5.2 Minimale Spannbäume

G = (V, E) sei ungerichteter zusammenhängender Graph mit positiven Kantengewichten $w : E \to \mathbb{R}_{>0}$.

5.2 Minimale Spannbäume

G=(V,E) sei ungerichteter zusammenhängender Graph mit positiven Kantengewichten $w:E \to \mathbb{R}_{>0}$.

Für $E'\subseteq E$ sei

$$w(E') = \sum_{e \in E'} w(e).$$

5.2 Minimale Spannbäume

G=(V,E) sei ungerichteter zusammenhängender Graph mit positiven Kantengewichten $w:E \to \mathbb{R}_{>0}$.

Für $E'\subseteq E$ sei

$$w(E') = \sum_{e \in E'} w(e).$$

Definition 5.12

Eine Kantenmenge $T \subseteq E$ heißt Spannbaum von G, wenn der Graph (V, T) ein Baum ist. Ein Spannbaum $T \subseteq E$ heißt minimaler Spannbaum von G, wenn es keinen Spannbaum von G mit einem kleineren Gewicht als w(T) gibt.

Union-Find-Datenstruktur

Speichere disjunkte Mengen S_1, \ldots, S_k und für jede Menge S_i Repräsentanten $s_i \in S_i$.

Union-Find-Datenstruktur

Speichere disjunkte Mengen S_1, \ldots, S_k und für jede Menge S_i Repräsentanten $s_i \in S_i$.

• MAKE-SET(x): Erzeugt eine neue Menge $\{x\}$ mit Repräsentant x. Dabei darf x nicht bereits in einer anderen Menge enthalten sein.

Union-Find-Datenstruktur

Speichere disjunkte Mengen S_1, \ldots, S_k und für jede Menge S_i Repräsentanten $s_i \in S_i$.

- MAKE-SET(x): Erzeugt eine neue Menge $\{x\}$ mit Repräsentant x. Dabei darf x nicht bereits in einer anderen Menge enthalten sein.
- UNION(x, y): Falls zwei Mengen S_x und S_y mit $x \in S_x$ und $y \in S_y$ existieren, so werden diese entfernt und durch die Menge $S_x \cup S_y$ ersetzt. Der neue Repräsentant von $S_x \cup S_y$ kann ein beliebiges Element dieser vereinigten Menge sein.

Union-Find-Datenstruktur

Speichere disjunkte Mengen S_1, \ldots, S_k und für jede Menge S_i Repräsentanten $s_i \in S_i$.

- MAKE-SET(x): Erzeugt eine neue Menge $\{x\}$ mit Repräsentant x. Dabei darf x nicht bereits in einer anderen Menge enthalten sein.
- UNION(x, y): Falls zwei Mengen S_x und S_y mit $x \in S_x$ und $y \in S_y$ existieren, so werden diese entfernt und durch die Menge $S_x \cup S_y$ ersetzt. Der neue Repräsentant von $S_x \cup S_y$ kann ein beliebiges Element dieser vereinigten Menge sein.
- FIND(x): Liefert den Repräsentanten der Menge S mit $x \in S$ zurück.

Operation	Zustand der Datenstruktur
	Ø

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1},2:{2},3:{3}

Operation	Zustand der Datenstruktur
	Ø
Make-Set(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	
MAKE-SET(4), MAKE-SET(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}

Operation	Zustand der Datenstruktur
	Ø
Make-Set(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1}, 2:{2}, 3:{3}
Make-Set(4), Make-Set(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	Ausgabe: 3, keine Zustandsänderung

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1}, 2:{2}, 3:{3}
MAKE-SET(4), MAKE-SET(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	1: {1}, 2: {2}, 3: {3}, 4: {4}, 5: {5} Ausgabe: 3, keine Zustandsänderung
Union(1,2)	2:{1,2},3:{3},4:{4},5:{5}

