Лабораторная работа. Расчет IPv4-подсетей

Задачи

Часть 1. Определение подсетей по IPv4-адресу

Часть 2. Расчет подсетей по IPv4-адресу

Общие сведения/сценарий

Умение работать с IPv4-подсетями и определять информацию о сетях и узлах на основе известного IP-адреса и маски подсети необходимо для понимания принципов работы IPv4-сетей. Цель первой части — закрепить знания о том, как рассчитывать IP-адрес сети на основе известного IP-адреса и маски подсети. Зная IP-адрес и маску подсети, вы всегда сможете получить другие данные об этой подсети.

Необходимые ресурсы

- Один ПК (Windows 7 или 8 с доступом в Интернет)
- Дополнительно: калькулятор IPv4-адресов

Часть 1: Определение подсетей по IPv4-адресу

В части 1 вам необходимо определить сетевой и широковещательный адреса, а также количество узлов, зная IPv4-адрес и маску подсети.

ОБЗОР. Чтобы определить сетевой адрес, выполните побитовую операцию И для IPv4-адреса, используя указанную маску подсети. В результате вы узнаете сетевой адрес. Совет. Если маска подсети имеет в октете десятичное значение 255, результатом ВСЕГДА будет исходное значение этого октета. Если маска подсети имеет в октете десятичное значение 0, результатом для этого октета ВСЕГДА будет 0.

Пример.

IP-адрес	192.168.10.10
Маска подсети	255.255.255.0
	=======
Результат (сеть)	192.168.10.0

Зная это, вы можете выполнить побитовую операцию И только для того октета, у которого в части маски подсети нет значений 255 или 0.

Пример.

ІР-адрес	172.30.239.145
Маска подсети	255.255.192.0

Проанализировав этот пример, вы увидите, что выполнить побитовую операцию И требуется только для третьего октета. Для этой маски подсети первые два октета дадут результат 172.30, а четвертый — 0.

ІР-адрес	172.30.239.145
Маска подсети	255.255.192.0
	=======
Результат (сеть)	172.30. ? .0

Выполните побитовую операцию И для третьего октета.

Десятичное	Двоичное
239	11101111
192	11000000
	======
Результат 192	11000000

Анализ этого примера снова даст следующий результат:

IP-адрес172.30.239.145Маска подсети255.255.192.0Результат (сеть)172.30.192.0

Рассчитать количество узлов для каждой сети в данном примере можно путем анализа маски подсети. Маска подсети будет представлена в десятичном формате с точкой-разделителем, например 255.255.192.0, или в формате сетевого префикса, например /18. IPv4-адрес всегда содержит 32 бита. Отняв количество бит, используемых сетевой частью (как показано в маске подсети), вы получите количество бит, используемых для узлов.

В нашем примере маска подсети 255.255.192.0 равна /18 в префиксной записи. Вычитание 18 бит сети из 32 бит даст нам 14 бит, оставшихся для узловой части. Исходя из этого, можно выполнить простой расчет:

$$2^{(\text{количество битов узла})} - 2$$
 = количество узлов $2^{14} = 16\ 384 - 2 = 16\ 382\ узла$

Определите сетевые и широковещательные адреса и количество бит узлов для IPv4-адресов и префиксов, указанных в следующей таблице.

IPv4- адрес/префикс	Сетевой адрес	Широковещательный адрес	Общее количество бит узлов	Общее количество узлов
192.168.100.25/28	192.168.100.16	192.168.100.31	4	14
172.30.10.130/30	172.30.10.128	172.30.10.132	2	2
10.1.113.75/19	10.1.128.0	10.1.193.255	13	8190
198.133.219.250/24	198.133.219.0	198.133.219.255	8	254
128.107.14.191/22	128.107.12.0	128.107.15.255	10	1022
172.16.104.99/27	172.16.104.96	172.15.104.127	5	30

Часть 2: Расчет подсетей по IPv4-адресу

Зная IPv4-адрес, а также исходную и новую маски подсети, можно определить следующие параметры.

- Сетевой адрес этой подсети
- Широковещательный адрес этой подсети
- Диапазон адресов узлов этой подсети

- Количество созданных подсетей
- Количество узлов в подсети

В приведенном ниже примере показана одна из задач и ее решение.

Дано:		
IP-адрес узла: 172.16.77.120		
Исходная маска подсети:	255.255.0.0	
Новая маска подсети:	255.255.240.0	
Найти:		
Количество бит подсети	4	
Количество созданных подсетей	16	
Количество бит узлов в подсети	12	
Количество узлов в подсети	4 094	
Сетевой адрес этой подсети	172.16.64.0	
IPv4-адрес первого узла в этой подсети	172.16.64.1	
IPv4-адрес последнего узла в этой подсети	172.16.79.254	
Широковещательный IPv4-адрес в этой подсети	172.16.79.255	

Давайте проанализируем, как была заполнена эта таблица.

Исходная маска подсети имела вид 255.255.0.0 или /16. Новая маска подсети — 255.255.240.0 или /20. Полученная разница составляет 4 бита. Поскольку 4 бита были заимствованы, мы можем определить, что были созданы 16 подсетей, так как $2^4 = 16$.

