2/3,AB/1

DIALOG(R) File 351: Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

002509771

WPI Acc No: 1980-27794C/ 198016

Prodn. of 2-furyl-benzazole derivs. - from halomethyl-benzazole and ortho-hydroxy aromatic carbonyl cpd., and new intermediate ether cpds.

Patent Assignee: CIBA GEIGY AG (CIBA)

Inventor: GUGLIELMET L; LUTHI C

Number of Countries: 007 Number of Patents: 006

Patent Family:

Patent No	Kind	Date	Applicat No	o Kind	Date	Week	
EP 10063	A	19800416				198016	В
JP 55049374	A	19800409				198021	
BR 7906368	A	19800527				198024	
EP 10063	В	19821229				198302	
DE 2964427	G	19830203				198306	
JP 89053276	В	19891113				198949	

Priority Applications (No Type Date): CH 7810304 A 19781004

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 10063 A G

Designated States (Regional): CH DE FR GB IT

EP 10063 B G

Designated States (Regional): CH DE FR GB IT

Abstract (Basic): EP 10063 A

(A) Prodn. of furanyl-benzazoles (I) comprises reacting an aromatic, mono- or polycyclic o-hydroxycarbonyl cpd. (II) with a 2-halomethylbenzazole (III), opt. in presence of a mildly basic condensing agent.

Reaction is opt. in presence of an organic solvent at >=50, esp. 50-200 degrees C, or in absence of solvent at 100-250 degrees C.

- (B) Ethers of formula (IV), formed by initial reaction of (II) and (III), are new: (R = H, alkyl or phenyl, opt. with non-chromophoric substits.; R1=H, halo, alkenyloxy, cycloalkoxy, or alkyl, alkoxy, phenoxy or aralkoxy opt. with non-chromophoric substits.; or is COOY, CONY1Y2, SO2NY1Y2, mono- or dialkylamino, acylamino, SO3H, arylsulphonyl, alkylsulphonyl or alkoxysulphonyl; R2=H, halo, alkyl or alkoxy, opt. with non-chromophoric substits. or with R1 in ortho position forms CH=CH-CH=CH, OCH2O or OCH2CH2O; R3=H, halo, alkenyloxy, alkenylcarbonyl, COOY1, CONY1Y2, SO2NY1Y2, CN, SO3H, alkylsulphonyl, arylsulphonyl, aryloxysulphonyl, CF3 or alkyl, alkoxy, phenyl or aralkyl opt. substd. by non-chromophoric substits; R4=H, halo, alkyl or alkoxy, opt. substd. by non-chromphoric substits.; or R3+R4 in ortho position complete CH=CH.CH=CH. X=O or NR5. Y1 and Y2 are each H, alkenyl, 5-6C cycloalkyl, or is alkyl, phenyl or aralkyl, opt. with non-chromophoric substits., or NY1Y2 = 5 or 6 membered heterocycle; R5 = alkenyl, cycloalkyl or is alkyl, phenyl or aralkyl opt. with non-chromophoric substits.).
- (I) are intermediates for pharmaceuticals, dyes and scintillators, and are also optical brighteners.

(1) Veröffentlichungsnummer:

0 010 063

A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 79810104.4

(22) Anmeldetag: 28.09.79

(5) Int. Cl.³: C 07 D 405/04 C 07 D 413/04, C 07 D 235/12 //C07D235/10

(30) Priorität: 04.10.78 CH 10304/78

(43) Veröffentlichungstag der Anmeldung: 16.04.80 Patentblatt 80/8

(84) Benannte Vertragsstaaten: CH DE FR GB IT

71) Anmelder: CIBA-GEIGY AG Patentabteilung Postfach CH-4002 Basel(CH)

72) Erfinder: Guglielmetti, Leonardo, Dr. Laufenburgerstrasse 30 CH-4058 Basel(CH)

(72) Erfinder: Lüthi, Christian, Dr. Anwilerstrasse 10 CH-4059 Basel(CH)

(54) Verfahren zur Herstellung von Furanyi-benzazolen; 2-((Ortho-acyl-phenoxy)methyl)-benzazole.

(5) Verfahren zur Herstellung von Furanyl-benzazolen, dadurch gekennzeichnet, dass man eine ein aromatisches elnoder mehrkerniges Ringsystem aufweisende o-Hydroxycarbonylverbindung mit einem 2-Halogenmethyl-benzazol in An- oder Abwesenheit eines schwach basischen Kondensationsmittels, kondensiert sowie neue Aether der Formel

worin X Sauerstoff oder eine substituierte Iminogruppe, R Wasserstoff oder gegebenenfalls substituiertes Alkyl oder Phenyl und A ein gegebenenfalls substituiertes aromatisches ein- oder mehrkerniges Ringsystem bedeuten und der Ring B substituiert sein kann.

1-12062/=

BEZEICHNUNG GEÄNDERT siehe Titelseite

Verfahren zur Herstellung von Furanyl-benzazolen

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Furanyl-benzazolen sowie neue Benzazolverbindungen.

Es sind bereits Verfahren zur Herstellung von 2-substituierten Benzofuranen bekannt geworden, so z.B. (A) aus K.B.L. Mathur und H.S. Mehra, J. Chem. Soc. (London) 1960, 1954-1955 die Herstellung von 2-(p-Nitrophenyl)--benzofuran durch intramolekulare Kondensation von o-(p-Nitrobenzyloxy)-benzaldehyd; (B) aus der DE-OS 2 238 628 die Herstellung von 2-substituierten Benzofuranen durch Wasserabspaltung mit stark basischen Kondensationsmitteln aus o-Aralkoxy-carbonylverbindungen; (C) aus der DE-OS 2 361 338 die Herstellung durch Amin--abspaltung aus o-Aralkoxy-azomethinen durch stark basische Kondensationsmittel in stark polaren Lösungsmitteln und (D) aus der US Patentschrift 3 772 323 die Herstellung von Benzofuranyl-benzimidazolen durch Kondensation einer Cumarilsaure mit einem N-mono-substituierten o-Phenylendiamin.

Alle diese Verfahren sind aber mit Nachteilen behaftet. Die aus (A) bekannte Reaktion ist nicht allgemein gultig; sie kann z.B. nicht mit o-Benzyloxybenzaldehyden

durchgeführt werden, welche am Benzylrest keine Nitrogruppe besitzen und somit keine reaktionsfähigen Nitronsäuresalze ausbilden können. Die in (B) beschriebene Methode führt unter stark alkalischen Bedingungen zu unerwünschten Nebenreaktionen, welche die Ausbeuten stark vermindern. Zur Behebung dieses Nachteils wurde ein anderer Syntheseweg gemäss (C) beschritten, welcher aber die unwirtschaftliche zusätzliche Stufe der Bildung und Isolierung eines Azomethins mit sich bringt und dazu noch den Nachteil der Rückgewinnung bzw. Beseitigung des anfallenden Amins aufweist. Der Nachteil der in (D) beschriebenen Methode liegt in der verhältnismässig schweren Zugänglichkeit der Cumarilsäure.

Es wurde nun überraschenderweise gefunden, dass Furanyl-benzazole ohne Isolierung von Zwischenstufen und in hoher Ausbeute durch Umsetzung von o-Hydroxycarbonylverbindungen mit 2-Halogenmethyl-benzazolen hergestellt werden können.

Das erfindungsgemässe Verfahren zur Herstellung von Furanyl-benzazolen ist dadurch gekennzeichnet, dass man eine ein aromatisches ein- oder mehrkerniges Ringsystem aufweisende o-Hydroxycarbonylverbindung mit einem 2-Halogenmethyl-benzazol in An- oder Abwesenheit eines schwach basischen Kondensationsmittels kondensiert.

