

IMMEDIATE RESPONSE ACTION PLAN Status Report 13

Cape Cod Gateway Airport Hyannis, Massachusetts

RTN 4-26347

April 2023

IMMEDIATE RESPONSE ACTION PLAN STATUS REPORT 13 CAPE COD GATEWAY AIRPORT HYANNIS, MASSACHUSETTS RTN 4-26347

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SUMMARY OF IRA PLAN AND IRA MODIFICATION	1
	Background	2
4.0	HISTORIC FIELD INVESTIGATIONS	4
5.0	FIELD INVESTIGATIONS CONDUCTED DURING THE CURRENT REPORTING PERIOD	8
6.0	BI-ANNUAL CAP INSPECTION AND CAP PERFORMANCE MONITORING	9
7.0	GROUNDWATER MODELING AND CONTAMINANT TRANSPORT ANALYSIS	. 10
8.0	PLANS FOR NEXT REPORTING PERIOD	. 10
2- 3- 4- 5-	USGS Locus Soil Sample Locations Surface Water and Monitoring Well Locations 1,4-dioxane Results in Groundwater Background PFAS Sample Locations TOC Sample Locations	
2- 3- 4- 5- 6- 7- 8- 9-	Soil Results for PFAS Compounds Groundwater Results for PFAS Compounds 1,4-Dioxane Groundwater Groundwater Results AFFF Concentrate Analytical Results SPLP Results Background PFAS Levels in Soil and Soil Stockpile Samples Surface Water Results for PFAS Ratio of Stable Isotopes Fire Truck Spray Water PFAS Results D – Total Organic Carbon Levels L- Runway 6/24 Surface Soil Results	

APPENDICES

Appendix A: Laboratory Analysis Reports (Not Previously Submitted to MassDEP)

Appendix B: Battelle Forensic PFAS Analysis Report

Appendix C: PFAS in Groundwater Trend Graphs for HW-I(s) and HW-P(s)

1.0 INTRODUCTION

The Horsley Witten Group, Inc. (HW) has been retained by the Cape Cod Gateway Airport (the "Airport"), formerly known as the Barnstable Municipal Airport, to develop this 13th Immediate Response Action (IRA) Status Report for its property at 480 Barnstable Road, Hyannis, Massachusetts (Figure 1). HW has prepared this report in accordance with the Massachusetts Contingency Plan 310 CMR 40.0000 (MCP) on behalf of:

Ms. Katie Servis, Airport Manager Cape Cod Gateway Airport Hyannis, Massachusetts 02601 (508) 775-2020

This report describes IRA related activities conducted at the Airport between October 2022 and April 2023.

2.0 SUMMARY OF IRA PLAN AND IRA MODIFICATION

An IRA was initiated in response to a Notice of Responsibility (NOR) for Release Tracking Number (RTN) 4-26347 dated November 10, 2016, issued to the Airport by the Massachusetts Department of Environmental Protection (MassDEP). The NOR requested that the Airport conduct investigations to evaluate:

- The source(s) of Per- and Poly-Fluoroalkyl Substances (PFAS) including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) previously detected in groundwater at the Airport and several adjacent properties;
- The source(s) of 1,4-dioxane, previously detected in a monitoring well downgradient of the Airport on the Maher wellfield property; and
- Potential impacts to public water supply wells operated by the Hyannis Water District at the Mary Dunn and Maher wellfields.

A proposed IRA plan was submitted for approval in response to the NOR. Subsequently, a meeting was held by MassDEP at the Airport that included other stakeholders including the Barnstable Department of Public Works, the Hyannis Water District, and Barnstable County representatives (representing the Fire Training Academy). At the meeting, IRA plans were coordinated between the Airport and Fire Training Academy including sampling locations, type of analysis, groundwater modeling, goals, and next steps. The IRA plan served as the guide for the soil and groundwater testing conducted since November 2016 to follow up on the results of the previous analyses.

In June 2019, the MassDEP issued a Request for Modified Immediate Response Action Plan/Interim Deadline dated June 18, 2019 (the "Modified IRA Request") to the Airport. The Modified IRA Request asked that the Airport propose response actions to "reduce infiltration of precipitation through PFAS-impacted soil, such as temporarily capping the source areas;

excavating and properly disposing of the PFAS-impacted soil; or some equivalent approach". The Airports response is documented in the report titled Final Immediate Response Action Plan Modification, prepared by HW and dated December 2019 (the "IRA Modification"). The IRA Modification included details for the installation of caps in two select areas to reduce precipitation infiltration. The two areas are identified as the Deployment Area and the Airport Rescue and Fire Fighting/Snow Removal Equipment (ARFF/SRE) Building Area (Figure 2). The two capped areas total approximately 94,100-square feet and represent a majority of the known PFAS in soil source areas relating to the historic application of aqueous film forming foam (AFFF) by the Airport. Areas of PFAS in soil remaining above the applicable Method 1 soil standard located outside of the caped area are indicated on Figure 2. Evaluation of these areas will be included in future response actions and/or included as part of a future risk assessment.

2.1 Background

Prior to issuance of the NOR, the Airport had conducted investigations on both 1,4-dioxane and PFAS and provided the results to MassDEP. In July 2015, HW sampled groundwater from seven groundwater monitoring wells for 1,4-dioxane. This contaminant was detected in groundwater monitoring well OW-9DD located in the Maher wellfield at a concentration of 0.926 micrograms per liter (ug/L). This concentration is above the applicable Method 1 standard of 0.30 ug/L. This groundwater monitoring well is screened from 77 to 87 feet below the ground surface.

At that time, it was thought that potential sources of 1,4-dioxane at the Airport could be related to a historic release of 1,1,1-trichloroethane (1,1,1-TCA) from an oil/water separator associated with a floor drain in the former Provincetown Boston Airlines hangar (currently leased to Cape Air) and/or from the application of deicing fluid. Given the screen depth of monitoring well OW-9DD, the 1,4-dioxane may also be from an off-Airport source.

On August 4, 2016, MassDEP issued a Request for Information (RFI) to the Airport requiring investigation of PFAS. On July 1 and 5, 2016, HW collected samples from six groundwater monitoring wells and submitted the samples for laboratory analysis of PFOS and PFOA. These compounds were detected in each of the wells tested. At monitoring wells HW-3 and HW-5, the sum of PFOS and PFOA were 0.0931 and 0.151 ug/L respectively, above the EPA health advisory limit and applicable MassDEP standard. PFOS and PFOA were also detected above the EPA health advisory limit and applicable MassDEP standard in monitoring well HW-1, located at the upgradient, western boundary of the Airport. Additional details about 1,4-dioxane and PFAS are included in the Revised Phase II Comprehensive Site Assessment Report submitted to the MassDEP in January 2022 (the "Revised Phase II Report").

2.2 Actions Under the IRA Plan

A summary of the IRA activities conducted between October 2022 and April 2023 include:

Groundwater Sampling for PFAS.

- Forensic analysis of groundwater by Battelle Memorial Institute from samples collected from HW-I(s), HW-I(m), HW-(d), ME-1, ME-2, and ME-3.
- Replacement of damaged monitoring wells HW-H and HW-R.

As indicated in the Revised Phase II, the Airport is not the source of 1,4-dioxane and as such, additional delineation of the non-airport related source(s) of 1,4-dioxane will not be completed. Refer to Figure 3 for historic 1,4-dioxane testing locations and results.

3.0 APPLICABLE MCP STANDARDS

Pursuant to 310 CMR 40.0900, the characterization of risk of harm to health, safety, public welfare, and the environment must be evaluated at each disposal site. This characterization includes the determination of site-specific soil and groundwater categories based on site location and use, and the comparison of laboratory results to these standards (310 CMR 40.0930).

In accordance with 310 CMR 40.0933, the applicable soil category is selected based upon the frequency, intensity of use, and accessibility of the Airport by adults and children. Based on these criteria, soil at the Airport is category S-1/GW-1 and S-1/GW-3.

Groundwater located within a Current Drinking Water Source Area is considered category GW-1. The Airport is located within several zones of contribution (Zone II) for Barnstable Village, the Hyannis Water District, and the Town of Yarmouth. Zone IIs are considered current drinking water sources as defined in 310 CMR 40.0006; thus, category GW-1 is applicable.

Groundwater located within 30 feet of an occupied building that has an average annual depth of less than 15 feet is categorized as GW-2. This is primarily a concern because of the possibility of vapor impacts to indoor air. The average annual depth to groundwater at the Airport is greater than 15 feet; therefore GW-2 Standards do not apply. Also, all disposal sites shall be considered a potential source of discharge to surface water, and therefore categorized as GW-3. Based on these criteria, categories GW-1 and GW-3 are applicable to the Airport.

The soil and groundwater standards applicable to the Airport for PFAS as described in the document titled Final PFAS – Related Changes to the MCP – 2019-12-13 prepared by the MassDEP and promulgated December 27, 2019 are as follows:

	PFAS Standards			
Analyta	Soil Standa	ard (ug/kg)	Groundwater S	Standard (ug/l)
Analyte	S-1/GW-1	SW-1/GW-3	GW-1	GW-3
Pefluorodecanoic Acid (PFDA)	0.3	300	N/A	40,000
Perfluoroheptanoic Acid (PFHpA)	0.5	300	N/A	40,000
Perfluorohexanesulfonic Acid (PFHxS)	0.3	300	N/A	500
Perfluorononanoic Acid (PFNA)	0.32	300	N/A	40,000

	PFAS Standards			
Austra	Soil Standa	ard (ug/kg)	Groundwater	Standard (ug/l)
Analyte	S-1/GW-1	SW-1/GW-3	GW-1	GW-3
Perfluorooctanesulfonic Acid (PFOS)	2	300	N/A	500
Perfluorooctanoic Acid (PFOA)	0.72	300	N/A	40,000
PFAS Sum of Six*	N/A	N/A	0.02	N/A

^{*} PFAS Sum of Six is the sum of PFDA, PFHpA, PFHxS, PFNA, PFOS, and PFOA

4.0 HISTORIC FIELD INVESTIGATIONS

A general description of historic field investigations conducted at the Airport since the November 2016 NOR and documented in prior IRA status reports are summarized below:

- Three soil samples were collected on December 9, 2016. One sample was taken from each location where it was determined that AFFF had been used at the Airport. The areas included the MCI Drill Area, the Deployment Area, and the 1991 Drill Location.
- One sample of AFFF concentrate was collected on December 9, 2016 and analyzed for PFAS compounds. The analysis was inconclusive (only 225.5 ug/l of total PFAS was detected) and it is assumed that the sample was not homogeneous (i.e., had separated in the foam bucket) and that the addition of water to the concentrate may affect how precursor PFAS analytes transform into various other detectable PFAS compounds.
- The installation of groundwater monitoring wells at six locations in April 2017: in the vicinity of potential sources of PFAS at the ARFF/SRE Area, at the Deployment Area and at upgradient locations outside of the Airport to evaluate potential off-site sources of PFAS and 1,4-dioxane.
- Groundwater from the new wells was initially sampled for PFAS and 1,4-dioxane in April 2017. Additional groundwater samples and one surface water sample were collected for analysis of PFAS on June 20, 2017.
- A second round of soil samples were collected on June 20, 2017 adjacent to the ARFF/SRE Building and within the Deployment Area to begin to determine the extent of PFAS within the surface soils. Based on the results of these analyses, a third round of samples from these two locations were collected on September 26, 2017. The third round of sampling was designed to further delineate the extent of PFAS in soils both horizontally and vertically, with samples taken at the ground surface and at two and four feet below ground surface (BGS).
- Six soil samples were analyzed for PFAS leaching potential using a synthetic precipitation leaching procedure (SPLP) test between September and October 2017. The chosen samples included four samples from the Deployment Area and two samples from runway reconstruction soils stockpiled at the Airport.

- In October 2017, 20 surface samples were collected both on and off Airport property to determine the concentration of PFAS in the area.
- In October 2017, three composite soil samples were taken from piles of soil associated with the redevelopment of Runway 15/33. These piles were located on Airport property at the site of the former Mildred's Restaurant and were analyzed for PFAS compounds to evaluate if soil removed from the Airport as part of this redevelopment contained PFAS.
- On August 14, 2018, 24 PFAS surface soil samples were collected in proximity to the ARFF/SRE Building Area and the Deployment Area. PFAS compounds were previously detected in these areas and additional samples were collected to determine the vertical extent of PFAS impacts in soil and to refine the soil disposal site boundary at the Airport.
- In October 2018, three soil borings (DL11, DL14 and HW-F) were advanced in the Deployment Area. One soil boring (ARFF3) was advanced, and one surface soil sample (HW-3) was collected near the ARFF/SRE Building in order to further delineate the extent of PFAS in soils both horizontally and vertically.
- In October 2018, six monitoring wells were installed at the Airport. A cluster of three wells (HW-G(s), HW-G(m), and HW-G(d)) was installed at an upgradient location to evaluate potential off-site sources of PFAS. Three additional wells (HW-H, HW-I, and HW-J) were installed southeast of the Deployment Area adjacent to the East Ramp.
- In November 2018, six groundwater samples were collected to evaluate PFAS
 concentrations in the Deployment Area. Four groundwater samples and one surface
 water sample from Mary Dunn Pond were also collected for analysis of oxygen and
 hydrogen isotopes to determine the contribution of pond water from Mary Dunn Pond
 to the four downgradient monitoring wells. The analysis was inconclusive in tracing the
 contribution of pond water in the downgradient monitoring wells.
- In December 2018, two soil samples were collected from the 1991 Drill Location to determine if PFAS detected in the area are related to background conditions.
- In December 2018, 12 groundwater samples were collected for analysis of PFAS, and 13 groundwater samples were collected for analysis of oxygen and hydrogen isotopes to determine the contribution of pond water from Mary Dunn Pond to the 13 downgradient wells. Groundwater samples were also collected from four monitoring wells in the Maher Wellfield for analysis of 1,4-dioxane.
- In February 2019, three additional surface soil samples were collected to further delineate the soil Disposal Site boundary around the ARFF/SRE building.

- In May and June 2019, HW installed nine groundwater monitoring wells to delineate the vertical and horizontal extent of PFAS and 1,4-dioxane at the Airport and on adjacent hydraulically upgradient properties.
- In June 2019, eight groundwater samples were collected from newly installed groundwater monitoring wells HW-L, HW-K, HW-I (m), HW-I (d), HW-M, HW-D(d), HW-D (dd), and HW-N for PFAS.
- In July 2019, one groundwater sample was collected from the newly installed groundwater monitoring wells HW-O for PFAS. One groundwater sample was collected from HW-L for 1,4-dioxane.
- In July 2019, two surface water samples were collected from Upper Gate and Lewis Ponds for PFAS analysis.
- In August 2019, four groundwater samples were collected from monitoring wells HW-N, HW-A(d), HW-O, and HW-1 to evaluate potential sources of 1,4-dioxane entering the Airport from unknown upgradient sources(s). One groundwater sample was also collected from groundwater monitoring well HW-E for PFAS.
- In August 2019, soil sample DL 11 (0-1) was collected from the Deployment Area.
- In August 2019, six spray water samples were collected from discharge locations on a fire truck at the Airport. The samples were collected to verify that the valve mechanism that controls the mixing of AFFF with water was working appropriately. PFAS should not be detected in the spray water. Although the spray water is not considered drinking water, PFAS was detected in each of the six samples collected above the GW-1 standard.
- On September 27, 2019, HW collected groundwater samples from six monitoring wells located on the Airport for 1,4-dioxane analysis.
- In November 2019, the Airport replaced the valve mechanism in the fire truck to ensure that AFFF was no longer mixing with the water despite the mechanism not being engaged. In December 2019, HW resampled the six discharge locations from the fire truck at the Airport. PFAS was detected at various concentrations at each location, but all were below the GW-1 standard.
- Between May 5th and May 21st, 2020, HW collected 16 groundwater samples PFAS analysis. Refer to Table 2 for groundwater results.
- Between May 5th and May 13th, 2020, HW collected groundwater samples from four monitoring wells for 1,4-dioxane analysis.
- Between September 14th and September 24th, 2020, HW and Desmond Well Drilling installed 13 monitoring wells.

- On September 17, 2020, HW collected groundwater samples from the three Maher Wells (ME-1 through ME-3) for PFAS analysis.
- Between September 14th and September 30th, 2020, HW collected 23 soil samples for PFAS analysis.
- Between October 1 and October 7, 2020, HW collected groundwater samples from 16 monitoring wells for PFAS.
- On October 2 and 7, 2020 HW collected groundwater samples from four monitoring wells for 1,4-dioxane analysis.
- Between November 5 and 6, 2020, HW collected five groundwater samples for PFAS analysis.
- On November 17, 2020, HW collected two roof samples (rubber membrane and asphalt shingle) from the ARFF/SRE building for SPLP PFAS. The testing was completed to determine if roofing materials were a potential source of PFAS in groundwater through stormwater infiltration. PFAS was detected in each of the samples collected. Although the leachate is not considered drinking water, the concentration of the MassDEP Sum of 6 were below the Method 1 GW-1 and GW-3 standards.
- On February 18 and 19th, 2021 HW conducted hydraulic conductivity testing at three monitoring well locations. Refer to the Revised Phase II Report for additional details.
- Between March 17th and March 19, 2021, HW collected 21 groundwater samples for PFAS analysis as part of the first round of post-cap semiannual monitoring.
- Between April 5th and April 7th, 2021, HW and Desmond Well Drilling installed monitoring wells HW-U(s), HW-U(m), HW-W(m), HW-W(d), and HW-W (dd).
- Between April 6th and 19th, 2021, HW collected 17 soil samples for total organic carbon (TOC) analysis. The TOC samples were collected from various depths between the ground surface and 65 feet below grade. The TOC data was used to determine plume migration.
- On April 19, 2021, HW sampled the recently installed monitoring wells HW-U(s), HW-U(m) HW-W(m), HW-W(d), and HW-W (dd) for further analysis of PFAS compounds in groundwater.
- On September 7, 2021, HW and New England Geotech installed monitoring wells HW-X(s) and HW-X(m). The monitoring wells were installed adjacent to the former ARFF/SRE Building.
- On September 7, 2021, HW collected a soil sample from HW-X (m) and submitted it for PFAS analysis. None of the MassDEP six regulated PFAS compounds were detected above the laboratory method detection limit.

- On September 10, 2021, HW collected groundwater samples from HW-X (s) and HW-X(m) and submitted them for PFAS and 1,4-dioxane analysis.
- Between September 1 and September 11, 2021, HW collected 26 groundwater samples as part of the second round of post cap semiannual monitoring.
- On September 10, 2021, HW collected two groundwater samples from monitoring wells HW-E and HW-J located in the Deployment Area for 1,4-dioxane. 1,4-dioxane was not detected above the laboratory reporting limit.
- On March 2nd and 4th, 2022, HW collected six surficial composite soil samples from Runway 6-24 and submitted them to Alpha Analytical for PFAS analysis. Runway 6-24 will be redeveloped in beginning April 2023 and is expected to be completed by October 2023. The soil testing was conducted to evaluate how soils removed from the areas around the runway would need to be managed if they were taken off site. None of the MassDEP six regulated PFAS compounds were detected above the applicable Method 1 Standard.
- Between March 15th and March 31st, 2022, HW collected 29 groundwater samples for PFAS analysis.
- On May 18th, 2022, HW collected three groundwater samples for PFAS analysis.
- Between July 29 and August 8th, 2022, HW collected eight groundwater samples for PFAS analysis.

Soil, surface water and groundwater sampling locations are indicated on Figures 2 through 7. Tabulated analytical data are included on Tables 1 through 11. Laboratory data packages and soil boring logs associated with the historic field investigations detailed above have previously been submitted to MassDEP and are available in other IRA Status Reports and phased reports (i.e., Phase II).

5.0 FIELD INVESTIGATIONS CONDUCTED DURING THE CURRENT REPORTING PERIOD

Details concerning field investigations conducted between October 2022 and April 2023 are summarized below.

- Between October 31 and November 2, 2022, HW collected groundwater samples from the three Maher Wells (ME-1, ME-2 and ME-3) and monitoring wells HW-W(m), HW-I(s), HM-I(m), HW-I(d), HW-3, HW-P(s), and HW-P(m) for PFAS analysis.
- On February 2, 2023, HW collected groundwater samples from the three Maher Wells (ME-1, ME-2 and ME-3) and monitoring wells HW-I(s) and HW-P(s) for PFAS analysis.
- On March 16 and 17, 2023 HW and Desmond Well Drilling reinstalled monitoring wells HW-H and HW-R (Figure 3) that were destroyed by the Lawrence Lynch Corporation

(road work construction company) during the Mary Dun Way road paving/sewer line installation project. It is estimated that the wells were destroyed during the week of July 12, 2022. It should be noted that these wells are used to track the groundwater plume from the Deployment Area and soil in the vicinity of the wells and Mary Dun Way have not been impacted by the Airports historic use of AFFF. Refer to Figure 2, soil samples A7, A8, A9, A11, A12, D10, D11, DL19, DL20, and DL21. Monitoring well construction logs will be included in the next MassDEP submittal.

• The Airport submitted groundwater samples from HW-I(s), HW-I(m), HW-I(d) and ME-1 through ME-3 for forensic PFAS analysis at Battelle (see attached report in Appendix B titled *PFAS Signature® Analysis Report*, dated December 8, 2022). As indicated in previous reports, HW-I(s) is representative of the Airports PFAS Plume, and HW-I(m) and HW-I(d) are representative of upgradient non-airport related sources (i.e., the Barnstable Fire Training Academy and others). The forensic report prepared by Battelle concluded that sample *"HW-I(d) seems most like the ME samples"*.

Analytical results are included on Table 2, and laboratory reports are included in Appendix A. PFAS in groundwater trend graphs for select wells in the vicinity of the caps are included in Appendix C.

HW anticipates conducting the final quarterly sampling event of the Maher Wells in May 2023. HW will continue to sample select wells in the vicinity of the Deployment Area, ARFF/SRE Building and other select locations bi-annually as part of the on-going evaluation of the cap and PFAS plume monitoring.

6.0 BI-ANNUAL CAP INSPECTION AND CAP PERFORMANCE MONITORING

HW inspected the asphalt cap on March 31, 2023 in the vicinity of the ARFF/SRE Building. The asphalt cap was free of significant cracks or depressions as indicated in the photographs below.

HW inspected the geomembrane cap on March 31, 2023, in the vicinity of the Deployment Area. The sand and loam protective layer over the geomembrane cap were intact with no signs of significant erosion as indicated in the photos below.

HW will continue to inspect the two cap areas every six months and collect groundwater samples from select existing monitoring wells to document the effectiveness of the caps.

7.0 GROUNDWATER MODELING AND CONTAMINANT TRANSPORT ANALYSIS

A full evaluation of the groundwater plumes associated with the releases at the Deployment Area and the ARFF/SRE Building Area are included in the Revised Phase II Report submitted to MassDEP in January 2022. Additional groundwater testing and forensic techniques will be utilized to further refine the groundwater contaminant fate and transport characteristics.

8.0 PLANS FOR NEXT REPORTING PERIOD

HW will continue to conduct inspections of the two cap areas and monitor groundwater. Future analytical results and laboratory reports will be included in future status reports.

- 1- USGS Locus
- 2- Soil Sample Locations
- 3- Surface Water and Monitoring Well Locations
- 4- 1,4-dioxane Results in Groundwater
- 5- Background PFAS Sample Locations
- 6- TOC Sample Locations
- 7- Surficial Soil Sampling Runway 6/24 Locations

Document Path: H:\Projects\HYA\11072 (697 Barnstable Airport)\GIS_Maps\Maps\USGS_Locus_20130815.mxd

Airport Property Line

USGS Locus Cape Cod Gateway Airport Hyannis, MA

Date: 4/17/2018 Figure 1

- 1- Soil Results for PFAS Compounds
- 2- Groundwater Results for PFAS Compounds
- 3-1,4-Dioxane Groundwater Groundwater Results
- 4- AFFF Concentrate Analytical Results
- 5- SPLP Results
- 6- Background PFAS Levels in Soil and Soil Stockpile Samples
- 7- Surface Water Results for PFAS
- 8 Ratio of Stable Isotopes
- 9 Fire Truck Spray Water PFAS Results
- 10 Total Organic Carbon Levels
- 11- Runway 6/24 Surface Soil Results

Table 1. Soil Results for PFAS Compounds ug/kg

la e e																																						
Sample Location																					ARFF Buildin	g																
Sample ID	Method 1 Sta	ndard UCL	ARFF1 (0-	1') ARFF1 (2')	ARFF1 (4')	ARFF2 (0-1')	ARFF3 (0-1')	ARFF3 (10-12)	ARFF4 (0-1')	ARFFCB (0-1)	A1 (0-1')	A2 (0-1')	A3 (0-1')	A4 (0-1')	A5 (0-1')	A5 (2-4')	A6 (0-1')	A7 (0-1')	A8 (0-1')	A9 (0-1')	A10 (0-1')	A11 (0-1')	A12 (0-1')	A13 (0-1')	A13 (0-1')	A14 (0-1')	A14 (0-1')	A15 (0-1')	A15 (0-1')	A16 (0-1')	A17 (0-1')	A18 (0-1)	A19 (0-1)	A20 (0-1)	A20 (2-4)	A21 (0-1) A22	(0-1) HW-P(M) [8-10]	HW-P(M) DL1(0-1')
Sample Date	S-1/GW-1 S-1	/GW-3	6/20/20	17 9/26/2017	9/26/2017	6/20/2017	9/26/2017	10/9/2018	9/26/2017	9/26/2017	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	9/24/2020	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	2/27/2019	9/29/2020	2/27/2019	5/13/2020	2/27/2019	5/13/2020	9/17/2020	9/17/2020	9/29/2020	9/24/2020	9/24/2020	9/24/2020	9/24/2020 9/2	/2020 9/18/2020	9/18/2020 6/20/2017
Perfluoroheptanoic acid (PFHpA)	0.5	300 4,000	0.82 J	1.8	0.66 J	0.17 U	0.60 J	0.32 J	0.75 J	0.60 J	0.19 U	0.19 U	0.38 J	0.19 U	1.1	0.089 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	<2.0	0.396 J	<1.9	0.51 J	<2.0	0.21 U	0.067 J	1.07	0.076 J	0.101 J	0.09 U	0.09 U	0.045 U 0.	0.044 U	0.043 U 0.30 J
Perfluorohexanesulfonic acid (PFHxS)	0.3	300 4,000	0.23 U	0.23 U	0.23 U	0.23 U	0.64 J	0.24 U	0.23 U	0.23 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.12 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	<2.0	0.058 U	<1.9	0.24 U	<2.0	0.21 U	0.085 J	0.058 U	0.054 U	0.059 U	0.121 U	0.121 U	0.06 U 0.0	55 U 0.059 U	0.058 U 0.23 U
Perfluorooctanoic acid (PFOA)	0.72	300 4,000	0.75 J	2.6	0.75 J	0.26 U	0.78 J	1.9	0.97 J	0.90 J	0.25 U	0.25 U	0.37 J	0.30 J	1.9	0.228 J	0.25 U	0.25 U	0.25 U	0.34 J	0.25 U	0.25 U	0.25 U	<2.0	0.67 J	<1.9	0.68 J	<2.0	0.14 U	0.088 J	0.989	0.111 J	0.129 J	0.196 J	0.147 J	0.042 U 0.	0.089 J	0.046 J 0.26 U
Perfluorononanoic acid (PFNA)	0.32	300 4,000	2.5	5.7	1.4	0.20 J	0.91 J	3.1	2.9	0.17 U	0.22 U	0.22 U	0.51 J	0.22 U	0.87 J	0.148 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	<2.0	1.2	<1.9	0.54 J	<2.0	0.15 U	0.119 J	0.774 J	0.281 J	0.246 J	0.15 U	0.15 U	0.075 U 0	11 J 0.073 U	
Perfluorooctane sulfonate (PFOS)	2	300 4,000	4.5	2.7	1.1	0.29 J	4.4	1.1	1.0	1.1	0.26 U	0.26 U	0.29 J	0.26 U	0.26 U	0.257 U	0.26 U	0.38 J	0.26 U	0.85 J	0.26 U	0.26 U	0.26 U	<2.0	1.3	<1.9	0.32 J	<2.0	0.29 J	2.02	0.573 J	1.15	0.611 J	0.259 U	0.26 U	0.276 J 0.	559 J 0.0127 U	0.0124 U 0.40 J
Perfluorodecanoic Acid (PFDA)	0.3	300 4,000	4.4	1.2	0.62 J	0.13 U	1.6	0.28 U	0.85 J	0.13 U	0.28 U	0.28 U	0.42 J	0.28 U	1.4	0.133 U	0.28 U	0.28 U	0.28 U	0.28 U	0.33 J	0.28 U	0.28 U	<2.0	0.34 J	<1.9	0.95 J	<2.0	0.15 U	0.074 J	0.147 J	0.146 J	0.066 U	0.134 U	0.134 U	0.067 U 0.	119 J 0.065 U	0.064 U 0.63 J
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	NA NA	0.93 J	0.74 J	1	0.23 U	0.61 J	4.2	0.65 J	2.2	0.26 U	0.26 U	0.26 U	0.26 U	18	0.355 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	<2.0	0.173 U	<1.9	0.25 U	<2.0	0.22 U	0.17 U	0.172 U	0.161 U	0.175 U	0.358 U	0.359 U	0.179 U 0.1	64 U 0.221 J	0.172 U 0.39 J
																		Sum of Laborat	tory Reported PFAS (To	otal PFAS) and Sum	of Six																	
Total PFAS	NA	NA NA	120.06	41.75	46.85	1.16	23.72	11.03	11.9	95.43	0	0	6.2	1.14	161.07	0.613	1.5	1.35	0.48	1.92	1.1	0.43	0	0.0	5.2	0	13.15	0.0	0.45	3.131	11.267	2.652	1.409	0.316	0.147	0.571 1	412 0.411	0.09 11.14
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	NA	NA NA	12.97	14	4.53	0.49	8.93	6.42	6.47	2.6	0	0	1.97	0.3	5.27	0.228	0	0.38	0	1.19	0.33	0	0	0	3.916	0	3	0	0.29	2.453	3.553	1.764	1.087	0.196	0.147	0.276 0	953 0.089	0.046 1.33
Sample Location																					Deployment A	rea																
Sample ID	Method 1 Sta	ndard	DL2 (0-1	') DL2 2'	DL2 4'	DL3 (0-1')	DL3 2'	DL3 4'	DL4 (0-1')	DL4 2'	DL4 4'	DL5 (0-1')	DL5 2'	DL5 4'	DL6 (0-1')	DL7 (0-1')	DL8 (2')	DL8 (4')	DL9 (0-1')	DL10 (0-1')	DL 11 (0-1')	DL 11 (0-1')	DL11 (4-6')	DL11 (10-12')	DL11 (14-16')	DL12 (0-1')	DL13 (0-1')	DL14 (0-1')	DL14 (4-6')	DL14 (10-12')	DL14 (14-16')	DL15 (0-1)	DL16 (0-1)	DL17 (0-1)	DL18 (0-1)	DL19 (0-1) DL2	0 (0-1) DL21 (0-1)	DL22 (2-4) DL22 (6-8)
Sample Date	S-1/GW-1 S-1	/GW-3	6/20/20	17 9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	9/26/2017	9/26/2017	6/20/2017	6/20/2017	6/20/2017	9/26/2017	6/20/2017	6/20/2017	9/26/2017	8/20/2019	10/4/2018	10/4/2018	10/4/2018	9/26/2017	9/26/2017	9/26/2017	10/4/2018	10/4/2018	10/4/2018	9/30/2020	9/30/2020	9/25/2020	9/25/2020	9/25/2020 9/25	/2020 9/25/2020	9/25/2020 9/25/2020
Perfluoroheptanoic acid (PFHpA)	0.5	300 4,000	1.9	1.2	0.48 J	0.84 J	0.17 U	0.17 U	0.31 J	0.17 U	0.17 U	2.5	0.40 J	0.50 J	5.0	2.5 J	2.9 J	4.7 J	0.66 J	1.3	2.1	1.8	1.3	0.31 J	0.23 J	1.2	1.6	4.9	0.36 J	0.19 U	1.4	0.175 U	0.138 J	0.167 U	0.319 J	0.145 U 0.1	57 U 0.158 U	0.109 J 0.481 J
Perfluorohexanesulfonic acid (PFHxS)	0.3	300 4,000	1.8	1.3	0.59 J	0.34 J	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.49 J	0.49 J	0.23 U	0.23 U	2.3 U	2.3 U	2.3 U	0.35 J	0.94 J	0.82 J	<0.9	0.24 U	0.24 U	0.24 U	0.23 U	0.23 U	0.71 J	0.24 U	0.24 U	0.74 J	0.235 U	0.057 U	0.224 U	0.159 J	0.194 U 0.	21 U 0.212 U	0.057 U 0.07 J
Perfluorooctanoic acid (PFOA)	0.72	300 4,000	1.6	4.1	0.74 J	0.80 J	0.26 U	0.26 U	0.83 J	0.26 U	0.26 U	3.7	1.6	0.26 U	0.26 U	4.2 J	25	22	0.68 J	1.7	4.7	5.2	2.9	1.9	0.50 J	4.6	2.4	23	0.58 J	0.32 J	2.9	0.334 J	0.223 J	0.166 J	0.979 J	0.135 U 0.1	46 U 0.159 J	0.447 J 1.32
Perfluorononanoic acid (PFNA)	0.32	300 4,000	0.81 J	2.5	0.17 U	0.55 J	0.17 U	0.17 U	2.7	0.17 U	3.7	0.19 J	0.17 U	0.17 U	0.19 J	9.6 J	46	1.7 U	0.22 J	0.17 U	16	2.4	2.5	0.22 U	0.22 U	7.3	1.5	10	0.22 U	0.22 U	10	0.292 U	0.285 J	0.277 U	0.296 J	0.241 U 0.2	61 U 0.263 U	5.46 2.66
Perfluorooctane sulfonate (PFOS)	2	300 4,000	12	1.5	0.21 U	0.51 J	0.21 U	0.21 U	2.0	0.21 U	0.50 J	0.21 U	0.21 U	0.21 U	0.21 U	3.9 J	14	2.1 U	0.38 J	0.26 J	29	1.5	0.26 U	0.26 U	0.26 U	23	0.66 J	7.6	0.26 U	0.26 U	2.3	0.505 U	0.575 J	0.481 U	1.05 J	0.418 U 0.4	52 U 0.456 U	20.3 8.85
Perfluorodecanoic Acid (PFDA)	0.3	300 4,000	0.13 U	0.13 U	0.13 U	1.4	0.13 U	0.13 U	1.3	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	1.3 U	1.3 U	1.3 U	0.13 U	0.13 U	1.8	8.7	0.28 U	0.28 U	0.28 U	0.66 J	7.4	9.6	0.28 U	0.28 U	0.28 U	0.26 U	0.181 J	0.248 U	0.167 J	0.215 U 0.2	33 U 0.235 U	0.834 J 0.383 J
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	NA NA	0.23 U	0.23 U	0.57 J	3.1	1.5	1	0.24 J	0.23 U	1.7	0.23 U	0.23 U	0.23 U	2	290	1600	900	0.23 U	0.23 U	7.8	30	4.1	4.4	6.7	62	320	230	0.67 J	0.30 J	64	0.698 U	0.168 U	0.664 U	0.19 U	0.577 U 0.6	25 U 0.629 U	7.49 11.7
																		Sum of Laborat	tory Reported PFAS (To	otal PFAS) and Sum	of Six																	
Total PFAS	NA	NA	24.41	12.17	2.38	84.86	9.56	13.81	9.6	0.88	5.9	11.03	2.49	0.5	18.59	404.4	1727.2	949.6	6.38	9.1	85.22	91.5	11.07	6.82	7.63	108.56	521.26	598.24	50.11	21.22	116.64	4.523	2.269	0.628	4.84	0	0 0.68	66.813 41.988
Sum of Six (PFHpA,PFHxS,PFOA, PFOS,	NA	NA NA	18.11	10.6	1.81	4.44		0	7.14	0	4.3	6.88	2.49	0.5	5.19	20.2	87.9	26.7	2.29	4.2	54.42	19.6	6.7	2.21	0.73	36.76	13.56	55.81	0.94	0.32	17.34	0.334	1.402	0.166	2.97	0	0 0.159	27.15 13.764
PFNA, and PFDA)	INA	NA NA	18.11	10.6	1.01	4.44	U	U	7.14	U	4.2			0.5	5.19	20.2	87.9	20.7	2.29	4.2	54.42	19.0	6.7	2.21	0.73	30.70	13.50	33.61	0.94	0.32	17.34	0.334	1.402	0.100	2.97	U	0 0.159	27.15 13.764
Sample Location												Deployment	Area																									
Sample ID	Method 1 Sta	ndard UCL	DL22 (18-	20) DL23 (0-1)	D1 (0-1')	D2 (0-1')	D3 (0-1')	D4 (0-1')	D5 (0-1')	D6 (0-1')	D7 (0-1')	D8 (0-1')	D9 (0-1')	D10 (0-1')	D11 (0-1')	D12 (0-1')	HW-F (10-12')	HW-F (14-16')	HW-3 (0-1')	MCI Drill (0-1)	Annual Deployment (0-1)																	
Sample Date	S-1/GW-1 S-1	/GW-3	9/25/20	20 9/29/2020	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	8/14/2018	10/4/2018	10/4/2018	10/9/2018	12/9/2016	12/9/2016																	
Perfluoroheptanoic acid (PFHpA)	0.5	300 4,000	0.073	0.24 J	0.19 U	0.21 J	0.19 U	0.95 J	0.22 J	0.25 J	7.8	1.0	2.7	0.19 U	0.19 U	0.19 U	0.32 J	1.3	0.19 U	8.4	20																	
Perfluorohexanesulfonic acid (PFHxS)		300 4,000			0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.31 J	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.5 J	4 U																	
Porfluoroostanois asid (REOA)	0.73	200 4.000	0.170	0.471 I	0.2511	0.221	0.25 11	1.1	0.2511	0.201	14	2.2	-	0.2511	0.2511	0.0511	0.2511	1.4	0.35 11		400	1																

Company of the Co

Table 2. Groundwater Results for PFAS Compounds ug/L

Sample ID	0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	HW-1 6/20/2017 51.51 25.00 26.51 30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	HW-1 11/1/2018 51.51 21.83 29.68 30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U 0.0066 U	HW-4M 4/5/2017 54.02 26.20 27.82 32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	HW-4M 3/25/2022 54.02 25.00 29.02 32.32 0.003 0.011 0.0018 U 0.013 0.025	HW-5 7/1/2016 54.98 24.94 30.04 27.80 0.0041 0.011 <0.002 0.031	HW-5 4/7/2017 54.98 26.75 28.23 27.80 0.0084 J	HW-5 11/1/2018 54.98 25.27 29.71 27.80 0.0074 U	HW-5 3/25/2022 54.98 25.31 29.67	HW-23 6/20/2017 50.65 22.70	HW-23 11/1/2018 50.65 24.01	HW-19D 6/20/2017 49.10	HW-19D 11/7/2018 49.10	HW-X(s) 9/10/2021 NA	HW-X(m) 9/10/2021 NA	HW-401S 4/7/2017 41.58	HW-A(S) 4/7/2017 55.34	HW-B(S) 4/7/2017 51.84	HW-B(S) 10/26/2018 51.84	HW-B(D) 10/26/2018 51.95	HW-C 3 4/7/2017 69.25	HW-M 6/24/2019 53.69	HW-N 6/24/2019 49.49	HW-O 7/2/2019 43.46	
UCL	7/1/2016 51.51 21.63 29.88 30.84 0 0.01 0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	6/20/2017 51.51 25.00 26.51 30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	11/1/2018 51.51 21.83 29.68 30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	4/5/2017 54.02 26.20 27.82 32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	3/25/2022 54.02 25.00 29.02 32.32 0.003 0.011 0.0018 U 0.013 0.025	7/1/2016 54.98 24.94 30.04 27.80 0.0041 0.011 <0.002	4/7/2017 54.98 26.75 28.23 27.80 0.0084 J 0.018 J	11/1/2018 54.98 25.27 29.71 27.80	3/25/2022 54.98 25.31	6/20/2017 50.65	11/1/2018 50.65	6/20/2017 49.10	11/7/2018	9/10/2021	9/10/2021	4/7/2017	4/7/2017	4/7/2017	10/26/2018	10/26/2018	4/7/2017	6/24/2019	6/24/2019	7/2/2019	
IOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Derfluoroheptanoic acid (PFHpA) Derfluoronanasulfonic acid (PFHxS) Derfluoronanasulfonic acid (PFNA) Derfluoronanasulfonic acid (PFNA) Derfluoroctanoic acid (PFNA) Derfluoroc	51.51 21.63 29.88 30.84 0 0.01 0.018 0 <0.002 0 0.033 0.017 NA NA 0.078	25.00 26.51 30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	21.83 29.68 30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	54.02 26.20 27.82 32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	25.00 29.02 32.32 0.003 0.011 0.0018 U 0.013 0.025	54.98 24.94 30.04 27.80 0.0041 0.011 <0.002	54.98 26.75 28.23 27.80 0.0084 J 0.018 J	25.27 29.71 27.80	54.98 25.31	50.65		49.10			NA	41.58	55,34		E1 0/	51.95	69.25				
Depth to Groundwater Groundwater Elevation Total Well Depth Derfluorohexanesulfonic acid (PFHpA) Derfluorohexanesulfonic acid (PFHpA) Derfluoronexanesulfonic acid (PFNA) Derfluoronexanesulfonic acid (PFNA) Derfluoroctanoic acid (PFNA) Derfluoroctanoic acid (PFNA) Derfluoroctanoic acid (PFNA) Derfluoroctanoic Acid (PFDA) Derfluoroctanoic Acid (PFNA) NA Derfluoroctanoic Acid (PFNA) NA Derfluoroctanoic Acid (PFNA) Derfluo	21.63 29.88 30.84 0 0.01 0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	26.51 30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	21.83 29.68 30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	27.82 32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	25.00 29.02 32.32 0.003 0.011 0.0018 U 0.013 0.025	24.94 30.04 27.80 0.0041 0.011 <0.002	28.23 27.80 0.0084 J 0.018 J	25.27 29.71 27.80	25.31																
Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) 100,000 Perfluoroheptanoic acid (PFHpA) 5,000 Perfluoroneptanoic acid (PFNA) 100,000 Perfluoroctanoic acid (PFNA) 100,000 Perfluoroctanoic acid (PFOA) 100,000 Perfluoroctanoic acid (PFDA) 100,000 Perfluorodecanoic Acid (PFDA) 100,000 Perfluorodecanoic Acid (PFDA) 100,000 Perfluorodecanoic Acid (PFDA) 100,000 Perfluorotelomer sulfonate (Picit Signature S	29.88 30.84 30.00 0.01 0.018 0.002 0.033 0.017 0.NA NA 0.078	26.51 30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	29.68 30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	27.82 32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	29.02 32.32 0.003 0.011 0.0018 U 0.013 0.025	30.04 27.80 0.0041 0.011 <0.002	28.23 27.80 0.0084 J 0.018 J	29.71 27.80				21.29	22.19	24.74	25.21	17.95	24.62	22.26	21.59	21.66	38.50	20.32	15.48	3.62	
otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000 erfluorohexanesulfonic acid (PFHxS) 5,000 erfluoronoanoic acid (PFNA) 100,000 erfluorooctanoic acid (PFNA) 100,000 erfluorooctanoic acid (PFOA) 100,000 erfluorooctanoic acid (PFDA) 100,000 erfluorodecanoic Acid (PFDA) 100,000 :2 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) ample Location ample ID ample Date OC Elevation epth to Groundwater iroundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	30.84 0 0.01 0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	30.84 0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	30.84 0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	32.32 0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	32.32 0.003 0.011 0.0018 U 0.013 0.025	27.80 0.0041 0.011 <0.002	27.80 0.0084 J 0.018 J	27.80		27.95	26.64	27.81	26.91	NA NA	NA	23.63	30.72	29.58	30.25	30.29	30.75	33.37	34.01	39.84	
erfluoroheptanoic acid (PFHpA) 100,000 erfluorohexanesuffonic acid (PFHxS) 5,000 erfluoronotanoic acid (PFNA) 100,000 erfluorooctanoic acid (PFOA) 100,000 erfluorooctanoic acid (PFOS) 5,000 erfluorodenoic Acid (PFDA) 100,000 :2 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) NA ample Location NA ample ID Dample Date OC Elevation UCL epth to Groundwater roundwater Elevation roundwater Elevation total Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0 0.01 0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	0.0042 J 0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	0.013 J 0.018 J 0.0087 U 0.031 0.028 0.0061 U	0.007 J 0.02 0.0046 U 0.011 J 0.043 0.0040 U	0.003 0.011 0.0018 U 0.013 0.025	0.0041 0.011 <0.002	0.0084 J 0.018 J		27.80	28.11	28.11	41.30	41.30	29.24	36.82	23.60	32.00	30.23	30.23	57.20	42.15	26.92	22.33	14.10	
erfluorohexanesulfonic acid (PFHxS) 5,000 erfluorononanoic acid (PFNA) 100,000 erfluoroctanoic acid (PFNA) 100,000 erfluoroctanoic acid (PFOA) 100,000 erfluoroctane sulfonate (PFOS) 5,000 erfluorodecanoic Acid (PFDA) 100,000 :2 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) NA mapple Location ample ID ample ID ample Date OC Elevation elepth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0.018 0 <0.002 0 0.033 0.017 0 NA NA 0.078	0.065 0.0057 J 0.022 0.24 0.0040 U 0.0032 U	0.018 J 0.0087 U 0.031 0.028 0.0061 U	0.02 0.0046 U 0.011 J 0.043 0.0040 U	0.011 0.0018 U 0.013 0.025	0.011 <0.002	0.018 J	0.007/4.11	0.0048	0.0045J	0.0098 J	0.0052 J	0.0080 J	0.0061	0.0034	0.0043 J	0.0048 J	0.049	0.012 J	0.0074 U	0.0033 U	0.007	0.0034	<0.002	
erfluorononanoic acid (PFNA) 100,000 erfluorootanoic acid (PFOA) 100,000 erfluorootanoic acid (PFOA) 100,000 erfluorootanoic acid (PFOA) 100,000 erfluorodecanoic Acid (PFDA) 100,000 22 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA otal PFAS NA um of Six (PFHPA,PFHxS,PFOA, PFOS, PFNA, and PFOA) ample Location ample ID ample Date OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0 <0.002 0 0.033 0.017 0 NA NA 0.078	0.0057 J 0.022 0.24 0.0040 U 0.0032 U	0.0087 U 0.031 0.028 0.0061 U	0.0046 U 0.011 J 0.043 0.0040 U	0.0018 U 0.013 0.025	<0.002		0.0074 U	0.0048	0.00433	0.0038 3	0.0032 3	0.00803	0.0061	0.0034	0.0043 J	0.0048 J	0.049	0.0123	0.0074 U	0.0033 U	0.007	0.0034	0.0043	
erfluorooctanoic acid (PFOA) 100,000 erfluorooctane sulfonate (PFOS) 5,000 erfluoroottane sulfonate (PFOS) 5,000 erfluorodeanoic Acid (PFDA) 100,000 e2 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) NA sample Location sample ID sample Date OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0 0.033 0.017 0 NA NA 0.078	0.022 0.24 0.0040 U 0.0032 U	0.031 0.028 0.0061 U	0.011 J 0.043 0.0040 U	0.013 0.025			0.0088 J	0.013 0.0018 U	0.021 0.0038 U	0.023 0.0087 U	0.046 0.0065 J	0.045 0.0087 U	0.0047 0.00049 J	0.0021	0.011 J	0.0079 J 0.0046 U	0.044 0.0046 U	0.047 0.0087 U	0.0036 U	0.0034 U	<0.002	<0.002	<0.002	
erfluorooctane sulfonate (PFOS) 5,000 erfluorodecanoic Acid (PFDA) 100,000 :2 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) NA maple Location ample ID ample ID ample Date OC Elevation tepth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0.017 NA NA 0.078	0.24 0.0040 U 0.0032 U	0.028 0.0061 U	0.043 0.0040 U	0.025	0.031	0.0046 U								0.000				0.000.0						
erfluorodecanoic Acid (PFDA) 100,000 22 Fluorotelomer sulfonate (6:2 FTS) NA otal PFAS NA um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) ample Location ample ID ample Date OC Elevation tepth to Groundwater froundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0 NA NA 0.078 0.078	0.0040 U 0.0032 U 0.4247	0.0061 U	0.0040 U		0.40	0.020 J	0.011 J	0.023	0.0046 U	0.011 J	0.017 J	0.014 J	0.013	0.0062	0.0046 U	0.0026 U	0.0094 J	0.020 J	0.012 J	0.0026 U	0.027	0.0088	0.0039	
22 Fluorotelomer sulfonate (6:2 FTS) NA Otal PFAS um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and FDA) ample Location ample ID ample Date OC Elevation lepth to Groundwater iroundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	NA 0.078 0.078	0.0032 U 0.4247				0.12	0.052	0.12	0.048	0.0079 J	0.015 J	0.061	0.069	0.068	0.034	0.012 J	0.0026 U	0.026	0.019 J	0.010 J	0.0026 U	0.0074	0.004	0.017	
otal PFAS um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) ample Location ample ID ample Date OC Elevation tepth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) NA	0.078 0.078	0.4247	0.0066 U		0.0018 U	NA	0.0040 U	0.0061 U	0.0018 U	0.0040 U	0.0061 U	0.0040 U	0.0061 U	0.00050 U	0.0042	0.0040 U	0.0040 U	0.0040 U	0.0061 U	0.0061 U	0.0040 U	<0.002	<0.002	0.0021	
um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) ample Location ample ID ample Date OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	0.078			0.0038 J	0.0018 U	NA	0.0037 J	0.0066 U	0.0018 U	0.0032 U	0.0066 U	0.0032 U	0.0066 U	0.002 J	0.00035 U	0.004 J	0.0032 U	0.0032 U	0.0066 U	0.0066 U	0.0034 J	<0.002	<0.002	0.002 U	
Im of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PDA) Imple Location Imple ID Imple Date OC Elevation epth to Groundwater roundwater Elevation total Well Depth refluoroheptanoic acid (PFHpA) 100,000	0.078							Sum of	Laboratory F	Reported PFA	AS (Total PFA	AS) and Sum	of Six												
Imple Location Imple Do Imple Date OC Elevation October Elevation Ital Well Depth Perfluoroheptanoic acid (PFHpA) Imple Date Incompleted I	0.078		0.15	0.1162	0.0679	0.1661	3.0021	0.1507	0.1045	0.0745	0.0858	0.1758	0.16	0.18221	0.10025	0.0313	0.0779	0.4561	0.186	0.0465	0.0034	0.0927	0.0727	0.0585	
mple Location mple ID mple Date DC Elevation ppth to Groundwater oundwater Elevation tal Well Depth urfluoroheptanoic acid (PFHpA) 100,000																	1								
mple ID mple Date DC Elevation upth to Groundwater oundwater Elevation tal Well Depth rfluoroheptanoic acid (PFHpA) 100,000		0.3369	0.09	0.081	0.052	0.1661	0.0984	0.1398	0.0888	0.0334	0.0588	0.1357	0.136	0.13459	0.0519	0.0273	0.0127	0.1284	0.098	0.022	<0.0046	0.0574	0.0492	0.0273	
Imple ID Imple Date OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000													l								_				
Imple Date OC Elevation epth to Groundwater roundwater Elevation stal Well Depth erfluoroheptanoic acid (PFHpA) 100,000													Deploym	ent Area											
ample Date OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000		1			1														البيبية				السيبا		
OC Elevation epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (s)	HW-I (m)	HW-I (m)	HW-I (m)	HW-I (m)	HW-I (m)	HW-I (m)	HW-I (m)	HW-I (d)	HW-I (d)	HW-I (d)	HW-I (d)	HW-I (d)	HW-I (d)	HW-I (d)	HW-J	HW-J	HW-J
epth to Groundwater roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	11/7/2018	5/8/2020	3/17/2021	9/8/2021	3/18/2022	8/2/2022	10/31/2022	2/2/2023	6/24/2019	5/8/2020	3/17/2021	9/8/2021	3/18/2022	8/2/2022	10/31/2022	6/24/2019		3/17/2021	9/11/2021		8/2/2022	10/31/2022	11/7/2018	3/17/2021	9/10/2021
epth to Groundwater roundwater Elevation stal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	36.08	36.08	36.08	36.08	36.08	36.08	36.08	36.08	36.27	36.27	36.27	36.27	36.27	36.27	36.27	36.02	36.02	36.02	36.02	36.02	36.02	36.02	37.10	37.10	37.10
roundwater Elevation otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	18.35	15.39	18.42	19.94	17.72	19.81	20.44	17.55	16.33	15.61	18.66	20.17	18.07	20.03	20.70	16.20	15.49	18.52	20.04	17.95	19.90	20.55	19.18	19.34	20.60
otal Well Depth erfluoroheptanoic acid (PFHpA) 100,000	17.73	20.69	17.66	16.14	18.36	16.27	15.64	18.53	19.94	20.66	17.61	16.10	18.20	16.24	15.57	19.82	20.53	17.50	15.98	18.07	16.12	15.47	17.92	17.76	16.50
erfluoroheptanoic acid (PFHpA) 100,000	25.10	25.10	25.10	25.10	25.15	25.18	25.14	25.15	34.80	34.80	34.80	34.80	34.80	34.80	34.80	41.67	41.67	41.67	41.67	41.67	41.70	41.70	24.30	24.30	24.30
, , , , , , , , , , , , , , , , , , , ,		0.54	0.032	0.097	0.098	0.2	0.065	0.021	0.0032	0.0012	0.00086 J	0.0014 J	0.0024	0.0017 U	0.00067 J	0.0053	0.0046	0.0065	0.0083	0.0079	0.012	0.0093	0.025	0.044	0.02
	0.18	0.22	0.021	0.036	0.06	0.11	0.026	0.011	0.019	0.0091	0.0052	0.0078	0.0052	0.0032	0.0042	0.057	0.018	0.031	0.05	0.039	0.063	0.045	0.0056 U	0.088	0.01
erfluorononanoic acid (PFNA) 100,000		0.082	0.065	0.033	0.21	0.12	0.04	0.028	<0.002	0.00078	0.00048 U	0.00046 J	0.00061 J	0.0017 U	0.00061 U	<0.002	0.00063 U	0.00075 J	0.00084 J	0.00077 J	0.0018 U	0.0011 J	0.028	0.035 J	0.015
erfluorooctanoic acid (PFOA) 100,000		0.29	0.05	0.063	0.11	0.17	0.067	0.016	0.0061	0.0018	0.0014 J	0.0016 J	0.0016 J	0.0017 U	0.00076 J	0.0047	0.0028	0.0043	0.0053	0.0074	0.013 U	0.0096	0.026	0.061	0.0091
erfluorooctane sulfonate (PFOS) 5,000	0.066	0.04	0.028	0.02	0.52	0.43	0.036	0.024	0.014	0.014	0.013	0.016	0.011	0.005	0.0043	0.012	0.02	0.038	0.039	0.047	0.083	0.063	0.13	0.25	0.08
erfluorodecanoic Acid (PFDA) 100,000	0.012 U	0.00062 U	0.0038 U	0.00047 U	0.00043 U	0.0018 U	0.00065 U	0.0018 U	<0.002	0.00062 U	0.00038 U	0.00050 U	0.00043 U	0.0017 U	0.00065 U	< 0.002	0.00062 U	0.00038 U	0.00048 U	0.00043 U	0.0018 U	0.00065 U	0.0061 U	0.0076 U	0.00050 U
2 Fluorotelomer sulfonate (6:2 FTS) NA	11	13	1.7	2.1	1.3	4.6	0.0013 U	0.48	<0.002	0.00039 U	0.0011 U	0.00037 U	0.00032 U	0.0017 U	0.0013 U	<0.002	0.0016	0.0011 U	0.00054	0.00086		0.0013 U	0.68	0.44	0.13
, ,,		· · · · ·											S) and Sum o												
tal PFAS NA	13.346	15.5383	2.082	2.73304	2.66512	6.1201	0.5101	0.60220	0.0718	0.03308	0.02516	0.03254	0.02985	0.0082	0.00993	0.1367	0.08985	0.15585	0.16687	0.15181	0.23	0.1844	1.074	1 217	0.511
	13.340	13.3303	2.002	2.73304	2.00312	0.1201	0.5101	0.69229	0.0/10	0.03300	0.02310	0.03234	0.02303	0.0062	0.00333	0.1307	0.00303	0.13303	0.1000/	0.13101	0.23	0.1044	1.0/4	1.217	0.311
um of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and	0.866	1.172	0.196	0.249	0.998	5.63	0.234	0.58	0.0423	0.02688	0.02046	0.02726	0.02081	0.0082	0.00993	0.079	0.0454	0.08055	0.10344	0.10207	0.158	0.128	0.209	0.478	0.1341
FDA)					l l											l						$\overline{}$		\longrightarrow	
ample Location						Υ	armouth Road	Area									Solar Field A	Area				S	teamship Par	rking Lot Area	
amala ID	IDM T ()	1 10A(T ()	LIMA T ()	LDA/ T ()	DD (/-)	DD 4 (-)	DD 1 (-)	DD 4 (-)	DD 1 ()	DD 1 ()	DD 1 ()	DD (())	LIMA D ()	LIMA D. ()	104/5/0	104/5/2	LIMIT CAR I	LIMA D. Calab	LINAL CACA	LINAL COAC	LIMA COS	LINE 2	10412	LDAC 2	LINECO
ample ID	HW-T (s)	HW-T (s)	HW-T (m)	HW-T (m)	RB-1 (s)	RB-1 (s)	RB-1 (s)	RB-1 (s)	RB-1 (m)	RB-1 (m)	RB-1 (m)	RB-1 (m)	HW-D (m)	HW-D (m)	HW-D (d)	HW-D (d)	HW-D (dd)	HW-D (dd)	HW-G(S)	HW-G(M)	HW-G(D)	HW-2	HW-2	HW-2	HW-2
ample Date	10/1/2020		10/1/2020	5/18/2022	11/5/2020	3/18/2021	9/5/2021	3/31/2022	11/5/2020	3/18/2021	9/5/2021	3/31/2022	4/7/2017	5/13/2020	6/24/2019	5/13/2020		5/13/2020	12/3/2018			7/1/2016	5/5/2020		3/25/2022
OC Elevation UCL	28.97	28.97	29.11	29.11	NA	NA	NA	NA	NA	NA	NA	NA	45.20	45.20	45.08	45.08	45.05	45.05	44.99	45.11	44.93	40.41	40.41	40.41	40.41
epth to Groundwater	13.41	12.07	13.58	12.24	17.87	16.91	18.64	16.65	17.79	16.85	18.57	16.59	18.83	18.34	18.99	18.23	20.60	19.97	20.69	20.75	20.71	27.48	25.33	30.20	27.72
roundwater Elevation	15.56	16.90	15.53	16.87	NA	NA	NA	NA	NA	NA	NA	NA	26.37	26.86	26.09	26.85	24.45	25.08	24.30	24.36	24.22	12.93	15.08	10.21	12.69
otal Well Depth	18.54	18.60	28.96	28.96	27.80	27.80	27.80	27.81	49.85	49.85	48.85	48.82	30.32	30.32	44.94	44.94	65.05	65.05	28.45	38.25	48.28	32.80	32.80	32.80	32.35
erfluoroheptanoic acid (PFHpA) 100,000	0.0039	0.0073	0.022	0.02	0.0042	0.0054	0.0077	0.0051	0.011	0.013 J	0.0073	0.0073	0.0033 U	0.00053 U	0.021	0.017	<0.002	0.00053 U	0.0074 U	0.0074 U	0.0074 U	0.0071	0.035	0.046	0.011
erfluorohexanesulfonic acid (PFHxS) 5,000	0.17	0.029	0.019	0.046	0.0084	0.03	0.0051	0.022	0.01	0.017 J	0.0099	0.016	0.0089 J	0.00077 U	0.062	0.039	0.0092	0.008	0.0056 U	0.012 J	0.0056 U	0.0035	0.0066	0.0056 J	0.009
erfluorononanoic acid (PFNA) 100,000		0.0013		0.00031 U	0.0047	0.0025	0.0026	0.0029	0.0068	0.0072 J	0.0044	0.0062	0.0046 U	0.00063 U	0.015	0.019	0.0041	0.0029	0.0087 U	0.011 J	0.0087 U	<0.002	0.016	0.004 J	0.0052
erfluorooctanoic acid (PFOA) 100,000	_	0.01	0.011	0.0035	0.007	0.0087	0.0093	0.0092	0.013	0.013 J	0.012	0.01	0.0046 U	0.00071 U	0.0088	0.0076	<0.002	0.00071 U	0.0033 U	0.0033 U	0.0033 U	0.0063	0.039	0.012	0.01
erfluorooctane sulfonate (PFOS) 5,000	0.21	0.035	0.011	0.0059	0.007	0.0087	0.0033	0.0032	0.013	0.0133	0.012	0.054	0.022	0.00071	0.0088	0.12	0.013	0.00071 0	0.0060 U	0.036	0.0060 U	0.0003	0.053	0.012	0.024
erfluorodecanoic Acid (PFDA) 100.000		0.00047	0.023	0.0054	0.00062 U	0.0038 U	0.001 0.00045 U	0.0043 0.0019 U	0.00075	0.073 0.0038 U	0.033	0.0028	0.022 0.0040 U	0.00011 0.00062 U	<0.002	0.00062 U	<0.002	0.0062 U	0.0060 U	0.036 0.0061 U	0.0060 U	NA	0.00062 U	0.025 U	0.0018 U
, , , , , , , , , , , , , , , , , , , ,																									
3:2 Fluorotelomer sulfonate (6:2 FTS) NA	0.00039 U	0.00032 U	0.00039 U	0.00033 U	0.00039 U	0.0011 U	0.00034 U	0.0019 U	0.038	0.055	0.013	0.02	0.0032 U	0.00039 U	0.0022	0.00039 U	0.002 U	0.00039 U	0.0066 U	0.0066 U	0.0066 U	NA	0.15	0.071	0.052
								Sı	um of Labora	atory Report	ea PFAS (Tot	ai PFAS) and	Sum of Six												
otal PFAS NA	0.44114	0.1295	0.3254	0.33614	0.08008	0.1175	0.06755	0.0713	0.2015	0.2642	0.1561	0.1733	0.0309	0.0011	0.2768	0.24993	0.0263	0.02444	0.0087 U	0.059	0.0087 U	0.0289	0.42678	0.4136	0.1563
ium of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and NA	0.39134	0.08307	0.0816	0.07594	0.0623	0.0866	0.0347	0.0437	0.09055	0.1252	0.0010	0.0963	0.0309	0.0011	0.2018	0.2026	0.0263	0.0239	0.0087 U	0.050	0.0087 U	0.0289	0.1496	0.0036	0.0592
FDA)	0.39134	0.08307	0.0010	0.07594	0.0023	0.0800	0.0347	0.0437	0.05055	0.1252	0.0919	0.0903	0.0309	0.0011	0.2018	0.2026	0.0203	0.0239	J.UU8/ U	0.059	0.0087 0	0.0289	0.1490	0.0936	0.0392
ample Lecation												Mahar Mall A	***												
ample Location												Maher Well A	red											1	
																200				OW-18D				1	
ample ID	ME-1*	MW-1*	ME-1*	ME-1*	ME-2**	ME-2**	ME-2**	ME-2**	ME-3***	ME-3***	ME-3***	ME-3***	OW-18S	OW-18S	OW-18S	OW-18M	OW-18M	OW-18M	OW-18D	Duplicate	OW-18D	OW-18D	OW-18D	1	
iample Date	9/17/2020	7/29/2022	11/2/2022	2/2/2023	9/17/2020	7/29/2022	11/2/2022	2/2/2023	9/17/2020	7/29/2022	11/2/2022	2/2/2023	7/5/2016	12/7/2018	5/8/2020	7/5/2016	12/7/2018	5/8/2020	7/5/2016	7/5/2016	4/11/2017	12/7/2018	5/13/2020	1	
OC Elevation UCL	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39.03	39.03	39.03	39.30	39.30	39.30	38.84		38.84	38.84	38.84	1	
			NA NA					NA NA		NA NA		NA NA												1	
epth to Groundwater	3.60	NA NA		NA	6.50	NA	NA		6.00		NA		24.40	24.29	23.45	25.82		23.93	25.95	25.95	1		23.47	1	
roundwater Elevation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.63	14.74	15.58	13.48	14.58	15.37	12.89	12.89	13.29	14.56	15.37	1	
otal Well Depth	81.20	NA	NA	NA	54.20	NA	NA	NA	50.30	NA	NA	NA	31.23	31.23	31.23	74.44	74.44	74.44	123.36	123.36	123.36	123.36	123.36	ı	
erfluoroheptanoic acid (PFHpA) 100,000		0.025	0.017	0.015	0.0055	0.016	0.036	0.027	0.0036	0.0065	0.0082	0.0087	0.0071	0.0074 U	0.0039	0.0029		0.0074	0.0071	0.0063	0.015J	0.014 J	0.012	ı	
erfluorohexanesulfonic acid (PFHxS) 5,000		0.058	0.04	0.027	0.04	0.035	0.071	0.065	0.018	0.029	0.032	0.032	0.0068	0.0056 U	0.0085	0.016	0.073	0.07	0.01	0.011	0.13	0.13	0.03	ı	
erfluorononanoic acid (PFNA) 100,000	0.017	0.021	0.015	0.0098	0.003	0.0089	0.023	0.014	0.004	0.0054	0.007	0.0063	<0.002	0.0087 U	0.0032	0.0076	0.0087 U	0.0027	0.0065	0.0058	0.0046 U	0.0087 U	0.0028	ı	
erfluorooctanoic acid (PFOA) 100,000	0.016	0.029	0.021	0.015	0.0077	0.017	0.032	0.02	0.012	0.012	0.014	0.011	0.018	0.012 J	0.01	0.0058	0.0060 J	0.0096	0.0059	0.0059	0.025	0.019 J	0.0095	ı	
erfluorooctane sulfonate (PFOS) 5,000		0.12	0.087	0.069	0.095	0.051	0.093	0.077	0.072	0.07	0.086	0.072	0.0083	0.028	0.016	0.044	0.24	0.18	0.018	0.019	0.22	0.32	0.041	ı	
erfluorodecanoic Acid (PFDA) 100,000		0.0017 U	0.001	0.0018 U	0.00062 U	0.0017 U	0.0014 J	0.00086 J	0.00062 U	0.0017 U	0.00064	0.0018 U	NA	0.0061 U	0.00062 U	NA	0.0061 U	0.00062 U	NA	NA	0.0040 U		0.00062 U	ı	
2 Fluorotelomer sulfonate (6:2 FTS) NA	_							0.31	0.0001	0.0017 0	0.0005	0.0018 0	NA NA	0.0061 U		NA NA			NA NA	NA NA				ı	
2 Hadrotelomer sundhate (0.2 F13) NA	0.034	0.046	0.026	0.026	0.00039 U	0.043	0.25						INA	U 0000.U	0.00039 U	INA	0.0066 U	0.00039 U	INA	INA	U.UU32 U	0.0066 U	0.00039 0	ı	
								Sum of Labor								•								ı	
	0.2873	0.4769	0.3426	0.2712	0.2009	0.2702	0.73928	0.70216	0.14005	0.1796	0.221	0.2012	0.0402	0.0573	0.05953	0.0763	0.3891	0.4357	0.0475	NA	0.506	0.5504	0.1832	1	
Total PFAS NA	1		T		I T	Ţ.,	T										1 T	Ţ.,			1 7	ι Τ	, <u>, ,</u> 7	ı	
otal PFAS NA sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and NA	0.184	0.299	0.181	0.1618	0.1512	0.1709	0.2564	0.51386	0.1096	0.1283	0.1472	0.134	0.0402	0.04	0.0416	0.0763	0.319	0.2697	0.0475	0.048	0.39	0.483	0.0953	1	

- Notes:

 UCL = Upper Concentration Limit

 < = Not detected by the laboratory above the reporting limit. Reporting limit shown.

 J = Estimated concentration between the method detection limit and reporting limit.

 Results in ug/L, micrograms per liter.

 U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.

 Bold results above Method 1 GW-1 standard (0.02 ug/L).

 Sum of six includes estimated values and does not include non-detects (U or <).

 Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

 NA = Not Applicable.

 * = MF-1 is screened from 37 to 47 and 70 to 80 feet below grade.

 ** = ME-2 is screened from 41 to 54 feet below grade.

 ** = ME-2 is screened from 40 to 50 feet below grade.

 The Method 1 GW-3 Standard for the individual analytes in the Sum of Six ranges from 500 to 40,000 ug/l.

