Duality theory in linear optimization and its extensions—formally verified

Martin Dvorak Vladimir Kolmogorov
Institute of Science and Technology Austria
{martin.dvorak,vnk}@ista.ac.at

Abstract: Farkas established that a system of linear inequalities has a solution if and only if we cannot obtain a contradiction by taking a linear combination of the inequalities. We state and formally prove several Farkas-like theorems over linearly ordered fields in Lean 4. Furthermore, we extend duality theory to the case when some coefficients are allowed to take "infinite values".

Keywords: Farkas lemma, linear programming, extended rationals, extended reals, calculus of inductive constructions

1 Introduction

When studying linear programming, we often ask whether a given system of linear inequalities has a solution. Duality theorems answer these naturally arising questions as follows: A system of linear inequalities has a solution if and only if we cannot obtain a contradiction by taking a linear combination of the inequalities. When we formulate duality theorems as "either there exists a solution, or there exists a vector of coefficients that tells us how to derive 0 < 0 from given inequalities", they are usually called *theorems of alternatives*. Two well-known theorems of alternatives are as follows (Farkas [8, 9]; Minkowski [13]).

Theorem (equalityFarkas). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F$. Let B be a vector of type A be a vector of type A

- nonnegative vector $x: J \to F$ such that $A \cdot x = b$
- vector $y: I \to F$ such that $A^T \cdot y \ge 0$ and $b \cdot y < 0$

Theorem (inequalityFarkas). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F$. Let b be a vector of type $I \to F$. Exactly one of the following exists:

- nonnegative vector $x: J \to F$ such that $A \cdot x \le b$
- nonnegative vector $y: I \to F$ such that $A^T \cdot y \ge 0$ and $b \cdot y < 0$

For optimization problems, duality asserts that primal and dual problems have the same optimal values TODO this sentence needs changes. (von Neumann [17]; Gale, Kuhn, Tucker [10]). For example, for Linear Programs in the standard form, the strong duality theorem, the cornerstone of linear programming, can be stated as follows.

Theorem (StandardLP.strongDuality). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F$. Let b be a vector of type $I \to F$. Let c be a vector of type $J \to F$. Then

$$\min \left\{ c \cdot x \mid x \ge 0 \ \land \ A \cdot x \le b \right\} = -\min \left\{ b \cdot y \mid y \ge 0 \ \land (-A^T) \cdot y \le c \right\}$$

holds if at least one of the systems has a solution (very roughly paraphrased).

For many more Farkas-like theorems (beyond the scope of this paper), see for example [16]. This paper makes the following contributions.

- We formally prove several existing duality results (including the statements above) in Lean 4. In fact, we prove a more general version of equalityFarkas due to Bartl [3].
- We establish (and formally prove in Lean 4) a new generalization of inequalityFarkas and StandardLP.strongDuality to the case when some of the coefficients are allowed to have infinite values. This scenario can be motivated by discrete optimization problems with "hard" constraints (the "hard" constraints declare what has to be be satisfied, whereas "soft" constraints declare what should be optimized). A common way to concisely write down such problems mathematically is to use infinite coefficients in front of the corresponding terms in the objective. Since infinities are not allowed in traditional LPs, "soft" and "hard" constraints need to be handled differently when formulating LP relaxations of such problems (see e.g. [11]). Our work provides a more direct way to formulate such relaxations.

Sections 1.1 and 1.2 provide further details about these extensions.

1.1 Bartl's generalization

The next theorem generalizes equalityFarkas to structures where multiplication does not have to be commutative. Furthermore, it supports infinitely many equations.

Theorem (coordinateFarkas). Let I be any type. Let J be a finite type. Let R be a linearly ordered division ring. Let A be an R-linear map from $(I \to R)$ to $(J \to R)$. Let b be an R-linear map from $(I \to R)$ to R. Exactly one of the following exists:

- nonnegative vector $x: J \to R$ such that, for all $w: I \to R$, we have $\sum_{i:J} (A \ w)_i \cdot x_j = b \ w$
- vector $y: I \to R$ such that $A y \ge 0$ and b y < 0

TODO: describe how it implies equalityFarkas?

This is so trivial that I don't know how to answer your question in a style that is consistent with how the Introduction is written. In the next generalization (similar to [7]), the partially ordered module $I \to R$ is replaced by a general R-module W.

Theorem (scalarFarkas). Let J be a finite type. Let R be a linearly ordered division ring. Let W be an R-module. Let A be an R-linear map from from W to $(J \to R)$. Let B be an B-linear map from B to B. Exactly one of the following exists:

- nonnegative vector $x: J \to R$ such that, for all w: W, we have $\sum_{j:J} (A w)_j \cdot x_j = b w$
- vector y: W such that $A y \ge 0$ and b y < 0

In the most general theorem, stated below, certain occurrences of R are replaced by a linearly ordered R-module V whose order respects order on R (the relationship between order on R and order on V will be left implicit in all upcoming informal statements; for a formal definition, see the end of Section 2.4). This result is due to [3] and our proof is based on [4].

Theorem (fintypeFarkasBartl). Let J be a finite type. Let R be a linearly ordered division ring. Let W be an R-module. Let V be a linearly ordered R-module. Let A be an R-linear map from W to $(J \to R)$. Let D be an R-linear map from D to D the following exists:

- nonnegative vector family $x: J \to V$ such that, for all w: W, we have $\sum_{j:J} (A \ w)_j \cdot x_j = b \ w$
- vector y: W such that $A y \ge 0$ and b y < 0

In the last branch, $A y \ge 0$ uses the partial order on $(J \to R)$ whereäs b y < 0 uses the linear order on V. Note that fintypeFarkasBartl subsumes scalarFarkas (as well as the other versions based on equality), since R can be viewed as a linearly ordered module over itself. We prove fintypeFarkasBartl in Section 4, which is where the heavy lifting comes.

1.2 Extension to infinite coefficients

Until now, we have talked about known results. What follows is a new extension of the theory.

Definition. Let F be a linearly ordered field. We define an extended linearly ordered field F_{∞} as $F \cup \{\bot, \top\}$ with the following properties. Let p and q be numbers from F. We have $\bot . We define addition, negation, and scalar action on <math>F_{\infty}$ as follows:

+	1	q	Т
Τ	1	Т	1
p	\perp	p+q	Т
Т		Т	Т

_	\perp	q	Т
=	T	-q	\perp

•	1	q	Т
0	1	0	0
p > 0	1	$p \cdot q$	Т

When we talk about elements of F_{∞} , we say that values from F are finite.

Informally speaking, \top represents the positive infinity, \bot represents the negative infinity, and we say that \bot is "stronger" than \top in all arithmetic operations. The surprising parts are $\bot + \top = \bot$ and $0 \cdot \bot = \bot$. Because of them, F_{∞} is not a field. In fact, F_{∞} is not even a group. However, F_{∞} is still a densely linearly ordered abelian monoid with characteristic zero.

Theorem (extendedFarkas). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F_{\infty}$. Let b be a vector of type $I \to F_{\infty}$. Assume that A does not have \bot and \top in the same row. Assume that A does not have \bot and \top in the same column. Assume that A does not have \top in any row where b has \top . Assume that A does not have \bot in any row where b has \bot . Exactly one of the following exists:

- nonnegative vector $x: J \to F$ such that $A \cdot x \leq b$
- nonnegative vector $y: I \to F$ such that $(-A^T) \cdot y \leq 0$ and $b \cdot y < 0$

Next we define an extended notion of linear program, i.e., linear programming over extended linearly ordered fields. The implicit intention is that the linear program is to be minimized.

