SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF CHEMICAL AND FOOD TECHNOLOGY Institute of Information Engineering, Automation, and Mathematics

Nonlinear Model Predictive Control of Rotary Inverted Pendulum MASTER THESIS

Bc. Alexey Morozov

Supervisor: Ing. Martin Klaučo, PhD. Consultant: Ing. Matúš Furka

June, 2020

Furuta Pendulum Device

Intro ○●000

Swing-Up Control of the Pendulum

Intro 00000

Main control strategies

- Heuristic Swing-Up Control strategy
- Optimal Swing-Up Control strategy

Furuta Pendulum Device

Derivation of the Mathematical Model Lagrangian Formulation

Lagrangian

$$L = E_{\rm k} - E_{\rm p}$$

Euler-Lagrange Equations

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial\,L}{\partial\,\dot{\theta}_0} \right) - \frac{\partial\,L}{\partial\,\dot{\theta}_0} = \tau$$
$$\frac{\mathrm{d}}{\mathrm{d}\,t} \left(\frac{\partial\,L}{\partial\,\dot{\theta}_1} \right) - \frac{\partial\,L}{\partial\,\dot{\theta}_1} = 0$$

Derivation of the Mathematical Model Lagrangian Formulation

Equations of motion

$$\ddot{\theta}_{0} = \frac{\gamma(\epsilon\dot{\theta}_{0}^{2} + \rho) - \delta(\tau + \beta\dot{\theta}_{1}^{2} - \sigma\dot{\theta}_{0}\dot{\theta}_{1})}{\gamma^{2} - \alpha\delta}$$
$$\ddot{\theta}_{1} = \frac{\gamma(\tau + \beta\dot{\theta}_{1}^{2} - \sigma\dot{\theta}_{0}\dot{\theta}_{1}) - \alpha(\epsilon\dot{\theta}_{0}^{2} + \rho)}{\gamma^{2} - \alpha\delta}$$

Parametres

$$\alpha = I_0 + L_0^2 m_1 + I_1^2 m_1 \sin^2 \theta_1$$

$$\beta = L_0 m_1 I_1 \sin \theta_1$$

$$\gamma = L_0 m_1 I_1 \cos \theta_1$$

$$\delta = I_1 + I_1^2 m_1$$

$$\epsilon = I_1^2 m_1 \sin \theta_1 \cos \theta_1$$

$$\rho = m_1 g I_1 \sin \theta_1$$

$$\sigma = 2I_1^2 m_1 \sin \theta_1 \cos \theta_1$$

Derivation of the Mathematical Model State-Space Formulation

State variables

$$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} = \begin{bmatrix} \theta_0(t) \\ \dot{\theta}_0(t) \\ \theta_1(t) \\ \dot{\theta}_1(t) \end{bmatrix}$$

Control input

$$u(t) = \tau(t)$$

Non-linear model

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \dot{x}_4(t) \end{bmatrix} = \begin{bmatrix} \dot{\theta}_0 \\ \frac{\gamma(\epsilon\dot{\theta}_0^2 + \rho) - \delta(\tau + \beta\dot{\theta}_1^2 - \sigma\dot{\theta}_0\dot{\theta}_1)}{\gamma^2 - \alpha\delta} \\ \dot{\theta}_1 \\ \frac{\gamma(\tau + \beta\dot{\theta}_1^2 - \sigma\dot{\theta}_0\dot{\theta}_1) - \alpha(\epsilon\dot{\theta}_0^2 + \rho)}{\gamma^2 - \alpha\delta} \end{bmatrix}$$

Linear model

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-gL_0l_1^2m_1^2}{(m_1L_0^2+l_0)(m_1l_1^2+l_1)-L_0^2l_1^2m_1^2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{gl_1m_1(m_1L_0^2+l_0)}{(m_1L_0^2+l_0)(m_1l_1^2+l_1)-L_0^2l_1^2m_1^2} & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ \frac{m_1L_1^2+l_1}{(m_1L_0^2+l_0)(m_1l_1^2+l_1)-L_0^2l_1^2m_1^2} \\ 0 \\ \frac{-L_0l_1m_1}{(m_1L_0^2+l_0)(m_1l_1^2+l_1)-L_0^2l_1^2m_1^2} \end{bmatrix}$$

Main control strategies

- Heuristic Swing-Up Control strategy
- Optimal Swing-Up Control strategy

Main control strategies

- Heuristic Swing-Up Control strategy
- Optimal Swing-Up Control strategy

Heuristic Swing-Up Control

Two phases of control:

- Initial excitation of the system (by Energy-Shaping controller)
- Stabilisation of the pendulum (by Predictive controller)

Heuristic Swing-Up Control

Development of control strategy:

- Design of Energy-Shaping controller
- Design of Model Predictive controller
- Full-range control of the pendulum

Pendulum is controlled by Energy-Shaping controller.

Energy-Shaping controller

$$E = \frac{m_1 g I_1}{2} \left(\left(\frac{\dot{\theta}_1}{\omega_0} \right)^2 + \cos(\theta_1) - 1 \right)$$
$$u = -4E \operatorname{sign} \left(\dot{\theta}_1 \cos(\theta_1) \right)$$

Second Phase of Control

Pendulum is controlled by Predictive controller.

