

INTRODUCCIÓN A LOS MODELOS OCULTOS DE MARKOV

Luis Miguel Bergasa Pascual

Departamento de Electrónica. Universidad de Alcalá. Email:bergasa@depeca.uah.es

Luis M. Bergasa. Departamento de Electrónica

1

CONTENIDOS

- Introducción
- Revisión de conceptos
- Procesos de Markov
- Modelos ocultos de Markov
- Ejemplos de aplicación

Fenómenos Naturales

- Emiten señales o tienen propiedades observables con características estadísticas que pueden variar con el tiempo.
- Clasificación de las señales:
 - Discretas (p.e. el alfabeto) o continuas (p.e. la voz)
 - Estacionarias o estocásticas
 - Puras o distorsionadas por el ruido

Luis M. Bergasa. Departamento de Electrónica

3

Problema: modelar dichos fenómenos

- Establecer una representación matemática del fenómeno que permita explicarlo.
- Deben permitir analizar el fenómeno sin necesidad de ser observado directamente
- Deben tener una representación adecuada:
 - Buena capacidad de reconocimiento
 - Predicción
- Tipos:
 - Deterministas: exploran características conocidas de la señal
 - Estadísticos: caracterizan la señal con valores estadísticos

Modelos Estadísticos de Señales

- Cadenas de Markov (Markov, 1906)
 - Señales observables representadas como un proceso aleatorio paramétrico
 - Los parámetros pueden determinarse con precisión
- Modelos Ocultos de Markov (HMM)
 (Baum et al, 1966-72)
 - Extensión de las cadenas de Markov cuando las señales no son observables

Luis M. Bergasa. Departamento de Electrónica

5

Ejemplo: estado del tiempo

Dado que hoy esta *soleado*, ¿cuál es la probabilidad de la secuencia *soleado*, *nuboso*, *lluvioso*?

Tipos de Modelos de Markov Características generales

Elementos básicos de todo modelo de Markov:

- El sistema tiene varios **estados** $s \in S$
- El sistema evoluciona de unos estados a otros con **transiciones probabilísticas** p(s'|s)

MODELO DE TRANSICIÓN p(s'|s)

\						
s	s'	s0	s1	s2	s3	s4
s0		0.2	0.6	0	0.2	0
s1		0	0	0.5	0.5	0
s2		0	0	0.1	0.9	0
s3		0	0	0	0.2	0.8
s4		0.7	0	0.3	0	0

PROPIEDAD DE MARKOV: El estado en t+1 sólo depende del estado en t, y no de la evolución anterior del sistema.

Luis M. Bergasa. Departamento de Electrónica

7

Tipos de Modelos de Markov Clasificación

	Estado observable	Estado oculto (observaciones)
No hay acciones (sólo transiciones estocásticas)	Cadenas de Markov (Markov Chains)	Modelos Ocultos de Markov (HMMs)
Hay acciones (que producen transiciones estocásticas)	Procesos de Decisión de Markov (MDPs)	Procesos de Decisión de Markov Parcialmente Observables (POMDPs)

Tipos de Modelos de Markov

1. Cadenas de Markov (Markov Chains)

En una Cadena de Markov el ESTADO es COMPLETAMENTE OBSERVABLE (conocido en todo momento), y NO EXISTEN ACCIONES (no hay toma de decisiones -> equivale a una sóla acción)

MODELO DE TRANSICIÓN p(s'|s)

5/:	s'	s0	s1	s2	s3	s4
s0		0.2	0.6	0	0.2	0
s1		0	0	0.5	0.5	0
s2		0	0	0.1	0.9	0
s3		0	0	0	0.2	0.8
s4		0.7	0	0.3	0	0

Luis M. Bergasa. Departamento de Electrónica

9

Tipos de Modelos de Markov 2. Modelos Ocultos de Markov (HMMs)

En un Modelo Oculto de Markov el ESTADO es PARCIALMENTE OBSERVABLE (no se conoce, pero existen observaciones o∈O), y NO EXISTEN ACCIONES (no hay toma de decisiones -> equivale a una sóla acción)

Luis M. Bergasa. Departamento de Electrónica

MODELO DE TRANSICIÓN p(s'|s)

Y

MODELO DE OBSERVACIÓN p(o|s)

