Set Theory and Maps

1 Sets

1.1 Basic Sets

* **Natural Numbers (N):**

$$\mathbb{N} = \{0, 1, 2, ...\}$$

* **Integers (\mathbb{Z}):**

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

* **Rational Numbers (\mathbb{Q}):**

$$\mathbb{Q} = \left\{ \frac{k}{n} \mid k, n \in \mathbb{N}, n \neq 0 \right\}$$

* **Real Numbers (\mathbb{R}):** * **Complex Numbers (\mathbb{C}):**

$$\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{R} \}$$

• **Imaginary Unit (i):** characterized by $i^2 = -1$.

1.2 Spaces

* **d-dimensional Space (\mathbb{R}^d) :**

$$\mathbb{R}^d = \{(a_1, ..., a_d) \mid a_i \in \mathbb{R}\}$$

* **Space of Infinite Sequences of Reals (\mathbb{R}^{∞}):**

$$\mathbb{R}^{\infty} = \{(a_0, a_1, a_2, ...) \mid a_i \in \mathbb{R}\}$$

2 Set Operations

Let A, B be *sets*.

* **Union
$$(A \cup B)$$
:**

$$A \cup B = \{c \mid c \in A \text{ or } c \in B\}$$

* **Intersection $(A \cap B)$:**

$$A \cap B = \{c \mid c \in A \text{ and } c \in B\}$$

* **Difference $(A \backslash B)$:**

$$A \backslash B = \{ c \mid c \in A \text{ and } c \notin B \}$$

* **Symmetric Difference $(A\Delta B)$:**

$$A\Delta B = (A \cup B) \backslash (A \cap B)$$

3 Indexed Families of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an *indexed family of sets* (index set I).

• **Union:**

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$

• **Intersection:**

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$

4 Maps

A *map* (or *function* or *mapping* or *transformation*) is a rule that assigns to each element of a set A (the *domain*) a unique element of a set B (the *target space*).

- **Notation:** $f: A \to B$
- **Value:** f(a) is the element in B assigned to $a \in A$.
- **Restriction:** If $A' \subseteq A$, then $f': A' \to B$ where f'(a) = f(a) is called the *restriction* of f to A', denoted $f' = f|_{A'}$.

4.1 Examples

- 1. ** $f : \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)^{**}$ (Sine function)
- 2. ** $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$ ** (Reciprocal function)
- 3. ** $g: \mathbb{R} \to \mathbb{R}, x \mapsto 0$ if x = 0 and $x \mapsto \frac{1}{x}$ if $x \neq 0$ ** (Piecewise function)
- 4. ** $f: V \to \text{set of subspaces of } V, v \mapsto span(v)^{**}$ (Span of a vector)
- 5. ** $D: P(\mathbb{R}) \to P(\mathbb{R}), p(x) \mapsto p'(x)^{**}$ (Derivative)