Цифровые подписи

Захар Назаров

Июнь 2024

Содержание

1	Введение				
2	Гермины и определения				
3	Архитектуры хеш-функций 3.1 Hash-and-Sign	3 3			
4	DSA 4.1 Генерация цифровой подписи				
5	ECDSA 5.1 Генерация ключевой пары 5.2 Генерация цифровой подписи 5.3 Проверка цифровой подписи	5			
6	ГОСТ Р 34.10-1994 6.1 Генерация цифровой подписи 6.2 Проверка цифровой подписи				
7	ГОСТ 34.10-2018 7.1 Генерация ключевой пары 7.2 Генерация цифровой подписи 7.3 Проверка цифровой подписи				
8	Схема подписи Фиата-Шамира 8.1 Процесс взаимодействия сторон	8			
9	Схема подписи Шнорра 9.1 Генерация ключей 9.2 Генерация цифровой подписи 9.3 Проверка цифровой подписи				
10	Схема подписи Меркля–Лампорта 10.1 Цифровая подпись Лампарта 10.1.1 Генерация ключей 10.1.2 Генерация цифровой подписи 10.1.3 Проверка цифровой подписи 10.2 Подпись Лампарта в комбинации с деревом Меркла	9 9			
	10.2.1 Followalling removals	٥			

	10.2.2	Генерация цифровой подписи	10
		Проверка цифровой подписи	
11 Cxe			10
	11.0.1	Генерация ключей	10
	11.0.2	Генерация цифровой подписи	10
	11.0.3	Проверка цифровой подписи	11
11.1	Крипт	роанализ	11
	11.1.1	Декодирующие атаки	11
	11.1.2	Структурные атаки	11
		Сложность	
11.2		чение	
12 CRY	STALS-	Dilithium. My Signature!	11
	12.0.1	Генерация ключей	12
	12.0.2	Генерация цифровой подписи	12
	12.0.3	Проверка цифровой подписи	12
		Листинг полного алгоритма	
13 Спи	ісок ли	тературы	13

1. Введение

В данной работе описываются две схемы построения цифровых подписей: "Hash-and-Sign"и "Преобразование Фиата-Шамира а также 9 конкретных цифровых подписей: DSA, ECDSA, ГОСТ Р 34.10-1994, ГОСТ 34.10-2018, Схема подписи Фиата-Шамира, Схема подписи Шнорра, Схема подписи Меркля-Лампорта, Схема подписи CFS(Courtois, Finiasz, Sendrier), CRYSTALS-Dilithium. Устройство схемы подписи CFS и ее особенности рассматриваются более детально, также расмотрены атаки на него.

2. Термины и определения

Определение 2.1. Схема "Hash-and-Sign"

Пусть $\Pi = (\text{Gen, Sign, Vrfy})$ — это схема подписи для сообщений длиной l(n), и пусть $\Pi_H = (\text{Gen}_H, H)$ — это хеш-функция с выходной длиной l(n). Построим схему подписи $\Pi' = (\text{Gen', Sign', Vrfy'})$ следующим образом:

- Gen': на вход 1^n запускаем $Gen(1^n)$, чтобы получить (pk, sk), и запускаем $Gen_H(1^n)$, чтобы получить s; открытый ключ равен $\langle pk, s \rangle$, а закрытый ключ равен $\langle sk, s \rangle$.
- Sign': на вход подается закрытый ключ $\langle sk,s \rangle$ и сообщение $m \in \{0,1\}^*$, на выходе $\sigma \leftarrow \text{Sign}_{sk}(H_s(m))$.
- Vrfy': на вход подается открытый ключ $\langle pk, s \rangle$, сообщение $m \in \{0, 1\}^*$ и подпись σ , на выходе выдать 1, если и только если Vrfy $_{pk}(H_s(m), \sigma) \stackrel{?}{=} 1$.

Построенная Π' и будет схемой подписи "Hash-and-Sign".

Определение 2.2. Эллиптической кривой над конечным полем F_q называется совокупность точек (x, y), которые удовлетворяют следующему уравнению:

$$y^2 = x^3 + ax + b$$

Над точками эллиптической кривой вводится операция сложения с помощью добавления "виртуальной точки"О. Лучше всего варианты сложения точек эллиптической кривой описываются следующей иллюстрацией:

Рис. 1. Операция сложения для точек эллиптической кривой [4]

Умножение точки на целое число Q = nP определяется как:

$$Q = \sum_{n} P$$

Определение 2.3. Дерево Меркла?

