CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 10

Sharan Vaswani

November 10, 2023

Recap

- Given a policy parameterization s.t. $\pi = h(\theta)$ and a step-size η , policy gradient methods have the following update: $\theta_{t+1} = \theta_t + \eta \nabla_{\theta} J(\theta_t)$ where $J(\theta) := v^{\pi_{\theta}}(\rho) = \mathbb{E}_{s_0 \sim \rho} v^{\pi_{\theta}}(s_0)$.
- Policy Gradient Theorem: $\nabla_{\theta} J(\theta) = \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\sum_{a \in \mathcal{A}} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} q^{\pi_{\theta}}(s, a) \right].$
- Consider function $h: \mathbb{R}^A \to \mathbb{R}^A$ such that $h(\theta) = \pi_\theta$ where $\pi_\theta(a) = \frac{\exp(\theta(a))}{\sum_{a'} \exp(\theta(a'))}$. The Jacobian of h is given by $H(\pi_\theta) \in \mathbb{R}^{A \times A} = \operatorname{diag}(\pi_\theta) \pi_\theta \pi_\theta^T$.
- **Tabular softmax policy parameterization:** There are SA parameters such that $\pi_{\theta}(\cdot|s) = h(\theta(s,\cdot))$. In this case, $[\nabla J(\theta)]_{s,a} = \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta(s,a)} = \frac{d^{\pi_{\theta}}(s)}{1-\gamma} \pi_{\theta}(a|s) \mathfrak{a}^{\pi_{\theta}}(s,a)$, where $\mathfrak{a}^{\pi}(s,a) = q^{\pi}(s,a) v^{\pi}(s)$ is the advantage function.
- For the bandit setting with deterministic rewards, $J(\theta) = \mathbb{E}_{a \sim \pi_{\theta}}[r(a)] = \langle \pi_{\theta}, r \rangle$ and $[\nabla J(\theta)]_a = \frac{\partial v^{\pi_{\theta}}(\rho)}{\partial \theta(a)} = \pi_{\theta}(a) [r(a) \langle \pi_{\theta}, r \rangle]$. Hence, the corresponding policy gradient update is: $\theta_{t+1} = \theta_t + \eta \pi_{\theta_t}(a) [r(a) \langle \pi_{\theta_t}, r \rangle]$.

1

Softmax Policy Gradient for Bandits

Claim: For the tabular softmax policy parameterization where $\pi_{\theta}(a) = \frac{\exp(\theta(a))}{\sum_{a'} \exp(\theta(a'))}$, the objective $J(\theta) = \langle \pi_{\theta}, r \rangle$ can be non-concave w.r.t θ .

Proof: Recall that a function $f: \mathcal{D} \to \mathbb{R}$ is concave if for all $\theta, \theta' \in \mathcal{D}$ and $\alpha \in [0,1]$, $f(\alpha\theta + (1-\alpha)\theta') \ge \alpha f(\theta) + (1-\alpha)f(\theta')$. Consider a multi-armed bandit problem where A=3, and r=[1,9/10,1/10], $\theta=[0,0,0]$ and $\theta'=[\ln(9),\ln(16),\ln(25)]$. Choosing $\alpha=\frac{1}{2}$,

$$\pi = h(\theta) = [1/3, 1/3, 1/3] \implies J(\theta) = \frac{1}{3} + \frac{3}{10} + \frac{1}{30} = \frac{2}{3}$$

$$\pi' = h(\theta') = [9/50, 16/50, 25/50] \implies J(\theta) = \frac{90}{500} + \frac{144}{500} + \frac{25}{500} = \frac{259}{500}$$

$$\implies \text{RHS} = \alpha J(\theta) + (1 - \alpha)J(\theta') = \frac{1}{2} \left(\frac{2}{3} + \frac{259}{500}\right) = \frac{1777}{3000}$$

$$\alpha\theta + (1 - \alpha)\theta' = [\ln(3), \ln(4), \ln(5)] \implies h(\alpha\theta + (1 - \alpha)\theta') = [3/12, 4/12, 5/12]$$

$$\implies \text{LHS} = J(\alpha\theta + (1 - \alpha)\theta') = \frac{3}{12} + \frac{36}{120} + \frac{5}{120} = \frac{71}{120}.$$

RHS = $\frac{1777}{3000} = \frac{14216}{24000} > \frac{14200}{24000} = LHS$, meaning that $J(\theta)$ is non-concave for this example.

