Nonuniform Quantizer (Lloyd - Max Quantizer) Uniform Quantizer: D DBs: b1, b2, --- b1-1 RLs: 4,, 42, ... 4 minimize $\sigma_{q}^{2}(b_{1},b_{2},-b_{1},y_{1},y_{2},-y_{L})$

A Nonuniform midrise Quantizer

$$= \cdots + \begin{cases} b_{j} \\ (x-y_{j})^{2} f_{x}(x) dx \\ b_{j-1} \\ b_{j-1} \end{cases}$$

$$= \cdots + \begin{cases} b_{j} \\ (x-y_{j})^{2} f_{x}(x) dx + \begin{cases} b_{j+1} \\ (x-y_{j+1})^{2} f_{x}(x) dx \\ b_{j} \end{cases}$$

Leibnitz's rule states that if
$$b(x)$$
 and $a(x)$ are monotonic, then
$$\frac{\partial}{\partial x} \left[\begin{array}{c} b(x) \\ \phi(x, x) dx \\ a(x) \end{array} \right] = \begin{array}{c} b(x) \\ \frac{\partial}{\partial x} \phi(x, x) dx \\ a(x) \end{array}$$

$$+\phi(\alpha = b(x); x) \frac{\partial}{\partial x} b(x)$$

$$-\phi(\alpha = a(x); x) \frac{\partial}{\partial x} a(x)$$

$$\frac{\partial e_{j}^{2}}{\partial b_{j}} = 0 \implies \begin{cases}
\frac{1}{2} (b_{j}) (b_{j} - y_{j})^{2} - f_{x}(b_{j}) (b_{j} - y_{j+1})^{2} \\
\frac{1}{2} (b_{j} - y_{j})^{2} = (b_{j} - y_{j+1})^{2}
\end{cases}$$

$$\Rightarrow (b_{j} - y_{j})^{2} = (b_{j} - y_{j+1})^{2}$$

$$\Rightarrow (b_{j} - y_{j}) = y_{j+1} - b_{j} (0 b_{j} + y_{j})$$

$$\Rightarrow b_{j} = (y_{j+1} + y_{j}) \quad b_{j} < y_{j+1}).$$

Lloyd - Max Algorithm

- · L-level Symmetric midrise quantizer
- · Obtain the reconstruction levels (RLs): { y11421 --- 41}
 - DBs: { b₁, b₂, ... b₁₋₁}

$$y_1 = \int_{b_0}^{b_1} x f_x(x) dx$$

$$\int_{b_0}^{b_1} f_x(x) dx$$

bo is ZERO

Guess y_1 and solve for b_1 numerically $b_1 = y_2 + y_1 \Rightarrow y_2 = 2b_1 - y_1$

 $y_2 = \int_{-\infty}^{D_2} x f_x(x) dx$ $\int_{h}^{2} f_{x}(x) dx$ Solve for be numerically y3 = 2 b2-y2

 $\{y_1, y_2, \dots, y_{\frac{1}{2}}\}$ and $\{b_1, b_2, \dots, b_{\frac{1}{2}-1}\}$

Lis the centroid of the probability mass of the interval [b]., b] $xf_x(x)dx$ $f_{x}(x)dx$

TABLE: QUANTIZER BOUNDARY AND RECONSTRUCTION LEVELS FOR NONUNIFORM GAUSSIAN AND LAPLACIAN QUANTIZERS

Levels	Gaussian			Laplacian		
	b _i	y i	(SNR) _q	b _i	y i	(SNR) _q
4	0.0	0.4528		0.0	0.4196	
	0.9816	1.510	9.3 dB	1.1269	1.8340	7.54 dB
6	0.0	0.3177		0.0	0.2998	
	0.6589	1.0		0.7195	1.1393	
	1.447	1.894	12.41 dB	1.8464	2.5535	10.51 dB
8	0.0	0.2451		0.0	0.2334	
	0.7560	0.6812		0.5332	0.8330	
	1.050	1.3440		1.2527	1.6725	
	1.748	2.1520	14.62 dB	2.3796	3.0867	12.64 dB
8-level PDF optimised UQ 14.27 dB						11.39 dB