R.O.B.O.T. Comics

Having EATR programmed by strict vegans to appease the public has unintended consequences.

CS 4649/7649 Robot Intelligence: Planning

Machine Learning IV: Deep Reinforcement Learning

CS 4649/7649 – Asst. Prof. Matthew Gombolay

Assignments

- Due 2/24
 - Reading: Russel & Norvig Ch. 20 (getting ready for POMDP)
- Due 3/1
 - PSet6
- Due 3/3
 - Reading TBD

Thursday, February 10th at 9:30 AM – 10:45 AM

Midterm 1 - CS 4649/7649

CS 4649/7649 Robot Intelligence: Planning Instructor: Dr. Matthew Gombolay

Notes:

- <u>CS 4649 Students Please Select 6 of 8 Problems to complete (including the subparts for each problem).</u>
- <u>CS 7649 Students Please Select 7 of 8 Problems to complete (including the subparts of each problem). Each of the 8 problems are equally weighted.</u>

Problem 1.B

In each of the following, circle T if the statement is TRUE and F otherwise. Assume a finite graph with either directed or undirected edges.

i.	Т	F		Assuming an edge cost of 1, BFS with a visited list is guaranteed to find a shortest path to the goal if one exists.
ii.	Т	F		Assuming an edge cost of 1, DFS with a visited list is guaranteed to find a shortest path to the goal if one exists.
iii.	Т	F		IDS with a visited list will always find the optimal path.
lv.	Т	F		DFS without a visited list is guaranteed to find a path to the goal if one exists, assuming no loop exists in the graph.
V.	Т	F		BFS will typically perform with better speed than IDS.

Problem 2

Zookeeper George was in charge of feeding all of the animals in the morning. He had a regular schedule that he followed every day. Each animal is fed once a day at one of the times in the table below ($t_1 = 6:30 \ AM$, $t_2 = 6:45 \ AM$, $t_3 = 7:00 \ AM$, $t_4 = 7:15 \ AM$, and $t_5 = 7:30 \ AM$). In addition:

- i. The monkeys were fed after the giraffes but before the zebras.
- ii. The lions were fed 15 minutes after the bears.
- iii. The zebras were fed after the lions.

	6:30 AM	6:45 AM	7:00 AM	7:15 AM	7:30 AM
Bears					
Giraffes					
Lions					
Monkeys					
Zebras					

To figure out George's schedule, please formulate this problem as a constraint satisfaction problem (CSP).

Estimate: Overall Grade > 88% → A

Estimate: Overall Grade > 90% → A

Outline

- Review:
 - MDPs
 - Value Iteration
 - Policy Iteration

- Deep Q-Learning
- Policy Gradients

From deterministic to stochastic planning problems

A basic planning model for deterministic systems (e.g., graph/tree search algorithms, etc.) is:

Planning Model

(Transition system + goal)

A discrete, deterministic, feasible planning model is defined by

- A countable set of states, S.
- A countable set of actions, A.
- A transition relation $\rightarrow \subseteq S \times A \times S$
- An initial state, $s_1 \in S$
- A set of goal states $s_G \subset S$
- We considered the case in which the transition relation is purely_adeterministic: if (s, a, s') are in relation, i.e., $(s, a, s') \in \rightarrow$ or, more concisely, $s \rightarrow s'$, then taking action a from state s will always take the state to s'.
- Can we extend this model to include (probabilistic) uncertainty in the transitions?

From deterministic to stochastic planning problems

Instead of a (deterministic) transition relation, let us define transition probabilities; also, let us introduce a reward (or cost) structure:

Markov Decision Process (MDP)

(Stochastic transition system + reward)

A discrete, deterministic, feasible planning model is defined by

- A countable set of states, S.
- A countable set of actions, A.
- A transition relation $T: S \times A \times S \rightarrow [0,1]$
- An initial state, $s_1 \in S$
- A reward function, $R: S \times A \times S \rightarrow \mathcal{R}$
- In other words: if action a is applied from state s, a transition to state s! will occur with probability, T(s, a, s')
- Furthermore, every time a transition is made from s to s' using action a, a reward, R(s,a,s'), is collected.

