Problem 3.16 Based on X with distribution indexed by $\theta \in \Omega$, the problem is to test $\theta \in \omega$ versus $\theta \in \omega'$. Suppose there exists a test ϕ such that $E_{\theta}[\phi(X)] \leq \beta$ for all θ in ω , where $\beta < \alpha$. Show there exists a level α test $\phi^*(X)$ such that

$$E_{\theta}[\phi(X)] \le E_{\theta}[\phi^{*}(X)],$$

for all θ in ω' and this inequality is strict if $E_{\theta}[\phi(X)] < 1$.

> Exercise 13 (#6.18). Let $(X_1,...,X_n)$ be a random sample from the uniform distribution on $(\theta,\theta+1)$, $\theta \in \mathbb{R}$. Suppose that $n \geq 2$. (i) Show that a UMP test of size $\alpha \in (0,1)$ for testing $H_0: \theta \leq 0$ versus $H: \theta \geq 0$ is of the form

$$T_*(X_{(1)},X_{(n)}) = \left\{ \begin{array}{ll} 0 & \quad X_{(1)} < 1 - \alpha^{1/n}, \, X_{(n)} < 1 \\ 1 & \quad \text{otherwise,} \end{array} \right.$$

where $X_{(j)}$ is the jth order statistic.

(ii) Does the family of all densities of $(X_{(1)},X_{(n)})$ have monotone likelihood

Solution A. (i) The Lebesgue density of $(X_{(1)}, X_{(n)})$ is

$$f_{\theta}(x, y) = n(n - 1)(y - x)^{n-2}I_{(\theta, y)}(x)I_{(x, \theta+1)}(y).$$

A direct calculation of $\beta_{T_*}(\theta) = \int T_*(x, y) f_{\theta}(x, y) dx dy$, the power function of T_* , leads to

$$\beta_{T_*}(\theta) = \begin{cases} 0 & \theta < -\alpha^{1/n} \\ (\theta + \alpha^{1/n})^n & -\alpha^{1/n} \le \theta \le 0 \\ 1 + \alpha - (1 - \theta)^n & 0 < \theta \le 1 - \alpha^{1/n} \\ 1 & \theta \ge 1 - \alpha^{1/n} \end{cases}$$

For any $\theta_1 \in (0, 1 - \alpha^{1/n}]$, by the Neyman-Pearson Lemma, the UMP test T of size α for testing $H_0: \theta = 0$ versus $H_1: \theta = \theta_1$ is

$$T = \left\{ \begin{array}{ll} 1 & X_{(n)} > 1 \\ \alpha/(1-\theta_1)^n & \theta_1 < X_{(1)} < X_{(n)} < 1 \\ 0 & \text{otherwise.} \end{array} \right.$$

The power of T at θ_1 is computed as

$$\beta_T(\theta_1) = 1 - (1 - \theta_1)^n + \alpha,$$

which agrees with the power of T_* at θ_1 . When $\theta>1-\alpha^{1/n},\,T_*$ has power 1. Therefore T_* is a UMP test of size α for testing $H_0:\theta\leq 0$ versus $H_1:\theta>0$.

In 1,0 > 0. (ii) The answer is no. Suppose that the family of densities of $(X_{(1)}, X_{(n)})$ has monotone likelihood ratio. By the theory of UMP test (e,g,. Theorem 6.2 in Shao, 2003), there exists a UMP test T_0 of size $\alpha \in (0, \frac{1}{2})$ for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$ and T_0 has the property that, for $\theta_1 \in (0, 1-\alpha^{1/n})$, T_0 is UMP of size $\alpha_0 = 1+\alpha-(1-\theta_1)^n$ for testing $H_0: \theta \leq \theta_1$ versus $H_1: \theta > \theta_1$. Using the transformation $X_i - \theta_1$ and the result in (i), the test

$$T_{\theta_1}(X_{(1)},X_{(n)}) = \left\{ \begin{array}{ll} 0 & X_{(1)} < 1 + \theta_1 - \alpha_0^{1/n}, X_{(n)} < 1 + \theta_1 \\ 1 & \text{otherwise} \end{array} \right.$$

is a UMP test of size α_0 for testing $H_0:\theta\leq\theta_1$ versus $H_1:\theta>\theta_1$. At $\theta=\theta_2\in(\theta_1,1-\alpha^{1/n}]$, it follows from part (i) of the solution that the power of T_0 is $1+\alpha-(1-\theta_2)^n$ and the power of T_0 , is $1+\alpha_0-[1-(\theta_2-\theta_1)]^n$. Since both T_0 and T_{θ_1} are UMP tests, $1+\alpha-(1-\theta_2)^n=1+\alpha_0-[1-(\theta_2-\theta_1)]^n$. Because $\alpha_0=1+\alpha-(1-\theta_1)^n$, this means that

$$1 = (1 - \theta_1)^n - (1 - \theta_2)^n + [1 - (\theta_2 - \theta_1)]^n$$

holds for all $0<\theta_1<\theta_2\leq 1-\alpha^{1/n}$, which is impossible. This contradiction proves that the family of all densities of $(X_{(1)},X_{(n)})$ does not have monotone likelihood ratio.