(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

第2884525号

(45)発行日 平成11年(1999) 4月19日

(24)登録日 平成11年(1999)2月12日

(51) Int.Cl.⁶

識別記号

G11B 19/02

501

 \mathbf{F} I

G11B 19/02

501G

発明の数1(全16頁)

(21)出顧番号 特願平9-340889 (73)特許権者 000005016 (62)分割の表示 特願昭61-103508の分割 パイオニア株式会社 (22)出願日 昭和61年(1986)5月6日 東京都目黒区目黒1丁目4番1号 (72)発明者 育柳 芳郎 (65)公開番号 特開平10-172223 埼玉県川越市大字山田字西町25番地1 (43)公開日 平成10年(1998) 6 月26日 パイオニア株式会社川越工場内 審査請求日 平成9年(1997)11月27日 (72)発明者 木村 俊之 埼玉県川越市大字山田字西町25番地1 パイオニア株式会社川越工場内 斉藤 義則 (72)発明者 埼玉県川越市大字山田字西町25番地1 パイオニア株式会社川越工場内 赤穂 隆雄 審査官 最終頁に続く

(54) 【発明の名称】 デイスクプレーヤにおける表示方法

1

(57)【特許請求の範囲】

1. 主たる情報である主記録情報とともに記録されている主記録情報の数を示す情報片数または/及び主記録情報の再生時間を記録してあるディスクを再生するディスクプレーヤにおける表示方法であって、

ディスクがプレーヤ内に挿入されると前記情報片数または/及び前記再生時間を読み取るとともに、その読み取り動作中は表示部に所定の表示を行う第1の工程と、前記情報片数または/及び前記再生時間の読取り完了後、自動的に前記情報片数または/及び前記再生時間を10前記表示部に所定時間だけ表示する第2の工程とを有することを特徴とするディスクプレーヤにおける表示方法。

2. 前記所定時間の後、前記主情報の再生に関する再生状況情報を前記表示部に表示する第3の工程とを有する

2

ことを特徴とする請求項1 に記載のディスクプレーヤに おける表示方法。

- 3. 前記所定時間内に他のモード指定があった場合には、直ちに前記再生状況情報の表示に移行する第4の工程を有することを特徴とする請求項2に記載のディスクプレーヤにおける表示方法。
- 4. 前記再生時間は前記主記録情報の総絶対時間、または曲毎の演奏時間であることを特徴とする請求項1乃至3に記載のディスクプレーヤにおける表示方法。
- 5. 前記所定の表示は表示部に設けられた一部の表示素子の点滅であるととを特徴とする請求項1乃至4に記載のディスクプレーヤにおける表示方法。
 - 6. 前記再生状況情報は曲番、またはトラックナンバ
 - ー、あるいは各曲毎の演奏開始からの経過時間であることを特徴とする請求項2万至5 に記載のディスクプレー

3

ヤにおける表示方法。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ディスクプレーヤにお ける表示方法に関するものである。

[0002]

【従来技術】コンパクト・ディスクと称される直径約12 cmの小型のディジタル・オーディオ・ディスクには、曲などの主記録情報とともに、リードインエリアに当該ディスクに収録されている主記録情報の曲数、総絶対時間、各曲毎の演奏時間等の情報が記録されており、ディスクの再生に際しては、当該リードインエリアの記録情報の読取りが行われる。そして、その読み取られた情報に基づき再生動作が行われる。

[0003]

【発明が解決しようとする課題】本発明は、主記録情報の曲数や再生時間などの、ディスクの記録内容を把握するために有用な情報や、ディスクプレーヤの動作状態をユーザに適切に伝達することを目的とする。

[0004]

【発明が解決するための手段】本発明によるディスクプレーヤにおける表示方法は、ディスクがプレーヤ内に挿入されると情報片数または/及び再生時間を読み取るとともに、その読み取り動作中は表示部に所定の表示を行う第1の工程と、情報片数または/及び再生時間の読取り完了後、自動的に情報片数または/及び再生時間を表示部に所定時間だけ表示する第2の工程とを有することを特徴としている。

[0005]

【実施例】以下、本発明の実施例を図に基づいて詳細に説明する。図1は本発明が適用されるスロットインタイプの車載用オートローディングディスクプレーヤの外観を示す概略斜視図、図2はその内部構造を示す概略構成図である。まず図1において、ハウジング1の一部を構成するフロントパネル2には、再生されるべきディスク3を挿入するためのスロット4が図の左右方向に伸長して設けられている。ディスク3は、例えばオーディスクで設けられている。ディスク3は、例えばオーディオ情報がPCM(Pulse Code Modulation)化されて記録されたいわゆるコンパクトディスクであり、その外径は約12cmとなっている。フロントパネル2には更に、当該ディスクブレーヤに対して各種の操作指令、例えばプレイスタート、ディスクイジェクト等の指令をなすための複数の操作キーが配列され、これらキーによって操作キー群5が構成されている。

【0006】図2において、スロット4が挿入されたディスク3は、トレイ6上の所定の位置(以下、スロット位置に称する)に図示せぬ位置決め手段により位置決めされ、ディスク3の一部がフロントパネル2外に突出した状態でトレイ6上に担持される。トレイ6は駆動源であるローディングモータ7、このモータ7の回転駆動力50

を図の左右方向及び上下方向の直線駆動力としてトレイ 6に伝達する駆動力伝達機構8等により、担持したディ スク3をスロット位置とハウジング1内の後述する再生 位置との間で搬送するためのローディング機構を構成し ている。

【0007】かかるローディング機構において、トレイ 6はスロット位置にセットされたディスク3を担持して 図の実線位置から右方向に移動し、ディスク3の中心孔 がスピンドルモータ9の回転軸に固着されたターンテー 10 ブル10上に到達した時点で真下に降下し、ディスク3を ターンテーブル10上に載置した後更に降下し、図に二点 鎖線で示す如くディスク面から僅かに離間した状態で停 止し、以上の一連の動作によりディスク3の搬入(ロー ディング)動作を行なう。ディスク3がターンテーブル 10上に載置された位置が先述した再生位置となる。ま た、ディスク3の搬出(イジェクト)動作は、ローディ ングモータ7の逆回転により、上述したローディング動 作の場合と全く逆の経路を辿って行なわれる。なお、上 述したローディング機構については、本願出願人により 20 特願昭59-200145 号~200153号等で出願されており、そ の詳細な構成及び動作の説明に関しては、ここでは詳述 しない。

【0008】ハウジング1内には各種の検出スイッチが設けられている。まず、ディスク3がスロット位置にあることを検出するディスク検出スイッチ11が設けられており、このディスク検出スイッチ11はディスク3がスロットル位置にセットされたときオン状態となり、当該位置からディスク3が抜き取られたときオフ状態となる。ローディング完了検出スイッチ12は、ターンテーブル10上にディスク3を載置した後のトレイ6に係合することによってオン状態となり、ローディング動作が完了したことを検出する。また、イジェクト完了検出スイッチ13は、ローディング機構によるイジェクト動作時に最前方(フロントパネル2側)位置に到達したトレイ6に係合することによってオン状態となり、イジェクト動作が完了したことを検出する。

【0009】ターンテーブル10上に載置されたディスク3はスピンドルモータ9によって回転駆動され、またその記録情報は光学式ピックアップ14によって読み取られる。ピックアップ14はディスク3の半径方向において移動自在に設けられたキャリッジ(図示せず)に搭載されており、当該キャリッジはキャリッジモータ15によりギア機構16を介して駆動される。フロントパネル2に配設された操作キー群5や上述した各検出スイッチ11~13等から発せられる各信号は、ハウジング1内の所定位置に配置された図3に示される制御系に伝送される。

【0010】図3には制御系の構成が示されており、当該制御系は制御の中心となるCPU (中央処理装置) 20及び記憶手段としてのRAM (ランダム・アクセス・メモリ) 21等からなるマイクロコンピュータ構成となってい

