C. Verification of inequality (28) in Theorem 4.2

For notational simplicity, \widetilde{x} and \widehat{x} denote the optimal allocations with respect to $(\widetilde{b}_n, b_{-n}^*)$ and $(\widehat{b}_n, b_{-n}^*)$, respectively.

Consider the allocations of all EVs at time t_1 with respect to the bid profile $(\hat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_1}$. Because $\hat{d}_{nt_1} < \hat{d}_{nt_1}^* < d_{nt_1}^* < \hat{d}_{nt_1}^2$, (18a) gives,

$$\widehat{\beta}_{nt_1} \triangleq \beta_{nt_1}(\widehat{d}_{nt_1}; A) > \beta_{nt_1}(\widehat{d}_{nt_1}^2; A) = \beta_{nt_1}^*.$$

Also, by Lemma 3.2, $\beta_{nt}^* \geq \beta_{mt}^*$ for all $m \in \mathcal{N} \setminus \{n\}$ when $d_{nt}^* > 0$. Therefore, $\widehat{\beta}_{nt_1} > \beta_{mt_1}^*$. Using an argument similar to that following (43), it is straightforward to show,

$$\widehat{x}_{nt_1} = \widehat{d}_{nt_1}, \qquad \widehat{x}_{mt_1} = d_{mt_1}^* \text{ for all } m \in \mathcal{N} \setminus \{n\}.$$
 (46)

Hence, at time t_1 , all EVs are fully allocated with respect to $(\hat{b}_n, b_{-n}^*)_{t_1}$. Similarly, with respect to $(\tilde{b}_n, b_{-n}^*)_{t_1}$,

$$\widetilde{x}_{nt_1} = \widetilde{d}_{nt_1}, \qquad \widetilde{x}_{mt_1} = d_{mt_1}^* \text{ for all } m \in \mathcal{N} \setminus \{n\}.$$
 (47)

By (46) and (47), the difference in the payments of the *n*-th EV at time t_1 with respect to $(\tilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_1}$ and $(\hat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_1}$ is given by,

$$\Delta \tau_{nt_{1}} \triangleq \tau_{nt_{1}} \left((\widetilde{\boldsymbol{b}}_{n}, \boldsymbol{b}_{-n}^{*})_{t_{1}} \right) - \tau_{nt_{1}} \left((\widehat{\boldsymbol{b}}_{n}, \boldsymbol{b}_{-n}^{*})_{t_{1}} \right)$$

$$= c_{t} \left(D_{t_{1}} + \sum_{m \neq n} d_{mt_{1}}^{*} + \widetilde{d}_{nt_{1}} \right)$$

$$- c_{t} \left(D_{t_{1}} + \sum_{m \neq n} d_{mt_{1}}^{*} + \widehat{d}_{nt_{1}} \right). \tag{48}$$

For the *n*-th EV at time t_2 , the difference in payments with respect to $(\tilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2}$ and $(\hat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2}$ is given by,

$$\Delta \tau_{nt_2} \triangleq \tau_{nt_2} \left((\widetilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2} \right) - \tau_{nt_2} \left((\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2} \right)$$

$$= c_t (D_{t_2} + \sum_{m \neq n} \widetilde{x}_{mt_2} + \widetilde{x}_{nt_2})$$

$$- c_t (D_{t_2} + \sum_{m \neq n} \widehat{x}_{mt_2} + \widehat{x}_{nt_2})$$

$$+ \sum_{m \neq n} \beta_{mt_2}^* (\widehat{x}_{mt_2} - \widetilde{x}_{mt_2}). \tag{49}$$

The last term of (49) can be simplified by recalling from Lemma 3.2 that all EVs, $k \in \mathcal{N}$, with $d_{kt_2}^* > 0$ share the same value for $\beta_{kt_2}^*$. Denoting that common value by $\beta_{\diamond t_2}^*$ allows the last term to be expressed as $\beta_{\diamond t_2}^* \sum_{m \neq n} (\widehat{x}_{mt_2} - \widetilde{x}_{mt_2})$.

It follows from (27d) that for the *n*-th EV, the difference in payments at times $t \neq t_1, t_2$, with respect to $(\widetilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_t$ and $(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_t$ is,

$$\Delta \tau_{nt} \triangleq \tau_{nt} \left((\widetilde{\boldsymbol{b}}_{n}, \boldsymbol{b}_{-n}^{*})_{t} \right) - \tau_{nt} \left((\widehat{\boldsymbol{b}}_{n}, \boldsymbol{b}_{-n}^{*})_{t} \right) = 0, \ \forall t \neq t_{1}, t_{2}.$$
 (50)

Thus, by (48)-(50), the difference in the payments of the *n*-th EV with respect to $(\widetilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)$ and $(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)$ satisfies,

$$\Delta \tau_n \stackrel{\triangle}{=} \tau_n(\widetilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*) - \tau_n(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*) = \Delta \tau_{nt_1} + \Delta \tau_{nt_2}.$$
 (51)

The difference in utility of the *n*-th EV, with respect to $(\widetilde{b}_n, b_{-n}^*)$ and $(\widehat{b}_n, b_{-n}^*)$, is given by,

$$\Delta w_n \triangleq w_n(\widetilde{x}_n) - w_n(\widehat{x}_n)$$

$$= -\delta_n \Big(\sum_{t \in \mathcal{T}} \widetilde{x}_{nt} - \Gamma_n \Big)^2 + \delta_n \Big(\sum_{t \in \mathcal{T}} \widehat{x}_{nt} - \Gamma_n \Big)^2$$

$$+ f_n(\widehat{d}_{nt_1}) - f_n(\widetilde{d}_{nt_1}) + f_n(\widehat{x}_{nt_2}) - f_n(\widetilde{x}_{nt_2}). \quad (52)$$

By (51) and (52), the difference in the payoff of the n-th EV, subject to $(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)$ and $(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)$, becomes,

$$\Delta u_n \triangleq u_n(\widetilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*) - u_n(\widehat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*) = \Delta w_n - \Delta \tau_n.$$
 (53)

To establish (28), firstly the case with $\widehat{d}_{nt_2} = d_{nt_2}^*$ will be addressed, then the three cases \widehat{d}_{nt_2} , $\widetilde{d}_{nt_2} \in \mathcal{R}_i$, i = 1, 2, 3 will be considered separately.

