PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

SOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIETE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedna poprawna odpowiedź.

Zadanie 1. (*1 pkt*)

Jasiek ma w swojej bibliotece tylko książki przyrodnicze i przygodowe. Książek przyrodniczych ma 8, co stanowi 20% wszystkich jego książek. Wynika stąd, że liczba książek przygodowych Jaśka, to: **A.** 32 **B.** 40 **C.** 16 **D.** 10

Zadanie 2. (1 *pkt*)

Kwote 1000 zł wpłacamy do banku na 2 lata. Kapitalizacja odsetek jest dokonywana w tym banku co kwartał, a roczna stopa procentowa wynosi 6%. Po dwóch latach otrzymamy kwotę:

$$\mathbf{A.1000} \cdot (1,06)^2$$

B.
$$1000 \cdot (1,06)^8$$

B.
$$1000 \cdot (1,06)^8$$
 C. $1000 \cdot (1,015)^2$

D.
$$1000 \cdot (1,015)^8$$

Zadanie 3. (*1 pkt*)

Wyrażenie $W = \left(\frac{2}{7}\right)^{40} \left(\frac{7}{2}\right)^{30}$ jest równe:

$$\mathbf{B} \cdot \left(\frac{2}{7}\right)^{10}$$

$$\mathbf{C} \cdot \left(\frac{2}{7}\right)^{70}$$

$$\mathbf{D} \cdot \left(\frac{2}{7}\right)^{120}$$

Zadanie 4. (*1 pkt*)

Liczba $a = 9^{\log_3 4}$ jest równa:

Zadanie 5. (*1 pkt*)

Wyrażenie $W = 25 - 4x^2 + 12xy - 9y^2$ w postaci iloczynowej ma postać: **A.** $W = (5 - 2x + 3y)^2$ **B.** (5 - 2x + 3y)(5 + 2x + 3y)

$$\mathbf{A.} W = (5 - 2x + 3y)^{-1}$$

B.
$$(5-2x+3y)(5+2x-3y)$$

C.
$$W = (5 - 2x - 3y)^2$$

D.
$$(5-2x-3y)(5+2x-3y)$$

Zadanie 6. (*1 pkt*)

Dziedziną wyrażenia $W = \frac{x^2 - 25}{(x+4)(x^2 + 6x + 9)}$ jest zbiór: **A.** $R \setminus \{-5, -4, -3, 5\}$ **B.** $R \setminus \{-5, -4, 5, 3\}$ **C.** $R \setminus \{-4, 3\}$ **D.** $R \setminus \{-4, -3\}$

A.
$$R \setminus \{-5, -4, -3, 5\}$$

B.
$$R \setminus \{-5, -4, 5, 3\}$$

C.
$$R \setminus \{-4, 3\}$$

D.
$$R \setminus \{-4, -3\}$$

Zadanie 7. (*1 pkt*)

Zbiorem rozwiązań nierówności $-x^2 < 5x$ jest:

$$\mathbf{A.}(-\infty,-5)$$

$$\mathbf{B.}(-5,+\infty)$$

Swności
$$-x^2 < 5x$$
 jest:
 $\mathbf{B} \cdot (-5, +\infty)$ $\mathbf{C} \cdot (-\infty, -5) \cup (0, +\infty)$ $\mathbf{D} \cdot (-5, 0)$

$$\mathbf{D}_{\bullet}(-5,0)$$

Zadanie 8. (*1 pkt*)

Funkcja $f(x) = (-m-3)x^2 + 5x + 1$ osiąga wartość największą dla:

$$\mathbf{A} \cdot m \in (-\infty, 3)$$

A.
$$m \in (-\infty, 3)$$
 B. $m \in (-\infty, -3)$ **C.** $m \in (3, +\infty)$ **D.** $m \in (-3, \infty)$

$$\mathbf{C} \cdot m \in (3, +\infty)$$

$$\mathbf{D} \cdot m \in (-3, \infty)$$

Zadanie 9. (*1 pkt*)

Gdy przesuniemy wykres funkcji $f(x) = x^2$ o 5 jednostek w lewo i 3 jednostki w dół, to otrzymamy wykres funkcji: **A.** $y = (x+5)^2 - 3$ **B.** $y = (x+5)^2 + 3$ **C.** $y = (x-5)^2 - 3$ **D.** $y = (x-5)^2 + 3$

