Diode Circuits: Part 2

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

SEQUEL file: ee101_peak_detector_1.sqproj

Peak detector (with $V_{on} = 0.7 \,\mathrm{V}$)

Peak detector (with $V_{on} = 0.7 \,\mathrm{V}$)

Peak detector (with $V_{on} = 0.7 \,\mathrm{V}$)

SEQUEL file: ee101_peak_detector_1.sqproj

* A clamper circuit provides a "level shift." (The shape of the input signal is not altered.)

- * A clamper circuit provides a "level shift." (The shape of the input signal is not altered.)
- * The shift could be positive or negative.

- * A clamper circuit provides a "level shift." (The shape of the input signal is not altered.)
- * The shift could be positive or negative.

* When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C+V_S=0 \to V_C=-V_S$.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C+V_S=0 \to V_C=-V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C+V_S=0 \to V_C=-V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C+V_S=0 \to V_C=-V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.

- * When D conducts, the capacitor charges instantaneously since R_{on} is small. In this phase, $V_D = 0 \rightarrow V_C + V_S = 0 \rightarrow V_C = -V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.

- * When D conducts, the capacitor charges instantaneously since R_{on} is small. In this phase, $V_D = 0 \rightarrow V_C + V_S = 0 \rightarrow V_C = -V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C+V_S=0 \to V_C=-V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.

- * When D conducts, the capacitor charges instantaneously since R_{on} is small. In this phase, $V_D = 0 \rightarrow V_C + V_S = 0 \rightarrow V_C = -V_S$.
- st V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m$, i.e., a positive level shift.
- * Note that we are generally interested only in the steady-state behaviour and not in the transient at the beginning.

* When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small (as in the last circuit). In this phase,

$$V_c + V_s + V_{\text{on}} = 0 \rightarrow V_c = -V_s - V_{\text{on}}.$$

* When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small (as in the last circuit). In this phase,

$$V_c + V_s + V_{\text{on}} = 0 \rightarrow V_c = -V_s - V_{\text{on}}.$$

* V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.

- * When D conducts, the capacitor charges instantaneously since R_{on} is small (as in the last circuit). In this phase,
 - $V_c + V_s + V_{\text{on}} = 0 \rightarrow V_c = -V_s V_{\text{on}}.$
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value $(V_m V_{\rm on})$, it cannot change any more. We then have $V_o(t) = V_s(t) + V_c(t) = V_s(t) + V_m V_{\rm on}$. In this case, V_o gets clamped at $-0.7\,\rm V$.

* When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_c-V_s=0 \to V_c=V_s$.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C-V_S=0 \to V_C=V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C-V_S=0 \to V_C=V_S$.
- st V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) V_c(t) = V_s(t) V_m$, i.e., a negative level shift.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C-V_S=0 \to V_C=V_S$.
- st V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) V_c(t) = V_s(t) V_m$, i.e., a negative level shift.

- * When D conducts, the capacitor charges instantaneously since $R_{\rm on}$ is small. In this phase, $V_D=0 \to V_C-V_S=0 \to V_C=V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) V_c(t) = V_s(t) V_m$, i.e., a negative level shift.

- * When *D* conducts, the capacitor charges instantaneously since R_{on} is small. In this phase, $V_D = 0 \rightarrow V_C V_S = 0 \rightarrow V_C = V_S$.
- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value (V_m) , it cannot change any more. We then have $V_o(t) = V_s(t) V_c(t) = V_s(t) V_m$, i.e., a negative level shift.

* When *D* conducts, the capacitor charges instantaneously since *R*_{on} is small (as in the last circuit). In this phase,

$$V_c + V_{\text{on}} - V_s = 0 \rightarrow V_c = V_s - V_{\text{on}}.$$

* When D conducts, the capacitor charges instantaneously since R_{on} is small (as in the last circuit). In this phase,

$$V_c + V_{\text{on}} - V_s = 0 \rightarrow V_c = V_s - V_{\text{on}}.$$

* V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.

* When D conducts, the capacitor charges instantaneously since R_{on} is small (as in the last circuit). In this phase,

$$V_c + V_{\text{on}} - V_s = 0 \rightarrow V_c = V_s - V_{\text{on}}.$$

- * V_c can only increase since a decrease in V_c would require the diode to conduct in the reverse direction.
- * After V_c reaches its maximum value $(V_m V_{on})$, it cannot change any more. We then have $V_o(t) = V_s(t) V_c(t) = V_s(t) V_m + V_{on}$. In this case, V_o gets clamped at 0.7 V.

