Measure Theory

Alex Rutar* University of Waterloo

Winter 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: April 17, 2019

Contents

Chapte	er I Measures	
1	Measure Spaces	1
2	Pre-measures to Outer Measures to Measures	
3	Constructing σ -Algebras and Measures	
Chapte	er II Integration Theory	
4	Measurable Functions	17
5	Integration	20
6	Modes of Convergence	
Chapte	er III Product Measures	
7	Multidimensional Lebesgue Measure	35
Chapte	er IV Complex Measures	
8	Signed Measures	37
9	L^p -spaces	
10	Radon Measures	
Chapte	er V Fourier Series	
11	Differentiation in \mathbb{R}^d	51

I. Measures

1 Measure Spaces

Definition. Let $X \neq \emptyset$ be a set. $\mathcal{M} \subset \mathcal{P}(X)$ is called a σ -algebra on X if

- 1. $X \in \mathcal{M}$
- 2. $A \in \mathcal{M} \Rightarrow A^c \in \mathcal{M}$
- 3. If $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$

The pair (X, \mathcal{M}) is called a **measurable space**. The elements of \mathcal{M} are called **measurable sets**.

Definition. Let (X, \mathcal{M}) be a measurable space, (Y, τ) be a topological space. Then $f: X \to Y$ is called **measurable** if $f^{-1}(V) \in \mathcal{M}$ for all $V \in \tau$.

We have the following properties of σ -algebras.

- 1.1 Proposition. 1. $\emptyset \in \mathcal{M}$
 - 2. $A_1, A_2, \dots, A_n \in \mathcal{M} \Rightarrow A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{M}$
 - 3. $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}$
 - 4. $A, B \in \mathcal{M} \Rightarrow A \setminus B \in \mathcal{M}$
 - 5. f is measurable, $H \subset Y$ is closed, then $f^{-1}(H) \in \mathcal{M}$.

Proof 1. $X \in \mathcal{M} \Rightarrow X^c \in \mathcal{M}$.

- 2. We can extend this to a countable union by introduction $A_{n+i} = \emptyset$ for $i \in \mathbb{N}$.
- 3. By DeMorgan's identities, $(\bigcap A_n)^c = \bigcup A_n^c \in \mathcal{M}$.
- 4. $A \setminus B = A \cap B^c \in \mathcal{M}$.
- 5. H^c is open implies $f^{-1}(H^c) \in \mathcal{M}$. Then $f^{-1}(H) = (f^{-1}(H^c))^c \in \mathcal{M}$.

EXTENDED REAL LINE

One can define the extended real line as follows: set the space $X = \mathbb{R} \cup \{-\infty, +\infty\}$. Then the topology is given by

$$G \in \tau \Leftrightarrow \begin{cases} \text{for all } x \in G \cap \mathbb{R} & \exists r > 0 \text{ s.t. } (x - r, x + r) \subset G \\ -\infty \in G & \exists b \in \mathbb{R} \text{ s.t. } (-\infty, b) \subset G \\ +\infty \in G & \exists a \in \mathbb{R} \text{ s.t. } (a, \infty) \subset G \end{cases}$$

The same can be done with a single symbol as well. In either case, the extended real line is a compact set. We also extend the general operations so that $a + \infty = \infty$ for any $a \in (0, \infty]$, and $\infty = \sup[0, \infty] = \sup[0, \infty)$, and similarly for $-\infty$.

We define for $(a_i) \subset [0, \infty]$

$$\sum_{i=1}^{\infty} a_i = \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} a_i$$

If (a_i) , $(b_i) \subset [0, \infty]$, then

$$\sum_{i=1}^{\infty} (a_i + b_i) = \sum_{i=1}^{\infty} a_i + \sum_{i=1}^{\infty} b_i$$

Furthermore, if $(a_{ij})_{i=1}^{\infty} \stackrel{\infty}{\underset{j=1}{\longrightarrow}} \subset [0, \infty]$, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$$

With this, we can define positive measures.

Definition. Let (X, \mathcal{M}) be a measurable space. A function $\mu : \mathcal{M} \to [0, \infty]$ is called a **(positive) measure** if it is countably additive and not constant ∞ . In other words,

- 1. $\mu(\emptyset) = 0$
- 2. $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \text{ if } A_i \cap A_j = \emptyset$

The pair (X, \mathcal{M}, μ) is called a **measure space**.

- **1.2 Proposition.** 1. If $A_i \cap A_j = \emptyset$ then $\mu\left(\sum_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$.
 - 2. $A \subset B$ implies $\mu(A) \leq \mu(B)$ Then $\mu(B \setminus A) = \mu(B) \mu(A)$.
 - 3. If $A_1, A_2, \ldots \in \mathcal{M}$, then $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$. This is referred to as σ -subadditivity.
 - 4. $A_1 \subset A_2 \subset A_3 \cdots$ then $\lim_{n \to \infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$
 - 5. $A_1 \supset A_2 \supset A_3 \cdots$ and $\mu(A_i) < \infty$ then $\lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{n=1}^{\infty} A_n)$

Proof 1. Obvious.

- 2. Follows since $B = A \cup (B \setminus A)$ is a disjoint union.
- 3. Let $E_1 = A_1$, $E_{n+1} = A_{n+1} \setminus \bigcup_{i=1}^n A_i$. Then $E_i \cap E_j = \emptyset$ and if $i \neq j$ and for all $i \in \mathbb{N}$, $E_i \in \mathcal{M}$ and $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} A_i$. Thus

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

4. Define $B_1 := A_1$ and $B_{i+1} = A_{i+1} \setminus A_i$ for $i \ge 1$. Then $B_i \cap B_j = \emptyset$ and $\mu(A_n) = \mu(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n \mu(B_i)$. Similarly, $\mu(\bigcup_{n=1}^\infty A_n) = \mu(\bigcup_{n=1}^\infty B_n) = \sum_{n=1}^\infty \mu(B_n)$. Thus the result follows since

$$\lim_{n\to\infty}\sum_{i=1}^n\mu(B_i)=\sum_{n=1}^\infty\mu(B_n)$$

5. Without loss of generality $\mu(A_1) < \infty$. Let $C_1 = \emptyset$, $C_n = A_1 \setminus A_n$. Then $C_1 \subset C_2 \subset \cdots$ and $\mu(C_n) + \mu(A_n) = \mu(A_1)$. Let $A = \bigcap_{n=1}^{\infty} A_n$ so $A_1 \setminus A = \bigcup_{n=1}^{\infty} C_n$ and $(\bigcup_{n=1}^{\infty} C_n) \cup A = A_1$ disjointly. But then $\mu(\bigcup_{n=1}^{\infty} C_n) + \mu(A) = \mu(A_1)$ so that

$$\mu(A_1) - \mu(A) = \mu\left(\bigcup_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} \mu(C_n) = \mu(A_1) - \lim \mu(A_n)$$

Since $\mu(A_1)$ is finite, we have $\mu(A) = \lim \mu(A_n)$.

EXAMPLES OF MEASURES

Definition. A measure space (X, \mathcal{M}, μ) is called:

- 1. **finite** if $\mu(X) < \infty$
- 2. a **probability space** if $\mu(X) = 1$. If $0 < \mu(X) < \infty$, then $\frac{1}{\mu(X)}\mu$ is a probability measure.
- 3. σ -finite if there is a countable collection $\{X_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$, $\bigcup_{i=1}^{\infty} X_i = X$, and $\mu(X_i) < \infty$.
- 4. **decomposable** if there is a set $\Pi \subseteq \mathcal{M}$ such that
 - a) Π partitions X
 - b) If $E \subseteq X$, then $E \in \mathcal{M}$ if and only if $E \cap P \in \mathcal{M}$ for each $P \in \Pi$
 - c) $\mu(P) < \infty$ for all $P \in \Pi$
 - d) If $E \in \mathcal{M}$ with $\mu(E) < \infty$, then

$$\mu(E) = \sup_{\substack{\mathcal{F} \subseteq \Pi \\ \mathcal{F} \text{ finite}}} \sum_{P \in \mathcal{F}} \mu(E \cap P) := \sum_{P \in \Pi} \mu(E \cap P)$$

- 5. **semifinite** if for any $E \in \mathcal{M}$ with $\mu(E) > 0$, there is $F \in \mathcal{M}$, $F \subseteq E$ such that $0 < \mu(F) < \infty$ (each set is "finitely approximatable from below")
- 6. **complete** if whenever $N \subseteq X$ such that $N \subseteq E$, $E \in \mathcal{M}$ and $\mu(E) = 0$, then $N \in \mathcal{M}$.

A common technique that σ -finiteness allows is to define $E_n = \bigcup_{i=1}^n X_i$, so $E_1 \subseteq E_2 \subseteq \cdots$, $X = \bigcup_{i=1}^\infty E_i$ and each $\mu(E_i) < \infty$. Alternatively, let $A_1 = X_1$, $A_{n+1} = X_{n+1} \setminus \bigcup_{i=1}^n X_i$, so each $A_i \in \mathcal{M}$, $A_i \cap A_j = \emptyset$ if $i \neq j$, each $\mu(A_i) < \infty$, and $X_i = \bigcup_{i=1}^\infty A_i$ disjointly.

Note that every σ -finite measure is both decomposable and semifinite, but decomposability and semifiniteness are not equivalent.

Completeness has some technical usefulness. However, every measure space (X, \mathcal{M}, μ) extends to a complete measure space, so this property is rather unexciting. Most "natural" constructions of measures give us complete measures.

Here are some common examples of measures.

- 1. The zero measure. Given a measurable space (X, \mathcal{M}) , let $\mu(E) = 0$ for $E \in \mathcal{M}$.
- 2. Counting measure. Let *X* be any non-empty set. Then $\mathcal{P}(X)$ is a σ -algebra on *X*. We let $\gamma : \mathcal{P}(X) \to [0, \infty]$ by

$$\gamma(E) = \begin{cases} |E| & : |E| < \infty \\ \infty & : \text{ otherwise} \end{cases}$$

Then $(X, \mathcal{P}(X), \gamma)$ is a measure space (easy exercise). This space is

- finite if and only if *X* is finite
- σ -finite if and only if X is countable
- always decomposable $(\Pi = \{\{x\} : x \in X\})$.
- always semifinite
- · always complete

Since $X \neq \emptyset$, if X is finite, let $\nu = \frac{1}{|X|} \gamma$ is the uniform probability.

3. Point mass or Dirac measure. Let $a \in X$ and define $\delta_a : \mathcal{P}(X) \to \{0,1\} \subset [0,\infty]$ by

$$\delta_a(E) = \begin{cases} 1 & : a \in E \\ 0 & : a \notin E \end{cases}$$

Again, this is clearly a measure. It is complete, since null sets are those which do not contain *a*. It is also a probability measure.

- 4. Let X be a countable set, and let \mathcal{M} be the subsets of X that are countable or have countable complement. Define $\mu: \mathcal{M} \to [0, \infty]$ by $\mu(E) = 0$ if E is countable, and infinity otherwise. The measure is not semifinte, nor decomposable, and naturally not σ -finite. However, it is complete.
- 5. Let $X = \{x_0\}$, the singleton sets. Then $\mathcal{P}(X) = \{\emptyset, \{x_0\}\}$, and define $\mu(\emptyset) = 0$ and $\mu(\{x_0\}) = \infty$. It is not decomposable nor semifinite.

In the next section, we will investigate how to construct more useful measures.

2 Pre-measures to Outer Measures to Measures

OUTER MEASURES

Definition. Let X be a non-empty set. An **outer measure** on X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

- (i) $\mu^*(\emptyset) = 0$
- (ii) $A \subseteq B$ implies $\mu^*(A) \le \mu^*(B)$
- (iii) $A_1, A_2, \ldots \in \mathcal{P}(X)$, then

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \le \sum_{i=1}^{\infty} \mu^* (A_i)$$

Remark. Certainly any measure on $\mathcal{P}(X)$ is an outer measure. While outer measures are easy to construct and have the largest possible domain, they may not be σ -additive.

2.1 Proposition. Let $\mathcal{E} \subseteq \mathcal{P}(X)$ be any family such that $\{\emptyset, X\} \subseteq \mathcal{E}$, and there is a function $\rho : \mathcal{E} \to [0, \infty]$ such that $\rho(\emptyset) = 0$. Then the function μ^* defined for $A \in \mathcal{P}(X)$ by

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : E_1, E_2, \dots \in \mathcal{E}, A \subseteq \bigcup_{i=1}^{\infty} E_i \right\}$$

defines an outer measure on X.

Remark. Unless (\mathcal{E}, ρ) is "nice", we may not be able to recver ρ from μ^* . It certainly holds that for any $E \in \mathcal{E}$, $\mu^*(E) \leq \rho(E)$, but we may not get equality.

PROOF First, $0 \le \mu^*(\emptyset) \le \rho(\emptyset) = 0$. Second, if $A \subseteq B \subseteq X$, then any countable \mathcal{E} -cover of B is evidently an \mathcal{E} -cover of A. Finally, suppose $A_1, A_2, \ldots \subseteq X$ and let $\epsilon > 0$. By definition of μ^* to each A_i , get E_{i1}, E_{i2}, \ldots in \mathcal{E} such that $A_i \subseteq \bigcup_{j=1}^{\infty} E_{ij}$ and $\sum_{j=1}^{\infty} \rho(A_i) + \frac{\epsilon}{2^i}$. Then $\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} E_{ij}$ so that

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \le \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} E_{ij} \le \sum_{i=1}^{\infty} \left(\mu^*(A_i) + \frac{\epsilon}{2^i} \right)$$
$$= \sum_{i=1}^{\infty} \mu^*(A_i) + \epsilon$$

Since $\epsilon > 0$ is arbitrary, the desired inequality holds.

prop:def-outer

CARATHEODORY'S THEOREM

Definition. (Caratheodory) Given an outer measure μ^* on X, we say that a set $A \subseteq X$ is μ^* -measurable provided that for any $E \in \mathcal{P}(X)$, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$.

Remark. If μ^* is an outer measure, $\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \setminus A)$ always happens. In practice, we only need check the converse inequality.

Definition. Given a non-empty set X, an **algebra** on X is a family $A \subseteq \mathcal{P}(X)$ such that

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$
- (iii) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$

By induction, any finite union of sets is in A. As well, $\emptyset \in A$ and A is closed under finite intersections.

thm:carat

2.2 Theorem. (Caratheodory) Given an outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$, we have that

(i)
$$\mathcal{M} = \{ A \in \mathcal{P}(X) : \text{for all } E \in \mathcal{E}(X), \mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A) \} \text{ is a } \sigma - \text{algebra}.$$

(ii)
$$\mu = \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$$
 is a complete measure.

CLAIM I M is an algebra.

PROOF First note that $X \in \mathcal{M}$: if $E \in \mathcal{P}(X)$, then $\mu^*(E \cap X) + \mu^*(E \setminus X) = \mu^*(E) + \mu^*(\emptyset) \le \mu^*(E)$.

Now, let $A, B \in \mathcal{M}$ be arbitrary. We have for $E \in \mathcal{P}(X)$ that

$$\mu^*(E \cap (X \setminus A)) + \mu^*(E \setminus (X \setminus A)) = \mu^*(E \setminus A) + \mu^*(E \cap A) \le \mu^*(E)$$

so that $X \setminus A \in \mathcal{M}$. Furthermore,

$$\mu^{*}(E) \geq \mu^{*}(E \cap A) + \mu^{*}(E \setminus A)$$

$$\geq \mu^{*}((E \cap A) \cap B) + \mu^{*}((E \cap A) \setminus B) + \mu^{*}((E \setminus A) \cap B) + \mu^{*}((E \setminus A) \setminus B)$$

$$= \mu^{*}(E \cap (A \cap B)) + \mu^{*}(E \cap (A \setminus B)) + \mu^{*}(E \cap (B \setminus A)) + \mu^{*}(E \setminus (A \cup B))$$

$$\geq \mu^{*}(E \cap (A \cup B)) + \mu^{*}(E \setminus (A \cup B))$$

by σ -additivity and that $A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)$. Thus $A \cup B \in \mathcal{M}$.

CLAIM II \mathcal{M} is a σ -algebra.

PROOF It suffices to show closure under countable unions. Let $A_1, A_2, ... \in \mathcal{M}$ and $A = \bigcup_{i=1}^{\infty} A_i$. Let $B_1 = A_1$, $B_{n+1} = A_{n+1} \setminus \bigcup_{i=1}^n A_i$, so $B_i \cap B_j = \emptyset$. In particular, each $B_i \in \mathcal{M}$ and $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$. We thus have for $E \in \mathcal{P}(X)$ arbitrary

$$\mu^* \left(E \cap \bigcup_{i=1}^n B_i \right) \ge \mu^* \left(\left(E \cap \bigcup_{i=1}^n B_i \right) \cap B_n \right) + \mu^* \left(\left(E \cap \bigcup_{i=1}^n B_i \right) \setminus B_n \right) = \mu^* (E \cap B_n) + \mu^* \left(E \cap \bigcup_{i=1}^{n-1} B_i \right)$$

$$\ge \mu^* (E \cap B_n) + \mu^* (E \cap B_{n-1}) + \mu^* \left(E \cap \bigcup_{i=1}^{n-2} B_i \right)$$

$$\vdots$$

$$\ge \sum_{i=1}^n \mu^* (E \cap B_i)$$

by induction. We thus have

$$\mu^*(E) \ge \mu^* \left(E \cap \bigcup_{i=1}^n A_i \right) + \mu^* \left(E \setminus \bigcup_{i=1}^n A_i \right) \ge \mu^* \left(E \cap \bigcup_{i=1}^n B_i \right) + \mu^* (E \setminus A)$$

$$\ge \sum_{i=1}^n \mu^* (E \cap B_i) + \mu^* (E \setminus A)$$

so, taking the limit,

$$\mu^{*}(E) \geq \sum_{i=1}^{\infty} \mu^{*}(E \cap B_{i}) + \mu^{*}(E \setminus A)$$

$$\geq \mu^{*}\left(\bigcup_{i=1}^{\infty} (E \cap B_{i})\right) + \mu^{*}(E \setminus A)$$

$$= \mu^{*}(E \cap A) + \mu^{*}(E \setminus A)$$
(2.1) [eq:car]

so that $A \in \mathcal{M}$. Thus (i) is established.

CLAIM III *µ* is a complete measure.

PROOF To show that μ is a measure, it remains to show σ -additivity. Assume $A_1, A_2, ... \in \mathcal{M}$ and that $A_i \cap A_j = \emptyset$ for $i \neq j$. Take E = A and $B_i = A_i$ as in Eq. (2.1), so that

$$\mu^*(A) \ge \sum_{i=1}^{\infty} \mu^*(A \cap A_i) + \mu(A \setminus A) = \sum_{i=1}^{\infty} \mu^*(A_i) \ge \mu^*\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu^*(A)$$

Finally, let $N \in \mathcal{M}$ with $\mu(N) = 0$, and $E \subseteq N$ arbitrary. It suffices to show that $N \in \mathcal{M}$; indeed, for any $F \in \mathcal{P}(X)$, we have

$$u^*(F \cap E) + u^*(F \setminus E) \le u^*(N) + u^*(F) = u(N) + u^*(F) = u^*(F)$$

and we have (ii).

Pre-Measures to Measures

Definition. Let A be an algebra on X. A **pre-measure** is a function $\mu_0 : A \to [0, \infty]$ such that

- (i) $\mu_0(\emptyset) = 0$
- (ii) If $A_1, A_2, \ldots \in \mathcal{A}$ with $A_i \cap A_j = \emptyset$, and $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, then $\mu_0(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu_0(A_i)$. A **pre-measure space** is a triple (X, \mathcal{A}, μ_0) .

Since \mathcal{A} is an algebra, μ_0 respects finite unions. As with measures, premeasures are monotone: $A \subseteq B$ in \mathcal{A} implies $\mu_0(A) \le \mu_0(B)$.

thm:pre-to-m

2.3 Theorem. Let (X, \mathcal{A}, μ_0) be a premeasure space and define $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(A_i) : A_1, A_2, \dots \in \mathcal{A}, E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}$$

Then u* is an outer measure, and

(i)
$$\mu^*|_{\mathcal{A}} = \mu_0$$

- (ii) The set \mathcal{M} of μ^* -measurable sets contains \mathcal{A} . Hence, $\mu = \mu^*|_{\mathcal{M}}$ satisfies $\mu|_{\mathcal{A}} = \mu_0$.
- (iii) If $\nu : \mathcal{M} \to [0, \infty]$ is a measure with $\nu_{\mathcal{A}} = \mu_0$, then $\nu(E) \leq \mu(E)$ for all $E \in \mathcal{M}$, with $\nu(E) = \mu(E)$ if $\mu(E) < \infty$. In particular, if (X, \mathcal{M}, μ) is σ -finite, then μ is the unique extension of μ_0 to a measure on \mathcal{M} .

Proof Recall that μ^* is an outer measure by the standard construction in Proposition 2.1.

(i) Let $A \in \mathcal{A}$. Note that $\mu^*(A) \leq \mu_0(A)$ immediately by definition of μ^* . Conversely, let $A_1, A_2, \ldots, \in \mathcal{A}$ be such that $A \subseteq \bigcup_{i=1}^{\infty} A_i$. Let $B_1 = A_1$, $B_{n+1} = A_{n+1} \setminus \bigcup_{i=1}^n A_i$, so $B_i \in \mathcal{A}$, $B_i \cap B_j = \emptyset$ for $i \neq j$. Thus

$$A = A \cap \bigcup_{i=1}^{\infty} A_i = A \cap \bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} (A \cap B_i)$$

where $(A \cap B_i) \cap (A \cap B_i) = \emptyset$ for $i \neq j$. Hence, by restricted σ -additivity,

$$\mu_0(A) = \mu_0 \left(\bigcup_{i=1}^{\infty} (A \cap B_i) \right) = \sum_{i=1}^{\infty} \mu_0(A \cap B_i) \le \sum_{i=1}^{\infty} \mu_0(A_i)$$

Since $\{A_i\}$ was an arbitrary cover, we see that $\mu_0(A) \le \mu^*(A)$ and equality holds.

(ii) Now, let $A \in \mathcal{A}$ and $E \in \mathcal{P}(X)$; we verify Caratheodory's criterion as in Theorem 2.2. Given $\epsilon > 0$, let $A_1, A_2, \ldots \in \mathcal{A}$ be such that $E \subseteq \bigcup_{i=1}^n A_i$ and

$$\sum_{i=1}^{\infty} \mu_0(A_i) \le \mu^*(E) + \epsilon$$

Then, for each i, $\mu_0(A_i) = \mu_0(A_i \cap A) + \mu_0(A_i \setminus A)$ by finite additivity, and $E \cap A \subseteq \bigcup_{i=1}^{\infty} (A_i \cap A)$, $E \setminus A \subseteq \bigcup_{i=1}^{\infty} (A_i \setminus A)$. Thus

$$\mu^*(E) + \epsilon \ge \sum_{i=1}^{\infty} \mu_0(A_i) = \sum_{i=1}^{\infty} \mu_0(A_i \cap A) + \sum_{i=1}^{\infty} \mu_0(A_i \setminus A)$$

$$\ge \mu^*(E \cap A) + \mu^*(E \setminus A)$$

and since ϵ was arbitrary, we see that the desired inequality holds.

(iii) If $E \in \mathcal{M}$ and $A_1, A_2, ... \in \mathcal{A}$ are such that $E \subseteq \bigcup_{i=1}^{\infty} A_i$, then

$$\nu(E) \le \nu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \nu(A_i) = \sum_{i=1}^{\infty} \mu_0(A_i)$$

and it follows from definition of $\mu = \mu^*|_{\mathcal{M}}$ that $\nu(E) \leq \mu(E)$.

Now recall that $A_{\sigma} = \{\bigcup_{i=1}^{\infty} A_i : A_1, A_2, \dots \in A\}$. In particular, $\nu|_{A_{\sigma}} = \mu|_{A_{\sigma}}$: to see this, if $A = \bigcup_{i=1}^{\infty} A_i, A_i \in A$, then

$$\nu(A) = \lim_{n \to \infty} \nu\left(\bigcup_{i=1}^{n} A_i\right) = \lim_{n \to \infty} \mu_0\left(\bigcup_{i=1}^{n} A_i\right) = \lim_{n \to \infty} \mu\left(\bigcup_{i=1}^{n} A_i\right) = \mu(A)$$

by continuity from below.

Now, let $E \in \mathcal{M}$ with $\mu(E) < \infty$. Given $\epsilon > 0$, let $A_1, A_2, \ldots \in \mathcal{A}$ with $E \subseteq \bigcup_{i=1}^{\infty} A_i = A$ and such that

$$\mu(E) + \epsilon = \mu^*(E) + \epsilon > \sum_{i=1}^{\infty} \mu_0(A_i)$$

Hence, $\mu(E) \le \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \mu_0(A_i) < \mu(E) + \epsilon$. Thus $\mu(A \setminus E) = \mu(A) - \mu(E) < \epsilon$. Hence, as $A \in \mathcal{A}_{\sigma}$, $\mu(A) = \nu(A)$ and we have

$$\mu(E) \le \mu(A) = \nu(A) = \nu(A \cap E) + \nu(A \setminus E) \le \nu(A \cap E) + \mu(A \setminus E)$$

$$< \nu(E) + \epsilon$$

Since $\epsilon > 0$ is arbitrary, $\mu(E) \le \nu(E)$, so equality must hold.

Finally, if (X, \mathcal{M}, μ) is σ -finite, we can write $X = \bigcup_{i=1}^{\infty} X_i$ where $X_i \in \mathcal{M}$, $\mu(X_i) < \infty$, and $X_1 \subseteq X_2 \subseteq \cdots$. If $E \in \mathcal{M}$, then $E = \bigcup_{i=1}^{\infty} (X_i \cap E)$, so

$$\mu(E) = \lim_{n \to \infty} \mu(X_n \cap E) = \lim_{n \to \infty} \nu(X_n \cap E) = \nu(E)$$

by continuity from below.

Remark. The uniqueness also holds if we have that (X, \mathcal{M}, μ) is semifinite. Indeed, by A1, if $E \in \mathcal{M}$,

$$\mu(E) = \sup\{\mu(F) : F \in \mathcal{M}, F \subseteq E, \mu(F) < \infty\}$$
$$= \sup\{\nu(F) : F \in \mathcal{M}, F \subseteq E, \mu(F) < \infty\} \le \nu(E) \le \mu(E)$$

2.4 Corollary. Given a measure space (X, \mathcal{M}, μ) , there is a complete measure space $(X, \overline{\mathcal{M}}, \overline{\mu})$ such that $\overline{\mu}|_{\mathcal{M}} = \mu$. Furthermore, if (X, \mathcal{M}, μ) is a σ -finite, then any $E \in \mathcal{M}$ admits a representation of the form $E = M \cup N$, with $M \in \mathcal{M}$ and $N \subseteq N'$ where $N' \in \mathcal{M}$ has $\mu(N') = 0$.

