662 Student Name: - Shyd Shahrian Housain Evalutionary Algorithm; Assignment no-3 Peroblems Using GA find Maximum value of f(x)=x= 52+10 over {0,1,---,15}. Consider population Size 4, 1 one point crossover and 50% mutation 1. We have to generate initial population at random. Ans: They are chnomosomes on Grenotype-(15) 01111, (14) 01110, (13) 01101, (12) 01100 2. Evaluate fitness: Calculate fitness with f(x) = 2 -52+10; 3. Select parent based upon their fitness Fi = Fitness for string i in population

Di -Pi = Peroloability of String; being selected. n = Number of individuals. nxPi = Expected count Pi = f(xi)
Sum (P.T.O)

Selection table:

				-	
Storing	Initial population	& Value	Fitness f(x)=x25x +10	Poro Leabi lety Pi	Expected count nxP;
1	01111	15	160	0.318	1:272
2	01110	14	136	0.2698	
3	01101	13	114	0'2262	0.3048
6 4	01100	12	94	0.186	0.744
Sum			504		\mathcal{L}
Avg			126		•1
Max			160	· · · · · · · · · · · · · · · · · · ·	1.272

$$P_{1} = \frac{f(x_{1})}{Sum} = \frac{160}{504} = 0.318$$

$$P_{2} = \frac{f(x_{1})}{Sum} = \frac{136}{504} = 0.269$$

$$P_{3} = \frac{f(x_{3})}{Sum} = \frac{114}{504} = 0.226$$

$$P_{4} = \frac{f(x_{1})}{Sum} = \frac{94}{504} = 0.186$$

$$P_{2} = \frac{6(x_{n})}{504} = 0.269$$

$$P_3 = \frac{f(x_3)}{504} = \frac{114}{504} = 0.22t$$

offspring 1 = 01110 offspring 2 = 01111

Corossover table:

Storing No.	Mating	Crossover	offspring after Crossover	& value	Figuress f(x) = x25x+10
1	Olleti	2	01110	14	136
2	01/10	2	01111	15	160
1	011/11	3	01101	13	114
3	011/01	3	01111	15	160
Sum					5.70
Avg	. ~				143
Max					160

Mutation 50%? -

		<u> </u>		ž.	
String	offspring. x-over	Aspring Mutation	& Value	Floress.	-52+10
1	01110	01101	13	114	
2	01111	01110	14	136	
3	01111	01111	. 15	160	
Ü	01100	01100	12	94	
Sum				504	
Avg		~ ~		126	
 Max				160	