(ejemplo con 3 posibles observaciones)

s	00	o1	o2
s\c	0.2	0.8	0
s1	0	0	1
s2	0	0.5	0.5
s3	0.3	0.7	0
s4	0.7	0	0.3

Aquí el problema es *estimar* el estado (variable oculta)

10

Tipos de Modelos de Markov 3. Procesos de Decisión de Markov (MDPs)

En un **Proceso de Decisión de Markov** el **ESTADO** es **COMPLETAMENTE OBSERVABLE** (conocido en todo momento), y **EXISTEN DIFERENTES ACCIONES** (un modelo de transición para cada acción -> p(s'|s,a))

Luis M. Bergasa. Departamento de Electrónica

MODELO DE TRANSICIÓN p(s'|s,a)

(en este caso, al haber 2 acciones, son dos matrices: p(s'|s,a0) y p(s'|s,a1))

Aquí el problema es la *toma de decisiones* (seleccionar las acciones para maximizar una recompensa futura). Para ello se define el:

MODELO DE RECOMPENSA r(s|a)

(POLÍTICA: asocia una acción óptima a cada estado, que maximiza la recompensa futura.

Varios algoritmos)

11

Tipos de Modelos de Markov

4. Procesos de Decisión de Markov Parcialmente Observables (POMDPs)

En un **Proceso de Decisión de Markov Parcialmente Observable** el **ESTADO** es **PARCIALMENTE OBSERVABLE** (no se conoce, pero se dispone de observaciones), y **EXISTEN DIFERENTES ACCIONES** (un modelo de transición para cada acción -> p(s'|s,a))

MODELO DE TRANSICIÓN p(s'|s,a) MODELO DE OBSERVACIÓN p(o|s) MODELO DE RECOMPENSA r(s,a)

Aquí hay dos problemas:

- la estimación del estado (como en HMM)
- la toma de decisiones (como en MDP)

Luis M. Bergasa. Departamento de Electrónica

Tipos de Modelos de Markov Algoritmos probabilísticos útiles

Para seleccionar la acción a ejecutar

Luis M. Bergasa. Departamento de Electrónica

13

Cadenas de Markov (MC)

- Dado un proceso representado por N estados, S_i , i=1,...,N, cambia de estado según cierta probabilidad asociada a cada estado, en puntos discretos en el tiempo t=1,...,T. Se dice que en el tiempo t el sistema está en el estado q_t .
- La descripción probabilística del proceso es

$$P[q_t = S_i | q_{t-1} = S_i, q_{t-2} = S_k...] = P[q_t = S_i | q_{t-1} = S_i],$$
 (primer orden).

• Considerándolo independiente del tiempo, se tienen las probabilidades de transición entre estados,

$$a_{ij} = P[q_t = S_j | q_{t-1} = S_i], \quad i,j = 1,...,N,$$
donde $a_{ij} \ge 0$ y $\Sigma a_{ij} = 1$.

• Probabilidades del estado inicial,

$$\pi_i = P[q_1 = S_i],$$
 $i = 1,...,N.$

Ejemplo de MC: estado del tiempo

- Modelo de Markov observable: cada estado es un evento físico observable.
- Matriz de probabilidad de transición de estados:

$$A = \{a_{ij}\} = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

• Dado que hoy esta *soleado*, ¿cuál es la probabilidad la secuencia *soleado*, *nuboso*, *lluvioso*, $O = \{S_3S_2S_1\}$?

$$P(O/Modelo) = P[S_3].P[S_2|S_3].P[S_1|S_2]$$

= $\pi_3 \cdot a_{32} \cdot a_{21} = 1 \cdot 0.1 \cdot 0.2 = 0.02$

Luis M. Bergasa. Departamento de Electrónica

15

Extensión a HMM

- En las cadenas de Markov el estado es observable, el parámetro es la probabilidad de transición.
- En HMM la observación es una función probabilística del estado.
- El modelo tiene dos procesos estocásticos embebidos, uno no es observable (estados ocultos), pero puede ser observado mediante el otro proceso (secuencia de observaciones).