* Input voltage: $-V_m$ to V_m

- * Input voltage: $-V_m$ to V_m
- * Output of positive clamper (V_1) : 0 to 2 V_m

- * Input voltage: $-V_m$ to V_m
- * Output of positive clamper (V_1) : 0 to 2 V_m
- * The peak detector detects the peak of $V_1(t)$, i.e., $2\,V_m$ (dc).

 ${\sf SEQUEL\ file:\ ee101_voltage_doubler.sqproj}$

Assuming R_1C and R_2C to be large compared to T, find $V_o(t)$ in steady state.

* Charging time constant $\tau_1 = R_1 C$.

- * Charging time constant $\tau_1 = R_1 C$.
- * Discharging time constant $\tau_2 = R_2 C$.

- * Charging time constant $\tau_1 = R_1 C$.
- * Discharging time constant $\tau_2 = R_2 C$.
- * Since $\tau_1 \gg T$ and $\tau_2 \gg T$, we expect V_C to be nearly constant in steady state, i.e., $V_C(t) \approx \text{constant} \equiv V_C^0$.

- * Charging time constant $\tau_1 = R_1 C$.
- * Discharging time constant $\tau_2 = R_2 C$.
- * Since $\tau_1 \gg T$ and $\tau_2 \gg T$, we expect V_C to be nearly constant in steady state, i.e., $V_C(t) \approx \text{constant} \equiv V_C^0$.
- * $V_o(t) = V_i(t) V_C(t) \approx V_i(t) V_C^0$

Assuming R_1C and R_2C to be large compared to T, find $V_o(t)$ in steady state.

- * Charging time constant $\tau_1 = R_1 C$.
- * Discharging time constant $\tau_2 = R_2 C$.
- * Since $\tau_1 \gg T$ and $\tau_2 \gg T$, we expect V_C to be nearly constant in steady state, i.e., $V_C(t) \approx \text{constant} \equiv V_C^0$.
- * $V_o(t) = V_i(t) V_C(t) \approx V_i(t) V_C^0$.

Let us look at an example.

$$\Delta Q = \int_0^T i_C \, dt = \int_0^{T_1} i_C \, dt + \int_{T_1}^{T_1 + T_2} i_C \, dt = 0.$$

$$\Delta Q = \int_0^T i_C dt = \int_0^{T_1} i_C dt + \int_{T_1}^{T_1 + T_2} i_C dt = 0.$$

$$T_1 \left(\frac{V_m - V_C - V_{\text{on}}}{R_1} \right) - T_2 \left(\frac{0 - (-V_m - V_C) - V_{\text{on}}}{R_2} \right) = 0.$$

$$\begin{split} &\Delta Q = \int_0^T i_C \, dt = \int_0^{T_1} i_C \, dt + \int_{T_1}^{T_1 + T_2} i_C \, dt = 0. \\ &T_1 \left(\frac{V_m - V_C - V_{\text{on}}}{R_1} \right) - T_2 \left(\frac{0 - (-V_m - V_C) - V_{\text{on}}}{R_2} \right) = 0. \\ &\left(\frac{T_1}{R_1} - \frac{T_2}{R_2} \right) (V_m - V_{\text{on}}) = V_C \left(\frac{T_1}{R_1} + \frac{T_2}{R_2} \right). \end{split}$$

$$\begin{split} &\Delta Q = \int_0^T i_C \, dt = \int_0^{T_1} i_C \, dt + \int_{T_1}^{T_1 + T_2} i_C \, dt = 0. \\ &T_1 \left(\frac{V_m - V_C - V_{\text{on}}}{P_0} \right) - T_2 \left(\frac{0 - (-V_m - V_C) - V_{\text{on}}}{P_0} \right) = 0. \end{split}$$

$$\left(\frac{T_1}{R_1} - \frac{T_2}{R_2}\right) (V_m - V_{on}) = V_C \left(\frac{T_1}{R_1} + \frac{T_2}{R_2}\right).$$

$$\rightarrow V_C = \frac{\left(\frac{T_1}{R_1} - \frac{T_2}{R_2}\right)}{\left(\frac{T_1}{R_2} + \frac{T_2}{R_2}\right)} (V_m - V_{\text{on}}) = -1.86 \, \text{V}.$$

* A rectifier is used t charger.	to convert an AC voltage to a DC voltage	ge (typically 5 to 20 V), e.g.,	a mobile phone
	to convert an AC voltage to a DC volta	ge (typically 5 to 20 V), e.g., a	a mobile phone

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage

- * A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phone charger.
- * AC mains \rightarrow step-down transformer \rightarrow DC voltage OR AC mains \rightarrow DC voltage \rightarrow lower DC voltage
- * A voltage regulator would be typically used to remove the ripple riding on the DC output.

