

Europäisches Patentamt

European Patent Office

Office européen des brevets

1 Publication number:

0 217 286 A1

© EUROPEAN PATENT APPLICATION

(21) Application number: 86113166.2

2 Date of filing: 24.09.86

(a) Int. CI.4 CO7C 103/737, C07C 103/84, C07C 123/00, C07C 143/76, C07C 143/80, C07C 149/42, C07D 207/16, C07D 211/16, C07D 211/32, C07D 211/58, C07D 211/62

Priority: 27.09.85 JP 212240/85 04.03.86 JP 45348/86

- Date of publication of application:
 08.04.87 Bulletin 87/15
- Designated Contracting States: BE CH DE FR GB IT LI NL SE

- Applicant: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) Applicant: Showa Denko Kabushiki Kaisha 10-12, Shiba Dalmon 2-chome Minato-ku Tokyo 105(JP)
- 2 inventor: Okamoto, Shosuke
 15-18, Asahigaoka 3-chome
 Tarumi-ku Kobe-shi Hyogo(JP)
 inventor: Okada, Yoshio
 542-1, Aza Shimizu
 Okuradani Akashi-shi Hyogo(JP)
 inventor: Okunomiya, Akiko
 13-2, Nakayamatedori 7-chome
 Chuo-ku Kobe-shi Hyogo(JP)
 inventor: Naito, Taketoshi SHOWA DENKO
 K.K.

Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)

Inventor: Kimura, Yoshio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa 2-chome

Ota-ku Tokyo(JP)

Inventor: Yamada, Morihiko SHOWA DENKO

KK.

Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Ohno, Norio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

inventor: Katsuura, Yasuhiro SHOWA DENKO

K.K.

Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Seld, Yumi SHOWA DENKO K.K.

Seikagakukenkyusho 24-25, Tamagawa 2-ch me Ota-ku Tokyo(JP) Widenmayerstrasse 17 Postfach 22 03 45 D-8000 München 22(DE)

Representative: Strehl, Schübel-Hopf, Groening, Schulz

- Phenylalanine derivative and proteinase inhibitor.
- A phenylalanine derivative having the formula (i):

$$\begin{array}{c}
\text{H}_2\text{NCH}_2 & \xrightarrow{\text{H}_n} \\
\text{CONHCHCON} & \\
\text{CH}_2
\end{array}$$
(1)

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

 C_1 - C_2 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C_1 - C_4 alkoxy, or halogen;

 C_s - C_s cycloalky! which may be substituted with hydroxy, C_1 - C_4 alkoxy, hydroxylcarbony!, C_1 - C_4 alkoxycarbony!, or C_1 - C_4 alky!;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C,-C₄ alkoxy, C,-C₄ alkylmercapto, C,-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C,-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C,-C₄ alkylwhich may further be substituted with C,-C₄ alkylcarbonyl, hydroxycarbonyl, or C,-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R1 and R2 may form with the nitrogen atom at-

tached thereto a ring structure as morpholino; thiomorpholino; or piperidyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

piperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

This phenylalanine derivativ is effectiv as a proteinase inhibitor.

PHENYLALANINE DERIVATIVE AND PROTEINASE INHIBITOR

15

20

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to a novel phenylalanine derivative, more particularly to a phenylalanine derivative having a proteinase inhibition activity or a pharmaceutically acceptable salt thereof. The present invention also relates to a proteinase inhibitor containing the phenylalanine derivative as the effective ingredient.

2. Description of the Related Art

It is well known in the art that various proteinases are present in human organisms. Examples of such proteinases are plasmin, trypsin, kallikrein, urokinase, and the like. As is also known, when these proteinases are abnormally activated for some reason, various diseases are caused. For example, hemorrhagic diseases are caused when abnormally activated plasmin is present in a relatively large amount in the blood. Also, plasmin participates in inflammation and it is considered to cause inflammatory diseases. For this reason, a substance capable of exhibiting a proteinase inhibition activity is useful as a clinical remedy or medicine, and various investigations in the prior art have been made for the development of such substances. For example, antiplasmins are useful as

hematostatic agents, antiinflammatory agents or antiallergic agents, antitrypsins are useful for the therapy of pancreatitis, antikallikreins are useful as therapeutical agents for inflammation, and antiurokinases are useful for the inhibition of hemorrhagic symptoms in the thrombolytic therapeutical method with urokinase. Accordingly, developments of proteinase inhibitors having such activities have progressed in the prior art, but their proteinase inhibition activities are low and not satisfactory for practical application as medicines. Further, compounds having satisfactory inhibition activities against various proteinases have not been developed.

SUMMARY OF THE INVENTION

Accordingly, the objects of the present invention are to eliminate the above-mentioned disadvantages of the prior art and to provide a compound having a satisfactory inhibition activity in practical application but still having satisfactory inhibition activities against various proteinases, and a proteinase inhibitor containing the compound as the effective ingredient.

Other objects and advantages of the present invention will be apparent from the following description.

In accordance with the present invention, there is provided a phenylalanine derivative having the formula (I):

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

 C_1 - C_0 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl,

pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

 C_6-C_8 cycloalkyl which may be substituted with hydroxy, C_7-C_4 alkoxy, hydroxylcarbonyl, C_7-C_4 alkoxycarbonyl, or C_7-C_4 alkyl:

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C,-C4 alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C,-C4 alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C_1 - C_4 alkyl; C_2 - C_4 alkenyl; benzyl which may be substituted with halogen, C_1 - C_4 alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of a D-configuration, L-configuration and DL-configuration, or a pharmaceutical acceptable salt thereof. Examples of such a salt may include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, etc.; organic salts such as oxalate, succinate, glycolate, malate, citrate, maleate, lactate, benzenesulfonate, toluenesulfonate, methanesulfonate, etc.

In accordance with the present invention, there is also provided a proteinase inhibitor comprising the phenylalanine derivative of the above formula - (I) or a pharmaceutically acceptable salt thereof as the active ingredient.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

Typical examples of the compound represented by the above formula are listed in Table I.

The compounds listed in the Table are mumbered, respectively, and in the following description, the individual compounds are designated in terms of said compound Nos. for the purpose of convenience.

For the compounds indicated as (DL) in the chemical structure, this means that their carbons are mixtures of D-and L-forms; in the compounds indicated as (L), this means that their carbons are-L-form; and, in the compounds indicated as (D), this means that its carbon is D-form. The asymmetric carbon atoms in the phenylalanine skeleton having no indications are all L-forms. In the physical properties shown in Table I, NMR represents a nuclear magnetic resonance spectrum indicated by δ (i.e., delta) (ppm) representing the chemical shifts. The determination was carried out by using as a solvent CDCl₂ (i.e., heavy chloroform), (CD₃)-2SO (i.e., de-dimethylsulfoxide), D2O (i.e., heavy water), or CD₃OD (i.e., heavy methanol) alone or in any mixture thereof, and by using as an internal standard TMS (i.e., tetramethylsilane). In the parenthesis after the 8 number, the number of the hydrogen atom and the symbols s, d, t, q, m, and broad, thereafter, denote singlet, doublet, triplet, quartet, multiplet, and broad absorbance, respectively. The absorbance based on the solvent is omitted from the Table.

IR represents an infrared absorption spectrum in which a potassium bromide tablet is used in the determination unless otherwise noted. When a solution is used in the determination, the kind of solvent is listed in parenthesis. The number listed in the Table represents a wave number in units of cm⁻¹, and only the main absorption peaks are listed in the Table.

MS represents a mass spectrum, and the results are shown as M/e (i.e., the mass of the cation fragment divided by the charge) of the main peaks.

:		····				5			····
	Properties	NYR: CDC13, TNS 6 0.80—2.20(1011, m) 2.402.60(211, d)	(1.11/00.701.7 (1.11/00.701.7 (1.11/00.701.7	20XCD, 0D-CDC1, THS 6 0.802.20(1011, m) 2.52 (211, d)	2.60 (311,s) 2.803.24(211,m) 4.76 (111,m) 7.127.86(91,m)	00 TH	2.13 (211,4) 2.24 (311,5) 2.84 - 3.20(211,4) 4.68 (111,4) 5.02 (211,5) 6.80 - 7.93(1311,4)	NHR: CD,0D, THS & 0.782.28(10 , m) 2.45 (2! , d)	
-	Physical P	MS: M/e 483,327,287,253		IR: 3300, 2025, 2850, 1675, 1040, 1595, 1520, 1310, 1265, 1255, 1175, 815,	695	18: 3300, 2930, 2860, 1680, 1642, 1598, 1530, 1510,		IR: 3300, 2925, 2860, 1640, 1590, 1510, 1260, 1175,	835
Table 1	Contround		$\langle - \rangle$ -2- $\langle - \rangle$ CONIICIICONII - $\langle - \rangle$ - $\langle - \rangle$ -	· ·	II.P.NCII.R CONIICIICONII - C-CII.R. C.CII.R.	OCIIP-	II, NCII, - CONIICIICONII- ()- C-CII,	= -	$ _{P}$ NC $ _{P}$ - $\langle - \rangle$ CONIICIICONII - $\langle - \rangle$ - $ _{C}$ - $ _{C}$
	No.	- .		8		က		4	
		55							

	5	
NNR: 50%CD ₃ 0h-CDCl ₃ , TMS 6 0.802.26(10H, m) 2.502.68(5H, broad) 2.903.20(2H, m) 5.01 (2H, m) 6.807.96(12H, m)	50xCD 0D-CDCl TNS 5 0.802.3(101) m) 2.60 (311.8) 2.803.18(21) m) 3.70 (311.8) 4.70 (311.8) 6.96 (411, m) 6.96 (411, m) 7.78 (411, dd)	SOXCD ₂ OD-CDC1 ₃ , TMS 6 0.802.25 (1011, m) 2.55 (211, d) 3.04 (211, m) 4.70 (111, m) 5.04 (211, m) 5.04 (211, m) 5.04 (211, m)
1R: 3290, 2825, 2860, 1675, 1645, 1505, 1530, 1510, 1265, 1240, 1175, 1010, 810	1R: 3300, 2930, 2860, 1680, 1640, 1530, 1510, 1265, 1245, 1175, 1030, 830	1R: 3290, 2930, 2860, 1640, 1600, 1510, 1490, 1450, 1240, 1220, 1000
0cm _p -c1	II, NCII, - CONIICIICONII - C-CII, CII, CII, CII, CII, CII, CII	II.» NCII.» — CONIICIICONII — CII.»
Ś	v	-

HS: H/e 493,359,343,197, 134 NS: N/e 485,

		5	
NHR: (CD2) SO, THS (CD2) S 0.70-2.68(10!), 3.52 (1!. 3.52 (1!. 3.52 (2!!. 3		NMR: CDC19-CD ₈ OD, THS 6 3.00-3.40(211, m) 3.08 4.00-5.00(11, m) 6.60-7.80(1311, m)	
HS: H/e 519,303,363,309, 281,237,228,197,127	1R: 3300, 2930, 2860, 1680, 1695, 1595, 1530, 1510, 1200, 1140	HS: N/e 389,207,239	-
II. NCII CONIICIICONII - CI		II. NCII CONIICIICONII - C-CII. CII. SO. II	
=	2	<u> </u>	 .

