

MAPAS Y FUNCIONES MESURABLES

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 15) 13.MARZO.2023

Definición

Sean (X, A) y (Y, B) espacios mesurables. Decimos que un mapa $T: X \to Y$ es **mesurable** (respecto de las σ -álgebras A y B) si $T^{-1}(B) \subseteq A$. Esto es,

$$T^{-1}(B) \in \mathcal{A}$$
, para todo $B \in \mathcal{B}$.

En el caso particular en que $T: \mathbb{R}^m \to \mathbb{R}^n$, $A = \mathcal{B}(\mathbb{R}^m)$ y $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$, entonces T se llama un mapa **Borel-mesurable**.

Lemma

Sean (X, A) y (Y, B) espacios mesurables, con $B = \sigma(G)$, donde $G \subseteq \mathcal{P}(Y)$ es algún conjunto generador. Entonces, $T: X \to Y$ es mesurable \iff para tod $G \in G$, $T^{-1}(G) \in A$. (En otras palabras, es suficiente verificar la definición para aquellos conjuntos en el generador G).

Prueba: (\Rightarrow) Si $T: X \to Y$ es mesurable, entonces por definición $T^{-1}(G) \in \mathcal{A}$, para todo $G \in \mathcal{B}$, en particular, para todo $G \in \mathcal{G}$.

(⇐) Consideremos la colección de subconjuntos de Y

$$\mathcal{S} = \{B \subseteq Y : T^{-1}(B) \in \mathcal{A}\}.$$

Observe que

- $\varnothing \in \mathcal{S}$, ya que $T^{-1}(\varnothing) = \varnothing \in \mathcal{A}$.
- Si $B \in \mathcal{S}$, entonces $A = T^{-1}(B) \in \mathcal{A}$. Luego, $T^{-1}(B^c) = T^{-1}(B)^c = A^c \in \mathcal{A}$, lo que implica que $B^c \in \mathcal{S}$.

• Si $\{B_k\}_{k\geq 1}\in\mathcal{S}$ es una secuencia de elementos en \mathcal{S} , entonces $A_k=T^{-1}(B_k)\in\mathcal{A}$, para todo $k\geq 1$. Como \mathcal{A} es σ -álgebra, entonces $T^{-1}(\bigcup_k B_k)=\bigcup_k T^{-1}(B_k)=\bigcup_k A_k\in\mathcal{A}$, de modo que $\bigcup_k B_k\in\mathcal{S}$.

Lo anterior muestra que $\mathcal S$ es una σ -álgebra en $\mathbf Y$.

Por hipótesis, $T^{-1}(G) \in \mathcal{A}$, $\forall G \in \mathcal{G}$. Luego, $\mathcal{G} \subseteq \mathcal{S} \Rightarrow \mathcal{B} = \sigma(\mathcal{G}) \subseteq \mathcal{S}$, $\Rightarrow T^{(\mathcal{B})} \subseteq \mathcal{A}$, lo que prueba que T es mesurable. \Box

Obs! Si (X, \mathcal{O}) es un espacio topológico (\mathcal{O} = abiertos), y consideramos la -álgebra de Borel $\mathcal{B}(X) = \sigma(\mathcal{O})$, nos gustaría establecer una relación entre los mapas continuos y los mapas mesurables.

Corolario

Sean (X, \mathcal{O}_X) y (Y, \mathcal{O}_Y) espacios topológicos, y consideremos los espacios mesurables $(X, \mathcal{B}(X))$, $(Y, \mathcal{B}(Y))$. Entonces, todo mapa continuo $T: X \to Y$, es un mapa mesurable.

Prueba: Como $T: X \to Y$ es continuo, entonces $T^{-1}(\mathcal{O}_Y) \subseteq \mathcal{O}_X$. Luego, $T^{-1}(\mathcal{O}_Y) \subseteq \mathcal{O}_X \subseteq \mathcal{B}(X)$. Como los abiertos \mathcal{O}_Y generan a $\mathcal{B}(Y)$, por el lema anterior, tenemos que $T^{-1}(\mathcal{B}(Y)) \subseteq \mathcal{B}(X)$, y T es un mapa mesurable. \square

Comentario: No todo mapa mesurable es un mapa continuo.

Ejemplo: Tome $T: \mathbb{R} \to \mathbb{R}$, (aquí consideramos las σ -álgebras de Borel en \mathbb{R}),

$$T(\mathbf{x}) = \mathbf{1}_{[-1,1]}(\mathbf{x}) = egin{cases} 1, & -1 \leq \mathbf{x} \leq 1; \\ 0, & \text{otro caso.} \end{cases}$$

Analizamos las posibles preimágenes por T, de cualquier intervalo abierto $[-\infty, y)$:

- Si $y \le 0$, entonces $T^{-1}(a,b) = \emptyset \in \mathcal{B}(\mathbb{R})$.
- Si O < y \leq 1, entonces $T^{-1}(a,b) = (-\infty,-1) \cup (1,\infty) \in \mathcal{B}(\mathbb{R})$.
- Si 1 < y, entonces $T^{-1}(a,b) = \mathbb{R} \in \mathcal{B}(\mathbb{R})$.

Esto abarca todas las posibilidades $\Rightarrow T$ es mesurable. Pero T no es continua.

Propiedades

Proposición

Sean $(X, \mathcal{A}), (Y, \mathcal{B}), (Z, \mathcal{C})$ espacios mesurables. Si $T_1: X \to Y$ y $T_2: Y \to Z$ son mapas mesurables, entonces $T_2 \circ T_1: X \to Z$ es mesurable.

Prueba: Sea $C \in \mathcal{C}$. Como T_2 es mesurable, entonces $B = T_2^{-1}(C) \in \mathcal{B}$. Como T_1 es mesurable, entonces $A = T_1^{-1}(B) \in \mathcal{A}$. Pero $A = T_1^{-1}(B) = T_1^{-1}(T_2^{-1}(C)) = (T_2 \circ T_1)^{-1}(C)$, lo que muestra que $T_2 \circ T_1$ es mapa mesurable. \square

Dado un espacio mesurable (Y, \mathcal{B}) y dado $T: X \to Y$, en ocasiones podemos no tener referencia de una Σ -álgebra en X. Nos gustaría construir alguna σ -álgebra \mathcal{A} en X para la cual T resulta ser mesurable.

• Obviamente, A = P(X) hace que T y cualquier otro mapa de X a Y sean mesurables.

Pero, ¿es posible construir una menor σ -álgebra para que T sea mesurable?

• En este caso, la **menor** σ -álgebra en X para la cual T es mesurable es $A = \sigma(T^{-1}(B))$.

Propiedades

Ahora, suponga que $\{(X_i, A_i)\}_{i \in I}$ es una colección de espacios mesurables. Dados mapas $T_i : X \to X_i$.

¿Cuál es la menor σ -álgebra en X que hace que todos los T_i sean mapas mesurables, simultáneamente?

• Respuesta: $A = \sigma(\bigcup_i T_i^{-1}(A_i))$.

Definición

 $\mathcal{A} = \sigma(\bigcup_i T_i^{-1}(\mathcal{A}_i))$ se llama la σ -álgebra generada por los mapas T_i .

Teorema

Sean (X, A) y (Y, B) espacios mesurables, $T: X \to Y$ un mapa mesurable, y sea μ una medida sobre A. Entonces, podemos construir una medida $T_*\mu$ en B, dada por

$$T_*\mu(B)=\mu\big(T^{-1}(B)\big).$$

Prueba: Observe que al ser T un mapa mesurable, entonces $T_*\mu$ aplica sobre conjuntos válidos. Mostramos que $T_*\mu$ es una medida.

- $T_*\mu(\varnothing) = \mu(T^{-1}(\varnothing)) = \mu(\varnothing) = 0.$
- Sea $\{B_k\}_{k\geq 1}\subseteq \mathcal{B}$ una secuencia de conjuntos disjuntos a pares en \mathcal{B} . Entonces las preimágenes $\{T^{-1}(B_k)\}_{k\geq 1}$ también forman una secuencia de conjuntos disjuntos a pares en \mathcal{A} , pues $T^{-1}(B_i)\cap T^{-1}(B_j)=T^{-1}(B_i\cap B_j)=\varnothing$, para $i\neq j$. Luego,

$$T_*\mu\Big(\bigcup_{k\geq 1}B_k\Big)=\mu\Big(T^{-1}\Big(\bigcup_{k\geq 1}B_k\Big)\Big)=\mu\Big(\bigcup_{k\geq 1}T^{-1}(B_k)\Big)=\sum_{k\geq 1}\mu\big(T^{-1}(B_k)\big)=\sum_{k\geq 1}T_*\mu(B_k).$$

Lo anterior muestra que T_*mu es una medida. \square

Propiedades

Teorema

Sean (X, A) y (Y, B) espacios mesurables, $T: X \to Y$ un mapa arbitrario, y sea μ una medida sobre B, y A una σ -álgebra contenida en $T^{-1}(B)$. Entonces, podemos construir una medida $T^*\mu$ en A, dada por

$$T^*\mu\big(T^{-1}(B)\big)=\mu(B).$$

Prueba: Mostramos que $T^*\mu$ es una medida.

