CS409: Neural Networks (Semester II - 2021/22)

Unit 6: Convolutional Neural Networks (CNNs) (1)

Dr. Ruwan Nawarathna
Department of Statistics & Computer Science
Faculty of Science
University of Peradeniya

Content

- Introduction to Convolutional Neural Networks (CNNs)
- What is Convolution?
- Types of layers of a CNN

Convolutional Neural Networks (CNNs)

 Convolutional networks, also known as convolutional neural networks or CNNs, are a specialized kind of neural network for processing data that has a known, grid-like topology.

Examples include:

- image data, which can be thought of as a 2D grid of pixels.
- time-series data, which can be thought of as a 1D grid taking samples at regular time intervals.

- Convolutional networks have been tremendously successful in practical applications.
 - Computer vision
 - Object classification and detection in photographs
 - Natural language processing
 - Speech recognition

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

• The name "convolutional neural network" indicates that the network employs a mathematical operation called **convolution**.

Convolution is a specialized kind of linear operation.

 Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

• Through series of convolutions (convolutional layers) feature learning is performed at various levels.

Types of layers

- Three main types of layers are used to build CNN architectures:
- 1. Convolutional layers (CONV)
 - Output: Feature Map
 - ReLU (Rectified linear unit) layers (RELU)
- 2. Pooling (or Subsampling) layers (POOL)
- 3. Fully connected layers (classification) (FC)
 - Multi-layer perceptron

Convolutional layer

- Rectangular grid of neurons
- Input from a rectangular section of previous layer
- Weights are same for each neuron
- Weights specify convolutional filters
- Several grids in each layer, each grid takes inputs from all layers using different filters

• Convolution is a common image processing technique that changes the intensities of a pixel to reflect the intensities of the surrounding pixels.

A common use of convolution is to create image filters

Effect of Convolution

This is an output of smoothing filter

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

-1

Filter 1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

-2

-1

-2

3

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Convolution on Color images: RGB 3 channels

Convolution with Neurons

Convolution with Neurons Considered as a ReLU layer -3 -1 -3 -3 ReLU -3 -3 -2 -1

Grid of Neurons (Activation Map)

Convolution with Neurons – 3D Inputs

3 x 3 by filter becomes 3 x 3 x 3 (27 weights)

Weights = {w1,w2,,w27}

Input = {r1,r2,...r9, g1,g2,...,g9,b1,b2,...b9}

Convolutional Layers: Parameter Sharing and Local Connectivity

 Parameter sharing is sharing of weights by all neurons in a particular feature map.

 Local connectivity is the concept of each neural connected only to a subset of the input image (unlike a neural network where all the neurons are fully connected) Parameter
Sharing and
Local
Connectivity

Parameter
Sharing and
Local
Connectivity

Zero Padding

- Adding zero padding will preserve the size spatially.
- In general, common to see CONV layers with stride 1, filter size F x F, and zero-padding with (F-1)/2.

Stride

That is depth of the input = depth of the filter

activation map

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

parameters = weights

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

 CNN is a sequence of Convolutional Layers, interspersed with activation functions

Calculating the Output Volume Size and Other Parameters

Filter Extent = F Stride = S Padding = P Produces a volume of size $W_2xH_2xD_2$ where:

$$W_2 = (W_1-F+2P)/S + 1$$

 $H_2 = (H_1-F+2P)/S + 1$
 $D_2 = K$

With parameter sharing, it introduces $F.F.D_1$ weights per filter, for a total of $(F.F.D_1)$. K weights and k biases

Example

Number of shared parameters (weights) per filter = 5x5x3 + 1(bias) = 76

Total number of shared parameters (weights) = 5x5x3 + 1(bias) = 76 x10 = 760

Input Volume of 32x32x3

Stride = 1

Padding = 2

Apply 10 5x5 filters

$$(W_2=H_2) = \frac{32-5+2*2}{1}+1$$

$$D_2 = 10$$

Output Volume Size = $32 \times 32 \times 10$

Example CNN – with CONV Layers Only

Example CNN – with CONV Layers Only

In all layers, S=1, P=0

Same network with different Representation (AlexNet Style)

Image

Pooling Layers

• Why Pooling: Subsampling pixels will not change the object

We can subsample the pixels to make image smaller fewer parameters to characterize the image

Pooling Layer

• makes the representations smaller and more manageable

Pooling layer

- Takes smaller blocks from convolutional layer
- Subsamples to produce single output from that block
- Several ways- average or maximum or learned linear combination of neurons
- For example, max pooling layers take maximum out of that block
- Pooling layers do not have trainable weights.

Types of Pooling

- Max pooling
- Average pooling
- Global max pooling
- Global average pooling

Pooling Layer

Max Pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

6	8
3	4

Average Pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Avg pool with 2x2 filters and stride 2

3.25	5.25
2	2

Effect of Pooling

Example CNN – with CONV and Pooling Layers

Fully-connected layer

Fully-connected layer

• Finally, after several convolutional and max pooling layers, the high-level reasoning in the neural network is done via fully connected layers.

• Neurons in a fully connected layer have full connections to all activations in the previous layer, as seen in regular Neural Networks.

Example CNN

Fully Connected Layers

Fully-connected layer

Last output volume will be flattened and use it for the input layer of the fully connected network.

In this case, flattening gives 64x4x4 = 1024 Input values which are the outputs of 1024 neurons of the output volume

Example Architecture – LeNet 5

• Exercise: Explain the architecture of LeNet-5

