Normal Distribution

When X has a normal distribution with mean μ and standard deviation σ , we can standardize X as follows:

$$Z = \frac{X - \mu}{\sigma}.$$

This Z, called z-score, has a standard normal distribution (i.e. normal distribution with mean 0 and s.d. 1), of which the values of the distribution function are usually given in a table.

The table of $F(z)$											
	z	0	1	2	3	4	5		8	9	
	0.9	.8159	.8186	.8212	.8238	.8264	.8289		.8365	.8389	
	1.0	.8413	.8438	.8461	.8485	.8508	.8531		.8599	.8621	
	1.1	.8643	.8665	.8686	.8708	.8729	.8749		.8810	.8830	
	1.2	.8849	.8869	.8888	.8907	.8925	.8944		.8997	.9015	

For example, F(1.04) = 0.8508, which means that $P(Z \le 1.04) = 0.8508$.

The table of standard normal distribution usually shows the values of F(z) only when z is positive. To get F(z) when z is negative, we can use the symmetry of the normal curve:

$$F(-z) = P(Z \le -z) = P(Z > z) = 1 - F(z).$$

For example, F(-1.04) = 1 - F(1.04) = 0.1492.

Example 1. Suppose that X is normally distributed with mean 50 and s.d. 10. Find P(39.5 < X < 59.2).

Solution.

Example 2. Suppose that X is normally distributed with s.d. 10 and P(X>25)=0.8997. Find EX.

Solution. Let μ be the mean of X. Note that, since P(X > 25) is greater than 0.5, 25 must be less than μ . In particular, the value 25 has a negative z-score.

Notice from the table that 0.8997 = F(1.28), where F is the distribution function for Z. So by the symmetry of the normal curve, we have that 25 corresponds to the z-score -1.28. That is, $(25 - \mu)/10 = -1.28$. Thus, $\mu = 37.8$.

Uniform Distribution

X has a uniform distribution over an interval (a,b) if it takes on the values in that interval and its density function is

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b.$$

It follows that $EX = \frac{a+b}{2}$ (i.e. the midpoint of the interval) and $\operatorname{var} X = \frac{(b-a)^2}{12}$. Note that the variance naturally depends only on the length of the interval.

The easiest way to compute the probability of X when X is uniform over some interval is by finding the rectangular area under the density curve over that interval.

Example 3. X is uniform over the interval (4,12). Compute P(|X-7|>1).

Solution. The density function of X is given by $f(x) = \frac{1}{12-4} = \frac{1}{8}$ for $4 \le x \le 12$. Then

$$\begin{split} P(|X-7|>1) &= P(X<6 \text{ or } X>8) \\ &= P(X<6) + P(X>8) \\ &= (6-4)\frac{1}{8} + (12-8)\frac{1}{8} \\ &= 0.75. \quad \blacksquare \end{split}$$

Exponential Distribution

 \boldsymbol{X} has an exponential distribution if it takes on the non-negative values and its density function has the form

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

The distribution function of *X* is

$$F(x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

It follows that

$$P(X > x) = 1 - F(x) = e^{-\lambda x}, \quad x \ge 0.$$

$$EX = \frac{1}{\lambda}$$
 and $\operatorname{var} X = \frac{1}{\lambda^2}$.

Non-Aging Property. When X is exponentially distributed, we have that

$$\begin{split} P(X>t+h|X>t) &= \frac{P(X>t+h \text{ and } X>t)}{P(X>t)} \\ &= \frac{P(X>t+h)}{P(X>t)} = \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} = e^{-\lambda h} = P(X>h). \end{split}$$

In words, when X models the lifetime of an object, this property states that: given that this object has lasted for at least t units of time, the probability that it will last for at least h more units is equal to the probability that it will last for at least h units of time from the beginning. The fact that it has lasted for t units of time does not have any effect on how longer it will last after that.

Example 4. Suppose that the waiting time for the next bus at a bus stop is exponentially distributed with mean 10 minutes. Find the probability that you will have to wait for at least 5 minutes but no longer than 15 minutes until the next bus arrives.

