Bachelorarbeit

Andreas Windorfer

9. Juli 2020

Zusammenfassung

Inhaltsverzeichnis

1	Zip	per Baum	4
	1.1	Hybrid Baum	4
		1.1.1 Repräsentation eines preferred path	4
		1.1.2 Die access Operation beim Hybrid Baum	4
		1.1.3 Laufzeitanalyse beim Hybrid Baum	11
	1.2	Repräsentation eines preferred path beim Zipper Baum	12
	1.3	Die access Operation beim Zipper Baum	12
	1.4	Laufzeitanalyse für <i>access</i>	14

1 Zipper Baum

Der Zipper-Baum basiert auf dem Tango-Baum und nutzt auch preferred paths aus einem lower-bound-tree Y. Aufbau und Pflege der preferred paths in Y unterscheiden sich nicht vom Tango-Baum, wohl aber ihre Repräsentation im eigentlichen BST T. Der Zipper-Baum wurde in [1] vorgestellt. Er ist ebenfalls $\log(\log(n))$ -competitive, garantiert aber auch $O(\log(n))$ im worst case, bei einer einzelnen access Operation. n steht wieder für de Anzahl der Knoten von T. Das Verhalten der Operationen cut und join unterscheidet sich deutlich. Da die Operationen des Zipper Baumes recht aufwendig sind, werden sie hier wie in [1] in zwei Schritten vorgestellt. Zunächst an einem Hybrid Baum, der kein BST ist und dann am eigentlichen Zipper Baum. Die Knoten im Zipper sind wie beim Tango Baum erweitert. Beim Hybrid Baum kommt ein zusätzlicher Zeiger auf einen Knoten hinzu. Sei v ein Knoten in T, dann ist in diesem Kapitel v^* der Knoten in Y, mit $key(v) = key(v^*)$.

1.1 Hybrid Baum

Znächst wird die Repräsentation eine preferred path in T vorgestellt. Dann wird die access Operationen, mit ihren Hilfsoperationen vorgestellt. Zum Schluss geht es noch um die Laufzeit.

1.1.1 Repräsentation eines preferred path

Die Repräsentation eines preferred path $P_p = p_1^*, p_2^*, ..., p_m^*$ in T stellt einen Hilfsbaum H dar, der in zwei Teile unterteilt wird, den **top path** und dem **bottom tree**. Der bottom tree ist ein balancierter BST der genau die Schlüssel enthält, die in P_m enthalten sind jedoch nicht im top path. Der top path enthält $n_1 \in [\log(\log(n)), 3\log(\log(n))]$ Knoten falls ein bottom tree existiert, ansonsten $n_1 \in [1, 3\log(\log(n))]$. Der top path besteht aus den Knoten $p_1, p_2, ..., p_{n_1}$ und stellt eine eins zu eins Repräsentation von $p_1, p_2^*, ..., p_{n_1}^*$ dar. p_1 ist die Wurzel von H. Die Wurzel des bottom tree ist ein Kind von p_{n_1} . Abbildung 2 zeigt eine mögliche Darstellung zu dem preferred path in Abbildung 1. Jeder Knoten in H kann in $O(\log(\log(n)))$ Zeit erreicht werden. Die Repräsentationen der preferred paths werden wie beim Tango Baum zu einer Gesamtstruktur entsprechend ihrer Schlüssel zusammengefügt.

1.1.2 Die access Operation beim Hybrid Baum

Sei p der Zeiger der access(k) Operation in T. Erreicht p während des Suchens in einem Hilfsbaum H_1 die Wurzel eines weiteren Hilfsbaum H_2 , werden die

Abbildung 1: Beispiel preferred path

Knoten von H_1 , entsprechend ihrer depth Variable, vergleichbar mit dem Tango Baum, mit einer cut Operation in zwei Bäume D_1 und D_2 aufgeteilt. Sei D_2 der Baum mit den Knoten größerer Tiefe. D_2 wird sofort in eine gültige Pfadrepräsentation überführt, wie genau wird in cut beschrieben. Die Knoten in D_1 werden nach der Ausführung von access im Hilfsbaum mit der Wurzel von T enthalten sein. Dieser wird mit join erst erstellt wenn der Knoten mit Schlüssel k gefunden ist. D_1 bleibt also zunächst unverändert bestehen.

cut beim Hybrid Baum Es werden zwei Fälle unterschieden. Beim ersten Fall zeigte p in H_1 nur auf Knoten im top path $p_1, p_2, ..., p_m$ im zweiten Fall erreichte p den bottom tree. Es wird davon ausgegangen dass in H_1 ein bottom tree enthalten ist, der andere Fall ist einfacher und ergibt sich aus der Beschreibung.

