

Decision Trees

Emily Fox & Carlos Guestrin
Machine Learning Specialization
University of Washington

©2015-2016 Emily Fox & Carlos Guestrin

Predicting potential loan defaults

What makes a loan risky?

Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair

Credit History

Income

Term

Personal Info

Income

Loan terms

How soon do I need to pay the loan?

Example: 3 years,

5 years,...

Personal information

Age, reason for the loan, marital status,...

Example: Home loan for a married couple

Intelligent application

Classifier review

This module ... decision trees

Decision trees: Intuition

What does a decision tree represent?

What does a decision tree represent?

15

Scoring a loan application

 \mathbf{x}_{i} = (Credit = poor, Income = high, Term = 5 years)

Decision tree model

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Decision tree learning task

@2015_2016 Emily Fox & Carlos Guestrin

Carlos Guestrin Machine Learning Specialization

Learn decision tree from data?

Decision tree learning problem

Training data: N observations (\mathbf{x}_i, y_i)

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Quality metric: Classification error

Error measures fraction of mistakes

```
Error = # incorrect predictions # examples
```

- Best possible value : 0.0

- Worst possible value: 1.0

Find the tree with lowest classification error

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)

Simple (greedy) algorithm finds "good" tree

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Greedy decision tree learning: *Algorithm outline*

@2015_2016 Emily Fox & Carlos Guestrin

Step 1: Start with an empty tree

Step 2: Split on a feature

Feature split explained

Step 3: Making predictions

Step 4: Recursion

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Problem 1: Feature split selection

Problem 2: Stopping condition

Recursion

Feature split learning

Decision stump learning

Start with the data

Assume N = 40, 3 features

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Start with all the data

Compact visual notation: Root node

Decision stump: Single level tree

Visual Notation: Intermediate nodes

Making predictions with a decision stump

For each intermediate node, set $\hat{y} = majority value$

Selecting best feature to split on

How do we learn a decision stump?

How do we select the best feature?

Intuitively, a better split is one that gives you lowest classification error. Better? Choice 1: Split on Credit Choice 2: Split on Term Loan status: Loan status: Root Root Safe Risky Safe Risky 22 18 22 18 Credit? Term? 3 years 5 years excellent fair poor 9 4 4 14 16 4 14

How do we measure effectiveness of a split?

Error = # mistakes # data points

Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data

Error =	18
=	

Tree	Classification error	
(root)	0.45	

Choice 1: Split on credit history?

Choice 1: Split on Credit

©2015-2016 Emily Fox & Carlos Guestrin

How good is the split on Credit?

Choice 1: Split on Credit

Split on Credit: Classification error

Choice 1: Split on Credit

$$Error = \underbrace{4+4}_{40}$$

$$= 0.20$$

Tree	Classification error	
(root)	0.45	
Split on credit	0.2	

Choice 2: Split on Term?

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

$$Error = \frac{4+6}{40}$$
$$= 0.25$$

Tree	Classification error	
(root)	0.45	
Split on credit	0.2	
Split on term	0.25	

Choice 1 vs Choice 2

Tree	Classification error	
(root)	0.45	
split on credit	0.2	-First
split on loan term	0.25	35

Choice 1: Split on Credit

Choice 2: Split on Term

57

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature $h_i(x)$: < credit, ten, income
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error split
- Chose feature $h^*(x)$ with lowest classification error f

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Decision Tree Learning: Recursion & Stopping conditions

Learn decision tree from data?

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

We've learned a decision stump, what next?

Tree learning = Recursive stump learning

Second level

65

Final decision tree

66

Simple greedy decision tree learning

Pick best feature to split on Learn decision stump with this split For each leaf of decision stump, recurse When do we stop??? 67

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Stopping condition 1: All data agrees on y

Stopping condition 2: Already split on all features

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions 1 & 2

Recursion

Decision tree model

Traversing a decision tree

 \mathbf{x}_{i} = (Credit = poor, Income = high, Term = 5 years)

Decision tree prediction algorithm

predict(tree_node, input)

- If current tree_node is a leaf:
 - return majority class of data points in leaf
- else:
 - next_note = child node of tree_node whose feature value agrees with input
 - return predict(next_note, input)

Multiclass classification & predicting probabilities

Multiclass prediction

Multiclass decision stump

N = 40, 1 feature, 3 classes

Credit	у	
excellent	safe	
fair	risky	
fair	safe	
poor	danger	
excellent	risky	
fair	safe	
poor	danger	
poor	safe	
fair	ir safe	

81

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Predicting probabilities with decision trees

Decision tree learning: *Real valued features*

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Split on each numeric value?

Alternative: Threshold split

88

Threshold splits in 1-D

Visualizing the threshold split

Split on Age >= 38

Depth 2: Split on Income >= \$60K

Each split partitions the 2-D space

Finding the best threshold split

Finding the best threshold split

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B

Only need to consider mid-points

Threshold split selection algorithm

/ Income

- Step 1: Sort the values of a feature $h_j(\mathbf{x})$: Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, ... \mathbf{v_N}\}$ denote sorted values
- Step 2:
 - -Fori = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_j(\mathbf{x}) >= \mathbf{t}_i$
 - Chose the t with the lowest classification error

Logistic regression

Feature	Value	Weight Learned
h ₀ (x)	1	0.22
h ₁ (x)	x [1]	1.12
h ₂ (x)	x [2]	-1.07

106

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Depth 1: Split on x[1]

Machine Learning Specialization

Depth 2

Threshold split caveat

Decision boundaries

Comparing decision boundaries

Decision Tree

Logistic Regression

Machine Learning Specialization

Summary of decision trees

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
 - Probability predictions
 - Multiclass classification

Thank you to Dr. Krishna Sridhar

Dr. Krishna Sridhar Staff Data Scientist, Dato, Inc.