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1}, 2:{2}, 3:{3}
MAKE-SET(4), MAKE-SET(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	Ausgabe: 3, keine Zustandsänderung
Union(1,2)	2: {1,2}, 3: {3}, 4: {4}, 5: {5} 2: {1,2}, 3: {3,4}, 5: {5}
Union(3,4)	2: {1,2}, 3: {3,4}, 5: {5}

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1}, 2:{2}, 3:{3}
MAKE-SET(4), MAKE-SET(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	Ausgabe: 3, keine Zustandsänderung
Union(1,2)	2: {1,2}, 3: {3}, 4: {4}, 5: {5}
Union(3,4)	2: {1,2}, 3: {3,4}, 5: {5}
FIND(1)	Ausgabe: 2, keine Zustandsänderung

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
MAKE-SET(2), MAKE-SET(3)	1:{1}, 2:{2}, 3:{3}
MAKE-SET(4), MAKE-SET(5)	1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	Ausgabe: 3, keine Zustandsänderung
Union(1,2)	2: {1,2}, 3: {3}, 4: {4}, 5: {5}
Union(3,4)	2: {1,2}, 3: {3,4}, 5: {5}
FIND(1)	Ausgabe: 2, keine Zustandsänderung
Union(1,5)	2: {1,2,5}, 3: {3,4}
· · · · · · · · · · · · · · · · · · ·	

Zustand der Datenstruktur
Ø
1:{1}
1:{1}, 2:{2}, 3:{3}
1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
Ausgabe: 3, keine Zustandsänderung
2:{1,2},3:{3},4:{4},5:{5}
2:{1,2},3:{3,4},5:{5}
Ausgabe: 2, keine Zustandsänderung
2:{1,2,5},3:{3,4}
Ausgabe: 2, keine Zustandsänderung

Operation	Zustand der Datenstruktur
	Ø
MAKE-SET(1)	1:{1}
Make-Set(2), Make-Si	ET(3) 1:{1}, 2:{2}, 3:{3}
Make-Set(4), Make-Si	ET(5) 1:{1}, 2:{2}, 3:{3}, 4:{4}, 5:{5}
FIND(3)	Ausgabe: 3, keine Zustandsänderung
Union(1,2)	2: {1,2}, 3: {3}, 4: {4}, 5: {5}
Union(3,4)	2: {1,2}, 3: {3,4}, 5: {5}
FIND(1)	Ausgabe: 2, keine Zustandsänderung
Union(1,5)	2:{1,2,5},3:{3,4}
FIND(5)	Ausgabe: 2, keine Zustandsänderung
UNION(5,4)	3: {1,2,3,4,5}

Implementierung als Feld

• Annahme: MAKE-SET wird für 1, ..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

• INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.

Implementierung als Feld

• Annahme: Make-Set wird für $1, \ldots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.

Implementierung als Feld

• Annahme: MAKE-SET wird für 1, ..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Implementierung als Feld

• Annahme: MAKE-SET wird für $1, \ldots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Implementierung als Feld

• Annahme: MAKE-SET wird für 1, ..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Implementierung als Feld

• Annahme: MAKE-SET wird für 1, ..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: MAKE-SET wird für 1, ..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \dots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: Make-Set wird für $1, \ldots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Implementierung als Feld

• Annahme: MAKE-SET wird für $1, \ldots, n$ jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Implementierung als Feld

Annahme: MAKE-SET wird für 1,..., n jeweils einmal aufgerufen.

n als Parameter bei Initialisierung gegeben.

- INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.
- FIND(x): Gib A[x] aus.
- UNION(x, y): Durchlaufe Feld A. Für i mit A[i] = A[y] setze A[i] = A[x].

Beispiel:

Laufzeit von UNION: $\Theta(n)$.

Implementierung als Feld mit verketteten Listen

Idee: Zusätzliche Listen L[1, ..., n], wobei L[i] die Elemente enthält, die i repräsentiert.

