Project: 1

Prediction of mortality of ICU patients based on random forest algorithm

Background

Because the basic causes of critical illness are different, critical patients are scattered to different medical specialties, which makes the lack of unity for critical illness. ICU (Intensive Care Unit) is a clinical base of a professional team specialized in critical care medicine and specialized in critical care treatment. It is a centralized management unit for critical patients and high-risk patients after surgery from various clinical departments. The birth of ICU has directly promoted the development of critical care medicine. It pays more attention to the characteristics of patients in critical care and the common threats and damages they face, so that many patients who previously thought that they could not be cured can survive or extend their survival time.

Develop the population mortality prediction in the intensive care unit (ICU) and the inhospital mortality prediction method for specific patients. The information collected at the time of admission to the ICU will be used to predict which patients can survive during the hospitalization and which patients cannot.

Technology

Programming language: python

Import: pandas, imbearn, sklearn, pyecharts, matplotlib, math, numpy

Analysis: sequence classification

Introduction of Algorithm

In machine learning, random forest is a classifier containing multiple decision trees, and its output category is determined by the mode of the category output by individual trees.

Leo Breiman and Adele Cutler developed algorithms to deduce random forests. "Random Forests" is their trademark. This term is derived from the random decision forests proposed by Tin Kam Ho of Bell Laboratories in 1995. This method combines Breimans' "Bootstrap aggregating" idea and Ho's "random subspace method" to build a set of decision trees.

The advantages of random forest include:

- 1) For many kinds of data, it can produce high accuracy classifiers.
- 2) It can handle a large number of input variables;
- 3) It can evaluate the importance of variables when determining categories.
- 4) When building a forest, it can produce an unbiased estimate of the generalized error internally.
- 5) It contains a good method to estimate the lost data, and if a large part of the data is lost, the accuracy can still be maintained.
 - 6) It provides an experimental method to detect variable interactions.

- 7) For unbalanced classification data sets, it can balance errors.
- 8) It calculates the proximity in each example, which is very useful for data mining, outlier detection and data visualization.
- 9) Use the above. It can be extended to unmarked data, which usually uses unsupervised clustering. It can also detect deviators and view data.
 - 10) The learning process is very fast
 - 11) Significant effect on high latitude data

Data source

https://www.physionet.org/content/challenge-2012/1.0.0/

Project process

1: Data acquisition:

The original data is a .txt file. Each file is used for the various data collected by a patient since entering the hospital.

- RecordID (defined as above)
- SAPS-I score (Le Gall et al., 1984)
- SOFA score (Ferreira et al., 2001)
- Length of stay (days)
- Survival (days)
- In-hospital death (0: survivor, or 1: died in-hospital)

2: Preliminary arrangement of data:

Read the .txt file through the open function loop and format the data after slicing, segmentation and statistics to form a set_a_data.csv_set_b_data.csv_set_c_Data.csv

Three tables with the same column name, 12000 data in total.

This data is sequence data, and features are extracted based on six basic statistical methods: mean value, variance, extreme value (maximum, minimum), initial value and current value.

Feature extraction: For RecordID, Age, Gender, Height, ICUType and Weight, these six fields are read directly,

The remaining 37 fields:

- Albumin (q/dL)
- ALP [Alkaline phosphatase (IU/L)] • K [Serum potassium
- ALT [Alanine transaminase (mEq/L)] (IU/L)]

- (mg/dL)]
- HCO3 [Serum

- HCT [Hematocrit (%)]
- HR [Heart rate (bpm)]
- (mEq/L)]
 Lactate (mmol/L)

- O₂ (0-1)] pressure (mmHg)] *TropT* [Troponin-T (μg/L)]
 GCS [Glasgow Coma *NIMAP* [Non-invasive Score (3-15)] mean arterial blood *WBC* [White blood cell count (cells/nL)]
 - NISysABP [Non-invasiveWeight (kg)^{*} HCO3 [Serum systolic arterial blood bicarbonate (mmol/L)] systolic arterial blood pressure (mmHg)]

- PaCO2 [partial pressure of arterial CO₂ (mmHg)]
- PaO2 [Partial pressure of
- BUN [Blood urea nitrogen (mg/dL)]
 arterial proof proo

In addition to the weight, each field is subdivided into 6 features, and the total number of features is 222.

