

Informatics

報告者: 225 賴昱錡

指導老師:王鼎中 老師 指導學長:陳哲安 學長

指導教授:中央大學 蔡宗翰 教授

Luminescen

Abstract

Abstract

本研究以利用pix2pix及CycleGAN等模型實現歷史航照之上色為動機,並深入探討、評估與修正這些方式,以得出能有最好成效的深度學習模型。最初是進行預處理的動作,此研究擷取中研院的WMTS資料建立資料集,接著建立pix2pix、CycleGAN、CUT等由GAN衍生出的模型,探討改變生成器及判別器權重、生成器架構、GAN損失模式等,是否會對上色成效帶來影響,再透過FID及IS等指標評估。

實驗後發現,透過增加生成器、判別器filter數量之比例,可以有效降低CycleGAN、pix2pix中對抗損失上升的現象,也讓三模型的成效提高。而ResNet比起U-Net能幫助pix2pix生成較鮮艷、穩定的圖像,以灰階映射L*a*b的方式訓練,可降低生成圖片的一些瑕疵。平均而言,CycleGAN與CUT在為舊航照的上色表現較pix2pix好,而其中CUT對於影像細節的處理又較為精緻、穩定。若欲採用CUT模型,不採用Identity Loss、搭配LSGAN的損失模式為佳。

02

研究動機&目的

Motivation & Purpose

儘管網路上可以輕易取得內政部所測 製或中研院所徵集的一系列歷史航空照片, 藉由數位典藏及GIS圖資發佈技術,讓二戰 後期迄今所記錄臺灣歷史航照影像得以完 整保存及活用。

但灰階的舊航照始終會帶來分析地景時的不方便。因此,此研究希望能建立一個上色模型(運用生成對抗網路所衍伸的pix2pix、CycleGAN等模型實作),並對這些方法進行深入的探討與比較,期許能讓歷史航照的上色達到較佳的效果,並照到最佳的模型設定,讓模型得以更好的運用。

建中數資39屆成果發表會 LUMINESCENCE

▲ 利用 QGIS 擷取中研院所 提供之正射影像、民初歷史航 照等 wmts 資料 (256*256) (shapefile格式)

▲ 透過 Pillow、Shutil 等 套件,以原彩色圖像、灰階處 理影像建立訓練用的dataset

建中數資39屆成果發表會 LUMINESCENCE

CycleGAN 架構 & 訓練方式

以非成對資料集作為輸入

Pix2pix 架構 & 訓練方式

以成對資料集作為輸入 (先將灰階處理影像、Ground truth 合併為 256*512 的圖片)

CUT (Contrastive Unpaired Translation)

*以非成對資料集作為輸入

 $\ell(v,v^+,v^-) = -\log\left[rac{\exp(v\cdot v^+/ au)}{\exp(v\cdot v^+/ au) + \sum_{n=1}^N \exp(v\cdot v_n^-/ au)}
ight]$

3

E=

$$\mathcal{L}_{\mathrm{GAN}}(G,D,X,Y) = \mathbb{E}_{m{y} \sim Y} \log D(m{y}) + \mathbb{E}_{m{x} \sim X} \log (1-D(G(m{x}))).$$

$$\ell(m{v},m{v}^+,m{v}^-) = -\log \left[\frac{\exp(m{v}\cdotm{v}^+/ au)}{\exp(m{v}\cdotm{v}^+/ au) + \sum_{n=1}^N \exp(m{v}\cdotm{v}_n^-/ au)} \right].$$

$$\mathcal{L}_{\mathrm{GAN}}(G,D,X,Y) + \lambda_X \mathcal{L}_{\mathrm{PatchNCE}}(G,H,X) + \lambda_Y \mathcal{L}_{\mathrm{PatchNCE}}(G,H,Y).$$

$$\mathbf{Luminescence}$$

BicycleGAN structure

cLR-GAN: Conditional Latent Regressor GAN 建中數資39屆成果發表會

生成影像的評估指標: FID與IS (參考inception v3模型)

$$ext{FID}(x,g) = \|\mu_x - \mu_g\| + ext{Tr}\left(\Sigma_x + \Sigma_g - 2\sqrt{\Sigma_x\Sigma_g}
ight)$$

FID score (Frecht Inception Score)

