Министерство образования Республики Беларусь Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Инженерно-экономический факультет Кафедра экономической информатики

ОТЧЕТ

по предмету «Статистика»

Тема №4 «Ряды распределения» Вариант 13

Сделал.	Купреева С. И. группа 872302
Проверил:	Журавлев В. А.

Спепап:

Задание 4.3: построить интервальный ряд со следующими данными, имеющимися в отделении национального банка, об остатках на текущих счетах организаций на конец месяца (млн. р.). Ряд распределения построить с равными интервалами, при этом образовать 5 групп.

971	692	1396	1028	563	1173	913	623
478	782	695	878	793	933	1190	656
956	728	844	819	1296	1295	869	963
519	1093	756	107	1165	917	866	611
417	1367	911	1079	1057	926	770	892

Решение:

1. Из данного множества находим наименьшее и наибольшее значение:

$$k_{min} = 107,$$

 $k_{max} = 1396.$

2. Определяем длину интервала по формуле $h = \frac{k_{max} - k_{min}}{n}$, где n -количество групп:

$$h = \frac{1396 - 107}{5} = 257,8.$$

- 3. Высчитываем значения интервалов. Так, в первый интервал будут входить значения от 107 до 107+257,8=364,8. Во второй значения от 364,8 до 364,8+257,8=622,6. В третий значения от 622,6 до 880,4. В четвертый значения от 880,4 до 1138,2. В пятый значения от 1138,2 до 1396.
- 4. Подсчитываем количество значений, входящих в каждый интервал. Первый интервал -1. Второй интервал -5. Третий интервал -14. Четвертый интервал -13. Пятый интервал -7.

971	692	1396	1028	563	1173	913	623
478	782	695	878	793	933	1190	656
956	728	844	819	1296	1295	869	963
519	1093	756	107	1165	917	866	611
417	1367	911	1079	1057	926	770	892

5. Составим итоговую таблицу, поместив в него полученный ряд:

Группы организаций по размеру	
остатков на текущих счетах на	Число организаций
конец месяца (млн. р)	
107-364,8	1
364,8-622,6	5
622,6-880,4	14
880,4-1138,2	13
1138,2-1396	7

6. Построим полигон ряда распределения (Рисунок 1).

Рисунок 1 – Полигон ряда распределения

7. Построим гистограмму ряда распределения (Рисунок 2).

Рисунок 2 – Гистограмма ряда распределения

8. Вычислим частоты ряда распределения и занесем результаты в Таблицу 1.

Группы организаций по размеру остатков на текущих счетах на конец месяца (млн. р)	гков на текущих счетах на	
107-364,8	1	0,025
364,8-622,6	5	0,125
622,6-880,4	14	0,35
880,4-1138,2	13	0,325
1138,2-1396	7	0,175
Итого:	40	1

Таблица 1 – Частоты ряда распределения

9. Вычислим среднюю арифметическую взвешенную, используя следующую формулу:

$$\bar{x} = \frac{\sum xm}{\sum m},$$

где x — индивидуальные значения величины признака, m — количество единиц, имеющих данную величину признака.

10. Вычислим дисперсию и СКО, используя следующую формулу:

$$\sigma^2 = \frac{\sum (x - \bar{x})^2 m}{\sum m}.$$

11.Вычислим коэффициент вариации, используя следующую формулу:

$$\vartheta = \frac{\sigma}{\bar{x}} \cdot 100\%.$$

12.Все полученные данные занесем в Таблицу 2.

Группы организаций по размеру остатков (млн. р)	Число организаций (m)	Середина интервала (x)	x*m	(x-x¯)²m
107-364,8	1	235,9	235,9	415380,3
364,8-622,6	5	493,7	2468,5	747684,5
622,6-880,4	14	751,5	10521	232612,9
880,4-1138,2	13	1009,3	13120,9	215997,7
1138,2-1396	7	1267,1	8869,7	1046758
Итого:	40	3757,5	35216	2658434
	\bar{x}	880,4		
	σ^2	66460,84		
	σ	257,8		
	θ	29,28		

Таблица 2 – Расчет средней арифметической, дисперсии, СКО и коэффициента вариации методом средневзвешенной

13.
Вычислим моду по следующей формуле:
$$M_0=x_{M_0}+i_{M_0}\frac{m_{M_0}-m_{M_0-1}}{\left(m_{M_0}-m_{M_0-1}\right)+\left(m_{M_0}-m_{M_0+1}\right)}$$

где x_{M_0} — начало модального интервала, i_{M_0} — величина интервала, m_{M_0} — частота модального интервала, m_{M_0-1} частота интервала, предшествующего модальному, m_{M_0+1} – частота интервала, следующая за модальным.

В нашем случае модальным является интервал 622,6-880,4.

14.Вычислим медиану по следующей формуле:

$$M_{\rm e} = x_{M_{\rm e}} + i_{M_{\rm e}} \frac{0.5 \sum m - S_{M_e-1}}{m_{M_e}}$$

где $\mathit{x}_{\mathit{M}_{\mathrm{e}}}$ — начало медианного интервала, $\mathit{i}_{\mathit{M}_{\mathrm{e}}}$ — величина интервала, $\sum m$ — сумма всех частот ряда, S_{M_e-1} — сумма накопленных частот вариантов до медианного, m_{M_e} — частота медианного интервала.

В нашем случае медианным является интервал 1138,2-1396. 15. Сделанные вычисления занесем в таблицу 3.

Начало интервала	Конец интервала	Частота ряда	
107	364,8	1	
364,8	622,6	5	
622,6	880,4	14	Модальный
880,4	1138,2	13	
1138,2	1396	7	Медианный
M _o	854,62		
M _e	659,43		

Таблица 3 – Расчет моды и медианы ряда

16. Построим кумуляту (Рисунок 3).

Рисунок 3 — Кумулята вариационного ряда