Case I,
$$\widehat{d}_{nt_2}^* < \widehat{d}_{nt_2} < \widehat{d}_{nt_2} = d_{nt_2}^*$$

Because $\widehat{d}_{nt_2} = d_{nt_2}^*$,
 $\widehat{\beta}_{nt_2} = \beta_{nt_2}(d_{nt_2}^*, A) > \beta_{nt_2}(d_{nt_2}^*, \sum_{i \in \mathcal{I}} d_{nt}^*) = \beta_{nt_2}^*$.

Likewise, with $\widehat{d}_{nt_2}^* < \widetilde{d}_{nt_2} < \widehat{d}_{nt_2} = d_{nt_2}^*$,

$$\widetilde{\beta}_{nt_2} = \beta_{nt_2}(\widetilde{d}_{nt_2}, A) > \beta_{nt_2}(\widehat{d}_{nt_2}^2, A) = \beta_{nt_2}^*$$

A similar argument to that used to establish (46),(47) for t_1 shows that all EVs are fully allocated at t_2 with respect to both $(\hat{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2}$ and $(\tilde{\boldsymbol{b}}_n, \boldsymbol{b}_{-n}^*)_{t_2}$:

$$\widehat{x}_{nt_2} = \widehat{d}_{nt_2} = d^*_{nt_2}, \qquad \widehat{x}_{mt_2} = d^*_{mt_2} \text{ for all } m \in \mathcal{N} \setminus \{n\},$$

$$\widetilde{x}_{nt_2} = \widetilde{d}_{nt_2}, \qquad \qquad \widetilde{x}_{mt_2} = d^*_{mt_2} \text{ for all } m \in \mathcal{N} \setminus \{n\}.$$

Substituting these allocations into (53) gives,

$$\Delta u_n = f_n(\widehat{d}_{nt_1}) - f_n(\widetilde{d}_{nt_1}) + f_n(\widehat{d}_{nt_2}) - f_n(\widetilde{d}_{nt_2})$$

$$- \left(c_t(D_{t_1} + \sum_{m \neq n} d^*_{mt_1} + \widehat{d}_{nt_1})\right)$$

$$- c_t(D_{t_1} + \sum_{m \neq n} d^*_{mt_1} + \widehat{d}_{nt_1})$$

$$+ c_t(D_{t_2} + \sum_{m \neq n} d^*_{mt_2} + \widehat{d}_{nt_2})$$

$$- c_t(D_{t_2} + \sum_{m \neq n} d^*_{mt_2} + \widehat{d}_{nt_2})\right)$$

$$= g_{nt_1}(\widehat{d}_{nt_1}) - g_{nt_1}(\widetilde{d}_{nt_1}) + g_{nt_2}(\widehat{d}_{nt_2}) - g_{nt_2}(\widetilde{d}_{nt_2})$$

$$> g'_{nt_1}(\widehat{d}^*_{nt_1})(\widehat{d}_{nt_1} - \widetilde{d}_{nt_1}) + g'_{nt_2}(\widehat{d}^*_{nt_2})(\widehat{d}_{nt_2} - \widetilde{d}_{nt_2})$$

$$= \mu(\widehat{d}_{nt_1} - \widetilde{d}_{nt_1} + \widehat{d}_{nt_2} - \widetilde{d}_{nt_2})$$

$$= 0$$

where the inequality holds due to the convexity of $g_{nt}(\cdot)$ and the subsequent equality follows from (26). Therefore, (28) is satisfied in this case.

Case II,
$$\widehat{d}_{nt_2}, \widetilde{d}_{nt_2} \in \mathcal{R}_1$$

The initial step in showing (28) is to determine the allocations of all EVs at time t_2 with respect to the bid profile $(\hat{b}_n, b_{-n}^*)_{t_2}$. Firstly, consider $\hat{d}_{nt_2} \in \text{Int}(\mathcal{R}_1)$. Then,

$$\widehat{\beta}_{nt_2} > \widehat{\beta}_{nt_2}^1 = c_t'(D_{t_2} + \sum_{m \neq n} d_{mt_2}^* + \widehat{d}_{nt_2}^1)$$
$$> c_t'(D_{t_2} + \sum_{m \neq n} d_{mt_2}^* + \widehat{d}_{nt_2}),$$

so it follows from the KKT conditions (8) that $\hat{x}_{nt_2} = \hat{d}_{nt_2}$.

Now consider the case with $\widehat{d}_{nt_2} = \widehat{d}_{nt_2}^1$, the upper boundary of \mathcal{R}_1 . In this case, $\widehat{\beta}_{nt_2} = c_t'(D_{t_2} + \sum_{m \neq n} d_{mt_2}^* + \widehat{d}_{nt_2})$. Assume $\widehat{x}_{nt_2} < \widehat{d}_{nt_2}$. Then due to the convexity of $c_t(\cdot)$,

$$c'_t(D_{t_2} + \sum_{m \neq n} d^*_{mt_2} + \widehat{x}_{nt_2}) < c'_t(D_{t_2} + \sum_{m \neq n} d^*_{mt_2} + \widehat{d}_{nt_2}) = \widehat{\beta}_{nt_2}.$$

But (8) then implies $\hat{\sigma}_{nt_2} > 0$ and therefore that $\hat{x}_{nt_2} = \hat{d}_{nt_2}$. Hence a contradiction, so $\hat{x}_{nt_2} = \hat{d}_{nt_2}$.

