Chabauty-Kim

Xiang Li

1 Apply to $\mathbb{G}_m(\mathbb{Z})$

Fix a prime $p \in \mathbb{Z}$. For any prime $l \in \mathbb{Z}$, consider the diagram

$$\mathbb{G}_{m}(\mathbb{Z}) \longrightarrow \mathbb{G}_{m}(\mathbb{Z}_{l})$$

$$\downarrow_{j} \qquad \downarrow_{j_{l}} \qquad (1)$$

$$H^{1}(G_{\mathbb{Q}}, \mathbb{Q}_{p}(1)) \xrightarrow{\operatorname{loc}_{l}} H^{1}(G_{l}, \mathbb{Q}_{p}(1))$$

Proposition 1.1. Let K be a field of characteristic 0. Then the the Kummer map $\mathbb{G}_m(K) = K^{\times} \to H^1(G_K, \mathbb{Q}_p(1))$ can be identified with the natural map

$$K^{\times} \to K^{\times} \otimes \mathbb{Q}_p := \left(\varprojlim_n K^{\times}/(K^{\times})^{p^n}\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

Proof. We have short exact sequence

$$0 \longrightarrow \mu_{p^n} \longrightarrow \mathbb{G}_m \xrightarrow{\times p^n} \mathbb{G}_m \longrightarrow 0$$

which induces long exact sequence of Galois cohomology on \overline{K} points

$$\mu_{p^n} \longrightarrow \overline{K}^\times \xrightarrow{\times p^n} \overline{K}^\times \longrightarrow H^1(G_K, \mu_{p^n}(\overline{K})) \longrightarrow H^1(G_K, \overline{K}^\times)$$

By Hilbert 90, $H^1(G_K, \overline{K}^{\times}) = 0$. So the above long exact sequence gives us the following short exact sequence

$$0 \longrightarrow K^{\times}/(K^{\times})^{p^n} \longrightarrow H^1(G_K, \mu_{p^n}(\overline{K})) \longrightarrow 0$$

So

$$K^{\times}/(K^{\times})^{p^n} \simeq H^1(G_K, \mu_{p^n}(\overline{K})).$$

By taking the limit $n \to \infty$, we get

$$\varprojlim_{n} K^{\times}/(K^{\times})^{p^{n}} \simeq H^{1}(G_{K}, \mathbb{Z}_{p}(1)).$$

Thus,

$$K^{\times} \otimes \mathbb{Q}_p := \left(\varprojlim_n K^{\times} / (K^{\times})^{p^n} \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq H^1(G_K, \mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq H^1(G_K, \mathbb{Q}_p(1))$$

where the Kummer map $\mathbb{G}_m(K) = K^{\times} \to H^1(G_K, \mathbb{Q}_p(1))$ is given by the natural map. \square

Corollary 1.2.

$$\mathbb{Q}^{\times} \otimes \mathbb{Q}_p := \left(\varprojlim_{n} \mathbb{Q}^{\times} / (\mathbb{Q}^{\times})^{p^n} \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1))$$
 (2)

$$\mathbb{Q}_l^{\times} \otimes \mathbb{Q}_p := \left(\varprojlim_n \mathbb{Q}_l^{\times} / (\mathbb{Q}_l^{\times})^{p^n} \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq H^1(G_l, \mathbb{Q}_p(1))$$
 (3)

Lemma 1.3. The l-valuation map $v_l: \mathbb{Q}_l^{\times} \to \mathbb{Z}$ gives us the following split short exact sequence

$$0 \longrightarrow \mathbb{Z}_l^{\times} \xrightarrow{i} \mathbb{Q}_l^{\times} \xrightarrow{v_l} \mathbb{Z} \longrightarrow 0 \tag{4}$$

where $i: \mathbb{Z}_l^{\times} \to \mathbb{Q}_l^{\times}$ is the inclusion.

Proof. Note that $v_l : \mathbb{Q}_l^{\times} \to \mathbb{Z}$ has a section $s : \mathbb{Z} \to \mathbb{Q}_l^{\times}, m \mapsto l^m$ such that $v_l \circ s = \mathrm{id}_{\mathbb{Z}}$. So the above short exact sequence splits.

