

internat. kl. C 07 c

AUSLEGESCHRIFT 1 085 871

R 23345 IV b/12o

ANMELDETAG: 16. MAI 1958

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER

AUSLEGESCHRIFT: 28. JULI 1960

Die Erfindung bezieht sich auf die Herstellung von neuen alicyclischen Cyanketonen.

Die erfindungsgemäß erhältlichen Verbindungen können durch die folgende Formel dargestellt werden:

in der R_1 , R_2 und R_4 jeweils eine Alkyl-, Aryl-, Arylalkyloder Alkylarylgruppe und R_3 ein Wasserstoffatom, eine Methyl- oder Athylgruppe bedeuten, R_1 und R_2 zusammen mit dem Kohlenstoffatom in β -Stellung zur Carbonylgruppe einen fünf- bis sechsgliedrigen alicyclischen bzw. 15 Bicyclo-[2,2,1]-heptylring, R_1 und R_3 zusammen mit den Kohlenstoffatomen in a- und β -Stellung zur Carbonylgruppe einen fünf- bis sechsgliedrigen alicyclischen Ring; R2 und R4 zusammen mit dem Carbonylkohlenstoffatom und den α- und β-Kohlenstoffatomen einen fünf- bis 20 sechsgliedrigen alicyclischen Ring und R₃ und R₄ zusammen mit dem Carbonylkohlenstoffatom und dem dazu α-ständigen Kohlenstoffatom einen fünf- bis sechsgliedrigen alicyclischen Ring bilden können und in der wenigstens ein fünf- bis sechsgliedriger Ring oder Bicyclo- 25 [2,2,1]-heptylrest vorhanden ist. Die Gesamtzahl der Kohlenstoffatome des Produktes soll vorzugsweise 24, einschließlich des Cyankohlenstoffatoms, nicht überschreiten.

Die neuen Verbindungen werden durch Umsetzung 30 eines alicyclischen Olefinketons mit Cyanwasserstoffsäure bei erhöhten Temperaturen und in Gegenwart eines Cyanidionen bildenden Katalysators hergestellt, wie nachfolgend noch eingehender beschrieben wird.

Die erfindungsgemäß als Ausgangsmaterial verwen- 35 deten alicyclischen Olefinketone können durch die folgende Formel dargestellt werden

$$R_1 \longrightarrow C = C - C - R_4$$

$$R_2 \longrightarrow C = C - C - R_4$$

in der R1, R2, R3 und R4 die oben wiedergegebene Be- 45 deutung haben.

Verfahren zur Herstellung von alicyclischen Cyanketonen

Anmelder:

Rohm & Haas Company, Philadelphia, Pa. (V.St.A.)

Vertreter: Dr. W. Beil und A. Hoeppener, Rechtsanwälte, Frankfurt/M.-Höchst, Antoniterstr. 36

> Beanspruchte Priorität: V. St. v. Amerika vom 31. Mai 1957

Newman Mayer, Bortnick, Oreland, Pa., und Gerard Edward Gantert, Philadelphia, Pa. (V. St. A.), sind als Erfinder genannt worden

Es ist weitgehend bekannt, daß α,β -ungesättigte Ketone und β,y-ungesättigte Ketone sich in Gegenwart von basischen Katalysatoren in tautomerem Gleichgewicht befinden. Die erfindungsgemäßen Bedingungen sind so 40 beschaffen, daß Gleichgewichtsmischungen dieser Tautomeren gebildet werden und austauschbar mit reinen α,β-ungesättigten Ketonen angewendet werden können. Daher ist das β,γ -ungesättigte Keton, 2-(1-Cyclohexenyl)-cyclohexanon, für den vorliegenden Zweck genauso zufriedenstellend wie das entsprechende 2-Cyclohexylidencyclohexanon und

