# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年11月 5日

出 願 番 号 Application Number:

特願2002-321655

[ST. 10/C]:

[JP2002-321655]

出 願 人
Applicant(s):

マツダ株式会社

2003年10月 6日

特許庁長官 Commissioner, Japan Patent Office 今井康



【書類名】

特許願

【整理番号】

30727

【提出日】

平成14年11月 5日

【あて先】

特許庁長官殿

【国際特許分類】

B60J 5/04

【発明の名称】

車両のサイドドア構造

【請求項の数】

3

【発明者】

【住所又は居所】

広島県安芸郡府中町新地3番1号 マツダ株式会社内

【氏名】

守山 幸宏

【特許出願人】

【識別番号】

000003137

【住所又は居所】 広島県安芸郡府中町新地3番1号

【氏名又は名称】

マツダ株式会社

【代理人】

【識別番号】

100067828

【弁理士】

【氏名又は名称】 小谷 悦司

【選任した代理人】

【識別番号】

100075409

- 【弁理士】

【氏名又は名称】

植木 久一

【選任した代理人】

【識別番号】

100099955

【弁理士】

【氏名又は名称】 樋口 次郎

【手数料の表示】

【予納台帳番号】 012472

【納付金額】

21,000円

# 【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9908482

【プルーフの要否】 要

## 【書類名】 明細書

【発明の名称】 車両のサイドドア構造

### 【特許請求の範囲】

【請求項1】 前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、リヤドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸を傾斜させたことを特徴とする車両のサイドドア構造。

【請求項2】 フロントドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸を傾斜させたことを特徴とする請求項1記載の車両のサイドドア構造。

【請求項3】 前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸を傾斜させたことを特徴とする車両のサイドドア構造。

### 【発明の詳細な説明】

 $[0\ 0\ 0\ 1\ ]$ 

### 【発明の属する技術分野】

本発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造に関するものである。

[0002]

## 【従来の技術】

従来、前部に設けられたドアヒンジを介してフロントドアが開閉自在に支持されるともに、後部に設けられたドアヒンジを介してリヤドアが開閉自在に支持されることにより、いわゆる観音開き式に開閉操作されるフロントドア及びリヤドアにより車体の側面開口部が覆われるように構成された車両のサイドドア構造が知られている。(例えば特許文献 1 参照)。

[0003]

【特許文献1】

特開平13-1388864号公報(図1)

 $[0\ 0\ 0\ 4]$ 

## 【発明が解決しようとする課題】

上記のように観音開き式に開閉操作されるフロントドア及びリヤドアを備えた 車両は、上記リヤドアを開放操作する場合に、まずドアロックによるフロントド アのロック状態を解放して、図15の仮想線で示すように、フロントドア2aを 所定開度に開放してフロントドア2aとリヤドア4aとの連結状態を解除した後 に、リヤドア4aを閉止状態から開放状態に移行させるように構成されている。

### [0005]

上記フロントドア2a及びリヤドア4aは、一般的にデザイン上の理由により車両の正面から見て上端部が車体の内方側に位置するように傾斜した状態で設置されている。このように傾斜状態で設置されたフロントドア2a及びリヤドア4aを、図15に示すように、鉛直方向に設置されたヒンジ軸17a,12aによって開閉自在に支持した場合には、フロントドア2a及びリヤドア4aの上端部が上記ヒンジ軸17a,12aの軸心よりも車体の内方側に位置しているために、両ドア2a,4aを開放操作する際の初期段階で、フロントドア4aの後部上端が車体の後方側に揺動変位するとともに、リヤドア4aの前部上端が車体の前方側に揺動変位することになる。また、上記フロントドア2aの後端部とリヤドア4aの前端部とは、所定距離OLだけオーバラップした状態で設置されているため、フロントドア2aの後部上端の揺動軌跡

との重合範囲Aが大きくなることが避けられない。したがって、上記リヤドア4 aの開放操作時に、その前端部がフロントドア2aの後端部に干渉し易く、この 干渉を防止するためには、フロントドア2aを大きく開放した状態で、リヤドア 4aの開放操作を行わなければならず、操作性が悪いという問題があった。

