

Comparison with DK1.1_RF_mmW model(s)

Focus on analog/RF performance

Please use the bookmark to navigate

General information on EGLVT models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): eglvtnfet_rf, eglvtnfet_rfseg, eglvtpfet_rf, eglvtpfet_rfseg
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft_max: Maximum transition frequency at Vds = VddV, f = 100kHz.
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*1*W/(1*L+0+0*p_la) at Vds=Vdd/4V.
 - ✓ Ilin : Drain current at Vgs = 1.8V, Vds = 0.05V.
 - ✓ Fmaxmax : Maximum oscillation frequency at Vds = VddV, f = 10GHz
 - ✓ Rg : Total gate resistance at Vgs = 1.8V, Vds = 0V, f = 10GHz
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt* $M*1*W/(1*L+0+1*p_la)$ at Vds = vds_satV.
 - ✓ Cgg_inv: Total gate capacitance at Vgs = 1.8V, Vds = 0V, f = 100kHz.
 - ✓ Ft_ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Isat : Drain current at Vgs = 1.8V, Vds = VddV.
 - ✓ Cgd_0v : Gate-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

eglvtnfet_rf Electrical characteristics per geometry

eglvtnfet_rf@ w=4e-05, l=1.5e-07, nf=20, wfing=2e-06, ngcon=1, sd=140e-9, wstrap=1.6e-07, pocos=5e-08, pocod=5e-08, strap=2, sa=1.2e-07, sb=1.2e-07, study=LScaling_W2u, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF	
vt_lin [mV]	416.2 0.0mV	366.8 0.0mV	317.8 0.0mV	
vt_sat [mV]	394.5 0.0mV	345.8 0.0mV	297.5 0.0mV	
ilin [mA]	2.61 0.0%	2.88 0.0%	3.14 0.0%	
cgd_0V/w []	2.31e-10 0.0%	2.16e-10 0.0%	2e-10 0.0%	
rg [Ω]	27.19 0.0%	23.39 0.0%	20.17 0.0%	
Ft_max [GHz]	60.44 0.0%	64.17 0.0%	68.42 0.0%	
Fmaxmax [GHz]	112.4 0.0%	134.1 0.0%	161.5 0.0%	

dormieub

eglvtnfet_rfseg Electrical characteristics per geometry

eglvtnfet_rfseg@ w=4e-05, l=1.5e-07, nf=20, wfing=2e-06, ngcon=1, sd=140e-9, wstrap=1.6e-07, pocos=5e-08, pocod=5e-08, strap=2, sa=1.2e-07, sb=1.2e-07, study=LScaling_W2u, vbs=0, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF	
vt_lin [mV]	415.6 0.0mV	366.2 0.0mV	317.3 0.0mV	
vt_sat [mV]	389.7 0.0mV	341.2 0.0mV	293.1 0.0mV	
ilin [mA]	2.61 0.0%	2.89 0.0%	3.14 0.0%	
cgd_0V/w []	2.31e-10 0.0%	2.16e-10 0.0%	2e-10 0.0%	
rg [Ω]	25.58 0.0%	21.81 0.0%	18.62 0.0%	
Ft_max [GHz]	61.4 0.0%	66.1 0.0%	72.06 0.0%	
Fmaxmax [GHz]	116.4 0.0%	141.9 0.0%	175.9 0.0%	

eglvtpfet_rf Electrical characteristics per geometry

eglvtpfet_rf @ w=4e-05, l=1.5e-07, nf=20, wfing=2e-06, ngcon=1, sd=140e-9, wstrap=1.6e-07, pocos=5e-08, pocod=5e-08, strap=2, sa=1.2e-07, sb=1.2e-07, study=LScaling_W2u, vbs=Vdd, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF	
vt_lin [mV]	347.8 0.0mV	293.2 0.0mV	238.8 0.0mV	
vt_sat [mV]	322 0.0mV	268 0.0mV	213.6 0.0mV	
ilin [mA]	0.84 0.0%	0.98 0.0%	1.12 0.0%	
cgd_0V/w []	1.88e-10 0.0%	1.73e-10 0.0%	1.59e-10 0.0%	
rg [Ω]	70.85 0.0%	58.4 0.0%	53.81 0.0%	
Ft_max [GHz]	36.36 0.0%	38.32 0.0%	40.45 0.0%	
Fmaxmax [GHz]	54.52 0.0%	66.88 0.0%	76.84 0.0%	

