Essential Modular Arithmetic & Number Theory Formulas (Updated)

51. Binary Exponentiation and Basic Modular Arithmetic

- $(a + b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- $(a b) \mod m = ((a \mod m) (b \mod m) + m) \mod m$
- (a * b) mod m = ((a mod m) * (b mod m)) mod m
- Binary exponentiation: compute a^b mod m in O(log b) using repeated squaring

52. Fermat's Little Theorem and Modular Inverse

- Fermat: if p is prime and gcd(a,p)=1, then $a^{(p-1)} \equiv 1 \pmod{p}$
- Euler: if gcd(a,m)=1, then $a^{\uparrow}\phi(m) \equiv 1 \pmod{m}$
- Inverse over prime modulus: $a^{(-1)} \equiv a^{(p-2)} \pmod{p}$

255. Euler's Totient Function / Phi Function

- $\phi(n) = |\{1 \le k \le n : gcd(k,n)=1\}|$
- Prime power: $\phi(p^e) = p^e p^e$
- Multiplicative form: $\phi(n) = n * \Pi_{p|n} (1 1/p)$
- Identity: $\Sigma_{d|n} \phi(d) = n$
- Euler's theorem: if gcd(a,n)=1, then $a^{\uparrow}\phi(n) \equiv 1 \pmod{n}$

256. Power Tower / Generalized Euler Theorem (non ■coprime case)

- Goal: compute $x^n \mod m$ even when $gcd(x,m) \neq 1$
- Let a be the product of common prime powers between x and m: $a = \Pi p_i^{k_i}$ where $p_i \mid x$ and $p_i^{k_i} \mid m$
- Let k be the smallest exponent such that a divides x^k
- Then: x^n mod m = (x^k mod m) * (x^{n-k} mod (m/a)) mod m, with gcd(x, m/a) = 1
- Reduce the remaining exponent using Euler on coprime modulus:
- $x^{n-k} \equiv x^{n-k} \pmod{\phi(m/a)} \pmod{m/a}$
- Putting together: $x^n \mod m = (x^k \mod m) * (x^k (n-k) \mod \phi(m/a)) \mod (m/a)$) mod m
- Clean periodic form (when $n \ge \log_2(m)$): $x^n \equiv x^{\phi}(m) + (n \mod \phi(m))$ (mod m)
- Special case (coprime): reduces to standard Euler: $x^n \equiv x^n \pmod{\phi(m)}$ (mod m)

261. Euclidean Algorithm

gcd(a,b) via remainder: gcd(a,b) = gcd(b, a mod b)

262. Extended Euclid

• Computes x,y with ax + by = gcd(a,b) (also yields modular inverse when gcd=1)

263. Bézout's Identity

- There exist integers x,y such that ax + by = gcd(a,b)
- Linear Diophantine ax + by = c is solvable iff gcd(a,b) | c

265. Linear Congruence Equation

- $ax \equiv b \pmod{m}$ has solutions iff g = gcd(a,m) divides b
- If solvable, number of solutions = g; reduce to $a/g * x \equiv b/g \pmod{m/g}$

266. Chinese Remainder Theorem (CRT)

- System: x ≡ a_i (mod m_i) with pairwise coprime m_i
- M = Π m_i, M_i = M/m_i, y_i = inverse(M_i, m_i)
- Solution: $x \equiv \Sigma a_i * M_i * y_i \pmod{M}$

269. Discrete Logarithm (Baby■Step Giant■Step)

- Solve $a^x \equiv b \pmod{m}$, with gcd(a,m)=1
- Let $n = \blacksquare \sqrt{m}$. Precompute table $T[j] = a^{j*n} \pmod{m}$ for j=0..n
- Find i in [0..n] s.t. b * a^i matches some T[i]; then $x = i^*n i$

275. Linear Diophantine Equation (Two Variables)

- ax + by = c has solution iff g = gcd(a,b) | c
- If (x0,y0) is one solution, all solutions: x = x0 + (b/g)t, y = y0 (a/g)t, $t \in Z$

290. Pisano Period

- Fibonacci numbers modulo m are periodic with period $\pi(m)$
- $\pi(m)$ is the smallest k such that $F_{n+k} \equiv F_n \pmod{m}$ for all n

299. Combination Technique

- C(n,r) = n! / (r!(n-r)!)
- Pascal: C(n,r) = C(n-1,r-1) + C(n-1,r)
- Vandermonde: $\Sigma_k C(r,k) C(s, n-k) = C(r+s, n)$

305. Lucas Theorem

- For prime p: write $n = \sum n_i p^i$, $r = \sum r_i p^i$
- $C(n,r) \equiv \Pi_i C(n_i, r_i) \pmod{p}$

306. nCr Modulo Any Mod

- If modulus m is composite: factorize m = Π p_i^{e_i}
- Compute C(n,r) modulo each p_i^{e_i} (using prime■power methods), then combine via CRT
- If m is prime: use factorials + inverses modulo m

352. Matrix Exponentiation

- For linear recurrence F_n = a1*F_{n-1} + ... + ak*F_{n-k}
 State vector V_n = [F_n, F_{n-1}, ..., F_{n-k+1}]^T
 V_n = T^{n-k} * V_k, where T is the kxk companion matrix; compute T^p by fast exponentiation