PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-110041

(43) Date of publication of application: 23.04.1999

(51) Int. CI.

G05D 1/02 B25J 5/00

B25J 19/00

(21) Application number : **09-269465**

(71) Applicant: FUJITSU LTD

(22) Date of filing:

02. 10. 1997

(72) Inventor: KAMATA TORU

OIKAWA KOICHI

(54) AUTOMATED GUIDED VEHICLE

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent a vehicle from getting ahead of or passing another vehicle at a specified place on a travel path.

SOLUTION: When a vehicle A enters an attention area, the vehicle A sends information (entry information) on the current position of the vehicle to a vehicle B, which once receiving the entry information, sends information (response information) on its current position and travel direction. The vehicle A when receiving the response information judges the approach between the vehicles A and B from the said two pieces of information (entry information and response information); when the opposition distance decreases below a specific value, the vehicle A is commanded to stop and the number of approaching vehicles B is set in a counter. When information on leaving the attention area is received from the vehicle B, the counter is counted down by one and

when the counter reaches O, the resetting of the stopping of the vehicle A is commanded.

LEGAL STATUS

[Date of request for examination]

15. 07. 2003

[Date of sending the examiner's decision

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

'[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-110041

(43)公開日 平成11年(1999)4月23日

(51) Int.Cl. ⁸ G 0 5 D 1/00 B 2 5 J 5/00 19/00	1	FI G05D 1/02 S B25J 5/00 E 19/00 K	
		審査請求 未請求 請求項の数1 〇L (全	7 頁)
(21)出顯番号	特願平9-269465	(71)出願人 000005223 富士通株式会社	
(22)出願日	平成9年(1997)10月2日	神奈川県川崎市中原区上小田中4-1号	丁目1番
		(72)発明者 鎌田 徹 神奈川県川崎市中原区上小田中4 ⁻ 1号 富士通株式会社内	丁目1番
		(72)発明者 及川 浩一 神奈川県川崎市中原区上小田中4 1号 富士通株式会社内	丁目1番
		(74)代理人 弁理士 有我 單一郎	

(54) 【発明の名称】 無人搬送車両

(57)【要約】

【課題】 走路上の指定された場所で追い越しやすれ違いを行わない。

【解決手段】 車両Aが注意エリアに侵入すると、車両Aから他の車両Bに対して車両Aの現在位置の情報(侵入情報)を送信し、車両Bでこの侵入情報が受信されると、車両Bから車両Bの現在位置及び進行方向の情報(応答情報)を送信する。そして、車両Aでこの応答籍報が受信されると、上記二つの情報(侵入情報と応答情報)より車両A、B間の接近を判断し、所定値を下回る対向距離の場合に、車両Aの停止を指令すると共に、もかる後、車両Bからの注意エリアの離脱情報が受信されると、カウンタを-1し、カウンタの値がOになったときに、車両Aの停止解除を指令する。

1 1

1

【特許請求の範囲】

【請求項1】 (a) 走行位置を検出する位置検出手段と、 (b) 進行方向を検出する方向検出手段と、

(c) 走路上に任意に設定された注意エリアへの侵入 と該注意エリアからの離脱を検出するエリア検出手段 と、 (d) 前記エリア検出手段により注意エリアへの 侵入が検出されたとき、そのときの走行位置の情報を含 む侵入情報を送信する第1の送信手段と、(e) 他車 他車両か 両からの情報を受信する受信手段と、(f) らの侵入情報を受信したとき、そのときの走行位置及び 進行方向の情報を含む応答情報を送信する第2の送信手 前記第1の送信手段で侵入情報を送信し 段と、(g) た直後に他車両からの応答情報を受信すると、該侵入情 報と該応答情報とに基づいて自車両に接近しつつある他 車両までの距離を計算し、該距離が所定値を下回る場合 は、接近しつつあるすべての車両の台数をカウンタにセ ットすると共に、自車両の走行停止を指令する第1の指 前記エリア検出手段により注意エリ 令手段と、(h) アからの離脱が検出されたとき、離脱した旨を示す離脱 自車両が走 20 情報を送信する第3の送信手段と、(i) 行停止状態にあるとき、他車両からの離脱情報を受信す る度に前記カウンタの値を一つ減らし、該カウンタの値 が0になると、自車両の走行停止の解除を指令する第2 の指令手段と、を備えたことを特徴とする無人搬送車

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、床面に敷設された 誘導帯に沿って走行し、任意の工程(セルとも言う)に 部品や資材を投入したり完成品や半完成品を他の工程に 移したりする無人搬送車両に関し、特に、追い越しやす れ違いを可能にした無人搬送車両に関する。

[0002]

【従来の技術】床面に敷設された磁気ガイド等の誘導帯に沿って走行する、AGV (Automatic Guided Vehicle)と称される無人搬送車両は、工場の省力化と自動化に欠かせない設備であり、誘導帯を敷き直すだけで自在に運行経路を変更できることから、工程の変更等に柔軟に対応できる点で有利であるが、複数台を同時に運用する場合に交通の輻輳を否めず、工場の生産性を高めることができないという欠点があった。

【0003】そこで、本件発明者等は、先に、車両同士の追い越しやすれ違いを可能にした技術を提案している (特願平8-223476号、平成8年8月26日)。この技術は、無人搬送車両の間で走行位置や優先度等の情報をやり取りすることにより、それぞれの車両で自車両と他車両の位置関係を把握し、交通の輻輳がある場合は、何れか一方又は双方の車両が自律的に走路を変更して追い越しやすれ違いを行うというものである。

[0004]

【発明が解決しようとする課題】しかしながら、かかる 先願の無人搬送車両にあっては、交通の輻輳がある場合 は、場所にかかわらず、追い越しやすれ違いを行うた め、例えば、狭い場所やセル付近においては、走路変更

によって障害物にぶつかったり、又はセルに出入りする 他車両と接触したりするという不都合があり、却つて交 通の輻輳を増大するという問題点があった。

【0005】そこで、本発明は、走路上の指定された場所においては、追い越しやすれ違いを行わないようにす 10 ることを目的とする。

[0006]

【課題を解決するための手段】請求項1記載の発明は、 (a) 走行位置を検出する位置検出手段と、 (b) 進行 方向を検出する方向検出手段と、(c)走路上に任意に 設定された注意エリアへの侵入と該注意エリアからの離 脱を検出するエリア検出手段と、(d)前記エリア検出 手段により注意エリアへの侵入が検出されたとき、その ときの走行位置の情報を含む侵入情報を送信する第1の 送信手段と、(e)他車両からの情報を受信する受信手 段と、(f)他車両からの侵入情報を受信したとき、そ のときの走行位置及び進行方向の情報を含む応答情報を 送信する第2の送信手段と、(g)前記第1の送信手段 で侵入情報を送信した直後に他車両からの応答情報を受 信すると、該侵入情報と該応答情報とに基づいて自車両 に接近しつつある他車両までの距離を計算し、該距離が 所定値を下回る場合は、接近しつつあるすべての車両の 台数をカウンタにセットすると共に、自車両の走行停止 を指令する第1の指令手段と、(h)前記エリア検出手 段により注意エリアからの雕脱が検出されたとき、離脱 した旨を示す離脱情報を送信する第3の送信手段と、

(i) 自車両が走行停止状態にあるとき、他車両からの 離脱情報を受信する度に前記カウンタの値を一つ減ら し、該カウンタの値が O になると、自車両の走行停止の 解除を指令する第 2 の指令手段と、を備えたことを特徴 とする。

