

Química 2.º Bach

Rodrigo Alcaraz de la Osa y Ángela Alcaraz de la Osa

Regla del octeto

La **configuración más estable** para cualquier átomo es contar con **ocho electrones** en la **capa exterior**.

Los elementos tenderán a **unirse** para completar su capa exterior, **intercambiando** (cediendo/captando → enlace **iónico**) o **compartiendo electrones** (enlace **covalente**), y así **ganar estabilidad**.

Parametros moleculares

Potencial de Morse: representa la energía frente a la distancia entre átomos. Según estos se van aproximando, se ponen de manifiesto fuerzas atractivas, pero si se acercan demasiado actúan fuerzas repulsivas. Traducida y adaptada de

https://ch301.cm.utexas.edu/section2.php?target=atomic/bonding/covalent-bonding.html.

Energía de enlace Es la energía desprendida al formar el enlace desde la separación *infinita* hasta alcanzar la longitud de enlace. Es una medida de la FORTALEZA de un ENLACE QUÍMICO (cuanto mayor sea esta energía, más fuerte será el enlace).

Longitud de enlace Distancia media entre los núcleos de dos átomos enlazados. Se trata de la distancia óptima en la que la atracción es máxima y la repulsión mínima.

Ángulo de enlace Ángulo formado por tres átomos enlazados consecutivamente.

Polaridad de enlace Es la separación de cargas eléctricas a lo largo de un enlace, dando lugar a un MOMENTO DIPOLAR ELÉCTRICO. La diferencia de electronegatividad, $\Delta \chi$, entre los átomos de un enlace determina su POLARIDAD:

Una molécula será polar si el momento dipolar total (suma vectorial) es distinto de cero.

La molécula de BF₃ tiene tres enlaces polares pero debido a su geometría trigonal plana el momento dipolar resultante es nulo. Fuente: https://commons.wikimedia.org/wiki/File:

Boron-trifluoride-elpot-3D-vdW.png.

Enlace ionico

Es un enlace que involucra la atracción electrostática entre iones de signo opuesto.

El enlace iónico suele darse entre metales (tienden a ceder electrones, convirtiéndose en cationes) y no metales (tienden a captar electrones, convirtiéndose en aniones).

Cada ion tiende a rodearse de un número determinado de iones de signo opuesto (**número de coordinación**). Se forman así **redes cristalinas** compactas y **neutras** con diferentes geometrías según el tipo de iones que las forman.

Energía de red o energía reticular $U_{\rm R}$

Es la energía liberada (proceso exotérmico) al formar la red a partir de sus iones en estado gaseoso. Cuanto mayor sea su valor más estable es la red y mayor será el punto de fusión y menor su solubilidad.

Ciclo de Born-Haber Formación de un compuesto iónico a partir de sus elementos.

Ciclo de Born-Haber para la formación de un mol de fluoruro de litio (LiF).

Cada energía tendrá su signo según sea desprendida (< 0) o absorbida (> 0).

Basada en https://commons.wikimedia.org/wiki/File:Born-haber_cycle_LiF.svg.

Ecuación de Born-Landé Permite calcular la energía de red $U_{\rm R}$:

$$U_{\rm R} = -\frac{N_{\rm A} M z^+ z^- e^2}{4\pi\epsilon_0 r_0} \left(1 - \frac{1}{n}\right) \propto -\frac{z^+ z^-}{r_0},$$

donde $N_{\rm A} = 6.022 \times 10^{23} \, {\rm mol}^{-1}$ es la constante de Avogadro; M es la constante de Madelung, relacionada con la geometría del cristal; z^+ y z^- son los números de carga del catión y del anión, respectivamente; $e = 1.6 \times 10^{-19} \, {\rm C}$ es la carga elemental, $\epsilon_0 = 8.85 \times 10^{-12} \, {\rm C}^2 \, {\rm N}^{-1} \, {\rm m}^{-2}$ es la permitividad eléctrica del vacío; r_0 es la distancia al ion más cercano; y 5 < n < 12 es el exponente de Born (experimental).

