

odel : KG1

P/N: MMBD0061702 Date: Aug 2006 / Issue 1.0

Содержание

1. Введение	3
1.1 Назначение	3
1.2 Регламентирующие положения	3
А. Безопасность	3
В. Изменения предоставляемых услуг	3
С. Ограничения на выполнение техобслуживания	3
D. Уведомление о наличии излучения	3
Е. Помехи и подавление сигнала	3
F. Приборы, чувствительные к электростатическим разрядам	3
2. SYSTEM SPECIFICATION	6
3. Краткая техническая информация	7
3.1 Блок-схема КG110	8
3.2 Описание РЧ части	8
3.2.1 Приемное устройство	8
А. Малошумящие усилители	
В. Смесители, преобразующие сигнал с понижением	9
С. НЧ усилители / Фильтры нижних частот	
D. Коррекция смещений от постоянной составляющей на НЧ выходе	
Е. Гетеродинный генератор приемного устройства	
3.2.2 Передающее устройство	
А. Модуль усилителя мощности	11
В. Квадратурный модулятор	11
С. Фазовый частотный детектор	12
D. Контурный фильтр	12
Е. ГУН передачи	12
F. Смеситель, преобразующий сигнал с понижением с обратной связью	12
G. Схема частот передачи	12
Н. Основной синтезатор частоты	12
I. Дробное деление на N	13
J. Датчик фазовой частоты/Генератор подкачки заряда	13
К. Контурный фильтр синтезатора	13
L. ГУН	13
3.2.3 Кварцевый генератор опорной частоты	13
3.2.4 Управление питанием	14
А. Использование стабилизаторов	14
3.3 Описание НЧ части	15
3.3.1 Процессор НЧ части (АD6720 , U101)	15
3.3.2 Соединения с внешними устройствами	15
А. Интерфейс блока часов реального времени	15
В. Интерфейс модуля ЖКД	16
Сигналы	16

	Описание	16
	С. РЧ интерфейс	16
	D. Интерфейс SIM	17
	Е. Блок стабилизаторов	18
	3.3.3 Блок зарядки батареи	18
	3.3.4 Дисплей и интерфейс	20
	3.3.5 Нажатия клавиш и сканирование сигналов клавиатуры	21
	3.3.6 Микрофон	22
	3.3.7 Программный midi и основной динамик	23
	3.3.8 Интерфейс гарнитуры	24
	3.3.9 Подсветка клавиатуры	25
	3.3.10 Подсветка ЖК-дисплея	26
	3.3.11 Виброзвонок	26
4.	Устранение неисправностей	28
	4.1 РЧ компоненты	28
	4.2 Неисправность приема сигнала	
	4.2.1 Проверка тактового генератора	
	4.2.2 Проверка управляющих сигналов усилителя мощности	
	4.2.3 Проверка антенного и мобильного переключателя	
	 4.2.4 Проверка ПАВ фильтра	
	4.2.5 Проверка передаваемых сигналов I и Q	
	4.3 Неисправность передачи сигнала	
	4.3.1 Проверка тактового генератора	
	4.3.2 Проверка управляющих сигналов	
	4.3.3 Проверка передаваемых сигналов I и Q	39
	4.3.4 Проверка управляющих сигналов усилителя мощности	
	4.3.5 Проверка антенного и мобильного переключателя	41
	4.4 Неисправность включения	43
	4.5 Неисправность зарядного устройства	45
	4.6 Загрузка ПО	47
	4.7 Калибровка	49
	4.7.1 Оборудование	49
	4.7.2 Установка	50
	4.8 Неисправность ЖКД	56
	4.8.1 Синий экран на ЖКД или некорректная работа	56
	4.8.2 Черный экран на ЖКД	57
	4.9 Неисправность динамика	51
	4.10 Неисправность громкоговорителя	60
	4.11 Неисправность микрофона	62
	4.12 Неисправность гарнитуры	64
	4.13 Неисправность светодиодов подсветки клавиатуры	67
	4.14 Неисправность определения SIM карты	
5.	Приложение	63
	1. BOM	63
	2. Сборочный чертеж	72

1. Введение

1.1 Назначение

В данном руководстве приводится техническое описание и необходимая информация для выполнения ремонта, калибровки, а также для загрузки программного обеспечения этой модели телефона.

1.2 Регламентирующие положения

А. Безопасность

Коммутационное мошенничество, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами. Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы.

Изготовитель не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Изготовитель не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

В. Изменения предоставляемых услуг.

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу данного телефонного аппарата, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, предоставляя тем самым ему возможность предпринять необходимые меры с целью продолжения пользования услугами телефонной связи

С. Ограничения на выполнение техобслуживания

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

D. Уведомление о наличии излучения

Настоящее изделие соответствует действующим в стране законодательным нормативам в отношении высокочастотного излучения. Согласно этим положениям, необходимая информация должна быть предоставлена потребителю.

1. Введение

Е. Помехи и подавление сигнала

Телефон может создавать помехи в работе чувствительного лабораторного оборудования, медицинского оборудования и т.п. На работу самого телефона могут оказать влияние помехи, исходящие от машин и электродвигателей, не оборудованных устройствами подавления помех.

F. Приборы, чувствительные к электростатическим разрядам

ВНИМАНИЕ

Платы, детали которых чувствительны к электростатическим разрядам, обозначены соответствующей пиктограммой.

Ниже приведена информация о порядке работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления;
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном);
- Паяльник (соответствующий выполняемой работе) должен быть заземлен;
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования;
- Перед отправкой на завод системные платы, а также электрически перепрограммируемые ПЗУ и им подобные детали необходимо упаковать указанным способом.

2. SYSTEM SPECIFICATION

Наименование	Характеристики	
Форм-фактор	Моноблок	
Стандартная батарея	(830 мА/ч, Ионно-литиевая) Габариты: 34(Ш)?50(В)?4.5(Г) мм Вес: 20 г.	
Габариты аппарата	102.8 х 44 х16.5 мм	
Вес аппарата	71 г.(со стандартной батареей)	
Ток в режиме ожидания	Не более 3.0 мА при стандартном	
	энергопотреблении (Период опроса сети = 9)	
Продолжительность работы в режиме разговора	До 3 часов (Уровень приема GSM: 5)	
Продолжительность работы в дежурном режиме	До 200 часов. Период опроса сети: 9, RSSI: 85 дБм	
Антенна	Внутренняя	
Дисплей	Основной ЖКД: CSTN 128 x 128 пикс., 65000 цветов.	
Подсветка	Синие светодиоды	
Возможность синхронизации с ПК	Нет	
Светодиодная индикация	Нет	
Виброзвонок	Есть (Цилиндрического типа)	
Зуммер	Есть	
Микрофон	Есть	
Динамик	Есть	
Разъем гарнитуры	Опционально	
Разъем SIM	Есть (Тип SIM блока)	
Клавиши регулировки громкости	Нет	
Клавиша Voice	Нет	
MP3/AAC	Нет	
MIDI	40-голосая полифония, программный MIDI	
Разъем вводы/вывода	24-контактный	
Стандартная комплектация	Зарядное устройство	

3. Краткая техническая информация

3.1 Блок-схема KG110

Рис. 3-1: Блок-схема первого уровня KG110

На рисунке 3-1 изображена подробная блок схема KG110, содержащая RF часть и BB часть. Подробный список:

1. AD6720: ADI набор микросхем НЧ-части, включающий в себя цифровую НЧ-часть (ЦНЧ) и аналоговую

НЧ-часть (АНЧ).

