_{sp}\delta_{kn}\right) \omega_{k}^{'}(S^{'}, S)\omega_{p}^{'}(S^{'}, S)z_{n}^{'}$$

$$\tag{4}$$

$$= m\delta_{sn}\delta_{kp}\omega'_{k}(S', S)\omega'_{p}(S', S)z'_{n} - m\delta_{sp}\delta_{kn}\omega'_{k}(S', S)\omega'_{p}(S', S)z'_{n}$$
(5)

$$= m\omega'_{p}(S', S)\omega'_{p}(S', S)z'_{s} - m\omega'_{n}(S', S)\omega'_{s}(S', S)z'_{n}$$
(6)

To deduce that C_s' is coplanar with the vectors $\omega_s'(S',S)$ and z_n' we calculate the mixed triple product

$$P = \epsilon_{spr} C_s' \omega_p' (S', S) z_r' \tag{7}$$

$$= m \underbrace{\epsilon_{spr} \omega_n^{'}(S^{'}, S) \omega_n^{'}(S^{'}, S) z_s^{'} \omega_p^{'}(S^{'}, S) z_r^{'}}_{=0} - \underbrace{m \epsilon_{spr} \omega_n^{'}(S^{'}, S) \omega_s^{'}(S^{'}, S) z_n^{'} \omega_p^{'}(S^{'}, S) z_r^{'}}_{=0}$$
(8)

$$=0$$

Both terms vanish: the first by the presence of the terms $\epsilon_{spr}z_s^{'}z_r^{'}$ which cancel each other and for the second by the terms $\epsilon_{spr}\omega_s^{'}(S^{'},S)\omega_p^{'}(S^{'},S)$. As P=0, the three vectors are coplanar. We now calculate the inner product $C_s^{'}\omega_s^{'}(S^{'},S)$

$$P = m\omega'_{n}(S', S)\omega'_{n}(S', S)z'_{s}\omega'_{s}(S', S) - \underbrace{m\omega'_{n}(S', S)\omega'_{s}(S', S)z'_{n}\omega'_{s}(S', S)}_{\Leftrightarrow m\omega'_{n}(S', S)\omega'_{n}(S', S)z'_{s}\omega'_{s}(S', S)}$$
(10)

$$=0 (11)$$

♦

p168 - Exercise 5.12

Taking N=3, show that **5.424** may be reduced to the usual Euler equations:

$$I_{11} \frac{d\omega'_{1}(S', S)}{dt} - \left(I_{22} - I'_{33}\right)\omega_{2}(S', S)\omega'_{3}(S', S) = M'_{1}$$

and two similar equations.

We first begin with an approach which leads to nothing. I probably made a reasoning error. I give here the whole calculation as this was interesting and also to, later, find my mistake. After this buggy solution, I will give a second version, which works.

5.424:

$$M_{ab}^{'} = J_{abrq}^{'} \frac{d\omega_{rq}^{'}(S', S)}{dt} + J_{cdrq}^{'}(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}) \omega_{rq}^{'}(S', S)\omega_{uv}^{'}(S', S) =$$
(1)

$$M'_{ab} = J'_{abrq} \frac{d\omega'_{rq}(S', S)}{dt} + J'_{cdrq} \left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right) \omega'_{rq}(S', S)\omega'_{uv}(S', S) =$$

$$\times \epsilon_{sab}: \quad 2M'_{s} = \epsilon_{sab}J'_{abrq} \frac{d\omega'_{rq}(S', S)}{dt} + \epsilon_{sab}J'_{cdrq} \left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right) \omega'_{rq}(S', S)\omega'_{uv}(S', S)$$

$$(2)$$

Using $\omega_{rq}^{'}(S^{'},S) = \epsilon_{rqt}\omega_{t}^{'}(S^{'},S)$ and $I_{st} = \frac{1}{2}J_{abrq}^{'}\epsilon_{abs}\epsilon_{rqt}$

$$2M_{s}^{'} = 2I_{st}\frac{d\omega_{t}^{'}(S^{'},S)}{dt} + \epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J_{cdrq}^{'}\left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right)\omega_{i}^{'}(S^{'},S)\omega_{j}^{'}(S^{'},S)$$

$$(3)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{t}(S',S)}{dt} \\ + \left(\epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{ac}\delta_{du}\delta_{bv} + \epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{bd}\delta_{cu}\delta_{av}\right)\omega'_{i}(S',S)\omega'_{j}(S',S) \end{cases}$$

$$(4)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\ + \left(\epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{ac}\delta_{du}\delta_{bv} + \epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{bd}\delta_{cu}\delta_{av}\right)\omega'_{i}(S',S)\omega'_{j}(S',S) \end{cases}$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\ + \left(\epsilon_{scb}\epsilon_{rqi}\epsilon_{dbj}J'_{cdrq} + \epsilon_{sad}\epsilon_{rqi}\epsilon_{caj}J'_{cdrq}\right)\omega'_{i}(S',S)\omega'_{j}(S',S) \end{cases}$$

$$(5)$$

$$= \begin{cases} 2I_{st} \frac{\omega_{i}(S,S)}{dt} \\ + (\epsilon_{bcs}\epsilon_{bdj}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\ + (\epsilon_{cs}\epsilon_{bdj}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \end{cases}$$

$$(6)$$

$$= \begin{cases}
2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\
+ (\epsilon_{bcs}\epsilon_{bdj}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\
+ (\epsilon_{asd}\epsilon_{acj}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S)
\end{cases}$$

$$= \begin{cases}
2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\
+ (\delta_{cd}\delta_{sj} - \delta_{cj}\delta_{sd}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\
+ (\delta_{sc}\delta_{dj} - \delta_{sj}\delta_{dc}) \epsilon_{rqi} J'_{cdrq} \omega'_{i}(S',S) \omega'_{j}(S',S)
\end{cases}$$

$$(6)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\ +\epsilon_{rqi} J'_{ccrq} \omega'_{i}(S',S) \omega'_{s}(S',S) \\ -\epsilon_{rqi} J'_{jsrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\ +\epsilon_{rqi} J'_{sjrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\ -\epsilon_{rqi} J'_{ccrq} \omega'_{i}(S',S) \omega'_{s}(S',S) \end{cases}$$

$$(8)$$

giving

$$2M_{s}^{'} = \begin{cases} 2I_{st} \frac{d\omega_{t}^{'}(S^{'}, S)}{dt} \\ +\epsilon_{rqi} J_{sjrq}^{'} \omega_{i}^{'}(S^{'}, S) \omega_{j}^{'}(S^{'}, S) \\ -\epsilon_{rqi} J_{jsrq}^{'} \omega_{i}^{'}(S^{'}, S) \omega_{j}^{'}(S^{'}, S) \end{cases}$$
(9)

For s = 1:

	$+\epsilon_{rqi}J_{1jrq}\omega_i\omega_j$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1112}\omega_{3}\omega_{1}+J_{1212}\omega_{3}\omega_{2}+J_{1312}\omega_{3}\omega_{3}$	$-J_{1112}\omega_3\omega_1 - J_{2112}\omega_3\omega_2 - J_{3112}\omega_3\omega_3$
ϵ_{132}	$ -J_{1113}\omega_2\omega_1 - J_{1213}\omega_2\omega_2 - J_{1313}\omega_2\omega_3 $	$+J_{1113}\omega_{2}\omega_{1}+J_{2113}\omega_{2}\omega_{2}+J_{3113}\omega_{2}\omega_{3}$
ϵ_{213}	$ -J_{1121}\omega_3\omega_1 - J_{1221}\omega_3\omega_2 - J_{1321}\omega_3\omega_3 $	$+J_{1121}\omega_3\omega_1+J_{2121}\omega_3\omega_2+J_{3121}\omega_3\omega_3$
ϵ_{231}	$+J_{1123}\omega_1\omega_1+J_{1223}\omega_1\omega_2+J_{1323}\omega_1\omega_3$	$-J_{1123}\omega_1\omega_1 - J_{2123}\omega_1\omega_2 - J_{3123}\omega_1\omega_3$
ϵ_{321}	$-J_{1132}\omega_1\omega_1 - J_{1232}\omega_1\omega_2 - J_{1332}\omega_1\omega_3$	$+J_{1132}\omega_1\omega_1+J_{2132}\omega_1\omega_2+J_{3132}\omega_1\omega_3$
ϵ_{312}	$+J_{1131}\omega_2\omega_1+J_{1231}\omega_2\omega_2+J_{1331}\omega_2\omega_3$	$-J_{1131}\omega_2\omega_1 - J_{2131}\omega_2\omega_2 - J_{3131}\omega_2\omega_3$

Taking into account that $J_{abcd}=0$ for $a\neq c \wedge b\neq d$

	$+\epsilon_{rqi}J_{1jrq}\omega_i\omega_j$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1112}\omega_{3}\omega_{1}+J_{1212}\omega_{3}\omega_{2}+J_{1312}\omega_{3}\omega_{3}$	$-J_{1+12}\omega_{3}\widetilde{\omega_{1}}$
ϵ_{132}	$-J_{1113}\omega_{2}\omega_{1} - J_{1213}\omega_{2}\omega_{2} - J_{1313}\omega_{2}\omega_{3}$	$+J_{1+13}\omega_{2}\overline{\omega_{1}}$
ϵ_{213}	$-J_{1+21}\omega_3\overline{\omega_1}$	$+ \underline{J_{1121}} \underline{\omega_3} \underline{\omega_1} + J_{2121} \underline{\omega_3} \underline{\omega_2} + J_{3121} \underline{\omega_3} \underline{\omega_3}$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}	$+J_{1+31}\omega_2\omega_1$	$-J_{1481}\omega_{2}\omega_{1} - J_{2131}\omega_{2}\omega_{2} - J_{3131}\omega_{2}\omega_{3}$

Opposite sign terms vanish, giving

	$+\epsilon_{rqi}J_{1jrq}\omega_{i}\omega_{j}$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1212}\omega_3\omega_2+J_{1312}\omega_3\omega_3$	
ϵ_{132}	$-J_{1213}\omega_2\omega_2 - J_{1313}\omega_2\omega_3$	
ϵ_{213}		$+J_{2121}\omega_{3}\omega_{2}+J_{3121}\omega_{3}\omega_{3}$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}		$-J_{2131}\omega_2\omega_2 - J_{3131}\omega_2\omega_3$

Considering $J_{abcd} = -J_{badc}$

	$+\epsilon_{rqi}J_{1jrq}\omega_i\omega_j$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1212}\omega_3\omega_2+J_{1312}\omega_3\omega_3$	
ϵ_{132}	$-J_{1213}\omega_2\omega_2-J_{1313}\omega_2\omega_3$	
ϵ_{213}		$+J_{2121}\omega_3\omega_2+J_{3121}\omega_3\omega_3$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}		$-J_{2131}\omega_2\omega_2-J_{3131}\omega_2\omega_3$

We get

$$m_{s}^{'} = I_{st} \frac{d\omega_{t}^{'}(S^{'}, S)}{dt}$$

?????

Let's try another approach. Start with **5.332**.: $\frac{d}{dt}(I_{st}\omega_t) = M_s$

$$\frac{d}{dt}\left(I_{st}(S',S)\omega_{t}(S',S)\right) = M_{s}(S',S) \tag{10}$$

Cf. **5.408**.

$$\omega_u'(S',S) = A_{uq}\omega_q(S',S) \tag{11}$$

$$\times A_{ut} \quad \to \qquad \qquad A_{ut}\omega_{u}'(S',S) = A_{ut}A_{uq}\omega_{q}(S',S) \tag{12}$$

$$=\omega_{t}(S',S) \tag{13}$$

$$\omega_t(S', S) = A_{ut}\omega_u'(S', S) \tag{14}$$

$$(10) \quad \Rightarrow \qquad \qquad M_s(S',S) = \frac{d}{dt} \left(I_{st}(S',S) A_{ut} \omega_u'(S',S) \right) \tag{15}$$

$$\times A_{ps} \quad \Rightarrow M_{p}^{'}(S^{'}, S) = A_{ps} \frac{d}{dt} \left(I_{st}(S^{'}, S) A_{ut} \omega_{u}^{'}(S^{'}, S) \right) \tag{16}$$

$$I_{st}(S', S) = A_{as} A_{bt} I'_{ab}(S', S)$$
(17)

(16)
$$\Rightarrow$$
 $M'_{p}(S', S) = A_{ps} \frac{d}{dt} \left(A_{as} A_{bt} I'_{ab}(S', S) A_{ut} \omega'_{u}(S', S) \right)$ (18)

$$= A_{ps} \frac{d}{dt} \left(A_{as} I'_{ak}(S', S) \omega'_{k}(S', S) \right)$$
 (19)

As we transformed $I_{st}(S', S)$ to a coordinate system fixed to the body we have that the elements of $I'_{ab}(S', S)$ are constants.

Hence,

$$M'_{p}(S', S) = I'_{ak}S', S)A_{ps}\frac{d}{dt}\left(A_{as}\omega'_{k}(S', S)\right)$$
 (20)

$$=I_{ak}^{'}(S^{'},S)A_{ps}\left(\dot{A}_{as}\omega_{k}^{'}(S^{'},S)+A_{as}\dot{\omega}_{k}^{'}(S^{'},S)\right) \tag{21}$$

$$=I_{ak}^{'}(S^{'},S)A_{ps}A_{as}\dot{\omega}_{k}^{'}(S^{'},S)+I_{ak}^{'}(S^{'},S)A_{ps}\dot{A}_{as}\omega_{k}^{'}(S^{'},S) \eqno(22)$$

$$=I_{pk}^{'}(S^{'},S)\dot{\omega}_{k}^{'}(S^{'},S)+I_{ak}^{'}(S^{'},S)A_{ps}\dot{A}_{as}\omega_{k}^{'}(S^{'},S) \tag{23}$$

$$\mathbf{5.408.} \quad \Rightarrow \qquad A_{ps} \dot{A}_{as} = \omega'_{ap}(S', S) \tag{24}$$

(23)
$$\Rightarrow$$
 $M'_{p}(S', S) = I'_{pk}(S', S)\dot{\omega}'_{k}(S', S) + I'_{ak}(S', S)\omega'_{ap}(S', S)\omega'_{k}(S', S)$ (25)

Let's now calculate the last expression for p=1

$$M_{1}'(S',S) = I_{1k}'(S',S)\dot{\omega}_{k}'(S',S) + I_{ak}'(S',S)\omega_{a1}'(S',S)\omega_{k}'(S',S)$$
(26)

As we want an arbitrary, fixed to the body of course, coordinate system, it is possible to chose one so that the $I'_{kj}(S',S) = 0$ for $k \neq j$ i.e. $I'_{kj}(S',S)$ is diagonal. This is possible because $I'_{kj}(S',S)$ is symmetric (the finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix).

We get, noticing that $\omega'_{ab}(S',S)$ is skew-symmetric and hence $\omega'_{11}(S',S)=0$:

$$M_{1}^{'}(S^{'},S) = I_{11}^{'}(S^{'},S)\dot{\omega}_{1}^{'}(S^{'},S) + I_{22}^{'}(S^{'},S)\omega_{21}^{'}(S^{'},S)\omega_{2}^{'}(S^{'},S) + I_{33}^{'}(S^{'},S)\omega_{31}^{'}(S^{'},S)\omega_{3}^{'}(S^{'},S)$$
(27)

Using **5.317**: $\omega_{21}^{'}(S^{'},S) = -\omega_{3}^{'}(S^{'},S)$ and $\omega_{31}^{'}(S^{'},S) = \omega_{2}^{'}(S^{'},S)$ we get the asked expression

$$M_{1}'(S',S) = I_{11}'(S',S)\dot{\omega}_{1}'(S',S) - \left(I_{22}'(S',S) - I_{33}'(S',S)\right)\omega_{2}'(S',S)\omega_{3}'(S',S)$$
(28)

♦

5.13 p169 - Exercise

Assign convenient generalized coordinates for the three systems (a), (b), and (c) mentioned at the beginning of this section, and calculate the kinematical metric form in each case

(a) a particle on a surface (N=2)

No need here for fancy general coordinates: the V_2 coordinate system in the plane is the metric form of choice. Indeed $|v|^2 = a_{mn}v_mv_n$ and for a V_2

$$ds^{2} = \left(a_{11} \left(v^{1}\right)^{2} + 2a_{12}v^{1}v^{2} + a_{22} \left(v^{2}\right)^{2}\right) dt^{2}$$

and if the space is Euclidean and the plane smooth, we can choose an orthogonal system where a_{12} will vanish.

(b) a rigid body which can turn about a fixed point, as in the preceding section (N=3) For a rigid body we can choose a coordinate system $S^{'}$ fixed to the body to describe the geometry of the rigid body. The kinetic energy referenced to a 'non-moving' (abuse of language) coordinate system S is

$$T = \frac{1}{2} \sum \rho v_n^{'}(S) v_n^{'}(S) \qquad \text{(summation over all masses in the rigid body)}$$
 (1)

We know by **5.409**: $v_n^{'}(S) = v_n^{'}(S^{'}) + \omega_{mn}^{'}(S^{'},S)z_m^{'}$. As the $v_n^{'}(S^{'})$ are fixed, we have $v_n^{'}(S^{'}) = 0$ giving

$$T = \frac{1}{2} \sum \rho z'_{m} z'_{k} \omega'_{mn}(S', S) \omega'_{kn}(S', S)$$
 (2)

Note in (2) that we bring $\omega'_{mn}(S',S)$ out of the summation as this expression is the same for all masses in the body.

$$\omega_{mn}(S', S) = \epsilon_{mnt}\omega_t'(S', S) \tag{3}$$

$$\Rightarrow T = \frac{1}{2} \sum \rho \epsilon_{mnt} \epsilon_{kns} z'_{m} z'_{k} \omega'_{t}(S', S) \omega'_{s}(S', S)$$

$$\tag{4}$$

$$= \frac{1}{2} \sum \rho \left(\delta_{mk} \delta_{ts} - \delta_{ms} \delta_{kt} \right) z'_{m} z'_{k} \omega'_{t} (S', S) \omega'_{s} (S', S)$$
 (5)

$$=\frac{1}{2}\sum \rho \left(z_{m}^{'}z_{m}^{'}\omega_{t}^{'}(S^{'},S)\omega_{t}^{'}(S^{'},S)-z_{s}^{'}z_{t}^{'}\omega_{t}^{'}(S^{'},S)\omega_{s}^{'}(S^{'},S)\right) \tag{6}$$

$$= \frac{1}{2} \sum \rho \left(\delta_{st} z_{m}^{'} z_{m}^{'} \omega_{s}^{'}(S^{'}, S) \omega_{t}^{'}(S^{'}, S) - z_{s}^{'} z_{t}^{'} \omega_{t}^{'}(S^{'}, S) \omega_{s}^{'}(S^{'}, S) \right)$$
(7)

$$= \frac{1}{2} \sum \rho \left(\delta_{st} z'_{m} z'_{m} - z'_{s} z'_{t} \right) \omega'_{s}(S', S) \omega'_{t}(S', S)$$
 (8)

By **5.335**. we have $I_{st} = \delta_{st} \sum \rho z_m z_m - \sum \rho z_s z_t$ and so (8) can be written as

$$T = \frac{1}{2} I_{st} \omega_s'(S', S) \omega_t'(S', S)$$
(9)

So we can choose the three angles $\Omega_s'(S',S)$ with $(\omega_s'(S',S) = \frac{d\Omega_s'(S',S)}{dt})$ as generalized coordinates and define

$$ds^{2} = I_{st} d\Omega'_{s}(S', S) d\Omega'_{t}(S', S)$$

with

$$a_{mn} = I_{mn}$$

having constants as elements. Some check on consistency of the metric tensor defined by (14):

Positive definite? : Yes, as T is positive by construction.

Symmetric?: Yes, as $a_{mn} = I_{km}$ and I_{km} is symmetric.

(c) a chain of six rods smoothly hinged together, with one end fixed and all moving on a smooth plane (N=6)

To simplify the notation we will assume that the mass m_k of each rod (with length L_k) is concentrated at it's endpoint.

First we note that the velocity of a rod is composed of two vectors, one (labelled as $\overline{\nu}_k$) generated by its own rotation relative to the previous rod and the other (labelled as $\overline{\nu}_{k-1}$) generated by the velocity of the endpoint of the rod to which it is attached (see.fig. 5.2).

Figure 5.2: Composition of absolute and relative velocities of a chain of rods

If we take Cartesian coordinates it is easy to see that rod (1) will have components

$$\left(L_1\dot{\theta}_1\cos\theta,L_1\dot{\theta}_1\sin\theta_1\right)$$

rod (2)
$$\left(L_1 \dot{\theta}_1 \cos \theta_1 + L_2 \dot{\theta}_2 \cos \theta_2, L_1 \dot{\theta}_1 \sin \theta_1 + L_2 \dot{\theta}_2 \sin \theta_2 \right)$$

:

rod (k)

$$\left(\sum_{i=1}^{k} L_i \dot{\theta}_i \cos \theta_i, \sum_{i=1}^{k} L_i \dot{\theta}_i \sin \theta_i\right)$$

and so

$$\left(v^{(k)}\right)^2 = \left(\sum_{i=1}^k L_i \dot{\theta}_i \cos \theta_i\right)^2 + \left(\sum_{i=1}^k L_i \dot{\theta}_i \sin \theta_i\right)^2 \tag{10}$$

$$= \sum_{i=1}^{k} \left(L_i \dot{\theta}_i \right)^2 + 2 \sum_{i=1}^{k} \sum_{j=1}^{k-i} \left(L_i L_{i+j} \dot{\theta}_i \dot{\theta}_{i+j} \cos \left(\theta_i - \theta_{i+j} \right) \right)$$
(11)

So the kinetic energy of one rod and the total kinetic energy of the system are

$$T^{(k)} = \frac{1}{2} m_k \left[\sum_{i=1}^k \left(L_i \dot{\theta}_i \right)^2 + 2 \sum_{i=1}^k \sum_{j=1}^{k-i} \left(L_i L_{i+j} \dot{\theta}_i \dot{\theta}_{i+j} \cos \left(\theta_i - \theta_{i+j} \right) \right) \right]$$
(12)

$$T = \sum_{k=1}^{N} T^{(k)} \tag{13}$$

For N=6 we get

rod	$T^{(k)}$
1	$\left[rac{1}{2}m_1\left[\left(L_1\dot{ heta}_1 ight)^2 ight]$
2	$\frac{1}{2}m_2\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right)\right]$
3	$\frac{1}{2}m_3\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + \left(L_3\dot{\theta}_3\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right) + 2L_1L_3\dot{\theta}_1\dot{\theta}_3\cos\left(\theta_1 - \theta_3\right) + \dots\right]$
4	$\frac{1}{2}m_4\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + \left(L_3\dot{\theta}_3\right)^2 + \left(L_4\dot{\theta}_4\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right) + 2L_1L_3\dot{\theta}_1\dot{\theta}_3\cos\left(\theta_1 - \theta_3\right) + \dots\right]$
5	$\frac{1}{2}m_5 \left[\left(L_1 \dot{\theta}_1 \right)^2 + \left(L_2 \dot{\theta}_2 \right)^2 + \left(L_3 \dot{\theta}_3 \right)^2 + \left(L_4 \dot{\theta}_4 \right)^2 + \left(L_5 \dot{\theta}_5 \right)^2 + 2L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) + \dots \right]$
6	$\frac{1}{2}m_{6}\left[\left(L_{1}\dot{\theta}_{1}\right)^{2}+\left(L_{2}\dot{\theta}_{2}\right)^{2}+\left(L_{3}\dot{\theta}_{3}\right)^{2}+\left(L_{4}\dot{\theta}_{4}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+\left(L_{6}\dot{\theta}_{6}\right)^{2}+2L_{1}L_{2}\dot{\theta}_{1}\dot{\theta}_{2}\cos\left(\theta_{1}-\theta_{2}\right)+\ldots\right]$

Giving for T

$$\begin{cases} (m_1 + m_2 + m_3 + m_4 + m_5 + m_6) \left(L_1 \dot{\theta}_1 \right)^2 \\ + (m_2 + m_3 + m_4 + m_5 + m_6) \left(L_2 \dot{\theta}_2 \right)^2 \\ + (m_3 + m_4 + m_5 + m_6) \left(L_3 \dot{\theta}_3 \right)^2 \\ + (m_4 + m_5 + m_6) \left(L_4 \dot{\theta}_4 \right)^2 \\ + (m_5 + m_6) \left(L_5 \dot{\theta}_5 \right)^2 \\ + (m_6) \left(L_6 \dot{\theta}_6 \right)^2 \\ + 2 \left(m_2 + m_3 + m_4 + m_5 + m_6 \right) L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) \\ + 2 \left(m_3 + m_4 + m_5 + m_6 \right) L_1 L_3 \dot{\theta}_1 \dot{\theta}_3 \cos \left(\theta_1 - \theta_3 \right) \\ + 2 \left(m_3 + m_4 + m_5 + m_6 \right) L_2 L_3 \dot{\theta}_2 \dot{\theta}_3 \cos \left(\theta_2 - \theta_3 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_2 L_4 \dot{\theta}_2 \dot{\theta}_4 \cos \left(\theta_1 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_2 L_4 \dot{\theta}_2 \dot{\theta}_4 \cos \left(\theta_2 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_3 L_4 \dot{\theta}_3 \dot{\theta}_4 \cos \left(\theta_3 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_2 L_5 \dot{\theta}_2 \dot{\theta}_5 \cos \left(\theta_3 - \theta_5 \right) \\ + 2 \left(m_5 + m_6 \right) L_4 L_5 \dot{\theta}_4 \dot{\theta}_5 \cos \left(\theta_4 - \theta_5 \right) \\ + 2 \left(m_5 + m_6 \right) L_4 L_5 \dot{\theta}_4 \dot{\theta}_5 \cos \left(\theta_4 - \theta_5 \right) \\ + 2 \left(m_6 \right) L_2 L_6 \dot{\theta}_2 \dot{\theta}_6 \cos \left(\theta_2 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_3 L_6 \dot{\theta}_3 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_4 L_6 \dot{\theta}_4 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_5 - \theta_6 \right) \end{aligned}$$

We define as general coordinates the angles θ^i and express ds^2 as

$$ds^2 = 2Tdt^2$$

and see that ds^2 is of the required form

$$ds^2 = a_{mn}d\theta^m d\theta^n$$

The metric tensor a_{mn} contains elements depending on the θ_k chosen as general coordinates of the system and is a good candidate as metric tensor. Some check on consistency of the metric tensor defined by (14):

Positive definite ? : Yes, as T is positive by definition

Symmetric?: Yes, as the non-diagonal term a_{ij} contains $\cos(\theta_i - \theta_j) = \cos(\theta_j - \theta_i)$

Number of elements: the metric tensor a_{mn} for N=6 should contain 6 diagonal elements and $\frac{6\times 6-6}{2}=15$ independent non-diagonal elements. Checking (8), one can find that the numbers yield.

