Financial Times Series

Lecture 4

Trends and Seasonalities

To make predictions

We need to estimate the trend and seasonality

Fair to assume additive model (?)

Linear trend?

Period of the seasonality?

Possible prediction

Additive model

• $x_t = m_t + s_t + e_t$ (trend, seasonality, stationary mean zero noise)

We first consider the case where no seasonality is present

• $x_t = m_t + e_t$

Estimation of trend (1)

• Let $x_1, ..., x_T$ be the observed time series values

• By occular inspection try/find reasonable polynomial $m_t = \sum_{i=0}^k a_i t^i$ that minimizes

$$\sum_{t=1}^{T} (x_t - m_t)^2$$

Estimation of trend (1)

The procedure yields a polynomial

$$\widehat{m}_t = \sum_{i=0}^{\kappa} \widehat{a}_i t^i$$

which in turn is a predictor for X_t under the assumption that the noise process has mean zero

Estimation of trend (1)

It may turn out that the noise series exhibits correlation

This may be used to improve the prediction

Estimation of trend (2)

We may also use two-sided moving averages

$$\widehat{m}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} x_{t+j}, \quad q+1 \le t \le T-q$$

Or exponential smoothing

$$\widehat{m}_t = ax_t + (1-a)\widehat{m}_{t-1}, 0 \le a \le 1, t = 2, ..., T,$$

$$\widehat{m}_1 = x_1$$

Estimation of seasonality

 If there is no obvious trend it may be resonable to assume that the seasonality component is given by the periodic function

$$s_t = a_0 + \sum_{j=1}^k (a_j cos(\lambda_j t) + b_j sin(\lambda_j t)),$$

where $s_t = s_{t+d}$ since λ_j is an integer multiple of $2\pi/d$

Seasonality and trend

• First, (pre-)estimate the trend for $q < t \le T - q$ by

$$\widehat{m}_t = (0.5x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + 0.5x_{t+q})/d,$$

if the period d of the seasonality component is 2q or by the same two-sided MA as for trend only if the period is odd.

• Now define, for $1 \le k \le d$, w_k as the average of $x_{k+jd} - \widehat{m}_{k+jd}$

The seasonality estimate is then given by

$$\hat{s}_k = w_k - \frac{1}{d} \sum_{i=1}^d w_i$$
, $k = 1, ..., d$

In turn we get the deseasonalized data as

$$d_t = x_t - \hat{s}_t$$

 From this data we re-estimate the trend using one of the above methods

Finally, we end upp with the estimated noise

$$\hat{e}_t = x_t - \widehat{m}_t - \hat{s}_t$$

- Now we want to investigate the properties of the estimated noise
- If it turns out that there is no dependence in the noise, all further modeling that can be done is to estimate the mean and variance of the noise

Checking noise properties

• For an iid, zero mean and finite variance series it can be shown that the sample acf:s, $\hat{\rho}(h)$, asymptotically follow a $N(0, T^{-1})$ distribution

• So if we uncorrelated residuals 95% of the sample acf:s should be expected to fall within $\pm 1.96/\sqrt{T}$

ACF for 1000 iid, first 100 lags

Checking noise properties

Portmanteau test

$$Q = T \sum_{j=1}^{n} \hat{\rho}^{2}(j) \sim \chi^{2}_{1-\alpha}(h)$$

Ljung-Box (faster convergence)

$$Q_{LB} = T(T+2) \sum_{j=1}^{n} \frac{\hat{\rho}^{2}(j)}{T-j} \sim \chi^{2}_{1-\alpha}(h)$$

Portmanteau

 The series used for the plotted sample acf:s is based on 1000 observations

The observed value of the Portmanteau statistic is 102.3

• The corresponding 95% chi2(100) quantile is 124.3 so we cannot reject the null hypothesis of the series being oncorrelated at the 5% level.

Exercise

Play around in matlab with, e.g.

```
%Season and trend time series
time=0:24;
season=sin(pi/2*time);
trend=0.05*time;
WN=normrnd(0,0.2,1,length(time));
Y=season+trend+WN;
plot(time, Y)
```

Exercise

 Try the classical decomposition scheme and check for iid residuals using the suggested tests.

- $x_t = m_t s_t e_t$ (trend, seasonality, stationary mean zero noise)
- We use this model if the seasonal variation seems to increase

with increased trend or decrease with decreasing trend

• If the periodicity is denoted d it is often the case that a seasonal series $\{x_t\}$ can be defined by

$$(1 - B^d)(1 - B)x_t = (1 - \theta B)(1 - \Theta B^d)a_t$$

where $|\theta| < 1$, $|\Theta| < 1$ and a_t is WN

 Note that the AR part (LHS) contains difference and seasonal differences, i.e.,

$$(1 - B^d)(1 - B)x_t = (1 - B^d)(x_t - x_{t-1})$$
$$= x_t - x_{t-1} - (x_{t-d} - x_{t-d-1})$$

whereas for the MA part (RHS) it holds that its expectation is zero and its ACF is (show this)

$$\rho_1 = \frac{-\theta}{1 + \theta^2}, \rho_d = \frac{-\Theta}{1 + \Theta^2},$$

$$\rho_{d-1}=\rho_{d+1}=rac{\theta\Theta}{(1+\theta^2)(1+\Theta^2)}$$
 and 0 otherwise

 The model with the MA part as above is called a multiplicative model

If the MA part instead is

$$x_t = (1 - \theta B - \Theta B^s)a_t$$

the model is called non-multiplicative

Regression models with correlated errors

• In many situations we want to fit a model that predicts returns of a single stock from the returns of an index

$$r_{1t} = \alpha + \beta r_{2t} + e_t$$

- Using OLS to fit the model, i.e. to estimate α and β is OK if $\{e_t\}$ is WN
- However, in practice it is common that $\{e_t\}$ exhibits serial correlation, i.e. autocorrelation and if so OLS will not give consistent parameter estimates

