

دانشکده مهندسی کامپیوتر

طراحی پایگاه داده

(فعل نهم: نرمال سازي پايكاه داده)

مهدي دادبخش

mahdi.dadbakhsh@sharif.edu

شماره درس:۴۰۳۸۴

یکشنبه - سه شنبه (۱۸:۲۰ الی ۱۸)

14-1-14-4

طراحی پایکاه داده رابطه ای

در طراحی پایگاه دادههای رابطهای باید موارد زیر را مشخص نمود:

- 🗖 مجموعهای از رابطهها
- 🗖 کلید (های) کاندید هر رابطه
 - □ کلید اصلی هر رابطه
- \Box کلیدهای خارجی هر رابطه (در صورت وجود)
 - محدودیتهای جامعیتی ناظر بر هر رابطه

طراحی با روش بالا به پایین (Top-Down)

طراحی با روش سنتز [نرمال ترسازی رابطهها]

روشهای طراحی: RDB

طراحی پایکاه داده رابطه ای

□روش طراحي بالا به پايين

🖵 ابتدا مدلسازی دادهها را (با روش E]ER] یا UML)انجام میدهیم و سپس مدلسازی را به مجموعهای از رابطهها تبدیل می کنیم .

\square روش طراحی سنتز رابطهای (نرمال ترسازی)

- 🖵 ابتدا مجموعه صفات خرد جهان واقع را مشخص می کنیم .سپس با تحلیل قواعد و محدودیتهای ناظر به صفات و تشخیص
- وابستگیهای بین آنها، صفات را متناسباً با هم سنتز می کنیم (نوعی گروهبندی) تا به مجموعهای از رابطههای نرمال دست یابیم .
 - 🗖 **در عمل** روش ترکیبی استفاده میشود، یعنی ابتدا روش بالا به پایین، سپس نرمال ترسازی

طراحي RDB (روش بالا به پايين)

□ روش طراحي بالا به پايين:

تبدیل نمودار E]ER]به مجموعهای از رابطههای نرمال (و نه لزوماً در نرمال ترین صورت).

در طراحی RDB، نهایتا طراح تصمیم می گیرد چند رابطه داشته باشد و عنوان (Heading) هر رابطه چه باشد .

. در نمودار مدلسازی معنایی دادهها، حالات متعدد داریم، که به نحوه طراحی بر اساس آن در بخشهای قبلی اشاره شد

طراحی RDB (روش سنتز یا نرمال تر سازی رابطه ها)

□ ایده اصلی در نرمال ترسازی:

یک رابطه، هر چند نرمال (با تعریفی که قبلا دیدیم) ممکن است آنومالی (مشکل) داشته باشد در عملیات ذخیرهسازی

(در درج، حذف یا بهنگامسازی).

- □ آنومالی در درج: عدم امکان درج یک فقره اطلاع که منطقا باید قابل درج باشد.
 - . حذف یک اطلاع ناخواسته در پی حذف اطلاع خواسته \Box
 - 🗖 آنومالی در بهنگامسازی: بروز فزون کاری
 - . پس باید رابطه را iرمال تر کرد \Box

فرم های نرمال

درد. [NF: Normal Forms]مختلفی دارد. \square

□ فرمهای نرمال:

1NF □ فرمهاي كلاسيك كادي (Codd) $2NF \square$ 3NF □ (Boyce-Codd Normal Form) BCNF 4NF □ (Projection Join Normal Form) PJNF USNF U 6NF □ (Domain Key Normal Form) DKNF ____

رابطه نرمالتر / آنومالی کمتر

رابطه بین فرم های نرمال

- 5NF C 4NF C BCNF C 3NF C 2NF C 1NF
- . یعنی به طور مثال، رابطهای که BCNF باشد، 3NF هم هست

تئوري وابستكي

- 🖵 برای بررسی فرمهای نرمال، نیاز به مفاهیمی داریم از تئوری وابستگی (Dependency Theory).
 - 🗖 مفاهیمی از تئوری وابستگی
 - (Functional Dependency) وابستگی تابعی 🖵
 - (Fully Functional Dependency) [تام] (Fully Functional Dependency |
 - (Transitive Functional Dependency) وابستگی تابعی با واسطه \Box