If $d_{nt_2} \geq \sum_{k \in \mathcal{N}} d_{kt_2}^*$ then it can be shown by contradiction that $\sum_{m\neq n} \widehat{x}_{mt_2} = 0$. Assuming $\sum_{m\neq n} \widehat{x}_{mt_2} > 0$ gives,

$$c'_t(D_{t_2} + \sum_{k \neq n} \widehat{x}_{kt_2} + \widehat{x}_{nt_2}) > c'_t(D_{t_2} + \sum_{k \in \mathcal{N}} d^*_{kt_2}) \ge \beta^*_{mt_2},$$

for all $m \in \mathcal{N} \setminus \{n\}$. But (8) then implies $\widehat{x}_{mt_2} = 0$ for all $m \in$ $\mathcal{N}\setminus\{n\}$, hence a contradiction. Alternatively, if $d_{nt_2}<\sum_{k\in\mathcal{N}}d_{kt_2}^*$ then it can be shown, once again by contradiction, that $\sum_{k\in\mathcal{N}} \widehat{x}_{kt_2} =$ $\sum_{k \in \mathcal{N}} d_{kt_2}^*. \text{ Consider } \sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} > \sum_{k \in \mathcal{N}} d_{kt_2}^*. \text{ Then } c_t'(D_{t_2} + \sum_{k \in \mathcal{N}} \widehat{x}_{kt_2}) > \beta_{mt_2}^* \text{ for } \underline{m} \in \mathcal{N} \setminus \{n\}, \text{ with (8) implying } \widehat{x}_{mt_2} = 0,$ hence a contradiction. If $\sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} < \sum_{k \in \mathcal{N}} d_{kt_2}^*$, then $c_t'(D_{t_2} + \sum_{k \in \mathcal{N}} \widehat{x}_{kt_2}) < \beta_{mt_2}^*$, with (8) implying $\widehat{x}_{mt_2} = d_{mt_2}^*$. This leads to another contradiction, as $\sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} = \sum_{m \neq n} d_{mt_2}^* + d_{nt_2} >$ $\sum_{k \in \mathcal{N}} d_{kt_2}^*$. Summarizing,

$$\widehat{x}_{nt_{2}} = \widehat{d}_{nt_{2}}, \quad \sum_{m \neq n} \widehat{x}_{mt_{2}} > 0, \quad \sum_{m \neq n} \widehat{x}_{mt_{2}} + \widehat{d}_{nt_{2}} = \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},$$
if $\widehat{d}_{nt_{2}} < \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},$

$$\widehat{x}_{nt_{2}} = \widehat{d}_{nt_{2}}, \quad \sum_{m \neq n} \widehat{x}_{mt_{2}} = 0, \quad \sum_{m \neq n} \widehat{x}_{mt_{2}} + \widehat{d}_{nt_{2}} \ge \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},$$
if $\widehat{d}_{nt_{2}} \ge \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*}.$
(54b)

Similarly, the above analysis also holds for the bid profile $(b_n, b_{-n}^*)_{t_2}$

$$\widetilde{x}_{nt_{2}} = \widetilde{d}_{nt_{2}}, \quad \sum_{m \neq n} \widetilde{x}_{mt_{2}} > 0, \quad \sum_{m \neq n} \widetilde{x}_{mt_{2}} + \widetilde{d}_{nt_{2}} = \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},
\text{if } \widetilde{d}_{nt_{2}} < \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},
\widetilde{x}_{nt_{2}} = \widetilde{d}_{nt_{2}}, \quad \sum_{m \neq n} \widetilde{x}_{mt_{2}} = 0, \quad \sum_{m \neq n} \widetilde{x}_{mt_{2}} + \widetilde{d}_{nt_{2}} \ge \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*},
\text{if } \widetilde{d}_{nt_{2}} \ge \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*}.$$
(55b)

Substituting into (51) gives,

$$\Delta \tau_n = c_t (D_{t_1} + \sum_{m \neq n} d_{mt_1}^* + \widetilde{d}_{nt_1}) - c_t (D_{t_1} + \sum_{m \neq n} d_{mt_1}^* + \widehat{d}_{nt_1})$$

$$+ c_t (D_{t_2} + \sum_{m \neq n} \widetilde{x}_{mt_2} + \widetilde{d}_{nt_2}) + \beta_{\diamond t_2}^* \sum_{m \neq n} (\widehat{x}_{mt_2} - \widetilde{x}_{mt_2})$$

$$- c_t (D_{t_2} + \sum_{m \neq n} \widehat{x}_{mt_2} + \widehat{d}_{nt_2}).$$

Because $\widehat{x}_{nt_1} + \widehat{x}_{nt_2} = \widetilde{x}_{nt_1} + \widetilde{x}_{nt_2}$ and $\widehat{x}_{nt} = \widetilde{x}_{nt}$ for all $t \neq t_1, t_2$, it follows that $\sum_t \widehat{x}_{nt} = \sum_t \widetilde{x}_{nt}$, and so (52) becomes,

$$\Delta w_n = f_n(\widehat{d}_{nt_1}) + f_n(\widehat{d}_{nt_2}) - f_n(\widetilde{d}_{nt_1}) - f_n(\widetilde{d}_{nt_2}).$$

