元素の周期的性質

周期表の構造

メンデレーエフは、元素を原子量順(当時は原子番号は未発見)に並べつつ、良く似た性質の元素が一列に並ぶように、横8列の周期表を作った。ところどころあった欠番の部分は、後に実在することが発見され、元素が周期的性質を持つことが確信されるに至った。

メンデレーエフの周期表(1871年)												
周期 族	1	2	3	4	5	6	7	8				
1	Н											
2	Li	Be	В	С	N	0	F					
3	Na	Mg	Al	Si	P	S	Cl					
4	K	Ca	1	Ti	V	Cr	Mn	Fe Co Ni Cu				
5	(Cu)	Zn	2	3	As	Se	Br					
6	Rb	Sr	Yt?	Zr	Nb	Mo	4	Ru Rh Pd Ag				
7	(Ag)	Cd	In	Sn	Sb	Те	I	1 4 118				
8	Cs	Ba	Di?	Ce?								
9						5		0- 1-				
10				La?	Ta	W	6	Os Ir Pt Au				
11	(Au)	Hg	Tl		Bi							
12				Th		U						
	,,,,	表の空	219									
				ジウム(
	2 1875 年にガリウム(Ga)として発見3 1886 年にゲルマニウム(Ge)として発見											
	4 1937 年にテクネチウム(Tc)として発見											
	5 1898 年にポロニウム(Po)として発見											
	6 1925 年にレニウム(Re)として発見 化学の小辞典、岩波ジュニア新書よ											

現在の周期表は、原子量(中性子数と陽子数の和)ではなく原子番号(陽子数)順に元素を並べたもの。

り転載

周期表

		2	3	4	5	6	7	8	9	10	П	12	13	14	15	16	17	18
	н																	He
2	Li	Ве											В	C	Z	0	F	Ne
3	Na	Mg											Al	Si	Р	S	C	Ar
4	Κ	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
6	Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
7	Fr	Ra		Rf	DЬ	Sg	Bh	Hs	Mt	Ds	Rg							
	Lanthanoids			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ть	Dy	Но	Er	Tm	Yb	Lu
	Actinoids			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

単に順番に並べただけではなく、電子がどの軌道に入っているかをある程度反映して整理 されている。

H Is ¹	He Is ²						
Li	Be	B	C	N	O	F	Ne
2s¹	2s ²	2p ¹	2p ²	2p ³	2p⁴	2p ⁵	2p ⁶
Na	Mg	Al	Si	P	S	CI	Ar
3s¹	3s ²	3p ¹	3p ²	3p ³	3p⁴	3p ⁵	3p ⁶

s軌道に2個まで電子が入るので、最外殻電子が2個までの元素がまず左端2列に並び、その 隣6列に、p軌道に電子が入る元素が並ぶ。

下から順に、一つの箱に2個まで電子が入る。

Is→2s→2p→3s→3p→4s→3d→4p→5sの順

エネルギーの低い軌道から順に電子が入っていくため、4sの次には3d軌道にも電子が入りはじめる。

4s軌道の次は、3d軌道に先に電子が入る

原子番号順に並べると、d軌道に電子が入る元素が割りこむため、周期表は18列になる。

さらに原子番号が大きくなると、f軌道にも電子が入る(ランタノイド、アクチノイド)が、 化学的な重要性が低いので、通常は欄外に書かれることが多い。

最後に、Heだけは、Beの上ではなく、Neの上に置かれる。閉殻構造で、物性がBeよりも Neに近い希ガスであるため。

分類(I)

分類(2)

電子の手放しやすさ、電子のうけとりやすさでの分類

分類(3)

元素の性質

原子番号が1つずつ増えるだけなのに、元素の性質に周期性が生まれるのは、電子軌道(のエネルギー準位)が、不連続になっているから(教科書p.39 図2.7)

電気的中性の原理

- 1. 最外殻をきっちり電子で埋めること(希ガス型電子配置)
- 2. 電気的に中性であること

前者が後者よりも優先される。

金属は電子を手放し希ガス型電子配置(閉殻構造)になろうとする。

非金属は電子を獲得して希ガス型電子配置(閉殻構造)になろうとする。

水素は両方の性質を持つ。つまり、電子を手放せば陽イオンになる一方、電子を共有して 閉殻構造になろうとする。

原子・イオンサイズに関する法則性

- 1. 軌道は、原子番号が大きくなるにつれどんどん収縮する(核電荷が大きくなるため)
- 2. 外殻軌道ほど半径が大きい。
- 3. 電子がs軌道に新たに入る時に、最も半径が大きくなる。

原子サイズ

- 1. 周期表を右に進むにつれ、同じ軌道に電子が入るだけなので原子半径は小さくなる。
- 2. 周期表を下に行くほど、外殻軌道に電子が入るので原子半径は大きくなる。
- 3. 希ガス→アルカリ金属で電子がs軌道に新たに入るので、原子半径が急増する。

イオンサイズ

- 1. 金属元素では、最外殻電子を除去して陽イオン化すると、閉殻構造になり安定化する。 原子番号が大きい分、希ガスよりさらに小さくなる。
- 2. 非金属元素では、電子を追加して閉殻構造にすると安定化する。電子が増えるので半径は大きくなる。

イオン化エネルギー

中性原子から、電子を1つはぎとるのに必要なエネルギー。アルカリ金属は電子を手放しやすく、希ガスは非常に手放しにくい。(教科書p.84 図5.1)

Hundの規則

同じエネルギーの軌道が複数ある場合、電子はできるだけ別々の軌道に入る。

安定・準安定な電子配置

- ・最安定: 閉殻構造(希ガス型)
 - ・最外殻が1sまたはp軌道で、全占有
- 準安定: 亜閉殻構造
 - ・最外殻がpまたはd軌道で、半分占有
 - 最外殻がsまたはd軌道で、全占有

閉殻構造(希ガス)の次の元素(アルカリ金属)は陽イオン化しやすいが、よく似た傾向が、 亜閉殻構造(Be,N,Mg,P,Ca,Cr,Mn,Zn)の次の元素でも見られる。

電気陰性度

2つの元素が結合する際に、電子をひきつけやすい度合いを表す指標。

大きい値ほど強く電子を引き寄せる。

金属元素は電気陰性度小さく、非金属は大きい。1.8を境におおよそ分類できる。

非金属元素同士が結合する際も、電気陰性度が大きいほうが電子を引き寄せ、分極が生じる。

水素と、電気陰性度が大きい元素が結合すると、大きな分極が生じる。このような結合を持つ分子は、互いに水素結合(分極による分子間力)を形成し、融点や沸点が高くなる。(教科書p.96 図5.5)