4.2 NÚCLEO DE UMA TRANSFORMAÇÃO LINEAR

Definição

Chama-se núcleo de uma transformação linear $T: V \longrightarrow W$ ao conjunto de todos os vetores $v \in V$ que são transformados em $0 \in W$. Indica-se esse conjunto por N(T) ou $\ker(T)$:

$$N(T) = \{ v \in V/T(v) = 0 \}$$

Observemos que $N(T) \subset V$ e $N(T) \neq \emptyset$, pois $0 \in N(T)$, tendo em vista que T(0) = 0.

Exemplos

1) O núcleo da transformação linear

T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (x + y, 2x - y)$

é o conjunto:

$$N(T) = \{(x,y) \in \mathbb{R}^2 / T(x,y) = (0,0)\}$$

o que implica:

$$(x + y, 2x - y) = (0, 0)$$

ou:

$$\begin{cases} x + y = 0 \\ -2x - y = 0 \end{cases}$$

sistema cuja solução é:

$$x = 0$$
 e $y = 0$

logo:

$$N(T) = \{(0, 0)\}$$

Seja T: ℝ³ → ℝ² a transformação linear dada por:

$$T(x, y, z) = (x - y + 4z, 3x + y + 8z)$$

Nesse caso, temos:

$$N(T) = \{(x, y, z) \in \mathbb{R}^3 / T(x, y, z) = (0, 0)\}$$

isto é, um vetor $(x, y, z) \in N(T)$ se, e somente se:

$$(x - y + 4z, 3x + y + 8z) = (0, 0)$$

ou:

$$\begin{cases} x - y + 4z = 0 \\ 3x + y + 8z = 0 \end{cases}$$

sistema homogêneo de solução x = -3z e y = z.

Logo:

$$N(T) = \{ (-3z, z, z)/z \in \mathbb{R} \}$$

ou:

$$N(T) = \{z(-3, 1, 1)/z \in \mathbb{R}\}\$$

ou, ainda:

$$N(T) = [(-3, 1, 1)]$$

Observemos que esse conjunto representa uma reta no \mathbb{R}^3 que passa pela origem e tal que todos os seus pontos têm por imagem a origem do \mathbb{R}^2 (Figura 4.2).

Figura 4.2

4.2.1 Propriedades do Núcleo

O núcleo de uma transformação linear T: V → W é um subespaço vetorial de V.
De fato:

Sejam v_1 e v_2 vetores pertencentes ao N(T) e α um número real qualquer. Então, $T(v_1) = 0$ e $T(v_2) = 0$. Assim:

I)
$$T(v_1 + v_2) = T(v_1) + T(v_2) = 0 + 0 = 0$$

isto é:

$$v_1+v_2\in\,N(T)$$

II)
$$T(\alpha v_1) = \alpha T(v_1) = \alpha 0 = 0$$

isto é:

$$\alpha v_1 \in N(T)$$

2) Uma transformação linear T: V ---- W é injetora se, e somente se, N(T) = {0}.

Lembremos que uma aplicação $T: V \longrightarrow W$ é injetora se $\forall v_1, v_2 \in V$, $T(v_1) = T(v_2)$ implica $v_1 = v_2$ ou, de modo equivalente, se $\forall v_1, v_2 \in V$, $v_1 \neq v_2$ implica $T(v_1) \neq T(v_2)$.

A demonstração dessa propriedade tem duas partes:

a) Vamos mostrar que se T é injetora, então N(T) = {0}.

De fato:

Seja $v \in N(T)$, isto é, T(v) = 0. Por outro lado, sabe-se que T(0) = 0. Logo, T(v) = T(0). Como T é injetora por hipótese, v = 0. Portanto, o vetor zero é o único elemento do núcleo, isto é, $N(T) = \{0\}$.

b) Vamos mostrar que se $N(T) = \{0\}$, então T é injetora.

De fato:

Sejam $v_1, v_2 \in V$ tais que $T(v_1) = T(v_2)$. Então, $T(v_1) - T(v_2) = 0$ ou $T(v_1 - v_2) = 0$ e, portanto, $v_1 - v_2 \in N(T)$. Mas, por hipótese, o único elemento do núcleo é o vetor 0, e, portanto, $v_1 - v_2 = 0$, isto é, $v_1 = v_2$. Como $T(v_1) = T(v_2)$ implica $v_1 = v_2$, T é injetora.