PROOF We regard (X, \mathcal{M}, μ) is a pre-measure space. By the previous theorem (Theorem 2.3), we get an outer measure μ^* such that $\mu^*|_{\mathcal{M}} = \mu$ and if

$$\overline{\mathcal{M}} = \{A \in \mathcal{P}(X) : \mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A) \text{ for all } E \in \mathcal{P}(X)\}$$

then $\mathcal{M} \subseteq \overline{\mathcal{M}}$; we may take $\overline{\mu} = \mu^*|_{\overline{\mathcal{M}}}$.

We now appeal to A1Q4 to see the structure of $E \in \overline{\mathcal{M}}$. We have $X \setminus E \in \overline{\mathcal{M}}$ so that $X \setminus E = A \setminus N$ where $A \in \mathcal{M}_{\sigma\delta}$ and $\mu^*(N) = 0$. For each n, we can find $A_{n1}, A_{n2}, \ldots \in \mathcal{A}$ such that $N \subseteq \bigcup_{i=1}^{\infty} A_{ni} := A_n$ and $\sum_{i=1}^{\infty} \mu(A_{ni}) < 1/n = \mu^*(N) + 1/n$. In particular, $N \subseteq A_n$ and $A_n \in \mathcal{M}$. Thus $N \subseteq \bigcap_{n=1}^{\infty} A_n =: N'$, $N' \in \mathcal{M}$ and $\mu(N') \le \mu(A_n) < 1/n$ for each n so $\mu(N') = 0$. Finally,

$$E = X \setminus (X \setminus E) = X \setminus (A \setminus N) = (X \setminus A) \cup N$$

gives a decomposition of the desired form.

The past section has provided an important abstract construction: given a pre-measure space (X, \mathcal{A}, μ_0) , one gets an outer measure μ^* , and by Caratheodory, extract a measure space (X, \mathcal{M}, μ) such that $\mathcal{M} \supseteq \mathcal{A}$ and $\mu|_{\mathcal{A}} = \mu_0$.

3 Constructing σ -Algebras and Measures

- **3.1 Lemma.** Let X be a non-empty set.
 - (i) If $\{M_i\}_{i\in I}$ is a family of σ -algebras on X, then $\bigcap_{i\in I} \mathcal{M}_i \subseteq \mathcal{P}(X)$.
 - (ii) Given $\emptyset \neq \mathcal{E} \subseteq \mathcal{P}(X)$, we define

$$\sigma(\mathcal{E}) = \bigcap \{ \mathcal{M} : \mathcal{M} \text{ is a } \sigma\text{-algebra on } X, \mathcal{E} \subseteq \mathcal{M} \}$$

This is the σ -algebra generated by \mathcal{E} .

(iii) If $\emptyset \neq \mathcal{F} \subseteq \sigma(\mathcal{E})$ in $\mathcal{P}(X)$, then $\sigma(\mathcal{F}) \subseteq \sigma(\mathcal{E})$.

Proof (i) It is easy to check the σ -algebra axioms.

- (ii) Direct application of (i)
- (iii) Since $\sigma(\mathcal{E})$ is a σ -algebra containing \mathcal{F} , by (ii), the result follows since $\sigma(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} .

Definition. We say that the **algebra generated by** \mathcal{E} is $\langle \mathcal{E} \rangle = \bigcap \{ \mathcal{A} : \mathcal{A} \text{ is an algebra on } X, \mathcal{E} \subseteq \mathcal{A} \}$.

We now turn our sights towards topology:

Definition. Let (X, τ) be a topological space. The **Borel** σ **-algebra** is defined $\mathcal{B}(X, \tau) = \mathcal{B}(X) = \sigma(\tau)$.

Remark. If $\mathcal{F} = \{F \subseteq X : F \text{ is closed}\}$, then $\mathcal{F} \subseteq \sigma \langle \tau \rangle$ and $\sigma \langle \mathcal{F} \rangle \subseteq \sigma \langle \mathcal{G} \rangle$. The opposite inclusion holds identically, so these sets are equal.

prop:br-gen

3.2 Proposition. Let $\mathcal{B}(\mathbb{R})$ denote the Borel σ -algebra on \mathbb{R} . Consider the following families of subsets of \mathbb{R} :

- 1. $\mathcal{O} = \{(a,b) : -\infty \le a \le b \le \infty\}, (a,a) = \emptyset.$
- 2. $\mathcal{O}_{\infty} = \{(a, \infty) : -\infty \le a \in \mathbb{R}\}.$
- 3. $\mathcal{H} = \{(a,b] : -\infty \le a \le b \le \infty \text{ in } \mathbb{R}\}, (a,\infty] = (a,\infty), (a,a] = \emptyset.$
- 4. $C_{\infty}\{[a,\infty): -\infty < a \in \mathbb{R}\}.$

Then $\mathcal{B}(\mathbb{R}) = \sigma \langle \mathcal{O} \rangle = \sigma \langle \mathcal{O}_{\infty} \rangle = \sigma \langle \mathcal{H} \rangle = \sigma \langle \mathcal{C}_{\infty} \rangle$.

Proof This follows since τ has a countable base.

Definition. An **elementary family** of sets on X is any $\mathcal{E} \subseteq \mathcal{P}(X)$ such that

- (i) $X \in \mathcal{E}$
- (ii) If $E, F \in \mathcal{E}$, $E \cap F = \bigcup_{i=1}^{n} E_i$ with $E_i \in \mathcal{E}$
- (iii) If $E \in \mathcal{E}$, $X \setminus F = \bigcup_{j=1}^m E_j$, $E_1, \dots, E_j \in \mathcal{E}$.

A simple induction arguement shows that any finite intersection of elements of \mathcal{E} is a finite union of elements in \mathcal{E} .

Example. In \mathbb{R} , $\mathcal{H} = \{(a, b] : -\infty \le a \le b \le \infty\}$ is an elementary family.

3.3 Lemma. If $\mathcal{E} \subseteq \mathcal{P}(X)$ is an elementary family, then $\mathcal{E} = \{\bigcup_{i=1}^n E_i, E_i \in \mathcal{E}, n \in \mathbb{N}\}.$

PROOF It suffices to see that the RHS is an algebra. It is clearly closed under finite unions. Let $E_1, ..., E_n \in \mathcal{E}$, and write each $X \setminus E_i = \bigcup_{i=1}^{m_i} E_{ij}$. We then have

$$X \setminus \left(\bigcup_{i=1}^{n} E_{i}\right) = \bigcap_{i=1}^{n} (X \setminus E_{i}) = \bigcap_{i=1}^{n} \bigcup_{j=1}^{m_{i}} E_{ij}$$
$$= \bigcup_{\substack{1 \leq j_{i} \leq n \\ 1 < i < n}} E_{1j_{1}} \cap \cdots \cap E_{nj_{n}}$$

where each finite intersection is a finite union of elements of \mathcal{E} .

The following corollary is now clear:

3.4 Corollary. In
$$\mathbb{R}$$
, $\langle \mathcal{H} \rangle = \{ \bigcup_{i=1}^{n} (a_i, b_i] : -\infty \le a_i \le b_i \le \infty \}$.

Let $A = \langle \mathcal{H} \rangle \subseteq \mathcal{P}(\mathbb{R})$. We will build many premeasures on A.

LOCALLY FINITE MEASURES ON IR

Definition. We define the set of non-decreasing, right-continuous functions

$$ND_r(\mathbb{R}) = \left\{ F : \mathbb{R} \to \mathbb{R} : x < y \Rightarrow F(x) \le F(y); \lim_{x \to a^+} F(x) = F(x) \right\}$$

lem:pre-ND

3.5 Lemma. Let $F \in ND_r(\mathbb{R})$ and $A = \langle \mathcal{H} \rangle \subset \mathcal{P}(\mathbb{R})$, the algebra generated by half-open half-closed intervals. Then $\mu_{0,F} : A \to [0,\infty]$ defined by

$$\mu_{0,F}\left(\bigcup_{i=1}^{n} (a_i, b_i)\right) = \sum_{i=1}^{n} (F(b_i) - F(a_i))$$

defines a pre-measure on A. Here, we say that $b - (-\infty) = \infty$ for $-\infty < b \le \infty$.

For simplicity, write $\mu_0 = \mu_{0,F}$. It is evident that μ_0 is well-defined and that $\mu_0(\emptyset) = 0$; it remains to show that μ_0 has restricted σ -additivity.

c1:a1

Claim I Suppose
$$(a,b] = \bigcup_{j=1}^{\infty} (c_j,d_j], -\infty < a < b < \infty.$$
 Then $\mu_0((a,b]) = \sum_{j=1}^{\infty} \mu_0((c_j,d_j]).$

PROOF First, given $n \in \mathbb{N}$, there is a bijection $\sigma : [n] \to [n]$ such that $c_{\sigma(1)} \le d_{\sigma(1)} \le \cdots \le c_{\sigma(n)} \le d_{\sigma(n)}$. Then, as F is non-decreasing, we have

$$\begin{split} \sum_{j=1}^{n} \mu_0((c_j, d_j]) &= \sum_{j=1}^{n} (F(d_j) - F(c_j)) = \sum_{j=1}^{n} (F(d_{\sigma(j)}) - F(c_{\sigma(j)})) \\ &= F(d_{\sigma(n)}) - F(c_{\sigma(n)}) + F(d_{\sigma(n-1)}) + \dots - F(c_{\sigma(1)}) \\ &\leq F(d_{\sigma(n)} - F(c_{\sigma(n)}) \leq \mu_0((a, b]) \end{split}$$

and since $n \in \mathbb{N}$ is arbitrary, $\sum_{j=1}^{\infty} \mu_0((c_j, d_j]) \le \mu_0((a, b])$.

To see the converse inequality, let $\epsilon > 0$ and, since F is right-continuous, we may find

- $\delta_0 > 0$ such that $a + \delta_0 < b$ and $F(a + \delta_0) < F(a) + \epsilon/2$.
- for each j, $\delta_j > 0$ such that $F(d_j + \delta_j) < F(d_j) + \epsilon/2^{j+1}$

Then $\{(c_j, d_j + \delta_j)\}_{j=1}^{\infty}$ is a cover of $[a + \delta_0, b]$ and hence, by compactness, we have that $[a + \delta_0, b] \subseteq \bigcup_{j=1}^{n} (c_j, d_j + \delta_j)$ for some n. Let $\sigma : [n] \to [n]$ be as before. Notice that

• $c_{\sigma(1)} < a + \delta_0$ implies $F(c_{\sigma(1)}) \le F(a + \delta_0) < F(a) + \epsilon/2$.

• For j = 1, ..., n-1, $c_{\sigma(j+1)} < d_{\sigma(j)} + \delta_{\sigma(j)}$ implies $F(c_{\sigma(j+1)}) \le F(d_{\sigma(j)} + \delta_{\sigma(j)}) < F(d_{\sigma(j)}) + \epsilon/2^{\sigma(j)+1}$

• $b < d_{\sigma(n)} + \delta_{\sigma(n)}$ implies $F(b) < F(d_{\sigma(n)}) + \epsilon/2^{\sigma(n)+1}$.

Thus

$$\begin{split} \sum_{j=1}^{\infty} \mu_0((c_j, d_j]) &\geq \sum_{j=1}^{n} \mu_0((c_j, d_j]) = \sum_{j=1}^{n} (F(d_j) - F(c_j)) \\ &= F(d_{\sigma(n)}) + \sum_{j=1}^{n-1} \Big(F(d_{\sigma(j)}) - F(c_{\sigma(j+1)}) \Big) - F(c_{\sigma(1)}) \\ &> \Big(F(b) - \frac{\epsilon}{2^{\sigma(n)+1}} \Big) + \sum_{j=1}^{n-1} \Big(-\frac{\epsilon}{2^{\sigma(j)+1}} \Big) - \Big(F(a) + \frac{\epsilon}{2} \Big) \\ &> F(b) - F(a) - \epsilon = \mu_0((a, b]) - \epsilon \end{split}$$

and since $\epsilon > 0$ is arbitrary, our desired inequality holds.

Claim II The same applies to $(-\infty, b]$, (a, ∞) .

Proof Exercise.

Claim III Let $A, A_1, A_2, \ldots \in \mathcal{A}$ with $A = \bigcup_{i=1}^{\infty} A_i$. Then $\mu_0(A) = \sum_{i=1}^{\infty} \mu_0(A_i)$.

PROOF Write $A = \bigcup_{j=1}^{\infty} (a_i, b_i]$ and for each i, j, $(a_i, b_i] \cap A_j = \bigcup_{k=1}^{m_{ij}} (c_{ijk}, d_{ijk}]$. From Claim I and Claim II, we have that

$$(a_i, b_i] = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{m_{ij}} (c_{ijk}, d_{ijk}]$$

so that

$$\mu_0((a_i,b_i]) = \sum_{j=1}^{\infty} \sum_{k=1}^{m_{ij}} \mu_0((c_{ijk},d_{ijk}])$$

and

$$\mu_0(A) = \sum_{i=1}^n \mu_0((a_i, b_i])$$

$$= \sum_{i=1}^n \sum_{j=1}^\infty \sum_{k=1}^{m_{ij}} \mu_0((c_{ijk}, d_{ijk}])$$

$$= \sum_{j=1}^\infty \sum_{i=1}^n \sum_{k=1}^{m_{ij}} \mu_0((c_{ijk}, d_{ijk}])$$

$$= \sum_{j=1}^\infty \mu_0(A_j)$$

since each $A_j = \bigcup_{i=1}^n \bigcup_{k=1}^{m_{ij}} (c_{ijk}, d_{ijk}).$

Definition. A measure $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ is called **locally finite** if $\mu(K) < \infty$ for $K \subset \mathbb{R}$ compact.

Equivalently, $\mu([-a, a]) < \infty$ for any $0 < a \in \mathbb{R}$. Note that any locally finite measure is also σ -finite.

- **3.6 Theorem.** (Locally Finite Measures on \mathbb{R}) The following hold:
 - (i) For each F in $ND_r(\mathbb{R})$, there is a unique locally finite measure $\mu_F : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ such that $\mu_F((a,b]) = F(b) F(a)$ for any finite a,b.
 - (ii) Every locally finite measure appears as in (i)
- (iii) If $F, G \in ND_r(\mathbb{R})$, then $\mu_F = \mu_G$ if and only if F G is constant.

PROOF (i) The previous lemma (Lemma 3.5) provides a premeasure $(\mathbb{R}, \langle \mathcal{H} \rangle, \mu_{0,F})$, where $\mu_{0,F}((a,b]) = F(b) - F(a)$ for $-\infty \le a \le b \le \infty$. By the canonical construction in Theorem 2.3, this gives rise to a measure $\mu_F^* : \mathcal{P}(\mathbb{R}) \to [0,\infty]$, and its σ -algebra \mathcal{F} of μ_F^* -measurable sets. From Proposition 3.2, $\mathcal{B}(\mathbb{R}) = \sigma \langle \mathcal{H} \rangle$; since $\mathcal{H} \subseteq \langle \mathcal{H} \rangle \subseteq \mathcal{M}_F$, we have that $\mathcal{B}(\mathbb{R}) = \sigma \langle \mathcal{H} \rangle \subseteq \mathcal{M}_F$. Then, we let $\mu_F = \mu_F^*|_{\mathcal{B}(\mathbb{R})} : \mathcal{B}(\mathbb{R}) \to [0,\infty]$. Notice, for a > 0 in \mathbb{R} , that

$$\mu_F([-a,a]) \le \mu_F((-a-1,a]) = F(a) - F(-a-1) < \infty$$

so μ_F is locally finite, and hence σ -finite. Thus μ_F is the unique extension of $\mu_{0,F}$ to $\mathcal{B}(\mathbb{R})$ (or even to \mathcal{M}_F).

(ii) Let $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ be a locally inite measure. Then for $x \in \mathbb{R}$, we let

$$F(x) = \begin{cases} \mu((0, x]) & : x \ge 0 \\ -\mu((x, 0]) & : x < 0 \end{cases}$$

We will see that $F \in ND_r(\mathbb{R})$. If x < y in \mathbb{R} :

- If $x \ge 0$, then $(0, x] \subseteq (0, y]$ so $F(x) = \mu((0, x]) \le \mu((0, y]) = F(y)$
- If y < 0, then $(y, 0] \subseteq (x, 0]$ so $\mu((y, 0]) \le \mu((x, 0])$, so $F(x) = -\mu((x, 0]) \le -\mu((y, 0]) = F(y)$.
- If $x < 0 \le y$, then $F(x) = -\mu((x, 0]) \le 0 \le \mu((0, y]) = F(y)$.

To see right continuity, it suffices to see for $x \in \mathbb{R}$, we have $F(x) = \lim_{n \to \infty} F(x_n)$, where $(x_n) \to x$ monotonically from the right. Thus, given x, $(x_n)_{n=1}^{\infty}$, we have

$$F(x_n) - F(x) = \mu((x, x_n]) \xrightarrow{n \to \infty} \mu(\emptyset) = 0$$

by continuity from above for measures.

Notice that for a < b in \mathbb{R} , $\mu_F((a, b]) = \mu((a, b])$, which by uniqueness in (i) shows that $\mu = \mu_F$.

(iii) $\mu_F = \mu_G$ if and only if for $x \in \mathbb{R}$,

$$F(x) - F(0) = \mu_F((0, x]) = \mu_G((0, x]) = G(x) - G(0) \text{ for } x \ge 0$$

$$F(0) - F(x) = \mu_F((x, 0]) = \mu_G((x, 0]) = G(0) - G(x) \text{ for } x < 0$$

if and only if F(x) - G(x) = F(0) - G(0) is constant.

Remark. Let $F \in ND_r(\mathbb{R})$, a < b in \mathbb{R} ,

1. $(a,b) = \bigcup_{n=1}^{\infty} (a,b-1/n]$ so

$$\mu_F((a,b)) = \lim_{n \to \infty} \mu_F((a,b-1/n])$$

$$= \lim_{n \to \infty} [F(b-1/n) - F(a)]$$

$$= F(b^-) - F(a)$$

2. As above,

$$\mu_F([a,b]) = \lim_{n \to \infty} \mu_F((a-1/n,b])$$

$$= F(b) - F(a^-)$$

In particular, $\mu_F(\{a\}) = \mu_F([a,a]) = F(a) - F(a^-)$, so $\mu_F(\{a\}) = 0$ if and only if F is continuous at a.

POINT MASS/DIRAC MEASURE

Fix $a \in \mathbb{R}$. Let $H_a \in ND_r(\mathbb{R})$ where

$$H_a(x) = 1_{[a,\infty)}(x) = \begin{cases} 1 & : x \in [a,\infty) \\ 0 & : \text{otherwise} \end{cases}$$

Let $\delta_a : \mathcal{B}(\mathbb{R}) \to [0, \infty]$, where

$$\delta_a(A) = \begin{cases} 1 & : a \in A \\ 0 & : a \notin A \end{cases}$$

Notice that if c < d in \mathbb{R} , then

$$\delta_a((c,d]) = \begin{cases} 1 & : c < a \le d \\ 0 & : \text{otherwise} \end{cases} = H_a(d) - H_a(c)$$

so that $\delta_a = \mu_{H_a}$.

LEBESGUE MEASURE

Let I(x) = x, $I \in ND_r(\mathbb{R})$. We let $\lambda = \mu_I$ and $\mathcal{L} = \mathcal{M}_I \supseteq \mathcal{B}(\mathbb{R})$ denote the Lebesgue measure and Lebesgue σ -algebra.

- 3.7 Theorem. (Characteristic Property of Lebesgue Measure) The following hold:
 - (i) $(\mathbb{R}, \mathcal{L}, \lambda)$ is translation invariant: for $x \in \mathbb{R}$, $E \in \mathcal{L}$, we have $E + x \in \mathcal{L}$ and $\lambda(E + x) = \lambda(E)$.
 - (ii) If $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ is a translation invariant locally finite measure, then $\mu = c\lambda$ for some $c \ge 0$ in \mathbb{R} .

PROOF (i) If $-\infty \le a \le b \le \infty$, then $\lambda((a,b]+x) = \mu_I((a+x,b+x]) = b-a = \lambda((a,b])$. Hence if $A \in \langle H \rangle$, $\mu_I(A+x) = \mu_I(A)$ for $x \in \mathbb{R}$. If $E \in \mathcal{P}(\mathbb{R})$, $E \subseteq \bigcup_{i=1}^{\infty} A_i$, $A_i \in \langle \mathcal{H} \rangle$ if and only $E+x \subseteq \bigcup_{i=1}^{\infty} (A_i+x)$. Thus, by definition of μ_I^* , we see that $\mu_I^*(E+x) = \mu_I^*(E)$. Now, if $A \in \mathcal{L}$, $E \in \mathcal{P}(\mathbb{R})$, then

$$\mu_{I}^{*}(E \cap (A+x)) + \mu_{I}^{*}(E \setminus (A+x)) = \mu_{I}^{*}([(E-x) \cap A] + x) + \mu_{I}^{*}([(E-x) \setminus A] + x)$$

$$= \mu_{I}^{*}((E-x) \cap A) + \mu_{I}^{*}((E-x) \setminus A)$$

$$\leq \mu_{I}^{*}(E-x) = \mu_{I}^{*}(E)$$

so $E + x \in \mathcal{L}$ and $\mu(E + X) = \mu(E)$.

(ii) We let $\mu = \mu_F$ where $F \in ND_r(\mathbb{R})$. Without loss of generality, F(0) = 0, so

$$F(x) = \begin{cases} \mu((0,x]) & : x \ge 0 \\ -\mu((x,0]) & : x < 0 \end{cases}$$

Then for $y \ge 0$, we have

$$F(y) = \mu((0, y]) = \mu((x, x + y]) = F(x + y) - F(x)$$

so F(x) + F(y) = F(x + y). Thus if $x \ge 0$, F(nx) = nF(x) for $n \in \mathbb{N}$. Thus F(x/n) = F(x)/n, 0 = F(0) = F(-x) + F(x), $x \ge 0$, so F(-x) = -F(x). Thus $F : \mathbb{R} \to \mathbb{R}$ is additive and F(qx) = qF(x) for $x \in \mathbb{R}$, $q \in \mathbb{Q}$. Now, given $x \in \mathbb{R}$, let (q_n) be a rational sequence so $q_n \ge x$, $\lim q_n = x$, and we have

$$F(x) = \lim_{n \to \infty} F(q_n) = \lim_{n \to \infty} q_n \cdot F(1) = F(1) \cdot x$$

Let $c = F(1) = \mu((0,1]) \ge 0$; then by uniqueness, $\mu = \mu_{cI} = c\lambda$.

CANTOR'S SETS AND FUNCTIONS

Fix $0 < \alpha \le 1$. Let $I_{01} = [0,1]$ and J_{01} be the open middle of length $\alpha/3$. Notice that $I_{01} \setminus J_{01} = I_{11} \dot{\cup} I_{12}$, each a closed interval, with $\lambda(I_{1k}) < 1/2$, k = 1, 2. Having constructed closed intervals I_{m1}, \ldots, I_{m2^m} , each of length at most $1/2^m$, we let for each $k = 1, \ldots, 2^m$, J_{mk} denote the open middle of length $\alpha/3^{m+1}$. Then each $I_{mk} \setminus J_{mk} = I_{m+1,2k-1} \dot{\cup} I_{m+1,2k}$.

Let $C_{\alpha,n} = \bigcup_{k=1}^{2^n} I_{nk}$, so $C_{\alpha,n}$ is compact. Notice that $C_{\alpha,1} \supseteq C_{\alpha,2} \supseteq \cdots$, then $C_{\alpha} := \bigcap_{n=1}^{\infty} C_{\alpha,n}$ is empty and compact. If $\alpha = 1$, then $C = C_1$ is called the (middle thirds) **Cantor set**.

Remark. 1. C_{α} is nowhere dense. Indeed, if $x \in C_{\alpha}$, $\epsilon > 0$, let n be so $1/2^n < 2\epsilon$ and we see that $(x - \epsilon, x + \epsilon) \subseteq I_{nk}$ for any $k = 1, ..., 2^n$. Thus $(x - \epsilon, x + \epsilon) \cap (\mathbb{R} \setminus C_{\alpha}) \neq \emptyset$.

2. We can compute

$$\lambda(C_{\alpha}) = \lambda([0,1]) - \lambda([0,1] \setminus C_{\alpha})$$

$$= 1 - \lambda \left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}} J_{nk} \right)$$

$$= 1 - \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}} \lambda(J_{nk})$$

$$= 1 - \sum_{n=1}^{\infty} \alpha \frac{\alpha}{3} \left(\frac{2}{3}\right)^{n}$$

$$= 1 - \alpha$$

In particular, $\lambda(C) = 0$.

Write each $I_{nk} = [a_{nk}, b_{nk}]$. Define $\phi_{\alpha,n} : \mathbb{R} \to \mathbb{R}$ by

$$\phi_{\alpha,n} = \begin{cases} 0 & : x \in (-\infty, 0) \\ \frac{2k-1}{2^{m+1}} & : x \in J_{mk} \\ \frac{1}{2^{n}(b_{mk}-a_{mk})}(x-a_{mk}) + c_{mk} & : x \in I_{mk} \\ 1 & : x \in (1, \infty) \end{cases}$$

Each $\phi_{\alpha,n}$ is continuous and non-decreasing on \mathbb{R} , and $\|\phi_{\alpha,n}-\phi_{\alpha,n+1}\|=\frac{1}{2^n}$. Thus $(\phi_{\alpha,n})_{n=1}^\infty$ is uniformly Cauchy, so $\phi_\alpha:=\lim_{n\to\infty}\phi_{\alpha,n}$ exists and is continuous. Furthermore, (1) tells us for x< y, $\phi_\alpha(x) \le \phi_\alpha(y)$, so $\phi_\alpha \in \mathrm{ND}_r(\mathbb{R})$ and is, in fact, continuous. We let μ_{ϕ_α} denote the corresponding locally inite measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. If $\alpha=1$, $\mu_\phi=\mu_{\phi_1}$ is called the Cantor singular measure.

Note that $\mu_{\phi_{\alpha}}(C_{\alpha}) = 1 = \mu_{\phi_{\alpha}}(\mathbb{R})$, so $\mu_{\phi_{\alpha}}(\mathbb{R} \setminus C_{\alpha}) = 0$. We say that $\mu_{\phi_{\alpha}}$ is **concentrated** on C_{α} . $\mathcal{M}_{\phi_{\alpha}} \supseteq \mathcal{P}(\mathbb{R} \setminus C_{\alpha})$ as null sets for $\mathcal{M}_{\phi_{\alpha}}$.