【0007】請求項1記載の発明では、ある車両(車両Aとする)が注意エリアに侵入すると、車両Aから他の車両(車両Bとする)に対して車両Aの現在位置の情報(侵入情報)が送信され、車両Bでこの侵入情報が受信されると、車両Bから車両Bの現在位置及び進行方向の情報(応答情報)が送信される。そして、車両Aでこの応答情報が受信されると、上記二つの情報(侵入情報と応答情報)より車両A、B間の接近が判断され、所定値を下回る対向距離の場合に、車両Aの停止が指令されると共に、接近しつつある車両Bの台数がカウンタにセットされる。しかる後、車両Bからの注意エリアの離脱情報が受信されると、カウンタが一1され、カウンタの値がOになったときに、車両Aの停止解除が指令される。

[8000]

50 【発明の実施の形態】以下、本発明の実施例を図面に基

づいて説明する。図1~図7は本発明に係る無人療送車 両の一実施例を示す図である。なお、本実施例の無人搬 送車両は、冒頭でも述べたように、床面に敷設された誘 導帯に沿って走行し、任意の工程(セル)に部品や資材 を投入したり完成品や半完成品を他の工程に移したりす ると共に、さらに、追い越しやすれ違いを可能にした無 人搬送車両を改良したものである。したがって、改良前 の基本機能、例えば、誘導帯に沿って走行する機能や積 荷の受け渡しの機能、及び追い越しやすれ違いの機能を 有することは言うまでもなく、以下の説明では、本実施 例で追加された機能について説明する。

【0009】図1は、誘導帯に沿って走行するすべての 無人搬送車両に共通の機能概念図である。図において、 a は位置検出手段、b は方向検出手段、c はエリア検出 手段、dは第1の送信手段、eは受信手段、fは第2の 送信手段、gは第1の指令手段、hは第3の送信手段、 iは第2の指令手段であり、また、10は送受信アンテ ナ、11はカウンタである。なお、a~iの記号は、請 求項1記載の発明の各事項に付された識別符号と対応す

【0010】位置検出手段a、方向検出手段b及びエリ ア検出手段cは、それぞれ自車両の現在位置、進行方向 並びに走路上に任意に設定された特定のエリア(注意エ リアと称する)への侵入及び離脱を検出するもの、受信 10 手段 e は他車両からの情報を受信するもの、第1~第3 の送信手段d、f、hは、それぞれ所定のイベントに応 答して所定の情報を送信するものであり、イベントと送 信情報の関係は次表1のとおりである。

(以下余白)

[0011]

表 1

送信手段	イベント	送信情報		
d	注意エリアに侵入	侵入情報(走行位置)		
f	侵入情報の受信	応答情報(走行位置及び進行方向)		
h	注意エリアからの離脱	離脱情報		

また、第1の指令手段gと第2の指令手段iは、それぞ れ所定の条件のときに自車両の走行停止と走行停止の解 除を指令するものであり、指令の内容と条件の関係は次 表2のとおりである。

(以下余白)

[0012]

表 2

指令手段	指令内容	条件
g	走行停止	他車両からの応答情報を受信したときで、 その応答情報に含まれる他車両の進行方向 が自車両に接近する方向であり、且つ、そ の応答情報に含まれる他車両の走行位置か ら自車両の走行位置までの距離が所定値を 下回っている場合。
i	走行停止の解除	カウンタ11 (他車両からの離脱情報が受信される度に値が一つ減らされる) の値が0 を示したとき。

図2は、誘導帯20に沿って走行する3台の無人搬送車 両を示す図であり、10は送受信アンテナ、12は各検 出手段(位置検出手段a、方向検出手段b及びエリア検 出手段 c) のセンサ部、13は車輪である。この例で は、図面左端の車両(車両A)が右方向に走行し、中央 の車両(車両B)と右端の車両(車両C)が左方向に走 行している。すなわち、車両Aと車両B及び車両Aと車 50 【0013】ここで、いくつかのビットで位置情報フィ

両Cの距離が接近する方向に各車両が走行している。図 において、21~25は位置標識であり、これらの位置 標識21~25は、N極を論理1、S極を論理0として コード化した磁極パターンを使用できる。例えば、パタ ーン配列を [NSSNNN] とすると、2進表記で〔1 00111)となる。

1.