Digression – Smooth functions

Smooth functions: For smooth functions that are differentiable everywhere, the gradient is Lipschitz-continuous i.e. it can not change arbitrarily fast.

• Formally, the gradient ∇f is L-Lipschitz continuous if for all $x, y \in \mathcal{D}$,

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$$

where L is the Lipschitz constant of the gradient (also called the smoothness constant of f).

- If f is twice-differentiable and smooth, then for all $x \in \mathcal{D}$, $\nabla^2 f(x) \leq L I_d$ i.e. $\sigma_{\max}[\nabla^2 f(x)] \leq L$ where σ_{\max} is the maximum singular value.
- For L-smooth functions, for all $x, y \in \mathcal{D}$,

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} ||y - x||^2$$

Hence the function f(y) is upper and lower-bounded by quadratics:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$
 and $f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} \|y - x\|^2$ respectively. These bounds are *global* and hold for all $y \in \mathcal{D}$.

3

Softmax Policy Gradient

Fact: For the tabular softmax policy parameterization where $\pi_{\theta} = h(\theta)$ i.e. $\pi_{\theta}(a) = \frac{\exp(\theta(a))}{\sum_{r \in P(\theta(a'))}}$, the objective $J(\theta) = \langle \pi_{\theta}, r \rangle$ is $\frac{5}{2}$ -smooth.

See [MXSS20, Lemma 2] for a proof. Such a smoothness property also holds for general MDPs (see [MXSS20, Lemma 7]).

- By putting together these results, we conclude that for the tabular softmax policy parameterization, the objective $J(\theta)$ is a smooth, non-concave function.
- Hence, in general (without additional properties), softmax PG is not guaranteed to converge to the optimal policy, but only to a stationary point where $\|\nabla_{\theta}J(\theta)\|=0$. Assuming that we can exactly calculate $\nabla_{\theta}J(\theta)$, we can prove the following result from non-convex optimization.

Claim: For the tabular policy parameterization where $J(\theta)$ is L-smooth w.r.t θ , softmax PG with $\eta = \frac{1}{L}$ returns $\hat{\theta}_T$ such that $\left\|\nabla J(\hat{\theta}_T)\right\|^2 \leq \epsilon$ and requires $T = \frac{2L}{(1-\gamma)\epsilon}$ iterations.

Stationary point Convergence of Softmax Policy Gradient

Proof: Using the *L*-smoothness of *J* with $x = \theta_t$ and $y = \theta_{t+1} = \theta_t + \frac{1}{L} \nabla J(\theta_t)$ in the quadratic bound (also referred to as the *ascent lemma*),

$$J(\theta_{t+1}) \ge J(\theta_t) + \left\langle \nabla J(\theta_t), \frac{1}{L} \nabla J(\theta_t) \right\rangle - \frac{L}{2} \left\| \frac{1}{L} \nabla J(\theta_t) \right\|^2$$

$$\implies J(\theta_{t+1}) \ge J(\theta_t) + \frac{1}{2L} \left\| \nabla J(\theta_t) \right\|^2$$

By moving from θ_t to θ_{t+1} , the algorithm has increased the value of J. Rearranging the inequality, for every iteration t,

$$\frac{1}{2L} \left\| \nabla J(\theta_t) \right\|^2 \le J(\theta_{t+1}) - J(\theta_t)$$

