NYCU Deep Learning Lab-1 Back Propagation

學號 : 314551113

姓名:劉哲良

Github: <u>Lab1-BackPropagation</u>

Content

Introduction
Implement Detail4
Network Architecture4
Activation Functions5
Backpropagation6
Extra Implementation8
Experimental Results9
Screenshot and comparison figure9
Show the accuracy of your prediction
Learning curve (loss-epoch curve)
Discussions
Try different learning rates12
Try different numbers of hidden units
Try without activation functions
Extra Implementation Discussions
Questions
A. What are the purposes of activation functions?19
B. What if the learning rate is too large or too small?
C. What are the purposes of weights and biases in a neural network?19
Reference 20

Introduction

在本次作業中,實作了一個簡單的深度神經網路,並完成了 Forward Propagation 與 Back Propagation 的流程,以模擬模型的訓練過程。除此之外,也額外加入了多種 Activation Function 與 Optimizer,以觀察它們對模型訓練效果的影響與優化效果。

為了驗證模型的表現與泛化能力,訓練資料分別使用助教提供的 Linear Dataset 以及 XOR Dataset。本作業的主要目的是深入理解 Back Propagation 的運作原理與細節,並透過嘗試調整模型結構、參數以及 Hyperparameters (如 Learning rate、Activation Functions 與 Optimizer)來優化訓練過程。

此外,透過實際實作與實驗,我們能更直觀地掌握深度學習中梯度下降的概念,並 進一步了解不同設計選擇對於收斂速度與最終準確率的影響,為未來更複雜模型的開發 打下基礎。

Implement Detail

Network Architecture

- Hidden Layer 程式碼: (Backward Pass 參考 Back Propagation 的程式碼)
 - Initialization:

```
# Fully connected layer class
class Linear_Layer:
   def __init__( self,input_size,output_size,activation="sigmoid",optimizer="SGD",momentum=0.9, ):
       self.input_size = input_size
       self.output_size = output_size
       # Initialize weights and bias (W , b)
       \# Assume that the size of input vector is n by 1
       # The size of weight matrix should be m by n, where m is the size of output vector
       self.weights = np.random.randn(input_size, output_size)
       self.bias = np.random.randn(1, output_size)
       self.input = None
       self.activation = activation
       self.optimizer = optimizer # optimizer for gradient descent
       self.momentum = momentum # Momentum for optimizer
       self.v_weight = 0 # Velocity of weight for momentum optimizer
       self.v_bias = 0 # Velocity of bias for momentum optimizer
       self.total_grad_w = 0 # Total gradient of weight for Adagrad optimizer
       self.total_grad_b = 0 # Total gradient of bias for Adagrad optimizer
       self.epsilon = 1e-8 # smoothed value for adagrad optimizer in case of zero value of denominator
```

■ Forward:

```
# Forward pass: z = xW + b
def forward(self, x):
    self.input = x
    self.z = np.dot(x, self.weights) + self.bias

if not self.activation:
    self.a = self.z
else:
    self.a = activation_map[self.activation](self.z)

return self.a
```

- Model 程式碼:
 - 使用 losses 儲存訓練過程的所有 loss value
 - 使用 layers 紀錄 model 的 Layer 架構
 - Initialization

```
class Model:
    def __init__(
    self,
         input_size=2,
        output_size=1,
hidden_layers_size=10,
        activation="sigmoid",
optimizer="SGD",
         learning_rate=0.01,
        self.activation = activation
self.losses = []
self.layers = []
         self.learning_rate = learning_rate
         # Build model
         self.layers.append(
             Linear_Layer(input_size, hidden_layers_size, activation,
                           optimizer))
         self.layers.append(
             Linear_Layer(hidden_layers_size, hidden_layers_size, activation,
        | | optimizer))
self.layers.append(
            Linear_Layer(hidden_layers_size, output_size, activation,
             optimizer))
```

■ Forward:

```
def forward(self, x):
    # Forward pass through all layers
    for layer in self.layers:
        x = layer.forward(x)
    return x
```

■ Backward:

```
def backward(self, delta, learning_rate=0.01):
    # Backward pass
    for layer in reversed(self.layers):
        delta = layer.backward(delta, self.learning_rate)
```