- 2.TQM6M4003: Усилитель мощности Triquint и антенный переключатель
- 3. Приемопередатчик: ADI Othello G AD6548
- 4. Флеш-память: Spansion 128Mbit + 32Mbit
- 5. Прочие:
- А. 22 клавиши
- В. 128 x 128 пикс. 65000 цветов. CSTN модуль ЖКД
- С. Виброзвонок
- D. Микрофон
- Е. Динамик и громкоговоритель
- **F.** Гарнитура
- G. Разъем SIM-карты
- Н. Разъем батареи

3. Краткая техническая информация

3.2 Описание РЧ части

РЧ часть состоит из передающего устройства, приемного устройства, источника питания, генератора тактовой частоты. Модуль AD6548 является схемой прямого преобразования, объединяющей в себе, на одном чипе, четырехдиапазонный радио модуль (GSM850, E-GSM, DCS1800 и PCS1900), и схему управления питанием. Это необходимо для построения максимально компактного GSM устройства. Четырехдиапазонное передающее устройство GSM включает в себя усилитель мощности, фильтр нижних частот, линейный переключатель приема/передачи, подключенный к усилителю мощности и управляющий переключатель, объединенный в одном модуле со схемой защиты от статических разрядов.

3.2.1 Приемное устройство

Приемное устройство AD6548 содержит полный набор активных схем, весь приемный тракт за исключением приемных P4 ПАВ фильтров. Схема AD6548 использует архитектуру OthelloTM: архитектуру прямого преобразования принимаемого сигнала. В четырехдиапазонном приемном тракте используются четыре отдельных малошумящих усилителя. Сигнал преобразуется квадратурным смесителем с понижением частоты и затем подается и затем подается на НЧ усилитель мощности с программируемым коэффициентом усиления и активные фильтры для выбора канала. Контакты передающего устройства могут быть напрямую подключены к процессору АНЧ. Приемный тракт включает в себя схемы автоматической калибровки и выявления с последующим удалением смещений постоянной составляющей. Схема блока РЧ приемного устройства показана ниже.

Рис. 3-2: Блок РЧ приемного устройства

А.Малошумящие усилители

Блок AD6548 содержит четыре отдельных малошумящих усилителя, предназначенных для работы в различных диапазонах без использования каких-либо внешних компонентов. Эти усилители используют отдельные вводы, для того, чтобы свести к минимуму количество ненужных помех. Вводы подключены к стандартному FEM или отдельному приемному ПАВ фильтру. Выходы малошумящих усилителей напрямую подключены к смесителям, осуществляющим преобразование с понижением частоты. Усиление напряжения ПАВ обычно составляет 24 дБ. Каждый ПАВ фильтр может быть включен режим пониженного усиления при получении изначально мощного сигнала посредством системы APV.

В. Смесители, преобразующие сигнал с понижением

Для смешивания сигналов, поступающих с малошумящих усилителей, используются два квадратурных смесителя: один для высоких частот (1800 и 1900 МГц) и один для низких частот (850 и 900 МГц). Выходы смесителей подключены к НЧ части через встроенный однополярный фильтр с номинальной частотой отсечки 800 кГц. Эта система исполняет роль НЧ фильтра со срезом ВЧ для самых больших блокирующих сигналов (т.е. для сигналов более 3 МГц) и предотвращает перегрузку НЧ усилителей.

С. НЧ усилители / Фильтры нижних частот

НЧ усилители предоставляют основную часть мощности аналогового динамика. Фильтрация осуществляется интегрированным фильтром нижних частот 5 порядка Чебышева, который обеспечивает необходимый соседний канал и фильтрацию блокировок, а так же функционирует в качестве НЧ фильтра для схем НЧ преобразователей. Конечный выход нижних частот доступен с каждого НЧ выхода через внутренний резистор с внешним шунтирующим конденсатором. Внешний конденсатор необходим для НЧ схем ADI. Встроенный в чип фильтр имеет функцию автокалибровки, обеспечивающую оптимальную производительность фильтров. НЧ усилители используют программируемую мощность для AGC. Полные 57 дБ управляемого коэффициента мощности обеспечиваются с помощью последовательного интерфейса с шагом в 3 дБ. В сочетании

3. Краткая техническая информация

с мощностью малошумящих усилителей дает общий диапазон регулировки мощности в 77 дБ. Принимающие НЧ выходы подсоединены к общим приемному и передающему портам синфазных и квадратурных сигналов и подсоединены к НЧ преобразователям.

D. Коррекция смещений от постоянной составляющей на НЧ выходе Для минимизации смещений от постоянной составляющей In order, возникающих в приемном устройстве и увеличения динамического диапазона в приборе используется схема коррекции смещений. Коррекция запускается с помощью последовательной шины, активируется схема выявления смещений для минимизации остаточных смещений в любых условиях. Схема выявления смещений полностью интегрирована в оборудование и не требует дополнительно программного обеспечения.

Е. Гетеродинный генератор приемного устройства

Используется для избегания смещений от постоянной составляющей, вызванных помехами гетеродина на приемный тракт. При помощью ГУН, который функционирует на частоте, отличной от частоты приема, любые помехи ГУН (например, связанные с передачей пакетов) выпадают из диапазона. Гетеродин используется для преобразования смещений, синтезированных на выходе ГУН. Гетеродинный генератор включен в качестве регенеративного делителя частоты, осуществляющий деление выхода ГУН как 2/3 для высокочастотных диапазонов (DCS1800/PCS1900) и как 1/3 для низкочастотных (E-GSM/GSM850).

3.2.2 Передающее устройство

Передающее устройство состоит из активных частей AD6548 и усилителя мощности. Передающая секция AD6548 включает в себя цепь модулятора сигнала. Он состоит из квадратурного модулятора, высокоскоростного фазочастотного датчика с выходным генератором подкачки заряда, контурным фильтром, передающим ГУН и преобразователя с понижением частоты с обратной связью. Выход ГУН (делится на 2 для НЧ) подается на усилитель мощности и частично подается на преобразователь, с понижением частоты завершая контур обратной связи.

А. Модуль усилителя мощности

Рис 3-3: Модуль усилителя мощности

Усовершенствованный четырехдиапазонный передатчик предназначен для использования в мобильных телефонов, компактен и является полнофункциональным передающим устройством. Блоки усилителей для GSM850/900 и DCS/PCS включает управление мощностью и комбинированы с четырехдиапазонным рНЕМТ переключателем с низким фактором вносимых потерь. Так же включена гармоническая фильтрация приема, встроен декодер, четыре принимающих порта, и полная электростатическая защита. Такая архитектура полностью снимает необходимость использования системы усилитель мощности - переключатель. Все четыре принимающих порта независимы от частоты и обладают гибкостью в подключении к приемопередатчику. Созданный по высоконадежной технологии InGaP HBT / рНЕМТ, модуль поддерживает GPRS класса 12 и предоставляет 50-омный вход и выход. Управляющие входы модуля совместимы с CMOS и не требуют опорного напряжения. Благодаря отличной производительности на всех четырех диапазонах, усилитель мощности и модуль переключателя отвечают всем требованиям, предъявляемым к устройствам для мобильных телефонов нового поколения.

