Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Fri May 28 11:00:46 2021 Program finished at Fri May 28 14:49:43 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3412945191

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo	0	0	0	0	0	0	0	0	0	*	*	*	
12	0			0	0	0	0	0	0	0	*	*	
12	U	U	U	U	U	U	U	U	U	U			
Order of param	otors:												
1	Θ_1						~d	lienla	yed:				
2	Θ_2^1							-	yed:				
3	Θ_3							-	yed:				
4	Θ_4^3								yed:				
5	Θ_5							-	yed:				
6	Θ_6								yed:				
7	Θ_7^6								yed:				
8	Θ_8								yed:				
9	Θ_9								yed:				
10	Θ_{10}								yed:				
11	Θ_{11}^{10}								yed:				
12	Θ_{12}^{11}								yed:				
13	$M_{2->1}^{12}$							-	yed:				
24	$M_{1->2}$								yed:				
25	$M_{3->2}$								yed:				
36	$M_{2->3}$								yed:				
37	$M_{4->3}^{2->3}$								yed:				
48	$M_{3->2}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
49	$M_{5->2}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
60	M _{4->5}						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
61	M _{6->5}						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
72	$M_{5->6}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
73	$M_{7\rightarrow6}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
84	$M_{6->7}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
85	M _{8->7}						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
96	$M_{7->8}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
97	$M_{9->8}$						<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
108	$M_{8->9}$)						-	yed:				
109	M _{10->}							-	yed:				
120	$M_{9->1}$	0						-	yed:				
121	M _{11->}	- 10						-	yed:				
132	M _{10->}	- 11						-	yed:				
133	M 12->	- 11						-	yed:				
144	M 11->	-12					<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
Mutation rate an	nong loci:												Mutation rate is constant
													5
Analysis strateg	y:												Bayesian inference

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)100

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

bayesfile

Print data:

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	10
12	1	0
Total of all populations	1	184

Bayesian Analysis: Posterior distribution table

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03741
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02147
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01648
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01866
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01749
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01667
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01949
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01432
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02746
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01451
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01106
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01040
1	M _{2->1}	12000.0	20000.0	35000.0	50000.0	62000.0	47000.0	54286.7
1	M _{1->2}	78000.0	0.00088	103000.0	116000.0	154000.0	101000.0	83222.2
1	M _{3->2}	74000.0	102000.0	119000.0	132000.0	140000.0	103000.0	90234.3
1	M _{2->3}	20000.0	34000.0	47000.0	56000.0	0.00088	51000.0	51037.3
1	M _{4->3}	0.0	0.0	9000.0	22000.0	58000.0	45000.0	53243.4
1	M _{3->4}	60000.0	74000.0	103000.0	118000.0	126000.0	85000.0	75887.7
1	M _{5->4}	66000.0	80000.0	95000.0	112000.0	132000.0	89000.0	74201.4
1	M _{4->5}	0.0	0.0	7000.0	18000.0	30000.0	107000.0	83905.8
1	M _{6->5}	20000.0	66000.0	79000.0	92000.0	116000.0	79000.0	76107.8
1	M _{5->6}	0.0	0.0	1000.0	14000.0	18000.0	47000.0	44622.2
1	M _{7->6}	6000.0	14000.0	29000.0	42000.0	74000.0	37000.0	38526.4
1	M _{6->7}	0.0	0.0	1000.0	18000.0	66000.0	21000.0	24234.9
1	M _{8->7}	56000.0	72000.0	87000.0	96000.0	120000.0	89000.0	87807.8
1	M _{7->8}	24000.0	34000.0	47000.0	82000.0	96000.0	77000.0	88331.6
1	M _{9->8}	0.0	0.0	1000.0	12000.0	18000.0	15000.0	34494.4
1	M _{8->9}	0.0	0.0	13000.0	24000.0	58000.0	41000.0	46713.7
1	M _{10->9}	0.0	0.0	9000.0	22000.0	78000.0	23000.0	24444.4
1	M _{9->10}	0.0	0.0	7000.0	16000.0	50000.0	17000.0	14623.8
1	M _{11->10}	0.0	6000.0	21000.0	34000.0	44000.0	31000.0	40559.6
1	M _{10->11}	54000.0	66000.0	81000.0	92000.0	150000.0	81000.0	65937.6
1	M _{12->11}	68000.0	78000.0	95000.0	110000.0	122000.0	89000.0	71730.4
1	M _{11->12}	90000.0	100000.0	123000.0	146000.0	156000.0	235000.0	242559.9

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 11:00:46]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2182.125069	(1a)
	-2106.873594	(1b)
Harmonic mean	-2095.766814	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	760/4405	0.17253
Θ_2	1294/4414	0.29316
Θ_3	1004/4494	0.22341
\mathbf{D}_A	1708/4373	0.39058
)5	2164/4335	0.49919
06	1386/4435	0.31251
) ₇	753/4402	0.17106
) ₈	1283/4398	0.29172
$\mathbf{O}_{\mathbf{Q}}$	1588/4317	0.36785
) ₁₀	1567/4513	0.34722
211	1361/4399	0.30939
12	3092/4470	0.69172
1 2->1	4458/4458	1.00000
1 1->2	4319/4319	1.00000
1 _{3->2}	4345/4345	1.00000
1 2->3	4510/4510	1.00000
1 4->3	4485/4485	1.00000
1 3->4	4427/4427	1.00000
1 5->4	4455/4455	1.00000
1 4->5	4457/4457	1.00000
1 6->5	4382/4382	1.00000
1 5->6	4446/4446	1.00000
1 7->6	4494/4494	1.00000
1 6->7	4508/4508	1.00000
1 8->7	4372/4372	1.00000
1 7->8	4418/4418	1.00000
/	4307/4307	1.00000
1 9->8 1 _{8->9}	4583/4583	1.00000
1 0->9	4435/4435	1.00000
10->9 9->10	4406/4406	1.00000
11->10	4529/4529	1.00000
11->10	4273/4273	1.00000
10->11	4399/4399	1.00000
11->12	4401/4401	1.00000
Genealogies	44124/149636	0.29488

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.90169	163.56
Θ_2	0.83291	276.27
Θ_3^-	0.82089	306.60
Θ_4°	0.75514	423.71
) ₅	0.62299	712.58
) ₆	0.78011	381.07
) ₇	0.87045	216.48
) ₈	0.77834	386.08
) _o	0.72605	519.01
) ₁₀	0.76286	422.27
) ₁₁	0.73812	487.98
12	0.45006	1170.82
1 ¹² _{2->1}	0.89102	176.05
1 1->2	0.78497	377.34
$M_{3->2}$	0.84362	260.60
1 2->3	0.83097	283.12
1 4->3	0.79869	342.36
1 3->4	0.69120	604.49
1 5->4	0.85770	230.04
1 4->5	0.80162	332.82
1 6->5	0.85232	243.47
1 5->6	0.85043	243.94
1 7->6	0.77918	377.57
1 6->7	0.83572	279.83
1 8->7	0.87316	203.72
1 7->8	0.83877	265.84
Λ	0.76303	405.71
1 9->8 1 _{8->9}	0.80880	316.96
10->9	0.87810	194.59
10->9 1 9->10	0.65191	776.18
11->10	0.81274	315.33
11->10	0.83533	277.40
10->11	0.78393	376.90
12->11 11->12	0.87850	197.01
n[Prob(D G)]	0.99425	8.64

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run