TABLE OF CONTENTS

1.8 TRIGONOMETRIC INTEGRALS

Recall:

- $\blacktriangleright \sin^2 x = \frac{1}{2}(1 \cos 2x)$

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin x \cos x \, \mathrm{d}x =$$

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin x \cos x \, \mathrm{d}x =$$

$$\int \sin^{10} x \, \cos x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin x \cos x \, dx = \frac{\sin^2 x}{2} + C$$
, then it should be true that $\frac{d}{dx} \left\{ \frac{\sin^2 x}{2} + C \right\} = \sin x \cos x$.

If we are correct that
$$\int \sin^{10} x \cos x \, dx = \frac{\sin^{11} x}{11} + C$$
, then it should be true that $\frac{d}{dx} \left\{ \frac{\sin^{11} x}{2} + C \right\} = \sin^{10} x \cos x$.

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int_0^{\frac{\pi}{2}} \sin^{\pi+1} x \, \cos x \, \mathrm{d}x =$$

If we are correct that $\int \sin^{\pi+1} x \cos x \, dx = \frac{\sin^{\pi+2} x}{\pi+2} + C$, then it should be true that $\frac{d}{dx} \left\{ \frac{\sin^{\pi+2} x}{\pi+2} + C \right\} = \sin^{\pi+1} x \cos x$.

INTEGRATING PRODUCTS OF SINE AND COSINE

Let $u = \sin x$, $du = \cos x dx$.

$$\int \sin^{10} x \cos^3 x \, \mathrm{d}x =$$

INTEGRATING PRODUCTS OF SINE AND COSINE

Let $u = \sin x$, $du = \cos x dx$. Use $\sin^2 x + \cos^2 x = 1$.

$$\int \sin^{10} x \cos^3 x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin^{10} x \cos^3 x \, dx = \frac{\sin^{11} x}{11} - \frac{\sin^{13} x}{13} + C$$
, then it should be true that
$$\frac{d}{dx} \left\{ \frac{\sin^{11} x}{11} - \frac{\sin^{13} x}{13} + C \right\} = \sin^{10} x \cos^3 x.$$

INTEGRATING PRODUCTS OF SINE AND COSINE

$$\int \sin^5 x \cos^4 x \, \mathrm{d}x =$$

If we are correct that
$$\int \sin^5 x \cos^4 x \, dx = -\frac{1}{5} \cos^5 x + \frac{2}{7} \cos^7 x - \frac{1}{9} \cos^9 x + C, \text{ then it should}$$
 be true that $\frac{d}{dx} \left\{ -\frac{1}{5} \cos^5 x + \frac{2}{7} \cos^7 x - \frac{1}{9} \cos^9 x + C \right\} = \sin^5 x \cos^4 x.$

To use the substitution $u = \sin x$, $du = \cos x dx$:

 \blacktriangleright We need to reserve one $\cos x$ for the differential.

- \blacktriangleright We need to reserve one $\cos x$ for the differential.
- ▶ We need to convert the remaining $\cos^{n-1} x$ to $\sin x$ terms.

17/1

- \blacktriangleright We need to reserve one $\cos x$ for the differential.
- ▶ We need to convert the remaining $\cos^{n-1} x$ to $\sin x$ terms.
- ▶ We convert using $\cos^2 x = 1 \sin^2 x$. To avoid square roots, that means n 1 should be even when we convert.

- \blacktriangleright We need to reserve one $\cos x$ for the differential.
- ▶ We need to convert the remaining $\cos^{n-1} x$ to $\sin x$ terms.
- ▶ We convert using $\cos^2 x = 1 \sin^2 x$. To avoid square roots, that means n 1 should be even when we convert.
- ▶ So, we can use this substitution when the original power of cosine, *n*, is ODD: one cosine goes to the differential, the rest are converted to sines.

To use the substitution $u = \cos x$, $du = -\sin x dx$:

 \blacktriangleright We need to reserve one $\sin x$ for the differential.

- \blacktriangleright We need to reserve one $\sin x$ for the differential.
- ▶ We need to convert the remaining $\sin^{m-1} x$ to $\cos x$ terms.

- \blacktriangleright We need to reserve one $\sin x$ for the differential.
- ▶ We need to convert the remaining $\sin^{m-1} x$ to $\cos x$ terms.
- ▶ We convert using $\sin^2 x = 1 \cos^2 x$. To avoid square roots, that means m 1 should be even when we convert.

- \blacktriangleright We need to reserve one $\sin x$ for the differential.
- ▶ We need to convert the remaining $\sin^{m-1} x$ to $\cos x$ terms.
- ▶ We convert using $\sin^2 x = 1 \cos^2 x$. To avoid square roots, that means m 1 should be even when we convert.
- ► So, we can use this substitution when the original power of sine, *m*, is ODD: one sine goes to the differential, the rest are converted to cosines.