Ejemplo HMM: lanzamiento de monedas

- Del experimento solo se sabe los resultados del lanzamiento de las monedas (las monedas están ocultas).
- Se observan los símbolos cara(C) y cruz (X): Q = CXXCCXCXX
- ¿Cómo construir un modelo que explique la secuencia de monedas?
- ¿A qué corresponden los estados?

Luis M. Bergasa. Departamento de Electrónica

17

Ejemplo HMM: 1. Asumiendo una moneda

 Cada estado podría representar el resultado del lanzamiento

- Modelo observable
- Especificado con solo determinar: P(C)
- Parámetros: 1

Ejemplo HMM: 2. Asumiendo dos monedas

Cada estado podría representar una moneda

- Cada estado tiene una función de distribución de prob.
- Especificado con 4 parámetros: (p₁, p₂, a₁₁, a₂₂).

Luis M. Bergasa. Departamento de Electrónica

19

Ejemplo HMM: 3. Asumiendo tres monedas

¿Cuál es el mejor modelo?

- Correspondencia con el fenómeno físico
- Cantidad de parámetros: flexibilidad vs. esfuerzo cálculo

Ejemplo HMM: modelo de urnas y bolas

P(Rojo)=b1(1)

P(Azul)=b1(2)

P(Verde)=b1(M)

P(Rojo)=b2(1)P(Azul)=b2(2)

P(Verde)=b2(M)

Urna n

P(Rojo)=bn(1)P(Azul)=bn(2)

P(Verde)=bn(M)

O={Rojo, Azul, Azul, Verde, Verde, ..., Verde}

- Observaciones: color de las bolas
- Estados: urnas de donde se extraen las bolas (ocultos)
- Parámetros: n·(n-1)+n·(m-1), n=n° de urnas, m= n° de colores

Luis M. Bergasa. Departamento de Electrónica

21

Formalización de HMM

- N: cantidad de estados (ocultos, pero con significado).
- M: cantidad de símbolos observales por estado, $V = \{v_1,...,v_M\}$.
- Distribución de probabilidad de la transición entre estados,

$$A = \{a_{ij}\}, \quad a_{ij} = P[q_{t+1} = S_j | q_t = S_i], \quad i,j = 1,...,N.$$

Distribución de prob. de observación de símbolo en cada estado,

$$B = \{b_j(k)\}, \quad b_j(k) = P[v_k | q_t = S_j], \quad j=1,...,N, k=1,...,M.$$

Distribución de probabilidad del estado inicial,

$$\pi = \{\pi_i\}, \qquad \pi_i = P[q_i = S_i], \qquad i=1,...,N.$$

- Notación
 - Observación: $O = O_1O_2...O_T$ (de tamaño T)
 - Modelo: $\lambda = (A, B, \pi)$

Obtención de los parámetros del modelo

- 1. Elegir un estado inicial q_1 = S_i según la distribución inicial de estados π .
- 2. Poner t=1.
- 3. Elegir O_t=V_k según la probabilidad de distribución de símbolo en el estado S_i, p.e. b_i(k).
- 4. Pasar a un nuevo estado $q_{t+1}=S_j$, según la distribución de probabilidad de transición para el estado S_i , p.e. a_{ij} .
- 5. Poner t=t+1, vuelta al paso 3) si t<T, en caso contrario terminar el proceso.

Luis M. Bergasa. Departamento de Electrónica

23

Problemas fundamentales

- Evaluación: Dado el modelo $\lambda = (A, B, \pi)$ y la secuencia de observaciones $O = O_1O_2...O_T$, calcular $P(O|\lambda)$ (algoritmo forward-backward).
- Dado el modelo $\lambda = (A, B, \pi)$ y la secuencia de observaciones $O = O_1O_2...O_T$, encontrar la **secuencia de estados** correspondientes $Q = q_1q_2...q_T$ que mejor explique las observaciones (algoritmo de Viterbi).
- Entrenamiento: dada la secuencia de observaciones $O = O_1O_2...O_T$, encontrar los parámetros del modelo $\lambda = (A, B, \pi)$ que maximicen $P(O|\lambda)$ (algoritmo de Baum-Welch)

Solución al problema de Evaluación

- Dados $O = O_1O_2...O_T$ y λ , calcular $P(O|\lambda)$.
- Para ello se enumeran las secuencias de estados de tamaño *T*.

