Almost Beatty Partitions and Optimal Scheduling Problems

Xiaomin Li

Mentor: A. J. Hildebrand University of Illinois at Urbana-Champaign

MAA MathFest Conference August 1, 2019

Credits

This talk is based on a joint work with:

- Junxian Li (University of Göttigen)
- Yun Xie (University of Washington)
- A. J. Hildebrand (University of Illinois)

It originated with a project in Spring 2018 at the **Illinois Geometry Lab** at the University of Illinois at Urbana-Champaign.

- Faculty mentors: A. J. Hildebrand and Ken Stolarsky
- Graduate student: Junxian Li
- Undergraduate students: Weiru Chen, Matthew Cho, Jared Krandel, Xiaomin Li and Yun Xie

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- 3 Applications
 - Scheduling Problems
- Future Work

Definition: Beatty Sequence

Given $\alpha > 0$, define the **Beatty sequence** B_{α} as

$$B_{\alpha}:=\left\{\lfloor\frac{n}{\alpha}\rfloor,n=1,2,\ldots\right\},$$

where |x| denotes the floor function.

Future Work

4/24

Beatty Sequences: Definition

Definition: Beatty Sequence

Given $\alpha > 0$, define the **Beatty sequence** B_{α} as

$$B_{\alpha}:=\left\{\lfloor\frac{n}{\alpha}\rfloor,n=1,2,\ldots\right\},$$

where |x| denotes the floor function.

Remarks

- When $\alpha \leq 1$, then the elements of B_{α} are distinct and have density α in \mathbb{N} .
- When $\alpha > 1$, B_{α} has repeated elements.

4/24

															16
$\alpha = 1/3 \parallel 3$	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$																
$\alpha = \sqrt{2}$	0	1	2	2	3	4	4	5	6	7	7	8	9	9	10	11

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = \sqrt{2}$		1	l .	l .	l	l	l	l	l .	l			l .		l	l .
$\alpha = \pi$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4	5

Beatty Sequences: Examples

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5											
$\alpha = \sqrt{2}$	1	ı		l .		l	l	l	l .	7			l	9	10	11
$\alpha = \pi$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4	5

Examples of Beatty Sequences B_{α} with $\alpha = 1/3, 1, \sqrt{2}, \pi$.

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
										16						
B_{1/ϕ^2}	2	5	7	10	13	15	18	20	23	26	28	31	34	36	39	41

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

Rearranging the last two sequences gives:

$B_{1/\phi}$	1		3	4		6		8	9		11	12		14		16
B_{1/ϕ^2}		2			5		7			10			13		15	

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

Rearranging the last two sequences gives:

Observations:

• The Beatty sequences $B_{1/\phi}$ and B_{1/ϕ^2} partition \mathbb{N} .

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

Rearranging the last two sequences gives:

$B_{1/\phi}$	1		3	4		6		8	9		11	12		14		16
B_{1/ϕ^2}		2			5		7			10			13		15	

Observations:

- The Beatty sequences $B_{1/\phi}$ and B_{1/ϕ^2} partition \mathbb{N} .
- $1/\phi + 1/\phi^2 = 1$ (i.e. the densities of the last two sequences **sum up to 1**).

Beatty's Theorem: Statement

The following theorem shows that the previous observation holds whenever the densities α and β are irrational and sum up to 1.

Theorem (Beatty's Theorem)

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. Then B_{α} and B_{β} form a partition of the positive integers.

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$$
 $\iff j \leq \frac{n}{\alpha} < j + 1 \text{ and } j \leq \frac{m}{\beta} < j + 1$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$$

$$\iff j \leq \frac{n}{\alpha} < j + 1 \text{ and } j \leq \frac{m}{\beta} < j + 1$$

$$\iff j < \frac{n}{\alpha} < j + 1 \text{ and } j < \frac{m}{\beta} < j + 1 \text{ (since } \alpha, \beta \text{ are irrational)}$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$$

$$\iff j \leq \frac{n}{\alpha} < j + 1 \text{ and } j \leq \frac{m}{\beta} < j + 1$$

