BAGIAN C- UTS METODE SIMULASI DAN RESAMPLING

Nama: Indri Ramdani

NIM: G1401201036

Jawablah pertanyaan dibawah ini dengan singkat dan jelas.

1. Uraikan langkah yang harus dilakukan bila ingin di bangkitkan 2000 bilangan acak seragam dengan cara bilangan acak semu dengan menentukan nilai $x_0 = 89$, a = 1577, b = 93, dan $m = 10^5$.

```
Diketahui: x_0 = 89, a = 1577, b = 93, dan m = 10^5
```

Langkah-langkah:

Dibangkitkan secara rekursif dengan fungsi (Bentuk pembangkit kongruensial)

$$X_{n+1} = (aX_n + b) \pmod{m}, n \ge 0$$

```
X_1 = (1557(89) + 93) \pmod{10^5} = 52

X_2 = (1557(X_1) + 93) \pmod{10^5}

X_2 = (1557(X_2) + 93) \pmod{10^5}

.

.

.

.

X_{2000} = 1557(X_{1999}) + 93 \pmod{10^5}
```

Total bilangan acak seragam adalah 2000, yaitu bilangan acak pertama yaitu 52 dan 1999 hasil pengulangan berikutnta

Implementasi di R

```
x0<-89

n<-2000

xi<-matrix(NA,n,3)

colnames(xi)<-c("aX(i-1)+b","Xi","Ui")

for (i in 1:n)

{

xi[i,1]<-(1577*x0+93)

xi[i,2]<-xi[i,1]%%100000

xi[i,3]<-xi[i,2]/1000

x0<-xi[i,2]

}

hist(xi[,3])
```

Histogram of xi[, 3]

2. Cara lain untuk memeriksa keacakan bilangan hasil bangkitan adalah dengan menggunakan RUN TEST. Uraikan langkah run test tersebut.

Jawab:

Run Test adalah uji asumsi klasik uji autokorelasi untuk menguji keacakan dan melihat apakah data diambil secara acak atau tidak. Langkah-langkah run test yaitu sebagai berikut:

- a. Menghitung nilai rata-rata dari data yang akan diuji
- b. Hitung nilai standar deviasi
- c. Kelompokkan beberapa bilangan menjadi beberapa run
- d. Hitung jumlah run yang terbentuk
- e. Hitung nilai z-score

$$\frac{2n_1n_2}{n_1+n_2}$$

 $n_1, n_2\,$ jumlah observasi pada kelompok dua yang berbeda

f. Membandingkan nilai z-score pada poin 5 dengan tabel sebaran normal untuk menentukan keacakan data.

Jika Z > 1,96 atau Z < -1,96 data tidak acak

Jika
$$-1,96 < Z < 1,96$$
 data acak

3. Jika U_i adalah bilangan acak Seragam (0, 1) yang saling bebas, maka N = $\sum_{i=1}^{B} U_i - A$ akan memiliki sebaran mendekati Normal (3, 1), untuk besaran A dan B sebesar?

Diketahui:

$$E(Ui) = \frac{1}{2}$$

$$Var(Ui) = \frac{1}{12}$$

$$U \sim (0,1)$$

$$X \sim N(3,1)$$

$$X = \sum_{i=1}^{12} U_i - 3$$

$$B=12 dan A=3$$

Pembuktian

$$E(X) = E(\sum_{i=1}^{12} \frac{1}{2} - 3) = 12(\frac{1}{2}) - 3 = 6 - 3 = 3$$

$$Var(X) = V\left(\sum_{i=1}^{12} \frac{1}{2} - 3\right) = \frac{1}{12} + \dots + \frac{1}{12} = 12\left(\frac{1}{12}\right) = 1$$

4. Uraikan cara pembangkitan bilangan acak bernoulli(0.5) dari bilangan acak yang menyebar normal(0, 1)

Jawab:

Untuk menghasilkan bilangan acak Bernoulli (0,5) dari bilangan acak yang memiliki distribusi Normal(0,1), dilakukan langkah-langkah sebagai berikut:

Misalkan Ui~Uniform(0,1)

X~ Normal (0,1)

Y~Bernoulli(0.5)

a) Buatlah sebuah bilangan acak dengan distribusi Normal(0,1) menggunakan metode Dalil Limit Pusat:

$$E(Ui) = \frac{1}{2}$$

$$Var(Ui) = \frac{1}{12}$$

$$U \sim (0,1)$$

$$X \sim N(0,1)$$

$$X = \sum_{i=1}^{12} U_i - 6$$

b) Ambil nilai absolut dari bilangan acak tersebut.

Jika nilai absolut yang diambil kurang dari 0.5, maka nilainya 0. Jika lebih besar atau sama dengan 0.5, maka nilainya 1.

Hitung
$$Y = |X|$$
.

Jika Y < 0.5, kembalikan 0. Jika tidak, kembalikan 1.

Karena distribusi Normal(0,1) simetris terhadap 0,