Progress **R**eport − 1

1. DATA DICTONARY:

A Data Dictionary is a collection of names, definitions, and attributes about data elements that are being used or captured in a database, information system, or part of a research project. It describes the meanings and purposes of data elements within the context of a project, and provides guidance on interpretation, accepted meanings and representation. A Data Dictionary also provides metadata about data elements. The metadata included in a Data Dictionary can assist in defining the scope and characteristics of data elements, as well the rules for their usage and application.

Why Data Dictionary is Important:

- The main reason companies use data dictionaries is to document and share data structures and other information for all involved with a project or database.
- Using a shared dictionary ensures the same quality, meaning, and relevance for all data elements for all team members.
- The data dictionary will define conventions for the project and consistency throughout the dataset.
- Without a data dictionary, there's a higher risk of losing crucial information in translation and transition. Using a data dictionary also helps teams analyse the data easier later on.

Progress **R**eport − 1

❖ DATABASE DESIGN

<u>DataBase Name</u>: ehealthcare

1) Table Name: patient

This Table Is Used to Store Information of Patient In System. This table Is Use When Any Patient Want to Book His/her Appointment.

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	patient_id	Int	3	Primary Key,	Use To Store Unique Id
				Auto	Of Each Patient
				Increment	
2	patient_email	Varchar	25	Not Null,	Use To Store Email
				Unique Key	Address Of Patient
3	patient_name	Varchar	15	Not Null	Use To Store Name Of
					Patient
4	patient_gender	Varchar	6	Not Null	Use to Store Gender Of
					Patient
5	patient_password	Varchar	8	Not Null	Use To Store Password
					Of Patient with that
					Patient Login
6	patient_address	Varchar	50	Not Null	Use To Store Address
					Of Patient
7	patient_dob	Date		Not Null	Use To Store Date Of
					Birth Of Each Patient
8	patient_phoneno	Varchar	12	Not Null,	Use To Store Mobile
				Unique key	Number Of Patient

2) <u>Table Name</u>: appointment

This Table Is use to store the appointments Detail. This Table information Is Visible for Admin and particular doctor according to his schedule and also visible to patients for his/her appointments.

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	appo_id	Int	3	Primary Key,	Use To Store Unique Id
				Auto	Of Appointments
				Increment	
2	patient_id	Int	3	References	Use To Store Patient Id
				(patient table)	That Reference From
					patient Table
3	appo_no	Int	3	Not Null	Use To Store Which No
					Of appointment is Book
					for This patient
4	sche_id	Int	3	References	Use To Store schedule Id
				(schedule	That Reference From
				table)	schedule Table
5	appo_date	Date		Not Null	Use To Store Date Of
					Appointment

3) Table Name: pending

This Table Is Use TO Store Pending Request Of Doctor Who Want to Join This System For Making Session And giving consultation to patients from their appointments.

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	pen_doc_id	Int	3	Primary Key, Auto Increment	Use To Store Doctor Id
2	doc_email	Varchar	25	Unique Key, Not Null	Use to store doctor email
3	doc_name	Varchar	15	Not Null	Use To Store Doctor's Name
4	doc_password	Varchar	8	Not Null	Use To Store Doctor's Email Password
5	Doc_gender	Varchar	6	Notnull	Use to Store Gender Of Doctor.
6	doc_phoneno	Varchar	12	Unique Key, Not Null	Use To Store Doctor's Phone Number
7	spec_id	Int	2	References (specialist table)	Use to Store Doctor's Specialist
8	doc_charge	Int	5	Not Null	Use TO Store Charge Of Doctor
9	doc_img	Varchar	25	Not null, Unique Key	Use To Store Path Of Image

4) Table Name : feedback

This Table Is used To Store Information Of Feedback That Give By Patient for Doctor .

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	feedback_id	Int	3	Primary Key, Auto Increment	Use To Store Unique Id Of Feedback
2	doc_id	Int	3	References (doctor table)	Use To Store doctor Id That Reference From doctor Table
3	rate_id	Int	3	References (rating table)	Use To Store Rating Id That reference From rating Table
4	feedback_description	Varchar	200	Not Null	Use To Store The Feedback That Given By Patient
5	patient_id	Int	3	References (patient table)	Use To Store Patient Id That Reference From patient Table

5) Table Name: rating

This Table Is Used To Store Information On Rating Related That How many patient rate the Doctor Or How many Points .

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	rate_id	Int	3	Primary Key,	Use To Store Schedule
				Auto	Id
				Increment	
2	doc_id	Int	3	References	Use To Store Doctor Id
				(doctor table)	
3	rate_total_rating	Int	4	Not Null	Use To Store Schedule
					Title
4	rate_total_review	Int	4	Not Null	Use To Store Schedule
					Date

6) **Table Name**: user

This Table Is used When Any User Login In system It check Tyoe Of User And Redirect the reference to According Table On System For login .

Sr.no	Field Name	Data Type	Size	Constraint	Description
1	user_id	Int	3	Primary	Use to Store user id
				Key, Auto	
				Increment	
2	user_email	varchar	25	NotNull	Use to Store email id of all
					system user
3	user_name	Varchar	15	Notnull	Use to store name
3	user_type	char	1	Nonull	Use to Store User Type
					[A-Admin,
					P-Patient,
					D-Doctor]

2. DATA FLOW DIAGRAM:

Notation:

- ➤ The two main types of notation used for data flow diagrams are Yourdon-Coad and Gane-Sarson, both named after their creators, all experts who helped develop DFD methodology: Ed Yourdon, Peter Coad, Chris Gane and Trish Sarson.
- ➤ There are some differences in style between the notation types. For example, Yourdon and Coad notation uses circles to represent processes, whereas Gane and Sarson notation use rectangles with rounded corners.
- ➤ Because DFD symbols vary, it's important to be consistent with whatever notation you choose in order to avoid confusion.
- ➤ Here we will be using the Yourdon-Coad notations.
- ➤ All data flow diagrams include four main elements: entity, process, data store and data flow.

•	Entity:	
		[Entity]

Also known as actors, sources or sinks, and terminators, external
entities produce and consume data that flows between the entity
and the system being diagrammed.

• Process:

[Process]

- An activity that changes or transforms data flows. Since they transform incoming data to outgoing data, all process must have inputs and outputs on a DFD.
- Processes are typically oriented from top to bottom and left to right on a data flow diagram.

•	Data	Source	•
•	Data	Doult	•

[Data Source]

- A data store does not generate any operations but simply holds data for later access
- Data stores could consist of files held long term or a batch of documents stored briefly while they wait to be processed.
- Input flows to a data store include information or operations that change the stored data. Output flows would be data retrieved from the store.

•	Data F	low:		
				_

[Data Flow]

- Movement of data between external entities, processes and data stores is represented with an arrow symbol, which indicates the direction of flow.
- Input and output data flows are labelled based on the type of data or its associated process or data store, and this name is written alongside the arrow.

SYSTEM: E-Health Care Management System

Level-0 DFD:

❖ Patient Level – 1 DFD :

