Operations on multivalued functions

Let $A: \mathcal{X} \to 2^{\mathcal{X}}$ be a set-valued mapping, where $\mathcal{X} = \mathbb{R}^n$. We define the graph of A by $\operatorname{gr} A = \{(x,y): y \in A(x)\}$. We define $A^{-1}: \mathcal{X} \to 2^{\mathcal{X}}$ as $A^{-1}(x) = \{y: x \in A(y)\}$ that is

$$gr(A^{-1}) = \{(x, y) : (y, x) \in grA\}.$$

Its domain dom(A) is the set of $x \in \mathcal{X}$ such that $A(x) \neq \emptyset$.

Exercise 1. Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a proper closed convex function.

- 1. Write Fenchel-Young inequality and the conditions for equality.
- 2. Show the equivalence

$$\phi \in \partial f(x) \iff x \in \partial f^*(\phi)$$
.

3. Deduce from it the equality $(\partial f)^{-1} = \partial f^*$.

Correction 1.

- 1. $\forall x, \phi, f(x) + f^*(\phi) > \langle x, \phi \rangle$ and $\phi \in \partial f(x) \Leftrightarrow f(x) + f^*(\phi) = \langle x, \phi \rangle$
- 2. As f is proper closed and convex, we know by Fenchel-Moreau theorem that $f = f^{**}$. Now using twice the equality case in Fenchel-Young inequality

$$\phi \in \partial f(x) \Leftrightarrow f(x) + f^*(\phi) = \langle x, \phi \rangle \Leftrightarrow f^{**}(x) + f^*(\phi) = \langle x, \phi \rangle \Leftrightarrow x \in \partial f^*(\phi)$$

3. By definition of the inverse of a multivalued function,

$$x \in (\partial f)^{-1}(\phi) \Leftrightarrow \phi \in \partial f(x) \Leftrightarrow x \in \partial f^*(\phi)$$

 $Hence, (\partial f)^{-1} = \partial f^*.$

Exercise 2. Let $\gamma > 0$ and $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|.

- 1. Draw the graph of ∂f and the graph of $\gamma \partial f$.
- 2. Draw the graph of $I + \gamma \partial f$ where $I: x \mapsto x$ is the identity function.
- 3. Draw the graph of $(I + \gamma \partial f)^{-1}$. Whose function is it the graph?

Exercise 3. Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a proper l.s.c. convex function. Let $x \in \mathcal{X}$ and $\gamma > 0$.

1. Show that $p \in (I + \gamma \partial f)^{-1}(x)$ if and only if

$$0 \in \partial f(p) + \frac{p-x}{\gamma} \, .$$

2. Show that $(I + \gamma \partial f)^{-1}(x)$ coincides with the set of minimizers of the function

$$y \mapsto f(y) + \frac{\|y - x\|^2}{2\gamma}.$$

3. Deduce that $(I + \gamma \partial f)^{-1}$ is single-valued (hence it is a function) and is given by

$$(I + \gamma \partial f)^{-1}(x) = \operatorname{prox}_{\gamma f}(x)$$
.

Correction 3.

- 1. $p \in (I + \gamma \partial f)^{-1}(x) \Leftrightarrow x \in (I + \gamma \partial f)(p) \Leftrightarrow x \in p + \gamma \partial f(p) \Leftrightarrow 0 \in \partial f(p) + \frac{p-x}{\gamma}$ where the last equivalence comes from the fact that b belongs to the set A if and only if 0 belongs to the set $A b = \{x : \exists a \in A, x = a b\}.$
- 2. Let us define the function $g: y \mapsto f(y) + \frac{\|y-x\|^2}{2\gamma}$. As the domain of the squared norm is equal to \mathcal{X} , the subdifferential of g is the sum of the subdifferentials:

$$\partial g(y) = \partial f(y) + \frac{y-x}{\gamma}$$

Using Fermat's rule and the first question,

$$p \in \arg\min g \Leftrightarrow 0 \in \partial g(p) \Leftrightarrow \partial f(p) + \frac{p-x}{\gamma} \Leftrightarrow p \in (I+\partial f)^{-1}(x)$$

