Тема V: Линейные операторы

§3. Умножение операторов и матриц

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Умножение линейных операторов

Пусть V_1,V_2,V_3 – векторные пространства над одним и тем же полем F. Если $\mathcal{A}\colon V_1\to V_2$ и $\mathcal{B}\colon V_2\to V_3$ – линейные операторы, то определена их композиция $\mathcal{AB}\colon V_1\to V_3$, действующая по правилу

$$\mathcal{AB}(\mathbf{x}) := \mathcal{B}(\mathcal{A}(\mathbf{x}))$$
 для всех $\mathbf{x} \in V_1$.

Мы называем \mathcal{AB} произведением операторов \mathcal{A} и \mathcal{B} .

Линейность произведения операторов

Предложение

Произведение линейных операторов – линейный оператор.

$$\mathcal{AB}(\mathbf{x}+\mathbf{y}) = \mathcal{B}(\mathcal{A}(\mathbf{x}+\mathbf{y})) = \mathcal{B}(\mathcal{A}(\mathbf{x})+\mathcal{A}(\mathbf{y})) = \mathcal{B}(\mathcal{A}(\mathbf{x})) + \mathcal{B}(\mathcal{A}(\mathbf{y})) = \mathcal{AB}(\mathbf{x}) + \mathcal{AB}(\mathbf{y}).$$

Так же проверяется, что $\mathcal{AB}(t\mathbf{x}) = t\mathcal{AB}(\mathbf{x})$ для всех $\mathbf{x} \in V_1$ и $t \in F$.

Свойства умножения линейных операторов

Ассоциативность. Пусть V_1,V_2,V_3,V_4 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\,\mathcal{B}\colon V_2\to V_3$ и $\mathcal{C}\colon V_3\to V_4$ – линейные операторы. Тогда

$$(\mathcal{AB})\mathcal{C} = \mathcal{A}(\mathcal{BC}).$$

Ассоциативность – свойство композиции произвольных отображений.

Свойства умножения линейных операторов (2)

Дистрибутивность справа. Пусть V_1, V_2, V_3 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\ \mathcal{B}\colon V_1\to V_2$ и $\mathcal{C}\colon V_2\to V_3$ – линейные операторы. Тогда

$$(\mathcal{A} + \mathcal{B})\mathcal{C} = \mathcal{A}\mathcal{C} + \mathcal{B}\mathcal{C}.$$

Дистрибутивность слева. Пусть V_1,V_2,V_3 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\ \mathcal{B}\colon V_2\to V_3$ и $\mathcal{C}\colon V_2\to V_3$ – линейные операторы. Тогда

$$\mathcal{A}(\mathcal{B}+\mathcal{C})=\mathcal{A}\mathcal{B}+\mathcal{A}\mathcal{C}.$$

Доказательство. Для любого $\mathbf{x} \in V_1$ имеем

$$((\mathcal{A}+\mathcal{B})\mathcal{C})(\mathbf{x}) = \mathcal{C}((\mathcal{A}+\mathcal{B})(\mathbf{x})) = \mathcal{C}(\mathcal{A}(\mathbf{x})+\mathcal{B}(\mathbf{x})) = \mathcal{C}(\mathcal{A}(\mathbf{x})) + \mathcal{C}(\mathcal{B}(\mathbf{x}))$$

$$= \mathcal{AC}(\mathbf{x}) + \mathcal{BC}(\mathbf{x}) = (\mathcal{AC} + \mathcal{BC})(\mathbf{x}).$$

Аналогично проверяется дистрибутивность справа.

Дистрибутивность уже использует специфику линейных операторов; скажем, при композиции произвольных функций из \mathbb{R} в \mathbb{R} ее нет. (Докажите!)

П

Свойства умножения линейных операторов (3)

Следствие

Множество ${\rm Hom}(V,V)$ всех линейных операторов пространства V является ассоциативным кольцом относительно операций сложения и умножения линейных операторов.

