Evaluation model

Yunlong Cheng

2019年7月16日

1 模型概念学习

见此。

2 模型实例分析

2.1 层次分析法 (AHP)

问题:

假期某人想要出去旅游,现有三个目的地(方案):风光绮丽的杭州(P1)、迷人的北戴河(P2)和山水甲天下的桂林(P3)。假如选择的标准和依据(行动方案准则)有5个:景色,费用,饮食,居住和旅途。

解答:

1.

选择旅游地的层次结构

2. 构造判断矩阵。

选择旅游目的地

图 1: 目标-准则层判断矩阵 (成对比较矩阵)

图二见下。

3. 层次单排序: 对上一层因素而言,本层次各因素的重要性的排序。 计算方法: 求矩阵 A 的最大特征根与特征向量。其中 $\lambda_{max}=5.073$ 对应的 正规化特征向量为:

$$\omega^{(2)} = (0.263, 0.475, 0.055, 0.099, 0.110)^T$$

4. 一致性检验:
$$CI = \frac{\lambda_{max} - n}{n-1} = \frac{5.073 - 5}{5-1} = 0.01825$$

(a) 方案-景色判断矩阵 (b) 方案-费用判断矩阵 (c) 方案-居住判断矩阵

(d) 方案-饮食判断矩阵 (e) 方案-旅途判断矩阵

图 2: 方案-准则层判断矩阵

查表知平均随机一致性指标 RI, 则

$$CR = \frac{CI}{RI} = \frac{0.01825}{1.12} = 0.016295 < 0.1$$

检验通过。同理第二层一致性检验也通过。

5. 得到的权重举证可以轻易结合到任何模型中去。

2.2 灰色关联分析与评价

问题:

利用灰色关联分析对 6 位教师工作状况进行综合分析。

解答:

- 1. 分析指标包括:专业素质、外语水平、教学工作量、科研成果、论文、著作与出勤。
- 2. 对原始数据经处理后得到以下数值, 见下表:

编号	专业	外语	教学 量	科研	论文	著作	出勤
1	8	9	8	7	5	2	9
2	7	8	7	5	7	3	8
3	9	7	9	6	6	4	7
4	6	8	8	8	4	3	6
5	8	6	6	9	8	3	8
6	8	9	5	7	6	4	8

3. 确定参考序列: $\{x_0\} = \{9,9,9,9,8,9,9\}$

4. 计算
$$|x_0(k) - x_i(k)|$$
, 见下表:

编号	专业	外语	教学 量	科研	论文	著作	出勤
1	1	0	1	2	3	7	0
2	2	1	2	4	1	6	1
3	0	2	0	3	2	5	2
4	3	1	1	1	4	6	3
5	1	3	3	0	0	6	1
6	1	0	4	2	2	5	1

5. 求最值:

$$\min_{i} \min_{k} |x_0(k) - x_i(k)| = \min(0, 1, 0, 1, 0, 0) = 0$$
$$\max_{i} \max_{k} |x_0(k) - x_i(k)| = \max(7, 6, 5, 6, 6, 5) = 7$$

6. 分辨系数 θ 取 0.5, 计算 r_{ij} , 得:

编号							
1	0. 778	1. 000	0. 778	0. 636	0. 467	0. 333	1. 000
2	0. 636	0. 778	0. 636	0. 467	0. 636	0. 368	0. 778
3	1.000	0. 636	1.000	0. 538	0. 538	0. 412	0. 636
4	0. 538	0. 778	0. 778	0. 778	0. 412	0. 368	0. 538
5	0. 778	0. 538	0. 538	1. 000	0. 778	0. 368	0. 778
6	0. 778	1. 000	0. 467	0. 636	0. 538	0. 412	0. 778

7. 计算每个人的各指标关联系数的均值:

$$r_{01} = \frac{0.778 + 1.000 + 0.778 + 0.636 + 0.467 + 0.333 + 1.000}{7} = 0.713$$

$$r_{02} = 0.614$$
 $r_{03} = 0.680$ $r_{04} = 0.599$ $r_{05} = 0.683$ $r_{06} = 0.658$.

8. 考虑各指标权重,比较优劣。