3. Архитектуры хеш-функций

Рассмотрим две основные архитектуры построения схем подписей: "Hash-and-Sign"и "преобразование Фиата-Шамира"

3.1. Hash-and-Sign

Пусть у нас есть схема подписи Π сообщений длины l и хеш-функция H, у которой длина выхода также равна l. Схема "Hash-and-Sign" заключается в том, что сообщение произвольной длины хеширутеся с помощью H и затем подписывается Π .

Формальное определение содержится в главе "Термины и определение".

3.2. Преобразование Фиата-Шамира

В 1986 году Амос Фиат и Ади Шамир опубликовали новый протокол интерактивного взаимодействия, с помощью которого можно организовать идентификацию и схемы подписи [1]. Его криптографическая стойкость основана на сложности решения задачи нахождения квадратного корня из числа по модулю n, где n - это произведение двух простых чисел и двоичная запись n содержит не менее 512 значащих битов. Также классическая схема предполагает наличие **доверенного** центра, который будет подтверждать информацию I об идентифицирующейся стороне и выдавать ей определенный секрет под эти данные. Зафиксируем:

- 1) Публичное число n = pq, где p, q простые числа. Факторизацию этого числа знает только доверенный центр.
- 2) Публичная псевдослучайная функция f.
- 3) Фиксированное количество k маленьких значений j. Для простоты зафиксируем: $j=1,\ldots,k$.
- 4) Количество проверок t.

Поэтому эта схема содержит 2 этапа: проверка идентичности доверенным центром и выдача секрета идентифицирующейся стороне, непосредственная идентификация перед контрагентом.

Этап проверки идентичности

1) Центр вычисляет k значений $v_j = f(I, j)$.

- 2) Для каждого v_j находится обратный к нему элемент $p = v_j^{-1}$ по модулю n и затем вычисляется наименьший квадратный корень по модулю: $s_j = \sqrt{p} \bmod n$.
- 3) Затем безопасным путем (в оригинальной статье в виде смарт-карты) передается информация идентифицирующейся стороне: $I, s_i(j)$.

Идентификация

Пусть у нас есть А со смарт-картой и сторона В, перед которой А хочет идентифицироваться.

- 1) Сторона А отправляет I стороне В.
- 2) В вычисляет $v_i = f(I, j)$, где j = 1, ..., k.
- 3) Для і от 1 до t:
 - а) Сторона A выбирает случайное $r_i \in [0, n)$ и отправляет $x_i = r_i^2$ стороне B.
 - б) Сторона В отправляет рандомный бинарный вектор (e_{i1},\ldots,e_{ik}) стороне А.
 - в) Сторона А отправляет В:

$$y_i = r_i \prod_{e_{i,i}=1} s_i \pmod{n}$$

г) Сторона В проверяет:

$$x_i = y_i^2 \prod_{e_{ij}=1} v_j \pmod{n}$$

Таким образом, если все проверки В прошли успешно, то считается что А успешно идентифицировалась. В противном случае - не успешно.

4. DSA

DSA (Digital Signature Algorithm) - алгоритм цифровой подписи, основанный на конструкции "Hash-and-sign". Опубликован в 1998 году и запатентован NIST. Опишем алгоритм, следуя стандарту [2].

Определим следующие параметры:

- 1) Простое число p, где $2^{L-1} , 512 <math><= L <= 1024$ и L кратно 64.
- 2) Простое число q, которое является делителем p-1, $2^{159} < q < 2^{160}$.
- 3) $g = h^{(p-1)/q} \mod p$, где h любое число от 1 до p-1 и g>1.
- 4) Случайное число x, сгенерированное псевдорандомно, 0 < x < q.
- 5) $y = q^x \mod p$
- 6) Случайное число k, сгенерированное псевдорандомно, 0 < k < q.

Значения p, q, g публичны и ими может пользоваться группа пользователей. Приватный и публичный ключ пользователя x и y соответственно. Значения x и k используются для генерации подписи и остаются в секрете, k генерируется для каждой новой подписи.

4.1. Генерация цифровой подписи

- 1) $r = (q^k \mod p) \mod q$
- 2) $(k^{-1}()SHA 1(M) + xr) \mod q$

Значение k^{-1} является мультипликативно обратным элементом к k по модулю q. Если r=0, то выбирается другое k; если s=0, то выбирается другое k. Далее сообщение m отправляется вместе с подписью (r,S) получателю.

4.2. Проверка цифровой подписи

Получатель знает p, q, g, y и получает подписанное сообщение (m, r, s). Алгоритм проверки следующий:

- 1) Проверяется что r,s лежат в диапазоне: 0 < r, s < q. Иначе проверка заканчивается неуспехом. Если все правильно, то проводятся дальнейшие вычисления.
- $2) \ w = s^{-1} \bmod q$
- 3) $u_1 = ((SHA 1(M))w) \mod q$
- 4) $u_2 = ((r)w) \mod q$
- 5) $v = (((q)^{u_1}(y)^{u_2}) \mod p) \mod q$

Если v = r, то подпись считается валидно, иначе - невалидной.

5. ECDSA

ECDSA (Elliptic Curve Digital Signature Algorithm) - алгоритм цифровой подписи, основанный на конструкции "Hashand-sign а также использующий эллиптические кривые.

Будем считать, что у нас есть заданная эллиптическая кривая с параметрами, которая отвечает требованиям безопасности, описанным в стандарте [3]:

- 1) q порядок поля F_q .
- 2) n порядок эллиптической кривой.
- 3) a, b параметры эллиптической кривой.
- 4) G базовая точка эллиптической кривой.

Начнем рассматривать взаимодействие между А и В, где А - хочет отправить подписанное сообщение.

5.1. Генерация ключевой пары

На входе у нас заданная эллиптическая кривая и точка G.

- 1) Выбирается случайное число $d \in [1, n-1]$.
- 2) Вычисляется новая точка эллиптической кривой Q = dG.
- 3) На выход идет d и Q.

5.2. Генерация цифровой подписи

На входе у нас заданная эллиптическая кривая, точка G, закрытый ключ d, хеш-функция H и сообщение m.

- 1) Выбирается случайное число $k \in [1, n-1]$.
- 2) Вычислить $kG = (x_1, y_1)$.
- 3) Вычислить $r = x_1 \mod n$.
- 4) Вычислить e = H(m)
- 5) Вычислить $s = k^{-1}(e + dr) \bmod n$
- 6) Вернуть (*r*, *s*)

Если r=0, то выбирается другое k; если s=0, то выбирается другое k.

5.3. Проверка цифровой подписи

На входе у нас заданная эллиптическая кривая, точка G, хеш-функция H, сообщение m, открытый ключ Q и подпись (r,s).

- 1) Проверка, что $r, s \in [1, n-1]$. При неудаче то подпись невалидна.
- 2) Вычислить e = H(m).
- 3) Вычислить $w = s^{-1} \mod n$.
- 4) Вычислить $u_1 = ew \mod n$, $u_2 = rw \mod n$.
- 5) Вычислить $X = u_1 * G + u_2 * Q = (x_2, y_2)$
- 6) Если X=O, то подпись невалидна. Иначе вычислить $v=x_2 \bmod n$

Если v = r, то подпись валидна, иначе - невалидна.

6. ΓΟCT P 34.10-1994

ГОСТ Р 34.10-1994 - алгоритм цифровой подписи, основанный на конструкции "Hash-and-sign стандартизованный в 1994 году [5].

Пусть заданы простые числа p (512 бит) и q (256 бит), которые удовлетворяют условиям описанным в стандарте [5]. Пусть также есть число a > 1, которое представляется в виде:

$$a = d^{\frac{p-1}{q}} \mod p$$
 (512 бит)

6.1. Генерация цифровой подписи

На входе у нас заданные p,q,a, сообщение m и хеш-функция H. Предварительно выбирается случайное число $x \in [0,q]$, которое будет закрытым ключом. Также считается открытый ключ по формуле: $y=a^x \mod p$.

- 1) Вычислить $h = H(m) \mod q$, если H(M) = 0, то $h := 0^{255}1$.
- 2) Выбирается случайное число $k \in [0, q]$.
- 3) Вычислить $r = a^k \mod p$.
- 4) Вычислить $r' = r \mod q$.
- 5) Если r' = 0, то выбрать другое k.
- 6) Вычислить $s = (xr' + kh) \mod q$.
- 7) Подать на выход подпись: (r', s)

После выработки подписи число k уничтожается.

6.2. Проверка цифровой подписи

На входе у нас заданные p,q,a, сообщение m, хеш-функция H, открытый ключ y и подпись (r',s).

- 1) Проверка, что r', $s \in (0, q)$. При неудаче то подпись невалидна.
- 2) Вычислить $h = H(m) \mod q$, если H(M) = 0, то $h := 0^{255}1$.
- 3) Вычислить $v = h^{q-2} \mod q$.
- 4) Вычислить $z_1 = sv \mod q$.
- 5) Вычислить $z_2 = (q r')v \mod q$.
- 6) Вычислить $u = ((a^{z_1} * y^{z_2}) \mod p) \mod q$.

7)

Если u=r', то подпись валидна, иначе - невалидна.