Упражнения. 1. На пространстве $\mathbb{R}[x]$ всех многочленов над полем \mathbb{R} рассмотрим оператор дифференцирования: $\mathcal{D}(p) := p'$, где p' – производная многочлена p. Как действует квадрат оператора \mathcal{D} ?

- 2. Пусть \mathcal{R}_{α} оператор поворота плоскости \mathbb{R}^2 вокруг начала координат на угол α . Как действует произведение $\mathcal{R}_{\alpha}\mathcal{R}_{\beta}$?
- 3. Приведите пример двух линейных операторов $\mathcal A$ и $\mathcal B$ плоскости $\mathbb R^2$, таких, что $\mathcal A\mathcal B \neq \mathcal B\mathcal A$.

Матрица произведения операторов

Пусть $\mathcal{A}\colon V_1 \to V_2$ и $\mathcal{B}\colon V_2 \to V_3$ — линейные операторы, а пространства V_1, V_2, V_3 конечномерны и имеют размерности n, k и m соответственно. Зафиксируем базисы $P = \{\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n\}$ в $V_1, Q = \{\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_k\}$ в V_2 и $R = \{\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_m\}$ в V_3 . Тогда можно построить матрицу $A = (a_{ij})_{k \times n}$ оператора $\mathcal{A}\colon V_1 \to V_2$ в базисах P и Q и матрицу $B = (b_{ij})_{m \times k}$ оператора $\mathcal{B}\colon V_2 \to V_3$ в базисах Q и R. Теперь подсчитаем матрицу $C = (c_{ij})_{m \times n}$ произведения $\mathcal{AB}\colon V_1 \to V_3$ в базисах P и R.

Из выражения для образа вектора через матрицу оператора имеем:

$$C[\mathbf{x}]_P = \big[\mathcal{AB}(\mathbf{x})\big]_R = \big[\mathcal{B}(\mathcal{A}(\mathbf{x}))\big]_R = B\big[\mathcal{A}(\mathbf{x})\big]_Q = B(A[\mathbf{x}]_P).$$

Матрица произведения операторов (2)

Напомним, что произведение матрицы на столбец было определено в §V.1:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{kn}x_n \end{bmatrix}.$$

Возьмем
$$\mathbf{x}=\mathbf{p}_1$$
 в равенстве $C[\mathbf{x}]_P=B(A[\mathbf{x}]_P)$. Тогда $[\mathbf{p}_1]_P=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}$.

Поэтому $A[\mathbf{p}_1]_P)$ – это первый столбец матрицы A, а $C[\mathbf{p}_1]_P$ – это первый столбец матрицы C. Итак, первый столбец матрицы C есть произведение матрицы B на первый столбец матрицы A.

Полагая в том же равенстве $\mathbf{x}=\mathbf{p}_2$ и т.д., получим, что каждый столбец матрицы C есть произведение B на столбец матрицы A с тем же номером. Другими словами, элемент матрицы C, стоящий на месте i,j есть сумма произведений элементов i-й строки матрицы B на соответствующие элементы j-го столбца матрицы A (правило «строка на столбец»).

Матрица произведения операторов (3)

Видим, что матрица произведения линейных операторов получается по правилу «строка на столбец» из матриц сомножителей. Именно поэтому произведение матриц *определяют* правилом «строка на столбец»!

Итак, произведение матриц G и H определено тогда и только тогда, когда число столбцов G равно числу строк H. Если $G=(g_{ij})_{p\times \ell}$, а $H=(h_{ij})_{\ell\times q}$, то произведением матриц G и H называется матрица $GH=(f_{ij})_{p\times q}$, где f_{ij} есть сумма произведений элементов i-й строки матрицы G на соответствующие элементы j-го столбца матрицы H:

$$f_{ij}:=g_{i1}h_{1j}+g_{i2}h_{2j}+\cdots+g_{i\ell}h_{\ell j}$$
 для всех $i=1,2,\ldots,p$ и $j=1,2,\ldots,q$.

