Box #____ Math 60 Section 1 Homework 12 31 May 2018

Collaborators:

Colley 7.3 #4 Verify Stoke's Theorem for *S* which is defined by $x^2 + y^2 + z^2 = 4$, $z \le 0$, oriented by downward normal and

$$\mathbf{F} = (2y - z)\mathbf{i} + (x + y^2 - z)\mathbf{j} + (4y - 3x)\mathbf{k}.$$

1

Colley 7.3 #6 Verify Gauss's Theorem for

$$\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

$$D = \{(x, y, z) | 0 \le z \le 9 - x^2 - y^2 \}.$$

Colley 7.4 #6 Use Gauss's Theorem to derive the heat equation,

$$\sigma \rho \frac{\partial T}{\partial t} = k \nabla^2 T.$$

Colley 7.4 #10 Consider the three-dimensional heat equation

$$\nabla^2 u = \frac{\partial u}{\partial t} \tag{1}$$

for functions u(x,y,z,t). (Here $\nabla^2 u$ denotes the Laplacian $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$.) In this exercise, show that any solution T(x,y,z,t) to the heat equation is unique in the following sense: Let D be a bounded solid region in \mathbb{R}^3 and suppose that the functions $\alpha(x,y,z)$ and $\phi(x,y,z,t)$ are given. Then there exists a unique solution T(x,y,z,t) to equation (1) that satisfies the conditions

$$T(x,y,z,0) = \alpha(x,y,z), \quad \text{for } (x,y,z) \in D,$$
 (2)

and

$$T(x, y, z, t) = \phi(x, y, z, t)$$
, for $(x, y, z) \in \partial D$ and $t \ge 0$.

To establish uniqueness, let T_1 and T_2 be two solutions to equation (1) satisfying the conditions in (2) and set $w = T_1 - T_2$.

(a) Show that w must also satisfy equation (1), plus the conditions that

$$w(x,y,z,0) = 0$$
 for all $(x,y,z) \in D$,

and

$$w(x, y, z, t) = 0$$
 for all $(x, y, z) \in \partial D$ and $t \ge 0$.

(b) For $t \ge 0$, define the "energy function"

$$E(t) = \frac{1}{2} \iiint_{D} [w(x,y,z,t)]^2 dV.$$

Use Green's first formula in Theorem 4.1 to show that $E'(t) \leq 0$ (i.e., that E does not increase with time).

- (c) Show that E(t) = 0 for all $t \ge 0$. (Hint: Show that E(0) = 0 and use part (b).)
- (d) Show that w(x, y, z, t) = 0 for all $t \ge 0$ and $(x, y, z) \in D$, and thereby conclude the uniqueness of solutions to equation (1) that satisfy the conditions in (2).

Colley 7.4 #18 Suppose that $J = \sigma E$ (This is a version of Ohm's law that obtains in some electric conductors—here σ is a positive constant known as the **conductivity**) If $\rho = 0$, show that E and B satisfy the so-called **telegrapher's equation**,

$$\nabla^2 \mathbf{F} = \mu_0 \sigma \frac{\partial \mathbf{F}}{\partial t} + \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{F}}{\partial t^2}.$$

True/False Questions

- 1. The function $\mathbf{X}: \mathbb{R}^2 \to \mathbb{R}^3$ given by $\mathbf{X}(s,t) = (2s+3t+1,4s-t,s+2t-7)$ parametrizes the plane 9x-y-14z=107.
- 2. The function $X : \mathbb{R}^2 \to \mathbb{R}^3$ given by $X(s,t) = (s^2 + 3t 1, s^2 + 3, -2s^2 + t)$ parametrizes the plane x 7y 3z + 22 = 0.
- 3. The function $\mathbf{X}: (-\infty, \infty) \times (-\pi/2, \pi/2) \to \mathbb{R}^3$ given by $\mathbf{X}(s,t) = (s^3 + 3\tan t 1, s^3 + 3, -2s^3 + \tan t)$ parametrizes the plane x 7y 3z + 2z = 0.
- 4. The surface $\mathbf{X}(s,t) = (s^2t, st^2, st)$ is smooth.
- 5. The area of the portion of the surface $z = xe^{xy}$ lying over the disk of radius 2 centered at the origin is given by

$$\int_0^2 \int_0^{\sqrt{4-x^2}} \sqrt{1 + e^{2xy} (x^4 + x^2y^2 + 2xy + 1)} \, dy \, dx.$$

- 6. If *S* is the unit sphere centered at the origin, then $\int \int_S x^3 dS = 0$.
- 7. If *S* is the cube with the eight vertices $(\pm 1, \pm 1, \pm 1)$, then $\int \int_S (1 + x^3 y) dS = 0$.
- 8. If *S* denotes the rectangular box with faces given by the planes $x = \pm 1$, $y = \pm 2$, $z = \pm 3$, then $\int \int_S xys \, dS = 0$.

