lation angle of the waveguide light can be fit. varied. Therefore, by varying the emitting positions of the light beams from the two converging grating couplers, the converged spot can be allowed to trace on the track.

According to the eight embodiment as mentioned above, in addition to the effects of the foregoing seventh embodiment, the change-over of the waveguide lights which enter the converging grating couplers and the tracking control can be executed by the SAW transducer 91. Thus, the optical head can be simplified and the number of manufacturing steps can be reduced.

Since the surface acoustic wave 92 is located between the fourth beam splitter 93 and the two converging grating couplers, the return waveguide light from the optical disc 1 is not influenced by the tracking control on the optical path after the surface acoustic wave 92. Therefore, the converging position on the third photo detector is not moved by the tracking control, so that a deterioration in photo detection signal can be prevented.

In the embodiment, although the SAW transducer has been used as both of the optical path switching means and the optical path deflecting means for tracking control, the SAW transducer can be also provided for the optical head only for the tracking control. For instance, it is also possible to form the SAW transducer for the sixth optical head 60 in the fifth embodiment or the seventh optical head 80 in the sixth embodiment and to execute the tracking control.

We claim:

An optical recording/reproducing apparatus for recording, reproducing or erasing an information signal by converging a light flux onto/from a recording layer through a transparent disc substrate, comprising:

(a) Noptical heads, N being greater than or equal to 2, each comprising:

light emitting means,

objective lenses, whose aberrations have respectively been corrected for said N disc substrates having different thicknesses, each for converging the light flux which is emitted from the light emitting means onto the optical disc, and

a plurality of photo detecting means each for detecting the reflected light from the optical disc;

(b) Noptical head moving means which are arranged below the optical disc and move the N optical heads in the hadial direction of the optical disc;

(c) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating a discrimination signal in accordance with the result of the discrimination; and

(d) control means for selecting the optical head having the objective lens in which the occurrence of the aberration due to the disc substrate is smallest in accordance with the discrimination signal,

wherein the selected obtical head records, reproduces or crases the information signal onto/from the optical disc.

2. An apparatus according to claim 1, further comprising backward moving means for moving the non-selected optical heads to the outside of the optical disc for a period of time when the optical head which has been selected by the control means is recording, reproducing, or erasing the information signal.

3. An apparatus according to claim 1, wherein said disc discriminating means comprises.

a cartridge for enclosing the optical disc;

discrimination hole which is formed on the tridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating a discrimination signal.

4. An apparatus according to claim 2, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating

a discrimination signal.

5. An apparatus according to claim 1, wherein numerical apertures of at least two or more of said N objective lenses differ.

- 6. An apparatus according to claim 2, wherein numerical apertures of at least two or more of said N objective lenses differ.
- 7. An optical recording/reproducing apparatus for recording, reproducing or erasing an information signal by converging a light flux onto/from a recording layer through a transparent disc substrate, comprising:

(a) an optical head having N, N being greater than or equal to 2, converging optical systems each com-

prising:

light emitting means,

objective lenses, whose aberrations have respectively been corrected for said N disc substrates having different thicknesses, each for converging the light flux which is emitted from the light emitting means onto the optical disc, and

a plurality of photo detecting fleans each for detecting the reflected light from the optical disc:

ing the reflected light from the optical disc;
(b) optical head moving means which is arranged below the optical disc and moves the optical head in the radial direction of the optical disc;

- (c) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating a discrimination signal in accordance with the result of the discrimination;
- (d) control means for allowing the light emitting means, which belongs to the converging optical system in which the occurrence of the aberration due to the disc substrate is smallest in accordance with the discrimination signal, to emit light,

wherein the selected converging optical system records, reproduces or erases the information signal onto/from the optical disc.

8. An apparatus according to claim 7, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating a discrimination signal.

An apparatus according to claim 7, wherein numerical apertures of at least two or more of said N objective: lenses differ.

