

DIGITAL VOLTMETER

5524-S-2056

Telephone (714) 833-1234 Teletype 910-595-1136

Congratulations on your choice of a Dana instrument Now that you are using the instrument, Dana would like to help you to take full advantage of its capabilities. or ratio of two voltages. Noise Rejection Techniques discusses common mode voltage and ground techniques to To keep my instruction manual updated, please send revision manual. To see that these reach you, please fill in and return Techniques analyzes measurements involving the comparison and application data sheets to be included in your instruction the reply card below. In the event that you have received a preliminary instruction manual, the return of the card will Dana Laboratories manufactures a complete line of digital voltmeters, data amplifiers, and data acquisition systems. Catalogs are available; to get your copy, simply check the You can also check a box to receive one of the technical pages, application data, or other supplementary information To do this, Dana issues addendum sheets, revision sheets, ensure your receiving a final manual as soon as it is available. articles by Dana's staff engineers. Ratio Measurement ☐ Data Amplifiers Techniques ☐ Systems/Components ☐ Noise Rejection Techniques ☐ Ratio Measurement received it on (date) Model minimize its effect in data systems. appropriate box on the reply card. Also, please send information on: Section My Dana instrument is a DOVINS Company Serial No. Address Name Dep't

EWPORT BEACH PERMIT NO. 413 FIRST CLASS

CALIFORNIA

BUSINESS REPLY MAIL uary 17 Mailes in The United States No Perligs 11smp Noos

Partiege Will de Paid by

LABORATORIES, INC.

P.O. Box D

Irvine, California 92644

Att: Publication Dept.

PUBLICATION 980244

MODEL 5524

DIGITAL VOLTMETER

5524-S-2056

Dana Laboratories Incorporated Irvine, California 92664 Telephone (714) 833-1234 Teletype 910-595-1136

December - 1967

Reprinted June, 1968

TABLE OF CONTENTS

Section	Title	Page
1	INTRODUCTION	1-1
1.1	SCOPE	1-1
1.3	PURPOSE OF EQUIPMENT	1-1
1.6	MECHANICAL DESCRIPTION	1-3
1.9	ELECTRICAL DESCRIPTION	1-3
1.13	SPECIFICATIONS	1-4
2	INSTALLATION & OPERATION	2-1
2.1	UNPACKING & INSPECTION	2-1
2.3	POWER CONNECTION	2-1
2.5	INPUT CONNECTOR	2-1
2.7	REMOTE PROGRAM/DIGITAL OUTPUT CONNECTORS	2-1
2.13	INITIAL CHECKOUT PROCEDURES	2-2
2.21	FUSES	2-3
2.23	EXTERNAL CONNECTOR IDENTIFICATION	2-3
2.25	CONTROLS	2-3
2.34	MANUAL OPERATION	2-5
3	DIGITAL OUTPUT AND REMOTE PROGRAM ACCESSORIES	3-1
3.1	INTRODUCTION AND OPTIONS	3-1
3.9	ISOLATED OUTPUT BOARD	3-2
3.12	ISOLATED PROGRAMMING BOARD	3-2
3.16	RANGE/FUNCTION CODE BOARD	3-3
3.18	COMMAND LOGIC BOARD	3-3
3.21	DVM COMMAND	3-4
3.24	DIGITAL OUTPUT CONNECTIONS	3-5
3.35	REMOTE PROGRAM OPERATION	3-9
3.40	GENERAL PROGRAMMING RULES	3-10
3.41	GENERAL PROGRAMMING PROCEDURE	3-11
4	THEORY OF OPERATION	4-1
4.1	INTRODUCTION	
4.5	SIGNAL CONDITIONING CIRCUITS	4-1

TABLE OF CONTENTS (Cont)

Section	Title	Page
4.34	MEASUREMENT OF DC VOLTS AND RATIOS	4-7
4.42	MEASUREMENT OF FAST DC VOLTS	4-7
4.44	MEASUREMENT OF MILLIVOLTS	4-8
4.47	MEASUREMENT OF AC VOLTS	4-8
4.52	MEASUREMENT OF OHMS	4-10
4 54	DIGITIZING AND DISPLAY CIRCUITS · · · · · · · · · · · · · · · · · · ·	4-10
5	TROUBLESHOOTING & MAINTENANCE	5-1
5.1	INTRODUCTION	5-1
5.3	MECHANICAL DISASSEMBLY	5-1
5.7	POWER SUPPLY	5-2
5.10	BOARD SUBSTITUTION	5-2
5.12	VISUAL INSPECTION · · · · · · · · · · · · · · · · · · ·	
5.14	RESISTIVE CHECK	5-4
5.19	BIASING	
5.23	TROUBLESHOOTING CHARTS	5-5
5.25	ORDERING PARTS	5-5
5.27	PARTS REPLACEMENT	
5.30	CALIBRATION · · · · · · · · · · · · · · · · · · ·	5-12
. 6	DRAWINGS AND PARTS LIST	6-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.1	Model 5524 Digital Voltmeter	1-1
1.2	Connector and Operating Controls	1-2
1.3	Model 5524 Block Diagram	1-5
2.1	Control Panel	2-4
2.2	Input Connector	2-5
2.3	Ratio Measurements	2-7
2.4	Ohms Measurements	2-7
3.1	Rear Panel	3-2
3.2	Typical Output Circuit	3-3
3.3	Typical Program Input	3-3
3.4	Simplified Block Diagram - Delay Circuit	3-4
3.5	Print Command Logic	3-5
3.6	Print Command	3-5
3.7	Output/Program Interconnections	3-8
4.1	Dana Logic Symbols	4-2
4.2	Range Counter Inhibit Lines	4-4
4.3	Block Diagram - DC and Ratio Modes	4-8
4.4	Block Diagram - AC Mode	4-9
4.5	Block Diagram - Ohm Mode	4-9
4.6	Block Diagram - Digitizing & Display Module	4-11
4.7	Model 5500 Timing (Without Overrange)	4-12
4.8	Model 5500 Timing (With Overrange)	4-13
4.9	Typical DAC Circuits	4-15
4.10	Functional Intraconnection - Signal Conditioning	4-20
4.11	Functional Intraconnection - Digitizing and Display	4-21
5.1	Troubleshooting - Display, Decimal & Function Readout Blank	5-6
5.2	Troubleshooting - Display Full Scale	5-7
5.3	Troubleshooting - Display Blank	5-8
5.4	Troubleshooting - Wrong Digit	5-9
5.5	Troubleshooting - Display Jumps	5-10
5.6	Component Installation	5-11
5.7	Calibration Points	5-13
5.8	Ratio Test Set-Up	5-16

LIST OF TABLES

Table	Title	Page
1.1	Connector Identification	1-4
1.2	Electrical Specifications	1-6
2.1	Pin Assignments - Input Connectors	2-1
2.2	Fuse Identification	2-3
2.3	External Connector Identification	2-3
2.4	Four-Wire Operational Ohmmeter	2-6
3.1	Board Types	3-2
3.2	Delay Times	3-4
3.3	Digital Output Connectot J202	3-6
3.4	Output Codes and Format	3-7
3.5	Common Jumpers	3-9
3.6	Remote Program Connector J201	3-10
3.7	Settling Time	3-11
5.1	Power Supply Voltages	5-2
5.2	Component Characteristics	5-3
5.3	Decade Fault Isolation	5-5

SECTION 1

INTRODUCTION

1.1 SCOPE

1.2. This manual covers installation, operation, and maintenance information for the Dana Model 5524 Digital Voltmeter (Figure 1.1). The manual is intended for use by personnel responsible for operation and/or maintenance of the equipment. The information includes the physical description, a detailed description of the principles of operation, and maintenance and troubleshooting guides.

1.3 PURPOSE OF EQUIPMENT

1.4. The Model 5524 Digital Voltmeter is a multiple-function instrument capable of measuring dc voltage (filtered or

unfiltered), dc/dc ratios, dc voltage in millivolts, resistance in kilohms and ac voltage. The output is displayed on a five digit visual readout with a sixth "overrange" digit that extends each range by 10% (99999 to 109999). An optional Remote Program Accessory enables the function, range, and read commands to be made externally. In addition, an optional Electrical Output Accessory provides an isolated binarycoded decimal (BCD) output for driving a printer or other recording device. A sealed case enables the instrument to withstand severe environmental conditions (see "Specifications", 1.13).

1.5. Automatic ranging (Auto Range), circuits within the instrument deter-

Figure 1.1. Model 5524 Digital Voltmeter

(a) Operating Controls and Circuit Board Locations

(b) Rear Panel Connectors

Figure 1.2. Connectors and Operating Controls

mine the optimum range for the function being measured and switch to that range automatically. Automatic polarity detecting circuits (Auto Polarity) determine the polarity of the input signal and display or prints this information with the output.

1.6 MECHANICAL DESCRIPTION

1.7. All circuits, except the power supply, are mounted on plug-in printed circuit boards. The boards are installed in the chassis which slides into the sealed case on rollers. All input/output connections are made through sealed glass connectors mounted on the sealed case.

1.8. All operating controls are mounted on the front panel of the instrument. Input connectors, wired in parallel, are mounted on both the front (J101) and rear (J204) panels. They carry the input signal, and the reference input used for ratio measurements. On the rear panel are the power connector (J203), the remote program connector (J201), and the digital output connector (J202). Within the instrument are connectors J1 through J22 into which the circuit boards are installed. Figure 1-2 shows the operating controls and the locations of each connector.

1.9 ELECTRICAL DESCRIPTION (Block diagram: Figure 1.3)

1.10. The instrument uses the null balance technique to measure the amplitude of unknown voltages. The circuit boards in connectors J12 through J22 (signal conditioning circuitry) develop a ten-volt full scale (plus overrange) analog voltage of the input which may be either an ac, dc, or ohms measurement. A current, proportional to this voltage, is balanced against a

precise current developed from an internal reference voltage in the digitizing and display circuits (J1-J11). The "balancing" of these currents is done by a series of trial-and-error-currents developed from the known reference voltage and compared with the current from the signal conditioner. Precision resistors in the Digital to Analog Converter (DAC) divide the reference current into 100,000 equally-spaced current increments. The closest increment is determined in a maximum of 45 trials. When a null balance has been achieved. the digital setting of the DAC is displayed on the visual readout. The number shown is the ratio of the input signal to the reference voltage in parts per 100,000.

1.11. For example, if the controls are set to measure ac volts on the 100-volt range, a 50-volt input (rms) results in an internal analog voltage of 5 volts dc from the signal conditioning circuits. This is converted to a current which is balanced by an equal current derived from the internal reference voltage when the DAC arrives at a value of 50,000 (parts per 100,000). The digital display now carries the numerals 5-0-0-0-0, and range information from the signal conditioning circuits place the decimal point to read 50.000.

1.12. In the ratio measuring mode, the internal 20-volt reference is replaced by an external dc voltage, which may vary from +2 to +10.5V (ratio input of +20 to 105V optional). The displayed value is the ratio between a dc input signal and the reference voltage at that instant. The ratio between +dc voltages and the reference are shown as plus (+) ratios; the ratio between -dc voltage

Table 1.1. Connector Identification

Connector	Function
J1	Circuit Board, Display
J2	Circuit Board, 10,000
	Decade
13	Circuit Board, 1,000
J4	Decade Circuit Board, 100 Decade
,	Circuit Board, 10 Decade
J5	Circuit Board, 1 Decade
J6	-
J7	Circuit Board, DAC
18	Circuit Board, Null Detector
J9	Circuit Board, Sequence
, ,	Logic
J10	Circuit Board, Control
, , , ,	Logic
J11	Circuit Board, Reference
,	and Buffer Amplifier
J12	
J13	
J14	Assembly, Control and
J15	Attenyator
J16	Circuit Board, Isolator
J17	Circuit Board, Range
	Control
J18	Circuit Board, AC
J19	Converter
J20	Circuit Board, Auto
	Polarity
J21	Circuit Board, Ohms
J22	Converter
J101	Signal Input/Reference
	Input
J201	Remote Programming Input
	(rear, optional)
J202	Digital Output (rear,
	optional)
J203	Power (rear)
J204	Signal Input/Reference
	Input

and the reference as minus (-) ratios. This bipolar ratio capability (+/+ and -/+) is of particular value in applications, such as bridge balancing, where inputs are likely to pass through zero. Since the signal and reference voltages are being detected simultaneously, the accuracy of the ratio measurement is independent of the stability of the voltage source.

1.13 SPECIFICATIONS

- 1.14 ENVIRONMENTAL SPECIFICA-TIONS
 - (a) Temperature Continuous operation from -40°C to 55°C. Storage temperature is from -62°C to +85°C. Intermittent operation is possible at +71°C.
 - (b) Humidity 100% with condensation in the way of frost or liquid water on the equipment. Equipment to withstand this humidity during operation, and exposure in a non-operating condition.
 - (c) Shock Will withstand 18 impact shocks of 15 g, consisting of three shocks in opposite directions along each of three perpendicular axes, each shock impulse having a time duration of 11 + 1 milliseconds. The g value within ±10% when measured with a 0.2 to 250 Hz filter, and the maximum g occurring at approximately 5-1/2 milliseconds.
 - (d) <u>Vibration</u> Will withstand continuous vibration along each of

the three mutually perpendicular axes within the following frequency ranges and amplitudes:

Frequency	Double Amplitude
5 - 15 Hz	0.06 inch
15 - 25 Hz	0.04 inch
25 - 55 Hz	0.02 inch

(e) <u>Interference</u> - Interference control is in accordance with MIL-I-6181.

- (f) <u>Sand and Dust</u> As encountered in desert areas shall not damage equipment.
- (g) <u>Fungus</u> Fungus-supporting atmosphere shall not affect or damage equipment.
- (h) <u>Salt-Sea Atmosphere</u> Shall not damage equipment.
- (i) Explosive Conditions Equipment shall not cause ignition of explosives; gaseous atmosphere.

1.15 ELECTRICAL SPECIFICATIONS

1.16. Electrical Specifications are tabulated in table 1.2.

 $\frac{\text{NOTE:}}{\text{MIL 21200F}}$ Instrument meets environmental requirements of MIL 21200F when installed in its sealed outer case and with front mounting screws secured.

Figure 1.3. Model 5524 Block Diagram

Table 1.2. Electrical Specifications

DANA SERIES 5524 DVM SPECIFICATIONS

```
DC VOLTAGE MEASUREMENTS
Full scale ranges
                                                                               +10.9999, +109.999, +1099.99 V (max 1000 V)
                                                                               \pm 0.005\% of reading \pm 0.001\% of f.s. \pm 0.001\% of reading per month \pm 0.0005\% of reading \pm 0.0002\% of f.s. per ^{\circ}\text{C} 15 milliseconds
    Short term, 24 hours, 23 ±1°C
    Long term stability, 6 months
Temperature coefficient
Response time: Digitizing
                      Digitizing with polarity change
                                                                               25 milliseconds
                                                                               250 milliseconds per range
Range change
Full scale step function settling time (to 0.01%)
Common mode rejection: DC
AC, 61 Hz and below
                                                                                500 milliseconds with up to 100k-ohm source
                                                                                140 dB with up to 100 ohms in either lead
120 dB with up to 100 ohms in either lead
                                                                               60dB min, 50Hz and up; increasing 18dB/octave; 80 dB min, 300Hz and above
Normal mode noise rejection
Input resistance - at or off null: 10 range
                                                                                10.000 megohms
DC RATIO VOLTAGE MEASUREMENTS
Full scale ranges
                                                                               +1.09999:1, +10.9999:1, +109.999:1
Accuracy
    Short term, 24 hours, 23 ±1°C
Long term stability, 6 months
                                                                                \pm 0.004\% of reading \pm 0.001 (10 V/ref)% of f.s.
                                                                               +0.0003% of reading per month
+0.0005% of reading +0.0002% of f.s. per °C
Temperature coefficient
Response time: Digitizing
Digitizing with polarity change
                                                                                15 milliseconds
                                                                                25 milliseconds
Range change
Full scale step function settling time (to 0.01%)
                                                                                250 milliseconds per range
                                                                                500 milliseconds with up to 100k-ohm source
140 dB with up to 100 ohms in either lead
 Common mode rejection: DC
                                                                                120 dB with up to 100 ohms in either lead
Same as absolute (input only)
                                  AC, 61 Hz and below
 Normal mode noise rejection
                                                                                Signal, 10,000 megohms; ref, 20 megohms
 Input resistance - at or off null: 10 range
                                                                                Signal, 10 megohms; ref, 20 megohms
                                            other ranges
 DC VOLTAGE MEASUREMENTS, FAST
Full scale ranges
                                                                                +10.9999, +109.999, +1099.9 V (max 1000 V)
 Accuracy
     Short term, 24 hours, 23 ± 1°C
Long term stability, 6 months
                                                                                \pm 0.005\% of reading \pm 0.001\% of f.s.
                                                                                ±0.001% of reading per month
±0.0005% of reading ±0.0002% of f.s. per °C
     Temperature coefficient
 Response time: Digitizing
                                                                                15 milliseconds
                      Digitizing with polarity change
 Range change
Full scale step function settling time (to 0.01%)
                                                                                250 milliseconds per range
                                                                                50 milliseconds with up to 100k-ohm source
140 dB with up to 100 ohms in either lead
 Common mode rejection: DC
AC, 61 Hz and below
                                                                                94 dB with up to 100 ohms in either lead 10,000 megohms
 Input resistance - at or off null: 10 V range
                                            other ranges
                                                                                10 megohms
 MILLIVOLT MEASUREMENTS
                                                                                \pm 109.999, \pm 1099.00 millivolts \pm 0.01\% of reading \pm 0.02\% of f.s. \pm 0.01\% of reading \pm 0.005\% of f.s.
 Full scale ranges
 Accuracy, 3 months: 100mV range
                              1000mV range
     Temperature coefficient
                                                                                 ±0.001% of reading ±2 microvolts per °C
 Response time (to 0.01%): Step response
                                                                                 1 second
                                    Range change
                                                                                250 milliseconds
 Common mode rejection: DC
                                                                                 140 dB with up to 100 ohms in either lead
                                  AC. 61 Hz and below
                                                                                 120 dB with up to 100 ohms in either lead 100 megohms minimum
 Input resistance
  AC MEASUREMENTS
                                                                                 500 V rms, 50 Hz to 10 kHz, decreasing to
 Maximum voltage rating
                                                                                 150 V at 50 kHz and above
10.9999, 109.999, 1099.99 V rms
 Full scale ranges
                                                                                 50 Hz to 10 kHz: \pm 0.09\% of rdg \pm 0.01\% f.s.

10 kHz to 50 kHz: \pm 0.2\% of rdg \pm 0.05\% f.s.

50 kHz to 100 kHz: \pm 0.9\% of rdg \pm 0.1\% f.s.
  Accuracy, 3 months
     Temperature coefficient
                                                                                 \pm 0.01\% of reading and \pm 0.0002\% f.s. per ^{\circ}C
 Response time: Step response
With range change
Common mode rejection: AC, 61 Hz and below
                                                                                 300 milliseconds (to 0.1%)
                                                                                 250 milliseconds per range
94 dB with up to 100 ohms in either lead
  Input resistance (all ranges)
                                                                                 1 megohm in series with 0.22 microfarad
less than 200 pF, all ranges
  Shunt capacitance at terminals
 OHMS MEASUREMENTS
  Maximum voltage across unknown
                                                                                10 V at f.s., max current 10 mA on 1 kilohm range
 Full scale ranges
                                                                                1.09999, 10.9999, 109.999, 1099.99, 10999.9 kilohms
 Accuracy, 3 months
       1, 10, 100 kilohm ranges
                                                                                \pm 0.01\% of reading and \pm 0.001\% f.s.
                                                                                \pm 0.03\% of reading and \pm 0.001\% f.s.
       1000 kilohm range
       10,000 kilohm range
                                                                                \pm 0.1\% of reading and \pm 0.001\% f.s.
 Temperature coefficient
                                                                                \pm 0.002\% of reading and \pm 0.0002\% f.s.
       1, 10, 100 kilohm ranges
       1000 kilohm range
                                                                                \pm 0.0035\% of reading and \pm 0.0002\% f.s.
       10,000 kilohm range
                                                                                \pm 0.005\% of reading and \pm 0.0002\% f.s.
 Response time
       Step response
                                                                                750 msec
       With Range change
                                                                                750 msec/range
 GENERAL SPECIFICATIONS
Operating temperature range
Maximum power requirement
                                                                                -40^{\circ} to +55°C (internal temp. remains above +15°C) 50 watts, 105 to 125 V (export 210 to 250 V), 50 to 70 Hz (400 Hz special)
  Maximum common mode voltage
```

Standard 19-inch rack width; 5-1/4" high

12 months, faulty workmanship or component failure

Dimensions

SECTION 2

INSTALLATION & OPERATION

2.1 UNPACKING & INSPECTION

- 2.2. The Model 5524 Digital Voltmeter is crated in a plastic foam container consisting of two half-forms joined together and securely taped. The forms are contoured so as to hold the digital voltmeter firmly in place with the container absorbing any reasonable external shock. Before uncrating, examine the container for any sign of external damage. Then perform the following steps.
 - (a) Carefully cut the tape holding the two half-forms together and remove the digital voltmeter. Inspect the digital voltmeter for signs of damage. If damage is found, notify the carrier immediately.
 - (b) Remove the chassis from the sealed case by removing the eight screws on the front panel and pulling gently but firmly toward the front of the instrument. (It is not necessary to remove the chassis completely from the case. Slide it out far enough to expose the boards.) See that all boards are firmly seated in the connectors. Replace dessicant (see 2.9).
 - (c) Replace chassis and secure by tightening the eight panel screws.

2.3 POWER CONNECTION

2.4. An eight-foot, three-wire, coiled power cable is supplied with the instrument. This cord connects to a three-pin power connector (J203) at the rear of the unit.

2.5 INPUT CONNECTOR

2.6. J101 on the front panel is wired in parallel with J204 on the rear panel. These connectors are supplied with mating connectors only. No cables are supplied. Pin assignments of the input connector are listed below.

Table 2.1. Pin Assignments - Input Connectors

FUNCTION	PIN
+ Signal - Signal + Ohms - Ohms Ref. Input (ratios) Guard	N P R S T Pins A thru M

2.7 REMOTE PROGRAM/DIGITAL OUT-PUT CONNECTORS

2.8. For pin assignments and other information necessary for installation and operation of the optional Electrical Output and Remote Programming accessories, see Section 3.

2.9 DESSICANT

- 2.10. The dessicant consists of a moisture adsorption packet and a humidity indicator placed within the sealed case of the instrument. The packet should be replaced each time the sealed case is opened.
- 2.11. The packet is supplied in a heat-sealed outer bag. The sealed

outer bag must not be punctured or opened until ready for use. When the outer bag is opened, the dot on the humidity indicator should be blue. If not blue, the adsorption packet is defective and another should be used. Once the sealed bag is opened, the adsorption packet must be installed and the instrument sealed within five minutes.

2.12. Additional adsorption packets may be obtained from:

Coast Engineering Laboratory 3755 Inglewood Avenue Redondo Beach, California

Order by part number DEEC-1.

2.13 INITIAL CHECKOUT PROCEDURES

- 2.14. The following procedure is performed to verify that no damage has occurred during shipment and that the instrument is operative. Slight deviations in readings during the following tests may be corrected by making simple adjustments. For instructions refer to Section 5, "Calibration". Any major discrepancies should be reported to the carrier and to Dana Laboratories immediately.
- 2.15. Prior to performing the checkout procedure, it may be advisable to refer to the operating instructions beginning at 2.25.

2.16 ZERO CHECK

- (a) Set FUNCTION control to MV and RANGE to 100.
- (b) Short input leads. Visual readout should display 000.00.

(c) If necessary, adjust MV ZERO on front panel to obtain this reading.

2.17 POLARITY GAIN CHECK

- (a) Set FUNCTION control to DC and RANGE to 10.
- (b) Apply a known voltage of approximately -10 volts to the input. Visual readout should display value of input voltage (within specified tolerance and proper polarity.

2.18 RANGE CHECK

- (a) Set RANGE to 100.
- (b) Connect input to a source of +100 DC.
- (c) Visual readout should display input value and proper polarity.
- (d) Vary input voltage and polarity and check for proper readout (within specified tolerance).
- (e) Repeat on 1000 volt range.
- (f) Repeat the above steps with range on mV and using 100mV and 1000mV inputs.

2.19 AC CHECK

- (a) Connect signal generator to input. Set FUNCTION switch to AC.
- (b) Set generator to 50Hz and check for proper readout at the following input voltages: 9 volts, 90.0 volts, and 125 volts.

2.20 OHMS CHECK

- (a) Measure standard resistors of values near full scale for each range.
- (b) Check for proper readout (within specified tolerance) and ohms indication.

2.21 FUSES

2.22. On the rear panel are three fuses: F201, the power fuse; F202, the fan fuse; and F203, heater fuse (the 400 watt heater is operated by a thermostat within the instrument). Each fuse is wired to an indicator on the front panel that illuminates when the corresponding fuse is blown. The fuses are identified in table 2.2.

2.23 EXTERNAL CONNECTOR IDENTIFI-CATION

2.24. All external connectors are identified in table 2.3.

Table 2.2. Fuse Identification

Fuse	Function	Type
F201	Power	F02B 250V 1 Amp
F202	Fan	F02B 250V 1 Amp
F203	Heater	F02B 250V 5A

2.25 CONTROLS (See Figure 2.1)

2.26 POWER SWITCH

2.27. This is a two-position switch that applies power to the instrument. When Power is ON, the DVM display is always lit.