	5	
NMR: 10XCD, 00-CDC13, THS 6 0.8-2.20 (1011, 11) 1.30 (611, 4) 2.58 (311, 4) 2.58 (311, 4) 4.46 (111, 11) 6.93 (411, 14) 7.75 (411, 4d)		CD. 0D, THS \$ 0.802.00(0H, m) 2.202.40(1H, m) 2.808.20(2H, m) 4.68 (1H, m) 5.02 (2H, m) 5.02 (2H, m) 8.41-7.40(9H, m) 8.448.60(2H, m) 9.32 (1H, m) 9.32 (1H, m)
18: 3300,2930,2860,1680, 1640,1585,1530,1510, 1270,1240,1180,1115, 850,830	NVR: CD=00,TMS	IR: 36502250,1700,1840, 1610,1545,1510,1450, 1380,1240,1010,800
II. NCII. CONIICIICONII - C-CII.	II.» NCII.» - CONIICIICON - CII.»	0СШ _Р - СОМІІСНСОМІІ - СПР
5 5		8

	. 5	
(CD ₃) SO, TNS (CD ₃) SO, TNS (SU, broad) 2.38 (2H, broad) 4.60 (2H, broad) 5.02 (2H, broad) 5.02 (2H, broad) 5.02 (2H, broad) 8.857.92(12H, m)	CD=00, TNS & 0.502.00(911,m) 2.142.30(111,m) 2.56 (311,s) 2.843.16(211,d) 4.64 (111,m) 5.00 (211,s) 5.00 (211,s) 6.858.10(1311,m)	NMR: CD ₃ OD, TMS S 0.901.96(911, m) 2.162.37(111, m) 2.903.20(211, d) 5.00 (211, d) 6.847.86(1811, m)
18: 3300, 2930, 2860, 1880, 1645, 1595, 1530, 1510, 1205, 1240, 1175, 820, 805	18: 37002200,1680,1640, 1610,1580,1510,1265,'	. 18: 3025, 2030, 1600, 1640, 1595, 1530, 1510, 1310, 700
II.» NCII.» - CONIICIICONII - C-CII.»		ПР ИСП СОМПСПСОМП - С.
21	81 .	61

	5	
CD ₃ OD, TMS 6 0.90 - 1.96(911, m) 2.16 - 2.35{111, m} 2.55 (311, s) 2.86 - 3.20{211, m} 4.70 (211, m) 5.20 (211, s) 6.86 - 47.95{111, m)	(CD ₂) ₂ SO,TMS 6 0.762.68(110,m) 3.50 (10,8) 4.08 (20,8) 5.04 (20,8) 6.887.82(130,m)	CD. DD. THS CD. 00. THS S 0.801.50(191, m) 2.082.26(11, m) 2.80-3.10(31, d) 4.45 5.02 C11, m) 5.02 (11, m) 5.02 (211, s)
18: 2940, 2860, 1680, 1640, 1595, 1530, 1510, 1300	MS: N/e 485,467,432,359, 335,288,244,197, 155,134,91	1R: 3300,2930,2860,1640, 1545,1570,1240,1220
I ₁	II.P. CONIICIICON CII.P IIC1	II. HCII CONIICIICONII - CII.
8	7	22

CD, 00, TMS. 6 0.9--2. 2.1--3. ≌ .

CD,00, TH & 0.8 MMR: <u>:S</u>

	5	
(CD ₃) 250, TMS 6 0.701.84(91, m) 2.002.20(11, m) 2.703.00(211, m) 4.66 (111, m) 5.04 (211, m) 5.04 (211, m) 6.847.58(1311, m)		CDC1a-CDa0D, THS 6 0.802.20(1011, m) 2.75 (211, d) 3.603.70(211, d) 4.85 (111, t) 7.307.80(111, m) 8.15 (211, d)
1R: 3300, 2825, 2860, 1665, 1640, 1580, 1530, 1505, 1465, 1235	CD.DD.TMS 6 0.801.98(911,m) 2.102.30(111,m) 2.52 (211,d) 2.66 (311,s) 3.04 (211,m) 6.40 (211,m) 6.40 (211,m)	ik: 3400,2940,1840,1800, 1520,1345,1280,1180
OCII _e - CONIICIICONII - SCII _s	II ₂ NCII ₂ - C-CII ₂ CII ₃	$\begin{array}{c} M_{02} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
30		,

60.00, TH 8 0.80-3.78-\$

美: <u>~</u> ₩e ₹ • 48 47 48

		-
1R: 3300, 1640, 1510, 1240	CD, 0D, TMS CD, 0D, TMS 5 0.802.32(1011, m) 3.64 (211, m) 4.404.36(111, m) 4.444.64(111, m) 5.04 (211, m) 5.04 (211, m)	NYR: CD ₂ 0D, TMS S 0.91 2.36(1011, M) 2.72 3.28(411, M) 4.56 4.75(111, broad) 5.02 (211, s) 8.70 8.08(13H, M)
H2 NCH2 - CONIICHCONII - C	- IIC1	IIE NCII2 - CONIICIICONII - C-NIIE - IICI
20	<u></u>	25

8.00° ÓCIIs -CII≡CIIs

	5.	
		IR: 3320, 1635, 1510, 1245
WHR: (3) 00, THS 5 0.922.38(1011, m) 4.644.76(11, m) 5.05 (211, m) 6.908.50(1211, m)	WHR: CD ₀ OD, THS S 0.822.32(1011, m) 2.683.22(711, m) 5.04 (211, s) 6.747.46(1311, m)	MS: M/e 523,373,283,236, 197,137
II _e NCII _e - COMIICIICOMII - CI	OCII ₂ - CONIICII ₂ - CONIICII ₂ - OCII ₃ • IIC1	II. NCII.2 - CONIICIICONIICII.2 - COII.3 • IICI
89	09	19

	NMR: CD ₈ OD, THS	(311, a)		
MS: M/e 497,432,387,359, 347,282,256,237, 226,210,187,134, 110,91	MS: M/e 493,343,238,197, 134	IR: 1640, 1510, 1240, 815	MS: M/e 503,438,393,365, 347,258,237,226, 210,197,140,112, 110,91	
II.2 NCII.2 - CONHCIICONII.	- allo	II, NCII, CONIICHCONII-COI, - IICI	II.2 NCII.2 - CONHCIICONIL.	
62	83	2	5	•

·	•		5		
NYR:	6. 2.2 (811,8) 3.03.20(21),12 3.83 (211,8) 4.805.10(311,18) 6.807.80(1511,18)				
1	197, 134	3300, 1635, 1510, 1240 N'IR:	CD, 00, TMS 8 0.852.36(1011, m) 2.10-3.25(411, m) 4.654.75(111, m) 5.00 (211, s) 6.887.72(1211, m)	CO ₃ OD, TMS CO ₃ OD, TMS S 0.044-2.28(1011, m) 2.76-3.24(411, m) 4.70-4.80(111, m) 5.00 (211, m) 6.84-7.80(1711, S)	
Octile - dillo	(II. MCII. 2 - CONIICHCONII - CII.	II.2 NCII.2 - CONIICIICONII - CI	$\bigcap_{ I _{e}}^{OCII_{e}} - \bigcap_{ CI _{e}}^{OCI$	•
65	•	88			

	5	····	·
		IR: 1640, 1515, 1250, 710	
CDs 00, TMS & 0.902.50(1211, m) 2.803.16(311, m) 4.05-4.22(411, m) 4.084.76(411, m) 5.03 (211, m) 5.03 (211, m) 6.887.92(1311, m)	CD. 0D, THS C 0.822.50(1211, m) 2.913.15.31, m) 4.024.20(411, m) 4.654.76(11, m) 5.04 (211, m) 6.857.88(1211, m)	MS: M/e 428,254,197,134	
OCIIP - CO2 C2 IIs	$\frac{0^{C _{\mathbf{g}}}}{C _{\mathbf{g}}} - \underbrace{C_{\mathbf{G}}}_{\mathbf{G}} = \underbrace{C_{\mathbf{G}}}_{\mathbf{G}$	0 СП _е - СОРИИСПСООМ 1-C-C	
12	2	5	· -

12	Octile octile	NS: N/e 513,495,479,485,	
82	II ₂ NCII ₂ - CONIICIICONIICII ₂ CII ₂ - CONIICIICONIICII ₂ CII ₂ - FICI	257, 315, 226, 210, 252, 237, 226, 210, 177, 91	
	OCII ₂ - CH ₂ CH ₂ CH ₃ CH ₄ CH ₅ CH ₆ CH ₆ CH ₇ CH ₇ CH ₇ CH ₈	MS: M/e 507,489,387,357, 286,252,237,197, 160,134,91	
78	°112-CII3	- E	
·	CONICIICONII - CONICIICONII - C-CII - IICI	3400, 2840, 1850, 1800, 1500, 1365, 1270, 1180, 870	

