

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Tecnologias descentralizadas: Compartilhamento de arquivos

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Objetivos

- Entender o processo de evolução das aplicações de compartilhamento de arquivos P2P
 - Napster: centralizado
 - Gnutella: descentralizado, não estruturado
 - Kazaa: super-nós
 - Bittorrent: descentralização, controle de integridade, DHTs

Napster

- Distribuição de arquivos MP3 via P2P
 - Híbrido descentralizado, não estruturado
- Combinação de abordagens cliente/servidor e P2P
 - Rede de usuários registrados executando software cliente
 - Comunicação c/ diretório central (servidor)
- Servidor mantém 3 tabelas
 - (Indexador_Arquivo, Metadados_Arquivo)
 - (ID_Usuário, Info_Usuário)
 - (ID_Usuário, Indexador_Arquivo)

Napster (cont.)

- O Napster foi inventado em 1999 por Shawn Fanning, músico da Northeastern University, para compartilhar músicas no campus.
- Primeiros processos por infração de direitos autorais de grandes gravadoras apareceram em Dezembro/1999
- Sua popularidade cresceu imensamente até 2001, quando seu fechamento foi ordenado pela justiça americana.
- Multa: U\$ 26 milhões por danos passados e <u>futuros</u>,
- Declaração de falência da empresa em 2002
- O nome "Napster" retornou em 2003 como uma loja de músicas online (nada a ver com P2P)...

Principais fraquezas:

- Servidor central: único ponto de falha (e alvo de ataques legais...)
- Resultados pouco confiáveis (dados entrados por usuário)

Gnutella

- Um pouco de história
 - Gnutella apareceu pouco depois do Napster
 - Resolve alguns dos problemas do Napster (mas introduz outros)
 - Protocolo de especificação aberta
 - Originalmente desenvolvida pela Nullsoft (posteriormente comprada pela AOL)
 - Versão 0.4 (= Gnutella original) será coberta aqui
 - Embora tenha sido substituída por versão semelhante ao KaZaa, discutido mais adiante

- Puramente descentralizado, não-estruturado
- Características:
 - Poucos nós com alta conectividade
 - A maioria dos nós com conectividade esparsa
- Cada instância da aplicação (nó):
 - Armazena/distribui arquivos
 - Roteia mensagens de busca para seus vizinhos
 - Responde a requisições de arquivo

- Juntando-se à rede (formação de conexões lógicas):
 - Mensagem de PING enviada a nó que já está na rede: lista obtida "fora de banda", por exemplo, via uma página web.
 - Mensagens de PING encaminhadas a vizinhos via inundação
 - Nós podem responder com mensagens de PONG contendo endereço do nó e outras informações relevantes

- Juntando-se à rede (formação de conexões lógicas):
 - Mensagem de PING enviada a nó que já está na rede: lista obtida "fora de banda", por exemplo, via uma página web.
 - Mensagens de PING encaminhadas a vizinhos via inundação
 - Nós podem responder com mensagens de PONG contendo endereço do nó e outras informações relevantes

- Juntando-se à rede (formação de conexões lógicas):
 - Mensagem de PING enviada a nó que já está na rede: lista obtida "fora de banda", por exemplo, via uma página web.
 - Mensagens de PING encaminhadas a vizinhos via inundação
 - Nós podem responder com mensagens de PONG contendo endereço do nó e outras informações relevantes

Busca:

- Mensagens de consulta enviadas via conexões TCP existentes
- Peers encaminham mensagem (inundação) até que TTL expira
- Quando objeto é encontrado, respostas (IP + porta) são enviadas no caminho reverso da consulta

C, F e I têm o conteúdo buscado por B

Busca:

- Mensagens de consulta enviadas via conexões TCP existentes
- Peers encaminham mensagem (inundação) até que TTL expira
- Quando objeto é encontrado, respostas (IP + porta) são enviadas no caminho reverso da consulta

C, F e I têm o conteúdo buscado por B

Busca:

- Mensagens de consulta enviadas via conexões TCP existentes
- Peers encaminham mensagem (inundação) até que TTL expira
- Quando objeto é encontrado, respostas (IP + porta) são enviadas no caminho reverso da consulta

C, F e I têm o conteúdo buscado por B

- Download: diretamente entre nós envolvidos
 - Mensagens no estilo HTTP, na porta informada, para obter conteúdo
- Vantagens:
 - Totalmente distribuída: sem pontos centrais de falha
 - Prova-se que rede é bastante robusta a falhas aleatórias (nem tanto a falhas em nós "bem conectados", comuns na rede)
- Limitações:
 - PINGs/PONGs periódicos consomem muitos recursos
 - Inundação (limitada) cria conflito entre completude e eficiência:
 - TTL baixo: buscas podem n\u00e3o encontrar dados
 - TTL alto: elevado consumo de recursos
 - Nenhum mecanismo contra comportamento egoísta

KaZaA

- O KaZaA (ou Kazaa) surgiu em 2001 e rapidamente superou seu antecessores
 - Nova arquitetura, baseada em super-nós: parcialmente centralizada, não estruturada
 - Cada super-nó conhece diversos outros super-nós (malha quase completa)

