PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-068786

(43) Date of publication of application: 16.03.2001

(51)Int.Cl.

H01S 5/223 H01L 21/3065 H01L 33/00 H01S 5/343

(21)Application number : 2000-079180

(71)Applicant: SHARP CORP

(22)Date of filing:

21.03.2000

(72)Inventor: HATA TOSHIO

(30)Priority

Priority number: 11178996

Priority date : 24.06.1999

Priority country: JP

(54) NITRIDE COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To decrease a threshold current and forward voltage and improved reliability in the nitride compound semiconductor light-emitting device where a current blocking layer is provided so as to stabilize the lateral mode.

SOLUTION: This nitride compound semiconductor light-emitting device is equipped with an active layer 5 which is pinched between an upper and a lower clad layer, 4 and 6, and a current blocking layer 8a having an opening that serves as a current path is formed on the active layer 5. The current blocking layer 8a is equipped with a conductor layer and an insulating layer 7 at least on the opening under a nitride compound semiconductor layer 8, and the insulating layer 7 functions as an etching stop layer of the nitride compound semiconductor layer 8 when the opening is formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(18) 日本田本田(1b)

€ 耧 4 盂 华 噩 4 8

特期2001-68786 (11) 格許出顧公開每号

(P2001 - 68786A)

8
<u>ښ</u>
ŝ
月 16日
竺
中成13年3
ш
(43)公理

(51) ht.Q.		MEDIEL P	FI		デーヤコート"(事業)
H01S	2/223			6/223	5F004
H01L	21/3065		HO 1 L	33/00	C 5F041
	33/00			5/343	5 P O 7 3
H018	5/343			208/12	7

審査請求 未請求 請求項の数15 01 (全 12 頁)

(21) 出版部分	44 ELZ000 79180(PZ000 79180)	(71) 出国人 000005049
		シャーン株式会社
(22) 出版日	平成12年3月21日(2000.3.21)	大阪府大阪市阿倍野区長档町22番23号
		(72) 班明者 特 (数据
(31) 個先進士服命時 (4個平11-17898	徐展平 11—17898	大阪帝大阪市冈伯男区央池町22425年
(32) (BC):B	平成11年6月24日(1999.6.24)	ナーン体式会社内
(33)但先指主题国	B本 (JP)	(74) 代理人 100078282
		弁理士 山本 秀策
		ドターム(参考) SFOOM ANDS BAOM DADD DADA DA11
		DB19 EA23 EB08 FA08
		5F041 CA34 CA40 CA74 CB03 CB04
		SP073 ANDT AN13 AN51 AA53 AA74
		CADT CBOS CBOT DAOS DA22
		DA25 DA35 EA23

(54) 【発明の名称】 室化物果化合物半導体発光素子およびその製造方法

【課題】 (機モードを安定させるために電流阻止層を設 けた館化物系化合物半導体発光素子において、しきい値 **電流と顧方向電圧を低減し、信頼性を向上する。** (57) (東約)

5上に電流通路となる閉口部を有する電流阻止層8gが 【解決手段】 上下クラッド層4、6で挟まれた活性層 散けられている。この電流阻止署8aは、窒化物系化合 数半導体層8の下の少なくとも関ロ部に導動体層と絶換 本書1とを有しており、絶象体層1は配口部形成の駅に **窓化物系化合物半導体層8のエッチングストップ層とし 大価能する。**

【精水項1】 基板上に、少なくとも一対のクラッド層 と、両クラッド層で挟まれた活性層と、蘇基板から遠い 方のクラッド層上に電流通路となる開口部を有して設け られた電流阻止層とを備えた蛮化物系化合物半導体発光 報子において

なり、該蛮化物系化合物半導体層の下の少なくとも該開 該電流阻止層が絶録体層と鑑化物系化合物半導体層から ロ部に該絶縁体層を有する窒化物系化合物半導体発光素

1tGa1-s-tN (0≤s, 0≤t, 0≤s+t≤1) か [請求項2] 前記蜜化物系化合物半導体層が1nsA らなる糖水項1に記載の鑑化物系化合物半導体発光器

y ≤ 1) からなり、前記活性層が I nz G a 1-z N (0≦ 前記クラッド層がA 1, Ga1-, N (0≦ z ≦ 1)からなる請求項2に記載の選化物系化合物半導 [請求項3] 体死光紫子。

٧,

際に前配塞化物系化合物半導体層に対してエッチングス 前記絶縁体層は、前記開口部を形成する トップ層として機能する請求項1乃至請求項3のいずれ かに記載の鑑化物系化合物半導体発光索子。 [新水原4]

20

前記蛮化物系化合物半導体層の関ロ部の 幅が、前記絶縁体層の関ロ部の幅よりも大きい請求項1 乃至請求項4のいずれかに記載の窒化物系化合物半導体 [龍水風5]

「静水項6】 前記基板がGaNからなる静水項1乃至 請求項5のいずれかに記載の鑑化物系化合物半導体発光 是光素子

【欝水項7】 前記絶縁体層の関ロ部が、他の領域より も結晶欠陥が少ない倒域に形成され、鞍関口部の下方に 位置する活性層領域が発光部となる請求項1乃至請求項 【静水項8】 前記絶縁体層の関ロ部が、その下の窓化 物系化合物半導体層の転位密度が10g/cm2以下の領 域に形成されている請求項7に記載の窒化物系化合物半 6のいずれかに記載の選化物系化合物半導体発光報子。

請求項1乃至請求項8のいずれかに記載の選化物系化合 [時水項9] 前記絶線体層がSiO1、Si1N4、A 1101およびTi01のうちの少なくとも1つからなる 物半導体配光素子。

れている欝水項1乃至請水項9のいずれかに記載の塞化 【請求項10】 前記絶縁体層がクラッド層上に形成さ 物系化合物半導体発光器子。 【請水項11】 前記電流阻止層が、前記絶線体層の下 に導電体層をさらに有する請求項1乃至請求項10のい [請求項12] 前記導電体層がW、Mo、Ta、M ずれかに記載の窒化物系化合物半導体発光素子。

络国2001-68786

ଷ

蜜化物系化合物半導体発光素子。

n以下である糖水項1乃至糖水項12のいずれかに配敷 【糖水項13】 的記導館体層が厚さ1nm以上10n の窒化物系化合物半導体発光素子。 【請求項14】 基板上に下部クラッド層、活性層およ **ゞ上部クラッド暑を積層形成し、放上部クラッド層上に** 電流阻止層となる絶験体層および蜜化物系化合物半導体 音を積層形成する工程と、 核蛮化物系化合物半導体層にドライエッチングにより開

し、数上部クラッド層を露出させる工程とを含む窒化物 核絶縁体層にウェットエッチングにより閉口部を形成 ロ部を形成し、核絶線体層を露出させる工程と 【請求項15】 基板上に抜下部クラッド層、 系化合物半導体発光森子の製造方法。 9

に電流阻止層となる導電体層、絶像体層および蜜化物系 **弦蜜化物系化合物半導体層にドライエッチングにより開** よび上部クラッド層を積層形成し、核上部クラッド 化合物半導体層を積層形成する工程と、

核絶縁体層および核導電体層にウェットエッチングによ り開口部を形成し、核上部クラッド層を露出させる工程 とを含む蜜化物系化合物半導体発光素子の製造方法。 ロ部を形成し、抜絶緑体層を露出させる工程と、 【発明の詳細な説明】

買城で発光可能な半導体レーザや発光ダイオード等の窒 し、特に、しきい値電流を低減するために電流阻止層を [発明の属する技術分野] 本発明は、青色領域から紫外 化物系化合物半導体発光業子およびその製造方法に関 [000]

【従来の技術】青色倒域から紫外倒域で発光可能な半導 設けた窒化物系化合物半導体発光素子およびその製造方 法に関する。 [0002] 30

本発光素子として、例えば特開平8-97507号公報 には図8に示すような鑑化ガリウム系化合物半導体レー げが開示されている。

いる。p型コンタクト層9の上にはp型電極10が形成 型AIGaNクラッド層6、内部電流阻止層80および され、n型コンタクト層3の露出部上にはn型電極11 p型GaNコンタクト層9を順次積層した構造を備えて n型GaNパッファ層2、n型GaNコンタクト層3 【0003】この半導体レーがは、サファイヤ基板 1 n型AIGaNクラッド層4、InGaN活性層5、 が形成されている。 6

【0004】上記電流阻止層80は、エッチングによっ は電流阻止層80の関ロ部を縦に流れるように狭窄され て形成されたストライプ状隔口部 (ストライプ構)を有 しており、p型電極10からn型電極11~流れる電流 5。この角指型止層80には、A1GaN、SiOz、

S i3N4およびA 12O3等が用いられている。

S

つからなる酵水項1万至酵水項11のいずれかに記載の

8、C、Beおよびそれらの合金のうちの少なくとも1

-2-

+

[発明が解決しようとする課題] 上述したように、蛮化 るために、偏純阻止職80にエッチングによって関ロ部 ガリウム米代合物半導体ソーザのしまい質配流を伝紋す を取けた構造が提案されている。

(溝の斜面) 110を再現性良く形成しなければならな 【0006】しかし、この処消困止職80にメッチング にて眠口部を形成する場合、配口部の値や配口部の形状 いという問題がある。これは、頭口部の幅や頭口部の形 状がしきい歯電流や発扱モードに影響を及ぼすからであ 【0001】また、観視因止師としてA1GaN等の徴 ろ、亀漑阻止層に関ロ部を形成する際に最適なエッチン グ方法が知られておらず、強択性に優れたエッチングが 行えないという問題がある。このため、上記憶流阻止層 を行う際に、電流阻止層80の下に位置するクラッド層 6の表面までもエッチングされるおそれがあり、エッチ ング条件を厳しく調整しない限り再現性の良い形状制御 80にストライプ状間口部を形成するためのエッチング 化ガリウム系化合物半導体を用いた場合、現在のとこ が実現できなかった。

な属出表面上に再成長層を形成しても、良好な結晶品質 [0008] さらに、エッチング装置によって観視阻止 職80にストライプ状態ロ部を形成した後、その関ロ部 を埋め込むように半導体層(コンタクト層9)を再成長 させるが、ドライエッチング法では再成長界面(鷹出表 面)にダメージや残留不純物等が導入される。このよう を有する再成長界面100が得られず、界面準位の原因 となっていた。

をドライエッチング社にたエッチングし、その教団にロ 【0009】例えば、p 型盤化ガリウム系化合物半導体 −V 特性がオーミック被他になっておらず、ドライエッ チングによるダメージや残留不純物等が導入されている 春在今回へた結果を図3に (c) で示す。この図から1 型電価を形成してp型電極間の1(電流)- Λ(電圧) ことがわかる。

部を形成した後、その関ロ部を埋め込むように半導体層 燕発してしまう。このため、その上にコンタクト層9を [0010]また、観視阻止層80にストライプ状関ロ (コンタクト層9) を再成長させるまでの間に、臨流阻 止職80のストライプ状律底部の関が蛮素不足のために 再成長すると、図8に示すような空滑1,11が発生する という問題も生じていた。

【0011】さらに、電流阻止層80を絶線体層で形成 した場合、電流阻止層80の間ロ部上に再成長した領域 に、図9に示すような欠陥112が発生し、再成長層に は結晶性が悪い帰しか得られない。このため、しきい値 電流や直列抵抗が増加し、順方向電圧が高くなり、信頼 性の優れた半導体発光素子が得られないという問題があ

すべくなされたものであり、発板横モードが安定し、し きい値電流と順方向電圧が低減され、信頼性が高い蛮化 物系化合物半導体発光素子およびその製造方法を提供す ることを目的とする。

【課題を解決するための手段】本発明の選化物系化合物 半導体発光繋子は、基板上に、少なくとも一対のクラッ ド届と、両クラッド層で挟まれた活性層と、該基板から 散けられた電流阻止層とを備えた蛮化物系化合物半導体 発光素子において、該電流阻止層が絶縁体層と窒化物系 化合物半導体層からなり、放変化物系化合物半導体層の **ドの少なくとも数関ロ部に数絶縁体層を有し、そのこと** 遠い方のクラッド層上に電流通路となる関ロ部を有して により上記目的が達成される。

[0014] 前記筮化物系化合物半導体層が InsAlt Gai-1-tN (048, 04t, 048+tx1) 25 なるのが好ましい。

≤1) からなり、前記活性層がInrGa1-zN (0≤z 【0015】前記クラッド層がA1,Ga1-,N(0≦ッ ≤1)からなるのが好ましい。 [0016] 前記絶縁体層は、前記開口部を形成する際 に前記鑑化物系化合物半導体層に対してエッチングスト ップ層として機能させることができる。

【0017】 前記蛮化物系化合物半導体層の関ロ部の幅 が、前記絶縁体層の関ロ部の幅よりも大きいのが好まし

【0018】 前記基板がG a Nからなるのが好ましい。

【0019】前記絶縁体層の閉口部が、他の領域よりも 結晶欠陥が少ない價域に形成され、該関ロ部の下方に位

【0020】 前記絶縁体層の関ロ部が、その下の蜜化物 采化合物半導体層の転位密度が108/cm²以下の領域 置する活性層質域が発光部となるのが好ましい。 に形成されているのが好ましい。 【0021】 對智語類存圖がSiO1、SitN4、All OaおよびTi Ozのうちの少なくとも 1 つからなるのが 年ました。 【0022】前記絶縁体層がクラッド層上に形成されて いるのが好ましい。 【0023】前記電流阻止層が、前記絶線体層の下に導 既体層をさらに有するのが好ましい。