Summing up from t = 0 to T - 1,

$$\frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla J(\theta_t)\|^2 \leq \sum_{t=0}^{T-1} [J(\theta_{t+1}) - J(\theta_t)] = J(\theta_T) - J(\theta_0)$$

Stationary point Convergence of Softmax Policy Gradient

Recall that $\frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla J(\theta_t)\|^2 \le J(\theta_T) - J(\theta_0)$. Since $J(\theta) \in \left[0, \frac{1}{1-\gamma}\right]$ for all θ ,

$$\frac{\sum_{t=0}^{T-1} \left\| \nabla J(\theta_t) \right\|^2}{T} \le \frac{2L}{(1-\gamma) T}$$

Define $\hat{\theta}_T := \arg\min_{t \in \{0,1,\dots,T-1\}} \|\nabla J(\theta_t)\|^2$.

$$\left\| \nabla J(\hat{\theta}_T) \right\|^2 \leq \frac{2L}{(1-\gamma) T}$$

If the RHS equal to $\frac{2L}{(1-\gamma)\,T} \le \epsilon$, this would guarantee that $\left\|\nabla J(\hat{\theta}_T)\right\|^2 \le \epsilon$ and we would achieve our objective. Hence, we need to run the algorithm for $T \ge \frac{2L}{(1-\gamma)\,\epsilon}$ iterations.

Next, we will see that for the tabular softmax policy parameterization, $J(\theta)$ satisfies an additional gradient domination property that allows us to prove convergence to the optimal policy.

Non-uniform Lojasiewicz condition for Bandits

Claim: For a bandit problem with deterministic rewards, where $J(\theta) = \langle \pi_{\theta}, r \rangle$, assuming that there is a unique optimal action a^* and $\pi^* := \arg \max_{\pi} \langle \pi, r \rangle$ is the optimal policy, then,

$$\left\| \frac{\partial J(heta)}{\partial heta}
ight\| \geq \pi_{ heta}(extbf{a}^*) \left[\langle \pi^*, r
angle - \langle \pi_{ heta}, r
angle
ight] = \pi_{ heta}(extbf{a}^*) \left[\langle \pi^*, r
angle - J(heta)
ight]$$

- The result implies that if $\pi_{\theta}(a^*) > 0$, as $\|\nabla_{\theta}J(\theta)\| \to 0$, $J(\theta) \to \langle \pi^*, r \rangle$. Hence, decreasing the gradient norm of $J(\theta)$ is sufficient for global convergence to the optimal value function.
- The property does not rely on the concavity of the objective, and hence characterizes a special class of non-concave functions that can be maximized to the optimum.
- The inequality is an instance of the *Lojasiewicz* or gradient domination condition. Function f satisfies a gradient domination with parameters (C, ζ) if: $\|\nabla_{\theta} f(\theta)\| \ge C [f^* f(\theta)]^{\zeta}$.
- For the above inequality, $C = \pi_{\theta}(a^*)$. Since the condition depends on θ , it is non-uniform. The dependence on $\pi_{\theta}(a^*)$ is necessary [MXSS20, Remark 1].
- $\zeta = \frac{1}{2}$ is more common in non-convex optimization, and is referred to as the *Polyak Lojasiewicz condition*.

Non-uniform Lojasiewicz condition for Bandits

Proof: Recall that for any action a, $\frac{\partial J(\theta)}{\partial \theta(a)} = \pi_{\theta}(a) [r(a) - \langle \pi_{\theta}, r \rangle]$. Hence,

$$\left\| \frac{\partial J(\theta)}{\partial \theta} \right\|^2 = \sum_{a} [\pi_{\theta}(a)]^2 [r(a) - \langle \pi_{\theta}, r \rangle]^2 \ge [\pi_{\theta}(a^*)]^2 [r(a^*) - \langle \pi_{\theta}, r \rangle]^2$$

$$= [\pi_{\theta}(a^*)]^2 [r(a^*) - J(\theta)]^2 = [\pi_{\theta}(a^*)]^2 [\langle \pi^*, r \rangle - J(\theta)]^2$$

$$\implies \left\| \frac{\partial J(\theta)}{\partial \theta} \right\| \ge \pi_{\theta}(a^*) [\langle \pi^*, r \rangle - J(\theta)] \quad \Box$$