ールドを構成し、残ったビットの一つを注意エリアの指 定ピットにすると、例えば、最上位ピットをエリア指定 ビットにすると共に、残りのビットを位置情報フィール ドにすると、上記例の〔100111〕は、エリア指定 が [1]、位置情報が [00111] になる。すなわ ち、論理 1 を真 (True) とするならば、〔1001 11] のパターンを持つ位置標識は、10進表記で [7] の位置アドレスを持ち、且つ、注意エリアを示す 標識になる。

【0014】図2において、ハッチングを付した二つの 位置標識22、23は、エリア指定ビットに〔1〕がセ ットされた標識であり、これら二つの位置標識22、2 3の間が注意エリア26になる。なお、注意エリアの設 定(上記エリア指定ビットの設定)は、無人搬送車両の 管理者によって任意に設定されるが、特に、工場のレイ アウトの関係で誘導帯20の周囲に充分なスペースを確 保できない場所や、セルの出入口付近に設定すべきであ る。これらの場所では追い越しやすれ違いが困難だから である。

【0015】図3及び図4(a)は、図2の俯瞰図であ 20 る、という従来技術にない有利な効果が得られる。 る。各車両A~Cの尖った部分がボディフロントであ り、これら図では、走行中の車両Aがハッチングを付し た位置標識22の真上に位置した状態を表わしている。 すなわち、車両Aが注意エリア26に侵入した状態を表 わしており、この車両Aの内部では上表1に示した第1 のイベント (注意エリアに侵入) が発生している。この ため、上表1より、車両Aから侵入情報(車両Aの走行 位置の情報)が送信され、他の車両B、Cの内部で上表 1に示した第2のイベント(侵入情報の受信)が発生す る結果、他の車両B、Cからそれぞれ応答情報(車両 B、Cの走行位置及び進行方向の情報)が送信されるこ とになる。

【0016】他の車両B、Cからの応答情報は車両Aで 受信され、車両B、Cの脅威の程度が評価される。例え ば、車両Bや車両Cの進行方向が車両Aから遠ざかる方 向であれば、車両Aにとって車両Bや車両Cは脅威にな らず、あるいは、接近する方向であっても、車両Bや車 両Cまでの距離が充分に雕れていれば(図5 (a) 参 照)、これも脅威にならない。なお、充分な距離とは、 車両Aが注意エリア26を通り抜ける間に車両Bや車両 Cに出会わない距離である。

【0017】車両Aにおいて、車両B又は車両Cが脅威 になると評価された場合、車両Aは直ちに停車すると共 に、脅威となる車両の台数をカウンタ11 (図1参照) にセットする。なお、図5は車両間の距離が充分に離れ ている場合(脅威と評価されなかった場合)の走行状態 図である。車両B及び車両Cは、そのまま走行を続け、 停車中の車両Aと出会うと(図4(b)))、車両Aを 回避する動作(この場合は走路を若干変更して車両Aの 側方を通過するすれ違いの動作)を行う(図4(c))

が、この回避動作は車両Aの停車位置、すなわち注意エ リア26の端で行われるから、回避動作中の車両B又は 車両Cからは、注意エリア26の離脱情報が送信され る。

6

【0018】停車中の車両Aは、この雕脱情報を受信す る度にカウンタ11の値を一つ減らし、例えば、車両B からの離脱情報を受信すると、カウンタ11の値を [2] から[1] にし、さらに、車両Cからの離脱情報 を受信すると、その値を〔1〕から〔0〕にする。そし 10 て、カウンタ11の値が [0] になると、車両Aは走行 停止を解除して、走行を開始する。

