

Paneldebatt: Er UML-modellene for strenge, er kravene for høye?

1. Tema v/Lars Eggan

Mer fleksibilitet i data – færre påkrevde egenskaper

- I dag:
 - Mange påkrevde egenskaper i mange UML-modeller i produktspesifikasjoner
 - Må det være så mange påkrevde egenskaper?
- Alternativ løsning:
 - Voidable-mekanisme fra INSPIRE
 - "to be provided if available or derivable at reasonable cost"
 - Applying
 - explicitly to properties (associations and attributes)
 - implicitly for feature types

Mer fleksibilitet i data – færre påkrevde egenskaper

• Eksempel:

2. Tema v/Bobo Nordahl

INNSPILL OM KODELISTER

ER UML-MODELLENE FOR STRENGE, ER KRAVENE FOR HØYE

Bobo Nordahl 13.11.2018

Kodelister skal ha "camelCase" koder

Geologi beskrives noen ganger med LANGE tekster som blir vanskelig å lese og skille med "camelCase".

usammenhengende Eller Tynt Løsma ssedekke Over Berggrunnen Flere Lø smassetyper Uspesifisert

Forskjellige sedimenter som danner et tynt eller usammenhengende eller tynt løsmassedekke over berggrunnen.

Denne betegnelsen brukes bare når en ikke velger å skille mellom ulike typer av løsmasser.

Usammenhengende eller tynt løsmassedekke over berggrunnen. løsmassedekke over berggrunnen, flere løsmassetyper, uspesifisert

- usammenhengendeEllerTyntLøsmassedekkeOverBerggrunnenFlereLøsmassetyperUspesifisert
- fjellskredSteinsprangavsetningSammenhengendeDekkeStedvisMedStorMektighet
- leirskredavsetningSammenhengendeDekkeStedvisMedStorMektighet
- leirskredavsetningUsammenhengendeEllerTyntDekkeOverBerggrunnen

Kodelister skal ikke ha "meningsløse" tallkoder 2 eksempler på problemer.

- 1. Geologi har hatt behov for å organisere kodelister i rekkefølge/gruppering og benyttet tallkodene til det:
- 2. NADAG: Innen fagfeltet geoteknikk samler NGU inn og distribuerer data fra andre i bransjen.
 - Trenger produktspesifikasjon for leveranser på flere formater i tillegg til bransjespesifikke.
 - Tallkoder er i bruk i bransjen
 - Levere ulike data til "GIS" og "Geotekniker"?

«codeList» Losmassetype

- Løsmasser/berggrunn under vann, uspesifisert = 1
- + Morenemateriale, uspesifisert = 10
- Morenemateriale, sammenhengende dekke, stedvis med stor mektighet = 11
- + Morenemateriale, usammenhengende eller tynt dekke over berggrunnen = 12
- + Moreneleire = 13
- Avsmeltningsmorene (ablasjonsmorene) = 14
- Randmorene/randmorenebelte = 15
- + Breelvavsetning (Glasifluvial avsetning) = 20
- + Breelv- og elveavsetning = 21
- Ryggformet breelvavsetning (Esker) = 22
- + Haugformet breelvavsetning (Kame) = 23
- + Bresjø-/eller brekammeravsetning (Glasilakustrin avsetning) = 30
- Breelv- og bresjø-/brekammeravsetning (Glasifluvial og glasilakustrin avsetning) = 31
- Innsjøavsetning (Lakustrin avsetning) = 35
- Bresjø-/brekammer og innsjøavsetning (Glasilakustrin og lakustrin avsetning) = 36
- Hav- og fjordavsetning, sammenhengende dekke, ofte med stor mektighet = 41
- + Marin strandavsetning, sammenhengende dekke = 42
- + Hay- og fjordavsetning og strandavsetning, usammenhengende eller tynt dekke og lavsattning.
- Skiellsand = 44
- Flya- on hakkaayeetning (Flyvial ayeetning) = 5

Morene

3. Tema v/Nils Ivar Nes

Problemstillinger

- Er kravene til UML-modellering for strenge?
 - Kravene er definert i SOSI del 1. Tung materie....
 - Krav til innholdet i UML-modellene er nødvendig for at de skal kunne brukes i modelldrevne systemer, men er alle «formkravene» nødvendige?
- Er kravene UML-modellene setter til dataene for strenge?
 - Hvordan er det fornuftig å modellere dataene slik at innsamling, forvaltning, utveksling og bruk av dataene blir best mulig?
 - Noen modelleringsteknikker er det lite støtte for i «standard» GIS-systemer. Modelleringen er
 ofte veldig «objektorientert», mens GIS-systemene er mer «geometriorientert»
 - Kost/nyttevurdering rundt en avansert/riktig modell vs. en forenklet modell som gir omtrent samme datagrunnlag?
 - Gir UML-modellene mulighet til å sette de kravene til dataene som er relevante/nødvendige for å få til en god innsamling, forvaltning, utveksling og bruk av dataene?