Als schwach basische Kondensationsmittel kommen anorganische und organische Verbindungen in Betracht, wie Alkalimetall- und Erdalkalimetallverbindungen, z.B. Carbonate, Bicarbonate oder Acetate, Ammoniumverbindungen, wie z.B. Ammoniumacetat oder tertiäre Amine, wie Pyridin. Vorzugsweise werden anorganische Verbindungen des Natriums und des Kaliums, besonders deren Carbonate verwendet. Es können aber auch Gemische verschiedener schwach basischer Verbindungen verwendet werden.

Die einzusetzende Menge an Kondensationsmittel bewegt sich in weiten Grenzen. Obschon für das Gelingen der Reaktion an sich eine katalytische Menge ausreichend ist, verwendet man mit Vorteil äquivalente Mengen oder sogar ein vielfaches davon.

Das erfindungsgemässe Verfahren wird zweckmässigerweise in einem unter den Reaktionsbedingungen inerten
Lösungsmittel durchgeführt. Als solche Lösungsmittel kommen
apolare und dipolare aprotische Lösungsmittel, wie Xylol,
Dichlor- oder Trichlorbenzol, Dimethylformamid, Diäthylformamid, Dimethylacetamid, N-Methylpyrrolidon sowie deren
Gemische in Betracht. Es werden vorzugsweise wasserfreie
organische Lösungsmittel, worin die zur Anwendung gelangende
schwache Base teilweise oder vollständig löslich sind,
verwendet.

In gewissen Fällen, z.B. wenn die Ausgangsstoffe tiefe Schmelzpunkte haben und sich nicht zersetzen, kann die erfindungsgemässe Umsetzung auch ohne Lösungsmittel, d.h. in der Schmelze, in Gegenwart des schwach basischen Kondensationsmittels durchgeführt werden.

Je nach Verfahren (mit oder ohne Lösungsmittel) und den zu kondensierenden Verbindungen kann sich die Reaktionstemperatur in einem breiten Bereich bewegen. Bei der Anwendung von Lösungsmitteln liegt sie zwischen 50°C und dem Siedepunkt des jeweiligen Lösungsmittels, vorzugsweise jedoch zwischen 50 und 200°C, besonders aber zwischen 90 und 160°C. Wird die Kondensation ohne Lösungsmittel durchgeführt, dann liegt die Reaktionstemperatur zwischen der Schmelztemperatur des Gemisches der verwendeten Reaktionskomponenten und der Zersetzungstemperatur der zu kondensierenden Verbindungen, Vorzugsweise kommen Temperaturen zwischen 100 und 250°C in Betracht

randa (C4 Lengal neb megagi o . .

His and the last lifety

Im Rahmen der Erfindung ist von Bedeutung, die Herstellung von Furanyl-benzazolen der Formel

$$(1) \qquad \qquad \underset{0}{\text{All}} \quad \overset{R}{\underset{0}{\text{IIB}}}$$

worin

A ein unsubstituiertes oder substituiertes aromatisches einoder mehrkerniges Ringsystem, das in der angegebenen Weise mit zwei benachbarten C-Atomen mit dem Furanring kondensiert ist,

R Wasserstoff, unsubstituiertes oder substituiertes Alkyl oder unsubstituiertes oder substituiertes Phenyl, X Sauerstoff oder eine -NR₅-Gruppe,worin R₅ für Alkenyl, Cycloalkyl, unsubstituiertes oder substituiertes Alkyl, Phenyl oder Aralkyl steht, bedeuten und der Ring B unsubstituiert oder substituiert ist, welche dadurch gekennzeichnet ist, dass man eine o-Hydroxycarbonylverbindung der Formel (2) mit einem 2-Halogenmethyl-benzazol der Formel (3)

worin A, B, R und X die oben angegebene Bedeutung haben und Hal für Halogen steht, kondensiert.

Als Substituenten der erfindungsgemäss herstellbaren Furanyl-benzazole kommen solche in Betracht, welche die Kondensation nicht beeinträchtigen können, d.h. Substituenten, die mit den o-Hydroxycarbonylverbindungen der Formel (2) bzw. den 2-Halogenmethylverbindungen der Formel (3) nicht leicht reagieren können.

Eine wichtige Ausführungsform der vorliegenden Erfindung besteht in der Herstellung von Benzofuranyl-benzazolen der Formel

$$(4) \qquad \qquad \underset{R_2}{\overset{R_1}{\swarrow}} \circ \overset{R}{\overset{R}{\swarrow}} \circ \overset{R}{\overset{R}{\swarrow}} \overset{R_3}{\overset{R_4}{\swarrow}}$$

worin

R Wasserstoff oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Phenyl,

 R_1 Wasserstoff, Halogen, Alkenyloxy, Cycloalkoxy, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenoxy oder Aralkoxy, $-\text{COOY}_1$, $-\text{CONY}_1 Y_2$ oder $-\text{SO}_2 \text{NY}_1 Y_2$, worin Y_1 und Y_2 unabhängig voneinander für Wasserstoff, Alkenyl, Cycloalkyl mit 5 oder 6 Ring C-Atomen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl oder Y_1 und Y_2 zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen, Mono- oder Dialkylamino, Acylamino, Sulfo, Arylsulfonyl, Alkylsulfonyl, Alkoxysulfonyl oder R_1 mit R_2 in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH $_2$ -O- oder -O-CH $_2$ -O- bilden,

 R_2 Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder zusammen mit R_1 in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH $_2$ -O- oder -O-CH $_2$ -O- bilden,

R₃ Wasserstoff, Halogen, Alkenyloxy, Alkenylcarbonyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenyl oder Aralkyl, -COOY₁, -CONY₁Y₂ oder -SO₂NY₁Y₂, worin Y₁ und Y₂ die oben angegebene Bedeutung haben, Cyano, Sulfo, Alkylsulfonyl, Arylsulfonyl, Aryloxysulfonyl oder Trifluormethyl oder R₃ mit R₄ in o-Stellung zueinander den -CH=CH-CH=CH-Rest,

 ${
m R}_4$ Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder ${
m R}_4$ mit ${
m R}_3$

in o-Stellung zueinander den Rest -CH=CH-CH=CH- und

X Sauerstoff oder eine -NR₅-Gruppe, worin R₅ für Alkenyl,
Cycloalkyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl steht
bedeuten, durch Kondensation einer o-Hydroxycarbonylverbindung der Formel (5) mit einem 2-Halogenmethyl-benzazol der
Formel (6)

worin R bis R_4 und X die oben angegebene Bedeutung haben und Hal Fluor, Chlor oder Brom bedeutet.

Alkylreste R, R₁, R₂, R₃, R₄ und R₅ haben 1 bis 8, vorzugsweise 1 bis 4 C-Atomen und können als nicht-chromophore Substituenten Hydroxy-, Cyano-, Alkoxy- mit vorzugsweise 1 bis 4 C-Atomen oder -COOZ-Gruppen, worin Z für Wasserstoff oder Alkyl mit vorzugsweise 1 bis 4 C-Atomen steht, aufweisen.

Ein Alkylrest ${\bf R}_5$ kann auch durch einen Dialkylaminorest mit insgesamt 2 bis 6 C-Atomen substituiert sein.