### [0006]

上記両ドア2a, 4aの揺動軌跡の重合範囲Aが大きいことに起因した両ドア2a, 4aの干渉を防止するために、フロントドア2a及びリヤドア4aの傾斜状態に対応させて両ドアのヒンジ軸2a, 4aを傾斜させることが考えられるが、このように構成した場合には、閉止状態にある各ドア2a, 4aを開放操作する際に大きな操作力が必要になるという問題がある。すなわち、図16は、上端部が内方に位置するように傾斜したヒンジ軸17a, 12aの軸方向からフロントドア2a及びリヤドア4aを見た状態を示している。

### [0007]

図15と図16とを比較すると、両ドア2a,4aの傾斜状態に対応させて上記ヒンジ軸17a,12aを傾斜させることにより、このヒンジ軸17a,12aを支点として開放操作される両ドア2a,2bの揺動軌跡の重合範囲Aを小さくできることが解る。この反面、上記のように上端部を内方に位置させるようにヒンジ軸17a,12aを傾斜させた場合には、フロントドア2a及びリヤドア4aの重心〇を通って鉛直方向に作用する各ドア2a,4aの自重Mと、上記重心〇からヒンジ軸17a,12aまで距離L1,L2との積により表される大きなモーメントが各ドア2a,4aの閉止方向にそれぞれ作用し、このモーメントに抗して各ドア2a,4aを開放操作しなければならないので、各ドア2a,4aを開放操作する際の初期段階で大きな操作力が必要になるという問題がある。また、上記両ドア2a,4aの開放角度 $\theta$ が約90度になるまで、両ドア2a,4aの閉止方向に上記モーメントが作用するため、両ドア2a,4aを開放操作する場合に、その終期段階まで所定の操作力が必要になるという問題があった。

### [0008]

本発明は、上記の点に鑑みてなされたものであり、観音開き式に設置されたフロントドアとリヤドアとの干渉を効果的に回避しつつ、その操作性を向上させる

ことができる車両のサイドドア構造を提供することを目的としている。

## [0009]

## 【課題を解決するための手段】

請求項1に係る発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、リヤドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸を傾斜させたものである。

## [0010]

上記構成によれば、上端部が車体の内方側に位置するように傾斜したヒンジ軸を支点にしてリヤドアを開放操作する際に、その前端部の前方側への移動量が小さく抑えられてフロントドアとの干渉が防止されるとともに、上端部が車体の後方側に位置するように傾斜した上記ヒンジ軸を支点にして上記リヤドアを開放操作する際の操作力が低減されることになる。

### [0011]

請求項2に係る発明は、上記請求項1記載の車両のサイドドア構造において、フロントドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸を傾斜させたものである。

### [0012]

上記構成によれば、上端部が車体の内方側に位置するように傾斜したヒンジ軸を支点にしてフロントドアを開放操作する際に、その後端部の後方側への移動量が小さく抑えられるため、フロントドアとリヤドアの干渉が、より効果的に防止されるとともに、上端部が車体の前方側に位置するように傾斜した上記ヒンジ軸を支点に、フロントドアを開放操作する際の操作力が低減されることになる。

### [0013]

請求項3に係る発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸を傾斜させたものである。

## [0014]

上記構成によれば、上端部が車体の内方側に位置するように傾斜したヒンジ軸を支点にしてフロントドアを開放操作する際に、その後端部の後方側への移動量が小さく抑えられてリヤドアとの干渉が防止されるとともに、上端部が車体の前方側に位置するように傾斜した上記ヒンジ軸を支点としてフロントドアを開放操作する際の操作力が低減されることになる。

## $[0\ 0\ 1\ 5]$

## 【発明の実施の形態】

図1及び図2は、本発明に係る車両のサイドドア構造の実施形態を示している。このサイドドア構造は、前部に設けられた上下一対のドアヒンジ1を介して開閉自在に支持されたフロントドア2と、後部に設けられた上下一対のドアヒンジ3を介して開閉自在に支持されたリヤドア4とを有し、車両の側面に形成された開口部が上記フロントドア2及びリヤドア4により覆われるとともに、これらのフロントドア2及びリヤドア4が、いわゆる観音開き式に開閉操作されるように構成されている。

