Programare logică

Mulţimi de generatori Algebre libere

Mulţimi de generatori

 (S,Σ) signatură multisortată, A-algebră, X mulţime, $X\subseteq A$

■Subalgebra generată de X în A, notată \overline{X} , este *cea mai mică* (\subseteq) subalgebră a lui A care include X.

Mulţimi de generatori

 (S,Σ) signatură multisortată, A-algebră, X mulţime, $X\subseteq A$

- Subalgebra generată de X în A, notată \overline{X} , este *cea mai mică* (\subseteq) subalgebră a lui A care include X.
- ${lue C}=\overline{X}$ dacă și numai dacă:
 - $\blacksquare C \subseteq A$, C subalgebră,
 - $\blacksquare X \subset C$,
 - $\blacksquare B \subseteq A$, B subalgebră, $X \subseteq B \Rightarrow C \subseteq B$.

Mulţimi de generatori

 (S,Σ) signatură multisortată, A-algebră, X mulţime, $X\subseteq A$

- Subalgebra generată de X în A, notată \overline{X} , este *cea mai mică* (\subseteq) subalgebră a lui A care include X.
- ${lue C}=\overline{X}$ dacă și numai dacă:
 - $\blacksquare C \subseteq A$, C subalgebră,
 - $\blacksquare X \subset C$,
 - $\blacksquare B \subseteq A$, B subalgebră, $X \subseteq B \Rightarrow C \subseteq B$.
- Spunem că A este generată de X dacă $X \subseteq A$ şi $\overline{X} = A$. În acest caz X este mulțime de generatori pentru A.

Construcția subalgebrei generate

A-algebră, X mulţime, $X \subseteq A$

- $lacksquare \mathcal{F} := \{B \subseteq A \mid B \text{ subalgebr} \check{\mathbf{a}}, \ X \subseteq B\}$
 - $\blacksquare A \in \mathcal{F}$, deci $\mathcal{F} \neq \emptyset$
 - $\blacksquare \{B_i\}_{i\in I}\subseteq \mathcal{F} \text{ implică } \bigcap_{i\in I} B_i\in \mathcal{F}$
 - $\blacksquare \overline{X} = \bigcap \{B \mid B \in \mathcal{F}\}$

Construcția subalgebrei generate

A-algebră, X mulţime, $X \subseteq A$

- $lacksquare \mathcal{F} := \{B \subseteq A \mid B \text{ subalgebr} \check{\mathbf{a}}, \ X \subseteq B\}$
 - $\blacksquare A \in \mathcal{F}$, deci $\mathcal{F} \neq \emptyset$
 - $\blacksquare \{B_i\}_{i\in I}\subseteq \mathcal{F} \text{ implică } \bigcap_{i\in I} B_i\in \mathcal{F}$
 - $\blacksquare \overline{X} = \bigcap \{B \mid B \in \mathcal{F}\}$
- **C**onstruim un şir de mulţimi S-sortate $(X_n)_n$ astfel:

$$X_0 := X,$$

$$X_{n+1,s} := X_{n,s} \cup \{A_{\sigma} \mid \sigma : \to s\} \cup \{A_{\sigma}(a_1, \dots, a_k) \mid$$

$$\sigma : s_1 \dots s_k \to s, (a_1, \dots, a_k) \in X_{n,s_1} \times \dots \times X_{n,s_k}\}.$$

Construcția subalgebrei generate

A-algebră, X mulţime, $X \subseteq A$

- $lacksquare \mathcal{F} := \{B \subseteq A \mid B \text{ subalgebr} \check{\mathbf{a}}, \ X \subseteq B\}$
 - $\blacksquare A \in \mathcal{F}$, deci $\mathcal{F} \neq \emptyset$
 - $\blacksquare \{B_i\}_{i\in I}\subseteq \mathcal{F} \text{ implică } \bigcap_{i\in I} B_i\in \mathcal{F}$
 - $\blacksquare \overline{X} = \bigcap \{B \mid B \in \mathcal{F}\}$
- **C**onstruim un şir de mulţimi S-sortate $(X_n)_n$ astfel:

$$X_0 := X,$$

$$X_{n+1,s} := X_{n,s} \cup \{A_{\sigma} \mid \sigma : \rightarrow s\} \cup \{A_{\sigma}(a_1, \dots, a_k) \mid$$

$$\sigma : s_1 \dots s_k \rightarrow s, (a_1, \dots, a_k) \in X_{n,s_1} \times \dots \times X_{n,s_k}\}.$$

Propoziție. $\overline{X} = \bigcup_n X_n$.

