Задача 6. Пълно ли е множеството от двоични функции $(L \cap T_1) \cup (S \setminus T_0)$? А множеството $(L \cap T_1) \cup (S \cap M)$? Обосновете отговорите си!

Решение. Нека $F = (L \cap T_1) \cup (S \setminus T_0)$ и $f(x_1, \dots, x_n)$ е произволна двоична функция и $f \in F$. Ще докажем, че $f \not\in T_0$, $f \not\in T_1$, $f \not\in L$, $f \not\in M$ и $f \not\in S$. Това ще означава, че $F \not\subseteq T_0 \cup T_1 \cup L \cup M \cup S$ и следователно от критерия на Пост-Яблонски ще следва, че F е пълно множество.

- а) Нека $f_1(x_1,\ldots,x_n)=\tilde{1}\Rightarrow f_1\in F$, тъй като $f_1\in L\cap T_1$. Но $f_1\not\in T_0\Rightarrow F\not\subseteq T_0$.
- б) Нека $f_2(x)=\overline{x}\Rightarrow f_2\in F$, тъй като $f_2\in S\setminus T_0$. Но $f_2\not\in T_1\Rightarrow F\not\subseteq T_1$.
- в) Търсим такава $f_3 \in F$, която не е линейна, но е самодвойнствена и не запазва нулата, т.е. $f_3 \in S \setminus T_0$. Естествено е първо да видим дали има такава f_3 , която е функция на два аргумента.

x	у	$1 \oplus xy$	$1 \oplus x \oplus xy$	$1 \oplus y \oplus xy$	$1 \oplus x \oplus y \oplus xy$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0

Очевидно нито една функция на два аргумента, която не е линейна не е самодвойнствена. Избираме функцията $f_3(x,y,z)=1+xy+yz+zx$.

x	у	z	$1 \oplus xy \oplus yz \oplus zx$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- г) Търсим такава $f_4 \in F$, която не е монотонна. Забележете, че $f_3(0,0,0)=1$ и $f_3(1,1,1)=0$. Това означава, че няма как да е монотонна. Следователно ще вземем f_3 и като пример за функция, която е от F, но не е монотонна.
- д) Остана да намерим функция $f_5\in F$, която не е самодвойнствена. Нека вземем $f_5\in L\cap T_1$, за да си гарантираме, че $f_5\in F$. Тогава $f_5(x_1,\ldots,x_n)=a_0+a_1x_2+\ldots+x_nx_n$ и $f_5(1,\ldots,1)=1\Rightarrow a_0+a_1+\ldots+a_n=1$. Искаме да е изпълнено: $f_5(x_1,\ldots,x_n)=f_5(\overline{x_1},\ldots,\overline{x_n})$, за да бъде f_5 самодвойнствена.

Ho $\overline{x} = x + 1$, следователно

$$f_5(\overline{x_1}, \dots, \overline{x_n}) = a_0 + a_1(x_1 + 1) + \dots + a_n(x_n + 1) =$$

$$= \underbrace{a_0 + a_1 x_1 + \dots + a_n x_n}_{f_5(x_1, \dots, x_n)} + \sum_{i=1}^n a_i$$

Тоест, за да е изпълнено $f_5(x_1,\ldots,x_n)=f_5(\overline{x_1},\ldots,\overline{x_n})$ е достатъчно да вземем функция f_5 , за която $\sum_{i=1}^n a_i=0$ и това ще гарантира, че е самодвойнствена. Достатъчно е да е изпълнено $a_1=a_2=\ldots=a_n$ и n да е четно число.

А за да е изпълнено и това, че f_5 запазва единицата е необходимо и $a_0=1$.

$$f_5(x,y) = 1 + x + y$$
; $f_5 \in F \text{ u } f_5 \notin S \Rightarrow F \nsubseteq S$.

Второто множество от условието, $(L\cap T_1)\cup (S\cap M)$ не е пълно, тъй като за дадена двоична функция $f\in F$ имаме две възможности: или $f\in L\cap T_1$ или $f\in S\cap M$. Ако $f\in L\cap T_1$, то $F\subseteq T_1$. Ако пък $f\in S\cap M$, то $f(x_1,\ldots,x_n)\neq \tilde{0}$ и $f(x_1,\ldots,x_n)\neq \tilde{1}$, за да може да бъде двойнствена. Но от друга страна е и монотонна. Следователно $f(1,\ldots,1)=1$, което отново означава, че $F\subseteq T_1$.