Tema 3: Models discrets multidimensionals no lineals

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Matemàtiques Troc comú en Biologia i Biotecnologia

jordi.villa@uvic.cat

darrera actualització 20 d'octubre de 2025

curs 2025-2026

Índex

- Introducció
- Model de Nicholson-Bailey
- Model binomial negatiu (Griffiths-May)
- 4 Punts d'equilibri de sistemes discrets multidimensionals
- Estabilitat dels punts d'equilibri del model discret bidimensional
 - Exemple d'estabilitat dels punts d'equilibri
- Referències

Context i objectiu

En aquesta secció estudiarem la dinàmica de dues poblacions relacionades. Concretament, presentem dos models hoste—parasitoide i farem simulacions del nombre d'individus de cada espècie en cada instant discret k.

També veurem com extreure conclusions sobre el nombre d'individus per a temps grans, com en models anteriors. En concret, començarem plantejant dos models clàssics: el model de Nicholson–Bailey i el model binomial negatiu.

Introducció al model de Nicholson-Bailey

Molts insectes paràsits ajuden al control de plagues en cultius: p. ex. les vespes del gènere *Trichogramma*. Nicholson (entomòleg) i Bailey (físic) als anys 30 van proposar un model discret hoste—parasitoide. Denotem:

- x_k = nombre d'hostes en l'instant discret k.
- y_k = nombre de parasitoides en l'instant discret k.

En absència de parasitoides la població d'hostes té un factor de creixement R i evolucionaria segons

$$x_k = R x_{k-1}$$
.

Interès principal quan R>1 (creixement exponencial si no hi ha parasitoides).

Efecte de la parasitació

Reducció de natalitat dels hostes per parasitació:

$$x_k = R x_{k-1} e^{-ay_{k-1}}, (1)$$

amb a>0 mesurant l'eficiència dels parasitoides en la cerca d'hostes. Observa que $0< e^{-ay_{k-1}} \le 1$ és la fracció d'hostes no parasitades en k-1. Com que $1-e^{-ay_{k-1}}$ és la fracció d'hostes parasitats, multiplicant per x_{k-1} obtenim el nombre d'hostes parasitats. Nicholson i Bailey proposen:

$$y_k = S x_{k-1} (1 - e^{-ay_{k-1}}),$$
 (2)

on S és el nombre mitjà d'ous viables de parasitoide per cada hoste infectat.

Sistema Nicholson-Bailey

Reunint (1) i (2):

$$\begin{cases} x_k = R \, x_{k-1} \, e^{-ay_{k-1}}, & k > 0, \\ y_k = S \, x_{k-1} \, (1 - e^{-ay_{k-1}}) \, , & k > 0. \end{cases}$$

També podem definir les funcions

$$f(x,y) = Rxe^{-ay}, \qquad g(x,y) = Sx(1 - e^{-ay}).$$

Comportament del model

Veure exemple matlab.

El model de Nicholson-Bailey és inestable: petites variacions en les condicions inicials poden produir grans diferències en el comportament futur. A més, sovint no s'ajusta bé a dades empíriques.

Conseqüències observades en simulacions: o bé el parasitoide s'extingeix i l'hoste creix exponencialment, o bé l'hoste s'extingeix i, per tant, també el parasitoide.

Motivació

Per a estabilitzar el comportament a llarg termini, es proposa una modificació: el model binomial negatiu (també anomenat Griffiths–May). Amb la mateixa notació que en el model de Nicholson–Bailey, les equacions són

$$\begin{cases} x_{k} = R x_{k-1} \left(1 + \frac{ay_{k-1}}{m} \right)^{-m}, \\ y_{k} = S x_{k-1} \left(1 - \left(1 + \frac{ay_{k-1}}{m} \right)^{-m} \right), \end{cases} \quad k > 0,$$
 (3)

on m > 0 és un paràmetre addicional i R, S, a mantenen el mateix sentit que abans.

Comentari sobre el terme de supervivència

El terme

$$\left(1+\frac{ay}{m}\right)^{-m}$$

representa la fracció d'hostes no parasitades en lloc de e^{-ay} . Per z>0, la funció $p(z)=\left(1+\frac{az}{m}\right)^{-m}$ s'assembla a $q(z)=e^{-az}$ i satisfà p(z)>q(z), i la semblança augmenta quan m creix. Igual que abans, podem definir

$$f(x,y) = Rx \left(1 + \frac{ay}{m}\right)^{-m}, \qquad g(x,y) = Sx \left(1 - \left(1 + \frac{ay}{m}\right)^{-m}\right).$$

A diferència del model de Nicholson-Bailey, en aquest model les poblacions tendeixen a un equilibri de coexistència: no s'extingeixen sinó que s'adapten a una situació estable a llarg termini.