C、Beおよびそれらの合金のうちの少なくとも1つか [0024] 前記導電体層がW、Mo、Ta、Mg、 らなるのが好ましい。 【0025】前記導館体層が厚き1mm以上10mm以 下であるのが好ましい。 【0026】本発明の蛮化物系化合物半導体発光素子の 製造方法は、基板上に下部クラッド層、活性層および上 即クラッド層を積層形成し、核上部クラッド層上に電流 阻止層となる絶縁体層および選化物系化合物半導体層を 積層形成する工程と、放変化物系化合物半導体層にドラ

-3-

8

【0012】本発明はこのような従来技術の膜題を解決

イエッチングにより関ロ部を形成し、破絶縁体圏を臨出 させる工程と、核絶縁体層にウェットエッチングにより 開口部を形成し、豚上部クラッド層を露出させる工程と を含み、そのことにより上記目的が達成される。

導体層に ドライエッチングにより関ロ部を形成し、核絶 【0027】本発明の選化物系化合物半導体発光案子の 製造方法は、基板上に数下部クラッド層、活性層および 上部クラッド層を積層形成し、核上部クラッド層上に電 **流阻止層となる導電体層、絶縁体層および窒化物系化合** 物半導体層を積層形成する工程と、該選化物系化合物半 操体層を露出させる工程と、放絶線体層および該導電体 層にウェットエッチングにより関ロ部を形成し、該上部 クラッド層を露出させる工程とを含み、そのことにより 上記目的が達成される。

緑体層をエッチングストップ層として機能させることが 【0029】本発明にあっては、鶴流阻止層が強化物米 化合物半導体層の下の少なくとも関ロ部に絶験体層を有 しており、後述する実施形態1~実施形態4に示すよう に、窒化物系化合物半導体層に関ロ部を形成する際に絶 た、絶縁体層上に蜜化物系化合物半導体層が散けられて できるので、再現性の良い形状制御が可能である。ま いるので、図9に示したような電流阻止層(絶縁体層) [0028]以下、本発明の作用について説明する。 80上の成長層の欠陥112も生じない。

【0030】上記基板としては、例えばサファイヤ基板 やGaN基板が用いられる。特に、後述する実施形態4 ヤ基板を用いた場合に比べてその上に形成される蜜化物 **系化合物半導体層の転位が少なくなり、また、サファイ** ジを与えることもないので、好ましい。さらに、SiO に示すように、GaN基板を用いた場合には、サファイ ア基板のように基板の反りが生じてS 101機にダメー I膜を散けると熱が逃げにくいが、GaN基板では熱を あがすこともできる。

【0031】後述する実施形態4に示すように、上記絶 **縁体層を形成する前に、半導体層の表面から転位(結晶** が他の領域よりも少ない領域の上方に、上記絶縁体層の 関ロ部を形成するのが好ましい。この倒域を電流通路と して、その下方に位置する活性階領域を発光部とするこ とにより、非発光再結合が減少し、発光効率の高い窒化 物系化合物半導体発光素子が得られる。さらに、関ロ部 の転位を通って、例えばMgがヘビードープされたり型 コンタクト層から再成長中に活性層にMgが拡散するの 欠陥)を観察する方法等により、活性層を横切る転位 (黄通転位でさらにクラッド層まで質通している転位) を抑えることができるので、活性層の結晶性が悪化せ ず、牝光田の牝光松串が減少しない。

爾城を発光部とすると、非発光再結合が増加し、発光効 [0032] これに対して、活性層を徴切る転位が他の この領域を電流通路として、その下方に位置する活性層 領域よりも多い領域に上記絶線体層の関ロ部を形成し、

帯翼2001--68786

€

19

がヘビードープされたり型コンタクト層から再成長中に 率の低い 蜜化物系化合物半導体発光素子しか得ることが できない。さらに、開口部の転位を通って、例えばMg 活性層にMgが拡散するため、活性層の結晶性が悪化 し、発光部の発光効率が減少する。

化物系化合物半導体層の転位密度が例えば100//cm2 [0033]従って、絶験体層の関ロ部は、 以下の領域に形成するのが好ましい。

している。そして、絶縁体層の両側から横方向に結晶成 【0034】絶縁体層は、その上に蛮化物系化合物半導 体層が成長可能であり、成長マスク層としての機能を有 長が進み、その横方向の成長が合体するために、絶縁体 層上の中心近傍で転位()欠陥が少ないように成長。 ることができる。

クラッド層では絶縁体層からSi等の不植物が低入され 層の厚さは、0.05μm以上0.2μm以下であるの が好ましい。絶縁体層の厚さが0.05μmより薄いと **絶縁体として機能しないおそれがあり、0.2 umより** 少ないSiO1、Si13N4、A12O1丼たはTiO2都を 用いるのが好ましく、それらを2種類以上組み合わせて もよい。絶縁体層は、クラッド層上に形成するのが好ま しい。さらに、後述する実施形骸3に示すように、n犂 ても特に問題がないので、p型クラッド層よりもn型ク ラッド層上に絶縁体層を形成するのが好ましい。 絶縁体 厚いと電流阻止層により発振機モードを制御するのが困 【0035】絶縁体層としては、紫外餌域での光吸収 難になる。 20

【0036】さらに、絶縁体層の下層に金属層等の導電 体層を散けることにより、後述する実施形態2に示すよ うに、絶縁体層から上部クラッド層に不純物が導入され るのを防ぐことができる。さらに、この導気体層は、絶 緑体層形成時に、絶縁体構成元素が下地層へ進入するの を防止するための保護層としても機能する。

Be等を用いるのが好ましく、それらの合金や2種類以 は、導電体層の厚さが1nm未満では絶縁体層形成時に 絶縁体閥を構成する元素がクラッド層へ混入するのを防 ぐことができず、10nmを越えると活性層からの光が 導電体層に吸収される影響が大きいからである。さらに 【0037】導電体層としては、高融点金属であるW、 Mo、Ta等、またはp型不純物となりえるMg、C、 上を組み合わせて用いてもよい。また、導電体層の厚 は1nm以上10nm以下であるのが好ましい。これ 好ましくは5nm以上10nm以下である。

後、ウェットエッチングにより上部クラッド層を露出さ 【0038】本発明にあっては、上部クラッド層上に絶 **豪体層と蛮化物系化合物半導体層と絶縁体層を積層形成** してドライエッチングにより絶録体層を露出させ、その せることにより、ドライエッチングによるダメージや残 留不純物がクラッド層表面やその上の再成長層であるコ ンタクト層に導入されない。例えば、絶縁体層とp型窓