7. FOCT 34.10-2018

ГОСТ Р 34.10-2018 - алгоритм цифровой подписи, основанный на конструкции "Hash-and-sign a также использующий эллиптические кривые. Является международным стандартом, принятым в 2018 году [6].

Будем считать, что у нас есть заданная эллиптическая кривая с параметрами, которая отвечает требованиям безопасности, описанным в стандарте [6]:

- 1) p порядок поля F_p .
- 2) т порядок эллиптической кривой.
- 3) a, b параметры эллиптической кривой.
- 4) P базовая точка эллиптической кривой.
- 5) H(M) хеш-функция (ГОСТ Р 34.11-2012 [Стрибог]), с выходом 256-бит.

Начнем рассматривать взаимодействие между А и В, где А - хочет отправить подписанное сообщение.

7.1. Генерация ключевой пары

- 1) Выбирается случайное число $d \in [1, q-1]$.
- 2) Вычисляется новая точка эллиптической кривой Q = dP.
- 3) На выход идет d и Q.

7.2. Генерация цифровой подписи

На входе у нас заданная эллиптическая кривая, закрытый ключ d, и сообщение m.

- 1) Вычислить h = H(m)
- 2) Вычислить $e = h \bmod q$. Если e = 0, то $e \coloneqq 1$
- 3) Выбирается случайное число $k \in [1, q-1]$.
- 4) Вычислить $C = kP = (x_1, y_1)$.
- 5) Вычислить $r = x_1 \mod q$.
- 6) Вычислить $s = (rd + ke) \mod q$
- 7) Вернуть (*r*, *s*)

Если r = 0, то выбирается другое k; если s = 0, то выбирается другое k.

7.3. Проверка цифровой подписи

На входе у нас заданная эллиптическая кривая, сообщение m, открытый ключ Q и подпись (r,s).

- 1) Проверка, что $r, s \in [1, q-1]$. При неудаче то подпись невалидна.
- 2) Вычислить h = H(m).
- 3) Вычислить $e = h \mod q$. Если e = 0, то e := 1
- 4) Вычислить $v = e^{-1} \mod q$.
- 5) Вычислить $z_1 = sv \mod q$, $z_2 = -rv \mod q$.
- 6) Вычислить $C = z_1 * P + z_2 * Q = (x_2, y_2)$
- 7) Вычислить $R = x_2 \mod q$

Если R=r, то подпись валидна, иначе - невалидна.

8. Схема подписи Фиата-Шамира

Схема подписи Фиата-Шамира получается из преобразования Фиата-Шамира с помощью модификации. Пусть А хочет отправить подписанное сообщение М стороне В.

- $-\,$ В данном случае теперь у нас нет доверенного центра, сторона A сама определяет число n=pq.
- Затем А генерирует секретную последовательность из z чисел x_0, \ldots, x_z таких, что: n div $2^{64} <= x_i <= n-1$ и $GCD(x_i, n) = 1$, где GCD(a, b) наибольший общий делитель a и b.
- Далее A генерирует публичную последовательность y_0, \dots, y_z , которая вычисляется по формуле: $y_i = x_i^{-2} \mod n$.

Пусть A хочет отправить сообщение M стороне В. Пусть у нас также задана хеш-функция H.

8.1. Процесс взаимодействия сторон

- 1) Сторона A выбирает случайное $k \in [0, n)$ и отправляет $R = k^2$ стороне B.
- 2) Сторона В отправляет рандомный бинарный вектор (e_{i1}, \dots, e_{iz}) стороне А.
- 3) Сторона A вычисляет хеш E = H(M||R).
- 4) Сторона A вычисляет: $S = k \prod_{e_{i,i}=1} x_i \pmod{n}$.
- 5) Сторона A отправляет (M, E, S) стороне B.
- 6) Сторона В вычисляет: $R' = S^2 \prod_{e_{i,i}=1} y_i \pmod{n}$
- 7) Сторона В вычисляет: E' = H(M||R').
- 8) Если E = E', то подпись валидна, иначе невалидна.

Отметим, что сторона В знает публичную последовательность y_0, \ldots, y_z стороны А (аналог публичного ключа). Также интересно, что для одного и того же сообщения для разных посылок, будут разные подписи из-за генерации k.

9. Схема подписи Шнорра

Схема подписи Шнорра - схема подписи, которая является модификацией схемы подписи Фиата-Шамира.

9.1. Генерация ключей

- 1) Сторона A выбирает простое число p длиной 1024 бит.
- 2) Сторона A выбирает простое число q, такое что оно является делителем числа p-1. Размер q равен 160 бит.
- 3) Сторона A выбирает g > 1, такое что $g^q = 1 \bmod p$.
- 4) Сторона A выбирает случайное число w < q.
- 5) Сторона A вычисляет $y = q^{q-w} \mod p$.