A.
$$v = (x+5)^2 - 3$$

B.
$$v = (x+5)^2 + 3$$

C.
$$y = (x-5)^2 - 3$$

D.
$$y = (x-5)^2 + 3$$

Zadanie 10. (*1 pkt*)

Do wykresu funkcji liniowej y = ax + b należą punkty A = (-2, -7), B = (1, 2). Wynika stąd, że:

A.
$$a = -3 \land b = -1$$

B.
$$a = 3 \land b = -1$$

B.
$$a = 3 \land b = -1$$
 C. $a = -3 \land b = 1$

D.
$$a = 3 \land b = 1$$

Zadanie 11. (*1 pkt*)

Dziedziną funkcji f określonej wzorem $f(x) = \log(x^2 + 4)$ jest zbiór:

A.
$$R \setminus \{-2, 2\}$$

$$\mathbf{B}.(-\infty,-2)\cup(2,+\infty)$$
 $\mathbf{C}.(-2,2)$

$$C.(-2,2)$$

$$\mathbf{D}.R$$

Zadanie 12. (*1 pkt*)

Zbiorem wartości funkcji f określonej wzorem $f(x) = 2^{x-1}$ jest zbiór:

$$\mathbf{B}.(0,+\infty)$$

$$\mathbf{C}.(-1,+\infty)$$

$$\mathbf{D}.(1,+\infty)$$

Zadanie 13. (*1 pkt*)

Dany jest ciąg o wzorze na ogólny wyraz $a_n = 2 - \frac{n}{7}$. Ten ciąg:

A. ma nieskończenie wiele wyrazów dodatnich **B.** ma 14 wyrazów dodatnich

C. ma 13 wyrazów dodatnich

D. nie ma wyrazów dodatnich

Zadanie 14. (*1 pkt*)

Liczby $(\sqrt{3} + \sqrt{2})$, $\frac{1}{\sqrt{3} + \sqrt{2}}$ są początkowymi wyrazami ciągu arytmetycznego. Trzeci wyraz tego ciagu jest równy:

A.
$$\sqrt{3} - 3\sqrt{2}$$

B.
$$\sqrt{3} + 3\sqrt{2}$$

B.
$$\sqrt{3} + 3\sqrt{2}$$
 C. $2\sqrt{3} - \sqrt{2}$ **D.** $\sqrt{3} + \sqrt{2}$

D.
$$\sqrt{3} + \sqrt{2}$$

Zadanie 15. (1 pkt)

W ciągu geometrycznym pierwszy wyraz $a_1 = 256$, a iloraz $q = -\frac{1}{2}$. Siódmy wyraz tego ciągu jest równy:

$$A. -4$$

$$\mathbf{B.}-2$$

Zadanie 16. (1 pkt)

Suma *n* początkowych liczb naturalnych dodatnich parzystych jest równa:

$$\mathbf{A.} \, S_n = n^2$$

B.
$$S_n = n^2 + n$$
 C. $S_n = 2n^2$

$$\mathbf{C} \cdot S_n = 2n^2$$

D.
$$S_n = 2n^2 + 2n$$

Zadanie 17. (*1 pkt*)

Liczba cos 46° jest:

A. mniejsza od
$$\frac{1}{2}$$

B. większa od
$$\frac{\sqrt{2}}{2}$$

A. mniejsza od
$$\frac{1}{2}$$
 B. większa od $\frac{\sqrt{2}}{2}$ **C.** mniejsza od $\frac{\sqrt{3}}{2}$ **D.** większa od $\cos 44^\circ$

Zadanie 18. (1 pkt)

Wyrażenie $W = \frac{1 - \cos^2 \alpha}{\sin \alpha}$ można zapisać w postaci:

B.
$$\sin \alpha$$

$$\mathbf{C} \cdot \cos \alpha$$

D.
$$\frac{1}{\sin \alpha}$$

Zadanie 19. (*1 pkt*)

Przyprostokatne trójkata prostokatnego mają długości 3 i 4. Wynika stąd, że tangens mniejszego z kątów ostrych jest równy:

A.
$$\frac{4}{5}$$

B.
$$\frac{3}{5}$$

C.
$$\frac{3}{4}$$

D.
$$\frac{4}{3}$$

Zadanie 20. (1 pkt)