50

る。CPU20 は、操作キー群5や各検出スイッチ11~13等から発せられる各信号に基づいて、スピンドルモータ9の回転速度の制御をなすスピンドルサーボ回路22、キャッリッジモータ15の回転速度の制御をなすキャリッジサーボ回路23及びローディングモータ7を駆動するモータ駆動回路30等に対し、後述するタイミングで制御信号を発生し、また各種の表示をなすディスプレイ24に対して表示データを出力する。

【0011】ビックアップ14によりディスク3から読み取られた読取情報は、信号処理回路25で復調、誤り訂正 10等の信号処理が行なわれた後CPU20に供給されると共に、D/A (ディジタル/アナログ)変換器26でアナログ情報に変換され、電子ボリューム回路27を経て左

(L)、右(R)チャンネルのオーディオ信号として出力される。また、ピックアップ14から発せられかつディスク3の記録面上に収束される情報読取スポットの集光点の該記録面に対する垂直方向の位置制御をなすフォーカスサーボ回路28、ディスク3の記録トラックに対する上記情報読取スポットのディスク半径方向における位置制御をなすトラッキングサーボ回路29が設けられている。

【0012】フォーカスサーボ回路28は、再生開始時或 は再生中にフォーカスが外れた時等には、CPU20 から発 せられる指令に応答してピックアップ14のフォーカシン グ動作を行なうべく制御し、正常再生時には、非点収差 法等の周知の検出方法によって生成したフォーカスエラ ー信号に基づいてピックアップ14に内蔵されたフォーカ スアクチュエータ(図示せず)を駆動制御し、又フォー カスサーボの引込み時にロックインするとロックイン信 号をCPU20 に対して送出する。一方、トラッキングサー ボ回路29は、ピックアップ14亿内蔵されたトラッキング アクチュエータ(図示せず)に対し、ジャンプ時等には CPU20 から発せられる指令に応答して駆動信号を供給 し、通常再生時には3ビーム法等の周知の検出方法によ って生成したトラッキングエラー信号を供給することに よって上記情報読取点のディスク半径方向における位置 制御を行なう。なお、トラッキングエラー信号はキャッ ジサーボ回路23にも供給され、その低域成分が通常再生 時におけるキャリッジモータ15の駆動信号となる。

【0013】本ディスクプレーヤは車載用であるため、CPU20はバックアップ電源によって動作し、各機構部は自動車のいわゆるアクセサリスイッチ(図示せず)のオンにより供給される主電源によって動作するように構成されている。しかし、各機構のうち、ローディングモータ7及びその駆動回路30を含むローディング機構だけは、主電源がオフになった場合でもハウジング1内に取り込まれたディスク3をイジェクトできるように、バックアップ電源で動作するようになっている。そして、主電源の断を検出するためのAcc 検出回路31が設けられており、このAcc 検出回路31は主電源の断時に検出信号を

CPU20 に供給する。

【0014】操作キー群5における各キーには、図4に 示すように、音量の増大(UP)及び減少(DOMN)の指令 をなすボリューム「UP」キー50及びボリューム「DOWN」 キー51並びに左右チャンネルの音量バランスをとるため のバランス「L」キー52及びバランス「R」キー53が含 まれている。これらキーが操作されたときの処理はCPU2 0 によってソフト的に行なわれる。すなわち、CPU20 は 電子ボリューム回路27に対して、ボリューム「UP」キー 50又はボリューム「DOWN」キー51が操作されたときは、 左右両チャンネルの音量を同時に増大又は減少させるべ くデータ及びクロックを送出し、バランス「L」キー52 又はバランス「R」キー53が操作されたときは一方のチ ャンネルの音量を増大しかつ他方のチャンネルの音量を 減少させるべくデータ及びクロックを送出するのである が、その詳細な処理方法については後述する。とのとき の音量の変化状態はディスプレイ24に表示される。な お、電子ボリューム回路27としては、例えば、互いに直 列接続された複数の抵抗及びこれら各抵抗に並列に並列 20 接続された複数のアナログスイッチからなり、これら複 数のアナログスイッチをCPU20 からのデータに応じてオ ン・オフさせることにより音量制御をなす周知の構成の ものを用い得る。

6

【0015】ボリューム「UP」キー50及びボリューム「DOWN」キー51は各々、上述した如く音量の増大及び減少の指令をなす機能を担っていると共に、両キー50,51が2重に操作されたときは音量を例えば20dB程度一度に下げる指令をなす機能をも担っている。

【0016】次に、CPU20 によって実行される本オートローディングディスクプレーヤの動作手順を、図6乃至図12のフローチャートを参照しつつ再生順序に従って簡単に説明する。

【0017】まず、ローディング、演奏及びイジェクト の一連の動作を図6のフローチャートに従って説明する に、ディスク3がスロット4からハウジング1内に挿入 され、図2に示す如くトレイ6上のスロット位置にセッ トされると、ディスク検出スイッチがオン状態となる。 CPU20 は、このディスク検出スイッチ11のオンを検出す ると(ステップ1)、モータ駆動回路30を介してローデ ィングモータ7に対しローディング指令を発する。これ により、ローディングモータ7が回転してローディング 機構が起動して、ローディング動作を開始する(ステッ プ2)、ディスク3を担持したトレイ6が図2に実線で 示す位置から右方向に移動しかつターンテーブル10の上 方に到達すると、その位置から真下に降下し、これによ り図2に二点鎖線で示す如くディスク3がターンテーブ ル10上に載置され、以上の一連の動作によりローティン グ動作が完了する。このとき、ローディング完了検出ス イッチ12がオン状態となる。CPU20 は、このローディン グ完了検出スイッチ12のオン出力によりローディング完

了を検出すると(ステップ3)、ピックアップ14のフォーカスをとる(フォーカシング)ためのフォーカスモードに移行する(ステップ4)。このフォーカスモードについては後述する。

【0018】フォーカスモードにおいてフォーカスをとると、ピックアップ14の読取り動作を開始するのであるが、プログラムエリアの読取りに先立ってまず、ディスク3のリードインエリア内の記録情報の読取りを開始し(ステップ5)、しかる後表示モード(ステップ6)を経てプレイモード(ステップ7)に移行する。読み取られたTOC 情報はRAM21 に記憶される。ディスクのリードインエリア内には、ディスクに収録されている曲数、総絶対時間、各曲毎の演奏時間等のいわゆるTOC(Table Of Contents)情報が記録されており、演奏開始に際し必ずこのTOC 情報を読み取る必要がある。プレイモードでは、通常の順次演奏の他、プログラム選曲、スキャン、サーチ等の動作が行なわれる。

【0019】演奏が終了してピックアップ14を搭載したキャリッジ(図示せず)がその移動限界位置に達し、図示せぬ検出スイッチがオンすると、この時点でCPU 20は演奏が終了したことを検出し(ステップ8)、モータ駆動回路30を介してローディングモータ7に対しイジェクト指令を発する。これにより、ローディングモータ7はローディング動作時と逆方向に回転してイジェクト動作を開始する(ステップ9)。このイジェクト動作においては、トレイ6が先述したローディング動作時と全く逆の過程を辿ってディスク3を再生位置からスロット位置まで搬出し、トレイ6が図2に実線で示す最前方位置に達し、イジェクト動作が完了すると、イジェクト完了検出スイッチ13がオン状態となる。

【0020】CPU20は、このイジェクト完了検出スイッチ13のオン出力によりイジェクト完了を検出すると(ステップ10)、続いて操作キー群5におけるキー入力等によるリロード指令が有るか否かを判断し(ステップ1)、リロード指令が有る場合には、再度モータ駆動回路30を介してローディングモータ7に対しローディング指令を発し、ローディング動作を開始させる(ステップ12)。ローディング動作の完了を検出すると(ステップ13)、CPU20は、前回と同一のディスクの演奏であり、そのTOC 情報はRAM21に記憶されて有効となっている故、TOC 情報の読取りを行なうことなく即座にプレイモード(ステップ7)に移行すべく制御する。