Activation Functions

- 提供 Sigmoid、ReLU、Tanh 三種 Activation Functions 選擇
- 同時實作各 Activation functions 的微分以利之後計算梯度使用

```
# Activative functions and their derivatives
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-x))

def derivative_sigmoid(x):
    return np.multiply(x, 1.0 - x)

def relu(x):
    return np.maximum(0, x)

def derivative_relu(x):
    return np.where(x >= 0, 1, 0)

def tanh(x):
    return np.tanh(x)

def derivative_tanh(x):
    return 1.0 - np.square(np.tanh(x))
```

Backpropagation

- Loss Function採用 MSE (Mean Squared Error)
- 計算各層梯度
- 根據梯度更新 Weights 與 Bias

符號定義

• C: : Loss Function , 此模型中使用 Mean Square Error (MSE)

 $oldsymbol{\sigma}$: Activation Function

b^l : 第l 層的 bias

• w^l : 第l 層的 weight

• z^l : 從第 l-1 層 到第l 層經由 weight 和 bias 運算後得到的結果

a^l : σ (z^l)
 (圖片來源: [1])

ullet δ^l : $rac{\partial \mathsf{C}}{\partial z^l}$ l=1

對於每一層 Layer,我們需要去計算其 δ 值。假設我們已知 δ^l ,我們可以藉由此值推導出 δ^{l-1} ,根據連鎖律(Chain Rule), $\delta^{l-1} = \frac{\partial C}{\partial z^{l-1}} = \frac{\partial C}{\partial z^{l}} \times \frac{\partial z^l}{\partial a^{l-1}} \times \frac{\partial a^{l-1}}{\partial z^{l-1}}$ 。

$$\frac{\partial C}{\partial z^l}$$
 即為 δ^l ,為我們已知

 $\frac{\partial z^l}{\partial a^{l-1}}$ 根據觀察可得知為 w^l

 $\frac{\partial a^{l-1}}{\partial z^{l-1}}$ 即為 σ' (z^{l-1}), σ' 為 Activation function 之微分

下方圖片中的delta 就是參照以上推導而計算出,知道 δ 值後即可得知所有 weight 和 bias 的梯度,如下方證明,可知 bias 的梯度即為 δ^l ,weight 的梯度為 $\delta^l \times a^l$ 。

$$\frac{\partial C}{\partial b^{l}} = \frac{\partial C}{\partial a^{l}} \times \frac{\partial a^{l}}{\partial z^{l}} \times \frac{\partial z^{l}}{\partial b^{l}} = \delta^{l}$$

$$\frac{\partial C}{\partial w^{l}} = \frac{\partial C}{\partial a^{l}} \times \frac{\partial a^{l}}{\partial z^{l}} \times \frac{\partial z^{l}}{\partial w^{l}} = \delta^{l} \times a^{l}$$

也就是下方程式碼 dW 和 db 的計算方式,該程式碼為 Linear_Layer 類別的 backward 實作

```
def backward(self, upstream_delta, learning_rate=0.01):
                        the activation function is empty
     if not self.activation:
         delta = upstream_delta
         # If no activation function, delta is just upstream_delta
         delta = upstream delta * derivative activation map[self.activation](self.a)
     # Calculate gradients of weights and bias
     dW = np.dot(self.input.T, delta)
    db = np.sum(delta)
     if self.optimizer == "SGD":
    self.weights -= dW * learning_rate
    self.bias -= db * learning_rate
     elif self.optimizer == "Adagrad":
         # For the purpose of best training, learning rate should be adjusted according to the gradients # If gradients are small, learning rate should be larger, vice versa
         self.total_grad_w += np.square(dW)
         self.total_grad_b += np.square(db)
         self.weights -=
             dW * learning_rate / np.sqrt(self.total_grad_w + self.epsilon)
         self.bias -= db * learning_rate / np.sqrt(self.total_grad_b + self.epsilon)
     elif self.optimizer == "Momentum":
         self.v_weight = self.momentum * self.v_weight + dW * learning_rate
         self.v_bias = self.momentum * self.v_bias + db * learning_rate self.weights -= self.v_weight
         self.bias -= self.v_bias
     return np.dot(delta, self.weights.T) # Return delta for the previous layer
```

並在 Model 中對每一層 Layer 呼叫 backward function 實現 Back propagation

```
def backward(self, delta, learning_rate=0.01):
    # Backward pass
    for layer in reversed(self.layers):
        delta = layer.backward(delta, self.learning_rate)
```

Extra Implementation

• 支援多種 Optimizer,包括 SGD、Momentum、AdaGrad

Optimizer 的實作可參考上方圖片

- o SGD: 直接使用 Learning Rate 乘上梯度來更新 Weights
- Momentum:透過累積梯度的速度向量
 (v_weight, v_bias),幫助模型跳脫 Local
 Mimimum 並讓收斂路徑更平滑。

$$V_t \leftarrow \beta V_{t-1} - \eta \, \frac{\partial L}{\partial W}$$

 $W \leftarrow W + V_t$

(圖片來源:[2])