20

特限2001-68786

d

[0043] (実施形態1)図1は本発明の一実施形態 である窒化ガリウム系化合物半導体レーザの構成を示す

型電極を形成した場合、p型電極間のIーV特性は図3

に (a) で示すようになる。 よって、ドライエッチング によるダメージや残留不植物等が導入されておらず、1 - V 特性がオーミック接触に近いものになっていること 合物半導体をドライエッチング法にてエッチングし、そ

【0044】この半導体レーがは、サファイヤ基板1上 に、厚さ50nm程度のGaNパッファ層2、厚さ3μ

> の表面にp型電極を形成してp型電極間のIーV特性を 置くると、図3に (c) む示すようになる。 よった、ド

ライエッチングによるダメージや残留不能物等が導入さ れ、1-V特性がオーミック接触になっていないことが 層とを積層形成してドライエッチングにより絶縁体層を

[0039] さらに、他の本発明にあっては、上部クラ ッド層上に導電体層と絶線体層と変化物系化合物半導体 属出させ、その後、ウェットエッチングにより上部クラ るダメージや残留不純物がクラッド需表面やその上の再

ッド層を腐出させることにより、ドライエッチングによ

ば、導電体層と絶縁体層とp型変化物系化合物半導体を

成長層であるコンタクト層表面に導入されない。例え

積層形成して絶破体層までドライエッチング法にたエッ チングし、その後、ウェットエッチングにより上部クラ

がわかる。これに対して、従来のようにp型筆化物系化

m程度のn型GaNコンタクト層3、厚さ0.5μm程 度のn型A10.08Ga0.82Nクラッド層4、厚き3nm 0. 3 m粗度のp型 (Mgドープ) A10.06Ga0.92 Nクラッド層6、厚さ0、1 mmの絶縁体 (本実施形態 とからなる電流阻止層8aおよび厚さ0.3μmのp型 (Mgドープ) GaNコンタクト層9を順次積層した構 ラッド層6、電流阻止層8a およびp 型コンタクト層9 はn型コンタクト層3を露出させるようにその一部が除 去されている。p型コンタクト層9の上にはp型電極1 Oが形成され、n型コンタクト層3の戯出部上にはn型 造を備えている。n型クラッド階4、活性層5、p型ク ではSi02)種7と厚さ0. 3μmのn型GaN層8 のノンドープ I no.32 G a o.68 N 活性層 5 および厚さ 電極11が形成されている。

れた領域(本実施形態では共級器長方向に延びるストラ イプ状の領域)に電流通路となるストライプ状関ロ部を 【0045】上記電流阻止層8aは、活性層5の選択さ 有し、このストライプ状期ロ部の幅はレーザ発扱の横モ **ードを閲整するように決定されている。その関ロ部には** GaN層8の関ロ部の幅は絶縁体層1の関ロ部の幅より 大きく設定されている。絶縁体層7はGaN層8に対す 【0046】この半導体レーザは、例えば以下のように GaN暦8の下に楢様存(S102)届7が設けられ、 るエッチングストップ層としての機能を有している。

> になる。よって、ドライエッチングによるダメージや残 留不純物等が導入されておらず、! -V特性がオーミッ

ク被他になってさらに好ましい物性が得られていること

合、p型電極間の1 — V 特性は図3に(b)で示すよう

ッド階を属出させてその表面にp型電極を形成した場

[0040] さらに、塩化物系化合物半導体層の関ロ部

の幅は絶様体層の関ロ部の幅よりも大きくすることがで きるので、窒化物系化合物半導体層の関ロ部の幅を従来

よりも大きくすることができる。よって、InsAltG **化物系化合物半導体層を用いても、図8に示したように** ■流阻止層80のストライプ状構底部の関が窒素不足の

al-e-tN (0≦s、0≦t、0≦s+t≦1) 4の網

【0047】 窒化物系化合物半導体層の形成は有機金属 化合物気相成長法(MOCVD法)により行い、V族原 **枠としたアンモニア(NH3)、III族原枠としてトリメ** MA)およびトリメチルインジウム(TMIn)、p型 下純物と してピスシクロペンタディエニルトグネシウム チルガリウム (TMG) 、トリメチルアルミニウム (T H4)を用い、キャリヤガスとしてH2およびN2を用い (Cp1Mg)、n型不純物としてモノシラン (Si して作製することができる。

al-tN (0≤x≤1) からなり、クラッド層がAlyG

|-vN (0≤z≤1) からなる量子井戸活性層であるの

ai-yN (0≤y≤1) からなり、活性層が I nzGa

ために蒸発することはなく、空洞111も発生しない。 [0041]上記選化物系化合物半導体層は、AlvG [0048] 上紀MOCVD法により1回目の結晶成長 を行うためにサファイヤ基板1を図示しないMOCVD 200℃程度まで昇温することにより基板1の表面に対 装置のサセプタ上に配置し、H2雰囲気中、基板温度 1 して清浄化処理を施す。

> いた図面を参照しながら説明するが、本発明はこれらに 限定されるものではない。以下の実施形態では半導体レ

ーザ素子について数用するが、発光ダイオードについて も適用可能であることは言うまでもない。なお、本発明 において、蜜化物系化合物半導体とは、InsAltGa

【発明の実施の形態】以下に、本発明の実施の形態にし

0042

し、図2 (a) に示すように基板1の上に厚さ50nm 【0049】次に、基板温度を1000℃程度まで降温 程度のG8Nパッファ層2、厚さ3μm程度のn型G8 8

Gao.92Nクラッド層4を成長させる。続いて、基板温 Nコンタクト層 3、厚さ 0。 5 μ m程度の n型 A 1 ο. ο s 3 μm程度のp型 (Mg ドープ) A 10.08G a0.92Nク 基板をMOCVD装置の成長室から取り出すことなく連 度を100℃~750℃程度に降温し、厚さ3nmのノ の後、基板温度を1000℃程度まで昇温し、厚さ0. ラッド層6を成長させる。これらの半導体層の成長は、 ンドープ I no. 32 G a o. 68 N 活性層 5 を成長させる。

【0050】その後、上記半導体層が積層された基板を 成長室から一旦取り出し、電子ピーム蒸着法、スパッタ 2(b)に示すように絶縁体層7をクラッド層6上に形 リング蒸着法、化学気相成長(CVD)法等によりSi を幅20μm、厚さ0.1μm、周期500μmに形成 02からなる絶縁体層を成長する。そして、通常のフォ 成する。本実施形態では、SiOtからなる絶縁体層7 トリングラフィ技術およびエッチング技術によって、

