Chapter 8. Confidence Interval/Interval estimation

In this part, we will learn how to take into account the uncertainty of some estimate by making statements such as: "I am 90% certain that the value of the parameter is within the interval (-0.5,0.3)".

Confidence and uncertainty in estimation Confidence and uncertainty in estimation

Although the sample mean, \overline{x} is a unique number for any particular sample, if you pick a different sample you will probably get a different sample mean.

$$\left| \left(\frac{X - M}{S - M} \right) \right| < 2 \right) \approx 0.9$$

1. General definition

If $P(\hat{\theta}_L \leq \theta \leq \hat{\theta}_U) = 1 - \alpha$, $[\hat{\theta}_L, \hat{\theta}_U]$ is a (two-sided) confidence interval with confidence level $1 - \alpha$.

If $P(\hat{\theta}_L \leq \theta) = 1 - \alpha$, $[\hat{\theta}_L, \infty]$ is a one-sided confidence interval with confidence level $1 - \alpha$.

If $P(\theta \leq \hat{\theta}_U) = 1 - \alpha$, $[-\infty, \hat{\theta}_U]$ is a one-sided confidence interval with confidence level $1 - \alpha$.

2. Confidence interval for proportion

Example: A population consists of 10,000 people; each has a strong opinion for or against some proposition. We wish to know true proportion of the population that is for the proposition. We survey 100 people at random, and $X: \#ppl \not \to prop \sim B_{\pi}(n, p)$ the sample proportion is $\hat{p}_{z} \stackrel{\times}{=}$ Question: How close is \hat{p} to the true proportion p

In this example, we sample without replacement, and the distribution of $100\hat{p}$ is hypergeometric – too difficult to work with.

If we sample with replacement, the distribution of $100\hat{p}$ is Binomial(100,p)—easier than hypergeometric.

When the population is large compared to the sample size n, there is little difference between the two. Thus we should expect that \hat{p} is approximately normal.

Since $E[\hat{p}] = p, Var(\hat{p}) = p(1-p)/n$, the CLT implies that

$$\frac{\widehat{p}-p}{\sqrt{p(1-p)/n}} \sim N(0,1)$$

We have:

$$rac{\widehat{p}-p}{\sqrt{p(1-p)/n}} \sim N(\mathtt{0},\mathtt{1})$$

In particular, if

$$P(-z_{\alpha/2} \leq N(0,1) \leq z_{\alpha/2}) = 1 - \alpha$$

then

$$P(-z_{\alpha/2} \le \frac{\widehat{p} - p}{\sqrt{p(1-p)/n}} \le z_{\alpha/2}) \approx 1 - \alpha$$

For example, if $1 - \alpha = 0.95$, $z_{\alpha/2} = 1.96$.

To simplify, we replace $SD(\hat{p}) = \sqrt{p(1-p)/n}$ by standard error $SE(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})/n}$. The central limit theorem still applies with this divisor.

$$\frac{\widehat{p}-p}{SE(\widehat{p})} pprox N(0,1)$$

Rearranging the expression inside the probabil-

$$\int \left(-z_{\alpha/2} \le \frac{\widehat{p} - p}{SE(\widehat{p})} \le z_{\alpha/2}\right) \approx \left(-\right)$$

we get

$$(\widehat{p} - z_{\alpha/2} SE(\widehat{p}) \le p \le (\widehat{p} + z_{\alpha/2} SE(\widehat{p}))$$

which contains p with approximate probability $1-\alpha$.

The interval is referred to as $1 - \alpha$ confidence interval and is often abbreviated $\widehat{p} \pm z_{\alpha}SE(\widehat{p})$. $1 - \alpha$ is called the level of confidence.

3. Confidence interval for mean

Chi-squared distribution and Student's t distribution

The $\chi^2(n)$, or χ^2_n distribution is just the gamma distribution, with $\alpha=n/2$ and $\beta=1/2$. The integer n is the parameter of the distribution and sometimes called the degree of freedom. If $X \sim \chi^2(n)$, then E[X] = n, Var(X) = 2n.

Characterization/Definition: if $Z_i \stackrel{i.i.d.}{\sim} N(0,1)$, then $\sum_{i=1}^n Z_i^2 \sim \chi^2(n)$.