Возвращаясь к произведениям линейных операторов, заключаем, что при соответствии, которое сопоставляет линейному оператору его матрицу, выполнено равенство

$$[\mathcal{A}\mathcal{B}]_{P,R} = [\mathcal{B}]_{Q,R}[\mathcal{A}]_{P,Q}.$$

Матрицы операторов перемножаются в порядке, обратном тому, в котором записаны операторы.

Свойства умножения матриц

Свойства умножения матриц

Пусть A, B и C — матрицы. Тогда:

- 1) если произведения AB и BC определены, то (AB)C = A(BC) (ассоциативность);
- 2) если A и B одного и того же размера и произведение AC определено, то (A+B)C=AC+BC (дистрибутивность справа);
- 3) если B и C одного и того же размера и произведение AB определено, то A(B+C)=AB+AC (дистрибутивность слева);
- 4) если произведение AB определено, то $(AB)^T = B^T A^T$.

Умножение матриц некоммутативно! Даже для квадратных матриц A и B одинакового размера, когда оба произведения AB и BA определены, как правило, $AB \neq BA$.

Упражнение: составьте две 2×2 -матрицы из цифр даты своего рождения.

Например, для даты 01.02.2003 эти матрицы будут $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ и $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Перемножьте эти матрицы в разном порядке и сравните результаты.

Свойства умножения матриц (2)

Свойства 1)-3) следуют из соответствующих свойств умножения линейных операторов. Можно проверить их и прямыми вычислениями.

Альтернативное доказательство ассоциативности. Пусть $A=(a_{ij})_{m\times n}$, $B=(b_{ij})_{n\times r}$ и $C=(c_{ij})_{r\times s}$. Положим $AB=(d_{ij})_{m\times r}$ и $BC=(f_{ij})_{n\times s}$. Далее, положим $(AB)C=(g_{ij})_{m\times s}$ и $A(BC)=(h_{ij})_{m\times s}$. Требуется доказать, что $g_{ij}=h_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,s$. В самом деле:

$$g_{ij} = \sum_{k=1}^{r} d_{ik} c_{kj} = \sum_{k=1}^{r} \left[\left(\sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} \right) \cdot c_{kj} \right] = \sum_{k=1}^{r} \sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} c_{kj} =$$

$$= \sum_{\ell=1}^{n} \sum_{k=1}^{r} a_{i\ell} b_{\ell k} c_{kj} = \sum_{\ell=1}^{n} \left[a_{i\ell} \cdot \left(\sum_{k=1}^{r} b_{\ell k} c_{kj} \right) \right] = \sum_{\ell=1}^{n} a_{i\ell} f_{\ell j} = h_{ij}. \quad \Box$$

Упражнение: докажите свойство 4): если произведение AB определено, то

$$(AB)^T = B^T A^T.$$

Единичная матрица

Определение

Квадратная матрица, у которой все элементы главной диагонали равны 1, а все остальные элементы равны 0, называется единичной матрицей. Единичная матрица обозначается E (или E_n , если важен порядок).

Таким образом, единичная матрица выглядит следующим образом:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$
 Это не что иное как матрица единичного оператора $\mathcal{E}.$

Можно также записать $E_n=(\delta_{ij})_{n imes n}$, используя *символ Кронекера*

$$\delta_{ij} := egin{cases} 1, & ext{если } i = j, \ 0, & ext{если } i
et j. \end{cases}$$

Свойство единичной матрицы

Если произведение AE [соответственно EA] определено, то AE=A [соответственно EA=A].

Обратимые линейные операторы и их матрицы

Напомним, что отображение $f: M_1 \to M_2$ обратимо тогда и только тогда, когда f – взаимно однозначное отображение M_1 на M_2 .

Предложение

Если $A: V_1 \to V_2$ – взаимно однозначный линейный оператор векторного пространства V_1 на векторное пространство V_2 , то обратное отображение $A^{-1}: V_2 \to V_1$ также является линейным.

