Chapitre 3.

Ensembles de nombres

Les savoir-faire du parcours

- Savoir placer un nombre dans un ensemble.
- Savoir déterminer si un nombre appartient à un ensemble donné.

Les mathématiciennes et mathématiciens

Compétence.

1

L'ensemble des nombres entiers naturels N

Définition 1.

Un nombre entier naturel est un nombre dont la partie décimale est nulle et qui est positif. L'ensemble des nombres entiers naturels est noté \mathbb{N} .

L'ensemble des nombres entiers naturels a un plus petit élément, 0 mais n'a pas de plus grand élément.

$$\mathbb{N} = \{0; 1; 2; 3; 4; \dots \}$$

L'ensemble des nombres entiers relatifs $\mathbb Z$

Définition 3.

Un nombre entier relatif est un nombre entier positif ou négatif.

L'ensemble des nombres entiers relatifs est noté \mathbb{Z} .

- L'ensemble des nombres entiers relatifs n'a ni plus petit, ni plus grand élément.
- Tout nombre entier naturel est aussi un nombre entier relatif, on dit que $\mathbb N$ est inclus dans $\mathbb Z$ et on note : $\mathbb{N} \subset \mathbb{Z}$

L'ensemble des nombres décimaux D

Définition 5.

Un nombre décimal est un nombre qui peut s'écrire avec une partie décimale finie.

L'ensemble des nombres décimaux est noté D.

Propriété 6.

Un nombre décimal est un nombre de la forme $\frac{a}{10^p}$ avec a appartenant à $\mathbb Z$ et p appartenant à

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D}$

Propriété 8.

Démonstration exigible

 $\frac{1}{3}$ n'est pas un nombre décimal.

Preuve: Par l'absurde:

On suppose que $\frac{1}{3}$ est un nombre décimal, alors par propriété:

$$\exists a \in \mathbb{Z} \, et \, p \in \mathbb{N} \ \text{tels que} \ \frac{1}{3} = \frac{a}{10^p}$$

Donc $10^p = a \times 3$ (produit en croix) donc 3 est une diviseur de 10^p or $10^p=2^p\times 5^p$ (décomposition en facteurs premiers). Donc 3 ne peut pas diviser 10^p (l'hypothèse est donc absurde). Ainsi, on peut affirmer que $\frac{1}{3}$ n'est pas un nombre décimal.

Premier SF Compétence. **Deuxième SF** Compétence. 3 **Troisième SF** Compétence.

L'ensemble des nombres rationnels Q

Définition 9.

Un nombre rationnel est un nombre qui peut s'écrire sous la forme $\frac{p}{a}$ avec p appartenant à \mathbb{Z} et q appartenant à \mathbb{N}^* .

L'ensemble des nombres rationnels est noté Q.

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$

Propriété 11.

Démonstration exigible

 $\sqrt{2}$ n'est pas rationnel.

Preuve: Par l'absurde:

On suppose que $\sqrt{2}$ est un nombre rationnel, alors par définition:

$$\exists p \in \mathbb{Z} \, et \, q \in \mathbb{N}^* \text{ tels que } \sqrt{2} = \frac{p}{q}$$

On suppose que $\frac{p}{q}$ est une fraction irréductible. $\sqrt{2} = \frac{p}{q} \ \mathrm{donc} \ \sqrt{2} \times q = p \ \mathrm{donc} \ (\sqrt{2} \times q)^2 = p^2 \ \mathrm{donc} \ 2 \times q^2 = p^2 \ \mathrm{donc} \ 2 \times q^2$ p^2 (p^2 est donc un nombre pair).

Si le carré d'un nombre est pair alors on peut affirmer que ce nombre est pair donc p est un nombre pair : $\exists p_1 \in$ $\mathbb N$ tels que $p=2 imes p_1$ donc $2 imes q^2=p^2=(2 imes p_1)^2=4 imes p_1^2.$ Donc $q^2=2p_1^2$ (q^2 est donc un nombre pair). Si le carré d'un nombre est pair alors on peut affirmer que ce nombre est pair donc q est un nombre pair.

Si p est un nombre pair et que q est un nombre pair alors la fraction $\frac{p}{a}$ n'est pas irréductible, l'hypothèse est donc ab-

Ainsi, on peut affirmer que $\sqrt{2}$ n'est pas un nombre rationnel.

L'ensemble des nombres réels R

Définition 12.

L'ensemble des nombres réels est l'ensemble de tous les nombres que vous connaissez en seconde. L'ensemble des nombres entiers réels est noté \mathbb{R} .

Remarque 13.

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$

Premier SF Compétence. 5 **Deuxième SF** Compétence. 6 **Troisième SF** Compétence.

	Compétence.	
26		
	Compétence.	
27		
		l
		l
		J
	Compétence.	
28		
		l

