LEKÉRDEZÉSEK SQL-BEN

A relációs algebra

A SELECT utasítás

Összesítés és csoportosítás

Speciális feltételek

RELÁCIÓS ALGEBRA

- A relációs adatbázisokon végzett műveletek matematikai alapjai
- ► Halmazműveletek: kompatibilis táblák közt hajthatók végre a táblák azonos számú oszlopból kell álljanak, és a megfelelő attribútumok értéktartománya egyezzen
 - ▶ Metszet a INTERSECT b
 - ▶ Unió a UNION b
 - ► Különbség a EXCEPT b, ahol a, b sorok halmazai.

AI	A2	A 3
a	С	a
b	С	е
С	С	a

UNION

ВІ	B2	В3
a	С	a
С	d	е

CI	C2	C 3
a	С	a
b	С	е
С	С	a
С	d	е

DESCARTES-SZORZAT

Az egyik tábla minden sorát párosítjuk a másik tábla minden sorával

AI	A2
a	b
b	b

ВІ	B2	В3
С	f	е
a	a	a
b	a	b

AI	A2	ВІ	B 2	В3
a	b	С	f	е
b	b	a	a	a
a	b	b	a	b
b	b	С	f	е
a	b	a	a	a
b	b	b	a	b

PROJEKCIÓ, SZELEKCIÓ

- Projekció: adott oszlopokat kiválasztunk a táblából
- | Jelölése: π_{attribútumlista}(tábla)
- Például: $\Pi_{B1,B3}(T_1)$

ВІ	B2	В3
С	f	е
a	a	a
b	a	b

=>

ВІ	В3
С	е
a	a
b	b

PROJEKCIÓ, SZELEKCIÓ

- Adott feltétel szerinti sorokat választunk ki a táblából
- ► Jelölése: σ_{feltétel}(tábla)
- Például: $\sigma_{B2='a'}(T_1)$

ВІ	B2	В3
С	f	е
a	a	a
b	a	b

=>

ВІ	B2	В3
a	a	a
b	a	b

TERMÉSZETES ÖSSZEKAPCSOLÁS

- Két tábla közt a külső kulcsok révén lényegében egyező attribútumokkal teremtünk kapcsolatot a relációs modellben
- Például: Dolgozó(<u>szem.szám</u>, név, osztálykód) és Osztály(<u>osztálykód</u>, osztálynév) hogyan andánk meg egy dolgozó nevéhez, hogy mi annak az osztálynak a neve, ahol ő dolgozik?
- A két tábla természetes összekapcsolásából kiolvasható lesz a válasz:

$$T = \pi_{A \cup B}(\sigma_{R_1.X=R_2.X}(T_1 \times T_2))$$

ahol T1 az R1(A), és T2 az R2(B) sémák feletti táblák.

TERMÉSZETES ÖSSZEKAPCSOLÁS

- Természetes összekapcsoláskor tehát a két tábla Descartes-szorzatából megtartjuk azon sorokat, ahol az összekapcsolás alapjául szolgáló attribútumok egyeznek, majd a duplán szereplő oszlopokat projekcióval "egyszeresítjük".
- ▶ Jelölésben:

$$T = T_1 * T_2$$

A SELECT UTASÍTÁS ÁLTALÁNOS ALAKJA

SELECT [DISTINCT] megjelenítendő oszlopok

FROM táblá(k direkt szorzata)

[WHERE feltétel]

[GROUP BY csoportosítási szempont]

[HAVING csoportok szűrése]

[ORDER BY rendezési szempont];

PÉLDA

Dolgozó(<u>id</u>, név, fizetés, lakcím, osztály)

200 000 Ft-nál többet keresők listájának előállítása:

SELECT név

FROM Dolgozó

WHERE fizetés > 200000;

100 és 200 közti id-jű dolgozók nevének és lakcímének megjelenítése:

SELECT név, lakcím

FROM Dolgozó

WHERE id BETWEEN 100 AND 200;

RENDEZÉS

ORDER BY attributum ASC/DESC

Dolgozók összes adatának listázása összeg szerint növekvő listában:

SELECT * FROM Dolgozó ORDER BY fizetés ASC;

ÖSSZESÍTÉS

- Összesítés menete: valamilyen összesítő függvényt alkalmazunk egy adott attribútumra, ÉS az ezen attribútumon kívüli összes megjelenítendő oszlop szerint csoportosítani is szükséges (illetve a HAVING kulcsszó után feltételt is szabhatunk a csoportokra)
- Dolgozók fizetésének összege:
- ► SELECT SUM(fizetés) FROM Dolgozó;

ÖSSZESÍTÉS

- Számos különböző összesítő függvény létezik:
 - ► AVG(...) átlag
 - ► COUNT(...) sorok száma
 - ► MIN(...) legkisebb érték
 - ► MAX(...) legnagyobb érték
 - ► SUM(...) összeg
- Dolgozók fizetésátlaga az egyes osztályokon:

SELECT osztály, AVG(fizetés)

FROM Dolgozó

GROUP BY osztály;

KÜLÖNLEGES FELTÉTELEK

Néhány olyan logikai kifejezés, amit az SQL-ben használni lehet a korábban ismertetetteken kívül.

- Attribútum nem definiáltságának vizsgálata attrib IS NULL
- 2. Attribútum adott intervallumba esésének vizsgálata attrib BETWEEN a AND b igaz, ha a <= attrib <= b
- 3. Attribútum adott halmazba esésének vizsgálata attrib IN halmaz például születésiVáros IN ('Szeged', 'Baja', 'Pécs')

KÜLÖNLEGES FELTÉTELEK

- 4. Halmaz nemürességének vizsgálata
 - EXISTS halmaz igazat ad, ha a halmaz nem üres, pl. EXISTS (SELECT városNév FROM Város WHERE lakosság > 5000)
- 5. Szöveg mintának megfeleltetése attrib LIKE feltétel
 - % tetszőleges hosszú szöveggel illeszkedik
 - _ pontosan egy karakterrel illeszkedik
 - SELECT név, fizetés FROM dolgozó WHERE név LIKE '% András';

FELADATOK

Ország(<u>országKód</u>, név, terület, lakosság, hivatalosNyelv, pénznem, gdp_fő, földrészKód)

Földrész(földrészKód, név)

- 7.1 Hozzuk létre a fenti táblákat.
- 7.2 Szúrjuk be a Fantasia nevű országot fiktív adatokkal.
- 7.3 Hány ország van a Földön?
- 7.4 Listázzuk ki az összes olyan ország nevét terület szerint növekvő sorrendben, ahol a hivatalos az angol.
- 7.5 Listázzuk ki az összes, francia nyelven beszélő ország GDP-inek átlagát földrészkódonként csoportosítva.
- 7.6 Adjuk meg Európa és Ázsia lakosainak összlétszámát két módon is.
- 7.7 Számoljuk ki az egyes földrész(kódok)hoz tartozó népsűrűséget.