Таким образом у А появляется открытый ключ (p, q, g, y) и секретный ключ w. Пусть А хочет отправить сообщение М стороне В. Пусть у нас также задана хеш-функция H.

9.2. Генерация цифровой подписи

- 1) Сторона A выбирает случайное число r < q и вычисляет $x = q^r \mod p$.
- 2) Сторона A вычисляет $S_1 = H(M||x)$.
- 3) Сторона A вычисляет $S_2 = r + wS_1 \mod q$.
- 4) Сторона A отправляет стороне B подписанное сообщение (M, S_1, S_2) .

9.3. Проверка цифровой подписи

- 1) Сторона В вычисляет $X = (q^{S_2}q^{S_1}) \bmod p$.
- 2) Сторона В вычисляет S' = H(M||X)

Если $S' = S_1$, то подпись валидна, иначе - невалидна.

10. Схема подписи Меркля-Лампорта

Схема подписи Меркля-Лампорта - это схема цифровой подписи, основанная на использовании дерева Меркла и на одноразовой цифровой подписи Лампарта [7].

10.1. Цифровая подпись Лампарта

Пусть A хочет отправить сообщение M стороне B. Пусть задано положительное число $k, M \in \{0, 1\}^k$. Пусть у нас также задана хеш-функция H.

10.1.1. Генерация ключей

Генерируется 2r значений y_{ij} , где $1 \le i \le k$, $0 \le j \le 1$. Также вычисляется для всех $i, j : z_{ij} = H(y_{ij})$. Набор y_{ij} - это закрытый ключ. Набор z_{ij} - это открытый ключ.

10.1.2. Генерация цифровой подписи

Пусть $M = m_1 || m_2 || \dots || m_k$. Подпись сообщения sign считается как: $sign = (y_{1,m_1}, \dots, y_{k,m_k}) = (s_1, \dots, s_k)$

10.1.3. Проверка цифровой подписи

Если для всех 1 <= i <= k верно: $f(s_i) = z_{i,m_i}$, то подпись sign считается валидной, иначе - невалидной.

10.2. Подпись Лампарта в комбинации с деревом Меркла

В подписи Лампарта открытый ключ может использоваться только 1 раз. С помощью дерева Меркла можно создать схему подписи, где открытый ключ может использоваться несколько раз (при большом дереве, можно считать, что ключ можно использовать неограниченное количество раз).

10.2.1. Генерация ключей

Зададим некоторое n > 1. Сгенерируем 2^n пар ключей Лампарта (X_i, Y_i) $(1 <= i <= 2^n)$, где X_i - закрытый ключ, Y_i - открытый ключ.

Затем посчитаем для каждого открытого ключа посчитаем его хеш: $h_i = H(Y_i)$, $1 <= i <= 2^n$.

Построим дерево Меркла с листьями (h_1, \ldots, h_{2^n}) . Пусть корень дерева pub будет открытым ключом для новой схемы подписи.

10.2.2. Генерация цифровой подписи

Выберем любую пару ключей X_i , Y_i , например X_d , Y_d . Подпишем ею сообщение M, получим подпись sig'. Возьмем хеш от публичного ключа $h_d = H(Y_d)$. В дереве Меркла это будет лист. Встанем на этот лист и возьмем соседний элемент (назовем его a_0), который тоже ведет к родителю h_d . Встанем теперь на родителя h_d и также возьмем элемент (назовем его a_1), который ведет к родителю родителя h_d . И так далее, пока не дойдем до вершины. Последний взятый элемент a_{n-1} будет иметь родителя pub.

Составим итоговую подпись сообщения M в новой схеме: $siq = (siq', Y_d, a_0, \ldots, a_{n-1})$

10.2.3. Проверка цифровой подписи

Сначала проверяется одноразовая подпись sig'. Если она валидна, то идем дальше, если нет - sig также считается невалидной. Если sig' валидна, то считаем $A_0 = H(Y_d)$. Затем считаем $A_i = H(A_{i-1}||a_i)$ для 0 <= i <= n-1. Если $A_{n-1} = pub$, то подпись валидна, иначе - невалидна.

11. Схема подписи CFS(Courtois, Finiasz, Sendrier)

Схема подписи CFS(Courtois, Finiasz, Sendrier) - алгоритм цифровой подписи, основанный на конструкции "Hash-and-sign а также использующий линейные коды. Этот алгоритм был предложен в 2001 году [8] исследователями Courtois, Finiasz и Sendrier.

Ее безопасность опирается на сложность декодирования, а также на сложность восстановления структуры линейного кода.

