

UNIVERSIDAD DE LA AMAZONIA

Maratón de Programación 2025

EJERCICIO C. CARTMAN

Archivo: cartman.cpp cartman.java

Autor: Jaider Bautista Rodríguez – Estudiante Universidad de la Amazonia

Cartman está participando en una misión ultrasecreta (según él) donde debe limpiar varias zonas infestadas de monstruos. Cada zona tiene una cantidad de monstruos, y cada uno tiene dos atributos importantes: su tamaño (representado por la cantidad de monstruos) y su fuerza (representada por la energía que inflige cada uno).

El daño total que Cartman recibe al pasar por una zona se calcula como:

$$da\tilde{n}o_i = m_i \times e_i$$
 $da\tilde{n}o total = \sum_{i=l}^r m_i \times e_i$

Donde: mi es la cantidad o el tamaño total de los monstruos en la zona i.

e_i es la energía o fuerza que tiene cada monstruo en la zona i.

Cartman exige saber con exactitud cuánto daño recibirá, dice que necesita esa información para "delegar la parte peligrosa a Kenny". Ayúdalo respondiendo rápidamente algunas consultas. En cada una, deberás calcular cuánto daño acumularía si atraviesa desde la zona \boldsymbol{l} hasta la zona \boldsymbol{r} , [l,r].

La entrada:

La primera línea contiene un entero \mathbf{T} ($1 \le \mathbf{T} \le 100$), que indica el número de casos de prueba. Cada una de las siguientes líneas contiene:

- La primera línea contiene dos enteros \mathbf{n} y \mathbf{q} ($1 \le \mathbf{n}$, $\mathbf{q} \le 2 \cdot 10^5$), que corresponden al número de zonas y al número de consultas.
- La segunda línea contiene **n** enteros m_1 , m_2 ,..., m_n , $(1 \le \mathbf{m_i} \le 10^6)$, donde m_i es la cantidad de monstruos en la zona i.
- La tercera línea contiene n enteros e_1 , e_2 ,..., e_n , $(1 \le e_i \le 10^6)$, donde e_i es el daño que inflige cada monstruo en la zona i.
- Después siguen **q** líneas, cada una con dos enteros **l** y **r** ($1 \le 1$, $r \le 2 \cdot 10^5$), indicando el rango de zonas que Cartman quiere analizar.

La salida:

Por cada caso de prueba, imprimir en una línea el daño total recibido al recorrer desde la zona **l** hasta la zona **r** ambos inclusive.

Entrada	Salida
1	15
5 3	20
3 1 4 1 2	15
25134	
1 3	
2 5	
3 5	

Utilice métodos de E/S rápidos