MNEMONIC: "ODD ONE OUT"

Integrating
$$\int \sin^m x \cos^n x \, dx$$

If you want to use $u = \sin x$, there should be an odd power of cosine.

If you want to use $u = \cos x$, there should be an odd power of sine.

Carry out a suitable substitution (but do not evaluate the resulting integral):

To evaluate $\int \sin^m x \cos^n x \, dx$, we use:

- $ightharpoonup u = \sin x \text{ if } n \text{ is odd, and/or}$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

What if *n* and *m* are both even?

To evaluate $\int \sin^m x \cos^n x \, dx$, we use:

- $ightharpoonup u = \sin x \text{ if } n \text{ is odd, and/or}$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

What if *n* and *m* are both even?

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2} \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\int \sin^2 x \, \mathrm{d}x =$$

We check that
$$\int \sin^2 x \, dx = \frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) + C$$
 by differentiating:

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Evaluate $\int \sin^4 x \, dx$.

We want to check that
$$\int \sin^4 x \, dx = \frac{3}{8}x - \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x) + C$$
.

Recall:

- $ightharpoonup \frac{\mathrm{d}}{\mathrm{d}x}\{\sec x\} = \sec x \tan x$

$$\int \tan x \, \mathrm{d}x =$$

Let's check that $\int \tan x dx = \log |\sec x| + C$ by differentiating.

Optional: A nifty trick – you won't be expected to come up with it. There is some motivation for the trick in Example 1.8.19 in the CLP-2 text.

$$\int \sec x \, \mathrm{d}x =$$

Optional: A nifty trick – you won't be expected to come up with it. There is some motivation for the trick in Example 1.8.19 in the CLP-2 text.

$$\int \sec x \, dx = \int \sec x \left(\frac{\sec x + \tan x}{\sec x + \tan x} \right) \, dx$$

Useful integrals:

1.
$$\int \sec x \tan x \, dx =$$

$$2. \int \sec^2 x \, \mathrm{d}x =$$

3.
$$\int \tan x \, \mathrm{d}x =$$

4.
$$\int \sec x \, \mathrm{d}x =$$

Evaluate using the substitution rule:

$$\int \tan^5 x \, \sec^2 x \, \mathrm{d}x =$$

$$\int \sec^4 x \left(\sec x \tan x \right) \, \mathrm{d}x =$$

Let's check that
$$\int \tan^5 x \sec^2 x \, dx = \frac{1}{6} \tan^6 x + C$$
 by differentiating.

Let's check that $\int \sec^4 x (\sec x \tan x) dx = \frac{1}{5} \sec^5 x + C$ by differentiating.

Evaluate using the identity $\sec^2 x = 1 + \tan^2 x$

$$\int \tan^4 x \sec^6 x \, \mathrm{d}x =$$

$$\int \tan^3 x \sec^5 x \, \mathrm{d}x =$$

Let's check that
$$\int \tan^4 x \sec^6 x \, dx = \frac{1}{5} \tan^5 x + \frac{2}{7} \tan^7 x + \frac{1}{9} \tan^9 x + C$$
.

Let's check that
$$\int \tan^3 x \sec^5 x \, dx = \frac{1}{7} \sec^7 x - \frac{1}{5} \sec^5 x + C.$$

Choosing a Substitution: $\int \tan^m x \sec^n x \, dx$

Choosing a Substitution: $\int \tan^m x \sec^n x \, dx$

Using $u = \sec x$, $du = \sec x \tan x dx$:

ightharpoonup Reserve $\sec x \tan x$ for the differential.

- ightharpoonup Reserve $\sec x \tan x$ for the differential.
- From the remaining $\tan^{m-1} x \sec^{n-1} x$, convert all tangents to secants using $\tan^2 x + 1 = \sec^2 x$.

- Reserve $\sec x \tan x$ for the differential. (m, n should each be at least 1)
- ► From the remaining $\tan^{m-1} x \sec^{n-1} x$, convert all tangents to secants using $\tan^2 x + 1 = \sec^2 x$.