Solution. Let X be the waiting time until the next bus. Then X is exponentially distributed with mean 10. Since $EX = \frac{1}{\lambda}$, we have that $\frac{1}{\lambda} = 10$. That is, $\lambda = 0.1$. Then we want to find P(5 < X < 15).

$$P(5 < X < 15) = P(X > 5) - P(X > 15)$$

$$= e^{-(0.1)5} - e^{-(0.1)15} = e^{-0.5} - e^{-1.5}. \quad \blacksquare$$

More Examples

Example 5. Suppose that X and Y are two independent, uniformly distributed random variables, where X is uniform over the interval (0,1) and Y is uniform over (0,2). Find the probability that Y>X.

Solution. Because X and Y are independent and uniform, the point (X,Y) is distributed uniformly over the 1 x 2 rectangle on the xy-plane as shown. Note that Y>X if the point (X,Y) lies above the line y=x. Thus,

$$y = x$$

$$P(Y>X) = \frac{\text{area of shaded region}}{\text{area of 2 x 1 rectangle}} = \frac{1.5}{2} = 0.75. \; \blacksquare$$

Example 6. Suppose that we choose a random point inside a unit circle (i.e. a circle of radius 1). Let X be the distance between the chosen point and the center. Find EX and $\operatorname{var} X$.

Solution. Notice first that the range of X is from 0 to 1. We start by finding the distribution function. For 0 < x < 1, we have that $P(X \le x)$ is the probability that the chosen point is within the circle of radius x with the same center as that of the unit circle. Thus,

$$F(x) = P(X \le x) = \frac{\text{area of circle of radius } x}{\text{area of unit circle}} = \frac{\pi x^2}{\pi 1^2} = x^2 \quad \text{when } 0 < x < 1.$$

Then we can find the density function by taking the derivative of F(x).

$$f(x) = F'(x) = 2x, \quad 0 < x < 1.$$

Now that we have the density function, we can use it to find EX and $\operatorname{var} X$.

$$EX = \int_0^1 x f(x) dx = \int_0^1 x (2x) dx = \left[\frac{2}{3} x^3 \right]_0^1 = \frac{2}{3}.$$

$$E(X^2) = \int_0^1 x^2 f(x) dx = \int_0^1 x^2 (2x) dx = \left[\frac{2}{4} x^4 \right]_0^1 = \frac{1}{2}.$$

$$\text{var } X = E(X^2) - (EX)^2 = \frac{1}{2} - \left(\frac{2}{3} \right)^2 = \frac{1}{18}.$$

So the mean and the variance of X are $\frac{2}{3}$ and $\frac{1}{18}$, respectively.

Example 7. Define $Y = \frac{1}{X+1}$ where X is as defined in Example 6. Find the mean and the variance of Y.

Solution 1. We can use the density function for X from Example 6.

$$EY = E(\frac{1}{X+1}) = \int_0^1 \frac{1}{x+1} f(x) dx = \int_0^1 \frac{2x}{x+1} dx$$
$$= \int_0^2 \left(2 - \frac{2}{x+1}\right) dx = \left[2x - 2\ln(x+1)\right]_0^1 = 2 - 2\ln 2.$$

$$E(Y^2) = E\left(\frac{1}{(X+1)^2}\right) = \int_0^1 \frac{1}{(x+1)^2} f(x) dx = \int_0^1 \frac{2x}{(x+1)^2} dx.$$

We substitute u = x + 1. (Note the change of the limit of integration.)

$$\begin{split} E(Y^2) &= \int_1^2 \frac{2(u-1)}{u^2} du = \int_1^2 \left(\frac{2}{u} - \frac{2}{u^2}\right) du \\ &= \left[2\ln u + \frac{2}{u}\right]_1^2 = (2\ln 2 + 1) - (2\ln 1 + 2) = 2\ln 2 - 1. \end{split}$$

Thus,
$$\operatorname{var} Y = E(Y^2) - (EY)^2 = (2\ln 2 - 1) - (2 - 2\ln 2)^2$$
.