♦

5.14 p174 - Exercise

Establish the general result

$$v\frac{dv}{ds} = X_r \lambda^r, \quad \kappa v^2 = X_r \nu^r$$

Deduce that, if no forces at on the system, the trajectory is a geodesic in configuration space and the magnitude of the velocity is constant.

In configuration space $f_r = X_r$. Hence by **5**, **515**

$$X^r = v\frac{dv}{ds}\lambda^r + \kappa v^2 \nu^r \tag{1}$$

$$\Rightarrow X^r \lambda_r = X_r \lambda^r = v \frac{dv}{ds} \quad \text{as } \lambda^r \perp \nu^r$$
 (2)

and
$$X^r \nu_r = X_r \nu^r = \kappa v^2$$
 as $\lambda^r \perp \nu^r$ (3)

(4)

The trajectory is a geodesic if $\kappa = 0$ which is the case as $X_r = 0$ and

$$v\frac{dv}{ds} = 0 \Rightarrow \frac{dv}{ds} = 0 \Rightarrow v = C^t$$

5.15 p174 - Clarification

It is easy to see that the lines of force are the orthogonal trajectories of the equipotential surface $V=C^t$

Consider a curve given by $x^{r} = x^{r}(u)$.

Along that line we have $V=V\left(x^{r}\left(u\right)\right)$. Take u=s as parameter and let's impose that $V\left(s\right)=C^{t}$. We have $\frac{dV}{ds}=\frac{\partial V}{\partial x^{r}}\frac{dx^{r}}{ds}=\frac{\partial V}{\partial x^{r}}\lambda^{r}=0$ with $\lambda^{r}=\frac{dx^{r}}{ds}$ the tangent vector along that curve. But $X_{r}=\frac{\partial V}{\partial x^{r}}$.

So, $X_r\lambda^r=0$ and as X_r is collinear with dx^r (the infinitesimal line element of the line of force) we have $dx_n\lambda^n=a_{mn}dx^m\lambda^n=0$ proving the perpendicularity of both curves.

5.16 p176 - Exercise

For a spherical pendulum, show that the lines of force are geodesics on the sphere on which the particle is constrained to move. What does the theorem stated above tell us in this case?

For the spherical pendulum we have the following situation

Figure 5.3: Physical components of the gravitational force tensor acting on a mass m on a sphere

From the figure it is clear that the only component of the gravitational force acting on the mass is restricted along the $\bar{1}_{\theta}$ vector which, with varying θ lays along a great circle of the sphere which is a geodesic. Hence the lines of force are great circle on the sphere.

For the theorem stated this means that as a mass is launched along a great circle, it will stay on that great circle.

5.17 p176 - Exercise

A system starts from rest at a configuration O. Prove that the trajectory at O is tangent to the line of force through O, and that the first curvature of the trajectory is one-third of the first curvature of the line of force.

From 5.533 we have

$$v\frac{dv}{ds} = X_r \lambda^r, \quad \kappa v^2 = X_r \nu^r \tag{1}$$

From the second expression we have as v=0 at O that $X_r\nu^r=0$, meaning that X_r is perpendicular to ν^r . Also by **5.516**

$$f^r = \frac{dv}{dt}\lambda^r + \kappa v^2 \nu^r \tag{2}$$

we know that the acceleration lies in the elementary two-space containing the tangent and the first normal to the trajectory implying by the previous result that X_r and λ^r are collinear. Note that from (1) we can not conclude (because v=0) from the first expression that $X_r\lambda^r=0$. Indeed, $v\frac{dv}{ds}$ is a derived expression form of $\frac{dv}{dt}$. As $\frac{dv}{dt}$ is not necessarily 0 (otherwise the system would for ever stay on the configuration at O meaning that ds=0, making the expression $v\frac{dv}{ds}$ meaningless.)

Let's consider (2) with $f^r = X^r$:

$$\frac{dv}{dt}\lambda^r + \kappa v^2 \nu^r = X^r \tag{3}$$

We know that at O, X^r is tangent to the trajectory and so $X^r = X\lambda^r$. At the same point we can also define $X^r = X\lambda^{'r}$, with $\lambda^{'r}$ the tangent vector to the line of force. Multiplying (3) with λ^r we see that $\frac{dv}{dt} = X$. So we get for (3)

$$X\lambda^{r} + \kappa v^{2}\nu^{r} = X\lambda^{'r} \tag{4}$$

$$\frac{\delta(4)}{\delta s} \quad \Rightarrow \quad \frac{dX}{ds} \lambda^r + X \underbrace{\frac{\delta \lambda^r}{\delta s}}_{\kappa \nu^r} + \frac{d\kappa}{ds} \underbrace{v^2}_{=0} \nu_r + 2\kappa \underbrace{v \frac{dv}{ds}}_{=\frac{dv}{dt} = X} \nu^r + \kappa \underbrace{v^2}_{=0} \underbrace{\frac{\delta \nu^r}{\delta s}}_{=0} = \frac{dX}{ds} \lambda^{\prime r} + X \underbrace{\frac{\delta \lambda^{\prime r}}{\delta s}}_{=\kappa^{\prime} \nu^{\prime r}} \Rightarrow 3\kappa \quad = (5)$$

(we evaluate the expression at point O and define $\kappa' \nu'^r$ as the first curvature tensor of the line of force evaluated at 0)

$$\frac{dX}{ds}\lambda^{r} + X\kappa\nu^{r} + 2\kappa X\nu^{r} = \frac{dX}{ds}\lambda^{'r} + X\nu^{'r}$$
(6)

$$\times \quad \nu^r \quad \Rightarrow \quad 3\kappa X = \frac{dX}{ds} \underbrace{\lambda^{'r} \nu^r}_{=0} + X\kappa^{'} \nu^{'r} \nu^r \tag{7}$$

$$\Rightarrow 3\kappa = \kappa' \nu'^r \nu^r \tag{8}$$

Note that $\lambda^{'r}\nu^r=0$ as $\lambda^{'r}$ coincides with λ^r . On the other hand we still have to prove that $\nu^{'r}$ coincides with ν^r at O.

$$(6) \times \nu^{'r} \quad \Rightarrow \quad X \kappa \nu^{r} \nu^{'r} + 2\kappa X \nu^{r} \nu^{'r} = X \kappa^{'} \tag{9}$$

$$3\kappa \nu^r \nu^{'r} = \kappa^{'} \tag{10}$$

From (8) and (10) we see that $\nu^r \nu^{'r} = 1$ and so

$$3\kappa = \kappa^{'}$$

5.18 p181-p182 - Clarification Figures 13., 14. and 15.

There are several ways to perform a map of the configuration space of a rigid body with fixed point.

Figure 5.4: Map of the configuration space of a rigid body with fixed point.

Consider figure 5.2(a). We can stretch like an accordion the cuboid along the ϕ axis and bent it so that the planes $\phi=0$ and $\phi=2\pi$ join. We get (b), a torus with square sections. The dimension ϕ is dealt with as a point $P\left(\theta,\phi,\psi\right)$ in the configuration space returns to the same point when varying ϕ to $\phi+2k\pi$.

We can apply the same procedure of stretching and bending for the ψ dimension so that the planes $\Psi = 0$ and $\Psi = 2\pi$ join. We get (c), a torus-like object.

The only dimension left is θ which our multi-dimensional crippled mind can't find a way to reshape this pseudo-torus so that when varying θ we can come back to the same point as started.

5.19 p183 - Clarification for 5.561

The kinetic energy is

5.561.
$$T = \frac{1}{2}I(\dot{\theta}^2 + \dot{\phi}^2 + \dot{\psi}^2 + 2\dot{\phi}\dot{\psi}\cos\theta)$$

We first determine the general form of the kinetic energy for a rigid body rotating around a fixed point. From 5,310 we have

$$v_r = -\omega_{rm} z_m = -\epsilon_{rst} \omega_s z_t \tag{1}$$

$$T = \frac{1}{2} \sum m v_r v_r \tag{2}$$

$$T = \frac{1}{2} \sum m \epsilon_{rst} \omega_s z_t \epsilon_{ruv} \omega_u z_v \tag{3}$$

$$= \frac{1}{2} \sum_{n} m \left(\delta_{su} \delta_{tv} \omega_s \omega_u z_t z_v - \delta_{sv} \delta_{tu} \omega_s \omega_u z_t z_v \right)$$

$$(4)$$

For the case N=3 we get from (4):

$$T = \frac{1}{2} \sum_{m} m \left[\omega_1^2 \left(z_2^2 + z_3^2 \right) + \omega_2^2 \left(z_1^2 + z_3^2 \right) + \omega_3^2 \left(z_1^2 + z_2^2 \right) - 2\omega_1 \omega_2 z_1 z_2 - 2\omega_1 \omega_3 z_1 z_3 - 2\omega_2 \omega_3 z_2 z_3 \right]$$
(5)

Using the result from 5.336 this can be written as

$$T = \frac{1}{2} \left[I_{11}\omega_1^2 + I_{22}\omega_2^2 + I_{33}\omega_3^2 + 2I_{12}\omega_1\omega_2 + 2I_{13}\omega_1\omega_3 + 2I_{23}\omega_2\omega_3 \right]$$
 (6)

Considering that the matrix I_{ij} is symmetric, one can always find an appropriate basis so that the matrix becomes diagonal. Hence (6) can be simplified to

$$T = \frac{1}{2} \left[I_{11} \omega_1^2 + I_{22} \omega_2^2 + I_{33} \omega_3^2 \right] \tag{7}$$

Of course the ω_i in (7) are not the Euler angles and we have to express the ω_i as functions of the Euler angles.

Figure 5.5: Euler angles

Consider the Euler angles as in figure 5.5. The resulting angular velocity of the rigid body can be expressed as

$$\overline{\omega} = \dot{\psi}\overline{z} + \dot{\theta}\overline{N} + \dot{\phi}\overline{z}_1 \tag{8}$$

The projection of $\overline{\omega}$ on the basis $\overline{x}_1, \overline{y}_1, \overline{z}_1$ (which we choose fixed to the rigid body) will then coincide with the ω_i .

We determine the components of $\overline{z}, \overline{N}, \overline{z}_1$ with $\overline{x}_1, \overline{y}_1, \overline{z}_1$ as basis.

We have

$$\begin{cases}
\overline{N} = \cos \phi \, \overline{y}_1 + \sin \phi \, \overline{x}_1 \\
\overline{z} = \cos \theta \, \overline{z}_1 - \sin \theta \, \overline{x}_0 \\
\overline{x}_0 = \cos \phi \, \overline{x}_1 - \sin \phi \, \overline{y}_1
\end{cases} \tag{9}$$

$$\begin{cases}
\overline{N} = \cos \phi \, \overline{y}_1 + \sin \phi \, \overline{x}_1 \\
\overline{z} = \cos \theta \, \overline{z}_1 - \sin \theta \, \cos \phi \, \overline{x}_1 + \sin \theta \, \sin \phi \, \overline{y}_1
\end{cases}$$

$$\Rightarrow \begin{cases} \overline{N} = \cos \phi \ \overline{y}_1 + \sin \phi \ \overline{x}_1 \\ \overline{z} = \cos \theta \ \overline{z}_1 - \sin \theta \ \cos \phi \ \overline{x}_1 + \sin \theta \ \sin \phi \ \overline{y}_1 \end{cases}$$
(10)

Hence,

$$\overline{\omega} = \dot{\psi}\cos\theta \ \overline{z}_1 - \dot{\psi}\sin\theta \ \cos\phi \ \overline{x}_1 + \dot{\psi}\sin\theta \ \sin\phi \ \overline{y}_1 + \dot{\theta}\cos\phi \ \overline{y}_1 + \dot{\theta}\sin\phi \ \overline{x}_1 + \dot{\phi}\overline{z}_1$$
 (11)

giving

$$\begin{cases}
\omega_1 = \dot{\theta} \sin \phi - \dot{\psi} \sin \theta \cos \phi \\
\omega_2 = \dot{\psi} \sin \theta \sin \phi + \dot{\theta} \cos \phi \\
\omega_3 = \dot{\psi} \cos \theta + \dot{\phi}
\end{cases} (12)$$

In the case considered $I_{11}=I_{22}=I_{33}=I.$ Plugging (12) in (7) gives indeed

$$T = \frac{1}{2} I \left(\dot{\theta}^2 + \dot{\phi}^2 + \dot{\psi}^2 + 2 \dot{\phi} \dot{\psi} \cos \theta \right)$$

5.20 p186 - Exercise 1

If a vector at the point with coordinates (1,1,1) in Euclidean 3-space has components (3,-1,2), find the contra-variant, covariant and physical components in spherical polar coordinates.

The tensor T_n to consider is (3, -1, 2) - (1, 1, 1) = (2, -2, 1).

The Jacobian matrix for the transformation $z^n \to x^k$, evaluated at the point (1,1,1) is

$$J_{(1,1,1)} = \begin{pmatrix} \frac{x}{r} & \frac{y}{r} & \frac{z}{r} \\ \frac{xz}{r^2\sqrt{x^2+y^2}} & \frac{yz}{r^2\sqrt{x^2+y^2}} & \frac{-(x^2+y^2)}{r^2\sqrt{x^2+y^2}} \\ \frac{-y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'^n} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{\sqrt{2}}{3} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{3} \end{pmatrix}$$

$$(4)$$

We have the metric tensor evaluated at (1, 1, 1)

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 (5)

$$\Rightarrow \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{3} \\ -2 \end{pmatrix}$$
 (6)

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{2} \\ -4 \end{pmatrix} \tag{7}$$

And the physical components

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_{ph.}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{2} \\ -4 \end{pmatrix}$$
(8)

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{\frac{2}{3}} \\ -2\sqrt{2} \end{pmatrix} \tag{9}$$

Another way to find the physical components is to project orthogonally the tensor on the unit vectors of a local Cartesian coordinate system, oriented along the unit vectors \overline{e}_r , \overline{e}_θ , \overline{e}_ϕ corresponding to the vector P(1,1,1) with modulus $|P|=\sqrt{3}$. We have for the tensor $T_n(2,-2,1)$ with modulus $|T_n|=3$ as component along \overline{e}_r :

$$|T_n|\cos\alpha = |T_n|\frac{\langle T_n, P\rangle}{|T_n||P|} \tag{10}$$

$$=|T_n|\frac{2-2+1}{|T_n||P|}\tag{11}$$

$$=\frac{1}{\sqrt{3}}\tag{12}$$

For the component along \bar{e}_{θ} we first have to determine the vector \bar{e}_{θ} . As first equation we have the

orthogonality condition with \overline{e}_r and putting $\overline{e}_\theta = (a, b, c)$, get $\langle \overline{e}_r, \overline{e}_\theta \rangle = a + b + c = 0$. As \overline{e}_θ lies in the plane (1,1,0) - (0,0,0) - (0,0,1) we can put a = b and get $\overline{e}_{\theta} = \frac{1}{\sqrt{6}}(1,1,-2)$ and get for the tensor $T_n(2,-2,1)$ as component along \overline{e}_{θ} :

$$|T_n|\cos\beta = |T_n| \frac{\langle T_n, \overline{e}_\theta \rangle}{|T_n|}$$

$$= |T_n| \frac{2 - 2 - 2}{|T_n| \sqrt{6}}$$
(13)

$$=|T_n|\frac{2-2-2}{|T_n|\sqrt{6}}\tag{14}$$

$$= -\frac{\sqrt{2}}{\sqrt{3}}\tag{15}$$

For the component along \overline{e}_{ϕ} we first have to determine the vector \overline{e}_{ϕ} . As first equation we have the orthogonality condition with the pair \overline{e}_r , \overline{e}_θ and get $\overline{e}_\phi = \overline{e}_r \times \overline{e}_\theta = \frac{1}{\sqrt{3}\sqrt{6}} (-3,3,0) = \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$. For the tensor $T_n(2, -2, 1)$ as component along \overline{e}_{ϕ} :

$$|T_n|\cos\gamma = |T_n|\frac{\langle T_n, \overline{e}_\phi\rangle}{|T_n|}$$
 (16)

$$= |T_n| \frac{-2 - 2}{|T_n| \sqrt{2}}$$

$$= -\frac{4}{\sqrt{2}}$$
(17)

$$= -\frac{4}{\sqrt{2}} \tag{18}$$

$$= -2\sqrt{2} \tag{19}$$

giving

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_{ph.}} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{\frac{2}{3}} \\ -2\sqrt{2} \end{pmatrix} \tag{20}$$

as in (9).

5.21 p186 - Exercise 2

In cylindrical coordinates (r, ϕ, z) in Euclidean 3-space, a vector field is such that the vector at each point points along the parametric line of ϕ , in the sense of ϕ increasing, and its magnitude is kr, where k is a constant. Find the contra-variant, covariant and physical components of this vector field.

We can work backwards, with the physical components as starting point. Indeed, at a point $P(r, \phi, z)$ the tensor of this vector field will have (0, kr, 0) as physical components in the cylindrical coordinates (r, ϕ, z) system.

We have the metric tensor

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1}$$

Giving

$$\begin{cases}
X_1 = h_1 X_1^{phys.} = 0 \\
X_2 = h_2 X_2^{phys.} = kr^2 \\
X_3 = h_3 X_3^{phys.} = 0
\end{cases}$$
(2)

and

$$\begin{cases}
X^{1} = \frac{X_{1}^{phys.}}{h_{1}} = 0 \\
X^{2} = \frac{X_{2}^{phys.}}{h_{2}} = k \\
X^{3} = \frac{X_{3}^{phys.}}{h_{3}} = 0
\end{cases}$$
(3)

♦

5.22 p186 - Exercise 3

Find the physical components of velocity and acceleration along the parametric lines of cylindrical coordinates in terms of the and their derivatives with respect to time.

We have the metric tensor

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1}$$

and the contravariant velocities

$$\begin{cases}
v^{1} = \frac{dr}{dt} \\
v^{2} = \frac{d\phi}{dt} \\
v^{3} = \frac{dz}{dt}
\end{cases}$$
(2)

giving by $v_K^{phys.} = h_K v^K$

$$\begin{cases}
v_r = \frac{dr}{dt} \\
v_\phi = r\frac{d\phi}{dt} \\
v_z = \frac{dz}{dt}
\end{cases}$$
(3)

For the acceleration using $f^r = \frac{\delta v^r}{\delta t}$ and the Christoffel symbols being

$$\begin{cases} \Gamma^m_{nk} = 0 & \forall \quad (nk) \neq (r, \theta), (\theta, \theta) \\ \\ \Gamma^\theta_{r\theta} = \frac{1}{r} & \text{and} \quad \Gamma^r_{\theta\theta} = -r \end{cases}$$
 (4)

we have

$$\begin{cases} f^{1} = \frac{dv^{1}}{dt} - r \underbrace{v^{2} \frac{dx^{2}}{dt}}_{=(v^{2})^{2}} \\ f^{2} = \frac{dv^{2}}{dt} + \underbrace{\frac{1}{r} v^{1} \frac{dx^{2}}{dt} + \frac{1}{r} v^{2} \frac{dx^{2} 1}{dt}}_{=\frac{2}{r} v^{1} v^{2}} \end{cases}$$

$$f^{3} = \frac{dv^{3}}{dt}$$

$$(5)$$

giving by $f_K^{phys.} = h_K f^K$

$$\begin{cases}
f_r = \frac{dv^1}{dt} - r(v^2)^2 \\
f_{phi} = r\frac{dv^2}{dt} + r\frac{2}{r}v^1v^2 \\
f_z = \frac{dv^3}{dt}
\end{cases} (6)$$

$$\begin{cases}
f_r = \frac{dv^1}{dt} - r \left(v^2\right)^2 \\
f_{phi} = r \frac{dv^2}{dt} + r \frac{2}{r} v^1 v^2 \\
f_z = \frac{dv^3}{dt}
\end{cases}$$

$$\begin{cases}
f_r = \frac{d^2 r}{dt^2} - r \left(\frac{d\phi}{dt}\right)^2 \\
f_{phi} = r \frac{d^2 \phi}{dt^2} + 2 \frac{dr}{dt} \frac{d\phi}{dt}
\end{cases}$$

$$\Rightarrow \begin{cases}
f_z = \frac{d^2 z}{dt^2}
\end{cases}$$
(7)

5.23 p186 - Exercise 4

A particle moves on a sphere under the action of gravity. Find the contra-variant an covariant components of the force, using colatitude and azimuth, and write down the equation of motion.

We determine first the physical components of the force.

Figure 5.6: Physical components of the gravitational force tensor acting on a mass m on a sphere

We note first that the unit vector $\overline{1}_{\phi}$ is perpendicular to the place formed by the vectors $\overline{1}_{\theta}$, \overline{F} and s the force has no components projected on this vector. The vector \overline{F} is parallel with the axis of reference of the sphere with radius R and so the physical components become

$$\begin{cases} F_{\phi}^{phys} = 0 \\ F_{\theta}^{phys} = mg\sin\theta \end{cases}$$

$$\begin{cases} F^{\phi} = 0 & F_{\phi} = 0 \\ F^{\theta} = \frac{1}{R}mg\sin\theta & F_{\theta} = Rmg\sin\theta \end{cases}$$

$$(1)$$

We use equation 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases}$$
(3)

with for our case

$$T = \frac{1}{2}mR^2 \left(\dot{\theta}^2 + \sin^2\theta \ \dot{\phi}^2\right) \tag{4}$$

and get the set of equation of motion (the second column gives the dimensional analysis as a check for consistency)

$$\begin{cases} \frac{\ddot{\theta}}{\dot{\phi}} = -2\cot\theta \ \dot{\theta} & : \quad \frac{[T]^{-2}}{[T]^{-1}} \cong [T]^{-1} \\ \ddot{\theta} - \left(\dot{\phi}\right)^2 \sin\theta \cos\theta = \frac{g}{R}\sin\theta & : \quad [T]^{-2} + \left([T]^{-1}\right)^2 \cong \frac{[L][T]^{-2}}{[L]} \end{cases}$$
(5)

Let's check the special case when $\dot{\phi} = 0$.

