HOCHSCHULE LUZERN

InformatikFH Zentralschweiz

Computer Graphics: Flächen - Übung

Josef F. Bürgler und Thomas Koller

TA.BA_CG, SW 09

Die Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein.

Sie sollten im Durschnitt 75% der Aufgaben bearbeiten. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche nachdem das Thema im Unterricht besprochen wurde.

Aufgabe 1: Zylinderkoordinaten

Beschreiben Sie mit Hilfe von Zylinderkoordinaten das rechts gezeichneten Tortenstück. Sie müssen 5 Flächen exakt mit Hilfe von Mengen aus \mathbb{R}^3 beschreiben!

Hinweis: der Tortenboden lässt sich durch folgende Teilmenge von \mathbb{R}^3 beschreiben:

$$T_B = \{ (r, \theta, 0) | 0 \le r \le 6 \land 0 \le \theta \le \pi/6 \}$$

Lösung: Man hat nacheinander

• Tortenboden:

$$T_R = \{(r, \theta, 0) | 0 \le r \le 6 \land 0 \le \theta \le \pi/6 \}$$

• Tortendeckel:

$$T_D = \{ (r, \theta, 4) | 0 < r < 6 \land 0 < \theta < \pi/6 \}$$

• Tortenrand (aussen):

$$T_R = \{(6, \theta, z) | 0 \le \theta \le \pi/6 \land 0 \le z \le 4\}$$

• Tortenanschnitt 1:

$$T_{A1} = \{(r,0,z) | 0 \le r \le 6 \land 0 \le z \le 4\}$$

• Tortenanschnitt 2:

$$T_{A1} = \{ (r, \pi/6, z) | 0 \le r \le 6 \land 0 \le z \le 4 \}$$

Aufgabe 2: Sphärische Koordinaten

Beschreiben Sie mit Hilfe von Kugelkoordinaten den rechts gezeichneten Kegel mit Öffnungswinkel 90° . Sie müssen dazu 2 Flächen exakt mit Hilfe von Mengen aus \mathbb{R}^3 beschreiben! Wie würde die Darstellung in Zylinderkoordinaten lauten?

Hinweis: die Deckfläche ässt sich durch folgende Teilmenge von \mathbb{R}^3 beschreiben:

$$D = \left\{ \left(\frac{1}{\sqrt{2}\cos\phi}, \phi, \theta \right) \middle| 0 \le \phi \le \frac{\pi}{4} \, \land \, 0 \le \theta < 2\pi \right\}$$

Lösung: Man hat nacheinander

• Deckel:

$$D = \left\{ \left(\frac{1}{\sqrt{2}\cos\phi}, \phi, \theta \right) \middle| 0 \le \phi \le \frac{\pi}{4} \, \land \, 0 \le \theta < 2\pi \right\}$$

• Mantel:

$$M = \left\{ \left(
ho, \frac{\pi}{4}, heta
ight) \left| 0 \le
ho \le 1 \, \land \, 0 \le heta < 2\pi
ight.
ight\}$$

Natürlich wäre die Beschreibung in Zylinderkoordinaten einfacher:

• Deckel: kurz $0 \le z = r \le 1/\sqrt{2}$

$$D = \left\{ \left(r, \theta, \frac{1}{\sqrt{2}} \right) \middle| 0 \le r \le \phi/4 \, \land \, 0 \le \theta < 2\pi \right\}$$

• Mantel: kurz $0 \le z = r \le 1/\sqrt{2}$, $0 \le \theta < 2\pi$

$$M = \left\{ \left(r, \theta, \frac{1}{\sqrt{2}} \right) \middle| 0 \le \rho 2 \land 0 \le \theta < 2\pi \right\}$$

2

Aufgabe 3: Parametrisierung einer Rotationsfläche

Gesucht ist die Parametrisierung eines Kegels mit dem Basiskreis $x^2 + y^2 = a^2$ in der xy-Ebene und der Spitze im Punkt (0,0,h) über der xy-Ebene (siehe folgende Abbildung).

Lösung: Falls die Einheitsvektoren in x-, y- und z-Richtungen gegeben sind durch \overrightarrow{i} , \overrightarrow{j} und \overrightarrow{k} , dann hat der Radiusvektor die Form

$$\vec{r}_0 = a \left(\cos \phi \, \vec{i} + \sin \phi \, \vec{j} \right)$$

Oberhalb der xy-Ebene nimmt der Radius r linear ab, d.h. wir haben

$$r(z) = a\left(1 - \frac{z}{h}\right)$$

Somit hat man auf der Höhe z den Radius

$$\vec{r}_1 = a \left(1 - \frac{z}{h} \right) \left(\cos \phi \, \vec{i} + \sin \phi \, \vec{j} \right)$$

Also lautet die Parameterform Somit hat man auf der Höhe z den Radius

$$\vec{r}(\theta, z) = \vec{r}_1 + z\vec{k}$$

$$= a\left(1 - \frac{z}{h}\right)\left(\cos\phi\vec{i} + \sin\phi\vec{j}\right) + z\vec{k}$$

Diese Vektorgleichung kann auch so geschrieben werden:

$$x(\theta, z) = a\left(1 - \frac{z}{h}\right)\cos\phi$$
$$y(\theta, z) = a\left(1 - \frac{z}{h}\right)\sin\phi$$
$$z = z$$

Aufgabe 4: Regelfläche — Möbiusband

Zeige, dass das Möbiusband (siehe Abb. rechts) durch die folgende parametrische Gleichung dargestellt werden kann:

$$\mathbf{r}(u,v) = \mathbf{p}(u) + v\mathbf{q}(u)$$

wobei

$$\mathbf{p}(u) = \begin{bmatrix} \cos(2u) \\ \sin(2u) \\ 0 \end{bmatrix} \quad \text{und} \quad \mathbf{q}(u) = \begin{bmatrix} \cos(u)\cos(2u) \\ \cos(u)\sin(2u) \\ \sin(u) \end{bmatrix}$$

wobei $(u,v) \in [0,\pi] \times [-1,1]$, indem Sie die Regelfläche mit einem geeigneten Zeichenprogramm darstellen.

Lösung: Die Spitze des Vektors $\mathbf{p}(u)$ bewegt sich in der xy-Ebene auf einem Kreis mit Radius 1 und Zentrum im Ursprung und zwar rundherum wenn sich u zwischen 0 und π bewegt. An dieses Spitze wird nun ein v-Faches des Vektors $\mathbf{q}(u)$ geheftet. Die Spitze dieses Vektor bewegt sich auf einer Einheitskugel. Sie startet im Nordpol, quert den 45-zigsten (nördlichen) Breitengrad bei 90° Ost, den Äquator bei 180° Ost, den 45-zigsten (südlichen) Breitengrad bei 90° West und erreicht danach den Südpol. Damit wird wieder die gleiche Gerade aufgespannt, wie wenn sich die Vektorspitze im Nordpol befindet.

Aufgabe 5: Extrudierte Fläche — der Doughnut

Erstellen Sie ein Programm in Ihrer Lieblingsprogrammiersprache welches 8×8 Punkte auf einem Torus (Doughnut) berechnet. Der Aussendurchmesser sei $2R_a$, der Innendurchmesser $2R_i$ und der Durchmesser des Querschnitts sei 2r.

Wir legen ein Koordinatensystem in den Schwerpunkt des Doubhnut. Verwenden Sie dann folgende Informationen:

• Der Schwerpunkt der Querschnittsfläche beschreibt den Kreis

$$u \mapsto \mathbf{x}(u) = \frac{R_i + R_a}{2} \begin{bmatrix} \cos u \\ \sin u \\ 0 \end{bmatrix}$$
 wobei $0 \le u < 2\pi$.

- Berechnen Sie mit dieser Information das die Kurve begleitende Dreibein, d.h. $\mathbf{t}(u)$, $\mathbf{n}(u)$ und $\mathbf{b}(u)$ mit den Formeln aus den Slides.
- Denken Sie sich jetzt ein lokales Koordinatensystem mit Ursprung auf der obigen Kurve. Dann ist der Rand des Doughnut gegeben durch

$$\mathbf{s}(u, v) = r(\mathbf{n}(u)\cos v + \mathbf{b}(u)\sin v)$$
 wobei $0 \le v < 2\pi$.

• Ein beliebiger Punkt auf dem Doughnut lässt sich nun beschreiben durch

$$\mathbf{S}(u,v) = \mathbf{x}(u) + \mathbf{s}(u,v) \quad \text{wobei} \quad 0 \le u, v < 2\pi.$$

Lösung: TODO