 $\mathbf{x}_1 := \mathcal{A}^{-1}(\mathbf{y}_1), \, \mathbf{x}_2 := \mathcal{A}^{-1}(\mathbf{y}_2).$ Тогда $\mathcal{A}(\mathbf{x}_1 + \mathbf{x}_2) = \mathcal{A}(\mathbf{x}_1) + \mathcal{A}(\mathbf{x}_2) = \mathbf{y}_1 + \mathbf{y}_2,$ откуда $\mathcal{A}^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{x}_1 + \mathbf{x}_2 = \mathcal{A}^{-1}(\mathbf{v}_1) + \mathcal{A}^{-1}(\mathbf{v}_2)$.

Доказательство. Рассмотрим произвольные вектора $y_1, y_2 \in V_2$ и пусть

Так же проверяется, что $\mathcal{A}^{-1}(t\mathbf{y}) = t\mathcal{A}^{-1}(\mathbf{y})$ для всех $\mathbf{y} \in V_2$ и $t \in F$.

Вспомним, что взаимно однозначное линейное отображение векторного пространства V_1 на векторное пространство V_2 мы называли *изоморфизмом*. У изоморфных пространств одинаковы размерности, поэтому матрица обратимого линейного отображения будет квадратной.

Обратимые матрицы

Если $\mathcal{A}\colon V_1\to V_2$ — взаимно однозначное линейное отображение векторного пространства V_1 на векторное пространство V_2 , а $\mathcal{A}^{-1}\colon V_2\to V_1$ — обратное отображение, то произведение $\mathcal{A}\mathcal{A}^{-1}$ — единичный оператор пространства V_1 , а произведение $\mathcal{A}^{-1}\mathcal{A}$ — единичный оператор пространства V_2 .

Переходя к матрицам, имеем $[\mathcal{A}\mathcal{A}^{-1}]=E$ и $[\mathcal{A}^{-1}\mathcal{A}]=E$, где E – единичная матрица. Отсюда $[\mathcal{A}^{-1}][\mathcal{A}]=E$ и $[\mathcal{A}][\mathcal{A}^{-1}]=E$.

Если обозначить $A:=[\mathcal{A}],\ B:=[\mathcal{A}^{-1}],$ то AB=E и BA=E. Вспомним, что в любой полугруппе с единицей e элемент b такой, что ab=ba=e называется обратным к элементу a. В курсе «Введение в математику» было проверено, что для данного a обратный к нему, если существует, определяется однозначно, что оправдывает обозначение $a^{-1}.$ В соответствии с этим, матрица B такая, что AB=BA=E для данной матрицы A называется обратной к матрице A и обозначается через $A^{-1}.$

Возникает два естественных вопроса:

- О Как узнать, имеет ли данная квадратная матрица обратную?
- **2** Если матрица A имеет обратную, то как вычислить A^{-1} ?

Обратимые матрицы (2)

Предложение

Квадратная матрица размера $n \times n$ обратима тогда и только тогда, когда её ранг равен n.

Доказательство. С каждой $n \times n$ -матрицей A связан линейный оператор $\mathcal A$ пространства столбцов высоты n, определенный правилом $\mathcal A(\mathbf x) := A\mathbf x$ для любого вектора-столбца $\mathbf x$. При этом матрица A будет матрицей оператора $\mathcal A$ (в стандартном базисе пространства столбцов. Матрица $A = [\mathcal A]$ обратима тогда и только тогда, когда обратим оператор $\mathcal A$. Если $\mathcal A$ обратим, его образ совпадает со всем пространством столбцов, а значит, ранг $\mathcal A$ равен n. Так как ранг линейного оператора совпадает с рангом его матрицы, заключаем, что ранг A равен n.