$$\iff j < \frac{n}{\alpha} < j + 1 \text{ and } j < \frac{m}{\beta} < j + 1 \text{ (since } \alpha, \beta \text{ are irrational)}$$

$$\iff j\alpha < n < (j + 1)\alpha \text{ and } j\beta < m < (j + 1)\beta$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{m}{\beta} \rfloor$$

$$\iff j \le \frac{n}{\alpha} < j + 1 \text{ and } j \le \frac{m}{\beta} < j + 1$$

$$\iff j < \frac{n}{\alpha} < j + 1 \text{ and } j < \frac{m}{\beta} < j + 1 \text{ (since } \alpha, \beta \text{ are irrational)}$$

$$\iff j\alpha < n < (j + 1)\alpha \text{ and } j\beta < m < (j + 1)\beta$$

$$\iff j < n + m < j + 1 \text{ (since } \alpha + \beta = 1)$$

This is a contradiction since n, m, j are integers.

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\frac{k_1}{\alpha} < j \text{ and } j+1 \le \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \le \frac{k_2+1}{\beta}$$

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\begin{split} \frac{k_1}{\alpha} < j \text{ and } j+1 &\leq \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \leq \frac{k_2+1}{\beta} \\ \iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta} \end{split}$$

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\begin{split} \frac{k_1}{\alpha} < j \text{ and } j+1 &\leq \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \leq \frac{k_2+1}{\beta} \\ \iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta} \\ \iff k_1 < j\alpha \text{ and } (j+1)\alpha < k_1+1, k_2 < j\beta \text{ and } (j+1)\beta < k_2+1 \end{split}$$

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\frac{k_1}{\alpha} < j \text{ and } j+1 \le \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \le \frac{k_2+1}{\beta}$$

$$\iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta}$$

$$\iff k_1 < j\alpha \text{ and } (j+1)\alpha < k_1+1, k_2 < j\beta \text{ and } (j+1)\beta < k_2+1$$

$$\iff k_1 + k_2 < j < k_1 + k_2 + 1 \text{ (since } \alpha + \beta = 1)$$

This is a contradiction since j, k_1, k_2 are integers. \square

9/24

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- 3 Applications
 - Scheduling Problems
- 4 Future Work

Uspensky's Theorem

Beatty Partitions into More Than Two Parts?

Question

Does Beatty's Theorem generalize to partitions into 3 parts?

That is, given three positive irrational numbers α , β and γ which sum up to 1, do B_{α} , B_{β} and B_{γ} partition the positive integers?

Question

Does Beatty's Theorem generalize to partitions into 3 parts?

That is, given three positive irrational numbers α , β and γ which sum up to 1, do B_{α} , B_{β} and B_{γ} partition the positive integers?

Answer: No!

Theorem (Uspensky's Theorem)

Beatty's Theorem does not hold for three (or more) sequences. That is, if α , β and γ are arbitrary positive numbers, then B_{α} , B_{β} and B_{γ} never partition the positive integers.

Almost Beatty Sequences

Almost Beatty Sequences

Question

How close can three Beatty sequences come to a 3-part partition?

Beatty's Theorem

Almost Beatty Sequences

Question

How close can three Beatty sequences come to a 3-part partition?

Definition: Almost Beatty Sequence

Consider a Beatty sequence with density $\alpha \in (0, 1)$:

$$B_{\alpha}=(a(n))_{n\in\mathbb{N}}$$
, where $a(n)=\lfloor \frac{n}{\alpha} \rfloor$.

We call a sequence

$$\widetilde{B_{\alpha}} = (\widetilde{a}(n))_{n \in \mathbb{N}}$$

an almost Beatty sequence with density α if $\|\tilde{a} - a\| < \infty$, where $\|\widetilde{a} - a\| = \sup_{n} |\widetilde{a}(n) - a(n)|$.