Half-wave rectifier without filter

Vi

Half-wave rectifier without filter

* D conducts only if $V_i > V_{
m on}$, and in that case $V_o = V_i - V_{
m on}$, a straight line with slope = 1.

Half-wave rectifier without filter

- * D conducts only if $V_i > V_{\rm on}$, and in that case $V_o = V_i V_{\rm on}$, a straight line with slope = 1.
- * If $V_i < V_{\text{on}}$, D does not conduct $\rightarrow V_o = 0$.

* Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.

* Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.

- * Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.
- * Because of the load current i_R , there is a drop in the output voltage ightarrow "ripple"

- * Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.
- Because of the load current i_R, there is a drop in the output voltage → "ripple"
- * The peak diode current is much larger than the average load current.

- * Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.
- Because of the load current i_R, there is a drop in the output voltage → "ripple"
- * The peak diode current is much larger than the average load current.
- * $V_D(t) = V_s(t) V_o(t) \approx V_s(t) V_m$ \rightarrow The maximum reverse bias ("Peak Inverse Voltage" or PIV) across the diode is 2 V_m .

- * Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.
- * Because of the load current i_R , there is a drop in the output voltage \rightarrow "ripple"
- * The peak diode current is much larger than the average load current.
- * $V_D(t) = V_s(t) V_o(t) \approx V_s(t) V_m$ \rightarrow The maximum reverse bias ("Peak Inverse Voltage" or PIV) across the diode is 2 V_m .
- * With $V_{\rm on} =$ 0.7 V, the plots are slightly different.

- Similar to the peak detector except that the load resistance provides a discharge path for the capacitor in this case.
- * Because of the load current i_R , there is a drop in the output voltage \rightarrow "ripple"
- * The peak diode current is much larger than the average load current.
- * $V_D(t) = V_s(t) V_o(t) \approx V_s(t) V_m$ \rightarrow The maximum reverse bias ("Peak Inverse Voltage" or PIV) across the diode is 2 V_m .
- * With $V_{\rm on} =$ 0.7 V, the plots are slightly different.

 $V_m\!=\!16\,\mathrm{V},\ f\!=\!50\,\mathrm{Hz},\ R\!=\!100\,\Omega.$ For a ripple voltage $V_R\!=\!2\,\mathrm{V},$ find (a) the filter capacitance C, (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{0n}\!=\!0\,\mathrm{V}.$)

 $V_m=16\,\mathrm{V},\ f=50\,\mathrm{Hz},\ R=100\,\Omega.$ For a ripple voltage $V_R=2\,\mathrm{V},$ find (a) the filter capacitance C, (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{00}=0\,\mathrm{V}.$)

- (a) filter capacitance
 - 1. In the discharge phase,

$$V_o(t) = V_m e^{-t/ au} pprox V_m \left(1 - rac{t}{ au}
ight).$$

 $V_m=16\,\mathrm{V},\ f=50\,\mathrm{Hz},\ R=100\,\Omega.$ For a ripple voltage $V_R=2\,\mathrm{V},$ find (a) the filter capacitance C, (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{00}=0\,\mathrm{V}.$)

- (a) filter capacitance
 - 1. In the discharge phase,

$$V_o(t) = V_m e^{-t/\tau} \approx V_m \left(1 - \frac{t}{\tau}\right).$$

The drop in $V_o(t)$ is given by the second term.

Using $T_2 \approx T$,

$$V_R = V_m \frac{T}{\tau} = V_m \frac{T}{RC}$$
.

