Methodenlehre I

Vorlesung
Wintersemester 2011/12

Vorstellung

Prof. Dr. Oliver Lüdtke Humboldt-Universität zu Berlin, Institut für Psychologie Lehrstuhl für Psychologische Methodenlehre

Kontaktinformationen:

Rudower Chaussee 18, Zimmer 3'103

Sprechstunde: Dienstag 13-14 Uhr

Email: oliver.luedtke@hu-berlin.de

Unterschied von empirischer Forschung und Alltagserfahrung

- Systematik und Dokumentation des Vorgehens:
 - Replikation, Objektivität (bzw. intersubjektive Nachprüfbarkeit),
 Transparenz
- Präzision der Terminologie:
 - Umgangssprache vs. wissenschaftliche Fachsprache
- Art der Auswertung und Interpretation von Informationen:
 - z.B. statistische Analysen
- Überprüfung von Gültigkeitskriterien:
 - interne und externe Validität
- Umgang mit Theorien
 - Systematischer Prozess der Überprüfung und Kritik

Phasen des Forschungsprozesses (Schnell et al., 2008)

Empirische Forschung

Empirische Forschung sucht nach Erkenntnissen durch systematische Auswertung von **Erfahrungen**

Zusammeng zwischen Erfahrung und Erkenntnisgewinn wird in der wissenschaftstheoretischen Literatur heftig diskutiert

Kritischer Rationalismus (Popper, 1934): Approximation der Realität durch Überprüfung von Hypothesen

Beispiel empirische Studie (Holling & Gediga, 2011, S. 29)

Gehirngröße und Intelligenz bei eineiligen Zwillingen (Tramo, Loftus, Stukel, Green, Weaver & Gazzaniga, 1998)

Erhobene Merkmale:

ID: Nummer bzw. Kennung der einzelnen Person

IDZP: Nummer bzw. Kennung des Zwillingspaars

GR: Geburtsreihenfolge

GES: Geschlecht

OG: Oberfläche der Großhirnrinde in cm²

VG: Volumen des Vorderhirns in cm³

CC: Fläche des Corpus Callosum in cm²

KU: Kopfumfang in cm

IQ: Intelligenzquotient

KG: Körpergewicht in kg

Datenmatrix

Rechteckiges Schema, in dem die Ausprägungen der erhobenen Merkmale für die untersuchten Personen angeordnet sind.

	ID	IDZP	GR	GES	OG	VG	CC	KU	IQ	KG
1	1	1	1	2	1913.88	1005	6.08	54.7	96	57.607
2	2	1	2	2	1684.89	963	5.73	54.2	89	58.968
3	3	2	1	2	1902.36	1035	6.22	53	87	64.184
4	4	2	2	2	1860.24	1027	5.8	52.9	87	58.514
5	5	3	1	2	2264.25	1281	7.99	57.8	101	63.958
6	6	3	2	2	2216.4	1272	8.42	56.9	103	61.69
7	7	4	1	2	1866.99	1051	7.44	56.6	103	133.358
8	8	4	2	2	1850.64	1079	6.84	55.3	96	107.503
9	9	5	1	2	1743.04	1034	6.48	53.1	127	62.143
10	10	5	2	2	1709.3	1070	6.43	54.8	126	83.009
11	11	6	2	1	1689.6	1173	7.99	57.2	101	61.236
12	12	6	1	1	1806.31	1079	8.76	57.2	96	61.236
13	13	7	2	1	2136.37	1067	6.32	57.2	93	83.916
14	14	7	1	1	2018.92	1104	6.32	57.2	88	79.38
15	15	8	2	1	1966.81	1347	7.6	55.8	94	97.524
16	16	8	1	1	2154.67	1439	7.62	57.2	85	99.792
17	17	9	1	1	1767.56	1029	6.03	57.2	97	81.648
18	18	9	2	1	1827.92	1100	6.59	56.5	114	88.452
19	19	10	2	1	1773.83	1204	7.52	59.2	113	79.38
20	20	10	1	1	1971.63	1160	7.67	58.5	124	72.576
21										

Grundbegriffe

Statistische Einheiten (Merkmalsträger, Untersuchungseinheiten): Objekte, an denen interessierende Größen erfasst werden (z. B. Zwillinge).

