# IBM Attritio dataset



What makes IBM employees quit?

...is it just about pay?



# Table of content

The Team:

Anne Cuzeau
Andrew Nguyen
Eric Vandament



# About our data

- Hypothetical dataset created by IBM data scientists (Kaggle). Very few NaN
  - BUT: once the employeeID removed: duplicates!
- This dataset has 23,436 rows and 37 columns describing different employees profiles
- Both numeric and categorical variables
- Main goal: find a model to help HR predict attrition and understand how pay rate influences employee retention

#### **Variables**

- Job related: Job role, Department, job level, travel frequency
- Demographics: Age, Gender, Distance from home, relationship status, educational background
- Career Descriptions: Number of companies worked for, years at company, years in current role, years since last promotion
- Pay: Daily Rate, Hourly Rate, Monthly Income,
   Monthly Rate

# Does pay rate influence attrition?

... or is it influenced by other factors?

 Comparing pay rate to other factors, most of the correlation Coefficients are below .1





• With the highest being .4 with Environment Satisfaction





Linear Regression Model

• Fitting Hourly Rate shows us no real correlation



#### Linear Regression Model

• Fitting Hourly Rate and using an alpha of 0.375 shows a slight upwards trend but not highly noticeable.



## **Hourly Rate Vs Attrition**

 LR model for attrition relies heavily on Monthly and daily rate



### Predicting Attrition

What makes an employee likely to quit their job that isn't pay rate?

#### What makes an employee likely to quit their job?

Initial findings, LR baseline

Really good at predicting staying even if they left

LR Confusion Matrix after Balancing Data

- Worse at predicting people who will stay
- 57% increase at predicting people who will leave



0.69

Predicted label

0.31

0.4

## What makes an employee likely to quit their job?

Initial Decision tree and its Confusion Matrix

- It is decent at predicting if someone will stay
- Terrible at predicting those who left Depth = 5 Split = 10 Leaf = 5

Decision tree and its Confusion Matrix after Tuning

- Decrease of 9% for predicting employees that stayed
- Increase of 36% for predicting employees that left

Depth = 30 Split = 5 Leaf = 2





#### **Nearest Neighbor**

- Used gridSearchCV to find the best parameters
- Combined high attrition demographics
- Combined high attrition roles & levels
- KNN with winning metric: Hamming
- Ran with stratified data and balanced data
- Nearest neighbor: 1

#### **Strong results**

Hamming, 1 neighbour, stratified data: 89% overall accuracy



#### **Strong results**

- Looking at 'false stayed':
  - Very confused about R&D (61% of wrong predictions): diverse job levels, diverse pay.
     Somewhat higher attrition across job levels
  - Sales: wrongly predicted that executives would quit
  - Strong confidence
  - Even with new columns (broke down R&D by job levels + pay): no improvements

#### **XGBoost**

- Ran two DTs:
  - One with stratified data
  - One with balanced data (number of employees who left = number of employees who stayed)

#### **XGBoost: Stratified data**



- Great at predicting if an employee will stay
- Only 56% for predicting if they will quit
- Still confused about R&D (56% of the wrong predictions)
- Not predicting that everyone will stay: 20% of people predicted to quit

#### **XGBoost: Balanced data**



- Better at predicting if people will quit
- Very small dataset: only training on 1,875 rows
- Still confused about R&D: job that were wrongly predicted were mostly
  - in life science (R&D)
  - high job levels, except for lab techs.

## Main Takeaways

# What makes an employee likely to quit their job?

#### Our Findings:

- Entry level employees: Of all job roles the majority of employees leaving are level 1 or 2
- Best models: decision trees compared to any other model
- People younger in age
- Some high attrition roles & levels
   For instance:
  - Sales level 1 = 96% quit
  - Sales Representatives and Laboratory Technicians (46.33% of people who quit)



### **Extra Slides**

#### Main takeaways

All models look at the same factors:

- Pay rate and attrition are related!
- But job role, job levels: huge influences

## Are pay rate and an employee's attrition related?

Tying it all together

## **Hourly Rate Vs Attrition**

 LR model for attrition relies heavily on Monthly and daily rate



## Are pay rate and an employee's attrition related?

- So far: no clear linear relationship
- However: our linear regression, Knn and decision tree for attrition rely heavily on:
  - Pay rate
  - Job level (related to pay rate)