Almost Beatty Partitions: Construction 1

Theorem (Partition into 2 Exact and 1 Almost Beatty Sequence)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$. Let $B_{\alpha} = (a(n))_{n \in \mathbb{N}}$, $B_{\beta} = (b(n))_{n \in \mathbb{N}}$ and $B_{\gamma} = (c(n))_{n \in \mathbb{N}}$ be the corresponding Beaty sequences. Define

$$\widetilde{B_{\gamma}}=\mathbb{N}\backslash(B_{\alpha}\cup B_{\beta})=(\widetilde{c}(n))_{n\in\mathbb{N}}.$$

Then:

- (i) B_{α} , B_{β} , $\widetilde{B_{\gamma}}$ form a partition of \mathbb{N} if and only if $r\alpha + s\beta = 1$ for some $r, s \in \mathbb{N}$.
- (ii) If this condition is satisfied, then $\widetilde{B_{\gamma}}$ is an almost Beatty sequence with perturbation errors satisfying $|c(n) \widetilde{c}(n)| \le \max(\lfloor \frac{2-\alpha}{1-\alpha} \rfloor, \lfloor \frac{2-\beta}{1-\beta} \rfloor)$.

Remarks

- Part (i) of the theorem (i.e. the partition property) follows from the following Theorem of Skolem (1957):
 - Let α,β be irrational numbers in (0,1). Then the Beatty sequences B_{α} and B_{β} are disjoint if and only if there exist positive integers r and s such that $r\alpha + s\beta = 1$.
- In part (ii) (the **almost Beatty sequence property**), the bound on the perturbation errors $|c(n) \tilde{c}(n)|$ is the best possible. If $\max(\alpha, \beta) < \frac{1}{2}$, then the bound simplifies to $|c(n) \tilde{c}(n)| \le 2$.

Almost Beatty Partitions: Construction 1

Beatty's Theorem

Construction 1: Example

Example: $\alpha = 1/\phi^3$, $\beta = 1/\phi^4$, $\gamma = 1/\phi$

We have $1/\phi^3 + 1/\phi^4 + 1/\phi = 1$ and $3/\phi^3 + 2/\phi^4 = 1$.

Therefore, the condition $r\alpha + s\beta = 1$ holds for r = 3 and s = 2.

B_{α}	a(n)	4	8	12	16	21	25	29	33	38	42	46	50
B_{β}	b(n)	6	13	20	27	34	41	47	54	61	68	75	82
B_{γ}	c(n)	1	3	4	6	8	9	11	12	14	16	17	19
$\widetilde{B_{\gamma}}$	$\widetilde{c}(n)$	1	2	3	5	7	9	10	11	14	15	17	18
Error	$c(n) - \widetilde{c}(n)$	0	1	1	1	1	0	1	1	0	1	0	1

Construction 1: Analysis of Perturbation Errors

Theorem (Perturbation Errors in Construction 1)

Assume the conditions of the above theorem are satisfied and suppose $\max(\alpha,\beta)<\frac{1}{2}$. Then the perturbation errors $c(n)-\widetilde{c}(n)$ are 0,1,2 and each value is attained infinitely often. Moreover, the densities of these values are given by:

$$\begin{aligned} d_0 &= \frac{r(s-1)(1-2\gamma) + (2r\gamma - 1 - \lfloor r\gamma \rfloor)\lfloor r\gamma \rfloor}{2r(r-s)\gamma} \\ d_1 &= \frac{r^2(4\gamma - 1) - r(s-2+4\gamma) - (4r\gamma - 2)\lfloor r\gamma \rfloor + 2\lfloor r\gamma \rfloor^2}{2r(r-s)\gamma} \\ d_2 &= \frac{(-r+2r\gamma - \lfloor r\gamma \rfloor)(1-r+\lfloor r\gamma \rfloor)}{2r(r-s)\gamma} \end{aligned}$$

Example: Density of Perturbation Errors

Example:
$$\alpha = 1/\phi^3$$
, $\beta = 1/\phi^4$, $\gamma = 1/\phi$

B_{α}	a(n)	4	8	12	16	21	25	29	33	38	42	46	50
B_{β}	b(n)	6	13	20	27	34	41	47	54	61	68	75	82
B_{γ}	c(n)	1	3	4	6	8	9	11	12	14	16	17	19
$\widetilde{B_{\gamma}}$	$\widetilde{c}(n)$	1	2	3	5	7	9	10	11	14	15	17	18
Error	$c(n) - \widetilde{c}(n)$	0	1	1	1	1	0	1	1	0	1	0	1