Implementierung als Feld mit verketteten Listen

Idee: Zusätzliche Listen L[1, ..., n], wobei L[i] die Elemente enthält, die i repräsentiert.

• INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.

Erzeuge Feld L[1, ..., n] mit $L[i] \rightarrow i \rightarrow \text{null}$.

Erzeuge Feld size[$1, \ldots, n$] mit size[i] = 1.

Implementierung als Feld mit verketteten Listen

Idee: Zusätzliche Listen L[1, ..., n], wobei L[i] die Elemente enthält, die i repräsentiert.

• INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.

Erzeuge Feld $L[1, \ldots, n]$ mit $L[i] \rightarrow i \rightarrow \text{null}$.

Erzeuge Feld size[$1, \ldots, n$] mit size[i] = 1.

• FIND(x): Gib A[x] aus.

Implementierung als Feld mit verketteten Listen

Idee: Zusätzliche Listen L[1, ..., n], wobei L[i] die Elemente enthält, die i repräsentiert.

• INIT(n): Erzeuge Feld A[1, ..., n] mit A[i] = i.

Erzeuge Feld $L[1, \ldots, n]$ mit $L[i] \rightarrow i \rightarrow \text{null}$.

Erzeuge Feld size[$1, \ldots, n$] mit size[i] = 1.

• FIND(x): Gib A[x] aus.

```
UNION(x, y)

1  i = \text{FIND}(x); j = \text{FIND}(y);

2  \text{if } (\text{size}[i] > \text{size}[j]) \text{ Vertausche } i \text{ und } j.

3  \text{for each } (z \in L[i]) \{ A[z] = j; \}

4  Hänge L[i] an L[j] an.

5  \text{size}[j] = \text{size}[j] + \text{size}[i];

6  L[i] = \text{null};

7  \text{size}[i] = 0;
```

```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (\text{size}[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 \text{size}[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 \text{size}[i] = 0;
```

$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (\text{size}[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 \text{size}[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 \text{size}[i] = 0;
```

$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (size[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 \text{size}[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 \text{size}[i] = 0;
```

$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (\text{size}[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 \text{size}[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 \text{size}[i] = 0;
```

$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (\text{size}[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 \text{size}[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 \text{size}[i] = 0;
```

$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1 i = \text{FIND}(x); j = \text{FIND}(y);

2 if (size[i] > \text{size}[j]) Vertausche i und j.

3 for each (z \in L[i]) { A[z] = j; }

4 Hänge L[i] an L[j] an.

5 size[j] = \text{size}[j] + \text{size}[i];

6 L[i] = \text{null};

7 size[i] = 0;
```

Beispiel: UNION(8,9)
$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$


```
UNION(x, y)

1  i = \text{FIND}(x); j = \text{FIND}(y);

2  \text{if } (\text{size}[i] > \text{size}[j]) \text{ Vertausche } i \text{ und } j.

3  \text{for each } (z \in L[i]) \{ A[z] = j; \}

4  \text{Hänge } L[i] \text{ an } L[j] \text{ an.}

5  \text{size}[j] = \text{size}[j] + \text{size}[i];

