Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms

Sep. 12, 2024

Contents

Introduction

Exact SV Calculation for KNN

Extension on different KNN

Experiment Result

Data Valuation

Figure 1. Motivating Example of Data Valuation.

Shapley Value

$$s(\nu, i) = \frac{1}{N} \sum_{S \subseteq I \setminus \{i\}} \frac{\nu(S \cup \{i\}) - \nu(S)}{\binom{N-1}{|S|}}$$

- Group Rationality
- Fairness
- Additivity

KNN classifier

▶ Utility function:

$$u(S) = \frac{1}{K} \sum_{k=1}^{\min(K,|S|)} \mathbb{1}[y_{\alpha_k(S)} = y_{\text{test}}]$$

▶ Lemma 1:

$$s_i - s_j = \frac{1}{N-1} \sum_{S \subseteq I \setminus \{i,j\}, |S|=N-2} (\nu(S \cup \{i\}) - \nu(S \cup \{j\}))$$

SV in KNN

▶ Theorem 1:

$$s_{\alpha_N} = \frac{\mathbb{1}[y_{a_N} = y_{\text{test}}]}{N}$$

$$s_{\alpha_i} = s_{\alpha_{i+1}} + \frac{\left(\mathbb{1}[y_{\alpha_i} = y_{\text{test}}] - \mathbb{1}[y_{\alpha_{i+1}} = y_{\text{test}}]\right)}{K} \frac{\min\{K, i\}}{i}$$

Exact SV Algorithm

Algorithm 1: Exact algorithm for calculating the SV for an unweighted KNN classifier.

```
input : Training data D = \{(x_i, y_i)\}_{i=1}^N, test data D_{test} = \{(x_{test,i}, y_{test,i})\}_{i=1}^{N_{test}}
     output: The SV \{s_i\}_{i=1}^N
 1 for j \leftarrow 1 to N_{test} do
            (\alpha_1, ..., \alpha_N) \leftarrow Indices of training data in an ascending order using d(\cdot, x_{test});
         s_{i,\alpha_N} \leftarrow \frac{1[y_{\alpha_N} = y_{test}]}{N}:
         for i \leftarrow N-1 to 1 do
            s_{j,\alpha_i} \leftarrow s_{j,\alpha_{i+1}} + \frac{\mathbb{I}[y_{\alpha_i} = y_{\text{test},j}] - \mathbb{I}[y_{\alpha_{i+1}} = y_{\text{test},j}]}{\mathbb{K}} \frac{\min\{K,i\}}{i};
            end
 7 end
 8 for i \leftarrow 1 to N do
 9 s_i \leftarrow \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} s_{j,i};
10 end
```

LSH based Approximation

▶ Theorem 2:

$$\widehat{s}_{\alpha_i} = 0$$
 if $i \geqslant K^*$

$$\widehat{s}_{\alpha_i} = \widehat{s}_{\alpha_i+1} + \frac{\left(\mathbb{1}[y_{\alpha_i} = y_{\text{test}}] - \mathbb{1}[y_{\alpha_{i+1}} = y_{\text{test}}]\right)}{K} \frac{\min\{K, i\}}{i}$$

$$if \ i \leqslant K^* - 1$$

• where $K^* = \max\{K, \lceil \frac{1}{\epsilon} \rceil\}$ for some $\epsilon > 0$

Improved MC Approximation

THEOREM 5. Given the range [-r, r] of the utility difference ϕ_i , the sample size required such that

$$P[\|\widehat{s} - s\|_{\infty} > \epsilon] \leq \delta$$

is $T > T^*$. T^* is the solution of

$$\sum_{i=1}^{N} \exp\left(-T^*(1-q_i^2)h\left((1-q_i^2)r\right)\right) = \frac{\delta}{2}.$$

where $h(u) = (1+u)\log(1+u) - u$ and

$$q_i = \begin{cases} 0, & i = 1, \dots, K \\ \frac{i-K}{i}, & i = K+1, \dots, N \end{cases}$$

Improved MC Approximation

Algorithm 2: Improved MC Approach

```
input: Training set - D = \{(x_i, y_i)\}_{i=1}^N, utility function v(\cdot), the number of measurements -
               M, the number of permutations - T
    output: The SV of each training point - \hat{s} \in \mathbb{R}^N
11 for t ← 1 to T do
        \pi_t \leftarrow GenerateUniformRandomPermutation(D);
12
        Initialize a length-K max-heap H to maintain the KNN;
13
        for i \leftarrow 1 to N do
14
             Insert \pi_{t,i} to H;
15
             if H changes then
16
                  \phi_{\pi_{t,i}}^t \leftarrow \nu(\pi_{t,1:i}) - \nu(\pi_{t,1:i-1});
17
             else
18
               \phi_{\pi_{t+1}}^t \leftarrow \phi_{\pi_{t+1}}^t;
19
20
             end
        end
21
22 end
23 \hat{s}_i = \frac{1}{T} \sum_{t=1}^{T} \phi_i^t for i = 1, ..., N;
```

Runtime for unweighted KNN

Figure 6. Performance of unweighted KNN classification in the single-data-per-seller case.

LSH on different datasets

Figure 9. Performance of LSH on three datasets: deep, gist, dog-fish. (a) Relative contrast C_K - vs. K^* . (b), (c) and (d) illustrate the trend of the SV approximation error for different number of hash tables, returned points and recalls.

Experiment on MC approximation

Figure 12. Performance of the weighted KNN classification.

Figure 13. Performance of the KNN classification in the multi-data-per-seller case.

References

▶ R. Jia, et al., "Efficient task-specific data valuation for nearest neighbor algorithms," *Proceedings of the VLDB Endowment*, vol. 12, no. 11, pp. 1610–1623, 2019.