Tutorial Eliminação de Gauss

J.M.Valério de Carvalho Dept. Produção e Sistemas Universidade do Minho 2010

Conteúdo

- Introdução
- Operações Elementares em matrizes
- Eliminação de Gauss
- Aplicação a Exemplos

Introdução

- O Método de Eliminação de Gauss consiste na aplicação de operações elementares em matrizes, de modo a obter um resultado desejado, como, por exemplo, a solução de um sistema de equações.
- Deve o seu nome a Carl Friedrich Gauss, que foi um matemático, astrónomo e físico alemão (1777-1855).
- O Método de Eliminação de Gauss é leccionado no ensino secundário e também em disciplinas introdutórias de Algebra, no ensino superior.

Operações elementares com matrizes

- Multiplicar uma linha por uma constante.
- Adicionar uma linha multiplicada por uma constante a outra linha.
- Trocar duas linhas.

Exemplo 1 (i)

• Aplicação do Método de Eliminação de Gauss à resolução do sistema de equações:

•
$$4 x + 5 y = 200$$

•
$$6 x + 4 y = 230$$

•
$$1 x + 2 y + z = 70$$

• O sistema de equações pode ser representado num quadro:

	X	У	Z		
Equação 1:	4	5	0	=	200
Equação 2:	6	4	0	=	230
Equação 3:	1	2	1	=	70

Exemplo 1 (ii)

• Multiplicação da primeira linha pela constante 1/4.

Exemplo 1 (iii)

• Adição da primeira linha multiplicada pela constante -6 à segunda linha.

O porquê do nome ...

- Ao adicionar uma linha multiplicada por uma constante (escolhida convenientemente) a outra linha, eliminamos uma variável dessa linha (equação).
- Daí a designação de Eliminação de Gauss
- Isso acontece na Equação 2 do slide anterior:
- Equação 2: 6x + 4y = 230.
- Equação 1: x + 5/4 y = 50, ou seja, x = 50 5/4 y.
- Assim,
- 6 (50-5/4y) + 4y = 230 é equivalente a -7/2 y = -70, e equivalente a y=20.

Exemplo 1 (iv)

• Adição da primeira linha multiplicada pela constante -1 à terceira linha.

Nota:

- Após efectuarmos estas operações elementares, a coluna de x é uma coluna da matriz identidade, ou seja,
- a variável x só aparece na Equação 1.

• Iremos efectuar outras operações elementares para atingir os mesmos objectivos com as colunas de y e z.

Exemplo 1 (v)

• Multiplicação da segunda linha pela constante -2/7.

Exemplo 1 (vi)

• Adição da segunda linha multiplicada pela constante -5/4 à primeira linha.

Exemplo 1 (vii)

• Adição da segunda linha multiplicada pela constante -3/4 à terceira linha.

Exemplo 1 (viii)

- Após efectuar operações válidas com as linhas da matriz, obtemos a solução do sistema de equações:
- a primeira equação diz que x=25, a segunda que y=20 e a terceira que z=5.

Pivot

- No processo de resolução, obtivemos colunas da matriz identidade para as variáveis x, y e z.
- O elemento que dá origem ao 1 na coluna da matriz identidade é designado por elemento pivot.
- Usámos como elementos pivots os elementos (1,1) e
 (2,2) da matriz; não foi preciso fazê-lo para (3,3).

Elemento Pivot

- Para usar o elemento (i,j) como elemento pivot:
- A linha i é multiplicada por uma constante,
- A linha i é multiplicada por uma constante (escolhida convenientemente e dependendo de cada linha) e adicionada a cada uma das outras linhas.

• Depois das operações, a coluna j tem um 1 na linha i e 0s nas outras linhas.

Exemplo 2 (i)

- Quando, a par da resolução do sistema de equações, se pretende obter a matriz inversa, o método é aplicado com uma matriz estendida com a matriz identidade.
- O elemento pivot é assinalado com .

	X	У	Z				
Equação 1:	4	5	0	1	0	0	200
Equação 2:	6	4	0	0	1	0	230
Equação 3:	1	2	1	0	0	1	70

Exemplo 2 (ii)

```
   x
   y
   z

   Equação 1:
   4
   5
   0
   1
   0
   0
   200

   Equação 2:
   6
   4
   0
   0
   1
   0
   230

   Equação 3:
   1
   2
   1
   0
   0
   1
   70
```

```
   x
   y
   z

   Equação 1:
   1
   5/4
   0
   1/4
   0
   0
   50

   Equação 2:
   0
   -7/2
   0
   -6/4
   1
   0
   -70

   Equação 3:
   0
   3/4
   1
   -1/4
   0
   1
   20
```

Exemplo 2 (iii)

```
   x
   y
   z

   Equação 1:
   1
   5/4
   0
   1/4
   0
   0
   50

   Equação 2:
   0
   -7/2
   0
   -6/4
   1
   0
   -70

   Equação 3:
   0
   3/4
   1
   -1/4
   0
   1
   20
```

Já se obteve a matriz identidade na parte esquerda.

Definição Matricial

- O sistema de equações pode ser representado pela equação matricial Ax = b.
- Se as colunas de A forem linearmente independentes (existindo a matriz inversa A^{-1}), então a solução do sistema de equações é dada por $x = A^{-1}b$.
- As operações efectuadas correspondem a pré-multiplicar por A⁻¹ a seguinte matriz.

Pré-multiplicação por A⁻¹

Exemplo 3

- Iremos de seguida aplicar o Método de Eliminação de Gauss usando o elemento pivot indicado.
- Não é aqui apresentada uma justificação para a forma como foi seleccionado, que decorre do método simplex.
- A Eliminação de Gauss é efectuada com cálculos linha a linha.

