What is claimed is:

1. Compound of formula

(1)
$$\begin{bmatrix} R_1 & O & O & A \\ R_2 & O & O & A \end{bmatrix}$$
, wherein

R₁ and R₂ independently from each other are; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitogen atom form a 5- or 6membered heterocyclic ring;

n₁ is a number from 1 to 4; when $n_1 = 1$,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; cyclohexyl optionally substituted with one or more C₁-C₅alkyl; phenyl optionally substituted with a heterocyclic radical, aminocarbonyl or C1-C5alkylcarboxy;

wenn n_1 is 2,

R₃ is an alkylen-, cycloalkylene alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; a radical of formula •--cH₂-c≡c--cH₂-• or R₃

together with A forms a bivalent radical of the formula (1a)

n₂ is a number from 1 to 3;

when n₁ is 3,

R₃ is an alkantriyl radical;

wenn n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

2. Compound according to claim 1, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

- 42 -

n₁ is a number from 1 to 4;

wenn n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; Cyclohexyl substituted with one or more C₁-C₅alkyl;

wenn n₁ is 2,

R₃ is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

wenn n₁ is3,

R₃ is an alkantriyl radical;

wenn n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or -N(R_5)-; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

3. Compound according to claim 1 or 2, wherein

R₁ and R₂ are C₁-C₂₀alkyl.

4. Compound according to one of claims 1 to 3, wherein

R₁ and R₂ independently from each other are C₁-C₅alkyl.

5. Compound according to one of claims 1 to 4, wherein

R₁ and R₂ in formula (1) have the same definition

6. Compound according to one of claims 1 to 5, wherein

if n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical.

7. Compound according to one of claims 1 to 5, wherein

if n_1 is 1,

R₃ is a saturated heterocyclic radical.

8. Compound according to claim 7, wherein

R₃ is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

9. Compound according to claim 8, wherein

R₃ is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl

10. Compound according to claim 6, wherein

R₃ is an unsaturated heterocyclic radical.

11. Compound according to claim 10, wherein

R₃ a polycyclic radical.

12. Compound according to claim 1 or 11, wherein

 R_3 is a radical of formula (1a) R_5 , and

R₅ is polycyclic heteroaromatic radical with one or 2 heteroatoms.

13. Compound according to claim 12, wherein

R₃ is a radical of formula (1b)

R₆ is hydrogen; or C₁-C₅alkyl.

14. Compound according to one of claims 1 to 4 or 13, wherein,

if n₁ is 2,

R₃ is a C₁-C₁₂alkylene radical, and

R₁, R₂ and A are defined as in claim 1.

15. Compound according to claim 14, wherein

R₃ is a radical of formula \star —CH₂—(CH₂)_m—CH₂— \star ; \star —CH₂— \star ; \star —CH₂— \star ;

$$\bullet - CH_{2} \xrightarrow{CH_{3}} CH_{2} - ; \quad \bullet - CH_{2} \xrightarrow{CH_{2}} CH_{2} - ; \quad \bullet - CH_{2} \xrightarrow{CH_{3}} \begin{bmatrix} CH_{3} & CH_{3} &$$

r is 0 or 1; and

q = is a number from 0 to 5.

- 44 -

16. Compound according to claim 1 to 5, wherein, when n_1 is 3;

p is a number from 0 to 3; and

R₁, R₂ and A are defined as in formula (1).

17. Compound according to one of claims 1 to 5, wherein, when n_1 is 4,

$$R_3$$
 is a radical of formula $*-\overset{\bullet}{C}-\bullet$; or $*-CH_2-\overset{\bullet}{C}-CH_2-\bullet$; and CH_2

R₁, R₂ and A are defined as in formula (1).

18. Compound according to claim 1, which corresponds to formula

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

R₃ is a saturated or unsaturated heterocyclic radical.

19. Compound according to claim 1, which corresponds to formula

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

R₃ is a C₁-C₁₂alkylene radical.

20. Compound according to claim 1, which corresponds to formula

(4)
$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

p is a number from 0 to 3.

21. Compound according to claim 1, which corresponds to formula

(5)
$$R_1$$
 R_2 R_3 A Q Q Q R_4 R_2 R_2 R_3 R_4 R_2 R_2

 R_3 is a radical of formula $*-\overset{\overset{\bullet}{C}-\overset{\bullet}{+}}{}$; or $*-CH_2-\overset{\overset{\bullet}{C}-CH_2-\overset{\bullet}{+}}{}$; and

 R_1 , R_2 and A are defined as in formula (1).

22. A process for the preparation of the compounds of formula (1), which comprises, dehydratisating

(a) the compound formula (6a) R₁ N to the compound of formula

(b) reacting the anhydride with the compound of formula (6c₁) H-N(R₅)-R₃ or (6c₂) H-O-R₃ to the compound of formula

- 47 -

(1')
$$\begin{bmatrix} R_1 & OH & O & A \\ R_2 & N & OH & O \\ R_3 & OH & OH & OH \\ R_4 & OH & OH & OH \\ R_5 & OH & OH & OH & OH \\ R_7 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH & OH & OH & OH \\ R_9 & OH &$$

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is 1 to 4:

if n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-Cyclohexyl not substituted or substituted with one or more C1-C5alkyl; (Y-O)pZ; C6-C10aryl; or a saturated or unsaturated heterocyclic radical;

Y is C₁-C₁₂alkylen;

Z is C₁-C₅alkyl;

is a number from 1 to 20;

if n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is a alkantetrayl radical;

A is -O-; or $-N(R_5)$ -;

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

23. Process according to claim 22, wherein the process refers to compounds of formula

R₁ and R₂ independently from each other are C₁-C₁₂alkyl; and

R₅ is hydrogen; C₁-C₁₂alklyl; or C₃-C₆-Cycloalkyl.

- 24. Use of compounds of formula (1) in protecting human and animal hair and skin from UV radiation.
- 25. Use according to claim 24, wherein the compounds of formula (1) are present in micronized form.
- 26. A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim 1 with cosmetically acceptable carriers or adjuvants.
- 27. Compounds of formula

- R₁' and R₂" independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cycloalkyl; C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.
- 28. Use of the compounds of formula (6b') for the preparation of organic UV absorbers.
- 29. UV-Absorber-dispersion, comprising
- (a) a micronised UV absorber of formula

(1')
$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; not substituted or with one or more C₁-C₅alkyl substituted C₃-C₁₀cyclohexyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

WO 2004/052837 PCT/EP2003/050937

- 49 -

- Y C₁-C₁₂alkylen;
- Z C₁-C₅alkyl;
- p is a number from 1 to 20;

when n_1 is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n₁ is,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

 R_5 is hydrogen; C_1 - C_5 alkyl; or hydroxy- C_1 - C_5 Alkyl;

having a particle size from 0,02 to 2 m, and

(b) a suitable dispersing agent.