(The data processing and feature extraction code is in the open_file.py file).

ecordID lab	Age Gen	der Height	ICUType	Weight	GCS_jun	GCS_farg	GCS_da	GCS_xizo	GCS_chu	GCS_dang	HR_jun	HR_fang	HR_da	HR_xia	o HR_dhi	HR_dang	NIDiasABP_jun	NEDlasABP_fang	NIDiasABP_da	NIDiasABP_xiao	NIDiasABP_chu	NIDiasABP_dang	NIMAP_jun	
32539.0 0	54.0 0.0	-1.0	4.0	-1.0		0.0710059171597633	15.0	14.0	15.0	15.0	70.8108108108108	72.04528853177501	86.0	58.0	73.0	86.0		61.77249134948096	67.0	39.0	65.0	55.0	71.55911764705883	
32540.0 0	76.0 1.0	175.3	2.0	76.0	13.33333333333334		15.0	3.0		15.0	80.79411764705883	44.75173010380623	90.0	65.0	88.0	65.0	56.714285714285715		67.0	38.0	38.0	49.0	75.30857142857143	
32541.0 0	44.0 0.0	-1.0	3.0	56.7	5.923076923076923	1.3017751479289943	8.0	5.0	7.0	5.0	83.75925925925925	130.6272290809328	113.0	57.0	100.0	71.0	79.0		95.0	66.0	84.0	84.0	96.7513157894737	
32543.0 0	68.0 1.0	180.3	3.0	84.6	14.9444444444445	0.05246913580246914	15.0	14.0	15.0	15.0	70.98333333333333	58.883055555555	88.0	57.0	79.0	79.0	65.05172413793103	44.393876337693214	81.0	45.0	63.0	81.0	83.88551724137932	١
32545.0 0	88.0 0.0	-1.0	3.0	-1.0	15.0	0.0	15.0	15.0	15.0	15.0	74.95833333333333	54.41493055555555	94.0	65.0	93.0	68.0	45.72093023255814	152.8058409951325	96.0	26.0	41.0	42.0	74.94651162790697	•
32547.0 0	64.0 1.0	180.3	1.0	114.0	8.606060606060606	0.685858585858587	11.0	7.0	7.0	5.0	88.53191489361703	63.10004526935264	101.0	71.0	78.0	92.0	70.5	342.25	89.0	52.0	89.0	52.0	81.985	
32548.0 0	68.0 0.0	162.6	3.0	87.0	15.0	0.0	15.0	15.0	15.0	15.0	68.33898305084746	43.37661591496697	88.0	50.0	73.0	60.0	72.0	298.85714285714283	0.88	31.0	88.0	77.0	102.1471428571428	ı
12551.0 1	78.0 0.0	162.6	3.0	48.4	11.846153846153847	8.899408284023668	15.0	8.0	15.0	9.0	70.94520547945206	152.02439482079188	111.0	55.0	111.0	58.0	30.697674418604652	135.32720389399677	56.0	14.0	51.0	19.0	55.17790597674417	
2554.0 0	64.0 0.0	-1.0	3.0	60.7	15.0	0.0	15.0	15.0	15.0	15.0	127.23913043478261	22.52977315689981	137.0	115.0	127.0	122.0	64.47826086956522	83.33648393194707	92.0	47.0	71.0	53.0	84.47739130434783	
2555.0 0	74.0 1.0	175.3	2.0	66.1	14.08333333333334	3.40972222222228	15.0	10.0	10.0	15.0	85.1896551724138	64.0847205707491	99.0	67.0	67.0	78.0	53.0	16.0	57.0	49.0	57.0	49.0	75.67	
2556.0 0	64.0 0.0	-1.0	3.0	65.0	15.0	0.0	15.0	15.0	15.0	15.0	110.5625	693.37109375	161.0	57.0	101.0	91.0	48.1666666666664	21.33888888888892	60.0	32.0	48.0	45.0	57.28813559322034	
2567.0 0	71.0 0.0	157.5	2.0	56.0	14.181818181818182	3.057851239669422	15.0	10.0	10.0	15.0	95.22727272727273	53.02410468319559	112.0	82.0	84.0	95.0	43.4333333333333	38.84535353535356	57.0	32.0	45.0	48.0	64.66733333333333	,
2568.0 0	66.0 0.0	157.5	3.0	84.5	15.0	0.0	15.0	15.0	15.0	15.0	88.5	34.06818181818182	100.0	77.0	88.0	93.0	56.8974358974359	109.83563445101906	79.0	36.0	62.0	48.0	71.21621621621621	
2570.0 0	84.0 1.0	170.2	1.0	102.6	14.6	0.24	15.0	14.0	15.0	15.0	70.60975609756098	143.0672218917311	105.0	55.0	70.0	73.0	48.675	125.06937500000001	66.0	0.0	61.0	47.0	72.38461538461539	,
2573.0 0	77.0 1.0	162.6	1.0	90.1	15.0	0.0	15.0	15.0	15.0	15.0	73.66071428571429	19.045599489795922	84.0	64.0	80.0	68.0	48.55357142857143	60.81855867346938	82.0	37.0	49.0	44.0	82.8382142857142	
2575.0 0	78.0 1.0	167.6	2.0	63.0	10.857142857142858	27.55102040816328	15.0	3.0	3.0	15.0	84.49253731343283	146.24994430830918	119.0	65.0	73.0	106.0								
