CS5330: Optional problems on Martingales

April 12, 2020

Here are solution sketches to the optional problems on martingales. If anything is unclear, please talk to me or your TA.

1. (Exercise 13.3 of MU) Let $X_0 = 0$ and for $j \ge 0$, let X_{j+1} be chosen uniformly over the real interval $[X_j, 1]$. Show that for $k \ge 0$, the sequence:

$$Y_k = 2^k (1 - X_k)$$

is a martingale.

$$\mathbb{E}[Y_{j+1} \mid X_1, \dots, X_j] = \mathbb{E}[2^{j+1}(1 - X_{j+1}) \mid X_1, \dots, X_j]$$

$$= 2^{j+1}(1 - \mathbb{E}[X_{j+1} \mid X_1, \dots, X_j])$$

$$= 2^{j+1}\left(1 - \frac{1 + X_j}{2}\right)$$

$$= 2^{j}(1 - X_j) = Y_j$$

2. Suppose X_0, X_1, \ldots, X_n are independent, identically distributed, real-valued random variables with mean 0 and variance σ^2 . For any $i \geq 0$, let $S_i = \sum_{j=0}^i X_j$, and let $M_i = S_i^2 - i\sigma^2$. Show that M_0, \ldots, M_n form a martingale with respect to X_0, \ldots, X_n .

$$\mathbb{E}[M_{j+1} \mid X_0, \dots, X_j] = \mathbb{E}[S_{j+1}^2 - (j+1)\sigma^2 \mid X_0, \dots, X_j]$$

$$= \mathbb{E}[(S_j + X_{j+1})^2 \mid X_0, \dots, X_j] - (j+1)\sigma^2$$

$$= S_j^2 + 2S_j \mathbb{E}[X_{j+1}] + \mathbb{E}[X_{j+1}^2] - (j+1)\sigma^2$$

$$= S_j^2 - j\sigma^2 = M_j$$

- 3. Let G be a random d-regular graph on n vertices, that is, a graph drawn uniformly from the family of all n-vertex graph in which each vertex has exactly d neighbors. Color the vertices of G red or blue independently at random.
 - (a) What is the expected number of monochromatic edges in G?

Each edge has probability 1/2 of being monochromatic. So, the expected number of monochromatic edges is (dn/2)/2 = dn/4.

(b) Show that the actual number of monochromatic edges is tightly concentrated around its expectation.

Fix any 2-coloring. Order the vertices $1, \ldots, n$ arbitrarily. Let X_i be the edges between i and nodes in $\{1, \ldots, i-1\}$. The number N of monochromatic edges is clearly a function f of X_1, \ldots, X_n . We claim that f is d-Lipschitz. This is simply because there can be at most d additional monochromatic edges depending on where the edges incident to a particular vertex are placed. Hence, applying McDiarmid and part (a), we get that

$$\Pr[|N - dn/4| > \varepsilon dn] \le 2e^{-2(\varepsilon dn)^2/(d^2n)} = 2e^{-2\varepsilon^2n}.$$

4. Consider an n by n square grid $\{0, 1, \ldots, n\}^2$, where each point is connected to each of its (at most) four neighbors. Within each inner square of the grid, we draw a diagonal from bottom left to the top right with probability 1/2.

Let Z be the length of the shortest path from (0,0) to (n,n). Show that:

$$\Pr[|Z - \mathbb{E}[Z]| \ge t] \le \exp(-\Omega(t^2/n))$$

Hint: Consider Z as a function of X_1, \ldots, X_n where X_i denotes the state of the i'th column.

As hinted, let $Z=f(X_1,\ldots,X_n)$ where X_i is a vector that describes whether each cell of the i'th column has the diagonal present or not. Note that f is $(2-\sqrt{2})$ -Lipschitz because the shortest path will only cross any particular column once, and this crossing via a diagonal is of length $\sqrt{2}$ while via the sides of a cell is 2. Hence, applying McDiarmid directly:

$$\Pr[|Z - \mathbb{E}[Z]| \ge t] \le 2\exp(-2t^2/((2-\sqrt{2})^2n)).$$

5. Consider a random graph $G_{n,p}$ on n vertices where each edge appears with probability p independently. Let C denote the size of the largest clique in $G_{n,p}$. Show that:

$$\Pr[|C - \mathbb{E}[C]| \ge t] \le 2e^{-2t^2/n}.$$

As in problem 3, we use the "vertex exposure martingale". Order the vertices 1 through

n arbitrarily, we let $C = C(X_1, \ldots, X_n)$ where X_i is the set of edges between i and nodes $\{1, \ldots, i-1\}$. The function C is clearly 1-Lipschitz. McDiarmid directly implies the result.

6. (Exercise 13.16 of MU) Let x and y be two bit strings of length n, where each character is independently 0 with probability 1/2 and 1 with probability 1/2. Show that the length of the longest common subsequence is highly concentrated around its mean.

Write the LCS length L as a function of $x_1, \ldots, x_n, y_1, \ldots, y_n$. Check that this function is 1-Lipschitz. Applying McDiarmid yields: $\Pr[|L - \mathbb{E}[L]| > t] \le 2 \exp(-t^2/n)$.

7. (Exercise 13.9 of MU) Consider an n-cube with $N = 2^n$ nodes. Let S be a nonempty set of vertices on the cube, and let x be a vertex chosen uniformly at random among all vertices of the cube. Let D(x,S) be the minimum number of coordinates in which x and y differ over all points $y \in S$. Give a bound on:

$$\Pr[|D(x,S) - \mathbb{E}[D(x,S)]| > \lambda]$$

Again very similar to the previous problems. S is fixed, so D(x,S) is a function of the n independent coordinates of x. The function is 1-Lipschitz. So, the probability bound is $2e^{-2\lambda^2/n}$.