Probability 1 Daniel Yu

November 19, 2024

Contents

1	Poisson Processes	3
2	Appendix: Asysmpotics	6

CONTENTS 2

1 Poisson Processes

Definition 1. A stochastic process $\{N(t)\}_{t\in[0,\infty)}$ is a counting process if

- 1. $N(t) = \{01, 2, 3, \ldots\} \forall t > 0$ and
- 2. $N(s) \le N(t) \forall s \le t$

N(t) counts the number of events that occurred between time 0 and time t.

Note. See the Appendix for the definition for asymptotic notation for O(x). We are using a definition that is no the traditional definition.

Definition 2. A counting process is **simple** if $\forall t \geq 0$,

$$P[N(t+h) - N(t) \ge 2] = O(h).$$

meaning the probability of more than 1 arrival in the interval [t+h,t] goes to 0 fairly quickly (at rate O(h))

We wish to study the generalization of **time-homogenous markov chains**. Let's make the assumptions that:

- 1. the distribution of (N(t+s) N(t)) the number of arrivals that occurred between t to t+s does not depend on t!
- 2. for any $t \leq s$ the RVs N(t), N(s) N(t) are independent this is known as the independent increament property. This is saying that the number of arrivials in disjoint time intervals is independent.

Definition 3. Any simple counting process that satisfies (1), (2) is a time-homogenous poisson process on \mathbb{R}

To determine the process, we need only one parameter $\lambda > 0$. Consider for the interval, [0, h]:

$$P[N(h) - N(0) = 0] = 1 - \lambda h + O(h).$$

using the fact that $P[N(h) - N(0) = 1] = \lambda h$ and $P[N(h) - N(0) \ge 2] = O(h)$

Theorem 1. Let $N_{\lambda}(t)$ be the unique process which satisfies all these properties above:

$$P[N_{\lambda}(t) = k] = \frac{e^{-\lambda t}(\lambda t)^k}{k!}.$$

i.e. $N_{\lambda}(t) \sim Poisson(\lambda t)$

Proof. Let $P_m(t) = P[N_{\lambda}(t) = m]$.

$$P_{m}(t+h) = \sum_{k=0}^{m} P[N_{\lambda}(1+h) = m \mid N_{\lambda}(t) = k] \cdot P[N_{\lambda}(t) = k]$$

$$= \sum_{k=0}^{m} P[N_{\lambda}(1+h) - N_{\lambda}(t) + N_{\lambda}(t) = m \mid N_{\lambda}(t) = k] \cdot P[N_{\lambda}(t) = k]$$

$$= \sum_{k=0}^{m} P[N_{\lambda}(1+h) - N_{\lambda}(t) = m - k \mid N_{\lambda}(t) = k] \cdot P[N_{\lambda}(t) = k]$$

Use the property that disjoint intervals are independent

$$= \sum_{k=0}^{m} P[N_{\lambda}(1+h) - N_{\lambda}(t) = m-k] \cdot P[N_{\lambda}(t) = k]$$

= using time homogenity

$$= \sum_{k=0}^{m} P[N_{\lambda}(h) - N_{0}(t) = m - k] \cdot P[N_{\lambda}(t) = k]$$

$$= P[N_{\lambda}(h) - N_{\lambda}(0) = 0] \cdot P_{m}(t) + P[N_{\lambda}(h) - N_{\lambda}(0) = 0] \cdot P_{m-1}(t) + \sum_{k=0}^{m-2} P[N_{\lambda}(h) - N_{0}(t) = m - k] \cdot P_{k}(t)$$

$$= (1 - \lambda h + O(h))P_m(t) + (\lambda h + O(h))P_{m-1}(t) + \sum_{k=0}^{m-2} O(h) \cdot P_k(t)$$

we can group and simplify by asymptotics since cO(x) = O(x)

$$= P_m(t) + \lambda h \left(-P_m(t) + P_m(t) \right) + O(h)$$

$$\frac{P_m(t+h) - P_m(t)}{h} = \lambda(-P_m(t) + P_m(t)) + \frac{O(h)}{h}.$$

Let's take the limit as $h \to 0$:

$$\frac{dP_m(t)}{dt} = -\lambda P_m(t) + \lambda P_m(t), m \ge 1.$$

Repeating this for m = 0,m

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t).$$

What is $P_0(t)$?

$$P'_0 = -\lambda P_0$$

$$\Rightarrow \int_0^t \frac{P'_0(s)}{P_0(s)} ds$$

$$= \int_0^t -\lambda ds$$

$$= \ln(P_0(t)) - \ln(P_0(0)) = -\lambda t$$

$$P_0(t) = e^{-\lambda t}.$$

For m = 1: missing notes.

$$e^{\lambda t}P_1(t) - P_1(0) = \lambda t \Rightarrow P_1(t) = \lambda t \cdot e^{-\lambda t}$$