25 10. An optical recording/reproducing appa recording, reproducing or crasing an information signal by converging a light flux onto/from a recording layer through a transparent disc substrate, comprising:

(a) an optical head including:

light emitting means.

light flux dividing means which are arranged in the light flux from the emitting means and divide the emitted light flux into N, N being greater than or equal to 2, light fluxes and deflect in different directions.

N objective lenses, whose aberrations have respectively been corrected for said N disc substrates having different thicknesses, for respectively converging said N light fluxes onto the optical disc,

light flux selecting means for selecting one of the N light fluxes divided by the light flux dividing means and for allowing said light flux to pass, and

photo detecting means for detecting the light fluxes

reflected by the optical disc;

(b) optical head moving means which is arranged below the optical disc and moves the optical head in the radial direction of the optical disc:

(c) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating a discrimination signal in accordance with the result of the discrimination;

(d) control means for generating a control signal to the light flux selecting means in accordance with the discrimination signal and for selecting the light flux which passes through the objective lens in which the occurrence of the aberration due to the

disc substrate is smallest,
wherein the optical head records, reproduces or erases the information kignal onto/from the optical

disc by the selected light flux.

11. An apparatus according to claim 10, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for defecting the opening/closing state of the discrimination hole and for generating

a discrimination signal.

12. An apparatus according to claim 10, wherein numerical apertures of at least two or more of said N objective lenses differ.

13. An optical recording/rearoducing apparatus for recording, reproducing or erasing an information signal by converging a light flux onto/from a recording layer through a transparent disc substrate, comprising:

(a) an optical head including:

an optical waveguide formed on a substrate,

N light emitting means each for emitting a waveguide light into said optical waveguidd, N being greater than or equal to 2,

N converging grating couplers, whose abertations have respectively been corrected for said N disc substrates having different thicknesses, each for emitting the waveguide light supplied from said N light emitting means to the outside of the optical waveguide and for allowing the reflected light . from the optical disc to enter, and

N photo detecting means each for detecting reflected light and for generating an information \ignal;

optical head moving means which is arra below the optical disc and moves the optical head in the kadial direction of the optical disc;

(c) selecting means for selecting the light emitting means to be allowed to emit the light from among

the N emitting means;

(d) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating a discrimination signal according to the result of the discrimination; and

(e) control means for generating a control signal in accordance/with the discrimination signal, for providing said control signal to said selecting means and for allowing the light emitting means for emitting the waveguide light into the converging grating coupler in which the occurrence of the aberration due to the disc substrate is smallest,

wherein the optical head records, reproduces or erases the information signal onto/from the optical disc by the light flux from the selected light emit-

ting means.

14. An apparatus according to claim 13, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating

a discrimination signal.

15. An apparatus according to claim 13, wherein numerical apertures of at least two or more of the N

converging grating couplers differ.

16. An optical recording reproducing apparatus for recording, reproducing or crasing an information signal by converging a light flux onto from a recording layer through a transparent disc substrate comprising:

(a) an optical head including:

an optical waveguide formed on a substrate, light emitting means for emitting a waveguide light

into said optical waveguide,

light flux dividing means for dividing the waveguide light emitted from the light emitting means into N divided waveguide lights, N being greater than or equal to 2,

· said N converging grating couplers, whose aberrations have respectively been corrected for said N disc substrates having different thicknesses, each for emitting each of said N\divided waveguide lights to the outside of the optical waveguide and for allowing the reflected light from the optical disc to enter, and

N photo detecting means for respectively detecting said reflected lights from the N converging grating couplers and for generating information signals;

(b) optical head moving means which is arranged below the optical disc and moves the optical head in the radial direction of the optical disc;

(c) output switching means for selectifig and outputting one of the output signals of said N photo de-

tecting means:

(d) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating a discrimination signal in accordance with the result of the discrimination; and

(e) control means for generating a control the output switching means in accordance discrimination signal and for selecting the photo detecting means into which the waveguide light enters from the converging grating coupler in which the occurrence of the aberration due to the disc substrate is smallest.