 \square تعریف : وابستگی تابعی(FD):صفتR.Bبه صفتR.Aو ابستگی تابعی دارد اگر و فقط اگر به از ای یک مقدار از Aبیک مقدار از Bمتناظر باشد . به عبارت دیگر اگر B دو تاپل از Bباشند، در این صورت:

 $a_1 \rightarrow b_1$

 $a_1 < \frac{c_1}{c_2}$

IF
$$t_1.A = t_2.A$$
 THEN $t_1.B = t_2.B$

ا مثال: با فرض اینکه کل تاپلهای رابطه به صورت زیر باشد، آیا داریم:

 a_1 b_1 c_1

 a_1 b_1 c_2

 a_2 b_2 c_2

 a_3 b_3 c_3

 a_4 b_2 c_3

□نكات تابع وابستگى:

- 1. صفات طرفین رابطه می توانند مرکب یا ساده باشند.
 - 2. لزوماً برعكس رابطه صادق نيست.
- 3. اگر B زیر مجموعه ی A باشد آنگاه B → A یک رابطه نامهم یا بدیهی است.

: نمایش FDهای رابطه Rبه روشهای مختلف

به صورت یک مجموعه :

o با نمودار FDها :

روي خود عنوان رابطه با استفاده از فلشهايي :

: FD تفسیر

هر FDنمایشگر یک قاعده معنایی از محیط است :نوعی قاعده جامعیتی (که باید به نحوی به سیستم داده شود .خواهیم دید که در بحث طراحی، از طریق طراحی خوب به سیستم میدهیم).

تمرین :در رابطهR(X,Y,Z)، یک اظهار بنویسید که قاعده معنایی $Y^{\mathbb{R}}X$ را پیادهسازی نماید.

(به طور مثال میتوان از EXISTSاستفاده کرد)

CREATE ASSERTION XTOYFD

CHECK (NOT EXISTS (SELECT X FROM R GROUP BY X HAVING MAX(Y)!=MIN(Y)))

حساب رابطه ای : CONSTRAINT XTOYFD FORALL R1 (FORALL R2 IF R1.X=R2.X THEN R1.Y=R2.Y)

کند در یک رشته تحصیل کند $STID \rightarrow STJ$: یک دانشجو فقط می تواند در یک رشته تحصیل کند : $STJ \rightarrow STD$: یک رشته فقط در یک دانشکده تحصیل می کند. $STID \rightarrow STD$

🗖 قواعد استنتاج آرمسترانگ

1 if B \subseteq A then A \rightarrow B \Rightarrow A \rightarrow A (قاعده انعکاسی)

2 if $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$ (قاعدہ تعدی یا تراگذاری)

3- if $A \rightarrow B$ then $(A,C) \rightarrow (B,C)$

4- if $A \rightarrow (B,C)$ then $A \rightarrow B$ and $A \rightarrow C$

5- if $A \rightarrow B$ and $C \rightarrow D$ then $(A,C) \rightarrow (B,D)$ (قاعدہ ترکیب)

6- if $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow (B,C)$ (قاعده اجتماع)

7- if $A \rightarrow B$ and $(B,C) \rightarrow D$ then $(A,C) \rightarrow D$ (قاعده شبهتعدي)

🔲 سه قاعده اول درست و کامل هستند، بدین معنا که با داشتن یک مجموعه از وابستگیهای تابعی، تمام وابستگیهای تابعی منطقا قابل

استنتاج از F، با همین سه قاعده به دست می آیند و هیچ و ابستگی تابعی دیگر (که از Fقابل استنتاج نباشد) نیز به دست نمی آید.

□توجه :درستی سه قاعده اول به آسانی قابل اثبات است و قواعد دیگر از روی همانها اثبات میشوند.

- □ تمرین:قاعده2را اثبات کنید (با استفاده از برهان خلف).
- اثبات : فرض خلف :گیریم که A
 ightharpoonup A. در این صورت در رابطه Aدر حداقل دو تاپل، به از ای یک مقدار A، دو مقدار متمایز از A داریم.
 - اما به از ای دو مقدار متمایز C، مقدار Bممکن است دو مقدار متمایز با یک مقدار باشد.

$$R$$
 (A, B, C)
 R (A, B, C)
 R (A, B, C)

 a_1 ... c_1
 a_1 b_1 c_1
 a_1 b_1 c_1

 a_1 b_2 c_2
 a_1 b_1 c_2

است. اول، فرخB < -Aو در حالت دوم، فرخC > -Bنقض می شود پس فرض خلف باطل است و حکم بر قر ار است. \Box

□ کاربردهای قواعد آرمسترانگ

1. محاسبه بستار صفت A: + A

مجموعه تمام صفاتی که با ، وابستگی تابعی دارند

نکته :اگر $A \leftarrow A^{+}=H_R$ سوپرکلید (الگوریتم تشخیص سوپرکلید و نه کلید کاندید)

F^+ : محاسبه بستار مجموعه وابستگیهای تابعی یک رابطه F^+

: مجموعه تمام FDهایی که از Fمنطقا استنتاج می شوند

$$F = \{A \rightarrow B, B \rightarrow C\} \implies F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, (A,C) \rightarrow (B,C), \dots\}$$

- : F+ کاربردهای مهم
- 1-تشخیص معادل بودن دو مجموعه از FD های رابطهای R: به طور نمونه F و G
 - $F^+=G^+$: شرط معادل بودن \square
 - . G که از F به دست آید، از G هم به دست می آید

2-تشخيص FD افزونه

- $(F-f)^+=F^+$: وابستگی تابعی $f\in F$ را افزونه گوییم، هرگاه وابستگی تابعی G
 - . یعنی بود و نبود fدر محاسبه F^+ تاثیری نداشته باشد lacktriangle

3-محاسبه مجموعه کاهشناپذیر FDهای یک رابطه سه شرط دارد:

1-هیچ FDدر آن افزونه نباشد .

2-سمت راست هر FD، صفت ساده باشد

3-سمت $\frac{Z}{Z}$ هر FD، خود کاهشناپذیر باشد :در وابستگی تابعی $X \to X$ ، X را کاهشناپذیر (و وابستگی $X \to X$ را کامل) گوییم، $X \to X$ هرگاه $X \to X$ با هیچ زیرمجموعه از X (غیر از خود X)، FD نداشته باشد .

. در غیر اینصورت X را کاهشپذیر گوییم و وابستگی $X {
ightarrow} Y$ را ناکامل گوییم

. اگریک FD کامل به صورت A o Y داشته باشیم، آنگاه FD ناکامل FD کامل به صورت A o Y

 $(A,B) {
ightarrow} (Y,B)$ اثبات $(A,B) {
ightarrow} (Y,B)$

. با استفاده از قاعده تجزیه داریم: $B \longrightarrow B$ که یک FD بدیهی است و $(A,B) \longrightarrow B$ که همان حکم است

کنجکاوی: مجموعه کاهشناپذیر چه کاربردی دارد؟

تعریف: وابستگی تابعی با واسطه (TFD): اگر

 $B \rightarrow A g B \rightarrow C A \rightarrow B$

. اواسطه از طریق B دارد B دارد B می گوییم

. اگر $B \rightarrow A$ هم برقرار باشد، آنگاه آن $B \rightarrow B$ با واسطه، بدیهی (نامهم) است