同時,較低的FID score代表著生成影像的質量、穩定性較佳。

→ 針對生成影像與Ground truth進行比較

生成影像的評估指標: FID與IS (參考inception v3模型)

$$\sum_{x \in G} P(x) \sum_{i=1}^{1000} P(y_i|x) \log rac{P(y_i|x)}{P(y_i)} \ = E_{x \sim p_G} KL(p(y|x)||p(y))$$

$$ext{IS} = \exp E_{x \sim p_G} KL(p(y|x)||p(y))$$

IS (Inception Score): 較高的IS表示生成的 圖片分布與Ground truth 越接近。

→ 直接針對生成影像的分布進行評估

Luminescence

改變一: 改變生成器與判別器之權重

1. 調整生成器末端(卷積層)與判別器首端的Filter數量。

2. 增加生成器的Learning rate

→為解決訓練後期,判別器的性 能遠勝生成器,進而使生成器對 抗損失大幅上升的現象。

改變二:改變pix2pix生成器架構(U-Net/ResNet) 左右兩圖分別為U-Net、ResNet的架構

改變三:改變pix2pix訓練方式(映射的模式)

改變四:改變CUT的GAN損失模式: 除最原始的 Vanilla GAN外,也嘗試了LSGAN、WGAN-GP等 損失模式來訓練模型 (上/下圖)

$$\min_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \left[(D(\boldsymbol{x}) - b)^{2} \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - a)^{2} \right]$$

$$\min_{G} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - c)^{2} \right],$$

$$L = \underbrace{\mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\tilde{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathop{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

→ 討論不同損失模式下對CUT模型帶來的作用

改變五:是否採用Identity Loss

CUT模型的總損失公式可以寫成以下的數學形式,其中 λx 與 λy 為控制兩者比重的係數, λy 同時也代表著 $Identity\ Loss$ 。

而Identity loss在CycleGAN中的作用是保留輸入和輸出顏色組成的一致性。

$$\mathcal{L}_{\text{GAN}}(G, D, X, Y) + \lambda_X \mathcal{L}_{\text{PatchNCE}}(G, H, X) + \lambda_Y \mathcal{L}_{\text{PatchNCE}}(G, H, Y).$$

改變六:潛在編碼的加入時機

此研究中,我們嘗試改變z輸入給Generator的位置(首段、中段···等位置)。

→ 欲探討潛在編碼在何時加入生成器網路能讓歷史航照上色達到較好 的效果。

Luminescence

6

6

6

研究結果&討論

Results & Discussion

一、預設模型上色成效的評估

Pix2pix

1. pix2pix對於灰階處理 航照的套色效果最好,對 於舊航照的著色而

2. CycleGAN與CUT的著色成效比較優異,但處理多主體的舊航照(同時具有植被與建築物)時,顏色的分界不夠清晰,而pix2pix所生成之圖片幾乎沒有除了綠色與淡棕色以外的顏色。

建中數資39屆成果發表會 LUMINESCENCE

二、調整生成器與判別器權重帶來的影響

→ 透過增加生成器的filter數量,能夠改善
善訓pix2pix、CycleGAN練後期,生成器的
對抗損失大幅上升的現象

建中數資39屆成果發表會 LUMINESCENCE

三、改變pix2pix生成器架構帶來的影響

左側為使用U-Net作為生成器架構,右側則使用ResNet
→ 使用U-Net的模型所生成之圖像具有顏色飽和度低、邊緣模糊、色調單一等缺點,但在將pxi2pix的生成器 **MINESCENCE**ResNet後,前述問題均有得到較為顯著的改善。

四、改變pix2pix訓練方式帶來的影響

→ 若使用由L通道的數值(即為灰階圖片),預測*a(藍綠色)與 *b(黃紅色)兩圖層的方式,可以大幅降低邊緣出現藍綠雜訊的 情形,也能提高圖片的質量與穩定度。

建中數資39屆成果發表會 Luminescence

6

6=

6

五、改變GAN損失模式為對比式學習帶來的影響

→ 由左至右分別為使用LSGAN、Vanilla、WGAN-GP等 GAN損失模式針對歷史航照的上色效果,綜合而言使用 LSGAN損失模式的CUT具有較好的性能,對於大多數的航 照物件如河流、植被均有上到比較正確的顏色