6  L[i] = \text{null};

7  \text{size}[i] = 0;
```

Beispiel: UNION(8,9)
$$i = FIND(8) = 8$$
 $j = FIND(9) = 4$

Laufzeit: $\Theta(\min\{\text{size}[i], \text{size}[j]\})$

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis: Gesamtlaufzeit der FIND-Operationen: O(f)

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis: Gesamtlaufzeit der FIND-Operationen: O(f)

Laufzeit einer UNION-Operation: $\leq c \cdot (\min\{\text{size}[i], \text{size}[j]\})$

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis: Gesamtlaufzeit der FIND-Operationen: O(f)

Laufzeit einer UNION-Operation: $\leq c \cdot (\min\{\text{size}[i], \text{size}[j]\})$

Für $i \in \{1, \dots, n-1\}$ bezeichne X_i die kleinere Menge bei der i-ten UNION-Operation.

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis: Gesamtlaufzeit der FIND-Operationen: O(f)

Laufzeit einer UNION-Operation: $\leq c \cdot (\min\{\text{size}[i], \text{size}[j]\})$

Für $i \in \{1, ..., n-1\}$ bezeichne X_i die kleinere Menge bei der i-ten UNION-Operation. Laufzeit aller UNION-Operationen:

$$\leq c \cdot \sum_{i=1}^{n-1} |X_i| = c \cdot \sum_{i=1}^{n-1} \sum_{x \in X_i} 1 = c \cdot \sum_{i=1}^{n} |\{X_i \mid j \in X_i\}|.$$

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis: Gesamtlaufzeit der FIND-Operationen: O(f)

Laufzeit einer UNION-Operation: $\leq c \cdot (\min\{\text{size}[i], \text{size}[j]\})$

Für $i \in \{1, \dots, n-1\}$ bezeichne X_i die kleinere Menge bei der i-ten UNION-Operation. Laufzeit aller UNION-Operationen:

$$\leq c \cdot \sum_{i=1}^{n-1} |X_i| = c \cdot \sum_{i=1}^{n-1} \sum_{x \in X_i} 1 = c \cdot \sum_{j=1}^{n} |\{X_i \mid j \in X_i\}|.$$

Nachdem ein Element s mal in der kleineren Menge einer UNION-Operation lag, liegt es in einer Menge der Größe mindestens 2^s.

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis:

Aus $2^s \le n$ folgt $s \le \log_2 n$. Also gilt für jedes Element j

$$|\{X_i \mid j \in X_i\}| \leq \log_2 n.$$

Lemma 5.13

Jede Folge von (n-1) UNION- und f FIND-Operationen kann in Zeit $O(n \log(n) + f)$ durchgeführt werden, wobei n die Anzahl an Elementen bezeichnet.

Beweis:

Aus $2^s \le n$ folgt $s \le \log_2 n$. Also gilt für jedes Element j

$$|\{X_i \mid j \in X_i\}| \leq \log_2 n.$$

Also beträgt die Gesamtlaufzeit der UNION-Operationen höchstens

$$c \cdot \sum_{j=1}^{n} |\{X_i \mid j \in X_i\}| \le c \cdot \sum_{j=1}^{n} \log_2 n = O(n \log n).$$