2.28 READ/HOLD SWITCH

2.29. This is a two-position switch that allows the operator a choice of a READ mode, in which new readings are commanded at a fixed rate of four per second, or a HOLD mode, which freezes

Table 2.3. External Connector Identification

Connector	Dana P/N	Mfr.	P/N
Signal Input J101	600359	Glass Seal	BE1H14-19P (Var B)
Mating Connector	600352	Cannon	KSP06F14-19S
Remote Program J201	600357	Glass Seal	BE7H16-26P
Mating Connector	600353	Cannon	KSP06F16-26S
Digital Output J202	600356	Glass Seal	BE7H22-55P
Mating Connector	600355	Cannon	KSP06F22-55S
Power J203	600360	Glass Seal	BE7H12-3P
Mating Connector	600354	Cannon	KSP06F12-3S
Signal Input J204	600358	Glass Seal	BE7H14-19P (Var A)
Mating Connector	600352	Cannon	KSP06F14-19S

Figure 2.1. Control Panel

the last previous reading indefinitely. HOLD is released by turning the switch back to the READ position.

2.30 FUNCTION SWITCH

- 2.31. The FUNCTION switch is a seven-position switch having the following positions:
 - (a) <u>REMOTE</u>. In REMOTE, the selection of the function to be measured is made externally through the Remote Program input connector.
 - (b) <u>FAST DC</u>. This position selects high-speed, non-filtered DC measurements from 100uv to 1000 volts (plus overrange).
 - (c) <u>DC</u>. DC selects medium-speed dc measurements from 100uv to 1000 volts. An input filter is

- installed in the circuit in this position.
- (d) <u>10X RATIO</u>. This position selects the measurement of the ratio of the DC input voltage to a +DC reference voltage (+2 to +11 V.) both applied at the input connector.
- (e) AC. This position selects the measurement of AC voltages from 100uv to 1000 V (rms) at 50Hz to 100kHz.
- (f) MV. This position selects the measurement of low-level DC voltages from 1 microvolt to 1000 millivolts (plus overrange).
- (g) <u>K-OHM</u>. This position selects the measurement of resistance from 0.1 ohm to 10 megohms.

2.32 RANGE SWITCH

2.33. The RANGE switch has five fixed

range positions, an AUTO position and REMOTE.

- (a) Fixed Ranges. The five fixed ranges are 1, 10, 100, 1000, and 10,000. Inscriptions on the panel define the ranges which can be used with particular functions. AC, DC, and FAST DC measurements can be taken on the 10, 100, and 1000 voltranges. Millivolts can be measured on the 100 and 1000 ranges. Resistance can be measured on all five ranges. If a range is selected that is invalid for the function being measured, the instrument advances to the 1000 range whether or not there is an input. For example, if 10000 range is selected in MV function, the range advances to 1000. When this happens, the decimal point on the readout is blank indicating incorrect data.
- (b) <u>AUTO (Automatic)</u>. In this position, range is automatically selected for all functions by internal circuits.
- (c) <u>REMOTE</u>. In this position, the selection of range is made externally through the Remote Program input.

2.34 MANUAL OPERATION

2.35. Once the instrument has been connected to the power line and to the signal source in accordance with the instructions in 2.3 through 2.12, the operator can make all the required measurements by setting the front panel manual controls to the indicated positions. Remote program operation is covered in Section 3. The voltmeter displays the four-per-second readings

in the READ mode. It is therefore normally most convenient to leave the READ/HOLD control on the READ position, using the HOLD position only for special applications, such as remote command operation. When switching from one type of measurement to another by turning the FUNCTION control, it is generally advisable to keep the RANGE switch on AUTO so as to avoid overloading the input circuitry.

CAUTION

Voltage exceeding 250 volts must not be applied between chassis ground and guard (input connector, pins A through M) or between guard and the low input terminal (pin P). Avoid introducing more than 500 volts into the instrument while the FUNCTION switch is on AC or more than 30 volts while the FUNCTION switch is on MV.

2.36 DC MEASUREMENTS, FAST, NOR-MAL, AND MILLIVOLT

2.37. (Pin assignments of the signal input connector are repeated in figure 2.2). Attach the high side of the signal source to pin N of the input connector (J101 or J204); and the low side to pin P. The guard is connected to the low side of the measurement point.

PINS A THROUGH M CONNECTED TO GUARD

Figure 2.2. Input Connector

Table 2.4. Four-Wire Operational Ohmmeter

$$I_{in} = \frac{E_{ref}}{R_{s}}$$

$$(r_1 \text{ through } r_4 = \text{lead resistance})$$

Since
$$I_{in} = I_{o}$$
, $E_{o} = \frac{E_{ref} R_{x}}{R_{s}}$ and $\frac{E_{o}}{E_{ref}} = \frac{R_{x}}{R_{s}}$

Analysis of Lead Resistance

Lead resistances r_2 and r_3 have no effect since there is no current flow through them. Resistance r_4 is eliminated by being placed within the feedback loop. This is accomplished by proper placement of the voltage sensing lead (r_3) .

Resistancer₁ affects the full scale current. Therefore, it causes a "percent of reading" error equal to:

$$\frac{R_1 \times 100}{R_s}$$
 % where $R_s = Standard Resistor$

For example, if r_1 is 1 ohm and the standard resistor is 2K, the % of reading error is 0.05%.

It is important to note that r_1 has no effect at zero resistance and does not cause a % of full-scale error. For example, using the two-wire method, a lead resistance of 1 ohm creates an error of 1% when measuring 100 ohms (R).

If lead resistance is changed, a full scale adjustment must be made to maintain full accuracy.

2.38 AC MEASUREMENTS

2.39. Attach the high side of the signal source to pin N, the low side to pin P. Connect guard to low side of measurement point.

(a) Three-Wire Ratio Measurements

(b) Four-Wire Ratio Measurements

Figure 2.3. Ratio Measurements

2.40 RATIO MEASUREMENTS

2.41. Attach the signal input as for the DC instructions. Attach the +DC reference voltage with the positive side to pin T and the negative side to pin P. The instrument by itself makes three-wire ratio measurements since the signal and reference voltage have a joint common (see figure 2.3). For four-wire ratio measurements, an external differential amplifier (such as the Dana Model 2820) must be used. The amplifier can be placed in either the signal or reference input, depending on application.

(a) Two-Wire Ohms Measurement

(b) Four-Wire Ohms Measurement

Figure 2.4. Ohms Measurements

2.42 OHMS MEASUREMENTS

- 2.43. For two-wire ohms measurements, jumper pin R to pin N and pin S to pin P. The unknown resistance may be connected across either set of terminals.
- 2.44. For four-wire ohms measure-ments, separate sets of leads are connected to the non-jumpered signal input and ohmmeter-current source terminals. These leads are connected to the unknown resistance in the manner shown in figure 2.4.
- 2.45. The four-wire configuration minimizes the effect of lead resistance. However, when this method of measurement is used, the full scale reading must be re-adjusted (by recalibration of the Ohms Converter with the cables to be used for measurement). No zero adjustment is required. See Table 2.4 for analysis of lead resistance.

2.38 AC MEASUREMENTS

2.39. Attach the high side of the signal source to pin N, the low side to pin P. Connect guard to low side of measurement point.

(a) Three-Wire Ratio Measurements

(b) Four-Wire Ratio Measurements

Figure 2.3. Ratio Measurements

2.40 RATIO MEASUREMENTS

2.41. Attach the signal input as for the DC instructions. Attach the +DC reference voltage with the positive side to pin T and the negative side to pin P. The instrument by itself makes three-wire ratio measurements since the signal and reference voltage have a joint common (see figure 2.3). For four-wire ratio measurements, an external differential amplifier (such as the Dana Model 2820) must be used. The amplifier can be placed in either the signal or reference input, depending on application.

(a) Two-Wire Ohms Measurement

(b) Four-Wire Ohms Measurement

Figure 2.4. Ohms Measurements

2.42 OHMS MEASUREMENTS

- 2.43. For two-wire ohms measurements, jumper pin R to pin N and pin S to pin P. The unknown resistance may be connected across either set of terminals.
- 2.44. For four-wire ohms measure-ments, separate sets of leads are connected to the non-jumpered signal input and ohmmeter-current source terminals. These leads are connected to the unknown resistance in the manner shown in figure 2.4.
- 2.45. The four-wire configuration minimizes the effect of lead resistance. However, when this method of measurement is used, the full scale reading must be re-adjusted (by recalibration of the Ohms Converter with the cables to be used for measurement). No zero adjustment is required. See Table 2.4 for analysis of lead resistance.

3.44. MV/DC RATIOS

- 3.45. The programming accessory enables the measurement of $\pm MV/\pm DC$ and MV/DC ratios not possible with manual operation.
 - (a) Select desired range by applying a closure to common at the appropriate pin. Select ratio by applying common at pin G.
 - (b) Select the numerator of the ratio (MV) by a common to pin D.

Wait 25 milliseconds and apply the input signal. No delay is necessary in application of the reference input. Apply a common to pin M, the Delayed Command — or provide a delay for settling time of the function and apply a common to the Direct Command input, pin P.

3.46. The instrument will now measure the ratio and display or print a number equal to ten times the ratio.

SECTION 3

DIGITAL OUTPUT AND REMOTE PROGRAM ACCESSORIES

3.1 INTRODUCTION AND OPTIONS

3.2. The isolated accessories available for use with the Dana Model 5524 Digital Voltmeter allow operation with non-isolated equipment with no loss in the common-mode characteristics of the voltmeter. This is achieved by the use of guarded reed relays between the instrument and all external input/output lines. The basic accessories and their identifying model numbers are listed below:

Isolated Electrical Output Model 76
Isolated Remote Program Model 77
Isolated Electrical Output/Isolated
Remote Program Model 78

- 3.3. The isolated output can be adapted to the format requirements of a wide variety of printers and other digital output devices by use of a diode matrix which converts the internal digital voltmeter code to the desired BCD output. The more commonly used codes (1-2-4-8 and 1-2-2-4) have been standardized and assigned option numbers. Other BCD codes can be provided on special order.
- 3.4. Output voltage levels are produced by a switch closure to an externally supplied reference voltage. The user can, therefore, obtain the desired voltage levels by specifying either a switch-closure for a "false" bit or a switch-closure for a "true" bit. An open switch, of course, represents

the complementary state. With contact-closure "true" specified, negative true outputs are obtained when a positive reference voltage is supplied; positive true outputs are obtained when a negative reference is supplied. With a contact-closure "false", the output sense is reversed.

- 3.5. The options described above are designated by a suffix to the basic accessory model number:
 - 1-2-4-8 with switch-closure "true" is designated as D1.
 - 1-2-4-8 with switch-closure "false" is designated as D2.
 - 1-2-2-4 with switch-closure "true" is designated as El.
 - 1-2-2-4 with switch-closure "false" is designated as E2.
- 3.6. For example, a Model 5524 DVM having basic accessory Model 75 with 1-2-4-8 code, switch-closure "true" is identified as 5524-78-D1.
- 3.7. Physically, each basic accessory consists of a printed circuit "mother-board" containing nine connectors into which additional printed circuit boards are placed. The nine connectors are designated as J211 through J219. Four types of boards are used; the quantity of each is determined by the basic accessory model. The complement of each type board in each basic accessory is shown in table 3.1. Separate

Table 3.1. Board Types

Basic Accessory	Isc	olated	Outpu	ıt Boa	rds	Isol Progra Boa	-	Range & Funct . Code Board	_	Delay Board
	J211	J212	J213	J214	J215	J216	J217	J218	J219	J220
Model 76	Х	Х	Х	Х	х		х	Х	Х	
Model 77					Х	Х	-X		X	х
Model 78	х	х	х	х	Х	Х	Х	Х	Х	Х

sets of diode matrices are installed in the decade boards and in the output accessory to obtain the proper BCD output for the specified option.

3.8. The digital outputs of each accessory are delivered through connector J202; program inputs are made through J201. The connectors are mounted on the rear panel of the DVM (see Figure 3.1). Specific pin assignments of the connectors are listed on the pin assignments charts, Table 3.3 (page 3-6) and Table 3.6 (page 3-10).

Figure 3.1. Rear Panel

3.9 ISOLATED OUTPUT BOARD (J211 through J215)

3.10. The Isolated Output circuit boards are used in basic accessories 76 and 78 only, since Model 77 does not deliver an electrical output. The boards contain guarded reed relays that provide isolation between the digital voltmeter circuits and the output device. They also contain diode matrices to convert polarity and overrange information into the desired BCD output format. The configuration of a typical output bit (X1) is shown in Figure 3.2.

3.11. When the XI input from the DVM digitizing circuits is at digital common, relay KI is energized. This places the XI output at common. When KI is not energized, the voltage at the XI output is dependent on the external supply voltage. Relay KI is energized on either the "true" or "false" DVM outputs depending on the option selected and determined by the diode matrix in the Decades of the digital voltmeter.

3.12 ISOLATED PROGRAMMING BOARD (J216 - J217)

3.13. The configuration of a typical Isolated Programming input circuit is

Figure 3.2. Typical Output Circuit

shown in Figure 3.3. Two boards are used in Models 77 and 78 one board (1217) is used in Model 76.

- 3.14. The command for a function or range selection is made by supplying a common to the appropriate pin on the Programming Input connector. One side of each programming relay is tied to one side of each of the other relays and to the external +12 volt supply supplied by user.
- 3.15. Current flow through a closed circuit is approximately 6 milliamperes.

Figure 3.3. Typical Program Input

3.16 RANGE/FUNCTION CODE BOARD (J218)

3.17. The Range/Function Code board contains two diode matrices. One is used to convert the internal DVM function code to the selected output format; the other matrix converts the internal DVM range code to the selected output format. Specific coding differs with the option selected. The codes are identified on the "Pin Assignments" chart for the particular accessory.

3.18 COMMAND LOGIC BOARD (J219)

3.19. The Command Logic Board used in the Model 76 options, provides an approximate 1 ms delay for the print drive signal. The Command Logic Board used in the Models 77 and 78 options, is used in conjunction with the Delay Board (J220). These two boards, provide a delay or "timeout" period to provide settling time for the input accessories (used with AC, DC, Kilohms, or MV measurements) and to allow time for the DVM to change ranges when operating in Auto Range. At the end of the delay period, a Print Command is generated.

Figure 3.4. Block Diagram - Delay Circuit

3.20. A simplified diagram of the Command Logic and delay circuitry is shown in figure 3.4. This general configuration is used with Models 77 and 78. A simplified block diagram of the Print Command logic used in the Model 76 options is shown in figure 3.5.

3.21 DVM COMMAND

3.22. The DVM Command is applied to the instrument causing a new reading to be taken. The command is initiated on the negative-going edge of a positive pulse generated by the Command flip-flop. The flip-flop is set true by either the Direct Command or an inverted start stop strobe pulse generated at the end of a DVM read cycle. The flip-flop is reset by the delayed output of the one shot (initiated by either the direct or delay command) or the delayed pulse of the delay

generator. The Delay Generator provides various timeouts to allow for the settling time of the accessory selected (see table 3.2). The delay determining portion of the circuit is located on the Delay Board. The Delay starts when the delay flip-flop is set true by the Delay Command or by the 0's and 9's signals from the decades indicating that either the up or down range change is required. The Delay flip-flop is then reset by the start-strobe.

Type of Measurement	Delay
DC Volts - Fast	105 ms
Ratio DC Volts AC Volts Millivolts	630 ms 630 ms 460 ms 1.25 sec
Ohms	890 ms

Table 3.2. Delay Times

Figure 3.5. Print Command Logic

3.23. The Print signal indicates that the instrument has completed the read cycle. The Print is taken from the inverted start-stop strobe signal and extended approximately 1 millisecond by the Print Drive circuit on the Delay Board. The Print signal is inhibited during a range and polarity change.

3.24 DIGITAL OUTPUT CONNECTIONS

3.25. Pin assignments of the Digital Output connector, J202, are given in Table 3.3. The outputs include data from each decade (units through 100,000) range, polarity, and function. Each output consists of four bits, X1 through -X4, representing 1-2-2-4 or 1-2-4-8 depending on the option. The BCD output format for each option is shown in Table 3.4. The table also includes sample data outputs. Outputs are obtained by supplying an external reference voltage as described below.

3.26 EXTERNAL VOLTAGE SUPPLY

3.27. The external reference supply of up to 100 volts is applied across pins T and S of J202. This voltage is present at each individual output pin when the corresponding relay contacts are open (Figure 3.2). This will occur on either a true or false bit, depending on the option selected.

PRINT Command is a contact closure at the completion of the read cycle. The contact is open during the read cycle.

Figure 3.6. Print Command

- 3.28. The common sides of each pair of relay contacts are normally tied together. However, the commons for each group can be brought out separately (as explained in 3.33) if so desired.
- 3.29. Polarity bits X2, X3, and X4 are either permanently strapped to common or tied (through 47 Kohm resistors) to the reference voltage, depending on option.

3.30 PRINT COMMAND

- 3.31. The Print Command, J201-pin U, indicates to the printer that the data present at the output connector is final data (the measurement cycle has been completed) and that it is time to print. During the measurement cycle, the printer is inhibited from printing the interim data values by a voltage level on this line. At the end of the measurement cycle, the level changes providing the print command (Figure 3.6). The signal can be of either polarity. The voltage is the external reference voltage in series with 47K resistor.
- 3.32. The external reference voltage and the print command appear at both

Table 3.3 Digital Output Connector J202

Function		Pi	ns	Function
Range Range Polarity Polarity Units Units 10's 100's 100's 1000's 1000's 100K's 100K's 100K's Function Function Print Command Ext. Reference Common	,	HH GCC BB y x u t q p k j g f C b Y X U T S	FF EE AZ W V S r n m i h e d a Z W V G H N M R K P L J	Range X3 Range X4 Polarity X3 Polarity X4 Units X3 Units X4 10's X3 10's X4 100's X3 100's X4 1000's X3 1000's X4 100K's X3 100K's X4 Function X3 Function X4 Function X3 Function X4 Function Common (2) Range Common (2) Polarity Common (2) Units Common (2) 10's Common (2) 100's Common (2) 100's Common (2) 100K's Common (2)

- (1) Model 77 equipped with these lines only
- (2) See paragraph 3.33

Mating Connector:

Dana P/N 600356 - Glass Seal P/N BE7H22-55P

E1 - E2 OPTIONS	TRUTH TABLE BCD E1 Switch Closure = True (1)	D Options E Options 1-2-2-4 E2 Switch Closure = False (0)	2. 1 2 4 8 1 2 2 4 J202 Pin No. HHGGFF EE Y X W V CC BB AA Z	0 0 0 0 0	1 0 0 0 1 0 0 0 Range 10 1 1 0 0	0 0 0	4 0 0 1 0 0 1 1 0 Range 1000 1 0 0 0	+	7 1 1 1 0 1 0 1 1 DC 1 0 0 0	8 0 0 0 1 0 1 1 1 1 Ratio	9 1 0 0 1 1 1 1 1 DC Fast 1 1 0 0	AC 0 1 1 0	MV 1 1 1 0	Kilohms 0 0 1 1	+ Polarity 0 0 0 0	- Polarity 1 0 0 0	Code 1 2 2 4 1 2 2 4 1 2 2 4
D1 - D2 OPTIONS	D1 Switch Closure = True (1)	D2 Switch Closure = False (0)	HIGGEFEE Y X W V CCBBAA Z DEC.	0 0 1 0	1 1 0 0	0 1 0 0	1 0 0 0	0 0 0 0	1 0 0 0	0 1 0 0				0 1 1 0	0 0 0 0	1 0 0 0	1 2 4 8 1 2 4 8 1 2 4 8
	BCD	1-2-4-8	1202 Pin No.	Range 1	Range 10	Range 100	Range 1000	Range 10000	DC	Ratio	DC Fast	AC	MV	Kilohms	+ Polarity	- Polarity	Code

		>	0	0	0	0	0	0		0	8
	ITS	3	0	0	1	1	0	1	0	1	4
	UNITS	×	0	0	1	0	0	1	0	0	2
		У	0	1	1	0	1	0	1	1	-
		r	0	0	0	0	0	0	1	0	8
	10	ß	0	0	0 0	0 0	0 0	0 0 0 1	0	1	4
		Ļ	0	0	0	0	0	0	0	0	2
		Ħ	0	0	0	1	0 0	0	1 1	1	1
		ш	0	0	0	0	0	0	1	0	00
UES	100	n	0	0	0	0	0	0	0	ĭ	4
AL	-	p	0	0	0	0	1 0	0 0 0	1 0	1	2
ľA V		р	0	0	0	0		0		0	
DA		Ч	0	0	0	0 0 0 0	0 0 0 0	1 0 0 0	0	1 0	8
ΓE	1,000	i	0 0	0	0	0	0	0	0	1	4
MP	1,	j	0	0	0	0	0	0	0	0	2
SA		Ж	0	0	0	0	0	1	0	0	
S I	0	q	0	0	0	0	0	0	0	0	8
NO	10,000	е	0	0 0	0 0	0 0 0 0 0 0	0 0 0 0	0	0	0 0 0 0 0 0	4
D1 - D2 OPTIONS - SAMPLE DATA VALUES	10	j b	0	0	0	0	0	0 0 0	0	0	2
0		g	0	0 0	0 0	0	0	0	7	0	_
Ä	g	a Z	0 0	0	0	0	0	0	0	0	8
)]	100,000		0	0	0 0	0	0	0	0	0	4
Ц	100	q	0 0	0	0	0	0	0	0	0	2
	_	υ	0	0	0	0	0	0	0		-
		J202 Pin No.	Decimal 0	000001	00000	000014	000101	001246	010999	104655	Code

			Ξ]	1	E2	OP	lio	NS	E1 - E2 OPTIONS - SAMPLE DATA VALUES	AM	PL	. O	ATA	VA	Ta	ES			
		001	100,000			10,000	000			1,000	00			100	0			-	01
J202 Pin No.	O	а	Ø	Ζ	g	4-1	Φ	р	×	j	i	h	q	Q	u	Е	ä	t	S
Decimal 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000014	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0
000101	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
001246	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	1
010999	0	0	0	0	1	0	0	0	0	0	0	0	1	1	-	-	1	7	7
104655	1	0	0	0	0	0	0	0	Ö	1	1	0	0	0	7	-	-	1	_
Code		2	2	4	ī	2	2	4	1	2	2	4	1	2	2	4	-	2	2

Table 3.4. Output Codes and Format

Figure 3.7. Output/Program Interconnections

the Digital Output connector and the Program Input connector (figure 3.7). Therefore, these external connections can be made at either of the two connectors.

3.33 DIGITAL OUTPUT COMMONS

3.34. As shown on the basic schematic of the Digital Output circuits, the commons for each group of outputs are tied together. If it is desired to isolate any or all groups of outputs, it is necessary to move the factoryinstalled jumpers to the appropriate pins. The terminals at which the jumpers are installed are physically located on the "mother board" and are identified on the intraconnection drawing (430699). The jumper terminals are listed in Table 3.5. To isolate any output, remove the factoryinstalled jumper at the terminals listed in column 3 and install jumpers

at the terminals listed in column 4.

3.35 REMOTE PROGRAM OPERATION

3.36. With the Remote Program accessory, the instrument can be operated by remote contact closures or by a combination of front-panel manual controls and remote contact closures.

3.37. Table 3.6 provides a list of pin assignments of the instructions that may be programmed at J201, the Remote Program connector. In order to operate the isolated relays, it is necessary to connect an external +12 volts to pin N of J201 (see Figure 3.7). An instruction is transmitted into the instrument by providing a common (to the externally supplied +12 volts) at the pin corresponding to the desired command (identified in Table 3.6). The instruction is not operative, however, unless the corresponding manual control on the

Table 3.5. Common Jumpers

(1) J202 Pin	(2) Function	(3) Jumpers Installed	(4) Jumpers for Isolation
G	Function Common	E2 - E10	E10 - E20
L	10,000's Common	E 8 - E11	E11 - E19
P	1000's Common	E9 - E12	E12 - E23
ĸ	100's Common	E7 - E13	E13 - E24
R	10's Common	E5 - E14	E14 - E25
N	Polarity Common	E4 - E16	E16 - E27
М	Units Common	E3 - E15	E15 - E26
н	Range Common	E1 - E18	E18 - E21
1	100,000's Common	E6 - E17	E17 - E22

front panel is set to its REMOTE position. Therefore, to remotely program the range, the RANGE control must be set to REMOTE. The same is true of the FUNCTION control, if the function is to be remotely programmed. It is pos-

Table 3.6 Remote Program Connector J201

Function	Pin
1 Range	Y
10 Range	w
100 Range	L
1000 Range	к
10K Range	J
Ratio	G
DC Fast	н
DC	v
AC	х
MV	D
Kilohms	F
Hold(1)	υ
Command(1)	P
Delayed Command	М
Ext. Reference	R
Common	В
Print	<u>c</u>
+12 Volts(1)	N
(1) Model 76 equipped w lines only	ith these
Mating Connector: Dana P/N 600356	

Glass Seal P/N BE7H22-55P

sible, however, to set one control manually while another is being remotely controlled.

3.38. Each Accessory includes a pin for commanding the instrument to take a reading. To enable this command function, the instrument is put in the Hold mode, either by turning the front panel READ-HOLD control to the HOLD position or by providing a command (common) to pin U (Hold). A single reading can then be commanded by a common to pin P (command). The instrument immediately initiates a measurement cycle, and holds this measurement until the common at pin P is broken and again made.

3.39. The delays listed in table 3.2 are obtained by applying a common to pin M, the Delayed Command, rather than pin P which provides no internal delay.