Definition. Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F_{\infty}$, let b be a vector of type $I \to F_{\infty}$, and c be a vector of type $J \to F_{\infty}$ such that the following six conditions hold:

- A does not have \perp and \top in the same row
- A does not have \perp and \top in the same column
- A does not have \perp in any row where b has \perp
- A does not have \top in any column where c has \bot
- ullet A does not have \top in any row where b has \top
- A does not have \perp in any column where c has \top

We say that P = (A, b, c) is a linear program over F_{∞} whose constraints are indexed by I and variables are indexed by J. We say that a nonnegative vector $x: J \to R$ is a solution to P if and only if $A \cdot x \leq b$. We say that P reaches an objective value r if and only if there exists x such that x is a solution to P and $c \cdot x = r$. We say that P is feasible if and only if P reaches a finite value. We say that P is bounded by a finite value r if and only if, for every value P reached by P, we have $P \in P$. We say that P is unbounded if and only if there is no finite value P such that P is bounded by P. We say that the linear program P is the dual of P.

Theorem (ExtendedLP.weakDuality). Let F be a linearly ordered field. Let P be a linear program over F_{∞} . If P reaches p and the dual of P reaches q, then $p+q\geq 0$.

Definition. Let F be a linearly ordered field. Let P be a linear program over F_{∞} . We define the optimum of P as follows. If P is feasible and unbounded, its optimum is \bot . If P is not feasible, its optimum is \top . In all other cases, we ask whether P reaches a finite value P such that P is bounded by P. If so, its optimum is P. Otherwise, P does not have optimum.

Theorem (ExtendedLP.strongDuality). Let F be a linearly ordered field. Let P be a linear program over F_{∞} . If P or its dual is feasible (at least one of them), then there exists p in F_{∞} such that P has optimum p and the dual of P has optimum -p.

1.3 Structure of this paper

In Section 2, we explain all underlying definitions and comment on the formalization process; following the philosophy of [14] we review almost all the declarations needed for the reader to believe our results, leaving out many declarations that were used in order to prove the results. In Section 3, we formally state theorems from Section 1 using definitions from Section 2. In Section 4, we prove fintypeFarkasBartl (stated in Section 1.1), from which be obtain equalityFarkas as a corollary. In Section 5, we prove extendedFarkas (stated in Section 1.2). In Section 6, we prove ExtendedLP.strongDuality (stated in Section 1.2), from which we obtain StandardLP.strongDuality as a corollary.

Repository https://github.com/madvorak/duality contains full version of all definitions, statements, and proofs. They are written in a formal language called Lean 4, which provides a guarantee that every step of every proof follows from valid logical axioms. This paper attempts to be an accurate description of the duality project. However, in case of any discrepancy, the code shall prevail.

2 Preliminaries

There are many layers of definitions that are built before say what a linearly ordered field is, what a linearly ordered division ring is, and what linearly ordered abelian group is. We need these three algebraic structures for stating our main results. This section mainly documents existing Mathlib definitions. We also highlight custom definitions added to our project only.

2.1 We start with a review of algebraic typeclasses that our project depends on

Additive semigroup is a structure on any type with addition where the addition is associative:

```
class AddSemigroup (G : Type u) extends Add G where add_assoc : \forall a b c : G, (a + b) + c = a + (b + c)
```

Similarly, semigroup is a structure on any type with multiplication where the multiplication is associative:

```
class Semigroup (G : Type u) extends Mul G where mul_assoc : \forall a b c : G, (a * b) * c = a * (b * c)
```

Additive monoid is an additive semigroup with the "zero" element that is neutral with respect to addition from both left and right, thanks to which we can define a scalar multiplication by the natural numbers:

¹It would be perhaps more natural to say that P reaches a value different from \top . However, since \bot cannot be reached because of the way linear programming is defined, it is equivalent to our definition by reaching a finite value. TODO this changed.

²By the end of the paper, we will have proved that optimum always exists, i.e., it cannot happen that the set of objective values reached by P has a finite infimum that is not attained. However, because we do not have the theorem now, the optimum is defined as a partial function from linear programs to F_{∞} .

³For simplicity, we rephrased the theorem without mentioning partial functions. Also note that it would be incorrect to say the following: P has optimum p, the dual of P has optimum q, and p + q = 0. It would fail for unbounded linear programs because the arithmetics of F_{∞} defines $\top + \bot = \bot$.

⁴The only axioms used in our proofs are propext, Classical choice, and Quot sound, which you can check by the #print axioms command.

```
class AddZeroClass (M : Type u) extends Zero M, Add M where zero_add : \forall a : M, 0 + a = a add_zero : \forall a : M, a + 0 = a class AddMonoid (M : Type u) extends AddSemigroup M, AddZeroClass M where nsmul : \mathbb{N} \to \mathbb{M} \to \mathbb{M} nsmul_zero : \forall x : M, nsmul 0 x = 0 nsmul_succ : \forall (n : \mathbb{N}) (x : M), nsmul (n + 1) x = nsmul n x + x
```

Similarly, monoid is a semigroup with the "one" element that is neutral with respect to multiplication from both left and right, thanks to which we can define a power to the natural numbers:

```
class MulOneClass (M : Type u) extends One M, Mul M where one_mul : \forall a : M, 1 * a = a mul_one : \forall a : M, a * 1 = a class Monoid (M : Type u) extends Semigroup M, MulOneClass M where npow : \mathbb{N} \to \mathbb{M} \to \mathbb{M} npow_zero : \forall x : M, npow 0 x = 1 npow_succ : \forall (n : \mathbb{N}) (x : M), npow (n + 1) x = npow n x * x
```

Subtractive monoid is an additive monoid that adds two more operations (unary and binary minus) that satisfy some basic properties (please note that "adding minus itself gives zero" is not required yet; that will be required e.g. in an additive group):

```
class SubNegMonoid (G : Type u) extends AddMonoid G, Neg G, Sub G where sub := SubNegMonoid.sub' sub_eq_add_neg : \forall a b : G, a - b = a + -b zsmul : \mathbb{Z} \to G \to G zsmul_zero' : \forall a : G, zsmul 0 a = 0 zsmul_succ' (n : \mathbb{N}) (a : G) : zsmul (Int.ofNat n.succ) a = zsmul (Int.ofNat n) a + a zsmul_neg' (n : \mathbb{N}) (a : G) : zsmul (Int.negSucc n) a = -(zsmul n.succ a)
```

Similarly, division monoid is a monoid that adds two more operations (inverse and divide) that satisfy some basic properties (please note that "multiplication by an inverse gives one" is not required yet; that will be required e.g. in a group):

```
class DivInvMonoid (G : Type u) extends Monoid G, Inv G, Div G where div := DivInvMonoid.div' div_eq_mul_inv : \forall a b : G, a / b = a * b^-1 zpow : \mathbb{Z} \to G \to G zpow_zero' : \forall a : G, zpow 0 a = 1 zpow_succ' (n : \mathbb{N}) (a : G) : zpow (Int.ofNat n.succ) a = zpow (Int.ofNat n) a * a zpow_neg' (n : \mathbb{N}) (a : G) : zpow (Int.negSucc n) a = (zpow n.succ a)^-1
```

Additive group is a subtractive monoid in which the unary minus acts as a left inverse with respect to addition:

```
class AddGroup (A : Type u) extends SubNegMonoid A where add_left_neg : \forall a : A, -a + a = 0
```

Abelian magma is a structure on any type that has commutative addition:

```
class AddCommMagma (G : Type u) extends Add G where add_comm : \forall a b : G, a + b = b + a
```

Similarly, commutative magma is a structure on any type that has commutative multiplication:

```
class CommMagma (G : Type u) extends Mul G where mul_comm : \forall a b : G, a * b = b * a
```