II. Integration Theory

4 Measurable Functions

Let X, Y be sets, $T : X \to Y$. We define the **pullback** of a set $E \in \mathcal{P}(Y)$ by $T^{-1}(E) = \{x \in X : T(x) \subseteq E\}$. If $\mathcal{E} \subseteq \mathcal{P}(Y)$, we write $T^{-1}(\mathcal{E}) = \{T^{-1}(E) : E \in \mathcal{E}\}$. Note that

- 1. $T^{-1}(Y \setminus E) = X \setminus T^{-1}(E)$
- 2. $E_1, E_2, ... \subseteq Y, T^{-1}(\bigcup_{i=1}^{\infty} E_i) = \bigcup_{i=1}^{\infty} T^{-1}(E_i).$
- **4.1 Proposition.** (i) If \mathcal{N} is a σ -algebra on Y, then $T^{-1}(\mathcal{N})$ is a σ -algebra on X (the pullback σ -algebra).
 - (ii) If \mathcal{M} is a σ -algebra on X, then $\{E \in \mathcal{P}(Y) : T^{-1}(E) \in \mathcal{M}\}$ is a σ -algebra on Y (the pushforward σ -algebra).

Proof Exercise.

Definition. Let (X, \mathcal{M}) , (Y, \mathcal{N}) be measurable spaces, and $T: X \to Y$. We say that T is $\mathcal{M}-\mathcal{N}$ -measurable provided that $T^{-1}(\mathcal{N}) \subseteq \mathcal{M}$.

4.2 Proposition. Suppose (X, \mathcal{M}) , (Y, \mathcal{N}) , $T: X \to Y$ measurable, and $\mathcal{N} = \sigma(\mathcal{E})$. Then T is $\mathcal{M} - \mathcal{N}$ -measurable if and only if $T^{-1}(E) \in \mathcal{M}$ for $E \in \mathcal{E}$.

Proof The forward direction is obvious. Conversely, as in the previous proposition, $\mathcal{N}' = \{A \in \mathcal{P}(Y) : T^{-1}(A) \in \mathcal{M}\}\$ is a σ -algebra. We have that $\mathcal{E} \subseteq \mathcal{N}'$, so $\mathcal{N} = \sigma \langle \mathcal{E} \rangle \subseteq \mathcal{N}'$.

cor:br-m

- **4.3 Corollary.** Let (X, \mathcal{M}) be a measurable space, $f: X \to \mathbb{R}$. Then the following are equivalent:
 - (i) f is $\mathcal{M} \mathcal{B}(\mathbb{R})$ -measurable
 - (ii) $f^{-1}(G) \in \mathcal{M}$ for open $G \subseteq \mathbb{R}$.
- (iii) $f^{-1}((a, \infty)) \in \mathcal{M}$ for a in \mathbb{R}
- (iv) $f^{-1}([a,\infty)) \in \mathcal{M}$ for a in \mathbb{R}
- (v) $f^{-1}((\infty, a)) \in \mathcal{M}$ for a in \mathbb{R}
- (vi) $f^{-1}((\infty, a]) \in \mathcal{M}$ for a in \mathbb{R}

Proof Exercise.

Definition. A function $f: X \to \mathbb{R}$ satisfying any of the equivalent conditions above will be called \mathcal{M} -measurable.

Certainly continuous functions are $\mathcal{B}(\mathbb{R})$ –measurable.

For notation, let $f_n : \mathbb{R} \to \mathbb{R}$, $n \in \mathcal{N}$. We let

$$(\sup_{n\in\mathbb{N}} f_n)(x) = \sup_{n\in\mathbb{N}} f_n(x) \in \overline{\mathbb{R}}$$
(4.1)

for $x \in \mathbb{R}$. Let $a \in \mathbb{R}$, $(a, \infty] = \{x \in \overline{\mathbb{R}} : a < x\}$, and let $\mathcal{B}(\overline{\mathbb{R}}) = \sigma \langle \mathcal{G} \cup \{\{-\infty\}, \{\infty\}\}\}\rangle$. Given a measurable space (X, \mathcal{M}) , $f : X \to \overline{R}$, we say f is \mathcal{M} -measurable if it is $\mathcal{M} - \mathcal{B}(\overline{\mathbb{R}})$ -measurable. Notice that if $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$, then $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n : X \to \overline{R}$.

4.4 Proposition. Let (X, \mathcal{M}) be a measurable space, $f_n : X \to \overline{\mathbb{R}}$ be measurable for each $n \in \mathbb{N}$. Then the following are measurable:

- (i) $\sup_{n\in\mathbb{N}} f_n$
- (ii) $\inf_{n\in\mathbb{N}} f_n$
- (iii) $\limsup_{n\to\infty} f_n$
- (iv) $\liminf_{n\to\infty} f_n$.

Furthermore, if $\lim_{n\to\infty} f_n$ exists, it too is measurable.

Proof To verify measurability, it is fastest to verify any condition as in Corollary 4.3.

(i) Fix $a \in \mathbb{R}$. Then

$$\left(\sup_{n\in\mathbb{N}} f_n\right)^{-1} ((a,\infty]) = \left\{x \in X : \sup_{n\in\mathbb{N}} f_n(x) > a\right\}$$
$$= \bigcup_{n=1}^{\infty} \left\{x \in X : f_n(x) > a\right\} \in \mathcal{M}$$

(ii) For $a \in \mathbb{R}$, we have

$$\left(\inf_{n \in \mathbb{N}} f_n^{-1}\right)([-\infty, a)) = \bigcup_{n=1}^{\infty} \left\{ x \in X : f_n(x) < a \right\} \in \mathcal{M}$$

(iii) This is immediate since

$$\limsup_{n \to \infty} f_n(x) = \inf_{n \in \mathbb{N}} \sup_{k \ge n} f_k(x)$$
measurable

- (iv) Same as above.
- (v) If the limit exists, it is equal to the lim sup and the liminf.

PRODUCT σ -ALGEBRAS

Definition. If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, we let the **product** σ -**algebra** of \mathcal{M} and \mathcal{N} be given by

$$\mathcal{M} \otimes \mathcal{N} = \sigma \langle \{E \times F : E \in \mathcal{M}, F \in \mathcal{N}\} \rangle \subseteq \mathcal{P}(X)$$

4.5 Lemma. Let π_X , π_Y denote the coordinate projections. Then

1.
$$\mathcal{M} \otimes \mathcal{N} = \sigma \langle \pi_X^{-1}(\mathcal{M}) \cup \pi_Y^{-1}(\mathcal{N}) \rangle$$

2. If
$$\mathcal{M} = \sigma \langle \mathcal{E} \rangle$$
, $\mathcal{N} = \sigma \langle \mathcal{F} \rangle$, then $\mathcal{M} \otimes \mathcal{N} = \sigma \langle \{E \times F : E \in \mathcal{E}, F \in \mathcal{F} \} \rangle$.

Proof 1. $E \times F = (E \times F) \cap (X \times F) = \pi_X^{-1}(E) \cap \pi_Y^{-1}(F)$. We see that

$${E \times F : E \in \mathcal{M}, F \in \mathcal{N}} \subseteq \sigma \langle \pi_X^{-1}(\mathcal{M}) \cup \pi_Y^{-1}(\mathcal{N}) \rangle$$

and

$$\pi_X^{-1}(\mathcal{M}) \cup \pi_Y^{-1}(\mathcal{N}) \subseteq \sigma \langle \{E \times F : E \in \mathcal{M}, F \in \mathcal{N}\} \rangle$$

2.

$$\mathcal{M} \otimes \mathcal{N} = \sigma \langle \pi_X^{-1}(\mathcal{M}) \cup \pi_Y^{-1}(\mathcal{N}) \rangle$$
$$= \sigma \langle \pi_Y^{-1}(\mathcal{E}) \cup \pi_Y^{-1}(\mathcal{F}) \rangle$$

since
$$\sigma(\pi_X^{-1}(E)) = \pi_X^{-1}(\mathcal{M})$$
.

Let (X, d) be a metric space, $\mathcal{G}(X)$ denote the open sets in X, and \mathcal{B} the Borel σ -algebra. If ρ is an equivalent metric to d, then these metric generate the same open sets (and thus the same σ -algebra).

4.6 Proposition. Let (X, d_X) , (Y, d_Y) be separable metric spaces, and let ρ be any metric on $X \times Y$ such that $\rho \sim \rho_{\infty}$ (where $\rho_{\infty}((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}$. Then $\mathcal{B}(X \times Y,\rho) = \mathcal{B}(X,d_X) \otimes \mathcal{B}(Y,d_Y)$.

PROOF For r > 0, $(x, y) \in X \times Y$, we have radius r open balls. Since X, Y are separable, write G as a countable union of products of open balls in X and Y. Thus $\mathcal{G}(X \times Y) \subseteq \mathcal{B}(X) \otimes \mathcal{B}(Y)$, so $\mathcal{B}(X \times Y) = \mathcal{B}(X) \times \mathcal{B}(Y)$. Conversely,

$$\mathcal{B}(X) \times \mathcal{B}(Y) = \sigma \langle \{G \times H : G \subseteq X \text{ open, } H \subseteq Y \text{ open} \} \rangle$$
$$\subseteq \sigma \langle \mathcal{G}(X \times Y) \rangle \subseteq \mathcal{B}(X \times Y)$$

Even without the separability assumption, f always holds. However, the converse inclusion is in doubt. (take (\mathbb{R}, d) where d is the discrete metric).

Also note, by induction, $\mathcal{B}(\mathbb{R}^d) = \mathcal{B}(\mathbb{R}) \otimes \cdots \otimes \mathcal{B}(\mathbb{R})$.

4.7 Proposition. If (X, \mathcal{M}) , (Y, \mathcal{N}) and (Z, \mathcal{O}) are measurable spaces, $S: X \to Y$ and $T: Y \to Z$ are measurable, then $T \circ S: X \to Z$ is measurable.

PROOF If
$$E \in \mathcal{O}$$
, then $(T \circ S)^{-1}(E) = S^{-1}(T^{-1}(E)) \in \mathcal{M}$.

4.8 Proposition. If (X, \mathcal{M}) is a measurable space, and $T: X \to \mathbb{R}^d$, then T is $\mathcal{M} - \mathcal{B}(\mathbb{R})$ -measurable if and only if each $\pi_k \circ T: X \to \mathbb{R}$ is \mathcal{M} -measurable.

PROOF If $B \in \mathcal{B}(\mathbb{R})$, then $(\pi_k \circ T)^{-1}(B) = T^{-1}(\pi_k^{-1}(B))$. Let's refer to this by (*).

- (⇒) We have that $\pi_k : \mathbb{R}^d \to \mathbb{R}$ is continuous, so $\pi_k^{-1}(G)$ is open for open G in \mathbb{R} , and hence $\pi^{-1}(B) \in \mathcal{B}(\mathbb{R}^d)$ for B above. Hence $T^{-1}(\pi_k^{-1}(B)) \in \mathcal{M}$ by (*)
- (\Leftarrow) We have $(\pi_k \circ T)^{-1}(B) \in \mathcal{M}$ for B above. We have that $\mathcal{B}(\mathbb{R}^d) = \sigma(\pi_1^{-1}(\mathcal{B}(\mathbb{R})) \cup \cdots \cup \pi_n^{-1}(\mathcal{B}(\mathbb{R})))$. Then by (*), we se that T is $\mathcal{M} \mathcal{B}(\mathbb{R}^d)$ —measurable.
 - **4.9 Corollary.** $\mathbb{C} \cong \mathbb{R}^2$ and if (X, \mathcal{M}) is a measurable space, $T: X \to \mathbb{C}$, then T is $\mathcal{M} \mathcal{B}(\mathbb{C})$ —measurable if and only if Re(T), $Im(T): X \to \mathbb{R}$ is \mathcal{M} —measurable.

Definition. We call an M − B(\mathbb{C})−measurable function an M−measurable function.

4.10 Corollary. Arithmetic property of measurable functions. Let (X, \mathcal{M}) be a measurable space; $f,g:X\to\mathbb{C}$ each be measurable. Then $f+g,fg:X\to\mathbb{C}$ are each \mathcal{M} -measurable.

PROOF Consider $\alpha: \mathbb{C}^2 \to \mathbb{C}$, $m: \mathbb{C}^2 \to \mathbb{C}$ given by $\alpha(z,w) = z+2$, m(z,w) = zw are continuous functions and thus $\mathcal{B}(\mathbb{C}^2) - \mathcal{B}(\mathbb{C})$ —measurable. We define $F: X \to \mathbb{C}^2$ by F(x) = (f(x), g(x)). By a modification of the last proposition, \mathbb{C}^2 playing the role of \mathbb{R}^d , we see that F is $\mathcal{M} - \mathcal{B}(\mathbb{C})$ —measurable. Then $f + g = \alpha \circ F$, $fg = m \circ F$.

5 Integration

Definition. If (X, \mathcal{M}) is a measurable space, let $\mathcal{S}^+(X, \mathcal{M}) = \{\phi : X \to [0, \infty) : |\phi(x)| < \infty, \phi \text{ is measurable}\}$.

- **5.1 Lemma.** (i) If $E \in \mathcal{P}(X)$, then $1_E \in \mathcal{S}^+(X, \mathcal{M})$ if and only if $E \in \mathcal{M}$.
 - (ii) If $\phi: X \to [0, \infty)$ then $\phi \in S^+(X, \mathcal{M})$ if and only if there are $0 \le a_1 < a_2 < \cdots < a_n$, $E_1, \ldots, E_n \in \mathcal{M}$ pairwise disjoint, so that $\phi = \sum_{i=1}^n a_i 1_{E_i}$.

PROOF (i) Clearly $1_E(X) \subseteq [0, \infty)$. If $B \in \mathcal{B}(\mathbb{R})$, then

$$1_{E}^{-1}(B) = \begin{cases} \emptyset & : \{0,1\} \cap B = \emptyset \\ E & : \{0,1\} \cap B = \{1\} \\ X \setminus E & : \{0,1\} \cap B = \{0\} \\ X & : \{0,1\} \subseteq B \end{cases}$$

- (ii) (\Leftarrow). Use (i) and arithmetic of measurable functions.
 - (\Rightarrow) Let $\{a_1, ..., a_n\} = \phi(X)$. Then let $E_i = \phi^{-1}(\{a_i\})$.

Definition. If (X, \mathcal{M}, μ) ie a measure space, define $I_{\mu}: \mathcal{S}^+(X, \mathcal{M}) \to [0, \infty]$ by $I_{\mu}(\phi) = \sum_{i=1}^n a_i \mu(E_i)$ where ϕ is in standard form. Here, we say $a \cdot \infty = \infty$ if $a \neq 0$, and $0 \cdot \infty = 0$.

- **5.2 Proposition.** Let $\phi, \psi \in \mathcal{S}^+(X, \mathcal{M})$. Then
 - (i) If $\phi \leq \psi$ (pointwise), then $I_{\mu}(\phi) \leq I_{\mu}(\psi)$.
 - (ii) If $c \in [0, \infty)$, then $I_{\mu}(\phi + c\psi) = I_{\mu}(\phi) + cI_{\mu}(\psi)$.

PROOF Write $\phi = \sum_{i=1}^{n} a_i 1_{E_i}$, $\psi = \sum_{i=1}^{n} b_i 1_{F_i}$ in standard forms. (i)

$$I_{\mu}(\phi) = \sum_{i=1}^{n} a_i \mu(E_i)$$

$$= \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \mu(E_i \cap_i)$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} a_i \mu(E_i \cap F_i)$$

$$\leq \sum_{j=1}^{m} \sum_{i=1}^{n} b_i \mu(E_i \cap F_i)$$

$$= \sum_{j=1}^{m} b_j \mu(F_j) = I_{\mu}(\psi)$$

(ii) Notice that $1_E 1_F = 1_{E \cap F}$. We have

$$\phi + c\psi = \sum_{j=1}^{m} 1_{F_j} \sum_{i=1}^{n} a_i 1_{E_i} + \sum_{i=1}^{n} 1_{E_i} \sum_{j=1}^{m} cb_j 1_{F_j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i + cb_j) 1_{E_i \cap F_j}$$

Let $\{c_1,...,c_p\}=\{a_i+cb_j:i=1,...,n;j=1,...,m\}$ (distinct enumeration) and for $k=1,...,\mu$, and $G_k=\bigcup E_i\cap F_j$ (union over appropriate indices) so $\phi+c\psi=\sum_{k=1}^p c_k 1_{G_k}$. Then

$$I_{\mu}(\phi + c\psi) = \sum_{k=1}^{p} c_{k}\mu(G_{k})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i} + cb_{j})\mu(E_{i} \cap F_{j})$$

$$= \sum_{i=1}^{n} a_{i}\mu(E_{i}) + c\sum_{j=1}^{m} b_{j}\mu(F_{j})$$

$$= I_{\mu}(\phi) + cI_{\mu}(\psi)$$

- **5.3 Theorem.** (Monotone Convergence) Let $f_n: X \to [0, +\infty]$ be measurable, such that
 - $(i) \quad 0 \le f_1 \le f_2 \le \cdots$
- (ii) $f(x) := \lim_{n \to \infty} f_n(x)$ for all $x \in X$ Then f is measurable, and $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu$.

PROOF That f exists and is measurable is clear since $f = \sup_{n \in \mathbb{N}} f_n$. We have $\int_X f_n \, \mathrm{d}\mu \le \int_X f_{n+1} \, \mathrm{d}\mu$ for all n, so $\alpha := \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$ exists. We also have $f_n \le f$, so $\int_X f_n \, \mathrm{d}\mu \le \int_X f \, \mathrm{d}\mu$ and $\alpha \le \int_X f_n \, \mathrm{d}\mu$. Thus we wish to show $\alpha \ge \int_X f \, \mathrm{d}\mu$. It suffices to prove that $\alpha \ge \int_X s \, \mathrm{d}\mu$ for any simple $s \le f$. Furthermore, if $c \in (0,1)$, it suffices to show that $\alpha \ge \int_X c \cdot s \, \mathrm{d}\mu$.

Define $E_n = \{x \in X : f_n(x) \ge c \cdot s(x)\}$. We have $E_1 \subset E_2 \subset \cdots$ so that $\bigcup_{n=1}^{\infty} E_n = X$. Then

$$\int_X f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge \int_{E_n} c \cdot s \, \mathrm{d}\mu$$

Let $\phi(E) = \int_E s \, d\mu$, so $\int_{E_n} s \, d\mu = \phi(E_n)$. Thus $\lim_{n \to \infty} \phi(E_n) = \phi(X) = \int_X s \, d\mu$. Thus

$$\alpha \ge c \cdot \lim_{n \to \infty} \phi(E_n) = c \cdot \int_X s \, \mathrm{d}\mu = \int_X c \cdot s \, \mathrm{d}\mu$$

as desired.

5.4 Theorem. (Fatou) Let $(f_n)_{n=1}^{\infty} \subseteq \overline{M}^+(X, \mathcal{M})$. Then

$$\int_{X} \left(\liminf_{n \to \infty} f_n \right) d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu$$

Proof For each n, we know that $\int_X \inf_{k \ge n} f_k d\mu \le \int_X f_n d\mu$, so by monotone convergence, we have

$$\int_{X} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu = \int_{X} \lim_{n \to \infty} \left(\inf_{k \ge n} f_k \right) \mathrm{d}\mu = \lim_{n \to \infty} \int_{X} \inf_{k \ge n} f_k \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu$$

5.5 Theorem. Let $f: X \to [0, +\infty]$ be nonnegative measurable functions. Then there exists a sequence $s_n: X \to [0, +\infty]$ of simple measurable functions with

- 1. (s_n) is increasing and bounded above by f
- 2. $\lim s_n = f$ pointwise.

PROOF Let $n \in \mathbb{N}$, $t \ge 0$, and define $k_n(t) = [2^n \cdot t]$ (i.e. $k_n(t) \le 2^n \cdot t < k_n(t) + 1$). Then define

$$\phi_n(t) = \begin{cases} k_n(t) \cdot 2^{-n} & \text{if } t \le n \\ n & \text{if } t > n \end{cases}$$

I've drawn ϕ_1 below:

Then $t-2^{-n} \le \phi_n(t) \le t$, $\lim \phi_n(t) = t$ uniformly, and $\phi_n \le \phi_{n+1}$, so the sequence of functions is monotone. Define $s_n = \phi_n \circ f$, so for any $x \in X$, $\lim s_n(x) = \lim \phi_n \circ f(x) = f(x)$. Note that s_n is simple since it has finite range (from ϕ_n), and $s_n \le s_{n+1}$ because $\phi_n \le \phi_{n+1}$, and $s_n \le f$ since $\phi_n(t) \le t$. Furthermore, ϕ_n is measurable since its level sets are intervals, so $s_n = \phi_n \circ f$ is measurable.

- **5.6 Corollary.** 1. If $f,g \in \overline{M}^+(X,\mathcal{M})$, $c \geq 0$, then $f + cg \in \overline{M}^+(X,\mathcal{M})$ and $\int_X (f + cg) d\mu = \int_X f d\mu + c \int_X g d\mu$.
 - 2. If $(f_k)_{k=1}^{\infty} \subset \overline{M}^+(X, \mathcal{M})$, then $\sum_{k=1}^{\infty} f_k \in \overline{M}^+(X, \mathcal{M})$ and $\int_X \left(\sum_{k=1}^{\infty} f_k\right) d\mu = \sum_{k=1}^{\infty} \int_X f_k d\mu$.
 - 3. If $f \in \overline{M}^+(X, \mathcal{M})$, then $\mu_f : \mathcal{M} \to [0, \infty]$, $\mu_f(E) = \int_X (1_E f) d\mu$ defines a measure.

PROOF 1. Let $(\phi_n)_{n=1}^{\infty} \subset S_f^+$, so $\phi_1 \leq \phi_2 \leq \cdots$, $\lim_{n \to \infty} \phi_n$ and $(\psi_n)_{n=1}^{\infty} \subset S_g^+$. Then $(\phi_n + c\psi_n)_{n=1}^{\infty} \subset S_{f+cg}^+$ with $\phi_1 + c\psi_1 \leq \phi_2 + c\psi_2 \leq \cdots$ and $\lim(\phi_n + c\psi_n) = f + cg$. Thus $f + cg \in \overline{M}^+(X, \mathcal{M})$. Furthermore, MCT provides

$$\int_{X} (f + cg) \, d\mu = \lim_{n \to \infty} \int_{X} (\phi_n + c\psi_n) \, d\mu$$

$$= \lim_{n \to \infty} \left(\int_{X} \phi_n \, d\mu + c \int_{X} \psi_n \, d\mu \right)$$

$$= \lim_{n \to \infty} \int_{X} \phi_n \, d\mu + c \lim_{n \to \infty} \int_{X} \psi_n \, d\mu$$

$$= \int_{X} d\mu + c \int_{X} g \, d\mu$$

2. Let $g_n = \sum_{k=1}^n f_k$. Then $g_1 \le g_2 \le \cdots$ with $\sum_{k=1}^\infty f_k = \lim_{n \to \infty} g_n$. We apply (1), and by MCT, we have

$$\int_{X} \sum_{k=1}^{\infty} f_{k} d\mu = \int_{X} \lim_{n \to \infty} g_{n} d\mu$$

$$= \lim_{n \to \infty} \int_{X} g_{n} d\mu$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \int_{X} f_{k} d\mu$$

$$= \sum_{k=1}^{\infty} \int_{X} f_{k} d\mu$$

3. Notice that $1_{\emptyset} = 0$, so $\mu_f(\emptyset) = 0$. If $E_1, E_2, \ldots \in \mathcal{M}$ are disjoint, then apply (ii) to get $f_k = 1_{E_k}$, noting that $\sum_{k=1}^{\infty} 1_{E_k} = 1_{\bigcup_{k=1}^{\infty} E_k}$ to see σ -additivity.

Integration of Complex Valued Functions

Let (X, \mathcal{M}, μ) be a measure space. We let

$$M(X, \mathcal{M}) = \{f : X \to \mathbb{C} : f \text{ is } \mathcal{M}\text{-measurable}\}$$

 $M^{\mathbb{R}}(X, \mathcal{M}) = \{f : X \to \mathbb{R} : f \text{ is } \mathcal{M}\text{-measurable}\}$
 $M^{+}(X, \mathcal{M}) = \{f : X \to [0, \infty) : f \text{ is } \mathcal{M}\text{-measurable}\}$

Remark. 1. If $f \in M^{\mathbb{R}}(X, \mathcal{M})$, then $f^+ := \max\{f, 0\}$, $f^- := \max\{-f, 0\}$ are both in M^+ . Thus, we have $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

2. If $f \in M(X, \mathcal{M})$, then $|\cdot|: \mathbb{C} \to [0, \infty)$ is continuous and thus Borel measurable. **Definition.** We let $L(X, \mathcal{M}, \mu) = L(\mu) := \{f \in M(X, \mathcal{M}): \int_X |f| \, \mathrm{d} \mu < \infty \}$ denote the μ -**Lebesgue integrable** functions. Notice that $\mathrm{Re}\, f^+, \mathrm{Re}\, f^-, \mathrm{Im}\, f^+, \mathrm{Im}\, f^- \leq |f| \leq \mathrm{Re}\, f^+ + \cdots + \mathrm{Im}\, f^-$, so we have $f \in L(\mu) \Leftrightarrow \mathrm{Re}\, f^+, \cdots, \mathrm{Im}\, f^- \in L(\mu)$. We may therefore define for $f \in L(\mu)$ the **Lebesgue integral** with respect to μ

$$\int_X f \, \mathrm{d}\mu = \int_X \mathrm{Re} \, f^+ \, \mathrm{d}\mu - \int_X \mathrm{Re} \, f^- \, \mathrm{d}\mu + i \left(\int_X \mathrm{Im} \, f^+ \, \mathrm{d}\mu - \int_X \mathrm{Im} \, f^- \, \mathrm{d}\mu \right)$$

5.7 Proposition. If $f, g \in L(X, \mathcal{M}, \mu)$ and $c \in \mathbb{C}$, then $f + g, cf \in L(\mu)$ with $\int_X (f + g) d\mu = \int_X f d\mu + \int_X g d\mu$, $\int_X (cf) d\mu = c \int_X f d\mu$.

PROOF Assume $f, g \in L^{\mathbb{R}}(\mu)$ and $c \in \mathbb{R}$. Then

$$(f+g)^+ - (f+g)^- = f+g = f^+ - f^- + g^+ - g^- \Rightarrow (f+g)^+ + f^- + g^- = f^+ + g^+ + (f+g)^-$$

We then integrate, applying the last corollary, and rearrange. Similarly, $c = cf^+ - cf^-$ if $c \ge 0$, and $|c|f^- - |c|f^+$ if c < 0. Then, for example, if c < 0, we have $\int_X |c|f^\pm d\mu = |c|\int_X f^\pm d\mu < \infty$ and $\int_X |c|f^- d\mu - \int_X |c|f^+ d\mu = |c|\int_X f^- d\mu - |c|\int_X f^+ d\mu = c\int_X f d\mu$.

Finally, use C-arithmetic on Re, Im parts.

Definition. If $f,g \in M(X,\mathcal{M})$, we say that f=g μ -almost everywhere if $\mu(\{x \in X : f(x) \neq x\})$ g(x)) = 0.

