Homework 2

1. Let π ; $\mathbb{C}^{n+1} - \{0\} \to \mathbb{CP}^n$ be the quotient map defined by

$$\pi(\vec{z}) = \{w(z^1, \dots, z^n, z^{n+1}) | w \in \mathbb{C}\} = [z^1, \dots, z^{n+1}] = [\vec{z}].$$

We will show that \mathbb{CP}^n is a smooth compact topological manifold. First we will show that \mathbb{CP}^n is locally Euclidean by producing a smooth atlas on it. Let $\widetilde{U}_i = \{\vec{z} \in \mathbb{C}^{n+1} | z^i \neq 0\}$, and let $U_i = \pi\left(\widetilde{U}_i\right)$. So an element of $U_i \subset \mathbb{CP}^n$ is of the form $[z^1, \ldots, z^i \neq 0, \ldots, z^{n+1}]$. Then we define a map $\widetilde{\varphi}_i : U_i \to \mathbb{C}^n$ by

$$\widetilde{\varphi}_i[\vec{z}] = \left(\frac{z^1}{z^i}, \dots, \hat{z}^i, \dots, \frac{z^{n+1}}{z^i}\right)$$

where hat denotes a removed quantity. We can see that $\widetilde{\varphi}_i$ is well-defined because taking $\widetilde{\varphi}(w\overline{z})$ just gives a multiple of ww^{-1} in each coordinate. Finally we push forward the map to \mathbb{R}^{2n} in the obvious way: let

$$\varphi_i = \rho \circ \widetilde{\varphi}_i,$$

where $\rho(x^1+iy^1,\ldots,x^n+iy^n)=(x^1,y^1,\ldots,x^n,y^n)$. Now $\{(U_i,\varphi_i)\}$ is an atlas on \mathbb{CP}^n . To see this, observe that $\{U_i\}$ covers C^{n+1} and each φ_i is continuous (since $z_i\neq 0$) with continuous inverse $\widetilde{\varphi}^{-1}\circ\rho^{-1}$, where $\widetilde{\varphi}_i^{-1}:\mathbb{C}^n\to U_i$ is given by

$$\widetilde{\varphi}_i^{-1}(\vec{w}) = [w^1, \dots, w^{i-1}, 1, w^{i+1}, \dots, w^n],$$

so \mathbb{CP}^n is locally Euclidean.

If π is open, then we can show that \mathbb{CP}^n is second countable and Hausdorff. Let $U \subset \mathbb{CP}^n$ be open, then $\pi(U) = \{\xi U | \xi \in \mathbb{C}\}$, so $\pi^{-1}(\pi(U)) = \{\xi U | \xi \in \mathbb{C}\}$, which is open. Thus π is open. Since $\mathbb{R}^{2n+2} \cong C^{n+1} \supset (\mathbb{C}^{n+1} - \{\vec{0}\})$ and \mathbb{R}^{2n+2} is second countable, then so is $\pi\left(\mathbb{C}^{n+1} - \{\vec{0}\}\right) = \mathbb{CP}^n$.

Now we show that \mathbb{CP}^n is Hausdorff. To do this, let

$$R = \{(\vec{z}, \vec{w}) | \pi(\vec{z}) = \pi(\vec{w})\},\,$$

where $\vec{z}, \vec{w} \in (\mathbb{C}^{n+1} - \{\vec{0}\})$, and if R is closed, then $\pi(\mathbb{C}^{n+1} - \{\vec{0}\}) = \mathbb{CP}^n$ is Hausdorff. Consider $(\vec{z}, \vec{w}) \in R$. Since $[\vec{z}] = [\vec{w}]$, then there exists some $\xi \in \mathbb{C}$ such that $\xi \vec{z} = \vec{w}$, that is, $z^i w^j = z^j w^i$ for each $i, j = 1, \ldots, n+1$. Now let

$$f(\vec{z}, \vec{w}) = \sum_{1 \le i, j \le n+1} ||w^i z^j - z^i w^j||^2$$

and we find that f is a continuous function which vanishes precisely on R. Thus since $\{0\}$ is closed, then so is $f^{-1}(\{0\}) = R$ and \mathbb{CP}^n is Hausdorff.

