

COMPILIER @Liu Yepang 2019

for SUSTech CSE $\,$

HomeWork 4

EDITED BY

汪至圆

11610634

 $\begin{array}{c} 2019 \\ \text{SHENZHEN} \end{array}$

1 Exercise 1 (Top-Down Parsing):

Consider the following grammar G:

$$S \to aB$$
$$B \to S + B|\epsilon$$

1.1 Construct the predictive parsing table for G. [20 points]

$$FIRST(S): \{a\}$$

$$FIRST(B): \{a, \epsilon\}$$

$$FELLOW(S)\{+, \$\}$$

$$FELLOW(B)\{+, \$\}$$

表 1: Parsing Table

Non-Terminal	INPUT SYMBOL			
Non-Terminal	a	+	\$	
S	$S \rightarrow aB$			
В	$B \to S + B$	$B \to \epsilon$	$B \to \epsilon$	

1.2 Is the grammar LL(1)? [10 points]

For the $B \to S + B|\epsilon$

- $FIRST(S+B) = \{a\}$ and $FIRST(\epsilon) = \{\epsilon\}$, $FIRST(S+B) \bigcup FIRST(\epsilon) = \emptyset$
- $FIRST(\epsilon) = {\epsilon}$, and $FIRST(S+B) \bigcup FELLOW(B) = \emptyset$

So $B \to S + B | \epsilon$ is LL(1)

1.3 Can an LL(1) parser accept the input string aaaa+++? If yes, please list the moves made by the parser; otherwise, state the reason. Before parsing, please resolve conflicts in the parsing table if any. [20 points]

Yes, it can

Matched	Stack	Input	Output Action
	S\$	aaaa+++\$	
	aB\$	aaaa+++\$	Output $s \to aB$
a	В\$	aaa+++\$	Match a
a	S+B\$	aaa+++\$	Output $B \to S + B$
a	aB+B\$	aaa+++\$	Output $s \to aB$
aa	B+B\$	aa+++\$	Match a
aa	S+B+B\$	aa+++\$	Output $B \to S + B$
aa	aB+B+B\$	aa+++\$	Output $s \to aB$
aaa	B+B+B\$	a+++\$	Match a
aaa	S+B+B+B\$	a+++\$	Output $B \to S + B$
aaa	aB+B+B+B\$	a+++\$	Output $s \to aB$
aaaa	B+B+B+B\$	+++\$	Match a
aaaa	+B+B+B\$	+++\$	Output $B \to \epsilon$
aaaa+	B+B+B\$	++\$	Match +
aaaa+	+B+B\$	++\$	Output $B \to \epsilon$
aaaa++	B+B\$	+\$	Match +
aaaa++	+B\$	+\$	Output $B \to \epsilon$
aaaa+++	В\$	\$	Match +
aaaa+++	\$	\$	Output $B \to \epsilon$

2 Exercise 2 (Bottom-Up Parsing): Consider the grammar G in the required Exercise 1:

2.1 Construct the SLR(1) parsing table for G. [20 points]

The CLOSURE of item set $\{[S' \to -> \cdot S]\}$ is $I_0 = CLOSURE([S' \to \cdot S) = \{[S' \to \cdot S], [S \to \cdot aB]\}$

So, there are:

$$\begin{split} I_{1} &= GOTO(I_{0},S) = \{[S' \to S \cdot]\} \\ I_{2} &= GOTO(I_{0},a) = \{[S - > a \cdot B], [B \to \cdot S + B], [B \to \cdot \epsilon], [S \to \cdot aB]\} \\ GOTO(I_{2},a) &= I_{2} \\ I_{3} &= GOTO(I_{2},B) = \{[S \to aB \cdot]\} \\ I_{4} &= GOTO(I_{2},S) = \{[B \to S \cdot + B]\} \\ I_{5} &= GOTO(I_{4},+) = \{[B \to S + \cdot B], [B \to \cdot S + B], [B \to \cdot \epsilon], [S \to \cdot aB]\} \\ GOTO(I_{5},a) &= I_{2} \\ GOTO(I_{5},S) &= I_{4} \\ I_{6} &= GOTO(I_{5},B) = \{[B \to S + B \cdot]\} \end{split}$$

图 1

$$(1)S \to aB(2)B \to S + B(3)B \to \epsilon$$

表 3: Parsing Table

STATE	ACTION		GOTO		
SIAIL	a	+	\$	S	В
0	s_2			1	
1			accept		
2	s_2	r_3	r_3	4	3
3		r_1	r_1		
4		s_5			
5	s_2	r_3	r_3	4	6
6		r_2	r_2		

2.2 Is the grammar SLR(1)? [10 points]

Yes, it is, there is no conflict during the parsing table construction

2.3 Can an SLR(1) parser accept the input string aaaa+++? If yes, please list the moves made by the parser; otherwise, state the reason. Before parsing, please resolve conflicts if any. [20 points]

Yes, it can.

表 4

	am. a	arn rp ar a		A COMPANY
	STACK	SYMBOLS	INPUT	ACTION
0	0		aaaa+++\$	Shift
1	02	a	aaa+++\$	Shift
2	022	aa	aa+++\$	Shift
3	0222	aaa	a+++\$	Shift
4	02222	aaaa	+++\$	Reduce $B \to \epsilon$
5	022223	aaaaB	+++\$	Reduce $S \to aB$
6	02224	aaaS	+++\$	Shift
7	022245	aaaS+	++\$	Reduce $B \to \epsilon$
8	0222456	aaaS+B	++\$	Reduce $B \to S + B$
9	02223	aaaB	++\$	Reduce $S \to aB$
10	0224	aaS	++\$	Shift
11	02245	aaS+	+\$	Reduce $B \to \epsilon$
12	022456	aaS+B	+\$	Reduce $B \to S + B$
13	0223	aaB	+\$	Reduce $S \to aB$
14	024	aS	+\$	Shift
15	0245	aS+	\$	Reduce $B \to \epsilon$
16	02456	aS+B	\$	Reduce $B \to S + B$
17	023	aB	\$	Reduce $S \to aB$
18	01	S	\$	Accept