基板をMOCVD装置のサセプタ上に配置し、基板温度 を1000℃程度まで昇温する。そして、図2 (c) に 成長し、横方向成長層同士が合体する。このため、絶縁 【0051】次に、2回目の結晶成長を行うため、再び 示すように厚さ0.3μmのn型GaN層Bを絶縁体層 体層7の中央部近傍に絶縁体層7と平行方向に結晶欠陥 き、GaN層8はSiO2絶縁体層7の両側から横方向 7とクラッド層6の上にわたって成長させる。このと 16 が発生するのが表面から見てもわかる。

【0052】その後、上記半導体層が積層された基板を マスク12aを形成する。このとき、n型GaN層8の 成長室から一旦取り出し、n型GaN層8上にレジスト 結晶欠陥16をマスク合わせのマーカーとして用いるこ 図2(d)に示すように、この領域のレジストマスクを 除去し、レジストマスク12aで覆われていないn型G a N層 8 部分を避択的にエッチングする。 このエッチン **がに際して絶縁体層 7 がエッチングストップ層として機** 能し、絶縁体層7の表面13が露出した時点で容易に再 現性良くエッチングを停止させることができる。このエ によりBC11/C11/SiC11等のガスを用いて絶 緑体層7が露出するまで行う。本実施形態では露出した 絶縁体層1の幅を1ヵmとした。その後、有機溶剤によ とができるので、マスク合わせが容易となる。そして、 ッチングは、例えばRIE(反応性イオンエッチング) otマスク12aを除去する。

N層8と絶縁体層1の一部の上にレジストマスク12b を形成する。そして、ウェットエッチングによって絶縁 **体層7をクラッド層6の表面14が鉄出するまでエッチ** ングする。本実施形態では露出したクラッド層6の幅を 3μmとした。その後、有機猝剤によってマスク12b [0053] 次に、図2 (e) に示すように、n型Ga を除去する。

【0054】続いて、3回目の枯晶成長を行うため、再 ≸基板をMOCVD装置のサセプタ上に配置し、基板温 に示すように、厚さ0.3μmのMg ドープGaNコン タクト層9を成長させる。このとき、クラッド層6の露 出表面 1 4 はドライエッチング時のダメージや不純物礁 入による表面準位等の影響を受けることなく、MOCV のような良好な状態の清浄表面の上に再成長が行われる 度を1000℃程度まで昇進する。そして、図2(f) D装置内で良好な状態の滑浄表面が維持されている。

【0055】その後、上記半導体層が積層された基板を MOCVD装置から取り出し、図示しないレジストセン 0 ℃の熱アニーリングを行ってMg ドープ層をp型に ので、結晶性に優れた良好な再成長層が形成される。 クを用いてドライエッチング技術によりn型コンタ 層3表面15を露出させる。次に、N2雰囲気中、

極10を形成し、n型コンタクト層3の露出表面15上 にn型電極11を形成して図2(g)に示す本実施形態 【0056】最後に、p型コンタクト層9の上にp型電 の半導体レーザが得られる。 【0057】この半導体レーがは、図示しない観視供給 クされるので、電流が狭窄されながら電流阻止層88の られ、半導体積層構造の中をp型電極10からn型電極 11~と観光が流れる。このとき、観光はn型GaN層 8と絶縁体層7からなる亀流阻止層8gによってブロッ 開口部を上から下へ流れる。これにより、横モードの制 回路から p 型電極 1 0 および n 型電極 1 1 に電圧が与え 御されたレーザ発振が生じ、故長が青色領域から紫外領 核にむるワー扩光が毎のれる。

層)をドライエッチングに晒ことなく電流狭窄部(電流 [0058] さらに、本実施形態によれば、p型窒化物 時のダメージや幾留不純物混入等による界面準位が生じ ない。よって、図3の(a)に示すようなオーミック接 性に近い!-V 特性が得られるのと同様な良好な再成是 通路) を形成することができるので、ドライエッチング 系化合物半導体層(p型クラッド層とp型コンタクト 30

の幅よりも大きく散定できるので、図8に示した従来の 半導体発光繋子に生じていたような内部電流阻止層80 【0059】n型GaN層8の関ロ部の幅は絶縁体層 の関ロ部底面の隅部の空洞111が生じない。 界面が得られている。

【0060】さらに、観戒狭쒐部(関ロ部)の幅や形状 をウェットエッチング法により制御性良く形成すること

[0061] 電流阻止層8aの絶線体層7はGaN層8 に対してエッチングストップ層として機能するため、エ き、ダメージや残留不純物等による界面準位も低減され ッチングの停止を容易に再現性良く制御することがで

【0062】このように、本実施形態においては、横モ

23

ドが制御され、しきい値位流および頃方向電圧が低減 3、信頼性に優れた蛮化ガリウム系化合物半導体レーザ を実現することができた。

【0063】 (実施形體2) 本実施形態では、絶録体局 の下層に導動体盤を設けた例について説明する。

【0064】図4は実施形態2の窒化ガリウム系化合物 **半半存フーから槙氏かぶ上配旧因かせん。**

m程度のn型GaNコンタクト悶3、耳さ0.5μm程 度のn型A 10.08G 80.82Nクラッド図4、厚さ3 nm の I no. 15 G a o. 15 N 最子井戸図が3 周と、厚さ4 n m ドープ) Ale.osGae.szNクラッド階6、厚さ5nm 【0065】この半導体レーがは、サファイヤ結板1上 厚さ50nm程度のGaNペッファ图2、厚さ4μ の1 no. os G a o. os N 障壁層が 2 局とからなる多重量子 止偏8もおよび厚さ0.3ヵmのp型 (Mgドープ) G n型クラッド層4、活性層5、p型クラッド局6、Q流 乳止層8 bおよびp型コンタクト層9はn型コンタクト **暑3を露出させるようにその一部が除去されている。 p** 型コンタクト層3の**欧出**部上にはn型配極11が形成さ 井戸活性層51および厚さ0,3μm程度のp型 (Mg の導配体 (本実施形態ではMg) 励71と厚さ0.1μ a Nコンタクト層9を頃次徴層した構造を偉えている。 田の絶縁体 (本実施形態ではSiO1) 图7と厚さ0. 型コンタクト層9の上にはp型配極10が形成され、

有し、このストライプ状図ロ部の協はレーザ発振の樹木 **- ドを餌整するように決定されている。その関ロ部には** n型AIGaN編8の下にMgからなる導配体图71 お [0066] 上記電液阻止層86は、倍性層5の選択さ れた領域(本実施形態では共振器長方向に延びるストラ イプ状の領域)に配流通路となるストライプ状限ロ部を N層8の壁口部の結び物数存配1の四口部の結より大き く既定されている。他級体図1はAIGaN图8に対す 【0067】この半導体レーザは、例えば以下のように よびSiOtからなる絶像体層でが設けられ、AIGa るエッチングストップ層としての協能を有している。 して作数することができる。