• Recall the stationary point convergence – tabular softmax PG returns a point $\hat{\theta}_T$ such that $\left\|\nabla J(\hat{\theta}_T)\right\|^2 \leq \frac{2L}{(1-\gamma)\,T}$. Combining with the above Lojasiewicz condition,

$$\pi_{\hat{\theta}_{\mathcal{T}}}(\boldsymbol{a}^*)\left[\langle \pi^*, r \rangle - J(\hat{\theta}_{\mathcal{T}})\right] \leq \sqrt{\frac{2L}{(1-\gamma)\ T}} \implies \langle \pi^*, r \rangle - J(\hat{\theta}_{\mathcal{T}}) \leq \frac{1}{\pi_{\hat{\theta}_{\mathcal{T}}}(\boldsymbol{a}^*)}\sqrt{\frac{2L}{(1-\gamma)\ T}}$$

• Hence, softmax PG (with the tabular parameterization) will converge to the optimal arm at an $O(1/\sqrt{\tau})$ rate if $\pi_{\hat{\theta}_{\mathcal{T}}}(a^*) \neq 0$.

Global Convergence of Softmax Policy Gradient

Fact: For tabular softmax PG with step-size $\eta = \frac{1}{L}$ and a uniform initialization $(\forall a, \pi_0(a) = \frac{1}{A})$ ensures that $\min_{t \geq 0} \pi_{\theta_t}(a^*) \geq \frac{1}{A} > 0$ (see [MXSS20, Lemma 5] for a proof).

• We have established that for the multi-armed bandit setting, tabular softmax PG (with exact gradients) can converge to the optimal arm at an $O(1/\sqrt{\tau})$ rate.

Q: Where is the exploration? Ans: All arms are pulled to construct the gradient. So no exploration is required.

Fact: For general MDPs, if π^* is the optimal policy corresponding to taking action $a^*(s)$ in state s, then the objective $J(\theta) = \mathbb{E}_{s_0 \sim \rho} v^{\pi_{\theta}}(s_0)$ satisfies a non-uniform Lojasiewicz condition:

$$\left\| \frac{\partial J(\theta)}{\partial \theta} \right\| \geq \frac{\min_{s \in \mathcal{S}} \pi_{\theta}(a^*(s)|s)}{\sqrt{S} \left\| d^{\pi^*}/d^{\pi_{\theta}} \right\|_{\infty}} \left[v^{\pi^*}(\rho) - J(\theta) \right]$$

- Similar to the bandit case, there is a dependence on $\pi_{\theta}(a^*(s)|s)$, but now for each state.
- There is a dependence on the distribution mismatch coefficient $\left\| d^{\pi^*}/d^{\pi_{\theta}} \right\|_{\infty}$.

Global Convergence of Softmax Policy Gradient

Recall that
$$\left\| \frac{\partial J(\theta)}{\partial \theta} \right\| \geq \frac{\min_{s \in \mathcal{S}} \pi_{\theta}(a^*(s)|s)}{\sqrt{S} \left\| a^{\pi^*}/a^{\pi\theta} \right\|_{\infty}} [v^{\pi^*}(\rho) - J(\theta)].$$