Обратно, если ранг матрицы A равен n, то ранг оператора $\mathcal A$ равен n. Значит, образ $\mathcal A$ совпадает со всем пространством столбцов, т.е. $\mathcal A$ – отображение пространства столбцов на себя. По теореме о ранге и дефекте ядро оператора $\mathcal A$ нулевое. Покажем, что тогда $\mathcal A$ взаимно однозначен. Предположим, что $\mathcal A(\mathbf x)=\mathcal A(\mathbf y)$ для некоторых векторов-столбцов $\mathbf x$ и $\mathbf y$. Тогда $\mathcal A(\mathbf x-\mathbf y)=\mathcal A(\mathbf x)-\mathcal A(\mathbf y)=\mathbf 0$, откуда $\mathbf x-\mathbf y=\mathbf 0$, т.е. $\mathbf x=\mathbf y$. Тем самым, $\mathcal A$ – взаимно однозначное отображение пространства столбцов на себя, т.е. обратимый оператор.

Обратимые матрицы (3)

Теперь ответим на вопрос, как вычислить A^{-1} .

Алгоритм вычисления обратной матрицы

Припишем к обратимой $n \times n$ -матрице A слева единичную $n \times n$ -матрицу и проделаем над строками $n \times 2n$ -матрицы E|A последовательность элементарных преобразований, которая приведет A к единичной матрице. Левая половина получившейся матрицы будет равна матрице A^{-1} .

Замечание: можно приписывать единичную матрицу сверху и проделывать элементарные преобразования со столбцами $2n \times n$ -матрицы $\frac{E}{A}$. Тогда A^{-1} возникнет в «числителе», когда «знаменатель» станет равным E.

Пример вычисления обратной матрицы

Пусть
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
 . Вычислим матрицу A^{-1} .
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 3 & 2 \\ 0 & 1 & 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 3 & 2 \\ -1 & 1 & 0 & 0 & -5 & -1 \\ -1 & 0 & 1 & 0 & -4 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 0 & 2 & 1 & -5 & 0 \\ 0 & 1 & -1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 & -4 & -1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} -1 & 0 & 2 & 1 & -5 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 4 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & -5 & 7 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 4 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} -1 & -5 & 7 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 4 & -5 & 0 & 0 & 1 \end{pmatrix}$$
 Итак, $A^{-1} = \begin{pmatrix} -1 & -5 & 7 \\ 0 & -1 & 1 \\ 1 & 4 & -5 \end{pmatrix}$.

Обоснование алгоритма

Чтобы обосновать предложенный алгоритм, нужно объяснить, почему эта процедура (1) заканчивается и (2) приводит именно к обратной матрице.

В чем проблема с (1)? Доказательство теоремы о ранге позволяет привести $n \times n$ -матрицу A ранга n к единичной матрице с помощью элементарных преобразований над строками и столбцами, но в алгоритме разрешены преобразования только над строками! Покажем, что матрицу A можно привести к единичной матрице, оперируя только со строками.

Поскольку ранг матрицы A по столбцам равен n, ее столбцы линейно независимы. Поэтому в первом столбце A есть ненулевой элемент. С помощью перестановки строк переставим его на место 1,1, а затем, домножив первую строку на обратный элемент, сделаем элемент на месте 1,1 равным 1. Теперь с помощью преобразований II-го и III-го родов над строками обнулим остальные элементы первого столбца:

$$\begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \xrightarrow{\text{II,III}} \begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \dots & b_{nn} \end{pmatrix}.$$

Обоснование алгоритма (2)

Второй столбец матрицы
$$\begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \dots & b_{nn} \end{pmatrix}$$
 не может выражаться через

первый, поэтому среди его «поддиагональных» элементов b_{22},\dots,b_{n2} должен быть ненулевой. С помощью перестановки строк переставим его на место 2,2, а затем, домножив вторую строку на обратный элемент, сделаем элемент на месте 2,2 равным 1. Теперь с помощью преобразований II-го и III-го родов над строками обнулим остальные элементы второго столбца:

$$\begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & 1 & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{n2} & \dots & c_{nn} \end{pmatrix} \xrightarrow{\text{II,III}} \begin{pmatrix} 1 & 0 & \dots & d_{1n} \\ 0 & 1 & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{nn} \end{pmatrix}.$$

Продолжим в том же духе. В силу линейной независимости столбцов никакой столбец не может выражаться через предыдущие столбцы. Поэтому на шаге, когда обработаны первые j столбцов (j < n), среди «поддиагональных» элементов (j+1)-го столбца найдется ненулевой, и процесс можно продолжать, пока не будут обработаны все n столбцов.

