四重極項計算のSIMD化による ツリー法の高速化

千葉大学大学院 融合理工学府 児玉哲史 千葉大学 統合情報センター 石山智明

重力多体シミュレーション

- 各粒子の運動方程式を数値積分
 - 粒子間で相互に重力が働く
- 宇宙の大規模構造や天体の理解に有用
 - 銀河・銀河団、星団、ダークマター構造形成など
- 直接計算法: 計算量 $O(N^2)$
- ツリー法: O(N log N)

ツリー法(Barnes & Hut 1986)

- 近傍粒子からの作用は直接計算
- 遠方粒子群からの作用は多重極展開で近似
 - 近傍・遠方の判定基準は見込角θで決定
 - 粒子群の見込角 < θ: 遠方と判断
 - 単極子では $\theta = 0.3 \sim 0.75$ が用いられることが多い
 - 単極子の計算はPhantom-GRAPEで高速化可能

$$\phi(r) = -\frac{GM}{r} - \frac{1}{2} \frac{G}{r^5} \mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$$

 $\phi(r)$:ポテンシャル

M:総質量

Q:四重極テンソル

Phantom-GRAPE LSIMD

- Phantom-GRAPE(Tanikawa and Yoshikawa. 2012, 2013): SIMDを利用して、単極子項の計算を大幅に高速化
- SIMD:1命令で複数データを並列演算
- 現在のIntelのCPU:AVX, AVX2

SIMD演算の概念図

本研究の目的

- Phantom-GRAPEでは四重極項の計算は不可
 - 擬似粒子法と組み合わせれば可能
- ・我々は四重極までの計算をSIMDを利用して 高速化するコードを実装
 - Phantom-GRAPEを拡張
- 単極子のみで行うシミュレーションを、四重極 まで用いて高速化可能か検証
 - 一同じ計算精度ならば単極子のみの場合よりもθを 大きくできる
- 今後レジスタ長増加に応じて我々の実装が 有利になる可能性あり

直接計算法との相対誤差の累積分布

単極子 $\theta = 0.3$ の精度は四重極 $\theta = 0.4$ で得られる単極子 $\theta = 0.5$ の精度は四重極 $\theta = 0.6$ で得られる

単極子のみの場合に相当する精度を 得られるθの値

一様球	の場合	Plumme	rの場合	Diskの場合		
単極子	四重極	単極子	四重極	単極子	四重極	
0.3	0.65	0.3	0.4	0.3	0.45	
0.5	0.75	0.5	0.6	0.5	0.65	

単極子項のみの場合との計算時間の 比較(粒子数N = 4,194,304)

一様球						
プログラム	θ	合計[s]				
単極子	0.3	23.99				
四重極	0.65	10.88				
単極子	0.5	10.26				
四重極	0.75	8.35				

Plummer					
プログラム	θ	合計[s]			
単極子	0.3	41.23			
四重極	0.4	44.65			
単極子	0.5	15.13			
四重極	0.6	22.26			

	Disk	
プログラム	θ	合計[s]
単極子	0.3	23.24
四重極	0.45	24.86
単極子	0.5	11.75
四重極	0.65	12.67

- 一様球では約1.23 2.20倍高速化
- Plummerで約1.08 1.47倍、Diskで約1.07倍 低速化
- 密度コントラストの小さい系で有効

実装したコードの一部

```
void c GravityKernel(pIpdata ipdata, pFodata fodata, cJcdata
int j;
float half[8] = \{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5\};
PREFETCH(jcdata[0]);
VZEROALL;
// load i-particle
VLOADPS(*ipdata->x, XMM00);
VLOADPS(*ipdata->y, XMM01);
VLOADPS(*ipdata->z, XMM02);
VLOADPS(jcdata->xm[0][0], YMM14);
VLOADPS(jcdata->q[0][0], YMM08);
VLOADPS(icdata->q[1][0], YMM15);
icdata++:
VPERM2F128(YMM00, YMM00, YMM00, 0x00);
VPERM2F128(YMM01, YMM01, YMM01, 0x00);
VPERM2F128(YMM02, YMM02, YMM02, 0x00);
// load jcell's coordinate
VSHUFPS(YMM14, YMM14, YMM03, 0x00); //00
VSHUFPS(YMM14, YMM14, YMM04, 0x55); //55
VSHUFPS(YMM14, YMM14, YMM05, 0xaa); // aa
for(j = 0; j < nj; j += 2){
  // r ii,x -> YMM03
  VSUBPS(YMM00, YMM03, YMM03);
  // r ij,y -> YMM04
  VSUBPS(YMM01, YMM04, YMM04);
  VLOADPS(*ipdata->eps2, XMM01);
  VPERM2F128(YMM01, YMM01, YMM01, 0x00);
```

- コンパイラによる自動SIMD化では不十分
- SIMD命令を利用するコードを手動で記述

擬似粒子法との計算時間の比較 (粒子数N=4,194,304)