 1. Well elevation increased due to soil cap.

Table 2. Groundwater Results for PFAS Compounds ug/L

Sample Location						Airport Road/ly	annough Road A	rea								ARFF Buil	ding Area				
Sumple Education																					
Sample ID		HW-U(s)	HW-U(s)	HW-U(s)	HW-U(m)	HW-U(m)	HW-U(m)	HW-U(d)	HW-U(d)	HW-U(d)	HW-V(m)	HW-L (s)	HW-L (m)	HW-L (d)	HW-L (d)	HW-P (s)	HW-P (s)	HW-P (s)	HW-P (s)	HW-P (s)	HW-P (s)
Sample Date		4/19/2021	9/5/2021	3/15/2022	4/19/2021	9/5/2021	3/15/2022	10/2/2020	9/5/2021	3/15/2022	10/2/2020	10/7/2020	10/7/2020	6/19/2019	10/7/2020	10/1/2020	3/18/2021	9/8/2021	3/18/2022	11/2/2022	2/2/2023
TOC Elevation	UCL	NA	NA	NA	NA	NA	NA	48.80	48.80	48.80	53.83	39.07	38.98	39.15	39.15	40.51	40.51	40.51	40.51	40.51	40.51
Depth to Groundwater		23.59	24.53	22.89	23.50	24.49	22.80	24.66 24.14	25.24	23.52	22.90 30.93	21.96	21.88	19.40	22.22	22.69 17.82	22.09 18.42	23.54	21.61 18.90	23.96	21.42
Groundwater Elevation Total Well Depth		NA 28.83	NA 28.83	NA 29.15	NA 38.93	NA 38.93	NA 39.65	62.30	23.56 62.30	25.28 63.65	36.15	17.11 27.33	17.10 37.33	19.75 70.55	16.93 70.55	27.60	27.60	16.97 27.60	27.61	16.55 27.61	19.09 27.62
Perfluoroheptanoic acid (PFHpA)	100,000	0.002 J	0.004	0.0027	0.0018 J	0.0049	0.004	0.01	0.01	0.01	0.0033	0.00053 U	0.0064	0.0078	0.0065	0.026	0.0067	0.004	0.01	0.0044	0.012
Perfluorohexanesulfonic acid (PFHxS)	5,000	0.01	0.004	0.0027	0.0043	0.011	0.0098	0.018	0.022	0.017	0.0032	0.0013	0.023	0.033	0.015	0.0018	0.00074 J	0.00056 J	0.0012 J	0.00054 U	0.0022
Perfluorononanoic acid (PFNA)	100,000	0.0013 J	0.0017 J	0.0013 J	0.00083 J	0.0011 J	0.0021	0.0016	0.005	0.0025	0.0017	0.00063 U	0.0025	0.0033	0.0022	0.0061	0.002	0.0013 J	0.0039	0.0016 J	0.015
Perfluorooctanoic acid (PFOA)	100,000	0.0075	0.0047	0.0052	0.0055	0.0094	0.018	0.01	0.013	0.013	0.0063	0.00071 U	0.01	0.025	0.018	0.0084	0.0042	0.0017 J	0.012	0.0037	0.014
Perfluorooctane sulfonate (PFOS)	5,000	0.06	0.029	0.012	0.0093	0.027	0.029	0.023	0.051	0.043	0.0059	0.0014	0.07	0.049	0.039	0.00097	0.00049 J	0.00054 U	0.00098 J	0.00048 J	0.0037
Perfluorodecanoic Acid (PFDA)	100,000	0.00064 J	0.0011 J	0.0006 J	0.00038 U	0.001 U	0.00055 J	0.00062 U	0.0025 U	0.00047 J	0.00062 U	0.00062 U	0.00062 U	<0.002	0.0019	0.00085	0.0004 J	0.00048 U	0.00043 U	0.00066 U	0.0018 U
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	0.0011 U	0.00034 U	0.00032 U	0.0011 U	0.00075	0.00033 U	0.0012	0.04	0.00032 U	0.00039 U	0.00039 U	0.022	0.0021	0.00078	0.011	0.0034	0.0014	0.0083	0.0016 J	0.019
								Sum of Labora	tory Reported PF.	AS (Total PFAS) a	nd Sum of Six										
Total PFAS	NA	0.09704	0.06596	0.04424	0.03622	0.0839	0.10395	0.0889	0.1775	0.12378	0.0543	0.0027	0.18375	0.1823	0.12348	0.2478	0.06294	0.05055	0.08508	0.03898	0.1232
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and	NA NA	0.08144	0.0439	0.0257	0.02173	0.0534	0.06345	0.0588	0.0987	0.08167	0.0204	0.0027	0.1119	0.1181	0.0826	0.04412	0.01453	0.00756	0.02808	0.01018	0.0659
PFDA)	1475	0.00144	0.0433	0.0237	0.02173	0.0334	0.00343	0.0500	0.0307	0.00107	0.0204	0.0027	0.1113	0.1101	0.0020	0.04412	0.01433	0.00730	0.02000	0.01010	0.0033
Sample Location											Deploymer	nt Area									
Sample ID		HW-E	HW-E	HW-E	HW-E	HW-E ¹	HW-E ¹	HW-E ¹	HW-F	HW-F	HW-F	HW-F	HW-F	HW-F	HW-H	HW-H	HW-H	HW-R(s)	HW-R(s)	HW-R(s)	HW-R(s)
Sample Date		4/5/2017	11/7/2018	8/19/2019	5/5/2020	3/17/2021	9/8/2021	3/16/2022	4/5/2017	11/7/2018	5/5/2020	3/17/2021	9/8/2021	3/16/2022	11/7/2018	5/8/2020	5/18/2022	10/1/2020	3/17/2021	9/8/2021	3/16/202
TOC Elevation	UCL	38.45	38.45	38.45	38.45	42.40	42.40	42.40	36.32	36.32	36.32	36.32	36.32	36.32	38.47	38.47	38.47	35.72	35.72	35.72	35.72
Depth to Groundwater	JCL	19.05	19.38	17.82	16.16	23.35	25.02	22.67	19.60	20.08	16.82	20.01	21.72	19.34	20.39	17.37	20.07	18.33	17.37	19.00	16.69
Groundwater Elevation		19.40	19.07	20.63	22.29	19.05	17.38	19.73	16.72	16.24	19.50	16.31	14.60	16.98	18.08	21.10	18.40	17.39	18.35	16.72	19.03
Total Well Depth		26.22	26.22	26.22	26.22	30.26	30.26	30.26	26.89	26.89	26.89	26.89	26.89	26.83	27.09	27.09	27.07	23.56	23.67	23.67	23.66
Perfluoroheptanoic acid (PFHpA)	100,000	0.15	0.0074 U	0.0053	0.044	0.014	0.0018 J	0.023	0.34	0.0074 U	0.23	0.39	0.0051	0.36	0.077	0.28	0.015	0.021	0.005	0.021	0.03
Perfluorohexanesulfonic acid (PFHxS)	5,000	0.042	0.0056 U	0.0021	0.011	0.0015 J	0.00088 J	0.0028	0.019J	0.0056 U	0.005	0.012 U	0.00037 U	0.0097	0.0056 U	0.0031	0.0021	0.02	0.01	0.0046	0.0019
Perfluorononanoic acid (PFNA)	100,000	0.0087 J	0.0087 U	<0.002	0.0052	0.00048 U	0.00037 U	0.0023	0.0046 U	0.0087 U	0.00081	0.0097 U	0.00037 U	0.0025	0.0087 U	0.00063 U	0.0003 U	0.0031	0.001 J	0.00034 U	0.00031 U
Perfluorooctanoic acid (PFOA)	100,000	0.053	0.0033 U	0.0047	0.027	0.00095 J	0.00094 J	0.029 J	0.075	0.0033 U	0.02	0.052	0.00074 U	0.052	0.0050 J	0.002	0.0006 U	0.014	0.004	0.004	0.0014 J
Perfluorooctane sulfonate (PFOS) Perfluorodecanoic Acid (PFDA)	5,000	0.047 0.0040 U	0.0060 U 0.0061 U	<0.002 <0.002	0.0037 0.00062 U	0.00082 J 0.00038 U	0.00064 U 0.00052 U	0.0013 J 0.00043 U	0.0026 U 0.0040 U	0.0060 U 0.0061 U	0.00086 0.00062 U	0.0076 U 0.0076 U	0.00065 U 0.00053 U	0.0037 0.00043 U	0.0060 U 0.0061 U	0.00068 U 0.00062 U	0.00053 U 0.00043 U	0.016 0.00062 U	0.0023 0.00038 U	0.0053 0.00049 U	0.001 J 0.00044 U
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	0.0040 0	0.0061 U	0.069	0.86	0.0035	0.00032 U	0.83	5.7	0.0061 U	1.5	4.8	0.00033 0	8.2	1.5	0.00002 0	0.00043 U	0.00002 0	0.00038 0	0.00043 0	0.0053
o.2 Tradiotecionici sanonate (6.2 115)	14/5		0.0000 0	0.003	0.80	0.0033	0.00033 0		tory Reported PF.		1.5	4.0	0.0043	8.2	1.3	0.13	0.00032 0	0.037	0.0048	0.003	0.0033
Total PFAS	NA	3.2257	0.0074 U	0.14	1.04526	0.04812	0.01342	0.9169	12.96	0.084	2.65637	8.422	0.159	12.18373	4.452	1.26666	0.165	0.2171	0.04878	0.2549	0.30126
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and	1	5.2257			1.04520																
PFDA)	NA	0.3007	0.0074 U	0.0121	0.0909	0.01727	0.00362	0.0584	0.434	0.0087 U	0.25667	0.442	0.0051	0.4279	0.082	0.2851	0.0171	0.0741	0.0751	0.0213	0.0343
Sample Location										Steamship Pa	king Lot Area										
· ·	1	104/ 2	104/2	104/2	104/2	104/2	104/2	104/2	104/2		- 104/ 200	104/200	104/200	104/ 204	104/ 202	104/ 202	104/202	104/202	104/ 202		
Sample ID Sample Date		HW-3	HW-3	HW-3 10/26/2018	HW-3	HW-3	HW-3 9/1/2021	HW-3 3/25/2022	HW-3 10/31/2022	HW-300 7/1/2016	HW-300	HW-300 9/2/2021	HW-300 3/31/2022	HW-301 7/1/2016	HW-302	HW-302 12/3/2018	HW-302	HW-302	HW-302		
Salliple Date																					
		7/1/2016	4/5/2017		5/5/2020	3/17/2021					3/17/2021				7/1/2016		3/17/2021	9/1/2021	3/25/2022		
TOC Elevation	UCL	38.74	38.74	38.74	38.74	38.74	38.74	38.74	38.74	36.09	36.09	36.09	36.09	39.46	41.17	41.17	41.17	41.17	41.17		
TOC Elevation Depth to Groundwater	UCL	38.74 25.81		38.74 26.06	38.74 23.64	38.74 26.19		38.74 26.03	38.74 27.63	36.09 22.52	36.09 22.86	36.09 23.02		39.46 25.05	41.17 23.52	41.17 22.65	41.17 24.04	41.17 26.15			
TOC Elevation	UCL	38.74	38.74 25.70	38.74	38.74	38.74	38.74 28.35	38.74	38.74	36.09	36.09	36.09	36.09 22.53	39.46	41.17	41.17	41.17	41.17	41.17 23.70		
TOC Elevation Depth to Groundwater Groundwater Elevation	UCL 100,000	38.74 25.81 12.93	38.74 25.70 13.04	38.74 26.06 12.68	38.74 23.64 15.10	38.74 26.19 12.55	38.74 28.35 10.39	38.74 26.03 12.71	38.74 27.63 11.11	36.09 22.52 13.57	36.09 22.86 13.23	36.09 23.02 13.07	36.09 22.53 13.56	39.46 25.05 14.41	41.17 23.52 17.65	41.17 22.65 18.52	41.17 24.04 17.13	41.17 26.15 15.02	41.17 23.70 17.47		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth		38.74 25.81 12.93 33.08	38.74 25.70 13.04 33.08	38.74 26.06 12.68 33.08	38.74 23.64 15.10 33.08	38.74 26.19 12.55 33.12	38.74 28.35 10.39 33.11	38.74 26.03 12.71 33.70	38.74 27.63 11.11 33.00	36.09 22.52 13.57 30.33	36.09 22.86 13.23 30.30	36.09 23.02 13.07 30.34	36.09 22.53 13.56 30.40	39.46 25.05 14.41 30.42	41.17 23.52 17.65 30.45	41.17 22.65 18.52 30.45	41.17 24.04 17.13 30.44	41.17 26.15 15.02 30.40	41.17 23.70 17.47 30.42		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA)	100,000	38.74 25.81 12.93 33.08 0.016	38.74 25.70 13.04 33.08 0.1	38.74 26.06 12.68 33.08 0.10	38.74 23.64 15.10 33.08 0.1	38.74 26.19 12.55 33.12 0.084	38.74 28.35 10.39 33.11 0.035	38.74 26.03 12.71 33.70 0.02	38.74 27.63 11.11 33.00 0.054	36.09 22.52 13.57 30.33 0.0096	36.09 22.86 13.23 30.30 0.0028	36.09 23.02 13.07 30.34 0.0029	36.09 22.53 13.56 30.40 0.0019 U	39.46 25.05 14.41 30.42 0.002	41.17 23.52 17.65 30.45 0.019	41.17 22.65 18.52 30.45 0.015 J	41.17 24.04 17.13 30.44 0.0066	41.17 26.15 15.02 30.40 0.0062	41.17 23.70 17.47 30.42 0.0092		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFNA)	100,000 5,000 100,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluorohexanesulfonic acid (PFHpA) Perfluoronexanesulfonic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluoroctanoic acid (PFOA) Perfluoroctane	100,000 5,000 100,000 100,000 5,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA)	100,000 5,000 100,000 100,000 5,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056 0.0038 U	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015 0.001 J	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluorohexanesulfonic acid (PFHpA) Perfluoronexanesulfonic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluoroctanoic acid (PFOA) Perfluoroctane	100,000 5,000 100,000 100,000 5,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctane sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS)	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056 0.0038 U 0.47	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 varatory Reported	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS)	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.00086 J	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.0015 0.0011 0.0062	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS	100,000 5,000 100,000 100,000 5,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056 0.0038 U	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015 0.001 J	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.064 0.056 0.0038 U 0.47	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 varatory Reported	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS)	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.00086 J	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.0015 0.0011 0.0062	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoronexanesulfonic acid (PFHxS) Perfluorononanoic acid (PFNA) Perfluoroctanoic acid (PFNA) Perfluoroctanoic acid (PFOA) Perfluoroctanoic acid (PFOA) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.0052 U 0.2 Sum of Labo 0.6867	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359	38.74 27.63 11.11 33.00 0.054 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.00034 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.00086 J 0.012	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.0015 0.0001 J 0.0062	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroneptanoic acid (PFNxS) Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) 6:2 Fluorotelomer sulfonate (PFOS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.0052 U 0.2 Sum of Labo 0.6867	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359	38.74 27.63 11.11 33.00 0.054 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.00034 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.00086 J 0.012	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.0015 0.0001 J 0.0062	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072	HW-W(d)	HW-W(d
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctane sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47 1.1394 0.2294	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359 0.0678	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.03178 0.1377	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA ONA Sum of Six 0.0438 0.0438 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 0.00099 0.00038 U 0.0011 U 0.05509 0.03309 Maher We	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.00034 U 0.03812 0.02832	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.0086 J 0.012 0.08304 0.02536	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.005 0.0015 0.0011 0.0062 0.0377	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 0.0687		
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluoronoanoic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorofecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample ID Sample Date	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359 0.0678	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.054 0.73178 0.1377	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA ONA Sum of Six 0.0438 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 0.00044 0.015 0.00038 U 0.0011 U 0.05509 0.03309	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.00034 U 0.03812 0.02832	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA 0.0547	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.0086 J 0.012 0.08304	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.005 0.0015 0.001J 0.0062 0.09793	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 0.0687	HW-W(d) 9/5/2021 NA	1.1
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctane sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.064 0.056 0.0038 U 0.47 1.1394 0.2294	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359 0.0678	38.74 27.63 11.11 33.00 0.054 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 OW-19D	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U 0.05509 0.03309 Maher We OW-19D 5/13/2020	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.00034 U 0.03812 0.02832 II Area 0W-19D 3/19/2021	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.033 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 OW-19D 3/18/2022	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.0086 J 0.012 0.08304 0.02536	41.17 26.15 15.02 30.40 0.0062 0.005 0.005 0.0015 0.001J 0.0062 0.0377	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 0.0687	9/5/2021	3/16/202
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFNx) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorobecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample ID Sample Date TOC Elevation	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.13 0.96981 0.2851	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.038 U 0.47 1.1394 0.2294	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.094 0.0052 U 0.2 Sum of Labo 0.6867 0.1147	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 0.14 ratory Reported 0.4359 0.0678	38.74 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.0028 0.00069 U 0.0014 U PPAS (Total PFAS) 0.73178 0.1377	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0W-19D 4/11/2017 39.06	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.0017 0.0006 J 0.0034 U 0.03812 0.02832 II Area OW-19D 3/19/2021 39.06	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0019 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.0038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 OW-19D 3/18/2022 39.06	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.097 J 0.03 0.031 0.061 U 0.13 0.3427 0.1017	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.008304 0.02536	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015 0.001J 0.0062 0.09793 0.0377	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 HW-W(d) 4/19/2021 NA	9/5/2021 NA	3/16/202 NA
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHxS) Perfluoronanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorocanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample ID Sample Date TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth	100,000 5,000 100,000 100,000 5,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 OW-19(S) 11/6/2020 NA 27.38 NA 34.56	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.066 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.02 Sum of Labe 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.004 0.0019 0.14 vratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25	38.74 27.63 11.11 33.00 0.054 0.097 0.022 0.008 0.0069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.W-19D 4/11/2017 39.06 26.73 12.33 110.42	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.0034 U 0.03812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0019	39.46 25.05 14.41 30.42 0.002 0.0038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 0.0547 OW-19D 3/18/2022 39.06 27.95 11.11 112.70	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 HW-W(m) 9/5/2021 NA 30.17 NA 58.02	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.008304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0065 0.015 0.001J 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 HW-W(d) 4/19/2021 NA 28.73 NA 61.78	9/5/2021 NA 29.93 NA 61.78	3/16/202 NA 28.92 NA 63.02
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroneptanoic acid (PFHpA) Perfluoroneanci acid (PFNA) Perfluorocanoic Acid (PFNA) Perfluoroteanci Acid (PFNA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample ID Sample Date TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA)	100,000 100,000 100,000 100,000 5,000 100,000 NA NA UCL	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 0.116/2020 NA 27.38 NA 34.56 0.0042	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 0.0044	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0056	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(5) 3/16/2022 NA 27.42 NA 35.20 0.0062	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.03	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 pratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014	38.74 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038	36.09 22.52 13.57 30.33 0.0096 0.012 <0.002 0.0052 0.017 NA NA O.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 0.00044 0.015 0.00038 U 0.00011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.0034 U 0.03812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 OW-19D 3/18/2022 39.06 27.95 11.11 112.70 0.018	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.01	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017 HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.008304 0.012 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0015 0.0011 0.0062 0.09793 0.0377 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.013	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 0.0687 HW-W(d) 4/19/2021 NA 28.73 NA 61.78 0.0021	9/5/2021 NA 29.93 NA 61.78	3/16/202 NA 28.92 NA 63.02 0.01
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNAS) Perfluoronanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample ID Sample Date TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHpA)	100,000 5,000 100,000 100,000 100,000 NA NA UCL 100,000 5,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 OW-19(S) 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0031	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 26.27 NA 34.65 34.65 34.6044 0.0064	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 34.67 34.67 0.0027	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(5) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.064 0.056 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 76.28 0.027	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labd 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.014 J	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 28.65 NA 76.25	38.74 27.63 11.11 33.00 0.054 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.0038 0.0038 0.0013	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.W-19D 4/11/2017 39.06 26.73 12.33 110.42 0.0051 J 0.029	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 10.011 0.12	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area 0W-19D 3/19/2021 39.06 27.52 11.54 110.33 0.028	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.001	39.46 25.05 14.41 30.42 0.002 0.033 <0.002 0.037 0.011 NA NA 0.0547 0.0547 0.0547 0.112 0.11	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.012	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034 0.015	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.0086 J 0.012 0.08304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.0041 0.014	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 10.013 0.025	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0088	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064	3/16/202 NA 28.92 NA 63.02 0.01 0.022
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroneptanoic acid (PFNA) Perfluoroneanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample ID Sample Date TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNS)	100,000 5,000 100,000 100,000 100,000 NA NA UCL	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 OW-19(S) 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0031 0.0024	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.015 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 0.0044 0.0012 J	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0056 0.0027 0.0025	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044 0.0012 J	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.066 0.038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.03 0.027	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.004 J 0.0048 U	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 0.14 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021	38.74 27.63 11.11 33.00 0.054 0.0937 0.022 0.0028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038 0.0013 0.0022	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.W-19D 4/11/2017 39.06 26.73 11.33 110.42 0.0051 0.029 0.006 J	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011 0.12	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.0034 U 0.03812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.019	39.46 25.05 14.41 30.42 0.002 0.0038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 0W-19D 3/18/2022 39.06 27.95 11.11 112.70 0.018 0.029 0.00042 J	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.01 0.012 0.00077 J	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017 HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034 0.0015 0.001 J	41.17 24.04 17.13 30.44 0.0066 0.005 0.0041 0.008804 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.0041	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.013 0.025 0.002	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 HW-W(d) 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0028 0.0013 J	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroneptanoic acid (PFHpA) Perfluoroneanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Simple Sim	100,000 5,000 100,000 100,000 5,000 NA NA UCL 100,000 5,000 100,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 0.116/2020 NA 27.38 NA 34.56 0.0042 0.0031 0.0024 0.011	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 0.0044 0.0064 0.0012 J 0.007	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0056 0.0027 0.0025 0.0066	38.74 23.64 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0044 0.0012 0.0085	38.74 26.19 12.55 33.12 0.084 0.0064 J 0.019 J 0.056 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.03 0.027 0.002 0.011	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.014 J 0.0048 U 0.0094 J	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 varatory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021 0.0037	38.74 27.63 27.63 11.11 33.00 0.054 0.024 0.0097 0.022 0.028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038 0.013 0.0022 0.0045	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.017 NA NA NA O.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438	36.09 22.86 13.23 30.30 0.0028 0.00099 0.00099 0.00044 0.015 0.00038 U 0.0011 U 0.05509 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011 0.12 0.0017 0.023	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.0034 U 0.03812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029 0.0097	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.001	39.46 25.05 14.41 30.42 0.002 0.038 <0.002 0.0037 0.011 NA NA 0.0547 0.0547 0.0547 0.011 3/18/2022 39.06 27.95 11.11 11.270 0.018 0.029 0.00042 J 0.0078	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.01 0.012 0.00077 J 0.0041	41.17 22.65 18.52 30.45 0.015 J 0.016 J 0.0097 J 0.03 0.031 0.0061 U 0.13 0.3427 0.1017 HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034 0.001 J 0.0024	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.008304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.0041 0.0041 0.0045 0.0041 0.0032	41.17 26.15 15.02 30.40 0.0062 0.004 0.005 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.013 0.025 0.002 0.0071	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 0.2149 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0088 0.0013 J 0.0029	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluoronanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (FOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (FOS) Perfluorodecanoic Acid (PFDA) Sample Dasample Dasa	100,000 5,000 100,000 100,000 100,000 NA NA 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 0.1197 0.0110 0.021 0.0024 0.0031 0.0024 0.0011 0.025	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 34.0064 0.0064 0.0012 J 0.007 0.015	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0025 0.0027 0.0025 0.0026 0.0031	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044 0.0012 0.0085 0.0071	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.064 0.056 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 6.03 0.027 0.002 0.001 0.0047	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labd 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.014 J 0.0044 J 0.0044 J 0.0044 J 0.0094 J 0.0094 J 0.027	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 oratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021 0.0037 0.0029	38.74 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.00 NA 78.00 NA 78.00 NA 0.013 0.0022 0.0028 0.00038 0.013 0.0022 0.0025 0.0012	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 10.011 0.12 0.0017 0.023 0.31	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 10.018 0.026 0.0029 0.0037 0.047	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.001	39.46 25.05 14.41 30.42 0.002 0.0037 0.011 NA NA 0.0547 0.0547 0.0547 0.0547 0.011 1.11 112.70 0.029 0.00042 J 0.0078 0.0078	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.012 0.0017 0.0017 0.0041	HW-W(m) 9/5/2021 NA 58.02 0.015 0.031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.0086 J 0.012 0.08304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.00055 J 0.014 0.00055 J 0.014 0.00055 J 0.0032 0.068	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0015 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.0013 0.025 0.002 0.002 0.0013 0.013	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 4/19/2021 NA 28.73 NA 61.78 0.0023 0.0038 0.0013 J 0.0029 0.012	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroneptanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFOA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorocanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample Date TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHpA) Perfluoronanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocatonic acid (PFOA) Perfluorocatonic acid (PFOA) Perfluorocatonic acid (PFOA) Perfluorocatonic acid (PFOA)	100,000 5,000 100,000 100,000 100,000 NA NA UCL 100,000 5,000 100,000 100,000 100,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 OW-19(S) 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0011 0.0024 0.0011 0.0025 0.0027	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 0.0044 0.0012 J 0.007 0.015 0.001 J	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.0051 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0056 0.0027 0.0025 0.0025 0.0025 0.0031 0.00048 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0062 0.0012 J 0.0085 0.0071 0.00046 U	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.066 0.038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.03 0.027 0.002 0.011 0.047	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.02 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.0048 U 0.0048 U 0.0094 J 0.0027 0.0038 U	38.74 26.03 12.71 33.70 0.02 0.039 0.0069 0.013 0.0019 0.14 0.019 0.14 0.039 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021 0.0021 0.0029 0.00046 U	38.74 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.0069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038 0.0013 0.0022 0.00045 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.W-190 4/11/2017 39.06 26.73 12.33 110.42 0.0051 0.029 0.006 J 0.029 0.0040 U	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011 0.12 0.0017 0.023 0.31 0.00062 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029 0.0039 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.00319 U 0.0019 U 0.00	39.46 25.05 14.41 30.42 0.002 0.0037 0.011 NA NA 0.0547 0.0547 0W-19D 3/18/2022 39.06 27.95 11.11 112.70 0.018 0.0078 0.0078 0.0041 0.00046 U	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.01 0.0012 0.00077 J 0.0041 0.075 0.00038 U	HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034 0.0034 0.0031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.008304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.00055 J 0.0032 0.0032 0.0032 0.0068 0.00044 U	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.013 0.025 0.002 0.0071 0.13 0.00063 U	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 HW-W(d) 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0029 0.0013 J 0.0029 0.0012 0.00038 U	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017 0.00046 U	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097 0.034
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluoronanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample Dote TOC Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheyanesulfonic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluoronotanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorocatanoic acid (PFOA) Perfluorocatane sulfonate (PFOS)	100,000 5,000 100,000 100,000 100,000 NA NA 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 0.1197 0.0110 0.021 0.0024 0.0031 0.0024 0.0011 0.025	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 34.0064 0.0064 0.0012 J 0.007 0.015	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0025 0.0027 0.0025 0.0026 0.0031	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044 0.0012 0.0085 0.0071	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.064 0.056 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 6.03 0.027 0.002 0.001 0.0047	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labd 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.014 J 0.0044 J 0.0044 J 0.0044 J 0.0094 J 0.0094 J 0.027	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 ratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0027 0.0037 0.029	38.74 27.63 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.0028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038 0.013 0.0022 0.0045 0.012 0.00043 U 0.00032 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.0438 0.0452 0.017 39.06 26.73 12.33 110.42 0.0051 0.029 0.0046 U 0.029 0.0040 U 0.0032 U	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 0.00099 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011 0.12 0.0017 0.023 0.31 0.00062 U 0.00039 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 10.018 0.026 0.0029 0.0037 0.047	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.001	39.46 25.05 14.41 30.42 0.002 0.0037 0.011 NA NA 0.0547 0.0547 0.0547 0.0547 0.011 1.11 112.70 0.029 0.00042 J 0.0078 0.0078	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.012 0.0017 0.0017 0.0041	HW-W(m) 9/5/2021 NA 58.02 0.015 0.031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.005 0.005 0.0041 0.0086 J 0.012 0.08304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.00055 J 0.014 0.00055 J 0.014 0.00055 J 0.0032 0.068	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0015 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.0013 0.025 0.002 0.002 0.0013 0.013	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 4/19/2021 NA 28.73 NA 61.78 0.0023 0.0038 0.0013 J 0.0029 0.012	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097 0.034
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluoronancia caid (PFNA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorocanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample Date TOC Elevation Total Well Depth Perfluoroheptanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluoronotanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA)	100,000 5,000 100,000 100,000 NA NA 100,000 100,000 NA NA 100,000 100,000 100,000 100,000 NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0031 0.0024 0.0011 0.0025 0.0027 0.00039 U	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 34.65 0.0044 0.0012 J 0.007 0.015 0.001 J 0.0011 U	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 34.67 0.0056 0.0027 0.0025 0.0026 0.0031 0.00048 U 0.00036 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044 0.0012 0.00085 0.0071 0.00046 U 0.00044 U	38.74 26.19 26.19 3.12 0.084 0.0064 J 0.019 J 0.065 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.027 0.002 0.011 0.047 0.00062 U 0.00095	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labe 0.68867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.0048 U 0.0048 U 0.0094 J 0.0027 0.0038 U 0.011 U	38.74 26.03 12.71 33.70 0.02 0.039 0.0069 0.024 0.0019 U 0.14 0.14 0.037 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021 0.0037 0.0029 0.00040 U 0.00035 U Sum of Labora	38.74 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.73178 0.1377 OW-19(M) 3/18/2022 NA 78.03 0.03 0.013 0.0024 0.0024 0.0032 0.0045 0.0012 0.00043 U 0.00043 U 0.00032 U tory Reported PF.	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.0438 0.0438 0.0051 10.42 0.0051 0.006 J 0.006 J 0.0040 U 0.0029 0.0040 U 0.0032 U AS (Total PFAS) al	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U 0.05509 0.3309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.017 0.12 0.0017 0.023 0.331 0.00062 U 0.00039 U d Sum of Six	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029 0.0037 0.0038 U 0.0011 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0031 0.0019 U 0.00019 U 0.0008 U	39.46 25.05 14.41 30.42 0.002 0.033 <0.002 0.037 0.011 NA NA 0.0547 0.0547 0.0547 0.011 112.70 0.018 0.029 0.0042 0.0094 0.00044 0.00046 U 0.00034 U	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 52.04 0.012 0.0077 0.0075 0.00038 U 0.0011 U	HW-W(m) 9/5/2021 NA 58.02 0.0015 0.0031 0.0061 U 0.13 HW-W(m) 9/5/2021 NA 58.02 0.0015 0.0015 0.0015 0.0024 0.0029	41.17 24.04 17.18 10.066 0.002 0.0066 0.005 0.001 0.0086 J 0.012 0.08304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.0055 J 0.0041 0.0068 0.00044 U 0.0034	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0065 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 52.09 0.013 0.025 0.0013 0.005 0.005 0.0013 0.00063 0.0072	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0038 0.0013 U 0.0011 U 0.00038 U	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017 0.00046 U	3/16/202 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097 0.034 0.00043 U
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluoronancic acid (PFNA) Perfluoroctanoic acid (PFNA) Perfluoroctanoic acid (PFNA) Perfluoroctanoic acid (PFDA) G:2 Fluorotelomer sulfonate (PFOS) Perfluorodecanoic Acid (PFDA) G:2 Fluorotelomer sulfonate (G:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample ID Sample Date TOC Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheyanesulfonic acid (PFHpA) Perfluoroheyanesulfonic acid (PFNA) Perfluorooctanoic acid (PFNA) Perfluorooctanoic acid (PFOA) Perfluorodecanoic Acid (PFOA) Perfluorodecanoic Acid (PFDA)	100,000 5,000 100,000 100,000 NA NA UCL 100,000 5,000 100,000 NA NA NA NA NA NA NA NA NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 OW-19(S) 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0011 0.0024 0.0011 0.0025 0.0027	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 26.27 NA 34.65 0.0044 0.0012 J 0.007 0.015 0.001 J	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.0051 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 28.47 NA 34.67 0.0056 0.0027 0.0025 0.0025 0.0025 0.0031 0.00048 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0062 0.0012 J 0.0085 0.0071 0.00046 U	38.74 26.19 12.55 33.12 0.084 0.0064 0.019 J 0.066 0.038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.03 0.027 0.002 0.011 0.047	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.02 Sum of Labo 0.6867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.044 0.0048 U 0.0048 U 0.0094 J 0.0027 0.0038 U	38.74 26.03 12.71 33.70 0.02 0.013 0.0039 0.0069 0.024 0.0019 U 0.14 ratory Reported 0.4359 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0027 0.0037 0.029	38.74 27.63 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.0028 0.00069 U 0.0014 U PFAS (Total PFAS) 0.73178 0.1377 OW-19(M) 3/18/2022 NA 27.59 NA 78.05 0.0038 0.013 0.0022 0.0045 0.012 0.00043 U 0.00032 U	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.0438 0.0452 0.017 39.06 26.73 12.33 110.42 0.0051 0.029 0.0046 U 0.029 0.0040 U 0.0032 U	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 0.00099 0.00038 U 0.0011 U 0.05509 0.03309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.011 0.12 0.0017 0.023 0.31 0.00062 U 0.00039 U	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029 0.0039 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0033 0.012 0.0019 U 0.0019 U 0.00319 U 0.0019 U 0.00	39.46 25.05 14.41 30.42 0.002 0.0037 0.011 NA NA 0.0547 0.0547 0W-19D 3/18/2022 39.06 27.95 11.11 112.70 0.018 0.0078 0.0078 0.0041 0.00046 U	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 28.96 NA 52.04 0.01 0.0012 0.00077 J 0.0041 0.075 0.00038 U	HW-W(m) 9/5/2021 NA 30.17 NA 58.02 0.0034 0.0034 0.0031 0.0061 U 0.13	41.17 24.04 17.13 30.44 0.0066 0.0022 0.0066 0.005 0.0041 0.008304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 29.12 NA 0.0041 0.0041 0.0040 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0032 0.068 0.0044 U 0.0034	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 29.59 NA 52.09 0.013 0.025 0.002 0.0071 0.13 0.00063 U	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 HW-W(d) 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0029 0.0013 J 0.0029 0.0012 0.00038 U	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017 0.00046 U	3/16/2022 NA 28.92 NA 63.02 0.01 0.022 0.0023 0.0097 0.034 0.00043 U
TOC Elevation Depth to Groundwater Groundwater Elevation Total Well Depth Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFNA) Perfluoronancia caid (PFNA) Perfluorocanoic acid (PFDA) 6:2 Fluorotelomer sulfonate (PFOS) Perfluorocanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS) Total PFAS Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA) Sample Location Sample Location Sample Date TOC Elevation Total Well Depth Perfluoroheptanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluoronotanoic acid (PFNA) Perfluorocanoic acid (PFNA) Perfluorocanoic acid (PFOA)	100,000 5,000 100,000 100,000 NA NA UCL 100,000 5,000 100,000 NA NA NA NA NA NA NA NA NA	38.74 25.81 12.93 33.08 0.016 0.0043 0.0063 0.0091 0.084 NA NA 0.1197 0.1197 0.1197 11/6/2020 NA 27.38 NA 34.56 0.0042 0.0031 0.0024 0.0011 0.0025 0.0027 0.00039 U	38.74 25.70 13.04 33.08 0.1 0.020 J 0.027 0.065 0.15 0.0040 U 0.47 1.603 0.362 OW-19(S) 3/18/2021 NA 34.65 0.0044 0.0012 J 0.007 0.015 0.001 J 0.0011 U	38.74 26.06 12.68 33.08 0.10 0.012 J 0.023 0.057 0.053 0.0061 U 0.12 0.952 0.245 OW-19(S) 9/2/2021 NA 34.67 0.0056 0.0027 0.0025 0.0026 0.0031 0.00048 U 0.00036 U	38.74 23.64 15.10 33.08 0.1 0.0087 0.021 0.054 0.1 0.0014 0.13 0.96981 0.2851 OW-19(S) 3/16/2022 NA 27.42 NA 35.20 0.0062 0.0044 0.0012 0.00085 0.0071 0.00046 U 0.00044 U	38.74 26.19 26.19 3.12 0.084 0.0064 J 0.019 J 0.065 0.0038 U 0.47 1.1394 0.2294 OW-19(M) 11/6/2020 NA 27.57 NA 76.28 0.027 0.002 0.011 0.047 0.00062 U 0.00095	38.74 28.35 10.39 33.11 0.035 0.0057 J 0.014 J 0.016 J 0.044 0.0052 U 0.2 Sum of Labe 0.68867 0.1147 OW-19(M) 3/19/2021 NA 27.15 NA 76.24 0.0048 U 0.0048 U 0.0094 J 0.0027 0.0038 U 0.011 U	38.74 26.03 12.71 33.70 0.02 0.039 0.0069 0.024 0.0019 U 0.14 0.14 0.037 0.0678 OW-19(M) 9/3/2021 NA 28.65 NA 76.25 0.014 0.015 0.0021 0.0037 0.0029 0.00040 U 0.00035 U Sum of Labora	38.74 27.63 11.11 33.00 0.054 0.0024 0.0097 0.022 0.028 0.00069 U 0.0014 U 0.73178 0.1377 OW-19(M) 3/18/2022 NA 78.03 0.03 0.013 0.0024 0.0024 0.0032 0.0045 0.0012 0.00043 U 0.00043 U 0.00032 U tory Reported PF.	36.09 22.52 13.57 30.33 0.0096 0.012 <0.0052 0.0052 0.017 NA NA and Sum of Six 0.0438 0.0438 0.0438 0.0438 0.0051 10.42 0.0051 0.006 J 0.006 J 0.0040 U 0.0029 0.0040 U 0.0032 U AS (Total PFAS) al	36.09 22.86 13.23 30.30 0.0028 0.0099 0.00099 J 0.0044 0.015 0.0038 U 0.0011 U 0.05509 0.3309 Maher We 0W-19D 5/13/2020 39.06 25.64 13.42 110.42 0.017 0.12 0.0017 0.023 0.331 0.00062 U 0.00039 U d Sum of Six	36.09 23.02 13.07 30.34 0.0029 0.00066 J 0.0028 0.0044 0.017 0.0006 J 0.003812 0.02832 II Area OW-19D 3/19/2021 39.06 27.52 11.54 110.33 0.018 0.026 0.0029 0.0037 0.0038 U 0.0011 U	36.09 22.53 13.56 30.40 0.0019 U 0.006 0.0019 U 0.0031 0.0019 U 0.00019 U 0.0008 U	39.46 25.05 14.41 30.42 0.002 0.033 <0.002 0.037 0.011 NA NA 0.0547 0.0547 0.0547 0.011 112.70 0.018 0.029 0.0042 0.0094 0.00044 0.00046 U 0.00034 U	41.17 23.52 17.65 30.45 0.019 0.0063 0.054 0.033 0.014 NA NA 0.1263 0.1263 HW-W(m) 4/19/2021 NA 52.04 0.012 0.0077 0.0075 0.00038 U 0.0011 U	HW-W(m) 9/5/2021 NA 58.02 0.0015 0.0031 0.0061 U 0.13 HW-W(m) 9/5/2021 NA 58.02 0.0015 0.0015 0.0015 0.0024 0.0029	41.17 24.04 17.18 10.066 0.002 0.0066 0.005 0.001 0.0086 J 0.012 0.08304 0.02536 HW-W(m) 3/16/2022 NA 29.12 NA 53.10 0.0041 0.0055 J 0.0041 0.0068 0.00044 U 0.0034	41.17 26.15 15.02 30.40 0.0062 0.0065 0.0065 0.0015 0.0011 0.0062 HW-W(m) 10/31/2022 NA 52.09 0.013 0.025 0.0013 0.005 0.005 0.0013 0.00063 0.0072	41.17 23.70 17.47 30.42 0.0092 0.013 0.02 0.017 0.0095 0.0019 U 0.072 4/19/2021 NA 28.73 NA 61.78 0.0021 0.0038 0.0013 U 0.0011 U 0.00038 U	9/5/2021 NA 29.93 NA 61.78 0.01 0.0064 0.0025 0.0094 0.017 0.00046 U	28.92 NA 63.02 0.01 0.022 0.0023 0.0097

Notes:

UCL = Upper Concentration Limit

< = Not detected by the laboratory above the reporting limit. Reporting limit shown.

J = Estimated concentration between the method detection limit and reporting limit.

Results in ug/L, micrograms per liter.

U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.

Bold results above Method 1 GW-1 standard (0.02 ug/L).

Sum of six includes estimated values and does not include non-detects (U or <).

Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

NA = Not Applicable.

The Method 1 GW-3 Standard for the individual analytes in the Sum of Six ranges from 500 to 40,000 ug/l.

1. Well elevation increased due to soil cap.

Table 2. Groundwater Results for PFAS Compounds ug/L

Sample Location					ARFF Buil	ding Area									
Sample ID		HW-P (m)	HW-P (m)	HW-P (m)	HW-P (m)	HW-P (m)	HW-Q (s)	HW-Q (s)	HW-Q (m)	l					
Sample Date		10/1/2020	3/18/2021	9/8/2021	3/18/2022	11/2/2022	10/1/2020	11/6/2020	10/1/2020						
TOC Elevation	UCL	40.64	40.64	40.64	40.64	40.64	37.89	37.89	37.90						
Depth to Groundwater Groundwater Elevation		22.80 17.84	22.20 18.44	23.67 16.97	21.73 18.91	24.08 16.56	21.45 16.44	22.04 15.85	21.41 16.49	ł					
Total Well Depth		38.30	38.30	38.30	38.28	38.30	26.60	26.60	36.79	i					
Perfluoroheptanoic acid (PFHpA)	100,000	0.003	0.017	0.016	0.009	0.0083	0.0018 J	0.0021	0.00053 U	1					
Perfluorohexanesulfonic acid (PFHxS)	5,000	0.00085	0.0015 J	0.0013 J	0.002	0.0011 J	0.013	0.0087	0.0019						
Perfluorononanoic acid (PFNA)	100,000	0.0011	0.006	0.0099	0.009	0.0095	0.00063 U	0.00063 U	0.00075						
Perfluorooctanoic acid (PFOA) Perfluorooctane sulfonate (PFOS)	100,000	0.0018	0.0096	0.01	0.0081	0.008	0.0049	0.0062	0.00095	l					
Perfluorooctane suifonate (PFOS) Perfluorodecanoic Acid (PFDA)	5,000 100,000	0.0011 0.00062 U	0.0035 0.00038 U	0.003 0.00048 U	0.0026 0.00043 U	0.0022 0.00065 U	0.0041 0.00062 U	0.0075 0.00062 U	0.0049 0.00062 U	ł					
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	0.00092	0.0011 U	0.00046 U	0.00043 U	0.0013 U	0.00039 U	0.00032 U	0.00039 U	i					
			ratory Reported P							1					
Total PFAS	NA	0.02967	0.17311	0.15362	0.08697	0.0705	0.0307	0.0346	0.00944	1					
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	NA	0.00785	0.0376	0.0402	0.0307	0.0291	0.0238	0.0245	0.0085	1					
Sample Location					L	Yarmouth I	Road Area	L							
Sample ID		HW-S (s)	HW-S (s)	HW-S (s)	HW-S (s)	HW-S(s)	HW-S (m)	HW-S (m)	HW-S (m)	HW-S (m)	HW-S(m)				
Sample Date		10/1/2020	3/18/2021	9/3/2021	3/31/2022	8/8/2022	10/1/2020	3/18/2021	9/3/2021	3/25/2022	8/8/2022				
TOC Elevation	UCL	31.60	31.60	31.60	31.60	31.60	31.59	31.59	31.59	31.59	31.59				
Depth to Groundwater		16.88	16.29	17.30	15.70	16.43	17.01	16.35	17.37	15.48	17.94				
Groundwater Elevation Total Well Depth		14.72 22.10	15.31 22.10	14.30 22.10	15.90 22.20	15.17 22.15	14.58 32.04	15.24 32.04	14.22 32.04	16.11 32.05	13.65 32.11				
Perfluoroheptanoic acid (PFHpA)	100,000	0.11	0.14	0.11	0.061	0.16	0.00096	0.0011 J	0.0012 J	0.0018 U	0.0065				
Perfluorohexanesulfonic acid (PFHxS)	5,000	0.055	0.083	0.064	0.041	0.12	0.0064	0.00113	0.00123	0.0018 0	0.0003				
Perfluorononanoic acid (PFNA)	100,000	0.1	0.024	0.1	0.043	0.16	0.00063 U	0.00057 J	0.00055 J	0.0018 U	0.0017 U				
Perfluorooctanoic acid (PFOA)	100,000	0.062	0.078	0.13	0.05	0.23	0.0013	0.0018 J	0.0014 J	0.0019	0.0049				
Perfluorooctane sulfonate (PFOS)	5,000	0.1	0.03	0.048	0.048	0.16	0.0058	0.006	0.0094	0.0052	0.0096				
Perfluorodecanoic Acid (PFDA)	100,000	0.00062 U	0.0038 U	0.012 U	0.0019 U	0.0017 U	0.00062 U	0.00038 U	0.00047 U	0.0018 U	0.0017 U				
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	3.7	3.1	5.2 tory Reported PF	0.0019 U	0.0017 U	0.0065	0.0067	0.0036	0.023	0.0017 U				
Total PFAS	NA	4.8958	4.3105	6.1418	0.5956	1.5581	0.02471	0.03263	0.02873	0.043	0.0564				
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and															
PFDA)	NA	0.427	0.427	0.452	0.243	0.83	0.01446	0.01677	0.01785	0.0097	0.0284				
Sample Location			Stea	mship Parking Lo	t Area										
Sample ID		HW-K	HW-K	HW-K	HW-K	HW-K									
Sample Date		6/19/2019	5/21/2020	3/18/2021	9/2/2021	3/25/2022									
TOC Elevation	UCL	37.70	37.70	37.70	37.70	37.70									
Depth to Groundwater Groundwater Elevation		20.88 16.82	20.56 17.14	22.87 14.83	24.24 13.46	22.93 14.77									
Total Well Depth		44.18	44.18	44.17	44.18	44.17									
Perfluoroheptanoic acid (PFHpA)	100,000	0.0051	0.0028	0.0044	0.0086	0.017									
Perfluorohexanesulfonic acid (PFHxS)	5,000	< 0.002	0.001	0.00066 J	0.0015 J	0.0019									
Perfluorononanoic acid (PFNA)	100,000	<0.002	0.0012	0.0037	0.003	0.0087									
Perfluorooctanoic acid (PFOA)	100,000	0.0041	0.0019	0.0036	0.0038	0.012									
Perfluorooctane sulfonate (PFOS)	5,000	<0.002 <0.002	0.0016	0.0015 J	0.0019	0.0037 0.0019 U									
Perfluorodecanoic Acid (PFDA) 6:2 Fluorotelomer sulfonate (6:2 FTS)	100,000 NA	<0.002	0.00062 U 0.00039 U	0.00038 U 0.0011 U	0.00046 U 0.00034 U	0.0019 U									
			otal PFAS) and Sur												
Total PFAS	NA	0.0348	0.0275	0.04486	0.09217	0.1864									
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	NA	0.0092	0.0085	0.01386	0.0188	0.0414									
Sample Location								Maher W	ell Area						
Sample ID		HW-W(dd)	HW-W(dd)	HW-W(dd)	OW-9S	OW-9S	OW-9S	OW-9M	OW-9M	OW-9D	OW-9D	OW-9D	OW-9DD	OW-9DD	OW-90
Sample Date		4/19/2021	9/5/2021	3/16/2022	7/5/2016	12/3/2018	5/8/2020	12/3/2018	5/8/2020	7/5/2016	12/3/2018	5/5/2020	4/11/2017	12/3/2018	10/2/2
TOC Elevation	UCL	NA	NA	NA	23.25	23.25	23.25	23.53	23.53	23.22	23.22	23.22	23.81	23.81	23.8
Depth to Groundwater		28.67	29.89	28.85	12.23	10.80	10.14	11.11	10.45	12.48	10.82	10.15	12.10	11.30	13.0
Groundwater Elevation		NA	NA	NA TO 61	11.02	12.45	13.11	12.42	13.08	10.74	12.40	13.07	11.71	12.51	10.7
Total Well Depth	100,000	72.10 0.0091	72.09 0.0073	73.61 0.0077	21.35 0.014	21.35 0.048	21.35 0.0064	56.20 0.11	56.20 0.0061	68.63 0.0028	68.63 0.033	68.63 0.044	86.75 0.034	86.75 0.015 J	0.008
Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	5,000	0.0091	0.0073	0.0077	<0.014	0.048	0.0064	0.11 0.0056 U	0.0061	0.0028	0.033	0.044	0.034	0.015 J	0.00
Perfluorononanoic acid (PFNA)	100,000	0.0014 J	0.0048	0.0015 J	0.003	0.0087 U	0.0033	0.044	0.0033	0.0036	0.12	0.15	0.059	0.042	0.01
Perfluorooctanoic acid (PFOA)	100,000	0.0046	0.0069	0.0059	0.007	0.032	0.0043	0.052	0.0035	0.0052	0.057	0.088	0.055	0.020 J	0.0
Perfluorooctane sulfonate (PFOS)	5,000	0.015	0.0081	0.035	0.0074	0.024	0.0058	0.0081 J	0.01	0.041	0.52	0.72	0.5	0.14	0.04
Perfluorodecanoic Acid (PFDA)	100,000	0.00038 U	0.00049 U	0.00045 U	NA	0.0061 U	0.00062 U	0.0061 U	0.00062 U	NA	0.0061 U	0.00062 U	0.0040 U	0.0061 U	0.0006
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	0.0011 U	0.00036 U	0.0033 U	NA .	0.0066 U	0.00039 U	0.64	0.0049	NA	0.19	0.23	0.13	0.062	0.02
Total PFAS	N/A	0.10469	0.0563	0.11378	Sum of Laborato 0.0361			1.7141	0.0816	0.0646	1.217	1.5845	1.02	0.30	0.10
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and	NA					0.618	0.06678						1.02	0.39	0.16
		0.0387	0.0291	0.0701	0.0361	0.127	0.0308	0.2141	0.0266	0.0646	0.83	1.182	0.768	0.255	0.104

- Notes:

 UCL = Upper Concentration Limit

 < = Not detected by the laboratory above the reporting limit. Reporting limit shown.

 J = Estimated concentration between the method detection limit and reporting limit.

 Results in ug/L, micrograms per liter.

 U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.

 Bold results above Method 1 GW-1 standard (0.02 ug/L).

 Sum of six includes estimated values and does not include non-detects (U or <).

 Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

 NA = Not Applicable.

Table 3 - 1,4 Dioxane Groundwater Results ug/L

Sample Location											North	Ramp								Airport Roa	id/Iyannou	gh Road Ar	ea			ARFF Bu	uilding	
Sample ID	HW-1	HW-1	HW-5	HW-12	OW-6	OW-6	HW-4M	HW-4D	HW-204	HW-29	HW-207S	HW-207D	HW-207D	HW-19D	HW-19D	HW-X(s)	HW-X(m)	HW-A(D)	HW-A(D)	HW-B(D)	HW-N	HW-O	HW-U(d)	HW-V(m)	HW-L(s)	HW-L(m)	HW-L(d)	HW-L(d)
Sample Date	5/7/2015	8/5/2019	5/7/2015	5/7/2015	5/7/2015	9/27/2019	4/5/2017	4/5/2017	9/27/2019	9/27/2019	9/27/2019	4/5/2017	9/27/2019	4/5/2017	9/27/2019	9/10/2021	9/10/2021	4/5/2017	8/5/2019	4/5/2017	8/5/2019	8/5/2019	10/2/2020	10/2/2020	10/7/2020	10/7/2020	7/2/2019	5/13/2020
1,4-Dioxane	<0.152	<0.25	<0.150	<0.150	<0.150	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.19	<0.22	<0.25	<0.25	<0.25	<0.25	<0.25	0.73	0.8	<0.2	<0.2	0.727	0.75
Sample Location								Maher Well F	ield							Deploym	nent Area											
Sample ID	OW-9M	OW-9D	OW-9D	OW-9D	OW-9DD	OW-9DD	OW-9DD	OW-18M	OW-18D	OW-18D	OW-18D	OW-19M	OW-19D	OW-19D	OW-19D	HW-E	HW-J											
Sample Date	5/28/2015	5/28/2015	12/3/2018	5/5/2020	5/28/2015	4/11/2017	12/3/2018	4/11/2017	4/11/2017	12/7/2018	5/13/2020	4/11/2017	4/11/2017	12/7/2018	5/13/2020	9/10/2021	9/10/2021											
1,4-Dioxane	<0.141	<0.141	<0.25	<0.19	0.926	0.838	0.732	<0.25	0.552	<0.25	0.35	<0.25	0.800	<0.25	0.3	<0.20	<0.20											

Results in ug/L, micrograms per liter.

< = Not detected by the laboratory above the reporting limit. Reporting limit shown. Bold results above Method 1 GW-1 standard (0.3 ug/L).

The Method 1 GW-2 standard for 1,4-dioxane is 6,000 ug/l.

The Method 1 GW-3 standard for 1,4-dioxane is 50,000 ug/l.

Table 4. ARFF Concentrate Analytical Results ug/L

Sample ID	Foam Mix
Sample Date	12/9/2016
Perfluoroheptanoic acid (PFHpA)	3.4 J
Perfluorohexanesulfonic acid (PFHxS)	2.1 J
Perfluorononanoic acid (PFNA)	93
Perfluorooctanoic acid (PFOA)	19
Perfluorooctane sulfonate (PFOS)	5 U
Perfluorodecanoic Acid (PFDA)	2.8 J
6:2 FTS	33
Total PFAS	222.5
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	120.3

- 1. U = Not detected by the laboratory above the Method Detection Limit. Method Detection Limit shown.
- 2. Results in ug/L, micrograms per liter.
- 3. Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U).
- 4. Sample is AFFF concentrate.
- 5. J = Estimated concentration between the Method Detection Limit and the Laboratory Reporting Limit.

Table 5. SPLP Results ug/L

Sample ID	DL4 4'	DL5 2'	DL8 (4')	DL14(0-1')	Stockpile West	Stockpile East	ARFF Rubber Roof	ARFF Asphalt Roof
Sample Date	9/26/2017	9/26/2017	9/26/2017	9/26/2017	10/10/2017	10/10/2017	11/17/2020	11/17/2020
Perfluoroheptanoic acid (PFHpA)	0.011 U	0.011 U	0.065 J	0.17	0.011 U	0.011 U	0.00279	0.0002 U
Perfluorohexanesulfonic acid (PFHxS)	0.0072 U	0.0072 U	0.036 U	0.01 J	0.0072 U	0.0072 U	0.00034 U	0.00036 U
Perfluorononanoic acid (PFNA)	0.16	0.0032 U	0.052 J	0.37	0.0032 U	0.0032 U	0.00068 J	0.00028 U
Perfluorooctanoic acid (PFOA)	0.012 J	0.042	0.6	0.87	0.0037 U	0.0037 U	0.0073	0.00021 U
Perfluorooctane sulfonate (PFOS)	0.013 J	0.0072 U	0.036 U	0.19	0.0072 U	0.0072 U	0.00045 U	0.00202
Perfluorodecanoic Acid (PFDA)	0.0052 U	0.0052 U	0.026 U	0.34	0.0052 U	0.0052 U	0.000364 J	0.000271 U
6:2 FTS	0.067	0.0072 U	25	7.13	0.034 J	0.024 J	0.0154 J	0.0017 J
Total PFAS	0.195	0.042	26.25	20.195	0.034	0.024	0.072723	0.07957
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	0.185	0.042	0.717	1.95	0.011 U	0.011 U	0.011133	0.00202

- 1. U = Not detected by the laboratory above the Method Detection Limit. Method Detection Limit shown.
- 2. Results in ug/L, micrograms per liter.
- 3. Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U).

Table 6: Background PFAS Levels in Soil and Soilstock Pile Samples

										E	Background Sa	mple Location	S												
Sample ID	Method 1	Standard	Stockpile West	Stockpile East	Loam Pile	BG-1 0-1'	BG-2 0-1'	BG-3 0-1'	BG-4 0-1'	BG-5 0-1'	BG-6 0-1'	BG-7 0-1'	BG-8 0-1'	BG-9 0-1'	BG-10 0-1'	BG-11 0-1'	BG-12 0-1'	BG-13 0-1'	BG-14 0-1'	BG-15 0-1'	BG-16 0-1'	BG-17 0-1'	BG-18 0-1'	BG-19 0-1'	BG-20 0-1'
Sample Date	S-1/GW-1	S-1/GW-3	10/10/2017	10/10/2017	10/10/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	10/26/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017	12/14/2017
Sample Location			On-Airport	On-Airport	On-Airport	Off-Airport	On-Airport	On-Airport	On-Airport	On-Airport	On-Airport	On-Airport	On-Airport	Off-Airport											
Perfluoroheptanoic acid (PFHpA)	0.5	300	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.18 J	0.17 U	0.18 J	0.17 U	0.17 U	0.23 J	0.17 U	0.17 U	0.19 U	0.19 U	0.19 U	0.19 U	0.44 J	0.19 U	0.19 U	0.35 J	0.19 U	0.46 J
Perfluorohexanesulfonic acid (PFHxS)	0.3	300	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.24 U	0.39 J	0.24 U	0.24 U	0.57 J	0.47 J	0.24 U	0.49 J	0.24 U	0.24 U
Perfluorooctanoic acid (PFOA)	0.72	300	0.26 U	0.26 U	0.26 U	0.58 J	0.26 U	0.26 U	0.16 U	0.47 J	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.75 J	0.67 J	0.33 J	0.25 U	0.46 J	0.37 J	0.36 J	0.5 J	0.25 U	0.86 J
Perfluorononanoic acid (PFNA)	0.32	300	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.22 U	0.29 J	0.22 U	0.22 U	0.53 J	0.22	0.67 J	0.41 J	0.22 U	0.22 U
Perfluorooctane sulfonate (PFOS)	2	300	0.38 J	0.39 J	0.81 J	0.21 U	0.7 J	0.38 J	2.3	0.41 J	0.32 J	0.33 J	0.31 J	1.3	0.62 J	0.41 J	0.76 J	0.99	0.26 U	3.1	2	0.36 J	2.3	0.41 J	0.44 J
Perfluorodecanoic Acid (PFDA)	0.3	300	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.28 U	0.28 U	0.36 J	0.28 U	0.31 J	0.41 J	0.28 U	0.41 J	0.28 U	0.28 U
									Su	m of Laborato	ry Reported P	FAS (Total PFA	S) and Sum of	Six											
Total PFAS	NA	NA	1.78	0.91	0.81	1.47	0.7	0.56	3.21	1.31	0.32	0.3	0.84	1.3	0.62	1.16	2.73	1.68	0	6.79	3.77	5.09	5.45	0.41	2.43
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	NA	NA	0.38	0.39	0.81	0.58	0.7	0.56	2.3	1.06	0.32	0.33	0.54	1.3	0.62	1.16	2.11	1.68	0	5.41	3.47	1.39	4.46	0.41	1.76

J = Estimated concentration between the method detection limit and reporting limit.

Results in ug/kg, micrograms per kilogram.

U= Not detected by the Laboratory above the method detection limit. Method detection limit shown. Bold results above the proposed Method 1 S-1/GW-1 standard.

Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Sum of six includes estimated values and does not include non-detects (U or <).

Table 7. Surface Water Results for PFAS ug/L

	Su	rface Wate	er
Sample ID	Kmart	LP-1	UGP-1
Sample Date	6/20/2017	7/11/19	7/11/19
Perfluoroheptanoic acid (PFHpA)	0.0033 U	<0.01	<0.02
Perfluorohexanesulfonic acid (PFHxS)	0.0034 U	<0.01	<0.02
Perfluorononanoic acid (PFNA)	0.0043 J	<0.01	<0.02
Perfluorooctanoic acid (PFOA)	0.0026 U	<0.01	<0.02
Perfluorooctane sulfonate (PFOS)	0.0046 U	<0.01	<0.02
Perfluorodecanoic Acid (PFDA)	0.0040 U	<0.01	<0.02
Sum of Laboratory Reported PFAS	(Total PFAS)	and Sum o	f Six
Total PFAS	0.0174	0.018	0.047
Sum of Six (PFHpA,PFHxS,PFOA, PFOS,			
PFNA, and PFDA)	0.0043	< 0.01	<0.02

< = Not detected by the laboratory above the reporting limit. Reporting limit shown.

J = Estimated concentration between the method detection limit and reporting limit.

Results in ug/L, micrograms per liter.

U= Not detected by the laboratory above the method detection limit. Method detection limit shown.

Sum of six includes estimated values and does not include non-detects (U or <).

Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Currently MassDEP has not issued a surface water standard for PFAS.

The Method 1 GW-1 Standard for the Sum of Six is 0.02 ug/l.

The Method 1 GW-3 Standard for the individual analytes in the Sum of Six range from 500 to 40,000 ug/l.

Table 8: Ratio of Stable Isotopes Oxygen-18 and Hydrogen-2 Laboratory Results

Sample Date	Lab Sample ID	LIM Commis ID	Stab	le Isotope Oxyge	n-18	Stak	Stable Isotope Hydrogen-2				
Sample Date	Lab Sample ID	HW Sample ID	δ180 (V-SMOW)	Atm %	Expected Values	δ180 (V-SMOW)	Atm %	Expected Values			
11/7/2018	1011200 2	HW-I	-6.92	0.20	-	-40.41	0.01494	-			
	1811299-2	□ vv-1	-6.77	0.20	-	-40.17	0.01495	-			
	1911200 4	HW-E	-6.79	0.20	-	-38.56	0.01497	-			
	1811299-4	⊓vv-⊑	-6.85	0.20	-	-38.87	0.01497	-			
	1811299-5	HW-F	-6.9	0.20	-	-38.28	0.01498	-			
	1011299-5	UAA-L	-6.88	0.20	-	-38.15	0.01498	-			
			-2.67	0.20	-	-18.65	0.01528	-			
	1811299-7	SW-2	2.61	0.20	_	-20.42	0.01526	-			
			-2.61	0.20	_	-23.04	0.01521	-			
	1012100 1	LIVA C/C)	-6.74	0.20	-	-38.19	0.01498	-			
	1812198-1	HW-G(S)	-6.93	0.20	-	-37.87	0.01498	-			
12/3/2018	1812198-2	HW-G(M)	-7.53	0.20	-	-44.34	0.01498	-			
			-7.57	0.20	-	-44.39	0.01498	-			
	1012100 2	LIM C(D)	-7.18	0.20	-	-44.15	0.01489	-			
	1812198-3	HW-G(D)	-7.45	0.20	-	-44.56	0.01488	-			
	1812198-4	OW-9S	-7.29	0.20	-	-41.86	0.01492	-			
			-7.41	0.20	-	-42.94	0.0149	-			
	1812198-5	OW-9D	-7.76	0.20	-	-47.91	0.01483	-			
			-7.71	0.20	-	-46.82	0.01484	-			
					-	-47.20	0.01484	-			
	1812198-6	OW-9DD	-7.52	0.20	-	-45.58	0.01486	-			
			-7.57	0.20	-	-45.48	0.01487	-			
	1012100.7	OM/ ON4	-7.13	0.20	-	-41.44	0.01493	-			
	1812198-7	OW-9M	-7.24	0.20	-	-43.40	0.0149	-			
	1012222 1	OW 195	-7.58	0.20	-	-49.29	0.01481	-			
	1812232-1	OW-18S	-7.54	0.20	-	-49.66	0.0148	-			
42/7/2040	1012222	OW-18M	-6.95	0.20	-	-42.64	0.01491	-			
12/7/2018	1812232-2		-6.89	0.20	-	-42.57	0.01491	-			
	4042222	OW-18D	-7.28	0.20	-	-44.76	0.01488	*			
	1812232-3		-7.36	0.20	-	-41.61	0.01493	*			
	IAEA OH-14	-	-5.64	0.20	-5.6	-37.45	0.01499	-37.70			
04/06	IAEA OH-15	-	-9.59	0.20	-9.41	-77.89	0.01436	-78			
QA/QC	IAEA OH-16	-	-15.72	0.20	-15.41	-	-	-113.8			
	Antarc IC	-	-29.83	0.19	-30	-	-	-239.69			

Table 9. Fire Truck Spray Water PFAS Results ug/L

	Fire Truck Spray Water Spray												
Sample ID	Но	ose	Ro	oof	Bun	nper	Officer Sid	e Handline	Driver s	ide-Rear	Officer side-Rear		
Sample Date	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	8/22/2019	11/12/2019	
Perfluoroheptanoic acid (PFHpA)	0.073	<0.002	0.0045	<0.002	0.0039	<0.002	0.027	<0.002	0.0055	<0.002	0.081	0.0021	
Perfluorohexanesulfonic acid (PFHxS)	0.0059	<0.002	0.0033	<0.002	0.0039	<0.002	0.004	<0.002	0.0048	<0.002	0.0043	<0.002	
Perfluorononanoic acid (PFNA)	0.011	<0.002	0.0026	<0.002	0.0031	<0.002	0.013	<0.002	0.003	<0.002	0.016	<0.002	
Perfluorooctanoic acid (PFOA)	0.088	0.0062	0.0087	<0.002	0.01	<0.002	0.039	<0.002	0.011	<0.002	0.076	0.0041	
Perfluorooctane sulfonate (PFOS)	0.009	0.0021	0.0068	<0.002	0.006	<0.002	0.0087	<0.002	0.0093	<0.002	0.0086	<0.002	
Perfluorodecanoic Acid (PFDA)	0.014	<0.002	0.004	<0.002	0.0045	<0.002	0.032	<0.002	0.0049	<0.002	0.032	<0.002	
Total PFAS	5.7017	0.3391	0.9195	0.0205	0.7817	0.0167	4.1098	0.0481	0.8302	0.0087	5.4701	0.086	
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	0.2009	0.0083	0.0299	<0.002	0.0314	<0.002	0.1237	<0.002	0.0385	<0.002	0.2179	0.0041	

 $\,$ < = Not detected by the laboratory above the reporting limit. Reporting limit shown.

Results in ug/L, micrograms per liter.

Bold results above proposed MassDEP GW-1 standard (0.02 ug/L)

Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Table 10: Total Organic Carbon Levels (mg/kg)

Total Organic Carbon Concentration																	
Sample ID	HW-W dd 3-5 ft	HW-W dd 8-10 ft	HW-W dd 18-20 ft	HW-W dd 23-25 ft	HW-W dd 28-30 ft	HW-W dd 33-35 ft	HW-W dd 38-40 ft	HW-W dd 43-45 ft	HW-W dd 48-50 ft	HW-W dd 58-60 ft	HW-W dd 63-65 ft	S1 0-2ft	S1 2-4ft	S1 4-6ft	S2 0-2ft	S2 2-4ft	S2 4-6ft
Sample Date	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	04/06/2021	4/19/2021	4/19/2021	4/19/2021	4/19/2021	4/19/2021	4/19/2021
Sample Depth (ft below grade)	3-5	8-10	18-20	23-25	28-30	33-35	38-40	43-45	48-50	58-60	63-65	0-2	2-4	4-6	0-2	2-4	4-6
Sample Location	Water Department Property	Deployment Area	Deployment Area	Deployment Area	Deployment Area	Deployment Area	Deployment Area										
Total Organic Carbon	94.8 U	94.3 U	96.5 U	93.9 U	95.7 U	93.5 U	96.9 U	95.7 U	95.7 U	95.7 U	95.7 U	28,900	1,150	180	1,550	95.1 U	3,500

Results in mg/kg, milligrams per kilogram.

U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.

Table 11. Runway 6/24 Surface Soil Results ug/kg

Sample Location Surface Soils												
Sample ID	Method 1 Standard		UCL	6-24 A (0-1)	6-24 A (1-2)	6-24 B (0-1)	6-24 B (1-2)	6-24 C (0-1)	6-24 C (1-2)			
Sample Date	S-1/GW-1	S-1/GW-3	UCL	3/2/2022	3/2/2022	3/2/2022	3/2/2022	3/4/2022	3/4/2022			
Perfluoroheptanoic acid (PFHpA)	0.5	300	4,000	<0.051	<0.046	0.068 J	<0.049	<0.055	0.079 J			
Perfluorohexanesulfonic acid (PFHxS)	0.3 300		4,000	<0.068	<0.062	<0.064	<0.066	<0.074	<0.069			
Perfluorooctanoic acid (PFOA)	0.72	300	4,000	<0.047	0.115 J	0.136 J	0.106 J	0.058 J	0.156 J			
Perfluorononanoic acid (PFNA)	0.32	300	4,000	<0.085	<0.077	0.115 J	<0.082	<0.091	<0.085			
Perfluorooctane sulfonate (PFOS)	2	300	4,000	0.318	0.361	0.471	0.196 J	0.654	0.297			
Perfluorodecanoic Acid (PFDA)	0.3	300	4,000	<0.076	<0.069	< 0.071	< 0.073	<0.082	<0.076			
6:2 Fluorotelomer sulfonate (6:2 FTS)	NA	NA	NA	<0.203	<0.184	<0.19	<0.197	<0.219	<0.203			
Sum of Laboratory Reported PFAS (Total PFAS) and Sum of Six												
Total PFAS	NA	NA	NA	0.457	0.731	1.312	0.55	1.123	0.85			
Sum of Six (PFHpA,PFHxS,PFOA, PFOS, PFNA, and PFDA)	NA	NA	NA	0.318	0.476	0.79	0.302	0.712	0.532			

< = Not detected by the laboratory above the reporting limit. Reporting limit shown.

J = Estimated concentration between the method detection limit and reporting limit.

Results in ug/kg, micrograms per kilogram.

U= Not detected by the Laboratory above the method detection limit. Method detection limit shown.

Bold results above the Method 1 S-1/GW-1 standard.

Total PFAS is the sum of all laboratory detected PFAS analytes including estimated values and does not include non-detects (U or <).

