NEC

PNP SILICON TRANSISTOR 2SA990

DESCRIPTION

The 2SA990 is designed for use in driver stage of AF amplifier.

FEATURE

High hFE.

 h_{FE} : 400 TYP. ($V_{CE} = -6.0 \text{ V}$, $I_{C} = -1.0 \text{ mA}$)

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures

· ·
Storage Temperature55 to +125 °C
Junction Temperature +125 °C Maximum
Maximum Power Dissipation (Ta = 25 °C)
Total Power Dissipation 250 mW
Maximum Voltages and Currents (Ta = 25 °C)
V _{CBO} Collector to Base Voltage60 V
V_{CEO} Collector to Emitter Voltage50 V
V_{EBO} Emitter to Base Voltage5.0 V
I _C Collector Current100 mA
l _B Base Current20 mA

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	150	380		_	V _{CE} = -6.0 V, I _C = -0.1 mA
hFE2	DC Current Gain	200	400	800	-	$V_{CE} = -6.0 \text{ V}, I_{C} = -1.0 \text{ mA}$
fT	Gain Bandwidth Product	50	180		MHz	$V_{CE} = -6.0 \text{ V}, I_{E} = 1.0 \text{ mA}$
Cob	Output Capacitance		4.5	6.0	pF	V _{CB} = -10 V, I _E = 0, f = 1.0 MHz
NV	Noise Voltage		25	40	mV	$V_{CE} = -5.0 \text{ V}$, $I_{C} = -1.0 \text{ mA}$, $R_{G} = 100 \text{ k}\Omega$, $G_{V} = 80 \text{ dB}$, $f = 10 \text{ Hz}$ to 1.0 kHz
1 _{CBO}	Collector Cutoff Current			-100	nA	$V_{CB} = -60 \text{ V}, I_E = 0$
I _{EBO}	Emitter Cutoff Current			-100	nA	$V_{EB} = -5.0 \text{ V, } I_{C} = 0$
∨ _{BE}	Base to Emitter Voltage	-0.58	-0.62	-0.68	V	$V_{CE} = -6.0 \text{ V}, I_{C} = -1.0 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		-0.18	-0.30	V	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}$

Classification of hFE2

Rank	Р	F	E
Range	200 – 400	300 - 600	400 – 800

 h_{FE2} Test Conditions : $V_{CE} = -6.0$ V, $I_{C} = -1.0$ mA

TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)

NORMALIZED h-PARAMETERS vs. EMITTER CURRENT

NORMALIZED h-PARAMETERS vs. COLLECTOR TO EMITTER VOLTAGE

NOISE FIGURE MAP 1

NOISE FIGURE MAP 2

NOISE FIGURE MAP 3

NOISE FIGURE MAP 4

