Disciplina: Programação Computacional

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 04_C: Sistemas de numeração:

- Representação de Números Binários com Sinal:
- Sistema Sinal-Magnitude (ou Representação Direta);
- Sistema de Representação Binário em Complemento de 2 (dois).

Representação de Números Binários com Sinal

Sistema sinal-magnitude

Sistema sinal-magnitude

- Algoritmo de soma (números com sinal):
 - Sinais diferentes
 - Encontra número com maior magnitude
 - Subtrai menor do maior
 - Atribui ao resultado o sinal do número de maior magnitude
 - Sinais iguais
 - Soma e atribui sinal dos operandos
 - Atenção deve ser dada ao estouro de magnitude
 - Algoritmo de soma (números com sinal)

Questões de projeto de circuitos lógicos

- Algoritmo do sistema sinal-magnitude: lógica complexa por conta das diversas condições (requer vários testes) e leva a aritmética complicada em termos de hardware.
- Também a multiplicação em computadores é feita por um artifício: para multiplicar um número A por n, basta somar A com A, n vezes. Por exemplo, 4 x 3 = 4 + 4 + 4.
- E a divisão também pode ser feita por subtrações sucessivas.

Complemento a Base

- Nos computadores, a subtração em binário é feita por um artifício: o "Método do Complemento a Base".
- Consiste em encontrar o complemento do número em relação a base e depois somar os números.
- Os computadores funcionam sempre na base 2, portanto o complemento a base será complemento a dois.

Representação de números em complemento

- Complemento é a diferença entre o maior algarismo possível na base e cada algarismo do número.
- Através da representação em complemento, a subtração entre dois números pode ser substituída pela sua soma em complemento.
- A representação de números positivos em complemento é idêntica à representação em sinal e magnitude.

Sistema de Representação Binário em Complemento de 2

Complemento de 2: Conceito

- A representação de Complemento de 2 é usada para representar números negativos (bit de sinal (ou MSB) = 1).
- O complemento de dois de um número de N bits é definido como o complemento em relação a 2^N.
- ▶ Para calcular o complemento de dois de um número, basta subtrair este número de 2^N, que em binário é representado por 1 (um) seguido de N zeros.
- Por exemplo: 0110 (6 em binário com N=4 bits)

Complemento de 2: sinal e magnitude

- Definimos números positivos como aqueles que possuem o MSB igual a 0.
- Números negativos são definidos da seguinte forma: inverte todos os bits do número positivo e soma 1 ao resultado (Conversão mais usada).

```
    Ex: 6_{10} na base 2 = 00110_2 => - 6 ??
    Complemento de 1 = 11001 (Inverte todos os bits)
    Complemento de 2 = 1001 (Soma 1 ao resultado)
    11010
```

- Existe outra maneira de calcular o complemento de dois:
 - Dado o número binário 00110.
 - Começando da direita para esquerda você vai repetindo o número (para a esquerda) até encontrar o número 1, depois que encontrá-lo repita-o e passe a inverter o restante. Então temos: 11010, ou seja, bits repetidos e bits invertidos.

Complemento de 2: Observações

- Por que usar complemento de 2?
 - Operações de subtração implementadas como soma binária com números negativos:
 - Sistemas computacionais mais simples, que apresentam somente circuito somador binário, sem a necessidade de um circuito subtrator.
 - Muita atenção para o tamanho da representação!!!
 - O complemento do complemento é sempre igual ao número original. P. ex.: O complemento de 0110 é igual a 1010. Por sua vez, o complemento de 1010 é 0110. Ou seja, volta ao valor original.

Complemento de 2 – Exemplo prático

- **Ex:**
 - 0.10_{10} na base $2 = 1010_2$
 - $_{0}$ 6₁₀ na base 2 = 0110₂
- ► Em Complemento de 2:
 - $-10 = 01010_2$
 - $-6 = 11010_{2}$
- ► Faça (+10) + (-6)
- Se resultado vai 1, resultado positivo;
- ► Se resultado não vai 1, resultado negativo: para converter para número decimal, precisa tirar complemento antes.

Complemento de 2 – Notação

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois
+16	_	_	-	-
+15	1111	-	-	-
+14	1110	-	_	-
+13	1101	_	_	-
+12	1100	_	-	-
+11	1011	_	-	-
+10	1010	-	-	-
+9	1001	-	-	-
+8	1000	-	-	-
+7	0111	0111	0111	0111
+6	0110	0110	0110	0110
+5	0101	0101	0101	0101
+4	0100	0100	0100	0100
+3	0011	0011	0011	0011
+2	0010	0010	0010	0010
+1	0001	0001	0001	0001
+0	-	0000	0000	-
0	0000	-	_	0000
-0	-	1000	1111	-
-1	-	1001	1110	1111
-2	-	1010	1101	1110
-3	-	1011	1100	1101
-4	-	1100	1011	1100

Complemento de 2

- 5 3 = 2
- \rightarrow 3 5 = -2

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois
+16	_	-	-	-
+15	1111	-	-	-
+14	1110	-	-	-
+13	1101	-	-	-
+12	1100	-	-	-
+11	1011	-	-	-
+10	1010	-	-	-
+9	1001	-	-	-
+8	1000	-	-	-
+7	0111	0111	0111	0111
+6	0110	0110	0110	0110
+5	0101	0101	0101	0101
+4	0100	0100	0100	0100
+3	0011	0011	0011	0011
+2	0010	0010	0010	0010
+1	0001	0001	0001	0001
+0	-	0000	0000	-
0	0000	-	-	0000
-0	-	1000	1111	-
-1	-	1001	1110	1111
-2	-	1010	1101	1110
-3	-	1011	1100	1101
-4	-	1100	1011	1100

Decimal	Binário s/ sinal	Binário (Compl. 2)
-8	-	1000
-7	-	1001
-6	-	1010
-5	-	1011
-4	-	1100
-3	-	1101
-2	-	1110
-1	-	1111
0	000	0000
1	001	0001
2	010	0010
3	011	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111

Conclusões

- Qualquer operação aritmética pode ser realizada em computadores apenas através de somas (diretas ou em complemento)!
- Em circuitos lógicos, será visto como essas propriedades serão úteis para os engenheiros que projetam os computadores.

Referências

https://www.inf.ufes.br/~zegonc/material/Introducao_a_C omputacao/Aritmetica_binaria_Complemento.pdf

Fim