Sum of six includes estimated values and does not include non-detects (U or <).

UCL = Upper Concentration Limit

Sample depth in feet below grade in parenthesis

Λ	D	D	F	N	IX	Λ
$\boldsymbol{\vdash}$	_			ıv	 IΛ	$\boldsymbol{\vdash}$

Laboratory Analysis Reports (Not Previously Submitted to MassDEP)

October 25, 2022

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Mahes Wellfield

Client Job Number: Project Number: 22071

Laboratory Work Order Number: 22H0298

Enclosed are results of analyses for samples as received by the laboratory on August 4, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
22H0298-01	7
22H0298-02	9
22H0298-03	10
22H0298-04	11
22H0298-05	12
22H0298-06	13
Sample Preparation Information	14
QC Data	15
Semivolatile Organic Compounds by - LC/MS-MS	15
B315452	15
B315519	17
B316366	19
Flag/Qualifier Summary	21
Internal standard Area & RT Summary	22
Certifications	37
Chain of Custody/Sample Receipt	39

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 10/25/2022

PROJECT NUMBER: 22071

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22H0298

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Mahes Wellfield

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ME-1	22H0298-01	Ground Water		-	
				SOP-454 PFAS	
ME-3	22H0298-02	Ground Water		SOP-454 PFAS	
ME-2	22H0298-03	Ground Water		SOP-454 PFAS	
HW-I (s)	22H0298-04	Ground Water		SOP-454 PFAS	
HW-I (m)	22H0298-05	Ground Water		SOP-454 PFAS	
HW-I (d)	22H0298-06	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 10/25/22- PFAS reported down to MDL

SOP-454 PFAS

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Hexafluoropropylene oxide dimer a

 $22H0298-01[ME-1], 22H0298-02[ME-3], 22H0298-03[ME-2], 22H0298-04[HW-I\,(s)], 22H0298-05[HW-I\,(m)], B315452-BSD1, B315452-BSD1,$

22H0298-01[ME-1], 22H0298-02[ME-3], 22H0298-03[ME-2], 22H0298-04[HW-I (s)], 22H0298-05[HW-I (m)], B315452-BS1, B315452-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2

22H0298-01[ME-1], 22H0298-02[ME-3], 22H0298-03[ME-2], B315452-BSD1

PF-17

Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.

Analyte & Samples(s) Qualified:

d5-NEtFOSAA

22H0298-01[ME-1], 22H0298-02[ME-3], 22H0298-03[ME-2], 22H0298-04[HW-I (s)], 22H0298-05[HW-I (m)], B315452-BLK1

M2-8:2FTS

B315452-BLK1, S075995-IBL1

M3HFPO-DA

22H0298-01[ME-1], 22H0298-02[ME-3], 22H0298-03[ME-2], 22H0298-04[HW-I (s)], 22H0298-05[HW-I (m)], B315452-BLK10], B315452-BLK10]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

d3-NMeFOSAA

22H0298-01[ME-1]

d5-NEtFOSAA

B315452-BS1, B315452-BSD1

M2-4:2FTS

22H0298-01[ME-1], 22H0298-01RE1[ME-1], S076727-CCV3, S076727-CCV6

M2-6:2FTS

22H0298-01[ME-1], 22H0298-04[HW-I (s)], S076727-CCV3

M2-8:2FTS

22H0298-01[ME-1], B315452-BS1

M2PFTA

22H0298-01[ME-1]

M3HFPO-DA

B315452-BS1, B315452-BSD1, S076727-CCV3, S076727-CCV4

M3PFHxS

22H0298-01[ME-1]

M4PFHpA

22H0298-01[ME-1]

M5PFHxA

22H0298-01[ME-1]

M5PFPeA

22H0298-01[ME-1]

M6PFDA

22H0298-01[ME-1]

M7PFUnA

22H0298-01[ME-1]

22H0298-01[ME-1], 22H0298-06[HW-I (d)]

M8PFOA

22H0298-01[ME-1]

M8PFOS

22H0298-01[ME-1]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M9PFNA

22H0298-01[ME-1]

MPFBA

22H0298-01[ME-1]

MPFDoA

22H0298-01[ME-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Perfluoro-4-oxapentanoic acid (PF)

S076727-CCV6

Z-01

Original extract within hold. Re-extract to confirm extracted internal standard recoveries performed outside of hold. Re-extract resulted in conforming data for many analytes. Both results reported.

Analyte & Samples(s) Qualified:

22H0298-01RE1[ME-1]

Z-01a

Sample analyzed at a refortified dilution.

Analyte & Samples(s) Qualified:

22H0298-04RE1[HW-I(s)]

Z-01b

Signal to noise on quantification ion <10. Detection suspect.

Analyte & Samples(s) Qualified:

Perfluoroheptanesulfonic acid (PFl

22H0298-01[ME-1]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Warrengton

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: ME-1

Sampled: 7/29/2022 10:10

Sample ID: 22H0298-01
Sample Matrix: Ground Water

		2	semivolatile	Organic Coi	npounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	25	1.7	0.64	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorobutanoic acid (PFBA)	15	1.7	0.65	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorobutanesulfonic acid (PFBS)	3.3	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorobutanesulfonic acid (PFBS)	2.3	1.7	0.25	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoropentanoic acid (PFPeA)	89	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoropentanoic acid (PFPeA)	55	1.7	0.34	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorohexanoic acid (PFHxA)	54	1.7	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorohexanoic acid (PFHxA)	32	1.7	0.34	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
PCI-PF3ONS (F53B Minor)	ND	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
PCI-PF3ONS (F53B Minor)	ND	1.7	0.34	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
4,8-dioxa-3H-perfluorononanoic acid	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
ADONA) 4,8-dioxa-3H-perfluorononanoic acid ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Hexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.7	0.21	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.21	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
3:2 Fluorotelomersulfonic acid (8:2FTS A)	0.98	1.7	0.53	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
3:2 Fluorotelomersulfonic acid (8:2FTS A)	0.69	1.7	0.53	ng/L	1	J	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorodecanoic acid (PFDA)	1.3	1.7	0.42	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorodecanoic acid (PFDA)	0.79	1.7	0.43	ng/L	1	J	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
'erfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
erfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoroheptanesulfonic acid (PFHpS)	2.9	1.7	0.81	ng/L	1	Z-01b	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoroheptanesulfonic acid (PFHpS)	2.0	1.7	0.82	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
I-EtFOSAA	ND	1.7	0.55	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
N-EtFOSAA	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
N-MeFOSAA	ND	1.7	0.66	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
N-MeFOSAA	ND	1.7	0.66	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.25	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.37	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.15	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL

Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: ME-1

Project Location: Mahes Wellfield

Sampled: 7/29/2022 10:10

Sample ID: 22H0298-01

Sample Matrix: Ground Water Sample Flags: Z-01

Sample Flags: Z-01			semivoiame	Organic Con	inpounds by -	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.15	ng/L	1	riag/Quai	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	0.71	1.7	0.13	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	1.0	1.7	0.27	ng/L	1	J	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoro-1-butanesulfonamide (FBSA)	1.6	1.7	0.27	_	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoro-1-butanesulfonamide (FBSA)				ng/L		J				
Perfluorohexanesulfonic acid (PFHxS)	1.2	1.7	0.17	ng/L	1	J	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
,	58	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorohexanesulfonic acid (PFHxS)	31	1.7	0.29	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	46	1.7	0.32	ng/L	1	L-07	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	27	1.7	0.32	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoropetanesulfonic acid (PFPeS)	3.7	1.7	0.22	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoropetanesulfonic acid (PFPeS)	2.1	1.7	0.22	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoroundecanoic acid (PFUnA)	0.71	1.7	0.32	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoroundecanoic acid (PFUnA)	0.50	1.7	0.32	ng/L	1	J	SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluoroheptanoic acid (PFHpA)	25	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluoroheptanoic acid (PFHpA)	15	1.7	0.30	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorooctanoic acid (PFOA)	29	1.7	0.59	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorooctanoic acid (PFOA)	16	1.7	0.59	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorooctanesulfonic acid (PFOS)	120	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorooctanesulfonic acid (PFOS)	81	1.7	0.52	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH
Perfluorononanoic acid (PFNA)	21	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:51	DRL
Perfluorononanoic acid (PFNA)	12	1.7	0.30	ng/L	1		SOP-454 PFAS	9/1/22	9/19/22 3:30	BLH

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: ME-3

Sampled: 7/29/2022 10:20

Sample ID: 22H0298-02
Sample Matrix: Ground Water

				9. g	P					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	6.1	1.7	0.64	ng/L	1	rag/Quar	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorobutanesulfonic acid (PFBS)	2.1	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoropentanoic acid (PFPeA)	20	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorohexanoic acid (PFHxA)	15	1.7	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
9CI-PF3ONS (F53B Minor)	ND	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
4,8-dioxa-3H-perfluorononanoic acid	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
(ADONA) Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.21	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorodecanoic acid (PFDA)	ND	1.7	0.42	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoroheptanesulfonic acid (PFHpS)	1.7	1.7	0.81	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
N-EtFOSAA	ND	1.7	0.54	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
N-MeFOSAA	ND	1.7	0.65	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorooctanesulfonamide (FOSA)	4.3	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.14	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	1.8	1.7	0.27	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoro-1-butanesulfonamide (FBSA)	0.93	1.7	0.16	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorohexanesulfonic acid (PFHxS)	29	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	5.4	1.7	0.31	ng/L	1	L-07	SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoropetanesulfonic acid (PFPeS)	2.0	1.7	0.22	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluoroheptanoic acid (PFHpA)	6.5	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorooctanoic acid (PFOA)	12	1.7	0.59	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorooctanesulfonic acid (PFOS)	70	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL
Perfluorononanoic acid (PFNA)	5.4	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 3:58	DRL

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: ME-2

Sampled: 7/29/2022 10:30

Sample ID: 22H0298-03
Sample Matrix: Ground Water

		,	Sciiivoiatiic	Organic Con	iipoulius by - i	LC/MS-MS				
	D 1/	DI	DI	TT *4	D'1 4'	FI (O I	N. a. i	Date	Date/Time	
Analyte Perfluorobutanoic acid (PFBA)	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
· · · · ·	12	1.7	0.65	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorobutanesulfonic acid (PFBS)	3.5	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoropentanoic acid (PFPeA)	47	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorohexanoic acid (PFHxA)	34	1.7	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.34	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.21	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	0.78	1.7	0.53	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorodecanoic acid (PFDA)	0.59	1.7	0.43	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoroheptanesulfonic acid (PFHpS)	1.5	1.7	0.82	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
N-EtFOSAA	ND	1.7	0.55	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
N-MeFOSAA	ND	1.7	0.66	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.37	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.15	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	0.53	1.7	0.27	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoro-1-butanesulfonamide (FBSA)	1.3	1.7	0.17	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorohexanesulfonic acid (PFHxS)	35	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	43	1.7	0.32	ng/L	1	L-07	SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoropetanesulfonic acid (PFPeS)	2.8	1.7	0.22	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluoroheptanoic acid (PFHpA)	16	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorooctanoic acid (PFOA)	17	1.7	0.59	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorooctanesulfonic acid (PFOS)	51	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL
Perfluorononanoic acid (PFNA)	8.9	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:13	DRL

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: HW-I (s)

Sampled: 8/2/2022 13:45

Sample ID: 22H0298-04
Sample Matrix: Ground Water

			Schiivolathe	Organic Con	inpounds by -	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	53	1.8	0.67	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorobutanesulfonic acid (PFBS)	2.8	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoropentanoic acid (PFPeA)	210	180	35	ng/L	100		SOP-454 PFAS	8/24/22	9/9/22 17:30	DRL
Perfluorohexanoic acid (PFHxA)	150	1.8	0.35	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.58	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.35	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.22	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	3.1	1.8	0.55	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8	0.44	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.40	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.21	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoroheptanesulfonic acid (PFHpS)	18	1.8	0.84	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
N-EtFOSAA	ND	1.8	0.57	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
N-MeFOSAA	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	0.67	1.8	0.25	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorononanesulfonic acid (PFNS)	1.3	1.8	0.15	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	39	1.8	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoro-1-butanesulfonamide (FBSA)	6.8	1.8	0.17	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorohexanesulfonic acid (PFHxS)	110	1.8	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.37	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	4600	180	33	ng/L	100		SOP-454 PFAS	8/24/22	9/9/22 17:30	DRL
Perfluoropetanesulfonic acid (PFPeS)	7.4	1.8	0.23	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluoroheptanoic acid (PFHpA)	200	180	31	ng/L	100		SOP-454 PFAS	8/24/22	9/9/22 17:30	DRL
Perfluorooctanoic acid (PFOA)	170	1.8	0.61	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL
Perfluorooctanesulfonic acid (PFOS)	430	180	54	ng/L	100		SOP-454 PFAS	8/24/22	9/9/22 17:30	DRL
Perfluorononanoic acid (PFNA)	120	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:20	DRL

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: HW-I (m)

Sampled: 8/2/2022 14:10

Sample ID: 22H0298-05
Sample Matrix: Ground Water

			Schiivolathe	Organic Cor	iipoulius by - i	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.7	0.64	ng/L	1	riag/Quai	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorobutanesulfonic acid (PFBS)	ND ND	1.7	0.04	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoropentanoic acid (PFPeA)	ND ND	1.7	0.24		1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorohexanoic acid (PFHxA)	0.69	1.7	0.34	ng/L ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.55	Ü	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
9Cl-PF3ONS (F53B Minor)	ND ND	1.7	0.33	ng/L ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
4,8-dioxa-3H-perfluorononanoic acid	ND ND	1.7		Ü				8/24/22		DRL
(ADONA) Hexafluoropropylene oxide dimer acid	ND ND	1.7	0.30	ng/L	1	L-04	SOP-454 PFAS SOP-454 PFAS	8/24/22	8/30/22 4:27 8/30/22 4:27	DRL
(HFPO-DA)				_						
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorodecanoic acid (PFDA)	ND	1.7	0.42	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	0.81	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
N-EtFOSAA	ND	1.7	0.54	ng/L	1	L-04	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
N-MeFOSAA	ND	1.7	0.65	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.14	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.7	0.27	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.7	0.16	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorohexanesulfonic acid (PFHxS)	3.2	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	0.75	1.7	0.31	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoropetanesulfonic acid (PFPeS)	ND	1.7	0.22	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluoroheptanoic acid (PFHpA)	0.68	1.7	0.30	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorooctanoic acid (PFOA)	0.65	1.7	0.58	ng/L	1	J	SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorooctanesulfonic acid (PFOS)	5.0	1.7	0.52	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL
Perfluorononanoic acid (PFNA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/24/22	8/30/22 4:27	DRL

Project Location: Mahes Wellfield Sample Description: Work Order: 22H0298

Date Received: 8/4/2022
Field Sample #: HW-I (d)

Sampled: 8/2/2022 14:50

Sample ID: 22H0298-06
Sample Matrix: Ground Water

			Schiivolathe	Organic Con	inpounds by - i	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	10	1.8	0.67	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorobutanesulfonic acid (PFBS)	2.2	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoropentanoic acid (PFPeA)	30	1.8	0.35	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorohexanoic acid (PFHxA)	24	1.8	0.35	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.58	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.35	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.22	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.55	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorodecanoic acid (PFDA)	ND	1.8	0.44	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.40	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.21	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoroheptanesulfonic acid (PFHpS)	3.5	1.8	0.85	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
N-EtFOSAA	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
N-MeFOSAA	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.29	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.38	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.15	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.28	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoro-1-butanesulfonamide (FBSA)	0.29	1.8	0.17	ng/L	1	J	SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorohexanesulfonic acid (PFHxS)	63	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.37	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	1.4	1.8	0.33	ng/L	1	J	SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoropetanesulfonic acid (PFPeS)	2.3	1.8	0.23	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.33	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.25	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluoroheptanoic acid (PFHpA)	12	1.8	0.31	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorooctanoic acid (PFOA)	13	1.8	0.61	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorooctanesulfonic acid (PFOS)	83	1.8	0.54	ng/L	1		SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH
Perfluorononanoic acid (PFNA)	1.2	1.8	0.31	ng/L	1	J	SOP-454 PFAS	8/24/22	8/31/22 3:46	BLH

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22H0298-01 [ME-1]	B315452	289	1.00	08/24/22
22H0298-02 [ME-3]	B315452	291	1.00	08/24/22
22H0298-03 [ME-2]	B315452	288	1.00	08/24/22
22H0298-04 [HW-I (s)]	B315452	278	1.00	08/24/22
22H0298-04RE1 [HW-I (s)]	B315452	278	1.00	08/24/22
22H0298-05 [HW-I (m)]	B315452	292	1.00	08/24/22

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22H0298-06 [HW-I (d)]	B315519	278	1.00	08/24/22

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22H0298-01RE1 [ME-1]	B316366	288	1.00	09/01/22

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B315452 - SOP 454-PFAAS										
lank (B315452-BLK1)				Prepared: 08	3/24/22 Analy	yzed: 08/30/2	22			
erfluorobutanoic acid (PFBA)	ND	1.8	ng/L			<u>'</u>				
erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
erfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
,8-dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
exafluoropropylene oxide dimer acid HFPO-DA)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
I-EtFOSAA	ND	1.8	ng/L							
I-MeFOSAA	ND	1.8	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	0.46	1.8	ng/L							J
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
onafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	1.8	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
erfluorononanoic acid (PFNA)	ND	1.8	ng/L							
CS (B315452-BS1)				Prepared: 08	3/24/22 Analy	yzed: 08/30/2	22			
erfluorobutanoic acid (PFBA)	9.90	1.8	ng/L	9.06		109	73-129			
erfluorobutanesulfonic acid (PFBS)	8.51	1.8	ng/L	8.02		106	72-130			
erfluoropentanoic acid (PFPeA)	9.66	1.8	ng/L	9.06		107	72-129			
erfluorohexanoic acid (PFHxA)	9.99	1.8	ng/L	9.06		110	72-129			
Cl-PF3OUdS (F53B Major)	6.56	1.8	ng/L	8.54		76.9	50-150			
Cl-PF3ONS (F53B Minor)	8.10	1.8	ng/L	8.44		95.9	50-150			
8-dioxa-3H-perfluorononanoic acid ADONA)	8.83	1.8	ng/L	8.54		103	50-150			
(exafluoropropylene oxide dimer acid HFPO-DA)	3.13	1.8	ng/L	9.06		34.5 *	50-150			L-04
2 Fluorotelomersulfonic acid (8:2FTS A)	8.82	1.8	ng/L	8.70		101	67-138			
erfluorodecanoic acid (PFDA)	9.57	1.8	ng/L	9.06		106	71-129			
erfluorododecanoic acid (PFDoA)	9.13	1.8	ng/L	9.06		101	72-134			
erfluoro(2-ethoxyethane)sulfonic acid	7.29	1.8	ng/L	8.06		90.4	50-150			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B315452 - SOP 454-PFAAS										
CS (B315452-BS1)				Prepared: 08	3/24/22 Analy	yzed: 08/30/	22			
Perfluoroheptanesulfonic acid (PFHpS)	8.01	1.8	ng/L	8.65		92.6	69-134			
N-EtFOSAA	1.98	1.8	ng/L	9.06		21.8	61-135			L-04
N-MeFOSAA	11.1	1.8	ng/L	9.06		123	65-136			
Perfluorotetradecanoic acid (PFTA)	8.90	1.8	ng/L	9.06		98.3	71-132			
erfluorotridecanoic acid (PFTrDA)	9.44	1.8	ng/L	9.06		104	65-144			
:2 Fluorotelomersulfonic acid (4:2FTS A)	9.35	1.8	ng/L	8.47		110	63-143			
erfluorodecanesulfonic acid (PFDS)	7.73	1.8	ng/L	8.74		88.4	53-142			
erfluorooctanesulfonamide (FOSA)	8.51	1.8	ng/L	9.06		93.9	67-137			
erfluorononanesulfonic acid (PFNS)	9.28	1.8	ng/L	8.70		107	69-127			
erfluoro-1-hexanesulfonamide (FHxSA)	9.93	1.8	ng/L	9.06		110	50-150			
erfluoro-1-butanesulfonamide (FBSA)	9.14	1.8	ng/L	9.06		101	50-150			
erfluorohexanesulfonic acid (PFHxS)	8.45	1.8	ng/L	8.29		102	68-131			
erfluoro-4-oxapentanoic acid (PFMPA)	9.48	1.8	ng/L	9.06		105	50-150			
erfluoro-5-oxahexanoic acid (PFMBA)	9.52	1.8	ng/L	9.06		105	50-150			
:2 Fluorotelomersulfonic acid (6:2FTS A)	11.0	1.8	ng/L	8.61		127	64-140			
erfluoropetanesulfonic acid (PFPeS)	10.4	1.8	ng/L	8.52		122	71-127			
Perfluoroundecanoic acid (PFUnA)	9.07	1.8	ng/L	9.06		100	69-133			
Ionafluoro-3,6-dioxaheptanoic acid NFDHA)	8.83	1.8	ng/L	9.06		97.5	50-150			
erfluoroheptanoic acid (PFHpA)	9.85	1.8	ng/L	9.06		109	72-130			
erfluorooctanoic acid (PFOA)	10.8	1.8	ng/L	9.06		119	71-133			
erfluorooctanesulfonic acid (PFOS)	8.98	1.8	ng/L	8.38		107	65-140			
erfluorononanoic acid (PFNA)	9.89	1.8	ng/L	9.06		109	69-130			
CS Dup (B315452-BSD1)				Prepared: 08	3/24/22 Analy	yzed: 08/30/	22			
erfluorobutanoic acid (PFBA)	9.80	1.8	ng/L	9.02		109	73-129	0.963	30	
erfluorobutanesulfonic acid (PFBS)	8.43	1.8	ng/L	7.98		106	72-130	0.967	30	
erfluoropentanoic acid (PFPeA)	9.42	1.8	ng/L	9.02		104	72-129	2.43	30	
erfluorohexanoic acid (PFHxA)	9.74	1.8	ng/L	9.02		108	72-129	2.45	30	
1Cl-PF3OUdS (F53B Major)	7.38	1.8	ng/L	8.50		86.9	50-150	11.7	30	
Cl-PF3ONS (F53B Minor)	8.31	1.8	ng/L	8.41		98.8	50-150	2.59	30	
,8-dioxa-3H-perfluorononanoic acid	8.61	1.8	ng/L	8.50		101	50-150	2.52	30	
ADONA) lexafluoropropylene oxide dimer acid	3.15	1.8	ng/L	9.02		34.9 *		0.797	30	L-04
HFPO-DA)										
:2 Fluorotelomersulfonic acid (8:2FTS A)	8.49	1.8	ng/L	8.66		98.1	67-138	3.76	30	
Perfluorodecanoic acid (PFDA)	9.16	1.8	ng/L	9.02		102	71-129	4.28	30	
erfluorododecanoic acid (PFDoA)	8.86	1.8	ng/L	9.02		98.2	72-134	3.08	30	
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	7.07	1.8	ng/L	8.03		88.1	50-150	3.05	30	
erfluoroheptanesulfonic acid (PFHpS)	9.12	1.8	ng/L	8.62		106	69-134	12.9	30	
I-EtFOSAA	1.82	1.8	ng/L	9.02		20.2 *		8.12	30	L-04
i-MeFOSAA	10.3	1.8	ng/L	9.02		114	65-136	8.02	30	
erfluorotetradecanoic acid (PFTA)	9.34	1.8	ng/L	9.02		104	71-132	4.76	30	
erfluorotridecanoic acid (PFTrDA)	9.90	1.8	ng/L	9.02		110	65-144	4.81	30	
2 Fluorotelomersulfonic acid (4:2FTS A)	9.17	1.8	ng/L	8.44		109	63-143	1.90	30	
erfluorodecanesulfonic acid (PFDS)	7.16	1.8	ng/L	8.71		82.2	53-142	7.71	30	
erfluorooctanesulfonamide (FOSA)	8.05	1.8	ng/L	9.02		89.3	67-137	5.54	30	
erfluorononanesulfonic acid (PFNS)	9.26	1.8	ng/L	8.66		107	69-127	0.181	30	
erfluoro-1-hexanesulfonamide (FHxSA)	10.0	1.8	ng/L	9.02		111	50-150	0.807	30	
erfluoro-1-butanesulfonamide (FBSA)	8.76	1.8	ng/L	9.02		97.2	50-150	4.20	30	
erfluorohexanesulfonic acid (PFHxS)	8.38	1.8	ng/L	8.25		102	68-131	0.840	30	
erfluoro-4-oxapentanoic acid (PFMPA)	9.28	1.8	ng/L	9.02		103	50-150	2.16	30	
erfluoro-5-oxahexanoic acid (PFMBA)	9.29	1.8	ng/L	9.02		103	50-150	2.40	30	

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Satch B315452 - SOP 454-PFAAS										
.CS Dup (B315452-BSD1)				Prepared: 08	/24/22 Anal	yzed: 08/30/2	22			
:2 Fluorotelomersulfonic acid (6:2FTS	12.5	1.8	ng/L	8.57		146 *	64-140	13.3	30	L-07
A) erfluoropetanesulfonic acid (PFPeS)	9.68	1.8	ng/L	8.48		114	71-127	7.07	30	
erfluoroundecanoic acid (PFUnA)	9.86	1.8	ng/L	9.02		109	69-133	8.41	30	
Jonafluoro-3,6-dioxaheptanoic acid	8.80	1.8	ng/L	9.02		97.6	50-150	0.341	30	
NFDHA)										
erfluoroheptanoic acid (PFHpA)	9.55	1.8	ng/L	9.02		106	72-130	3.08	30	
erfluorooctanoic acid (PFOA)	11.1	1.8	ng/L	9.02		123	71-133	2.76	30	
erfluorooctanesulfonic acid (PFOS)	9.62	1.8	ng/L	8.35		115	65-140	6.96	30	
erfluorononanoic acid (PFNA)	10.4	1.8	ng/L	9.02		115	69-130	4.97	30	
atch B315519 - SOP 454-PFAAS										
lank (B315519-BLK1)				Prepared: 08	/23/22 Anal	yzed: 08/31/2	22			
erfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
erfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
8-dioxa-3H-perfluorononanoic acid	ND	1.8	ng/L							
ADONA)		4.0	~							
exafluoropropylene oxide dimer acid HFPO-DA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
erfluorodecanoic acid (PFDA)	ND ND	1.8	ng/L							
erfluorododecanoic acid (PFDoA)	ND ND	1.8	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid	ND ND	1.8	ng/L							
PFEESA)	ND	1.0								
erfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
-EtFOSAA	ND	1.8	ng/L							
-MeFOSAA	ND	1.8	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	0.62	1.8	ng/L							J
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							·
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
onafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
NFDHA) erfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND ND	1.8	ng/L							
erfluorooctanoic acid (PFOS)	ND	1.8	ng/L							
ariuoroocianesunome acid (FFOS)	ND	1.0	ng/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
satch B315519 - SOP 454-PFAAS										
CS (B315519-BS1)				Prepared: 08	3/23/22 Analy	yzed: 08/31/2	22			
Perfluorobutanoic acid (PFBA)	8.41	1.8	ng/L	9.24		91.0	73-129			
erfluorobutanesulfonic acid (PFBS)	7.15	1.8	ng/L	8.17		87.5	72-130			
erfluoropentanoic acid (PFPeA)	8.30	1.8	ng/L	9.24		89.9	72-129			
erfluorohexanoic acid (PFHxA)	8.44	1.8	ng/L	9.24		91.3	72-129			
1Cl-PF3OUdS (F53B Major)	6.01	1.8	ng/L	8.70		69.0	50-150			
Cl-PF3ONS (F53B Minor)	6.74	1.8	ng/L	8.61		78.3	50-150			
,8-dioxa-3H-perfluorononanoic acid ADONA)	7.56	1.8	ng/L	8.70		86.9	50-150			
lexafluoropropylene oxide dimer acid HFPO-DA)	5.06	1.8	ng/L	9.24		54.8	50-150			
:2 Fluorotelomersulfonic acid (8:2FTS A)	7.54	1.8	ng/L	8.87		85.0	67-138			
erfluorodecanoic acid (PFDA)	8.24	1.8	ng/L	9.24		89.2	71-129			
erfluorododecanoic acid (PFDoA)	8.61	1.8	ng/L	9.24		93.3	72-134			
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	6.13	1.8	ng/L	8.22		74.5	50-150			
erfluoroheptanesulfonic acid (PFHpS)	8.83	1.8	ng/L	8.82		100	69-134			
N-EtFOSAA	8.52	1.8	ng/L	9.24		92.2	61-135			
N-MeFOSAA	10.1	1.8	ng/L	9.24		109	65-136			
erfluorotetradecanoic acid (PFTA)	8.64	1.8	ng/L	9.24		93.5	71-132			
erfluorotridecanoic acid (PFTrDA)	8.51	1.8	ng/L	9.24		92.2	65-144			
2 Fluorotelomersulfonic acid (4:2FTS A)	7.89	1.8	ng/L	8.64		91.4	63-143			
erfluorodecanesulfonic acid (PFDS)	7.30	1.8	ng/L	8.91		81.9	53-142			
erfluorooctanesulfonamide (FOSA)	8.86	1.8	ng/L	9.24		95.9	67-137			
erfluorononanesulfonic acid (PFNS)	6.85	1.8	ng/L	8.87		77.3	69-127			
erfluoro-1-hexanesulfonamide (FHxSA)	8.44	1.8	ng/L	9.24		91.4	50-150			
erfluoro-1-butanesulfonamide (FBSA)	7.50	1.8	ng/L	9.24		81.2	50-150			
erfluorohexanesulfonic acid (PFHxS)	6.71	1.8	ng/L	8.45		79.4	68-131			
erfluoro-4-oxapentanoic acid (PFMPA)	7.71	1.8	ng/L	9.24		83.5	50-150			
erfluoro-5-oxahexanoic acid (PFMBA)	7.83	1.8	ng/L	9.24		84.8	50-150			
:2 Fluorotelomersulfonic acid (6:2FTS A)	9.59	1.8	ng/L	8.77		109	64-140			
erfluoropetanesulfonic acid (PFPeS)	6.72	1.8	ng/L	8.68		77.4	71-127			
erfluoroundecanoic acid (PFUnA)	8.52	1.8	ng/L	9.24		92.2	69-133			
onafluoro-3,6-dioxaheptanoic acid NFDHA)	8.36	1.8	ng/L	9.24		90.5	50-150			
erfluoroheptanoic acid (PFHpA)	8.24	1.8	ng/L	9.24		89.2	72-130			
erfluorooctanoic acid (PFOA)	9.98	1.8	ng/L	9.24		108	71-133			
erfluorooctanesulfonic acid (PFOS)	7.65	1.8	ng/L	8.54		89.6	65-140			
erfluorononanoic acid (PFNA)	8.36	1.8	ng/L	9.24		90.5	69-130			
CS Dup (B315519-BSD1)					3/23/22 Analy	yzed: 08/31/2	22			
erfluorobutanoic acid (PFBA)	8.81	1.8	ng/L	8.88		99.2	73-129	4.65	30	
erfluorobutanesulfonic acid (PFBS)	7.50	1.8	ng/L	7.85		95.5	72-130	4.68	30	
erfluoropentanoic acid (PFPeA)	8.75	1.8	ng/L	8.88		98.6	72-129	5.22	30	
erfluorohexanoic acid (PFHxA)	8.77	1.8	ng/L	8.88		98.8	72-129	3.83	30	
Cl-PF3OUdS (F53B Major)	5.88	1.8	ng/L	8.36		70.3	50-150	2.16	30	
Cl-PF3ONS (F53B Minor)	6.69	1.8	ng/L	8.27		80.9	50-150	0.735	30	
8-dioxa-3H-perfluorononanoic acid ADONA)	8.04	1.8	ng/L	8.36		96.2	50-150	6.16	30	
(exafluoropropylene oxide dimer acid HFPO-DA)	4.85	1.8	ng/L	8.88		54.7	50-150	4.15	30	
2 Fluorotelomersulfonic acid (8:2FTS A)	8.47	1.8	ng/L	8.52		99.4	67-138	11.7	30	
erfluorodecanoic acid (PFDA)	8.67	1.8	ng/L	8.88		97.7	71-129	5.15	30	
erfluorododecanoic acid (PFDoA)	8.91	1.8	ng/L	8.88		100	72-134	3.37	30	
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	6.32	1.8	ng/L	7.90		80.1	50-150	3.14	30	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B315519 - SOP 454-PFAAS										
.CS Dup (B315519-BSD1)				Prepared: 08	/23/22 Analy	zed: 08/31/2	22			
Perfluoroheptanesulfonic acid (PFHpS)	8.62	1.8	ng/L	8.48		102	69-134	2.48	30	
N-EtFOSAA	8.44	1.8	ng/L	8.88		95.1	61-135	0.927	30	
N-MeFOSAA	9.26	1.8	ng/L	8.88		104	65-136	8.75	30	
Perfluorotetradecanoic acid (PFTA)	8.75	1.8	ng/L	8.88		98.5	71-132	1.26	30	
Perfluorotridecanoic acid (PFTrDA)	8.48	1.8	ng/L	8.88		95.5	65-144	0.444	30	
:2 Fluorotelomersulfonic acid (4:2FTS A)	7.95	1.8	ng/L	8.30		95.8	63-143	0.675	30	
erfluorodecanesulfonic acid (PFDS)	7.50	1.8	ng/L	8.56		87.6	53-142	2.71	30	
erfluorooctanesulfonamide (FOSA)	8.69	1.8	ng/L	8.88		97.9	67-137	1.88	30	
Perfluorononanesulfonic acid (PFNS)	6.92	1.8	ng/L	8.52		81.2	69-127	0.947	30	
Perfluoro-1-hexanesulfonamide (FHxSA)	8.59	1.8	ng/L	8.88		96.8	50-150	1.70	30	
erfluoro-1-butanesulfonamide (FBSA)	8.04	1.8	ng/L	8.88		90.6	50-150	7.03	30	
erfluorohexanesulfonic acid (PFHxS)	7.40	1.8	ng/L	8.12		91.1	68-131	9.71	30	
erfluoro-4-oxapentanoic acid (PFMPA)	8.08	1.8	ng/L	8.88		91.0	50-150	4.59	30	
erfluoro-5-oxahexanoic acid (PFMBA)	8.07	1.8	ng/L	8.88		90.9	50-150	2.97	30	
:2 Fluorotelomersulfonic acid (6:2FTS A)	9.22	1.8	ng/L	8.43		109	64-140	3.93	30	
erfluoropetanesulfonic acid (PFPeS)	7.40	1.8	ng/L	8.34		88.7	71-127	9.66	30	
erfluoroundecanoic acid (PFUnA)	9.20	1.8	ng/L	8.88		104	69-133	7.73	30	
onafluoro-3,6-dioxaheptanoic acid NFDHA)	8.50	1.8	ng/L	8.88		95.8	50-150	1.64	30	
erfluoroheptanoic acid (PFHpA)	8.90	1.8	ng/L	8.88		100	72-130	7.62	30	
erfluorooctanoic acid (PFOA)	8.99	1.8	ng/L	8.88		101	71-133	10.5	30	
erfluorooctanesulfonic acid (PFOS)	7.38	1.8	ng/L	8.21		89.9	65-140	3.55	30	
erfluorononanoic acid (PFNA)	9.35	1.8	ng/L	8.88		105	69-130	11.2	30	
erfluorononanoic acid (PFNA) Batch B316366 - SOP 454-PFAAS	9.35	1.8	ng/L	8.88		105	69-130	11.2	30	
	9.35	1.8	ng/L		/01/22 Analy			11.2	30	
Batch B316366 - SOP 454-PFAAS Blank (B316366-BLK1)		1.8	ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) erfluorobutanoic acid (PFBA)	9.35 ND ND				/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L		/01/22 Analy			11.2	30	
Statch B316366 - SOP 454-PFAAS Slank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluorobutanesulfonic acid (PFBS) erfluoropentanoic acid (PFPeA)	ND ND	1.8 1.8	ng/L ng/L		/01/22 Analy			11.2	30	
Batch B316366 - SOP 454-PFAAS	ND ND ND	1.8 1.8 1.8	ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluorobutanesulfonic acid (PFBS) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) lCl-PF3OUdS (F53B Major)	ND ND ND	1.8 1.8 1.8	ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) Perfluorobutanoic acid (PFBA) Perfluorobutanesulfonic acid (PFBS) Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)	ND ND ND ND	1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) Perfluorobutanoic acid (PFBA) Perfluorobutanesulfonic acid (PFBS) Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) 1CI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid	ND ND ND ND ND	1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A)	ND ND ND ND ND ND ND ND	1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid difPO-DA) 22 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA)	ND	1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) fexafluoropropylene oxide dimer acid diffPO-DA) 22 Fluorotelomersulfonic acid (8:2FTS A) erfluorododecanoic acid (PFDA) erfluorododecanoic acid (PFDoA) erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
arch B316366 - SOP 454-PFAAS lank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPA) erfluoropentanoic acid (PFPA) erfluorohexanoic acid (PFHAA) Cl-PF3OUdS (F53B Major) Cl-PF3ONS (F53B Minor) 8-dioxa-3H-perfluorononanoic acid ADONA) exafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodocanoic acid (PFDA) erfluorododecanoic acid (PFDA) erfluoro(2-ethoxyethane)sulfonic acid (PFHpS)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS lank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPA) erfluoropentanoic acid (PFPA) erfluorohexanoic acid (PFPA) erfluorohexanoic acid (PFHXA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) 8-dioxa-3H-perfluorononanoic acid ADONA) exafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA) erfluorododecanoic acid (PFDA) erfluoro(2-ethoxyethane)sulfonic acid (PFESA) erfluoroheptanesulfonic acid (PFHpS) -EtFOSAA	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS lank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPA) erfluorohexanoic acid (PFPA) erfluorohexanoic acid (PFHxA) Cl-PF3OUdS (F53B Major) Cl-PF3ONS (F53B Minor) 8-dioxa-3H-perfluorononanoic acid ADONA) exafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A) erfluorododecanoic acid (PFDA) erfluorodo-erfluoro(2-ethoxyethane)sulfonic acid (PFESA) erfluoroheptanesulfonic acid (PFHpS) -EtFOSAA -MeFOSAA	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS llank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) levarfluoropropylene oxide dimer acid HFPO-DA) -2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodoceanoic acid (PFDA) erfluorodoceanoic acid (PFDA) erfluoro(2-ethoxyethane)sulfonic acid PFEESA) erfluoroheptanesulfonic acid (PFHpS) l-EtFOSAA l-MeFOSAA erfluorotetradecanoic acid (PFTA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS lank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluorobutanesulfonic acid (PFBS) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) LCI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) 8-dioxa-3H-perfluorononanoic acid ADONA) exafluoropropylene oxide dimer acid HFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA) erfluorodecanoic acid (PFDA) erfluorodeptanesulfonic acid (PFDA) erfluoroheptanesulfonic acid (PFHpS) -EtFOSAA -MeFOSAA erfluorotetradecanoic acid (PFTA) erfluorotridecanoic acid (PFTA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
eatch B316366 - SOP 454-PFAAS Plank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluorobutanesulfonic acid (PFBS) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) :2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodocanoic acid (PFDA) erfluorodoceanoic acid (PFDA) erfluoroheptanesulfonic acid (PFHpS) I-EtFOSAA I-MeFOSAA erfluorotetradecanoic acid (PFTA) erfluorotridecanoic acid (PFTDA) :2 Fluorotelomersulfonic acid (YFTDA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) rerfluorobutanoic acid (PFBA) rerfluorobutanesulfonic acid (PFBA) rerfluoropentanoic acid (PFPeA) rerfluorohexanoic acid (PFPeA) rerfluorohexanoic acid (PFHxA) 1CI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) :2 Fluorotelomersulfonic acid (8:2FTS A) rerfluorodocanoic acid (PFDA) rerfluorodo-prefluoronoic acid (PFDA) rerfluorote-prefluoronoic acid (PFDA) rerfluoroheptanesulfonic acid (PFHpS) I-EFOSAA I-MeFOSAA rerfluorotetradecanoic acid (PFTA) rerfluorotridecanoic acid (PFTA) rerfluorotridecanoic acid (PFTDA) rerfluorotridecanoic acid (PFTDA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) 1CI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) :2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA) erfluorododecanoic acid (PFDA) erfluorodeptanesulfonic acid (PFHpS) I-EFOSAA I-MeFOSAA erfluorotetradecanoic acid (PFTA) erfluorotidecanoic acid (PFTA) erfluorotidecanoic acid (PFTDA) :2 Fluorotelomersulfonic acid (PFTA) erfluorotidecanoic acid (PFTDA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
eatch B316366 - SOP 454-PFAAS Plank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) ICI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) :2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA) erfluorody-ethoxyethane)sulfonic acid PFEESA) erfluoroheptanesulfonic acid (PFHpS) I-EtFOSAA I-MeFOSAA erfluorotidecanoic acid (PFTA) erfluorotidecanoic acid (PFTA) erfluorotidecanoic acid (PFTA) erfluorotelomersulfonic acid (PFTA) erfluorotelomersulfonic acid (PFTA) erfluorodecanesulfonic acid (PFDS) erfluorodecanesulfonic acid (PFDS) erfluorodecanesulfonic acid (PFDS) erfluorodecanesulfonic acid (PFDS) erfluorococtanesulfonamide (FOSA)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
atch B316366 - SOP 454-PFAAS lank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPA) erfluorohexanoic acid (PFPA) erfluorohexanoic acid (PFHXA) lCl-PF3OUdS (F53B Major) Cl-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid HFPO-DA) ,2 Fluorotelomersulfonic acid (8:2FTS A) erfluorodecanoic acid (PFDA) erfluorododecanoic acid (PFDA) erfluorodephanesulfonic acid (PFHpS) H-EtFOSAA H-MeFOSAA erfluorotetradecanoic acid (PFTA) erfluorotetrodecanoic acid (PFTA) erfluorotetrodecanoic acid (PFTA) erfluorotetrodecanoic acid (PFTDA) c2 Fluorotelomersulfonic acid (PFTA) erfluorodecanoic acid (PFTDA) erfluorodecanoic acid (PFTDA) erfluorotetradecanoic acid (PFTDA) erfluorotetrodecanoic acid (PFTDA) erfluorodecanesulfonic acid (PFDS) erfluorodecanesulfonic acid (PFNS)	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	
Blank (B316366 - SOP 454-PFAAS Blank (B316366-BLK1) erfluorobutanoic acid (PFBA) erfluoropentanoic acid (PFPeA) erfluorohexanoic acid (PFPeA) erfluorohexanoic acid (PFHxA) 1CI-PF3OUdS (F53B Major) CI-PF3ONS (F53B Minor) ,8-dioxa-3H-perfluorononanoic acid ADONA) lexafluoropropylene oxide dimer acid	ND N	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L		/01/22 Analy			11.2	30	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B316366 - SOP 454-PFAAS										
lank (B316366-BLK1)				Prepared: 09	0/01/22 Analy	yzed: 09/19/2	22			
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	0.85	1.8	ng/L							J
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
onafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
NFDHA)										
erfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
rfluorononanoic acid (PFNA)	ND	1.8	ng/L							
CS (B316366-BS1)				Prepared: 09	0/01/22 Analy	yzed: 09/19/2	22			
erfluorobutanoic acid (PFBA)	9.35	1.8	ng/L	9.24		101	73-129			
erfluorobutanesulfonic acid (PFBS)	8.41	1.8	ng/L	8.17		103	72-130			
erfluoropentanoic acid (PFPeA)	9.59	1.8	ng/L	9.24		104	72-129			
erfluorohexanoic acid (PFHxA)	9.50	1.8	ng/L	9.24		103	72-129			
Cl-PF3OUdS (F53B Major)	5.85	1.8	ng/L	8.70		67.2	50-150			
Cl-PF3ONS (F53B Minor)	8.19	1.8	ng/L	8.61		95.1	50-150			
8-dioxa-3H-perfluorononanoic acid .DONA)	8.55	1.8	ng/L	8.70		98.2	50-150			
exafluoropropylene oxide dimer acid FPO-DA)	8.89	1.8	ng/L	9.24		96.3	50-150			
2 Fluorotelomersulfonic acid (8:2FTS A)	8.11	1.8	ng/L	8.87		91.4	67-138			
rfluorodecanoic acid (PFDA)	9.43	1.8	ng/L	9.24		102	71-129			
rfluorododecanoic acid (PFDoA)	8.27	1.8	ng/L	9.24		89.5	72-134			
rfluoro(2-ethoxyethane)sulfonic acid FEESA)	5.94	1.8	ng/L	8.22		72.3	50-150			
erfluoroheptanesulfonic acid (PFHpS)	9.52	1.8	ng/L	8.82		108	69-134			
EtFOSAA	10.3	1.8	ng/L	9.24		111	61-135			
MeFOSAA	10.1	1.8	ng/L	9.24		109	65-136			
erfluorotetradecanoic acid (PFTA)	10.2	1.8	ng/L	9.24		111	71-132			
erfluorotridecanoic acid (PFTrDA)	9.06	1.8	ng/L	9.24		98.1	65-144			
2 Fluorotelomersulfonic acid (4:2FTS A)	9.45	1.8	ng/L	8.64		109	63-143			
erfluorodecanesulfonic acid (PFDS)	7.05	1.8	ng/L	8.91		79.1	53-142			
erfluorooctanesulfonamide (FOSA)	9.81	1.8	ng/L	9.24		106	67-137			
erfluorononanesulfonic acid (PFNS)	8.83	1.8	ng/L	8.87		99.6	69-127			
erfluoro-1-hexanesulfonamide (FHxSA)	7.82	1.8	ng/L	9.24		84.7	50-150			
erfluoro-1-butanesulfonamide (FBSA)	8.79	1.8	ng/L	9.24		95.1	50-150			
erfluorohexanesulfonic acid (PFHxS)	8.28	1.8	ng/L	8.45		98.0	68-131			
erfluoro-4-oxapentanoic acid (PFMPA)	8.28 8.21	1.8	ng/L	9.24		88.8	50-150			
rfluoro-5-oxahexanoic acid (PFMBA)	8.21	1.8	ng/L	9.24		88.3	50-150			
2 Fluorotelomersulfonic acid (6:2FTS A)		1.8	ng/L	9.24 8.77		98.9	64-140			
rfluoropetanesulfonic acid (PFPeS)	8.68 8.78	1.8	ng/L	8.68		101	71-127			
rfluoroundecanoic acid (PFUnA)		1.8	ng/L	9.24		101	69-133			
onafluoro-3,6-dioxaheptanoic acid	9.64 9.42	1.8	ng/L	9.24		104	50-150			
IFDHA) erfluoroheptanoic acid (PFHpA)	0.60	1.8	ng/L	9.24		105	72-130			
erfluorooctanoic acid (PFOA)	9.69	1.8								
erfluorooctanoic acid (PFOS)	10.0		ng/L	9.24		109	71-133			
erfluorononanoic acid (PFOS)	8.85 9.88	1.8 1.8	ng/L ng/L	8.54 9.24		104 107	65-140 69-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
PF-17	Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.
S-29	Extracted Internal Standard is outside of control limits.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
Z-01	Original extract within hold. Re-extract to confirm extracted internal standard recoveries performed outside of hold. Re-extract resulted in conforming data for many analytes. Both results reported.
Z-01a	Sample analyzed at a refortified dilution.
Z-01b	Signal to noise on quantification ion <10. Detection suspect.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-1 (22H0298-01)			Lab File ID: 22H02	298-01.d		Analyzed: 08/30	0/22 03:51		
M8FOSA	113040.8	3.980583	253,489.00	3.980567	45	50 - 150	0.0000	+/-0.50	*
M2-4:2FTS	45081.32	2.4146	181,274.00	2.4146	25	50 - 150	0.0000	+/-0.50	*
M2PFTA	273052.3	4.30535	788,408.00	4.30535	35	50 - 150	0.0000	+/-0.50	*
M2-8:2FTS	61502.75	3.7789	134,920.00	3.778883	46	50 - 150	0.0000	+/-0.50	*
MPFBA	202481.4	1.058467	435,289.00	1.050167	47	50 - 150	0.0083	+/-0.50	*
M3HFPO-DA	248135.9	2.76565	109,736.00	2.76565	226	50 - 150	0.0000	+/-0.50	*
M6PFDA	230126	3.787383	576,444.00	3.779417	40	50 - 150	0.0080	+/-0.50	*
M3PFBS	64422.88	1.83695	125,952.00	1.828667	51	50 - 150	0.0083	+/-0.50	
M7PFUnA	339093.4	3.93005	898,020.00	3.93005	38	50 - 150	0.0000	+/-0.50	*
M2-6:2FTS	28424.72	3.4205	86,775.00	3.4205	33	50 - 150	0.0000	+/-0.50	*
M5PFPeA	195998.6	1.6652	415,405.00	1.6652	47	50 - 150	0.0000	+/-0.50	*
M5PFHxA	360311.6	2.498417	771,580.00	2.498433	47	50 - 150	0.0000	+/-0.50	*
M3PFHxS	38835.15	3.177667	94,993.00	3.177667	41	50 - 150	0.0000	+/-0.50	*
M4PFHpA	333994.9	3.138483	774,416.00	3.138483	43	50 - 150	0.0000	+/-0.50	*
M8PFOA	218486.7	3.43785	564,919.00	3.437833	39	50 - 150	0.0000	+/-0.50	*
M8PFOS	45008.88	3.628217	94,009.00	3.6282	48	50 - 150	0.0000	+/-0.50	*
M9PFNA	182441.8	3.62925	438,303.00	3.629233	42	50 - 150	0.0000	+/-0.50	*
MPFDoA	328482.9	4.064667	925,952.00	4.064667	35	50 - 150	0.0000	+/-0.50	*
d5-NEtFOSAA	586783.5	3.929533	199,379.00	3.937517	294	50 - 150	-0.0080	+/-0.50	*
d3-NMeFOSAA	81641.39	3.857667	260,310.00	3.85765	31	50 - 150	0.0000	+/-0.50	*

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-1 (22H0298-01RE1)			Lab File ID: 22H02	298-01RE1.d		Analyzed: 09/19	9/22 03:30		
M8FOSA	176264.7	3.99655	292,494.00	3.99655	60	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	97852.95	2.439333	244,134.00	2.439333	40	50 - 150	0.0000	+/-0.50	*
M2PFTA	713115.9	4.313416	1,239,252.00	4.313416	58	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	66625.04	3.78685	119,127.00	3.78685	56	50 - 150	0.0000	+/-0.50	
MPFBA	438391.3	1.058467	436,533.00	1.058467	100	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	117732	2.782017	89,402.00	2.782017	132	50 - 150	0.0000	+/-0.50	
M6PFDA	521967	3.787367	629,060.00	3.787367	83	50 - 150	0.0000	+/-0.50	
M3PFBS	129023.3	1.861817	118,592.00	1.861817	109	50 - 150	0.0000	+/-0.50	
M7PFUnA	504676	3.930033	737,522.00	3.930033	68	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	81078.46	3.4293	141,111.00	3.4205	57	50 - 150	0.0088	+/-0.50	
M5PFPeA	410882.7	1.690017	391,952.00	1.690017	105	50 - 150	0.0000	+/-0.50	
M5PFHxA	839074.1	2.523067	820,754.00	2.523067	102	50 - 150	0.0000	+/-0.50	
M3PFHxS	120722.3	3.193817	114,140.00	3.185733	106	50 - 150	0.0081	+/-0.50	
M4PFHpA	988753.9	3.154633	966,420.00	3.14655	102	50 - 150	0.0081	+/-0.50	
M8PFOA	901638.4	3.437833	882,375.00	3.437833	102	50 - 150	0.0000	+/-0.50	
M8PFOS	85951.77	3.636183	101,504.00	3.6282	85	50 - 150	0.0080	+/-0.50	
M9PFNA	614519.3	3.629233	734,996.00	3.629233	84	50 - 150	0.0000	+/-0.50	
MPFDoA	457791	4.07265	753,263.00	4.07265	61	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	148582.1	3.937517	264,483.00	3.9375	56	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	192806.9	3.8656	308,492.00	3.8656	62	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-3 (22H0298-02)	•		Lab File ID: 22H02	298-02.d		Analyzed: 08/3	0/22 03:58		•
M8FOSA	322919.9	3.980567	253,489.00	3.980567	127	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	110356.1	2.4146	181,274.00	2.4146	61	50 - 150	0.0000	+/-0.50	
M2PFTA	885878.5	4.305333	788,408.00	4.30535	112	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	189132.7	3.778883	134,920.00	3.778883	140	50 - 150	0.0000	+/-0.50	
MPFBA	473597.7	1.050167	435,289.00	1.050167	109	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	266785.9	2.76565	109,736.00	2.76565	243	50 - 150	0.0000	+/-0.50	*
M6PFDA	707726.8	3.787367	576,444.00	3.779417	123	50 - 150	0.0080	+/-0.50	
M3PFBS	154485	1.828667	125,952.00	1.828667	123	50 - 150	0.0000	+/-0.50	
M7PFUnA	1018033	3.930033	898,020.00	3.93005	113	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	54554.79	3.4205	86,775.00	3.4205	63	50 - 150	0.0000	+/-0.50	
M5PFPeA	480465.6	1.6652	415,405.00	1.6652	116	50 - 150	0.0000	+/-0.50	
M5PFHxA	884240.9	2.498417	771,580.00	2.498433	115	50 - 150	0.0000	+/-0.50	
M3PFHxS	102801.4	3.17765	94,993.00	3.177667	108	50 - 150	0.0000	+/-0.50	
M4PFHpA	894954.7	3.138467	774,416.00	3.138483	116	50 - 150	0.0000	+/-0.50	
M8PFOA	616688.5	3.42985	564,919.00	3.437833	109	50 - 150	-0.0080	+/-0.50	
M8PFOS	117575.2	3.6282	94,009.00	3.6282	125	50 - 150	0.0000	+/-0.50	
M9PFNA	488724.6	3.629233	438,303.00	3.629233	112	50 - 150	0.0000	+/-0.50	
MPFDoA	919479.6	4.06465	925,952.00	4.064667	99	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	932673.6	3.929517	199,379.00	3.937517	468	50 - 150	-0.0080	+/-0.50	*
d3-NMeFOSAA	255955.4	3.85765	260,310.00	3.85765	98	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-2 (22H0298-03)			Lab File ID: 22H02	298-03.d		Analyzed: 08/3	0/22 04:13		
M8FOSA	350311.6	3.980583	253,489.00	3.980567	138	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	108107.5	2.4146	181,274.00	2.414617	60	50 - 150	0.0000	+/-0.50	
M2PFTA	927392.5	4.305367	788,408.00	4.30535	118	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	170501.8	3.7789	134,920.00	3.778883	126	50 - 150	0.0000	+/-0.50	
MPFBA	519917.2	1.050167	435,289.00	1.050167	119	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	267450.4	2.76565	109,736.00	2.765667	244	50 - 150	0.0000	+/-0.50	*
M6PFDA	755278.4	3.787383	576,444.00	3.787383	131	50 - 150	0.0000	+/-0.50	
M3PFBS	156642.4	1.828667	125,952.00	1.828667	124	50 - 150	0.0000	+/-0.50	
M7PFUnA	995026.2	3.93005	898,020.00	3.93005	111	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	68410.1	3.4205	86,775.00	3.4205	79	50 - 150	0.0000	+/-0.50	
M5PFPeA	500506	1.6652	415,405.00	1.6652	120	50 - 150	0.0000	+/-0.50	
M5PFHxA	907770.9	2.498417	771,580.00	2.498433	118	50 - 150	0.0000	+/-0.50	
M3PFHxS	112809.5	3.185733	94,993.00	3.177667	119	50 - 150	0.0081	+/-0.50	
M4PFHpA	903580.1	3.14655	774,416.00	3.14655	117	50 - 150	0.0000	+/-0.50	
M8PFOA	637873.1	3.437833	564,919.00	3.42985	113	50 - 150	0.0080	+/-0.50	
M8PFOS	134660.8	3.6282	94,009.00	3.6282	143	50 - 150	0.0000	+/-0.50	
M9PFNA	547228.8	3.629233	438,303.00	3.629233	125	50 - 150	0.0000	+/-0.50	
MPFDoA	1011224	4.064667	925,952.00	4.064667	109	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	1004131	3.929517	199,379.00	3.937517	504	50 - 150	-0.0080	+/-0.50	*
d3-NMeFOSAA	276881.3	3.857667	260,310.00	3.85765	106	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-I (s) (22H0298-04)			Lab File ID: 22H02	298-04.d		Analyzed: 08/30	0/22 04:20		
M8FOSA	300515.6	3.980583	253,489.00	3.980567	119	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	122916.5	2.414617	181,274.00	2.414617	68	50 - 150	0.0000	+/-0.50	
M2PFTA	895639.8	4.30535	788,408.00	4.30535	114	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	176371.4	3.7789	134,920.00	3.778883	131	50 - 150	0.0000	+/-0.50	
MPFBA	426981.8	1.050167	435,289.00	1.050167	98	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	273571	2.76565	109,736.00	2.765667	249	50 - 150	0.0000	+/-0.50	*
M6PFDA	696609.5	3.7874	576,444.00	3.787383	121	50 - 150	0.0000	+/-0.50	
M3PFBS	140531.2	1.836967	125,952.00	1.828667	112	50 - 150	0.0083	+/-0.50	
M7PFUnA	1000905	3.930067	898,020.00	3.93005	111	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	682463.8	3.420517	86,775.00	3.4205	786	50 - 150	0.0000	+/-0.50	*
M5PFPeA	444029.3	1.6652	415,405.00	1.6652	107	50 - 150	0.0000	+/-0.50	
M5PFHxA	828030.4	2.498433	771,580.00	2.498433	107	50 - 150	0.0000	+/-0.50	
M3PFHxS	103010.7	3.18575	94,993.00	3.177667	108	50 - 150	0.0081	+/-0.50	
M4PFHpA	823495.6	3.146567	774,416.00	3.14655	106	50 - 150	0.0000	+/-0.50	
M8PFOA	520494.8	3.429867	564,919.00	3.42985	92	50 - 150	0.0000	+/-0.50	
M8PFOS	103227	3.628217	94,009.00	3.6282	110	50 - 150	0.0000	+/-0.50	
M9PFNA	463302.8	3.62925	438,303.00	3.629233	106	50 - 150	0.0000	+/-0.50	
MPFDoA	960215.6	4.064683	925,952.00	4.064667	104	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	1031909	3.937533	199,379.00	3.937517	518	50 - 150	0.0000	+/-0.50	*
d3-NMeFOSAA	253160.7	3.857667	260,310.00	3.85765	97	50 - 150	0.0000	+/-0.50	
HW-I (s) (22H0298-04RE1)			Lab File ID: 22H02	298-04RE1.d		Analyzed: 09/0	9/22 17:30		
M2-6:2FTS	38333.86	3.485367	56,034.00	3.485383	68	50 - 150	0.0000	+/-0.50	
M5PFPeA	176843.2	1.7743	291,406.00	1.7743	61	50 - 150	0.0000	+/-0.50	
M4PFHpA	173873.5	3.227617	341,842.00	3.227633	51	50 - 150	0.0000	+/-0.50	
M8PFOS	42189.76	3.6841	73,698.00	3.684117	57	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-I (m) (22H0298-05)			Lab File ID: 22H02	298-05.d		Analyzed: 08/30	0/22 04:27		
M8FOSA	366857	3.980567	253,489.00	3.980567	145	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	126036.8	2.4146	181,274.00	2.414617	70	50 - 150	0.0000	+/-0.50	
M2PFTA	1008766	4.30535	788,408.00	4.30535	128	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	189433.4	3.778883	134,920.00	3.778883	140	50 - 150	0.0000	+/-0.50	
MPFBA	495869.8	1.050167	435,289.00	1.050167	114	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	281244.1	2.76565	109,736.00	2.765667	256	50 - 150	0.0000	+/-0.50	*
M6PFDA	788066.1	3.787383	576,444.00	3.787383	137	50 - 150	0.0000	+/-0.50	
M3PFBS	161686.8	1.828667	125,952.00	1.828667	128	50 - 150	0.0000	+/-0.50	
M7PFUnA	1134175	3.93005	898,020.00	3.93005	126	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	66463.64	3.4205	86,775.00	3.4205	77	50 - 150	0.0000	+/-0.50	
M5PFPeA	517533.3	1.6652	415,405.00	1.6652	125	50 - 150	0.0000	+/-0.50	
M5PFHxA	939442.4	2.498417	771,580.00	2.498433	122	50 - 150	0.0000	+/-0.50	
M3PFHxS	116674.1	3.17765	94,993.00	3.177667	123	50 - 150	0.0000	+/-0.50	
M4PFHpA	956055.7	3.14655	774,416.00	3.14655	123	50 - 150	0.0000	+/-0.50	
M8PFOA	704916.6	3.437833	564,919.00	3.42985	125	50 - 150	0.0080	+/-0.50	
M8PFOS	136408.5	3.6282	94,009.00	3.6282	145	50 - 150	0.0000	+/-0.50	
M9PFNA	568454.3	3.629233	438,303.00	3.629233	130	50 - 150	0.0000	+/-0.50	
MPFDoA	1081139	4.064667	925,952.00	4.064667	117	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	1019535	3.937517	199,379.00	3.937517	511	50 - 150	0.0000	+/-0.50	*
d3-NMeFOSAA	282085.4	3.85765	260,310.00	3.85765	108	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-I (d) (22H0298-06)			Lab File ID: 22H02	298-06.d		Analyzed: 08/3	1/22 03:46		
M8FOSA	59545.23	3.9806	293,084.00	3.980567	20	50 - 150	0.0000	+/-0.50	*
M2-4:2FTS	89546.84	2.422817	171,911.00	2.4146	52	50 - 150	0.0082	+/-0.50	
M2PFTA	508484.7	4.305367	810,248.00	4.305333	63	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	162557.8	3.7789	160,893.00	3.778883	101	50 - 150	0.0000	+/-0.50	
MPFBA	341697.8	1.058467	450,804.00	1.050167	76	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	145892.2	2.76565	129,648.00	2.76565	113	50 - 150	0.0000	+/-0.50	
M6PFDA	509152.4	3.779433	642,324.00	3.7794	79	50 - 150	0.0000	+/-0.50	
M3PFBS	111621.9	1.83695	128,766.00	1.828667	87	50 - 150	0.0083	+/-0.50	
M7PFUnA	630761	3.922067	876,840.00	3.92205	72	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	55928.65	3.4205	87,191.00	3.4205	64	50 - 150	0.0000	+/-0.50	
M5PFPeA	365340.6	1.673467	437,818.00	1.6652	83	50 - 150	0.0083	+/-0.50	
M5PFHxA	661594.3	2.506633	785,551.00	2.498417	84	50 - 150	0.0082	+/-0.50	
M3PFHxS	89490.92	3.177667	99,698.00	3.17765	90	50 - 150	0.0000	+/-0.50	
M4PFHpA	687931.2	3.146567	809,634.00	3.138467	85	50 - 150	0.0081	+/-0.50	
M8PFOA	496728.5	3.429867	579,240.00	3.42985	86	50 - 150	0.0000	+/-0.50	
M8PFOS	87553.51	3.6282	106,944.00	3.6282	82	50 - 150	0.0000	+/-0.50	
M9PFNA	407523.6	3.62925	478,068.00	3.629233	85	50 - 150	0.0000	+/-0.50	
MPFDoA	568596	4.064683	942,196.00	4.064667	60	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	132748.2	3.929533	218,021.00	3.929517	61	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	168254.3	3.857683	248,391.00	3.85765	68	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B315452-BLK1)			Lab File ID: B3154	452-BLK1.d		Analyzed: 08/3	0/22 02:46		
M8FOSA	294407.4	3.9806	253,489.00	3.980567	116	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	158618.8	2.422817	181,274.00	2.4146	88	50 - 150	0.0082	+/-0.50	
M2PFTA	730093.6	4.305367	788,408.00	4.30535	93	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	246724.5	3.778917	134,920.00	3.778883	183	50 - 150	0.0000	+/-0.50	*
MPFBA	442933.4	1.058467	435,289.00	1.050167	102	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	358327	2.765667	109,736.00	2.76565	327	50 - 150	0.0000	+/-0.50	*
M6PFDA	648594.6	3.7874	576,444.00	3.779417	113	50 - 150	0.0080	+/-0.50	
M3PFBS	141592.5	1.836967	125,952.00	1.828667	112	50 - 150	0.0083	+/-0.50	
M7PFUnA	916817.6	3.930067	898,020.00	3.93005	102	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	69704.11	3.420517	86,775.00	3.4205	80	50 - 150	0.0000	+/-0.50	
M5PFPeA	453166.2	1.673467	415,405.00	1.6652	109	50 - 150	0.0083	+/-0.50	
M5PFHxA	831287.6	2.498433	771,580.00	2.498433	108	50 - 150	0.0000	+/-0.50	
M3PFHxS	95214.95	3.18575	94,993.00	3.177667	100	50 - 150	0.0081	+/-0.50	
M4PFHpA	796295.9	3.146567	774,416.00	3.138483	103	50 - 150	0.0081	+/-0.50	
M8PFOA	528314.4	3.437867	564,919.00	3.437833	94	50 - 150	0.0000	+/-0.50	
M8PFOS	105902.6	3.628217	94,009.00	3.6282	113	50 - 150	0.0000	+/-0.50	
M9PFNA	444566	3.629267	438,303.00	3.629233	101	50 - 150	0.0000	+/-0.50	
MPFDoA	856345.9	4.064683	925,952.00	4.064667	92	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	938126.1	3.937533	199,379.00	3.937517	471	50 - 150	0.0000	+/-0.50	*
d3-NMeFOSAA	259282.6	3.857683	260,310.00	3.85765	100	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B315452-BS1)			Lab File ID: B3154	152-BS1.d		Analyzed: 08/3	0/22 02:32		
M8FOSA	272282.5	3.980567	253,489.00	3.980567	107	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	134701.2	2.4228	181,274.00	2.4146	74	50 - 150	0.0082	+/-0.50	
M2PFTA	698668.5	4.30535	788,408.00	4.30535	89	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	205859.4	3.778883	134,920.00	3.778883	153	50 - 150	0.0000	+/-0.50	*
MPFBA	403902.1	1.058467	435,289.00	1.050167	93	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	305550.6	2.76565	109,736.00	2.76565	278	50 - 150	0.0000	+/-0.50	*
M6PFDA	623567.4	3.779417	576,444.00	3.779417	108	50 - 150	0.0000	+/-0.50	
M3PFBS	129645.2	1.83695	125,952.00	1.828667	103	50 - 150	0.0083	+/-0.50	
M7PFUnA	865399.8	3.93005	898,020.00	3.93005	96	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	57091.99	3.4205	86,775.00	3.4205	66	50 - 150	0.0000	+/-0.50	
M5PFPeA	416846.1	1.673467	415,405.00	1.6652	100	50 - 150	0.0083	+/-0.50	
M5PFHxA	760449.9	2.506633	771,580.00	2.498433	99	50 - 150	0.0082	+/-0.50	
M3PFHxS	80752.11	3.185733	94,993.00	3.177667	85	50 - 150	0.0081	+/-0.50	
M4PFHpA	708261.3	3.14655	774,416.00	3.138483	91	50 - 150	0.0081	+/-0.50	
M8PFOA	509353.6	3.437833	564,919.00	3.437833	90	50 - 150	0.0000	+/-0.50	
M8PFOS	98178.8	3.6282	94,009.00	3.6282	104	50 - 150	0.0000	+/-0.50	
M9PFNA	409364.7	3.629233	438,303.00	3.629233	93	50 - 150	0.0000	+/-0.50	
MPFDoA	831393.1	4.064667	925,952.00	4.064667	90	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	827195.6	3.929517	199,379.00	3.937517	415	50 - 150	-0.0080	+/-0.50	*
d3-NMeFOSAA	216582.1	3.85765	260,310.00	3.85765	83	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS Dup (B315452-BSD1)			Lab File ID: B3154	152-BSD1.d		Analyzed: 08/30	0/22 02:39		
M8FOSA	239113.2	3.980583	253,489.00	3.980567	94	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	130908.3	2.4228	181,274.00	2.4146	72	50 - 150	0.0082	+/-0.50	
M2PFTA	623516.1	4.30535	788,408.00	4.30535	79	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	201235.6	3.7789	134,920.00	3.778883	149	50 - 150	0.0000	+/-0.50	
MPFBA	368639.5	1.058467	435,289.00	1.050167	85	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	284525.7	2.76565	109,736.00	2.76565	259	50 - 150	0.0000	+/-0.50	*
M6PFDA	583912.9	3.779417	576,444.00	3.779417	101	50 - 150	0.0000	+/-0.50	
M3PFBS	118456.3	1.83695	125,952.00	1.828667	94	50 - 150	0.0083	+/-0.50	
M7PFUnA	741424.5	3.930067	898,020.00	3.93005	83	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	54286.85	3.4205	86,775.00	3.4205	63	50 - 150	0.0000	+/-0.50	
M5PFPeA	381838.8	1.673467	415,405.00	1.6652	92	50 - 150	0.0083	+/-0.50	
M5PFHxA	694416.6	2.498417	771,580.00	2.498433	90	50 - 150	0.0000	+/-0.50	
M3PFHxS	74646.42	3.185733	94,993.00	3.177667	79	50 - 150	0.0081	+/-0.50	
M4PFHpA	645436.3	3.14655	774,416.00	3.138483	83	50 - 150	0.0081	+/-0.50	
M8PFOA	456913.4	3.437833	564,919.00	3.437833	81	50 - 150	0.0000	+/-0.50	
M8PFOS	84932.37	3.6282	94,009.00	3.6282	90	50 - 150	0.0000	+/-0.50	
M9PFNA	369743.9	3.629233	438,303.00	3.629233	84	50 - 150	0.0000	+/-0.50	
MPFDoA	741711.6	4.064683	925,952.00	4.064667	80	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	766062.1	3.929533	199,379.00	3.937517	384	50 - 150	-0.0080	+/-0.50	*
d3-NMeFOSAA	204652.1	3.857667	260,310.00	3.85765	79	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B315519-BLK1)			Lab File ID: B3155	519-BLK1.d		Analyzed: 08/3	1/22 03:39		
M8FOSA	194491	3.980583	293,084.00	3.980567	66	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	121786.2	2.4228	171,911.00	2.4146	71	50 - 150	0.0082	+/-0.50	
M2PFTA	586825.6	4.30535	810,248.00	4.305333	72	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	187112.6	3.7789	160,893.00	3.778883	116	50 - 150	0.0000	+/-0.50	
MPFBA	384914.5	1.050167	450,804.00	1.050167	85	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	133073.1	2.76565	129,648.00	2.76565	103	50 - 150	0.0000	+/-0.50	
M6PFDA	530808.2	3.779417	642,324.00	3.7794	83	50 - 150	0.0000	+/-0.50	
M3PFBS	109045.7	1.83695	128,766.00	1.828667	85	50 - 150	0.0083	+/-0.50	
M7PFUnA	654944.7	3.93005	876,840.00	3.92205	75	50 - 150	0.0080	+/-0.50	
M2-6:2FTS	66416.34	3.4205	87,191.00	3.4205	76	50 - 150	0.0000	+/-0.50	
M5PFPeA	359940.3	1.6652	437,818.00	1.6652	82	50 - 150	0.0000	+/-0.50	
M5PFHxA	646868.8	2.498417	785,551.00	2.498417	82	50 - 150	0.0000	+/-0.50	
M3PFHxS	85741.09	3.177667	99,698.00	3.17765	86	50 - 150	0.0000	+/-0.50	
M4PFHpA	675313.4	3.14655	809,634.00	3.138467	83	50 - 150	0.0081	+/-0.50	
M8PFOA	522083.9	3.42985	579,240.00	3.42985	90	50 - 150	0.0000	+/-0.50	
M8PFOS	90527.88	3.6282	106,944.00	3.6282	85	50 - 150	0.0000	+/-0.50	
M9PFNA	401714.5	3.629233	478,068.00	3.629233	84	50 - 150	0.0000	+/-0.50	
MPFDoA	605293.8	4.064667	942,196.00	4.064667	64	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	134170.3	3.929533	218,021.00	3.929517	62	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	177637	3.857667	248,391.00	3.85765	72	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B315519-BS1)			Lab File ID: B3155	519-BS1.d		Analyzed: 08/3	1/22 03:24		
M8FOSA	204022.3	3.980567	293,084.00	3.980567	70	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	129296.3	2.4228	171,911.00	2.4146	75	50 - 150	0.0082	+/-0.50	
M2PFTA	633997.4	4.305333	810,248.00	4.305333	78	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	186857.4	3.778883	160,893.00	3.778883	116	50 - 150	0.0000	+/-0.50	
MPFBA	416491.8	1.058467	450,804.00	1.050167	92	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	146187.1	2.773833	129,648.00	2.76565	113	50 - 150	0.0082	+/-0.50	
M6PFDA	565915.1	3.7794	642,324.00	3.7794	88	50 - 150	0.0000	+/-0.50	
M3PFBS	115133	1.83695	128,766.00	1.828667	89	50 - 150	0.0083	+/-0.50	
M7PFUnA	656365.5	3.930033	876,840.00	3.92205	75	50 - 150	0.0080	+/-0.50	
M2-6:2FTS	71794.28	3.4205	87,191.00	3.4205	82	50 - 150	0.0000	+/-0.50	
M5PFPeA	388123.1	1.673467	437,818.00	1.6652	89	50 - 150	0.0083	+/-0.50	
M5PFHxA	691367	2.506633	785,551.00	2.498417	88	50 - 150	0.0082	+/-0.50	
M3PFHxS	93756.85	3.185733	99,698.00	3.17765	94	50 - 150	0.0081	+/-0.50	
M4PFHpA	720935.5	3.14655	809,634.00	3.138467	89	50 - 150	0.0081	+/-0.50	
M8PFOA	531983.4	3.437833	579,240.00	3.42985	92	50 - 150	0.0080	+/-0.50	
M8PFOS	91860.38	3.6282	106,944.00	3.6282	86	50 - 150	0.0000	+/-0.50	
M9PFNA	437894.7	3.629233	478,068.00	3.629233	92	50 - 150	0.0000	+/-0.50	
MPFDoA	663333.5	4.06465	942,196.00	4.064667	70	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	137564.3	3.929517	218,021.00	3.929517	63	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	179972	3.85765	248,391.00	3.85765	72	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS Dup (B315519-BSD1)		-	Lab File ID: B3155	519-BSD1.d		Analyzed: 08/3	1/22 03:31		
M8FOSA	232135.6	3.980583	293,084.00	3.980567	79	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	137371.3	2.4228	171,911.00	2.4146	80	50 - 150	0.0082	+/-0.50	
M2PFTA	710081.5	4.30535	810,248.00	4.305333	88	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	172330.7	3.7789	160,893.00	3.778883	107	50 - 150	0.0000	+/-0.50	
MPFBA	421237.6	1.050167	450,804.00	1.050167	93	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	141652.3	2.76565	129,648.00	2.76565	109	50 - 150	0.0000	+/-0.50	
M6PFDA	582773.1	3.779417	642,324.00	3.7794	91	50 - 150	0.0000	+/-0.50	
M3PFBS	119041.2	1.83695	128,766.00	1.828667	92	50 - 150	0.0083	+/-0.50	
M7PFUnA	710720.8	3.92205	876,840.00	3.92205	81	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	73444.91	3.4205	87,191.00	3.4205	84	50 - 150	0.0000	+/-0.50	
M5PFPeA	395607.2	1.6652	437,818.00	1.6652	90	50 - 150	0.0000	+/-0.50	
M5PFHxA	702282.7	2.498417	785,551.00	2.498417	89	50 - 150	0.0000	+/-0.50	
M3PFHxS	92138.43	3.17765	99,698.00	3.17765	92	50 - 150	0.0000	+/-0.50	
M4PFHpA	714648.3	3.14655	809,634.00	3.138467	88	50 - 150	0.0081	+/-0.50	
M8PFOA	555480.9	3.42985	579,240.00	3.42985	96	50 - 150	0.0000	+/-0.50	
M8PFOS	103390.7	3.6282	106,944.00	3.6282	97	50 - 150	0.0000	+/-0.50	
M9PFNA	451647.9	3.629233	478,068.00	3.629233	94	50 - 150	0.0000	+/-0.50	
MPFDoA	731815.9	4.064667	942,196.00	4.064667	78	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	153174.8	3.929533	218,021.00	3.929517	70	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	202119.6	3.857667	248,391.00	3.85765	81	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q			
Blank (B316366-BLK1)		Lab File ID: B316366-BLK1.d					Analyzed: 09/19/22 02:40					
M8FOSA	217208.9	3.99655	292,494.00	3.99655	74	50 - 150	0.0000	+/-0.50				
M2-4:2FTS	134283.7	2.439333	244,134.00	2.439333	55	50 - 150	0.0000	+/-0.50				
M2PFTA	938673.3	4.313416	1,239,252.00	4.313416	76	50 - 150	0.0000	+/-0.50				
M2-8:2FTS	97024.48	3.78685	119,127.00	3.78685	81	50 - 150	0.0000	+/-0.50				
MPFBA	507067.1	1.050167	436,533.00	1.058467	116	50 - 150	-0.0083	+/-0.50				
M3HFPO-DA	116066.4	2.773833	89,402.00	2.782017	130	50 - 150	-0.0082	+/-0.50				
M6PFDA	626794.1	3.787367	629,060.00	3.787367	100	50 - 150	0.0000	+/-0.50				
M3PFBS	134044.1	1.861817	118,592.00	1.861817	113	50 - 150	0.0000	+/-0.50				
M7PFUnA	641612.9	3.930033	737,522.00	3.930033	87	50 - 150	0.0000	+/-0.50				
M2-6:2FTS	87602.66	3.4293	141,111.00	3.4205	62	50 - 150	0.0088	+/-0.50				
M5PFPeA	438932.7	1.681733	391,952.00	1.690017	112	50 - 150	-0.0083	+/-0.50				
M5PFHxA	893500.4	2.523067	820,754.00	2.523067	109	50 - 150	0.0000	+/-0.50				
M3PFHxS	126112.4	3.1938	114,140.00	3.185733	110	50 - 150	0.0081	+/-0.50				
M4PFHpA	1064378	3.154633	966,420.00	3.14655	110	50 - 150	0.0081	+/-0.50				
M8PFOA	984937.8	3.437833	882,375.00	3.437833	112	50 - 150	0.0000	+/-0.50				
M8PFOS	100650.2	3.636183	101,504.00	3.6282	99	50 - 150	0.0080	+/-0.50				
M9PFNA	716694.6	3.629233	734,996.00	3.629233	98	50 - 150	0.0000	+/-0.50				
MPFDoA	631718.5	4.07265	753,263.00	4.07265	84	50 - 150	0.0000	+/-0.50				
d5-NEtFOSAA	203339.5	3.9375	264,483.00	3.9375	77	50 - 150	0.0000	+/-0.50				
d3-NMeFOSAA	247914.5	3.8656	308,492.00	3.8656	80	50 - 150	0.0000	+/-0.50				