Exemplu. M mulţime, $Q\subseteq M$, BOOL-algebra $A=(\mathcal{P}(M),\cup,\cap,\neg,\emptyset,M)$

$$X := \{Q\}$$

$$\overline{X} = \{\emptyset, Q, \neg Q, M\}$$

Exemplu. M mulţime, $Q\subseteq M$, BOOL-algebra $A=(\mathcal{P}(M),\cup,\cap,\neg,\emptyset,M)$

- $X := \{Q\}$ $\overline{X} = \{\emptyset, Q, \neg Q, M\}$
- $\blacksquare \ \overline{\emptyset} = \{\emptyset, M\}$

Exemplu. M mulţime, $Q\subseteq M$, BOOL-algebra $A=(\mathcal{P}(M),\cup,\cap,\neg,\emptyset,M)$

- $X := \{Q\}$ $\overline{X} = \{\emptyset, Q, \neg Q, M\}$
- $\overline{\emptyset} = \{\emptyset, M\}$
- $Y := \{\{a\}, \{b\}\}, \text{ unde } a \neq b \in M$ $\overline{Y} = \{\{a\}, \{b\}\} \cup \{\emptyset, M\} \cup \{\neg\{a\}, \neg\{b\}, \{a, b\}\} \cup \{\neg\{a, b\}\}$

Proprietăți

 (S,Σ) signatură multisortată

Propoziție. Fie $h:A\to B$ și $g:A\to B$ morfisme.

- $\blacksquare X \subseteq A, h|_X = g|_X \Rightarrow h|_{\overline{X}} = g|_{\overline{X}},$
- $\blacksquare h(\overline{X}) = \overline{h(X)}$ pentru $X \subseteq A$,
- $\overline{h^{-1}(Y)} \subseteq h^{-1}(\overline{Y})$ pentru $Y \subseteq B$.

 (S,Σ) signatură multisortată, X mulţime de variabile

- ■O algebră A este liber generată de X dacă
 - $\blacksquare X \subseteq A$,
 - ■oricare ar fi B o algebră şi $f: X \to B$ o funcţie există un unic morfism $\tilde{f}: A \to B$ cu $\tilde{f}_s(x) = f_s(x)$ oricare $x \in X_s, s \in S$.

 (S,Σ) signatură multisortată, X mulțime de variabile

- ■O algebră A este liber generată de X dacă
 - $\blacksquare X \subseteq A$,
 - ■oricare ar fi B o algebră şi $f: X \to B$ o funcţie există un unic morfism $\tilde{f}: A \to B$ cu $\tilde{f}_s(x) = f_s(x)$ oricare $x \in X_s, s \in S$.
- ■Dacă A_1 şi A_2 sunt liber generate de X, atunci $A_1 \simeq A_2$.

 (S,Σ) signatură multisortată, X mulțime de variabile

- ■O algebră A este liber generată de X dacă
 - $\blacksquare X \subseteq A$,
 - ■oricare ar fi B o algebră şi $f: X \to B$ o funcţie există un unic morfism $\tilde{f}: A \to B$ cu $\tilde{f}_s(x) = f_s(x)$ oricare $x \in X_s, s \in S$.
- ■Dacă A_1 şi A_2 sunt liber generate de X, atunci $A_1 \simeq A_2$.
- $\blacksquare T_{\Sigma}(Y)$ este liber generată de mulţimea de variabile Y.

 (S,Σ) signatură multisortată, X mulţime de variabile

- ■O algebră A este liber generată de X dacă
 - $\blacksquare X \subseteq A$,
 - ■oricare ar fi B o algebră şi $f: X \to B$ o funcţie există un unic morfism $\tilde{f}: A \to B$ cu $\tilde{f}_s(x) = f_s(x)$ oricare $x \in X_s, s \in S$.
- ■Dacă A_1 şi A_2 sunt liber generate de X, atunci $A_1 \simeq A_2$.
- $\blacksquare T_{\Sigma}(Y)$ este liber generată de mulţimea de variabile Y.
- $\blacksquare T_{\Sigma}$ este liber generată de mulţimea \emptyset .

