Difuzija

- definiranje dopiranih područja (područja uvoda/odvoda, ekstenzije uvoda/odvoda, podešavanje napona praga) određuje brojne karakteristike kratkog kanala MOS tranzistora
- otpor utječe na struju vođenja
- skaliranjem tranzistora s faktorom κ , dubine spojeva se također trebaju skalirati s κ da bi se očuvalo jednaka struktura električnog polja (uz pretpostavku da se i napon napajanja skalira uz isti faktor)
- doping upravljačke elektrode utječe na osiromašenje polisilicija i ograničava kontorlu upravljačke elektrode nad kanalom

Slojni otpor

• otpornost kocke računa se prema:

$$J = nqv = nq\mu F = \frac{1}{\rho}F$$
 $\rho = \frac{F}{J}\Omega cm$

• slojni otpor plitkog spoja je:

$$R = \frac{\rho}{x_i} \left[\frac{\Omega}{kvadrat} \right] \equiv \rho_s$$

• za neuniformno dopirani sloj, slojni otpor se računa prema:

$$\rho_s = \frac{\rho}{x_j} = \frac{1}{1 \int_{0}^{x_j} \left[n(x) - N_B \right] \mu \left[n(x) \right] dx}$$

- prethodna jednadžba je numerički integrirana za jednostavne analitičke profile Irvinove krivulje
- slojni otpor se eksperimentalno može izmjeriti pomoću metode s četiri šiljka

Difuzija

- difuzijaje redistribucija atoma iz područja visoke koncentracije pokretljivih čestica u područja niže koncentracije
- događa se pri svim temperaturama, ali difuzivnost eksponencijalno ovisi o temperaturi (T)
- predepozicija –unosi se odgovarajuća doza dopanada u podlogu
- redistribucija nakanadnim napuštanjem dopandi se redistribuiraju čime se dobije odgovarajuća dubina spojeva i površinska koncentracija

Vrste difuzije – prednosti i nedostatci

	ionska implantacija i kaljenje	difuzija iz krutog/plinovitog stanja
prednost	maska na sobnoj temperaturi	nema oštećenja uslijed dopiranja
	precizna kontrola doze	serijska proizvodnja
	doze: 10 ¹¹ -10 ¹⁶ atoma cm ⁻²	
	precizna kontrola dubine	
nedostatak	oštećenja kod implantacije povećavaju difuziju	uobičajeno ograničeno na topljivost materijala
	dislokacije uzrokovane oštećenjima mogu uzrokovati curenje na spojevima	niske koncentracije pri površini teško se ostvaruju bez dugotrajnog redistribuiranja
	kanaliranje implantanata može utjecati na profil primjesa	teško je predeponirati male doze

- Topivost određuje maksimalnu vrijednost koncentracije nekog matreijala (dopanda) u siliciju
- dopandi mogu imati električku topljivost koja je različita od kemijske topljivosti

• As₄ V je jedan mogući električki neaktivni oblik

Prvi Fickov zakon

• makroskopska redistribucija dopanada opisana je prvim Fickovim zakonom – opisuje kako tok dopanada ovisi o gradijentu dopinga

$$f = -D \frac{\partial N}{\partial x}$$

- zakon je sličan drugim zakonima gdje je uzrok proporcionalan posljedici (Fourierov zakon protjecanja topline, Ohmov zakon protjecanja struje)
- konstanta proporcionalnosti je difuzivnost (D [cm2s-1])
- difuzivnost je vezana uz atomske skokove preko energetske barijere (formiranje i migracija pokretljivih čestica) i aktivirana je eksponencijalno
- u silicijskoj kristalnoj rešetci difuzivnost je izotropna
- negativni predznak označava da je tok niz gradijent koncentracije

Drugi Fickov zakon

• drugi Fickov zakon – opisuje kako je promjena koncentracije u elementu prostora određena promjenom u toku u i izvan elementa prostora

$$\frac{\partial N}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial N}{\partial x} \right)$$

• ako je D konstantan:

$$\frac{\partial N}{\partial x} = \frac{\partial f}{\partial x} = D \frac{\partial^2 N}{\partial x^2}$$

