AD201MPCHVVA

单板使用指南

文档版本 01

发布日期 2024-04-17

前言

概述

本文档主要介绍 AD201MPCHVVA 单板基本功能、硬件特性、多功能硬件配置和软件调试方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
3061M 系列	-

读者对象

本文档(本指南)主要适用于以下工程师:

- 验证工程师
- 软件调试工程师
- 技术支持工程师
- 单板硬件开发工程师

2024-04-17 i

修订记录

修订日期	版本	修订说明
2023-08-22	00B01	第 1 次临时版本发布。
2024-04-17	01	第 1 次正式版本发布。

2024-04-17 ii

目 录

前	言	.i
4 1		
1 1	姀. 企	ľ
1.1	简介	1
1.2	ADPWR24 电源板(低压调试使用)+24V 直流电源功能特性	1
1.3	相关组件	3
2 }	更件介绍	4
2.1	结构与接口	4
2.2	指示灯	5
2.3	单板电源供电方式切换	6
2.4	SWD 调试器接口	7
2.5	SPI 通讯接口	8
2.6	Hall&QDM 编码器接口	9
2.7	IIC 通讯接口1	11
2.8	按键1	2
3 }	操 作指南 1	4
3.1	注意事项1	4
3.2	单板硬件配置字选择	4
3.3	单板散热片选择	6
3.4	采样电阻和过流点配置	7

插图目录

冬	1-1	单板功能接口框图	. 2
图	2-1	单板接口结构示意图	. 4
冬	2-2	指示灯位置	. 5
图	2-3	高压供电接线方式	. 6
冬	2-4	低压电源板跳线位置示意图	. 7
冬	2-5	SWD 接口 J501 的位置示意图&接器管脚定义	. 8
图	2-6	SPI 接口 J503 的位置示意图&接口管脚定义	. 9
图	2-7	Hall & QDM 接口 J505 的位置示意图	10
图	2-8	Hall & QDM 接口管脚定义	11
冬	2-9	IIC接口 J504的位置示意图&接口管脚定义	12
冬	2-10) KEY0 位置	13
图	3-1	启动管脚原理图	15
图	3-2	J504 的 PCB 位置	16
夂	3-3	· 鱼板散热片安装价置	17

2024-04-17 iv

表格目录

表 2-1	单板接口说明	4
表 3-1	启动配置选择	15
	采样电阻配置	

2024-04-17 v

1 概述

1.1 简介

AD201MPCHVVA 是针对 3061M 系列 48pin MCU 开发的高压通用生态板,用于MCU 基于电机控制板场景的功能、性能测试验证,同时作为客户电机开发板的参考设计。

AD201MPCHVVA 支持 220V AC 输入,其中 220V AC 输入包含保护、整流、滤波、Buck 电路控制。如果想用低压调试,需要外接一块电源板(ADPWR24),该单板支持 24V DC 输入,输出 24V、15V、6V 三路电源。MCU 的 DVDD33 和 AVDD33 由同一LDO 供电,5V 外围电源由另一路 LDO 供电。

AD201MPCHVVA 支持 BLDC/PMSM 电机控制,单电阻和双电阻采样兼容设计。逆变电路采用 IPM 集成方案设计,默认双电阻采样,双电阻电流采样采用内置运放,采样电阻 $50m\Omega$,过流保护默认使用 MCU 内置比较器(兼容 IPM 内置比较器);单电阻电流采样采用内置 PGA0,采样电阻 $50m\Omega$ 。过流保护使用 IPM 内置比较器或 MCU 内置比较器。

通过串口或者 SWD 与 PC 连接,组成一个基本开发系统。为实现更完整的开发系统或演示环境,需增加如下设备或部件:

- PC
- SWD 调试/仿真器,支持 5pin (2.54mm pitch) 连接器

1.2 ADPWR24 电源板(低压调试使用)+24V 直流电源功能 特性

AD201MPCHVVA 包含以下功能特性:

2024-04-17

- 支持 1 个两线串口 (UART3),接 5pin 连接器。
- 支持 1 路 SWD 接口,连接 5pin 连接器。
- 支持 1 个 I2C 接口,连接 6pin 连接器。
- 支持 1 个 Hall&QDM 编码器接口,连接 5pin 连接器。
- 支持 1 个 SPI 接口,连接 6pin 连接器。
- 支持母线电压侦测。
- 支持 2 个内置 PGA, PGA0 采样 W 相电流或总电流和 PGA1 采样 U 相电流,均为外置电阻模式。
- 支持3个APT (APT0/1/2) 输出,用作IPM控制。
- 支持 1 个内置 ACMP1,用作 IGBT 总电流过流保护。
- 预留 1 个 12MHz 外置晶体。
- 预留1个按键。
- 支持3个指示灯,1路用作电源指示灯,另外2路由用户自定义使用。