eglvtpfet_rfseg Electrical characteristics per geometry

eglvtpfet_rfseg@ w=4e-05, l=1.5e-07, nf=20, wfing=2e-06, ngcon=1, sd=140e-9, wstrap=1.6e-07, pocos=5e-08, pocod=5e-08, strap=2, sa=1.2e-07, sb=1.2e-07, study=LScaling_W2u, vbs=Vdd, vdd=1.8, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF	
vt_lin [mV]	347.4 0.0mV	292.9 0.0mV	238.5 0.0mV	
vt_sat [mV]	321.8 0.0mV	268.2 0.0mV	214.1 0.0mV	
ilin [mA]	0.84 0.0%	0.98 0.0%	1.12 0.0%	
cgd_0V/w []	1.88e-10 0.0%	1.73e-10 0.0%	1.59e-10 0.0%	
rg [Ω]	63.64 0.0%	50.58 0.0%	45.35 0.0%	
Ft_max [GHz]	38.11 0.0%	40.91 0.0%	43.82 0.0%	
Fmaxmax [GHz]	59.41 0.0%	75.22 0.0%	90.61 0.0%	

eglvtnfet_rf Electrical characteristics scaling

Scaling versus width L=150nm - DC

dormieub

eglvtnfet_rf, vt_lin [mV] vs Wfing [m]

eglvtnfet_rf, vt_sat [mV] vs Wfing [m]

eglvtnfet_rf, VtGmmax [mV] vs Wfing [m]

eglvtnfet_rf, ilin/W vs Wfing [m]

eglvtnfet_rf, isat/W vs Wfing [m]

eglvtnfet_rf, Gm_max/w vs Wfing [m]

Scaling versus width L=150nm - RF

eglvtnfet_rf, Cgd_0V/W vs Wfing [m]

eglvtnfet_rf, cgg_inv/W vs Wfing [m]

eglvtnfet_rf, Rg*NF vs Wfing [m]

eglvtnfet_rf, Ft_max [GHz] vs Wfing [m]

eglvtnfet_rf, Fmaxmax [GHz] vs Wfing [m]

Scaling versus width L=150nm - Analog

eglvtnfet_rf, Vgs_ana [mV] vs Wfing [m]

eglvtnfet_rf, Gm_ana/W [] vs Wfing [m]

eglvtnfet_rf, Gds_ana/W [] vs Wfing [m]

eglvtnfet_rf, GDC_ana [] vs Wfing [m]

eglvtnfet_rf, GBW_QS [GHz] vs Wfing [m]

eglvtnfet_rf, Ft_ana [GHz] vs Wfing [m]

(Study=="WScaling_L150n" or Study=="LScaling_W2u") and l==150e-9

dormieub

Scaling versus length Wfing=2um - DC

dormieub

eglvtnfet_rf, vt_lin [mV] vs l [m]

eglvtnfet_rf, vt_sat [mV] vs l [m]

eglvtnfet_rf, VtGmmax [mV] vs l [m]

eglvtnfet_rf, ilin/W vs l [m]

eglvtnfet_rf, isat/W vs l [m]

eglvtnfet_rf, Gm_max/w vs l [m]

Scaling versus length Wfing=2um - RF

dormieub

eglvtnfet_rf, Cgd_0V/W vs l [m]

eglvtnfet_rf, cgg_inv/W vs l [m]

eglvtnfet_rf, Rg*NF vs l [m]

eglvtnfet_rf, Ft_max [GHz] vs l [m]

eglvtnfet_rf, Fmaxmax [GHz] vs l [m]

Scaling versus length Wfing=2um - Analog

eglvtnfet_rf, Vgs_ana [mV] vs l [m]

eglvtnfet_rf, Gm_ana/W [] vs l [m]

eglvtnfet_rf, Gds_ana/W [] vs l [m]

eglvtnfet_rf, GDC_ana [] vs l [m]

(Study=="WScaling_L150n" or Study=="LScaling_W2u") and wfing==2e-6

ST Confidential

eglvtnfet_rf, GBW_QS [GHz] vs l [m]

eglvtnfet_rf, Ft_ana [GHz] vs l [m]

eglvtnfet_rfseg Electrical characteristics scaling

Scaling versus width L=150nm - DC

dormieub

eglvtnfet_rfseg, vt_lin [mV] vs Wfing [m]

eglvtnfet_rfseg, vt_sat [mV] vs Wfing [m]

eglvtnfet_rfseg, VtGmmax [mV] vs Wfing [m]

eglvtnfet_rfseg, ilin/W vs Wfing [m]

eglvtnfet_rfseg, isat/W vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtnfet_rfseg, Gm_max/w vs Wfing [m]