#### $[0\ 0\ 1\ 6]$

上記フロントドア2は、その後部に設けられたドアラッチ51と、リヤドア4の前端部に設けられたストライカ52とからなるドアロック5を介してリヤドア4と連結されることにより、閉止状態に保持されるようになっている。一方、上記リヤドア4は、車体とリヤドア4との間に設けられた上下一対のドアロック6,7により閉止状態に保持されるように構成されている。また、上記フロントドア2の前部及びリヤドア4の後部には、各ドア2,4の開度が所定角度となった

場合にその開度を保持するドアチェッカー8,9が上記ドアヒンジ1,3の下方 にそれぞれ配設されている。

## [0017]

上記リヤドア4用のドアヒンジ3は、リヤドア4の後部壁面に固着されたヒンジ金具10と、車体に形成された上記開口部の後部周壁面に固着されたヒンジ金具11と、両金具10,11を連結するヒンジ軸12とにより構成されている。そして、リヤドア4の前端部から所定距離だけ後方側に離間した位置においてドア内壁面に取り付けられた開閉操作用の操作ノブ14をもってリヤドア4を開閉操作することにより、上記ヒンジ軸12を支点にしてリヤドア4が閉止位置と開放位置との間で揺動変位するようになっている。上記ドアヒンジ3のヒンジ軸12は、図3に示すように車両の正面から見て、その上端部が車体の内方側に位置するように軸心120が傾斜した状態で設置されるとともに、車両の側面から見て、その上端部が車体の後方側に位置するように軸心120が傾斜した状態で設置されている(図1参照)。

## [0018]

また、上記フロントドア2用のドアヒンジ1は、フロントドア2の前部壁面に固着されたヒンジ金具15と、車体に形成された上記開口部の前部周壁面に固着されたヒンジ金具16と、両金具15,16を連結するヒンジ軸17とにより構成され、このヒンジ軸17を支点にしてフロントドア2が閉止位置と開放位置との間で揺動変位するようになっている。フロントドア2用のヒンジ軸17は、上記リヤドア4用のヒンジ軸12と同様に車両の正面から見て、その上端部が車体の内方側に位置するように軸心170が傾斜した状態で設置されている。また、上記フロントドア2用のヒンジ軸17は、その軸心170が車両の側面から見て略鉛直方向に設置されている。

## [0019]

上記フロントドア2用のドアチェッカー8は、図4に示すように、フロントドア2の前部壁面に対向する位置において車体に取り付けられたブラケット18と、このブラケット18に設けられた支持軸19を支点にして揺動可能に支持されたチェッカープレート20と、フロントドア2の前部内方に設置された保持ケー

ス21とを有し、この保持ケース21には、図5に示すように、上下一対の挟持体22と、両挟持体22を互いに接近させる方向に付勢する弾性体23とが保持されている。

## [0020]

上記チェッカープレート20は、鋼板材等からなる芯材24と、この芯材24を被覆する合成樹脂材等からなる被覆材25と、先端部に設けられたストッパー部材26とを有している。そして、上記保持ケース21に形成された挿通孔を貫通した状態でチェッカープレート20が設置されることにより、上記両挟持体22が弾性体23の付勢力に応じてチェッカープレート20に表裏両面に圧接されるようになっている。また、チェッカープレート20の表裏両面には、上記被覆材25の厚みをチェッカープレート20の長手方向に変化させることにより、複数の凸部27a~27cが設けられるとともに、それらの間に複数の凹部28a~28cが配設されている。

## [0021]

そして、フロントドア2の開閉操作時に、上記保持ケース21がチェッカープレート20の長手方向に摺動変位するとともに、上記弾性体23の付勢力に応じて両挟持体22がチェッカープレート20の表裏両面に圧接されることにより付与される摺動抵抗の大きさが、フロントドア2の開放角度に応じて変化するように構成されている。

### [0022]

すなわち、図4に示す平面視において、ドアチェッカー9の支持軸19が上記 ヒンジ軸12の設置位置から所定距離だけ車体の内方側にオフセットした位置に 配設されているため、上記ヒンジ軸12を支点にして図4の実線で示す閉止位置 と、仮想線で示す開放位置との間で、フロントドア2を開閉操作するのに応じ、 このフロントドア2とともに保持ケース21が揺動変位するとともに、上記支持 軸19を支点にしてチェッカープレート20が揺動変位する。また、両揺動支点 が上記のようにオフセットしていることにより、フロントドア2の揺動変位時に 、上記保持ケース21がチェッカープレート20の長手方向に沿って摺動変位す るようになっている。