- (a) Ripple voltage V_R
- 2. Assuming $i_C=i_R=\frac{V_o}{R}\approx\frac{V_m}{R}$ in the discharge phase, we get

$$i_C = \frac{V_m}{R} = C \frac{\Delta V_o}{\Delta t} \approx C \frac{V_R}{T} \rightarrow V_R = V_m \frac{T}{RC}.$$

- (a) Ripple voltage V_R
- 2. Assuming $i_C=i_R=\frac{V_o}{R}\approx\frac{V_m}{R}$ in the discharge phase, we get

$$i_C = \frac{V_m}{R} = C \frac{\Delta V_o}{\Delta t} \approx C \frac{V_R}{T} \rightarrow V_R = V_m \frac{T}{RC}.$$

$$ightarrow C = rac{V_m}{V_R} rac{T}{R} = rac{16\, ext{V}}{2\, ext{V}} rac{20\, ext{ms}}{100\,\Omega} = 1600\,\mu ext{F}.$$

(b) Average diode current

(b) Average diode current Using charge balance,

$$\int_{T-T_c}^{T} (i_D - i_R) dt = \int_{0}^{T-T_c} i_R dt$$

(b) Average diode current

Using charge balance,
$$\int_{T-T_c}^T (i_D - i_R) dt = \int_0^{T-T_c} i_R dt$$

$$\rightarrow \int_{T-T_c}^T i_D dt = \int_0^T i_R dt.$$

$$ightarrow \int_{-T}^{T} i_D dt = \int_{-T}^{T} i_R dt.$$

(b) Average diode current

Using charge balance, $\int_{T-T_c}^{T} (i_D - i_R) dt = \int_{0}^{T-T_c} i_R dt$

$$\int_{T-T_c} (I_D - I_R) dt = \int_0 I_R$$

$$\rightarrow \int_{T-T_c}^T i_D dt = \int_0^T i_R dt.$$

$$i_D^{\text{av}} = \frac{1}{T} \int_0^T i_D dt = \frac{1}{T} \int_{T - T_c}^T i_D dt$$

$$1 \int_0^T V_m$$

$$=\frac{1}{T}\int_0^T i_R\,dt\approx\frac{V_m}{R}.$$

(b) Average diode current

Using charge balance, $\int_{T-T_c}^{T} (i_D - i_R) dt = \int_{0}^{T-T_c} i_R dt$

$$i_D^{\text{av}} = \frac{1}{T} \int_0^T i_D dt = \frac{1}{T} \int_{T-T}^T i_D dt$$

$$=rac{1}{T}\int_0^T i_R\,dtpproxrac{V_m}{R}.$$

$$i_D^{\mathrm{av}} pprox rac{16\,\mathrm{V}}{100\,\Omega} = 160\,\mathrm{mA}.$$

$$i_D^{\mathrm{peak}} = \left. C \frac{d}{dt} \left(V_m \cos \omega t \right) \right|_{t=-T_c} + \frac{V_m}{R}$$

$$\begin{array}{c|c}
\underline{i_D} & D \\
+ & V_D - \\
V_s & C & R \geqslant V_o \\
- & & i_C \downarrow & i_R \downarrow -
\end{array}$$

$$i_D^{\mathrm{peak}} = \left. C \frac{d}{dt} \left(V_m \cos \omega t \right) \right|_{t=-T_c} + \frac{V_m}{R}$$

$$= -\omega C V_m \sin(-\omega T_c) + \frac{16 V}{100 \Omega}$$

$$= \omega C V_m \sin \omega T_c + 0.16$$

$$\begin{array}{c|c} \underline{i_D} & D \\ + & V_D - \\ V_s \bigcirc & C \bigcirc & R \lessgtr V_o \\ - & & i_C | & i_R | & - \end{array}$$

$$i_D^{\text{peak}} = C \frac{d}{dt} (V_m \cos \omega t) \Big|_{t=-T_c} + \frac{V_m}{R}$$

$$= -\omega C V_m \sin(-\omega T_c) + \frac{16 \text{ V}}{100 \Omega}$$

$$= \omega C V_m \sin \omega T_c + 0.16$$

$$V_m \cos(-\omega T_c) = V_m - V_R, \text{ giving}$$

 $\omega T_c = \cos^{-1}\left(1 - \frac{V_R}{V}\right) = \cos^{-1}\left(1 - \frac{2}{16}\right) = 29^{\circ}.$

$$\begin{array}{c|c} \underline{i_D} & D \\ + & V_D - \\ V_s \bigcirc & C \longrightarrow R \geqslant V_o \\ - & & i_C \downarrow & i_R \downarrow - \end{array}$$