Propiedades de las sustancias iónicas

- Debido a las intensas fuerzas electrostáticas entre los iones, suelen tener temperaturas de fusión y ebullición muy elevadas, por lo que la mayoría son sólidos cristalinos a temperatura ambiente.
- Ante **golpes**, el **alineamiento** de los **iones** positivos y negativos **puede perderse**, por lo que son muy **frágiles**, aunque también muy **duros**.
- Son solubles en disolventes polares (serán más solubles cuanto menor sea $U_{\rm R}$).
- Fundidos o en disolución, conducen la corriente eléctrica.

Enlace metalico

El enlace metálico es el enlace químico que mantiene unidos a los átomos de un metal entre sí. Surge de la atracción electrostática entre los electrones de conducción y los cationes metálicos.

Modelo del gas electrónico

Modelo del gas electrónico, con los cationes en posiciones fijas y los electrones moviéndose libremente en una *nube*. Fuente: https://commons.wikimedia.org/wiki/File:Metalic_bond_model.svg.

Teoría de bandas

Comparación de la **estructura** de **bandas** electrónicas de un **metal**, un **semiconductor** y un **aislante**.

Traducida y adaptada de https://commons.wikimedia.org/wiki/File:Isolator-metal.svg.

Propiedades de las sustancias metálicas

- Apariencia brillante.
- Son buenos conductores del calor y de la electricidad.
- Forman **aleaciones** con otros metales.
- Tienden a ceder (perder) electrones al reaccionar con otras sustancias.
- La mayoría son **sólidos** a temperatura ambiente (**Hg** es 🌢).

Química 2.º Bach

Rodrigo Alcaraz de la Osa y Ángela Alcaraz de la Osa

Enlace covalente

Es un enlace químico que implica la **compartición** de **pares** de **electrones** entre átomos. El **enlace covalente** suele darse **entre no metales** (tendencia a captar electrones).

Representación de la **unión covalente** entre dos átomos de **flúor** (F) para formar F₂, con un par de electrones compartidos. Adaptada de

https://commons.wikimedia.org/wiki/File:Covalent_bond_fluorine.svg.

Estructuras de Lewis

Se trata de diagramas que muestran la unión entre los átomos de una molécula y los pares solitarios de electrones que pueden existir en la molécula.

Ejemplos

Resonancia

La RESONANCIA es una forma de describir el enlace en ciertas moléculas mediante la combinación de varias ESTRUCTURAS RESONANTES cuyo conjunto se conoce como un HÍ-BRIDO de RESONANCIA. Es especialmente útil para describir los ELECTRONES DESLO-CALIZADOS (enlaces = en distintas posiciones) en ciertas moléculas o iones poliatómicos.

Propiedades de las sustancias covalentes moleculares

- Debido a las débiles interacciones entre moléculas covalentes, suelen tener temperaturas de fusión y ebullición bajas (muchos compuestos covalentes son líquidos o gases a temperatura ambiente).
- Son solubles en disolventes polares y apolares.
- En estado **sólido** son compuestos **blandos** y **frágiles**.
- Son malos conductores del calor y de la electricidad.

Propiedades de las sustancias covalentes cristalinas

- Debido a los fuertes enlaces covalentes entre los átomos, suelen tener temperaturas de fusión y ebullición altas, por lo que son sólidos a temperatura ambiente.
- Son sustancias muy duras aunque frágiles.
- Son insolubles.
- Suelen ser malos conductores (no así el grafito o el grafeno).

Geometria molecular

TRPECV

La Teoría de Repulsión de Pares de Electrones de la Capa de Valencia (TRPECV) se basa en que, como los electrones de valencia se repelen unos a otros, estos tienden a adoptar una disposición espacial que minimiza dicha repulsión.