Fall 1:

Sei q_i der Vater der Wurzel von H_2 , dann muss eine Laufzeit von O(i) erreicht werden. q_{i+1} wird zur Wurzel von H_1 . Es muss sichergestellt werden, dass die Anzahl der Knoten im top path von H_1 noch groß genug ist. Enthält er weniger als $2 \log (\log (n))$ Knoten werden mit einem **Extraktionsprozess** Knoten aus dem bottom tree dem top path hinzugefügt. Dazu werden extract Operationen verwendet. Eine solche Operation fügt dem top path $\log (\log (n))$ Knoten aus dem bottom tree hinzu. Um die Laufzeit einhalten zu können verteilt extract dies über mehrere cut Operationen. Dazu wird der bottom tree in einen Zwischenzustand versetzt, der keinem balancierten BST entspricht. Ein Hilfsbaum bei dem kein Extraktionsprozess aktiv ist hat

Abbildung 2: Mögliche Repräsentation des preferred path aus 1. Grün der top path, blau der bottom tree.

 $2 \log (\log (n))$ Knoten im top path. Der Extraktionsprozess wird im Abschnitt zu extract beschrieben.

Fall 2:

Es muss eine Laufzeit von $O\log(\log(n))$ erreicht werden. Dieser Fall ist sehr ähnlich zum Tango Baum und es werden die Operationen von ihm verwendet. Sei tangoJoin die join Operation wie im Kapitel zum Tango Baum beschrieben und tangoCut die cut Operation von dort. Sei v der Vater der Wurzel von H_2 . Ist in H_1 ein Extraktionsprozess aktiv, muss dieser beendet werden und der top path muss in einen balancierten Baum H_3 überführt werden. Nun werden H_3 und der bottom tree mit tangoJoin zu H_4 vereinigt. Dann wird tangoCut verwendet um die Knoten mit einem Wert der depth Variable größer v. depth aus in einen Hilfsbaum H_5 auszulagern. Auf H_5 werden zwei Extraktionsprozess ausgeführt um eine gültige Pfadrepräsentation zu erreichen.

Im ersten Fall entstehen Kosten von O(i) um q_i zu erreichen, und dass auch in extract Kosten von O(i) entstehen wird weiter unten gezeigt. Im zweiten Fall entstehen Kosten von $O(\log(\log(n)))$ sowohl um v zu erreichen, um H_4 zu erzeugen (siehe join) als auch in extract.

join beim Hybrid Baum join wird verwendet um zum Abschluss von access den Hilfsbaum H mit der Wurzel von T zu erstellen. Seien $H_1, H_2, ..., H_m$ die Bäume die zu H vereinigt werden, so dass für $i \in \{1, 2, ..m\}$ und i > 1, in H_{i-1} der Vater der Wurzel von H_i enthalten ist. Abbildung 3 zeigt ei-

ne beispielhafte Konstellation. Zunächst werden die Bäume $H_1, H_2, ..., H_m$ zu balancierten Bäumen $H'_1, H'_2, ..., H'_m$ transformiert. Diese werden dann mit einer Folge von m-1 tangoJoin Operationen zu H zusammengefügt. Als erstes werden H'_1 und H'_2 zusammengefügt. Zu dem neu entstandenen Hilfsbaum wird dann H'_3 hinzugefügt usw. Um H zu erstellen werden dann noch $2 \log (\log (n))$ Knoten zu einem top path extrahiert. Abbildung 4 zeigt den Ablauf für das Beispiel.