Abelian semigroup is an abelian magma and an additive semigroup at the same time:

```
\verb|class|| \texttt{AddCommSemigroup}|| \texttt{(G: Type u)}|| \texttt{extends}|| \texttt{AddSemigroup}|| \texttt{G}, \texttt{AddCommMagma}|| \texttt{G}||
```

Similarly, commutative semigroup is a commutative magma and a semigroup at the same time:

```
class CommSemigroup (G : Type u) extends Semigroup G, CommMagma G
```

Abelian monoid is an additive monoid and an abelian semigroup at the same time:

```
class \mathtt{AddCommMonoid} (M : Type u) extends \mathtt{AddMonoid} M, \mathtt{AddCommSemigroup} M
```

Similarly, commutative monoid is a monoid and a commutative semigroup at the same time:

```
class CommMonoid (M : Type u) extends Monoid M, CommSemigroup M
```

Abelian group is an additive group and an abelian monoid at the same time:

```
class AddCommGroup (G : Type u) extends AddGroup G, AddCommMonoid G
```

Distrib is a structure on any type with addition and multiplication where both left distributivity and right distributivity hold:

```
class Distrib (R : Type*) extends Mul R, Add R where left_distrib : \forall a b c : R, a * (b + c) = a * b + a * c right_distrib : \forall a b c : R, (a + b) * c = a * c + b * c
```

Nonunital-nonassociative-semiring is an abelian monoid with distributive multiplication and well-behaved zero:

```
class MulZeroClass (M_0: Type u) extends Mul M_0, Zero M_0 where zero_mul : \forall a : M_0, 0 * a = 0 mul_zero : \forall a : M_0, a * 0 = 0 class NonUnitalNonAssocSemiring (\alpha: Type u) extends AddCommMonoid \alpha, Distrib \alpha, MulZeroClass \alpha
```

Nonunital-semiring is a nonunital-nonassociative-semiring that forms a semigroup with zero (i.e., the semiring requirement makes it associative):

```
class SemigroupWithZero (S_0 : Type u) extends Semigroup S_0, MulZeroClass S_0 class NonUnitalSemiring (\alpha : Type u) extends NonUnitalNonAssocSemiring \alpha, SemigroupWithZero \alpha
```

Additive monoid with one and abelian monoid with one are defined defined from additive monoid and abelian monoid, equipped with the symbol "one" and embedding of natural numbers (please ignore the difference between Type u and Type* as it is the same thing for all our purposes):

```
class AddMonoidWithOne (R : Type*) extends NatCast R, AddMonoid R, One R where
  natCast := Nat.unaryCast
  natCast_zero : natCast 0 = 0
  natCast_succ : ∀ n, natCast (n + 1) = natCast n + 1
class AddCommMonoidWithOne (R : Type*) extends AddMonoidWithOne R, AddCommMonoid R
```

Additive group with one is an additive monoid with one and additive group at the same time:

```
class AddGroupWithOne (R : Type u) extends IntCast R, AddMonoidWithOne R, AddGroup R where intCast := Int.castDef intCast_ofNat : \forall n : \mathbb{N}, intCast (n : \mathbb{N}) = Nat.cast n intCast_negSucc : \forall n : \mathbb{N}, intCast (Int.negSucc n) = - Nat.cast (n + 1)
```

Nonassociative-semiring is a nonunital-nonassociative-semiring that has a well-behaved multiplication by both zero and one and forms an abelian monoid with one (i.e., the unit is finally defined):

```
class MulZeroOneClass (M_0 : Type u) extends MulOneClass M_0, MulZeroClass M_0 class NonAssocSemiring (\alpha : Type u) extends NonUnitalNonAssocSemiring \alpha, MulZeroOneClass \alpha, AddCommMonoidWithOne \alpha
```

Semiring is the combination of nonunital-semiring and nonassociative-semiring that forms a monoid with zero:

```
class MonoidWithZero (M_0 : Type u) extends Monoid M_0, MulZeroOneClass M_0, SemigroupWithZero M_0 class Semiring (\alpha : Type u) extends NonUnitalSemiring \alpha, NonAssocSemiring \alpha, MonoidWithZero \alpha
```

Ring is a semiring and an abelian group at the same time that has "one" that behaves well:

```
class Ring (R : Type u) extends Semiring R, AddCommGroup R, AddGroupWithOne R
```

Commutative ring is a ring (guarantees commutative addition) and a commutative monoid (guarantees commutative multiplication) at the same time.

```
class CommRing (lpha : Type u) extends Ring lpha, CommMonoid lpha
```

Division ring is a nontrivial ring whose multiplication forms a division monoid, whose nonzero elements have multiplicative inverses, whose zero is inverse to itself (if you find the equality $0^{-1}=0$ disturbing, read [1] that explains it), and embeds rational numbers:

```
class Nontrivial (\alpha: Type*): Prop where exists_pair_ne: \exists x y : \alpha, x \neq y class DivisionRing (\alpha: Type*) extends Ring \alpha, DivInvMonoid \alpha, Nontrivial \alpha, NNRatCast \alpha, RatCast \alpha where mul_inv_cancel: \forall (a : \alpha), a \neq 0 \rightarrow a * a<sup>-1</sup> = 1 inv_zero: (0 : \alpha)<sup>-1</sup> = 0 nnratCast:= NNRat.castRec
```

Field is a commutative ring and a division ring at the same time:

```
class Field (K : Type u) extends CommRing K, DivisionRing K
```

Preorder is a reflexive & transitive relation on any structure with binary relational symbols \leq and < where the strict comparison a < b is equivalent to $a \leq b \land \neg (b \leq a)$ given by the relation \leq which is neither required to be symmetric nor required to be antisymmetric:

```
class Preorder (\alpha: Type u) extends LE \alpha, LT \alpha where le_refl : \forall a : \alpha, a \leq a le_trans : \forall a b c : \alpha, a \leq b \rightarrow b \leq c \rightarrow a \leq c lt_iff_le_not_le : \forall a b : \alpha, a \leq b \Longleftrightarrow a \leq b \land \negb \leq a
```