Sentral FKB - Modelldrevet forvaltning

- Generelt GIS-system som i utgangspunktet kan brukes på alle data
- Krav til dataene i SFKB hentes fra UML-modellen
 - I tillegg til noen generelle krav til geometrien som er «hardkodet»
- Det valideres på kravene i modellen ved innsjekk
- Savner mulighet for å modellere:
 - Ulike krav til geometri (sammenfallende, heldekkende, overlappende etc.)
 - Krav til egenskapskombinasjoner
 - Krav sammenheng mellom objekttyper (assosiasjoner?)

SFKB og Plan - Geosynkronisering

- Geosynkronisering er maskin-maskin-kommunikasjon
 - Alt som ikke er entydig definert vil feile!
- For at dataflyt mellom ulike systemer vha. geosynkronisering skal kunne fungere må UML-modellen spesifisere dataene så detaljert som mulig.
- Tilbyder i geosynkronisering må sørge for at GML-dataene validerer ihht GML Schema (som igjen er generert fra UMLmodellen)
- Krav til egenskapskombinasjoner, geometri etc. lar seg ikke enkelt legge inn i UML-modell/GML-Schema. Her erfarer vi utfordringer. Eks:
 - 2D/3D koordinater
 - Avrunding/oppløsning på koordinater
 - Egenkrysning, gap etc.

4. Tema v/Tore Freddy Bæk

Tilpass modellenes kompleksitet til behovet

Problem

- I noen tilfeller benyttes en kompleks modell for å dekke et enkelt behov
- Produkter blir unødig vanskelig å realisere

• Løsning:

 Tilpasse modellen til de faktiske behovene fremfor å la kompliserte modeller fra fagområdestandardene gjøre realisering av produkter vanskelig

Hvor komplekst skal modell/produkt være?

La brukerbehov gjøre forenkling mulig

5. Tema v/Kent Jonsrud

UML-modellen er den felles kjernen

SOSI modellregister er en stor skattekiste med beskrivelser og muligheter for automatisering.

Vi vet bare ikke hvorfor tingene der er som de er.

Vi bør nå kreve brukstilfeller!

Vi bør kreve at alle modeller er motivert i et eller flere brukstilfeller!

Er dette en stor jobb?

Brukstilfellets navn	Kapasitetsanalyse
Beskrivelse	Kommunen trenger å analysere om avløpsnettet klarer belastningsendringen fra et nytt byggefelt.
Prioritet	Нøу
Forhåndsbetingelse	
Sekvens av hendelser	
Steg 1	Søk i kommunal database etter alle ledninger i nettverket
Steg 2	Identifiser de aktuelle komponentene
Steg 3	Last ned og analyser muligheten for ytterligere utnytting
Resultat	Anbefaling om byggetillatelse eller større nettoppgradering
Datakildebeskrivelse	kart2.nois.no/hole
Geografisk omfang	Soria Moria byggefelt i kommune 0612

6. Tema v/Harald Huse

Hvis målet er godt spesifiserte datasett tilpasset brukerbehov, hvordan og hvor gir UML best støtte i den prosessen?

7. Tema v/Joan Peel Hansen

Nautisk geosynkronisering

Om Kartverkets Sjødivisjon (og Kystverket) – anno 2011-2017+? Teknologiforum 2018 - paneldebatt:

Er UML-modellene for strenge, er kravene for høye?

Nautisk geosynkronisering

Det finnes mange typer av <u>kardinale</u> sjømerker i bruk i Norge, men deres funksjon er beslektet, men <u>ikke like</u>...

Nautisk geosynkronisering

Det finnes mange forskjellige typer av flytende og faste grønn

<u>laterale</u> (og nær beslektede) sjømerker

- men deres funksjon er like.

UML-modellene KAN bli for vanskelige

- Felles prosjekt med ulike interessenter (Kystverket, Kartverket Sjødivisjon)
- Ulike behov mtp. detaljeringsgrad (objekttyper, egenskaper)
- Fallgruve: Hver av partene vil få med alle sine objekttyper og egenskaper.
 - → For mange (påkrevde) egenskaper
- · Vi trenger en tydelig avgrensning av produktets formål!
- Bedre med flere modeller (produkter) med avgrensede bruksområder enn <u>1</u> for kompleks modell som skal dekke "alt".

8. Tema v/Tore Freddy Bæk

Mer fokus på produktrealisering og innhold

• I dag:

- Regler for forholdet mellom en fagområdestandard og produktspesifikasjon:
 Påkrevde egenskaper og assosiasjoner i en SOSI fagområdestandard kan ikke gjøres opsjonelle, [1] -> [0..1] er ikke tillatt.
- Konsekvens: Fiktive verdier innføres i noen tilfeller for å tilfredsstille standarden.

Eksempel: datafangstdato 10300729

Alternativ løsning:

Tilpasse produktspesifikasjonen til innhold i faktiske data