Gender Classification from facial image

Group 8

Project Guide: Madam Pema Yangden

Our Team

Technology

Aim

System Architecture

<u>Outline</u>

Objectives

Work flow

Scope

Work plan

Literature Review

Conclusion

Requirements

Our Team

Bikram Chuwan

Sonam Thinley

Tshering Jurmey

Tshewang Dendup

<u>Aim</u>

• To build a system that can classify the person's gender from his/her facial image using deep learning.

<u>Objectives</u>

Build a gender classification system based on facial images.

 Detect the accuracy of the male or female images in terms of percentage.

Detect the gender from the provided dataset.

Scope of the project

This research focuses on employing a deep learning approach that comprises a Convolutional Neural Network to improve gender classification accuracy (CNN).

Several face datasets were collected from the internet and utilized as facial recognition system training material.

LITERATURE REVIEW

Paper Review

Mäkinen & Raisamo (2008)

An experimental comparison of gender classification methods

Tathe and Narote (2012), Chai et. al. (2009), and Rahman et. al. (2013) A face detection technique using human skin color models.

Application Review

GenderGet: Detect your gender with A.I. (Classify)

Requirements

1.Software Requirements

Google colab

Google Colab is a cloud-based Jupyter notebook environment that is free to use.

Anaconda

Anaconda is a distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment.

<u>Technology</u>

Computer Vision

Convolutional Neural Network (CNN)

OpenCV

System Architecture

3-tier architecture

Work Flow

Gantt chart

Assignment Title	Start date	End date	Duration					
Project Proposal and Presentation	1-Mar	14-Mar	13					
Analytices Model and Presentation	15-Mar	28-Mar	13					
Milesrtone Modle Presentation	29-Mar	9-May	41					
Final Delivery and Presentation	10-May	13-Jun	34					
			Proposal and P	21-Mar	10-Apr	30-Apr	20-May	9-Jun
			srtone Modle F					

Conclusion

• The Gender detection will be deployed in a website using convenient frameworks. The website will have a function where user will be able to upload their picture in order to detect the gender.

Biblography

- Chai, T. Y., Rizon, M., Woo, S. S. & Tan, C. S., 2009. Facial Features for Template Matching Based Face Recognition. American Journal of Applied Sciences, vol. 6, no. 11, pp. 1897-1901.
- Yang, MH & Ahuja, N, 2001, Face Detection and Gesture Recognition for Human-Computer Interaction, Springer Science & Business Media, Boston.
- Sirovich, L. & Kirby, M., 1987, 'Low-dimensional procedure for the characterization of human faces', Journal of Optical Society of America, vol. 4, no. 3, p. 519.