Para la secuencia $Q = Q_1Q_2...Q_T$,

$$P(O/Q,\lambda) = \prod_{t=1}^{T} P(O_t/q_t,\lambda)$$

• Asumiendo independencia en las observaciones:

$$P(O|Q,\lambda) = b_{q1}(O_1) \ b_{q2}(O_2) \ ... \ b_{qT}(O_T).$$

- La probabilidad de la sec., $P(Q|\lambda) = \pi_{q1} a_{q1q2} a_{q2q3} ... a_{qT-1qT}$.
- La probabilidad conjunta de O y Q es, $P(O,Q|\lambda) = P(O|Q,\lambda) P(Q|\lambda)$
- Sumando para todas las posibles secuencias de estados,

$$P(O/\lambda) = \sum_{\forall O} P(O/Q, \lambda) P(Q/\lambda) = \sum_{\forall q} \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) ... a_{q_{T-1} q_T} b_{q_T}(Q_T)$$

Luis M. Bergasa. Departamento de Electrónica

25

Algoritmo forward-backward

- El cálculo requiere de 2T·N·T operaciones → inviable
- Solución: algoritmo forward-backward
 - Cálculo de 2 variables intermedias:
 - Forward: α_t(i) =P(O₁O₂...O_t, q_t = S_i / λ)
 probabilidad de la secuencia de observaciones parciales O₁,O₂....O_t y el estado S_i en el instante t, para el modelo λ.
 - **Backward**: $\beta_t(i) = P(O_{t+1}O_{t+2}...O_T/q_t = S_i, \lambda)$ probabilidad de la observación parcial de la secuencia desde t+1 hasta el final, dado un estado S_i , y un modelo λ

Cálculo de la variable $\alpha_t(i)$

- Inicialización: $\alpha_1(i) = \pi_i b_i(O_1)$ $t = 1, 1 \le i \le N$
- Inducción: $\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij}\right] b_{j}(O_{t+1}) \quad 1 \le j \le N , \ 1 \le t \le T-1$
- Conclusión: $P(O/\lambda) = \sum_{i=1}^{N} \alpha_T(i)$

• Operaciones: N²·T

Luis M. Bergasa. Departamento de Electrónica

27

Cálculo de la variable $\beta_t(i)$

- Inicialización: $\beta_T(i) = 1$
- $t = 1, \quad 1 \le i \le N$
- Inducción: $\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$ $1 \le j \le N$, t = T-1, T-2, ..., 1
- Conclusión: $P(O/\lambda) = \sum_{i=1}^{N} \beta_{T}(i)$

• Operaciones: N²·T

Solución al problema de Sec. de estados

- No hay secuencia óptima única, existen muchos criterios.
- Una forma, basada en programación dinámica, es el algoritmo de Viterbi:
 - Dada $O = O_1O_2...O_T$, encontrar $Q = Q_1Q_2...Q_T$.
 - Se define:

$$\delta_t(i) = \max_{q1q2...qt-1} P[q_1q_2...q_t = i , O_1O_2...O_T \mid \lambda]$$
 la máx. probabilidad en el camino, en tiempo t y final en estado S_i .

- Inductivamente:

$$\delta_{t+1}(j) = [\max_{i=1,...,N} \delta_t(i) \ a_{ij}] \ b_j(O_{t+1}), \ j=1,...,N, t=1,...,T-1.$$

Luis M. Bergasa. Departamento de Electrónica

29

Algoritmo de Viterbi

• Inicialización:

$$\delta_1(i) = \pi_i b_i(O_1)$$
 $\psi_1(i) = 0$ $t = 1, 1 \le i \le N$

• Recursividad:

$$\delta_{t}(j) = \left[\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij} \right] b_{j}(O_{t}) \qquad \psi_{t}(j) = \arg\max_{1 \le i \le N} \left[\delta_{t-1}(i) a_{ij} \right]$$

$$1 \le j \le N, \quad 2 \le t \le T$$

•Terminación:

$$P^* = \max_{1 \le i \le N} [\delta_T(i)] \qquad q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$$

• Secuencia de estados óptima:

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$
 $t = T - 1, T - 2, ..., 1$

Luis M. Bergasa. Departamento de Electrónica

Solución al problema de Entrenamiento

- No se conoce resolución analítica de los parámetros del modelo, que maximice la probabilidad de la secuencia de observaciones.
- No hay forma óptima de estimar los parámetros.
- Se puede resolver, con métodos óptimos locales, mediante procedimientos iterativos:
 - Baum-Welch
 - Métodos de gradientes.

