Synteza strukturalna automatu Moore'a i Mealy

Pojęcie automatu

 $A=<Z,Q,Y,\Phi,\Psi,q0>$

Z – alfabet wejściowy

Y – alfabet wyjściowy

Q – zbiór stanów wewnętrznych

Φ - funkcja przejść

Ψ - funkcja wyjść

$$q(t+1) = \Phi (q(t), z(t))$$

$$y(t) = \Psi(q(t))$$
 – automat Moore'a $y(t) = \Psi(q(t), z(t))$ – automat Mealy

Przykład

Załóżmy, że mamy następujący graf automatu Moore'a

Ponieważ celem syntezy jest utworzenie układu elektronicznego działającego wg schematu, a układ ten operuje na bitach wobec tego występujące symbole w automacie (zi,qi,yi) należy odpowiednio przystosować do układu elektronicznego czyli po prostu zakodować.

1. Kodowanie sygnałów wejściowych

W przypadku naszego automatu są trzy sygnały wejściowe. Minimalna ilość bitów potrzebna do zakodowania wynosi 2. Oznacza to, że trzy sygnały Z_i będą kodowane na dwóch bitach oznaczonych jako Z_0 i Z_1 . Przykładowe kodowanie przedstawiono w tabeli.

	Z_1	Z_0
Z_0	0	0
\mathbf{z}_1	0	1
\mathbf{Z}_2	1	0

Tab.1

Nie jest to jedyny sposób kodowania. Możliwe jest kodowanie np. na trzech bitach

	Z_2	Z_1	Z_0
\mathbf{Z}_0	0	0	1
\mathbf{z}_1	0	1	0
\mathbf{Z}_2	1	0	0

Tab.2

Sposób wyboru kodowania narzuca nam często sposób podawania danych wejściowych.

2. Kodowanie sygnałów wyjściowych

Kodowanie to jest analogiczne do kodowania sygnałów wejściowych. Do zakodowania trzech sygnałów wyjściowych wystarczą dwa bity. W tabeli podano przykładowe kodowanie sygnałów wyjściowych. Kodowanie wyjść (podobnie jak i wejść) zależy od tego jak dalej będziemy z nich korzystać.

	Y_1	Y_0
\mathbf{y}_0	0	0
\mathbf{y}_1	0	1
y ₂	1	0

Tab.3

3. Kodowanie stanów

Elementem pamięciowym realizującym automat jest przerzutnik. W układzie logicznym stan automatu może być pamiętany jako kombinacja stanów przerzutników. W przypadku 3 stanów konieczne jest użycie dwóch przerzutników oznaczonych np. jako Q_0 i Q_1 . Symbol Q_i oznacza jednocześnie przerzutnik i-ty oraz wyjście przerzutnika. W tabeli niżej przedstawiono przykładowy sposób kodowania stanów

	Q_1	Q_0
q_0	0	0
q_1	0	1
q_2	1	1

Tab.4

Stan q₂ zakodowano jako kombinację 11 a nie 10, aczkolwiek obie kombinacje są dopuszczalne. Takie zakodowanie powinno trochę uprościć układ.

4. Kodowanie tabeli przejść

Na podstawie tabeli przejść przedstawionej na rysunku oraz tabeli kodowania możemy przedstawić zakodowana tabelę przejść

1	t	t+1							
q_i	Zi	q_i		Q_1	Q_0	\mathbf{Z}_1	Z_0	Q_1	Q_0
q_0	Z_0	q_2	\Rightarrow	0	0	0	0	1	1
q_1	Z_0	q_0	\Rightarrow	0	1	0	0	0	0
q_2	Z_0	q_1	\Rightarrow	1	1	0	0	0	1
q_0	\mathbf{z}_1	q_1	\Rightarrow	0	0	0	1	0	1
q_1	\mathbf{z}_1	q_2	\Rightarrow	0	1	0	1	1	1
q_2	*Z1	q_0	\Rightarrow	1	1	0	1	0	0
q_0	\mathbf{Z}_2	q_0	\Rightarrow	0	0	1	0	0	0
q_1	\mathbf{Z}_2	q_1	\Rightarrow	0	1	1	0	0	1
q_2	\mathbf{Z}_2	q_2	\Rightarrow	1	1	1	0	1	1

Tab.5

5. Synteza przejść

Należy określić pobudzenie wejść przerzutników. Do tego niezbędna jest tabela przejść przerzutnika. Poniżej przedstawiono tabele dla przerzutników D, T, JK. Symbol * oznacza wartość nieistotną

Q(t)	Q(t+1)	D(t)	T(t)	J(t)	K(t)
0	0	0	0	0	*
0	1	1	1	1	*
1	0	0	1	*	1
1	1	1	0	*	0

Tab.6

Przytoczone tabele należy czytać następująco. Np. dla T – jeśli przerzutnik ma przejść ze stanu 0 (Q(t)) do stanu 0 (Q(t+1)) to na wejście T przerzutnika należy podać sygnał 0.

Proces syntezy zostanie pokazany jednocześnie na trzech typach przerzutników (zazwyczaj wykonujemy go na jednym typie przerzutników).

