20104169 - SUMESH R

Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]:
```

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2012.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	ТСН	TOL	station
0	2012-09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN	28079004
1	2012-09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4	28079008
2	2012-09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5	28079011
3	2012-09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2012-09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN	28079017
				•••								•••	•••	
210715	2012-03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN	28079056
210716	2012-03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN	28079057
210717	2012-03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN	28079058
210718	2012-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN	28079059
210719	2012-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN	28079060

210720 rows × 14 columns

df.info()

Data Cleaning and Data Preprocessing

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10916 entries, 6 to 210702
Data columns (total 14 columns):
     Column
              Non-Null Count Dtype
 #
              _____
     _____
                               ____
 0
     date
              10916 non-null object
 1
              10916 non-null
                               float64
 2
    CO
              10916 non-null
 3
    EBE
              10916 non-null
                               float64
              10916 non-null
                               float64
 4
    NMHC
 5
              10916 non-null
                               float64
     NO
     NO 2
 6
              10916 non-null
                               float64
 7
     0 3
                               float64
              10916 non-null
 8
     PM10
              10916 non-null
                               float64
 9
     PM25
              10916 non-null
                               float64
 10 SO 2
              10916 non-null
                               float64
 11
     TCH
              10916 non-null
                               float64
 12
     TOL
              10916 non-null
                               float64
 13
     station 10916 non-null
                               int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.2+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
     6 0.2 28079024
    30 0.2 28079024
       0.2 28079024
       0.2 28079024
    78
   102
       0.2 28079024
210654
       0.3 28079024
210673
       0.4 28079008
210678
       0.3 28079024
210697 0.4 28079008
210702 0.3 28079024
10916 rows × 2 columns
Line chart
In [7]:
data.plot.line(subplots=True)
Out[7]:
array([<Axes: >, <Axes: >], dtype=object)
```

2.5

2.0

1.5

1.0

Line chart

```
In [8]:
data.plot.line()
Out[8]:
<Axes: >
     1e7
 2.5
 2.0
 1.5
                                                          CO
                                                            station
 1.0
 0.5
 0.0
                  50000
                               100000
                                             150000
                                                          200000
```

Bar chart

Histogram

```
In [11]:
```

data.plot.hist()

Out[11]:

<Axes: ylabel='Frequency'>

Area chart

```
In [12]:
```

```
data.plot.area()
```

^--± [1 0 1 -

Cut[12]:
<Axes: >

Box chart

In [13]:

```
data.plot.box()
Out[13]:
```

station

<Axes: >

2.5 -2.0 -1.5 -1.0 -

Pie chart

0.0

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO' ,y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 10916 entries, 6 to 210702
Data columns (total 14 columns):

Daca	COLUMNIS	(0000	II COI amiii	J / •
#	Column	Non-Nu	ıll Count	Dtype
0	date	10916	non-null	object
1	BEN	10916	non-null	float64
2	CO	10916	non-null	float64
3	EBE	10916	non-null	float64
4	NMHC	10916	non-null	float64
5	NO	10916	non-null	float64
6	NO_2	10916	non-null	float64
7	0_3	10916	non-null	float64
8	PM10	10916	non-null	float64
9	PM25	10916	non-null	float64
10	SO_2	10916	non-null	float64
11	TCH	10916	non-null	float64
12	TOL	10916	non-null	float64
13	station	10916	non-null	int64
dtype	es: float	64(12),	int64(1)	, object(1)
memoi	ry usage:	1.2+ N	MB	

In [17]:

```
df.describe()
```

Out[17]:

	BEN	88	EBE	SHMI	N8	N8 -2	8-3	FM 18	
count	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000	10916.000000	109
mean	0.784014	0.279333	0.992213	0.215755	18.795529	31.262642	44.239557	22.875687	
std	0.632755	0.167922	0.804554	0.075169	40.038872	27.234732	29.535560	22.266862	
min	0.100000	0.100000	0.100000	0.050000	0.000000	1.000000	1.000000	1.000000	
25%	0.400000	0.200000	0.500000	0.160000	1.000000	9.000000	18.000000	10.000000	
50%	0.600000	0.200000	0.800000	0.220000	3.000000	24.000000	44.000000	17.000000	
75%	0.900000	0.300000	1.200000	0.250000	18.000000	47.000000	65.000000	28.000000	
max	7.000000	2.500000	9.700000	0.670000	525.000000	225.000000	157.000000	267.000000	
4					188				. ▶

