- 1. Tempo disponibile 120 minuti.
- 2. Non è possibile consultare appunti, slide, libri, persone, siti web, ecc.
- 3. Scrivere in modo leggibile, su ogni foglio, nome, cognome e numero di matricola.
- 4. Le soluzioni agli esercizi che richiedono di progettare un algoritmo devono:
 - spiegare a parole l'algoritmo (se utile, anche con l'aiuto di esempi o disegni),
 - fornire e commentare lo pseudo-codice (indicando il significato delle variabili),
 - calcolare la complessità (con tutti i passaggi matematici necessari),
 - se l'esercizio ammette più soluzioni, a soluzioni computazionalmente più efficienti e/o concettualmente più semplici sono assegnati punteggi maggiori.

IMPORTANTE: Risolvere gli esercizi 1–2 e gli esercizi 3–4 su fogli separati. Infatti, al termine, dovrete consegnare gli esercizi 1–2 separatamente dagli esercizi 3–4.

1. Calcolare la complessità T(n) del seguente algoritmo MYSTERY1:

Algorithm 1: MYSTERY1(INT n) \rightarrow INT

Soluzione. Analizziamo prima il costo di MYSTERY2 che esegue tre chiamate ricorsive con input ridotto ad 1/3 del valore originale. Le rimanenti operazioni in MYSTERY2 hanno costo costante. L'equazione di ricorrenza di MYSTERY2:

$$T'(n) = \begin{cases} 1 & n \le 1\\ 3T'(n/3) + 1 & n > 1 \end{cases}$$

può essere risolta con il Master Theorem

$$\alpha = \log_3 3 = 1 > 0 = \beta \Rightarrow T'(n) = \Theta(n^{\alpha}) = \Theta(n)$$

Il costo di MYSTERY1 dipende dal costo del suo unico ciclo for. Tale ciclo viene eseguito n-1 volte per i che va da 2 ad n. Ad ogni iterazione viene chiamata la funzione MYSTERY2 con input $2^100n/i$. Il costo totale del ciclo for è quindi:

$$\Theta(2^{100}n/2) + \Theta(2^{100}n/3) + \dots + \Theta(2^{100}n/n) = 2^{100}\Theta\left(\sum_{i=2}^{n} \frac{n}{i}\right) = \Theta\left(n\sum_{i=2}^{n} \frac{1}{i}\right)$$

Poiché la serie armonica 1/i, per i che va da 2 ad n, è limitata superiormente da $\ln n$

$$\sum_{i=2}^{n} \frac{1}{i} \le \ln n \Rightarrow \Theta\left(\sum_{i=2}^{n} \frac{1}{i}\right) = O(\log n)$$

concludiamo che la complessità nel caso pessimo di MYSTERY1 è

$$T(n) = \Theta\left(n\sum_{i=2}^{n} \frac{1}{i}\right) = O(n\log n)$$

2. Considerare una Tabella Hash T di dimensione m=11, inizialmente vuota. La funzione hash è definita sul metodo della divisione

$$h'(k) = k \mod m$$

e abbiamo la seguente sequenza di operazioni:

- 1) insert 39 2) insert 15 3) insert 18
- 4) insert 17 5) insert 28 6) insert 6
- a) Mostrare lo stato di T dopo l'esecuzione delle operazioni precedenti, assumendo che le collisioni in T siano gestire con indirizzamento aperto e ispezione quadratica

$$h(k,i) = (h'(k) + i^2) \mod m$$

b) Mostrare lo stato di T dopo l'esecuzione delle operazioni precedenti, assumendo che le collisioni in T siano gestire con concatenamento

Soluzione.

