```
import astropy.units as u
import astropy.constants as const
import numpy as np

# Use to obtain data
import pandas as pd
import urllib
# the service URL
livechart = "https://nds.iaea.org/relnsd/v1/data?"

# There have been cases in which the service returns an HTTP Error 403: Forbidden
# use this workaround
import urllib.request
def lc_pd_dataframe(url):
    req = urllib.request.Request(url)
    req.add_header('User-Agent', 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0')
    return pd.read_csv(urllib.request.urlopen(req))
```

Quesiton 1

Assume $^{235}\mathrm{U}$ splits into two stable nuclides $^{100}\mathrm{Ru}$, $^{132}\mathrm{Xe}$, and three neutrons. About 86% of the energy is in the kinetic energy of the fission fragments. A fully enriched $^{235}\mathrm{U}$ bomb is expected to give a prompt explosive yield of about $20\,\mathrm{kg}$ of TNT. How many kilograms of $^{235}\mathrm{U}$ are required (assuming the actual explosive yield efficiency is around 30%)?

Answer

The energy of this reaction have been calculated in the previous question. I copied the result here.

$$\Delta E = 192\,\mathrm{MeV}$$

Out[]: 165.24487 MeV

And the energy convert to explosion $\Delta E' = 0.86 \Delta E = 165 \, \mathrm{MeV}.$

According to Wikipedia, a ton of TNT can release about 4.184 gigajoules. So, the energy of explosion of $20\,\mathrm{kg}$ is E_0 where

$$E_0 = 4.184\,\mathrm{GJ}\cdotrac{20\,\mathrm{kg}}{1\,\mathrm{t}}$$

\$\$

```
In [ ]: E0 = (4.184*u.GJ*20*u.kg/u.t).to('MJ')
E0
```

Out[]: 83.68 MJ

Thus $E_0 = 83.68 \, \mathrm{MJ}$.

The number of $^{235}\mathrm{U}$ required is $N=E_0/\Delta E'$.

Out[]: 3.1607001×10^{18}

So $N=3.16 imes10^{18}$. The mass of $^{235}{
m U}$ is

$$m=N\cdot m_{^{235} ext{U}}$$

Out[]: 1.2336201 mg

So the mass of $^{235}\mathrm{U}$ is $1.23\,\mathrm{mg}$.

Question 2

Describe two methods used for separating 235U from natural uranium.

Answer

Two methodologies are employed for isolating ^{235}U from its natural form, each initiating with gaseous uranium hexafluoride as the primary substrate.

- 1. **Gaseous Diffusion:** This process subjects the gas to a sequence of semipermeable membranes. Through thousands of membrane passages, the concentration of 235 U incrementally escalates.
- 2. **Centrifugation Technique:** Involves introducing the gas into ultracentrifuges, which rotate at an incredibly high pace—thousands of revolutions per minute. Similar to gaseous diffusion, repeated cycles lead to a stepwise augmentation in 235 U concentration.

Both techniques, albeit distinct in their operational mechanics, share the objective of progressively enriching $^{235}\mathrm{U}$ via iterative processes.

Question 3

What is the meaning of critical mass or critical size? How to roughly estimate the critical size of $^{233}\mathrm{U}$ bomb?

Answer

Critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. Critical size is the least include enough fissionable material to reach critical mass.

The fission cross section of $^{233}\mathrm{U}$ is $\sigma_f=1.9\,\mathrm{b}$. We know that the density of uranium is $19\,\mathrm{g/cm^3}$. Thus the mean free path is

$$\lambda = rac{1}{\sigma_f N} = rac{m_{^{233} ext{U}}}{\sigma_f
ho}$$

```
In [ ]: sigma_f= 1.9*u.barn
    rho = 19*u.g/(u.cm**3)
```

```
lam = (m_235U/(sigma_f*rho)).si
lam
```

Out[]: 0.10811624 m

Thus the critical size is $R_c=\lambda/2$ and the critical mass is $m_c=rac{4\pi R_c^3}{3}
ho$.

 $0.05405812 \mathrm{\ m}$

Out[]: 12.572598 kg

So the critical size is $0.05\,\mathrm{m}$ and the critical mass is $12.6\,\mathrm{kg}$.