## Repaso

- ¿Qué es un problema computable?
- ¿Qué es un problema intratable?
- ¿Qué es ingeniería de software?
- Describa el ciclo de vida del software y sus etapas
- ¿Por qué es importante el análisis de un problema?
- ¿Qué es caja negra?

# Programación básica

PRÁCTICA 2. SOLUCIÓN DE PROBLEMAS

# Objetivo

 Identificar el conjunto de entrada (datos de entrada) y el conjunto de salida (datos de salida), a partir del análisis de la definición de un problema.



# ¿Qué es un problema?

Un problema es un conjunto de hechos o circunstancias que dificultan la consecución de algún fin.

Un Problema es una cuestión o punto discutible que requiere de una solución.

Problema es una cuestión que se propone con la finalidad y ánimo de aclararla o resolverla utilizando una metodología determinada.



DEFINICIÓN DE NECESIDADES MANTENIMIENTO anácisis ♥ EVOLUCIÓN CICLO DE **SOFTWARE** VaLidación oiseño PRUEBAS CODIFICACIÓN



### Características de la herramienta



### **Ejemplos**

#### Ejemplo 1

Un control automático de una alberca en un hotel muy moderno, abrirá o cerrará una sombrilla de acuerdo a si hay sol o no hay sol o si el usuario quiere o no quiere la sombrilla abierta.

#### Ejemplo 2

Resolver una ecuación de segundo orden para calcular el valor de  $x_1$  y  $x_2$ , utilizando la ecuación cuadrática:  $ax^2+bx+c=0$ . Identificar datos de entrada, datos de salida y el proceso de solución.

#### Ejemplo 3

Hacer la sumatoria de los n números naturales, donde n es el número de términos a sumar.

#### Práctica – INDIVIDUAL

### Resolver al reverso de la carátula de la práctica

#### Problema 1

A 53- En la fabricación de una mezcla entra un 15% de un material cuyo precio es de 1,25 € el kg, un 35% de otro material de 2,5 € el kg, y el restante 50% de un tercer material de 3,5 € el kg. En la fabricación se produce un 5% de mermas. ¿A cuánto ha de venderse el kg de la mezcla, para ganar un 20%?

#### Problema 2

Dada una ecuación de dos variables, definir qué tipo de cónica es por medio de su indicador o discriminante, las cónicas posibles son: elipse, parábola o hipérbola

#### Problema 3

En un juego de dados, se tirarán 3 dados al mismo tiempo. Determinar ¿Cuál es la probabilidad de que los tres dados salgan con la misma cara?





#### NUMERICAL SETS

- oExample :
- A is set of natural number
  A ={1,2,3,4,5,...}
- o2. B is set of integers 8 -{..... -2, -1,0,1,2,....}
- 3. C set of prime numberC = { 2,3,4,7,11,13,...}

| cerrado                   | $[a,b] = \{x \in \mathbb{R}  :  a \le x \le b\}$  | a        | Ь |
|---------------------------|---------------------------------------------------|----------|---|
| abierto                   | $(a,b) = \{x \in \mathbb{R} : a < x < b\}$        | à        | É |
| semiabierto o semicerrado | $[a,b) = \{x \in \mathbb{R} : a \leq x < b\}$     | a        | В |
| semiabierto o semicerrado | $(a,b] = \{x \in \mathbb{R} : a < x \leq b\}$     | - o<br>a | b |
| semirrecta cerrada        | $[a,+\infty)=\{x\in\mathbb{R}:x\geq a\}$          | a        |   |
| semirrecta abierta        | $(a,+\infty) = \{x \in \mathbb{R} : x > a\}$      | - a      | * |
| semirrecta cerrada        | $(-\infty,b]=\{x\in\mathbb{R}:x\leq b\}$          | -        | b |
| semirrecta abierta        | $(-\infty, b) = \{x \in \mathbb{R} \ : \ x < b\}$ | -        | Ğ |
| recta real                | $(-\infty, +\infty) = \mathbb{R}$                 | +        | + |

Hasta hace no mucho tiempo se utilizaba el término algoritmo para referirse únicamente a formas de realizar ciertos cálculos, pero con el surgimiento de la computación, el término algoritmo pasó a abarcar cualquier método para obtener un resultado.