[0068] 塩化物系化合物半導体圏の形成はMOCV n 型不純物およびキャリヤガスは実施形態1と同様のも D法により行い、V族原料、III族原料、p型不純物、

[0069] 上配MOCVD法により1回目の結晶成長 を行うためにサファイヤ茲板1を図示しないMOCVD 200℃程度まで昇温することにより基板1の表面に対 装置のサセプタ上に配置し、H1 雰囲気中、基板徴度 1 して清浄化処理を施す。

8 程度のGaNパッファ帰2、厚さ4μm程度のn型Ga 【0010】次に、基板型度を1000℃程度まで降温 L、図5 (a) に示すように落板1の上に厚さ50nm

Nコンタクト码3、厚さ0. 5 m 型度のn型A 10.08 Ga0.82Nクラッド쭴4を成長させる。続いて、甚板温 ne. os G a e. es N障壁器が 2 配とからなる多重量子井戸 活性局51を成長させる。その後、基板温度を1000 で程度まで昇温し、厚さ0.3μm程度のp型(Mgド 度を100℃~150℃程度に降温し、厚さ3mmの1 no.15Gao.85N位子井戸局が3周と、厚さ4nmの1 これらの半導体層の成長は、基板をMOCVD装置の成 ープ) A 10.08 G a 0.82 Nクラッド图 6 を成長させる。 長室から取り出すことなく連続的に行う。

のフォトリングラフィ技術およびエッチング技術によっ をクラッド個6上に形成する。本実施形態では、Mgか 【0071】その後、上記半導体圏が積層された基板を 成長室から一旦取り出し、電子ピー、ウ蒸着法等により Mgからなる導電体圏を成長し、電子ピーム蒸着法、ス パッタリング蒸萄法、化学気相成長(CVD)法等によ らなる**導電体層71を幅**6μm、厚さ5nm、周期50 て、図5(4)に示すように導動体局11と絶縁体局1 りSi02からなる絶像体層を成長する。そして、通常 0 m m に形成し、SiO2からなる絶縁体陷7を幅20 и m、厚さ0. 1 и m、周数500 и mに形成した。

【0072】次に、2回目の結晶成長を行うため、再び 基板をMOCVD装配のサセプタ上に配配し、基板温度 を1000C程度まで昇温する。そして、図5 (c) に ボオように厚さ0. 3μmのn型A10.0sGao.9sN層 8を絶縁体層7とクラッド層8の上にわたって成長させ このため、絶縁体图1の中央部近傍に絶縁体隔1と平行 る。このとき、A1GaN图8はSiO2絶験体图1の 方向に結晶欠陥16が発生するのが表面から見てもわか 両側から機方向成長し、横方向成長層同士が合体する。

ストマスク12aを形成する。このとき、n型A1Ga 【0073】その後、上記半導体圏が積層された基板を 成長盆から一旦取り出し、n型AIGaN層8上にレジ N層8の結晶欠陥16をマスク合わせのマーカーとして そして、図5(d)に示すように、この飯板のレジスト マスクを除去し、レジストマスク12gで摂われていな いのエッチングに際して結様体困りがエッチングストッ プ母として機能し、絶縁体層1の装画13が露出した時 点で容易に再現性良くエッチングを停止させることがで きる。このエッチングは、例えばRIE(反応性イオン スを用いて絶像体图7が露出するまで行う。 本実施形態 エッチング) によりBC13/C11/SiC14輪のガ では露出した絶縁体困7の幅を7ヵmとした。その後、 用いることができるので、マスク合わせが容易となる。 いn型AIGaN層8部分を選択的にエッチングする。 有磁路剤によってマスク12gを除去する。

[0074] 次に、図5 (e) に示すように、n型A1 2 bを形成する。そして、ウェットエッチングによって GaN路8と絶縁体配1の一部の上にレジストマスク1

8 4 が露出するまでエッチングする。本実施形態では露出 したクラッド層6の幅を3μmとした。その後、有機容 色操体局7および導電体層71をクラッド層6の表面1 **阿によってマスク12bを除去する。**

【0075】続いて、3回目の結晶成長を行うため、再 び基板をMOCVD装置のサセプタ上に配置し、基板温 出表面14はドライエッチング時のダメージや不純物混 タクト届9を成長させる。このとき、クラッド쪔6の鷸 入による表面準位等の影響を受けることなく、MOCV のような良好な状態の清浄表面の上に再成長が行われる に示すように、厚さ0.3μmのMg ドープGaNコン 度を1000℃程度まで昇温する。そして、図5 (f) D装型内で良好な状態の滑浄表面が維持されている。 ので、結晶性に優れた良好な再成長層が形成される。

[0076] その後、上記半導体層が積層された基板を MOCVD装置から取り出し、図示しないレジストャス クを用いてドライエッチング技術によりn型コンタクト 0℃の熱アニーリングを行ってMgドープ配をp型に変 問3表面15を露出させる。次に、N2雰囲気中、75

[0011] 最後に、p型コンタクト層9の上にp型電 極10を形成し、n型コンタクト圈3の鶴出表面15上 にn型電極11を形成して図5 (g) に示す本実施形態 の半時体ワーザが徐られる。

8 bによってプロックされるので、電流が狭窄されなが られ、半導体積層構造の中をp型電極10からn型電極 ら電流阻止間8bの関口部を上から下へ流れる。これに 【0078】この半単体レーザは、図示しない観視供給 回路からp型電橋10およびn型電極11に電圧が与え 11~と電流が流れる。このとき、電流はn型A1Ga N層8と絶縁体層7と英電体層71からなる電流阻止層 より、横モードの制御されたレーザ発板が生じ、故長が な色質核から紫外質核にもるワーザ光が得られる。

触の!-V特性が得られるのと同様な良好な再成長界面 [0079] さらに、本実施形態によれば、p型窒化物 **풤)をドライエッチングに晒ことなく電流狭窄部(電流** 通路) を形成することができるので、ドライエッチング 時のダメージや残留不純物混入等による界面準位が生じ ない。よって、図3の (b) に示すようなオーミック接 系化合物半導体層 (p型クラッド層とp型コンタクト が得られている。

習1の幅よりも大きく散定できるので、図8に示した従 来の半導体発光素子に生じていたような内部配施阻止層 【0080】n型AIGaN图8の関ロ町の幅は絶談体 80の開口部底面の関節の空洞111が生じない。