```
KRUSKAL(G, w)
      Teste mittels DFS, ob G zusammenhängend ist. Falls nicht, Abbruch.
     for each (v \in V) MAKE-SET(v);
   T = \emptyset:
     Sortiere die Kanten in E gemäß ihrem Gewicht.
     Danach gelte E = \{e_1, ..., e_m\} mit w(e_1) < w(e_2) < ... < w(e_m).
     Außerdem sei e_i = (u_i, v_i).
     for (int i = 1; i < m; i++) {
 6
          if (FIND(u_i) \neq FIND(v_i)) {
               T = T \cup \{e_i\};
               UNION(u_i, v_i);
10
11
     return T
```


$$\{a\},\{b\},\{c\},\{d\},\{e\}$$

$$\{a,b\},\{c\},\{d\},\{e\}$$

$$\{a,b\}, \{c\}, \{d,e\}$$

$$\{a,b,c\},\{d,e\}$$

$$\{\textit{a},\textit{b},\textit{c},\textit{d},\textit{e}\}$$

Theorem 5.14

Für zusammenhängende Graphen berechnet der Algorithmus von Kruskal einen minimalen Spannbaum.

Theorem 5.14

Für zusammenhängende Graphen berechnet der Algorithmus von Kruskal einen minimalen Spannbaum.

Beweis:

Invariante:

 Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).

Theorem 5.14

Für zusammenhängende Graphen berechnet der Algorithmus von Kruskal einen minimalen Spannbaum.

Beweis:

Invariante:

- Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).
- 2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist. Insbesondere ist (V, T) azyklisch.

Theorem 5.14

Für zusammenhängende Graphen berechnet der Algorithmus von Kruskal einen minimalen Spannbaum.

Beweis:

Invariante:

- Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).
- 2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist. Insbesondere ist (V, T) azyklisch.

Nach dem letzten Schleifendurchlauf gilt i = m + 1. Somit muss S leer sein und damit T ein minimaler Spannbaum.

Invariante:

- Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).
- 2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist. Insbesondere ist (V, T) azyklisch.

Induktionsanfang (vor dem ersten Schleifendurchlauf):

1. Es gilt $T = \emptyset$. Die ZHK von (V, T) sind genau die einelementigen Mengen. Dies ist auch in der Union-Find-Struktur abgebildet.

Invariante:

- Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).
- 2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist. Insbesondere ist (V, T) azyklisch.

Induktionsanfang (vor dem ersten Schleifendurchlauf):

- 1. Es gilt $T = \emptyset$. Die ZHK von (V, T) sind genau die einelementigen Mengen. Dies ist auch in der Union-Find-Struktur abgebildet.
- 2. Es gilt $T = \emptyset$ und i = 1. Wir können S als einen beliebigen minimalen Spannbaum von G wählen.

Induktionsschritt, erster Teil:

 Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Induktionsschritt, erster Teil:

 Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Falls wir Kante e_i nicht in T einfügen, so ändern sich weder die Mengen in der Union-Find-Datenstruktur noch die Zusammenhangskomponenten von (V, T).

Induktionsschritt, erster Teil:

 Die Mengen, die in der Union-Find-Datenstruktur gespeichert werden, entsprechen am Ende des Schleifenrumpfes der for-Schleife den Zusammenhangskomponenten des Graphen (V, T).

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Falls wir Kante e_i nicht in T einfügen, so ändern sich weder die Mengen in der Union-Find-Datenstruktur noch die Zusammenhangskomponenten von (V, T).

Fügen wir e_i in T ein, so fallen die Zusammenhangskomponenten von u_i und v_i in (V, T) zu einer gemeinsamen Komponente zusammen. Diese Veränderung bilden wir in der Union-Find-Datenstruktur korrekt ab.

Induktionsschritt, zweiter Teil:

2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist.

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Es gibt $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum ist.

Induktionsschritt, zweiter Teil:

2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist.

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Es gibt $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum ist.

1. Fall: $T \cup \{e_i\}$ enthält Kreis. e_i wird nicht zu T hinzugefügt.

