Neural Implicit Flow: A Comparative Study Implementation Approaches and Performance Analysis

Christian Beneke

10.02.2025

Outline

- Introduction
- Neural Implicit Flow Framework
- 3 Implementation Approaches
- 4 Experimental Setup
- Results and Analysis
- 6 Conclusions

Problem Space & Motivation

- High-dimensional spatio-temporal dynamics are computationally challenging
- Traditional methods face limitations:
 - Fixed mesh structures (SVD, CAE)
 - Poor scaling with high-dimensional data
 - Limited ability to capture nonlinear dynamics
- Real-world applications require:
 - Adaptive mesh handling
 - Efficient dimensionality reduction
 - Real-time processing capabilities

Key Challenges in Current Approaches

- Singular Value Decomposition (SVD)
 - Limited to fixed mesh structures
 - Poor scaling with dimensionality
- Convolutional Autoencoders (CAE)
 - Requires uniform grid resolution
 - Struggles with adaptive meshing
- Common Issues
 - High computational overhead
 - Limited expressiveness for complex dynamics
 - Poor generalization to new scenarios

Core Architecture

Two specialized networks:

- ShapeNet: Spatial complexity
- ParameterNet: Temporal evolution

Key innovations:

- Mesh-agnostic representation
- Efficient parameter sharing
- Adaptive complexity handling

Figure: NIF Architecture

Mathematical Formulation

Core mapping function:

$$f_{\theta}: (\mathbf{x}, \mathbf{t}) \mapsto u(\mathbf{x}, \mathbf{t})$$

where:

- $\mathbf{x} \in \mathbb{R}^d$: Spatial coordinate
- $\mathbf{t} \in \mathbb{R}^p$: Temporal/parametric input
- u: Field value
- Hypernetwork decomposition:

$$f_{ heta}(\mathbf{x},\mathbf{t}) = \mathsf{ShapeNet}_{\mathsf{ParameterNet}_{ heta_p}(\mathbf{t})}(\mathbf{x})$$

Implementation Overview

- Three distinct implementations:
 - Upstream Reference (TensorFlow)
 - TensorFlow Functional API
 - PyTorch Implementation
- Key considerations:
 - Framework-specific optimizations
 - Code maintainability
 - Development ergonomics

Upstream Reference Implementation

- Based on original paper implementation
- Key modifications:
 - Migration to current TensorFlow version
 - Various bug fixes needed to run the provided examples
- Implementation details:
 - Direct TensorFlow.Keras Model inheritance
 - Static layer definitions with fixed weights
 - Manual parameter mapping and weight updates

Upstream Reference Architecture

- ParameterNet:
 - Dense (30) \rightarrow 60 params
 - ullet 2x MLP ShortCut (30) ightarrow 930 each
 - ullet Bottleneck (1)
 ightarrow 31 params
 - ullet Output (1951) ightarrow 3,902 params
- Total: 5,853 params (22.86 KB)
- ShapeNet:
 - Parameters generated by ParameterNet
 - Internal forward pass in a single function call

TensorFlow Functional API Implementation

- Complete architectural redesign
- Key features:
 - Utilises TensorFlow's functional API
 - Custom SIREN kernel initialization
 - Dynamic layer generation
- Optimizations:
 - Automatic shape inference and building
 - TF Function decoration for performance
 - Full ParameterNet output forwarded to all ShapeNet layers

TensorFlow Functional API Architecture

- ParameterNet:
 - Dense (30) \rightarrow 60 params
 - $\bullet \ 2x \ \mathsf{Shortcut} \ (30) \to 930 \ \mathsf{each}$
 - Bottleneck (1) ightarrow 31 params
 - ullet Output (1951) ightarrow 3,902 params
 - Total: 5,853 params (22.86 KB)
- ShapeNet:
 - 4x HyperDense layers
 - Parameters generated by ParameterNet

PyTorch Implementation

- Core Features:
 - Mixed precision training support (FP16/BF16)
 - Custom StaticDense and StaticSIREN layers
 - Gradient scaling and automatic mixed precision (AMP)
- Implementation Details:
 - Custom AdaBelief optimizer with gradient centralization
 - Configurable learning rate scheduler with warmup
 - Dynamic device handling (CPU/GPU) with dtype management
- Network Components:
 - ResNet and Shortcut layer implementations
 - Flexible activation function mapping
 - Parameter sharing through static layers

Common Setup

- Implemented base class for common functionality
- Implemented two of the given example cases
- Made optimiser configurable (Adam, AdaBelief)
- Comprehensive training logger with visualization

Test Cases

Low Frequency Wave

- Domain: $x \in [0, 1], t \in [0, 100]$
- 200 spatial points, 10 timesteps
- Simple periodic traveling wave
- $u(x, t) = \exp(-1000(x x_0 ct)^2)$

Figure: Low Frequency Example

Test Cases

High Frequency Wave

- Same spatial/temporal domain
- Added frequency $\omega = 400$
- Complex oscillatory pattern
- $u(x, t) = \exp(-1000(x x_0 ct)^2)\sin(\omega(x x_0 ct))$

Figure: High Frequency Example

Network Architectures

ParameterNet

- Dense input layer
- Two hidden layers (30 units)
- Single-unit bottleneck
- Adaptive output layer

ShapeNet Variants

- Shortcut (Low frequency)
 - Skip connections
 - Swish activation
- SIREN (High frequency)
 - Sinusoidal activation
 - $\omega_0 = 30$ scaling

Performance Overview

• Low Frequency Best Result:

• Func. API: 1.526e-04

• PyTorch: 1.549e-04

• Upstream: 5.073e-04

High Frequency Best Result:

PyTorch: 1.884e-04

Func. API: 5.415e-04

Upstream: N/A

Processing Speed Comparison

Implementation	Low Freq.	High Freq.
TF Functional	11.5-17K pts/s	11.5-16K pts/s
PyTorch	12-15K pts/s	6-16K pts/s
Upstream	12-17K pts/s	-

Table: Processing Speed (points per second)

Optimizer Impact

- Adam vs AdaBelief comparison:
 - TF Functional API: 62.5% improvement
 - PyTorch: 5.10x improvement (low freq.)
 - PyTorch: 11.77x improvement (high freq.)
- Key findings:
 - Adam: More stable convergence
 - Better final loss values
 - Consistent across implementations

Visual Results - Low Frequency

Figure: Low Frequency Predictions (TF Functional API)

Visual Results - High Frequency

Figure: High Frequency Predictions (TF Functional API)

Key Findings

- Implementation Trade-offs:
 - Modern implementations excel at high-frequency cases
 - TF Functional API: Most consistent performance
 - PyTorch: Best high-frequency accuracy
- Practical Implications:
 - All implementations achieve production-ready speed
 - Adam optimizer consistently outperforms AdaBelief
 - Framework choice impacts development experience

Planned vs Achieved Goals

- ✓ Port from TensorFlow to PyTorch
- + Add TensorFlow Functional API implementation
- ✓ Implement using upstream SIREN
- ✓ Improve parallelism in training phase
- imes Compare to other HyperNetworks / LoRA / etc
- √ Compare existing results with own implementation
- Compare performance with very hard example (e.g. weather prediction)

Thank you for your attention!

Questions?