# Reti di calcolatori (a.a. 2006/07 – primo appello)

Per la soluzione usare al più un foglio protocollo, indicando in alto e in STAMPATELLO: cognome, nome, numero di matricola e corso (A o B). Non è consentito usare materiale didattico di alcun tipo.

Quesiti - Rispondere in maniera concisa ma esauriente ai seguenti quesiti.

- a) Indicare tutte le invocazioni di primitive TCP che un server HTTP deve effettuare per ricevere una richiesta da un cliente.
- b) Consideriamo un router R che gestisce tutto il traffico in entrata e in uscita da una rete locale. Consideriamo un pacchetto IP inviato da un host A della rete locale a un server Web esterno a tale rete e contenente un segmento SYN. Indicare le informazioni relative all'indirizzamento contenute in tutti i preamboli del frame contenente il pacchetto IP ricevuto da R e ritrasmesso da R.
- c) Indicare che relazione esiste tra SOAP e HTTP.

### Esercizio 1.

Consideriamo un router che utilizza il protocollo distance vector (senza poisoned reverse). Supponiamo per semplicità che i nodi della rete siano rappresentati dagli interi [0,1,...,V-1,V,...,N-1] dove 0 è il router in oggetto e [1,...,V-1] sono i vicini del router. Supponiamo inoltre che il router utilizzi un array C di V interi per rappresentare i costi dei collegamenti con i suoi vicini e un array D di VxN interi per memorizzare i vettori delle distanze (dove D[i,j] indica la distanza del vicino i dalla destinazione j). **Scrivere lo pseudo-codice** eseguito dal router in seguito alla variazione del costo di une collegamento con un suo vicino.

#### Esercizio 2.

Supponiamo che un'applicazione A desideri inviare 6 messaggi, ciascuno di 1 MSS, su una connessione TCP appena stabilita con un suo pari B. Supponiamo inoltre che:

- solo il secondo e il quarto pacchetto IP inviato dall'host di A vadano persi;
- la lunghezza del timeout del TCP di A sia maggiore di 2\*RTT;
- i processi TCP coinvolti bufferizzino i segmenti "non in ordine" ricevuti e che lo spazio libero nei buffer sia inizialmente di 10 MSS.

Descrivere tutti i possibili segmenti TCP scambiati dai due host, evidenziando di ogni segmento numero di seguenza, numero di riscontro, eventuali bit di controllo attivi e dimensione dei dati contenuti nel segmento.

#### Traccia della soluzione

#### Quesiti

a) Il server dovrà farsi assegnare dal sistema operativo la porta 80, quindi attendere di ricevere una richiesta di connessione su tale porta e infine (una volta creata la connessione) ricevere una richiesta (HTTP) su tale connessione. Ad esempio, usando Java le corrispondenti invocazioni sono:

```
ServerSocket ss = new ServerSocket(80);
Socket s = ss.accept();
r = br.readLine();
(dove br è un BufferReader associato all'InputStream del socket).
```

b) Supponendo che l'host A e il router R siano direttamente collegati, il frame ricevuto da R conterrà nei vari preamboli le seguenti informazioni relative all'indirizzamento:

```
SRC: INDIRIZZO MAC DI A
DEST: INDIRIZZO MAC DELL'INTERFACCIA DI R SULLA RETE LOCALE DI A

SRC: INDIRIZZO IP DI A
DEST: INDIRIZZO IP DEL SERVER WEB

SRC: PORTA TCP DEL PROCESSO DI A
DEST: PORTA TCP DEL SERVER WEB (80)

preambolo TCP
```

Il frame inviato dal router R al di fuori della rete conterrà lo stesso pacchetto IP ma un diverso preambolo, ovvero:

```
SRC: INDIRIZZO MAC DELL'INTERFACCIA DI R SULLA RETE SU CUI È R'
DEST: INDIRIZZO MAC DELL'INTERFACCIA DI R' SULLA RETE SU CUI È R

preambolo DL
```

dove R' è il router a cui R indirizza i pacchetti destinati al server Web in oggetto.

c) HTTP può essere utilizzato da SOAP come protocollo di trasporto (ovvero i messaggi SOAP possono essere trasportati all'interno di richieste HTTP).

## Esercizio 1.

```
minChanged = 0;
for (j=1; j<N; ++) {
                                          // per ogni destinazione j
      min = MAX_INT;
      for (i=1; i < V; i++)
                                          // per ogni vicino i
            if (C[i]+D[i,j] < min)
                                          // applica equazione di Bellman-Ford
                  min = C[i] + D[i, j];
      if (min != D[0, j]) {
            D[0,j] = min;
            minChanged = 1;
      }
if (minChanged == 1)
                                          // se è cambiata una distanza minima
      for (i=1; i < V; i++)
            "invia al vicino i il vettore D[0]"
```

#### Esercizio 2.

Supponiamo che X sia il numero di seguenza iniziale scelto in modo casuale dall'host dell'applicazione A.

[A causa del controllo di congestione di TCP, l'host di A invierà inizialmente un solo segmento contenente 1MSS di dati (il primo messaggio dell'applicazione A). Quando riceverà dall'host di B il riscontro di tale segmento, l'host di A invierà due nuovi segmenti contenenti 1MSS di dati, con numeri di sequenza X+1MSS e X+2MSS rispettivamente. Dato che – per ipotesi – il secondo pacchetto IP inviato dall'host di A andrà perso, l'host di B riceverà solo il segmento con numero di sequenza X+2MSS e invierà quindi un unico riscontro (negativo). Allo scadere del timeout, l'host di A invierà di nuovo il segmento con numero di sequenza X+1MSS che –per ipotesi – andrà di nuovo perso. Allo scadere del timeout, l'host di A invierà quindi di nuovo il segmento con numero di sequenza X+1MSS e riceverà quindi (dato che i segmenti "non in ordine" ricevuti vengono bufferizzati) un segmento di riscontro cumulativo con numero di riscontro X+3MSS. A questo punto l'host di S invierà due nuovi segmenti contenenti 1MSS di dati, con numeri di

sequenza X+3MSS e X+4MSS rispettivamente e, quando riceverà il relativo riscontro, potrà inviare l'ultimo segmento con numero di sequenza X+5MSS.]



(A. Brogi)