

Part 24 TEST REPORT

Product Name	Smart Terminal
Model Name	ST5, ST5e, ST5ex
Brand Name	IRIS
FCC ID	UY9-ST5
Client	IRIS Corporation Berhad
Manufacturer	OPTIMA KLASIK SDN. BHD. (807783-T)
Date of issue	October 11, 2013

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1309-0139RF02R1 Page 2of 36

GENERAL SUMMARY

Reference Standard(s)	FCC CFR47 Part 2 (2012) Frequency Allocations And Radio Treaty Matters; General Rules And Regulations FCC CFR47 Part 24E (2012) Personal Communications Services ANSI/TIA-603-C(2004) Land mobile FM or PM Communications Equipment Measurements and Performance Standards.
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 2 of this test report are below limits specified in the relevant standards. General Judgment: Pass
Comment	The test result only responds to the measured sample.

Approved by Revised by Performed by RF Engineer

TABLE OF CONTENT

1. Ge	neral Information	4
1.1.	Notes of the test report	
1.2.	Testing laboratory	5
1.3.	Applicant Information	5
1.4.	Manufacturer Information	5
1.5.	Information of EUT	6
1.6.	Test Date	7
2. Tes	st Information	8
2.1.	Summary of test results	
2.2.	RF Power Output	g
2.3.	Effective Isotropic Radiated Power	11
2.4.	Occupied Bandwidth	13
2.5.	Band Edge Compliance	18
2.6.	Frequency Stability	22
2.7.	Spurious Emissions at Antenna Terminals	25
2.8	Radiates Spurious Emission	29
3. Ma	in Test Instruments	34
ANNEX	A: EUT Appearance and Test Setup	35
A.1	EUT Appearance	
A.2	Test Setup	36

Report No.: RXA1309-0139RF02R1 Page 4of 36

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 428261.

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 8510A.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

Report No.: RXA1309-0139RF02R1 Page 5of 36

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company: IRIS Corporation Berhad

Address: IRIS Smart Technology Complex, Technology Park Malaysia, 57000 Kuala Lumpur,

Malaysia.

City: Kuala Lumpur

Postal Code: 57000

Country: Malaysia

1.4. Manufacturer Information

Company: OPTIMA KLASIK SDN. BHD. (807783-T)

IRIS Smart Technology Complex, Technology Park Malaysia, Bukit Jalil, 57000

Address: Kuala Lumpur, Malaysia

City: Kuala Lumpur

Postal Code: 57000

Country: Malaysia

Report No.: RXA1309-0139RF02R1 Page 6of 36

1.5. Information of EUT

General information

Product Name:	Smart Terminal			
IMEI:	1302-P0001			
Hardware Version:	HW_ST5_V1.0			
Software Version:	SW_ST5_V1.0			
Antenna Type:	Internal Antenna			
Device Operating Configurations:				
Operating Mode(s):	GSM1900; (tested)		
Test Modulation:	(GSM)GMSK;			
GPRS Multislot Class:	12			
EGPRS Multislot Class:	12			
HSDPA UE Category:	8			
HSUPA UE Category:	6			
Maximum E.I.R.P.	GSM 1900: 28.55	dBm		
Power Supply:	Battery or Charger	r		
Rated Power Supply Voltage:	7.4V			
Extreme Voltage:	Minimum: 6.8V	Maximum: 8.2V		
Extreme Temperature:	Lowest: -10°C	Highest: +55°C		
Test Channel: (Low - Middle - High)	512 - 661 - 810	(GSM 1900)	(tested)	
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency (varige(s)	GSM1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	

Report No.: RXA1309-0139RF02R1 Page 7of 36

Auxiliary equipment details

AE1: Battery

Model: 963450P

Manufacturer: Shenzhen Cx-Power Electronic Co.,Ltd

S/N: /

Equipment Under Test (EUT) is GSM/UMTS handheld rugged terminal with internal antenna. The EUT is tested GSM1900 in this report.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. Test Date

The test is performed from June 22, 2013 to June 27, 2013.

Report No.: RXA1309-0139RF02R1 Page 8of 36

2. Test Information

2.1. Summary of test results

Number	Test Case	Clause in FCC rules	Verdict
1	RF power output	2.1046	PASS
2	Effective Isotropic Radiated power	24.232	PASS
3	Occupied Bandwidth	2.1049	PASS
4	Band Edge Compliance	24.238	PASS
5	Frequency Stability	2.1055 / 24.235	PASS
6	Spurious Emissions at Antenna Terminals	2.1051 / 24.238	PASS
7	Radiates Spurious Emission	2.1053 / 24.238	PASS

Report No.: RXA1309-0139RF02R1 Page 9of 36

2.2. RF Power Output

Ambient condition

Temperature	Relative humidity Pressure	
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

No specific RF power output requirements in part 2.1046.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB.