- Define $\mathcal{S}^* = \{s \in \mathcal{S} | d^{\pi^*}(s) \neq 0\}$. For the distribution mismatch coefficient to be bounded, we want that $d^{\pi_{\theta}}(s) \neq 0$ for all $s \in \mathcal{S}^*$. Hence, the algorithm needs to have a non-zero probability of visiting states in \mathcal{S}^* and requires sufficient exploration to ensure this. The distribution mismatch coefficient thus captures the need for policy gradient algorithms to explore the state space.
- The dependence on the mismatch coefficient is necessary for the non-uniform Lojasiewicz condition and hence for global convergence to the optimal policy [MXSS20, Proposition 3].
- A practical way to guarantee that the distribution mismatch coefficient is bounded is to ensure that $\rho(s) \neq 0$ for all $s \in \mathcal{S}$. This may not always be feasible, and exploration with policy gradient is problematic. See [AHKS20, CYJW20, LWG⁺23] for some recent attempts to handle this.
- Using a uniform distribution over actions for each state also ensures that $\min_s \pi_\theta(a^*(s)|s) > 0$. With these settings, softmax PG can be shown to converge to the optimal policy π^* at an O(1/T) rate [MXSS20, Theorem 4].

Global Convergence of Softmax Policy Gradient

Claim: Assuming $J(\theta)$ is L-smooth and satisfies the Lojasiewicz condition with constant μ i.e. $\|\nabla J(\theta)\| \ge \mu \left[v^{\pi^*}(\rho) - J(\theta)\right]$, softmax PG with the tabular policy parameterization, uniform initialization, $\eta = \frac{1}{L}$ and T iterations converges as: $\delta_T \le \frac{2L}{\mu^2 T}$, where $\delta_t := v^{\pi^*}(\rho) - J(\theta_t)$.

Proof: Using the *L*-smoothness of $J(\theta)$ and the update as before,

$$J(\theta_{t+1}) \geq J(\theta_t) + \frac{1}{2L} \|\nabla J(\theta_t)\|^2 \geq J(\theta_t) + \frac{\mu^2}{2L} [v^{\pi^*}(\rho) - J(\theta_t)]^2 \qquad \text{(Lojasiewicz condition)}$$

$$\implies \delta_{t+1} \leq \delta_t - \frac{\mu^2}{2L} \, \delta_t^2 \implies \frac{1}{\delta_t} \leq \frac{1}{\delta_{t+1}} - \frac{\mu^2}{2L} \, \frac{\delta_t}{\delta_{t+1}} \implies \frac{\mu^2}{2L} \leq \frac{1}{\delta_{t+1}} - \frac{1}{\delta_t}$$

$$\text{(Dividing by } \delta_t \, \delta_{t+1}, \text{ and using that } \delta_t \geq \delta_{t+1})$$

$$\implies \frac{\mu^2 T}{2L} \le \sum_{t=0}^{r-1} \left[\frac{1}{\delta_{t+1}} - \frac{1}{\delta_t} \right] \le \frac{1}{\delta_T} \implies \delta_T \le \frac{2L}{\mu^2 T} \quad \Box$$

- For bandit problems, $\mu = \min_{t \geq 0} \pi_{\theta_t}(a^*)$ and for general MDPs, $\mu = \min_{t \geq 0} \frac{\min_{s \in \mathcal{S}} \pi_{\theta_t}(a^*(s)|s)}{\sqrt{\mathcal{S}} \left\| a^{\pi^*}/a^{\pi_{\theta_t}} \right\|_{\infty}}$.
- The O(1/T) rate is tight for softmax PG and cannot be improved [MXSS20, Theorems 9, 10].