Notice that

$$\{x \in X : f(x) \neq g(x)\} = \begin{cases} (f-g)^{-1}(\mathbb{C} \setminus \{0\}) \\ (f-g)^{-1}((0,\infty)) \cup [f^{-1}(\{\infty\}) \cap g^{-1}([0,\infty))] \cup [f^{-1}([0,\infty)) \cap g^{-1} \cap g^{-1}(\{\infty\})] \end{cases}$$

If $f = g \ \mu$ -a.e., and $g = \mu$ -a.e., then $f = h \ \mu$ -a.e. If $(f_n)_{n=1}^{\infty} \subset M(X, \mathcal{M})$, we write $\lim_{n\to\infty} f_n = f$ μ -a.e. if $\mu(\{x \in X : \lim_{n\to\infty} : \lim_{n\to\infty} f_n(x) \neq f(x)\}) = 0$. Notice that

$$E = \{x \in X : \lim_{n \to \infty} f_n(x) \text{ does not exist}\}$$

$$= \{x \in X : \liminf_{n \to \infty} \operatorname{Re} f_n \neq \limsup_{n \to \infty} \operatorname{Re} f_n\} \cup \{x \in X : \liminf_{n \to \infty} \operatorname{Im} f_n \neq \limsup_{n \to \infty} f_n\}$$

Likewise, $\{x \in X : \lim_{n \to \infty} f(x) \text{ exists, but is not } f(x)\} \in \mathcal{M}$.

5.8 Lemma. Let $f \in \overline{M}^+(X, \mathcal{M})$. Then

- 1. $\int_X f \, d\mu < \infty \Rightarrow \mu(f^{-1}(\{\infty\})) = 0$, i.e. $f < \infty \mu a.e.$ 2. $\int_X f \, d\mu \Leftrightarrow \mu(f^{-1}(\{0,\infty\})) = 0$, i.e. $f = 0 \mu a.e.$

1. For each $N \in \mathbb{N}$, $n1_{f^{-1}(\{\infty\})} \in S_f^+$, so $0 \le n\mu(f^{-1}(\{\infty\})) \le \int_Y f \, d\mu < \infty$, so that $\mu(f^{-1}(\{\infty\})) = 0.$

2. $\frac{1}{n} 1_{f^{-1}([1/n,\infty])} \in S_f^+$ so

$$0 \le \frac{1}{n}\mu(f^{-1}([1/n,\infty])) = \int_X \frac{1}{n} 1_{f^{-1}([1/n,\infty])} \le \int_X f \, \mathrm{d}\mu = 0$$

so $u(f^{-1}([1/n,\infty])) = 0$. Now,

$$f^{-1}((0,\infty])) = \bigcup_{n=1}^{\infty} f^{-1}([1/n,\infty])$$

so the result holds by σ -subadditivity.

Conversely, let
$$\phi = \sum_{i=1}^{n} a_i 1_{E_i} \in S_f^+$$
 in standard form, and $a_i > 0$, then $E_i = f^{-1}(\{a_i\}) \subseteq^{-1}((0,\infty])$, so $\mu(E_i) = 0$. Thus $\int_X \phi \, d\mu = 0$ so $\int_X f \, d\mu = 0$.

- **5.9 Corollary.** 1. If $f \in \overline{M}^+(X, \mathcal{M})$, then $\int_X f d\mu < \infty$ if and only if there is $f_0 \in M^+(X, \mathcal{M})$ so that $f = f_0 \mu a.e.$
 - 2. If $f,g \in L(X,\mathcal{M},\mu)$, then f=g $\mu-a.e.$ if and only if $\int_X |f-g| d\mu=0$.

Proof Clear from above.

- **5.10 Theorem.** (Lebesgue Dominated Convergence) Let $(f_n) \subseteq L(X, \mathcal{M}, \mu)$, and $f \in M(X, \mathcal{M})$ such that
 - $\lim_{n\to\infty} f_n = f \ \mu$ -a.e.
 - There is $g \in L^+(\mu)$ such that $|f_n| \leq g \mu$ -a.e. Then $f \in L(\mu)$ and $\lim_{n \to \infty} \int_X f_n d\mu =$ $\int_X f d\mu$. If, further, (X, \mathcal{M}, μ) is complete, we may take $f: X \to \mathbb{C}$.

PROOF Let $N = \bigcup_{n=1}^{\infty} (|f_n| - g)^{-1}((0, \infty)) \cup \{x \in X : \lim f_n(x) \neq f(x)\}$, so $\mu(N) = 0$. Replace f_n by $1_N f_n$ and f by $1_N f$, and assume all limits and inequalities are pointwise. Notice if (X, \mathcal{M}, μ) is complete, then we do not need the assumption that f is measurable to see that $N \in \mathcal{M}$. We thus have that $f \in \mathcal{M}(X, \mathcal{M})$ with $|f| = \lim |f_n| \leq |g|$, so $\int_X f \, \mathrm{d}\mu < \infty$.

(I) Assume that each f_n , hence f, is \mathbb{R} -valued. Then $(g+f_n)_{n=1}^{\infty}$, $(g-f_n)_{n=1}^{\infty} \subset M^+(X,\mathcal{M})$. Hence, we may use Fatou's Lemma:

$$\int_{X} g \, \mathrm{d}\mu \pm \int_{X} f \, \mathrm{d}\mu = \int_{X} (g \pm f) \, \mathrm{d}\mu = \int_{X} \liminf_{n \to \infty} (g \pm f_{n}) \, \mathrm{d}\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} (g \pm f_{n}) \, \mathrm{d}\mu = \liminf_{n \to \infty} \left(\int_{X} g \, \mathrm{d}\mu \pm \int_{X} f_{n} \, \mathrm{d}\mu \right)$$

$$= \begin{cases} \int_{X} g \, \mathrm{d}\mu + \liminf_{n \to \infty} \int_{X} f_{n} \, \mathrm{d}\mu & \pm = + \\ \int_{X} g \, \mathrm{d}\mu - \limsup_{n \to \infty} \int_{X} f_{n} \, \mathrm{d}\mu & \pm = - \end{cases}$$

Then

• $\pm = + \text{ provides } \int_X g \, d\mu + \int_X f \, d\mu \le \int_X G \, d\mu + \liminf_{n \to \infty} \int_X f_n \, d\mu$. Thus $\int_X f \, d\mu \le \liminf_{n \to \infty} \int_X f_n \, d\mu$

• $\pm = - \text{ implies } \int_X f \, d\mu \ge \limsup_{n \to \infty} \int_X f_n$.

Thus $\limsup_{n\to\infty} \int_X f_n d\mu \le \int_X f d\mu \le \liminf_{n\to\infty} \int_X f_n d\mu$, so $\lim_{n\to\infty} \int_X f_n d\mu$ exists and equals $\int_X f d\mu$.

(II) Here we use (I) to see that $\lim_{n\to\infty} \operatorname{Re} f_n = \operatorname{Re} f$, so $\lim_{n\to\infty} \int_X \operatorname{Re} f_n \, \mathrm{d}\mu = \int_X \operatorname{Re} f \, \mathrm{d}\mu$, and likewis with imaginary parts. Thus

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X \operatorname{Re} f_n \, \mathrm{d}\mu + i \lim_{n \to \infty} \int_X \operatorname{Im} f_n \, \mathrm{d}\mu$$
$$= \int_X \operatorname{Re} f \, \mathrm{d}\mu + i \int_X \operatorname{Im} f \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$$

Note that MCT and Fatou's lemma also work with assumptions of μ -a.e. convergence. Let $S(X, \mathcal{M}) = \{\phi : X \to \mathbb{C} : \phi \text{ is } \mathcal{M}\text{-measurable}, |\phi(X)| < \infty\}.$

- **5.11 Corollary.** 1. If $(f_n) \subseteq L(\mu)$, $f \in M(X, \mathcal{M})$ with $f = \lim_{n \to \infty} f_n$ μ -a.e. and there is $g \in L^+(\mu)$ with $|f_n| \leq g \mu$ -a.e., then $\lim_{n \to \infty} \int_X |f f_n| d\mu = 0$.
 - 2. Given $f \in L(\mu)$, there exists a sequence $(\phi_n) \subseteq S(X, \mathcal{M})$ such that $|\phi_n| \le |f|$ and $\lim_{n\to\infty} \phi_n = f$. Furthermore, we have that $\int_X f \, \mathrm{d}\mu = \lim_{n\to\infty} \int_X \phi_n \, \mathrm{d}\mu$.
 - 3. If $f \in L(\mu)$, then $\left| \int_X f d\mu \right| \le \int_X \left| f \right| d\mu$.

PROOF 1. We have $\lim_{n\to\infty} |f-f_n| = 0$ μ -a.e., and $|f-f_n| \le |f| + |f_n| \le 2g \in L^+(\mu)$. Apply LDCT.

2. An earlier lemma gives us sequences $(\phi_n^\pm)_{n=1}^\infty$, $(\psi_n^\pm)_{n=1}^\infty$ so that $0 \le \phi_1^+ \le \phi_2^+ \le \cdots$ with $\lim \phi_n^+ = \operatorname{Re} f^+$, $0 \le \psi_1^- \le \psi_2^- \le \cdots$ with $\lim \psi_n^- = \operatorname{Im} f^-$. Let $\phi_n = \phi_n^+ - \phi_n^- + i[\psi_n^+ - \psi_n^-]$. Then

$$\begin{aligned} |\phi_n| &= [|\phi_n^+ - \phi_n^-|^2 + |\psi_n^+ - \psi_n^-|^2]^{1/2} \\ &\leq [(\phi_n^+ + \phi_n^-)^2 + (\psi_n^+ + \psi_n^-)^2]^{1/2} \\ &= |f| \end{aligned} \le \left[(\operatorname{Re} f^+ + \operatorname{Re} f^-)^2 + (\operatorname{Im} f^+ + \operatorname{Im} f^-) \right]^{1/2}$$

and, also, $\lim \phi_n = f$. We have that since $|\phi_n| \le |f|$, we use LDCT to get a limit of integrals.

3. If $\phi \in S^-(X, M) \cap L(\mu)$, write $\phi = \sum_{i=1}^n c_i 1_{E_i}$. Then

$$|\int_{X} \phi \, \mathrm{d}\mu| = |\sum_{i=1}^{n} c_{i}\mu(E_{i})| \le \sum_{i=1}^{n} |c_{i}|\mu(E_{i}) = \int_{X} |\phi| \, \mathrm{d}\mu$$

Now, if $f \in L(\mu)$, we obtain sequences $(\phi_n)_{n=1}^{\infty} \subset S(X, \mathcal{M})$. Thus we have

$$|\int_X f \, \mathrm{d}\mu| = \lim |\int_X \phi_n \, \mathrm{d}\mu| \le \lim \int_X |\phi_n| \, \mathrm{d}\mu = \int_X |f| \, \mathrm{d}\mu$$

as $|\phi_n| \le |f|$, $\lim |\phi_n| = |f|$.

5.12 Lemma. Let (X, \mathcal{A}, μ_0) be a premeasure space, and (X, \mathcal{M}, μ) denote the canonical induced measure space. Given $f \in L(\mu)$, $\epsilon > 0$, there is

$$\phi = \sum_{i=1}^{n} a_i 1_{B_i}, a_1, \dots, a_n \in \mathbb{C}, B_1, \dots, B_n \in \mathcal{A}$$

such that $\int_{Y} |\phi - f| d\mu < \epsilon$.

PROOF (I) Let $E \in \mathcal{M}$, with $\mu(E) < \infty$. Then given $\epsilon > 0$, there is $B \in \mathcal{A}$ so that $\mu(B \triangle E) < \epsilon$. To see this, let $A_1, A_2, ... \in A$ so that $E \subseteq \bigcup_{i=1}^{\infty} A_i$ with $\sum_{i=1}^{\infty} \mu_0(A_i) < \mu^*(E) + \epsilon = \mu(E) + \epsilon$. Let n be so that $\sum_{i=n+1}^{\infty} \mu_0(A_i) < \epsilon/2$, and let $B = \bigcup_{i=1}^{n} A_i \in A$. Then $B \triangle E \subseteq (\bigcup_{i=1}^{\infty} A_i \setminus E) \cup \{0\}$ $(\bigcup_{i=n+1}^{\infty} A_i)$ and the result follows by σ -subaddivitity.

(II) If $\psi \in S(X, \mathcal{M}) \cap L(\mu)$. Then given $\epsilon > 0$, there is ϕ as above so $|\psi - \phi| < \epsilon$. To see this, write $\psi = \sum_{i=1}^{n} a_i 1_{E_i}$. By (I), we find for each i, B_i in \mathcal{A} such that $\mu(B_i \triangle E_i) < \epsilon/a$, where $a = 1 + \sum_{i=1}^{n} |a_i|$. Then

$$\int |\phi - \psi| \le \sum_{i=1}^n |a_i| \int |1_{B_i} - 1_{E_i}| = \sum_{i=1}^n \mu(B_i \triangle E_i) < \epsilon$$

(III) If $f \in L(\mu)$, a corollary to LDCT provides ψ in $S(X, \mathcal{M}) \cap L(\mu)$ such that $\int |f - \psi| < \epsilon.2$. We let ϕ as in (II), so $|\psi - \phi| < \epsilon/2$.

- **5.13 Proposition.** Let (X, \mathcal{M}, μ) be a measure space, $f: X \times (a, b) \to \mathbb{C}$ satisfy that
 - $f(\cdot,s) \in L(\mu)$ for each $s \in (a,b)$
 - $\frac{\partial}{\partial s}f(x,s) = \lim_{h\to 0} \frac{f(x,s+h)-f(x,s)}{h}$ exists for each (x,s) in $X\times (a,b)$ there is $g\in L^+(\mu)$ so that $\left|\frac{\partial}{\partial s}f(\cdot,s)\right|\leq g$ μ -a.e for each $s\in (a,b)$.

Then $F(x) = \int_X f(x,s) d\mu(x)$, and F is differentiable on (a,b) with $F'(s) = \int_X \frac{\partial}{\partial s} f(x,s) d\mu(x)$.

Proof We fix $s \in (a, b)$ and an arbitrary sequence $(h_n)_{n=1}^{\infty} \subset \mathbb{R} \setminus \{0\}$ such that $s + h_n \in (a, b)$ for each n, and $\lim h_n = 0$. Notive that for each $x \in X$, $f(x, \cdot) : (a, b) \to \mathbb{C}$ is continuous on intervals $[s, s+h_n]$, $[s+h_n, s]$ (if $h_n < 0$) for $n \in \mathbb{N}$. Thus, by MVT, we find $c_n, d_n \in (s, s+h_n)$ such that

$$|f(x,s+h_n) - f(x,s)| = \left| \operatorname{Re} \frac{\partial}{\partial s} f(x,c_n) + i \operatorname{im} \frac{\partial}{\partial s} f(x,d+n) \right| |h_n|$$

$$\leq 2|g(x)||h_n|$$

Thus, by LDCT,

$$F'(s) = \lim_{n \to \infty} \frac{F(s + h_n) - F(s)}{h_n} = \lim_{n \to \infty} \int \left(\frac{f(x, s + h_n) - f(x, s)}{h_n} \, \mathrm{d}\mu(x) \right)$$
$$= \int \frac{\partial}{\partial s} f(x, s) \, \mathrm{d}\mu(x)$$

6 Modes of Convergence

Let (X, \mathcal{M}, μ) be a measure space, (f_n) , $f \in M(X, \mathcal{M})$. We say that $\lim f_n = f$

- **uniformly** if $\lim_{n\to\infty} \sup_{x\in X} |f_n(x) f(x)| = 0$
- **pointwise** if $\lim_{n\to\infty} |f_n(x) f(x)| = 0$ for each $x \in X$
- **pointwise** μ -a.e. if $\lim_{n\to\infty} |f_n(x)-f(x)|=0$ for each $x\in X\setminus N$, where $\mu(N)=0$.
- in $L^1(\mu)$ if $\lim_{n\to\infty} \int_X |f_n f| d\mu = 0$.
- in μ -measure if for any $\epsilon > 0$ we have $\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) f(x)| \ge \epsilon\}) = 0$.

Example. Consider sequences $f_n = \frac{1}{n} 1_{[0,n]}$, $g_n = 1_{[n,n+1]}$, $h_n = n 1_{[0,1/n]}$, $k_n = 1_{[j/2^k,(j+1)/2^k]}$ where $n = 2^k + j$ for $j = 0, ..., 2^k - 1$. Then

6.1 Proposition. If $\lim_{n\to\infty} f_n = f$ in $L^1(\mu)$, then $\lim_{n\to\infty} f_n = f$ in μ -measure.

PROOF Let $\epsilon > 0$, and set $E_n = \{x \in X : |f_n(x) - f(x)| \ge \epsilon\}$. Then $\int_X |f_n - f| d\mu \ge \int_{E_n} |f_n - f| d\mu \ge \int_{E_n} \epsilon = \epsilon \mu(E_n)$. Thus $\mu(E_n) \le \frac{1}{\epsilon} \int_X |f_n - f| d\mu \to 0$ as n goes to infinity.

- **6.2 Theorem.** Let $(f_n)_{n=1}^{\infty}$, $f \in M(X, \mathcal{M})$. Then
 - (i) If $\lim_{n\to\infty} f_n = f$ in μ -measure, then $(f_n)_{n=1}^{\infty}$ is **Cauchy in \mu-measure**; i.e., given $\epsilon, \delta > 0$, there is $n_0 \in \mathbb{N}$ (dependent on ϵ, δ) such that whenever $n, m \ge n_0$, $\mu(\{x \in X : |f_n(x) f_m(x)| \ge \epsilon\}) < \delta$.
 - (ii) If $(f_n)_{n=1}^{\infty}$ is Cauchy in μ -measure, then there is a subsequence $(f_{n_j})_{j=1}^{\infty}$ such that $\lim_{j\to\infty} f_{n_j} = f_0$ for some $f_0 \in M(X,\mathcal{M})$ μ -a.e. Furthermore, $\lim_{j\to\infty} f_{n_j} = f_0$ in measure.

PROOF (i) If $m, n \in \mathbb{N}$, then

$$\{x \in X : |f_n(x) - f_m(x)| \ge \epsilon\} \subseteq \{x \in X : |f_n(x) - f(x)| + |f(x) - f_m(x)| \ge \epsilon\}$$

$$\subseteq \{x \in X : |f_n(x) - f(x)| \ge \epsilon/2\} \cup \{x \in X : |f(x) - f_m(x)| \ge \epsilon/2\}$$

and apply convergence in μ -measure to each term.

(ii) Let $n_1 < n_2 < \cdots$ be such that

$$E_j = \{ x \in X : |f_n(x) - f_m(x)| \ge 1/2^j \text{ for all } n, m \ge n_j \} \qquad \mu(E_j) < \frac{1}{2^j}$$

by taking ϵ , $\delta = 1/2^{j}$.

Let $F_k = \bigcup_{j=k}^{\infty} E_j$, so by σ -subadditivity, $\mu(F_k) \le 1/2^{k-1}$. If $x \notin F_k$, then for $i > j \ge k$, we have

$$\left| f_{n_j}(x) - f_{n_i}(x) \right| \le \sum_{p=j}^{i-1} \left| f_{n_p}(x) - f_{n_{p+1}}(x) \right|$$

$$< \sum_{p=j}^{i-1} \frac{1}{2^p} \le \frac{1}{2^{j-1}} \le \frac{1}{2^{k-1}}$$

Thus $(f_{n_i})_{i=1}^{\infty}$ is pointwise Cauchy on $X \setminus F_k$. Let $F = \bigcap_{k=1}^{\infty} F_k$, so

$$0 \le \mu(F) \le \mu(F_k) \le \frac{1}{2^{k-1}}$$

and since this holds for any k, $\mu(F)=0$. Thus for $x\in X\setminus F=\bigcup_{k=1}^{\infty}(X\setminus F_k)$, we have that $(f_{n_j})_{j=1}^{\infty}$ is pointwise Cauchy. Thus there is $\tilde{f}\in M(X\setminus F,\mathcal{M}|_{X\setminus F})$, so $\lim_{j\to\infty}f_{n_j}=\tilde{f}$ on $X\setminus F$. Consider

$$f_0: X \to \mathbb{C}$$

$$f_0(x) = \begin{cases} \tilde{f}(x) & : x \in X \setminus F \\ 0 & : x \in F \end{cases}$$

It is easy to see that $f_0 \in \mathcal{M}(X, \mathcal{M})$. Given $\epsilon > 0$, let k be so $1/2^{k-1} < \epsilon$. Then for $x \in X \setminus F_k$,

$$|f_0(x) - f_{n_k}(x)| = \lim_{j \to \infty} |f_{n_j}(x) - f_{n_k}(x)| \le \frac{1}{2^{k-1}} < \epsilon$$

Thus $\{x \in X : |f_0(x) - f_{n_k}(x)| \ge \epsilon\} \subseteq F_k$, so $\mu(E) \le \mu(F_k) \le 1/2^{k-1} < \epsilon$ and the convergence is also in μ -measure.

6.3 Corollary. If $\lim_{n\to\infty} f_n = f$ in $L^1(\mu)$, then there is a subsequence $(f_{n_j})_{j=1}^{\infty}$ such that $\lim_{j\to\infty} f_{n_j} = f$ μ -a.e.

PROOF By the last proposition, we have $\lim f_n = f$ in μ -measure, and hence by (i), $(f_n)_{n=1}^{\infty}$ is Cauchy in μ -measure. By (ii), there is a subsequence so that $\lim f_{n_j} = f_0 \mu$ -a.e. As before,

$$E = \{x \in X : |f_0(x) - f(x)| \ge \epsilon\} \subseteq \{x \in X : |f_n(x) - f(x)| \ge \epsilon/2\} \cup \{x \in X : |f(x) - f_m(x)| \ge \epsilon/2\}$$

and since $\lim f_n = f$ in measure and $\lim f_{n_j} = f_0$ in measure, we see that $\mu(E)$ is bounded by arbitrarily small values.

6.4 Corollary. If a < b in \mathbb{R} $f : [a,b] \to \mathbb{R}$ is Riemann integrable, then $f \in L([a,b],\mathcal{B}([a,b]),\lambda)$ and the Riemann and Lebesgue integral agree.

Proof Let

$$J_{n,i} = \left[a + \frac{i-1}{n}(b-a), a + \frac{i}{n}(b-a)\right)$$

for $i=1,\ldots,n$, $I_{n,i}=\overline{J_{n,i}}$, $l_{n,i}=\int_{x\in I_{n,i}}f(x)$, $u_{n,i}=\sup_{x\in I_{n,i}}f(x)$, $\phi_n=\sum_{i=1}^n l_{n,i}1_{J_{n,i}}$, $\psi_n=\sum_{j=1}^n u_{n,j}1_{J_{n,j}}$ and

$$L_n(f) = \int_{[a,b]} \phi_n \, d\lambda, U_n(f) = \int_{[a,b]} \psi_n \, d\lambda$$

Riemann integrability tells us that $\lim_{n\to\infty} (U_n(f) - L_n(f)) = 0$. Note that $\phi_n \le f \le \psi_n$, and $\int_{[a,b]} |\psi_n - \phi_n| \, d\lambda = U_n(f) - L_n(f) \to 0$ as $n\to\infty$. Thus $\lim_{n\to\infty} |\psi_n - \phi_n| = 0$ in $L^1(\mu)$. Thus, there is a subsequence so $\lim_{j\to\infty} |\psi_{n_j} - \phi_{n_j}| = 0$ λ -a.e. Since $\phi_n \le \phi_{n+1} \le f \le \psi_{n+1} \le \psi_n$, we conclude that $f = \lim \phi_{n_j} \lambda$ -a.e. with integrable majorant $g = |\phi_1| + |\psi_1|$, so $\int_{[a,b]} f \, d\lambda = \lim_{j\to\infty} L_{n_i}(f) = \int_a^b f$.

More generally, Riemann integrable functions are continuous λ –a.e. If a < b in \overline{R} , $f \ge 0$ improperly Riemann integrable, then it is Lebesgue integrable on (a,b).

Definition. If $(f_n)_{n=1}^{\infty}$, f are in $M(X, \mathcal{M})$, then $\lim f_n = f$ μ -almost uniformly if, given any $\epsilon > 0$, there is $E \in M$ with $\mu(E) < \epsilon$ so that $\lim_{n \to \infty} \sup_{x \in X \setminus E} |f_n(x) - f(x)| = 0$.

6.5 Theorem. (Egoroff) Suppose (X, \mathcal{M}, μ) is a finite measure space. If $(f_n)_{n=1}^{\infty}$, f are in $M(X, \mathcal{M})$ such that $\lim f_n = f \mu$ -a.e., then $\lim f_n = f \mu$ -almost uniformly.

Note that finiteness is essential.

Proof Let $N = \{x \in X : \lim f_n(x) \text{ does not exist, or is not equal to } f(x)\}$, so $\mu(N) = 0$. For $k, n \in \mathbb{N}$, let $E_{n,k} = \bigcup_{m=n}^{\infty} \{x \in X : |f_m(x) - f(x)| \ge 1/k\}$, so $E_{n,k} \in \mathcal{M}$, $E_{n,k} \supseteq E_{n+1,k}$ and $\bigcap_{n=1}^{\infty} E_{n,k} \subseteq N$. Thus by continuity from above (we assume $\mu(X) < \infty$), we see that $\lim_{n \to \infty} \mu(E_{n,k}) = 0$.

Given $\epsilon > 0$, let n_k so that $\mu(E_{n_k,k}) < \epsilon/2^k$. Let $E = \bigcup_{k=1}^{\infty} E_{n_k,k}$ so $\mu(E) < \epsilon$ and for $x \in X \setminus E = \bigcap_{k=1}^{\infty} (E \setminus E_{n_k,k}) \subseteq E_{n_k,k}$, for any k, we have $|f_n(x) - f(x)| < 1/k$ for $n \ge n_k$. Thus $\limsup_{n \to \infty} \sup_{x \in X \setminus E} |f_n(x) - f(x)| \le 1/k$, which gives $\lim_{n \to \infty} \sup_{x \in X \setminus E} |f_n(x) - f(x)| = 0$.

III. Product Measures

Let (X, \mathbb{N}, μ) , (Y, \mathcal{N}, ν) be two measure spaces.

- **6.6 Proposition.** Let $\mathcal{E} = \{E \times F : E \in \mathcal{M}, F \in \mathcal{N}\} \subseteq \mathcal{P}(X \times Y)$, and let $\mathcal{A} = \langle \mathcal{E} \rangle$. Then
 - 1. Each element of A is of the form $A = \bigcup_{i=1}^{n} E_i \times F_i$ for $E_i \in \mathcal{M}$, $F_i \in \mathcal{N}$, $(E_i \times F_i) \cap (E_j \cap F_i) = \emptyset$ if $i \neq j$.
 - 2. We define $(\mu \times \nu)_0 : \mathcal{A} \to [0, \infty]$ by

$$(\mu \times \nu)_0(A) = \sum_{i=1}^n \mu(E_i \cup F_i)$$

if A is as in (i). Then $(\mu \times \nu)_0$ is a pre-measure, hence extends to a measure $\mu \times \nu$: $M \otimes \mathcal{N} \to [0, \infty]$. If each of μ and ν are σ -finite, $\mu \times \nu$ is σ -finite and this extension is unique.