### [0023]

そして、上記保持ケース21の摺動変位に応じ、その内部に保持された両挟持体22が、上記チェッカープレート20の表裏両面に設けられた上記凸部27a~28cを乗り越えて凹部28a~28cの設置部に向けて移動し、この際に、上記凸部27a~27cを構成する傾斜面によって上記両挟持体22が互いに離間する方向に押圧されるとともに、上記弾性体23が圧縮されることにより、この弾性体23の付勢力に対応した摺動抵抗が付与される。この弾性体23の付勢力が、両挟持体22を凹部28a~28cの設置位置に移動させる方向に作用し、これによってフロントドア2の開放操作時に、上記凹部28a~28cの設置部に挟持体22が位置した時点で所定の拘束力が付与され、この位置に対応した開度に上記フロントドア2が保持されることになる。

### [0024]

また、リヤドア用のドアチェッカー9は、図6及び図7に示すように、リヤドア4の後部壁面に対向する位置において車体に取り付けられたブラケット18と、このブラケット18に設けられた支持軸19を支点にして揺動可能に支持されたチェッカープレート20と、リヤドア4の後部内方に設置された保持ケース21とを有し、この保持ケース21に上下一対の挟持体22と、両挟持体22を互いに接近させる方向に付勢する弾性体23とが保持されている。上記チェッカープレート20は、その先端側に位置する凸部27cが先拡がり形状に形成されるとともに、その先端部側に大径部29が形成され、この先端部に凹部28cが設けられていない点が、上記フロントドア2用のドアチェッカー8と相違し、その他の点はフロントドア用のチェッカープレート20と略同様に構成されている。また、上記リヤドア用のドアチェッカー9の機能も、フロントドア用のドアチェッカー8と同様に構成されている。

### [0025]

上記構成において、後部席の乗員が閉止状態にあるリヤドア4を開放状態に移行させる場合には、上記ドアロック5によるフロントドア2のロックを解除した状態で、このフロントドア2を所定角度に開放した後、上記ドアロック6,7によるリヤドア4のロックを解除した状態で、上記操作ノブ14をもってリヤドア

4の前端部を車体の外方側に揺動変位させることにより開放操作する。

## [0026]

上記のように前部に設けられたドアヒンジ1を介して開閉自在に支持されたフロントドア2と、後部に設けられたドアヒンジ3を介して開閉自在に支持されたリヤドア4とにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、上記リヤドア用のヒンジ軸12を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸12を傾斜させるとともに、このヒンジ軸12を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸12を傾斜させたため、リヤドア4の開閉操作時に、その先端部がフロントドア2と干渉するのを回避しつつ、上記リヤドア4を軽い力で開放操作することができる。

## [0027]

すなわち、リヤドア4用のヒンジ軸12を、その上端部が車体の内方側に位置するように傾斜させたため、リヤドア4の上端部が上記ヒンジ軸12の内方側に位置した状態となることが防止され、上記ヒンジ軸12を支点にしてリヤドア4を閉止位置から開放位置に揺動変位させる場合に、その前端部が前方側に大きく移動するのを抑制することができる。したがって、車両の側面から見てヒンジ軸が鉛直方向に設置された図15に示す従来例に比べ、図8に示すように、上記のように傾斜したヒンジ軸12の軸方向から見た状態において、フロントドア2の後端部と、リヤドア4の前端部との揺動軌跡の重合範囲Aを、著しく小さくして両ドア2.4の干渉を効果的に防止することができる。

#### [0028]

そして、リヤドア4用のヒンジ軸12を、その上端部が車体の後方側に位置するように傾斜させたため、リヤドア4の重心Gを通って鉛直方向に作用するリヤドア4の自重Mに応じ、ヒンジ軸12を支点としてリヤドア4の閉止方向に作用するモーメントの距離Lを、図16に示す従来例に比べて小さくすることができ、これによってリヤドア4を開放操作する場合の初期段階における操作力を効果的に低減することができる。しかも、図8に示すように、上記リヤドア4を90度未満の所定角度 $\theta$ に開放操作して上記自重Mの作用方向とヒンジ軸12の傾斜