EDA AND VISUALIZATION

In [18]:

sns.pairplot(df[0:50])

Out[18]:

In [19]:

```
sns.distplot(df['station'])
```

<ipython-input-19-6e2460d4583e>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['station'])

Out[19]:

<Axes: xlabel='station', ylabel='Density'>

In [20]:

sns.heatmap(df.corr())

<ipython-input-20-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in Da
taFrame.corr is deprecated. In a future version, it will default to False. Select only va
lid columns or specify the value of numeric_only to silence this warning.
sns.heatmap(df.corr())

Out[20]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

BEN

CO

EBE

NO

NMHC

4.128526

22.656931

-0.355293

16.665677

-0.026850

```
In [21]:
x=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO 2', 'O 3', 'PM10', 'PM25',
       'SO_2', 'TCH', 'TOL']]
y=df['station']
In [22]:
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
Linear Regression
In [23]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[23]:
▼ LinearRegression
LinearRegression()
In [24]:
lr.intercept
Out[24]:
28079016.56357889
In [25]:
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
Out[25]:
      Co-efficient
```

```
Co-efficient
-0.121328

0_3 -0.029489

PM10 0.005533

PM25 -0.059807

SO_2 -0.667808

TCH 2.347965

TOL -1.517752
```

In [26]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[26]:

<matplotlib.collections.PathCollection at 0x7b55b17b5450>

ACCURACY

In [27]:

```
lr.score(x_test,y_test)
```

Out[27]:

0.6178488329817193

In [28]:

```
lr.score(x_train,y_train)
```

Out[28]:

0.6265443111435998

Ridge and Lasso

```
In [29]:
from sklearn.linear model import Ridge,Lasso
In [30]:
rr=Ridge(alpha=10)
rr.fit(x train,y train)
Out[30]:
      Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [31]:
rr.score(x_test,y_test)
Out[31]:
0.6152190481161524
In [32]:
rr.score(x_train,y_train)
Out[32]:
0.6223236671405741
In [33]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[33]:
     Lasso
Lasso(alpha=10)
In [34]:
la.score(x_train,y_train)
Out[34]:
0.36094830764963526
Accuracy(Lasso)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.3646755234090291
In [36]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
```

Out[36]:

```
▼ ElasticNet
ElasticNet()
In [37]:
en.coef
Out[37]:
                 , 0.
                              , -0.
                                           , 0.
                                                       , 0.0666659 ,
array([ 0.
       -0.08986738, -0.03785497, 0.
                                                         , -0.69996377,
                                             0.
       0. , -0.69127665])
In [38]:
en.intercept
Out[38]:
28079027.736731425
In [39]:
prediction=en.predict(x test)
In [40]:
en.score(x test, y test)
Out[40]:
0.5470783923837095
Evaluation Metrics
In [41]:
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean squared error(y test,prediction)))
3.438876448474995
23.043203144300286
4.800333649268588
Logistic Regression
In [42]:
from sklearn.linear model import LogisticRegression
In [43]:
feature matrix=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO 2', 'O 3', 'PM10', 'PM25',
       'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [44]:
feature matrix.shape
```

Out[44]:

In [45]:

(10916, 12)

```
target_vector.shape
Out[45]:
(10916,)
In [46]:
from sklearn.preprocessing import StandardScaler
In [47]:
fs=StandardScaler().fit transform(feature matrix)
In [48]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target vector)
Out[48]:
▼ LogisticRegression
LogisticRegression(max iter=10000)
In [49]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12]]
In [50]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [51]:
logr.classes
Out[51]:
array([28079008, 28079024])
In [52]:
logr.score(fs,target_vector)
Out[52]:
0.9311102968120191
In [53]:
logr.predict proba(observation)[0][0]
Out[53]:
1.0
In [54]:
logr.predict proba(observation)
Out[54]:
array([[1.00000000e+00, 7.14919073e-33]])
```

