30221 - Sistemas Distribuidos

Rafael Tolosana

Dpto. Informática e Ing. de Sistemas

- Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5, 2012. Capítulo 6 y Sección 15.4
- Tanenbaum and Van Steen, Distributed Systems: Principles and Paradigms, 3e, (c) 2017 Prentice- Hall. Secciones 4.4, 6.7, 8.4

Comunicación entre Procesos

Communicating entities (what is communicating)		Communication paradigms (how they communicate)		
System-oriented entities	Problem- oriented entities	Interprocess communication	Remote invocation	Indirect communication
Nodes Processes	Objects Components	Message passing	Request- reply	Group communication
	Web services	Sockets	RPC	Publish-subscribe
		Multicast	RMI	Message queues
				Tuple spaces

 $^{^1}$ Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4©Pearson Education 2005

_

- Formas de Comunicación entre Procesos
 - Comunicación Directa
 - Sockets IPC: TCP / UDP
 - RPC
 - Canales síncronos / asíncronos
 - Comunicación Indirecta (mediada)
 - Linda, publish-subscribe, colas de mensajes, etc.

Formas de Comunicación entre Procesos

- Comunicación Directa
 - Sockets IPC: TCP / UDP
 - RPC
 - Canales síncronos / asíncronos
- Comunicación Indirecta (mediada)
 - Linda, publish-subscribe, colas de mensajes, etc.

Protocolos de Comunicación

- Formato de los Mensajes
- Inter-Process Communication (IPC)
 - Sockets IPC: TCP / UDP
 - RPC
 - Canales síncronos / asíncronos

Protocolos de Comunicación

Protocolos de Interacción

 Conjunto de mensajes intercambiados entre procesos para conseguir una sincronización / coordinación

²Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4(c)Pearson Education 2005

Publish-Subscribe

³Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4© Pearson Education 2005

Comunicación entre Procesos

- La mayor parte de la comunicación entre procesos en SSDD se hace entre pares.
- A veces hay también necesidad de comunicar 1-N
- La comunicación 1-N puede simularse enviando el mismo mensaje N veces (N destinatarios).

Comunicación entre Procesos

Comunicación en Grupo

- La mayor parte de la comunicación entre procesos en SSDD se hace entre pares.
- A veces hay también necesidad de comunicar 1-N
- La comunicación 1-N puede simularse enviando el mismo mensaje N veces (N destinatarios).
- ; Es eficiente?

Eficiencia comunicación 1-N "simulada"

Comunicación entre Procesos

- La mayor parte de la comunicación entre procesos en SSDD se hace entre pares.
- A veces hay también necesidad de comunicar 1-N
- La comunicación 1-N puede simularse enviando el mismo mensaje N veces (N destinatarios).
- ¿Es eficiente?
- ¿Qué sucede con a tolerancia a fallos?

Historia

Motivación

¿Necesidad de Comunicación entre múltiples procesos?

Conclusiones

¿Necesidad de Comunicación entre múltiples procesos?

operation acquire_mutex() is

- (1) $cs_state_i \leftarrow trying;$
- (2) $\ell rd_i \leftarrow clock_i + 1;$
- (3) $waiting_from_i \leftarrow R_i$; $\% R_i = \{1, ..., n\} \setminus \{i\}$
 - 4) for each $j \in R_i$ do send REQUEST $(\ell rd_i, i)$ to p_j end for;
- (5) **wait** (waiting_from_i = \emptyset);
- (6) $cs_state_i \leftarrow in$.

operation release_mutex() is

- (7) $cs_state_i \leftarrow out;$
- (8) for each $j \in perm_delayed_i$ do send PERMISSION(i) to p_j end for;
- (9) $perm_delayed_i \leftarrow \emptyset$.

when REQUEST(k, j) is received do

- (10) $clock_i \leftarrow \max(clock_i, k)$;
- (11) $prio_i \leftarrow (cs_state_i \neq out) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle);$
- (12) **if** $(prio_i)$ **then** $perm_delayed_i \leftarrow perm_delayed_i \cup \{j\}$ (13) **else** send PERMISSION(i) to p_j
- (14) end if.

when PERMISSION(j) is received do

(15) waiting_from_i \leftarrow waiting_from_i $\setminus \{j\}$.

