

NeurIPS 2020 L2RPN Robustness and Adaptability Tracks Competition Winning Approach

YANG Zhihong, XU Chunlei, LU Jixiang*, XU Hongsheng, XU Kang, CHEN Tianyu, XU Zhilin, LIU Junjun, LU Jinjun, CHEN Tianhua

(* Corresponding author)

Track1: Robustness Track

Problem description

Methodology

Tricks

Results

An adversarial opponent will attack some lines of the grid everyday randomly.

- ➤ **Goal:** Develop agent to be robust to unexpected events and keep delivering reliable electricity everywhere even in difficult circumstances.
- > Operation Cost: Operate the grid as long as possible, minimize the operation cost including powerlines losses, redispatch cost and blackout cost (penalty).

Methodology

Tricks

Results

Track2: Adaptability Track

- ➤ **Goal:** Develop agent to adapt to new energy productions in the grid with an increasing share of renewable energies which might be less controllable.
- > Operation Cost: Operate the grid for as long as possible, minimize the operation cost including powerlines losses, redispatch cost and blackout cost (penalty).

Rules and Score

Problem description

Methodology

Tricks

Results

Rules and Constraints

- > Demand-supply balance should be met at any time without load shedding.
- Tripping power plant is not allowed.
- > Electrical islands are not allowed.
- > Any action has a certain cool down time.

•••

Score

The agent with less blackouts and less operation costs will be given higher score.

$$C_{operations}(t) = C_{loss}(t) + C_{redispatching}(t)$$

$$C_{blackout}(t) = Load(t) * \beta * p(t), \beta \ge 1$$

$$C(e) = \sum_{t=1}^{t_{end}} C_{operations}(t) + \sum_{t=t_{end}}^{T_e} C_{blackout}(t)$$

$$Score = \sum_{i=1}^{N} C(e_i)$$

Methodology

Tricks

Results

Do-Nothing action

Powerline Status action: reconnecting / disconnecting a power line

Substation Topological action: switching busbar connection between double busbars for each substation object.

Generation redispatch action: modifying the production set point with redispatching

Methodology

Tricks

Results

State chosen:

- Some states (such as prod_p, load_p, topology_vect, time_next_maintenance, line_status, rho etc.) are necessary in our action selecting process.
- Inherent properties in power grid (e.g thermal_limit of lines) and some properties of generators (e.g max_ramp_up)

State unchosen:

Another part of states (such as date, time, prod_q, load_q etc.) which have no contribution to our action selecting process.

Methodology

Tricks

Results

Dual-agent strategy

Methodology

Tricks

Results

DRL agent

Problem description

Methodology

Tricks

Results

We adopt the Dueling-Double-DQN(D3QN) algorithm for our DRL agent, a kind of value based algorithm which can handle discrete action-space problems.

D3QN Neural network structure diagram

Robustness Track: State size=744, Action size=885

Adaptability Track: State size =2300, Action size =1164

Methodology

Tricks

Results

Rewards: (factors considering)

- 1.Sandbox economic
- 2.Close-To-OverFlow overflow
- 3. Distance difference with initial topology
- 4.Line-capacity available transfer capacity

Robustness Track (Track1)

- Sandbox-Reward
- Close-To-OverFlow-Reward
- Distance-Reward

Adaptability Track (Track2)

- ➤ Sandbox-Reward
- ➤ Close-To-OverFlow-Reward
- ➤ Distance-Reward
- ➤ Lines-Capacity-Reward

Reward= Σ Weight(i)*Reward(i),i \in (Sandbox, CloseToOverflow, Distance, LineCapacity)

Methodology

Tricks

Results

Reduced Action-space

- Robustness Track (Track1)
- \triangleright Before reduce: 130k (2¹⁷ = 131,072)
- > After reduce: 885
 - 58 line, 786 topo, 40 redisp, 1 donothing

- Adaptability Track (Track2)
- Before reduce: even more!
- > After reduce: 1164

185 line, 978 topo, 1 donothing

Why action-space need to be reduced?

- > The topology action number is huge due to complex action combination.
- Difficult for system simulation and agent training.
- > We reduce them according to domain knowledge and experiments.

Methodology

Tricks

Results

Guided exploration

- Large Action-space
- Long MDP chain
- Local optimum

- Stable
- Better experience
- Efficient

Methodology

Tricks

Results

Adaptability Track Test Result

- > 50-year simulated training data and 24-week test data for each competition track.
- Blue indicates scenarios passed, orange indicates scenarios black-out.
- > We will optimize our agent for the failed cases in future work.

Methodology

Tricks

Results

Robustness Track:

 $1.rl_agent\ team\ is\ the\ best\ team\ with\ a\ score\ of\ 59.26$

2.binbinChen team ranks 2nd with a score of 46.89

3. lujixiang team ranks 3rd with a score of 44.62

Adaptability Track:

1.rl_agent team is the best team with a score of 25.53

2.kunijeTang team ranks 2nd with a score of 24.66

3.lujixiang team ranks 3rd with a score of 24.63

We are one of top performers in both NeurIPS Robustness Track and Adaptability Track competitions.

Thanks!