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B316366-BS1)			Lab File ID: B3163	866-BS1.d		Analyzed: 09/19	9/22 02:33		
M8FOSA	231204.9	3.99655	292,494.00	3.99655	79	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	122585.6	2.439333	244,134.00	2.439333	50	50 - 150	0.0000	+/-0.50	
M2PFTA	926942.3	4.313416	1,239,252.00	4.313416	75	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	92017.65	3.78685	119,127.00	3.78685	77	50 - 150	0.0000	+/-0.50	
MPFBA	542887.4	1.050167	436,533.00	1.058467	124	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	117544.5	2.782017	89,402.00	2.782017	131	50 - 150	0.0000	+/-0.50	
M6PFDA	691644.5	3.787367	629,060.00	3.787367	110	50 - 150	0.0000	+/-0.50	
M3PFBS	144703.1	1.861817	118,592.00	1.861817	122	50 - 150	0.0000	+/-0.50	
M7PFUnA	656739	3.930033	737,522.00	3.930033	89	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	84980.66	3.4293	141,111.00	3.4205	60	50 - 150	0.0088	+/-0.50	
M5PFPeA	471351	1.681733	391,952.00	1.690017	120	50 - 150	-0.0083	+/-0.50	
M5PFHxA	940557.8	2.523067	820,754.00	2.523067	115	50 - 150	0.0000	+/-0.50	
M3PFHxS	133427.7	3.1938	114,140.00	3.185733	117	50 - 150	0.0081	+/-0.50	
M4PFHpA	1101564	3.154633	966,420.00	3.14655	114	50 - 150	0.0081	+/-0.50	
M8PFOA	1042088	3.437833	882,375.00	3.437833	118	50 - 150	0.0000	+/-0.50	
M8PFOS	107898.9	3.636183	101,504.00	3.6282	106	50 - 150	0.0080	+/-0.50	
M9PFNA	727099.6	3.629233	734,996.00	3.629233	99	50 - 150	0.0000	+/-0.50	
MPFDoA	617913.8	4.07265	753,263.00	4.07265	82	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	196478.8	3.9375	264,483.00	3.9375	74	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	252284.7	3.8656	308,492.00	3.8656	82	50 - 150	0.0000	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9CI-PF3ONS (F53B Minor)	NH-P
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA	NH-P
N-MeFOSAA	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
OP-466 PFAS in Soil	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P

CERTIFICATIONS

Certified Analyses included in this Report

NH-P

New Hampshire Environmental Lab

Analyte	Certifications			
SOP-466 PFAS in Soil				
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P			
Perfluoroheptanesulfonic acid (PFHpS)	NH-P			
N-EtFOSAA	NH-P			
N-MeFOSAA	NH-P			
Perfluorotetradecanoic acid (PFTA)	NH-P			
Perfluorotridecanoic acid (PFTrDA)	NH-P			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P			
Perfluorodecanesulfonic acid (PFDS)	NH-P			
Perfluorooctanesulfonamide (FOSA)	NH-P			
Perfluorononanesulfonic acid (PFNS)	NH-P			
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P			
Perfluoro-1-butanesulfonamide (FBSA)	NH-P			
Perfluorohexanesulfonic acid (PFHxS)	NH-P			
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P			
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P			
Perfluoropetanesulfonic acid (PFPeS)	NH-P			
Perfluoroundecanoic acid (PFUnA)	NH-P			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P			
Perfluoroheptanoic acid (PFHpA)	NH-P			
Perfluorooctanoic acid (PFOA)	NH-P			
Perfluorooctanesulfonic acid (PFOS)	NH-P			
Perfluorononanoic acid (PFNA)	NH-P			
Con-Test, a Pace Environmental Laboratory, operates u	nder the following certification	s and accreditations:		
Code Description		Number	Expires	

2557 NELAP

09/6/2023

2240AB

http://www.pacelabs.com

39 Spruce Street

Doc # 381 Rev 5_07/13/2021

analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will responsible for missing samples Glassware in freezer? Y / N Prepackaged Cooler? Y / N Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? *Pace Analytical is not from prepacked coolers 1 Matrix Codes: GW = Ground Water WW = Waste Water ² Preservation Codes: Total Number Of: DW = Drinking Water X = Sodium Hydroxide SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate Courier Use Only O = Other (please define) 5 = Sulfuric Acid VIALS PLASTIC ² Preservation Code Page 1 of 1 N = Nitric Acid BACTERIA M = Methanol GLASS ENCORE T = Sodium Thiosulfate S = Soil A = Air ∄... H... CT RCP Required H - High; M - Medium; L - Low; C - Clean; U possible sample concentration within the Conc Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram

AlHA-LAP,LLC not be held accountable. Code column above: ANALYSIS REQUESTED Unknown MCP Certification Form Required MA MCP Required RCP Certification Form Required MA State DW Required **BEVS** X 1 MITTHORSE × X × East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL VIALS GLASS PLASTIC 4 School N No preservetire - Samples Tuel NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD 0 0 0 0 Conc Code Municipality Brownfield Due Date: Matrix # QISMd 3 30 35 3 S 10-Day EXCEL Š 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB のなり 812122 1450 Corab SVCP SVCP 500 525 びなり IZ PFAS 10-Day (std) PĢ Ending Pate/Time Government 0.9 0701 12000 7/24/41/030 82122 H Email To: 812122 134S ax To#: Federa ormat: Other: Date/Time: Client Comments: 7-Day 1-Day 2-Day APSoject Entity Beginning Date/Time いっと J. Hen Orono Access COC's and Support Requests PEDS MONTONING be11 26-4-8 Mes/er/200 8 472 EN PUZZZ 1641 Sall Text-8 Date/Time: 8/2/22-164 8-4-22 16 8(TIP(02) Client Sample ID / Description Phone: 413-525-2332 Fax: 413-525-6405 HW-IM Date/Time: Date/Time: 5229 Mass 6 0 2) K. 3T 1-34 アニュア -- 3 Horsky 0039-833-80 Z U S Relinguished by: (signature) 3 Face Analytical * ろったら Received by: (stignature) 2000 Ų, Pace Quote Name/Number: Relinquished by: (signatu 0 eceived by: (signature Pace Work Order# invoice Recipient: Project Location: Project Manager: Project Number: Sampled By: 2 Address:

1782 232

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.pacelabs.com

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False Client Date Received By On Ice No Ice How were the samples In Cooler No Cooler received? **Ambient** Melted Ice Direct From Sample By Gun # Actual Temp -Were samples within Within By Blank # Actual Temp -Tempurature? 2-6°C Was Custody Seal In tact? Were Samples Tampered with? Does Chain Agree With Samples? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Were samples received within holding time? Is COC in ink/ Legible? Sampler Name? Did COC include all Client? Analysis? Collection Dates/Times? pertinent Information? Project? ID's? Are Sample labels filled out and legible? Are there Lab to Filters? ___ Who was notified? Who was notified? Are there Rushes? Who was notified? Are there Short Holds? is there enough Volume? Samples are received within holding time? ₹ MS/MSD? Is there Headspace where applicable? Proper Media/Containers Used? splitting samples required On COC? Were trip blanks receive Base Do All Samples Have the proper pH? Acid Vials Containers: 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Unp-8oz Amb/Clear 500 mL Plastic HCL-500 mL Amb. 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh-Flashpoint 2oz Amb/Clear Bisulfate-Col./Bacteria Other Glass Encore Other Plastic DI-Plastic Bag Frozen: Thiosulfate-SOC Kit Perchlorate Ziplock Sulfuric-**Unused Media** Containers: Vials 1 Liter Plastic 16 oz Amb. Unp-1 Liter Amb. 500 mL Plastic 8oz Amb/Clear HCL-500 mL Amb. 4oz Amb/Clear 250 mL Plastic Meoh-250 mL Amb. Flashpoint 2oz Amb/Clear Col./Bacteria Bisulfate-Encore Other Glass DI-Other Plastic Thiosulfate-Plastic Bag Frozen: SOC Kit Ziplock Perchlorate Sulfuric-Comments:

October 26, 2022

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Hyannis, MA

Client Job Number: Project Number: 22071

Laboratory Work Order Number: 22H0420

Enclosed are results of analyses for samples as received by the laboratory on August 9, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
22H0420-01	5
22H0420-02	6
Sample Preparation Information	7
QC Data	8
Semivolatile Organic Compounds by - LC/MS-MS	8
B315759	8
Flag/Qualifier Summary	11
Internal standard Area & RT Summary	12
Certifications	17
Chain of Custody/Sample Receipt	18

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 10/26/2022

PROJECT NUMBER: 22071

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22H0420

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Hyannis, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-S (s)	22H0420-01	Ground Water		-	
				SOP-454 PFAS	
HW-S (m)	22H0420-02	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 10/25/22- PFAS reported down to MDL

SOP-454 PFAS

Qualifications:

PF-19

Sample re-analyzed at a dilution that was re-fortified with internal standard.

Analyte & Samples(s) Qualified:

22H0420-01RE1[HW-S (s)]

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

compound.
Analyte & Samples(s) Qualified:

Hexafluoropropylene oxide dimer a

B315759-BSD1

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

d3-NMeFOSAA

22H0420-01[HW-S (s)]

d5-NEtFOSAA

22H0420-01[HW-S (s)]

M2-4:2FTS

22H0420-02[HW-S (m)], S076742-CCV5

M2-6:2FTS

22H0420-01[HW-S (s)], S076742-CCV5

M3HFPO-DA

S076742-CCV5

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan E. Kelley Reporting Specialist

Meghan S. Kelley

Project Location: Hyannis, MA Sample Description: Work Order: 22H0420

Date Received: 8/9/2022

Field Sample #: HW-S (s)

Sampled: 8/8/2022 10:30

Sample ID: 22H0420-01
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time	Analyst	
Perfluorobutanoic acid (PFBA)	100	1.7	0.64		1	riag/Quai	SOP-454 PFAS	8/29/22	Analyzed	Analyst	
Perfluorobutanesulfonic acid (PFBS)				ng/L			SOP-454 PFAS		9/19/22 0:01 9/19/22 0:01	BLH BLH	
Perfluoropentanoic acid (PFPeA)	5.2	1.7	0.24	ng/L	1			8/29/22			
•	360	86	17	ng/L	50		SOP-454 PFAS	8/29/22	9/20/22 20:22	BLH	
Perfluorohexanoic acid (PFHxA)	220 ND	86	17	ng/L	50		SOP-454 PFAS	8/29/22	9/20/22 20:22	BLH	
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.34	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.21	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	0.91	1.7	0.53	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorodecanoic acid (PFDA)	ND	1.7	0.42	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoroheptanesulfonic acid (PFHpS)	27	1.7	0.81	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
N-EtFOSAA	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
N-MeFOSAA	ND	1.7	0.66	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	0.32	1.7	0.24	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorononanesulfonic acid (PFNS)	0.21	1.7	0.15	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoro-1-hexanesulfonamide (FHxSA)	4.0	1.7	0.27	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoro-1-butanesulfonamide (FBSA)	3.2	1.7	0.17	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorohexanesulfonic acid (PFHxS)	120	1.7	0.29	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoropetanesulfonic acid (PFPeS)	8.7	1.7	0.22	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluoroheptanoic acid (PFHpA)	160	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	
Perfluorooctanoic acid (PFOA)	230	86	29	ng/L	50		SOP-454 PFAS	8/29/22	9/20/22 20:22	BLH	
Perfluorooctanesulfonic acid (PFOS)	160	86	26	ng/L	50		SOP-454 PFAS	8/29/22	9/20/22 20:22	BLH	
Perfluorononanoic acid (PFNA)	160	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:01	BLH	

Project Location: Hyannis, MA Sample Description: Work Order: 22H0420

Date Received: 8/9/2022
Field Sample #: HW-S (m)

Sampled: 8/8/2022 11:15

Sample ID: 22H0420-02
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	4.1	1.7	0.64	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoropentanoic acid (PFPeA)	14	1.7	0.34	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorohexanoic acid (PFHxA)	9.9	1.7	0.33	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.33	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.21	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorodecanoic acid (PFDA)	ND	1.7	0.42	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.38	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.20	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	0.81	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
N-EtFOSAA	ND	1.7	0.54	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
N-MeFOSAA	ND	1.7	0.65	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.31	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.28	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.14	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.7	0.27	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoro-1-butanesulfonamide (FBSA)	0.20	1.7	0.16	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorohexanesulfonic acid (PFHxS)	7.4	1.7	0.29	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.36	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.29	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7	0.31	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoropetanesulfonic acid (PFPeS)	0.45	1.7	0.22	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.32	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.24	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluoroheptanoic acid (PFHpA)	6.5	1.7	0.30	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorooctanoic acid (PFOA)	4.9	1.7	0.58	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorooctanesulfonic acid (PFOS)	9.6	1.7	0.52	ng/L	1		SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH
Perfluorononanoic acid (PFNA)	1.3	1.7	0.30	ng/L	1	J	SOP-454 PFAS	8/29/22	9/19/22 0:08	BLH

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22H0420-01 [HW-S (s)]	B315759	289	1.00	08/29/22
22H0420-01RE1 [HW-S (s)]	B315759	289	1.00	08/29/22
22H0420-02 [HW-S (m)]	B315759	292	1.00	08/29/22

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B315759 - SOP 454-PFAAS	Result	Liiiit	Jinus	Level	Tobuit	, siele	Zimits		Limit	110103
Blank (B315759-BLK1)				Prepared: 08	/29/22 Analy	/zed: 09/18/	22			
Perfluorobutanoic acid (PFBA)	ND	1.7	ng/L	-						
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.7	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.7	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	1.7	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.7	ng/L							
4,8-dioxa-3H-perfluorononanoic acid	ND	1.7	ng/L							
ADONA) Hexafluoropropylene oxide dimer acid	ND	1.7	ng/L							
HFPO-DA)										
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.7	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.7	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.7	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	1.7	ng/L							
N-EtFOSAA	ND	1.7	ng/L							
J-MeFOSAA	ND	1.7	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.7	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.7	ng/L							
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.7	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.7	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.7	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.7	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.7	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.7	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	ng/L							
:2 Fluorotelomersulfonic acid (6:2FTS A)	0.55	1.7	ng/L							J
Perfluoropetanesulfonic acid (PFPeS)	ND	1.7	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.7	ng/L							
Ionafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	1.7	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.7	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.7	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.7	ng/L							
erfluorononanoic acid (PFNA)	ND	1.7	ng/L							
CS (B315759-BS1)					/29/22 Analy					
Perfluorobutanoic acid (PFBA)	9.91	1.8	ng/L	8.90		111	73-129			
erfluorobutanesulfonic acid (PFBS)	9.17	1.8	ng/L	7.88		116	72-130			
erfluoropentanoic acid (PFPeA)	10.1	1.8	ng/L	8.90		114	72-129			
erfluorohexanoic acid (PFHxA)	10.2	1.8	ng/L	8.90		114	72-129			
1Cl-PF3OUdS (F53B Major)	6.82	1.8	ng/L	8.39		81.4	55.1-141			
Cl-PF3ONS (F53B Minor)	7.88	1.8	ng/L	8.30		95.0	59.6-146			
,8-dioxa-3H-perfluorononanoic acid ADONA)	9.19	1.8	ng/L	8.39		110	60.3-131			
Hexafluoropropylene oxide dimer acid HFPO-DA)	10.5	1.8	ng/L	8.90		118	37.6-167			
:2 Fluorotelomersulfonic acid (8:2FTS A)	8.64	1.8	ng/L	8.55		101	67-138			
Perfluorodecanoic acid (PFDA)	10.4	1.8	ng/L	8.90		117	71-129			
Perfluorododecanoic acid (PFDoA)	8.86	1.8	ng/L	8.90		99.5	72-134			
Perfluoro(2-ethoxyethane)sulfonic acid	6.07	1.8	ng/L	7.92		76.6	49.4-154			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B315759 - SOP 454-PFAAS										
LCS (B315759-BS1)				Prepared: 08	3/29/22 Analy	zed: 09/18/	/22			
Perfluoroheptanesulfonic acid (PFHpS)	9.76	1.8	ng/L	8.50		115	69-134			
N-EtFOSAA	11.1	1.8	ng/L	8.90		124	61-135			
I-MeFOSAA	10.9	1.8	ng/L	8.90		122	65-136			
Perfluorotetradecanoic acid (PFTA)	11.2	1.8	ng/L	8.90		126	71-132			
erfluorotridecanoic acid (PFTrDA)	10.5	1.8	ng/L	8.90		118	65-144			
:2 Fluorotelomersulfonic acid (4:2FTS A)	9.87	1.8	ng/L	8.32		119	63-143			
erfluorodecanesulfonic acid (PFDS)	8.19	1.8	ng/L	8.59		95.4	53-142			
erfluorooctanesulfonamide (FOSA)	10.7	1.8	ng/L	8.90		120	67-137			
erfluorononanesulfonic acid (PFNS)	8.13	1.8	ng/L	8.55		95.1	69-127			
erfluoro-1-hexanesulfonamide (FHxSA)	8.65	1.8	ng/L	8.90		97.2	61.7-156			
erfluoro-1-butanesulfonamide (FBSA)	9.43	1.8	ng/L	8.90		106	61.3-145			
erfluorohexanesulfonic acid (PFHxS)	9.21	1.8	ng/L	8.15		113	68-131			
erfluoro-4-oxapentanoic acid (PFMPA)	8.51	1.8	ng/L	8.90		95.6	59.8-147			
erfluoro-5-oxahexanoic acid (PFMBA)	9.29	1.8	ng/L	8.90		104	59.5-146			
2 Fluorotelomersulfonic acid (6:2FTS A)	10.2	1.8	ng/L	8.46		121	64-140			
erfluoropetanesulfonic acid (PFPeS)	8.86	1.8	ng/L	8.37		106	71-127			
erfluoroundecanoic acid (PFUnA)	9.97	1.8	ng/L	8.90		112	69-133			
onafluoro-3,6-dioxaheptanoic acid NFDHA)	10.0	1.8	ng/L	8.90		112	58.5-143			
erfluoroheptanoic acid (PFHpA)	10.3	1.8	ng/L	8.90		116	72-130			
erfluorooctanoic acid (PFOA)	10.7	1.8	ng/L	8.90		120	71-133			
erfluorooctanesulfonic acid (PFOS)	9.28	1.8	ng/L	8.24		113	65-140			
erfluorononanoic acid (PFNA)	10.6	1.8	ng/L	8.90		119	69-130			
CS Dup (B315759-BSD1)				Prepared: 08	3/29/22 Analy	zed: 09/18/	/22			
erfluorobutanoic acid (PFBA)	8.82	1.8	ng/L	8.76		101	73-129	11.6	30	
erfluorobutanesulfonic acid (PFBS)	7.91	1.8	ng/L	7.76		102	72-130	14.7	30	
erfluoropentanoic acid (PFPeA)	9.03	1.8	ng/L	8.76		103	72-129	11.4	30	
erfluorohexanoic acid (PFHxA)	9.29	1.8	ng/L	8.76		106	72-129	9.14	30	
CI-PF3OUdS (F53B Major)	6.63	1.8	ng/L	8.25		80.3	55.1-141	2.90	30	
Cl-PF3ONS (F53B Minor)	7.60	1.8	ng/L	8.17		93.0	59.6-146	3.70	30	
8-dioxa-3H-perfluorononanoic acid	8.27	1.8	ng/L	8.25		100	60.3-131	10.5	30	
ADONA) exafluoropropylene oxide dimer acid	5.67	1.8	ng/L	8.76		64.7	37.6-167	60.0	* 30	R-05
HFPO-DA)										
:2 Fluorotelomersulfonic acid (8:2FTS A)	7.14	1.8	ng/L	8.41		84.9	67-138	19.0	30	
erfluorodecanoic acid (PFDA)	9.24	1.8	ng/L	8.76		105	71-129	11.9	30	
erfluorododecanoic acid (PFDoA)	7.68	1.8	ng/L	8.76		87.7	72-134	14.2	30	
erfluoro(2-ethoxyethane)sulfonic acid	5.43	1.8	ng/L	7.80		69.6	49.4-154	11.1	30	
erfluoroheptanesulfonic acid (PFHpS)	9.41	1.8	ng/L	8.37		112	69-134	3.64	30	
-EtFOSAA	10.2	1.8	ng/L	8.76		117	61-135	7.73	30	
-MeFOSAA	10.1	1.8	ng/L	8.76		115	65-136	7.49	30	
erfluorotetradecanoic acid (PFTA)	9.98	1.8	ng/L	8.76		114	71-132	11.7	30	
erfluorotridecanoic acid (PFTrDA)	9.60	1.8	ng/L	8.76		110	65-144	9.05	30	
2 Fluorotelomersulfonic acid (4:2FTS A)	9.08	1.8	ng/L	8.19		111	63-143	8.41	30	
erfluorodecanesulfonic acid (PFDS)	7.31	1.8	ng/L	8.46		86.5	53-142	11.4	30	
erfluorooctanesulfonamide (FOSA)	9.78	1.8	ng/L	8.76		112	67-137	9.20	30	
erfluorononanesulfonic acid (PFNS)	8.61	1.8	ng/L	8.41		102	69-127	5.69	30	
erfluoro-1-hexanesulfonamide (FHxSA)	7.94	1.8	ng/L	8.76		90.6	61.7-156	8.54	30	
erfluoro-1-butanesulfonamide (FBSA)	8.50	1.8	ng/L	8.76		97.0	61.3-145	10.4	30	
erfluorohexanesulfonic acid (PFHxS)	8.01	1.8	ng/L	8.02		99.9	68-131	14.0	30	
erfluoro-4-oxapentanoic acid (PFMPA)	7.77	1.8	ng/L	8.76		88.7	59.8-147	9.11	30	
erfluoro-5-oxahexanoic acid (PFMBA)	8.36	1.8	ng/L	8.76		95.4	59.5-146	10.5	30	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch B315759 - SOP 454-PFAAS												
LCS Dup (B315759-BSD1)	Prepared: 08/29/22 Analyzed: 09/18/22											
6:2 Fluorotelomersulfonic acid (6:2FTS A)	8.93	1.8	ng/L	8.32		107	64-140	13.6	30			
Perfluoropetanesulfonic acid (PFPeS)	8.19	1.8	ng/L	8.24		99.4	71-127	7.82	30			
Perfluoroundecanoic acid (PFUnA)	8.69	1.8	ng/L	8.76		99.2	69-133	13.7	30			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	9.01	1.8	ng/L	8.76		103	58.5-143	10.5	30			
Perfluoroheptanoic acid (PFHpA)	9.45	1.8	ng/L	8.76		108	72-130	8.74	30			
Perfluorooctanoic acid (PFOA)	10.0	1.8	ng/L	8.76		114	71-133	6.57	30			
Perfluorooctanesulfonic acid (PFOS)	8.53	1.8	ng/L	8.11		105	65-140	8.44	30			
Perfluorononanoic acid (PFNA)	9.36	1.8	ng/L	8.76		107	69-130	12.2	30			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
PF-19	Sample re-analyzed at a dilution that was re-fortified with internal standard.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
S-29	Extracted Internal Standard is outside of control limits.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-S (s) (22H0420-01)			Lab File ID: 22H04	120-01.d		Analyzed: 09/19/22 00:01			
M8FOSA	172635.6	3.99655	292,494.00	3.99655	59	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	129551.3	2.513233	244,134.00	2.513233	53	50 - 150	0.0000	+/-0.50	
M2PFTA	741534.6	4.345917	1,239,252.00	4.345917	60	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	61850.55	3.818733	119,127.00	3.818733	52	50 - 150	0.0000	+/-0.50	
MPFBA	379445.9	1.075083	436,533.00	1.0834	87	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	77779.23	2.847483	89,402.00	2.8393	87	50 - 150	0.0082	+/-0.50	
M6PFDA	430278.8	3.81925	629,060.00	3.81925	68	50 - 150	0.0000	+/-0.50	
M3PFBS	118048.6	1.911533	118,592.00	1.911533	100	50 - 150	0.0000	+/-0.50	
M7PFUnA	386232.5	3.962017	737,522.00	3.962017	52	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	582495.9	3.4614	141,111.00	3.4614	413	50 - 150	0.0000	+/-0.50	*
M5PFPeA	334921.8	1.731383	391,952.00	1.731383	85	50 - 150	0.0000	+/-0.50	
M5PFHxA	753039.6	2.596967	820,754.00	2.596967	92	50 - 150	0.0000	+/-0.50	
M3PFHxS	114493	3.226417	114,140.00	3.226417	100	50 - 150	0.0000	+/-0.50	
M4PFHpA	924118.5	3.195017	966,420.00	3.186933	96	50 - 150	0.0081	+/-0.50	
M8PFOA	719439.8	3.469917	882,375.00	3.469917	82	50 - 150	0.0000	+/-0.50	
M8PFOS	75094.32	3.660133	101,504.00	3.660133	74	50 - 150	0.0000	+/-0.50	
M9PFNA	585274.3	3.661167	734,996.00	3.661167	80	50 - 150	0.0000	+/-0.50	
MPFDoA	377588.9	4.104633	753,263.00	4.104633	50	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	115125.6	3.969483	264,483.00	3.969483	44	50 - 150	0.0000	+/-0.50	*
d3-NMeFOSAA	134211.2	3.897717	308,492.00	3.889733	44	50 - 150	0.0080	+/-0.50	*
HW-S (s) (22H0420-01RE1)			Lab File ID: 22H04	120-01RE1.d		Analyzed: 09/20	0/22 20:22		
M5PFPeA	384967.5	1.757717	451,752.00	1.757717	85	50 - 150	0.0000	+/-0.50	
M5PFHxA	768121.3	2.629817	913,633.00	2.629817	84	50 - 150	0.0000	+/-0.50	
M8PFOA	912187.8	3.485883	1,084,912.00	3.485883	84	50 - 150	0.0000	+/-0.50	
M8PFOS	93544.19	3.6761	117,592.00	3.6761	80	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
HW-S (m) (22H0420-02)	S (m) (22H0420-02)					Analyzed: 09/19/22 00:08				
M8FOSA	192545.6	3.99655	292,494.00	3.99655	66	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	109129.2	2.513233	244,134.00	2.513233	45	50 - 150	0.0000	+/-0.50	*	
M2PFTA	811344.4	4.345917	1,239,252.00	4.345917	65	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	69191.6	3.818717	119,127.00	3.818733	58	50 - 150	0.0000	+/-0.50		
MPFBA	349353.6	1.075083	436,533.00	1.0834	80	50 - 150	-0.0083	+/-0.50		
M3HFPO-DA	66176.36	2.847483	89,402.00	2.8393	74	50 - 150	0.0082	+/-0.50		
M6PFDA	525264.5	3.81925	629,060.00	3.81925	83	50 - 150	0.0000	+/-0.50		
M3PFBS	104342	1.911533	118,592.00	1.911533	88	50 - 150	0.0000	+/-0.50		
M7PFUnA	573446.5	3.962017	737,522.00	3.962017	78	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	110837.9	3.4614	141,111.00	3.4614	79	50 - 150	0.0000	+/-0.50		
M5PFPeA	306579.6	1.731383	391,952.00	1.731383	78	50 - 150	0.0000	+/-0.50		
M5PFHxA	666997.4	2.596967	820,754.00	2.596967	81	50 - 150	0.0000	+/-0.50		
M3PFHxS	102457.1	3.2345	114,140.00	3.226417	90	50 - 150	0.0081	+/-0.50		
M4PFHpA	816008.5	3.195017	966,420.00	3.186933	84	50 - 150	0.0081	+/-0.50		
M8PFOA	816402.4	3.469917	882,375.00	3.469917	93	50 - 150	0.0000	+/-0.50		
M8PFOS	92799.28	3.660133	101,504.00	3.660133	91	50 - 150	0.0000	+/-0.50		
M9PFNA	604222.2	3.661167	734,996.00	3.661167	82	50 - 150	0.0000	+/-0.50		
MPFDoA	540864.1	4.104633	753,263.00	4.104633	72	50 - 150	0.0000	+/-0.50		
d5-NEtFOSAA	179057.9	3.969483	264,483.00	3.969483	68	50 - 150	0.0000	+/-0.50		
d3-NMeFOSAA	202718.7	3.897717	308,492.00	3.889733	66	50 - 150	0.0080	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B315759-BLK1)			Lab File ID: B3157	759-BLK1.d		Analyzed: 09/18/22 23:47			
M8FOSA	235350.4	3.99655	292,494.00	3.99655	80	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	209874.7	2.513233	244,134.00	2.513233	86	50 - 150	0.0000	+/-0.50	
M2PFTA	895246.3	4.345917	1,239,252.00	4.345917	72	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	105192.3	3.818717	119,127.00	3.818733	88	50 - 150	0.0000	+/-0.50	
MPFBA	416811.4	1.075083	436,533.00	1.0834	95	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	87619.05	2.8393	89,402.00	2.8393	98	50 - 150	0.0000	+/-0.50	
M6PFDA	591235.4	3.81925	629,060.00	3.81925	94	50 - 150	0.0000	+/-0.50	
M3PFBS	116076	1.911533	118,592.00	1.911533	98	50 - 150	0.0000	+/-0.50	
M7PFUnA	616114.8	3.962017	737,522.00	3.962017	84	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	131790.2	3.4614	141,111.00	3.4614	93	50 - 150	0.0000	+/-0.50	
M5PFPeA	368012.3	1.731383	391,952.00	1.731383	94	50 - 150	0.0000	+/-0.50	
M5PFHxA	773353.6	2.596967	820,754.00	2.596967	94	50 - 150	0.0000	+/-0.50	
M3PFHxS	112651.2	3.226417	114,140.00	3.226417	99	50 - 150	0.0000	+/-0.50	
M4PFHpA	928084.7	3.195	966,420.00	3.186933	96	50 - 150	0.0081	+/-0.50	
M8PFOA	895770	3.469917	882,375.00	3.469917	102	50 - 150	0.0000	+/-0.50	
M8PFOS	100688.9	3.660133	101,504.00	3.660133	99	50 - 150	0.0000	+/-0.50	
M9PFNA	668823.2	3.661167	734,996.00	3.661167	91	50 - 150	0.0000	+/-0.50	
MPFDoA	593757.1	4.104633	753,263.00	4.104633	79	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	202559.8	3.969483	264,483.00	3.969483	77	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	254953.3	3.897717	308,492.00	3.889733	83	50 - 150	0.0080	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B315759-BS1)			Lab File ID: B3157		Analyzed: 09/18/22 23:32				
M8FOSA	249182.4	3.99655	292,494.00	3.99655	85	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	233312.9	2.505033	244,134.00	2.513233	96	50 - 150	-0.0082	+/-0.50	
M2PFTA	999368.5	4.345917	1,239,252.00	4.345917	81	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	122682.2	3.818717	119,127.00	3.818733	103	50 - 150	0.0000	+/-0.50	
MPFBA	437797.8	1.075083	436,533.00	1.0834	100	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	75869.39	2.8393	89,402.00	2.8393	85	50 - 150	0.0000	+/-0.50	
M6PFDA	630033.4	3.81925	629,060.00	3.81925	100	50 - 150	0.0000	+/-0.50	
M3PFBS	123096.6	1.911533	118,592.00	1.911533	104	50 - 150	0.0000	+/-0.50	
M7PFUnA	653542.1	3.962017	737,522.00	3.962017	89	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	143789.4	3.4614	141,111.00	3.4614	102	50 - 150	0.0000	+/-0.50	
M5PFPeA	382479.2	1.731383	391,952.00	1.731383	98	50 - 150	0.0000	+/-0.50	
M5PFHxA	820250.4	2.596967	820,754.00	2.596967	100	50 - 150	0.0000	+/-0.50	
M3PFHxS	120948.4	3.226417	114,140.00	3.226417	106	50 - 150	0.0000	+/-0.50	
M4PFHpA	992325.3	3.195017	966,420.00	3.186933	103	50 - 150	0.0081	+/-0.50	
M8PFOA	934632.3	3.469917	882,375.00	3.469917	106	50 - 150	0.0000	+/-0.50	
M8PFOS	106830.7	3.660133	101,504.00	3.660133	105	50 - 150	0.0000	+/-0.50	
M9PFNA	715393.4	3.661167	734,996.00	3.661167	97	50 - 150	0.0000	+/-0.50	
MPFDoA	648874.4	4.104633	753,263.00	4.104633	86	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	222046.9	3.969483	264,483.00	3.969483	84	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	273662.9	3.889733	308,492.00	3.889733	89	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS Dup (B315759-BSD1)			Lab File ID: B3157	759-BSD1.d	Analyzed: 09/18/22 23:39				
M8FOSA	248617.6	3.99655	292,494.00	3.99655	85	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	220691	2.513233	244,134.00	2.513233	90	50 - 150	0.0000	+/-0.50	
M2PFTA	958538.8	4.345917	1,239,252.00	4.345917	77	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	117820.9	3.818717	119,127.00	3.818733	99	50 - 150	0.0000	+/-0.50	
MPFBA	434884	1.075083	436,533.00	1.0834	100	50 - 150	-0.0083	+/-0.50	
M3HFPO-DA	100725.5	2.847483	89,402.00	2.8393	113	50 - 150	0.0082	+/-0.50	
M6PFDA	597416.1	3.81925	629,060.00	3.81925	95	50 - 150	0.0000	+/-0.50	
M3PFBS	120396.7	1.911533	118,592.00	1.911533	102	50 - 150	0.0000	+/-0.50	
M7PFUnA	655512.6	3.962017	737,522.00	3.962017	89	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	140577.4	3.4614	141,111.00	3.4614	100	50 - 150	0.0000	+/-0.50	
M5PFPeA	380229.4	1.731383	391,952.00	1.731383	97	50 - 150	0.0000	+/-0.50	
M5PFHxA	806588.6	2.596967	820,754.00	2.596967	98	50 - 150	0.0000	+/-0.50	
M3PFHxS	115905.8	3.226417	114,140.00	3.226417	102	50 - 150	0.0000	+/-0.50	
M4PFHpA	963593.4	3.195017	966,420.00	3.186933	100	50 - 150	0.0081	+/-0.50	
M8PFOA	919495.3	3.469917	882,375.00	3.469917	104	50 - 150	0.0000	+/-0.50	
M8PFOS	99059.66	3.660133	101,504.00	3.660133	98	50 - 150	0.0000	+/-0.50	
M9PFNA	693265	3.661167	734,996.00	3.661167	94	50 - 150	0.0000	+/-0.50	
MPFDoA	649476.9	4.104633	753,263.00	4.104633	86	50 - 150	0.0000	+/-0.50	
d5-NEtFOSAA	226189.8	3.969483	264,483.00	3.969483	86	50 - 150	0.0000	+/-0.50	
d3-NMeFOSAA	265771.7	3.889733	308,492.00	3.889733	86	50 - 150	0.0000	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Code

NH-P

Description

New Hampshire Environmental Lab

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA	NH-P
N-MeFOSAA	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Number

2557 NELAP

Expires

09/6/2023

07ho#27

http://www.pacelabs.com

Prepackaged Cooler? Y/N analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Glassware in freezer? Y / N responsible for missing samples from prepacked coolers Disclaimer: Pace Analytical is not responsible for any omitted information on the Cham of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? '<u>Matrix Codes</u>: GW = Ground Water WW = Waste Water DW = Drinking Water *Pace Analytical is not Total Number Of: Preservation Codes: X = Sodium Hydroxide PLASTIC 4 A = Air S = Soil SL = Siudge SOL = Solid O = Other (please define) B = Sodium Bisulfate Courier Use Only O = Other (please define) VIALS S = Sulfuric Acid BACTERIA Preservation Code z > N = Nitric Acid ENCORE M = Methanol GLASS T = Sodium Thiosulfate THE H possible sample concentration within the Conc CT RCP Required
H - High; M - Medium; L - Low; C - Clean; U RCP Certification Form Required Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram
AHA-LAP,LLC not be held accountable. Code column above; ANALYSIS REQUESTED Unknown DINTON MA MCP Required MCP Certification Form Required MA State DW Required Igatozi IIA. DEHZ 39 Spruce Street East Longmeadow, MA 01028 BACTERIA ENCORE Field Filtered Field Filtered Special tequitements PCB ONLY Lab to Filter Lab to Filter VIALS GLASS PLASTIC School MBTA NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD 0 0 0 0 Conc Code Email To: OrnOSSQQ HovSley Municipality Brownfield Due Date: Fax To #: Witten, Com Matrix Code S PWSID # S 10-Day 3-Day EXCEL 4-Day CLP Like Data Pkg Required: COMP/GRAB (Sical) 84922 10:30 (GYab $\exists Z$ PFAS 10-Day (std) PDF · 3 5 Ending Date/Time 8/8/22 11 1S Government Federal format: Other: i-Day .Day Client Comments; Ç Project Entity Beginning Date/Time SOG: 633-10400 3000 Access COC's and Support Requests Date/Time: @/8/22 (Z. OO SIS12 17:03 Date/Time: 81912 1020 Client Sample ID / Description Cate/Time: Phone: 413-525-2332 ならる Fax: 413-525-6405 E)の 34 Date/Time: くれんう S Project Location: KMONNIS 4MM Project Manager: Pxy () K) MCs 55G 0:8 Conjugate Value Face Analytical STACOP TO TO Project Number: 22107 Address: 90 ROUTE inquished by: (signature) Pace Quote Name/Number: F-725g Received by: (signature) eived by: (signature Pace Work Order# Sampled By: SB Invoice Recipient: Lab Comments: Phone:

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 Pace" PEOPLE ADVANCING SCHEICH Doc# 277 Rev 6 July 2022

www.pacelabs.com Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False Client Time Date Received By No Ice On Ice No Cooler How were the samples In Cooler Melted Ice received? Ambient **Direct From Sample** Actual Temp By Gun # Within Were samples within Actual Temp -By Blank # 2-6°C Tempurature? Were Samples Tampered with? Was Custody Seal In tact? Does Chain Agree With Samples? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Were samples received within holding time? Is COC in ink/ Legible? Sampler Name? Analysis? Client? Did COC include all Collection Dates/Times? ID's? pertinent Information? Project? Are Sample labels filled out and legible? Who was notified? Are there Lab to Filters? Who was notified? Are there Rushes? Who was notified? Are there Short Holds? Is there enough Volume? Samples are received within holding time? - MS/MSD? Is there Headspace where applicable? splitting samples required Proper Media/Containers Used? On,CQC? Were trip blanks receiv€ Base Do All Samples Have the proper pH? Acid Containers: Viels 16 oz Amb 1 Liter Plastic 1 Liter Amb. Unp-8oz Amb/Clear 500 mL Plastic 500 mL Amb. HCL-4oz Amb/Clear 250 mL Plastic 250 mL Amb. Meoh-2oz Amb/Clear Flashpoint Col./Bacteria Bisulfate-Encore Other Glass Other Plastic DI-Frozen: Plastic Bag SOC Kit Thiosulfate-Ziplock Perchlorate Sulfuric-**Unused Media** Containers: Vials 16 oz Amb. 1 Liter Plastic 1 Liter Amb. Unp-8oz Amb/Clear 500 mL Plastic 500 mL Amb. HCL-4oz Amb/Clear 250 mL Plastic 250 mL Amb. Meoh-2oz Amb/Clear Flashpoint Col./Bacteria Bisulfate-Encore Other Glass Other Plastic DI-Frozen: Plastic Bag SOC Kit Thiosulfate-Ziplock Perchlorate Sulfuric-Comments:

December 6, 2022

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Hyannis, MA

Client Job Number: Project Number: 22071

Laboratory Work Order Number: 22K0795

Enclosed are results of analyses for samples as received by the laboratory on November 3, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
22K0795-01	7
22K0795-02	8
22K0795-03	9
22K0795-04	10
Sample Preparation Information	11
QC Data	12
Semivolatile Organic Compounds by - LC/MS-MS	12
B322221	12
Flag/Qualifier Summary	14
Internal standard Area & RT Summary	15
Certifications	21
Chain of Custody/Sample Receipt	22

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 12/6/2022

CREILIGE ORDER NOMBER.

PROJECT NUMBER: 22071

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22K0795

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Hyannis, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-W(M)	22K0795-01	Ground Water		SOP-454 PFAS	
ME-1	22K0795-02	Ground Water		SOP-454 PFAS	
ME-2	22K0795-03	Ground Water		SOP-454 PFAS	
ME-3	22K0795-04	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-454 PFAS

Qualifications:

L-01

Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

4,8-Dioxa-3H-perfluorononanoic ac

B322221-BS1

N-EtFOSAA (NEtFOSAA)

B322221-BS1

N-MeFOSAA (NMeFOSAA)

B322221-BS1

Nonafluoro-3,6-dioxaheptanoic acid

B322221-BS1

Perfluorononanesulfonic acid (PFN

B322221-BS1

L-05

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Perfluoroheptanesulfonic acid (PFI

22K0795-01[HW-W(M)], 22K0795-02[ME-1], 22K0795-03[ME-2], 22K0795-04[ME-3], B322221-BS1

Perfluoropetanesulfonic acid (PFP)

22K0795-01[HW-W(M)], 22K0795-02[ME-1], 22K0795-03[ME-2], 22K0795-04[ME-3], B322221-BS1

PF-17

Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and

bias is on the high side.

Analyte & Samples(s) Qualified:

M2-8:2FTS

S080004-IBL1

PF-19

Sample re-analyzed at a dilution that was re-fortified with internal standard.

Analyte & Samples(s) Qualified:

22K0795-03RE1[ME-2]

PF-23

Qualifier ion ratio <50% of associated calibration. Detection is suspect.

Analyte & Samples(s) Qualified:

Perfluorodecanesulfonic acid (PFD

22K0795-03[ME-2]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-4:2FTS

22K0795-02[ME-1], 22K0795-03[ME-2]

22K0795-02[ME-1]

M2-8:2FTS

S080004-CCV2

M2PFTA

B322221-BLK1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2

22K0795-01[HW-W(M)], 22K0795-02[ME-1], 22K0795-04[ME-3], S079888-CCV1

Perfluorotetradecanoic acid (PFTA

22K0795-01[HW-W(M)], 22K0795-02[ME-1], 22K0795-03[ME-2], 22K0795-04[ME-3], S079888-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Hyannis, MA Sample Description: Work Order: 22K0795

Date Received: 11/3/2022

Field Sample #: HW-W(M)

Sampled: 10/31/2022 13:15

Sample ID: 22K0795-01
Sample Matrix: Ground Water

Semivolatile	Organic	Compounds	by - L	C/MS-MS

			Schiivolatiic	Organic Con	inpounds by - i	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	15	1.7	0.54	ng/L	1	ring/Quui	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorobutanesulfonic acid (PFBS)	0.52	1.7	0.49	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoropentanoic acid (PFPeA)	40	1.7	0.56	ng/L	1	·	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorohexanoic acid (PFHxA)	24	1.7	0.55	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.58	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.71	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	1.1	1.7	0.57	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorodecanoic acid (PFDA)	ND	1.7	0.63	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.61	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.55	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoroheptanesulfonic acid (PFHpS)	0.49	1.7	0.38	ng/L	1	L-05, J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.53	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.52	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorooctanesulfonamide (FOSA)	130	1.7	0.66	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.73	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	1.2	1.7	0.93	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorohexanesulfonic acid (PFHxS)	25	1.7	0.51	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.50	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	7.2	1.7	1.2	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoropetanesulfonic acid (PFPeS)	0.69	1.7	0.58	ng/L	1	L-05, J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoroundecanoic acid (PFUnA)	1.6	1.7	0.61	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.48	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluoroheptanoic acid (PFHpA)	13	1.7	0.43	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorooctanoic acid (PFOA)	7.1	1.7	0.62	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorooctanesulfonic acid (PFOS)	130	1.7	0.36	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB
Perfluorononanoic acid (PFNA)	2.0	1.7	0.59	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:15	RRB

Project Location: Hyannis, MA Sample Description: Work Order: 22K0795

Date Received: 11/3/2022
Field Sample #: ME-1

Sampled: 11/2/2022 10:35

Sample ID: 22K0795-02
Sample Matrix: Ground Water

				J	inpounts by - 1			Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	21	1.7	0.54	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorobutanesulfonic acid (PFBS)	3.1	1.7	0.48	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoropentanoic acid (PFPeA)	63	1.7	0.55	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorohexanoic acid (PFHxA)	38	1.7	0.55	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.57	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.45	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.29	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.70	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorodecanoic acid (PFDA)	1.0	1.7	0.62	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.60	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.54	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoroheptanesulfonic acid (PFHpS)	3.4	1.7	0.37	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.51	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.51	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.45	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.66	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.72	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	1.6	1.7	0.92	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoro-1-butanesulfonamide (FBSA)	1.9	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorohexanesulfonic acid (PFHxS)	40	1.7	0.51	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.50	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	26	1.7	1.2	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoropetanesulfonic acid (PFPeS)	3.6	1.7	0.57	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.60	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluoroheptanoic acid (PFHpA)	17	1.7	0.43	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorooctanoic acid (PFOA)	21	1.7	0.61	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorooctanesulfonic acid (PFOS)	87	1.7	0.36	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB
Perfluorononanoic acid (PFNA)	15	1.7	0.59	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:23	RRB

Project Location: Hyannis, MA Sample Description: Work Order: 22K0795

Date Received: 11/3/2022
Field Sample #: ME-2

Sampled: 11/2/2022 11:00

Sample ID: 22K0795-03
Sample Matrix: Ground Water

		2	semivolatile	Organic Coi	mpounds by - I	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	26	1.7	0.56	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorobutanesulfonic acid (PFBS)	6.2	1.7	0.50	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoropentanoic acid (PFPeA)	94	1.7	0.57	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorohexanoic acid (PFHxA)	66	1.7	0.57	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.60	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.31	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.73	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	21	1.7	0.59	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorodecanoic acid (PFDA)	1.4	1.7	0.65	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.63	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoroheptanesulfonic acid (PFHpS)	6.5	1.7	0.39	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.7	0.48	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.54	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.53	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.53	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorodecanesulfonic acid (PFDS)	0.58	1.7	0.47	ng/L	1	PF-23, J	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.68	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.75	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	1.0	1.7	0.95	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoro-1-butanesulfonamide (FBSA)	4.8	1.7	0.46	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorohexanesulfonic acid (PFHxS)	71	1.7	0.53	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.48	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	250	17	13	ng/L	10		SOP-454 PFAS	11/10/22	11/28/22 17:20	RRB
Perfluoropetanesulfonic acid (PFPeS)	6.8	1.7	0.60	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.62	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.49	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluoroheptanoic acid (PFHpA)	36	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorooctanoic acid (PFOA)	32	1.7	0.64	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorooctanesulfonic acid (PFOS)	93	1.7	0.37	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB
Perfluorononanoic acid (PFNA)	23	1.7	0.61	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:30	RRB

Project Location: Hyannis, MA Sample Description: Work Order: 22K0795

Date Received: 11/3/2022
Field Sample #: ME-3

Sampled: 11/2/2022 10:55

Sample ID: 22K0795-04
Sample Matrix: Ground Water

				0.g	p					
	D 1/	DI	DI	TT *4	D'1 4'	FI (O I	M.d. 1	Date	Date/Time	
Analyte Perfluorobutanoic acid (PFBA)	Results	RL	DL	Units	Dilution 1	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	9.0	1.7	0.55	ng/L	-		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
,	2.3	1.7	0.49	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoropentanoic acid (PFPeA)	25	1.7	0.57	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorohexanoic acid (PFHxA)	19	1.7	0.56	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.59	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.30	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.72	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.58	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorodecanoic acid (PFDA)	ND	1.7	0.64	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.62	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoroheptanesulfonic acid (PFHpS)	2.3	1.7	0.38	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
N-EtFOSAA (NEtFOSAA)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.54	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.53	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.45	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.53	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorooctanesulfonamide (FOSA)	5.3	1.7	0.68	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.74	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoro-1-hexanesulfonamide (FHxSA)	3.5	1.7	0.94	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoro-1-butanesulfonamide (FBSA)	1.1	1.7	0.45	ng/L	1	J	SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorohexanesulfonic acid (PFHxS)	32	1.7	0.52	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.51	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
6:2 Fluorotelomersulfonic acid (6:2FTS A)	3.5	1.7	1.3	ng/L	1	V-05	SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoropetanesulfonic acid (PFPeS)	2.8	1.7	0.59	ng/L	1	L-05	SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.62	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.49	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluoroheptanoic acid (PFHpA)	8.2	1.7	0.44	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorooctanoic acid (PFOA)	14	1.7	0.63	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorooctanesulfonic acid (PFOS)	86	1.7	0.37	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB
Perfluorononanoic acid (PFNA)	7.0	1.7	0.60	ng/L	1		SOP-454 PFAS	11/10/22	11/22/22 21:37	RRB

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
22K0795-01 [HW-W(M)]	B322221	294	1.00	11/10/22	
22K0795-02 [ME-1]	B322221	298	1.00	11/10/22	
22K0795-03 [ME-2]	B322221	286	1.00	11/10/22	
22K0795-03RE1 [ME-2]	B322221	286	1.00	11/10/22	
22K0795-04 [ME-3]	B322221	289	1.00	11/10/22	

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

	D 1	Reporting	II'	Spike	Source	0/BEC	%REC	DDD	RPD	NT 4
nalyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B322221 - SOP 454-PFAAS										
lank (B322221-BLK1)				Prepared: 11	/10/22 Analy	yzed: 11/22/2	22			
erfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
erfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
exafluoropropylene oxide dimer acid IFPO-DA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid PEESA) erfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
• • • • •	ND	1.8	ng/L							
-EtFOSAA (NEtFOSAA)	ND	1.8	ng/L							
-MeFOSAA (NMeFOSAA)	ND	1.8	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
onafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
NFDHA) erfluoroheptanoic acid (PFHpA)	NID	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND ND	1.8	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND ND	1.8	ng/L							
erfluorononanoic acid (PFNA)	ND ND	1.8	ng/L							
CS (B322221-BS1)	ND	1.0	0-2	Prenared: 11	/10/22 Analy	vzed: 11/22/	22			
erfluorobutanoic acid (PFBA)	11.2	1.8	ng/L	8.94		126	73-129			
erfluorobutanesulfonic acid (PFBS)	11.2	1.8	ng/L	8.94 7.92		126	73-129			
erfluoropentanoic acid (PFPeA)	9.81	1.8	ng/L	7.92 8.94		124	72-130 72-129			
erfluorohexanoic acid (PFHxA)	11.2 11.4	1.8	ng/L	8.94		128	72-129			
Cl-PF3OUdS (F53B Major)	10.2	1.8	ng/L	8.43		128	55.1-141			
CI-PF3ONS (F53B Minor)		1.8	ng/L	8.34		115	59.6-146			
8-Dioxa-3H-perfluorononanoic acid	9.56	1.8	ng/L	8.43		113 *				L-01
a-Dioxa-5H-perfluorononanoic acid ADONA) exafluoropropylene oxide dimer acid	12.0 8.72	1.8	ng/L	8.43		97.5	37.6-167			L-UI
IFPO-DA) 2 Fluorotelomersulfonic acid (8:2FTS A)	9.92	1.8	ng/L	8.59		115	67-138			
erfluorodecanoic acid (PFDA)	11.1	1.8	ng/L	8.94		124	71-129			
	11.1	1.0	_							
erfluorododecanoic acid (PFDoA)	11.9	1.8	ng/L	8.94		133	72-134			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B322221 - SOP 454-PFAAS										
LCS (B322221-BS1)				Prepared: 11	/10/22 Analy	yzed: 11/22	/22			
Perfluoroheptanesulfonic acid (PFHpS)	12.4	1.8	ng/L	8.54	<u></u>	145	* 69-134			L-05
N-EtFOSAA (NEtFOSAA)	14.4	1.8	ng/L	8.94		161	* 61-135			L-01
N-MeFOSAA (NMeFOSAA)	13.6	1.8	ng/L	8.94		152	* 65-136			L-01
Perfluorotetradecanoic acid (PFTA)	9.43	1.8	ng/L	8.94		105	71-132			
Perfluorotridecanoic acid (PFTrDA)	11.2	1.8	ng/L	8.94		125	65-144			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	10.4	1.8	ng/L	8.36		125	63-143			
Perfluorodecanesulfonic acid (PFDS)	10.8	1.8	ng/L	8.63		125	53-142			
Perfluorooctanesulfonamide (FOSA)	12.0	1.8	ng/L	8.94		134	67-137			
Perfluorononanesulfonic acid (PFNS)	11.6	1.8	ng/L	8.59		135	* 69-127			L-01
Perfluoro-1-hexanesulfonamide (FHxSA)	11.4	1.8	ng/L	8.94		128	61.7-156			
Perfluoro-1-butanesulfonamide (FBSA)	10.3	1.8	ng/L	8.94		115	61.3-145			
Perfluorohexanesulfonic acid (PFHxS)	10.2	1.8	ng/L	8.18		125	68-131			
Perfluoro-4-oxapentanoic acid (PFMPA)	11.9	1.8	ng/L	8.94		133	59.8-147			
Perfluoro-5-oxahexanoic acid (PFMBA)	12.1	1.8	ng/L	8.94		135	59.5-146			
5:2 Fluorotelomersulfonic acid (6:2FTS A)	11.0	1.8	ng/L	8.50		129	64-140			
erfluoropetanesulfonic acid (PFPeS)	10.9	1.8	ng/L	8.41		130	* 71-127			L-05
Perfluoroundecanoic acid (PFUnA)	10.8	1.8	ng/L	8.94		121	69-133			
onafluoro-3,6-dioxaheptanoic acid NFDHA)	14.4	1.8	ng/L	8.94		161	* 58.5-143			L-01
Perfluoroheptanoic acid (PFHpA)	11.2	1.8	ng/L	8.94		125	72-130			
Perfluorooctanoic acid (PFOA)	11.4	1.8	ng/L	8.94		128	71-133			
erfluorooctanesulfonic acid (PFOS)	9.77	1.8	ng/L	8.27		118	65-140			
erfluorononanoic acid (PFNA)	11.6	1.8	ng/L	8.94		130	69-130			