Random Forest

```
In [55]:
from sklearn.ensemble import RandomForestClassifier
In [56]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [56]:
▼ RandomForestClassifier
RandomForestClassifier()
In [57]:
parameters={ 'max depth': [1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n estimators': [10,20,30,40,50]
In [58]:
from sklearn.model selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid search.fit(x train,y train)
Out[58]:
            GridSearchCV
 ▶ estimator: RandomForestClassifier
       RandomForestClassifier
In [59]:
grid search.best score
Out[59]:
0.966496771081828
In [60]:
rfc best=grid search.best estimator
In [61]:
from sklearn.tree import plot tree
plt.figure(figsize=(80,40))
plot tree(rfc best.estimators_[5], feature_names=x.columns, class_names=['a', 'b', 'c', 'd'], f
illed=True)
Out[61]:
nvalue = [2021, 5620] \nclass = b'),
Text(0.30113636363636365, 0.75, 'EBE <= 0.75 \ngini = 0.217 \nsamples = 3990 \nvalue = [784]
, 5563]\nclass = b'),
Text(0.1477272727272737, 0.5833333333333334, 'BEN <= 0.25 \ngini = 0.077 \nsamples = 2220
\nvalue = [141, 3372] \setminus nclass = b'),
Text(0.09090909090909091, 0.41666666666666667, 'NO 2 <= 14.5 \ngini = 0.461 \nsamples = 107

    | value = [63, 112] \rangle = b'),

Text(0.04545454545454545456, 0.25, 'NMHC <= 0.165 \ngini = 0.098 \nsamples = 67 \nvalue = [6, 0.098]
110]\nclass = b'),
Text(0.0227272727272728, 0.083333333333333333, 'gini = 0.397 \nsamples = 15 \nvalue = [6, ]
16] \nclass = b'),
Text(0.0681818181818181818, 0.083333333333333333, 'gini = 0.0 \nsamples = 52 \nvalue = [0, 94]
] \nclass = b'),
```

```
] \nclass = a'),
    Text(0.1136363636363636363, 0.083333333333333333, 'gini = 0.153 \nsamples = 15 \nvalue = [22, 12]
2] \nclass = a'),
     Text(0.15909090909091, 0.083333333333333333, 'gini = 0.0 \nsamples = 25 \nvalue = [35, 0]
 \nclass = a'),
    Text(0.20454545454545456, 0.4166666666666667, 'NO 2 <= 10.5 \ngini = 0.046 \nsamples = 211
3\nvalue = [78, 3260]\nclass = b'),
    Text(0.18181818181818182, 0.25, 'gini = 0.0 \nsamples = 878 \nvalue = [0, 1379] \nclass = b
  '),
    Text(0.2272727272727272727, 0.25, 'BEN <= 0.35 \setminus gini = 0.076 \setminus samples = 1235 \setminus gini = 1235 \setminus gin
1881] \setminus nclass = b'),
     Text(0.2045454545454545456, 0.0833333333333333333, 'gini = 0.351 \nsamples = 103 \nvalue = [35]
 , 119] \nclass = b'),
    = b'),
     70\nvalue = [643, 2191]\nclass = b'),
     Text(0.36363636363636365, 0.41666666666666667, 'NMHC <= 0.135 \ngini = 0.488 \nsamples = 69
1\nvalue = [457, 624]\nclass = b'),
     Text(0.318181818181818182, 0.25, '0 3 \le 47.5 = 0.171 = 0.171 = 153 = [24, 2]
30] \nclass = b'),
     Text(0.29545454545454547, 0.08333333333333333333, 'gini = 0.328 \nsamples = 53 \nvalue = [18, 18]
 69] \nclass = b'),
    161] \setminus nclass = b'),
    Text(0.40909090909091, 0.25, 'NO 2 \le 15.5 \le 0.499 \le 538 \le 15.5 
