CHAPTER 5

PROBLEM SPECIFICATIONS

The answers for the Problem Specifications section are located at the end of the section.

1. WM-Figure 5-1 shows a problem specification and algorithm involving a robot named Rob. Modify the algorithm to direct Rob to bring an umbrella if it's raining.

Rob is standing in front of a closed door in his living room. The door leads to the outside. Your task is to direct Rob to go outside and then close the door.

- 1. open the door
- 2. walk forward
- 3. close the door

WM-Figure 5-1 First problem specification and algorithm using Rob

2. WM-Figure 5-2 shows a problem specification and algorithm involving a robot named Rob. Modify the algorithm to direct Rob to buy two tickets if the tickets are on sale.

Rob wants to buy a ticket to a basketball game.

- 1. call the ticket broker
- 2. order the ticket
- 3. pay for the order
- 4. pick up the order

WM-Figure 5-2 Second problem specification and algorithm using Rob

3. WM-Figure 5-3 shows a solution for the Haperin Company. Modify the algorithm to calculate the 5% commission only when the sales are at least \$25000.

Input	Processing	Output	
sales	Processing items: none	commission	
	Algoríthm:		
	1. enter the sales		
	2. calculate the commission by		
	multiplying the sales by .05		
	з. dísplay the commissíon		

WM-Figure 5-3 Problem specification and solution for the Haperin Company

- 4. Modify the algorithm shown in WM-Figure 5-3 to calculate a 7% commission when the sales are over \$75000; otherwise, calculate a 3% commission.
- 5. Analyze the problem specification shown in WM-Figure 5-4.

Your friend, Jacob, wants a program that calculates and displays the balance in his checking account, given the beginning balance, the amount of money he deposited, and the amount of money he withdrew. The program also should display the "Overdrawn" message when the ending balance is less than 0.

WM-Figure 5-4 Problem specification for Jacob

6. Analyze the problem specification shown in WM-Figure 5-5.

Professor Jerome wants a program that displays either the "Pass" message or the "Fail" message. The appropriate message depends on the average of three test scores entered by the professor. The "Pass" message should be displayed when the average is at least 70; otherwise, the "Fail" message should be displayed.

WM-Figure 5-5 Problem specification for Professor Jerome

7. Analyze the problem specification shown in WM-Figure 5-6.

Yonger College wants a program that displays either the "Accepted" or "Not Accepted" message. The appropriate message depends on the student's SAT score, which is composed of three subscores for Critical Reading, Mathematics, and Writing. The user will enter the three subscores. The "Accepted" message should be displayed when the SAT score is at least 1500; otherwise, the "Not Accepted" message should be displayed.

WM-Figure 5-6 Problem specification for Yonger College

8. Analyze the problem specification shown in WM-Figure 5-7.

South Carlton Bank wants a program that displays the bank's service fee for a checking account. The basic fee is \$2 per month. The bank also charges \$.02 per check for the first 6 checks written, and then \$.10 for each additional check. The user will enter the number of checks written.

WM-Figure 5-7 Problem specification for South Carlton Bank

9. Analyze the problem specification shown in WM-Figure 5-8.

Cartwright Grocery is located in a state that charges a 4% sales tax on all items except food. The store manager wants a program that allows a salesclerk to enter an item's price and its type (either food or non-food). The program should display the total amount the customer owes for the item.

WM-Figure 5-8 Problem specification for Cartwright Grocery

10. Analyze the problem specification shown in WM-Figure 5-9.

Universal Surveys wants a program that displays the number of males and females responding to a survey. The user will enter the respondent's gender (M for Male or F for Female).