Alkoxyreste R₁, R₂, R₃ und R₄ haben 1 bis 8, vorzugs-weise 1 bis 4 C-Atomen und als nicht-chromophore Substituenten können sie Hydroxy-, nieder Alkoxy-, Carbonamido-, Cyano-, Alkoxycarbonyl- mit insgesamt 2 bis 5 C-Atomen oder Alkoxy-gruppen mit 1 bis 4 C-Atomen aufweisen.

Phenylreste R und R_3 sowie Phenoxyreste R_1 können als nicht-chromophore Substituenten Halogenatome, wie Fluor-, Chlor- und Brom-, vorzugsweise Chloratome aufweisen oder Alkyl- oder Alkoxygruppen mit 1 bis 4, vorzugweise 1 C-Atom besitzen.

Aralkoxyreste R_1 können im Arylrest, wie Phenylreste R, nicht-chromophor substituiert sein und der Alkoxyteil weist 1 bis 4 C-Atome auf.

Alkylreste R_5 , Y_1 und Y_2 können durch Hydroxy, nieder Alkoxy, Phenoxy, Carboxy, Carbalkoxy mit 2 bis 5 C-Atomen oder Cyano nicht-chromophor substituiert sein.

Alkylreste in Alkylamino- und Alkylsulfonylgruppen haben 1 bis 8, vorzugsweise 1 bis 4 C-Atomen.

Als Aralkylrest R_5 kommt besonders der Benzylrest in Betracht, der im Phenylteil, wie ein Phenylrest R, substituiert sein kann.

Alkoxysulfonylreste R_3 weisen 1 bis 4 C-Atome auf. Als Aryl- und Aryloxysulfonylreste R_3 kommen vorzugsweise der Phenyl- und Phenoxyrest in Betracht.

Unter Acylaminoreste R_1 sind besonders solche der Formel -NH-COY $_3$ zu verstehen, worin Y $_3$ für einen unsubstituierten oder substituierten Alkylrest mit 1 bis 8, vorzugsweise 1 bis 4 C-Atomen oder einen unsubstituierten oder substituierten Phenylrest steht.

Der Ausdruck "nieder" in Zusammenhang mit irgendeinem Rest bedeutet, dass der Rest 1 bis 4 C-Atome besitzt.

Bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens bestehen in der Herstellung von

1) Benzofuranyl-benzazolen der Formel

(7)
$$R_{1}^{\prime} = 0 \qquad C \qquad N \qquad R_{3}^{\prime}$$

worin

Ri eine Alkoxygruppe mit 1 bis 8 Kohlenstoffatomen, eine Alkenyloxygruppe mit 3 oder 4 Kohlenstoffatomen, eine unsubstituierte oder mit Chlor, nieder Alkyl oder nieder Alkoxy substituierte Phenoxy- oder Phenylalkoxygruppe mit 1 bis 4 C-Atomen im Alkoxyteil, eine Hydroxyalkoxy-, Alkoxyalkoxy-, Cyanoalkoxy-, Carbalkoxyalkoxy-, Carbonamidoalkoxy- oder Cyclohexyloxygruppe oder Wasserstoff,

R; Wasserstoff, nieder Alkyl, nieder Alkoxy, Halogen, Phenyl, Alkylsulfonyl, Arylsulfonyl, unsubstituiertes oder ein bis dreifach durch Alkyl mit 1 bis 4 C-Atomen, Chlor oder Methoxy substituiertes Phenoxysulfonyl, Cyano, Trifluormethyl, -COOY1, -SO2NY1Y1 oder -CONY1Y1, worin Y1 für Wasserstoff, Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Phenoxyalkyl mit insgesamt 6 bis 9 C-Atomen, Carboxyalkyl mit 2 bis 6 C-Atomen, Carbalkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Methyl, Chlor oder Methoxy substituiertes Benzyl, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Phenyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen oder Phenathyl, Y' für Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen oder Hydroxyalkyl mit 2 bis 4 C-Atomen oder Y_1 und Y_2^1 zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen und

R5 Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Carboxyalkyl mit 2 bis 5 C-Atomen, Carbalkoxyalkyl mit insgesamt 3 bis 9 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Benzyl, Phenyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen oder Phenäthyl bedeuten, durch Kondensation eines o-Hydroxybenzaldehyds der Formel (8) mit einem 2-Chlormethyl-benzimidazol der Formel (9)

worin R_1^1 , R_3^1 und R_5^1 die oben angegebene Bedeutung haben, und

II) von Benzofuranyl-benzazolen der Formel

(10)
$$R_{8} = R_{9}$$

$$R_{11}$$

$$R_{12}$$

worin R' Wasserstoff oder Methyl, R Wasserstoff oder zusammen mit R₇ den Rest -CH=CH-CH=CH-, R₇ Wasserstoff, Chlor, Alkyl mit l bis 4 C-Atomen, Alkylsulfonyl mit l bis 4, vorzugsweise l C-Atom oder zusammen mit R₆ den Rest -CH=CH-CH=CH-, R₈ Wasserstoff, Alkyl mit 1 bis 4, vorzugsweise 1 C-Atom, Alkoxy mit l bis 4 C-Atomen oder Dialkylamino mit insgesamt 2 bis 6, vorzugsweise 4 C-Atomen, R_g Wasserstoff oder Chlor, R_{10} Wasserstoff oder zusammen mit R_{11} den Rest -CH=CH-CH=CH-, R_{11} Wasserstoff, Alkyl mit 1 bis 4, vorzugsweise 1 C-Atom, Chlor, -COOY1, oder -CONHY $_1'$, worin Y $_1'$ für Alkyl mit 1 bis 4, vorzugsweise 1bis 2 C-Atomen steht, -CONH2, Cyano, Trifluormethyl, Sulfo, Alkylsulfonyl mit l bis 4, vorzugsweise l bis 2 C-Atomen, -SO2NHY1 oder -SO2N(Y1)2 worin Y1 die oben angegebene Bedeutung hat, -SO2NH2, Phenoxysulfonyl, Morpholinosulfonyl, Cyclohexylaminosulfonyl, Phenylaminosulfonyl oder zusammen mit R₁₀ den Rest -CH=CH-CH=CH-, R₁₂ Wasserstoff oder Phenyl und X Sauerstoff oder eine Gruppe -NR $_5$, worin R $_5$ für Alkyl mit 1 bis 8 C-Atomen, Hydroxyalkyl mit 2 bis 4, vorzugsweise 2 C-Atomen, Cyanoalkyl mit 2 bis 5, vorzugsweise 2 C-Atomen, unsubstituiertes oder durch Chlor oder Methoxy substituiertes Benzyl, Phenyl oder Cyclohexyl steht, bedeuten, wobei von R_6 bis R_9 eines oder zwei und von R_{10} bis R_{12} eines verschieden von Wasserstoff ist, durch Kondensation eines o-Hydroxy-benzaldehyds der Formel (11) mit einem 2-Chlormethyl-benzazol der Formel (12)

(11)
$$\begin{array}{c} R_7 \\ R_8 \\ R_9 \end{array}$$
 OH (12)
$$C1-CH_2-C \\ X \\ R_{12}$$

worin R' bis R₁₂ und X die oben angegebene Bedeutung haben.

Das erfindungsgemässe Verfahren ermöglicht die Herstellung von Furanly-benzazolen in höheren Ausbeuten und ohne Isolierung von Zwischenprodukten. Die erfindungsgemäss herstellbaren Furanyl-benzazole sind Ausgangsprodukte für die Herstellung von pharmazentrischen Produkten (vgl. US Patentschrift 3 470 192), Farbstoffen und Szintillatoren oder sind optische Aufheller (vgl. US Patentschriften 3 772 323 und 4 009 994 oder die französische Patentschrift 2 359 839).

