Reinforcement Learning Assignment3 Report

516030910373 XueyanLi

Part 1: Sarsa Algorithm

♦ Introduction

In model-free policy improvement, the common algorithm is to determine the action under one state by value of Q. There are two methods in choosing Q values, one is greedy algorithm and the other is ε -greedy algorithm. The difference between the two algorithms is that the greedy algorithm takes the action with the largest Q value as the target action, while the ε -greedy algorithm gives the non-maximum action a probability of ε/m , which is shown in the following formula.

$$\pi^{'}(s) = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} Q(s, a)$$

Formula 1. greedy Algotithm

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s,a) \\ \epsilon/m & ext{otherwise} \end{array}
ight.$$

Formula 2. ε-greedy Algorithm

Therefore, Sarsa algorithm applys ε -greedy method to select the action, and then updates the Q value, pseudo code of which can be shown as follow:

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

♦ Code

My code is shown as follow:

```
def sarsa(trans, Q, reward, alpha, gamma, e):
    action = random.randint(0, 3)
    for times in range(1000):
        state = [3, 0]
        newstate = [1, 1]
    if (times > 0):
        maxa = -100000
        for a in range(4):
               for a in range(4):

if (Q[state[0]][state[1]][a] > maxa):

maxa = Q[state[0]][state[1]][a]
                         action =
               p = []
               for a in range(4)
if (a == acti
                        (a == action):
p.append(e / 4 + 1 - e)
         p.append(e / 4)
               for a in range(4):
                    if (a == newaction):
                         p.append(e / 4 + 1 - e)
                    else
                         p.append(e / 4)
               p = np.array(p)
               action = newaction
     return
```

Part 2: Q-learning Algorithm

♦ Introduction

The main difference between Q-learning Algorithm and Sarsa Algorithm is the Q-value updating. In Q-learning, greedy algorithm is used to choose an action and update Q-value while the real action to execute is still choosed by ϵ -greedy algorithm. Contrarily, Sarsa choose the same action in updating Q-value and execution, which determines by ϵ -greedy algorithm. Therefore, Q-learning is an off-policy algorithm, of which the pseudo code is shown as follow:

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```

Part 3: Comparative Experiment

♦ Experiment setup

In this experiment, I set γ to 1 and α to 0.5. What's more, I set the times for the algorithm to take a step as 5000.

♦ Result

To visualize the result, I use some symbols to show the route in the grid world. The action of going west, north, east, south is represented by '<-', '^', '->', '.' so that the route can be seen directly.

When we choose the ε as 0.5, the result is shown as follow:

The	route of	Sarsa									
->	->	->	->	->	->	->	->	->	->	->	
•	0	0	0	0	0	0	0	0	0	0	
•	0	0	0	0	0	0	0	0	0	0	
^	0	0	0	0	0	0	0	0	0	0	0
The	route of	Q-learni	ng								
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
->	->	->	->	->	->	->	->	->	->	->	
•	0	0	0	0	0	0	0	0	0	0	0

It can be seen that Sarsa choose the upper route while Q-learning choose the route nearest to the cliff.

When we choose the ε as 0.005, which is a quite small value, the result is shown as follow:

The	route of	Sarsa									
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
->	->	->	->	->	->	->	->	->	->	->	
•	0	0	0	0	0	0	0	0	0	0	0
The	route of	0=1eerni	200								
ine	route or	d_teatur	mg O								
U	U	U	U	U	U	U	U	U	U	U	U
0	0	0	0	0	0	0	0	0	0	0	0
->	->	->	->	->	->	->	->	->	->	->	
•	0	0	0	0	0	0	0	0	0	0	0

It can be seen that Sarsa and Q-learning choose the same route which is close to the cliff.

Therefore, when the ϵ is large, Sarsa tends to choose a route safer while Q-learning tends to choose the optimal route, because Sarsa has an possibility to choose the non-optimal action which will lead to a huge punish near the cliff.

When the ε is small, Sarsa and Q-learning will all choose the optimal route because the possibility to choose the non-optimal action is small which allows Sarsa to go near the cliff without dropping down.