Overfitting in ML & How to Solve it

With code examples

Swipe to see in detail

What is Overfitting

Overfitting occurs when a machine learning model learns the training data too well, capturing noise or random fluctuations in the data that don't represent the underlying patterns. As a result, an overfitted model performs well on the training set but fails to generalize to new, unseen data.

signs that your model might be overfitting:

- High Training Accuracy, Low Validation Accuracy:
 The model achieves high accuracy on the training data but performs poorly on a separate validation set.
- Model Complexity: Overfit models tend to be excessively complex, capturing noise in the training data instead of the underlying patterns.
- Large Differences Between Training and Validation
 Performance: If there is a significant gap between the
 training and validation performance metrics, it may
 indicate overfitting.

Lert's see how we can solve it

Train-Test Split

Split your dataset into two parts: a training set used to train the model and a test set used to evaluate its performance.

```
from sklearn.model_selection import
train_test_split

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)
```

Cross-Validation

Divide the dataset into multiple subsets (folds) and train the model on different combinations of these subsets to assess its performance more robustly.

```
from sklearn.model_selection import cross_val_score, KFold from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100)

# Use cross-validation to evaluate the model
cv = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(model, X, y, cv=cv)

print(f'Cross-Validation Mean Accuracy: {cv_scores.mean()}')
```

Lasso Regression (L1 regularization)

L1 regularization encourages sparsity

Ridge Regression (L2 regularization)

L1 regularization encourages sparsity

Dropout for Neural Networks

Randomly deactivate some neurons during training to prevent overreliance on specific ones and enhance generalization.

```
from tensorflow.keras.models import
Sequential
from tensorflow.keras.layers import
Dense, Dropout

model = Sequential([
        Dense(64, activation='relu',
input_dim=X_train.shape[1]),
        Dropout(0.5),
        Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam',
loss='binary_crossentropy', metrics=
['accuracy'])
model.fit(X_train, y_train, epochs=100,
validation_data=(X_val, y_val))
```

Early Stopping

Monitor the validation performance during training and stop when it starts degrading.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.callbacks import EarlyStopping

model = Sequential([
    Dense(64, activation='relu', input_dim=X_train.shape[1]),
    Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])

# Use early stopping to monitor validation loss
early_stopping = EarlyStopping(monitor='val_loss', patience=5,
restore_best_weights=True)

# Fit the model with early stopping
model.fit(X_train, y_train, epochs=100, validation_data=(X_val,
y_val), callbacks=[early_stopping])
```

Ensemble Methods

Combine predictions from multiple models to improve overall performance.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

model1 = RandomForestClassifier(n_estimators=100)
model2 = SomeOtherClassifier()

ensemble_model = VotingClassifier(estimators=[('rf', model1),
    ('other', model2)], voting='hard')
ensemble_model.fit(X_train, y_train)
```

Feature Selection

Select a subset of the most important features to reduce complexity and enhance generalization.

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)

feature_importances = model.feature_importances_
selected_features = X_train.columns[feature_importances > threshold]
```

Data Augmentation

Generate new training samples by applying transformations to existing ones, especially useful for image data.

```
from
tensorflow.keras.preprocessing.image
import ImageDataGenerator

datagen =
ImageDataGenerator(rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2, zoom_range=0.2,
horizontal_flip=True)

# Fit the generator on your training
data
datagen.fit(X_train)

# Use the generator for training
model.fit(datagen.flow(X_train,
y_train, batch_size=32), epochs=100,
validation_data=(X_val, y_val))
```