# Harvard CS 121 and CSCI E-207 Lecture 4: Deterministic and Nondeterministic Finite Automata

Harry Lewis

September 14, 2010

Reading: Sipser, §1.1 and §1.2.

# **A Deterministic Finite Automaton**

# Accepts

 $\{x: x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s}\}$ 



# Transition function $\delta$ :

$$Q = \{q_0, q_1, q_2, q_3\} \quad \Sigma = \{a, b\} \quad F = \{q_2\}$$

# Formal Definition of a DFA

• A DFA M is a 5-Tuple  $(Q, \Sigma, \delta, q_0, F)$ 

Q: Finite set of states

 $\Sigma$ : Alphabet

 $\delta$ : "Transition function",  $Q \times \Sigma \to Q$ 

 $q_0$ : Start state,  $q_0 \in Q$ 

F: Accept (or final) states,  $F \subseteq Q$ 

• If  $\delta(p,\sigma)=q$ ,

then if M is in state p and reads symbol  $\sigma \in \Sigma$ 

then M enters state q (while moving to next input symbol)

# **Formal Definition of Computation**

 $M=(Q,\Sigma,\delta,q_0,F)$  accepts  $w=w_1w_2\cdots w_n\in\Sigma^*$  (where each  $w_i\in\Sigma$ ) if there exist  $r_0,\ldots,r_n\in Q$  such that

- 1.  $r_0 = q_0$ ,
- 2.  $\delta(r_i, w_{i+1}) = r_{i+1}$  for each i = 0, ..., n-1, and
- 3.  $r_n \in F$ .

The <u>language recognized</u> (or <u>accepted</u>) by M, denoted L(M), is the set of all strings accepted by M.

# Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define  $\delta^*: Q \times \Sigma^* \to Q$  by  $\delta^*(q, \varepsilon) = q$ ,  $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$ .
- Intuitively,  $\delta^*(q,w)=$  "state reached after starting in q and reading the string w.
- M accepts w if  $\delta^*(q_0, w) \in F$ .

# Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define  $\delta^*: Q \times \Sigma^* \to Q$  by  $\delta^*(q, \varepsilon) = q$ ,  $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$ .
- Intuitively,  $\delta^*(q,w)=$  "state reached after starting in q and reading the string w.
- M accepts w if  $\delta^*(q_0, w) \in F$ .

**Determinism:** Given M and w, the states  $r_0, \ldots, r_n$  are uniquely determined. Or in other words,  $\delta^*(q, w)$  is well defined for any q and w: There is precisely one state to which w "drives" M if it is started in a given state.

# The impulse for nondeterminism

A language for which it is hard to design a DFA:

$$\{x_1x_2\cdots x_k: k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$$

But it is easy to imagine a "device" to accept this language if there sometimes can be several possible transitions!



# **Nondeterministic Finite Automata**

An NFA is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- $Q, \Sigma, q_0, F$  are as for DFAs
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to P(Q)$ .

When in state p reading symbol  $\sigma$ , can go to <u>any</u> state q in the <u>set</u>  $\delta(p,\sigma)$ .

- there may be more than one such q, or
- there may be none (in case  $\delta(p, \sigma) = \emptyset$ ).

Can "jump" from p to any state in  $\delta(p,\varepsilon)$  without moving the input head.

# Computations by an NFA

 $N=(Q,\Sigma,\delta,q_0,F)$  accepts  $w\in\Sigma^*$  if we can write  $w=y_1y_2\cdots y_m$  where each  $y_i\in\Sigma\cup\{\varepsilon\}$  and there exist  $r_0,\ldots,r_m\in Q$  such that

- 1.  $r_0 = q_0$ ,
- 2.  $r_{i+1} \in \delta(r_i, y_{i+1})$  for each i = 0, ..., m-1, and
- 3.  $r_m \in F$ .