0 217 286

Me 424,387,359,343, 297,226,197,134, 83 ₹ **::** ij <u>:</u> 8 81 82

		IR: 3360,2950,1840,1515, 1240
CD, OD, TMS S 0.802.35(13H, m) 2.703.30(4H, m) 4.304.44(2H, m) 5.15 (2H, m) 5.15 (2H, m) 5.15 (2H, m)	CD ₀ OD, TMS 6 0.962.32(1011, m) 2.08 -2.70(211, m) 2.703.20(211, m) 4.604.72(111, m) 5.12 (211, m) 6.808.02(1211, m)	HS: H/e 387,351,134
II ₂ NCII ₂ - CO ₂ C ₂ II ₃ CII ₂ - CO ₂ C ₂ II ₃ CII ₂ - CONIICIICONII - C-C-CII ₃ · IIC1	$ _{L^{R}} _{L^{R}} - \langle C_{0_{R}} _{L^{R}} - \langle C_$	рСП ₂ — СОМІІСІІСОМІ - МС1
88	29	8

•	5	
	1R: 3430,3300,3050,2840, 1735,1640,1610,1515, 1240,1180,1025	
IR: 2850, 1840, 1510, 1345, 1245	HS: H/e 571,415,374,237, 106,91	MS: M/e 500,393,382,344, 228,197,91
OCIIs - COMINCIICONNICIIs - CO-NO2 - NCI	OCII _e - CO CII _e CII _e CII _e CII _e CII _e CO _e CI	OCII ₂ - CONIICIICONIICII ₂ - CONIICIICIICONIICIII - CONIICIICONIICIII - CONIICIICII - CONIICIII - CONIICIIICII - CONIICIIICIII - CONIICIIICII - CONIICIIII - CONIICIIICII - CONIICIIICIII - CONIICIIICII - CONIICIIICIII - CONIICIIICII - CONIICIIICIII - CONIICIIII - CONIICIIICII - CONIICIIICIII - CONIICIIII - CONIICIIII - CONIICIIII - CONIICIIII - CONIICIIII - CONIICIII - CONIICIIII
68	08	16

CD, 00, TM

	5		
		1R: 2950,1735,1845,1515, 1240	
MYR: CD ₉ OD, TMS S 1.02.34 (1011, m) 2.50 (311, s) 2.80 (211, m) 3.043.30(211, m) 4.72 (111, m) 6.908.08(1211, m)	KS: We 434,344,298,277, 254,226,197,185, 164,134,93	HS: N/e 557,512,252,172, 134	
$0 - \bigcirc -N0_{e}$ $CII_{e} - \bigcirc -CONIICIICONII - \bigcirc 0$ $CII_{e} - \bigcirc -CONIICIICONII - \bigcirc 0$	II ₂ NCH ₂ - CONIICHCHONIICH ₂ - CONICHCHONICH ₂ - CONICHCHONICH ₂ - CONICHCHONICH ₂ - CONICHCHONICH ₃ - CONICHCHONICH ³	II2 MCII2 - CONIICIICONII - CO2 C2 II5 · IIC1	
. 88	98	. 26	

<u>=</u>

:S

	5		
CDC1s-CDs OD, TMS 6 0.802.30(101,m) 2.803.10(21,m) 4.86 (211,4) 5.02 (211,4) 5.02 (211,4) 6.707.84(1311,m)			
HS: H/e 543,498,393,387, 302,282,197,134	IR: 3400,3300,3030,2930, 1640,1510,1240,1220	MS: M/c 484,476,459,433, 387,344,281,187, 150,106	
II ₂ NCII ₂ - CONIICIICON - CO ₂ CII ₂ CII ₃ • IIC1	OCII ₂ - OCII ₂ - CH ₂ CH ₃ CH ₃ CH ₄	II ₂ NCII ₂ - CONIICIICONIICII ₂ - CONIICIICONIICII - CONIICIICONIICII - CONIICIICONIICII - CONIICIICII - CONIICII - CONI	
	=		

	5	
CDC13-CD3 DD TMS 6 3.03.16 (211, m) 4.12 (211, s) 4.46 (211, 4) 5.02 (211, t) 5.02 (211, t) 6.80-7.80(1711, m)	CDC1, -CD30D, TMS & 0.801.80(1011,m) 2.953.10(211,m) 3.503.70(111,m) 4.12 (211,m) 4.12 (211,m) 5.04 (211,t) 5.04 (211,t)	
ik: 3420,3280,2860,2930, 1630,1510,1240,1220	IR: 3430, 2940, 2860, 1640, 1515, 1240	1R: 3430,3030,2840,1695, 1640,1810,1510,1455, 1240,1230,1140,990, 910,810,740
II.2 NCII.2 - CONIICIICONIICII.2 - CO	11 ₂ NCII ₂ - CONIICHICONII IICI	H2 NCII2 - CONIICHICONII - CH3 · IICI
	114	115

116				
	II. NCII. CONIICIICON	1R: 3440,1745,1840,1515, 1245,1225		
117	OCII ^s - OCII ^s	KS: H/e 387,187,151,91	IR: 36002400,1690,1610	
	IIR NCIIR - CONIICINCONII - CIIR COR II - IICI			
<u> </u>	OCII ^s	IR: 3420,3030,1670,1640, 1600,1530,1510,1270	NMR: CD ₂ OD, THS S 2.56 (311,8)	
	$\lim_{\mathbb{R}^2} \operatorname{hCH}_{\mathfrak{g}}^{\mathfrak{g}} - \operatorname{COMHCHCOMH}_{\mathfrak{g}}^{\mathfrak{g}} - \operatorname{C-CH}_{\mathfrak{g}} \to \operatorname{HCI}_{\mathfrak{g}}$		3.10-3.30(2 ,#\) 3.98 (2 ,8\) 4.60-4.80(1 ,#\) 5.00 (2 ,\$\) 6.80-8.00(17 ,#\)	

NMR:

0 217 286

CD₂ OD, TMS ~

	-	
CD.0D, THS CD.0D, THS S 0.902.35(101, m) 2.76 (311.8) 3.04 (211.4) 4.70 (111, m) 5.04 (211, m) 6.848.50(1111, m)	CO.00, TMS © 0.902.38(10H, m) 2.58 (2H, s) 2.182 (2H, s) 3.10 (2H, m) 4.72 (2H, m) 5.50 (2H, m) 7.048.88(12H, m)	18: 3280, 2940, 1680, 1600, 1520, 1345, 1270, 1180, 840
$ I_{2}NCII_{2}-\bigcap_{CII_{2}}CII_{2}$ $ I_{2}NCII_{2}-\bigcap_{CII_{2}}CII_{2}$ $ I_{2}NCII_{2}-\bigcap_{CII_{2}}CII_{2}$	H ₂ NCH ₂ - CONIICIICONII - C-CH ₂ · 2IIC1	$ _{\mathbb{R}^{R}} _{\mathbb{R}^{R}} = _{\mathbb{R}^{R}} _{\mathbb{R}^{R}$
128	55	130

MAR: **≍** ≝ .

IR:		5	
IR:	8.80(12)	30(23)	-8.0 (13ii. a)
$\begin{array}{c} \left\langle \begin{array}{c} C I_{12} \\ C I_{12} \\ C I_{12} \\ C I_{12} \\ C C \\ C \\$	R: 430,3030,2960,1 615,1550,1500,1	IR: 3430,3030,2830,1670, 1640,1630,1600,1500, 1410,1360,1310,1270,	CD ₂ OD, TMS S 0.50-2.34(10H, m) 2.80 3.10 (2H, m) 6.86-8.40(11H, m)
-	CIIIe CIIIe		
55 · 34 · 134	¥		138

3420, 1700, 1640, 1540, 1300 (学) ₹.

CD, 00, THS 8 3.10--CD 00.9

143				· ·
•		CD, 0D, THS CD, 00, THS 5 0.802.32(17H, m) 2.783.20(6H, m) 4.60 7.048.94(7H, m)		
4	₂ NC ₂ - \(\rightarrow \cdot	IR: 1760, 1680, 1680, 1590, 1510, 1440	· .	5
145		IR: 1760, 1690, 1680, 1590, 1510, 1440		
-	II2 MCII2 - CONIICIICONII - C-CII3 · IICI	·		

146			
		1R: 1760,1690,1680,1590, 1510,1440	
147	II. MCII COMIICIICONII(CII.) CII.	CD ₃ OD, TMS \$ 0.812.32(1711, m) 2.703.28(611, m) 4.404.66(11, m) 6.648.80(711, m)	
148		IR: 3430,3300,3030,2930, 1700,1850,1560,1460 1440,1340,1300,1010, 850,700	
	II. NCII CONIICIICONII - COII 2IICI		

<u>...</u> We 540,390,237,197, 154,134 :S

	5	
	18: 3430,3020,1720,1840, 1570,1540,1500,1280, 1115,1070,780,700	
CD ₃ OD, TMS (211, m) 6 2.91 3.12(311, m) 4.16 (211, s) 4.18 5.08(411, m) 5.02 (211, s) 6.72 7.92(1711, m)	HS: H/e 402,311,253,134	IR: 3300, 2940, 1650, 1520, 1350, 1210, 1110, 1020, 860
II.2 MCII.2 - CONIICIICONII - CIICI	II ₂ NCII ₂ - CONIICHCONCII ₂ - CII ₃ CH ₂ CII ₃	II ₂ NCII ₂ - CONHCIICON C(CII ₂) ₃ CII ₃ • IICI
	157	

158		·		
	H2 NCH2 - CONIICHCONIICH2 - N	18: 3420, 3280, 2840, 1680, 1650, 1520, 1350, 1220, 1105, 1040, 860, 760		•
	$\begin{array}{c} NO_{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	IR: 3450,3200,3000,2850, 2670,2000,1745,1805, 1505,1495,1350,1230, 1105,1005,840,750,	5	5
180	OCH(CII ₂) ₂ CII ₂	MS: M/e 473,430,415,345, 317,205,128,113,		
	•			