Partial order is a reflexive & antisymmetric & transitive relation:

```
class PartialOrder (lpha : Type u) extends Preorder lpha where
  le_antisymm : \forall a b : \alpha, a \leq b \rightarrow b \leq a \rightarrow a = b
Ordered abelian group is an abelian group with partial order that respects addition:
class OrderedAddCommGroup (lpha : Type u) extends AddCommGroup lpha, PartialOrder lpha where
  {\tt add\_le\_add\_left} \; : \; \forall \; \; {\tt a} \; \; {\tt b} \; : \; \alpha \text{, } \; {\tt a} \; \leq \; {\tt b} \; \rightarrow \; \forall \; \; {\tt c} \; : \; \alpha \text{, } \; {\tt c} \; + \; {\tt a} \; \leq \; {\tt c} \; + \; {\tt b}
Strictly ordered ring is a nontrivial ring whose addition behaves as an ordered abelian group where zero is less or equal to one and the
product of two strictly positive elements is strictly positive:
class StrictOrderedRing (lpha : Type u) extends Ring lpha, OrderedAddCommGroup lpha, Nontrivial lpha where
  zero_le_one : 0 \le (1 : \alpha)
  mul_pos : \forall a b : \alpha, 0 < a \rightarrow 0 < b \rightarrow 0 < a * b
Linear order (sometimes called total order) is a partial order where every two elements are comparable; technical details are omitted:
class LinearOrder (lpha : Type u) extends PartialOrder lpha, (...)
  le_total (a b : \alpha) : a \leq b \vee b \leq a
Linearly ordered abelian group is an ordered abelian group whose order is linear:
class LinearOrderedAddCommGroup (lpha : Type u) extends OrderedAddCommGroup lpha, LinearOrder lpha
Linearly ordered ring is a strictly ordered ring where every two elements are comparable:
class LinearOrderedRing (lpha : Type u) extends StrictOrderedRing lpha, LinearOrder lpha
Linearly ordered commutative ring is a linearly ordered ring and commutative monoid at the same time:
class LinearOrderedCommRing (lpha : Type u) extends LinearOrderedRing lpha, CommMonoid lpha
We define a linearly ordered division ring as a division ring that is a linearly ordered ring at the same time:
class LinearOrderedDivisionRing (R : Type*) extends LinearOrderedRing R, DivisionRing R
Linearly ordered field is defined in Mathlib as a linearly ordered commutative ring that is a field at the same time:
class LinearOrderedField (lpha : Type*) extends LinearOrderedCommRing lpha, Field lpha
Note that LinearOrderedDivisionRing is not a part of the algebraic hierarchy provided by Mathlib, hence LinearOrderedField does not
inherit LinearOrderedDivisionRing, thus we provide a custom instance that converts LinearOrderedField to LinearOrderedDivisionRing:
instance LinearOrderedField.toLinearOrderedDivisionRing {F : Type*} [instF : LinearOrderedField F] :
  LinearOrderedDivisionRing F := { instF with }
This instance is needed for the step from coordinateFarkas to equalityFarkas.
      Extended linearly ordered fields
Given any type F, we construct F \cup \{\bot, \top\} as follows:
def Extend (F : Type*) := WithBot (WithTop F)
From now on we assume that F is a linearly ordered field:
variable {F : Type*} [LinearOrderedField F]
The following instance defines how addition and comparison behaves on F_{\infty} and automatically generates a proof that F_{\infty} forms a
linearly ordered abelian monoid:
instance : LinearOrderedAddCommMonoid (Extend F) :=
   inferInstanceAs (LinearOrderedAddCommMonoid (WithBot (WithTop F)))
The following definition embeds F in F_{\infty} and registers this canonical embedding as a type coercion:
\texttt{@[coe]} \ \texttt{def} \ \texttt{toE} \ : \ \texttt{F} \rightarrow \texttt{(Extend F)} \ := \ \texttt{some} \ \circ \ \texttt{some}
instance : Coe F (Extend F) := \langle toE \rangle
Unary minus on F_{\infty} is defined as follows:
\texttt{def neg : Extend } F \to \texttt{Extend } F
| ⊥ => ⊤
| ⊤ => ⊥
| (x : F) =  toE (-x)
instance : Neg (Extend F) := \langle EF.neg \rangle
Line-by-line, we see that:
```

• negating \perp gives \top

- negating \top gives \bot
- negating any finite value x by gives -x converted to the type F_{∞}

In the file FarkasSpecial.lean and everything downstream, we have the notation

FΩ

for F_{∞} and also the notation

 $F \ge 0$

for all nonnegative elements of F. We define a scalar action of the nonnegative elements on F_{∞} as follows:

```
def EF.smulNN (c : F\geq0) : F\infty \rightarrow F\infty | \perp => \perp | \top => if c = 0 then 0 else \top | (f : F) => toE (c.val * f)
```

Line-by-line, we see that:

- multiplying \perp by anything from the left gives \perp
- multiplying \top by 0 from the left gives 0; multiplying \top by a strictly positive element from the left gives \top
- multiplying any finite value f by a coefficient c from the left gives $c \cdot f$ converted to the type F_{∞}

Scalar action on F_{∞} by negative elements from the left is undefined. Multiplication between two elements of F_{∞} is also undefined.

2.3 Vectors and matrices

We distinguish two types of vectors; implicit vectors and explicit vectors. Implicit vectors (called just "vectors") are members of a vector space; they do not have any internal structure (in the informal text, we use the word "vectors" somewhat loosely; it can refer to members of any module). Explicit vectors are functions from coordinates to values (again, we use the word "explicit vector" (or just "vector" when it is clear from context that our vector is a map) not only when they form a vector space). The type of coordinates need not be ordered. Matrices live next to explicit vectors. They are also functions; they take a row index and a column index and they output a value at the given spot. Neither the row indices nor the column vertices are required to form an ordered type. This is why multiplication between matrices and vectors is defined only in structures where addition forms a commutative semigroup. Consider the following example:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} ? \\ - \end{pmatrix}$$

We do not know whether the value at the question mark is equal to $1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9$ or to $2 \cdot 8 + 1 \cdot 7 + 3 \cdot 9$ or to any other ordering of summands. This is why commutativity of addition is necessary for the definition to be valid. On the other hand, we do not assume any property of multiplication in the definition of multiplication between matrices and vectors; they do not even have to be of the same type; we only require the elements of the vector to have an action on the elements of the matrix (this is not a typo — normally, we would want matrices to have an action on vectors — not in our work).

2.3.1 Mathlib definitions versus our definitions

Mathlib defines dot product (i.e., a product of an explicit vector with an explicit vector) as follows:

```
def Matrix.dotProduct [Fintype m] [Mul \alpha] [AddCommMonoid \alpha] (v w : m \rightarrow \alpha) : \alpha := \sum i, v i * w i
```

Mathlib defines a product of a matrix with an explicit vector as follows:

```
def Matrix.mulVec [Fintype n] [NonUnitalNonAssocSemiring \alpha] (M : Matrix m n \alpha) (v : n \rightarrow \alpha) : m \rightarrow \alpha | i => (fun j => M i j) \cdot_v v
```

Mildly confusingly, m and n are type variables here, not natural numbers. Note that, when multiplying two vectors, the left vector is not transposed — a vector is not defined as a special case of matrix, and transposition is not defined as an operation on explicit vectors, only on matrices.

Infix notation for these two operations is defined as follows (the keyword infix1 when defining an operator \circ means that $x \circ y \circ z$ gets parsed as $(x \circ y) \circ z$ whether or not it makes sense, whereäs the keyword infixr when defining an operator \circ means that $A \circ B \circ v$ gets parsed as $A \circ (B \circ v)$ whether or not it makes sense; the numbers 72 and 73 determine precedence):

```
scoped infix1:72 " \cdot_v " => Matrix.dotProduct scoped infixr:73 " *_v " => Matrix.mulVec
```

These definitions are sufficient for stating results based on linearly ordered fields. However, our results from Section 1.2 require a more general notion of multiplication between matrices and vectors. They are defined in the section hetero_matrix_products_defs as follows:

We start by declaring that α and γ are types from any universe (not necessarily both from the same universe). We require that α forms an abelian monoid and that γ has a scalar action on α . In this setting, we can instantiate α with F_{∞} and γ with F for any linearly ordered field F.

For explicit vectors $v:I\to\alpha$ and $w:I\to\gamma$, we define their product of type α as follows. Every element of v gets multiplied from left by an element of w on the same index. Then we sum them all together (in unspecified order). For a matrix $M:(I\times J)\to\alpha$ and a vector $w:J\to\gamma$, we define their product of type $I\to\alpha$ as a function that takes an index i and outputs the dot product between the i-th row of M and the vector w.

Beware that the arguments (both in the function definition and in the infix notation) come in the opposite order from how scalar action is written. We recommend a mnemonic "vector times weights" for $v \cdot w$ and "matrix times weights" for $M \cdot w$ where arguments come in alphabetical order.

In the infix notation, you can distinguish between the standard Mathlib definitions and our definitions by observing that Mathlib operators put the letter v to the right of the symbol whereas our operators put a letter to the left of the symbol.