The first equation can be rewritten and gives of course $\phi = C$ while the second equation becomes

$$\ddot{\theta} = \frac{g}{R}\sin\theta$$

which is similar to the equation of the simple gravity pendulum.

♦

5.24p186 - Exercise 5

Consider the motion of a particle on a smooth torus under no forces except normal reaction. The geometrical line element may be written

$$ds^2 = (a - b\cos\theta)^2 d\phi^2 + b^2 d\theta^2$$

where ϕ is an azimuthal angle and θ an angular displacement from the equatorial plane. Show that the path of a particle satisfies the following two differential equations in which his a constant

(a)
$$(a - b\cos\theta)^2 \frac{d\phi}{ds} = h$$
(b)
$$b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

We use equation 5.212. and 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases} \tag{1}$$

with for our case

$$T = \frac{1}{2}m\left(b^2\dot{\theta}^2 + (a - b\cos\theta)^2 \dot{\phi}^2\right)$$
 (2)

$$\begin{cases} \frac{\partial T}{\partial \dot{\phi}} = m \left(a - b \cos \theta \right)^2 \dot{\phi} & \frac{\partial T}{\partial \phi} = 0 \\ \frac{\partial T}{\partial \dot{\theta}} = m b^2 \dot{\theta} & \frac{\partial T}{\partial \theta} = m b \left(a - b \cos \theta \right) \dot{\phi}^2 \sin \theta \end{cases}$$
(3)

giving

$$\begin{cases}
(a - b\cos\theta)^2 \ddot{\phi} + 2b(a - b\cos\theta) \dot{\theta}\dot{\phi}\sin\theta = 0 \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = 0
\end{cases}$$

$$(4)$$

$$\Rightarrow \begin{cases}
(a - b\cos\theta) \ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = 0
\end{cases}$$

$$(5)$$

$$\Rightarrow \begin{cases} (a - b\cos\theta)\ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\ b^2\ddot{\theta} - b(a - b\cos\theta)\dot{\phi}^2\sin\theta = 0 \end{cases}$$
 (5)

In the first equation, put $y \equiv \dot{\phi}$ giving for the first equation:

$$\frac{dy}{y} = -2b \frac{\sin\theta d\theta}{(a - b\cos\theta)} \tag{6}$$

$$\Leftrightarrow \frac{dy}{y} = -2\frac{d(a - b\cos\theta)}{(a - b\cos\theta)}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C$$

$$\Rightarrow \dot{\phi} = C(a - b\cos\theta)^{-2}$$
(8)

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C \tag{8}$$

$$\Rightarrow \qquad \dot{\phi} = C \left(a - b \cos \theta \right)^{-2} \tag{9}$$

Note that $\dot{\phi}$ is a time derivative. But as we are on a geodesic, **5.226**. stands and so v is constant as $\frac{dv}{ds} = 0$. Using $v = \frac{ds}{dt}$, (9) can be written as

$$(a - b\cos\theta)^2 \frac{d\phi}{dt} = C \tag{10}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} \underbrace{\frac{ds}{dt}}_{=v} = C \tag{11}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} = h \quad \text{with } h = \frac{C}{v}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} = h \quad \text{with } h = \frac{C}{v}$$
 (12)

Next, we don't use the second equation in (5) but the line element equation instead

$$ds^{2} = (a - b\cos\theta)^{2} d\phi^{2} + b^{2}d\theta^{2}$$
(13)

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = \left(a - b\cos\theta\right)^2 + b^2\left(\frac{d\theta}{d\phi}\right)^2 \tag{14}$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{15}$$

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = (a - b\cos\theta)^2 + b^2 \left(\frac{d\theta}{d\phi}\right)^2$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2$$

$$(15)$$

$$(12) : \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

$$(16)$$

5.25 p186 - Exercise 6

Consider the motion of a particle under gravity on the smooth torus of the previous problem, the equatorial plane of the torus being horizontal. Taking the mass of the particle to unity, so that $V = bg \sin \theta$, show that the path of the particle satisfies the following two differential equations.

(a)
$$(E - V) (a - b\cos\theta)^2 \frac{d\phi}{ds} = h$$
(b)
$$b^2 \left(\frac{d\theta}{d\phi}\right)^2 = (E - V) \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

where E is the total energy, h is a constant and $d\sigma$ is the action line element.

The line of reasoning is quite the same as problem (5). We use equation 5.212. and 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases} \tag{1}$$

with for our case

$$T = \frac{1}{2}m\left(b^2\dot{\theta}^2 + (a - b\cos\theta)^2 \dot{\phi}^2\right)$$
 (2)

$$\begin{cases}
\frac{\partial T}{\partial \dot{\phi}} = m \left(a - b \cos \theta \right)^2 \dot{\phi} & \frac{\partial T}{\partial \phi} = 0 \\
\frac{\partial T}{\partial \dot{\theta}} = m b^2 \dot{\theta} & \frac{\partial T}{\partial \theta} = m b \left(a - b \cos \theta \right) \dot{\phi}^2 \sin \theta
\end{cases} \tag{3}$$

giving (as $F_{\phi} = -\partial_{\phi}V = 0$ and $F_{\theta} = -\partial_{\theta}V = -bg\cos\theta$)

$$\begin{cases}
(a - b\cos\theta)^2 \ddot{\phi} + 2b(a - b\cos\theta) \dot{\theta}\dot{\phi}\sin\theta = 0 \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = -bg\cos\theta
\end{cases}$$

$$\begin{cases}
(a - b\cos\theta) \ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = -bg\cos\theta
\end{cases}$$
(5)

$$\Rightarrow \begin{cases} (a - b\cos\theta)\ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\ b^2\ddot{\theta} - b(a - b\cos\theta)\dot{\phi}^2\sin\theta = -bg\cos\theta \end{cases}$$
 (5)

In the first equation, put $y \equiv \dot{\phi}$ giving for the first equation:

$$\frac{dy}{y} = -2b \frac{\sin\theta d\theta}{(a - b\cos\theta)} \tag{6}$$

$$\Leftrightarrow \frac{dy}{y} = -2\frac{d(a - b\cos\theta)}{(a - b\cos\theta)} \tag{7}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C \tag{8}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C$$

$$\Rightarrow \dot{\phi} = C(a - b\cos\theta)^{-2}$$
(9)

Note that $\dot{\phi}$ is a time derivative. Using $\frac{ds}{dt} = v = \sqrt{2T} = \sqrt{2}\sqrt{E-V}$, (9) can be written as

$$(a - b\cos\theta)^2 \frac{d\phi}{dt} = C \tag{10}$$

$$\Leftrightarrow (a - b\cos\theta)^{2} \frac{d\phi}{d\sigma} \underbrace{\frac{d\sigma}{ds}}_{=\sqrt{E-V}} \underbrace{\frac{ds}{dt}}_{=\sqrt{2}\sqrt{E-V}} = C$$

$$\Leftrightarrow (E - V) (a - b\cos\theta)^{2} \frac{d\phi}{d\sigma} = h$$
(11)

$$\Leftrightarrow \qquad (E - V) \left(a - b \cos \theta \right)^2 \frac{d\phi}{d\sigma} = h \tag{12}$$

with $h = \frac{C}{\sqrt{2}}$.

Next, we don't use the second equation in (5) but the line element equation instead

$$ds^2 = (a - b\cos\theta)^2 d\phi^2 + b^2 d\theta^2 \tag{13}$$

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = \left(a - b\cos\theta\right)^2 + b^2\left(\frac{d\theta}{d\phi}\right)^2 \tag{14}$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{15}$$

$$\Leftrightarrow b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{d\sigma}\right)^{-2} \left(\frac{d\sigma}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{16}$$

(12) :
$$b^{2} \left(\frac{d\theta}{d\phi}\right)^{2} = (E - V)^{2} \frac{1}{(E - V)} \frac{(a - b\cos\theta)^{4}}{h^{2}} - (a - b\cos\theta)^{2}$$
 (17)

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = (E - V) \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2 \tag{18}$$

5.26 p187 - Exercise 7

A dynamical system consists of a thin straight smooth tube which can rotate in a horizontal plan about one end O, together with a bead B inside the tube connected to O by a spring. Taking as coordinates r = OB and $\theta =$ angle of rotation of the tube about O, the potential energy V is a function of r only. Show that in configuration space, all the lines of force are geodesics for the kinematical line element.

Well understanding the question is of course paramount:

- The tube mentioned plays only a functional role to hold the spring "stiff" along the line *OB* as its mass can be neglected. It will play no further role in the dynamics of the system.
- Nothing is said that the system contains any force that keeps the angular velocity at a constant speed ω .

That being clarified, one can expect that the system will behave as a harmonic oscillator along the line OB and that ,given an initial rotational momentum, the angular momentum will be a constant during the trajectory of the bead. This means that the bead will oscillate along OB but as the angular momentum is a constant and given $m\omega r^2 = C(m = \text{mass of the bead})$, the instant radial speed will vary.

The only conservative force acting on the bead will be that of the spring and will be $V = \frac{1}{2}k(r - r_0)^2$, r_0 being the point along OB where the spring is not stretched. The generalized forces are $F_r = -k(r - r_0)$ and $F_\theta = 0$ meaning the lines of force are straight lines pointing to the origin O.

About the geodesics. Clearly the instantaneous velocity of the bead is $\overrightarrow{v} = \dot{r} \overrightarrow{1}_r + \dot{\theta} r \overrightarrow{1}_{\theta}$ giving as kinetic energy $T = \frac{1}{2} \left(\dot{r}^2 + \dot{\theta}^2 r^2 \right)$ giving as kinematic line element

$$ds^2 = 2Tdt = dr^2 + r^2d\theta^2$$

Referring to 3.101, the configuration space is flat and the geodesics are straight lines. As the line forces are straight lines towards the origin O, these line of force are also geodesics in the configuration space equipped with the kinematical line element.

•

p187 - Exercise 8 5.27

Show that if a line of force is a geodesic for the kinematical line element, it is also a geodesic for the action line element.

From 5.516 and 5.529 we have

$$X^r = v\frac{dv}{ds}\lambda^r + \kappa v^2 \nu^r \tag{1}$$

As the line of force is a geodesic, we can start with a velocity tangent to the line of force, ensuring that the trajectory of the dynamical system will lie on the geodesic line of force (see page 175) and thus $\kappa = 0$ for the trajectory. Hence,

$$X^r = v \frac{dv}{ds} \lambda^r \tag{2}$$

expressing now the function of the action line element $d\sigma = \sqrt{E - V} ds$ we have

$$X^r = v \frac{dv}{ds} \lambda^r \tag{3}$$

$$= v \frac{dv}{ds} \frac{dx^r}{d\sigma} \frac{d\sigma}{ds}$$

$$= v \frac{dv}{ds} \frac{dx^r}{d\sigma} \sqrt{E - V}$$

$$(5)$$

$$= v\frac{dv}{ds}\frac{dx^r}{d\sigma}\sqrt{E - V} \tag{5}$$

$$= \sqrt{E - V} v \frac{dv}{ds} \lambda^{\prime r} \tag{6}$$

As stated page 177, this dynamical system will describe in configuration space a geodesic for the action metric, meaning that $\lambda^{'r}$ is tangent to this geodesic and that X^r , being collinear with $\lambda^{'r}$ (with the factor $\sqrt{E-V}v\frac{dv}{ds}$), is also tangent to this geodesic. Hence, this line of force is also a geodesic for the action line element.

5.28 p187 - Exercise 9

Using the methods of Chapter II and 5.532, show that the trajectories of a dynamical system with kinetic energy T and potential energy V satisfy the variational equation

$$\delta \int_{t_1}^{t_2} (T - V) dt = 0$$

Let's start with a function L defined by

$$dL = (T - V)du (1)$$

(2)

As in figure 2 page 38 we will make L a function of two parameters, u and v, the latter defining a family of curves between the begin point u_1 and the endpoint u_2 .

$$L = L(u, v) \tag{3}$$

with

$$(T - V)(u_1, v) = (T - V)_1 \quad (T - V)(u_2, v) = (T - V)_2 \quad \forall v \tag{4}$$

We will try to minimize (with respect to v) the following functional

$$L == \int_{u_1}^{u_2} (T - V)(u, v) du \tag{5}$$

It's derivative with respect to v

$$\frac{dL}{dv} = \int_{u_{\perp}}^{u_{2}} \frac{\partial (T - V)(u, v)}{\partial v} du \tag{6}$$

We express (T-V)(u,v) as a function of the generalized coordinates x^r and their derivatives. Then,

$$\frac{\partial (T-V)(u,v)}{\partial v} = \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \frac{\partial \dot{x^r}}{\partial v} + \frac{\partial (T-V)(u,v)}{\partial x^r} \frac{\partial x^r}{\partial v}$$
(7)

where $\dot{x^r} = \frac{\partial x^r}{\partial u}$.

We have

$$\frac{\partial \dot{x}^r}{\partial v} = \frac{\partial}{\partial v} \frac{\partial x^r}{\partial u} = \frac{\partial}{\partial u} \frac{\partial x^r}{\partial v}$$
 (8)

So,

$$\frac{\partial (T-V)(u,v)}{\partial v} = \frac{\partial (T-V)(u,v)}{\partial x^r} \frac{\partial}{\partial u} \frac{\partial x^r}{\partial v} + \frac{\partial (T-V)(u,v)}{\partial x^r} \frac{\partial x^r}{\partial v}$$
(9)

Consider the expression

$$\int_{u_1}^{u_2} d(AB) = \int_{u_1}^{u_2} Ad(B) + \int_{u_1}^{u_2} Bd(A)$$
 (10)

$$\Rightarrow \int_{u_1}^{u_2} Ad(B) = \int_{u_1}^{u_2} d(AB) - \int_{u_1}^{u_2} Bd(A)$$
 (11)

Put $B = \frac{\partial x^r}{\partial v}$ and $A = \frac{\partial (T-V)(u,v)}{\partial x^r}$ and putting this inside (9) and (6):

$$\frac{dL}{dv} = \int_{u_1}^{u_2} d\left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r} \frac{\partial x^r}{\partial v}\right) - \int_{u_1}^{u_2} \frac{\partial x^r}{\partial v} d\left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r}\right) + \int_{u_1}^{u_2} \frac{\partial (T - V)(u, v)}{\partial x^r} \frac{\partial x^r}{\partial v} du$$
(12)

$$= \left. \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \frac{\partial x^r}{\partial v} \right|_{u_1}^{u_2} - \left[\int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \frac{\partial x^r}{\partial v} du \right]$$
(13)

We express now the results in term of infinitesimals. A change in "length" δL when we pas from a curve v to a curve v+dv is

$$\delta L = \frac{dL}{dv} \delta v \tag{14}$$

$$= \frac{\partial (T-V)(u,v)}{\partial \dot{x}^r} \frac{\partial x^r}{\partial v} \delta v \bigg|_{u_1}^{u_2} - \int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x}^r} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \frac{\partial x^r}{\partial v} \delta v du \quad (15)$$

$$= \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \delta x^r \bigg|_{u_1}^{u_2} - \int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \delta x^r du \tag{16}$$

The first term vanish as at the endpoints the δx^r are zero and hence we get

$$\delta L = -\int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r} \right) - \frac{\partial (T - V)(u, v)}{\partial x^r} \right) \delta x^r du \tag{17}$$

As the δx^r are arbitrary, we must have for $\delta L = 0$

$$\frac{\partial}{\partial u} \left(\frac{\partial (T - V)(u)}{\partial \dot{x}^r} \right) - \frac{\partial (T - V)(u)}{\partial x^r} = 0 \tag{18}$$

This is the same equation as **5.532** which describe the motion of a system with a conservative force.

♦

5.29 p188 - Exercise 10

Using the definition **5.5335** for I_{rs} , prove that if X_r is any non-zero vector, then $I_{rs}X_rX_s \ge 0$, and that the equality occurs only if all particles of the system are distributed on a single line.

By 5.335

$$I_{rs} = \delta_{rs} \sum mz_q z_q - \sum mz_r z_s \tag{1}$$

Multiplying by X_rX_s :

$$I_{rs}X_rX_s = \underbrace{X_rX_s\delta_{rs}}_{=X_rX_r} \sum mz_qz_q - \sum m \underbrace{z_rX_r}_{=|z|_{(m)}|X|\cos\theta_m = |z|_{(m)}|X|\cos\theta_m}$$
(2)

with θ_m the angle between the vector X_r and the position vector z_m of a particle.

$$I_{rs}X_{r}X_{s} = |X|^{2} \sum_{m} m |z|_{(m)}^{2} - |X|^{2} \sum_{m} m |z|_{(m)}^{2} \cos^{2} \theta_{m}$$
(3)

$$= |X|^2 \sum_{m} m |z|_{(m)}^2 \left(1 - \cos^2 \theta_m\right) \tag{4}$$

As we have $(1 - \cos^2 \theta_m) \in [0, 1]$ it is clear that $I_{rs}X_rX_s \ge 0$ and that it only will be zero when $\theta_m = 0 \quad \forall m$ which means that all position vectors are collinear wit X_r and are on a line.

•

5.30 p188 - Exercise 11

Let $Oz_1z_2z_3$ and $O'z_1'z_2'z_3'$ be two sets of Cartesian axes parallel to one another. Consider a mass distribution and let $I_{rs}, I_{rs}^{'}$ be its moment of inertia tensors calculated for these two axes in accordance with **5.335**. Writing $I_{rs}^{'} = I_{rs} + K_{rs}$, evaluate K_{rs} .

By **5.335**

$$I_{rs} = \delta_{rs} \sum mz_q z_q - \sum mz_r z_s \tag{1}$$

As the axes of both coordinate systems are parallel, we can write

$$z_q' = z_q + b_q \tag{2}$$

which gives for (1):

$$I'_{rs} = \delta_{rs} \sum_{rs} m(z_q + b_q)(z_q + b_q) - \sum_{rs} m(z_r + b_r)(z_s + b_s)$$
 (3)

$$= \begin{cases}
\delta_{rs} \sum mz_q z_q - \sum mz_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\
+\delta_{rs} \sum mb_q b_q - \sum mb_r b_s
\end{cases}$$

$$= \begin{cases}
I_{rs} \\
+\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\
+\delta_{rs} \sum mb_q b_q - \sum mb_r b_s
\end{cases}$$
(5)

$$= \begin{cases} I_{rs} \\ +\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\ +\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\ +\delta_{rs} \sum mb_q b_q - \sum mb_r b_s \end{cases}$$

$$(5)$$

(6)

The last term $\delta_{rs} \sum mb_qb_q - \sum mb_rb_s$ can be interpreted as a moment of inertia tensor for a single virtual mass $M = \sum m$ situated at the point b_q seen from the axes $Oz_1z_2z_3$. Let's denote it with $I_{rs} = \sum m \left(\delta_{rs} b_q b_q - b_r b_s \right).$

The other two terms can also be seen as a rigid body of particles distributed in a plane perpendicular to one of the axis i.e. all particles are transported perpendicularity to a plane. We note that $\delta_{rs} \sum mb_q z_q - \sum mb_r z_s = \delta_{rs} \sum mb_q z_q - \sum mb_s z_r$. This follows immediately from the symmetric character of $I'_{rs}, I_{rs}, \tilde{I}_{rs}$.

Denoting $\overline{I}_{rs} = \delta_{rs} \sum mb_q z_q - \sum mb_r z_s + \delta_{rs} \sum mb_q z_q - \sum mb_s z_r$ giving

$$K_{rs} = I_{rs} + \overline{I}_{rs} + \tilde{I}_{rs}$$

5.31 p188 - Exercise 12

A rigid body is turning about a fixed point. Referred to right-handed axes $Oz_1z_2z_3$, its angular velocity tensor has components

$$\omega_{23} = 1$$
, $\omega_{31} = 2$, $\omega_{12} = 3$

If we refer the same motion to the axis $O^{'}z_{1}^{'}z_{2}^{'}z_{3}^{'}$, such that the axis $O^{'}z_{1}^{'}$ is $Oz_{1}^{'}$ reversed, while $z_{2}z_{3}$ coincide with $O^{'}z_{2}^{'}z_{3}^{'}$, what are the $\omega_{rs}^{'}$ and $\omega_{rs}^{'}$?

We use the following identities

$$\begin{cases}
5.312 & \omega_{rm} = -\omega_{mr} \\
5.316 & \omega_{rs} = \epsilon_{rsn}\omega_{n} \\
5.317 & \omega_{1} = \omega_{23} & \omega_{2} = \omega_{31} & \omega_{3} = \omega_{12}
\end{cases} \tag{1}$$

The angular velocity tensor is

$$\Omega = \begin{pmatrix} 0 & 3 & -2 \\ -3 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$
(2)

giving by 5.317

$$\omega_1 = \omega_{23} \quad \omega_2 = \omega_{31} \quad \omega_3 = \omega_{12} \tag{3}$$

From pure geometrical consideration we can conclude that

$$\omega_{1}^{'} = -\omega_{1} \quad \omega_{2}^{'} = \omega_{2} \quad \omega_{3}^{'} = \omega_{3} \tag{4}$$

Figure 5.7: Angular velocity vectors in mirrored axis

Indeed, the ω_i can be considered as vectors, objects independent from the chosen coordinate system. Reversing the direction of the first axis, will for the observer looking along the positive direction, look as if the ω_1 is reversed. We now use $\omega_{rs} = \epsilon_{rsn}\omega_n$ but here we have to be careful with ϵ_{rsn} when using the equation in the transformed coordinate system.

with ϵ_{rsn} when using the equation in the transformed coordinate system. Looking at **4.312** $\epsilon_{stu}^{'}=\epsilon_{mnr}\frac{\partial z_m}{\partial z_s'}\frac{\partial z_n}{\partial z_t'}\frac{\partial z_r}{\partial z_u'}$ and noting that $\frac{\partial z_1}{\partial z_1'}=-1$ and 1 or 0 for the others, we have $\epsilon_{stu}^{'}=-\epsilon_{mnr}$. Now with **5.316** we get

$$\omega_{rs}^{'} = -\epsilon_{rsn}\omega_{n}^{'} \tag{5}$$

giving

$$\omega_{12}^{'} = -\omega_{12} \quad \omega_{13}^{'} = -\omega_{13} \quad \omega_{23}^{'} = \omega_{23}$$
 (6)

Giving

$$\Omega' = \begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \tag{7}$$

•

5.32 p188 - Exercise 13

Consider three rigid bodies, S, S', S", turning about a common point. If all angular velocities are referred to common axes, show that the angular velocity tensors of S" relative to S is the sum of the angular velocity tensors of S' relative to S and of S" relative to S'.

Consider the following three transformation from one axes system to another

$$\begin{cases} z_{r}^{'} = A_{rm}z_{m} & z_{r} = A_{mr}z_{m}^{'} & A_{mp}A_{mq} = \delta_{pq} & A_{pm}A_{qm} = \delta_{pq} \\ z_{r}^{"} = B_{rm}z_{m}^{'} & z_{r}^{'} = B_{mr}z_{m}^{"} & B_{mp}B_{mq} = \delta_{pq} & B_{pm}B_{qm} = \delta_{pq} \\ z_{r}^{"} = C_{rm}z_{m} & z_{r} = C_{mr}z_{m}^{"} & C_{mp}C_{mq} = \delta_{pq} & C_{pm}C_{qm} = \delta_{pq} \end{cases}$$

$$(1)$$

We then have,

$$\begin{cases}
\omega'_{pq}\left(S',S\right) = -A_{pm}A_{qm}^{\cdot} \\
\omega_{pq}^{"}\left(S'',S'\right) = -B_{pm}B_{qm}^{\cdot} \\
\omega_{pq}^{"}\left(S'',S\right) = -C_{pm}C_{qm}^{\cdot}
\end{cases} \tag{2}$$

From (1) we see that

$$C_{rq} = B_{rm} A_{mq} \tag{3}$$

And thus

$$\omega_{pq}^{"}\left(S^{"},S\right) = -B_{pk}A_{km}(B_{qn}\dot{A}_{nm})\tag{4}$$

$$\Rightarrow \underbrace{-A_{km}A_{nm}}_{=\omega'_{kn}(S',S)}B_{pk}B_{qn} - \underbrace{A_{km}A_{nm}}_{=\delta_{kn}}B_{pk}B_{qn}$$

$$(5)$$

$$\omega_{pq}^{"}(S, S) = -B_{pk}A_{km}(B_{qn}A_{nm}) \tag{4}$$

$$\Rightarrow \qquad = \underbrace{-A_{km}A_{nm}}_{=\omega'_{kn}}B_{pk}B_{qn} - \underbrace{A_{km}A_{nm}}_{=\delta_{kn}}B_{pk}B_{qn}$$

$$\Rightarrow \qquad = \omega'_{kn}(S, S) = -\delta_{kn}$$

$$\Rightarrow \qquad = \omega'_{kn}(S, S)B_{pk}B_{qn} - \underbrace{B_{pn}B_{qn}}_{=-\omega_{pq}^{"}(S, S, S)}$$
(6)

The fist term of the right side expression is a bilinear map of the tensor $\omega_{kn}^{'}\left(S^{'},S\right)$ from the reference axis S' to S". Hence we get

$$\omega_{pq}^{"}(S^{"},S) = \omega_{pq}^{"}(S^{"},S') + \omega_{pq}^{"}(S',S)$$
 (7)

5.33 p188 - Exercise 14

A freely moving particle is observed from a platform which rotates with angular velocity $\omega_r = n\delta_{r3}$, where n is constant, relative to a Newtonian frame S in which z_r are rectangular Cartesians. Use **5.421** to find the equations of motion relative to S' in terms of coordinates z'_r in S', such that the axis of z'_3 coincides permanently with the axis of z_3 .