3.40 GENERAL PROGRAMMING RULES

- (a) Commands (contact closures) must be 3 milliseconds (min.) duration.
- (b) The range and function relays require approximately 25 milliseconds to switch. Therefore, after the function and range selections are made, 25 milliseconds should be allowed before application of the input signal.
- (c) If the Read Command is made at the Direct Command input (pin P) rather than the Delayed Command input (pin M), a delay equal to that in Table 3.7 must be provided if the range, function, or input signal have been changed.

Table 3.7. Settling Time

Function	Settling Time
DC Volts Fast Ratio DC Volts AC Volts Millivolts Ohms	50 milliseconds 500 milliseconds 500 milliseconds 300 milliseconds 1 sec 750 milliseconds

These are settling times only. Table 3.2 lists the automatic timeout periods taken when using the delayed command. Times in Table 3.2 include settling time plus tolerances of components.

- (d) If no remote range selection is made and the Range switch on front panel is on REMOTE, the instrument is in Auto Range.
- (e) With the instrument on Auto Range and the Direct Command input used, the Command (closures) must not exceed 25 milliseconds.

3.41 GENERAL PROGRAMMING PROCEDURE

- 3.42. The following procedures assume that the connections to the measurement points are made as described in 2.34 through 2.45.
 - (a) Place instrument into HOLD mode either by setting the front panel MODE switch to HOLD or by applying a closure to common at pin U of J201.

(b) Apply closures to common at the pins corresponding to the desired function and range. For example, AC volts on the 100-volt range is commanded by closures to common at pins X and L. If Auto Range is desired, do not select any range.

CAUTION: If the selected function was changed from the previous measurement, the input voltage should not be applied for 25 milliseconds. If the previous measurement was, for example, MV, 100 volts AC may damage the input circuits if applied before the relays are completely switched.

- (c) If function was changed, allow 25 milliseconds for relay operation, then apply input signal. Command a Delayed Read by completing a closure to pin M. If the command is made at the direct Command input (Pin P), the Read must be delayed by the settling time of the function being measured (see Table 3.7). At the end of the measurement cycle, the print line, pin c, drops to zero and the instrument will accept another command.
- 3.43. When used in a system such as a scanner where the inputs are the same function, it may be more convenient to select the function and range manually and use only the Print and Read Command lines remotely. Upon receipt of the Print Command, the external system itself may generate the next Read Command.

divider network consisting of a fixed resistor, a potentiometer, and a Zener diode. The drive current for the Zener comes from the output of the Reference Buffer itself. Through careful selection of components and a balancing of the various resistances in the feedback network, an essentially zero temperature coefficient is achieved

within the operating range of the instrument.

- 4.90 DISPLAY (Schematic 430389)
- 4.91. The Display board provides a mechanical assembly for the digital display tubes and carries the drive circuits for the neons that indicate decimal point, polarity, and range.

SECTION 4

THEORY OF OPERATION

4.1 INTRODUCTION

- 4.2. Circuits in the Model 5524 fall into two functional areas. The circuit boards in the right-hand side of the instrument as viewed from the front (J12-J22) are the signal conditioning circuits. The boards in the opposite side (J1-J11) are digitizing and display circuits. The purpose of the signal conditioning section is to provide a -10 volt full scale analog signal to the digitizing and display section where it is balanced against a current derived from a precise reference voltage.
- 4.3. This section describes, first, the signal conditioning circuits individually followed by a discussion of operation of the signal conditioning circuits for each mode (type of measurement). Overall operation of the digitizing and display section is then described since it is the same in all operating modes. This is followed by a description of individual circuits in that section.
- 4.4. The last two figures in this section are functional intraconnection diagrams of the signal conditioning section (Figure 4.10) and the digitizing and display section (Figure 4.11). Each of the diagrams can be unfolded allowing the diagram to be referenced while reading the circuit descriptions throughout the section. The diagrams are intended to supplement the complete schematics included in Section 6. Dana logic symbols are defined in Figure 4.1

4.5 SIGNAL CONDITIONING CIRCUITS

- 4.6 CONTROL AND ATTENUATOR (Schematic 430705)
- 4.7. The Control and Attenuator is the first assembly behind the front panel. On it are mounted the front panel switches and input/output terminals. The board contains relays that switch the function and range displays; filters; scaling resistors; and a feedback attenuator for millivolt measurements. The relays are controlled by the function selection -from either the front panel switch or through remote programming -- and by the range signals -- from either the RANGE switch, through remote programming, or from the Range Control board.
- 4.8. Eight relays, Kl through K8, are used. One side of each relay coil is tied to +28V; the relay is energized by applying a digital common level to the opposite side. The purpose of each relay is indicated in the following table.

Relay	Energized By	Purpose
Κı	AC Selected	Switches high side of input directly to AC Converter; switches filter into the circuit.
Қ2	R1 and R2 or Kilohms Se- lected	Range Switching
КЗ	MV Selected	Switches passive filter into circuit; adds feedback loop to Isolator and adds resistance network to common.
K4	R1 and R2 and K11ohm Select- ed or AC Selected	Range Switching
KS	AC Selected	Switches Auto Polarity Output to AC Filter
K6		Switches active filter into input circuit when "fast" function not selected.
K 7	Kilohms Se- lected	Routes "current source" directly from Ohms Converter
K8	Kilohm Se- lected	Prevents leakage of current source through relay inte- connections.

Figure 4.1. Dana Logic Symbols

4.9 ISOLATOR (Schematic 430659)

4.10. The Isolator is a floating-input potentiometric amplifier capable of operating at very low signal levels. The feedback loop, that establishes amplifier gain, is located on the Control and Attenuator board. The feedback circuit and the amplifier input are switched into various configurations to conform to the function selected. The amplifier operates as a unity-gain isolator for DC, ratios, and resistance measurements, as a gain of 10 amplifier for AC measurements; and as a preamplifier for millivolt measurements on the 100 and 1000 ranges.

4.11. Operating in conjunction with the Isolator amplifier is a "bootstrap" amplifier (consisting of Q1, Q3, Q4, Q7, Q8, Q9, and Q11, see schematic). This amplifier samples the voltage at the negative feedback point and adjusts the supply voltages to the input stage so that base and collector voltage remain constant. Also it provides a reference level for the first stage base current compensation network.

4.12 RANGE CONTROL (Schematic 430408)

4.13. Range changes in the instrument are determined by the BCD state of the Decades in the Digitizing and Display Module and controlled by the range signals R1, R2, R3, and their complements. These signals are the outputs of a three-stage counter on the Range Control circuit board. The counter counts up or down in response to logic at the input which depends on the function selected. If the decades are not at full scale (109999), the Count Up signal is inhibited by the lines from the Decades. If the state of the decades is not at onetenth scale or less (010000), the Count Down signal is inhibited. The circuit arrangement of the inhibit lines is shown in Figure 4.2.

- 4.14. The Count Up and Count Down lines are clamped by diode gates on the decades when a change (either up or down) in the range counter is to be inhibited. An "up" range is allowed only when the Overflow flip-flop on the Control Logic board is set and the four lower-order decades are at nineindicating 109999. In addition to this count, an "up" from the Trigger flipflop is also required. At any count other than 109999, the Count Up signal is clamped to common by one or more of the diodes in the 0's or 9's gates on the Decade boards or diodes on the Overflow flip-flop output.
- 4.15. A "down" range is allowed only when the count is less than 01000. This is indicated by the Overflow flipflop "off" and the 0's gate from the 10K decade "true". At other counts, the Count Down range signal is inhibited.
- 4.16. The count lines are also inhibited (clamped to common) by diodes on the Auto Polarity board during a polarity change.
- 4.17. The Count Up Range and Count Down Range signals have no effect on the counter except when the output of the Start/Stop Memory (S/S) one-shot is "true". This occurs when the S/S signal (generated in the Digitizing and Display module) goes "false" at the end of a digitizing process. The count signals can be inhibited also by the "forbidden range" logic explained in the following paragraphs. Normally the counter will count up as shown in the following table.

Figure 4.2. Range Counter Inhibit Lines

	States		
R1	R2	R3	Range
0 1 0 1	0 0 1 1	0 0 0 0	1 10 100 1000 10,000

4.18. Since all ranges are not used for all functions, logic is present to prevent the counter from remaining on a prohibited range for a particular function. For example, with the Millivolt function selected, R2 is not allowed to reset and R3 is held "off" by the MV line applied to R2 and R3 through diodes CR37 and CR38. This allows only the 100 and 1000 ranges to be available with this function selected. Similarly, with the counter at 110 representing the 1000 range, a count-up pulse is inhibited unless the Kilohm function is selected-since that is the only function using the 10,000 range. The input line labeled Z is "false" when either AC, DC, DCF, or Ratio is selected. This line prevents the R3 flip-flop from settingthereby skipping the 10,000 range.

4.19. Any fixed range, selected either manually or remotely, inhibits the automatic range function. This is done by logic gate "A" (Figure 4.10).

4.20 AUTO POLARITY (Schematic 430406)

4.21. The Auto Polarity board eliminates the need for polarity switching by maintaining, in conjunction with the Isolator output, a negative input to the Null Detector (in the digitizing and display section) regardless of the polarity of the input. The circuit consists of an inverting amplifier with polarity-dependent feedback paths, a

differential amplifier, a polarity flipflop, a one-shot circuit, and a relay driver.

4.22. The Isolator output is applied to the Auto Polarity board at pins D and 14. The signal is scaled to 10 volts full scale and of the same polarity as the input. When the input is negative, relay Kl is not energized and the signal (at pin 14) is routed directly to the Null Detector.

4.23. The Auto Polarity amplifier has a separate feedback path for each polarity. When the input signal is positive, the Auto Polarity amplifier output is negative. The output from the negative feedback path is routed to pin J of J20, through relay contacts on the AC Converter board and back to pin 1 of J20 and through a potentiometer, the + Polarity Gain adjustment, to the normally open contact of K1.

4.42. The negative voltage at the Auto Polarity output (at the junction of the two feedback diodes) and analog common form the input to a differential amplifier. The outputs of the differential amplifier enable the "dynamic and" gates at the polarity flipflop input when at zero voltage. In this case (input signal positive), the gate at the reset input (2) of the flipflop is enabled (the gate at 1 is approximately 10 volts).

4.25. Start-Stop is a signal from the digitizing and display section which is true (+14 volts) during the digitizing (measuring) time of the DVM. At the end of the measurement time, the line drops to zero and triggers the reset side (2) of the polarity flip-flop. The flip-flop outputs are now false (0 V) at 3 and true (+14 V) at 4.

- 4.26. The positive voltage at 4 turns on the relay driver (Q15) which provides a common to K1 and energizes that relay. The output to the Null Detector is now taken from the negative feedback path of the Auto Polarity amplifier.
- 4.27. The effect of the circuit can be summarized as follows: if the input signal is negative full scale (-10 volts), the output of the Isolator is also -10 volts. Relay Kl is not energized and the negative voltage from the Isolator is routed directly to the Null Detector. If the input signal is positive full scale (+10 V) the Isolator output is also +10 volts, the Auto Polarity Output (on negative feedback leg) is -10 volts. The Polarity flip-flop causes relay Kl to be energized and the negative voltage from the Auto Polarity amplifier is applied to the Null Detector. Therefore, the output to the Null Detector is always negative regardless of the polarity of the input.
- 4.28. A one-shot at the Polarity flipflop output is triggered each time the Polarity flip-flop changes state. The one-shot "times out" in 10 msec at which time the DVM command (to Control Logic in digitizing and display section) is generated. The 10 msec allows relay Kl time to switch completely before the next reading is taken after a polarity change. During the 10 msec delay period, transistor Ol7 is turned on clamping the 0's and 9's lines to digital common and thereby preventing the instrument from upor down-ranging (in Auto Range) during a polarity change.
- 4.29 AC CONVERTER (Schematic 430437)
- 4.30. The AC Converter is an accessory board that may be plugged into

- the designated position in the instrument at any time. No special wiring is required; however, recalibration is required. The Converter consists of an AC-coupled, wideband, low-level amplifier with one permanent feedback path for the low range and shunt networks that are switched into the circuit by reed relays for the other two ranges. The unit is an operational amplifier, with resistor-capacitor pairs at the input and on the feedback loop. The full-scale output on all ranges is approximately 3 volts rms for a 10-volt rms input signal.
- 4.31. The output is applied to the Auto Polarity Amplifier which, in AC mode, serves as a full wave rectifier. Relay K3 is energized when AC is selected. It reroutes signals from the Isolator and Auto Polarity boards to obtain the proper circuit configuration for the measurement of AC volts.

4.32 OHMS CONVERTER (Schematic 430714)

4.33. The Ohms Converter is an operational amplifier used to generate a precise current through the unknown resistance. The range resistors, connected to the +20 volt internal reference voltage, determine the current source (+ current) to the summing junction at the input of the amplifier (+ sense). An equal amount of current is supplied to the summing junction, through the unknown resistor, from the output of the amplifier (- current). Because the reference current is taken from the internal reference of the DVM itself, the voltage output of the operational amplifier is a direct voltage equivalent of the unknown resistor value. The value of the range resistors is selected such that the output of the Ohms Converter is read by the DVM directly in kilohms.

4.34 MEASUREMENT OF DC VOLTS AND RATIOS

- 4.35. The circuit configuration used for the measurement of DC volts is shown in Figure 4.3. An identical arrangement is used when the instrument is in the ratio-measuring mode. The difference in these two types of measurements lies in the counterbalancing reference used in the Digitizing and Display section. DC volts are measured against a fixed internal reference; ratios are measured against an external reference.
- 4.36. As explained previously, the purpose of the signal conditioning section is to produce a negative 10-volt full scale signal (-10.9999, including overrange) at the input of the digitizing and display section. The negative voltage is applied across a precision resistor to produce a current that is nulled by an opposite current derived from the reference voltage.
- 4.37. The first step is to scale the incoming DC signal to 10 volts full scale. The precision scaling resistors in the Control and Attenuator circuit divide the input voltage by 10 if the signal is between ± 10.999 and ± 109.999 volts, and by 100 if the signal is between ± 109.999 and ± 1000.0 volts. The 10-volt full scale input is then filtered to remove superimposed noise and fed into the input of the Isolator.
- 4.38. The Isolator is, in this mode, a unity gain amplifier. Its output is therefore identical in polarity and amplitude with the scaled input. The voltage is directed to the 10K summing resistor in the Null Detector through the contacts of Kl. When the Isolator output is negative, relay Kl is not energized and the negative voltage from the Isolator is applied directly to

- the summing resistor. When the Isolator output is positive, the Auto Polarity output is negative, the Polarity flip-flop is triggered, and the relay is energized. The negative Auto Polarity output is then applied to the summing resistor, through the Positive Gain Adjustment.
- 4.39. The current into the Null Detector, then, has two potential sources. If the input signal is negative, the Isolator output is negative and all of the required negative voltage is from the Isolator. On the other hand, if the input signal is positive, the Isolator output is positive, relay Kl is energized, and the negative voltage is taken from the Auto Polarity output.
- 4.40. The Auto Polarity amplifier derives its name from the fact that it allows the Null Detector to deal exclusively with negative currents from the signal conditioning section, without any delay for polarity switching. This is of particular importance when the signal is frequently passing through zero, as in the case of bridge balancing.
- 4.41. It is important to note that the Positive Polarity Gain adjustment is used to calibrate positive input voltages; however, the actual polarity of the voltage affected by this adjustment is always negative.

4.42 MEASUREMENT OF FAST DC VOLTS

4.43. When Fast DC measurements are being made, the configuration of the signal conditioning circuits is the same as for DC measurements except that the active filter is removed. Elimination of the filter allows the instrument to settle to within 0.01% of the final reading in 50 milliseconds, after a step-function change in input level.

Figure 4.3. Block Diagram - DC and Ratio Modes

The filter slows the settling time down to 500 milliseconds. Other than this change at the input, the fast DC mode is identical to that of standard DC and ratio measurements.

4.44 MEASUREMENT OF MILLIVOLTS

4.45. The Signal Conditioning section "expands the scale" by switching the function of the Isolator circuit, changing it to a preamplifier. A 10-kilohm feedback loop is added to the amplifier. This, in conjunction with a resistance network to ground, switches the gain of the amplifier from unity to either 10 or 100. At again of 10, the instrument is operating at 1,000 millivolts full scale; at a gain of 100, full scale is 100 millivolts and the last digit resolution is 1 microvolt.

4.46. A passive filter is used at the input to attenuate superimposed noise. Otherwise the balance of the millivolt circuitry is identical to that used in measuring DC volts and ratios.

4.47 MEASUREMENT OF AC VOLTS

4.48. The measurement of AC volts involves the addition of the AC Converter amplifier and a major reorgani-

zation of the balance of the circuitry. Figure 4.4 illustrates this configuration.

4.49. The AC input signal is applied directly to the capacitor-coupled AC Converter amplifier. The principal purpose of this amplifier is to scale the input down so that the output of the stage is approximately 3 volts rms for a 10-volt rms, full-scale input signal. Input voltages in the 10-to-100 and 100-to-1,000 ranges are reduced by factors of 10 and 100, respectively.

4.50. The scaled-down voltage is applied to the Auto Polarity amplifier, which rectifies it and produces a negative voltage that is approximately $1/\pi$ of the input. A 10-volt rms full-scale input to the instrument is now reduced by exactly 1/10, to -1 volt. The half-wave rectified output of the Auto Polarity circuit is "summed" with the AC Converter output to produce a one-volt full-wave signal (the "weight" of the Auto Polarity output is twice that of the AC Converter and 180° out of phase with it).

4.51. The output of the Auto Polarity amplifier is filtered by an active filter on the Control and Attenuator Assembly

AC MODE

Figure 4.4. Block Diagram - AC Mode

Figure 4.5. Block Diagram - Ohm Mode

board and then applied to the Isolator, which has been set to a gain of 10 (using the feedback resistors and attenuators that established the 1,000-millivolt range in the mV mode). The amplified negative voltage is, at this point, a 10-volt full-scale analog of the rms value of the AC input. It is fed directly to the current-determining 10 Kohm resistor at the input to the Null Detector.

4.52 MEASUREMENT OF OHMS

4.53. The ohms measurement configuration (Figure 4.5) of the Signal Conditioning section is similar to that used in the measurement of DC with the DVM held in negative polarity. The Ohms Converter provides a series of precise currents (a different current for each range) which is passed through the unknown resistor. The resultant voltage drop is read by the DC measuring circuitry as a negative voltage and displayed as Kilohms.

4.54 DIGITIZING AND DISPLAY CIRCUITS

4.55. A simplified drawing of the Digitizing and Display section is shown in Figure 4.6. The input from the Signal Conditioning circuits is applied to a summing junction at the input to the Null Detector. Regardless of the polarity of the voltage being measured, the current from the Signal Conditioning section is always -1 ma full scale. This current is combined with a positive current from the DAC (Digital/Analog Converter) circuit.

4.56. DAC current supplied to the summing junction is the analog equivalent of the digital value represented by the state of the Decade flip-flops.

When the summing junction is brought to null, the state of the flip-flops indicates the exact digital value of the input signal.

4.57. The digitizing process, or "conversion", begins when the Start/Stop flip-flop (on the Control Logic board) is set. Start/Stop is set by either of two conditions. The Display Rate circuit turns it on automatically every 250 milliseconds unless inhibited by a ground level at the Ground Hold input (READ/HOLD switch on HOLD) or a ground level at the Accessory Hold input. Start/Stop is also set by an External Command received through the remote programming input.

4.58. As Start/Stop is set, the negative-going edge of Start/Stop sets the Reset flip-flop. Reset is inverted to become S9 (Set 9) and applied to each of the Decades. Each Decade has four flip-flops representing X1 - X4 for that Decade. S9 sets the Decades to 99999. If, with the five Decades set to nines. DAC current is less than the input, the Overflow flip-flop is turned on by Overflow detecting logic on the Sequence Logic board. This adds additional DAC current representing a sixth digit (100K). If the resulting DAC current is still too low, the digitizing cycle is completed and the unit is made to uprange. If no higher range is available or permitted, the overrange condition (109999) is read out to indicate an excessive input.

4.59. Normally, however, the initial setting of 99999 results in a DAC current greater than the input current. This condition is detected by logic on the Sequence Logic board; the Sequence Counter is stepped to sequence state 1 (S1).

Figure 4.6. Block Diagram - Digitizing & Display Module

Figure 4.7. Model 5500 Timing (Without Overrange)

Figure 4.8. Model 5500 Timing (With Overrange)

4.60. In S1, the 10K Decade is "dropped" (each flip-flop "off"). The Decades are now set to 09999. If the resulting DAC current is less than the input current, the Null Detector causes the generation of UP at the Trigger flipflop. The 10K Decade now counts up on each clock pulse until DAC current becomes equal to or greater than the input current. This condition is indicated by an UP from the Null Detector. The Sequencer then advances to S2 and the 1000 Decade is set to zero. If DAC current is less than the input current, the 1000 Decade is counted up in the same manner as the 10K Decade. This is repeated for each succeeding Decade. At the end of the S5, during which the 1 Decade is counted up, the Start/Stop flip-flop is turned off. At this time, the state of the Decades represents the digital value of the input signal and the conversion is complete. This operation is illustrated in the timing diagram of Figure 4.7. In the illustration the input is 012345. Figure 4.8 shows the timing with overrange.

4.61 NULL DETECTOR (Schematic 430379)

- 4.62. There are two main elements on the Null Detector circuit board; the two highest order Decade precision DAC (digital/analog converter) resistor matrices controlled by the state of the Decade flip-flops—and the Null Detector itself, an amplifier that detects and amplifies any difference in input current and DAC current.
- 4.63. A summing junction at the input to the Null Detector receives the negative input from the Signal Conditioning module and the DAC current. The two currents are balanced out by the DAC resistor network. The DAC current is

developed from a precise 20-volt reference voltage from the Reference Buffer circuit board for absolute measurements or from an external reference when ratios are being measured.

- 4.65. A typical DAC switch in the highest order decades is shown in Figure 4.9a. Q2 is normally on and R_{DAC} is in the circuit. When a positive voltage is applied to the base of Q1, Q1 is turned on and the resulting ground level at the base of Q2 back biases Q2 and R_{DAC} is out of the circuit. As shown in the figure, the switch is operated by the "not" side of the Decade flip-flop. When the flipflop is "off" ("not" side true), the resistor is out of the circuit. Therefore, as a decade is counted up, resistance is added in parallel and DAC current increases at each step.
- 4.64. Two types of DAC switches are used: one for the lowest order decades (1, 10, 100, and 1000) and a different type for the highest order decase (10K). The 10,000 Decade switches and 1000 Decade, switches are located on the Null Detector board. The balance of the switches are on the DAC board (Schematic 430376).
- 4.66. A typical DAC switch for lowest order decades is shown in Figure 4.9b. Q2 is normally on, Q3 is normally off, and R DAC is effectively connected to the reference supply. When a positive voltage is applied to the base of Q1, Q1 is turned on, biasing Q2 off and Q3 on; RDAC is now effectively connected to negative sense. The junction voltage drops across Q3 are compensated for by R65 and CR11. As shown in the figure, the switch is operated by the "not" side of the decade flip-flop. When the flip-flop is "off" ("not" side true) the resistor is tied to the reference voltage.

(a) Highest Order Decade

(b) Lowest Order Decade

Figure 4.9. Typical DAC Circuits

4.67. The positive DAC current is applied to the summing junction at the Null Detector input. If the DAC current is greater than the negative current from the Signal Conditioning module, the resulting current is positive; if the Signal Conditioning input is greater, the resulting current is negative. The Null Detector is a high-gain amplifier that provides an output of sufficient amplitude to trigger the Trigger flipflop only when the input (summing junction) is negative. The Trigger flipflop is located on the Sequence Logic board; its output is the UP signal. UP and its complement, UP, control generation of the sequence states which, in turn, control the counting operation of the Decades.

4.68 DECADES (Schematic 430390)

There are five Decade boards in the instrument, all identical. The Decade board nearest the front of the instrument controls the 10,000 digit; the second board the 1000 digit; the third, the 100 digit; the fourth, the 10 digit; and the fifth, the 1 digit.

4.69. At the beginning of a conversion, after the Start/Stop and Reset flipflops (on Control Logic board) are set, the S9 line is made "true". This applies a positive voltage to the reset side of each flip-flop and represents "all to nine" condition. If the Null Detector indicates that 99999 is greater than the input signal, the Sequence Logic places the instrument in sequence state 1 (S1). S1 is applied to the C input of the 10K Decade. As S1 goes "true", the negative-going edge of Sl places a negative voltage on the reset input of the flip-flop, thereby resetting it to zero. The "true" output of the flip-flop and of each remaining flipflop on the Decade resets the following

flip-flop as it goes "false" (on negative-going edge). Each flip-flop on the 10K Decade is now "off" and the value represented by the four Decades has changed from 99999 to 09999.

4.70. Sl is applied to the input gate along with UP and a clock pulse. The Decade counter now counts up on each clock pulse. (Sequence state 1 (S1) enables count-up of the 10K Decade; S2, the 1K Decade; S3, the 100 Decade; S4, the 10 Decade; and S5, the 1 Decade). Counting continues until UP goes FALSE. At this time, the Sequence Logic places the instrument in sequence state 2 (S2) and the 100 Decade is reset by S2 applied to the $C_{_{\mbox{\scriptsize O}}}$ input. The count-up operation proceeds exactly as the 10K Decade, except that the input gate is now enabled by S2. The 100 Decade and 10 Decade counting operations begin on following UP signals. At the end of the 1 Decade counting operation (S5), the Sequence Logic counter and Start/Stop flip-flop are reset and no further sequence states are generated until the Start/Stop flip-flop is again set.

