CS170 Computation Theory

Lecture 6

September 21, 2023

Megumi Ando

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

Definition (p. 168): A Turing Machine (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left, Right}\}$, a transition function

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\mathsf{Left}, \mathsf{Right}\}, \text{ a transition function}$

 $q_1 \in Q$, a start state

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\mathsf{Left}, \mathsf{Right}\}, \text{ a transition function}$

 $q_1 \in \mathcal{Q}$, a start state

 $q_{\mathrm{accept}} \in \mathcal{Q}$, an accept state

Definition (p. 168): A Turing Machine (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left}, \text{Right}\}$, a transition function

 $q_1 \in \mathcal{Q}$, a start state

 $q_{\mathrm{accept}} \in \mathcal{Q}$, an accept state

 $q_{\text{reject}} \in Q$, a reject state

Review: Formal Definition of TM

Definition (p. 168): A <u>Turing Machine</u> (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left}, \text{Right}\}, \text{ a transition function }$

 $q_1 \in \mathcal{Q}$, a start state

 $q_{\text{accept}} \in Q$, an accept state

 $q_{\text{reject}} \in Q$, a reject state

Configuration = Current state,

- Current tape contents,
- Current position of head

Read/write tape

"Ø0*q*₇1122"

Control

Definition (p. 168): A Turing Machine (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left}, \text{Right}\}, \text{ a transition function}$

 $q_1 \in \mathcal{Q}$, a start state

E.g., $\delta(q_7,1) = (q_4,1,R)$

 $q_{\mathrm{accept}} \in \mathcal{Q}$, an accept state

 $q_{\text{reject}} \in Q$, a reject state

Definition (p. 168): A Turing Machine (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left}, \text{Right}\}$, a transition function

 $q_1 \in \mathcal{Q}$, a start state

E.g., $\delta(q_7,1) = (q_4, 1, R)$

 $q_{\mathrm{accept}} \in \mathcal{Q}$, an accept state

 $q_{\text{reject}} \in Q$, a reject state

Control

Definition (p. 168): A Turing Machine (TM) is a 7-tuple

 $Q = \{q_1, q_2, ..., q_n\}$, a finite set of states

 Σ , a finite set of alphabet symbols NOT containing blank symbol " \sqcup "

 Γ , a finite set of tape symbols, including all the symbols in Σ , i.e., $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{\text{Left}, \text{Right}\}$, a transition function

 $q_1 \in \mathcal{Q}$, a start state

E.g., $\delta(q_7,1) = (q_4, 1, R)$

 $q_{\mathrm{accept}} \in \mathcal{Q}$, an accept state

 $q_{\text{reject}} \in Q$, a reject state

Control

" $00q_71122$ " yields " $001q_4122$ "

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

• C_1 is the start configuration $(q_1w_1w_2...w_k)$

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

- C_1 is the start configuration $(q_1w_1w_2...w_k)$
- Each C_i yields C_{i+1}

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

- C_1 is the start configuration $(q_1w_1w_2...w_k)$
- Each C_i yields C_{i+1}
- C_{ℓ} is an accepting configuration (i.e., with q_{accept})

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

- C_1 is the start configuration $(q_1w_1w_2...w_k)$
- Each C_i yields C_{i+1}
- C_{ℓ} is an accepting configuration (i.e., with q_{accept})

Definition (p. 170): Let M be a TM. Let $A = \{w \mid M \text{ accepts } w\}$. Then, \underline{A} is the language recognized by M, i.e., $\underline{A} = \underline{L}(\underline{M})$.

Definition (p. 169): A TM M accepts input $w = w_1 w_2 ... w_k$ if exists configurations $C_1, C_2, ..., C_\ell$ such that

- C_1 is the start configuration $(q_1w_1w_2...w_k)$
- Each C_i yields C_{i+1}
- C_{ℓ} is an accepting configuration (i.e., with q_{accept})

Definition (p. 170): Let M be a TM. Let $A = \{w \mid M \text{ accepts } w\}$. Then, \underline{A} is the language recognized by M, i.e., $\underline{A} = L(M)$.

Definition (p. 170): A language is <u>T-recognizable</u> if there is a TM that recognizes it.

Review: T-decidability

The TM M has 3 possible outcomes for input w:

- Accept (by entering q_{accept})
- ullet Reject by entering q_{reject}
- Reject by looping (running forever)

Definition (p. 170): A TM \underline{M} is a decider if it halts on all inputs.

Definition (p. 170): A language A is T-decidable (or just decidable) if A = L(M) for some TM decider M.

Today's Topics

- Pumping Lemma for CFLs
- Turing Machines (TMs)
- T-recognizability and T-decidability

- Robustness of TMs
- Church-Turing Thesis

Captures our intuition of computation

- Captures our intuition of computation
- Mathematically precise

- Captures our intuition of computation
- Mathematically precise
- Simple

- Captures our intuition of computation
- Mathematically precise
- Simple
- Robust: equivalent to other TM variants (e.g., TMs with multiple tapes, Nondeterministic TMs)

Multi-tape TMs

Definition (p. 176): A <u>multi-tape Turing Machine</u> is a TM with k tapes. The transition function $\delta: Q \times \Gamma^k \mapsto Q \times \Gamma^k \times \{L, R\}^k$ allows reading, writing, and moving the heads on some or all of the tapes.

