A propos des suites de fonctions - TD 2

Exercice 1 On considère les fonctions h_n , $n \ge 1$, définies sur \mathbb{R} par $h_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} .
- 2. La suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur \mathbb{R} ?

Exercice 2 Pour $n \in \mathbb{N}^*$ et x dans \mathbb{R} on pose : $f_n(x) = \arctan\left(\frac{x}{n}\right)$.

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers la fonction nulle.
- 2. La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur \mathbb{R} ?
- 3. La convergence de la suite $(f'_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur \mathbb{R} ?

Exercice 3 On considère les fonctions f_n définies sur \mathbb{R} par $f_n(x) = \frac{1}{1+n^2x^2}$.

- 1. Montrer que la suite de fonctions $(f_n)_{\in\mathbb{N}}$ converge simplement vers une fonction f que l'on déterminera.
- 2. La suite de fonctions $(f_n)_{\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R} ?

Exercice 4 Pour n dans $\mathbb N$ on considère les fonctions f_n définies sur $\mathbb R$ par

$$f_n(x) = \frac{nx}{1 + n^2 x^2} \ .$$

- 1. Montrer que la suite de fonctions $(f_n)_{\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers une fonction f que l'on déterminera.
- 2. (a) Etudier les variations sur \mathbb{R} des fonctions f_n pour $n \geq 1$.
 - (b) La suite de fonctions $(f_n)_{\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R} ?
 - (c) Soit a un nombre réel strictement positif. La convergence de la suite $(f_n)_{\in \mathbb{N}}$ est-elle uniforme sur $\mathbb{R}\setminus]-a,a[?]$

Exercice 4 Pour tout n dans \mathbb{N}^* , on considère les fonctions h_n définies sur \mathbb{R}^+ par $h_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$.

1. Etudier la convergence simple sur \mathbb{R}^+ de la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$.

2. En utilisant Taylor-Lagrange montrer que pour tout t dans \mathbb{R}^+ on a l'encadrement

$$t - \frac{t^2}{2} \le \ln(1+t) \le t$$

3. En déduire que la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge uniformément sur tout intervalle [0,a] avec a>0.

Exercice 5 On considère pour n dans $\mathbb N$ les fonctions φ_n définies sur $\mathbb R_+$ par

$$\varphi_n(x) = \frac{x}{(1+nx)^2}$$

- 1. Montrer que la suite de fonctions $(\varphi_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}_+ vers une fonction que l'on déterminera.
- 2. La convergence de la suite $(\varphi_n)_{n\in\mathbb{N}}$ est-elle uniforme sur \mathbb{R}_+ ?
- 3. (a) Etudier la convergence simple sur \mathbb{R}_+ de la suite des dérivées $(\varphi'_n)_{n\in\mathbb{N}}$.
 - (b) A-t-on sur \mathbb{R}_+ l'égalité $\lim_{n\to+\infty}\varphi_n'=\left(\lim_{n\to+\infty}\varphi_n\right)'$?
 - (c) La convergence de la suite $(\varphi'_n)_{n\in\mathbb{N}}$ est-elle uniforme sur \mathbb{R}_+ ?