МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра теории вероятности и математической статистики

ИССЛЕДОВАНИЕ МЕЙКСНОГО РАСПРЕДЕЛЕНИЯ

Индивидуальное задание

Рымкевич Виктории Сергеевны
Студентки 4 курса,
специальность «актуарная математика»
Преподаватель:
доктор физико-математических наук

Н.Н. Труш

Распределение Мейкснера

(Meixner distribution)

Плотность распределения Мейкснера MD(a,b,m,d) задаётся следующей формулой:

$$f_{MD}(x; a, b, m, d) = \frac{\left(2\cos\left(\frac{b}{2}\right)\right)^{2d}}{2a\pi\Gamma(2d)} \cdot \exp\left(\frac{b(x-m)}{a}\right) \cdot \left|\Gamma\left(d + \frac{i(x-m)}{a}\right)\right|^{2}$$

Где:

- a параметр масштаба, a > 0;
- b параметр асимметрии, $-\pi < b < \pi$;
- m параметр положения, $m \in \mathbb{R}$;
- d параметр формы, d > 0.

Характеристическая функция $X \sim MD(a, b, m, d)$ задается следующей формулой:

$$\phi_{MD}(u) = E[e^{iuX}] = \left(\frac{\cos\left(\frac{b}{2}\right)}{\cosh\frac{au - ib}{2}}\right)^{2d} \cdot \exp(imu)$$

и кумулятивная функция:

$$g_{MD}(u) := \log \phi_{MD}(u) = 2d \left[\log \left(\cos \left(\frac{b}{2} \right) \right) - \log \left(\cosh \frac{au - ib}{2} \right) \right] + im$$

Для данного распределения существуют моменты любого порядка. Далее приведены наиболее важные величины:

математическое ожидание	$m + ad \tan \left(\frac{b}{2} \right)$
дисперсия	$\frac{a^2d}{1+\cos b}$
эксцесс	$3 + \frac{2 - \cos b}{d}$
асимметрия	$\sqrt{\frac{2}{d}} \cdot \sin\left(\frac{b}{2}\right)$

Основные свойства распределения Мейкснера:

1. MD(a, b, m, d) является бесконечно делимым распределением с триплетом Леви $(\alpha, 0, \nu(dx))$, где

$$\alpha = ad \tan \left(\frac{b}{2}\right) - 2d \int_{1}^{+\infty} \frac{\sinh(bx/a)}{\sinh(\pi x/a)} dx + m,$$

$$v(dx) = d \frac{\exp(bx/a)}{x \sinh(\pi x/a)} dx$$

Как следствие, справедлива следующая формула для характеристической функции:

$$\phi_{MD}(u; a, b, m, d) = \left[\phi_{MD}\left(u; a, b, m/n, d/n\right)\right]^n, \forall n \in \mathbb{N}$$

2. Если $X_j \sim MD(a, b, m_j, d_j)$, j = 1, ..., n, а также являются попарно независимыми, то

$$X_1 + \cdots + X_n \sim MD\left(a, b, \sum_{j=1}^n m_j, \sum_{j=1}^n d_j\right).$$

3. MD(a, b, m, d) является саморазложимым распределением и имеет полутяжёлые хвосты. Это означет, что

$$f_{MD}(x;a,b,m,d) \sim \mathsf{C}_{-}|x|^{\rho_{-}} \exp(-\sigma_{-}|x|)$$
 при $x \to -\infty$ $f_{MD}(x;a,b,m,d) \sim \mathsf{C}_{+}|x|^{\rho_{+}} \exp(-\sigma_{+}|x|)$ при $x \to +\infty$

где

$$C_{-}, C_{+} \ge 0, \qquad \rho_{-} = \rho_{+} = 2d - 1, \qquad \sigma_{-} = \frac{\pi - b}{a}, \sigma_{+} = \frac{\pi + b}{a}$$

Дальнейшее исследование было проведено при помощи программного пакета Wolfram Matematica 9.0. Реальные данные для исследования были полученны из встроенных баз данных.

Исследование параметров распределения.

m является простым параметром положения, в то время как a и d влияют на островершинность распределения, а b, являясь параметром формы, напрямую влияет на скошенность распределения. Далее наглядно продемонстрируем зависимость вида функции распределения от значения её параметров.

•
$$X \sim MD(a, 1, 0, 1)$$

С увеличением параметра a распределение из островершинного переходит в плосковершинное.

• $X \sim MD(2, b, 0, 1)$

При b < 0 распределение скошено влево, при b > 0 — вправо. Величина модуля параметра влияет на степень скошенности.

• $X \sim MD(2, 1, m, 1)$

Значение параметра m влияет на параллельный сдвиг распределения от стандартного положения (m=0).

