

planetmath.org

Math for the people, by the people.

compactly supported continuous functions are dense in L^p

 ${\bf Canonical\ name} \quad {\bf Compactly Supported Continuous Functions Are Dense In Lp}$

Date of creation 2013-03-22 18:38:53 Last modified on 2013-03-22 18:38:53 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Theorem
Classification msc 54C35
Classification msc 46E30
Classification msc 28C15

Synonym $C_c(X)$ is dense in $L^p(X)$

Let (X, \mathcal{B}, μ) be a measure space, where X is a locally compact Hausdorff space, \mathcal{B} a http://planetmath.org/SigmaAlgebra σ -algebra that contains all compact subsets of X and μ a measure such that:

- $\mu(K) < \infty$ for all compact sets $K \subset X$.
- μ is inner regular, meaning $\mu(A) = \sup{\{\mu(K) : K \subset A, K \text{ is compact}\}}$
- μ is outer regular, meaning $\mu(A) = \inf \{ \mu(U) : A \subset U, U \in \mathcal{B} \text{ and } U \text{ is open} \}$

We denote by $C_c(X)$ the space of continuous functions $X \to \mathbb{C}$ with compact support.

Theroem - For every $1 \le p < \infty$, $C_c(X)$ is dense in http://planetmath.org/LpSpace $L^p(X)$.

: It is clear that $C_c(X)$ is indeed contained in $L^p(X)$, where we identify each function in $C_c(X)$ with its class in $L^p(X)$.

We begin by proving that for each $A \in \mathcal{B}$ with finite measure, the characteristic function χ_A can be approximated, in the L^p norm, by functions in $C_c(X)$. Let $\epsilon > 0$. By of μ , we know there exist an open set U and a compact set K such that $K \subset A \subset U$ and

$$\mu(U \setminus K) = \mu(U) - \mu(K) < \epsilon$$

By the http://planetmath.org/ApplicationsOfUrysohnsLemmaToLocallyCompactHausdorf lemma for locally compact Hausdorff spaces, we know there is a function $f \in C_c(X)$ such that $0 \le f \le 1$, $f|_K = 1$ and supp $f \subset U$. Hence,

$$\int_X |\chi_A - f|^p \ d\mu = \int_{U \setminus K} |\chi_A - f|^p \ d\mu < \epsilon$$

Thus, χ_A can be approximated in L^p by functions in $C_c(X)$.

Now, it follows easily that any simple function $\sum_{i=1}^{n} c_i \chi_{A_i}$, where each A_i has finite measure, can also be approximated by a compactly supported continuous function. Since this kind of simple functions are dense in $L^p(X)$ we see that $C_c(X)$ is also dense in $L^p(X)$. \square