一様球			Plummer			Disk		
プログラム	θ	合計[s]	プログラム	θ	合計[s]	プログラム	θ	合計[s]
擬似粒子法	0.65	11.91	擬似粒子法	0.4	48.61	擬似粒子法	0.45	27.09
四重極	0.65	10.88	四重極	0.4	44.65	四重極	0.45	24.86
擬似粒子法	0.75	9.22	擬似粒子法	0.6	24.30	擬似粒子法	0.65	13.92
四重極	0.75	8.35	四重極	0.6	22.26	四重極	0.65	12.67

- 擬似粒子法=四重極展開を仮想粒子で表現
 - Phantom-GRAPEをそのまま利用可能
- ・ 我々の実装は擬似粒子法に比べ約1.1倍高速
 - 四重極テンソルの対角化が不要なため

レジスタ長の増加で有利になる理由

- ・ 主な処理: ツリー構築、ツリー走査、重力計算
- 8分木を取り扱うため、ツリー構築とツリー走 査で並列数8を超えるSIMD長の活用は困難
- 重力計算はSIMD長の増加が高速化に直結
 - 走査時の相互作用のリスト化が必要
 - 相互作用の数は非常に多い

ツリー走査のSIMD化

- 8個の子セルの見込角の計算をSIMD化
- ・ さらに深く走査するかは計算するまでわから ないため、8並列を超えたSIMD化は困難

次世代SIMD命令セット:AVX-512で 実装時の計算時間見積もり

- ・ 単極子項および四重極項の計算部分をAVX-512 で実装した場合の見積もり(他の処理は変更無)
 - 他の処理(ツリー構築・ツリー走査)は8を超える並列 数のSIMD化が困難
- 単極子項の計算は2倍高速化と予想
 - AVXに対してレジスタ長が2倍(512bit)であるため
- 四重極項の計算は約2.46倍高速化と予想
 - AVXに対してレジスタ長が2倍であるため
 - レジスタ本数がAVXより多く(32本)、i粒子データ等のロードを毎回実行する必要がなくなるため(約1.23倍)

レジスタ本数増加によるロード命令削減

四重極項までの計算を行うループの一部

```
for(j = 0; j < nj; j += 2){
// load i-particle
VLOADPS(*ipdata->x, XMM00);
VLOADPS(*ipdata->y, XMM01);
VLOADPS(*ipdata->z, XMM02);
VPERM2F128(YMM00, YMM00, YMM00, 0x00);
VPERM2F128(YMM01, YMM01, YMM01, 0x00);
VPERM2F128(YMM02, YMM02, YMM02, 0x00);
// load jcell's coordinate
VLOADPS(*jcdata->x, YMM03);
VLOADPS(*jcdata->y, YMM04);
VLOADPS(*jcdata->z, YMM05);
// r ij,x -> YMM03
VSUBPS(YMM00, YMM03, YMM03);
// r ij,y -> YMM04
VSUBPS(YMM01, YMM04, YMM04);
// r ij,z -> YMM05
VSUBPS(YMM02, YMM05, YMM05);
 // r ii^2 -> YMM01
 VLOADPS(*ipdata->eps2, XMM01);
 VPERM2F128(YMM01, YMM01, YMM01, 0x00);
```

- AVX-512ではこの部分が 必要なくなる
 - レジスタ本数が増加し、常にデータを置けるため
- 左で示された範囲以外にも、ループ内で2個のロード命令が削減可能
 - 定数0.5が並んだ配列を レジスタにロードする命 令
 - 定数5が並んだ配列をレジスタにロードする命令

AVX-512利用時の計算時間見積もり

一作来球			Plummer			DISK		
プログラム	θ	合計[s]	プログラム	θ	合計[s]	プログラム	θ	合計[s]
単極子	0.3	13.99	単極子	0.3	25.49	単極子	0.3	15.69
四重極	0.65	6.13	四重極	0.4	23.66	四重極	0.45	13.73
単極子	0.5	6.29	単極子	0.5	9.90	単極子	0.5	7.20
四重極	0.75	4.86	四重極	0.6	12.52	四重極	0.65	7.51

- AVX-512で実装時、密度コントラストの大きい系の高精度シミュレーションも高速化可能
 - Plummerで約1.08倍, Diskで約1.14倍

まとめ

- SIMD命令を利用して高速に四重極項を計算 するコードを実装
- ・ 我々の実装は擬似粒子法よりも約1.1倍高速
- 密度コントラストの小さい系では、本研究による実装を用いて四重極まで計算することで最大約2.2倍の高速化が可能
- AVX-512では密度コントラストが高い系でも最大約1.14倍の高速化が可能と見積もられる

直接計算法との相対誤差の累積分布

Sumulative distribution

単極子 $\theta = 0.3$ の精度は四重極 $\theta = 0.65$ で得られる単極子 $\theta = 0.5$ の精度は四重極 $\theta = 0.75$ で得られる

直接計算法との相対誤差の累積分布

単極子 $\theta = 0.3$ の精度は四重極 $\theta = 0.45$ で得られる単極子 $\theta = 0.5$ の精度は四重極 $\theta = 0.65$ で得られる