TRAVAUX DIRIGES SUR SUBSTITUTION ET UNIFICATION

EXERCICE 1: retour sur des questions de syntaxe

Pour chacune des assertions suivantes, indiquer (puis justifier) si elle est vraie ou fausse :

- a. $\neg (P \Rightarrow Q)$ équivaut à $\neg P \Rightarrow \neg Q$
- b. f(P(A,x)) est une formule correcte du calcul des prédicats
- c. $\exists x \in P[x,f(A)] \land Q(y)$ est une formule correcte du calcul des prédicats
- d. La variable x est libre dans la formule : $\forall y \in P(x,y) \vee \exists x \in Q(x)$
- e. $\exists x \ P(x,z)$ est équivalent à $\exists y \ P(y,z)$
- f. $\exists x \ P(x,z)$ est équivalent à $\exists z \ P(z,z)$

EXERCICE 2 : sur la composée des substitutions

Soit σ la substitution représentée par l'ensemble $\{ < x . g(x) > , < y . f(z) > \}$. Calculer : $\sigma(\sigma(x)) = \sigma(\sigma(y)) = \sigma(\sigma(y)) = \sigma(P(x,y)) = \sigma(Q(z)) = (x . g(A) > , < y . B > \} = o \{ < x . g(x) > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > , < y . x > \} = o \{ < x . y > ,$

EXERCICE 3: on y aborde l'unification sans faire appel à un algorithme

Pour chacun des couples de termes qui suivent, déterminer, lorsque cela est possible, une substitution unificatrice la plus générale, et une instance commune la plus générale :

- a. P(f(x),x) et P(y,y)
- b. P(x,f(A,y),x) et P(f(u,u),z,z)

EXERCICE 4 : comment unifier plus de deux expressions

On généralise la notion d'unificateur de deux termes à celle d'unificateur de n termes t_1, \dots, t_n , avec $n \ge 1$ par : $\sigma(t_1) = \sigma(t_2) = \dots = \sigma(t_n)$

- 1) Trouver un "upg" pour l'ensemble de littéraux suivant : $\{P(x,z,y), P(w,u,w), P(A,u,u)\}$
- 2) Trouver un "upg", s'il en existe un, pour chacun des ensembles de littéraux suivants : $\{P(f(A),x), P(x,A)\}$ $\{P(f(x,x),A), P(f(f(y,f(y,A)),A),A)\}$ S'il n'en existe pas, expliquer pourquoi.
- c) Supposons que *unifier2* soit un algorithme qui calcule un "upg" pour deux termes, s'il en existe un. Proposer un algorithme pour unifier une liste de n termes.

IA02 2016 GI / UTC