- توجه : در سه فرم کلاسیک کادی، فقط با مفهوم کلید اصلی (PK) کار می کنیم و نه هر CK.
 - 1NF :رابطه R در 1NF است اگر و فقط اگر تمام صفات آن تکمقداری باشد
 - این تعریف می گوید هر رابطه نرمال در $1 \mathsf{NF}$ است . \square
- **2NF :**رابطه R در 2NF است اگر و فقط اگر در 1NF باشد و هر صفت <u>ناکلید</u> (که خود PK یا CK نباشد و جزء PK یا CK هم نباشد) در آن، با کلید اصلی رابطه ، FD کامل داشته باشد .
 - . به بیان دیگر در این رابطه $\overline{\mathsf{FD}}$ ناکامل با کلید اصلی نداشته باشیم \square
 - . الگوریتم تبدیل 1NFبه 2NF:حذف $\frac{FD}{D}$ های ناکامل از طریق تجزیه عمودی رابطه به طور مناسب
 - 3NF:رابطه R در 3NF است اگر و فقط اگر در 2NF باشد و هر صفت <u>ناکلید</u> با <u>کلید اصلی رابطه، فقط FD بیواسطه داشته باشد</u> (FDباواسطه نداشته باشد).
 - □ الگوريتم تبديل 2NF به 3NF :حذف FD هاى با واسطه .

- . مثال: مثالی قید می کنیم و در آن تا 3NFپیش می ویم \Box
- . در حالت کلی، تمام صفات دانشجو، درس و انتخاب در یک رابطه می توانند باشند \Box
 - 🗀 قواعد محيط :
 - 1-یک دانشجو در یک رشته تحصیل میکند .
 - 2-یک دانشجو در یک دانشکده تحصیل می کند .
 - 3-یک رشته در یک دانشکده ارائه می شود

PKهاي ناشي از PK(سمت چپ)

R (STID, COID, STJ, STD, GR)

777 CO₁ Phys D11 777 Phys D11 CO₂ 777 CO₃ Phys D11 888 CO₁ Math D12 888 CO₂ Math D12 444 CO₁ Math D12 13 555 Phys D11 CO₁ 555 CO₂ Phys D11

- . ولی آنومالی دارد و باید نرمال تر شود ${f R}$ رابطه ${f R}$ در ${f R}$ است (چون همه صفات تک مقداری هستند) ولی آنومالی دارد و باید نرمال تر شود
 - 🔲 أنوماليهاي رابطه R:

1. در درج:

درج كن اين فقره اطلاع درمورد يك دانشجو را : (á '666', 'chem', 'D16')

درج ناممكن: تا ندانيم حداقل يك درسى كه گرفته شده چيست .

2. در حذف :

فرض می کنیم '444'در این لحظه فقط همین تک درس را داشته باشد .

حذف كن فقط اين اطلاع را: (CO1', 13')

حذف انجام مى شود اما اطلاع ناخواسته هم حذف مى شود (اطلاعات دانشجو هم حذف مى شود).

3. در بهنگامسازی:

تغییر رشته تحصیلی دانشجو با شماره 777 به Chem .

برای انجام آن فزونکاری داریم ؛ بهنگامسازی منتشرشونده (Propagating Update).

دلیل آنومالیهای رابطه R:

- □ از دیدگاه عملی: پدیده اختلاط اطلاعات، یعنی اطلاعات در مورد خود موجودیت دانشجو با اطلاعات در مورد انتخاب درس مخلوط شده است.
 - 🔲 از دیدگاه تئوری : وجود FD های ناکامل

$$\begin{cases} (STID, COID) \to STJ \\ STID \to STJ \end{cases} \begin{cases} (STID, COID) \to STD \\ STID \to STD \end{cases}$$

- 🖵 این FDهای ناکامل باید از بین بروند .برای این منظور رابطه R را باید چنان تجزیه عمودی کنیم که در رابطههای حاصل، FD ناکامل نباشد .
 - . برای این کار از عملگر پرتو استفاده می کنیم . پرتوی که منجر به یک تجزیه خوب شود \square

 $\Pi_{(STID,COID,GR)}(R)$

 $\prod_{\text{STID,ST,STD}}(R)$

SCG (STID, COID, GR) 9 SSD (STID, STJ, STD)

777	CO1	19
777	CO2	16
777	CO3	11
888	CO1	16
888	CO2	18
444	CO1	13
555	CO1	14
555	CO2	12

•	<u> </u>	$\mathbf{D}\mathbf{I}\mathbf{U}_{\mathbf{j}}$	$\mathbf{D}\mathbf{I}\mathbf{D}$
	777	Phys	D11
	888	Math	D12
	444	Math	D12
	555	Phys	D11

- : رابطههای جدید آنومالیهای R را ندارند \square
- ('666', 'chem', 'D16'): درج کن
- بدون مشکل در SSD درج می شود .
 - 2. حذف كن : (CO1', 13): حذف
- بدون مشكل از SCG حذف مي شود .
- **3.** بهنگام سازی کن: تغییر رشته دانشجوی 777 را به
 - بدون مشکل در SSD بروز می شود .