建中數資39屆成果發表會 LUMINESCENCE

六、Identity Loss對上色成效的影響

CUT(上圖)、FastCUT(下圖)於歷史航照的上色效果比較
→ 在一些影像處理的細節,FastCUT(即未採用Identity

建中數資39屆成果發表會 Loss的CUT模型)勝過一般的CUT,如上色的多樣性較高、建築

MINESCEN物於郭較為明顯等。

七、各生成模型成效之評估

		Pix2pix (註: 原pi	x2pix以U-Net作為	生成器架構)		
	輸入	採用模型	FID	IS最大值	IS 平均值	
	以灰階處理之航照	原pix2pix	48. 58	11.62	2.49	
	作輸入	pix2pix	43. 11	12. 10	2. 51	
		(以L*a*b映射的方				
		式訓練)				
		ngf=128, ndf=32	47. 80	11.20	2. 51	
		ResNet 生成器	46. 96	12. 42	2. 52	
		(ngf=128, ndf=32)				
	以舊航照	原Pix2pix	139. 49	13.66	3. 20	
	作輸入	pix2pix	138. 11	13. 69	3. 22	
		(以L*a*b映射的方				
		式訓練)				
		ngf=128, ndf=32	145. 70	13. 62	3. 33	
		ResNet 生成器	132. 90	11. 75	3. 38	
中數:	資39屆成果發表會	(ngf=128, ndf=32)				
nîi	hescenc					

七、各生成模型成效之評估

1			CycleGAN		
T	輸入	採用模型	FID	IS最大值	IS 平均值
╀	以灰階處理之航	原CycleGAN	169.50	11.18	3. 05
#	照作輸入	ngf=128, ndf=32	145. 09	15. 73	3. 41
\dagger		,			
+	以舊航照	原CycleGAN	144. 24	11. 93	3. 28
	作輸入	ngf=128, ndf=32	128. 49	12. 29	3. 19

七、各生成模型成效之評估

CUT (註: 原CUT、FastCUT以LSGAN為GAN損失模式)							
CUT模式		採用模型	FID	IS最大值	IS 平均		
					值		
採用Identity Loss	以灰階處	原CUT	145. 99	13. 23	3. 34		
	理之航照	ngf=128, ndf=32	165. 76	16. 23	3.10		
	作輸入	改變GAN架構	168. 22	15. 22	3.03		
		(Vanilla)					
	以舊航照	原CUT	163. 55	17.64	3.41		
	作輸入	ngf=128, ndf=32	160.14	12. 25	3.07		
		改變GAN架構	167.11	14. 39	2. 91		
		(Vanilla)					

不採用 Identity Loss	以灰階處理	原FastCUT	97. 03	15. 34	3. 25
(FastCUT)	之航照作輸	LSGAN with	97. 11	17. 25	3. 33
	λ	ngf=128, ndf=32			
		改變GAN架構	165. 26	15. 39	3. 55
		(Vanilla)			
		 改變GAN架構	234. 15	5. 67	1.12
		(WGAN-GP)	201.10	0.01	1.12
	以舊航照		157. 04	11.27	3. 60
	作輸入	LSGAN with	163. 49	12. 99	3. 25
		ngf=128, ndf=32			
		改變GAN架構	176. 55	12. 55	3. 36
		(Vanilla)			
		改變GAN架構	331.52	3. 12	1.09
		(WGAN-GP)			

05.

結論

Conclusion

Conclusion

一、 以增加生成器卷積層上Filter的數量,調整生成器與判別 器的權重能改善pix2pix與CycleGAN的上色效果,也能有效降低 其對抗損失升高之趨勢,而對於CUT模型的成效則較無顯著影響。

二、使用L*a*b映射的訓練方式、採用ResNet生成器、增加生成器權重都能顯著改善pix2pix對於灰階歷史航照的上色效果。

三、CycleGAN與CUT在灰階歷史航照上色的各項表現較為優異、穩定。而不使用Identity Loss可以提升CUT模型生成影像的質量,而其中以搭配LSGAN損失模式最為優秀。

06. 展望 The Future

The Future

- 一、設計結合預訓練模型的 Web App,讓歷史航照的上色技術得以更加容易地讓人運用。
- 二、對資料集進行更好的預處理,如對影像中的主體標上
- label、去模糊等,供模型生成更加準確的影像
- 三、讓本研究能繼續應用於年代更早的航空影像,並達到修復 不全影像的效果。
- 四、能去更了解各改變能改善生成影像質量的原因。
- 五、研究 multimodal image translation 的相關模型。

特別感謝

- 中研院人社中心-廖泫銘研究副技師、 實驗室的陳哲安學長
- 中央大學-蔡宗翰教授
- 建中王鼎中老師
- 成發公關網管組的同學們
- · 協助這場成發順利完成的每個人和觀 眾。

The end of my presentation.

感謝各位的聆聽!

