Plants and Soil Water

Heinz Coners, Sharath Paligi

Kučera et al. 2020

Soil Water content

normal" range

- ~10-30 vol%
- ~0.1...0.3 cm³/cm³
- ~ 0.1...0.3

...depending on soil type

Measurement methods

- Direct
 - Gravimetrical (weighing of samples with known volume) = gold standard
- Indirect
 - Electrically (tdr, fdr)
 - Neutron probe

<u>Time Domain Reflectrometry (TDR)</u>

How it works

- Original use: Cable fault finding
 - Send electrical wave signal along a cable pair
 - Reflected wave indicate where cable is damaged
 - Surrounding soil water disturbs measurement (electrical dipol H₂O)
- "Controlled misuse" for soil water content determination
 - Probe of know length/reflection
 - Calibration with gravimetric measurements
 - Topp-Equation for many soil types
 - Problematic/inaccurate in
 - Fine textured soils Organic material (nonconform particles, elect
 - Volcanic soils

CS655 water content reflectometer (Campbell Scientific, Logan, Utah, U.S.)

Soil matric potential

Water potential

$$\Psi = \Psi_0 + \Psi_\pi + \Psi_p + \Psi_v + \Psi_m$$

Dominant in soil:

Matric potential

- Adhesion to surfaces
- Cohesion between water molecules
- ->meniscus formation

Measurement methods

- Direct
 - Water filled tensiometer
- Indirect (in gypsum, ceramic)
- (based on calibration)
 - Electrical conductivity
 - Thermal conductivity
 - Water content (known SWRC)

Tensiometers

Water filled tensiometer

- Direct measurement
- Cavitation at ~80 kPa (refill)
- ->only for moist conditions

https://ugt-online.de/produkte/boden/sensoren/tensiometer/

Wide range water potential sensor

- Indirect measurement in ceramics (dielectric permitivity)
- Reduced precision <100 kPa
- Rubust results without maintenance

https://metergroup.com/products/teros-21/

Soil texture

Particle size classes

Class	Size (mm)	Evolution	Chemical
Rock/gravel	> 2		
Sand	0.0632	Weathering of rock	Mostly hard minerals (Quartz, SiO ₂)
Silt	0.0020.06	Weatering of sand	Mostly hard minerals (Quartz, SiO ₂)
Clay	< 0.002	Chemical (acid) weathering of silicate rocks	Clay minerals e.g Kaolinite Al ₂ Si ₂ O ₅ (OH) ₄

Mikenorton, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Particle size analysis

Sieve (sand diameter classes)

Sedimentation (by density) (silt, clay)

https://www.retsch.de/de/produkte/sieben/siebmaschinen/as-200-control/

Soil Water Retention Curve (SWRC)

texture	sand	silt	clay
sand	95	5	0
loam	50	30	20
Clay	20	20	60

Van Genuchten 1980

$$\theta(\Psi_m) = \theta_r + (\theta_s - \theta_r)[1 + (\alpha \cdot \Psi_m)^n]^{-m}$$

SWRCs predicted from PSD

(Plant) Available Water Capacity (AWC)

Available Water Capacity

Idealized Water Retention USDA-ARS ROSETTA Model Centroids

Available Water Holding Capacity USDA-ARS ROSETTA Model Centroids

Sorted According to AWC

Some real-world data

Volumetric water content (TDR)

Soil water experiment

- Two soil types (sand, loam)
- Starting with quite dry condition
- No grown soil, sensor installation not perfect
- Two irrigation regimes
- https://wwwuser.gwdguser.de/~logplanteco/LoggerDataViz/CwwCourseSoilWater2024.html