

第五章 频率响应法

- 5.1 频率特性的基本概念
- 5.2 典型环节的频率特性
- 5.3 开环系统频率特性图的绘制
- 5.4 控制系统的频域稳定判据
- 5.5 稳定裕量
- 5.6 开环系统频率特性与闭环系统性能的关系
- 5.7 闭环频率特性和频域性能指标

5.2典型环节的频率特性-Bode图

- **▶比例环节**
- ▶积分环节
- ▶惯性环节
- ▶振荡环节
- ▶微分环节
- > 延迟环节

1. 比例环节 $G(s) = K, (K > 0), G(j\omega) = K$

幅频特性: $A(\omega) = K$; 相频特性: $\varphi(\omega) = 0$

对数幅频特性:

$$L(\omega) = 20 \lg K = \begin{cases} > 0 & K > 1 \\ = 0 & K = 1 \\ < 0 & 0 < K < 1 \end{cases}$$

对数相频特性:

$$\varphi(\omega) = \angle K = 0^{\circ}$$

2. 积分环节:
$$G(s) = \frac{1}{s}$$
, $G(j\omega) = \frac{1}{j\omega} = -j\frac{1}{\omega} = \frac{1}{\omega}e^{-\frac{\pi}{2}}$

幅频特性: $A(\omega) = \frac{1}{\omega}$; 相频特性: $\varphi(\omega) = -\frac{\pi}{2}$

对数幅频特性:

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \frac{1}{\omega}$$
$$= -20 \lg \omega$$

可见斜率为 - 20dB/dec.

对数相频特性:

$$\varphi(\omega) = -\frac{\pi}{2}$$

3. 惯性环节:
$$G(s) = \frac{1}{Ts+1}$$
, $G(j\omega) = \frac{1}{Tj\omega+1}$

$$A(\omega) = \frac{1}{\sqrt{1 + T^2 \omega^2}}, \quad \varphi(\omega) = -\arctan(T\omega)$$

①对数幅频特性:

$$L(\omega) = 20 \lg A(\omega) = -20 \lg \sqrt{1 + T^2 \omega^2}$$

为了图示简单,采用分段直线近似表示:

低频段: 当 $T\omega \ll 1$ 时, $L(\omega) \approx 20 \lg 1 = 0$, 称为低频渐近线。

高频段: 当 $T\omega >> 1$ 时, $L(\omega) \approx -20 \lg T\omega$, 称为高频渐近线。

这是一条斜率为-20dB/Dec的直线 (ω每增加10倍频程下降20分贝)。

$$L(\omega) = 20 \lg A(\omega) = -20 \lg \sqrt{1 + T^2 \omega^2}$$

- ▶ 当 $\omega \to 0$ 时,对数幅频曲线趋近于低频渐近线 $L(\omega) \approx 0$,
- ▶ 当 $ω \to ∞$ 时,对数幅频曲线趋近于高频渐近线 $L(ω) \approx -20 \lg Tω$ 。 低频高频渐近线的交点为:

$$0 = -20 \log T \omega$$

$$\Rightarrow T \omega = 1$$

$$\Rightarrow \omega_n = \frac{1}{T}$$

称为转折频率
或交接频率。

惯性环节的对数幅频特性可以用这两段渐近线近似表示:

$$L_a(\omega) = \begin{cases} 0, & \omega < \frac{1}{T} \\ -20 \lg T\omega, & \omega > \frac{1}{T} \end{cases}$$

图中, 红、绿线分别是低频、高频渐近线, 蓝线是实际曲线。

波德图误差分析(实际频率特性和渐近线之间的误差):

当
$$\omega > \omega_n$$
时,误差为: $\Delta_2 = -20 \lg \sqrt{1 + T^2 \omega^2} + 20 \lg T \omega = -20 \lg \sqrt{1/T^2 \omega^2 + 1}$

Τω	0.1	0.2	0.5	1	2	5	10
L(ω),dB	-0.04	-0.2	-1	-3	-7	-14.2	-20.04
渐近线,dB	0	0	0	0	-6	-14	-20
误差,dB	-0.04	-0.2	-1	-3	-1	-0.2	-0.04

最大误差发生在

$$\omega = \omega_n = \frac{1}{T}$$
处,为

$$\Delta_{\text{max}} = -20\log\sqrt{1 + T^2\omega_0^2}$$

$$=-20\log\sqrt{2}$$

$$\approx$$
 -3(dB)

0						
-1						
-2						
-3						
-4						
1	_1_	1	1	2	<u>5</u>	<u>10</u>
10 <i>T</i>	5 <i>T</i>	2T	T	T	T	T

②相频特性: $\varphi(\omega) = -\arctan(T\omega)$

作图时先计算几个特殊点:

