Fysica: mechanica, optica en moderne fysica

Bert De Saffel

2017-2018

Inhoudsopgave

1	Fou	tentheorie	3
	1.1	Testvragen	3
	1.2	Vorm	3
	1.3	Soorten	4
		1.3.1 Fout op meting	4
		1.3.2 Statistische fout	4
		1.3.3 Fout op berekening	5
Ι	\mathbf{M}	echanica	8
2	Bev	veging in 2 en 3 dimensies	9
	2.1	Begrippen	9
	2.2	Formules	9
	2.3	Conceptvraag: Helikopter	10
	2.4		10
	2.5		10
3	Kra		12
	3.1	Begrippen	12
	3.2	Formules	12
4	Toe	passen wetten van Newton	13
	4.1	Begrippen	13
	4.2	Formules	13
5	Arb	eid, energie en vermogen	14
6	Beh	oud van energie	15

1 2	Systemen van deeltjes	16
8 I	Rotatiebewegingen	17
9 I	Rotatie vektoren en impulsmoment	18
10 5	Statisch evenwicht	19
11 7	Trillingen	20
12 (Golven	21
13 I	Electromagnetische golven	22
II	Optica	23
14 I	Breking en terugkaatsing	24
	or ching on torughadoring	
15 I		25
	Beelden en optische instrumenten	
16 I	Beelden en optische instrumenten Interferentie en diffractie	25
16 I	Beelden en optische instrumenten Interferentie en diffractie	25 26
16 I 17 I	Beelden en optische instrumenten Interferentie en diffractie Deeltjes en golven	25 26

Hoofdstuk 1

Foutentheorie

1.1 Testvragen

De oefeningen op Curios zijn analoog aan de test

- 1. Foute notatie omvormen naar juiste notatie.
- 2. Complete foute notatie. De eenheid en macht van 10 moet helemaal achteraan staan. De meetfout moet 1 of 2 beduidende cijfers bedragen en het waardegetal moet even nauwkeurig zijn als de meetfout.
- 3. Meetfoutberekening (Combinatie van som, verschil, product, deling, macht, sin en cos).
- 4. Fout op gemiddelde. Je moet de standaarddeviatie kunnen uitrekenen van gegeven data.
- 5. Grafiekanalyse. Neem de formule, vorm deze om naar y = ax + b. Kijk in uw formule wat overeenkomt met a en b.

1.2 Vorm

Gemeten waarde \pm absolute fout(AF)

- $6,458 \pm 0,027 \text{ mV}$
- $8.67 \pm 0.05 \cdot 10^3 \text{m}$

Relative Fout(RF) = $\frac{AF}{Gemeten\ waarde}$

• RF =
$$\frac{0.027}{6.458}$$
 = 0.04 = 0.4%

• RF =
$$\frac{0.05 \cdot 10^3}{8.67}$$
 = 5.77 = 577%

1.3 Soorten

- 1. Fout op meting
- 2. Statistische fout
- 3. Fout op berekening

1.3.1 Fout op meting

- Is afhankelijk van de nauwkeurigheid van het meettoestel
- Op een meetlat: $\pm 1mm$
- Op een chronometer: $\pm 0.01s$

Meten van de lengte van een tafel met een meetlat: $5 \pm 1.10^{-3} m$

1.3.2 Statistische fout

Dezelfde lengten van een tafel 5 keer met
en met een meetlat = Het gemiddelde nemen van de gemeten waarden en het gemiddelde van de absolute fouten

Voorbeeld: We meten de slingerperiode met een chronometer tot op 0.01s nauwkeurig een aantal keer. De resultaten zijn 3.29s; 3.12s; 3.45s; 3.18s; 3.21s; 3.26s. Wat is de gemiddelde periode?