3. As g is strongly convex, it has at most one minimizer. It is equal to the proximity operator of γf at x because for $\gamma > 0$,

$$\arg\min_{y} f(y) + \frac{\|y - x\|^2}{2\gamma} = \arg\min_{y} \gamma f(y) + \frac{1}{2} \|y - x\|^2.$$

Exercise 4. The goal of this exercise is to show Moreau's identity: for every $x \in \mathbb{R}^n$,

$$\operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x) = x.$$

- 1. Let $x \in \mathbb{R}^n$ and $p = \text{prox}_f(x)$. Show that $x p \in \partial f(p)$.
- 2. Using the result of Exercise 1, show that $p \in \partial f^*(x-p)$.
- 3. Prove Moreau's identity.
- 4. Show that Moreau's formula generalizes the famous identity $\Pi_E + \Pi_{E^{\perp}} = I$, where Π_E and $\Pi_{E^{\perp}}$ are the orthogonal projectors onto some linear subspace $E \subset \mathbb{R}^n$ and its supplementary space E^{\perp} respectively.

Hint: choose f as the indicator function of a properly chosen set.

5. Homework. For $\gamma > 0$, generalize the identity to:

$$\operatorname{prox}_{\gamma f}(x) + \gamma \operatorname{prox}_{\gamma^{-1} f^*}(\frac{x}{\gamma}) = x.$$

Correction 4.

- 1. $p = \operatorname{prox}_f(x) \Leftrightarrow p = \arg\min_y f(y) + \frac{1}{2} ||y x||^2 \Leftrightarrow 0 \in \partial f(p) + (p x) \Leftrightarrow x p \in \partial f(p)$
- 2. $\partial f^* = (\partial f)^{-1}$ and $x p \in \partial f(p)$ so $p \in \partial f^*(x p)$.
- 3. Let us denote q = x p. We have $x q \in \partial f^*(q)$ so by Question 1, we deduce that $q = \operatorname{prox}_{f^*}(x)$. We obtain $x = p + q = \operatorname{prox}_f(x) + \operatorname{prox}_{f^*}(x)$.
- 4. Let us choose $f = \iota_E$.

$$\operatorname{prox}_f(x) = \arg\min_{y \in \mathbb{R}^n} \iota_E(y) + \frac{1}{2} ||y - x||^2 = \arg\min_{y \in E} \frac{1}{2} ||y - x||^2 = \Pi_E(x).$$

We now need to show that $f^* = \iota_{E^{\perp}}$.

$$f^*(x) = \sup_{y \in \mathbb{R}^n} \langle y, x \rangle - \iota_E(y) = \sup_{y \in E} \langle y, x \rangle$$

If
$$x \in E^{\perp}$$
, then for all $y \in E$, $\langle y, x \rangle = 0$ and so $f^*(x) = 0$.

If $x \notin E^{\perp}$, the linear form $\varphi : E \to \mathbb{R}$, $\varphi(y) = \langle y, x \rangle$ is nonzero and so its supremum is $+\infty$. These two cases show that $f^* = \iota_{E^{\perp}}$.

Using similar arguments as for f, we get $\operatorname{prox}_{f^*} = \iota_{E^{\perp}}$.

Applying Moreau's identity to f, we recover the equality

$$\Pi_E + \Pi_{E^{\perp}} = I$$

5. $p = \operatorname{prox}_{\gamma f}(x) \Leftrightarrow p = \operatorname{arg\,min}_y f(y) + \frac{1}{2\gamma} ||y - x||^2 \Leftrightarrow 0 \in \partial f(p) + \frac{p - x}{\gamma} \Leftrightarrow \frac{x - p}{\gamma} \in \partial f(p)$ Hence, $p \in \partial f^*(\frac{x - p}{\gamma})$

Let us denote $q = \frac{x-p}{\gamma}$. Since $p = x - \gamma q$, we have $x - \gamma q \in \partial f^*(q)$. This can be rewritten as $\frac{\gamma^{-1}x-q}{\gamma^{-1}} \in \partial f^*(q)$ and so $q = \operatorname{prox}_{\gamma^{-1}f^*}(\gamma^{-1}x)$.