- Super-nós: peers normais, porém com mais recursos e responsabilidades
 - Usuários normalmente podem se recusar a tornar super-nós
 - Nó regular se conecta a apenas um super-nó em cada instante
 - Cada super-nó mantém registro de todos os arquivos nos peers aos quais está conectado (e apenas para esses peers)
 - Super-nó atua como uma espécie de "hub" Napster para todos os nós normais conectados a ele.
- Conexões entre super-nós mudam regularmente
 - Periodicidade de algumas dezenas de minutos

Montando a rede

- Peer obtêm endereço de super-nó de alguma forma (e.g., site web ou incluso no software cliente)
- Peer enviam requisição a super-nó, informando lista de arquivos que deseja compartilhar
- Apenas aquele super-nó mantém registro desse novo peer

Buscando conteúdo

- Peer envia requisição de conteúdo (e.g., palavra chave) a seu próprio super-nó
- Super-nó responde por todos os nós conectados a ele e encaminha pedido a outros super-nós
- Outros super-nós respondem pelos nós a ele conectados

- Vantagens
 - Escalabilidade (mais usuários = mais super-nós)
 - Eficiência: inundação limitada aos super-nós
 - Explora heterogeneidade dos nós
 - Tolerância a falhas
- Desvantagens
 - Poluição de conteúdos
 - Vulnerabilidade a ataques de negação de serviço
 (Denial of Service DoS) contra super-nós

BitTorrent

- Uso: distribuição de arquivos P2P
 - Ex.: uTorrent, participation
 qBittorrent, participation
- Nova rede overlay criada para cada arquivo sendo distribuído
- Pode-se enviar "link" (arquivo .torrent) a um amigo
 - "Link" sempre se refere ao mesmo arquivo
 - Não é o caso de Napster, Gnutella, ou KaZaA: redes baseadas em buscas (difícil identificar arquivo específico)
 - Permite verificação de integridade (hash criptográfico)
 - Buscas não estão inclusas no protocolo, mas podem ser implementadas via sites web ou na interface de um aplicativo

BitTorrent (cont.)

Nomenclatura:

 Tracker (Rastreador): mantém lista de peers interessados em certo conteúdo

 Piece (Pedaço): Uma parte de um arquivo que está disponível na rede.

 Seeders (Semeadores): peers que têm o arquivo completo e continuam compartilhando-o (comportamento autruísta)

 Leechers (Sanguessugas): peers que têm apenas partes do arquivo e estão compartilhando e recebendo pedaços

Arquivo .torrent: metadados do arquivo

 Swarm (enxame): conjunto de peers que participam na distribuição de um determinado conteúdo.

BitTorrent (cont.)

Funcionamento: com tracker

BitTorrent: mecanismos

- Arquivo dividido em pedaços (comum: 256 KiB)
- Recebendo pedaços:
 - Periodicamente, cada peer pede a cada vizinho a lista de pedaços que eles têm;
 - Ele então envia requisições para os pedaços que faltam, dando prioridade àqueles com menor disponibilidade: mais raros primeiro

BitTorrent: mecanismos (cont.)

Enviando pedaços:

- Cada nó envia pedaços a n (comum: 4) vizinhos atuais, dando preferência àqueles que estão fornecendo pedaços com maior velocidade: "tit-for-tat", ou "olho por olho"
 - Diz-se que os peers neste grupo estão "unchoked" (não estrangulado)
- Reavalia grupo unchoked a cada t (comum: 10) segundos
- Seleciona um nó aleatoriamente a cada t_c (comum: 30) segundos e o coloca no grupo unchoked, substituindo nó com menor velocidade: optimistic unchoke
 - Diz-se que o nó removido foi "choked" (estrangulado).

BitTorrent: mecanismos (cont.)

- Resultado das políticas do BitTorrent
 - Peers servem peers que os servem em retorno: peers com capacidades semelhantes (i.e., banda) tendem a interagir

- Encoraja cooperação, desencoraja free-riding: free-riders são "choked" após algum tempo
- "Rarest first" não apenas ajuda a manter arquivo na rede, mas também incentiva colaboração com novos peers: eles recebem primeiro os pedaços mais raros!
- Conexão a diversos peers ao mesmo tempo pode levar a "chokes" frequentes: divisão da banda disponível entre os peers conectados

- Seeders também têm política de "tit-for-tat", mas observam a taxa de download do leecher ao invés da taxa de upload.
 - Preferência por leecher fazendo bastante download

BitTorrent sem tracker: disponibilidade

Tracker essencial para busca de peers...

– E se tracker sair do ar…?

BitTorrent sem tracker: disponibilidade

- BitTorrent sem tracker:
 - Distributed Hash Table (DHT): peers se organizam de forma que um auxilia o outro na busca por arquivos
 - Nota: 1º peer obtido via tracker, cache local, ou servidor web
 - Links magnéticos: usa DHT para obter arquivo .torrent, antes de iniciar download do arquivo em si
 - Peer Exchange (PEX): peers conectados a um nó qualquer fornecem listas de nós aos quais eles estejam conectados
- Maior disponibilidade
 - Resistência a censura/ações legais
 - Resistência a ataques de negação de serviço

BitTorrent: anonimato?