In ähnlicher Weise ergeben

und

Der Ausdruck »β,β-disubstituiertes α,β-ungesättigtes Ketone ist hier so zu verstehen, daß die entsprechenden β , γ -ungesättigten Ketotautomeren, die mit dem α , β -un- 40 gesättigten Keton vermischt zugegen sein können, oder unter den Reaktionsbedingungen gebildet werden können, eingeschlossen sind. Typische verwendbare alicyclische olefinische Ketone sind 2-Methylcyclopentenylmethylketon, 2-Athylcyclohexenylbenzylketon, 2-Butylcyclohexenyl- 45 phenylketon, 2-Propylcyclopentenyloctylketon, 2-Methyl-3-butylcyclopentanon, 2-Athyl-3-octylcyclohexenon, 2-Methyl - 3 - dodecylcyclohexenon, 3 - Hexylcyclopentenon, 3,5,5-Trimethylcyclohexenon, 2-Isopropyliden-5-methylcyclohexanon, 2-Isopropyliden-6-methylcyclohexanon, 50 4-(2-Oxocyclohexyliden)-octan, 2-Cyclohexylidencyclohexanon, 1-Cyclohexyliden-2-octanon, 2-Cyclopentyliden-3-hexanon, 6-Cyclopentyliden-7-tridecanon, Cyclohexylidenbutanon, 2-Cyclohexylidencyclopentanon, 2-Cyclopentylidencyclohexanon und 2-Hexylcyclopentenylbuyl- 55

Cyanhydrierungen wurden in der Technik mit vielen Arten von Verbindungen und unterschiedlichem Erfolg durchgeführt. Es wurde bereits versucht, carbocyclische Olefinketone des erfindungsgemäßen Typs mit Cyan- 60 anderen inerten Gas gebildet werden. wasserstoffsäure umzusetzen. Jedoch wurde keiner der erfindungsgemäßen Reaktionsteilnehmer jemals erfolgreich mit Cyanwasserstoff umgesetzt, noch wurden die erfindungsgemäß erhältlichen alicyclischen Cyanketone jemals zuvor hergestellt.

Die Reaktion von Cyanwasserstoffsäure mit ungesättigten Ketonen, wie Vinylketon, bei -20 bis 90°C unter Bildung zweier verschiedener Produkte, eines Keto-nitrils und eines Cyanhydrins ist bekannt. Kompliziertere Verbindungen, wie die erfindungsgemäß eingesetzten 70 als Ausgangsmaterial eingesetzten β , β -disubstituierten-

 β,β -disubstituierten α,β -ungesättigten Ketone konnten nach den bisherigen Methoden nicht in die entsprechenden Cyanketone umgewandelt werden. Erst die vorliegende Erfindung liefert in eindeutiger Reaktion bei höheren Temperaturen und Anwendung eines Cyanidionenerzeugenden Katalysators unter guten Ausbeuten ein Verfahren zur Gewinnung β , β -disubstituierter β -Cyanketone, die wenigstens einen fünf- bis sechsgliedrigen Ring ent-

Hauptziel der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung der angegebenen alicyclischen

Die vorliegende Umsetzung wird in einem Temperaturbereich zwischen 125 und 275°C, vorzugsweise 150 und 225°C, durchgeführt. Temperaturen außerhalb des angegebenen Bereichs liefern unbedeutende oder unerwünschte Ergebnisse.

Die Anwendung von Normaldruck ist von Vorteil. Überdruck kann gewünschtenfalls verwendet werden, jedoch werden dabei offensichtlich keine merklichen Vorteile erzielt. Falls Überdruck zur Anwendung kommt, kann er autogen oder mit Hilfe von Stickstoff oder einem

Die vorliegende Umsetzung wird vorzugsweise diskontinuierlich durchgeführt, jedoch kann gewünschtenfalls auch eine kontinuierliche Arbeitsweise angewendet werden.

Gewünschtenfalls kann ein flüchtiges inertes stark polares organisches Lösungsmittel verwendet werden. Die Anwendung eines Lösungsmittels ist besonders erwünscht, wenn die höher siedenden Ketone angewendet werden. Häufig ist es erwünscht, einen Teil des erfindungsgemäß β-Cyanoketons als Lösungsmittel zu verwenden. Geeignete Lösungsmittel sind Dimethylformamid, Dimethylacetamid, 1-Methyl-2-pyrrolidinon, 1,5-Dimethyl-2-pyrrolidinon und 1,3-Dimethyl-2-imidazolidinon.

