CONTROLEIRRIGACAO

HOME ABOUT

AUTHOR ARCHIVES: CONTROLEIRRIGACAO

November 9, 2014 Leave a comment

Leitura e processamento das variáveis

Ao realizar a inserção dos sensores no projeto, é possível obter a leitura das

SEARCH

SEARCH

RECENT POSTS

- Leitura e processame das variávei
- Aplicação dos sensores de umidade do solo no projeto
- importância da agricultura e da irrigação
- Sensor de medição de umidade doo solo

RECENT POSTS

- Leitura e processamento das variáveis
- Aplicação dos sensores de umidade do solo no projeto
- A importância da agricultura e da irrigação
- Sensor de medição de umidade doo solo
- importância Estruturação e da comunicação

RECENT COMMENTS

variáveis a serem interpretas. Com isso é possível desenvolver um algoritmo que possibilite a abertura ou fechamento da válvula de irrigação.

Visto isso, segue abaixo as imagens da montagem dos sensores no projeto:

Estruturaçã ARCHIVES

comunicaçã November 2014

October 2014

September 2014

RECENT COMMENTS

CATEGORIES

Uncategorized

ARCHIVES

November 2014

October 2014

September 2014

Entries RSS

META

Register

Log in

Comments RSS

WordPress.com

CATEGORIE

Uncategorized

META

Register

Log in

Entries RSS

Comments

RSS

WordPress.cor

Dessa forma, ao ler os valores de temperatura e umidade, o sistema verifica a necessidade de ativar ou desativar sinal para a válvula. Esse processamento é feito pelo algoritmo abaixo:

Na imagem acima, é possível observar, na parte direita, os valores lidos pelo sensor.

Permalink.

November 9, 2014 Leave a comment

Aplicação dos sensores de umidade do solo no projeto

Visto que o projeto está sendo desenvolvido com o intuito de possibilitar a irrigação quando as condições de umidade e temperatura presentes no ambiente não estiverem favoráveis às plantas, faz-se necessário o uso de sensores para identificação desses fatores.

Para tanto, foi necessário o acompanhamento de 3 variáveis: Temperatura, umidade do ar e umidade do solo.

Assim, para a medição das duas primeiras variáveis, foi utilizado o sensor DHT11, o qual descrevemos suas especificações aplicações no post https://controleirrigacao.wordpress.com e-temperatura/.

Para medição da umidade do solo, foi utilizado o sensor HL-69.

Este sensor utiliza as duas sondas para passar corrente através do solo, e, em seguida, realiza a leitura do valor de resistência para obter o nível de humidade. Mais água faz com que o comportamento do solo permitir a passagem de eletricidade mais facilmente (menor resistência), enquanto que o solo seco conduz eletricidade mal (mais resistência).

Abaixo segue a imagem de como o sensor é esquematizado:

Permalink.

November 2, 2014 Leave a comment

A importância da agricultura e da irrigação

Conforme matéria publicada por Dana

no Jornal Folha de São Paulo no link http://www1.folha.uol.com.br/colunas/c a-importancia-da-agricultura-brasileira-em-numeros.shtml, podemos observar abaixo diversas informações sobre a importância da agricultura.

O agronegócio é um setor fundamental na economia brasileira. Segundo pesquisa da USP, esse setor representou 22,8% do PIB (Produto Interno Bruto) nacional em 2013, de acordo com a CNA (Confederação Nacional da Agricultura) e também é responsável por 32% dos empregos e 34,8% das emissões de CO2 no país.

As exportações do agronegócio somaram US\$ 100 bilhões no ano passado, o que equivale a 41,3% do total nacional. O saldo do comércio exterior do agronegócio foi positivo em US\$ 82,91 bilhões e compensou o deficit de US\$ 80,35 bilhões dos demais setores da economia, possibilitando um superávit geral de US\$ 2,5 bilhões na balança comercial.

Visto as considerações feitas, é possível justificar a importância da irrigação embasado no artigo, "Fioreze destaca a importância da irrigação para a segurança alimentar", publicado no link http://www.agricultura.rs.gov.br/conteu Fioreze_destaca_a_import%C3%A2ncia_c

Segundo o autor, "O uso da irrigação é fundamental para assegurar a

produção primária e fazer aumentar os índices de produtividade. Por isso, torna-se fundamental para garantir a segurança alimentar."

Permalink.

October 10, 2014 Leave a comment

Sensor de medição de umidade doo solo

O sensor de medição de umidade do solo foi desenvolvido para detectar as variações de umidade presente no solo, indicando que quando o solo está seco a saída do sensor fica em estado alto, e quando úmido em estado baixo.

O limite entre seco e úmido pode ser ajustado através do potenciômetro presente no sensor que regulará a saída digital D0. Contudo para ter uma resolução melhor é possível utilizar a saída analógica A0 e conectar a um conversor AD, como a presente no Arduino por exemplo.

Segue abaixo o algoritmo de exemplo utilizado para leitura do sensor.

