Ínria-

Stage INRIA - Réunion n°4

Quentin RAPILLY

Lecture de la thèse sur la caractérisation de formes

Principe de cette caractérisation

Inspiré de la théorie des champs.
 Calcul du flux d'un champ de vecteur ω à travers une surface : S(ω) = ∫_S ω(x)^t n(x) dλ(x)
 L'idée sous jacente : une forme peut être décrite par (S(ω))_{ω∈W} où W est l'ensemble des champs possibles.

Lecture de la thèse sur la caractérisation de formes

Principe de cette caractérisation

- Inspiré de la théorie des champs.
 Calcul du flux d'un champ de vecteur ω à travers une surface : S(ω) = ∫_S ω(x)^t n(x) dλ(x)
 L'idée sous jacente : une forme peut être décrite par (S(ω))_{ω∈W} où W est l'ensemble des champs possibles.
- On prend en fait W un espace de test, dense dans l'espace des champs.

$$K^W(x,y) = e^{\frac{-|x-y|^2}{\lambda_W^2}} I_d$$

L'ensemble de test est composé de fonctions $\omega_{y,\beta}(x) = K^W(x,y)\beta$

• Obtention d'un espace dual W^* et d'une forme linéaire $\mathcal{L}_W: W \to W^*$ definie par $\mathcal{L}_W(\omega)(\omega') = \langle \omega, \omega' \rangle_W$ (*)

Lecture de la thèse sur la caractérisation de formes

Notion de distance

- Définition d'un produit scalaire sur l'espace W: $\delta_x^{\alpha}(\omega) = \langle K^W(x,.)\alpha, \omega \rangle = \alpha^t \omega(x)$
- Définition d'un produit scalaire associé sur l'espace W*.
- Distance entre deux formes : $d(T,T') = ||T-T'||_{W^*} = \sqrt{\langle T-T',T-T'\rangle_{W^*}} \\ ||T-T'||_{W^*}^2 = (T-T')(\mathcal{L}_W^{-1}(T-T'))$

Obtention des segmentations de ASHS

Segmentations pour l'entièreté du dataset obtenues.

Obtention des segmentations de ASHS

Segmentations pour l'entièreté du dataset obtenues.

Création de scripts

Script permettant de transformer les segmentations en maillages .vtk à partir des masques (obtenus manuellement ou par ASHS)

Obtention des segmentations de ASHS

Segmentations pour l'entièreté du dataset obtenues.

Création de scripts

Script permettant de transformer les segmentations en maillages .vtk à partir des masques (obtenus manuellement ou par ASHS)

Problème

Problème de version de vtk qui fait planter le logiciel.

Pour la semaine prochaine

TODO

- Terminer l'implémentation deep.
- Continuer de parcourir la thèse.
- Commencer à s'intéresser à Deformetrica et aux scripts de Claire.
- S'intéresser au bug des vtk et MedInria.

Ce que j'ai compris de l'objectif

TODO