PROOF 1. We see that \mathcal{E} is an elementary family of sets: if $E, E_1 \in \mathcal{M}$, $F, F_1 \in \mathcal{N}$, then

- $(E \times F) \cap (E_1 \times F_1) = (E \cap E_1) \times (F \cap F_1) \in \mathcal{E}$
- $(X \times Y) \setminus (E \times F) = [(X \setminus E) \times F] \cup [E \times (Y \setminus F)] \cup [(X \setminus E) \cup (Y \setminus F)].$

Thus the result follows from an earlier lemma.

2. We need to establish that the formula for $(\mu \times \nu)_0(A)$ is well-defined. Suppose

$$A = \bigcup_{i=1}^{n} (E_i \times F_i) = \bigcup_{j=1}^{m} (M_j \times N_j)$$

Then for each $x \in X$ we see that $1_A(x, \cdot) = \sum_{i=1}^n 1_{E_i}(x) 1_{F_i} = \sum_{j=1}^n 1_{M_j}(x) 1_{F_j}$ and hence

$$\int_{Y} 1_{A}(x,y) \, \mathrm{d}\mu(y) = \sum_{i=1}^{n} \nu(F_{i}) 1_{E_{i}}(x) = \sum_{j=1}^{m} \mu(N_{j}) 1_{M_{j}}(x)$$

and moreover

$$\int_{X} \left[\int_{Y} 1_{A}(x, y) \, \mathrm{d}\nu(y) \right] \mathrm{d}\mu(x) = \sum_{i=1}^{n} \mu(E_{i}) \nu(F_{i})$$

$$= \sum_{j=1}^{m} \mu(M_{j}) \nu(N_{j}) \tag{\dagger}$$

which gives an unambiguous value for $(\mu \times \nu)_0(A)$. Evidently, $\emptyset = \emptyset \times \emptyset$, so $(\mu \times \nu)_0(\emptyset) = 0$. Now suppose A, $(A_n)_{n=1}^{\infty}$ are in A, with $A = \bigcup_{n=1}^{\infty} A_n$. But then $1_A = \sum_{n=1}^{\infty} 1_{A_n}$ and for $x \in X$, $1_A(x, \cdot) = \sum_{n=1}^{\infty} 1_{A_n}(x, \cdot)$. Thus, by 2 applications of (a Corollary to) MCT and (\dagger) ,

$$\begin{split} (\mu \times \nu)_0(A) &= \int_X \int_Y \mathbf{1}_A(x,y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(x) \\ &= \int_X \int_Y \sum_{n=1}^\infty \mathbf{1}_{A_n}(x,y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(x) \\ &= \int_X \left[\sum_{n=1}^\infty \int_Y \mathbf{1}_{A_n}(x,y) \, \mathrm{d}\nu(y) \right] \mathrm{d}\mu(x) \\ &= \sum_{n=1}^\infty \int_X \int_Y \mathbf{1}_{A_n}(x,y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(x) \\ &= \sum_{n=1}^\infty (\mu \times \nu)_0(A_n) \end{split}$$

We appeal to the canonical measure construction to get $\mu \times \nu$ on $\mathcal{M} \otimes \mathcal{N} = \sigma \langle \mathcal{E} \rangle = \sigma \langle \mathcal{A} \rangle$. If $(X_n)_{n=1}^{\infty} \subseteq \mathcal{M}$, $(Y_n)_{n=1}^{\infty} \subseteq \mathcal{N}$ show σ -finitenes of μ , (resp. ν), then each $(\mu \times \nu)(X_n \times Y_n) = \mu(X_n)\nu(Y_n) < \infty$ and $X \times Y = \bigcup_{n=1}^{\infty} X_n \times Y_n$, showing σ -finiteness of $\mu \times \nu$.

6.7 Theorem. Let (X, \mathcal{M}, μ) , (Y, \mathcal{N}, ν) be σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then

- (i) $x \mapsto v(E_x): X \to [0, \infty]$ is \mathcal{M} -measurable
- (ii) $y \mapsto \mu(E^y): Y \to [0, \infty]$ is \mathcal{N} -measurable.
- (iii) $\mu \times \nu(E) = \int_Y \mu(E^Y) d\nu(y) = \int_X \nu(E_X) d\mu(x).$

PROOF (I) We assume that $\mu(X)$, $\mu(Y) < \infty$. Set \mathcal{C} be the set of $E \in \mathcal{M} \otimes \mathcal{N}$ for which (i), (ii), (iii) hold. We will establish that $\mathcal{A} = \langle \{M \otimes N : M \in \mathcal{M}, N \in \mathcal{N}\} \rangle \subseteq \mathcal{C}$ and that \mathcal{C} is a monotone class. Hence, the Monotone Class lemma show that $M \otimes \mathcal{N} = \sigma \langle \mathcal{A} \rangle = C(\mathcal{A}) \subseteq \mathcal{C} \subseteq \mathcal{M} \mathcal{M} \otimes \mathcal{N}$. If $E \in \mathcal{A}$, write $E = \bigcup_{i=1}^n A_i \times B_i$, $A_i \in \mathcal{M}$, $B_i \in \mathcal{N}$ for i = 1, ..., n. Then or $x \in X$, we have

$$E_x = \bigcup_{x \in A_i, i=1}^n B_i \Longrightarrow \nu(E_x) = \sum_{i=1}^n \nu(B_i) 1_{A_i}(x)$$

Thus it is clear that (*i*) and part of (*iii*) hold or *E*. In the same way, (*ii*) holds, and the other part of (*iii*), so $E \in \mathcal{C}$, so $A \subseteq \mathcal{C}$.

Let's see that \mathcal{C} is a monotone class. Let $E_1 \supseteq E_2 \supseteq \cdots$ in \mathcal{C} . Then, for $x \in X$, $E_{1x} \supseteq E_{2x} \supseteq \cdots$ in \mathcal{N} , and $(\bigcap_{n=1}^{\infty} E_n)_x = \bigcap_{n=1}^{\infty} (E_{nx})$. Since $\nu(E_{1x}) \le \nu(X) < \infty$, we may appeal to continuity from above to see that

$$\nu\left(\left(\bigcap_{n=1}^{\infty} E_n\right)_{x}\right) = \nu\left(\bigcap_{n=1}^{\infty} (E_{nx})\right) = \lim_{n \to \infty} \nu(E_{nx})$$

and hence (i) holds for $\bigcap_{n=1}^{\infty} E_n$. Furthermore, by LDCT with integrable majorant $\mu(X)\nu(Y)1_{X\times Y}$

and again by continuity from above,

$$(\mu \times \nu) \left(\bigcap_{n=1}^{\infty} E_n \right) = \lim_{n \to \infty} (\mu \times \nu) (E_n)$$

$$= \lim_{n \to \infty} \int_X \nu(E_{nx}) \, \mathrm{d}\mu(x)$$

$$= \int_X \lim_{n \to \infty} \nu(E_{nx}) \, \mathrm{d}\mu(x)$$

$$= \int_X \nu \left(\left(\bigcap_{n=1}^{\infty} E_n \right)_x \right) \, \mathrm{d}\mu(x)$$

so $\bigcap_{n=1}^{\infty}$ satisfies part of (iii). Likewise, if $E_1 \subseteq E_2 \subseteq \cdots$ in \mathcal{C} , we may apply continuity from below, and MCT to see that $\bigcup_{n=1}^{\infty} E_n$ satisfies (i) and part of (iii). Similarly, in each case above, then y-sections of intersections of decreasing sequences or unions of increasing sequences are in \mathcal{C} .

(II) Now let each of μ , ν be σ -finite. Hence there are $X_1 \subseteq X_2 \subseteq \cdots$ in \mathcal{M} , so $\bigcup_{n=1}^{\infty} X_n = X$, and $Y_1 \subseteq Y_2 \subseteq \cdots$ in \mathcal{N} so $\bigcup_{n=1}^{\infty} Y_n = Y$. If $E \in \mathcal{M} \otimes \mathcal{N}$, then $E \cap (X_1 \times Y_1) \subseteq E \cap (X_2 \times Y_2) \subseteq \cdots$ and each $E \cap (X_n \times Y_n)$ satisfies (i), (ii), and (iii) in the finite measure space $(\mu \times \nu)|_{X_n \times Y_n}$. Hence, we conclude by continuity from below

$$y \mapsto \mu(E^Y) = \lim_{n \to \infty} \mu(E^Y \cap Y_n)$$

since $(E \cap (X_n \times Y_n))^Y = E^Y \cap Y_n$ is an increasing sequence and this function is \mathcal{N} -measurable. Thus, by MCT and again by continuity from below,

$$\mu \times \nu(E) = \lim_{n \to \infty} \mu(E \cap (X_n \times Y_n))$$

$$= \lim_{n \to \infty} \int_Y \nu(E^Y \cap Y_n) \, d\nu(y)$$

$$= \int_Y \lim_{n \to \infty} \nu(E^Y \cap Y_n) \, d\nu(y)$$

$$= \int_Y \nu(E^Y) \, d\nu(y)$$

Thus, *E* satisfies (ii) and part of (iii). Likewise, *E* satisfies (i) and the other part of (iii). ■

6.8 Theorem. (Tonelli and Fubini) Let (X, \mathcal{M}, μ) (Y, \mathcal{N}, ν) be σ -finite measure spaces. (Tonelli's Theorem) If $f \in \overline{M}^+(X \times Y, \mathcal{M} \otimes \mathcal{N})$, then

$$x \mapsto \int_Y f_x \, \mathrm{d}\nu : X \to [0, \infty] \text{ is } \mathcal{M}\text{-measurable.}$$

 $y \mapsto \int_Y f^y \, \mathrm{d}\mu : Y \to [0, \infty] \text{ is } \mathcal{N}\text{-measurable.}$

and

$$\int_{Y} \int_{X} f^{y} d\mu d\nu(y) = \int_{X \times Y} f d\mu \times \nu = \int_{X} \int_{Y} f_{x} d\nu d\mu(x)$$
 (†)

(Fubini's Theorem) If $f \in L(\mu \times \nu)$, then

$$\left(x \mapsto \int_{Y} f_{x} \, \mathrm{d}\nu\right) \in L(\mu)$$
$$\left(y \mapsto \int_{X} f^{y} \, \mathrm{d}\mu\right) \in L(\nu)$$

and (†) holds.

Proof For an indicator function, we have

$$\int_{X\times Y} 1_E \, \mathrm{d}\mu \times \nu = \mu \times \nu(E) = \int_X \nu(E_X) \, \mathrm{d}\mu(X)$$

$$= \int_X \int_Y 1_{E_X} \, \mathrm{d}\nu \, \mathrm{d}\mu(X)$$

$$= \int_X \int_Y (1_E)_X \, \mathrm{d}\nu \, \mathrm{d}\mu(X)$$

Similarly, this is true for the *y*–sections and the other itegrated integral. Hence Tonelli holds for $f \in S^+(X \times Y, \mathcal{M} \otimes \mathcal{N})$.

If $f \in \mathcal{M}^+(X \times Y, \mathcal{M} \otimes \mathcal{N})$, we have $(\phi_n)_{n=1}^{\infty} \subset S^+(X \times Y, \mathcal{M} \otimes \mathcal{N})$ such that $\lim \phi_n = f$. We use MCT.

• $\int_Y f_x d\nu = \int_Y \lim_{n \to \infty} \phi_{nx} d\nu = \lim_{n \to \infty} \int_Y \phi_{nx} d\nu$, so $x \mapsto \int_Y f_x$ is \mathcal{M} -measurable, and

 $\int_{X\times Y} f \, \mathrm{d}\mu \times \nu = \lim_{n \to \infty} \int_{X\times Y} \phi_n \, \mathrm{d}\mu \times \nu)$ $= \lim_{n \to \infty} \int_X \int_Y \phi_{nx} \, \mathrm{d}\nu \, \mathrm{d}\mu(x)$ $= \int_X \lim_{n \to \infty} \int_Y \phi_{nx} \, \mathrm{d}\nu \, \mathrm{d}\mu(x)$ $= \int_X \int_Y \lim_{n \to \infty} \phi_{nx} \, \mathrm{d}\nu \, \mathrm{d}\mu(x)$ $= \int_Y \int_Y f_x \, \mathrm{d}\nu \, \mathrm{d}\mu(x)$

and the same holds for y-sections, and Tonelli's Theorem holds.

For Fubini's Theorem, we proceed as above. Recall that if $f \in L(\mu \times \nu)$, we can find $(\phi_n)_{n=1}^{\infty} \subset S(X \times Y, \mathcal{M} \otimes \mathcal{N})$ such that each $|\phi_n| \leq f$ and $\lim_{n \to \infty} \phi_n = f$. We use LDCT with integrable majorants to see that

$$\int_{X\times Y} |f| \,\mathrm{d}\mu \times \nu = \int_X \int_Y |f|_x \,\mathrm{d}\nu \,\mathrm{d}\mu(x)$$

so that $x \mapsto \left| \int_Y f_x \, d\nu \right| \le \int_Y |f_x| \, d\nu$, which shows that $x \mapsto \int_Y f_x \, d\nu$ is in $L(\mu)$. Likewise for the other section.

Remark. If $f \in M(X \times Y, \mathcal{M} \otimes \mathcal{Y})$, we may wish to see that $f \in L(\mu \times \nu)$. This is equivalent to saying that $|f| \in L(\mu \times \nu)$, and we may be able to compute this with an integrated integral, using Tonelli's Theorem.

MULTIDIMENSIONAL LEBESGUE MEASURE

Let $\mathcal{B}(\mathbb{R}), \mathcal{L} \subseteq \mathcal{P}(\mathbb{R})$ denote the Borel and Lebesgue σ -algebras. Recall that the Lebesgue measure is translation invariant.

Remark. If $x, c \in \mathbb{R}$, $c \neq 0$, then the maps $T_x : \mathbb{R} \to \mathbb{R}$ by $y \mapsto x + y$ and $M_c : \mathbb{R} \to \mathbb{R}$ by $y \mapsto cy$ are continuous, hence Borel measurable. Thus if $E \in \mathcal{B}(\mathbb{R})$, $x + E = T_x(E) = T_{-x}^{-1}(E) \in \mathcal{B}(\mathbb{R})$. Similarly, $cE = M_{1/c}^{-1}(E) \in \mathcal{B}(\mathbb{R})$.

7.1 Proposition. Let $f \in L(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda) = L(\lambda)$.

- (i) For $x \in \mathbb{R}$, $f \circ T_x \in L(\lambda)$ with $\int_{\mathbb{R}} f \circ T_x d\lambda = \int_{\mathbb{R}} f d\lambda$.
- (ii) For $0 \neq c \in \mathbb{R}$, $f \circ M_c \in L(\lambda)$ with $\int_{\mathbb{R}} f \circ M_c d\lambda = \frac{1}{|c|} \int_{\mathbb{R}} f d\lambda$.

Proof This is a direct application of A2 Q3(b).

Now, recall that $\mathcal{B}(\mathbb{R}^d) = \mathcal{B}(\mathbb{R}) \otimes \cdots \otimes \mathcal{B}(\mathbb{R})$. Let $\lambda_d = \lambda \times \cdots \times \lambda : \mathcal{B}(\mathbb{R}^d) \to [0, \infty]$ denote the d-dimensional Lebesgue measure. We define \mathcal{L}_d to be the completion of $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda_d)$. *Remark.* For suitable *f* , we say

$$\int_{\mathbb{R}^d} f \, d\lambda_d = \int_{\mathbb{R}^d} f(x_1, \dots, x_d) \, d(x_1, \dots, x_d)$$

Fubini-Tonelli theorem tells us that

$$\int_{\mathbb{R}^d} f \, \mathrm{d}\lambda_d = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, \dots, x_d) dx_{\sigma(1)} \cdots \mathrm{d}x_{\sigma(d)}$$

where $\sigma : [d] \rightarrow [d]$ is any bijection.

7.2 Proposition. Let $f \in L(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \lambda_d) = L(\lambda_d)$. (i) For $x \in \mathbb{R}^d$, let $T_x : \mathbb{R}^d \to \mathbb{R}^d$ be given by $T_x(y) = x + y$. Then $f \circ T_x \in L(\lambda)$ with

$$\int_{\mathbb{R}^d} f \circ T (x) d\lambda_d = \int_{\mathbb{R}^d} f d\lambda_d$$

(ii) For $A \in (d, \mathbb{R})$, $f \circ A \in L(\lambda)$ with

$$\int_{\mathbb{R}^d} f \circ A \, d\lambda_d = \frac{1}{|\det A|} \int_{\mathbb{R}^d} f \, d\lambda_d$$

(i) This follows from the previous proposition as well as Fubini-Tonelli: **Proof**

$$\int_{\mathbb{R}^{d}} f \circ T_{x} d\lambda_{d} = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_{1} + y_{1}, \dots, x_{d} + y_{d}) d\lambda_{1} \cdots d\lambda_{d}$$

$$= \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_{1}, \dots, x_{d} + y_{d}) d\lambda_{1} \cdots d\lambda_{d}$$

$$\vdots$$

$$= \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_{1}, \dots, x_{d}) d\lambda_{1} \cdots d\lambda_{d}$$

$$= \int_{\mathbb{R}} f d\lambda_{d}$$

(ii) We can factor $A = A_1 \cdots A_n$ where each A_i is one of the following 3 types:

- (add row to vector) $A_{ij}(x_1,...,x_d) = (x_1,...,x_i + x_j,...,x_d)$.
- (swap) $S_{ij}(x_1,...,x_d) = (x_1,...,x_j,...,x_i,...,x_d)$
- (multiply row) $M_{ic}(x_1,...,x_d) = (x_1,...,cx_i,...,x_d)$

Notice that $det(A_{ij}) = 1 = |\det S_{ij}|$, while $|\det(M_{ic})| = |c|$. If $f \ge 0$, we have for i < j

$$\int_{\mathbb{R}^d} f \circ A_{ij} \, d\lambda_d = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, \dots, x_i + x_j, \dots, x_d) \, d\lambda_1 \cdots d\lambda_d = \int_{\mathbb{R}^d} f \, d\lambda_d$$

by translation invariance. Similarly, $\int_{\mathbb{R}^d} f \circ S_{ij} d\lambda_d = \int_{\mathbb{R}^d} f d\lambda_d$ and $\int_{\mathbb{R}^d} f \circ M_{ic} d\lambda_d = \frac{1}{|c|} \int_{\mathbb{R}^d} f d\lambda_d$. Then

$$\int_{\mathbb{R}^d} f \circ A \, d\lambda_d = \int_{\mathbb{R}^d} f \circ A_1 \circ \cdots \circ A_n \, d\lambda_d$$

$$= \frac{1}{|\det(A_n)|} \int_{\mathbb{R}^d} f \circ A_1 \circ \cdots \circ A_{n-1} \, d\lambda_d$$

$$= \frac{1}{|\det(A)|} \int_{\mathbb{R}^d} f \, d\lambda_d$$

IV. Complex Measures

8 Signed Measures

Definition. Let (X, \mathcal{M}, μ) be a measurable space. A (finite) **signte measure**) on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to \mathbb{R}$ such that

- $\nu(\emptyset) = 0$
- If $E_1, E_2, \ldots \in \mathcal{M}$ are disjoint, then $\nu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \nu(E_i)$.

Remark. 1. It is possible to defined a signed measure into $(-\infty, \infty]$ or $[-\infty, \infty)$. For convenience, we work only with the finite case.

- 2. As well, note that the series above is always absolutely convergent.
- 3. If $F \subseteq E$ in \mathcal{M} , then $\nu(E \setminus F) = \nu(E) \nu(F)$.

Example. 1. If $\mu_1, \mu_2 : \mathcal{M} \to [0, \infty)$, then $\nu = \mu_1 - \mu_2$ is a signed measure.

- 2. If $\mu : \mathcal{M} \to [0, \infty]$ is a measure and $f \in L(\mu)$, we define $f \cdot \mu : \mathcal{M} \to \mathbb{R}$ by $f \cdot \mu(E) = \int_E f \, d\mu = \int_X 1_E f \, d\mu$. This is a signed measure (LDCT).
- **8.1 Proposition.** (i) If $E_1 \subseteq E_2 \subseteq \cdots$ in \mathcal{M} , then $\nu\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \nu(E_n)$. (ii) If $E_1 \supseteq E_2 \supseteq \cdots$ in \mathcal{M} , then $\nu\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \nu(E_n)$.

Proof Identical as the proof as for (non-negative) measures.

Definition. Let (X, \mathcal{M}, μ) be a signed measure space. A set $E \in \mathcal{M}$ is **positive** (or **negative** or **null**) for ν if for any $F \subseteq E$, $F \in \mathcal{M}$, we have $\nu(F) \ge 0$ (or $\nu(F) \le 0$ or $\nu(F) = 0$).

8.2 Lemma. (i) If $P \in \mathcal{M}$ is positive and $Q \subseteq P$, then Q is positive. (ii) If $P_1, P_2, \ldots \in \mathcal{M}$, then $P = \bigcup_{i=1}^{\infty} P_i$ is positive.

PROOF The first statement is clear. For the second, suppose $E \subseteq P$, $E \in \mathcal{M}$, and let $Q_1 = P_1$, $Q_{n+1} = P_{n+1} \setminus \bigcup_{i=1}^n P_i$. Each Q_n is positive by (i) and $E = \bigcup_{i=1}^\infty (E \cap Q_i)$ as $E \subseteq P$. Thus $\nu(E) = \sum_{i=1}^\infty \nu(E \cap Q_i) \ge 0$.

- **8.3 Theorem. (Hahn Decomposition)** Let (X, \mathcal{M}, μ) be a signed measure space. Then there exist P, N in \mathcal{M} such that
 - (i) P is positive for v.
 - (ii) N is negative for v
- (iii) $P \cup N = X$, $P \cap N = \emptyset$.

Furthermore, if P', N' also satisfy the above constraints, then $P \triangle P'$ and $N \triangle N'$ are each null for v.

Definition. A pair (P, N), as above, is called a **Hahn decomposition** for ν .

Proof Every set named in this proof is assumed to be in \mathcal{M} .

I: If $E \in \mathcal{M}$, $\epsilon > 0$, then there is $E_{\epsilon} \subseteq E$ such that

- 1. $\nu(E_{\epsilon}) \geq \nu(E)$
- 2. for any $B \subseteq E_{\epsilon}$, $\nu(B) \epsilon$.

If not, then every $A \subseteq E$ satisfying (1), there exists $B \subseteq A$ such that $\nu(B) \le -\epsilon$. Then, inductively, we find

- $B_1 \subseteq E$ such that $\nu(B_1) \le -\epsilon$ and $\nu(E \setminus B_1) = \nu(E) \nu(B_1) > \nu(E)$; hence
- $B_2 \subseteq E \setminus B_1$ such that $\nu(B_2) \le -\epsilon$ and $\nu(E \setminus (B_1 \cup B_2)) = \nu(E) \sum_{i=1}^2 \nu(B_i) > \nu(E)$. $B_{n+1} \subseteq E \setminus \bigcup_{i=1}^n B_i$, with $\nu(B_{n+1}) \le -\epsilon$ and $\nu(E \setminus \bigcup_{i=1}^{n+1} B_i) > \nu(E)$. However, as $B_i \cap B_j = \emptyset$, we would have $\nu(\bigcup_{i=1}^\infty B_i) = \sum_{i=1}^\infty \nu(B_i) = -\infty$, violating finiteness

II: If $E \in \mathcal{M}$, there is a positive $P \subseteq E$ such that $\nu(P) \ge \nu(E)$. Let $E_0 = E_1$ and we use (I)and induction fo find $E_n \subseteq E_{n-1}$ such that $\nu(E_n) \ge \nu(E_{n-1})$ and if $B \subseteq E_n$, then $\nu(B) > -1/n$. Let $P = \bigcap_{n=1}^{\infty} E_n$. By continuity from above, $\nu(P) = \lim \nu(E_n) \ge \nu(E_0) = \nu(E)$. If $B \subseteq P$, then $B \subseteq E_n$ for each n so $\nu(B) > -1/n$. Thus P is positive for ν .

III: Let $s = \sup\{\nu(E) : E \in \mathcal{M}\}$. Then there is a sequence E_1, E_2, \ldots such that s = $\lim_{n\to\infty} \nu(E_n)$. For each n, find $P_n \subseteq E_n$, which is positive for ν , with $\nu(P_n) \ge \nu(E_n)$. Let $P = \bigcup_{i=1}^{\infty} P_i$. We note that P is positive for ν and we compute

$$s \ge \nu(P) = \lim_{n \to \infty} \nu\left(\bigcup_{i=1}^{\infty} P_i\right) \ge \lim_{n \to \infty} \nu(P_n) \ge \nu(E_n) = s$$

so $\nu(P) = s$. We let $N = X \setminus P$. If there were $E \subseteq N$ with $\nu(E) > 0$, then $\nu(E \cup P) > \nu(E) + \nu(P) > 0$ s, violating definition of s. Thus $\nu(E) \le 0$, so N is negative.

IV: Essential Uniqueness If P', N' are another Hahn decomposition, then $P \triangle P' \subseteq$ $N' \cup N$. Then $P \triangle P'$ is positive and negative, and thus null. The same result holds for $N' \triangle N$.

8.4 Proposition. Let μ , ν be as above with μ finite. Then $\nu \ll \mu$ if and only if for any $\epsilon > 0$, there is $\delta > 0$ such that for $E \in \mathcal{M}$, $\mu(E) < \delta$ implies $|\nu(E)| < \infty$.

PROOF First, since $|v(\cdot)| \le \text{Re } v^+ + \cdots + \text{Im } v^-|$, it suffices to show the equivalence for finite measures. Suppose (AC') fails. Then there exists $\epsilon > 0$ such that there is $E_n \in \mathcal{M}$ with $\mu(E_n) < 1/2^n$ while $\nu(E_n) \ge \epsilon$. Let $F_n = \bigcup_{i=n}^{\infty} E_i$ so $F_1 \supseteq F_2 \supseteq \cdots$ with $\mu(F_n) \le 1/2^{n-1}$ and hence by continuity from above, $\mu(\bigcap_{n=1}^{\infty} F_n) = \lim_{n \to \infty} \mu(F_n)$ while

$$\nu\left(\bigcap_{n=1}^{\infty} F_n\right) = \lim_{n \to \infty} \nu(F_n) \ge \liminf_{n \to \infty} \nu(E_n) \ge \epsilon$$

so AC fails. Thus AC implies AC'.

If AC' holds, there is $\delta_n > 0$ so for E in \mathcal{M} , $\mu(E) < \delta_n$ implies $\nu(E) < 1/n$. Hence if $\mu(E) = 0 < \delta_n$ for all n, then $\nu(E) < 1/n$ for any n, i.e. $\nu(E) = 0$.