4.71. The "and" gates at the inputs to the 2 and 2* flip-flops adjust the count to eliminate "forbidden codes". Additional gates on the board receive various outputs from the flip-flops to detect the 0 and 9 states of the Decade for use of the range circuits in the Signal Conditioning module.

4.72. Also included on the Decade circuit board is a Decoder that interprets the state of the flip-flops and produces the drive voltage for the numerical display and the BCD data to the digital output accessory. There are five lines to the lamps, each representing a pair of numerals: 0 and 1, 2 and 3, 4 and 5, etc. Separate control lines determine whether the even

or odd numeral is to be lit. During the digitizing cycle, a blanking signal inhibits both the odd and even enable lines.

4.73 SEQUENCE LOGIC (Schematic 430393)

- 4.74. A counter on the Sequence Logic circuit board generates the five sequence states—or periods during which each Decade is reset to zero and then counted up. In addition, logic gates on the board determine when the sequence counter is turned on—and also detect the "overrange" condition where the input exceeds the five-digit capability of that range. Operation of the Sequence Logic is described in the following paragraph. In the first case, it is assumed that the input does not require the overrange function.
- 4.75. As Sl goes "true" Sl goes "false". The negative-going edge of Sl resets the 10K Decade to zero (as explained under "Decades") and Sl enables the input gate to allow the Decade to start counting. The 10K Decade counts up until UP is received. UP resets the Sl flip-flop in the sequence counter. On the negative-going edge of Sl, flip-flop S2 is set. The negative edge of S2 resets the 1K Decade to zero. S2 enables the input gate of the 1K Decade and it begins counting.
- 4.76. The Sequence counter advances to S3 on the next UP and the 100 Decade count operation is performed. S4 controls the counting of the 10 Decade, and S5 controls the counting of the 1 Decade. The negative-going edge of S5 resets the Start/Stop flip-flop.
- 4.77. The function of each sequence state can be summarized as follows:

- S1 resets 10K Decade to zero (on negative-going edge);
- S1 enables 10K Decade count-up;
- S2 resets 1K Decade to zero (on negative-going edge);
- S2 enables 1K Decade count-up, resets 100 Decade to zero (on negative-going edge);
- S3 enables 100 Decade count-up, and resets 10 Decade to zero (on negative-going edge);
- S4 enables 10 Decade count-up, and resets the 1 Decade;
- S5 enables 1 Decade count-up and resets the Start/Stop flip-flop.
- 4.78. The overrange condition exists when, after the Decades are initially set to 99999, an UP is received. This indicates that the value represented by the state of the Decades is full-scale but still less than the input signal. This condition is detected by an "and" gate on the Sequence Logic board which receives the UP signal along with the clock, Start/Stop, and the "not" outputs of the sequence counter flip-flops. When UP enables this gate, a signal (Set 100K) is sent to the Control Logic board where it sets the overflow flipflop. The overrange bit has a logical weight of 100,000. If the overrange bit is "true", the readout is 10XXXX. For reasons of linearity and accuracy, the analog weight of the resistor associated with this bit is 10,000. This requires that the 10K decade be set to 9 and results in a total weight of 9+1 or 10. The readout does not indicate 199999 but the true analog weight of 109999.

- 4.79. If, after the overrange bit is set, the new comparison at the Null Detector results in an $\overline{\rm UP}$, this indicates that the input is some value between 99999 and 109999. The negativegoing edge of 100K places the instrument into sequence state 3 and the conversion proceeds as described before, but with the 10K position remaining at 9 and the 1000 Decade the first Decade "dropped".
- 4.80. If, after the overflow bit is set, an UP is received indicating that 109999 is still less than the input, a digitizing cycle is not performed and the unit is made to uprange (if instrument equipped for auto range). If no higher range is available, the overrange indication of 109999 is displayed (printed) to indicate an excessive input.

4.81 CONTROL LOGIC (Schematic 430685)

- 4.82. The conversion operation begins when the Start/Stop flip-flop is set. Start/Stop is set either automatically, by the Display Rate circuit, or by an external command.
- 4.83. The Display Rate circuit is an oscillator which delivers a pulse every 250 milliseconds when the READ/HOLD switch is in the READ position. The oscillator output is inverted and applied to an "and" gate. The gate is inhibited when the READ/HOLD switch is in HOLD or by Accessory Hold if the line is at ground level. The Start/Stop flip-flop is set on the negative-going edge of Display Rate signal. Start/Stop is also set when an external command is received through the programming input.
- 4.84. As Start/Stop (S/S) is set, the negative-going edge of $\overline{S/S}$ sets the

- Reset flip-flop. RESET is applied through an inverter to the Decades as S9 (Set 9). It sets the Decades to 99999 and resets the Overflow flip-flop to zero. The Reset flip-flop is turned off by the next CLOCK.
- 4.85. The "true" output of the Start/Stop flip-flop is applied to an inverter. The inverter output is the blanking level which biases off the display lamps during the digitizing process. At the end of a conversion, Start/Stop is turned off by S5 (negative-going). This releases the blanking signal and, at that time, the state of the Decade is displayed.
- 4.86. The Overflow flip-flop is set by the Set 100K signal from the Sequence Logic board. Its output operates a corresponding DAC switch in the Null Detector representing a "1" digit in the 100K position. This feature allows an overrange voltage to be measured and displayed.
- 4.87 REFERENCE AND BUFFER AMPLI-FIER (Schematic 430395)
- 4.88. The reference and Buffer Amplifier board serves two functions: it produces a precise 20-volt internal-reference output for absolute measurements, and it serves as a high input impedance, low-output impedance, buffer amplifier for external reference voltages used in ratio measurements. In ratio mode, this amplifier has a gain of 2. A relay on the board (K1) switches the circuit from an internal reference voltage supply to a buffer for the external reference voltage when energized by the RATIO command.
- 4.89. The internal reference circuit is based on the use of an aged Zener diode. The Internal Reference is a

SECTION 5

TROUBLESHOOTING & MAINTENANCE

5.1 INTRODUCTION

5.2. This section is to be used as a supplement to the schematics and assembly drawings of Section 6. Contained in this section are troubleshooting guides, power supply voltages, parts ordering information, and calibration procedures.

WARNING

Potentials over 300 volts are used in the instrument in the locations listed below:

Power supply

Display tubes

Display board

Decade boards

Range control board

5.3 MECHANICAL DISASSEMBLY

- 5.4. Troubleshooting the instrument at the circuit board level can be accomplished without removing the chassis from the sealed case. It is only necessary to slide the chassis out part way. This allows all boards except the Control and Attenuator and Display boards to be replaced (see 5.6).
 - (a) Remove power from DVM.

- (b) Loosen the eight captive allen screws around the front panel and slide the drawer forward to the stops. This allows access to the circuit boards.
- (c) Before applying power, check for mechanical short between guard and case and between guard and input common.

CAUTION: When operating instrument with chassis partially removed, disconnect guard clip on input cable from the source to prevent possible damage to external voltage supply by grounding point to which guard is attached.

- 5.5. If, when the procedures in this section are followed and it is determined that the malfunction is not due to a faulty circuit board, it is necessary to completely remove the chassis from the case:
 - (a) Remove cable support rod from DVM chassis.
 - (b) Disconnect cables from rear of chassis.
 - (c) Slide chassis out of case.
- 5.6. The Control and Attenuator board and the Display board are each secured by two screws installed through the bottom plate of the chassis. These

screws are accessible with the chassis removed from the case. In removing the Control and Attenuator, it is also necessary to drop the front panel by removing three screws on either end of the panel. After the panel is dropped, the screws should be replaced to support the card guide.

5.7 POWER SUPPLY

- 5.8. When checking for any major trouble in the DVM, make the following routine check of the power supply.
 - (a) Apply power to instrument.
 - (b) Set MODE switch to READ. If readout is blank, refer to figure 5.1.
 - (c) The power supply voltages are most easily checked by placing the Null Detector board (18) and one of the Decade boards (12 through [6] on extenders and measuring the voltages at the pins indicated in table 5.1. If any of the voltages are low, indicating a short, isolate the cause by removing all boards. If the low voltage still exists, the problem is in the power supply itself (see schematic 430701) or a shorted strap on the main circuit board. If the voltage returns to normal, replace the boards, one at a time, until the board having the short is found.
- 5.9. If the power supply appears to be operating normally, refer to the Initial Checkout Procedures (2.13). In addition, perform the following check:
 - (a) Set RANGE to AUTO

Table 5.1. Power Supply Voltages

Pin	Schematic Ident.	Nominal	Ripple
J8-4	+40V	+52V	500mV
J8-T	+28V	+32V	500mV
J8-U	-28V	-32V	500mV
J8-N	+18V	+17V	5mV
J8-V	-18V	-17.5V	5mV
J2-V	+2V	+2.2V	20mV
J2-P*	+14V*	+16V	225mV
J2-10*	+300V*	+350V	500mV

- *Referenced to digital common, J2-N; other voltages referenced to analog common, J8-P.
 - (b) Set FUNCTION to DC
 - (c) Set MODE to READ
 - (d) Set POWER to ON
 - (e) Connect the signal input leads to a source of variable DC. Slowly increase the DC source voltage from zero to 10 volts. Check the DVM for problems covered in figures 5.4 and 5.5.

5.10 BOARD SUBSTITUTION

5.11. When spare boards are available, the most effective method of isolating a malfunctioning board is by substitution. Replace all boards in the DVM with spare boards. If the problem persists, the malfunction is narrowed down to that portion of the DVM still remaining. If the DVM is functioning normally with the spare boards, replace the spare boards, one at a time, with the original boards until the problem reappears. Repair or replace the malfunctioning board.

Table 5.2. Component Characteristics

	Configuration			V
Identity	(See Below)	Type	Usage	Notes
009	С	PNP	Medium power	Case Common to Collector
012	b	PNP	Analog	Ероху
014	С	NPN	Medium power	Case Common to Collector
015	d	Dual NPN	Low level lst stage	Case insulated
016	d	Dual NPN	Low level lst stage	Case insulated
2N3565	a	NPN	High gain analog	Ероху
2N3646	a	NPN	High speed digital	Ероху
007	е	Diode	Low leakage	Glass
018	е	Diode	Logic	Glass
SD4	е	Diode	Power	Ероху
1N916	е	Diode	Low leakage	Glass
1N9586	е	Zener	7.5v	Glass
1N961b	е	Zener	10v	Glass
1N967b	е	Zener	18v	Glass or Epoxy
M2 4A2 5	е	Zener	2.4v	Glass

5.12 VISUAL INSPECTION

5.13. Check a malfunctioning board visually for burned components, loose connections or any other abnormalities which could cause problems. Check also the printed circuit fingers which form the pins of the male connector at the bottom of the board for oil, dirt, etc. The fingers can be cleaned with a solvent or a common pencil eraser.

5.14 RESISTIVE CHECK

- 5.15. Component failures such as shorted capacitors, open resistors, and shorted or open semiconductors are easily located by checking the resistance of a component with a VOM.
- 5.16. DIODES. Resistance readings taken of diodes vary according to the range and type of VOM used. However, the forward biased resistance is usually in the order of a few hundred ohms and the front-to-back ratio is in the order of 1000 or more.
- 5.17. ZENERS. Zener diodes may be checked in the same way as diodes and will show whether the diode junction of the zener is open, shorted or normal (zeners tend to appear leaky). However, only by applying power to the device can the voltage regulating properties of the zener be checked.
- 5.18. TRANSISTORS. With respect to their junctions, transistors are two diodes connected together with the base lead connected in the middle (see table 5.2). These two "diodes" are checked for their forward and back resistance. In addition, a check is made across the emitter and collector for any leakage.

5.19 BIASING

5.20. When resistive checks of the components fail to discern the cause of

the trouble, normal circuit tracing techniques are used. The most useful of these involves the checking of operating levels or "biasing" of the active components.

- 5.21. DIGITAL. Digital circuitry performs all of its functions using only two logic states: +14 volts and digital common. These two levels are normally referred to as "true" and "false" and may be in the form of pulses or levels. Diodes are used as gates and pass or reject data according to whether the diodes are forward or reverse biased. Transistors are used as inverters. A logic true at the input of an inverter results in a logic false at the output and a false input results in a true output. Flip-flops can be analyzed as two inverters with inputs and outputs interconnected. In the biasing of logic transistors the collector is either at digital common (actually about 0.2 volts above) or at a positive voltage determined by the load on the output. the collector resistor, and the supply voltage (normally +14 volts). For the collector to be false, the transistor is turned on by a sufficient amount of current entering the base. The voltage from emitter to base is between 0.6 and 0.7 volts on all logic transistors.
- 5.22. ANALOG. In analog circuitry, the transistor collector is biased at some potential less than the supply voltage but more than the base voltage. Varying the base-emitter current results in a corresponding change in collector current and collector voltage such that increasing the base-emitter current causes an increase in collector current. The increased collector current results in an increase in the I-R drop across the collector load and the collector voltage becomes nearer the base voltage. Less base-emitter current results in a collector current nearer the supply voltage. Check transistors for transistor action

Table 5.3. Decade Fault Isolation

READOUT	CONTROLLING SEQUENCE F/F
099999	1
009999	2
000999	3
000009	4
*000000	5
	099999 009999 000099

^{*}May have double number

The Display Readout column represents the position of the DAC when the sequence count is interrupted by: (1) a malfunctioning decade board, or (2) a malfunctioning sequence F/F. Remove the decade board whose corresponding display readout most nearly matches the DVM display.

by shorting together the base and emitter leads and observe that the collector returns to the supply voltage.

5.23 TROUBLESHOOTING CHARTS

- 5.24. Unless otherwise noted, the following troubleshooting charts, (figures 5-1 through 5-5) are valid only when the instrument is programmed as stated below.
 - (a) Set RANGE to 10
 - (b) Set FUNCTION to DC
 - (c) Set MODE to READ
 - (d) Set POWER to ON
 - (e) Connect SIGNAL INPUT leads (J101 pins N and P) together.

5.25 ORDERING PARTS

5.26. Standard parts can be obtained through Dana Laboratories Incorporated, its local representatives or through

other vendors. Consult parts list in section 6 for value, tolerance and rating. When ordering parts include the following information:

- (a) Instrument type
- (b) Description of part including reference designator, Dana part number, and component type
- (c) Name of printed circuit board (if applicable)

5.27 PARTS REPLACEMENT

- 5.28. The following material is recommended for parts replacement:
 - (a) 60/40 rosin core solder
 - (b) wire braid thin
 - (c) rosin flux
 - (d) rosin solvent such as percloroethylene
 - (e) moisture resist (type 1A27 or equiv.)

Figure 5.1. Troubleshooting - Display, Decimal & Function Readout Blank

Figure 5.2. Troubleshooting - Display Full Scale

Figure 5.3. Troubleshooting - Display Blank

*On certain input voltages

Figure 5.4. Troubleshooting - Wrong Digit

. With input increased from zero to full scale

2. DAC switch open or held off

3. DAC switch shorted or held on

Figure 5.5. Troubleshooting - Display Jumps

(a) Soldered, flush mounted potentiometer

(b) Pre-soldering lead preparation, terminal mount

(c) Pre-soldering wire preparation, flat pin connector

(d) Pre-soldering wire preparation, tabular pin connector

(e) Pre-soldering lead preparation, printed circuit

Figure 5.6. Component Installation

- 5.29. The following steps should be taken to replace components on printed circuit boards.
 - (a) Dip one end of the wire braid in flux and place it on the solder joint on the back of the printed circuit board. Use care to keep the braid on the etch circuit to prevent burning of the board.
 - (b) Place the tip of the iron firmly against the braid until the solder is observed on the braid.
 - (c) Remove the iron and the braid from the board. Lift the lead away from the etch pad with the diagonal wire cutters and straighten the lead with a pair of long-nose pliers.
 - (d) Repeat the above steps for each lead on the component.
 - (e) When the lead is perpendicular to the board, pull the lead through the hole in the board with a pair of pliers.
 - (f) Remove the flux and burned moisture resistant coating from the board with a flux solvent.
 - (g) Bend the leads of the replacement component to line up with the holes on the circuit board. Holes filled with solder can be opened by heating pad with the soldering iron and using a toothpick or other soft pointed object to clear the hole.
 - (h) Insert the leads and seat the new component firmly against the board. Bend leads if required and cut as shown in figure 5.6.
 - (i) Apply enough solder to cover wire and strap. Both wire and

- strap should be discernible. Apply just enough heat to the component lead to allow the solder to flow freely.
- (j) Clean new solder connection with a flux solvent. Apply a thin coat of moisture resist.

5.30 CALIBRATION

- 5.31. The calibration of the Model 5524 is designed to keep the instrument operating within its specifications for indefinite periods of time. Access to calibration components is made by removing the eight screws that secure the front panel to the case and pulling the drawer out of the stops.
- 5.32. All calibration points involved in the calibration of the Model 5524 are shown in Figure 5.7. Field calibration procedures are listed in table 5.4. "Factory Only" adjustments are described in 5.48.

5.30 REQUIRED CALIBRATION EQUIPMENT

- 5.34. The equipment required by the user for the calibration of the Model 5524 is listed below.
 - (a) Service card extender DP/N-400839 (supplied by Dana Laboratories, Inc.)
 - (b) Precision null-type microvoltmeter (Fluke 845AR or equivalent)
 - (c) Precision DC power supply (COHU Model 326 or equivalent)
 - (d) Precision voltage divider (E.S.I. Dekavider RV622A or equivalent)
 - (e) Precision AC source

Null Detector Test Point

AC Converter (Front View)

Auto Polarity Test Point

Figure 5.7. Calibration Points

Table 5.4. Field Zeroing Procedure

The following procedure can be used as a field zeroing procedure or when the zero is just slightly out of adjustment. It still requires that the chassis be pulled partially out of the case, but an extender is not required.

- (a) Set FUNCTION to DC, RANGE to AUTO, and MODE switch to READ.
- (b) Short input leads together.
- (c) Connect microvoltmeter to left side of C3 on Isolator board (see assembly drawing).
- (d) Adjust MV ZERO potentiometer on front panel for a microvoltmeter reading of zero $\pm 10 \, \mu \text{volts}$.
- (e) Apply an input signal of -1.0 mV. Adjust the null detector current zero potentiometer (R7) until the readout bounces between -00.0009 and -00.0010.
- (f) Apply an input signal of +1.0 mV. Adjust the autopolarity current zero potentiometer (R7) until the readout bounces between +00.0009 and +00.0010.
- (g) Set FUNCTION switch to AC. Check to see that the readout is less than 00.0010 with the input shorted. If not, adjust the Auto Polarity current zero (R7) to bring the readout between 00.0010 and 00.0005.
- (h) Check steps (b) through (g) to see that readings are within tolerance given. If a zero reading with shorted input cannot be obtained after completing the above procedure, it will be necessary to use the detailed zeroing procedure (5.37).

(f) Resistance standard

5.35. CALIBRATION PROCEDURE

5.36. For all zeroing operations, the low side of the microvoltmeter is referenced to -SIGNAL INPUT.

5.37. ISOLATOR ZERO

- (a) Place isolator board (402477) on extender board.
- (b) Set FUNCTION control switch to FAST DC, RANGE control switch to AUTO, and MODE control switch to READ.
- (c) Short +SIGNAL INPUT and -SIG-NAL INPUT together.
- (d) Connect a jumper across capacitor C1.
- (e) Connect microvoltmeter lead to left side of capacitor C3.
- (f) Adjust MV ZERO control on front panel for 0 +50 microvolts out.
- (g) Adjust current zero potentiometer R7 for 0 ±50 microvolts out.
- (h) Repeat steps (d), (f), and (g) to ensure accuracy.
- (i) Remove meter connections from Isolator board and reinstall in DVM.

5.38. NULL DETECTOR ZERO

(a) Place Null Detector board on the extender board.

- (b) With the DVM Readout Display all zeros and -Polarity, set the MODE control switch to HOLD.
- (c) Connect the microvoltmeter lead to the feedthrough supporting the top of resistor R63 on the Null Detector board.
- (d) Adjust the current zero potentiometer R7 for a reading of 0 +10 microvolts on the microvoltmeter.
- (e) Remove the microvoltmeter lead from the Null Detector board and replace the board in DVM.

5.39. AUTO POLARITY ZERO

- (a) Place the Auto Polarity board on the extender board and remove the plastic shield by removing the two mounting screws.
- (b) Set the MODE control switch to HOLD.
- (c) Connect microvoltmeter lead, through a series 10K resistor, to the top of the precision resistor Rl (standoff) on the Auto Polarity board.
- (d) Adjust the 5K voltage zero potentiometer R11 for 0 ±10 microvoltouts output on the microvoltouter.
- (e) Remove the microvoltmeter lead from the standoff and remove the AutoPolarity board from the extender. Remount the plastic shield and reinsert the Auto Polarity board in the DVM.

Figure 5.8. Ratio Test Setup

5.40. DVM POLARITY ADJUSTMENT

- (a) Place the Isolator board on the extender and connect the microvoltmeter lead to the left side of capacitor C3.
- (b) Remove the short from the + and- Input Signal lines and connectto a negative voltage source.
- (c) Adjust the input voltage until microvoltmeter reads -1 millivolt.
- (d) Adjust the Null Detector voltage zero potentiometer (R24) until Readout Display reads between 9 and 10 digits in equal proportions.
- (e) Switch DC Source to Positive polarity and adjust input until microvoltmeter reads +1 millivolt.
- (f) Adjust the Auto Polarity current zero (R7) until the Readout Display reads between 9 and 10 digits in equal proportions.
- (g) Repeat steps (b) through (f) to ensure accuracy.
- (h) Remove the microvoltmeter leads from the Isolator board and reinstall board in DVM.

5.41. RATIO ADJUSTMENT

- (a) Set FUNCTION control switch to 10X RATIO.
- (b) Connect the DVM as shown in Figure 5.8 with +10 volts power supply voltage and the voltage divider set to 0.999900.

- (c) Note the Readout display at +10 volts and reduce the power supply to +2 volts.
- (d) Adjust the Reference and Buffer Amplifier board ratio linearity potentiometer R17 until the DVM Readout display at 2 volts and at 10 volts are the same (within 5 digits).

5.42. PLUS AND MINUS POLARITY GAINS

- (a) Set FUNCTION control switch to FAST DC.
- (b) Connect the Signal Input leads to the Power Supply and select -9.9990 volts.
- (c) Adjust the Reference and Buffer Amplifier Minus Polarity Gain potentiometer R10 for a DVM Readout display of -9.9990 volts.
- (d) Reverse the Polarity of the Power Supply voltage and adjust the Auto Polarity plus polarity gain potentiometer R3 for a DVM Readout display of +9.990 volts.
- (e) Repeat steps (b), (c) and (d) to ensure accuracy.

5.43. RATIO ACCURACY

- (a) Set FUNCTION control switch to 10X RATIO.
- (b) Connect the DVM as shown in Figure 5.8 with the power supply set at a precise +10 volts. Set the Voltage Divider to 0.999900.

- (c) Adjust the Reference and Buffer Amplifier accuracy potentiometer R8 for a DVM Readout display of +9.9990.
- (d) Switch the FUNCTION control switch to FAST DC.
- (e) Check the DVM Readout for display of +9.9990.

5.44. DC RANGE CALIBRATION

- (a) Set FUNCTION control switch to FAST DC and the RANGE control switch to 100.
- (b) Connect the Signal Input leads to a known -100 volt source.
- (c) Adjust the Control board 100 voltrange potentiometer R34 for a Display readout of -100.00.
- (d) Set the Range Control switch to 1000 and connect the DVM to a known -1000 volt source.
- (e) Adjust the 1000 volt range potentiometer R36 for a Display readout of -1000.0.

5.45. MILLIVOLT RANGE CALIBRATION

- (a) Set FUNCTION control switch to MV and the RANGE control switch to 100.
- (b) Short input leads together and adjust the MV ZERO control pottentiometer for a DVM readout display of all zeros.
- (c) Connect the Signal Input leads to a known 100 MV source.

- (d) Adjust Control board 100 MV range potentiometer R44 for a Display readout of 100.00.
- (e) Set RANGE control switch to 1000 and connect DVM to known source of 1000 MV.
- (f) Adjust 1000 MV range potentiometer R45 for a Display readout of 1000.00.

5.46. AC RANGE CALIBRATION

- (a) Place AC Converter board on extender and set the 100 volt capacitor (5) to the middle of its span.
- (b) Set FUNCTION control switch to AC and Range Control switch to AUTO.
- (c) Connect the Signal Input to the following series of AC voltages and frequencies, adjusting the indicated adjustment until the instrument displays the known voltage value;

Volts, RMS	Frequency	Adjustment (Figure 5.7)
125.00	400 Hz	(1)
125.00	50 kHz	(2)
9.0000	400 Hz	(3)
9.0000	50 kHz	(4)
125.00	50 kHz	(5)
90.000	400 Hz	(6)
90.000	50 kHz	(7)

When all adjustments are completed, check accuracy of ranges at 50 Hz, using voltage inputs

- of approximately 9.0,90.0, and 125 volts.
- (d) Reinsert AC Converter in DVM.
- 5.47 KILOHM RANGE CALIBRATION
 - (a) Set FUNCTION switch to KIL-OHMS. Place Ohms Converter board on extender.
 - (b) Short the following terminals together: +SIGNAL, -SIGNAL, and -OHMS CURRENT SOURCE.
 - (c) Adjust Voltage Zero potentiometer for zero display on DVM.
 - (d) Remove short between +SIGNAL and -SIGNAL and insert 10 Megohm resistor between +SIGNAL and -SIGNAL.
 - (e) Adjust Current Zero potentiometer for zero display on DVM.
 - (f) Connect the input to a 10 megohm standard and adjust the range potentiometer for a DVM

- Readout display equal to the value of the standard.
- (g) Repeat with standard resistors near full scale of the remaining four ranges, adjusting the appropriate controls on the ohms board for a DVM Readout display for each standard value.