Um H_i zu H_i' zu überführen werden die Knoten in seinem top path als Bäume mit einem Knoten betrachtet. Diese werden mit Folgen von tangoConcatenate zusammengefügt. In jeder solchen Folge wird die Anzahl der Bäume halbiert, indem zwei aufeinanderfolgende Bäume jeweils zusammengeführt werden. Nach der Ausführung dieser tangoConcatenate Folgen existiert ein aus dem top path entstandener balancierter BST und eventuell ein bottom tree. Diese werden mit einer weiteren tangoConcatenate Operation zusammengeführt. Nach jeder tangoConcatenate Folge halbiert sich die Anzahl der aus dem top path entstandenen Bäume und die Anzahl ihrer Knoten verdoppelt sich. Sei n_i die Anzahl der Knoten von H_i , dann summieren sich die Kosten über alle Folgen zu $O\left(\sum_{j=1}^{\log n_i} jn_i/2^j\right) = O\left(n_i\right)$. tangoJoin hat eine Laufzeit von $O\left(\log\left(n_r\right)\right)$, mit n_r ist die Anzahl der Knoten von tangoJoin hat eine Laufzeit von tangoJoin0 (tangoJoin1), mit tangoJoin1 mat eine Laufzeit von tangoJoin2 mit tangoJoin3 mit tangoJoin4 mit tangoJoin4 mit tangoJoin5 mit tangoJoin6 mit tangoJoin8 mit tangoJo

tango Join hat eine Laufzeit von $O(\log(n_r))$, mit n_r ist die Anzahl der Knoten, des resultierenden Baumes. Die Anzahl der benötigten Operationen is $O(\log(n_r))$. Damit ergibt sich auch für die Gesamtlaufzeit $O(\log(n_r)\log(n_r)) = O(n_r)$. Asymptotisch können die Kosten für join damit für die Betrachtung von access damit vernachlässigt werden.

Abbildung 3: Mögliche Ausgangsituation vor concatenate.

Abbildung 4: Es werden zwei *concatenate* Operationen benötigt. Oben das Ergebnis der Ersten, unten dass der Zweiten

extract beim Hybrid Baum Wie bereits erwähnt wird diese Operation benötigt um einen Extraktionsprozess durchzuführen. Ein Extraktionsprozess fügt dem top path $\log(\log n)$ Knoten hinzu und wird gestartet wenn der top path aufgrund einer cut Operation, weniger als $2 \log (\log n)$ enthält. Damit die Laufzeit von cut eingehalten werden kann, erstreckt sich ein Extraktionsprozess über mehrere cut Operationen, mit Fall 1. Ein Extraktionsprozess wird mit einer Folge von $O(\log(\log n))$ Rotationen ausgeführt. Um die Invariante bezüglich der top path Länge einzuhalten, kann ein Extraktionsprozess auf so viele cut Operationen verteilt werden, bis mehr als $\log(\log n)$ Knoten vom top path entfernt wurden. Der Hybrid Baum macht, mit einer Konstante, die Anzahl der durchgeführten Rotationen, von der Anzahl der abgespaltenen Knoten abhängig. So dass der Extraktionsprozess spätestens dann abgeschlossen wird, wenn $\log(\log n)$ durch cut entfernt wurden. Kommt es zu einer *cut* Operationen, mit Fall 2 wird ein aktiver Extraktionsprozess abgebrochen. Von den Hilfsbäumen wird eine split Operation wie vom Hilfsbaum des Tango Baumes verlangt. Diese darf jedoch nur Rotationen verwenden. Für den Rot-Schwarz-Baum ist eine solche Variante in [1] dargestellt. Sei H eine Repräsentation des preferred path $P_p = p_1, p_2, ..., p_m$ und $i \in \{1, 2, ..., m\}$. Sei $n_1 = \log(\log(n))$. Sei v der Vater der Wurzel des bottom tree, mit d = v.depth und p_i der Knoten in P_p mit Schlüssel key(v). Es müssen der Reihe nach die Knoten mit depth Wert $d+1, d+2, ..., d+n_2$ extrahiert werden, damit ein valider top path entsteht. P_p wird in **zig Seg**mente und zag Segmente unterteilt. zig Segmente entsprechen den längst möglichen Teilpfaden von Knoten mit linken Kindern in P_p . zag Segmente entsprechen den längst möglichen Teilpfaden von Knoten mit rechten Kindern in P_p . Das Blatt P_p wird dem Segment seines Vaters zugeordnet. In Abbildung 8 sind zig und zag Segmente dargestellt. Sei S_{zig} die Folge der Knoten der zig Segmente, aufsteigend sortiert nach der Tiefe und S_{zag} die Folge der Knoten der zag Segmente, aufsteigend sortiert nach der Tiefe der enthaltenen Knoten. Ist u der tiefste Knoten eines zig bzw. zag Segmentes, so können in den Segmenten mit Knoten größerer Tiefe nur noch größere bzw. kleinere Schlüssel enthalten sein, vergleiche Abschnitt?? und Abbildung 8. Deshalb müssen die Knoten in $S_1 \circ S_2$ aufsteigend sortiert nach Schlüssel sein. Da die Knoten in S_{zig} bzw. S_{zag} aber auch aufsteigend bzw. absteigend nach Tiefe sortiert sind, können aus $S_{zig} \circ S_{zag}$ Intervalle [l,r] für die Schlüsselmengen, von Pfaden in P_p mit Endknoten p_m abgeleitet werden, siehe Abbildung 8, wobei l in S_{zig} enthalten sein muss und r in S_{zag} . Sei [l, r]ein so erstelltes Intervall zu dem Pfad von p_{i+n_1} zu p_m . Es müssen genau die Knoten im bottom tree zum extrahieren vorbereitet werden, deren Schlüssel nicht in [l, r] liegen. Die Knoten mit Schlüssel l und r, sowie der Vorgänger v_l von l mit Schlüssel l' und der Nachfolger v_r von r mit Schlüssel r' werden gefunden wie in Abschnitt?? gezeigt. Mit zwei split Operationen werden die Knoten v_l und v_r herausgelöst. Das linke Kind von v_l ist ein balancierter BST B, der alle Schlüssel aus H enthält die kleiner als l sind. Das rechte Kind von v_l ist v_r . Das linke Kind von v_r ist ein balancierter BST D, der alle Schlüssel aus H enthält die in (l,r) enthalten sind. Das rechte Kind von v_r ist ein balancierter BST E, der alle Schlüssel aus H enthält die größer als r sind. Es werden also genau die Knoten aus B und E vorbereitet. Schritt zwei in Abbildung 5 ist damit bereits vollzogen. In Schritt drei werden Bund E nun zu BST in Listendarstellung gewandelt. Sei B' bzw. E' der Baum der dadurch von B bzw. E zu einer Liste entsteht. Es wird B' betrachtet, E' ist dazu symmetrisch. Die Wurzel von B' enthält den größten Schlüssel in B', somit sind alle anderen Knoten in B' linke Kinder. Die Umwandlung geschieht wie folgt:

Es werden so oft Links Rotationen auf das rechte Kind der Wurzel ausgeführt, bis der rechte Teilbaum der Wurzel leer ist. In Schritt zwei wird der rechte Teilbaum des linken Kindes der Wurzel auf die gleiche Art und Weise geleert und eine Rechts Rotation auf das linke Kind der Wurzel ausgeführt. Schritt zwei wird so oft wiederholt bis B' erzeugt ist. Abbildung 6 stellt diesen Vorgang dar. Da l in S_{zig} enthalten ist, müssen alle Schlüssel aus B' auch als Schlüssel von Knoten S_{zig} enthalten sein. S_{zig} ist aufsteigend nach den Schlüsseln als auch nach den Tiefen sortiert, somit müssen dies auch die Knoten in B' sein. Das bedeutet für einen Knoten v aus B', dass alle Knoten in seinem rechten Teilbaum einen größeren Wert bei der depth Variable haben

als v.depth. Für v aus E' gilt für den linken Teilbaum das gleiche. Aus den gleichen Gründen muss $v_l.depth$ bzw. $v_r.depth$ einen größeren Wert haben, als die depth Variablen aller Knoten in B' bzw. E'. v_l , v_r sowie die Knoten aus B' und E' sind nun zum extrahieren vorbereitet. Sei u die Wurzel von B' oder E', je nachdem bei welchem Knoten die depth Variable einen kleineren Wert hat. Dann kann u mit maximal zwei Rotationen den top path hinzugefügt werden. Sind B' und E' erschöpft und auch v_r und v_l dem top path hinzugefügt, beginnt der Vorgang von vorne.