Adagrad:根據以往累積的梯度平方和來動態調整 Learning Rate。當某些參數需要較大或較小的更新時特別有幫助。

$$W \leftarrow W - \eta \frac{1}{\sqrt{n + \epsilon}} \frac{\partial L}{\partial W}$$

$$n = \sum_{r=1}^{t} (\frac{\partial L_r}{\partial W_r})^2$$

$$W \leftarrow W - \eta \frac{1}{\sqrt{\sum_{r=1}^{t} (\frac{\partial L_r}{\partial W})^2 + \epsilon}} \frac{\partial L}{\partial W}$$

(圖片來源:[2])

- 可調整參數如 Learning Rate、Hidden Layer 點數、Activation Functions 類型等
- 加入 Early stop 以保留最佳模型參數以及預測結果

```
if len(self.losses) > 0 and loss >= self.losses[-1]:
    # If the prediction of current model is worse than before
    cnt += 1
    # Skip the weight updating progress , keep the better weight of the model
    continue
else:
    # Reset the counting of early stop
    cnt = 0
    # Keep the best prediction
    output = cur_output
```

Experimental Results

Screenshot and comparison figure

Hyperparameters

Activation Function	Optimizer	Learning Rate	Hidden_Units	Epochs
sigmoid	Adagrad	0.01	10	200000

Linear

XOR

Show the accuracy of your prediction

Hyperparameters

Activation Function	Optimizer	Learning Rate	Hidden_Units	Epochs
sigmoid	Adagrad	0.01	10	200000

Linear Dataset

```
Ground Truth: [0]
                                         Predict: [1.02858064e-05]
Iter86
Iter87
               Ground Truth:
                                         Predict: [4.19457328e-05]
Iter88
               Ground Truth: [0]
                                         Predict: [1.32200751e-05]
               Ground Truth: [0]
                                         Predict: [4.64427017e-05]
Iter89
Iter90 |
               Ground Truth: [0]
                                         Predict: [1.01875439e-05] |
Iter91
               Ground Truth: [0]
                                         Predict: [6.59757665e-05] |
Iter92
               Ground Truth: [0]
                                         Predict: [0.06922087] |
Iter93
               Ground Truth: [1]
                                         Predict: [0.99999807] |
                                         Predict: [9.51350791e-05] |
Iter94
               Ground Truth: [0]
                                         Predict: [4.25082399e-05] |
Iter95
               Ground Truth: [0]
                                         Predict: [0.9999989] |
Iter96
               Ground Truth: [1]
Iter97
               Ground Truth: [0]
                                         Predict: [8.24585126e-05] |
                                         Predict: [0.93402683] |
Iter98 |
               Ground Truth: [1]
               Ground Truth: [1] |
                                         Predict: [0.99991112] |
                Ground Truth: [0] |
                                          Predict: [0.00603146] |
Loss = 0.0040 Accuracy = 100.00%
```

XOR Dataset

```
iterio i
               Ground Truth: [1] |
                                         rrealct: [U.95bU/U2b]
                                         Predict: [0.05239608]
Iter11 |
               Ground Truth: [0] |
               Ground Truth: [0]
                                         Predict: [0.02101065] |
Iter12 |
Iter13 |
               Ground Truth: [1]
                                         Predict: [0.9510509] |
               Ground Truth: [0]
                                         Predict: [0.00976467] |
Iter14
Iter15 |
               Ground Truth: [1]
                                         Predict: [0.99983074] |
               Ground Truth: [0]
                                         Predict: [0.0060062] |
Iter16 |
Iter17 |
               Ground Truth: [1]
                                         Predict: [0.99996463] |
Iter18 |
               Ground Truth: [0] |
                                         Predict: [0.00414463]
                                         Predict: [0.99997695]
Iter19 |
               Ground Truth: [1]
Iter20 |
               Ground Truth: [0]
                                         Predict: [0.00305483]
               Ground Truth: [1] |
                                         Predict: [0.99997975] |
Iter21 |
Loss = 0.0004 Accuracy = 100.00%
```

Learning curve (loss-epoch curve)