Operating	Control Voltage			
Mode	Vmod_en	Vtx	Vbs1	Vbs2
TX GSM 850/900	Н	Н	L	L
TX DCS/PCS	Н	Н	Н	L
RX1	Н	L	L	L
RX2	Н	L	L	Н
RX3	Н	L	Н	L
RX4	Н	L	Н	Н
Sleep Mode	L	L	L	L

Таблица 3-1: Логика усилителя мощности

В. Квадратурный модулятор

Квадратурный модулятор переводит синфазные и квадратурные НЧ сигналы в сигналы GMSK на промежуточной частоте передачи. После прохождения фильтрации и лимитации через полосу пропускания Передаваемый сигнал на ПЧ используется как опорная частота для фазового частотного детектора ФАПЧ передачи.

3. Краткая техническая информация

С. Фазовый частотный детектор

Фазовый частотный детектор гарантирует, что передаваемый сигнал имеет необходимую модуляцию и закреплен в точности на нужном GSM канале. Преобразованный с понижением обратный сигнал от ГУН и квадратурного модулятора совмещен по фазе с частотным детектором. Генератор подкачки заряда частотного детектора генерирует импульсы тока, пропорциональные разнице в фазе, которая подана на контурный фильтр.

D. Контурный фильтр

В целях упрощения схемы, контурный фильтр передатчика интегрирован в ИС. При включении питания, фильтр автоматически калибруется вместе с калибровкой НЧ фильтра, что увеличивает толерантность. Калибровка полностью интегрирована и не требует дополнительного программирования.

Е. ГУН передатчика

ГУН передачи и компоненты резонансного контура, полностью интегрированы в подсистему. Подсистема включает управление усилителем мощности, поэтому выходы используются для прямого управления внешними усилителями. Характеристики малошумящего стабилизатора и встроенные фильтры исключают необходимость ПАВ фильтра на передаче. В работе на низких диапазонах выход ГУН передачи делится на два и фильтруется. ГУН передачи автоматически калибруется для обеспечения оптимальной производительности на рабочих частотах 1648 - 1910 МГц.

F. Смеситель, преобразующий сигнал с понижением с обратной связью

Такой смеситель используется для превращения выходного частотного сигнала передающего ГУН в ПЧ передачи. Встроенный диапазонный фильтр располагается в промежутке между смесителем и датчик фазовой частоты для фильтрации побочных сигналов, возникающих в смесителе.

G. Схема частот передачи

В отличие от многих других модуляторов, AD6548 использует только один источник (ГУН) для получения сигнала тактовой частоты для обоих смесителей и квадратурного модулятора. Поэтому, ПЧ передачи связана с гетеродинной частотой ГУН. Такой коэффициент был избран для того, чтобы сузить диапазон подстройки ГУН, диапазон ПЧ передачи и обеспечить наилучшую форму спектральной маски при передаче. Смеситель понижающий частоту использует обратную связь для высокочастотных диапазонов и глубокую обратную связь для низкочастотных диапазонов. Передаваемая частота и гетеродинная частота ГУН в результате различны для двух разных диапазонов. Эти соотношения рассчитываются в зависимости от архитектуры синтезатора и программы.

Н. Основной синтезатор частоты

Модуль AD6548/9 включает быстро настраивающийся синтезатор с делителем, используемый для управления ГУН как при приеме, так и при передаче. Вся система, включая ГУН, резонансный контур, делитель на N, систему сигма дельта компенсации, генератор подкачки заряда и контурные фильтры полностью интегрирована. Единственный внешний компонент недорогой генератор опорной частоты. Синтезатор управляется последовательным интерфейсом. ГУН снабжает делители необходимыми гетеродинными частотами для приема и передачи.

I. Дробное деление на N

Дробное деление на N позволяет системе ФАПЧ иметь меньший шаг чем частота, установленная опорной частотой 26 МГц. Эта функция позволяет дробить частотные диапазоны GSM, с быстрой подстройкой и хорошими шумовыми характеристиками. Секция делителя состоит из двух модулей 8/9 предварительных делителей частоты, блока делителей М и А, и системы дробного деления на N, основанной на сигма дельта модуляции для создания необходимого шага деления. Знаменатель

в дробном делителе может быть установлен в одно из трех значений (1040, 1170, 1235), в зависимости от режима работы. Например, знаменатель 1040 с применением делителя F позволяет использовать диапазон значений F/1040 с шагом в 25 кГц при работе на частоте 26 МГц.

J. Датчик фазовой частоты/Генератор подкачки заряда

Датчик фазовой частоты используется в фазовом детекторе ФАПЧ. Генератор подкачки заряда обеспечивает хорошее согласование восходящих и нисходящих токов и обеспечивает функционирование схемы в широком диапазона напряжений. Выход генератора подкачки заряда подключен к интегрированному контурному фильтру синтезатора.

К. Контурный фильтр синтезатора

Для упрощения схемы внешней печатной платы контурный фильтр основного синтезатора интегрирован в ИС. Внешних дополнительных компонентов не требуется.

Ι ΓΥΗ

Встроенный ГУН – самонастраивающаяся система. Он обеспечивает полностью автоматизированную систему цифровой самонастройки и позволяет обеспечивать оптимальный уровень фазовых помех во всем частотном диапазоне. Гунн генерирует частоты в диапазоне от 2520 МГц до 2985 МГц, которые необходимы как для приема, так и для передачи.

3.2.3 Кварцевый генератор опорной частоты

Из внешних компонентов AD6548 необходим лишь не дорогостоящий кварцевый генератор для создания опорной частоты. Система генерации и подстройки частоты полностью интегрированы. В качестве сбалансированного улучшения в систему введен стабилизатор. Стабилизатор должен быть подключен к двум контактам. Для грубой подстройки смещений (например, производственный допуск генератора) используется программируемый конденсатор, и встроен варактор для динамического управления. Стабилизатор предназначен для работы с генератором частоты 26 МГц. Генератор подключен, как показано на схеме.

Рис. 3-4: Система генерации тактовой частоты

Персональное специализированное программное обеспечение обеспечивает превосходную частотную стабильность при любых обстоятельствах.

3. Краткая техническая информация

3.2.4 Управление питанием

Для прямого подключения батарею и упрощения схемы AD6548/9 используется три стабилизатора. Три стабилизатора обеспечивают изоляцию генераторов и чувствительных цепей от опасных напряжений и помех. Они также гарантируют работоспособность схемы в широком диапазоне напряжений. Стабилизаторы управляются независимо друг от друга при помощи трехпроводной последовательной шины.

А.Использование стабилизаторов

Таблица описывает применение стабилизаторов:

LDO1	LDO2	LDO3
Приемная и передающая НЧ секции	Основной ГУН	ГУН передачи

Таблица 3-2: Предназначение стабилизаторов

Выходы стабилизаторов подключены к внешним соединениям, как показано в таблице 3. Каждое соединение требует использования развязывающего конденсатора. Стабилизаторы смоделированы таким образом, чтобы быть устойчивыми в не зависимости от электронного резонанса конденсатора.

