Module 4: The General Energy Equation (CIVL 318)

GEE:	$\frac{p_A}{\gamma} + z_A + \frac{v_A^2}{2g} + h_A - h_R - h_L$	=	$\frac{p_B}{\gamma} + z_B + \frac{v_B^2}{2g}$
Power added by a pump:	P_A	=	$h_A \gamma Q$
Power removed by a turbine:	P_R	=	$h_R \gamma Q$
Efficiency of a pump:	e_M	=	$\frac{\text{power delivered to fluid}}{\text{power input to pump}} = \frac{P_A}{P_I}$
Efficiency of a turbine:	e_M	=	$\frac{\text{power output from turbine}}{\text{power removed from fluid}} = \frac{P_O}{P_R}$

Example 1:

Liquid with a specific gravity of 0.9 flows from a tank, pressurized to $57\,\mathrm{kPa}$, through the pipe system shown, before entering the atmosphere through a nozzle with diameter $125\,\mathrm{mm}$.

If the volume flow rate is $Q=89\,\mathrm{L/s}$, determine h_L , the head loss due to friction and fittings.

Example 2:

Liquid with a specific gravity of 0.87 is pumped from Tank 1; the liquid exits the pipe at C before dropping into Tank 2 at 180 L/s.

Determine the head added by the pump and the pressure at \boldsymbol{A} .

(Assume that friction losses are not significant.)

Exercise 1:

Liquid with a specific gravity of 0.87 is pumped from Tank 1; the liquid exits the pipe at C before dropping into Tank 2 at 180 L/s. (Neglect any head losses due to friction and valves.)

Determine the pressure at B:

- (1) First, by applying the GEE between the surface of Tank 1 and B;
- (2) Second, by applying the GEE between A and B;
- (3) Finally, by applying the GEE between B and C.

Example 3:

Water flows from A to B at the rate of $120~{\rm L/s}$ Determine the head removed by the turbine.

Example 4:

A pump produces a flow of 1024~L/min of kerosene with a specific gravity of 0.823 from vented underground storage to an elevated tank pressurized to 512~kPa. Energy loss between the underground storage and the pump is 0.95~m and energy loss between the pump and the elevated tank is 4.9~m.

- (a) Determine the power added to the fluid by the pump.
- (b) If the pump has an efficiency of 73%, determine the (electrical) power drawn by the pump.
- (c) Determine the gauge and the absolute pressure at the pump inlet.

Exercise 2:

Oil, with sg = 0.87, flows from a tank pressurized at 130 kPa at a rate of 72 L/s and powers a fluid motor as shown. Energy losses due to friction and fittings between the tank and B are estimated to be 1.81 m.

If the pressure at B is found to be $-56~\rm kPa$ and the motor has an efficiency of 78%, determine the power output from the motor.

Example 5:

A car fuel pump pumps 1 L of gasoline every 45~s when is has a suction pressure of 155~mm of mercury vacuum and a discharge pressure of 32~kPa. Both the suction and the discharge lines have the same diameter.

If the pump efficiency is 68%, determine the power drawn from the engine.

Example 6:

Water flows at a steady rate in a vertical pipe. Two pressure gauges are set $10\,\mathrm{m}$ apart, as shown. There are no pumps or turbines and the pipe is of constant diameter.

Determine which of the following is true:

- (a) flow is upward
- (b) flow is downward
- (c) there is no flow

Exercise 3:

A rural house relies upon a shallow well for its water supply. The pump at the well is required to supply $210\,L/min$ of water. The water tank at the house maintains a pressure of $280\,kPa$. Friction losses in the pipe amount to $4.35\,m$.

If the pump is 72% efficient, determine the power delivered to the pump by the electrical supply and the power added to the water by the pump.