Second Phase of Control

Model Predictive Control strategy

$$\min_{u_0,\dots,u_{N-1}} \sum_{k=0}^{N-1} \left(x_k^{\mathsf{T}} Q_{\mathsf{x}} x_k + u_k^{\mathsf{T}} Q_{\mathsf{u}} u_k \right)$$
s.t.
$$x_{k+1} = A x_k + B u_k \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$u_{\mathsf{min}} \le u_k \le u_{\mathsf{max}} \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$x_0 = x(0)$$

Parameter	Symbol	Value
Prediction horizon	Ν	20
Initial condition	<i>x</i> ₀	$\begin{bmatrix} 0 & 0 & 28.5 & -40 \end{bmatrix}^{T}$
Constraint on control input-upper bound	u_{max}	10
Constraint on control input-lower bound	u_{min}	-10

Model Predictive Control strategy

$$\min_{u_0,\dots,u_{N-1}} \sum_{k=0}^{N-1} (x_k^{\mathsf{T}} Q_{\mathsf{x}} x_k + u_k^{\mathsf{T}} Q_{\mathsf{u}} u_k)$$
s.t.
$$x_{k+1} = A x_k + B u_k \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$u_{\min} \le u_k \le u_{\max} \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$x_0 = x(0)$$

Weight matrices

$$Q_{\mathsf{x}} = egin{bmatrix} 5 & 0 & 0 & 0 \ 0 & 0.08 & 0 & 0 \ 0 & 0 & 10 & 0 \ 0 & 0 & 0 & 0.2 \end{bmatrix} \quad Q_{\mathsf{u}} = 1 \times 10^{-3}$$

Second Phase of Control

Full-Range Control

Algorithm 1 Heuristic Swing-Up Control strategy

- 1: procedure Heuristic Swing-Up Control
- 2: $\theta_1 \leftarrow 180 \text{ deg}$
- 3: Pendulum is controlled by Energy-Shaping controller
- 4: **if** $\theta_1 \in [-50, 50] \text{ deg then}$
- 5: Pendulum is controlled by Predictive controller
- 6: end if
- 7: end procedure

Main control strategies

- Heuristic Swing-Up Control strategy
- Optimal Swing-Up Control strategy

Optimal Control Strategy

Two phases of control:

- Initial excitation of the system (by Non-linear Predictive controller)
- Stabilisation of the pendulum (by Non-linear Predictive controller)

Non-Linerar Model Predictive Control

$$\min_{u_0,\dots,u_{N-1}} \sum_{k=0}^{N-1} (x_k^{\mathsf{T}} Q_{\mathsf{x}} x_k + u_k^{\mathsf{T}} Q_{\mathsf{u}} u_k)$$

$$\text{s.t. } x_{k+1} = f(x_k, u_k) \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$u_{\mathsf{min}} \le u_k \le u_{\mathsf{max}} \qquad \qquad k \in \mathbb{N}_0^{N-1}$$

$$x_0 = x(0)$$

Parameter	Symbol	Value
Prediction horizon	Ν	20
Initial condition	<i>x</i> ₀	$[0\ 0\ 180\ 0]^{T}$
Constraint on control input-upper bound	$u_{\sf max}$	10
Constraint on control input-lower bound	u_{min}	-10

Non-Linerar Model Predictive Control

$$\min_{u_{0},...,u_{N-1}} \sum_{k=0}^{N-1} (x_{k}^{\mathsf{T}} Q_{\mathsf{x}} x_{k} + u_{k}^{\mathsf{T}} Q_{\mathsf{u}} u_{k})$$
s.t. $x_{k+1} = f(x_{k}, u_{k})$ $k \in \mathbb{N}_{0}^{N-1}$

$$u_{\mathsf{min}} \leq u_{k} \leq u_{\mathsf{max}} \qquad k \in \mathbb{N}_{0}^{N-1}$$

$$x_{0} = x(0)$$

Weight matrices

$$Q_{\mathsf{x}} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0.1 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 0.1 \end{bmatrix} \quad Q_{\mathsf{u}} = 0.1$$

Full-Range Control

Control of the arm

Quality criteria:

- Settling time
- Sum of absolute error (SAE)
- Sum of squared control differences (SSCD)
- Solver solving time

Strategy	Settling Time	SAE	SSCD	Solving Time			
				t_{min}	$t_{\sf avg}$	$t_{\sf max}$	
Heuristic Swing-Up	7.51	305.15	86.77	0.0156	0.0234	0.0313	
Optimal Swing-Up	3.20	205.56	88.94	0.0313	0.0469	0.0625	

t[s]

Strategy	Settling Time	SAE	SSCD	Solving Time		
				t_{min}	t_{avg}	$t_{\sf max}$
Heuristic Swing-Up	100%	100%	100%	100%	100%	100%
Optimal Swing-Up	42.6%	67.4%	103%	201%	200%	200%

Conclusions

00000

Summary

Main achievements of the thesis

- Design of Optimal Swing-Up control strategy
- Its comparisson against the heuristic method
- Evaluation of control quality and calculation time of individual approaches

Parametres of the Pendulum

g-gravitational acceleration [ms $^{-2}$] m_0 -mass of arm [kg] m_1 -mass of pendulum [kg] L_0 -length of arm [m] L_1 -length of pendulum [m] I_0 -arms center of mass [m] I_1 -pendulums center of mass [m] I_0 -arms moment of inertia [kg m⁻²] I_1 -pendulums moment of inertia [kg m⁻²] θ_0 -arm angle[rad] θ_1 -pendulum angle [rad] τ -motor torque [N m]