Amendments to the CLAIMS:

1. (Original) An azabicyclic derivative represented by Formula I

$$AZA - X' - A' - Y' - L - Y'' - A'' - X'' - AZA$$
 (I)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

AZA represents an azacyclic group selected from

wherein ----- represents an optional double bond; n is 0, 1, 2 or 3; m is 1 or 2; and R' represents hydrogen or alkyl;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -O-CH₂-, -S-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, alkyl, hydroxy,

alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CH₂-, -CH₂-, -NH₂-, -N(alkyl)-, -(CO)-, -(CS)-,

a group of the formula -NR''-(CO)-, -NR''-(CO)-O-, -NR''-(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or cyano; and

L represents a group A" which represents a monocyclic or polycyclic, carbocyclic or

heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-cycloalkoxy-alkyl, cycloalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

 (Original) An azabicyclic derivative of claim 1, being a quinuclidine derivative represented by Formula II

$$(CH_2)_n$$
 $X' - A' - Y' - L - Y'' - A'' - X''$ $(CH_2)_n$

(II)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein, ----- represents an optional double bond; n is 1, 2 or 3;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -O-CH₂-, -S-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"; and R" represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂-, -CH₂-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-

Docket No.: 2815-0374PUS1

(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or evano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, alkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

3. (Original) An azabicyclic derivative of claim 1, represented by Formula III

$$R'N \underbrace{(CH_2)_n}_{l} N - X' - A' - Y' - L - Y'' - A'' - X'' - N\underbrace{(CH_2)_n}_{l} NR'$$

(III)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein.

R' represents hydrogen or alkyl;

n is 1, 2 or 3;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -CH₂-, -S-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CH₂-, -CH₂-, -CH₂-, -N(alkyl)-, -(CO)-, -(CS)-.

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, sulfamoyl and phenyl; or

Y' and Y", independently of one another, represent a linker selected from -O-, -O-CH2-,

-O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or evano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

4. (Original) An azabicyclic derivative of claim 1, represented by Formula IVa,

$$P_{i,N} \bigvee N - X_i - A_i - A_$$

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy.

eycloalkoxy, eycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CH₂-, -CH₂-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, alkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

5. (Original) An azabicyclic derivative of claim 1, represented by Formula Va,

(Va)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂-

and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be

substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH $_2$ -, -O-CH $_2$ -, -C-CH $_2$ -, -S-, -SO-, -SO $_2$ -, -CH $_2$ -, -S-CH $_2$ -CH $_2$ -, -CH $_2$ -, -CH $_2$ -, -CH $_2$ -, -N(alkyl)-, -(CO)-, -(CS)-,

and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"'; and R" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

6. (Original) An azabicyclic derivative of claim 1, represented by Formula Vb,

(Vb) ;

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -CH₂-, -S-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

o s s s s s and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"; and R" represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkoxy, cycloalkoxy-alkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkyl, cycloalkoxy, hydroxyalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A*** which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CH₂-, -CH₂-, -N(alkyl)-, -(CO)-, -(CS)-,

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and

phenyl.

7. (Original) An azabicyclic derivative of claim 1, represented by Formula Vc,

(Vc)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein.

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or evano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkoxy, cycloalkoxy-alkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkox

Docket No.: 2815-0374PUS1

carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NII₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CH₂-, -CH₂-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"; and R" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, alkyl, hydroxy,

alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

8. (Original) An azabicyclic derivative of claim 1, represented by Formula VIa,

$$N - X' - A' - Y' - L - Y'' - A'' - X'' - N$$

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein.

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-.

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-

(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl.

cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

o s s s s and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

L represents a group A'" which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic.

carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

9. (Original) An azabicyclic derivative of claim 1, represented by Formula VII.

$$(CH_2)_m \qquad NR' \qquad N - X' - A' - Y' - L - Y'' - A'' - X'' \qquad NR' \qquad (CH_2)_m \qquad (CH_2)_m \qquad NR' \qquad (CH_2)_m \qquad (CH_2)_m \qquad (CH_2)_m \qquad (CH_2)_m \qquad (CH_2)_m \qquad (CH_2)_m \qquad$$

