Instructor: Jinkyu Lee

Homework 6 (80 points): 2016/5/26

Due date: 2016/6/7 23:59 (submission to icampus)

Problem 6-1: Elevator Optimization 2 (50 points)

- Read the elevator optimization problem in Pages 253-256. We change the problem such that
 - 1. People can walk down but cannot walk up; and
 - 2. The 1st floor is the base floor.
- Sample input (the red numbers are input)
 - **5** (number of people <= MAX_RIDER=50)
 - 3 (number of stops <= MAX_STOP = 50)
 - **3** (the floor on which Person 1's home is located <= NFLOORS=100)
 - **16** (the floor on which Person 2's home is located <= NFLOORS=100)
 - 2 (the floor on which Person 3's home is located <= NFLOORS=100)
 - **10** (the floor on which Person 4's home is located <= NFLOORS=100)
 - 15 (the floor on which Person 5's home is located <= NFLOORS=100)

- Sample output (the red numbers are output)
 - **3** (the floor on which Person 1 gets off)
 - **16** (the floor on which Person 2 gets off)
 - **3** (the floor on which Person 3 gets off)
 - **10** (the floor on which Person 4 gets off)
 - **16** (the floor on which Person 5 gets off)

In your code

- Insert comments.
- TA will test your program in http://ideone.com/

In your report

- Explain your solution idea (algorithm) with an example.
- Explain your code.

Problem 6-2: Land Lease (30 points)

- You are going to lease a piece of land. For each unit of land, you should pay X amount of fee, and you will earn some money from the land.
- Develop an algorithm that finds a rectangle maximizing your profit.
- Example: *X=100*,

110	130	80	170	160
150	120	170	160	90
110	190	180	120	30
10	80	110	130	140
120	130	30	120	90
60	120	80	100	50

- Then, your maximum profit is 490, when the rectangle (1,1) (3,4) (colored as grey) is chosen. In this case, the amount of profit is
- -110+130+80+170+150+120+170+160+110+190+180+120-100*12=490

110	130	80	170	160
150	120	170	160	90
110	190	180	120	30
10	80	110	130	140
120	130	30	120	90
60	120	80	100	50

In your code

- No code

In your report

- Explain your algorithm.
- Explain your algorithm with the following example with X=150.

)	140	60	200	260	240	110	260	150	200
)	20	90	110	70	130	20	110	100	110
)	260	170	230	20	230	110	130	90	20
)	130	40	80	150	90	230	230	130	260
)	110	80	100	20	290	40	30	110	40
)	260	150	190	170	170	260	140	260	110
)	210	160	140	150	90	130	150	130	170
)	140	190	260	110	170	110	170	140	20
)	60	120	230	170	130	260	230	150	170
)	50	40	100	270	90	20	290	240	100