方向とが重なった状態となった時点で、リヤドア4の閉止方向に作用するモーメントが0になるため、リヤドア4を開放操作する場合の終期段階における操作力をも効果的に低減することができる。なお、リヤドア4の重心を通る自重Mは鉛直方向に作用しており、この自重Mが図8において傾斜した状態で表示されているのは、この図8が上記のようにヒンジ軸12の軸方向から見た状態を示すものであって、このヒンジ軸12の軸心と直交する面を表すものだからである。

## [0029]

また、上記実施形態では、フロントドア用のヒンジ軸15を車両の正面から見た場合に、上端部が車体の内方側に位置するように傾斜させたため、上記ヒンジ軸15を支点にしてフロントドア2を開放操作する際に、その後端部の後方側への移動を抑制することができ、これによってフロントドア2の後端部と、リヤドア4の前端部とが干渉するのを、より効果的に防止できるという利点がある。

## [0030]

上記のように車両の正面から見てフロントドア用の上端部が車体の内方側に位置するように傾斜させたフロントドア2を有する車両のサイドドア構造において、図9に示すように、フロントドア用のヒンジ軸15を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸15を傾斜させた構造としてもよい。このように構成した場合には、上記ヒンジ軸15を支点にしてフロントドア2を開放操作する場合の操作力を、上記リヤドア4と同様に効果的に低減することができるという利点がある。

## [0031]

上記実施形態では、リヤドア4の後部に設けられた上下一対のヒンジ部材3の下方にドアチェッカー9を配設したため、リヤドア4の下部に位置する空間部を有効に利用して上記ドアチェッカー9を設置することができ、そのレイアウトの自由度を充分に確保することができる。また、上記チェッカープレート20の全長を大きくすることにより作動範囲が大きく設定されたドアチェッカー9をリヤドア4の下部に位置する上記空間部内に配設することが可能であり、このドアチェッカー9によって規制されるリヤドア4の最大開度を大きな値に設定することができるという利点がある。

## [0032]

さらに、図3、図4及び図6に示すように、上記ヒンジ部材3を構成するヒンジ軸12の軸心120よりも車体の内方側に上記ドアチェッカー9を配設し、上記ヒンジ軸12の設置位置とドアチェッカー9の設置位置とを車幅方向に所定距離だけオフセットさせるように構成した場合には、リヤドア4の開閉操作時にドアチェッカー9からリヤドア4に付与される拘束力に応じてリヤドア4に付与される抵抗モーメントを効果的に増大させることができる。

## [0033]

すなわち、上記ヒンジ軸12の上端部が車体の内方側に位置するように軸心120が傾斜していることにより、リヤドア用のヒンジ部材3の下方に配設されたドアチェッカー9の設置位置から大きく離れた位置を上記軸心120の延長線が通り、上記ヒンジ軸12の設置位置とドアチェッカー9の設置位置との離間距離が充分に確保されることになる。このため、リヤドア4の開閉操作時に、上記ドアチェッカー9により付与される拘束力と、上記離間距離との積からなる抵抗モーメントを大きな値に設定することができる。したがって、上記拘束力が小さいドアチェッカー9を用いた場合においても、このドアチェッカー9によりリヤドア4を所定の開度に安定して保持できるという利点がある。

### [0034]

また、図11に示すように、上記リヤドア4の設置部の後方側にホイールアーチ(タイヤハウスの曲線部分)30が配設された車両において、リヤドア用のドアチェッカー9を上記ヒンジ軸12の設置位置よりも車体の前方側に所定距離だけオフセットした位置に配設した構造としてもよい。このように構成した場合には、上記ホイールアーチ30にドアチェッカー9が干渉するのを防止しつつ、このドアチェッカー9を適正位置に設置し、リヤドア4の開放操作時に、所定の抵抗モーメントを付与することにより、リヤドア4を開放状態に保持することができる。

