Reconocimiento de Escritura Manuscrita (Online Handwriting Recognition)

Pablo Speciale

Tesina de Grado

(Septiembre 2011)

Lic. en Cs. de la Computación Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

Director: Dr. Juan Carlos Gomez¹ **Co-director**: Dr. Pablo Granitto²

¹Procesamiento de Señales Multimedia, CIFASIS

² Aprendizaje Automatizado y Aplicaciones, CIFASIS

Offline vs Online

Base de Datos (dígitos)

Simple y Multi-Trazos

Segmentación

- 1. BOXED DISCRETE CHAR
- 2. Spaced Discrete Characters
- 3. Run-on discretely written characters
- 4. pure cursive script writing
- 5. Mixed Cursice and Discrete

Motivación

Reconocimiento de escritura para todos

Expresiones Matemáticas

Handwriting

$$\int \frac{(3 x^2 + 2) \sin(x^3 + 2x - 1)}{\cos(x^3 + 2x - 1)} dx$$

Usando LAT $_{\mathsf{F}}\mathsf{X}\,2_{\varepsilon}$

Expresiones Matemáticas

Handwriting

$$\int \frac{(3 x^2 + 2) \sin(x^3 + 2x - 1)}{\cos(x^3 + 2x - 1)} dx$$

Usando LATEX 25

```
\int {\frac { \left( 3\,{x}^{2}+2 \cdot right)
              \left( x^{3}+2\right, x-1 \right) 
            { \c \left( x^{3}+2\right, x-1 \right) }
     } ~ dx
```

Trazos discretos como curvas continuas

Curvas paramétricas

Curvas paramétricas

Aproximaciones

con Bases de Polinomios Ortogonales

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i B_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i B_i(t) \end{cases}$$

donde $\{B_i\}$ es base de polinomios ortogonales

$$(\alpha_0,\ldots,\alpha_d,\beta_0,\ldots,\beta_d)$$

Aproximaciones

con Bases de Polinomios Ortogonales

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i B_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i B_i(t) \end{cases}$$

donde $\{B_i\}$ es base de polinomios ortogonales

$$(\alpha_0,\ldots,\alpha_d,\beta_0,\ldots,\beta_d)$$

con Bases de Polinomios Ortogonales

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_{i} B_{i}(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_{i} B_{i}(t) \end{cases}$$

donde $\{B_i\}$ es base de polinomios ortogonales

$$(\alpha_0,\ldots,\alpha_d,\beta_0,\ldots,\beta_d)$$

$$\langle B_i, B_j \rangle \doteq \int_a^b B_i(t) B_j(t) w(t) dt$$

donde w(t) es una función peso.

Ortogonalidad:

• $\langle B_i, B_j \rangle = 0$, $\forall i \neq j \implies B_i \text{ y } B_j \text{ son ortogonales}$ • Si además, $\langle B_i, B_i \rangle = 1 \implies B_i \text{ y } B_j \text{ son ortonormale}$

$$\langle B_i, B_j \rangle \doteq \int_a^b B_i(t) B_j(t) w(t) dt$$

donde w(t) es una función peso.

Ortogonalidad:

- $\langle B_i, B_j \rangle = 0$, $\forall i \neq j \implies B_i \text{ y } B_j \text{ son ortogonales}$
- Si además, $\langle B_i, B_i \rangle = 1 \implies B_i$ y B_i son ortonormales.

$$\langle B_i, B_j \rangle \doteq \int_a^b B_i(t) B_j(t) w(t) dt$$

donde w(t) es una función peso.

Ortogonalidad:

- $\langle B_i, B_j \rangle = 0$, $\forall i \neq j$ \Longrightarrow B_i y B_j son ortogonales
- Si además, $\langle B_i, B_i \rangle = 1 \implies B_i$ y B_i son ortonormales.

Producto interno:

$$\langle L_i, L_j \rangle = \int_{-1}^1 L_i(t) L_j(t) w(t) dt$$

Si tomamos como función peso w(t) = 1 en la definición anterior

$$\langle L_i, L_j \rangle = \int_{-1}^1 L_i(t) L_j(t) dt$$

se pueden generar los polinomios de Legendre $\{L_i\}$ con el proceso de ortogonalización de **Gram-Schmidt** en el intervalo [-1,1].