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

n is 1, 2 or 3;

m is 1 or 2;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy,

alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-y-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkyl, cycloalkoxy, hydroxyalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"'; and R" represents hydrogen, alkyl or cyano; and

L represents a group A"" which represents a monocyclic or polycyclic, carbocyclic or

heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

(Original) An azabicyclic derivative of claim 1, represented by Formula VIII.

$$R^{t} N \underbrace{(CH_{2})_{m}}_{N-1} N - X^{t} - A^{t} - Y^{t} - L - Y^{m} - A^{m} - X^{m} - N \underbrace{(CH_{2})_{m}}_{N} N R^{t}$$

(VIII)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

n is 1, 2 or 3:

m is 1 or 2:

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkyl, cycloalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A'" which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH2-,

-O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

11. (Original) An azabicyclic derivative of claim 1, represented by Formula IX,

$$N - X' - A' - Y' - L - Y'' - A'' - X'' - N$$

(IX) ;

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'',

independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-gloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalko

carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"; and R" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

12. (Original) An azabicyclic dcrivative of claim 1, represented by Formula X,

$$NR'$$
 NR'
 NR'
 NR'

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition

salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CCH₂-, -CCH₂-, -CCH₂-, -CCS₂-, -CCS₂-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A'" which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents scleeted from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be

substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from
-O-, -O-CH₂-, -O-CH₂-, CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂-, -CH₂-, -NH-,
-N(alkyl)-, -(CO)-, -(CS)-,

and/or ; and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, halo, CF3, CN, NO2, NH2, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

13. (Original) An azabicyclic derivative of claim 1, represented by Formula XI,

$$\begin{array}{c} \text{NHR'} \\ \text{NHR'} \end{array}$$

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein,

R' represents hydrogen or alkyl;

X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -CH₂-, -S-, -SO₂-, -CH₂-, -CH₂-, -CH₂-, -(C=CH₂)-, -NH-, -N(alkyl)-, -(CO)-, -(CS)-,

; and/or a group of the formula -NR''-(CO)-, -NR''-(CO)-O-, -NR''-

(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or cyano; and

A' and A'', independently of one another, represent an aromatic monocyclic and/or polycyclic, carbocyclic and/or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; and

Y' and Y'' may be absent (i.e. represent single (covalent) bonds); and

L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl; or

Y' and Y'', independently of one another, represent a linker selected from -O-. -O-CH₂-, -O-CH₂-, -C-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂-, -NH₂-, -N(alkyl)-, -(CO)-, -(CS)-,

s s s and/or a group of the formula -NR''-(CO)-, -NR''-(CO)-O-, -NR''-(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or cyano; and

L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy.

alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

- 14. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein ______ represents a single (covalent) bond.
- 15. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein n is 1, 2 or 3.
- 16. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein m is 1 or 2.
- 17. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-, -CH₂-, -CCH₂-, -CC

and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z")-NR"-; wherein Z' represents O, S or NR""; and R"" represents hydrogen, alkyl or cyano.

18. (Currently Amended) The azabicyclic derivative of claim 17, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an

onium salt thereof, wherein, wherein X' and X'' are absent (i.e. represent single (covalent) bonds).

19. (Currently Amended) The azabicyclic derivative of claim 16, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂

and/or a group of the formula -NR"-(CO)-, -NR"-(CO)-O-, -NR"-(SO₂)- and -NR"-(C=Z')-NR"-; wherein Z' represents O, S or NR"; and R" represents hydrogen, alkyl or cyano.

- 20. (Currently Amended) The azabicyclic derivative of claim 19, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein X' and X'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -S-, -SO₂-, -CH₂-, -NH-(CO)-NH- and/or -NH-(CO)-O-.
- 21. (Currently Amended) The azabicyclic derivative of claim 17, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein, wherein X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'' represent -O- or -O-CH₂-; or X' represents -O- or -O-CH₂-; and X'' represents -NH-(CO)-NH- or -NH-(CO)-O-.
- 22. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein L represents a single (covalent) bond (i.e. L is absent).

23. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein Y' and Y'' are absent (i.e. represent single (covalent) bonds).