#### [0035]

また、上記実施形態では、ドアチェッカー8,9のチェッカープレート20に複数の凹部28a~28cを形成したため、この凹部28a~28cの設置数に

対応した複数個所においてフロントドア2及びリヤドア4を所定開度の開放状態に保持することにより、以下のように乗員の乗降を適正に行うことができる等の利点がある。

## [0036]

具体的には、図12に示すように、フロントドア2の開放角度が、リヤドア4の開閉軌軌跡  $\alpha$  よりもやや外方側位置する最小開度  $\theta$  1となった場合に、上記ドアチェッカー8のチェッカープレート20に設けられた複数の凹部28a~28 cのうち、基端部側に配設された第1凹部28aの設置位置に上記挟持体22が到達してフロントドア2が上記最小開度  $\theta$  1に保持されるように構成されている。また、上記チェッカープレート20の中間部に設けられた第2凹部28bの設置位置に応じて保持されるフロントドア2の開放角度が、前部席に対して乗員が昇降する際に適した中間開度  $\theta$  2に設定されるともに、上記チェッカープレート20の先端部に設けられた第3凹部28cの設置位置に応じて保持されるフロントドア2の開放角度が、フロントドア2の限界開度である最大開度  $\theta$  3に対応した値に設定されている。

## [0037]

上記ドアチェッカー8によりフロントドア2の開放角度を上記最小開度 $\theta$ 1に保持することにより、両ドア2、4の干渉を回避しつつ、上記リヤドア4の開放操作を容易に行うことができる。また、上記ドアチェッカー8によりフロントドア2の開放角度を上記中間開度 $\theta$ 2に保持させることにより、前部席に対する乗員の昇降を容易に行うことができる。さらに、上記ドアチェッカー8によりフロントドア2の開放角度を、上記最大開度 $\theta$ 3に保持させることにより、車室内に対する荷物の出し入れ等を容易に行うことができるという利点がある。

### [0038]

上記フロントドア用のドアチェッカー8と同様に、リヤドア用のドアチェッカー9により保持されるリヤドア4の最小角度、つまり上記ドアチェッカー9のチェッカープレート20に基端部側に設けられた第1凹部28aの設置位置に上記挟持体22が到達した時点で保持されるリヤドア4の開放角度を、フロントドア2の開閉軌跡 $\beta$ よりもやや外方側に位置する角度に設定することにより、上記最

小角度にリヤドア4を保持した状態で、フロントドア2を開閉操作する際に、このフロントドア2がリヤドア4に干渉するのを効果的に防止することができる。

## [0039]

また、上記ドアチェッカー9のチェッカープレート20の中間部に設けられた 第2凹部28bの設置位置に上記挟持体22が到達した時点で保持されるリヤド ア4の開放角度を、乗員の昇降に適した中間開度に設定することにより、この中 間角度にリヤドア4を保持させた状態で、後部席に対する乗員の昇降を容易に行うことができる。さらに、上記ドアチェッカー9のチェッカープレート20の先端部に設けられた大径部29の設置位置に上記挟持体22が到達した時点で保持されるリヤドア4の開放角度を、リヤドア4の最大開度に対応した角度に設定することにより、リヤドア4を限界まで開放した状態で、車室内に対する荷物の出し入れ等を容易に行うことができるという利点がある。

## [0040]

また、上記実施形態に示すように、リヤドア用のアチェッカー9を構成するチェッカープレート20の最先端部に大径部29を形成し、リヤドア4の開放角度が図13に示す最大開度となった時点で、図14に示すように、保持ケース21内に保持された挟持体22が上記大径部29上に乗り上げた状態で、リヤドア4が最大角度に保持されるように構成した場合には、この最大開度に保持されたリヤドア4の閉止操作を容易に行うことができるという利点がある。

### $[0\ 0\ 4\ 1]$

すなわち、図14に示すように、上記大径部29上に挟持体22が乗り上げた 状態では、弾性体23が大きく圧縮されることにより大きなエネルギーが蓄えられているため、リヤドア4を上記最大開度から閉止方向に少しでも移動させると、先拡がり形状の第3凸部27cを構成する傾斜面に沿って挟持体22が摺動することにより、リヤドア4を閉止方向に付勢する大きなアシスト力が得られることになる。したがって、図13に示すように最大開放状態にあるリヤドア4の操作ノブ14を後部席の乗員が持ってリヤドア4を閉止操作する場合に、人体の構造上の理由から、リヤドア4の閉止方向に大きな力を付与することが困難であるにも拘わらず、比較的容易に上記リヤドア4の閉止操作を行うことができる。