Producto interno:

$$\langle L_i, L_j \rangle = \int_{-1}^1 L_i(t) L_j(t) w(t) dt$$

Si tomamos como función peso w(t) = 1 en la definición anterior

$$\langle L_i, L_j \rangle = \int_{-1}^1 L_i(t) L_j(t) dt$$

se pueden generar los polinomios de Legendre $\{L_i\}$ con el proceso de ortogonalización de **Gram-Schmidt** en el intervalo [-1, 1].

$$L_i(t) = \sum_{j=0}^i \frac{C_{ij}}{t^j} t^j$$

$$L_i(t) = \sum_{j=0}^i \frac{C_{ij}}{t^j} t^j$$

Serie

$$f(t) = \sum_{i=0}^{\infty} \alpha_i L_i(t)$$

Coeficientes

$$\alpha_i = \langle f, L_i \rangle$$

Aproximación

$$f(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t)$$

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i L_i(t) \end{cases}$$

$$(\alpha_0,\ldots,\alpha_d,\beta_0,\ldots,\beta_d)$$

Serie

$$f(t) = \sum_{i=0}^{\infty} \alpha_i L_i(t)$$

Coeficientes

$$\alpha_i = \langle f, L_i \rangle$$

Aproximación

$$f(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t)$$

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i L_i(t) \end{cases}$$

$$(\alpha_0, \dots, \alpha_d, \beta_0, \dots, \beta_d)$$

Serie

$$f(t) = \sum_{i=0}^{\infty} \alpha_i L_i(t)$$

Coeficientes

$$\alpha_i = \langle f, L_i \rangle$$

Aproximación |

$$f(t) \approx \sum_{i=0}^d \alpha_i \, L_i(t)$$

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i L_i(t) \end{cases}$$

Serie

$$f(t) = \sum_{i=0}^{\infty} \alpha_i L_i(t)$$

Coeficientes

$$\alpha_i = \langle f, L_i \rangle$$

Aproximación

$$f(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t)$$

$$\begin{cases} x(t) \approx \sum_{i=0}^{d} \alpha_i L_i(t) \\ y(t) \approx \sum_{i=0}^{d} \beta_i L_i(t) \end{cases}$$

$$(\alpha_0,\ldots,\alpha_d,\beta_0,\ldots,\beta_d)$$

Definición

Los momentos de una función f definida en $\left[0,1\right]$ son

$$\mu_k \doteq \int_0^1 f(t) \, t^k \, dt$$

Hausdorff Moment Problem

Recuperar a partir de una secuencia finita de momentos $\{\mu_k\}_{k=0,1,2,\dots,d}$ una función f en el dominio [0,1].

Definición

Los momentos de una función f definida en $\left[0,1\right]$ son

$$\mu_k \doteq \int_0^1 f(t) \, t^k \, dt$$

Hausdorff Moment Problem

Recuperar a partir de una secuencia finita de momentos $\{\mu_k\}_{k=0,1,2,\dots,d}$ una función f en el dominio [0,1].

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) t^j dt$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$f(t) \approx \sum_{i=0}^d \alpha_i L_i(t)$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$f(t) \approx \sum_{i=0}^{d} \frac{\alpha_i}{\alpha_i} L_i(t)$$

 $\alpha_i = \langle f, L_i \rangle$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) t^j dt$$

$$f(t) \approx \sum_{i=0}^{d} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) t^j dt$$

$$f(t) \approx \sum_{i=0}^{d} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$= \int_{0}^{1} f(t) \left(\sum_{j=0}^{i} C_{ij} t^{j} \right) dt$$

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$f(t) \approx \sum_{i=0}^{a} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$= \int_{0}^{1} f(t) \left(\sum_{j=0}^{i} C_{ij} t^{j} \right) dt$$

$$= \sum_{j=0}^{i} C_{ij} \left(\int_{0}^{1} f(t) t^{j} dt \right)$$

Producto interno

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

Momentos

$$\mu_j = \int_0^1 f(t) \, t^j \, dt$$

$$f(t) \approx \sum_{i=0}^{d} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$= \int_{0}^{1} f(t) \left(\sum_{j=0}^{i} C_{ij} t^{j} \right) dt$$

$$= \sum_{j=0}^{i} C_{ij} \left(\int_{0}^{1} f(t) t^{j} dt \right)$$

Producto interno

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

Momentos

$$\mu_j = \int_0^1 f(t) t^j dt$$

$$f(t) \approx \sum_{i=0}^{d} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$= \int_{0}^{1} f(t) \left(\sum_{j=0}^{i} C_{ij} t^{j} \right) dt$$

$$= \sum_{j=0}^{i} C_{ij} \left(\int_{0}^{1} f(t) t^{j} dt \right) = \sum_{j=0}^{i} C_{ij} \mu_{j}$$