$$i_D^{\text{peak}} = C \frac{d}{dt} (V_m \cos \omega t) \Big|_{t=-T_c} + \frac{V_m}{R}$$
$$= -\omega C V_m \sin(-\omega T_c) + \frac{16 \text{ V}}{100 \Omega}$$
$$= \omega C V_m \sin \omega T_c + 0.16$$

$$V_m \cos(-\omega T_c) = V_m - V_R$$
, giving
$$\omega T_c = \cos^{-1}\left(1 - \frac{V_R}{V_c}\right) = \cos^{-1}\left(1 - \frac{2}{16}\right) = 29^\circ.$$

= 3.89 + 0.16 = 4.05 A

$$i_D^{\text{peak}} = 2\pi \times 50 \times 1600 \times 10^{-6} \times 16 \times \sin 29^{\circ} + 0.16$$

t = T

t = 0

 $-2V_{m}$

٧.

(b) Peak diode current: analytic expression

(b) Peak diode current: analytic expression

$$V_m \cos(-\omega T_c) = V_m - V_R \rightarrow \cos \omega T_c = 1 - \frac{V_R}{V_m} \equiv 1 - x$$

(b) Peak diode current: analytic expression

$$V_m \cos(-\omega T_c) = V_m - V_R \rightarrow \cos \omega T_c = 1 - \frac{V_R}{V_m} \equiv 1 - x$$

$$\sin \omega T_c = \sqrt{1 - \cos^2 \omega T_c} = \sqrt{1 - (1 - x)^2}$$

$$= \sqrt{1 - (1 - 2x + x^2)} \approx \sqrt{2x} = \sqrt{\frac{2V_R}{V_m}}$$

$$\begin{array}{c|c} \underline{i_D} & D \\ + & V_D - \\ V_s \bigcirc & C \longrightarrow R \geqslant V_o \\ - & i_C | i_R | - \end{array}$$

(b) Peak diode current: analytic expression

$$egin{aligned} V_m \cos(-\omega T_c) &= V_m - V_R
ightarrow \cos \omega T_c = 1 - rac{V_R}{V_m} \equiv 1 - x \ \sin \omega T_c &= \sqrt{1 - \cos^2 \omega T_c} = \sqrt{1 - (1 - x)^2} \ &= \sqrt{1 - (1 - 2x + x^2)} pprox \sqrt{2x} = \sqrt{rac{2 \, V_R}{V_m}} \ i_D^{
m peak} &= i_R + \left. C \, rac{d}{dt} \left(V_m \cos \omega t
ight)
ight|_{t=-T_c} \ &= i_R + \omega C \, V_m \sin \omega T_c \ &= i_R + \omega C \, V_m \sqrt{rac{2 \, V_R}{V_m}} \end{aligned}$$

(b) Peak diode current: analytic expression

$$V_m \cos(-\omega T_c) = V_m - V_R \rightarrow \cos \omega T_c = 1 - \frac{V_R}{V_m} \equiv 1 - x$$
 $\sin \omega T_c = \sqrt{1 - \cos^2 \omega T_c} = \sqrt{1 - (1 - x)^2}$
 $= \sqrt{1 - (1 - 2x + x^2)} \approx \sqrt{2x} = \sqrt{\frac{2V_R}{V_m}}$
 $i_D^{\text{peak}} = i_R + C \frac{d}{dt} \left(V_m \cos \omega t \right) \Big|_{t=-T_c}$
 $= i_R + \omega C V_m \sin \omega T_c$
 $= i_R + \omega C V_m \sqrt{\frac{2V_R}{V_m}}$

(c) Maximum reverse bias $\approx 2 V_m = 32 V$.

(b) Peak diode current: analytic expression

$$V_m \cos(-\omega T_c) = V_m - V_R \rightarrow \cos \omega T_c = 1 - \frac{V_R}{V_m} \equiv 1 - x$$
 $\sin \omega T_c = \sqrt{1 - \cos^2 \omega T_c} = \sqrt{1 - (1 - x)^2}$
 $= \sqrt{1 - (1 - 2x + x^2)} \approx \sqrt{2x} = \sqrt{\frac{2 V_R}{V_m}}$
 $i_D^{\text{peak}} = i_R + C \frac{d}{dt} \left(V_m \cos \omega t \right) \Big|_{t=-T_c}$
 $= i_R + \omega C V_m \sin \omega T_c$
 $= i_R + \omega C V_m \sqrt{\frac{2 V_R}{V_m}}$

(c) Maximum reverse bias $\approx 2 V_m = 32 \text{ V}$.