We obtain $x = p + \gamma q = \operatorname{prox}_{\gamma f}(x) + \gamma \operatorname{prox}_{\gamma^{-1} f^*}(\gamma^{-1} x)$.

Fenchel-Legendre transforms and subdifferentials

Exercise 5. Calculate f^* , where $f: \mathbb{R}^n \to \mathbb{R}$ is provided below.

- 1. $f(x) = ||x||_1$
- 2. $f(x) = \frac{1}{2}x^{\top}Qx$ where Q is a symmetric positive definite matrix.
- 3. $f(x) = \frac{1}{2}x^{\top}Qx$ where Q is a symmetric positive semi-definite matrix. Hint: Distinguish between the cases $\varphi \in Im(Q)$ and $\varphi \notin Im(Q)$.

Correction 5.

1. $f^*(q) = \sup_{x \in \mathbb{R}^n} \langle x, q \rangle - ||x||_1 = \sup_{x \in \mathbb{R}^n} \sum_{i=1}^n x_i q_i - |x_i| = \sum_{i=1}^n \sup_{x_i \in \mathbb{R}^n} x_i q_i - |x_i|$ Now, if $q_i \in [-1, 1]$, then $q_i \in \partial ||\cdot||_1$ and so $0 \in \arg\max_{x_i \in \mathbb{R}^n} x_i q_i - |x_i|$.

If $q_i < -1$ or $q_i > 1$, we can let $x_i q_i - |x_i|$ go to $+\infty$ by letting x_i go to $-\infty$ (respectively $+\infty$).

Hence, $f^*(q) = \sum_{i=1}^n \iota_{[-1,1]}(q_i) = \iota_{B_{\infty}}(q)$ where $B_{\infty} = \{x : ||x||_{\infty} \le 1\}$.

2. $f^*(s) = \sup_{x \in \mathbb{R}^n} s^\top x - \frac{1}{2} x^\top Q x = \sup_{x \in \mathbb{R}^n} \phi_s(x)$

 ϕ_s is differentiable and $\nabla \phi_s(x) = s - Qx$. As Q is invertible, the maximum of ϕ_s is attained at $Q^{-1}s$ and we have

$$f^*(s) = s^\top Q^{-1} s - \tfrac{1}{2} s^\top Q^{-\top} Q Q^{-1} s = \tfrac{1}{2} s^\top Q^{-1} s.$$

3. We still have $f^*(s) = \sup_{x \in \mathbb{R}^n} s^\top x - \frac{1}{2} x^\top Q x = \sup_{x \in \mathbb{R}^n} \phi_s(x)$ where ϕ_s is differentiable and $\nabla \phi_s(x) = s - Q x$. However, now, Q may not be invertible.

If $s \in Im(Q)$, then there exists $x_s \in \mathbb{R}^n$ such that $s = Qx_s$. One may choose for instance x_s given by $x_s = Q^+s$ where Q^+ is the Moore-Penrose generalized inverse of Q. Then, $f^*(s) = s^\top Q^+s - \frac{1}{2}s^\top Q^+QQ^+s = \frac{1}{2}s^\top Q^+s$ because $Q^+QQ^+ = Q^+$.

If $s \notin Im(Q)$, then $\nabla \phi_s$ never vanishes and so ϕ_s does not have any maximizer. A quadratic function is either unbounded or attains its maximum so ϕ_s is unbounded and $f^*(s) = +\infty$.

To summarize, $f^*(s) = \frac{1}{2} s^{\top} Q^+ s + \iota_{Im(Q)}(s)$.

Exercise 6. Let C be a convex subset of \mathbb{R}^n . The normal cone of C at x is the set

$$N_C(x) = \{ \varphi \in \mathbb{R}^n : \forall y \in C, \ \langle \varphi, y - x \rangle \le 0 \},$$

if $x \in C$, and $N_C(x) = \emptyset$ otherwise.

- 1. Show that $N_C = \partial \iota_C$.
- 2. Let $x \in \text{int}(C)$. Prove that $N_C(x) = \{0\}$.
- 3. Let $C = \{(u, v) \in (-\infty, 0]^2 : u + v \ge 0\}$. Draw C and $N_C((0, 0))$.

