Dr. Raphael S. Steiner

Aufgaben: Zwei Quadrate Satz

1. Zeige, dass für eine Primzahl $\mathbb{N} \ni p \equiv 1 \mod (4)$ die zwei ganzen Zahlen $x,y \in \mathbb{Z}$ für welche $p = x^2 + y^2$ gilt bis auf Reihenfolge und Vorzeichen eindeutig bestimmt sind.

Hinweis: Betrachte $a^2(x^2+y^2)-x^2(a^2+b^2)$, wobei $p=a^2+b^2$ eine andere Lösung ist.

Lösung:

Seien, a, b, x, y ganze Zahlen mit $a^2 + b^2 = p = x^2 + y^2$. Dann gilt,

$$p \mid a^2(x^2 + y^2) - x^2(a^2 + b^2) = a^2y^2 - b^2x^2 = (ay - bx)(ay + bx).$$

Da p prim ist können wir zwei Fälle unterscheiden.

1) **Fall:** $p \mid ay - bx$

Wir haben

$$p^{2} = (a^{2} + b^{2})(x^{2} + y^{2}) = (ay - bx)^{2} + (ax + by)^{2}.$$

Es folgt, dass $p \mid ax + by$ und weiter, dass entweder ay - bx = 0 oder ax + by = 0.

1a) Fall: ay - bx = 0

Es gilt dann

$$y^2p = y^2(a^2 + b^2) = b^2(x^2 + y^2) = b^2p \Rightarrow y = \pm b \Rightarrow x = \pm a.$$

1b) Fall: ax + by = 0

Es gilt dann

$$x^2p = x^2(a^2 + b^2) = b^2(y^2 + x^2) = b^2p \Rightarrow x = \pm b \Rightarrow y = \pm a.$$

2) Fall: $p \mid ay + bx$

Wir haben

$$p^2 = (a^2 + b^2)(x^2 + y^2) = (ay + bx)^2 + (ax - by)^2.$$

Es folgt, dass $p \mid ax - by$ und weiter, dass entweder ay + bx = 0 oder ax - by = 0.

2a) Fall: ay + bx = 0

Es gilt dann

$$y^2p = y^2(a^2 + b^2) = b^2(x^2 + y^2) = b^2p \Rightarrow y = \pm b \Rightarrow x = \pm a.$$

2b) Fall: ax - by = 0

Es gilt dann

$$x^{2}p = x^{2}(a^{2} + b^{2}) = b^{2}(y^{2} + x^{2}) = b^{2}p \Rightarrow x = \pm b \Rightarrow y = \pm a.$$

2. Sei $p \in \mathbb{N}$ eine Primzahl und $x, y \in \mathbb{Z}$ zwei ganze Zahlen, welche teilerfremd zu p sind. Nehme an, dass $p \mid x^2 - xy + y^2$ und folgere, dass entweder p = 3 oder $p \equiv 1 \mod (6)$.

HS 2021

Hinweis: $(x + y)(x^2 - xy + y^2) = x^3 + y^3$.

Lösung:

Es gilt

$$p \mid x^2 - xy + y^2 \mid x^3 + y^3$$

und ferner, da y und p teilerfremd sind, dass $(xy^\star)^3 \equiv -1 \mod (p)$ für ein multiplikatives Inverse y^\star von y modulo p. Sei $z \in \mathbb{Z}$ eine ganze Zahl, sodass $z \equiv xy^\star \mod (p)$. Dann ist die multiplikative Ordnung r von z modulo p ein Teiler von 6, da $z^6 \equiv (-1)^2 \equiv 1 \mod (p)$. Es gilt die Fälle r = 1, 2, 3, 6 zu unterscheiden. Falls r = 1, dann gilt $z \equiv 1 \mod (p)$ und folglich $x \equiv y \mod (p)$ und $0 \equiv x^2 - xy + y^2 \equiv x^2 \not\equiv 0 \mod (p)$ — ein Widerspruch!

Falls r=2, dann gilt $x^2 \equiv y^2 \mod (p)$ und somit $0 \equiv x^2 - xy + y^2 \equiv y(2y-x) \mod (p)$. Da y und p teilerfremd sind muss also $2y \equiv x \mod (p)$ gelten und somit $y^2 \equiv x^2 \equiv 4y^2 \mod (p)$. Also $p \mid 3y^2$, aber $p \nmid y$ und somit $p \mid 3$, folglich p=3.

Im Fall r=3 gilt $1 \equiv z^3 \equiv -1 \mod (p)$ und somit $p \mid 2$. Aber für zwei ungerade Zahlen x,y gilt $2 \nmid x^2 - xy + y^2 - \text{ein Widerspruch!}$

Im Fall r = 6 muss $6 \mid p - 1$ gelten, da nach dem kleinen Satz von Fermat gilt $z^{p-1} \equiv 1 \mod (p)$, und es foglt, dass $p \equiv 1 \mod (6)$.