【0019】以上のとおり、本実施例では、車両Aが走 路上に任意に設定した注意エリア26に侵入すると、他 の車両B、Cの脅威を評価し、脅威ありと判断された場 合に車両Aを直ちに停車させるようにしたので、注意エ リア26の内部で車両同士が出会うことはない。したが って、注意エリア26の内部での追い越しやすれ違いを 回避でき、障害物との衝突や車両との接触を防止して、 交通の円滑さを確保し、以て工場の生産性を向上でき

【0020】なお、以上の説明では、誘導帯の一部に注 意エリアを設定したが、これに限らない。例えば、工程 (セル) の出入口も交通の輻輳を生じやすい場所である から、この出入口付近も注意エリアに設定してもよい。 図 6 において、30、31はセルである。図 6 (a)で は、左側のセル30に車両Aが入っており、他の車両B がセル30、31の出入口付近に接近しつつある。な お、セル30、31にも、上述の位置標識(特に注意エ リアを示す位置標識22、23)と同様のものが設けら *30* れている。

【0021】今、車両Aがセル30から離れて誘導帯2 0 上に戻る動作を開始したと仮定すると、この動作の開 始は、先の説明における車両Aの注意エリア26への侵 入 (図4 (a) 参照) に相当する。これは、誘導帯20 上に戻る動作を開始したときに、セル30の位置標識の 情報を評価するからである。したがって、車両Aは侵入 情報を送信し、他の車両Bはこの侵入情報に対応する応 答情報を送信することとなり、車両Bは車両Aにとって 脅威になるから、車両Aの走行停止が指令される。そし て、車両Bが注意エリアを離脱(進行方向に沿って二つ 目の注意エリア標識22を通過)すると、車両Bから離 脱情報が送信され(図6(b))、この場合、脅威とな る車両は1台であるから、この離脱情報に応答して車両 Aの走行停止が解除され、車両Aは誘導帯20に戻る動 作を再開する(図6(c))ことになる。

【0022】なお、以上の説明は、他の車両Bが誘導帯 20に沿って走行している例を示したが、これに限らな い。例えば、図7に示すように、他の車両Bが空いてい るセル31に入る場合にも適用できる。上記例との相違 50 は、他の車両Bの注意エリアからの離脱の判定にある。

7

図7では、車両Bが進行方向に沿って最初の注意エリア 標識23を通過する時点で旋回を伴っていれば、注意エ リアからの離脱を判定(離脱情報送信)している。

[0023]

【発明の効果】本発明によれば、走路上の指定された場所(注意エリア)での追い越しやすれ違いを防止できる。したがって、適切な注意エリアを設定することにより、交通の輻輳を回避して工場の生産性を向上することができる。

【図面の簡単な説明】

【図1】一実施例の機能概念図である。

【図2】一実施例の3台の車両の走行状態図である。

【図3】図2の俯瞰図である。

【図4】一実施例の走行状態説明図(車両Aを停止させ

る場合)である。

【図5】一実施例の走行状態説明図(専両Aを停止させ

ない場合)である。

【図6】一実施例の走行状態説明図(セルの出入口付近 を注意エリアとする場合:その1)である。

【図7】一実施例の走行状態説明図(セルの出入口付近を注意エリアとする場合:その2)である。

【符号の説明】

a;位置検出手段

b:方向検出手段

c:エリア検出手段

10 d:第1の送信手段

e:受信手段

f:第2の送信手段

g:第1の指令手段

h : 第3の送信手段

i : 第2の指令手段

【図1】

一実施例の機能概念図

【図2】

一実施例の3台の車両の走行状態図

[図3]

図2の俯瞰図

[図4]

一実施例の走行状態説明図(車両Aを停止させる場合)

【図6】

一実施例の走行状態説明図 (セルの出入口付近を注意エリアとする場合:その1)

【図 5】 一実施例の走行状態説明図(車両Aを停止させない場合)

一実施例の走行状態説明図 (セルの出入口付近を注意エリアとする場合:その2)

