```
PRACTICA 3
7) 2K = 2K+1 KEZ
    w=w+1 Absurdo
2) alt -> a= + v a= -1 VendAdeno
a alt x JCEZ: += a.C.
                  si a= + → c= 4 (EZ) => - = a= 4 = 1
                  a a=-1 → c=-1 (EZ) => 1= a=-1=-1
To alby blc entonces alc Vendadeno
   blc \rightarrow \exists d \in \mathbb{Z}: c = bd \rightarrow c = (ae).d prop.edad

alb \rightarrow \exists e \in \mathbb{Z}: b = ae c = a(e.d)
 a(a-1) es por Verdadero
                                                   WEZ
   L> a=2K+1 ---> a(a-1)=2K+1 2K= 2[K(2K+1)]
                                                  ZEZ
  D XIY & YIZ -> XIYZ
   YIZ → BCEZ: Z=YC XIYZ → BhEZ: YZ=Xh
  XIY → Bd ∈ Z: Y=x.d
   YZ = Y, Z = (xd). (Y.C)
       YZ = X (d.Y.C) / Pocpiedad
ASOCIATIVA
```


67 (16,24)	Método "Subir por los Restos"
24 = 16.1 + 8	
	Como el nester es 0, tenemos que 8 es el 1CD de (16,24)
	(24,16)=(16,8)=(8,0)
ii) (70,50)	
70=50.4+20	(70,50)=(SC,20)=(20,10)=(10,0)
50 - 20.2 + 10	
20=10.2+0	MCD= 20
iii) (121,88)	
121 = 88.1 + 33	
88 = 33.2 + 22	
33 = 22,1+11	(121,88)=(88,33)=(33,22)=(22,44)=(44,0)
22= 11.2+0	MCD = 44
iv) (-90,90)	(-90,90) = (90,0)
-90 = 90.(-1)+0	MCD=90
V (980, 224)	
980 = 224.4 + 84	
224 = 84.2 + 66	(980,224)=(224,84)=(84,56)=(56,28)=
84 = 56.4 + 28	= (28,c)
56= 28, 2+0	MCD = 28

10) 9: 72909 · w 9, w EZ wo dele ser durable por 7290 = 2 x 3 x 5 → 2x3x51ω 2x3x5 = 90 por eg: si Z= + entinces Por la tanto, podemos decir que w3= 729.000 y 9:100 a w es miltiple de 90, entonces 7290 × 100 = 729.000 geristing es I ayb ∈ 0/a<b → Ix ∈ Q/a<x<b a<b a+b < b+b a < (a+b) < b 12) \$ x & \$ / x = 2 $\frac{a}{b} = \times \rightarrow \left(\frac{a}{b}\right)^3 = \times^3 = 2 = \sqrt[3]{2} \rightarrow \sqrt[3]{2} = \frac{c}{d} \Rightarrow 2 = \frac{c^3}{\sqrt{3}}$ => 2d3 = 8K3 contisdice la suposition initial 4/2 ED entonces primos entre si)


```
PRACTICE 3 P
  17 KER/ 2-(++K)i ER
            \frac{(2-(1+\kappa)i).(1-(-\kappa)i)}{(1+(-\kappa)i).(1-(-\kappa)i)} = \frac{(2.1+(1+\kappa).(-\kappa))+i(-2(-\kappa)+1.(1+\kappa))}{(2.1+(1+\kappa)i).(1-(-\kappa)i)} = \frac{(2.1+(1+\kappa).(-\kappa))+i(-2(-\kappa)+1.(1+\kappa))}{(1+(-\kappa)i).(1-(-\kappa)i)}
            = \frac{2 + K + K^{2} + i(2K + 1 - K)}{1 + K^{2}} = \frac{2 + K(1 + K) + i(2K - (1 + K))}{1 + K^{2}}
                                                                                                                                                                                                          pora que ZER, su
          Re(z)= 2+K(1+K) = 2+K+K2 1+K2
                                                                                                                                                                                                                  porte imaginaria dele
          Im(z) = \frac{2K - (1 + K)}{1 + K^2} = \frac{2K - K - 1}{1 + K^2} = \frac{K - 1}{1 + K^2} \Rightarrow 0.
        16) a i 489 mod 4 => restor = 1
                           b - i 1026 mod 4 => resto = 2
                                              -i2=-(-1)=1
                            C) (3i) 168 = 368, 168 168 mod 4 = 0
                                                                             = 3 4 = 368
                    a =+== (3+3i)+(-4-4i)=-1-1i
                 B Zg-Zg= Si+5+4i=5+9i
                  C Zq. ZG=(2-2i). (-7)= 2. (-7)+(-2i). (-7)=-14+14i
                   \frac{1}{3} = \frac{1}
                                                                                                                                            = \frac{32 + (-24)i}{9 + 16} = \frac{32 - 24i}{25}
                e == = (5+4i)+(-7)=-2+4i
                 = = = (-+1)-(-7)= 6+i
```

