

Numerical Analysis MS-C1650

Tölle/Nyman

Exercises, Week 19, 2022

 $DATE^1$

On assignments: Submit homework to your assistant electronically via the course pages. MATLAB-assignments are submitted via Peergrade.

1 Quadratic and Cubic Hermite Interpolation

Given interpolating values y_1 , y_2 and derivatives s_1 , s_2 at two nodes a < b, let $z \in (a,b)$ be a number called a knot. We seek a piecewise quadratic polynomial $g: [a,b] \to \mathbb{R}$ in the form

$$g(x) = \begin{cases} p_1(x), & \text{if } a \le x < z, \\ p_2(x), & \text{if } z < x \le b, \end{cases}$$

with $p_1, p_2 \in \mathbb{P}_2$ such that

$$q(a) = y_1, \ q'(a) = s_1, \ q(b) = y_2, \ q'(b) = s_2.$$

Moreover, we require

$$p_1(z) = p_2(z), p'_1(z) = p'_2(z),$$

which means that $g \in C^1[a,b]$. g is a unique quadratic Hermite interpolant.

EXERCISE 1

(a) Verify that $g:[0,2]\to\mathbb{R}$ given by

$$g(x) = \begin{cases} 0, & \text{if } 0 \le x < 1, \\ 16(x-1)^2, & \text{if } 1 < x \le 2, \end{cases}$$

is a quadratic Hermite interpolant with a knot at z=1 interpolating $f(x)=x^4$ at 0 and 2.

¹Published on 2022-05-05.

- (b) Find $g_3(x)$ the cubic Hermite interpolant interpolating the same data.
- (c) Plot f, g_2 , and g_3 on the interval [0, 2].

2 Quadratic and Cubic Hermite Interpolation Using the Bernstein Basis

We recall that a polynomial $p \in \mathbb{P}_d$ is said to be in Bernstein form of degree d on an interval $[\alpha, \beta]$, with $h = \beta - \alpha > 0$, if

$$p(x) = \sum_{j=0}^{d} c_j B_j^d \left(\frac{x-\alpha}{h} \right), \text{ where } B_j^d(t) = \binom{d}{j} t^j (1-t)^{d-j}, \ d \ge 0.$$

Moreover for $d \geq 2$ the values and derivatives at the endpoints are given by

$$p(\alpha) = c_0, \ p(\beta) = c_d, \ p'(\alpha) = \frac{d}{h}(c_1 - c_0), \ p'(\beta) = \frac{d}{h}(c_d - c_{d-1}).$$

EXERCISE 2

- (a) Consider cubic Hermite interpolation on [a, b]. Compute first the general form of the coefficients c_j in the Bernstein form of degree 3 and then apply them to the setup of Exercise 1.
- (b) Compute the corresponding quadratic Hermite interpolant g(x) above in Bernstein form. (Use notation c_{1j}, c_{2j}).

EXERCISE 3

- (a) Write a function quadhermite.m that computes the c_{1j}, c_{2j} , given arguments $a, b, z, y_1, y_2, s_1, s_2$.
- (b) Let the knot z = 1. Plot first together f, g_3 , g_2 , where $f(x) = x^4$ on the interval [0, 2]. Second, plot together errors $f g_2$ and $f g_3$.

3 Splines and Bezier Curves

EXERCISE 4 Draw one of your initials on (graph or grid) paper and design a font using either splines or Bezier curves. Implement your font with MATLAB.