Muss ein Extraktionsprozess aufgrund cut vorzeitig abgebrochen werden, werden aus B' und E' wieder balancierte BST erzeugt, simultan zu der Beschreibung in join. Im Anschluss wird mit zwei tangoJoin Operationen wieder ein bottom tree erstellt. Um die Laufzeit von cut einhalten zu können, werden die Knoten im Hybrid Tree um einen weiteren Zeiger erweitert. Ist in einem Hilfsbaum H mit Wurzel w ein Extraktionsprozess aktiv, zeigt dieser auf den Knoten auf den die nächste Rotation ausgeführt wird. Da p nach dem extrahieren von Knoten, nochmals auf w zeigen muss, bevor er auf einen Knoten außerhalb von H zeigt, kann dieser Knoten einfach gepflegt werden. Aufgrund dieses Zeigers ist der Hybrid Baum jedoch kein BST.

Bei Schritt eins und zwei entstehen Kosten von $O(\log(\log n))$, vergleichbar mit Kapitel ??. Beim erstellen von B' aus B ist jeder Knoten an maximal drei Rotationen beteiligt, vergleiche Abbildung 6. Da maximal $\log(\log n)$ Knoten vorbereitet werden, entstehen Kosten von $O(\log(\log n))$. Bei Schritt vier kommen noch einmal Kosten von $O(\log(\log n))$ hinzu. Werden mit einem verkürzten Ablauf k bereits vorbereitete Knoten dem top path hinzugefügt, entstehen mit Hilfe des zusätzlichen Zeigers Kosten von O(k).

Abbildung 5: Es wird ein Extraktionsprozess dargestellt. Die Abbildung basiert auf einer in [1]

Abbildung 6: Beispielhaftes überführen von B zu B'.

1.1.3 Laufzeitanalyse beim Hybrid Baum

Zunächst wird ein Lemma benötigt.

Lemma 1.1. Sei T ein Hybrid Baum mit n Knoten und Y ein dazu erstellter lower bound tree. Sei v ein Knoten aus T, dann gilt depth $(v) = O(depth(v^*))$.

Beweis. Seien $P_1, P_2, ..., P_m$ die preferred path, die Knoten aus dem Pfad P_{v^*} von der Wurzel von Y zu v_* enthalten. Jeder von ihnen wird nun als BST betrachtet. Für $i \in \{1, 2, ..., m\}$ sei H_i die Pfadrepräsentation zu P_i . Sei p_i der Knoten in P_i mit der größten Tiefe unter denen in P_u enthaltenen. (Es muss $p_m = v^*$ gelten) Sei h_i der Knoten in H_i mit $key(h_i) = key(y_i)$. Die folgenden Tiefenangaben werden auf P_i bzw. H_i bezogen. Ist h_i im top path enthalten, haben h_i und p_i die gleiche Tiefe. Liegt h_i im bottom tree so muss $depth(p_i) > \log(\log n)$ gelten aufgrund der Konstruktion von H_i . Für die Tiefe jedes Knoten in H_i gilt $O(\log(\log n))$

Daraus ergibt sich sofort für die Höhe eines Hybrid Baum mit n Knoten sofort $O(\log n)$.

In access entstehen preferred path mit k involvierten Knoten Kosten von O(k) wenn $k < \log(\log(n))$ gilt und Kosten von $O(\log(\log n))$ wenn $k \ge \log(\log(n))$ gilt. Mit dem Lemma gilt deshalb für die Kosten von access

11

 $O(\log(n))$. Da pro cut Operation maximal Kosten von $O(\log(\log(n)))$ entstehen, muss der Hybrid Baum genau wie der Tango Baum $\log(\log(n))$ -competitive sein.

1.2 Repräsentation eines preferred path beim Zipper Baum

Ziel der Repräsentation eins preferred path $P_p = p_1^*, p_2^*, ..., p_m^*$ ist es ohne den zusätzlichen Zeiger in den Knoten auszukommen, ohne Einschränkung bei asymptotischen Laufzeiten. Dies wird dadurch erreicht, dass der Knoten auf den in einem Extraktionsprozess die nächste Rotation ausgeführt wird, immer in konstanter Zeit von der Wurzel seines Hilfsbaumes H aus zugegriffen werden kann.