【0021】イジェクト完了後、ステップ11でリロード指令が無いと判定した場合には、続いてディスク3がスロット位置から抜き取られたか否かを判断する(ステップ14)。このディスク3の抜取りは、ディスク検出スイッチ11のオフ出力により検出できる。ステップ14でディスク3がスロット位置から抜き取られたと判定した時点で、RAM21 に記憶されているTOC 情報を無効とし(ステップ15)、無効フラグを立てる。以上により、ローディ

ング、演奏及びイジェクトの一連の動作を終了する。 【0099】上述した一連の動作においては、ディフ

【0022】上述した一連の動作においては、ディスク3のイジェクト動作が完了した時点ではRAM21 に記憶されているTOC 情報を無効とせず、ディスク3がスロット位置から抜き取られた時点で初めて無効とするようにしているので、イジェクトしたディスクを続けて演奏する場合には、TOC 情報を再び読み取る必要がなく、演奏操作にスムーズに移行できることになる。

【0023】次に、図6におけるフォーカスモード(ス 10 テップ4)について図7のフローチャートに従って説明 する。

【0024】CPU20は、まず、フォーカスサーボ回路28に対しフォーカシング動作の開始指令を発し(ステップ20)、同時にCPU20に内蔵された一定時間Taのタイマをスタートさせる(ステップ21)。そして、フォーカスサーボがロックインしたか否かを判断し(ステップ22)、ロックインした場合にはタイマをクリアし(ステップ23)、しかる後、図5のメインフローに戻る。なお、フォーカスサーボがロックインしたか否かの判断は、フォーカスサーボがロックインしたときにフォーカスサーボ回路28から発生されるロックイン信号を用いることによって可能となる。

【0025】ステップ22でロックインしていないと判定した場合には、一定時間Taが経過したか否かを判断し(ステップ24)、経過した場合には、再生位置にローディングされたディスクをイジェクトすべく、モータ駆動回路30を介してローディングモータ7に対しイジェクト指令を発する(ステップ25)。すなわち、ディスクの傷や汚れ、或はディスクの裏返し挿入等により、フォーカスがとれなかった場合には、一定時間Taが経過した後ディスクをイジェクトするのである。

【0026】イジェクト指令後、操作キー群5におけるキー入力等によるリロード指令が有るか否かを判断し(ステップ26)、リロード指令が無い場合には、イジェクト完了を検出し(ステップ27)、それ以降は動作停止状態となる。また、ステップ26においてリロード指令が有ると判定された場合には、その指令のためのキー入力を無視し(ステップ28)、しかる後ステップ27に移行する。

40 【0027】すなわち、ディスクの傷や汚れ、或はディスクの裏返し挿入等によりフォーカスがとれず、ディスクをイジェクトしている最中には、ディスクのリロード指令を受け付けず、イジェクト動作からローディング動作に移行するのを禁止しているのである。これにより、ディスクを裏返しで挿入した場合にはそのことをユーザはすぐ判断でき、またディスクに傷や汚れ等がある場合にはそのディスクの演奏を未然に防止できることになる。

【0028】続いて、図6における表示モード(ステッ 50 プ6)について図8のフローチャートに従って説明す る。

【0029】図6のメインフローにおいてTOC 情報の読取りを開始し(ステップ5)、しかる後本表示モードに入るのであるが、TOC 情報の読取り開始時点からディスクプレイ24に、所定情報の表示、例えば図5に示す如く7セグメントの表示器の中央の1セグメントを使って「ーーー」の点滅表示を行ない(ステップ30)、TOC情報の読取りが完了すると(ステップ31)、CPU20に内蔵された一定時間Tb(例えば、5秒)のタイマをスタートさせ(ステップ32)、同時に読み取ったTOC情報、即10ち曲数及び総絶対時間等の表示を行なう(ステップ33)。なお、図6のフローチャートにおいては、説明の都合上、表示モードとプレイモードとを別モードとして示したが、表示モードにおいてTOC情報を読み取った後はプレイ動作に入るものとする。

9

【0030】通常、ディスクのローディング完了後TOC 情報を読み取ってプレイ動作に移行するまでのいわゆるセットアップ時には、まだTOC 情報が読み取られておらず、ディスプレイ24に表示できるデータがなく、何も表示できないので、ユーザはプレーヤがどのような動作状 20態にあるのか判断できない場合がある。しかしながら、上述したように、TOC 情報が無くても何等かの表示を行なうことにより、プレーヤがセットアップ状態にあることをユーザに告知できることになる。なお、この場合の表示情報は、7セグメントの表示器を使った「---

【0031】曲数及び総絶対時間等を表示している状態で、操作キー群5におけるトラック±、FF、REV等のキー入力により他のモードが指定されたことを検出した場合には(ステップ34)、タイマをクリアし(ステップ35)、同時にプログラムエリアを再生中のピックアップ14の読取情報に基づいて演奏(再生)状況情報、即ち曲番(トラックナンバー)、各曲毎の演奏開始からの経過時間(分、秒)等の表示を行なう(ステップ36)。これら演奏状況情報はいわゆるCDフォーマットにおけるサブコード信号のQチャンネルに記録されており、ピックアップ14の読取情報から検出できる。また、曲数及び総絶対時間等を表示している状態において、他のモード指定が無く、その表示状態が一定時間Tbだけ経過したと判定すると(ステップ37)、ステップ36に移行し、上述した演奏状況情報の表示に切り換える。

【0032】すなわち、読み取られたTOC 情報は一定時間Tbだけ表示され、一定時間Tbの経過前に他のモード指定があった場合には、その時点で演奏状況情報の表示に切り換わり、一定時間Tbが経過すると自動的に演奏状況情報の表示に切り換わるのである。

【0033】次に、プレイ中にフォーカスが外れた場合の動作について図9のフローチャートに従って説明する

【0034】CPU20は、フォーカスサーボ回路28からサ

ーボループとロックイン状態で発生されるロックイン信 号を常時所定のサイクルで監視し、ロックイン信号が消 滅したことを検知すると、フォーカスが外れたと判断 し、フォーカスサーボ回路2%C対しフォーカシング動作 の開始指令を発し(ステップ40)、同時にCPU20 に内蔵 された一定時間Tcのタイマをスタートさせる(ステップ 41)。そして、操作キー群24亿おけるキー入力によるデ ィスクイジェクト指令又はストップ指令が有ったか否か を判断し(ステップ42)、無い場合には、フォーカスサ ーボがロックインしたか否かを判断する(ステップ4 3)。フォーカスサーボがロックイン、即ちフォーカス がとれた場合には、タイマをクリアし(ステップ44)、 しかる後再びプレイ動作に移行する。フォーカスサーボ のロックイン信号が一定時間Tc内に得られないと(ステ ップ45)、その時点で今回のフォーカシング動作でフォ ーカシングがとれなかった(フォーカスNG)としてCPU2 0 に内蔵されたNGカウンタをインクリメントする(ステ ップ46)。そして、このカウンタのカウント値Nが所定 値、例えば「16」になったか否かを判断し(ステップ4 7) 、N≠16の場合には、ステップ40に戻ってフォーカ シング動作を再度行ない、フォーカスがとれるまで最大 16回連続してフォーカシング動作を繰り返す。

10

【0035】連続して16回フォーカシング動作を繰り返してもフォーカスがとれない場合には、NGカウンタをクリアし(ステップ48)、しかる後ストップ状態とする(ステップ49)。ここに、ストップ状態とは、ディスクが再生位置にあって主電源が遮断され各機構部が動作停止となった状態を言う。このストップ状態で、操作キー群5におけるキー入力によりプレイ指令が発せられたことを検知すると(ステップ50)、ステップ40に移行して再びフォーカシング動作を開始する。

【0036】このように、連続してフォーカシング動作を繰り返す回数を制限することにより、フォーカスアクチュエータ等を含むサーボ系にかかる負荷を軽減できると共に、ビックアップ14の発熱等を防止できることになる。また、フォーカシング動作中にディスクイジェクト指令又はストップ指令が有った場合には(ステップ42)、ステップ48に移行してNCカウンタをクリアし、しかる後ストップ状態とする。なお、ディスクイジェクトもつが有った場合には、ストップ状態を経てディスクのイジェクト動作に移行する。このようにイジェクト指令又はストップ指令が有った場合にNCカウンタをクリアすることにより、ストップ状態からプレイ状態に移行して再度フォーカシング動作を行なうときでも、フォーカスがとれるまで最大16回連続してフォーカシング動作を繰り返すことができることになる。