В новой маске, равной 255.255.240.0 или /20, остается 12 бит для узлов. Если для узлов осталось 12 бит, воспользуемся следующей формулой: $2^{12} = 4.096 - 2 = 4.094$ узла для каждой подсети.

Побитовая операция И поможет определить подсеть для этой задачи, в результате чего мы получим сеть 172.16.64.0.

В заключение необходимо установить первый узел, последний узел и широковещательный адрес для каждой подсети. Один из способов определения диапазона узлов — использовать двоичные значения для узловой части адреса. В нашем примере узловая часть — это последние 12 бит адреса. В первом узле для всех старших бит будет установлено значение 0, а для младшего бита — значение 1. В последнем узле для всех старших бит будет установлено значение 1, а для младшего бита — значение 0. В этом примере узловая часть адреса находится в третьем и четвертом октетах.

Описание	1-й октет	2-й октет	3-й октет	4-й октет	Описание
Сеть/узел	cccccc	cccccc	ссссуууу	ууууууу	Маска подсети
Двоичное	10101100	00010000	0100 0000	0000001	Первый узел
Десятичное	172	16	64	1	Первый узел
Двоичное	10101100	00010000	0100 1111	11111110	Последний узел
Десятичное	172	16	79	254	Последний узел
Двоичное	10101100	00010000	0100 1111	11111111	Широковещательный адрес
Десятичное	172	16	79	255	Широковещательный адрес

Шаг 1: Заполните приведенные ниже таблицы, зная заданный IPv4-адрес, исходную и новую маску подсети.

а. **Задача 1.**

Дано:		
ІР-адрес узла:	192.168.200.139	
Исходная маска подсети:	255.255.255.0	
Новая маска подсети:	255.255.255.224	
Найти:		
Количество бит подсети	3	
Количество созданных подсетей	8	
Количество бит узлов в подсети	5	
Количество узлов в подсети	30	
Сетевой адрес этой подсети	192.168.200.128	
IPv4-адрес первого узла в этой подсети	192.168.200.129	
IPv4-адрес последнего узла в этой подсети	192.168.200.158	
Широковещательный IPv4-адрес в этой подсети	192.168.200.159	

b. Задача 2.

Дано:		
ІР-адрес узла:	10.101.99.228	
Исходная маска подсети:	255.0.0.0	
Новая маска подсети:	255.255.128.0	
Найти:		
Количество бит подсети	9	
Количество созданных подсетей	512	
Количество бит узлов в подсети	15	
Количество узлов в подсети	32766	
Сетевой адрес этой подсети	10.101.0.0	
IPv4-адрес первого узла в этой подсети	10.101.0.1	
IPv4-адрес последнего узла в этой подсети	10.101.127.254	
Широковещательный IPv4-адрес в этой подсети	10.101.127.255	

с. **Задача 3.**

Дано:	
IP-адрес узла:	172.22.32.12
Исходная маска подсети:	255.255.0.0
Новая маска подсети:	255.255.224.0
Найти:	
Количество бит подсети	3
Количество созданных подсетей	8
Количество бит узлов в подсети	13
Количество узлов в подсети	8190
Сетевой адрес этой подсети	172.22.0.0
IPv4-адрес первого узла в этой подсети	172.22.0.1
IPv4-адрес последнего узла в этой подсети	172.22.31.254
Широковещательный IPv4-адрес в этой подсети	172.22.31.255

d. Задача 4.

Дано:	
ІР-адрес узла:	192.168.1.245
Исходная маска подсети:	255.255.255.0
Новая маска подсети:	255.255.255.252
Найти:	
Количество бит подсети	6
Количество созданных подсетей	64
Количество бит узлов в подсети	2
Количество узлов в подсети	2
Сетевой адрес этой подсети	192.168.1.244
IPv4-адрес первого узла в этой подсети	192.168.1.245
IPv4-адрес последнего узла в этой подсети	192.168.1.246
Широковещательный IPv4-адрес в этой подсети	192.168.1.247

e. Задача 5.

Дано:		
IP-адрес узла:	128.107.0.55	
Исходная маска подсети:	255.255.0.0	
Новая маска подсети:	255.255.255.0	
Найти:		
Количество бит подсети	8	
Количество созданных подсетей	256	
Количество бит узлов в подсети	8	
Количество узлов в подсети	254	
Сетевой адрес этой подсети	128.107.0.0	
IPv4-адрес первого узла в этой подсети	128.107.0.1	
IPv4-адрес последнего узла в этой подсети	128.107.0.254	
Широковещательный IPv4-адрес в этой подсети	128.107.0.255	

f. Задача 6.

Дано:	
ІР-адрес узла:	192.135.250.180
Исходная маска подсети:	255.255.255.0
Новая маска подсети:	255.255.255.248
Найти:	
Количество бит подсети	5
Количество созданных подсетей	32
Количество бит узлов в подсети	3
Количество узлов в подсети	6
Сетевой адрес этой подсети	192.135.250.176
IPv4-адрес первого узла в этой подсети	192.135.250.177
IPv4-адрес последнего узла в этой подсети	192.135.250.183
Широковещательный IPv4-адрес в этой подсети	192.135.250.184

Вопросы для повторения

Почему маска подсети так важна при анализе IPv4-адреса? Она позволяет отделить сетевую часть IP адреса от узловой.