The fact that π is open also gives us that \mathbb{CP}^n is compact. To see this, note that it is also continuous since $\pi^{-1}[\vec{z}] = [\vec{z}]$, where we think of $[\vec{z}]$ as an equivalence class on the left hand side and a set on the right hand side. This means that for an open subset of \mathbb{CP}^n , call it $U = \{[\vec{z}] | \vec{z} \in \Gamma\}$ for Γ an indexing set, $\pi^{-1}(U) = \bigcup_{\Gamma} [\vec{z}]$. For simplicity, we can simply write $\pi^{-1}(U) = U$, with the understanding that $U \in \mathbb{CP}^n$ is a collection of equivalence classes and $U \in \mathbb{CP}^{n+1} - \{\vec{0}\}$ consists of all the elements of those equivalence classes. Now denote the box

$$Q_{\mathbb{C}}^{n+1} = \{ (w^1, \dots, w^{n+1}) \mid \operatorname{Re}(w^i), \operatorname{Im}(w^i) \in [-1, 1] \quad \forall i \in 1, \dots n+1 \},$$

and observe that $Q^{n+1}_{\mathbb{C}} \subset \mathbb{C}^{n+1} - \{0\}$ is compact. For any open cover $\{U_{\alpha}\}_{{\alpha} \in \Gamma}$ of \mathbb{CP}^n ,

$$\pi^{-1}\left(\{U_{\alpha}\}_{\alpha\in\Gamma}\right) = \{U_{\alpha}\}_{\alpha\in\Gamma},$$

which covers $Q^{n+1}_{\mathbb{C}}$. Since $Q^{n+1}_{\mathbb{C}}$ is compact, we can produce a finite subcover $\{U_{\alpha_i}\}_{i=1}^n$, and $\pi\left(\{U_{\alpha_i}\}_{i=1}^n\right)=\{U_{\alpha_i}\}_{i=1}^n$ which is open and covers \mathbb{CP}^n . To see this, let $[\vec{z}]\in\mathbb{CP}^n$ and observe that $[\vec{z}]=\frac{1}{\delta}[\vec{z}]\in\mathbb{Q}^{n+1}_{\mathbb{C}}$, where $\delta=\max_i(|\mathrm{Re}(z^i)|,|\mathrm{Im}(z^i)|)$. Thus $\{U_{\alpha_i}\}_{i=1}^n$ covers \mathbb{CP}^n , so it is compact.

Thus we have shown that \mathbb{CP}^n is a compact topological manifold. It only remains to be shown that it is a smooth manifold, that is, that the atlas we constructed is a smooth atlas. Let's check that two arbitrary charts (U_i, φ_i) and (U_j, φ_j) are compatible. Clearly $\varphi_j \circ \varphi_i^{-1} = \rho \circ \widetilde{\varphi}_j \circ \widetilde{\varphi}_i^{-1} \circ \rho^{-1}$ is smooth if and only if $\widetilde{\varphi}_j \circ \widetilde{\varphi}_i^{-1}$ is, so we will check the latter.

$$\widetilde{\varphi}_j \circ \widetilde{\varphi}_i^{-1}(z^1, \dots, z^n) = \left(\frac{z^1}{z^j}, \dots, \widehat{z^j}, \dots, \frac{z^{i-1}}{z^j}, \frac{1}{z^j}, \frac{z^{i+1}}{z^j}, \dots, \frac{z^n}{z^j}\right),$$

which is smooth since $z^{j} \neq 0$ on U_{j} , and we are done.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Consider the charts (\mathbb{R}, id) on the domain and $(B_{\frac{1}{2}}(1), id), (B_{\frac{1}{2}}(0), id)$ on the range.

For any $x \in \mathbb{R}$ in the domain of f, f(x) = 0, 1, so suppose f(x) = 1. Then (\mathbb{R}, id) contains x and $(B_{\frac{1}{2}}(1), id)$ contains f(x), and

$$\operatorname{id}\left(\mathbb{R}\cap f^{-1}\left(B_{\frac{1}{2}}(1)\right)\right) = \left(\mathbb{R}\cap[0,\infty)\right)$$
$$= [0,\infty),$$

and id $\circ f \circ id = f$ which is constantly 1 on $[0, \infty)$, so it is smooth. Similarly, for x such that f(x) = 0, we can use the other chart which contains 0 and we find that id $\circ f \circ id = f$ is constant in that case as well.

However, f is not a smooth function from $\mathbb{R} \to \mathbb{R}$, because for x = 0 in the domain, there is no chart $(U, \varphi) \ni x$ such that $f \circ \varphi^{-1}$ is smooth because f is discontinuous at 0 (the choice of chart for the range doesn't help with this).