394] \nclass = a'),
    216] \setminus nclass = b'),
    Text(0.4318181818181818, 0.0833333333333333333, 'gini = 0.415\nsamples = 398\nvalue = [428]
 , 178] \nclass = a'),
    Text(0.5454545454545454, 0.4166666666666667, 'TOL <= 4.85 \neq 0.19 \Rightarrow 1079 \neq 1079 \Rightarrow 107
value = [186, 1567] \setminus nclass = b'),
    Text(0.5, 0.25, 'NO 2 \le 69.5 \neq 0.039 \le 878 \le 25, 1388] \le 10.039 
b'),
     Text(0.47727272727273, 0.08333333333333333, 'gini = 0.025 \nsamples = 846 \nvalue = [17, 1]
1342]\nclass = b'),
    Text(0.52272727272727, 0.0833333333333333333, 'gini = 0.311 \nsamples = 32 \nvalue = [11, 1]
46] \nclass = b'),
    179] \nclass = b'),
    Text(0.5681818181818182, 0.0833333333333333333, 'gini = 0.345 \nsamples = 114 \nvalue = [41, 12]
144] \setminus nclass = b'),
     Text(0.613636363636363636, 0.083333333333333333, 'gini = 0.354 \nsamples = 87 \nvalue = [117, 12]
35] \nclass = a'),
     571 \times a = a',
     Text(0.6818181818181818, 0.5833333333333333334, 'CO <= 0.35 \ngini = 0.312 \nsamples = 99 \nva
lue = [125, 30] \setminus nclass = a'),
     Text(0.65909090909091, 0.4166666666666667, 'qini = 0.0\nsamples = 70\nvalue = [108, 0]
  \nclass = a'),
     Text(0.70454545454546, 0.416666666666666667, 'NO 2 <= 104.0 \ngini = 0.462 \nsamples = 29 \neg 104.0 \ngini = 0.462 \nsamples = 29 \ngrid = 20 \ngr
nvalue = [17, 30] \setminus nclass = b'),
     Text(0.6818181818181818, 0.25, 'CO \le 0.55 \neq 0.307 = 0.307 = 23 \neq 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.307 = 0.3
nclass = b'),
    Text(0.65909090909091, 0.08333333333333333, 'gini = 0.492 \nsamples = 11 \nvalue = [7, 9]
 ] \nclass = b'),
     Text(0.70454545454546, 0.08333333333333333, 'gini = 0.0 \nsamples = 12 \nvalue = [0, 21]
 \nclass = b'),
    Text(0.7272727272727273, 0.25, 'gini = 0.0 \nsamples = 6 \nvalue = [10, 0] \nclass = a'),
    Text(0.875, 0.583333333333334, 'TCH <= 2.085 \cdot i = 0.046 \cdot i = 689 \cdot i = [111]
2, 27] \setminus nclass = a'),
     Text(0.818181818181818182, 0.4166666666666666, 'NO 2 <= 79.5 \ngini = 0.032 \nsamples = 671 
nvalue = [1093, 18] \nclass = a'),
     Text(0.7727272727272727, 0.25, 'PM25 \le 9.5 \le 0.012 \le 513 \le [829, 1.00]
 5] \nclass = a'),
    Text(0.7954545454545454, 0.08333333333333333333, 'gini = 0.02\nsamples = 295\nvalue = [484, 0.0833333333333333333]
 51 \times a'),
     Text(0.863636363636363636, 0.25, 'TOL <= 7.75 | mgini = 0.089 | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mvalue = [264, 1.05] | msamples = 158 | mva
```


Conclusion

Accuracy

```
In [62]:
```

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.6178488329817193
Ridge Regression: 0.6152190481161524
Lasso Regression 0.3646755234090291
ElasticNet Regression: 0.5470783923837095
Logistic Regression: 0.9311102968120191
Random Forest: 0.966496771081828

Random Forest is suitable for this dataset