Example, 3-year interest rates vs. 1-year interest rates

Example, 3-year interest rates vs. 1-year interest rates

 We want to predict the 3-year rate from the 1year rate

$$r_{3t} = \alpha + \beta r_{1t} + e_t$$

OLS gives

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	,987ª	,975	,975	,5267994	,092

a. Predictors: (Constant), one

b. Dependent Variable: three

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
I	1	Regression	5702,540	1	5702,540	20548,392	,000ь
I		Residual	146,529	528	,278		
l		Total	5849,069	529			

a. Dependent Variable: three

b. Predictors: (Constant), one

OLS assumptions

 Remember that OLS assumes uncorrelated constant variance (homoskedastic) normal residuals

This is many times overlooked by practitioners

May lead to inconsistent models/tests...

Durbin-Watson test for correlated residuals

- The null hypothesis is that there is no (one lag) autocorrelation in the residuals $e_t, t=1,2,...,n$
- The test statistic is

$$D = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} (e_t)^2}$$

- If we observe $D>d_U$ we do not reject H_0 , if we observe $D< d_L$ we reject H_0 but if $d_L< D< d_U$ the test is indecisive. Values of d_L and d_U can be found in the econometrics literature
- In our example $d_L pprox 1.85$ for 5% significance level

ACF of residuals

So clearly we have autocorrelation in the residual series

Remedy? Differencing

We could try to model

$$(1-B)r_{3t} = \alpha + \beta(1-B)r_{1t} + e_t$$

OLS gives

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	,933ª	,871	,871	,14370	1,637

a. Predictors: (Constant), onediff

b. Dependent Variable: threediff

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	73,320	1	73,320	3550,886	,000b
	Residual	10,882	527	,021		
	Total	84,202	528			

a. Dependent Variable: threediff

b. Predictors: (Constant), onediff

Remedy...

 The Durbin-Watson test still says that there is autocorrelation at the 5% level but

- Only one lag
- So if we model the residuals as an AR(1) we are good to go

Final model

So ur final model is

$$(1 - B)r_{3t} = \alpha + \beta(1 - B)r_{1t} + e_t$$
$$e_t = a_t + \rho a_{t-1}$$

Which is equivalent to

$$(1-B)r_{3t} = \alpha + \beta(1-B)r_{1t} + \rho(1-B)r_{3t-1} - \beta\rho(1-B)r_{1t-1} + \tilde{a}_t$$

where $\tilde{a}_t = e_t - \rho e_{t-1}$ constitutes a WN series

Model fit

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	,936ª	,876	,875	,14118	1,961

a. Predictors: (Constant), onedifflag, onediff, threedifflag

b. Dependent Variable: threediff

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	73,567	3	24,522	1230,245	,000Ъ
	Residual	10,445	524	,020		
	Total	84,012	527			

a. Dependent Variable: threediff

b. Predictors: (Constant), onedifflag, onediff, threedifflag

• Here the observed value of the DW-test is 1.96 which is above $d_U \approx 1.86$ for 5% significance level

Compensation of autocorrelation and/or heteroskedasticity

• What if our main goal is to make inference about α and β in the regression model but residuals exhibit autocorrelation and/or heteroskedasticity?

 The problems can be solved by using the approprioate covariance structures for the coefficient estimators

OLS as we (used to) know it

So we want to fit the model

$$y_t = \boldsymbol{x'}_t \boldsymbol{\beta} + e_t$$

where $\mathbf{x}_t = (x_{1t}, ..., x_{kt})'$ where $x_{1t} = 1$ and $\boldsymbol{\beta} = (\beta_1, ..., \beta_k)$

The OLS estimates are given by

$$\widehat{\boldsymbol{\beta}} = \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x'}_{t}\right]^{-1} \sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{y}_{t}, \qquad Cov(\widehat{\boldsymbol{\beta}}) = \sigma^{2}_{e} \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x'}_{t}\right]^{-1}$$

Autocorrelation and/or heteroskedacticity

To compensate for heteroskedacticity use

$$Cov(\widehat{\boldsymbol{\beta}})_{HC}$$

$$= \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x}'_{t}\right]^{-1} \left[\frac{T}{T-k} \sum_{t=1}^{T} (\hat{e}_{t})^{2} \boldsymbol{x}_{t} \, \boldsymbol{x}'_{t}\right] \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x}'_{t}\right]^{-1}$$

where
$$\hat{e}_t = y_t - x'_t \widehat{\beta}$$

Autocorrelation and/or heteroskedacticity

To compensate for autocorrelation and heteroskedacticity use

$$Cov(\widehat{\boldsymbol{\beta}})_{HAC} = \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x'}_{t}\right]^{-1} \hat{C}_{HAC} \left[\sum_{t=1}^{T} \boldsymbol{x}_{t} \, \boldsymbol{x'}_{t}\right]^{-1}$$

where

$$\hat{C}_{HAC} = \sum_{t=1}^{T} (\hat{e}_t)^2 x_t \, x'_t + \sum_{j=1}^{l} w_j \sum_{t=j+1}^{T} (x_t \hat{e}_t \hat{e}_{t-j} x'_{t-j} + x_{t-j} \hat{e}_{t-j} \hat{e}_t x'_t)$$

for
$$w_j = 1 - \frac{j}{l+1}$$
 and (suggested) $l = 4(T/100)^{2/9}$