Permalink.

//DO: Digital output interface (0 and 1) threshold taken from potentiometer

```
//AO: Analog output
interfaceconst int
moistureAO = 1;
const int moistureDO = 8;
int AO = 0;
int DO = 0;
int tmp = 0;
void setup (){
Serial.begin(9600);
Serial.println("Soil moisture
sensor");
pinMode(moistureAO,
INPUT);
pinMode(moistureDO,
INPUT);
void loop ()
tmp=analogRead(
moistureAO);
if (tmp!= AO)
AO=tmp;
Serial.print("A=");
Serial.println(AO);
tmp=digitalRead(
moistureDO);
if (tmp!= DO)
DO=tmp;
Serial.print("D=");
Serial.println(DO);
```

delay (1000);

Abaixo um exemplo de aplicação do sensor desenvolvido pela turma do 1º semestre de 2013 do curso de manutenção e suporte à informática do colégio técnico CEDUP – Renato Santos da Silva de Lages-SC

September 27, 2014 Leave a comment

Estruturação e comunicação

Para montagem da estrutura do projeto, utilizamos como base o projeto de futebol com robôs desenvolvido pelos alunos da UFF pois foi utilizado o mesmo módulo de comunicação.

O trabalho desenvolvido por eles está disponível em http://futebol-uff.blogspot.com.br/.

Visto isso, foi utilizado o seguinte esquema de montagem:

Assim, ao configurar as ligações físicas, foi possível utilizar o seguinte algoritmo para transferência de informações pelo arduino:

```
Este programa envia duas variáveis
inteiras, recebidas em duas entradas
analógicas,
via rádio usando um módulo nRF24L01
Programa original disponibilizado por:
http://www.bajdi.com
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
RF24 radio(9,10);
const uint64_t pipe = 0xE8E8F0F0E1LL;
void setup(void)
{ Serial.begin(9600);
radio.begin();
radio.openWritingPipe(pipe);
void loop(void)
radio.write("teste", 1234);
```

Para recepção, utilizamos o algoritmo abaixo:

/*

Este programa recebe duas variáveis inteiras, via rádio usando um módulo nRF24L01

Programa original disponibilizado por:

http://www.bajdi.com

```
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
int teste[2];
RF24 radio(9,10);
const uint64_t pipe = 0xE8E8F0F0E1LL;
void setup(void)
Serial.begin(9600);
radio.begin();
radio.openReadingPipe(1,pipe);
radio.startListening();
void loop(void)
if ( radio.available() )
bool done = false;
while (!done)
done = radio.read( teste, sizeof(teste) );
Serial.println(teste[0]);
Serial.println(teste[1]);
else
```

```
{
Serial.println("Rádio não disponível");
}
// Delay para facilitar a visualização das
informações no serial monitor
delay(1000);
}
```

Permalink.

September 13, 2014 Leave a comment

Umidade e Temperatura

Sabemos que as plantas sofrem grande influência do meio que estão inseridas, podemos destacar três principais variáveis que se não forem bem monitoradas podem prejudicar bastante o desenvolvimento de qualquer vegetal que não esteja adaptado para aquele clima, são elas:

- Temperatura
- Umidade
- Luz

Pensando nisso além de controlarmos a umidade do solo, iremos também monitorar as condições do ambiente. Através delas podemos criar melhores condições para o um bom crescimento das plantas. Hoje começamos os testes com o sensor DHT11, que consegue monitorar a temperatura e umidade relativa do ar, além de ser um sensor de fácil utilização tem um custo bem em conta, em torno de 10 a 15 reais.

O DTH11 possui 4 terminais porém somente 3 deles são utilizados: GND,VCC e Dados.

4 - GND

Abaixo vemos o sensor já conectado ao arduino.

Permalink.

September 13, 2014 Leave a comment

Mãos à massa

Mais uma semana de desenvolvimento do projeto. Durante o decorrer desta primeira semana iniciamos a aquisição dos componentes necessários para o desenvolvimento do projeto.

Considerando os hardwares necessários, definimos para essa primeira etapa o uso da placa Arduíno Mega devido ao fato de já possuírmos a placa e por esta ser um excelente versão. Junto ao arduino também selecionamos os sensores que serão utilizados. Segue abaixo as fotos dos componentes:

Nas imagens acima é possível observar os sensores de humidade e temperatura e de humidade do solo. Esses componentes serão responsáveis por aquisição das informações dentro do projeto.

Abaixo é possível observar a fonte ATX utilizada para alimentação do sistema e também a mangueira de irrigação:

Também foi definido o uso de válvulas solenóides que estão em processo de aquisição.

Para o desenvolvimento do software foi utilizado a IDE padrão do arduíno na versão para Linux 64 bits disponível em

http://arduino.cc/en/Main/Software. O sistema operacional utilizado é o Ubuntu 14.04 LTS.

Permalink.

Create a free website or blog at WordPress.com. | The Yoko Theme.

Top

e