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established limits.
÷	Wide recovery limits established for difficult compound.
	•
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
J L-01	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high
L-01	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this
L-01 L-05	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side. Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated
L-01 L-05 PF-17	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side. Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.
L-01 L-05 PF-17 PF-19	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side. Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side. Sample re-analyzed at a dilution that was re-fortified with internal standard.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-W(M) (22K0795-01)	•		Lab File ID: 22K0	795-01.d		Analyzed: 11/22/22 21:15			
M8FOSA	242628.7	3.99655	312,418.00	3.99655	78	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	59221.52	2.472183	101,803.00	2.463967	58	50 - 150	0.0082	+/-0.50	
M2PFTA	996176.9	4.313416	1,079,117.00	4.313416	92	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	135391.9	3.802783	183,419.00	3.802783	74	50 - 150	0.0000	+/-0.50	
MPFBA	446265.3	1.0834	495,260.00	1.0834	90	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	107163.6	2.806567	93,486.00	2.798383	115	50 - 150	0.0082	+/-0.50	
M6PFDA	618055.6	3.803317	706,312.00	3.803317	88	50 - 150	0.0000	+/-0.50	
M3PFBS	113744.7	1.886667	118,777.00	1.878383	96	50 - 150	0.0083	+/-0.50	
M7PFUnA	656017.3	3.938033	742,292.00	3.938033	88	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	47826.84	3.445283	73,821.00	3.445283	65	50 - 150	0.0000	+/-0.50	
M5PFPeA	372485	1.714833	393,340.00	1.706567	95	50 - 150	0.0083	+/-0.50	
M5PFHxA	678328.1	2.555917	714,540.00	2.5477	95	50 - 150	0.0082	+/-0.50	
M3PFHxS	102611.1	3.21025	113,170.00	3.21025	91	50 - 150	0.0000	+/-0.50	
M4PFHpA	793998.5	3.170783	827,607.00	3.170783	96	50 - 150	0.0000	+/-0.50	
M8PFOA	732700.6	3.461933	780,447.00	3.453817	94	50 - 150	0.0081	+/-0.50	
M8PFOS	94713.53	3.65215	106,681.00	3.65215	89	50 - 150	0.0000	+/-0.50	
M9PFNA	535718.6	3.653183	605,116.00	3.653183	89	50 - 150	0.0000	+/-0.50	
MPFDoA	678873.5	4.07265	759,435.00	4.07265	89	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	158150.8	3.9455	199,185.00	3.9455	79	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	195917.6	3.873767	240,973.00	3.873767	81	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-1 (22K0795-02)			Lab File ID: 22K07	795-02.d		Analyzed: 11/22/22 21:23			
M8FOSA	189754.8	3.99655	312,418.00	3.99655	61	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	47072.7	2.472183	2.472183 101,803.00		46	50 - 150	0.0082	+/-0.50	*
M2PFTA	693366.2	4.305333	1,079,117.00	4.313416	64	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	108664.5	3.794817	183,419.00	3.802783	59	50 - 150	-0.0080	+/-0.50	
MPFBA	360559.7	1.0834	495,260.00	1.0834	73	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	83129.78	2.806567	93,486.00	2.798383	89	50 - 150	0.0082	+/-0.50	
M6PFDA	443263.4	3.79535	3.79535 706,312.00		63	50 - 150	-0.0080	+/-0.50	
M3PFBS	92378.12	1.878383	1.878383 118,777.00		78	50 - 150	0.0000	+/-0.50	
M7PFUnA	467103.5	3.938033	742,292.00	3.938033	63	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	36103.75	3.445283	73,821.00	3.445283	49	50 - 150	0.0000	+/-0.50	*
M5PFPeA	297692.6	1.714833	393,340.00	1.706567	76	50 - 150	0.0083	+/-0.50	
M5PFHxA	559820.7	2.5477	714,540.00	2.5477	78	50 - 150	0.0000	+/-0.50	
M3PFHxS	80950.85	3.21025	113,170.00	3.21025	72	50 - 150	0.0000	+/-0.50	
M4PFHpA	625861.2	3.170783	827,607.00	3.170783	76	50 - 150	0.0000	+/-0.50	
M8PFOA	590770.7	3.453817	780,447.00	3.453817	76	50 - 150	0.0000	+/-0.50	
M8PFOS	75379.69	3.644167	106,681.00	3.65215	71	50 - 150	-0.0080	+/-0.50	
M9PFNA	408873.6	3.6452	605,116.00	3.653183	68	50 - 150	-0.0080	+/-0.50	
MPFDoA	473102.6	4.07265	759,435.00	4.07265	62	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	113218.2	3.9455	199,185.00	3.9455	57	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	138816.6	3.873767	240,973.00	3.873767	58	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-2 (22K0795-03)			Lab File ID: 22K0	795-03.d		Analyzed: 11/22/22 21:30			
M8FOSA	177443.1	3.99655	312,418.00	3.99655	57	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	43274.26	2.463967	101,803.00	2.463967	43	50 - 150	0.0000	+/-0.50	*
M2PFTA	708922.6	4.305333	1,079,117.00	4.313416	66	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	101997.2	3.794817	183,419.00	3.802783	56	50 - 150	-0.0080	+/-0.50	
MPFBA	333940	1.0834	495,260.00	1.0834	67	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	82652	2.798383	93,486.00	2.798383	88	50 - 150	0.0000	+/-0.50	
M6PFDA	469435.3	3.795333	706,312.00	3.803317	66	50 - 150	-0.0080	+/-0.50	
M3PFBS	88444.45	1.878383	118,777.00	1.878383	74	50 - 150	0.0000	+/-0.50	
M7PFUnA	493671.4	3.938033	742,292.00	3.938033	67	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	68808.36	3.445283	73,821.00	3.445283	93	50 - 150	0.0000	+/-0.50	
M5PFPeA	281011.8	1.706567	393,340.00	1.706567	71	50 - 150	0.0000	+/-0.50	
M5PFHxA	521159.8	2.539483	714,540.00	2.5477	73	50 - 150	-0.0082	+/-0.50	
M3PFHxS	82679.05	3.201883	113,170.00	3.21025	73	50 - 150	-0.0084	+/-0.50	
M4PFHpA	617289.3	3.170783	827,607.00	3.170783	75	50 - 150	0.0000	+/-0.50	
M8PFOA	586121.1	3.453817	780,447.00	3.453817	75	50 - 150	0.0000	+/-0.50	
M8PFOS	72119.32	3.644167	106,681.00	3.65215	68	50 - 150	-0.0080	+/-0.50	
M9PFNA	426628.6	3.6452	605,116.00	3.653183	71	50 - 150	-0.0080	+/-0.50	
MPFDoA	485945.3	4.06465	759,435.00	4.07265	64	50 - 150	-0.0080	+/-0.50	
D5-NEtFOSAA	118636.6	3.9455	199,185.00	3.9455	60	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	148889.8	3.8656	240,973.00	3.873767	62	50 - 150	-0.0082	+/-0.50	
ME-2 (22K0795-03RE1)			Lab File ID: 22K0	795-03RE1.d		Analyzed: 11/2	8/22 17:20		
M2-6:2FTS	82454.66	3.4205	87,113.00	3.420517	95	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-3 (22K0795-04)			Lab File ID: 22K0	795-04.d		Analyzed: 11/22	2/22 21:37		
M8FOSA	222479.5	3.99655	312,418.00	3.99655	71	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	58037	2.463967	101,803.00	2.463967	57	50 - 150	0.0000	+/-0.50	
M2PFTA	868041.6	4.305333	1,079,117.00	4.313416	80	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	141147.9	3.794817	183,419.00	3.802783	77	50 - 150	-0.0080	+/-0.50	
MPFBA	421169.1	1.0834	495,260.00	1.0834	85	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	98751.81	2.798383	93,486.00	2.798383	106	50 - 150	0.0000	+/-0.50	
M6PFDA	575530.3	3.795333	706,312.00	3.803317	81	50 - 150	-0.0080	+/-0.50	
M3PFBS	110735.9	1.878383	118,777.00	1.878383	93	50 - 150	0.0000	+/-0.50	
M7PFUnA	603375.5	3.938033	742,292.00	3.938033	81	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	46615.85	3.437283	73,821.00	3.445283	63	50 - 150	-0.0080	+/-0.50	
M5PFPeA	367275.8	1.706567	393,340.00	1.706567	93	50 - 150	0.0000	+/-0.50	
M5PFHxA	669560.7	2.5477	714,540.00	2.5477	94	50 - 150	0.0000	+/-0.50	
M3PFHxS	103943.5	3.201883	113,170.00	3.21025	92	50 - 150	-0.0084	+/-0.50	
M4PFHpA	777203.7	3.170783	827,607.00	3.170783	94	50 - 150	0.0000	+/-0.50	
M8PFOA	700519.6	3.453817	780,447.00	3.453817	90	50 - 150	0.0000	+/-0.50	
M8PFOS	92026.52	3.644167	106,681.00	3.65215	86	50 - 150	-0.0080	+/-0.50	
M9PFNA	542897.1	3.6452	605,116.00	3.653183	90	50 - 150	-0.0080	+/-0.50	
MPFDoA	608166.8	4.07265	759,435.00	4.07265	80	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	139124.8	3.9455	199,185.00	3.9455	70	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	180276.8	3.8656	240,973.00	3.873767	75	50 - 150	-0.0082	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B322221-BLK1)		Lab File ID: B3222	221-BLK1.d		Analyzed: 11/22	d: 11/22/22 18:51			
M8FOSA	213335	3.99655	312,418.00	3.99655	68	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	87716.46	2.472183	101,803.00	2.480383	86	50 - 150	-0.0082	+/-0.50	
M2PFTA	473825.2	4.313416	1,079,117.00	4.313416	44	50 - 150	0.0000	+/-0.50	*
M2-8:2FTS	173409.5	3.802783	183,419.00	3.802783	95	50 - 150	0.0000	+/-0.50	
MPFBA	486533.2	1.0834	495,260.00	1.0834	98	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	98440.46	2.81475	93,486.00	2.81475	105	50 - 150	0.0000	+/-0.50	
M6PFDA	600000.1	3.803317	706,312.00	3.803317	85	50 - 150	0.0000	+/-0.50	
M3PFBS	108015.8	1.886667	118,777.00	1.894967	91	50 - 150	-0.0083	+/-0.50	
M7PFUnA	568612.3	3.946033	742,292.00	3.946033	77	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	59491.58	3.445283	73,821.00	3.453267	81	50 - 150	-0.0080	+/-0.50	
M5PFPeA	367885.9	1.714833	393,340.00	1.7231	94	50 - 150	-0.0083	+/-0.50	
M5PFHxA	675459.5	2.555917	714,540.00	2.555917	95	50 - 150	0.0000	+/-0.50	
M3PFHxS	98206.73	3.21025	113,170.00	3.21025	87	50 - 150	0.0000	+/-0.50	
M4PFHpA	781830.1	3.17885	827,607.00	3.17885	94	50 - 150	0.0000	+/-0.50	
M8PFOA	727787	3.461933	780,447.00	3.461933	93	50 - 150	0.0000	+/-0.50	
M8PFOS	94735.94	3.65215	106,681.00	3.65215	89	50 - 150	0.0000	+/-0.50	
M9PFNA	522597.2	3.653183	605,116.00	3.653183	86	50 - 150	0.0000	+/-0.50	
MPFDoA	409676.9	4.08065	759,435.00	4.08065	54	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	157785.5	3.9535	199,185.00	3.9535	79	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	229708.1	3.88175	240,973.00	3.88175	95	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
LCS (B322221-BS1)			Lab File ID: B3222	221-BS1.d		Analyzed: 11/22	nalyzed: 11/22/22 18:44			
M8FOSA	203310.1	3.99655	312,418.00	3.99655	65	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	84878.7	2.480383	101,803.00	2.480383	83	50 - 150	0.0000	+/-0.50		
M2PFTA	852204.3	4.313416	1,079,117.00	4.313416	79	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	178483.7	3.802783	183,419.00	3.802783	97	50 - 150	0.0000	+/-0.50		
MPFBA	451281.2	1.0834	495,260.00	1.0834	91	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	104238.1	2.806567	93,486.00	2.81475	112	50 - 150	-0.0082	+/-0.50		
M6PFDA	592720.9	3.803317	706,312.00	3.803317	84	50 - 150	0.0000	+/-0.50		
M3PFBS	101770.8	1.886667	118,777.00	1.894967	86	50 - 150	-0.0083	+/-0.50		
M7PFUnA	645478.8	3.946033	742,292.00	3.946033	87	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	61007.17	3.453267	73,821.00	3.453267	83	50 - 150	0.0000	+/-0.50		
M5PFPeA	341912	1.714833	393,340.00	1.7231	87	50 - 150	-0.0083	+/-0.50		
M5PFHxA	618369.1	2.555917	714,540.00	2.555917	87	50 - 150	0.0000	+/-0.50		
M3PFHxS	96874.05	3.21025	113,170.00	3.21025	86	50 - 150	0.0000	+/-0.50		
M4PFHpA	721475.4	3.17885	827,607.00	3.17885	87	50 - 150	0.0000	+/-0.50		
M8PFOA	693171.6	3.461933	780,447.00	3.461933	89	50 - 150	0.0000	+/-0.50		
M8PFOS	91005.44	3.65215	106,681.00	3.65215	85	50 - 150	0.0000	+/-0.50		
M9PFNA	520457.9	3.653183	605,116.00	3.653183	86	50 - 150	0.0000	+/-0.50		
MPFDoA	612593.7	4.08065	759,435.00	4.08065	81	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	162349.9	3.9535	199,185.00	3.9535	82	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	219998	3.88175	240,973.00	3.88175	91	50 - 150	0.0000	+/-0.50		

CERTIFICATIONS

Certified Analyses included in this Report

Code

NH-P

Description

New Hampshire Environmental Lab

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Number

2557 NELAP

Expires

09/6/2023

Page 22 of 23

responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Glassware in freezer? Y / N Analytical values your partnership on each project and will try to assist with missing information, but will Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Prepackaged Cooler Y 🌶 Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware-il) the fridge? from prepacked coolers 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water *Pace Analytical is not Total Number Of: 2 Preservation Codes: X = Sodium Hydroxide A = Air S = Soil SL = Studge SOL = Solid O = Other (please define) B = Sodium Bisulfate Courier Use Only O = Other (please define) BACTERIA 5 = Sulfuric Acid Preservation Code PLASTIC N = Nitric Acid ENCORE M = Methanol GLASS VIALS T = Sodium Thiosulfate H HOL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited ☐ Chromatogram ☐ AIHA-LAP,LLC not be held accountable. Code column above: ANALYSIS REQUESTED Doc # 381 Rev 5_07/13/2027 CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required PFAS (isatops della X × 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered ies exercisoryo Field Filtered Age of Deputy and the Lab to Filter Lab to Filter PCB ONL GLASS PLASTIC School × X >NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD VIALS 0 0 0 0 Matrix Conc Code Email To: DMXSCA(E) horsity http://www.pacelabs.com Municipality Brownfield Due Date: 3 Sow 3 SE # CIISMA 10-Day <u> Padroversinj</u>, personbaj 3-Day EXCEL 4-Day Clent Sample D/ Description The Segments Eight Controlled Date/Time Controlled Controlled Date/Time Controlled CLP Like Data Pkg Required; 193/22 13:15 Grap 11/22 10:35 Grab 11/12/11:00/Gran 1142410:55/5rab PDF PFAS 10-Day (std) Government Federal ormat: 2.Day Other: Client Comments: -Day ·Day City Project Entity YOUR COR SONDWICK MA Access COC's and Support Requests SOLOXOL 080) 22/5/2 163/22 1030 1/3/72 / 620 Phone: 413-525-2332 TENER(B) Date/Time: Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: ME - 2 3 Project Manager: Bryan Massa Project Location: HYCLY , MA 一到 ME-833-6600 E P Pace Analytical Sampled By: Sarah 7 Relinquished by: (signature) elinguished by: (signature) Pace Quote Name/Number Received by: (signature) Received by: (signature) Pace Work Order# Invoice Recipient: 0 Project Number; Address:

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 Pace" PEOPLE ADVINCING SCIENC Doc# 277 Rev 6 July 2022

www.pacelabs.com Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False Witten Client Time Date Received By No Ice In Cooler No Cooler On Ice How were the samples received? Melted Ice **Ambient** Direct From Sample Actual Temp -By Gun # Within Were samples within By Blank # Actual Temp -2-6°C Tempurature? Were Samples Tampered with? Was Custody Seal In tact? Does Chain Agree With Samples? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Were samples received within holding time? Is COC in ink/ Legible? Client? Analysis? Sampler Name? Did COC include all ID's? Collection Dates/Times? pertinent Information? Project? Are Sample labels filled out and legible? Who was notified? Are there Lab to Filters? Who was notified? Are there Rushes? Who was notified? Are there Short Holds? Is there enough Volume? Samples are received within holding time? MS/MSD?.... Is there Headspace where applicable? splitting samples required Proper Media/Containers Used? On COC? Were trip blanks receive Base Do All Samples Have the proper pH? Acid Containers: Vials 16 oz Amb. 1 Liter Plastic 1 Liter Amb. Unp-8oz Amb/Clear 500 mL Plastic HCL-500 mL Amb. 4oz Amb/Clear 250 mL Plastic 250 mL Amb. Meoh-2oz Amb/Clear Flashpoint Col./Bacteria Bisulfate-Encore Other Glass Other Plastic DI-Frozen: Plastic Bag SOC Kit Thiosulfate-Perchlorate Ziplock Sulfuric-**Unused Media** Containers: Vials 16 oz Amb. 1 Liter Amb. 1 Liter Plastic Unp-500 mL Plastic 8oz Amb/Clear 500 mL Amb. HCL-4oz Amb/Clear 250 mL Plastic 250 mL Amb. Meoh-2oz Amb/Clear Flashpoint Col./Bacteria Bisulfate-Encore Other Glass DI-Other Plastic Plastic Bag Frozen: SOC Kit Thiosulfate-Perchlorate Ziplock Sulfuric-Comments:

December 2, 2022

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Hyannis, MA

Client Job Number: Project Number: 22071

Laboratory Work Order Number: 22K0796

Enclosed are results of analyses for samples as received by the laboratory on November 3, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
22K0796-01	6
22K0796-02	7
22K0796-03	8
22K0796-04	9
22K0796-05	10
22K0796-06	11
Sample Preparation Information	12
QC Data	13
Semivolatile Organic Compounds by - LC/MS-MS	13
B322381	13
Flag/Qualifier Summary	16
Internal standard Area & RT Summary	17
Certifications	26
Chain of Custody/Sample Receipt	27

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

REPORT DATE: 12/2/2022

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 22071

ANALYTICAL SUMMARY

22K0796 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Hyannis, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-I(s)	22K0796-01	Ground Water		SOP-454 PFAS	
HW-I(m)	22K0796-02	Ground Water		SOP-454 PFAS	
HW-I(d)	22K0796-03	Ground Water		SOP-454 PFAS	
HW-3	22K0796-04	Ground Water		SOP-454 PFAS	
HW-P(s)	22K0796-05	Ground Water		SOP-454 PFAS	
HW-P(m)	22K0796-06	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-454 PFAS

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

4,8-Dioxa-3H-perfluorononanoic ac

B322381-BS1, B322381-BSD1

N-MeFOSAA (NMeFOSAA)

B322381-BS1, B322381-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

N-EtFOSAA (NEtFOSAA)

B322381-BSD1

PF-17

Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and

bias is on the high side.

Analyte & Samples(s) Qualified:

M2-6:2FTS

22K0796-01[HW-I(s)], 22K0796-04[HW-3]

M2-8:2FTS

S080051-IBL1

M3HFPO-DA

22K0796-03[HW-I(d)]

PF-19

Sample re-analyzed at a dilution that was re-fortified with internal standard.

Analyte & Samples(s) Qualified:

22K0796-04RE1[HW-3]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-8:2FTS

S080051-CCV2

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watthensten

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022

Field Sample #: HW-I(s)

Sampled: 10/31/2022 11:45

Sample ID: 22K0796-01
Sample Matrix: Ground Water

			Schiivolathe	Organic Con	inpounds by - i	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	37	1.8	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorobutanesulfonic acid (PFBS)	1.3	1.8	0.50	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoropentanoic acid (PFPeA)	130	1.8	0.58	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorohexanoic acid (PFHxA)	84	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	1.5	1.8	0.59	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoroheptanesulfonic acid (PFHpS)	9.6	1.8	0.39	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.55	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.69	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	9.2	1.8	0.96	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoro-1-butanesulfonamide (FBSA)	1.6	1.8	0.46	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorohexanesulfonic acid (PFHxS)	26	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	1.3	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoropetanesulfonic acid (PFPeS)	1.9	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluoroheptanoic acid (PFHpA)	65	1.8	0.45	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorooctanoic acid (PFOA)	67	1.8	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorooctanesulfonic acid (PFOS)	36	1.8	0.38	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL
Perfluorononanoic acid (PFNA)	40	1.8	0.62	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:46	DRL

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022
Field Sample #: HW-I(m)

Sampled: 10/31/2022 12:30

Sample ID: 22K0796-02
Sample Matrix: Ground Water

		2	semivolatile	Organic Coi	mpounds by - 1	LC/IVIS-IVIS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.8	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoropentanoic acid (PFPeA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorohexanoic acid (PFHxA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.59	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	0.39	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.95	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorohexanesulfonic acid (PFHxS)	4.2	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	1.3	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.62	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluoroheptanoic acid (PFHpA)	0.67	1.8	0.44	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorooctanoic acid (PFOA)	0.76	1.8	0.64	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorooctanesulfonic acid (PFOS)	4.3	1.8	0.37	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL
Perfluorononanoic acid (PFNA)	ND	1.8	0.61	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 18:53	DRL

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022
Field Sample #: HW-I(d)

Sampled: 10/31/2022 13:30

Sample ID: 22K0796-03

Sample Matrix: Ground Water

		2	semivolatile	Organic Coi	mpounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	8.8	1.7	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorobutanesulfonic acid (PFBS)	1.9	1.7	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoropentanoic acid (PFPeA)	23	1.7	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorohexanoic acid (PFHxA)	18	1.7	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.7	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.31	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	0.73	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	0.59	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorodecanoic acid (PFDA)	ND	1.7	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoroheptanesulfonic acid (PFHpS)	2.4	1.7	0.39	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.7	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.7	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.7	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.7	0.68	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.7	0.75	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.7	0.95	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.7	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorohexanesulfonic acid (PFHxS)	45	1.7	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	0.52	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7	1.3	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoropetanesulfonic acid (PFPeS)	2.3	1.7	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.62	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluoroheptanoic acid (PFHpA)	9.3	1.7	0.44	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorooctanoic acid (PFOA)	9.6	1.7	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorooctanesulfonic acid (PFOS)	63	1.7	0.37	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL
Perfluorononanoic acid (PFNA)	1.1	1.7	0.61	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:01	DRL

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022
Field Sample #: HW-3

Sampled: 10/31/2022 11:45

Sample ID: 22K0796-04
Sample Matrix: Ground Water

			Schiivolatiic	Organic Con	inpounds by - 1	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	77	1.9	0.59	ng/L	1	g	SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorobutanesulfonic acid (PFBS)	3.3	1.9	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoropentanoic acid (PFPeA)	330	19	6.1	ng/L	10		SOP-454 PFAS	11/17/22	12/1/22 12:32	RRB
Perfluorohexanoic acid (PFHxA)	170	1.9	0.61	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.9	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.9	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.33	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	0.78	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	2.7	1.9	0.62	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorodecanoic acid (PFDA)	ND	1.9	0.69	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.67	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoroheptanesulfonic acid (PFHpS)	0.78	1.9	0.41	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.9	0.51	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.9	0.58	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.9	0.73	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.9	0.80	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.9	1.0	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoro-1-butanesulfonamide (FBSA)	2.1	1.9	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorohexanesulfonic acid (PFHxS)	24	1.9	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	0.55	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	0.51	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	1.4	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoropetanesulfonic acid (PFPeS)	6.1	1.9	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoroundecanoic acid (PFUnA)	2.1	1.9	0.66	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluoroheptanoic acid (PFHpA)	54	1.9	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorooctanoic acid (PFOA)	22	1.9	0.68	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorooctanesulfonic acid (PFOS)	28	1.9	0.40	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL
Perfluorononanoic acid (PFNA)	9.7	1.9	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:08	DRL

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022

Field Sample #: HW-P(s)

Sampled: 11/2/2022 12:10

Sample ID: 22K0796-05
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	9.2	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.51	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoropentanoic acid (PFPeA)	18	1.8	0.58	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorohexanoic acid (PFHxA)	8.0	1.8	0.58	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.61	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	0.39	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.55	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.69	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.76	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.97	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	1.6	1.8	1.3	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	0.61	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluoroheptanoic acid (PFHpA)	4.4	1.8	0.45	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorooctanoic acid (PFOA)	3.7	1.8	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorooctanesulfonic acid (PFOS)	0.48	1.8	0.38	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL
Perfluorononanoic acid (PFNA)	1.6	1.8	0.62	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:15	DRL

Project Location: Hyannis, MA Sample Description: Work Order: 22K0796

Date Received: 11/3/2022

Field Sample #: HW-P(m)

Sampled: 11/2/2022 11:45

Sample ID: 22K0796-06
Sample Matrix: Ground Water

		2	semivolatile	Organic Co	mpounds by - 1	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	8.4	1.8	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.50	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoropentanoic acid (PFPeA)	21	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorohexanoic acid (PFHxA)	12	1.8	0.57	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.31	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.59	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorodecanoic acid (PFDA)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.56	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	0.39	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.54	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.47	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.95	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	0.46	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorohexanesulfonic acid (PFHxS)	1.1	1.8	0.53	ng/L	1	J	SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.48	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	1.3	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	0.60	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.62	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.49	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluoroheptanoic acid (PFHpA)	8.3	1.8	0.44	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorooctanoic acid (PFOA)	8.0	1.8	0.64	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorooctanesulfonic acid (PFOS)	2.2	1.8	0.37	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL
Perfluorononanoic acid (PFNA)	9.5	1.8	0.61	ng/L	1		SOP-454 PFAS	11/17/22	11/28/22 19:22	DRL

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22K0796-01 [HW-I(s)]	B322381	284	1.00	11/17/22
22K0796-02 [HW-I(m)]	B322381	285	1.00	11/17/22
22K0796-03 [HW-I(d)]	B322381	286	1.00	11/17/22
22K0796-04 [HW-3]	B322381	268	1.00	11/17/22
22K0796-04RE1 [HW-3]	B322381	268	1.00	11/17/22
22K0796-05 [HW-P(s)]	B322381	281	1.00	11/17/22
22K0796-06 [HW-P(m)]	B322381	285	1.00	11/17/22

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B322381 - SOP 454-PFAAS										
Blank (B322381-BLK1)				Prepared: 11	/17/22 Anal	yzed: 11/28/2	22			
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
'erfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
HERAFILO DAN	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
V-EtFOSAA (NEtFOSAA)	ND	1.8	ng/L							
V-MeFOSAA (NMeFOSAA)	ND	1.8	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
Perfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L							
.CS (B322381-BS1)					/17/22 Anal	-				
Perfluorobutanoic acid (PFBA)	10.5	1.8	ng/L	9.07		116	73-129			
Perfluorobutanesulfonic acid (PFBS)	9.01	1.8	ng/L	8.02		112	72-130			
Perfluoropentanoic acid (PFPeA)	10.4	1.8	ng/L	9.07		115	72-129			
Perfluorohexanoic acid (PFHxA)	10.2	1.8	ng/L	9.07		112	72-129			
1CI-PF3OUdS (F53B Major)	8.25	1.8	ng/L	8.54		96.6	55.1-141			
CI-PF3ONS (F53B Minor)	9.02	1.8	ng/L	8.45		107	59.6-146			
,8-Dioxa-3H-perfluorononanoic acid ADONA)	11.4	1.8	ng/L	8.54		133 *				L-02
HEXAFILUOROPPOPULATE ON A STATE A STAT	10.9	1.8	ng/L	9.07		121	37.6-167			
22 Fluorotelomersulfonic acid (8:2FTS A)	10.1	1.8	ng/L	8.70		116	67-138			
Perfluorodecanoic acid (PFDA)	11.0	1.8	ng/L	9.07		122	71-129			
Perfluorododecanoic acid (PFDoA)	10.5	1.8	ng/L	9.07		116	72-134			
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	9.19	1.8	ng/L	8.07		114	49.4-154			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B322381 - SOP 454-PFAAS										
LCS (B322381-BS1)				Prepared: 11	/17/22 Analy	zed: 11/28/	22			
Perfluoroheptanesulfonic acid (PFHpS)	11.5	1.8	ng/L	8.66		133	69-134			
N-EtFOSAA (NEtFOSAA)	11.4	1.8	ng/L	9.07		126	61-135			
N-MeFOSAA (NMeFOSAA)	13.0	1.8	ng/L	9.07		143 *	65-136			L-02
Perfluorotetradecanoic acid (PFTA)	9.87	1.8	ng/L	9.07		109	71-132			
Perfluorotridecanoic acid (PFTrDA)	9.47	1.8	ng/L	9.07		104	65-144			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	9.92	1.8	ng/L	8.48		117	63-143			
Perfluorodecanesulfonic acid (PFDS)	8.35	1.8	ng/L	8.75		95.5	53-142			
Perfluorooctanesulfonamide (FOSA)	10.5	1.8	ng/L	9.07		116	67-137			
Perfluorononanesulfonic acid (PFNS)	10.7	1.8	ng/L	8.70		123	69-127			
Perfluoro-1-hexanesulfonamide (FHxSA)	10.1	1.8	ng/L	9.07		111	61.7-156			
Perfluoro-1-butanesulfonamide (FBSA)	9.91	1.8	ng/L	9.07		109	61.3-145			
Perfluorohexanesulfonic acid (PFHxS)	8.93	1.8	ng/L	8.30		108	68-131			
Perfluoro-4-oxapentanoic acid (PFMPA)	11.2	1.8	ng/L	9.07		124	59.8-147			
Perfluoro-5-oxahexanoic acid (PFMBA)	10.8	1.8	ng/L	9.07		119	59.5-146			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	10.4	1.8	ng/L	8.61		121	64-140			
Perfluoropetanesulfonic acid (PFPeS)	9.23	1.8	ng/L	8.52		108	71-127			
Perfluoroundecanoic acid (PFUnA)	9.58	1.8	ng/L	9.07		106	69-133			
Nonafluoro-3,6-dioxaheptanoic acid	12.7	1.8	ng/L	9.07		140	58.5-143			
NFDHA)	,		=							
Perfluoroheptanoic acid (PFHpA)	10.2	1.8	ng/L	9.07		113	72-130			
Perfluorooctanoic acid (PFOA)	10.4	1.8	ng/L	9.07		115	71-133			
Perfluorooctanesulfonic acid (PFOS)	9.93	1.8	ng/L	8.39		118	65-140			
Perfluorononanoic acid (PFNA)	10.4	1.8	ng/L	9.07		114	69-130			
LCS Dup (B322381-BSD1)				Prepared: 11	/17/22 Analy	/zed: 11/28/	22			
Perfluorobutanoic acid (PFBA)	10.8	1.9	ng/L	9.34		116	73-129	3.01	30	
Perfluorobutanesulfonic acid (PFBS)	9.39	1.9	ng/L	8.26		114	72-130	4.21	30	
Perfluoropentanoic acid (PFPeA)	10.6	1.9	ng/L	9.34		114	72-130	2.25	30	
Perfluorohexanoic acid (PFHxA)	10.7	1.9	ng/L ng/L	9.34		114	72-129	4.62	30	
11Cl-PF3OUdS (F53B Major)	8.44	1.9	ng/L	8.79		95.9	55.1-141	2.24	30	
PCI-PF3ONS (F53B Minor)	8.62	1.9	ng/L	8.70		99.0	59.6-146	4.62	30	
4,8-Dioxa-3H-perfluorononanoic acid	11.8	1.9	ng/L ng/L	8.79		134 *		3.95	30	L-02
ADONA)	11.0	1.7		0.19		154	00.5-151	5.95	50	L-02
Hexafluoropropylene oxide dimer acid (HFPO-DA)	10.9	1.9	ng/L	9.34		117	37.6-167	0.0477	30	
:2 Fluorotelomersulfonic acid (8:2FTS A)	11.3	1.9	ng/L	8.96		126	67-138	11.0	30	
Perfluorodecanoic acid (PFDA)	10.8	1.9	ng/L	9.34		116	71-129	1.69	30	
Perfluorododecanoic acid (PFDoA)	11.2	1.9	ng/L	9.34		120	72-134	6.37	30	
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	9.55	1.9	ng/L	8.31		115	49.4-154	3.84	30	
Perfluoroheptanesulfonic acid (PFHpS)	11.2	1.9	ng/L	8.92		126	69-134	3.02	30	
N-EtFOSAA (NEtFOSAA)	12.9	1.9	ng/L	9.34		139 *		12.2	30	L-07
N-MeFOSAA (NMeFOSAA)	13.0	1.9	ng/L	9.34		139		0.514	30	L-02
Perfluorotetradecanoic acid (PFTA)	11.1	1.9	ng/L	9.34		119	71-132	11.5	30	
Perfluorotridecanoic acid (PFTrDA)	10.8	1.9	ng/L	9.34		115	65-144	12.7	30	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	10.3	1.9	ng/L	8.73		118	63-143	3.39	30	
Perfluorodecanesulfonic acid (PFDS)	8.89	1.9	ng/L	9.01		98.7	53-142	6.21	30	
Perfluorooctanesulfonamide (FOSA)	11.5	1.9	ng/L	9.34		123	67-137	9.23	30	
Perfluorononanesulfonic acid (PFNS)	11.0	1.9	ng/L	8.96		123	69-127	2.84	30	
Perfluoro-1-hexanesulfonamide (FHxSA)	10.4	1.9	ng/L	9.34		112	61.7-156	3.19	30	
Perfluoro-1-butanesulfonamide (FBSA)	10.3	1.9	ng/L	9.34		110	61.3-145	3.78	30	
Perfluorohexanesulfonic acid (PFHxS)	9.26	1.9	ng/L	8.54		108	68-131	3.65	30	
Perfluoro-4-oxapentanoic acid (PFMPA)	11.7	1.9	ng/L	9.34		125	59.8-147	4.02	30	
Perfluoro-5-oxahexanoic acid (PFMBA)	11.3	1.9	ng/L	9.34		122	59.5-146	4.75	30	
										Page 14

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B322381 - SOP 454-PFAAS										
LCS Dup (B322381-BSD1)				Prepared: 11	/17/22 Anal	yzed: 11/28/	22			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	9.96	1.9	ng/L	8.87		112	64-140	4.36	30	
Perfluoropetanesulfonic acid (PFPeS)	9.54	1.9	ng/L	8.78		109	71-127	3.29	30	
Perfluoroundecanoic acid (PFUnA)	10.1	1.9	ng/L	9.34		108	69-133	5.11	30	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	13.3	1.9	ng/L	9.34		142	58.5-143	4.83	30	
Perfluoroheptanoic acid (PFHpA)	10.1	1.9	ng/L	9.34		108	72-130	1.83	30	
Perfluorooctanoic acid (PFOA)	10.8	1.9	ng/L	9.34		116	71-133	3.46	30	
Perfluorooctanesulfonic acid (PFOS)	9.68	1.9	ng/L	8.64		112	65-140	2.53	30	
Perfluorononanoic acid (PFNA)	11.1	1.9	ng/L	9.34		119	69-130	6.51	30	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
PF-17	Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.
PF-19	Sample re-analyzed at a dilution that was re-fortified with internal standard.
S-29	Extracted Internal Standard is outside of control limits.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-I(s) (22K0796-01)			Analyzed: 11/28/22 18:46						
M8FOSA	316022.6	3.9806	328,882.00	3.988583	96	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	93173.54	2.431017	117,202.00	2.431017	79	50 - 150	0.0000	+/-0.50	
M2PFTA	962403.5	4.28115	1,179,309.00	4.281133	82	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	170662.2	3.77095	161,607.00	3.7789	106	50 - 150	-0.0080	+/-0.50	
MPFBA	554101.9	1.066783	461,996.00	1.066783	120	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	119713.7	2.765683	90,432.00	2.76565	132	50 - 150	0.0000	+/-0.50	
M6PFDA	756748.6	3.77945	679,406.00	3.779417	111	50 - 150	0.0000	+/-0.50	
M3PFBS	147684.9	1.853533	113,187.00	1.853533	130	50 - 150	0.0000	+/-0.50	
M7PFUnA	716008.1	3.9141	781,940.00	3.914067	92	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	279472.8	3.420533	87,113.00	3.4205	321	50 - 150	0.0000	+/-0.50	*
M5PFPeA	467588.8	1.68175	354,541.00	1.681733	132	50 - 150	0.0000	+/-0.50	
M5PFHxA	862377.1	2.50665	712,368.00	2.51485	121	50 - 150	-0.0082	+/-0.50	
M3PFHxS	140972	3.185767	116,118.00	3.185733	121	50 - 150	0.0000	+/-0.50	
M4PFHpA	1019995	3.146583	866,308.00	3.14655	118	50 - 150	0.0000	+/-0.50	
M8PFOA	934497	3.429883	798,016.00	3.437833	117	50 - 150	-0.0080	+/-0.50	
M8PFOS	121112.7	3.628233	103,021.00	3.6282	118	50 - 150	0.0000	+/-0.50	
M9PFNA	693390.3	3.629267	651,283.00	3.629233	106	50 - 150	0.0000	+/-0.50	
MPFDoA	695891.2	4.048717	828,207.00	4.048683	84	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	168645.1	3.921567	202,178.00	3.921533	83	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	214072.8	3.849733	260,668.00	3.8497	82	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
HW-I(m) (22K0796-02)			Lab File ID: 22K0	796-02.d	Analyzed: 11/28/22 18:53					
M8FOSA	321824.4	3.980567	328,882.00	3.988583	98	50 - 150	-0.0080	+/-0.50		
M2-4:2FTS	80510.04	2.431017	117,202.00	2.431017	69	50 - 150	0.0000	+/-0.50		
M2PFTA	1157199	4.281116	1,179,309.00	4.281133	98	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	165104.9	3.770917	161,607.00	3.7789	102	50 - 150	-0.0080	+/-0.50		
MPFBA	539792.2	1.066783	461,996.00	1.066783	117	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	127608.8	2.76565	90,432.00	2.76565	141	50 - 150	0.0000	+/-0.50		
M6PFDA	750302.4	3.7794	679,406.00	3.779417	110	50 - 150	0.0000	+/-0.50		
M3PFBS	141898.4	1.853533	113,187.00	1.853533	125	50 - 150	0.0000	+/-0.50		
M7PFUnA	757034.7	3.91405	781,940.00	3.914067	97	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	55335.07	3.4205	87,113.00	3.4205	64	50 - 150	0.0000	+/-0.50		
M5PFPeA	465089.4	1.681733	354,541.00	1.681733	131	50 - 150	0.0000	+/-0.50		
M5PFHxA	857138.5	2.506633	712,368.00	2.51485	120	50 - 150	-0.0082	+/-0.50		
M3PFHxS	134010.5	3.185733	116,118.00	3.185733	115	50 - 150	0.0000	+/-0.50		
M4PFHpA	1003357	3.14655	866,308.00	3.14655	116	50 - 150	0.0000	+/-0.50		
M8PFOA	945029.6	3.437833	798,016.00	3.437833	118	50 - 150	0.0000	+/-0.50		
M8PFOS	122839.8	3.6282	103,021.00	3.6282	119	50 - 150	0.0000	+/-0.50		
M9PFNA	733048.8	3.629233	651,283.00	3.629233	113	50 - 150	0.0000	+/-0.50		
MPFDoA	795224.3	4.040683	828,207.00	4.048683	96	50 - 150	-0.0080	+/-0.50		
D5-NEtFOSAA	184893.5	3.921517	202,178.00	3.921533	91	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	234336.2	3.8497	260,668.00	3.8497	90	50 - 150	0.0000	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-I(d) (22K0796-03)		Lab File ID: 22K0796-03.d Analyzed: 11/28/22 19:01							
M8FOSA	326186.3	3.980567	328,882.00	3.988583	99	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	94032.64	2.431017	117,202.00	2.431017	80	50 - 150	0.0000	+/-0.50	
M2PFTA	1186683	4.281116	1,179,309.00	4.281133	101	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	193588.1	3.778883	161,607.00	3.7789	120	50 - 150	0.0000	+/-0.50	
MPFBA	522389.1	1.066783	461,996.00	1.066783	113	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	144819.8	2.765667	90,432.00	2.76565	160	50 - 150	0.0000	+/-0.50	*
M6PFDA	785605.3	3.779417	679,406.00	3.779417	116	50 - 150	0.0000	+/-0.50	
M3PFBS	151884.9	1.853533	113,187.00	1.853533	134	50 - 150	0.0000	+/-0.50	
M7PFUnA	812392.1	3.914067	781,940.00	3.914067	104	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	65207.73	3.4205	87,113.00	3.4205	75	50 - 150	0.0000	+/-0.50	
M5PFPeA	484577.9	1.681733	354,541.00	1.681733	137	50 - 150	0.0000	+/-0.50	
M5PFHxA	895560.8	2.506633	712,368.00	2.51485	126	50 - 150	-0.0082	+/-0.50	
M3PFHxS	143640.8	3.185733	116,118.00	3.185733	124	50 - 150	0.0000	+/-0.50	
M4PFHpA	1036990	3.14655	866,308.00	3.14655	120	50 - 150	0.0000	+/-0.50	
M8PFOA	971499	3.42985	798,016.00	3.437833	122	50 - 150	-0.0080	+/-0.50	
M8PFOS	125189.9	3.6282	103,021.00	3.6282	122	50 - 150	0.0000	+/-0.50	
M9PFNA	729224.1	3.629233	651,283.00	3.629233	112	50 - 150	0.0000	+/-0.50	
MPFDoA	826722.9	4.048683	828,207.00	4.048683	100	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	207621.3	3.921533	202,178.00	3.921533	103	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	250272.4	3.8497	260,668.00	3.8497	96	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

									\Box
10. 11.		p.r.	Reference	Reference		Area %	DE D.C.	RT Diff	
Internal Standard	Response	RT	Response	RT	Area %	Limits	RT Diff	Limit	Q
HW-3 (22K0796-04)			Lab File ID: 22K0	796-04.d		Analyzed: 11/2	8/22 19:08		
M8FOSA	297041	3.980567	328,882.00	3.988583	90	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	87903.63	2.431017	117,202.00	2.431017	75	50 - 150	0.0000	+/-0.50	
M2PFTA	1024804	4.281116	1,179,309.00	4.281133	87	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	185368.2	3.770917	161,607.00	3.7789	115	50 - 150	-0.0080	+/-0.50	
MPFBA	480661.1	1.066783	461,996.00	1.066783	104	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	131210.2	2.76565	90,432.00	2.76565	145	50 - 150	0.0000	+/-0.50	
M6PFDA	736549.8	3.77145	679,406.00	3.779417	108	50 - 150	-0.0080	+/-0.50	
M3PFBS	140826.7	1.853533	113,187.00	1.853533	124	50 - 150	0.0000	+/-0.50	
M7PFUnA	782383.3	3.914067	781,940.00	3.914067	100	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	179458.5	3.4205	87,113.00	3.4205	206	50 - 150	0.0000	+/-0.50	*
M5PFPeA	414879.4	1.681733	354,541.00	1.681733	117	50 - 150	0.0000	+/-0.50	
M5PFHxA	798930.3	2.506633	712,368.00	2.51485	112	50 - 150	-0.0082	+/-0.50	
M3PFHxS	130328.3	3.185733	116,118.00	3.185733	112	50 - 150	0.0000	+/-0.50	
M4PFHpA	952901.6	3.14655	866,308.00	3.14655	110	50 - 150	0.0000	+/-0.50	
M8PFOA	905660.1	3.42985	798,016.00	3.437833	113	50 - 150	-0.0080	+/-0.50	
M8PFOS	121603.6	3.6282	103,021.00	3.6282	118	50 - 150	0.0000	+/-0.50	
M9PFNA	686634.9	3.62125	651,283.00	3.629233	105	50 - 150	-0.0080	+/-0.50	
MPFDoA	762503.4	4.040683	828,207.00	4.048683	92	50 - 150	-0.0080	+/-0.50	
D5-NEtFOSAA	206337	3.921533	202,178.00	3.921533	102	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	230693.8	3.8497	260,668.00	3.8497	89	50 - 150	0.0000	+/-0.50	
HW-3 (22K0796-04RE1)			Lab File ID: 22K0	796-04RE1.d		Analyzed: 12/0	1/22 12:32		
M5PFPeA	418060.9	1.714833	373,794.00	1.7231	112	50 - 150	-0.0083	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-P(s) (22K0796-05)			Lab File ID: 22K0	796-05.d		Analyzed: 11/28	3/22 19:15		
M8FOSA	306947.5	3.980567	328,882.00	3.988583	93	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	76802.77	2.431	117,202.00	2.431017	66	50 - 150	0.0000	+/-0.50	
M2PFTA	989825.6	4.281116	1,179,309.00	4.281133	84	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	166598.9	3.770917	161,607.00	3.7789	103	50 - 150	-0.0080	+/-0.50	
MPFBA	503522.8	1.066783	461,996.00	1.066783	109	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	132660	2.76565	90,432.00	2.76565	147	50 - 150	0.0000	+/-0.50	
M6PFDA	708394.6	3.779417	679,406.00	3.779417	104	50 - 150	0.0000	+/-0.50	
M3PFBS	134664.1	1.853533	113,187.00	1.853533	119	50 - 150	0.0000	+/-0.50	
M7PFUnA	756325.8	3.914067	781,940.00	3.914067	97	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	51622.24	3.4205	87,113.00	3.4205	59	50 - 150	0.0000	+/-0.50	
M5PFPeA	441900.7	1.681733	354,541.00	1.681733	125	50 - 150	0.0000	+/-0.50	
M5PFHxA	803921.3	2.506633	712,368.00	2.51485	113	50 - 150	-0.0082	+/-0.50	
M3PFHxS	125207.4	3.185733	116,118.00	3.185733	108	50 - 150	0.0000	+/-0.50	
M4PFHpA	936140.8	3.14655	866,308.00	3.14655	108	50 - 150	0.0000	+/-0.50	
M8PFOA	858479.5	3.42985	798,016.00	3.437833	108	50 - 150	-0.0080	+/-0.50	
M8PFOS	116471.8	3.6282	103,021.00	3.6282	113	50 - 150	0.0000	+/-0.50	
M9PFNA	644425.3	3.629233	651,283.00	3.629233	99	50 - 150	0.0000	+/-0.50	
MPFDoA	748739.7	4.040683	828,207.00	4.048683	90	50 - 150	-0.0080	+/-0.50	
D5-NEtFOSAA	166180.3	3.921533	202,178.00	3.921533	82	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	208582.9	3.8497	260,668.00	3.8497	80	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-P(m) (22K0796-06)				Analyzed: 11/28/22 19:22					
M8FOSA	342685.6	3.9806	328,882.00	3.988583	104	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	85103.01	2.431017	117,202.00	2.431017	73	50 - 150	0.0000	+/-0.50	
M2PFTA	1301122	4.28115	1,179,309.00	4.281133	110	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	183042	3.770933	161,607.00	3.7789	113	50 - 150	-0.0080	+/-0.50	
MPFBA	614005.3	1.066783	461,996.00	1.066783	133	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	128285.9	2.765667	90,432.00	2.76565	142	50 - 150	0.0000	+/-0.50	
M6PFDA	820836.1	3.779433	679,406.00	3.779417	121	50 - 150	0.0000	+/-0.50	
M3PFBS	159230.2	1.853533	113,187.00	1.853533	141	50 - 150	0.0000	+/-0.50	
M7PFUnA	861957	3.914083	781,940.00	3.914067	110	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	58345.4	3.420517	87,113.00	3.4205	67	50 - 150	0.0000	+/-0.50	
M5PFPeA	514616.8	1.68175	354,541.00	1.681733	145	50 - 150	0.0000	+/-0.50	
M5PFHxA	928508.5	2.50665	712,368.00	2.51485	130	50 - 150	-0.0082	+/-0.50	
M3PFHxS	148023.3	3.185733	116,118.00	3.185733	127	50 - 150	0.0000	+/-0.50	
M4PFHpA	1085199	3.146567	866,308.00	3.14655	125	50 - 150	0.0000	+/-0.50	
M8PFOA	1023231	3.429867	798,016.00	3.437833	128	50 - 150	-0.0080	+/-0.50	
M8PFOS	138029.9	3.628217	103,021.00	3.6282	134	50 - 150	0.0000	+/-0.50	
M9PFNA	757147.7	3.62925	651,283.00	3.629233	116	50 - 150	0.0000	+/-0.50	
MPFDoA	908053.9	4.040717	828,207.00	4.048683	110	50 - 150	-0.0080	+/-0.50	
D5-NEtFOSAA	188972.2	3.92155	202,178.00	3.921533	93	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	241863.4	3.849733	260,668.00	3.8497	93	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B322381-BLK1)		Lab File ID: B322381-BLK1.d Analyzed: 11/28/22 18:39							
M8FOSA	327682.6	3.980567	328,882.00	3.988583	100	50 - 150	-0.0080	+/-0.50	
M2-4:2FTS	123008.9	2.431	117,202.00	2.431017	105	50 - 150	0.0000	+/-0.50	
M2PFTA	1036314	4.281116	1,179,309.00	4.281133	88	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	213718.8	3.778883	161,607.00	3.7789	132	50 - 150	0.0000	+/-0.50	
MPFBA	640084.6	1.066783	461,996.00	1.066783	139	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	124872.4	2.76565	90,432.00	2.76565	138	50 - 150	0.0000	+/-0.50	
M6PFDA	785956.9	3.7794	679,406.00	3.779417	116	50 - 150	0.0000	+/-0.50	
M3PFBS	141403.6	1.853533	113,187.00	1.853533	125	50 - 150	0.0000	+/-0.50	
M7PFUnA	855436	3.91405	781,940.00	3.914067	109	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	87708.57	3.4205	87,113.00	3.4205	101	50 - 150	0.0000	+/-0.50	
M5PFPeA	485757.3	1.681733	354,541.00	1.681733	137	50 - 150	0.0000	+/-0.50	
M5PFHxA	875016.8	2.506633	712,368.00	2.51485	123	50 - 150	-0.0082	+/-0.50	
M3PFHxS	134172.3	3.185733	116,118.00	3.185733	116	50 - 150	0.0000	+/-0.50	
M4PFHpA	1038696	3.14655	866,308.00	3.14655	120	50 - 150	0.0000	+/-0.50	
M8PFOA	994655.4	3.437833	798,016.00	3.437833	125	50 - 150	0.0000	+/-0.50	
M8PFOS	131467.9	3.6282	103,021.00	3.6282	128	50 - 150	0.0000	+/-0.50	
M9PFNA	760895.7	3.629233	651,283.00	3.629233	117	50 - 150	0.0000	+/-0.50	
MPFDoA	776765.3	4.048666	828,207.00	4.048683	94	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	227692.7	3.921517	202,178.00	3.921533	113	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	282951.8	3.8497	260,668.00	3.8497	109	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B322381-BS1)			Lab File ID: B3223	881-BS1.d	Analyzed: 11/28/22 18:25				
M8FOSA	303792.5	3.988583	328,882.00	3.988583	92	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	129389	2.431	117,202.00	2.431017	110	50 - 150	0.0000	+/-0.50	
M2PFTA	1075708	4.281133	1,179,309.00	4.281133	91	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	225421.6	3.7789	161,607.00	3.7789	139	50 - 150	0.0000	+/-0.50	
MPFBA	609775.7	1.066783	461,996.00	1.066783	132	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	112294.9	2.76565	90,432.00	2.76565	124	50 - 150	0.0000	+/-0.50	
M6PFDA	745575.6	3.779417	679,406.00	3.779417	110	50 - 150	0.0000	+/-0.50	
M3PFBS	139820.6	1.853533	113,187.00	1.853533	124	50 - 150	0.0000	+/-0.50	
M7PFUnA	808818.3	3.914067	781,940.00	3.914067	103	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	92444.56	3.4205	87,113.00	3.4205	106	50 - 150	0.0000	+/-0.50	
M5PFPeA	463675.7	1.681733	354,541.00	1.681733	131	50 - 150	0.0000	+/-0.50	
M5PFHxA	839131.6	2.51485	712,368.00	2.51485	118	50 - 150	0.0000	+/-0.50	
M3PFHxS	133559.5	3.185733	116,118.00	3.185733	115	50 - 150	0.0000	+/-0.50	
M4PFHpA	1002382	3.14655	866,308.00	3.14655	116	50 - 150	0.0000	+/-0.50	
M8PFOA	965265.6	3.43785	798,016.00	3.437833	121	50 - 150	0.0000	+/-0.50	
M8PFOS	120615.2	3.6282	103,021.00	3.6282	117	50 - 150	0.0000	+/-0.50	
M9PFNA	726495.6	3.629233	651,283.00	3.629233	112	50 - 150	0.0000	+/-0.50	
MPFDoA	773426.5	4.048683	828,207.00	4.048683	93	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	218358.3	3.921533	202,178.00	3.921533	108	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	265674.6	3.8497	260,668.00	3.8497	102	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS Dup (B322381-BSD1)		Lab File ID: B322381-BSD1.d Analyzed: 11/28/22 18:32							
M8FOSA	335939.3	3.988567	328,882.00	3.988583	102	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	143174.4	2.431	117,202.00	2.431017	122	50 - 150	0.0000	+/-0.50	
M2PFTA	1237590	4.281116	1,179,309.00	4.281133	105	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	242824.8	3.778883	161,607.00	3.7789	150	50 - 150	0.0000	+/-0.50	
MPFBA	686158.6	1.066783	461,996.00	1.066783	149	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	130138.3	2.76565	90,432.00	2.76565	144	50 - 150	0.0000	+/-0.50	
M6PFDA	862935.7	3.779417	679,406.00	3.779417	127	50 - 150	0.0000	+/-0.50	
M3PFBS	157166.7	1.853533	113,187.00	1.853533	139	50 - 150	0.0000	+/-0.50	
M7PFUnA	904418.6	3.91405	781,940.00	3.914067	116	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	109576.9	3.4205	87,113.00	3.4205	126	50 - 150	0.0000	+/-0.50	
M5PFPeA	525167.8	1.681733	354,541.00	1.681733	148	50 - 150	0.0000	+/-0.50	
M5PFHxA	943271.6	2.506633	712,368.00	2.51485	132	50 - 150	-0.0082	+/-0.50	
M3PFHxS	151715.2	3.185733	116,118.00	3.185733	131	50 - 150	0.0000	+/-0.50	
M4PFHpA	1134506	3.14655	866,308.00	3.14655	131	50 - 150	0.0000	+/-0.50	
M8PFOA	1064475	3.437833	798,016.00	3.437833	133	50 - 150	0.0000	+/-0.50	
M8PFOS	142346.7	3.6282	103,021.00	3.6282	138	50 - 150	0.0000	+/-0.50	
M9PFNA	799708.6	3.629233	651,283.00	3.629233	123	50 - 150	0.0000	+/-0.50	
MPFDoA	896311.8	4.048666	828,207.00	4.048683	108	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	236656.7	3.921533	202,178.00	3.921533	117	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	302129.6	3.8497	260,668.00	3.8497	116	50 - 150	0.0000	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Code

NH-P

Description

New Hampshire Environmental Lab

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Number

2557 NELAP

Expires

09/6/2023

	Dage 	10 - 1 380	² Preservation Code	Courier Use Only	Total Number Of:		VIALS	GLASS	PLASTIC	RACTEDIA	TOUCH			Glassware of the fridge?	5	Glassware in freezer? Y / N		riepachaged cooler	*Pace Analytical is not	from prepacked coolers		GW = Ground Water	WW = Waste Water	A = Air	S = Soil SL = Stadoe	Solid Solid	O = Other (please define)	2 Preservation Codes:	l ≈ Iced	TH=HCT	M = Methanol	N = Nitric Acid			a conjuit bisuidie	X = Sodium Hydroxide	T = Sodium Thiosulfate		O = Other (please define)		n on the Chain of Custody. The and is used to determine what aboratory's responsibility. Pace th missing information, but will	
07/13/2021		ANALYSIS REQUESTED									***************************************																	The state of the s				Please use the following codes to indicate Dossible sample concentration within the Conc	Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	THE PROPERTY OF THE PROPERTY O		Other	Chromatogram	☐ AIHA-LAP,LLC		oonsible for any omitted information hat must be complete and accurate Any missing information is not the Lack project and will try to assist wont be held accountable.	
Doc # 381 Rev 5_07/13/2021	39 Spruce Street East Longmeadow: MA 01028		Field Filtered		0	•	Lab to Filter		PCB ONLY	5		[<u> </u>		PLASTIC BACTERIA ENCORE	, x			X	8	×							The state of the s					MCP Certification Form Required			MA State DW Required		MWRA 🗌 WRTA 📋	School	The second secon	Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable.	
http://www.pacelabs.com	CHAIN OF CUSTODY RECORD	fülfraround Time Diksoh	10-Day 🗌 O	Due Date:		<u>o</u>		Data Delivery	EXCEL [V]		uired:	a horshe	3	, interest	SYASSANIA.	75 9		1	D G &		3/5)	_	+-				THE PARTY OF THE P	, , , , , , , , , , , , , , , , , , ,				K				PWSID #	· · · · · · · · · · · · · · · · · · ·	Municipality	21 J Brownfield			
		Paqijbetaci	7-Day	PFAS 10-Day (std)	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1-Day	2-Day		Format: PDF V	Other:	CLP Like Data Pkg Required:	Email To: Orvo	C C WOLL PA Fax To #: 52 ()		Date/Time Date/Time COMP/GRAB	10/31/24 11.45 GYON	12 313		10/31/12 13:30 CarcaD	1013/122/11:45 (CAYOLD	M12/12 12:10 GNOVO	W2172 11 45 (Swar)					Client Comments:		1036	Detection Limit Reducement	1.20			TOTAL CONTRACTOR CONTR		ıtity	hent	Federal			
プタスタチョ	alvical Phone: 413-525-2332		Access COC's and	Total Witten Group	3	00 90 0	4	annis MA	2.2071	A an Massa		100 married 11 married	Bertte Blandt +		Crear Samble to a Description	(ら)ドラエ	(m) 1 (m)	1	· 3 = :	· 34 I	(S)2-31 S	(m) 1. NH 9						(e) (Date/Time: 103 (3)	O C C C C C C C C C C C C C C C C C C C	1/5/cz 11	(279)	7.3/6/11	2, 2 / Marie 16	re) Dite/Time:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COLE () MIE:	re) Date/Time:		Date/Time:			
E	Face Analytical		1	ia way	- 1	7 183		1-	Project Number: 7.2	Project Manager: (3 mg (1 D)	Pace Quote Name/Numbe	Invoice Recipient:	Sampled By: Sarah	Pace	Work Order#													Relinquished by: (signature	Received by: (senature)	Che lus	Relipquish d by: high cu	Received by Islanding	JUL #15	Relimquished by: (signature)	Received hy: (cionature)	/ Signification of the community of the	Relinquished by: (signature)		Received by: (signature)	Tb Comments:	Page 27	of 28

39 Spruce St.

East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405 www.pacelabs.com

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False Witten Date Time Received By How were the samples In Cooler No Cooler On Ice No Ice received? Melted Ice Direct From Sample **Ambient** By Gun # Were samples within Within Actual Temp -Tempurature? 2-6°C By Blank # Actual Temp -Was Custody Seal In tact? Were Samples Tampered with? Does Chain Agree With Samples? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Were samples received within holding time? Did COC include all Client? Analysis? Sampler Name? Collection Dates/Times? pertinent Information? Project? ID's? Are Sample labels filled out and legible? Who was notified? Are there Lab to Filters? Who was notified? Are there Rushes? Who was notified? Are there Short Holds? Is there enough Volume? Samples are received within holding time? Is there Headspace where applicable? MS/MSD?... Proper Media/Containers Used? splitting samples required On COC? Were trip blanks receive Do All Samples Have the proper pH? Acid Base Vials Containers: 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Unp-8oz Amb/Clear HCL-500 mL Amb. 500 mL Plastic Meoh-250 mL Amb. 250 mL Plastic 4oz Amb/Clear 2oz Amb/Clear Flashpoint Bisulfate-Col./Bacteria Other Glass Encore DI-Other Plastic Thiosulfate-SOC Kit Plastic Bag Frozen: Sulfuric-Perchlorate Ziplock **Unused Media** Vials Containers: 1 Liter Plastic 16 oz Amb. Unp-1 Liter Amb. 8oz Amb/Clear HCL-500 mL Amb. 500 mL Plastic 250 mL Plastic 4oz Amb/Clear Meoh-250 mL Amb. 2oz Amb/Clear Bisulfate-Col./Bacteria Flashpoint Other Glass Encore DI-Other Plastic Plastic Bag Thiosulfate-SOC Kit Frozen: Perchlorate Ziplock Sulfuric-Comments:

March 7, 2023

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Hyannis, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 23B0625

Enclosed are results of analyses for samples as received by the laboratory on February 3, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
23B0625-01	7
23B0625-02	8
Sample Preparation Information	9
QC Data	10
Semivolatile Organic Compounds by - LC/MS-MS	10
B330793	10
Flag/Qualifier Summary	12
Internal standard Area & RT Summary	13
Certifications	17
Chain of Custody/Sample Receipt	18

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

REPORT DATE: 3/7/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23B0625

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Hyannis, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
HW-I (S)	23B0625-01	Ground Water		SOP-454 PFAS	
HW-P(S)	23B0625-02	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-454 PFAS

Qualifications:

PF-17

Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.

Analyte & Samples(s) Qualified:

M3HFPO-DA

S083860-IBL1

PF-18

Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects.

Analyte & Samples(s) Qualified:

M2-4:2FTS

23B0625-01[HW-I (S)]

M2-8:2FTS

23B0625-01[HW-I(S)]

PF-19

Sample re-analyzed at a dilution that was re-fortified with internal standard.

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2FTS A)

23B0625-01RE2[HW-I (S)]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

D3-NMeFOSAA

23B0625-01[HW-I (S)]

D5-NEtFOSAA

23B0625-01[HW-I (S)]

M2-4:2FTS

S083860-CCV3

M2-6:2FTS

S084026-CCV1

M2PFTA

23B0625-01[HW-I (S)]

M6PFDA

23B0625-01[HW-I (S)]

M7PFUnA

23B0625-01[HW-I (S)]

M8FOSA

23B0625-01[HW-I (S)]

MPFDoA

23B0625-01[HW-I (S)]

V-26

Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance, matrix interference confirmed. **Analyte & Samples(s) Qualified:**

D3-NMeFOSAA

S084023-CCV5

D5-NEtFOSAA

S084023-CCV5

M2-4:2FTS

S084023-CCV5

M2-6:2FTS

S084023-CCV5

M2-8:2FTS

S084023-CCV5

M2PFTA

S084023-CCV5

M8FOSA

S084023-CCV5

Perfluoro-1-hexanesulfonamide (FHxSA)

S084023-CCV5

V-32

Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the high side. Re-analysis yielded similar non-conformance, matrix interference confirmed.

Analyte & Samples(s) Qualified:

9Cl-PF3ONS (F53B Minor)

S084023-CCV5

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watslengton Technical Representative

Work Order: 23B0625

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Hyannis, MA Sample Description:

Date Received: 2/3/2023

Field Sample #: HW-I (S)

Sampled: 2/2/2023 12:30

Sample ID: 23B0625-01
Sample Matrix: Ground Water

		5	Semivolatile	Organic Co	mpounds by - l	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	17	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoropentanoic acid (PFPeA)	55	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorohexanoic acid (PFHxA)	31	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.91	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	1.6	1.8	0.84	ng/L	1	J	SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorodecanoic acid (PFDA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.81	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoroheptanesulfonic acid (PFHpS)	4.1	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.84	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.91	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.89	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.90	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	2.8	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorohexanesulfonic acid (PFHxS)	11	1.8	0.63	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	480	18	11	ng/L	10	PF-19	SOP-454 PFAS	2/7/23	3/1/23 18:22	RRB
Perfluoropetanesulfonic acid (PFPeS)	0.79	1.8	0.67	ng/L	1	J	SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluoroheptanoic acid (PFHpA)	21	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorooctanoic acid (PFOA)	16	1.8	1.2	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorooctanesulfonic acid (PFOS)	24	1.8	0.75	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW
Perfluorononanoic acid (PFNA)	28	1.8	0.81	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:41	QNW

Project Location: Hyannis, MA Sample Description: Work Order: 23B0625

Date Received: 2/3/2023

Field Sample #: HW-P (S)

Sampled: 2/2/2023 13:40

Sample ID: 23B0625-02
Sample Matrix: Ground Water

			Schiivolatiic	Organic Cor	inpounds by - 1	LC/MS-MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	11	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoropentanoic acid (PFPeA)	29	1.8	0.71	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorohexanoic acid (PFHxA)	16	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	1.3	1.8	0.86	ng/L	1	J	SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorodecanoic acid (PFDA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.94	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.85	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.69	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.91	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.94	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoro-1-butanesulfonamide (FBSA)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorohexanesulfonic acid (PFHxS)	2.2	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.58	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	19	1.8	1.1	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.77	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluoroheptanoic acid (PFHpA)	12	1.8	0.76	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorooctanoic acid (PFOA)	14	1.8	1.2	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorooctanesulfonic acid (PFOS)	3.7	1.8	0.76	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW
Perfluorononanoic acid (PFNA)	15	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/21/23 20:49	QNW

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B0625-01 [HW-I (S)]	B330793	285	1.00	02/07/23
23B0625-01RE2 [HW-I (S)]	B330793	285	1.00	02/07/23
23B0625-02 [HW-P (S)]	B330793	279	1.00	02/07/23

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B330793 - SOP 454-PFAAS										
Blank (B330793-BLK1)				Prepared: 02	2/07/23 Analy	zed: 02/21/	23			
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
9Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
Hexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.8	ng/L							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
N-EtFOSAA (NEtFOSAA)	ND	1.8	ng/L							
N-MeFOSAA (NMeFOSAA)	ND	1.8	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND ND	1.8	ng/L ng/L							
Perfluoro-1-hexanesulfonamide (FHxSA)		1.8	ng/L ng/L							
Perfluoro-1-butanesulfonamide (FBSA)	ND ND	1.8	ng/L ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
	ND									
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
5:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
Perfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	1.8	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L							
CCS (B330793-BS1) Perfluorobutanoic acid (PFBA)	0.60	1.9	ng/L	Prepared: 02 9.67	2/07/23 Analy	/zed: 02/21/ 99.2				
Perfluorobutanesulfonic acid (PFBS)	9.60		-				73-129			
,	8.60	1.9	ng/L	8.56		100	72-130			
Perfluoropentanoic acid (PFPeA)	9.65	1.9	ng/L	9.67		99.8	72-129			
Perfluorohexanoic acid (PFHxA)	9.52	1.9	ng/L	9.67		98.4	72-129			
1Cl-PF3OUdS (F53B Major)	7.53	1.9	ng/L	9.11		82.7	55.1-141			
Cl-PF3ONS (F53B Minor)	8.04	1.9	ng/L	9.02		89.2	59.6-146			
,8-Dioxa-3H-perfluorononanoic acid ADONA)	8.67	1.9	ng/L	9.11		95.1	60.3-131			
HEPO-DA)	8.99	1.9	ng/L	9.67		93.0	37.6-167			
22 Fluorotelomersulfonic acid (8:2FTS A)	11.0	1.9	ng/L	9.29		119	67-138			
Perfluorodecanoic acid (PFDA)	10.4	1.9	ng/L	9.67		107	71-129			
Perfluorododecanoic acid (PFDoA)	10.2	1.9	ng/L	9.67		105	72-134			
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	8.37	1.9	ng/L	8.61		97.2	49.4-154			age 10

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

	D 1	Reporting	***	Spike	Source	A/DEG	%REC	DDD	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B330793 - SOP 454-PFAAS										
LCS (B330793-BS1)				Prepared: 02	2/07/23 Analy	zed: 02/21/	23			
Perfluoroheptanesulfonic acid (PFHpS)	8.54	1.9	ng/L	9.24		92.4	69-134			
N-EtFOSAA (NEtFOSAA)	12.0	1.9	ng/L	9.67		124	61-135			
N-MeFOSAA (NMeFOSAA)	10.3	1.9	ng/L	9.67		106	65-136			
Perfluorotetradecanoic acid (PFTA)	9.45	1.9	ng/L	9.67		97.7	71-132			
Perfluorotridecanoic acid (PFTrDA)	11.2	1.9	ng/L	9.67		116	65-144			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	8.91	1.9	ng/L	9.04		98.5	63-143			
Perfluorodecanesulfonic acid (PFDS)	8.90	1.9	ng/L	9.33		95.3	53-142			
Perfluorooctanesulfonamide (FOSA)	9.25	1.9	ng/L	9.67		95.6	67-137			
Perfluorononanesulfonic acid (PFNS)	11.4	1.9	ng/L	9.29		123	69-127			
Perfluoro-1-hexanesulfonamide (FHxSA)	9.45	1.9	ng/L	9.67		97.7	61.7-156			
Perfluoro-1-butanesulfonamide (FBSA)	8.74	1.9	ng/L	9.67		90.4	61.3-145			
Perfluorohexanesulfonic acid (PFHxS)	9.41	1.9	ng/L	8.85		106	68-131			
Perfluoro-4-oxapentanoic acid (PFMPA)	9.89	1.9	ng/L	9.67		102	59.8-147			
Perfluoro-5-oxahexanoic acid (PFMBA)	9.97	1.9	ng/L	9.67		103	59.5-146			
5:2 Fluorotelomersulfonic acid (6:2FTS A)	9.93	1.9	ng/L	9.19		108	64-140			
Perfluoropetanesulfonic acid (PFPeS)	9.58	1.9	ng/L	9.09		105	71-127			
Perfluoroundecanoic acid (PFUnA)	11.3	1.9	ng/L	9.67		117	69-133			
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	10.3	1.9	ng/L	9.67		107	58.5-143			
Perfluoroheptanoic acid (PFHpA)	9.41	1.9	ng/L	9.67		97.2	72-130			
Perfluorooctanoic acid (PFOA)	8.85	1.9	ng/L	9.67		91.5	71-133			
Perfluorooctanesulfonic acid (PFOS)	8.76	1.9	ng/L	8.95		97.9	65-140			
Perfluorononanoic acid (PFNA)	10.3	1.9	ng/L	9.67		106	69-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
PF-17	Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.
PF-18	Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects.
PF-19	Sample re-analyzed at a dilution that was re-fortified with internal standard.
S-29	Extracted Internal Standard is outside of control limits.
V-26	Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the low side. Re-analysis yielded similar non-conformance, matrix interference confirmed.
V-32	Opening calibration verification was within control criteria. Closing calibration verification was outside of criteria and biased on the high side. Re-analysis yielded similar non-conformance, matrix interference confirmed.

