correlation...one

TECH FOR JOBS

CONFIDENCE

KNOWLEDGE

Fundamentally, data analytics is about storytelling and truth-telling.

Analytics Paradigm

Regardless of type or industry, this paradigm provides a repeatable pathway for effective data problem solving.

Data Wrangling

6

Conditionals: If This, Then That

Conditionals present a way to control the flow of logic based on certain criteria being met. This is a **core building block** of all languages.

Conditionals: If This, Then That

8

Ooh...Coding! (Sort Of)

=IF(AND(D2>5, D2<10), TRUE, FALSE)

11

Conditionals: If This, Then That

Nesting conditionals are powerful, but can become convoluted very quickly!

Types of Data

Values used to describe the center of a data set.

Central Tendency

Three most common measures of central tendency:

Mean

The "arithmetic" average

To calculate: The sum of all values, divided by the number of values

Median

The middle value of a data set

To calculate: Sort the data set and find the center

Mode

The most frequent value of a data set

To calculate: Count the frequency of each value in a data set, determine the most frequent value

The mean, median and mode.

The mean, median and mode.

Variability of a Data Set

Three summary statistics metrics for describing variability:

Variance

Standard Deviation

Z-Score

Variance

Used to describe how far values in the data set are from the mean

Describes how much variation exists in the data

Variance considers the distance of each value in the data set from the center of the data

The value of the one observation

The mean value of all observations

$$S^2$$

$$\sum (x_i - \bar{x})^2$$

The number of observations n-

Standard Deviation

Describes how spread out the data is from the mean

Calculated from the square root of the variance

In the same units of measurement as the mean

Standard Deviation

Square root of the variance; a measure used to quantify the dispersion of a set of observations.

Z-Score

Z-Score describes a single value's distance from the mean of the data set The distance is in terms of standard deviations. Can be positive or negative:

The smaller the z-score, the closer the value is to the mean

Z-Score

Quantiles: Used to Describe Segments of a Dataset

Quantiles separate a sorted dataset into equally sized fragments.

The two most popular types of quantiles are quartiles and percentiles.

Outliers

Suspicious values are called potential outliers. An outlier is a data point that differs from the rest of a data set. Outliers can inaccurately skew a data set.

Qualitatively

Use **box-and-whisker plots** to visually identify potential outliers.

29

Quantitatively

Determine the outlier boundaries in a dataset by using the $1.5 \times IQR$ rule.

The IQR is the range between the first and the third quartile.

Anything less than, or below, Quartile 1 - (1.5 \times IQR) might be an outlier.

Anything greater than, or above, Quartile $3 + (1.5 \times IQR)$ might be an outlier.

1

Qualitatively

Use **box-and-whisker plots** to visually identify potential outliers.

Other Visuals

Use **Histograms** to visually identify potential outliers.

Scatter plots are a powerful visualization tool!

Visualizes the comparison between two variables:

Correlation

Correlation