It is possible to solve the above by induction and get the closed form formula:

$$P_m(t)\frac{e^{-\lambda t}(\lambda t)^m}{m!}.$$

Method 2: Using Generating Functions

$$G(s,t) = \sum_{m=0}^{\infty} P_m(t) \cdot S^m.$$

Then, compute the derivative

$$\begin{split} \frac{dG(s,t)}{dt} &= \sum_{m=0}^{\infty} P_m(t)' S^m \\ &= P_0'(t) + \sum_{m \geq 1} P_m'(t) S^m \\ &= -\lambda P_0(t) + \sum_{m \geq 1} [-\lambda P_m(t) + \lambda P_{m+1}(t)] S^m \\ &= \text{missing text} \\ &= \lambda G(s,t) + \lambda s G(s,t) \end{split}$$

Then,

$$\frac{dG(s,t)}{dt} = \lambda G(s,t)(S-1).$$

Divide by G(s,t) and integrat w.r.t. t,

$$\ln[G(s,t)] - \ln[G(s,t)] = \lambda s - 1) \cdot t.$$

missing text

$$\begin{split} \sum_{m=0}^{\infty} P_m(t) \cdot S^m &= e^{-\lambda t} \cdot e^{\lambda s t} \\ &= e^{-\lambda t} \sum_{m=0}^{\infty} \frac{\left(\lambda s t\right)^m}{m!} \end{split}$$

canceling both sides and removing the summations

$$P_m(t) = \frac{e^{-\lambda t} (\lambda t)^m}{m!}.$$

Note. The continuous version of this is the Brownian motion

Let's go through an example. Let N(t) be a poisson point process of increment 1. What is

$$P[N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 2, N(5) = 3].$$

?

Method 1

We can use the new arrivals per interval:

= P[1 arrival [0,1], 0 arrival in [1,2], one arrival in [2,3], zero arrival [3,4], 1 arrova; [4,5]].

By tyhe time independent increment property:

$$\begin{split} P[\text{ events above}] &= P[1 \text{ arrival } [0,1]] P[0 \text{ arrival } [1,2]] P[1 \text{ arrival } [2,3] P[0 \text{ arrival } [3,4]] P[1 \text{ arrival } [4,5]] \\ &= P[Poisson(1)=1]^3 P[Poisson(1)=0]^2 \\ &= \frac{1}{e^5} \end{split}$$

Method 2

Using joints intelligently

$$P[N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 2, N(5) = 3] = P[N(1) - N(0) = 1] \cdot P[N(2) - N(1) = 0] \cdot P[N(3) - N(2) = 1] = \cdot P[N(4) - N(3) = 0] \cdot P[N(5) - N(4) = 1].$$

$$P[X=k] = \frac{\mu^k e^{-\mu}}{k!}.$$

For each interval [a, b], the mean is $\mu = \lambda(b - a)$. Since $\lambda = 1$ and each interval is of length 1, we have $\mu = 1$ for each increment:

$$\begin{split} P[N(1)-N(0)=1] &= P[\text{Poisson}(1)=1] = \frac{1^1 e^{-1}}{1!} = \frac{1}{e}, \\ P[N(2)-N(1)=0] &= P[\text{Poisson}(1)=0] = \frac{1^0 e^{-1}}{0!} = \frac{1}{e}, \\ P[N(3)-N(2)=1] &= P[\text{Poisson}(1)=1] = \frac{1}{e}, \\ P[N(4)-N(3)=0] &= P[\text{Poisson}(1)=0] = \frac{1}{e}, \\ P[N(5)-N(4)=1] &= P[\text{Poisson}(1)=1] = \frac{1}{e}. \end{split}$$

Step 4: Combine Probabilities

The total joint probability is:

$$P[N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 2, N(5) = 3] = \frac{1}{e} \cdot \frac{1}{e} \cdot \frac{1}{e} \cdot \frac{1}{e} \cdot \frac{1}{e} \cdot \frac{1}{e} = \frac{1}{e^5}.$$

Final Result:

Both methods yield the same result:

$$P[N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 2, N(5) = 3] = \frac{1}{e^5}.$$

2 Appendix: Asysmpotics

Definition 4.
$$f(x) = O(x)$$
 if $\lim_{x\to 0} \frac{f(x)}{x} = 0$

Note. This not equivalent to the usual definition of big-O notation i.e. that f(x) is O(g(x)) if $f(x) \le cg(x)$.

- 1. consider $x^2 \Rightarrow \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$ but is not O(x) in the traditional definition.
- 2. Consider $x \Rightarrow \lim_{x \to 0} \frac{x}{x} = 1 \neq 0$ but is O(x) in the traditional definion.

In this notation if f(x) is twice differentiable at x = 0, then we can use the taylor series expansion with the error term $r(x) = O(x^2)$:

$$f(x) = f(0) + f'(0) + \frac{f''(0)}{2}x^2 + O(x^2).$$

$$\left(\frac{1}{x} + 1 + O(1)\right) \cdot \left(1 + O(x)\right) = \left(\frac{2}{x} + 2\right) + O(1).$$

some missing text here $\frac{f(x)}{x} + f(x) \to 0$