Page Rank

Last time ...

- Complexity theory for MapReduce
- ▶ PageRank

Today ...

- ▶ PageRank
 - ► Topic specific
 - ▶ Combatting spam
- ► Assignment 2
 - ► Matrix multiplication
 - ▶ Page Rank

Efficient Computation of PageRank

- Transition Matrix M is very sparse
- Store locations of non-zero entries
- In general for sparse matrices
 - ► $(i, j, M_{ij}) \rightarrow 4+4+8$ bytes
- Further compression possible for transition matrix
 - Store degree of column plus indices
 - ▶ Number of links on a page plus the indices of those pages

Topic Sensitive PageRank

- Weight certain pages more because of their topic
- Allows personalization of results to users
 - Ideally a separate page rank vector for each user
 - ▶ Not scalable
- Create one vector for each of a small set of topics
 - Basis vectors
 - Determine weights for each individual user
 - ▶ size → number of basis vectors

Biased Random Walks

- Identify certain pages that represent a given topic
- (re) introduce random surfers to only topic specific pages
- Let S be the set of integers consisting of the indices of topic-specific pages, and e_S be a vector that is 1 in S and 0 elsewhere
- ► Topic sensitive PageRank

$$v' = \beta M v + \frac{(1-\beta)e_S}{|S|}$$

Using topic-sensitive PageRank

- Decide on the topics for which we shall create specialized PageRank vectors
 - Manually
 - From Data
- ▶ Pick the set S for each of these topics, and use that set to compute the topic-sensitive PageRank vector for that topic
- Determine which topics are of most interest to a particular user/query
- Use the PageRank vectors for those topics in ordering the results

Link Spam

- ▶ Techniques for artificially increasing the PageRank of a page
- Spam Farm

- \triangleright $\beta \rightarrow$ taxation parameter
- \triangleright $n \rightarrow$ total number of webpages
- ► Target t with m supporting pages
- \blacktriangleright Let x be the amount of PageRank contributed by accessible pages
- \blacktriangleright Let us compute y, the PageRank of t

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = x + \beta m \left(\frac{\beta y}{m} + \frac{1 - \beta}{n} \right) + \frac{1 - \beta}{n}$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = x + \beta^2 y + \beta (1 - \beta) \frac{m}{n}$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1 - \beta}{n}$$

$$y = \frac{x}{1 - \beta^2} + \frac{\beta}{1 + \beta} \frac{m}{n}$$

▶ If
$$\beta = 0.85$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = 3.6 x + 0.46 \frac{m}{n}$$

Combating Link Spam

- TrustRank: variation of topic-sensitive PageRank
- Spam mass: calculation that identifies spam farms

Trust Rank

- topic-sensitive PageRank, where the topic is a set of pages believed to be trustworthy
- Manually select trustworthy pages
- Avoid trustworthy sites where anyone can create links
 - Many websites prevent users from entering URLs in comments
- Domains where membership is controlled
 - ▶ .edu .gov etc ...

Spam Mass

- Measure the fraction of the pagerank that comes from spam
- \blacktriangleright Compute the ordinary pagerank (r) and trustrank (t) of a page
 - Spam mass = $\frac{r-t}{r}$
- ▶ Negative or small positive spam mass → not spam
- ▶ Closer to 1 → spam

