MATH 135 HOMEWORK 3

A. HENING

Do problems 13, 15, 16, 18 from Rudin Chapter 1, problems 1, 2, 3, 4 from Rudin Chapter 2 and the following problems.

- 1. a.) Let $A = \{f : \mathbb{Z} \to \{0,1\} | \text{ if } n \geq m \text{ then } f(n) \geq f(m) \}$ (the set of nondecreasing functions from $\mathbb Z$ to $\{0,1\}).$ Prove A is countable.
- b.) Is this still true for $B = \{f : \mathbb{Q} \to \{0,1\} | \text{ if } p > q \text{ then } f(p) \geq f(q)\}$? 2. Let M be an uncountable subset of the real positive numbers, $M \subset \mathbb{R}^+$. Show that for every $r \in \mathbb{R}$ there is a finite number of different elements $a_1, a_2, \ldots, a_n \in$ M such that

$$\sum_{k=1}^{n} a_k \ge r$$

Hint: Look at the sets $M_N = \{a \in M | a \ge \frac{1}{N}\}, N \in \mathbb{N}.$