Math 542-Modern Algebra II

Taylor Lee

January 31, 2014

Problem 1:

HW1: 01/31/2014

(Fri Jan 24) (a) Find an integer x such that $x = 6 \mod 10$ and $x = 15 \mod 21$ and $0 \le x \le 210$. (b) Find the smallest positive integer y such that $y = 6 \mod 10$ and $y = 15 \mod 21$ and $y = 8 \mod 11$.

Solution:

(a) We will use the proof of the Chinese Remainder Theorem to create a number that is the sum of two integers, x_1, x_2 , which satisfy: $x_1 \equiv 6 \pmod{10}$ and $x_2 \equiv 15 \pmod{21}$, as well as $x_1 \equiv 0 \pmod{10}$ and $x_2 \equiv 0 \pmod{21}$. This number is hence:

$$x = x_1 + x_2 = 6 \cdot 21 \cdot 1 + 15 \cdot 10 \cdot 19 = 2976 \equiv 36 \pmod{210}$$

This number, x = 36 satisfies our system of congruences.

(b) We will use the proof of the Chinese Remainder Theorem to create a number that is the sum of three integers, y_1, y_2, y_3 which satisfy: $y_1 \equiv 6 \pmod{10}$, $y_2 \equiv 15 \pmod{21}$ and $y_3 \equiv 8 \pmod{11}$, as well as $y_1 \equiv 0 \pmod{21}$ and $y_1 \equiv 0 \pmod{11}$, $y_2 \equiv 0 \pmod{10}$ and $y_3 \equiv 0 \pmod{11}$ repectively. This number is hence:

$$y = y_1 + y_2 + y_3 = 6 \cdot 231 + 15 \cdot 110 \cdot 17 + 8 \cdot 210 = 31116 \equiv 1086 \pmod{2310}$$

This number, y = 1086, satisfies our system of congruences.

Problem 2:

HW1: 01/31/2014

(Fri Jan 24) (a) Find integers i, j such that there is no integer x with $x = i \mod 6$ and $x = j \mod 15$. (b) Find all pairs i, j with i = 0, 1, ..., 14 such that there is an integer x with $x = i \mod 6$ and $x = j \mod 15$.

Solution:

First we will display the pairs i, j for which there is no x that satisfy the above system of congruences.

i	<i>j</i>	i	j	i	j
0		2	0	4	0
0	2	2	1	4	2
0	4	2 2 2 2	3	4	3
0	5	2	4	4	5
0	7	2	6	4	6
0	8	2	7	4	8
0	10	2	9	4	9
0	11	2	10	4	11
0	13	2	12	4	12
0	14		13	4	14
1	0	3	1	5	0
1	2	3	2	5	1
1	3	3	4	5	3
1	5	3	5	5	4
1	6	3	7	5	6
1	8	3	8	5	7
1	9	3	10	5	9
1	11	3	11	5	10
1	12	3	13	5	12
1	14	3	14	5	13

(b) Here we will display the pairs i, j which have a solution x, as well as the solution x itself:

i		j	x	i	j	x
0	1	0	0	3	0	15
0		3	18	3	3	3
0	1	6	6	3	6	21
0	1	9	24	3	9	9
0		12	12	3	12	27
1		1	1	4	1	16
1		4	19	4	4	4
1		7	7	4	7	22
1		10	25	4	10	10
1		13	13	4	13	28
2		2	2	5	2	17
2		5	20	5	5	5
2		8	8	5	8	23
2		11	26	5	11	11
2		14	14	5	14	29