Producto interno

$$\langle f,g\rangle = \int_0^1 f(t) g(t) dt$$

Polinomios de Legendre

$$L_i(t) = \sum_{j=0}^i C_{ij} t^j$$

Momentos

$$\mu_j = \int_0^1 f(t) t^j dt$$

$$f(t) \approx \sum_{i=0}^{d} \alpha_{i} L_{i}(t)$$

$$\alpha_{i} = \langle f, L_{i} \rangle$$

$$= \int_{0}^{1} f(t) L_{i}(t) dt$$

$$= \int_{0}^{1} f(t) \left(\sum_{j=0}^{i} C_{ij} t^{j} \right) dt$$

$$= \sum_{j=0}^{i} C_{ij} \left(\int_{0}^{1} f(t) t^{j} dt \right) = \sum_{j=0}^{i} C_{ij} \mu_{j}$$

$$\alpha_i = \sum_{j=0}^i C_{ij} \, \mu_j$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix} = \begin{bmatrix} C_{00} \\ C_{10} \\ \vdots \\ C_{d0} \end{bmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ C_{d0} \end{bmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

Matricialmente

$$\alpha = \mathbf{C} \mu$$

$$\alpha_i = \sum_{j=0}^i C_{ij} \, \mu_j$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix} = \begin{bmatrix} C_{00} & & & \\ C_{10} & C_{11} & & \\ \vdots & \vdots & \ddots & \\ C_{d0} & C_{d1} & \dots & C_{dd} \end{bmatrix} \cdot \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

Matricialmente

$$\alpha = \mathbf{C}\,\mu$$

$$\alpha_i = \sum_{j=0}^i C_{ij} \, \mu_j$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix} = \begin{bmatrix} C_{00} & & & \\ C_{10} & C_{11} & & \\ \vdots & \vdots & \ddots & \\ C_{d0} & C_{d1} & \dots & C_{dd} \end{bmatrix} \cdot \begin{bmatrix} \mu_0 \\ \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

Matricialmente

$$\alpha = \mathbf{C} \mu$$

Calculo numérico de los momentos

$$f(t) pprox \sum_{i=0}^{d} \alpha_i L_i(t)$$

 $\alpha = \mathbf{C} \mu$

$$\mu_k = \int_0^1 f(t) t^k dt$$

Calculo numérico de los momentos

$$f(t) pprox \sum_{i=0}^{d} \alpha_i L_i(t)$$

 $\alpha = \mathbf{C} \mu$

$$\mu_k = \int_0^1 f(t) t^k dt$$

Inestabilidad numérica

Preproceso

(a) Suavizado y Resizing, (b) Resampling

Preproceso

Invariante a escala

$$\hat{\alpha} = \frac{\alpha}{\|\alpha\|}$$

Suavizado

Preproceso

Invariante a escala

$$\hat{\alpha} = \frac{\alpha}{\|\alpha\|}$$

Suavizado

Variaciones en la velocidad de escritura

Parametrización por longitud de arco es usualmente preferible, pues no es afectada por variaciones en la velocidad de escritura. Esta puede ser expresada como:

$$arc$$
-length $(t) = \int_0^t \sqrt{(x'(\lambda))^2 + (y'(\lambda))^2} d\lambda$

Aproximación por Mínimos Cuadrados

$$f(t) \approx \sum_{i=0}^d \alpha_i B_i(t)$$

Una forma alternativa para calcular los α_i es mediante la Pseudo-Inversa de Moore-Penrose.