We find it unfortunate that the Mathlib name of dotProduct is prefixed by the Matrix namespace. While Matrix.mulVec allows for the use of dot notation in places where infix notation is not used, the full name Matrix.dotProduct only clutters the code. Even though we do not like it, we decided to namespace our definitions in the same way for consistency.

Since we have new definitions, we have to rebuild all API (a lot of lemmas) for Matrix.dotProd and Matrix.mulWeig from scratch. This process was very tiresome. We decided not to develop a full reusable library, but prove only those lemmas we wanted to use in our project. For similar reasons, we did not generalize the Mathlib definition of "vector times matrix", as "matrix times vector" was all we needed. It was still a lot of lemmas.

2.4 Modules and how to order them

Given types α and β such that α has a scalar action on β and α forms a monoid, Mathlib defines multiplicative action where 1 of type α gives the identity action and multiplication in the monoid associates with the scalar action:

```
class MulAction (\alpha: Type*) (\beta: Type*) [Monoid \alpha] extends SMul \alpha \beta where one_smul : \forall b : \beta, (1 : \alpha) • b = b mul_smul : \forall (x y : \alpha) (b : \beta), (x * y) • b = x • y • b
```

For a distributive multiplicative action, we furthermore require the latter type to form an additive monoid and two more properties are required; multiplying the zero gives the zero, and the multiplicative action is distributive with respect to the addition:

```
class DistribMulAction (M A : Type*) [Monoid M] [AddMonoid A] extends MulAction M A where smul_zero : \forall a : M, a • (0 : A) = 0 smul_add : \forall (a : M) (x y : A), a • (x + y) = a • x + a • y
```

We can finally review the definition of a module. Here the former type must form a semiring and the latter type abelian monoid. Module requires a distributive multiplicative action and two additional properties; addition in the semiring distributes with the multiplicative action, and multiplying by the zero from the semiring gives a zero in the abelian monoid:

```
class Module (R : Type u) (M : Type v) [Semiring R] [AddCommMonoid M] extends DistribMulAction R M where add_smul : \forall (r s : R) (x : M), (r + s) • x = r • x + s • x zero_smul : \forall x : M, (0 : R) • x = 0
```

Note the class Module does not extend the class Semiring; it requires Semiring as an argument. The abelian monoid is also required separately in the definition. We call such a class "mixin". Thanks to this design, we do not need to define superclasses of Module in order to require "more than a module". Instead, we use superclasses in the respective arguments, i.e., "more than a semiring" and/or "more than an abelian monoid". For example, if we replace

```
[Semiring R] [AddCommMonoid M] [Module R M]
```

in a theorem statement by

```
[Field R] [AddCommGroup M] [Module R M]
```

we require M to be a vector space over R. We do not need to extend Module in order to define what a vector space is.

In our case, to state the theorem fintypeFarkasBartl, we need R to be a linearly ordered division ring, we need W to be an R-module, and we need V to be a linearly ordered R-module. The following list of requirements is almost correct:

```
[LinearOrderedDivisionRing R] [AddCommGroup W] [Module R W] [LinearOrderedAddCommGroup V] [Module R V]
```

The only missing assumption is the relationship between how R is ordered and how V is ordered. For that, we use another mixin, defined in Mathlib as follows:

```
class PosSMulMono (lpha eta : Type*) [SMul lpha eta] [Preorder lpha] [Preorder eta] : Prop where
   elim {a : \alpha} (ha : 0 \leq a) {b<sub>1</sub> b<sub>2</sub> : \beta} (hb : b<sub>1</sub> \leq b<sub>2</sub>) : a ullet b<sub>1</sub> \leq a ullet b<sub>2</sub>
```

We encourage the reader to try and delete various assumptions and see which parts of the proofs underline by red.

Linear programming

```
Extended linear programs are defined as follows: TODO this changed.
```

```
structure ExtendedLP (I J F : Type*) [LinearOrderedField F] where
  A : Matrix I J F\infty
  b : I \to F\infty
  c: J \to F\infty
  hAi : \neg \exists i : I, (\exists j : J, A i j = \bot) \land (\exists j : J, A i j = \top)
  hAj : \neg \exists j : J, (\exists i : I, A i j = \bot) \land (\exists i : I, A i j = \top)
  hbi : \neg \exists i : I, b i = \bot
  hcj : \neg \exists j : J, c j = \bot
  hAb : \neg \exists i : I, (\exists j : J, A i j = \top) \land b i = \top
  hAc : \neg \exists j : J, (\exists i : I, A i j = \bot) \land c j = \top
Vector x made of finite nonnegative values is a solution if and only if A \cdot x \leq b holds:
\mathtt{P.A} _{m}* x \leq \mathtt{P.b}
Reaching a value r is defined as follows:
def ExtendedLP.Reaches (P : ExtendedLP I J F) (r : F\infty) : Prop :=
  \exists x : J \rightarrow F\geq0, P.IsSolution x \land P.c _v \cdot x = r
Feasibility is defined as follows: TODO this changed.
def ExtendedLP.IsFeasible (P : ExtendedLP I J F) : Prop :=
  \exists p : F, P.Reaches (toE p)
Being bounded by a value r (from below – we always minimize) is defined as follows:
def ExtendedLP.IsBoundedBy (P : ExtendedLP I J F) (r : F) : Prop :=
  \forall p : F\infty, P.Reaches p \rightarrow r \leq p
Being unbounded is defined as follows:
def ExtendedLP.IsUnbounded (P : ExtendedLP I J F) : Prop :=
  \neg \exists r : F, P.IsBoundedBy r
The following definition says how linear programs are dualized (the first three parts define the dual program's A, b, c; the rest generates
proofs that our six conditions stay satisfied after dualization, where aeply is a custom tactic based on aesop [12]): TODO this changed.
def ExtendedLP.dualize (P : ExtendedLP I J F) : ExtendedLP J I F :=
  \langle -P.A^T, P.c, P.b, by aeply P.hAj, by aeply P.hAi, P.hcj, P.hbi, by aeply P.hAc, by aeply P.hAb\rangle
The definition of optimum is, sadly, very complicated:
noncomputable def ExtendedLP.optimum (P : ExtendedLP I J F) : Option F\infty :=
```

```
if P.IsFeasible then
  if P. IsUnbounded then
    some
  else
    if hf : \exists r : F, P.Reaches (toE r) \land P.IsBoundedBy r then
      some (toE hf.choose)
    else
      none
else
  some T
```

The type Option F_{∞} , which is implemented as Option (Option F)) after unfolding definitions, allows the following values:

- none
- some \(\perp\) implemented as some none
- some T implemented as some (some none)
- some (to E r) implemented as some (some (some r)) for any r : F

We assign the following semantics to Option F ∞ values:

• none ... invalid finite value (infimum is not attained)

- some \perp ... feasible unbounded
- some ⊤ ... infeasible
- some (toE r) ... the minimum is a finite value r

The definition above first asks if P is feasible; if not, it returns some \top (i.e., the worst value). When P is feasible, it asks whether P is unbounded; if yes, it returns some \bot (i.e., the best value). Otherwise, we are in the middle branch where P is feasible and bounded. We ask if there is a finite value r such that P reaches r and, at the same time, P is bounded by r; is so, some (toE r) is the optimum. Note that we use the verbs "ask" and "return" metaphorically; ExtendedLP.optimum is not a computable function; it is just a mathematical definition (see the keyword noncomputable def above).

Finally, we define what opposite values of the type Option $F\infty$ are (note that for any values except none we directly follow the definition of negation a.k.a. unary minus on the extended linearly ordered fields):

```
def OppositesOpt : Option F\infty \to Option F\infty \to Prop | (p : F\infty), (q : F\infty) => p = -q | _ => False
```

The last line says that OppositesOpt none none is False. We later show that none is never the optimum, but we do not know it yet.

