Composition des applications

Exercice 1. Recopier et compléter les pointillés :

- 1. Soient f(x) = x + 2 et $g(x) = x^2$ deux applications définies sur \mathbb{R} .
 - $-(f \circ g)(3) = \cdots$
 - $-(g \circ f)(3) = \cdots$
 - $-(f\circ g)(x)=\cdots$
- 2. Si $h(x) = (2x+1)^3$ tel que $h = f \circ g$ alors $g(x) = \cdots$ et $f(x) = \cdots$

Exercice 2. Dans chacun des cas suivants, déterminer l'application $g \circ f$.

- 1. f(x) = 3x et g(x) = x + 5
- 2. f(x) = 2x et g(x) = -7x
- 3. $f(x) = 2x^2$ et g(x) = -7x
- 4. f(x) = 2x + 3 et $g(x) = 2x^2 + 5x + 1$
- 5. f(x) = 1 x et $g(x) = \frac{1}{x}$

Exercice 3. Dans chacun des cas suivants, déterminer l'application $g \circ f$.

- 1. f(x) = 3x et $g(x) = \sqrt{x}$
- 2. $f(x) = 2\sqrt{x+1}$ et $g(x) = 5x^2$
- 3. $f(x) = \sqrt{x}$ et $g(x) = 5x^2 + 1$
- 4. f(x) = x + 1 et $g(x) = 2x^2 + 3x + 4$

Exercice 4. Dans chacun des cas suivants , déterminer une expression de $g \circ f$ en fonction de x. (on simplifiera si possible l'expression de $g \circ f$ obtenue.)

- 1. $f(x) = \frac{x+1}{x-1}$ et $g(x) = \sqrt{x}$
- 2. $f(x) = \sqrt{x}$ et $g(x) = \frac{x+1}{x-1}$
- 3. f(x) = 3x + 1 et $g(x) = x^3$
- 4. f(x) = x + 1 et $g(x) = \frac{x+1}{x-1}$

Exercice 5 (Décomposition). Dans chacun des cas suivants, déterminer deux applications f et g telles que l'application h soit la composée de g par f: c'est à dire $h = g \circ f$.

1.
$$h(x) = \sqrt{7x+1}$$

2.
$$f(x) = (5x+6)^2$$

3.
$$h(x) = (x-2)^2 - 4$$

4.
$$h(x) = \frac{\sqrt{x+1}}{1-2\sqrt{x}}$$

Exercice 6. 1. Soit deux applications f et g définies par : f(x) = 1 - x et $g(x) = \frac{8x - 4}{3x + 3}$.

- (a) Calculer $(f \circ g)(0)$ et $(g \circ f)(2)$.
- (b) Déterminer une expression de $(g \circ f)(x)$.
- 2. On considère l'application h définie par : $h(x) = 2(5x 2)^2$. Déterminer deux applications u et v telles que : $h(x) = (v \circ u)(x)$ pour tout $x \in \mathbb{R}$.

Exercice 7. Pour chaque item, indiquer le résultat exact parmi les trois proposés.

n°	Items	Résultat A	Résultat B	Résultat C
1.	Si $f(x) = -x^2 + 1$ et $g(x) = (x - 1)^2$ Alors la valeur de $g \circ f(-1)$ est	1	0	4
2.	Soit $f(x) = 3x + 4$. Une expression de $f(2x)$ en fonction de x est	6 <i>x</i> + 8	10	6x + 4
3.	L'application définie par $f(x) = (x+3)^4$ est la composée de $u \circ v$ avec :	u(x) = x + 3 et $v(x) = x^4$	$u(x) = x^4$ et $v(x) = x + 3$	u(x) = x et $v(x) = 3 + x^4$