$$\frac{\partial}{\partial \theta} \operatorname{M} T(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{T} T(x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} T(x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} T(x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} T(x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\theta} \int_{\mathbb{R}_{n}}^{\mathbb{R}_{n}} f(x, \theta) dx = \int_{\mathbb{R}_{n}}^$$

Project 3

FYS3150 - Computational physics

Quantum dots

Author:

Vidar Skogvoll

Abstract

Here is a short summary of the project.

Contents

1 Introduction			3	
2	Theory			
	2.1	The n	umerical foundation	. 3
		2.1.1	Monte Carlo methods	. 3
		2.1.2	Importance sampling	. 3
		2.1.3	Metropolis algorithm	. 3
	2.2	The p	hysical system	. 3
		2.2.1	Quantum mechanics	. 3
		2.2.2	Discretization	. 3
		2.2.3	The virial theorem	. 3
3	Method			
	3.1	Subsec	ction	. 3
4	Results and discussion			
	4.1	Subsec	ction	. 3
5	Con	clusio	\mathbf{n}	4

1 Introduction

Quantum mechanics is an exciting field.

2 Theory

Here is all the theory needed to understand the project.

2.1 The numerical foundation

This is the section explaining the numerical theory upon which the project is built.

- 2.1.1 Monte Carlo methods
- 2.1.2 Importance sampling
- 2.1.3 Metropolis algorithm

2.2 The physical system

This is the section explaining the physics of the system.

- 2.2.1 Quantum mechanics
- 2.2.2 Discretization
- 2.2.3 The virial theorem

3 Method

This is the section explaining what has been done.

3.1 Subsection

These will become apparent as the work boils down.

4 Results and discussion

Section listing results and discussing them.

4.1 Subsection

The same as the method section.

5 Conclusion