Regression Models - Project 2

Kalyani

1/11/2022

Executive Summary You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

Data Processing/briefly analysis

```
library(car)
```

Loading required package: carData

```
mtcars$am = as.factor(mtcars$am)
levels(mtcars$am) = c("Automatic", "Manual")
summary(mtcars$mpg)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.40 15.43 19.20 20.09 22.80 33.90
```

summary(mtcars\$am)

```
## Automatic Manual
## 19 13
```

#Exploratory analysis A Scatterplot to check the relations of MPG variables

[&]quot;Is an automatic or manual transmission better for MPG"

[&]quot;Quantify the MPG difference between automatic and manual transmissions"

Type of Transmission

Boxplot to check what the type of transmission could be more efficiently to gas consumption.

Comparison of MPG by type of Transmission

•

A correlation analysis of MPG variable and others.

Fit 3 - am + wt

```
cor(mtcars[, -c(9)])[1, ]
##
                       cyl
                                  disp
                                                hp
                                                          drat
                                                                                  qsec
           mpg
    1.0000000 \ -0.8521620 \ -0.8475514 \ -0.7761684 \ \ 0.6811719 \ -0.8676594 \ \ 0.4186840
##
##
                      gear
            ٧s
    0.6640389 0.4802848 -0.5509251
Linear models Fit 1 - am
fit1 = lm(mpg ~ am, data=mtcars)
rmse1 = sqrt(sum(fit1$residuals ^ 2) / nrow(mtcars))
rsq1 = summary(fit1)$r.squared
Fit 2 - \operatorname{mpg}
fit2 = lm(mpg ~ wt, data=mtcars)
rmse2 = sqrt(sum(fit2$residuals ^ 2) / nrow(mtcars))
rsq2 = summary(fit2)$r.squared
```

```
fit3 = lm(mpg ~ am + wt, data=mtcars)
rmse3 = sqrt(sum(fit3$residuals ^ 2) / nrow(mtcars))
rsq3 = summary(fit3)$r.squared
```

#Residual Analysis Residuals Plot

```
par(mfcol = c(1, 3))
plot(mtcars$wt, resid(fit1), main = "Model 1", xlab = "Weight (lbs/1000)", ylab = "Residuals")
plot(mtcars$wt, resid(fit2), main = "Model 2", xlab = "Weight (lbs/1000)", ylab = "Residuals")
plot(mtcars$wt, resid(fit3), main = "Model 3", xlab = "Weight (lbs/1000)", ylab = "Residuals")
```


The residuals for model 1 exhibit a linear pattern. Model 1 has larger residuals than the other two models. The residuals of models 2 and 3 are almost identical.

 $\ll \ll$ table of comparison - Root Mean Squared Error

[1] "Model 2 = 2.94916268595503"

```
print(paste('Model 1 = ', rmse1))

## [1] "Model 1 = 4.74636900427014"

print(paste('Model 2 = ', rmse2))
```

```
print(paste('Model 3 = ', rmse3))
## [1] "Model 3 = 2.94915081645569"
Table of comparisation - R2
print(paste('Model 1 = ', rsq1))
## [1] "Model 1 = 0.359798943425465"
print(paste('Model 2 = ', rsq2))
## [1] "Model 2 = 0.752832793658264"
print(paste('Model 3 = ', rsq3))
## [1] "Model 3 = 0.752834783202689"
Model 1 does not predict MPG very well, models 2 and 3 have very similar performance characteristics. The
R2 values reveals the fact that adding the transmission type to model 2 does not add any predictive power.
Coefficients
coef2 = summary(fit2)$coef
coef2
                Estimate Std. Error
                                        t value
                                                    Pr(>|t|)
## (Intercept) 37.285126
                            1.877627 19.857575 8.241799e-19
## wt
               -5.344472
                            0.559101 -9.559044 1.293959e-10
Coefficient Model 3:
coef3 = summary(fit3)$coef
coef3
##
                   Estimate Std. Error
                                            t value
                                                         Pr(>|t|)
## (Intercept) 37.32155131 3.0546385 12.21799285 5.843477e-13
               -0.02361522 1.5456453 -0.01527855 9.879146e-01
## amManual
               -5.35281145 0.7882438 -6.79080719 1.867415e-07
## wt
transmission_ci \leftarrow coef3[2, 1] + c(-1, 1) * qt(.975, df = fit3$df) * coef3[2, 2]
transmission_ci
```

```
## [1] -3.184815 3.137584
```

Conclusion: The 95% confidence interval for this coefficient is rather large compared to its estimated value, namely (-3.1848, 3.1376). To provide a basis for comparison, an increase in weight of 1000 lbs would lower the MPG by an average of 5.3528.