Digital Circuits Laboratory report	Year 2020 Number of the exercise: 2
Name and surname (author of realized circuit/this report): Nykonchuk Illia	Title of the exercise: Synthesis of synchronous circuit
CAD ¹	
Laboratory group number:	Week day: Thursday
Breadboard number:	Hours of the lab:17:05-18:45

Moore machine

Moore machine is a finite-state machine whose output values are determined only by its current state.

States-outputs graph

a) Logic Circuit

Remark: D2 stores last even value, D1 responsible for output and it resets by the data from output or from D2

b) Minimization of states-outputs table

Input	DI	1 Pa	NANDI	Zı	72
0	X	Х	X	0	0
1	X	1	*1	0	
1	X	0	1	-	0
	1	X	0	0	1
1	0	X	0	1	0

Coding of states:

A: D1(Q)=0, NAND1 = 1

B: D1(Q)=1, NAND1 = 0

C: D1(Q)=0, NAND1 = 0

D: D1(Q)=1, NAND1 = 1

c) Excitation tables:

D1

Qn	Qn+1	02
0	0	Nesez
0		0
	0	
		Neser

D2

0,	On +1	V	D.
X	ONFI		
^		1	0
X		1	
0	0	1	X-
		1	X

D3

Mealy Machines are also finite state machines with output value and its output depends on present state and current input symbol

States-outputs graph:

Logic circuit

Minimized states-outputs table

Coding of states:

A: U1(Q)=1, U1(!Q)=0;

B: U1(Q)=1, U1(!Q)=1;

Excitation tables: (U1 and U2 are on the circuit)

U1 flip-flop

U2 flip-flop

M	//
Ltnx	
	0
	0,41