CD₃00-D₂ & 0.78-2.92-**FE**:: **Z**R:

164	on a supplied to the supplied	KAR:	
	II. MCII CONIICIICONII (CII.). CII 211C1	6.99-7.88(12H, m)	
165	· ball	₹. .:	
	H ₂ NCII ₂ - CONIICIICON CII ₃	CDC1s, TMS & 0.703.02(2811, m) 4.085.20(31, m) 6.027.12(41, m) 7.34 (211 d) 8.58 (211, d)	5
168	OCIIP CO-OS	MS: We 321,293,231,175	
	CONFICIEON - CH2 -		·

167	OCIIs CO-	HS: H/e 177,107,94,67	IR: 3430,3020,2840,1730, 1700,1640,1610,1510, 1320,1220,820	
	II. NCII CONIICIICONII - N. CONIICIICONII			
889	*ONO	CD ₀ OD, TMS © 0.80-2.36(10II, III) 2.40-3.16(71II, III)		
	II. NCII CONIICIICON(CII.) 2IICI		•	3
169	20N0	MS:		
	II2 NCH2 - CONIICHICH2 - CONIICH - CONIICH - CONIICH - CONIICH CONIICH - CONIICH CONIICH - CONIICH CONIICH CHAP - CONIICH CONIICH CHAP - CONI			•

	5	
1R: 3400,2840,1740,1650, 1500,1455,1370,1200, 1180,1150,1090,860	18: 3400,2840,1740,1640, 1500,1370,1200,1180, 1150,1080,860	MMR: CD ₃ OD, TMS 6 0.842.40(22 , m) 2.603.00(4 , m) 3.163.44(2 , m) 5.03 (2 , s) 6.847.72(14 , m)
OSO ₂ - CII ₃ II ₂ NCII ₂ - CONIICIICONII - CII ₃ HCI	II.2 NCII.2 - CONIICHCONII - N - 2IIC1	OCH ₂ - C ₂ C
170	55	172

<u>«</u> Me 548,380,197,154 We 483,328,197 MMR: ₹ :: ₹ 176 178 171

The compounds of the present invention can be synthesized by various combinations of the so-called peptide synthesis methods.

- I) Mixed acid anhydride method [Ann, Chem., 572,] 190 (1951)
- 2) Acid chloride method [Biochemistry., 4, 22!9 (1960)]
- 3) Phosphazo method [Chem. Ber., <u>93</u>, 2387 (1960)]
- 4) Dicyclohexylcarbodiimide method [J. Am. Chem. Soc., 77, 1087 (1955)]
- 5) Active ester method using, for xample, N-hydroxysuccinimide [J. Am. Ch m. Soc., <u>85</u>, 3039 (1963)].

It should be noted, however, that not all of the compounds can be synthesized according to th methods as mentioned here, but that it is necessary to combine the above-mentioned methods appropriately for the respective compounds. Among these methods, typical examples of the reaction routes are shown below.

Route A

For carrying out synthesis from ① to ③,① is dissolved in an appropriate solvent such as THF, dimethylsulfoxide diethyl ether, dioxane, and the like, and an appropriate base such as triethylamine, pyridine, and the like, is added in an amount of I equivalent to 5 equivalents, preferably 2 to 3 equivalents relative to ① . To this reaction mixture is added ethyl chlorocarbonate as such or as a solu-

tion dissolved in the solvent used as the reaction solvent, at one time or in several divided portions. The temperature of the reaction mixture is maintained at -10°C to 30°C, preferably 5 to 10°C. The reaction time is from I hour to 50 hours, preferably from 5 to 20 hours. After a conventional post-treatment, 0.5 to 2 equivalents of

are added and the reaction is carried out at -10°C to 30°C, preferably 5 to 20°C, for I to 50 hours, preferably 5 to 20 hours. Then, after a conventional post-treatment, (3) is obtained.

The reaction from 3 to 4 may be carried out by allowing 5 to react with I to I0 equivalents, preferably 3 to 7 equivalents relative to 3 of 4N-HCI dioxane solution at room temperature. Then,

after a conventional post-treatment, (4) is obtained. The reactions from (4) to (6) can be carried out in the sam way as from (1) to (4), whereby (6) can be obtained.

Route B

BOCNHCHOO₂H $\xrightarrow{R_1}$ $\xrightarrow{R_2}$ BOCNHCHOON $\xrightarrow{R_1}$ $\xrightarrow{R_2}$ $\xrightarrow{R_2}$

10

 $\begin{array}{c|c} X & & X \\ & & \\ H_2NCHCON \\ \hline \begin{pmatrix} R_1 & BOCNH-Y-CO_2H \\ \hline R_2 & DCC \\ \end{pmatrix} & BOCNH-Y-CONHCHCON \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \end{pmatrix} & C \\ \hline \begin{pmatrix} R_1 \\ \hline R_2 \\ \hline \end{pmatrix} & C \\ \hline \\ \hline \end{pmatrix} & C \\ \hline \\ \hline \end{pmatrix} & C \\ \hline \\ \hline \end{pmatrix} & C \\ \hline \\ \hline \end{pmatrix} & C \\ \hline \\ C \\ \hline \end{pmatrix} & C \\ \hline \end{pmatrix} & C \\ \hline \\ C \\ \hline \\ C \\ \hline \end{pmatrix} & C \\ \hline \\ C \\ C \\ \hline \end{pmatrix} & C \\ \hline$

 $\xrightarrow{\text{4N-HC1 / }} H_2\text{N-Y-CONFICHCON} \xrightarrow{R_1} R_2$

For syntheses from 1 to 3 and from 4 to 5, there may be employed, for example, the methods as described in J. Am. Chem. Soc., 77 1067 (1955). For the reactions from 3 to 4 and from 5 to 6, the methods as described in route A may be used.

Route C

$$\begin{array}{c|c}
 & X & \longrightarrow & CH \\
\hline
 & & & \longrightarrow & CH \\
\hline
 & & & & \longrightarrow & CH \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 &$$

$$\begin{array}{c}
 & \text{NaH} \\
\hline
 & \text{R}_3-A
\end{array}$$

$$\begin{array}{c}
 & \text{R}_1 \\
 & \text{R}_2
\end{array}$$

For syntheses from 3 to 1, there may be employed, for example, the methods as described in synthesis 685 (1976), J. Chem. Soc. Perkin Trans 1 490 (1977).

For synthesis from ① to ⑧, ① is dissolved in an appropriate solvent such as DMF, DMSO, toluene, and the like, and NaH is added in an amount of I equivalent to 5 equivalents, preferably I equivalent to 2 equivalents relative to ①. To this reaction mixture is added a solution of R₂-A dissolved in the solvent used as the reaction solvent, and the reaction is carried out at room temperature from 2 hours to 50 hours, preferably from 4 to 6 hours. Then, after a conventional post-treatment, ② is obtained. For synthesis ⑧ to ①, the methods from ③ to ⑥ in route A may be used.

EXAMPLES

The present invention will now be further illustrated by, but is by no means limited to, the following Examples. In the following, preparation of typical compounds is described by referring to specific examples.

Example I

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (Compound No. 2)

N-(t-butyloxycarbonyl)-L-phenylalanine (I) (5.30 g) was dissolved in dry tetrahydrofuran (80 ml), triethylamine (3 ml) was added to the resultant solution and ethyl chlorocarbonate (2.40 g) was added to the mixture under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-acetylaniline (2.70 g) and the mixture was stirred at room temperature for l0 hours. To the reaction mixture was added ice-water (300 ml) and the precipitated crystalline substance was collected by filtration, thoroughly washed and dried to give 7.07 g of N-(t-butyloxycarbonyl)-L-phenylalanine 4-acetylanilide (II).

To the above compound (II) (2.29 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (30 ml) and ice-cooling was removed, followed by stirring at room temperature for 30 minutes. To this solution was added ether (300 ml) and the precipitated crystalline substance was collected by filtration, washed with ether and dried under a reduced pressure to quantitatively obtain L-phenylalanine 4-acetylanilide hydrochloride (III).

15

35

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (1.62 g) was dissolved in dry tetrahydrofuran (50 ml), triethylamine (0.96 ml) was added to the resultant solution and ethyl chlorocarbonate (0.76 g) was added under ice-cooling to the mixture, followed by stirring for 30 minutes. To this solution was added the hydrochloride salt (III) previously obtained and triethylamine (2 ml) was added to the mixture, followed by stirring at room temperature for 3 hours. Ice-water (200 ml) was added to the reaction mixture and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to give 2.62 g of N-[trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarbonyl]-L-phenylalanine 4-acetylanilide (IV).

To the above compound (IV) (2.60 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (25 ml) and the mixture was stirred at room temperature for 30 minutes. The mixture was concentrated under a reduced pressure, and the residue was dissolved in water (I00 ml) and sodium carbonate (I.05 g) was added to the resultant solution. The precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (V) (I.90 g).

Example 2

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-1-phenylalanine 4-acetylanilide (Compound No. 3)

Trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarboxylic acid (I.41 g) was made into a mixed acid anhydride following a conventional method. and 4-benzyloxy-Lphenylalanine-4-acetylanilide hydrochloride previously synthesized following a conventional method was added thereto and the mixture was stirred with addition of triethylamine (I.7 ml) at room temperature for 3 hours. Then, post-treatment was carried out following the procedure as described in Example I to give N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-acetylanilide (I) (2.46 g).

The above compound (I) (2.40 g) was treated with 4N-hydrogen chloride/dioxane and, following the procedure of Example I, N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (II) (I.50 g) was obtained.

Example 3

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-ohenylalanine 4-acetylanilide : (Compound No. 4)

Ethanol was added to the N-(trans-4-aminomethylcyclohexyl-carbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide prepared in Example 2 (100 mg), palladium black (20 mg) and cyclohexene (2.5 ml) and the mixture was stirred under reflux of ethanol for 30 minutes. The solid was collected by filtration, and concentrated to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (79 mg).

