Aufgabenblatt 6 – Lösungen

Aufgabe 1 (Klausur 2016, Aufgabe 3)

Angenommen, die Daten werden erzeugt mittels der Gleichung:

$$y_t = \mu + u_t + \theta_2 u_{t-2}, \quad t = 1, 2, 3, \dots$$

mit unabhängig identisch verteiltem Rauschen $(u_t)_{t\in\mathbb{Z}}$ mit Erwartungswert 0 und Varianz σ^2 .

a) Welche Eigenschaften muss ein Prozess haben, um stationär zu sein?

Siehe Aufgabenblatt 5, Aufgabe 2a.

- b) Bitte berechnen Sie den Erwartungswert und die Varianz von y_t sowie die Kovarianzfunktion zum Lag 1, 2 und 3.
 - $E(y_t) = \mu$
 - $\operatorname{Var}(y_t) = \sigma^2 + \theta_2^2 \sigma^2$
 - $\operatorname{Cov}(y_t, y_{t+1}) = \operatorname{E}((y_t \operatorname{E}(y_t))(y_{t+1} \operatorname{E}(y_{t+1})))$ = $\operatorname{E}((\mu + u_t + \theta_2 u_{t-2} - \mu)(\mu + u_{t+1} + \theta_2 u_{t-1} - \mu))$ = $\operatorname{E}((u_t + \theta_2 u_{t-2})(u_{t+1} + \theta_2 u_{t-1}))$ = $\operatorname{E}(u_t u_{t+1} + \theta_2 u_t u_{t-1} + \theta_2 u_{t-2} u_{t+1} + \theta_2^2 u_{t-2} u_{t-1})$ = $\operatorname{E}(u_t u_{t+1}) + \operatorname{E}(\theta_2 u_t u_{t-1}) + \operatorname{E}(\theta_2 u_{t-2} u_{t+1}) + \operatorname{E}(\theta_2^2 u_{t-2} u_{t-1})$ = $\operatorname{E}(u_t) \operatorname{E}(u_{t+1}) + \theta_2 \operatorname{E}(u_t) \operatorname{E}(u_{t-1}) + \theta_2 \operatorname{E}(u_{t-2}) \operatorname{E}(u_{t+1}) + \theta_2^2 \operatorname{E}(u_{t-2})(u_{t-1})$ = $0 \cdot 0 + \theta_2 \cdot 0 \cdot 0 + \theta_2 \cdot 0 \cdot 0 + \theta_2^2 \cdot 0 \cdot 0 = 0$
 - $Cov(y_t, y_{t+2}) = \theta_2 \sigma^2$
 - $\bullet \operatorname{Cov}(y_t, y_{t+3}) = 0$
- c) Welche Bedingungen müssen für die Parameter gelten, damit $(y_t)_{t\in\mathbb{N}}$ stationär ist?

Keine Bedingungen sind erforderlich, ein MA(2) Prozess ist immer stationär.

Aufgabe 2 (Klausur 2014, Aufgabe 3)

Gegeben sei die AR(1) Gleichung

$$y_t = 1 + 0.5y_{t-1} + \epsilon_t, \quad t \ge 1$$

für weißes Rauschen $(\epsilon_t)_{t\in\mathbb{N}}$ mit Erwartungswert 0 und Varianz $\frac{1}{10}$.

a) Bitte bestimmen Sie alle Lösungen dieser Differenzengleichung.

Die Lösungen lauten $y_t = \sum_{\tau=0}^{t-1} 0.5^{\tau} + 0.5^t y_0 + \sum_{\tau=0}^{t-1} 0.5^{\tau} \epsilon_{t-\tau}$ für verschiedene Startwerte y_0 (darauf bezieht sich das "alle" in der Aufgabenstellung).

b) Berechnen Sie die Verteilung des Startwertes y_0 , der zu einer stationären Lösung führt.

Damit $(y_t)_{t\in\mathbb{N}}$ stationär ist, muss $\mathrm{E}(y_t)$ unabhängig von t sein:

$$E(y_t) = E(y_{t-1}) \Rightarrow 1 + 0.5E(y_{t-1}) + 0 = E(y_{t-1})$$

 $\Rightarrow E(y_{t-1}) = 2 \text{ für alle } t.$

Für die Stationarität muss außerdem $Var(y_t)$ unabhängig von t sein:

$$Var(y_t) = Var(y_{t-1}) \Rightarrow Var(1 + 0.5y_{t-1} + \epsilon_t) = Var(y_{t-1})$$

$$\Rightarrow Var(y_{t-1}) = \frac{1}{10(1 - 0.5^2)} = \frac{1}{7.5} \text{ für alle } t.$$

Also muss $E(y_0) = 2$ und $Var(y_0) = 1/7.5$ gelten. Wir müssen außerdem annehmen, dass y_0 unabhängig von $(\epsilon_t)_{t \in \mathbb{N}}$ ist.

c) Berechnen Sie die zugehörige Autokorrelationsfunktion für die Lags $k=1,\ldots,5$.

Es gilt $Cov(y_t, y_{t+k}) = 0.5^k Var(y_t)$ (siehe Vorlesung). Die Autokorrelationsfunktion $\rho_k : k \to Cov(y_t, y_{t+k})/Var(y_t) = 0.5^k$ hat für k = 1, ..., 5 die folgenden Werte:

- $\rho_1 = 0.5$
- $\rho_2 = 0.25$
- $\rho_3 = 0.125$
- $\rho_4 = 0.0625$
- $\rho_5 = 0.03125$

Aufgabe 3 (Schätzung von AR(p) Prozessen)

a) Was ist die "companion" Form eines AR(p) Prozesses und wofür ist sie nützlich?

Sie ist die Vektorgleichung $X_t = AX_{t-1} + U_t$ (siehe Vorlesung) und hilfreich, um den AR(p) Fall auf den AR(1) Fall zurückzuführen.

2

b) Welchen Annahmen des klassischen linearen Regressionsmodells können für die Kleinste-Quadrate Schätzung eines AR(p) Prozesses erfüllt sein, welche nicht?

Falls wir $y_t = \alpha_0 + \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + \epsilon_t$ mit linearer Regression schätzen,

- können MLR.1 (lineares Modell), MLR.3 (Information in den Regressoren, keine Multikollinearität), MLR.4 (bedingte Erwartung verschwindet), MLR.5 (Homoskedastie der Fehler) und MLR.6 (unabhängige Normalverteilung der Fehler) erfüllt sein,
- aber MLR.2 (Zufallsstichprobe) ist auf jeden Fall verletzt.

Deshalb ist der KQ-Schätzer für endliche Stichproben in der Regel verzerrt, aber konsistent und asymptotisch normalverteilt (siehe Vorlesung).

c) Bitte simulieren Sie einen AR(4) Prozess in R und schätzen Sie die Parameter.

Siehe R Code.