PHYS 241 Assignment 1

Mihail Anghelici 260928404

1 Question 1

First, since the stove operates at 450°C let us transform the temeprature coefficient of resistance.

$$\Delta \rho = \alpha \Delta T \rho_0$$

= $(3.5 \times 10^{-3} \,^{\circ}\text{C}^{-1})(450 \,^{\circ}\text{C} - 20 \,^{\circ}\text{C})(3.2 \times 10^{-8} \,^{\circ}\text{m})$
= $4.8 \times 10^{-8} \,^{\circ}\text{m}$
 $\Rightarrow \rho = 8.0 \times 10^{-8} \,^{\circ}\text{m}$ at $450 \,^{\circ}\text{C}$

Power dessipation in a resistor is given by the following relationship

$$P = i^2 R = \frac{V^2}{R}$$

Therefore we can compute the resistor's resistance :

$$R = \frac{V^2}{P} = \frac{(220)^2}{1000} \left[\frac{V^2}{W} \right] = 48.4 \Omega$$

from the relationship between a wire's shape and it's resistance, we can find the legnth of the wire required.

$$R = \rho \frac{L}{A} \implies L = \frac{RA}{\rho} = \frac{\pi d^2 \ 48.4 \ \Omega}{4(8.0 \times 10^{-8})} \left[\frac{\text{m}^2 \text{ V}^2}{\Omega \text{ m}} \right] = \boxed{= 29.6 \text{ m}}$$

2 Question 2

2.1 a)

The resistors are presented in series, therefore

$$V_s = I_s(R_1 + R_2) \implies I_s = \frac{V_s}{R_1 + R_2} = \frac{5 \text{ V}}{300 \Omega} = 16.7 \text{ mA}$$

2.2 b

For resistors in series, the voltage dropped across them is directly proportional to their size, i.e, their resistance. Thus,

$$\Delta V_2 = I_s R_2 = \frac{1}{60} \text{ A (200) } \Omega = \frac{10}{3} \text{ V} = 3.33 \text{ V}$$

2.3 c)

The power dissipated in R_2 is given by the following equation:

$$P_2 = i^2 R_2 = \left(\frac{1}{60}\right)^2 A^2 \ 200 \ \Omega = \frac{1}{18} \ W = \frac{1}{18} \times 10^{-3} \ W = 55.6 \ mW$$

3 Question 3

The upward portion of the given circuit acts as if it had a very small resistance, let us denote it R'. Since R' and R_1 are parallel,

$$R_T = \left(\frac{1}{R'} + \frac{1}{R_1}\right)^{-1}$$

$$R_1 >> R' \implies \frac{1}{R'} \to \infty \implies R_T = \frac{1}{\infty}$$

Effectively, R_1 acts as if it were absent due to the given configuration.

3.1 a)

Consequently we can compute the current in the circuit:

$$i = \frac{V_0}{R_2} = \frac{5 \text{ V}}{200 \Omega} = 25 \text{ mA}$$

3.2 b)

$$I = \frac{V}{R_2} \implies V = R_2 I$$

= 200 \Omega 0.025 A
= 5 V

3.3 c)

The power dissipated in R_2 is given by the following equation:

$$P_2 = i^2 R_2$$

= $(0.025 \text{ A})^2 200 \Omega$
= $0.125 \text{ W} = 125 \text{ mW}$

4 Question 4

The current I pasing through the right-ward portion of the parallel circuit is given by the following equation :

$$I_2 = \frac{V}{R_2} = \frac{5 \text{ V}}{300 \Omega} = \frac{1}{60} \text{ A} = 16.7 \text{ mA}$$

5 Question 5

Figure a): Original circuit schematic.

Figure b): R_2 , R_3 and R_4 are resistors in series, therefore they recombine to form a single resistor. Define $R_2=400~\Omega$ the sum of the series resistors. Figure c): R_2 , R_3 and R_4 from figure b) are resistors in parallel therefore they recombine as $R_2={}^{400}/{}_3~\Omega$. Finally, R_1 and the recombined R_2 are in series thus the final equivalent resistor is $R={}^{700}/{}_3~\Omega$.

$$R = \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)^{-1} = \frac{700}{3} \ \Omega = 233.3 \ \Omega$$

6 Question 6.

Since there's a circuit ground inserted at point B in the middle.

6.1 a)

If $R_1=R_2$, equal voltage will be dissipated in both resistors due to symmetry. Moreover because the source is set-up that way, $\Delta V_A=-3$ V, $\Delta V_C=0$ and $\Delta V_C=3$ V.

