Marcos López lópez Práctica 6

Ejercicio previo (1):

Se quiere hacer el diagrama de Bode aproximado de un sistema:

$$L(s) = \frac{K}{(1+T_1s)} \frac{(1-T_2s)}{(1+T_2s)}$$
, con K=20, T₁=10 seg., T₂=0,01 seg.

a)Indicar cuáles son las dos frecuencias $\omega_1 << \omega_2$ de cambio de tendencia del módulo. Hacer las gráficas de tramos rectos, para $0 < \omega < 10 \omega_1$, de módulo y fase del Bode.

b)Deducir el efecto en módulo y fase de las raíces de alta frecuencia (en $\omega = \omega_2$) y hacer los diagramas de Bode completos, en todo el rango de frecuencias.

$$\frac{1}{20} = \frac{20 \left(1 - 0^{\circ} O / s\right)}{\left(1 + 10 s\right) \left(1 + 0^{\circ} O / s\right)} = \frac{20 \cdot \left(1 - \frac{s}{100}\right)}{\left(1 + \frac{s}{100}\right) \left(1 + \frac{s}{100}\right)}$$

$$L(j\omega) = \frac{20 \cdot (1 - j\omega/100)}{(1 + j\omega/1(1 + j\omega/100))}$$

Pfrecuencias de combio de tendencia: $\omega_1 = 0.1$ $\omega_2 = 100$

20 log K = 20 log 20 = 26'02 — pend.
$$\phi$$
 $(1+j^{\omega})^{-1}$ — polo simple -20 dB_{dec} en 10^{-1} — pend $-45\%_{dec}$ $(10^{-2}, 10^{\circ})$
 $(1+j^{\omega})^{-1}$ — polo simple -20 dB_{dec} en 10^{-2} — pend $-45\%_{dec}$ $(10^{-1}, 10^{-3})$
 $(1-j^{\omega}/100)$ — pero simple $-0+20 \text{ dB}/dec$ en 10^{-2} — pend $-45\%_{dec}$ $(10^{-1}, 10^{-3})$

Spece no withing

Ejercicio previo (2):

Un sistema de levitación magnética contiene un lazo abierto L(s) con 1 polo inestable (Real(λ)>0), y el resto estables (Real(λ)<0). Sobre el lazo cerrado estable, T(s)=L(s)/(1+L(s)), se hacen ensayos frecuenciales que permiten obtener $T(j\omega)$ y $L(j\omega)$ para varias frecuencias. La figura muestra dichos valores de $L(j\omega)$, en el plano complejo.

a) Aplicar el criterio de Nyquist y deducir la estabilidad del lazo cerrado.

Stable

Stable

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
0.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < K < 1 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 < \infty \frac{1}{2} < 0 \\
1.1

O < 02 <

b)Si se incluye una ganancia K>0 (es decir, L(jω) se cambia por KL(jω)), volver a aplicar el criterio de Nyquist y deducir el rango de valores 0<K1<K<K2<∞ que mantienen estable el lazo cerrado.

np=1 (Nz=0 \$ Nz-1 => Giro antihorario => Nz = -1+1=0 -> Estable N=±1

b) -DCon K=1 es criticamente estable

-DCon -K > -O'2 se vuelve inestable

O 40'24K1120