Three subcases must be considered, depending on the relative

values of \widetilde{d}_{nt_2} , \widehat{d}_{nt_2} and $\sum_{k \in \mathcal{N}} d_{kt_2}^*$. $Case~II.1,~ \widetilde{d}_{nt_2} < \widehat{d}_{nt_2} < \sum_{k=1}^N d_{kt_2}^*$: In this case, Δu_n defined in (53) is established using (54a) and (55a),

$$\Delta u_{n} = g_{nt_{1}}(\widehat{d}_{nt_{1}}) - g_{nt_{1}}(\widetilde{d}_{nt_{1}}) + f_{n}(\widehat{d}_{nt_{2}}) - f_{n}(\widetilde{d}_{nt_{2}})$$

$$- \beta^{*}_{\diamond t_{2}}(\widetilde{d}_{nt_{2}} - \widehat{d}_{nt_{2}})$$

$$> g'_{nt_{1}}(\widehat{d}^{*}_{nt_{1}})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}})$$

$$+ (f'_{n}(d^{*}_{nt_{2}}) + \beta^{*}_{\diamond t_{2}})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$= g'_{nt_{1}}(\widehat{d}^{*}_{nt_{1}})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + g'_{nt_{2}}(d^{*}_{nt_{2}})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}}),$$
(56c)

where (56a) holds by the specification of $g_{nt}(\cdot)$ given in (25) and substitution from (54a) and (55a); (56b) holds by the convexity of $g_{nt}(\cdot)$ together with (27a), and the convexity of $f_n(\cdot)$ together with (29); and (56c) holds by (10) in Lemma 3.2 and (25).

From (22), $\widehat{d}_{nt_2}^* < d_{nt_2}^*$, so $g_{nt_2}'(d_{nt_2}^*) > g_{nt_2}'(\widehat{d}_{nt_2}^*)$ due to the convexity of $g_{nt_2}(\cdot)$. By construction, $\widehat{d}_{nt_1}^* > 0$, so (26) gives $g'_{nt_2}(d^*_{nt_2}) \geq g'_{nt_1}(d^*_{nt_1}) = \mu$. Therefore, because (29) ensures $\widehat{d}_{nt_2} > \widetilde{d}_{nt_2}$, (56c) gives,

$$\Delta u_n > \mu(\hat{d}_{nt_1} - \tilde{d}_{nt_1} + \hat{d}_{nt_2} - \tilde{d}_{nt_2}) = 0,$$
 (57)

where the final equality holds by (27c).

Case II.2, $\widetilde{d}_{nt_2} < \sum_{k \in \mathcal{N}} d_{kt_2}^* \le \widehat{d}_{nt_2}$: In this case, Δu_n is governed by (54b) and (55a), giving,

$$\Delta u_{n} = g_{nt_{1}}(\hat{d}_{nt_{1}}) - g_{nt_{1}}(\tilde{d}_{nt_{1}}) + f_{n}(\hat{d}_{nt_{2}}) - f_{n}(\tilde{d}_{nt_{2}})$$

$$- c_{t}(D_{t_{2}} + \sum_{m \neq n} \widetilde{x}_{mt_{2}} + \widetilde{d}_{nt_{2}}) + c_{t}(D_{t_{2}} + \widehat{d}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*} \sum_{m \neq n} \widetilde{x}_{mt_{2}}$$

$$> g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ c'_{t}(D_{t_{2}} + \sum_{k \in \mathcal{N}} d_{kt_{2}}^{*})(\widehat{d}_{nt_{2}} - \sum_{m \neq n} \widetilde{x}_{mt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*} \sum_{m \neq n} \widetilde{x}_{mt_{2}}$$

$$= g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*}(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}}),$$

$$(58c)$$

where (58a) holds by (53) and (25); (58b) holds by the convexity of $g_{nt}(\cdot)$ together with (27a), the convexity of $f_n(\cdot)$ together with (29), and the convexity of $c_t(\cdot)$ using (55a); and (58c) holds by (10). Proceeding as in (56c),(57) yields $\Delta u_n > 0$.

Case II.3, $\sum_{k \in \mathcal{N}} d_{kt_2}^* \leq d_{nt_2} < d_{nt_2}$: In this case, Δu_n uses (54b) and (55b) to give,

$$\Delta u_{n} = g_{nt_{1}}(\widehat{d}_{nt_{1}}) - g_{nt_{1}}(\widetilde{d}_{nt_{1}}) + f_{n}(\widehat{d}_{nt_{2}}) - f_{n}(\widetilde{d}_{nt_{2}})$$

$$- c_{t}(D_{t_{2}} + \widetilde{d}_{nt_{2}}) + c_{t}(D_{t_{2}} + \widehat{d}_{nt_{2}})$$

$$> g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ c'_{t}(D_{t_{2}} + \widetilde{d}_{nt_{2}})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$\geq g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}})$$

$$+ \left(f'_{n}(d_{nt_{2}}^{*}) + c'_{t}(D_{t_{2}} + \sum_{m \neq n} d_{mt_{2}}^{*} + d_{nt_{2}}^{*})\right)$$

$$\times (\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$= g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + g'_{nt_{2}}(d_{nt_{2}}^{*})(\widehat{d}_{nt_{2}} - \widetilde{d}_{nt_{2}}),$$
(59d)

where (59a) holds by (53) and (25); (59b) holds by the convexity of $g_{nt}(\cdot)$ together with (27a), and the convexity of $f_n(\cdot)$ and $c_t(\cdot)$ together with (29); (59c) holds by the convexity of $c_t(\cdot)$ with $d_{nt_2} \ge$ $\sum_{k\in\mathcal{N}} d_{kt_2}^*$; and (59d) holds by (25). Proceeding as in (57) yields

Hence, $\Delta u_n > 0$ whenever $\widehat{d}_{nt_2}, \widetilde{d}_{nt_2} \in \mathcal{R}_1$.