SEQUEL file: ee101_half_rectifier.sqproj

* As in the half-wave rectifier case, we have charging and discharging intervals, and $V_o \approx V_m$ is maintained.

- * As in the half-wave rectifier case, we have charging and discharging intervals, and $V_o \approx V_m$ is maintained.
- * Charging through D_1 , D_2 takes place when $V_o(t)$ falls below $V_s(t)$.

- * As in the half-wave rectifier case, we have charging and discharging intervals, and $V_o \approx V_m$ is maintained.
- * Charging through D_1 , D_2 takes place when $V_o(t)$ falls below $V_s(t)$.
- * Charging through D_3 , D_4 takes place when $V_o(t)$ falls below $-V_s(t)$.

- * As in the half-wave rectifier case, we have charging and discharging intervals, and $V_0 \approx V_m$ is maintained.
- * Charging through D_1 , D_2 takes place when $V_o(t)$ falls below $V_s(t)$.
- * Charging through D_3 , D_4 takes place when $V_o(t)$ falls below $-V_s(t)$.
- * The discharging interval is typically much longer than the charging intervals (*T*_{C1} and *T*_{C2}).

- * As in the half-wave rectifier case, we have charging and discharging intervals, and $V_o \approx V_m$ is maintained.
- * Charging through D_1 , D_2 takes place when $V_o(t)$ falls below $V_s(t)$.
- * Charging through D_3 , D_4 takes place when $V_o(t)$ falls below $-V_s(t)$.
- * The discharging interval is typically much longer than the charging intervals (T_{C1} and T_{C2}).
- * The maximum reverse bias across any of the diodes is V_m .

 $V_m\!=\!16\,\text{V},\,f\!=\!50\,\text{Hz},\,R\!=\!100\,\Omega.$ For a ripple voltage $V_R\!=\!2\,\text{V},\,\text{find}$ (a) the filter capacitance $C,\,$ (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{\text{on}}\!=\!0\,\text{V}.)$

 $V_m\!=\!16\,\text{V},\,f\!=\!50\,\text{Hz},\,R\!=\!100\,\Omega.$ For a ripple voltage $V_R\!=\!2\,\text{V},\,\text{find}$ (a) the filter capacitance $C,\,$ (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{\text{on}}\!=\!0\,\text{V}.)$

(a) filter capacitance:

 $V_m\!=\!16$ V, $f\!=\!50$ Hz, $R\!=\!100\,\Omega.$ For a ripple voltage $V_R\!=\!2$ V, find (a) the filter capacitance C, (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{\rm on}\!=\!0$ V.)

(a) filter capacitance:

Assuming
$$i_C = i_R = \frac{V_o}{R} \approx \frac{V_m}{R}$$
 in the discharge phase, we get $i_C = \frac{V_m}{R} = C \frac{\Delta V_o}{\Delta t} \approx C \frac{V_R}{T/2} \rightarrow V_R = V_m \frac{T}{2RC}$.

 $V_m=16\,\mathrm{V},\ f=50\,\mathrm{Hz},\ R=100\,\Omega.$ For a ripple voltage $V_R=2\,\mathrm{V},\ \mathrm{find}\ (a)\,\mathrm{the}$ filter capacitance C, (b) average and peak diode currents, (c) maximum reverse voltage across the diode. (Let $V_{\mathrm{on}}=0\,\mathrm{V}.$)

(a) filter capacitance:

Assuming
$$i_C = i_R = \frac{V_o}{R} \approx \frac{V_m}{R}$$
 in the discharge phase, we get $i_C = \frac{V_m}{R} = C \frac{\Delta V_o}{\Delta t} \approx C \frac{V_R}{T/2} \rightarrow V_R = V_m \frac{T}{2RC}.$ $\rightarrow C = \frac{1}{2} \frac{V_m}{V_R} \frac{T}{R} = \frac{1}{2} \frac{16 \text{V}}{2 \text{V}} \frac{20 \text{ ms}}{100 \Omega} = 800 \, \mu\text{F}.$

 D_4 D_2 D_4 D_4 D_2 D_4 D_4 D_2 D_4 D_4

(b) Average diode current

Half of the charge lost by the capacitor is supplied by i_{D1} (= i_{D2}), and the other half by i_{D3} (= i_{D4}).