Merkmal: interessierende Größe, die beobachtet wird (z.B. Intelligenz)

Variable: Merkmal mit mindestens zwei Ausprägungen

Konstante: Merkmal mit nur einer Ausprägung

Merkmalsausprägung (Variablenwert, Wert, Ausprägung): konkreter Wert des Merkmals für eine bestimmte statistische Einheit

Variablen und Daten

Übersicht: Variablen

Grundbegriffe

Population (Grundgesamtheit): Menge der statistischen Einheiten, für die die zu treffenden Aussagen Gültigkeit besitzen sollen

Stichprobe: tatsächlich untersuchte Teilmenge der Population (Auswahl der Mitglieder der Population)

Es gibt verschiedene Methoden zur Ziehung von Stichproben aus der Population (z.B. einfache Zufallsstichprobe).

Inferenzstatistik vs. Deskriptive Statistik

Population = Zielbereich inferenzstatistischer Aussagen

Stichprobe = Gültigkeitsbereich deskriptivstatistischer Aussagen

- + = Populationsmitglieder
 - O = Stichprobenmitglieder
 - A = Stichprobenziehung
 - B = Inferenzstatistischer Schluß

siehe Wirtz & Nachtigall (2006)

Deskriptive Statistik vs. Inferenzstatistik

Deskriptive, beschreibende Statistik:

- Eigenschaften der Merkmale in einer Stichprobe werden beschrieben
- Z.B. 50% der Schülerinnen und Schüler in einer bestimmten Schulklasse sind weiblich
- Deskriptiv statistische Aussagen sagen nur etwas über die Objekte aus, die tatsächlich erhoben wurden

Induktive, schließende Statistik (Inferenzstatistik):

- Personen oder Objekte werden als repräsentative Teilmenge einer Gesamtheit (Population) aufgefasst
- Es ist das Ziel auf Basis der Stichprobe Aussagen über
 Eigenschaften der Population zu gewinnen
- Z.B. 53% der Schülerinnen und Schüler in Deutschland sind weiblich

Beispiel: PISA Studie

Untersuchung der Schulleistung (Mathematik, Lesen, Naturwissenschaft) von Schülerinnen und Schülern, die zum Beginn des Testzeitraums zwischen 15 Jahren/drei Monate und 16 Jahren/zwei Monate alt waren.

Population?

Stichprobe?

Merkmal?

Merkmalsausprägungen?

Mathematische Leistungen der Neuntklässler

Beispiel: Häufigkeit von hypothetisch beobachteten Leukämieerkrankungen bei Kindern in der Wohnumgebung möglicher Krankheitsverursacher (Leonhart, 2009)

schwarzer Würfel

Krankheitsverursacher: Kernkraftwerk (KKW), Mülldeponie (Müll), Elektrizitätswerk (E-Werk), Chemiefabrik (Chemie)

Durch einen Wurf des weißen und schwarzen Würfels wird zufällig ein hypothetischer Leukämiefall bestimmt.

schwarzer Würfel

Durch einen Wurf des weißen und schwarzen Würfels wird zufällig ein hypothetischer Leukämiefall bestimmt.

	6	XXX	X	хх			
	5		X KKW	XXX	X	Müll	X
weißer	4		X X	ХX	X		X
Würfel	3	хх	хх	Х		X	хх
	2	X	X X E-Werk	хх		X X X Chemie	X
	1						
		1	2	3	4	5	6

schwarzer Würfel

Wozu brauchen Psychologen statistische Verfahren?

- Kritische Beurteilung von Forschungsergebnissen
- Durchführung und Auswertung von Studien zur Beantwortung eigener Forschungsfragen
- Einschätzung der Fundierung von Aussagen über die Wirksamkeit von Interventionen
- Evaluation der eigenen praktischen Arbeit im Sinne von Qualitätssicherung etc.