【0037】次に、特殊な動作としてブレイ時に自動車のアクセサリスイッチがオフされた場合の動作について、図10のフローチャートに従って説明する。

【0038】CPU20は、Acc 検出回路31の検出出力を所

30

定のサイクルで常時監視しており、当該検出出力により主電源(Acc)の断を検出すると(ステップ60)、続いて操作キー群5でのキー入力によるイジェクト指令が有るか否かを判断し(ステップ61)、イジェクト指令が有る場合には、再生位置にあるディスクをイジェクトすべく、モータ駆動回路30を介してローディングモータ7に対してイジェクト指令を発する(ステップ62)。イジェクト指令後、操作キー群5におけるキー入力等によるリロード指令が有るか否かを判断し(ステップ63)、リロード指令が無い場合には、イジェクト完了を検出し(ステップ64)、それ以降は動作停止状態となる。また、ステップ63においてリロード指令が有ると判定された場合には、その指令のためのキー入力を無視し(ステップ65)、しかる後ステップ64に移行する。

【0039】すなわち、主電源の断によりディスクをイジェクトしている最中には、ディスクのリロード指令を受け付けず、イジェクト動作からローディング動作により移行するのを禁止しているのである。これにより、ローディング動作とイジェクト動作が繰り返されることなく、バッテリ電圧の低下を防止できることになる。

【0040】次に、操作キー群5において、ボリューム「UP」、「DOWN」キー50,51 及びバランス「L」、

「R」キー52,53 が操作されたときに、CPU20 によって 実行されるキー処理方法について説明する。まず、ボリ ューム「UP」、「DOWN」キー50,51 の場合であるが、こ れらキーは先述した如く、各々音量の増大及び減少の指 令をなす機能を担っていると共に、両キーが共に操作

(いわゆる2重押し)されたときは音量を例えば20dB程度一度に下げる指令をなす機能をも担っており、以下そのキー処理方法について図11のフローチャートに従って説明する。

【0041】CPU20は、操作キー群5においていずれかのキーが押されたか否かを所定のサイクルで常時監視してステップ70)、いずれかのキーが押された場合には、そのキーが前回のサイクルのときと同じキーであるか否かを判断する(ステップ71)。前回と違うキーである場合には、CPU20に内蔵されたチャヤリングカウンタをスタートさせ(ステップ72)、続いてCPU20に内蔵された2重押しタイマをクリアし(ステップ73)、更に2重押しチェックフラグをオフにする(ステップ74)。なお、チャタリングカウンタはキー操作時のチャタリングを吸収して誤動作を防止するためのカウンタ、2重押しチェックフラグは操作されたキーが2重押し用のキーであることを示すフラグである。

【 0 0 4 2 】 ステップ 71で前回と同じキーであると判定した場合には、チャタリングカウンタがカウントオーバーしたか否かを判断し (ステップ 75)、オーバーしている場合には、2 重チェックフラグがオンか否かを判断する (ステップ 76)。前回のサイクルでは、ステップ 74で 50

2重押しチェックフラグをオフにしているので、続いて、押されているキーが2重押し用キーであるか否かを判断し(ステップ77)、2重押し用キーである場合には、2重押しタイマをスタートし(ステップ78)、更に2重押しチェックフラグをオンにする(ステップ79)。【0043】このように、2つの2重押し用キーのいずれかが押されることにより2重押しタイマがスタートし、そのタイマの動作期間中において、ステップ70でキーが押されていない、即ちキーが離されたと判定した場合には、2重押しチェックフラグがオンしていることを確認(ステップ80)、しかる後そのキーを有効とする(ステップ81)。

12

【0044】同様に、2重押しタイマの動作期間中において、ステップ76を経て当該タイマがタイムオーバーか否かを判断し(ステップ82)、タイムオーバーの場合には、その時点で押されているキーを有効とする(ステップ81)。また、タイムオーバーでない場合には、キーが2重押しされている場合には、ステップ81に移行して双方のキーを有効とし2重押しを受け付ける。

【0045】すなわち、CPU20は、2重押し用のキーが押された場合には、2重押しタイマを動作させ、そのタイマ動作期間中は、2重押し用の2つのキーのいずれかが押されているときはキーが離れたことを検出することによってそのキーを受け付け、又両方のキーが共に押されたときには2重押しとして受け付け、更にタイマ動作期間が過ぎた時点で2つのキーのいずれかが押されているときはそのキーを受け付ける処理を行なうのである。そして、各キーを受け付けた後は、各キーの機能又は2重押し機能を実行すべく電子ボリューム27(図4参照)に対してデータ及びクロックを送出する。

【0046】このように、2重押しタイマを設け、当該タイマの動作期間中に1つのキーが押された後、離されたことを検出することにより、タイマ動作期間中でも1つのキー処理を行なうことができるので、早い繰返しのキー操作にも迅速に対応できることになる。

【0047】なお、本実施例においては、2重押し用キーのキー処理方法として、ボリューム「UP」,「DOWN」キー50,51 の場合について説明したが、これらのキーに限定されるものではない。また、適用される機器も、本ディスクプレーヤに限定されるものではない。

【0048】続いて、バランス「L」、「R」キー52,53 により左右チャンネルの音量のバランスを調整する場合の処理方法について、図12のフローチャートに従って説明する。

【0049】CPU20は、操作キー群5においていずれかのキーが押されたか否かを所定のサイクルで常時監視し、押された場合にはそのキーがバランス「L」又は「R」キー52又は53であるか否かを判断する(ステップ

90)。いずれかのキーが押されている場合には、そのキ

ーに対応したキー識別データがCPU20 に内蔵されたレジ スタに記憶される。バランス「L」, 「R」キー52,53 のいずれでも無い場合には、レジスタをリセットし(ス テップ91)、しかる後、次のサイクル待ちとなる。

【0050】ステップ90でバランス「L」又は「R」キ -52又は53が押されていると判定した場合には、前回レ ジスタに記憶されたキー識別データと今回のキー識別デ ータとを比較することにより、そのキーが前回のサイク ルのときと同じキーであるか否かを判断する(ステップ 92)。この判断により、同じキーが連続して押されてい 10 るか否かを判定できるのである。連続押しでない場合に は、レジスタのキー識別データを書き換え(ステップ9 3) 、続いてそのキーがバランス「L」キー52か否かを 判断する (ステップ94)。バランス「L」キー52である 場合には、Lチャンネルの音量を増大しかつRチャンネ ルの音量を減少せしめるべく、電子ボリューム27(図4 参照) に対してデータ及びクロックを送出し (ステップ 95)、バランス「R」キー53である場合にはその逆の制 御を行なう(ステップ96)。

【0051】ステップ92で連続押しと判定した場合に は、左右チャンネルの音量バランスがとれた(センター バランス状態)か否かを判断し(ステップ97)、バラン スがとれていない場合にはステップ94に移行して上述と 同様の動作を行ない、バランスがとれた場合にはその時 点で連続押しの受け付けを止める。センターバランス状 態は、電子ボリューム回路27に対して送出する左右チャ ンネルのデータを比較し両データの一致をみることによ って検出できる。

【0052】このように、バランスキーが連続押しされ ているときにセンターバランス状態になったら、その時 30 点で連続押しの受け付けを止めることにより、いわゆる センタークリック効果が得られるので、簡単にかつ確実 にセンターバランス状態を得ることができると共に、表 示を見ないでの操作が可能となる。従って、特に表示を 確認しないで操作する機会が多い車載用機器に有用であ る。

【0053】なお、本実施例では、上述した音量バラン スの処理方法をディスクプレーヤにおける電子ボリュー ム回路に適用した場合について説明したが、これに限定 されるものではなく、通常のトーンコントロール回路や 40 13 イジェクト完了検出スイッチ フェーダーコントロール回路等にも適用し得るものであ る。