2577.0 0	65.0 1.0	+1.0	3.0	66.3	12.125	6.109375	15.0	9.0	9.0	15.0	84.47916666666667	25.666232638888886	96.0	71.0	94.0	88.0	74.9090909090909	201.53719008264463	98.0	48.0	62.0	65.0	99.6518181818181	
2592.0 0	84.0 1.0	182.9	3.0	82.5	14.846153846153847	0.13017751479289943	15.0	14.0	15.0	15.0	94.07142857142857	48.53061224489795	108.0	77.0	101.0	83.0	43.870370370370374	48.594307270233195	60.0	24.0	57.0	51.0	66.0740740740740	ε
2584.0 0	78.0 0.0	-1.0	3.0	72.8	9.91666666666666	4,74305555555556	11.0	3.0	3.0	11.0	84,125	290.359375	124.0	53.0	124.0	73.0	64.29411764705883	518.2076124567475	129.0	44.0	75.0	52.0	84.7423529411764	é
2585.0 0	40.0 0.0	165.1	2.0	84.7	13.785714285714286	10.596938775510207	15.0	3.0	3.0	15.0	80.45614035087719	67.09018159433671	101.0	66.0	79.0	92.0	41.57142857142857	38.81632653061225	50.0	30.0	38.0	50.0	57.2857142857142	£
2588.0 1	48.0 0.0	154.9	3.0	42.3	15.0	0.0	15.0	15.0	15.0	15.0	93.85	160.6775	115.0	76.0	115.0	78.0	50.083333333333336	77.854166666666	68.0	31.0	47.0	46.0	64.1486111111111	:
2990.0 0	58.0 1.0	188.0	2.0	98.0	12.0	14.181818181818182	15.0	3.0		15.0	97.54098360655738	90.51061542596075	131.0		119.0	88.0	55.0	55.0	55.0	55.0	55.0	55.0	75.67	
	81.0 1.0	+1.0	3.0	63.7		0.0	15.0	15.0		15.0	20 13725490195079	103 60861207227991	109.0		62.0	61.0	55 745098039215684		70 O	28.0	62.0	54.0	74 143529411764	
2992.0 0	35.0 0.0	-1.0	3.0	71.8		0.0	15.0	15.0		15.0	97.07142857142857	80.78061224489795	115.0		112.0	82.0		105.11600237953597		43.0	43.0	55.0	80.9256097560975	
	26.0 0.0	-1.0	3.0	-1.0	15.0	0.0	15.0	15.0	15.0	15.0	97.07142837142837	69:76001229169795	115.0	77.00	112.0	02.0	02.029750097300973	105.11000237933397	63/0	43.0	43.0	35.0	80.923609736997	,,,
2597.0 0	66.0 0.0	137.2	3.0	82.0	15.0	0.0	15.0	15.0	15.0	15.0	68.79245283018868	139.78711285154859	143.0	56.0	76.0	65.0	39.34615384615385	48.45710059171598	60.0	24.0	37.0	25.0	60 4930769230769	
				60.0		0.0																		
32598.0 1	53.0 0.0	-1.0 177.8	4.0	73.5		2.90972222222222	14.0	7.0		5.0	78.70886075949367 85.39285714285714	97.6670918367367	155.0		98.0	72.0	65.76744186046511	247.66684694429424	115.0 69.0	43.0	69.0	61.0	89.0376744186D46	8
			4.0													94.0		18.5		57.0	69.0			
	74.0 1.0	177.6		75.9	12.538461538461538		15.0	3.0	3.0	15.0	99.24193548387096	37.957596253902175	109.0	*****	103.0	95.0	66.0	66.0	66.0	66.0	66.0	66.0	93.0	
2602.0 1	80.0 1.0	180.3	3.0	70.0	15.0	0.0	15.0	15.0		15.0	74.45283018867924	288.3987184051263	144.0		67.0	85.0	66.38	60.915600000000005		47.0	72.0	61.0	80.791666666666	0
2605.0 1	90.0 0.0	-1.0	3.0	55.0	7.41666666666667	0.243055555555555	8.0	7.0		7.0	72.12280701754386	65.96737457679285	98.0	58.0	72.0	98.0		174.35204081632654		22.0	66.0	72.0	64.095	
	72.0 1.0	172.9	3.0	72.26	14.9	0.09	15.0	14.0		15.0	74.11627906976744	12.753921038399135	84.0	70.0	75.0	78.0	39.0	12.66666666666666		34.0	42.0	34.0	57.3333333333333	
12612.0 0	52.0 1.0	-1.0	4.0	109.0	9.2222222222221	4.950617283950617	11.0	3.0	11.0	9.0	74.61111111111111	257.42283950617286	126.0	57.0	114.0	73.0	53.0	74.0	64.0	43.0	43.0	52.0	73.556666666666	
32614.0 0	77.0 1.0	162.6	1.0	59.0	15.0	0.0	15.0	15.0	15.0	15.0	70.78947368421052	1.1662049861495845	74.0	70.0	73.0	70.0	39.42857142857143	29.102040816326532	49.0	32.0	41.0	36.0	57.4271428571428	5