- ovo je forma Fickovog drugog zakona koja se može riješiti analitički
- moderno procesiranje silicija rijetko zadovoljava uvjete u kojima vrijede rješenja na koje se odnose (npr. D je konstanta) ta rješenja su samo gruba procjena stvarnih profila

Rješenja Fickovih zakona

- 1. ograničeni izvor fiksna doza Q predstavljena je delta funkcijom na izvoru
 - rješenje koje zadovoljava drugi Fickov zakon je:

$$N(x,t) = \frac{Q}{2\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

- važne posljedice:
 - 1. doza Q ostaje konstantna
 - 2. vršna koncentracija opada s: $\frac{1}{\sqrt{t}}$
 - 3. difuzijska udaljenost od izvora se povećava s: $\frac{2}{\sqrt{Dt}}$

2. konstantni izvor blizu površine

$$N(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = N(0,t) \exp\left(-\frac{x^2}{4Dt}\right)$$
Imaginary Delta Function Dose Q (Initial Profile)
Virtual Diffusion
Virtual Gaussian

3. neograničeni izvor – napravljen od malih komada koji svaki difundira po Gaussu

$$N(x,t) = \frac{Q}{2\sqrt{\pi Dt}} \sum_{i=1}^{n} \Delta x_{i} \exp\left(-\frac{(x-x_{i})^{2}}{4Dt}\right)$$
Dose CAx

Initial Profile

Diffused Profile

• rješenje koje zadovoljava drugi Fickov zakon je:

$$N(x,t) = \frac{N'}{2} \left[1 - erf\left(\frac{x}{2\sqrt{Dt}}\right) \right] = N_s \left[erfc\left(\frac{x}{2\sqrt{Dt}}\right) \right]$$

- važne posljedice rješenja s funkcijom pogreške:
- simetrija oko središnje točke dozvoljava da se izračuna konstantna koncentracija na površini
- funkcija pogreške se dobije od zbroja Gaussovih rješenja delta funkcija
- doza iza x=0 se nastavlja povećavati s vremenom kaljenja

4. konstantna koncentracija na površini – desna strana gornje slike

$$N(x,t) = N_s \left[erfc \left(\frac{x}{2\sqrt{Dt}} \right) \right]$$

• doza se računa kao:

$$Q = \int_{0}^{\infty} N_{s} \left[1 - erfc \left(\frac{x}{2\sqrt{Dt}} \right) \right] = \frac{2N_{s}}{\sqrt{\pi}} \sqrt{Dt}$$

Koeficijenti intrinsične difuzije dopanada

• koeficijenti intrinsične difuzije dopanada dani su u obliku:

$$D = D_0 \exp\left(\frac{-E_A}{kT}\right)$$

	Si	В	In	As	Sb	P
$D_0 [cm^2 s^{-1}]$	560	1.0	1.2	9.17	4.58	4.70
E _A [eV]	4.76	3.5	3.5	3.99	3.88	3.68

- n_i je pri visokim temperaturama velik, tako da se "intrinzični" koeficijenti mogu koristiti u različitim uvjetima
- vidljivo je da postoje materijali koji difundiraju sporo i brzo
- prilikom odabira dopanada potrebno je razmotriti i topivost

Efekti sukcesivne difuzije

• ako se dopand difundira pri temperaturi T_1 u vremenu t_1 , zatim pri temperaturi T_2 u vremenu t_2 , efektivna difuzija Dt je tada suma svih individualnih difuzija

$$Dt_{eff} = \sum Dt = D_1 t_1 + D_2 t_2 + D_3 t_3 + \dots$$

- neki koraci difuzije (Dt) u procesu mogu biti neznatni
- Gaussovo riješenje je očuvano ako je Dt koji se koristi za unos dopanada malen u usporedbi s konačnim Dt nakon redistribuiranja – tj. kada je početna aproksimacija delta funkcijom opravdana
- primjer: u bipolarnom tranzistoru ako se profil emitera formira koracima predepozicije, a profil baze implantacijom i redistribucijom, tada se spoj emiter baza javi na mjestu gdje vrijedi:

$$N_s erfc \left(\frac{x}{2\sqrt{Dt}} \right) = \frac{Q}{\sqrt{\pi Dt}} \exp \left(-\frac{x^2}{4Dt} \right)$$

