Министерство образования Республики Беларусь Учреждение образования

«Брестский государственный технический университет» ФАКУЛЬТЕТ ЭЛЕКТРОННО-ИНФОРМАЦИОННЫХ СИСТЕМ Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №1

Выполнил
А.В. Горобец,
студент группы АС66
Проверил
А. А. Крощенко,
ст. преп. кафедры ИИТ,
«__ » _____2025 г.

Цель работы: Получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации.

Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 3

Задание 1. Загрузите данные и проверьте, есть ли в них пропущенные значения.

import pandas as pd df = pd.read_csv(r'C:\Users\Anton\Downloads\iris.csv') pd.set_option('display.max_rows', None) # Показывать все строки pd.set_option('display.max_columns', None) # Показывать все столбцы pd.set_option('display.width', None) # Без ограничения по ширине pd.set_option('display.max_colwidth', None) # Полная ширина столбцов print(df)

print("\nПроверка на пропущенные значения:")

print(df.isnull().sum())

```
Проверка на пропущенные значения:
sepal.length 0
sepal.width 0
petal.length 0
petal.width 0
variety 0
dtype: int64
```

Задание 2. Выведите количество образцов каждого вида ириса.

import pandas as pd

df = pd.read_csv(r'C:\Users\Anton\Downloads\iris.csv')
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)

print("\nКоличество образцов каждого вида ириса:")

print(df['variety'].value counts())

```
Количество образцов каждого вида ириса:
variety
Setosa 50
Versicolor 50
Virginica 50
Name: count, dtype: int64
```

Задание 3. Постройте парные диаграммы рассеяния (pair plot) для всех признаков, чтобы визуально оценить их разделимость.

```
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('C:\\Users\\z3594\\OneDrive\\Документы\\лабы\\heart.csv') plt.scatter(df['age'], df['thalach'], c=df['target'], cmap='coolwarm') plt.xlabel('Возраст') plt.ylabel('Максимальный пульс') plt.show(block=True)
```


Задание 4. Для каждого вида ириса рассчитайте среднее значение по каждому из четырех признаков.

```
import pandas as pd

df = pd.read_csv(r'C:\Users\Anton\Downloads\iris.csv')

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

pd.set_option('display.width', None)

pd.set_option('display.max_colwidth', None)

mean_by_variety = df.groupby('variety').mean(numeric_only=True)

print("\nCpедние значения признаков по каждому виду ириса:")

print(mean_by_variety)
```

midmean_03_variety)								
Средние зн	начения признаког	в по каждому	виду ириса:					
	sepal.length	sepal.width	petal.length	petal.width				
variety								
Setosa	5.006	3.428	1.462	0.246				
Versicolor	5.936	2.770	4.260	1.326				
Virginica	6.588	2.974	5.552	2.026				

Задание 5. Создайте "ящик с усами" (box plot) для признака Petal Length (cm), чтобы сравнить его распределение по разным видам ирисов.

import pandas as pd import matplotlib.pyplot as plt

```
# Загрузка данных df = pd.read_csv(r'C:\Users\Anton\Downloads\iris.csv') # Настройки отображения pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None)
```


☆ ◆ → | **+** Q **=** | **B**

import pandas as pd

Задание 6. Стандартизируйте данные (приведите к нулевому среднему и единичному стандартному отклонению).

from sklearn.preprocessing import MinMaxScaler

df = pd.read_csv('C:\\Users\\z3594\\OneDrive\\Документы\\лабы\\heart.csv')

features_to_normalize = ['age', 'trestbps', 'chol', 'thalach']

scaler = MinMaxScaler()

df[features_to_normalize] = scaler.fit_transform(df[features_to_normalize])

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', None)

print(df)

143	1.159173	0.328414	1.217458	1.448832	Virginica
144	1.038005	0.558611	1.103783	1.712096	Virginica
145	1.038005	-0.131979	0.819596	1.448832	Virginica
146	0.553333	-1.282963	0.705921	0.922303	Virginica
147	0.795669	-0.131979	0.819596	1.053935	Virginica
148	0.432165	0.788808	0.933271	1.448832	Virginica
149	0.068662	-0.131979	0.762758	0.790671	Virginica

Вывод: я получил практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научился выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.