Some Remarks

- In a Markov Decision Process, both transition probabilities and rewards only depend on the **present** state, not on the history of the state. In other words, the future states and rewards are independent of the past, given the present.
- A Markov Decision Process has many common features with Markov Chains and Transition Systems.
- In an MDP:
 - Transitions and rewards are stationary.
 - The state is known exactly. (Only transitions are stochastic.)
- MDPs in which the state is not known exactly (HMM + Transition Systems) are called Partially Observable Markov Decision Processes (POMDP's): these are very hard problems.

Total reward in an MDP

- Let us assume that it is desired to maximize the total reward collected over infinite time.
- In other words, let us assume that the trajectory, τ , is $\tau = \langle s_0, a_0, s_1, a_1, \dots, s_t, a_t, \dots \rangle$ along with rewards, $\langle r_0, r_1, \dots, r_t, \dots \rangle$, then the total collected reward is as follows, where $\gamma \in [0,1]$ is the discount factor.

$$V = \sum_{t=0}^{\infty} \gamma^t r_t$$

- Philosophically: it models the fact that an immediate reward is better than an uncertain reward in the future.
- Mathematically: $\gamma \in [0,1)$ it ensures that the sum is always finite, if the rewards are bounded (e.g., finitely many states/actions).

Decision-making in MDPS

- Notice that the actual sequence of states, and hence the actual total reward, is unknown a priori.
- We could choose a plan, i.e., a sequence of actions, $\langle a_0, a_1, ..., a_t, ... \rangle$.
- In this case, transition probabilities are fixed and one can compute the probability
 of being at any given state at each time step—in a similar way as the forward
 algorithm in HMMs—and hence compute the expected reward:

$$\mathbb{E}[R(s_t, a_t, s_{t+1}) | s_t, a_t] = \sum_{s' \in S} T(s_t, a_t, s) R(s_t, a_t, s)$$

• Such approach is essentially open loop, i.e., it does not take advantage of the fact that at each time step the actual state reached is known, and a new feedback strategy can be computed based on this knowledge.

Introduction to Value Iteration

- Let us assume we have a function $V_i: S \to \mathcal{R}$ that associates to each state s a lower bound on the optimal (discounted) total reward $V^*(s)$ that can be collected starting from that state. Note the connection with admissible heuristics in informed search algorithms.
- For example, we can start with $V_o(s) = 0, \forall s \in S$
- As a feedback strategy, we can do the following: at each state, choose the action that maximizes the expected reward of the present action + estimate total reward from the next step onwards.
- Using this strategy, we can get an update V_{i+1} on the function V_i . Iterate until convergence...

Value Iteration Pseudocode

7. END WHILE

```
1. Set V_0(s) \leftarrow 0, \forall s \in S; i = 0

2. WHILE TRUE

3. V_{i+1}(s) \leftarrow \max_{a} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_i(s')], \forall s \in S

4. IF \max_{s \in S} |V_{i+1}(s) - V_i(s)| < \epsilon

5. RETURN V^*(s) \approx V_{i+1}(s), \forall s \in S

6. i + +
```

Under some technical assumptions the optimal value function, $V^*(s)$, satisfies Bellman's Equation:

$$V^*(s) = \max_{a} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Q-Learning

Model-free MDPs

- In many cases, exact details of the MDP (i.e., transition probabilities) not known.
- Reinforcement learning: learn good control policies via the analysis of state/action/rewards sequences collected in simulation and/or experiments.
- Several options, e.g., :
 - Certainty equivalence: estimate transition probabilities through data, then apply standard methods. (Expensive, not on-line)
 - Temporal Difference learning: Only maintain an estimate of the value function, V. For each transition, e.g., $s \xrightarrow{a} s'$, update the estimate:

$$V(s) \leftarrow (1 - \alpha_t)V(s) + \alpha_t[R(s, a, s') + \gamma V(s')]$$

where $\alpha_t \in (0,1)$ is a learning parameter. Note: α_t should decay (e.g., $a_t = \frac{1}{t}$), as the number of updates goes to infinity. Learning depends on the particular policies applied.