6.2 b)

If
$$R_1 = 2R_2$$
, $\Delta V_A = -4$ V, $\Delta V_B = 0$ and $\Delta V_C = 2$ V.

7 Question 7.

7.1 a)

Let i be the current flowing through the circuit, V_0 the \mathcal{E}_{fem} , R the resistance of the right-ward resitor, v the voltage drop across R and finally r the resistance of the resistor upwards next to the photovoltaic cell.

Then ,since the two resistors are in series, the the current flow through the circuit is given by :

$$i = \frac{V_0}{R+r}$$

Moreover, the voltage drop across R is :

$$i = \frac{v}{R}$$

. Let us rearrange these equations to find the desired expression

$$i(R+r) = V_0 \implies i = \frac{V_0 - v}{r} \tag{1}$$

Equation 1. can be rearranged , in the form of y = mx + b :

$$i = \frac{V_0}{r} - \frac{v}{r}$$

hence a plot of I against V will have the form of a decreasing linear function, as initially given.

7.2 b)

When i=0 , v=1 and when v=0 , i=3.5 A. Plugging those in Equation 1 yields

$$3.5 = \frac{V_0}{r}$$

$$0 = \frac{V_0 - 1}{r} \implies V_0 = 1 \text{ V}$$

Solving for r gives $r = 1/3.5 = 0.286 \text{ V A}^{-1}$

7.3 c)

Using Ohm's law,

$$I = \left(\frac{V_0}{r+R}\right)$$

. Since, ${\cal P}_R=I^2R$ we can substitute for ${\cal P}_R$ yielding

$$P = \left(\frac{V_0}{r+R}\right)^2 R \implies P = \frac{V^2}{\frac{r^2}{R} + 2r + R}$$

. The maximum occurs when the derivative of the denominator is set to zero.

$$\frac{d}{dR}\left(\frac{r^2}{R} + 2r + R\right) = 0$$

$$\frac{-r^2}{R^2} + 0 + 1 = 0$$

$$\frac{R^2 - r^2}{R^2} = 0$$

$$\implies R = \pm r$$

Since resistance is positive by definition, the maximum power in R occurs at R = r. Moreover, using the values found in b), the maximal power is given by

$$P = \frac{V_0^2}{1 + 3R}$$
= $\frac{1 \text{ V}^2}{1 + 3(0.286 \Omega)}$
= 539 mW

$$\implies R = 0.286 \ \Omega$$

8 Question 8

By the hydrolic law and since R_1 is in series with R and R_2 in series with another R,

•
$$Q_1 = \frac{\Delta P}{R_H} = \frac{\Delta P}{R_1 + R}$$

•
$$Q_2 = \frac{\Delta P}{R_H} = \frac{\Delta P}{R_2 + R}$$

Since the final pressure is $0 \implies \Delta P = P_0$. For a pipe of radius r, the hydraulic resistance is given by

$$R_H = \frac{8\eta L}{\pi r^4}$$

So we have the following equalities

$$R_1 + R = \frac{8\eta(l_1 + l_0)}{(d/2)^4} \implies Q_1 = \frac{8\pi(l_1 + l_0)2^4}{\pi d^4 P_0}$$

$$R_2 + R = \frac{8\eta(l_2 + l_0)}{(d/2)^4} \implies Q_2 = \frac{8\pi(l_2 + l_0)2^4}{\pi d^4 P_0}$$

Using the given relationship $Q_1 = Q_1/Q_1 + Q_2$, we have

$$\frac{\left(\frac{8\pi(l_1+l_0)2^4}{\pi d^4 P_0}\right)}{\left(\frac{8\pi(l_1+l_0)2^4}{\pi d^4 P_0}\right) + \left(\frac{8\pi(l_2+l_0)2^4}{\pi d^4 P_0}\right)} = 0.25$$

$$\frac{\left(\frac{8\eta 2^4}{\pi d^4 P_0}\right)}{\left(\frac{8\eta 2^4}{\pi d^4 P_0}\right)} \frac{(l_1+l_0)}{l_1+l_0+l_2+l_0} = 0.25$$

$$\implies l_1 = \frac{l_0 - 0.25(2l_0+l_2)}{-0.75}$$

$$\implies l_1 = \frac{10^{-6}(50 - 0.25(100 + 500))}{-0.75}$$

$$\implies l_1 = 1.33 \times 10^{-6} \text{ m} = 133 \text{ µm}$$