Chi-squared distribution:

Property: if X and Y are independent with χ_n^2 and χ_m^2 distributions, then $X+Y\sim\chi_{n+m}^2$ (this can be proved easily with the above characterization)

Student's-t distribution:

Characterization:

If $Z \sim N(0,1), X \sim \chi_n^2$, and X and Z are independent, then $\sqrt{n}Z/\sqrt{X} \sim t_n(\text{or }t(n))$. n is the parameter of the t distribution and called the degrees of freedom like for χ^2 distribution.

Student's-t distribution;

Density:

$$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}} (1 + x^2/n)^{-(n+1)/2}$$

Mean and variance:
$$(|+\frac{1}{h})^n \to e^{-\frac{1}{h}} (|+\frac{N^2}{h})^{-\frac{1}{h}} = E[X] = 0, Var(X) = \frac{n}{n-2} \text{ if } n > 2$$

Confidence interval for mean

For a random sample X_1, X_2, \ldots, X_n , the central limit theorem tell us that for large n

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{\bar{X} - \mu}{SD(\bar{X})}$$

(called Z-statistics) will have an approximately normal distribution. So 95% CI for μ is $\bar{X} \pm 1.96 \sigma/\sqrt{n}$.

(Small sample test) When $X_i \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, Z is exactly N(0, 1).

$$P(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} < z_{\alpha/2}) \approx 1 - \alpha$$

$$\iff P(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) \approx 1 - \alpha$$

Conclusion: the confidence interval for μ is

$$[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

But what happens if we don't know σ ?/

IDEA: plug in an estimator for σ !

When σ is unknown, we use the standard error, $SE(\bar{X}) = s/\sqrt{n}$, to replace σ/\sqrt{n} .

Consider

$$T = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{\bar{X} - \mu}{SE(\bar{X})}$$

T is still approximately normal when n is large enough. This fact can be used to construct confidence intervals such as a 95% confidence interval as $\bar{X} \pm 1.96s/\sqrt{n}$.

When n is not large, and X_i are i.i.d. normal, the sampling distribution of T is the t-distribution with n-1 degrees of freedom. (Note when n goes to infinity, t(n-1) will be converge to normal distribution, so there is no contradiction)

$$P(-t_{\alpha/2} < T_{n-1} < t_{\alpha/2}) \approx 1 - \alpha$$

$$\iff P(\bar{X} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2} \frac{s}{\sqrt{n}}) \approx 1 - \alpha$$

Example:

A person has been trained to set the bean grinder so that a 25-second espresso shot results in 2 ounces of espresso. He pours eight shots and measures the amounts to be 1.95, 1.80, 2.10, 1.82, 1.75, 2.01, 1.83, and 1.90 ounces. Find a 90% confidence interval for the mean shot size. Does it include 2.0?

Example: Students in a class of 30 have an average height of 66 inches, with a sample standard deviation of 4 inches.

Assume that these heights are normally distributed, and the class can be considered a random sample from the entire college population. What is an 80% interval for the mean height of all the college students?

X ± t29 2,1 J80

One-sided CI is obtained when we assign the mass to only one tail. For example, for confidence intervals for the mean, based on the T statistics, these would be found by finding z^* such that $P(-z^* \leq T) = 1 - \alpha$ or $P(T \leq z^*) =$

 $1 - \alpha.(\text{set } z^* = z_\alpha).$

Example:

Find a 90% CI of the form $(-\infty, b]$ for \bar{X} .

$$P(T \le z_{\alpha}) = 1 - \alpha$$

$$P(\frac{\bar{X} - \mu}{s/\sqrt{n}} \le z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - \mu \le z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - \mu \le z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - \mu \le z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - \mu \le z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - z_{\alpha}) = 1 - \alpha$$

$$P(\mu \le \bar{X} + z_{\alpha}) = 1 - \alpha$$

$$P(\bar{X} - z_{\alpha}) = 1 - \alpha$$

The optimal serving temperature for coffee is -180F. Five temperatures are taken of the served coffee: 175,185,170,184, and 175 degrees. Find a 90% CI of the form $(-\infty,b]$ for the mean temperature.

$$(-10)$$
 $x + t_{4,0.1}$ $\frac{5}{15}$