Stosunek pól dwóch kół jest równy 4. Wynika stad, że promień większego koła jest większy od promienia mniejszego koła:

A. o 4

B. o 2

C. 4 razy

D. 2 razy

Zadanie 21. (*1 pkt*)

Dana jest prosta l o równaniu $y = \frac{2}{3}x - 7$. Prosta k jest prostopadła do prostej l i przechodzi przez punkt P = (-6,1). Prosta k ma wzór:

A.
$$y = -\frac{2}{3}x - 3$$

B.
$$y = -\frac{3}{2}x - 10$$
 C. $y = -\frac{2}{3}x - 4$ **D.** $y = -\frac{3}{2}x - 8$

C.
$$y = -\frac{2}{3}x - 4$$

D.
$$y = -\frac{3}{2}x - 8$$

Zadanie 22. (*1 pkt*)

Dana jest prosta l o równaniu $y = -\frac{5}{3}x + 2$. Prosta k o równaniu y = (-1 - 3a)x - 5 jest równoległa do prostej l. Wynika stąd, że:

A.
$$a = \frac{2}{9}$$

B.
$$a = \frac{8}{9}$$

C.
$$a = -2$$

Zadanie 23. (*1 pkt*)

Odległość punktu $A = (\sqrt{7}, 3)$ od początku układu współrzędnych jest równa:

A. 3

$$\mathbf{B}.\sqrt{7}$$

C.
$$\sqrt{10}$$

Zadanie 24. (1 pkt)

Pole powierzchni bocznej stożka o kącie rozwarcia 60° i wysokości $h = 6\sqrt{3}$ jest równe:

 $\mathbf{A.144}\pi$

B.
$$72\pi$$

C.
$$108\pi$$

D. 216
$$\pi \sqrt{3}$$

Zadanie 25. (*1 pkt*)

Rzucamy dwiema sześciennymi kostkami do gry. Prawdopodobieństwo tego, że suma wyrzuconych oczek wyniesie co najwyżej 8, jest równe:

A.
$$\frac{28}{36}$$

B.
$$\frac{26}{36}$$

$$C.\frac{15}{36}$$

D.
$$\frac{5}{36}$$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 *pkt*)

Wykaż, że liczba $a = 3^{27} + 3^{29}$ jest podzielna przez 30.

Zadanie 27. (2 pkt)

Rozłóż na czynniki możliwie najniższego stopnia wielomian $W(x) = x^3 + 5x^2 - 16x - 80$.

Zadanie 28. (2 *pkt*)

Sprawdź, czy równe są wielomiany: $W_1(x) = (x+2)^3 - (2x+3)(2x-3)$ i $W_2(x) = (x-5)(x^2+1) + 7x^2 + 11x + 22$.

Zadanie 29. (2 pkt)

Dana jest funkcja f określona wzorem $f(x) = \sqrt{x^2} + \sqrt{-x^2}$. Wyznacz dziedzinę i zbiór wartości tej funkcji.

Zadanie 30. (2 *pkt*)

Wykaż, że nie istnieje kąt α , taki, że $\cos \alpha = \frac{3}{5}$ i tg $\alpha = \frac{3}{4}$.

Zadanie 31. (5 *pkt*)

Trzy liczby, których suma jest równa 45, tworzą ciąg arytmetyczny. Jeśli drugą liczbę powiększymy o 3, a trzecią liczbę powiększymy o 9, to otrzymamy ciąg geometryczny. Wyznacz te liczby.

Zadanie 32. (5 *pkt*)

Zewnętrznie styczne okręgi o środkach S_1 , S_2 i promieniach r_1 , r_2 ($r_1 > r_2$) są styczne do prostej l. Kąt między prostą przechodzącą przez środki okręgów i prostą l ma miarę 30°. Wyznacz długości promieni okręgów, jeśli wiadomo, że ich suma jest równa 24.

Zadanie 33. (5 *pkt*)

Podstawą graniastosłupa jest trójkąt prostokątny równoramienny o ramieniu długości 9. Kąt między przekątną największej ściany bocznej i wysokością graniastosłupa jest równy 60°. Oblicz pole powierzchni bocznej i objętość tego graniastosłupa.

