Science of Living System

BS20001

Nihar Ranjan Jana

School of Bioscience

Email: nihar@iitkgp.ac.in

Tel: 03222-260802

Flow of Genetic Information: The Central Dogma of Molecular Biology

Genome, Chromosome and Gene

- 23 chromosomes
- Chromosomes are made of DNA
- DNA: A, T, C, and G
- Containing coding regions called genes
- ~20,000 genes in the human genome
- Genes code for proteins

 Have biological function in the cell

Overview of Transcription and Translation

"Human Genome Project" Dramatically Enhanced Our Understanding on Gene Expression

~21,000 human genes (appeared to be significantly fewer than previous estimates)

Genome Size, Gene Number, and Complexity of an Organism

	Organism	rganism Genome size (bp)	
O Cay Car	E. coli	4,600,000	4,250
	S. cerevisiae	12,160,000	5,616
	C. elegans	100,000,000	19,735
AUGH PHILAGR	Human	3,200,000,000	21,000
	Marbled lungfish	139,000,000,000	NA

Transcription

Genome size (bp)

Total DNA content vs transcribable content

4,600,000

► Protein coding sequences is ~1.5% of total DNA content (human)

3,200,000,000

Messenger RNA (mRNA)

► Besides protein coding region, DNA can be transcribed into:

Ribosomal RNA (rRNA) Transfer RNA (tRNA)

► Most of the DNA sequences are not transcribed

The Encyclopedia of DNA Elements (ENCODE)

About 80% of the human genome serves some purpose

Transcription: Involved Machineries and Processes

RNA Polymerase

5'
5'
5'

Initiation Elongation Termination

Key points to be discussed

- 1. Promoter
- 2. RNA Polymerase
- 3. RNA synthesis
- 4. Termination

Promoter for Transcription

Promoter is a region of a DNA molecule which forms the site at which transcription of a gene starts

RNA Polymerase

Subunits of RNA Polymerase: α , α , β , β and σ

Holo-enzyme: α , α , β , β and σ

Core-enzyme: α , α , β and β '

Roger Kornberg
Nobel Prize in 2006

- ► RNA polymerase is completely **Processive**: A transcript is synthesized from start to end by a single RNA polymerase molecule.
- ► RNA polymerase can initiate the synthesis of RNA *de-novo* (No primer required)

mRNA 5% tRNA 15% rRNA 80%

Who transcribes this huge pool of rRNA and tRNA?

In bacteria same RNA polymerase transcribe all these three types of RNA

In eukaryotes different RNA polymerases are involved in transcription of mRNA, rRNA and tRNA

RNA Synthesis

Polymerase advances 3' →5' down template strand, melting duplex DNA and adding rNTPs to growing RNA.

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

INITIATION

Polymerase binds to promoter sequence in duplex DNA. "Closed complex"

Polymerase melts duplex DNA near transcription start site, forming a transcription bubble. "Open complex"

Polymerase catalyzes phosphodiester linkage of two initial rNTPs.

ELONGATION

Polymerase advances 3'→5' down template strand, melting duplex DNA and adding rNTPs to growing RNA.

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

Termination of Transcription in Prokaryotes

Factor independent

An RNA hairpin followed by several uracil residues terminates transcription

Factor dependent

Rho binds the nascent RNA chain and pulls it away from RNA polymerase and the DNA template.

Eukaryotic Transcripts Need to be Processed

► Ends of a nascent mRNA acquire a 5' cap and a 3' poly A tail

- Increase stability of mRNA
- More effective template for translation

Eukaryotic Transcripts Need to be Processed

► Splicing (mediated by specialized enzymatic machineries consisting of snRNAs and proteins) removes introns from nascent mRNA

Thomas Cech Nobel prize in 1989

Transcription: At a Glance

DNA: Contains the Instruction for Life

Regulation of Gene Expression

Each cell contains all the genetic material for growth and development

Some of these genes are expressed all the time

Other genes are not expressed all the time. They are switched on an off at need

Lac Operon: A Classic Example of Bacterial Gene Expression Control

Operon: Cluster of genes, related by function, regulated by a single promoter and transcribed into one mRNA (polycistronic).

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Functional Outcome of Lac Operon

Lac repressor is a negative regulator of the Lac operon

RNA Polymerase

Lac operator

Lac Operon

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Lactose (Allolactose) Can Displace Lac Repressor From the Operator Site

RNA Polymerase

Lac operator

Lac Operon

Four Possible Situations

Glucose	Lactose	Lac repressor bound	Lac operon	
1	0	YES	OFF (0)	
1	1	YES	OFF (0)	
0	1	NO	ON (1)	
0	0	YES	OFF (0)	

Translation

How Amino Acids are Linked Together

Translation

Venki Ramakrishnan Nobel Prize 2009

Template for protein synthesis

5' ______ 3' mRNA

5'UAAGGAGA AUCGUCAUGAAGAGGCCC......UAAUUA 3'

(RBS)

Start Stop codon

Met-Lys-Arg-Pro.....

Polypeptide

► In Eukaryotes, 5' 7mG cap is recognized by ribosome

How Correct Amino Acids are Selected During Protein Synthesis

Genetic code

Genetic code is the relation between the sequence of bases in DNA (or its RNA transcripts) and the sequence of amino acids in proteins

A codon is a set of 3 nucleotides that specifies a particular amino acid

Why three nucleotides?

64 Codons present. Three of them (UAA, UAG, UGA) can't code any amino acids, called STOP codons

AUG serves as the "initiator" or "start codon, which starts the synthesis of a protein

We have 61 codons that code for amino acids, and we have 20 amino acids. So, one amino acid may be specified by more than one codon

Khorana, Nirenberg, Holley Nobel Prize in 1968

Genetic code

Second Letter

		U	С	Α	G	
1st letter	5	UUU Phe UUC Leu UUG Leu	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	C	CUU Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC GIn CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUA Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G
	G	GUU Val GUC GUA GUG	GCU Ala GCA GCG	GAU Asp GAC GAA Glu GAG	GGU Gly GGA GGG	U C A G

Translation: Involved Machineries and Processes

Nucleic Acid to Protein: At a Glance

Which Came First? Nucleic acids or Proteins

► RNA has enzymatic activity

Translation Machineries: Attractive Targets For Therapeutics

Tetracycline

Binds to the 30S ribosome, and blocks binding of aminoacyl-tRNA to the A-site

Chloramphenicol

Blocks the peptidyl transferase reaction on 50S ribosomes

Streptomycin

Binds to the 30S ribosome, prevents the transition from initiation to chain-elongation

Erythromycin

Binds to the 50S ribosome, and blocks the translocation

What Happens Inside the Ribosome?

Chemical and Physical Consideration of Protein Synthesis

Time, Space and Correlation between Transcription and Translation

Time, Space and Correlation between Transcription and Translation

Suggested Textbook...

Stryer...

Baltimore, Lodish..

Extra Resources

Further Reading...

James Darnell

Videos... mRNA synthesis (Transcription)

http://highered.mheducation.com/sites/007 2507470/student_view0/chapter3/animatio n_mrna_synthesis_transcription_quiz _2_.html

Protein synthesis (Translation)

https://www.youtube.com/watch?v=lkq9AcBcohA

Overview

https://www.youtube.com/watch?v=gG7uC
skUOrA