【0081】さらに、臨海狭쒐部(田口部)の幅や形状 をウェットエッチング社により制御性良く形成すること [0082] 電流阻止圏8bの絶線体局7はAlGaN

母8に対してエッチングストップ母として機能するた

特開2001-68786

4

め、エッチングの停止を容易に再現性良く制御すること ができ、ダメージや疫留不純物等による界面準位も低減

[0083] さらに、本実施形態では、p型クラッド層 6上に直接絶縁体層7を形成するのではなく、導館体局 7 1を形成しているため、S i 等の不純勉がp 型クラッ ド層6に堆積されず、絶験体形成時の酸素やSi等の不 純物がp型クラッド間6に混入するのを防ぐための保護 【0084】このように、本実施形態においては、横モ **雷としても機能する。よって、実施形態1の半導体ン**・ ザよりもさらに順方向電圧を低減することができる。 **ードが制御され、しきい値電流および順方向電圧が** し、信頼性に優れた窒化ガリウム系化合物半導体1 [0085] なお、本実施形態では専8体圏71が残る ように形成したが、導稿体图 2 1 の形成幅を閉口部の幅 と同じに形成し、p型クラッド層6表面14を蘇出させ **ろためのエッチング工程において導電体局71を全て除** 去してもよい。さらに、苺配体局71は絶縁体局7より も幅が狭くされているが、絶縁体間1の下全面に散ける

を実現することができた。

【0086】 (実施形態3) 本実施形態では、n型クラ [0087] 図6は実施形態3の窒化ガリウム系化合物 ッド局上に絶縁体局を散けた例について説明する。 半導体レーザの格成を示す断面図である。

こともできる。

【0088】この半導体レーずは、サファイヤ基板1上 に、厚さ50nm程度のGaNパッファ配2、厚さ3μ 厚さ0. 5μm程度のp型 (Mg ドープ) Alo.osGa 0.12G a 0.68N括性間5および厚さ0.3 μ m程度のn 型A10.08G80.02Nクラッド쪔61、厚き0.1μm μmのp型 (Mgドープ) GaN層81とからなる電流 8 c およびp 型コンタクト閥31はp 型コンタクト閥3 1を露出させるようにその一部が除去されている。 n型 阻止層8 c および厚さ0. 3 μ mのn 型G a Nコンタク m程度のp型 (Mgドープ) GaNコンタクト層31、 の絶縁体 (本実施形態ではSiO1) 吊7と厚さ0.3 ト層 9 1 を順次積層した構造を備えている。 p 型クラ 0.82Nクラッド図41、厚さ3nmのノンドープ1n ド層41、活性層5、n型クラッド層61、電流阻止 コンタクト周91の上にはn型電極11が形成され、

[0089] 上記電流阻止層8cは、活性層5の選択さ れた領域(本実施形態では共振器長方向に延びるストラ ードを閲覧するように決定されている。その関ロ部には イプ状の領域)に臨流通路となるストライプ状関ロ部を 有し、このストライプ状関ロ部の幅はレーザ発援の横モ GaN層81の下に絶破体 (SiO2) 磨7が散けら

型コンタクト層31の露出部上にはp型電極10が形成

\$

れ、GaN局81の関ロ部の幅は絶線体局1の関ロ部の 幅より大きく散定されている。絶談体励りはGaN厬8

#

8

1 に対するエッチングストップ層としての機能を有して

【0090】この半導体レーザの製造において、各層の め、キャリヤガスは実施形態1と同様のものを用いるこ 成是法、V族原料、III族原料、p型不純物、n型不純

【0091】 この半導体レーがは、図示しない観視供格 られ、半等体積層構造の中をp型電極10からn型電極 11~と電流が流れる。このとき、電流はp型GaN層 81と絶縁体層りからなる観視阻止層8cによってプロ ックされるので、電流が狭窄されながら電流阻止層8 c の関ロ部を上から下へ流れる。これにより、横モードの 回路から p 型電板 1 0 および n 型電板 1 1 に電圧が与え 制御されたレーザ発援が生じ、故長が青色領域から紫外 強機にあるフーザ光が毎られる。

時のダメージや残留不純物混入等による界面準位が生じ **聞)をドライドッチングに晒ことなく観光狭磐街(観光** 【0092】さらに、本実施形態によれば、n型蜜化物 通路) を形成することができるので、ドライエッチング 系化合物半導体層 (n型クラッド層とn型コンタクト

【0093】 p型GaN層81の国口部の値は治験体層 7の幅よりも大きく設定できるので、図8に示した従来 の半導体発光素子に生じていたような内部電流阻止層8 0の開口部底面の開部の空洞111が生じない。

[0095] 真浜田上畑8 cの地域体種7はGaN昭8 【0094】さらに、鬼消狭俗部(関ロ部)の幅や形状 をウェットエッチング法により制御性良く形成すること

エッチングの停止を容易に再現性良く制御することがで き、ダメージや残留不純物等による界面準位も低減され 1に対してエッチングストップ層として機能するため、

層7がn型クラッド層61上に形成されており、SiO **強入しても、Siは窓化物系化合物半導体に対してπ型** 子を作製した場合、実施形態2で得られた順方向電圧よ 【0091】このように、本実施形態においては、横干 **ードが観響され、しきい値電流および順方向電圧が低減** し、信頼性に優れた選化ガリウム系化合物半導体レーザ 不純物として働くため、特に問題は生じない。 実際に来 2絶縁体層7の形成時にn型クラッド層61にSi等が 【0096】さらに、本実施形態では、SiOz絶縁体 りも若干高めであるが、問題ない程度であった。 を実現することができた。

【0098】 (実施形態4) 本実施形態では、導電性G a N基板を用いた例について説明する。

【0099】殴7は実施形態4の竃化ガリウム系化合物 4番体フーザの権成を示す慰団図である。

【0100】この半導体レーがは、n型GaN基板21

上に、厚さ3ヵm程度のn型G a Nコンタクト層3、厚

-6-

20

さ0.5μm程度のn型A 10.08G ao.82Nクラッド層 0.08G80.82Nクラッド層6、厚さ0.1μmの絶縁体 3 m m の p 型(M g ドープ)G a N コンタクト層 9 を順 **次積層した構造を備えている。p型コンタクト層9の上** 4、厚さ3mmのノンドープ I no. 32Ggの 68 N 钴性層 にはp型電極10が形成され、n型GaN基板21の裏 5および厚さ0.3μm程度のp型 (Mgドープ) A l (本実施形態ではSiO1) 層7と厚さO: 3 mmのn 型GaN層8とからなる電流阻止層8aおよび厚さの. 面にはn型電極11が形成されている。

有し、このストライプ状閉口部の幅はレーザ発振の横モ **ードを調整するように決定されている。その関口部には** 大きく散定されている。拾版体圖1はGaN屬8に対す 【0101】上記電流阻止層8aは、括性層5の選択さ れた領域(本実施形態では共級器長方向に延びるストラ イブ状の領域)に電流通路となるストライプ状開口部を Ga N語8の親ロ街の編は結構存職~の翌日街の編れり G 8 N面 8 の下に結束体(S i O1)面 7 が受けられ、 るエッチングストップ層としての機能を有している。