Scaling versus width L=150nm - RF

eglvtnfet_rfseg, Cgd_0V/W vs Wfing [m]

eglvtnfet_rfseg, cgg_inv/W vs Wfing [m]

eglvtnfet_rfseg, Rg*NF vs Wfing [m]

eglvtnfet_rfseg, Ft_max [GHz] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtnfet_rfseg, Fmaxmax [GHz] vs Wfing [m]

Scaling versus width L=150nm - Analog

eglvtnfet_rfseg, Vgs_ana [mV] vs Wfing [m]

eglvtnfet_rfseg, Gm_ana/W [] vs Wfing [m]

eglvtnfet_rfseg, Gds_ana/W [] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtnfet_rfseg, GDC_ana [] vs Wfing [m]

eglvtnfet_rfseg, GBW_QS [GHz] vs Wfing [m]

eglvtnfet_rfseg, Ft_ana [GHz] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

Scaling versus length Wfing=2um - DC

eglvtnfet_rfseg, vt_lin [mV] vs l [m]

eglvtnfet_rfseg, vt_sat [mV] vs l [m]

eglvtnfet_rfseg, VtGmmax [mV] vs l [m]

eglvtnfet_rfseg, ilin/W vs l [m]

eglvtnfet_rfseg, isat/W vs l [m]

eglvtnfet_rfseg, Gm_max/w vs l [m]

Scaling versus length Wfing=2um - RF

dormieub

eglvtnfet_rfseg, Cgd_0V/W vs l [m]

eglvtnfet_rfseg, cgg_inv/W vs l [m]

eglvtnfet_rfseg, Rg*NF vs l [m]

eglvtnfet_rfseg, Ft_max [GHz] vs l [m]

eglvtnfet_rfseg, Fmaxmax [GHz] vs l [m]

Scaling versus length Wfing=2um - Analog

eglvtnfet_rfseg, Vgs_ana [mV] vs l [m]

eglvtnfet_rfseg, Gm_ana/W [] vs l [m]

eglvtnfet_rfseg, Gds_ana/W [] vs l [m]

eglvtnfet_rfseg, GDC_ana [] vs l [m]

eglvtnfet_rfseg, GBW_QS [GHz] vs l [m]

eglvtnfet_rfseg, Ft_ana [GHz] vs l [m]

 $(Study == "WS caling_L150n" \ or \ Study == "LS caling_W2u") \ and \ wfing == 2e-6$

eglvtpfet_rf Electrical characteristics scaling

dormieub

Scaling versus width L=150nm - DC

dormieub

eglvtpfet_rf, vt_lin [mV] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtpfet_rf, vt_sat [mV] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtpfet_rf, VtGmmax [mV] vs Wfing [m]

eglvtpfet_rf, ilin/W vs Wfing [m]

eglvtpfet_rf, isat/W vs Wfing [m]

eglvtpfet_rf, Gm_max/w vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

Scaling versus width L=150nm - RF

eglvtpfet_rf, Cgd_0V/W vs Wfing [m]

eglvtpfet_rf, cgg_inv/W vs Wfing [m]

eglvtpfet_rf, Rg*NF vs Wfing [m]

eglvtpfet_rf, Ft_max [GHz] vs Wfing [m]

eglvtpfet_rf, Fmaxmax [GHz] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

Scaling versus width L=150nm - Analog

dormieub

eglvtpfet_rf, Vgs_ana [mV] vs Wfing [m]

eglvtpfet_rf, Gm_ana/W [] vs Wfing [m]

eglvtpfet_rf, Gds_ana/W [] vs Wfing [m]

eglvtpfet_rf, GDC_ana [] vs Wfing [m]

eglvtpfet_rf, GBW_QS [GHz] vs Wfing [m]

eglvtpfet_rf, Ft_ana [GHz] vs Wfing [m]

Scaling versus length Wfing=2um - DC

eglvtpfet_rf, vt_lin [mV] vs l [m]

eglvtpfet_rf, vt_sat [mV] vs l [m]

eglvtpfet_rf, VtGmmax [mV] vs l [m]

eglvtpfet_rf, ilin/W vs l [m]

eglvtpfet_rf, isat/W vs l [m]

eglvtpfet_rf, Gm_max/w vs l [m]