5.48 FACTORY ADJUSTMENTS

- 5.49. Certain adjustments are considered critical and it is highly recommended that they not be disturbed. These adjustments involve, generally, the selection of FSV (factory-selected values) of components to compensate for temperature drift. It is necessary that an oven be used for these adjustments.
- 5.50. The adjustments considered "Factory Adjustments" are R67 on the Null Detector, R49 on Auto Polarity board, and R42 on the Control Logic board. Procedures for adjusting these controls are given in the following paragraphs.

Figure 5.9. Null Detector Tempco Adjust Set-Up

5.51 EQUIPMENT REQUIRED

Microvoltmeter, Fluke 845-AR or equivalent

Resistor Substitution Box
Precision Voltage Source
Temperature Chamber; 50^OC oven
Modified Null Detector Extender
(Dana)

5.52 NULL DETECTOR TEMPCO ADJUSTMENT

- 5.53. The following procedure need be performed only if any of the transistors in the first three stages of the Null Detector are replaced. The initial steps, prior to placing the Null Detector in the oven, should be performed at approximately 25°C. Before beginning this procedure, the Isolator Zero adjustments (paragraph 5.37) must be made.
 - (a) Place Null Detector on modified extender board; set DVM range to 10; remove Auto Polarity board.
 - (b) Remove FSV resistors R66, R68, and R69 from circuit; in place of R66, connect Resistor Substitution Box. Short null detector input to analog common.
 - (c) Short DVM input; set Collector Zero potentiometer R24 to center of its mechanical range. Adjust the Resistor Substitution Box for a readout of random numbers between full scale and zero. That is, adjusted to the point where the Null Detector is generating neither an Up or Down command. On either side of the optimum adjustment, the readout will be either full scale (109999) or zero (000000).

- (d) Remove the Resistor Box from the circuit; in its place, install a fixed 5% carbon resistor nearest to the value determined in step c.
- (e) Adjust R24 for display of random numbers between full scale and zero.
- (f) Replace Auto Polarity board.
- (g) Adjust voltage divider at DVM input to a voltage of -2MV (representing 20 digits).
- (h) Adjust Current Zero potentiometer R7 for a readout of 000020 on DVM display.
- (i) With input remaining at 20 digits, place Null Detector in temperature chamber at 50°C (by extending cable attached to modified extender board). Allow one hour warm-up.
- (i) After warm-up, note number of digits displayed on DVM readout. The number of digits minus 20 represents the amount of drift. To compensate for this drift, a voltage equal to four times the amount of drift and of same polarity must be placed on the opposite base of the input pair. For example, assume that the readout drifted from 20 digits to 28 during warm-up. This means that the drift was 8 digits or 800 uV. Remove Null Detector from oven and allow to cool.
- (k) To compensate for the drift, install 150 kilohms resistor across FSV terminals R69 (if drift positive) or 390 kilohms across FSV terminals R68 (if drift negative).

- (1) Connect microvoltmeter to base of Q15 (base "B" on schematic). Adjust R67 for a voltage equal to four times the drift observed in step i (3.2 MV for the above example).
- (m) Repeat b through H; if the drift is greater than 1 digit, add algebraicly four times the noted drift to previous results of step i and adjust the voltage in base "B" of the input dual to this value.

Example (continuing previous example):

Previous results (after temperature run):

28 digits -20 digits = 8 digits = 0.8 MV drift

0.8 MV \times 4 = 3.2 MV compensation

Second temperature run (assuming readout of 18):

18 digits -20 digits = -2 digits = -0.2 MV drift

Compensation = (-0.2 MV) 4 + 3.2 MV (from first run) -0.8 MV + 3.2 MV = 2.4 MV

5.54 AUTO POLARITY TEMPCO ADJUSTMENT

5.55. The following procedure need be performed only if the first or second stage transistor of the Auto Polarity is replaced. The initial steps, prior to placing the Auto Polarity in the oven should be performed at approximately 25°C. Before beginning this procedure, the Isolator Zero adjustments (paragraph 5.37) must be made.

- (a) Place Auto Polarity board on extender board; set the DVM range to 10 and function to DC.
- (b) Remove plastic cover from Auto Polarity board.
- (c) Connect microvoltmeter* minus lead minus sense (pin C) and plus lead to base "B" of the input dual and adjust temperature potentiometer R49 for a microvoltmeter reading of 0 +50 uv.
- (d) Remove meter lead from base B and connect to base "A" of the input dual. Replace FSV resistor R12 or R15 (a resistor is installed in one of the two) with a jumper and set potentiometer R11 to midscale.
- (e) If meter reads positive, remove jumper from the FSVR12 position; if negative, remove jumper from the FSVR15 position and replace with resistor substitution box.
- (f) Adjustresistor box for the meter reading nearest zero. Remove the resistor box from circuit and replace with a 5% carbon resistor of the nearest standard value determined by the resistor box setting.
- (g) Adjust potentiometer R11 for a meter reading of 0 ± 10 uv.

*To prevent oscillations, the microvoltmeter should be "decoupled" from the amplifier circuitry by inserting in series with the positive lead, a 10K 5% carbon resistor.

- (h) Remove meter leads and jumper from circuit board. Apply +2 millivolts to the input of the DVM and adjust potentiometer R7 for a DVM readout display of +20 digits (+00.0020).
- (i) Set Auto Polarity board in oven at 50°C (by means of extender cable) and allow 1 hour for the board to warm-up.
- (j) After warm-up, note number of digits displayed on DVM readout. The number of digits minus 20 represents the amount of drift.* Multiplying this value by 9 gives the correction factor needed for temperature compensation.
- (k) Remove board from oven and allow to cool. Connect the minus lead of microvoltmeter to minus sense and the plus lead to base "B" of the input dual.
- (1) Adjust potentiometer R49 for a microvoltmeter reading of the correction factor calculated in step k. Remove 2-millivolt input.
- (m) Repeat steps d through k; if drift is greater than one digit, add algebraically 9 times the

noted drift to the previous correction factor and adjust the voltage in base "B" of the input dual to this value. For example: Assume the DVM readout display increases from +00.0020 to +00.0023, or an increase of 3 digits (+300 uv). The correction factor is found by multiplying the 3 digits by 9, equalling a correction factor of 27, or 2.7 millivolts. On the second trial, assume the DVM readout display decreases from 00,0020 to 00.0018, or -2 digits. -2 times 9 equals -18, or -1.8 millivolts; added algebraically to 2.7 millivolts, it results in a new correction factor of 0.9 millivolts.

5.56 DISPLAY RATE ADJUSTMENT

- 5.57. The displayrate circuitry determines the number of measurements taken by the DVM in a given time period. Readjustment of the display rate control is required only if repairs are made on this circuitry.
 - (a) With an oscilloscope monitor test point 2 (white) on the control logic board.
 - (b) Adjust potentiometer R42 on the control logic board for a pulse repetition rate of four per second.

^{*}If the amount of drift exceeds 5 digits, the matched set of gain resistors consisting of R1, R8, and R10 must be replaced.

SECTION 6

DRAWINGS

6.1	DRAWINGS		Page
	Interconnection Intraconnection - Signal Conditioning	430700 430707	6-3 6-4
	Intraconnection - Digitizing and Display	430688	6-5,6-6
	Schematic - Primary Wiring - 115V	430698	6-7
	Schematic - Primary Wiring - 230V	430759	6-8
	Attenuator and Control Assembly	402538	6-9
	Schematic Control and Attenuator	430705	6-10
	PC Board Assembly - Attenuator	402031	6-11
	PC Board Assembly - Switch Panel	402684	6-12
	PC Board Assembly - Isolator	402477	6-13
	Schematic - Isolator	430659	6-14
	PC Board Assembly - Range Control	402038	6-15
	Schematic - Range Control	430408	6-16
	PC Board Assembly - AC Converter	402102	6-17
	Schematic - AC Converter	430437	6-18
	PC Board Assembly - Auto Polarity	402036	6-19
	Schematic - Auto Polarity	430406	6-20
	PC Board Assembly - Ohms Converter	402551	6-21
	Schematic - Ohms Converter	430714	6-22
	PC Board Assembly, Function Indicator	402549	6-23
	PC Board Assembly - Display	402520	6-24
	Schematic - Display	430389	6-25
	PC Board Assembly - BCD Decade	400891	6-26
	Schematic - BCD Basic Decade	430390	6-27
	PC Board Assembly, DAC	400896	6-28
	Schematic, DAC	430376	6-29

DRAWINGS (Cont)

		Page
PC Board Assembly - Null Detector	400892	6-30
Schematic - Null Detector	430379	6-31
PC Board Assembly - Sequence Logic	400894	6-32
Schematic - Sequence Logic	430393	6-33
PC Board Assembly - Control Logic	402501	6-34
Schematic - Control Logic	430685	6-35
PC Board Assembly - Reference and		
Buffer Amplifier Schematic - Reference and Buffer	400895	6-36
Amplifier	430395	6-37
Assembly, Fan	402548	6-38
Assembly, Heater	402601	6-39
Assembly, Power Supply Chassis	402685	6-40,6-41
Power Supply Assembly	402691	6-42,6-43
PC Board Assembly - Power Supply	402522	6-44
Schematic - Power Supply	430701	6-45
Assembly, 5524-S2056 DVM	400947	6-46,6-47
Assembly, Enclosure	402686	6-48,6-49
Assembly, Case	402694	6-50
Assembly, Slide	402535	6-51
Assembly, Wiring Harness	402687	6-52
Assembly, Program Input & Digital	402664	6-53,6-54
Output Harness	400.000	6 55
Assembly, Power Harness	402663	6-55
Assembly, DVM Drawer	402689	6-56,6-57,6-58
Assembly, Front Panel	402692	6-59,6-60
Assembly, Chassis Drawer	402690	6-61
Assembly, Module	402540	6-62

AS.	SF	MR	I Y	40	253	R

REF. DESIG.	PART NO.			υES	C R	I P T	I 0	N	
C10	120007	CAP	MYLAR	•22	MED	600 V	20) %	FLEC CUBE 210B1F224
C11	121146	CAP	MYLAR	.0047	MED	100 V	10	0%1	CDE WMF1D47
K 1	310029	RELAY							AM ZETTLR AZ420-56
K2	310029	RELAY							AM ZETTLR AZ420-56
К3	310029	RELAY							AM ZETTLR AZ420-56
К4	310030	RELAY	חר	4	PDT	28V		1	PARELCO INR10-E046
K5	310029	RELAY	00	•	, , ,	201		•	AM ZETTLR AZ420-56
K7	310029	RELAY							AM ZETTLR AZ420-56
ĸ8	310011	RELAY	DC	2	PDT	26V			BABCOCK BR16-125082
R25	010344	RES	METAL	237	K	1%	1/4	W	ELECTRA RN60D2373F
R26	010164	RES	METAL	887	¥	1%	,	W	ELECTRA RN70D8873F
R53	040111	RES	VARI	200		1.6		W	BECKMAN 555R-200K
R54	000104	RES	CARBON	100		5%	1/4		OHMITE RC07GF104J

PARTS LIST

ASSEMBLY	402031									
REF.	PART									
DESIG.	NA •			DES	C R	IPT	I ()	N		
C12	120089	CAP	MYLAR	4.7	MED	60 V	1	0%	IONETICS	1017 10
C13	120089	CAP	MYLAR		MED		_	0%	IUNFTICS	1047-60
R27	010020	RES	METAL	4.99		1%	1/4		ELECTRA	1047-60
R28	020124	RES	WW I	MATCHEL			1/4	n		RN60D4991F
R29	010165	RES	METAL	806		1%	1/2	W1	DANA ELECTRA	020124 RN6508063F
R30	020124	RES	1111	AMOUTE						
R31	020241	RES	WW I	MATCHED					DANA	020124
R32	020241	RES	ww WW	10		•05%	1/8		JORDAM	J-11
R 33	010020	RES	METAL	10		.05%	1/8		JURDAN	J-11
R34	040033	RES	VARI	4.99		1%	1/4		ELECTRA	RN6004991F
	100,55	KL3	VAKI	1	K	10%	1	M	TECHN()	20
R35	020124	RES	ww N	MATCHED	SET				DANA	000104
R36	040033	RES	VARI	1		10%	1	W	TECHNO	020124
R37	000823	RES	CARBON	82	ĸ	5%	1/4		OHMITE	20 R C 076F823J
R38	000154	RES	CARBON	150	K	5%	1/4		OHMITE	RC076F154J
R 39	000824	RES	CARBON	820	K	5%	1/4		OHMITE	RCO7GF824J
R40	000153	RES	CARBON	15	V	CΨ	•			
R41	010161	RES	METAL	110		5%	1/4		OHMITE	RCO7GF153J
R42	020204	RES	WW	1.1111		1%	1/4		ELECTRA	RN60D1100F
R43	020170	RES	WW	100.83		•05%	1/8		JURDAN	J-11
R44	040053	RES	VARI	5		•05米 10米	1/8 1.5		KELVIN CTS	EP-20 110
R45	040053	RES	VARI	5	K	10%	1.5	W	CTS	110

REF. DESIG.	PART NO.		DESCRIPT	ION		
CRO1 CR2 CRO3 CR4 CR5	200048 211236 200048 211236 211083	DIODE SILICO	NPN DUAL 2N3565 007	1	DANA	200048 1236 200048 1236 211083
CR6 CR7 CR8 CR9 CR10	211083 211083 211083 220012 220012		0 018	1 1 1 1	DANA DANA DANA MOTOROLA MOTOROLA	211083 211083 211083 1N9588 1N9588
CR11 CR12 CR13 CR14 CR15	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018	1 1 1 1	DANA DANA DANA DANA	211083 211083 211083 211083 211083
CR16 CR17 CR18 CR19 CR20	210004 210004 221177 200048 200048	TRANS SILICO	SD4	1/4 W1	DIODES IN SDA DIODES IN SDA MOTOROLA DANA DANA	
C01 C02 C3 C4 C5	120128 120092 120063 121146 120005	CAP POLYS CAP MYLAR CAP MYLAR CAP MYLAR CAP MYLAR	.0056 MFD 125V 1 MFD 300V 2 MFD 100 V .0047 MFD 100 V .001 MFD 100 V	5% 5%1 10%1 10%1	OIEL IMB IMB CDE	N100 ZA20105K XT2B205J WMF1D47 WMF1D1
C6 C7 C8 C9 C10	110038 110038 110039 120003 110036	CAP ELECT CAP ELECT CAP ELECT CAP MYLAR CAP ELECT	50 MFD 15 V 50 MFD 15 V 5 MFD 50 V •1 MFD 100 V 25 MFD 50 V	20% 20% 20% 10%1 20%	DUCATI DUCATI DUCATI CDE DUCATI	50-15 50-15 5-50 WMF1P1 25-50
C11 C12 C13 C14 C15	110036 100013 101145 120003 101145	CAP ELECT CAP CERAM CAP CERAM CAP MYLAR CAP CERAM	25 MFD 50 V 15 PFD 500 V 100 PFD 500 V •1 MFD 100 V 100 PFD 500 V	20% 10% 10%1 10%1 10%1	DUCATI AEROVOX AEROVOX CDE AEROVOX	25-50 TCD-N750 SCD1X5F WMF1P1 SCD1X5F
01 02 03	201084 200027 200044	TRANS GERMAN TRANS SILICO TRANS SILICO		1		2N1304 0027 0044

REF. DESIG.	PART ND.			DE	: S	CRI	РТ	1 0	. N :		
04	200044	TRANS	SILICO	NPN	DUA	L FSV	,			DANA 2	00044
Q5	200036		SILICO		•	015				DANA	200036
42	200030		3.2.00								
06	200036	TRANS	SILICO	NPN		015	1			DANA	200036
0.7	200043		SILICO				565			FAIRCHIL	
08	200043		SILICO				565			FAIRCHIL	
09	200035		SILICO			014				DANA	200035
ດ10	200022	TRANS	SILICO	PNP		012				DANA	200022
911	200052	TRANS	SILICO	PNP		009				DANA	200052
ຄາຂ	200043		SILICO				565			FAIRCHIL	
013	200043		SILICO				565			FAIRCHIL	
014	200022		SILICO			012				DANA	200022
015	200035	TRANS	SILICO	NPN		014	•			DANA	200035
014	200035	TOAMS	SILICO	NDN		014				DANA	200035
016 R1	000152	RES	CARBON		.5	_	5%	1/4	41	OHMITE	RC07GF152J
R2	000101	RES	CARBON			OHM	5%	1/4		OHMITE	RC07GF101J
R3	010249	RES	WW	•		M	2%	1/8		DALE	DC-2
R4	000101	RES	CARBON	1		OHM	5%	1/4		OHM1 TE	RCU76F101J
1, -	000201	N.C.O		-				• •			
R5	000622	RES	CARBON		.2		5%	1/4	-	GHMITE	RCO7GF622J
R6	000242	RES	CARBON	2	2.4		5%	1/4		OHMITE	RCO7GF242J
R 7	040005	RES	VARI	_	10		10%	1/2		BOURNS	3067-P-1-10
RR	000152	RES	CARBON		.5		5%	1/4		OHMITE	RCu7GF152J
R10	000752	RES	CARBON	1	7 • 5	K	5%	1/4	M1	DHMITE	RCO7GF752J
R11	000136	RES	CARBON		13	M	5%	1/4	W	OHMITE	RCD7GF136J
R12	001734	RES	FSV							DANA	001734
R13	010236	RES	WW		10	MEG	1%	1	W1	PME	PME70T2
R15	000685	RES	CARBON		8.6	M	5%	1/4	W	OHMITE	RCD7GF685J
R16	000132	RES	CARBON	1	1.3	K	5%	1/4	W	OHMITE	ACU7GF132J
0.16	010236	RES	WW .		10	MEG	1%	1	W1	PME	PME7OT2
K18 R20	000335	RES	CARBON		3.3		5%	1/4	_	OHMITE	RCO7GF335J
R21	000565	RES	CARBON		3.6	M	5%	1/4		OHMITE	RCO7GF565J
R22	000393	RES	CARBON		39		5%	1/4		OHMITE	RCO7GF393J
R23	000912	RES	CARMON		1.6		5%	1/4		OHMITE	RC07GF912J
0.24	000510	0.00	C 40004	المستنفل المارين			5%	1/4	L) 1	OHMITE	RCO7GF513J
R24	000513	RES	CARBON		"5 } *		ラネ - 5名	1/4		OHMITE	RCO7GF102J
R25	000102	RES	CARRON		1 1		5%	1/4		OHMITE	RCU7GF102J
R26	000122	RES	CARBON		1.2		5%	1/4		OHMITE	RC07GF122J
R27	000102	RES	CARBON		4.7		5%	1/4		OHMITE.	RCO7GF472J
K28	000472	WES.			* • *	•	94	177		uemi iç,	NCO101 4120
R29	000101	RES	CARBON	1	100	OHM'	5%	1/4	,w1	OHMITE	RC07GF101J
										2 of 3	

REE.	PART									
DESIG.	Mf1.			D E S	CRI	PΤ	I O	N		
R30	000912	RES	CARBON	9.1	K	5%	1/4	W1	UHMITE	RCO7GF912J
R31	000102	RES	CARBON	1	K	5%	1/4	W 1	OHMITE	RCO7GF102J
R32	000912	RES	CARBON	9.1	K	5%	1/4	W1	OHMITE	RCO7GF912J
R33	000332	RES	CARBUN	3.3	K	5%	1/4	Wl	OHMITE	RCU7GF332J
	000000	0.55	C 4 12 2 (14)	2 2		- A.				
R 54	000332	RES	CARBON	3.3		5%	1/4	-	OHMITE	RCO7GF332J
R35	000511	RES	CARBON		OHM	5%	1/4	_	OHMITE	RCU7GF511J
R36	000153	RES	CARBON	15	K	5%	1/4	_	OHMITE	RCO7GF153J
R37	000240	RES	CARBUN		OHM	5%	1/4	_	OHMITE	RCO7GF240J
R38	000750	RES	CARBON	75	UHM	5%	1/4	Wl	OHMITE	RCO7GF750J
R39	000240	RES	CARBON	24	OHM	5%	1/4	W1	OHMITE	RCD7GE240J
R40	000433	RES	CARBON	43	K	5%	1/4	M	OHMITE	RCU7GF433J
R41	000101	RES	CARBON	100	OHM	5%	1/4	W 1	OHMITE	RC07GF101J
R42	000153	RES	CARBON	15	K	5*	1/4	W1	OHMITE	RCO7GF153J
K43	000103	RES	CARBON	10	К	5%	1/4	W)	OHMITE	RCD7GF103J
R44	001734	RES	FSV						DANA	001734
R49	000750	RES	CARBON	75	OHM	5%	1/4	w1	DHMITE	RC076~750J
	· · · · · · · · · · · · · · · · · · ·					- "	-,,			1.0.710(150)

REF. DESIG.	PART NO.		OESCRIPTION	
CR1 A-CR1 CR2 A-CR2 J-CR02	211083 210004 211083 210004 210004	DIDDE SILICO DIDDE SILICO DIDDE SILICO DIDDE SILICO	018 1 SD4 018 1 SD4 SD4	DIODES IN SD4
K-CR2 M-CR2 CR3 A-CR3 L-CR3	210004 210004 211083 210004 210004	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	SD4 SD4 018 1 SD4 SD4	DIODES IN SD4 DIODES IN SD4 DANA 211083 DIODES IN SD4 DIODES IN SD4
U-CR3 CR4 A-CR4 CR5 CR25	210004 211083 210004 210004 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	SD4 018 1 SD4 SD4 018 1	DIODES IN SD4 DIODES IN SD4
CR26 CR27 CR28 CR36 CR37	211083 211083 211083 211083 210004	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 1 018 1 018 1 018 1 SD4	DANA 211083 DANA 211083 DANA 211083 DANA 211083 DIODES IN SU4
CR38 CR39 CR42 CO1 E-CO1	210004 211083 211083 101174 121092	DIODE SILICO DIODE SILICO DIODE SILICO CAP CERAM CAP MYLAR	SD4 018 1 018 1 •001 MFD 500 V 10%1 •0022 MFD 100 V 10%	DIUDES IN SD4 DANA 211083 DANA 211083 AEROVOX SCD3X5F CUE WMF1D22
001 B-001 002 B-002 003	200043 200037 200043 200043 200043	TRANS SILICO TRANS SILICO TRANS SILICO TRANS SILICO TRANS SILICO	NPN 2N3646 NPN 2N3565 NPN 2N3565	FAIRCHILD 2N3565 FAIRCHILD 2N3646 FAIRCHILD 2N3565 FAIRCHILD 2N3565 FAIRCHILD 2N3565
004 005 006 R01 R02	200035 200043 200043 000222 000153	TRANS SILICO TRANS SILICO TRANS SILICO RES CARBON RES CARBON	NPN 2N3565	DANA 200035 FAIRCHILD 2N3565 FAIRCHILD 2N3565 OHMITE RC07GF222J OHMITE RC07GF153J
R03 R04 R05	000222 000153 000822	RES CARBON RES CARBON		DHMITE RC07GF153J

REF. DESIG.	PART NO.		DESCRIPT	I 0 N	
CR1 A-CR1 CR2 A-CR2 J-CR02	211083 210004 211083 210004 210004	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 SD4 018 SD4 SD4	1	DANA 211083 DIODES IN SD4 DANA 211083 DIUDES IN SD4 DIUDES IN SD4
K-CR2 M-CR2 CR3 A-CR3 L-CR3	210004 210004 211083 210004 210004	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	SD4 SD4 018 SD4 SD4	1,	DIODES IN SD4 DIODES IN SD4 DANA 211083 DIODES IN SD4 DIODES IN SD4
U-CR3 CR4 A-CR4 CR5 CR25	210004 211083 210004 210004 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	SD4 018 SD4 SD4 018	1	DIODES IN SD4 DANA 211083 DIODES IN SD4 DIODES IN SD4 DANA 211083
CR26 CR27 CR28 CR36 CR37	211083 211083 211083 211083 210004	DIDDE SILICO DIDDE SILICO DIDDE SILICO DIDDE SILICO DIDDE SILICO	018 018 018 018 5D4	1 1 1	DANA 211083 DANA 211083 DANA 211083 DANA 211083 DIODES IN SD4
CR38 CR39 CR42 CO1 E-CO1	210004 211083 211083 101174 121092	DIODE SILICO DIODE SILICO DIODE SILICO CAP CERAM CAP MYLAR	SD4 018 018 •001 MFD 500 V •0022 MFD 100 V	1 1 10*1 10*	DIODES IN SD4 DANA 211083 DANA 211083 AEROVOX SCD3X5F CDE WMF1D22
001 B-001 002 B-002 003	200043 200037 200043 200043 200043	TRANS SILICO TRANS SILICO TRANS SILICO TRANS SILICO TRANS SILICO	NPN 2N3646 NPN 2N3565 NPN 2N3565		FAIRCHILD 2N3565 FAIRCHILD 2N3646 FAIRCHILD 2N3565 FAIRCHILD 2N3565 FAIRCHILD 2N3565
004 005 006 R01 R02	200035 200043 200043 000222 000153	TRANS SILICO TRANS SILICO TRANS SILICO RES CARBON RES CARBON	NPN 2N3565	1/4 W1 1/4 W1	DANA 200035 FAIRCHILD 2N3565 FAIRCHILD 2N3565 OHMITE RCD7GF222J OHMITE RCO7GF153J
R03 R04 R05	000222 000153 000822	RES CARBON RES CARBON RES CARBON	2 • 2 K 5% 15 K 5% 8 • 2 K 5%	1/4 W1 1/4 W1 1/4 W1	OHMITE RCO7GF222J OHMITE RCO7GF153J OHMITE RCO7GF822J