【0102】この半導体レーザの製造において、各層の 成長法、V族原料、III族原料、p型不純物、n型不純 物、キャリヤガスは実施形態1と同様のものを用いるこ

20

【0103】いの半導体レーがは、図示しない観消供給 クされるので、電流が狭窄されながら電流阻止層88の 閉口部を上から下へ流れる。これにより、横モードの制 られ、半導体積層構造の中をp型電極10からn型電極 11~と電流が流れる。このとき、電流はn型GaN層 8 と絶縁体層 7 からなる亀流阻止層 8 a によったブロッ 御されたレーザ発振が生じ、波長が青色領域から紫外領 回路から p 型電極10および n 型電極11に電圧が与え 核にむるフー扩光が侮られる。

[0104] さらに、本実施形態によれば、p型窒化物 **踊)をドライエッチングに晒ことなく亀流狭窄部(電液** 通路)を形成することができるので、ドライエッチング 時のダメージや残留不純物混入等による界面準位が生じ 系化合物半導体層(p 型クラッド層とp 型コンタクト

の幅よりも大きく散定できるので、図8に示した従来の 半導体発光素子に生じていたような内部電流阻止層80 【0102】n型GaN層8の既口部の幅は絶縁体層7 の関ロ部底面の関部の空洞 1 1 1が生じない。

【0106】さらに、亀流狭窄的(関ロ部)の編や形状 をウェットエッチング法により制御性良く形成すること [0107] 電流阻止層8aの絶線体層7はGaN層8 に対してエッチングストップ階として機能するため、エ き、ダメージや残留不純物等による界面準位も低減され ッチングの停止を容易に再現性良く制御することがで

9

特開2001-68786

1

【0117】従って、本発明によれば、横モードが制御 され、しきい値電流および順方向電圧が低減し、信頼性 に優れた窒化物系化合物半導体発光素子を実現すること

を用いているため、その上のクラッド階6に存在する転

位がサファイヤ基板を用いた場合に比べて少ない。 よっ て、クラッド層6表面から転位を観察して、転位の少な い領域上に絶縁体層7を形成し、例えば転位密度が10 8人cm2以下の倒板に形成することができる。その上に GaN層8を積層して電流阻止層8aを形成し、この電

【0108】さらに、本実施形態では、GaN基板21

することができ、例えば転位密度が100~cm2以下の [0118] 特に、GaN基板を用いた場合には、その 上に形成される窒化物系化合物半導体層の転位を少なく 領域の上に上記絶線体層の関ロ部を形成することができ また、活性層の結晶性を悪化させることもないので、さ らに発光効率の高い釜化物系化合物半導体発光繋子を得 る。その結果、非発光再結合を減少させることができ、 ることができる。 9

[0109] 従って、本実施形態では、横モードが制御

流阻止層8aに関口部を形成することにより、転位の少

ない領域に電流通路を形成することができる。

され、実施形態1~実施形態3の半導体レーザよりもさ らにしきい値電流および順方向電圧が低減し、信頼性に

優れた蛮化ガリウム系化合物半導体レーザを実現するこ

【図1】実施形態1の窶化ガリウム系化合物半導(【図面の簡単な説明】

げの構造を示す断面模式図である。

[図3] 実施形態1および実施形態2の窒化ガリウム系 [図2] 実施形態1の鑑化ガリウム系化合物半導体レー **げの製造工程を説明するための断面模式図である。**

化合物半導体レーザと従来の窒化ガリウム系化合物半導 体ァーザについて、I - V 特性を示す図である。

れていても本実施形態と同様の効果が得られることを確

怒している。

2) 面等が好ましく、これらの面方位から±2度程度す

西、(1-101)西、(11-22)西(01-1 {0001}固、{1-100}固、(11-20} 【0110】なお、GaN基板の面方位については、

【011】上記絶縁体層1は、その上に窒化ガリウム 系化合物半導体層が成長可能なものであり、成長マスク 4、A 1203またはTi02等、紫外領域での光吸収が少

[図4] 実施形態2の塞化ガリウム系化合物半導体レー げの構造を示す断面模式図である。

[図5] 実施形態2の窒化ガリウム系化合物半導体レー げの製造工程を説明するための断面模式図である。

層としての機能を有している。特に、SiOス、Si₃N

【図6】実施形態3の鑑化ガリウム系化合物半導体レー げの構造を示す断面模式図である。

[図1] 実施形態4の窒化ガリウム系化合物半導体レー げの構造を示す断面模式図である。 【図8】従来の窒化ガリウム系化合物半導体レーザの構 造を示す断面模式図である。 30

再現性良くエッチングを停止させて制御性良く関口部の

形状を制御することができる。

[0113] 電流阻止層の下の釜化物系化合物半導体層 をドライエッチングに晒すことなく電流の狭窄部(電流 通路)を形成することができるので、ドライエッチング によるダメージや残留不純物がクラッド層表面やその上

電流阻止層の絶縁体層を窒化物系化合物半導体層のエッ

[発明の効果] 以上詳述したように、本発明によれば、 チングストップ層として機能させることができるので、

ない材料を用いるのが好ましい。

【図9】 従来の塞化ガリウム系化合物半導体レーザの構 歯を示す節面模式図である。 [符号の説明]

1 サファイヤ基板

パッファ層

3、9.1 n型コンタクト層 4、6.1 n型クラッド層

41 p型クラッド層 活性層

7 電流阻止層(絶縁体層) 西洋西片屋 (GaN扇)

4

た場合のように絶縁体體形成時に不純物がクラッド層に

堆積されるのを防ぐことができる。

[0114] さらに、絶縁体層の下層に導電体層を設け ることにより、絶縁体圏を直接上部クラッド層に形成し

- V 特性が得られる。

の再成長層であるコンタクト層に導入されず、良好な1

[0115] 電流阻止層の窒化物系化合物半導体層の関 ができるので、従来のように電流阻止層のストライプ状

ロ部の幅は絶縁体層の関ロ部の幅よりも大きくすること

8 a、8 b、8 c 電流阻止層

9、31 p型コンタクト層

10 p型電極

11 n型電極

12a, 12b レジストマスク

トエッチング缶で形成できるので、ドライエッチング法 よりはダメージが少ない関口的や関口的の底部が形成で き、制御性良く電流狭窄部を形成して、しきい値電流や

[0116] 観視狭磐郎 (関ロ部) の幅や形状はウェッ

構底部の隅に空洞が生じることはない。

14 p型クラッド層の露出表面 13 絶像体層の臨出表面

n型コンタクト層の露出表面 結晶欠陥 16

20

発振モードを安定させることができる。

-0-