Lemma 1.4. We have an isomorphism

$$\varprojlim_{n} \mathbb{Q}_{l}^{\times} / (\mathbb{Q}_{l}^{\times})^{p^{n}} \xrightarrow{\simeq} \left(\varprojlim_{n} \mathbb{Z}_{l}^{\times} / (\mathbb{Z}_{l}^{\times})^{p^{n}} \right) \oplus \mathbb{Z}_{p}$$
(5)

where

- the map to the first component is induced by a section $s: \mathbb{Q}_l^{\times} \to \mathbb{Z}_l^{\times}$ of the inclusion $i: \mathbb{Z}_l^{\times} \to \mathbb{Q}_l^{\times}$ with $s \circ i = \mathrm{id}_{\mathbb{Z}_l^{\times}}$;
- the map to the second component is induced by the l-valuation map $v_l: \mathbb{Q}_l^{\times} \to \mathbb{Z}$.

Proof. Consider the commutative diagram below with exact rows:

$$0 \longrightarrow \mathbb{Z}_{l}^{\times} \xrightarrow{i} \mathbb{Q}_{l}^{\times} \xrightarrow{v_{l}} \mathbb{Z} \longrightarrow 0$$

$$\downarrow^{\times p^{n}} \quad \downarrow^{\times p^{n}} \quad \downarrow^{\times p^{n}}$$

$$0 \longrightarrow \mathbb{Z}_{l}^{\times} \xrightarrow{i} \mathbb{Q}_{l}^{\times} \xrightarrow{v_{l}} \mathbb{Z} \longrightarrow 0$$

By snake lemma, we have the following short exact sequence

$$0 \longrightarrow \mathbb{Z}_l^{\times}/(\mathbb{Z}_l^{\times})^{p^n} \stackrel{i}{\longrightarrow} \mathbb{Q}_l^{\times}/(\mathbb{Q}_l^{\times})^{p^n} \stackrel{v_l}{\longrightarrow} \mathbb{Z}/p^n\mathbb{Z} \longrightarrow 0$$

By taking the limit $n \to \infty$, we have

$$0 \longrightarrow \underline{\lim}_{n} \mathbb{Z}_{l}^{\times}/(\mathbb{Z}_{l}^{\times})^{p^{n}} \stackrel{i}{\longrightarrow} \underline{\lim}_{n} \mathbb{Q}_{l}^{\times}/(\mathbb{Q}_{l}^{\times})^{p^{n}} \stackrel{v_{l}}{\longrightarrow} \mathbb{Z}_{p} \longrightarrow 0$$

The above exact short sequence splits (which basically follows from the splitness of the exact sequence (4)). So we have our desired isomorphism.

Lemma 1.5. Let $l \in \mathbb{Z}$ be an odd prime. The reduction modulo l map $mod_l : \mathbb{Z}_l^{\times} \to \mathbb{F}_l^{\times}$ gives us the following split short exact sequence

$$0 \longrightarrow \mathbb{Z}_l \stackrel{\iota}{\longrightarrow} \mathbb{Z}_l^{\times} \stackrel{\operatorname{mod}_l}{\longrightarrow} \mathbb{F}_l^{\times} \longrightarrow 0$$

where $\iota : \mathbb{Z}_l \to \mathbb{Z}_l^{\times}$ is given by the following compositions:

$$\mathbb{Z}_{l} \xrightarrow{\sim}^{\times l} l\mathbb{Z}_{l} \xrightarrow{\exp} 1 + l\mathbb{Z}_{l} \xrightarrow{\operatorname{inclusion}} \mathbb{Z}_{l}^{\times}$$