Conclusió

- El model de Nicholson-Bailey és senzill i il·lustra la interacció hoste-parasitoide, però pot ser inestable i poc realista.
- El model binomial negatiu introdueix un terme que estabilitza la dinàmica, fent-la més coherent amb algunes dades empíriques en què es veu coexistència.

Introducció als punts d'equilibri en models bidimensionals generals

Les simulacions numèriques mostren diferències clares entre els models:

- En el model binomial negatiu, les dues poblacions evolucionen cap a un comportament semblant a llarg termini, fins i tot amb condicions inicials diferents.
- En el model de Nicholson-Bailey, l'evolució és molt sensible a les condicions inicials i difícil de predir.

Això ens porta a estudiar els **punts d'equilibri** i la seva estabilitat, per comprendre el comportament a llarg termini.

Model bidimensional general

En general, un model bidimensional discret s'escriu com

$$\begin{cases} x_k = f(x_{k-1}, y_{k-1}), \\ y_k = g(x_{k-1}, y_{k-1}), \end{cases}$$
 (4)

Les funcions f i g corresponen, segons el model:

- Nicholson-Bailey
- Binomial negatiu

Es diu que (x^*, y^*) és un **punt d'equilibri** del sistema (4) si es compleix:

$$\begin{cases} x^* = f(x^*, y^*), \\ y^* = g(x^*, y^*). \end{cases}$$

Com en el cas unidimensional, els punts d'equilibri són punts especials: si el sistema comença en (x^*, y^*) , hi resta per sempre.

Exemple: punts d'equilibri del model de Nicholson-Bailey I

Per al model

$$f(x,y) = Rxe^{-ay}, \quad g(x,y) = Sx(1 - e^{-ay}),$$

els punts d'equilibri satisfan

$$\begin{cases} Rxe^{-ay} = x, \\ Sx(1 - e^{-ay}) = y. \end{cases}$$

De la primera equació: x = 0 o bé $Re^{-ay} = 1$.

- Si x = 0, llavors y = 0. Punt trivial: (0,0).
- Si $Re^{-ay} = 1$, aleshores $y = \frac{\ln R}{a}$.

Exemple: punts d'equilibri del model de Nicholson-Bailey II

Substituint a la segona equació:

$$y = Sx(1 - e^{-ay}) = Sx(1 - 1/R) = Sx\frac{R - 1}{R}.$$

D'on

$$x = \frac{R \ln R}{aS(R-1)}.$$

Per tant, els punts d'equilibri del model de Nicholson-Bailey són:

$$(0,0) \quad \mathsf{i} \quad \left(\frac{R \ln R}{\mathsf{a} \mathsf{S}(R-1)}, \frac{\ln R}{\mathsf{a}}\right).$$

El segon només és biològicament significatiu si R > 1.

Exemple: punts d'equilibri del model binomial negatiu I

En aquest model

$$f(x,y) = Rx \left(1 + \frac{ay}{m}\right)^{-m}, \quad g(x,y) = Sx \left(1 - \left(1 + \frac{ay}{m}\right)^{-m}\right).$$

El sistema d'equilibri és

$$\begin{cases} Rx \left(1 + \frac{ay}{m}\right)^{-m} = x, \\ Sx \left(1 - \left(1 + \frac{ay}{m}\right)^{-m}\right) = y. \end{cases}$$

De la primera equació: x=0 o bé $(1+\frac{ay}{m})^m=R$, d'on $y=\frac{m}{a}(R^{1/m}-1)$.

- Si x = 0, llavors y = 0. Punt trivial: (0,0).
- Si $(1 + \frac{ay}{m})^m = R$, aleshores $y = \frac{m}{a}(R^{1/m} 1)$.

Exemple: punts d'equilibri del model binomial negatiu II

Substituint $y = \frac{m}{2}(R^{1/m} - 1)$ a la segona equació:

$$y = Sx\left(1 - \frac{1}{R}\right) = Sx\frac{R - 1}{R}.$$

D'on

$$x = \frac{mR(R^{1/m} - 1)}{aS(R - 1)}.$$

Per tant, els punts d'equilibri del model binomial negatiu són:

(0,0) i
$$\left(\frac{mR(R^{1/m}-1)}{aS(R-1)}, \frac{m(R^{1/m}-1)}{a}\right)$$
.