Theorem: The language A is T-recognizable iff some multi-tape TM recognizes it.

Proof of Equivalence of Multi-tape TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow multi-tape TM recognizes A.
- Multi-tape TM recognizes $A \Longrightarrow A$ is T-recognizable.

Proof of Equivalence of Multi-tape TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow multi-tape TM recognizes A. Vacuously true.
- Multi-tape TM recognizes $A \Longrightarrow A$ is T-recognizable.

Proof of Equivalence of Multi-tape TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow multi-tape TM recognizes A.

 Vacuously true.
- Multi-tape TM recognizes $A \Longrightarrow A$ is T-recognizable.

Need to show.

Proof that Multi-tape TM \Longrightarrow Single-tape TM

Proof that Multi-tape TM \Longrightarrow Single-tape TM

Description of M'

Description of M'

 $M' = \text{``On input } w = w_1 w_2 ... w_n$:

1. Initiate tape: $\#w_1^{\bullet}w_2...w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#...\#$

$$M'$$
 = "On input $w = w_1 w_2 ... w_n$:

- 1. Initiate tape: $\#w_1 w_2 \dots w_n \# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \# \dots \#$
- 2. To simulate a step in M:

$$M'$$
 = "On input $w = w_1 w_2 \dots w_n$:

- 1. Initiate tape: $\#\overrightarrow{w_1}w_2...w_n\# \overset{\bullet}{\sqcup} \# \overset{\bullet}{\sqcup} \#...\#$
- 2. To simulate a step in M:
 - a. Scan entire tape to find dotted symbols.

$$M'$$
 = "On input $w = w_1 w_2 \dots w_n$:

- 1. Initiate tape: $\#w_1^{\bullet}w_2...w_n\#\mathring{\sqcup}\#\mathring{\sqcup}\#...\#$
- 2. To simulate a step in M:
 - a. Scan entire tape to find dotted symbols.
 - b. Scan again to update according to M.

$$M'$$
 = "On input $w = w_1 w_2 \dots w_n$:

- 1. Initiate tape: $\#w_1^{\bullet}w_2...w_n\#\mathring{\sqcup}\#\mathring{\sqcup}\#...\#$
- 2. To simulate a step in M:
 - a. Scan entire tape to find dotted symbols.
 - b. Scan again to update according to M.
 - c. Shift to add room as needed.

$$M'$$
 = "On input $w = w_1 w_2 \dots w_n$:

- 1. Initiate tape: $\#\dot{w_1}w_2...w_n\#\dot{\bot}\#\dot{\bot}\#...\#$
- 2. To simulate a step in M:
 - a. Scan entire tape to find dotted symbols.
 - b. Scan again to update according to M.
 - c. Shift to add room as needed.
- 3. Accept if M does."

Nondeterministic TMs

Definition (p. 178): A <u>Nondeterministic Turing Machine</u> is like a Deterministic TM, except for the transition function $\delta: Q \times \Gamma \mapsto \mathscr{P}(Q \times \Gamma \times \{\mathsf{L}, \mathsf{R}\})$.

Theorem: The language A is T-recognizable iff some Nondeterministic TM recognizes it.

Proof of Equivalence of Nondeterministic TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow Nondeterministic TM recognizes A.
- Nondeterministic TM recognizes $A \Longrightarrow A$ is T-recognizable.

Proof of Equivalence of Nondeterministic TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow Nondeterministic TM recognizes A.

 Vacuously true.
- Nondeterministic TM recognizes $A \Longrightarrow A$ is T-recognizable.

Proof of Equivalence of Nondeterministic TMs and TMs

We must prove both directions:

- A is T-recognizable \Longrightarrow Nondeterministic TM recognizes A.

 Vacuously true.
- Nondeterministic TM recognizes $A \Longrightarrow A$ is T-recognizable.

 Need to show.

Mon-Deterministic accept - f(n) ... reject

Non-Deterministic

Each vertex represents a configuration

Non-Deterministic

Each vertex represents a configuration

An edge between u and v represents "u yields v"

Non-Deterministic

Each vertex represents a configuration

An edge between u and v represents "u yields v"

NTM accepts input if there exists "accepting branch"

Non-Deterministic

Each vertex represents a configuration

An edge between u and v represents "u yields v"

NTM accepts input if there exists "accepting branch"

Attempt #1 at simulating NTM N.

Look for an accepting configuration via a depth-first search on the computation tree. (Doesn't work. Why?)

Non-Deterministic

Each vertex represents a configuration

An edge between u and v represents "u yields v"

NTM accepts input if there exists "accepting branch"

Proof Idea:

Look for an accepting configuration via a breadth-first search on the computation tree.

Non-Deterministic accept — f(n) reject accept

Non-Deterministic

Let N be any NTM.

Non-Deterministic

Let N be any NTM.

Non-Deterministic

Let N be any NTM.