Natural Policy Gradient

Natural Policy Gradient

- Softmax PG has a slow $O(1/\tau)$ rate of convergence (even when using exact gradients). On the other hand, policy iteration has a linear $O(\exp(-T))$ convergence rate.
- Natural Policy Gradient (NPG) overcomes this shortcoming of softmax PG, and achieves a linear rate of convergence. NPG is an instantiation of *preconditioned gradient ascent*.
- For a general symmetric, positive definite matrix Q, preconditioned gradient ascent on $J(\theta)$ can be written as: $\theta_{t+1} = \theta_t + \frac{\eta}{\eta} Q \nabla_{\theta} J(\theta)$.
- Preconditioned gradient ascent is equivalent to the update that "follows" the direction of the gradient, but stays "close" to the previous iterate θ_t in the norm induced by Q^{-1} , i.e.

$$\theta_{t+1} = \operatorname*{arg\,max}_{\theta} \left[\langle \nabla_{\theta} J(\theta), \theta \rangle - \frac{1}{2\eta} \, \left\| \theta - \theta_{t} \right\|_{Q^{-1}}^{2} \right].$$

• Preconditioning is equivalent to reparameterizing the space so that the maximum remains the same, but the function becomes easier to optimize, enabling gradient ascent to converge faster.

Natural Policy Gradient

NPG chooses the preconditioner Q to be the (pseudo)-inverse of the *Fisher information matrix*: $F_{\theta} \in \mathbb{R}^{d \times d}$ (where d is the dimension of the parameter θ):

$$F_{\theta} := \mathbb{E}_{s \sim d^{\pi_{\theta}}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)} [\nabla_{\theta} \log(\pi_{\theta}(a|s)) \nabla_{\theta} \log(\pi_{\theta}(a|s))^{\mathsf{T}}] = \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\frac{\partial^{2} \mathsf{KL}(\pi_{\theta}||\pi_{\theta'})}{\partial \theta'^{2}} \right]_{\theta' = \theta}$$

- \bullet F_{θ} is symmetric, positive semi-definite and corresponds to the Hessian of the KL divergence.
- F_{θ} is also the covariance of the score function $\frac{\partial \ln(\pi_{\theta}(a|s))}{\partial \theta}$ and determines the amount of information the observed data has about the true (unknown) parameter generating the data.
- The NPG update can be written as: $\theta_{t+1} = \theta_t + \eta \frac{F_{\theta_t}^{\dagger} \nabla J(\theta_t)}{F_{\theta_t}^{\dagger}}$.
- Next, we will instantiate the NPG update for the tabular softmax policy parameterization, and prove that preconditioning by F_{θ}^{\dagger} enables NPG to converge at a faster $\exp(-T)$ rate, compared to softmax PG.

For the tabular softmax policy parameterization, $\theta \in R^{SA}$ and $\pi_{\theta}(\cdot|s) = h(\theta(s,\cdot))$ such that $\pi_{\theta}(a|s) = \frac{\exp(\theta(a|s))}{\sum_{a'} \exp(\theta(a'|s))}$. Recall that $\frac{\partial \pi_{\theta}(\cdot|s)}{\partial \theta(s,\cdot)} = H(\pi_{\theta}(\cdot|s)) = \operatorname{diag}(\pi_{\theta}) - \pi_{\theta} \pi_{\theta}^{T}$.

We can calculate the Jacobian element-wise, and derive the following relation: for any s', a', $\frac{\partial \log(\pi_{\theta}(a'|s'))}{\partial \theta(s,a)} = \mathcal{I}\left\{s' = s\right\} \left[\mathcal{I}\left\{a' = a\right\} - \pi_{\theta}(a|s)\right]$. (Prove in Assignment 4!).

Claim: For the tabular softmax policy parameterization, $[F_{\theta}^{\dagger} \nabla J(\theta)]_{s,a} = \frac{\alpha^{\pi_{\theta}}(s,a)}{1-\gamma}$.