INTERNAL STANDARD AREA AND RT SUMMARY

			Reference	Reference		Area %		RT Diff	\Box
Internal Standard	Response	RT	Response	RT	Area %	Limits	RT Diff	Limit	Q
HW-I (S) (23B0625-01)			Lab File ID: 23B06	525-01.d		Analyzed: 02/2	1/23 20:41		
M8FOSA	137446.9	4.076517	333,528.00	4.076533	41	50 - 150	0.0000	+/-0.50	*
M2-4:2FTS	41968.25	2.670733	137,596.00	2.670733	31	50 - 150	0.0000	+/-0.50	*
M2PFTA	5614.295	4.394683	874,363.00	4.3947	01	50 - 150	0.0000	+/-0.50	*
M2-8:2FTS	45050.18	3.86685	91,371.00	3.8751	49	50 - 150	-0.0083	+/-0.50	*
MPFBA	361554.4	1.149867	463,867.00	1.141567	78	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	77226.93	2.97845	119,916.00	2.97845	64	50 - 150	0.0000	+/-0.50	
M6PFDA	246244.4	3.86735	605,719.00	3.867367	41	50 - 150	0.0000	+/-0.50	*
M3PFBS	95203.91	2.044233	131,474.00	2.044233	72	50 - 150	0.0000	+/-0.50	
M7PFUnA	162312.4	4.017983	639,020.00	4.018	25	50 - 150	0.0000	+/-0.50	*
M2-6:2FTS	78852.91	3.525617	63,587.00	3.525617	124	50 - 150	0.0000	+/-0.50	
M5PFPeA	286987.2	1.857667	382,657.00	1.857667	75	50 - 150	0.0000	+/-0.50	
M5PFHxA	459174.7	2.7636	653,228.00	2.755417	70	50 - 150	0.0082	+/-0.50	
M3PFHxS	70083.73	3.308383	118,783.00	3.308383	59	50 - 150	0.0000	+/-0.50	
М4РFНрА	447751.8	3.27725	725,238.00	3.27725	62	50 - 150	0.0000	+/-0.50	
M8PFOA	408659.9	3.534133	652,845.00	3.53415	63	50 - 150	0.0000	+/-0.50	
M8PFOS	54403.83	3.716267	99,916.00	3.716283	54	50 - 150	0.0000	+/-0.50	
M9PFNA	285192.1	3.717267	529,047.00	3.717283	54	50 - 150	0.0000	+/-0.50	
MPFDoA	62980.4	4.15315	660,611.00	4.153167	10	50 - 150	0.0000	+/-0.50	*
D5-NEtFOSAA	49361.19	4.025466	186,290.00	4.025483	26	50 - 150	0.0000	+/-0.50	*
D3-NMeFOSAA	65574.59	3.945883	234,402.00	3.9459	28	50 - 150	0.0000	+/-0.50	*
HW-I (S) (23B0625-01RE2)			Lab File ID: 23B06	525-01RE2.d		Analyzed: 03/0	1/23 18:22		
M2-6:2FTS	68871.2	3.453267	81,394.00	3.453267	85	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
HW-P (S) (23B0625-02)			Lab File ID: 23B06	525-02.d		Analyzed: 02/2	1/23 20:49		
M8FOSA	293015.9	4.076517	333,528.00	4.076533	88	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	72341.89	2.661333	137,596.00	2.670733	53	50 - 150	-0.0094	+/-0.50	
M2PFTA	665349.2	4.386567	874,363.00	4.3947	76	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	100098.4	3.866867	91,371.00	3.8751	110	50 - 150	-0.0082	+/-0.50	
MPFBA	505357.3	1.141567	463,867.00	1.141567	109	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	117095.8	2.970333	119,916.00	2.97845	98	50 - 150	-0.0081	+/-0.50	
M6PFDA	548101.2	3.867367	605,719.00	3.867367	90	50 - 150	0.0000	+/-0.50	
M3PFBS	135813.2	2.044217	131,474.00	2.044233	103	50 - 150	0.0000	+/-0.50	
M7PFUnA	590471.1	4.018	639,020.00	4.018	92	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	57200.61	3.517633	63,587.00	3.525617	90	50 - 150	-0.0080	+/-0.50	
M5PFPeA	397503	1.849383	382,657.00	1.857667	104	50 - 150	-0.0083	+/-0.50	
M5PFHxA	663463.4	2.755417	653,228.00	2.755417	102	50 - 150	0.0000	+/-0.50	
M3PFHxS	105013.1	3.30035	118,783.00	3.308383	88	50 - 150	-0.0080	+/-0.50	
M4PFHpA	662207.3	3.277267	725,238.00	3.27725	91	50 - 150	0.0000	+/-0.50	
M8PFOA	600771.9	3.53415	652,845.00	3.53415	92	50 - 150	0.0000	+/-0.50	
M8PFOS	108984.2	3.716283	99,916.00	3.716283	109	50 - 150	0.0000	+/-0.50	
M9PFNA	514606.8	3.717283	529,047.00	3.717283	97	50 - 150	0.0000	+/-0.50	
MPFDoA	515898	4.15315	660,611.00	4.153167	78	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	153671.6	4.025466	186,290.00	4.025483	82	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	151641.6	3.9459	234,402.00	3.9459	65	50 - 150	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B330793-BLK1)			Lab File ID: B3307	793-BLK1.d		Analyzed: 02/2	1/23 20:20		
M8FOSA	297854.5	4.0765	333,528.00	4.076533	89	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	71605.59	2.670733	137,596.00	2.670733	52	50 - 150	0.0000	+/-0.50	
M2PFTA	660430.9	4.394667	874,363.00	4.3947	76	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	122022.8	3.86685	91,371.00	3.8751	134	50 - 150	-0.0083	+/-0.50	
MPFBA	462768.8	1.141567	463,867.00	1.141567	100	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	111574.7	2.97845	119,916.00	2.97845	93	50 - 150	0.0000	+/-0.50	
M6PFDA	606835.9	3.867333	605,719.00	3.867367	100	50 - 150	0.0000	+/-0.50	
M3PFBS	125488.3	2.044217	131,474.00	2.044233	95	50 - 150	0.0000	+/-0.50	
M7PFUnA	581898.8	4.017983	639,020.00	4.018	91	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	52657.02	3.5256	63,587.00	3.525617	83	50 - 150	0.0000	+/-0.50	
M5PFPeA	377095.9	1.857667	382,657.00	1.857667	99	50 - 150	0.0000	+/-0.50	
M5PFHxA	630826.3	2.7636	653,228.00	2.755417	97	50 - 150	0.0082	+/-0.50	
M3PFHxS	98674.25	3.308383	118,783.00	3.308383	83	50 - 150	0.0000	+/-0.50	
M4PFHpA	639090.9	3.27725	725,238.00	3.27725	88	50 - 150	0.0000	+/-0.50	
M8PFOA	569103.1	3.534133	652,845.00	3.53415	87	50 - 150	0.0000	+/-0.50	
M8PFOS	100701.3	3.716267	99,916.00	3.716283	101	50 - 150	0.0000	+/-0.50	
M9PFNA	484720.4	3.71725	529,047.00	3.717283	92	50 - 150	0.0000	+/-0.50	
MPFDoA	583837.8	4.153133	660,611.00	4.153167	88	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	151892.4	4.02545	186,290.00	4.025483	82	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	201214.1	3.945883	234,402.00	3.9459	86	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B330793-BS1)			Lab File ID: B3307	793-BS1.d		Analyzed: 02/2	/23 20:12		
M8FOSA	300778.9	4.076533	333,528.00	4.076533	90	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	82358.86	2.67075	137,596.00	2.670733	60	50 - 150	0.0000	+/-0.50	
M2PFTA	712502.1	4.3947	874,363.00	4.3947	81	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	129772.1	3.8751	91,371.00	3.8751	142	50 - 150	0.0000	+/-0.50	
MPFBA	562243.8	1.149867	463,867.00	1.141567	121	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	122203.8	2.978467	119,916.00	2.97845	102	50 - 150	0.0000	+/-0.50	
M6PFDA	635870.4	3.875633	605,719.00	3.867367	105	50 - 150	0.0083	+/-0.50	
M3PFBS	148790.6	2.044233	131,474.00	2.044233	113	50 - 150	0.0000	+/-0.50	
M7PFUnA	678273.8	4.018017	639,020.00	4.018	106	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	57729.82	3.52565	63,587.00	3.525617	91	50 - 150	0.0000	+/-0.50	
M5PFPeA	454205.7	1.857667	382,657.00	1.857667	119	50 - 150	0.0000	+/-0.50	
M5PFHxA	756008	2.763617	653,228.00	2.755417	116	50 - 150	0.0082	+/-0.50	
M3PFHxS	117208.6	3.308417	118,783.00	3.308383	99	50 - 150	0.0000	+/-0.50	
M4PFHpA	763989.4	3.277283	725,238.00	3.27725	105	50 - 150	0.0000	+/-0.50	
M8PFOA	682788.7	3.534167	652,845.00	3.53415	105	50 - 150	0.0000	+/-0.50	
M8PFOS	120823.6	3.7163	99,916.00	3.716283	121	50 - 150	0.0000	+/-0.50	
M9PFNA	569878.9	3.7173	529,047.00	3.717283	108	50 - 150	0.0000	+/-0.50	
MPFDoA	674170.4	4.153167	660,611.00	4.153167	102	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	185346.5	4.025483	186,290.00	4.025483	99	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	249412	3.945917	234,402.00	3.9459	106	50 - 150	0.0000	+/-0.50	

CERTIFICATIONS

Certified Analyses included in this Report

Code

NH-P

Description

New Hampshire Environmental Lab

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Number

2557 NELAP

Expires

09/6/2023

Glassware in freezer? Y / N Prepackaged Cooler? Y / N esponsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The 1 Matrix Codes:
GW = Ground Water
WW = Waste Water
DW = Drinking Water
A = Ali
S = Soil from prepacked coolers *Pace Analytical is not Total Number Of * <u>Preservation Codes:</u> I = Iced X = Sodium Hydroxide Courier Use Only SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate PLASTIC & 0 = Other (please define) ² Preservation Code BACTERIA 5 = Sulfuric Acid GLASS ENCORE N = Nitric Acid VIALS M = Methanol T = Sodium Thiosulfate H= HC possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and Alfa-LAP, LLC Accredited Chromatogram

AlHA-LAP,LLC AIHA-LAP,LLC not be held accountable. Code column above: ANALYSIS REQUESTED Doc # 381 Rev 5_07/13/2021 CT RCP Required MA MCP Required MCP Certification Form Required MA State DW Required <u>CU3</u> Y 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL GLASS PLASTIC School ਨ MBTA CLP Like Data Pig Required: []

Email To: DYNXSSA@ DXXS\PCY NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD VIALS 0 0 0 0 Conc Code WITHEN COIN http://www.pacelabs.com Municipality Due Date: Brownfield Matrix Code 3 10-Day 3 # QISMd EXCEL 3-Day 4-Day COMP/GRAB 212/23/13 90 Gran 212125 | 12:30 Cavab) (Z PFAS 10-Day (std) PDF Ending Date/Time (-) (S) Government ax To#: Format: Federal Other: -Day 1-Day 2-Day Client Comments: Project Entity Beginning Date/Time 19/ Access COC's and Support Requests Sandwich France 51.5 211/23 15.13 2.5-3 in Client Sample ID / Description Phone: 413-525-2332 Date/Time:
3-3-3-3-1
Date/Time: Fax: 413-525-6405 7373 2/2/23 Date/Time: Date/Time: Ś シロ・スエ ANN-P Project Manager: BYM GN WAGSSG 899-Address: 90 RONE 617
Phone: SOB- \$33-60 delinguished by (signature) Pace Analytical" Company Name TDV NEW Received by: (signature) (signajare) C. I N. A. Sugarefour quished by: (signature) Pace Quote Name/Number Received by: (signature) ved by: (signature Sampled By: 731CO) Work Order# Pace Invoice Recipient: Project Number: ab Comments Page 18 of 19

23BA25 KAI

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0001 v02_Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

		u 🗥								True	Fal
Client_	JIVI	ten (7	who _			Received	l on loo			Ц	F
Project		Μ.	Man						Ħ		
	CP Required		_			,	l in Cooler		<u> </u>		
	liverable Package Requirement GW-1						Seal: DAT	E TI	ME	L_l r/i	r r
Locatio	n <u>'llyanni</u>	, [VIA	<u>\</u>		***********	COC Relia	nguished			<u>V</u>	<u>L</u>
PWSID#	(When Applicable)		_v\u_	-		COC/Sam	ples Labe	is Agree		<u> </u>	
	Method		1 1			Ail Sampl	es in Good	d Condition		Ø	
	d By / Date / Time)	-		vithin Holdir	ng Time	7	
Back-Sh	eet By / Date / Time	Mem	3/6/33	331	<u>) </u>	,			_	7	
Temper	ature Method	Oun		# <u> 3 </u>			nough Vo			<u> </u>	<u> </u>
Jemp <	6° C ✓ Actual Tem	peratur	e <u> </u>	1		Proper M	edia/Cont	ainer Used		<u> </u>	
Rush Sa	mples: Yes / NoN	0	Notify			Splitting S	amples R	eguired			
Short Ho	old: Yes / No	10	Notify		<u></u>	MS/MSD				<u> </u>	Ø
	s regarding Sample	·Icoc		Af COD		rip Blank	<u> </u>	ىيى دەرىخەك يەكىمىدىكىلىقىدىكى سامارىكى ئالىرىكىلىكىلىكىلىكىلىكىلىكىلىكىلىكىلىكىلى			
ivote	s regarding Sample:	5/COC	BUCSTOR	<u>-DI-SUF</u>	1,000	ab to Filt		The state of the s			Ø
					_ I			- · · · · · · · · · · · · · · · · · · ·	Γ	7	П
	The state of the s					OC Legib		'	<u> </u>	21	البيبا
***************************************		******	is i administration in		(Of Inch	ided: (Ch	eck all linch	ided)		
						ſ	7	eck all Inclu			ינדו
					_ 0	lient [₹ An	alysis 🛒	Sampler		
					_ 0	ſ	₹ An	alysis 🛒	Sampler	Name n Date/Tir	ne 🗹
					— C	Client [Project [☑ An	nalysis 🗹	Sampler		ne 🗹
					F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me of
Contair	ner (Circle when applicable	a) Uni	PHCI	HNO3	— C	Client [Project [☑ An	nalysis 🗹	Sampler	n Date/Tir	me 🗹
1L	Amber Plastic	s) Uni	P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me d
1L 500 mL	Amber Plastic Amber Plastic		PHCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me of
1L 500 mL 250 mL	Amber Plastic Amber Plastic Amber (Plastic)	s) Uni	PHCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me d
1L 500 mL 250 mL	Amber Plastic Amber Plastic		PHCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me of
1L 500 mL 250 mL Other	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me d
1L 500 mL 250 mL Other 16oz	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		PHCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me II
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear Amber Clear Amber Clear Amber Clear Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me d
1L 500 mL 250 mL Other 1602 802 402 202 Col/Bac	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me d
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo	Amber Plastic Amber Plastic Amber Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me I
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me I
1L 500 mL 250 mL Other 1602 802 402 202 Col/Bac Flashpo Plastic I	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	
1L 500 mL 250 mL Other 1602 802 402 202 Col/Bac Flashpo Plastic I SOC Kit	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	me I
1L 500 mL 250 mL Other 1602 802 402 202 Col/Bac Flashpo Plastic SOC Kit Perchlo Encore	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	F	Client C Project C	✓ An	er PH	Sampler Collection	n Date/Tir	
1L 500 mL 250 mL Other 1602 802 402 202 Col/Bac Flashpo Plastic I SOC Kit	Amber Plastic Amber Plastic Amber (Plastic) Amber Clear Plastic Amber Clear		P HCI	HNO3	H2SO4	Client C Project C	And ID	er PH	Sampler Collection	n Date/Tir	

March 7, 2023

Bryan Massa Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563

Project Location: Hyannis, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 23B0638

Enclosed are results of analyses for samples as received by the laboratory on February 3, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
23B0638-01	6
23B0638-02	7
23B0638-03	8
Sample Preparation Information	9
QC Data	10
Semivolatile Organic Compounds by - LC/MS-MS	10
B330793	10
Flag/Qualifier Summary	12
Internal standard Area & RT Summary	13
Certifications	18
Chain of Custody/Sample Receipt	19

Horsley Witten Group 90 Route 6A Unit #1 Sandwich, MA 02563 ATTN: Bryan Massa

PURCHASE ORDER NUMBER:

REPORT DATE: 3/7/2023

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

23B0638 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Hyannis, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
ME-1	23B0638-01	Ground Water		SOP-454 PFAS	
ME-3	23B0638-02	Ground Water		SOP-454 PFAS	
ME-2	23B0638-03	Ground Water		SOP-454 PFAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP-454 PFAS

Qualifications:

PF-17

Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.

bias is on the high side.

Analyte & Samples(s) Qualified:

M3HFPO-DA

23B0638-01[ME-1], S083860-IBL1

PF-19

Sample re-analyzed at a dilution that was re-fortified with internal standard.

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2FTS A)

23B0638-03RE1[ME-2]

PF-22

Qualifier ion ratio >150% of associated calibration. Detection is suspect.

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2FTS A)

23B0638-01[ME-1]

 $Perfluoro octane sulfonamide \ (FOSA)$

23B0638-02[ME-3]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-4:2FTS

23B0638-02[ME-3], S083860-CCV3

M2-6:2FTS

S084026-CCV1

M2PFTA

23B0638-01[ME-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Perfluorodecanesulfonic acid (PFDS)

S083850-CCV2

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watthensten

Work Order: 23B0638

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Hyannis, MA Sample Description:

Date Received: 2/3/2023
Field Sample #: ME-1

Sampled: 2/2/2023 09:58

Sample ID: 23B0638-01
Sample Matrix: Ground Water

		2	semivolatile	Organic Co	mpounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	16	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorobutanesulfonic acid (PFBS)	2.3	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoropentanoic acid (PFPeA)	53	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorohexanoic acid (PFHxA)	33	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.52	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.84	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorodecanoic acid (PFDA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.82	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.65	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoroheptanesulfonic acid (PFHpS)	1.5	1.8	0.72	ng/L	1	J	SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.71	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.84	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.91	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.90	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.90	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoro-1-butanesulfonamide (FBSA)	1.4	1.8	0.69	ng/L	1	J	SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorohexanesulfonic acid (PFHxS)	27	1.8	0.63	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.63	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.57	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	26	1.8	1.1	ng/L	1	PF-22	SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoropetanesulfonic acid (PFPeS)	2.2	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.69	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluoroheptanoic acid (PFHpA)	15	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorooctanoic acid (PFOA)	15	1.8	1.2	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorooctanesulfonic acid (PFOS)	69	1.8	0.75	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW
Perfluorononanoic acid (PFNA)	9.8	1.8	0.81	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:52	QNW

Project Location: Hyannis, MA Sample Description: Work Order: 23B0638

Date Received: 2/3/2023

Field Sample #: ME-3

Sampled: 2/2/2023 10:15

Sample ID: 23B0638-02
Sample Matrix: Ground Water

		2	semivolatile	Organic Co	mpounds by - I	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	8.9	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorobutanesulfonic acid (PFBS)	2.6	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoropentanoic acid (PFPeA)	26	1.8	0.71	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorohexanoic acid (PFHxA)	19	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	0.86	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorodecanoic acid (PFDA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoroheptanesulfonic acid (PFHpS)	1.9	1.8	0.73	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.94	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.85	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.69	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorooctanesulfonamide (FOSA)	3.6	1.8	0.91	ng/L	1	PF-22	SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	1.4	1.8	0.94	ng/L	1	J	SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoro-1-butanesulfonamide (FBSA)	1.2	1.8	0.70	ng/L	1	J	SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorohexanesulfonic acid (PFHxS)	32	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.58	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	4.0	1.8	1.1	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoropetanesulfonic acid (PFPeS)	2.6	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.77	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluoroheptanoic acid (PFHpA)	8.7	1.8	0.76	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorooctanoic acid (PFOA)	11	1.8	1.2	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorooctanesulfonic acid (PFOS)	72	1.8	0.76	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW
Perfluorononanoic acid (PFNA)	6.3	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 19:59	QNW

Work Order: 23B0638

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Hyannis, MA Sample Description:

Date Received: 2/3/2023

Field Sample #: ME-2

Sampled: 2/2/2023 10:30

Sample ID: 23B0638-03

Sample Matrix: Ground Water

		2	semivolatile	Organic Coi	mpounds by - 1	LC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	23	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorobutanesulfonic acid (PFBS)	4.6	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoropentanoic acid (PFPeA)	79	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorohexanoic acid (PFHxA)	56	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.8	0.68	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.8	0.67	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.94	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	0.53	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	12	1.8	0.86	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorodecanoic acid (PFDA)	0.86	1.8	0.75	ng/L	1	J	SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	0.66	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoroheptanesulfonic acid (PFHpS)	4.8	1.8	0.74	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
N-EtFOSAA (NEtFOSAA)	ND	1.8	0.72	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
N-MeFOSAA (NMeFOSAA)	ND	1.8	0.94	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorotetradecanoic acid (PFTA)	ND	1.8	0.86	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorotridecanoic acid (PFTrDA)	ND	1.8	0.75	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.93	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorononanesulfonic acid (PFNS)	ND	1.8	0.92	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	0.95	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoro-1-butanesulfonamide (FBSA)	3.7	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorohexanesulfonic acid (PFHxS)	65	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	0.64	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	0.59	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	310	18	11	ng/L	10	PF-19	SOP-454 PFAS	2/7/23	3/1/23 18:29	RRB
Perfluoropetanesulfonic acid (PFPeS)	5.2	1.8	0.69	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.77	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	0.70	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluoroheptanoic acid (PFHpA)	27	1.8	0.76	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorooctanoic acid (PFOA)	20	1.8	1.2	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorooctanesulfonic acid (PFOS)	77	1.8	0.77	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW
Perfluorononanoic acid (PFNA)	14	1.8	0.83	ng/L	1		SOP-454 PFAS	2/7/23	2/23/23 20:06	QNW

Sample Extraction Data

Prep Method: SOP 454-PFAAS Analytical Method: SOP-454 PFAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B0638-01 [ME-1]	B330793	284	1.00	02/07/23
23B0638-02 [ME-3]	B330793	279	1.00	02/07/23
23B0638-03 [ME-2]	B330793	277	1.00	02/07/23
23B0638-03RE1 [ME-2]	B330793	277	1.00	02/07/23

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

	- ·	Reporting	** **	Spike	Source	0/855	%REC	Des	RPD	37 -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B330793 - SOP 454-PFAAS										
lank (B330793-BLK1)				Prepared: 02	2/07/23 Analy	yzed: 02/21/2	23			
erfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
erfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
CI-PF3ONS (F53B Minor)	ND	1.8	ng/L							
8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
exafluoropropylene oxide dimer acid	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
erfluoro(2-ethoxyethane)sulfonic acid	ND	1.8	ng/L							
erfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
-EtFOSAA (NEtFOSAA)	ND	1.8	ng/L							
-MeFOSAA (NMeFOSAA)	ND	1.8	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.8	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
erfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L							
erfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L							
erfluorononanesulfonic acid (PFNS)	ND	1.8	ng/L							
erfluoro-1-hexanesulfonamide (FHxSA)	ND	1.8	ng/L							
erfluoro-1-butanesulfonamide (FBSA)	ND	1.8	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
erfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
erfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
erfluoropetanesulfonic acid (PFPeS)	ND	1.8	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
onafluoro-3,6-dioxaheptanoic acid	ND	1.8	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
erfluorononanoic acid (PFNA)	ND	1.8	ng/L							
CS (B330793-BS1)		1.0	75		2/07/23 Analy					
erfluorobutanoic acid (PFBA)	9.60	1.9	ng/L	9.67		99.2	73-129			
erfluorobutanesulfonic acid (PFBS)	8.60	1.9	ng/L	8.56		100	72-130			
erfluoropentanoic acid (PFPeA)	9.65	1.9	ng/L	9.67		99.8	72-129			
erfluorohexanoic acid (PFHxA)	9.52	1.9	ng/L	9.67		98.4	72-129			
CI-PF3OUdS (F53B Major)	7.53	1.9	ng/L	9.11		82.7	55.1-141			
Cl-PF3ONS (F53B Minor)	8.04	1.9	ng/L	9.02		89.2	59.6-146			
8-Dioxa-3H-perfluorononanoic acid ADONA)	8.67	1.9	ng/L	9.11		95.1	60.3-131			
exafluoropropylene oxide dimer acid HFPO-DA)	8.99	1.9	ng/L	9.67		93.0	37.6-167			
2 Fluorotelomersulfonic acid (8:2FTS A)	11.0	1.9	ng/L	9.29		119	67-138			
erfluorodecanoic acid (PFDA)	10.4	1.9	ng/L	9.67		107	71-129			
erfluorododecanoic acid (PFDoA)	10.2	1.9	ng/L	9.67		105	72-134			
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	8.37	1.9	ng/L	8.61		97.2	49.4-154			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B330793 - SOP 454-PFAAS										
LCS (B330793-BS1)				Prepared: 02	2/07/23 Anal	yzed: 02/21/2	23			
Perfluoroheptanesulfonic acid (PFHpS)	8.54	1.9	ng/L	9.24		92.4	69-134			
N-EtFOSAA (NEtFOSAA)	12.0	1.9	ng/L	9.67		124	61-135			
N-MeFOSAA (NMeFOSAA)	10.3	1.9	ng/L	9.67		106	65-136			
Perfluorotetradecanoic acid (PFTA)	9.45	1.9	ng/L	9.67		97.7	71-132			
Perfluorotridecanoic acid (PFTrDA)	11.2	1.9	ng/L	9.67		116	65-144			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	8.91	1.9	ng/L	9.04		98.5	63-143			
Perfluorodecanesulfonic acid (PFDS)	8.90	1.9	ng/L	9.33		95.3	53-142			
Perfluorooctanesulfonamide (FOSA)	9.25	1.9	ng/L	9.67		95.6	67-137			
Perfluorononanesulfonic acid (PFNS)	11.4	1.9	ng/L	9.29		123	69-127			
Perfluoro-1-hexanesulfonamide (FHxSA)	9.45	1.9	ng/L	9.67		97.7	61.7-156			
Perfluoro-1-butanesulfonamide (FBSA)	8.74	1.9	ng/L	9.67		90.4	61.3-145			
Perfluorohexanesulfonic acid (PFHxS)	9.41	1.9	ng/L	8.85		106	68-131			
Perfluoro-4-oxapentanoic acid (PFMPA)	9.89	1.9	ng/L	9.67		102	59.8-147			
Perfluoro-5-oxahexanoic acid (PFMBA)	9.97	1.9	ng/L	9.67		103	59.5-146			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	9.93	1.9	ng/L	9.19		108	64-140			
Perfluoropetanesulfonic acid (PFPeS)	9.58	1.9	ng/L	9.09		105	71-127			
Perfluoroundecanoic acid (PFUnA)	11.3	1.9	ng/L	9.67		117	69-133			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	10.3	1.9	ng/L	9.67		107	58.5-143			
Perfluoroheptanoic acid (PFHpA)	9.41	1.9	ng/L	9.67		97.2	72-130			
Perfluorooctanoic acid (PFOA)	8.85	1.9	ng/L	9.67		91.5	71-133			
Perfluorooctanesulfonic acid (PFOS)	8.76	1.9	ng/L	8.95		97.9	65-140			
Perfluorononanoic acid (PFNA)	10.3	1.9	ng/L	9.67		106	69-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
PF-17	Extracted Internal Standard recovery is outside of control limits. Data is not significantly affected since associated analyte is not detected and bias is on the high side.
PF-19	Sample re-analyzed at a dilution that was re-fortified with internal standard.
PF-22	Qualifier ion ratio >150% of associated calibration. Detection is suspect.
S-29	Extracted Internal Standard is outside of control limits.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

QC result is outside of established limits.

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
ME-1 (23B0638-01)		Lab File ID: 23B0638-01.d			Analyzed: 02/23/23 19:52					
M8FOSA	316797.3	4.0845	394,923.00	4.0845	80	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	88665.7	2.678933	165,484.00	2.678933	54	50 - 150	0.0000	+/-0.50		
M2PFTA	510301.4	4.394667	1,024,322.00	4.4028	50	50 - 150	-0.0081	+/-0.50		
M2-8:2FTS	173856.9	3.875067	215,848.00	3.88305	81	50 - 150	-0.0080	+/-0.50		
MPFBA	617263.6	1.149867	534,345.00	1.149867	116	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	176669.4	2.986567	107,660.00	2.986567	164	50 - 150	0.0000	+/-0.50	*	
M6PFDA	758030.8	3.8756	766,328.00	3.883583	99	50 - 150	-0.0080	+/-0.50		
M3PFBS	163547	2.054933	149,852.00	2.054933	109	50 - 150	0.0000	+/-0.50		
M7PFUnA	758014.1	4.025967	839,980.00	4.025967	90	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	75212.4	3.5336	121,538.00	3.5336	62	50 - 150	0.0000	+/-0.50		
M5PFPeA	495960.8	1.86595	446,990.00	1.86595	111	50 - 150	0.0000	+/-0.50		
M5PFHxA	846623.5	2.771783	782,300.00	2.771783	108	50 - 150	0.0000	+/-0.50		
M3PFHxS	143788.6	3.316417	128,330.00	3.316417	112	50 - 150	0.0000	+/-0.50		
M4PFHpA	916002.5	3.2853	884,017.00	3.2853	104	50 - 150	0.0000	+/-0.50		
M8PFOA	874527.1	3.542133	743,619.00	3.542133	118	50 - 150	0.0000	+/-0.50		
M8PFOS	119433.9	3.724233	128,346.00	3.724233	93	50 - 150	0.0000	+/-0.50		
M9PFNA	700839.8	3.725233	663,153.00	3.725233	106	50 - 150	0.0000	+/-0.50		
MPFDoA	675864.4	4.1612	865,995.00	4.1612	78	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	195095.4	4.03345	210,785.00	4.03345	93	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	224562.9	3.953867	266,645.00	3.953867	84	50 - 150	0.0000	+/-0.50		

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-3 (23B0638-02)	Lab File ID: 23B0638-02.d			Analyzed: 02/23/23 19:59					
M8FOSA	316401.3	4.0845	394,923.00	4.0845	80	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	79661.73	2.678933	165,484.00	2.678933	48	50 - 150	0.0000	+/-0.50	*
M2PFTA	638719.6	4.394667	1,024,322.00	4.4028	62	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	132862.9	3.875067	215,848.00	3.88305	62	50 - 150	-0.0080	+/-0.50	
MPFBA	557327.7	1.158183	534,345.00	1.149867	104	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	153635	2.986567	107,660.00	2.986567	143	50 - 150	0.0000	+/-0.50	
M6PFDA	680044.8	3.8756	766,328.00	3.883583	89	50 - 150	-0.0080	+/-0.50	
M3PFBS	145257.1	2.054933	149,852.00	2.054933	97	50 - 150	0.0000	+/-0.50	
M7PFUnA	730890.8	4.025967	839,980.00	4.025967	87	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	64178.63	3.5336	121,538.00	3.5336	53	50 - 150	0.0000	+/-0.50	
M5PFPeA	444789.1	1.86595	446,990.00	1.86595	100	50 - 150	0.0000	+/-0.50	
M5PFHxA	773748.5	2.771783	782,300.00	2.771783	99	50 - 150	0.0000	+/-0.50	
M3PFHxS	122184.5	3.316417	128,330.00	3.316417	95	50 - 150	0.0000	+/-0.50	
M4PFHpA	822518	3.2853	884,017.00	3.2853	93	50 - 150	0.0000	+/-0.50	
M8PFOA	792942.6	3.542133	743,619.00	3.542133	107	50 - 150	0.0000	+/-0.50	
M8PFOS	115313.2	3.724233	128,346.00	3.724233	90	50 - 150	0.0000	+/-0.50	
M9PFNA	589867.3	3.725233	663,153.00	3.725233	89	50 - 150	0.0000	+/-0.50	
MPFDoA	654421.4	4.1612	865,995.00	4.1612	76	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	163816.9	4.03345	210,785.00	4.03345	78	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	194311.3	3.953867	266,645.00	3.953867	73	50 - 150	0.0000	+/-0.50	

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
ME-2 (23B0638-03)			Lab File ID: 23B06	Analyzed: 02/23/23 20:06				Щ	
M8FOSA	374924.4	4.0845	394,923.00	4.0845	95	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	88818.82	2.678933	165,484.00	2.678933	54	50 - 150	0.0000	+/-0.50	
M2PFTA	761629.3	4.394667	1,024,322.00	4.4028	74	50 - 150	-0.0081	+/-0.50	
M2-8:2FTS	165355.2	3.875067	215,848.00	3.88305	77	50 - 150	-0.0080	+/-0.50	
MPFBA	627478.6	1.149867	534,345.00	1.149867	117	50 - 150	0.0000	+/-0.50	
M3HFPO-DA	139831.8	2.986567	107,660.00	2.986567	130	50 - 150	0.0000	+/-0.50	
M6PFDA	836265.3	3.8756	766,328.00	3.883583	109	50 - 150	-0.0080	+/-0.50	
M3PFBS	167809.8	2.054933	149,852.00	2.054933	112	50 - 150	0.0000	+/-0.50	
M7PFUnA	824695	4.025983	839,980.00	4.025967	98	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	100227.3	3.5256	121,538.00	3.5336	82	50 - 150	-0.0080	+/-0.50	
M5PFPeA	513894.3	1.857667	446,990.00	1.86595	115	50 - 150	-0.0083	+/-0.50	
M5PFHxA	871201.4	2.7636	782,300.00	2.771783	111	50 - 150	-0.0082	+/-0.50	
M3PFHxS	143939.5	3.308383	128,330.00	3.316417	112	50 - 150	-0.0080	+/-0.50	
M4PFHpA	993224.3	3.2853	884,017.00	3.2853	112	50 - 150	0.0000	+/-0.50	
M8PFOA	898548.5	3.542133	743,619.00	3.542133	121	50 - 150	0.0000	+/-0.50	
M8PFOS	131449.5	3.724233	128,346.00	3.724233	102	50 - 150	0.0000	+/-0.50	
M9PFNA	725393.9	3.725233	663,153.00	3.725233	109	50 - 150	0.0000	+/-0.50	
MPFDoA	798421.3	4.1612	865,995.00	4.1612	92	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	207473.1	4.03345	210,785.00	4.03345	98	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	240607.9	3.953867	266,645.00	3.953867	90	50 - 150	0.0000	+/-0.50	
ME-2 (23B0638-03RE1)	-2 (23B0638-03RE1) Lab File ID: 23B0638-03RE1.d Analyzed: 0				Analyzed: 03/0	1/23 18:29			
M2-6:2FTS	72653.56	3.453267	81,394.00	3.453267	89	50 - 150	0.0000	+/-0.50	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
Blank (B330793-BLK1)			Lab File ID: B3307	793-BLK1.d		Analyzed: 02/21/23 20:20				
M8FOSA	297854.5	4.0765	333,528.00	4.076533	89	50 - 150	0.0000	+/-0.50		
M2-4:2FTS	71605.59	2.670733	137,596.00	2.670733	52	50 - 150	0.0000	+/-0.50		
M2PFTA	660430.9	4.394667	874,363.00	4.3947	76	50 - 150	0.0000	+/-0.50		
M2-8:2FTS	122022.8	3.86685	91,371.00	3.8751	134	50 - 150	-0.0083	+/-0.50		
MPFBA	462768.8	1.141567	463,867.00	1.141567	100	50 - 150	0.0000	+/-0.50		
M3HFPO-DA	111574.7	2.97845	119,916.00	2.97845	93	50 - 150	0.0000	+/-0.50		
M6PFDA	606835.9	3.867333	605,719.00	3.867367	100	50 - 150	0.0000	+/-0.50		
M3PFBS	125488.3	2.044217	131,474.00	2.044233	95	50 - 150	0.0000	+/-0.50		
M7PFUnA	581898.8	4.017983	639,020.00	4.018	91	50 - 150	0.0000	+/-0.50		
M2-6:2FTS	52657.02	3.5256	63,587.00	3.525617	83	50 - 150	0.0000	+/-0.50		
M5PFPeA	377095.9	1.857667	382,657.00	1.857667	99	50 - 150	0.0000	+/-0.50		
M5PFHxA	630826.3	2.7636	653,228.00	2.755417	97	50 - 150	0.0082	+/-0.50		
M3PFHxS	98674.25	3.308383	118,783.00	3.308383	83	50 - 150	0.0000	+/-0.50		
M4PFHpA	639090.9	3.27725	725,238.00	3.27725	88	50 - 150	0.0000	+/-0.50		
M8PFOA	569103.1	3.534133	652,845.00	3.53415	87	50 - 150	0.0000	+/-0.50		
M8PFOS	100701.3	3.716267	99,916.00	3.716283	101	50 - 150	0.0000	+/-0.50		
M9PFNA	484720.4	3.71725	529,047.00	3.717283	92	50 - 150	0.0000	+/-0.50		
MPFDoA	583837.8	4.153133	660,611.00	4.153167	88	50 - 150	0.0000	+/-0.50		
D5-NEtFOSAA	151892.4	4.02545	186,290.00	4.025483	82	50 - 150	0.0000	+/-0.50		
D3-NMeFOSAA	201214.1	3.945883	234,402.00	3.9459	86	50 - 150	0.0000	+/-0.50		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

${\bf INTERNAL\,STANDARD\,AREA\,AND\,RT\,SUMMARY}$

SOP-454 PFAS

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (B330793-BS1)			Lab File ID: B3307	Analyzed: 02/21/23 20:12					
M8FOSA	300778.9	4.076533	333,528.00	4.076533	90	50 - 150	0.0000	+/-0.50	
M2-4:2FTS	82358.86	2.67075	137,596.00	2.670733	60	50 - 150	0.0000	+/-0.50	
M2PFTA	712502.1	4.3947	874,363.00	4.3947	81	50 - 150	0.0000	+/-0.50	
M2-8:2FTS	129772.1	3.8751	91,371.00	3.8751	142	50 - 150	0.0000	+/-0.50	
MPFBA	562243.8	1.149867	463,867.00	1.141567	121	50 - 150	0.0083	+/-0.50	
M3HFPO-DA	122203.8	2.978467	119,916.00	2.97845	102	50 - 150	0.0000	+/-0.50	
M6PFDA	635870.4	3.875633	605,719.00	3.867367	105	50 - 150	0.0083	+/-0.50	
M3PFBS	148790.6	2.044233	131,474.00	2.044233	113	50 - 150	0.0000	+/-0.50	
M7PFUnA	678273.8	4.018017	639,020.00	4.018	106	50 - 150	0.0000	+/-0.50	
M2-6:2FTS	57729.82	3.52565	63,587.00	3.525617	91	50 - 150	0.0000	+/-0.50	
M5PFPeA	454205.7	1.857667	382,657.00	1.857667	119	50 - 150	0.0000	+/-0.50	
M5PFHxA	756008	2.763617	653,228.00	2.755417	116	50 - 150	0.0082	+/-0.50	
M3PFHxS	117208.6	3.308417	118,783.00	3.308383	99	50 - 150	0.0000	+/-0.50	
M4PFHpA	763989.4	3.277283	725,238.00	3.27725	105	50 - 150	0.0000	+/-0.50	
M8PFOA	682788.7	3.534167	652,845.00	3.53415	105	50 - 150	0.0000	+/-0.50	
M8PFOS	120823.6	3.7163	99,916.00	3.716283	121	50 - 150	0.0000	+/-0.50	
M9PFNA	569878.9	3.7173	529,047.00	3.717283	108	50 - 150	0.0000	+/-0.50	
MPFDoA	674170.4	4.153167	660,611.00	4.153167	102	50 - 150	0.0000	+/-0.50	
D5-NEtFOSAA	185346.5	4.025483	186,290.00	4.025483	99	50 - 150	0.0000	+/-0.50	
D3-NMeFOSAA	249412	3.945917	234,402.00	3.9459	106	50 - 150	0.0000	+/-0.50	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Code

NH-P

Description

New Hampshire Environmental Lab

Analyte	Certifications
OP-454 PFAS in Water	
Perfluorobutanoic acid (PFBA)	NH-P
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluoropentanoic acid (PFPeA)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
11Cl-PF3OUdS (F53B Major)	NH-P
9Cl-PF3ONS (F53B Minor)	NH-P
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P
Perfluoroheptanesulfonic acid (PFHpS)	NH-P
N-EtFOSAA (NEtFOSAA)	NH-P
N-MeFOSAA (NMeFOSAA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH-P
Perfluorodecanesulfonic acid (PFDS)	NH-P
Perfluorooctanesulfonamide (FOSA)	NH-P
Perfluorononanesulfonic acid (PFNS)	NH-P
Perfluoro-1-hexanesulfonamide (FHxSA)	NH-P
Perfluoro-1-butanesulfonamide (FBSA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluoro-4-oxapentanoic acid (PFMPA)	NH-P
Perfluoro-5-oxahexanoic acid (PFMBA)	NH-P
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH-P
Perfluoropetanesulfonic acid (PFPeS)	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P

Number

2557 NELAP

Expires

09/6/2023

Table of Contents

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical Values your partnership on each project and will try to assist with missing information, but will Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water *Pace Analytical is not from prepacked coolers Total Number Of: ² Preservation Codes: I = Iced X = Sodium Hydroxide A = Air S = Soil SL = Sludge SOL = Solid O = Other (please Courier Use Only B = Sodium Bisulfate O = Other (please define) BACTERIA 5 = Sulfuric Acid Z Preservation Code GLASS N = Nitric Acid PLASTIC ENCORE M = Methanol VIALS Thiosulfate define) possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AlfA-LAP, LLC Accredited Chromatogram
AHA-LAP,LLC not be held accountable. Code column above: ANALYSIS REQUESTED Unknown CT RCP Required RCP Certification Form Required MCP Certification Form Required MA MCP Required MA State DW Required BEAS X $^{\prime}$ X 39 Spruce Street East Longmeadow, MA 01028 BACTERIA ENCORE Anna San Anna and Anna San Ann Field Filtered Field Filtered PCB ONLY Lab to Filter Lab to Fitter GLASS PLASTIC School MBTA X X X NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD VIALS 0 0 0 0 Conc Code Email To: DKNGSSQ @YNOSIEW WITHER CON Σ Municipality Brownfield Due Date: Matrix N N N Z Z # CISMd 10-Day 30 EXCEL 3-Day 4-Day CLP Like Data Pkg Required: COMPJGRAB 2121239 58 GYGD CA COVED 21272 10:30 CAGNO PDF PFAS 10-Day (std) -715 Ending Date/Time Government 21:01 52125 Fax To#: Format: Federal Other: 1-Day -Day Client Comments: City Project Entity Beginning Date/Time Access COC's and Support Reguests Date/Time: 21423 15.13 State Lines 125 42123 15:13 JUSTED CATALLY Client Sample ID / Description Phone: 413-525-2332 Sardwich Date/Time: Date/Time: 7-3-3-3 A Sume: Fax: 413-525-6405 Date/Time. Date/Time: Project Location: 什么なペトハン MA Project Manager: Bryngh MGSSG 933 - 660C ME /(signaye) Pace Analytical Address: 90 PRNT LOCA Velak Diarrale Company Name John Leginsty Color \elinquished_by: \langle signature \rangle inquished by: (signature) nquished by: (pgnature Pace Quote Name/Number \$1000 N Received by: (signature) eceived by: (signature Pace Work Order# ampled By: SK Invoice Recipient: Project Number: ab Comments: m Phone: Page 19 of 20

Doc # 381 Rev 5_07/13/2021

http://www.pacelabs.com

33130638

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0001 v02_Sample Receiving Checklist 1-12-2

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

	1 . \ \./4	t. C.							T	rue	False
Client	Horsley Wit	ru arc	<u> </u>			Dana da sa al	!			4	П
Project			100		,	Received	on Ice	<u>,,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		7	— H
MCP/RCP Req	uired	MA·A			!	Received	in Coole	<u>r</u>	1	<u></u>	
Deliverable Pa	ckage Requirem	ent	(;W	-		Custody !	Seal: DA	TE TIN	NE L	<u> </u>	Ø
Location	<u> </u>	<u>bc, M</u>	A		<u> </u>	COC Reli	7				
PWSID# (Whe	n Applicable)		na		<u> </u>	COC/Sam	pies Lab	els, Agree	[
Arrival Metho	1	Divec.	- 1 - 1			All Sampl	es in Gor	od Condition	[7	
Received By /	Date / Time	_[R_	<u> </u>	3 1615					[7	П
Back-Sheet By	nck-Sheet By / Date / Time <u>McM 3/6/33 3359</u>							within Holdin		<u>=</u>	
Temperature I	mperature Method <u>ပြော</u> # <u>ဒ</u>					s there e	nough V	olume	<u>.</u>	<u> </u>	<u></u>
	Actual Tem			7	<u>F</u>	roper M	edia/Cor	tainer Used	L	<u> </u>	
	Yes / No				\$	plitting S	amples I	Required			
	Yes / No					AS/MSD]	
		al en		and the second s				والمراجعة المحالية المحالية المحالية]	
Notes reg	rding Sample	s/COC ¢	utside	of SOP:					17-15-17-17-17		П
						ab to Filt			<u> </u>	<u></u> 71	<u> </u>
						OC Legib			<u> </u>		
***							ıded: (C	heck all linclu	ded}		4,794
	ı			-	•		F/5				
			······································					nalysis 🔽	Sampler	Name ·	
					_		3 A	-	Sampler	Name n Date/Ti	me 🚺
					_	lient	3 A	nalysis 🗹 Ds 🖸	Sampler Collection		me 🗹
					— C	lient roject	Y A	nalysis 🗹 Ds 🖸	Sampler		
Container (Ci	cle when applicabl		HCI	ниоз	— C	lient roject	Y A	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	me []
	cle when applicable		HCI	ниоз	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A	mber Plastic mber Plastic		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A	mber Plastic mber Plastic mber Plastic		HCI	ниоз	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A Other Amber	mber Plastic mber Plastic mber Plastic Clear Plastic		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A Other Amber 1602 A	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A Other Amber 160z A 80z A	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 16oz A 8oz A 4oz A	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 1602 A 802 A 402 A 202 A	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A Other Amber 160z A 80z A 40z A 20z A Col/Bacteria	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 1602 A 802 A 402 A 202 A	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1L A 500 mL A 250 mL A Other Amber 16oz A 8oz A 4oz A 2oz A Col/Bacteria Flashpoint	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 16oz A 8oz A 4oz A 2oz A Col/Bacteria Flashpoint Plastic Bag	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 160z A 80z A 40z A 20z A Col/Bacteria Flashpoint Plastic Bag SOC KIt	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	— C	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 160z A 80z A 40z A 20z A Col/Bacteria Flashpoint Plastic Bag SOC KIt Perchlorate Encore Frozen	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear mber Clear mber Clear	e) UnP			H2SO4	Ilient I	les Pro	nalysis Ds	Sampler Collection	n Date/Ti	
1t A 500 mL A 250 mL A Other Amber 160z A 80z A 40z A 20z A Col/Bacteria Flashpoint Plastic Bag SOC KIt Perchlorate Encore Frozen	mber Plastic mber Plastic mber Plastic Clear Plastic mber Clear mber Clear mber Clear		HCI	HNO3	H2SO4	lient I	A J iles Pro	nalysis 🗹 Ds 🗹 per PH	Sampler Collection	n Date/Ti	

APPENDIX B

Battelle Forensic PFAS Analysis Report

PFAS Signature® Analysis Report Hyannis Airport

Submitted to: Horsley Witten Group, Inc. 90 Route 6A, Unit 1 Sandwich, MA 02563

Prepared by:

Date: December 08, 2022

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table of Contents

1.0	Brief Project Description	3
2.0	Chain of Custody	3
3.0	PFAS-Targeted Analysis	4
4.0	Suspect Screening High Resolution Mass Spectrometric Analysis (HRMS)	7
	4.1 Analyte Identification Confidence Levels	7
5.0	Machine Learning Analysis	11
Refe	rences	31
Арре	endix A – Supplemental Information	
List	of Tables	
Table	e 1. PFAS Concentrations of Aqueous Samples and Quality Control Samplese 2. Suspect Screening Analysis Data (Peak responses of the detected analytes)e 3. Sample Proximity Matrix Plot of the unknown samples	9
List	of Figures	
Figur	re 1. Hierarchical Cluster Plot from Machine Learning Analysis of Known AFFF and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the library are shown with distinct ID:	
Figur	re 2. MDS Cluster Plot from Machine Learning Analysis of Known AFFF and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the library are shown with distinct IDs	
Figur	re 3. MDS Cluster Plot from Supervised Machine Learning Analysis of Known Field Environmental Samples and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the	
	library are shown with distinct IDs.	15

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

1.0 Brief Project Description

This report provides results of six samples submitted for PFAS Signature® analysis by Horsley Witten Group. The objective of the study was to perform per- and polyfluoroalkyl substances (PFAS) source discrimination analysis using Battelle's PFAS Signature® Tool. The data collected will be helpful to differentiate potential PFAS signatures at groundwater sampling locations and to inform forensic investigations.

2.0 Chain of Custody

GILLOWING ALOUS (HYA)	nt Project Manag			-	771	Number:		Test / Preservative ¹		COC Num	ber:
PMOSSA Worsleywitten	CDYY	Samp	ies Collected by	HV	V			Sighahay	reservative	Turnaround Time ² :	
TO ROUSE 6M			509-	63	13-6	000		TS TS			days (standard)
Sanzhuch WM			brassal	(GYO)	Strait	citter	Lorn	53			days (Rush) days (Rush) 120ac
Phone: 761-243-1517			EUS A	rin	-1			NE	711		ays (Rush)
Email: Sample ID		PG ref	ferences					2			ay (Rush)
VY (- 1	7/29/22	Time	Type ³	-	atrix	Count	Lab ID	8		Sample	Comments
MANZ MF-3	7/29/22		CHAD		w	2	E4930	V			
WES ME-Z	7/29/22	10 60	CYCYC	6	W	2	E4431		+++	-	
HW-I(s)	8/2/22	13 45	Oxox		W	2	64933				
HW-I(m)	8/2/22	14:10	OVOVO	9		2	E4434	1			
(BIT-VIH DON'T PAR	812122	1450	Crayal	61		1	E4935	/			
2 00			1								
	-										
				-				++			
								1	+++	-	
elinemethod to Come /Com)	Company								1000		
Analy D (US)	HW		Date/Tim			thy (Print/Sig	n):		Company:		Date/Time: \$\22\22\6\4)
elinquished by (Frint/Sign)	Company	S.	Dute/Ilm	10.		by (Print/Se	TT:		Company:		Date/Time:
olinquished by (Print/Sign):	Chimpany	15	Date/Tim	te:	Received	by (Print/Sig	9):-		BN()	8 3 2L 039
ield Project comments:				-	District				1.000		Salid (1995)
1.30 Therm ?					Heceipt	comments:					
1.2 Iran C											
nclude comments in the Field Project co	mment field	it there are	method spe	cific re	equiren	unts, i.e.,	WHO PCS CO	ngener list	", "PFA5 - 18	analytes".	or "PFAS - 29 analytos
m UCMR5" ush TAT request should be verified with										- william !	- Canalytes

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

3.0 PFAS-Targeted Analysis

Targeted PFAS were measured in six samples collected from locations at Cape Cod Gateway Airport and surrounding downgradient locations (see Figure A-1 for a location map). In addition, a laboratory process blank and spiked laboratory control sample were prepared and analyzed alongside these samples for quality control. Targeted PFAS analysis was performed by liquid chromatography tandem mass spectrometry (LC/MS/MS) in the multiple reaction monitoring (MRM) mode and quantified using the isotope dilution method. Targeted PFAS analytes included 43 analytes listed in Table A-1. Detections, and detection limits for non-detects are summarized below in Table 1. The PFAS concentrations in these samples are reported in nanogram per liter (ng/L). The method detection limits (MDLs), limits of detection (LODs), and limits of quantitation (LOQs) are provided in Table A-1. The full targeted analysis data package was delivered separately to Horsley Witten Group on September 16, 2022.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table 1. PFAS Concentrations of Aqueous Samples and Quality Control Samples

Battelle ID		E4930-l	FS	E4931-l	FS	E4932-F	-S	E4933-F	S	E4934-F	S	E4935-F	-S
Client ID		ME-1		ME-3		ME-2		HW-I(s)		HW-I(m)		HW-I(d)	
Collection Da	te	07/29/2	07/29/2022		022	07/29/20	022	08/02/2022		08/02/2022		08/02/2022	
		Result		Result		Result		Result		Result		Result	
Analyte	CAS No.	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier
NFDHA	151772-58-6	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFEESA	113507-82-7	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFMPA	377-73-1	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFMBA	863090-89-5	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFBA	375-22-4	17.4		9.75		15.0		62.7		3.01	U	8.10	
PFPeA	2706-90-3	48.9		23.3		55.1		237		1.15	J	20.9	
PFHxA	307-24-4	36.9		22.1		60.3		205		2.15	U	23.8	
PFHpA	375-85-9	16.4		10.0		27.5		299		1.74	J	13.1	
PFOA	335-67-1	21.5		14.2		30.6		256		2.15	U	16.8	
PFNA	375-95-1	12.2		7.99		15.4		146		0.739	J	1.21	J
PFDA	335-76-2	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFUnA	2058-94-8	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFDoA	307-55-1	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFTrDA	72629-94-8	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFTeDA	376-06-7	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
NMeFOSAA	2355-31-9	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
NEtFOSAA	2991-50-6	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
NMeFOSA	31506-32-8	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
NEtFOSA	4151-50-2	3.00	U	3.00	U	3.17	U	3.16	U	3.01	U	3.29	U
NMeFOSE	24448-09-7	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U

Glossary of Data Qualifiers:

below the Detection Limit (DL) value, Limit of Detection (LOD) reported

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

D - Dilution Run. Initial run outside the initial calibration range of the instrument

J – Estimated value; analyte detected below the Limit of Quantitation (LOQ)

U - Analyte not detected or detected below the Detection Limit (DL) value, Limit of Detection (LOD) reported

Table 1 (continued). PFAS Concentrations of Aqueous Samples and Quality Control Samples

Battelle ID		E4930-I	-S	E4931-F	-S	E4932-F	S	E4933-F	S	E4934-F	S	E4935-F	S
Client ID		ME-1		ME-3		ME-2		HW-I(s)		HW-I(m))	HW-I(d)	
Collection Date		07/29/2022		07/29/2022		07/29/20	22	08/02/20	22	08/02/2022		08/02/2022	
		Result		Result		Result		Result		Result		Result	
Analyte	CAS No.	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier	(ng/L)	Qualifier
NEtFOSE	1691-99-2	3.00	U	3.00	U	3.17	U	3.16	U	3.01	U	3.29	U
PFOSA	754-91-6	3.00	U	5.95		3.17	U	3.16	U	3.01	U	3.29	U
PFBS	375-73-5	2.36	J	3.07	J	8.32		4.34	J	2.15	U	2.36	J
PFPeS	2706-91-4	2.71	J	3.63	J	6.18		10.7		2.15	U	3.16	J
PFHxS	355-46-4	37.9		39.1		60.1		129		6.31		66.2	
PFHpS	375-92-8	2.77	J	2.83	J	3.44	J	23.4		2.15	U	4.05	J
PFOS	1763-23-1	77.4		104		97.0		595		10.3		93.6	
PFNS	68259-12-1	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFDS	335-77-3	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
PFDoS	79780-39-5	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
4:2FTS	757124-72-4	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
6:2FTS	27619-97-2	21.7		4.91		43.4		4180	D	3.01	U	1.63	J
8:2FTS	39108-34-4	2.14	U	2.14	U	1.40	J	4.25	J	2.15	U	2.35	U
3:3 FTCA	356-02-5	3.00	U	3.00	J	3.17	U	3.16	U	3.01	U	3.29	U
5:3 FTCA	914637-49-3	2.14	U	2.14	\supset	2.26	U	2.26	U	2.15	U	2.35	U
7:3 FTCA	812-70-4	2.14	U	2.14	J	2.26	U	2.26	U	2.15	U	2.35	U
HFPO-DA	13252-13-6	2.14	U	2.14	\supset	2.26	U	2.26	U	2.15	U	2.35	U
Adona	919005-14-4	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
9CI-PF3ONS	756426-58-1	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U
11CI-PF3OUdS	763051-92-9	2.14	U	2.14	U	2.26	U	2.26	U	2.15	U	2.35	U

Glossary of Data Qualifiers:

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

D - Dilution Run. Initial run outside the initial calibration range of the instrument

J – Estimated value; analyte detected below the Limit of Quantitation (LOQ)

U - Analyte not detected or detected below the Detection Limit (DL) value, Limit of Detection (LOD) reported below the Detection Limit (DL) value, Limit of Detection (LOD) reported

4.0 Suspect Screening High Resolution Mass Spectrometric Analysis (HRMS)

Suspect screening analysis was performed using an ultra-performance liquid chromatograph coupled to a quadrupole time-of-flight (QTOF) mass spectrometer with a mass resolution of >20,000. The samples were analyzed in full-scan mode in both positive and negative ionization modes. The acquired data were processed and searched against the library of 496 PFAS-related suspect analytes. The compounds were identified by in silico fragmentation of the structure file embedded in the library. The tool incorporates the use of homolog data filtering, which performs PFAS-focused data reduction, followed by peak confirmations. The detection criteria and the confidence levels used for the analyte identification are summarized below.

Detection Criteria

All detections are expected to fulfill these criteria:

- Mass error of ≤ 3 mDa.
- Isotope match intensity root mean squared (RMS) error of ≤ 20%.
- At least one expected product (fragment) ion found.
- Product ions are expected to have a mass error of ≤ 3 mDa and the precursor and all product ions should co-maximize in time and have similar peak profiles.
- Peak area should be greater than three times the associated negative control.

4.1 Analyte Identification Confidence Levels

Following peak assignments, CLs 1 through 4 were assigned for analyte identifications following Schymanski guidelines (Schymanski et al., 2014). The scale has four levels of identification confidence, where CL4 is the level with the lowest confidence (exact mass was identified) and CL1 is the level with the highest confidence (confirmed structure). The detected analytes in all samples are summarized in Table 2 for confidence levels (CLs) 1 through 3; for data including CL4, see Table A-2. Data of the quality control samples (procedural blanks, laboratory control spike and the instrument standard) are summarized in Table A-3. A detailed list of the analytes detected in the samples and laboratory spiked controls, abbreviations, and the references are summarized in Table A-4. The detections with CL4 are not considered for statistical analysis and source discrimination discussion given the low confidence level. All of the analytes detected are color coded to denote the specific CLs and the notes for the color scheme are provided as footnotes to the data reporting tables.

Results. The samples are classified into two groups based on the sample locations: HW-I(s) (shallow), HW-I(m) (mid depth at ~20 ft), and HW-I(d) (deep depth at ~50 ft) and three downgradient wells: ME-1, ME-2, ME-3.

HW-I Samples. Based on the data collected from both targeted and suspect screening analysis, HW-I samples show a mix of electrochemical fluorination (ECF) and Fluorotelomer (FT) based analytes. Wells HW-I(m) and HW-I(d) had few detections, making identification difficult, but from

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

the data, HW-I(m) appears distinct in chemistry from the other five samples, while HW-I(d) seems most like the ME samples.

ME Samples. Samples ME-1, ME-2 and ME-3 showed detections of analytes associated with a mix of both ECF- and FT-based analytes. FT-based analytes are not as dominant as in the HW-I(s) sample.

Discussion.

FT-based Analytes. The analyte n:2 FASO2PA-MePS (also referred to as n:2 FtSO2AoS), which is an intermediate transformation product of n:2 fluorotelomer thioether amido sulfonate (FtTAoS) (Harding-Marjanovic et al., 2015; Choi et al. 2022) was detected in both positive and negative modes of ionization in samples HW-I(s), ME-1, and ME-2. However, the parent analyte n:2 FtTAoS was not detected in any of the samples, indicating the faster rate of transformation of parent n:2 FtTAoS (few weeks), compared to the intermediate (n:2 FASO2PA-MePS, n:2 FTS) transformation rates (Harding-Marjanovic et al., 2015). Further, n:2 FTS is the transformation product of n:2 FASO2PA-MePS, which further biotransforms to result in perfluorinated carboxylic acids (PFCAs). The precursor analyte (FtTAoS) is sold under the tradename Lodyne, found in different aqueous film-forming foam (AFFF) formulations manufactured by Angus, Ansul, and Chemguard, and was widely used from 1984 onwards (Place and Field, 2012; Harding-Marjanovic et al., 2015). Detection of n:2 FASO2PA-MePS, n:2 FTS, and PFCA in HW-I(s) samples and ME samples suggests the transformation of precursors and downgradient migration of the transformation products (Choi et al., 2022).

Very low detection (peak response) of 6:2 FTAB was found in HW-I(m) and ME-1, while 8:2 FTAB was found only in HW-I(s), which shows FT-betaine chemistry contamination.

ECF-based Analytes. All samples showed detections of ECF-based precursor analytes found in AFFF formulations. Sample HW-I(s) predominantly showed C4 to C6 chemistry of N-SPAmP-FASA, N-SPAmP-FASAA, and N-SPAmP-FASAPS. N-SPAmP-FASAA C6 was detected in all three HW-I(s), HW-I(m), HW-I(d) samples, however it was not detected in downgradient ME wells. N-SHOPAmP-FASAHOPS C6 was detected in ME wells and HW-I(d) well; this analyte was not detected in HW-I(s) and HW-I(m) wells. Further, analytes perfluorosulfonamides (FASAs – FBSA, FHxSA, FOSA), which are the transformation products of ECF-based PFAS precursors, were detected in all ME wells and HW-I(s) well, suggesting ECF-based contamination in the downgradient ME wells (Rhoads et al., 2008). Understanding groundwater flow path and depths at this site might provide further information on the sources of PFAS.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table 2. Suspect Screening Analysis Data (Peak responses of the detected analytes)

				ME-1	ME-3	ME-2	HW-I(s)	HW-I(m)	HW-I(d)
Component name	Formula	Multiple Detects	lonization	20220920 0007	20220920 0008	20220920 0009	20220920 0010	20220920 0012	20220920 0013
				E4930FS	E4931FS	E4932FS	E4933FS	E4934FS	E4935FS
6:2 FASO2PA-MePS	C15H18F13NO6S2	No	Positive	1.77E+04	ND	ND	2.57E+06	ND	ND
6:2 FTAB	C15H19F13N2O4S	No	Positive	3.23E+03	ND	ND	ND	1.30E+03	ND
8:2 FTAB	C17H19F17N2O4S	No	Positive	ND	ND	ND	3.21E+03	ND	ND
N-HOEAmP-FASA C5	C12H17F11N2O3S	Yes	Positive	1.23E+04	1.21E+04	ND	4.89E+03	ND	ND
N-SHOPAmP- FASAHOPS C6	C17H25F13N2O10S3	No	Positive	4.68E+04	2.32E+04	1.30E+04	ND	ND	9.87E+03
N-SPAmP-FASA C4	C12H19F9N2O5S2	No	Positive	ND	ND	ND	4.38E+04	ND	9.67 £ 1.63 ND
N-SPAmP-FASAA C4	C14H21F9N2O7S2	No	Positive	ND	ND	ND	2.24E+04	ND	ND
N-SPAmP-FASAA C5	C15H21F11N2O7S2	No	Positive	ND	ND	ND	3.13E+04	ND	ND
N-SPAmP-FASAA C6	C16H21F13N2O7S2	Yes	Positive	ND	1.18E+04	ND	2.18E+04	ND	ND
N-SPAmP-FASAPS C4	C15H25F9N2O8S3	No	Positive	ND	ND	ND	1.14E+04	ND	ND
N-SPAmP-FASAPS C5	C16H25F11N2O8S3	No	Positive	ND	ND	ND	2.25E+04	ND	ND
N-SPAmP-FASAPS C6	C17H25F13N2O8S3	Yes	Positive	ND	ND	ND	1.27E+05	9.56E+03	1.55E+04
1HO-n:2 FTS C6	C8H5F13O4S	No	Negative	ND	ND	ND	3.43E+03	ND	ND
6:2 FASO2PA-MePS	C15H18F13NO6S2	No	Negative	1.40E+03	ND	1.37E+03	2.72E+05	ND	ND
6:2 FTS	C8H5F13O3S	No	Negative	3.76E+03	9.17E+02	7.64E+03	4.67E+05	ND	ND

Notes: CL1

1 – Isomers Observed CL2b

ND denotes non-detect CL3

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table 2 (continued). Suspect Screening Analysis Data (Peak responses of the detected analytes)

				ME-1	ME-3	ME-2	HW-I(s)	HW-I(m)	HW-I(d)
Component name	Formula	Multiple Detects	Ionization	20220920 0007	20220920 0008	20220920 0009	20220920 0010	20220920 0012	20220920 0013
				E4930FS	E4931FS	E4932FS	E4933FS	E4934FS	E4935FS
8:2 FTS	C10H5F17O3S	No	Negative	ND	ND	3.65E+02	8.65E+02	ND	ND
FBSA	C4H2F9NO2S	No	Negative	4.83E+02	5.34E+02	7.26E+02	2.69E+03	ND	ND
FHxSA	C6H2F13NO2S	Yes	Negative	5.73E+02	1.42E+03	3.70E+02	1.70E+04	ND	ND
FOSA	C8H2F17NO2S	No	Negative	ND	5.39E+03	1.44E+03	ND	ND	ND
N-SHOPAmP- FASAHOPS C6	C17H25F13N2O10S3	No	Negative	2.05E+03	1.05E+03	ND	ND	ND	ND
N-SP-FASA C6	C9H8F13NO5S2	No	Negative	ND	ND	ND	1.02E+03	ND	ND
N-SPAmP-			<u> </u>	ND	ND	ND.		ND	ND
FASAPS C6	C17H25F13N2O8S3	Yes	Negative	ND	ND	ND	4.79E+03	ND	ND
PFBA	C4HF7O2	No	Negative	6.20E+02	3.66E+02	5.73E+02	1.73E+03	ND	3.14E+02
PFBS	C4HF9O3S	No	Negative	1.44E+03	1.95E+03	3.13E+03	1.73E+03	ND	1.20E+03
PFHpA	C7HF13O2	No	Negative	5.51E+03	3.14E+03	6.56E+03	6.78E+04	4.03E+02	3.51E+03
PFHpS	C7HF15O3S	Yes	Negative	1.75E+03	2.11E+03	1.87E+03	1.29E+04	ND	2.29E+03
PFHxA	C6HF11O2	No	Negative	6.96E+03	4.63E+03	9.28E+03	3.25E+04	ND	3.87E+03
PFHxS	C6HF13O3S	Yes	Negative	3.07E+04	3.66E+04	3.83E+04	9.15E+04	3.72E+03	4.78E+04
PFNA	C9HF17O2	No	Negative	4.28E+03	3.00E+03	4.09E+03	3.55E+04	ND	5.36E+02
PFOA	C8HF15O2	Yes	Negative	6.32E+03	5.27E+03	6.82E+03	5.89E+04	ND	4.03E+03
PFOS	C8HF17O3S	Yes	Negative	7.45E+04	9.63E+04	6.08E+04	3.58E+05	8.06E+03	4.95E+04
PFPeA	C5HF9O2	Yes	Negative	4.49E+03	2.27E+03	4.80E+03	1.73E+04	ND	1.68E+03
PFPeS	C5HF11O3S	No	Negative	2.11E+03	2.95E+03	3.18E+03	7.30E+03	ND	2.22E+03

Notes:

CL1

CL3

¹ – Isomers Observed

.

ND denotes non-detect

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

5.0 Machine Learning Analysis

Method Description. All samples in the source library were processed to extract distinct analytes. The labeled samples were then further processed using supervised machine learning techniques to generate a predictive model that can process an unknown sample and predict the source classification, based on the sample signature matches to the source library. In addition to the prediction, a CL was obtained in the prediction as well as several diagnostic measures that supplement the predictions from the model (Figure A-2), CLs in individual predictions, similarity metrics between different samples, hierarchical clustering, and the importance of analytes in the model's decision-making process.

Results. Table 3 shows a statistical comparison across samples. This shows sample HW-I(m), which is a mid-depth monitoring well sample, is found as an outlier from the other five samples, while HW-I(d), which is the deep monitoring well sample, has shown the most correlated signature with the ME samples (>50% score). All ME well samples show >50% similarity score. The HW-I samples collected at different depths show less similarities (<50%), while HW-I(s) and HW-I(m) show the least similarity with a 9.5% score. Hierarchical clustering, depicted in Figure 1, was performed against the Battelle library of AFFF formulations. This reflects formulation similarity for five of the samples to a FT-based AFFF formulation, while HW-I(m) appears to be a different FT-based AFFF formulation. In Figure 2, an unsupervised learning plot, the group of five also appears as a cluster near FT-based and ECF-based AFFF formulation datapoints, indicating a mix of FT-based and ECF-based AFFF sources. Finally, a supervised algorithm comparing the samples to environmental field samples of AFFF and non-AFFF origins places all but HW-I(m) in the mix or AFFF region (Figure 3).

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table 3. Sample Proximity Matrix Plot of unknown samples.

Lab ID	Sample ID	E4930FS_1	E4931FS_1	E4932FS_1	E4933FS_1	E4934FS_1	E4935FS_1
		ME-1	ME-3	ME-2	HW-I(s)	HW-I(m)	HW-I(d)
E4930FS_1	ME-1	100.0%	62.6%	58.3%	32.5%	27.4%	54.4%
E4931FS_1	ME-3	62.6%	100.0%	52.9%	37.0%	22.5%	60.3%
E4932FS_1	ME-2	58.3%	52.9%	100.0%	38.1%	18.0%	61.3%
E4933FS_1	HW-I(s)	32.5%	37.0%	38.1%	100.0%	9.5%	27.8%
E4934FS_1	HW-I(m)	27.4%	22.5%	18.0%	9.5%	100.0%	30.9%
E4935FS_1	HW-I(d)	54.4%	60.3%	61.3%	27.8%	30.9%	100.0%

Note: The legend shows the lighter the shade representing closer distance of the samples with the relevant source samples. Percentages show degree of similarity score.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Heirarchical Clustering w/ Average Linkage

Figure 1. Hierarchical Cluster Plot from Machine Learning Analysis of Known AFFF and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the library are shown with redacted IDs.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Figure 2. MDS Cluster Plot from Machine Learning Analysis of Known AFFF and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the library are shown as black points.

Figure 3. MDS Cluster Plot from Supervised Machine Learning Analysis of Known Field Environmental Samples and Unknown Samples. The data points from unknown samples are labelled with their sample identifications, and the data points in the library are shown with distinct IDs.

Conclusions: The results of the PFAS Signature® analysis are presented based on the high-resolution mass spectrometric data. Both suspect screening analysis and machine learning analysis are complementary analyses providing different lines of evidence. More information can be obtained by understanding the site history and looking at the groundwater flow conditions at the site to evaluate PFAS migration pathways. While all of these samples were PFAS-impacted, application of a high-resolution mass spectral suspect screening method has revealed slight differences in these samples to help discriminate the PFAS sources.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Appendix A - Supplemental Information

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Figure A-1. Map showing Battelle Sample collection locations. Red boundary areas show the locations of six samples collected.

Table A-1. List of PFAS analytes and their method detection limits (MDLs), limits of detection(LODs), and limits of quantitation (LOQs) reported in nanogram per liter (ng/L) in aqueous matrices. Compliant with DoD QSM 5.3 Table B-15.

Analyte	CAS No.	MDL (ng/L)	LOD (ng/L)	LOQ (ng/L)
NFDHA	151772-58-6	0.761	2.50	5.00
PFEESA	113507-82-7	0.687	2.50	5.00
PFMPA	377-73-1	1.08	2.50	5.00
PFMBA	863090-89-5	0.92	2.50	5.00
PFBA	375-22-4	1.49	3.50	5.00
<i>PFPeA</i>	2706-90-3	1.26	3.50	5.00
PFHxA	307-24-4	0.902	2.50	5.00
PFHpA	375-85-9	0.930	2.50	5.00
PFOA	335-67-1	0.998	2.50	5.00
PFNA	375-95-1	0.823	2.50	5.00
PFDA	335-76-2	0.775	2.50	5.00
PFUnA	2058-94-8	0.743	2.50	5.00
PFDoA	307-55-1	0.751	2.50	5.00
PFTrDA	72629-94-8	0.733	2.50	5.00
PFTeDA	376-06-7	0.782	2.50	5.00
PFHxDA	67905-19-5	0.762	2.50	5.00
PFODA	16517-11-6	0.942	2.50	5.00
NMeFOSAA	2355-31-9	1.02	2.50	5.00
NEtFOSAA	2991-50-6	0.978	2.50	5.00
NMeFOSA	31506-32-8	1.05	2.50	5.00
NEtFOSA	4151-50-2	1.25	3.50	5.00
NMeFOSE	24448-09-7	1.06	2.50	5.00
NEtFOSE	1691-99-2	1.35	3.50	5.00
PFOSA	754-91-6	1.56	3.50	5.00
PFBS	375-73-5	0.856	2.50	5.00
<i>PFPeS</i>	2706-91-4	1.01	2.50	5.00
PFHxS	355-46-4	0.985	2.50	5.00
PFHpS	375-92-8	0.831	2.50	5.00
PFOS	1763-23-1	1.06	2.50	5.00
PFNS	68259-12-1	0.693	2.50	5.00
PFDS	335-77-3	0.770	2.50	5.00

Table A-1 (continued). List of PFAS analytes and their method detection limits (MDLs), limits of detection(LODs), and limits of quantitation (LOQs) reported in nanogram per liter (ng/L) in aqueous matrices.

