ECE216: Digital Electronics Laboratory

Exp -8

Table of Content

Task	Title	Page No.
Experiment 1	Understanding the combinational logic by implementing the	1
	boolean function using basic logic gates	
Experiment 2	To design and analyze the circuit for Full adder and Full	6
	subtractor using Logic Gates.	
Practical work	Practical work evaluation based on Experiment 1 and	9
evaluation 1	Experiment 2.	
Experiment 3	Understanding the combinational logic by implementing the	12
	boolean function using multiplexer	
Experiment 4	Understanding the combinational logic by implementing the	16
	boolean function using decoder	
Practical work	Practical work evaluation based on Experiment 3 and	20
evaluation 2	Experiment 4.	
Project evaluation 1	Design and Implementation of application-based projects-1	23

E		26
Experiment 5	Understanding the sequential logic by implementing the flip	26
	flop with the help of logic gates	
Experiment 6	Understanding the sequential logic by implementing the	28
	counter with flip flop.	
Practical work	Practical work evaluation based on Experiment 5 and	31
evaluation 3	Experiment 6.	
Experiment 7	To visualize the output of decade counter on seven segment	34
	display	
Experiment 8	To implement and simulate combinational and sequential	37
	circuit using IDSCH Proteus.	
Practical work	Practical work evaluation based on Experiment 7 and	41
evaluation 4	Experiment 8.	
Project evaluation 2	Design and Implementation of application-based projects-2	44
Practical work evaluation 4	To implement and simulate combinational and sequential circuit using DSCH/Proteus. Practical work evaluation based on Experiment 7 and Experiment 8.	41

Experiment 8: To implement the shift register (450, 1100, 4100, 1150)

Or

Understanding the seguential logic by implemently the
shift register with flip flop.

Type of slift 5150 7 P150 5/50

AIC 34157

Ay Nevet CA4 (4 May 2021) Sylve Eyp 7, 5x68 - 10 Mar (Whit up)
- 10 Mar (Simely)
- 10 Mar (MCQ/SLANT (Simely) (MCQ/SLout Amy)

Next to Next sples <4/5, 6, 7, 8 30MCg, 1 Mars ear with 0.25 -velage for when answer