Dt-emitera

Dt-emitera+baze

• spoj kolektor-baza nalazi se na mjestu gdje vrijedi:

$$\frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) = N_B$$

Irvinove krivulje

prethodno spomenuta jednadžba:

$$\rho_s = \frac{\rho}{x_j} = \frac{1}{q \int_{0}^{x_j} \left[n(x) - N_B \right] \mu \left[n(x) \right] dx}$$

je numerički integrirana za različite slučajeve (erfc i Gaussova funkcija)

• primjer Irvinovih krivulja za P tip Gaussovih profila

Dobivanje difuzijskih slojeva

• primjer difuzijskog procesa za bor (npr. za dobivanje well-ova u CMOS procesu) koji ima slijedeće karakteristike:

$$\rho_s = 900\Omega/\Box$$

$$x_j = 3\mu m$$

$$N_{BC} = 1 \cdot 10^{15} cm^{-3} \text{ (koncentracija podloge)}$$

• srednja vodljivost sloja je:

$$\overline{\sigma} = \frac{1}{\rho_s x_j} = \frac{1}{900 \left[\Omega/\Box\right] \cdot 3 \cdot 10^{-4} \left[cm\right]} = 3.7 \left[\Omega cm\right]^{-1}$$

• iz Irvinovih krivulja može se dobiti:

$$N_{s} \approx 4 \cdot 10^{17} \, cm^{-3}$$

• može se pretpostaviti da je profil nakon redistribucije Gaussov:

$$\Rightarrow N_{BC} = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x_j^2}{4Dt}\right) = N_s \exp\left(-\frac{x_j^2}{4Dt}\right)$$

• odatle slijedi:

$$Dt = \frac{x_j^2}{4 \ln \frac{N_s}{N_B}} = \frac{\left(3.10^{-4}\right)}{4 \ln \left(\frac{4.10^{17}}{10^{15}}\right)} = 3.7.10^{-9} cm^2$$

- ako je redistribucija napravljena pri temp 1100°C, tada je difuzivnost bora D=1.5•10-13 cm2s-1
- vrijeme redistribucije je:

$$t_{drive-in} = \frac{3.7 \cdot 10^{-9} cm^2}{1.5 \cdot 10^{-13} cm^2 s^{-1}} = 6.8h$$

• uz zadanu površinsku koncentraciju i produkt Dt, za traženi Gausov profil može se izračunati početna doza

$$Q = N_s \sqrt{\pi Dt} = 4 \cdot 10^{17} \cdot \sqrt{\pi} \cdot \sqrt{3.7 \cdot 10^{-9}} = 4.3 \cdot 10^{13} cm^{-2}$$

• ova doza se može jednostavno implantirati u uskom sloju uz površinu čime je opravdana početna pretpostavka Gaussovog profila da je početna razdioba aproksimirana delta funkcijom

- da je uzeta predepozicija iz krute/plinovite faze pri 950°C
- topivost B pri 950°C je 2.5•10²⁰ cm⁻³
- difuzivnost B je $4.2 \cdot 10^{-15}$ cm²s⁻¹
- doza za erfc profil je:

$$Q = \frac{2N_s}{\sqrt{\pi}} \sqrt{Dt}$$

• vrijeme potrebno za predepoziciju je

$$t_{pre-dep} = \left(\frac{4.3 \cdot 10^{13}}{2.5 \cdot 10^{20}}\right)^2 \left(\frac{\sqrt{\pi}}{2}\right)^2 \frac{1}{4.2 \cdot 10^{-15}} = 5.5s$$

• provjera:

$$Dt_{predep} \left(2.3 \cdot 10^{-14} \right) << Dt_{drive-in} \left(1.5 \cdot 10^{-13} \right)$$

