## Making a chemical bond: simplest molecule



#### Born-Oppenheimer Hamiltonian:

$$H = -\frac{\hbar^{2}}{2m} \vec{\nabla}_{r}^{2} - \frac{e^{2}}{\left|\vec{r} - \vec{R}_{L}\right|} - \frac{e^{2}}{\left|\vec{r} - \vec{R}_{R}\right|} + \frac{e^{2}}{\left|\vec{R}_{R} - \vec{R}_{L}\right|}$$

#### H<sub>2</sub>+ wavefunctions

#### If protons are far away



Protons are nearby

Molecular orbital: linear combination of atomic orbitals (LCAO) - Approximation



#### H<sub>2</sub>+ intuitive solution



Potential energy: electrons spend less time at the protons Kinetic energy: smaller gradients





#### Anti-symmetric:

Potential energy: electrons spend more time at the protons Kinetic energy: larger gradients





## **Energy contributions**

Analytical solution for H<sub>2</sub>+ can be found using 1s hydrogen atomic orbitals



# Molecular states with p orbitals



## H<sub>2</sub> and He<sub>2</sub> molecules

We can use the H<sub>2</sub>+ solution to obtain a qualitative picture of diatomic H and He



Quantitative predictions require:

- · Treating electron-electron interactions
- Exchange interactions (anti-symmetric nature of the wavefunction)