REF.	PART									
DESIG.	NO.			DES	CR	I P	1 0	N		
R06	000153	RES	CARBON	15	K	5%	1/4	Wl	OHMITE	RC076F153J
R07	000204	RES	CARBON	200		5%	1/4	W	OHMITE	PC076F204J
R08	000243	RES	CARBON	24	ĸ	5%	1/4	wı	OHATTE	RCH7GE243J
8-R08	000243	RES	CARBON	12		5×	1/4		OHMITE	RCH/GF1253
C-R08	000123	RES	CARBON	12		5%	1/4		OHMITE	RC07GF123J
D-R08	000512	RES	CARBON	5.1		5%	1/4		UHMITE	RCU7GF512J
E-ROB	000512	RES	CARBON	5.1		5%	1/4	Wl	OHMITE	RCO7GF512J
i. Kwi			U ANDO!!		,-		• • •			
4-K08	000822	RES	CARBUN	⊎•2	к	5%	1/4	wl	OBMITE	RC076F822J
J-R08	000822	RES	CARBON	8.2		5%	1/4	Wl	OHMITE	RCU76F872J
K-RO8	000822	RES	CARBON	8 • 2		5%	1/4	W1	OHMITE	RCN7GF822J
L-RO8	000822	RES	CARBON	8.2	K	5%	1/4	Wì	OHMITE	RCO7GF822J
M-R08	000822	RES	CARBON	8.2	K	5%	1/4	W1	OHMITE	RCO7GFA22J
R10	000273	RES	CARBEIN	27	к	57	1/4	₩ 7	UHMITE	kCO7GE273J
R11	000213	RES	CARBON	24		5 k	1/4		UHMITE	-C+76+243J
R12	000822	RES	GARBON	8.2		5%	1/4	_	OHMITE	RCO/GE822J
R13	000822	RES	CARBON	8.2		5%	1/4		OHMITE	RC07GF822J
814	000153	RES	CARBUN	15		5%	1/4	W1	()HMITH	RCG76F153J
			•							
R15	000822	RES	CARBON	8.2	, K	5%	1/4	W1	OHMITE	KCH7GF822J
R18	030012	RES	CARBON	130	K-	5%	1	W	CHMITE	RC32GE134J
819	000512	RES	CARBON	5.1	K	5%	1/4	Wl	OHMITE	KC07GF512J
870	000104	RES	CARBON	100	K	5%	1/4		OHMITE	RC07GF104J
K21	000512	RES .	CARBON	5.1	K	5%	1/4	W1	OHMITE	RCN7GF512J
		· · · · · · · · · · · · · · · · · · ·			-					
K22	000512	RES	CARBON	5.1	ĸ	5%	1/4	Wl	OHMITE	RCO7GF512J
R23	030012	RES	CARBON			5%		₩	OHMITE	RC32GF134J
K/J	030015	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-			

#55FMHLY 402102

REF. UESIG.	PART NO.			D E S	C R	I P	T I	0 N		
CR1 CR2 CR3 CR4 CR5	211083 211083 211083 211083 211083	DIODE S DIODE S DIODE S DIODE S DIODE S	ILICO ILICO		018 018 018 018 018			1 1 1 1	DANA DANA DANA DANA DANA	211083 211083 211083 211083 211083
CR6 CR7 CR8 CR9 CR10	211083 211083 211083 220004 211083	DIODE S DIODE S DIODE S DIODE S	ILICO ILICO	ZENER	018 018 018 1 N9 6	18		1 1 1 1	DANA DANA DANA MUTURULA DANA	211083 211083 211083 1N9618 211083
CR11 CR12 CR13 CR14 CR15	211083 210004 210004 210004 211083	DIODE S DIODE S DIODE S DIODE S	ILICO ILICO		018 504 504 504 504			1	DANA DIODES IN SD DIODES IN SD UIODES IN SD DANA	4
C1 C2 C3 C4 C5	130043 130029 110017 110038 110001	CAP GE CAP EL	LASS LASS ANTA LECT ANTA	1-5 1 50	PFD PFD MFD MFD MFD		V V V	10% 10% 10%1 20% 10%1	CORN LRC KEMET DUCATI KEMET	CYEM10C7R7 682116 K1C35K 50-15 K6R8C35K
C6 C7 C8 C9 C10	101641 130039 130029 100006 130034	CAP GI CAP GI	ERAM LASS LASS ERAM ERAM	27 1-5 10	PFD PFD PFD PFD	500 500 500	V V V	10#1 10# 10# 10#1 10#	AEROVOX CORN LRC AEROVOX CRL	SCD1X5F CYFM10C270J 682116 TCD-N750 822BN-N650
C11 C13 C14 C15 C16	130040 130041 100006 101641 110001	CAP GI CAP CI	LASS LASS ERAM ERAM ANTA	3000 10 470	PFD PFD PFD PFD MFD	500 500	V V V	10% 10% 10%1 10%1 10%1	CORM CORM AEROVUX AEROVOX KEMET	CYFM10C241J CYFM200302J TCD=N750 SCD1X5F K6R8C35K
C17 C18 C19 C20 C21	100005 110001 110002 110001 120069	CAP TO	ERAM ANTA AN TA ANTA YLAR	6.8 22 6.8	PFD MFD MFD MFD MFD	35 35 35	V V V	10% 10%1 10%1 10%1 10%	AEROVOX KEMET KEMET KEMET IMB	TCD-N750 K6R8C35K K22C35K K6R8C35K XA1134K
C22 C23 K1	130034 130027 310013		ERAM Lass EED		PFD PFD SPST		٧	10* 10* 1	CRL CORN WHEELOCK	822BN-N650 CYFM-10C100 2961A X6

ASSEMBLY 402102

REF. DESIG.	PART ND.			DES	C R	I P T	1 0	N		
		RELAY	DEED		PST	24V		1	WHEELOCK	2961A X6
K2. K3	310013 310022	RELAY			PUT	29V		1	ALLIED	TS154-00-00
Ν 3	310022	RELAT	OC .	-	FUI	274			ACCIED	13134-00-00
Ω1	200035		SILICO		01				DANA	200035
02	200035		SIFICO		01				DANA	200035
03	200035		SILICO		0.1				DANA	200035
04	200043		SILICO			13565			FAIRCHILD	
Q5	200043	IRANS	SILICO	NPN	20	13565			FAIRCHILD	203505
06	200043	TRANS	SILICO	NPN	21	13565			FAIRCHILD	2N3565
0.7	200043		SILICO			13565			FAIRCHILD	
ผู้8	200043		SILICO		-	13565			FAIRCHILD	
09	200011		SILICO		00)9			DANA	200011
010	200035	TRANS	SILICO	NPN	01	4			ΔΝΔΟ	200035
			·	. ~	,	6 11 414			0.44.77	
R1	000473	RES	CARBON	47		5%	1/4		OHMITE	KCO7GE473J PME329KT2
R2	010280 000473	RES	CARRON	329 47		•25% 5%	1/8 1/4		PME OHMITE	RCO7GF473J
R3	000684	RES	CARBON	680		5% 5%	1/4		OHMITE	RC07GF684J
R4 R5	000101	RES	CARBON		OHM	5%	1/4		OHMITE	RC07GF101J
45	000101	NES .	CARBON	- 100	CHIP	J.	17,4		One I L	
RF	000913	RES	CARBON	91	K	5*	1/4		DHMITE	RC076F913J
R 7	000470	RES	CARBON		OHM	5%	1/4		OHMITE	RCO7GE470J
Ŕн	000682	RES	CARBON	6.8		5%	1/4		OHMITE	RCO7GF682J
ρĢ	000272	RES	CARBON	2.7		5*	1/4		OHMITE	RC07GF272J
K10	000201	RES	CARBON	200	OHM	5¥	1/4	Wl	OHMITE	RCU7GF201J
R11	010280	RES	WW	329	ĸ	.25%	1/8	W	PME	PME329KT2
K12	000913	RES	CARBON	91		5%	1/4		OHMITE	RCO7GF913J
R13	010280	RES	WW	329		.25%	1/8		PME	PME329KT2
K14	010280	RES	WW	329		.25%	1/8	W	PME	PME329KT2
R15	000152	RES	CARBON	1.5		5%	1/4	Wl	OHMITE	RCD7GF152J
	000201	056	CARRAN	300	ЛПР	5 %	1/4	ωı	OHM1TE	RC07GF201J
K16	000201	RES	CARBON		NHW.		1/4		OHMITE	RC07GF392J
R17 R18	000392 040053	RES	VARI	0003.9	K	>% 10%	1.5		CTS	110
R19	040053	RES	VARI .		OHM	10%	1.5		CTS	110
R20	040052		VARI		ОНМ	10%	1.5		CTS	110
N 2 17	040032	NC5	V-1.1.2	20	5		20.2			
R21	000153	RES	CARBON	15		5%	1/4		OHMITE	RC07GF153J
k22	000330	RES	CARBON	33		5%	1/4		OHMITE	RCO7GF330J
R23		RES	CARBON		OHM	5%	1/4		OHMITE	RCO7GF751J
R24	000330	RES	CARBON	33		5%	1/4		OHMITE	RCD7GF330J
K25	000432	RES	CARBON	4.3	K -	5%	1/4	WI	OHMITE	RCO7GF432J
R26	000103	RES	CARBON	10	K	5%	1/4	W1	OHMITE	RC07GF103J

REF. DESIG.	PART NO.			D E S	CRI	ГРТ	ΙΟ	N		
R27	000910	RES	CARBON	91	OHM	5%	1/4	W1	OHMITE	RC07GF910J
R28	000390	RES	CARBON	39	OHM	5%	1/4	W1	OHMITE	RCO7GF390J
R29	020165	RES	WW	270	K	1%	1/8	W	KELVIN	EP-20
R30	020165	RES	WW	270	К	1%	1/8	W	KELVIN	EP-20
R31	020164	RES	WW	135	ĸ	-1%	1/8	W	KELVIN	EP-20
R32	020164	RES	WW	135	K	.1%	1/8	W	KELVIN	EP-20
R33	000202	RES	CARBON	2	K	5%	1/4	Wl ·	OHMITE	RCO7GF202J
R34	001705	RES	CARBON	820	OHM	5%	1/2	W	OHMITE	RC20GF821J
R35	000152	RES	CARBON	1.5	K	5%	1/4	W1	OHMITE	RCO7GF152J

ASSEMBLY 402036

REF. DESIG.	PART NO.		D _i E	SCR	I P T	ION		
CR1	220012	DIODE SILIO	O ZENER	1095	88	1	MOTOROLA	1N958H
CR10	211083	DIODE SILI		018		î	DANA	211083
CR11	211083	DIODE SILIO		018		i	DANA	211083
CR12	211083	DIODE SILI		018		i	DANA	211083
CK13	211083	DIODE SILI		018		ī	DANA	211083
						•		
C#14	211083	DIDDE SILI		018		1	DANA	211083
C915	211083	DIOUE SILIC		018		1	DANA	211083
CR16	211083	DIODE SILI		018		1	DANA	211083
CR17	211083	DIODE SILIC		018		1	DANA	211083
CR18	211083	DIODE SILIC	.0	018		1	DANA	211083
CR19	211083	DIODE SILI		018		1	DANA	211083
CR2	220012	DIODE SILIC			BR	1	MOTORULA	1N9588
CR3	210006	DIDDE SILIO		\$368			G.E.	\$368
CR4	210006	DIODE SILI		\$368		1 44 113	G.E.	S368
C45	221177	DIODE SILIO	O ZENEK			1/4 W1	MOTOROLA	M.2.4A25
CR6	220007	DIODE SILIO	U ZENER	1N75	1	1	MUTORULA	1พ751
CK7	210007	DIODE SILIC	.0	166			G.E.	DH0166
CRR	210007	DIODE SILIC		166			G.E.	DH0166
CR9	211083	DIODE SILIO	.0	018		1	DANA	211083
C01	110039	CAP ELEC	•	5 MFD	50 V	20%	DUCATI	5-50
C02	110039	CAP ELEC		5 MFD	50 V	204	DUCATI	EEO
C03	120039	CAP PULY			500 V		DUCATI CRL	5-50
C04	120039	CAP POLYS			500 V		CRL .	CPR-24J
C05	101145	CAP CERAI			500 V		AEROVUX	CPR-24J SCD1X5F
C06	100012	CAP CERA			500 V		AEROVOX	TCD-N750
C 00	100072	CAP CENAL		3 770	. 500 v		AERUVUA	TCD-N750
C07	101175	CAP CERA			500 V			SCD1X5F
C08	101099	CAP CERA			500 V		AEROVOX	SCD2X5F
C11	100010	CAP CERA			500 V			D-N750
C12	100010	CAP CERA		8 PFD				D-N750
C13	110044	CAP ELEC	5	O MFD	50 V	20%	DUCATI	50-50
C14	120005	CAP MYLA			100 V			WMF1D1
C15	120005	CAP MYLA			100 V			WMF101
C16	100010	CAP CERA			500 V		· · - · · · · · · · · · · · · · · · · ·	D-N750
C17	100010	CAP CERA			500 V			D-N750
C18	121393	CAP MYLA	•2	2 MFD	100 V	10%	CDE	WMF1P22
K01	311274	RELAY DC		2 PDT			BABCOCK	BR12H-1.6KC
QO1	201084	TRANS GERM			N1304	1	ΤΙ	2N1304
Q02	200036	TRANS SILI	O NPN	0	15		DANA	200036

ASSEMBLY 402036

REF. DESIG.	PART NO.			D	E S	C R	I P T	1 0	N		
003	200040	TRANS	SILICO	NPN		0	16			DANA	200040
004	200040		SILICU			0	16			AMA	200040
005	200043	TRANS	SILICO	NPN		21	N3565			FAIRCHILD	2N3565
006	200011		SILICO			0	09			DANA	200011
NO7	200035		SILICO			0	14			DANA	200035
408	200011		SILICO			0	09			DANA	200011
009	200035	TRANS	SILICO	NPN		0	14			DANA	200035
	•										
010	200043	TRANS	SILICU	NPN		2	N3565			FAIRCHILD	2N3565
011	200043		SILICO			2	N3565			FAIRCHILD	
012	200037	TRANS	SILICO	NPN		2	N3646			FAIRCHILD	2N3646
013	200037	TRANS	SILICO	NPN			N3646			FA1KCHILD	
014	200049	TRANS				2	N3417			GE 2N	3417
015	200035		SILICO	NPN			14			DANA	200035
016	20004 9	TRANS					N3417				3417
017	200043		SILICO	NPN			N3565			FAIRCHILD	2N3303 LR-11
RO1	020166	RES	WW		10	Κ.	•05%	1/8	W	JORDAN	[K-11
K02	020379										
					_					544545	2047 0 1-80
R 0 3	040050	RES	VARI			K	10*	1/2		BOURNS	3067-P-1-KO
K04	000203	RES	CARBON		20		5%	1/4		OHMITE	RCO7GF203J
R05	000101	RES	CARBON			OHM		1/4		OHMITE	RCO7GF101J RN60D7501F
R06	010079	RES	METAL		7.5		1%	1/4		ELECTRA	3068-P-1-10
R07	040004	RES	VARI		100	K	1026	1/5	Ħ	BOURNS	3066-P-1-10
808	020166	RES	MM.		10		.05%	1/8		JORDAN	LR-11
R09	010167	RES	METAL		442		18	1/4		ELECTRA	RN60D4423F
R10	020166	RES	WW		10		-05%	1/8		JORDAN	LR-11
R11	040050	RES	VARI		5	K	10%	1/2	,	BOURNS	3067-P-1-K0
R12	001713	RES	FSV				5%	1/4	W	DANA 00	1713
										5. 56704	D
R13	010158	RES	METAL		200		1*	1/4		ELECTRA	RN60D2003F
R14	010282	RES	METAL		140	K	1%	1/4		IRC	RN60C1403F
R15	001713	RES	FSV		2.2.2		5%	1/4		• • • • • • • • • • • • • • • • • • • •	1713 RN60D2003F
R16	010158	RES	METAL	.*.	200		12	1/4	Win	ELECTRA OHMITE	RCO7GF102J
R17	000102	RES	CARBON		1	K	5\$	1/4	₩ T.	UMMITE	KCOIGETOSA
							• •			CLECTUA	DAIZ/MAAA SEE
R18	010167	RES	METAL		442		1%	1/4		ELECTRA	RN6004423F
R19	010060	RES	METAL	49	10		12	1/4		ELECTRA Flectra	RN60D10U2F RN60D9091F
R20	010039	RES	METAL		-09		1 % 5 %	1/4		OHM1TE	RCU7GF102J
P21	000102	RES	CARBON		442	K	74 1%	1/4		ELECTRA	RN60D4423F
R22	010167	RES	METAL		772	- C	14	1/4	~ 4	LECOINA	
0.22	000203	556	CARBON		20	K	5%	1/4	W 1	OHMITE	RC07GF203J
R23	000203	RES	UAKBUN		20		34	., 4	4	\$11.11.1 F.	2 of 4

REF.	PART						
DESIG.	NO.		DESC	CRIP	FIUN		
R24	001712	RES CARBO	N 750 C]HM 5%	1/2 W	OHMITE	RC20GF751J
R25	000220	RES CARBO			1/4 W1		RC07GF220J
R26	000820	RES CARBO		3HM 5%	1/4 W	OHMITE :	RCU7GF820J
R27.	000101	RES CARBO			1/4 W1	OHMITE	RC076F101J
					4.	Onerre	KCO TOF TOTO
R28	000220	RES CARBO	N 22 C	DHM 5%	1/4 W1	OHMITE	RCD7GF220J
R30	000220	RES CARBO	N 22 €)HM 5%	1/4 W1	DHMITE	RC07GF220J
R31	000101	RES CARBO	N 100 (JHM 5%	1/4 W1	UHMITE	RCU7GF101J
R32	000222	RES CARBO			1/4 W1	UHMITE	RC07GF222J
₹33	001674	RES CARBO	N - 680 C)HM 5%	1/2 W1	OHMITE	RC20GF681J
R34	000103	DEC CARDO					
R35	000103	RES CARBO			1/4 W1	OHMITE	RCO7GF103J
R36	000153	RES CARBO RES CARBO			1/4 W1	OHMITE	RCO7GF153J
R37	000153	RES CARBO RES CARBO			1/4 W1	OHMITE	RCO7GF153J
R38	000153	RES CARBO			1/4 W1	OHMITE	RCO7GF153J
K30	000103	. NES CARBO	N 15 K	5%	1/4 W1.	OHMITE	RCO7GF153J
R39	000822	RES CARBO	N 8.2 K	5%	1/4 W1	OHMITE	060766055
R40	000303	RES CARBO			1/4 W1	OHMITE	RCU7GF#22J RCD7GF303J
R41	000123	RES CARBO			1/4 W1	OHMITE	RCU7GF3033
R42	000822	RES CARBO			1/4 W1	OHMITE	RC07GF822J
R43	000303	RES CARBO			1/4 W1	OHMITE	RCU7GF303J
R44	000123	RES CARBO			1/4 W1	OHMITE	RC07GF123J
R45	000163	RES CARBO			1/4 W1	DHMITE	RCU7GF163J
R46	000102	RES CARBO			1/4 W1	OHMITE	RC07GF102J
R47	000105	RES CARBO			1/4 Wl	OHMITE	RCO7GF105J
R48	000822	RES CARBO	N 8 • 2 K	5%	1/4 W1	DHMITE	RCO7GF822J
R49	040003	RES VARI	20 K	1.08	1.42.14	DOUD VA	
R50	000822	RES CARBO		·	1/2 W 1/4 W1	BOURNS	3067-P-1-20
R52	000563	RES CARBO			1/4 W1 1/4 W	OHMITE	RCD7GF822J
R53	000273	RES CARBO			1/4 W	OHMITE	RCO7GF563J
R54	000273	RES CARBO			1/4 W1	OHMITE OHMITE	RCD7GF273J
				241	1/4 #1	DHMITE	RCO7GF273J
R55	000163	RES CARBO		5%	1/4 W1	OHMITE	RCO7GF163J
R56	000104	RES CARBO	100 K	5*	1/4 W1	UHMITE	RCU7GF104J
R57	000163	RES CARBOI		5%	1/4 W1	OHMITE	RCO7GF163J
R58	000153	RES CARBOI	N 15 K	5%	1/4 W1	OHMITE	RCO7GF153J
R59	000123	RES CARBO	12 K		1/4 W1	OHMITE	RCO7GF123J
D40 ·	000000						
R60	000202	RES CARBON			1/4 W1	DHMITE	RCU7GF202J
R61	000431	RES CARBON			1/4 W1	OHMITE	RCO7GF431J
R62	000202	RES CARBON			1/4 W1	OHMITE	RCO7GF202J
R63	000822	RES CARBON	8 • 2 K	5%	1/4,W1	OHMITE	RCO7GF822J

ASSEMBLY 402551

REF. DESIG.	PART NO.		DESCRIPT	T 0 N	
CR1 CR2 CR3 CR4 CR5	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	DANA 211083 DANA 211083 DANA 211083 DANA 211083 DANA 211083
CR6 CR7 CR8 CR9 CR10	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	DANA 211083 DANA 211083 DANA 211083 DANA 211083 DANA 211083
CR11 CR12 CR13 CR14 CR15	211083 211083 210004 210004 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 SD4 SD4 018	DÍO	DANA 211083 DANA 211083 IDES IN SD4 IDES IN SD4 DANA 211083
CR16 CR17 CR18 CR19 CR20	211083 211083 211083 211236 211236	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 007 007	1 1 1 DAN	
CR21 CR22 C1 C2 C3	221254 221254 101641 121473 110001	DIODE SILICO DIODE SILICO CAP CERAM CAP MYLAR CAP TANTA		1 10%1 10%1 10%1	MOTOROLA 1N961A MOTOROLA 1N961A AEROVOX SCD1X5F CDE WMF1S47 KEMET K6R8C35K
C4 C5 C6 C7 F1	121473 110001 101641 120094 920054	CAP MYLAR CAP TANTA CAP CERAM CAP POLYS FUSE	.0015 MFD 100 V 6.8 MFD 35 V 470 PFD 500 V .0051 MFD 500 V .1 AMP	10%1 10%1 10%1 CRL BUS	
E-F2FUS K1 K2 K3 K4	920280 310013 310013 310013 310013	RELAY REED RELAY REED RELAY REED RELAY REED	SPST 24V SPST 24V SPST 24V SPST 24V SPST 24V	MICROFU 1 1 1	SE WHEELOCK 2961A X6 WHEELOCK 2961A X6 WHEELOCK 2961A X6 WHEELOCK 2961A X6
Q1 Q2 Q3	200035 200035 200035	TRANS SILICO TRANS SILICO TRANS SILICO	NPN 014		DANA 200035 DANA 200035 DANA 200035

ASSEMBLY 402551

REF. DESIG.	PART NO.		DESCRI	P T I 0) N		
		TRANS SILICO	NPN 014			DANA	200035
04	200035 201084	TRANS GERMAN			1	Τl	2N1304
05	201064	TRANS CENTRAL					
			NPN 015			DANA	200036
N6	200036	TRANS SILICO	,,,,,			DANA	200040
W 7	200040	TRANS SILICO				DANA	200040
OB _	200040	TRANS SILICO	NON 2N3	565		FAIRCHI	LD 2N3565
009	200043 200043	TRANS SILICO		565		FAIRCHI	LO 2N3565
010	200043	INANS SICIOP					
				3565		FAIRCHI	LD 2N3565
011	200043	TRANS SILICO	PNP 012			DANA	200022
012	200022	TRANS SILICO	PNP 009	-		DANA	200052
D13	200052	TRANS SILICO RES CARBON	47 K		4 W1	OHMITE	RCO7GF473J
RB	000473		10.104 MEG		1 W	PYROFILM	PME75
84	010339	RES METAL	10.104 MLO	• 1 4	•		
						OHMITE	RC07GF103J
×10	000103	RES CARBON	10 K		4 W1	PYROFILM	PME75
× 1.1	010338	RES METAL	1 MEG		1 W	JORDAN	J11
R12	020403	RES WW	201.0 K		'8 W '8 W	JORDAN	J11
R13	020399	RES WW	20.153 K	-	8 W	JORDAN	J11
₭14	020400	RES WW	2.0088 K	.1% 1/	0 "	JORDAN	~
				;		·	2040 0 1-10
R15	040004	RES VARI	100 K		/5 W	BOURNS	3068-P-1-10
R16	020401	RES WW.	10.34 K		/8 W	JORDAN	J11 J11
R17	020386	RES WW	10 K		/8 W	JORDAN BOURNS	271-2-1-166
R18	040066	RES VARI	1 K		/4 W	BOURNS	3067P-1-20
R 19	040084	RES VARI	200 OHM	10% 1/	/2 W	BOOKNS	30077
	á _	g Assert					2010 0 1-50
620	040055	RES VARI	500 K		/5 W	BOURNS	3068-P-1-50
R21	010158	RES METAL	200 K		/4 W1	ELECTRA	RN60D2003F RC07GF432J
R22	000432	RES CARBON	4.3 K		/4 W1	OHMITE	RC07GF511J
R23	000511	RES CARBON			/4 W1	OHMITE OHMITE	RC07GF103J
R24	000103	RES CARBON	10 K	5% 1	/4 W1	CHMIIE	VC0101 1030
	000681	RES CARBON	680 OHM,	5% 1	/4 W1	OHMITE	RCO7GFA81J
K25	010139	RES METAL		2% 1	/4 W1	PYROFI	
R26	040004	RES VARI	100 K		/5 W	BOURNS	3068-P-1-10
327	010039	RES METAL	9.09 K	1% 1	/4 W	ELECTR	A RN6009091F
н28 R29	010034	RES WW	10 MEG	1%	1 W1	PME	PMF70T2
K24	010250	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
			1 44	10% 1	/5 W	BOURNS	3068-P-1-10
R30	040059	RES VARI	1 M 10 MEG		1 W1	PME	PME70T2
H31	010236	RES WW	10 MEG	1%	i Wi	PME	PME70T2
R32	010236	RES WW	11		/4 W1	OHMITE	RC07GF513J
H 33	000513	RES CARBO			/4 W1	ELECTR	
R34	010158	RES METAL	200	- "	_		
				e	/A W1	OHMITE	RC07GF202J
R35	000202	RES CARBO	N 2 K	5% l	/4 W1	Omilia	. Compared to the second
							0 -6 2

