Relatório EP 2

Flávio Nakasato Cação 7373076

a) Sobre as configurações e os hiperparâmetros do modelo.

Como base de dados, foi utilizado o conjunto 'b2w-10k.csv' fornecido pela B2W, com 10 mil registros. Esta base foi embaralhada e dividida em três grupos: treinamento, validação e teste (este último utilizado apenas no final), nas proporções 65%, 10% e 25%, respectivamente. As curvas, losses e acurácias mostradas a seguir foram geradas sobre o conjunto de validação. Para os *embeddings*, tomamos o de 50 dimensões 'cbow_s50.txt' do projeto NILC. Limitamos o tamanho do vocabulário a 2000.

Foi realizado um *Gridsearch* sobre 4 parâmetros, com 70 épocas por rodada, nas variações abaixo:

- **Rede:** Unidirecional e Bidirecional
- **Dropout:** 0.00, 0.25 e 0.50
- **Tammax** (para o tamanho das palavras iniciais): 50 e 300
- **Tam** (para o tamanho do batch): 32 e 256

Em todos os casos usamos 32 unidades de LSTMs, otimizadores Adam, loss 'sparse categorical crossentropy' e a métrica-alvo foi a acurácia.

b) Gráficos de validação e épocas até sobreajuste.

Gráficos de loss e acurácia abaixo gerados sobre o conjunto de validação, com **tam=300** e **tammax=32**, que se mostraram um pouco melhores na etapa de *Gridsearch*. Nota: há typo de inversão nos valores "Rede" e "Dropout" nos títulos dos gráficos; eles são consistentes com a curva, apenas estão trocados.

Foram tomadas 70 épocas no total para cada curva, mas pode-se observar que nos melhores casos abaixo, começa a haver sobreajuste a partir de **~17 épocas aproximadamente** (melhor modelo: Rede: bidirecional | Dropout: 0.0 | Tammax: 300 | Batch size: 32). Na maioria dos modelos, principalmente os unidirecionais, não parece ter havido aprendizagem real, com as curvas de validação estáticas praticamente.

Acurácias

c) Tabela com acurácias no teste.

Tabela com as acurácias no conjunto de teste após 17 épocas, com tam=300 e tammax=32. Em negrito, o melhor modelo.

Rede	Dropout	Acurácia no teste
Unidirecional	0.00	0.376
	0.25	0.376
	0.50	0.375
Bidirecional	0.00	0.510
	0.25	0.500
	0.50	0.300

Os resultados acima foram obtidos rodando a avaliações dos modelos no conjunto de teste imediatamente após o treinamento. Quando salvamos todos os parâmetros do modelo usando os métodos do Keras (modelo.save('modelo_final')) e depois o carregamos (tf.keras.models.load_model('modelo_final')), mesmo mantendo sementes no Numpy e no Tensorflow, os resultados caem para cerca 0.33, no mesmo conjunto de teste. Ainda não foi compreendido disto, mas cremos que se deva a alguma particularidade computacional da biblioteca ou IDE usadas, então reportamos os valores acima, sobre o mesmo conjunto.

d) Discussão.

Pudemos observar que redes unidirecionais têm considerável dificuldade em aprender sob as nossas especificações de problema; seus desempenhos são muitos baixos e assim se mantém sob diversas combinações de hiperparâmetros.

Obtivemos, no entanto, um resultado substancialmente mais elevado usando redes bidirecionais, como seria esperado. É importante notar que a camada de dropout não trouxe a este problema grandes melhores de acurácia e consideramos o melhor modelo - sob pequena margem, diga-se - aquele cuja taxa de dropout é nula (em negrito na tabela da seção anterior).

Um efeito interessante do Dropout é que as curvas de validação em geral são melhores (menores erros, maiores acurácias) do que aquelas obtidas no treino. Nossa hipótese é que isso ocorre porque, no último caso, a rede está, por construção, com diversos neurônios desativados; isto é, estamos tornando artificialmente mais difícil para rede a tarefa de prever. Na validação, no entanto, a rede usufrui de toda a sua capacidade para a mesma tarefa, resultando no observado desempenho superior.