Lecture 12

CHM695 Feb 13

Implicit Solvet Models

Hierarchy of solvent models:

polarisable explicit solvent

fixed charge explicit solvent

Non-linear Poisson Boltzmann

Linear Poisson Boltzmann

Generalised Born

realistic model computational cost

Poisson Boltzmann Techniques

Solvent is treated as dielectric continuum

No explicit solvents - thus no direct interactions with first shell solvation can be treated

Classical electrostatics:

Now we need to include charge density due to ions in solutions

Debye-Hueckel theory:

This is non-linear form of PB equation. Solving this equation is complicated.

If solvent ionic strength is not very large, then we can linearise the Boltzmann part.

Solved by finite difference methods (on grids)

http://honig.c2b2.columbia.edu/delphi

Solvent dielectric: ~80

Solute dielectric: 2-20

Electrostatic properties of the 30S ribosomal subunit. Potential obtained by solution of the LPBE at 150 mM ionic strength with a solute dielectric of 2 and a solvent dielectric of 78.5 by using the 30S structure from the <u>1FJG</u> Protein Data Bank entry.

PNAS | August 28, 2001 | vol. 98 | no. 18 | 10037-10041

Electrostatics of nanosystems: Application to microtubules and the ribosome

Nathan A. Baker*¹¹, David Sept⁵, Simpson Joseph*, Michael J. Holst⁹, and J. Andrew McCammon*¹¹

Departments of *Chemistry and Biochemistry. *Mathematics. and *Pharmacology. and *Howard Hughes Medical Institute. University of Califo at San Diego, 9500 Gilman Drive, La Jolla, CA 92093; and *Department of Biomedical Engineering, Washington University, One Brookings Drive. Louis MO 63130-4899

Generalized Born Model (GBM)

- Considering solute molecules as spheres (or within cavities)
- Single charge in the centre of a sphere has the following solution for GB equation:

$$\Delta G_{\rm solv} = -\frac{1}{2} \left(1 - \frac{1}{\epsilon_{\rm ext}} \right) \frac{q^2}{R}$$

radii

We will use α for Born radii hereafter

If an atom is solvent exposed, R is close to atomic radius (but larger).

For atoms buried inside, R can be quite large.

Pair form of GB equation

$$\Delta G_{\rm solv} = \sum_{I} \Delta G_{I}^{\rm self} + 2 \sum_{I} \sum_{J>I} \Delta G_{IJ}^{\rm pair}$$

$$\Delta G_{IJ}^{\text{pair}} = -\frac{1}{2} \left(1 - \frac{1}{\epsilon_{\text{ext}}} \right) \frac{q_I q_J}{\sqrt{R_{IJ}^2 + \alpha_I \alpha_J \exp\left(-\frac{R_{IJ}}{4\alpha_I \alpha_J} \right)}}$$

Born

radii

Onufriev A, Case DA, Bashford D (Nov 2002). "Effective Born radii in the generalized Born approximation: the importance of being perfect". Journal of Computational Chemistry. 23 (14): 1297–304. doi:10.1002/jcc.10126. PMID 12214312.

Solvent Accessible Surface Area

- The generalized Born model only describes the polar, i.e., hydrophilic, energy of solvation.
- It is desirable to account also for the nonpolar, i.e., hydrophobic, energy of solvation through a solventaccessible surface area (SA) calculation, as it is known that the hydrophobic solvation energy is approximately proportional to SA.

LCPO method (Linear combination of pairwise overlaps)

 The LCPO method, which considers only non-hydrogen atoms, is founded on calculating the surface area overlap between two spheres representing atoms

total surface area of an atom i

$$SA_i = P_{1,i} 4\pi R_i^2 + P_{2,i} \sum_{j \in N(i)} A_{ij}$$

$$+ \underbrace{P_{3,i}}_{j \in N(i)} \sum_{A_{ij}} \sum_{k \in N(i) \cap N(j)} A_{jk}$$

$$+ \underbrace{P_{4,i}}_{j \in N(i)} \sum_{[A_{ij}]} \sum_{j \in N(i)} \sum_{k \in N(i) \cap N(j)} A_{jk}]$$

parameters

force due to SA area on atom *I*

$$\vec{F}_l^{SA} = -T_S \sum_{i \in N(l)} (dSA_i/dr_l)$$

Applications:

- a) MM-PBSA: a popular method for ligand binding
- b) pKa computation of ligands in proteins
- c) protein folding
- d) protein aggregation

Advantages:

- (a) computationally cheap;
- (b) energy minimisations of structure & potential energy based predictions

Disadvantages:

- (a) GB is very crude and empirical but PB is more reliable, however, expensive
- (b) derivatives are computationally expensive or not accurate (due to numerical issues using GB models)

Workout the tutorial: http://ambermd.org/tutorials/basic/tutorial3/index.htm