The densities of the perturbation errors 0,1,2 are given by:

$$d_0 = (1 + \sqrt{5})/12 = 0.26967...,$$

 $d_1 = (19 - 5\sqrt{5})/12 = 0.65163...,$
 $d_2 = (\sqrt{5} - 2)/3 = 0.078689...$

Almost Beatty Partitions: Construction 2

Theorem (Partition into 1 Exact and 2 Almost Beatty Sequences)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$ and $\max(\alpha, \beta) < \gamma$. Define $\widetilde{B_{\beta}} = (\widetilde{b}(n))_{n \in \mathbb{N}}$ as

$$\widetilde{b}(n) = \begin{cases} b(n), & \text{if } b(n) \notin B_{\alpha} \\ b(n) - 1, & \text{if } b(n) \in B_{\alpha} \end{cases}$$

Denote

$$\widetilde{\textit{\textbf{B}}_{\gamma}}=\mathbb{N}\backslash(\textit{\textbf{B}}_{lpha}\cup\widetilde{\textit{\textbf{B}}_{eta}}).$$

Then B_{α} , $\widetilde{B_{\beta}}$, and $\widetilde{B_{\gamma}}$ partition all positive integers and $b(n) - \widetilde{b}(n) \in \{0, 1\}$, $c(n) - \widetilde{c}(n) \in \{0, 1, 2\}$

Remark: Construction 2 applies to any irrational densities α, β, γ that sum up to 1 and satisfy $\max(\alpha, \beta) < \gamma$.

Almost Beatty Partitions: Construction 2

Is this Construction Best Possible?

Question

Is there a partition of the positive integers into one exact and two almost Beatty sequences with perturbation errors less than or equal to 1?

Is this Construction Best Possible?

Question

Is there a partition of the positive integers into one exact and two almost Beatty sequences with perturbation errors less than or equal to 1?

Applications

Answer: No (in general)!

Theorem (Nonexistence Result)

Let α , β , and γ be positive irrational numbers such that $\alpha+\beta+\gamma=1$. If $\alpha>\frac{1}{3}$ and $1,\alpha,\beta$ are linearly independent over \mathbb{Q} , then **there does not exist** an almost Beatty partition $B_{\alpha}\cup \widetilde{B_{\beta}}\cup \widetilde{B_{\gamma}}=\mathbb{N}$ such that $\widetilde{B_{\beta}}=(\widetilde{b}(n))_{n\in\mathbb{N}},\,\widetilde{B_{\gamma}}=(\widetilde{c}(n))_{n\in\mathbb{N}}$ satisfy

$$\sup_{n} |b(n) - \widetilde{b}(n)| \le 1, \quad \sup_{n} |c(n) - \widetilde{c}(n)| \le 1.$$

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- Applications
 - Scheduling Problems
- 4 Future Work

Applications

- Chairman Assignment Problem
- Frequency Hopping
- Carpool Problem
- Weighted Fair Queueing
- Computer Networks

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- 3 Applications
 - Scheduling Problems
- Future Work

Future Work

- Investigate almost Beatty partitions into more than 3 sequences.
- Investigate almost Beatty partitions using non-homogeneous Beatty sequences. Can such sequences give an optimal chairman assignment?
- Look for applications of Beatty partitions to other optimal scheduling problems (e.g. frequency hopping).

References

- Beatty, S. (1926). Problem 3173. American Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153
- Hildebrand, A. J., Li, J., Li, X., Xie, Y. (2018). Almost Beatty Partitions. arXiv preprint arXiv:1809.08690.
- Lord Rayleigh (1894). The Theory of Sound. 1 (Second ed.). Macmillan. p. 123. 10.1016/0012-365X(80)90269-1.
- Skolem, T. (1957). On certain distributions of integers in pairs with given differences, *Math. Scand.* 5 (1957), 57–68.
- Tijdeman, R. (1980). The chairman assignment problem.
 Discrete Mathematics. 32. 323-330.
- Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp. 516–521. Canadian Journal of Mathematics, 21, 6-27.