LDO OP	Внешние соединения		
VLDO1	VCC_FE, VCC_BBI, VCC_BBQ		
VLDO2	Нет внешних соединений за исключением развязки		
VLDO3	Нет внешних соединений за исключением развязки		

Таблица 3-3: Соединения стабилизаторов

Стабилизатор LDO1 получает опорное напряжение от ГУН (VCC_REF). Поэтому, предполагается, что VCC_REF будет подаваться с внешнего стабилизатора с номинальным напряжением 2.75 В (например, ADP3330 или схема аналоговой НЧ части: Vout = 2.75V_1.4%)

3.3 Описание НЧ части

3.3.1 Процессор НЧ части (АD6720, U101)

- AD6720 является процессором ADI.
- AD6720 содержит следующие модули:
- 1. Подсистема управляющего процессора.
- 32-битный управляющий процессор ARM7TDMI
- тактовая частота 39 МГц при напряжении питания 1.8В
- Встроенный кэш инструкций/данных 16 Кб
- 1 Мб системной памяти SRAM
- 2. Подсистема DSP
- 16-бит процессор DSP с фиксированной запятой
- 91 MIPS при напряжении питания 1.8B
- данные и программная памяти SRAM
- Кэш программных инструкций
- Full Rate, Enhanced Full Rate, Half Rate,
- Алгоритмы кодировки речевого сигнала AMR и PDC.
- 3. Периферийные подсистемы
- Параллельный и последовательный интерфейсы дисплея
- Интерфейс клавиатуры
- Интерфейс флеш-память
- Поддержка постраничного режима флеш
- Интерфейс SIM 1.8B и 3.0B, 64 кб/с
- Интерфейс Universal System Connector
- Интерфейс сервиса данных
- Интерфейс батареи (например Dallas)
- 4. Другие
- Поддерживается частоты 13 МГц и 26 МГц
- Рабочее напряжение ядра 1.8 В
- 289-контактная микросхема (12х12 мм), 0.65 мм шаровые контакты
- 5. Передающая секция НЧ части АD6720 поддерживает:
- Классы модуляции мобильной станции GMSK:
- GSM 900/850 классы 4 и 5,
- DCS 1800 классы 1 и 2, и
- PCS 1900 классы 1 и 2

3.3.2 Соединения с внешними устройствами

А. Интерфейс блока часов реального времени

Частота генерируется тактовым генератором.

Генератор создает частоту 32.768 кГц

В. Интерфейс модуля ЖКД

Сигнал	Описание		
L_MAIN_LCD_CS	Сигнал включения схемы запуска основного ЖКД.		
LCD_RESET	Сброс модуля ЖКД.		
LCD_WR	Управление записью управляющего модуля ЖКД		
LCD_RD	Управление чтением управляющего модуля ЖКД		
LCD_RS	Разделяет управляющие данные и сигнал изображения, направленные на ЖКД.		
A1	Включает режим использования ЖКД 16-битной шины.		

Таблица 3-4: Описание контактов ЖКД

Подсветка ЖКД управляется AD6720 через AAT3110, U300. Управляющие сигналы подсветки ЖКД даны ниже.

Сигнал	Описание		
LCD_LED_CTL	Управление подсветкой ЖКД в 4 шага		
DISP_LIGHT	Источник питания для светодиодов подсветки ЖКД		

Таблица 3-5. Описание управления светодиодами подсветки ЖКД.

С. РЧ интерфейс

AD6720 управляет PЧ частью через PA_BAND, ANT_SW1, ANT_SW2, ANT_SW3 , CLKON , PA_EN, S_EN, S_DATA, S_CLK, RF_PWR_DWN.

Сигнал	Описание		
PA_BAND	(GPO17) Выбор диапазона усилителя мощности		
ANT_SW1	(GPO9) Выбор диапазона антенного переключателя		
ANT_SW2	(GPO11) Выбор диапазона антенного переключателя		
RF_PWR_DWN	(GPO4) Ввод отключения питания		
CLKON	Включение/выключение РЧ стабилизаторов		

3. Краткая техническая информация

Сигнал	Описание		
PA_EN	(GPO16) Включение/выключение усилителя мощности		
S_EN	(GPO19) Включение/выключение ФАПЧ		
S_DATA	(GPO20) Последовательные данные для ФАПЧ		
S_CLK	(GPO21) Частота для ФАПЧ		

Таблица 3-6. Описание управляющих сигналов РЧ.

D. Интерфейс SIM

Микросхема AD6720 является модулем SIM интерфейса. Во время звонка микросхема AD6720 периодически проверяет наличие SIM-карты в телефоне, однако в режиме ожидания проверка не происходит. Для связи с SIM-картой используются 3 сигнала: SIM_DATA, SIM_CLK, SIM_RST(GPIO_23).

Функции управляющих сигналов интерфейса SIM детально описаны в таблице 3-7.

Сигнал	Описание	
SIM_DATA	Контакт осуществляет обмен данными с SIM картой. Данная модель поддерживает только SIM-карты с интерфейсом 3.0 В.	
SIM_CLK	Частота синхронизации 3.25 МГц	
SIM_RST	Сброс блока SIM (GPIO_23)	

Таблица 3-7: писание управляющих сигналов интерфейса SIM

Рис 3-5: SIM интерфейс AD6720

Е. Блок стабилизаторов

- 1. В AD6720 имеются 8 стабилизаторов.
- VCORE : подается на ядро цифрового НЧ процессора и цифровое ядро процессора AD6720
- VMEM : подается на внешнюю память и интерфейс внешней памяти цифрового НЧ процессора (1.8В или 2.8В, 150мА)
- VEXT : подается на цифровой радио интерфейс и высоковольтный интерфейс (2.8B, 170мA)
- VSIM : подается на цепи интерфейса SIM в цифровом процессоре и SIM-карте (2.85B, 20мА)
- VRTC : подается на модуль часов реального времени (1.8 B, 20 мА)
- VABB : подается на аналоговые части AD6537B
- VMIC : подается на цепи интерфейса микрофона (2.5 B, 1 мА)
- VVCXO : подается на генератор с кварцевой стабилизацией частоты (2.75 B, 10 мА)

3.3.3 Блок зарядки батареи

- 1. Может использоваться для зарядки ионно-литиевый аккумуляторов. Инициализация зарядки, быстрая подзарядка, и управление зарядкой ионно-литиевых батарей поддерживаются оборудованием.
- 2. Процесс зарядки
- Проверить, подключено ли зарядное устройство
- Если AD6720 определяет что зарядное устройство подключено, начинается СС-СV зарядка.
- Исключение: Если напряжение ниже 3.2 В, сначала включается режим предварительной зарядки (с низким током подзарядки).

- Когда напряжение аккумулятора достигает 3.2 В, запускается СС-СV зарядка.

3. Контакты используемые для зарядки

- VCHG : питание зарядки.