	1							
DENSIDADES	NÚ1	NÚMERO DE PARES SOLITARIOS (EN AMARILLO)						
ELECTRÓNICAS	0	1	2	3				
2	Lineal, 180°							
3	Trigonal plana, 120°	Angular, < 120°						
4	Tetraédrica, 109.5°	Piramidal trigonal, < 109.5°	Angular, < 109.5°	Lineal, 180°				
5	Bipiramidal trigonal	Balancín	Forma de T	Lineal, 180°				
6	Octaédrica	Piramidal cuadrada	Cuadrada plana					

Partiendo de las estructuras de Lewis, se determinan las DENSIDADES ELECTRÓNICAS o direcciones de enlace, teniendo en cuenta que, para ver la repulsión, tanto los enlaces sencillos, dobles y triples así como los pares solitarios afectan como una única densidad electrónica (dirección de enlace).

TEV/Hibridación

La Teoría del Enlace de Valencia (TEV) se basa en que los e⁻ compartidos se encuentran en una zona de solapamiento orbital:

SOLAPAMIENTO	ENLACE	ORBITALES				
Frontal (orbitales enfrentados)	σ (sencillo)	s + s	s + p	p + p		
Lateral (orbitales paralelos)	π (múltiple)		p + p			

La HIBRIDACIÓN consiste en combinar orbitales atómicos del átomo central para formar ORBITALES HÍBRIDOS energéticamente iguales y orientados en la dirección del enlace.

	hibridación sp	HIBRIDACIÓN sp ²	HIBRIDACIÓN sp ³
ORBITALES ATÓMICOS	s + p (2)	s + p + p (3)	s + p + p + p (4)
ORBITALES HÍBRIDOS	180°	120°	109,5°
GEOMETRÍA (EJEMPLO)	Lineal (BeCl ₂)	Trigonal plana (BF ₃)	Tetraédrica (CH ₄)

Fuerzas intermoleculares

Las **fuerzas intermoleculares** son las **fuerzas** que existen **entre** las **moléculas**, incluyendo las fuerzas de atracción o repulsión que actúan entre las moléculas y otros tipos de partículas vecinas, por ejemplo, átomos o iones. Las fuerzas intermoleculares son **débiles en relación con** las **fuerzas intramoleculares** (las que mantienen unida una molécula). Son además **responsables** del **estado de agregación**, ya que su fortaleza está relacionada con las temperaturas de fusión y ebullición de la sustancia.

Fuerzas de van der Waals

Atracción intermolecular entre moléculas de **cloruro de hidrógeno**, HCl. Traducida y adaptada de https://www.coursehero.com/sg/organic-chemistry/intermolecular-forces/.

Se pueden dar entre **moléculas polares** (dipolo-dipolo, más fuertes cuanto mayor sea la polaridad de la molécula), y **apolares** (llamadas **fuerzas** de **dispersión** de **London**, más fuertes cuanto más grandes y masivas son las moléculas involucradas).

Enlaces de hidrógeno

Son las **fuerzas** intermoleculares más **intensas**. Se dan entre moléculas que contienen átomos de **hidrógeno** unidos a átomos de **nitrógeno** (N), **oxígeno** (O) o **flúor** (F).

Los enlaces de hidrógeno son responsables de:

- Que el **agua** (H₂O) tenga una **temperatura** de **ebullición anormalmente alta** (100 °C a presión atmosférica).
- La estructura de proteínas y ácidos nucleicos, como la doble hélice del ADN ...
- La estructura de polímeros.

Enlaces de hidrógeno entre átomos de H y O en moléculas de **agua** (H₂O). Traducida y adaptada de

https://www.coursehero.com/sg/organic-chemistry/intermolecular-forces/.

cristal covalente >	sólido metálico	>	cristal iónico		enlaces de H	>	dipolo- dipolo	· >	London (Ne)
(grafito) > 3600 °C	(Ti) 1668°C		(NaCl) 801°C	(H ₂ O) 0°C		(CO) -205°C		-248.4°C	

Mayor fortaleza, temperaturas de fusión y ebullición más elevadas