NAME DIESES MODULS

1 Diverses

1.1 Rahmen

Hoher Rahmen um einen ganz normalen Text.

Ein hoher roter Rahmen um einen ganz normalen Text.

Rahmen um einen ganz normalen Text.

Ein roter Rahmen um einen ganz normalen Text.

1.2 Merksatz

Merke 1: Dies ist ein Merksatz! Dies ist ein Merksatz!

2 Aufzählungen

2.1 Punktual

Aufzählungspunkte mit Spalten linear, Zeilen eingefärbt: X Schülertext ...Beschreibung 1. X Schülertext ...Beschreibung 2. X Schülertext ...Beschreibung 1.

2.2 Numeral

Aufzö	hlungsnummerie	rung mit Spalten linear, Zeilen eingefärbt:
1	Schülertext	Beschreibung 1.
2	Schülertext	Beschreibung 2.
3	Schülertext	Beschreibung 3.
4	Schülertext	Beschreibung 4.
5	Schülertext	Beschreibung 5.
6	Schülertext	Beschreibung 6.
7	Schülertext	Beschreibung 7.
8	Schülertext	Beschreibung 8.
9	Schülertext	Beschreibung 9.

Aufzählungsnummerierung mit Spalten linear, Zeilen eingefärbt:				
1	Schülertext	Beschreibung 1.		
2	Schülertext	Beschreibung 2.		

2.3 OK und NOK

	Α	В	С	D	E
Text 1:					
Text 2:					

2.4 Multi Table

(1) Schülertext 1:

Eingerückt 1:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

Eingerückt 2:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

(2) Schülertext 2:

Eingerückt 1:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

Eingerückt 2:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

3 Subsections

3.1 Table in Subsection

${f Dezimal}_{10}$	$\mathbf{Hexadezimal}_{16}$	$Oktal_8$	\mathbf{Dual}_2
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011

Beschreibung Beschreibung Beschreibung Beschreibung.

Bild 1: Bildbeschreibung Bildbeschreibung Bildbeschreibung.

3.2 Text und Graphik in Subsection

Beschreibung	Beschreibung
Beschreibung	Beschreibung
Beschreibung	Beschreibung Be-
schreibung Be	schreibung.

Bild 2: Bildbeschreibung Bildbeschreibung.

4 Formeln

4.1 Lange Formeln

Für für eine lange Formel gilt für eine Größe in der Einheit:

```
R_{\vartheta 2} = R_{\vartheta 1} \cdot [1 + \alpha_{\vartheta 1} \cdot (\vartheta_2 - \vartheta_1)]

R_{\vartheta 2} = R_{20} \cdot [1 + \alpha_{20} \cdot (\vartheta_2 - 20^{\circ}C) + \beta_{20} \cdot (\vartheta_2 - 20^{\circ}C)^2]
```

4.2 Kurze Formeln

Für für eine kurze Formel gilt für eine Größe in der Einheit:

$$U_T = \frac{k \cdot T}{q} \approx 26mV \hspace{1cm} U_T \hspace{1cm} \dots \hspace{1cm} \begin{array}{c} Temperaturspannung \approx 26mV \\ k \hspace{1cm} \dots \hspace{1cm} Boltzmann \hspace{1cm} Konst. \hspace{1cm} k = 1,38 \cdot 10^{-23} J/K \\ T \hspace{1cm} \dots \hspace{1cm} absolute \hspace{1cm} Temperatur \hspace{1cm} in \hspace{1cm} K \\ q \hspace{1cm} \dots \hspace{1cm} Einheitsladung \hspace{1cm} mit \hspace{1cm} 1.602 \cdot 10^{-19} \hspace{1cm} As \\ r_{BE} \hspace{1cm} \dots \hspace{1cm} differentieller \hspace{1cm} Basis \hspace{1cm} Emitterwiderstand \\ I_B \hspace{1cm} \dots \hspace{1cm} Basisstrom \hspace{1cm} des \hspace{1cm} Transistors \\ \beta \hspace{1cm} \dots \hspace{1cm} Stromverst\"{arkung} \hspace{1cm} des \hspace{1cm} Transistors \end{array}$$

5 Graphik

5.1 Wrap Graphik

Beschreibung in Bild 3 Beschreibung Beschrei

Bild 3: Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik .

5.2 Block Graphik

Bild 4: Bildunterschrift Block Graphik Bildunterschrift Block Graphik Bildunterschrift Block Graphik.