Пусть A хочет отправить сообщение M стороне B. Зафиксируем:

- Пусть заданы целые числа n, k, которые определяют размерность линейного кода C[n, k].
- Пусть у нас задана хеш-функция H с выходом размера n-k.
- Пусть у нас задана случайная бинарная невырожденная квадратная матрица S порядка (n-k) .
- Пусть у нас задана случайная бинарная матрица перестановки P порядка n.

Будем считать, что вышеописанные параметры отвечают требованиями безопасности, описанным в [8].

11.0.1. Генерация ключей

Секретным ключом является линейный код $C_0[n,k]$ с генератором G_0 и матрицей проверки H_0 . Публичным ключом является: $H=V*H_0*P$.

11.0.2. Генерация цифровой подписи

- 1) Вычисляется хеш s = H(M).
- 2) Вычисляются $s_i = h(s||i)$, i = 0, 1, 2, ..., до тех пор пока какое-то s_{i_0} не станет декодируемым для C_0 . Запомним этот s_{i_0} .
- 3) Затем с помощью обратной функции(trapdoor function) мы находим такое z, что $H*z^T=s_{i_0}$.
- 4) На выход идет подпись (z, i_0) .

11.0.3. Проверка цифровой подписи

- 1) Вычисляется хеш s = H(M).
- 2) Вычислить $s_1 = H * z^T$
- 3) Вычислить $s_2 = h(s||i_0)$

Если $s_1=s_2$, то подпись валидна, иначе - нет. Для оптимизации разработчики преобразуют z, чтобы подпись была более компактная.

11.1. Криптоанализ

Как говорилось выше, безопасность этой схемы опирается на сложность декодирования, а также на сложность восстановления структуры линейного кода. Поэтому рассмотрим атаки именно на эти аспекты.

11.1.1. Декодирующие атаки

Наиболее известная атака методом декодирования была предложена Каньто и Шабо [10], и её асимптотическая временная сложность составляет примерно $(n/log_2(n))^{f(t)}$, где $f(t) = \lambda * t - c$ является аффинной функцией с λ , не сильно меньшим единицы, и c — константой, лежащей в пределах от 1 до 2.

Хорошие оценки асимптотического поведения сложности лучших известных общих методов декодирования приведены Баргом в [11]. В действительности, когда скорость $(R=\frac{k}{n}$ кода стремится к 1, временная и объем памяти становится $(2^{n(1-R)/2(1+o(1))})$, что для кодов Гоппа даёт $(n^{t(1/2+o(1))})$.

11.1.2. Структурные атаки

Немного известно о различимости кодов Гоппы. На практике единственная структурная атака [12] заключается в перечислении всех кодов Гоппы и затем тестировании их на эквивалентность с открытым ключом. Существует $(2^{tm}/t)$ бинарных кодов Гоппы, исправляющих t ошибок, длины $(n=2^m)$, но из-за свойств кодов Гоппа нужно проверить только один из (mn^3) , и, наконец, сложность проверки эквивалентности не может быть ниже $(n(tm)^2)$ (методом Гауссова исключения). В итоге, совокупная сложность структурной атаки не будет меньше чем (tmn^{t-2}) элементарных операций.

11.1.3. Сложность

Пусть $n = 2^m$, k = n - tm, d >= 2t + 1 для кода Гоппа. Тогда сложность лучших атак будет:

- Для декодирующей атаки: $2^{tm(1/2+o(1))}$
- Для структурной атаки: $tm \ 2^{m(t-2)}$

11.2. Заключение

Вывод:

Схема цифровой подписи CFS (Courtois, Finiasz, Sendrier) основана на методе "Hash-and-sign"и использует линейные коды для обеспечения безопасности. Безопасность данной схемы зависит от сложности декодирования и восстановления структуры линейного кода, что делает её устойчивой к широкому спектру атак. Основные атаки для схемы это декодирующие и структурные атаки. Временная и пространственная сложность этих атак варьируется в зависимости от параметров кода, однако лучшие известные атаки всё ещё имеют достаточно высокую вычислительную сложность.

12. CRYSTALS-Dilithium. My Signature!

CRYSTALS-Dilithium - постквантовый алгоритм цифровой подписи, опубликованный в 2021 году [9].

12.0.1. Генерация ключей

- Генерация матрицы А размера k*l, элементами которой являются полиномы в кольце $R_q=Z_q[n]/(X^n+1)$. Эта матрица первая часть публичного ключа.
- Генерация двух случайных векторов (s_1 , s_2) размеров l и k соответственно. Элементом вектора являются также полиномы в кольце R_a (с коэффициентами у многочленов не больше η .
- Вычислить $t = A * s_1 + s_2$.