Case III,
$$\widehat{d}_{nt_2}, \widetilde{d}_{nt_2} \in Int(\mathcal{R}_2)$$

The situation where $\widehat{d}_{nt_2} \in \mathcal{R}_2$ will be considered as two separate cases. Case III, presented here, discusses $\hat{d}_{nt_2} \in Int(\mathcal{R}_2)$, while Case IV addresses $\widehat{d}_{nt_2} = \widehat{d}_{nt_2}^2$, the upper boundary of \mathcal{R}_2 .

Consider the allocations of all EVs at time t_2 with respect to the bid profile $(\hat{b}_n, b_{-n}^*)_{t_2}$. If $\widehat{d}_{nt_2} < \sum_{k \in \mathcal{N}} d_{kt_2}^*$, then the argument presented in Case II can again be used to show that $\sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} = \widehat{x}_{kt_2}$ $\sum_{k \in \mathcal{N}} d_{kt_2}^*$. Also, because $\hat{\beta}_{nt_2} > \beta_{nt_2}^* = c_t'(D_{t_2} + \sum_{k \in \mathcal{N}} d_{kt_2}^*)$, (8) implies $\hat{x}_{nt_2} = \hat{d}_{nt_2}$. Similar outcomes hold for the bid profile

 $(\widetilde{b}_n, b_{-n}^*)_{t_2}$ as $\widetilde{d}_{nt_2} < \widehat{d}_{nt_2}$. Therefore, (54a) and (55a) are again applicable.

However, if $\widehat{d}_{nt_2} > \sum_{k \in \mathcal{N}} d_{kt_2}^*$, then because $\widehat{\beta}_{nt_2} < \widehat{\beta}_{nt_2}^1 =$ $c'_t(D_t + \sum_{m \neq n} d^*_{mt_2} + d^1_{nt_2})$, there is no guarantee that $\widehat{x}_{nt_2} = d_{nt_2}$. Whether or not (54b) holds depends on the comparison between β_{nt_2} and $c'_t(D_{t_2} + \sum_{m \neq n} \widehat{x}_{mt_2} + \widehat{d}_{nt_2})$. Similarly, for the bid profile $(\hat{b}_{nt_2}, \boldsymbol{b}_{-n,t_2}^*)$, there is no guarantee that (55b) holds.

Three subcases must be considered for \hat{x}_{t_2} and \tilde{x}_{t_2} , depending on the relative values of d_{nt_2} , d_{nt_2} and $\sum_{k \in \mathcal{N}} d_{kt_2}^*$.

Case III.1, $\widetilde{d}_{nt_2} < \widehat{d}_{nt_2} < \sum_{k \in \mathcal{N}} d^*_{kt_2}$: Analysis of Δu_n in this case is identical to that of Case II.1, so $\Delta u_n > 0$.

Case III.2, $\widetilde{d}_{nt_2} < \sum_{k \in \mathcal{N}} d_{kt_2}^* \le \widehat{d}_{nt_2}$: Because $\widehat{\beta}_{nt_2} > \beta_{nt_2}^*$, satisfying (8) for the *n*-th EV results in $\sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} \ge \sum_{k \in \mathcal{N}} d_{kt_2}^*$, with equality holding only if $\widehat{x}_{nt_2} = \widehat{d}_{nt_2} = \sum_{k \in \mathcal{N}} d_{kt_2}^*$ and $\sum_{m \neq n} \widehat{x}_{mt_2} = 0$. If the inequality is strict, then $c_t'(D_{t_2} + \sum_{k \in \mathcal{N}} \widehat{x}_{kt_2}) > \beta_{mt_2}^*$ for all $m \in \mathcal{N} \setminus \{n\}$, with (8) implying $\widehat{x}_{mt_2} = 0$. Hence,

$$\sum_{k \in \mathcal{N}} d_{kt_2}^* \le \widehat{x}_{nt_2} \le \widehat{d}_{nt_2}, \qquad \sum_{m \ne n} \widehat{x}_{mt_2} = 0.$$
 (60)

The applicability of (54b) reverts to a comparison between $\widehat{\beta}_{nt_2}$ and $c'_t(D_{t_2} + d_{nt_2})$:

- If $\hat{\beta}_{nt_2} \ge c_t'(D_{t_2} + \hat{d}_{nt_2})$ then it can be verified that (54b) holds. Thus, $\Delta u_n > 0$, since the analysis in this case is identical to that developed in Case II.2.
- If $\beta_{nt_2} < c_t'(D_{t_2} + d_{nt_2})$, (54b) does not hold. Rather, Δu_n can be established using (53), (25), (55a) and (60),

$$\Delta u_{n} = g_{nt_{1}}(\widehat{d}_{nt_{1}}) - g_{nt_{1}}(\widetilde{d}_{nt_{1}}) - \delta_{n} \Big(\sum_{t \in \mathcal{T}} \widetilde{x}_{nt} - \Gamma_{n} \Big)^{2}$$

$$+ \delta_{n} \Big(\sum_{t \in \mathcal{T}} \widehat{x}_{nt} - \Gamma_{n} \Big)^{2} + f_{n}(\widehat{x}_{nt_{2}}) - f_{n}(\widetilde{d}_{nt_{2}})$$

$$- c_{t}(D_{t_{2}} + \sum_{m \neq n} \widetilde{x}_{mt_{2}} + \widetilde{d}_{nt_{2}}) + c_{t}(D_{t_{2}} + \widehat{x}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*} \sum_{m \neq n} \widetilde{x}_{mt_{2}}$$

