LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

CURS 6

- **Gentzen** (logician german, 1909-1945) a fost primul care a demonstrat în 1943 că toate tautologiile sunt produse prin aplicarea anumitor reguli, ceea ce revine la a spune că pentru orice tautologie φ există o anumită tautologie ce conduce la φ.
- Teoria demonstrării a fost utilizată în 1955 de Beth şi Hintikka pentru a crea un algoritm de determinare a caracterului tautologic al unei propoziţii.

Fie σ o propoziţie.

• fσ reprezintă aserţiunea "σ este falsă", iar

• aσ reprezintă aserţiunea "σ este adevărată".

• fσ şi aσ se numesc formule cu semn.

• Tablourile sematice atomice ale propoziţiilor σ , σ_1 , σ_2 sunt cele prezentate în tabelul următor:

$ \begin{array}{c c} a(\sigma_1 \wedge \sigma_2) \\ & \\ a\sigma_1 \\ & \\ a\sigma_2 \end{array} $	$a(\sigma_1^{\vee}\sigma_2)$ /\ $a\sigma_1$ $a\sigma_2$	a(-σ) f(σ)	$a(\sigma_1 \rightarrow \sigma_2)$ /\ $f\sigma_1 a\sigma_2$	$a(\sigma_1 \leftrightarrow \sigma_2)$ $/ \setminus$ $a\sigma_1 f\sigma_1$ $ $ $a\sigma_2 f\sigma_2$
$f(\sigma_1^{\wedge}\sigma_2)$ /\ $f\sigma_1 f\sigma_2$	$f(\sigma_1^{\vee}\sigma_2)$ $f\sigma_1$ f f f	f(-σ) a(σ)	$f(\sigma_1 \rightarrow \sigma_2)$ $ $ $a\sigma_1$ $ $ $f\sigma_2$	$ f(\sigma_1 \leftrightarrow \sigma_2) \\ / $

Exemplul 1:

Fie K: $((A \land \neg A) \lor (B \lor (C \land D)))$ propoziţie.

Tabloul semantic cu originea *aK* este:

$$a((A \land \neg A) \lor (B \lor (C \land D)))$$

$$a(A \land \neg A) \qquad a(B \lor (C \land D))$$

$$a(A) \qquad a(B) \qquad a(C \land D)$$

$$a(\neg A) \qquad k_2 \qquad a(C)$$

$$f(A) \qquad a(D)$$

$$\otimes k_1 \qquad k_3$$

Definiții:

- Nodurile unui tablou semantic sunt toate formulele cu semn care apar în tablou.
- Un nod al unui tablou semantic se numeşte folosit dacă apare ca origine a unui tablou semantic atomic; în caz contrar, nodul se numeşte nefolosit.
- O ramură a unui tablou semantic se numeşte **contradictorie** dacă pentru o anumită propoziție σ , σ și f σ sunt noduri ale ramurii respective.
- Un tablou semantic se numeşte complet dacă nici una din ramurile necontradictorii din tablou nu are noduri nefolosite; în caz contrar se numeşte tablou incomplet.
- Un tablou semantic este *contradictoriu* dacă toate ramurile sale sunt contradictorii.

Construcția inductivă a tablourilor semantice:

Vom construi un tablou semantic pentru o propoziţie *K* după cum urmează:

Vom începe cu formula cu semn aK (sau fK) ca origine a tabloului şi continuăm inductiv .

Pasul n: Avem un tablou semantic atomic T_n .

Pasul n+1: Tabloul semantic atomic T_n va fi extins la tabloul T_{n+1} prin utilizarea anumitor noduri ale T_n care nu vor mai fi utilizate în continuare. Dintre nodurile neutilizate ale lui T_n aflate cel mai aproape de origine, selectăm pe cel mai din stânga. Fie X acest nod.

Extindem acum fiecare ramură necontradictorie ce trece prin X prin concatenarea unui tablou atomic semantic T_{n+1} (în practică nu se va mai scrie nodul X din nou deoarece el este deja un nod al ramurii necontradictorii).

Construcția se termină atunci când fiecare ramură necontradictorie nu mai are noduri nefolosite.

• Exerciţiu(Legea lui Peirce): Construiţi tablourile semantice ale adevarului şi falsităţii pentru pentru propoziţia $((A \rightarrow B) \rightarrow A) \rightarrow A$ şi folosindu-vă de acestea stabiliţi validitatea propoziţiei.

Dacă un tablou semantic complet cu originea fK este contradictoriu, acesta înseamnă că am încercat toate modurile posibile în care propoziţia K poate deveni falsă şi am eşuat; în consecinţă, K este o tautologie.

- *O demonstrație Beth* a unei propoziții *K* este un tablou semantic contradictoriu complet cu originea f*K*.
- Un tablou semantic contradictoriu complet cu originea aK se numeşte o respingere Beth a lui K.
- Se spune că propoziţia K este demonstrabilă
 Beth dacă K admite o demonstraţie Beth.
- K se numeşte respinsă Beth dacă există o respingere Beth pentru K.
- Faptul că propoziția K este demonstrabilă Beth se notează cu $\vdash_B K$.

 Axiomele. Privim ca axiomă oricare din propoziţiile de forma următoare:

1)
$$\phi \rightarrow (\tau \rightarrow \phi)$$

2)
$$(\phi \rightarrow (\tau \rightarrow \sigma)) \rightarrow ((\phi \rightarrow \tau) \rightarrow (\phi \rightarrow \sigma))$$

3)
$$(\neg \phi \rightarrow \neg \tau) \rightarrow (\tau \rightarrow \phi)$$

Regula Modus Ponens:

Regula *Modus Ponens*, spune că propoziția τ poate fi derivată din propozițiile ϕ și $\phi \to \tau$. Regula *Modus Ponens* (*mode* conform lui Diogenes Laertius) se notează cu:

$$\frac{\varphi}{\varphi \to \tau} \tag{1}$$

sau chiar cu:

$$\varphi, \varphi \to \tau \mid \tau$$
 (2)

Exemplul 2: Să se demonstreze că $-A \rightarrow A$.