Korzystając z tabel przejść przerzutników oraz zakodowanej tabeli przejść można uzyskać następującą tabelę pobudzeń. Tabelę tę wypełniamy następująco: np. dla wiersza drugiego wynika, że przerzutnik Q_1 przechodzi ze stanu 0 dla chwili t do stanu 0 w chwili t+1. Wobec tego na podstawie tabeli 6 dla D_1 wpiszemy 0, dla T_1 - 1, a dla J_1 -0 i K_1 -*

		t		t+	-1								
\mathbf{Q}_1	Q_0	Z_1	Z_0	Q_1	Q_0	D_1	D_0	T_1	T_0	J_1	\mathbf{K}_1	J_0	K_0
0	0	0	0	1	1	1	1	1	1	1	*	1	*
0	1	0	0	0	0	0	0	0	1	0	*	*	1
1	1	0	0	0	1	0	1	1	0	*	1	*	0
0	0	0	1	0	1	0	1	0	1	0	*	1	*
0	1	0	1	1	1	1	1	1	0	1	*	*	0
1	1	0	1	0	0	0	0	1	1	*	1	*	1
0	0	1	0	0	0	0	0	0	0	0	*	0	*
0	1	1	0	0	1	0	1	0	0	0	*	*	0
1	1	1	0	1	1	1	1	0	0	*	0	*	0

Tab.7

Z tabeli wynika, że równanie pobudzenia dla D_1 jest następujące (zapisujemy je formie sum iloczynów, więc bierzemy tylko pozycje, gdzie D_1 =1 - zmiennymi są wartości w chwili t czyli Q_0 , Q_1 , Z_0 , Z_1):

$$D_1 = /Q_1/Q_0/Z_1/Z_0 + /Q_1Q_0/Z_1Z_0 + Q_1Q_0Z_1/Z_0$$

Możemy oczywiście próbować minimalizować dalej to wyrażenie, ale można to zrobić za pomocą tablic Karnaugh, które dla D1 i Do wyglądają następująco

D_1				
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	11,		*	
01		[1	*]	
11		,	(*	1)
10	*	*	*	*
Tab.8				

D_0				
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	T.	A	*)	
01		L	*	1)
11	1		*	
10	*	*	*	*
Tab.9				

Proszę zauważyć, że w tabeli przejść (tab.7) nie ma kombinacji Z_1Z_0 =11 oraz Q_1Q_0 =10, dlatego dla tych pozycji możemy wstawić znak *(składnik obojętny) i wykorzystać to w

minimalizacji. I tak na podstawie tabeli Karnaugh pobudzenia dla poszczególnych wejść przerzutników przedstawiają się następująco:

$$D_1 = /Q_0/Z_1/Z_0 + /Q_1Q_0Z_0 + Q_1Z_1$$

$$D_0 = Q_1/Z_0 + /Q_0/Z_1 + Q_0Z_1 + /Q_1Z_0$$

Analogicznie można zbudować tablicę dla przerzutników T

T_1		_	_	
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	11,		*	
01		1	*	
11	1	I	*	
10	*	*	*	*

Tab.10

T_0		_	_	_
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	1	1,	*	
01	T		*	
11		1	*	
10	<i>(</i> *	*	*	*
		$\overline{}$	$\overline{}$	•

Tab.11

Po zminimalizowaniu

$$T_1 = /Q_0/Z_1/Z_2 + Q_1/Z_1 + Q_0Z_0$$

$$T_0 = /Q_1/Z_1/Z_0 + /Q_0/Z_1 + Q_1Z_0$$

W przypadku przerzutników JK tablic będzie dwa razy więcej

J_1				_
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	$\lfloor 1 \rfloor$		*	
01		1	*	
11	*	*	*	*
10	*	*	*	*
I /0 /	7 /7	107		

 $J_1 = /Q_0/Z_1/Z_0 + Q_0Z_0$

K_1	
\cap	

$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	*	*	*	*
01	*	*	*	*
11	1	1	*	0
10	*	*	*	*
-	/-			-

 $K_1 = /Z_1$

Tab.12

100.11

J_0		_	_	_
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10
00	1	1	*	0
01	*	*	*	*
11	*	*	*	*
10	*	*	*	*
$J_0 = /Z_1$				

Tab.14

K_0					
$Q_1Q_0\backslash Z_1Z_0$	00	01	11	10	
00	*	*	*	*	
01	1	0	*	0	
11	0	1	*	0	
10	*	*	*	*	
$K_0 = /Q_1/Z_1/Z_0 + \overline{Q_1Z_0}$					

, (, , , ,

6. Synteza sygnałów wyjściowych

Z zasady działania automatu Moore'e wynika, że wyjście zależy tylko od stanu automatu. Innymi słowy wartość wyjścia jest funkcją stanów. Na podstawie tab 3 i tabeli 4 oraz grafu można wyrysować następującą tabelę.

