```
In [98]: import pandas as pd
data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
```

In [99]: import warnings
warnings.filterwarnings('ignore')

In [100]: data.describe()

Out[100]:

price	lon	lat	previous_owners	km	age_in_days	engine_power	ID	
1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	count
8576.003901	11.563428	43.541361	1.123537	53396.011704	1650.980494	51.904421	769.500000	mean
1939.958641	2.328190	2.133518	0.416423	40046.830723	1289.522278	3.988023	444.126671	std
2500.000000	7.245400	36.855839	1.000000	1232.000000	366.000000	51.000000	1.000000	min
7122.500000	9.505090	41.802990	1.000000	20006.250000	670.000000	51.000000	385.250000	25%
9000.000000	11.869260	44.394096	1.000000	39031.000000	1035.000000	51.000000	769.500000	50%
10000.000000	12.769040	45.467960	1.000000	79667.750000	2616.000000	51.000000	1153.750000	75%
11100.000000	18.365520	46.795612	4.000000	235000.000000	4658.000000	77.000000	1538.000000	max

In [101]: datal=data.drop(['ID','lat','lon'],axis=1)
 datal

Out[101]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [102]: data2=data.loc[(data.model=='lounge')]

In [103]: data2

Out[103]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
11	12	lounge	51	366	17500	1	45.069679	7.704920	10990
1528	1529	lounge	51	2861	126000	1	43.841980	10.515310	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.361120	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.994500	10800
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990

1094 rows × 9 columns

In [104]: data2=pd.get_dummies(data2)
 data2

Out[104]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge
0	1	51	882	25000	1	44.907242	8.611560	8900	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1
6	7	51	731	11600	1	44.907242	8.611560	10750	1
7	8	51	1521	49076	1	41.903221	12.495650	9190	1
11	12	51	366	17500	1	45.069679	7.704920	10990	1
1528	1529	51	2861	126000	1	43.841980	10.515310	5500	1
1529	1530	51	731	22551	1	38.122070	13.361120	9900	1
1530	1531	51	670	29000	1	45.764648	8.994500	10800	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1

1094 rows × 9 columns

In [105]: data2.shape

Out[105]: (1094, 9)

In [106]: y=data2['price']

x=data2.drop('price',axis=1)

```
In [107]: y
Out[107]: 0
                   8900
                   6000
          6
                  10750
          7
                   9190
          11
                  10990
          1528
                   5500
          1529
                   9900
          1530
                  10800
          1534
                   4600
          1536
                   5990
          Name: price, Length: 1094, dtype: int64
In [108]: from sklearn.model_selection import train_test_split
          x train, x test, y train, y test=train test split(x,y,test size=0.33,random state=42)
In [109]: x test.head(5)
Out[109]:
```

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge
676	677	51	762	18609	1	41.572239	13.33369	1
215	216	51	701	25000	1	44.988739	9.01050	1
146	147	51	4018	152900	1	43.067532	12.55155	1
1319	1320	51	731	20025	1	41.689281	13.25494	1
1041	1042	51	640	38231	1	41.107880	14.20881	1

```
In [110]: x train.head(5)
Out[110]:
                  ID engine_power age_in_days
                                              km previous_owners
                                                                              Ion model_lounge
                                                                      lat
             441
                 442
                              51
                                        762 36448
                                                              1 45.571220
                                                                          9.15914
             701
                  702
                                        701 27100
                                                              1 41.903221 12.49565
                               51
                                                              1 45.571220 9.15914
                 696
                              51
                                       3197 51083
             695
            1415 1416
                              51
                                        670 33000
                                                              1 42.287029 12.40754
             404 405
                                        456 14000
                                                              1 40.840141 14.25226
                               51
In [111]: x train.shape
Out[111]: (732, 8)
In [112]: y test.head(5)
Out[112]: 676
                    10250
           215
                     9790
                     5500
           146
                     9900
           1319
           1041
                     8900
           Name: price, dtype: int64
In [113]: y train.head(5)
Out[113]: 441
                     8980
           701
                    10300
           695
                     5880
           1415
                    10490
                     9499
           404
           Name: price, dtype: int64
```

In [114]: x_train

Out[114]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge
441	442	51	762	36448	1	45.571220	9.15914	1
701	702	51	701	27100	1	41.903221	12.49565	1
695	696	51	3197	51083	1	45.571220	9.15914	1
1415	1416	51	670	33000	1	42.287029	12.40754	1
404	405	51	456	14000	1	40.840141	14.25226	1
459	460	51	397	15628	1	45.512569	10.32901	1
654	655	51	3227	95554	1	45.069679	7.70492	1
189	190	51	1431	81900	1	44.138371	12.23882	1
1455	1456	51	701	33942	1	41.107880	14.20881	1
1218	1219	51	882	25000	1	44.907242	8.61156	1

732 rows × 8 columns

In [115]: y_train

Out[115]: 441

Name: price, Length: 732, dtype: int64

```
In [116]: #ridge regression
          from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha = [1e-15, 1e-\overline{10}, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20, 30]
          ridge = Ridge()
          parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y train)
Out[116]:
            ▶ GridSearchCV
            ► estimator: Ridge
                 ► Ridge
In [117]: ridge_regressor.best_params_
Out[117]: {'alpha': 30}
In [118]: ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
          y pred ridge=ridge.predict(x test)
In [119]: from sklearn.metrics import mean squared error
          Ridge Error=mean squared error(y pred ridge,y test)
          Ridge Error
Out[119]: 529111.0455362241
In [120]: from sklearn.metrics import r2 score
          r2 score(y test,y pred ridge)
Out[120]: 0.8343797517106646
```

```
In [121]: Results=pd.DataFrame(columns=['Actual','Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[121]:

	index	Actual	Predicted	ID
0	676	10250	9912.601754	0
1	215	9790	10141.748493	1
2	146	5500	4775.235521	2
3	1319	9900	9870.926966	3
4	1041	8900	9630.417885	4
5	1425	9500	8697.092014	5
6	409	10450	10265.822884	6
7	617	9790	10293.851867	7
8	1526	9300	8614.349738	8
9	1010	4600	5749.673567	9

```
In [126]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
plt.plot()
```

Out[126]: []


```
In [ ]:
```