Solicitud de Accesso SC en RA

Solicitud de Accesso SC en RA

¡Comunicación de grupo (multicast)!

El Problema Mutex Distribuido

Comunicación en Grupo

 Un grupo de procesos se ordenan para acceder a la SC en excl mútua

El Problema Consenso Distribuido

 Un grupo de procesos acuerdan qué valores son adecuados bajo la presencia de fallos

Conclusiones

El Problema Mutex Distribuido

 Un grupo de procesos se ordenan para acceder a la SC en excl mútua

El Problema Consenso Distribuido

 Un grupo de procesos acuerdan qué valores son adecuados bajo la presencia de fallos

Publish-Subscribe

- N fuentes de datos generan información periódicamente
- M consumidores están interesados en algunas fuentes de datos
- Un sistema se encarga de comunicar las fuentes de datos con los consumidores

Historia

Historia

Historia

Motivación

 Hasta 1993 la comunicación 1-1 funcionaba correctamente

Conclusiones

⁵https://tldp.org/HOWTO/Multicast-HOWTO-1.html

Hasta 1993 la comunicación 1-1 funcionaba correctamente

 La comunicación 1-1 como implementación para comunicar N-M

⁵https://tldp.org/HOWTO/Multicast-HOWTO-1.html

- Hasta 1993 la comunicación 1-1 funcionaba correctamente
- La comunicación 1-1 como implementación para comunicar N-M
- Algo cambió...: vídeo ⁵

Comunicación en Grupo

⁵https://tldp.org/HOWTO/Multicast-HOWTO-1.html

Historia

Eficiencia comunicación 1-N "simulada"

¿Necesidad de Comunicación entre múltiples procesos? Un aspecto importante de los SSDD es la capacidad de enviar mensajes a múltiples procesos a la vez:

COMUNICACIÓN MULTICAST

¿Necesidad de Comunicación entre múltiples procesos? Un aspecto importante de los SSDD es la capacidad de enviar mensajes a múltiples procesos a la vez:

COMUNICACIÓN MULTICAST

 Históricamente ha sido un aspecto de investigación exclusivo de redes de comunicación

Conclusiones

¿Necesidad de Comunicación entre múltiples procesos? Un aspecto importante de los SSDD es la capacidad de enviar mensajes a múltiples procesos a la vez:

COMUNICACIÓN MULTICAST

- Históricamente ha sido un aspecto de investigación exclusivo de redes de comunicación
- En la práctica, involucraba enormes cantidades de gestión (requiriendo intervención humana).

Conclusiones

Comunicación en Grupo

¿Necesidad de Comunicación entre múltiples procesos? Un aspecto importante de los SSDD es la capacidad de enviar mensajes a múltiples procesos a la vez:

COMUNICACIÓN MULTICAST

- Históricamente ha sido un aspecto de investigación exclusivo de redes de comunicación
- En la práctica, involucraba enormes cantidades de gestión (requiriendo intervención humana).
- Con el avance de las tecnologías, su gestión se ha simplificado significativamente

Requisitos Comunicación en Grupo

Cada grupo se identifica con una dirección IP

Conclusiones

Comunicación en Grupo

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)
- Los miembros de un grupo se pueden encontrar en cualquier parte de Internet

Comunicación en Grupo

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)
- Los miembros de un grupo se pueden encontrar en cualquier parte de Internet
- Los miembros de un grupo pueden unirse y abandonar al grupo libremente

Comunicación en Grupo

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)
- Los miembros de un grupo se pueden encontrar en cualquier parte de Internet
- Los miembros de un grupo pueden unirse y abandonar al grupo libremente
- La pertenencia a un grupo no se conoce a priori

Comunicación en Grupo

Comunicación en Grupo

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)
- Los miembros de un grupo se pueden encontrar en cualquier parte de Internet
- Los miembros de un grupo pueden unirse y abandonar al grupo libremente
- La pertenencia a un grupo no se conoce a priori
- Los emisores no tienen por qué ser miembros del grupo

Comunicación en Grupo

Requisitos Comunicación en Grupo

- Cada grupo se identifica con una dirección IP
- Los grupos pueden ser de tamaño variable (dinámico)
- Los miembros de un grupo se pueden encontrar en cualquier parte de Internet
- Los miembros de un grupo pueden unirse y abandonar al grupo libremente
- La pertenencia a un grupo no se conoce a priori
- Los emisores no tienen por qué ser miembros del grupo