6 Rechnungen

6.1 Beispiele

Beispiel 1: Angabe eines Beispiels I

(1.1) Beschreibung des Rechnungsschrittes horizontal verteilt. Beschreibung des Rechnungsschrittes horizontal verteilt:

$$U_{GL} = \frac{U_{e1} + U_{e2}}{2} = \frac{2+3}{2} = 2.5 \ V$$

(1.2) Beschreibung des Rechnungsschrittes horizontal verteilt. Beschreibung des Rechnungsschrittes horizontal verteilt:

$$U_{GL} = \frac{U_{e1} + U_{e2}}{2} = \frac{0.5 + 2}{2} = 1.25 \text{ V}$$

(1.3) Beschreibung des Rechnungsschrittes vertikal verteilt. Beschreibung des Rechnungsschrittes vertikal verteilt:

$$U_{GL} = \frac{U_{e1} + U_{e2}}{2} = \frac{2+3}{2} = 2.5 \text{ V}$$

6.2 Erläuterungen und Deklarationen

(1) Beschreibung des Rechnungsschrittes vertikal verteilt, Beschreibung des Rechnungsschrittes vertikal verteilt, Beschreibung des Rechnungsschrittes vertikal verteilt:

$$U_a = A_D \cdot e$$

$$U_a = A_D \cdot (U_e - x)$$

$$U_a = A_D \cdot (U_e - k \cdot U_a)$$

(2) Beschreibung des Rechnungsschrittes horizontal verteilt, Beschreibung des Rechnungsschrittes horizontal verteilt, Beschreibung des Rechnungsschrittes horizontal verteilt, Beschreibung des Rechnungsschrittes horizontal verteilt:

$$F = \frac{U_a}{U_e} = \frac{A_D \cdot (U_e - k \cdot U_a)}{U_e}$$
$$F = A_D \cdot (1 - k \cdot F)$$

7 Tabellen

		geme	gemessen		berechnet		
Mess	f	\mathbf{u}_{es}	\mathbf{u}_{as}	$oldsymbol{A}_{CL}$	$oldsymbol{A}_{CL}$	φ	
Nr.:	(Hz)	(mV)	(mV)	(-)	(db)	(°)	
1	1k						
10	1M						

8 Lernzielkontrolle

- 1. Frage Nummer 1.
- 2. Frage Nummer 2.

Welc	he Aussage trifft auf ein	en Begriff zu?			
Α	Statement A.	D	Statement D.		
В	Statement B.	E	Statement E.		
C	Statement C.	F	Statement F.		
	ERGEBNIS:		В	E	F

9 PDF Einbindung

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

DESCRIPTION

The μ A741 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The μ A741 is short-circuit-protected and allows for nulling of offset voltage.

FEATURES

- Internal frequency compensation
- Short circuit protection
- Excellent temperature stability
- High input voltage range

PIN CONFIGURATION

Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
8-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	μΑ741N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	μΑ741CN	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA741CN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	μΑ741F	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70°C	μΑ741CF	0580A
8-Pin Small Outline (SO) Package	0 to +70°C	μΑ741CD	SOT96-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage		
	μ Α741 C	±18	V
	μΑ741	±22	V
P_D	Internal power dissipation		
	D package	780	mW
	N package	1170	mW
	F package	800	mW
V _{IN}	Differential input voltage	±30	V
V _{IN}	Input voltage ¹	±15	V
I _{SC}	Output short-circuit duration	Continuous	
T _A	Operating temperature range		
	μA741C	0 to +70	°C
	SA741C	-40 to +85	°C
	μΑ741	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES

1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

1994 Aug 31 1 853-0903 13721

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

DC ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_S = \pm 15$ V, unless otherwise specified.