Proof. For any $\alpha \in \mathbb{F}_l^{\times}$, pick the lift $a \in \mathbb{Z}_l^{\times}$ of $\alpha \in \mathbb{F}_l^{\times}$ under mod_l with $a \in \mathbb{Z}, 1 \leq a \leq l-1$. Consider $f(x) = x^{l-1} - 1 \in \mathbb{Z}_l[x]$. Then we have $f(a) \equiv 0 \pmod{l}$ and $f'(a) = (l-1)a^{l-2} \not\equiv 0 \pmod{l}$. By Hensel's lemma, there exists a unique $r \in \mathbb{Z}_l^{\times}$ such that f(r) = 0 and $a \equiv r \pmod{l}$, i.e., $\operatorname{mod}_l(r) = \operatorname{mod}_l(a) = \alpha$. Thus, we define a section $s : \mathbb{F}_l^{\times} \to \mathbb{Z}_l^{\times}$ which sends α to r in the above process. We have $\operatorname{mod}_l \circ s = \operatorname{id}_{\mathbb{F}_l^{\times}}$. So the above short exact sequence splits. \square

Remark 1.6. For l=2, the split short exact sequence becomes

$$0 \longrightarrow \mathbb{Z}_2 \stackrel{\iota}{\longrightarrow} \mathbb{Z}_2^{\times} \stackrel{\text{mod}_4}{\longrightarrow} (\mathbb{Z}/4\mathbb{Z})^{\times} \longrightarrow 0$$

where $\iota: \mathbb{Z}_2 \to \mathbb{Z}_2^{\times}$ is given by the following compositions:

$$\mathbb{Z}_2 \xrightarrow{\simeq} 4\mathbb{Z}_2 \xrightarrow{\exp} 1 + 4\mathbb{Z}_2 \xrightarrow{\mathrm{inclusion}} \mathbb{Z}_2^{\times}$$

Lemma 1.7. We have an isomorphism

$$\underbrace{\lim_{n} \mathbb{Z}_{l}^{\times}/(\mathbb{Z}_{l}^{\times})^{p^{n}}}_{p} \xrightarrow{\simeq} \underbrace{\lim_{n} \mathbb{Z}_{l}/p^{n}\mathbb{Z}_{l}}.$$
(6)

which is induced by a section $s: \mathbb{Z}_l^{\times} \to \mathbb{Z}_l$ of $\iota: \mathbb{Z}_l \to \mathbb{Z}_l^{\times}$ with $s \circ \iota = \mathrm{id}_{\mathbb{Z}_l}$.

Remark 1.8. Such section $s: \mathbb{Z}_l^{\times} \to \mathbb{Z}_l$ is derived by picking a section $\mathbb{Z}_l^{\times} \to 1 + l\mathbb{Z}_l$ of the inclusion $1 + l\mathbb{Z}_l \to \mathbb{Z}_l^{\times}$ and forming the compositions:

$$\mathbb{Z}_l^{\times} \longrightarrow 1 + l\mathbb{Z}_l \xrightarrow{\log} l\mathbb{Z}_l \xrightarrow{\dot{z}} \mathbb{Z}_l$$

So roughly speaking, such section $s: \mathbb{Z}_l^{\times} \to \mathbb{Z}_l$ is the "logarithm map".

Proof of lemma. Let's first assume that $l \in \mathbb{Z}$ is an odd prime. Consider the commutative diagram below with exact rows:

$$0 \longrightarrow \mathbb{Z}_{l} \xrightarrow{\iota} \mathbb{Z}_{l}^{\times} \xrightarrow{\operatorname{mod}_{l}} \mathbb{F}_{l}^{\times} \longrightarrow 0$$

$$\downarrow^{\times p^{n}} \qquad \downarrow^{\times p^{n}} \qquad \downarrow^{\times p^{n}}$$

$$0 \longrightarrow \mathbb{Z}_{l} \xrightarrow{\iota} \mathbb{Z}_{l}^{\times} \xrightarrow{\operatorname{mod}_{l}} \mathbb{F}_{l}^{\times} \longrightarrow 0$$

By snake lemma, we have the following short exact sequence

$$0 \longrightarrow \mathbb{Z}_l/p^n\mathbb{Z}_l \stackrel{\iota}{\longrightarrow} \mathbb{Z}_l^{\times}/(\mathbb{Z}_l^{\times})^{p^n} \stackrel{\operatorname{mod}_l}{\longrightarrow} \mathbb{F}_l^{\times}/(\mathbb{F}_l^{\times})^{p^n} \longrightarrow 0$$