Ein stark alkalischer Cyanidionen bildender Katalysator ist vorzugsweise in einer Menge von 0,1 bis 20 Gewichtsprozent, bezogen auf das Gesamtgewicht der Reaktionsteilnehmer, erforderlich. Geeignete Katalysatoren dieser Art sind die Alkalimetalle und ihre Carbonate; ferner Erdalkalimetalle und Alkali- und Erdalkalialko- 10 holate, -oxyde, -hydroxyde, -peroxyde und -cyanide; tertiäre Amine und quaternäre Ammoniumbasen. Als Katalysator kann jede Base verwendet werden, die in wäßrigem Medium eine Dissoziationskonstante oberhalb von etwa 10-7 hat. Typische Beispiele von verwendbaren 15 Katalysatoren sind Natrium, Kalium, Lithium, Natriummethylat, Kaliumbutylat, Lithiumäthylat, Magnesiumäthylat, Natriumoxyd, Kaliumhydroxyd, Calciumoxyd, Bariumhydroxyd, Strontriumhydroxyd, Natriumperoxyd, Magnesiumperoxyd, Kaliumcyanid, Lithiumcyanid, Ba- 20 Fachmann aus den Lehren der vorliegenden Erfindung. riumcyanid, Magnesiumcyanid, Natriumcarbonat, Kaliumcarbonat, Trimethylamin, Triäthylamin, Triäthanolamin, Octyldimethylamin, N-Methylmorpholin, Benzyltrimethylammoniumhydroxyd, Dibenzyldimethylammo-Dodecenyltriäthylammonium- 25 und hydroxyd. Die Alkalicyanide sind für die vorliegenden Zwecke besonders wirksam.

Ausbeuten von etwa 50 bis 90% und mehr werden laufend erzielt. Unter den erfindungsgemäßen Reaktions-bedingungen tritt praktisch keine Polymerisation der 30 Cyanwasserstoffsäure ein, und es bildet sich im wesentlichen keine Cyclisierungs-, Kondensations- oder Zersetzungsverbindung, wogegen die bisher bekannten Cyanhydrierungsverfahren häufig durch eines oder beide

Die vorliegende Umsetzung kann so durchgeführt werden, daß man die Cyanwasserstoffsäure mit oder ohne Lösungsmittel in ein Gemisch aus Katalysator und olefinischem carbocyclischem Keton einführt. Es wird bevorzugt, einen geringen Überschuß an Keton zu ver- 40 wenden, um jede Neigung der Cyanwasserstoffsäure zur Polymerisierung auf ein Minimum herabzusetzen oder im wesentlichen auszuschalten. Ganz gleich, ob kontinuierlich oder diskontinuierlich gearbeitet wird, ist es im vorliegenden Fall von Vorteil, zuerst den Katalysator und 45 einen Teil des Ketons in das Reaktionsgefäß zu geben. Zu diesem Gemisch wird dann ein aus dem gleichen Keton und Cyanwasserstoffsäure bestehendes Gemisch zugegeben. Es ist auch möglich, als Anfangsbeschickung mit dem Katalysator einen Teil des bei einem früheren Versuch erhaltenen Ketonitrils zu verwenden. Zu diesem Gemisch wird ein Gemisch aus Cyanwasserstoffsäure und Keton zugegeben. Dadurch, daß man als Teil der Anfangsbeschickung das Keton oder das Ketonitril verwendet, wird die Bildung von unerwünschten Kondensations- 55 produkten auf ein Minimum herabgesetzt oder völlig beseitigt. Dies führt bei minimalen Mengen an unerwünschten Produkten zu maximalen Ausbeuten, wodurch das Problem der Trennung und Isolierung des Produktes auf ein Minimum beschränkt oder praktisch völlig ausgeschaltet wird. Bei der vorliegenden Erfindung ist es gleichfalls zweckmäßig — ganz gleich, ob kontinuierlich oder diskontinuierlich gearbeitet wird - ,wenn der gesamte Katalysator zu Beginn der Umsetzung oder gewird jedoch besonders darauf hingewiesen, daß die Cyanwasserstoffsäure nicht auf einmal, sondern mit solcher Geschwindigkeit zugesetzt werden soll, daß konstante Reaktionsbedingungen aufrechterhalten werden. Sind