- . های ناکامل از بین رفتند بنابراین SSD های ناکامل از بین رفتند بنابراین \Box
 - تاکید: رابطه R، 2NF است هرگاه اوالا در 1NF باشد و ثانیًا هر صفت ناکلید با کلید اصلی، FD کامل
 - داشته باشد (رابطه، FD ناکامل نداشته باشد).
 - تمرین: بررسی شود که آیا در این تجزیه همه FD ها محفوظ میمانند؟
 - 🖵 نکته: باید توجه کنیم که در تجزیه، FD ای از دست نرود، چون هر FD یک قاعده جامعیت در محیط است
 - توجه داشته باشید که در این تجزیه هیچ اطلاعی از دست نمیرود .یعنی اگر کاربر رابطه اصلی را به هر
 - دلیلی بخواهد، با پیوند دو رابطه جدید به دست میآید .

- ا آیا رابطههای جدید (SSD و SSD) آنومالی ندارند؟ \Box
 - □ آنومالیهای SSD:
 - 1- در درج:
- اطلاع « :رشته IT در دانشکده D20 ارائه میشود .»به دلیل FD شماره ، 3 این اطلاع منطقاً باید قابل درج
 - باشد، اما درج ناممکن است . چون کلید ندارد، باید حداقل یک دانشجوی این رشته را بشناسیم
 - 2- در حذف:
 - حذف کن ('Chem') و با فرض اینکه تنها یک دانشجو در رشته Che ثبت شده است .
 - حذف انجام می شود ولی اطلاع «رشته شیمی در D16 ارائه می شود »، ناخواسته حذف می شود
 - 3- در بهنگامسازی
 - «شماره دانشکده رشته فیزیک را عوض کنید ».به تعداد تمام دانشجویان این رشته باید بهنگامسازی شود .
 - SSD باید نرمال تر شود .

🔲 این رابطهها در 3NF هستند .

🔲 او ًلا در 2NF هستند .

🔲 ثانیا FD با واسطه نداریم

تمرین: بررسی شود که در این تجزیه هیچ اطلاعی از دست نمیرود و FD ها هم حفظ میشوند .

تاکید : رابطه R در 3NF است اگر و فقط اگر او لا در 2NF باشد و ثانیاً هر صفت ناکلید با کلید اصلی FD بی و اسطه داشته باشد (تمام FD ها مستقیماً ناشی از PK باشد).

نتیجه: FDهای ناکامل و باواسطه مزاحم هستند و باید از بین بروند .

در عمل رابطه ها باید حداقل تا 3NF نرمال شوند و خواهیم دید حتی الامکان در BCNF یا بیشتر باشند .

در رابطه 3NF داریم که «یک بوده (واقعیت) :یک رابطه »و یا «یک شیئ : یک رابطه ».

[بحث تکمیلی] تجزیه خوب

در حالت کلی اگر R_1 ، R_2 ،و R_n پرتوهای دلخواه از R_1 باشند، به شرط عدم وجود هیچمقدار در صفات پیوند داریم (ممکن است تاپلهای افزونه بروز کند):

 $R \subseteq R_+ \bowtie R_2 \bowtie \cdots \bowtie R_n$

- 🗖 تجزیه بی حذف: شرطش این است که در صفات پیوند هیچمقدار (Null Value) نداشته باشیم
 - 🖵 اگر در صفات پیوند هیچمقدار داشته باشیم، چه پیش میآید؟

 $T(\underline{A}, B, C, D, E) \Rightarrow T_1(A, B) T_2(B, C, D, E)$

- تاپلهایی در پیوند از دست میروند .به این تاپلها، تاپلهای آونگان [معلق] (Dangling) گوییم .
 - 🗖 در مباحث نرمالترسازی معمولا فرض بر این است که صفت (صفات) پیوند، هیچمقدار ندارند .