Luis M. Bergasa. Departamento de Electrónica

31

El algoritmo Baum-Welch

- Método de optimización local → problema de mínimos locales
- •Requiere de parámetros (A, B, π) iniciales

El algoritmo Baum-Welch

• Realiza la estimación de (A, B, π) apoyándose en:

 $\overline{\pi_i}$ = (número esperado de veces de estar en S_i en t = 1)

 $\overline{a_{ij}} = \frac{\text{(número esperado de transiciones realizadas desde Si hasta Sj)}}{\text{(número esperado de transiciones realizadas desde Si)}}$

 $\overline{b_j(k)} = \frac{\text{(número esperado de veces de estar en S}_j \text{y observar el simbolo V}_k)}{\text{(número esperado de veces de estar en S}_j)}$

Calcula una variable intermedia:

$$\varepsilon_{t}(i,j) = P(q_{t} = S_{i}, q_{t+1} = S_{j} / O, \lambda)$$

$$\varepsilon_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}{P(O / \lambda)} = \frac{\alpha_{t}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \varepsilon_{t}(i,j) = 1$$

Luis M. Bergasa. Departamento de Electrónica

33

El algoritmo Baum-Welch

- También es necesario calcular: $\gamma_t(i) = \sum_{j=1}^{N} \varepsilon_t(i, j)$ Número de transiciones desde el estado S_i : $\sum_{j=1}^{N} \gamma_t(i)$
- Número de transiciones del estado S_i : $\sum_{t=1}^{T} \gamma_t(t) \sum_{t=1}^{T-1} \varepsilon_t(i,j)$
- Fórmulas de estimación de A, B, π :

$$\overline{\pi_{i}} = \gamma_{1}(i) \qquad 1 \leq i \leq N$$

$$\overline{a_{ij}} = \frac{\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \qquad 1 \leq i, j \leq N$$

$$\overline{b_{j}(k)} = \frac{\sum_{t=1}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)} \qquad 1 \leq j \leq N, 1 \leq k \leq M$$

El algoritmo Baum-Welch

- Con estas fórmulas pasamos de un modelo $\lambda = (A, B, \pi)$ a otro modelo $\overline{\lambda} = (\overline{A}, \overline{B}, \overline{\pi})$
- Procedimiento iterativo siempre que: $P(O/\overline{\lambda}) > P(O/\lambda)$
- La iteración finaliza cuando $\overline{\lambda} = \lambda$ (máx. verosimilitud del HMM)
- En cada iteración se cumple:

$$\sum_{i=1}^{N} \overline{a_{i}} = 1$$

$$\sum_{j=1}^{N} \overline{a_{ij}} = 1, \quad 1 \le i \le N$$

$$\sum_{k=1}^{M} \overline{b_{j}(k)} = 1, \quad 1 \le j \le N$$

Luis M. Bergasa. Departamento de Electrónica

35

El algoritmo Baum-Welch

El algoritmo Baum-Welch

$$\beta_{L}(i) = 1, \quad 1 \le i \le N$$

$$\beta_{I}(i) = \sum_{j=1}^{N} a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j), \quad 1 \le i \le N, \ t = L - 1, ..., 1$$

$$\varepsilon_{i}(i, j) = \frac{\alpha_{i}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}{\sum_{j=1}^{N} \sum_{j=1}^{N} \alpha_{i}(i)a_{ij}b_{j}(O_{t+1})\beta_{t+1}(j)}, \quad 1 \le i, j \le N, \ t = L, ..., 1$$

$$\gamma_{i}(i) = \sum_{j=1}^{N} \varepsilon_{i}(i, j), \quad 1 \le i \le N, \ t = L, ..., 1$$

$$\overline{\alpha_{ij}} = \sum_{j=1}^{L-1} \varepsilon_{i}(i, j), \quad 1 \le i \le N$$

$$\overline{\alpha_{ij}} = \sum_{j=1}^{L-1} \varepsilon_{i}(i, j), \quad 1 \le i, j \le N$$

$$\overline{b_{j}(k)} = \frac{\sum_{t=1}^{L-1} \gamma_{i}(j)}{\sum_{t=1}^{L} \gamma_{i}(j)}, \quad 1 \le j \le N, \ 1 \le k \le M$$

Luis M. Bergasa. Departamento de Electrónica

37

Limitaciones

- Supone que las observaciones sucesivas son independientes.
- Suposición Markoviana: la probabilidad de estar en un estado en determinado tiempo, sólo depende del estado en el tiempo anterior.