Solution 2. We can find the distribution function and the density function for Y first. Note that Y ranges from $\frac{1}{2}$ to 1, as X ranges from 0 to 1. So for $\frac{1}{2} < y < 1$,

$$\begin{split} P(Y \leq y) &= P(\frac{1}{X+1} \leq y) \\ &= P(X+1 \geq \frac{1}{y}) \\ &= P(X \geq \frac{1}{y}-1) \\ &= 1 - F_X(\frac{1}{y}-1) \quad \text{where } F_X \text{ denotes the cdf for } X \\ &= 1 - \left(\frac{1}{y}-1\right)^2 \quad \text{by Example 6 (Note that } 0 < \frac{1}{y}-1 < 1.) \\ &= \frac{2}{y} - \frac{1}{y^2}. \end{split}$$

Thus the density function for Y is $f_Y(y) = F_Y'(y) = -\frac{2}{y^2} + \frac{2}{y^3}$ for $\frac{1}{2} < y < 1$. Then

$$EY = \int_{1/2}^{1} y f_Y(y) dy = \int_{1/2}^{1} y \left(-\frac{2}{y^2} + \frac{2}{y^3} \right) dy = \int_{1/2}^{1} \left(-\frac{2}{y} + \frac{2}{y^2} \right) dy$$
$$= \left[-2\ln y - \frac{2}{y} \right]_{1/2}^{1} = (-2\ln 1 - 2) - (-2\ln \frac{1}{2} - 4) = 2 - 2\ln 2.$$

(Recall that $\ln 1 = 0$ and $\ln \frac{1}{2} = \ln(2^{-1}) = -\ln 2$.)

$$\begin{split} E(Y^2) &= \int_{1/2}^1 y^2 f_Y(y) dy = \int_{1/2}^1 y^2 \left(-\frac{2}{y^2} + \frac{2}{y^3} \right) dy = \int_{1/2}^1 \left(-2 + \frac{2}{y} \right) dy \\ &= \left[-2y + 2 \ln y \right]_{1/2}^1 = \left(-2 + 2 \ln 1 \right) - \left(-1 + 2 \ln \frac{1}{2} \right) = 2 \ln 2 - 1. \end{split}$$

Therefore, $\operatorname{var} Y = E(Y^2) - (EY)^2 = (2 \ln 2 - 1) - (2 - 2 \ln 2)^2$.

Exercises

- 1. Suppose that *X* has a normal distribution with mean 50 and variance 25. Use the table of standard normal distribution on the first page to find the following:
 - (a) P(X > 45.4)
 - (b) P(X < 55.7)
 - (c) P(45.4 < X < 55.7)
 - (d) P(|X 50| < 5.4)
 - (e) value e such that P(X < e) = 0.8888
 - (f) value f such that P(X > f) = 0.8888
 - (g) value g such that P(X < g) = 0.1271
 - (h) value h such that P(X > h) = 0.1271
- 2. Suppose that X is uniformly distributed with mean 7 and variance 3. Compute P(3 < X < 6). (*Hint:* Find the interval over which X is distributed first.)
- 3. The lifetime of a radioactive atom is exponentially distributed with half-life 2 days. This means that the probability that this atom will last longer than 2 days is equal to 0.5.
 - (a) Find the average lifetime of this atom.
 - (b) Find the probability that this atom will decay within 1.5 day.
- 4. Let X be defined as in Example 6. Define $Y=e^{2X}$. Compute EY by using the density function for X found in Example 6.
- 5. Let X and Y be two independent random variables that are both uniformly distributed over the interval (0,1). Define Z to be the sum of X and Y. Then we know that the value of Z is between 0 and 2.
 - (a) Compute EZ and var Z.
 - (b) Compute $P(Z \le 0.4)$, and $P(Z \le z)$ when $0 < z \le 1$ in general. (*Hint*: Draw the line y = 0.4 x.)
 - (c) Compute $P(Z \le 1.4)$, and $P(Z \le z)$ when $1 \le z < 2$ in general.