13. Момент импульса. Момент силы. Уравнение моментов. Закон сохранения момента импульса механической системы. Рассмотрим понятия момента импульса, момента силы, уравнение моментов и закон сохранения момента импульса.

1. Момент импульса (L)

Момент импульса — это векторная величина, характеризующая вращательное движение тела.

Формула:

 $L=r\times p$,

где:

- r радиус-вектор точки относительно оси вращения,
- p = mv импульс тела,
- × векторное произведение.

Модуль момента импульса:

 $L=r p \sin \alpha$,

где:

• α — угол между векторами r и p.

Для вращающегося твёрдого тела:

 $L=I\omega$,

где:

- I момент инерции тела относительно оси вращения,
- ω угловая скорость.

2. Момент силы (M)

Момент силы — это векторная величина, характеризующая вращательное действие силы.

Формула:

$$M=r\times F$$
,

где:

- r радиус-вектор точки приложения силы относительно оси вращения,
- F сила,
- × векторное произведение.

Модуль момента силы:

$$M = r F \sin \alpha$$
,

где:

• α — угол между векторами r и F.

3. Уравнение моментов

Уравнение моментов связывает момент силы с изменением момента импульса.

Формулировка:

$$\frac{dL}{dt} = M$$
,

где:

- $\frac{dL}{dt}$ производная момента импульса по времени,
- M момент силы.

Для твёрдого тела:

$$I\alpha = M$$
,

где:

- *I* момент инерции,
- α угловое ускорение.

4. Закон сохранения момента импульса

Формулировка:

Если сумма моментов внешних сил, действующих на систему, равна нулю ($\sum M_{\text{внеш}} = 0$), то момент импульса системы сохраняется.

Математически:

$$L_{\text{до}} = L_{\text{после}}$$
.

Условия выполнения:

- 1. Система должна быть замкнутой (внешние силы отсутствуют или их моменты равны нулю).
- 2. Внутренние силы не влияют на момент импульса системы.

5. Примеры

Пример 1: Момент импульса точки

Точка массой m=2кг движется по окружности радиусом r=3м со скоростью v=4 м/с. Найдём момент импульса:

$$L = mvr = 2 \cdot 4 \cdot 3 = 24 \text{ kg} \cdot \text{cdotp m}^2/\text{c}$$
.

Пример 2: Закон сохранения момента импульса

Фигурист вращается с угловой скоростью ω_1 =5 рад/с и моментом инерции I_1 =4 кг \cdotp м². Прижимая руки к телу, он уменьшает момент инерции до I_2 =2 кг \cdotp м². Найдём новую угловую скорость:

- 1. Момент импульса до: $L_1 = I_1 \omega_1 = 4 \cdot 5 = 20 \,\mathrm{kr} \cdot \mathrm{cdotp} \,\mathrm{m}^2/\mathrm{c}$.
- 2. Момент импульса после: $L_2 = I_2 \omega_2$.
- 3. По закону сохранения момента импульса:

$$L_1 = L_2, 20 = 2 \omega_2.$$

4. Отсюда:

$$\omega_2$$
=10 рад/с.

6. Итог

• Момент импульса: $L=r \times p$.

- Момент силы: $M = r \times F$.
- Уравнение моментов: $\frac{dL}{dt} = M$.
- Закон сохранения момента импульса: если $\sum M_{\mbox{\tiny BHell}} = 0$, то $L = {
 m const.}$

Эти понятия широко используются для анализа вращательного движения и решения задач динамики.