a) Indirizzamento aperto

	0	1	2	3	4	5	6	7	8	9	10	_
insert 39	/	/	/	/	/	/	39	/	/	/	1	h(39,0) = 6
												1
	0	_1_	2	3	4	5	_6_	_ 7	_8_	9	10	,
insert 15	/	/	/	/	15	/	39	/	/	/	/	h(15,0) = 4
	_		_	_		_	_	_	_	_		
		1	2	3	4	_ 5_	6		8	9	10	1
insert 18	/	/	/	/	15	/	39	18	/	/	/	h(18,0) = 7
	0	1	2	3	4	5	6	7	8	9	10	
insert 17	/	/	/	/	15	/	39	18	/	/	17	h(17,2) = 10
							•					
	0	1	2	3	4	5	6	7	8	9	10	
insert 28	28	/	/	/	15	/	39	18	/	/	17	h(28,4) =0
							•					•
	0	1	2	3	4	5	6	7	8	9	10	
insert 6	28	/	/	/	15	7	39	18	/	6	17	h(6,5) =9

b) Concatenamento

3. Progettare un algoritmo che, dato un array di numeri A[1..n], restituisce un array $MAX[1..\lceil \log n \rceil]$ (dove $\lceil \log n \rceil$ è l'arrotondamento all'intero superiore di $\log n$) con i $\lceil \log n \rceil$ valori più grandi presenti nell'array in input. L'algoritmo deve possibilmente avere una complessità in tempo migliore di $\Theta(n \log n)$.

Soluzione.

Il problema potrebbe essere risolto utilizzando le operazione heapify, findMax e deleteMax utilizzate dall'algoritmo heapsort: heapify può essere usato per trasformare l'array A in un heap, e successivamente si eseguono per $\lceil \log n \rceil$ volte le operazioni findMax e deleteMax per estrarre il massimo valore rimasto in A ed inserirlo in un nuovo array che al termine viene restituito.

Algorithm 2: LogNmassimi($Number\ A[1..n]$) $\rightarrow Number[1..\lceil \log n]$]

Il costo computazionale dell'algoritmo somma al costo O(n) di heapify il costo di $\lceil \log n \rceil$ esecuzioni di findMax e deleteMax, che hanno rispettivamente costo O(1) e $O(\log n)$. Quindi complessivamente avremo complessità in tempo pari a $O(n + \log n + \log n \log n) = O(n)$ (in quanto l'ordine di grandezza O(n) è superiore sia dell'ordine di grandezza $O(\log n)$ sia dell'ordine di grandezza $O(\log n \log n)$).

4. Progettare un algoritmo che dato un grafo orientato G = (V, E) e due vertici s e t restituisce la distanza di t da s (ovvero il numero mimimo di archi da attraversare per andare da s a t). Nel caso in cui t non sia raggiungibile da s l'algoritmo deve restituire ∞ .

Soluzione.

È sufficiente effettuare una visita in ampiezza del grafo a partire da s e restituire la distanza di t. L'algoritmo (si veda Algoritmo 3) corrisponde con l'algoritmo BFS visto a lezione in cui si usa il

Algorithm 3: Distanza(Graph G = (V, E), Vertex s, Vertex t) \rightarrow Int

```
Queue q \leftarrow new Queue()

for x \in V do

\lfloor x.dist \leftarrow \infty

s.dist \leftarrow 0

q.enqueue(s)

while not \ q.isEmpty() do

u \leftarrow q.dequeue()

for w \in u.adjacents() do

if \ w == t \ then

| \ return \ u.dist+1

else if \ w.dist == \infty \ then

| \ w.dist \leftarrow u.dist+1

| \ q.enqueue(w)

return \infty
```

campo dist anche per tener traccia dei vertici già visitati (per capire se un vertice w non è ancora stato visitato basta controllare se $w.dist == \infty$) con l'aggiunta di un controllo che termina la visita appena si raggiunge il vertice t. Infine, se t non viene visitato, l'algoritmo restituisce ∞ .

L'algoritmo, nel caso pessimo, ha il medesimo costo computazionale della visita in ampiezza che, assumendo implementazione del grafo tramite liste di adiacenza, risulta essere O(n+m) dove n=|V| e m=|E|.