Foundations of Pataflow Analysis

15-745 Optimizing Compilers
Spring 2006

Peter Lee

Ingredients of a dataflow analysis

- * direction: forward or backward
- * flow/transfer function
- * combining ("meet") operator
- * dataflow values

A thought experiment

- * As a thought experiment, consider programs with just one flow value
 - * e.g., for reaching definitions, a program containing just one definition
 - * e.g., for liveness analysis, a program with just one variable
 - * e.g., for available expressions, a program with just one expression

Reaching definitions, again

combining operation (aka/dataflow "meet" operator)

 $in(n) = \bigcup_{p \in pred(n)}^{p} out(p)$

out(n) = $gen(n) \cup (in(n) - kill(n))$

flow function

 $out_n(i) = gen_n \vee (i - kill_n)$

Pataflow values

- * For such simple programs, in(n) and out(n) would be elements of the set {0,1}, assuming a bit-vector representation
 - * for RD: 1 = the def reaches
 - * for LV: 1 = the var is live
 - * for AE: 1 = the expr is available

Combining operation

- * When two or more control paths meet at a single node, the dataflow values from each path must be combined, according to the in() equation (for forward analyses) or out() equation (for backward analyses)
 - * RD: union / bit-wise V
 - * LV: union / bit-wise \lor
 - * AE: intersection / bit-wise ^

The "meet" operator

Recall: lattices

- * A lattice L is a (possibly infinite) set of values, along with \square and \square operations
 - * $\forall x,y \in L$, \exists unique w and z such that * $x \sqcup y = w$ and $x \sqcap y = z$
 - * $\forall x,y \in L$, $x \cup y = y \cup x$ and $x \cap y = y \cap x$
 - * $\forall x,y,z \in L$, $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ and $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$
 - * $\exists \bot, \top \in L$, such that $\forall x \in L$, * $x \sqcup \top = \top$ and $x \sqcap \bot = \bot$

Two-point lattice

- * So, in fact, the values $\{0,1\}$, along with the bit-wise operations \vee and \wedge form a two-point lattice
 - * \vee is the \cup ("join") operator
 - $* \land$ is the \neg ("meet") operator

1

Pataflow values are lattice elements

- * For our simple singledataflow-value programs, the dataflow values are elements of the two-point lattice
- * And this is easily generalized to bit-vectors of arbitrary (but fixed) length

Monotonic functions

- * The join and meet operations induce a partial order on the lattice elements
 - * $x \subseteq y$ if and only if $x \cap y = x$
 - * reflexive, anti-symmetric, transitive
- * For a lattice L, a function $f: L \rightarrow L$ is monotonic if for all $x,y \in L$,
 - * $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$
 - * i.e., larger args give larger results

RD is monotonic

 $out_n(i) = gen_n \lor (i - kill_n)$

- * Claim: The flow function for reaching definitions is monotonic
- * Proof (for single-value programs) by contradiction:
 - * Suppose out_n(1) = 0, for some n
 - * Then genn=0 and killn=1
 - * But kill_n=1 only if n is a definition, which would mean that gen_n=1

In dataflow analysis, we require that all flow functions be monotone

Fixed points

- * Given lattice L and function $f:L \rightarrow L$, a fixed point of f is an element $z \in L$ such that f(z)=z
- * Furthermore, assuming there are no infinite ascending chains in L, iteration of f starting from \bot is guaranteed to find a fixed point
 - * an effective chain wrt f is a sequence of lattice elements, [f(i), f(f(i)), f(f(f(i))), ...] for some i∈L

In dataflow analysis, we require that all flow functions be monotone and have only finite-length effective chains

Dataflow analysis framework

- * A control-flow graph with nodes {0,1,...,m},
- * for each node, a corresponding monotonic flow function over lattice L, \(f_0, f_1, ..., f_m \),
- * a combining (aka "meet") operator, \otimes , and
- * an initial value, io, giving the lattice value of the entry (or exit) block(s)

Iterative dataflow analysis

* Then forward iterative dataflow analysis is the least solution in L to these equations:

in(entry) =
$$i_0$$

in(n) = $\sum_{p \in pred(n)} out(p)$, for non-entry nodes
out(n) = $f_n(in(n))$

For RP, LV, and AE, the f_n are monotonic and have finite effective chains, so the iterative method will work

Similarly for backward iterative dataflow analysis

Questions

- * Is it sound (i.e., are the results conservative)?
- * How good are the results?
- * How fast does it run?

How good is it?