Linear

Discussions

Try different learning rates

Fixed Hyperparameters

Activation Function	Optimizer	Hidden_Units	Epochs
sigmoid	Adagrad	10	200000

Linear

可以觀察到,當 learning_rate 較小時,梯度更新速度較為緩滿,也導致準確率有些微下降的情況。learning_rate 較大時,梯度更新速度會快上許多,準確率仍保持 100%。並且,在 Linear Dataset 中, learning rate 對準確率的影響並不大。

XOR

在 XOR Dataset 中,learning rate 對於訓練的影響就相比 Linear 較為明顯,首先,同樣地,learning rate 對於 loss 的影響相同,learning rate 大,loss 下降速度較快而且較為陡峭,learning rate 小,loss 下降速度慢且平緩。顯著的是,在此 Dataset 中,小的 learning rate 相較於 learning rate 較大的值,擁有較差的準確率

Try different numbers of hidden units

Fixed Hyperparameters

在這裡使用 SGD optimizer, 以觀察到更明顯的 loss 變化

Activation Function	Optimizer	Learning Rate	Epochs
sigmoid	SGD	0.01	200000

Linear

在 Linear Dataset 中,模型準確率沒有明顯的差異,但是可以明顯感覺到 hidden_layer 數增加時,訓練模型時間也明顯上升。再者,從 learning_curve 可以 看出,當層數越多時,模型的 loss 下降也比較穩定且迅速。

在 XOR Dataset 中,準確率在這兩種實驗 hidden layer 沒有明顯的差異,但可以看出較多的 hidden layer 對於模型訓練較為快速、穩定。

Try without activation functions

Fixed Hyperparameters

Hidden Layer	Optimizer	Learning Rate	Epochs
10	Adagrad	0.01	200000

Linear

沒有 Activation Function 在 Linear Dataset 影響不大,但可以看出影響了 loss 值

大小,但經過的 epoch 數較多也能有不錯的訓練效果。相較於有 Activation Function,沒有使用 Activation Function 的準確率也下降了些許。

XOR

相較於 Linear Dataset, 有無 Activation Function 對於 XOR Dataset 的影響明顯提升,沒有 Activation Function 基本上 Train 不了 model。

Extra Implementation Discussions

Try different optimizers

除了一般的 SGD, 在本次作業中我額外實作了 Adagrad 以及 Momentum, 下面會比較使用其他 optimizer 對於訓練的影響

Fixed Hyperparameters

Hidden Layer	Activation Function	Learning Rate	Epochs
10	Sigmoid	0.01	200000

Linear

Optimizer 對於 Linear Dataset 的準確率沒有太大的影響,但可以看出與其使用單純的 SGD,其他兩者的 Loss 下降速度較快。

Optimizer 對於 XOR Dataset 的影響較大,除了影響 loss 下降幅度較大,同時也影響了準確率,在此實驗 Adagrad 擁有較好的訓練效果

Try different activation functions

Fixed Hyperparameters

Hidden Layer	Optimizer	Learning Rate	Epochs
10	Adagrad	0.01	200000

Linear

可以觀察到使用 tanh 和 sigmoid 訓練效果均不錯,使用 relu 反而無法訓練 Model。

與Linear Dataset 差不多,但Relu基本上完全Train不了Mode

Questions

A. What are the purposes of activation functions?

使得訓練出來的模型不會只是線性函數,使用可微分的 activation function,可以經由多層神經元的疊加產生非線性效果,使神經網路能夠解決更困難的問題。

B. What if the learning rate is too large or too small?

當 learning rate 太小時,參數更新幅度太小,導致訓練速度非常緩慢,可能需要非常多次迭代才能收斂,亦或者卡在Local Minimum 而導致無法找到最佳解。

當 learning rate 太大時,參數更新幅度過大,可能導致 loss 函數震盪甚至 發散,無法收斂到最小值。

C. What are the purposes of weights and biases in a neural network?

Weight 決定 Neurons 之間的連結的強度並控制輸入對於輸出的影響程度, Bias 能夠移動 Model Function,,兩者都能調整 Model Function 的形狀以及位置,增加模型的靈活性。

Reference

[1] https://datasciocean.tech/deep-learning-core-concept/backpropagation-explain/

[2]

https://medium.com/%E9%9B%9E%E9%9B%9E%E8%88%87%E5%85%94%E5%85%94
%E7%9A%84%E5%B7%A5%E7%A8%8B%E4%B8%96%E7%95%8C/%E6%A9%9F%E5
%99%A8%E5%AD%B8%E7%BF%92ml-note-sgd-momentum-adagrad-adam-optimizerf20568c968db