# **EMOTION DETECTION**

Cătălina Beșliu Cristian Monor

# Etapele parcurse

- Achiziția unui set de date de antrenare și validare.
- Augmentarea setului de date în scopul obținerii unui set extins de date de intrare.
- Folosirea unui rețele neuronale convoluționale pentru prelucrarea imaginilor.
- Stabilirea straturilor rețelei de antrenare.
- Aplicarea modelului antrenat pe date de test.
- Analiza acurateții modelului antrenat.
- Găsirea parametrilor optimi pentru îmbunătățirea modelului.

### Setul de date de intrare

■ Este alcătuit din 35887 de imagini.

■ Imaginile se încadrează în 7 clase:

- Enervat
- Dezgustat
- Înfricoșat
- Fericit
- Neutru
- Trist
- Surprins

















## Structura retelei neuronale convoluționale

#### Convoluție

operații de convoluție dintre imaginea de intrare si un filtru. In urma straturile de convoluție se obtin una sau mai multe feature maps.

#### Agregare (pooling)

reduce dimensiunea feature map-urilor.

#### Funcții de activare

 Asigura comportamentul neliniar al retelei.



#### Fully connected (straturi dense)

- straturi clasice, complet conectate in care se realizează clasificarea propriu-zisă pe baza feature map-urilor din straturile anterioare
- leșirea este un vector de probabilități.

# Implementarea preliminară și rezultatele obținute

Pentru crearea modelului neuronal şi al straturilor am folosit librăria Python TensorFlow.

| Tipul modelului | Nr epoci | Acuratețe | Eroare |
|-----------------|----------|-----------|--------|
| Model 1         | 30       | 0.5838    | 1.0593 |
| Model 1         | 100      | 0.6269    | 1.0294 |
| Model 2         | 30       | 0.5911    | 1.0226 |



# Compararea rezultatelor finale

In cadrul modelului 1 s-au folosit 4 nivele de straturi convolutionale-agregare, 3 nivele complet conectate si 3 etape de "dropout". Spre deosebire de modelul 1, in cadrul modelului 2 au fost folosite doar 2 nivele complet conectate. Modelul 3 contine 4 straturi convolutionale-agregare cu o singură etapa de dropout. Modelul 4 constă din 3 straturi convolutionale-agregare cu o singura etapa de dropout.

| Nr model | Nr epoci | Acuratețe obținută | Eroare |
|----------|----------|--------------------|--------|
| 1        | 30       | 0.5838             | 1.0593 |
| 1        | 100      | 0.6269             | 1.0294 |
| 2        | 30       | 0.5911             | 1.0226 |
| 3        | 100      | 0.6722             | 0.8722 |
| 4        | 100      | 0.7230             | 0.7484 |

TABLE I
REZULTATELE OBȚINUTE ÎN URMA ANTRENĂRII

## Lucrari existente

In 2019, A. Agrawal si N. Mittal au incercat sa obtina o acuratete cat mai mare prin variatia parametrilor retelei neuronale convolutionale. Au schimbat dimensiunile imaginilor, numarul de filtre aplicate precum si optimizatorul folosit pe o retea neuronala convolutionala simpla ce consta din doua straturi de convolutie succesive, un strat de agregare si o functie softmax pentru clasificare. In urma incercarilor, acuratetea obtinuta a modelelor a fost de 65.23% si 65.77%. Particularitatea acestor modele este ca nu contin straturi complet conectate.

A. Mollahosseini, D. Chan si M. H. Mahoor au dezvoltat un model de retea neuronala ce l-au propus pentru a fi folosit pe mai multe seturi de date. Dupa extragerea trasaturilor faciale, imaginile erau reduse la dimensiunea de 48 x 48 pixeli si erau supuse tehnicii de augmentare a datelor. Arhitectura modelului consta din doua straturi de convolutie-agregare urmat de doua module "Inception" ce permite imbunatatirea locala a performantei prin reducerea problemelor de "over-fitting". Acuratetea modelului a fost de 61.1% pe setul de date FER2013.

## Concluzii

- Adaugarea straturilor convolutionale aditionale si complet conectate a imbunatatit acuratetea retelei neuronale cu aproximativ 2%.
- Această imbunătatire are costul timpului crescut de antrenare.