Define DTM N' = "On input $w = w_1 w_2 ... w_n$:

1. Initiate tape: $\#q_{\mathsf{start}}w_1w_2...w_n\#\sqcup\sqcup...$

Non-Deterministic

Let N be any NTM.

- 1. Initiate tape: $\#q_{\mathsf{start}}w_1w_2...w_n\#\sqcup\sqcup...$
- 2. To simulate next depth in N's computation tree:

Non-Deterministic

Let N be any NTM.

- 1. Initiate tape: $\#q_{\mathsf{start}}w_1w_2...w_n\#\sqcup\sqcup...$
- 2. To simulate next depth in N's computation tree:
 - a. Scan entire tape, updating each "thread" (delimited by #'s) according to N.

Non-Deterministic

Let N be any NTM.

- 1. Initiate tape: $\#q_{\mathsf{start}}w_1w_2...w_n\#\sqcup\sqcup...$
- 2. To simulate next depth in N's computation tree:
 - a. Scan entire tape, updating each "thread" (delimited by #'s) according to N.
 - b. If a thread forks, copy thread.

Non-Deterministic

Let N be any NTM.

- 1. Initiate tape: $\#q_{\mathsf{start}}w_1w_2...w_n\#\sqcup\sqcup...$
- 2. To simulate next depth in N's computation tree:
 - a. Scan entire tape, updating each "thread" (delimited by #'s) according to N.
 - b. If a thread forks, copy thread.
 - c. If a thread accepts, accept." Q.E.D.

Check In (Break)

True or false: A language is decidable iff some nondeterministic TM decides it.

Definition (p. 180): An <u>enumerator</u> E is like a Deterministic TM, except it has a "printer." It starts with a blank tape and eventually prints out all the strings w_1, w_2, \ldots in the language L(E) it generates.

Definition (p. 180): An <u>enumerator</u> E is like a Deterministic TM, except it has a "printer." It starts with a blank tape and eventually prints out all the strings w_1, w_2, \ldots in the language L(E) it generates.

Definition (p. 180): An <u>enumerator</u> E is like a Deterministic TM, except it has a "printer." It starts with a blank tape and eventually prints out all the strings w_1, w_2, \ldots in the language L(E) it generates.

Definition (p. 180): An <u>enumerator</u> E is like a Deterministic TM, except it has a "printer." It starts with a blank tape and eventually prints out all the strings w_1, w_2, \ldots in the language L(E) it generates.

Definition (p. 180): An <u>enumerator</u> E is like a Deterministic TM, except it has a "printer." It starts with a blank tape and eventually prints out all the strings w_1, w_2, \ldots in the language L(E) it generates.

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

1. Run *E*.

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

- 1. Run *E*.
- 2. Whenever E prints out a string w', check whether w' = w. If it is, accept."

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

Proof. Let M be TM that recognizes A. Construct enumerator as follows:

M = "On input w,

- 1. Run *E*.
- 2. Whenever E prints out a string w', check whether w' = w. If it is, accept."

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

- 1. Run *E*.
- 2. Whenever E prints out a string w', check whether w' = w. If it is, accept."

Proof. Let M be TM that recognizes A. Construct enumerator as follows:

E = "Repeat for i = 1,2,...

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

- 1. Run *E*.
- 2. Whenever E prints out a string w', check whether w' = w. If it is, accept."

Proof. Let M be TM that recognizes A. Construct enumerator as follows:

E = "Repeat for i = 1,2,...

1. Run M for i steps on each of the "first" i strings in Σ^* :

$$S_1, S_2, ..., S_i$$

18

Enumerator generates $A \Longrightarrow A$ is T-recognizable.

A is T-recognizable \Longrightarrow Enumerator generates A.

Proof. Let E be enumerator that generates A. Construct TM as follows:

M = "On input w,

- 1. Run *E*.
- 2. Whenever E prints out a string w', check whether w' = w. If it is, accept."

Proof. Let M be TM that recognizes

A. Construct enumerator as follows:

E = "Repeat for $i = 1, 2, \dots$

1. Run M for i steps on each of the "first" i strings in Σ^* :

$$S_1, S_2, ..., S_i$$

a. For $s \in \{s_1, s_2, ..., s_i\}$ s.t. M accepts s, print s."

Church-Turing Thesis

- Captures our intuition of computation
- Mathematically precise
- Simple
- Robust: equivalent to other TM variants (e.g., TMs with multiple tapes, Nondeterministic TMs)

Church-Turing Thesis

- Captures our intuition of computation
- Mathematically precise
- Simple
- Robust: equivalent to other TM variants (e.g., TMs with multiple tapes, Nondeterministic TMs)
- Church-Turing Thesis: any (classical) real-world computation can be modeled as a TM

Summary of Today's Lecture

- Robustness of TMs
- Church-Turing Thesis

Acknowledgements

- These slides are based on lecture notes on Theory of Computation from other universities, namely Michael Sipser (MIT), Lorenzo De Stefani (Brown).
- Errata: If you let us know of any errors in the slides, we'll fix them and acknowledge you here!