17. An apparatus according to claim 16, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating a discrimination signal.

18. An apparatus according to claim 16, wherein numerical apertures of at least two or more of the N converging grating couplers differ.

19. An optical recording/reproducing apparatus for recording, reproducing or erasing an information signal by converging a light flux onto/from a recording layer through a transparent disc substrate, comprising:

(a) an optical head including:

an optical waveguide, formed on a substrate,

light emitting means for emitting a waveguide light

into said optical waveguide,

optical path switching means which is arranged on an optical path of said waveguide light and switches the propagating direction of the waveguide light in N directions in accordance with a control signal, N being greater than or equal to 2,

N converging grating couplers, whose aberrations have respectively been corrected for said N disc substrates having different thicknesses and which are respectively arranged in said N propagating directions which are switched by said optical path switching means and emit the waveguide light to the outside of the optical waveguide and allow the reflected light from the optical disc to enter, and photo detecting means for detecting the reflected

light and generating an information signal;
(b) optical head moving means which is arranged below the optical disc and moves the optical head

in the radial direction of the optical disc;

(c) disc discriminating means for discriminating the thickness of the disc substrate of the loaded optical disc and for generating the discrimination signal in accordance with the result of the discrimination; and (d) control means for generating a control signal to the optical path switching means in acq with the discrimination signal and for swit .rom propagating direction of the waveguide ligh the light emitting means to the direction of the converging grating coupler in which the occurrence of the aberration due to the disc substrate is smallest,

wherein the optical head records, reproduces or erases the information signal onto/from the optical disc by the light flux emitted from the selected

converging grating coupler.

20. An apparatus according to claim 19, wherein said optical path switching means combines deflecting means for changing the propagating direction of the waveguide light by a deflection angle according to a input signal,

and wherein said apparatus comprises:

tracking error detecting means for detecting a tracking error amount of a converged spot which has been converged onto the optical disc and for generating a tracking derior signal; and

tracking control means for changing the input signal to the deflecting means in accordance with said tracking error signal and for eliminating the tracking error of the converged spot.

21. An apparatus according to claim 19, wherein said disc discriminating means comprises:

a cartridge for enclosing the optical disc; a discrimination hole which is formed on the car-tridge and whose opining closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating

a discrimination signal.

22. An apparatus according to claim 20, wherein said disc discrimination means comprises:

a cartridge for enclosing the optical disc;

a discrimination hole which is formed on the cartridge and whose opening/closing state differs in correspondence to the thickness of the disc substrate of the optical disc; and

detecting means for detecting the opening/closing state of the discrimination hole and for generating

a discrimination signal.

23. An apparatus according to claim 19, wherein numerical apertures of at least two or more of the N converging grating couplers differ.

24. An apparatus according to claim 20, wherein numerical apertures of at least two or/more of the N converging grating couplers differ.

25. An optical

recording/reproducing system for recording, reproducing or erasing an information signal onto/from any selected one of N types (where $N \ge 2$) of optical discs having transparent substrates of hifferent thicknesses, each of said N optical discs having at least a transparent substrate and an information layer, by converging a light flux on said information layer through said transparent substrate said apparatus comprising:

at least one composite converging optical system, each of which comprises:

i) a light emitting means for emitting said light flux;

ii) a converging means for converging said light flux on said information layer; and

iii) an optical wave front transforming means being disposed in an optical path connecting a light emitting means, said converging means and one of said N optical discs, and

at least one photo detecting means
for detecting reflective light from said one of
said N optical disce

wherein said at least one composite conversing optical system (a) has different numerical apertures, (b) performs aberration correction over transparent substrate of a respective one of said N optical discs, and (c) converges said light flux as a smaller spot diameter D having been aberration corrected by employing a larger one of said numerical apertures, with respect to one of said optical discs having a thinner one of said substrates,

wherein thicknesses of said transparent substrates of said N types of optical discs are about 1.2mm or less than 1.2mm.