- GATEDRIVE : зарядный выход ЦАП

- ISENSE : зарядный токочувствительный вход- VBATSENSE : токочувствительный вход батареи- BATTYPE : вход идентификации типа батареи

- REFCHG: выход опорного напряжения

4. Зарядное устройство

- Входное напряжение: АС 85 В ~ 260 В, 50~60 Гц

- Выходное напряжение: DC 5.2B ($0.2\ B$)

- Выходной ток: Макс. 800 мА (50 мА)

5. Батареи

- Ионно-литиевые (Макс. 4.2 В, Номинал. 3.7 В)

- Стандартные: Емкость - 830 мА/ч

Рис. 3-6. Цепь зарядки

3.3.4 Дисплей и интерфейс

- Основной ЖКД Управляется сигналами портов L_MAIN_LCD_CS, LCD_RESET, LCD_RS, LCD_WR, LCD_RD, LCD_ID, L_DATA[00:15]
- L_MAIN_LCD_CS: запуск управляющего чипа основного ЖКД. Управляющая схема основного ЖКД имеет свой собственный контакт CS
- LCD_RST: Контакт перезапускает модуль ЖКД. Сигнал поступает напрямую из AD6720.
- LCD_RS: Контакт определяет какие данные передаются на ЖКД управляющие или для отображения.
- L_WR: Управление записью
- L_RD: Управление чтением. Контакт используется только для настройки.
- L_DATA[00:15]: Канал параллельных данных.
- Для использования 65000 цветов, шины данных должны быть в 16-битном режиме.

Характеристики дисплея. Ед. изм.

Активная область дисплея 35.78*40.05*2.8 мм

Кол-во цветов 65,536 цветов

Разрешение 128 x 128 RGB точек

Рис. 3-7. Схема ЖКД

3.3.5 Нажатия клавиш и сканирование сигналов клавиатуры

Срабатывание клавиш обеспечивается металлическим куполом, при нажатии создающим контакт между двумя концентрическими контактами клавиатурного слоя печатной платы. Клавиатура состоит из 21 таких контактов, подключенных к матрице из 5 рядов и 5 колонок и дополнительной GPIO 35 для KEY_ROW5, за исключением кнопки питания (КВ1), подсоединенной отдельно. Матрица подключена к микросхеме AD6720. Ее колонки являются выходными каналами, в то время как ряды являются входными каналами и подключены через нагрузочные резисторы. При нажатии клавиши, ряд и колонка соединяются в одной точке, заставляя ряд создавать прерывание. На предмет нажатия клавиши ряды и колонки сканируются микросхемой AD6720.

Рис. 3-8: Нажатия клавиш и сканирование сигналов клавиатуры

R216

R210

->> KEY ROW4

SELECT

Д

3.3.6 Микрофон

Микрофон расположен на передней стороне корпуса телефона и подсоединен к основной плате.

Звуковой сигнал передается через контакты AIN1P и AININ схемы AD6720. Напряжение VMIC передается из AD6720, и является напряжением смещения для AIN1P. Затем сигналы AIN1P и AIN1N проходят в голосовом диапазоне через АЦП AD6720. Оцифрованная речь (PCM 8 кГц ,16 кГц) передается через секцию DSP AD6720 для дальнейшей обработки (кодирование, интерливинга и пр.).

Рис. 3-9: Соединение между микрофоном и AD6720

3.3.7 Программный midi и основной динамик

Встроенная MIDI TTPCоm и устройство полифонического оркестра, "TEMPO", является полнофункциональным MIDI проигрывателем со следующими функциями:

- Совместима со всеми стандартами MIDI
- MIDI проигрываются, как полифонические мелодии
- Малый объем занимаемой памяти менее 8 кб системная RAM внутренней MCU
- 40-голосая полифония
- Интеллектуальная система, позволяющая оптимальное использование синтезатора.
- Продукт с открытым API кодом, что позволяет обновлять поддержку MIDI в соответствии с требованиями пользователей.
- Парсер MIDI поддерживает стандартные MIDI (форматы 0, 1 и 2), SMAF-MA3, GM-Lite и SP-MIDI

Основной динамик управляется напрямую с помощью контактов AD6720 AOUT1P и AOUT1N а выходная мощность управляется PGA микропроцессора AD6720.

Рис. 3-10: Схема основного динамика

3.3.8 Интерфейс гарнитуры

Этот телефон использует 6-контактную гарнитуру со следующими контактами: GND, AUXIP, JACK_DETECT, HOOK_DETECT. Эта гарнитура поддерживает монозвук.

Переключение с динамика на гарнитуру

Если гарнитура подключена, контакт JACK_DETECT меняет свое логическое значение с низкого на высокое.

Звуковой канал переключается с динамика на гарнитуру прерыванием JACK_DETECT.

Переключение с гарнитуры на динамик

При отключении гарнитуры контакт JACK_DETECT меняет свое логическое значение с высокого на низкое. Звуковой канал переключается с гарнитуры на динамик прерыванием JACK_DETECT.

Определение подключения

При нажатии кнопки подключения HOOK_DETECT меняет свое логическое значение с высокого на низкое.

Логическое значение считывается AUXADC2.

Таким образом, определяется подключение.

Рис. 3-11: Интерфейс гарнитуры

3.3.9 Подсветка клавиатуры

Подсветка клавиатуры состоит из 14 голубых светодиодов, расположенных на основной плате. Подсветка клавиатуры управляется сигналами KEY_BACKLIGHT схемы AD6720.

Рис. 3-12: Подсветка клавиатуры

3.3.10 Подсветка ЖК-дисплея

Подсветка ЖК-дисплея управляется AD6720 через AAT3110.

CHARGE PUMP

Рис. 3-13: Схема управления подсветкой ЖК-дисплея.

3.3.11 Виброзвонок

Виброзвонок находится в крышке телефона и подключен к модулю ЖК-дисплея. Виброзвонок управляется сигналом VIBRATOR (GPIO_0) схемы AD6720.

Рис. 3-14: Схема виброзвонка

4. Устранение неисправностей

4.1 РЧ компоненты

Рис. 4-1

Таблица 4-1

Наименование	Описание	Наименование	Описание
U401	Модуль усилителя мощности	FL401	ПАВ фильтр для GSM и DCS
U402	ИС чипа приемопередатчика	FL402	ПАВ фильтр для PCS
Y400	Тактовый генератор	FL403	ПАВ фильтр для GSM850
SW400	Модуль мобильного переключателя		

4.2 Неисправность приема сигнала

Рис. 4-2

4.2.1 Проверка тактового генератора

График 4-2

4.2.2 Проверка управляющих сигналов усилителя мощности

4.2.3 Проверка антенного и мобильного переключателя

Check Mobile SW

Check ANT SW

Рис. 4-6

Режим работы	Управляемое напряжение			
	Vmod_en	Vtx	Vbs1	Vbs2
TX GSM 850/900	Н	Н	L	L
TX DCS/PCS	Н	Н	Н	L
RX1	Н	L	L	L
RX2	Н	L	L	Н
RX3	Н	L	Н	
RX4	Н	L	Н	Н
Режим сна	L	L	L	L

Таблица 4-2

4.2.4 Проверка ПАВ фильтра

Рис. 4-7

4.2.5 Проверка передаваемых сигналов I и Q

Рис. 4-8

4.3 Неисправность передачи сигнала

Рис. 4-9

4.3.1 Проверка тактового генератора

График 4-5

4.3.2 Проверка управляющих сигналов

Рис. 4-11

График 4-7

4.3.3 Проверка передаваемых сигналов I и Q

Рис. 4-12

График 4-8.