32615.0 0	46.0 0.0	152.4	3.0	88.6	8.111111111111111	10.76543209876543	11.0	3.0	3.0	11.0	70.05797101449275	101.38794370930475	107.0	55.0	80.0	55.0	43.13333333333333	69.44888888888887	61.0	30.0	61.0	36.0	63.5320000000000	1
32617.0 1	77.0 1.0	170.2	1.0	75.0	15.0	0.0	15.0	15.0	15.0	15.0	82.74285714285715	83.90530612244898	100.0	66.0	66.0	79.0	40.0	46.56410256410256	61.0	19.0	56.0	37.0	58.5984615384615	4
32618.0 0	72.0 0.0	152.4	4.0	69.1	11.714285714285714	3.727891156462585	15.0	10.0	14.0	11.0	58.28	35.041599999999995	74.0	49.0	56.0	64.0	47.10344827586207	29.12722948870392	57.0	36.0	36.0	43.0	63.6434482758620	7
32622.0 1	71.0 0.0	160.0	3.0	79.0	14.454545454545455	0.42975206611570244	15.0	13.0	15.0	15.0	77.92156862745098	174.22914263744715	104.0	58.0	95.0	80.0	55.46	125.4484	85.0	30.0	68.0	50.0	69.4468	
32623.0 0	24.0 1.0	182.9	2.0	78.0	13.22222222222221	14.617283950617283	15.0	3.0	3.0	15.0	110.0952380952381	27.752834467120177	121.0	96.0	101.0	96.0	63.0	39.68421052631579	76.0	49.0	68.0	62.0	81.7726315789473	7
32632.0 0	49.0 0.0	-1.0	3.0	162.2	13.384615384615385	5.3136094674556205	15.0	8.0	13.0	15.0	72.16981132075472	22.10323958704165	81.0	62.0	73.0	75.0	58.625	199.1510416666666	82.0	16.0	82.0	60.0	72.5652173913043	4
32634.0 0	82.0 0.0	-1.0	4.0	-1.0	14.909090909090908	0.08264462809917357	15.0	14.0	15.0	15.0	104.3181818181818181	51.171487603305785	123.0	84.0	116.0	88.0	46.395348837209305	42.192536506219575	67.0	33.0	33.0	50.0	62.6976744186046	5
32635.0 0	66.0 0.0	167.6	2.0	70.1	14.583333333333334	1.90972222222223	15.0	10.0	10.0	15.0	81.0126582278481	48.189713186989266	98.0	69.0	84.0	74.0	44.0	0.0	44.0	44.0	44.0	44.0	61.67	
32636.0 0	42.0 0.0	-1.0	4.0	114.2	8.66666666666666	2.99999999999996	11.0	3.0	3.0	10.0	67.51063829787235	28.334993209597105	84.0	57.0	58.0	71.0	46.75609756097561	34.08685306365258	60.0	32.0	32.0	41.0	69.6021951219512	2
2637.0 0	78.0 0.0	170.2	2.0	56.0	12.81818181818181818	21.421487603305785	15.0	3.0	3.0	15.0	86.60606060606067	110.76190476190474	114.0	46.0	95.0	80.0								
32639.0 0	73.0 1.0	180.3	2.0	96.3	12.16666666666666	10.30555555555555	15.0	5.0	5.0	13.0	75,64864864864865	107.25493060628195	113.0	63.0	80.0	85.0	38.6	83.0399999999999	56.0	29.0	45.0	56.0	64.5	
12642.0 0	89.0 0.0	-1.0	3.0	-1.0	14.3333333333334	0.388888888888888	15.0	13.0	14.0	14.0	120.70491803278688	237.9457135178715	163.0	97.0	131.0	124.0	75.8	126.6600000000000001	117.0	54.0	59.0	68.0	90.6610169491525	
2644.0 0	71.0 0.0	149.9	4.0	64.5	14.454545454545455	2.066115702479339	15.0	10.0	15.0	15.0	105.35135135135135	58.87655222790358	134.0	93.0	112.0	105.0								
	27.0 0.0	-1.0	3.0	-1.0																				
32648.0 0	87.0 0.0	157.5	2.0	66.0	8.823529411764707	0.1453287197231834	9.0	8.0	8.0	9.0	28.63333333333334	37.8322222222222	95.0	65.0	65.0	71.0								
32650.0 0	83.0 0.0	-1.0	3.0	56.0		15.884297520661153	15.0	3.0		11.0	68.87931034482759	511.3475029726516	122.0	46.0	122.0	56.0	50.707317073170735	162.0118976799574	91.0	33.0	86.0	19.0	62.4146341463414	
	78.0 1.0	127.8	2.0	91.3	10.45454545454545	26.392857142857142	15.0	3.0		15.0	88.35038088888888	56.48765432098766	105.0		92.0	84.0		27.22222222222222		52.0	63.0	55.0	74.83333333333333	
											ov. 2000000000008889	~~~a/a343409a/66				09.0	Jr. J3333333333333333	***************************************	0070	24.0	99.0	99.0	0222222233333	