True/False Questions (Continued)

9. If *S* denotes the sphere of radius *a* centered at the origin, then

$$\int \int_{S} (z^{3} - z + 2) dS = \int \int_{S} (x - y^{5} + 2) dS.$$

- 10. $\iint_S (-y\mathbf{i} + x\mathbf{j}) \cdot d\mathbf{S} = 0$, where *S* is the cylinder $x^2 + y^2 = 9$, $0 \le z \le 5$.
- 11. Let *S* denote the closed cylinder with lateral surface given by $y^2 + z^2 = 4$, front by x = 7, and back by x = -1, and oriented by outward normals. Then $\int_S x \mathbf{i} \cdot d\mathbf{S} = 24\pi$.
- 12. If *S* is the portion of the cylinder $x^2 + y^2 = 16$, $-2 \le z \le 7$, then $\int \int_S \nabla \times (()y\mathbf{i}) \cdot d\mathbf{S} = 0$.
- 13. $\iint_S \mathbf{F} \cdot d\mathbf{S} = 6\pi$, where *S* is the closed hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$, together with the surface $x^2 + y^2 \le 1$, z = 0 and $\mathbf{F} = yz\mathbf{i} xz\mathbf{i} + 3\mathbf{k}$.
- 14. If *S* is the level set of a function f(x,y,z) and $\nabla f \neq \mathbf{0}$, then the flux of ∇f across *S* is never zero.
- 15. A smooth surface has at most two orientations.
- 16. A smooth, connected surface is always orientable.

True/False Questions (Continued)

- 17. If **F** is a vector field of class C^1 and S is the ellipsoid $x^2 + 4y^2 + 9z^2 = 36$, then $\int \int_S \nabla \times \mathbf{F} d\mathbf{S} = 0$.
- 18. $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ has the same value for all piecewise smooth, oriented surfaces S that have the same boundary curve C.
- 19. If **F** is a constant vector field, then $\iint_S \mathbf{F} \cdot d\mathbf{S} = 0$, where *S* is any piecewise smooth, closed, orientable surface.
- 20. $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} = 0$, where *S* is any closed, orientable, smooth surface in \mathbb{R}^3 and \mathbf{F} is of class C^1 .
- 21. Suppose that **F** is a vector field of class C^1 whose domain contains the solid region D in \mathbb{R}^3 and is such that $\|\mathbf{F}(x,y,z)\| \leq 2$ at all points on the boundary surface S of D. Then $\iiint_D \nabla \cdot \mathbf{F} dV$ is twice the surface area of S.
- 22. If *S* is an orientable, piecewise smooth surface and **F** is a vector field of class C^1 that is everywhere tangent to the boundary of *S*, then $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} = 0$.
- 23. If *S* is an orientable, piecewise smooth surface and **F** is a vector field of class C^1 that is everywhere perpendicular to the boundary of *S*, then $\iint_S \nabla \times \mathbf{F} \times d\mathbf{S} = 0$.

True/False Questions (Continued)

- 24. If **F** is tangent to a closed surface *S* that bounds a solid region *D* in \mathbb{R}^3 , then $\iiint_D \nabla \cdot \mathbf{F} dV = 0$.
- 25. Let S be a piecewise smooth, orientable surface and F a vector field of class C^1 . Then the flux of F across S is equal to the circulation of F around the boundary of S.
- 26. Let D be a solid region in \mathbb{R}^3 and \mathbf{F} a vector field of class C^1 . Then the flux of \mathbf{F} across the boundary of D is equal to the integral of the divergence of \mathbf{F} over D.
- 27. Suppose that f and g are of class C^2 and D is a solid region in \mathbb{R}^3 with piecewise smooth boundary surface S that is oriented away from D. If g is harmonic, then $\iiint_D \nabla f \cdot \nabla g \, dV = \iint_S f \nabla g \cdot d\mathbf{S}$.
- 28. Suppose that f and g are of class C^2 and D is a solid region in \mathbb{R}^3 with piecewise smooth boundary surface S that is oriented away from D. If f and g are harmonic, then $\iint_S f \nabla g \cdot d\mathbf{S} = \iint_S g \nabla f \cdot d\mathbf{S}$.
- 29. If $\nabla^2 f$ is known, then f is uniquely determined up to a constant.
- 30. If *S* is a closed, orientable surface, then

$$\iint\limits_{S} \frac{\mathbf{x}}{\left\|\mathbf{x}\right\|^{3}} \cdot d\mathbf{S} = 0.$$