Proof: Define $w_{\theta} := \arg\min_{w} \|F_{\theta}w - \nabla J(\theta)\|^2 = F_{\theta}^{\dagger} \nabla J(\theta)$. First, let us calculate $F_{\theta}w$ for a general $w \in \mathbb{R}^{SA}$.

$$F_{\theta}w = \mathbb{E}_{s' \sim d^{\pi_{\theta}}} \mathbb{E}_{a' \sim \pi_{\theta}(\cdot|s')} [\nabla_{\theta} \log(\pi_{\theta}(a'|s')) \nabla_{\theta} \log(\pi_{\theta}(a'|s'))^{\mathsf{T}}] w$$

$$= \sum_{s'} d^{\pi_{\theta}}(s') \sum_{a'} \pi_{\theta}(a'|s') [\nabla_{\theta} \log(\pi_{\theta}(a'|s')) \nabla_{\theta} \log(\pi_{\theta}(a'|s'))^{\mathsf{T}}] w$$

$$F_{\theta}w = \sum_{s'} d^{\pi_{\theta}}(s') \sum_{a'} \pi_{\theta}(a'|s') \underbrace{\langle \nabla_{\theta} \log(\pi_{\theta}(a'|s')), w \rangle}_{:=C(s',a')} \nabla_{\theta} \log(\pi_{\theta}(a'|s'))$$

 $F_{\theta}w = \sum_{s'} d^{\pi_{\theta}}(s') \sum_{a'} \pi_{\theta}(a'|s') C(s',a') \nabla_{\theta} \log(\pi_{\theta}(a'|s'))$ where $C(s',a') = \langle \nabla_{\theta} \log(\pi_{\theta}(a'|s')), w \rangle$. Recall that,

$$\begin{split} & [\nabla_{\theta} \log(\pi_{\theta}(a'|s'))]_{s,a} = \frac{\partial \log(\pi_{\theta}(a'|s'))}{\partial \theta(s,a)} = \mathcal{I}\left\{s'=s\right\} \left[\mathcal{I}\left\{a'=a\right\} - \pi_{\theta}(a|s)\right] \\ & \Longrightarrow \left[F_{\theta}w\right]_{s,a} = d^{\pi_{\theta}}(s) \sum_{a'} \pi_{\theta}(a'|s) \, C(s,a') \, \left[\mathcal{I}\left\{a'=a\right\} - \pi_{\theta}(a|s)\right] \\ & C(s',a') = \langle \nabla_{\theta} \log(\pi_{\theta}(a'|s')), w \rangle = \sum_{\tilde{s},\tilde{a}} \frac{\partial \log(\pi_{\theta}(a'|s'))}{\partial \theta(\tilde{s},\tilde{a})} \, w(\tilde{s},\tilde{a}) \\ & = \sum_{\tilde{s},\tilde{a}} \mathcal{I}\left\{s'=\tilde{s}\right\} \left[\mathcal{I}\left\{a'=\tilde{a}\right\} - \pi_{\theta}(\tilde{a}|\tilde{s})\right] \, w(\tilde{s},\tilde{a}) = \sum_{\tilde{a}} w(s',\tilde{a}) \, \left[\mathcal{I}\left\{a'=\tilde{a}\right\} - \pi_{\theta}(\tilde{a}|s')\right] \\ & \Longrightarrow C(s',a') = w(s',a') - \underbrace{\langle \pi_{\theta}(\cdot|s'), w(s',\cdot) \rangle}_{:=c(s')} \\ & \Longrightarrow \left[F_{\theta}w\right]_{s,a} = d^{\pi_{\theta}}(s) \sum_{a'} \pi_{\theta}(a'|s) \left[w(s,a') - c(s)\right] \left[\mathcal{I}\left\{a'=a\right\} - \pi_{\theta}(a|s)\right] \right] \end{split}$$