Missing value processing: remove the feature data with missing ratio greater than 20%, and finally get 109 features, as shown below:

```
data1 = pd.read_csv('set_a_data.csv')

data2 = pd.read_csv('set_b_data.csv')

data3 = pd.read_csv('set_b_data.csv')

data = pd.concat([data1, data2,data3])

data_list = data.dropna(thresh=9600,axis=1)

print(data_list.isnull().sum())

print(data_list.head())

print(data_list)
```

```
RecordID 6
lab 0
Age 0
Gender 0
Height 0
...
WBC_fang 205
WBC_da 205
WBC_xiao 205
WBC_chu 205
WBC_dang 205
WBC_dang 205
Length: 109, dtype: int64
```

```
Length: 109, dtype: int64

RecordID lab Age Gender ... WBC_da WBC_xiao WBC_chu WBC_dang
0 132539.0 0 54.0 0.0 ... 11.2 9.4 11.2 9.4
1 132540.0 0 76.0 1.0 ... 13.3 7.4 7.4 13.3
2 132541.0 0 44.0 0.0 ... 6.2 3.7 4.2 6.2
3 132543.0 0 68.0 1.0 ... 11.5 7.9 11.5 7.9
4 132545.0 0 88.0 0.0 ... 4.8 3.8 3.8 4.8
```