- Apenas de quem gerou conteúdo
 - Nós trocando pedaços enxergam endereços IP uns dos outros: sem anonimato dos nós!
 - Monitoramento possível:
 - Entrar na rede e anunciar que possui conteúdo
 - Opcional: Enviar pedaços falsos (descartados pelo receptor)
 - Coletar IPs dos nós que tentarem obter o conteúdo
 - Mapear IP-usuário com ajuda de operadora de Internet
 - Privacidade possível se usado com VPNs
 - Não use Tor: https://blog.torproject.org/bittorrent-over-tor-isnt-good-idea

BitTorrent: anonimato?

https://canaltech.com.br/pirataria/usuarios-de-torrent-no-brasil-voltam-a-receber-notificacoes-extrajudiciais-182223/

https://olhardigital.com.br/2019/01/18/noticias/pf-derruba-site-de-torrents-brasileiro-como-parte-da-operacao-copyright/

https://www.diariodaregiao.com.br/cidades/policia/policia-investiga-600-suspeitos-de-pornografia-infantil-na-regi-o-de-rio-preto-1.817865

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Tecnologias descentralizadas: Compartilhamento de arquivos

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

*Streaming: crescimento mais expressivo desde então

Fonte: IPOQUE

- Tráfego em período de pico (redes fixas)
 - Fonte: Sandvine Global Internet Phenomena 2016

- Tráfego em período de pico (redes fixas) Principais aplicações
 - Fonte: Sandvine Global Internet Phenomena 2016

América do Norte

P₂P

Upstream		Downstream		Aggregate	
BitTorrent	18.37%	Netflix	35.15%	Netflix	32.72%
YouTube	13.13%	YouTube	17.53%	YouTube	17.31%
Netflix	10.33%	Amazon Video	4.26%	HTTP - OTHER	4.14%
SSL - OTHER	8.55%	HTTP - OTHER	4.19%	Amazon Video	3.96%
Google Cloud	6.98%	iTunes	2.91%	SSL - OTHER	3.12%
iCloud	5.98%	Hulu	2.68%	BitTorrent	2.85%
HTTP - OTHER	3.70%	SSL - OTHER	2.53%	iTunes	2.67%
Facebook	3.04%	Xbox One Games	2.18%	Hulu	2.47%
FaceTime	2.50%	Facebook	1.89%	Xbox One Games	2.15%
Skype	1.75%	BitTorrent	1.73%	Facebook	2.01%
	69.32%		74.33%		72.72%

- Tráfego em período de pico (redes fixas) Principais aplicações
 - Fonte: Sandvine Global Internet Phenomena 2016

71.69%

América do Sul

Downstream

Aggregate

P₂P

Upstream

opstreum		DOWNSCI CUIT		7551 05410	
BitTorrent	30.03%	YouTube	28.48%	YouTube	25.91%
YouTube	9.30%	HTTP - OTHER	11.66%	HTTP - OTHER	11.12%
HTTP - OTHER	7.59%	SSL - OTHER	9.76%	BitTorrent	10.06%
Facebook	6.72%	Netflix	8.31%	SSL - OTHER	9.28%
SSL - OTHER	6.19%	BitTorrent	6.96%	Netflix	7.45%
Ares	5.27%	Facebook	5.10%	Facebook	5.32%
Skype	2.53%	MPEG - OTHER	2.28%	MPEG - OTHER	2.10%
Netflix	1.97%	RTMP	1.79%	RTMP	1.66%
Dropbox	1.16%	Google Market	1.69%	Google Market	1.52%
MPEG - OTHER	0.92%	Flash Video	1.60%	Flash Video	1.46%

77.63%

75.87%

58% of the total downstream volume of traffic on the internet

NETFLIX is 15% of the total downstream volume of traffic across the entire internet

More than 50% of internet traffic is encrypted, and TLS 1.3 adoption

is growing

is becoming a significant force in traffic volume as gaming downloads, Twitch streaming, and professional gaming go mainstream

Plus spotlights on:

Traffic share leaders for video, social networking, messaging, audio streaming, and gaming

Fonte: https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf

Fonte: https://www.sandvine.com/phenomena

References

- Ding, C. H., Nutanong, S., & Buyya, R. (2004). P2P Networks for Content Sharing. arXiv preprint cs/0402018. URL: https://arxiv.org/abs/cs/0402018
- Liang, J., Kumar, R., & Ross, K. W. (2004). Understanding kazaa. URL: http://pages.di.unipi.it/ricci/kazaa.pdf
- Cohen, B. (2003). Incentives build robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer systems (Vol. 6, pp. 68-72). <u>URL:https://www.cs.swarthmore.edu/~newhall/readings/bittorrentecon.pdf</u>
- Wolchok, S., & Halderman, J. A. (2010). Crawling BitTorrent DHTs for Fun and Profit. In 4th USENIX Workshop on Offensive Technologies (WOOT 10). URL:
 - https://www.usenix.org/legacy/event/woot10/tech/full_papers/Wolchok.pdf