3 Formal statements of selected results

3.1 Main corollaries

```
theorem equalityFarkas (A : Matrix I J F) (b : I \rightarrow F) : 
 (\exists x : J \rightarrow F, 0 \le x \land A *_v x = b) \ne (\exists y : I \rightarrow F, 0 \le A<sup>T</sup> *_v y \land b \cdot_v y < 0) 
 theorem inequalityFarkas [DecidableEq I] (A : Matrix I J F) (b : I \rightarrow F) : 
 (\exists x : J \rightarrow F, 0 \le x \land A *_v x \le b) \ne (\exists y : I \rightarrow F, 0 \le y \land 0 \le A<sup>T</sup> *_v y \land b \cdot_v y < 0) 
 theorem StandardLP.strongDuality {P : StandardLP I J R} (hP : P.IsFeasible \lor P.dualize.IsFeasible) : 
 OppositesOpt P.optimum P.dualize.optimum
```

3.2 Main results

```
theorem fintypeFarkasBartl {J : Type*} [Fintype J] [LinearOrderedDivisionRing R] [LinearOrderedAddCommGroup V] [Module R V] [PosSMulMono R V] [AddCommGroup W] [Module R W] (A : W \rightarrow_l [R] J \rightarrow R) (b : W \rightarrow_l [R] V) : (\exists x : J \rightarrow V, 0 \leq x \land V w : W, \sum j : J, A w j • x j = b w) \neq (\exists y : W, 0 \leq A y \land b y < 0) theorem extendedFarkas (A : Matrix I J F\infty) (b : I \rightarrow F\infty) (hA : \neg \exists i : I, (\exists j : J, A i j = \bot) \land (\exists j : J, A i j = \top)) (hAT : \neg \exists j : J, (\exists i : I, A i j = \bot) \land (\exists i : I, A i j = \top)) (hAb : \neg \exists i : I, (\exists j : J, A i j = \top) \land b i = \top) (hAb' : \neg \exists i : I, (\exists j : J, A i j = \bot) \land b i = \bot) : (\exists x : J \rightarrow F\ge0, A m^* x \le b) \neq (\exists y : I \rightarrow F\ge0, \negA m^* y \le 0 \land b v · y < 0) theorem ExtendedLP.strongDuality {P : ExtendedLP I J F} (hP : P.IsFeasible \lor P.dualize.IsFeasible) : OppositesOpt P.optimum P.dualize.optimum
```

4 Proving the Farkas-Bartl theorem

We prove finFarkasBartl and, in the end, we obtain fintypeFarkasBartl as corollary.

Theorem (finFarkasBartl). Let n be a natural number. Let R be a linearly ordered division ring. Let W be an R-module. Let V be a linearly ordered R-module. Let A be an R-linear map from W to $([n] \to R)$. Let b be an R-linear map from W to V. Exactly one of the following exists:

- nonnegative vector family $x:[n] \to V$ such that, for all w:W, we have $\sum_{j:[n]} (A \ w)_j \cdot x_j = b \ w$
- vector y : W such that $A y \ge 0$ and b y < 0

The only difference is that finFarkasBartl uses $[n] = \{0, \dots, n-1\}$ instead of an arbitrary (unordered) finite type J.

Proof idea: We first prove that both cannot exist at the same time. Assume we have x and y of said properties. We plug y for w and obtain $\sum_{i:[n]} (A y)_i \cdot x_j = b y$. On the left-hand side, we have a sum of nonnegative vectors, which contradicts b y < 0.

We prove "at least one exists" by induction on n. If n = 0 then $A y \ge 0$ is a tautology. We consider b. Either b maps everything to the zero vector, which allows x to be the empty vector family, or some w gets mapped to a nonzero vector, where we choose y to be either w or (-w). Since V is linearly ordered, one of them satisfies b y < 0. Now we precisely state how the induction step will be.

Lemma (industepFarkasBart1). Let m be a natural number. Let R be a linearly ordered division ring. Let W be an R-module. Let V be a linearly ordered R-module. Assume (induction hypothesis) that for all R-linear maps $\bar{A}:W\to ([m]\to R)$ and $\bar{b}:W\to V$, the formula " $\forall \bar{y}:W$, $\bar{A}\ \bar{y}\geq 0\implies \bar{b}\ \bar{y}\geq 0$ " implies existence of a nonnegative vector family $\bar{x}:[m]\to V$ such that, for all $\bar{w}:W$, $\sum_{i:[m]}\ (\bar{A}\ \bar{w})_i\cdot \bar{x}_i=\bar{b}\ \bar{w}$. Let A be an R-linear map from W to $([m+1]\to R)$. Let B be an B-linear map from B to B to B such that, for all B to B that, for all B is B to B the B to B that B is B th

Proof idea: Let $A_{\leq m}$ roughly mean $A \upharpoonright [m]$. To be more precise, $A_{\leq m}$ is a function that maps (w:W) to $(Aw) \upharpoonright [m]$, i.e., $A_{\leq m}$ is an R-linear map from W to $([m] \to R)$ that behaves exactly like A where it is defined. We distinguish two cases. If, for all y:W, the inequality $A_{\leq m}$ $y \geq 0$ implies $b \ y \geq 0$, then plug $A_{\leq m}$ for \bar{A} , obtain \bar{x} , and construct a vector family x such that $x_m = 0$ and otherwise x copies \bar{x} . We easily check that x is nonnegative and that $\sum_{i:[m+1]} (Aw)_i \cdot x_i = bw$ holds.

In the second case, we have y' such that $A_{\leq m}$ $y' \geq 0$ holds but \dot{b} y' < 0 also holds. We realize that $(A\ y')_m < 0$. We now declare $y := (A\ y')_m \cdot y'$ and observe $(A\ y)_m = 1$. We establish the following facts (proofs are omitted):

- for all w: W, we have $A(w ((A w)_m \cdot y)) = 0$
- for all w: W, the inequality $A_{\leq m} (w ((A w)_m \cdot y)) \geq 0$ implies $b (w ((A w)_m \cdot y)) \geq 0$
- for all w: W, the inequality $A_{\leq m} w A_{\leq m} ((A w)_m \cdot y) \geq 0$ implies $b w b ((A w)_m \cdot y) \geq 0$
- for all w: W, the inequality $(A_{\leq m} (z \mapsto (A z)_m \cdot (A_{\leq m} y))) \ w \geq 0$ implies $(b (z \mapsto (A z)_m \cdot (b y))) \ w \geq 0$

We observe that $\bar{A} := A_{\leq m} - (z \mapsto (A \ z)_m \cdot (A_{\leq m} \ y))$ and $\bar{b} := b - (z \mapsto (A \ z)_m \cdot (b \ y))$ are R-linear maps. Thanks to the last fact, we can apply induction hypothesis to \bar{A} and \bar{b} . We obtain a nonnegative vector family x' such that, for all $\bar{w} : W, \sum_{i:[m]} (\bar{A} \ \bar{w})_i \cdot x_i' = \bar{b} \ \bar{w}$. It remains to construct a nonnegative vector family $x : [m+1] \to V$ such that, for all w : W, we have $\sum_{i:[m+1]} (\bar{A} \ w)_i \cdot x_i = b \ w$. We choose $x_m = b \ y - \sum_{i:[m]} (A_{\leq m} \ y)_i \cdot x_i'$ and otherwise x copies x'. We check that our x has the required properties. Qed.

We complete the proof of finFarkasBart1 by applying industepFarkasBart1 to $A_{\leq n}$ and b. Finally, we obtain fintypeFarkasBart1 from finFarkasBart1 using some boring mechanisms regarding equivalence between finite types.