- 24. (Currently Amended) The azabicyclic derivative of claim 23, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein L represents a single (covalent) bond (i.e. L is absent); or a group A''' which represents an aromatic monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, alkoxy-alkoxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy, cycloalkoxy, cycloalkoxy, cycloalkoxy, alkoxy-alkoxy, halo, CF₃, CN, NO₂, NII₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.
- 25. (Currently Amended) The azabicyclic derivative of claim 24, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein A''' represents a phenyl, naphthyl, pyridyl, thienyl, furanyl, pyridazinyl or thiazolyl group.
- 26. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein Y' and Y'', independently of one another, represent a linker selected from -O-, -O-CH₂-, -O-CH₂-, -S-, -SO-, -SO₂-, -CH₂-, -S-CH₂-CH₂-, -CH₂-, -CH₂

and/or a group of the formula -NR''-(CO)-, -NR''-(CO)-O-, -NR''-(SO₂)- and -NR''-(C=Z')-NR''-; wherein Z' represents O, S or NR'''; and R''' represents hydrogen, alkyl or cyano.

27. (Currently Amended) The azabicyclic derivative of claim 26, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein L represents a group A''' which represents a monocyclic or polycyclic, carbocyclic or heterocyclic group, optionally substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkoxy, alkoxy-alkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl, or with another monocyclic or polycyclic, carbocyclic or heterocyclic group, which additional monocyclic or polycyclic, carbocyclic or heterocyclic group may optionally be substituted one or more times with substituents selected from the group consisting of alkyl, cycloalkyl, cycloalkyl-alkyl, hydroxy, alkoxy, hydroxyalkoxy, alkoxy-alkyl, alkoxy-alkoxy, cycloalkoxy, cycloalkoxy-alkyl, cycloalkoxy-alkoxy, halo, CF₃, CN, NO₂, NH₂, carboxy, carbamoyl, amido, sulfamoyl and phenyl.

28. (Currently Amended) The azabicyclic derivative of claim 27, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein A''' represents a phenyl, naphthyl, pyridyl, thienyl, furanyl, pyridazinyl or thiazolyl group.

29. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein _____ represents a single (covalent) bond; n is 2; X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'', independently of one another, represent -O-.

-S-, -SO- or -NH-; and A' and A'' represent phenyl, pyridyl, thienyl, furanyl, pyridazinyl and/or thiazolyl; and Y', Y'' and L represent single (covalent) bonds.

- 30. (Currently Amended) The azabicyclic derivative of claim 29, which is 2,2'-Bis-((±)-1-aza-bicyclo[2.2.2]oct-3-yloxy)-[5,5']-bithiazolyl; 2,2'-Bis-((±)-1-aza-bicyclo[2.2.2]oct-3-yloxy)-[5,5']-bifuranyl; 6,6'-Bis-((±)-1-aza-bicyclo[2.2.2]oct-3-yloxy)-[3,3']-bipyridinyl; 6,6'-Bis-((±)-1-aza-bicyclo[2.2.2]oct-3-yloxy)-[3,3']-bipyridazinyl; or 6-[4-(1-Aza-bicyclo[2.2.2]oct-3-yloxy)-phenyl]-pyridazin-3-ol-(1-aza-bicyclo[2.2.2]oct-3-yl); or an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof.
- 31. (Currently Amended) The azabicyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'' represent -O-, -S-, -SO-, -NH-, or -(CO)-; and A' and A'' represent phenyl, pyridyl, thienyl, furanyl, pyridazinyl and/or thiazolyl; and Y', Y'' and L represent single (covalent) bonds; or Y' and Y'' represent -O-, -S-, -SO- or -NH-; and L represents a phenyl group.
- 32. (Currently Amended) The azabicyclic derivative of claim 31, which is 6.6'-Bis-[1,4]-diaza-bicyclo[3.2.2]nonan-1-yl-[3,3']-bipyridazinyl; 1,2-Di-[6-(1,4-diaza-bicyclo[3.2.2]nonan-4-yl)-pyridazin-3-yl-thio]-benzene; or 1,3-Di-[6-(1,4-diaza-bicyclo[3.2.2]nonan-4-yl)-pyridazin-3-yl-thio]-benzene; or an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof.
- 33. (Currently Amended) A pharmaceutical composition comprising a therapeutically effective amount of an azacyclic derivative of claim 1, or an enantiomer thereof or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof.