WM-Figure 5-9 Problem specification for Universal Surveys

ANSWERS FOR THE PROBLEM SPECIFICATIONS SECTION

1. See WM-Figure 5-10.

```
    open the door
    if (it's raining)
    bring an umbrella
    end if
    walk forward
    close the door
```

WM-Figure 5-10 Modified algorithm for the first problem using Rob

2. See WM-Figure 5-11.

```
    call the ticket broker
    if (the tickets are on sale)
        order two tickets
        else
            order one ticket
        end if
    pay for the order
    pick up the order
```

WM-Figure 5-11 Modified algorithm for the second problem using Rob

3. See WM-Figure 5-12.

```
    enter the sales
    if (the sales are at least 25000)
        calculate the commission by multiplying the sales by .05
        else
        assign 0 as the commission
        end if
    display the commission
```

WM-Figure 5-12 First modified algorithm for the Haperin Company

4. See WM-Figure 5-13.

```
    enter the sales
    if (the sales are greater than 75000)
        calculate the commission by multiplying the sales by .07
        else
        calculate the commission by multiplying the sales by .03
        end if
    display the commission
```

WM-Figure 5-13 Second modified algorithm for the Haperin Company

5. See WM-Figure 5-14.

Input beginning balance amount deposited amount withdrawn	Processing Processing ítems: none	Output ending balance "Overdrawn" message
	Algorithm:	
1. enter the beginning balance,		. Killedoor v
	amount deposited, and amount withdrawn 2. calculate the ending balance by adding	
	the amount deposited to the beginning	
	balance, and then subtracting the amount withdrawn from the result 3. display the ending balance	
	4. if (the ending balance is less than 0)	
	dísplay "Overdrawn"	
	end if	

WM-Figure 5-14 Solution for the Jacob problem

6. See WM-Figure 5-15.

Input	Processing	Output
score 1	Processing items:	message (either "Pass" or "Fail")
score 2	average	
score 3		
	Algoríthm:	
	1. enter score 1, score 2, and score 3	
	2. calculate the average by adding	
	together score 1, score 2, and score 3,	
	and then dividing the sum by 3	
	3. if (the average is at least 70)	
	dísplay "Pass" message	
	else	
	dísplay "Faíl" message	
	end if	

WM-Figure 5-15 Solution for the Professor Jerome problem

7. See WM-Figure 5-16.

Input	Processing	Output
reading score	Processing items:	message (either "Accepted"
math score	SATscore	or "Not Accepted")
writing score		
	Algorithm:	
	1. enter reading score, mo and writing score	9th score,
	2. calculate the SAT score by adding together the reading score, math score, and writing score	
	3. íf (the SAT score ís greater than or equal to 1500) dísplay "Accepted" message else dísplay "Not Accepted" message	
	end íf	

WM-Figure 5-16 Solution for the Yonger College problem

8. See WM-Figure 5-17.

Input number of checks written	Processing Processing ítems: check charge	Output service fee
	Algorithm: 1. enter the number of checks written 2. if (the number of checks written is less than or equal to 6) calculate the check charge by multiplying the number of checks written by .02 else calculate the check charge by subtracting 6 from the number of checks written, then multiplying the result by .10, and then adding .12 to the result end if 3. calculate the service fee by adding 2 to the check charge 4. display the service fee	

WM-Figure 5-17 Solution for the South Carlton Bank problem

9. See WM-Figure 5-18.

Input	Processing	Output
ítem príce	Processing items: none	total owed
ítem type		
	Algorithm:	
	1. enter the item price and ite	m type
	2. if (item type is non-food)	<u> </u>
	calculate the total owed	d by
	multíplying the item ;	price by
	.04 and then adding t	
	to the total owed	
	end if	
	з. dísplay the total owed	

WM-Figure 5-18 Solution for the Cartwright Grocery problem

10. See WM-Figure 5-19.

Input	Processing	Output
gender (M for male or F or F for female)	Processing items: none	number of males number of females
	Algoríthm:	
	1. enter the gender	
	2. if (the gender is M)	
	add 1 to the number	of males
	else	
	add 1 to the number	of females
	end if	
	з. dísplay the number of n	
	and number of females	

WM-Figure 5-19 Solution for the Universal Surveys problem

OPERATORS

The answers for the Operators section are located at the end of the section.

1. Complete the chart shown in WM-Figure 5-20 by recording the steps for evaluating each expression. Use the first example, as well as Figure 5-24 in the book, as a guide.