Q-learning

- Estimate total collected reward for state-action pairs.
- Q-factor Q(s, a): estimate of the total collected reward collected
 - (i) starting at state s,
 - (ii) applying action a at the first step,
 - (iii) acting optimally for all future times.
- Q-factor update law, based on an observed transition, $s \xrightarrow{a} s'$

$$Q(s,a) \leftarrow (1 - \alpha_t)Q(s,a) + \alpha_t \left[R(s,a,s') + \gamma \max_{a'} Q(s',a') \right]$$

Note: α_t should decay over time for convergence, e.g., $\alpha_t = \frac{1}{t}$

- Q-learning does not depend on a particular policy, π .
- Issue: exploitation (choose "best" action, a) versus exploration (choose a poorly characterized, action a.

Q-learning Pseudocode

```
Set Q_0(s,a) \leftarrow 0, \forall s \in S, a \in A; i \leftarrow 0
         WHILE TRUE
3.
         s_0 \sim \rho(s); \tau \leftarrow \langle \rangle
              FOR t = 0 to T // "Policy" rollouts
4.
                 a_t \leftarrow \begin{cases} \sim U(A), \text{ with } p = \epsilon \\ \operatorname{argmax} Q_i(s_t, a), \text{ otherwise} \end{cases}
5.
                  s_{t+1} \sim T(s_t, a_t, \cdot)
6.
             r_t \leftarrow R(s_t, a_t, s_{t+1})
8.
                  \tau \leftarrow \tau \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
              ENDFOR
9.
10.
              FOR all \langle s, a, s', r \rangle \in \tau // Update Q-function
                   Q_{i+1}(s,a) \leftarrow (1-\alpha_t)Q_i(s,a) + \alpha_t \left[r + \gamma \max_{a'} Q_i(s',a')\right]
11.
12.
              ENDFOR
              |\mathsf{F} \max_{s \in \tau} |Q_{i+1}(s, a) - Q_i(s, a)| < \epsilon
13.
                   RETURN Q^*(s, a) \approx Q_{i+1}(s, a), \forall s \in S, a \in A
14.
              ENDIF
15.
16.
              i + +
17.
         ENDWHILE
```

Example

Approximation techniques

- Very often (e.g., when the state space, S, is a discretization of a continuous state space, e.g., \mathcal{R}^n), the dimensions of the state space make value iteration/policy iteration/Q-learning/etc. unfeasible in practice.
- ullet Choose an approximation architecture, ψ , with m parameters, heta , e.g.,
 - ψ : basis functions, θ : coefficients
 - ψ : "feature vector", θ : coefficients
 - ψ : neural network, θ parameters (weights/biases, etc.)

$$\widehat{Q}_{\theta}(s, a) = \sum_{k=1}^{m} \theta_k \psi_k(s, a)$$

- Updates to Q(s,a) correspond to updates to the lower-dimensional vector, θ
- Goal: find best θ s.t. that $Q(s,a) \approx \hat{Q}_{\theta}(s,a), \forall s \in S, a \in A$

Deep Q-learning

Multi-class Output

- (D) Output (linear) $z_j^{(2)} = \sum_i \theta_{j,i}^{(2)} o_i^{(1)}$
- (C) Hidden $o_j^{(1)} = a^{(1)} (z_j^{(1)})$
- (B) Hidden (linear) $z_j^{(1)} = \sum_i \theta_{j,i}^{(1)} x_i$

(A) **Input** Given x_i , Vi

Deep Q-learning

(F) Loss (Bellman Residual)
$$L = \mathbb{E}_{\langle s, a, s', r \rangle \sim D} \left[\frac{1}{2} \left(\left[r + \gamma \max_{a'} Q_{\theta^{(i)}}(s', a') \right] - Q_{\theta^{(i)}}(s, a) \right)^{2} \right]$$

Output

Hidden Layer

Input

(E) Output (linear)

$$\widehat{y}_j = z_j^{(2)}$$

(D) Output (linear)

$$z_j^{(2)} = \sum_i \theta_{j,i}^{(2)} o_i^{(1)}$$

(C) Hidden (nonlinear) $o_j^{(1)} = a^{(1)} (z_j^{(1)})$

(B) Hidden (linear)

$$z_j^{(1)} = \sum_{i} \theta_{j,i}^{(1)} x_i$$

Notes:

- Often use "feature" embedding of your state, $\{\psi_1(s), \psi_2(s), ..., \psi_k(s)\}$
- Could also use pixels of a game image (typically with convolutional neural networks)