REF. DESIG.	PART NO.			υ Ε	S C	R	1	РΤ	I 0	N		
R36	000513	RES	CÁRBON		51 K			5%	1/4	W1	OHMITE	RCO7GF513J
	000151		CARBON		50 0			5%	1/4	WI	OHMITE	RCO7GF151J
R37			CARBON)HM		5%	1/4	_	CHMITE	RC07GF151J
R38	000151				47 K			5%	1/4	_	OHMITE	PC07GF473J
R 39	000473	RES	CARBUN	•	+1 1			.;) A	1/4	и т	(41)32 (1	#10//10/ 4130
R40	000152	RES	CARBON	1	•5 K	(5%	1/4	WI.	OHMITE	RCO7GF152J
R41	000202	RES	CARBON		2 K	(5 %	1/4	Wl	OHMITE	RCHYGESOS J
R42	000822	RES	CARBON	8.	.2 K	(5%	1/4	ыŢ	OHMITE	RC07GF822J
R43	020119	RES	WW	- 68	80 C	MHC		1*	1/2	W1	OF HUFO	
R44	000332	RES	CARBON	3	.3 K	ζ.		5%	1/4	W 1	OHMITE	RCO7GF332J
R45	000101	RES	CARBON	10	00 0	MHC		5%	1/4		OHMITE	RCO7GF101J
R46	001713	RES	FSV					5%	1/4		DANA	001713
R47	001713	RES	FSV					5≭	1/4		DANA	001713
R48	001713	RES .	FSV					5%	1/4	W	AMACI	001713
R49	001713		FSV					5%	1/4	W	DANA	001713
								.	•		13.4.6.4	001713
R50	001713	RES	FSV					5%	1/4		DANA	001713
R51	001713	RES	FSV	_				5%	1/4		DANA	001713
R52	020402	RES	MM.	1	15 H	K	•	1*	1/8		JURDAN	J11
R53	001713	RES	FSV					5%	1/4	W	DANA	001713

PARTS LIST

ASSEMBLY 402549 - PC Board Assembly, Function Indicator

RFF.	PART		1							
DESIG.	N().			o e s	CRI	PΤ	1 0	M		
081	920116	LAMP	NEON		NE-2H				G E	MPG-250-3
DS2	920116	LAMP	NEDN.		NE-2H				GE	MPG-250-3
0803	420116	LAMP	NEON		ME-2H				G E	MPG250-3
0504	920116	LAMP	NEON		ME-2H				G E	MPG250-3
0805	920116	LAMP	NEDN	* .	ME-5H				G E	MPG250-3
0806	920116	LAMP	NEON		NE-2H				G F	MPG250-3
R46	000473	RES	CARBON	47	κ :	5×	1/4	Wl	OHMITE	RCU/GF473J
R47	000473	RES	CARBON	47	K !	5%	1/4	W1	OHMITE	RCD7GF473J
R48	000473	RES	CARBON	47	K - !	5*	1/4	Wl	OHMITE	RCD7GF473J
R49 .	000473	RES	CARBUN	47	K	5*	1/4	W1	OHMITE	RCD7GF473J
R50	000473	RES	CARBON	47	K !	5 X	1/4	w 1	UHMITE	RCU7GF473J
K51	000473	RES	CARBUN	47		5%	1/4		OHMITE	RC07GF473J

PARTS LIST

٨	c	c	E	h.	ĸ.	v	41	12	5	21	'n	
72	•	•	_	LA E	пι		41		7	-	.,	

REF. DESIG.	PART NO.		DESCR	тет	TÜN		
7/(310)	rv(r •		D 1. 3 C 11	1 , ,	, .,		
C I	110041	CAP ELECT	250 MFD	6 V	20*	DUCATI	250-6
CR1	210004	DIODE SILIC	D SD4			DIDDES IN	SD4
CR2	210004	DIODE SILIC	J SD4			DIODES IN	SD4
CR3	210004	DIODE SILIC	D SD4		•	DIODES IN	SU4
R1	001107	RES CARBO	N 39 K	5≭	1 W	OHMITE	RC32GF393J
R2	001698	RES CARBU	-	5%	1 W	OHMITE	RC32GF203J
R3	000224	RES CARBO		5*	1/4 W1	OHMITE	RCU7GF224J
R 4	001107	RES CARBO		5%	1 W	OHMITE	RC32GF393J
R5	001698	RES CARBO		5%	1 W	OHMITE	RC32GF203J
R6 .	030005	RES CARBO	N 100 K	5%	2 W	CHMITE	RC42GF104J
R 7	030005	RES CARBO	N 100 K	5%	2 W	OHMITE	RC42GF104J
RH	030005	RES CARBO		5%	2 W	OHMITE	RC42GF104J
R9	030012	RES CARBO	N 130 K	5%	1 W	OHMITE	RC32GF134J
R10	030012	RES CARBO	N 130 K	5%	1 W	OHMITE	RC32GF134J
P11	030012	RES CARBO	N 130 K	5%	1 W	OHMITE	RC32GF134J
K]2	000914	RES CARBO		5%	1/4 W	OHMITE	RCO7GF914J
R13	000914	RES CARBO	_	5%	1/4 W	OHMITE	RCO7GF914J
६14	000914	RES CARBO		5%	1/4 W	OHMITE	REU7GF914J
R15	000914	RES CARBO		5⊁	1/4 W	OHMITE	RC07GF914J
R16	000914	RES CARBO	N 910 K	5%	1/4 W	OHMITE	RCD7GF914J
013	000014	DEC CARRO	010 K	E W	1 // 11	DUMITE	henzekota i
P17	000914	RES CARBO		5% 5%	1/4 W	OHMITE	RC07GF914J
K18	0,00914	RES CARBO	N 910 K	5%	1/4 W	OHMITE	RCO7GF914J

REF.	PART							
OFSIG.	*HO •			D F S.C R	IPTIC	N		
CR1	211083	DIDDE	SILICO	018		1	DANA	211083
CR2	211083		SILICO	018		1	DANA	211083
CR3	211083		SILICO	018		1	DANA	211083
CR4	211083		SILICO	018		ı	DANA	211083
CR5	211083		SILICO	. 018		1	DANA	211083
() () ()	7.1.1.1.1.2	0.100			<i>•</i> .			
CH6	211083	DIUDE	SILICO	018		1	DANA	211083
CR7	211083		SILICO	018		1	DAMA	211083
CRR	211083	OIONE	SILICO	018		1 .	DAMA	211083
CRY	211083	DIODE	SILICO	018		1	DANA	211083
CR10 .	211083	DIODE	SILICU	018		1	DANA	211083
								211692
C411	211083		SILICO	018		1	DANA	211083
C#12	211083		SILICU	018		1	DANA	211083 211083
0813	211083		SILICO	018		1	DANA	211083
CR 14	211083		SILICO	018		1	ANA DANA	211083
CR15	211083	01006	SILICO	018		1	DANA	211003
6014	211083	ntone	SILICO	018		1	DANA	211083
CR16	211083		SILICO	018		ī	DANA	211083
CR17 CR19	211083		SILICO	018		ī	DANA	211083
CR19	211083		SILICO	018		ī	DANA	211083
CRZO	211083		SILICO	018		1	DANA	211083
O. i.o								
CK21	211083	DIODE	SILICO	018		1	DANA	211083
C422	211083		SILICO	018		1	DANA	211083
CR23	211083	DIODE	SILICO	018		1	DANA	211083
CR24	211083		SILICO	. 018		1	DANA	211083
CR 25	211083	DIDDE	SILICO	018		1	DANA	211083
				010			DANA	211083
CR 36	211083		SILICO	018 018		1	DANA	211083
CR37	211083		SILICO	018		i	DANA	211083
CR 38	211083		SILICO	018		ì	DANA	211083
CR39	211083		SILICO	018		î	DANA	211083
C440	211083	1)1005	311100	010		•		12 4 11 11 2
C841	211083	DIODE	SILICO	018		1	DANA	211083
CR42	211083		SILICO			1	DANA	211083
CR43	211083		SILICO			1	DANA	211083
CH44	211083		SILICO	018		1	DANA	211083
CR45	211083		SILICO			1	DANA	211083
-							řs A A I A	211002
C446	211083		SILICO			1	AMA AMAG	211083 211083
CR47	211083		SILICO			1	DANA	211083
CR48	211083	DIODE	SILICO	018	1.	1	IJAWA	511003

			PI	ARTS LT	ST					
SSE	BLY 400891									
UEA	. PART									
REF DESI				DES	C	RIPT	1 0	N		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the		5 EOA W			ACDOVOV	TC0N750
001 001	100012 200037	TRANS	SILICO	Te 9	PF	D 500 V 2N3646	10	3 X.	AEROVOX FAIRCHILD	TCD-N750 2N3646
					,					
002	200037	TRANS	SILICO	NPN		2N3646			FAIRCHILD	
304	200035		SILICO		U	014	1/4	1.65	DANA OHMITE	200035 FC07GF122J
101	000122	RES	CARBON	1.2		5% 5%	1/4	_	OHMITE	RC076F153J
102	000153	RES	CARBON	15 1.2		5% 5%	1/4		OHMITE	RC076F122J
.03	000122	RES	CARBON	1 • %	ĸ	24	1/4	44.1	Ormitte	RCOTOFIZZO
04	000153	RES	CARBON	15		5%	1/4	wt 1	онитте	PC076F153J
(04 (08	000153 000243	RES	CARBON	24		5×	1/4		OHMITE	RC076F243J
109	000273	RES	CARBON	27		śκ	1/4		DHMITE	RC07GF273J
11	000204	RES	CARBON	200		5%	1/4		OHMITE	RCD7GF204J
12	000103	RES	CARBON	10		5%	1/4		OHMITE	RCU7GF103J
15	000103	ACJ			**		-, ,	-		
1.3	000103	RES	CARBON	10	K	5%	1/4	W1	OHMITE	RC07GF103J
14	001698	RES	CARBON		K	5%		W	OHMITE	RC32GF203J
15	001107	RES	CARBON	39		5*		ij.	OHMITE	RC32GF393J
16	000103	RES	CARBON	10		5%	1/4		OHMITE	RCU76F103J
17	000103	RES	CARBON	10		5%	1/4		OHMITE	RC076F103J
•					٠.	.4				
14	000103	RES	CARBON	10	· K	5%	1/4	W1	OHMITE	RC076F103J
14	001107	RES	CARBON		K	5%	1	W	DHMITE	RC32GF393J
20	001698	RES	CARBON	20	Ķ	5%	3	1 .)	OHMITE	RC326F203J
21	000103	RES	CARBON	10	K	5%	1/4		UHMITE	RC076F103J
22	000103	RES	CARBON	10	K	5%	1/4	W1	OHMITE	RC07GF103J
23	000103	RES	CARBON	10	K	5*	1/4	-	DHMITE	RC07GF103J
24	000103	RES	CARBON	10	K	5%	1/4		OHMITE	RCU7GE103J
25	000103	RES	CARBON		K	5%	1/4		OHMITE	RCO7GF103J
126	000103	RES	CARBON		K	5%	1/4		OHMITE	RCO7GF103J
27	000223	RES	CARBON	. 22	K	5%	1/4	W	OHMITE	RC07GE223J
	000000	055	CARRON	22	U	EĐ	1/4	· Lu	OHMITE	RC076F223J
28	000223 000223	RES RES	CARBON CARBON		K	5% 5%	1/4		OHMITE	RC07GF223J
129 130	000223	RES	CARBON		K	5%	1/4		OHMITE	RC07GF223J
31	000223	RES	CARBON		K		1/4		OHMITE	RC07GF683J
32	000563	RES	CARBON		K	5%	1/4		OHMITE	RCU7GF563J
4.	ne ne tit. F targe		· popular				'			
133	000473	RES	CARBON		ĸ	5%	1/4	W1	OHMITE	RC076F473.
34	000473	RES	CARBON		K	5%	1/4		OHMITE	RC07GF473.
35	000473	RES	CARBON		ĸ		1/4		OHMITE	RCO7GF473J
36	000473	RES	CARBON	1 1000	K	5%	1/4		OHMITE	RCD7GF473J
37	000473	RES	CARBON		Ķ		1/4		OHMITE	RCO7GF473J
R38	000204	RES	CARBON	200	K	5%	1/4	W	OHMITE	RC07GF204J
	the second				n %. Gjali				2 of	2
					. (1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4 QI	-

REE. DESIG.	PART NO.		DESC	RIPT	IUN		
CR1 CR2 001	211083 211083 200037	DIODE SILIC DIODE SILIC TRANS SILIC	0 01 0 NPN	8 2N3646	1. 1	DANA DANA Fairchile	
ი02 003	200055 200067	TRANS SILIC TRANS	U NPN	FSV PNP	019	-	00055 00067
R01 R02	000473 000153	RES CARBO	N 15 K	5%	1/4 W1 1/4 W1	OHMITE OHMITE	RCO7GF473J RCO7GF153J
R03 R04 R05	000753 000204 010033	RES CARBO RES CARBO RES METAL	N 200 K	5%	1/4 W 1/4 W 1/4 W	OHMITE OHMITE ELECTRA	RCU7GF753J RCU7GF204J RN60D4992F
R6	000104	RES CARBO		-	1/4 W1	OHMITE	RCU7G+104J
R07 R08 R09	000104 000204 010290	RES CARBO RES CARBO RES METAL	N 200 K 180 K	5% 1%	1/4 W1 1/4 W 1/4 W	OHMITE OHMITE ELECTRA	RC07GF104J RC07GF204J RN60D1803F
R10	020078	RES WW	50 K		1/8 W	JORDAN	J-11
R11 R12 R13	010291 010291 010292	RES METAL RES METAL RES METAL	100 K 100 K 200 K	•25% •25%	1/2 W 1/2 W 1/2 W	PYROFILM PYROFILM PYROFILM	PME65T100K PME65T100K PME65T200K
R14 R15	020121 021103	RES WW RES WW	180 K 50 K		1/8 W 1/4 W	JORDAN KELVIN	J-11 EP-21
R16 R17	020242 020242	RES WW RES WW	100 K 100 K		1/4 W 1/4 W	JURDAN JI JORDAN JI	
R18 R19	020243 000203	RES WW RES CARBO	200 K	. ∙05%	1/4 W 1/4 W1	JORDAN JI OHMITE	

ASSEMBLY 400892 - PC Board Assembly - Null Detector

RFF.	PART									
DESIG.	N().			DES	CRI	1 T 4	() N			
C0.3	211002	N.T. (1) N.E.	C 11 T C 11		.10			****		
CR1	211083		SILICO		018		1	DANA		211083
CRS	211083		SILICO		18		1	ANACI		211083
CR3	211083		SILICO)18		1	DANA		211083
CR4	211083		SILICO)1H		1	AMA		211083
CR5	211083	DIODE	SILICO	(018		1	μανα		211083
CR6	211083	DIODE	SILICO	(018		1	ANAO		211083
CR7	211083	DIODE	SILICO	- ()18		1	DANA		211083
CR8	211083	-	SILICO)18		1	AMA()		211083
CR9	211083	DIODE	SILICO	C	18		1	ANAC		211083
CR 10	220004	DIODE	SILICO	ZENER I	LN961B		1	MOTORE	LΔ	1N961H
CR11	211083	DIODE	SILICO	(018		1	ANACI		211083
C01	110047	-CAP	ELECT	50	MFD 5	0 V	20*	OUCATI		50-50
C02	110047	CAP	ELECT	50	MFO 5	6 V	20%	DUCATI		50-50
C03	110043	CAP	ELECT	25	MED 2	5 V `	20%	DUCATI		25-25
C04	101175	CAP	CERAM	. 220	PED 50	0 v	10%1	AERDVE	X	SCD1X5F
0.05	110043	CAP	ELECT	25	MED 2	5 V	20%	DUCATI	i	25-25
COA	101642	CAP	CERAM	150	PF0 50	0 V	10%1	AEROVE	ıχ	SCD2X5F
C07	110043	CAP	ELECT	25	MED 2	5 V	20,*	DUCATI	[25-25
008	110017	CAP	TANTA	1	MFI) 3	5 V	10×1	KEMET		K1C35K
C09	111097	CAP	ELECT	50	MED 5	0 V	20*1	SPRAGE	I F.	111307
C10	111097	CAP	ELECT	50	MED 5	0 v	20%1	SPRAGE	ιĖ	TE1307
C11	121092	CAP	MYLAR	0022	MED 10	n v	10*	COF		WMF1022
001	200037	TRANS	SILICO	NPN	2436	46		HAIRCH	(Lb	2013606
002	200054	TTRANS	S SILICO	NAN C	FSV			DANA	20	0054
Q03	200067	TRANS			PNP		019	DANA	50	0067
Q04	200037	TRANS	SILICO	NPN	2N36	46		FAIRCH	HLD	2N3646
005	200054	TTRANS	SILICO	NPN C	FSV			DANA	20	0054
006	200035		SILICO		014			ANA()		200035
Ω 0.7	200011		SILICO		009			DANA		200011
800	200036	TRANS	SILICO	NPN	015			DANA		200036
Q09	200040	TRANS	SILICO	NPN	016			DAMA (1		200040
010	200037		SILICO		2N36	46		FAIRCE	HLU	243646
Ω11 ·	200037		SILICO		2N36			FAIRCE	HLD	2N3646
Q12	200037		SILICO		2N36					2N3646
013	200037	TRANS	SILICO	NPN	2N36	46		FAIRC	HLO	2N3646
Q14	200022	TRANS	SILICO	PNP.	012			AMA(I		200022
015	200037		SILICO		2N36	46			HLD	2N3646
016	200037		SILICO		2N36					2N3646
				:						1 of 3

PARTS LIST

ASSEMBLY 400892 - PC Board Assembly - Null Detector

REF.	PART									
DESIG.	NO.			DES	C R 1	PT	ΙO	N		
Q17	200043		SILICO			3565				D 2N3565
R01	000473	RES	CARBON	47	K	5%	1/4	W l	UHMITE	RC076F473J
R02	000123	RES	CARBON	12	K	5%	1/4	W1	OHMITE	RC07GF123J
K03	000563	RES	CARBON	56	Κ.	5%	1/4	W	UHMITE	RCO7GF563J
R04	000473	RES	CARBON	47	K	5%	1/4	W 1	OHMITH	RC1176F473J
R05	000203	RES	CARBON	20	K	5%	1/4	W1	OHMITE	RCO7GF203J
R06	000823		CARBON	82		5*	1/4	W1	OHMITE	RCH7GFH23J
	Sin A									
R07	040004	RES	VARI	100	K	100	1/5	W	BUURNS	3068-P-1-10
ROB	020244	RES	WW	MATCH					DANA	020244
R09	020123	RES	WW	10		01%	1/8	W	JURDAN' J	11)
R10	020334	RES		4897.4		-	1/8			11
R11	020244	RES	WW	MATCH					DANA	020244
K 1 1	02024-	7 723	,		J					
×12	000102	RES	CARBON	- 1	K .	5%	1/4	w i	OHM176	RC07GF102J
R13	000102	RES	CARBON	i	ĸ	5%	1/4		OHMITE	RCO7GF102J
				1		- 01	1/4		OHMITE	RC07GF102J
K14	000102	RES	CARBON			/ つる - 5%	1/4		OHMITE	KC07GF102J
R15	000102	RES	CARHON	1			1/4		DHMITE	RCH7GF516J
R16	000516	RES	CARBON	51	. П	5%	1/4	W .	DEMILE	KC(()(IC)100
			distributes -	3,49,	, sig					
017	020244	DEC	WW	MATCH	CET				DANA	020244
R17	020244	RES	the state of the s	200		5%	1/4	w 1	OHMITE	RC07GF201J
K18	000201	RES	CARBON			5%	1/4		DHMITE	KC07GF201J
R19	0002014	- STARES -	Control of the Contro	20 0		24	1.74	M.T.	DANA	020244
R20	020244	RES	WW	MATCH					OHMITE	RCO7GF622J
R21	000622	RES	CARBON	6-2	Ж,	5%	1/4	M.T.	Unmile	KCUTOFOZZU
				arr Armen 1988	and the second			58,		
		4	11. 结角双线器 点点	The state of the s		1%	1/4	L. 3	ELECTRA	KN60D4423F
R22	010167	RES	METAL	442		1.4	11/4	M.T.	DANA	020244
R23	020244	RES	· Wi	MATCH	- F F : 1	1 20			ROURNS	3067-P-1-10
R24	040005	RES	VARI	. 10	(表示: A. M. A.M.)	10%	1/2	₩		
R25	010295	RES			MEG	1%				8N20X
R26		THE RES	*CARBON	12	K	>4	1/4	MI	OHMITE	RCO7GF123J
	HOW TO P			4.0						
_				nagagegaar is. Tagan og og 🛋					ELECTRA	DW4004433E
R27	010167	A STATE OF THE STA	METAL	442		1%	1/4	M.T.	ELECTRA	RN60D4423F
R28	4020244	# RES		MATCH	3E1	terior de la companya del companya del companya de la companya de	far ya		DANA	020244
R29	020244	RES	***	MATCH	2E1				DANA	020244
R30	000225		CARBON	. 2-2	M	5%	1/4	H		RCO7GF225J
R31	000104	RES	CARBON		K.	5%	1/4	M1	OHMITE	RCO7GF104J
				if and	11.1					
		Maria Karajisa.				·			******	000000114
R32	000114		CARBON	110	K				OHMITE	
R 33	001711	RES	FSV				1/4			001711
R34	020244	RES S	MH W	HATCH	SET	· · · · · · · · · · · · · · · · · · ·		ete.	DANA	020244
R35	000104	RES	CARBON	4 M 0	K	4 5%	1/4	Wi	OHMITE	RCO7GF104J
R36	000225	RES	CARBON	2.2	M3 15	58	1/4	₩,	OHMITE	RCO7GF225J
	THE PROPERTY OF	Lake & From Library Steine	SET SET SET SET SET		1,24					
		ig likelt to tak iiina	The Royal Co.		2,1 :	2 23.	3. A. A. A.	1		#
R37	000331	RES	CARBON	230	OHM	¥ 52	1/4	.Wi		RCD7GF331J
									10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1.0	1	100			, , , , , , , , , , , , , , , , , , ,				2 of 3
										-
							:-	·	with the second section of the second	

PARTS LIST

ASSEMBLY 400892 - PC Board Assembly - Null Detector

REF.	PART									
DESIG.	NÜ.			D E S	CKI	PΤ	1 0	N		
						:- 124	1.46	Li	DANA	001711
R38	001711	RES	FSV			5 X	1/4	W		020244
R39	020244	RES	WW	MATCH					AMAG	RCH7GF102J
R40	000102	RES	CARBON	-	K	5#	1/4	_	OHMITH	
R41	000302	RES	CARBON	3	K	5%	1/4	W1	OHMITE	RC07GF302J
				• •						
						יש בי	1/4	1.41	OHMITE	RCD7GF273J
R42	000273	RES	CARBON	27		5%	1/4		OHMITE	RC07GF512J
R43	000512	RES	CARBON	5 • 1.	K	5 %			DANA	001711
R44	001711	RES	FSV			5%	1/4	W	DANA	020244
R45	020244	RES	WW	MATCH					•	RCO7GE391J
R46	000391	RES	CARBON	390	OHM	5%	1/4	W	OHMITE	KCO FOL 3240
		_		1.6	. !	5 %	1/4	ш1	OHMITE	RCH76F183J
R47	000183	RES	CARBON	18	Ķ		1/4		DANA	001711
R48	001711	RES	FSV		0.53	5*	1/4	~	DANA	020244
R49	020244	RES	WW	MATCH		ند ۽ ا	1/2	1.1	UHMITE	RC20GF472J
R50	001692	RES	CARBON	4.7	K	5%	1/2		DANA	001711
R51	001711	RES	FSV			5%	1/4	W	DANA	001111
				44.TCU	CCT				DANA	020244
R52	020244	RES	WW	MATCH		5%	1/2	W1	OHMITE	RCZ0GF512J
R53	.001283	RE\$	CARBON	5.1		5% 5%	1/2		UHMITE	RC20GF472J
R54	001692	RES	CARBON	4.7	ĸ	5%	1/4		DANA	001711
R55	001711	RES	FSV		CFT	2*	1/4	•	DANA	020244
R56	020244	RES	WW	MATCH	251				0	
			•	:						
		D.E. ¢	CARBON	20	. K	5*	1/4	W1	UHMITE	RCO7GF303J
R57	000303	RES	CARBUN		K.	5%		WI	OHMITE	RCD7GF124J
RSA	000124	RES	CARBON			5*		- W1	OHMITE	
R59	000392	RES	CARBON	100) OHM	5*		WI	OHMITE	RCD7GF101J
R60 (000101	RES	CARBON) CHM	5%		. W1	OHMITE	RCDYGETOLA
K61	000101	RES	CARBUIN	100	, 17, 114	2-1				
•			•							
	000001	RES	CARBON	200	MH() (5 %	1/4	4 W1	OHMITE	
R62	000201	RES	FSV		* ******	5%		4 W	DANA	001711
R63	001711		CARBON	٨.	7 K	5%		4 W1	OHMITE	
R64	000473	RES	CARBON		3 K	5%		4 W1	CHMITE	RCU7GF133J
R65	000133	RES	-	A . :	BK.	5*		4 W1	OHMITE	RC07GF682J
H-R65	000682	RES	CARBON	. ₽•!	μ κ .		. • •		_	