ωT	0.01	0.02	0.05	0.1	0.2	0.3	0.5	0.7	1.0
φ(ω)	-0.6	-1.1	-2.9	-5.7	-11.3	-16.7	-26.6	-35	-45
ωT	2.0	3.0	4.0	5.0	7.0	10	20	50	100
φ(ω)	-63.4	-71.5	-76	-78.7	-81.9	-84.3	-87.1	-88.9	-89.4

- ▶ 由图不难看出相频特性曲线在半对数坐标系中对于(w_n, -45°) 点是斜对称的, 这是对数相频特性的一个特点。
- ▶ 当时间常数 T 变化时,对数幅频特性和对数相频特性形状都不变,仅仅是根据转折频率 1/T 的大小整条曲线向左或向右平移。
- ▶ 当增益K改变时,相频特性不变,幅频特性上下平移。

4. 振荡环节:
$$G(s) = \frac{1}{T^2 s^2 + 2\zeta T s + 1} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

讨论 0 ≤ ζ ≤ 1时的情况:

$$G(j\omega) = \frac{1}{(1 - T^2\omega^2) + j2\zeta\omega T}$$

$$A(\omega) = \frac{1}{\sqrt{(1 - T^2 \omega^2)^2 + (2\zeta \omega T)^2}}$$

$$\varphi(\omega) = -\arctan\left(\frac{2\zeta\omega T}{1 - T^2\omega^2}\right)$$

①对数幅频特性:

$$L(\omega) = 20 \lg A(\omega) = -20 \lg \sqrt{(1-T^2\omega^2)^2 + (2\zeta\omega T)^2}$$

$$L(\omega) = 20 \log A(\omega) = -20 \lg \sqrt{(1 - T^2 \omega^2)^2 + (2\zeta \omega T)^2}$$

低频段渐近线: $T\omega \ll 1$ 时, $L(\omega) \approx 0$

高频段渐近线: $T\omega >> 1$ 时, $L(\omega) \approx -20 \lg \sqrt{(T^2 \omega^2)^2} = -40 \lg T\omega$

- ightharpoonup 两渐近线的交点 $\omega_o=rac{1}{T}$ 称为振荡环节的转折频率 或交接频率。
- > ω> ω₀后斜率为-40dB/Dec。

振荡环节的对数幅频特性可以用这两段渐近线近似表示:

$$L_a(\omega) = \begin{cases} 0, & \omega < \frac{1}{T} \\ -40 \lg T\omega, & \omega > \frac{1}{T} \end{cases}$$

Matlab代码如下:

N=[1]; D=[1 0.6 1]; bode(N,D); h = findobj(gcf, 'Type','line'); set(h, 'LineWidth', 2); set(h(3),'linewidth',2.5) set(h(4),'linewidth',2.5) set(h(4),'color','m') set(h(4),'color','b') %set(h(3),'linestyle','--') grid on;

对 $A(\omega)$ 求导并令等于零,可解得 $A(\omega)$ 的极值对应的频率 ω_r 。

$$\omega_r = \frac{\sqrt{1 - 2\zeta^2}}{T} = \omega_n \sqrt{1 - 2\zeta^2}$$
 (0 < \zeta < 0.707)

该频率称为谐振峰值频率。可见,谐振峰值频率与阻尼系数 (

有关,当
$$\zeta = \frac{1}{\sqrt{2}} = 0.707$$
 时, $\omega_r = 0$; 当 $\zeta > \frac{1}{\sqrt{2}}$ 时, 无谐振峰值;

当 $\zeta < \frac{1}{\sqrt{2}}$ 时,有谐振峰值:

$$A_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

Matlab代码如下:

x=0:0.01:0.707; y=1./(2.*x.*sqrt(1-x.^2)); plot(x,y, 'LineWidth', 2,'color','r'); grid on;

由幅频特性
$$A(\omega) = \frac{1}{\sqrt{(1-T^2\omega^2)^2 + (2\zeta\omega T)^2}}$$

$$\stackrel{\underline{\mathcal{M}}}{=} \omega = \omega_n , \quad A(\omega_n) = \frac{1}{2\zeta} , \quad L(\omega_n) = -20 \lg 2\zeta .$$

因此在转折频率附近的渐近线依不同阻尼系数与实际曲线可能有

很大的误差。

幅值 $A(\omega)$ 与 $T\omega$ 的关系:

左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。

 $\varsigma = 0.3$

 $\zeta \neq 0$

 $c \neq 0.5$

当0.3<ζ<0.8, 误差约为 ± 4dB

10*T*

②相频特性: $\varphi(\omega) = -\arctan \frac{2\zeta\omega T}{1 - T^2\omega^2}$

几个特殊点: $\omega = 0, \varphi(\omega) = 0; \omega = \frac{1}{T}, \varphi(\omega) = -\frac{\pi}{2}; \omega = \infty, \varphi(\omega) = -\pi.$