8.5 Lemma. Let $\mu, \nu : \mathcal{M} \to [0, \infty)$ be finite measures. Then either $\mu \perp \nu$ or to every $\epsilon > 0$ and $E \in \mathcal{M}$ for which $\mu(E) > 0$ and E is positive $\nu - \epsilon \mu$.

PROOF Let (P_n, N_n) be a Hahn decomposition for $\nu - \frac{1}{n}\mu$ and $P = \bigcup_{n=1}^{\infty} P_n$, $N = X \setminus P =$ $\bigcap_{n=1}^{\infty} N_n$. Then N is negative for each $\nu - \frac{1}{n}$, so $0 \le \nu(N) \le \frac{1}{n}\mu(N)$ for each n, so $\nu(N) = 0$. If $\mu(P) = 0$, then $\nu \perp \mu$. Otherwise, $\mu(P) > 0$, so $\mu(P_n) > 0$ for some n, and $E = P_n$ satisfies $\mu(E) > 0$ and $(\nu - \frac{1}{n}\mu)(E) > 0$.

- **8.6 Theorem.** (Lebesgue-Radon-Nikodym) Let (X, \mathcal{M}) be a measurable space, $v : \mathcal{M} \rightarrow$ \mathbb{C} a complex measure and $\mu: \mathcal{M} \to [0, \infty]$ be a σ -finite measure. Then
 - (i) There is a unique complex measure $\rho: \mathcal{M} \to \mathbb{C}$ such that $\rho \perp \mu$ and $\nu \rho \ll \mu$

(ii) There is $f \in L(\mu)$ such that $\nu - \rho = f \cdot \mu$.

Remark. The decomposition $\nu = \rho + (\nu - \rho)$ is called the **Lebesgue decomposition** of ν with respect to μ . The element $f \in L(\mu)$, above, is called the **Radon-Nikodym derivative** of ν with respect to μ . We will often write $f = \frac{d\nu}{d\mu}$.

PROOF (I) Assume $\mu, \nu : \mathcal{M} \to [0, \infty)$ are finite measures. Let

$$\mathcal{F} = \{ f \in \overline{M}^+(X, \mathcal{M}) : \int_E f \, \mathrm{d}\mu \le \nu(E) \text{ for all } E \text{ in } \mathcal{M} \}$$

Indeed, let $A = \{x \in X : f(x) > g(x)\}$. Then for $E \in \mathcal{M}$,

$$\int_{E} \max\{f, g\} d\mu = \int_{E \cap A} f d\mu + \int_{E \setminus A} g d\mu \le \nu(E \cap A) + \nu(E \setminus A) = \nu(E)$$

Thus if $f_1, \ldots, f_n \in \mathcal{F}$, then $\max\{f_1, \ldots, f_n\} \in \mathcal{F}$. Let $s = \sup\{\int_X f \, \mathrm{d}\mu : f \in \mathcal{F}\} \le \nu(X) < \infty$. Hence for each n, there is $f_n \in \mathcal{F}$ such that $s - \frac{1}{n} < \int_X f_n \, \mathrm{d}\mu \le s$. We let $g_n = \max\{f_1, \ldots, f_n\} \in \mathcal{F}$ so $g_n \le g_{n+1}$, and we let $f = \lim_{n \to \infty} g_n$. Then

$$s \ge \lim_{n \to \infty} \int_X \ge \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu \ge \lim_{n \to \infty} \left(s - \frac{1}{n} \right) = s$$

so $s = \lim_{n \to \infty} \int_X g_n \, d\mu = \int_X f \, d\mu$ by monotone convergence. In particular, $f \in \overline{L}^+(\mu)$, so we may assume that $f \in L^+(\mu)$ (i.e. \mathbb{R} -valued). Again, by MCT,

$$\int_{E} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{E} g_n \, \mathrm{d}\mu \le \lim_{n \to \infty} \nu(E) = \nu(E)$$

so $f \in \mathcal{F}$.

Now, let $\rho = \nu - f \cdot \mu$, which is non-negative as $f \in \mathcal{F}$. If $\rho \not\perp \mu$, then the last lemma provides $\epsilon > 0$ and $E \in \mathcal{M}$ which is positive such that

$$\rho - \epsilon \mu = (\nu - f \cdot \mu) - \epsilon \mu = \nu - (f + \epsilon 1)\mu$$

i.e. for $B \subseteq E$, $B \in \mathcal{M}$, $\int_{B} (f + \epsilon 1) d\mu = (f + \epsilon 1)\mu(B) \le \nu(B)$. Hence if $A \in \mathcal{M}$, we have

$$\int_{A} (f + \epsilon 1_{E}) d\mu = \int_{A \setminus E} f d\mu + \int_{A} (f + \epsilon 1_{E}) d\mu$$

$$\leq \nu(A \setminus E) + \nu(A \cap E)$$

so $f + \epsilon 1_E \in \mathcal{F}$. However,

$$\int_{Y} (f + \epsilon 1_{E}) d\mu = \int_{Y} f d\mu + \epsilon \mu(E) = s + \epsilon \mu(E) > s$$

But these last two statements contradict definitions of \mathcal{F} and s. Thus $\rho \perp \mu$.

- (II) Assume $\nu: \mathcal{M} \to [0, infty)$ and $\mu: \mathcal{M} \to [0, \infty]$ is σ -finite. We get $(X_n)_{n=1}^{\infty} \subseteq \mathcal{M}$ such that $X = \bigcup_{n=1}^{\infty} X_n$ and each $X_n \in \mathcal{M}$ has $\mu(X_n) < \infty$. Let $\nu_x = \nu_{X_i}$, $\mu_i = \mu_{X_i}$. Apply (I) to pairs (ν_i, μ_i) to obtain measures $\rho_i: \mathcal{M}_{X_i} \to [0, \infty)$ $\rho_i \perp \mu_i$ and $\nu_i \rho_i = f_i \cdot \mu_i \ll \mu_i$ where $f_i \in L^+(\mu_i)$. Define
 - $\rho: \mathcal{M} \to [0, \infty]$ by $\rho(E) = \sum_{i=1}^{\infty} \rho_i(E \cap X_i)$
 - $f: X \to [0, \infty)$ by $f(x) = f_i(x)$ if $x \in X_i$.

It is easily checked that ρ defines a measure and that $f \in M^+(X, \mathcal{M})$. If (E_i, F_i) realize (E_i, F_i) realizes $\rho_i \perp \mu_i$, then $(\bigcup_{i=1}^{\infty} E_i, \bigcup_{i=1}^{\infty} F_i)$ realizes $\rho \perp \mu$. Furthermore, for $E \in \mathcal{M}$ we have

$$\nu(E) = \sum_{i=1}^{\infty} \nu(E \cap X_i) = \sum_{i=1}^{\infty} \left(\rho_i(E \cap X_i) + \int_{E \cap X_i} f_i \, \mathrm{d}\mu_i \right)$$
$$= \rho(E) + \int_E f \, \mathrm{d}\mu$$

by monotone convergence. In particular, since $\nu(X) < \infty$, we see that ρ is a finite measure and $f \in L^+(\mu)$.

(III) Now suppose $\nu: \mathcal{M} \to \mathbb{C}$, $\mu: \mathcal{M} \to [0, \infty]$ is σ -finite. Apply the Jordan decomposition so that $\nu = (\operatorname{Re} \nu^+ - \operatorname{Re} \nu^-) + i(\operatorname{im} \nu^+ - \operatorname{im} \nu^-)$. Apply (II) to each component to get (ρ_i, f_i) and let $\rho = \rho_1 - \rho_2 + i(\rho_3 - \rho_4)$ and $f = f_1 - f_2 + i(f_3 - f_4)$, which certainly satisfy the properties.

(IV) Uniqueness. Suppose we have $\rho, \rho' : \mathcal{M} \to \mathbb{C}$ satisfying the requirements. Since $\rho + (\nu - \rho) = \nu = \rho' + (\nu - \rho')$, we have $\rho - \rho' = (\nu - \rho') - (\nu - \rho)$ simulaneously singular and absolutely continuous with respect to μ , so $\rho - \rho' = 0$.

THE RADON-NIKODYM DERIVATIVE

Definition.

Let us assume above that $\nu \ll \mu$, so (L-)R-N tells us that $\nu = f \cdot \mu$ for some $f \in L(\mu)$.

- 1. If $f \in L(\mu)$, $f \cdot \mu = 0$ if and only if $1_E f = 0$ μ -a.e. for each $E \in \mathcal{M}$ if and only if f = 0 μ -a.e. Hence if $f, g \in L(\mu)$, then $f \cdot \mu = g \cdot \mu$ if and only if $f = g \mu$ -a.e.
- 2. We let $L^1(\mu) = L(\mu) / \sim_{\mu}$ where $f \sim_{\mu} g$ if and only if $f = g \mu$ -a.e. Pointwise μ -a.e. operations are legal.

If $\nu = f \cdot \mu$ as above, we write $f = \frac{d\nu}{d\mu}$ in $L^1(\mu)$, so $\nu = \frac{d\nu}{d\mu} \cdot \mu$.

Definition. Let $v : \mathcal{M} \to \mathbb{C}$ be a complex measure. We let $L(v) = L(\operatorname{Re} v^+) \cap \cdots L(\operatorname{Im} v^-)$ and for $f \in L(v)$, we define the **Lebesgue integral** by

$$\int_{X} f \, dv = \int_{X} f \, d(\operatorname{Re} v^{+}) - \int_{X} f \, d(\operatorname{Re} v^{-}) + i \left[\int_{X} f \, d(\operatorname{Im} v^{+}) - \int_{X} f \, d(\operatorname{Im} v^{-}) \right]$$

We let $L^1(\nu) = L(\nu)/\sim_{\nu}$.

- **8.7 Proposition.** Let ν be a complex measure, μ a finite easure, and λ a σ -finite measure, on a measurable space X. Then
 - (i) If $v \ll \lambda$, then for $g \in L(v)$, $g \frac{dv}{d\lambda} \in L^1(\lambda)$.
 - (ii) If $v \ll \mu$, $\mu \ll \lambda$, then $v \ll \lambda$ and $\frac{dv}{d\lambda} = \frac{dv}{du} \frac{d\mu}{d\lambda}$

Proximan*) If $E \in \mathcal{M}$, then $\int 1_E d\nu = \nu(E) = \frac{d\nu}{d\lambda} \cdot \lambda(E) = \int 1_E \frac{d\nu}{d\lambda} d\lambda$. Thus the result holds by LDCT.

(roman*) If $E \in \mathcal{M}$, if $\lambda(E) = 0$, then $\mu(E) = 0$ so $\nu(E) = 0$ so $\nu \ll \lambda$. Then for any $E \in \mathcal{M}$, apply (i) to get

$$\int 1_E \frac{d\nu}{d\lambda} d\lambda = \nu(E) = \int 1_E \frac{d\nu}{d\mu} d\mu$$
$$= \int 1_E \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda}$$

and from above, $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \lambda$ –a.e.

9 L^p -SPACES

Let (X, \mathcal{M}, μ) be a measure space. Recall that $L^1(\mu) = L(\mu)/\sim_{\mu}$. Likewise, if $1 , then we let <math>L^p(\mu) = \{f \in M(X, \mathcal{M}) : \int_X |f|^p \, \mathrm{d}\mu < \infty\}/\sim_{\mu}$. Note that the functional $\|\cdot\|_1$ on $L^1(\mu)$ given by $\|f\|_1 = \int_X |f| \, \mathrm{d}\mu$ is a norm on $L^1(\mu)$.

If $\phi : \mathbb{R} \to \mathbb{R}$ is twice differentiable and for which $\phi'' > 0$, then ϕ is **strictly convex**. If x < y in \mathbb{R} , 0 < t < 1, then $\phi((1-t)x + ty) < (1-t)\phi(x) + t\phi(y)$.

9.1 Proposition. (Young's Inequality) If $a, b \ge 0$, p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{1}{p}a^{\frac{1}{q}}b^q$ with equality if $a^p = b^q$.

Proof By convexity of e^x ,

$$ab = e^{\log(ab)} = e^{\frac{1}{p}\log(a^p) + \frac{1}{q}\log(b^q)} \le \frac{1}{p}e^{\log(a^p)} + \frac{1}{q}e^{\log(b^q)} = \frac{1}{p}a^p + \frac{1}{q}b^q$$

and equality holds if and only if $a^p = b^q$.

Remark. If $f,g \in L^{\mathbb{R}}(\mu)$, $f \geq g$ μ -a.e. and $f \neq g$ μ -a.e, then $\int_X f \, d\mu > \int_X g \, d\mu$. Indeed, $(f-g) \cdot \mu$ is a non-zero (positive) measure.

9.2 Proposition. (Hölder's Inequality) Let p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\mu)$, $g \in L^q(\mu)$. Then $f g \in L^1(\mu)$ with

$$||f||_1 \le ||f||_p ||g||_q$$

with equality holding only if there are $\alpha, \beta \geq 0$ such that $\alpha |f|^p = \beta |g|^q \mu - a.e.$

Proof We may assume that $||f||_p ||g||_q > 0$. By Young's inequality,

$$\frac{|f(x)g(x)|}{\|f\|_p \|g\|_q} \le \frac{1}{p} \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|g(x)|^q}{\|g\|_q^q}$$

Integrate over *X* and multiply by $||f||_p^p ||g||_q^q$ to see that

$$||fg||_{1} \leq \frac{1}{p} \cdot \frac{||f||_{p}^{p}}{||f||_{p}^{p-1}} ||g||_{q} + \frac{1}{q} \frac{||g||_{q}^{q}}{||g||_{q}^{q-1}} ||f||_{p}$$

$$\leq \left(\frac{1}{p} + \frac{1}{q}\right) ||f||_{p} ||g||_{q}$$

with equality holding if and only if $||g||_q^q |f|^p = ||f||_p^p |g|^q$.

Remark. We define sgn: $\mathbb{C} \to \mathbb{C}$ by sgn $(z) = \frac{z}{|z|}$ if $z \neq 0$, and 0 if z = 0.

9.3 Proposition. (Minkowski's Inequality) If p > 1 and $f, g \in L^p(\mu)$, then $f + g \in L^p(\mu)$ with $||f + g||_p \le ||f||_p + ||g||_q$ with equality if and only if $\operatorname{sgn} f = \operatorname{sgn} g \ \mu - a.e.$ and there are $\alpha, \beta \ge 0$ so $\alpha |f| = \beta |g| \ \mu - a.e.$

Proof We have, by Hölder's inequality used twice,

$$\begin{split} |f+g|^p &= |f+g||f+g|^{p-1} \\ &\leq (|f|+|g|)|f+g|^{p-1} \\ &\leq ||f||_p \left\| |f+g|^{p-1} \right\|_q + ||g||_q \left\| |f+g|^{p-1} \right\|_q \\ &= (||f||_p + ||g||_q) \left\| |f+g|^{p-1} \right\|_q \end{split} \tag{*}$$

where equality holds at the first inequality $\operatorname{sgn} f = \operatorname{sgn} g$, and at the second inequality $\alpha |f|^p = \|f\|_p \||f + g|^{p-1}\|_q$ and $\alpha |g|^p = \|g\|_p \||f + g|^{p-1}\|_q$ where $\alpha = \||f + g|^{p-1}\|_q$. Notice that a(p-1) = p so that

$$||f+g|^{p-1}||_q = \left(\int |f+g|^{(p-1)q}\right)^{1/q} = ||f+g||_p^{p/q}$$

Furthermore, $|f + g|^p \le (|f| + |g|)^p \le 2^p \max\{|f|, |g|\}^p \in L^1(\mu)$. Thus by (*),

$$||f + g||_p = \frac{||f + g||_p}{||f + g||_p^{p/q}} \le ||f||_p + ||g||_q$$

and the equality situation is described above.

Remark. This implies that $(L^p(\mu), \|\cdot\|_p)$ is a normed space.

9.4 Lemma. Let $(L, \|\cdot\|)$ be a normed space. Then $(L, \|\cdot\|)$ is a Banach space if and only $\sum_{k=1}^{\infty} f_k$ converges in L whenever $\sum_{k=1}^{\infty} \|f_k\| < \infty$ in \mathbb{R} .

PROOF (\Leftarrow) Let $(f_n)_{n=1}^{\infty}$ be Cauchy in $(L, \|\cdot\|)$. Then we can find a subsequence $(f_{n_k})_{k=1}^{\infty}$ such that $\|f_{n_{k+1}} - f_{n_k}\| < 1/2^k$ for each k. We then use our assumption to let $f = f_{n_1} + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k}) \in L$. Check that $f = \lim_{n \to \infty} f_{n_k}$, so $f = \lim_{n \to \infty} f_n$.

9.5 Theorem. Let (X, \mathcal{M}, μ) be a measure space and $1 \le p < \infty$. Then $(L^p(\mu), \|\cdot\|_p)$ is a Banach space.

PROOF We use the lemma. Let $(f_k)_{k=1}^{\infty} \subset L^p(\mu)$ such that $s = \sum_{k=1}^{\infty} \|f_k\|_p < \infty$. We think of each f_k as an element of $M(X, \mathcal{M})$. Let for $n \in \mathbb{N}$ $g_n = \sum_{k=1}^n |f_k|$ and $g = \sum_{k=1}^{\infty} |f_k| \in M^+(X, \mathcal{M})$. Now by Minkowski's inequality,

$$||g_n||_p \le \sum_{p} k = 1^n ||f_k||_p \le s$$

so

$$||g_n||^p \leq s^p$$

and hence by monotone convergence

$$\int |g|^p = \lim_{n \to \infty} \int |g_n|^p \le s^p < \infty$$

so $|g|^p \in \overline{L}^+(\mu)$. By replacing values on a null set, we may assume $|g|^q \in L^+(\mu)$. Now, set $f(x) = \sum_{k=1}^\infty \infty f_k(x)$ for μ -ae. x in X. Then $|f| \le \sum_{k=1}^\infty |f| \le |g|$ which shows that f is finite

and thus μ –a.e. equivalent to an element of $M(X, \mathcal{M})$, which we will also call f. Since $|f|^p \le |g|^p$; we see that $f \in L^p(\mu)$. Now for each n,

$$\left| f - \sum_{k=1}^{n} f_k \right|^p \le \left(|f| + \sum_{k=1}^{n} |f_k| \right)^p \le |g|^p \in L(\mu)$$

and $\lim_{n\to\infty}\left|f-\sum_{k=1}^\infty f_j\right|^p=0$ μ –a.e. Thus by LDCT, we have

$$\left\| f - \sum_{k=1}^{n} f_k \right\|_{p}^{p} = \int \left| f - \sum_{k=1}^{\infty} f_k \right|^{p}$$

so $f = \sum_{k=1}^{\infty} f_k \in L^p(\mu)$.

Definition. Let $(L, \|\cdot\|)$ be a \mathbb{C} -normed Banach space. We let its **dual space** be

$$L^* = \{\Phi : L \to \mathbb{C} \mid \phi \text{ linear and } \|\phi\|_{\infty} = \sup\{|\phi(f)| : f \in L, \|f\| \le 1\} < \infty\}$$

Remark. 1. L^* is itself a \mathbb{C} -vector space with norm $\|\cdot\|_*$:

$$\begin{split} \left\|\phi\right\|_* &= 0 \Leftrightarrow |\Phi(f)| = 0 \text{ for all } f \in L, \|f\| \le 1 \\ &\Leftrightarrow \Phi(f) = \|f\|\Phi\left(\frac{1}{\|f\|}f\right) = 0 \text{ for all } f \in L \setminus \{0\} \\ &\Leftrightarrow \Phi = 0 \end{split}$$

Linearity and respecting scalars is obvious.

- 2. If $\Phi \in L^*$, Φ is Lipschitz, hence continuous. Indeed, if $f \in L \setminus \{0\}$, then $|\Phi(f)| = ||f|| |\Phi(\frac{1}{||f||}f)| \le ||\phi||_* ||f||$ and hence if $f, g \in L$, $|\Phi(f) \Phi(g)| = |\Phi(f g)| \le ||\Phi||_* ||f g||$.
- **9.6 Theorem.** Let (X, \mathcal{M}, μ) be a measure space, p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$.
 - (i) For $g \in L^q(\mu)$ we have $\Phi_g \in L^p(\mu)^*$ given by

$$\Phi_g(f) = \int_X f g \, \mathrm{d}\mu$$

satisfies $\|\Phi_g\|_* = \|g\|_q$ (ii) If $\Phi \in L^p(\mu)^*$, then $\Phi = \Phi_g$ for some $g \in L^q(\mu)$. Hence, $g \mapsto \Phi_g : L^q(\mu) \to L^p(\mu)^*$ is an isometric surjection.

PROOF (i) First notice for $f \in L^p(\mu)$,

$$\int |fg| = ||fg||_1 \le ||f||_p \, ||g||_q$$

so $fg \in L^1(\mu)$, so $\Phi_g(f) = \int fg$ makes sense. Again, we use Hölder's inequality to see for $f \in L^p(\mu)$ with $\|f\|_p \le 1$, we have

$$\left|\Phi_g(f)\right| = \left|\int fg\right| \leq \int \left|fg\right| = \left\|fg\right\|_1 \leq \left\|f\right\|_p \left\|g\right\|_q \leq \left\|g\right\|_q$$

so $\|\Phi_g\|_* \le \|g\|_q$. To see the converse inequality, for $g \ne 0$, let

$$f = \frac{1}{\|g\|_q^{q-1}} |g|^{q-1} \overline{\operatorname{sgn} g}$$

Then $\frac{1}{p} = 1 - \frac{1}{q} = \frac{q-1}{q}$, q = (q-1)p and we have

$$\int |f|^p \le \frac{1}{\|g\|_q^{(q-1)p}} \int |g|^{(q-1)p} = \frac{1}{\|g\|_q^q} \int |g|^q = 1$$

so $||f||_p \le 1$. Thus

$$\begin{split} \left\| \Phi_g \right\|_* &\ge |\Phi_g(h)| = \left| \frac{1}{\|g\|_q^{q-1}} \int |g|^{q-1} \overline{\operatorname{sgn} g} g \right| \\ &= \frac{1}{\|g\|_q^{q-1}} \int |g|^q = \frac{\|g\|_q^q}{\|g\|^{q-1}} = \|g\|_q \end{split}$$

(ii) Let $\Phi \in L^p(\mu)^*$. (I) Suppose that $\mu(X) < \infty$. Let $\nu : \mathcal{M} \to \mathbb{C}$ be $\nu(E) = \Phi(1_E)$. Then $\nu(\emptyset) = \Phi(1_\emptyset) = 0$. If $E_1, E_2, \ldots \in \mathcal{M}$, $E_i \cap E_j = \emptyset$ for $i \neq j$, then $E = \bigcup_{i=1}^{\infty} E_i$ and we have

$$\left\| 1_E - \sum_{i=1}^n 1_{E_i} \right\|_p^p = \int \left| 1_{\bigcup_{i=n+1}^\infty E_i} \right|^p d\mu$$

$$= \mu \left(\bigcup_{i=n+1}^\infty E_i \right)$$

$$= \sum_{i=n+1}^\infty \mu(E_i)$$

which goes to 0 as $n \to \infty$. Thus $1_E = \lim_{n \to \infty} \sum_{i=1}^n 1_{E_i}$ in $L^p(\mu)$. Thus, as Φ is linear and continuous, we have

$$\nu(E) = \Phi(1_E) = \Phi\left(\lim_{n \to \infty} \sum_{i=1}^{n} 1_{E_i}\right) = \lim_{n \to \infty} \sum_{i=1}^{n} \Phi(1_{E_i}) = \lim_{n \to \infty} \sum_{i=1}^{n} \nu(E_i) = \sum_{i=1}^{\infty} \nu(E_i)$$

and thus ν is a \mathbb{C} -measure. Furthermore, if $E \in \mathcal{M}$ satisfies $\mu(E) = 0$, then $1_E = 0$ μ -a.e, so $\nu(E) = \Phi(1_E) = \Phi(0) = 0$ and $\nu \ll \mu$. Thus the Radon-Nikodym Theorem provides $g = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ in $L^1(\mu)$ such that $\nu(E) = \int_E g \, \mathrm{d}\mu$.

We now show that $g \in L^q(\mu)$. First, if $f \in M(X, \mathcal{M}) / \sim_{\mu}$ is essentially bounded, then

$$\int |fg| \, \mathrm{d}\mu \le \int M|g| \, \mathrm{d}\mu = M \, ||g|| < \infty$$

so $fg \in L^1(\mu)$. We then note that

$$M(g) \geq \sup\{ \left| \int f g \, \mathrm{d} \mu \right| : f \in M(X, \mathcal{M}) / \sim_{\mu} \text{ is essentially bounded and } \|f\|_{p} \leq 1 \} \quad (*)$$

For f as in (*), we find $(\psi_n)_{n=1}^{\infty} \subset S(X, \mathcal{M})/\sim_{\mu}$ such that $f = \lim_{n \to \infty} \psi_n \ \mu$ -a.e. and such that $|\psi_n| \le |f|$. Notice for $\phi \in S(X, \mathcal{M})/\sim_{\mu}$, $\psi = \sum_{i=1}^n c_i 1_{E_i}$ in standard form, that

$$\Phi(\psi) = \sum_{j=1}^{m} c_i \Phi(1_{E_j}) = \sum_{j=1}^{n} c_i \nu(E_j)$$
$$= \sum_{j=1}^{m} c_j \int_X 1_{E_j} g \, d\mu = \int \psi g \, d\mu$$

Thus, $|\psi_n - f|^p \le (|\psi_n| + |f|)^p \le 2^p |f|^p \in L^1(\mu)$ so by LDCT,

$$\lim_{n\to\infty} \|\psi_n - f\|_p^p = \lim_{n\to\infty} |\phi_n - f|^p d\mu = 0$$

and $|\psi_n g| = |\psi_n||g| \le |fg| \in L^1(\mu)$. Thus for such f, using continuity of ϕ , and then LDCT,

$$\Phi(f) = \lim_{n \to \infty} \Phi(\psi_n) = \lim_{n \to \infty} \int \psi_n g \, \mathrm{d}\mu = \int f g \, \mathrm{d}\mu$$

Thus we see that $M(g) \le ||\Phi||_* < \infty$. Now we let $(\varphi_n)_{n=1}^{\infty} \subset S(X, \mathcal{M}) / \sim_{\mu}$ such that $\lim \varphi_n = g$ and $|\varphi_n| \le |\varphi_{n+1}| \le |g|$. We define

$$f_n = \frac{1}{\|\varphi_n\|_q^{q-1}} |\varphi_n|^{q-1} \overline{\operatorname{sgn} g}$$

which is essntially bounded and with $\int |f_n|^p \le 1$ as above. Furthermore, by MCT,

$$\int |g|^q d\mu = \lim_{n \to \infty} \int |\varphi_n|^q d\mu$$

and we compute

$$||g||_{q} = \lim_{n \to \infty} ||\varphi_{n}||_{q} = \lim_{n \to \infty} \frac{1}{||\varphi_{n}||_{q}^{q-1}} \int |\varphi_{n}|^{q}$$

$$\lim_{n \to \infty} \int |f_{n}||\varphi_{n}| \le \liminf_{n \to \infty} \int |f_{n}||g| \, \mathrm{d}\mu$$

$$= \liminf \int f_{n}g \, \mathrm{d}\mu \le ||\Phi||_{\infty} < \infty$$

so $g \in L^q(\mu)$. We see that $\Phi = \Phi_g$ by mimicking the same computation as earlier, but for f not necessarily essentially bounded.