Es gilt $e_i \notin S$, denn sonst wäre $T \cup S$ kein Baum.

Also gilt $S \subseteq \{e_{i+1}, \dots, e_m\}$.

Induktionsschritt, zweiter Teil:

2. Immer wenn die Abbruchbedingung der Schleife in Zeile 5 überprüft wird, gibt es eine Kantenmenge $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum von G ist.

Invariante sei zu Beginn eines Schleifendurchlaufs erfüllt:

Es gibt $S \subseteq \{e_i, \dots, e_m\}$, sodass $T \cup S$ ein minimaler Spannbaum ist.

1. Fall: $T \cup \{e_i\}$ enthält Kreis. e_i wird nicht zu T hinzugefügt.

Es gilt $e_i \notin S$, denn sonst wäre $T \cup S$ kein Baum.

Also gilt $S \subseteq \{e_{i+1}, \dots, e_m\}$.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben. Behauptung $T' := T \cup (S \setminus \{e_i\}) \cup \{e_i\}$ ist MST.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben.

Behauptung $T' := T \cup (S \setminus \{e_j\}) \cup \{e_i\}$ ist MST.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben. Behauptung $T' := T \cup (S \setminus \{e_i\}) \cup \{e_i\}$ ist MST.

Beobachtungen:

• (V, T') ist zusammenhängend.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben.

Behauptung $T' := T \cup (S \setminus \{e_j\}) \cup \{e_i\}$ ist MST.

Beobachtungen:

- (V, T') ist zusammenhängend.
- (V, T') ist kreisfrei.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben. Behauptung $T' := T \cup (S \setminus \{e_i\}) \cup \{e_i\}$ ist MST.

Beobachtungen:

- (V, T') ist zusammenhängend.
- (V, T') ist kreisfrei.
- (V, T') ist also ein Spannbaum.

2. Fall: $T \cup \{e_i\}$ kreisfrei. e_i wird zu T hinzugefügt. Gilt $e_i \in S$, so ist nichts zu zeigen. Sei also $e_i \notin S$.

Da $(V, T \cup S)$ zusammenhängend, muss $T \cup S \cup \{e_i\}$ einen Kreis C enthalten. Es muss Kante $e_j \in S \cap C$ geben.

Behauptung $T' := T \cup (S \setminus \{e_j\}) \cup \{e_i\}$ ist MST.

Beobachtungen:

- (V, T') ist zusammenhängend.
- (V, T') ist kreisfrei.
- (V, T') ist also ein Spannbaum.

Wegen i < j gilt $w(e_i) \le w(e_j)$ und deshalb $w(T') = w(T \cup S) + w(e_i) - w(e_i) \le w(T \cup S). \quad \Box$

Theorem 5.15

Für einen ungerichteten zusammenhängenden Graphen G = (V, E) benötigt der Algorithmus von Kruskal eine Laufzeit von $O(|E| \log |E|)$.

Theorem 5.15

Für einen ungerichteten zusammenhängenden Graphen G = (V, E) benötigt der Algorithmus von Kruskal eine Laufzeit von $O(|E| \log |E|)$.

- Laufzeit von DFS: O(|V| + |E|).
- G ist zusammenhängend. Deshalb gilt $|E| \ge |V| 1$, also O(|V| + |E|) = O(|E|).

Theorem 5.15

Für einen ungerichteten zusammenhängenden Graphen G = (V, E) benötigt der Algorithmus von Kruskal eine Laufzeit von $O(|E| \log |E|)$.

- Laufzeit von DFS: O(|V| + |E|).
- G ist zusammenhängend. Deshalb gilt $|E| \ge |V| 1$, also O(|V| + |E|) = O(|E|).
- Laufzeit für Sortieren der Kanten: $O(|E| \log |E|)$.

Theorem 5.15

Für einen ungerichteten zusammenhängenden Graphen G=(V,E) benötigt der Algorithmus von Kruskal eine Laufzeit von $O(|E|\log|E|)$.

- Laufzeit von DFS: O(|V| + |E|).
- G ist zusammenhängend. Deshalb gilt $|E| \ge |V| 1$, also O(|V| + |E|) = O(|E|).
- Laufzeit für Sortieren der Kanten: $O(|E| \log |E|)$.
- Die for-Schleife wird |E| mal durchlaufen. Abgesehen von UNION und FIND beträgt die Gesamtlaufzeit hierfür O(|E|).

Theorem 5.15

Für einen ungerichteten zusammenhängenden Graphen G = (V, E) benötigt der Algorithmus von Kruskal eine Laufzeit von $O(|E|\log|E|)$.

- Laufzeit von DFS: O(|V| + |E|).
- G ist zusammenhängend. Deshalb gilt $|E| \ge |V| 1$, also O(|V| + |E|) = O(|E|).
- Laufzeit für Sortieren der Kanten: $O(|E| \log |E|)$.
- Die for-Schleife wird |E| mal durchlaufen. Abgesehen von UNION und FIND beträgt die Gesamtlaufzeit hierfür O(|E|).
- Wir führen in der Union-Find-Datenstruktur 2|E| FIND-Operationen und |V|-1 UNION-Operationen durch. Mit Lemma 5.13 ergibt sich demnach eine Laufzeit von $O(|V|\log|V|+2|E|)=O(|E|\log|E|)$.