Multivariable calculus

Vaibhav Venkat

January 6, 2024

Contents

1	Derivatives			
	1.1	Derivatives in several variables		
		1.1.1	Partial Derivatives	2
		1.1.2	Partial derivatives in \mathbb{R}^n	3
		1.1.3	The derivative in several variables	:
		1.1.4	Jacobian Matrix	3

Chapter 1

Derivatives

1.1 Derivatives in several variables

1.1.1 Partial Derivatives

Definition 1.1. Partial derivative A partial derivative is differentiating a function with respect to only one variable.

$$\frac{\partial f}{\partial a_i} = \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{h}$$

Remark. Just imagine every other a_k where $k \in \{1, ..., n\}$ is a constant.

Example. Let

$$f(x,y) = x^2 + x^3y^2 + y^{78}$$
$$\frac{\partial f}{\partial x} = 2x + 3x^2y^2 + 0$$

Example. Let

$$f(a,b) = a\sin(b) + b^{2}$$
$$\frac{\partial f}{\partial b} = a\cos(b) + 2b$$

 \Diamond

 \Diamond

1.1.2 Partial derivatives in \mathbb{R}^n

Just evaluate the derivative at each value

Example. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be

$$f(x,y) = (x^{2}y, \cos(y))$$
$$\frac{\partial f}{\partial y} = (x^{2}, -\sin(y))$$
$$\frac{\partial f}{\partial x} = (2xy, 0)$$

 \Diamond

1.1.3 The derivative in several variables

Before we start differentiating, it is helpful to note that the previous definition(s) of derivatives will not work for all dimensions, thus, we come up with a generalization

Definition 1.2. Derivative (Alternate) f is differntiable at α with the derivative β if and only if

$$\lim_{h\to 0}\frac{(f(a+h)-f(a))-(\beta\alpha)}{h}$$

1.1.4 Jacobian Matrix

Definition 1.3. Jacobian Matrix Let **S** be a subset of \mathbb{R}^n .

The Jacobian matrix of $f:S\to\mathbb{R}^m$ is an $m\times n$ matrix of the partial derivatives of f at α

$$|\mathbf{J}f(\alpha)| = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\alpha) & \dots & \frac{\partial f_1}{\partial x_n}(\alpha) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\alpha) & \dots & \frac{\partial f_m}{\partial x_n}(\alpha) \end{pmatrix}$$

Example. Let $f(x, y) = (x^3y, 2x^2y^2, xy)$

$$\begin{pmatrix} 3x^2y & x^3 \\ 4xy^2 & 4x^2y \\ y & x \end{pmatrix}$$

 \Diamond

Because of this, we have to update our derivative definition

Definition 1.4. Derivative Let $\mathbf{S} \subset \mathbb{R}^n$ and let $f: S \to \mathbb{R}^m$. Let α be a point in \mathbf{S} . If $\mathbf{L}: \mathbb{R}^n \to \mathbb{R}^m$, such that

$$\lim_{\vec{h}\to 0}\frac{(f(a+h)-f(a))-\mathbf{L}(\vec{h})}{\vec{h}}=\vec{0}$$

Then f is differentiable at α , $\mathbf L$ is the unique derivative of f, which is denoted f'