[0054]

【発明の効果】以上説明したように、本発明による表示

方法によれば、ディスクがプレーヤ内に挿入されると情 報片数または/及び再生時間を読み取るとともに、その 読み取り動作中は表示部に所定の表示を行うため、ユー ザはプレーヤが動作を行っていることを知ることができ ると共に、読取り完了後、自動的に情報片数または/及 び再生時間を表示部に所定時間だけ表示することによ り、ユーザが容易に適切なタイミングにディスクの記録 情報を把握することができる。このように、プレーヤの 使い勝手が向上する。

【図面の簡単な説明】

【図1】ディスクプレーヤの外観を示す概略斜視図。

【図2】ディスクプレーヤの内部構造を示す概略構成

【図3】制御系の回路構成を示すブロック図。

【図4】図3の回路の一部具体的構成を示すブロック

【図5】表示方法の一例を示す図。

【図6】CPU によって実行される各動作手順を示すフロ ーチャートである。

【図7】CPU によって実行される各動作手順を示すフロ 20 ーチャートである。

【図8】CPU によって実行される各動作手順を示すフロ ーチャートである。

【図9】CPU によって実行される各動作手順を示すフロ ーチャートである。

【図10】CPU によって実行される各動作手順を示すフ ローチャートである。

【図11】CPU によって実行される各動作手順を示すフ ローチャートである。

【図12】CPU によって実行される各動作手順を示すフ ローチャートである。

【符号の説明】

- 1 ハウジング
- 3 ディスク
- 4 スロット
- 5 操作キー群
- 7 ローディングモータ
- 9 スピンドルモータ
- 11 ディスク検出スイッチ
- - 14 ピックアップ
 - 15 キャリッジモータ
 - 27 電子ボリューム回路

【図3】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

フロントページの続き

(56)参考文献 特開 昭58-208979 (JP, A)

特開 昭60-69863 (JP, A)

実開 昭59-130287 (JP, U)

(58)調査した分野(Int.C1.º, DB名)

G11B 19/02 501

ENGUSH TRANSLATION

PU020345 J(JP2884525) ON 7604

- (19) Patent Agency of Japan (JP)
- (12) Official report on patent publication (B2)
- (11) Patent number: 2884525
- (45) Day of publication: 19.04.1999
- (24) Registration date: 12.02.1999
- (51) Int.Cl.⁶

Distinction sign FI

G 11 B 19/02

501

G11B 1

19/02

501 G

Number of inventions: 1

(16 pages)

- (21) Application number: 9-340889
- (62) Display of division: division of 61-103508
- (22) Date of filing: 06.05.1986
- (65) Publication number: 10-172223
- (43) Date of publication of application: 26.06.1998 Examination billing date: 27.11.1997
- (73) Patent holder: 000005016

PIONEER ELECTRONIC CORP Tokyo, Meguro-ku, Meguro 1 cho 4 ban 1 go

- (72) Inventor: AOYANAGI YOSHIRO Saitama-ken Kawagoe city Oji Yamada Jinishi-cho 25 banchi 1 PIONEER ELECTRONIC CORP Kawagoe factory
- (72) Inventor: KIMURA TOSHIYUKI Saitama-ken Kawagoe city Oji Yamada Jinishi-cho 25 banchi 1 PIONEER ELECTRONIC CORP Kawagoe factory
- (72) Inventor: SAITO YOSHINORI Saitama-ken Kawagoe city Oji Yamada Jinishi-cho 25 banchi 1 PIONEER ELECTRONIC CORP Kawagoe factory

Examination officer Ako Furio continued on last page (54) Name of invention: DISPLAY METHOD AT DISK PLAYER

(57) Sphere of patent's claim

1. A display method at disk player that is

a display method at disk player that reproduces a disk with information fragments number that shows the number of main recorded information recorded together with main recorded information which is a principal information, or/and a playback time of the main recorded information,

and is characteristic of having provided a 1st operation that, when being installed in the disk player, performs prescribed display at the display part while reading the above-mentioned information fragments number or/and the aforesaid playback time,

and a 2nd operation that shows automatically the above-mentioned information fragments number or/and the aforesaid playback time for only a prescribed period of time when the reading of the above-mentioned information fragments number or/and the above-mentioned playback time is over.

- 2. A display method at disk player described in request item 1 which is characteristic of having a 3rd operation that shows the playback condition information concerning the playback of the aforesaid main information after the above-mentioned prescribed period of time has passed.
- 3. A display method at disk player described in request item 2 which is characteristic of having a 4th operation that transfers the operation to the display of the above-

mentioned playback condition information if another mode was specified during the prescribed time.

- 4. A display method at disk player described in request items 1-3 which is characteristic of the fact that the above-mentioned playback time is a general absolute time of the aforesaid main recorded information or the performance time of each of the track.
- 5. A display method at disk player described in request items 1-4 which is characteristic of the fact that the above-mentioned prescribed display is a blinking of display element of one part installed in the display part.
- 6. A display method at disk player described in request items 2-5 which is characteristic of the fact that the above-mentioned playback condition information is song number, or track number, or the time passed from the beginning of performance of each of the songs.

[Detailed explanation of the invention] [0001]

[Sphere of usage in industry]

This invention concerns a display method at disk player.

[0002]

[Conventional technology] In digital audio disk of small type with the diameter of about 12 cm, information such as song number, general absolute rime, performance time of each song etc. of the main recorded information is recorded in the read-in area of this disk together with main recorded information such as songs etc., and when the disk is reproduced, this recorded information

from the read-in area is being read. Then playback operation starts based on this read information. [0003]

[Problems which invention tries to solve] This invention aims at transmitting adequately to the user information that is needed for understanding the recorded content of the disk, such as sing number, playback time etc. of the main recorded information, and at transmitting the operational status of the disk player.

[0004]

[Devices used to solve the invention (problem?)] The display method at disk player from this invention is characteristic of having a 1st operation that reads the information fragments number or/and playback time when the disk is inserted in the player and at the same time performs a prescribed display at the display part during this reading operation, and a 2nd operation where the information fragments number or/and playback time is shown in the display part only for a prescribed time automatically after reading of information fragments number or/and playback time is finished. [0005]

Examples of embodiment

Below we explain examples of embodiment of this invention in detail referring to the diagrams.

Diagram 1 is a schematic perspective view that shows an external view of on vehicle auto loading player of slot-in type that is applied by this invention, diagram 2 is a schematic perspective view that shows its inner structure. Firstly, in diagram 1 in front panel 2 that constitutes a part of front cover (housing) 1 a slot 4 disk 3 that has to be reproduced is set up being extended in left and right direction of the diagram. As for disk 3, for instance when it is a so-called compact disk which was recorded with audio information being PCM (Pulse Code Modulation)-"ized", its external diameter is about 12 cm. A number of operation keys for performing operation commands of various types concerning this disk player, such as play list, disk eject commands etc., is additionally arranged at front panel 2. A group of operation keys 5 is formed by these keys. [0006]

In diagram 2, disk 3 inserted from slot 4 is made to occupy a predetermined position (below referred to as slot position) in tray 6 by positioning device not shown in the diagram, and one part of disk 3 is supported at tray 6 in the condition protruded to the outer (side) of front panel 2. Tray 6 has a loading mechanism for feeding the supported disk 3 between slot position and playback position at housing 1 which is described below with the help of loading motor 7 which is a driving source, drive force transmission mechanism 8 that transmits the rotation drive force of this motor 7 to tray 6 as a straight line drive force of left and right as well as up and down directions of the diagram, etc.

