[1] The joint probability mass function of two discrete random variables X and Y is

Find the value of c and P[X>Y].

 $\begin{array}{c} (x,y) = \begin{cases} (x,y) = \begin{cases} (x,y) = 1,2 \end{cases} \end{cases}$ $\begin{array}{c} (x,y) = 1,2 \end{cases}$

	x=-1	ズニー	$\chi = 2$	
8=1	C	C	(A-C)	
y = 2	20	2 C	80	
18C=1 -> C= 18				
P[x>y] = 40 = 4 = = = = = = = = = = = = = = =				

[2] The joint probability density function of two continuous random variables X and Y is

$$f_{x,y}(x,y) = \begin{cases} cxy, & 0 \le y \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$
Find the value of c and the P[2Y>X]

 $xy dydx = 1 - 3 c \int x \cdot \frac{y^2}{2} dx$ $= \frac{1}{2} \int x^3 dx = 1$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} =$

$$= \frac{C}{2} \int_{A}^{1} \left[x^{2} - \frac{x^{2}}{4} \right] dx = \frac{C}{8} \int_{A}^{1} 3x^{3} dx$$

$$= \frac{3C}{8} \left[\frac{x^{4}}{4} \right]_{D}^{1} = \frac{3C}{32} = \frac{3}{4}$$

$$= \frac{3C}{8} \left[\frac{x^{4}}{4} \right]_{D}^{1} = \frac{3C}{32} = \frac{3}{4}$$

P[27>X]