

### **Voltage-Current Relation: Linear Mode**

For long-channel devices (L > 0.25 micron)

ightharpoonup When  $V_{DS} \le V_{GS} - V_{T}$ 

$$I_D = k'_n W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$

where

 $k'_n = \mu_n C_{ox} = \mu_n \epsilon_{ox}/t_{ox} = is$  the process transconductance parameter ( $\mu_n$  is the carrier mobility (m²/Vsec))

 $k_n = k'_n$  W/L is the gain factor of the device

For small  $V_{DS}$ , there is a linear dependence between  $V_{DS}$  and  $I_D$ , hence the name resistive or linear region

### **Voltage-Current Relation: Saturation Mode**

For long channel devices

□ When  $V_{DS} \ge V_{GS} - V_{T}$ , replacing  $V_{DS}$  by  $V_{GS} - V_{T}$  in  $I_{D}$  expression found previously:

$$I_{D}' = k'_{n}/2 W/L [(V_{GS} - V_{T})^{2}]$$

since the voltage difference over the induced channel (from the pinch-off point to the source) remains fixed at  $V_{GS} - V_{T}$  and  $I_{D}$  is no longer a function of  $V_{DS}$ 

However, the effective length of the conductive channel is modulated by the applied V<sub>DS</sub>, so

$$I_{D} = I_{D}' (1 + \lambda V_{DS})$$

where  $\lambda$  is the channel-length modulation (varies with the inverse of the channel length)

- The transistor in saturation mode acts as a perfect current source, since the current between drain and source is constant and independent of  $V_{DS}$ . However, this is not entirely correct because the effective channel length is actually modulated by  $V_{DS}$ . (increasing  $V_{DS}$  reduces the effective length of the conducting channel). The current increases as L is decreased (L is at the denaminator).
- $\lambda$  is inversly proportional to the channel length. In shorter transistors, the drain-junction depletion region presents a larger fraction of the channel and the channel-length modulation effect is more pronounced.
- It is therefore advisable to choose long-channel transistors if a high empedance current source is needed.

#### **Current Determinates**

- For a fixed V<sub>DS</sub> and V<sub>GS</sub> (> V<sub>T</sub>), I<sub>DS</sub> is a function of
  - the distance between the source and drain L
  - the channel width W
  - the threshold voltage − V<sub>T</sub>
  - the thickness of the SiO<sub>2</sub> t<sub>ox</sub>
  - the dielectric of the gate insulator (SiO<sub>2</sub>)  $\varepsilon_{ox}$
  - the carrier mobility
    - for nfets:  $\mu_n = 500 \text{ cm}^2/\text{V-sec}$
    - for pfets:  $\mu_p = 180 \text{ cm}^2/\text{V-sec}$

# A model for manual analysis



$$\begin{split} V_{DS} &> V_{GS} - V_T \\ I_D &= \frac{\kappa'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \end{split}$$

$$\begin{split} V_{DS} &< V_{GS} - V_T \\ I_D &= k_n' \frac{W}{L} \Big( (V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \Big) \end{split}$$

with

$$V_T = V_{T0} + \gamma (\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F})$$

#### **Velocity Saturation**

The behavior of transistor with very short channels deviates considerably from the resistive and saturated models. We stated previously that:

$$v_n = \mu_n \xi(x)$$

Where the carrier mobility is constant. However at high electric field strengths (horizontal) when the strength reaches to a critical value  $\xi_c$  the velocity of the carriers tend to saturate due to collisions. This condition is easily met in short-channel devices.

#### **Short Channel Effects**

Behavior of short channel device mainly due to



- Velocity saturation
- the velocity of the carriers saturates due to scattering (collisions suffered by the carriers)

• For an NMOS device with L of .25μm, only a couple of volts difference between D and S are needed to reach velocity saturation. Velocity saturation effects are less pronounced in PMOS transistors.