Ventajas

No presenta inestabilidad numérica
 Polinomios cualesquiera

Desventajas

Calculo offline

Implementación más complicada

Aproximación por Mínimos Cuadrados

$$f(t) \approx \sum_{i=0}^d \alpha_i B_i(t)$$

Una forma alternativa para calcular los α_i es mediante la Pseudo-Inversa de Moore-Penrose.

Ventajas

- No presenta inestabilidad numérica
- Polinomios cualesquiera

- Calculo offline
- Implementación más complicada

Aproximación por Mínimos Cuadrados

$$f(t) \approx \sum_{i=0}^d \alpha_i B_i(t)$$

Una forma alternativa para calcular los α_i es mediante la Pseudo-Inversa de Moore-Penrose.

Ventajas

- No presenta inestabilidad numérica
- Polinomios cualesquiera

- Calculo offline
- Implementación más complicada

Aproximación por Mínimos Cuadrados

$$f(t) \approx \sum_{i=0}^d \alpha_i B_i(t)$$

Una forma alternativa para calcular los α_i es mediante la Pseudo-Inversa de Moore-Penrose.

Ventajas

- No presenta inestabilidad numérica
- Polinomios cualesquiera

- Calculo offline
- Implementación más complicada

Aproximación por Mínimos Cuadrados

$$f(t) \approx \sum_{i=0}^d \alpha_i B_i(t)$$

Una forma alternativa para calcular los α_i es mediante la Pseudo-Inversa de Moore-Penrose.

Ventajas

- No presenta inestabilidad numérica
- Polinomios cualesquiera

- Calculo offline
- Implementación más complicada

Polinomios de Legendre-Sobolev

Producto interno (de Sobolev)

$$\langle f,g\rangle_{LS}=\int_0^1 f(t)\,g(t)\,dt+\mu\,\int_0^1 f'(t)\,g'(t)\,dt$$

Producto interno (de Sobolev)

$$\langle f,g
angle_{LS}=\int_0^1f(t)\,g(t)\,dt+\mu\,\int_0^1f'(t)\,g'(t)\,dt$$

k-NN

Distancia Euclidiana

$$dist(x,y)^{2} = \sum_{i=0}^{d} (x_{i} - y_{i})^{2} = (x - y)(x - y)^{T}$$

Distancia de Hamming o Cityblock

$$dist(x,y) = \sum_{i=0}^{d} |x_i - y_i|$$

Distancia Mahalanobis $^{ m 1}$

$$dist(x, y)^2 = (x - y) \Sigma^{-1} (x - y)^T$$

donde Σ es la matriz de covariancia

^{*} A diferencia de la distancia euclidiana, se tiene en cuenta la correlación entre las variables aleatorias

k-NN

Distancia Euclidiana

$$dist(x,y)^2 = \sum_{i=0}^{d} (x_i - y_i)^2 = (x - y)(x - y)^T$$

Distancia de Hamming o Cityblock

$$dist(x,y) = \sum_{i=0}^{d} |x_i - y_i|$$

Distancia Mahalanobis¹

$$dist(x, y)^2 = (x - y) \Sigma^{-1} (x - y)^T$$

donde Σ es la matriz de covariancia

¹A diferencia de la distancia euclidiana, se tiene en cuenta la correlación entre las variables aleatorias

k-NN

Distancia Euclidiana

$$dist(x,y)^{2} = \sum_{i=0}^{d} (x_{i} - y_{i})^{2} = (x - y)(x - y)^{T}$$

Distancia de Hamming o Cityblock

$$dist(x,y) = \sum_{i=0}^{d} |x_i - y_i|$$

Distancia Mahalanobis¹

$$dist(x, y)^2 = (x - y) \Sigma^{-1} (x - y)^T$$

donde Σ es la matriz de covariancia.

¹A diferencia de la distancia euclidiana, se tiene en cuenta la correlación entre las variables aleatorias

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, y_i \in \{-1, 1\} \}_{i=1}^n$$

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, \, y_i \in \{-1, 1\} \}_{i=1}^n$$

$$\omega^T x_k - b \ge 1$$
, para $y_k = 1$
 $\omega^T x_k - b \le -1$, para $y_k = -1$

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, \, y_i \in \{-1, 1\}\}_{i=1}^n$$

$$\omega^T x_k - b \ge 1$$
, para $y_k = 1$
 $\omega^T x_k - b \le -1$, para $y_k = -1$