H enthält auch einen bottom tree. Die Knoten im top path werden jedoch zu einem **zipper** angeordnet. Dieser besteht aus zwei Teilen z_t und z_b . z_t und z_b dürfen jeweils maximal $\log(\log(n))$ Knoten enthalten, gemeinsam müssen sie zumindest $\log(\log(n))/2$ Knoten enthalten. Es wird wieder angenommen, dass ein bottom tree existiert. Sei n_t bzw. n_b die Anzahl der Knoten von z_t bzw. z_b . z_t repräsentiert Knoten $P_t = p_1^*, p_2^*, ..., p_{n_t}^*$ und z_b die Knoten $P_b = p_{n_t+1}^*, p_{n_t+2}^*, ..., p_{n_t+n_b}^*$.

 z_t ist wie folgt aufgebaut:

Sei S_{zig} und S_{zag} zu P_t definiert wie in Abschnitt 1.1.2. Sei t_l bzw. t_r der Knoten in S_{zig} bzw. S_{zag} mit der kleinsten Tiefe. t_l ist die Wurzel von H. t_r ist das rechte Kind von t_l . Der linke Teilbaum von t_l hat Listenform und wird von den restlichen Knoten in S_{zig} gebildet, so dass kein Knoten in diesem Teilbaum ein linkes Kind hat. Der rechte Teilbaum von t_r hat Listenform und wird von den restlichen Knoten in S_{zag} gebildet, so dass kein Knoten in diesem Teilbaum ein rechtes Kind hat.

 z_b wird simultan aus P_b erzeugt und seien b_l und b_r die Knoten in z_b entsprechend zu t_l und t_r in z_t . b_l ist das linke Kind von t_r . Die Wurzel des bottom Tree ist das linke Kind von t_r . Das die Links-Rechts-Beziehung eingehalten wird ergibt aus den Aufbau der zig und zag Segmente und die Wurzel des bottom tree ist in konstanter Zeit erreichbar. Abbildung ?? zeigt eine beispielhafte Darstellung.

1.3 Die access Operation beim Zipper Baum

Wie der Tango Baum erweitert der Zipper Baum seine Knoten um eine is-Root Variable sowie um die depth, minDepth und maxDepth Variable. Sei k der Parameter der Operation und p der Zeiger der Operation in den BST. Diese access Operation hat Ähnlichkeit zu der des Tango Baum. Nach der

Abbildung 7: Pfadrepräsentation beim Zipper Baum, basiert auf einer Abbildung aus [1].

Operation muss es einen preferred path von der Wurzel von P zu dem Knoten mit Schlüssel k geben. Verlässt p einen Hilfsbaum H, werden aus H zwei BST H_1 und H_2 mit Schlüsselmengen analog zum Tango Baum erstellt. Sei H_1 der BST mit den Knoten mit kleinerer Tiefe und H_2 der mit den Knoten mit größerer Tiefe. H_2 wird sofort in einen gültigen Hilfsbaum überführt. Die Knoten aus H_1 sind nach der Operation in dem Hilfsbaum enthalten, der die Wurzel des Zipper Baumes enthält. Dieser wird erst erzeugt nachdem k gefunden wurde. Insbesondere startet p nicht mehrmals bei der Wurzel von T. Es werden wieder Hilfsoperationen benötigt.

zip Operation

access Operation Nun wird die access Operation des Tango Baumes betrachtet. Sei k der Parameter der Operation und p der Zeiger der Operation in den BST. Solange sich p im Hilfsbaum mit der Wurzel des Tango Baumes T befindet, verhält sich die Operation wie die Standardvariante von search. Erreicht p die Wurzel eines anderen Hilfsbaumes H_2 , muss sich ein preferred child in P verändert haben. T wird mit cut und join so angepasst, das er wieder die preferred paths in P repräsentiert. Anschließend startet p wieder an der Wurzel von T. Erreicht p den Knoten mit key(k) so wird das preferred child des Knoten mit Schlüssel k in P auf left gesetzt. So dass nochmals eine

Anpassung notwendig sein kann. Die Operation wird noch etwas detaillierter beschrieben.

1.4 Laufzeitanalyse für access

Abbildung 8: zig Segmente sind grün dargestellt. zag Segmente blau

Literatur

[1] Prosenjit Bose, Karim Douïeb, Vida Dujmović, and Rolf Fagerberg. An o(log log n)-competitive binary search tree with optimal worst-case access times. *Algorithm Theory - SWAT 2010*, page 38–49, 2010.