Recall that
$$[F_{\theta}w]_{s,a} = d^{\pi_{\theta}}(s) \sum_{a'} \pi_{\theta}(a'|s) \left[[w(s,a') - c(s)] \left[\mathcal{I} \{a' = a\} - \pi_{\theta}(a|s) \right] \right]$$
 where $c(s) := \langle \pi_{\theta}(\cdot|s), w(s, \cdot) \rangle$. Simplifying,
$$[F_{\theta}w]_{s,a} = d^{\pi_{\theta}}(s) \sum_{a'} \pi_{\theta}(a'|s) \left[w(s,a') \mathcal{I} \{a' = a\} - c(s) \mathcal{I} \{a' = a\} - w(s,a') \pi_{\theta}(a|s) + c(s) \pi_{\theta}(a|s) \right]$$

$$= d^{\pi_{\theta}}(s) \left[\pi_{\theta}(a|s) w(s,a) - \pi_{\theta}(a|s) c(s) - \pi_{\theta}(a|s) \sum_{a'} \pi_{\theta}(a'|s) w(s,a') + c(s) \pi_{\theta}(a|s) \right]$$

$$= d^{\pi_{\theta}}(s) \pi_{\theta}(a|s) \left[w(s,a) - c(s) \right]$$
 (Since $\sum_{a'} \pi_{\theta}(a'|s) w(s,a') = c(s)$)
$$||F_{\theta}w - \nabla J(\theta)||^2 = \sum_{s} \sum_{a} \left[[F_{\theta}w]_{s,a} - [\nabla J(\theta)]_{s,a} \right]^2$$

$$= \sum_{s} \sum_{a} \left[d^{\pi_{\theta}}(s) \pi_{\theta}(a|s) \left(w(s,a) - c(s) - \frac{\alpha^{\pi_{\theta}}(s,a)}{1 - \gamma} \right) \right]^2$$
 (Using the expression for the policy gradient for the tabular softmax parameterization)

Recall that $F_{\theta}^{\dagger} \nabla J(\theta) = w_{\theta} = \arg\min_{w} \|F_{\theta}w - \nabla J(\theta)\|^2$

$$= \arg\min_{w} \sum_{s} \sum_{a} \left[d^{\pi_{\theta}}(s) \, \pi_{\theta}(a|s) \left(w(s,a) - \sum_{a'} \pi_{\theta}(a'|s) \, w(s,a') - \frac{\mathfrak{a}^{\pi_{\theta}}(s,a)}{1-\gamma} \right) \right]^{2}$$

Setting $w_{s,a} = \frac{\mathfrak{a}^{\pi_{\theta}}(s,a)}{1-\gamma}$ ensures that each (s,a) term is zero since $\sum_{a'} \mathfrak{a}^{\pi_{\theta}}(s,a') \pi_{\theta}(a'|s) = 0$

$$\implies [F_{ heta}^{\dagger} \,
abla J(heta)]_{s, a} = rac{\mathfrak{a}^{\pi_{ heta}}(s, a)}{1 - \gamma}$$

Comparing the preconditioned gradient to the softmax policy gradient $d^{\pi}(s) \pi_{\theta}(a|s) = \frac{a^{\pi_{\theta}}(s,a)}{1-\gamma}$,

- The preconditioned gradient does not depend on $d^{\pi}(s)$ or $\pi_{\theta}(a|s)$.
- As $\pi_{\theta} \to \pi^*$, for $a \neq a^*(s)$, $\pi_{\theta}(a|s) \to 0$. Consequently, $\|\nabla_{\theta}J(\theta)\|$ becomes smaller with increasing number of iterations and the resulting method becomes slower.
- Since the NPG update does not depend on $\pi_{\theta}(a|s)$, it does not suffer from the above problem, resulting in faster convergence.

References i

- Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun, *Pc-pg: Policy cover directed exploration for provable policy gradient learning*, Advances in neural information processing systems **33** (2020), 13399–13412.
- Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang, *Provably efficient exploration in policy optimization*, International Conference on Machine Learning, PMLR, 2020, pp. 1283–1294.
- Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári, *Optimistic natural policy gradient: a simple efficient policy optimization framework for online rl*, arXiv preprint arXiv:2305.11032 (2023).
- Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans, *On the global convergence rates of softmax policy gradient methods*, International Conference on Machine Learning, PMLR, 2020, pp. 6820–6829.