Demostratie:

$$\vdash A \to ((B \to A) \to A) \tag{1}$$

pe baza primei axiome.

Pe baza celei de-a doua axiome avem:

$$\vdash A \to ((B \to A) \to A) \to [((A \to (B \to A)) \to (A \to A)] (2)$$

Din (1), (2) și Modus Ponens rezultă:

$$\vdash (A \to (B \to A)) \to (A \to A) \tag{3}$$

Dar $\vdash A \rightarrow (B \rightarrow A)$, conform primei axiome şi, cu regula *Modus Ponens*, (3) conduce la $\vdash A \rightarrow A$.

Astfel, propoziţia $A \rightarrow A$ este derivată în sistemul axiomatic descris.

Substituţia echivalenţelor:

Dacă o propoziție $\sigma \leftrightarrow \sigma_1$ este derivată în **LP** şi este o subformulă a propoziției φ , atunci propoziția $\varphi \leftrightarrow \varphi_1$ poate fi de asemenea derivată în **LP**, unde φ_1 este propoziția obtinută din φ prin înlocuirea a zero, una sau mai multe apariții ale propoziției σ cu echivalentul ei σ_1 .

Formal:

$$\vdash \sigma \leftrightarrow \sigma_1 \qquad \Rightarrow \qquad \vdash \phi \leftrightarrow \phi_1$$

Fie S o mulţime de propoziţii.

- (1) O **demonstrație din** S este o secvență finită de propoziții σ_1 , σ_2 ,...., σ_n astfel încât pentru fiecare $1 \le i \le n$:
 - (i) σ_i aparţine lui S, sau
 - (ii) σ_i este o axiomă, sau
- (iii) σ_i urmează din σ_j , σ_k , $1 \le j,k \le i$, prin aplicarea regulii *Modus Ponens*.
- (2) O propozițe σ este **S-demonstrabilă** dintr-o mulțime de propoziții S dacă există o demonstrație $\sigma_1, \sigma_2,, \sigma_n$ din S astfel încât σ_n coincide cu σ . Formal se scrie $S \vdash \sigma$.
- (3) Propoziţia σ este **demonstrabilă** dacă $\vdash \sigma$, adică dacă σ este derivată în sistemul axiomatic prin utilizarea regulii *Modus Ponens*.

Evident, conceptul de propoziţie S-demonstrabilă coincide cu conceptul de propoziţie demonstrabilă pentru $S = \phi$.

Exemplul 3: Vom prezenta demonstraţia formulei \neg B \rightarrow (C \rightarrow A) din $S = \{A\}$:

(2)
$$A \rightarrow (C \rightarrow A)$$
 axioma 1

(3)
$$(C \rightarrow A)$$
 Modus Ponens din (1) şi (2)

(4)
$$(C \rightarrow A) \rightarrow (\neg B \rightarrow (C \rightarrow A))$$
 axioma 1

(5)
$$\neg B \rightarrow (C \rightarrow A)$$
 Modus Ponens din (3)
şi (4)

• **Teorema – (***Teorema deducției*):

Fie *S* o mulţime de propoziţii şi fie *K, L* două propoziţii **LP**. Atunci:

$$S \cup \{K\} \mid L \Leftrightarrow S \mid K \rightarrow L$$

MULŢUMESC!

Ex1: Să se construiască tablourile semantice ale adevărului și ale falsității pentru următoarele propoziții:

a)
$$[[(\neg A \land B) \rightarrow C] \lor D]$$

b)
$$A \wedge B \rightarrow C$$

c)
$$(P \rightarrow Q) \land (P \land \neg Q)$$

Ex2: Folosind metoda tablourilor semantice, demonstrați că următoarele propoziții sunt tautologii:

- a) $(A \land \neg A) \rightarrow A$
- b) b) $(A \rightarrow B) \lor (A \rightarrow \neg B)$
- c) $A \rightarrow \neg \neg A$
- d) $[(A \land B) \rightarrow C] \leftrightarrow [A \rightarrow (B \rightarrow C)]$
- e) $(A \land (A \rightarrow B)) \leftrightarrow (A \land B)$
- f) $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- g) $((B \rightarrow A) \land (C \rightarrow A)) \rightarrow ((B \lor C) \rightarrow A)$
- h) $((A \land B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$
- i) $(A \rightarrow (B \rightarrow C)) \leftrightarrow (B \rightarrow (C \rightarrow A))$

Ex3: Demonstrați că următorele propoziții sunt contradicții:

- a) $A \wedge \neg A$
- b) $(\neg A \lor (B \land \neg B)) \leftrightarrow A$
- c) $(A \rightarrow B) \land (B \rightarrow C) \land (A \land \neg C)$
- d) $\neg (A \land B) \land (A \rightarrow B) \land A$

Ex4: Aflați valorizările de adevăr care falsifică propozițiile următoare:

a)
$$(A \rightarrow B) \leftrightarrow (A \lor B)$$

b)
$$(A \lor \neg B) \leftrightarrow (A \land B)$$

Ex5: Demonstrați $\{A \lor B, A \to C, B \to D\} \vdash C \lor D$ (folosind tablouri semantice).

Ex6: Să presupunem că următoarele propoziții sunt adevărate.

- George o iubeşte pe Maria sau George o iubeşte pe Ecaterina.
- Dacă George o iubește pe Maria atunci el o iubește pe Ecaterina.

Pe cine iubeşte George de fapt?