Таким образом, Пара (A, t) - публичный ключ. Пара (A, t, s_1 , s_2) - приватный ключ.

Пусть A хочет отправить сообщение M стороне B. Пусть у нас также задана хеш-функция H. Определим вспомогательные функции:

```
Power2Round_q(r, d)
                                                                                                                            \mathsf{Decompose}_{a}(r,\alpha)

08  r := r \operatorname{mod}^+ q 

09  r_0 := r \operatorname{mod}^{\pm} 2^d

                                                                                                                            19 \ r := r \bmod^+ q
                                                                                                                            20 r_0 := r \operatorname{mod}^{\pm} \alpha
 10 return ((r-r_0)/2^d, r_0)
                                                                                                                            21 if r - r_0 = q - 1
22 then r_1 := 0; r_0 := r_0 - 1
\label{eq:makeHint}  \begin{aligned} & \underbrace{\mathsf{MakeHint}_q(z,r,\alpha)}_{11} \ \ r_1 := \mathsf{HighBits}_q(r,\alpha) \\ & 12 \ \ v_1 := \mathsf{HighBits}_q(r+z,\alpha) \\ & 13 \ \ \mathbf{return} \ \llbracket r_1 \neq v_1 \rrbracket \end{aligned}
                                                                                                                           23 else r_1 := (r - r_0)/\alpha
24 return (r_1, r_0)
                                                                                                                            \mathsf{HighBits}_q(r,\alpha)
                                                                                                                            \overline{ 25 (r_1,r_0):=\mathsf{Decompose}_q(r,lpha)
 14 m := (q-1)/\alpha
15 (r_1, r_0) := \mathsf{Decompose}_q(r, \alpha)
                                                                                                                            26 return r_1
16 if h = 1 and r_0 > 0 return (r_1 + 1) \mod^+ m
17 if h = 1 and r_0 \le 0 return (r_1 - 1) \mod^+ m
                                                                                                                         \frac{\mathsf{LowBits}_q(r,\alpha)}{^{27}\ (r_1,r_0) := \mathsf{Decompose}_q(r,\alpha)}
                                                                                                                            28 return ro
```

Рис. 2. Вспомогательные функции для CRYSTALS-Dilithium [9].

12.0.2. Генерация цифровой подписи

- 1) Генерация вектора-маски $y \in S^l_{\gamma_1-1}$, который состоит из многочленов с коэффициентами меньше, чем γ_1 . Считаем, что γ_1 отвечает требованиям безопасности, описанным в [9].
- 2) Вычисляем $w_1 = HighBits(Ay, 2 * \gamma_2)$. Считаем, что γ_2 отвечает требованиям безопасности, описанным в [9].
- 3) Вычислить $c = H(M||w_1), c \in B_{60}$. c это многочлен в R_q , имеющий ровно 60 коэффициентов, которые равны 1 или -1, остальные нули.
- 4) $\beta = max(c * s_1, c * s_2)$
- 5) Если один из коэффициентов z, больше чем $\gamma_1 \beta$, то генерация подписи начинается заново.
- 6) Если все коэффициенты младших битов Az-ct, больше чем $\gamma_2-\beta$, то генерация подписи начинается заново.
- 7) На выход идет подпись (z, c).

12.0.3. Проверка цифровой подписи

- 1) Вычислить $w'_1 = HighBits(Az ct, 2\gamma_2)$.
- 2) Если один из коэффициентов z, больше чем $\gamma_1 \beta$, то подпись невалидна.
- 3) Вычислить $c' = H(M||w_1')$

Если с' = с, то подпись валидна, иначе - нет.