4.3.4 Проверка управляющих сигналов усилителя мощности

4.3.5 Проверка антенного и мобильного переключателя

Рис. 4-14

Таблица 4-3

Режим работы	Управляемое напряжение				
Гежим рассты	Vmod_en	Vtx	Vbs1	Vbs2	
TX GSM 850/900	Н	Н	L	L	
TX DCS/PCS	Н	Н	Н	L	

4.4 Неисправность включения.

Рис. 4-15

Проверить телефон следующим образом.

4.4 Неисправность включения.

Рис. 4-16

4.6 Загрузка ПО

1. Стирание

Запустите программу GSMulti.

Далее необходимо изменить настройки программы "Settings/Configuration" в соответствии с рисунком.

Выберите необходимый *.dll файл.

Выберите необходимый файл ПО *.mot.

Используемый загрузчик (loader) :Cmd.m0;

В соответствии с возможностями компьютера выберите скорость СОМ порта.

В разделе "Option(ADI)", выберите "Common".

После подтверждения установок вы можете начать процесс обновления ПО.

4.7 Калибровка

Программа калибровки Hotkimchi

4.7.1 Оборудование

4.7.2 Установки

1) Создайте папку

2) Загрузите программу Hotkimchi

3) Содержание архива

4) Создайте папки для каждой модели телефона

5) Загрузите файлы для программы калибровки. (пример: В2000)

6) Содержание архива

7) Файл info_Db.txt

8) Добавление новых моделей

9) Запуск программы Hotkimchi

4. Устранение неисправностей

10) Выбор модели

11) Настройки программы (на большом рисунке только для ADI моделей)

12) Завершающая стадия калибровки.

4.8 Неисправность ЖКД

4.8.1 Синий экран на ЖКД или некорректная работа

Рис. 4-17

Последовательность проверки

4. Устранение неисправностей

4.8.2 Черный экран на ЖКД

Рис. 4-18

Последовательность проверки

CHARGE PUMP

4.9 Неисправность динамика

Схема цепи

Последовательность проверки

4.10 Неисправность громкоговорителя

Схема цепи

Последовательность проверки

Настройка: Подключить PIF к телефону, и включить его. Войти в инженерный режим, и установить "Melody on" в пункте зуммер в меню НЧ тестирования

4.11 Неисправность микрофона

Схема цепи

Последовательность проверки

4.12 Неисправность гарнитуры

Схема цепи

Последовательность проверки

Неисправность принимающего канала гарнитуры

Неисправность определения гарнитуры

Неисправность передающего канала гарнитуры

Рис. 4-19

Последовательность проверки

4.14 Неисправность определения SIM карты

Рис. 4-20

Последовательность проверки

Схема цепи

5. Приложение

1. BOM

<Main component>

	Location			
Level	NO.	Part Name	Part Number	Spec
3	SAFY00	PCB ASSY,MAIN	SAFY0178601	KG110 (ATOM) PCB ASSY,MAIN
4	SAFB00	PCB	SAFB0064001	KG110 ATOM
		ASSY,MAIN,INSERT		
5	ANT	ANTENNA,GSM,FIXED	SNGF0018401	5 ,-7 dBd, ,Internal,
				Triple(GSM900+DCS1800+PCS1900), Pb
				Free ,; ,TRIPLE , , ,
5	BAT01	BATTERY,CELL,LITHI	SBCL0001303	2 V,1 mAh,COIN ,SOLDER TYPE
		UM		BACKUP BATTERY
5	LCD	LCD MODULE	SVLM0021401	MAIN ,128*128 ,35.78*39.7*3.4 ,65k ,CST
				N ,TM ,S6B33B6X ,1.52" CSTN Single
5	MIC	MICROPHONE	SUMY0003809	FPCB ,42 dB,4*1.5 ,
4	SAFF00	PCB ASSY,MAIN,SMT	SAFF0099901	KG110 ATOM
5	SAFC00	PCB ASSY,MAIN,SMT	SAFC0081101	KG110 (ATOM) PCB ASSY,MAIN,SMT
		воттом		воттом
6	C101	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C102	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C103	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C104	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C105	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C106	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C107	CAP,CERAMIC,CHIP	ECCH0005604	10 uF,6.3V ,M ,X5R ,TC ,1608 ,R/TP
6	C108	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C109	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C110	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C111	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C112	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C113	CAP,CHIP,MAKER	ECZH0001421	2.2 uF,6.3V ,K ,X5R ,HD ,1608 ,R/TP
6	C114	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C115	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C116	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C117	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C118	CAP,CHIP,MAKER	ECZH0001421	2.2 uF,6.3V ,K ,X5R ,HD ,1608 ,R/TP
6	C119	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C120	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP
6	C122	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP

5. APPENDIX-BOM

	Location			
Level	NO.	Part Name	Part Number	Spec
6	C123	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C124	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP
6	C125	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C126	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C127	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C128	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C129	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C132	CAP,CHIP,MAKER	ECZH0001421	2.2uF,6.3V ,K ,X5R ,HD ,1608 ,R/TP
6	C134	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C135	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C136	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C137	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C138	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C139	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C140	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C141	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C142	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C150	CAP,CERAMIC,CHIP	ECCH0006201	4.7uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP
6	C152	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C153	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C154	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C155	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP
6	C156	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C231	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C232	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C233	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C234	CAP,TANTAL,CHIP,	ECTZ0005201	10uF,6.3V ,M ,L_ESR ,1608 ,R/TP
		MAKER		
6	C235	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C236	CAP,CERAMIC,CHIP	ECCH0003401	10uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP
6	C237	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C238	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C241	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP
6	C242	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP
6	C243	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C244	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP

	Location			
Level	NO.	Part Name	Part Number	Spec
6	C261	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C262	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP
6	C263	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C264	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C265	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C266	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C267	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C271	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C277	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C280	CAP,CHIP,MAKER	ECZH0003202	1 uF,6.3V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C290	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C291	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C311	CAP,TANTAL,CHIP	ECTH0002101	1 uF,16V ,M ,STD ,1608 ,R/TP
6	C312	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP
6	C313	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C314	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP
6	C315	CAP,CERAMIC,CHIP	ECCH0000104	3 pF,50V,C,NP0,TC,1005,R/TP
6	C321	CAP,CHIP,MAKER	ECZH0001421	2.2uF,6.3V ,K ,X5R ,HD ,1608 ,R/TP
6	C322	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C323	CAP,CERAMIC,CHIP	ECCH0005604	10 uF,6.3V ,M ,X5R ,TC ,1608 ,R/TP
6	C324	CAP,CERAMIC,CHIP	ECCH0005604	10 uF,6.3V ,M ,X5R ,TC ,1608 ,R/TP
6	C325	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C327	CAP,CHIP,MAKER	ECZH0001211	220 nF,10V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C329	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP
6	C403	CAP,CERAMIC,CHIP	ECCH0000701	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP
6	C405	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP
6	C406	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C407	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP
6	C408	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP
6	C409	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP
6	C410	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP
6	C411	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP
6	C412	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C413	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C414	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP

	Location			
Level	NO.	Part Name	Part Number	Spec
6	C415	CAP,CERAMIC,CHIP	ECCH0000126	68 pF,50V,J,NP0,TC,1005,R/TP
6	C416	CAP,CERAMIC,CHIP	ECCH0000126	68 pF,50V,J,NP0,TC,1005,R/TP
6	C417	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C418	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C421	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C422	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C423	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C424	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP
6	C425	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C426	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C427	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C428	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C429	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C430	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C431	CAP,CHIP,MAKER	ECZH0001211	220 nF,10V ,Z ,Y5V ,HD ,1005 ,R/TP
6	C432	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C433	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C434	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP
6	C435	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP
6	C436	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP
6	C440	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP
6	C444	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP
6	C445	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP
6	CN302	CONNECTOR,I/O	ENRY0003401	24 PIN,0.5 mm,ETC , ,
6	D100	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1
				A,R/TP ,2.5*1.25*0.6(t)
6	D101	DIODE,SWITCHING	EDSY0005701	EMT3 ,80 V,4 A,R/TP ,
6	D300	DIODE,SWITCHING	EDSY0012301	1-1E1A ,85 V,1 A,R/TP ,P=200mW,
				IFM=200mA
6	FB301	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead
6	FL301	FILTER,EMI/POWER	SFEY0007101	SMD ,1CH,1608Feedthru ESD/EMI
				filter for power Pb-free
6	FL302	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor
				Array(400Ohm,25pF)
6	FL303	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor
				Array(400Ohm,25pF)
6	FL304	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor
				Array(400Ohm,25pF)
6	FL305	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor
				Array(400Ohm,25pF)
6	FL306	FILTER,EMI/POWER	SFEY0007102	SMD ,5.6 V,SMD ,4ch. R-Varistor
				Array(400Ohm,25pF)

	Location			
Level	NO.	Part Name	Part Number	Spec
6	FL401	FILTER,SAW,DUAL	SFSB0000801	942.5 MHz,35 MHz,2.3 dB,21
				dB,1842.5 MHz,75 MHz,2.4 dB,12
				dB,2.5*2.0*0.76 ,SMD ,Pb-free_Dual(
				GSM900+DCS1800
				Rx) ,; ,942.5MHz_1842.5MHz ,2.5*2.
				0*0.76 ,SMD ,[empty]
6	J200	CONN,JACK/PLUG,EARP	ENJE0002301	3,5 PIN,G7000 EAR JACK 3 pole, 5
		HONE		pin KSD
6	J300	CONN,SOCKET	ENSY0015901	6 PIN,ETC , ,2.54 mm,H=2.2
6	L401	INDUCTOR,CHIP	ELCH0001032	18 nH,J ,1005 ,R/TP ,PBFREE
6	L402	INDUCTOR,CHIP	ELCH0003817	7.5 nH,J ,1005 ,R/TP ,
6	L403	INDUCTOR,CHIP	ELCH0005015	6.8 nH,S ,1005 ,R/TP ,
6	L404	INDUCTOR,CHIP	ELCH0005005	27 nH,J ,1005 ,R/TP ,
6	L405	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,
6	L406	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,
6	L407	INDUCTOR,CHIP	ELCH0007602	680 nH,J ,2012 ,R/TP ,
6	L408	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,
6	L410	INDUCTOR,CHIP	ELCH0001034	3.3 nH,S ,1005 ,R/TP ,PBFREE
6	L411	INDUCTOR,CHIP	ELCH0005001	2.2 nH,S ,1005 ,R/TP ,
6	L412	INDUCTOR,CHIP	ELCH0001421	47 nH,J ,1005 ,R/TP ,PBFREE
6	Q100	TR,FET,P-CHANNEL	EQFP0004201	2.9*1.9*0.8(t) ,.7 W,20 V,-6
				A,R/TP ,NDC652P
				upgrade(substitution) item, Pb free
6	Q300	TR,BJT,ARRAY	EQBA0000406	SC-70 ,0.2 W,R/TP ,CDMA,Common
				use
6	Q301	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW
				FREQUENCY
6	R101	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP
6	R102	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP
6	R103	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R105	RES,CHIP	ERHY0001102	0.2 ohm,1/4W ,F ,2012 ,R/TP
6	R107	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP
6	R108	RES,CHIP	ERHY0000152	82K ohm,1/16W,F,1005,R/TP
6	R111	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R114	RES,CHIP	ERHY0000204	12 ohm,1/16W,J,1005,R/TP
6	R115	RES,CHIP	ERHY0000204	12 ohm,1/16W,J,1005,R/TP
6	R120	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R121	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R122	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R123	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP

	Location			
Level	NO.	Part Name	Part Number	Spec
6	R124	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP
6	R190	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R200	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP
6	R205	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R206	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R207	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R208	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R209	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R210	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP
6	R231	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R232	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R233	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R234	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP
6	R236	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP
6	R237	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP
6	R239	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R240	RES,CHIP	ERHY0000293	510K ohm,1/16W,J,1005,R/TP
6	R241	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP
6	R242	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R243	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP
6	R244	RES,CHIP	ERHY0000138	33K ohm,1/16W,F,1005,R/TP
6	R261	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R262	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP
6	R263	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP
6	R264	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP
6	R265	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP
6	R266	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP
6	R271	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R272	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R275	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R276	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R277	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R280	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP
6	R305	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R306	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R307	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP
6	R308	RES,CHIP	ERHY0000912	15 ohm,1/10W,J,2012,R/TP
6	R311	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R312	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R313	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP

	Location			
Level	NO.	Part Name	Part Number	Spec
6	R314	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R315	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R316	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R317	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R318	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R319	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP
6	R320	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R321	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R322	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R323	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R324	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R326	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R327	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R328	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R329	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R330	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R331	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R341	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP
6	R342	RES,CHIP	ERHY0000211	33 ohm,1/16W,J,1005,R/TP
6	R344	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP
6	R345	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R346	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP
6	R348	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP
6	R349	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP
6	R401	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R407	RES,CHIP	ERHY0008201	24 ohm,1/16W ,J ,1005 ,R/TP
6	R408	RES,CHIP	ERHY0000226	220 ohm,1/16W,J,1005,R/TP
6	R409	RES,CHIP	ERHY0000226	220 ohm,1/16W,J,1005,R/TP
6	R410	RES,CHIP	ERHY0000210	30 ohm,1/16W,J,1005,R/TP
6	R411	RES,CHIP	ERHY0000224	180 ohm,1/16W,J,1005,R/TP
6	R412	RES,CHIP	ERHY0000224	180 ohm,1/16W,J,1005,R/TP
6	R413	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R414	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R415	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	R416	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP
6	R418	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP
6	R419	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP
6	R427	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP
6	SW400	CONN,RF SWITCH	ENWY0003301	,SMD ,0.4 dB,