(A) **Input** Given $\{\psi_k\}$, $\forall k$

Q-learning Pseudocode

```
Set Q_0(s,a) \leftarrow 0, \forall s \in S, a \in A; i = 0
         WHILE TRUE
3.
         s_0 \sim \rho(s); \tau \leftarrow \langle \rangle
              FOR t = 0 to T // "Policy" rollouts
4.
                 a_t \leftarrow \begin{cases} \sim U(A), \text{ with } p = \epsilon \\ \underset{a \in A}{\operatorname{argmax}} \ Q_i(s_t, a), \text{ otherwise} \end{cases}
5.
                   s_{t+1} \sim T(s_t, a_t, \cdot)
6.
              r_t \leftarrow R(s_t, a_t, s_{t+1})
8.
                   \tau \leftarrow \tau \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
               ENDFOR
9.
10.
               FOR all \langle s, a, s', r \rangle \in \tau // Update Q-function
                    Q_{i+1}(s,a) \leftarrow (1-\alpha_t)Q_i(s,a) + \alpha_t \left[r + \gamma \max_{a'} Q_i(s',a')\right]
11.
12.
               ENDFOR
              |\mathsf{F} \max_{s \in \tau} |Q_{i+1}(s, a) - Q_i(s, a)| < \epsilon
13.
                   RETURN Q^*(s, a) \approx Q_{i+1}(s, a), \forall s \in S, a \in A
14.
              ENDIF
15.
16.
              i + +
17.
          ENDWHILE
```

Deep Q-learning Pseudocode

```
Initialize Q_{\theta^{(0)}}(s, a), \forall s \in S, a \in A as a neural network; i \leftarrow 0; Initialize replay buffer, D = \{ \}
        WHILE TRUE
             s_0 \sim \rho(s);
3.
            FOR t = 0 to T // "Policy" rollouts
4.
                                     \sim U(A), with prob, \epsilon
                 a_t \leftarrow \begin{cases} a_t \\ argmax Q_{\theta^{(i)}}(s_t, a), \text{ otherwise} \end{cases}
5.
                                                                                                     Bellman Residual
6.
                 S_{t+1} \sim T(S_t, a_t, \cdot)
                                                                                                                                                               Target and
                 r_t \leftarrow R(s_t, a_t, s_{t+1})
                                                                                                                                                           Guess use same
                                                                                                                                Guess (\hat{y})
                                                                                              Target (y)
                 D \leftarrow D \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
8.
                                                                                                                                                               model (i.e.,
                                                                                                                                                            bootstrapping)
9.
             ENDFOR
            \theta^{(i+1)} \leftarrow \theta^{(i)} + \alpha_t \sum_{\langle s,a,s',r \rangle \sim D' \subset D} \frac{1}{|D'|} \left( \left[ r + \gamma \max_{a'} Q_{\theta^{(i)}}(s',a') \right] - Q_{\theta^{(i)}}(s,a) \right) \nabla_{\theta} Q_{\theta^{(i)}}(s,a)
10.
             |F(|\theta^{(i+1)} - \theta^{(i)}|) < \epsilon
11.
                  RETURN Q*(s, a) \approx Q_{\theta}(s, a), \forall s \in S, a \in A
12.
13.
             ENDIF
                                                                                                                                     Only differentiate w.r.t. the
                                                                                                                                            second Q_{\boldsymbol{\theta}^{(i)}} term
14.
             i + +
        ENDWHILE
15.
```

Example

Mid-lecture Break

Simple Lego building task Confederate the secessies.

cipant builds Legos

Particip

y round

Deadly Triad

- 1. Function approximation
 - e.g., Deep Q-function
- 2. Off-policy learning
 - The fact that our "policy" rollouts do not perfectly reflect what the function approximator says the best action to take in each state would be
- 3. Boostrapping
 - The Q-function itself is both what we are regressing and what we are regressing towards ("chasing your tail")

$$Q_{\theta}(s,a) \leftarrow Q_{\theta}(s,a) + \alpha_t \left(\left[r + \gamma \max_{a'} Q_{\theta}(s',a') \right] - Q_{\theta}(s,a) \right) \nabla_{\theta} Q(s,a)$$
Regressing towards Regressing