12.0.4. Листинг полного алгоритма

```
01 \ \rho \leftarrow \{0,1\}^{256}
02 K \leftarrow \{0,1\}^{256}
03 (\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_{\eta}^{\ell} \times S_{\eta}^{k}
04 \mathbf{A} \in R_q^{k \times \ell} := \mathsf{ExpandA}(\rho)
                                                                                                                   #A is stored in NTT Domain Representation
05 \mathbf{t} := \mathbf{A}\mathbf{s}_1 + \mathbf{s}_2
05 \mathbf{t} := \mathbf{A}\mathbf{s}_1 + \mathbf{s}_2

06 (\mathbf{t}_1, \mathbf{t}_0) := \mathsf{Power2Round}_q(\mathbf{t}, d)

07 tr \in \{0, 1\}^{384} := \mathsf{CRH}(\rho \parallel \mathbf{t}_1)
08 return (pk = (\rho, \mathbf{t}_1), sk = (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0))
Sign(sk, M)
\begin{array}{ll} \overline{\mathbf{Q}} \overline{\mathbf{M}} \leftarrow \overline{\mathbf{M}} & = \mathbf{E} \mathbf{x} \mathbf{p} \mathbf{n} \mathbf{d} \mathbf{A}(\rho) \\ 09 & \mathbf{A} \in R_q^{k \times \ell} := \mathbf{E} \mathbf{x} \mathbf{p} \mathbf{n} \mathbf{d} \mathbf{A}(\rho) \\ 10 & \mu \in \{0,1\}^{384} := \mathbf{C} \mathbf{R} \mathbf{H}(tr \parallel M) \\ 11 & \kappa := 0, \ (\mathbf{z},\mathbf{h}) := \bot \end{array}
                                                                                                                   #A is stored in NTT Domain Representation
12 while (\mathbf{z}, \mathbf{h}) = \perp do
            \mathbf{y} \in S_{\gamma_1-1}^{\ell} := \mathsf{ExpandMask}(K \parallel \mu \parallel \kappa)
\mathbf{w} := \mathbf{A}\mathbf{y}
               \mathbf{w}_1 := \mathsf{HighBits}_q(\mathbf{w}, 2\gamma_2)
               c \in B_{60} := \mathsf{H}(\mu \parallel \mathbf{w}_1)
                z := y + cs_1
               (\mathbf{r}_1, \mathbf{r}_0) := \mathsf{Decompose}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)
               if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta or \|\mathbf{r}_0\|_{\infty} \geq \gamma_2 - \beta or \mathbf{r}_1 \neq \mathbf{w}_1, then (\mathbf{z}, \mathbf{h}) := \bot
                     \mathbf{h} := \mathsf{MakeHint}_q(-c\mathbf{t}_0, \mathbf{w} - c\mathbf{s}_2 + c\mathbf{t}_0, 2\gamma_2)
                     if \|c\mathbf{t}_0\|_{\infty} \geq \gamma_2 or the # of 1's in h is greater than \omega, then (\mathbf{z}, \mathbf{h}) := \bot
\mathsf{Verify}(\mathit{pk}, M, \sigma = (\mathbf{z}, \mathbf{h}, \mathit{c}))
#A is stored in NTT Domain Representation
28 \mu \in \{0,1\}^r :— \operatorname{Cort}(\mu \cap \| e1 \| \| m)
27 \mathbf{w}_1' := \operatorname{UseHint}_q(\mathbf{h}, \mathbf{Az} - c\mathbf{t}_1 \cdot 2^d, 2\gamma_2)
28 \operatorname{\mathbf{return}} [\|\mathbf{z}\|_{\infty} < \gamma_1 - \beta\| \text{ and } \|c = \operatorname{\mathsf{H}}(\mu \| \mathbf{w}_1')] \text{ and } [\# \text{ of } 1\text{'s in } \mathbf{h} \text{ is } \leq \omega]
```

Рис. 3. Листинг CRYSTALS-Dilithium [9]

13. Список литературы

- [1] Fiat A., Shamir A. How to prove yourself: Practical solutions to identification and signature problems //Conference on the theory and application of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. C. 186-194.
 - [2] Digital signature standart (DSS) // FIPS PUB 186-1. 1998
- [3] ANSI X9.62-1998: Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA). // American Bankers Association. 1998
 - [4] Elliptic curve group law // URL: https://commons.wikimedia.org/wiki/File:ECClines-2.0.svg
- [5] ГОСТ 34.11-94 «Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма» // URL: https://files.stroyinf.ru/Data2/1/4294820/4294820322.pdf
- [6] ГОСТ 34.11-94 «Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма» // URL: https://protect.gost.ru/v.aspx?control=7id=232149
 - [7] Lamport L. Constructing digital signatures from a one way function. 1979.
- [8] Courtois N. T., Finiasz M., Sendrier N. How to achieve a McEliece-based digital signature scheme //Advances in Cryptology—ASIA 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast, Australia, December 9–13, 2001 Proceedings 7. Springer Berlin Heidelberg, 2001. C. 157-174.
 - [9] Ducas L. et al. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES 2018 (1), 238-268 (2018).
- [10] Canteaut A. A new algorithm for finding minimum-weight words in large linear codes //IMA International Conference on Cryptography and Coding. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. C. 205-212.
 - [11] Barg A. Complexity issues in coding theory //Handbook of Coding theory. 1998. T. 1. C. 649-754.
- [12] Loidreau P., Sendrier N. Weak keys in the McEliece public-key cryptosystem //IEEE Transactions on Information Theory. 2001. T. 47. \mathbb{N}^2 . 3. C. 1207-1211.