Bases de Datos

Serializabilidad en Conflictos y en Vistas

Dr. Diego R. Garcia

DEPARTAMENTO DE CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN UNIVERSIDAD NACIONAL DEL SUR

Prueba serializabilidad en Conflictos

Grafo de precedencia:

- Un nodo por cada transacción
- Un arco de Ti a Tj si: Ti ejecuta una instrucción I(X) sobre antes que Tj ejecute una instrucción J(X) (sobre el mismo dato X) y alguna de las instrucciones I o J es write(X)
- Si el grafo **no** tiene ciclos entonces la planificación es serializable. Si el grafo presenta un ciclo la planificación no es serializable en cuanto a conflictos.

Presenta un ciclo entre T2 y T3 => no es serializable en conflicos

Tb (escribe A y B)

	T1	T2	T3
1			R(A)
2		W(A)	
3			W(B)
4	R(A)		
5		R(B)	
6	W(B)		
7			W(A)
8	W(A)		

Tf (lee A y B)

Grafo de precendencia etiquetado

- Se agregan 2 transacciones ficticias: Tb (inicial) escribe todos los datos al comienzo de la planificación y Tf (final) lee todos los datos al final.
- Un nodo por cada transacción incluidas (Tb y Tf)
- Un arco Ti ⁰→Tj si Tj lee un dato escrito por Ti
- Por cada dato X tal que Tj lee el valor de X escrito por Ti (Ti → Tj) y otra transacción Tk (Tk≠Tb) ejecuta W(X) (en cualquier lugar) se analizan los siguientes casos:
- a) Si Ti=Tb y Tj \neq Tf => se inserta Tj $\xrightarrow{0}$ Tk $\xrightarrow{W(X)}$ Tb
- b) Si Ti \neq Tb y Tj=Tf => se inserta Tk $\xrightarrow{0}$ Ti $\xrightarrow{W(X)}$ Ti $\xrightarrow{0}$ Tf $\xrightarrow{R(X)}$ W(X)
- c) Si Ti ≠Tb y Tj ≠Tf=> se insertan:
 Tk N→Ti y Tj N→Tk con N>0
 Un numero N nuevo cada vez que se agrega para identificar una opción, en caso de ciclo.

Tk

W(X)

Grafo de precendencia etiquetado

Grafo de precendencia etiquetado

Tf (lee A y B)

Grafo de precendencia etiquetado

	T1	T2	Т3	
1			R(A)	
2		W(A)		
3			W(B)	
4	R(A)			
5		R(B)		
6	W(B)			
7			W(A)	
8	W(A)			
Tf (lee A y B)				

b) W(X) Ti 0 Tf R(X) W(X)

Si en este punto el grafo presenta un ciclo con arcos etiquetados con 0 se puede concluir que **no** es serializable en vistas.

Grafo de precendencia etiquetado

Tb (escribe A y B)

	T1	T2	Т3
1			R(A)
2		W(A)	
3			W(B)
4	R(A)		
5		R(B)	
6	W(B)		
7			W(A)
8	W(A)		

Tf (lee A y B)

Grafo de precendencia etiquetado

	T1	T2	Т3
1			R(A)
2		W(A)	
3			W(B)
4	R(A)		
5		R(B)	
6	W(B)		
7			W(A)
8	W(A)		

Cada arco etiquetado con N > 0 representa una opción, solo debe quedar uno de los arcos por cada N > 0:

- Si logro obtener un grafo sin ciclos eliminando un arco por cada N entonces es serializable en vistas.
- Sino no se puede obtener un grafo sin ciclos entonces **no** es serializable en vistas.