Cyanwasserstoffsäure zugegen, so können unerwünschte Polymerisationen begünstigt werden. Die Cyanwasserstoffsäure kann je nach Wunsch in gasförmigem oder flüssigem Zustand in das Reaktionsgefäß eingeführt werden. Es wird bevorzugt, Cyanwasserstoffsäure allein oder in Lösung mit dem Keton zu einem Gemisch aus Keton und Katalysator oder Nitrilprodukt und Katalysator bei einer mäßigen Geschwindigkeit zuzugeben, so daß die Umsetzung sofort stattfindet, wenn die beiden Reaktionsteilnehmer in Gegenwart des Katalysators und unter den angegebenen Reaktionsbedingungen aufeinandertreffen. Bei einer solchen Anordnung findet keine merkliche Polymerisation der Cyanwasserstoffsäure statt, und dementsprechend sind die Ausbeuten an dem gewünschten Produkt sehr hoch. Vorzugsweise soll die in dem Reaktionsmedium anwesende Cyanwasserstoffsäure zu jedem gegebenen Zeitpunkt äquimolare Mengen an Keton-Reaktionsteilnehmer nicht überschreiten. Die Vorteile der obigen Verfahrensweise ergeben sich für den

Zusammenfassend muß darauf hingewiesen werden, daß zur Erreichung der erfindungsgemäßen Ziele die Verwendung der aufgeführten Reaktionsteilnehmer der angegebenen Temperaturen und der Einführungsgeschwindigkeit der Cyanwasserstoffsäure in das Reaktionsgefäß von Bedeutung ist.

In einigen Fällen kann es sein, daß der Katalysator nicht oder wenigstens nicht ganz in dem Reaktionssystem löslich ist, und es ist deshalb zur Gewährleistung der höchsten Aktivität des Katalysators eine gute Durchmischung durch beispielsweise Rühren oder Schütteln wünschenswert. Rühren ist im allgemeinen von Vorteil.

Nach beendeter Umsetzung wird der Katalysator durch Zugabe von Säure, vorzugsweise einer Mineralsäure, wie dieser unerwünschten Ergebnisse beeinträchtigt wurden. 35 Phosphorsäure, Schwefelsäure oder Chlorwasserstoffsäure, neutralisiert. Das Reaktionsgemisch kann dann gewünschtenfalls filtriert und dann vorzugsweise bei vermindertem Druck destilliert werden. Diese Produkte, in technischen Mengen auf einen inerten Träger angewendet, sind als Mittel gegen Moskitos und Nagetiere von Nutzen. Sie sind gleichfalls als Weichmacher für Nitrocellulose wertvoll.

> Die vorliegende Erfindung wird durch die folgenden Beispiele, die nur der Erläuterung dienen, besser verständlich. Bei den angegebenen Teilen handelt es sich stets um Gewichtsteile.