4. Let $C = \{x \in \mathbb{R}^n : ||x||_2 \le 1\}$. Calculate $N_C(x)$ for all x.

Correction 6.

1. $\forall x \in \mathbb{R}^n$, $\partial \iota_C(x) = \{ \varphi \in \mathbb{R}^n : \forall y \in \mathbb{R}^n, \iota_C(y) \ge \iota_C(x) + \langle \varphi, y - x \rangle \}$

If $x \notin C$, then $\partial \iota_C(x) = \emptyset = N_C(x)$.

If $x \in C$, then $\iota_C(x) = 0$ and for $y \notin C$, the inequality

 $\iota_C(y) = +\infty \ge \iota_C(x) + \langle \varphi, y - x \rangle = \langle \varphi, y - x \rangle$ is trivial and does not bear any information. Hence,

$$\partial \iota_C(x) = \{ \varphi \in \mathbb{R}^n : \forall y \in C, \iota_C(y) \ge \langle \varphi, y - x \rangle \} = \{ \varphi \in \mathbb{R}^n : \forall y \in C, 0 \ge \langle \varphi, y - x \rangle \} = N_C(x).$$

Combining both cases, we get $\partial \iota_C = N_C$.

2. Suppose that $x \in \text{int } C$. Then for all $h \in \mathbb{R}^n$, there exists $t_0 > 0$ such that for all $t \in [-t_0, t_0]$, $x + th \in C$.

First, $0 \in N_C(x)$ because $\langle 0, y - x \rangle = 0 \le 0$ for all $y \in C$. Then, let us consider $\varphi \in N_C(x)$. For $h \in \mathbb{R}^n$ and $t \in [-t_0, t_0]$, $x + th \in C$. Thus,

$$\langle \varphi, x + th - x \rangle = t \langle \varphi, h \rangle \le 0.$$

Taking $t = t_0$ and $t = -t_0$ in this inequality, we get $\langle \varphi, h \rangle = 0$ for all $h \in \mathbb{R}^n$. This implies that $\varphi = 0$.

This shows that $N_C(x) = \{0\}$ if $x \in \text{int } C$.

3. The only element in C is (0,0), so $C = \{(0,0)\}.$

$$N_C((0,0)) = \{ \varphi \in \mathbb{R}^2 : \langle \varphi, 0 - 0 \rangle \le 0 \} = \mathbb{R}^2.$$

4. $C = \{x \in \mathbb{R}^n : ||x||_2 \le 1\}.$

If ||x|| < 1, then $x \in \text{int } C$ and so $N_C(x) = \{0\}$.

If ||x|| > 1, then $x \notin C$ and so $N_C(x) = \emptyset$.

Let us suppose now that ||x|| = 1. And let $\varphi \in N_C(x)$. We know that $\forall y \in C$, $\langle \varphi, y - x \rangle \leq 0$.

Taking y = 0 in this inequality, we get $\langle \varphi, x \rangle \geq 0$.

We now consider $h \in x^{\perp}$ (that is a h such that $\langle x, h \rangle = 0$) and a sequence (t_n) of positive real numbers that converges to 0. We consider $y_n = \frac{x + t_n h}{\|x + t_n h\|_2}$. $y_n \in C$ so $\langle \varphi, y_n - x \rangle \leq 0$.

Dividing by $t_n > 0$, we get

$$0 \ge \left\langle \varphi, \frac{1}{t_n} \left(\frac{1}{\|x + t_n h\|_2} - 1 \right) x + \frac{1}{\|x + t_n h\|_2} h \right\rangle$$

For the second term we use the continuity of norm to deduce $||x + t_n h||_2 \to ||x|| = 1$.

For the first term, we recognise a directional derivative. Indeed, if we denote $g(x) = \frac{1}{\|x\|_2} = (\|x\|_2^2)^{-1/2}$, g is differentiable for all $x \neq 0$ and we have

$$\lim_{t_n \to 0} \frac{1}{t_n} \left(\frac{1}{\|x + t_n h\|_2} - \frac{1}{\|x\|_2} \right) = \langle \nabla g(x), h \rangle$$

 $\nabla g(x) = -\frac{1}{2} \frac{1}{\|x\|_2^{3/2}} 2x$ so by our choice of $h \in x^{\perp}$, $\langle \nabla g(x), h \rangle = 0$.