5 Extended Farkas theorem

We prove inequalityFarkas by applying equalityFarkas to the matrix $(1 \mid A)$ where 1 is the identity matrix of type $(I \times I) \to F$.

Theorem (inequalityFarkas_neg). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F$. Let B be a vector of type A be a matrix of type A be a vector of type A be a matrix of typ

- nonnegative vector $x: J \to F$ such that $A \cdot x \leq b$
- nonnegative vector $y: I \to F$ such that $(-A^T) \cdot y \leq 0$ and $b \cdot y < 0$

Obviously, inequalityFarkas_neg is an immediate corollary of inequalityFarkas.

Theorem (extendedFarkas, restated). Let I and J be finite types. Let F be a linearly ordered field. Let A be a matrix of type $(I \times J) \to F_{\infty}$. Let b be a vector of type $I \to F_{\infty}$. Assume that A does not have \bot and \top in the same row. Assume that A does not have \bot in any row where b has \top . Assume that A does not have \bot in any row where b has \bot . Exactly one of the following exists:

- nonnegative vector $x: J \to F$ such that $A \cdot x \le b$
- nonnegative vector $y: I \to F$ such that $(-A^T) \cdot y \leq 0$ and $b \cdot y < 0$

5.1 Proof idea

We need to do the following steps in given order:

- 1. Delete all rows of both A and b where A has \perp or b has \top (they are tautologies).
- 2. Delete all columns of A that contain \top (they force respective variables to be zero).
- 3. If b contains \perp , then $A \cdot x \leq b$ cannot be satisfied, but y = 0 satisfies $(-A^T) \cdot y \leq 0$ and $b \cdot y < 0$. Stop here.
- 4. Assume there is no \perp in b. Use inequality Farkas_neg. In either case, extend x or y with zeros on all deleted positions.

5.2 Counterexamples

If A has \perp and \top in the same row, it may happen that both x and y exist:

$$A = \begin{pmatrix} \bot & \top \\ 0 & -1 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \qquad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

If A has \perp and \top in the same column, it may happen that both x and y exist:

$$A = \begin{pmatrix} \bot \\ \top \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad x = \begin{pmatrix} 0 \end{pmatrix} \qquad y = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

If A has \top in a row where b has \top , it may happen that both x and y exist:

$$A = \begin{pmatrix} \top \\ -1 \end{pmatrix} \qquad b = \begin{pmatrix} \top \\ -1 \end{pmatrix} \qquad x = \begin{pmatrix} 1 \end{pmatrix} \qquad y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

If A has \perp in a row where b has \perp , it may happen that both x and y exist:

$$A = \begin{pmatrix} \bot \end{pmatrix}$$
 $b = \begin{pmatrix} \bot \end{pmatrix}$ $x = \begin{pmatrix} 1 \end{pmatrix}$ $y = \begin{pmatrix} 0 \end{pmatrix}$

6 Extended strong LP duality

We start with the weak duality and then move to the strong duality. We will use extendedFarkas in several places.

Theorem (weakDuality, restated). Let F be a linearly ordered field. Let P be a linear program over F_{∞} . If P reaches p and the dual of P reaches q, then $p+q \geq 0$.

Proof idea: There is a vector x such that $A \cdot x \leq b$ and $c \cdot x = p$. Apply extendedFarkas to the following matrix and vector:

$$\begin{pmatrix} A \\ c \end{pmatrix} \qquad \begin{pmatrix} b \\ c \cdot x \end{pmatrix}$$

TODO this changed.

Lemma (infeasible_of_unbounded). If a linear program P is unbounded, the dual of P cannot be feasible.

Proof idea: Assume that P is unbounded, but the dual of P is feasible. Obtain contradiction using weakDuality.

Lemma (unbounded_of_reaches_le). Let F be a linearly ordered field. Let P be a linear program over F_{∞} . Assume that for each s in F there exists p in F_{∞} such that P reaches p and $p \leq s$. Then P is unbounded.

Proof idea: It suffices to prove that for each r in F there exists p' in F_{∞} such that P reaches p' and p' < r. Apply the assumption to r-1.

Lemma (unbounded_of_feasible_of_neg). Let F be a linearly ordered field. Let P be a linear program over F_{∞} that is feasible. Let x_0 be a nonnegative vector such that $c \cdot x_0 < 0$ and $A \cdot x_0 + 0 \cdot (-b) \le 0$. Then P is unbounded.

Proof idea: There is a nonnegative vector x_p such that $A \cdot x_p \leq b$ and $c \cdot x_p = e$ for some e in F. We apply unbounded_of_reaches_le. In case $e \leq s$, we use x_p and we are done. Otherwise, consider what $c \cdot x_0$ equals to. We cannot have $c \cdot x_0 = \bot$ because c does not contain \bot . We cannot have $c \cdot x_0 = \top$ because $c \cdot x_0 < 0$. Hence $c \cdot x_0 = d$ for some d in F. Observe that the fraction $\frac{s-e}{d}$ is well defined and it is positive. Use $x_p + \frac{s-e}{d} \cdot x_0$.

Lemma (dualize_dualize). Let P be a linear program. The dual of the dual of P is exactly P.

Proof idea: $-(-A^T)^T = A$

Lemma (strongDuality_aux). Let P be a linear program such that P is feasible and the dual of P is also feasible. There is a value p reached by P and a value q reached by the dual of P such that $p + q \le 0$.

Proof idea: Apply extendedFarkas to the following matrix and vector:

$$\begin{pmatrix} A & 0 \\ 0 & -A^T \\ c & b \end{pmatrix} \qquad \qquad \begin{pmatrix} b \\ c \\ 0 \end{pmatrix}$$

In the first case, we obtain a nonnegative vectors x and y such that $A \cdot x \leq b$, $-A^T \cdot y \leq c$, and $c \cdot x + b \cdot y \leq 0$. We immediately see that P reaches $c \cdot x$, that the dual of P reaches $b \cdot y$, and that the desired inequality holds.

In the second case, we obtain nonnegative vectors y and x and a nonnegative scalar z such that $-A^T \cdot y + z \cdot (-c) \le 0$, $A \cdot x + z \cdot (-b) \le 0$, and $b \cdot y + c \cdot x < 0$. If z > 0, we finish the proof using $p := z^{-1} \cdot c \cdot x$ and $q := z^{-1} \cdot b \cdot y$ (and we do not care that this case cannot happen in reality). It remains to prove that z = 0 cannot happen. At least one of $b \cdot y$ or $c \cdot x$ must be strictly negative. If $c \cdot x < 0$, we apply unbounded_of_feasible_of_neg to P, which (using infeasible_of_unbounded) contradicts that the dual of P is feasible. If $b \cdot y < 0$, we apply unbounded_of_feasible_of_neg to the dual of P, which (using infeasible_of_unbounded and dualize_dualize) contradicts that P is feasible.

Lemma (strongDuality_of_both_feasible). Let P be a linear program such that P is feasible and the dual of P is also feasible. There is a finite value r such that P reaches -r and the dual of P reaches r.

Proof idea: From strongDuality_aux we have a value p reached by P and a value q reached by the dual of P such that $p+q \leq 0$. We apply weakDuality to p and q to obtain $p+q \geq 0$. We set r := q.

Lemma (unbounded_of_feasible_of_infeasible). Let P be a linear program such that P is feasible but the dual of P is not feasible. Then P is unbounded.

Proof idea: Apply extendedFarkas to the matrix $(A \upharpoonright \{i : I \mid b_i \neq \top\})^T$ and the vector c.