(II) Assume now that μ is a general measure. If $E \in \mathcal{M}$, identify $L^p(\mu_E) \cong 1_E L^p(\mu) \subseteq L^p(\mu)$ and likewise for q. If $F \in \mathcal{M}$, $\mu(F) < \infty$, then (I) provides g_G in $1_F L^p(\mu)$ such that $\phi(1_F f) = \int_F f g_F d\mu = \int_X f g_F d\mu$ as $g_F = 1_F g_F$. Notice that if $F \subseteq F'$, where $F' \in \mathcal{M}$, $\mu(F') < \infty$, then $g_F = g_{F'} \mu_F$ —a.e. Hence if $F_1, F_2, \ldots \in \mathcal{M}$, each $\mu(F_i) < \infty$, then on $E = \bigcup_{i=1}^{\infty} F_i$, we may uniquely define g_E so $g_E = g_{F_n} \mu_{F_n}$ —a.e. and $1_E g_E = g_E$. Let $E_n = \bigcup_{i=1}^n F_i$, and MCT and (I) and (i) provide

$$\int |g_E|^q d\mu = \lim_{n \to \infty} \int |g_{E_n}|^q = \lim_{n \to \infty} \|\Phi|_{1_{E_n} L^p(\mu)}\|_* \le \|\Phi\|_*$$

so that $g_E \in L^q(\mu)$. In fact, $g_E = 1_E L^q(\mu)$. We then let

$$s = \sup \left\{ \int |g_E|^q : E \in \mathcal{M} \text{ is } \sigma\text{-finite for } \mu \right\} \leq ||\Phi||_* < \infty$$

Then let $E_1, E_2, ..., \in \mathcal{M}$ each be σ -finite for μ , such that $\lim_{n\to\infty} |g_{E_n}|^q = s$. Then $E = \bigcup_{i=1}^{\infty} E_i$ is σ -finite, and again using MCT,

$$s \ge \int |g_E|^q d\mu = \lim_{n \to \infty} \int |g_{\bigcup_{i=1}^{\infty} E_i}|^q d\mu \ge \lim_{n \to \infty} \int |g_{E_n}|^q d\mu = s$$

so that $s = \int |g_E|^q = s$. Now if $E' \in \mathcal{M}$ is σ -finite for μ such that

$$s + \int |g_{E' \setminus E}|^q \, \mathrm{d}\mu = \int |g_E|^q \, \mathrm{d}\mu + \int |g_{E \setminus E}|^q \, \mathrm{d}\mu = \int |g_E|^q \, \mathrm{d}\mu \le s$$

and we conclude that $g_{E'\setminus E} = 0$ μ –a.e.

Finally, if $f \in L^p(\mu)$, we think of f as a function and let

$$E_f = \bigcup_{n=1}^{\infty} \left\{ x \in X : |f(x)|^p < \frac{1}{n} \right\}$$

so E_f is σ -finite. Decompose $E_f \cup E = \bigcup_{i=1}^{\infty} E_i$, each $E_i \in \mathcal{M}$, $\mu(E_i) < \infty$, $E_1 \subseteq E_2 \subseteq \cdots$ and we have

- $\lim_{n\to\infty} ||f 1_{E_n} f||_p = 0$ (LDCT argument we saw in (I))
- $|fg_{E_n}| \le |fg_E| \in L^1(\mu)$

Thus by continuity of Φ , by LDCT and (I),

$$\Phi(f) = \lim_{n \to \infty} \Phi(1_{E_n} f) = \lim_{n \to \infty} \int 1_{E_n} f g_E \, \mathrm{d}\mu = \int f g_E \, \mathrm{d}\mu$$

Hence $\Phi = \Phi_{q_E}$.

10 RADON MEASURES

Definition. Let (X,d) be a metric space. We say that (X,d) is **locally compact** if for each $x \in X$, there is $\epsilon_x > 0$ such that $\overline{B_{\epsilon_x}}(x)$ is compact.

Example. (i) \mathbb{R}^d with the usual metric is locally compact. Any closed ball $\overline{B_{\epsilon}(x)}$ is cmpact (Heine-Borel)

- (ii) Let X be any non-empty set, d the discrete metric. If $x \in X$, then $B_{\epsilon}(x) = \overline{B_{\epsilon}(x)}$ is compact, provided that X is infinite, exactly for $0 < \epsilon \le 1$. Note that we distinguish $\overline{B_{\epsilon}(x)}$ from $\overline{B_{\epsilon}}(x) = \{y : d(x,y) < \epsilon\}$.
- (iii) If *C* is a closed subset and *U* an open subset of a locally compact space, then *C*, *U* and $C \cap U$, $C \cup U$ are locally compact.

Definition. Let (X,d) be a locally compact metric space. A measure $\mu: \mathcal{B}(x) \to [0,\infty]$ is called a **Radon measure** if it satisfies

• (outer regularity) For $E \in \mathcal{B}(X)$, $\mu(E) = \inf{\{\mu(U) : E \subseteq U, U \text{ open}\}}$.

- (locally finite) For $K \subseteq X$ compact, $\mu(K) < \infty$
- (inner regular on open sets) If $U \subseteq X$ is open, then $\mu(U) = \sup{\{\mu(K) : K \subseteq U, K \text{ is compact}\}}$.

10.1 Proposition. Let μ be a Radon measure, as above. Then if $E \in \mathcal{B}(X)$ such that $\mu(E) < \infty$, then inner regularity holds for E as well. Thus, if X is σ -finite for μ , then μ is inner regular for each $E \in \mathcal{B}(X)$.

Proof First assume that $\mu(E) < \infty$. Let $\epsilon > 0$. Let

- $E \subseteq U$, U open, $\mu(E) < \mu(E) + \epsilon$ implies $\mu(U \setminus E) < \epsilon$.
- $F \subseteq U$, F compact, $\mu(U) < \mu(F) + \epsilon$, and
- $U \setminus E \subseteq C$, so V is open and $\mu(V) < \epsilon$.

Let $K = F \setminus V = F \cap (X \setminus V) \subseteq F \setminus (U \setminus E) \subseteq F \cap E \subseteq E$ and is compact with

$$\mu(K) = \mu(F) - \mu(F \cap V)$$

> $\mu(U) - \epsilon - \mu(V) > \mu(E) - 2\epsilon$

Now, if E is σ -finite for μ , write $E = \bigcup_{i=1}^{\infty} E_i$, each $E_i \in \mathcal{B}(X)$, $\mu(E_i) < \infty$, $E_1 \subseteq E_2 \subseteq \cdots$. For each n, let $K_n \subseteq E_n$ such that $\mu(K_n) \le \mu(E_n) < \mu(K_n) + 1/n$. Then by continuity from below, $\mu(E) = \lim \mu(E_n) = \lim \mu(K_n)$ so $\mu(E) = \sup_{n \in \mathbb{N}} \mu(K_n)$.

Remark. We say that (X,d) is σ -compact if $X = \bigcup_{n=1}^{\infty} K_n$, where each K_n is compact. If μ is a Radon measure, then σ -compact implies σ -finite.

Riesz Representation Theorem. Let (X,d) be a metric space, $I:C_c(X)\to\mathbb{C}$ a positive linear functional. Then there is a unique Radon measure $\mu:\mathcal{B}(X)\to[0,\infty]$ such that $I(f)=\int_X f\,\mathrm{d}\mu,\ f\in C_c(G)$. We let $U\subseteq C$, $\mu^0(U)=\sup\{I(f):f\prec U\},\ E\subseteq X,\ \mu^*(E)=\inf\{\sum_{i=1}^\infty\mu^0(E_i):U\subseteq\bigcup_{i=1}^\infty,U_i\in\tau\}$.

(III) We have that $\mathcal{B}(X) \subseteq \mathcal{M}$. Ín particular, $\mu = \mu^*|_{\mathcal{B}(x)}$ satisfies $\mu(U) = \mu^*(U)$ for U open, and μ is outer regular, by (I), and locally finite, by (II). It suffices to show that $U \in \mathcal{M}$ whenever U is open.

Suppose $V \subseteq X$ is open with $\mu^*(V) < \infty$ (say \overline{V} is compact), and let $\epsilon > 0$. We let

- $f < U \cap V$ be so $\mu^*(U) \cap V < I(f) + \epsilon$
- $g < V \setminus \text{supp } f$ be such $\mu^*(V \setminus \text{supp } f) < I(g) + \epsilon$

Then f + g < V as supp $f \cap \text{supp } g = \emptyset$, and we have

$$\mu^{*}(V \cap U) + \mu^{*}(V \setminus U) < I(f) + \epsilon + \mu^{*}(V \setminus \text{supp } f)$$

$$< I(f) + I(g) + 2\epsilon$$

$$= I(f+g) + 2\epsilon$$

$$\leq \mu^{0}(V) + 2\epsilon = \mu^{*}(V) + 2\epsilon$$

so, since $\epsilon > 0$ is arbitrary, $\mu^*(V \cap U) + \mu^*(V \setminus U) \le \mu^*(V)$. Now, if $E \subseteq X$, $\mu^*(E) < \infty$, for each $\epsilon > 0$ we find open $V \supseteq E$ such that $\mu^*(V) = \mu^0(E) < \mu^*(E) + \epsilon$. Then

$$\mu^*(E) + \epsilon > \mu^*(V) \ge \mu^*(V \cap U) + \mu^*(V \setminus U) \ge \mu^*(E \cap U) + \mu^*(E \setminus U)$$

and since ϵ is arbitrary, $\mu^0(E) \ge \mu^*(E \cap U) + \mu^*(E \setminus U)$. Notice that this also holds immediately if $\mu^*(E) = \infty$.

(IV) $I(f) = \int_X f \, d\mu$ for f in $C_c(X)$. First, if $f \in C_c(X)$, we may write $f_1 - f_2 + i(f_3 - f_4)$ where $f_i \ge 0$. Let $M_i = \sup\{f_i(x) : x \in X\}$ and we see that each $i = (M_i + 1)\frac{1}{M_i + 1}f_i$, where $0 \le \frac{1}{M_i + 1}f_i \le 1$. Hence it suffices to establish this for $0 \le f \le 1$. Now let $K_0 = \operatorname{supp} f$, for

j = 1, ..., n, let $K_j = f^{-1}\left(\left[\frac{j}{n}, 1\right]\right)$ so each $K_0, ..., K_n$ is compact and $K_0 \supseteq K_1 \supseteq \cdots \supseteq K_n$. Then let $f_j = \min\left\{\max\left\{f - \frac{j-1}{n}1, 0\right\}, \frac{1}{n}\right\}$.

Then $f = \sum_{j=1}^{n} f_j$ and $1_{K_j} \le nf_j \le 1_{K_{j-1}}$, j = 1, ..., n. Hence, taking integrals, we see $\mu(K_j) \le n \int_X f_j \, d\mu \le \mu(K_{j-1})$, so that

$$\frac{1}{n} \sum_{j=1}^{n} \mu(K_j) \le \int_X f \, \mathrm{d}\mu \le \frac{1}{n} \sum_{j=1}^{n} \mu(K_{j-1}) \tag{*}$$

On the other hand, we have $K_j < nf_j < K_{j-1}^{\circ}$, so using (II), $\mu(K_j) \le nI(f_j) \le \mu(K_{j-1}^{\circ}) \le \mu(K_{j-1})$. Thus

$$\frac{1}{n} \sum_{j=1}^{n} \mu(K_j) \le I(f) \le \frac{1}{n} \mu(K_{j-1}) \tag{\dagger}$$

Hence, by (*) and (†), we obtain

$$|I(f) - \int_X f \, \mathrm{d}\mu| \le \frac{1}{n} (\mu(K_0) - \mu(K_1)) \le \frac{1}{n} \mu(K_0)$$

and this holds for any $n \in \mathbb{N}$, so $I(f) = \int_X f \, d\mu$.

(V) Inner regularity on open sets. Let $U \subseteq X$ be open. Find $(f_n)_{n=1}^{\infty} \subseteq C_c(X)$, each $f_n < U$ so $\lim_{n \to \infty} I(f_n) = \mu^0(U) = \mu(U)$. Let $K_n = \operatorname{supp} f_n \subseteq U$. Then, by (IV),

$$I(f_n) = \int f_n \, \mathrm{d}\mu \le \int 1_{K_n} \, \mathrm{d}\mu = \mu(K_n) \le \mu(U)$$

and hence, by squeeze, $\lim_{n\to\infty} \mu(K_n) = \mu(U)$, i.e. $\mu(U) \le \sup{\{\mu(K) : K \subseteq U, K \text{ compact}\}}$ where " \ge " is obvious.

(VI) Uniqueness. Let μ' be a Radon measure for which $\int f d\mu' = I(f)$ for $f \in C_c(X)$. Then, if U is open and K < f < U, then

$$\mu'(K) = \int_{1_V} d\mu' \le \int f d\mu' = I(f) = \int f d\mu \le 1_U d\mu = \mu(U)$$

so

$$\sup\{\mu'(K)LK \subseteq U, K \text{ compact}\} \le \sup\{I(f): f < U\} \le \mu'(U)$$

but, by inner regularity of μ' on open sets and definition of $\mu(U) = \mu^0(U)$, we see $\mu'(U) \le \mu(U) \le \mu'(U)$. Thus $\mu' = \mu$ on open sets. Since each is outer regular, hence $\mu' = \mu$ on $\mathcal{B}(X)$.

10.2 Proposition. Let (X,d) be a locally compact measure space and $\mu: \mathcal{B}(x) \to [0,\infty]$ a Radon measure. Then for $1 \le p < \infty$, we have that $C_c(X)/\sim_u$ is dense in $L^p(\mu)$.

PROOF Note that $C_c(X)/\sim_{\mu} \subseteq L^p(\mu)$ as μ is locally finite. If $E \in \mathcal{B}(X)$, $\mu(E) < \infty$, then by inner and outer regularity we can find for any $\epsilon > 0$ and $\mu(E) < \mu(K) + \epsilon/2$, and $\mu(U) < \mu(E) + \epsilon/2$. Thus $\mu(U \setminus K) = \mu(U \setminus E) + \mu(E \setminus K) < \infty$. Then for any K < f < U, we have

$$||f - 1_E||_{\mu}^p = \int |f - 1_E|^p d\mu \le |1_U - 1_K|^p d\mu = \int 1_{U \setminus K} d\mu < \epsilon$$

Thus simple elements of $L^p(\mu)$ are approximated from $C_c(X)/\sim_{\mu}$, and hence arbitrary elements.

10.3 Theorem. Let (X,d) be a σ -compact locally compact metric space. Then every locally finite measure $v: \mathcal{B}(x) \to [0,\infty]$ (i.e. $v(K) < \infty$, K compact) is a Radon measure. In particular, v is outer regular and inner regular.

PROOF Since ν is locally finite, each $f \in C_c(X)$ is Borel measurable and $\| \le 1_{\text{supp} f}$, so $f \in L(\mu)$. Since ν is non-negative, $I(f) = \int_X f \, d\nu$ defines a positive linear function on $C_c(X)$. Hence, the Riesz Representation Theorem provides us with a Radon measure μ such that $\int_X f \, d\nu = \int_X f \, d\mu$. Let's show that $\nu = \mu$.

- (I) Let $U \subseteq X$ be open. Since X is σ -compact, write $X = \bigcup_{n=1}^{\infty} L_n$, each $L_n \subseteq X$ compact and $L_1 \subseteq L_2 \subseteq \cdots$. For each n, let $F_n = \{x \in U : d(x, X \setminus U) \ge 1/n\}$ and let $K_n = L_n \cap F_n \subseteq U$. Since $F_1 \subseteq F_2 \subseteq \cdots$, $K_1 \subseteq K_2 \subseteq \cdots$. Furthermore, if $x \in U$, there is n_1 so that $d(x, X \setminus U) \ge \frac{1}{n}$, and n_2 such that $x \in L_{n_2}$. Thus for $n \ge \max\{n_1, n_2\}$, we have $x \in K_n \cap L_n$. Thus $U = \bigcup_{n=1}^{\infty} K_n$. Let's choose $(f_n)_{n=1}^{\infty} \subset C_c(X)$ inductively:
 - $K_1 < f_1 < U$
 - $K_2 \cup \operatorname{supp} f_1 \prec f_2 \prec U$
 - $K_{n+1} \cup \operatorname{supp} f_n < f_{n+1} < U$

Thus $f_1 \le f_2 \le \cdots$ and $\lim_{n\to\infty} f_n = 1_U$. Thus by MCT, we have

$$\nu(U) = \int 1_U d\nu = \lim_{n \to \infty} f_n d\nu = \lim_{n \to \infty} \int f_n d\mu = \int 1_U d\mu = \mu(U)$$

(II) Now let $E \in \mathcal{B}(X)$, $\mu(E) < \infty$. Given $\epsilon > 0$, find $K \subseteq E \subseteq V$, K compact, V open, so that $\mu(E) < \mu(K) + \epsilon/2$ and $\mu(V) < \mu(E) + \epsilon/2$. Hence by (I),

$$\nu(V) - \nu(K) = \nu(V \setminus K) = \mu(V \setminus K) < \epsilon$$

Thus

$$\nu(E) \le \mu(V) < \nu(K) + \epsilon \le \nu(E) + \epsilon$$

Thus $\nu(E) = \inf{\{\nu(V) : E \subseteq V, V \text{ open}\}} = \inf{\{\mu(V) : E \subseteq V, V \text{ open}\}} = \mu(E)$. Finally, by (II) and continuity from below, we have

$$\mu(E) = \lim_{n \to \infty} \mu(E_n) = \lim_{n \to \infty} \nu(E_n) = \nu(E)$$

10.4 Corollary. If (X,d) is a σ -compact locally compact metric space, and $\mu: \mathcal{B}(X) \to \mathbb{C}$, then μ is a linear combination of up to 4 finite Radon measures.

PROOF We consider, for example, the Jordan decomposition, $\mu = \mu_1 - \mu_2 + i[\mu_3 - \mu_4]$. Each μ_k is a finite measure, and hence Radon.

10.5 Corollary. The d-dimensional Lebesgue measure $\lambda_d : \mathcal{B}(\mathbb{R}^d) \to [0, \infty]$ is inner and outer regular.

PROOF We note that $\mathbb{R}^d = \bigcup_{n=1}^{\infty} \overline{B_n(0)}$ is σ -compact. If $K \subseteq \mathbb{R}^d = \bigcup_{n=1}^{\infty} (-n,n)^d$ is compact, then $K \subseteq (-n_0,n_0)^d$ for some n_0 . Hence $\lambda_d(K) \le \lambda_d((-n_0,n_0)^d) = (2n_0)^d < \infty$. Thus λ_d is a locally finite measure on a σ -compact space, hence Radon.

Remark. If $\emptyset \neq U \subseteq \mathbb{R}^d$ is open, then $\lambda_d(U) > 0$. Indeed, if $x \in U$, find $\epsilon > 0$ such that $\prod_{j=1}^d (x_j - \epsilon, x_j + \epsilon) = B(x, d_\infty) \subseteq U$, and we have $\lambda_d(U) \ge (2\epsilon)^d > 0$.

TODO: dual of L1 is Linfty (for finite measures)

11 Differentiation in \mathbb{R}^d

If $f:(a,b)\to\mathbb{C}$ is continuous and bounded (with $\lim_{t\to\infty}f(t)=f(a)$), then for $x\in(a,b)$,

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}t} \left[\int_a^t f(s) \, \mathrm{d}s \right] = \lim_{r \to 0^+} \frac{1}{2r} \int_{x-r}^{x+r} f(s) \, \mathrm{d}s$$

We shall generalize this so integrable f and d > 1.

If $x \in \mathbb{R}^d$, r > 0, we let $B_r(x) = \{y \in \mathbb{R}^d : ||x - y||_2 < r\}$. In fact, we could replace $||\cdot||_2$ with any norm on \mathbb{R}^d and the results will remain true as stated.

11.1 Lemma. (Covering) Let C be a collection fo Euclidean balls in \mathbb{R}^d , $U = \bigcup_{B \in C} B$. Then for any $0 < c < \lambda_d(U)$, there exist B_1, \ldots, B_n in C such that $B_i \cap B_j = \emptyset$ for $I \neq j$ and $3^d \sum_{i=1}^n \lambda_d(B_i)$.

PROOF Since $U \neq \emptyset$, there is c a above. By inner regularity, there is $K \subseteq U$ compact such that $\lambda_d(K) > c$. Since $K \subseteq U = \bigcup_{B \in \mathcal{C}} B$, there is B'_1, \ldots, B'_m in \mathcal{C} such that $K \subseteq \bigcup_{j=1}^m B'_j$. Write each $B'_j = B_{r'_j}(x'_j)$, we may relabel $r'_1 \geq \cdots \geq r'_m$. Then

- $B_1 = B_2'$
- $B_2 = B_{j_2}^{'}$ where $j_2 = \min\{j \in [m] : B_j' \cap B_1 = \emptyset\}.$
- $B_n = B'_{j_n}$ where $j_n = \min\{j \in \{j_{n+1} + 1, ..., m\} : B'_j \cap \bigcup_{j=1}^{n-1} B_i\}$

where n is determined by where this process stops. If $B'_j \notin \{B_1, \ldots, B_n\}$, then $B'_j \cap B_i = B'_{j_i}$ for some $j_i < j$, ro $r_i := r'_{j_i} \ge r'_j$. If we write $B_i = B_{r_i}(x_i)$, then $B'_j \subseteq B_{3r_i(x_i)}$. Notice that

$$\lambda_d(B_{3r_i}(x_i) = \lambda_d(3I(B_{r_i}(0)) + x_i) = 3^d \lambda_d(B_{r_i}(x_i))$$

Thus

$$c < \lambda_d(K) \le \lambda_d \left(\bigcup_{j=1}^n B_j' \right) \le \lambda_d \left(\bigcup_{j=1}^n B_{3r_i}(x_i) \right)$$

$$\le \sum_{i=1}^n \lambda_d(B_{3r_i}(x_i)) = 3^d \sum_{i=1}^n \lambda_d(B_i)$$

Definition. If $f \in L(\lambda_d)$, we let $A_r f(x) = \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x)} f(y) \, dy$ denote the "average value", for r > 0, $x \in \mathbb{R}^d$. We let the **Hardy-Littlewood maximal functions**

$$Hf(x) = \sup_{r>0} A_r |f|(x)$$

Remark. (i) $(r,x) \mapsto A_r f(x) : (0,\infty) \times \mathbb{R}^d \to \mathbb{R}$ is continuous. First, as above, $\lambda_d(B_r(x)) = \lambda_d(rI(B_1(0))) = r^d \lambda_d(B_r(0))$. Second, if $((r_n,x_n))_{n=1}^{\infty}$ with $\lim_{n\to\infty} (r_n,x_n) = (r,x)$, then $1_{B_{r_n}(x_n)}|f| \le |f|$ and $|\lim_{n\to\infty} 1_{B_{r_n}}(x_n)f = f|$ pointwise. Hece by LDC,

$$A_{r_n}f(x) = \frac{1}{r_n^d \lambda_d(B_1(0))} \int 1_{B_{r_n}(x_n)} f \xrightarrow{n \to \infty} \frac{\int 1_{B_r(x)} f}{r^d \lambda_d(B_1(0))} = A_r f(x)$$

(ii) $Hf(x) = \sup_{r>0} A_r |f|(x) = \sup_{r \in (0,\infty) \cap \mathbb{Q}} A_r |f|(x)$ so Hf is the supremum of a countable family of continuous functions and hence Borel measurable.

(iii) We may define $A_r f$ and hence H f for f in

$$L_{loc}(\lambda_d) = \{ f \in M(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) : 1_K f \in L(\lambda_d) \text{ for any compact } K \subset \mathbb{R}^d \}$$

11.2 Theorem. (Hardy Littlewood Maximal) If $f \in L(\lambda_d)$ and $\alpha > 0$, then

$$\lambda_d \left(Hf^{-1}((\alpha, \infty)] \right) \le \frac{3^d}{\alpha} \int_{\mathbb{R}^d} |f| d\lambda$$

PROOF Let $E_{\alpha} = Hf^{-1}((\alpha, \infty])$. Then for each $x \in E_{\alpha}$, $Hf(x) > \alpha$ so there is $r_x > 0$ such that $A_{r_x}|f|(x) > \alpha$. Now, $E_{\alpha} \subseteq \bigcup_{x \in E_{\alpha}} B_{r_x}(x) = U$, so if $0 < \lambda_d(E_{\alpha})$ and $0 < c < \lambda_d(E_{\alpha}) \le \lambda_d(U)$, the last lemma provides $x_1, \ldots, x_n \in E_{\alpha}$ with $B_i = B_{r_{x_i}}(x_i)$ for $i = 1, \ldots, n$ such that $B_i \cap B_j = \emptyset$ and $c < 3^d \sum_{i=1}^n \lambda_d(B_i)$. Then for each i,

$$\frac{1}{\lambda_d(B_i)} \int_{B_i} |f| = A_{r_{x_i}}(x_i) > \alpha \quad \Rightarrow \quad \frac{1}{\alpha} \int_{B_i} |f| > \lambda_d(B_i)$$

and hence

$$c < 3^d \sum_{i=1}^n \lambda_d(B_i) < \frac{3^d}{\alpha} \sum_{i=1}^n \int_{B_i} |f| = \frac{3^d}{\alpha} \int_{\bigcup_{i=1}^n B_i} |f| \le \frac{3^d}{\alpha} \int |f|$$

11.3 Corollary. If $f \in \overline{M}^+(X, \mathcal{M})$ and $\mu : \mathcal{M} \to [0, \infty]$ is a measure, and $\alpha > 0$, then

$$\int_{f^{-1}((\alpha,\infty])} f \, \mathrm{d}\mu \ge \int_{f^{-1}((\alpha,\infty])\alpha 1\{\mu} = \alpha \mu(f^{-1}((\alpha,\infty]))$$

so that

$$\frac{1}{\alpha} \int_{f^{-1}} ((\alpha, \infty]) f \, \mathrm{d}\mu \ge \mu(f^{-1}((\alpha, \infty]))$$

11.4 Theorem. (First Differentiation) If $f \in L_{loc}(\lambda_d)$, then $\lim_{r\to 0^+} A_r f(x) = f(x)$ for λ_d -a.e. in \mathbb{R}^d .