Gathering the two limits, we get $0 \ge \langle \varphi, h \rangle$. This is true also for -h, so $\langle \varphi, h \rangle = 0$.

Hence, $\varphi \in (x^{\perp})^{\perp} = \operatorname{span}(x)$. As we also have $\langle \varphi, x \rangle \geq 0$, we can see that there exists $\lambda \geq 0$ such that $\phi = \lambda x$.

For the other inclusion, let us show that if $\lambda \geq 0$, then $\lambda x \in N_C(x)$.

$$\langle \lambda x, y - x \rangle = \lambda(\langle x, y \rangle - \|x\|_2^2) \le \lambda(\|x\|_2 \|y\|_2 - 1) \le 0, \text{ which shows that } \lambda x \in N_C(x).$$

Exercise 7. Calculate the subdifferential of $f(x) = \sum_{i=1}^{n} g_i(x_i)$.

Correction 7.

$$\phi \in \partial f(x) \Leftrightarrow \forall y \in \mathbb{R}^n, f(y) \ge f(x) + \langle \phi, y - x \rangle$$
$$\Leftrightarrow \forall y \in \mathbb{R}^n, \sum_{i=1}^n g_i(y_i) \ge \sum_{i=1}^n g_i(x_i) + \sum_{i=1}^n \phi_i(y_i - x_i)$$

For $i \in \{1, ... n\}$, take y such that $y_j = x_j$ if $j \neq i$ and y_i is free. We obtain that $\forall y_i \in \mathbb{R}, g_i(y_i) \geq g_i(x_i) + \phi_i(y_i - x_i)$

Hence, $\phi_i \in \partial g_i(x_i)$ for all i.

Conversely, if $\phi_i \in \partial g_i(x_i)$ for all i, we obviously have

$$\forall y \in \mathbb{R}^n, \sum_{i=1}^n g_i(y_i) \ge \sum_{i=1}^n g_i(x_i) + \sum_{i=1}^n \phi_i(y_i - x_i).$$

To conclude,

$$\partial f = \partial q_1 \times \partial q_2 \times \ldots \times \partial q_n$$
.

Exercise 8. Let $f: \mathbb{R}^n \to \mathbb{R}$.

- 1. Show that if f is differentiable at x, then $\partial f(x) \subseteq {\nabla f(x)}$.
- 2. Show that if f is convex and differentiable at x, then $\partial f(x) = {\nabla f(x)}$.

Correction 8.

1. Let f be a differentiable function, let us consider $x \in \mathbb{R}^n$ and, if it exists, $\varphi \in \partial f(x)$.

 $\forall y \in \mathbb{R}^n, f(y) \geq f(x) + \langle \varphi, y - x \rangle$ so this is also true if (t_n) is a positive sequence converging to $0, h \in \mathbb{R}^n$ and we take $y_n = x + t_n h$. Using the differentiability of f, we get that there exists a function $\epsilon(t_n)$ such that $\epsilon(t_n) \to 0$ and

$$f(x) + t_n \langle \nabla f(x), h \rangle + t_n \epsilon(t_n) \ge f(x) + t_n \langle \varphi, h \rangle.$$

Dividing by t_n and removing f(x) on both sides, we get $\langle \nabla f(x), h \rangle + \epsilon(t_n) \geq \langle \varphi, h \rangle$.

Passing to the limit yields $\langle \nabla f(x), h \rangle \geq \langle \varphi, h \rangle$ for all h. Doing the same for -h, we get $\langle \nabla f(x), h \rangle = \langle \varphi, h \rangle$ and so $\nabla f(x) = \varphi$.

Hence, either $\partial f(x) = \emptyset$ or $\partial f(x) = {\nabla f(x)}.$

2. If f is differentiable and convex, then

$$\forall y \in \mathbb{R}^n, \forall x \in \mathbb{R}^n, f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

This shows that $\nabla f(x) \in \partial f(x)$. Combined with the first question, we have the equality $\{\nabla f(x)\} = \partial f(x)$.