Ejemplos de aplicación

- Reconocimiento de gestos faciales mediante visión artificial usando HMMs.
- Identificación de blancos aéreos mediante radar usando HMMs

Luis M. Bergasa. Departamento de Electrónica

39

Reconocimiento de gestos

- Se han colocado unas pegatinas en la cara del usuario y se estudia su evolución en la realización de gestos mediante HMMs
- Las pegatinas se segmentan mediante un algoritmo de detección de color con funciones Gaussianas a priori
- Se han creado cuatro HMMs: dos modelan la apertura de los ojos, otro la apertura de la boca, y el último el estiramiento de la boca.

Luis M. Bergasa. Departamento de Electrónica

Reconocimiento de gestos

- Como observación para obtener el grado de apertura del ojo se usa la colinealidad presentada por su contorno
- Como observación para estimar la apertura de la boca se utiliza la diferencia entre los centros de gravedad de las pegatinas superior e inferior de la boca.
- Para el estiramiento se utiliza la diferencia de componentes x de las pegatinas izquierda y derecha.
- Definición de estados:
 - Para los ojos: cerrado, semicerrado y abierto.
 - Para la apertura de la boca: abierta, semiabierta y cerrada.
 - Para el estiramiento de la boca: estirada, semiestirada y encogida

Luis M. Bergasa. Departamento de Electrónica

41

Reconocimiento de gestos

- Se capturan observaciones de cada tipo (boca y ojos) y se efectúa el entrenamiento de los 4 HMM.
- El entrenamiento ajusta los valores de [A], [B] y $[\pi]$

Luis M. Bergasa. Departamento de Electrónica

Reconocimiento de gestos

• A partir de la información anterior se pueden reconocer una serie de gestos:

Luis M. Bergasa. Departamento de Electrónica

43

Reconocimiento de gestos

Identificación de blancos aéreos

- Objetivo: Obtener identificación positiva de un blanco aéreo sin la colaboración de éste.
- Se usa el método HRR (HIGH RESOLUTION RADAR)
 - Se basa en el estudio de las características del eco recibido

• Se produce una reflexión radar diferente en función de la forma del

blanco

• Depende de los centros de scatter

Luis M. Bergasa. Departamento de Electrónica

Control of the state of the sta

45

Identificación de blancos aéreos

- Las señales a clasificar son muy parecidas entre si
- Dependen del ángulo de observación
- Las regiones de decisión están muy solapadas
- La correlación equivoca a menudo la clasificación

Identificación de blancos aéreos

Luis M. Bergasa. Departamento de Electrónica

47

Identificación de blancos aéreos

• Resultados:

- SE UTILIZAN SECUENCIAS DE ENTRENAMIENTO PARA CADA MODELO.
- EXISTE UNA BASE DE DATOS DE OBSERVACIONES CON 800 ARRAYS DE 10 ELEMENTOS.

PORCENTAJE DE ERROR	MODELOS O. MARKOV	CORRELACION
Modelo 1	0 %	40 %
Modelo 2	0 %	50 %
Modelo 3	0 %	40 %
Modelo 4	0 %	40 %
Modelo 5	0 %	40 %
Modelo 6	0 %	40 %
Modelo 7	0 %	30 %
Modelo 8	0 %	40 %

Bibliografía

• Rabiner, L.R, 1989. *A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition*. Proceedings of the IEEE, 77(2).

(http://www.ai.mit.edu/courses/6.867-f02/papers/rabiner.pdf)

- *GHMM Library* en Max Planck Institute for Molecular Genetics, http://www.ghmm.org
- Murphy, K. 1998. *HMM Toolbox for Matlab* (http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.html)

Luis M. Bergasa. Departamento de Electrónica