Igual que abans, el punt no trivial només té sentit biològic si R>1.

4 D > 4 B > 4 B > 4 B >

... i l'estabilitat?

Si R < 1, la població d'hostes tendeix a l'extinció fins i tot sense parasitoides.

Un cop coneguts els punts d'equilibri, cal estudiar-ne l'**estabilitat**. Si el sistema s'inicia prop de l'equilibri,

- s'hi acostarà (estabilitat), o
- se n'allunyarà (inestabilitat)?

Per això caldrà noves eines matemàtiques, ja que ara tenim dues funcions (f,g) i dues variables (x,y).

Com trobem l'estabilitat dels punts d'equilibri en sistemes no lineals multidimensionals?

Tornem ara al nostre propòsit: obtenir informació sobre l'**estabilitat** dels punts d'equilibri del model discret bidimensional no lineal

$$\begin{cases} x_k = f(x_{k-1}, y_{k-1}), \\ y_k = g(x_{k-1}, y_{k-1}). \end{cases}$$
 (5)

Volem determinar si, en petites pertorbacions al voltant d'un punt d'equilibri, el sistema tendeix a tornar-hi (estable) o a allunyar-se'n (inestable).

Definició: Matriu jacobiana associada

Definició

Anomenem **matriu jacobiana** associada al sistema (5) la matriu de derivades parcials següent:

$$J(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) & \frac{\partial f}{\partial y}(x,y) \\ \frac{\partial g}{\partial x}(x,y) & \frac{\partial g}{\partial y}(x,y) \end{pmatrix}.$$

Aquesta matriu recull la dependència local de les funcions f i g respecte de les variables x i y.

Interpretació geomètrica

La matriu jacobiana $J(x^*, y^*)$ mesura com petites variacions al voltant del punt d'equilibri (x^*, y^*) afecten l'evolució del sistema.

En concret:

- Si les variacions inicials tendeixen a disminuir amb el temps, l'equilibri és estable.
- Si les variacions creixen, l'equilibri és inestable.

Per analitzar-ho, caldrà estudiar els **valors propis** (autovalors) de $J(x^*, y^*)$.

La dinàmica local ve aproximada pel sistema lineal:

$$\begin{pmatrix} \Delta x_k \\ \Delta y_k \end{pmatrix} = J(x^*, y^*) \begin{pmatrix} \Delta x_{k-1} \\ \Delta y_{k-1} \end{pmatrix}.$$

- L'estabilitat depèn del mòdul dels autovalors λ_1, λ_2 de $J(x^*, y^*)$:
 - Si $|\lambda_1| < 1$ i $|\lambda_2| < 1$, equilibri asimpòticament estable.
 - Si algun $|\lambda_i| > 1$, equilibri **inestable**.

Jordi Villà i Freixa (FCTE)

Criteri d'estabilitat local

Teorema

Sigui (x^*, y^*) un punt d'equilibri del model discret bidimensional

$$\begin{cases} x_k = f(x_{k-1}, y_{k-1}), \\ y_k = g(x_{k-1}, y_{k-1}), \end{cases}, \text{ isigui}$$

$$J(x^*, y^*) = \begin{pmatrix} \frac{\partial f}{\partial x}(x^*, y^*) & \frac{\partial f}{\partial y}(x^*, y^*) \\ \frac{\partial g}{\partial x}(x^*, y^*) & \frac{\partial g}{\partial y}(x^*, y^*) \end{pmatrix}$$

la matriu jacobiana associada en el punt (x^*, y^*) .

Siguin λ_1 i λ_2 els **autovalors** (reals o complexos) de $J(x^*, y^*)$. Aleshores:

- Si $|\lambda_1| < 1$ i $|\lambda_2| < 1$, el punt d'equilibri (x^*, y^*) és **estable**.
- Si algun $|\lambda_i| > 1$, aleshores el punt d'equilibri (x^*, y^*) és **inestable**:

Aquest resultat és l'extensió natural del criteri d'estabilitat lineal per a sistemes unidimensionals.

- Els valors propis determinen el comportament local de les òrbites pròximes a l'equilibri.
- Si els mòduls són menors que la unitat, les trajectòries s'aproximen al punt d'equilibri amb el temps.
- Si algun mòdul supera la unitat, les trajectòries divergeixen: l'equilibri és inestable.

Pots fàcilment comprovar que el mateix mètode usant la matriu jacobiana es pot aplicar als sistemes lineals de Leslie i d'illes discrets vistos anteriorment per a entendre la seva estabilitat. Aquí només hem generalitzat el procés.