Pueden combinarse,

$$x_1$$
 $y_k(\omega^T x_k - b) - 1 \ge 0, \quad k = 1, ..., n$

Variable Slack (ξ_k

$$y_k(\omega^T x_k - b) \ge 1 - \xi_k$$

Formulación

$$\min_{\omega,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{k=1}^n \xi_k$$

s.t.
$$y_k(\omega^T x_k - b) \ge 1 - \xi_k,$$
$$\xi_k \ge 0,$$

Variable Slack (ξ_k)

$$y_k(\omega^T x_k - b) \ge 1 - \xi_k$$

Formulación

$$\min_{\omega,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{k=1}^n \xi_k$$

s.t.
$$y_k(\omega^T x_k - b) \ge 1 - \xi_k,$$
$$\xi_k \ge 0,$$

Variable Slack (ξ_k)

$$y_k(\omega^T x_k - b) \ge 1 - \xi_k$$

Formulación

$$\begin{aligned} & \min_{\omega,b,\xi} & & \frac{1}{2} \|w\|^2 + \frac{C}{C} \sum_{k=1}^n \xi_k \\ & \text{s.t.} & & y_k (\omega^T x_k - b) \ge 1 - \xi_k, \end{aligned}$$

s.t.
$$y_k(\omega^T x_k - b) \ge 1 - \xi_k$$
, $\xi_k \ge 0$,

$$y_k(\omega^T x_k - b) \ge 1 - \xi_k$$

Formulación

$$\begin{aligned} & \min_{\omega,b,\xi} & & \frac{1}{2} \|w\|^2 + C \sum_{k=1}^n \xi_k \\ & \text{s.t.} & & y_k(\omega^T x_k - b) \ge 1 - \xi_k, \end{aligned}$$

s.t.
$$y_k(\omega^T x_k - b) \ge 1 - \xi_k,$$

 $\xi_k \ge 0,$

C: compensación entre errores de entrenamiento y los márgenes rígidos. Permite algunos errores en la clasificación a la vez que los penaliza.

SVM no lineal - Kernels

Kernels más usados

$$K_{linear}(x_k, x_\ell) = x_k^T x_\ell$$
 $K_{polinomial}(x_k, x_\ell) = (1 + x_k^T x_\ell)^t$
 $K_{RBF}(x_k, x_\ell) = e^{-\frac{\|x_k - x_\ell\|^2}{\gamma^2}}$

SVM no lineal - Kernels

Kernels más usados

$$\begin{array}{rcl} \textit{K}_{\textit{linear}}(\textit{x}_k, \textit{x}_\ell) & = & \textit{x}_k^T \textit{x}_\ell \\ \textit{K}_{\textit{polinomial}}(\textit{x}_k, \textit{x}_\ell) & = & (1 + \textit{x}_k^T \textit{x}_\ell)^d \\ \\ \textit{K}_{\textit{RBF}}(\textit{x}_k, \textit{x}_\ell) & = & e^{-\frac{\|\textit{x}_k - \textit{x}_\ell\|^2}{\gamma^2}} \end{array}$$

SVM no lineal - Kernels

Formulación

$$\min_{\omega,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{k=1}^n \xi_k$$
s.t.
$$y_k (\omega^T \phi(x_k) - b) \ge 1 - \xi_k,$$

$$\xi_k \ge 0,$$

Problema dual (clasificador)

$$y(x) = sign\left(\sum_{k=1}^{n} \alpha_k y_k K(x, x_k) + b\right)$$

Formulación

$$\min_{\omega,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{k=1}^n \xi_k$$
s.t.
$$y_k (\omega^T \phi(x_k) - b) \ge 1 - \xi_k,$$

$$\xi_k \ge 0,$$

Problema dual (clasificador)

$$y(x) = sign\left(\sum_{k=1}^{n} \alpha_k y_k K(x, x_k) + b\right)$$

Resultados

Sin preproceso, Momentos, Polinomios de Legendre

Resultados

Con preproceso, Pseudo-inversa, Polinomios de Legendre-Sobolev

Resultados

Base de datos de letras (3600 muestras)