Die 2-Halogenmethylverbindungen der Formeln (3), (6), (9) und (12) können auch in Form derer Salze mit organischen oder anorganischen Säuren zur Anwendung gelangen.

Bei der Kondensation der Verbindungen der Formeln (2), (5), (8) und (11) mit solchen der Formeln (3), (6), (9) und (12) bilden sich intermediär die Aether der Formeln

(16)
$$R_{7} = R_{12} = R_{12}$$

worin A, B, X, R bis R_{12} , R^1 , R_1^1 , R_3^1 und R_5^1 die weiter oben angegebene Bedeutung haben. Diese Verbindungen sind neu und können vor dem Ringschluss als solche isoliert werden. Von besonderer Bedeutung sind jene der Formeln (14), (15) und (16).

Die nachfolgenden Beispiele erläutern die Erfindung ohne sie zu beschränken. Prozente sind Gewichtsprozente.

Beispiel 1

29,5 g 2-Chlormethyl-1-methyl-5-methylsulfonyl-benzimi-dazolhydrochlorid der Formel

werden in 100 ml Dimethylformamid suspendiert. Die Suspension wird mit 16,3 g 2-Hydroxy-4-methoxy-benzaldehyd (Titer: 93,5%) der Formel

und 41,5 g wasserfreiem Kaliumcarbonat versehen. Das Reaktionsgemisch wird unter Stickstoff innerhalb 30 Minuten auf 90°C erhitzt und während einer Stunde bei dieser Temperatur weitergerührt, wobei der ziemlich unlösliche Aether der Formel

vom Fp 204-205°C als Kondensationsprodukt ausfällt.Der dicke, aber immer noch gut rührbare Brei wird nun innerhalb 30 Minuten auf 140°C erhitzt, wobei unter Rühren und Stickstoff ab. 130°C ein Gemisch von Wasser und Dimethylformamid langsam abdestilliert. Das Reaktionsgemisch wird nun während einer Stunde bei 140°C weitergerührt, wobei das durch den raschen Ringschluss des Kondensationsproduktes abspaltende

Wasser ständig abdestilliert wird und das Reaktionsgemisch immer flüssiger wird. Das Reaktionsgemisch wird nun auf 30°C abgekühlt und bei dieser Temperatur unter Kühlung mit 200 ml Wasser langsam verdünnt, wobei das Reaktionsprodukt der Formel

kristallin ausfällt. Das Reaktionsgemisch wird abgenutscht, das Nutschgut mit Wasser neutral gewaschen und unter Vakuum bei 80°C getrocknet. Man erhält 34,5 g (96% der Theorie) eines hellgelben kristallinen Pulvers vom Schmelzpunkt 193 bis 195°C. Ein analytisch reines aus Chlorbenzol umkristallisiertes Muster dieser Verbindung weist einen konstanten Schmelzpunkt von 196 bis 198°C auf.

Das als Ausgangsmaterial verwendete 2-Chlormethyl-1-methyl-5-methylsulfonyl-benzimidazolhydrochlorid der Formel
(100) kann beispielsweise wie folgt hergestellt werden:

200,2 g 3-Amino-4-methylamino-phenylmethylsulfon und 99 g Chloressigsäure werden in 200 ml konzentrierter Salzsäure suspendiert, die Suspension auf Rückfluss (108°C) erhitzt, wobei bei 70°C eine klare Lösung entsteht. Das Reaktionsgemisch wird nach 10 Minuten Rückfluss mit einigen Kristallen 2-Chlormethyl-1-methyl-5-methylsulfonyl-benzimidazolhydrochlorid angeimpft und zwei Stunden am Rückfluss gehalten, wobei die Rückflusstemperatur von 108°C auf 102°C abfällt und das Reaktionsprodukt kristallin ausfällt. Das kristalline breiartige Reaktionsgemisch wird nun auf 0 bis 5°C gekühlt, zwei Stunden bei dieser Temperatur weitergerührt und dann abgenutscht. Das Nutschgut wird mit 200 ml Isopropylalkohol gewaschen und unter Vakuum bei 80°C getrocknet. Man erhält 271 g (92% der Theorie) eines hellbraunen

kristallinen Pulvers der Verbindung der Formel (100), die bei 247 bis 256°C unter Zersetzung schmilzt. Diese Verbindung ist dunnschichtehromatographisch rein und wird ohne Reinigung weiter eingesetzt.

Beispiel 2

29,5 g des 2-Chlormethyl-1-methyl-5-methylsulfonyl-benzimidazolhydrochlorids der Formel (100) werden in 100 ml
N-Methylpyrrolidon suspendiert. Die Suspension wird mit
16,3 g 2-Hydroxy-4-methoxy-benzaldehyd (Titer: 93,5%) und
41,5 g wasserfreiem Kaliumcarbonat versetzt. Die Kondensation
wird wie im Beispiel 1 beschrieben durchgeführt. Das Reaktionsgemisch wird nachher unter Vakuum vom N-Methylpyrrolidon
befreit und mit 200 ml Wasser langsam verdünnt, wobei das
Reaktionsprodukt der Formel (103) kristallin ausfällt. Das
Reaktionsprodukt wird nun abgenutscht, das Nutschgut mit
Wasser neutral gewaschen und unter Vakuum bei 80°C getrocknet.
Man erhält 34 g (95,5% der Theorie) eines hellgelben kristallinen Pulvers der Formel (103) vom Schmelzpunkt 196 bis 197°C.

Beispiel 3

29,5 g des 2-Chlormethyl-1-methyl-5-methylsulfonyl-benzimidazolhydrochlorids der Formel (100) werden in 200 ml
Chlorbenzol suspendiert. Die Suspension wird mit 16,3 g
2-Hydroxy-4-methoxy-benzaldehyd (Titer: 93,5%) und 41,5 g
wasserfreiem Kaliumcarbonat versetzt. Das Reaktionsgemisch
wird unter Stickstoff 20 Stunden am Rückfluss gehalten, wobei
das abspaltende Wasser ständig entfernt wird. Das Reaktionsgemisch wird nun auf 30°C abgekühlt und bei dieser Temperatur
unter Kühlung mit 300 ml Wasser langsam verdünnt, wobei das
Reaktionsprodukt der Formel (103) kristallin ausfällt. Das
Reaktionsgemisch wird unter Vakuum vom Chlorbenzol befreit,
abgenutscht, das Nutschgut mit Wasser neutral gewaschen und

unter Vakuum bei 80°C getrocknet. Man erhält 31,4 g (88,5% der Theorie) eines hellgelben kristallinen Pulvers der Formel (103) vom Schmelzpunkt 188 bis 193°C.

In analoger Weise werden die in der Tabelle I aufgeführten Verbindungen der Formel

$$(300) \qquad \begin{array}{c} R_2 \\ R_3 \end{array} \qquad \begin{array}{c} R_1 \\ 0 \end{array} \qquad \begin{array}{c} R_5 \\ R_4 \end{array}$$

hergestellt.