Scaling versus length Wfing=2um - RF

eglvtpfet_rf, Cgd_0V/W vs l [m]

eglvtpfet_rf, cgg_inv/W vs l [m]

eglvtpfet_rf, Rg*NF vs l [m]

eglvtpfet_rf, Ft_max [GHz] vs l [m]

eglvtpfet_rf, Fmaxmax [GHz] vs l [m]

Scaling versus length Wfing=2um - Analog

eglvtpfet_rf, Vgs_ana [mV] vs l [m]

eglvtpfet_rf, Gm_ana/W [] vs l [m]

eglvtpfet_rf, Gds_ana/W [] vs l [m]

(Study=="WScaling_L150n" or Study=="LScaling_W2u") and wfing==2e-6

dormieub

eglvtpfet_rf, GDC_ana [] vs l [m]

eglvtpfet_rf, GBW_QS [GHz] vs l [m]

eglvtpfet_rf, Ft_ana [GHz] vs l [m]

eglvtpfet_rfseg **Electrical characteristics scaling**

dormieub

Scaling versus width L=150nm - DC

dormieub

eglvtpfet_rfseg, vt_lin [mV] vs Wfing [m]

eglvtpfet_rfseg, vt_sat [mV] vs Wfing [m]

eglvtpfet_rfseg, VtGmmax [mV] vs Wfing [m]

eglvtpfet_rfseg, ilin/W vs Wfing [m]

eglvtpfet_rfseg, isat/W vs Wfing [m]

eglvtpfet_rfseg, Gm_max/w vs Wfing [m]

Scaling versus width L=150nm - RF

eglvtpfet_rfseg, Cgd_0V/W vs Wfing [m]

eglvtpfet_rfseg, cgg_inv/W vs Wfing [m]

eglvtpfet_rfseg, Rg*NF vs Wfing [m]

eglvtpfet_rfseg, Ft_max [GHz] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtpfet_rfseg, Fmaxmax [GHz] vs Wfing [m]

Scaling versus width L=150nm - Analog

eglvtpfet_rfseg, Vgs_ana [mV] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

eglvtpfet_rfseg, Gm_ana/W [] vs Wfing [m]

eglvtpfet_rfseg, Gds_ana/W [] vs Wfing [m]

eglvtpfet_rfseg, GDC_ana [] vs Wfing [m]

eglvtpfet_rfseg, GBW_QS [GHz] vs Wfing [m]

eglvtpfet_rfseg, Ft_ana [GHz] vs Wfing [m]

 $(Study == "WScaling_L150n" \ or \ Study == "LScaling_W2u") \ and \ l == 150e-9$

Scaling versus length Wfing=2um - DC

dormieub

eglvtpfet_rfseg, vt_lin [mV] vs l [m]

eglvtpfet_rfseg, vt_sat [mV] vs l [m]

eglvtpfet_rfseg, VtGmmax [mV] vs l [m]

eglvtpfet_rfseg, ilin/W vs l [m]

eglvtpfet_rfseg, isat/W vs l [m]

eglvtpfet_rfseg, Gm_max/w vs l [m]

Scaling versus length Wfing=2um - RF

dormieub

eglvtpfet_rfseg, Cgd_0V/W vs l [m]

eglvtpfet_rfseg, cgg_inv/W vs l [m]

eglvtpfet_rfseg, Rg*NF vs l [m]

eglvtpfet_rfseg, Ft_max [GHz] vs l [m]

eglvtpfet_rfseg, Fmaxmax [GHz] vs l [m]

Scaling versus length Wfing=2um - Analog

eglvtpfet_rfseg, Vgs_ana [mV] vs l [m]

eglvtpfet_rfseg, Gm_ana/W [] vs l [m]

eglvtpfet_rfseg, Gds_ana/W [] vs l [m]

eglvtpfet_rfseg, GDC_ana [] vs l [m]

eglvtpfet_rfseg, GBW_QS [GHz] vs l [m]

eglvtpfet_rfseg, Ft_ana [GHz] vs l [m]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtnfet_rf (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - x vds_ft = Vdd V
 - \mathbf{X} iana = 5e-6 A
 - \times vds_cgg = 0 V
 - \times f_ext_rg = 10G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.0.e
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - x vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0

Sep 21, 2018

- **✗** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** shrink iana = 1
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- X dlshrink iana = 0
- \star ithslwi = 10e-9 A
- \mathbf{X} vds ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- \times mc runs = 500
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eglvt_dev = 1