By taking the limit $n \to \infty$,

$$0 \longrightarrow \varprojlim_n \mathbb{Z}_l/p^n\mathbb{Z}_l \xrightarrow{\iota} \varprojlim_n \mathbb{Z}_l^{\times}/(\mathbb{Z}_l^{\times})^{p^n} \xrightarrow{\operatorname{mod}_l} \varprojlim_n \mathbb{F}_l^{\times}/(\mathbb{F}_l^{\times})^{p^n} \longrightarrow 0$$

But note that $\lim_{n \to \infty} \mathbb{F}_l^{\times} / (\mathbb{F}_l^{\times})^{p^n} = 0$. So we have our desired isomorphism.

For l=2, the proof is essentially the same except \mathbb{F}_l^{\times} should be replaced by $(\mathbb{Z}/4\mathbb{Z})^{\times}$. But we still have $\varprojlim_n (\mathbb{Z}/4\mathbb{Z})^{\times}/((\mathbb{Z}/4\mathbb{Z})^{\times})^{p^n} = 0$. So our result does not change.

Proposition 1.9.

$$H^1(G_l, \mathbb{Q}_p(1)) \simeq \begin{cases} 0 \oplus \mathbb{Q}_p & l \neq p \\ \mathbb{Q}_p \oplus \mathbb{Q}_p & l = p \end{cases}$$

where

- the map to the first component comes from the logarithm;
- the map to the second component comes from the l-valuation.

Proof. By Corollary 1.2, Lemma 1.4 and Lemma 1.7, we have

$$H^1(G_l, \mathbb{Q}_p(1)) \simeq \left(\varprojlim_n \mathbb{Q}_l^{\times} / (\mathbb{Q}_l^{\times})^{p^n} \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq \left(\left(\varprojlim_n \mathbb{Z}_l / p^n \mathbb{Z}_l \right) \oplus \mathbb{Z}_p \right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

where the map to the first component $(\varprojlim_n \mathbb{Z}_l/p^n\mathbb{Z}_l)$ is induced by the logarithm map (see Remark 1.8) and the map to the second component (\mathbb{Z}_p) is induced by the l-valuation.

Note that

$$\varprojlim_{n} \mathbb{Z}_{l}/p^{n}\mathbb{Z}_{l} \simeq \begin{cases}
0 & l \neq p \\
\varprojlim_{n} \mathbb{Z}/p^{n}\mathbb{Z} = \mathbb{Z}_{p} & l = p
\end{cases}$$

So

$$H^{1}(G_{l}, \mathbb{Q}_{p}(1)) \simeq \begin{cases} (0 \oplus \mathbb{Z}_{p}) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} \simeq 0 \oplus \mathbb{Q}_{p} & l \neq p \\ (\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} \simeq \mathbb{Q}_{p} \oplus \mathbb{Q}_{p} & l \neq p \end{cases}$$

Lemma 1.10. We have an isomorphism coming from the prime factorization

$$\mathbb{Q}^{\times} \xrightarrow{\cong} \mathbb{F}_2 \oplus \bigoplus_{q \text{ prime}} \mathbb{Z}$$

Proof. Any nonzero rational number can be written as $\pm 2^a 3^b 5^c \cdots$ uniquely.

Lemma 1.11. We have an isomorphism coming from the prime factorization

$$\varprojlim_{n} \mathbb{Q}^{\times} / (\mathbb{Q}^{\times})^{p^{n}} \xrightarrow{\simeq} \bigoplus_{q \text{ prime}} \mathbb{Z}_{p}$$
(7)

Proof. By Lemma 1.10 and the fact of $\lim_{n} \mathbb{F}_2/p^n \mathbb{F}_2 = 0$, we have

$$\varprojlim_{n} \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^{p^{n}} \xrightarrow{\cong} \varprojlim_{n} \left(\mathbb{F}_{2}/p^{n}\mathbb{F}_{2} \oplus \bigoplus_{q \text{ prime}} \mathbb{Z}/p^{n}\mathbb{Z} \right)$$

$$\simeq \bigoplus_{q \text{ prime}} \varprojlim_{n} \mathbb{Z}/p^{n}\mathbb{Z} = \bigoplus_{q \text{ prime}} \mathbb{Z}_{p}$$

Proposition 1.12. $H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1))$ is a countably infinite dimensional \mathbb{Q}_p -vector space

$$H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1)) \simeq \bigoplus_{q \text{ prime}} \mathbb{Q}_p$$

where the isomorphism comes from the prime factorization.