2 = = (5+4i). (3-4i) = 5.3+5.(-4i)+4i.3+4i.(-4i)= = $15 + (-20)i + 12i - 16i^2 = 15 + 16 + i(-20 + 12) = 31 - 8i$ F = (3+3i)= (3+3i). (3+3i). (3+3i)=(9+9i+9i+9i2).(3+3) (9+2(9i)+9.(-1)). (3+3i)= 18i. (3+3i)= 54i+54i2 = -54+54i Z= (2-21)=> Z= (17/eix)=17/einx = (2/2) eiq-T $r = |\Xi| = \sqrt{2^2 + (-2)^2} = \sqrt{6} = 2\sqrt{2}$ <= org(=)= ton'(=2)= ton'(1)= - TT 0= 9 $\exists z_{s}^{15} = (5i) = 5^{15} \cdot i^{15} = 5^{15} \cdot i^{3} = 5^{15} \cdot (-i) = -5^{15} i^{3}$ $\mathbb{R}^{3} = (3-4i)^{3} = (3-4i).(3-4i).(3-4i) = (9-4i3-4i3+16i.7/(3-4i)$ $=(9-2.4i3+16i^2).(3-4i)=(9-24i+16.(-1)).(3-4i)=$ $=(-7-24i).(3-4i)=-21+28i-72i+96i^2=-21-44i+96(-1)=$ = -117-44i L 4/Z = 4/-1+i = a = ora(2) = ton'(-1) = 3 TT $\varphi_{\rm c} = \frac{3\pi}{4} + 20\pi = \frac{3\pi}{4} = \frac{3\pi}{16}\pi$ |w| = 4/|z| = 4/2 = 8/2 $P_1 = \frac{3\pi}{4} + 2.1\pi = \frac{3\pi}{4} + 2\pi = \frac{3\pi$ $\varphi_{K} = \frac{3\pi}{4} + 2\kappa\pi \qquad 0 \leq K \leq 4$ $\varphi_2 = \frac{3}{4}\pi + 2.2\pi = \frac{3}{4}\pi + 4\pi$ $\varphi_{3} = \frac{3\pi + 2.3\pi}{4\pi + 6\pi} = \frac{2\pi + 6\pi}{4}$ = 19 T = 27 TT ω= \$\lambda e i 16 " ω, = \$\lambda e i 16 " ω2 = \$\lambda e i 16 " ω3 = \$\lambda 2 e i 16 " ω3 = \$\lambda 2 e i 16 "

$\sqrt{3}\sqrt{24} = \sqrt{4}$	
$Y = Z = \sqrt{9^2 + 0^2} = \sqrt{81} = 9$	ω = 93. eio
$\alpha = ton^{-1}(\frac{0}{9}) = 0$ $z = 9e^{i.0}$ $ w = \sqrt[3]{ z } = \sqrt[3]{9}$ $N = 3$	$w = 9^{\frac{1}{5}} \cdot e^{i\frac{2}{5}\pi}$
PK= 0+2KTT 0≤K<3	w2= 93. e/ 5TT
$\varphi_{0} = \frac{O + 2.0 \text{ T}}{3} = \frac{O}{3} = \frac{O + 2.4 \text{ T}}{3} = \frac{2}{3}$	Τ
$\frac{9}{2} = \frac{c + 2.2\pi}{3} = \frac{4\pi}{3}$	
$\sim \sqrt{i}$	
$Y = Z = \sqrt{2^2 + 4^2} = \sqrt{4} = 4$	
$\alpha = \frac{\pi}{2}$ $z = 1.e^{i\frac{\pi}{2}}$	
$ \omega ^{=\frac{\pi}{4}} = 4 \qquad N=7$ $\varphi_{K} = \frac{\pi}{2} + 2K\pi \qquad 0 \leq K \leq 7$	
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2.4TT = 5 TT = 5 TT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\pi \frac{\varepsilon_{l}}{ \Delta } = \frac{\pi \varepsilon_{s}}{ \Delta }$
$\mathcal{L}_{4} = \frac{\pi}{2} + 2.4\pi = \frac{17}{14}\pi$ $\mathcal{L}_{5} = \frac{\pi}{2} + 2.5\pi = \frac{7}{2}$	$\frac{21}{14}\pi = \frac{3}{2}\pi$
$ \varphi_{c} = \frac{\pi}{2} + 2.6\pi $ $ \omega_{c} = e^{i\frac{\pi}{14}} $ $ \omega_{c} = e^{i\frac{\pi}{14}} $	w,= ei fin
$\omega_{2}^{=}e^{i\frac{\Omega_{1}}{\Omega_{2}}\pi}$	$w_3 = e^{2\frac{13}{14}\pi}$
ω ₄ = e ⁱ 14π	Ws= ei=T
ω ₆ = e ^{i 25} π	