Lev	Location			
el	NO.	Part Name	Part Number	Spec
6	U101	IC	EUSY0280001	CSP_BGA ,289 PIN,R/TP ,GSM
				Onechip Baseband
6	U102	IC	EUSY0311401	BGA ,64
				PIN,R/TP ,128Mb_NOR+32Mb_pS
				MirrorBIT
6	U201	IC	EUSY0119002	4X3 UCSP / CODE : B12-4 ,10
				PIN,R/TP ,DUAL SPDT ANALOG
				SWITCHES(Pb Free)
6	U202	IC	EUSY0309201	10pin,TDFN,1.4W differential power
				amp ,10 PIN,R/TP ,AUDIO AMP
6	U204	IC	EUSY0077301	SC70-6 ,6 PIN,R/TP ,SPDT Analog
				switch
6	U205	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,1.8V Low
				Voltage Comparator with Rail-to-Rail
				Input, Pb Free
6	U300	IC	EUSY0124601	SOT23-6 ,6 PIN,R/TP ,Charge Pump
6	U401	RF MODULE,HANDSET	SMRH0003801	MHz, MHz, ,ASM + PAM
6	U402	IC	EUSY0280101	LFCSP-32 ,32 PIN,R/TP ,GSM QUAD
				BAND TRANSCEIVER, Othello G.
6	VA101	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA201	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA202	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA203	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA204	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA205	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	VA300	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005
6	X100	X-TAL	EXXY0015601	32.768 KHz,20 PPM,7 pF,65000
				ohm,SMD ,6.9*1.4*1.3 ,Overlapping
				Part Cleansing, Replace with
				EXXY0004601 , ,32.768KHz ,20PPM
				, , , ,SMD ,R/TP
6	Y400	X-TAL	EXXY0018403	26 MHz,10 PPM, pF,
				ohm,SMD ,3.2*2.5*0.7 ,temporary
				spec,
				W-191-451 ,; ,26 ,10PPM , , , ,SMD ,
				R/TP
5	SAFD00	PCB ASSY,MAIN,SMT	SAFD0079901	KG110 (ATOM) PCB
		TOP		ASSY,MAIN,SMT TOP
6	C221	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C222	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP

	Location			
Level	NO.	Part Name	Part Number	Spec
6	C223	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C224	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C225	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C226	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C272	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C273	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C274	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP
6	C301	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	C302	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP
6	CN301	CONNECTOR,BOARD TO	ENBY0018701	41 PIN,0.3 mm,STRAIGHT, ,0.9t
		BOARD		stacking height
6	LD201	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	LD202	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	LD203	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	LD204	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	LD205	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	LD206	DIODE,LED,CHIP	EDLH0011601	BLUE ,1608 ,R/TP ,PB-FREE
6	MIC200	MICROPHONE	SUMY0003809	FPCB ,42 dB,4*1.5 ,
6	R221	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R222	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R223	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R224	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R225	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R226	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP
6	R301	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP
6	R302	RES,CHIP	ERHY0000215	56 ohm,1/16W,J,1005,R/TP
6	R303	RES,CHIP	ERHY0000215	56 ohm,1/16W,J,1005,R/TP
6	R304	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP
5	SPFY00	PCB,MAIN	SPFY0138601	FR-4 ,1.0 mm,MULTI-6 , ,; , , , , , , ,

	Location					
Level	NO.	Part Name	Part Number	Spec	Color	Remark
1		GSM,BAR/FILP	TGSM0046101			
2	AAAY00	ADDITION	AAAY0170601			
3	MCJA00	COVER,BATTERY	MCJA0034701	KG110 BATTERY COVER(PC)	BLACK	7
2	ABEZ00	BOX ASSY	ABEZ0067201			
2	APEY00	PHONE	APEY0324301	KG110 PHONE	BLACK	
3	ACGK00	COVER ASSY,FRONT	ACGK0077501	KG110 FRONT ASSY	BLACK	
		CAP,EARPHONE				
4	MCCC00	JACK	MCCC0038601	KG110 EARPHONE JACK CAP	BLACK	15
4	MCJK00	COVER,FRONT	MCJK0061901	KG110 FRONT COVER(PC)	BLACK	1
4	MDAG00	DECO,FRONT	MDAG0022201	KG110 FRONT DECO(PC)	BLACK	2
4	MPBG00	PAD,LCD	MPBG0049501	KG110 LCD PAD	BLACK	11
4	MTAA00	TAPE,DECO	MTAA0121801	KG110 FRONT DECO TAPE		13
4	MTAB00	TAPE,PROTECTION	MTAB0123101	KG110 PROTECTION TAPE		14
4	MTAD00	TAPE,WINDOW	MTAD0056801	KG110 WINDOW TAPE		12
3	ACGM00	COVER ASSY,REAR	ACGM0076701	KG110 REAR ASSY	BLACK	
4	MCJN00	COVER,REAR	MCJN0056701	KG110 REAR COVER(PC)	BLACK	5
4	MDAK00	DECO,REAR	MDAK0011701	KG110 REAR DECO(PC)	BLACK	6
3	AKAZ00	KEYPAD ASSY	AKAZ0016901	KG110 KEYPAD	BLACK	4
		SCREW				
3	GMEY00	MACHINE,BIND	GMEY0004001	1.4 mm,4.0 mm,MSWR3(BK) ,		17
3	GMZZ00	SCREW MACHINE	GMZZ0015101	1.4 mm,3.0 mm,MSWR3(FN),		18
	MICZ00	INSERT NUT	MICZ0027801	M1.4*L3.3		19
	MICZ00	INSERT NUT	MICZ0027901	M1.4*L4.7		20
3	мссноо	CAP,SCREW	MCCH0089401	KG110 SCREW CAP	BLACK	16
3	MWAC00	WINDOW,LCD	MWAC0069801	KG110 LCD WINDOW	BLACK	3
	ADCA00	DOME ASSY	ADCA0056401	KG110 DOME ASSY		10
		INSULATOR ON				
	MIDZ0	REAR	MIDZ0108401	KG110 REAR INSULATOR		21
	MIDZ0	INSULATOR ON PCB	MIDZ0108501	KG111 PCB INSULATOR		22

21	BATTERY	1	SBPL0083501
20	LCD	1	SVLM0021401
19	SPEAKER	1	SUSY0022301
18	SCREW MACHINE	4	GMZZ0015101
17	SCREW MACHINE,BIND	2	GMEY0004001
16	CAP,SCREW	2	MCCH0089401
15	CAP,EARPHONE JACK	1	MCCC0038601
14	TAPE,PROTECTION	1	MTAB0123101
13	TAPE,DECO	1	MTAA0121801
12	TAPE, WINDOW	1	MTAD0056801
11	PAD,LCD	1	MPBG0049501
10	DOME ASM	1	ADCA0056401
9	INTENNA	1	
8	PCB ASM	1	
7	COVER,BATTERY	1	MCJA0034701
6	DECO,REAR	1	MDAK0011701
5	COVER,REAR	1	MCJN0056701
4	KEYPAD,ASSY	1	AKAZ0016901
3	WINDOW,LCD	1	MWAC0069801
2	DECO,FRONT	1	MDAG0022201
1	COVER_FRONT	1	MCJK0061901
ND.	PART NAME	QTY	PART.NO
			· · · · · · · · · · · · · · · · · · ·

8.0

CAM350 V