Example 4

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-chlorobenzyloxy)-1,-phenylalanine 4-acetylanilide (Compound No. 5)

of mixture N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine 4-acetylanilide (I) (4.88 g), palladium black (0.60 g), cyclohexene (i5 ml) and ethanol (100 ml) was subjected to the reaction under reflux of ethanol for I hour. After cooling, the solid was filtered off and the filtrate was concentrated to obtain N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (II) (3.90 g). The compound (II) without purification was dissolved in N,N-dimethylformamide (100 ml) and the solution was stirred with addition of sodium hydride (60% content) (0.44 g) at room temperature for 30 minutes. To this solution was added 4-chlorobenzyl chloride (I.8) g) and the reaction was carried out at room temperature for I0 hours. Ice-water (500 ml) was added to the reaction mixture, and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to obtain N-(t-butyloxycarbonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (III) (3.65 g). The compound (III) was treated in a conventional manner to synthesize N-(trans-4-aminomethylcvclohexylcarbonyl)-4-(4-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (IV).

Example 5

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-methoxy-L-phenylalanine 4-acetylanilide - (Compound No. 6)

N-(t-butoxyoxycarbonyl)-4-benzyloxy-Lphenylalanine 4-acetylanilide (0.49 g), palladium black (0.10 g) and cyclohexene (4 ml) were reacted with ethanol (20 ml) under reflux for I hour. After cooling, the solid was filtered off and the filtrate

35

40

was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (i) (0.39 g). The compound (l) was dissolved in dimethylformamide (6 ml) and oily sodium hydride (0.04 g) was added to the resultant solution. The mixture was stirred at room temperature for 30 minutes. To this mixture was added a dimethylformamide (2 ml) solution of methyl iodide (0.15 g) and the reaction was carried out at room temperature for 6 hours. Ice-water was added to the reaction mixture, and the resultant oily substance was extracted with ethyl acetate. After a conventional treatment, N-(t-butyloxycarbonyl)-4methoxy-L-phenylalanine 4-acetylanilide (II) (0.21 g) was obtained. N-(trans-4-aminomethyl cyclohexylcarbonyl)-4-methoxy-L-phenylalanine etylanilide (0.08 g) was obtained from the compound (II) (0.19 g), following the procedure of Example I.

Example 6

Synthesis of N-(4-aminomethylbenzovl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (Compound No. 10)

N-(4-benzyloxycarbonylaminomethylbenzoyl)-4-benzyloxy-L-phenylalanine 4-benzoylanilide (I) - (0.20 g) was dissolved in 30% hydrobromic acid/acetic acid solution (I0 mI) and the solution was stirred at room temperature for 30 minutes. Excessive reagent was removed with ether by decantation, water was added to the residue and the mixture was made alkaline with sodium carbonate, followed by extraction with methylene chloride. According to a conventional method, N-(4-aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (II) (0.II g) was obtained.

Example 7

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (Compound No. 16)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (3.71 g) was dissolved in dry tetrahydrofuran (I00 ml) and, under ice cooling, triethylamine (I.5 ml) was added thereto. After stirring for I5 minutes, ethyl chlorocarbonate (I.I0 g) was added, followed by stirring for 30 minutes. To this solution was added 3-aminopyridine (0.94 g) and the reaction was carried out at room temperature for 7 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure.

The residue was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide (II) (I.0I g) was obtained.

Th compound (II) (0.90 g) was dissolved in dry 1,4-dioxane (10 ml) and, to this solution, 4N hydrogen chloride/dioxane solution (25 ml) was added and, at room temperature, the mixture was stirred for I hour. The precipitated substance was collected by filtration and dried. This product was added to a mixed acid anhydride, which was previously synthesized from 4-(t-butyloxycarbonyl)aminomethyl cyclohexyl carboxylic acid (0.54 g), triethylamine (0.31 ml), and ethyl chlorocarbonate -(0.23 g). Furthermore, to this mixture were added triethylamine (0.62 ml) and N.N-dimethylformamide (5 ml) followed by stirring at room temperature for 3 hours. To the reaction mixture was added icewater (100 ml) and the precipitated substance was collected by filtration. After thoroughly washing with water and drying, N-(trans-4-(t-butyloxycarbonyl)-aminomethylcyclohexylcarbonyl-4-benzyloxy-Lphenylalanine 3-pyridylamide (III) (0.98 g) was obtained.

The compound (III) (0.95 g) was dissolved in dry I,4-dioxane (I0 ml) and, to this solution, 4N-hydrogen chloride/dioxane solution (20 ml) was added, followed by stirring at room temperature for 2 hours. The precipitated substance was collected by filtration and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (0.90 g).

Example 8

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonvl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound 23)

mixture of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine cyclohexylamide (0.68 g) obtained in Example 4, palladium black (0.10 g), cyclohexene (4 ml), and ethanol (20 ml) was allowed to react under reflux of ethanol for one hour, while stirring. After cooling, the solid was filtered off and the filtrate was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl-4-hydroxy-L-phenylalanine cyclohexylamide (i) (0.54 g). The compound (I) (0.54 g) was dissolved, without purification, in N,N-dimethylformamide (10 ml), followed by adding sodium hydride (0.06 g) thereto. The mixture was stirred at room temperature for 30 minutes. To this solution was added a solution of phenacyl bromide (0.30 g) in N,N-dimethylformamide (5 ml). The reaction was carried out at room temperature for 4 hours, followed by adding

20

ice-water thereto. The resultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-phenacyloxy-L-ph nylalanine cycloh xylamide (II) - (0.6I g) was obtained. From the compound (II), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (0.38 g) was obtained, following the procedure of Example 7.

Example 9

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride (Compound No. 3I)

N-(t-butyloxycarbonyl)-4-nitro-D,Lphenylalanine (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under icecooling to the resultant solution, followed by stirring for 20 minutes. 4-benzoylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-D,L-phenylalanine 4-benzoylanilide (I) was obtained. To the above compound (I) (0.37 g) was added 4N-hydrogen chloride/dioxane solution (1.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethyl chlorocarbonate -(0.09 g) was added to the solution under icecooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional posttreatment, 0.29 g of N-[trans-4-(t-butyloxy carbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-D,Lphenylalanine 4-benzoylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4N-hydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride was obtained.

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylam:ide hydrochloride (Compound No. 34)

Triethylamine (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added 4-cis/trans-methyl-cyclohexylamine (0.43 g) and the mixture was stirred at room temperature for I0 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate washed with water and dried to give 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methyl-cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxanesolution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to give quantitatively 4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to a solution of trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.62 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to give 0.2 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under a reduced pressure to give 0.1 g of N-(trans-4aminomethylcyclohexylcarbonyl)-4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride.

Example II

Example 10

N-(trans-4-aminomethylcvclohexylcarbonyl)-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide methane sulfonate (Compound No. 35)

N-(t-butyloxycarbonyl)-4-(benzyloxy)-Lphenylalanine 4-acetylanilide (1.2 g), palladium black (0.15 g) and cyclohexane (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-chlorobenzylchloride (0.4 g) in dimethylformamide (5 ml) was allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water (100 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (1.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (I2 ml) to obtain 4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(III). The above compound (III) was suspended in dimethylformamide (10 ml) -tetrahydrofuran (10 ml) dry solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid anhydride were added under ice-cooling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.3) g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (10 ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. This was dissolved in water (100 ml) and the substance precipitated by addition of sodium carbonate was suspended in methanol (30 ml) - methylenechloride (30 ml) solution and methanesulfonic acid (0.13 g) was added to the suspension, followed by stirring at room temperature for I hour, to obtain a transparent solution. After evaporation of the solvent under reduced pressure, recrystallization from ethanoiether solution gave N-(trans-4-aminomethylcyclohexylcarbonyi)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilidemethanesulfonate (I.I g).

Example 12

Synthesis of N-(trans-4-aminomethylcyclohexyl carbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride (Compound No. 47)

Triethylamine (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-sulfamoylahiline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to give I.3 g of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine 4-sulfamoylanilide (II). To the above compound (II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4-benzyloxy-L-phenylalanine 4-sul-famoylarilide hydrochloride (III). On the other hand, trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethyl chlorocarbonate (0.1 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (1 ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride was obtained.

Example 13

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide hydrochloride (Compound No. 59)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (4.48 g) was dissolved in dry tetrahydrofuran (II0 ml) and triethylamine (I.80 ml) was added under ice-cooling, followed by stirring for I5 minutes. To this solution was added ethyl chlorocarbonate (I.44 g) and th mixture was stirred for 30 minutes. After adding 4-amino-2-chloropyridine (I.54 g), th reaction was carried out

15

30

35

40

50

at room temperature for I0 hours. The solid was filtered off and the filtrate was concentrated under a reduced pressure. The residue was extracted with ethyl acetate. The extract was purified with a column chromatography to obtain N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide (II) (0.60 g). Following the procedure of Example 7, the final compound N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)pyridylamide hydrochloride (III) (0.67 g) was obtained from the compound (II).