$$> g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*} \sum_{m \neq n} \widetilde{x}_{mt_{2}} + c'_{t}(D_{t_{2}} + \sum_{m \neq n} d_{mt_{2}}^{*} + d_{nt_{2}}^{*})$$

$$\times \Big(\widehat{x}_{nt_{2}} - \sum_{m \neq n} \widetilde{x}_{mt_{2}} - \widetilde{d}_{nt_{2}}\Big)$$

$$\leq g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}})$$

$$(61a)$$

$$= g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}})$$

$$(61b)$$

where (61a) holds by the convexity of $q_{nt}(\cdot)$ together with (27a), the convexity of $f_n(\cdot)$ together with (29) and (60), the convexity of $c_t(\cdot)$ together with (55a) and (60), and the concavity of $-\delta_n(\sum_{t\in\mathcal{T}}x_{nt}-\Gamma_n)^2$ together with Lemma A.1 specified below, recalling that $b_n, b_n \in \mathcal{B}_n(A)$ with $\sum_{t \in \mathcal{T}} d_{nt} = A <$ $\sum_{t \in \mathcal{T}} d_{nt}^*$, and that $\sum_{t \in \mathcal{T}} \widetilde{x}_{nt} - \sum_{t \in \mathcal{T}} \widehat{x}_{nt} = d_{nt_1} + d_{nt_2} - d_{nt_1}$ $(\widehat{d}_{nt_1} + \widehat{x}_{nt_2}) \ge 0$; (61b) holds by (10) in Lemma 3.2 together with (25); and (61c) follows the same justification as (57) though using (27a).

(61c)

 $> \mu(\widehat{d}_{nt_1} - \widetilde{d}_{nt_1}) + \mu(\widetilde{d}_{nt_1} - \widehat{d}_{nt_1})$

Lemma A.1: Consider an allocation $x_n(b) \equiv (x_{nt}, t \in \mathcal{T})$ with respect to a bid profile **b**, such that $\sum_{t \in \mathcal{T}} d_{nt} < \sum_{t \in \mathcal{T}} d_{nt}^*$.

$$\frac{\partial}{\partial x_{nt}} \left(-\delta_n \left(\sum_{t \in \mathcal{T}} x_{nt} - \Gamma_n \right)^2 \right) > g'_{nt}(d_{nt}^*) > \mu, \quad (62)$$

for all $t \in \mathcal{T}$, where g_{nt} is defined in Lemma 4.3.

Proof of Lemma A.1.

$$\frac{\partial}{\partial x_{nt}} \left(-\delta_n \left(\sum_{t \in \mathcal{T}} x_{nt} - \Gamma_n \right)^2 \right) = 2\delta_n \left(\Gamma_n - \sum_{t \in \mathcal{T}} x_{nt} \right)
> 2\delta_n \left(\Gamma_n - \sum_{t \in \mathcal{T}} d_{nt}^* \right)$$
(63a)

$$= \beta_{nt}^* + f_n'(d_{nt}^*) \tag{63b}$$

$$= c'_t(D_t + \sum_{m \neq n} d^*_{mt} + d^*_{nt}) + f'_n(d^*_{nt})$$
 (63c)

$$=g'_{nt}(d^*_{nt})\tag{63d}$$

$$>\mu$$
, (63e)

where (63a) holds because $\sum_{t\in\mathcal{T}}x_{nt}\leq\sum_{t\in\mathcal{T}}d_{nt}<\sum_{t\in\mathcal{T}}d_{nt}^*$; (63b) follows from $\beta_{nt}^*=\frac{\partial}{\partial d_{nt}}w_n(\boldsymbol{d}_n^*)=-f_n'(d_{nt}^*)+2\delta_n(\Gamma_n-\sum_{t\in\mathcal{T}}d_{nt}^*)$; (63c) holds by (10) in Lemma 3.2; (63d) holds by the specification of g_{nt} in (25); and (63e) holds by Lemma 4.3 and the convexity of g_{nt} .

End of proof of Lemma A.1. Case III.3, $\sum_{k \in \mathcal{N}} d_{kt_2}^* \leq \widetilde{d}_{nt_2} < \widehat{d}_{nt_2}$: Using the same argument as in Case III.2 gives $\sum_{m\neq n} \widehat{x}_{mt_2} = \sum_{m\neq n} \widetilde{x}_{mt_2} = 0$. Analysis of Δu_n depends on the relative values of \widetilde{d}_{nt_2} , \widehat{x}_{nt_2} and \widehat{d}_{nt_2} , keeping in mind from Lemma 4.1 that $\beta_{nt_2}(d_{nt_2}, A) > \beta_{nt_2}(d_{nt_2}, A)$.

- If $\widehat{x}_{nt_2} = \widehat{d}_{nt_2}$ then $\widetilde{x}_{nt_2} = \widetilde{d}_{nt_2}$ must also hold. Analysis of Δu_n in this case is identical to that developed in Case II.3.
- If $d_{nt_2} \leq \widehat{x}_{nt_2} < \widehat{d}_{nt_2}$ then $\widetilde{x}_{nt_2} = d_{nt_2} \leq \widehat{x}_{nt_2}$. Analysis of Δu_n follows that of Case III.2.
- If $\widehat{x}_{nt_2} < \widetilde{d}_{nt_2} < \widehat{d}_{nt_2}$ then $\widehat{x}_{nt_2} < \widetilde{x}_{nt_2}$, and Δu_n satisfies,