Modifikacije Fickovih zakona

A) Efekti električnog polja

• kada je doping viši od ni tada efekti električnog polja postaju važni

B) Difuzivnost ovisna o koncentraciji

• kod visokih koncentracija dopinga, difuzivnost se povećava

C) Segregacija

• dopandi segregiraju (odvajaju) na spojevima; vrijedi:

$$k_0 = \frac{N_s}{N_L}$$

• odatle se dobije tok na spoju:

$$f = h \left(N_A - \frac{N_B}{k_0} \right)$$

• oksidacija uniformno dopirane podloge bora osiromašuje bor u rastući SiO₂

• N-tip dopanada se nagomilava, a bor se osiromašuje

Difuzija na atomskoj razini

- mnogi efekti (OED, TED...) koji su vrlo važni eksperimentalno, ne mogu se objasniti makroskopskim modelima koji su se do sada koristili
- mehanizam difuzije potpomognut vakancijama:

$$A+V \Leftrightarrow AV$$

• mehanizam difuzije potpomognut intersticijama i izbijanjem (kick out): (matematički identično kao i prethodni mehanizam)

Posljedice koje slijede iz mehanizama prisutnih na atomskoj razini

- oksidacija djeluje kao izvor intersticija
- nitridacija djeluje kao izvor vakancija
- greške slaganja (stacking faults) služe kao detektori kao i dopandi koji difundiraju

Modeliranje I i V komponente difuzije

• ekperimenti poput prethodno prikazanog i eksperimenti s As/Sb dokazuju da su oba točkasta defekta važna u siliciju

$$D_A = D_A^* \left(f_I \frac{C_I}{C_I^*} + f_V \frac{C_V}{C_V^*} \right)$$

slijedi:

- difuzija dopanada je poboljšana ili smanjena promjenom koncentracije točkastih defekata
- oksidacija unosi intersticije, povećava C_I/C_I^* i smanjuje C_V/C_V^* kroz rekombinaciju na intersticijama i vakancijama u volumnom siliciju; nitridacija radi upravo suprotno
- mjerenja veličine poboljšanja ili smanjenja difuzije dopanada uslijed oksidacije ili nitridacije omogućuje procjenu I ili V komponente difuzije

	$\mathbf{f_{_{I}}}$	$\mathbf{f_v}$	
silicij	0.6	0.4	
bor	1	0	
fosfor	1	0	
arsen	0.4	0.6	
antimon	0.02	0.98	

Modeliranje reakcijskih mehanizama na atomskoj razini – bipolarni tranzistor

• pomak emitera je također objašnjen ovim mehanizmima

- ionska implantacija u područja uvoda/odvoda generira višak intersticija taj višak difundira u područja kanala i podiže bor (doping kanala) gore prema površini
- efekt je izraženiji u manjim tranzistorskim strukturama
- ullet rezultat ovog efekta je da U_{GS0} ovisi o duljini kanala ("reverzni efekt kratkog kanala")

Zaključak

- selektivno dopiranje je ključan proces u proizvodnji poluvodičkih struktura
- atomi dopanada se moraju smjestiti na supstitucijska mjesta da bi bili električki aktivni
- koncentracija dopiranja i oblik profila su kritični za električke karakteristike struktura
- ionska implantacija je dominantan proces koji se koristi za dopiranje na taj način se stvaraju oštećenja tako da je potrebno kaljenje da se oštećenja poprave
- za vrijeme kaljenja dopandi mogu difundirati mnogo brže nego inače
- atomistički difuzijski proces se javlja tako da se upare atomi dopanada i točkasti defekti
- generalno, difuzivnosti su proporcionalne lokalnoj koncentraciji točkastih defekata
- koncentracije točkastih defekata ovise eksponencijalno o temperaturi, Fermievom nivou, oštećenjima ionske implantacije i površinskim procesima poput oksidacije
- rezultat difuzivnosti dopanada ovisi o vremenu i položaju u prostoru za vrijeme visokotemperaturnih procesa
- postoje jaki simulacijski alati pomoću kojih se mogu modelirati navedeni proces i koji mogu predvidjeti kompleksne profile dopiranja