Marbles Calibration

Part 1: setting the module to output quantized voltages 1V and 3V.

- 1. Connect the CV output X1 to a high count (ie 50000 count) multimeter (fig.1)
- Set the voltage range (J) to +5V (orange LED).
- 3. Set (E) and (N) to green.
- 4. Turn the « **Spread** » knob <u>fully counter</u>— clockwise
- 5. Turn the « Steps » knob <u>fully clockwise</u>
- 6. Turn « bias » to select the octave, you need to find the closest value to 1V (You will probably find a value between 0.91 and 0.99). Then do the same for 3V.
- 7. Write down these values in the corresponding cells of the spreadsheet (1V and 3V) and do the same thing for the next CV outputs X2 and X3.

Marbles voltage mesurements						
	1v	3v	dac_code1	dac_code3	scale	offset1
1 (Y)	0.94302	2.92737	26555	14129	-6262.00015118	32460.19138257
2 (X1)	0.94749	2.9453	26555	14129	-6219.81069271	32448.20843323
3 (X2)	0.9368	2.93674	26555	14129	-6213.18639559	32375.51301539
4 (X3)	0.94613	2.9263	26555	14129	-6275.21879435	32492.17275789

8. For the Y output: hold down the (N) button and turn the « Spread » knob <u>fully counter-clockwise</u> and the « Steps » knob <u>fully clockwise</u>. You will probably have to adjust the « rate » in order to « stabilize » this CV output while you read the voltage value.

<u>Part 2: copying the voltage measurements to settings.cc, compiling and uploading the firmware.</u>

- Open the file named <u>settings.cc</u> in an editor. You will find the file in *Mutable-dev-environment -> eurorack-modules -> Marbles*
- 2. Copy and paste the values of
 Scale and Offset from the
 spreadsheet to settings.cc
 (line 179). Don't forget the
 « f » and make sure the
 separator is a dot. [0] is Y
 [1] is X1 etc.
- Save the file, compile the firmware and upload it to the module.

```
c.adc_scale[ADC_CHANNEL_T_RATE] = -120.0f;

/* Marbles calibration */
persistent_data_.calibration_data.dac_offset[0] = 32407.04687500f;
persistent_data_.calibration_data.dac_scale[0] = -6216.91699219f;
persistent_data_.calibration_data.dac_offset[1] = 32434.53906250f;
persistent_data_.calibration_data.dac_scale[1] = -6184.36669922f;
persistent_data_.calibration_data.dac_offset[2] = 32367.77929688f;
persistent_data_.calibration_data.dac_scale[2] = -6216.91699219f;
persistent_data_.calibration_data.dac_offset[2] = 32367.77929688f;
persistent_data_.calibration_data.dac_scale[2] = -6216.91699219f;
persistent_data_.calibration_data.dac_scale[3] = 32470.53320312f;
persistent_data_.calibration_data.dac_scale[3] = -6202.39453125f;
// End edits

for (size_t i = 0; i < kNumScales; ++i) {</pre>
```

Part 3: ADC calibration.

To calibrate the adc, long-press the rate and spread buttons. Feed $\mathbf{1v}$ into rate input, press one of the two buttons, feed in $\mathbf{3v}$, press button, feed $\mathbf{1v}$ into spread \mathbf{cv} , press button and then feed $\mathbf{3v}$ into spread \mathbf{cv} , press button and the calibration is done.