Report No.: RXA1309-0139RF02R1 Page 10of 36

Test Results

		Average Conducted Power(dBm)			
GSM 1900		Channel 512	Channel 661	Channel 810	
		1850.2(MHz)	1880(MHz)	1909.8(MHz)	
	1TXslot	29.58	29.4	29.4	
GPRS	2TXslots	27.25	27.06	27.02	
(GMSK)	3TXslots	25.3	25.13	25.03	
	4TXslots	23.2	23.08	22.91	
	1TXslot	25.89	25.84	25.69	
EGPRS	2TXslots	23.83	23.78	23.64	
(8PSK)	3TXslots	21.84	21.78	21.68	
	4TXslots	19.89	20	19.74	

Note:

¹⁾ The maximum RF Output Power numbers are marks in bold.

²⁾The following testing in GPRS/EGPRS is set to 1TXslot based on the maximum RF Output Power.

Report No.: RXA1309-0139RF02R1 Page 11of 36

2.3. Effective Isotropic Radiated Power

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement

The measurement procedures in TIA- 603C are used.

- 1. The EUT was placed on a turntable with 1.5 meter height in a fully anechoic chamber.
- 2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower
- 3. GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst; UMTS operating modes: Set RBW= 100 KHz, VBW= 300 KHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per section 4.0 of KDB 971168 D01.
- 4. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 5. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
- 6. Taking the record of maximum ERP/EIRP.
- 7. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. The conducted power at the terminal of the dipole antenna is measured.
- 9. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
- 10. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs

Ps (dBm): Input power to substitution antenna.

Gs (dBi or dBd): Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF

AF (dB/m): Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

Test Setup

Report No.: RXA1309-0139RF02R1 Page 12of 36

Limits

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts EIRP. Peak power" and Rule Part 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage".

Limit (EIRP)	≤ 2 W (33 dBm)
(/	((

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 1.19 dB

Test Results:Pass

Mode	Channal	Polarization	Rt	Rs	Ps	Gs	E.I.R.P.
Mode	Channel	Polarization	(dBm)	(dBm)	(dBm)	(dBd)	(dBm)
	512	Vertical	-32.99	-53.70	0	1.92	22.63
	661	Vertical	-33.20	-53.91	0	1.94	22.65
GSM 1900	810	Vertical	-33.57	-54.55	0	1.90	22.88
GPRS(GMSK)	512	Horizontal	-26.63	-53.21	0	1.92	28.50
	661	Horizontal	-27.01	-53.42	0	1.94	28.35
	810	Horizontal	-27.02	-53.67	0	1.90	28.55
	512	Vertical	-35.06	-53.70	0	1.92	20.56
	661	Vertical	-35.23	-53.91	0	1.94	20.62
GSM 1900	810	Vertical	-35.76	-54.55	0	1.90	20.69
EGPRS(8-PSK)	512	Horizontal	-29.94	-53.21	0	1.92	25.19
	661	Horizontal	-30.25	-53.42	0	1.94	25.11
	810	Horizontal	-30.35	-53.67	0	1.90	25.22

Note: 1. EIRP= E.R.P+2.15

Report No.: RXA1309-0139RF02R1 Page 13of 36

2.4. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 3kHz,VBW is set to 10kHz for GSM 1900.99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

Report No.: RXA1309-0139RF02R1 Page 14of 36

Test Result

	Channel	Frequency (MHz)	99% Power Bandwidth (kHz)	-26dBc Bandwidth(kHz)
	512	1850.2	246.6127	314.451
GSM 1900+GPRS	661	1880.0	246.5919	316.356
	810	1909.8	247.1982	312.983
001	512	1850.2	241.1694	302.928
GSM 1900+EGPRS	661	1880.0	248.5347	313.931
	810	1909.8	240.3360	301.457

GSM1900+GPRS CH512 Occupied Bandwidth

Report No.: RXA1309-0139RF02R1 Page 15of 36

GSM 1900+GPRS CH661 Occupied Bandwidth

Report No.: RXA1309-0139RF02R1 Page 16of 36

GSM1900+EGPRS CH512 Occupied Bandwidth

GSM 1900+EGPRS CH661 Occupied Bandwidth

Report No.: RXA1309-0139RF02R1 Page 17of 36

GSM 1900+EGPRS CH810 Occupied Bandwidth

Report No.: RXA1309-0139RF02R1 Page 18of 36

2.5. Band Edge Compliance

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to 3kHz,VBW is set to 10kHz for GSM 1900. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm
Limit	-13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

