Passage of Native Cutthroat Trout Through Small Culverts On Steep Slopes: What Are The Limits?

Jeffrey T. Light¹, N. Phil Peterson², & Ryan K. Simmons²

¹Plum Creek Timber Company

²West Fork Environmental

Society of American Foresters March 14, 2013

Fish Passage: What's the big deal?

Fish Passage: What's the big deal?

Fish Passage: Our Northwest Context

Washington State private forest lands

- 6,505 barriers identified in 1997
- 50% have been replaced to date (total cost \$100-200M)

Washington State DOT

- 1,904 barriers identified at a cost of \$900M
- 75% of blocked streams contain significant habitat upstream

US Forest Service lands in WA and OR

 4,800 barriers at a cost of 331M, estimated to take 100 years to complete

· Oregon DOT

733 barriers identified in W. Oregon (total cost >\$100M)

· British Columbia

44,000 culverts pose a moderate to high risk for passage problems

Culvert Passability

Coastal Cutthroat Trout

- · Life history: both sea-run and resident forms
- Resident populations represent the most common fish species found in small headwater streams
- Resident populations often thrive above migration barriers

Study Objectives

- Assess the passability of wild coastal cutthroat trout through a culvert over a range of slopes and flows;
 - Assess the influence of culvert outlet conditions (drop height and water velocity) on passability

Passage Detection System

PIT Tag Antennae

Cross-Sectional Hydraulic Asymmetry higher velocity lower velocity Silberman 1959

Cross Sectional Velocity Profile

The Sweet Spot

Juvenile Coho movine upstream

Flow

Size Distribution of Tested Cutthroat Trout

Results

Results

Results

Flow: 8 cubic feet/sec Pipe Slope: 8.6% Velocity: 7 ft/sec

Probability of Passage

Bottom Line

- Wild cutthroat were successful in average passage conditions well beyond those predicted by most passage criteria
 - No perch at outlet

Study design Passage conditions matrix

Each velocity and height combination was tested twice (18 total trials)

Passage Detection System

Passage performance by distance through culvert

Movement up lower quarter of culvert

relative passage performance

What Next?

- Policy
 - Improve passage criteria
 - Account for partial passage
 - Broaden the decision space
 - True 'worst first' prioritization

Culvert Slope Categories for Inventoried Fish Passage Barriers in Alaska & British Columbia

N = 909

Sources: British Columbia Forest Practices Board (2009), Flanders and Cariello (2000)

Acknowledgments

- Dan Adkins
- Rhonda Brooks
- Dr. Joel Cahoon
- Dr. Tamre Cardoso
- Jim Dill
- Peter Heide
- Dr. George Ice
- Chris Jarmer
- Warren Leach
- Dr. Douglas Martin
- NCASI
- Oregon Association of Counties

- Oregon Forest Industries Council
- Jon Peterson
- Pat Powers
- Earl Prentice
- Adelaide Sibeaux
- Washington Dept. of Transportation
- Washington Forest Protection Association
- Individual Timber Companies