(b) Average diode current

Half of the charge lost by the capacitor is supplied by i_{D1} (= i_{D2}), and the other half by i_{D3} (= i_{D4}).

$$i_D^{\text{av}} = \frac{1}{T} \times \frac{1}{2} \times \text{(Charge lost in one cycle)}$$

(b) Average diode current

Half of the charge lost by the capacitor is supplied by i_{D1} (= i_{D2}), and the other half by i_{D3} (= i_{D4}).

$$i_D^{
m av} = rac{1}{T} imes rac{1}{2} imes$$
 (Charge lost in one cycle)

$$pprox rac{1}{T} imes rac{1}{2} imes \left(rac{V_m}{R} imes T
ight) = rac{V_m}{2R} = rac{16\, ext{V}}{2 imes 100\,\Omega} = 80\, ext{mA}.$$

∠V₀ V_{m} V_R /_V_s 0 V_{D1} V_{D3} $-V_{m}$ /i_{D1}, i_{D2} 0-, i_{D3}, i_{D4} t = 00-T/2 T/2 T_{C1} T_{C2}

(b) Peak diode current

$$i_{D1}^{\mathrm{peak}} = \left. C \frac{d}{dt} \left(V_m \cos \omega t \right) \right|_{t=-T_{C1}} + \frac{V_m}{R}$$

$$= -\omega C V_m \sin(-\omega T_{C1}) + \frac{16 V}{100 \Omega}$$

$$= \omega C V_m \sin \omega T_{C1} + 0.16$$

(b) Peak diode current

$$i_{D1}^{\text{peak}} = C \frac{d}{dt} \left(V_m \cos \omega t \right) \bigg|_{t=-T_{C1}} + \frac{V_m}{R}$$

$$= -\omega C V_m \sin(-\omega T_{C1}) + \frac{16 V}{100 \Omega}$$

$$= \omega C V_m \sin \omega T_{C1} + 0.16$$

$$\omega T_{C1} = \cos^{-1}\left(1 - \frac{V_R}{V_m}\right) = \cos^{-1}\left(1 - \frac{2}{16}\right) = 29^{\circ}.$$

(b) Peak diode current

$$\begin{split} i_{D1}^{\text{peak}} &= \left. C \frac{d}{dt} \left(V_m \cos \omega t \right) \right|_{t=-T_{C1}} + \frac{V_m}{R} \\ &= -\omega C \ V_m \sin \left(-\omega T_{C1} \right) + \frac{16 \ V}{100 \ \Omega} \\ &= \omega C \ V_m \sin \omega T_{C1} + 0.16 \\ \omega T_{C1} &= \cos^{-1} \left(1 - \frac{V_R}{V_m} \right) = \cos^{-1} \left(1 - \frac{2}{16} \right) = 29^{\circ}. \\ i_{D1}^{\text{peak}} &= 2\pi \times 50 \times 800 \times 10^{-6} \times 16 \times \sin 29^{\circ} + 0.16 \\ &= 1.95 + 0.16 = 2.1 \ \text{A}. \end{split}$$

(c) Maximum reverse bias = $V_m = 16 \text{ V}$.

(c) Maximum reverse bias = $V_m = 16 \text{ V}$.

SEQUEL file: diode_rectifier_4.sqproj

Comparison of half-wave and full-wave (bridge) rectifiers with capacitive filter

For the same source voltage $(V_m \sin \omega t)$, load (R), and ripple voltage (V_R) , compare the half-wave and full-wave rectifiers.

Comparison of half-wave and full-wave (bridge) rectifiers with capacitive filter

For the same source voltage $(V_m \sin \omega t)$, load (R), and ripple voltage (V_R) , compare the half-wave and full-wave rectifiers.

Parameter	Half-wave	Full-wave
Number of diodes	1	4
Filter capacitance	С	C/2
Average diode current	i _D av	$i_D^{\rm av}/2$
Peak diode current	i_D^{peak}	$i_D^{\mathrm{peak}}/2$
Maximum reverse voltage	2 <i>V</i> _m	V _m