- * Consider a path of execution that starts from the entry node and ends at node n:
 - * entry \rightarrow b₁ \rightarrow b₂ \rightarrow ... \rightarrow n
- * The dataflow information for this path is given by composing the flow functions:
 - * fn(...(fb2(fb1(fentry(io))))...)

MOP

- * Then the "best" possible solution to a dataflow problem for node n is given by computing the dataflow information for all possible paths from entry to n, and then combining them with \otimes
 - in general there will be an infinite number of possible paths to n
- * This is called the meet-over-all-paths solution

IPA is conservative

- * Thm [Kildall73]: The MOP solution for block n is \(\subseteq \) the solution given to in(n) by iterative dataflow analysis
 - * a related theorem by [Cousot&Cousot76]
- * In other words, the iterative dataflow analysis solution is a conservative approximation to the "best" solution

Distributive lattices

- * BVn is a distributive lattice
 - * L is distributive if $\forall x,y,z \in L$,
 - * $(x \sqcup y) \sqcap z = (x \sqcap z) \sqcup (y \sqcap z)$, and
 - * $(x \sqcap y) \sqcup z = (x \sqcup z) \sqcap (y \sqcup z)$

BVn analyses are precise

- * Thm [Kildall73]: For iterative dataflow analysis over a distributive lattice, in(n) is the MOP solution for n
- * Thus, reaching definitions, liveness, and available expressions are all solved precisely by iterative dataflow analysis

Not all PAs are distributive

- * There are important dataflow analyses that use lattices that are not distributive
- * Consider, for example, constantpropagation analysis...

Constant-propagation analysis

- * For a single-variable program:
 - * direction: forward
- * dataflow value: element of the CP-lattice
- * meet operator: CP-lattice \(\text{ } \)
- * initial entry value: \(\perp \)

CP-lattice

- ⊥ means "uninitialized variable"
- T means "not a constant"

Constant-propagation analysis

- * For multi-variables we have the lattice CP*:
 - * elements: functions f: Var → CP-lattice
 - * \(\p\): \(\p\):\(\p\):\(\p\) = \(\p\), a\(\p\)
 - * ⊤cp*: ⊤cp*(v)= ⊤, all v
 - * $(f \sqcup_{CP^*} g)(v) = f(v) \sqcup g(v)$, all v

CP is not distributive

- * The CP-lattice and CP* are not distributive
 - * (1 42) 73 = 773 = 3 =
 - * (1 ¬ 3) ¬ (2 ¬ 3) = ⊥¬⊥ = ⊥
- * In practical terms, this means that the order in which the nodes are visited can affect the precision of the results

Not always finite chains

- * Sometimes we will want to uses lattices that have infinite ascending chains
- * In order to use such lattices in an iterative dataflow analysis, we will have to ensure that the flow functions still have only finite effective chains
- * Standard example: range analysis

Range analysis

- * With range analysis, we try to determine the possible range of integer values of a variable
 - * elts: \bot , \top , and [m,n] where m≤n
 - * $[m,n] \cup [m',n'] = [min(m,m'), max(n,n')]$
- * A forward analysis with □ as the meet operator
 - * How to deal with the infinite chains?

MOP is not always "best"

- * For RP, LV, and AE, the flow functions are simple in the sense of being constant-time (or actually O(N), for N-variable programs)
- * But the flow functions can, in principle, be arbitrarily complicated, even involving theorem proving
 - * e.g.: $v = x \mod y$, for prime x...

How fast?

- * Consider reaching definitions
 - * N nodes, so N possible definitions
 - * N² bits
 - * in worst case, each iteration changes one bit
 - * Thus, O(N³), assuming constant-time flow functions (per bit)
- * Ex: Construct a worst-case example

Why do basic blocks help?

- * In terms of worst-case complexity, basic blocks do not make a difference
- * However, we usually assure proper directionality within blocks, effectively assuring that the dataflow works in linear time

Reduction Methods

Iterative dataflow analysis is easy

- * Iterative dataflow analysis is relatively easy to implement
- * Hence, its popularity in optimizing compilers
- * But it can be slow to execute
- * With the rise in popularity of Just-In-Time compilers, dataflow analysis methods based on reducibility of flow graphs have re-gained interest

Next time...

- * Overview of reduction methods
- * Start on loop optimizations

Reduction methods

- * In reduction methods, we calculate, symbolically, a flow function for the entire procedure body
 - * usually this can be done in linear time
- * This is called a "reduction" because, in essence, the flow graph is reduced to a single node
- * Then, in practice, a fixed point can be found in a small number (often just one) iterations