Tab.15

q	y	Q_1	Q_0	Y_1	Y_0
q_0	\mathbf{y}_0	0	0	0	0
q_1	\mathbf{y}_1	0	1	0	1
q_2	V 2	1	1	1	1

Tab. 16

Na podstawie tej tabeli można wypisać formuły logiczne dla Y_1 i Y_2 np. jako suma iloczynów (analizujemy tylko te kombinacje Q_1Q_0 , które dla danego Y_i dają wartość 1). Otrzymujemy następujące formuły:

$$Y_1(Q_1,Q_0) = Q_1Q_0$$

 $Y_0(Q_1,Q_0) = Q_1Q_0 + Q_1Q_0 = Q_0$

Przy bardziej złożonych funkcjach należałoby zastosować np. tablice Karnaugh do minimalizacji funkcji jak przedstawiono jak w tab. 17

Y_0				\mathbf{Y}_1		
$Q_1 \setminus Q_0$	0	1		$Q_1 \setminus Q_0$	0	1
0	0	0		0	0	$\overline{1}$
1	*	1		1	*	
Tab.17			-			

Na podstawie Tab.17 uzyskamy identyczne równania jak z tab.16

7. Synteza automatu Mealy

Synteza automatu Mealy nie różni się mocno od Moore'a. Jedyna różnica występuje tylko przy syntezie sygnałów wyjściowych. W automacie Mealy wyjście $y_i=f(q,z)$ a w automacie Moore $y_i=f(q)$. Wskutek tej różnicy w tabeli 16 dla automatu Mealy pojawią się dodatkowo sygnały wejściowe z.

METODA H1

Metoda H1 (hot one) polega na takim zakodowaniu tabeli stanów na przerzutnikach, że każdemu stanowi odpowiada jeden aktywny przerzutnik. Zgodnie z tą ideą tabela 4 wyglądałaby następująco:

	Q_2	Q_1	Q_0
q_0	0	0	1
q_1	0	1	0
q_2	1	0	0

Do syntezy takiego automatu można użyć metody przedstawionej wcześniej. Ale w przypadku użycia przerzutników D można skorzystać z metody uproszczonej przedstawionej niżej.

Weźmy nasz graf automatu.

Wynika z niego iż w czasie t+1 nastąpi przejście do stanu q_0 jeżeli będzie spełniony jeden z następujących warunków:

- w chwili t automat jest w stanie q₁ i zostanie podany sygnał z₀,
- w chwili t automat jest w stanie q₂ i zostanie podany sygnał z₁,
- w chwili t automat jest w stanie q₀ i zostanie podany sygnał z₂,

Możemy to zapisać następująco:

$$q_0(t+1) = q_1(t) * z_0(t) + q_2(t) * z_1(t) + q_0(t) * z_2(t)$$
(1)

Upraszczając - analizujemy strzałki dochodzące do stanu q₀.

Ponieważ w każdym stanie tylko jeden przerzutnik jest aktywny więc np. stan q_0 , który po przekodowaniu byłby zapisany jako $/Q_2/Q_1Q_0$ (przy zapisie funkcji jak suma iloczynów) można uprościć tylko do jednego symbolu Q_0 . Analogicznie jest dla pozostałych stanów. Jeżeli do syntezy użyje się przerzutnika D, dla którego Q(t+1)=D(t) to powyższą zależność można przekodować następująco:

$$D_0 = Q_1 z_0 + Q_2 * z_1 + Q_0 * z_2$$
 (2)

W powyższym wyrażeniu nie zakodowaliśmy sygnałów z. W tym celu jeżeli wykorzystamy tabelę 2

	Z_1	Z_0
Z_0	0	0
\mathbf{z}_1	0	1
\mathbf{Z}_2	1	0

Zgodnie z jej danymi $z_0=/Z_1/Z_0$, $z_1=/Z_1Z_0$, $z_2=Z_1/Z_0$. Jeżeli wstawimy te kodowania do wyrażenia (2) to będzie ono wyglądało następująco:

$$D_0 = Q_1/Z_1/Z_0 + Q_2/Z_1Z_0 + Q_0 Z_1/Z_0$$
(3)

Analogiczną operację należy przeprowadzić dla wierzchołków q₁ i q₂. Uzyskamy nast. wyrażenia:

$$q_1(t+1) = q_2(t) * z_0(t) + q_0(t) * z_1(t) + q_1(t) * z_2(t)$$

$$q_2(t+1) = q_0(t)*z_0(t)+q_1(t)*z_1(t)+q_2(t)*z_2(t)$$

Po przekodowaniu:

$$D_1 = Q_2/Z_1/Z_0 + Q_0/Z_1Z_0 + Q_1 Z_1/Z_0$$

$$D_2 = Q_0/Z_1/Z_0+Q_1/Z_1Z_0+Q_2 Z_1/Z_0$$

Mamy zatem konieczne wyrażenia potrzebne do narysowania schematu. Przy rysowaniu schematu należy pamiętać, iż w wyniku resetu automat musi znaleźć się w stanie q_0 czyli reset musi ustawić przerzutnik Q_0 na '1' a pozostałe na '0'.

Należy jeszcze odpowiednio zakodować wyjścia.