The University of Melbourne — School of Mathematics and Statistics MAST30012 Discrete Mathematics — Semester 2, 2021

Practice Class 9: Permutations – Answers

Q1: (i)
$$264351 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 3 & 5 & 1 \end{pmatrix} = (126)(34) = (16)(12)(34)$$

(ii) $315642 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 5 & 6 & 4 & 2 \end{pmatrix} = (135462) = (12)(16)(14)(15)(13)$

Q2: (i) (i) An r-cycle σ can be written as the product of r-1 2-cycles so $sgn(\sigma) = (-1)^{r-1}$.

(ii)
$$\sigma = 87654321 = (18)(27)(36)(45), \qquad \tau = 46213875 = (14)(26853).$$

(iii)
$$\operatorname{sgn}(\sigma) = +1,$$
 $\operatorname{sgn}(\tau) = ;= -1$

(iv)
$$(156)(247)(38) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 8 & 7 & 6 & 1 & 2 & 3 \end{pmatrix}$$

 $(1587)(23)(46) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 2 & 6 & 8 & 4 & 1 & 7 \end{pmatrix}$

Q3: $\sigma = s_5 s_4 s_3 s_1 s_2 s_1$ gnment project Exam Help

Q4:
$$(123)(234)(324)$$
 h(tp₃s₁/₄/₄) oweder.e($\frac{1}{1}$).

Q5: (i)
$$A_n(x) = \sum_{k=0}^n S_1(n,k) x^k$$
 = $X_n(x) = \sum_{k=0}^n S_1(n-1,k) x^k + \sum_{k=0}^n S_1(n-1,k-1) x^k$.

Now rewrite each term and prove

$$A_n(x) = (n-1)A_{n-1}(x) + xA_{n-1}(x) = (x+n-1)A_{n-1}(x).$$

(ii)
$$A_0(x) = S_1(0,0) = 1$$

 $A_1(x) = xA_0(x) = x$
 $A_2(x) = (x+1)A_1(x) = (x+1)x$
 $A_3(x) = (x+2)A_2(x) = (x+2)(x+1)x$
 \vdots
 $A_n(x) = (x+n-1)A_{n-1}(x) = (x+n-1)(x+n-2)\cdots(x+2)(x+1)x$

Q6: We have to seat n people at n-2 tables. There are two cases:

Case 1: Three people are seated at one table the remaining n-3 people must then be seated one each at the remaining n-3 tables. There are $2\binom{n}{3}$ seating arrangements for this case.

Case 2: Two people each are seated at two of the tables with the remaining n-4 seated one each at the remaining n-4 tables. There are $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ seating arrangements for this case.

Putting everything together we have: $S_1(n, n-2) = 2\binom{n}{3} + \frac{1}{2}\binom{n}{2}\binom{n-2}{2}$.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder