```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Using Streams

Streams

- A stream is an *infinite sequence* of values
 - So cannot make a stream by making all the values
 - Key idea: Use a thunk to delay creating most of the sequence
 - Just a programming idiom

A powerful concept for division of labor:

- Stream producer knows how create any number of values
- Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:

- User actions (mouse clicks, etc.)
- UNIX pipes: cmd1 | cmd2 has cmd2 "pull" data from cmd1
- Output values from a sequential feedback circuit

Using streams

We will represent streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:

```
'(next-answer . next-thunk)
```

So given a stream s, the client can get any number of elements

- First: (car (s))
- Second: (car ((cdr (s))))
- Third: (car ((cdr ((s))))))

(Usually bind (cdr (s)) to a variable or pass to a recursive function)

Example using streams

This function returns how many stream elements it takes to find one for which tester does not return #f

Happens to be written with a tail-recursive helper function

- (stream) generates the pair
- So recursively pass (cdr pr), the thunk for the rest of the infinite sequence