Double Deep Q-learning Pseudocode

- 1. Initialize $Q_{\theta^{(0)}}(s,a)$ and $Q_{\phi^{(0)}}(s,a)$, $\forall s \in S, a \in A$ as a neural network; Initialize replay buffer, D
- 2. WHILE TRUE $s_0 \sim \rho(s)$; 3. FOR t = 0 to T // "Policy" rollouts 4. $a_t \leftarrow \begin{cases} \sim U(A), \text{ with prob, } \epsilon \\ \operatorname*{argmax}_{\theta^{(i)}}(s_t, a), \text{ otherwise} \end{cases}$ 5. $S_{t+1} \sim T(S_t, a_t, \cdot)$ 6. $r_t \leftarrow R(s_t, a_t, s_{t+1})$ $D \leftarrow D \cup \langle s_t, a_t, s_{t+1}, r_t \rangle$ 8. 9. **ENDFOR** 10. $\phi^{(i+1)} \leftarrow \phi^{(i)}(1-\alpha') + \alpha\theta^{(i)}$ 11. $|F(|\theta^{(i+1)} - \theta^{(i)}|) < \epsilon \wedge (|\phi^{(i+1)} - \phi^{(i)}| < \epsilon)$ 12.

14.

15.

16.

ENDIF

i + +

ENDWHILE

Gets rid of bootstrapping!

10.
$$\theta^{(i+1)} \leftarrow \theta^{(i+1)} + \alpha \sum_{\sim D' \subset D} \frac{1}{|D'|} \Big(\Big[r + \gamma Q_{\phi^{(i)}} \big(s', \operatorname{argmax}_{a'} Q_{\theta^{(i)}} (s', a') \big) \Big] - Q_{\theta^{(i)}} (s, a) \Big) \nabla_{\theta^{(i)}} Q(s, a)$$
11. $\phi^{(i+1)} \leftarrow \phi^{(i)} (1 - \alpha') + \alpha \theta^{(i)}$
12. IF $\Big(\Big| \theta^{(i+1)} - \theta^{(i)} \Big| \Big) < \epsilon \wedge \Big(\Big| \phi^{(i+1)} - \phi^{(i)} \Big| < \epsilon \Big)$
13. RETURN $Q^*(s, a) \approx Q_{\theta}(s, a), \forall s \in S, a \in A$

Example

Policy Gradient-based Methods

Instead of learning a Q-function that estimates the value of taking an action in each state, let's learn a policy that directly tells us what action to take. This policy will output a probability distribution over actions.

Policy Iteration Pseudocode

- 1. Set $V_0(s) \leftarrow 0, \forall s \in S, \forall s \in S, i = 0$
- 2. Initialize $\pi(s)$ to pick one action in each state, $s \in S$
- 3. WHILE TRUE
- 4. // Solve linear program:
- 5. $V_{i+1}(s) = \sum_{s' \in S} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i(s')], \forall s \in S$
- 6. If $\max_{s \in S} |V_{i+1}(s) V_i(s)| < \epsilon$
- 7. RETURN $V^*(s) \approx V_{i+1}(s), \forall s \in S$
- 8. // Update policy
- 9. $\pi(s) \leftarrow \operatorname{argmax}_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{i+1}(s')], \forall s \in S$
- 10. i + +
- 11. END WHILE

Goal:

$$\pi_{\theta}^*(s) = \operatorname{argmax}_{\theta} V^{\pi_{\theta}}(s)$$

$$V^{\pi_{\theta}}(s) = \mathbb{E}_{a \sim \pi_{\theta}(s,a)} \left[Q_{\phi}^{\pi_{\theta}}(s,a) \right]$$

How do we get there in a model-free way?

$$\begin{split} V^{\pi_{\theta}}(s) &= \mathbb{E}_{a \sim \pi_{\theta}(s, a)} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \right] \\ \nabla_{\theta} V^{\pi_{\theta}}(s) &= \nabla_{\theta} \mathbb{E}_{a \sim \pi_{\theta}(s, a)} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \right] \\ &= \nabla_{\theta} \sum_{a} \pi(a|s) Q_{\phi}^{\pi_{\theta}}(s, a) \\ &= \sum_{a} \nabla_{\theta} \left(\pi(a|s) Q_{\phi}^{\pi_{\theta}}(s, a) \right) \\ &= \sum_{a} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) + \pi_{\theta}(a|s) \nabla_{\theta} Q_{\phi}^{\pi_{\theta}}(s, a) \right] \\ &= \sum_{a} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) + \pi_{\theta}(a|s) \nabla_{\theta} \sum_{s'} T(s'|s, a) \left(R(s, a, s') + \gamma V^{\pi_{\theta}}(s') \right) \right] \\ &= \sum_{a} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) + \pi_{\theta}(a|s) \sum_{s'} T(s'|s, a) \gamma \nabla_{\theta} V^{\pi_{\theta}}(s') \right] \end{split}$$

