Soluciones

P1) Es fácil deducir que $D_1 = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ y $D_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + 2y^2 \ge 1\}$. En las figuras siguientes se muestran $D_1 \cup D_2$ y $D_1 \cap D_2$, respectivamente.

Por tanto, $D_1 \cup D_2$ es cerrado (incluye los puntos frontera) y $D_1 \cap D_2$ es compacto (es cerrado y acotado). Además, $D_1 \cup D_2$ está acotado. Todas son correctas.

P2) La solución correcta es (a).

Sea $\{x_n\}$ una sucesión tal que $x_n \to 0$. Entonces $f(x_n) \to \infty$. Elegimos la sucesión $\{y_n\}$ tal que $y_n \to 0$ y $g(y_n) > 2f(x_n)$. La sucesión $\{(x_n,y_n)\}$ verifica que $(x_n,y_n) \to (0,0)$ y $f(x_n) - g(y_n) < -f(x_n) \to -\infty$.

Si repetimos la construcción intercambiando los papeles de f y g, llegamos a que existe $(x'_n, y'_n) \to 0$ pero $f(x'_n) - g(y'_n) \to \infty$.

P3) Observamos que

$$A = \{x \in \mathbb{R}^{m} : f(x) = g(x)\} = \{x \in \mathbb{R}^{m} : (f - g)(x) = 0\} = (f - g)^{-1}(\{0\}).$$

Como f - g es continua, el conjunto $\{0\}$ es cerrado y A es su imagen inversa, A es cerrado.

Sin embargo, puede que A no sea compacto (por ejemplo, si f(x) = g(x) en todo \mathbb{R}^m).

- **P4)** La solución correcta es la primera. La imagen de un compacto es un compacto y $f(B) \subset f(\overline{B})$.
- **P5)** Se ve fácilmente que los límites laterales son cero. Sin embargo, si calculamos el límite en la región $S = \{(x,y) \in D : y = x^2 + x^{3k}\}$, resulta

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in S}}\frac{(xy)^k}{y-x^2}=\lim_{x\to 0}(1+x^{3k-2})^k=1,$$

de modo que el límite no existe independientemente del valor de $k \in \mathbb{N}.$

P6) Si llamamos $S_1 = \{(x,y) \in D : x > 0\}$ y $S_2 = \{(x,y) \in D : x < 0\}$, entonces

$$\begin{split} & \underset{(x,y) \rightarrow (0,k)}{\underset{(x,y) \in S_1}{\text{lim}}} f(x,y) = \phi(k), \\ & \underset{(x,y) \rightarrow (0,k)}{\text{lim}} f(x,y) = 2\phi(k) - k. \end{split}$$

Será continua si y sólo si $\phi(k) = k$.

P7) Si escribimos la función en coordenadas polares $u = x \cos y$, $v = x \sin y$, resulta

$$|f(u,v)| = \left| \frac{u^4(\cos^4v + \operatorname{sen}^4v) + \operatorname{au}^3\cos^2v\operatorname{sen}v}{u^2(2 - \cos v\operatorname{sen}v)} \right| \leqslant \frac{u^2(\cos^4v + \operatorname{sen}^4v)}{2 - \cos v\operatorname{sen}v} + \frac{|\operatorname{au}\cos^2v\operatorname{sen}v|}{2 - \cos v\operatorname{sen}v}.$$

Teniendo en cuenta que $2-\cos\nu \, {\rm sen} \, \nu \geqslant 1$, tenemos la acotación

$$|f(x,y)| \le u^2(\cos^4 v + \sin^4 v) + |au\cos^2 v \sin v|.$$

Por lo tanto,

$$0\leqslant \lim_{u\to 0}|f(u,\nu)|\leqslant \lim_{u\to 0}(u^2(\cos^4\nu+\sin^4\nu)+|\alpha u\cos^2\nu\sin\nu|)=0,$$

para cualquier valor de $\alpha \in \mathbb{R}$.