数学科教育法レポート®の解答

課題 8-1 数列 $\{x_n\}$, $\{y_n\}$ を漸化式

$$\begin{cases} x_{n+1} = x_n + 2y_n \\ y_{n+1} = x_n + y_n \end{cases}, \quad (x_1)^2 - 2(y_1)^2 = 1$$

によって定義すると、奇数番の x_n/y_n は $\sqrt{2}$ に収束する。 (右表は初期値を $x_1=1,\ y_1=0$ としたもの)

n	x_n	y_n	x_n/y_n
1	1	0	
2	1	1	
3	3	2	1.5
4	7	5	_
5	17	12	$1.41\dot{6}$
6	41	29	_
7	99	70	1.41428571
8	239	169	_
9	577	408	1.41421568
10	1393	985	
11	3363	2378	1.41421362
12	8119	5741	
13	19601	13860	1.41421356

課題 8-2 任意の有理数 $p,q \in \mathbb{Q}$ (ただし、p < q) に対し、p < r < q を満たす有理数 $r \in \mathbb{Q}$ が必ず存在する.

課題 8-3

- 実数の切断とは,実数 \mathbb{R} の空集合 \emptyset でない部分集合 A,B の組で $\underline{(A \cup B = \mathbb{R}, A \cap B \neq \emptyset)}$ かつ $\underline{(a \in A, b \in B)}$ ならば,a < b」を満たすものをいう.
- 実数の連続性とは実数の任意の切断 (A, B) に対し,
 - 「A の最大値が存在し、B に最小値が存在しない」か、または
 - 「A の最大値が存在せず,B に最小値が存在する」

のいずれか一方が成り立つことである.