$$\Delta u_{n} > g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(\widetilde{x}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{x}_{nt_{2}}) + c'_{t}(D_{t_{2}} + \widetilde{x}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{x}_{nt_{2}}) + g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}}) + 2\delta_{n}\left(\Gamma_{n} - \sum_{t \in \mathcal{T}} \widetilde{x}_{nt}\right)(\widetilde{x}_{nt_{2}} - \widehat{x}_{nt_{2}})$$

$$> f'_{n}(\widetilde{x}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{x}_{nt_{2}}) + c'_{t}(D_{t_{2}} + \widetilde{x}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{x}_{nt_{2}}) + 2\delta_{n}\left(\Gamma_{n} - \sum_{t \in \mathcal{T}} \widetilde{x}_{nt}\right)(\widetilde{x}_{nt_{2}} - \widehat{x}_{nt_{2}}),$$

$$(65)$$

where (64) holds by the convexity of $g_{nt_1}(\cdot)$ together with (27a), the convexity of $f_n(\cdot)$ and $c_t(\cdot)$, the concavity of $-\delta_n(\Gamma_n \sum_{t\in\mathcal{T}} x_{nt}$)² and Lemma A.1; and (65) makes use of (61b). Further analysis uses $\widetilde{x}_{nt} \leq \widetilde{d}_{nt}$ for all $t \in \mathcal{T}$ to give,

$$2\delta_n \left(\Gamma_n - \sum_{t \in \mathcal{T}} \widetilde{x}_{nt} \right) \ge 2\delta_n \left(\Gamma_n - \sum_{t \in \mathcal{T}} \widetilde{d}_{nt} \right)$$
$$= f'_n (\widetilde{d}_{nt_2}) + \widetilde{\beta}_{nt_2}, \tag{66}$$

where the equality follows from (11). Because $\tilde{x}_{nt_2} > 0$ and $\sum_{m\neq n} \widetilde{x}_{mt_2} = 0$, (8) gives $\beta_{nt_2} \geq c'_t(D_{t_2} + \widetilde{x}_{nt_2})$. Therefore,

$$2\delta_n \left(\Gamma_n - \sum_{t \in \mathcal{T}} \widetilde{d}_{nt} \right) \ge f'_n(\widetilde{d}_{nt_2}) + c'_t(D_{t_2} + \widetilde{x}_{nt_2})$$

$$\ge f'_n(\widetilde{x}_{nt_2}) + c'_t(D_{t_2} + \widetilde{x}_{nt_2}). \tag{67}$$

Because $\widehat{x}_{nt_2} < \widetilde{x}_{nt_2}$, (65) and (67) ensure $\Delta u_n > 0$. Hence, $\Delta u_n > 0$ whenever $\hat{d}_{nt_2}, \hat{d}_{nt_2} \in \text{Int}(\mathcal{R}_2)$.

Case IV, $\widehat{d}_{nt_2} = \widehat{d}_{nt_2}^2, \widetilde{d}_{nt_2} \in \mathcal{R}_2$

In this case, $\widehat{\beta}_{nt_2} = \beta_{nt_2}^*$, so (8) ensures that $\sum_{k \in \mathcal{N}} \widehat{x}_{kt_2} =$

 $\sum_{k \in \mathcal{N}} d_{kt_2}^* \text{ and } d_{nt_2}^* \leq \widehat{x}_{nt_2} \leq \widehat{d}_{nt_2}^2.$ $Case \ \textit{IV.I}, \ \widetilde{d}_{nt_2} < \sum_{k \in \mathcal{N}} d_{kt_2}^* : \text{ Using the same argument as in } \text{Case III, (55a) is again applicable.}$

If $\widehat{x}_{nt_2} > \widetilde{x}_{nt_2} = \widetilde{d}_{nt_2}$, Δu_n can be established by,

$$\Delta u_{n} > g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(d_{nt_{2}}^{*})(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}} + \widetilde{d}_{nt_{2}} - \widehat{x}_{nt_{2}})$$

$$+ \beta_{\diamond t_{2}}^{*}(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$= g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}})$$

$$(68b)$$

$$> 0,$$

$$(68c)$$

where (68a) holds by the convexity of $g_{nt}(\cdot)$ together with (27a), the convexity of $f_n(\cdot)$ together with $\widehat{x}_{nt_2} > \widetilde{x}_{nt_2}$ and (55a), and the concavity of $-\delta_n(\sum_{t\in\mathcal{T}}x_{nt}-\Gamma_n)^2$ together with Lemma A.1, recalling that $\hat{b}_n, \tilde{b}_n \in \mathcal{B}_n(A)$ with $\sum_{t \in \mathcal{T}} d_{nt} = A < \sum_{t \in \mathcal{T}} d_{nt}^*$; (68b) holds by (10) in Lemma 3.2 together with (25); and (68c) follows from (61b).

If $\widehat{x}_{nt_2} < \widetilde{x}_{nt_2} = \widetilde{d}_{nt_2}$, Δu_n is given by,

$$\Delta u_{n} > g'_{nt_{1}}(\widehat{d}_{nt_{1}}^{*})(\widehat{d}_{nt_{1}} - \widetilde{d}_{nt_{1}}) + f'_{n}(\widetilde{d}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ g'_{nt_{2}}(d_{nt_{2}}^{*})(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}}) + \beta_{\diamond t_{2}}^{*}(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ 2\delta_{n}(\Gamma_{n} - \sum_{t \in \mathcal{T}} \widetilde{x}_{nt})(\widetilde{d}_{nt_{2}} - \widehat{x}_{nt_{2}})$$

$$> f'_{n}(\widetilde{d}_{nt_{2}})(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}}) + \beta_{\diamond t_{2}}^{*}(\widehat{x}_{nt_{2}} - \widetilde{d}_{nt_{2}})$$