Analogía:

 Radio frecuencia: cualquiera puede transmitir y cualquiera puede conectarse y escuchar

Comunicación en Grupo

Comunicación en Grupo

Pertenencia al Grupo

- Los mensajes al grupo se reciben por todos sus miembros
- Si los procesos se añaden / borran de un grupo (fallo de proceso, cambio en la red, cambio en las preferencias de usuario, etc.), se tiene que notificar el cambio a todos los miembros activos del grupo, manteniendo la consistencia en todos ellos.
- Todo mensaje se entrega bajo ciertas configuraciones de precisión. No obstante, siempre se quiere garantizar atomicidad, uniformidad y terminación.

Retos de Comunicación en grupo

- Ordenación de mensajes para los miembros del grupo
- Garantías de Entrega
- Gestión de la pertenencia a grupo
- Tolerancia a fallos

Retos de Comunicación en Grupo

- Vivacidad y Tolerancia a fallos
 - Los mensajes terminan llegando (fiabilidad en entrega)

Comunicación en Grupo

Retos de Comunicación en Grupo

- Vivacidad y Tolerancia a fallos
 - Los mensajes terminan llegando (fiabilidad en entrega)
- Atomic Multicast
 - Un mensaje enviado a un grupo, o se entrega a todos o nadie lo recibe

Retos de Comunicación en Grupo

- Vivacidad y Tolerancia a fallos
 - Los mensajes terminan llegando (fiabilidad en entrega)
- Atomic Multicast
 - Un mensaje enviado a un grupo, o se entrega a todos o nadie lo recibe
- Orden de llegada de los mensajes
 - ¿Es el orden de llegada como el de emisión?

Comunicación en Grupo

Retos de Comunicación en Grupo

- Vivacidad y Tolerancia a fallos
 - Los mensajes terminan llegando (fiabilidad en entrega)
- Atomic Multicast
 - Un mensaje enviado a un grupo, o se entrega a todos o nadie lo recibe
- Orden de llegada de los mensajes
 - ¿Es el orden de llegada como el de emisión?
- Gestión de la pertenencia al grupo
 - Dinamismo y garantías de identidad anónima

- Best-Effort broadcast (sin control alguno)
- Reliable broadcast
- FIFO broadcast.
- Causal broadcast
- Total Order broadcast

Conclusiones

Best-Effort (sin control alguno)

Conclusiones

Reliable Multicast

Se producen retransmisiones hasta que llega el mensaje

Comunicación en Grupo

FIFO Multicast

Los mensajes enviados por un nodo tienen que llegar en el mismo orden

FIFO Multicast

Los mensajes enviados por un nodo tienen que llegar en el mismo orden

Órdenes válidos: (m1, m2, m3), (m2, m1, m3), (m1, m3, m2)

Causal Broadcast

Historia

Motivación

Los mensajes con relaciones de causalidad tienen que llegar en orden causal

Conclusiones

Causal Broadcast

Historia

Motivación

Los mensajes con relaciones de causalidad tienen que llegar en orden causal

Conclusiones

Comunicación en Grupo

Causal Broadcast

broadcast(m1) -> broadcast(m2)

Causal Broadcast

broadcast(m1) -> broadcast(m2)

broadcast(m1) -> broadcast(m3)

Órdenes válidos: (m1, m2, m3), (m1, m3, m2)

Causal Broadcast

broadcast(m1) -> broadcast(m2)

broadcast(m1) -> broadcast(m3)

Órdenes válidos: (m1, m2, m3), (m1, m3, m2)

Total Order Broadcast

Todos los nodos tienen el mismo orden de recepción.

Conclusiones

Total Order Broadcast

Todos los nodos tienen el mismo orden de recepción. El orden que se determine

Total Order Broadcast

Todos los nodos tienen el mismo orden de recepción. El orden que se determine

Diseño e Implementación de Comunicación en Grupo

Diseño e Implementación de Comunicación en Grupo

¿Qué alternativas hay para la comunicación en grupo?

- El emisor envía el mensaje repetidamente punto a punto: unicast
 - Poco eficiente en recursos

Diseño e Implementación de Comunicación en Grupo

¿Qué alternativas hay para la comunicación en grupo?

