Generalization

- Consider a model with accuracy 80% on training set
- How it will perform on the new data?
- Does the model generalize well?

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x$

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$

Underfitting and overfitting example

Training set: $X \subset \mathbb{R}$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_{15} x^{15}$

Overfitting example 2

Training set: $\{0.2, 0.4, ..., 1.6\}, y = \sin(x) + \epsilon$

Model: $a(x) = b + w_1 x + w_2 x^2 + \dots + w_8 x^8$

Parameters: (130.0, -525.8, ..., 102.6)

Model just incorporates target into parameters!

Holdout set

Training set

Holdout set

Small holdout set:

- Training set is representative
- Holdout quality has high variance

Large holdout set:

- Holdout quality has low variance
- Holdout quality has high bias

Holdout set

Training set 1

Holdout set 1

Holdout set 2

Holdout set 2

Training set K

Holdout set K

No guarantees that each object will be in holdout part at least once

Cross-validation

Cross-validation

- Requires to train models K times for K-fold CV
- Useful for small samples
- In deep learning holdout samples are usually preferred

Summary

- Models can easily overfit with high number of parameters
- Overfitted model just remembers target values for training set and doesn't generalize
- Holdout set or cross-validation can be used to estimate model performance on new data