- 1. Gemiddelde = 3,25
- 2. standaarddeviatie = 0.114
- 3. Fout op gemiddelde = $\frac{stdev}{\sqrt{6}}$ = 0,05
- 4. Resultaat = $3,25 \pm 0,05s$

Grafiekanalyse

$$y = 0.1134x - 0.0575$$

$$delta l = (g/k)x + 0$$

$$(g/k) = 0.1134 \rightarrow k = (g/0.1134)$$

$$0 = -0.0575 \pm 0.19$$

$$0 = -0.06 \pm 0.19$$

1.3.3 Fout op berekening

Voor de voorbeelden worden volgende X en Y gebruikt:

$$X = 16, 5 \pm 0.5$$

 $Y = 237, 1 \pm 0.9$

• Som/Verschil: $AF(R) = \sqrt{AF(X)^2 + AF(Y)^2}$

1.
$$X + Y = ?$$

2.
$$AF(R) = \sqrt{0.5^2 + 0.9^2}$$

3.
$$AF(R) = \sqrt{1,06}$$

4.
$$AF(R) = 1,03$$

5.
$$16, 5 + 237, 1 \pm 1, 03$$

6.
$$253, 6 \pm 1, 0$$

1.
$$X - Y = ?$$

2.
$$AF(R)_{X-Y} = AF(R)_{X+Y}$$

3.
$$220, 6 \pm 1, 0$$

• Product/Deling: $RF(R) = \sqrt{RF(X)^2 + (RF(Y)^2)^2}$

1.
$$X * Y = ?$$

2.
$$RF(R) = \sqrt{\left(\frac{0.5}{16.5}\right)^2 + \left(\frac{0.9}{237.1}\right)^2}$$

3.
$$RF(R) = 0.03$$

4.
$$16, 5 * 237, 1 = 3912, 15$$

5.
$$AF(R) = 3912, 15 * RF(R)$$

6.
$$AF(R) = 3912, 15 * 0, 03$$

7.
$$AF(R) = 117,38$$

8.
$$3912, 2 \pm 117, 4$$

1.
$$\frac{X}{Y} = ?$$

2.
$$RF(R)_{\frac{X}{Y}} = RF(R)_{X*Y}$$

3.
$$RF(R) = 0.03$$

4.
$$\frac{16.5}{237.1} = 0.0696$$

5.
$$AF(R) = 0,0696 * 0.03$$

6.
$$AF(R) = 0,0021$$

7.
$$0,0696 \pm 0,0021$$

• Macht/Wortel: RF(R) = nRF(X)

1.
$$x^3 = ?$$

$$2. RF(R) = 3RF(X)$$

3.
$$RF(R) = 0.09$$

4.
$$(16,5)^3 \pm 0,09$$

5.
$$4492, 13 \pm 0, 09$$

1.
$$\sqrt[3]{x} = ?$$

2.
$$x^{\frac{1}{3}}$$

3.
$$RF(R) = \frac{1}{3}RF(X)$$

4.
$$RF(R) = 0, 1$$

5.
$$\sqrt[3]{16,5} \pm 0,1$$

6.
$$2,5\pm0,1$$

Functies

1.
$$tg(45\ 45'\pm 3') = ?$$

2.
$$3' = \frac{3}{60} graden = \frac{\pi}{3600} rad$$

3.
$$AF(tg(X)) = \frac{1}{\cos^2 x} AF(X)$$

4.
$$AF(tg(X)) = \frac{1}{\cos^2 x} * \frac{\pi}{3600}$$

- 5. AF(tg(X)) = 0,0018
- 6. $tg(45\ 45') \pm 0,0018$
- 7. $1,0265 \pm 0,0018$

Deel I Mechanica

Hoofdstuk 2

Beweging in 2 en 3 dimensies

2.1 Begrippen

- Vector: Een eenheid dat zowel een richting als een hoeveelheid heeft. Dit wordt voorgesteld door een lijnstuk met een pijl dat de richting aangeeft en de lengte die de grootte aangeeft.
- **Eenheidsvector**: Een vector met als grootte 1.
- Netto verplaatsing: De totale afstand van punt a tot punt b in vogelvlucht.
- Afgelegde afstand: De totale afstand die afgelegd werd om van punt a tot punt b te bekomen.

2.2 Formules

- Snelheid: $v = \frac{s}{t}$
- Versnelling: $a = \frac{v}{t}$
- Projectile motion: $y = x.tan(\theta_0) \frac{g}{2v_0^2 cos^2 \theta_0} * x^2$
- Uniforme circulaire beweging: $a = \frac{v^2}{r}$

2.3 Conceptvraag: Helikopter

• Vraag: Een helikopter vliegt horizontaal en laat in positie A een kist met hulpgoederen vallen. Welke baan volgt die kist (wrijving met de lucht verwaarlozen)?