Eliminação de Gauss: elemento pivot

	Z	x1	x2	x 3	x 4	x 5	
x 3	0	5	4	1	0	0	200
x 4	0	4	6	0	1	0	230
x 5	0	2	1	0	0	1	70
Z	1	-10	-9	0	0	0	0

Elemento pivot: cruzamento linha e coluna pivots

Pretende-se obter:

	Z	x1	x2	x 3	x 4	x 5	
x 3	0	0		1	0		
x 4	0	0		0	1		
x1	0	1		0	0		
Z	1	0		0	0		

Quadro anterior

	Z	x1	x2	x 3	x 4	x5	
x 3	0	5	4	1	0	0	200
x 4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
Z	1	-10	-9	0	0	0	0

Linha pivot: dividir linha pivot por elemento pivot

Parte do novo quadro - I

	Z	x 1	x2	x 3	x 4	x5	
x 3		0					
x 4							
x1	0	1	1/2	0	0	1/2	35
Z							

Quadro anterior

	Z	x1	x2	x 3	x 4	x 5	
x 3	0	5	4	1	0	0	200
x4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
Z	1	-10	-9	0	0	0	0

folha de cálculo: adicionar linha pivot multiplicada por -5 à linha de x3

	Z	x1	x2	x 3	x 4	x5	
x 3	0	5	4	1	0	0	200
-5.x1	0	-5	-5/2	0	0	-5/2	-175
Total	0	0	3/2	1	0	-5/2	25

Linha pivot:

x 1	0	1	1/2	0	0	1/2	35
		į					

29

J.M. Valério de Carvalho

Parte do novo quadro - II

	Z	x 1	x2	x 3	x 4	x5	
x3	0	0	3/2	1	0	-5/2	25
x4		0					
x1	0	1	1/2	0	0	1/2	35

Quadro anterior

	Z	x1	x2	x 3	x 4	x5	
x 3	0	5	4	1	0	0	200
x4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
Z	1	-10	-9	0	0	0	0

folha de cálculo: adicionar linha pivot multiplicada por -4 à linha de x4

	Z	x1	x2	х3	x 4	x 5	
x4	0	4	6	0	1	0	230
-4.x1	0	-4	-2	0	0	-2	-140
Total	0	0	4	0	1	-2	90

Linha pivot:

x 1	0	1	1/2	0	0	1/2	35
		ļ					

32

Parte do novo quadro - II

	Z	x 1	x2	x 3	x 4	x5	
x 3	0	0	3/2	1	0	-5/2	25
x 4	0	0	4	0	1	-2	90
x 1	0	1	1/2	0	0	1/2	35
Z		0					

Quadro anterior

	Z	x1	x2	x 3	x 4	x5	
x 3	0	5	4	1	0	0	200
x 4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
Z	1	-10	-9	0	0	0	0

folha de cálculo: adicionar linha pivot multiplicada por 10 à linha de z

	Z	x1	x2	х3	x 4	x 5	
Z	0	-10	-9	0	0	0	0
10.x1	0	10	5	0	0	5	350
Total	0	0	-4	0	0	5	350

Linha pivot:

x1	0	1	1/2	0	0	1/2	35
			į				

J.M. Valério de Carvalho

Quadro completo

			x2				
x3	0	0	3/2	1	0	-5/2	25
x 4	0	0	3/2 4 ½	0	1	-2	90
x 1	0	1	1/2	0	0	1/2	35
	1	0	-4	0	0	5	350

Exemplo 4

- Os cálculos do Método de Eliminação de Gauss podem ser efectuados elemento a elemento.
- Esses cálculos são os que resultam para cada elemento das operações elementares efectuadas com as linhas.
- É útil conhecer esta forma de efectuar cálculos elemento a elemento para eventualmente verificar, em caso de dúvida, se um elemento foi calculado correctamente.

Eliminação de Gauss cálculo elemento a elemento

quadro antigo quadro novo

Os dois quadros representam dois conjuntos de células, uma do quadro antigo e outra do novo.

elemento pivot é o elemento cujo valor é a.

Exemplo 4.1: porção da matriz a considerar

	Z	x1	x2	x 3	x4	x 5	
хЗ	0	5	4	1	0	0	200
x4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
	1	-10	-9	0	0	0	0

Exemplo 4.1: cálculo elemento a elemento

0

b/a

(ad-bc)/a

d

2	1	\rightarrow	1	1/2
-10	-9		0	-4

Elemento pivot é o elemento cujo valor é 2.

J.M. Valério de Carvalho

a

Exemplo 4.1: resultado

	Z	x1	x2	x 3	x4	x5	
хЗ	0	0	3/2	1	0	-5/2	25
x4	0	0	3/2	0	1	-2	90
x1	0	1	1/2	0	0	1/2	35
	1	0	-4	0	0	5	350

Exemplo 4.2: porção da matriz a considerar

	Z	x1	x2	x 3	x 4	x 5	
x3	0	5	4	1	0	0	200
x4	0	4	6	0	1	0	230
x5	0	2	1	0	0	1	70
	1	-10	-9	0	0	0	0

Exemplo 4.2: cálculo elemento a elemento

antigo

novo

a	b
С	d

 \rightarrow

1	b/a
0	(ad-bc)/a

4	0
2	1

0	-2
1	1/2

Exemplo 4.2: resultado

	Z	x1	x2	хЗ	x4	x 5	
хЗ	0	0	3/2	1	0	-5/2	25
x4	0	0	4	0	1	-2	90
x1	0	1	4 1/2	0	0	1/2	35
	1	0	-4	0	0	5	350

FIM