

Pablem3:	S. American A.
	4
(self regulated Current source) M5 7 5 6 C.	,十一一
Find 1. Rout Q.DC	
2. Compliance VIIIe Va -1 Ma May	1 =
2. Compliance Voltage Vc - Mg Mash of the Current source	
3. Vc For oftimum Compliance I d. Zout (F)	MIZI-V
4. Zout (F)ss]	+ (Comir
Assuming ideal IsulCan accept - Ve Voltage	From a CVIIIcr
Assuming ideal IssilCan accept - Ve Holton)
2. VComp. = VC + Veffz	3
3. For oftimum Compliance, Vc = Veff	
V Comp. = Veff, + Veff,	- F # . 7
	I'de vixe
$V_{x} = i_{x} r_{o_{1}} + i_{x} (1 + 9 m_{2} r_{o_{1}} (1 + A)) r_{o_{2}} $	132 -
0 / / / / / / / / / / / / / / / / / / /	-17 M.
Rout = Vx = 161 + 162 + 9m2 162 (0, (1+A) =	- 9
Rout = 9 m2 roz ro, (1+A) - 9 m2 1/ro, (1+A)	1×(1+ m 61)
$n = m_0 + 103 / 166$	THE TY
4. A(s) = 8m3 (1/1/03/1/05) - 1/2/	J& Dix
$= g_{m_3} \cdot \frac{(r_{o_3}/ r_{o_5})_* - \frac{1}{5C_2}}{(d_{o_3}/ r_{o_5}) + \frac{1}{5C_2}} r_{o_1} = 0$	xYo,
(do3/165) + 5C2	ιχ
= 8m3. (103/1105) 1	
1+502(103/1109	
Zout (5) = 9m2 roz (01 (1+A(5)) 1.	5G

Problem (4):

For the Wilson Cullent miller showing

- 1) Find an expression for Vamplionce and Rout
- 2) Does the Cullent millor Suffer flow Systematic offset? Explain

Rout: - Uy = Ux gmi

 $\frac{V_z = -9m_2 c_2 V_y}{= -9m_2 c_2 V_x}$

 $= \frac{i_x}{9m_1} + \left[1 + \frac{9m_3}{9m_1} \left(9m_2 r_0 + 1\right)\right] i_x r_0$

Rout = Ux = 3ma 3m2 162 103

2) Yes, $Y_{0s_1} \neq Y_{0s_2}$. $Y_{0s_1} = Y_{6s_1}$. $Y_{0s_2} = Y_{6s_1} + Y_{6s_3}$

 $J = \frac{W_1}{W_2} \frac{I}{REF} \frac{(1+\lambda V_{6S1})}{[1+\lambda (V_{6S1})]}$ $\frac{1}{4V_{6S1}}$