• $X \sim MD(2, 1, 0, d)$

Влияние аналогично параметру a, но с большим смещением вправо.

Генерация выборки случайных величин.

Сгенерируем набор псевдослучайных величин, распределенных по распределению Мейкснера $X \sim MD(1,-2,0,3)$. На графике ниже отображены гистограмма полученной выборки и эталонная функция генерируемого распределения.

	Практическое	Теоретическое
математическое ожидание	-4.6419	-4.6722
дисперсия	5.0927	5.1382
эксцесс	3.9261	3.8053
асимметрия	-0.69608	-0.68705

Оценка реальных данных.

Для исследования были взяты величины доходности индекса $S\&P~500^*$ в период с 1 января 2000 по 1 января 2010. Оценка параметров производилась методом моментов и методом максимального правдоподобия. Ниже приведены результаты оценок и их графики распределений, нарисованные поверх гистограммы рассматриваемых данных.

• Метод моментов.

MeixnerDistribution[0.0555843,0.0507417,-0.000183754,0.124796]

^{*} **Индекс Standard & Poor's 500** (**S&P 500**) — фондовый индекс, в корзину которого включено 500 избранных акционерных компаний США, имеющих наибольшую капитализацию. Список принадлежит компании Standard & Poor's и ею же составляется.

• Метод максимального правдоподобия.

MeixnerDistribution[0.0466282,-0.176725,0.000706459,0.172887]

Исходя из полученных результов, можно заключить, что оба метода достаточно точно оценивают параметры распределения, однако имеют существенные различия между собой.

Процесс Мейкснера

Свойства

- Не имеет броуновской компоненты, нулевое значение среднего элемента триплета Леви ясно просматривается.
- Его мера Леви задается как

$$v(dx) = d \frac{\exp(bx/a)}{x \sinh(\pi x/a)} dx$$

- Имеет моменты любого порядка.
- Имеет бесконечную вариацию, можно показать, что

$$\int_{-1}^{+1} |x| \nu(dx) = \infty$$

• Является саморазложимым и имеет полутяжелые хвосты.

Алгоритм генерации

Малые скачки субординатора аппроксимируются при помощи дрейфа

$$\varsigma = da \sqrt{\frac{2\varepsilon}{\pi}},$$

а размер скачка как

$$y_j = \frac{\varepsilon}{u_i^2},$$

где $\{u_j\}$ – последовательность независимых равномерно распределенных величин.

Изменение времени определяется как

$$\tau = \varsigma + \sum_{j} y_{j} \mathbb{I}_{\{g(y_{j}) > \omega_{j}\}},$$

где $\{\omega_j\}$ — еще одна последовательность независимых равномерно распределенных величин, а функция g(u) задается как

$$g(u) = \exp\left\{-\frac{A^2 u}{2}\right\} \sum_{n=-\infty}^{+\infty} (-1)^n \exp\left\{-\frac{n^2 \pi^2}{2C^2 u}\right\}.$$

В итоге, реализации процесса Мейкснера генерируются по следующей формуле:

$$X = \frac{b}{a}\tau + \sqrt{\tau}Z,$$

где Z — независимая стандартно нормально распределенная случайная величина.

Примеры реализации

• $X \sim MP(2, 1, 0, 1)$

• $X \sim MP(2, 0.5, 0, 1.5)$

• $X \sim MP(0.5, 1.5, 0, 1.5)$

Модель GARCH(1, 1) с процессом инноваций Мейкснера MP(1, 0, 0, 2)

Модель GARCH(1,1) задается следующим образом:

$$x_t = \sigma_t z_t,$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

Были получены следующие оценки параметров модели для дневных значений индекса S&P500:

Период	$lpha_0$	$lpha_1$	$oldsymbol{eta}_1$	Ошибка
Январь 2015	0.	0.1350853	0.3333034	0.0022265
Февраль 2015	6.415×10^{-7}	1.197×10^{-6}	0.131966	0.00058052
Март 2015	6.915×10^{-7}	0.15887	0.39823	0.00071479
Апрель 2015	0.	0.86879	1.2554	0.0012458
Май 2015	8.926×10^{-6}	0.16017	0.090274	0.0068613
Июнь 2015	0.00001711	0.6386	1.752	0.013974
Июль 2015	9.655×10^{-8}	5.317	2.777×10^{-7}	0.003184
Август 2015	0.006903	0.028052	0.03591	0.0052767
Сентябрь 2015	0.	0.	0.28417	0.0014211
Октябрь 2015	2.64×10^{-10}	0.035999	0.112202	0.0006764
Ноябрь 2015	0.	0.021273	0.	0.0001201
Декабрь 2015	0.	0.37351	0.000024069	0.00079984