TABELLE I

Verbin- dung Nr.	R ₁	R ₂	^R 3	R ₄	R ₅	Schmelz- punkt °C
301	-н	-H	-о-сн ₃	-CH ₂ -	-so ₂ -cH ₃	166-169
302	-Н	-C1	-о-сн ₃	-сн ₂ -<	-so ₂ -cH ₃	166-168
303	H	-H	-O-CH ₃	-C ₂ Н ₅	-SO ₂ -NH ₂	305
304	-H	-H	-0-C ₄ H ₉ (n)		-SO ₂ -CH ₃	195-196
305	-н	-C1	-0-CH ₃	, ,	-SO ₂ -CH ₃	278
306	-н	-H	-0-CH ₃		, ~ 5	147-148
307	-H	-H	-0-CH ₃	' "	-SO ₂ -CH ₃	
308	-н	-н	-0-CH ₃		-SO ₂ -CH ₃	196-197
309	-н	-H	, ,		-so ₂ -cH ₃ .	189-190
]	1	-0-СH ₃		-so ₂ -cн ₃	137-138
310	-H	-H	-0-CH ₃	-сн ₂ -сн ₂ он	-50 ₂ -сн ₃	239-240
311 -	-H	-H	-0-CH ₃	-CH ₃	-SO ₂ -C ₂ H ₅	175-176
312	-H	-H	-0-CH ₃	3	-so ₂ -NH-CH ₃	243
313	-H	-H	-0-СН ₃	•	-SO ₂ -NH ₂	339
			ی	٦	22	(Zers.)
314	-H	-н	-0-сн ₃	-сн ₃	-sо ₃ н	> 360

TABELLE I (FORTSETŹUNG)

Verbin- dung Nr.	R ₁	R ₂	R ₃	R ₄	R ₅	Schmelz- punkt °C
315	-н	-н	-о-сн ₃	-сн ₃	-so ₂ -o-(^\	164
316	-H	-н	-0-CH ₃	-сн ₃	-so ₂ -N_0	235
317	-H	-н	-0-сн ₃	-CH ₂ -()	-so ₂ n(cH ₃) ₂	175
318	-H	-H	-о-сн ₃	С ₂ н ₅	-so ₂ nhc ₂ h ₅	217
319 .	-H	-H	-о-сн ₃	-(H)	-so ₂ nh-(H)	224
320	-H	-H	-о-сн _з	-C ₄ H ₉ (n)	-so ₂ -nh-ch ₃	220
321	- H	-H	-о-сн ₃	_. -сн _з	-so ₂ nh-	299
322	-н	-н	-N(CH) 2	-сн ^{3.}	-сн	248

Beispiel 4

 $25,6~{
m g}$ des 1-Benzyl-2-chlormethyl-benzimidazols der Formel

und 16,3 g 2-Hydroxy-4-methoxy-benzaldehyd (Titer: 93,5%) der Formel (102) werden in 100 ml Dimethylformamid aufgenommen, wobei eine klare Lösung entsteht. Zu dieser Lösung werden nun 27,6 g Kaliumcarbonat zugegeben. Das Reaktions-

gemisch wird unter Stickstoff innerhalb 30 Minuten auf 90°C erhitzt und während einer Stunde bei dieser Temperatur weitergerührt. Die erhaltene gut rührbare rot-braune Suspension wird nun innerhalb 30 Minuten auf 150°C erhitzt, wobei unter Rühren und Stickstoff ab 130°C ein Gemisch von Wasser und Dimethylformamid langsam abdestilliert. Das Reaktionsgemisch wird nun während 6 Stunden bei 150°C weitergerührt, dann auf 0°C abgekühlt und bei dieser Temperatur mit 300 ml Wasser langsam verdünnt, wobei das Reaktionsprodukt der Formel

kristallin ausfällt. Das Reaktionsprodukt wird abgenutscht, das Nutschgut mit Wasser neutral gewaschen und unter Vakuum bei 80°C getrocknet. Man erhält 33,5 g (95% der Theorie) eines leicht braun gefärbten kristallinen Pulvers vom Schmelzpunkt 132 bis 136°C. Ein analytisch reines aus Isopropylalkohol umkristallisiertes Muster dieser Verbindung weist einen konstanten Schmelzpunkt von 139 bis 140°C auf.

Das als Ausgangsmaterial verwendete 1-Benzyl-2-chlor-methyl-benzimidazol der Formel (400) kann beispielsweise wie folgt hergestellt werden:

40 g N-Benzyl-1,2-phenylendiamin und 22 g Chloressigsäure werden in 60 ml konzentrierter Salzsäure suspendiert, die Suspension auf Rückfluss (108°C) erhitzt, wobei eine klare braun-schwarze Lösung entsteht. Das Reaktionsgemisch wird nun zwei Stunden am Rückfluss gehalten, auf 10°C abgekühlt, mit 600 ml Methylenchlorid beschichtet und langsam unter Rühren mit 500 ml Wasser verdünnt. Die Methylen-

chlorid-Schicht wird abdekantiert, mit Wasser neutral gewaschen, mit Natriumsulfat getrocknet und zur Trockne eingeengt. Man erhält 44 g (86% der Theorie) einer hellbraunen kristallinen Masse der Verbindung der Formel (400), die bei 102 bis 106°C schmilzt. Diese Verbindung ist dünnschicht-chromatographisch rein und wird ohne Reinigung weiter eingesetzt. Ein analytisch reines aus Aethanol umkristallisiertes Muster dieser Verbindung weist einen konstanten Schmelzpunkt von 108 bis 110°C auf.

Beispiel 5

Wenn man in Beispiel 4 das Dimethylformamid durch 200 ml 1,2-Dichlorbenzol ersetzt, erhält man 32,5 g (92% der Theorie) der Verbindung der Formel (401) als ein leicht braun gefärbtes kristallines Pulver vom Schmelzpunkt 129 bis 133°C.

In analoger Weise werden die in der Tabelle II aufgeführten Verbindungen der Formel

hergestellt.

- 19 -TABELLE II

ſ	7		1	7		·		
Ver- bin- dung Nr.	R.	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	Fp. °C
501	-н	-н	-0-CH ₃	-н	-н	-CH ₂	-н	151-152
502	-H	-н	-0-CH ₃	-н	-CH ₃	11	-H	159-160
503	-H	-н	-о-сн ₃	-н	-H	→	-н	161-162
504	1		-н	-H	-H	-CH ₃	-н	208-209
505	-H	-н	-CH ₃	-H	-н	-CH ₂ -(-)	-н	172-173
506	-н	-C1	_H	-C1	-H	-CH ₂ -(-)	-H	
507	-H	-н	-0-CH ₃	-H	-н			177-178
508	_н	-н	5			-CH ₂ -(1)	-CH ₃	157-159
i	. 1		-о-сн ₃	-H	-H	-CH ₂ -(1)	-Cl	144-145
509		-so ₂ cH ₃	-H	-H	-H	-CH ₂ -(_)	-H	209-210
510	اـر ا	-H	-00 ₄ H ₉ (n)	-H	-H	-CH ₂ -(1)	-H	116-117
511	(>	-H	-H	-н	-CH ₂ -(1)	-н	190-191
512	-H	-H	-0-CH ₃	-H	-H	- <u>(``</u>)-c1	-н	208-209
51.3	-н	-Н	-о-сн ₃	-н	-H	-⟨¹⟩-OCH ₃	-н	171-172
514	-н	-н	-о-сн ₃	-н	-CH3	-⟨ <u>·</u> ·⟩ .	-H	129-130
515	-н	-н	-0-CH ₃	-н	-H	-CH ₂ -CH ₂ -CN	-H	133-134
516	-H	-C ₂ H ₅	-о-сн ₃	-н	-н	-CH ₂ -(-)	-H-	110-111
517	-Н	-н	-0-CH ₃	-н	-н	-CH ₃		
518	-H	,	-0-CH ₃	-н	-н	-CH ³	-COOC ₂ H ₅	1
519	-Н	-н	-0-CH ₃	-н	-н	-CH ₃	-C≡N	227-228
520	-H		-о-сн ₃	-н	-н	-CH ₃	-CF ₃	150-151
521	-н	-н	-о-сн _З	-Н	-н	-CH ₂ -(1)	-CONH ₂	210-211
522	-н	-н	-о-сн3	-н	-н	-CH ₃	-COOCH ₃	199-200
523	-н	-H	N(C ₂ H ₅) ₂	-н .	ĺ	-CH ₃	-н	
				<i>i</i>		.5 1		200-201

