Extremwertbestimmung

Def Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$, $a \in U$.

f hat in a ein lokales Maximum (bzw. lokales Minimum), falls ein $\varepsilon > 0$ existiert, so dass $f(x) \le f(a)$ (bzw. $f(x) \ge f(a)$) für alle $x \in U$ mit $||x - a|| < \varepsilon$.

f hat in a ein globales Maximum (bzw. globales Minimum), falls $f(x) \leq f(a)$ (bzw. $f(x) \geq f(a)$) für alle $x \in U$.

f hat in a ein lokales bzw. globales Extremum, falls f in a ein lokales bzw. globales Maximum oder Minimum besitzt.

Satz 2.7(notwendige Bedingung für ein lokales Extremum)

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ eine differenzierbare Funktion. Hat f in $a \in U$ ein lokales Extremum, so gilt grad f(a) = 0.

Def Eine symmetrische $n \times n$ -Matrix heißt

positiv definit, falls $\langle Ah, h \rangle > 0$ für alle $h \in \mathbb{R}^n$, $h \neq 0$.

positiv semidefinit, falls $\langle Ah, h \rangle \geq 0$ für alle $h \in \mathbb{R}^n$.

negativ definit, falls -A positiv definit ist, d.h. falls $\langle Ah, h \rangle < 0$ für alle $h \in \mathbb{R}^n, h \neq 0$.

negativ semidefinit, falls -A positiv semidefinit ist, d.h. falls $\langle Ah, h \rangle \leq 0$ für alle $h \in \mathbb{R}^n$.

indefinit, falls es Vektoren $h_1, h_2 \in \mathbb{R}^n$ gibt, so dass $\langle Ah_1, h_1 \rangle > 0$ und $\langle Ah_2, h_2 \rangle < 0$.

Lemma Sei A eine symmetrische $n \times n$ -Matrix. Seien $\lambda_1 \leq \lambda_2 \dots \leq \lambda_n$ die Eigenwerte von A. Dann gilt

$$\lambda_1 ||h||^2 \le \langle Ah, h \rangle \le \lambda_n ||h||^2$$
 für alle $h \in \mathbb{R}^n$.

Satz 2.8 Sei A eine symmetrische $n \times n$ -Matrix. Es gilt:

A ist positiv definit \Leftrightarrow alle Eigenwerte von A sind positiv

A ist negativ definit \Leftrightarrow alle Eigenwerte von A sind negativ

A ist indefinit \Leftrightarrow Es gibt mindestens einen positiven und mindestens einen negativen Eigenwert von A.

Satz 2.9(Sylvester-Kriterium, auch Hurwitz-Kriterium) Sei A eine symmetrische $n \times n$ -Matrix und $A_k, k = 1, ..., n$, ihre Hauptminoren. Dann gilt:

A ist positiv definit \Leftrightarrow Alle Hauptminoren von A sind positiv (d.h. $A_k > 0$ für alle k = 1, ..., n)

A ist negativ definit \Leftrightarrow Alle Hauptminoren gerader Ordnung sind positiv und alle Hauptminoren ungerader Ordnung sind negativ (d.h. $(-1)^k A_k > 0$ für alle k = 1, ..., n)

Satz 2.10(hinreichende Bedingung für ein lokales Extremum) Sei $U \subset \mathbb{R}^n$ offen, $f \in C^2(U)$, $a \in U$. Dann gilt:

- 1) Ist grad f(a) = 0 und $H_f(a)$ positiv definit, so besitzt f in a ein lokales Minimum.
- 2) Ist grad f(a) = 0 und $H_f(a)$ negativ definit, so besitzt f in a ein lokales Maximum.
- 3) Ist grad f(a) = 0 und $H_f(a)$ indefinit, so hat f in a kein lokales Extremum. In dem Fall nennt man a einen Sattelpunkt.

Konvexität

DefEine Menge $U\subset\mathbb{R}^n$ heißt konvex, wenn für je zwei Punkte $x,y\in U$ gilt:

$$\lambda x + (1 - \lambda)y \in U$$
 für alle $\lambda \in [0, 1]$,

d.h. wenn mit x, y auch die Verbindungsstrecke in U liegt.

Def Sei $U \subset \mathbb{R}^n$ konvex. Eine Funktion $f: U \to \mathbb{R}$ heißt konvex, wenn für je zwei verschiedene Punkte $x, y \in U$ und für alle $\lambda \in (0, 1)$ gilt:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Wenn die umgekehrte Ungleichung gilt, wird f konkav genannt. f heißt streng konvex bzw. streng konkav, falls wir echte Ungleichungen mit < bzw. > betrachten.

Satz 2.11 Sei $f: U \to \mathbb{R}$ eine C^2 -Funktion auf einer konvexen offenen Menge $U \subset \mathbb{R}^n$. Dann gilt:

- $H_f(x)$ ist positiv semidefinit für alle $x \in U \Leftrightarrow f$ ist konvex auf U
- $H_f(x)$ ist negativ semidefinit für alle $x \in U \Leftrightarrow f$ ist konkav auf U
- $H_f(x)$ ist positiv definit für alle $x \in U \Rightarrow f$ ist streng konvex auf U
- $H_f(x)$ ist negativ definit für alle $x \in U \Rightarrow f$ ist streng konkav auf U