相频特性曲线在半对数坐标中关于(\(\omega_0\), -90°)点是斜对称的。

注意: 说明的是当 $\omega \in (0,\frac{1}{T})$ 时, $\varphi(\omega) \in (0,-90^\circ)$,当 $\omega \in (\frac{1}{T},\infty)$

时, $\varphi(\omega) \in (-90^{\circ}, -180^{\circ})$ 。此时若根据相频特性的表达式用计算器

来计算只能求出±90°之间的值(arctan函数的主值范围),也就

是说当 $\omega \in (\frac{1}{T}, \infty)$ 时,用计算器计算的结果要经过转换才能得到。

即当 $\omega \in (\frac{1}{T}, \infty)$ 时,用计算器计算的结果要减180°才能得到。

或用下式计算

$$\varphi(\omega) = -\arctan\frac{T\omega + \sqrt{1 - \zeta^2}}{\zeta} - \arctan\frac{T\omega - \sqrt{1 - \zeta^2}}{\zeta}$$

5. 微分环节:

微分环节有三种: 纯微分、一阶微分和二阶微分。传递函数分别为:

$$G(s) = s$$

$$G(s) = 1 + Ts$$

$$G(s) = T^2 s^2 + 2\zeta T s + 1$$

频率特性分别为:

$$G(j\omega) = j\omega$$

$$G(j\omega) = 1 + jT\omega$$

$$G(j\omega) = 1 - T^2\omega^2 + j2\zeta\omega T$$

① 纯微分环节: G(s) = s, $G(j\omega) = j\omega$

$$A(\omega) = \omega$$

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \omega$$

$$\varphi(\omega) = \frac{\pi}{2}$$

② 一阶微分: G(s) = 1 + Ts, $G(j\omega) = 1 + jT\omega$

$$A(\omega) = \sqrt{1 + T^2 \omega^2}, \quad \varphi(\omega) = \arctan(T\omega)$$

$$L(\omega) = 20\lg\sqrt{1 + T^2\omega^2}$$

对数幅频特性(用渐近线近似):

低频段渐近线: 当 $T\omega << 1$ 时, $A(\omega) \approx 1$, $20 \lg A(\omega) = 0$

高频段渐近线: 当 $T\omega >> 1$ 时, $A(\omega) \approx T\omega$, $L(\omega) = 20 \lg T\omega$

这是斜率为+20dB/Dec的直线。低、高频渐近线的交点为 $\omega = \frac{1}{T}$

相频特性: 几个特殊点如下

$$\omega = 0$$
, $\varphi(\omega) = 0$; $\omega = \frac{1}{T}$, $\varphi(\omega) = \frac{\pi}{4}$; $\omega = \infty$, $\varphi(\omega) = \frac{\pi}{2}$

相角的变化范围从0到 $\frac{\pi}{2}$ 。

一阶微分环节的波德图

惯性环节的波德图

③ 二阶微分环节 $G(s) = T^2s^2 + 2\zeta Ts + 1$, $G(j\omega) = 1 - T^2\omega^2 + j2\zeta\omega T$

幅频和相频特性为:

$$A(\omega) = \sqrt{(1 - T^2 \omega^2)^2 + (2\zeta\omega T)^2}, \quad \varphi(\omega) = \arctan\frac{2\zeta\omega T}{1 - T^2 \omega^2}$$
$$L(\omega) = 20 \lg \sqrt{(1 - T^2 \omega^2)^2 + (2\zeta\omega T)^2}$$

低频渐近线: $T\omega \ll 1$ 时, $L(\omega) \approx 0$

高频渐近线: $T\omega >> 1$ 时, $L(\omega) \approx 40 \lg T\omega$

转折频率为: $\omega_n = \frac{1}{T}$, 高频段的斜率+40dB/Dec.

可见,相角的变化范围从0~180度。

6. 延迟环节:

传递函数: $G(s) = e^{-rs}$

频率特性: $G(j\omega) = e^{-j\tau\omega}$

幅频特性: $A(\omega) = 1$

对数幅频特性:

$$L(\omega) = 0$$

相频特性:

$$\varphi(\omega) = -\omega \tau(rad)$$
$$= -57.3\omega \tau(\deg)$$

小结

- □比例环节和积分环节的频率特性
- \Box 惯性环节的频率特性——波德图:低频、高频渐进线,斜率-20, 转折频率 $\omega_n = \frac{1}{T}$
- \Box 振荡环节的频率特性——波德图:低频、高频渐进线,斜率-40, 转折频率 $\omega_n = \frac{1}{T}$
- □ 微分环节的频率特性—有三种形式: 纯微分、一阶微分和二阶微分。分别对应积分、一阶惯性和振荡环节
- □ 延迟环节的频率特性

Thank You!