Analyte	CAS No.	MDL (ng/L)	LOD (ng/L)	LOQ (ng/L)
PFDoS	79780-39-5	0.793	2.50	5.00
4:2FTS	757124-72-4	1.01	2.50	5.00
6:2FTS	27619-97-2	1.45	3.50	5.00
8:2FTS	39108-34-4	0.998	2.50	5.00
10:2FTS	108026-35-3	1.02	2.50	5.00
3:3 FTCA	356-02-5	1.49	3.50	5.00
5:3 FTCA	914637-49-3	1.11	2.50	5.00
7:3 FTCA	812-70-4	0.998	2.50	5.00
HFPO-DA	13252-13-6	0.855	2.50	5.00
ADONA	919005-14-4	0.859	2.50	5.00
9CI-PF3ONS	756426-58-1	1.02	2.50	5.00
11CI-PF3OUdS	763051-92-9	0.890	2.50	5.00

Analytes italicized in bold are included on our DoD ELAP scope of accreditation.

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-2. Suspect Screening Analysis, all Confidence Levels

				ME-1	ME-3	ME-2	HW-I(s)	HW-I(m)	HW-I(d)
		Multiple		E4930-	E4931-	E4932-	E4933-	E4934-	E4935-
Component name	Formula	Detects ¹	Ionization	FS	FS	FS	FS	FS	FS
1HO-n:2 FTS C6	C8H5F13O4S	No	Negative	ND	ND	ND	3.43E+03	ND	ND
6:2 FASO2PA-MePS	C15H18F13NO6S2	No	Negative	1.40E+03	ND	1.37E+03	2.72E+05	ND	ND
6:2 FTS	C8H5F13O3S	No	Negative	3.76E+03	9.17E+02	7.64E+03	4.67E+05	ND	ND
8:2 FTS	C10H5F17O3S	No	Negative	ND	ND	3.65E+02	8.65E+02	ND	ND
FBSA	C4H2F9NO2S	No	Negative	4.83E+02	5.34E+02	7.26E+02	2.69E+03	ND	ND
FHxSA	C6H2F13NO2S	Yes	Negative	5.73E+02	1.42E+03	3.70E+02	1.70E+04	ND	ND
FOSA	C8H2F17NO2S	No	Negative	ND	5.39E+03	1.44E+03	ND	ND	ND
N-SHOPAmP-FASAHOPS C6	C17H25F13N2O10S3	No	Negative	2.05E+03	1.05E+03	ND	ND	ND	ND
N-SP-FASA C6	C9H8F13NO5S2	No	Negative	ND	ND	ND	1.02E+03	ND	ND
N-SPAmP-FASAPS C6	C17H25F13N2O8S3	Yes	Negative	ND	ND	ND	4.79E+03	ND	ND
PFBA	C4HF7O2	No	Negative	6.20E+02	3.66E+02	5.73E+02	1.73E+03	ND	3.14E+02
PFBS	C4HF9O3S	No	Negative	1.44E+03	1.95E+03	3.13E+03	1.73E+03	ND	1.20E+03
PFHpA	C7HF13O2	No	Negative	5.51E+03	3.14E+03	6.56E+03	6.78E+04	4.03E+02	3.51E+03
PFHpS	C7HF15O3S	Yes	Negative	1.75E+03	2.11E+03	1.87E+03	1.29E+04	ND	2.29E+03
PFHxA	C6HF11O2	No	Negative	6.96E+03	4.63E+03	9.28E+03	3.25E+04	ND	3.87E+03
PFHxS	C6HF13O3S	Yes	Negative	3.07E+04	3.66E+04	3.83E+04	9.15E+04	3.72E+03	4.78E+04
PFNA	C9HF17O2	No	Negative	4.28E+03	3.00E+03	4.09E+03	3.55E+04	ND	5.36E+02
PFOA	C8HF15O2	Yes	Negative	6.32E+03	5.27E+03	6.82E+03	5.89E+04	ND	4.03E+03
PFOS	C8HF17O3S	Yes	Negative	7.45E+04	9.63E+04	6.08E+04	3.58E+05	8.06E+03	4.95E+04
PFPeA	C5HF9O2	Yes	Negative	4.49E+03	2.27E+03	4.80E+03	1.73E+04	ND	1.68E+03
PFPeS	C5HF11O3S	No	Negative	2.11E+03	2.95E+03	3.18E+03	7.30E+03	ND	2.22E+03
4:2 FASO2PA-MePS	C13H18F9NO6S2	No	Positive	ND	1.66E+04	ND	ND	ND	ND
6:2 FASO2PA-MePS	C15H18F13NO6S2	No	Positive	1.77E+04	ND	1.40E+04	2.57E+06	ND	ND

Notes:

¹ – Isomers Observed

ND denotes non-detect

CL1
CL2b
CL3
CL4

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-2. Suspect Screening Analysis, all Confidence Levels

		Multiple		ME-1	ME-3	ME-2	HW-I(s)	HW-I(m)	HW-I(d)
Component name	Formula	Detects	Ionization	E4930-FS	E4931-FS	E4932-FS	E4933-FS	E4934-FS	E4935-FS
6:2 FTAB	C15H19F13N2O4S	No	Positive	3.23E+03	ND	ND	ND	1.30E+03	ND
6:2 FTMAc	C12H9F13O2	No	Positive	1.31E+04	1.38E+04	8.20E+03	ND	ND	ND
8:2 FTAB	C17H19F17N2O4S	No	Positive	ND	ND	ND	3.21E+03	ND	ND
N-CMAmP FASA C3	C10H15F7N2O4S	No	Positive	ND	1.45E+04	1.23E+04	ND	ND	ND
N-HOEAmP-FASA C3	C10H17F7N2O3S	No	Positive	2.75E+04	2.86E+04	3.67E+04	ND	ND	1.61E+04
N-HOEAmP-FASA C5	C12H17F11N2O3S	Yes	Positive	2.91E+04	3.10E+04	1.95E+04	4.89E+03	ND	ND
N-HOEAmP-FASA C8	C15H17F17N2O3S	No	Positive	ND	ND	ND	1.14E+04	ND	ND
N-HOEAmP-FASE C2	C11H21F5N2O4S	No	Positive	ND	1.61E+04	ND	ND	ND	ND
N-HOEAmP-FASE C5	C14H21F11N2O4S	Yes	Positive	1.67E+04	1.90E+04	1.43E+04	ND	ND	ND
N-SHOPAmP-FASA C4	C12H19F9N2O6S2	No	Positive	1.45E+04	1.55E+04	ND	ND	ND	ND
N-SHOPAmP-FASAHOPS C6	C17H25F13N2O10S3	No	Positive	4.68E+04	2.32E+04	1.30E+04	ND	8.26E+03	9.87E+03
N-SPAmP-FASA C4	C12H19F9N2O5S2	No	Positive	ND	ND	ND	4.38E+04	ND	ND
N-SPAmP-FASA C6	C14H19F13N2O5S2	No	Positive	ND	1.09E+04	ND	ND	ND	ND
N-SPAmP-FASAA C4	C14H21F9N2O7S2	No	Positive	ND	ND	ND	2.24E+04	ND	ND
N-SPAmP-FASAA C5	C15H21F11N2O7S2	No	Positive	ND	ND	ND	3.13E+04	ND	ND
N-SPAmP-FASAA C6	C16H21F13N2O7S2	Yes	Positive	ND	1.18E+04	ND	2.18E+04	ND	ND
N-SPAmP-FASAPS C4	C15H25F9N2O8S3	No	Positive	ND	ND	ND	1.14E+04	ND	ND
N-SPAmP-FASAPS C5	C16H25F11N2O8S3	No	Positive	ND	ND	ND	2.25E+04	ND	ND
N-SPAmP-FASAPS C6	C17H25F13N2O8S3	Yes	Positive	1.70E+04	2.19E+04	1.22E+04	1.27E+05	9.56E+03	1.55E+04
N-SPHOEAmP-FASA C6	C15H21F13N2O6S2	No	Positive	ND	ND	ND	3.98E+04	ND	ND
N-TAmP-N-MeFASA C7	C14H18F15N2O2S	No	Positive	1.20E+04	ND	1.11E+04	ND	ND	ND
PFPeSaAm	C10H13F11N2O2S	No	Positive	1.16E+04	1.24E+04	ND	ND	ND	ND

Notes: CL1

1 – Isomers Observed CL2b

ND denotes non-detect CL3

CL4

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-3. Suspect screening Analysis quality control samples summary

		Multiple		Procedural Blank DJ508PB-	Laboratory Control Sample DJ509LCS-	NA Instrument
Component name	Formula	Detects	Ionization	FS	FS	Std
11CI-F53B/8:2 CI-PFESA	C10HCIF20O4S	No	Negative	ND	2.93E+05	1.99E+05
4:2 FTS	C6H5F9O3S	No	Negative	ND	1.85E+04	1.14E+04
5:3 FTCA	C8H5F11O2	No	Negative	ND	4.38E+03	ND
6:2 FTS	C8H5F13O3S	No	Negative	ND	2.55E+04	1.44E+04
7:3 FTCA	C10H5F15O2	No	Negative	ND	1.14E+04	ND
8:2 FTS	C10H5F17O3S	No	Negative	ND	2.94E+04	2.08E+04
9CI-F53B/6:2 CI-PFESA	C8HCIF16O4S	No	Negative	ND	2.16E+05	1.38E+05
ADONA	C7H2F12O4	No	Negative	ND	2.72E+04	1.83E+04
FBSA	C4H2F9NO2S	No	Negative	ND	ND	4.54E+04
FHxSA	C6H2F13NO2S	Yes	Negative	ND	ND	7.71E+04
FOSA	C8H2F17NO2S	No	Negative	ND	1.64E+05	1.17E+05
GenX	C6HF11O3	No	Negative	ND	1.89E+03	1.21E+03
N-EtFOSA	C10H6F17NO2S	No	Negative	ND	9.28E+04	ND
N-EtFOSAA	C12H8F17NO4S	No	Negative	ND	2.93E+04	2.58E+04
N-MeFOSA	C9H4F17NO2S	No	Negative	ND	1.07E+05	ND
N-MeFOSAA	C11H6F17NO4S	No	Negative	ND	3.46E+04	2.84E+04
NFDHA	C5HF9O4	No	Negative	ND	1.96E+03	1.29E+03
O-PFBS	C4HF9O4S	No	Negative	ND	1.04E+05	7.43E+04
PFBA	C4HF7O2	No	Negative	ND	5.57E+03	ND
PFBS	C4HF9O3S	No	Negative	ND	1.03E+05	7.20E+04
PFDA	C10HF19O2	No	Negative	ND	7.11E+04	4.88E+04
PFDS	C10HF21O3S	No	Negative	ND	3.06E+05	2.15E+05
PFDoDA	C12HF23O2	No	Negative	ND	1.01E+05	6.66E+04
PFDoDS	C12HF25O3S	No	Negative	ND	3.95E+05	ND
PFECHS	C8HF15O3S	No	Negative	ND	ND	1.31E+05
PFHpA	C7HF13O2	No	Negative	ND	6.37E+04	3.86E+04
PFHpS	C7HF15O3S	Yes	Negative	ND	2.14E+05	1.44E+05
PFHxA	C6HF11O2	No	Negative	ND	4.24E+04	2.69E+04
PFHxDA	C16HF31O2	No	Negative	ND	1.48E+05	ND

Notes

NA denotes not applicable as the analyte is not spiked
ND denotes non-detect
Standard Mix is the QC check at 20 µg/L in Negative mode analysis and 25 µg/L in Positive mode analysis
CL1
CL2b
CL3
CL4

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-3 (continued). Suspect screening Analysis quality control samples summary

Component name	Formula	Multiple Detects	lonization	Process Blank DJ508PB- FS	Laboratory Control Sample DJ509LCS- FS	NA Instrument Std
PFHxS	C6HF13O3S	Yes	Negative	ND	1.65E+05	1.18E+05
PFMOBA	C5HF9O3	No	Negative	ND	3.76E+03	2.57E+03
PFNA	C9HF17O2	No	Negative	ND	6.86E+04	4.55E+04
PFNS	C9HF19O3S	No	Negative	ND	2.73E+05	2.06E+05
PFOA	C8HF15O2	Yes	Negative	ND	6.02E+04	3.98E+04
PFODA	C18HF35O2	No	Negative	ND	5.29E+04	ND
PFOS	C8HF17O3S	Yes	Negative	ND	1.63E+05	1.31E+05
PFPeA	C5HF9O2	Yes	Negative	ND	1.61E+04	1.10E+04
PFPeS	C5HF11O3S	No	Negative	ND	1.58E+05	1.10E+05
PFPrS	C3HF7O3S	No	Negative	ND	ND	4.81E+03
PFTeDA	C14HF27O2	No	Negative	ND	1.17E+05	7.66E+04
PFTrDA	C13HF25O2	No	Negative	ND	1.02E+05	7.04E+04
PFUnDA	C11HF21O2	No	Negative	ND	7.39E+04	5.08E+04
5:1:2 FTB	C12H13F12NO2	No	Positive	ND	ND	7.22E+05
5:3 FTB	C12H14F11NO2	No	Positive	ND	ND	7.32E+05
6:2 FTAB	C15H19F13N2O4S	No	Positive	ND	ND	6.17E+05
N-TAmP-FASA C6	C12H15F13N2O2S	No	Positive	ND	ND	1.14E+06
PFHxSaAm	C11H13F13N2O2S	No	Positive	ND	ND	8.79E+05

Notes

NA denotes not applicable as the analyte is not spiked
ND denotes non-detect
Standard Mix is the QC check at 20 µg/L in Negative mode analysis and 25 µg/L in Positive mode analysis
CL1
CL2b
CL3
CL4

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
1	11CI-F53B/8:2 CI- PFESA	8:2 chlorinated polyfluorinated ether sulfonate	C10HCIF20O4S	631.8965	763051-92-9	Standard Available
2	1HO-n:2 FTS C6	1-Octanesulfonic acid, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-hydroxy-	C8H5F13O4S	443.9701	2089110-01-8	(Barzen-Hanson et al, 2017) 39
3	4:2 FASO2PA- MePS	2-methyl-2-[3-(3,3,4,4,5,5,6,6,6- nonafluorohexylsulfonyl)propanoylamino]propan e-1-sulfonic acid (pubchem, not found via scifinder)	C13H18F9NO6S2	519.0432	Cf. 6:2: 1911606-13-7	(Barzen-Hanson et al, 2017) PR-11
4	4:2 FTS	1-Hexanesulfonic acid, 3,3,4,4,5,5,6,6,6-nonafluoro-	C6H5F9O3S	327.9816	757124-72-4	Standard Available
5	5:1:2 FTB	1-Octanaminium, N-(carboxymethyl)- 3,4,4,5,5,6,6,7,7,8,8,8-dodecafluoro-N,N- dimethyl-, inner salt	C12H13F12NO2	431.0755	171184-02-4	Standard Available
6	5:3 FTB	1-Octanaminium, N-(carboxymethyl)- 4,4,5,5,6,6,7,7,8,8,8-undecafluoro-N,N- dimethyl-, inner salt	C12H14F11NO2	413.0849	171184-14-8	Standard Available
7	5:3 FTCA	Octanoic acid, 4,4,5,5,6,6,7,7,8,8,8- undecafluoro-	C8H5F11O2	342.0114	914637-49-3	Standard Available
8	6:2 FASO2PA- MePS	1-Propanesulfonic acid, 2-methyl-2-[[1-oxo-3-[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)sulfonyl]propyl]amino]-	C15H18F13NO6S 2	619.0368	1911606-13-7	(Barzen-Hanson et al, 2017) PR-11
9	6:2 FTAB	1-Propanaminium, N-(carboxymethyl)-N,N-dimethyl-3-[[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)sulfonyl]amino]-, inner salt	C15H19F13N2O4 S	570.0858	34455-29-3	Standard Available
10	6:2 FTMAc	2-Propenoic acid, 2-methyl-, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl ester	C12H9F13O2	432.0395	2144-53-8	(Buck et al, 2011)

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
11	6:2 FTS	1-Octanesulfonic acid, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-	C8H5F13O3S	427.9752	27619-97-2	Standard Available
12	7:3 FTCA	Decanoic acid, 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-	C10H5F15O2	442.005	812-70-4	Standard Available
13	8:2 FTAB	1-Propanaminium, N-(carboxymethyl)-3- [[(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)sulfonyl]amino]-N,N-dimethyl-, inner salt	C17H19F17N2O4 S	670.0794	34455-21-5	(Buck et al, 2011); (D'Agostino and Mabury, 2014) L
14	8:2 FTS	1-Decanesulfonic acid, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- heptadecafluoro-	C10H5F17O3S	527.9688	39108-34-4	Standard Available
15	9CI-F53B/6:2 CI- PFESA	6:2 chlorinated polyfluorinated ether sulfonate	C8HCIF16O4S	531.9029	756426-58-1	Standard Available
16	ADONA	Propanoic acid, 2,2,3-trifluoro-3-[1,1,2,2,3,3-hexafluoro-3-(trifluoromethoxy)propoxy]-	C7H2F12O4	377.9761	919005-14-4	Standard Available
17	FBSA	1-Butanesulfonamide, 1,1,2,2,3,3,4,4,4- nonafluoro-	C4H2F9NO2S	298.9663	30334-69-1	Standard Available
18	FHxSA	1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-	C6H2F13NO2S	398.9599	41997-13-1	Standard Available
19	FOSA	1-Octanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluoro-	C8H2F17NO2S	498.9535	754-91-6	Standard Available
20	GenX	Propanoic acid, 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-	C6HF11O3	329.975	13252-13-6	Standard Available
21	N-CMAmP FASA C3	1-Propanaminium, N-(carboxymethyl)-3- [[(1,1,2,2,3,3,3- heptafluoropropyl)sulfonyl]amino]-N,N-dimethyl-	C10H15F7N2O4S	392.0641	2089109-21-5	(Barzen-Hanson et al, 2017) 16
22	N-EtFOSA	1-Octanesulfonamide, N-ethyl- 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluoro-	C10H6F17NO2S	526.9848	4151-50-2	Standard Available

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
23	N-EtFOSAA	Glycine, N-ethyl-N- [(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluorooctyl)sulfonyl]-	C12H8F17NO4S	584.9903	2991-50-6	Standard Available
24	NFDHA	Perfluoro-3,6-dioxaheptanoic acid	C5HF9O4	295.9731	151772-58-6	Standard Available
25	N-HOEAmP-FASA C3	1-Propanaminium, 3-[[(1,1,2,2,3,3,3-heptafluoropropyl)sulfonyl]amino]-N-(2-hydroxyethyl)-N,N-dimethyl-	C10H17F7N2O3S	378.0848	2089109-08-8	(Barzen-Hanson et al, 2017) 11
26	N-HOEAmP-FASA C5	1-Propanaminium, N-(2-hydroxyethyl)-N,N-dimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]-	C12H17F11N2O3 S	478.0784	142519-28-6	(Barzen-Hanson et al, 2017) 11
27	N-HOEAmP-FASA C8	1-Propanaminium, 3- [[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]amino]-N-(2-hydroxyethyl)-N,N-dimethyl-	C15H17F17N2O3 S	628.0688	71864-97-6	(Barzen-Hanson et al, 2017) 11
28	N-HOEAmP-FASE C2	1-Propanaminium, N-(2-hydroxyethyl)-3-[(2-hydroxyethyl)[(1,1,2,2,2-pentafluoroethyl)sulfonyl]amino]-N,N-dimethyl-	C11H21F5N2O4S	372.1142	2089108-97-2	(Barzen-Hanson et al, 2017) 9
29	N-HOEAmP-FASE C5	1-Propanaminium, N-(2-hydroxyethyl)-3-[(2-hydroxyethyl)](1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]-N,N-dimethyl-	C14H21F11N2O4 S	522.1046	2089109-00-0	(Barzen-Hanson et al, 2017) 9
30	N-MeFOSA	1-Octanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluoro-N-methyl-	C9H4F17NO2S	512.9691	31506-32-8	Standard Available
31	N-MeFOSAA	Glycine, N-[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]-N-methyl-	C11H6F17NO4S	570.9746	2355-31-9	Standard Available

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
32	N-SHOPAmP- FASA C4	1-Propanaminium, 2-hydroxy-N,N-dimethyl-N-[3-[[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]propyl]-3-sulfo-, inner salt	C12H19F9N2O6S 2	522.0541	2103241-12-7	(Barzen-Hanson et al, 2017) 3
33	N-SHOPAmP- FASAHOPS C6	1-Propanaminium, 2-hydroxy-N-[3-[(2-hydroxy-3-sulfopropyl)](1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]propyl]-N,N-dimethyl-3-sulfo-, inner salt	C17H25F13N2O1 0S3	760.0464	2103241-10-5	(Barzen-Hanson et al, 2017) 29
34	N-SPAmP-FASA C4	1-Propanaminium, N,N-dimethyl-N-[3- [[(1,1,2,2,3,3,4,4,4- nonafluorobutyl)sulfonyl]amino]propyl]-3-sulfo-, inner salt	C12H19F9N2O5S 2	506.0592	864069-52-3	(Barzen-Hanson et al, 2017) 2
35	N-SPAmP-FASA C6	1-Propanaminium, N,N-dimethyl-N-(3-sulfopropyl)-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt	C14H19F13N2O5 S2	606.0528	2103241-08-1	(Barzen-Hanson et al, 2017) 2
36	N-SPAmP-FASAA C4	1-Propanaminium, 3- [(carboxymethyl)[(1,1,2,2,3,3,4,4,4- nonafluorobutyl)sulfonyl]amino]-N,N-dimethyl-N- (3-sulfopropyl)-, inner salt	C14H21F9N2O7S 2	564.0646	2254560-17-1	(Barzen-Hanson et al, 2017) 32
37	N-SPAmP-FASAA C5	1-Propanaminium, 3- [(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,5- undecafluoropentyl)sulfonyl]amino]-N,N- dimethyl-N-(3-sulfopropyl)-, inner salt	C15H21F11N2O7 S2	614.0615	2254560-23-9	(Barzen-Hanson et al, 2017) 32
38	N-SPAmP-FASAA C6	1-Propanaminium, 3- [(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]amino]-N,N-dimethyl- N-(3-sulfopropyl)-, inner salt	C16H21F13N2O7 S2	664.0583	2254560-24-0	(Barzen-Hanson et al, 2017) 32
39	N-SPAmP- FASAPS C4	1-Propanaminium, N,N-dimethyl-N-[3- [[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl](3- sulfopropyl)amino]propyl]-3-sulfo-, inner salt	C15H25F9N2O8S 3	628.0629	2254560-15-9	(Barzen-Hanson et al, 2017) 5

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
40	N-SPAmP- FASAPS C5	1-Propanaminium, N,N-dimethyl-N-(3-sulfopropyl)-3-[(3-sulfopropyl)](1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]-, inner salt	C16H25F11N2O8 S3	678.0597	2254560-20-6	(Barzen-Hanson et al, 2017) 5
41	N-SPAmP- FASAPS C6	1-Propanaminium, N,N-dimethyl-N-(3-sulfopropyl)-3-[(3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt	C17H25F13N2O8 S3	728.0565	2103241-11-6	(Barzen-Hanson et al, 2017) 5
42	N-SP-FASA C6	1-Propanesulfonic acid, 3- [[(1,1,2,2,3,3,4,4,5,5,6,6,6- tridecafluorohexyl)sulfonyl]amino]-	C9H8F13NO5S2	520.9636	2089108-64-3	(Barzen-Hanson et al, 2017) 1
43	N-SPHOEAmP- FASA C6	N-dimethylaminohydroxybutyl- perfluorohexanesulfonamidopropylsulfonate	C15H21F13N2O6 S2	636.0633	2089108-76-7	(Barzen-Hanson et al, 2017) 4
44	N-TAmP-FASA C6	6:2 fluorotelomer sulfonamido propyl methyl amine	C12H15F13N2O2 S	498.0647	38850-51-0	Standard Available
45	N-TAmP-N- MeFASA C7	N-trimethylammoniopropyl N- methylperfluoroheptanesulfonamide	C14H18F15N2O2 S	563.0849	765219-81-6	(Barzen-Hanson et al, 2017) 12
46	O-PFBS	perfluorobutane ether sulfonate	C4HF9O4S	315.9452	85963-79-7	Standard Available
47	PFBA	Perfluorobutanoic acid	C4HF7O2	213.9865	335-10-4	Standard Available
48	PFBS	Perfluorobutanesulfonic acid	C4HF9O3S	299.9503	104729-49-9	Standard Available
49	PFDA	Perfluorodecanoic acid	C10HF19O2	513.9673	172155-07-6	Standard Available
50	PFDoDA	Perfluorododecanoic acid	C12HF23O2	613.9609	307-55-1	Standard Available
51	PFDoDS	Perfluorododecanesulfonic acid	C12HF25O3S	699.9247	79780-39-5	Standard Available

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

Table A-4. Analyte key

	Component Name	Full Chemical Name	Formula	Expected Mass (Da)	CASRN(s)	Reference(s)
52	PFDS	Perfluorodecanesulfonic acid	C10HF21O3S	599.9311	335-77-3	Standard Available
53	PFECHS	perfluoro ethyl cyclohexane sulfonate	C8HF15O3S	461.9407	646-83-3	Standard Available
54	PFHpA	Perfluoroheptanoic acid	C7HF13O2	363.9769	922168-41-0	Standard Available
55	PFHpS	Perfluoroheptanesulfonic acid	C7HF15O3S	449.9407	118334-96-6	Standard Available
56	PFHxA	Perfluorohexanoic acid	C6HF11O2	313.9801	307-24-4	Standard Available
57	PFHxDA	Perfluorohexadecanoic acid	C16HF31O2	813.9482	67905-19-5	Standard Available
58	PFHxS	Perfluorohexanesulfonic acid	C6HF13O3S	399.9439	355-46-4	Standard Available
59	PFHxSaAm	Perfluorohexane sulfonamido amine	C11H13F13N2O2 S	484.049	50598-28-2	Standard Available
60	PFMOBA	Perfluoro-n-methoxy butanoic acid	C5HF9O3	279.9782	863090-89-5	Standard Available
61	PFNA	Perfluorononanoic acid	C9HF17O2	463.9705	15899-31-7	Standard Available
62	PFNS	Perfluorononanesulfonic acid	C9HF19O3S	549.9343	68259-12-1	Standard Available
63	PFOA	Perfluorooctanoic acid	C8HF15O2	413.9737	335-67-1	Standard Available
64	PFODA	Perfluorostearic acid	C18HF35O2	913.9418	16517-11-6	Standard Available
65	PFOS	Perfluorooctanesulfonic acid	C8HF17O3S	499.9375	927670-12-0	Standard Available
66	PFPeA	Perfluoropentanoic acid	C5HF9O2	263.9833	2706-90-3	Standard Available
67	PFPeS	Perfluoropentanesulfonic acid	C5HF11O3S	349.9471	2706-91-4	Standard Available
68	PFPrS	perfluoropropane sulfonate	C3HF7O3S	249.9535	423-41-6	Standard Available
69	PFTeDA	Perfluorotetradecanoic acid	C14HF27O2	713.9545	376-06-7	Standard Available
70	PFTrDA	Perfluorotridecanoic acid	C13HF25O2	663.9577	16486-96-7	Standard Available

References

- Barzen-Hanson, K. A., Roberts, S. C., Choyke, S., Oetjen, K., McAlees, A., Riddell, N., . . . Field, J. A. (2017). Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. *Environmental Science & Technology*, *51*(4), 2047-2057. doi:10.1021/acs.est.6b05843
- Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., . . . van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. *Integr Environ Assess Manag*, 7(4), 513-541. doi:10.1002/ieam.258
- Choi, Y. J., D. E. Helbling, J. Liu, C. I. Olivares and C. P. Higgins (2022). "Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances." Science of The Total Environment 824: 153711.
- D'Agostino, L. A., & Mabury, S. A. (2014). Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. *Environ Sci Technol*, 48(1), 121-129. doi: https://doi.org/10.1021/es403729e
- Harding-Marjanovic, K. C., E. F. Houtz, S. Yi, J. A. Field, D. L. Sedlak and L. Alvarez-Cohen (2015). "Aerobic biotransformation of fluorotelomer thioether amido sulfonate (lodyne) in afff-amended microcosms." <u>Environmental Science & Technology</u> **49**(13): 7666-7674.
- Place, B. J., & Field, J. A. (2012). Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military. *Environmental Science & Technology, 46*(13), 7120-7127. doi:10.1021/es301465n
- Rhoads, K. R., Janssen, E. M. L., Luthy, R. G., & Criddle, C. S. (2008). Aerobic Biotransformation and Fate of N-Ethyl Perfluorooctane Sulfonamidoethanol (N-EtFOSE) in Activated Sludge. *Environmental Science & Technology, 42*(8), 2873-2878. doi:10.1021/es702866c
- Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. *Environmental Science & Technology, 48*(4), 2097-2098. doi:10.1021/es5002105

This document contains the confidential information and trade secrets of Battelle. The receipt or possession of this document does not convey any rights to reproduce or disclose its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part, without the express written consent of Battelle. Any disclosure to an external third party in whole or in part is expressly prohibited and any reproduction of this document or its contents in any forms, with or without modification, without the express written consent of Battelle.

DISCLAIMER: Battelle makes no warranties as to the use of this Information. Battelle will not be liable for any use, including any misuse or inability to use, this Information. Battelle further makes no other warranty or guarantee, express or implied, including, without limitation, warranties of fitness for a particular purpose or merchantability, for any information, good, report, design, item, service, or other result because of this document.

Cape Cod Gateway Airport - PFAS Project No G00120.XXX.XXXXXXX.NORWEL PFAS by DoD QSM 5.3 Table B-15

GW Batch 22-1319 Package DP-22-1361

Submitted to: Horsely Witten Group, Inc. 90 Route 6A Sandwich, MA 02563 U.S.A.

Submitted by:
Battelle Norwell Operations
141 Longwater Drive Suite 202
Norwell, MA 02061

Cape Cod Gateway Airport - PFAS Project No G00120.XX.XX.XXXX.NORWEL PFAS by DoD QSM 5.3 Table B-15

GWBatch 22-1319 Package DP-22-1361

Submitted to: Horsely Witten Group, Inc. 90 Route 6A Sandwich, MA 02563 U.S.A.

NELAP Accreditation Number: E87856 (Florida Department of Health) DoD-ELAP Accreditation Number: 91667

> Submitted by: Battelle Norwell Operations 141 Longwater Drive Suite 202 Norwell, MA 02061

Analyst Approval:

Lauren Griffith 2022.09.12 12:04:08 -04'00'

QC Chemist Approval:

Deb Huntress

2022.09.16 08:05:59 -04'00'

Project Manager Approval:

Robert Lizotte, Jr. 2022.09.16 08:47:23 -04'00'

Cape Cod Gateway Airport - PFAS Project No G00120.XX.XX.XXXXX.NORWEL PFAS by DoD QSM 5.3 Table B-15

GW Batch 22-1319 Package DP-22-1361

1	Work Plan Laboratory Work Plan, Addendums To Work Plan, Memos From Project	
	Manager, Special Instructions, Chain-of-Custody Reports.	1
	Tables	
2	Analytical Data Tables, Qualifier Definitions.	17
	Miscellaneous Documentation	
3	Case Narrative, Miscellaneous Documentation Form, Quality Control Summary, Example Calculations, Internal Standard Recovery Report, Retention Time Window Report.	37
	Sample Preparation Records	
4	Sample Preparation Records, Dilution Worksheets, Standard Preparation Records, Certificates Of Analysis, GPC Check Report.	NA
	Analytical Calibrations	
5	Analytical Calibrations Analytical Sequence, Analytical Method, Tune Report, Initial Calibration,	
	Pesticide Degradation Report, RF Summary, Calibration Verifications, Independent Calibration Verification Check.	NA
	7	1
6	Analytical Data Raw Data Quantification Reports.	
	Taw Data Quantification reports.	NA
	Characteristics	
7	Chromatograms Sample And Standard Chromatograms.	
	Sample Samana Samon Samon	NA
	Unused Data	
8	Unused Data	
		NA

Master Signature Page

Name (Printed)	Signature	Initials	Date
Jonathan Thom		JRT	1/9/2020
Robert Lizette, Jr.	Mrt 15H ?	BL	1.9.2020
Elyn M: Fitch.	Pelle W Titt-	ENF!	1/9/2020
Carla Devine	Could Denix	CRD	1/9/2020
Dange Schumitz	Lanin Schuit	DS	1/9/2020
Lauran Ceriffith	Lauren Guffith	2016	1.9.2020
Carble P Milarthy		Chr.	1/9/2020
Rich Restuci	AL.	RE	1/4/2020
Sim buimaracs	4hr	SAG	1/9/2020
Jordan Tower	and to	JOT	1/9/2020
Christie Usher	Chute like	Cir	1/9/2020
Kevin McInerney	1/Aut	Mm	1/14/2020
Matt Schumitz	M	Mos	1/14/2020
Weidong Li	Wedge &	W.L	1/14/2020
haylaidmaire	Keyl Status	KAC	1/14/2020
MUNAZ MUNTASIR	aly Muse	MM	02/14/2020
Kristen Nichols	KNichob	KN	01/14/2020
Kelsey Harnden	Kulsey & Hoto	- KH	01/30/2020
Keuin Bailey	Kenn Burn	KB	1/30/2020
Stephanie Schultz	the dery	SAS	1 30 2020

Master Signature Page

Name (Printed)	Signature	Initials	Date
Climiceo Brown	Carley	C13	01/30/20
Ryan Kelly	Myan Jeage,	RX	01/30/20
KAREN HYPPOLITE	Kam amt	K.H.	01/31/20
Gail De Ruzzo	A Dox	GD	01/31/2020
Tracy Stenner	1 1 1 0	ner	1/31/202
Ashley Wellington	Golden Willith	AW	1131/2020
Daniel Cooney	Johns	DAC	1/31/2020
Peter Domes	Peter General	PD	1/31/2020
Anay Delma	on Do	AD	3/19/2024
Emily Reardon	Gunla/hacell	ER	3/19/2021
Brenton Murphy	Ble My	Bm	3/19/2021
Haley Hart	Hart	HH	3/19/21
All, son Manness	Alleen Wammer	AW	3/19/21
Taylor Noonan	Taylor proman	TN	3/10/2/
FRANCO PALA	Liones Polos	FP.	3/19/21
Amina Chamanla	2 / 1	Ac	11/03/21
Michelle Wentzell	1 0	my)	11-3-21
Zuchary Dreiker	Vachury Dreiker	ZD	11/3/21
Prew Croke	D/6/.	OX	11/3/21
Zachany Willenberg	Say libble	SIN	11/3/21

Master Signature Page

Name (Printed)	Signature	Initials	Date
Hayley Beal	Housely Bool	113	5/9/2022
Nathaniel Kinsman	Intohall The	NK	5/9/2022
Debra Huntress	Debua Strutters	DHU	5/9/22
Vincent Urso	Vinust Uno	VU	5/9/22
		_	

Sample Summary

Client: Horsely Witten Group, Inc.

SDG: 22-1319

Project/Site: Cape Cod Gateway Airport - PFAS

CTO: NA

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Receipt Date
DJ508PB-FS	Procedural Blank	WATER	8/8/2022	8/8/2022
DJ509LCS-FS	Laboratory Control Sample	WATER	8/8/2022	8/8/2022
E4930-FS	ME-1	GW	7/29/2022	8/3/2022
E4931-FS	ME-3	GW	7/29/2022	8/3/2022
E4932-FS	ME-2	GW	7/29/2022	8/3/2022
E4933-FS	HW-I(s)	GW	8/2/2022	8/3/2022
E4934-FS	HW-I(m)	GW	8/2/2022	8/3/2022
E4935-FS	HW-I(d)	GW	8/2/2022	8/3/2022

Work Plan

1.0 GENERAL PROJECT INFORMATION

Project Title:Cape Cod Gateway Airport - PFASProject Number:G00120.XX.XX.XXXX.NORWEL

Client: Horsely Witten Group, Inc.

90 Route 6A

Unit 1

Sandwich, MA 02563

U.S.A.

Client Contact Information: Bryan Massa

Senior Environmental Professional

(508) 833-6600(V)

NA

bmassa@horselywitten.com

Effective Date of QAPP: 8/3/2022

Version Number: G00120.XX.XX.XXXX.NORWEL(L)-01

Project Manager: Thorn, Jonathan

Laboratory Task Manager: Thorn, Jonathan

Deliverable Due Date: 8/31/2022

2.0 SCOPE OF WORK

Overview: Analysis of water samples for PFAS.

Matrix: Water

2.1 TECHNICAL APPROACH

2.1.1 Sample Receipt, Storage, and Handling

The list of samples for this project plan are presented in Attachment 1.

Storage Directions: Store refrigerated.

Sub_Sampling: None

Procedures: NA

Contact: NA

Comment: Extracts will be sent to Columbus after analysis.

Archiving: None.

Disposal: None.

2.1.2 Sample Preparation

None.

Samples Expected:	Samples Per Batch:	Batches Expected:
6	20	1

Batch quality control samples are defined in Table 1.

Target samples are presented in Attachment 1.

Table 1: Quality Control Samples

Туре:	Description:	Count:	Rgt:	Reference:	Comment:
РВ	Laboratory control reagent blank.	1 per batch		NA	
LCS	Laboratory Control Sample	1 per batch	No	NA	

2.1.3 Extraction/Preparation

2.1.3.1 Extraction

SOP No.-Rev: **5-370-13**

SOP Title: Extraction of Poly and Perfluoroalkyl Substances from Environmental

Matrices

Sample Size: 250.00 ml

SIS and LCS/MS Compounds: Defined in Table 2.

Deviations: None.

Comments: Samples must be prescreened prior to extraction.

Table 2: SIS and LCS/MS Spiking Level

Standard Type	Standa	ard Contents	Spike Amount (ng)	Volume (uL)	Comment
PFAS DoD Surrogate (28 Targets)	LN97	SIS	~ 25.0 ng	50 uL	NA
PFAS DoD Surrogate (43 Targets)	LQ30	SIS	~ 25.0 ng	50 uL	NA
PFAS DoD Surrogate (18 Targets)	LR70	SIS	~ 25.0 ng	50 uL	NA
PFAS DoD Second	LR24	LCS/MS	~ 50 ng	250 uL	NA

Standard Type	Standard Contents	Spike Amount (ng)	Volume (uL)	Comment
Source LCS/MS (43 Analytes)				

2.1.3.2 Cleanup

None.

RIS spiking levels are presented in Table 3.

Extract PIV (uL): 5000

Table 3: RIS Spiking Level

Standard Type	Standard Contents	Spike Amount (ng)	Volume (uL)	Comment
PFAS DoD Internal Standards	LR44 RIS	~ 25.0 ng	50 uL	NA

2.1.4 Instrumental Analysis

The list of analytes along with data quality criteria are presented in Attachment 2.

1) SOP_No-Rev: **5-369-09**

SOP_Title: Analysis of Perfluoroalkyl Substances in Environmental Samples by

Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS)

Deviations: None.

Comments: None.

2.2. DELIVERABLES

Deliverables Due: 8/31/2022

LIMS Reports: No
Histograms: No
Excel Tables: No
Chromatograms: No
EDDs: No

Comments: • L2 Summary report

• Excel tables

3.0 QUALITY

The Method Quality Objectives are defined in Attachment 3.

4.0 ORGANIZATION AND COMMUNICATION

4.1 ORGANIZATION

The project team is defined in Table 4. Supervisors may make substitutions with Project Manager concurrence.

Table 4: Project Team and Roles

Staff Member	Role	Comment
Jonathan R. Thorn	Project Manager	NA
Hayley Beal	Sample Preparation	NA
Denise M. Schumitz	LC-MS/MS Analysis	NA
Matt D. Schumitz	Sample Custody	NA
Carla R. Devine	Quality Control Officer	NA
Zachary J. Willenberg	Quality Assurance Officer	NA

4.2 COMMUNICATION

A kick-off meeting will be held to discuss project scope and goals.

5.0 SCHEDULE

The project schedule is presented in Table 5.

Table 5. Schedule of Laboratory Activities

Activity:	Start Date:	End Date:	TAT (days):	Comment.
Sample Receipt	08/03/2022	08/03/2022	0	NA
Sample Preparation	08/03/2022	08/17/2022	14	NA
Instrument Analysis	08/17/2022	08/30/2022	13	NA
Quality Control Review	08/30/2022	08/31/2022	1	NA
Quality Assurance Review	08/31/2022	08/31/2022	0	NA

6.0 BUDGET

The labor budget for the analytical task is presented in Table 6.

Table 6. Labor Budget (Laboratory Analytical Task)

Labor Activity:	Hours/ Batch:	Batches:	Total Hours:	Comment:
Sample Receipt	1	1	1	NA
Sample Preparation	5	1	5	NA
Instrument Analysis	5	1	5	NA
Quality Control Review	1	1	1	NA
Quality Assurance Review	1	1	1	NA

7.0 STAFF DEVELOPMENT

None anticipated.

Attachment 1: Target Samples

Shipment: SHP-220803-02

Status: Pending

Description: Cape Cod Gateway Airport

Range: E4930-E4935

Comment: NA

No:	BDO Id:	Client Sample ID:	Collection Date:	Matrix:	Storage Facility: Location: No: Comments:
1	E4930	ME-1	07/29/2022 10:10 am	GW	R0119 (NA)
2	E4931	ME-3	07/29/2022 10:20 am	GW	R0119 (NA)
3	E4932	ME-2	07/29/2022 10:30 am	GW	R0119 (NA)
4	E4933	HW-I(s)	08/02/2022 1:45 pm	GW	R0119 (NA)
5	E4934	HW-I(m)	08/02/2022 2:10 pm	GW	R0119 (NA)
6	E4935	HW-I(d)	08/02/2022 2:50 pm	GW	R0119 (NA)

Attachment 2: Test Codes

Project Test Code Name:	Master_369D
SOP Reference:	5-369 - Analysis of Perfluoroalkyl Substances in Environmental Samples by Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS)
Description:	PFAS by DoD QSM 5.3 Table B-15
Matrix:	L - Liquid Samples, like water or sea water, prepared and anlyzed under the same class of detection limits.
Detection Limit Study:	5-369
Instrument:	LC-MS/MS
MQO Criteria	Universal_LC
Standard Report:	Standard Result Report

	Method Sp	ecific Reporting		Holding T		Data F	lags
Result Units:	ng/L	Unit Conversion:	(none)	Sample:	14	DL_Flag:	U
Weight Basis:	LIQUID	Result Format:	Fixed Digits	Frozen:	14	RL_Flag:	J
Standard Basis:	SIS	# of Figures/Digits:	2	Extract:	28	PB_Flag:	В
Oil Weight Basis:	No	Oil Weight Source:	Oil Weight			DIL_Flag:	D
U-Value Substition:	U-Flag=MD	Histograms:	No			HT_Flag:	T

ECD_Reporting: No

No:	Analyte:	Report Name:	Type RIS	SIS	Hidden:	Graph:
1	nonafluoro-3,6-dioxaheptanoic acid	NFDHA	T	13C5-PFHxA	No	No
2	Perfluoro (2-ethoxyethane) sulfonic acid	PFEESA	Т	13C3-PFBS	No	No
3	Perfluoro-3-methoxypropanoic acid	PFMPA	Т	13C4-PFBA	No	No
4	Perfluoro-4-methoxybutanoic acid	PFMBA	T	13C5-PFPeA	No	No
5	Perfluoro-n-butanoic Acid	PFBA	T	13C4-PFBA	No	No
6	Perfluoro-n-pentanoic acid	PFPeA	T	13C5-PFPeA	No	No
7	Perfluoro-n-hexanoic acid	PFHxA	T	13C5-PFHxA	No	No
8	Perfluoro-n-heptanoic Acid	PFHpA	T	13C4-PFHpA	No	No
9	Perfluoro-n-octanoic Acid	PFOA	T	13C8-PFOA	No	No
10	Perfluorononanoic Acid	PFNA	T	13C9-PFNA	No	No
11	Perfluoro-n-decanoic Acid	PFDA	T	13C6-PFDA	No	No
12	Perfluoro-n-undecanoic acid	PFUnA	T	13C7-PFUnA	No	No
13	Perfluoro-n-dodecanoic acid	PFDoA	Т	13C2-PFDoA	No	No
14	Perfluoro-n-tridecanoic acid	PFTrDA	T	13C2-PFTeDA	No	No
15	Perfluoro-n-tetradecanoic acid	PFTeDA	Т	13C2-PFTeDA	No	No
16	N-methylperfluoro-1- octanesulfonamidoacetic acid	NMeFOSAA	Т	d3-MeFOSAA	No	No

Attachment 2: Test Codes

No:	Analyte:	Report Name:	Туре	RIS	SIS	Hidden:	Graph:
17	N-ethylperfluoro- octanesulfonamidoacetic acid	NEtFOSAA	T		d5-EtFOSAA	No	No
18	N-methylperfluoro-1- octanesulfonamide	NMeFOSA	Т		d3-MeFOSA	No	No
19	N-ethylperfluoro-1- octanesulfonamide	NEtFOSA	T		d5-EtFOSA	No	No
20	2-(N-methylperfluoro-1-octanesulfonamido)-ethanol	NMeFOSE	T		d7-MeFOSE	No	No
21	2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol	NEtFOSE	Т		d9-EtFOSE	No	No
22	Perfluoro-1-octanesulfonamide	PFOSA	T		13C8-FOSA	No	No
23	Perfluoro-1-butanesulfonate	PFBS	T		13C3-PFBS	No	No
24	perfluoro-1-pentanesulfonate	PFPeS	T		13C3-PFHxS	No	No
25	Perfluoro-1-hexanesulfonate	PFHxS	T		13C3-PFHxS	No	No
26	Perfluoro-1-heptanesulfonate	PFHpS	T		13C3-PFHxS	No	No
27	Perfluoro-1-octanesulfonate	PFOS	T		13C8-PFOS	No	No
28	Perfluoro-1-nonanesulfonate	PFNS	Т		13C8-PFOS	No	No
29	Perfluoro-1-decanesulfonate	PFDS	T		13C8-PFOS	No	No
30	Perfluoro-1-dodecanesulfonate	PFDoS	T		13C8-PFOS	No	No
31	1H,1H,2H,2H-Perfluorohexane sulfonate	4:2FTS	Т		13C2-4:2FTS	No	No
32	1H,1H,2H,2H-Perfluorooctane sulfonate	6:2FTS	T		13C2-6:2FTS	No	No
33	1H,1H,2H,2H-Perfluorodecane sulfonate	8:2FTS	Т		13C2-8:2FTS	No	No
34	3-perfluoropropyl propanoic Acid	3:3 FTCA	Т		13C5-PFHxA	No	No
35	3-Perfluoropentyl propanoic acid	5:3 FTCA	T		13C8-PFOA	No	No
36	3-Perfluoroheptyl propanoic acid	7:3 FTCA	T		13C6-PFDA	No	No
37	Hexafluoropropylene oxide dimer acid	HFPO-DA	T		13C3-HFPO-DA	No	No
38	Adona	Adona	T		13C8-PFOA	No	No
39	9-chlorohexadecafluoro-3- oxanonane-1-sulfonic acid	9Cl-PF3ONS	T		13C8-PFOA	No	No
40	11-chloroeicosafluoro-3- oxaundecane-1-sulfonic acid	11Cl-PF3OUdS	Т		13C8-PFOA	No	No
1	13C4-PFBA	13C4-PFBA	SIS	13C3-PFBA		No	No
2	13C5-PFPeA	13C5-PFPeA	SIS	13C3-PFBA		No	No
3	13C5-PFHxA	13C5-PFHxA	SIS	13C2-PFOA		No	No
4	13C4-PFHpA	13C4-PFHpA	SIS	13C2-PFOA		No	No
5	13C8-PFOA	13C8-PFOA	SIS	13C2-PFOA		No	No
6	13C9-PFNA	13C9-PFNA	SIS	13C2-PFOA		No	No
7	13C6-PFDA	13C6-PFDA	SIS	13C2-PFDA		No	No
8	13C7-PFUnA	13C7-PFUnA	SIS	13C2-PFDA		No	No
9	13C2-PFDoA	13C2-PFDoA	SIS	13C2-PFDA		No	No
10	13C2-PFTeDA	13C2-PFTeDA	SIS	13C2-PFDA		No	No
	d3-MeFOSAA	d3-MeFOSAA	SIS	13C4-PFOS		No	No
	d5-EtFOSAA	d5-EtFOSAA	SIS	13C4-PFOS		No	No
	d3-MeFOSA	d3-MeFOSA	SIS	13C4-PFOS		No	No
	d5-EtFOSA	d5-EtFOSA	SIS	13C4-PFOS		No	No

Attachment 2: Test Codes

Project Test Code Name:	Master_3	69D				
No: Analyte:	Report Name:	Туре	RIS	SIS	Hidden:	Graph:
15 d7-MeFOSE	d7-MeFOSE	SIS	13C4-PFOS		No	No
16 d9-EtFOSE	d9-EtFOSE	SIS	13C4-PFOS		No	No
17 13C8-FOSA	13C8-FOSA	SIS	13C4-PFOS		No	No
18 13C3-PFBS	13C3-PFBS	SIS	13C4-PFOS		No	No
19 13C3-PFHxS	13C3-PFHxS	SIS	13C4-PFOS		No	No
20 13C8-PFOS	13C8-PFOS	SIS	13C4-PFOS		No	No
21 13C2-4:2FTS	13C2-4:2FTS	SIS	13C4-PFOS		No	No
22 13C2-6:2FTS	13C2-6:2FTS	SIS	13C4-PFOS		No	No
23 13C2-8:2FTS	13C2-8:2FTS	SIS	13C4-PFOS		No	No
24 13C3-HFPO-DA	13C3-HFPO-DA	SIS	13C2-PFOA		No	No
Total Analytes: 64						

Subtract Peaks:

None

Sum Peaks:

None

Attachment 2: Test Codes

Project Test Code Name: Master_369D

ICAL Acceptance Criteria:

Curve Fit:	Limit Mean(%):	Mean Qual:	Limit Ind.:	Ind. Qual:	Min Points:	Points Qual:	Comments:
Linear	NA	NA	0.99	N	5	N	y = Bx + C
Quadratic	NA	NA	0.99	N	6	N	$y = Ax^2 + Bx + C$

Continuing Calibration Verification Criteria:

(CCV	Name:	5-36	59								
		uency rs:		ean (%):	Indiv PD(idual %):	RIS/SI Window		Area Limit Low(%):	Area L High(Comment:
ſ	12	(N)	30	(N)	30	(N)	0.04	(N)	-50	100	(N)	NA

Independent Calibration Verification:

1	CC Name:	5-369								
	Mean P Limit(%		Ind. P Limit(RIS/SIS W Limit (S		Area Limit High(%):	Area L Low(Comment:
	30	(N)	30	(N)	0.04	(N)	-50	100	(N)	NA

Mass Discrimination Criteria:

None

Degredation Check Criteria:

None

Attachment 3: Method Quality Objectives

MQO Application:	Universal_LC		
MQO:	Acceptance Criteria:	Qual:	Corrective Action:
Procedural Blank	Samples must be greater than five times the blank concentration (>5xPB).	В	Review with Project Manager; re-analyze or justify results in project records.
PB Measurement Quality Objective	Organic results in the Procedural Blank are less than 1/2 times the LOQ (<1/2xLOQ)	N	Review with Project Manager; re-analyze or justify results in project records.
Laboratory Control Sample	Recovery values 70-130%.	N	Review with project manager; re-analyze or justify reporting the results in project records.
Matrix Spike / Matrix Spike Duplicate Recovery	Organics 70-130%. Analyte concentration in MS/MSD must be greater than five times reported background concentration.	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
	Organics Results in the Target is less than 5 times the Original	n	
Matrix Spike/Spike Duplicate Precision	Organics results less than 30% Relative Percent Difference (RPD). Analyte concentration in MS/MSD must be greater than five times reported background concentration.	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
	Organics Results in the Target is less than 5 times the Original	n	
Standard Reference Material Accuracy	Organics Percent Difference less than 30% from a range of certified values on average. Analyte concentration must be greater than five times the Method Detection Limit (>5xMDL).	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
	Organics Results in the Target is less than 5 times the MDL	n	
Analytical Duplicate Precision	Organics results less than 30% Relative Percent Difference (RPD). Analyte concentration must be > 5x MDL.	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
	Organics Results in the Original is less than 5 times the MDL	n	

Attachment 3: Method Quality Objectives

MQO Application:	Universal_LC		
MQO:	Acceptance Criteria:	Qual:	Corrective Action:
Analytical Triplicate Precision	Organics results less than 30% Relative Standard Deviation (RSD). Analyte concentration must be > 5x MDL.	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
	Organics Results in the Original is less than 5 times the MDL	n	
Surrogate Compound Recovery	Recovery results between 50% and 150%.	N	Review with Project Manager; re-analyze or justify reporting results in the project records.
Control Oil	RPD < 30% for at least 90% of analytes	N	Results examined by project manager, task leader, or subcontractor lab manager. Reextraction, reanalysis, or justification documented.
Instrument Calibration	5-369-9: R-squared greater than or equal to 0.990		Results examined by project manager, task leader, or subcontractor lab manager. Reextraction, reanalysis, or justification documented.
Independent Calibration Check Solution	5-369-9: Individual PD less than or equal to 30%. Mean Percent Difference less than or equal to 30%.	N	Review with Project Manager; re-analyze or justify in project records.
Continuing Calibration Verification	5-369-9: Individual PD less than or equal to 30%. Mean Percent Difference less than or equal to 30%.	N	Review with Project Manager; re-analyze or justify in project records.

It can be done

ShpNo

SHP-220803-02

Battelle Project No:

Project Number: 2					Approved:	Auti	norized		
roject Mulliber: 2	22071	Client	: Horsley Witten						
	Thorn, Jonathan	Date/	Time Received:	Wednesday	, August 03, 20	022 10:30 A	М		
No. of Shipping Conta	ainers: 1								
SHIPMENT									
lethod of Delivery:	Hand Delivered	Track	king Number:	NA					
OC Forms:	✓ Shipped with samples	No Fo	rms						
Cooler(s)/Box	(es)								
Cntr Type	Tracking No.	Seal	Seal	Container	Therm.	Temp C	Smps		
1 of 1 Cooler	NA	Tape	Intact	Intact	Therm_2	1.3	6		
amples									
ample Labels:	✓ Sample la	abels agree wi	th COC forms						
			nple Custody Cor	rective Action	n Form)				
Container Seals:									
January Seals.		☐ Tape ☐ Custody Seals ☐ Other Seals (See sample Log) ✓ Seals intact for each shipping container							
			ole log for impac						
		, see suil	inipac	omnipies)					
ondition of Samples:	✓ Sample co	ontainers inta							
and an animpress		Circumsto Inter-	Cl						
	Sample co	ontainers brok	ken/leaking (See			Form)			
emperature upon reco Note: If temperature up amples Acidified:	eipt (°C): 1.3 pon receipt differs from requir	Temperatur red conditions	re Blank used s, see sample log	✓ Yes 🗆 1	No	Form)			
emperature upon reconvote: If temperature up amples Acidified:	eipt (°C): oon receipt differs from requir Yes Yes	Temperatur red conditions No Un	re Blank used s, see sample log	✓ Yes 🗆 1	No	Form)			
emperature upon reconvote: If temperature up amples Acidified:	eipt (°C): 1.3 pon receipt differs from requir	Temperatur red conditions No Un	re Blank used s, see sample log	✓ Yes 🗆 1	No	Form)			
Temperature upon reconvote: If temperature upon amples Acidified: nitial pH 5-9?: no. individual sample otal Residual Chlorin	eipt (°C): oon receipt differs from requir Yes Yes adjustments on the Auxiliary The Present?: Yes	Temperatur red conditions No Un No NA Sample Received	re Blank used s, see sample log known ipt Form	✓ Yes 🗆 1	No	Form)			
Temperature upon reconvote: If temperature upon amples Acidified: nitial pH 5-9?: no. individual sample otal Residual Chlorin	eipt (°C): 2.3 2.5 2.5 2.7 2.7 2.7 3.7 4.7 4.7 5.7 1.3 1.3 1.3 1.4 2.5 2.7 2.7 3.7 4.7 4.7 4.7 4.7 4.7 4.7 4	Temperatur red conditions No Un No NA Sample Received	re Blank used s, see sample log known ipt Form	✓ Yes 🗆 1	No	Form)			
emperature upon reconvote: If temperature upon amples Acidified: notial pH 5-9?: notial Residual Sample otal Residual Chlorin yes, individual sample	eipt (°C): oon receipt differs from requir Yes Yes adjustments on the Auxiliary The Present?: Yes	Temperatur red conditions No Un No NA Sample Receive No NA y Sample Receive	re Blank used s, see sample log known ipt Form	Yes 1	No	Form)			
emperature upon reco Note: If temperature up amples Acidified: notial pH 5-9?: no. individual sample otal Residual Chlorin yes, individual sample ead Space <1% in san idividual sample devial	eipt (°C): 1.3 oon receipt differs from requir Yes Yes adjustments on the Auxiliary the Present?: Yes adjustments on the Auxiliary mples for water VOC analystions noted on sample log	Temperatured conditions No Universely Unive	re Blank used s, see sample log known ipt Form	Yes In comment field	No	Form)			
emperature upon reconvote: If temperature upon amples Acidified: nitial pH 5-9?: no. individual sample otal Residual Chlorin yes, individual sample lead Space <1% in sample deviate deviate amples Containers: amples returned in PC-	eipt (°C): 1.3 oon receipt differs from requir Yes Yes adjustments on the Auxiliary the Present?: Yes adjustments on the Auxiliary mples for water VOC analystions noted on sample log	Temperatur red conditions No Un No NA Sample Receive V Sample Receive Sis: Yes	re Blank used s, see sample log known ipt Form Solution No. 1. N	Yes In comment field	No d)	Form)			
emperature upon reconvote: If temperature upon amples Acidified: notial pH 5-9?: notial Residual Sample otal Residual Chlorin yes, individual sample	eipt (°C): 2	Temperatur red conditions No Un No NA Sample Receive V Sample Receive Sis: Yes	re Blank used s, see sample log known ipt Form Solution No. 1. N	Yes Incomment field	No d)		0:30 AM		
emperature upon recovote: If temperature upon amples Acidified: nitial pH 5-9?: no. individual sample otal Residual Chlorin yes, individual sample ead Space <1% in sandividual sample devial amples Containers: amples returned in PC- torage Location:	eipt (°C): 2	Temperatur red conditions No Un No NA Sample Receive V Sample Receive Sis: Yes	re Blank used s, see sample log known ipt Form Solution No. 1. N	Yes 1 comment field NA Unknown Did Assigne	No d)	- E4935	0:30 AM		

It can be done

ShpNo SHP-220803-02

Battelle Project No:

Sample Receipt Form Details

Approved:

Project Number:

22071

Client: Horsley Witten

Received by:

Thorn, Jonathan

Date/Time Received: Wednesday, August 03, 2022 10:30 AM

No. of Shipping Containers:

BDO Id:	Client Sample ID:	Collection Date:	Login Date:	Ctrs	: Matrix:	Temp:	pH:	TRC:	VOC:	Stored In:	Loc:	No: Comments:
E4930	ME-1	07/29/22 10:10	08/03/22 11:32	2	GW	1.3	No	NA	NA	R0119 (NA)		
E4931	ME-3	07/29/22 10:20	08/03/22 11:32	2	GW	1.3	No	NA	NA	R0119 (NA)		
E4932	ME-2	07/29/22 10:30	08/03/22 11:33	2	GW	1.3	No	NA	NA	R0119 (NA)		
E4933	HW-I(s)	08/02/22 13:45	08/03/22 11:33	2	GW	1.3	No	NA	NA	R0119 (NA)		
E4934	HW-I(m)	08/02/22 14:10	08/03/22 11:33	2	GW	1.3	No	NA	NA	R0119 (NA)		
E4935	HW-I(d)	08/02/22 14:50	08/03/22 11:33	1	GW	1.3	No	NA	NA	R0119 (NA)		

Total Samples:

Chain of Custody

GALEWOON A. VROIT (HYA)	ent Project Manager:			Client Project			Test /	Preservative ¹	COC Number:
Deliver Results to: DIMOSSO OMOTSleywitter Address: 90 Rowte 6A Sanzwher MA Phone: 781-243-1527 Email:).com	Phone: Email:	DMGSSA	633-6		om	As signature		Turnaround Time ² : ☐ 28-days (standard) ☐ 21-days (Rush) ☐ 14-days (Rush) ☐ 7-days (Rush) ☐ 3-day (Rush)
Sample ID	Date	Time	Type ³	Matrix	Count	Lab ID	8		Sample Comments
WE-1	7/29/22/1	01:5	CIVAD	6W	2	E4930	V		compre comments
pineuz ME-3		05:0	civalo	6W	2	64931			
notes ME-2	7/29/22/	0:30	CIVOLO	OW	2	E4932	/		
HW-I(s)		3.45	avab	ON	2	64933	/		
HW-I(m)		4:10	ayovo	OW	2	E4934	/		
HW-Ild)	812122 14	450	gravo	GW	1	E4935	/		
Delinquished by (Delay (Co.)									
Relinquished by (Print/Sign): Relinquished by (Print/Sign):	Company:		Date/Tim	641 1/0	by (Print/Sign by (Print/Sign			Company:	Date/Time: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Relinquished by (Print/Sign):	Company:		Date/Tim	e: Received	by (Print/Sign	n):		BNO Company:	8 3 2L 03° Date/Time:
Field Project comments:				Receipt	comments:				

¹ include comments in the Field Project comment field if there are method specific requirements, i.e., "WHO PCB Congener list", "PFAS – 18 analytes", or "PFAS – 29 analytes from UCMR5"

² Rush TAT request should be verified with the lab prior to submitting samples

³ Client sample type, if applicable

Data Tables

L22-1319_Master_369D

Project Client: Horsely Witten Group, Inc. Project Name: Cape Cod Gateway Airport - PFAS Project No.: G00120.XX.XX.XXXX.NORWEL

Client ID ME-1

 Battelle ID
 E4930-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

 Sample Size
 0.292

Size Unit-Basis Analysis Result (ng/L) DF Date LOD CAS No Extract ID DL LOQ Analyte 151772-58-6 NFDHA 2.14 U E4930-FS(0) 1.000 9/3/2022 0.659 2.14 4.28 E4930-FS(0) 9/3/2022 **PFEESA** 113507-82-7 2.14 U 1.000 0.595 2.14 4.28 PFMPA 377-73-1 2.14 U E4930-FS(0) 1.000 9/3/2022 0.933 2.14 4.28 **PFMBA** 863090-89-5 2.14 U E4930-FS(0) 1.000 9/3/2022 0.797 2.14 4 28 PFBA 375-22-4 17.4 E4930-FS(0) 1.000 9/3/2022 1.29 3.00 4.28 PFPeA 2706-90-3 48.9 E4930-FS(0) 1.000 9/3/2022 1.10 3.00 4.28 PFHxA 307-24-4 36.9 E4930-FS(0) 1.000 9/3/2022 0.782 2 14 4 28 PFHpA 375-85-9 16.4 E4930-FS(0) 1.000 9/3/2022 0.806 2.14 4.28 PFOA 335-67-1 21.5 E4930-FS(0) 1.000 9/3/2022 0.865 2.14 4.28 E4930-FS(0) 9/3/2022 0.713 4.28 PFNA 375-95-1 12.2 1.000 2.14 PFDA 335-76-2 2.14 U E4930-FS(0) 1.000 9/3/2022 0.671 2.14 4 28 PFUnA 2058-94-8 2.14 U E4930-FS(0) 1.000 9/3/2022 0.644 2.14 4.28 PFDoA 307-55-1 2.14 U E4930-FS(0) 1.000 9/3/2022 0.651 2.14 4.28 PFTrDA 72629-94-8 2.14 U E4930-FS(0) 1.000 9/3/2022 0.635 2.14 4.28 **PFTeDA** 376-06-7 2.14 U E4930-FS(0) 1.000 9/3/2022 0.677 2.14 4.28 1.000 NMeFOSAA 2355-31-9 2.14 U E4930-FS(0) 9/3/2022 0.882 4.28 2.14 NEtFOSAA 2991-50-6 2.14 U E4930-FS(0) 1.000 9/3/2022 0.848 2.14 4.28 9/3/2022 0.908 1.000 **NMeFOSA** 31506-32-8 2.14 U E4930-FS(0) 2.14 4.28 NEtFOSA 4151-50-2 3.00 U E4930-FS(0) 1.000 9/3/2022 1.08 3.00 4.28 24448-09-7 E4930-FS(0) 9/3/2022 0.916 **NMeFOSE** 2.14 U 1.000 2.14 4.28 NEtFOSE 1691-99-2 3.00 U E4930-FS(0) 1.000 9/3/2022 3.00 4.28 1.17 754-91-6 E4930-FS(0) **PFOSA** 3.00 U 1.000 9/3/2022 1.35 3.00 4.28 PFBS 375-73-5 2.36 J E4930-FS(0) 1.000 9/3/2022 0.741 2.14 4.28 **PFPeS** 2706-91-4 2.71 J E4930-FS(0) 1.000 9/3/2022 0.873 2.14 4.28 4.28 **PFHxS** 355-46-4 37.9 E4930-FS(0) 1.000 9/3/2022 0.854 2.14 **PFHpS** 375-92-8 2.77 J E4930-FS(0) 1.000 9/3/2022 0.720 2.14 4.28 PFOS 1763-23-1 77.4 E4930-FS(0) 1.000 9/3/2022 0.916 2.14 4.28 PFNS 68259-12-1 2.14 U E4930-FS(0) 1.000 9/3/2022 0.600 2.14 4.28 **PFDS** 335-77-3 2.14 U E4930-FS(0) 1.000 9/3/2022 0.667 2.14 4.28 **PFDoS** 79780-39-5 2.14 U E4930-FS(0) 1.000 9/3/2022 0.688 2.14 4.28 4:2FTS 757124-72-4 2.14 U E4930-FS(0) 1.000 9/3/2022 0.873 2.14 4.28 6:2FTS E4930-FS(0) 9/3/2022 4.28 27619-97-2 21.7 1.000 1.26 3.00 8:2FTS 39108-34-4 2.14 U E4930-FS(0) 1.000 9/3/2022 0.865 2.14 4.28 3:3 FTCA 356-02-5 3.00 U E4930-FS(0) 1.000 9/3/2022 1.29 3.00 4.28 5:3 FTCA 914637-49-3 2.14 U E4930-FS(0) 1.000 9/3/2022 0.959 4.28 2.14 7:3 FTCA 812-70-4 2.14 U E4930-FS(0) 1.000 9/3/2022 0.865 2.14 4.28 HFPO-DA 13252-13-6 2.14 U E4930-FS(0) 1.000 9/3/2022 0.741 2.14 4.28 Adona 919005-14-4 2.14 U E4930-FS(0) 1.000 9/3/2022 0.744 2.14 4.28 9CI-PF3ONS 756426-58-1 2.14 U E4930-FS(0) 1.000 9/3/2022 0.882 2.14 4.28 11CI-PF3OUdS 763051-92-9 2.14 U E4930-FS(0) 1.000 9/3/2022 0.771 2 14 4 28

Client ID ME-1

 Battelle ID
 E4930-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

.,			
			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C4-PFBA	59	E4930-FS(0)	9/3/2022
13C5-PFPeA	67	E4930-FS(0)	9/3/2022
13C5-PFHxA	58	E4930-FS(0)	9/3/2022
13C4-PFHpA	52	E4930-FS(0)	9/3/2022
13C8-PFOA	51	E4930-FS(0)	9/3/2022
13C9-PFNA	54	E4930-FS(0)	9/3/2022
13C6-PFDA	56	E4930-FS(0)	9/3/2022
13C7-PFUnA	61	E4930-FS(0)	9/3/2022
13C2-PFDoA	60	E4930-FS(0)	9/3/2022
13C2-PFTeDA	50	E4930-FS(0)	9/3/2022
d3-MeFOSAA	50	E4930-FS(0)	9/3/2022
d5-EtFOSAA	42 N	E4930-FS(0)	9/3/2022
d3-MeFOSA	38 N	E4930-FS(0)	9/3/2022
d5-EtFOSA	37 N	E4930-FS(0)	9/3/2022
d7-MeFOSE	46 N	E4930-FS(0)	9/3/2022
d9-EtFOSE	43 N	E4930-FS(0)	9/3/2022
13C8-FOSA	55	E4930-FS(0)	9/3/2022
13C3-PFBS	59	E4930-FS(0)	9/3/2022
13C3-PFHxS	57	E4930-FS(0)	9/3/2022
13C8-PFOS	59	E4930-FS(0)	9/3/2022
13C2-4:2FTS	70	E4930-FS(0)	9/3/2022
13C2-6:2FTS	66	E4930-FS(0)	9/3/2022
13C2-8:2FTS	78	E4930-FS(0)	9/3/2022
13C3-HFPO-DA	53	E4930-FS(0)	9/3/2022