Proof. By Corollary 1.2 and Lemma 1.11, we have

$$H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1)) \simeq \left(\varprojlim_n \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^{p^n}\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq \left(\bigoplus_{q \text{ prime}} \mathbb{Z}_p\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq \bigoplus_{q \text{ prime}} \mathbb{Q}_p.$$

Definition 1.13. The Selmer scheme $\operatorname{Sel}_{\infty}(\mathbb{G}_m)$ is defined as the scheme representing the subfunctor of $H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1))$ consisting of classes α such that for all primes l, the localization $\operatorname{loc}_l(\alpha)$ is contained in $j_l(\mathbb{G}_m(\mathbb{Z}_l))^{\operatorname{Zar}}$, the Zariski closure of $j_l(\mathbb{G}_m(\mathbb{Z}_l))$.

Definition 1.14. $H^1_f(G_p, \mathbb{Q}_p(1)) := j_p(\mathbb{G}_m(\mathbb{Z}_p))^{\mathrm{Zar}}.$

Lemma 1.15. The localization map $loc_l: H^1(G_{\mathbb{Q}}, \mathbb{Q}_p(1)) \to H^1(G_l, \mathbb{Q}_p(1))$ in the diagram diagram (1) can be identified with

$$\bigoplus_{q \text{ prime}} \mathbb{Q}_p \to (0 \text{ or } \mathbb{Q}_p) \oplus \mathbb{Q}_p, \quad (\alpha_q)_{q \text{ prime}} \mapsto (0, \alpha_l).$$

Lemma 1.16. The local Kummer map $j_l: \mathbb{G}_m(\mathbb{Z}_l) \to H^1(G_l, \mathbb{Q}_p(1))$ in the diagram (1) is identified with $\mathbb{Z}_l^{\times} \to (0 \text{ or } \mathbb{Q}_p) \oplus \mathbb{Q}_p$. Write $j_{l,1}: \mathbb{Z}_l^{\times} \to (0 \text{ or } \mathbb{Q}_p)$ and $j_{l,2}: \mathbb{Z}_l^{\times} \to \mathbb{Q}_p$ as the map j_l to the first and the second component respectively. Then

- $j_{l,1}$ is the zero map when $l \neq p$ and $j_{l,1}$ is the logarithm map when l = p.
- $j_{l,2}$ is always the zero map.

Proof. By Proposition 1.1, j_l is the natural map. Then by Proposition 1.9, $j_{l,1}$ is the logarithm map and $j_{l,2}$ is the l-valuation map.

- When $l \neq p$, the target of $j_{l,1}$ is zero, so $j_{l,1}$ is the zero map.
- Now for any prime l, the l-valuation of elements in \mathbb{Z}_l^{\times} are all zero. So the map $j_{l,2}$ is always the zero map.

Corollary 1.17. • When $l \neq p$, $j_l(\mathbb{G}_m(\mathbb{Z}_l)) = 0$ and hence $j_l(\mathbb{G}_m(\mathbb{Z}_l))^{\text{Zar}} = 0$.

• $H^1_f(G_p, \mathbb{Q}_p(1)) := j_p(\mathbb{G}_m(\mathbb{Z}_p))^{\mathrm{Zar}} = \mathbb{Q}_p \oplus 0 \text{ in } \mathbb{Q}_p \oplus \mathbb{Q}_p.$

Proof. • When $l \neq p$, j_l is the zero map by Lemma 1.16 and the result follows.