Example 14

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-toluenesulfonyloxy)-L-ohenylalanine 4-acetylanilide hydrochloride (Compound No. 79)

N-(t-butyloxycarbonyl)-4-hydroxy-Lphenylalanine 4-acetylanilide (0.57)a) triethylamine (0.5 ml) were dissolved in dichloromethane (IO ml) -tetrahydrofuran (IO ml) solution and 4-toluenesulfonyl chloride (0.38 g) was added at room temperature, followed by stirring for 3 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyi)-4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide (I) (0.8 g) was obtained. The above compound (I) (0.8 g) was treated with 4N hydrogen chloride/dioxane solution (2.2) obtain 4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide hydrochloride (II) (0.7 g). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.7 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide
(III) (0.32 g) was obtained. The above compound (III) (0.32 g) was treated with 4N-hydrogen
chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(4-

toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

Example 15

N-(4-aminomethylbenzovlcarbonyl)-4-benzyloxy-Lphenylalanine 3.4-dimethylcyclohexylamide hydrochloride (Compound No. 80)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (0.3 g) and 3,4-dimethylcyclohexylamine (0.1 g) were dissolved in dry methylene chloride (30 ml) and I-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride -(0.2 g) was added to the solution, followed by stirring at room temperature for I2 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (I) (0.32 g) was obtained. The above compound (I) (0.3 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain 4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (II) (0.28 g). The above compound (II) (0.26 g) and 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.16 g) were dissolved in dry methylene chloride (20 ml) -pyridinesolution, and I-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.15 g) was added to the solution. The reaction was carried out at room temperature for 12 hours. After a conventional posttreatment. N-[4-(t-butyloxycarbonyi)aminomethylbenzoyl]-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (III) (0.23 g) was obtained. The above compound (III) was allowed to react with 4N-hydrogen chloride/dioxane solution to N-(4-aminomethylbenzoyl)-4-12 ďή obtain benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (0.18 g).

Example 16

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-nitrophenyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 95)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (1.59 g) in dimethyl sulfoxide (I0 ml) were added potassium hydroxide (0.25 g) and 4-nitrobromobenzene (0.8) g), and the mixture was heated at 80 -90°C and stirred for I0 hours. After conventional post-treatment N-(t-butyloxycarbonyl)-4-(4-nitrophenyloxy)-Lphenylalanine 4-acetylanilide (I) (0.62 g) was obtained. The above compound (I) (0.6 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain 4-(4-nitrophenyloxy-Lphenylalanine 4-acetylanilide hydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic mixed acid anhydride obtained in Exampl 5 to N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(4-

10

35

nitrophenyloxy)-L-phenylalanine 4-acetylanilide (II) -(0.54 g). The above compound (ii) (0.54 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-nitrophenoxy)-L-phenylalanine 4acetylanilide hydrochloride (0.39 g).

143

Example 17

Synthesis <u>of</u> N-(4-aminomethylbenzovl)-4benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (Compound No. 96)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2.00 g) was dissolved in dry tetrahydrofuran (50 ml) and, under ice-cooling, triethylamine (0.8l ml) was added thereto. After stirring for I5 minutes, ethyl chlorocarbonate (0.64 g) was added thereto, followed by stirring for 30 minutes. To this solution was added 4-picolylamine (0.58 g) and the mixture was stirred at room temperature for 5 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate. After a conventional post-treatment N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine picolylamide (II) (I.60 g) was obtained. To the compound (II) (1.60 g) 4N-hydrogen chloride/dioxane solution (15 ml) was added, followed by stirring at room temperature for 30 minutes. The precipitated substance was collected by filtration and dried to quantitatively obtain 4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (III).

On the other hand, N-4-(t-butyloxycarbonyl)aminomethyl benzoic acid (0.60 g) was dissolved in dry tetrahydrofuran (10 ml) and N.N-dimethylformamide (5 ml) and, under ice-cooling, triethylamine (1.20 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.29 g) was added thereto, followed by stirring for 30 minutes. To this solution was added the above-prepared compound (III), followed by stirring for 3 hours at room temperature. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate and, after a conventional post-treatment, N-4-(t-butyloxycarbonyl)aminomethylbenzoyl-4-benzyloxy-Lphenylalanine 4-picolylamide (IV) (0.45 g) was obtained. To this compound (IV) (0.45 g) was added 4N hydrogen chloride/dioxane solution (4.5 ml) and the precipitated substance was collected by filtration. After drying, N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (0.39 g) was obtained.

Synthesis <u>of</u> N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound No. 114)

144

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate -(0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added cychlohexylamine -(0.43 g) and the mixture was stirred at room temperature for IO hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water, and dried to obtain 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitatedcrystalline substance was collected by filtration. washed with ether and then dried under reduced pressure to quantitatively obtain 4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.62 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0,25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to obtain 0.2 g of N-[4-(t-butyloxycarbonyl)aminomethylbenzovl]-4-benzyloxy-Lphenylalanine cyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogenchloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to obtain 0.1 g of N-(4-aminomethylbenzoyl)-4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride.

Example 19

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine trifluoromethylanilide hydrochloride (Compound No.

Example 18

Triethylamin (1.5 ml) was added to a solution of N-(t-butyloxycarbonyi)-4-benzyloxy-Lphenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate -(0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-trifluoromethylaniline (0.65 g) and the mixture was stirred at room temperature for I0 hours. Posttreatment was carried out in the same manner as in Example I to obtain I.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine trifluoromethylanilide (II). To the above compound -(II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4benzyloxy-L-phenylalanine 4-trifluoromethylanilide -(III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethylchlorocarbonate (0.i g) was added under icecooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide hydrochloride was obtained.

Example 20

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. I2I)

To a solution of N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (0.57 g) in dry dimethylsulfoxide (10 ml) was added oily sodium hydride (0.07 g), followed by stirring at room temperature for 30 minutes. Then, 2-chloro-5-nitropyridine (0.28 g) was added and stirred at room temperature for 10 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(5-nitro-2-pyridyloxy-L-phenylalanine 4-acetylanilide (I) (0.70 g) was obtained. The abov compound (I) (0.70 g)

was treated with 4N hydrogen chloride/dioxane solution (I5 ml) to obtain 4-(5-nitro-2-pyridyloxy)-Lphenylalanine 4-acetylanilide hydrochloride (II) (0.65 g).

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.18 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.65 g) and, after neutralizing with triethylamine, the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(5nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide -(III) (0.32 g) was obtained. The above compound (III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(5-nitro-2pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

Example 21

20

30

35

N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanllide hydrochloride (Compound No. 122)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine 4-acetylanilide (I.2 g), palladium black (0.15 g) and cyclohexene (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-cyanobenzylbromide (0.4 g) in dimethylformamide (5 ml) was added and allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water-(I00 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-cyanobenzyloxy)-L-

phenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (I.25 g) was allowed to react with 4N-hydrogen chloride/dioxane (I2 mI) to obtain 4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide - (III).

The above compound (III) was suspended in dimethylformamide (I0 mI) -tetrahydrofuran (I0 mI) solution, and triethylamine (0.4 mI) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic

acid mixed acid anhydride were added under icecooling, followed by stirring for 30 minutes. Further, th reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.3I g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (10 ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. The product was recrystallized from an ethanol-ether solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (l.l g).

Example 22

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 130)

N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine - (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (I5 ml), and ethylchlorocarbonate (0.33 g) was added under ice-cooling to the resultant solution, followed by stirring for 20 minutes. 4-acetylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide (I) was obtained.

To the above compound (I) (0.37 g) was added 4N-hydrogen chloride-dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-L-phenylalanine 4acetylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid -(0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethylchlorocarbonate (0.09 g) was added to the solution under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) -(0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.29 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-Lphenylalanine 4-acetylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4Nhydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystallin substance precipitated was collected by filtration and subjected to a conv ntional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-ñitro-L-pheñÿſalaniñe 4-acetylaniſſde hydrochloride was obtained.

Example 23

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(3-chloro-6-nitrophenoxy)-L-phenylalanine
4-pyridylamide dihydrochloride (Compound No. 137)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-pyridylamide (5.35 g) in dimethyl sulfoxide (I00 ml) was added oily sodium hydride (0.62 g), followed by stirring at room temperature for 30 minutes. Thereafter, 2,4-dichloronitrobenzene (2.88 g) was added and stirred at room temperature for 10 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(3-chloro--6-nitrophenoxy)-L-phenylalanine 4-pvridylamide dihydrochloride (6.66 g) was obtained. The above compound (I) (6.50 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (50 ml) to obtain 4-(3-chloro-6-nitrophenoxy-L-phenylalanine 4-pyridylamide dihydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid. anhydride obtained in Example 5 to obtain N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3-chloro-6nitrophenoxy)-L-phenylalanine 4-pyridylamide (II) -(7.16 g). The above compound (II) (7.00 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (150 ml) to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-chloro-6-nitrophenoxy)-Lphenylalanine 4-pyridylamide (6.06 g).

Example 24

35

Synthesis of N-(trans-4-aminomethylcvclohexylcar-bonyl)4-(4-picolyloxy)-L-phenylalanine 4-pic-pecolylamide (Compound No.165)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (I.86 g) was dissolved in dry tetrahydrofuran (30 ml) and, under ice-cooling, triethylamine (0.75 ml) was added thereto. After stirring for I0 minutes, ethyl chlorocarbonate (0.56 g) was added and stirred for 30 minutes. To this solution was added a solution of 4-pipecoline (0.55 g) in dry tetrahydrofuran (5 ml). The ice bath was removed and the reaction was carried out at room temperatur for 2 hours. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. To the residue was added water

10

15

25

(50 ml), followed by xtracting with ethyl acetate. After a conventional post-treatment N-(t-butylox-ycarbonyl)-4-benzyloxy-L-phenylalanine 4-pipecolylamide (II) (I.83 g) was obtained.

A mixtur of the above compound (II) (I.70 g), palladium black (0.20 g), cyclohexene (6 ml), and ethanol (50 ml) was reacted under reflux of ethanol. After cooling, the solid was filtered off and the filtrate was concentrated to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-pipecolylamide (III) (i.36 g). The compound (III) was dissolved. without purification, in N,N-dimethylformamide (20 ml). To this solution was added oily sodium hydride (60% content) (0.16 g), followed by stirring at room temperature for 30 minutes. To this solution was added a solution of 4-picolyl chloride (0.50 g) in N,N-dimethylformamide (5 ml) and the reaction was carried out at room temperature for 7 hours. Ice water was added to the reaction mixture and the resultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-picolyloxy)-Lphenylalanine 4-pipecolylamide (IV) (I.20 g) was

phenylalanine 4-pipecolylamide (IV) (I.20 g) was obtained. From the compound (IV), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-picolyloxy)-L-phenylalanine-4-pipecolylamide (0.85 g) following the procedure of Example 6.