**Nondeterminism:** Given N and w, the states  $r_0, \ldots, r_m$  are not necessarily determined.

# **Example of an NFA**



 $N = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\}),$  where  $\delta$  is given by:

|                  | $\mid a \mid$ | b                          | arepsilon |
|------------------|---------------|----------------------------|-----------|
| $\overline{q_0}$ | $\{q_1\}$     | Ø                          | Ø         |
| $q_1$            | $\{q_2\}$     | $\emptyset$                | Ø         |
| $q_2$            | $\{q_0\}$     | $  \{q_0, q_3\}  $         | Ø         |
| $q_3$            | $\{q_0\}$     | $ \hspace{.05cm}\emptyset$ | Ø         |

Work out the tree of all possible computations on aabaab

Harvard CS 121 & CSCI E-207 September 14, 2010

## **How to simulate NFAs?**

 $\bullet$  NFA accepts w if there is at least one accepting computational path on input w

- ullet But the number of paths may grow exponentially with the length of w!
- Can exponential search be avoided?

# NFAs vs. DFAs

NFAs seem more "powerful" than DFAs. Are they?

**Theorem:** For every NFA N, there exists a DFA M such that L(M) = L(N).

**Proof Outline**: Given any NFA N, to construct a DFA M such that L(M) = L(N):

# NFAs vs. DFAs

NFAs seem more "powerful" than DFAs. Are they?

**Theorem:** For every NFA N, there exists a DFA M such that L(M) = L(N).

**Proof Outline**: Given any NFA N, to construct a DFA M such that L(M) = L(N):

Have the DFA keep track, at all times, of all possible states the NFA could be in after reading the same initial part of the input string.

I.e., the <u>states</u> of M are <u>sets</u> of states of N, and  $\delta_M^*(R,w)$  is the set of all states N could reach after reading w, starting from a state in R.

# **Example of the SUBSET CONSTRUCTION**

NFA N for  $\{x_1x_2\cdots x_k: k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$ 



N starts in state 0 so we will construct a DFA M starting in state  $\{0\}$ .

# **Example of the SUBSET CONSTRUCTION**

NFA N for  $\{x_1x_2\cdots x_k: k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$ 



N starts in state 0 so we will construct a DFA M starting in state  $\{0\}$ . Here it is:



All other transitions are to the "dead state"  $\emptyset$ . The other states are unreachable, though technically must be defined. Final states are all those containing 0, the final state of M.

# Formal Construction of DFA M from

NFA 
$$N = (Q, \Sigma, \delta, q_0, F)$$

On the assumption that  $\delta(p,\varepsilon) = \emptyset$  for all states p. (i.e., we assume no  $\varepsilon$ -transitions, just to simplify things a bit)

$$M=(Q',\Sigma,\delta',q_0',F')$$
 where

$$\begin{array}{rcl} Q' &=& P(Q) \\ q_0' &=& \{q_0\} \\ F' &=& \{R \subseteq Q : R \cap F \neq \emptyset\} \text{ (that is, } R \in Q') \\ \delta'(R,\sigma) &=& \{q \in Q : q \in \delta(r,\sigma) \text{ for some } r \in R\} \\ &=& \bigcup_{r \in R} \delta(r,\sigma) \end{array}$$

# Proving that the construction works

**Claim:** For every string w, running M on input w ends in the state

 $\{q \in Q : \text{ some computation of } N \text{ on input } w \text{ ends in state } q\}.$ 

**Pf:** By induction on |w|.

Can be extended to work even for NFAs with  $\varepsilon$ -transitions.

"THE SUBSET CONSTRUCTION"

Harvard CS 121 & CSCI E-207 September 14, 2010

# Rabin & Scott, "Finite Automata and Their Decision Problems," 1959

1976 - Michael O. Rabin See the ACM Author Profile in the Digital Library

### Citation

For their joint paper "Finite Automata and Their Decision Problem," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. Their (Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work in this field.

### **Biographical Information**



Michael O. Rabin (born 1931 in Breslau, Germany) is a noted computer scientist and a recipient of the Turing Award, the most prestigious award in the field.



# **Closure Properties**

**Theorem:** The class of regular languages is closed under:

- · Union:  $L_1 \cup L_2$
- · Concatenation:  $L_1 \circ L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- · Kleene \*:  $L_1^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and each } x_i \in L_1\}$
- $\cdot$  Complement:  $\overline{L_1}$
- · Intersection:  $L_1 \cap L_2$

# **Closure Properties**

**Theorem:** The class of regular languages is closed under:

- · Union:  $L_1 \cup L_2$
- · Concatenation:  $L_1 \circ L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- · Kleene \*:  $L_1^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and each } x_i \in L_1\}$
- $\cdot$  Complement:  $\overline{L_1}$
- · Intersection:  $L_1 \cap L_2$

<u>Union</u>: If  $L_1$  and  $L_2$  are regular, then  $L_1 \cup L_2$  is regular.