Original expression	Evaluation steps
3 + 2 * 6	
2 * 6 is evaluated first	3 + 12
3 + 12 is evaluated last	15
10 < 25 / 2	
7 - 2 * 3	
47 / 2 > 25 && 3 < 6	
4 * (3 - 1) <= 12 / 3	
8 * 2 + 5 * 3 - 1 > 20 7 * 2 < 12	
10 / 2 * 5 + 1 >= 26	

WM-Figure 5-20 Chart

- 2. Write an expression that subtracts the number 6 from the contents of a double variable named sales, and then multiplies the result by .05.
- 3. The num variable has the int data type. Write an expression that divides the variable's contents by 3 and then returns the result as a double number.
- 4. Complete the chart shown in WM-Figure 5-21.

Original expression	6 * 3 * 3 + (9 - 7) * 5
(9 – 7) is performed first	6*3*3+2*5
is performed second	
is performed third	
is performed fourth	
is performed last	

WM-Figure 5-21 Evaluation of an expression

- 5. If the parentheses are removed from the original expression in WM-Figure 5-21, the expression evaluates to ______.
- 6. If additional parentheses are added around the 3 * 3 in the original expression in WM-Figure 5-21, the expression evaluates to ______.
- 7. Write an expression that adds together the contents of two int variables named the num1 and num2, and then multiplies the result by 10.
- 8. The expression 8 5 <= 1 + 6 / 2 evaluates to _____.
- 9. Write an expression that subtracts the contents of the expenses variable from the contents of the revenue variable, and then divides the difference by 2. The variables have the double data type.

ANSWERS TO OPERATORS SECTION

1.

Original expression	Evaluation steps
3 + 2 * 6	1
2 * 6 is evaluated first	3 + 12
3 + 12 is evaluated last	15
10 < 25 / 2	
25 / 2 is evaluated first	10 < 12.5
10 < 12.5 is evaluated last	true
7 - 2 * 3 <= 20	
2 * 3 is evaluated first	7 - 6 <= 20
7 – 6 is evaluated second	1 <= 2
1 <= 20 is evaluated last	true
47 / 2 > 25 && 3 < 6	
47 / 2 is evaluated first	23.5 > 25 && 3 < 6
23.5 > 25 is evaluated second	false && 3 < 6
3 < 6 is evaluated third	false && true
false && true is evaluated last	false
4 * (3 - 1) <= 12 / 3	
(3 – 1) is evaluated first	4 * 2 <= 12 / 3
4 * 2 is evaluated second	8 <= 12 / 3
12 / 3 is evaluated third	8 <= 4
8 <= 4 is evaluated last	false
8 * 2 + 5 * 3 - 1 > 20 7 * 2 < 12	
8 * 2 is evaluated first	16 + 5 * 3 - 1 > 20 7 * 2 < 12
5 * 3 is evaluated second	16 + 15 - 1 > 20 7 * 2 < 12
7 * 2 is evaluated third	16 + 15 - 1 > 20 14 < 12
16 + 15 is evaluated fourth	31 - 1 > 20 14 < 12
31 – 1 is evaluated fifth	30 > 20 14 < 12
30 > 20 is evaluated sixth	true 14 < 12
14 < 12 is evaluated seventh	true false
True false is evaluated last	true
10 / 2 * 5 + 1 >= 26	
10 / 2 is evaluated first	5 * 5 + 1 >= 26
5 * 5 is evaluated second	25 + 1 >= 26
25 + 1 is evaluated third	26 >= 26
26 >= 26 is evaluated last	true

WM-Figure 5-22 Completed chart from WM-Figure 5-20

- 2. (sales 6) * .05
- 3. You can use any of the following:

```
num / 3.0
static_cast<double>num / 3.0
static_cast<double>num / 3.0
```

4.

Original expression	6 * 3 * 3 + (9 - 7) * 5
(9 – 7) is performed first	6*3*3+2*5
6 * 3 is performed second	18 * 3 + 2 * 5
18 * 3 is performed third	54 + 2 * 5
2 * 5 is performed fourth	54 + 10
54 + 10 is performed last	64

WM-Figure 5-23 Completed chart from WM-Figure 5-21

```
5. 28
6. 64
7. (num1 + num2) * 10
8. true
9. (revenue - expenses) / 2
10. 15
```