[0007]

In this loading mechanism, tray 6 supports disk 3 that was set to slot position, transfers it from full line position in the diagram into right direction, drops directly below at the point of time when the central hole of disk 3 got at the turntable 10 which is firmly fixed to the axis of rotation of spindle motor 9, and after disk 3 was placed at the turntable 10 drops it even more, and stops at the position when it has slightly come between from the disk surface shown by chain double-dashed line in the diagram. Carrying in (loading) operations of disk 3 are executed with the help of a series of operations described above. The position when disk 3 was placed at the turntable 10 is the above-mentioned playback position. Moreover, carrying (taking) out (eject) operation is performed following a completely opposite path to the case of the aforesaid loading operation by inverse rotation of loading motor 7. Also here we don't explain in detail about the structure as well as operations of the above-mentioned loading mechanism, because this was done by the same applicant in patents with application numbers 59-200145~200153.

[8000]

Detection switches of various types are set up inside housing 1. Firstly, a disk detection switch that detects that disk 3 is in slot position is set up, and this disk detection switch 11 becomes ON when disk 3 is set in slot position and becomes OFF when disk 3 gets out from this position. Loading completion detection switch

12 becomes ON after disk 3 is placed at the turntable 10 and engages to tray 6, and detects that loading operation is finished. Also, eject completion detection switch 13 becomes ON when (the disk) engages to tray 6 that has reached the farthest side (side of front panel 2) position during eject operation due to loading mechanism, and detects that eject operation is finished. [0009]

Disk 3 placed at the turntable 10 is being rotary driven by spindle motor 9, and its recorded information is read by optical pickup 14. Pickup 14 is mounted in carriage (not shown in the diagram) set up movably in radial direction of disk 3, and this carriage is driven (activated) by carriage motor 15 through gear mechanism 16. Each of the signals occurring from operation key group 5 set up at front panel 2, detection switches 11-13 described above etc. is transmitted to control system which is placed in a predetermined position inside housing 1 and is shown in diagram 3.

[0010]

The structure of control system is shown in diagram 3. This control system consists of microcomputer that includes CPU (central processing unit) 20 which is the centre of control, of RAM (random access memory) 21 which is a memorizing means etc. CPU 20, on the basis of the signals generated from operation key group 5 and each of the detection switches 11-13 etc., generates control signal concerning spindle servo circuit 22 that performs control of rotation speed of spindle motor 9,

and concerning motor drive circuit 30 that drives carriage servo circuit 23 which performs control of rotation speed of carriage motor 15 as well as loading motor 7 etc. at the timing described below. It also outputs display data concerning display 24 that performs various displays. [0011]

Read information that was read from disk 3 by pickup 14 is demodulated at signal processing circuit 25, and, after the signal management such as error correction etc. ahs been made is supplied to CPU 20. Along with this, it is converted (transformed) into analog information at D/A (digital/analog) converter 26, and output as audio signal of left (L) and right (R) channels through electronic volume circuit 27. And a tracking servo circuit 29 that performs control of position in disk radial direction of the information reading spot concerning recorded tracks of disk 3 is installed in focus servo circuit 28 that performs control of position of vertical direction concerning the recording surface of concentration of light (light focus) of information reading spot that is converged to this recorded surface of disk 3 and also is generated from pickup 14.

[0012]

Focus servo circuit 28 responds to commands generated from CPU 20 at the time of out-of-focusing when playback starts or during playback, and controls focusing operations of pickup 14 that have to be performed. When playback is normal, it controls drive of focus actuator (not shown in the diagram) that mounted in

pickup 14 based on focus error signal generated by widely known detection methods such as astigmatic method etc. It also sends a lock-in signal to CPU 20 at the leading-in of the focus servo. On the other hand, tracking servo circuit 29 supplies drive signal response to commands generated from CPU 20 during jumps etc. concerning the tracking actuator (not shown in the diagram) built-in pickup 14, and controls the position of the above-mentioned information reading point at disk radial direction by supplying tracking error signal generating by widely known generation methods such as 3 beams method etc. during normal playback. Moreover, tracking error signal is also supplied to carriage servo circuit 23, and its low area components become a drive signal of carriage motor 15 during normal playback.

[0013]

Because this disk player is used in vehicles, CPU 20 operates with the help of back-up electrical current source, and all mechanism parts are constituted so that to operate with the help of main electrical current source supplied due to ON (position) of a so-called accessory switch (not shown in the diagram) of a car. However, of all mechanism parts, only loading mechanism that includes loading motor 7 as well as its drive circuit 30 is made so that to be able to eject the disk 3 that is being loaded inside housing 1 even when the main electrical current source is OFF, and so that to operate with the help of back-up electrical current source. In addition, an

Acc detection circuit 31 for detecting bluffs (drop-offs) of the main electrical current source is installed, and this Acc detection circuit 31 supplies detection signal to CPU 20 when the main electrical current source is cut out.

[0014] As shown in diagram 4, among the operation key group 5 there are volume "UP" key 50 as well as volume "DOWN" key 51 that perform commands of increasing (UP) and decreasing (DOWN) the volume, and also balance "L" key 52 as well as balance "R" key 53 for taking balance of volume of left and right channels. Processing when these keys are manipulated provided by CPU 20 in a soft way. In other words, CPU 20 sends data and clock that has to increase or decrease simultaneously the volume of both left and right channels concerning electronic volume circuit 27 when volume "UP" key 50 or volume "DOWN" key 51 are manipulated. When balance "L" key 52 or balance "R" key 53 are manipulated, (it) sends data and clock that has to increase volume of one channel and also to decrease volume of another channel, and we explain in detail about these processing methods below.

The condition of changes in volume at this time is shown at display 24. Moreover, things of well-known structure that consist, for instance, of several resistors that are connected in series or of several analog switches connected in parallel way to each of these resistors, and that provide volume control by making these several analog switches ON and OFF in response to data from CPU 20 can also be used as electrical volume circuit 27.

[0015]

Volume "UP" button 50 and volume "DOWN" button 51 not only have respectively the functions that perform commands of increasing and decreasing the volume, as was described above, but these two keys50 and 51, when manipulated together, have the function of performing the command of, for instance, decreasing the volume by 20dB at a time.

[0016]

Below we explain the procedure of operations of this auto loading disk player that is realized by CPU 20 referring to flow charts of diagrams 6-12 in the order of playback.

[0017]

Firstly, we explain a series of operations of loading, execution (performance) as well as eject according to the flow chart of diagram 6. Disk 3 is inserted from slot 4 into housing 1, and when it is set at slot position at tray 6, as shown in diagram 2, disk detection switch 11 becomes ON. When CPU 20 detects that this disk detection switch 11 is ON (step 1), a loading command concerning loading motor 7 is generated through motor drive circuit 30. Due to this, loading motor 7 rotates, loading mechanism boots up and loading operation begins (step 2). Tray 6 that supports disk 3 transfers from the position shown in diagram 2 by continuous line into right direction, and when it reaches the upper part of turntable 10, it drops right below from this position and disk 3 is placed at turntable 10 due to this, as shown in

diagram 2 by chain double-dashed line. Loading operations finish due to the series of operations described above. At this time, loading completion detection switch 12 becomes ON. CPU 20, when the completion of loading is detected (step 3) due to the ON output of this loading completion switch 12, moves to focus mode (step 4) for taking the focus (focusing) of pickup 14. We explain about this focus mode below. [0018]

When focus is taken at focus mode, reading operation of pickup 14 begins, but prior to reading program area, reading of recorded information in read-in area of disk 3 begins (step 5), and operation transfers to play mode (step 7) through after-display mode (step 6). TOC information that was read is committed to RAM 21 memory. A so-called TOC (Table of Contents) information such as number of songs that the disk includes, general absolute time, time of performance of each song etc. is recorded in the read-in area of the disk, and it is necessary to read this TOC information when performance begins. Operations such as program selecting songs, scanning, search etc. are performed in play mode besides regular sequential execution. [0019]

When performance is over, carriage (not shown in the diagram) that has a pickup 14 mounted reaches its transfer end position, and when detection switch not shown in the diagram is made ON, CPU 20 detects that performance is finished at this point of time (step 8), and

eject command is generated concerning loading motor 7 through motor drive circuit 30. Due to this, loading motor 7 begins eject operation by rotation in the direction opposite to that of loading operation (step 9). In this eject operation, tray 6 takes out disk 3 from restart position to slot position following the process completely opposite to that of loading motor operation, tray 6 reaches the farthest position shown in diagram 2 by continuous line, and eject completion detection switch 13 becomes ON. [0020]

When CPU 20 detects that eject is completed (step 10) with the help of ON output from this eject completion detection switch 13, then it is decided whether there is or not a reload command due to key input from operation key group 5 etc. (step 11), and in case there is a reload command, loading command is generated once again concerning loading motor 7 through motor drive circuit 30, and loading operation starts (step 12). When the completion of loading operation is detected (step 13), CPU 20 controls that the operation transfers right through to play mode (step 7) without executing reading of TOC information, as it is the performance of the same disk as previously and its TOC information is memorized in RAM 21 and is effective (available).