Exemple: Estabilitat dels punts d'equilibri

Considerem el model discret bidimensional:

$$\begin{cases} x_k = y_{k-1} \\ y_k = \frac{1}{2} x_{k-1} + y_{k-1} - y_{k-1}^2 \end{cases}$$

Volem analitzar l'estabilitat dels seus punts d'equilibri. Aquest model correspon a la forma general:

$$\begin{cases} x_k = f(x_{k-1}, y_{k-1}) \\ y_k = g(x_{k-1}, y_{k-1}) \end{cases}$$

on

$$f(x,y) = y$$
, $g(x,y) = \frac{1}{2}x + y - y^2$.

Càlcul dels punts d'equilibri

Calculem les solucions del sistema (no lineal):

$$\begin{cases} x = y, \\ y = \frac{1}{2}x + y - y^2. \end{cases}$$

De la primera equació es dedueix que x=y. Substituint a la segona:

$$0 = -y^2 + \frac{1}{2}y - y = -y^2 - \frac{1}{2}y = 0.$$

Això dóna dues solucions possibles:

$$y = 0$$
 obé $y = \frac{1}{2}$.

En consequència, els punts d'equilibri són:

$$(x_1^*, y_1^*) = (0, 0), \quad (x_2^*, y_2^*) = \left(\frac{1}{2}, \frac{1}{2}\right).$$

Jacobià del sistema i estabilitat dels punts d'equilibri I

La matriu jacobiana és:

$$J(x,y)=\begin{pmatrix}0&1\\1/2&1-2y\end{pmatrix}.$$

Analitzem l'estabilitat per a cadascun dels punts d'equilibri.

• Punt d'equilibri: $(x_1^*, y_1^*) = (0, 0)$:

$$J(0,0)=\begin{pmatrix}0&1\\1/2&1\end{pmatrix}.$$

Els autovalors λ són solucions de

$$\det\begin{pmatrix} -\lambda & 1\\ 1/2 & 1-\lambda \end{pmatrix} = 0 \Rightarrow \lambda^2 - \lambda - 1/2 = 0.$$

Jacobià del sistema i estabilitat dels punts d'equilibri II

$$\lambda_{1,2} = \frac{1 \pm \sqrt{3}}{2}.$$

Com que $|\lambda_1| > 1$, el punt (0,0) és **inestable**.

• Punt d'equilibri $(x_2^*, y_2^*) = (1/2, 1/2)$:

$$J(1/2,1/2)=\begin{pmatrix}0&1\\1/2&0\end{pmatrix}.$$

Els autovalors λ són solucions de

$$\det \begin{pmatrix} -\lambda & 1 \\ 1/2 & -\lambda \end{pmatrix} = 0 \Rightarrow \lambda^2 - 1/2 = 0.$$

$$\lambda_1 = \frac{1}{\sqrt{2}}, \quad \lambda_2 = -\frac{1}{\sqrt{2}}.$$

En aquest cas, com que $|\lambda_1| < 1$ i $|\lambda_2| < 1$, el punt és **estable**.

Jordi Villà i Freixa (FCTE)

Exercici

Exercici 1: Representació de l'espai de les variables i simulació del sistema

Construeix un fitxer matlab que simuli el sistema discret bidimensional explicat en les pàgines anteriors. Utilitza diferents condicions inicials per observar el comportament de les òrbites i comprova si coincideixen amb l'estabilitat calculada dels punts d'equilibri. Representa tant les variables en funció del temps com les trajectòries en el pla (x, y).

Bibliografia

El material d'aquestes presentacions està basat en anteriors presentacions i apunts d'altres professors [Corbera(2019)] de la UVic-UCC i d'altres universitats [de Souza(2025)], pàgines web diverses (normalment enllacades des del text), o bé monografies [Otto and Dav(2007)].

Montserrat Corbera.

Unitat 2. Càlcul integral.

Universitat de Vic - Universitat Central de Catalunya, Facultat de Ciències i Tecnologia, Vic, Barcelona, 2019. Drets reservats. No es pot copiar sense permís de l'autora.

Diego Araújo de Souza.

Matemáticas aplicadas a la biología.

Apuntes de classe: grado en Biología, asignatura de matemáticas, 2025,

Departamento de Ecuaciones diferenciales y Análsis Numérico; Universidad de Sevilla.

Sarah P. Otto and Troy Day.

A biologist's guide to mathematical modeling in ecology and evolution.

Princeton University Press. Princeton, 2007. ISBN 978-0-691-12344-8.

OCLC: ocm65065577.

