Computing Chi-Squared by Hand

First, we should 3 rundom indexes to use as our by-dulu france, being:

The dalu is as follows:

	Hur Player	Han Waters	_
Rundum #1	20	8	28
Rundum #1	Ų	ч	12
Rundum #3	30	ч	34
	58	16	(74)

Thuse will be an observed vulves, now we must calculate our expected rules with

enduraces moules # latet · contravents wer # latet enstaveded it into Freg

Rendom #1	(28.58) / 74	128 · 16) / 74
Runam #2	(12-58)/74	(12.16)/74
Rundom #3	(34.58) 174	(34.16) /74

Ţ

Enpected Values

1	Han Played	How Warred
Rundom #1	21.45	6.05
Rundom #2	9.41	2.54
Runden #3	26.65	T.35

Then to get X2 we do:

$$x^2: \sum_{ij} (O_{ij} - E_{ij})^2$$

Now we do on calculations:

Rundom #1 / Pluyed:
$$\frac{(20-21.95)^2}{21.95} = \frac{-1.95^2}{21.95} = \frac{3.8025}{21.95} = .17$$

Ranorm #1/westered
$$\frac{(8-6.05)^2}{6.05} = \frac{1.95^2}{6.05}, \frac{3.8025}{6.05} = .63$$

Rundom #2/Walched:
$$\frac{(4-2.64)^2}{2.54}$$
: $\frac{1.41^2}{2.59}$ = $\frac{1.9881}{2.59}$ = . 77

Rendom #3/Played:
$$\frac{(30-26.65)^2}{26.65} = \frac{3.35^2}{26.65} = \frac{11.2225}{26.65} = .42$$

Random #3/Walded:
$$\frac{(4-7.35)^2}{7.35} = \frac{-3.35^2}{7.35} = \frac{11.2225}{7.35} = 1.53$$

$$df = (# row - 1) \cdot (# column - 1)$$

$$(3-1) \cdot (2-1)$$

Using chi-squie table &= 0.05, df=1 me get a enil voter et 5.99 Becase and test value is less than are crit value, we can accept our null hypotheses that there is an independence.

Hund Cukulatuns for Correlation

	Hur Plance	Han Westers
Rundum #1	20	8
Rundum #2	J.	4
Runam #3	30	ч

 $[x-x_{min}]^2$ $.67^2$ ".4489 Sum: -11.33^2 : 128.3689 = 242.6667 10.67^2 = 113.8489

(y. gmin)2

 $2.67^{2} = 7.1284$ Sum: 10.6667 $-1.33^{2} = 1.7684$

1= U. 0924

This does match the conclution coefficient we encounted in pathon.