"Wenn man mündige Bürger haben will, muss man ihnen drei Dinge beibringen: Lesen, Schreiben und – statistisches Denken." (Gigerenzer, 2002)

Überblick Methodenlehre

VL	Meth	oden	lehre 1
.		UUCII	

VL Methodenlehre 2

Deskriptive Statistik

Analyse von Häufigkeiten

Wahrscheinlichkeitstheorie

Korrelation

Testen von Hypothesen

Lineare Einfachregression

z-Test, t-Test

Multiple lineare Regression

Übungen

VL Versuchsplanung

Analysen mit der Software R

Einfaktorielle Versuchspläne

Zweifaktorielle Versuchspläne

Teststärkeanalyse

Passwort in moodle: Statistik

(für alle Kurse)

Versuchspläne mit Messwiederholung

Themen der Vorlesung

- 1. Einführung (24.10.)
- 2. Messen (31.10.)
- 3. Statistische Kennwerte (7.11.)
- 4. Grafische Darstellung (14.11.)
- 5. Wahrscheinlichkeit I (21.11.)
- 6. Wahrscheinlichkeit II (28.11.)
- 7. Stichprobe und Grundgesamtheit (5.12.)
- 8. Stichprobe und Grundgesamtheit (12.12.)
- 9. Hypothesentesten: *z*-Test (2.1.)
- 10. Hypothesentesten: Teststärke (9.1.)

Themen der Vorlesung

- 11. Unterschiedshypothesen: 1-Stichproben *t*-Test, *t*-Test für unabhängige Stichproben (16.1.)
- 12. Unterschiedshypothesen: *t*-Test für abhängige Stichproben (23.1.)
- 13. Unterschiedshypothesen: Stichprobenumfänge, Vergleich Varianzen (30.1.)
- 14. Nicht-parametrische Tests: *U*-Test (5.2.)
- 15. Wiederholung (12.2.)

Übung und Tutorium

- Übung Methodenlehre 1 (Dr. Jenny Wagner)
 - Drei Termine: Dienstag, 15-17 Uhr; Mittwoch, 9-11 Uhr;
 Mittwoch, 11-13 Uhr.
- Tutorien zur Vorlesung (Beginn Anfang November)
 - Vier Termine

Klausur

- Dauer: 90 Minuten
- Inhalt: Vorlesung Methodenlehre 1 und Übung zur Vorlesung
- Aufbau:
 - Interpretation von Ergebnissen
 - kleinere Berechnungen selbstständig durchführen (Taschenrechner)
 - keine praktischen Aufgaben zu R!
 - Formelsammlung und Tabellen werden zur Verfügung gestellt

Literatur

Zentrale Literatur

Bortz, J. & Schuster, C. (2010). *Statistik für Sozialwissenschaftler (7. Aufl.)*. Heidelberg: Springer.

Ergänzende und vertiefende Literatur

Bühner, M. & Ziegler, M. (2009). *Statistik für Psychologen und Sozialwissenschaftler*. München: Pearson.

Eid, M., Gollwitzer, M. & Schmitt, M. (2010). *Statistik und Forschungsmethoden*. Weinheim: Beltz.

Holling, H. & Gediga, G. (2011). Statistik – Deskriptive Verfahren. Göttingen: Hogrefe.

Leonhart, R. (2009). Lehrbuch Statistik: Einstieg und Vertiefung (2. Aufl.). Bern: Huber.

Wirtz, M. & Nachtigall, C. (2006). *Deskriptive Statistik. Statistische Methoden für Psychologen – Band 1, Vierte Auflage*. Weinheim: Juventa.

Nachtigall, C. & Wirtz, M. (2006). Wahrscheinlichkeitsrechnung und Inferenzstatistik. Statistische Methoden für Psychologen – Band 2, Vierte Auflage. Weinheim: Juventa

...bis zum nächsten Mal

Lesen Sie bitte Kapitel 1.2: Skalenniveaus (S.12-15)

Bortz, J. & Schuster, C. (2010). *Statistik für Sozialwissenschaftler (7. Aufl.)*. Heidelberg: Springer.