

EVPN am KIT

Inhalt

- Bisschen was zu EVPN und warum das KIT sich dafür entschieden hat
- KIT Netzdesign
- Cases & Lessons learned

Motivation: historischer Netzaufbau

- Historisch gewachsene Struktur
- Layer 2 überall, manuelles Legen von VLANs
- Fehleranfälligkeit / große Fehler-Domäne
- Lange Ausfallzeiten
- Gateway unklar
- Shared Control-Plane auf zentralen Komponenten

Neue Lösung gesucht / Anforderung

- Offener Standard
- Unabhängige Control-Plane auf zentralen Komponenten
- Redundanz auf Layer 2 und Layer 3
- Kleinere Fehlerdomänen ermöglichen
- Möglichkeit zur sanften Migration von Layer 2 zentriertem Aufbau zur gerouteten Architektur
- Klare Position des Gateways
- Unterstützung für mehr als 4094 Broadcast-Domains
- Automatische Wegsuche für Broadcast-Domain

Lösungsansätze

- Proprietäre Lösung: kein offener Standard
- OpenFlow: zentrale Controller
- VPLS, TRILL, Shortest Path Bridging: Nur Layer 2
- ■L3VPN: nur L3
- EVPN: offener Standard, "kann alles"

EVPN!

- IETF Standard offen und herstellerübergreifend
- Robustheit: verteilte Control Plane, eingebaute Redundanz-Mechanismen für L2 und L3
- Flexibel einsetzbar: ISP-, Campus- / Enterprise- und DC-Netzwerk
- Reiches Featureset: L2VPN, Loop-Protection, MC-LAG, Anycast-Gateway, ARP-/NDP-Supression, L3VPN, ...

EVPN – One Protocol To Rule Them All

E-LINE
Point-to-Point

Pseudowire LDP/BGP

E-LAN
Point-to-Multipoint

VPLS LDP/BGP

E-Tree
Hub and Spoke

VPLS-Tree BGP

Multicast L3 VPNs
Point-to-Multipoint

(NG) MVPN BGP

MC-LAG

L3VPN BGP

Gateway

VRRP

EVPN Control Plane – BGP

EVPN VPWS RFC 8214 L2-EVPN RFC 7432 EVPN E-Tree RFC 8317 EVPN OISM draft

EVPN Type-5 RFC 9136 EVPN Multihoming RFC 7432 EVPN Anycast GW RFC 9135

EVPN Data Plane - (SR) MPLS / VXLAN

RFC 7432, RFC 8365

Hardware KITcore

Spine

Cisco Nexus 9336C-FX2

36 x 40/100G QSFP28

Leaf

Cisco Nexus 93240YC-FX2

48 x 1/10/25G SFP18 12 x 40/100G QSFP28

Service Leaf

Cisco Nexus 93180YC-FX3

48 x 1/10/25G SFP18 6 x 40/100G QSFP28

Netzwerk-Design L1 I

Netzwerk Design L1 II

Netzwerk Design L3 I

Netzwerk Design L3 II

Cases I

Cases II

- 78 Cases in den letzten 4 Jahren
 - 3 PEBKAC
 - 5 RMA: 2 defekte ASICs, 3 defekte Lüfter
 - 12 Cases zur Doku (Unklarheit, Korrekturen)
 - 13 Cases zu EVPN
 - 33 Cases mit Netzwerkstörungen
 - 17 Bugs in CLI / ASCII-Config
 - 64 Bug IDs, 7 Hotfixes

EVPN war die richtige Entscheidung, aber Qualitätsproblem bei Cisco!

Best of Cases

- CSCvr80704: Configure replace fails when 'switchport trunk allowed vlan' list is too large
- CSCvs15705: UDP fragmented packets punted to CPU as incorrectly parsed as BFDC v4 PACKET IETF
- CSCvt75268: IPv6 routes use wrong VLAN as next hop
- ■CSCvv04821: Nexus 9000 Series Switches in standalone NX-OS mode Egress RACL Bypass Vulnerability
- ■CSCvv26464: N9k IGMP report destined to 224.0.0.x sent back on same port it is received on
- CSCvv64248: N9k- DHCP Relay DHCP OFFER broadcast loop/bounce in EVPN Fabric

Fragen & Antworten

Benedikt Neuffer

mail: benedikt.neuffer@kit.edu

matrix: @iv4011:kit.edu