OVERDOL	PARAMETER	TEST CONDITIONS	μ Α741			μ Α741C			UNIT
SYMBOL			Min	Тур	Max	Min	Тур	Max	UNII
Vos	Offset voltage	R _S =10kΩ		1.0	5.0		2.0	6.0	mV
		R_S =10kΩ, over temp.		1.0	6.0		1	7.5	mV
ΔV _{OS} /ΔT				10			10	l i	μV/°C
los	Offset current			20	200		20	200	nA
		Over temp.						300	nA
		T _A =+125°C		7.0	200				nA
		T _A =-55°C		20	500				nA
ΔI _{OS} /ΔT				200			200		pA/°C
I _{BIAS}	Input bias current			80	500		80	500	nA
		Over temp.				1	1	800	nA
		T _A =+125°C		30	500	1	1	1 1	nA
		T _A =-55°C		300	1500			1 1	nA
ΔΙ _Β /ΔΤ				1			1	1 1	nA/°C
		R _L =10kΩ	±12	±14		±12	±14		V
V _{OUT}	Output voltage swing						1		
		$R_L=2k\Omega$, over temp.	±10	±13		±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	50	200		20	200		V/mV
A _{VOL}	Large-signal voltage gain	$R_L=2k\Omega$, $V_O=\pm 10V$,							
		over temp.	25			15			V/mV
	Offset voltage adjustment range			±30			±30		mV
		R _S ≤10kΩ					10	150	μV/V
PSRR	Supply voltage rejection ratio					1	1	1 1	
		R _S ≤10kΩ, over temp.		10	150		1	l i	μV/V
						70	90		dB
CMRR	Common-mode rejection ratio				1		1	l i	
		Over temp.	70	90	l		1	l i	dB
				1.4	2.8		1.4	2.8	mA
Icc	Supply current	T _A =+125°C		1.5	2.5	l	l		mA
		T _A =-55°C		2.0	3.3		1	l i	mA
V _{IN}	Input voltage range	(μA741, over temp.)	±12	±13		±12	±13		V
R _{IN}	Input resistance		0.3	2.0		0.3	2.0		ΜΩ
				50	85		50	85	mW
P_D	Power consumption	T _A =+125°C		45	75	l	l		mW
		T _A =-55°C		45	100	l	l		mW
R _{OUT}	Output resistance			75			75		Ω
I _{sc}	Output short-circuit current		10	25	60	10	25	60	mA

1994 Aug 31 2

Philips Semiconductors Product specification

General purpose operational amplifier

μ A741/ μ A741C/SA741C

DC ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_S = \pm 15$ V, unless otherwise specified.

SYMBOL	PARAMETER	TEST COMPLETIONS					
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Min Typ Ma		x UNIT	
Vos		R _S =10kΩ		2.0	6.0	mV	
	Offset voltage	R_S =10kΩ, over temp.		l	7.5	mV	
$\Delta V_{OS}/\Delta T$				10		μV/°C	
Ios				20	200	nA	
	Offset current	Over temp.		l	500	nA	
$\Delta I_{OS}/\Delta T$				200		pA/°C	
I _{BIAS}				80	500	nA	
	Input bias current	Over temp.		l	1500	nA	
$\Delta I_B/\Delta T$				1		nA/°C	
		R _L =10kΩ	±12	±14		V	
V _{OUT}	Output voltage swing			l			
		R_L =2k Ω , over temp.	±10	±13		V	
		$R_L=2k\Omega$, $V_O=\pm 10V$	20	200		V/mV	
A _{VOL}	Large-signal voltage gain			l			
		R_L =2k Ω , V_O =±10V, over temp.	15			V/mV	
	Offset voltage adjustment range			±30		mV	
PSRR	Supply voltage rejection ratio	R _S ≤10kΩ		10	150	μV/V	
CMRR	Common mode rejection ration		70	90		dB	
V _{IN}	Input voltage range	Over temp.	±12	±13		V	
R _{IN}	Input resistance		0.3	2.0		MΩ	
P_d	Power consumption			50	85	mW	
R _{OUT}	Output resistance			75		Ω	
I _{SC}	Output short-circuit current			25		mA	

AC ELECTRICAL CHARACTERISTICS

 $T_A{=}25^{\circ}C,\ V_S=\pm15\text{V},\ \text{unless otherwise specified}.$

SYMBOL	PARAMETER	TEST CONDITIONS	μΑ741, μΑ741C			UNIT
STWIBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNII
R _{IN}	Parallel input resistance	Open-loop, f=20Hz	0.3			ΩM
C _{IN}	Parallel input capacitance	Open-loop, f=20Hz		1.4		pF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V_{IN} =20mV, R_L =2k Ω , C_L ≤100pF				
t _R	Rise time		l	0.3	l	μs
	Overshoot		l	5.0	l	%
SR	Slew rate	C≤100pF, R _L ≥2kΩ, V _{IN} =±10V	l	0.5	l	V/μs

1994 Aug 31 3 1994

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SA741C

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

1994 Aug 31 4

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS

1994 Aug 31

Figure 3. Typical Performance Characteristics

5

1994 Aug 31

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)