- $T^*\mu(\varnothing) = T^*\mu(T^{-1}(\varnothing)) = \mu(\varnothing) = 0.$
- Sea $\{A_k\}_{k\geq 1}\subseteq \mathcal{B}$ una secuencia de conjuntos disjuntos a pares en $\mathcal{A}\subseteq T^{-1}(\mathcal{B})$. Entonces los $A_k=T^{-1}(B_k)$ son preimágenes de conjuntos disjuntos en \mathcal{B} . Luego,

$$T^*\mu\Big(\bigcup_{k\geq 1}B_k\Big) = T^*\mu\Big(\bigcup_{k\geq 1}T^{-1}(B_k)\Big) = T^*\mu\Big(T^{-1}\Big(\bigcup_{k\geq 1}A_k\Big)\Big) = \mu\Big(\bigcup_{k\geq 1}B_k\Big)$$
$$= \sum_{k\geq 1}\mu(B_k) = \sum_{k\geq 1}T^*\mu(A_k).$$

Definición

La medida T_* definida sobre \mathcal{B} se llama el **push-forward** de μ por T.

Notación: $T_*\mu$, $T_\sharp\mu$, $T\circ\mu$, $\mu\circ T^{-1}$.

Definición

La medida T^* definida sobre $A \subseteq T^{-1}(B)$ se llama el **pull-back** de μ por T.

Notación: $T^*\mu$, μ_T .

Definición

Sea (X, A) un espacio mesurable. Una **función mesurable** $u : X \to \mathbb{R}$ es cualquier mapa mesurable μ entre (X, A) y $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nota: En el caso en que (X, \mathcal{A}, μ) corresponde a un espacio de medida $(\Omega, \mathcal{F}, \mathbb{P})$, una función mesurable $X : \Omega \to \mathbb{R}$ se llama una **variable aleatoria**.

En otras palabras, una función $\mu: X \to \mathbb{R}$ es mesurable $\iff u^{-1}(B) \in \mathcal{A}$, para todo $B \in \mathcal{B}(\mathbb{R})$.

Como ya hemos visto, para verificar que $\mu: X \to \mathbb{R}$ es una función mesurable, basta verificar que $u^{-1}(G) \in \mathcal{A}$, para todo $G \in \mathcal{G}$, donde \mathcal{G} es cualquier conjunto generados para los borelianos $\mathcal{B}(\mathbb{R})$.

Recordemos que existen varios generadores para $\mathcal{B}(\mathbb{R})$:

•
$$\mathcal{G} = \{[a, \infty) : x \in \mathbb{R}\},$$

•
$$\mathcal{G} = \{(a, \infty) : x \in \mathbb{R}\},$$

•
$$\mathcal{G} = \{(-\infty, a) : x \in \mathbb{R}\}$$
,

•
$$\mathcal{G} = \{(-\infty, a] : x \in \mathbb{R}\},$$

•
$$\mathcal{G} = \{[a, \infty) : x \in \mathbb{Q}\},\$$

•
$$\mathcal{G} = \{(a, \infty) : x \in \mathbb{Q}\},$$

•
$$\mathcal{G} = \{(-\infty, a) : x \in \mathbb{Q}\}$$
,

•
$$\mathcal{G} = \{(-\infty, a] : x \in \mathbb{Q}\}.$$

Usando \mathcal{G} , para verificar que $u:X\to\mathbb{R}$ es mesurable, bastaría verificar que

$$u^{-1}((-\infty, a]) = \{x \in X : u(x) \in (-\infty, a]\} = \{x \in X : u(x) \le a\} = \{u \le a\} \in A, \forall a \in \mathbb{R}.$$

Notaciones:

- $\{u \le a\} = \{x \in X : u(x) \le a\} = u^{-1}((-\infty, a]),$
- $\{u < a\} = \{x \in X : u(x) < a\} = u^{-1}((-\infty, a)),$
- $\{u \geq a\} = \{x \in X : u(x) \geq a\} = u^{-1}([a, \infty)),$
- $\{u > a\} = \{x \in X : u(x) > a\} = u^{-1}((a, \infty)).$

Si $u:X\to\mathbb{R}$, y $v:X\to\mathbb{R}$ son ambas funciones, denotamos

- $\{u \le v\} = \{x \in X : u(x) \le v(x)\},$
- $\{u < v\} = \{x \in X : u(x) < v(x)\},$
- $\{u \geq v\} = \{x \in X : u(x) \geq v(x)\},$
- $\{u > v\} = \{x \in X : u(x) > v(x)\},$
- $\{u = v\} = \{x \in X : u(x) = v(x)\}.$

Lema

Sea (X, A) un espacio mesurable. Las siguientes son equivalentes:

- i) $u:X \to \mathbb{R}$ es mesurable,
- ii) $\{u \leq a\} \in \mathcal{A}$, para todo $a \in \mathbb{R}$,
- iii) $\{u < a\} \in \mathcal{A}$, para todo $a \in \mathbb{R}$,
- iv) $\{u \geq a\} \in \mathcal{A}$, para todo $a \in \mathbb{R}$,
- **v)** $\{u > a\} \in \mathcal{A}$, para todo $a \in \mathbb{R}$.

Prueba: Consecuencia del lema sobre generadores \mathcal{G} de los borelianos $\mathcal{B}(\mathbb{R})$. \Box (Existe una versión idéntica al lema, pero verificando sobre todo $a \in \mathbb{Q}$.)