

华中科技大学 2021~2022 学年第一学期 " 复变函数与积分变换 " 考试试卷(A 卷)

	考试方式:	闭卷_	考试日期:_	2021-11-2	7_ 考试时长	: <u>150</u> 分钟
	院 (系): _			专业班级	!:	
	学号:_			姓 名	; :	
_	一、单项选择题	(無期 9分.	生 24 分)			
			. ,			
1.	复数 $\left(-\cos\frac{\pi}{7}\right)$	$(i\sin\frac{\pi}{7})^i$ 的	值为 ().			
	A. $e^{\frac{\pi}{7}-2k\pi}$, (A.	$k \in \mathbb{Z}$),		$B. e^{\frac{6\pi}{7}-2k\pi}$	$, (k \in Z),$	
	$C \cdot e^{-\frac{\pi}{7} + 2k\pi}, $	$(k \in Z)$,]	D. $e^{-\frac{6\pi}{7}+2k\pi}$	$(k \in Z)$.	
2.	复数 $i(\cos\frac{\pi}{6}-i)$	$\sin\frac{\pi}{6}$) 的主	福角为 ().			
	A. $\frac{1}{6}\pi$,	$B. \frac{1}{3}\pi,$	C. $\frac{2}{3}\pi$, ,	$D\frac{1}{6}\pi.$	
3.	设 $f(z) = u(x, y)$)+ <i>iv</i> (<i>x</i> , <i>y</i>) 在	单位圆 z <1卢	可解析,则 ⁻	下列说法不正确	的是 ().
	A. 二元函数	u(x,y)和 $v(x)$;,y)在单位圆[z < 1 内可微	枚;	
	B. 二元函数:	u(x,y)和 $v(x,y)$,y)在单位圆 z	: <1内的偏	导数连续;	
	C. 复变函数	f(z)在闭曲组	桟 z =1上积分	为0;		
	D. 复变函数	f(z)单位圆 $ $	z < 1 内能够展	开为泰勒组	及数.	
4.	函数 $f(z) = x^2$	$-y^2 - 2x + 1 +$	i(2xy-2y)在}	点 $z = 1 + i$ 处	上的旋转角为().
	A. $\frac{\pi}{4}$,	B. $-\frac{\pi}{4}$,	C.	$\frac{\pi}{2}$,	D. $-\frac{\pi}{2}$.	
5.	设 C 为椭圆曲组		,则积分 ∮ _c (co	$\cos z + \frac{1}{z - 2} +$	$-\frac{1}{z-i}$) dz 的值为	().
	A.0,	B.2πi,	$C.4\pi i$. •	$D.6\pi i$.	

6. 3	若 C 为单位圆周, $f(z) = \oint_C \frac{\xi^2 + 1}{2(z - \xi)} d\xi$,则 $f'(2)$ 的值为().
	A. 0 , B. -2 , C. 2 , D. 4 .
7. :	级数 $\sum_{n=0}^{+\infty} \frac{1}{(2z)^n}$ 的收敛域为 ().
	A. $ z < \frac{1}{2}$, B. $ z > \frac{1}{2}$, C. $ z < 2$, D. $ z > 2$.
8.	函数 $\frac{\tan z}{z + \frac{\pi}{2}}$ 在点 $z = \frac{\pi}{4}$ 展开成 Taylor 级数的收敛半径为().
	A. $\frac{\pi}{4}$, B. $\frac{\pi}{2}$, C. $\frac{3\pi}{4}$, D. $\frac{5\pi}{4}$.
9.	$z = 0$ 是函数 $\frac{1 + \sin z - e^z}{1 - \cos^2 z}$ 何种类型的奇点? ().
	A 一阶极点, B. 二阶极点, C. 三阶极点, D. 可去奇点.
10.	在区域 $\{z: -\pi < Imz < \pi, Rez > -1\}$ 上,下列哪个函数不为共形映射? ()
	A. $w = z$, B. $w = \frac{1}{z}$, C. $w = 1$, D. $w = e^z$.
11.	设 $f(t) = e^{- t }$, 则 $f(t)$ 的 Fourier 变换为().
	A. $\frac{2}{1+\omega^2}$, B. $\frac{1}{1+\omega^2}$, C. $\frac{j\omega}{(1+\omega^2)}$, D. $\frac{2j\omega}{(1+\omega^2)}$.
12.	函数 $(2-t)^2\delta(t-1)$ 与函数 $\cos t$ 的卷积为().
	A. $4\cos t$, B. $\cos t$, C. $\cos(t-1)$, D. $\cos 1$.
二、	(12 4) 设 $u(x,y) = x^3 + ax^2y + bxy^2 + y^3$, 求 a,b 的值使 $u(x,y)$ 为调和函数,并求出
	解析函数 $f(z) = u(x, y) + iv(x, y)$.
三、	(12 5) 把函数 $f(z) = \frac{1}{z^2(z-i)}$ 在下列环域内展开为 Laurent 级数:

第 2页共 3页

(2) $1 < |z - i| < +\infty.$

(1) 0 < |z| < 1,

四、计算下列积分(每题5分,共10分)。

1.
$$\int_C \left(\frac{3z}{\overline{z}} + \sin\frac{\pi z}{2}\right) dz$$
, 其中 C 为 $|z| = 1$ 上从 -1 到 1 的上半单位圆周,

$$2. \oint_{|z|=1} \frac{e^{iz} - e^{i2z}}{z^2} dz.$$

五、计算下列积分(每题5分,共10分)。

1.
$$\oint_{|z|=2} \frac{z^{13}}{(z^2-1)(z^8+1)} dz$$
,

2.
$$\int_0^{+\infty} \frac{1}{(x^2+3)(x^2+5)} dx$$
.

六、(6 分) 求区域 $D = \left\{z: |z - \frac{1}{2}| > \frac{1}{2}, \operatorname{Re} z > 0, \operatorname{Im} z > 0\right\}$ 在映射 $w = e^{\frac{\pi}{3}i(\frac{z-1}{z})}$ 下的像。

(答题过程需用图形表示)

七、(10 分) 求一共形映射
$$w = f(z)$$
,将 z 平面上的区域 $D = \left\{ z : |z - \frac{1}{2} + \frac{i}{2}| > \frac{\sqrt{2}}{2}, \operatorname{Im} z < 0 \right\}$

映射到w平面的单位圆。(答题过程需用图形表示)

八、(10 分) 利用 Laplace 变换求解下面常微分方程组:

$$\begin{cases} x'(t) + y(t) = 2e^t, & x(0) = 1, \\ y'(t) - x(t) = -t, & y(0) = 0. \end{cases}$$

九、(6 **%**) 若函数 f(z)在 $|z| \le 2$ 上解析且满足 $|f'(z)-1| \le |z|$, 证明 $|f''(1)| \le 3$.