 ${f 5.421}$ gives (where the equation is expressed in term of the $z_r^{'}$

$$\begin{cases}
 mf_s = F'_s + C'_s + G'_s \\
 C'_s = m \left[\dot{\omega}'_{sn} \left(S', S \right) + \omega'_{sm} \left(S', S \right) \omega'_{nm} \left(S', S \right) \right] z'_n \\
 C'_s = 2m\omega'_{sm} v'_m \left(S' \right)
\end{cases}$$
(1)

We note the particle is free, so $F'_s = 0$ and the angular velocity is a constant, so $\dot{\omega}'_{sn}\left(S',S\right) = 0$, and the equation simplify to

$$\begin{cases}
f'_{s} = K'_{s} + J'_{s} \\
K'_{s} = \left[\omega'_{sm}\left(S', S\right)\omega'_{nm}\left(S', S\right)\right]z'_{n} \\
J'_{s} = 2\omega'_{sm}v'_{m}\left(S'\right)
\end{cases} (2)$$

As $\omega_s = n\delta_{s3}$ and by the requirement that the axis of z_3' coincides permanently with the axis of z_3 , it is not hard to see that

$$\begin{cases}
\omega_{12}\left(S',S\right) = n \\
\omega'_{12}\left(S',S\right) = n \\
\omega_{12}\left(S,S'\right) = -n \\
\omega'_{12}\left(S,S'\right) = -n
\end{cases}$$
(3)

while all other elements vanish.

We get

$$\begin{cases} K_{1}^{'} = \omega_{12}^{'} \left(S^{'}, S\right) \omega_{12}^{'} \left(S^{'}, S\right) z_{1}^{'} = n^{2} z_{1}^{'} \\ K_{1}^{'} = \omega_{21}^{'} \left(S^{'}, S\right) \omega_{21}^{'} \left(S^{'}, S\right) z_{1}^{'} = n^{2} z_{1}^{'} \\ K_{3}^{'} = 0 \end{cases}$$

$$(4)$$

$$\begin{cases} J_{1}^{'} = 2\omega_{12}^{'} \left(S^{'}, S\right) v_{2}^{'} \left(S^{'}\right) = 2nv_{2}^{'} \left(S^{'}\right) \\ J_{2}^{'} = 2\omega_{21}^{'} \left(S^{'}, S\right) v_{1}^{'} \left(S^{'}\right) = -2nv_{1}^{'} \left(S^{'}\right) \\ J_{3}^{'} = 0 \end{cases}$$

$$(5)$$

and get as equations of motion

$$\begin{cases}
f_{1}^{'} = n^{2}z_{1}^{'} + 2nv_{2}^{'} \left(S^{'}\right) \\
f_{2}^{'} = n^{2}z_{1}^{'} - 2nv_{1}^{'} \left(S^{'}\right) \\
f_{3}^{'} = 0
\end{cases} (6)$$

•

5.34 p188 - Exercise 15

If the tensor I_{st} is defined by **5.335** for N dimensions, and J_{nprq} is defined by **5.330**, establish the following relations:

$$J_{nprq} = (N-1)^{-1} I_{ss} \left(\delta_{nr} \delta_{pq} - \delta_{nq} \delta_{pr} \right) - \delta_{nr} I_{pq} + \delta_{pr} I_{nq}$$
$$J_{nppq} = I_{ss}$$
$$I_{nq} = (N-1)^{-1} \left(J_{nprq} - \delta_{nq} J_{nprq} \right)$$

5.421 and 5.421:

$$\begin{cases}
I_{st} = \delta_{st} \sum mz_q z_q - \sum mz_s z_t \\
J_{nprq} = \sum m \left(\delta_{nr} z_p z_q - \delta_{pr} z_n z_q \right)
\end{cases}$$
(1)

The first equation can be expressed as $\sum mz_pz_q = \delta_{pq}\sum mz_kz_k - I_{pq}$ and $\sum mz_nz_q = \delta_{st}\sum mz_kz_k - I_{nq}$

giving

$$J_{nprq} = \delta_{nr}\delta_{pq} \sum mz_k z_k - \delta_{nr}I_{pq} - \delta_{pr}\delta_{st} \sum mz_k z_k + \delta_{pr}I_{nq}$$

$$= \sum mz_k z_k \left(\delta_{nr}\delta_{pq} - \delta_{nr}I_{pq}\right) - \delta_{nr}I_{pq} + \delta_{pr}I_{nq}$$
(2)
(3)

Now, consider the expressions

$$\begin{cases}
I_{11} = \sum mz_qz_q - \sum mz_1z_1 \\
I_{11} = \sum mz_qz_q - \sum mz_1z_1 \\
\vdots \\
I_{NN} = \sum mz_qz_q - \sum mz_Nz_N
\end{cases}$$
(4)

Summing up these N expressions we have

$$I_{ss} = N\left(\sum mz_qz_q\right) - \sum mz_qz_q \tag{5}$$

$$= (N-1)\sum mz_qz_q \tag{6}$$

$$\Rightarrow \sum mz_qz_q = I_{ss}\left(N-1\right)^{-1} \tag{7}$$

Plugging this in (3) we get

$$J_{nprq} = I_{ss} \left(N - 1 \right)^{-1} \left(\delta_{nr} \delta_{pq} - \delta_{nr} I_{pq} \right) - \delta_{nr} I_{pq} + \delta_{pr} I_{nq}$$
(8)

•

5.35 p188 - Exercise 16 †

The motion of a dynamical system is represented by a curve in configuration-space. Using the kinematical line element, express the curvature as a function of its total energy E, and deduce that as E tends to infinity, the trajectory tends to become a geodesic. Illustrate by considering a particle moving under gravity on a smooth sphere.

We have 5.512 and 5.533:

$$\begin{cases} v^2 = a_{mn}v^mv^n = 2T \\ \kappa v^2 = X_r\nu^r \end{cases} \Rightarrow \kappa = \frac{X_r\nu^r}{2T}$$
 (1)

First, we have to note that nothing is said about the nature of the generalized forces (conservative or not) and therefore we use 5.517

$$dW = X_r dx^r (2)$$

From this we can express T as

$$T(s) = T_0 + \int_0^s dW \tag{3}$$

$$=T_0 + \int_0^s X_r dx^r \tag{4}$$

where T_0 is the kinetic energy at the initial configuration s = 0.

†

Suppose now that the for $s \to +\infty$, $\int_0^s dW \to +\infty$. In that case, the kinematical energy will represent the total energy of the system, $T \to E$ and $\kappa \to 0$ for $E \to +\infty$ provided that $X_r \nu^r \not\to \pm \infty$ which we will assume.

†

 \Diamond

Let's illustrate this with a particle on a smooth sphere moving under gravity.

Figure 5.8: Physical components of the gravitational force tensor acting on a mass m on a sphere

INTERMEZZO:

The next calculation are showed how careful we have to be when applying blindly some formulas. The aim is to find the equation of motion in the configuration space equipped with the kinematical fundamental form, starting from the physical components of the force field.

We have as physical components:

$$\begin{cases}
F_{\phi}^{phys} = 0 \\
F_{\theta}^{phys} = mg\sin\theta
\end{cases}$$
(5)

Using **5.109** and **5.110** combined with the kinematical fundamental form, $ds^2 = 2Tdt^2 = (\sqrt{m}R)^2 d\theta^2 + (\sqrt{m}R\sin\theta)^2 d\phi^2$

$$(a_{mn}) = \begin{pmatrix} mR^2 & 0\\ 0 & mR^2 \sin^2 \theta \end{pmatrix} \tag{6}$$

$$\begin{cases} h_{1} = \sqrt{m}R & [M]^{\frac{1}{2}}[L] \\ h_{2} = \sqrt{m}R\sin\theta & [M]^{\frac{1}{2}}[L] \\ F_{\phi}^{phys} = 0 & [M][L][T]^{-2} \\ F_{\theta}^{phys} = mg\sin\theta & [M][L][T]^{-2} \\ v_{\phi}^{phys} = R\sin\theta\dot{\phi} & [L][T]^{-1} \\ v_{\theta}^{phys} = R\dot{\theta} & [L][T]^{-1} \end{cases}$$
(7)

we have

$$\begin{cases} X^{\phi} = 0 & X_{\phi} = 0 \\ X_{\theta} = F_{\theta}^{phys} h_{1} = m^{\frac{3}{2}} g R \sin \theta & [M]^{\frac{3}{2}} [L]^{2} [T]^{-2} \\ X^{\theta} = \frac{F_{\theta}^{phys}}{h_{1}} = \frac{mg \sin \theta}{\sqrt{m}R} = \frac{\sqrt{m}g \sin \theta}{R} & [M]^{\frac{1}{2}} [T]^{-2} \\ v_{\theta} = v_{\theta}^{phys} h_{1} = \sqrt{m}R^{2}\dot{\theta} & [M]^{\frac{1}{2}} [L]^{2} [T]^{-1} \\ v^{\theta} = \frac{v_{\theta}^{phys}}{h_{1}} = \frac{R\dot{\theta}}{\sqrt{m}R} = \frac{1}{\sqrt{m}}\dot{\theta} & [M]^{-\frac{1}{2}} [T]^{-1} \\ v_{\phi} = v_{\phi}^{phys} h_{1} = \sqrt{m}R^{2} \sin \theta \,\,\dot{\phi} & [M]^{\frac{1}{2}} [L]^{2} [T]^{-1} \\ v^{\phi} = \frac{v_{\phi}^{phys}}{h_{1}} = \frac{R \sin \theta}{\sqrt{m}R} \dot{\phi} = \frac{1}{\sqrt{m}}\dot{\phi} & [M]^{-\frac{1}{2}} [T]^{-1} \end{cases}$$

Check 1:

$$X_{\theta} = a_{11}X^{\theta} \tag{9}$$

$$= mR^2 \frac{\sqrt{mg}\sin\theta}{R} \tag{10}$$

$$=m^{\frac{3}{2}}gR\sin\theta\tag{11}$$

Check 2:

$$v_{\theta} = a_{11}v^{\theta} + a_{12}v^{\phi} \tag{12}$$

$$= mR^2 \frac{1}{\sqrt{m}} \dot{\theta} \tag{13}$$

$$=\sqrt{m}R^2\dot{\theta}\tag{14}$$

Check 3:

$$\underbrace{f^{\theta} = X^{\theta}}_{\sim [M]^{\frac{1}{2}}[T]^{-2}} = \underbrace{\frac{\delta v^{\theta}}{\delta t}}_{\sim [M]^{-\frac{1}{2}}[T]^{-2}}$$
(15)

$$[M]^{\frac{1}{2}}[T]^{-2} \neq [M]^{-\frac{1}{2}}[T]^{-2} \tag{16}$$

So, obviously, we ran into a problem.

The reason is due to the fact that the physical components and the generalized coordinates are not equipped with the same metric. Indeed, consider a system with only one mass. Then there is no fundamental difference in the geometry of the two spaces ('physical' and 'generalized coordinates space') but, if ds is a distance in the physical space and ds' a distance in the 'generalized coordinates space' (abuse of language), then $ds' \neq ds$ as $ds' = \sqrt{m}ds$. So, the same physical object will be 'seen'

stretched by a factor \sqrt{m} when observed in the generalized configuration space. So let's begin again but with adapted conversion factors h_i .

$$\begin{cases} h_{1} = R & [M]^{\frac{1}{2}}[L] \\ h_{2} = R\sin\theta & [M]^{\frac{1}{2}}[L] \\ F_{\phi}^{phys} = 0 & [M][L][T]^{-2} \\ F_{\theta}^{phys} = mg\sin\theta & [M][L][T]^{-2} \\ v_{\phi}^{phys} = R\sin\theta\dot{\phi} & [L][T]^{-1} \\ v_{\theta}^{phys} = R\dot{\theta} & [L][T]^{-1} \end{cases}$$

$$(17)$$

we have

$$\begin{cases} X^{\phi} = 0 & X_{\phi} = 0 \\ X_{\theta} = F_{\theta}^{phys} h_{1} = mgR \sin \theta & [M][L]^{2}[T]^{-2} \\ X^{\theta} = \frac{F_{\theta}^{phys}}{h_{1}} = \frac{mg \sin \theta}{R} = \frac{mg \sin \theta}{R} & [M][T]^{-2} \\ v_{\theta} = v_{\theta}^{phys} h_{1} = R^{2}\dot{\theta} & [L]^{2}[T]^{-1} \\ v^{\theta} = \frac{v_{\theta}^{phys}}{h_{1}} = \frac{R\dot{\theta}}{R} = \dot{\theta} & [T]^{-1} \\ v_{\phi} = v_{\phi}^{phys} h_{2} = R^{2} \sin^{2} \theta \ \dot{\phi} & [L]^{2}[T]^{-1} \\ v^{\phi} = \frac{v_{\phi}^{phys}}{h_{2}} = \frac{R \sin \theta \ \dot{\phi}}{R \sin \theta} = \dot{\phi} & [T]^{-1} \end{cases}$$

Check 1:

$$X_{\theta} = a_{11}X^{\theta} \tag{19}$$

$$= mR^2 \frac{mg\sin\theta}{R} \tag{20}$$

$$= m^2 q R \sin \theta \tag{21}$$

$$\neq mgR\sin\theta$$
 (22)

Check 2:

$$v_{\theta} = a_{11}v^{\theta} + a_{12}v^{\phi} \tag{23}$$

$$= mR^2\dot{\theta} \tag{24}$$

$$\neq R^2 \dot{\theta} \tag{25}$$

Check 3:

$$\underbrace{f^{\theta} = X^{\theta}}_{\sim [M][T]^{-2}} = \underbrace{\frac{\delta v^{\theta}}{\delta t}}_{\sim [T]^{-2}} \tag{26}$$

$$[M][T]^{-2} \neq [T]^{-2} \tag{27}$$

Again, we ran into problems.

In fact, the idea of going from the physical space into the configuration space, by some transformation rule is wrong because, in configuration space equipped with the kinematical fundamental form, velocity and generalized forces have their very own, specific definition:

$$\begin{cases} \text{velocity:} & v^r = \frac{dx^r}{dt} \\ \text{generalized forces:} & dW = X_r dx^r \end{cases}$$
 (28)

and get for the velocities

$$v^{\theta} = \dot{\theta} \tag{29}$$

$$v^{\phi} = \dot{\phi} \tag{30}$$

and for the generalized forces

$$\begin{cases} dW = F_{\theta}^{phys}Rd\theta & \text{in the physical space} \\ dW = X_{\theta}d\theta & \text{in the configuration space} \end{cases}$$
(31)

and by the invariance of dW we get

$$X_{\theta} = mgR\sin\theta \tag{32}$$

$$\Rightarrow \quad X^{\theta} = a^{11} mgR \sin \theta \tag{33}$$

$$=\frac{mgR\sin\theta}{mR^2}\tag{34}$$

$$=\frac{g\sin\theta}{R}\tag{35}$$

and get for check 3:

$$\underbrace{f^{\theta} = X^{\theta}}_{\sim [T]^{-2}} = \underbrace{\frac{\delta v^{\theta}}{\delta t}}_{\sim [T]^{-2}} \tag{36}$$

$$[T]^{-2} = [T]^{-2} (37)$$

and get what we wanted.

Let's go on with the equations of motion in the configuration space: assuming that the gravitational force is conservative, we get as potential energy:

$$V = -mgR\cos\theta \tag{38}$$

We use equation 5.531.

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}^s} - \frac{\partial L}{\partial x^s} = 0 \tag{39}$$

with for our case

$$L = \frac{1}{2}mR^{2}\dot{\theta}^{2} + \frac{1}{2}mR^{2}\sin^{2}\theta\dot{\phi}^{2} + mgR\cos\theta$$
 (40)

and get the set of equations of motion (the second column gives the dimensional analysis as a check for consistency)

$$\begin{cases}
\frac{\ddot{\phi}}{\dot{\phi}} = -2\cot\theta \,\dot{\theta} & : \quad \frac{[T]^{-2}}{[T]^{-1}} \cong [T]^{-1} \\
\ddot{\theta} - \left(\dot{\phi}\right)^2 \sin\theta \cos\theta = -\frac{g}{R}\sin\theta & : \quad [T]^{-2} + \left([T]^{-1}\right)^2 \cong \frac{[L][T]^{-2}}{[L]}
\end{cases} \tag{41}$$

•

5.36 p189 - Exercise 17

A particle moves on a smooth sphere under action of gravity. Using he action line element, calculate the Gaussian curvature of configuration-space as a function of total energy E and height z above the centre of the sphere. Show that if the total energy is not sufficient to raise the particle to the top of the sphere, but only to a level z = h, then the Gaussian curvature tends to infinity as z approaches h from below.

Using polar spherical coordinates, the line element on the sphere is

$$ds^2 = R^2 d\theta^2 + R^2 \sin^2 \theta d\phi^2 \tag{1}$$

For the potential energy, we use the lowest point (along the axis of the gravitational filed) as reference. Hence the potential is given by

$$V = mgR + mgz \tag{2}$$

$$=R\left(1+mg\cos\theta\right)\tag{3}$$

Giving for the action line element (with a total energy of the system E_0)

$$d\sigma^2 = (E_0 - mgR - mgR\cos\theta) ds^2 \tag{4}$$

Be $E = E_0 - mgR$

$$(a_{mn}) = \begin{pmatrix} R^2 \left(E - mgR \cos \theta \right) & 0 \\ 0 & R^2 \left(E - mgR \cos \theta \right) \sin^2 \theta \end{pmatrix}$$
 (5)

3.114 and the exercise (Riemann curvature of a 2-space) on page 112 gives:

$$\begin{cases}
G = \frac{R_{1212}}{a_{11}a_{22}} \\
R_{1212} = -\frac{1}{2}\partial_{11}^{2}a_{22} - \frac{1}{4}a^{11}\partial_{1}a_{11}\partial_{1}a_{22} + \frac{1}{4}a^{22}\partial_{1}a_{22}\partial_{1}a_{22}
\end{cases} (6)$$

With

$$\begin{cases}
\partial_{1}a_{11} = mgR^{3} \sin \theta \\
\partial_{1}a_{22} = 2ER^{2} \sin \theta \cos \theta + R^{3}mg \left(\sin^{3}\theta - 2\sin\theta \cos^{2}\theta\right) \\
\partial_{11}^{2}a_{22} = 2ER^{2} \left(\cos^{2}\theta - \sin^{2}\theta\right) + R^{3}mg \left(3\cos\theta \sin^{2}\theta - 2\left(\cos^{3}\theta - 2\sin^{2}\theta\cos\theta\right)\right) \\
= 2ER^{2} \left(\cos^{2}\theta - \sin^{2}\theta\right) + R^{3}mg \left(7\cos\theta \sin^{2}\theta - 2\cos^{3}\theta\right) \\
a^{11} = \frac{1}{R^{2}(E - mgR\cos\theta)} \\
a^{22} = \frac{1}{R^{2}(E - mgR\cos\theta)\sin^{2}\theta}
\end{cases}$$
(7)

We first try now to replace the expressions in θ with expressions in $R\cos\theta=z$ and $R\sin\theta=\sqrt{R^2-z^2}$

$$\begin{cases}
\partial_{1}a_{11} = mgR^{2}\sqrt{R^{2} - z^{2}} \\
\partial_{1}a_{22} = 2Ez\sqrt{R^{2} - z^{2}} + mg\left(\left(R^{2} - z^{2}\right)\sqrt{R^{2} - z^{2}} - 2z^{2}\sqrt{R^{2} - z^{2}}\right) \\
\partial_{11}^{2}a_{22} = 2E\left(2z^{2} - R^{2}\right) + mg\left(7z\left(R^{2} - z^{2}\right) - 2z^{3}\right) \\
a^{11} = \frac{1}{R^{2}(E - mgz)} \\
a^{22} = \frac{1}{(E - mgz)(R^{2} - z^{2})} \\
\partial_{1}a_{11} = mgR^{2}\sqrt{R^{2} - z^{2}} \qquad ML^{4}T^{-2} \\
\partial_{1}a_{22} = \left(mgR^{2} + 2Ez - 3mgz^{2}\right)\sqrt{R^{2} - z^{2}} \qquad ML^{4}T^{-2} \\
\partial_{11}^{2}a_{22} = 2E\left(2z^{2} - R^{2}\right) + mgz\left(7R^{2} - 9z^{2}\right) \qquad ML^{4}T^{-2} \\
\Rightarrow \begin{cases}
a^{11} = \frac{1}{R^{2}(E - mgz)} \qquad M^{-1}L^{-4}T^{2} \\
a^{22} = \frac{1}{(E - mgz)(R^{2} - z^{2})} \qquad ML^{4}T^{-2} \\
a_{11} = R^{2}\left(E - mgz\right) \qquad ML^{4}T^{-2} \\
a_{22} = \left(E - mgz\right)\left(R^{2} - z^{2}\right) \qquad ML^{4}T^{-2}
\end{cases}$$

giving

$$R_{1212} = -\frac{1}{2}\partial_{11}^2 a_{22} - \frac{1}{4}a^{11}\partial_1 a_{11}\partial_1 a_{22} + \frac{1}{4}a^{22}\partial_1 a_{22}\partial_1 a_{22}$$

$$(10)$$

$$= \begin{cases} -E\left(2z^{2} - R^{2}\right) - \frac{1}{2}mgz\left(7R^{2} - 9z^{2}\right) \\ -\frac{1}{4}\frac{1}{(E - mgz)}mg\left(R^{2} - z^{2}\right)\left(mgR^{2} + 2Ez - 3mgz^{2}\right) \\ +\frac{1}{4}\frac{1}{(E - mgz)}\left(mgR^{2} + 2Ez - 3mgz^{2}\right)^{2} \end{cases}$$

$$(11)$$

$$\begin{cases}
 +\frac{1}{4}\frac{1}{(E-mgz)}\left(mgR^{-} + 2Ez - 3mgz^{-}\right) \\
 = \begin{cases}
 \frac{1}{4}\frac{1}{(E-mgz)}\left[(E-mgz)\left(-E\left(2z^{2} - R^{2}\right) - \frac{1}{2}mgz\left(7R^{2} - 9z^{2}\right)\right) \\
 -mg\left(R^{2} - z^{2}\right)\left(mgR^{2} + 2Ez - 3mgz^{2}\right) \\
 +\left(mgR^{2} + 2Ez - 3mgz^{2}\right)^{2}\right]
\end{cases} (12)$$

$$=\frac{R^2-z^2}{(E-mgz)}\left[3m^2g^2z^2-4Emgz+E^2\right] \tag{13}$$

$$=\frac{R^2-z^2}{(E-mgz)}\left(E-mgz\right)\left[E-3mgz\right] \tag{14}$$

$$= \left(R^2 - z^2\right) \left[E - 3mgz\right] \tag{15}$$

For the Gauss curvature we get then

$$G = \frac{R_{1212}}{R^2 \left(E - mgz\right)^2 \left(R^2 - z^2\right)} \tag{16}$$

and so

$$G = \frac{E - 3mgz}{R^2 \left(E - mgz\right)^2} \tag{17}$$

Be $h = \frac{E}{mg}$. From (17) we see that as long $z < \frac{h}{3}$, G is defined and positive. It becomes 0 for $z = \frac{h}{3}$ and negative for $z > \frac{h}{3}$ to become $-\infty$ for $z \to h$.

