MP6 Performance Evaluation Heath Gerrald

Part 1) Finding the shortest path on graph 2, I found the following data. This data supports that my implementation does follow a $O(n^2)$ complexity in that every time the nodes N are doubled (besides low values of N) the output is quadrupled. In jobs from 500 to 1000, 1000 to 2000, and 10,000 to 20,000, the output time is 4x the half. To prove that this ratio should be 4, take the examples of 8 and 16. $8^2 = 64$, and $16^2 = 256$, where 256 / 64 = 4. In further analysis, you can see from my graph below that my data follows a n^2 trend.

# Nodes		Time (ms)
	10	0.067
	250	1.54
	500	2.045
	1000	8.884
	2000	26.759
	5000	160.174
1	0000	662.565
1	5000	1465.592
2	0000	2979.528

b) Running the same test with the random graph construction and adjacent vertices equal to 20 (-a 20) I collected the following data. These times follow the same pattern as those above, showing that my implementation with random graphs is still $O(n^2)$. The graph illustrating this data is shown below.

* the top input is 100 nodes	# Nodes	Time (ms)
instead of 10 to keep	100	0.382
adjacent vertices similar for	250	1.666
all tests	500	3.719
	1000	7.86
	2000	28.701
	5000	182.977
	10000	746.439
	15000	1660.748
	20000	2970.88

2) My finding network diameter implementation has an $O(n^3)$ complexity. I came to this conclusion since every time the number of nodes are doubled, the output time is 8x the half. With an $O(n^2)$ algorithm, it would be 4x the half. For each jump below where the nodes are doubled, the time typically increases by 8 fold.

# Nodes	Time (ms)
100	31.308
250	141.794
500	884.881
1000	6834.453
2000	56012

3) In experimenting with node density for random graphs, I compared how the adjacent vertices parameter affects the probability that the graph will be connected. My results were as expected – when there are few adjacent vertices there is a less likely chance the graph will be connected.

# Nodes	Adjacent	Verts Seed		Time (ms)	Connected?
	100	7	1400	10.836	No
	100	7	9494	10.882	Yes
	100	7	948859	10.929	No
	100	7	2	9.891	. No
	100	7	10000	9.236	No
	100	7	12345	9.378	No
	100	7	8765	9.967	No
	100	7	2124054	8.861	. No
	100	7	90093	10.208	No
	100	7	412	10.891	. Yes

Adjacent Ve	rts Se	eed	Time (ms)	Connected?
100	20	40504	13.808	Yes
100	20	616824	12.505	Yes
100	20	34	35.516	Yes
100	20	10001	33.423	Yes
100	20	40059504	14.102	Yes
100	20	213	13.015	Yes
100	20	315	32.626	Yes
100	20	14005	13.503	Yes
100	20	14008	14.048	Yes
100	20	20225	13.273	Yes
	100 100 100 100 100 100 100 100	100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20	100 20 616824 100 20 34 100 20 10001 100 20 40059504 100 20 213 100 20 315 100 20 14005 100 20 14008	100 20 40504 13.808 100 20 616824 12.505 100 20 34 35.516 100 20 10001 33.423 100 20 40059504 14.102 100 20 213 13.015 100 20 315 32.626 100 20 14005 13.503 100 20 14008 14.048

4) Below is the data recorded from 5 trials of running multiple link-disjoint paths and each shows there are N-1 paths. In each trial the source node was N-1 and destination node was 0.

# Nodes	# F	aths	
	15		14
	22		21
	12		11
	100		99
1	000		999

b) When running the same test but changing the number of adjacent vertices parameter, I discovered that increasing the number of adjacent vertices increases the number of possible paths. This result was as expected.

# Nodes		Adjacent Verts	# of paths	
	1000	10)	2
	1000	20)	5
	1000	50)	25
	1000	100)	49
	1000	500)	237