Lemma (optimum_unique). Let P be a linear program. Let r be a value reached by P such that P is bounded by r. Let s be a value reached by P such that P is bounded by s. Then r = s.

Proof idea: We prove $r \leq s$ by applying "P is bounded by r" to "s is reached by P". We prove $s \leq r$ by applying "P is bounded by s" to "r is reached by P".

Lemma (optimum_eq_of_reaches_bounded). Let P be a linear program. Let r be a value reached by P such that P is bounded by r. Then the optimum of P is r.

Proof idea: Apply the axiom of choice to the definition of optimum and use optimum_unique.

Lemma (strongDuality_of_prim_feas). Let P be a linear program that is feasible. The strong duality holds.

Proof idea: If the dual of P is feasible as well, use strongDuality_of_both_feasible to obtain r such that P reaches -r and the dual of P reaches r. Using optimum_eq_of_reaches_bounded together with weakDuality, conclude that the optimum of P is r. Using optimum_eq_of_reaches_bounded together with weakDuality, conclude that the optimum of the dual of P is r. The strong duality holds.

If the dual of P is infeasible, the optimum of the dual of P is \top by definition. Using unbounded_of_feasible_of_infeasible we get that the optimum of P is \bot . The strong duality holds.

Theorem (optimum_neq_none). Every linear program has optimum.

Proof idea: If a linear program P is feasible, the existence of optimum follows from strongDuality_of_prim_feas. Otherwise, the optimum of P is \top by definition.

Lemma (strongDuality_of_dual_feas). Let P be a linear program whose dual is feasible. The strong duality holds.

Proof idea: Apply $strongDuality_of_prim_feas$ to the dual of P and use $dualize_dualize$.

Theorem (strongDuality, restated). Let F be a linearly ordered field. Let P be a linear program over F_{∞} . If P or its dual is feasible (at least one of them), then there exists p in F_{∞} such that P has optimum p and the dual of P has optimum -p.

Proof idea: Use strongDuality_of_prim_feas or strongDuality_of_dual_feas.

6.1 Counterexample (first two conditions)

If A has \perp and \top in the same column, the following may happen:

$$A = \begin{pmatrix} \bot \\ \top \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \qquad c = \begin{pmatrix} 0 \end{pmatrix}$$

If A has \perp and \top in the same row, the following may happen:

$$A = \begin{pmatrix} \top & \bot \end{pmatrix}$$
 $b = \begin{pmatrix} 0 \end{pmatrix}$ $c = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

The two linear programs above are duals of each other. Yet the optimum of the former is 0 but the optimum of the latter is \perp .

6.2 Counterexample (middle two conditions)

If A has \perp in a row where b has \perp , the following may happen:

$$A = \left(\bot\right) \qquad \qquad b = \left(\bot\right) \qquad \qquad c = \left(0\right)$$

If A has \top in a column where c has \bot , the following may happen:

$$A = (\top)$$
 $b = (0)$ $c = (\bot)$

The two linear programs above are duals of each other. Yet the optimum of the former is 0 but the optimum of the latter is \perp .

6.3 Counterexample (last two conditions)

If A has \top in a row where b has \top , the following may happen:

$$A = \begin{pmatrix} \top \\ -1 \end{pmatrix} \qquad b = \begin{pmatrix} \top \\ -1 \end{pmatrix} \qquad c = \begin{pmatrix} 0 \end{pmatrix}$$

If A has \perp in a column where c has \top , the following may happen:

$$A = \begin{pmatrix} \bot & 1 \end{pmatrix}$$
 $b = \begin{pmatrix} 0 \end{pmatrix}$ $c = \begin{pmatrix} \top \\ -1 \end{pmatrix}$

The two linear programs above are duals of each other. Yet the optimum of the former is 0 but the optimum of the latter is \perp .

7 Related work

Isabelle [5] [6] [15] Rocq [2]

In Lean, it would be possible to prove Farkas for reals using the Hahn-Banach separation theorem. However, we do not yet know that the set of feasible solutions is closed.

TODO more about existing formalizations of Farkas-like theorems.

8 Conclusion

We formally verified several Farkas-like theorems in Lean 4. We extended the existing theory to a new setting where some coefficient can carry infinite values. We realized that the abstract work with modules over linearly ordered division rings and linear maps between them was fairly easy to carry on in Lean 4 thanks to the library Mathlib that is perfectly suited for such tasks. In contrast, manipulation with matrices got tiresome whenever we needed a not-fully-standard operation. It turns out Lean 4 cannot automate case analyses unless they take place in the "outer layers" of formulas. Summation over subtypes and summation of conditional expression made us developed a lot of ad-hoc machinery which we would have preferred to be handled by existing tactics. Another area where Lean 4 is not yet helpful is the search for counterexamples. Despite these difficulties, we find Lean 4 to be an excellent tool for elegant expressions of mathematical theorems and for proving them formally.

References

- [1] Division by zero in type theory: a FAQ. https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/. Accessed: 2014-08-28.
- [2] Xavier Allamigeon and Ricardo D. Katz. A formalization of convex polyhedra based on the simplex method, 2018.
- [3] David Bartl. Farkas' lemma, other theorems of the alternative, and linear programming in infinite-dimensional spaces: a purely linear-algebraic approach. *Linear and Multilinear Algebra*, 55(4):327–353, July 2007.
- [4] David Bartl. A very short algebraic proof of the Farkas lemma. *Mathematical Methods of Operations Research*, 75(1):101–104, December 2011.
- [5] Ralph Bottesch, Max W. Haslbeck, and René Thiemann. Farkas' lemma and Motzkin's transposition theorem. *Archive of Formal Proofs*, January 2019. https://isa-afp.org/entries/Farkas.html, Formal proof development.
- [6] Ralph Bottesch, Alban Reynaud, and René Thiemann. Linear inequalities. Archive of Formal Proofs, June 2019. https://isa-afp.org/entries/Linear_Inequalities.html, Formal proof development.
- [7] Sergei Nikolaevich Chernikov. Linear inequalities. Nauka, 1968.

- [8] György Farkas. A Fourier-féle mechanikai elv alkalmazásai. Mathematikai és Természettudományi Értesitö, 12:457–472, 1894.
- [9] György Farkas. Paraméteres módszer fourier mechanikai elvéhez. Mathematikai és Physikai Lapok, 7:63–71, 1898.
- [10] D. Gale, H.W. Kuhn, and A.W. Tucker. Linear programming and the theory of games. In *Activity Analysis of Production and Allocation*, pages 317–329, 1951.
- [11] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming for general-valued CSPs. SIAM Journal on Computing, 44(1):1—36, 2015.
- [12] Jannis Limperg and Asta Halkjær From. Aesop: White-box best-first proof search for Lean. In *Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs*, CPP '23. ACM, January 2023.
- [13] H. Minkowski. Geometrie der Zahlen (Erste Lieferung). Teubner, Leipzig, 1986.
- [14] Robert Pollack. How to believe a machine-checked proof. BRICS Report Series, 4(18), January 1997.
- [15] René Thiemann. Duality of linear programming. Archive of Formal Proofs, February 2022. https://isa-afp.org/entries/LP_Duality.html, Formal proof development.
- [16] Cherng tiao Perng. On a class of theorems equivalent to Farkas's lemma. Applied Mathematical Sciences, 11(44):2175–2184, 2017.
- [17] J. von Neumann. Discussion of a maximum problem. Technical report, Institute for Advanced Study, Princeton, NJ, 1947.

9 Appendix: dependencies between theorems

Theorems are in black. Selected lemmas are in gray. What we consider to be the main theorems are denoted by yellow background. TODO yellow extendedFarkas. TODO this changed.