Remember that $E = E_0 - mgR$ with E_0 the total energy of the system and that the maximum potential energy is $V_{max} = 2mgR$. In order to reach the top, a particle starting from the bottom of the sphere (V = 0), should have at least a total energy $E_0 = 2mgR$.

Suppose now, that we configure the system so that the particle starts from the bottom and gets zero velocity at a point z = h. Then $E_0 = mg(R + h) < 2mgR$ and so $E = E_0 - mgR = mgh$.

(17) becomes

$$G = \frac{h - 3z}{mgR^2 \left(h - z\right)^2} \tag{18}$$

$$\Rightarrow \lim_{r \to b} G = -\infty \tag{19}$$

4

5.37p189 - Exercise 18

Show that the equations of motion of a rigid body with a fixed point may be written in either of the forms

$$\dot{h}_{r}^{'} - K_{rmn}^{'} h_{m}^{'} h_{n}^{'} = M_{rs}^{'}$$

where h'_r are the components on z'-axes (moving with the body) of angular moment as given in 5.338 and K'_{rmn} is a certain moment of inertia tensor. Evaluate the components K'_{rmn} in terms of the moments and products of inertia.

We use 5.329, 5.231, 5.233 and 5.424:

$$M_{rs}^{'} = \epsilon_{rsn} M_{n}^{'} \tag{1}$$

$$h_{rs}^{'} = \epsilon_{rsn} h_{n}^{'} \tag{2}$$

$$h_{np}^{'} = J_{nprq}^{'} \omega_{rq}^{'} \tag{3}$$

$$M_{ab}^{'} = J_{abrq}^{'}\dot{\omega}_{rq}^{'}\left(S^{'},S\right) + J_{cdrq}^{'}\left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right)\omega_{uv}^{'}\left(S^{'},S\right)\omega_{rq}^{'}\left(S^{'},S\right)$$
(4)

Then, using (1), (2), (3) in (4) and contracting the terms in δ_{ij}

$$M'_{ab} = \dot{h_{ab}}' + \dot{h_{au}}\omega'_{ub}(S', S) + \dot{h_{ub}}\omega'_{ua}(S', S)$$
(5)

$$\Leftrightarrow \qquad \epsilon_{abn} M'_{n} = \epsilon_{abn} \dot{h'_{n}}' + \epsilon_{aun} \dot{h'_{n}} \omega'_{ub} \left(S', S\right) + \epsilon_{ubn} \dot{h'_{n}} \omega'_{ua} \left(S', S\right)$$

$$(6)$$

$$\times \epsilon_{abt} \quad \Rightarrow \quad \epsilon_{abt} \epsilon_{abn} M^{'}{}_{n} = \epsilon_{abt} \epsilon_{abn} \dot{h_{n}}^{'} + \epsilon_{abt} \epsilon_{aun} h^{'}{}_{n} \omega^{'}{}_{ub} \left(S^{'}, S\right) + \epsilon_{bat} \epsilon_{bun} h^{'}{}_{n} \omega^{'}{}_{ua} \left(S^{'}, S\right)$$
 (7)

$$\Rightarrow 2M'_{t} = 2\dot{h_{t}}' + (\delta_{bu}\delta_{tn} - \delta_{bn}\delta_{tu}) h_{n}'\omega_{ub}' \left(S', S\right) + (\delta_{au}\delta_{tn} - \delta_{an}\delta_{tu}) h_{n}'\omega_{ua}' \left(S', S\right)$$

$$\tag{8}$$

$$=2\dot{h_{t}}' + h_{t}'\omega_{bb}'\left(S',S\right) - h_{b}'\omega_{tb}'\left(S',S\right) + h_{t}'\omega_{uu}'\left(S',S\right) - h_{a}'\omega_{ta}'\left(S',S\right)$$
(9)

And so,

$$M'_{r} = \dot{h_{r}}' + \omega'_{mr} \left(S', S\right) h'_{m} \tag{10}$$

Let's try to express equation (4) but with the inertia tensor I_{ij} as parameter. We have 5.332:

$$\frac{d\left(I_{st}\omega_t\left(S^{'},S\right)\right)}{dt} = M_s \tag{11}$$

Let's express this in the coordinate system S' so that I'_{sr} will not depend of the time. Be A_{ij} the

map from S' to S. Then:

$$\frac{d\left(A_{ks}I_{st}'\omega_{t}'\left(S',S\right)\right)}{dt} = M_{s} \tag{12}$$

$$\times A_{ps} \qquad A_{ps} \frac{d\left(A_{ks}I'_{st}\omega'_{t}\left(S',S\right)\right)}{dt} = M'_{p}$$
(13)

$$A_{ps}\dot{A_{ks}}I_{kt}'\omega_{t}'\left(S^{'},S\right) + A_{ps}A_{ks}I_{kt}'\dot{\omega}_{t}'\left(S^{'},S\right) = M_{p}' \tag{14}$$

We have

$$\begin{cases}
\mathbf{5.408} \quad \omega_{ts}'\left(S',S\right) = A_{tm}\dot{A}_{sm} \\
\mathbf{5.401} \quad A_{mp}A_{mq} = \delta_{pq} \quad A_{pm}A_{qm} = \delta_{pq}
\end{cases} \tag{15}$$

So, (14) becomes

$$\omega'_{pk}\left(S',S\right)I'_{kt}\omega'_{t}\left(S',S\right) + I'_{pt}\dot{\omega}'_{t}\left(S',S\right) = M'_{p}$$

$$\tag{16}$$

We use

$$\omega'_{pk}\left(S',S\right) = \epsilon_{pkm}\omega'_{m}\left(S',S\right) \tag{17}$$

and get for (16):

$$I_{pt}^{'}\dot{\omega}_{t}^{'}\left(S^{'},S\right) + \epsilon_{pkm}\omega_{m}^{'}\left(S^{'},S\right)I_{kt}^{'}\omega_{t}^{'}\left(S^{'},S\right) = M_{p}^{'} \tag{18}$$

Note also that $h_{s}^{'} = I_{sr}\omega_{r}^{'}\left(S^{'},S\right)$. Indeed,

$$h_{np}^{'} = J_{npqr}^{'} \omega_{rq}^{'} \left(S^{'}, S \right) \tag{19}$$

$$=J_{npqr}^{'}\epsilon_{rqm}\omega_{m}^{'}\left(S^{'},S\right) \tag{20}$$

$$\times \frac{1}{2} \epsilon_{snp} \qquad h'_{s} = \underbrace{\frac{1}{2} J'_{npqr} \epsilon_{snp} \epsilon_{rqm}}_{=I'_{sm}} \omega'_{m} \left(S', S\right) \qquad (21)$$

$$\Rightarrow \qquad h'_{s} = I'_{sm} \omega'_{m} \left(S', S\right) \qquad (22)$$

$$\Rightarrow h'_{s} = I'_{sm}\omega'_{m}\left(S', S\right) \tag{22}$$

and (18) becomes

$$\dot{h}_{p}^{'}\left(S^{'},S\right) + \epsilon_{pkm}I_{kt}^{'}\omega_{m}^{'}\left(S^{'},S\right)\omega_{t}^{'}\left(S^{'},S\right) = M_{p}^{'} \tag{23}$$

Let's examine the term $\epsilon_{pkm}I_{kt}^{'}\omega_{m}^{'}\left(S^{'},S\right)\omega_{t}^{'}\left(S^{'},S\right)$ and let's write tentatively

$$K'_{pqn}h'_{q}h'_{n} = \epsilon_{pkm}I'_{kt}\omega'_{m}\left(S',S\right)\omega'_{t}\left(S',S\right) \tag{24}$$

using $h_{r}^{'}=I_{rv}^{'}\omega_{v}^{'}\left(S^{'},S\right)$ in (24) we get

$$K_{pkn}^{'}I_{kt}^{'}I_{nm}^{'}\omega_{m}^{'}\left(S^{'},S\right)\omega_{t}^{'}\left(S^{'},S\right)=\epsilon_{pkm}I_{kt}^{'}\omega_{m}^{'}\left(S^{'},S\right)\omega_{t}^{'}\left(S^{'},S\right) \tag{25}$$

$$\Rightarrow K'_{pkn}I'_{kt}I'_{nm} = \epsilon_{pkm}I'_{kt} \tag{26}$$

$$\Rightarrow K'_{nkn}I'_{nm} = \epsilon_{pkm} \tag{27}$$

$$\Rightarrow K'_{pkn}I'_{kt}I'_{nm} = \epsilon_{pkm}I'_{kt}$$

$$\Rightarrow K'_{pkn}I'_{nm} = \epsilon_{pkm}$$

$$\times \epsilon_{pkt} \Rightarrow \epsilon_{pkt}K'_{pkn}I'_{nm} = \delta_{mt}$$

$$(26)$$

$$(27)$$

Let's write

$$I_{tn}^{'-1} = \epsilon_{pkt} K_{pkn}^{'}$$

We can truly consider $I_{tn}^{'-1}$ as the inverse of $I_{tn}^{'}$ due to (28) and the fact that $I_{tm}^{'}$ is represented as a symmetric square matrix with real numbers as elements and hence has a non-zero determinant and has indeed an inverse. Multiplying (27) by I'_{mt}^{-1} gives us finally

$$\mathbf{K_{pkt}^{'}} = \epsilon_{\mathbf{pkm}} \mathbf{I_{mt}^{'-1}}$$

Q: Why the minus sign in the question?

Let's now calculate $I_{tn}^{'-1}$

$$I_{tn}^{'} = \begin{pmatrix} I_{11}^{'} & I_{12}^{'} & I_{13}^{'} \\ I_{12}^{'} & I_{22}^{'} & I_{23}^{'} \\ I_{13}^{'} & I_{23}^{'} & I_{33}^{'} \end{pmatrix}$$

$$(29)$$

The determinant

$$\Delta = I'_{12}I'_{22}I'_{33} + 2I'_{12}I'_{13}I'_{23} - I'_{11}I'_{23}^2 - I'_{22}I'_{13}^2 - I'_{33}I'_{12}^2$$
(30)

giving

$$I_{tn}^{'-1} = \frac{1}{\Delta} \begin{pmatrix} I_{22}^{'}I_{33}^{'} - I_{23}^{'2} & -I_{12}^{'}I_{33}^{'} + I_{13}^{'}I_{23}^{'} & I_{12}^{'}I_{23}^{'} - I_{22}^{'}I_{13}^{'} \\ -I_{12}^{'}I_{33}^{'} + I_{13}^{'}I_{23}^{'} & I_{11}^{'}I_{33}^{'} - I_{13}^{'} & -I_{11}^{'}I_{23}^{'} + I_{12}^{'}I_{13}^{'} \\ I_{12}^{'}I_{23}^{'} - I_{22}^{'}I_{13}^{'} & -I_{11}^{'}I_{23}^{'} + I_{12}^{'}I_{13}^{'} & I_{11}^{'}I_{22}^{'} - I_{12}^{'2} \end{pmatrix}$$
(31)

giving for $\mathbf{K}_{\mathbf{pkt}}^{'} = \epsilon_{\mathbf{pkm}} \mathbf{I}_{\mathbf{mt}}^{'-1}$

$$\begin{cases}
K'_{121} = \frac{1}{\Delta} \left(I'_{12} I'_{23} - I'_{22} I'_{13} \right) \\
K'_{122} = \frac{1}{\Delta} \left(-I'_{11} I'_{23} + I'_{12} I'_{13} \right) \\
K'_{123} = \frac{1}{\Delta} \left(I'_{11} I'_{22} - I'_{12}^{2} \right) \\
K'_{131} = -\frac{1}{\Delta} \left(-I'_{12} I'_{33} + I'_{13} I'_{23} \right) \\
K'_{132} = \frac{1}{\Delta} \left(I'_{11} I'_{33} - I'_{13}^{2} \right) \\
K'_{133} = -\frac{1}{\Delta} \left(-I'_{11} I'_{23} + I'_{12} I'_{13} \right) \\
K'_{231} = -\frac{1}{\Delta} \left(I'_{22} I'_{33} - I'_{23}^{2} \right) \\
K'_{232} = \frac{1}{\Delta} \left(-I'_{11} I'_{23} + I'_{12} I'_{13} \right) \\
K'_{233} = \frac{1}{\Delta} \left(I'_{12} I'_{23} - I'_{22} I'_{13} \right)
\end{cases}$$

all others can be found by symmetry considerations.

♦

5.38 p189 - Exercise 19

A rigid body turns about a fixed point Oin a flat space of N dimensions. prove that if N is odd, there exists at any instant a line OP of particles instantaneously at rest, but that, if N is even, no point other than O is, in general, instantaneously at rest. Show that if N=4, there are points other than O instantaneously at rest if, and only if,

$$\omega_{23}\omega_{14} + \omega_{31}\omega_{24} + \omega_{12}\omega_{34} = 0$$

Consider 5.310

$$v_p = -\omega_{pr} z_r \tag{1}$$

What we seek, is a vector z_r so that

$$v_p = -\theta \omega_{pr} z_r = 0 \quad \theta \in \mathbb{R} \tag{2}$$

which means that we have to solve the homogeneous system of linear equations

$$\Omega \mathbf{z} = 0 \tag{3}$$

with Ω the skew-symmetric matrix containing the elements of the tensor ω_{pr} . From algebra, we know that when the dimension of a skew-symmetric matrix is odd, then it's determinant is zero, and hence the homogeneous system will have an infinity of solutions that can be of the form $z_r = a_r Z_N$ $r = \{1, 2, ..., N-1\}$, (we take the last coordinate as free parameter). This represents a line along which, all velocities are zero.

On the contrary if N is even, the determinant might be non-zero and the system will not have any solution except the trivial solution $z_r = 0$.

 \Diamond

Let's investigate this for N=4. We have for (3):

$$\Omega = \begin{pmatrix}
0 & \omega_{12} & \omega_{13} & \omega_{14} \\
-\omega_{12} & 0 & \omega_{23} & \omega_{24} \\
-\omega_{13} & -\omega_{23} & 0 & \omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & 0
\end{pmatrix}$$
(4)

giving

$$\det\{\Omega\} = -\omega_{12} \begin{vmatrix} -\omega_{12} & \omega_{23} & \omega_{24} \\ -\omega_{13} & 0 & \omega_{34} \\ -\omega_{14} & -\omega_{34} & 0 \end{vmatrix} + \omega_{13} \begin{vmatrix} -\omega_{12} & 0 & \omega_{24} \\ -\omega_{13} & -\omega_{23} & \omega_{34} \\ -\omega_{14} & -\omega_{24} & 0 \end{vmatrix} - \omega_{14} \begin{vmatrix} -\omega_{12} & 0 & \omega_{23} \\ -\omega_{13} & -\omega_{23} & 0 \\ -\omega_{14} & -\omega_{24} & -\omega_{34} \end{vmatrix}$$
(5)

$$= \begin{cases} -\omega_{12} \left(-\omega_{12}\omega_{34}\omega_{34} - \omega_{23}\omega_{14}\omega_{34} + \omega_{24}\omega_{13}\omega_{34} \right) \\ +\omega_{13} \left(-\omega_{12}\omega_{14}\omega_{34} + \omega_{24} \left(\omega_{13}\omega_{24} - \omega_{23}\omega_{14} \right) \right) \\ -\omega_{14} \left(-\omega_{12}\omega_{23}\omega_{34} + \omega_{23} \left(\omega_{13}\omega_{24} - \omega_{23}\omega_{14} \right) \right) \end{cases}$$

$$(6)$$

$$= \begin{cases} -\omega_{12} \left(-\omega_{12}\omega_{34}\omega_{34} - \omega_{23}\omega_{14}\omega_{34} + \omega_{24}\omega_{13}\omega_{34} \right) \\ +\omega_{13} \left(-\omega_{12}\omega_{14}\omega_{34} + \omega_{24} \left(\omega_{13}\omega_{24} - \omega_{23}\omega_{14} \right) \right) \\ -\omega_{14} \left(-\omega_{12}\omega_{23}\omega_{34} + \omega_{23} \left(\omega_{13}\omega_{24} - \omega_{23}\omega_{14} \right) \right) \end{cases}$$

$$= \begin{cases} +\omega_{12}\omega_{12}\omega_{34}\omega_{34} + \omega_{12}\omega_{14}\omega_{23}\omega_{34} - \omega_{12}\omega_{13}\omega_{24}\omega_{34} \\ -\omega_{12}\omega_{13}\omega_{14}\omega_{34} + \omega_{13}\omega_{13}\omega_{24}\omega_{24} - \omega_{13}\omega_{14}\omega_{23}\omega_{24} \\ +\omega_{12}\omega_{14}\omega_{23}\omega_{34} - \omega_{13}\omega_{14}\omega_{23}\omega_{24} + \omega_{14}\omega_{14}\omega_{23}\omega_{23} \end{cases}$$

$$(6)$$

Define

$$\begin{cases}
A = \omega_{12}\omega_{34} \\
B = \omega_{13}\omega_{24} \\
C = \omega_{14}\omega_{23}
\end{cases} \tag{8}$$

then we can write (7) as

$$\det\{\Omega\} = A^2 + B^2 + C^2 - 2AB - 2BC + 2AB \tag{9}$$

 $= (A - B + C)^2$ (10)

So, in the space of even dimensions, the system of homogeneous linear equations will have non-trivial solutions, only if

$$\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0$$

Let's find now some possible instantaneous lines of rotation.

Suppose N=4.

Let's define a line with

$$(z_r) = \theta \begin{pmatrix} \omega_{23} - \omega_{24} + \omega_{34} \\ -\omega_{13} + \omega_{14} + \omega_{34} \\ \omega_{12} - \omega_{14} - \omega_{24} \\ -\omega_{12} + \omega_{13} + \omega_{23} \end{pmatrix}$$
(11)

Then calculating the velocities with (1) we get

$$\begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{pmatrix} = -\theta \begin{pmatrix}
0 & \omega_{12} & \omega_{13} & \omega_{14} \\
-\omega_{12} & 0 & \omega_{23} & \omega_{24} \\
-\omega_{13} & -\omega_{23} & 0 & \omega_{34} \\
-\omega_{14} & -\omega_{24} & -\omega_{34} & 0
\end{pmatrix} \begin{pmatrix}
\omega_{23} - \omega_{24} + \omega_{34} \\
-\omega_{13} + \omega_{14} + \omega_{34} \\
\omega_{12} - \omega_{14} - \omega_{24} \\
-\omega_{12} + \omega_{13} + \omega_{23}
\end{pmatrix}$$

$$= -\theta \begin{pmatrix}
\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} \\
-\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23} \\
-\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23} \\
-\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23}
\end{pmatrix}$$

$$(12)$$

$$= -\theta \begin{pmatrix} \omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} \\ -\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23} \\ -\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23} \\ -\omega_{12}\omega_{34} + \omega_{13}\omega_{24} - \omega_{14}\omega_{23} \end{pmatrix}$$

$$(13)$$

So the velocities will vanish when

$$\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0$$

 \Diamond

Suppose N is odd. Let's define the following vector

$$\omega_{i_1} = \frac{1}{2^{\frac{N-1}{2}} \frac{N-1}{2}!} \epsilon_{i_1 i_2 \dots i_N} \prod_{k=1}^{\frac{N-1}{2}} \omega_{i_{2k} i_{2k+1}}$$
(14)

and a line

$$z_{i_1} = \theta \omega_{i_1} \quad (\theta \in \mathbb{R}) \tag{15}$$

First we note that ω_{i_1} (and hence z_{i_1}) is not a null-vector:

Let's consider in (14) the terms consisting of the permutation of the sequence of pairs

$$\{(i_2,i_3),(i_4,i_5),(i_6,i_7),\ldots,(i_{N-1},i_N)\}$$

This sequence contains $\frac{N-1}{2}$ pairs and so can be arranged in $\frac{N-1}{2}$! ways. As for each pair we have two valid possibilities e.g. (i_2, i_3) and (i_3, i_2) and as a sequence contains $\frac{N-1}{2}$ pairs, we will have for a given order of pairs $2^{\frac{N-1}{2}}$ possibilities. So in (1) there will be $2^{\frac{N-1}{2}} \frac{N-1}{2}!$ terms consisting of the permutation of the sequence of pairs $\{(i_2, i_3), (i_4, i_5), (i_6, i_7), \dots, (i_{N-1}, i_N)\}.$

Without loss of generality, suppose that $\epsilon_{i_1 i_2 \dots i_N}$ is positive and also all $\omega_{i_{2k} i_{2k+1}}$ are positive. Let's first consider a permutation of two pairs in the sequence $\{(i_2, i_3), (i_4, i_5), (i_6, i_7), \dots, (i_{N-1}, i_N)\}$. Obviously, this does not change the product of the $\omega_{i_{2k}i_{2k+1}}$. Also $\epsilon_{i_1i_2...i_N}$ will hold it's initial sign as the considered permutation needs two permutation of indices.

Next consider a permutation in one of the pairs of the sequence. Obviously $\epsilon_{i_1 i_2 \dots i_N}$ will change sign but also the picked $\omega_{i_{2k}i_{2k+1}}$ (skew-symmetric).

Conclusion, all $2^{\frac{N-1}{2}} \frac{N-1}{2}!$ terms can be reduced to the sum of $2^{\frac{N-1}{2}} \frac{N-1}{2}!$ of a same quantity and the ω_{i_1} will not trivially be zero.

Let's consider now 5.310

$$v_p = -\omega_{pi_1} z_{i_1} \tag{16}$$

(14):
$$v_p = -\frac{1}{2^{\frac{N-1}{2}} \frac{N-1}{2}!} \theta \epsilon_{i_1 i_2 \dots i_N} \omega_{p i_1} \prod_{k=1}^{\frac{N-1}{2}} \omega_{i_{2k} i_{2k+1}}$$
 (17)

On the right side, for having a non-zero term, we need that $p \neq i_1$ (ω_{st} skew-symmetric). This leaves us with only N-1 possible choices in the indices but as $\epsilon_{i_1i_2...i_N}$ needs N mutual different indices it is obvious that each term in (17) will have a $\epsilon_{i_1i_2...i_N}=0$

Conclusion, all v_p are zero and hence the defined line in (15) is an instantaneous line of rotation.

•

5.39 p189 - Exercise 20

The equations 5.329 do not determine J_{nprq} uniquely. Why? As an alternative to 5.330, we can require J_{npqr} to be skew-symmetric in the last two suffixes. Show that this defines J_{nprq} uniquely as follows:

$$J_{nprq} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

Prove that J_{nprq} , as defined here, has the same symmetries as the covariant curvature tensor (see 3.115, 3.116) and that, for N = 3, we have

$$I_{st} = \frac{1}{2} \epsilon_{snp} \epsilon_{trq} J_{nprq}, \quad J_{nprq} = \frac{1}{2} \epsilon_{snp} \epsilon_{trq} I_{st}$$

The equations 5.329, $h_{np} = J_{nprq}\omega_{rq}$ do not determine J_{nprq} uniquely because ω_{rq} is skew symmetric, so all elements at the positions $J_{np(rr)}$ can be chosen arbitrarily and still comply with the equation.

Consider now the expression

$$J_{nprq}^{'} = \frac{1}{2} \left(J_{nprq} - J_{npqr}^{'} \right) \tag{1}$$

$$\Rightarrow \qquad h'_{np} = J'_{nprq}\omega_{rq} \tag{2}$$

$$=\frac{1}{2}\left(J_{nprq}\omega_{rq}-J_{npqr}\omega_{rq}\right)\tag{3}$$

$$=\frac{1}{2}\left(J_{nprq}\omega_{rq}+J_{npqr}\omega_{qr}\right)\tag{4}$$

$$=\frac{1}{2}\left(J_{nprq}\omega_{rq}+J_{nprq}\omega_{rq}\right)\tag{5}$$

$$=h_{np} \tag{6}$$

So this expression $J_{nprq} = \frac{1}{2} \sum m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$ still describes the dynamical system and we note that this expression is skew-symmetric in the two last suffixes:

$$J_{np(rr)} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_r + \delta_{pr} z_n z_r - \delta_{nr} z_p z_r - \delta_{pr} z_n z_r \right) = 0$$
 (7)

$$J_{npqr} = \frac{1}{2} \sum_{r} m \left(\delta_{nq} z_p z_r + \delta_{pr} z_n z_q - \delta_{nr} z_p z_q - \delta_{pq} z_n z_r \right)$$
 (8)

$$= -\frac{1}{2} \sum_{n} m \left(-\delta_{nq} z_p z_r - \delta_{pr} z_n z_q + \delta_{nr} z_p z_q + \delta_{pq} z_n z_r \right)$$

$$\tag{9}$$

$$=-J_{nprq} \tag{10}$$

Symmetries to prove:

$$\begin{cases}
J_{nprq} = -J_{pnrq}, & J_{nprq} = -J_{npqr}, & J_{nprq} = J_{rqnp} \\
J_{nprq} + J_{nrqp} + J_{nqpr} = 0
\end{cases}$$
(11)

The second identity of (11) is already proven as J_{nprq} is skew-symmetric in the last two suffixes.