[بحث تكميلي] تجزيه خوب

- (Nonloss/Lossness Decomposition) تجزیه خوب \Box
 - 1-بىحشو: در پيوند پرتوها، تاپل حشو [افزونه] بروز نكند .
- 2-حافظ FD های رابطه اصلی حفظ شوند . FD های رابطه اصلی حفظ شوند .
- ر بی حذف :در پیوند پرتوها هیچ تاپلی حذف نشود (صفت یا صفات پیوند هیچمقدار نباشند). $U_{!\in\{1,...,n\}}H_{Ri)}=H_R$

 - 🖵 در بیشتر متون کلاسیک، تجزیه بی حشو تحت عنوان تجزیه بی کاست یا بی گمشدگی
- (Nonloss/Lossless Decomposition) مطرح شده است که به همراه خاصیت حفظ وابستگیهای تابعی،
 - تجزیه خوب را شکل میدهد (دو ویژگی دیگر تجزیه خوب را پیشفرض تجزیه خوب میدانیم).
 - 🖵 در واقع تاپلهای افزونه باعث از دست رفتن بخشی از اطلاعات میشوند .

[بحث تكميلي] تجزيه خوب

- □قضیه ریسانن (Rissanen):
- . از یکدیگر مستقل باشند R و با R به دو پرتوش R_1 و R_2 R_3 از یکدیگر مستقل باشند R_1
 - : مستقل از یکدیگرند اگر و فقط اگر R $_2$ همستقل از یکدیگرند ا
 - صفت مشترک، حداقل در یکی از آنها CK باشد رک بی حشو بودن
- تمام FD های رابطه اصلی یا در مجموعه FD های R $_1$ و جود داشته باشند یا از آنها منطقاً استنتاج شوند \longrightarrow حافظ FD ها
 - رقرار A -> C وB -> C ، A -> B وابستگیهای R(A, B, C) برقرار R(A, B, C) برقرار R(A, B, C) برقرار $R_2(\underline{B}, C)$ وابستگیهای R $R_2(\underline{B}, C)$ وابستگیهای R $R_2(\underline{B}, C)$ و R $R_2(\underline{B$
 - در اینجا صفت مشترک B در رابطه دوم کلید کاندید است، چون همه صفات به آن وابستگی تابعی دارند و کاهشپذیر هم نیست .

[بحث تکمیلی] تجزیه خوب

- . مثال :رابطه SSDرا در نظر می گیریم این رابطه به سه شکل به پرتوهای دو گانی قابل تجزیه است \Box
- $oxed{I}$ SS (STID, STJ) SD (STJ, STD)
- II) $SS (\underline{STID}, STJ)$ $SD (\underline{STID}, STD)$
- (III) SS((\underline{STID}, STD) SJ (\underline{STJ}, STD)

. تجزیه اخوب است، چون هر دو شرط ریسا نن را دارد lacksquare

$$\left.\begin{array}{c}
STID \to STJ \\
STJ \to STD
\end{array}\right\} \Rightarrow STID \to STD$$

- 🗖 تجزیه ااخوب نیست، چون FDاز دست میدهد .
- 🗖 تحزیه اااخوب نیست، چون FDاز دست میدهد .

فرم نرمال BCNF

🔲 اصطلاح : در وابستگی تابعی A -> B (A Determines B) A -> B) به المترمینان گویند

تعریف: BCNF : رابطه R در BCNF است اگر و فقط اگر در آن دترمینان هر FD مهم و کاهشناپذیر، CK باشد .

. چون رابطه می تواند بیش از یک CK داشته باشد، BCNF از NF قوی تر است \square

مثال : رابطههای زیر در BCNF هستند .

پایان فصل نهم

مهدي دادبخش

mahdi.dadbakhsh@sharif.edu

14-1-14-4