The phenylalanine derivatives or the salts thereof according to the present invention, which are an effective component of the proteinase inhibitor of the present invention, have very potent inhibition activities against proteinases such as plasmin, kallikrein, trypsin, and urokinase as shown in the below-mentioned test results. The plasmin inhibition activity is different from the effect exhibited by the antiplasmins of the prior art, when contrasted with known drugs of the prior art such as tranexamic acid or e-aminocaploic acid which selectively inhibits only plasmin among proteinases. For example, some effective ingredients of the proteinase inhibitor according to the present invention exhibit an inhibition activity against urokinase, which is a plasminogen activating enzyme as is well known. This means that the inhibition of this enzyme can provide preferable hemostatics. On the other hand, some of the proteinase inhibitors according to the present invention inhibit antikallikrein activity and antitrypsin activity. This means that these inhibition activities can provide, together with the antiplasmin activity, a strong antiinflammatory agent. For example, the Compound No. 3 in Table 3 is known as the phenylalamine derivative having the structure similar to that of the present invention (see Pharmazie 39, H, I, 68,1984). Furthermore, the Compound Nos. 4, 5, 6, and 7 are known as phenylalamine derivatives (see Chem. Abst. 77, 102225j; 86, 39312d; and 80, 92633m).

In the following, antiplasmin activity, antikallikrein activity, antitrypsin activity, antiurokinase activity and antithrombin activity of the present compounds are described in detail by referring to typical test examples.

The measurement methods employed in the following test examples are as described below. The test results are shown in Table 2 by referring to the compound Nos. in the above Table I for the compounds of the present invention, and the test results are shown in Table 4 by showing the structures of the compounds in Table 3 for the commercially available antiplasmins as Comparative Examples.

(I) Evaluation of Antiplasmin Activity

(i) <u>Determination of inhibition activity for fibrin de-</u> composition

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 600 μ l. To this buffer solution, 200 μ l of a 0.2% bovine fibrinogen, 100 μ l of a 0.3 casein unit/ml human plasmin solution, and 100 μ l of a 50 unit/ml bovine thrombin solution, all dissolved in the above-mentioned buffer, are added at a temperature of 37°C in a constant temperature bath. Then, the dissolution time of the fibrin mass formed above is determined. Thus, the concentration I_{so} of the inhibitor sample (i.e., 50% inhibition concentration, μ mol), at which the dissolution time obtained in the absence of the inhibitor (i.e., about 5 minutes) is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2251</u> decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.4) to make the total volume to 400 μ l. To this solution, 50 μ l of a 3 mM S-225l solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 casein unit/ml human plasmin is added and the mixture is incubated at a temperature of 37°C for 4 minutes. Thereafter, the reaction is stopped by adding 50 μ l of 50% acetic acid.

The absorbance of p-nitroaniline formed in the reaction mixture is determined at 405 nm. Thus, the concentration I_{50} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., I/2) of that obtained in the absence of the inhibitor, is determined.

50

30

35

(iii) Determination of inhibition activity for fibrinogen

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 400 µl. To this solution, 500 µl of a 0.4% bovine fibrinogen solution and l00 μl of a I casein unit/ml human plasmin solution, all dissolved in the above-mentioned buffer are added at a temperature of 37°C in a constant temperature bath. After the mixture is allowed to stand at a temperature of 37°C for I0 minutes, 3800 µl of the above-mentioned buffer containing I3.2 mM of tranexamic acid and 200 µl of a 50 unit/ml bovine thrombin solution are added to terminate the reaction. The mixture is incubated at a temperature of 37°C for I5 minutes to form the fibrin. The fibrin clot thus formed is adhered to or wound around a glass rod and is then washed with water. The amount of the remaining fibrinogen is determined according to a tyrosine coloring method using a phenol reagent (see J. Biol. Chem., 73, 627 (1927)). From the amount of the remaining fibrinogen thus determined, the amount of decomposed fibringgen is calculated. Thus, the concentration Iso (µmol) of the inhibitor sample, at which the amount of decomposed fibrinogen is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(2) Evaluation of Antithrombin Activity

(i) <u>Determination of inhibition activity against fibrin</u> formation

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 500 μ l. To this solution, 400 μ l of a 0.2% bovine fibrinogen solution and 100 μ l of a 4 unit/ml bovine thrombin solution are added at a temperature of 37°C in a constant temperature bath. Thus, a coagulation time is determined. The inhibitor concentration l_{so} (μ mol), at which the coagulation time obtained in the absence of the inhibitor is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2238</u> decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.3) to make a total volume of 400 μ l. To this solution, 50 μ l of a 0.2 mM S-2238 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperatur bath. Then, 50 μ l of a 0.2 unit/ml bovine thrombin solution is added thereto and the absorbance, at 405 nm, of

the p-nitroaniline formed per minute is determined at a temperature of 37° C by using the so-called initial velocity method. Thus, the concentration l_{po} - (µmol) of the inhibitor sample at which the absorbance is one half (i. ., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(3) <u>Evaluation of Antitrypsin Activity Determination of inhibition activity against S-2238 decomposition</u>

An inhibitor sample is dissolved in a 0.05 M Tris-imidazole buffer solution (pH = 8.I) and I25 μ I of a I mM S-2238 solution is added to make the total volume to I.20 ml. The mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. To this mixture, 0.05 ml of bovine trypsin is added and the absorbance, at 405 nm, of the p-nitroaniline formed per minute is determined at a temperature of 37°C by the so-called initial velocity method. Thus, the concentration $l_{\rm so}$ -- (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., I/2) of that obtained in the absence of the inhibitor sample, is determined.

(4) Evaluation of Anti-Plasma Kallikrein Activity Determination of inhibition activity for S-2302 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.8) to make the total volume to 400 µl. To this solution, 50 µl of a 2 mM S-2302 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μl of a 0.12 unit/ml human plasma kallikrein is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 µl of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration Is (umol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(5) Evaluation of Antiurokinase Activity Determination of inhibiton activity for S-2444 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.8) to make the total volume to 400 μ l. To this solution, 50 μ l of a I mM S-2444 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 500 unit/ml human urokinase is added and

the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 μ J of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration l_{so} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., l/2) of that obtained in the absence of the inhibitor sample, is determined.

When the compounds of the present invention are used as a medicine, there are no critical limitations to the administration methods. The present proteinase inhibitor can be formulated by any con-

ventional method in pharmaceutics. For example, the present proteinase inhibitor may be applied in any conventional manner including intrav nous injection, intramuscular injection, instillation, and oral administration. Although there are no critical limitations to the administration dosage, the suitable dosage is 100 to 1000 mg/day/person, which can be conveniently decreased or increased as desired, as a matter of course.

•	۰	ł	ľ
		1	ŀ
ļ	'n	į	ŀ
	3	į	ļ
	3	ĺ	l
	Ģ	١	ı
	٠	Į	ı

27 40 36 21 Fibrin S- 1.8 0.40 0.90 0.39 1.3 4.6 0.79 0.41 1.5 0.28 1.4 0.31 6.9 1.1 > 1.4 0.95 1.4 3.3 > 1.7 0.41 2.9 0.095 1.1 > 2.9 0.95 1.1 > 3.1 0.35 1.4 3.3 > 1.7 0.41 2.3 0.41 3.8 0.95	h ffhrambin	cmbin	Trypsin	Kallikrein	Urokinase
36 36 1.8 0.90 0.90 0.79 0.79 1.5 1.4 6.9 1.1 3.1 0.85 1.7 0.095 0.09	S	Fibrinogen	8-2238	S-2302	S-2444
36 0.90 0.90 0.79 0.79 0.79 1.5 0.28 1.4 0.31 6.9 1.1 3.1 0.95 1.7 0.95 0.95 1.7 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.9		×20	0.30	1.9	11
1.8 0.40 0.90 0.39 1.3 4.6 0.79 0.41 168 4.4 6.1 2.9 1.5 0.28 1.4 0.35 1.4 0.95 1.7 0.41 2.3 0.095 3.8 0.95		№1000	1.3	0.85	28
0.90 0.39 1.3 4.6 0.79 0.41 168 4.4 6.1 2.9 1.5 0.28 1.4 0.31 1.1 3.3 1.4 0.95 1.1 3.3 1.2 0.85 1.7 0.41 2.3 0.095 3.8 0.68 3.8 0.95	<u>-</u>	×100	0.77	0.63	31
1.3 4.6 0.79 0.41 168 4.4 6.1 2.9 1.5 0.28 1.4 0.31 1.4 0.95 1.4 3.3 1.1 3.3 1.7 0.41 2.3 0.095 3.8 0.95			0.84	0.46	25
0.79 168 6.1 1.5 0.28 1.4 0.31 6.9 1.4 0.95 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.8 0.95 1.9 0.95 1.7 0.95 0.95 1.7 0.95	4.6 230	>200	1.1	2.0	42
6.1 6.1 1.5 1.3 1.4 6.9 1.1 3.1 1.4 0.85 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095	0.41	-		0.84	11
6.1 1.5 1.5 0.28 1.4 0.31 6.9 1.1 3.1 0.85 1.4 0.85 1.1 0.95 1.2 0.80 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.7 0.095 1.8 0.095 1.9 0.095 1.0 0.095 0.0		×200		2.1	80
1.5 0.28 1.3 0.28 1.4 0.31 3.1 0.95 14 3.3 1.7 0.095 1.7 0.41 2.8 0.095 3.8 0.95		>200		1.7	45
1.3 0.28 1.4 0.31 3.1 0.35 1.4 0.95 1.8 3.3 1.7 0.095 1.7 0.41 2.8 0.095 3.8 0.95	0.28			. 0.58	23
6.9 1.1 3.1 0.35 1.4 0.95 1.4 3.3 1.5 0.095 1.7 0.041 3.8 0.95	0.28			1.2	19
6.9 3.1 0.35 1.4 0.95 14 3.3 13 0.80 0.095 1.7 0.41 2.3 0.41 3.4 0.68 3.8		>25		0.16	120
3.1 0.35 1.4 0.95 14 3.3 13 0.085 1.7 0.41 2.3 0.41 3.8 0.95		×100	·	2.1	260
1.4 0.95 14 3.3 13 12 0.80 0.095 1.7 0.41 3.4 0.68 3.8 0.95		>25	 	1.1	330
14 3.3 13 12 0.80 0.095 1.7 0.41 2.3 0.41 3.4 0.68 3.8 0.95		>50	1.0	0.37	08
13 12 0.80 0.095 1.7 0.41 2.3 0.41 3.4 0.68		×100		0.9	8.8
0.80 1.7 2.3 0.41 3.4 0.68 3.8 0.95		>200	0.52	8.5	11
3.8 0.41 3.8 0.41		>50	. 1.0	. 0.38	40
3.8 0.68 0.95		>50	0.82	1.2	100
3.8 0.95		>50	2.5	99	>400
3.8 0.95		>200	8.1	1.2	32
-	0.95 >500	>100	1:1	1.2	09
-	0.091		0.84	0.46	02
1.0	1.0 ~400	>200	7.5	4.5	. 130
3.4	-	×100	. 22	×100	200 ·

