

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Data structures
 - ➤ Skip lists
 - Definition
 - Search
 - Insertion/Deletion
 - Randomized data structure

Introduction and motivations

- Array: Static
 - >Good for a direct access of the elements
- Linked Lists: Dynamic
 - ➤ Good for insertion, deletion of elements
 - ➤ Problem:
 - o Search:
 - It depends on where we are in the list
 - Direct access: limited to Next element, or Next/Previous element
 - O Do we need to visit all the elements in a list to find one?
 - We can skip some elements

Introduction and motivations

- Linked lists
 - **≻**Benefits:
 - Easy to insert & delete in O(1) time
 - No need to estimate total memory needed
 - ➤ Drawbacks:
 - Difficult to search in less than O(n) time
 - Cannot use binary search
 - Hard to *jump* to the middle

Skip list

- Generalization of linked list
 - ➤ Bill Pugh (1990)
- Key features
 - ➤ Efficient (with high probability)
 - Expected search time is O(log n)
 - **≻**Randomized
 - o use random coin flips to build the data structure
 - ➤ Easy to implement

Skip list

Principle

- >Start with a sorted linked list
 - Add another layer linking every other element
 - Repeat for that layer, ...
- ➤ Hierarchy of sorted linked lists
 - Base: all the elements are connected
- ➤ Skip list = sorted linked list with shortcuts
 - o Example: access 28

Perfect skip list

- We started with a normal linked list (level 0)
- Then
 - right every other node in level 0 (2nd node from original list) and added them to level 1
 - riangleright every other node in level 1 (4th node from the original list) and raised it to level 2
 - riangleright every other node in level 2 (8th node from the original list) and raised it to level 3
- \rightarrow O(log₂(n)) levels
- Why
 - ➤ At each level, we visit at most 2 nodes
 - At any node, x, in level i, you sit between two nodes (p,q) at level i+1 and you will need to visit at most 1 other node in level i before descending
 - ➤ There are O(log(n)) levels
 - \circ \rightarrow visit at most O(2*log(n)) levels = O(log(n))

Skip list

- Example
 - ➤ A "perfect" skip list

Dummy header

Terminal sentinel

Skip list

Sorted skip list

- ➤ Keys in sorted order.
 - O(log n) levels
- > Each higher level contains half the elements of the level below it.
- ➤ Head and Tail nodes are in every level!
- ➤ Nodes have variable sizes:
 - Data + between 1 and O(log n) pointers
 - Pointers point to the start of each node

Skip lists

It is because higher level lists let you **skip** over many items

- To search for an item
 - >scan along the shortest list until passing the desired item.
 - >then drop down to a slightly more complete list at one level lower.
 - Finally, do a sorted sequential searching

- Example
 - ➤ Target = 71
 - Comparisons
 - Skip lists

Pseudo code: search(x)

If x == key
done
else If k < next key
go down a level
If k ≥ next key
go right in the current list

11

■ Example:

➤ Target = 96

- Remarks and analysis
 - ➤O(log n) levels
 - As we cut the # items by 2 at each level
 - ➤ Visit at most 2 nodes per level:
 - Target + Comparison to go down a level
 - ➤If more visits then you could have done it on 1 level higher up.
 - $\circ \rightarrow$ search time = O(log n).

Perfect vs. Random Skip list

- Perfect
 - ➤ What happens when you add or delete elements?
 - To maintain perfect balance
- Random skip list
 - ➤ Need to decide when to promote a node to some *i* level
 - ➤ Use **randomization**, with a chance of 50%, to decide when to promote a node

Insert and Delete

- Need to rearrange the entire data structure
 - ➤ Perfect Skip Lists
 - They are too structured to support efficient updates.
- Principle:
 - ➤ Relax the requirement that each level have **exactly half** the items of the previous level
- Instead:
 - ➤ We design the structure so that we expect 1/2 the items to be carried up to the next level
- Because Skip Lists are a randomized data structure
 - >/!\ The same sequence of inserts / deletes may produce different structures!!
 - It depends on the outcome of random coin flips.

Randomization

- Allows for some imbalance
 - ➤ Notion that we will retrieve in the trees! ◎
- Expected behavior (over the random choices)
 - **same** as with perfect skip lists.
- Principle:
 - ➤ Each node is promoted to the next higher level with probability 1/2
 - Expect 1/2 the nodes at level 1
 - Expect 1/4 the nodes at level 2
 - Expect 1/2ⁱ the nodes at level i
- expect # of nodes at each level is the same as with perfect skip lists.
 - In addition, expect the promoted nodes will be well distributed across the list

Randomization

- As nodes are inserted they are repeating trials of probability p
 (stopping when the first unsuccessful outcome occurs)
 - > it means we will not have an "every other" node promotion scheme
 - ➤ but the expected number of nodes at each level matches the non-randomized version

Warning:

- This scheme introduces the chance of some very high levels!
 - → usually cap the number of levels at some MAXIMUM value
 - However the expected number of levels is still log2 (n)

Example

•

How we decide the level of $12 \rightarrow Randomization$

Insertion

Randomized skip list

Delete

Randomized skip list

➤ Example: Remove 87

Worst case

- A worst case skip list
 - ➤ All the same height
 - > Just ascending or descending order of height
- But highly unlikely possibilities
 - ➤ the skip list will just be a linked list or
 - > the skip list will have every node at every level

Search time

- Search time with the randomized approach
 - ➤ Start at the node and walk backwards to the head node counting our expected number of steps
 - if we can move up a level we do so that we take the "faster" path and only move left if we can't move up
- Backward analysis
 - **≥**2 options
 - Probability of Case A: p
 - we added each level independently with probability p
 - Probability of Case B: 1-p
 - o the top level at level 0
 - o the current level where we found our search node = level k
 - expected max k = log2 (n)

Search time

- Define a recurrence relationship of the cost of walking back to level 0
 - ➤ Base case:

$$\circ$$
 C(0) = O(1)

- Only expect 1 node + head node at level 0
- \triangleright Recursive case: (p=0.5)

$$\circ$$
 C(k) = (1-p)(1+C(k)) + p(1+C(k-1))

- 1+C(k) = Case B and its probability is (1-p)
- 1+C(k-1) = Case A and its probability is p

$$\circ$$
 C(k) = 1/p + C(k-1)

$$\circ$$
 = 1/p + 1/p + C(k-2)

$$\circ$$
 = 1/p + 1/p + 1/p + C(k-3)

$$o = k/p = log_2(N) / p = O(log_2(N))$$

Conclusion

- Skip list
 - > Efficient data structure
 - > Probabilistic data structure
 - \triangleright "expected" O(log(n)) for insert, remove, and search operations
- Perfect and Randomized skip list
- Node structures are of variable size
 - > The size of a node doesn't change after its creation
 - ➤ Useful assumption:
 - o Knowledge about the maximum number of levels in advance

Algorithm	Average	Worst case
Space	O(<i>n</i>)	$O(n \log n)$
Search	O(log n)	O(n)
Insert	O(log n)	O(n)
Delete	O(log n)	O(n)

Questions?

Reading:

- ➤ Csci 115 book: Section 5.4 (Skip list)
- ➤ Pugh, W. Skip lists: A probabilistic alternative to balanced trees, Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