$$\nabla_{\theta} V^{\pi_{\theta}}(s') = \sum_{a'} \left[Q_{\phi}^{\pi_{\theta}}(s', a') \nabla_{\theta} \pi_{\theta}(a'|s') + \pi_{\theta}(a'|s') \sum_{s''} T(s''|s', a') \gamma \nabla_{\theta} V^{\pi_{\theta}}(s'') \right]$$

$$\begin{split} V^{\pi_{\theta}}(s) &= \mathbb{E}_{a \sim \pi_{\theta}(s, a)} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \right] \\ \nabla_{\theta} V^{\pi_{\theta}}(s) &= \sum_{a} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) + \pi_{\theta}(a|s) \sum_{s'} T(s'|s, a) \gamma \left[\sum_{a'} \left[Q_{\phi}^{\pi_{\theta}}(s', a') \nabla_{\theta} \pi_{\theta}(a'|s') + \pi_{\theta}(a'|s') \sum_{s''} T(s''|s', a') \gamma \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \\ &= \sum_{a} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) \right] \\ &+ \gamma \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[Q_{\phi}^{\pi_{\theta}}(s', a') \nabla_{\theta} \pi_{\theta}(a'|s') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s', a') \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s', a') \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s', a') \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s', a') \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s', a') \nabla_{\theta} V^{\pi_{\theta}}(s'', a') \nabla_{\theta} V^{\pi_{\theta}}(s'') \right] \right] \right] \\ &+ \gamma^{2} \sum_{a} \left[\pi_{\theta}(a|s) \sum_{s'} \left[T(s'|s, a) \sum_{a'} \left[\pi_{\theta}(a'|s') \sum_{s''} \left[T(s''|s, a') \nabla_{\theta} V^{\pi_{\theta}}(s'', a') \nabla_{\theta} V^{\pi_{\theta}}(s'$$

$$\begin{split} V^{\pi_{\theta}}(s) &= \mathbb{E}_{a \sim \pi_{\theta}(s, a)} \Big[Q_{\phi}^{\pi_{\theta}}(s, a) \Big] \\ \nabla_{\theta} V^{\pi_{\theta}}(s) &= \sum_{s' \in S} \sum_{k=0}^{\infty} \gamma^{k} \Pr[s \to s' | k, \pi] \sum_{a} Q(s', a) \nabla \pi_{\theta}(a | s') \end{split}$$

Policy Gradient Update:

$$\begin{split} \nabla_{\theta} V^{\pi_{\theta}}(\{s_{t}\}_{t=0}^{\infty}) &= \Delta \theta \\ \Delta \theta &= \sum_{t=0}^{\infty} Q_{\phi}^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \pi_{\theta}(a_{t}|s_{t}) = \sum_{t=0}^{\infty} \pi_{\theta}(a_{t}|s_{t}) Q_{\phi}^{\pi_{\theta}}(s_{t}, a_{t}) \frac{\nabla_{\theta} \pi_{\theta}(a_{t}|s_{t})}{\pi(a_{t}|s_{t})} \\ &= \sum_{t=0}^{\infty} \pi_{\theta}(a_{t}|s_{t}) Q_{\phi}^{\pi_{\theta}}(s_{t}, a_{t}) \frac{\nabla_{\theta} \pi_{\theta}(a_{t}|s_{t})}{\pi(a_{t}|s_{t})} = \mathbb{E}_{a_{t} \sim \pi_{\theta}(\cdot|s_{t})} \left[Q_{\phi}^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right] \\ &\sim Q_{\phi}^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \end{split}$$

Actual REINFORCE
Update

Simple approximation: $Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \approx \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$

Deep Policy Gradients

Output

Hidden Layer

Input

Notes:

- Often use "feature" embedding of your state, $\{\psi_1(s), \psi_2(s), ..., \psi_k(s)\}$
- Could also use pixels of a game image (typically with convolutional neural networks)

(F) **Utility** $\mathbb{E}_{a \sim \pi_{\theta}(s, a)} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \right]$

(D) Output (linear) $z_j^{(2)} = \sum_i \theta_{j,i}^{(2)} o_i^{(1)}$

(C) Hidden (nonlinear) $o_j^{(1)} = a^{(1)} (z_j^{(1)})$

(B) Hidden (linear) $z_j^{(1)} = \sum_i \theta_{j,i}^{(1)} x_i$

(A) Input Given x_i , Vi

REINFORCE Pseudocode

```
Initialize \pi_{\theta^{(0)}}(s,a), \forall s \in S, a \in A as a neural network; i \leftarrow 0
       WHILE TRUE
           s_0 \sim \rho(s); \tau = \langle \rangle
3.
           FOR t = 0 to T // Policy rollouts
4.
5.
     a_t \sim \pi_{\theta(i)}(\cdot, s_t)
6.
    s_{t+1} \sim T(\cdot | s_t, a_t)
     r_t \leftarrow R(s_t, a_t, s_{t+1})
                \tau \leftarrow \tau \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
8.
9.
            ENDFOR
           \theta^{(i+1)} \leftarrow \theta^{(i)} + \frac{\alpha}{|\tau|} \sum_{\langle s_t, a_t, s_{t+1}, r_t \rangle \in \tau} \left( \sum_{t'=t}^T \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta^{(i)}}(a_t | s_t)
10.
           |F||\theta^{(i+1)} - \theta^{(i)}| < \epsilon
11.
                    RETURN \pi^*(s, a) \approx \pi_{\theta^{(i+1)}}(s, a), \forall s \in S, a \in A
12.
13.
            ENDIF
14. i + +
15. ENDWHILE
```

Example

$$\begin{split} V^{\pi_{\theta}}(s) &= \mathbb{E}_{a \sim \pi_{\theta}(s, a)} \left[Q_{\phi}^{\pi_{\theta}}(s, a) \right] \\ \nabla_{\theta} V^{\pi_{\theta}}(s) &= \sum_{s' \in S} \sum_{k=0}^{\infty} \gamma^{k} \Pr[s \to s' | k, \pi] \sum_{a} Q(s', a) \nabla \pi_{\theta}(a | s') \end{split}$$

Policy Gradient Update:

$$\begin{split} \nabla_{\theta} V^{\pi_{\theta}}(\{s_t\}_{t=0}^{\infty}) &= \Delta \theta \\ \Delta \theta &= \sum_{t=0}^{\infty} Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \pi_{\theta}(a_t | s_t) = \sum_{t=0}^{\infty} \pi_{\theta}(a_t | s_t) Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi(a_t | s_t)} \\ &= \sum_{t=0}^{\infty} \pi_{\theta}(a_t | s_t) Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi(a_t | s_t)} = \mathbb{E}_{a_t \sim \pi_{\theta}(\cdot | s_t)} \left[Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \\ &\sim Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \end{split}$$

Simple approximation: $Q_{\phi}^{\pi_{\theta}}(s_t, a_t) \approx \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$

Can we actually learn the Q-function?