PROOF Since $\mathbb{R}^d = \bigcup_{N=1}^{\infty} B_N(0)$, it suffices to prove this result for $1_{B_N(x)}f$. Hence we may assume $f \in L(\lambda)$. Given $\epsilon > 0$, since λ_d is a Radon measure, there is $h \in C_c(\mathbb{R}^d)$ such that $\lceil |h - f| < \epsilon$. Notice that

$$\begin{aligned} |A_r h(x) - h(x)| &= \left| \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x))} (h(y) - h(x)) \, \mathrm{d}\lambda \right| \\ &= \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x)} |h(y) - h(x)| \, \mathrm{d}y \\ &\leq \sup_{y \in B_r(x)} |h(y) - h(x)| \to 0 \end{aligned}$$

as $r \to 0^+$. Thus

$$\begin{split} \lim \sup_{r \to 0^+} |A_r f(x) - f(x)| &\leq \lim \sup_{r \to 0^+} \left[|A_r f(x) - A_r h(x)| + |A_r h(x)| + |A_r h(x) - h(x)| + |h(x) - f(x)| \right] \\ &\leq \lim_{r \to 0} \sup_{r' \in (0,r)} \left[|A_r | f - h|(x) + |h(x) - f(x)| \right] \\ &\leq H(f - h)(x) + |f(x) - h(x)| \end{split}$$

Given $\delta > 0$, let $E_{\delta} = \{x \in \mathbb{R}^d : \limsup_{r \to 0^+} |A_r f(x) - f(x)| > \delta\}$. Then

$$E_{\delta} \subseteq \left\{ x \in \mathbb{R}^d : H(f - x)(x) > \frac{\delta}{2} \right\} \cup \left\{ x \in \mathbb{R}^d : |f(x) - f(x)| > \frac{\delta}{2} \right\}$$

so by the Hardy-Littlewood maximal theorem and Chebeshev's inequality,

$$\begin{split} \lambda_d(E_\delta) &\leq \lambda_d(H(f-h)^{-1}((\delta/2,\infty])) + \lambda_d(|h-f|^{-1}((\delta/2,\infty])) \\ &\leq \frac{2\cdot 3^d}{\delta} \int |f-h| + \frac{2}{\delta} \int_{|f-h|^{-1}((\lambda/2,\infty])} |f-h| \\ &< \frac{2\cdot 3^d + 2}{\delta} \epsilon \end{split}$$

Then, since $\epsilon > 0$ is arbitrary, $\lambda_d(E_\delta) = 0$. Then for $x \in \mathbb{R}^d \setminus \bigcup_{n=1}^\infty E_{1/n}$, we have $\lim_{r \to 0^+} |A_r f(x) - f(x)| = 0$.

11.5 Corollary. For $f \in L_{loc}(\lambda_d)$, we define its **Lebesgue set** to be

$$L_f = \left\{ x \in \mathbb{R}^d : \lim_{r \to 0^+} \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| \, \mathrm{d}y = 0 \right\}$$

Then $\lambda_d^*(\mathbb{R}^D \setminus L_f) = 0$, where λ_d^* is the outer measure associated to λ_d .

PROOF Let $\overline{\{c_n\}_{n=1}}^{\infty} = \mathbb{C}$. Let

$$E_n = \left\{ x \in \mathbb{R}^d : \limsup_{r \to 0^+} |A_r| f - c_n 1 |f(x) - |f(x) - c_n|| > 0 \right\}$$

so E_n is a λ_d -null set, and $E = \bigcup_{n=1}^{\infty} E_n$ is also null. If $x \in \mathbb{R}^d \setminus E$ and $\epsilon > 0$, then $|f(x) - c_n| < \epsilon$ for some n. Thus for any $y \in \mathbb{R}^d$,

$$|f(y) - f(x)| \le |f(y) - c_n| + |c_n - f(x)| < |f(y) - c_n| + \epsilon$$

Thus, as $x \notin E_n$,

$$\begin{split} \frac{1}{\lambda_r(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| \, \mathrm{d}y &\leq \frac{1}{\lambda_d(B_r(\lambda))} \int_{B_r(x)} (|f(y) - c_n| + \epsilon) \, \mathrm{d}y) \\ &= \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x)} |f(y) - c_n 1(y)| \, \mathrm{d}y + \epsilon \\ &\xrightarrow{r \to 0^+} |f(x) - c_n| + \epsilon < 2\epsilon \end{split}$$

Thus as $\epsilon > 0$ is arbitrary, the limit

$$\lim_{r \to 0^+} \frac{1}{\lambda_d(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| \, \mathrm{d}y = 0$$

for $x \in E$. We have $\mathbb{R}^d \setminus E \subseteq L_f$, so $\mathbb{R}^d \setminus L_f \subseteq E$.

11.6 Theorem. Let $\mu: \mathcal{B}(\mathbb{R}^d) \to [0,\infty]$ be a locally finite measure such that $\mu \perp \lambda_d$. Then

$$\lim_{r \to 0^+} \frac{\mu(B_r(x))}{\lambda_d(B_r(x))} = 0$$

for λ_d -a.e. x.

Proof Let (E,F) be a Borel partition of \mathbb{R}^d such that $\mu(F)=0=\lambda_d(E)$. For $\delta>0$, let

$$F_{\delta} = \left\{ x \in F : \limsup_{r \to 0^{+}} \frac{\mu(B_{r}(x))}{\lambda_{d}(B_{r}(x))} > \delta \right\}$$

Since μ is a Radon measure, given $\epsilon > 0$, there is open $U \supseteq F$ such that $\mu(E)\epsilon$. If $x \in F_{\delta} \subseteq F \subseteq U$, there is $r_x > 0$ be so that

$$B_x := B_{r_x(x)} \subseteq U$$
 and $\frac{\mu(B_x)}{\lambda_d(B_x)} \ge \delta$

Then $F_{\delta} \subseteq \bigcup_{x \in F_{\delta}} B_x := V \subseteq U$ and given $0 < f < \lambda_d(V)$, we may find $B_{x_1}, \dots, B_{x_n}, x_1, \dots, x_n \in F_{\delta}$ such that

$$B_{x_i} \cap B_{x_j} = \emptyset$$
 and $c < 3^d \sum_{i=1}^n \lambda_d(B_{x_i})$

Thus,

$$c < e^d \sum_{i=1}^n \lambda_d(B_{x_i}) \le \frac{3^d}{\delta} \sum_{i=1}^n \mu(B_{x_i}) = \frac{3^d}{\delta} \sum_{i=1}^n \mu\left(\bigcup_{i=1}^n B_{x_i}\right)$$

$$\le \frac{3^d}{\delta} \mu(V) \le \frac{3^d}{\delta} \mu(U) < \frac{3^d}{\delta} \epsilon$$

But then we have

$$\lambda_d^*(F_\delta) \le \lambda_d(V) = \lim_{c \to \lambda_d(V)^-} c \le \frac{3^d}{\delta} \epsilon$$

since $\epsilon > 0$ is arbitrary, we see that $\lambda_d^*(F_\delta) = 0$. Hence, if $x \in \mathbb{R}^d \setminus \bigcup_{k=1}^\infty F_{1/k}$, then

$$\lim_{r \to 0^+} \frac{\mu(B_r(x))}{\lambda_d(B_r(x))} = 0$$

Definition. A collection of sets $\{E_r(x): x \in \mathbb{R}^d, r > 0\} \subseteq \mathcal{B}(\mathbb{R}^d)$ is called **nicely shrinking** if for each $x \in \mathbb{R}^d$, r > 0,

- $E_r(x) \subseteq B_r(x)$
- $\lambda_d(E_r(x)) > \alpha \lambda_d(B_r(x))$, where α is a fixed constant.

11.7 Corollary. Let $v : \mathcal{B}(\mathbb{R}^d) \to \mathbb{C}$ be a complex measure with Lebesgue-Radon-Nikodym decomposition

$$\nu = \rho + f \cdot \lambda_d, \rho \perp \lambda_d, f \in L(\lambda_d)$$

Then for any nicely shrinking family $\{E_r(x): x \in \mathbb{R}^d, r > 0\}$, we have

$$\lim_{r \to 0^+} \frac{\nu(E_r(x))}{\lambda_d(E_r(x))} = f(x)$$

for λ_d -a.e. x in \mathbb{R}^d .

PROOF Write $\rho = \text{Re } \rho^+ - \text{Re } \rho^- + i [\text{Im } \rho^+ - \text{Im } \rho^-]$, $\text{Re } \rho^+, \dots, \text{Im } \rho^- \le |\rho| \le \text{Re } \rho^+ + \dots + \text{Im } \rho^-$. Thus each $\text{Re } \rho^+, \dots, \text{Im } \rho^- \perp \lambda_d$. By Differentiation Theorem II, we see that

$$\lim_{r \to 0^+} \frac{\mu(E_r(x))}{\lambda_d(E_r(x))} \le \lim_{r \to 0^+} \frac{\mu(B_r(x))}{\alpha \lambda_d(B_r(x))} = 0$$

 λ_d –a.e. Hence we conclude the same for ρ . On the other hand,

$$\left|\frac{1}{\lambda_d(E_r(x))}\int_{E_r(x)}f(x)\,\mathrm{d}y-f(x)\right|\leq \frac{1}{\lambda_d(E_r(x))}\int_{E_r(x)}|f(y)-f(x)|\,\mathrm{d}y\leq \frac{1}{\alpha\lambda_d(B_r(x))}\int_{B_r(x)}|f(y)-f(x)|\,\mathrm{d}y\xrightarrow{r\to 0^+}0$$
 provided that $x\in L_f$.

11.8 Proposition. If $F \in ND_r(\mathbb{R})$, then F'(x) exists for λ -a.e. x in \mathbb{R} .

Proof If $h \neq 0$, then

$$\frac{F(x+h) - F(x)}{h} = \begin{cases} \frac{\mu_F((x,x+h])}{\lambda_d((x,x+h))} & : h > 0\\ \frac{\mu_F((x+h,x))}{\lambda_d((x+h,x))} & : h < 0 \end{cases}$$

Since each family $\{(x, x + h] : x \in \mathbb{R}, h > 0\}$ and $\{(x - h, x] : x \in \mathbb{R}, h > 0\}$ is nicely shrinking, we see that

$$\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h}, \lim_{h \to 0^-} \frac{F(x+h) - F(x)}{h}$$

converge for λ -a.e. x, s right and left limits both exist for such x. However, each is λ -a.e. equal to $\frac{\mathrm{d}\mu_F}{\mathrm{d}\lambda}$, thanks to the last corollary. Hence F' exists $\lambda-\mathrm{a.e.}$

Example. Consider the Cantor ternary function $\phi \in ND_r(\mathbb{R})$. It is easy to see that $\phi'(x) = 0$ whenever $x \in \mathbb{R} \setminus C$.

Definition. Let $F: \mathbb{R} \to \mathbb{C}$. If a < b in \mathbb{R} , we define the **variation** of F on [a, b] by

$$V_F[a,b] = \sup \left\{ \sum_{i=1}^n |F(a_i) - F(a_{i-1})| : a = a_0 < a_1 < \dots < a_n = b, n \in \mathbb{N} \right\}$$

Example. Consider $F(x) = x \sin(1/x)$ for x > 0, and 0 when x = 0. Then $V_F[0, \epsilon] = \infty$ for $\epsilon > 0$.

11.9 Proposition. (i) If a < b < c, then $V_F[a, c] = V_F[a, b] + V_F[b, c]$. (ii) If $a' \le a \le b \le b'$, then $V_F[a, b] \le V_F[a', b']$

Definition. Define $V_F(a,b] = \lim_{x \to a} V_F[x,b]$ and $V_F(-\infty,b] = \lim_{x \to -\infty} V_F[x,b]$.

- **11.10 Proposition.** (i) If F is right continuous at a and $V_F[a,b] < \infty$, then $V_F(a,b] =$ $V_F[a,b]$.
 - (ii) If $V_F(-\infty, b] < \infty$, then $\lim_{x \to -\infty} (-\infty, x] = 0$.

(i) Certainly $V_F(a,b] \le V_F[a,b]$. To see the converse inequality, given $\epsilon > 0$, let $\delta > 0$ be such that $a < x < a + \delta$ so $|F(x) - F(a)| < \epsilon$. Now we let $a < a_0 < \cdots < a_n = b$ be so

- $\sum_{i=1}^{n} |F(a_i) F(a_{i-1})| > V_F[a, b] \epsilon$ $a < a+1 < a+\delta$

Then

$$V_f[a, b] < |F(a_1) - F(a_0)| + \sum_{i=2}^n |F(a_i) - F(a_{i-1})| + \epsilon$$

 $< \epsilon + V_F[a_1, b] + \epsilon \le V_F(a, b] + 2\epsilon$

Since $\epsilon > 0$ is arbitrary, $V_F[a, b] \leq V_F(a, b]$.

(ii) For fixed x < b, then by (A)

$$\begin{aligned} V_F(-\infty, b] &= \lim_{y \to -\infty} V_F[y, b] \\ &= \lim_{y \to -\infty, y < x} (V_F[y, x] + V_F[x, b]) \\ &= V_F(-\infty, x] + V_F[x, b] \end{aligned}$$

Then take $x \to -\infty$.

Definition. If $V_F(-\infty, x] < \infty$ for each $x \in \mathbb{R}$, we define the **total variation** function of F by $T_F(x) = V_F(-\infty, x] \in [0, \infty)$. If $\sup_{x \in \mathbb{R}} T_F(x) < \infty$, we say that F is of **bounded variation**. Write $F \in BV(\mathbb{R})$. We further let

$$BV_r(\mathbb{R}) = \{ F \in BV(\mathbb{R}) : F \text{ is right continuous} \}$$

Remark. (i) It follows (ii) that $T_F(-\infty) = \lim_{x \to -\infty} T_F(x) = 0$.

(ii) If $F \in BV_r(\mathbb{R})$, then T_F is right continuous. Let a < x < b, and we use (*), (A), and part (i) of the last proposition to see that

$$T_F(x) - T_F(a) = V_F[a, x] = V_F[a, b] - V_F[x, b]$$

= $V_F(a, b] - V_F[x, b] \rightarrow 0$

so $\lim_{x\to a^+} T_F(x) = T_F(a)$.

- **11.11 Proposition.** (i) $F \in BV(\mathbb{R})$ if and only if Re F, $Im F \in BV(\mathbb{R})$
- (ii) If $G \in BV^{\mathbb{R}}(\mathbb{R})$, then each of $T_F \pm F$ is non-decreasing.
- (iii) If $F \in BV(\mathbb{R})$, we let

$$F_1 = \frac{1}{2} (T_{\text{Re}\,F} + \text{Re}\,F),$$
 $F_2 = \frac{1}{2} (T_{\text{Re}\,F} - \text{Re}\,F)$
 $F_3 = \frac{1}{2} (T_{\text{Im}\,F} + \text{Im}\,F),$ $F_4 = \frac{1}{2} (T_{\text{Im}\,F} - \text{Im}\,F)$

Then $F = F_1 - F_2 + i[F_3 - F_4]$. Thus, F is bounded and $F(\pm \infty) = \lim_{x \to \pm \infty} F(x)$ exists.

PROOF (i) If x < y in \mathbb{R} , then by using definitions of V_H , H = F, $\operatorname{Re} F$, $\operatorname{Im} F$, we see

$$V_{\text{Re}\,F}[x,y], V_{\text{Im}\,F}[x,y] \le V_{F}[x,y] \le V_{\text{Re}\,F}[x,y] + V_{\text{Im}\,F}[x,y]$$

Taking $x \to -\infty$, we see that

$$T_{\text{Re}\,F}(x), T_{\text{Im}\,F}(y \le T_F(y) \le T_{\text{Re}\,F}(y) + T_{\text{Im}\,F}(y)$$

and then taking $y \to \infty$ does the job.

(ii) If $x < y \in \mathbb{R}$, then

$$(T_G \pm G)(y) - (T_G \pm G)(x) = T_G(y) - T_G(x) \pm [G(y) - G(x)]$$

= $V_G[x, y] + [G(y) - G(x)] \ge |G(y) - F(x)| \pm [G(y) - F(x)] \ge 0$

Furthermore, $T_G(\pm \infty)$ always exists...

(iii) Obvious

Remark. If *F* above is right continuous, so too are Re *F*, Im *F*, and ence F_1 , F_2 , F_3 , F_4 . If $F: \mathbb{R} \to \mathbb{R}$ is bounded, then $F \in BV^{\mathbb{R}}(\mathbb{R})$.

11.12 Theorem. (Complex Borel Measures on \mathbb{R}) Let $F \in BV_r(\mathbb{R})$.

(i) There is a complex measure $\mu_F : \mathcal{B}(\mathbb{R}) \to \mathbb{C}$ such that

$$\mu_F((a,b]) = F(b) - F(a) \text{ for } a < b \text{ in } \mathbb{R}$$
 (†)

- (ii) If $G \in \mathrm{BV}_r^{\mathbb{R}}(\mathbb{R})$ (real-valued), then |
- (iii) PROOF (i) Let $F = F_1 F_2 + i[F_3 F_4]$. Then each $F_K \in ND_r(\mathbb{R})$ and corresponds to a measure μ_{F_k} satisfying the analogue of (†). Let $\mu_K = \mu_{F_1} \mu_{F_2} + i[\mu_{F_3} \mu_{F_4}]$.
 - (ii) Let a < b in \mathbb{R} . we recall that

•
$$|\mu_G|((a,b]) = \sup \left\{ \sum_{i=1}^n |\mu_G(E_i)| : \{E_1,\ldots,E_n\} \text{ is a Borel partition of } (a,b], n \in \mathbb{N} \right\}$$

• $\mu_{T_G}((a,b]) = T_G(b) - T_G(a) = V_G[a,b] = \sup \left\{ \sum_{i=1}^n |G(a_i) - G(a_{i-1})| : (a,b] = \bigcup_{i=1}^n (a_{i-1},a_i], n \in \mathbb{N} \right\}$ Hence, it is immediate that $\mu_{T_G}((a,b]) \le |\mu_G((a,b])|$.

Now, $|\mu_G((a,b])| = |G(b) - G(a)| \le V_G[a,b] = T_G(b) - T_G(a) = \mu_{T_G}((a,b])$. We let $\mathcal{H} = \{(c,d] : a \le c < d \le b\}$ and for any $A \in \langle \mathcal{H} \rangle \subseteq \mathcal{P}((a,b])$, we have $A = \bigcup_{i=1}^n (c_i,d_i]$ and hence we have

$$\begin{aligned} |\mu_G(A)| &= \left| \sum_{i=1}^n \mu_G((c_i, d_i]) \right| \le \sum_{i=1}^n |\mu_G((c_i, d_i])| \\ &\le \sum_{i=1}^n \mu_{T_G}((c_i, d_i]) = \mu_{T_G}(A) \end{aligned}$$

We let $C = \{E \in \mathcal{B}((a, b]) : |\mu_G(E)| \le \mu_{T_G}(E)\}$. Then

• $\langle \mathcal{H} \rangle \subseteq \mathcal{C}$

We have

• If $E_1 \supseteq E_2 \supseteq \cdots$ in C, then by continuity from above,

$$\left|\mu_{G}\left(\bigcap_{n=1}^{\infty}E_{n}\right)\right| = \lim_{n \to \infty}\left|\mu_{G}(E_{n})\right| \le \lim_{n \to \infty}\mu_{T_{G}}$$

• If $E_1 \subseteq E_2 \subseteq \cdots$ in C, then by continuity from below,

$$\left| \mu_G \left(\bigcup_{n=1}^{\infty} E_n \right) \right| \le \mu_{T_G} \left(\bigcup_{n=1}^{\infty} E_n \right)$$

Thus by the Monotone Class Lemma, $C \supseteq \sigma(\mathcal{H}) = \mathcal{B}((a,b])$, so $\mathcal{C} = \mathcal{B}((a,b])$. Thus, for any Borel partition $\{E_1, \dots, E_n\}$ of (a,b], we have

$$\sum_{i=1}^{n} \left| \mu_{G}(E_{i}) \right| \leq \sum_{i=1}^{n} \mu_{T_{G}}(E_{i}) = \mu_{T_{G}} \left(\bigcup_{i=1}^{n} E_{i} \right) = \mu_{T_{G}}((a, b])$$

Thus, $|\mu_G|((a,b]) \le \mu_{T_G}((a,b])$. In conclusion, $|\mu_G|((a,b]) = \mu_{T_G}((a,b])$ and hence, by characterization of (locally) finite Borel measures on \mathbb{R} , $|\mu_G| = \mu_{T_G}$.

$$\mu_G^{\pm} = \frac{1}{2}(|\mu_G| \pm \mu_G) = \frac{1}{2}(\mu_{T_G} \pm \mu_G) = \mu_{\frac{1}{2}(T_G \pm G)}$$

(iii) If ν satisfies (††), then we see for a < b in \mathbb{R} that

$$\operatorname{Re} vv((a,b]) = \operatorname{Re} F(b) - \operatorname{Re} F(a) = \mu_{\operatorname{Re} F}((a,b])$$

By (i), Re ν , $\mu_{\text{Re }F}$ admit the same Jordan decompsition at least on intervals of the form (a,b]. Hence, by uniqueness for measures, Re $\nu = \mu_{\text{Re }F}$. Likewise, Im $\nu = \mu_{\text{Im }F}$.

Definition. If $F: \mathbb{R} \to \mathbb{C}$ is **absolutely continuous**, write $F \in (\mathbb{R})$, provided: given $\epsilon > 0$, there is $\delta > 0$ such that $a_1 \le b_1 \le a_2 \le b_2 \le \cdots \le a_n \le b_n$ such that $\sum_{i=1}^n |b_i - a_i| < \delta$, we have $\sum_{i=1}^n |F(b_i) - F(a_i)| < \epsilon$.

Note that Lipschitz⇒Absolutely continuous⇒uniformly continuous⇒ continuous.

11.13 Proposition. If $F \in BV(\mathbb{R}) \cap (\mathbb{R})$, then $T_F \in (\mathbb{R})$.

PROOF Given $\epsilon > 0$, find $\delta > 0$ as in absolute continuity, with $a_i < b_i$. Then as $F \in BV(\mathbb{R})$, for each i = 1, ..., n, we find $a_i = t_{i,0} < \cdots < t_{i,m_i} = b_i$ be so

$$\sum_{j=1}^{m_i} |F(t_{i,j}) - F(t_{i,j-1})| > V_F[a_i, b_i] - \epsilon/2^i$$

Then

$$\sum_{i=1}^{n} |T_F(b_i) - T_F(a_i)| = \sum_{i=1}^{n} V_F[a_i, b_i] < \sum_{i=1}^{n} \left(\sum_{j=1}^{m_i} |F(t_{i,j}) - F(t_{i,j-1})| + \frac{\epsilon}{2^i} \right) < 2\epsilon$$

since
$$\sum_{i=1}^{n} \sum_{j=1}^{m_i} (t_{i,j} - t_{i,j-1}) = \sum_{i=1}^{n} (b_i - a_i) < \delta$$
.

11.14 Theorem. (Fundamental Theorem of Calculus) (i) If $F \in BV(\mathbb{R}) \cap (\mathbb{R}) \subseteq BV_r(\mathbb{R})$, then $\mu_F \ll \lambda$.

(ii) If
$$f \in L(\lambda)$$
, then $F(x) = \int_{-\infty}^{x} f(t) d\lambda(t)$ satisfies $F \in BV(\mathbb{R}) \cap (\mathbb{R})$.

PROOF (i) By Jordan decomposition of F, it suffices to show this for $F \in (\mathbb{R}) \cap ND(\mathbb{R})$. Let $E \in \mathcal{B}(\mathbb{R})$ be so $\lambda(E) > 0$. Given $\epsilon > 0$, let $\delta > 0$ be as in the definition of absolute continuity. Let $\{(a_i,b_i]\}_{i=1}^{\infty}$ be so $E \subset \bigcup_{i=1}^{\infty}(a_i,b_i]$ and $\sum_{i=1}^{\infty}(b_i-a_i)=\sum_{i=1}^{\infty}\lambda((a_i,b_i])<\delta$. Find a sequence $\{(a_i',b_i']\}_{i=1}^{\infty}$ be such that there are $m_1 < m_2 < \cdots$ such that

$$\bigcup_{i=1}^{n} (a_i, b_i] = \bigcup_{i=1}^{m_n} (a'_i, b'_i], \qquad (a'_i, b'_i] \cap (a'_j, b'_j] = \emptyset \text{ if } i \neq j$$

Then for each n, $\sum_{i=1}^{m_n} (b'_i - a'_i) \le \sum_{i=1}^n (b_i - a_i) < \delta$ so

$$\mu_{F}(E) \leq \mu_{F}\left(\bigcup_{i=1}^{\infty} (a_{i}, b_{i}]\right) = \lim_{n \to \infty} \mu_{F}\left(\bigcup_{i=1}^{n} (a_{i}, b_{i})\right)$$

$$= \lim_{n \to \infty} \mu_{F}\left(\bigcup_{i=1}^{m_{n}} (a'_{i}, b'_{i})\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[F(b'_{i}) - F(a'_{i})\right] \leq \epsilon$$

as $\epsilon > 0$, we conclude that $\mu_F(E) = 0$.

(ii) Write
$$f = \text{Re } f^+ - \text{Re } f^- + i [\text{Im } f^+ - \text{Im } f^-] \text{ so}$$

$$F(x) = f \cdot \mu((-\infty, x]) = \operatorname{Re} f^+ \cdot \mu((-\infty, 1) - \dots + i \operatorname{Im} f^+ \cdot \mu((-\infty, x])$$

is a linear combination of 4 non-decreasing bounded functions. Thus $F \in BV(\mathbb{R})$.

We recall a proposition proven prior; since $|f| \cdot \lambda \ll \lambda$, the alternate characterization of absolute continuity applies. Hence if $a \le b_1 \le a_2 \le b_2 \le \cdots \le a_n \le b_n$ in $\mathbb R$ with

$$\lambda\left(\bigcup_{i=1}^{n}(a_i,b_i)\right) = \sum_{i=1}^{n}(b_i - a_i) < \delta$$

then

$$\sum_{i=1}^{n} |F(b_i) - F(a_i)| = \sum_{i=1}^{n} \left| \int_{(a_i, b_i]} f \, d\lambda \right|$$

$$\leq \sum_{i=1}^{n} \int_{(a_i, b_i]} |f| \, d\lambda = |f| \cdot \lambda \left(\bigcup_{i=1}^{n} (a_i, b_i]) \right) < \epsilon$$

Hence, $F \in (\mathbb{R})$.

Remark. $F \in BV(\mathbb{R}) \cap (\mathbb{R})$ if and only if there is $f \in L(\lambda)$ such that $F' = f \lambda$ -a.e., and $F(x) = \int_{-\infty}^{x} f \, d\lambda$. Indeed, we saw earlier that $F \in BV_r(\mathbb{R})$ is λ -a.e. differentiable. Since $F \in BV(\mathbb{R}) \cap (\mathbb{R})$, $\mu_F \ll \lambda$ implies $\mu_F = f \cdot \lambda$ and hence $F' = f \lambda$ -a.e. by Differentiation Theorem 1. Converse is just given.