REF. DESIG.	PART NO.		DESCRIPT	I D N		
CR1 CR2 CR3 CR4 CR5	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	DANA DANA	211083 211083 211083 211083 211083
CR6 CR7 CR8 CR9 CR10	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	DANA DANA DANA DANA DANA	211083 211083 211083 211083 211083
CR11 CR12 CR25 CR37 CR38	211083 211083 211083 211083 211083	DIDDE SILICO DIDDE SILICO DIDDE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	ÜANA DANA DANA	211083 211083 211083 211083 211083
CR39 CR40 CR41 CR42 CR43	211083 211083 211083 211083 211083	DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO DIODE SILICO	018 018 018 018 018	1 1 1 1	DANA DANA	211083 211083 211083 211083 211083
CF44 CO1 V=CO1 CO3 CO4	711083 100012 100010 101182 120011	DIODE SILICO CAP CERAM CAP CERAM CAP CERAM CAP POLYS	018 33 PFD 500 V 68 PFD 500 V 47 PFD 500 V	1 10% 10% 10%1 10%	DANA AEROVOX AERVOX TCU AEROVOX COE	211083 TCD-N750 D-N750 TCD-N750 WMF1568
005 006 901 902 907	120011 120011 200037 200037 200037	CAP POLYS CAP POLYS TRANS SILICO TRANS SILICO TRANS SILICO	NPN 2N3646	10*	CDE CDE FAIRCHILD FAIRCHILD FAIRCHILD	2N3646
008 009 010 801 802	200037 200037 200037 000222 000153	TRANS SILICO TRANS SILICO TRANS SILICO RES CARBON RES CARBON	NPN 2N3646 NPN 2N3646	1/4 W1 1/4 W1	FAIRCHILD FAIRCHILD FAIRCHILD OHMITE OHMITE	2N3646
R03 R04 R08	000222 000153 000123	RES CARBON RES CARBON RES CARBON	15 K 5%	1/4 W1 1/4 W1 1/4 W1	OHMITE OHMITE OHMITE	RCU7GF222J RCU7GF153J RCU7GF123J

REF. DESIG.	PART				DES	C R	IPT	I 0	N		
						•		• 0			
A-R08	000243		RES	CARBON	24	K	5%	1/4	W1	OHMITE	RCO7GF243J
B-R08	000243		RES	CARBON	24	K	5%	1/4	Wl	OHMITE	RC076F243J
R10	000273		RES	CARBON	27		5*	1/4	lei 1	OHMITE	RC07GF273J
R14	000153		RES	CARBON	15	ĸ	5%	1/4	-	UHMITE	RCU7GF153J
R15	000273		RES	CARBON	. 27		5%	1/4		OHMITE	RC07GF273J
R16	000822		RES	CARBON	8.2		5%	1/4		UHMITE	RCU7GF822J
R17	000153		RES	CARBON	15		5%	1/4		OHMITE	RCO7GF153J
		Police 1									
218	000104		RES	CARBON	100	ĸ	5%	1/4	W1	OHMITE	RCD7GF104J
R 19	000822	1 1	RES	CARBON	8 . 2	K	5%	1/4	Wl	OHMITE	RCU7GF822J
R20	000153	, 13 ⁶	RES	CARBON	15	K	5*	1/4	Wì	OHMITE	RCU7GF153J
R21	000153		RES	CARBON	15	ĸ	5%	1/4	Wl	OHMITE	RCO7GF153J
R22	000153		RES	CARBON	15	K	5≭	1/4	Wl	OHMITE	RC076F153J
					•						
R 23	000273		RES	CARBON	27	K	5%	1/4	W1	OHMITE	RCO7GF273J
R24	000333		RES	CARBON	33		5%	1/4	W	OHMITE	RCU7GF333J
R25	000822		RES	CARBON	8.2	, K	5%	1/4	W1	OHMITE	RCU7GF822J

ASSEMBLY 402501

REF. DESIG.	PART NO.		DESCRIPŤI	U N		
CR1	211083	DIODE SILICO	018	1	DANA	211083
CR2	211083	DIODE SILICO	018	ĩ		211083
CR3	211083	DIODE SILICO	018	ī		211083
CR13	211083	DIODE SILICO	018	ī		211083
CR14	211083	DIODE SILICO	018	î		211083
UNIT	211000			-		
CR24	211083	DIODE SILICO	018	1	AMAG	211083
CR25	211083	DIODE SILICO	018,	ī		211083
CR37	211083	DIODE SILICU	018	1	DANA	211083
CR38	211083	DIODE SILICO	018	1.		511083
CR39 -	211083	DIODE SILICO	018	1	DANA	211083
			019	1	DANA	211083
CR40	211083	DIODE SILICO	018 018	i		211083
CR41	211083	DIODE SILICO	018	1		211083
CR42	211083	DIDDE SILICO	018	1		211083
CR43	211083	DIODE SILICO	018	i	DANA	211083
C# 44	211083	plone sirico	OI n	1	DANA	7.11003
CR45	211083	DIODE SILICO	018	1	DANA	211083
CR46	211083	DIUDE SILICO	018	1	DANA	211083
CR47	211083	DIODE SILICU	018	1	DANA	211083
CR48	211083	DIODE SILICO	018	1	DANA	211083
CH49	211083	DIODE SILICO	018	1	DANA	211083
CR50	211083	DIODE SILICO	018	1	DANA	211083
C 1	100012	CAP CERAM	33 PFD 500 V	10%	AEROVOX	TCD-N750
K-C1	101145	CAP CERAM	100 PFD 500 V	10%1	AEROVOX	SCD1X5F
C 3	121093	ÇAP MYLAR	.047 MFD 100 V	10%1	CDE	WMF1S47
C.4	121473	CAP MYLAR	-0015 MFD 100 V	10%1	CDE	WMF1547
	131477	CAD MVIAD	.0015 MED 100 V	10*1	CDE	WMF1S47
C5	121473	CAP MYLAR	.015 MFD 100 V	10%1	CDE	NMF1515
C6	121090 110017	CAP TANTA	1 MFD 35 V	10%1	KEMET	K1C35K
C7	110017	CAP TANTA	1 MFD 35 V	10%1	KEMET	K1C35K
CB	110017	CAP TANTA	1 MFD 35 V	10%1	KEMET	K1C35K
C4	110017	CAP PARTA	1 0			
C10	110043	CAP ELECT	25 MFD 25 V	20%	DUCATI	25-25
01	200037	TRANS SILICO	_		FAIRCHILD	2N3646
02	200037	TRANS SILICO			FAIRCHILD	
07	200037	TRANS SILICO			FAIRCHILD	
ÕB;	200037	TRANS SILICO			FAIRCHILD	2N3646
						,
009	200037	TRANS SILICO	NPN 2N3646		FAIRCHILD	2N3646
010	200037	TRANS SILICO			FAIRCHILD	
011	200011	TRANS SILICO			DANA	200011
****					1 of 3	

REF. DESIG.	PART NO.		DESC	RIPT	ION		
						FAIRCHILD	2112646
012	200037	TRANS SILI		2N3646 2N3646		FAIRCHILD	
ω13	200037	TRANS SILI	CU NPN	ZN3040			
	200037	TRANS SILI	CO NPN	2N3646		FAIRCHILD	2N3646
ω14 ω15	200037	TRANS SILI	CO NPN	2N3646		FAIRCHILD	2N3646
016	200037	TRANS SILI	CO NPN	2N3646		FAIRCHILD	
017	200037	TRANS SILI	CO NPN	2N3646		FAIRCHILD	
018	200037	TRANS SILT		2N3646		FAIRCHILD	2N3646
		0.55 6.405	10N 2 2	к 5%	1/4 W1	OHMITE	RCD7GF222J
R1	000222	RES CARE			1/4 W1	OHMITE	RCO7GF153J
R2	000153	RES CARE			1/4 W1	CHMITE	RCO7GF222J
R3	000222	RES CARE			1/4 W1	CHMITE	RCU7GF153J
R4	000153	RES CARE		-	1/4 W1	OHMITE	RCO7GF123J
RH	000123	KES CARE	51.71N T.E.		** · · · *		
_		RES CARE	30N 200	K 5%	1/4 W	OHMITE	RCH76F204J
89	000204	RES CARE			1/4 W1	OHMITE	KCN7GF273J
R10	0002 73 000122	RES CARE			1/4 W1	OHMITE	RCU7GF122J
R16		RES CARI			1/4 W1	OHMITE	RC07GF153J
R17	00015 3 000822	RES CARI			1/4 W1	OHMITE	RCU7GF822J
R18	000822	RES CAN	3014				
5.10	000033	RES CAR	BON 8.2	к 5%	1/4 W1	OHM1TE	RCO7GF822J
R19	000822	RES CAR		K 5%	1/4 W1	OHMITE	RCO7GF122J
K20	000122	RES CAR			1/4 W1	OHMITE	RCU7GF153J
R21	000153 000201	RES CAR			1/4 W1	OHMITE	RCU7GF201J
R22 R24	000201	RES CAR			1/4 W1	OHMITE	KCO7GF153J
K24	000133	RES CAN					
		RES CAR	BON 100	K 5%	1/4 W1	OHMITE	RCO7GF104J
R25	000104 000822	RES CAR			1/4 W1	OHMITE	RCO7GF822J
R 26	000622	RES CAR			1/4 W1	OHMITE	RC07GF622J
R27	000022	RES CAR			1/4 W1	OHMITE	KCU7G F153J
R28	000153	RES CAR			1/4 W1	OHMITE	RCO7GF242J
R29	000242	KES OAK	55.7				
657	000153	RES CAR	BON 15	K 5%	1/4 W1	OHMITE	RCO7GF153J
R30	000104		BON 100		1/4 W1	OHMITE	RCD7GF104J
R31 R32	000122		BON 1.2		1/4 W1	OHMITE	RCO7GF122J
R33	000122			DHM 5%	1/4 W1	OHMITE	RC07GF221J
R34	000203		BUN 20		1/4 Wl	OHMITE	RCO7GF203J
K 34	000203						
R35	000203	RES CAR	BON 20		1/4 W1	OHMITE	RCO7GF203J
R36	000122		BON 1.2	K 5%	1/4 W1	OHMITE	RCD7GF122J
R37	000104		80N 100	K . 5%	1/4 W1	OHMITE	RC07GF104J
R38	000752		BON 7.5	K 5%	1/4 W1	OHMITE	RCO7GF752J
R39	000104		BON 100	K 5%	1/4 W1	OHMITE	RCO7GF104J
N 37	00010	**					
R 4 O	000222	RES CAF	RBON 2.2	K 5%	1/4 W1	OHMITE	RCD7GF222J 2 of 3

REF. DESIG.	PART NO.			ρεs	¢	KIPT	1 0	N		
	0.081.55	0.4100	C . C			* ***				A CAMPA COMMAND TO THE TAIL TO
R41	000133	RES	CARBUN	1.3		5%	1/4	_	HHMITE	RC07GF133J
R42	040003	RES	VARI	20	K	10%	1/2	M	BUURNS	3067-2-1-20
R43	000222	RES	CARBUN	2.2	K	5%	1/4	W1	OHMITE	RCD7GF222J
K44	000104	RES	CARBON	100	K	5%	1/4	Wl	OHMITE	RC07GF104J
34h	000243	RES -	CARBON	24	ν	5%	1/4	Left A	OHOTTE	eCO70F243J
R46	000822	RES	CARBON	8 • 2		5米	1/4	_	HM176	KCO7GF822J
R47	000103	RES	CARBON	. 10	K,	5%	1/4	MI	OHMITE	RCU7GF103J
848	000103	RES.	CARBON	10	K	5%	1/4	M J	OHMITE	RCD7GF103J
R49	000103	RES	CARHUN	10	K	- 5%	1/4	W1	DHMITE	RCU7GF103J
•										
R50	000103	RES	CARBON	10	K	5%	1/4	W1	OHMITE	RCO7GF103J
R51	000273	RES	CARBON	27	K	5%	1/4	WI	OHMITE	RCO7GE273J

REF.	PART		n ∈ s·c	RIPTI	() N		
CR1 CR2	220007 211236	DIODE SILICO			1	MUTOROLA	1.4751
		' '					1236
CR4	211083	DIODE SILICO			1	DANA	211083
CR5	211083	DIODE SILICO			l.	HANA	211083
CR6	211083	OTODE SILICO	01	. B	1	ijΔrιΔ	2110×3
CR7	211083	DIODE SILIC			1	OANA	211083
CRB	211083	DIUDE SILICE			1	ΔNΔCI	211083
CKA	211083	DIODE SILICO			1	DANA	211083
CRIO	220012	DIODE SILIC)	MUTORGLA	149588
CRII	220004	DIODE SILICO) ZENER 1N	1961B	1	METHRULA	109618
CR12	211083	DIODE SILICO			1	DANA	211083
CR13	211083	OTODE STEIC			1	DAMA	211083
CR14	211083	DIODE SILIC			1	AMACI	211083
CR15	211083	DIODE SILICO			1	DANA	211083
CR16	211083	DIODE SILIC) 01	. 8	1	AMACI	211083
CR17	210004	DIODE SILIC				DIUDES IN SU	
CO1	101145	CAP CERAM	100 F	PFD 500 V	10×1	AEROVOX	SC01X5F
002	101145	CAP CERAM	_	7FD 500 V	10×1	AEROVOX	SC01X5F
C03	101642	CAP CERAM		PEO 500 V	10*1	AERDVUX	SCD2X5F
C05	110017	CAP TANTA	1 1	4F0 35 V	10%1	KEMET	K1C35K
C06	110001	CAP TANTA	6.H N	FD 35 V	10*1	KEMET	KARBC35K
C07 -	101641	CAP CERAM	470 P	PED 500 V	10×1	AEROVOX	SCD1×5F
0.08	101641	CAP CERAM	470 P	PED 500 V	10%1	AFROVOX	SCD1X5F
009	110036	CAP ELECT	25 №		20%	DUCATI	25-50
C10	110036	CAP ELECT	25 M	1FD 50 V	20*	DUCATI	25-50
C11	110038	CAP ELECT	50 M	15 V	20%	DUCATI	50-15
C12	110038	CAP ELECT	50 №	NFD 15 V	20×	DUCATI	50-15
C13	110007	CAP TANTA	6 M		20%1	GE	29H56664
C14	120001	CAP MYLAR		100 V	10*1	CDE	WMF1033
C15	110007	CAP TANTA	6 M	1FD 25 V	20*1	G€	29656664
C 1.6	121093	CAP MYLAR		4FD 100 V	10×1	CDE	WMF1S47
C17	121088	CAP MYLAR	-01 M	1FD 100 V	10%	CDE	WmF1S1
Cla	101145	CAP CERAM	100 P	PED 500 V	10%1	AEROVOX	SCO1X5F
C19	101642	CAP CERAM		PFD 500 V	10%1	AEROVOX	SC02X5F
K01	310021	RELAY OC	2 F	PDT 24V	1	ALLIED	AZ42056105
۵01	200036	TRANS SILIC		015		DANA	200036
A02	200043	TRANS SILIC	NPN	2N3565		FAIRCHILD	2N3565
Ω03	200035	TRANS SILIC	NPN (014		DANA	200035

		PA	RTS LIST			
ASSEMBLY	400895		i i			
REF.	PART					
DESIG.	NO.	:	DESCRIPT	. 1 0 0		
904 905	200044 200044	TRANS SILICO)0044)0144
WU 3	200044	IKANS SILICO	MPN DUAL PSV		HANA ZI	1131344
906	200043	TRANS SILICO	NPN 2N3565		FAIRCHILD	243565
007	200011	TRANS SILICO			DANA	200011
008 009	200043	TRANS SILICO			FAIRCHILD DANA	200040
010	200040	TRANS SILTCO			DANA	200040
911	200043	TRANS SILICO	NPN 2N3565		FAIRCHILD	2N3565
ດ12	200022	TRANS SILICO			. DANA	200022
013 014	200043 200011	TRANS SILICO			FAIRCHILD DANA	
015	200011	TRANS SILICO			DANA	200011 200011
***	200011	, , , , , , , , , , , , , , , , , , ,			Transa	
ດ16	200011	TRANS SILICO	PNP 009		DANA	200011
017	200022	TRANS SILICO	PNP 012	•	DANA	200022
RO1	000512	RES CARBON	5.1 K 5%	1/4 W1	OHMITE	RC0766512J
R05 R06	001733 0001 26	RES CARBON	3.6 DHM 5% 12 M 5%	1/4 W 1/4 W	OHMITE RO	076E3R6J - RCU7GE126J
NOO	000120	NES CARBON	15 17 24		Om Tte	140010111100
R07	020123	RES. WW	10 K +01%	1/8 W	JORDAN J1	1
R06	040050	RES VARI	5 K 10%	1/2 W	BOURNS	3067-P-1-K0
R09	020123	RES WW	10 K .01%	1/8 W	JORDAN JI	-
R10 R12	040003 000681	RES VARI RES CARBON	20 K 10% 680 DHM 5%	1/2 W 1/4 Wl	BUUKNS OHMIT e	3067-P-1-20 RCD7GF681J
	200004	RES CANDON	000 01111	1,4 41	(A.11-12)	NG07070110
R13	000107	RES CARBON	100 M 5%	1/4 W	CHMITE	RC07GF107J
R14	000107	RES CARBON	100 M 5%	1/4 W	OHMITE	RCU7GF107J
R15	001674	RES CARBON	680 DHM 5%	1/2 W1	OHMITE ELECTRA	RC20GF681J RN60C3243F
R16 R17	010145 04005 4	RES METAL Res vari	324 K 1% 50 K 10%	1/4 W1 1/5 W	BOURNS	3068-P-1503
KI,	(1400)4	KES VARI	JU N 104	1/2 "	000000	3040 / 1303
R18	010091	RES METAL	11 K 1%	1/4 W1	ELECTRA	RN60D1102F
R19	010145	RES METAL	324 K 18	1/4 W1	ELECTRA	RN60C3243F
R20	000680	RES CARBON	68 OHM 5%	1/4 W	DHMITE	RC076F680J
R21 R22	000242 000242	RES CARBON	2.4 K 5% 2.4 K 5%	1/4 W1 1/4 W1	OHMITE OHMITE	RCO7GF242J RCO7GF242J
NEE	000242	KE3 CARBON	207 K 30	174 111		NOOTOT EST. O
R23	000565	RES CARBON	5.6 M 5%	1/4 W1	OHMITE	RCO7GF565J
R24	000335	RES CARBON	3.3 M 5%	1/4 W1	OHMITE	RCO7GF335J
R25	000822	RES CARBON	8 • 2 K 5%	1/4 W1	OHMITE	RCU7GF822J
R26 R27	0 0 0101 010114	RES CARBON	100 OHM 5% 4.02 K 1%	1/4 W1 1/4 W	OHMITE Electra	RC07GF101J RN60D4021F
REF	010114	NES METAL	#4 // 3U0T	177 M	CLECTEM	いはののいかびをまた
R28	010114	RES METAL	4.02 K 1%	1/4 W	ELECTRA	RN60D4021F
		र र चार्च के किया के किया के किया की किया किया की किया किया किया किया किया किया किया किया	•			2 of 3
						2013
			the second second			

REF. DESIG.	PART N∩.	·		D E S	c ĸ	I P T	ιυ	N		
R29	010299	RES	METAL	12	κ .	1.%	1/4	W	ELECTRA	KN60D1202F
R30	010300	RES	METAL	750		1%	1/4		ELECTRA	
R31	000101	RES	CARBON	100		5%	1/4		OHMITE	RC07GF101J
R32	000161	RES	CARBON	160		5%	1/4		DHMITE	RC076F161J
R33	000101	REŚ.	CARBON	100	OHM	5*	1/4	W 1	OHMITE	RCD7GF101J
R34	000752	RES	CARBON	7.5		5%	1/4		OHMITE	RC07GF752J
R35	102000	RES	CARBON	200		5%	1/4	_	OHMITE	RCD7GF201J
R36	000101	RES	CARBON	100	OHM	5%	1/4		OHMITE	RCD7GF101J
R37	000151	RES	CARHON	150	ПНМ	· 5%	1/4	Wl	OHMITE	RC07GF151J
R38	000101	RES	CARBON	100	OLIM	5%	1/4	1.14	UHMITE	000000101
R39	000101	RES	CARBON	220		5%	1/4		OHMITE	RC07GF101J RC07GF221J
R40	000221	RES	CARBON	1	K	5%	1/4		TIMHO	RCU7GFZ21J
R41	000133	RES	CARBON	13	ĸ.	5%	1/4		OHMITE	RC076F133J
R42	000150	RES	CARBON		ОНМ	5%	1/4		DHMITE	RC07GF150J
R43	000220	RES	CARBON		MHO	5*	1/4		OHMITE	RC07GF220J
R44	000150	RES	CARBON	15	MHO	5%	1/4		CHMITE	RCO7GF150J
R45	001260	RES	CARBON			5%	1/2		OHMITE	RC20GF392J
R46	000150	RES	CARBON		OHM	5%	1/4		OHMITE	RC07GF150J
R47	000122	RES	CARBUN	1.2	K	5≭	1/4	W1	OHMITE	RCU7GF122J
R48	020359	RES	WW	13.8	К	.01*	1/8	W	JURDAN	J11 :
R49	000153	RES	CARBUN	15		5%	1/4		OHMITE	KCU7GF153J

		* .	, P A	RTS LIS	T				
ASSEMBLY	PART	: .		DES	C B		T O N		
DESIG. CR1 CR2 CR3 CR4 CR5	NO. 210004 210004 210004 210004 210004	0100E 0100E	SILICO SILICO SILICO SILICO SILICO	. S S S	D4 D4 D4 D4 D4			DIODES IN SECTION OF S	D4 D4 D4
CR6 CR7 CR8 CR9 CR10	210004 210004 210004 210004 210004	DIODE DIODE	SILICO SILICO SILICO SILICO SILICO	S S	D4 D4 D4 D4 D4			DIODES IN S DIODES IN S DIODES IN S DIODES IN S DIODES IN S	D4 D4 D4
CR11 CR12 CR13 CR14 CR15	210004 210004 210004 210004 210004	DIODE DIODE DIODE	SILICO SILICO SILICO SILICO SILICO	·	5D4 5D4 5D4 5D4 5D4		. •	DIODES IN S DIODES IN S DIODES IN S DIODES IN S	D4 D4 D4
CR16 CR17 CR18 CR19 C1	210004 210004 220015 220015 121088	DIODE	SILICO SILICO SILICO SILICO MYLAR	ZENER I	LN967	'В	10%	DIODES IN S DIODES IN S MOTOROLA MOTOROLA CDE	D4 1N967B
C2 C3 C4 C5	121088 121088 121088 120072 110041	CAP CAP CAP CAP	MYLAR MYLAR MYLAR MYLAR ELECT	•01 •01	MFD MFD	100 V 100 V 100 V 600 V 6 V	10% 10% 10% 10% 20%	CDE CDE CDE CDE DUCATI	WMF1S1 WMF1S1 WMF1S1 WMF651 250-6
C15 C16 C17 C18 O1	110036 110036 101174 101174 200035	CAP CAP CAP	ELECT ELECT CERAM CERAM SILICO	.001 .001		50 V 50 V 500 V 500 V	20% 20% 10%1 10%1	DUCATI DUCATI AEROVOX AEROVOX DANA	25-50 25-50 SCD3X5F SCD3X5F 200035
02 R1 R2 R3 R4	200011 031450 030008 000202 000202	TRANS RES RES RES RES	SILICO CARBON CARBON CARBON	220 200 2		5% 5% 5% 5% 5%	2 W 3 W 1/4 W1 1/4 W1	OHMITE 4	200011 RC42GF224J #399 RCU7GF202J RCU7GF202J
R5 R6 R7	000151 000151 030007	RES RES RES	CARBON CARBON CARBON	150	OHM OHM OHM	5% 5% 5%	1/4 W1 1/4 W1 3 W	OHMITE OHMITE OHMITE	RCO7GF151J RCO7GF151J 4396
			·						1 of 2

ASSEMBLY 402522

REF. PART DESIG. NO.

DESCRIPTION

R8 030007 RES. CARBON 150 OHM 5% 3 W OHMITE 4396