[0021]

After eject is completed and when at step 11 it was decided that there was no reload command, then it is decided whether or not disk 3 got out from slot position (step 14). Getting out of this disk 3 can be detected by

OFF output from disk detection switch 11. At the point of time when at step 14 it was decided that disk 3 was extracted from slot position, TOC information memorized in RAM 21 is made invalid (step 15), and invalid flag is on. A series of operations — loading, performance and eject — is finished by the operations described above. [0022]

In the series of operations described above, due to the fact that it is made so that TOC information memorized in RAM 21 is not made invalid at the point of time when eject operation of disk 3 is finished, and it is first made invalid at the point of time when disk 3 is extracted from slot position, when continuing the performance of the disk that was ejected, there is no need to read TOC information once again, and operation transfers to performance operation in a smooth way.

[0023] And now we explain about focus mode (step 4) at diagram 6 with the help of flow chart of diagram 7.

[0024] CPU 20 at first generates starting command of focusing operation (step 20) concerning focus servo circuit 28, and a prescribed (limited) time Ta timer which is built-in in CPU 20 is started simultaneously (step 21). Then it is decided whether focus servo has locked-in or not (step 22), and in case it has locked-in, timer is cleared (step 23), and operation returns to main flow of diagram 5. Moreover, the decision whether focus servo has locked-in or not can be made using lock-in signal generated from focus servo circuit 28 when focus servo has locked-in.

[0025]

In case it was decided that lock-in is not made at step 22, it is decided whether a prescribed time Ta has passed or not (step 24), and if it has passed, it is necessary to eject the disk that was loaded in the restart position, and eject command is generated concerning loading motor through motor drive circuit 30 (step 25). In other words, disk is ejected when focus was not taken because of disk blems, stains, or reverse inserting of the disk etc. after the prescribed time Ta has passed. [0026]

It is decided whether or not reload command was generated due to key input of operation key group 5 etc. (step 26) after eject command, and there was no reload command, eject completion is detected (step 27) and after that operations are stopped. And if at step 26 it was decided that there was reload command, key input for this command is ignored (step 28) and operation transfers to step 27.

[0027]

In other words, when focusing is not made due to disk blems, stains or reverse inserting of the disk etc. and the disk is being ejected, disk reload command is not accepted and transfer from eject operation to loading operation is restricted. Due to this, the user can quickly understand that he has inserted the disk in a reverse way, and when there are blems or stains at the disk, it is possible to prevent the performance of this disk before it begins.

[0028]

And now we explain about display mode (step 6) at diagram 6 referring to flow chart of diagram 8. [0029]

Reading of TOC information begins in main flow of diagram 6 (step 5), and after the operation proceeds to this display mode, display of prescribed information at disk display 24, such as, for instance, blinking display using 1 segment "----" of the centre of display device of 7 segments as shown in diagram 5 is performed (step 30) from the point of time of starting reading the TOC information, and when reading of TOC information is finished (step 31), a prescribed time Tb (for instance, 5 sec) timer which is built-in in CPU 20 is started (step 32), and display of read information, in other words, number of songs and general absolute time etc. takes place simultaneously (step 33). What is more, in flow chart in diagram 6 display mode and play mode were shown as modes because different this was needed explanation, but in display mode operation proceeds to play operation after TOC information was read. [0030]

Usually after loading of disk is finished and during socalled setup up to transferring to play operation when TOC information is read, there are cases when the user cannot decide on what operational condition the player is in because TOC information is not read yet, there is no data to be shown at display 24 and nothing can be shown. However, as was described above, even when there is no TOC information it is possible to make the user understand that the player is in setup condition by displaying some information. Moreover, display information in such case is not limited to blinking display of "----" using display device of 7 segments.
[0031]

At the condition when the number of songs as well as general absolute time is shown, when it was detected that the other modes were specified by key input of track +-, FF, REV etc. keys from operation key group 5 (step 34), timer is cleared (step 35) and a display of performance (playback) condition information, in other words, track number, time which has passed since the beginning of performance of each track (min, sec) etc. is performed based on read information from pickup 14 that is reproducing program area (step 36). This information about condition of performance is recorded in a so-called Q channel of sub-code at CD format, and can be detected from read information of pickup 14. And in the condition when the number of songs (tracks) as well as general absolute time etc. is shown, this display condition, when it is determined that only the prescribed time Tb has passed (step 37), transfers to step 36, and switches to the display of performance condition information that was described above. [0032]

In other words, TOC information that was read is shown for only a prescribed period of time Tb, and in case when other modes were specified before the prescribed time Tb has passed, display is switched to performance condition display at this point of time, and when the prescribed time Tb passes it automatically switches to display of performance condition information. [0033]

And now we explain about the operations at the time of out-of-focusing during the play referring to flow chart at diagram 9.

[0034]

CPU 20 constantly observes the lock-in signal generated at the lock-in condition of servo loop from focus servo circuit 28 at prescribed cycles, and when it is detected that the lock-in signal is annihilated, it is decided that the out-of-focusing condition took place, starting command for focusing operation is generated concerning focus servo circuit 28 (step 40), and a timer of prescribed time Tc that is built-in in CPU 20 is started simultaneously (step 41). Then it is decided whether there was a disk eject command or stop command due to key input from operation key group 24 (step 42), and if there was no such command, it is decided whether focus servo is in lock-in condition or not (step 43). If focus servo is locked-in, or, in other words, if focusing took place, timer is cleared (step 44), and operation transfers to play operation once again. If the lock-in signal of focus servo is not gained within the prescribed time Tc (step 45), at this point of time NG counter which is built-in in CPU 20 is incremented as the fact that focusing was not made at focusing operation this time (focus NG) (step 46).

Then it is decided whether the count value N of this counter has become a prescribed value, for instance, "16" (step 47), and in case N?16, operation returns to step 40 and focusing operation is performed once again, and focusing operation is repeated for up to 16 times until focusing is made.

[0035]

In case focusing was not made even when focusing operation was repeated 16 times in a row, NG counter is cleared (step 48), and after this operation is stopped (step 49). Here under stop condition (mode) we mean the condition when the disk is in playback position, the main electrical current source is blocked (cut) off and parts of all mechanisms stop operating. If it is detected that a play command was generated by key input from operation key group 5 (step 50), operation transfers to step 40 and focusing operation begins once again.

[0036]

In such way, by limiting the number of times of repeating focusing operations in a row, it is possible to lessen the burden (load) on servo system that includes focus actuator etc. and at the same time to prevent heat generation etc. of pickup 14. Also, in case there were disk eject command or stop command during the focusing operation (step 42), operation proceeds to step 48, NG counter is cleared and after this operation is stopped. Moreover, in case there was disk eject command, operation proceeds to disk eject operation through stop condition. By clearing the NG counter in such way when there were eject command or stop command, it is possible to repeat focusing operation up to 16 times until focusing is made even when operation proceeds from stop condition to play condition and focusing operation is executed once again.

[0037]

Below we explain about the operations when the accessory switch of the car was turned OFF during the play as special operations referring to the flow chart of diagram 10.