the 2 (Continue

	1										_	_			_									
Urokinase	S-2444	35	. 23	46	45	>150	40	>500	×100	65	>200	350	40	25	82	>200	>200	65	>250	>200	>400	>400	28	73
Plasma Kallikrein	S-2302	0.45	0.42	0.76	1.4	2.8	0.42	8.3	24	. 2.3	22	0.54	1.2	1.2	. 6.2	25	▶200	. 2.4	. > 200	100	17	40	0.51	0.42
Trypain	8-2238	1.0	2.6	1.2	0.73	1.3	0.67	2.4	01	***	5.0	3.8	0.44	0.1	1.3	0.85	450	::	38	9.2	0.45	7.0	1.5	0.87
Thrombin	Fibrinocen	×100	8,	×100	>200	>20	>250	×100	\$20	>250	>50	>20	×20	>200	▶20	×25	×400	×100	>25	>50	>50	>25	>20	>50
T.	8-2238	>200	>125	200	730	>125	>125	>200		>400		>50		>400	170	>50	>400	>125	>50	>20	×100	>20	>200	>100
	Fibrin	0.19	0.29	0.29	3.3	0.72	0.18	0.58	1.4	0.49	1.0	0.092	0.14	0.65	0.63	0.62	210	0.88	2.4	0.75	0.33	2.8	0.21	0.35
Plasma	8-2251	1.0	1.2	1.9	4.6	3.4	1.4	1.8	5.6	2.5	2.9	0.80	1.1	1.2	1.7	2.1	220	5.8	5.8	3.8	1:1	8.5	0.89	0.95
Compound	હુ	54	55	58	57	28	28	62	63	64	65	99	67	89	20	72	73	75	92	82	80	82	83	98

able 2 (Continued

														_							_					
77-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	UTOKIDABS	S-2444	>200	78	8.0	>500	320	×100	>200	>150	>200	>300	>20	×100	>150	19	34	28	47	6.3	70	82	34	>250	37	×1000
Plasma	Kallikrein	5-2302	120	1.2	0.14	350	3.5	18	40	19	20	>20	>25	40	3.7	0.18	0.43	0.078	0.38	3.5	0.41	0.44	8.3	17	99.0	>1000
	Trypsin	8-2238	52	2.5	1.5	22	1.3	1.2	2.5	3.0	0.43	٠ <u>٠</u>	18	9.5	3.0	0.24	1:0	0.71	08.0	0.45	1.8	1.3	0.50	4.4	1.2	•
	Thrombin	Fibrinogen	^ 50	×100	▶100	>250	×20	•	>20	>50	>40		>50		> 50	>200	>20	>20		>200	>20	100	>400	>200	>200	>1000 -
	Th	8-2238	>200	>200	×400	. 001*	×400		>50		>50	>50			>50	280	>200	92			>200	×1000	>400	>200	>400	>1000
		Fibrin ·	×20	0.32	0.27	18	0.18	0.12	2.6	0.54	0.27	1.1	1.7	1.4	0.77	0.43	0.31	0.28	0.13	0.83	0.29	0.30	7.1	56	0.58	180
	Plasnin	S-2251	33	1.6	0.63	28	0.69	0.78	4.2	1.4	0.58	5.2	8.	3.2	3.4	0.95	1:1	0.39	0.49	1.5	1.5	1.4	15	170	0.80	>1000
·	Compound	Q	88	93	92	96	102	103	105	106	109	111	113	114	118	121	122	123	125	128	127	128	130	131	137	139

ole 2 (Continued)

No. S-2251 Fibrin S-2238 Fibringen S-2338 S-2338 140 8.8 2.5 >200 >200 18 144 0.23 0.051 >50 0.95 0.37 145 0.56 0.075 88 >50 0.75 146 0.04 0.02 >100 >100 0.58		Compound	ujuseta		ų,	Thrombin	Trypsin	Plasma Kallikrein	Urokinase
140 8.8 2.5 >200 >200 144 0.23 0.051 >50 0.95 145 0.56 0.075 86 >50 146 0.64 0.29 >100 >100		Š	S-2251	Fibrin .	S-2238	Fibrinogen	8-2238	S-2302	S-2444
0.23 0.051 >50 0.95 0.56 0.075 86 >50 0.64 0.29 >100 >100	55	140	8.8	2.5	>200	>200		81	×100
0.56 0.075 86 >50 0.64 0.29 >100 >100		144	0.23	0.051		>20	0.95	0.37	43
0.64 0.29 >100 >100		145	0.58	0.075	88	>20		0.75	31
		146	0.64	0.29	×100	×100		0.58	45

Table 3 (Continued)

Table 3

Table 4

Compound	Plasmi	n	Throm	bin	Trypsin	Plasma	Urokinase
No.	S-2251	fibrin	S-2238	Fibrinogen	S-2238	Kallikrein S-2302	S-2444
1 .	75,000	60	>1,000	>1,000	>1,000	>1,000	>1,000
2	180,000	200			*****	•••••	••••
3	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000
4	>200	>200	>200	>200		>200	>200
5	>100 .	>100	>100	>100	>150	>100	>100
6	>200	>200	>200	>200		>200	>200
7	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000

Claims

40

I. A phenylalanine derivative having the formula (i):

20

25

35

40

45

where R¹ and R² are, independently, hydrogen provided that both R¹ and R² are not hydrogen at the sam time;

 C_1 - C_2 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C_1 - C_4 alkoxy, or halogen;

C_s-C_e cycloalkyl which may be substituted with hydroxy, C₁-C₄ alkoxy, hydroxylcarbonyl, C₁-C₄ alkoxycarbonyl, or C₁-C₄ alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C,-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C,-C, alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-

C4 alkyl, phenylcarbonyl, or C4-C4 alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark "indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

- 2. A phenylalanine derivative as claimed in claim I, wherein the pharmaceutically acceptable-salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.
- A proteinase inhibitor comprising as an essential component the phenylalanine derivative of claim I or the pharmaceutically acceptable satt thereof.
- 4. A proteinase inhibitor as claimed in claim 3, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.

50

EPO Form 1503 03 62

EUROPEAN SEARCH REPORT

	DOCUMENTS CON	SIDERED TO BE RELEVANT	<u> </u>	EP 86113166.2
Category		ith indication, where appropriate, want passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
D,X		ACTS, vol. 101, no. 4, Columbus, Ohio,	1,2	C 07 C 103/737 C 07 C 103/84 C 07 C 123/00
	different Na-and benzoylated amount with aromatic apage 657, column	"Preparation of ryl-sulfonylated or ino acid amides aminomethyl groups" nns 1,2, abstract-nozie 1984, 39(1),68-9	-	C 07 C 143/76 C 07 C 143/80 C 07 C 149/42 C 07 D 207/16 C 07 D 211/16 C 07 D 211/32 C 07 D 211/58 C 07 D 211/62
A	<u>US - A - 4 261</u>	919 (W.S. KNOWLES et al.)	1	C 07 D 213/30 C 07 D 213/40 C 07 D 213/50
	* Column 1, 2, line 28	line 20 - column 3 *		C 07 D 213/64 C 07 D 213/75 C 07 D 239/34
P,A	EP - A2 - O 183	3 271 (SHOWA DENKO K.K.)	1,3	C 07 D 239/42 C 07 D 295/18 C 07 D 307/14
	* Compounds stract *	No. 102-140; ab-		TECHNICAL FIELDS SEARCHED (Int. Cl.4)
				C 07 C 103/00 C 07 D
	The present search report has b	Neen drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	VIENNA	16-12-1986		HOFBAUER
Y : parti docu A : tech O : non-	CATEGORY OF CITED DOCL cularly relevant if taken alone cularly relevant if combined w iment of the same category nological background written disclosure mediate document	E : earlier pater after the fillr ith another D : document c L : document c	nt document, ing date in the apprint the apprint of	ying the invention but published on, or plication reasons nt family, corresponding

EPO Form 1503 03 62

EUR PEAN SEARCH REPORT

		ISIDERED TO BE RELEVA		EP 86113166.2
degory		with indication, where appropriate, levent passages	. Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
•		·		C 07 K 5/06 A 61 K 31/16 A 61 K 31/34 A 61 K 31/40 A 61 K 31/435 A 61 K 31/505 A 61 K 31/535 A 61 K 31/54 A 61 K 37/02
	-			TECHNICAL FIELDS SEARCHED (Int. CI 4)
	•	•		·
	The present search report had	been drawn up for all claims		
	Place of search	Date of completion of the search	-	Examiner
	WIENNA	16-12-1986		HOFBAUER
: particu : particu docum : techno	ATEGORY OF CITED DOC larly relevant if taken alon larly relevant if combined ent of the same category logical background itten disclosure idiate document	E: earlier pai after the fi with another D: document L: document	ient document, ling date I cited in the ap I cited for other	tying the invention but published on, or plication reasons int family, corresponding