Actor-Critic (AC) Method Pseudocode

```
Initialize \pi_{\theta^{(0)}}(s,a) and Q_{\phi^{(0)}}(s,a) \forall s \in S, a \in A as neural networks; i \leftarrow 0
1.
           Initialize D \leftarrow \{ \}
2.
           WHILE TRUE
3.
                s_0 \sim \rho(s); \tau = \langle \rangle
4.
                FOR t = 0 to T // Policy rollouts
5.
                a_t \sim \pi_{\theta^{(i)}}(\cdot, s_t)
6.
                     s_{t+1} \sim T(\cdot | s_t, a_t)
8.
              r_t \leftarrow R(s_t, a_t, s_{t+1})
                      \tau \leftarrow \tau \cup \langle s_t, a_t, s_{t+1}, r_t \rangle; \quad D \leftarrow D \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
9.
                 ENDFOR
10.
                \theta^{(i+1)} \leftarrow \theta^{(i)} + \alpha \sum_{\langle s_t, a_t \rangle \in \tau} \frac{1}{|\tau|} Q_{\phi^{(i)}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta^{(i)}}(a_t | s_t)
11.
                \phi^{(i+1)} \leftarrow \phi^{(i)} + \alpha' \sum_{\langle s, a, s', r \rangle \sim D' \subset D} \frac{1}{|D'|} \left( \left[ r + \gamma \max_{a'} Q_{\phi^{(i)}}(s', a') \right] - Q_{\phi^{(i)}}(s, a) \right) \nabla_{\phi}^{(i)} Q_{\phi^{(i)}}(s, a)
12.
                \mathsf{IF}\left(\left|\theta^{(i+1)} - \theta^{(i)}\right|\right) < \epsilon \ \land \left(\left|\phi^{(i+1)} - \phi^{(i)}\right| < \epsilon\right)
13.
                           RETURN \pi^*(s, a) \approx \pi_{\theta^{(i+1)}}(s, a), \forall s \in S, a \in A
14.
15.
                 ENDIF
16.
                   i + +
17.
           ENDWHILE
```

Advantage Function Actor-Critic (A2C)

```
Initialize \pi_{\theta^{(0)}}(s,a) and Q_{\phi^{(0)}}(s,a) and V^{\pi}_{\eta_b^{(0)}}(s,a), \forall s \in S, a \in A as neural networks; i \leftarrow 0
1.
           Initialize D \leftarrow \{ \}
3.
           WHILE TRUE
                 s_0 \sim \rho(s); \tau = \langle \rangle
                 FOR t = 0 to T // Policy rollouts
5.
6.
                      a_t \sim \pi_{\theta(i)}(\cdot, s_t)
                      s_{t+1} \sim T(\cdot | s_t, a_t)
8.
                      r_t \leftarrow R(s_t, a_t, s_{t+1})
                       \tau \leftarrow \tau \cup \langle s_t, a_t, s_{t+1}, r_t \rangle; \quad D \leftarrow D \cup \langle s_t, a_t, s_{t+1}, r_t \rangle
9.
                 ENDFOR
10.
                 \theta^{(i+1)} \leftarrow \theta^{(i)} + \alpha \sum_{\langle s_t, a_t \rangle \in \tau} \frac{1}{|\tau|} \left( Q_{\phi^{(i)}}(s_t, a_t) - V_{\psi^{(i)}}^{\pi}(s_t) \right) \nabla_{\theta} \log \pi_{\theta^{(i)}}(a_t | s_t)
11.
                 \phi^{(i+1)} \leftarrow \phi^{(i)} + \alpha' \sum_{\langle s, a, s', r \rangle \sim D' \subset D} \frac{1}{|D'|} \left( \left[ r + \gamma \max_{a'} Q_{\phi^{(i)}}(s', a') \right] - Q_{\phi^{(i)}}(s, a) \right) \nabla_{\phi}^{(i)} Q_{\phi^{(i)}}(s, a)
12.
                \psi^{(i+1)} \leftarrow \psi^{(i)} + \alpha'' \sum_{\langle s, a, s', r \rangle \sim \tau} \frac{1}{|\tau|} \left( \left[ r + \gamma V_{\psi^{(i)}}^{\pi}(s') \right] - V_{\psi^{(i)}}^{\pi}(s) \right) \nabla_{\psi} V_{\psi^{(i)}}^{\pi}(s_{t})
13.
                 |F(|\theta^{(i+1)} - \theta^i|) < \epsilon \wedge (|\phi^{(i+1)} - \phi^i| < \epsilon) \wedge (|\psi^{(i+1)} - \psi^i| < \epsilon)
14.
                            RETURN \pi^*(s, a) \approx \pi_{\theta^{(i+1)}}(s, a), \forall s \in S, a \in A
15.
16.
                 ENDIF
17.
                 i + +
            ENDWHILE
18.
```

Example

Takeaways

- 1. Value Iteration : Q-Learning :: Policy Iteration : A2C
- 2. The deadly Triad
- How do design NN's for approximating a Q-function, policy, or value function
- 4. Deep Q-learning, Double-Deep Q-Learning, REINFORCE, AC, A2C
- 5. Derivation of REINFORCE