

1ST GERMANY - INDIA SMART ENERGY WORKSHOP

Germany's Experience with Rooftop PV and Importance of Smart Inverters

Speaker: Eckehard Tröster

CEO, Energynautics GmbH, Germany

Energynautics Germany technical consulting for the energy transition

Studies

Capacity Building Conferences

O Digital Platform

Renewables Development in Germany

SOURCE: 50Hertz, Amprion, TenneT, Transnet BW, Google Earth, statista

Rooftop PV in Germany

 Typical situation in German villages

Electricity Generation in Germany 11th to 15th Sept 2020

Original perspective:

Get renewables out of the way as soon as there is a disturbance in the electricity grid.

• But:

Not a good idea if RE is major contributor!

The 50.2 Hz Problem in Germany

Several thousand megawatts of installed renewable capacity disconnect at unfavorable frequency thresholds

Inverters had to be retrofitted:

- 300,000 inverters for more than €170M from 2012-2014
- For comparison: on Hawaii 800,000 inverters were reprogrammed in 2 days, remotely at no cost.

Source left: EEG-registry of TSOs (1997-2008) and Federal Netzwork Agency (2009-2010)

Smart Inverters What's the difference?

Traditional Inverters

- DC/AC conversion
- Ensuring power quality
- Protecting from unintentional islanding
- Disconnection from grid based on under-/overfrequency and under-/overvoltage

Smart Inverters

- Autonomous ride-through capabilities
- Autonomous support to system stability (voltage/reactive power and active power control)
- Communication capabilities

- Strictly required for variable renewable energy integration
- Many inverters on the market are already "smart"
- Inverters keep becoming smarter

Smart Inverter Capabilities

The most important driver for necessity of certain inverter capabilities is the VRE share in the power system.

Fully-Fledged Frequency Control

Fully-Fledged Voltage Control

Synthetic Inertia

Operating Reserves

Active Power Gradient Limitation

Simulation Models

Active Power Management

Communication

Low Voltage Ride Through

Reactive Power Capability

Power Reduction at Overfrequency

Protection

Power Quality

Source: IRENA Grid Codes Report, http://www.irena.org/DocumentDownloads/Publications/IRENA Grid Codes 2016.pdf

VRE Share

O Digital Platform

Reactive Power for voltage control in distribution grids

Source: Uhlig, CIRED Workshop 2014

German experience: Voltage control in distribution grids can become crucial

- Grid operators observed overvoltage issues especially in lightly loaded rural grids with high PV feed-in.
- PV units above 3.68 kW must be able to contribute to voltage control by feeding in reactive power.

Ancillary Services

Source: EnerginetDK, Technical requirements for PV and wind power plants above 11 kW, Denmark

Ancillary Services Frequency control with PV

Key Takeaways

- Many lessons to be learned from the PV frontrunner Germany (e.g., 50.2 Hz Problem)
- Smart inverters are strictly required for variable renewable energy integration (luckily many inverters on the market are already fairly "smart")
- With higher VRE share, smarter functions need to be implemented (e.g., frequency control)
- Grid Codes need to be in place and steadily revised to adapt to the progress of the energy transition

Thank You

For discussions/suggestions/queries email: www.indiasmartgrid.org www.isgw.in e.troester@energynautics.com

India Smart Grid Forum

CBIP Building, Malcha Marg, Chanakyapuri, Delhi-110021

Website: www.indiasmartgrid.org

