## Digital Signal Processing (EE41013/EE60033)

## Mid-semester Examination (Autumn 2021-22)

Total Marks: 30 Time: 2 hours

Q1. A stable filter has a system function specified as

$$H(z) = \frac{z - z_1}{z - p_1}$$

where  $z_1$  and  $p_1$  denote the zero and pole, respectively.

Given the pole-zero locations shown in the Figure below, discuss the behaviour of variation of  $|H(e^{j\omega})|$  as the vector  $z = e^{j\omega}$  moves around the unit circle. Plot  $|H(e^{j\omega})|$ .



(4)

**Q2.** Determine the transfer function and causal impulse response of a filter described by the difference equation

$$y(n) = 0.25y(n-2) + x(n)$$

Plot the location of poles and zeroes and sketch the variation of  $|H(e^{j\omega})|$  over  $0 < \omega < \pi$ .

Discuss the behaviour of  $|H(e^{j\omega})|$  and why it is so. (5)

**Q3.** Consider an input signal  $x[n] = \{\cos(0.1n) + \cos(0.4n)\}u(n)$  containing two cosine sequences of angular frequencies 0.1 rad/samples and 0.4 rad/samples. Design a high-pass filter that will pass the high frequency component and block the low frequency part. Assume the filter to be an FIR filter of length 3 with an impulse response  $h[0] = h[2] = \alpha_0$ ,  $h[1] = \alpha_1$ .

Specifically, obtain the suitable values of  $\alpha_0$  and  $\alpha_1$  such that the output of the high-pass filter is the cosine sequence with higher frequency. (4)

**Q4.** Use the linearity and time shifting properties of DTFT to obtain  $Y(e^{j\omega})$  when

$$y[n] = \left\{ \begin{array}{ll} \alpha^n & \quad 0 \leq n \leq M-1 \\ 0 & \quad \text{otherwise} \end{array} \right. \quad |\alpha| < 1$$

(3)

Q5. Determine the inverse Z-transform of

$$G(z) = \frac{z^3}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{3}\right)^2}$$
 ,  $|z| > \frac{1}{2}$ 

(4)

**Q6.** Determine all possible signals x(n) associated with the z-transform

$$X(z) = \frac{5z^{-1}}{(1 - 2z^{-1})(3 - z^{-1})}$$
(4)

(4)

Q7. (a) Compute the step response of the system

$$y(n) = \frac{1}{M} \sum_{k=0}^{M-1} x(n-k)$$

(b) Show that any discrete-time signal x(n) can be expressed as

$$x(n) = \sum_{k=-\infty}^{\infty} [x(k) - x(k-1)]u(n-k)$$
 (3 + 3)