Beispiel 1

In einen Dreihalskolben mit Rührwerk, Thermometer, einem mit Eiswasser gekühlten Kondensator und Tropftrichter mit Druckausgleich werden 293,7 Teile eines Gemisches aus 93%, Cyclohexenylcyclohexanon und 7%Cyclohexalidencyclohexanon, 293,7 Teile Dimethylformamid und 5,4 Teile Kaliumcyanid gegeben. Das Gemisch wird unter Rückfluß erhitzt (160°C), und ein Gemisch aus 46,8 Teilen Dimethylformamid und 46,8 Teilen Cyanwasserstoff wird während eines Zeitraums von 45 Minuten tropfenweise zugesetzt. Während dieser Zugabe fällt die Temperatur auf 146°C. Man rührt und erhitzt das Ge-60 misch noch eine weitere Stunde. Dabei steigt die Temperatur auf 157°C. Das Reaktionsgemisch wird dann auf Raumtemperatur abgekühlt und 6,4 Teile wäßrige 85% jege Phosphorsäure werden zugegeben. Das Gemisch wird unter vermindertem Druck destilliert. Das Produkt wird bei wünschtenfalls während derselben zugesetzt wird. Es 65 163 bis 174°C und einem absoluten Druck von 2,8 mm Hg gewonnen. Beim Stehenlassen kristallisiert es aus und wird dann aus siedendem Isooctan umkristallisiert. Das umkristallisierte Produkt ist ein weißer Feststoff, der bei 85 bis 86°C schmilzt und 6,80°/o Stickstoff enthält (theonämlich zu irgendeinem Zeitpunkt große Mengen an 70 retisch 6,83%). Das Produkt wird als 1-(2-Oxocyclohexyl)-cyclohexan-1-carbonsäurenitril identifiziert und entspricht der folgenden Formel:

Die Ausbeute beträgt 83%.

Auf ähnliche Weise stellt man Acetonylcyclohexan- 15 carbonsäurenitril her, wenn man als olefinisches carbocyclisches Keton eine im Gleichgewicht befindliche Mischung von Cyclohexenylaceton und Cyclohexylidenaceton verwendet. In gleicher Weise ergibt 1-Cyclohexyliden-1-(1-Oxooctyl)-cyclohexancarbonsäurenitril 20 2-Cyclopentyliden-3-hexanon 1-(1-Methyl-2-oxopentyl)-cyclopentancarbonsäurenitril.

Beispiel 2

552 Teile Isophoron, 552 Teile Dimethylacetamid und 25 14 Teile Kaliumcarbonat werden in ein Reaktionsgefäß gegeben und auf 175° Cerhitzt. 113 Teile flüssiger Cyanwasserstoff werden 3 Stunden tropfenweise mit einer solchen Geschwindigkeit zugegeben, daß die Gefäßtemperatur zu keinem Zeitpunkt unter 160°C absinkt. 23 Teile 30 einer wäßrigen 85% igen Phosphorsäure werden zugegeben, und das Gemisch wird dann unter vermindertem Druck destilliert. Das Produkt (465 Teile) hat einen Siedepunkt von 119°C bei einem absoluten Druck von 1,7 mm Hg und kristallisiert bei Kühlung aus. Das Produkt wird in 35 1000 Teilen heißem Isopropanol gelöst, und das Gemisch zuerst auf 0°C und dann auf -25°C gekühlt. Die sich bildende Fällung wird abfiltriert, mit kaltem Isopropanol gewaschen und bei Raumtemperatur an der Luft getrocknet. Das weiße kristalline Produkt (432 Teile) hat 40 einen Schmelzpunkt zwischen 68 und 70°C und einen

Stickstoffgehalt von 8,46% (theoretisch 8,48%).

Das Produkt wird als 5-Oxo-1,3,3-trimethylcyclohexancarbonsäurenitril identifiziert und entspricht der Formel:

$$CH_{2} CH_{3} CN$$

$$CH_{2} CH_{3} CH_{3}$$

$$CH_{3} CH_{3}$$

Auf ähnliche Weise ergeben 2-Methyl-1-cyclopentenylmethylketon 2-Acetyl-1-methylcyclopentancarbonsäurenitril, 2-Methyl-3-butylcyclopent-2-en-1-on 3-Oxo-2-methyl-1-butylcyclopentancarbonsäurenitril und 2-(1-Cyclohexen-1-yl)-cyclopentanon 1-(2-Oxocyclopentyl)-cyclo- 60 nitril identifiziert. Der Stickstoffgehalt beträgt 8,35% hexancarbonsaurenitril.