[0038]

CPU 20 constantly observes the detection output of Acc detection circuit 31 at prescribed cycle, and when the bluff (cut-off) of the main electricity supply source due to this detection output is detected (step 60), it is then decided whether there is an eject command due to key output from operation key group 5 (step 61), and in case there is an eject command, the disk that is in playback position has to be ejected, and eject command is generated concerning loading motor 7 through motor drive circuit 30 (step 62). After the eject command, it is decided whether there is a reload command due to key input from operation key group 5 etc. (step 63), and in case there is no reload command, eject completion is detected (step 64) and operations are stopped after this. However, when at step 63 it was decided that there is a reload command, key input for this command is ignored and operation proceeds to step 64.

[0039]

In other words, when the disk is being ejected because of bluff of the main electricity supply source, the disk reload command is not accepted, and the transfer from eject operation to loading operation is restricted. Due to this, loading operation and eject operation do not repeat, and cut-down of battery voltage can be prevented. [0040]

And now we explain about key processing methods that are realized by CPU 20 when volume "UP", "DOWN" keys 50, 51 as well as balance "L" and "R" keys 52, 53 from operation key group 5 are manipulated. Firstly, let us examine the case with volume "UP", "DOWN" keys 50, 51. These keys, as was described above, have the functions of performing the commands of increasing and decreasing the volume, and at the same time, when both of the keys are manipulated together (so-called double pressing), they also have the function of performing the command of for instance decreasing the volume by about 20 dB at a time, and below we explain about this key processing method referring to the flowchart of diagram 11.

[0041]

CPU 20 constantly observes at prescribed cycle whether any key from operation key group 5 was manipulated or not (step 70), and in case some of the keys were manipulated, it decides whether this key is the same as that of the previous cycle (step 71). In case it is a key different from the previous time, a chattering counter built-in CPU 20 is started (step 72), and then double-press timer which is built-in in CPU 20 is cleared (step 73), and double pressing check flag is made OFF (step 74). Moreover, a chattering counter is a counter for preventing false operation by absorbing chattering during key manipulation, double-pressing timer is a timer for observing double pressing of keys, and double-pressing check flag is a flag that shows that the manipulated keys are the keys for double-pressing.

[0042]

In case it was determined at step 71 that it is a key the same as previous time, it is decided whether a chattering counter has counted over or not (step 75), and in case it has, it is decided whether double check flag is ON or not (step 76). At the previous cycle, because double-pressing check flag is made OFF at step 74, it is next decided whether the key that is pressed is a key for double-pressing (step 77), and if it is a key for double-pressing, a double-pressing timer is started (step 78), and in addition a double-pressing check flag is made ON (step 79).

[0043]

A double-pressing timer is started due to the fact that one of the 2 double-pressing keys was pressed, and in case that during the operational period of this timer key is not pressed at step 70, or, in other words, it is determined that the keys are set apart, it is verified that a double-pressing check flag is ON (step 80) and after this key is made valid (effective) (step 81).

[0044]

Similarly, during the operational period of a double-pressing timer, it is decided whether this timer is time-over or not (step 82) using step 76, and in case it is time-over, a key that is pressed at this point of time is made valid (step 81). Also, in case it is not time-over (out of time), it is decided whether a key is pressed twice (double-pressed) or not (step 83), and in case it is, operation transfers to step 81, both keys are made valid and double-pressing is accepted.

[0045]

In other words, CPU 20, when keys for double-pressing are pressed, makes a double-pressing timer operate, and by detecting that the key bears (comes) off when one of the 2 keys for double-pressing is pressed during the operational period of this timer, this key is received (accepted). At the same time, when both keys are pressed together it is received as double-pressing, and when one of 2 keys is pressed at the point of time when timer operation period has passed, the processing of accepting this key is executed. After that, when each of the keys was received, data and clock is being sent concerning electronic volume 27 (see diagram 4 for reference) that has to realize function of each key or double-pressing function.

[0046]

In such way, by installing a double-pressing timer and detecting that one of the keys is set apart after it is pressed during the operational period of this timer, it is possible to provide processing of 1 key even during timer operational period, therefore a quick reaction can be provided even concerning fast repetition of key manipulation.

[0047]

Moreover, in this example of embodiment we have explained about the case of volume "UP", "DOWN" keys 50, 51 as a key processing method of keys for double-pressing, but it is not limited only to these keys. And equipment that can be applied is also not limited to this disk player.

[0048]

Below we explain about the processing (treating) method in case of adjusting the volume balance of left and right channels by balance "L", "R" keys 52, 53 referring to flow chart of diagram 12.

[0049]

CPU 20 constantly observes whether some of the key of operation key group 5 is pressed or not at prescribed cycles, and if it is pressed, it is decided whether this key is balance "L" or "R" key 52 or 53 or not (step 90). In case one of the keys is pressed, a key identification data is memorized in register which is built-in in CPU 20. In case it is neither balance "L", nor "R" key 52, 53, register is reset (step 91), and after that operation proceeds to waiting for the next cycle.

[0050]

In case it is determined that at step 90 balance "L" or "R" key 52 or 53 was pressed, key identification data that

was memorized in the register during the previous time is compared with this time's key identification data, and it is decided due to this whether this key is the same as the key during the previous cycle or not (step 92). With the help of this decision it is possible to determine whether the same key is pressed continuously or not. In case it is not continuous pressing, key identification data of the register is rewritten (step 93) and then it is decided whether this key is balance "L" key 52 or not (step 94). In case it is balance "L" key 52, the volume of L channel has to be increased and the volume of R channel has to be decreased, data as well as clock is being sent concerning electronic volume 27 (see diagram 4 for reference) (step 95), and if it is a balance "R" key 53, control opposite to this is made (step 96). [0051]

If at step 92 it was determined that it is a continuous pressing, it is decided whether the volume balance between left and right channel (centre balance condition) was gained (step 97), and if the balance is not reached operation transfers to step 94 and operations that were described above are executed. If balance was gained, receiving the continuous pressing is stopped at this point of time. Centre balance condition can be detected by comparing the data of left and right channel that is being sent concerning electric volume circuit 27 and by observing the accordance (conformance) of these data.

[0052] By stopping receiving the continuous pressing at the point of time when centre balance condition took place at the time when balance keys are being continuously pressed, a so-called centre click effect is reached and therefore, along with the fact that it is possible to reach centre balance condition easily and certainly, operations without watching the display also become possible. Consequently, this can be effectively used especially in on vehicle devices where there are many cases of manipulating without verifying the display. [0053] Moreover, at this embodiment of invention we have explained about the case when the volume balance processing method has been applied at the electric volume circuit of disk player, but this is not limited only to such thing, and can also be applied at usual tone control circuits and Feder control circuits etc.

[0054] [Effect of invention]

As was described above, with the help of a display method of this invention the user can understand that the player is operating because a prescribed display takes place in the display part during the reading operation of information fragments number or/and playback time when the disk is inserted in the player. Along with this, when the reading is over, the user can easily and at an adequate timing "grasp" the recorded information of the disk due to showing the information fragments number or/and playback time at the display part for only a prescribed period of time. In such way the usability of the player is improved.

[Simple explanation of diagrams]

Diagram 1 is a schematic perspective view that shows an external view of on vehicle auto loading player that concerns this invention, diagram 2 is a schematic perspective view that shows its inner structure, diagram 3 is a block diagram that shows circuit structure of the control system, diagram 4 is a block diagram that shows a specific structure of one part of the circuit of diagram 3, diagram 5 is a diagram that shows an example of display method, diagrams 6-12 are flow charts that show procedures of each of the operations realized by the CPU.

```
Explanation of principal symbols:
1 --- housing, 3 --- disk,
4 --- slot, 5 --- operation key group,
7 --- loading motor, 9 --- spindle motor,
11 --- disk detection switch.
12 --- loading completion detection switch.
13 --- eject completion detection switch,
14 --- pickup,
15 --- carriage motor,
27 --- electric volume circuit.
Continued from front page
(56) Reference literature
                             patent number 58-208979.
A) (58) sphere of search (Int.Cl<sup>5</sup>, DB name)
G11B 19/02
                50
patent number 60-69863 (JP, A)
actual number 59-130287 (JP, U)
```

Diagram 1

Diagram 6

Diagram 2

Diagram 3

Diagram 4

Diagram 5