	RecordID	lab	Age	Gender		WBC_da	WBC_xiao	WBC_chu	WBC_dang				
0	132539.0	Θ	54.0	0.0		11.2	9.4	11.2	9.4				
1	132540.0	0	76.0	1.0		13.3	7.4	7.4	13.3				
2	132541.0	0	44.0	0.0		6.2	3.7	4.2	6.2				
3	132543.0	0	68.0	1.0		11.5	7.9	11.5	7.9				
4	132545.0	Θ	88.0	0.0		4.8	3.8	3.8	4.8				
3995	152849.0	Θ	78.0	1.0		20.0	14.5	20.0	15.8				
3996	152851.0	Θ	90.0	1.0		41.8	18.0	27.4	21.4				
3997	152858.0	Θ	70.0	0.0		15.1	13.1	14.8	15.1				
3998	152862.0	Θ	49.0	0.0		16.6	13.6	13.6	16.6				
3999	152864.0	Θ	82.0	0.0		17.3	10.3	17.3	10.3				
[1200	[12000 rows x 109 columns]												

Missing value padding:

Fill in the missing values of each column in the way of median, and the results show.

```
RecordID
            False
lab
            False
            False
Age
Gender
            False
Height
            False
WBC_fang
            False
WBC_da
            False
WBC_xiao
           False
WBC_chu
            False
WBC_dang
            False
Length: 109, dtype: bool
```

3. Analysis of correlation coefficient for each feature:

```
def xiangguanxishu(X, Y):
    "'计算相关系数"'
    XY = X * Y
    X2 = X ** 2
    Y2 = Y ** 2
    n = len(XY)
    numerator = n * XY.sum() - X.sum() * Y.sum() # 分子
    denominator = math.sqrt(n * X2.sum() - X.sum() ** 2) * math.sqrt(n * Y2.sum() - Y.sum()

** 2) # 分母
    if denominator == 0:
        return 'NaN'
    rhoXY = numerator / denominator
    return rhoXY
```

Print results:

4. Data processing:

According to statistics, in the data sample, the tag value survivors (lab=0) account for about 85%, and the death (lab=1) account for about 15%. According to the binary classification algorithm, it belongs to the unbalanced data, and the final prediction result

will deviate greatly.

Solution: Reduce sampling method.

```
cc = ClusterCentroids()
X_resampled, y_resampled = cc.fit_resample(data_txt, data_lab.values.reshape([-1]))
data_train_X, data_train_Y = X_resampled, y_resampled
```

The final data is divided into training set (iris_x_train, iris_y_train), test set (iris_x_test, iris_y_test) and verification set (iris_x_yan, iris_y_yan) according to the two-eighth rule. The following is the division of data code block and display.

```
x_train_all, iris_x_test, y_train_all, iris_y_test = train_test_split(data_train_X, data_train_Y,
random_state=7, test_size=0.2)
    iris_x_train, iris_x_yan, iris_y_train, iris_y_yan = train_test_split(x_train_all, y_train_all,
random_state=11, test_size=0.2)
    print(iris_x_test)
    print(iris_x_train)
    print(iris_x_yan)
```

Test set:

	Age	Gender	Height	WBC_xiao	WBC_chu	WBC_dang
1395	52.20000	0.60	34.260000	31.220000	34.860000	31.860000
1062	42.00000	0.00	165.100000	9.700000	9.700000	10.500000
440	70.75000	0.50	62.875000	5.856250	8.187500	6.643750
1417	72.09375	0.50	47.540625	11.053125	13.496875	12.053125
3333	64.00000	0.00	157.500000	8.100000	8.100000	10.700000
962	44.00000	1.00	-1.000000	3.533333	6.100000	3.666667
3102	88.00000	1.00	182.900000	6.400000	6.400000	13.400000
2478	78.00000	1.00	182.900000	14.000000	14.000000	33.500000
1601	75.50000	1.00	-1.000000	5.400000	7.100000	5.550000
429	65.00000	0.25	107.700000	10.825000	15.400000	13.675000
[676	rows x 107	columns]			

Training set:

```
Gender
                            Height ...
                                        WBC_xiao
                                                   WBC_chu
                                                            WBC_dang
          Age
1460 76.116279 0.395349 59.862791 ... 10.102326 12.653488 11.241860
1857 89.000000 1.000000 -1.000000
                                        9.900000 10.000000
                                                            9.900000
3016 80.000000 1.000000
                         -1.000000
                                        8.500000 11.700000 9.000000
     64.000000 1.000000 -1.000000
                                        8.800000 10.100000 12.700000
2206 87.000000 1.000000 -1.000000
                                        7.300000 11.300000 7.300000
                                                            5.900000
1215 67.000000 0.000000 -1.000000
                                        2.600000 2.600000
760 58.857143 0.857143 151.885714
                                        7.785714 9.700000
                                                            9.685714
3295 63.000000 0.000000
                                   ... 8.800000 9.700000
                         -1.000000
                                                            8.800000
1595 62.444444 0.666667 171.588889
                                                 9.933333
                                   7.944444
                                                            9.622222
466
     69.000000 1.000000
                        -1.000000
                                   ... 11.300000 17.000000 11.300000
[2163 rows x 107 columns]
```