For the rest:

$$J_{nprq} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

$$\tag{12}$$

$$= -\frac{1}{2} \sum_{n} m \left(-\delta_{nr} z_p z_q - \delta_{pq} z_n z_r + \delta_{nq} z_p z_r + \delta_{pr} z_n z_q \right)$$

$$\tag{13}$$

$$=J_{pnrq} \tag{14}$$

and

$$J_{nprq} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

$$\tag{15}$$

$$J_{rqnp} = \frac{1}{2} \sum_{n} m \left(\delta_{rn} z_q z_p + \delta_{qp} z_r z_n - \delta_{rp} z_q z_n - \delta_{qn} z_r z_p \right)$$
(16)

$$=J_{pnrq} \tag{17}$$

and

$$J_{nprq} + J_{nrqp} + J_{nqpr} = \begin{cases} +\frac{1}{2} \sum m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right) \\ +\frac{1}{2} \sum m \left(\delta_{nq} z_p z_r + \delta_{rp} z_n z_q - \delta_{np} z_q z_r - \delta_{rq} z_n z_p \right) \\ +\frac{1}{2} \sum m \left(\delta_{np} z_r z_q + \delta_{qr} z_n z_p - \delta_{nr} z_q z_p - \delta_{qp} z_n z_r \right) \end{cases} = 0$$
 (18)

For the last part: From **5.33**, $(J_{nprq}^{'})$ being a not necessarily skew-symmetric tensor)

$$I_{st} = \frac{1}{2} J'_{nprq} \epsilon_{rqt} \epsilon_{snp} \tag{19}$$

or

$$I_{st} = \frac{1}{2} J'_{npqr} \epsilon_{qrt} \epsilon_{snp} \tag{20}$$

$$= -\frac{1}{2}J'_{npqr}\epsilon_{rqt}\epsilon_{snp} \tag{21}$$

Adding (19) and (21) gives

$$2I_{st} = \underbrace{\frac{1}{2} \left(J'_{npqr} - J'_{npqr} \right)}_{=J_{npqr}} \epsilon_{rqt} \epsilon_{snp}$$
 (22)

$$\Rightarrow I_{st} = \frac{1}{2} J_{npqr} \epsilon_{rqt} \epsilon_{snp} \tag{23}$$

And

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}J'_{kjuv}\underbrace{\epsilon_{tuv}\epsilon_{trq}}_{=\delta_{ur}\delta_{vq} - \delta_{uq}\delta_{vr}} \underbrace{\epsilon_{skj}\epsilon_{snp}}_{\delta_{jp} - \delta_{kp}\delta_{jn}}$$

$$(24)$$

$$= -\frac{1}{2}J'_{npqr}\epsilon_{rqt}\epsilon_{snp} \tag{25}$$

expanding the right product we get

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}\left(J_{nprq} + J_{pnqr} - J_{npqr} - J_{pnrq}\right)$$
(26)

And considering the symmetries described previously we get

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}4J_{nprq} \tag{27}$$

$$=2J_{nprq} \tag{28}$$

$$= 2J_{nprq}$$

$$\Rightarrow J_{nprq} = \frac{1}{2}I_{st}\epsilon_{trq}\epsilon_{snp}$$
(28)

Applications to Hydrodynamics, Elasticity, and Electromagnetic radiation

5.1 p191 - Exercise

A fluid rotates as a rigid body about the axis of z_3 with variable angular velocity $\omega(t)$. Write out explicitly the three Lagrangian equations **6.101** and the three Eulerian equations **6.103**.

The motion described reduces to a motion in a V_2 plane with z_3 a constant for a definite particle.

Lagrangian

A particular particle with starting coordinates $\left(z_1^{(*)}, z_2^{(*)}, z_3^{(*)}\right)$ will describe a circle with radius $\sqrt{z_1^{(*)2} + z_2^{(*)2}}$ in the plane V_2 parallel with the 1,2 axes. Taking axis 1 as reference to determine the instantaneous angle θ of the vertex OP (origin and particle) we get

$$\begin{cases}
z_1 = \sqrt{z_1^{(*)2} + z_2^{(*)2}} \cos(\theta(t) + \phi_0) \\
z_2 = \sqrt{z_1^{(*)2} + z_2^{(*)2}} \sin(\theta(t) + \phi_0) \\
z_3 = z_3^{(*)}
\end{cases}$$
(1)

with

$$\phi_0 = \arctan \frac{z_2^{(*)}}{z_1^{(*)}} \tag{2}$$

Note that $\omega(t)$ is not a constant, so

$$\theta(t) = \int_0^t \omega(\tau) d\tau \tag{3}$$

and get

$$\begin{cases}
z_{1} = \sqrt{z_{1}^{(*)2} + z_{2}^{(*)2}} \cos\left(\int_{0}^{t} \omega(\tau)d\tau + \phi_{0}\right) \\
z_{2} = \sqrt{z_{1}^{(*)2} + z_{2}^{(*)2}} \sin\left(\int_{0}^{t} \omega(\tau)d\tau + \phi_{0}\right) \\
z_{3} = z_{3}^{(*)} \\
\phi_{0} = \arctan\frac{z_{2}^{(*)}}{z_{1}^{(*)}}
\end{cases}$$
(4)

Eulerian

The equations get simplified and reduce to a motion of a particle on a circle.

Figure 5.1: Eulerian viewpoint of a spinning fluid

$$\begin{cases} v_1 = -\sqrt{z_1^2 + z_2^2}\omega(t)\sin\left(\arctan\frac{z_2}{z_1}\right) \\ v_2 = \sqrt{z_1^2 + z_2^2}\omega(t)\cos\left(\arctan\frac{z_2}{z_1}\right) \\ v_3 = 0 \end{cases}$$
 (5)

♥

5.2 p191 - Exercise

Compute the components of acceleration for the motion described in the preceding exercise.

We have

$$\begin{cases} v_1 = -\sqrt{z_1^2 + z_2^2}\omega(t)\sin\left(\arctan\frac{z_2}{z_1}\right) \\ v_2 = \sqrt{z_1^2 + z_2^2}\omega(t)\cos\left(\arctan\frac{z_2}{z_1}\right) \\ v_3 = 0 \end{cases}$$
 (1)

and

$$f_r = \partial_t v_r + v_{r,s} v_s \tag{2}$$

$$\begin{cases} \partial_t v_1 = -\sqrt{z_1^2 + z_2^2} \dot{\omega}(t) \sin\left(\arctan\frac{z_2}{z_1}\right) \\ \partial_t v_2 = \sqrt{z_1^2 + z_2^2} \dot{\omega}(t) \cos\left(\arctan\frac{z_2}{z_1}\right) \\ v_{1,1} = -\omega(t) \left[\frac{z_1}{\sqrt{z_1^2 + z_2^2}} \sin\left(\arctan\frac{z_2}{z_1}\right) - \sqrt{z_1^2 + z_2^2} \cos\left(\arctan\frac{z_2}{z_1}\right) \frac{z_2}{z_1^2} \frac{1}{1 + \frac{z_2^2}{z_1^2}} \right] \\ v_{1,2} = -\omega(t) \left[\frac{z_2}{\sqrt{z_1^2 + z_2^2}} \sin\left(\arctan\frac{z_2}{z_1}\right) + \sqrt{z_1^2 + z_2^2} \cos\left(\arctan\frac{z_2}{z_1}\right) \frac{1}{z_1} \frac{1}{1 + \frac{z_2^2}{z_1^2}} \right] \\ v_{2,1} = \omega(t) \left[\frac{z_1}{\sqrt{z_1^2 + z_2^2}} \cos\left(\arctan\frac{z_2}{z_1}\right) + \sqrt{z_1^2 + z_2^2} \sin\left(\arctan\frac{z_2}{z_1}\right) \frac{z_2}{z_1^2} \frac{1}{1 + \frac{z_2^2}{z_1^2}} \right] \\ v_{2,2} = \omega(t) \left[\frac{z_2}{\sqrt{z_1^2 + z_2^2}} \cos\left(\arctan\frac{z_2}{z_1}\right) - \sqrt{z_1^2 + z_2^2} \sin\left(\arctan\frac{z_2}{z_1}\right) \frac{1}{z_1} \frac{1}{1 + \frac{z_2^2}{z_1^2}} \right] \end{cases}$$

$$\begin{cases} \partial_{t}v_{1} = -\sqrt{z_{1}^{2} + z_{2}^{2}}\dot{\omega}(t)\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) \\ \partial_{t}v_{2} = \sqrt{z_{1}^{2} + z_{2}^{2}}\dot{\omega}(t)\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) \\ v_{1,1} = -\frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{1}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) - z_{2}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ v_{1,2} = -\frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{2}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) + z_{1}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ v_{2,1} = \frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{1}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) + z_{2}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ v_{2,2} = \frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{2}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) - z_{1}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \end{cases}$$

and get

$$v_{1,s}v_{s} = \begin{cases} -\sqrt{z_{1}^{2} + z_{2}^{2}}\omega(t)\sin\left(\arctan\frac{z_{2}}{z_{1}}\right)\frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{1}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) - z_{2}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ -\sqrt{z_{1}^{2} + z_{2}^{2}}\omega(t)\cos\left(\arctan\frac{z_{2}}{z_{1}}\right)\frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}}\left[z_{2}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) + z_{1}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ = -z_{1}\omega^{2}(t) \end{cases}$$
(5)

$$v_{2,s}v_{s} = \begin{cases} \sqrt{z_{1}^{2} + z_{2}^{2}}\omega(t)\sin\left(\arctan\frac{z_{2}}{z_{1}}\right) \frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}} \left[z_{1}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) + z_{2}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \\ + \sqrt{z_{1}^{2} + z_{2}^{2}}\omega(t)\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) \frac{\omega(t)}{\sqrt{z_{1}^{2} + z_{2}^{2}}} \left[z_{2}\cos\left(\arctan\frac{z_{2}}{z_{1}}\right) - z_{1}\sin\left(\arctan\frac{z_{2}}{z_{1}}\right)\right] \end{cases}$$

$$= z_{2}\omega^{2}(t)$$
(8)

giving with the second derivative term

$$= \begin{cases} f_1 = -\dot{\omega}(t)\sqrt{z_1^2 + z_2^2} \sin\left(\arctan\frac{z_2}{z_1}\right) - z_1\omega^2(t) \\ f_2 = \dot{\omega}(t)\sqrt{z_1^2 + z_2^2} \cos\left(\arctan\frac{z_2}{z_1}\right) + z_2\omega^2(t) \\ f_3 = 0 \end{cases}$$
(9)

•

5.3 p193 - Exercise

Verify that the operator $\frac{\partial}{\partial t}$ does not alter tensor character.

Be X^r and Y^r , two tensors so that $I=X_rY^r$ is an invariant. Obviously, $\frac{\partial I}{\partial t}$ will also be invariant and

$$\frac{\partial I}{\partial t} = \frac{\partial X_r}{\partial t} Y^r + X_r \frac{\partial Y^r}{\partial t} \tag{1}$$

Meaning that the right side is a sum of two invariants, from which we conclude (see page 20, 1.607) that $\frac{\partial X_r}{\partial t}$ and $\frac{\partial Y^r}{\partial t}$ are tensors.

♦

5.4 p193 - Clarification to 6.112

6.112.
$$\int F n_r dS = \int F_{,r} dV$$

Green's theorem is generally presented in the form

$$\int \overline{F}.\overline{n}dS = \int \overline{\nabla}.\overline{F}dV$$

or

$$\int F_r n_r dS = \int F_{r,r} dV$$

We can define

$$\overline{F} = F\overline{1}_r$$

 $\overline{F}.\overline{n}$ will then become Fn_r while $\overline{\nabla}.\overline{F}$ will become $\partial_r F$, giving the expression **6.112**..

5.5 p196 - Exercise

Write out 6.126 and 6.127b explicitly for spherical polar coordinates.

For spherical polar coordinates we have

$$(v^r) = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta\dot{\phi} \end{pmatrix} \tag{1}$$

and (see 2.546 page 58):

$$v_{|r}^{r} = \frac{1}{r^{2}} \partial_{r} \left(r^{2} v^{1} \right) + \frac{1}{\sin \theta} \partial_{\theta} \left(\sin \theta v^{2} \right) + \partial_{\phi} v^{3}$$
 (2)

$$= \frac{1}{r^2} \left(2rv^1 + r^2 \partial_r v^1 \right) + \frac{1}{\sin \theta} \left(v^2 \cos \theta + \sin \theta \partial_\theta v^2 \right) \tag{3}$$

$$= \frac{2}{r}\dot{r} + r\dot{\theta}\cot\theta\tag{4}$$

and

$$\partial_t \rho + (\rho v^r)_{|r} = 0 \tag{5}$$

$$\Leftrightarrow \qquad \partial_t \rho + \rho_{|r} v^r + \rho v_{|r}^r = 0 \tag{6}$$

$$\Leftrightarrow \qquad \partial_t \rho + \rho_{|r} v^r + \rho v_{|r}^r = 0$$

$$\Leftrightarrow \qquad \frac{d\rho}{dt} + \rho \left(\frac{2}{r} \dot{r} + r \dot{\theta} \cot \theta \right) = 0$$
(6)

5.6 p198 - Exercise

If ϵ^{rmn} is defined in precisely the same way as ϵ_{rmn} , prove that

$$\epsilon^{'uvw} = J\epsilon^{rmn} \frac{\partial x^{'u}}{\partial x^r} \frac{\partial x^{'v}}{\partial x^m} \frac{\partial x^{'w}}{\partial x^n}$$

We follow the pretty same line of reasoning as for ϵ_{rst} . Going from $x^{'r}$ to x^{s} we have (expanding the determinant of the inverse Jacobian along the rows instead of the columns):

$$J^{-1} = \left| \frac{\partial x^{'p}}{\partial x^q} \right| = \epsilon^{rmn} \frac{\partial x^{'1}}{\partial x^r} \frac{\partial x^{'2}}{\partial x^m} \frac{\partial x^{'3}}{\partial x^n}$$
 (1)

$$\times J \qquad \epsilon^{uvw} = J \epsilon^{rmn} \frac{\partial x^{'u}}{\partial x^r} \frac{\partial x^{'v}}{\partial x^m} \frac{\partial x^{'w}}{\partial x^n} \tag{3}$$

(4)

5.7 p198 - Exercise

Prove that $\frac{\epsilon^{rmn}}{\sqrt{a}}$ is an (absolute) contravariant tensor of the third order.

$$\sqrt{a'} = J\sqrt{a} \tag{1}$$

$$\epsilon^{'uvw} = J\epsilon^{rmn} \frac{\partial x^{'u}}{\partial x^r} \frac{\partial x^{'v}}{\partial x^m} \frac{\partial x^{'w}}{\partial x^n}$$
 (2)

$$\epsilon'^{uvw} = J\epsilon^{rmn} \frac{\partial x'^{u}}{\partial x^{r}} \frac{\partial x'^{v}}{\partial x^{m}} \frac{\partial x'^{w}}{\partial x^{n}}$$

$$(2)$$

$$(1) \text{ in (2)} \qquad \epsilon'^{uvw} = \frac{\sqrt{a'}}{\sqrt{a}} \epsilon^{rmn} \frac{\partial x'^{u}}{\partial x^{r}} \frac{\partial x'^{v}}{\partial x^{m}} \frac{\partial x'^{w}}{\partial x^{n}}$$

$$\Rightarrow \qquad \frac{\epsilon'^{uvw}}{\sqrt{a'}} = \frac{\epsilon^{rmn}}{\sqrt{a}} \frac{\partial x'^{u}}{\partial x^{r}} \frac{\partial x'^{w}}{\partial x^{m}} \frac{\partial x'^{w}}{\partial x^{n}}$$

$$(4)$$

$$\Rightarrow \frac{\epsilon^{'uvw}}{\sqrt{a'}} = \frac{\epsilon^{rmn}}{\sqrt{a}} \frac{\partial x^{'u}}{\partial x^r} \frac{\partial x^{'v}}{\partial x^m} \frac{\partial x^{'w}}{\partial x^n}$$
(4)

which is the required transformation rule for a "normal" (absolute) tensor.

5.8 p199 - Clarification to pressure invariance to direction of the surface element.

Pressure is independent of the direction

Figure 5.2: Pressure on a trirectangular tetrahedron

To see that the pressure is independent of the direction of the surface element on which we measure it, let's consider a trirectangular tetrahedron OABC as depicted in figure 5.2(a). Let's define P_x, P_y, P_z, P_t the pressure measured on the 4 surfaces with normal vectors dS_x, dS_y, dS_z, dS_t .

Let's neglect second order terms due to acceleration and external forces. For the forces along axis z(the same reasoning is valid for the two others) we will have $P_z dS_z = P_t dS_t \gamma_z$ where γ_z is the cosine of the angle formed by normal on dS_t and the z-axis.

Let's investigate the relationship between dS_t and dS_x, dS_y, dS_z .

Be hA the line element lying in the plane ABC (see figure 5.2(b)) and hO the line element lying in the plane OBC. As the area of a triangle = $\frac{1}{2} \times base \times perpendicular \ height \ we get \ dS_z = \frac{1}{2} |hO||BC|$. But $|hO| = |hA| \cos \alpha$ (see figure 5.2(c)) and so $dS_z = \frac{1}{2} |BC| |hA| \cos \alpha = dS_t \gamma_z$ and get

$$P_z dS_z = P_t dS_t \gamma_z \tag{1}$$

$$\Rightarrow P_z dS_t \gamma_z = P_t dS_t \gamma_z \tag{2}$$

$$\Rightarrow P_z = P_t \tag{3}$$

$$\Rightarrow \qquad P_z = P_t \tag{3}$$

5.9 p201 - Exercise

Write down the contravariant form of 6.147

6.147
$$\partial_t v_r + v_s v_{r|s} = X_r - \rho^{-1} p_{,r}$$

6.147
$$\partial_t v_r + v_s v_{r|s} = X_r - \rho^{-1} p_{,r} \tag{1}$$

$$\begin{aligned} \mathbf{6.147} & \partial_t v_r + v_s v_{r|s} = X_r - \rho^{-1} p_{,r} \\ \times a^{mr} & \partial_t a^{mr} v_r + v_s a^{mr} v_{r|s} = a^{mr} X_r - \rho^{-1} a^{mr} p_{,r} \end{aligned} \tag{1}$$

By ${\bf 2.527}$ page 53 we have $a^{rs}_{|t}=0$ and thus

$$v_{|s}^{m} = (a^{mr}v_r)_{|s} = (a^{mr})_{|n} v_r + a^{mr}v_{r|s} = a^{mr}v_{r|s}$$
 (3)

$$\partial_t v^m + v_s v^m_{|s} = X^m - \rho^{-1} a^{mr} p_{,r} \tag{4}$$

$$\Rightarrow \qquad \partial_t v^m + v_s v^m_{|s} = X^m - \rho^{-1} p'_{,r} \tag{5}$$

Note that $p_{,r}$ in (1) and (5) are not the same vector function as $p_{,r}$ can be written as $\overline{\nabla}p$ which is coordinate system dependent.

5.10 p202 - Exercise

Verify by means of 3.204 that 6.157 and 6.156 are the same equation.

$$\begin{cases}
\mathbf{3.204} & \Gamma_{rn}^{n} = \frac{1}{2}\partial_{r}\log a = \partial_{r}\log\sqrt{a} \\
\mathbf{6.157} & (\sqrt{a}a^{mn}\phi_{,m})_{,n} = 0 \\
\mathbf{6.156} & a^{mn}\phi_{|mn} = 0
\end{cases}$$
(1)

Considering also

$$\begin{cases} a_{|k}^{mn} = 0 \\ T_{|n}^{m} = \partial_{n} T_{m} + \Gamma_{kn}^{m} T_{k} \end{cases}$$
 (2)

So 6.156 can written as

$$a^{mn}\phi_{|mn} = 0 (3)$$

$$\Leftrightarrow \qquad \left(a^{mn}\phi_{|m}\right)_{|n} = 0 \tag{4}$$

$$T^{n} = a^{mn}\phi_{|m} \qquad \Rightarrow \qquad \partial_{n}T^{n} + \Gamma^{n}_{kn}T^{k} = 0 \tag{5}$$

$$\Rightarrow \qquad \partial_n \left(a^{mn} \phi_{|m} \right) + \Gamma_{kn}^n a^{pk} \phi_{|p} = 0 \tag{6}$$

$$\Leftrightarrow \qquad \partial_n \left(a^{mn} \right) \phi_{,m} + a^{mn} \phi_{,mn} + \Gamma_{kn}^n a^{pk} \phi_{,p} = 0 \tag{7}$$

(2)
$$\Rightarrow$$
 $\partial_n (a^{mn}) \phi_{,m} + a^{mn} \phi_{,mn} + \partial_k \log \sqrt{a} a^{pk} \phi_{,p} = 0$ (8)

$$\Leftrightarrow \qquad \left(a_{,n}^{mn}\right)\phi_{,m} + a^{mn}\phi_{,mn} + \frac{1}{\sqrt{a}}\left(\sqrt{a}a^{pk}\right)_{,k}\phi_{,p} = 0 \tag{9}$$

$$\Leftrightarrow \qquad \sqrt{a}\phi_{,m}\left(a^{mn}\right)_{,n} + \sqrt{a}a^{mn}\phi_{,mn} + a^{mn}\phi_{,m}\left(\sqrt{a}\right)_{,n} = 0 \qquad (10)$$

$$\Leftrightarrow \qquad \left(\sqrt{a}a^{mn}\phi_{,m}\right)_{,n} = 0 \tag{11}$$

•

5.11 p205 - Exercise

Show that a small strain is a rigid body displacement if, and only if, $e_{rs} = 0$. In the case of finite strain, deduce form **6.206** the conditions which must be satisfied by the partial derivatives of the displacement in order that it may be a rigid body displacement.

Suppose we deal with a rigid body. Then the position of two particles of the rigid body are given by

$$\begin{cases} p_r = z_r + u_r(z) \\ p'_r = z'_r + u_r(z') \end{cases}$$
 (1)

and

$$\begin{cases}
L_0 = z_r - z_r' \\
L_1 = z_r' + u_r(z') - z_r - u_r(z)
\end{cases}$$
(2)

A rigid body means $L_1 = L_0$, giving $u_r(z') = u_r(z)$ i.e $u_r(z)$ is a constant and thus $u_{r,s}(z) = 0$. As $e_{rs} = \frac{1}{2} (u_{r,s}(z) + u_{s,r}(z))$ we get $e_{rs} = 0$

Suppose now that $e_{rs} = 0$

We have $e=e_{rs}\lambda_r\lambda_s=0$ and $e=u_{r,s}(z)\lambda_r\lambda_s$ As the λ_r are arbitrary, in the sense that we are free to choose whatever curve to approach the initial point, we conclude that $u_{r,s}(z)=0$. So $u_r(z)$ is a constant, meaning that the mutual distance between two arbitrary points, do not change. The body is a rigid body.

 \Diamond

For a finite strain we have **6.206**:

$$\lim \frac{L_1^2 - L_0^2}{L_0^2} = 2u_{r,s}(z)\lambda_r \lambda_s + u_{m,r}(z)u_{m,s}(z)\lambda_r \lambda_s$$
 (3)

This limit is 0 and so we get as condition

$$(2u_{r,s}(z) + u_{m,r}(z)u_{m,s}(z))\lambda_r\lambda_s = 0$$
(4)

As the λ_r are arbitrary, in the sense that we are free to choose whatever curve to approach the initial point, we conclude that $2u_{r,s}(z) + u_{m,r}(z)u_{m,s}(z)$ must be zero.

$$2u_{r,s}(z) + u_{m,r}(z)u_{m,s}(z) = 0$$

•

p207 - Clarification 5.12

Then, clearly, since the the volume of the tetrahedron is less than a^3 ,

6.217
$$\lim_{a \to 0} \frac{1}{a^2} \frac{dM_r}{dt} = 0, \quad \lim_{a \to 0} \frac{1}{a^2} \int X_r dV = 0$$

But $\lim_{a\to 0} \frac{S}{a^2}$ is not zero,...