- Model eglvtnfet_rfseg (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times iana = 5e-6 A
 - \times vds_cgg = 0 V
 - \star f_ext_rg = 10G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.0.e
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - **x** ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - x vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** shrink iana = 1
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0
 - **x** vstep_iana = 0.01 V
 - \mathbf{x} vgs_start = 0 V
 - **✗** plashrink_ivt = 1

- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- **x** mc_runs = 500
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 1
- Model eglvtpfet_rf (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \mathbf{x} vds ft = Vdd V
 - \mathbf{X} iana = 2e-6 A
 - \times vds_cgg = 0 V
 - \star f_ext_rg = 10G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A

- **x** model_version = 1.0.e
- \mathbf{X} vds off = vds sat V
- \times vds_cgd = 0 V
- **x** ams_release = 2018.3
- **✗** plashrink_iana = 0
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** shrink_iana = 1
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- **x** vstep_iana = 0.01 V
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- \times mc_runs = 500
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vsub1 = 0
- \mathbf{x} vgs_off = 0 V

- **x** temp = $25 \, ^{\circ}$ C
- x f ext = 100k Hz
- \mathbf{x} vbs = Vdd V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 1
- Model eglvtpfet_rfseg (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - **x** iana = 2e-6 A
 - \times vds_cgg = 0 V
 - \times f_ext_rg = 10G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **x** model_version = 1.0.e
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \times ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - x vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha

- \times vds_sat = Vdd V
- **x** shrink iana = 1
- **x** mc_nsigma = 3
- **✗** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- **x** vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- X vds ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- \times mc_runs = 500
- \times vstep_ivt = 0.005 V
- \times vsub1 = 0
- \times vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = Vdd V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 1

- Model eglvtnfet_rf (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times iana = 5e-6 A
 - \times vds_cgg = 0 V
 - \star f_ext_rg = 10G Hz
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.0.d
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - **x** ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - x vgs_stop = vdd V
 - X dlshrink ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** shrink iana = 1
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0
 - **x** vstep_iana = 0.01 V
 - \mathbf{x} vgs_start = 0 V
 - **✗** plashrink_ivt = 1

- **✗** dlshrink iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{X} vddmax = vdd
- \times mc runs = 500
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtnfet_rfseg (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \mathbf{X} vds ft = Vdd V
 - \mathbf{X} iana = 5e-6 A
 - \times vds_cgg = 0 V
 - \mathbf{X} f_ext_rg = 10G Hz
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V

Sep 21, 2018

- **X** ivt = 300e-9 A
- **x** model_version = 1.0.d
- **x** vds_off = vds_sat V
- \times vds_cgd = 0 V
- **x** ams_release = 2018.3
- **✗** plashrink_iana = 0
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** shrink iana = 1
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- **x** vstep_iana = 0.01 V
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- X vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- **✗** vddmax = vdd
- \times mc_runs = 500
- \times vstep_ivt = 0.005 V
- \times vgs_off = 0 V

Sep 21, 2018

- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtpfet_rf (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \mathbf{X} vds ft = Vdd V
 - \mathbf{X} iana = 2e-6 A
 - \times vds_cgg = 0 V
 - \mathbf{X} f_ext_rg = 10G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **x** model_version = 1.0.d
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0

- **✗** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** shrink iana = 1
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- **✗** dlshrink_tinv = 0
- \times vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- X dlshrink iana = 0
- \star ithslwi = 10e-9 A
- \mathbf{X} vds ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- \times mc_runs = 500
- \mathbf{X} vstep_ivt = 0.005 V
- \times vsub1 = 0
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \times vbs = Vdd V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters

- \mathbf{x} eglvt_dev = 0
- **x** gflag_noisedev_eglvt_cmos028fdsoi = 0
- Model eglvtpfet_rfseg (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \mathbf{X} iana = 2e-6 A
 - \times vds_cgg = 0 V
 - \star f_ext_rg = 10G Hz
 - \mathbf{x} mc sens = 0
 - \times vds lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **x** model version = 1.0.d
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** shrink_iana = 1
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - **✗** dlshrink_tinv = 0
 - \mathbf{X} vstep_iana = 0.01 V

- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- **✗** dlshrink iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 500
- \mathbf{X} vstep_ivt = 0.005 V
- \times vsub1 = 0
- \times vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \star vbs = Vdd V
- \times vdd = 1.8 V
- **x** shrink_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 0