Report No.: RXA1309-0139RF02R1 Page 19of 36

Test Result:

	Carrier frequency (MHz)	Reference value (dBm)	Limit	Conclusion
GSM	1850.0	-23.70	-13	PASS
1900+GPRS	1910.0	-23.10	-13	PASS
GSM	1850.0	-27.01	-13	PASS
1900+EGPRS	1910.0	-29.08	-13	PASS

GSM 1900+GPRS 512 Channel

Report No.: RXA1309-0139RF02R1 Page 20of 36

GSM1900+GPRS 810 Channel

GSM 1900+EGPRS 512 Channel

Report No.: RXA1309-0139RF02R1 Page 21of 36

GSM1900+EGPRS 810 Channel

Report No.: RXA1309-0139RF02R1 Page 22of 36

2.6. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

1. Frequency Stability (Temperature Variation)

The temperature inside the climate chamber is varied from -10°C to +55°C in 10°C step size,

- (1) With all power removed, the temperature was decreased to -10°C and permitted to stabilize for three hours.
- (2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.
- (3) Repeat the above measurements at 10°C increments from -10°C to +55°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.
- 2. Frequency Stability (Voltage Variation)

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 6.8 V and 8.2 V, with a nominal voltage of 7.4V.

Test setup

Report No.: RXA1309-0139RF02R1 Page 23of 36

Limits

No specific frequency stability requirements in part 24.235

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U = 0.01ppm.

Test Result

GSM1900 GPRS

Temperature	Test Results (ppm) / 7.4 V Power supply
(° C)	Channel 661
-30	-13.65
-20	-10.73
-10	-11.09
0	-10.49
10	-21.02
20	-16.27
30	-15.07
40	-16.27
50	-16.81

Voltage	Test Results(ppm) / 20° C
(V)	Channel 661
6.8	-13.12
7.4	-16.27
8.2	-17.93

Report No.: RXA1309-0139RF02R1 Page 24of 36

GSM1900 EGPRS

Temperature	Test Results (ppm) / 7.4 V Power supply
(° C)	Channel 661
-30	-16.81
-20	-12.2
-10	-14.85
0	-18.97
10	-23.46
20	-14.18
30	-4.05
40	-15.37
50	-7.03

Voltage	Test Results(ppm) / 20° C
(V)	Channel 661
6.8	6.24
7.4	-14.18
8.2	5.75

Report No.: RXA1309-0139RF02R1 Page 25of 36

2.7. Spurious Emissions at Antenna Terminals

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. For GSM 1900,RBW and VBW are set to 100 kHz, Sweep is set to ATUO.

Of those disturbances below (limit – 20 dB), the mark is not required for the EUT.

Test setup

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

|--|

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-12.75GHz	1.407 dB

Report No.: RXA1309-0139RF02R1 Page 26of 36

Test Result

GSM 1900 CH 512

Note: The signal beyond the limit is carrier. GSM 1900 512 Channel 30MHz~18GHz

GSM 1900 512 Channel 18GHz ~20GHz

Page 27of 36

GSM 1900 CH 661

Note: The signal beyond the limit is carrier. GSM 1900 661 Channel 30MHz~18GHz

GSM 1900 661 Channel 18GHz ~20GHz

GSM 1900 CH 810

Note: The signal beyond the limit is carrier. GSM 1900 810 Channel 30MHz~18GHz

GSM 1900 810 Channel 18GHz ~20GHz

Report No.: RXA1309-0139RF02R1 Page 29of 36

2.8 Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The measurements procedures in TIA -603C are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

. The procedure of Radiates Spurious Emission is as follows: Step 1:

The measurement is carried out in the semi-anechoic chamber. EUT was placed on a 1.5 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.

Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a Tx cable. Adjust the level of the signal generator output until the value of the receiver reach the previously recorded analyzer power level (LVL). Then The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

Report No.: RXA1309-0139RF02R1 Page 30of 36

E.R.P (peak power) =S.G. - Tx Cable loss + Substitution antenna gain – 2.15. EIRP= E.R.P+2.15

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the antenna is vertical.

Of those disturbances below (limit – 20 dB), the mark is not required for the EUT.

