1

Недостатки алгоритма:

1. Нужно решать

$$f'(x) = 0$$

и иногда решение такого уравнение может быть сложным или невозможным.

- 2. Количество критических точек может быть так велико, что последовательное их нахождение не очень.
- 3. Функция f может быть не дифференцируема.
- 4. Функция не задана аналитически.

Рассмотрим численные методы одномерного поиска - которые используются при наличии вышеперчисленных проблем.

0.1 Унимодальные функции

Функция f(x) называется унимодальной на $[a_0,b_0]$ если f непрерывна на $[a_0,b_0]$ и

- 1. f на $[a_0, b_0]$ имеет единственную точку минимума x^*
- 2. f монотонно убывает на $[a_0, x^*)$ и монотонно возрастает на $(x^*, b_0]$

на отрезке $x^* \in [\alpha, \beta] \subset [a_0, b_0]$

$$f^* = \min_{[\alpha,\beta]} f(x)$$

Лемма: Основные свойства унимодальной функции. Пусть f является унимодальной на [a,b] и пусть $x,y\in [a,b]$ так, что a< x< y< b. Тогда

- 1. Если f(x) < f(y), то $x^* \in [a, y)$
- 2. Если f(x) > f(y), то $x^* \in (x, b]$
- 3. Если f(x) = f(y), то $x^* \in (x, y)$

Доказательство: Пункты 2 и 3 - самостоятельно. Пункт 1 - от противного. Предположим, что f(x) < f(y), но $x^* \notin [a,y)$, но тогда верно $x^* \in [y,b]$.

Но тогда по определению $f(x) > f(y) > f(x^*)$ - противоречие. Ч.Т.Д.

Использование унимодальных функций позволяет уменьшить отрезок поиска.

Отсюда вытекает определение: Любой отрезок содержащий точку минимума называется отрезком локализации точки минимума, или интервалом неопределенности.

Рассмотрим задачу поиска минимума f на [a,b] с заданной точностью ε . Найдем $x_{\text{пр}}^*$ такую что

$$|x^* - x_{\rm \Pi p}^*| < \varepsilon$$

$$x^* - \varepsilon < x_{\rm \Pi p}^* < x^* + \varepsilon$$

Должны найти отрезок длиной 2ε .

Выбираем отрезки $[a_i,b_i]$ до тех пор пока $b_i-a_i=2arepsilon$, при этом полагаем

$$x_{\mathrm{np}}^* = \frac{a_i + b_i}{2}$$

Например:

$$f(x) = x^2 - 10x + 1, x \in (-100, 100)$$

0.2 Алгоритм Свена

Найдем отрезок локализации для f

1.

 $\forall x_0, t > 0$ - величина шага

- 2. k = 0
- 3. $f(x_0-t)$; $f(x_0+t)$; $f(x_0)$
- 4. Условие окончания
 - (a) если $f(x_0-t) \geq f(x_0) \leq f(x_0+t)$ то нач. инт-л неопред. найден $[x_0-t,x_0+t]$
 - (b) если $f(x_0-t)\leq f(x_0)\geq f(x_0+t)$ то f(x) не унимодальная на $[x_0-t,x_0+t]$ тогда выбираем другую x_0 .
 - (c) Если условия окончания не выполняются, то переходим к пункту 5
- 5. Задим Δ следующим образом
 - (a) $f(x_0-t) \geq f(x_0) \geq f(x_0+t)$ тогда $\Delta = t, a_0 = x_0, x_1 = x_0+t, k=1$
 - (b) $f(x_0-t) \le f(x_0) \le f(x_0+t)$ тогда $\Delta = -t, b_0 = x_0, x_1 = x_0-t, k = 1$
- 6. Найти следующую точку

$$x_{k+1} = x_k + 2^k \Delta$$

7. Проверяем условие убывания функции

(a) Если
$$f(x_{k+1}) < f(x_k), \Delta = t$$
 то $a_0 = x_k, k = k+1$ если $f(x_{k+1}) < f(x_k), \Delta = -t$ то $b_0 = x_k, k = k+1$

(b) Если $f(x_{k+1}) \geq f(x_k)$ процедура завершается при $\Delta=t, b_0=x_{k+1}$ или $\Delta=-t, a_0=x_{k+1}$ и тогда $[a_0,b_0]$ - искомый отрезок.

Пример:

$$f(x) = (x-5)^2$$

- 1. Зададим $x_0 = 1, t = 1$
- 2. k = 0
- 3. f(0) = 25, f(1) = 16, f(2) = 9
- 4. f(0) > f(1) > f(2)

5.
$$f(0) > f(1) > f(2), \Delta = t = 1, a_0 = x_0 = 1, k = 1, x_1 = x_0 + t = 1 + 1 = 2$$

6.
$$x_2 = x_1 + 2\Delta = 4$$
 а потом $x_3 = x_2 + 2\Delta = 8$

7.
$$f(x_2) = 1 < f(x_1) = 9, \Delta = 1, a_0 = x_1 = 2, k = 2$$
 и потом

Решить самостоятельно $f(x)=x^2+Bx+C$ где B - дата рождения и C - номер группы