```
In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt
```

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The text. latex, preview reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The mathtext fallback to cm reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\\_classic\_test.mplstyle: Support for setting the 'mathtext.fallback to cm' rcParam is deprecated since 3.3 and will be removed two minor releases later; use 'mathtext.fallback: 'cm' instead.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The validate bool maybe none function was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The savefig. jpeg quality reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The keymap all axes reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The animation avconv path reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In D:\anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib\ classic test.mplstyle:

The animation avconv args reparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

```
In [2]: data_rawl=pd.read_excel("上海银行间同业拆放利率(SHIBOR)(日).xls",index_col="指标名称").iloc[1:,:] data_rawl.head()
```

Out[2]:

#### SHIBOR:3个月

| 指标名称                |        |
|---------------------|--------|
| 2013-12-31 00:00:00 | 5.5565 |
| 2014-01-02 00:00:00 | 5.5657 |
| 2014-01-03 00:00:00 | 5.5661 |
| 2014-01-06 00:00:00 | 5.5732 |
| 2014-01-07 00:00:00 | 5.576  |

11-1-4-1-

In [3]: data\_raw2=pd.read\_excel("社会融资规模存量(月).xls",index\_col="指标名称").iloc[1:,:] data\_raw2.head()

Out[3]:

### 社会融资规模存量:同比

| 指标名称<br>———————————————————————————————————— |      |
|----------------------------------------------|------|
| 2013-12-31 00:00:00                          | 17.5 |
| 2014-12-31 00:00:00                          | 14.3 |
| 2015-03-31 00:00:00                          | 13   |
| 2015-03-31 00:00:00                          | 13   |

2015-09-30 00:00:00 12.5

2015-06-30 00:00:00

In [4]: data\_raw=pd.merge(data\_raw1, data\_raw2, on=["指标名称"]).dropna() data\_raw.head()

Out[4]:

#### SHIBOR:3个月 社会融资规模存量:同比

11.9

| 指标名称                |        |      |
|---------------------|--------|------|
| 2013-12-31 00:00:00 | 5.5565 | 17.5 |
| 2014-12-31 00:00:00 | 5.1351 | 14.3 |
| 2015-03-31 00:00:00 | 4.8975 | 13   |
| 2015-06-30 00:00:00 | 3.233  | 11.9 |
| 2015-09-30 00:00:00 | 3.153  | 12.5 |

In [5]: #这里引入一个月未来函数。如果不用把30改为0

import datetime

data\_raw.index=data\_raw.index+datetime.timedelta(days=30) data\_raw.index=data\_raw.index.strftime("%Y-%m-%d %H:%M:%S")

data raw. head()

Out[5]:

## SHIBOR:3个月 社会融资规模存量:同比

| 2014-01-30 00:00:00 | 5.5565 | 17.5 |
|---------------------|--------|------|
| 2015-01-30 00:00:00 | 5.1351 | 14.3 |
| 2015-04-30 00:00:00 | 4.8975 | 13   |
| 2015-07-30 00:00:00 | 3.233  | 11.9 |
| 2015-10-30 00:00:00 | 3.153  | 12.5 |

```
In [6]: #求二次差 (加速度) 作为好坏的判断标准
data_raw_accelerate=data_raw.diff(1).diff(1).dropna().apply(lambda x:np.where(x>=0,1,0))
#生成四个象限
data_raw_accelerate["state"]=0
for i in range(len(data_raw_accelerate)):
    info=data_raw_accelerate.iloc[i,:]
    if info[0]==1 and info[1]==1:data_raw_accelerate.iloc[i,2]=1
    if info[0]==1 and info[1]==0:data_raw_accelerate.iloc[i,2]=2
    if info[0]==0 and info[1]==1:data_raw_accelerate.iloc[i,2]=3
    if info[0]==0 and info[1]==0:data_raw_accelerate.iloc[i,2]=4
data_raw_accelerate.index.name="日期"
data_raw_accelerate.head()
```

### Out[6]:

### SHIBOR:3个月 社会融资规模存量:同比 state

| 日期                  |   |   |   |
|---------------------|---|---|---|
| 2015-04-30 00:00:00 | 1 | 1 | 1 |
| 2015-07-30 00:00:00 | 0 | 1 | 3 |
| 2015-10-30 00:00:00 | 1 | 1 | 1 |
| 2016-01-30 00:00:00 | 1 | 0 | 2 |
| 2016-03-30 00:00:00 | 0 | 1 | 3 |

```
In [7]: #获取中国四类资产的数据
#股票: 上证指数,债券: 中证全债,商品: 南华商品指数,现金: 货币基金指数
from datetime import datetime
industry=pd. read_excel("四品种数据. xlsx", index_col="日期")
industry. head()
```

Out[7]:

### 上证指数000001.SH 中证全债H11001.CSI 南华商品指数NH0100.NHF 货基指数CN6112.CNI

| 日期         |          |         |         |         |
|------------|----------|---------|---------|---------|
| 2013-01-04 | 2276.992 | 144.358 | 1381.29 | 1272.14 |
| 2013-01-07 | 2285.364 | 144.448 | 1382.60 | 1272.51 |
| 2013-01-08 | 2276.070 | 144.54  | 1384.39 | 1272.68 |
| 2013-01-09 | 2275.340 | 144.605 | 1379.80 | 1272.81 |
| 2013-01-10 | 2283.658 | 144.628 | 1383.42 | 1272.94 |

```
In [8]: #直接merge得到空dataframe,现在先全部转成datatime格式 industry["a"]=industry.index industry["a"]=industry["a"].apply(pd.to_datetime,format='%Y-%m-%d') data_raw_accelerate["a"]=data_raw_accelerate.index data_raw_accelerate["a"]=data_raw_accelerate["a"].apply(pd.to_datetime,format='%Y-%m-%d')
```