Validation set:

```
Age
               Gender
                          Height ...
                                       WBC_xiao WBC_chu WBC_dang
1044 65.666667 0.555556 37.044444 ... 13.333333 17.40 13.833333
3052 80.000000 1.000000 175.300000 ... 3.900000
                                                15.00 13.700000
1565 37.500000 1.000000 -1.000000 ... 10.900000 14.45 10.900000
2989 66.000000 1.000000 170.200000 ... 3.900000
                                                 3.90 9.800000
1169 70.000000 0.666667 141.216667 ... 8.733333
                                                  9.30 10.766667
2739 76.000000 1.000000 182.900000 ... 15.200000 15.20 16.100000
2063 55.000000 1.000000 -1.000000 ... 28.200000
                                                33.60 28.200000
2808 73.000000 1.000000 160.000000 ... 31.300000
                                                 31.30 60.200000
2380 76.000000 0.000000 -1.000000 ... 12.500000
                                                 12.50 16.300000
2656 50.000000 0.000000 167.600000 ... 9.400000
                                                 16.10 15.400000
[541 rows x 107 columns]
```

5. For data after down sampling:

feature standardization, maximum and minimum value standardization, converted value range (0,1)

```
from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler(copy=True, feature_range=(0, 1))

new_X_train = iris_x_train

new_X_test = iris_x_test

new_X_yan = iris_x_yan

from sklearn.preprocessing import Normalizer

normalizer = Normalizer(copy=True, norm='l2').fit(new_X_train)

new_X_train = normalizer.transform(new_X_train)

new_X_test = normalizer.transform(new_X_test)

new_X_yan = normalizer.transform(new_X_yan)
```

6. Model Building:

Model 1:

MLPClassifier (multilayer perceptron classifier) and try to use this algorithm to build the model. The parameters are set to three hidden layers, the first layer is 100 neurons, the second layer is 50 neurons, the third layer is 50 neurons, clf=MLPClassifier (solver='lbfgs', alpha=1e-5, hidden _layer_sizes=(100, 50, 50), random_ State=1) # 3 hidden layers.

```
# 拟合(模型训练)
print(iris_x_train)
clf.fit(iris_x_train, iris_y_train)
iris_y_predict = clf.predict(iris_x_test)
score = clf.score(iris_x_test, iris_y_test, sample_weight=None)
print('iris_y_predict=')
print(iris_y_predict)
```

Finally, the accuracy rate is obtained through the test set test:

Accuracy: 0.5754437869822485.

Model 2 (final):

Random forest algorithm: It is very suitable for multi-dimensional data and has a good effect on dealing with binary classification problems.

```
RandomForest Classifier model under sklearn

clf1 = RandomForestClassifier(n_estimators=200)

clf1.fit(new_X_train, iris_y_train)
```

Set the number of decision trees to 200 (the best effect)

The following is a visual diagram of each decision tree (200 complete under the project, only one is shown here).

7. Model results

Visualization of feature importance:

The impact of features on the whole model can be clearly analyzed from the figure (file all.html), and some features with low impact can be eliminated.

```
Predicted value: (1: death, 0: survivor)
[0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
```

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1]

True value: (1: death, 0: survivor)

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0]

Use the validation set to generate the AUC visualization:

Evaluation index F1: 0.8958333333334

Accuracy: 0.8958333333334 Response rate: 0.8958333333334

Conclusion

The research and analysis of this medical data, for predicting the mortality rate of patients in ICU wards, adopts the random forest algorithm to build the model, and the accuracy rate of the results in the test set reaches 89.5%, which has certain medical reference value. The performance of the model in the validation set, draw the AUC curve, and get AUC=0.9652 (the closer the value is, the better).

Improvements:

For data processing and feature engineering, the extraction and segmentation of features are not detailed enough, this data can also mine deeper features, which need to be optimized.