

MDE_VELO_1401_FCC_MPE

FCC ID 2AFPAL8G10843

Maximum Permissible Exposure

as specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure

Frequency range (MHz)	Power density (mW/cm²)	
300 - 1,500	f/1500	
1,500 - 100,000	0 1.0	

Antenna Gain:

2400 MHz: 5.3 dBi 850 MHz: 2.14 dBi 1900 MHz: 2.14 dBi

Calculations

The output power at antenna input terminal:

2440 MHz: -1.8 dBm

850 MHz: 26.66 dBm (32.68 dBm – 6.02 dBm duty cycle) 1900 MHz: 30.48 dBm (30.48 dBm – 6.02 dBm duty cycle)

Prediction distance R:

20 cm

Prediction frequency 1(PF 1): Prediction frequency 2(PF 2): 2440 MHz 836.6 MHz

Prediction frequency 2(PF 2): Prediction frequency 3(PF 3):

1850.2 MHz

MPE limit S:

1 mW/cm²

0.558 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P*G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna (20cm)

Maximum Power density	Limit	Verdict
PF 1: 0.0004 mW/cm ²	1.0 mW/cm ²	Pass
PF 2: 0.1509 mW/cm ²	0.558 mW/cm ²	Pass
PF 3: 0.0909 mW/cm ²	1.0 mW/cm ²	Pass

Note. The calculation was made under the consideration of the duty cycle effect.

Yours sincerely

2015-09-14

Dirk Bratsch, Project Manager