## Out[9]:

|            | state | 上证指数000001.SH | 中证全债H11001.CSI | 南华商品指数NH0100.NHF | 货基指数CN6112.CNI |
|------------|-------|---------------|----------------|------------------|----------------|
| 日期         |       |               |                |                  |                |
| 2015-07-30 | 3     | -0.165679     | 0.0208095      | -0.106822        | 0.00892936     |
| 2015-10-30 | 1     | -0.087217     | 0.0249122      | -0.043777        | 0.00665966     |
| 2016-03-30 | 3     | -0.112907     | 0.0285247      | 0.088810         | 0.011931       |
| 2016-06-30 | 2     | -0.023675     | 0.00372065     | 0.145371         | 0.00629373     |
| 2016-09-30 | 3     | 0.025634      | 0.0219902      | 0.026770         | 0.00636142     |

# Out[10]:

|            | state | 上证指数000001.SH | 中证全债H11001.CSI | 南华商品指数NH0100.NHF | 货基指数CN6112.CNI |
|------------|-------|---------------|----------------|------------------|----------------|
| 日期         |       |               |                |                  |                |
| 2015-07-30 | 3     | -0.165679     | 0.0208095      | -0.106822        | 0.00892936     |
| 2015-10-30 | 1     | -0.238898     | 0.0682378      | -0.119910        | 0.0182417      |
| 2016-03-30 | 3     | -0.187189     | 0.047291       | 0.147238         | 0.0197803      |
| 2016-06-30 | 2     | -0.064848     | 0.0101913      | 0.398190         | 0.0172394      |
| 2016-09-30 | 3     | 0.070214      | 0.0602341      | 0.073326         | 0.0174248      |

```
In [11]:
          #画状态图
          plt. figure (figsize=(15, 4))
          x=data.index
          for i in range(1, len(data. index)):
              if data. iloc[i, 0] == 1:
                  plt.axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='green')
              if data. iloc[i, 0]==2:
                  plt. axvspan (x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='blue')
              if data.iloc[i, 0]==3:
                  plt.axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='orange')
              if data.iloc[i, 0]==4:
                  plt.axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='red')
          plt.plot(data.iloc[:,1:],)
          plt.legend(data.columns[1:])
          plt. xlabel("时间")
          plt. ylabel("年化收益率")
          print("绿色: 货币+信用+, 蓝色: 货币+信用-, 橙色: 货币-信用+, 红色: 货币-信用-")
```

D:\anaconda3\lib\site-packages\pandas\plotting\\_matplotlib\converter.py:103: FutureWarning: Using an implicitly registered dateti me converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.

To register the converters:

- >>> from pandas.plotting import register\_matplotlib\_converters
- >>> register matplotlib converters()

warnings.warn(msg, FutureWarning)

绿色: 货币+信用+, 蓝色: 货币+信用-, 橙色: 货币-信用+, 红色: 货币-信用-



In [12]: #统计各区间累计收益 result=data.groupby("state").apply(np.mean).iloc[:,1:] result

## Out[12]:

| 上证指数000001.SH | 中证全债H11001.CSI | 南华商品指数NH0100.NHF | 货基指数CN6112.CNI |
|---------------|----------------|------------------|----------------|
|---------------|----------------|------------------|----------------|

| state |           |           |           |          |
|-------|-----------|-----------|-----------|----------|
| 1     | -0.003016 | -0.008238 | 0.096114  | 0.021041 |
| 2     | -0.045293 | 0.037254  | -0.065703 | 0.017981 |
| 3     | -0.041361 | 0.039358  | 0.038909  | 0.020271 |
| 4     | -0.035094 | 0.047727  | 0.016396  | 0.022514 |

In [13]: result.sum()

Out[13]: 上证指数000001.SH -0.124764

中证全债H11001. CSI 0. 116101 南华商品指数NH0100. NHF 0. 085716 货基指数CN6112. CNI 0. 081807

dtype: float64

```
In [14]:
          #四期rolling mean再画图
          data rolling=data
          data_rolling.iloc[:,1:]=data_rolling.iloc[:,1:].rolling(4).mean()
          data rolling=data rolling.dropna()
          plt. figure (figsize=(15, 4))
          x=data rolling.index
          for i in range(1, len(data rolling.index)):
              if data rolling. iloc[i, 0] == 1:
                  plt.axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='green')
              if data rolling. iloc[i, 0]==2:
                  plt. axvspan (x[i-1], x[i], vmin=1.5, vmax=-1.5, alpha=0.2, color='blue')
              if data rolling.iloc[i, 0]==3:
                  plt. axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='orange')
              if data rolling. iloc[i, 0] == 4:
                  plt.axvspan(x[i-1], x[i], ymin=1.5, ymax=-1.5, alpha=0.2, color='red')
          plt.plot(data rolling.iloc[:,1:])
          plt. legend (data rolling. columns [1:])
          plt. xlabel("时间")
          plt. ylabel("年化收益率")
          print("绿色: 货币+信用+, 蓝色: 货币+信用-, 橙色: 货币-信用+, 红色: 货币-信用-")
```

绿色: 货币+信用+, 蓝色: 货币+信用-, 橙色: 货币-信用+, 红色: 货币-信用-



In [ ]:

In [ ]: