Machine Learning to measure Internet traffic

February 22, 2024

Machine Learning to measure Internet traffic

```
[]:['''
      In this analysis, I am going to use different aspects of Machine Learning \Box
       ⇒applied to a Big Data framework.
      I will apply classification and clustering techniques to measure the Internet,
       \hookrightarrow traffic.
      A network log trace file summarizing the traffic generated by thousands of \Box
       ⇔users while browsing the web is used.
      A Tstat (TCP STatistic and Analysis Tool) log file will be used.
      Each line represents a TCP connection. Besides the connection identifiers \sqcup
       ⇔(client and server
      IP addresses and ports), Tstat reports dozens of features, such as the number \Box
       ⇔of packets,
      bytes uploaded and downloaded, etc.
 []: # Input Data from the big data cluster
[10]: Tstat = "/data/students/bigdata_internet/lab4/log_tcp_complete_classes.txt"
```

```
[]: '''In this analysis, PySpark was utilized for its robust distributed computing
      ⇔capabilities,
     ideal for handling large datasets efficiently.
     If you're using the PySpark shell, no additional setup is necessary.
     However, for those working in a Python environment, setting up PySpark involves
     \hookrightarrow the following steps:
     1. Install PySpark: Begin by installing PySpark using pip:
     pip install pyspark
     2. Configure PySpark.sql: In your Python script or interactive session, include \Box
     ⇔the following configuration
     to initialize PySpark.sql:
     ```python
 from pyspark.sql import SparkSession
 spark = SparkSession.builder.getOrCreate()
```

```
Ensure to execute this configuration before performing any PySpark operations.
 For comprehensive installation and configuration instructions, refer to the \Box
 ⇔official PySpark documentation:
 PySpark Installation Guide
 I I I
 []: # Reading data
[11]: spark = SparkSession.builder.getOrCreate()
 df = spark.read.load(Tstat, format="csv", header=True, inferSchema=True, sep='_
 ')
 []: # See the columns of our dataframe
 [1]: df.columns
 []: # Count the number of columns. There are 207 columns
[14]: len(df.columns)
[14]: 207
 []: # Count the number of rows. There are 100,000 rows which means 100,000 TCP_{\sqcup}
 ⇔connections
[15]: df.count()
[15]: 100000
 []: # The 207th column "class:207" there are the label of classes
[17]: class_207 = df.select("class:207")
 []: # There are 10 classes in this TCP connection dataframe
[18]: class_207.distinct().count()
[18]: 10
 []: # The list of classes can be seen here (such as google, amazon, etc.)
```

```
[19]: class_207.distinct().show()
 +----+
 class:207|
 ----+
 class:google|
 class:amazon|
 |class:instagram|
 | class:facebook|
 class:netflix|
 class:ebay|
 class:spotify|
 | class:linkedin|
 class:youtube|
 class:bing|
[]: # I am going to group the dataframe by classes and count the number of TCP_
 ⇔connections to see how much connection
 # we have for each class
[20]:
 web_services = df.groupBy("class:207").count()
[21]: web_services.show()
 -----+
 class:207|count|
 class:google|10000|
 class:amazon|10000|
 |class:instagram|10000|
 | class:facebook|10000|
 class:netflix|10000|
 class:ebay|10000|
 class:spotify|10000|
 | class:linkedin|10000|
 class:youtube | 10000 |
 class:bing|10000|
 -----+
 []: # Classify TCP connections
```

```
[]: # Split dataframe into train-set and test-set (75, 25)
[22]: trainValidation, test = df.randomSplit([0.75, 0.25], 42)
 []: # Pre-processing the dataset
 [4]: from pyspark.ml.feature import VectorAssembler
 from pyspark.ml.feature import StringIndexer
[24]: # Select features
 feat_cols = ['c_bytes_uniq:7', 's_bytes_uniq:21', 'c_pkts_data:8', 's_pkts_data:
 ⁴22¹7
[25]: # Preprocess TrainValidation set
 # Vector Assembler
 va = VectorAssembler(inputCols=feat_cols, outputCol='features')
 vDF = va.transform(trainValidation)
 # Convert string to index for target column
 indexer = StringIndexer(inputCol="class:207", outputCol="label")
 indexerModel = indexer.fit(vDF)
 indexedDF = indexerModel.transform(vDF)
[26]: # Preprocess Test set
 testVDF = va.transform(test)
 testIndexedDF = indexerModel.transform(testVDF)
 []: # For classification, I am going to use Decision Tree model and Random Forest
 ⊶model
 # In order to compare how much time do these models take to train the I will _{\sqcup}
 →import time to compare them
[27]: import time
[28]: # 1. DECISION TREE CLASSIFIER
 from pyspark.ml.classification import DecisionTreeClassifier
 dt = DecisionTreeClassifier(labelCol="label", featuresCol="features", __
 ⇔maxDepth=20)
 start_time = time.time()
 dtModel = dt.fit(indexedDF)
 stop_time = time.time()
 print(f'It takes {stop_time - start_time} seconds')
 finalDFdt = dtModel.transform(indexedDF)
```

```
[29]: testDFdt = dtModel.transform(testIndexedDF)
[30]: # 2. RANDOM FOREST CLASSIFIER
 from pyspark.ml.classification import RandomForestClassifier
 rf = RandomForestClassifier(labelCol="label", featuresCol="features", __

¬numTrees=20, maxDepth=20)
 start_time = time.time()
 rfModel = rf.fit(indexedDF)
 stop_time = time.time()
 print(f'It takes {stop_time - start_time} seconds')
 finalDFrf = rfModel.transform(indexedDF)
 (0 + 1) / 1
 [Stage 124:>
 It takes 61.193100452423096 seconds
[31]: testDFrf = rfModel.transform(testIndexedDF)
[]: # Evaluate the performance of the models
[]: '''The result shows that Random Forest classifies data a little bit easier, \Box
 ⇔because the precision of
 \hookrightarrowDecision Tree (0.50, 0.79).
 For train set, Decision Tree classifier's accuracy is a little bit more than ⊔
 \hookrightarrow Random\ Forest\ Classifier
 but in the test set, the accuracy of Random Forest is a little more than \sqcup
 ⇔Decision Tree.'''
[]: # Evaluate the Decision Tree model performance
[5]: from pyspark.ml.evaluation import MulticlassClassificationEvaluator
[33]: |accuracy = MulticlassClassificationEvaluator(labelCol="label", __
 [34]: # Global accuracy on the TrainValidation set
[35]: print(f'Decition Tree Train Model:\t accuracy = {accuracy.
 —evaluate(finalDFdt)}\nRandom Forest Train Model:\t accuracy = {accuracy.
 ⇔evaluate(finalDFrf)}')
 (1 + 1) / 2
 [Stage 131:=========>
```

```
[36]: # Global accuracy on the Test set
[38]: print(f'Decition Tree Train Model:\t accuracy = {accuracy.
 Gevaluate(testDFdt)}\nRandom Forest Train Model:\t accuracy = {accuracy.
 ⇔evaluate(testDFrf)}')
 (1 + 1) / 2
 accuracy = 0.6938006255513673
 Decition Tree Train Model:
 Random Forest Train Model:
 accuracy = 0.7055898628598926
[39]: dtTestRDD = testDFdt.select("prediction", "label").rdd.map(lambda x:
 \hookrightarrow (float(x[0]), float(x[1])))
[40]: rfTestRDD = testDFrf.select("prediction", "label").rdd.map(lambda x:
 \hookrightarrow (float(x[0]), float(x[1])))
 [6]: from pyspark.mllib.evaluation import MulticlassMetrics
[50]: def metrics_calculator(x):
 metrics = MulticlassMetrics(x)
 precision = metrics.precision()
 recall = metrics.recall()
 f1Score = metrics.fMeasure
 labels = x.map(lambda a: a[1]).distinct().collect()
 print("Class \t Precision \t\t Recall \t\t F1Score")
 for label in sorted(labels):
 print(f'{label},\t {metrics.precision(label)},\t {metrics.
 Grecall(label)},\t {metrics.fMeasure(label, beta=0.1)}')
[49]: dtTestMetrics = metrics_calculator(dtTestRDD)
 Class
 Precision
 Recall
 F1Score
```

accuracy = 0.7894673736377927

accuracy = 0.7818869734352935

Decition Tree Train Model:

Random Forest Train Model:

0.7376775271512114,

0.6372226787181594,

0.6316430020283975,

0.6404358353510896,

0.7150279776179057,

0.8074162679425837,

(1 + 1) / 2

0.680023180095618

0.6757033049509563

0.7412014234204511

0.6701577904322303

0.7998556896353286

0.7566368734924604

[Stage 163:=========>

0.6794921123509042,

0.6761115954664342,

0.7424892703862661,

0.8008057296329454,

0.7561613144137416,

0.670468948035488,

0.0,

1.0,

2.0,

3.0,

4.0,

5.0,

```
6.0,
 0.7181694358904944
 0.718683197947841,
 0.6702551834130781,
 7.0,
 0.8450230995380092,
 0.7980959936533122,
 0.844531441561626
 8.0,
 0.8155529503712388,
 0.5033611217908153
 0.5014416146083613,
 9.0,
 0.48540288049824837,
 0.6948071650420092
 0.697817571348629,
[52]: rfTestMetrics = metrics_calculator(rfTestRDD)
 Class
 Precision
 Recall
 F1Score
 (1 + 1) / 2
 [Stage 171:=======
 0.0,
 0.7344537815126051,
 0.7301587301587301,
 0.7344110085942245
 1.0,
 0.7387127761767531,
 0.6318816762530813,
 0.7374782798598517
 2.0,
 0.785254824344384,
 0.6438133874239351,
 0.7835504607337521
 3.0,
 0.6723577235772358,
 0.6674737691686844,
 0.6723090172973061
 4.0,
 0.8050847457627118,
 0.7214228617106315,
 0.8041614101331264
 5.0,
 0.7290552584670231,
 0.7298203584350973
 0.8153907496012759,
 6.0,
 0.7265917602996255,
 0.6961722488038278,
 0.72627755263418
 7.0,
 0.862910381543922,
 0.7715192383974613,
 0.8618995178153834
 8.0,
 0.5024043966109457,
 0.8573661586557249,
 0.5044723044946148
 0.5192681977423121,
 0.6910534495227446
 9.0,
 0.6933471933471933,
 []: # Hyper-parameters tuning
 []: # I am going to use CrossValidation and ParamGridBuilder for tuning
 [7]: from pyspark.ml.tuning import CrossValidator
 from pyspark.ml.tuning import ParamGridBuilder
[54]: # Decision Tree parameter Tuning
 dtParamGrid = ParamGridBuilder().addGrid(dt.maxDepth, [15, 20, 25]).addGrid(dt.
 →impurity, ["Gini", "Entropy"]).build()
 # CrossValidation
 dtCv = CrossValidator(estimator=dt, evaluator=accuracy,
 ⇔estimatorParamMaps=dtParamGrid, numFolds=3)
 dtCvModel = dtCv.fit(indexedDF)
 dtFinalDF = dtCvModel.transform(indexedDF)
[55]: import numpy as np
```

```
[56]: # Analyze the best parameter of Decision Tree Classifier
 dtCvModel.getEstimatorParamMaps()[np.argmax(dtCvModel.avgMetrics)]
[56]: {Param(parent='DecisionTreeClassifier_83c6b6ced5c4', name='maxDepth',
 doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1
 means 1 internal node + 2 leaf nodes.'): 20,
 Param(parent='DecisionTreeClassifier 83c6b6ced5c4', name='impurity',
 doc='Criterion used for information gain calculation (case-insensitive).
 Supported options: entropy, gini'): 'Gini'}
[57]: # Random Forest parameter Tuning
 rfParamGrid = ParamGridBuilder().addGrid(rf.maxDepth, [15, 20, 25]).addGrid(rf.
 →impurity, ["Gini", "Entropy"]).addGrid(rf.numTrees, [15, 20, 25]).build()
 # CrossValidation
 rfCv = CrossValidator(estimator=rf, evaluator=accuracy,__
 ⇔estimatorParamMaps=rfParamGrid, numFolds=3)
 rfCvModel = rfCv.fit(indexedDF)
 rfFinalDF = rfCvModel.transform(indexedDF)
[58]: # Analyze the best parameter of Decision Tree Classifier
 rfCvModel.getEstimatorParamMaps()[np.argmax(rfCvModel.avgMetrics)]
[58]: {Param(parent='RandomForestClassifier_e5cd46576df4', name='maxDepth',
 doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1
 means 1 internal node + 2 leaf nodes.'): 15,
 Param(parent='RandomForestClassifier_e5cd46576df4', name='impurity',
 doc='Criterion used for information gain calculation (case-insensitive).
 Supported options: entropy, gini'): 'Entropy',
 Param(parent='RandomForestClassifier e5cd46576df4', name='numTrees',
 doc='Number of trees to train (>= 1).'): 25}
[59]: # Calculate best Decision Tree model accuracy
 bestDT = DecisionTreeClassifier(labelCol="label", featuresCol="features",
 →maxDepth=20, impurity="Gini")
 bestDTModel = bestDT.fit(indexedDF)
 bestDTFinal = bestDTModel.transform(indexedDF)
 accuracy.evaluate(bestDTFinal)
[59]: 0.7894673736377927
[60]: # Calculate best Random Forest model accuracy
 bestRF = RandomForestClassifier(labelCol="label", featuresCol="features", __
 →maxDepth=20, impurity="Gini", numTrees=20)
```

```
bestRFFinal = bestRFModel.transform(indexedDF)
 accuracy.evaluate(bestRFFinal)
[60]: 0.7818869734352935
[66]: # Calculate best Decision Tree model accuracy test set
 bestDTFinaltest = bestDTModel.transform(testIndexedDF)
 accuracy.evaluate(bestDTFinaltest)
[66]: 0.6938006255513673
[67]: # Calculate best Random Forest model accuracy test set
 bestRFFinaltest = bestRFModel.transform(testIndexedDF)
 accuracy.evaluate(bestRFFinaltest)
[67]: 0.7055898628598926
 []: # It shows that the best possible model is Random Forest and its accuracy is \Box
 →about 70%
 []: # Clustering users
 []: | # I am going to use k-means model and Gaussian mixture model
 []: # Calculate how many distinct IPs (users) we have
[68]: clients = df.select("#31#c_ip:1").distinct().count()
[69]: print(clients)
 3844
 []: # Find the top-5 most active users
[13]: connections = df.groupBy("#31#c_ip:1").agg({"#31#c_ip:1": "count", "c_bytes_all:
 49":"sum", "s_bytes_all:23":"sum", "s_bytes_retx:25":"sum", "s_rtt_avg:52":

¬"avg", "s_first:33":"avg"})
```

bestRFModel = bestRF.fit(indexedDF)

```
[71]: connectionOrdered = connections.sort("count(#31#c_ip:1)", ascending=False).
 \hookrightarrowshow(5)
 (171 + 2) / 200

 #31#c_ip:1| avg(s_rtt_avg:52)|count(#31#c_ip:1)|
 avg(s_first:33)|sum(s_bytes_all:23)|sum(s_bytes_retx:25)|sum(c_bytes_all:9)|
 +-----
 -----+
 246.25.63.193 | 126.04335648340408 |
 1175 | 57.096006808510644 |
 3273754
 170919
 2596746
 |246.25.221.106| 42.48682521290321|
 620 | 176.24669516129038 |
 80000151
 31258
 89344401
 180.102.5.86 | 30.208663604166667 |
 528 | 95.7006685606061 |
 7766181
 1946611|
 419 | 292.7211861575179 |
 246.25.63.82 | 103.03908910739855 |
 62219033
 2091264
 10775700|
 | 180.102.5.42| 64.18118633250616|
 403 | 180 . 22686352357326 |
 13021759
 4376418
 +-----
 -----+
 only showing top 5 rows
[]: # Calculate the average number of connections
 connectionsAvg = connections.agg({"count(#31#c_ip:1)":"avg"})
[73]: connectionsAvg.show()
 (162 + 3) / 200]
 +----+
 |avg(count(#31#c_ip:1))|
 26.014568158168576
 +----+
[2]: # Features selection
 feat_cols_cluster = ['count(#31#c_ip:1)', 'sum(s_bytes_all:23)',__

¬'sum(s_bytes_retx:25)', 'sum(c_bytes_all:9)', 'avg(s_rtt_avg:52)',
```

```
[15]: # Preprocessing
 va_cluster = VectorAssembler(inputCols=feat_cols_cluster, outputCol="features")
 assembledDF = va_cluster.transform(connections)
 # Scaler
 from pyspark.ml.feature import StandardScaler
 scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
 ⇒withStd=True, withMean=True)
 scalerModel = scaler.fit(assembledDF)
 scaledDF = scalerModel.transform(assembledDF)
[22]: # Train the K-Means model
 from pyspark.ml.clustering import KMeans
 kmeans = KMeans(k=10, featuresCol="scaledFeatures")
 kmeansModel = kmeans.fit(scaledDF)
 kmeansPredictionsDF = kmeansModel.transform(scaledDF)
[21]: # Train the GMM model
 from pyspark.ml.clustering import GaussianMixture
 gmm = GaussianMixture(k=10, featuresCol="scaledFeatures")
 gmmModel = gmm.fit(scaledDF)
 gmmPredictionsDF = gmmModel.transform(scaledDF)
[18]: from pyspark.ml.evaluation import ClusteringEvaluator
 evaluator = ClusteringEvaluator()
[87]: # Evaluate K-Means performance
 silhouetteKMeans = evaluator.evaluate(kmeansPredictionsDF)
 print("Silhouette with squared euclidean distance = " + str(silhouette))
 print("SSE: ",kmeansModel.computeCost(kmeansPredictionsDF))
 Silhouette with squared euclidean distance = 0.12522028393706328
 [Stage 4951:======>>(198 + 2) / 200]
 SSE: 6406.865780093279
[88]: # Evaluate GMM performance
 silhouetteGMM = evaluator.evaluate(gmmPredictionsDF)
 print("Silhouette with squared euclidean distance = " + str(silhouette))
 (158 + 4) / 200
 Silhouette with squared euclidean distance = 0.12522028393706328
```

```
[19]: # Tune K-means Parameters
 kmeansBest = KMeans(k=3, featuresCol="scaledFeatures", initSteps=10, maxIter=25)
 kmeansModelBest = kmeansBest.fit(scaledDF)
 kmeansPredictionsBest = kmeansModelBest.transform(scaledDF)
 silhouetteBKM = evaluator.evaluate(kmeansPredictionsBest)
 print("Silhouette with squared euclidean distance = " + str(silhouetteBKM))
 (172 + 4) / 200]
 Silhouette with squared euclidean distance = 0.9916145915641448
[20]: # Tune the GMM parameters
 gmmBest = GaussianMixture(k=3, featuresCol="scaledFeatures", maxIter=5)
 gmmModelBest = gmmBest.fit(scaledDF)
 gmmPredictionsBest = gmmModelBest.transform(scaledDF)
 silhouetteBGMM = evaluator.evaluate(gmmPredictionsBest)
 print("Silhouette with squared euclidean distance = " + str(silhouetteBGMM))
 (4 + 3) / 7
 Silhouette with squared euclidean distance = 0.7156195042662563
```