图1-1 单板功能接口框图

□ 说明

实线为默认设计, 虚线为兼容预留设计。

1.3 相关组件

以下所列组件不包含在 AD201MPCHVVA 的交付清单之内,但它们是用户程序调试过程中必备的,请用户自行准备。

- 5pin 串口线。
- 5pin SWD 排线。

2 硬件介绍

2.1 结构与接口

图2-1 单板接口结构示意图

□ 说明

插件在正面,贴片在背面。

表2-1 单板接口说明

序号	描述
----	----

序号	描述
1	5pin 串口 (UART3)
2	5pin SWD 接口
3	6pin SPI 通讯接口
4	5pin Hall&QDM 编码器接口
5	6pin IIC 通讯接口
6	单板高压接口,市电 220AC 接口或者接 AC 电源
7	IPM 输出 UVW 相电机口

2.2 指示灯

单板中有 3 个指示灯 D501、D502、D503, 位置如图 2-2 所示。

D501 绿色 LED, 电源指示灯, 3.3V 电源正常上电, D501 亮起;

D502 LED0, 红色 LED;

D503 LED1, 绿色 LED。

图2-2 指示灯位置

2.3 单板电源供电方式切换

AD201MPCHVVA 默认为 220V AC 供电,可以切换成低压 24V 供电,两种供电不能同时使用。

高压供电时,采用单板左下角的 J1 连接器,注意按照单板上丝印连接火线 L,零线 N。

图2-3 高压供电接线方式

低压供电调试时,按照图 2-4 飞线+15V, 24V DC GND 等网络给单板供电即可。

图2-4 低压电源板跳线位置示意图

□ 说明

在切换成低压电源板供电时,需要将 L1 电感去除。

2.4 SWD 调试器接口

AD201MPCHVVA 单板提供了 SWD 接口对接调试器。可以对接四合一调试器或者其他 SWD 接口调试器。调试接口在单板上的位置和连接器管脚定义如图 2-5 所示。

🗀 说明

在对接调试器时, AD201MPCHVVA 单板必须供电。

图2-5 SWD 接口 J501 的位置示意图&接器管脚定义

2.5 SPI 通讯接口

AD201MPCHVVA 单板提供了 SPI 接口。该接口在板上的位置和连接器管脚定义图 2-6 所示。

R509

TP60L

图2-6 SPI 接口 J503 的位置示意图&接口管脚定义

2.6 Hall&QDM 编码器接口

AD201MPCHVVA 单板提供了 Hall & QDM 编码器接口。接口在板上的位置和连接器管脚定义图 2-7 所示。

图2-7 Hall & QDM 接口 J505 的位置示意图

图2-8 Hall & QDM 接口管脚定义

2.7 IIC 通讯接口

AD201MPCHVVA 单板提供了 IIC 通讯接口对接调试器。调试接口在板上的位置和连接器管脚定义如图 2-9 所示。

图2-9 IIC接口 J504的位置示意图&接口管脚定义

2.8 按键

单板中有 1 个按键 KEY0, 功能由用户自定义, 位置如图 2-10 所示。

图2-10 KEY0 位置

3 操作指南

3.1 注意事项

单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项:

- 请在使用单板前仔细阅读本指南。
- 避免单板沾水。如果不慎将水等液体洒落到单板上,请立即切断电源,并用干布擦拭干净。
- 只能使用符合本机要求的电源。
- 高压调试时,做好高压防护,下电时切记一定要等到单板母线电容完全放电后触碰单板,以免造成触电危险。
- 在拆封单板包装与安装之前,为避免静电释放 (ESD) 对单板硬件造成损伤,需 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。
- 请对照图 2-1 熟悉单板的结构布局,确保能够在单板上辨认出可操作部件,如电源、连接器以及指示灯的位置。

3.2 单板硬件配置字选择

启动配置和测试模式由以下管脚的上电锁存状态决定,如图 3-1 和表 3-1 所示。

图3-1 启动管脚原理图

表3-1 启动配置选择

BOOT 管脚 (GPIO1_2)	跳线帽选择	MODE
0	不上跳帽	正常启动。
1	跳帽短接 pin5、pin6	升级模式,UART3 升级。

图3-2 J504 的 PCB 位置

3.3 单板散热片选择

该单板上有功率器件 IPM U16 和整流桥 D1,当驱动电机需要带负载时,需要考虑给单板散热,可在如图 3-3 位置安装一体化散热片,散热片和功率器件之间需涂抹硅脂导热。

图3-3 单板散热片安装位置

3.4 采样电阻和过流点配置

该单板支持单电阻采样和双电阻采样两种拓扑结构,默认双电阻采样;采用不同拓扑结构时,采样电阻和过流点电阻的配置不同。单板需要改制,具体配置如表 3-2 所示。另外,如果采样电阻修改为其他阻值,过流电阻和过流点需要重新计算和改制。

表3-2 采样电阻配置

采样电阻数量	采样电阻	跨接电阻	过流点电阻
单电阻采样	R615, R616 不上 料; R617 上料 50 m Ω	R642, R643 上料 0Ω	R640=2kΩ, R618=0k; 过流点=6A
双电阻采样 (默认)	R615,R616,R617 上料 50mΩ	R642, R643 不上料	R640=680Ω,R618=1.5k Ω; 过流点=6.5A