First, note that the volume of a trirectangular tetrahedron is $V = \frac{1}{6}abc$ with a, b, c the bases of the 3 rectangular triangles (see clarification for page 199), so if $a \ge b, c$ we have $V < a^3$.

There is no assurance that $\lim_{a\to 0}\frac{1}{a^3}\frac{dM_r}{dt}=0$. Indeed, consider **5.334**. For a continuous medium, this equation can be written as

$$I_{st} = \int_{V} \rho \epsilon_{ptq} \epsilon_{psn} z_s z_t dV \tag{1}$$

If V goes to zero, the quantities under the integral can be approximated by constant values and hence, the dynamics of the tetrahedron are govern by

$$\lim_{V \to 0} I_{st} = \rho \epsilon_{ptq} \epsilon_{psn} z_s z_t V \tag{2}$$

$$5.332: \frac{dI_{st}\omega_t}{dt} = M_s (3)$$

$$\Rightarrow \lim_{V \to 0} \frac{dM_s}{dt} = \lim_{V \to 0} V \frac{d\left(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t\right)}{dt}$$
(4)

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^3} \frac{dM_s}{dt} = \lim_{a \to 0} \frac{1}{a^3} V \frac{d \left(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t\right)}{dt}$$
 (5)

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^3} \frac{dM_s}{dt} < \lim_{a \to 0} \frac{1}{a^3} a^3 \frac{d \left(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t\right)}{dt}$$

$$(6)$$

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^3} \frac{dM_s}{dt} < \lim_{a \to 0} \frac{d\left(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t\right)}{dt}$$
 (7)

but there is no reason to admit that $\lim_{V\to 0} \frac{d\left(\rho\epsilon_{ptq}\epsilon_{psn}z_sz_t\omega_t\right)}{dt} = 0$. On the other hand, replacing a_3 with a^2 in (5) gives

$$\lim_{a \to 0} \frac{1}{a^2} \frac{dM_s}{dt} = \lim_{a \to 0} \frac{1}{a^2} V \frac{d(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t)}{dt}$$
(8)

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^2} \frac{dM_s}{dt} < \lim_{a \to 0} \frac{1}{a^2} a^3 \frac{d \left(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t\right)}{dt}$$
(9)

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^2} \frac{dM_s}{dt} < \lim_{a \to 0} a \frac{d(\rho \epsilon_{ptq} \epsilon_{psn} z_s z_t \omega_t)}{dt}$$

$$(10)$$

$$\Rightarrow \lim_{a \to 0} \frac{1}{a^2} \frac{dM_s}{dt} = 0 \tag{11}$$

For $\lim_{a\to 0} \frac{1}{a^2} \int X_r dV = 0$ the reasoning is even simpler as for a volume going to zero , we can consider X_r as constant and thus

$$\lim_{a \to 0} \frac{1}{a^2} \int X_r dV = \lim_{a \to 0} \frac{1}{a^2} X_r \int dV < \lim_{a \to 0} \frac{1}{a^2} X_r a^3 = 0$$
(12)

But $\lim_{a\to 0} \frac{S}{a^2}$ is not zero,...

Be S_t the area of the "sloped" triangle in the tetrahedron. Then, the total area of the tetrahedron is:

$$S = \frac{1}{2} (ab + bc + ac) + S_t \tag{13}$$

$$S_t > \frac{1}{2}ab, S_t > \frac{1}{2}bc, S_t > \frac{1}{2}ac$$
 (14)

$$\Rightarrow \qquad S > \frac{1}{2} \left(ab + bc + ac \right) + \frac{1}{2} ab \tag{15}$$

$$\Rightarrow S > \frac{1}{2}(ab + bc + ac) + \frac{1}{2}ab$$

$$\Rightarrow \frac{S}{a^2} > \frac{1}{2}\left(\frac{bc}{a^2} + \frac{c}{a}\right) + b$$

$$(15)$$

If we shrink the tetrahedron uniformly and put $a = \epsilon a_0, b = \epsilon b_0, c = \epsilon c_0$ then (16) can be written as

$$\lim_{\epsilon \to 0} \frac{S}{a^2} > \frac{1}{2} \left(\frac{b_0 c_0}{a_0^2} + \frac{c_0}{a_0} \right) + b_0 \lim_{\epsilon \to 0} \epsilon \tag{17}$$

which is indeed not zero.

p208 - Exercise 5.13

Show that the stress across a plane $z_1 = \text{const.}$ has the components E_{11} , E_{21} , E_{31} . What are the components across planes $z_2 = \text{const.}$ and $z_3 = \text{const.}$?

$$6.223 T_r = E_{rs} n_s (1)$$

So for the the stress across a plane $z_1 = \text{const.}$, we have $n_1 = 1, n_2 = 0, n_3 = 0$ and so

$$T_r (z_1 = \text{const.}) = \begin{pmatrix} E_{11} \\ E_{21} \\ E_{31} \end{pmatrix}$$
 (2)

For the the stress across a plane $z_2 = \text{const.}$, we have $n_1 = 0$, $n_2 = 1$, $n_3 = 0$ and for the stress across a plane $z_3 = \text{const.}$, we have $n_1 = 0$, $n_2 = 0$, $n_3 = 1$ and so

$$T_r (z_2 = \text{const.}) = \begin{pmatrix} E_{12} \\ E_{22} \\ E_{32} \end{pmatrix}$$
 (3)

$$T_r (z_2 = \text{const.}) = \begin{pmatrix} E_{12} \\ E_{22} \\ E_{32} \end{pmatrix}$$
 (3)
 $T_r (z_3 = \text{const.}) = \begin{pmatrix} E_{13} \\ E_{23} \\ E_{33} \end{pmatrix}$

5.14 p210 - Exercise

Show that the if 6.233 is solved for strain, so as to read

$$6.237 e_{rs} = C_{rsmn} E_{mn}$$

then the symmetry conditions **6.234**, **6.235**, and **6.236** imply similar conditions on C_{rsmn} . (The tensor C_{rsmn} is he second elasticity tensor).

a) $C_{rsnm} = C_{rsmn}$ and $C_{srmn} = C_{rsmn}$

This is a direct consequence of the symmetries $E_{nm} = E_{mn}$ and $e_{nm} = e_{mn}$. E.g.:

$$e_{nm} = e_{mn} \tag{1}$$

$$\Leftrightarrow C_{nmrs}E_{rs} = C_{mnrs}E_{rs} \tag{2}$$

$$\Rightarrow C_{nmrs} = C_{mnrs} \tag{3}$$

b) $C_{rsnm} = C_{mnrs}$

We simplify the notation by using 'compactified' indices (e.g.):

$$e_a = C_{ab}E_b \quad \Leftrightarrow \quad e_{rs} = C_{rsmn}E_{mn}$$

Let's form the invariant $E_a e_a$, then:

$$E_a e_a = c_{au} e_u C_{av} E_v \tag{4}$$

$$= c_{ua}e_aC_{uv}E_v \quad \text{(renaming dummy indices)} \tag{5}$$

$$=C_{uv}E_uE_v\tag{6}$$

$$= C_{vu} E_u E_v \quad \text{(renaming dummy indices)} \tag{7}$$

From (6) and (7) we can conclude

$$C_{vu} = C_{uv}$$

p212 - Exercise 5.15

Deduce from 6.250 that if an isotropic elastic body is in equilibrium under no body forces, then the expansion θ is an harmonic function $(\Delta \theta = 0)$

6.250:
$$\rho f_r = \rho X_r + (\lambda + \mu) \theta_{,r} + \mu \Delta u_r$$

In equilibrium under no body forces means $f_r = 0$ and $X_r = 0$. So,

$$(\lambda + \mu) \,\theta_{,r} + \mu \Delta u_r = 0 \tag{1}$$

$$\partial_{r} \Rightarrow (\lambda + \mu) \underbrace{\theta_{,rr}}_{=\Delta\theta} + \mu \underbrace{(\Delta u_{r})_{,r}}_{=\Delta u_{r,r}} = 0$$

$$u_{r,r} = \theta \Rightarrow (\lambda + \mu) \Delta\theta + \mu \Delta\theta = 0$$

$$\Rightarrow \Delta\theta = 0$$
(2)
$$(3)$$

$$u_{r,r} = \theta \quad \Rightarrow \quad (\lambda + \mu) \, \Delta \theta + \mu \Delta \theta = 0$$
 (3)

$$\Rightarrow \qquad \Delta\theta = 0 \tag{4}$$

p213 - Exercise 5.16

Express the equations of motion 6.250 in curvilinear coordinates.

6.250:
$$\rho f_r = \rho X_r + (\lambda + \mu) \theta_{,r} + \mu \Delta u_r$$

 $\rho f^r = \rho X^r + E^{rs}_{\mid s}$ We start from 6.252:

$$\rho f^r = \rho X^r + E^{rs}_{|s} \tag{1}$$

6.245:
$$\Rightarrow$$
 $E^{rs} = \lambda \delta_{rs}\theta + 2\mu e^{rs}$ (2) \Rightarrow $\rho f^r = \rho X^r + \lambda \delta_{rs}\theta_{|s} + 2\mu e^{rs}_{|s}$ (3)

$$\Rightarrow \qquad \rho f^r = \rho X^r + \lambda \delta_{rs} \theta_{|s} + 2\mu e^{rs}_{|s} \tag{3}$$

$$\Leftrightarrow \qquad \rho f^r = \rho X^r + \lambda \theta_{,r} + 2\mu e^{rs}_{|s} \tag{4}$$

6.245:
$$e^{rs} = \frac{1}{2} \left(u^r_{\ |s} + u^s_{\ |r} \right) \tag{5}$$

$$\Leftrightarrow \qquad \rho f^r = \rho X^r + \lambda \theta_{,r} + 2\mu \frac{1}{2} \left(u^r_{|ss} + u^s_{|rs} \right) \tag{6}$$

6.246:
$$\theta = e^{nn} = \frac{1}{2} \left(u^n_{|n} + u^n_{|n} \right) = u^n_{|n}$$
 (7)

(6)
$$\Rightarrow \qquad \rho f^r = \rho X^r + \lambda \theta_{,r} + \mu \left(u^r_{|ss} + \theta_{|r} \right)$$
 (8)

$$\Rightarrow \qquad \rho f^r = \rho X^r + (\lambda + \mu) \,\theta_{,r} + \mu u^r_{|ss|} \tag{9}$$

So,

$$f^r = \rho X^r + (\lambda + \mu) \,\theta_{,r} + \mu \Delta u^r$$

where we define the Laplacian differential operator as

$$\boldsymbol{\Delta}\left(\cdot\right)\stackrel{\text{\tiny def}}{=}\left(\cdot\right)_{\mid nn}$$

5.17 p215 - Exercise

Verify that $E_r = z_r$, $H_r = 0$ satisfy the wave equation but not Maxwell's equations

6.306:
$$\frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - E_{r,mn} = 0$$

6.307:
$$\frac{1}{c^2} \frac{\partial^2 H_r}{\partial t^2} - H_{r,mn} = 0$$

Obviously, **6.307** is trivial as $H_r = 0$ is a constant = 0, and so are the derivatives.

For **6.306**, $\frac{\partial^2 E_r}{\partial t^2} = 0$ as E_r is no function of time.

So, the defined field satisfy the wave equation.

$$\begin{cases}
6.301: & \frac{1}{c} \frac{\partial E_r}{\partial t} = \epsilon_{rmn} H_{n,m}, & \frac{1}{c} \frac{\partial H_r}{\partial t} = -\epsilon_{rmn} E_{n,m} \\
6.302: & E_{n,n} = 0, & H_{n,n} = 0
\end{cases}$$
(1)

The first equation of ${\bf 6.302}$ is not satisfied as $E_{n,n}=N$ with N the space dimension.

♦

5.18 p220 - Exercise

Prove a similar statement for the electric and magnetic vectors of the complementary electromagnetic field.

If we take the complex conjugate of 6.324 and subtract, we obtain after multiplying by i:

$$E_r^{**} = -\epsilon_{rmn} H_n^{**} V_{,m}, \quad H_r^{**} = \epsilon_{rmn} E_n^{**} V_{,m}, \tag{1}$$

Hence, the vectors $V_{,r}, E_r^{**}$ and H_r^{**} form a right-handed orthogonal triad, and we obtain the relation

$$E_r^{**}E_r^{**} = H_n^{**}H_n^{**} \tag{2}$$

5.19 p221 - Clarification

Some thoughts about polarization

Figure 5.3: Polarization of light

In the above figures, only the electric field is represented (the magnetic field has to be imagined perpendicular to the E_r vector).

In figure (a) we see an elliptical polarization which occurs when the EMW can be split into two perpendicular components. When $|\overline{E_1}| = |\overline{E_2}|$, one can speak about circular polarization. Figure (b) gives a view at a certain time t of the result of $\overline{E_1} + \overline{E_2}$.// In figure (c) an observer 'sees' in the phase wave situated at P, an unpolarized EMV. After passing a linear polarizing material at Q the observer will 'see' the EMV oscillating only in the vertical plane along \mathbf{v}

•

5.20 p221 - Exercise

What conditions must be imposed on the fixed complex vectors $E_r^{(0)}$ and $H_r^{(0)}$ in order that the wave may be plane-polarized

As stated a plane-polarized wave will have its vectors E_r^* and E_r^{**} have the same directions and moreover the E_r^* vector maintains a fixed directions.

This means that E_r^* can be written as $E_r^* = \alpha(z,t) \mathcal{E}_r$ and $E_r^{**} = \beta(z,t) \mathcal{E}_r$ with α , β real valued functions and \mathcal{E}_r a constant. Note that from the definition of E_r^* and E_r^{**} we have

$$E_r = E_r^* + iE_r^{**} \tag{1}$$

and

$$6.330 \begin{cases} \frac{\partial E_r^*}{\partial t} = -\frac{2\pi c}{\lambda} E_r^* \\ \frac{\partial E_r^{**}}{\partial t} = \frac{2\pi c}{\lambda} E_r^* \\ \frac{\partial \alpha}{\partial t} = -\frac{2\pi c}{\lambda} \beta \end{cases}$$

$$\Rightarrow \begin{cases} \frac{\partial \alpha}{\partial t} = -\frac{2\pi c}{\lambda} \beta \\ \frac{\partial \beta}{\partial t} = \frac{2\pi c}{\lambda} \alpha \\ \frac{\partial \beta}{\partial t^2} = -\left(\frac{2\pi c}{\lambda}\right)^2 \alpha \\ \frac{\partial^2 \beta}{\partial t^2} = -\left(\frac{2\pi c}{\lambda}\right)^2 \beta \end{cases}$$

$$\Rightarrow \begin{cases} \alpha = A(z) \cos \frac{2\pi c}{\lambda} t + B(z) \sin \frac{2\pi c}{\lambda} t \\ \beta = C(z) \cos \frac{2\pi c}{\lambda} t + D(z) \sin \frac{2\pi c}{\lambda} t \end{cases}$$

$$(5)$$

With $A, B, C, D : \mathbb{R}^3 \to \mathbb{R}$.

Let's write $E_r^{(0)}$ as $E_r^{(0)} = a + ib$ with a, b real valued functions depending on the position only. Then, **6.308** can be rewritten as

 $\Rightarrow \frac{E_r}{\mathcal{E}_r} = A\cos\frac{2\pi c}{\lambda}t + B\sin\frac{2\pi c}{\lambda}t + i\left(C\left(z\right)\cos\frac{2\pi c}{\lambda}t + D\left(z\right)\sin\frac{2\pi c}{\lambda}t\right)$

$$E_r = (a+ib)(\cos S + i\sin S) \tag{7}$$

$$= a\cos S - b\sin S + i\left(b\cos S + a\sin S\right) \tag{8}$$

(6)

We have, with $S = \frac{2\pi V}{\lambda} - \frac{2\pi c}{\lambda}t$

$$\begin{cases} \cos S = \cos \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t + \sin \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t \\ \sin S = \sin \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t - \cos \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t \end{cases} \tag{9} \\ \sin S = \sin \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t + a \sin \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t + b \cos \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t - b \sin \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t \\ + i \left(b \cos \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t + b \sin \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t - a \cos \frac{2\pi V}{\lambda} \sin \frac{2\pi c}{\lambda} t + a \sin \frac{2\pi V}{\lambda} \cos \frac{2\pi c}{\lambda} t \right) \end{cases} \tag{10}$$

$$= \begin{cases} \left(a \cos \frac{2\pi V}{\lambda} - b \sin \frac{2\pi V}{\lambda} \right) \cos \frac{2\pi c}{\lambda} t + \left(a \sin \frac{2\pi V}{\lambda} + b \cos \frac{2\pi V}{\lambda} \right) \sin \frac{2\pi c}{\lambda} t \\ + i \left[\left(b \cos \frac{2\pi V}{\lambda} + a \sin \frac{2\pi V}{\lambda} \right) \cos \frac{2\pi c}{\lambda} t + \left(b \sin \frac{2\pi V}{\lambda} - a \cos \frac{2\pi V}{\lambda} \right) \sin \frac{2\pi c}{\lambda} t \right] \end{cases} \tag{11}$$

Let's now compare equations (6) and (11)

$$E_r = A\mathcal{E}_r \cos \frac{2\pi c}{\lambda} t + B\mathcal{E}_r \sin \frac{2\pi c}{\lambda} t + i \left(C\mathcal{E}_r \cos \frac{2\pi c}{\lambda} t + D\mathcal{E}_r \sin \frac{2\pi c}{\lambda} t \right)$$
 (12)

$$E_r = \begin{cases} \left(a \cos \frac{2\pi V}{\lambda} - b \sin \frac{2\pi V}{\lambda} \right) \cos \frac{2\pi c}{\lambda} t + \left(a \sin \frac{2\pi V}{\lambda} + b \cos \frac{2\pi V}{\lambda} \right) \sin \frac{2\pi c}{\lambda} t \\ + i \left[\left(a \sin \frac{2\pi V}{\lambda} + b \cos \frac{2\pi V}{\lambda} \right) \cos \frac{2\pi c}{\lambda} t - \left(a \cos \frac{2\pi V}{\lambda} - b \sin \frac{2\pi V}{\lambda} \right) \sin \frac{2\pi c}{\lambda} t \right] \end{cases}$$
(13)

We see that

$$A\mathcal{E}_r = a\cos\frac{2\pi V}{\lambda} - b\sin\frac{2\pi V}{\lambda} \tag{14}$$

$$B\mathcal{E}_r = a\sin\frac{2\pi V}{\lambda} + b\cos\frac{2\pi V}{\lambda} \tag{15}$$

$$C = B \tag{16}$$

$$D = -A \tag{17}$$

(14), (15)
$$\Rightarrow \begin{cases} a = A\mathcal{E}_r \cos \frac{2\pi V}{\lambda} + B\mathcal{E}_r \sin \frac{2\pi V}{\lambda} \\ b = -A\mathcal{E}_r \sin \frac{2\pi V}{\lambda} + B\mathcal{E}_r \cos \frac{2\pi V}{\lambda} \end{cases}$$
 (18)

$$\Rightarrow \quad E_r^{(0)} = a + ib \tag{19}$$

$$= \mathcal{E}_r \left(A \left(z \right) + i B \left(z \right) \right) e^{-\frac{2\pi V}{\lambda}} \tag{20}$$

So, the direction of $E_r^{(0)}$ does not change as $\frac{E_r^{(0)}}{E_s^{(0)}} = \frac{\mathcal{E}_r}{\mathcal{E}_s}$ and the magnitude varies with the position but in such a way that the effect of V is annihilated.

•

p223 - Clarification 5.21

Interrelationship between the identities 6.337 to 6.340

6.337
$$\frac{1}{c^2} \frac{\partial^2 \phi_r}{\partial t^2} + \frac{1}{c} \frac{\partial \psi_{,r}}{\partial t} = \phi_{r,mm} - \phi_{m,mr}$$
 (1)

6.338
$$\frac{1}{c}\frac{\partial}{\partial t}\phi_{m,m} + \psi_{,mm} = 0$$
 (2)

6.339(a)
$$\frac{1}{c^2} \frac{\partial^2 \phi_r}{\partial t^2} - \phi_{r,mm} = 0$$
 (3)

6.339(b)
$$\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \psi_{,mm} = 0 \tag{4}$$

$$6.340 \frac{1}{c} \frac{\partial \psi}{\partial t} + \phi_{m,m} = 0 (5)$$

then

(3) in (1)
$$\frac{1}{c} \frac{\partial \psi_{,r}}{\partial t} = -\phi_{m,mr} \tag{6}$$

(3) in (1)
$$\frac{1}{c} \frac{\partial \psi_{,r}}{\partial t} = -\phi_{m,mr}$$

$$\frac{\partial (5)}{\partial z_r} \qquad \frac{1}{c} \frac{\partial \psi_{,r}}{\partial t} + \phi_{m,mr} = 0 \quad \Leftrightarrow \quad (6)$$
(7)

What about (4)?

(4) in (2)
$$\frac{1}{c} \frac{\partial}{\partial t} \phi_{m,m} = -\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2}$$

$$\int_t (8) \Rightarrow \frac{1}{c} \frac{\partial \psi}{\partial t} + \phi_{m,m} = C$$
(9)

$$\int_{t} (8) \Rightarrow \frac{1}{c} \frac{\partial \psi}{\partial t} + \phi_{m,m} = C \tag{9}$$

In (9), C is a function, constant in t. Imposing C=0 gives still a valid solution and is equivalent with (5).

p223 - Clarification 5.22

$$\mathbf{6.342} \qquad \qquad \frac{1}{c^2} \frac{\partial^2 \Pi_r}{\partial t^2} - \Pi_{r,mm} = 0$$

6.341(a)
$$\mathbf{E_n} = \mathbf{\Pi_{m,mn}} - \frac{1}{\mathbf{c^2}} \frac{\partial^2 \mathbf{\Pi_n}}{\partial \mathbf{t^2}}$$
 (1)

6.341(b)
$$\mathbf{H_n} = \frac{1}{\mathbf{c}} \epsilon_{\mathbf{npq}} \frac{\partial}{\partial \mathbf{t}} \mathbf{\Pi_{q,p}}$$
 (2)

We first check, under which conditions (1) and (2) satisfy the Maxwell equations

$$\begin{cases}
6.301(a),(b) & E_{m,m} = 0, & H_{m,m} = 0 \\
6.302(a) & \frac{1}{c} \frac{\partial E_r}{\partial t} = \epsilon_{rmn} H_{n,m} \\
6.302(b) & \frac{1}{c} \frac{\partial H_r}{\partial t} = -\epsilon_{rmn} E_{n,m}
\end{cases}$$
(3)

with the wave equations:

$$\begin{cases}
6.306 & \frac{1}{c^2} \frac{\partial^2 E_r}{\partial t^2} - E_{r,mm} = 0 \\
6.307 & \frac{1}{c^2} \frac{\partial^2 H_r}{\partial t^2} - H_{r,mm} = 0
\end{cases}$$
(4)

We have for 6.301(b):

$$(2)_{,n} H_{n,n} = \frac{1}{c} \epsilon_{npq} \frac{\partial \Pi_{q,pn}}{\partial t} (5)$$

$$= 0 \quad (\Pi_{q,pn} = \Pi_{q,np} \text{ and } \epsilon_{npq} = -\epsilon_{pnq})$$
 (6)

So, 6.301(b) is satisfied.