Posibles Aplicaciones

$$\int \frac{(3x^2+2)\sin(x^3+2x-1)}{\cos(x^3+2x-1)} dx$$

Posibles Aplicaciones

$$\int \frac{(3 x^{2} + 2) \sin(x^{3} + 2 x - 1)}{\cos(x^{3} + 2 x - 1)} dx$$

Pontanomuje 5160 Carlos Gardel

Posibles Aplicaciones

$$\int \frac{(3 \times^2 + 2) \sin(x^3 + 2 \times -1)}{\cos(x^3 + 2 \times -1)} dx$$
Fontonomoje
$$\int_{(0)}^{(0)} \frac{(3 \times^2 + 2) \sin(x^3 + 2 \times -1)}{\cos(x^3 + 2 \times -1)} dx$$

- Implementación eficiente del cálculo de los momentos (orden constante).
- Representación con polinomios ortogonales caracteriza muy bien a los trazos, permitiendo alcanzar una alta precisión en e reconocimiento. Resultados sobresalientes con Legendre-Solobev.
- Se ha mostrado que SVM alcanza los mejores resultados de clasificación.
- Se han utilizado métodos modernos para la representación de trazos, diferenciándose de los métodos tradicionales en los cuales éstos son tratados como secuencias de puntos.
- Código disponible: https://github.com/pablospe/legendre

- Implementación eficiente del cálculo de los momentos (orden constante).
- Representación con polinomios ortogonales caracteriza muy bien a los trazos, permitiendo alcanzar una alta precisión en el reconocimiento. Resultados sobresalientes con Legendre-Solobev.
- Se ha mostrado que SVM alcanza los mejores resultados de clasificación.
- Se han utilizado métodos modernos para la representación de trazos, diferenciándose de los métodos tradicionales en los cuales éstos son tratados como secuencias de puntos.
- Código disponible: https://github.com/pablospe/legendre

- Implementación eficiente del cálculo de los momentos (orden constante).
- Representación con polinomios ortogonales caracteriza muy bien a los trazos, permitiendo alcanzar una alta precisión en el reconocimiento. Resultados sobresalientes con Legendre-Solobev.
- Se ha mostrado que SVM alcanza los mejores resultados de clasificación.
- Se han utilizado métodos modernos para la representación de trazos, diferenciándose de los métodos tradicionales en los cuales éstos son tratados como secuencias de puntos.
- Código disponible: https://github.com/pablospe/legendre

- Implementación eficiente del cálculo de los momentos (orden constante).
- Representación con polinomios ortogonales caracteriza muy bien a los trazos, permitiendo alcanzar una alta precisión en el reconocimiento. Resultados sobresalientes con Legendre-Solobev.
- Se ha mostrado que SVM alcanza los mejores resultados de clasificación.
- Se han utilizado métodos modernos para la representación de trazos, diferenciándose de los métodos tradicionales en los cuales éstos son tratados como secuencias de puntos.
- Código disponible: https://github.com/pablospe/legendre

- Implementación eficiente del cálculo de los momentos (orden constante).
- Representación con polinomios ortogonales caracteriza muy bien a los trazos, permitiendo alcanzar una alta precisión en el reconocimiento. Resultados sobresalientes con Legendre-Solobev.
- Se ha mostrado que SVM alcanza los mejores resultados de clasificación.
- Se han utilizado métodos modernos para la representación de trazos, diferenciándose de los métodos tradicionales en los cuales éstos son tratados como secuencias de puntos.
- Código disponible: https://github.com/pablospe/legendre

Introducción Feature extraction Clasificacion Resultados - Posibles Aplicaciones - Conclusiones oridad: Eficiencia oridad: Precisión nclusiones I

¿Preguntas?

Introducción Feature extraction Clasificacion Resultados - Posibles Aplicaciones - Conclusiones oridad: Eficiencia oridad: Precisión nclusiones I

¡Gracias!

ioridad: Eficiencia ioridad: Precisión Inclusiones I

¡Game Over! :-)

Reconocimiento de Escritura Manuscrita (Online Handwriting Recognition)

Pablo Speciale

Tesina de Grado

(Septiembre 2011)

Lic. en Cs. de la Computación Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

Director: Dr. Juan Carlos Gomez³ **Co-director**: Dr. Pablo Granitto⁴

³Procesamiento de Señales Multimedia, CIFASIS

⁴ Aprendizaje Automatizado y Aplicaciones, CIFASIS