Beispiel 3

Ein Gemisch aus 76 Teilen 2-Isopropyliden-5-methylcyclohexanon (Pulegon), 38 Teilen 1-Methyl-2-pyrroli- 65 pentancarbonsäurenitril aus 1-Benzoyl-2-methylcyclodinon und 1,6 Teilen Kaliumcyanid wird auf 180°C erhitzt, und 14 Teile HCN werden allmählich mit einer solchen Geschwindigkeit zugegeben, daß die Gefäßtemperatur nicht unter 170°C absinkt. Das Gemisch

erhält 81 Teile rohes Produkt mit einem Siedepunkt von 120 bis 145°C bei einem absoluten Druck von 1,4 mm Hg. Erneute Destillation unter vermindertem Druck ergibt das reine flüssige Produkt mit einem Siedepunkt von 5 120 bis 125°C bei einem absoluten Druck von 1,4 mm Hg, einem no-Wert von 1,4669 und einem Stickstoffgehalt von 7,85 $^{\circ}$ / $_{0}$ (theoretischer Wert für $C_{11}H_{17}ON = 7,83\,^{\circ}$ / $_{0}$). Auf genau dieselbe Art werden 1-(1-Pentyl-2-oxooctyl)-cyclopentancarbonsäurenitril aus 6-Cyclopentyliden-

7-oxotridecan, 3-Methyl-2-oxo-1-isopropylcyclohexancarbonsäurenitril aus 2-Isopropyliden-6-methylcyclohexanon und 1-Lauryl-2-methyl-3-oxocyclohexancarbonsäurenitril aus 2-Methyl-3-dodecylcyclohex-2-en-1-on hergestellt.

Beispiel 4

Ein Gemisch aus 138 Teilen Cyclohexylidenaceton und 3,3 Teilen Kaliumcyanid wird auf 150°C erhitzt, und 30 Teile HCN werden tropfenweise zugegeben, während die Temperatur bei 140 bis 150°C gehalten wird. Nachdem die Zugabe beendet ist, wird das Gemisch 20 Minuten bei 150 bis 160°C gehalten, dann wird es mit 4 Teilen wäßriger 85% iger Phosphorsäure behandelt und unter vermindertem Druck destilliert. Das Produkt, 1-(2-Oxopropyl)-cyclohexancarbonsäurenitril wird in 75% ausbeute erhalten. Durch Elementaranalyse wurde seine Formel C10 H15 ON bewiesen. Die Analyse ergab einen Stickstoffgehalt von 8,40% (theoretisch 8,48%). Das Produkt siedet bei 125 bis 135°C bei 1 mm abs. Das Verfahren kann dadurch modifiziert werden, daß 20 Teile 1-(2-Oxopropyl)cyclohexancarbonsäurenitril und 3,3 Teile Kaliumcyanid in das Reaktionsgefäß gegeben werden. Dieses Gemisch wird auf 150°C erhitzt und ein Gemisch von 138 Teilen Cyclohexylidenaceton und 30 Teilen HCN langsam zugegeben, während eine Temperatur von 150 bis 160°C aufrechterhalten wird. Bei dieser Abwandlung beträgt die Ausbeute nur 70%. Unter Erzielung zufriedenstellender Ausbeuten können bei dieser Abwandlung Temperaturen bis zu etwa 200°C angewendet werden.

Auf die gleiche Weise wird (2,2-Dimethylbicyclo-[2,2,1]-heptyliden)-aceton zu 3,3-Dimethyl-2-(2-oxo-propyl)-bicyclo-[2,2,1]-heptan-2-carbonsäurenitril in 50% iger Ausbeute umgewandelt. Eine etwas bessere Ausbeute wird bei Verwendung von 1-Methyl-2-pyrroli-45 dinon als Lösungsmittel erzielt.

