REQUIREMENTS FOR IMPROVED MODELING OF THE ORBITAL ATMOSPHERE

Frank A. Marcos, Air Force Geophysics Laboratory

Satellite accelerometer data are available for seven time periods during the period 1974-present. All seasons and latitudes up to 83° are covered. Deviations between the accelerometer data and current models are greatest for high geographic latitudes and high geomagnetic index, although about a 15 percent standard deviation persists between the models and the accelerometer data even at low latitudes and geomagnetically quiet times.

Accelerometer data give density times the ballistic coefficient, (C_dA/m) , and it is therefore necessary to estimate the time-line of the ballistic coefficient in order to obtain density.

REQUIREMENTS FOR IMPROVED THERMOSPHERIC

NEUTRAL DENSITY MODELS

FRANK A. MARCOS

AIR FORCE GEOPHYSICS LABORATORY HANSCOM AFB, MA

WORKSHOP ON UPPER AND MIDDLE ATMOSPHERIC DENSITY MODELING

HUNTSVILLE, ALABAMA

19 NOV 85

PRECEDING PAGE BLANK NOT FILMED

OUTLINE

INTRODUCTION

AFGL SATELLITE ACCELEROMETER DATA BASE

RESUL TS

MODEL EVALUATIONS

• GEOMAGNETIC STORM ANALYSES

• DISCUSSION/CONCLUSIONS

ORIGINAL PAGE IS OF POOR QUALITY

	GEOPHYSICS SCHOLAR PROGRAM	SPATIAL GGRAFLATIONS	865 FBE
			N.GY
AVENTOS PHERICE DENSIEN 80 - Ann (M. 58 ANK ANN COS	AIR FORCE REFERENCE ARIOSPILERES	SATE "THE PRAC REASUREMENTS RIDDUE ANG STUDIES	
			W BOSTON
	ABORATORY DIRECTORS	SPECIFICATION GRAVITY WAVER	NCAR BOSTON
		₹8	Ž

Cartoon showing orientation of accelerometer axes with respect to aerodynamic drag and cross-track wind vectors.

Satellite accelerometer flight history and solar activity vs. time.

TABLE 1. SATELLITE ACCELEROMETER DATA SOURCES

Satellite.	Data Acquisition Period
AE-C	Jan - Dec 74
S3-1	Oct 74 - May 75
AE-D	Oct 75 - Jan 76
AE-E	Nov 75 - Nov 76
S3-4	May - Aug 78
SETA-1	Mar - Apr 79
SETA-2	May - Nov 82

TABLE 2. ACCELEROMETER, TOTAL MASS DENSITY RATIOS TO MODELS (ALTITUDE 150-240 KM)

	Z-ZV	ပ္	d−27	Ģ	1-37	뼥	1-69	1-	Ţ	4	\$FT 4-1	1.	SEI	SET 4-2
	les.	80	as	, mi) asi	esi O	#4	, m	jet	at o	i=	5	l=	•
NS IS 838	1.14	15.3	8:1	16.2	1.02	13.4	1.07	14.6	96.0	11.6	0.92	1.4	0.87	11.6
HS 1583A	1.13	15.6	8.1	16.4	٦. ع.	14.1	 8:	14.6	0.99	13.1	0.93	10.1	3.	11.6
97 SI SH	1.09	14.5	8.	16.8	1.01	13.7	8:	14.6	98.0	11.5	96.0	11.7	0.92	11.7
HS 1577	1.09	14.2	1.8	16.5	10.1	13.6	8:	14.2	96.0	11.2	96.0	11.5	0.92	11.2
111	1.08	16.2	1.01	15.7	10.1	15.4	3:	14.3	96.0	13.7	0.6	12.6	0.69	13.9
173	1.10	14.3	1.03	15.1	1.06	13.6	8:	13.5	96.0	11.6	0.92	9.6	0.92	10.2
17.1	1.13	14.9	3.8	15.1	3:	15.0	8:1	13.7	0.99	17.1	0.94	9.9	9.33	10.1
970	8.1	17.6	0.99	15.9	8:	15.9	3 :	14.6	0.97	12.0	0.99	9.3	6.83	10.4
764	0.97	17.3	0.69	17.0	0.91	13.4	0.93	17.8	0.30	9 .11	0.99	11.11	9.	11.3
¥-7	0.98	18.2	0.67	17.11	0.86	16.4	96.0	14.9	0.93	9.41	0.99	6.6	0.91	11.4
348	8:	19.5	1.02	18.8	1.02	9.61	0.99	19.6	98.0	0.11	8.0	10.4	0.62	10.9
9950	96.0	16.8	06.0	15.8	16.0	13.4	0.95	7:5	0.90	11.5	0.99	11.0	0.88	11.2
US62	0.92	28.9	97.0	30.3	0.76	29.6	0.73	32.7	0.93	17.6	1.13	13.0	96.0	15.0
DE NG	1.49	20.7	1.05	19.6	0.97	22.4	1.31	19.5	67.0	19.9	0.87	14.9	0.99	13.2

Mean values of SETA-1 data to J71 model plotted as a function of geographic latitude (three Kp bins).

Mean values of SETA-1 data to MSIS83 model plotted as a function of geographic latitude (three Kp bins).

Figure 11a. Standard Deviations of Ratios of SETA-1 Density Data to J71 Model

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 7. SETA-1 density ratios to J71 (with Kp = 1) plotted in geomagnetic latitude - geomagnetic local time. The four Kp bins are: 0 + 1.5, > 1.5 to 3.5, > 3.5 to 5.5 and > 5.5.

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 8. Density response to geomagnetic activity calculated from the ratio of the > 5.5 Kp bin to the 0 to 1.5 Kp bin data of Fig. 7.

SUN DYNAMO **EUV** UV MAGNETOSPHERE E-FIELDS **PARTICLES** IONI-THERMOSPHERE **ZATION** MOMEN-JOULE TUM SOURCE HEATING DENSITY TEMPERATURE IONI-COMPOSITION HEATING ZATION WINDS WAVES TIDES IONOSPHERE HEATING WAVES, **EDDY** LOWER ATMOSPHERE

Fig. 9. Schematic block diagram illustrating interactions between the lower atmosphere, thermosphere and magnetosphere.

REQUIREMENTS

• DATA ANALYSIS VS. SOLAR/GEOPHYSICAL CONDITIONS

• REALISTIC ATMOSPHERIC HEATING INDICATORS

DYNAMIC MODEL IMPROVEMENTS

 COORDINATED SATELLITE PROGRAM FOR LOWER THERMOSPHERE DYNAMICS

ATMOSPHERIC DENSITY PERTURBATIONS. CONTROL AND SURVEILLANCE SYSTEMS. DEVELOP NEV! DYNAMIC MODELS FOR AND PREDICTION AND FOR COMMAND, • RELATE IONOSPHERIC ANOMALIES TO OPERATIONAL ORBIT DETERMINATION • RESULTANT DATA BASE USED TO IONOSPHERIC COMPOSITION • PREDICT SATELLITE DRAG AND • GLOBAL DETERMINATION OF: NEUTRAL COMPOSITION ATMOSPHERIC DENSITY C3 I SYSTEMS DISRUPTIONS. AERODYNAMIC DRAG HORIZONTAL WINDS TEMPERATURE DESCRIPTION ENERGY DEPOSITION AURORA **ATMOSPHERE** PERTURBED