Beispiel 6

33,5 g des 2-Chlormethyl-benzoxazols der Formel

und 32,6 g 2-Hydroxy-4-methoxy-benzaldehyd (Titer: 93,6%) der Formel (101) werden in 100 ml Dimethylformamid aufgenommen, wobei eine klare Lösung entsteht. Zu dieser Lösung werden nun 55 g Kaliumcarbonat und 5 g Kaliumjodid zugegeben. Das Reaktionsgemisch wird unter Stickstoff innerhalb 30 Minuten auf 90°C erhitzt und während zwei Stunden bei dieser Temperatur weitergerührt. Die erhaltene gut rührbare braune Suspension wird nun innerhalb 30 Minuten auf 140°C erhitzt, wobei unter Rühren und Stickstoff ab 130°C ein Gemisch von Wasser und Dimethylformamid langsam abdestilliert. Das Reaktionsgemisch wird nun während zwei Stunden bei 140°C weitergerührt, dann auf 0°C abgekühlt und bei dieser Temperatur mit 300 ml Wasser langsam verdünnt, wobei das Reaktionsprodukt der Formel

kristallin ausfällt. Das Reaktionsprodukt wird abgenutscht, das Nutschgut mit Wasser neutral gewaschen und unter Vakuum bei 80°C getrocknet. Man erhält 41,5 g (78% der Theorie) eines gelb gefärbten kristallinen Pulvers vom Schmelzpunkt 138 bis 143°C. Ein analytisch reines aus Nonan umkristallisiertes Muster dieser Verbindung weist einen konstanten Schmelzpunkt von 146 bis 147°C auf.

In analoger Weise werden die in der Tabelle III aufgeführten Verbindungen der Formel

(602)
$$\begin{array}{c} R_2 \\ R_3 \end{array}$$

hergestellt.

TABELLE III

Verbin- dung Nr.	R ₁	R ₂	R ₃	R ₄	R;	R ₆	Fp. °Ç
603	-Н	-н	-о-сн _З	-H	-сн ₃	-н	128-129
604	-H	-H	-O-CH ₃	-н	-H	-⟨ □⟩	202-203
605	-н	-H	-0-CH3	1	1)	-H	149-150
606	-H	-H	-H	1	V	-H	203-205
607	-н	-H	-H	-H	(1	298-300
608	1		-H	-H	-н	-н .	172-173
609	(1	-Н	-H	-CH ₃	-н	194-195
610	-H	-н	-N(C ₂ H ₅) ₂	-н	-н	-н	126-127

Patentansprüche

- 1. Verfahren zur Herstellung von Furanyl-benzazolen, dadurch gekennzeichnet, dass man eine ein aromatisches einoder mehrkerniges Ringsystem aufweisende o-Hydroxycarbonylverbindung mit einem 2-Halogenmethyl-benzazol in An- oder Abwesenheit eines schwach basischen Kondensationsmittels, kondensiert.
- 2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man die Kondensation in Anwesenheit eines unter den Reaktionsbedingungen inerten organischen Lösungsmittels und eines schwach basischen Kondensationsmittels bei Temperaturen von mindestens 50°C vornimmt.
- 3. Verfahren gemäss Anspruch 2, dadurch gekennzeichnet, dass man die Kondensation bei Temperaturen zwischen 50 und 200°C vornimmt.
- 4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man die Kondensation in Anwesenheit eines schwach basischen Kondensationsmittels und in Abwesenheit eines Lösungsmittels bei Temperaturen zwischen 100 und 250°C vornimmt.
- 5. Verfahren gemäss den Ansprüchen 1 bis 4, zur Herstellung von Benzofuranyl-benzazolen der Formel

A ein unsubstituiertes oder substituiertes aromatisches einoder mehrkerniges Ringsystem, das in der angegebenen Weise mit zwei benachbarten C-Atomen mit dem Furanring kondensiert ist,

R Wasserstoff, unsubstituiertes oder substituiertes Alkyl oder unsubstituiertes oder substituiertes Phenyl,
X Sauerstoff oder eine -NR₅-Gruppe, worin R₅ für Alkenyl,
Cycloalkyl, unsubstituiertes oder substituiertes Alkyl,
Phenyl oder Aralkyl steht und
der Ring B unsubstituiert oder substituiert ist,
dadurch gekennzeichnet, dass man eine o-Hydroxycarbonylverbindung der Formel (2) mit einem 2-Halogenmethyl-benzazol der
Formel (3)

worin A, B, R und X die oben angegebene Bedeutung haben und Hal für Halogen steht, kondensiert.

6. Verfahren gemäss den Ansprüchen I bis 4, zur Herstellung von Benzofuranyl-benzazolen der Formel

(4)
$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

R Wasserstoff oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Phenyl,

 R_1 Wasserstoff, Halogen, Alkenyloxy, Cycloalkoxy, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenoxy oder Aralkoxy, $-\text{COOY}_1$, $-\text{CONY}_1\text{Y}_2$ oder $-\text{SO}_2\text{NY}_1\text{Y}_2$, worin Y_1 und Y_2 unabhängig voneinander für Wasserstoff, Alkenyl, Cycloalkyl mit 5 oder 6 Ring C-Atomen oder unsubstituiertes

oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl oder Y_1 und Y_2 zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen, Mono- oder Dialkylamino, Acylamino, Sulfo, Arylsulfonyl, Alkylsulfonyl, Alkoxysulfonyl oder R_1 mit R_2 in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH₂-O- oder -O-CH₂-CH₂-O- bilden,

 R_2 Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder zusammen mit R_1 in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH $_2$ -O- oder -O-CH $_2$ -O- bilden,

R₃ Wasserstoff, Halogen, Alkenyloxy, Alkenylcarbonyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenyl oder Aralkyl, -COOY₁, -CONY₁Y₂ oder -SO₂NY₁Y₂, worin Y₁ und Y₂ die oben angegebene Bedeutung haben, Cyano, Sulfo, Alkylsulfonyl, Arylsulfonyl, Aryloxysulfonyl oder Trifluormethyl oder R₃ mit R₄ in o-Stellung zueinander den -CH=CH-CH=CH-Rest,

R₄ Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder R₄ mit R₃
in o-Stellung zueinander den Rest -CH=CH-CH=CH- und

X Sauerstoff oder eine -NR₅-Gruppe, worin R₅ für Alkenyl,
Cycloalkyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl steht

bedeuten, durch Kondensation einer o-Hydroxycarbonylverbindung der Formel (5) mit einem 2-Halogenmethyl-benzazol der Formel (6)
(5)

worin R bis R, und X die oben angegebene Bedeutung haben und Hal Fluor, Chlor oder Brom bedeutet.

7. Verfahren gemäss den Ansprüchen 1 bis 4, zur Herstellung von Benzofuranyl-benzimidazolen der Formel

(7)
$$R_{1}^{\prime} \longrightarrow C \longrightarrow R_{3}^{\prime}$$

worin

 R_1^* eine Alkoxygruppe mit 1 bis 8 Kohlenstoffatomen, eine Alkenyloxygruppe mit 3 oder 4 Kohlenstoffatomen, eine unsubstituierte oder mit Chlor, nieder Alkyl oder nieder Alkoxy substituierte Phenoxy- oder Phenylalkoxygruppe mit 1 bis 4 C-Atomen im Alkoxyteil, eine Hydroxyalkoxy-, Alkoxyalkoxy-, Cyanoalkoxy-, Carbalkoxyalkoxy-, Carbonamidoalkoxy- oder Cyclohexyloxygruppe oder Wasserstoff, R, Wasserstoff, nieder Alkyl, nieder Alkoxy, Halogen, Phenyl, Alkylsulfonyl, Arylsulfonyl, unsubstituiertes oder ein bis dreifach durch Alkyl mit 1 bis 4 C-Atomen, Chlor oder Methoxy substituiertes Phenoxysulfonyl, Cyano, Trifluormethy1, $-\text{COOY}_1$, $-\text{SO}_2\text{NY}_1\text{Y}_2^{\text{!}}$ oder $-\text{CONY}_1\text{Y}_2^{\text{!}}$, worin Y_1 für Wasserstoff, Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Phenoxyalkyl mit insgesamt 6 bis 9 C-Atomen, Carboxyalkyl mit 2 bis 6 C-Atomen, Carbalkoxyalky1 mit insgesamt 3 bis 6 C-Atomen, Cyanoalky1 mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Methyl, Chlor oder Methoxy substituiertes Benzyl, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Phenyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen oder Phenathyl, Y' für Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen oder Hydroxyalkyl mit 2 bis 4 G-Atomen oder \mathbf{Y}_1 und \mathbf{Y}_2^1 zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen und

R's Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Carboxyalkyl mit 2 bis 5 C-Atomen, Carbalkoxyalkyl mit insgesamt 3 bis 9 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Benzyl, Phenyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen, oder Phenäthyl bedeuten, durch Kondensation eines o-Hydroxy-benzaldehyds der Formel (8) mit einem 2-Chlormethyl-benzimidazol der Formel (9)

worin R1, R3 und R5 die oben angegebene Bedeutung haben.

8. Verfahren gemäss den Ansprüchen 1 bis 4, zur Herstellung von Benzofuranyl-benzazolen der Formel

(10)
$$R_{8} = R_{9} = C \times R_{12}$$

worin R' Wasserstoff oder Methyl, R_6 Wasserstoff oder zusammen mit R_7 den Rest -CH=CH-CH=CH-, R_7 Wasserstoff, Chlor, Alkyl mit 1 bis 4 C-Atomen, Alkylsulfonyl mit 1 bis 4 C-Atomen oder zusammen mit R_6 den Rest-CH=CH-CH=CH-, R_8 Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen oder Dialkylamino mit insgesamt 2 bis 6 C-Atomen, R_9 Wasserstoff oder Chlor, R_{10} Wasserstoff oder zusammen mit R_{11} den Rest -CH=CH-CH=CH-, R_{11}

Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Chlor, -COOY1, oder -CONHY; worin Y; für Alkyl mit 1 bis 4 C-Atomen steht, -CONH₂, Cyano, Trifluormethyl, Sulfo, Alkylsulfonyl mit l bis 4 C-Atomen, $-SO_2NHY_1'$ oder $-SO_2N(Y_1')_2$ worin Y_1' die oben angegebene Bedeutung hat, -SO2NH2, Phenoxysulfonyl, Morpholinosulfonyl, Cyclohexylaminosulfonyl, Phenylaminosulfonyl oder zusammen mit R₁₀ den Rest -CH=CH-CH=CH-, R₁₂ Wasserstoff oder Phenyl und X Sauerstoff oder eine Gruppe -NR $_{5}^{"}$, worin R $_{5}^{"}$ für Alkyl mit 1 bis 8 C-Atomen, Hydroxyalkyl mit 2 bis 4 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Chlor oder Methoxy substituiertes Benzyl, Phenyl oder Cyclohexyl steht, bedeuten, wobei von ${
m R}_{
m 6}$ bis ${
m R}_{
m 9}$ eines oder zwei und von ${
m R}_{
m 10}$ bis ${
m R}_{
m 12}$ eines verschieden von Wasserstoff ist, durch Kondensation eines o-Hydroxy-benzaldehyds der Formel (11) mit einem 2-Chlormethylbenzazol der Formel (12)

(11)
$$\begin{array}{c} R_7 \\ R_8 \\ R_9 \end{array}$$
 OH (12)
$$\begin{array}{c} C1-CH_2-C \\ X \end{array}$$

$$\begin{array}{c} R_{10} \\ R_{11} \\ R_{12} \end{array}$$

worin R' bis R₁₂ und X die oben angegebene Bedeutung haben.

- 9. Verfahren gemäss den Ansprüchen 1 bis 8, worin als schwach basisches Kondensationsmittel Natrium- oder Kaliumcarbonat verwendet wird.
- 10. Verfahren gemäss den Ansprüchen 1 bis 9, worin als unter den Reaktionsbedingungen inertes Lösungsmittel ein apolares oder dipolares aprotisches Lösungsmittel verwendet wird.
- 11. Verfahren gemäss Anspruch 10, worin Dimethylformamid als Lüsungsmittel verwendet wird.

I2. Die Verbindungen der Formel

worin

R Wasserstoff oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Phenyl,

R₁ Wasserstoff, Halogen, Alkenyloxy, Cycloalkoxy, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenoxy oder Aralkoxy, -COOY₁, -CONY₁Y₂ oder -SO₂NY₁Y₂, worin Y₁ und Y₂ unabhängig voneinander für Wasserstoff, Alkenyl, Cycloalkyl mit 5 oder 6 Ring C-Atomen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl oder Y₁ und Y₂ zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen, Mono- oder Dialkylamino, Acylamino, Sulfo, Arylsulfonyl, Alkylsulfonyl, Alkoxysulfonyl oder R₁ mit R₂ in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH₂-O- oder -O-CH₂-CH₂-O- bilden,

 R_2 Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder zusammen mit R_1 in o-Stellung zueinander den Rest -CH=CH-CH=CH-, -O-CH $_2$ -O- oder -O-CH $_2$ -CH $_2$ -O- bilden,

 R_3 Wasserstoff, Halogen, Alkenyloxy, Alkenylcarbonyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Alkoxy, Phenyl oder Aralkyl, $-\text{COOY}_1$, $-\text{CONY}_1\text{Y}_2$ oder $-\text{SO}_2\text{NY}_1\text{Y}_2$, worin Y_1 und Y_2 die oben angegebene Bedeutung haben, Cyano, Sulfo, Alkylsulfonyl, Arylsulfonyl, Aryloxysulfonyl oder Trifluormethyl oder R_3 mit R_4 in o-Stellung zueinander den -CH=CH-CH=CH-Rest,

 $\rm R_4$ Wasserstoff, Halogen oder unsubstituiertes oder nicht-chromophor substituiertes Alkyl oder Alkoxy oder $\rm R_4$ mit $\rm R_3$

in o-Stellung zueinander den -CH=CH-CH=CH-Rest und X Sauerstoff oder eine -NR $_5$ -Gruppe, worin R $_5$ für Alkenyl, Cycloalkyl, unsubstituiertes oder nicht-chromophor substituiertes Alkyl, Phenyl oder Aralkyl steht bedeuten.