26. An optical recording/reproducing apparatus for recording, reproducing or erasing an information signal onto/from any one of N types (where N >= 2) of optical discs having first layers of different thicknesses, each type of said optical discs having at least said first layer being transparent and a second layer for storing information, by converging a light flux onto said second layer through said first layer, said apparatus comprising:

at least one composite converging

at least one composite converging optical system, each of which comprises:

i) a light emitting means for emitting

said light flux;

ii) a converging means for converging said light flux on said second layer; and

iii) an optical wave front transforming means being disposed in an optical path connecting a light emitting means, said converging means and one of said N optical discs; and

at least one photo detecting means for detecting reflective light from said one of said N optical discs.

wherein said at least one composite conversing optical system (a) has different numerical apertures, (b) performs aberration correction over transparent substrate of a respective one of said N optical discs, and (c) converges said light flux as a smaller spot diameter D having been aberration corrected by employing a larger one of said numerical apertures, with respect to one of said optical discs having a thinner one of said substrates,

wherein thicknesses of said transparent substrates of said N types of optical discs are about 1.2mm or less than 1.2mm.

27. An optical

recording/reproducing system comprising;

a) an optical recording/reproducing system for recording, reproducing or erasing an information signal onto/from any selected one of N types (where N >= 2) of optical discs having transparent substrates of different thicknesses, each of said N optical discs having at least a transparent substrate and an information layer by converging a light flux on said information layer through said transparent substrate said apparatus comprising:

at least one composite converging optical system, each of which comprises:

i) a light emitting means for emitting said light flux;

ii) a conversing means for converging said light flux on said information layer; and

iii) an optical wave front transforming means being disposed in an optical path connecting a light emitting means, said converging means and one of said N optical discs; and

at least one photo detecting means for detecting reflective light from said one of said N optical discs.

wherein said at least one composite conversing optical system (a) has different numerical apertures (b) performs aberration correction over transparent substrate of a respective one of said N optical discs, and (c) converges said light flux as a smaller spot diameter D having been aberration corrected by employing a larger one of said numerical apertures, with respect to one of said optical discs having a thinner one of said substrates, and

wherein thicknesses of said transparent substrates of said N types of optical discs are about 1.2mm or less than 1.2mm;

b) a system controlling means
coupled to said converging means for
moving said converging means relative to
the optical discs loaded in said apparatus to
traverse a recording track thereof; and

c) a signal processing means coupled to said photo detecting means for encoding or decoding said information signal.

28. An optical

recording/reproducing system comprising;

a) an optical recording/reproducing system for recording, reproducing or erasing an information signal onto/from any selected one of N types (where N >= 2) of optical discs having transparent substrates of different thicknesses, each of said N optical discs having at least a transparent substrate and an information layer by converging a

light flux on said information layer through said transparent substrate said apparatus comprising:

at least one composite converging optical system, each of which comprises:

i) a light emitting means for emitting said light flux;

ii) a conversing means for converging said light flux on said information layer; and

transforming means being disposed in an optical path connecting a light emitting means, said converging means and one of said N optical discs; and

at least one photo detecting means for detecting reflective light from said one of said N optical discs,

wherein said at least one composite conversing optical system (a) has different numerical apertures, (b)performs aberration correction over transparent substrate of a respective one of said N optical discs, and (c) converges said light flux as a smaller spot diameter D having been aberration corrected by employing a larger one of said numerical apertures, with respect to one of said optical discs having a thinner one of said substrates, and

wherein thicknesses of said transparent substrates of said N types of optical discs are about 1.2mm or less than 1.2mm;

b) a system controlling means
coupled to said converging means for
moving said converging means relative to
the optical discs loaded in said apparatus to
traverse a recording track thereof; and

c) a signal processing means coupled to said photo detecting means for encoding or decoding said information signal.

add3/ AddEd/