$$+ 2\delta_{n}(\Gamma_{n} - \sum_{t \in \mathcal{T}} \widetilde{x}_{nt})(\widetilde{d}_{nt_{2}} - \widehat{x}_{nt_{2}})$$

$$> 0,$$

$$(69b)$$

$$> 0,$$

where (69a) holds by the convexity of $g_{nt}(\cdot)$ together with (27a), the convexity of $f_n(\cdot)$ together with (55a), and the concavity of $-\delta_n(\sum_{t\in\mathcal{T}}x_{nt}-\Gamma_n)^2$ together with Lemma A.1, recalling that $\widehat{\boldsymbol{b}}_n, \widetilde{\boldsymbol{b}}_n \in \mathcal{B}_n(A)$ with $\sum_{t \in \mathcal{T}} d_{nt} = A < \sum_{t \in \mathcal{T}} d_{nt}^*$; (69b) uses (68b); and (69c) uses (66) together with $\widetilde{\beta}_{nt_2} > \beta_{\diamond t_2}^*$.

Case IV.2, $\widetilde{d}_{nt_2} \geq \sum_{k \in \mathcal{N}} d_{kt_2}^*$: Using the same argument as in Case III, (55b) is applicable. Then similar to the analysis of Case IV.1, $\Delta u_n > 0$.

Case V, \widehat{d}_{nt_2} , $\widetilde{d}_{nt_2} \in \mathcal{R}_3$

In this case, $\widehat{\beta}_{nt_2} < \widetilde{\beta}_{nt_2} < \beta^*_{nt_2}$, so (8) ensures that $\widehat{x}_{mt_2} = \widetilde{x}_{mt_2} = d^*_{mt_2}$ for all $m \in \mathcal{N} \setminus \{n\}$, and $\widehat{x}_{nt_2} \leq \widetilde{x}_{nt_2} < d^*_{nt_2}$. Hence, (51) becomes,

$$\Delta \tau_{n} = c_{t}(D_{t_{1}} + \sum_{m \neq n} d_{mt_{1}}^{*} + \widetilde{d}_{nt_{1}}) - c_{t}(D_{t_{1}} + \sum_{m \neq n} d_{mt_{1}}^{*} + \widehat{d}_{nt_{1}}) + c_{t}(D_{t_{2}} + \sum_{m \neq n} d_{mt_{2}}^{*} + \widetilde{x}_{nt_{2}}) - c_{t}(D_{t_{2}} + \sum_{m \neq n} d_{mt_{2}}^{*} + \widehat{x}_{nt_{2}}).$$

$$(70)$$

Using (52) and (70) in (53) gives,

$$\Delta u_n = g_{nt_1}(\hat{d}_{nt_1}) - g_{nt_1}(\hat{d}_{nt_1}) + g_{nt_2}(\hat{x}_{nt_2}) - g_{nt_2}(\tilde{x}_{nt_2})$$
$$- \delta_n \Big(\sum_{t \in \mathcal{T}} \tilde{x}_{nt} - \Gamma_n \Big)^2 + \delta_n \Big(\sum_{t \in \mathcal{T}} \hat{x}_{nt} - \Gamma_n \Big)^2$$
$$> -\mu \left(\tilde{d}_{nt_1} - \hat{d}_{nt_1} \right) - g'_{nt_2}(d^*_{nt_2}) \left(\tilde{x}_{nt_2} - \hat{x}_{nt_2} \right)$$

⁴The equality $\widehat{x}_{nt_2} = \widetilde{x}_{nt_2} = 0$ can occur if $c_t'(D_{t_2} + \sum_{m \neq n} d_{mt_2}^*) \geq$ $\widetilde{\beta}_{nt_2} > \widehat{\beta}_{nt_2}.$

$$-\delta_n \left(\sum_{t \in \mathcal{T}} \widetilde{x}_{nt} - \Gamma_n\right)^2 + \delta_n \left(\sum_{t \in \mathcal{T}} \widehat{x}_{nt} - \Gamma_n\right)^2, \tag{71}$$

where the inequality holds by the convexity of $g_{nt}(\cdot)$ together with (27a) for the first term, and with $\hat{x}_{nt_2} \leq \tilde{x}_{nt_2} < d^*_{nt_2}$ for the second

Using (62) from Lemma A.1 together with (27a), the concavity of $-\delta_n(\sum_{t\in\mathcal{T}}x_{nt}-\Gamma_n)^2$, and $\widetilde{x}_{nt_2}>\widehat{x}_{nt_2}$ gives,

$$-\delta_{n} \left(\sum_{t \in \mathcal{T}} \widetilde{x}_{nt} - \Gamma_{n} \right)^{2} + \delta_{n} \left(\sum_{t \in \mathcal{T}} \widehat{x}_{nt} - \Gamma_{n} \right)^{2}$$

$$> g'_{nt_{2}}(d_{nt_{2}}^{*}) \left(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}} + \widetilde{x}_{nt_{2}} - \widehat{x}_{nt_{2}} \right)$$

$$> \mu \left(\widetilde{d}_{nt_{1}} - \widehat{d}_{nt_{1}} \right) + g'_{nt_{2}}(d_{nt_{2}}^{*}) \left(\widetilde{x}_{nt_{2}} - \widehat{x}_{nt_{2}} \right). \tag{72}$$

Thus, it follows from (71) and (72) that $\Delta u_n > 0$ whenever $d_{nt_2}, d_{nt_2} \in \mathcal{R}_3.$

In summary, the analysis presented in Cases I-V shows that inequality (28) holds for all $d_{nt_2} \ge d_{nt_2}^*$. End of proof.