4.3 IMAGEM

Definição

Chama-se imagem de uma transformação linear $T: V \longrightarrow W$ ao conjunto dos vetores $w \in W$ que são imagens de pelo menos um vetor $v \in V$. Indica-se esse conjunto por Im(T) ou T(V):

 $Im(T) = \{ w \in W/T(v) = w \text{ para algum } v \in V \}$

A Figura 4.3 esclarece a definição.

Observemos que $Im(T) \subset W$ e $Im(T) \neq \phi$, pois $0 = T(0) \in Im(T)$. Se Im(T) = W, T diz-se sobrejetora, isto é, para todo $w \in W$ existe pelo menos um $v \in V$ tal que T(v) = w.

Figura 4.3

Exemplos

1) Seja T: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x, y, 0) a projeção ortogonal do \mathbb{R}^3 sobre o plano xy. A imagem de T é o próprio plano xy:

$$Im(T) = \{(x, y, 0) \in \mathbb{R}^3 / x, y \in \mathbb{R}\}\$$

Observemos que o núcleo de T é o eixo dos z:

$$N(T) = \{ (0, 0, z)/z \in \mathbb{R} \}$$

pois T(0, 0, z) = (0, 0, 0) para todo $z \in \mathbb{R}$.

- 2) A imagem da transformação linear identidade I: $V \longrightarrow V$ definida por I(v) = v, $\forall v \in V$, é todo espaço V. O núcleo, neste caso, é $N(I) = \{0\}$.
- 3) A imagem da transformação nula T: V → W definida por T(v) = 0, Vv ∈ V, é o conjunto Im(T) = { 0 }. O núcleo, nesse caso, é todo o espaço V.

4.3.1 Propriedade da Imagem

"A imagem de uma transformação T: V --- W é um subespaço de W."

De fato:

Sejam w_1 e w_2 vetores pertencentes a Im(T) e α um número real qualquer. Devemos mostrar que $w_1 + w_2 \in Im(T)$ e $\alpha w_1 \in Im(T)$, isto é, devemos mostrar que existem vetores v e u pertencentes a V tais que $T(v) = w_1 + w_2$ e $T(u) = \alpha w_1$.

Como $w_1, w_2 \in Im(T)$, existem vetores $v_1, v_2 \in V$ tais que $T(v_1) = w_1$ e $T(v_2) = w_2$. Fazendo $v = v_1 + v_2$ e $u = \alpha v_1$, tem-se:

$$T(v) = T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2$$

e:

$$T(u) = T(\alpha v_1) = \alpha T(v_1) = \alpha w_1$$

e, portanto, Im(T) é um subespaço vetorial de W.

4.3.2. Teorema da Dimensão

"Seja V um espaço de dimensão finita e $T: V \longrightarrow W$ uma transformação linear. Então, dim N(T) + dim Im(T) = dim V."

Deixaremos de demonstrar o teorema e faremos algumas comprovações por meio dos exemplos e de problemas resolvidos logo a seguir.

No exemplo 1 de 4.3, o núcleo (eixo dos z) da projeção ortogonal T tem dimensão 1 e a imagem (plano xy) tem dimensão 2, enquanto o domínio \mathbb{R}^3 tem dimensão 3.

No exemplo 2 da transformação identidade, temos dim N(T) = 0. Consequentemente, dim Im(T) = dim V pois Im(T) = V.

No exemplo 3 da transformação nula, temos dim Im(T) = 0. Portanto, dim N(T) = dim V, pois N(T) = V.

4.3.3 Problemas Resolvidos

10) Determinar o núcleo e a imagem do operador linear

T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, T(x, y, z) = (x + 2y - z, y + 2z, x + 3y + z)

Solução

a) N(T) =
$$\{(x, y, z) \in \mathbb{R}^3 / T(x, y, z) = (0, 0, 0)\}$$

De:

$$(x + 2y - z, y + 2z, x + 3y + z) = (0, 0, 0)$$

vem o sistema:

$$\begin{cases} x + 2y - z = 0 \\ y + 2z = 0 \\ x + 3y + z = 0 \end{cases}$$

cuja solução geral é (5z, -2z, z), z∈ IR.

Logo:

$$N(T) = \{(5z, -2z, z)/z \in \mathbb{R}\} = \{z(5, -2, 1)/z \in \mathbb{R}\} = [(5, -2, 1)]$$

b) $Im(T) = \{(a, b, c) \in \mathbb{R}^3 / T(x, y, z) = (a, b, c)\}$, isto é, $(a, b, c) \in Im(T)$ se existe $(x, y, z) \in \mathbb{R}^3$ tal que:

$$(x + 2y - z, y + 2z, x + 3y + z) = (a, b, c)$$