Beispiel 5

Zu einem Gemisch aus 150 Teilen 1-Acetyl-2-methylcyclohexen, 50 Teilen Dimethylformamid und 25 Teilen Natriumcyanid werden unter Rückfluß langsam 30 Teile HCN zugegeben, die in 50 Teilen Dimethylformamid gelöst sind. Die Temperatur wird durch Steuerung der Zugabegeschwindigkeit der HCN-Lösung zu dem Reaktionsgemisch auf 145 bis 155°C gehalten. Das Gemisch wird eine Stunde nach Abschluß der Säurezugabe erhitzt, dann werden 4 Teile wäßrige 85% ige Phosphorsäure zugegeben, und das Gemisch wird unter vermindertem Druck destilliert. Durch Elementaranalyse wird das Produkt als 2-Acetyl-1-methylcyclohexancarbonsäure-(theoretisch 8,48%). Das Produkt wurde in einer Ausbeute von 76% erhalten und siedet bei 110 bis 120°C bei 0,3 mm absolut.

Auf gleiche Weise werden 2-Benzoyl-1-methylcyclopenten und 2-Stearyl-1-methylcyclohexancarbonsäurenitril aus 1-Stearyl-2-methylcyclohexen erhalten. Eine bessere Ausbeute an 2-Stearyl-1-methylcyclohexancarbonsäurenitril wird erhalten, wenn 1-Methyl-2-pyrroliwird unter vermindertem Druck destilliert, und man 70 dinon an Stelle von Dimethylformamid als Lösungs5

mittel verwendet wird, und eine noch bessere Ausbeute wird erhalten, wenn die Reaktionstemperatur auf 200 bis 225°C erhöht wird.

PATENTANSPROCHE:

1. Verfahren zur Herstellung von alicyclischen Cyanketonen, die wenigstens einen fünf- bis sechsgliedrigen Ring bzw. Bicyclo-[2,2,1]-heptylrest enthalten der allgemeinen Formel

in der R_1 , R_2 und R_4 jeweils eine Alkyl-, Aryl-, Arylalkyl- oder Alkylarylgruppe, R_3 ein Wasserstoffatom, eine Methyl- oder Äthylgruppe, R_1 und R_2 20 zusammen mit dem zur Carbonylgruppe β -ständigen Kohlenstoffatom, R_1 und R_3 zusammen mit den zur Carbonylgruppe α - und β -ständigen Kohlenstoffatomen, R_2 und R_4 zusammen mit dem Carboxylkohlenstoffatom und den dazu α - und β -ständigen Kohlenstoffatom und dem α -Kohlenstoffatom einen fünfbis sechsgliedrigen alicyclischen Ring bedeuten, R_1 und R_2 zusammen auch einen Bicyclo-[2,2,1]-heptylrest bedeuten können und in der wenigstens ein fünfbis sechsgliedriger alicyclischer Ring bzw. Bicyclo-[2,2,1]- heptylrest enthalten ist, dadurch gekennzeichnet,

daß man Cyanwasserstoffsäure und eine Verbindung der allgemeinen Formel

$$\begin{array}{c|c} R_{1} & R_{3} \\ \hline \\ R_{2} & C = C - C - R_{4} \\ \hline \\ & O \end{array}$$

in der die Reste R₁ bis R₄ die vorstehend angegebene Bedeutung besitzen, bei einer Reaktionstemperatur von etwa 125 bis 275°C, vorzugsweise 150 bis 225°C, in Gegenwart eines stark alkalischen Cynanidionen bildenden Katalysators, gewünschtenfalls in Gegenwart eines stark polaren Lösungsmittels, umsetzt und die Cyanwasserstoffsäure im wesentlichen mit der Geschwindigkeit zugibt, mit der sie sich umsetzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Ausgangsverbindung der vorstehend angegebenen allgemeinen Formel mit nicht mehr als 23 Kohlenstoffatomen verwendet wird.

3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Reaktionsteilnehmer in im wesentlichen äquimolekularen Mengen mit etwa der gleichen Geschwindigkeit, wie sich das Reaktionsprodukt bildet, zusammengebracht werden.

In Betracht gezogene Druckschriften:
Deutsche Patentschrift Nr. 691 621;
französische Patentschrift Nr. 820 188;
Stouben-Weyl, Methoden der organ. Chemie, Bd. 8,
1952, S. 272-237.