## [0042]

また、上記実施形態では、図13に示すように、リヤドア4を開閉操作するための操作ノブ14を、リヤドア4の前端部から所定距離Wだけ車体の後方側に配設したため、最大開放位置にあるリヤドア4を閉止する場合に、後部席の乗員が上記操作ノブ14を把持するために大きく手を伸ばすことなく、自然な姿勢で上記操作ノブ14を把持して容易に上記閉止操作を行うことができるという利点がある。

### [0043]

## 【発明の効果】

以上説明したように、本発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、リヤドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸を傾斜させたため、観音開き式に設置されたフロントドアとリヤドアとの干渉を効果的に回避しつつ、リヤドアの操作性を向上させることができるという利点がある。

### [0044]

また、本発明は、前部に設けられたドアヒンジを介して開閉自在に支持されたフロントドアと、後部に設けられたドアヒンジを介して開閉自在に支持されたリヤドアとにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、フロントドア用のヒンジ軸を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸を傾斜させるとともに、このヒンジ軸を車両の側面から見た場合にその上端部が車体の前方側に位置するように上記ヒンジ軸を傾斜させたため、観音開き式に設置されたフロントドアとリヤドアとの干渉を効果的に回避しつつ、フロントドアの操作性を向上させることができるという利点がある。

### 【図面の簡単な説明】

### 図1】

本発明に係るフロントドア構造の実施形態を示す側面図である。

### 【図2】

上記フロントドア構造の実施形態を示す平面図である。

### 【図3】

リヤドアを車両の正面から見た状態を示す説明図である。

### 図4

フロントドア用のドアチェッカーの具体的構成を示す平面断面図である。

### 【図5】

フロントドア用のドアチェッカーの具体的構成を示す側面断面図である。

### 【図6】

リヤドア用のドアチェッカーの具体的構成を示す平面断面図である。

### 【図7】

リヤドア用のドアチェッカーの具体的構成を示す側面断面図である。

### 【図8】

フロントドア及びリヤドアの開閉操作状態を示す説明図である。

### 【図9】

フロントドア及びリヤドアを車両の側面から見た状態を示す説明図である。

#### 【図10】

本発明に係るフロントドア構造の別の実施形態を示す側面図である。

### 【図11】

本発明に係るフロントドア構造のさらに別の実施形態を示す側面図である。

#### 【図12】

フロントドアの開閉操作状態を示す説明図である。

### 【図13】

リヤドアを最大開度位置に開放した状態を示す説明図である。

### 【図14】

リヤドアを最大開度位置に開放した場合におけるドアチェッカーの状態を示す 説明図である。

# 【図15】

車両のサイドドア構造の従来例を示す説明図である。

# 【図16】

で車両のサイドドア構造の別の従来例を示す説明図ある。

## 【符号の説明】

- 1 フロントドア用のヒンジ
- 2 フロントドア
- 3 リヤドア用のヒンジ
- 4 リヤドア
- 12 リヤドアのヒンジ軸
- 15 フロントドアのヒンジ軸

【書類名】 図面

【図1】



【図2】







【図4】



【図5】



【図6】



【図7】



【図8】



【図9】



【図10】



【図11】



【図12】



【図13】



【図14】



【図15】



【図16】



## 【書類名】 要約書

## 【要約】

【課題】 観音開き式に設置されたフロントドアとリヤドアとの干渉を効果的に 回避しつつ、その操作性を向上させる。

【解決手段】 前部に設けられたドアヒンジ1を介して開閉自在に支持されたフロントドア2と、後部に設けられたドアヒンジ3を介して開閉自在に支持されたリヤドア4とにより車体の側面開口部を覆うように構成された車両のサイドドア構造において、リヤドア用のヒンジ軸12を車両の正面から見た場合にその上端部が車体の内方側に位置するように上記ヒンジ軸12を傾斜させるとともに、このヒンジ軸12を車両の側面から見た場合にその上端部が車体の後方側に位置するように上記ヒンジ軸1を傾斜させた。

### 【選択図】 図1

# 特願2002-321655

# 出願人履歴情報

識別番号

[000003137]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

広島県安芸郡府中町新地3番1号

氏 名 マツダ株式会社