- Reserve $\sec x \tan x$ for the differential. (m, n should each be at least 1)
- ► From the remaining $\tan^{m-1} x \sec^{n-1} x$, convert all tangents to secants using $\tan^2 x + 1 = \sec^2 x$. (m-1 should be even, to avoid square roots)

Using $u = \sec x$, $du = \sec x \tan x dx$:

- Reserve $\sec x \tan x$ for the differential. (m, n should each be at least 1)
- From the remaining $\tan^{m-1} x \sec^{n-1} x$, convert all tangents to secants using $\tan^2 x + 1 = \sec^2 x$. (m-1 should be even, to avoid square roots)

To use the substitution $u = \sec x$, $du = \sec x \tan x \, dx$ to evaluate $\int \tan^m x \sec^n x \, dx$, n should be _____, and m should be _____

Choosing a Substitution: $\int \tan^m x \sec^n x \, dx$

Using $u = \tan x$, $du = \sec^2 x dx$:

- ► Reserve for the differential.
- ► From the remaining terms, convert all using $\tan^2 x + 1 = \sec^2 x$.

To use the substitution $u = \tan x$, $du = \sec^2 x \, dx$ to evaluate $\int \tan^m x \sec^n \, dx$, n should be _____.

To evaluate $\int \tan^m x \sec^n dx$, we can use:

- \blacktriangleright $u = \sec x$ if m is odd and $n \ge 1$
- \blacktriangleright $u = \tan x$ if n is even and $n \ge 2$

Choose a substitution for the integrals below.

$$\int \sec^2 x \tan^3 x \, \mathrm{d}x$$

$$\int \sec^2 x \tan^2 x \, \mathrm{d}x$$

$$\int \sec^3 x \tan^3 x \, \mathrm{d}x$$

Evaluate
$$\int \tan^3 x \, dx$$

Evaluate
$$\int \tan^3 x \, dx = \int \frac{\sin^3 x}{\cos^3 x} \, dx$$

Let's check that $\int \tan^3 x \, dx = \log |\cos x| + \frac{1}{2} \sec^2 x + C$. by differentiating.

$$\int \tan^m x \sec^n x \, \mathrm{d}x =$$

$$\int \tan^m x \sec^n x \, dx = \int \left(\frac{\sin x}{\cos x}\right)^m \left(\frac{1}{\cos x}\right)^n dx$$
$$= \int \frac{\sin^m x}{\cos^{m+n} x} dx$$
$$= \int \left(\frac{\sin^{m-1} x}{\cos^{m+n} x}\right) \sin x \, dx$$

$$\int \tan^m x \sec^n x \, dx = \int \left(\frac{\sin x}{\cos x}\right)^m \left(\frac{1}{\cos x}\right)^n dx$$
$$= \int \frac{\sin^m x}{\cos^{m+n} x} dx$$
$$= \int \left(\frac{\sin^{m-1} x}{\cos^{m+n} x}\right) \sin x \, dx$$

To use $u = \cos x$, $du = \sin x dx$:

$$\int \tan^m x \sec^n x \, dx = \int \left(\frac{\sin x}{\cos x}\right)^m \left(\frac{1}{\cos x}\right)^n dx$$
$$= \int \frac{\sin^m x}{\cos^{m+n} x} dx$$
$$= \int \left(\frac{\sin^{m-1} x}{\cos^{m+n} x}\right) \sin x \, dx$$

To use $u = \cos x$, $du = \sin x \, dx$: we will convert $\sin^{m-1}(x)$ into cosines, so m-1 must be even, so m must be odd.

- $ightharpoonup u = \sec x \text{ if } m \text{ is odd and } n \ge 1$
- \blacktriangleright $u = \tan x$ if n is even and $n \ge 2$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

Evaluate
$$\int \tan^2 x \, dx$$

- $ightharpoonup u = \sec x \text{ if } m \text{ is odd and } n \ge 1$
- ▶ $u = \tan x$ if n is even and $n \ge 2$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

Evaluate
$$\int \tan^2 x \, dx$$

- $ightharpoonup u = \sec x \text{ if } m \text{ is odd and } n \ge 1$
- ▶ $u = \tan x$ if n is even and $n \ge 2$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$

Evaluate
$$\int \tan^2 x \, dx$$

$$\int \tan^2 x \, \mathrm{d}x = \int (\sec^2 x - 1) \mathrm{d}x = \tan x + x + C$$

- $ightharpoonup u = \sec x \text{ if } m \text{ is odd and } n \ge 1$
- ▶ $u = \tan x$ if n is even and $n \ge 2$
- $ightharpoonup u = \cos x \text{ if } m \text{ is odd}$
- ► $u = \tan x$ if m is even and n = 0 (after using $\tan^2 x = \sec^2 x 1$, maybe several times)

Evaluate
$$\int \tan^2 x \, dx$$

$$\int \tan^2 x \, \mathrm{d}x = \int (\sec^2 x - 1) \mathrm{d}x = \tan x + x + C$$

Included Work

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 25, 39, 42, 64

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 52