A rough approximation for the velocity curve:

$$v = \frac{\mu_n \xi}{1 + \frac{\xi}{\xi_c}} \quad \text{for } \xi \le \xi_c$$

$$v = v_{sat}$$
 for  $\xi \ge \xi_c$ 

continuity requirement of the curve at  $v = v_{sat}$  ( $\xi = \xi_c$ ) point dictates that:  $\xi_c = 2v_{sat}/\mu_n$ 

Reevaluating the I<sub>D</sub> equation previously found, with the new velocity formula:

### **Voltage-Current Relation: Velocity Saturation**

For short channel devices

□ Linear: When  $V_{DS} \le V_{GS} - V_{T}$ 

$$I_{D} = \kappa (V_{DS}) k'_{n} W/L [(V_{GS} - V_{T})V_{DS} - V_{DS}^{2}/2]$$

where  $k'_n = \mu_n C_{ox}$  and

 $\kappa(V) = 1/(1 + (V/\xi_c L))$  is a measure of the degree of velocity saturation

□ Saturation: When  $V_{DS} = V_{DSAT} \ge V_{GS} - V_{T}$ 

$$I_{DSAT} = \kappa (V_{DSAT}) k'_n W/L [(V_{GS} - V_T)V_{DSAT} - V_{DSAT}^2/2]$$

in case of long-channel devices (large L) or small values of  $V_{DS}$ ,  $\kappa$  approaches to 1. For short channel devices  $\kappa$  is less than 1, delivering less  $I_D$  than normally expected.

Recalling the dq(x) expression derived for the resistive operation earlier:

$$dq(x) = -C_{ox}Wdx[V_{GS} - V(x) - V_T]$$

since, I(x) = dq(x)/dt and  $v_n(x) = -dx/dt$ 

$$I(x) = C_{ox}Wv_n(x)[V_{GS} - V(x) - V_T]$$

using the expressions for saturation:

$$I_{DSAT} = C_{ox}Wv_{sat}(x)[V_{GS} - V_{DSAT} - V_{T}]$$

Equating this  $I_{DSAT}$  expression to the previous one and after rearranging and cancelling, we find:

$$V_{DSAT} = \kappa(V_{GT})V_{GT}$$

Where, 
$$V_{GT} = V_{GS} - V_{T}$$

For a short channel device and for large enough values of  $V_{GT}$ ,  $\kappa(V_{GT})$  is substantially less than 1 and thus  $V_{DSAT} < V_{GT}$ . The device enters saturation before  $V_{DS}$  reaches  $V_{GS}$ - $V_{T}$ .

#### **Velocity Saturation Effects**



For short channel devices and large enough  $V_{GS} - V_{T}$ 

•  $V_{DSAT} < V_{GS} - V_{T}$  so the device enters saturation before  $V_{DS}$ reaches  $V_{GS} - V_{T}$  and operates more often in saturation

• I<sub>DSAT</sub> has a linear dependence wrt V<sub>GS</sub> (in contrast with the squared dependence of long-channel device) so a reduced amount of current is delivered for a given control voltage



Figure 3-19 I-V characteristics of long- and a short-channel NMOS transistors in a 0.25  $\mu$ m CMOS technology. The (W/L) ratio of both transistors is identical and equals 1.5. Observe the difference in the y-axis scale.

For  $V_{GS} = V_{DS} = 2.5 V$ , the drain current of the short transistor is only 40% of the long one. (220 $\mu$ A versus 540 $\mu$ A)

### **Short Channel I-V Plot (PMOS)**

All polarities of all voltages and currents are reversed



PMOS transistor, 0.25um,  $L_d = 0.25um$ , W/L = 1.5,  $V_{DD} = 2.5V$ ,  $V_T = -0.4V$ 

### MOS I<sub>D</sub>-V<sub>GS</sub> Characteristics



- Linear (short-channel)
   versus quadratic (long-channel) dependence of
   I<sub>D</sub> on V<sub>GS</sub> in saturation
- Velocity-saturation causes the shortchannel device to saturate at substantially smaller values of V<sub>DS</sub> resulting in a substantial drop in current drive

(for 
$$V_{DS} = 2.5V$$
,  $W/L = 1.5$ )

Since the expressions found are complex and unsuitable for first order manual analysis, a simpler model can be obtained by making two assumptions:

1. The velocity saturates abruptly at  $\xi_c$  and approximated by:

$$v = \mu_n \xi$$
 for  $\xi \le \xi_c$ 

$$v = v_{sat} = \mu_n \xi_c$$
 for  $\xi \ge \xi_c$ 

2. The  $V_{DSAT}$  at which the critical electric field is reached and velocity saturation comes into play is constant and approximated by (reasonable for larger values of  $V_{GT}$ ):

$$V_{DSAT} \approx L\xi_c = \frac{Lv_{sat}}{\mu_n}$$

$$V_{DSAT} = K(V_{GT})V_{GT} = \frac{1}{1 + \frac{V_{GT}}{\xi_c L}}V_{GT} = \frac{\xi_c L}{\xi_c L + V_{GT}}V_{GT}$$

