斐波那契搜索方法

1. 定义

$$F_n = F_{n-1} + F_{n-2}$$
, $n = 2, 3,...$

where F_0 = F_1 = 1. Thus, the Fibonacci sequence is $\{F_0, F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, \ldots\}$ = $\{1, 1, 2, 3, 5, 8, 13, 21, 34\}$.

Example

Use the Fibonacci search to approximate the location of the maximum of $f(x) = x(5\pi - x)$ on [0, 20] to within $\epsilon = 1$.

Initial points

Find the smallest Fibonacci number that satisfies $F_N \epsilon \ge b-a$. The first Fibonacci number that satisfies

$$F_N 1 \ge 20-0$$

is $F_7 = 21$. We set N = 7,

$$\epsilon' = (b-a)/F_N = (20 - 0)/21 = 0.9524$$

and then position the first two points in the search at

$$F_{N-1} \epsilon' = F_6(0.9524) = 12.34$$

from each endpoint. Thus

$$x_1 = 0 + 12.38 = 12.38$$

 $x_2 = 20 - 12.38 = 7.62$
 $f(x_1) = (12.38)(5 \pi - 12.38) = 41.20$
 $f(x_2) = (7.62)(5 \pi - 7.62) = 61.63$

Using the unimodal property, we conclude that the maximum must occur to the left of 12.38, and we reduce the interval of interest to [0, 12.38]

1st iteration

The next lower Fibonacci number (F_6 was the last one used) is F_5 = 8; so the next point in the search is positioned at

$$F_{N-1} \epsilon' = F_5(0.9524) = 7.619$$

from the newest endpoint, 12.38. Thus

$$x_3 = 12.38 - 7.619 = 4.761$$

 $f(x_3) = (4.761)(5 \pi - 4.761) = 52.12$

3rd iteration

The next lower Fibonacci number now is F_3 = 3, Hence x_5 = 9.523 – F_3 ϵ' = 9.523 – 3(0.9524) = 6.666 $f(x_5)$ = (6.666) (5 π – 6.666) = 60.27

4th iteration

The next lower Fibonacci number now is F_2 = 2. Hence x_6 = 6.666 + F_2 ϵ' = 6.666 + 2(0.9524) = 8.571 $F(x_6)$ = (8.571)(5 π – 8.571) = 61.17

Note that x_2 = 7.62 is within ϵ = 1 of every other point of the interval. We therefore accept x_2 as the location of the maximum, i.e.

$$x^* = x_2 = 7.62$$
 with $z^* = f(x_2) = 61.63$