Лемма о элементарных преобразованиях

Итак, манипулируя со строками $n \times 2n$ -матрицы E|A, можно привести A к единичной матрице. Почему при этом матрица E превратится в A^{-1} ? Для обоснования потребуется один факт, полезный и в других случаях.

Лемма

Элементарные преобразования над столбцами (строками) матрицы A равносильны умножению A справа (слева) на некоторые матрицы.

Доказательство. Пусть

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3i} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{ki} & \dots & a_{kn} \end{pmatrix}$$

- произвольная (не обязательно квадратная) матрица. Для каждого элементарного преобразования над столбцами (строками) A построим матрицу, умножение на которую справа (слева) дает тот же результат.

Лемма о элементарных преобразованиях – интуиция

Идея построения такова. Элементарному преобразованию не важно, какие именно элементы составляют матрицу; оно манипулирует со столбцами (строками) независимо от их «содержимого».

Лемма о элементарных преобразованиях – построение

Поэтому можно найти матрицу, умножение на которую дает тот же результат, что и применение данного элементарного преобразования, применив это преобразование κ единичной матрице E. Та матрица T, которая при этом получится, и будет искомой, так как ET=TE=T.

Перестановка i-го и j-го столбцов (i-й и j-й строк) матрицы A равносильно умножению A справа (слева) на матрицу

$$\begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} j$$

которая получается, если в единичной матрице переставить i-й и j-й столбцы (или, что равносильно, переставить i-ю и j-ю строки).

Лемма о элементарных преобразованиях – построение (2)

Добавление к i-му столбцу матрицы A ее j-го столбца равносильно умножению A справа на матрицу

которая получается, если в единичной матрице прибавить к i-му столбцу j-й столбец. Аналогично, добавление к i-й строке матрицы A ее j-й строки равносильно умножению A слева на матрицу, которая получается, если в единичной матрице прибавить к i-й строке j-ю строку.

Лемма о элементарных преобразованиях – построение (3)

Умножение i-го столбца (i-й строки) матрицы A на скаляр $\lambda \neq 0$ равносильно умножению A справа (слева) на матрицу

$$\begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}^{j}$$

которая получается, если в единичной матрице умножить i-й столбец (или, что равносильно, i-ю строку) на λ .

Обоснование алгоритма – окончание

Рассмотрим последовательность элементарных преобразований $arepsilon_1,\dots,arepsilon_s$ над строками $n\times 2n$ -матрицы E|A такую, что

$$E|A \xrightarrow{\varepsilon_1} \cdots \xrightarrow{\varepsilon_s} B|E.$$

Пусть T_1,\dots,T_s – такие $n\times n$ -матрицы, что для каждого $k=1,\dots,s$ умножение произвольной матрицы X слева на T_k дает тот же результат, что и применение преобразования ε_k к строкам этой матрицы X. Тогда

$$T_s \cdots T_1 E = B$$
 in $T_s \cdots T_1 A = E$.

В силу второго равенства $T_s\cdots T_1=A^{-1}$, а в силу первого $T_s\cdots T_1=B$. Итак, $B=A^{-1}$.

Замечание: аналогично обосновывается «вертикальный» вариант алгоритма, когда единичную матрицу приписывают сверху и проделывают элементарные преобразования со столбцами $2n \times n$ -матрицы $\frac{E}{A}$ до тех пор, пока «знаменатель» не станет равным E.