MAP inference

In the fifth homework you will perform an application of the MAP inference we saw in class. For instance, you will design a Bayesian net-based based classifier, train and test it, and compare it according a benchmark.

If further questions arise, please use the slack channel, or write me to esjimenezro@iteso.mx.

References:

Solving A Simple Classification Problem with Python — Fruits Lovers' Edition

Imagen recuperada de: https://upload.wikimedia.org/wikipedia/commons/e/ed/Bayes_icon.svg.

Data

The fruits dataset was created by Dr. Iain Murray from University of Edinburgh. He bought a few dozen oranges, lemons and apples of different varieties, and recorded their measurements in a table. And then the professors at University of Michigan formatted the fruits data slightly and it can be downloaded from here.

1. EDA

Perform some exploratory data analysis over the fruits dataset to get familiarized with the data.

```
In [114... from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from pandas.plotting import scatter_matrix
    import matplotlib.pyplot as plt
    from matplotlib import cm
    import seaborn as sns
    import pandas as pd
    import numpy as np

%matplotlib inline

In [8]: df = pd.read_csv('C:\\Users\\Omar\\Documents\\Modelos Graficos Probabilisticos
In []: df.info()
```

```
In [3]: df.describe()
 Out[3]:
                 fruit_label
                                         width
                                                   height color_score
                                mass
           count
                 59.000000
                            59.000000 59.000000 59.000000
                                                           59.000000
                  2.542373 163.118644
                                       7.105085
                                                 7.693220
                                                            0.762881
           mean
                            55.018832
                                                 1.361017
                  1.208048
                                       0.816938
                                                            0.076857
             std
                  1.000000
                                       5.800000
                                                 4.000000
                                                            0.550000
            min
                            76.000000
            25%
                   1.000000 140.000000
                                       6.600000
                                                 7.200000
                                                            0.720000
            50%
                   3.000000 158.000000
                                       7.200000
                                                 7.600000
                                                            0.750000
                                       7.500000
            75%
                   4.000000 177.000000
                                                 8.200000
                                                            0.810000
                  4.000000 362.000000
                                       9.600000 10.500000
                                                            0.930000
            max
In [101... #training-test split
           X = df[['mass','width','height','color score']]
            # into y we put our target
           y = df['fruit label']
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuf)
In [117... sns.pairplot(df)
Out[117... <seaborn.axisgrid.PairGrid at 0x21d8d46e448>
```


2. Design a logistic regression classifier

- 2.1. Split the dataset into train and test. Be sure to suffle the data because it comes ordered.
- 2.2. Train a logistic regression classifier, using as explainer variables the **mass**, the **width**, the **height**, and the **color_score** for the target variable **fruit_label**
- 2.3. Obtain the accuracy of your classifier over the test dataset.

3. Design naïve Bayes classifier

- 3.1. Use the same train and test sets from the above point.
- 3.2. Design and train a naïve Bayes classifier, using as explainer variables the **mass**, the **width**, the **height**, and the **color_score** for the target variable **fruit_label**
- 3.3. Obtain the accuracy of your classifier over the test dataset.

```
In [103... | train = pd.DataFrame(X train).join(y train).copy()
          train.reset index(drop=True, inplace=True)
          train.mass = pd.cut(train.mass, bins=3, labels=np.arange(3), right=False)
          train.width = pd.cut(train.width, bins=3, labels=np.arange(3), right=False)
          train.height = pd.cut(train.height, bins=3, labels=np.arange(3), right=False)
          train.color score = pd.cut(train.color score, bins=3, labels=np.arange(3), rid
In [104... model.fit(train)
         WARNING:root:Replacing existing CPD for color score
         WARNING:root:Replacing existing CPD for fruit label
         WARNING:root:Replacing existing CPD for height
         WARNING:root:Replacing existing CPD for mass
         WARNING: root: Replacing existing CPD for width
In [105... model.check model()
Out[105... True
In [106... | test = pd.DataFrame(X test).copy()
          test.mass = pd.cut(test.mass, bins=3, labels=np.arange(3), right=False)
          test.width = pd.cut(test.width, bins=3, labels=np.arange(3), right=False)
          test.height = pd.cut(test.height, bins=3, labels=np.arange(3), right=False)
          test.color score = pd.cut(test.color score, bins=3, labels=np.arange(3), right
In [107... y pred = model.predict(test)
         100%|
                   | 9/9 [00:00<00:00, 1800.90it/s]
         (y_pred.values.T == y_test.values.T).sum() / len(y test)
Out[108... 0.9166666666666666
```

Which classifier performs better on the test set?

Bayesian model perform the best for this data set in particular.

Created with Jupyter by Esteban Jiménez Rodríguez.