CS689: Computational Linguistics for Indian Languages Parsing

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs689/

 $2^{\rm nd}$ semester, 2023-24 Tue 10:30–11:45, Thu 12:00–13:15 at RM101/KD102

Parsing,

- Parsing is finding structures and relationships in a sentence
- Two main types
- Constituency Parsing
 - Breaks a sentence into an ordered set of constituents
 - Uses a grammar
 - Produces a constituent parse tree
 - Useful for rigid-order languages
- Dependency Parsing
 - Finds directed relationships between pairs of words
 - Head word of a sentence
 - Produces a dependency parse tree
 - Useful for free-order languages

Grammar

- Constituency parsing uses parts-of-speech (POS) tags
- POS tags with a certain ordered combination form a phrase
 - Noun phrase, Verb phrase, Prepositional phrase
- Order of phrases is dictated by a grammar
- Constituency parsing uses context-free grammars (CFG)
 - Also called phrase-structure grammars

Context-Free Grammar (CFG)

- A CFG consists of
 - A set of non-terminals, denoted by N (capital letters)
 - A set of terminals, denoted by Σ (small letters)
 - A set of rules of the form $A \to B$ where A is a non-terminal, and B is any string composed of any number of terminals and non-terminals
 - ullet A start non-terminal, denoted by S

```
S \rightarrow NP VP
      NP \rightarrow Pronoun
                 Proper-Noun
                                                Noun \rightarrow flights \mid flight \mid breeze \mid trip \mid morning
                 Det Nominal
                                                  Verb \rightarrow is \mid prefer \mid like \mid need \mid want \mid fly \mid do
Nominal → Nominal Noun
                                           Adjective \rightarrow cheapest \mid non-stop \mid first \mid latest
                 Noun
                                                               other | direct
                                            Pronoun \rightarrow me \mid I \mid you \mid it
       VP \rightarrow Verb
                                       Proper-Noun \rightarrow Alaska \mid Baltimore \mid Los Angeles
                 Verb NP
                                                                Chicago | United | American
                 Verb NP PP
                                        Determiner \rightarrow the \mid a \mid an \mid this \mid these \mid that
                 Verb PP
                                        Preposition \rightarrow from \mid to \mid on \mid near \mid in
                                        Conjunction \rightarrow and | or | but
      PP \rightarrow Preposition NP
```

Parsing using a CFG

- Why CFG?
- Expressive enough
- Computationally feasible to handle
- Parsing using a CFG produces a constituent parse tree, sometimes called a parse tree or simply a parse
- "I prefer a morning flight" has the parse tree

Representation of a Parse Tree

Bracket flat (linear) notation
 [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]

• Bracket tree (hierarchical) notation

```
((S
   (NP-SBJ (DT That)
     (JJ cold) (, ,)
     (JJ empty) (NN sky) )
   (VP (VBD was)
                                ((S
     (ADJP-PRD (JJ full)
                                   (NP-SBJ The/DT flight/NN )
       (PP (IN of)
                                   (VP should/MD
         (NP (NN fire)
                                     (VP arrive/VB
                                       (PP-TMP at/IN
           (CC and)
                                         (NP eleven/CD a.m/RB ))
           (NN light) ))))
                                       (NP-TMP tomorrow/NN )))))
   (...)
```

How to Write a Grammar?

- Rules of the language
- Learned grammar from an annotated corpus
- Parse tree annotated corpus is called treebank
 - Penn Treebank for English
 - Universal Dependencies (UD) Treebank for multiple languages
- Rule derived from every sentence is a grammar rule
- No other rule is a grammar rule
- Every word is part of the lexicon for the corresponding POS tag
- No other word is part of the lexicon for a POS tag

Algorithm

- Dynamic programming solution: Cocke-Kasami-Younger (CKY) algorithm
- Converts any CFG into Chomsky Normal Form
 - Rules are either $A \rightarrow BC$ or $A \rightarrow a$
 - A non-terminal expands to either exactly two non-terminals or a single terminal
- Sentence of length n broken into n+1 gaps or fenceposts
- For a cell (i, j) in DP, consider all possible rules
 - Either, it is a terminal: single word, i.e., i = j 1
 - Or, consider all k such that i < k < j and $w_i \dots w_k$ and $w_k \dots w_j$ is a valid parse
- Finally, cell (0, n) gives all the parses

Example

• "Book the flight through Houston"

Evaluating a Parse

- How to evaluate a parse tree?
- \bullet Consider a parse tree generated by an algorithm A and a golden truth parse tree T
- Find the set of constituents C_A in A and C_T in T
 - A constituent is a non-terminal along with the starting and ending word positions
 - The cardinality of the two sets may not be the same
- Find set of common constituents $C_c = C_A \cap C_T$
- Metrics of evaluation

Precision
$$P = \frac{|C_c|}{|C_A|}$$
; Recall $R = \frac{|C_c|}{|C_T|}$;
F-score $F =$ Harmonic Mean $= \frac{2 \cdot P \cdot R}{P + R} = \frac{2|C_c|}{|C_A| + |C_T|}$

Ambiguity in Parsing

- Multiple parse trees can be possible
- Ambiguity in sentence meaning
- "One morning I shot an elephant in my pajamas"

Problems with Constituency Parsing

- Assumes a rather rigid sentence structure
- Phrases are less frequent in inflectional languages
 - They become inflected words or compound words or samasta-pada
 - अहं ज्ञातुम् इच्छामि becomes अहं जिज्ञासुः
- Can produce multiple valid parse trees
- Ways to choose a parse tree over other
 - Weights of a rule
 - Neural-network based
 - Probability-based: rules have probabilities, leading to probabilistic CFGs
 - Statistical constituency parsing

Probabilistic Context-Free Grammar

- In a probabilistic CFG, rules have probabilities
- All possible expansions of a rule add up to 1

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid trip [.30]$
$S \rightarrow VP$	[.05]	meal [.05] money [.05]
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I [.40] \mid she [.05]$
$Nominal \rightarrow Noun$	[.75]	<i>me</i> [.15] <i>you</i> [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	NWA [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [.40]$
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	through [.05]
$VP \rightarrow Verb NP NP$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

Choosing a Parse

- The parse tree with the highest joint probability is the best parse
- "Book the dinner flight"