- El emisor envía el mensaje repetidamente punto a punto: unicast
 - Poco eficiente en recursos
- IP Multicast
 - Soporte hardware

Diseño e Implementación de Comunicación en Grupo

¿Qué alternativas hay para la comunicación en grupo?

- El emisor envía el mensaje repetidamente punto a punto: unicast
 - Poco eficiente en recursos
- IP Multicast
 - Soporte hardware
- Overlay Multicast: Comunicación en Grupo en Internet

IP Multicast

- IP multicast service basics
- Multicast routing

Conclusiones

IP Multicast

Historia

Motivación

IP multicast service basics

IP Multicast

IP multicast service basics

IP Multicast típicamente se construye sobre UDP: no fiable

IP Multicast

IP multicast service basics

- IP Multicast típicamente se construye sobre UDP: no fiable
- Operaciones de recepción / envío
- Operaciones de gestión de pertenencia al grupo

IP multicast service basics

	octet 1	octet 2	octet 3		Range of addresses
	Network ID		Host ID		
Class A:	1 to 127	0 to 255	0 to 255	0 to 255	1.0.0.0 to 127.255.255.255
	Network ID		Host ID		
Class B:	128 to 191	0 to 255	0 to 255	0 to 255	7 128.0.0.0 to 191.255.255.255
		Network ID		Host ID	
Class C:	192 to 223	0 to 255	0 to 255	1 to 254	7 192.0.0.0 to 223.255.255.255
	Multicast address				
Class D (multicast):	224 to 239	0 to 255	0 to 255	1 to 254	224.0.0.0 to 239.255.255.255
Class E (reserved):	240 to 255	0 to 255	0 to 255	1 to 254	240.0.0.0 to 255.255.255.255

Comunicación en Grupo

IP Multicast

Multicast routing

- Para el encaminamiento de los paquetes, los routers tienen que gestionar estados grandes en tamaño
- Presenta problemas potenciales de denegación de servicio
- Es un servicio costoso económicamente

Motivación

Comunicación en Grupo

IP Multicast

Multicast routing

- Para el encaminamiento de los paquetes, los routers tienen que gestionar estados grandes en tamaño
- Presenta problemas potenciales de denegación de servicio
- Es un servicio costoso económicamente
- Los proveedores de Internet no suelen dar servicio IP Multicast
- IP Multicast es una buena solución para una LAN que uno controla, pero EN GENERAL NO PARA INTERNET

Comunicación en Grupo en Internet

Comunicación en Grupo

Overlay network

 Puede entenderse como una red de computadores que se construye sobre otra red. Todos los nodos de la *overlay* network se conectan mediante enlaces lógicos o virtuales, y esos enlaces constituyen un camino en la red subvacente.

Comunicación en Grupo

Overlay network

- Puede entenderse como una red de computadores que se construye sobre otra red. Todos los nodos de la *overlay* network se conectan mediante enlaces lógicos o virtuales, y esos enlaces constituyen un camino en la red subvacente.
- Un ejemplo de overlay network pueden ser los sistemas distribuidos cliente servidor o peer-to-peer. Esos sistemas v sus redes pueden verse como una overlav network puesto que se construyen sobre Internet.

Primer intento: punto a punto

Incluso teniendo IP multicast fiable, si un proceso falla, no se retransmiten sus mensajes

Segundo intento: retransmisiones exhaustivas

Se asegura la retransmisión pero a un coste altísimo

Tercer intento: gossiping

Conclusiones

Conclusiones

Comunicación en grupo

- Los sistemas distribuidos requieren de comunicación en grupo
- Muchas son las aplicaciones que requieren enviar mensajes a un conjunto de procesos.
- La comunicación punto a punto (unicast) es la más extendida pero es ineficiente respecto de la red
- La comunicación en grupo plantea muchos retos: dinamismo de los grupos, privacidad, seguridad, orden de los mensajes y carencias en los proveedores de internet para implementarlo
- En las LAN puede usarse IP Multicast, en Internet no en general
- Para implementar la comunicación en grupo hay otras alternativas a IP. Multicasta pero de menor eficiencia

Comunicación en Grupo

30221 - Sistemas Distribuidos

Rafael Tolosana

Dpto. Informática e Ing. de Sistemas