where  $\xi_c L + V_{GT}$  can be replaced by  $V_{GT}$  for large  $V_{GT}$ 

$$\approx \frac{\xi_c L}{V_{GT}} V_{GT} = \xi_c L$$

Under these assumptions, the current equations for the resistive region remain unchanged from the long-channel model. Once  $V_{DSAT}$  is reached, the current abruptly saturates. The value of  $I_{DSAT}$  at that point can be derived by inserting the saturation voltage into the current equation of the resistive region:

$$\begin{split} I_{DSAT} &= I_D(V_{DS} = V_{DSAT}) \\ &= \mu_n C_{ox} \frac{W}{L} \left[ (V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] \qquad (1) \\ \text{where } V_{DSAT} &\approx L \xi_c = L \frac{v_{sat}}{\mu_n} \rightarrow \frac{\mu_n}{L} = \frac{v_{sat}}{V_{DSAT}} \\ \text{inserting into } (1) &= \frac{v_{sat}}{V_{DSAT}} C_{ox} W \left[ (V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] \end{split}$$

inserting into (1) = 
$$\frac{V_{sat}}{V_{DSAT}} C_{ox} W \left[ (V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right]$$

$$I_{DSAT} = v_{sat}C_{ox}W \left[V_{GS} - V_T - \frac{V_{DSAT}}{2}\right]$$

This model is truly first-order and empirical. However it causes deviations in the transition zone between linear and velocity-saturated regions.

#### **Subthreshold Conductance**

When  $V_{GS} < V_T$ , the transition from ON to OFF condition is not abrupt, but gradual. The current  $(I_{D)}$  does not drop to zero immediately, but actually decays in an exponential fashion, similar to the operation of a bipolar transistor. In the absence of a conducting channel, the source, bulk and drain actually form a parasitic npn bipolar transistor. The current in this condition can be approximated by:

$$I_D = I_S e^{\frac{V_{GS}}{nkT/q}} \left[ 1 - e^{-\frac{V_{DS}}{kT/q}} \right] (1 + \lambda V_{DS})$$

Where  $I_S$  and n are empirical parameters, with n typically ranging around 1.5 ( $\geq 1$ )

### Subthreshold $I_D$ vs $V_{GS}$

$$I_D = I_S e^{(qV_{GS}/nkT)} (1 - e^{-(qV_{DS}/kT)})(1 + \lambda V_{DS})$$

Subthreshold MOS Characteristics - EE141 0.25u process

Date/Time run: 01/31/02 09:33:59 Temperature: 27.0



Date: January 31, 2002 Page 1 Time: 09:36:16

### **Subthreshold Conductance**



- Transition from ON to OFF is gradual (decays exponentially)
- Current roll-off (slope factor) is also affected by increase in temperature

S = n (kT/q) ln (10)(typical values 60 (n=1) to 100 mV/decade)(how much  $V_{GS}$  needs to be dropped, to drop  $I_D$  by a factor of 10)

 Creates problems in dynamic circuits and for power consumption

#### IN SUMMARY:

$$\begin{split} I_{D} &= 0 \qquad V_{GS} \leq V_{T} \quad \text{(Cut-off)} \\ I_{D} &= k_{n} \left[ \left( V_{GS} - V_{T} \right) V_{DS} - \frac{V_{DS}^{2}}{2} \right] \qquad V_{GS} > V_{T} \; , \; V_{DS} < V_{GS} - V_{T} \; , \; V_{DS} < V_{DSAT} \text{(Triode)} \\ I_{D} &= \frac{1}{2} k_{n} \left( V_{GS} - V_{T} \right)^{2} \left( 1 + \lambda V_{DS} \right) \qquad V_{GS} > V_{T} \; , \; V_{DS} \geq V_{GS} - V_{T} \; , \; V_{GS} - V_{T} < V_{DSAT} \text{(Saturation)} \\ I_{D} &= k_{n} \left[ \left( V_{GS} - V_{T} \right) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right] \; V_{GS} > V_{T} \; , \; V_{DS} \geq V_{DSAT} \; , \; V_{DSAT} < V_{GS} - V_{T} \; \text{(Velocity Sat)} \end{split}$$

Which can be approximated by:  $I_D \approx v_{sat} C_{ox} W \left( V_{GS} - V_T - \frac{V_{DSAT}}{2} \right)$ 