13. Die Verbindungen der Formel

worin

R; eine Alkoxygruppe mit 1 bis 8 Kohlenstoffatomen, eine Alkenyloxygruppe mit 3 oder 4 Kohlenstoffatomen, eine unsubstituierte oder mit Chlor, nieder Alkyl oder nieder Alkoxy substituierte Phenoxy- oder Phenylalkoxygruppe mit 1 bis 4 C-Atomen im Alkoxyteil, eine Hydroxyalkoxy-, Alkoxyalkoxy-, Cyanoalkoxy-, Carbalkoxyalkoxy-, Carbonamidoalkoxy- oder Cyclohexyloxygruppe oder Wasserstoff, .R. Wasserstoff, nieder Alkyl, nieder Alkoxy, Halogen, Phenyl, Alkylsulfonyl, Arylsulfonyl, unsubstituiertes oder ein bis dreifach durch Alkyl mit 1 bis 4 C-Atomen, Chlor oder Methoxy substituiertes Phenoxysulfonyl, Cyano, Trifluormethyl, -COOY1, -SO2NY1Y2 oder -CONY1Y2, worin Y1 fur Wasserstoff, Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Phenoxyalkyl mit insgesamt 6 bis 9 C-Atomen, Carboxyalkyl mit 2 bis 6 C-Atomen, Carbalkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Methyl, Chlor oder Methoxy substituiertes Benzyl, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Phenyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen oder PhenAlkenyl mit 3 oder 4 C-Atomen oder Hydroxyalkyl mit 2 bis 4 C-Atomen oder Y_1 und Y_2 zusammen mit dem Stickstoffatom für einen 5- oder 6-gliedrigen gesättigten heterocyclischen Ring stehen und

R's Alkyl mit 1 bis 8 C-Atomen, Alkenyl mit 3 oder 4 C-Atomen, Cyclohexyl, Hydroxyalkyl mit 2 bis 4 C-Atomen, Alkoxyalkyl mit insgesamt 3 bis 6 C-Atomen, Carboxyalkyl mit 2 bis 5 C-Atomen, Carbalkoxyalkyl mit insgesamt 3 bis 9 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Chlor, Methyl oder Methoxy substituiertes Benzyl, Dialkylaminoalkyl mit insgesamt 3 bis 7 C-Atomen oder Phenathyl bedeuten.

14. Die Verbindungen der Formel

worin R' Wasserstoff oder Methyl, R₆ Wasserstoff oder zusammen mit R₇ den Rest -CH=CH-CH=CH-, R₇ Wasserstoff, Chlor, Alkyl mit 1 bis 4 C-Atomen, Alkylsulfonyl mit 1 bis 4 C-Atomen oder zusammen mit R₆ den Rest-CH=CH-CH=CH-, R₈ Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Alkoxy mit 1 bis 4 C-Atomen oder Dialkylamino mit insgesamt 2 bis 6 C-Atomen, R₉ Wasserstoff oder Chlor, R₁₀ Wasserstoff oder zusammen mit R₁₁ den Rest -CH=CH-CH=CH-, R₁₁ Wasserstoff, Alkyl mit 1 bis 4 C-Atomen, Chlor, -COOY₁, oder -CONHY₁, worin Y₁ für Alkyl mit 1 bis 4 C-Atomen steht, -CONH₂, Cyano, Trifluormethyl, Sulfo, Alkylsulfonyl mit 1 bis 4 C-Atomen, -SO₂NHY₁ oder -SO₂N(Y₁)₂ worin Y₁ die oben angegebene Bedeutung hat, -SO₂NH₂, Phenoxysulfonyl, Mor-

pholinosulfonyl, Cyclohexylaminosulfonyl, Phenylaminosulfonyl oder zusammen mit R_{10} den Rest -CH=CH-CH=CH-, R_{12} Wasserstoff oder Phenyl und X Sauerstoff oder eine Gruppe -NR $_5^n$, worin R_5^n für Alkyl mit 1 bis 8 C-Atomen, Hydroxyalkyl mit 2 bis 4 C-Atomen, Cyanoalkyl mit 2 bis 5 C-Atomen, unsubstituiertes oder durch Chlor oder Methoxy substituiertes Benzyl, Phenyl oder Cyclohexyl steht, bedeuten, wobei von R_6 bis R_9 eines oder zwei und von R_{10} bis R_{12} eines verschieden von Wasserstoff ist.

EP 79 81 0104

	EINSCHLÄ	KLASSIFIKATION DER		
Kategorie	Kennzeichnung des Dokument maßgeblichen Teile	ANMELDUNG (InLCI. ³)		
D	1960, London, G.B. K.B.L. MATHUR e of 2-p-nitrophe Seiten 1954, 19		1-9	C 07 D 405/04 413/04 235/12// C 07 D 235/10
	* Vollständig	r *		
D	DE - A - 2 238 * Seiten 27-2	r 1–11	RECHERCHIERTE SACHGEBIETE (Int. Cl. ²)	
	-	·		C 07 D 405/04 413/04
		· .		
	-			KATEGORIE DER GENANNTEN DOKUMENTE
				X: von besonderer Bedeutung A: technologischer Hintergrund O: nichtschriftliche Offenberung P: Zwischenliteratur T: der Erfindung zugrunde
		×		liegende Theonen oder Grundsatze E: kollidierende Anmeldung D: In der Anmeldung angelührtes Dokument
	- Car vorliegende Recherchonb	or chi wurdo lur alla Palanianapriicha orc	Helk.	L: aus andern Gründen angeführtes Dokument * &: Mitglied der gleichen Patent- familie. Übereinstimmendes
Recheron		Abschlußdatum der Recherche	Prüler	Dokument
EPA form	Den Haag 1503.1 05.78	17-01-1980		ALLARD

GEE	GEBÜHRENPFLICHTIGE PATENTANSPRÜCHE							
Die vorlleger	nde europäische Patentanmeldung enthielt bei	ihrer Elnreichung mehr als zehn Patentansprüche.						
	Alla Anspruchsgebühren wurden innerhalb der vorgeschnebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für alle Patentansprüche erstellt.							
	Nur ein Teil der Anspruchsgebühren wurde innerhalb der vorgeschriebenen Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die ersten zehn sowie für jene Patentansprüche erstellt für die Anspruchsgebühren entrichtet wurden.							
	nämlich Patentansprüche:							
Ш	Keine der Anspruchsgebühren wurde inner! päische Recherchenbericht wurde für die erst	nalb der vorgeschnebenen Frist entrichtet. Der vorliegende euro- en zehn Paten: ansprüche erstellt.						
	•							
O MA	NGELNDE EINHEITLICHKEIT	DER ERFINDUNG						
		e vorliegende europäische Patentanmeldung nicht den Anforde- nrere Erlindungen oder Gruppen von Erlindungen,						
	1) Ansprüche 1-11	Verfahren zur Herstellung von Furanyl-benzazolen						
•	2) Ansprüche 12-14	Zwischenprodukte: 2- [(ortho- acylphenoxy(methyl] - benzazole.						
		•						
57		·						
		·						
h								
	Alle weiteren Recherchengebühren wurden innerhalb der gesetzten Frist entrichtet. Der vorliegende euro- päische Recherchenbericht wurde für alle Patentansprüche erstellt.							
	Nur ein Teil der weiteren Recherchengebühren wurde innerhalb der gesetzten Frist entrichtet. Der vorliegende europäische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf Erfindungen beziehen. für die Recherchengebühren entrichtet worden sind.							
	nämlich Patentansprüche:							
西	Keine der weiteren Recherchengebühren wurde innerhalb der gesetzten Frist entrichtet. Der vorliegende euro- päische Recherchenbericht wurde für die Teile der Anmeldung erstellt, die sich auf die zuerst in den Patent- ansprüchen erwähnte Erfindung beziehen.							
	nämlich Palentansprüche: 1—11.							