• Note that $j_p(\mathbb{G}_m(\mathbb{Z}_p)) = \log(\mathbb{Z}_p) \oplus 0$ where $\log(\mathbb{Z}_p)$ has infinitely many points in \mathbb{Q}_p . Since the Zariski topology for \mathbb{Q}_p is the cofinite topology, we have that the Zariski closure of $\log(\mathbb{Z}_p)$ is the whole \mathbb{Q}_p .

Proposition 1.18. The Selmer scheme $Sel_{\infty}(\mathbb{G}_m) = 0$.

Proof. Let $\alpha = (\alpha_q)_q$ prime $\in \operatorname{Sel}_{\infty}(\mathbb{G}_m)$. Then for any prime l, $\operatorname{loc}_l(\alpha) = (0, \alpha_l) \in j_l(\mathbb{G}_m(\mathbb{Z}_l))^{\operatorname{Zar}}$. By Corollary 1.17, the second component of $j_l(\mathbb{G}_m(\mathbb{Z}_l))^{\operatorname{Zar}}$ is always zero. So $\alpha_l = 0$. Since it holds for any prime l, we have $\alpha = 0$. This implies $\operatorname{Sel}_{\infty}(\mathbb{G}_m) = 0$.

Proposition 1.19. The Chabauty-Kim diagram

$$\mathbb{G}_{m}(\mathbb{Z}) \longrightarrow \mathbb{G}_{m}(\mathbb{Z}_{p})$$

$$\downarrow^{j} \qquad \qquad \downarrow^{j_{p}}$$

$$\operatorname{Sel}_{\infty}(\mathbb{G}_{m}) \xrightarrow{\operatorname{loc}_{p}} H^{1}_{f}(G_{p}, \mathbb{Q}_{p}(1))$$

can be identified with

$$\mathbb{G}_{m}(\mathbb{Z}) \longrightarrow \mathbb{G}_{m}(\mathbb{Z}_{p})$$

$$\downarrow \qquad \qquad \downarrow_{\log}$$

$$0 \xrightarrow{\log_{p}} \mathbb{Q}_{p}$$
(8)

Proof. Sel_{∞}(\mathbb{G}_m) = 0 follows from Proposition 1.18. $H^1_f(G_p, \mathbb{Q}_p(1)) \simeq \mathbb{Q}_p$ follows from Corollary 1.17. The fact that the map j_p is log follows from Lemma 1.16.

Proposition 1.20. $\mathbb{G}_m(\mathbb{Z}_p)_{\infty} \simeq \mathbb{F}_p^{\times}$ for odd prime $p \in \mathbb{Z}$.

Proof. Let $p \in \mathbb{Z}$ be an odd prime. Looking at the diagram (8),

$$\mathbb{G}_m(\mathbb{Z}_p)_{\infty} := \{ x \in \mathbb{G}_m(\mathbb{Z}_p) \mid j_p(x) \in \operatorname{im}(\operatorname{loc}_p) \}
= \{ x \in \mathbb{Z}_p^{\times} \mid \operatorname{log}(x) = 0 \}
= \{ x \in \mathbb{Z}_p^{\times} \mid x \in \mu_{p^n}(\mathbb{Q}_p) \text{ for some } n \}
= \{ p^n \text{-torsion points of } \mathbb{Z}_p^{\times} \text{ for some } n \}$$

Recall that we have the split short exact sequence by Lemma 1.5:

$$0 \longrightarrow \mathbb{Z}_p \stackrel{\iota}{\longrightarrow} \mathbb{Z}_p^{\times} \stackrel{\text{mod}_p}{\longrightarrow} \mathbb{F}_p^{\times} \longrightarrow 0$$

So $\mathbb{Z}_p^{\times} \simeq \mathbb{Z}_p \times \mathbb{F}_p^{\times}$. Then it's easy to see the result.

Proposition 1.21. $\mathbb{G}_m(\mathbb{Z}) = \{1, -1\}.$

Proof. By choosing p=3, we find $\mathbb{G}_m(\mathbb{Z})\subseteq\mathbb{G}_m(\mathbb{Z}_3)_{\infty}=\{1,-1\}$. So the result follows.