Theoretische Informatik - Übungsblatt 2

Alexandre Roque (14-938-278) Simon Janin (12-814-760)

October 6, 2016

Aufgabe 6

Wir definieren A_n , $\forall n \in \mathbb{N}$ als die Menge von allen natürlichen in dem Intervall:

$$[2^n, 2^{n+1} - 1]$$
, bzw. $A_n = \{x_n | 2^n \le x_n \le 2^{n+1} - 1, x_n \in \mathbb{N}\}$

Wir wissen von der Aussage, dass die untere Schranke von jeder Menge A_n :

$$2^n$$
 ist.

Jetzt möchten wir alle natürlichen Zahlen von diesen Mengen A_n als binäre Kodierung repräsentieren.

Erzeugen wir dann folgende Menge B_n :

$$B_n = \{y_n | y_n = Bin(x_n) \text{ wobei } x_n \in A_n\}$$

Dann alle wörter von $y_n \in B_n$ haben eine Länge von n+1:

$$|y_n| = n + 1, \, \forall y_n \in B_n$$

Somit haben wir eine Kolmogorov-Komplexität von:

$$|y_n| + c \ge K(y_n)$$

Wir wissen, dass $K(x_n) = K(Bin(x_n)) \ge n - i$. Dann es ergibt die folgende Gleichung was die Aussage für beliebige Konstanten c und c' beweist:

$$|y_n| + c = (n+1) + c = n + c' \ge K(y_n) = K(Bin(x_n)) = K(x_n) \ge n - i,$$

 $\forall y_n \in B_n, x_n \in A_n, \forall i \in \mathbb{N} \text{ und } i < n$

Insgesamt gilt es:

$$n + c' \ge K(x_n) \ge n - i,$$

 $\forall x_n \in A_n, \forall i \in \mathbb{N} \text{ und } i < n$