M has the states and transitions of  $M_1$  and  $M_2$  plus a new start state  $\varepsilon$ -transitioning to the old start state

# Concatenation, Kleene \*, Complementation

# Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

# Kleene \*:

$$L(M) = L(M_1)^*$$

# Complement:

$$\overline{L(M)} = \overline{L(M_1)}$$

# **Closure under Intersection**

# Intersection

$$\overline{S \cap T = \overline{\overline{S}} \cup \overline{T}}$$







 $= \overline{S}$  Hence closure under union and complement implies closure under intersection

# A more constructive and direct proof of closure under intersection

Better way ("Cross Product Construction"):

From DFAs  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , construct  $M=(Q,\Sigma,\delta,q_0,F)$ :

$$Q = Q_1 \times Q_2$$

$$F = F_1 \times F_2$$

$$\delta(\langle r_1, r_2 \rangle, \sigma) = \langle \delta_1(r_1, \sigma), \delta_2(r_2, \sigma) \rangle$$

$$q_0 = \langle q_1, q_2 \rangle$$

Then  $L(M_1) \cap L(M_2) = L(M)$ 

# **Some Efficiency Considerations**

The subset construction shows that any n-state NFA can be implemented as a  $2^n$ -state DFA.

| NFA States | DFA States                                             |
|------------|--------------------------------------------------------|
| 4          | 16                                                     |
| 10         | 1024                                                   |
| 100        | $2^{100}$                                              |
| 1000       | $2^{1000} \gg$ the number of particles in the universe |

How to implement this construction on ordinary digital computer?

| NFA states   | DF | A s | sta | te | bit | ve | ctor |
|--------------|----|-----|-----|----|-----|----|------|
| $1,\ldots,n$ | 0  | 1   | 1   | 0  |     | 1  |      |
|              | 1  | 2   |     |    |     | n  |      |

# Is this construction the best we can do?

Could there be a construction that always produces an  $n^2$  state DFA for example?

**Theorem:** For every  $n \geq 1$ , there is a language  $L_n$  such that

- 1. There is an (n+1)-state NFA recognizing  $L_n$ .
- 2. There is no DFA recognizing  $L_n$  with fewer than  $2^n$  states.

**Conclusion:** For finite automata, nondeterminism provides an *exponential savings* over determinism (in the worst case).

# Proving that exponential blowup is sometimes unavoidable

(Could there be a construction that always produces an  $n^2$  state DFA for example?)

Consider (for some fixed n=17, say)

 $L_n = \{w \in \{a,b\}^* : \text{the } n \text{th symbol} \}$  from the right end of  $w \in \{a,b\}^*$ 

- There is an (n+1)-state NFA that accepts  $L_n$ .
- There is no DFA that accepts  $L_n$  and has  $< 2^n$  states

Harvard CS 121 & CSCI E-207 September 14, 2010

# A "Fooling Argument"

- Suppose a DFA M has  $< 2^n$  states, and  $L(M) = L_n$
- There are  $2^n$  strings of length n.
- By the pigeonhole principle, two such strings  $x \neq y$  must drive M to the same state q.
- Suppose x and y differ at the  $k^{th}$  position from the right end (one has a, the other has b) (k = 1, 2, ..., or n)
- M must treat  $xa^{n-k}$  and  $ya^{n-k}$  identically (accept both or reject both). These strings differ at position n from the right end.
- So  $L(M) \neq L_n$ , contradiction. QED.

Harvard CS 121 & CSCI E-207 September 14, 2010

# Illustration of the fooling argument



- x and y are different strings (so there is a position k where one has a and the other has b)
- ullet But both strings drive M from s to the same state q

# What the argument proves

- This shows that the subset construction is within a factor of 2 of being optimal
- In fact it is optimal, i.e., as good as we can do in the worst case.
- Still, in many cases, the "generate-states-as-needed" method yields a DFA with  $\ll 2^n$  states

(e.g. if the NFA was deterministic to begin with!)