34. (Currently Amended) A method of treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disorder, disease or condition is responsive to modulation of cholinergic receptors and/or monoamine receptors, which method comprises the step of administering to such a living animal body in need thereof a therapeutically effective amount of an azacyclic derivative of claim 1, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof.

- 35. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition relates to the central nervous system.
- 36. (Previously Presented) The method according to claim 35, wherein the disease, disorder or condition is anxiety, cognitive disorders, learning deficit, memory deficits and dysfunction, Alzheimer's disease, attention deficit, attention deficit hyperactivity disorder (ADHD), Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, Gilles de la Tourette's syndrome, psychosis, depression, mania, manic depression, schizophrenia, obsessive compulsive disorders (OCD), panic disorders, eating disorders such as anorexia nervosa, bulimia and obesity, narcolepsy, nociception, AIDS-dementia, senile dementia, periferic neuropathy, autism, dyslexia, tardive dyskinesia, hyperkinesia, epilepsy, bulimia, post-traumatic syndrome, social phobia, sleeping disorders, pseudodementia, Ganser's syndrome, pre-menstrual syndrome, late luteal phase syndrome, chronic fatigue syndrome, mutism, trichotillomania and iet-lag.
- 37. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition are associated with smooth muscle contractions, including convulsive disorders, angina pectoris, premature labour, convulsions, diarrhoea, asthma, epilepsy, tardive dyskinesia, hyperkinesia, premature ejaculation and erectile difficulty.
 - 38. (Previously Presented) The method according to claim 34, wherein the disease,

disorder or condition is related to the endocrine system, such as thyrotoxicosis, pheochromocytoma, hypertension and arrhythmias.

- 39. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition is a neurodegenerative disorders, including transient anoxia and induced neuro-degeneration.
- 40. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition is an inflammatory disorder, including inflammatory skin disorders such as acne and rosacea, Chron's disease, inflammatory bowel disease, ulcerative colitis and diarrhoea.
- 41. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition is mild, moderate or even severe pain of acute, chronic or recurrent character, pain caused by migraine, postoperative pain, phantom limb pain, neuropathic pain, chronic headache, central pain, pain related to diabetic neuropathy, to post therapeutic neuralgia, or to peripheral nerve injury.
- 42. (Previously Presented) The method according to claim 34, wherein the disease, disorder or condition is associated with withdrawal symptoms caused by termination of use of addictive substances, including nicotine containing products such as tobacco, opioids such as heroin, cocaine and morphine, benzodiazepines and benzodiazepine-like drugs and alcohol.
 - 43. (cancelled).
 - 44. (New) An azabicyclic derivative represented by Formula I

$$AZA - X' - A' - Y' - L - Y'' - A'' - X'' - AZA$$
 (I)

an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition

salt thereof, or an onium salt thereof, wherein,

AZA represents an azacyclic group selected from

$$(CH_2)_m$$

$$(CH_2)_m$$
and
$$(CH_2)_m$$

$$(CH_2)_m$$

$$(CH_2)_m$$

$$(CH_2)_m$$

wherein n is 0, 1, 2 or 3 and m is 1 or 2; X' and X'' are absent (i.e. represent single (covalent) bonds); or X' and X'' represent -O-, -S-, -SO-, -NH-, or -(CO)-; and A' and A'' represent phenyl, pyridyl, thienyl, furanyl, pyridazinyl and/or thiazolyl; and Y', Y'' and L represent single (covalent) bonds; or Y' and Y'' represent -O-, -S-, -SO- or -NH-; and L represents a phenyl group.

45. (New) The compound of claim 44, an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof, wherein AZA represents an azacyclic group selected from

wherein n is 1 and m is 1; X' and X'' are absent (i.e. represent single (covalent) bonds); and A' and A'' represent pyridazinyl; and Y', Y'' and L represent single (covalent) bonds.

6,6'-bis-[1,4]-diaza-bicyclo[3,2,2]nonan-1-yl-[3,3']-bipyridazinyl, or an enantiomer thereof, or a mixture of its enantiomers, or a pharmaceutically-acceptable addition salt thereof, or an onium salt thereof.

46. (New) The compound of claim 44, which is