IOWA STATE UNIVERSITY

Department of Economics, Department of Electrical & Computer Engineering

Report on:

ERCOT PNNL Contract 401882: *Start Date* 3/19/2018

Development of an Integrated Transmission and Distribution Test System to Evaluate Transactive Energy Systems

ISU Project Team:

PI Leigh Tesfatsion & Co-PI Zhaoyu Wang

Grad Research Assistant: Swathi Battula

PNNL/ISU Web Conference, 08 February 2019

ERCOT Contract: Presentation Outline

- Original Task/Milestone Schedule: M1-M3
- Updated Task/Milestone Schedule: M1-M3
- M3.2 Work to Date: Summary of AMES V5.0 Work to Date for Milestone M3.2
- M3.2 Work in Progress: Summary of AMES V5.0 Work in Progress for Milestone M3.2
- M3.2: Report on AMES V5.0 Verification Test Cases
 - Notes on AMES V5.0 Verification Test-Case Data Files
 - AMES PSST : Sequence of Events
 - Summary of Previous AMES V5.0 Verification Test Cases
 - Summary of Previous and Ongoing AMES V5.0 Verification Test Cases
 - Total Production Cost Modeling in AMES V5.0 for SCUC/SECD operations
 - Brief Summary of Planned Future AMES V5.0 Verification Test Cases

Original Task & Milestone Schedule

Milestone	Date Due	Original Description
M1	May 31, 2018	5-zone model of the old ERCOT system, posted to a web repository.
M2	Sep 30, 2018	Nodal model of the new ERCOT system, posted to a web repository.
M3	Sep 30, 2018	Submitted conference or journal paper on this work.

Updated Task & Milestone Schedule

Milestone	Date Due	Date Delivered	Fuller Descriptions of Actual Work
M1* DONE	May 31, 2018	June 5, 2018	Development of 8-Bus ERCOT model (with nodal locational marginal pricing); grid/load/gen data posted at PNNL repository
M2.1 DONE	Sept 30, 2018	August 1, 2018	Basic 8-Bus ERCOT Test System, implemented via AMES V3.1, posted at https://github.com/ITDProject/ERCOTTestSystem
M2.2 DONE	Sept 30, 2018	August 24, 2018	8-Bus ERCOT Test System (with wind power), implemented via AMES V3.2, posted at https://github.com/ITDProject/ERCOTTestSystem
M3.1 DONE	Sept 30, 2018	August 31, 2018	200-Bus ERCOT Test System (with wind power), implemented via AMES V3.2, posted at
			https://github.com/ITDProject/ERCOTTestSystem/tree/master/ERCOT_Test Systems/The 200Bus ERCOT Test System
M3.2**	Feb 28, 2019		200-Bus ERCOT Test System (with wind power), implemented via AMES V5.0, to be posted at PNNL/ISU repositories.
M3.3**	Feb 28, 2019		Paper to be submitted that focuses on the development of the ERCOT Test Systems

^{• *} M1 Modification (Ok'd by PNNL): For M1 we have skipped the modeling of the old (zonal) ERCOT system and instead directly worked to develop an 8-bus model of the new (nodal) ERCOT system.

^{• **} M3 Modification: Contract extension through Feb 28, 2019 received from PNNL on Dec 21, 2018, for completion of task M3

Summary of AMES V5.0 Work to Date for M3.2

- ☐ Extension of AMES V5.0 Capabilities for Milestone M3.2
 - [DONE] Coding for Daily DAM SCUC optimization
 - [DONE] Coding for RTM SCED optimization every M minutes (M user specified).
 - [DONE] Coding for FNCS integration to enable network co-simulation.
 - [DONE] Detailed documentation for analytical DAM SCUC/SCED optimization in AMES V5.0
 - [DONE] Basic documentation for AMES V5.0, including a detailed list for all parameters/flags and initial state variables that need user configuration.

