CheggSolutions - Thegdp

Nuclear Physics

Transition Modes and Lifetime of Energy States

Given Data and Introduction

Given:

- Energy levels of ¹⁶O as shown in the figure
- Energy levels:
 - 0.0 MeV
 - 6.0 MeV
 - 6.1 MeV
 - 7.0 MeV
- 7.1 MeVTransitions: 1, 2, 3, 4, 5
- Tasks:
 - Estimate the lifetime of the 7.1 MeV state.
 - Identify possible transition modes shown in the figure.

Solution

Part (a): Estimating the Lifetime of the 7.1 MeV State

1. Introduction to Lifetime Estimation

To estimate the lifetime of the 7.1 MeV state, utilize the transition energy and gamma ray decay formula. Lifetime τ is inversely proportional to the transition probability:

```
\( \tau \propto \frac{1}{\Gamma} \)
```

where Γ is the transition width.

2. Electric Dipole Transitions:

For a rough estimation, assume the decay process is via electric dipole (E1) transitions, which is common for such energy levels. The lifetime τ for E1 transitions is approximated by:

```
\(\tau \approx \frac{10^3}{E_\gamma^3} \)
```

Here, E_v is in MeV and τ in \((10^{-16}\)) seconds.

3. Calculation with Approximation:

Using E_v = 7.1 MeV

4. Conversion to Proper Units:

```
\( \tau \approx 2.8 \times 10^{-3} \times 10^{-16} \approx 2.8 \times 10^{-19} \text{seconds} \)
```

Final Lifetime Estimation: The estimated lifetime of the 7.1 MeV state is approximately \(2.8 \times 10^{-19}\) seconds.

Part (b): Identifying Possible Transition Modes

1. Possible Transitions:

According to the given figure, the following transitions are identifiable:

- $\bullet \ \ 1{:}\ 6.0\ MeV \rightarrow 0.0\ MeV$
- 2: 7.0 MeV → 6.0 MeV
- $3:7.1 \text{ MeV} \rightarrow 6.1 \text{ MeV}$
- 4: 7.0 MeV → 0.0 MeV
- 5: 6.1 MeV \rightarrow 0.0 MeV

2. Visualization and Explanation:

Transition 1: Direct drop from 6.0 MeV to ground state.

Transition 2: From higher (7.0 MeV) to a lower excited state (6.0 MeV).

Transition 3: From 7.1 MeV state to 6.1 MeV.

Transition 4: From 7.0 MeV to the ground state directly.

Transition 5: From 6.1 MeV to ground state.

Final Transition Modes:

- Transition 1: 6.0 MeV \rightarrow 0.0 MeV
- Transition 2: 7.0 MeV \rightarrow 6.0 MeV
- Transition 3: 7.1 MeV \rightarrow 6.1 MeV
- Transition 4: 7.0 MeV \rightarrow 0.0 MeV
- Transition 5: 6.1 MeV \rightarrow 0.0 MeV

Final Solution

The estimated lifetime of the 7.1 MeV state is approximately (2.8×10^{-19}) seconds.

The possible transition modes are:

- 1. 6.0 MeV → 0.0 MeV
- 2.7.0 MeV → 6.0 MeV
- $\bullet \quad 3.\ 7.1\ MeV \rightarrow 6.1\ MeV$
- 4.7.0 MeV \rightarrow 0.0 MeV
- 5. 6.1 MeV \rightarrow 0.0 MeV