 (S,Σ) signatură multisortată, X mulțime de variabile

- ■O algebră A este liber generată de X dacă
 - $\blacksquare X \subseteq A$,
 - ■oricare ar fi B o algebră şi $f: X \to B$ o funcţie există un unic morfism $\tilde{f}: A \to B$ cu $\tilde{f}_s(x) = f_s(x)$ oricare $x \in X_s, s \in S$.
- ■Dacă A_1 şi A_2 sunt liber generate de X, atunci $A_1 \simeq A_2$.
- $\blacksquare T_{\Sigma}(Y)$ este liber generată de mulţimea de variabile Y.
- $\blacksquare T_{\Sigma}$ este liber generată de mulţimea \emptyset .

o expresie este un element al unei algebre libere

Mulţimi de generatori liberi

 (S,Σ) signatură multisortată, A-algebră, X mulțime de variabile, $X\subseteq A$

Propoziţie. Dacă A este liber generată de X, atunci $\overline{X} = A$. În acest caz, spunem că X este mulţime de generatori liberi pentru A.

Mulţimi de generatori liberi

 (S,Σ) signatură multisortată, A-algebră, X mulțime de variabile, $X\subseteq A$

- Propoziţie. Dacă A este liber generată de X, atunci $\overline{X} = A$. În acest caz, spunem că X este mulţime de generatori liberi pentru A.
- $NAT = (S = \{s\}, \Sigma), \Sigma = \{0 : \to nat, succ : nat \to nat\}$ $A_{nat} := \mathbb{N}, A_0 := 0, A_{succ}(x) := x + 1$
 - $\{1\}$ este mulțime de generatori pentru A
 - $\{1\}$ nu este mulțime de generatori liberi pentru A
 - A este liber generată de \emptyset

- ■STIVA = $(S = \{elem, stiva\}, \Sigma)$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, pop : stiva \rightarrow stiva, push : elem stiva \rightarrow stiva, top : stiva \rightarrow elem \}$
- STIVA-algebra A: $A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*$ $A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \cdots n_k) := n \ n_1 \cdots n_k,$ $A_{pop}(\lambda) = A_{pop}(n) := \lambda,$ $A_{pop}(n_1 n_2 \cdots n_k) := n_2 \cdots n_k \ \text{pt. } k \ge 2,$ $A_{top}(\lambda) := 0, A_{top}(n_1 \cdots n_k) := n_1 \ \text{pt. } k \ge 1.$
- ■Dacă $P:=\overline{\emptyset}$ atunci $P_{elem}=\{0\}$ și $P_{stiva}=\{0\}^*$.
- A este liber generată de X, unde $X_{elem} := \mathbb{N} \setminus \{0\}$ și $X_{stiva} := \emptyset$.

Axiomatizarea Peano a numerelor naturale

- Există o mulţime \mathbb{N} , ale cărei elemente se numesc numere naturale şi o funcţie $succ: \mathbb{N} \to \mathbb{N}$, numită funcţia succesor cu următoarele proprietăţi:
 - \blacksquare N contine un element special, notat 0,
 - $0 \neq succ(n)$ oricare $n \in \mathbb{N}$,
 - \blacksquare $succ(n) = succ(m) \Rightarrow n = m$,
 - Principiul inducţiei: dacă $P \subseteq \mathbb{N}$ a.î. $0 \in P$ şi $n \in P$ implică $succ(n) \in P$, atunci $P = \mathbb{N}$.

Algebre Peano

 (S,Σ) signatură multisortată A algebră, X mulţime de variabile

- ■Spunem că A este algebră Peano peste X dacă:
 - $\blacksquare X \subseteq A$,
 - $\blacksquare A_{\sigma}(a_1,\ldots,a_n) \not\in X_s$, or. $\sigma:s_1\ldots s_n \to s$, $(a_1,\ldots,a_n) \in A_{s_1} \times \cdots , A_{s_n}$,
 - or. $\sigma: s_1 \dots s_n \to s$, or $(a_1, \dots, a_n) \in A_{s_1} \times \dots \times A_{s_n}$, or. $\tau: s'_1 \dots s'_k \to s$, or. $(a'_1, \dots, a'_k) \in A_{s'_1} \times \dots \times A_{s'_k}$ $A_{\sigma}(a_1, \dots, a_n) = A_{\tau}(a'_1, \dots, a'_k) \Rightarrow \sigma = \tau$, n = k, $a_i = a'_i$ or. i
 - $\overline{X} = A.$

Algebre Peano

 (S,Σ) signatură multisortată A algebră, X mulţime de variabile

Teoremă. Următoarele afirmaţii sunt echivalente:

- \blacksquare A este Peano peste X,
- \blacksquare A este liber generată de X,
- \blacksquare $A \simeq T_{\Sigma}(X)$.