Noh-	stationarity
------	--------------

Weakly-stationary process $E(X_t) = const$ Van(Xt) = const 3) $Cov(Xt, Xt+k) = N_k = \sqrt{(k)}$ $y_{t} = \begin{vmatrix} y_{t}^{2} - 1 \\ y_{t} \end{vmatrix}, \lambda = 0$ Stationary Processes: MA(1), MA(q), MA(0) - all stationary AR(1), 0< B, < 1 AR(p) or ARMA(p,q) equations has roots $|\lambda| < 1 = 1$ has stationary solutions Non-stationary Processes: Rundom Waln: Xt = Xt-1 + Et

La Difference - stationary: DXt = Ex

$$\&=0$$
 $E(X_t) = E(E_t + E_{t-1} + ... + E_o)$
 $Y_0 = 0$
 $= E(E_0) = E_0 = 0$

$$Van(X_t) = t \cdot 6^2 = >$$
 $Cov(X_t, X_{t-s}) = (t-s)6^2$
 $Cov(X_t, X_{t-s}) = (t-s)6^2$

=> hot stat.

Trend - Stationary:

$$X_t = x + \beta t + \epsilon t$$
 $= x + \beta t + \epsilon t$
 $= x + \beta$

$$\Delta X t = d + \beta t - X + 1 + \epsilon_4$$

$$= d + \beta t - d - \beta (t - 1) + \epsilon_4 - \epsilon_{44}$$

$$= -\beta + \epsilon_4 - \epsilon_{4-1}$$

V

TS	í S	Wed	ahly	depen	dut	ς → ∞		
بعا		(DV/XI	- X-1 C))	ς -> ∞		
		00 ° ('N'	1 /261 3		' \			