

Subnetting

UFCD 6134 – Redes Locais

Formador: David Martins

Sumário

- Endereçamento de Rede por Classes
- Classless Inter Domain Routing
- Subnetting

Objetivos

- Conhecer o esquema de endereçamento em redes.
- Estruturar uma sub-rede baseada na necessidade de hosts.

Porquê?

- Tráfego reduzido.
- Performance otimizada.
- Gestão simplificada.
- Dispersão geográfica facilitada.

Endereçamento de Rede por Classes

Subnet Mask

- Para o esquema de sub-rede funcionar cada host na rede tem de saber que parte do endereço host irá ser usado como endereço de sub-rede.
- Classes A, B e C.

Classe	Formato	Subnet Mask	B. Subnet Mask	
А	N.H.H.H	255.0.0.0	1111111.00000000.00000000.00000000	
В	N.N.H.H	255.255.0.0	1111111111111111100000000.00000000	
С	N.N.N.H	255.255.255.0	111111111111111111111111100000000	

• A subnet mask contém o número de 1's contínuo.

Classles Inter-Domain Routing (CIDR)

- Método que os ISP's usam para alocar endereços de rede aos seus clientes, através de blocos de endereços.
- Usa a *slash notation*, que consiste na representação:
 - 192.168.10.32 / 28 -> significa que temos em 32 bits, 28 que são 1's.

Classles Inter-Domain Routing (CIDR)

Subnet Mask	32-bit Address	Prefix Length
255.0.0.0	1111111.00000000.00000000.00000000	/8
255.255.0.0	1111111111111111100000000.00000000	/16
255.255.255.0	11111111111111111111111111100000000	/24
255.255.255.128	111111111111111111111111111111111111111	/25
255.255.255.192	111111111111111111111111111111111111111	/26
255.255.255.224	111111111111111111111111111111111111111	/27
255.255.255.240	11111111.1111111111111111111110000	/28
255.255.255.248	11111111.1111111111111111111111000	/29
255.255.252	111111111111111111111111111111111111111	/30

- Saber responder a estas questões:
 - Quantas subnets é que a *subnet mask* produz?
 - Quantos host válidos por subnet estão disponíveis?
 - Quais são as subnets válidas?
 - Qual o endereço de *Broadcast* de cada *subnet*?
 - Quais são os hosts válidos por subnet?

- Quantas *subnets*?
 - 2^x = número de *subnets*.
 - X é o número de 1's
 - 11000000, o número de 1's dá-nos 2² subnets.
 - Neste exemplo temos 4 subnets.

- Quantos hosts por subnet?
 - $2^y 2 = número de hosts por subnet.$
 - Y é o número de bits a 0.
 - 11000000, o número de 0's dá-nos 2⁶ 2
 - Neste exemplo temos 62 hosts por subnet.
 - Temos de remover 2, para o identificador da *subnet* e do endereço *Broadcast*, que <u>não são *hosts* válidos.</u>

- Quais são as subnets válidas?
 - 256 subnet mask = tamanho do bloco.
 - Por exemplo 256-192 = 64.
 - Começar a contar do 0 em blocos de 64.
 - 0, 64, 128, 192 -> temos 4 subnets. (256/64 = 4)

- Qual o endereço de *Broadcast* para cada *subnet*?
 - Como contamos as *subnets* em blocos de 64 o endereço de *Broadcast* é sempre o número anterior.
 - A subnet 0 tem o endereço de broadcast 63 porque a próxima subnet é a 64.

- Quais são os hosts válidos?
 - Os hosts válidos são os números entre as subnets, omitindo todos os 0's e 1's.
 - Se 64 é o número da subnet e 127 é o endereço broadcast, então o nosso alcance de hosts é de 65 (subnet + 1) - 126 (broadcast -1).
 - São sempre os número entre a id da *subnet* e o endereço de *broadcast*.

Broadcast

- Um *broadcast* consiste no envio de informação para todos os *hosts* numa rede.
- Layer 2 broadcast: FF:FF:FF:FF:FF
- Layer 3 broadcast: 192.168.100.255

São todos os host bits a 1.

- Subnetting consiste em dividir ou aumentar a nossa rede consoante as necessidades.
- Se necessitamos de mais *hosts* retiramos network bits.
 - 255.255.255.0 ou um /24 (em CIDR) dá-nos 28 2 (254) hosts possíveis.
 - 11111111.111111111.11111111.00000000
 - Se são necessários mais hosts, 500 por exemplo, então a nossa subnet mask será 255.255.254.0 ou um /23 que nos dá 2º – 2 (510) hosts.
 - 1111111111111111111111110.00000000

- Subnetting consiste em dividir ou aumentar a nossa rede consoante as necessidades.
- Se necessitamos de dividir a nossa rede acrescentamos network bits.
 - 255.255.255.0 ou um /24 (em CIDR) dá 2²⁴ (16.777.216) subnets possíveis.

 - Mas a nossa mascara é fixa, portanto temos atribuídos 254 IP's para 1 rede.
 - Vamos dividir a nossa rede em 4. $4 = 2^2$ portanto vamos acrescentar 2 bits.

 - Portanto a nossa mascara será 255.255.255.192 ou /26.

- Se necessitamos de dividir a nossa rede <u>acrescentamos network bits</u>.
 - 255.255.255.0 ou um /24 (em CIDR), portanto temos atribuídos 254 IP's para 1 rede.
 - Vamos dividir a nossa rede em 4.

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	<mark>4</mark>	2	1

- portanto vamos acrescentar 2 bits.
- Portanto a nossa mascara será 255.255.255.192 ou /26.

- Se necessitamos de dividir a nossa rede <u>acrescentamos network bits</u>.
 - 255.255.255.192 ou um /26 (em CIDR), portanto temos atribuídos 62 IP's para 4 redes.
 - Vamos encontrar o nosso incremento de subnet.

1	1	0	0	0	0	0	0
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

• O incremento vai corresponder ao último bit na subnet mask.

• Resumindo:

- 255.255.255.192 é equivalente a /26 (CIDR).
- Vamos ter 4 sub-redes pois retiramos 2 (2²) bits de hosts (ou 256 192 = 64, e
 256/64 = 4)
- Vamos ter incrementos de 64.
- Usando a nossa rede 192.168.10.0 / 26 será algo como:

Net	Identificador	Alcance de IP's	Broadcast	
1	192.168.10.0/26	192.168.10.1 – 192.168.10.62	192.168.10.63	
2	192.168.10.64/26	192.168.10.65 - 192.168.10.126	192.168.10.127	
3	192.168.10.128/26	192.168.10.129 - 192.168.10.190	192.168.10.191	
4	192.168.10.192/26	192.168.10.193 - 192.168.10.254	192.168.10.255	

Exercícios

- Rede: 192.168.10.0
- Máscaras:
 - 1 255.255.255.128/25
 - 2 255.255.255.192/26
 - 3 255.255.255.224/27
 - 4 255.255.255.240/28
 - 5 255.255.255.248/29
 - 6 255.255.255.252/30