Client ID ME-3

 Battelle ID
 E4931-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

 Sample Size
 0.292

0.292 Size Unit-Basis Analysis Result (ng/L) DF Date LOD CAS No Extract ID DL LOQ Analyte 151772-58-6 NFDHA 2.14 U E4931-FS(0) 1.000 9/3/2022 0.659 2.14 4.28 9/3/2022 **PFEESA** 113507-82-7 2.14 U E4931-FS(0) 1.000 0.595 2.14 4.28 PFMPA 377-73-1 2.14 U E4931-FS(0) 1.000 9/3/2022 0.933 2.14 4.28 **PFMBA** 863090-89-5 2.14 U E4931-FS(0) 1.000 9/3/2022 0.797 2.14 4 28 PFBA 375-22-4 9.75 E4931-FS(0) 1.000 9/3/2022 1.29 3.00 4.28 PFPeA 2706-90-3 23.3 E4931-FS(0) 1.000 9/3/2022 1.10 3.00 4.28 PFHxA 307-24-4 22 1 E4931-FS(0) 1.000 9/3/2022 0.782 2 14 4 28 PFHpA 375-85-9 10.0 E4931-FS(0) 1.000 9/3/2022 0.806 2.14 4.28 PFOA 335-67-1 14.2 E4931-FS(0) 1.000 9/3/2022 0.865 2.14 4.28 E4931-FS(0) 9/3/2022 0.713 4.28 PFNA 375-95-1 7.99 1.000 2.14 PFDA 335-76-2 2.14 U E4931-FS(0) 1.000 9/3/2022 0.671 2.14 4 28 PFUnA 2058-94-8 2.14 U E4931-FS(0) 1.000 9/3/2022 0.644 2.14 4.28 PFDoA 307-55-1 2.14 U E4931-FS(0) 1.000 9/3/2022 0.651 2.14 4.28 PFTrDA 72629-94-8 2.14 U E4931-FS(0) 1.000 9/3/2022 0.635 2.14 4.28 **PFTeDA** 376-06-7 2.14 U E4931-FS(0) 1.000 9/3/2022 0.677 2.14 4.28 1.000 NMeFOSAA 2355-31-9 2.14 U E4931-FS(0) 9/3/2022 0.882 4.28 2.14 NEtFOSAA 2991-50-6 2.14 U E4931-FS(0) 1.000 9/3/2022 0.848 2.14 4.28 9/3/2022 0.908 1.000 **NMeFOSA** 31506-32-8 2.14 U E4931-FS(0) 2.14 4.28 NEtFOSA 4151-50-2 3.00 U E4931-FS(0) 1.000 9/3/2022 1.08 3.00 4.28 24448-09-7 E4931-FS(0) 9/3/2022 0.916 **NMeFOSE** 2.14 U 1.000 2.14 4.28 NEtFOSE 1691-99-2 3.00 U E4931-FS(0) 1.000 9/3/2022 3.00 4.28 1.17 E4931-FS(0) **PFOSA** 754-91-6 5.95 1.000 9/3/2022 1.35 3.00 4.28 PFBS 375-73-5 3.07 J E4931-FS(0) 1.000 9/3/2022 0.741 2.14 4.28 PFPeS 2706-91-4 3.63 J E4931-FS(0) 1.000 9/3/2022 0.873 2.14 4.28 4.28 **PFHxS** 355-46-4 39.1 E4931-FS(0) 1.000 9/3/2022 0.854 2.14 **PFHpS** 375-92-8 2.83 J E4931-FS(0) 1.000 9/3/2022 0.720 2.14 4.28 PFOS 1763-23-1 104 E4931-FS(0) 1.000 9/3/2022 0.916 2.14 4.28 PFNS 68259-12-1 2.14 U E4931-FS(0) 1.000 9/3/2022 0.600 2.14 4.28 **PFDS** 335-77-3 2.14 U E4931-FS(0) 1.000 9/3/2022 0.667 2.14 4.28 **PFDoS** 79780-39-5 2.14 U E4931-FS(0) 1.000 9/3/2022 0.688 2.14 4.28 4:2FTS 757124-72-4 2.14 U E4931-FS(0) 1.000 9/3/2022 0.873 2.14 4.28 6:2FTS 9/3/2022 4.28 27619-97-2 4.91 E4931-FS(0) 1.000 1.26 3.00 8:2FTS 39108-34-4 2.14 U E4931-FS(0) 1.000 9/3/2022 0.865 2.14 4.28 3:3 FTCA 356-02-5 3.00 U E4931-FS(0) 1.000 9/3/2022 1.29 3.00 4.28 5:3 FTCA 914637-49-3 2.14 U E4931-FS(0) 1.000 9/3/2022 0.959 2.14 4.28 7:3 FTCA 812-70-4 2.14 U 1.000 E4931-FS(0) 9/3/2022 0.865 2.14 4.28 HFPO-DA 13252-13-6 2.14 U E4931-FS(0) 1.000 9/3/2022 0.741 2.14 4.28 Adona 919005-14-4 2.14 U E4931-FS(0) 1.000 9/3/2022 0.744 2.14 4.28 9CI-PF3ONS E4931-FS(0) 756426-58-1 2.14 U 1.000 9/3/2022 0.882 2.14 4.28 11CI-PF3OUdS 763051-92-9 2.14 U E4931-FS(0) 1.000 9/3/2022 0.771 2 14 4 28

Client ID ME-3

 Battelle ID
 E4931-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

•			A
Surrogate Recoveries (%)	Recovery	Extract ID	Analysis Date
13C4-PFBA	54	E4931-FS(0)	9/3/2022
13C5-PFPeA	71	E4931-FS(0)	9/3/2022
13C5-PFHxA	63	E4931-FS(0)	9/3/2022
13C4-PFHpA	60	E4931-FS(0)	9/3/2022
13C8-PFOA	60	E4931-FS(0)	9/3/2022
13C9-PFNA	58	E4931-FS(0)	9/3/2022
13C6-PFDA	60	E4931-FS(0)	9/3/2022
13C7-PFUnA	68	. , ,	
	66	E4931-FS(0)	9/3/2022
13C2-PFDoA		E4931-FS(0)	9/3/2022
13C2-PFTeDA	55	E4931-FS(0)	9/3/2022
d3-MeFOSAA	67	E4931-FS(0)	9/3/2022
d5-EtFOSAA	61	E4931-FS(0)	9/3/2022
d3-MeFOSA	52	E4931-FS(0)	9/3/2022
d5-EtFOSA	49 N	E4931-FS(0)	9/3/2022
d7-MeFOSE	58	E4931-FS(0)	9/3/2022
d9-EtFOSE	56	E4931-FS(0)	9/3/2022
13C8-FOSA	65	E4931-FS(0)	9/3/2022
13C3-PFBS	62	E4931-FS(0)	9/3/2022
13C3-PFHxS	63	E4931-FS(0)	9/3/2022
13C8-PFOS	65	E4931-FS(0)	9/3/2022
13C2-4:2FTS	72	E4931-FS(0)	9/3/2022
13C2-6:2FTS	79	E4931-FS(0)	9/3/2022
13C2-8:2FTS	87	E4931-FS(0)	9/3/2022
13C3-HFPO-DA	61	E4931-FS(0)	9/3/2022

Client ID ME-2

 Battelle ID
 E4932-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

 Sample Size
 0.276

Sample Size		0.276						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
NFDHA	151772-58-6	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.697	2.26	4.53
PFEESA	113507-82-7	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.630	2.26	4.53
PFMPA	377-73-1	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.987	2.26	4.53
PFMBA	863090-89-5	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.843	2.26	4.53
PFBA	375-22-4	15.0	E4932-FS(0)	1.000	9/3/2022	1.37	3.17	4.53
PFPeA	2706-90-3	55.1	E4932-FS(0)	1.000	9/3/2022	1.16	3.17	4.53
PFHxA	307-24-4	60.3	E4932-FS(0)	1.000	9/3/2022	0.827	2.26	4.53
PFHpA	375-85-9	27.5	E4932-FS(0)	1.000	9/3/2022	0.852	2.26	4.53
PFOA	335-67-1	30.6	E4932-FS(0)	1.000	9/3/2022	0.915	2.26	4.53
PFNA	375-95-1	15.4	E4932-FS(0)	1.000	9/3/2022	0.755	2.26	4.53
PFDA	335-76-2	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.710	2.26	4.53
PFUnA	2058-94-8	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.681	2.26	4.53
PFDoA	307-55-1	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.688	2.26	4.53
PFTrDA	72629-94-8	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.672	2.26	4.53
PFTeDA	376-06-7	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.716	2.26	4.53
NMeFOSAA	2355-31-9	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.933	2.26	4.53
NEtFOSAA	2991-50-6	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.897	2.26	4.53
NMeFOSA	31506-32-8	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.960	2.26	4.53
NEtFOSA	4151-50-2	3.17 U	E4932-FS(0)	1.000	9/3/2022	1.14	3.17	4.53
NMeFOSE	24448-09-7	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.969	2.26	4.53
NEtFOSE	1691-99-2	3.17 U	E4932-FS(0)	1.000	9/3/2022	1.24	3.17	4.53
PFOSA	754-91-6	3.17 U	E4932-FS(0)	1.000	9/3/2022	1.43	3.17	4.53
PFBS	375-73-5	8.32	E4932-FS(0)	1.000	9/3/2022	0.784	2.26	4.53
PFPeS	2706-91-4	6.18	E4932-FS(0)	1.000	9/3/2022	0.924	2.26	4.53
PFHxS	355-46-4	60.1	E4932-FS(0)	1.000	9/3/2022	0.903	2.26	4.53
PFHpS	375-92-8	3.44 J	E4932-FS(0)	1.000	9/3/2022	0.762	2.26	4.53
PFOS	1763-23-1	97.0	E4932-FS(0)	1.000	9/3/2022	0.969	2.26	4.53
PFNS	68259-12-1	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.635	2.26	4.53
PFDS	335-77-3	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.706	2.26	4.53
PFDoS	79780-39-5	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.727	2.26	4.53
4:2FTS	757124-72-4	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.924	2.26	4.53
6:2FTS	27619-97-2	43.4	E4932-FS(0)	1.000	9/3/2022	1.33	3.17	4.53
8:2FTS	39108-34-4	1.40 J	E4932-FS(0)	1.000	9/3/2022	0.915	2.26	4.53
3:3 FTCA	356-02-5	3.17 U	E4932-FS(0)	1.000	9/3/2022	1.37	3.17	4.53
5:3 FTCA	914637-49-3	2.26 U	E4932-FS(0)	1.000	9/3/2022	1.01	2.26	4.53
7:3 FTCA	812-70-4	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.915	2.26	4.53
HFPO-DA	13252-13-6	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.784	2.26	4.53
Adona	919005-14-4	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.787	2.26	4.53
9CI-PF3ONS	756426-58-1	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.933	2.26	4.53
11Cl-PF3OUdS	763051-92-9	2.26 U	E4932-FS(0)	1.000	9/3/2022	0.816	2.26	4.53

Client ID ME-2

 Battelle ID
 E4932-FS

 Sample Type
 SA

 Collection Date
 07/29/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

,	001CX 3300 (710) E0/1110/1115		
			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C4-PFBA	64	E4932-FS(0)	9/3/2022
13C5-PFPeA	75	E4932-FS(0)	9/3/2022
13C5-PFHxA	53	E4932-FS(0)	9/3/2022
13C4-PFHpA	45 N	E4932-FS(0)	9/3/2022
13C8-PFOA	46 N	E4932-FS(0)	9/3/2022
13C9-PFNA	47 N	E4932-FS(0)	9/3/2022
13C6-PFDA	48 N	E4932-FS(0)	9/3/2022
13C7-PFUnA	54	E4932-FS(0)	9/3/2022
13C2-PFDoA	53	E4932-FS(0)	9/3/2022
13C2-PFTeDA	51	E4932-FS(0)	9/3/2022
d3-MeFOSAA	53	E4932-FS(0)	9/3/2022
d5-EtFOSAA	47 N	E4932-FS(0)	9/3/2022
d3-MeFOSA	51	E4932-FS(0)	9/3/2022
d5-EtFOSA	54	E4932-FS(0)	9/3/2022
d7-MeFOSE	62	E4932-FS(0)	9/3/2022
d9-EtFOSE	58	E4932-FS(0)	9/3/2022
13C8-FOSA	66	E4932-FS(0)	9/3/2022
13C3-PFBS	51	E4932-FS(0)	9/3/2022
13C3-PFHxS	55	E4932-FS(0)	9/3/2022
13C8-PFOS	48 N	E4932-FS(0)	9/3/2022
13C2-4:2FTS	76	E4932-FS(0)	9/3/2022
13C2-6:2FTS	78	E4932-FS(0)	9/3/2022
13C2-8:2FTS	83	E4932-FS(0)	9/3/2022
13C3-HFPO-DA	47 N	E4932-FS(0)	9/3/2022

Client ID HW-I(s)

 Battelle ID
 E4933-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

 Sample Size
 0.277

0.277 Size Unit-Basis Analysis Result (ng/L) DF Date LOD CAS No Extract ID DL LOQ Analyte NFDHA 151772-58-6 2.26 U E4933-FS(0) 1.000 9/3/2022 0.695 2.26 4.51 9/3/2022 **PFEESA** 113507-82-7 2.26 U E4933-FS(0) 1.000 0.627 2.26 4.51 PFMPA 377-73-1 2.26 U E4933-FS(0) 1.000 9/3/2022 0.984 2.26 4.51 **PFMBA** 863090-89-5 2.26 U E4933-FS(0) 1.000 9/3/2022 0.840 2.26 4.51 PFBA 375-22-4 E4933-FS(0) 1.000 9/3/2022 1.36 3.16 4.51 62.7 PFPeA 2706-90-3 237 E4933-FS(0) 1.000 9/3/2022 1.16 3.16 4.51 PFHxA 307-24-4 205 E4933-FS(0) 1.000 9/3/2022 0.824 2 26 4 51 PFHpA 375-85-9 299 E4933-FS(0) 1.000 9/3/2022 0.849 2.26 4.51 PFOA 335-67-1 256 E4933-FS(0) 1.000 9/3/2022 0.912 2.26 4.51 146 E4933-FS(0) 9/3/2022 4.51 PFNA 375-95-1 1.000 0.752 2.26 PFDA 335-76-2 2.26 U E4933-FS(0) 1.000 9/3/2022 0.708 2.26 4 51 PFUnA 2058-94-8 2.26 U E4933-FS(0) 1.000 9/3/2022 0.679 2.26 4.51 PFDoA 307-55-1 2.26 U E4933-FS(0) 1.000 9/3/2022 0.686 2.26 4.51 PFTrDA 72629-94-8 2.26 U E4933-FS(0) 1.000 9/3/2022 0.670 2.26 4.51 **PFTeDA** 376-06-7 2.26 U E4933-FS(0) 1.000 9/3/2022 0.714 2.26 4.51 2355-31-9 NMeFOSAA 2.26 U E4933-FS(0) 1.000 9/3/2022 0.930 2.26 4.51 NEtFOSAA 2991-50-6 2.26 U E4933-FS(0) 1.000 9/3/2022 0.894 2.26 4.51 9/3/2022 1.000 **NMeFOSA** 31506-32-8 2.26 U E4933-FS(0) 0.957 2.26 4.51 NEtFOSA 4151-50-2 3.16 U E4933-FS(0) 1.000 9/3/2022 1.14 3.16 4.51 24448-09-7 E4933-FS(0) 9/3/2022 0.966 **NMeFOSE** 2.26 U 1.000 2.26 4.51 NEtFOSE 1691-99-2 E4933-FS(0) 1.000 9/3/2022 1.24 3.16 U 3.16 4.51 754-91-6 E4933-FS(0) **PFOSA** 3.16 U 1.000 9/3/2022 1.43 3.16 4.51 PFBS 375-73-5 4.34 J E4933-FS(0) 1.000 9/3/2022 0.782 2.26 4.51 PFPeS 2706-91-4 10.7 E4933-FS(0) 1.000 9/3/2022 0.921 2.26 4.51 4.51 **PFHxS** 355-46-4 129 E4933-FS(0) 1.000 9/3/2022 0.900 2.26 **PFHpS** 375-92-8 23.4 E4933-FS(0) 1.000 9/3/2022 0.759 2.26 4.51 PFOS 1763-23-1 595 E4933-FS(0) 1.000 9/3/2022 0.966 2.26 4.51 PFNS 68259-12-1 2.26 U E4933-FS(0) 1.000 9/3/2022 0.633 2.26 4.51 **PFDS** 335-77-3 2.26 U E4933-FS(0) 1.000 9/3/2022 0.703 2.26 4.51 PFDoS 79780-39-5 2.26 U E4933-FS(0) 1.000 9/3/2022 0.725 2.26 4.51 4:2FTS 757124-72-4 2.26 U E4933-FS(0) 1.000 9/3/2022 0.921 2.26 4.51 6:2FTS 4180 D 9/3/2022 113 27619-97-2 E4933-FS-D(3) 25.000 33.2 79.0 8:2FTS 39108-34-4 4.25 J E4933-FS(0) 1.000 9/3/2022 0.912 2.26 4.51 3:3 FTCA 356-02-5 3.16 U E4933-FS(0) 1.000 9/3/2022 1.36 3.16 4.51 5:3 FTCA 914637-49-3 2.26 U E4933-FS(0) 1.000 9/3/2022 1.01 2.26 4.51 7:3 FTCA 812-70-4 2.26 U E4933-FS(0) 1.000 9/3/2022 0.912 2.26 4.51 HFPO-DA 13252-13-6 2.26 U E4933-FS(0) 1.000 9/3/2022 0.781 2.26 4.51 Adona 919005-14-4 2.26 U E4933-FS(0) 1.000 9/3/2022 0.784 2.26 4.51 9CI-PF3ONS 756426-58-1 2.26 U E4933-FS(0) 1.000 9/3/2022 0.930 4.51 2.26 11CI-PF3OUdS 763051-92-9 2.26 U E4933-FS(0) 1.000 9/3/2022 0.813 2 26 4.51

Client ID HW-I(s)

 Battelle ID
 E4933-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

,			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C4-PFBA	55	E4933-FS(0)	9/3/2022
13C5-PFPeA	65	E4933-FS(0)	9/3/2022
13C5-PFHxA	58	E4933-FS(0)	9/3/2022
13C4-PFHpA	53	E4933-FS(0)	9/3/2022
13C8-PFOA	54	E4933-FS(0)	9/3/2022
13C9-PFNA	53	E4933-FS(0)	9/3/2022
13C6-PFDA	54	E4933-FS(0)	9/3/2022
13C7-PFUnA	59	E4933-FS(0)	9/3/2022
13C2-PFDoA	54	E4933-FS(0)	9/3/2022
13C2-PFTeDA	47 N	E4933-FS(0)	9/3/2022
d3-MeFOSAA	43 N	E4933-FS(0)	9/3/2022
d5-EtFOSAA	39 N	E4933-FS(0)	9/3/2022
d3-MeFOSA	58	E4933-FS(0)	9/3/2022
d5-EtFOSA	60	E4933-FS(0)	9/3/2022
d7-MeFOSE	63	E4933-FS(0)	9/3/2022
d9-EtFOSE	62	E4933-FS(0)	9/3/2022
13C8-FOSA	64	E4933-FS(0)	9/3/2022
13C3-PFBS	55	E4933-FS(0)	9/3/2022
13C3-PFHxS	60	E4933-FS(0)	9/3/2022
13C8-PFOS	55	E4933-FS(0)	9/3/2022
13C2-4:2FTS	64	E4933-FS(0)	9/3/2022
13C2-6:2FTS	90 D	E4933-FS-D(3)	9/3/2022
13C2-8:2FTS	78	E4933-FS(0)	9/3/2022
13C3-HFPO-DA	53	E4933-FS(0)	9/3/2022

Client ID HW-I(m)

 Battelle ID
 E4934-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

Matrix Sample Size Size Unit-Basis L Result (ng/L) Extract ID DF Date DL LOD LOQ NFDHA 151772-58-6 2.15 U E4934-F5(0) 1.000 9/3/2022 0.662 2.15 4.30 PFEESA 113507-82-7 2.15 U E4934-F5(0) 1.000 9/3/2022 0.597 2.15 4.30 PFEESA 113507-82-7 2.15 U E4934-F5(0) 1.000 9/3/2022 0.597 2.15 4.30 PFEMPA 377-73-1 2.15 U E4934-F5(0) 1.000 9/3/2022 0.800 2.15 4.30 PFMBA 863090-89-5 2.15 U E4934-F5(0) 1.000 9/3/2022 0.800 2.15 4.30 PFBA 375-22-4 3.01 U E4934-F5(0) 1.000 9/3/2022 1.10 3.01 4.30 PFHAA 375-85-9 375-11 1.15 J E4934-F5(0) 1.000 9/3/2022 0.704 2.15 U 84934-F5(0) 1.000 9/3/2022 0.704 2.15 U 8493	Analytical institutile	iii.	Sciex 3300 (AC) EC/10/3/10/3						
Sample Size CAS No. Result (ng/L) Extract D DF Date DL LOD LOD	% Moisture								
Size Unit-Basis	Matrix								
NFDHA 151772-58-6	Sample Size		0.291						
NPDHA 151772-58-6	Size Unit-Basis					Analysis			
PREESA 113507-82-7	Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
PREESA 113507-82-7	NFDHA	151772-58-6	2.15 U	E4934-FS(0)	1.000	9/3/2022	0.662	2.15	4.30
PFMAM 877-73-1	PFEESA		2.15 U		1.000		0.597		4.30
PFMBA 883090-89-5	PFMPA	377-73-1	2.15 U		1.000		0.936	2.15	4.30
PFBA 375-22-4 3.01 U E4934-FS(0) 1.000 9/3/2022 1.10 3.01 4.30 PFPPA 2706-90-3 1.15 I E4934-FS(0) 1.000 9/3/2022 1.10 3.01 4.30 PFPHA 307-24-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.784 2.15 4.30 PFPHA 375-85-9 1.74 I E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFPDA 375-85-9 1.74 I E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFDA 335-67-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFDA 335-76-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 335-76-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.665 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.665 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.665 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 315-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 315-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.865 2.15 4.30 PFDA 315-79-3 2.15 U E4934-FS(0) 1.00	PFMBA								
PFHIXA 307-24-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.784 2.15 4.30 PFHIDA 375-85-9 1.74 J E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFHOA 335-67-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFNA 375-95-1 0.739 J E4934-FS(0) 1.000 9/3/2022 0.716 2.15 4.30 PFNA 335-67-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFNA 335-67-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFDA 305-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFDA 307-95-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-95-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-95-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.663 2.15 4.30 PFTDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.663 2.15 4.30 PFTDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFTDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFTDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.976 2.15 4.30 PFDA 376-06-2 3.10 U E4934-FS(0) 1.000 9/3/2022 0.976 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.976 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.866 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.866 2.15 4.30 PFDA 376-06-2 3.15 U E4934-FS(0) 1.000 9/3/2022 0.66	PFBA	375-22-4	3.01 U		1.000	9/3/2022	1.30	3.01	4.30
PFHDA 375-85-9 1.74 J E4934-FS(0) 1.000 9/3/2022 0.808 2.15 4.30 PFPOA 335-67-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.765 2.15 4.30 PFPOA 335-95-1 0.739 J E4934-FS(0) 1.000 9/3/2022 0.716 2.15 4.30 PFDA 335-76-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFDA 335-76-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.663 2.15 4.30 PFDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.663 2.15 4.30 PFDEDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.663 2.15 4.30 PFDEDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PMEFOSAA 2395-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PMEFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 PMEFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.985 2.15 4.30 PMEFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 PMEFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PMEFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PMEFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PMEFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PMEFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PMEFOSA 75-91-6 3.01	PFPeA	2706-90-3	1.15 J	E4934-FS(0)	1.000	9/3/2022	1.10	3.01	4.30
PFOA 335-67-1	PFHxA	307-24-4	2.15 U	E4934-FS(0)	1.000	9/3/2022	0.784	2.15	4.30
PFOA 335-67-1	PFHpA	375-85-9	1.74 J	E4934-FS(0)	1.000	9/3/2022	0.808	2.15	4.30
PFDA 335-76-2 2.15 U E4934-FS(0) 1.000 9/3/2022 0.674 2.15 4.30 PFUNA 2058-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.664 2.15 4.30 PFUNA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.653 2.15 4.30 PFTDA 72629-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.637 2.15 4.30 PFTDA 72629-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMEFOSAA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSAA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSAA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 NMEFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NMEFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-3 3 0.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-73 3 0.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-73 3 0.15 U	PFOA		2.15 U	E4934-FS(0)	1.000	9/3/2022	0.868	2.15	4.30
PFUNA 2058-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.646 2.15 4.30 PFDDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.653 2.15 4.30 PFTDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.657 2.15 4.30 PFTDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMEFOSA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.811 2.15 4.30 NMEFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NEIFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-79-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A33 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A33 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A33 PFDS 375-79-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A33 PFDS 375-79-79 3	PFNA	375-95-1	0.739 J	E4934-FS(0)	1.000	9/3/2022	0.716	2.15	4.30
PFUNA 2058-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.646 2.15 4.30 PFDDA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.653 2.15 4.30 PFDTDA 367-69-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.657 2.15 4.30 PFTEDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMEFDSAA 2955-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFDSAA 2951-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFDSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 NMEFDSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFDSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFDSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFDSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NMEFDSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDSS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDSS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFDSS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSS 375-79-2 8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSS 375-79-2 8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A3B-73 A2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A3B-73 A2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A3B-73 A2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 A3B-73 A2FTS 39108-	PFDA	335-76-2	2.15 U	E4934-FS(0)	1.000	9/3/2022	0.674	2.15	4.30
PFDOA 307-55-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.653 2.15 4.30 PFTTDA 72629-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFTEDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMEFOSAA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSAA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 2.15 U E4934-	PFUnA						0.646		
PFTrDA 72629-94-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.637 2.15 4.30 PFTeDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMEFOSAA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NEtFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMEFOSAA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMEFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NMEFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NMEFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFDSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDSA 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDSA 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSA 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSA 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDSA 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.999 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.999 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.999 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.660 2.15 4.30 PFDS 335-77-3	PFDoA	307-55-1	2.15 U		1.000		0.653	2.15	4.30
PFTEDA 376-06-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 NMeFOSAA 2355-31-9 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMeFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMeFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30 NMeFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.991 2.15 4.30 NMeFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.08 3.01 4.30 NMeFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 1.08 3.01 4.30 NMeFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFDS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPES 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPES 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 375-93-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDDS	PFTrDA	72629-94-8					0.637		
NMEFOSAA 2355-31-9	PFTeDA						0.680		
NEIFOSAA 2991-50-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.851 2.15 4.30 NMeFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMeFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NMeFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NMeFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 75-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFPS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFPS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFNS 6825-12-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFNS 6825-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-73-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 335-FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.608 2.15 4.30 PFDS 335-FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.608 2.15 4.30 PFDS 335-FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.608 2.15 4.3									
NMEFOSA 31506-32-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.911 2.15 4.30 NEFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.08 3.01 4.30 NEFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NEFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFPSS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPSS 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFPSS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFHS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 1835-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFD									
NETFOSA 4151-50-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.08 3.01 4.30 NMeFOSE 24448-09-7 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 NETFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFOSA 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFOSA 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFHINS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFOSA 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFOSA 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFOSA 355-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.668 2.15 4.30 PFDS 345-78 2.15 U E4934-FS(0) 1.000 9/3/2022 0.6	NMeFOSA								
NMEFOSE 24448-09-7									
NETFOSE 1691-99-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.18 3.01 4.30 PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFBS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPPS 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFHXS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFHXS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.609 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 75124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 75124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 335-77-3 STICA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-3 TECA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 335-77-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 350-75-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 350-75-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 350-75-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 350-75-1 2.15 U									
PFOSA 754-91-6 3.01 U E4934-FS(0) 1.000 9/3/2022 1.36 3.01 4.30 PFBS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 4.30 PFPBS 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFPHXS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.8876 2.15 4.30 PFHXS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.680 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFD 75.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0									
PFBS 375-73-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.744 2.15 U 4.30 PFPeS 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 U 4.30 PFHxS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.723 2.15 U 4.30 PFDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 U 4.30 PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.619 2.15 U 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 U 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 U 4.30 PFDOS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 U 4.30 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 U 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.8									
PFPES 2706-91-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFHXS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFHDS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFDS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 37980-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 PFDS 37980-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 PFDS 375124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 37504-75-73 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 37504-75-73 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 PFDS 37504-75-75-75-75-75-75-75-75-75-75-75-75-75-									
PFHXS 355-46-4 6.31 E4934-FS(0) 1.000 9/3/2022 0.857 2.15 4.30 PFHpS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 4.30 PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000									
PFHpS 375-92-8 2.15 U E4934-FS(0) 1.000 9/3/2022 0.723 2.15 U 4.30 PPOS PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.919 2.15 U 4.30 PPNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 U 4.30 PPNS 9FDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 U 4.30 PPNS 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 U 4.30 PPNS 6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 U 4.30 PPNS 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 U 4.30 PNS 5:3 FTCA 316437-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 U 4.30 PNS 5:3 FTCA 914637-49-3 2.15 U E4				` '					
PFOS 1763-23-1 10.3 E4934-FS(0) 1.000 9/3/2022 0.919 2.15 4.30 PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 4.30 PFNS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDOS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 4.2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 6.2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 8.2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 3.3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5.3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5.3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30									
PFNS 68259-12-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.602 2.15 U 4.30 PPDS PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 U 4.30 PPDOS PFDOS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 U 4.30 PPDOS 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 U 4.30 PPDOS 6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 D 3.01 U 4.30 PPDOS 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 PPDOS 2.15 U 4.30 PPDOS 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 PPOS 9/3/2022 PPOS 2.15 U 4.30 PPOS 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 PPOS 9/3/2022 PPOS 2.15 U 4.30 PPOS HFPO-DA 13252-13-6 2.15 U									
PFDS 335-77-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.669 2.15 4.30 PFDOS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 7:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
PFDOS 79780-39-5 2.15 U E4934-FS(0) 1.000 9/3/2022 0.690 2.15 4.30 4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 9Cl-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.785 2.15 4.30	PFDS								
4:2FTS 757124-72-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.876 2.15 4.30 6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 7:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
6:2FTS 27619-97-2 3.01 U E4934-FS(0) 1.000 9/3/2022 1.26 3.01 4.30 8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7.3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30				* *					
8:2FTS 39108-34-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 3:3 FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
33: FTCA 356-02-5 3.01 U E4934-FS(0) 1.000 9/3/2022 1.30 3.01 4.30 5:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
5:3 FTCA 914637-49-3 2.15 U E4934-FS(0) 1.000 9/3/2022 0.962 2.15 4.30 7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
7:3 FTCA 812-70-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.868 2.15 4.30 HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
HFPO-DA 13252-13-6 2.15 U E4934-FS(0) 1.000 9/3/2022 0.743 2.15 4.30 Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
Adona 919005-14-4 2.15 U E4934-FS(0) 1.000 9/3/2022 0.747 2.15 4.30 9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
9CI-PF3ONS 756426-58-1 2.15 U E4934-FS(0) 1.000 9/3/2022 0.885 2.15 4.30									
1.30 Laboration 7,5000 7,512022 0.774 2.25 4.50									
	110-1130003	,03031-32-3	2.13 0	24334-13(0)	1.000	3/3/2022	0.774	2.13	4.50

Client ID HW-I(m)

 Battelle ID
 E4934-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

Analytical instrument	3010X 3300 (AC) EC/1013/1013			
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C4-PFBA	55	E4934-FS(0)	9/3/2022	
13C5-PFPeA	67	E4934-FS(0)	9/3/2022	
13C5-PFHxA	52	E4934-FS(0)	9/3/2022	
13C4-PFHpA	47 N	E4934-FS(0)	9/3/2022	
13C8-PFOA	47 N	E4934-FS(0)	9/3/2022	
13C9-PFNA	46 N	E4934-FS(0)	9/3/2022	
13C6-PFDA	46 N	E4934-FS(0)	9/3/2022	
13C7-PFUnA	58	E4934-FS(0)	9/3/2022	
13C2-PFDoA	54	E4934-FS(0)	9/3/2022	
13C2-PFTeDA	44 N	E4934-FS(0)	9/3/2022	
d3-MeFOSAA	42 N	E4934-FS(0)	9/3/2022	
d5-EtFOSAA	40 N	E4934-FS(0)	9/3/2022	
d3-MeFOSA	52	E4934-FS(0)	9/3/2022	
d5-EtFOSA	53	E4934-FS(0)	9/3/2022	
d7-MeFOSE	61	E4934-FS(0)	9/3/2022	
d9-EtFOSE	59	E4934-FS(0)	9/3/2022	
13C8-FOSA	64	E4934-FS(0)	9/3/2022	
13C3-PFBS	52	E4934-FS(0)	9/3/2022	
13C3-PFHxS	50	E4934-FS(0)	9/3/2022	
13C8-PFOS	49 N	E4934-FS(0)	9/3/2022	
13C2-4:2FTS	59	E4934-FS(0)	9/3/2022	
13C2-6:2FTS	66	E4934-FS(0)	9/3/2022	
13C2-8:2FTS	81	E4934-FS(0)	9/3/2022	
13C3-HFPO-DA	50	E4934-FS(0)	9/3/2022	

Client ID HW-I(d)

 Battelle ID
 E4935-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 GW

 Sample Size
 0.266

Sample Size		0.266						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
NFDHA	151772-58-6	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.724	2.35	4.70
PFEESA	113507-82-7	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.653	2.35	4.70
PFMPA	377-73-1	2.35 U	E4935-FS(0)	1.000	9/3/2022	1.02	2.35	4.70
PFMBA	863090-89-5	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.875	2.35	4.70
PFBA	375-22-4	8.10	E4935-FS(0)	1.000	9/3/2022	1.42	3.29	4.70
PFPeA	2706-90-3	20.9	E4935-FS(0)	1.000	9/3/2022	1.20	3.29	4.70
PFHxA	307-24-4	23.8	E4935-FS(0)	1.000	9/3/2022	0.858	2.35	4.70
PFHpA	375-85-9	13.1	E4935-FS(0)	1.000	9/3/2022	0.884	2.35	4.70
PFOA	335-67-1	16.8	E4935-FS(0)	1.000	9/3/2022	0.949	2.35	4.70
PFNA	375-95-1	1.21 J	E4935-FS(0)	1.000	9/3/2022	0.783	2.35	4.70
PFDA	335-76-2	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.737	2.35	4.70
PFUnA	2058-94-8	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.707	2.35	4.70
PFDoA	307-55-1	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.714	2.35	4.70
PFTrDA	72629-94-8	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.697	2.35	4.70
PFTeDA	376-06-7	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.743	2.35	4.70
NMeFOSAA	2355-31-9	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.968	2.35	4.70
NEtFOSAA	2991-50-6	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.930	2.35	4.70
NMeFOSA	31506-32-8	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.996	2.35	4.70
NEtFOSA	4151-50-2	3.29 U	E4935-FS(0)	1.000	9/3/2022	1.18	3.29	4.70
NMeFOSE	24448-09-7	2.35 U	E4935-FS(0)	1.000	9/3/2022	1.01	2.35	4.70
NEtFOSE	1691-99-2	3.29 U	E4935-FS(0)	1.000	9/3/2022	1.29	3.29	4.70
PFOSA	754-91-6	3.29 U	E4935-FS(0)	1.000	9/3/2022	1.48	3.29	4.70
PFBS	375-73-5	2.36 J	E4935-FS(0)	1.000	9/3/2022	0.814	2.35	4.70
PFPeS	2706-91-4	3.16 J	E4935-FS(0)	1.000	9/3/2022	0.959	2.35	4.70
PFHxS	355-46-4	66.2	E4935-FS(0)	1.000	9/3/2022	0.937	2.35	4.70
PFHpS	375-92-8	4.05 J	E4935-FS(0)	1.000	9/3/2022	0.790	2.35	4.70
PFOS	1763-23-1	93.6	E4935-FS(0)	1.000	9/3/2022	1.01	2.35	4.70
PFNS	68259-12-1	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.659	2.35	4.70
PFDS	335-77-3	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.732	2.35	4.70
PFDoS	79780-39-5	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.755	2.35	4.70
4:2FTS	757124-72-4	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.959	2.35	4.70
6:2FTS	27619-97-2	1.63 J	E4935-FS(0)	1.000	9/3/2022	1.38	3.29	4.70
8:2FTS	39108-34-4	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.949	2.35	4.70
3:3 FTCA	356-02-5	3.29 U	E4935-FS(0)	1.000	9/3/2022	1.42	3.29	4.70
5:3 FTCA	914637-49-3	2.35 U	E4935-FS(0)	1.000	9/3/2022	1.05	2.35	4.70
7:3 FTCA	812-70-4	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.949	2.35	4.70
HFPO-DA	13252-13-6	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.813	2.35	4.70
Adona	919005-14-4	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.817	2.35	4.70
9CI-PF3ONS	756426-58-1	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.968	2.35	4.70
11Cl-PF3OUdS	763051-92-9	2.35 U	E4935-FS(0)	1.000	9/3/2022	0.847	2.35	4.70
			,-,					

Client ID HW-I(d)

 Battelle ID
 E4935-FS

 Sample Type
 SA

 Collection Date
 08/02/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

7 in any croan moch anneme	50,0x 5500 (x to) 20, ms, ms		
			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C4-PFBA	62	E4935-FS(0)	9/3/2022
13C5-PFPeA	72	E4935-FS(0)	9/3/2022
13C5-PFHxA	60	E4935-FS(0)	9/3/2022
13C4-PFHpA	55	E4935-FS(0)	9/3/2022
13C8-PFOA	55	E4935-FS(0)	9/3/2022
13C9-PFNA	55	E4935-FS(0)	9/3/2022
13C6-PFDA	56	E4935-FS(0)	9/3/2022
13C7-PFUnA	49 N	E4935-FS(0)	9/3/2022
13C2-PFDoA	38 N	E4935-FS(0)	9/3/2022
13C2-PFTeDA	18 N	E4935-FS(0)	9/3/2022
d3-MeFOSAA	40 N	E4935-FS(0)	9/3/2022
d5-EtFOSAA	29 N	E4935-FS(0)	9/3/2022
d3-MeFOSA	27 N	E4935-FS(0)	9/3/2022
d5-EtFOSA	24 N	E4935-FS(0)	9/3/2022
d7-MeFOSE	30 N	E4935-FS(0)	9/3/2022
d9-EtFOSE	26 N	E4935-FS(0)	9/3/2022
13C8-FOSA	59	E4935-FS(0)	9/3/2022
13C3-PFBS	58	E4935-FS(0)	9/3/2022
13C3-PFHxS	58	E4935-FS(0)	9/3/2022
13C8-PFOS	55	E4935-FS(0)	9/3/2022
13C2-4:2FTS	71	E4935-FS(0)	9/3/2022
13C2-6:2FTS	73	E4935-FS(0)	9/3/2022
13C2-8:2FTS	82	E4935-FS(0)	9/3/2022
13C3-HFPO-DA	57	E4935-FS(0)	9/3/2022

Client ID LS19 IB

Battelle ID LS19 IB_09/02/2022 Sample Type ΙB **Collection Date** NA **Extraction Date** NA Analysis Date 09/02/2022 Analytical Instrument Sciex 5500 (AC) LC/MS/MS % Moisture Matrix Water Sample Size 0.250

Sample Size		0.230			
Size Unit-Basis		L			
Analyte	CAS No.	Result (ng/L)	DL	LOD	LOQ
					_
NFDHA	151772-58-6	2.50 U	0.770	2.50	5.00
PFEESA	113507-82-7	2.50 U	0.695	2.50	5.00
PFMPA	377-73-1	2.50 U	1.09	2.50	5.00
PFMBA	863090-89-5	2.50 U	0.931	2.50	5.00
PFBA	375-22-4	3.50 U	1.51	3.50	5.00
PFPeA	2706-90-3	3.50 U	1.28	3.50	5.00
PFHxA	307-24-4	2.50 U	0.913	2.50	5.00
PFHpA	375-85-9	2.50 U	0.941	2.50	5.00
PFOA	335-67-1	2.50 U	1.01	2.50	5.00
PFNA	375-95-1	2.50 U	0.833	2.50	5.00
PFDA	335-76-2	2.50 U	0.784	2.50	5.00
PFUnA	2058-94-8	2.50 U	0.752	2.50	5.00
PFDoA	307-55-1	2.50 U	0.760	2.50	5.00
PFTrDA	72629-94-8	2.50 U	0.742	2.50	5.00
PFTeDA	376-06-7	2.50 U	0.791	2.50	5.00
NMeFOSAA	2355-31-9	2.50 U	1.03	2.50	5.00
NEtFOSAA	2991-50-6	2.50 U	0.990	2.50	5.00
NMeFOSA	31506-32-8	2.50 U	1.06	2.50	5.00
NEtFOSA	4151-50-2	3.50 U	1.26	3.50	5.00
NMeFOSE	24448-09-7	2.50 U	1.07	2.50	5.00
NEtFOSE	1691-99-2	3.50 U	1.37	3.50	5.00
PFOSA	754-91-6	3.50 U	1.58	3.50	5.00
PFBS	375-73-5	2.50 U	0.866	2.50	5.00
PFPeS	2706-91-4	2.50 U	1.02	2.50	5.00
PFHxS	355-46-4	2.50 U	0.997	2.50	5.00
PFHpS	375-92-8	2.50 U	0.841	2.50	5.00
PFOS	1763-23-1	2.50 U	1.07	2.50	5.00
PFNS	68259-12-1	2.50 U	0.701	2.50	5.00
PFDS	335-77-3	2.50 U	0.779	2.50	5.00
PFDoS	79780-39-5	2.50 U	0.803	2.50	5.00
4:2FTS	757124-72-4	2.50 U	1.02	2.50	5.00
6:2FTS	27619-97-2	3.50 U	1.47	3.50	5.00
8:2FTS	120226-60-0	2.50 U	1.01	2.50	5.00
3:3 FTCA	356-02-5	3.50 U	1.51	3.50	5.00
5:3 FTCA	914637-49-3	2.50 U	1.12	2.50	5.00
7:3 FTCA	812-70-4	2.50 U	1.01	2.50	5.00
HFPO-DA	13252-13-6	2.50 U	0.865	2.50	5.00
Adona	919005-14-4	2.50 U	0.869	2.50	5.00
9CI-PF3ONS	756426-58-1	2.50 U	1.03	2.50	5.00
11CI-PF3OUdS	763051-92-9	2.50 U	0.901	2.50	5.00

Client ID LS19 IB

Battelle ID LS19 IB_09/02/2022 Sample Type **Collection Date** NA **Extraction Date** NA 09/02/2022 **Analysis Date** Sciex 5500 (AC) LC/MS/MS Analytical Instrument % Moisture Matrix Water Sample Size 0.250 Size Unit-Basis L

Surrogate Recoveries (%)

Surregute necestries (50)	
13C4-PFBA	102
13C5-PFPeA	102
13C5-PFHxA	103
13C4-PFHpA	102
13C8-PFOA	104
13C9-PFNA	103
13C6-PFDA	101
13C7-PFUnA	105
13C2-PFDoA	108
13C2-PFTeDA	107
d3-MeFOSAA	103
d5-EtFOSAA	105
d3-MeFOSA	105
d5-EtFOSA	102
d7-MeFOSE	104
d9-EtFOSE	105
13C8-FOSA	107
13C3-PFBS	103
13C3-PFHxS	104
13C8-PFOS	105
13C2-4:2FTS	113
13C2-6:2FTS	107
13C2-8:2FTS	106
13C3-HFPO-DA	100

Client ID Procedural Blank

Battelle ID DJ508PB-FS Sample Type 08/08/2022 08/08/2022 Sciex 5500 (AC) LC/MS/MS Collection Date Extraction Date Analytical Instrument % Moisture WATER Matrix

Sample Size		0.253						
Size Unit-Basis		L			Analysis			
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	DL	LOD	LOQ
NFDHA	151772-58-6	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.761	2.47	4.94
PFEESA	113507-82-7	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.687	2.47	4.94
PFMPA	377-73-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.08	2.47	4.94
PFMBA	863090-89-5	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.920	2.47	4.94
PFBA	375-22-4	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.49	3.46	4.94
PFPeA	2706-90-3	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.26	3.46	4.94
PFHxA	307-24-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.902	2.47	4.94
PFHpA	375-85-9	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.930	2.47	4.94
PFOA	335-67-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.998	2.47	4.94
PFNA	375-95-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.823	2.47	4.94
PFDA	335-76-2	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.775	2.47	4.94
PFUnA	2058-94-8	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.743	2.47	4.94
PFDoA	307-55-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.751	2.47	4.94
PFTrDA	72629-94-8	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.733	2.47	4.94
PFTeDA	376-06-7	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.782	2.47	4.94
NMeFOSAA	2355-31-9	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.02	2.47	4.94
NEtFOSAA	2991-50-6	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.978	2.47	4.94
NMeFOSA	31506-32-8	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.05	2.47	4.94
NEtFOSA	4151-50-2	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.25	3.46	4.94
NMeFOSE	24448-09-7	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.06	2.47	4.94
NEtFOSE	1691-99-2	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.35	3.46	4.94
PFOSA	754-91-6	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.56	3.46	4.94
PFBS	375-73-5	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.856	2.47	4.94
PFPeS	2706-91-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.01	2.47	4.94
PFHxS	355-46-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.985	2.47	4.94
PFHpS	375-92-8	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.831	2.47	4.94
PFOS	1763-23-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.06	2.47	4.94
PFNS	68259-12-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.693	2.47	4.94
PFDS	335-77-3	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.770	2.47	4.94
PFDoS	79780-39-5	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.793	2.47	4.94
4:2FTS	757124-72-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.01	2.47	4.94
6:2FTS	27619-97-2	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.45	3.46	4.94
8:2FTS	39108-34-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.998	2.47	4.94
3:3 FTCA	356-02-5	3.46 U	DJ508PB-FS(0)	1.000	9/3/2022	1.49	3.46	4.94
5:3 FTCA	914637-49-3	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.11	2.47	4.94
7:3 FTCA	812-70-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.998	2.47	4.94
HFPO-DA	13252-13-6	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.855	2.47	4.94
Adona	919005-14-4	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.859	2.47	4.94
9CI-PF3ONS	756426-58-1	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	1.02	2.47	4.94
11Cl-PF3OUdS	763051-92-9	2.47 U	DJ508PB-FS(0)	1.000	9/3/2022	0.890	2.47	4.94

Client ID Procedural Blank

 Battelle ID
 DJ508PB-FS

 Sample Type
 PB

 Collection Date
 08/08/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

.,				
			Analysis	
Surrogate Recoveries (%)	Recovery	Extract ID	Date	
13C4-PFBA	54	DJ508PB-FS(0)	9/3/2022	
13C5-PFPeA	64	DJ508PB-FS(0)	9/3/2022	
13C5-PFHxA	72	DJ508PB-FS(0)	9/3/2022	
13C4-PFHpA	69	DJ508PB-FS(0)	9/3/2022	
13C8-PFOA	71	DJ508PB-FS(0)	9/3/2022	
13C9-PFNA	70	DJ508PB-FS(0)	9/3/2022	
13C6-PFDA	73	DJ508PB-FS(0)	9/3/2022	
13C7-PFUnA	79	DJ508PB-FS(0)	9/3/2022	
13C2-PFDoA	85	DJ508PB-FS(0)	9/3/2022	
13C2-PFTeDA	76	DJ508PB-FS(0)	9/3/2022	
d3-MeFOSAA	78	DJ508PB-FS(0)	9/3/2022	
d5-EtFOSAA	75	DJ508PB-FS(0)	9/3/2022	
d3-MeFOSA	52	DJ508PB-FS(0)	9/3/2022	
d5-EtFOSA	51	DJ508PB-FS(0)	9/3/2022	
d7-MeFOSE	53	DJ508PB-FS(0)	9/3/2022	
d9-EtFOSE	52	DJ508PB-FS(0)	9/3/2022	
13C8-FOSA	63	DJ508PB-FS(0)	9/3/2022	
13C3-PFBS	70	DJ508PB-FS(0)	9/3/2022	
13C3-PFHxS	74	DJ508PB-FS(0)	9/3/2022	
13C8-PFOS	77	DJ508PB-FS(0)	9/3/2022	
13C2-4:2FTS	71	DJ508PB-FS(0)	9/3/2022	
13C2-6:2FTS	71	DJ508PB-FS(0)	9/3/2022	
13C2-8:2FTS	82	DJ508PB-FS(0)	9/3/2022	
13C3-HFPO-DA	70	DJ508PB-FS(0)	9/3/2022	
		, ,		

Client ID Laboratory Control Sample

 Battelle ID
 DJ509LCS-FS

 Sample Type
 LCS

 Collection Date
 08/08/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

 % Moisture
 NA

 Matrix
 WATER

 Sample Size
 0.243

Sample Size		0.243								
Size Unit-Basis		L			Analysis				Contro	l Limits
Analyte	CAS No.	Result (ng/L)	Extract ID	DF	Date	Target	Recovery C	Qual	Lower	Upper
NFDHA	151772-58-6	234	DJ509LCS-FS(0)	1.000	9/3/2022	247	95		70	130
PFEESA	113507-82-7	211	DJ509LCS-FS(0)	1.000	9/3/2022	220	96		70	130
PFMPA	377-73-1	253	DJ509LCS-FS(0)	1.000	9/3/2022	247	102		70	130
PFMBA	863090-89-5	249	DJ509LCS-FS(0)	1.000	9/3/2022	247	101		70	130
PFBA	375-22-4	219	DJ509LCS-FS(0)	1.000	9/3/2022	247	89		73	129
PFPeA	2706-90-3	198	DJ509LCS-FS(0)	1.000	9/3/2022	249	80		72	129
PFHxA	307-24-4	270	DJ509LCS-FS(0)	1.000	9/3/2022	247	109		72	129
PFHpA	375-85-9	264	DJ509LCS-FS(0)	1.000	9/3/2022	247	107		72	130
PFOA	335-67-1	277	DJ509LCS-FS(0)	1.000	9/3/2022	249	111		71	133
PFNA	375-95-1	263	DJ509LCS-FS(0)	1.000	9/3/2022	247	106		69	130
PFDA	335-76-2	249	DJ509LCS-FS(0)	1.000	9/3/2022	247	101		71	129
PFUnA	2058-94-8	286	DJ509LCS-FS(0)	1.000	9/3/2022	247	116		69	133
PFDoA	307-55-1	265	DJ509LCS-FS(0)	1.000	9/3/2022	247	107		72	134
PFTrDA	72629-94-8	302	DJ509LCS-FS(0)	1.000	9/3/2022	247	122		65	144
PFTeDA	376-06-7	292	DJ509LCS-FS(0)	1.000	9/3/2022	247	118		71	132
NMeFOSAA	2355-31-9	285	DJ509LCS-FS(0)	1.000	9/3/2022	247	115		65	136
NEtFOSAA	2991-50-6	272	DJ509LCS-FS(0)	1.000	9/3/2022	247	110		61	135
NMeFOSA	31506-32-8	273	DJ509LCS-FS(0)	1.000	9/3/2022	247	111		68	141
NEtFOSA	4151-50-2	239	DJ509LCS-FS(0)	1.000	9/3/2022	247	97		70	130
NMeFOSE	24448-09-7	214	DJ509LCS-FS(0)	1.000	9/3/2022	247	87		70	130
NEtFOSE	1691-99-2	212	DJ509LCS-FS(0)	1.000	9/3/2022	247	86		70	130
PFOSA	754-91-6	217	DJ509LCS-FS(0)	1.000	9/3/2022	247	88		67	137
PFBS	375-73-5	310	DJ509LCS-FS(0)	1.000	9/3/2022	247	126		72	130
PFPeS	2706-91-4	257	DJ509LCS-FS(0)	1.000	9/3/2022	247	104		71	127
PFHxS	355-46-4	279	DJ509LCS-FS(0)	1.000	9/3/2022	247	113		68	131
PFHpS	375-92-8	284	DJ509LCS-FS(0)	1.000	9/3/2022	247	115		69	134
PFOS	1763-23-1	228	DJ509LCS-FS(0)	1.000	9/3/2022	247	92		65	140
PFNS	68259-12-1	267	DJ509LCS-FS(0)	1.000	9/3/2022	249	107		69	127
PFDS	335-77-3	272	DJ509LCS-FS(0)	1.000	9/3/2022	249	109		53	142
PFDoS	79780-39-5	214	DJ509LCS-FS(0)	1.000	9/3/2022	240	89		70	130
4:2FTS	757124-72-4	223	DJ509LCS-FS(0)	1.000	9/3/2022	247	90		63	143
6:2FTS	27619-97-2	205	DJ509LCS-FS(0)	1.000	9/3/2022	247	83		64	140
8:2FTS	39108-34-4	200	DJ509LCS-FS(0)	1.000	9/3/2022	249	80		67	138
3:3 FTCA	356-02-5	248	DJ509LCS-FS(0)	1.000	9/3/2022	247	100		70	130
5:3 FTCA	914637-49-3	273	DJ509LCS-FS(0)	1.000	9/3/2022	247	111		70	130
7:3 FTCA	812-70-4	277	DJ509LCS-FS(0)	1.000	9/3/2022	247	112		70	130
HFPO-DA	13252-13-6	297	DJ509LCS-FS(0)	1.000	9/3/2022	247	120		60	126
Adona	919005-14-4	277	DJ509LCS-FS(0)	1.000	9/3/2022	247	112		61	130
9CI-PF3ONS	756426-58-1	312	DJ509LCS-FS(0)	1.000	9/3/2022	247	126		60	126
11Cl-PF3OUdS	763051-92-9	309	DJ509LCS-FS(0)	1.000	9/3/2022	247	125		56	125

Client ID Laboratory Control Sample

 Battelle ID
 DJ509LCS-FS

 Sample Type
 LCS

 Collection Date
 08/08/2022

 Extraction Date
 08/08/2022

 Analytical Instrument
 Sciex 5500 (AC) LC/MS/MS

			Analysis
Surrogate Recoveries (%)	Recovery	Extract ID	Date
13C4-PFBA	50	DJ509LCS-FS(0)	9/3/2022
13C5-PFPeA	69	DJ509LCS-FS(0)	9/3/2022
13C5-PFHxA	64	DJ509LCS-FS(0)	9/3/2022
13C4-PFHpA	62	DJ509LCS-FS(0)	9/3/2022
13C8-PFOA	62	DJ509LCS-FS(0)	9/3/2022
13C9-PFNA	66	DJ509LCS-FS(0)	9/3/2022
13C6-PFDA	62	DJ509LCS-FS(0)	9/3/2022
13C7-PFUnA	71	DJ509LCS-FS(0)	9/3/2022
13C2-PFDoA	69	DJ509LCS-FS(0)	9/3/2022
13C2-PFTeDA	59	DJ509LCS-FS(0)	9/3/2022
d3-MeFOSAA	59	DJ509LCS-FS(0)	9/3/2022
d5-EtFOSAA	65	DJ509LCS-FS(0)	9/3/2022
d3-MeFOSA	60	DJ509LCS-FS(0)	9/3/2022
d5-EtFOSA	58	DJ509LCS-FS(0)	9/3/2022
d7-MeFOSE	61	DJ509LCS-FS(0)	9/3/2022
d9-EtFOSE	59	DJ509LCS-FS(0)	9/3/2022
13C8-FOSA	73	DJ509LCS-FS(0)	9/3/2022
13C3-PFBS	61	DJ509LCS-FS(0)	9/3/2022
13C3-PFHxS	61	DJ509LCS-FS(0)	9/3/2022
13C8-PFOS	65	DJ509LCS-FS(0)	9/3/2022
13C2-4:2FTS	70	DJ509LCS-FS(0)	9/3/2022
13C2-6:2FTS	76	DJ509LCS-FS(0)	9/3/2022
13C2-8:2FTS	89	DJ509LCS-FS(0)	9/3/2022
13C3-HFPO-DA	54	DJ509LCS-FS(0)	9/3/2022

Glossary of Data Qualifiers

Flag:	Application:
В	Analyte found in the sample at a concentration <10x the level found in the procedural blank
D	Dilution Run. Initial run outside the initial calibration range of the instrument
E	Estimate, result is greater than the highest concentration level in the calibration
J	Analyte detected below the Limit of Quantitation (LOQ)
MI	Significant Matrix Interference - value could not be determined.
N	Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO)
NA	Not Applicable
Т	Holding Time (HT) exceeded
U	Analyte not detected or detected below the Detection Limit (DL) value, Limit of Detection (LOD) reported
Q	Ion ratio outside of criteria (50% difference from calibration expected ratio)

Miscellaneous Documentation

Project:	Cape Code Gateway Airport – PFAS Analysis			
Client Project Manager:	Bryan Massa			
Parameters:	PFAS			
Laboratory:	Battelle, Norwell, MA			
Matrix:	Water			
Data Set:	DP-22-1361			
Analytical SOP:	5-369			
Method Reference:	PFAS to QSM 5.3 Table B-15			

Sample Custody						
Collection Date		Receipt Date	Temp (°C)			
7/29 and 8/2/2022		8/3/2022	1.3			
Corrective Actions	None.					
Sample Storage	The samples were stored refrigerated until extraction.					
Related samples	None.	None.				

	METHOD SUMMARIES
Sample	Water samples were fortified with surrogates in the original sample container
Preparation	from the field. The water was extracted using a Weak-anion exchange (WAX)
	solid phase extraction (SPE) cartridge. Target analytes are eluted from the WAX
	SPE using 1% NH₃OH in methanol. Extracts were acidified with acetic acid and
	further refined using dispersive Envi-carb to remove co-extracted interferences.
	Extracts were fortified with internal standards and transferred to LC-MS/MS for
	analysis.
Prep comments	pH of all samples prior to SPE extraction was verified between 6 and 8.
	Sample E4934-FS (HW-I(m)) was filled to the top of the container, approximately
	1 mL of sample was lost during initial transfer to the SPE cartridge for extraction.
	Sample E4935-FS (HW-I(d)) was received in a 1 L container, 750 mL of sample
	was transferred to new containers, leaving approximately 250 mL in the original container.
Analysis	PFAS were measured by liquid chromatography tandem mass spectrometry (LC-
	MS/MS) in the multiple reaction monitoring (MRM). An initial calibration
	consisting of representative target analytes, labelled analogs, and internal
	standards was analyzed prior to analysis to demonstrate the linear range of
	analysis. Calibration verification was performed at the beginning and end of 10
	injections and at the end of each sequence. Target PFAS were quantified using
	the isotope dilution method. Samples are reported in ng/L concentrations to
	three (3) significant figures.
Analysis	Samples analyzed on Sciex 5500 (AC) LC-MS/MS.
Comments	14 FOSAA 5:50SAA 95U S. 1950S; il 165 15; ll 1
	MeFOSAA, EtFOSAA, PFHxS, and PFOS in the LCS, and field samples when
	detected, were detected and reported as a combination of the branched and
	linear isomers.

13C5-PFHxA, 13C7-PFUnA, 13C2-PFDoA, 13C2-PFTeDA, 13C3-PFBS, 13C3-PFHxS, D5-EtFOSA and 13C3-HFPO-DA. are quantified using 13C3-PFBA. 13C8-FOSA, d3-MeFOSA, d7-MeFOSE and d9-EtFOSE are quantified using 13C2-PFOA. PFEESA quantified using 13C8-PFOS.

The following secondary transitions were not used in the calibration:

• MeFOSAA in the L1

These points were excluded as the data point generated no signal in the standard. The secondary transition is monitored solely for peak identification, not quantification. There is no impact on the reported data.

Secondary exceedances for calibrations, ICC, and CCV samples are not documented as the secondary transition is monitored solely for peak identification, not quantification. There is no impact on the reported data.

Holding Times	Extraction Date(s)	Analysis Date(s)		
	8/8/2022	9/2 – 4/2022		
Procedural Blank (PB)	A PB was prepared with this analytical and analysis methods are free of conta	· · · · · · · · · · · · · · · · · · ·		
≤½ the LOQ	No exceedances noted.			
Samples >10x PB	No comments.			
Laboratory Control Spike (LCS)	A LCS was prepared with this analytical analytes were calculated to measure a	batch. The percent recoveries of target ccuracy.		
Laboratory derived	No exceedances noted.			
control limits for recovery	No comments.			
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A MS/MSD was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure accuracy.			
Laboratory derived	Project specific MS/MSD not included in this data set			
control limits for recovery and <30% RPD	No comments.			
Extracted Internal Standard Analytes	Labelled analog compounds were adde calculated to measure extraction efficients	ed prior to extraction. The recoveries are ency.		
50-150% of true	Thirty-three (33) exceedances noted.			
value	Six samples had suppressed or enhanced recoveries for select extracted			

standards.

internal standards. The table below indicates if the extracted internal standard was within +/- 50% of the area of the L5 calibration point ("P") or if the area showed suppression (" \downarrow ") or enhancement (" \uparrow ") for these extracted internal

Dattil 22-1319								
		E4930-FS (ME-1)	E4931-FS (ME-3)	E4932-FS (ME-2)	E4933-FS (HW-I(s))	E4934-FS (HW-I(m))	E4935-FS (HW-I(d))	
	12C4 DEUnA	ш	ш	<u> </u>	ш	<u> </u>	ш	
	13C4-PFHpA 13C8-PFOA			P		_ ∀		
				P		P		
	13C9-PFNA 13C6-PFDA			P		P		
	13C6-PFDA			Р		Р	Р	
	13C2-PFDoA						↓	
	13C2-PFTeDA				↓	↓	\downarrow	
	d3-MeFOSAA				P	P	\downarrow	
	d5-EtFOSAA	Р		Р	<u> </u>	· →	\downarrow	
	d3-MeFOSA	→		<u> </u>	· •		\downarrow	
	d5-EtFOSA	\downarrow					\downarrow	
	d7-MeFOSE	P					↓	
	d9-EtFOSE	<u>·</u>	Р				\downarrow	
	13C8-PFOS			Р		Р		
	13C3-HFPO-DA			\downarrow				
	The remaining e	xtrac	ted ir	terna	al sta	ndar	ds in e	each impacted sample, fortified
	The remaining extracted internal standards in each impacted sample, fortified from the same solution, pass all criteria, suggesting that the suppression is							
						-		
	matrix related to these analytes only. The sample extracts were re-analyzed for							
	confirmation.							
Internal Standard Analytes	Labelled analog compounds were added prior to analysis.							
+/- 50% of the area	No exceedances noted.							
of the L5 calibration point.	No comments.							
_'								
Initial Calibration (ICAL)	The LC-MS/MS was calibrated with multi-level calibration curve for all compounds using linear or quadradic curve fitting.							
+/- 30% of true	No exceedances noted.							
value, R ² ≥0.99			<u>u.</u>					
Value, IV 20.55	No comments.							
Independent Calibration Check (ICC)	The independent check was run after each initial calibration to verify the calibration. This standard is from a different source than the ICAL.							
+/- 30% of true	No exceedances	note	d.					
value	No comments.							
	140 Comments.							
Continuing Calibration Verification (CCV)	Continuing calibration standards were run at the beginning and end of 10 injections and at the end of the sequence to ensure that initial calibration is still valid.							
+/- 30% of true	No exceedances noted.							
value	No comments.							
	1							

Instrument Blank (IB)	Immediately following the highest standard analyzed and daily prior to sample analysis.
≤½ the LOQ	No exceedances noted.
	No comments.

Preparation Batch: 22-1319
Data Set: DP-22-1361
Test Code: Master_369D

QC Parameter:	Exceed:	Justification:
Procedural Blank	0	None
PB Measurement Quality Objective	0	None
Laboratory Control Sample	0	None
Matrix Spike / Matrix Spike Duplicate Recovery	NA	None
Matrix Spike / Matrix Spike Duplicate Precision	NA	None
Extracted Internal Standard Analytes (Surrogates)	33	Confirmed by analysis of a fresh aliquot of the samples. LMG 09/12/2022
Instrument Calibration	0	None
Instrument Blank	0	None
Independent Calibration Check	0	None
Continuing Calibration Verification	0	None

It can be done

BATTELLE - NORWELL OPERATIONS MISCELLANEOUS DOCUMENTATION FORM

Project Title: Cape Cod Gateway Airport - PFAS Data Set Number: DP-22-1361

Project Number: G00120.XX.XX.XXXX.NORWEL Prep Batch Number: 22-1319

Entered By: Lauren Griffith Entered On: 09/12/2022

Test Code (Matrix Type): Master_369D(L)

Samples that were manually integrated are noted on the quant reports with the comment (TRUE). Changes were made due to incorrect auto integration of a peak by the data system. The analyst's initials on this statement indicate that all integrations were reviewed and approved by the analyst performing the analysis LMG 09/12/2022

Secondary exceedances for calibrations, ICC, and CCV samples are not documented as the secondary transition is monitored solely for peak identification, not quantification. There is no impact on the reported data

13C5-PFHxA, 13C7-PFUnA, 13C2-PFDoA, 13C2-PFTeDA, 13C2-PFHxDA, 13C3-PFBS, 13C3-PFHxS, D5-EtFOSA and 13C3-HFPO-DA are quantified using 13C3-PFBA

13C8-FOSA, D3-MeFOSA, D7-MeFOSE and D9-EtFOSE are quantified using 13C2-PFOA PFEESA quantified using 13C8-PFOS

The following secondary transitions were not used in the calibration:

MeFOSAA in the L1

These points were excluded as the data point generated no signal in the standard. The secondary transition is monitored solely for peak identification, not quantification. There is no impact on the reported data.

Task Leader Approval:

SupervisorApproval:

PM Approval:

Digitally signed by Jonathan Thorn Date: 2022.09.14 11:53:13 -04'00'

Printed on 9/12/2022 Page 1 of 1

Project Client: Horsely Witten Group, Inc.
Project Name: Cape Cod Gateway Airport - PFAS
Project No.: G00120.XX.XX.XXXX.NORWEL
Preparation Batch: 22-1319
Data Set: DP-22-1361

			ple)						
		DJSO8PB-FS (Procedural Blank)	DJS09LCS-FS (Laboratory Control Sample)	E4930-FS (ME-1)	E4931-FS (ME-3)	E4932-FS (ME-2)	E4933-FS (HW-I(s))	E4934-FS (HW-I(m))	E4935-FS (HW-I(d))
NFDHA	151772-58-6	-	L	-	-	-	-	-	-
PFEESA	113507-82-7	-	L	-	-	-	-	-	-
PFMPA	377-73-1	-	L	-	-	-	-	-	-
PFMBA	863090-89-5	-	L	-	-	-	-	-	-
PFBA	375-22-4	-	L	L	L	L	L	-	L
PFPeA	2706-90-3	-	L	L	L	L	L	L	L
PFHxA	307-24-4	-	L	L	L	L	L	-	L
PFHpA	375-85-9	1	L	L	L	L	L	L	L
PFOA	335-67-1	-	L	L	L	L	L	-	L
PFNA	375-95-1	-	L	L	L	L	L	L	L
PFDA	335-76-2	-	L	-	-	-	-	-	-
PFUnA	2058-94-8	-	L	-	-	-	-	-	-
PFDoA	307-55-1	-	L	-	-	-	-	-	-
PFTrDA	72629-94-8	-	L	-	-	-	-	-	-
PFTeDA	376-06-7	-	L	-	-	-	-	-	-
NMeFOSAA	2355-31-9	-	L/Br	-	-	-	-	-	-
NEtFOSAA	2991-50-6	-	L/Br	-	-	-	-	-	-
NMeFOSA	31506-32-8	-	L	-	-	-	-	-	-
NEtFOSA	4151-50-2	-	L	-	-	-	-	-	-
NMeFOSE	24448-09-7	-	L	-	-	-	-	-	-
NEtFOSE	1691-99-2	-	L	-	-	-	-	-	-
PFOSA	754-91-6	-	L	-	L	-	-	-	-
PFBS	375-73-5	-	L	L	L	L	L	-	L
PFPeS	2706-91-4	-	L	L	L	L	L	-	L
PFHxS	355-46-4	_	L/Br	L/Br	L/Br	L/Br	L/Br	L/Br	L/Br
PFHpS	375-92-8	_	L	L	L	L	L	-	L
PFOS	1763-23-1	_	L/Br	L/Br	L/Br	L/Br	L/Br	L/Br	L/Br
PFNS	68259-12-1	-	L	-	-	-	-	-	-
PFDS	335-77-3	-	L	-	-	-	-	_	-
PFDoS	79780-39-5	_	L	_	_	_	_	_	-
4:2FTS	757124-72-4	_	L	_	_	_	_		_
6:2FTS	27619-97-2	-	L	L	L	L	L	_	L
8:2FTS	39108-34-4	-	L	-	-	L	L		-
3:3 FTCA	356-02-5	_	L		_	-	-	_	-
5:3 FTCA	914637-49-3	-	L	-	-	-	-	_	_
7:3 FTCA	812-70-4	-	L	_	-	-	-	-	_
HFPO-DA	13252-13-6	-	L				-	-	-
Adona	919005-14-4	-	L	-	-	-	-	-	-
9CI-PF3ONS	756426-58-1	-	L	-	_	-	-	-	-
11Cl-PF3OUdS	763051-92-9	-	L	-	_	-	-		-
11CI-L120003	103031-92-9		L .						

[&]quot;L" :Linear

[&]quot;Br": branched

[&]quot;L/Br": Linear/Branched
"-": Not detected

ACCREDITATIONS

Accrediting Authority	Laboratory ID		
U.S. Department of Defense Environmental	91667		
Laboratory Accreditation Program (DoD-ELAP)	71007		
State of Florida Department of Health	E87856		
State of New York Department of Health	12105		
State of Washington Department of Ecology	C1050		
State of Maine	MA00056		
State of Vermont	VT 87856		
State of New Hampshire	2137		
Commonwealth of Pennsylvania Department of	68-05687		
Environmental Protection	00-03087		
State of Alaska Department of Environmental	19-005		
Conservation			
State of Rhode Island	E87856		
State of California	3045		

Current certificates and lists of accredited parameters are available upon request.

PFAS in Groundwater Trend Graphs for HW-I(s) and HW-P(s)

