ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ

Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет» (ГАОУ ВО МГПУ)

Институт цифрового образования Департамент информатики, управления и технологий

Лабораторная работа № 2.1 Вариант 30

по дисциплине «Платформы Data Engineering»

Выполнил: студент группы БД-251м Направление подготовки/Специальность 38.04.05 - Бизнес-информатика Трухачев Никита Алексеевич (Ф.И.О.)

Проверил: Доцент, к.т.н (ученая степень, звание) Босенко Тимур Муртазович (Ф.И.О.)

Краткое описание архитектуры проекта

Слой intermediate служит для подготовки и преобразования данных после стадии staging, но до финальных витрин. Здесь выполняются сложные джойны, агрегации и бизнес-преобразования, которые являются общими для нескольких витрин. Например, в int_orders_pivoted.sql данные о заказах, трансформируются в удобную для анализа структуру. Это позволяет избежать дублирования логики и повышает переиспользуемость кода.

Слой marts содержит готовые к использованию аналитические витрины, ориентированные на конкретные бизнес-сценарии, такие как анализ продаж (mart_monthly_sales) или расчёт LTV клиентов (mart_customer_ltv). Разделение на intermediate и marts необходимо для соблюдения принципа единой ответственности: промежуточный слой отвечает за техническую подготовку данных, а витрины — за предоставление понятных и целостных бизнес-метрик конечным потребителям (аналитикам, отчетам).

dbt run

dbt run --select mart_valuable_dormant_customers

dbt test

dbt test --select mart_pareto_customer_analysis

dbt snapshot

Архитектура DWH

Lineage graph

Скриншот с данными из индивидуальной mart-модели. Запрос

```
try:
    print("\n Спящие ценные клиенты. Определяет клиентов из топ-25% по общей выручке, которые не совершали покупок последние 6 месяцев")
    df_facts = pd.read_sql("SELECT * FROM public_dw_test.mart_valuable_dormant_customers;", engine)
    display(df_facts)

except Exception as e:
    print(f" ➤ He удалось загрузить dw_test.sales_fact: {e}")
```

Скриншот с данными из индивидуальной mart-модели. Ответ

cus	stomer_id	customer_name	segment	city	state	total_orders	total_sales	total_profit	avg_order_value	first_order_date	last_order_date	days_since_last_order	total_quantity	avg_discount	sales_percentile	customer_statu
0	TC-20980	Tamara Chand	Consumer	Decatur	Alabama	5	56368.0100	26617.4351	1761.500313	2016-11-07	2018-11-26	2520	123	0.106250	0.000000	DORMANT_VALUAB
1	RB-19360	Raymond Buch	Consumer	Auburn	California	6	44764.3600	20798.2696	1065.818095	2018-04-01	2019-09-25	2217	164	0.100000	0.001008	DORMANT_VALUABI
2	TA-21385	Tom Ashbrook	Consumer	Chicago	Illinois	4	43729.4600	14100.4589	1507.912414	2016-09-12	2019-10-22	2190	103	0.082759	0.002016	DORMANT_VALUAB
3	SC-20095	Sanjit Chand	Consumer	Concord	Arkansas	9	39919.1680	16417.5512	725.803055	2016-02-12	2019-01-15	2470	209	0.061818	0.003024	DORMANT_VALUAB
4	AB-10105	Adrian Barton	Consumer	Bloomington	Arizona	10	39124.4880	15770.2795	954.255805	2016-12-20	2019-11-19	2162	168	0.253659	0.004032	DORMANT_VALUAB
4	NS-18640	Noel Staavos	Consumer	Baltimore	California	13	8513.4010	-348.0493	113.512013	2016-06-25	2019-07-09	2295	326	0.200000	0.245968	DORMANT_VALUAB
5	SC-20020	Sam Craven	Consumer	Houston	Michigan	5	8508.4412	-265.8690	181.030664	2016-03-03	2017-11-10	2901	172	0.192340	0.246976	DORMANT_VALUAB
6	ND-18460	Neil Ducich	Consumer	Chandler	Alabama	6	8470.3750	1256.4941	403.351190	2016-02-06	2019-06-30	2304	93	0.100000	0.247984	DORMANT_VALUAB
7	AP-10915	Arthur Prichep	Consumer	Columbus	California	10	8463.4400	1551.5263	111.361053	2016-08-23	2019-09-23	2219	257	0.086842	0.248992	DORMANT_VALUAB
8	MN-17935	Michael Nguyen	Consumer	Clinton	Maryland	6	8457.5580	1411.3529	352.398250	2016-02-16	2019-11-26	2155	90	0.250000	0.250000	DORMANT_VALUABI

Вывод. В чем преимущество использования промежуточных моделей и витрин по сравнению с работой напрямую с единой таблицей фактов?

Использование промежуточных моделей и витрин данных предоставляет ключевое преимущество в виде декомпозиции сложности. Вместо работы с единой громоздкой таблицей фактов, которая содержит всю сырую информацию, сложные бизнес-преобразования разбиваются на управляемые этапы. Промежуточные модели (intermediate) абстрагируют техническую сложность — такие операции, как джойны нескольких таблиц, очистка данных или предварительные агрегации — что делает логику прозрачнее и значительно упрощает тестирование и повторное использование кода.