• Antwoord:

- 1. Baan (a) kan niet, de kist zal nooit achteruit gaan.
- 2. Baan (b) kan niet, dit zou enkel gebeuren als de helikopter stil staat.
- 3. Baan (c) kan niet, de zwaartekracht blijkt geen impact te hebben op de kist.
- 4. Baan(d) is correct. De kist zal eerst de snelheid van het vliegtuig overnemen, en dan zo alsmaar sneller naar beneden vallen door de zwaartekracht.
- 5. Baan(e) kan niet, de kist blijft te lang op dezelfde hoogte.

2.4 Conceptvraag: Snelheid en versnelling

• Vraag: Gegeven zijn de snelheid en versnelling van een bewegende persoon. In welk geval vertraagt de persoon en wijkt af naar rechts(vanuit het standpunt van de persoon)

• Antwoord:

- 1. Bij (A) blijft de snelheid constant.
- 2. Bij (B) vertraagt de snelheid en wijkt af naar rechts.
- 3. Bij (C) versnelt de snelheid en wijkt af naar links.
- 4. Bij (D) versnelt de snelheid en wijkt af naar rechts.
- 5. Bij (E) vertraagt de snelheid.

2.5 Oefeningen

3.48: Een bioloog kijkt door een microscoop en ziet een bacterie op positie $r_1=2,2\overrightarrow{i}+3,7\overrightarrow{j}-1,2\overrightarrow{k}\mu m$. Na 6,2 seconden bevindt de bacterie zich op positie $r_2=4,6\overrightarrow{i}+1,9\overrightarrow{k}\mu m$

$$\overrightarrow{v}_{gem} = \frac{(4,4-2,2)\overrightarrow{i} + (0-3,7)\overrightarrow{j} + (1,9-(-1,2))\overrightarrow{k}}{6,2} = 0,39\overrightarrow{i} - 0,60\overrightarrow{j} + 0,50\overrightarrow{k}$$

$$V_{gem} = ?$$

3.44: GPS satellieten draaien rond de aarde op een hoogte van ongeveer 20.000km. Op deze hoogte is de gravitatiekracht slechts 5,8% ten opzichte van deze op het aardoppervlak. Bepaal de omwentelingsperiode van deze GPS satellieten. ($R_{aarde} = 6,37.10^6 m$)

Hoofdstuk 3

Kracht en beweging

3.1 Begrippen

- Eerste wet van Newton: Een voorwerp in uniforme beweging blijft in uniforme beweging. Een voorwerp in rust blijft in rust.
- Tweede wet van Newton: De verandering in snelheid is gelijk aan de netto kracht die uitgeoefend wordt op het voorwerp
- Derde wet van Newton: Als voorwerp A een kracht uitoefend op voorwerp B, dan zal B een tegengestelde kracht uitoefenen op A

3.2 Formules

- Tweede wet van Newton: $\overrightarrow{F}_{net} = m \overrightarrow{a}$ met \overrightarrow{F}_{net} de som van de vectoren van alle krachten die worden uitgeoefend op het voorwerp, en ma het product van de massa van het voorwerp en zijn versnelling.
- Wet van Hooke (veren): $\underline{F_s = -kx}$ met k de krachtconstante van de veer en x de afstand
- Lineair momentum: $\overrightarrow{p} = m\overrightarrow{v}$ met \overrightarrow{p} de impuls, m de massa en \overrightarrow{v} de snelheid.

Hoofdstuk 4

Toepassen wetten van Newton

4.1 Begrippen

• Wrijving:

4.2 Formules

• formule

Hoofdstuk 5 Arbeid, energie en vermogen

Hoofdstuk 6 Behoud van energie

Hoofdstuk 7 Systemen van deeltjes

Hoofdstuk 8 Rotatiebewegingen

Hoofdstuk 9 Rotatie vektoren en impulsmoment

Hoofdstuk 10 Statisch evenwicht

Hoofdstuk 11 Trillingen

Hoofdstuk 12 Golven

Hoofdstuk 13 Electromagnetische golven

Deel II Optica

Hoofdstuk 14 Breking en terugkaatsing

Hoofdstuk 15 Beelden en optische instrumenten

Hoofdstuk 16 Interferentie en diffractie

Hoofdstuk 17 Deeltjes en golven

Deel III Kernfysica

Hoofdstuk 18 Kernfysica