COMP 250

Lecture 16

big O, big Omega Ω , big Theta Θ

Oct. 17, 2016

Recall motivation for O()

The time it takes to perform instructions depends on:

• the size of the input (n, m, N, ...)

 implementation details that are unknown (various constants c1, c2,)

Example: Grade School Addition

$$carry = 0$$

 $\mathbf{for} \ i = 0 \ \text{to} \ N - 1 \ \mathbf{do}$
 $r[i] \leftarrow (a[i] + b[i] + carry) \% \ 10$
 $carry \leftarrow (a[i] + b[i] + carry)/10$
 $\mathbf{end} \ \mathbf{for}$
 $r[N] \leftarrow carry$

Example: Grade School Addition

$$t(n) = c_0 + c_1 N$$

Constants c_0 , c_1 ... include time for :

- Primitive ops +,-, *, /, %
- Array address indexing
- Array get or set
- Assignment
- For loop administration
- Recursive call administration
- •

Recall last lecture: big O

$$t(n)$$
 is $O(g(n))$.

Formal Definition of Big O

Let t(n) and g(n) be two functions, where $n \geq 0$.

We say t(n) is O(g(n)), if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \leq c g(n)$$
.

Never write O(3n), $O(5 \log_2 n)$, etc.

The point of big O notation is to avoid dealing with constants.

It is still *technically* correct to write the above. We just don't do it.

Each of the following holds for n sufficiently large:

$$1 < log_2 n < n < n log_2 n < n^2 < n^3 < ... < 2^n < n!$$

Each of the following holds for n sufficiently large:

$$1 < log_2 n < n < n log_2 n < n^2 < n^3 < ... < 2^n < n!$$

Suppose t(n) is O(g(n)), and g(n) < h(n) for $n \ge n_0$.

Then, t(n) is O(h(n)).

e.g. if t(n) is O(n), then t(n) is $O(n^2)$, $O(n^3)$, ...

```
If t(n) is O(g(n)), one often writes t(n) \in O(g(n)),
```

That is, t(n) is a member of the set of functions that are O(g(n)).

We have the following strict subset relationships:

$$O(1) \subset O(\log_2 n) \subset O(n) \subset O(n \log_2 n) \subset O(n^2) \dots$$

 $\subset O(n^3) \subset \dots \subset O(2^n) \subset O(n!)$

Asymptotic *lower* bound

Preliminary Definition

t(n) is asymptotically bounded **below** by g(n) if there exists an n_0 such that, for all $n \ge n_0$,

$$t(n) \geq g(n)$$
.

Example:
$$t(n) = \frac{n(n-1)}{2}$$
 is asymptotically bounded below by $g(n) = \frac{n^2}{4}$.

Proof:

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

$$\Leftrightarrow$$
 $2n(n-1) \ge n^2$

$$\iff$$
 $n^2 \ge 2n$

$$\iff$$
 $n \ge 2$ So take $n_0 = 2$.

Definition of Big Omega (Ω)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Omega(g(n))$, if there exist two positive constants n_0 and c such that, for all $n \geq n_0$,

$$t(n) \geq c g(n)$$
.

Claim:
$$\frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof (1): Use
$$c = \frac{1}{4}$$
 from two slides ago.

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$

$$\Leftrightarrow$$
 :

$$\iff$$
 $n \ge 2$ So take $n_0 = 2$, $c = \frac{1}{4}$.

Claim:
$$\frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Proof (2): Try
$$c = \frac{1}{3}$$

$$\frac{n(n-1)}{2} \ge \frac{n^2}{3}$$

: ← you can fill this in

$$\Leftrightarrow$$
 $n \ge 3$ So take $n_0 = 3$, $c = \frac{1}{3}$.

Sets of Ω () functions

Claim: Suppose t(n) is $\Omega(g(n))$, and g(n) > h(n) for $n \ge n_0$.

Then, t(n) is $\Omega(h(n))$. Proof follows straight from definition.

e.g. if t(n) is $\Omega(n^3)$, then t(n) is $\Omega(1)$, $\Omega(n)$, ..., $\Omega(n^2)$

Sets of Ω () functions

If t(n) is $\Omega(g(n))$, one often writes $t(n) \in \Omega(g(n))$,

That is, t(n) is a member of the set of functions that are $\Omega(g(n))$.

Sets of Ω () functions

Thus, we have the following strict subset relationships:

$$\Omega(1) \supset \Omega(\log_2 n) \supset \Omega(n) \supset \Omega(n \log_2 n) \supset \Omega(n^2) \dots$$

$$\supset \Omega(n^3) \supset \dots \Omega(2^n) \supset \Omega(n!)$$

$$\Omega(1) \qquad \Omega(\log_2 n) \qquad \Omega(n) \qquad \text{etc} \qquad \Omega(2^n) \qquad \Omega(n!)$$

Definition of Big Theta (Θ)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Theta(g(n))$, if there exist three positive constants n_0 , c_1 , c_2 such that for all $n \ge n_0$, c_1 , $g(n) \le t(n) \le c_2$, g(n)

Definition of Big Theta (Θ)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Omega(\,g(n)\,)$, if there exist three positive constants $n_0,\ c_1,\ c_2$ such that for all $n\geq n_0$,

$$c_1 g(n) \leq t(n) \leq c_2 g(n)$$

$$t(n)$$
 is $O(g(n))$

Definition of Big Theta (Θ)

Let t(n) and g(n) be two functions of $n \ge 0$.

We say t(n) is $\Omega(g(n))$, if there exist three positive constants n_0 , c_1 , c_2 such that for all $n \geq n_0$,

$$c_1 g(n) \leq t(n) \leq c_2 g(n)$$

$$t(n)$$
 is $\Omega(g(n))$

Example

$$t(n)$$
 is $\Theta(g(n))$.

Example

Let
$$t(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2}$$

$$t(n)$$
 is $\Theta(?)$.

Example

Let
$$t(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2}$$

Claim:

$$t(n)$$
 is $\Theta(n^2)$.

Proof:

$$\frac{n^2}{4} \le t(n) \le (4 + 17 + 3 + 9 + \frac{1}{2}) n^2$$

Can we write $\Theta()$ for every t(n)?

No, as this contrived example shows:

Let
$$t(n) = \begin{cases} n, & n \text{ is odd} \\ n^2, & n \text{ is even.} \end{cases}$$

t(n) is $O(n^2)$ but not O(n).

t(n) is $\Omega(n)$ but not $\Omega(n^2)$.

There does not exist a $\Theta()$ bound for this t(n).

Algorithm best and worst cases

VS.

O(),
$$\Omega$$
(), Θ ().

What is relationship between these ideas? See Exercises.

Sets of Θ () functions

If t(n) is $\Theta(g(n))$, one often writes $t(n) \in \Theta(g(n))$,

That is, t(n) is a member of the set of functions that are $\Theta(g(n))$.