Summary of AMES V5.0 Work to Date for M3.2 ... Continued

[DONE]

Modified `PSST' Code

- ➤ To ensure correct refreshing of initial DAM/RTM conditions for multiple-day runs.
- > To report DAM LMPs and GenCo Commitments back to the user.
- > To read 'startup' and 'shutdown' cost components from AMES
- To produce output messages related to solver, e.g. status of the solver, termination condition of the solver
- ➤ To include the parameter 'Maximum Time Limit' to allow the solver to terminate after the prescribed time has elapsed

Verification Tests Done

- Verified 'DAM SCUC' outcomes for their correctness for simple test cases
- ➤ Verified 'RTM SCED' outcomes for their correctness for simple test cases with RTM running every five minutes (i.e., M=5)
- Verified that AMES V5.0 runs for multiple days
- Verified that all the cost components from AMES are read correctly into the SCUC formulation

Summary of Work in Progress for Milestone M3.2

[IN PROGRESS] Additional Verification Checks for AMES V5.0 Code

- Additional DAM/RTM verification test cases are being formulated and conducted.
 - Example: Formulation of test cases with varied generator production cost coefficients and minimum generating capacity that permit validation of production cost component modeling for the SCUC optimization
- Need to ensure outcomes are reported properly back to the user. Additional data that need to be written to '.out' file are: RTM LMPs, RTM GenCo commitment data, DAM/RTM power flow data, LMP true costs, and generator profit/propensity data.
- ➤ Detailed verification of PSST code for validating SCUC optimization formulation, including both objective function and constraints.

[IN PROGRESS] Further Cleaning Up of AMES V5.0 Code

Current code includes unused functions that need to be removed.

Report on AMES V5.0 Verification Test Cases

Notes on AMES V5.0 Test-Case Data Files

- Input data files for verification test cases are located in the following GitHub website directory: AMES-V5.0\DATA\VerificationTestCases\
 - Intermediary output files:
 - Data files written by AMES V5.0
 - ✓ ReferenceModel.dat: This is an input file for PSST that contains input data required to solve SCUC.
 - ✓ RTReferenceModel.dat: This is an input file for PSST that contains input data required to solve SCUC.
 - ✓ rt-unitcommitments.dat: : This is an input file for PSST that contains the unit commitment status of each generator for each M-minute period.
 - SCUC output data files generated by PSST for Day-Ahead Market (DAM)
 - ✓ xfertoames.dat: Contains DAM unit commitment status and dispatch schedule for each generator along with generator ID.
 - ✓ DAMLMP.dat: Contains DAM LMP at each bus for each hour of a 24-hour period
 - SCED output data files generated by PSST for the Real-Time Market (RTM)
 - ✓ RTSCED.dat: Contains RTM LMP at each bus for each M-minute period, power dispatch scheduled for each generator for the next M-minute period, and start-up and shut-down cost details for each minute of each M-minute period.

AMES – PSST : Sequence of Events

- Step 0: Initialize D = 0, H = 0, I = 0;
- **Step 1:** AMES starts DAM operation on day 'D' for day 'D+1'.
- **Step 2:** AMES writes 'ReferenceModel.dat' file and makes an external call to PSST to solve SCUC.
- Step 3: PSST reads the input file 'ReferenceModel.dat' and performs SCUC.
- Step 4: PSST writes SCUC outcomes into 'DAMLMP.dat' and 'xfertoames.dat' files.
- **Step 5:** AMES reads 'DAMLMP.dat' and 'xfertoames.dat' and updates its DAM outcomes.
- Step 6: AMES starts RTM operations for interval 'I' (duration of each interval = 'M' min).
- Step 7: AMES writes 'rt-unitcommitments.dat' (contains generator unit commitments of day 'D' and 'RTReferenceModel.dat' and makes an external call to PSST to solve SCED.
- **Step 8:** PSST reads the input files 'rt-unitcommitments.dat', 'RTReferenceModel.dat' and performs SCED.

AMES – PSST : Sequence of Events ... Continued

```
Step 9: PSST writes SCED outcomes into 'RTSCED.dat'.
Step 10: AMES reads 'RTSCED.dat' and updates RTM outcomes.
Step 11: Increment I;
       If (I*M \% 60 == 0) {
              H++;
       If (H\% 24 == 0) {
               increment D;
               goto Step 0;
       Else goto Step 6.
```

Summary of Previous AMES V5.0 Verification Test Cases

- VerTestCaseBaseCase
 - This test case produces SCUC/SCED outcomes under the following conditions:
 - ✓ Transmission congestion is absent
 - ✓ Minimum power generation limits are taken to be zero
 - ✓ Start up, shut down and no-load costs are taken to be zero
 - ✓ Minimum up-time and down-time values are taken to be 0 (hr)
 - ✓ No ramping limits
 - ✓ Day-ahead and real-time load forecasts are set equal
 - This test case provides a base case for later comparison purposes.
- VerTestCaseGenMinPowerLevel
 - This test case verifies a generator's minimum power level is maintained when it is committed, given the above-stated conditions (i) and (iii)-(vi).
- VerTestCaseUpTimeDownTime
 - This test case verifies a generator's minimum up time and down time are maintained when it is committed, given the above-stated conditions (i) and (iii)-(vi).
- VerTestCaseMultiDayRun
 - This test case verifies DAM/RTM initial conditions are refreshed appropriately when AMES V5.0 is run for multiple successive days.

Note: Files for the above test cases are uploaded at https://github.com/ITDProject/ERCOTTestSystem/tree/dev-source-code/AMES-V5.0/DATA/VerificationTestCases

Summary of Previous and Ongoing AMES V5.0 Verification Test Cases

VerTestCaseCostComponents

The purpose of this test case is to verify cost component aspects of the SCUC formulation under the above-stated conditions (i)-(ii) and (iv)-(vi) – i.e., to verify that the SCUC formulation correctly includes no load, start-up, dispatch, and shut-down cost components.

- ✓ Completed
 - VerTestCaseCostComponentsNoLoad

This test case verifies that no load cost is appropriately taken into account in SCUC/SCED formulation given the above-stated conditions (i), (ii) and (iv)-(vi).

- ✓ To be completed
 - VerTestCaseCostComponentsStartUP
 - VerTestCaseCostComponentsShutDown

Total Production Cost Modeling in AMES V5.0 for SCUC/SCED Operations

- For any given generator j, the user specifies a convex total production cost function
 TPC(p) = a + bp + cp²,
 p ∈ [P, P], applicable for each operating period k (e.g., hourly)
- 2. User then sets the number NL of power blocks, and either
- i. specifies the length of each of the NL power blocks, starting at \underline{P} and ending at \overline{P} , OR
- ii. chooses "Automated Approximation Option" in which the power output range $[\underline{P}, \overline{P}]$ is simply divided into NL equal-length blocks.
- 3. A piecewise-linear approximation for TPC(p) is then constructed, as shown in Fig. 1.

Fig 1. Linearized approximation for the total production cost function TPC(p) of a generator j, used for each operating period k (e.g., each hour).

NOTE: For a detailed explanation of construction 1.-3., please refer to Section 5 of "Analytical Formulation and Python Implementation for an Extended Carrion/Arroyo SCUC/SCED Optimization Formulation" at <a href="http://www2.econ.iastate.edu/tesfatsi/ECAModelAndPyomoCodeDoc.LTesfatsion.pdf" 14

Brief Summary of Planned Future AMES V5.0 Verification Test Cases

VerTestCaseRampUpRampDown

The purpose of this test case is to verify that ramping constraints are correctly modeled in the SCUC/SCED formulation.

VerTestCaseNonDispatchableGeneration

The purpose of this test case is to verify if non-dispatchable generation is correctly taken into account in the SCUC/SCED formulation.