For 6.302(b) we have:

6.302(b)
$$\frac{1}{c} \frac{\partial H_r}{\partial t} = -\epsilon_{rmn} E_{n,m} \tag{7}$$

$$(2)_{,t} \quad \Rightarrow \qquad \frac{1}{c} \epsilon_{npq} \frac{\partial^2}{\partial t^2} \Pi_{q,p} = -\epsilon_{rmn} E_{n,m} \tag{8}$$

$$6.302(b) \qquad \frac{1}{c} \frac{\partial H_r}{\partial t} = -\epsilon_{rmn} E_{n,m} \qquad (7)$$

$$(2)_{,t} \Rightarrow \qquad \frac{1}{c} \epsilon_{npq} \frac{\partial^2}{\partial t^2} \Pi_{q,p} = -\epsilon_{rmn} E_{n,m} \qquad (8)$$

$$(1) \text{ in } (8) \Rightarrow \qquad \frac{1}{c} \epsilon_{npq} \frac{\partial^2}{\partial t^2} \Pi_{q,p} = -\underbrace{\epsilon_{rmn} \Pi_{q,qnm}}_{=0} + \epsilon_{rmn} \frac{1}{c^2} \frac{\partial^2 \Pi_{n,m}}{\partial t^2} \qquad (9)$$

$$\Rightarrow \qquad \frac{1}{c} \epsilon_{npq} \frac{\partial^2}{\partial t^2} \Pi_{q,p} = \epsilon_{rmn} \frac{1}{c^2} \frac{\partial^2 \Pi_{n,m}}{\partial t^2} \qquad (10)$$

$$\Rightarrow \frac{1}{c} \epsilon_{npq} \frac{\partial^2}{\partial t^2} \Pi_{q,p} = \epsilon_{rmn} \frac{1}{c^2} \frac{\partial^2 \Pi_{n,m}}{\partial t^2}$$
 (10)

So, 6.302(b) is satisfied.

We still have to prove that the expression (1) and (2) are consistent with 6.301(a) and 6.302(a)

also for **6.301(a)**:

(1)_{,n}
$$E_{n,n} = \Pi_{m,mnn} - \frac{1}{c^2} \frac{\partial^2 \Pi_{n,n}}{\partial t^2}$$
 (11)

and for 6.302(a):

6.302(a)
$$\frac{1}{c} \frac{\partial E_r}{\partial t} = \epsilon_{rmn} H_{n,m} \tag{12}$$

$$(2) \Rightarrow = \epsilon_{rmn} \frac{1}{c} \epsilon_{npq} \frac{\partial}{\partial t} \Pi_{q,pm} \tag{13}$$

$$\Rightarrow \frac{\partial E_r}{\partial t} = \epsilon_{rmn} \epsilon_{npq} \frac{\partial}{\partial t} \Pi_{q,pm} \tag{14}$$

$$(2) \Rightarrow = \epsilon_{rmn} \frac{1}{c} \epsilon_{npq} \frac{\partial}{\partial t} \Pi_{q,pm}$$
 (13)

$$\Rightarrow \frac{\partial E_r}{\partial t} = \epsilon_{rmn} \epsilon_{npq} \frac{\partial}{\partial t} \Pi_{q,pm} \tag{14}$$

$$= (\delta_{rp}\delta_{mq} - \delta_{rq}\delta_{mp})\frac{\partial}{\partial t}\Pi_{q,pm}$$
(15)

$$= \partial_t \Pi_{m,rm} - \partial_t \Pi_{r,mm} \tag{16}$$

Let's impose the condition on Π_n :

6.342
$$\Pi_{\mathbf{r},\mathbf{mm}} = \frac{1}{\mathbf{c}^2} \frac{\partial^2 \Pi_{\mathbf{r}}}{\partial \mathbf{t}^2}$$
 (17)

From (1) we have

$$\frac{1}{c^2} \frac{\partial^2 \Pi_n}{\partial t^2} = \Pi_{m,mn} - E_n \tag{18}$$

(17) becomes
$$\Pi_{r,mm} = \Pi_{m,mn} - E_n \tag{19}$$

$$\Rightarrow E_n = \Pi_{m.mn} - \Pi_{r.mm} \tag{20}$$

$$\Rightarrow \qquad \partial_t E_n = \partial_t \Pi_{m,mn} - \partial_t \Pi_{r,mm} \tag{21}$$

Which is consistent with 6.302(a) following (16).

For 6.301(a) we have

$$(16)_{,n} \quad \Rightarrow \qquad \qquad \frac{1}{c^2} \frac{\partial^2 \Pi_{n,n}}{\partial t^2} = \Pi_{n,mmn} \tag{22}$$

$$(11) \quad \Rightarrow \qquad \qquad E_{n,n} = \Pi_{m,mnn} - \Pi_{n,mmn} \tag{23}$$

$$=0 (24)$$

Which is consistent with 6.301(a)

5.23 p226 - Clarification

6.361
$$\Pi_{r}^{\left(0\right)}\left(z\right) = \int_{V_{\zeta}} P_{r}\left(\zeta\right) F\left(z,\zeta\right) dV_{\zeta}$$

The reason why we can find a solution in the form **6.361** is because the condition **6.358**: $\Pi_{r,mm}^{(0)} + k^2 \Pi_r^{(0)} = 0$ is a linear homogeneous differential equation. So any linear combination of solutions of this equation will also be a solution:

$$\Pi_r^{(0)} = \sum_{r=0}^{N} C_n \Pi_r^{(0)} \tag{1}$$

where the $\Pi_r^{(0)}$ satisfy the condition $\Pi_{r,mm}^{(0)} + k^2 \Pi_r^{(0)} = 0$ an are evaluated at the same point z_r but at different $zeta_n$.

This is the situation as illustrated in the figure (a) below.

Figure 5.4: Integral form of Hertz vectors

If we take more and more points ζ_r and take the C_k as a weight factor, then in the limit, we get $\Pi_r^{(0)}(z) = \int_{V_\zeta} P_r(\zeta) \, F(z,\zeta) \, dV_\zeta$ where $P_r(\zeta)$ is a kind of density vector field. On page 227, it is mentioned that the vector field $P_r(\zeta)$ does not need to be continuous. This situation is illustrated in the figure (b) where $V_\zeta = V_\zeta' \oplus V_\zeta''$

•

p227 - Exercise 5.24

Show that Maxwell's equation in the form **6.356** are satisfied by

$$E_r^{(0)} = ik\epsilon_{rpq} \int_{V_\zeta} Q_q(\zeta) F_{,p} dV_\zeta$$

$$H_r^{(0)} = \int_{V_\zeta} Q_m(\zeta) \left(F_{,mr} + k^2 F \delta_{mr} \right) dV_\zeta$$

where $Q_r(\zeta)$ is an arbitrary vector field, and F is as in **6.344**

Let's first look at this with a discrete point and define

$$E_r^{(0)} = ik\epsilon_{rpq}\Pi_{q,p}^{(0)} \tag{1}$$

$$H_r^{(0)} = \Pi_{m,mr}^{(0)} + k^2 \Pi_r^{(0)} \tag{2}$$

We check whether that Maxwell's equation in the form **6.356** are satisfied:

$$-ikE_r^{(0)} = \epsilon_{rmn}H_{n,m}^{(0)} \tag{3}$$

$$-ikE_r^{(0)} = \epsilon_{rmn}H_{n,m}^{(0)}$$

$$(1) \text{ and } (2) \Rightarrow -ikik\epsilon_{rpq}\Pi_{q,p}^{(0)} = \underbrace{\epsilon_{rmn}\Pi_{q,qmn}^{(0)}}_{=0} + \epsilon_{rmn}k^2\Pi_{n,m}^{(0)}$$

$$\Rightarrow k^2\epsilon_{rpq}\Pi_{q,p}^{(0)} = \epsilon_{rmn}k^2\Pi_{n,m}^{(0)}$$

$$(5)$$

$$\Rightarrow \qquad k^2 \epsilon_{rpq} \Pi_{q,p}^{(0)} = \epsilon_{rmn} k^2 \Pi_{n,m}^{(0)} \tag{5}$$

So the first Maxwell equation is satisfied.

For the second

$$ikH_r^{(0)} = \epsilon_{rmn}E_{n,m}^{(0)}$$
 (6)

(1) and (2)
$$\Rightarrow ik\Pi_{m,mr}^{(0)} + ik^3\Pi_r^{(0)} = \epsilon_{rmn}ik\epsilon_{npq}\Pi_{q,pm}^{(0)}$$
 (7)

$$ikH_r^{(0)} = \epsilon_{rmn}E_{n,m}^{(0)}$$

$$\Rightarrow ik\Pi_{m,mr}^{(0)} + ik^3\Pi_r^{(0)} = \epsilon_{rmn}ik\epsilon_{npq}\Pi_{q,pm}^{(0)}$$

$$\Rightarrow \Pi_{m,mr}^{(0)} + k^2\Pi_r^{(0)} = (\delta_{rp}\delta_{mq} - \delta_{rq}\delta_{mp})\Pi_{q,pm}^{(0)}$$
(8)

$$\Rightarrow \qquad \Pi_{m,mr}^{(0)} + k^2 \Pi_r^{(0)} = \Pi_{m,mr}^{(0)} - \Pi_{r,mm}^{(0)}$$
 (9)

$$\Rightarrow \qquad \Pi_{r,mm}^{(0)} + k^2 \Pi_r^{(0)} = \Pi_{m,mr}^{(0)} - \Pi_{m,mr}^{(0)} = 0$$
 (10)

Conclusion, (1) and (2) are valid expressions of a EMW provided that the condition (10) is respected. The rest of the reasoning is identical as for the previous form for $E_r^{(0)}$ and $H_r^{(0)}$ when we take a linear combination of $\Pi_r^{(0)}$, each satisfying (10) and taking the limit on volume V_ζ while expressing $\Pi_r^{(0)}$ as $Q_r(\zeta) F(z,\zeta)$.

p228 - Exercise 5.25

Write out Maxwell's equations in terms of a magnetic vector and a skew-symmetric electric tensor.

Let's define

$$E_{rm} = \epsilon_{rmn} E_n \tag{1}$$

$$E_{rm} = \epsilon_{rmn} E_n \tag{1}$$

$$\Rightarrow \qquad E_r = \frac{1}{2} \epsilon_{rmn} E_{mn} \tag{2}$$

Maxwell's equation:

$$\begin{cases}
6.301(a),(b) & E_{m,m} = 0, & H_{m,m} = 0 \\
6.302(a) & \frac{1}{c} \frac{\partial E_r}{\partial t} = \epsilon_{rmn} H_{n,m} \\
6.302(b) & \frac{1}{c} \frac{\partial H_r}{\partial t} = -\epsilon_{rmn} E_{n,m}
\end{cases}$$
(3)

6.302(a):

$$6.302(a) \times \epsilon_{rmn} \Rightarrow \frac{1}{c} \frac{\partial E_{rm}}{\partial t} = -\epsilon_{rmn} \epsilon_{npq} H_{q,p}$$

$$= (\delta m p \delta r q - \delta m q - \delta r p) H_{q,p}$$
(5)

$$= (\delta mp \delta rq - \delta mq - \delta rp) H_{q,p} \tag{5}$$

$$=H_{r,m}-H_{m,r}\tag{6}$$

So,

$$\frac{\partial \mathbf{E_{rm}}}{\partial t} = \mathbf{H_{r,m}} - \mathbf{H_{m,r}}$$

6.302(b):

(2) in 6.302(b)
$$\Rightarrow$$

$$\frac{1}{c} \frac{\partial H_r}{\partial t} = \frac{1}{2} \epsilon_{rmn} \epsilon_{npq} E_{pq,m}$$
(7)
$$= \frac{1}{2} (\delta_{rp} \delta_{mq} - \delta_{rq} \delta_{pm}) E_{pq,m}$$
(8)
$$= \frac{1}{2} (E_{rm,m} - E_{mr,m})$$
(9)

$$= \frac{1}{2} \left(\delta_{rp} \delta_{mq} - \delta_{rq} \delta_{pm} \right) E_{pq,m} \tag{8}$$

$$= \frac{1}{2} (E_{rm,m} - E_{mr,m}) \tag{9}$$

$$=E_{rm,m}$$
 (E_{rm} is skew-symmetric) (10)

So,

$$\frac{1}{c}\frac{\partial \mathbf{H_r}}{\partial t} = \mathbf{E_{rm,m}}$$

6.301(a):

(2) in 6.301(a)
$$\Rightarrow$$
 $\epsilon_{rmn}E_{mn,r} = 0$ (11)

As this equation is homogeneous, we can permute the indices in $E_{mn,r}$ and write $\epsilon_{rmn}E_{rn,m}=0$ and $\epsilon_{rmn}E_{mr,n}=0$.

Adding this three equation together we get

$$\mathbf{E_{mn,r}} + \mathbf{E_{rn,m}} + \mathbf{E_{mr,n}} = \mathbf{0}$$

6.302(b):

As in this case, nothing changes for H_r we have

$$\mathbf{H_{n,n}}=\mathbf{0}$$

♦

5.26 p229 - Clarification

6.371
$$F_{\alpha\beta} = H_{\alpha\beta}, = -F_{4\alpha} = E_{\alpha}, F_{44} = 0$$

6.374 $g_{\alpha\beta} = a_{\alpha\beta}, g_{\alpha4} = 0, g_{44} = -1$

For clarity this give in matrix form

$$(F_{mn}) = \begin{pmatrix} 0 & H_3 & H_2 & E_1 \\ -H_3 & 0 & H_1 & E_2 \\ H_2 & -H_1 & 0 & E_3 \\ -E_1 & -E_2 & -E_3 & 0 \end{pmatrix}$$
 (1)

$$(g_{mn}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{12} & a_{22} & a_{23} & 0 \\ a_{13} & a_{23} & a_{33} & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 (2)

♦

5.27 p231 - Exercise

Show that with homogeneous coordinates z-r (z_1, z_2, z_3 being rectangular Cartesians in space and $z_4=ict=ix^4$) Maxwell's equations read

$$F_{rm,n} + F_{mn,r} + F_{nr,m} = 0, F_{rm,m} = 0$$

Write out the components of F_{mn} in terms of the real electric and magnetic vectors, noting which components are real and which are imaginary.

We use the same convention as in the book: Greek indices are restricted to the space manifold. Extending this manifold to a 4 dimensional manifold, latin suffixes will be used. We have **6.369**:

$$\begin{cases} \text{(a)} & \frac{1}{c} \frac{\partial E_r}{\partial t} = a^{mn} H_{rm|n} \\ \text{(b)} & \frac{1}{c} \frac{\partial H_{rm}}{\partial t} = E_{r,m} - E_{m,r} \\ \text{(c)} & a^{mn} E_{n|m} = 0 \\ \text{(d)} & H_{rm,n} + H_{mn,r} + H_{nr,m} = 0 \end{cases}$$

We rewrite (1):

$$\begin{cases}
(a) & \frac{\partial E_{\alpha}}{\partial (ict)} = -a^{\beta\gamma} H_{\alpha\beta|\gamma} \\
(b) & i \frac{\partial H_{\alpha\beta}}{\partial (ict)} = E_{\alpha,\beta} - E_{\beta,\alpha} \\
(c) & a^{\alpha\beta} E_{\beta|\alpha} = 0 \\
(d) & H_{\alpha\beta,\gamma} + H_{\beta\gamma,\alpha} + H_{\gamma\alpha,\beta} = 0
\end{cases}$$
(2)

instead of 6.371 let's define:

$$F_{\alpha\beta} = H_{\alpha\beta}, \ F_{\alpha4} = -F_{4\alpha} = -iE_{\alpha}, \ F_{44} = 0$$
 (3)

$$\Rightarrow \qquad E_{\alpha} = iF_{\alpha 4} = -iF_{4\alpha} \tag{4}$$

Using (4), (2) becomes

$$\begin{cases}
(a) & -\frac{\partial F_{\alpha 4}}{\partial (ict)} = a^{\beta \gamma} F_{\alpha \beta | \gamma} \\
(b) & i \frac{\partial F_{\alpha \beta}}{\partial (ict)} = i F_{\alpha 4, \beta} - i F_{\beta 4, \alpha} \\
(c) & a^{\alpha \beta} F_{\beta 4, \alpha} = 0 \\
(d) & F_{\alpha \beta, \gamma} + F_{\beta \gamma, \alpha} + F_{\gamma \alpha, \beta} = 0
\end{cases}$$
(5)

For homogeneous coordinates we have $a^{\alpha\beta} = 1$ and $a^{\alpha4} = 1$ so

$$\begin{cases}
(a) \quad F_{\alpha 4,4} = -F_{\alpha \beta | \beta} \\
(b) \quad F_{\alpha \beta,4} = F_{\alpha 4,\beta} - F_{\beta 4,\alpha} \\
(c) \quad F_{\beta 4,\beta} = 0 \\
(d) \quad F_{\alpha \beta,\gamma} + F_{\beta \gamma,\alpha} + F_{\gamma \alpha,\beta} = 0
\end{cases}$$
(6)

Let's look what happens when we extend the range α, β, γ to 4. First let's extend γ to 4. The left part of equation (6d) can be written as

$$F_{\alpha\beta,\gamma} + F_{\beta\gamma,\alpha} + F_{\gamma\alpha,\beta} + F_{\alpha\beta,4} + F_{\beta4,\alpha} + F_{4\alpha,\beta} \tag{7}$$

Consider

$$P = F_{\alpha\beta,4} + F_{\beta4,\alpha} + F_{4\alpha,\beta} \tag{8}$$

Let's extend α to 4:

$$P' = F_{4\beta,4} + F_{\beta4,4} + \underbrace{F_{44,\beta}}_{=0}$$

$$= \underbrace{F_{4\beta,4} + F_{\beta4,4}}_{=0}$$

$$(9)$$

$$= \underbrace{F_{4\beta,4} + F_{\beta4,4}}_{=0}$$

$$(10)$$

$$=\underbrace{F_{4\beta,4} + F_{\beta4,4}}_{=0} \quad (F_{mn} \text{ is skew-symmetric}) \tag{10}$$

Extend β to 4:

$$P'' = F_{44,4} + F_{44,4} + F_{44,4} \tag{11}$$

$$=0$$
 (F_{mn} is skew-symmetric) (12)

So, we only have to prove that $P = F_{\alpha\beta,4} + F_{\beta4,\alpha} + F_{4\alpha,\beta} = 0$.

From (6b) we get:

$$P = F_{\alpha\beta,4} + F_{\beta4,\alpha} + F_{4\alpha,\beta} \tag{13}$$

$$= F_{\alpha 4,\beta} - F_{\beta 4,\alpha} + F_{\beta 4,\alpha} - F_{\alpha 4,\beta} \tag{14}$$

$$=0 (15)$$

We get so,

$$F_{rm,n} + F_{mn,r} + F_{nr,m} = 0 (16)$$

Consider now equation (6c) and extend the suffixes from 3 to 4. What is the value of the following expression?

$$Q = F_{4m,m} = F_{4\beta,\beta} + F_{44,4} \tag{17}$$

Obviously, F_{mn} being skew-symmetric we have $F_{44}=0 \implies F_{44,4}=0 \implies Q=0$. So, the Maxwell equations reduce to

$$\begin{cases}
F_{rm,n} + F_{mn,r} + F_{nr,m} = 0 \\
F_{rm,m} = 0
\end{cases}$$
(18)

For the explicit expression of F_{mn} we get from (3) and (4):

$$F_{mn} = \begin{pmatrix} 0 & H_3 & -H_1 & -iE_1 \\ H_3 & 0 & H_2 & -iE_2 \\ H_1 & -H_2 & 0 & -iE_3 \\ iE_1 & iE_2 & iE_3 & 0 \end{pmatrix}$$
(19)

•

5.28 p234 - Exercise 1

For a fluid in motion referred to curvilinear coordinates, the kinetic energy of the fluid in any region R is

$$T = \frac{1}{2} \int_{R} \rho v_r v^r dV$$

Use the equation of motion 6.147 to show that, if we follow the particles which compose R, we have

$$\frac{dT}{dt} = -\int_{S} p n_r v^r dS + \int_{R} \theta p dV + \int_{R} \rho v_r X^r dV$$

where S is the bounding surface to R, and n_r the unit vector normal to S and drawn outward. Show further that if, instead of following the particles, we calculate the rate of change of T for a fixed portion of space, we get the above expression with the following additional term

$$-\frac{1}{2}\int_{S}\rho n_{r}v^{r}v_{s}v^{s}dS$$

Let's remember that

$$\theta = v_{|r}^{r}$$
 (6.126 page 196.)

and

$$\begin{cases}
6.147 & \frac{\partial v_r}{\partial t} + v^s v_{r|s} = X_r - \rho^{-1} p_{,r} & \text{(a)} \\
\text{exercise page 201} & \frac{\partial v^r}{\partial t} + v_s v^r_{|s} = X^r - \rho^{-1} a^{rm} p_{,m} & \text{(b)}
\end{cases}$$

First let us note that, for the first part of the question, we move with the particles which means that for the considered region the mass contained in this region will remain unchanged and hence ρdV can be considered as a constant when bringing the derivation operator inside the volume integral. So,

$$T = \frac{1}{2} \int_{B} \rho v_r v^r dV \tag{3}$$

$$\Rightarrow \frac{dT}{dt} = \frac{1}{2} \int_{R} \left(\frac{\delta v_r}{\delta t} v^r + \frac{\delta v_r}{\delta t} v^r \right) \rho dV \tag{4}$$

$$= \frac{1}{2} \int_{R} \left[\left(\partial_{t} v_{r} + v^{s} v_{r|s} \right) v^{r} + v_{r} \left(\partial_{t} v^{r} + v_{s} v^{r}_{|s} \right) \right] \rho dV \tag{5}$$

$$= \frac{1}{2} \int_{\mathcal{B}} \left[\left(X_r - \rho^{-1} p_{,r} \right) v^r + v_r \left(X^r - \rho^{-1} a^{rm} p_{,m} \right) \right] \rho dV \tag{6}$$

$$= \frac{1}{2} \int_{R} \left(\underbrace{X_{r} v_{r}^{r}}_{=X^{r} v_{r}} - \rho^{-1} p_{,r} v^{r} + X^{r} v_{r} - \rho^{-1} a^{rm} v_{r} p_{,m} \right) \rho dV \tag{7}$$

$$= -\frac{1}{2} \int_{R} \left(p_{,r} v^{r} + \underbrace{a^{rm} v_{r}}_{=v^{m}} p_{,m} \right) dV + \int_{R} \rho X^{r} v_{r} dV \tag{8}$$

$$= -\int_{R} p_{,r} v^{r} dV + \int_{R} \rho X^{r} v_{r} dV \tag{9}$$

Let's look at the expression $p_{,r}v^r$ in the first integral in (9). Obviously:

$$(pv^r)_r = p_{,r}v^r + pv_{,r}^r (10)$$

$$\Rightarrow \qquad p_{,r}v^r = (pv^r)_{,r} - pv_{,r}^r \tag{11}$$

Let's note also that

$$(pv^{r})_{|r} - pv^{r}_{|r} = (pv^{r})_{,r} + \Gamma^{r}_{mr}(pv^{m}) - pv^{r}_{,r} - p\Gamma^{r}_{mr}v^{m}$$
(12)

$$= (pv^r)_{,r} - pv_{,r}^r \tag{13}$$

(11) becomes
$$p_{,r}v^r = (pv^r)_{|r} - pv^r_{|r}$$
 (14)

Substituting in (9):

$$\frac{dT}{dt} = -\int_{R} (pv^{r})_{|r} dV + \int_{R} pv^{r}_{|r} dV + \int_{R} \rho X^{r} v_{r} dV$$
(15)

Using Green's theorem $\int F_r n^r dS = \int F_{|r}^r dV$, and putting $F^r = pv^r$:

$$\frac{dT}{dt} = -\int_{S} p \underbrace{v_r n^r}_{=v^r n_r} dS + \int_{R} p \underbrace{v^r_{|r}}_{=\theta} dV + \int_{R} \rho X^r v_r dV \tag{16}$$

giving

What if we look at the rate of change of T in a fixed region?

Then ρdV can't be considered as a constant and bringing the derivative operator under the integral

will generate an additional term

$$\frac{1}{2} \int_{R} v_r v^r \frac{\delta \rho}{\delta t} dV \tag{18}$$

As we fix the spatial coordinates, we have $\frac{\delta \rho}{\delta t} = \partial_t \rho$ and by **6.127b** we have

$$\partial_t \rho = -\left(\rho v^r\right)_{\mid r} \tag{19}$$

So (18) becomes

$$(18) = -\frac{1}{2} \int_{R} v_s v^s \left(\rho v^r\right)_{|r} dV \tag{20}$$

Using again Green's theorem $\int F_r n^r dS = \int F^r_{|r} dV$ with $F^r = \rho v^r$ and nothing that $v_s v^s$ is an invariant:

$$(18) = -\frac{1}{2} \int_{S} v_s v^s \rho v^r n_r dV \tag{21}$$

•