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Report No.: RXA1309-0139RF02R1 Page 31of 36

Test Result

GSM 1900 CH 512

Harmonic	TX ch.512 Frequency	SG (dBm)	Cable Loss	Gain	EIRP Level	Limit (dBm)	Margin	Azimuth
патпопіс	(MHz)		(dB)	(dBi)	(dBm)	, ,	(dB)	(deg)
2	3700.4	-54.33	2	10.15	-48.33	-13	35.33	180
3	5550.6	-53.01	2.51	11.35	-46.32	-13	33.32	135
4	7400.8	-60.30	4.2	10.85	-55.80	-13	42.80	90
5	9251	-58.25	5.2	11.35	-54.25	-13	41.25	180
6	11101.2	-58.00	5.5	11.95	-53.70	-13	40.70	270
7	12951.4	-60.50	5.7	13.55	-54.80	-13	41.80	0
8	14801.6	-54.79	6.3	13.75	-49.49	-13	36.49	180
9	16651.8	-45.72	6.8	13.85	-40.82	-13	27.82	90
10	18502	-43.34	6.9	14.25	-38.14	-13	25.14	0

Report No.: RXA1309-0139RF02R1 Page 32of 36

GSM 1900 CH 661

	TX ch.661		Cable		EIRP			
Harmonic	Frequency	SG (dBm)	Loss	Gain	Level	Limit (dBm)	Margin (dB)	Azimuth
паннонис	(MHz)	(ubili)	(dB)	(dBi)	(dBm)	(ubili)	(ub)	(deg)
2	3760	-56.46	2	10.75	-49.86	-13	36.86	0
3	5640	-52.19	2.51	11.05	-45.80	-13	32.80	90
4	7520	-58.56	4.2	11.15	-53.76	-13	40.76	180
5	9400	-60.62	5.2	11.15	-56.82	-13	43.82	270
6	11280	-58.89	5.5	11.95	-54.59	-13	41.59	0
7	13160	-56.89	5.7	13.55	-51.19	-13	38.19	180
8	15040	-53.24	6.3	13.75	-47.94	-13	34.94	90
9	16920	-44.48	6.8	13.85	-39.58	-13	26.58	0
10	18800	-42.30	6.9	14.25	-37.10	-13	24.10	270

Report No.: RXA1309-0139RF02R1 Page 33of 36

GSM 1900 CH 810

	TX ch.810		Cable		EIRP			
	Frequency	SG	Loss	Gain	Level	Limit	Margin	Azimuth
Harmonic	(MHz)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	(deg)
2	3819.6	-56.43	2	10.15	-50.43	-13	37.43	180
3	5729.4	-55.95	2.51	11.05	-49.56	-13	36.56	270
4	7639.2	-60.22	4.2	11.15	-55.42	-13	42.42	0
5	9549	-60.60	5.2	11.15	-56.80	-13	43.80	180
6	11458.8	-59.97	5.5	11.95	-55.67	-13	42.67	90
7	13368.6	-58.37	5.7	13.55	-52.67	-13	39.67	0
8	15278.4	-52.24	6.3	13.75	-46.94	-13	33.94	90
9	17188.2	-47.90	6.8	13.85	-43.00	-13	30.00	0
10	19098	-43.22	6.9	14.25	-38.02	-13	25.02	0

Report No.: RXA1309-0139RF02R1 Page 34of 36

3. Main Test Instruments

No.	Name	Туре	Manufacturer	Serial Number	Calibration Date	Valid Period
01	Base Station Simulator	CMU200	R&S	118133	2012-06-30	One year
02	Power Splitter	SHX-GF2-2-13	Hua Xiang	10120101	NA	NA
03	Spectrum Analyzer	E4445A	Agilent	MY46181146	2012-06-30	One year
04	Universal Radio Communication Tester	E5515C	Agilent	MY48367192	2012-06-30	One year
05	Signal Analyzer	FSV30	R&S	100815	2012-06-30	One year
06	Signal generator	SMB 100A	R&S	102594	2012-06-30	One year
07	EMI Test Receiver	ESCI	R&S	100948	2012-06-30	One year
08	Trilog Antenna	VUBL 9163	SCHWARZB ECK	9163-201	2011-06-19	Three years
09	Horn Antenna	HF907	R&S	100126	2012-07-01	Three years
10	Climatic Chamber	PT-30B	Re Ce	20101891	2010-09-10	Three years

*****END OF REPORT BODY*****

Report No.: RXA1309-0139RF02R1 Page 35of 36

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT

b: Battery
Picture 1 EUT and Auxiliary

Report No.: RXA1309-0139RF02R1 Page 36of 36

A.2 Test Setup

Picture 2: Radiated Spurious Emissions Test setup