Where:

$$k_n = k_n' \frac{W}{L}$$
,  $k_n' = \mu_n C_{ox} = \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}}$   
 $V_{GS} - V_T = V_{GT}$ 

### The MOS Current-Source Model - Unified for manual analysis



for 
$$V_{GS} - V_T \ge 0$$
  
with  $V_{min} = min(V_{GS} - V_T, V_{DS}, V_{DSAT})$   
and  $V_{GT} = V_{GS} - V_T$   

$$V_T = V_{TO} + \gamma(\sqrt{|-2\varphi_E|} + V_{SR}| - \sqrt{|-2\varphi_E|})$$

 Determined by the voltages at the four terminals and a set of five device parameters (0.25µm CMOS below)

|      | $V_{T0}(V)$ | $\gamma(V^{0.5})$ | V <sub>DSAT</sub> (V) | k'(A/V²)               | λ(V <sup>-1</sup> ) |
|------|-------------|-------------------|-----------------------|------------------------|---------------------|
| NMOS | 0.43        | 0.4               | 0.63                  | 115 x 10 <sup>-6</sup> | 0.06                |
| PMOS | -0.4        | -0.4              | -1                    | -30 x 10 <sup>-6</sup> | -0.1                |

This model employs 5 parameters which are determined by device physics and process technology:

$$V_{T0}$$
,  $\gamma$ ,  $V_{DSAT}$ ,  $k'$ ,  $\lambda$ 

In PMOS devices all of these parameters are negative, while they have positive values for NMOS.

"min" function turns into "max" for PMOS.

 $V_{GS}$  and  $V_{DS}$  comes from the operating conditions. However, in digital circuits, this is mostly the region of high  $I_D$ , that is  $V_{GS}=V_{DS}=V_{DD}$  (a good match with the model in these regions is therefore essential)

# Simple Model versus SPICE

Simple: Solid line

SPICE: Dotted line



### Resistance of Drain-to-Source Channel of NMOS Transistor Operating in Linear Mode

Ignoring the effects of channel-length modulation and velocity saturation:

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[ (V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$R_{DS} = \left[\frac{\partial V_{DS}}{\partial I_D}\right]_{V_{GS}} = \left[\left(\frac{\partial I_D}{\partial V_{DS}}\right)^{-1}\right]_{V_{GS}} = \left[k_n\left((V_{GS} - V_T) - V_{DS}\right)\right]^{-1}$$

$$R_{DS} = \frac{1}{k_n (V_{GS} - V_T - V_{DS})} \qquad \text{As } V_{GS} - V_T \to V_{DS}, \quad R_{DS} \to \infty$$

Repeating the same calculation for the saturation region (taking into consideration the channel length modulation but ignoring velocity saturation):

$$I_{D} = (k_{n}/2) [(V_{GS} - V_{T})^{2}] (1 + \lambda V_{DS})$$

$$R_{DS} = \left[\frac{\partial V_{DS}}{\partial I_{D}}\right]_{V_{GS}} = \left[\frac{\partial I_{D}}{\partial V_{DS}}\right]_{V_{GS}}^{-1}$$

$$R_{DS} = \left[\lambda k_{n}/2((V_{GS} - V_{T})^{2})\right]^{-1}$$

Which can be approximated by (ignoring  $1 + \lambda V_{DS}$  in  $I_D$ ):

$$R_{DS} \cong \left[\lambda I_D\right]^{-1}$$
 For a fixed  $V_{GS}$ 

 $R_{on}$  is time varying, nonlinear and dependent on the operation point of the transistor. An average value of the resistance ( $R_{eq}$ ) at the end points of the transition (switching between logical states) can be a suitable constant, linear approximation.

$$R_{eq} = average_{t=t_1...t_2}(R_{on}(t)) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} R_{on}(t) dt$$

$$= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{V_{DS}(t)}{I_D(t)} dt \approx \frac{1}{2} (R_{on}(t_1) + R_{on}(t_2))$$

By virtue of the definition of the propagation delay, lets take the discharging of a capacitor from  $V_{DD}$  to  $1/2V_{DD}$ , through an NMOS transistor. (assuming it stays in velocity sat.)



$$R_{eq} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT}(1+\lambda V)} dV = \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD}\right)$$

with, 
$$I_{DSAT} = k' \frac{W}{L} \left( (V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$

A similar result can be obtained by just averaging the values of the resistance at the end points of the transition region and simplifying the result using a Taylor expansion:

$$R_{eq} = \frac{1}{2} \left( \frac{V_{DD}}{I_{DSAT} (1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT} (1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left( 1 - \frac{5}{6} \lambda V_{DD} \right)$$

## The Transistor as a Switch





$$R_{eq} \, = \, \frac{1}{2} \left( \frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left( 1 - \frac{5}{6} \lambda V_{DD} \right)$$

#### The Transistor Modeled as a Switch



Modeled as a switch with infinite off resistance and a finite on resistance, R<sub>on</sub>

- Resistance inversely proportional to W/L (doubling W halves R<sub>on</sub>)
- For  $V_{DD} >> V_T + V_{DSAT}/2$ ,  $R_{on}$  independent of  $V_{DD}$
- Once V<sub>DD</sub> approaches V<sub>T</sub>,
   R<sub>on</sub> increases dramatically

| $V_{DD}(V)$     | 1   | 1.5 | 2  | 2.5 |  |
|-----------------|-----|-----|----|-----|--|
| $NMOS(k\Omega)$ | 35  | 19  | 15 | 13  |  |
| PMOS (kΩ)       | 115 | 55  | 38 | 31  |  |

 $R_{on}$  (for W/L = 1) For larger devices divide  $R_{eq}$  by W/L

# The Gate Capacitance



$$\Delta L = 2x_d$$



**Cross section** 

Overlap Capacitance:  $C_{GSO} = C_{GDO} = C_{ox}x_dW = C_oW$ 

# Gate Capacitance



Most important regions in digital design: saturation and cut-off

# Gate Capacitance





Capacitance as a function of VGS (with VDS = 0)

Capacitance as a function of the degree of saturation

# Diffusion Capacitance



$$C_{j} = \frac{C_{j0}}{\left(1 - V_{D} / \phi_{0}\right)^{m}}$$

$$C_{sw} = C_{sw} X_j (W + 2L_s)$$

$$C_{jsw} = C_{sw}' x_{j}$$

$$C_{diff} = C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER$$
$$= C_{j}L_{S}W + C_{jsw}(2L_{S} + W)$$

### MOSFET Capacitance Model

$$C_{GS} = C_{GCS} + C_{GSO}$$
 $C_{GD} = C_{GCD} + C_{GDO}$ 
 $C_{GB} = C_{GCB}$ 
 $C_{SB} = C_{Sdiff}$ 
 $C_{DB} = C_{Ddiff}$ 



# Capacitances in 0.25 µm CMOS process

|      | $C_{ox}$ (fF/ $\mu$ m <sup>2</sup> ) | $C_{\mathcal{O}}$<br>(fF/ $\mu$ m) | C <sub>j</sub><br>(fF/µm²) | $m_{j}$ | $\begin{pmatrix} \phi_b \\ (V) \end{pmatrix}$ | C <sub>jre</sub><br>(fF/μm) | $m_{j_{2H}}$ | $\phi_{bos} \ (V)$ |
|------|--------------------------------------|------------------------------------|----------------------------|---------|-----------------------------------------------|-----------------------------|--------------|--------------------|
| NMOS | 6                                    | 0.31                               | 2                          | 0.5     | 0.9                                           | 0.28                        | 0.44         | 0.9                |
| PMOS | 6                                    | 0.27                               | 1.9                        | 0.48    | 0.9                                           | 0.22                        | 0.32         | 0.9                |

### Parasitic Resistances





#### **HOT-CARRIER EFFECTS**

Treshold voltages tend to drift over time in short-channel devices

Device dimensions have been scaled down continuously, but power supply and the operating voltages not.

Resulting an increase in the electrical field, causing increase in the electron velocity.

High energy electrons penetrate into gate oxide and get trapped there.

Which cause an increase in treshold voltage (decrease for PMOS device) That is a long term reliability problem.

Solution: Specially engineered drain and source regions to limit the peaks of electric field and lowered supply voltages.

#### **Threshold Variations**

Part of the region below the gate is already depleted due to drain and source fields, a smaller  $V_T$  can cause strong inversion



Threshold as a function of the length (for low  $V_{DS}$ )

DIBL -Drain-induced barrier lowering (for low L)

Data dependent noise: Subtreshold leakage current becomes a function on the bit line and depends upon the data patterns.

## Latch-up



**n** (source of NMOS) - **p** (p substrate) - **n** (n well) - **p** (source of PMOS)