

URČOVANIE KRVNÝCH SKUPÍN SANQUI-TESTOM SKLÍČKOVOU METÓDOU

Krvné skupiny možno definovať ako <u>vrodené</u> vlastnosti **červených** krviniek, ktoré sú rozpoznávané pomocou špecifických protilátok. Ide o zložité organické molekuly (glykoproteíny), uložené na povrchu červ. krviniek tak, že tvoria nedeliteľnú súčasť bunkovej membrány.

Podstatou systému krvných skupín je existencia 2 faktorov: ANTIGÉNU a PROTILÁTKY.

Antigén (**Ag** *z angl. Antibody generating*) – je to všeobecne ktorákoľvek látka, ktorá po vniknutí do vnútorného prostredia organizmu vyvolá tvorbu protilátok, a ktorá má schopnosť reagovať so špecifickou protilátkou *in vivo* alebo *in vitro*.

Protilátka (**Ab** *z angl. Antibodies*) - molekula syntetizovaná plazmatickými bunkami na určitý antigénny podnet.

Proces vzniku protilátok sa nazýva IMUNIZÁCIA.

Erytrocytové skupinové antigény

V ľudských erytrocytoch bolo doposiaľ objavených viac než 30 antigénov, ktoré môžu vyvolať reakciu antigén - protilátka. Najdôležitejšie sú systémy ABO (H) a Rh faktor.

Systém AB0 (H) (r. 1901, K. Landsteiner)

V membráne erytrocytov sú povrchovo viazané chemické komplexy (glykoproteíny), tzv. **aglutinogény**, ktoré sa uplatňujú ako špecifické antigény. V sére každého jedinca sú protilátky proti tým antigénom, ktoré **nie sú !!!** na ich vlastných Ery. V prípade systému AB0 ide o protilátky prirodzené, teda také, ktoré sú prítomné v krvnej plazme od narodenia. Nevznikli teda v dôsledku imunizácie príjemcu cudzími krvinkami. Pretože zhlukujú Ery, nazývajú sa **aglutiníny**. To znamená, že rovnaký antigén a protilátka sa nemôžu naraz vyskytovať v krvi toho istého zdravého jedinca. Na základe tohto systému možno ľudí rozdeliť do štyroch skupín.

Skupina 0 neznamená, že by jedinec nemal nijaký antigén. U osôb skupiny 0 sú na Ery prítomné antigény H (je to veľmi slabý antigén). Antigén H je východzou molekulou pre antigény A a B. Na materských krvných bunkách všetkých plodov sa vytvára najprv antigén H, z ktorého sa až pôsobením reťazca enzýmov vytvárajú antigény A a B alebo obidva. Ak podľa zákonov genetiky je fétus krvnej skupiny 0, tato premena nenastáva.

Antigény AB0 systému sa vyskytujú nielen na Ery, ale aj v slinných žľazách, slinách, pankrease, obličkách, pečeni, pľúcach, semenníkoch, spermiách atď.

Type A blood. Red blood cells have type A surface antigens. Plasma has anti-B antibodies.

Type AB blood. Red blood cells have type A and type B surface antigens. Plasma has neither anti-A nor anti-B antibodies.

Type B blood. Red blood cells have type B surface antigens. Plasma has anti-A antibodies.

Type O blood. Red blood cells have neither type A nor type B surface antigens. Plasma has both anti-A and anti-B antibodies.

	Group A	Group B	Group AB	Group O	
Red blood cell type	A	В	AB		
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B	
Antigens in Red Blood Cell	♥ A antigen	† B antigen	P↑ A and B antigens	None	

V slovenskej populácii (ako aj v strednej Európe) je **najčastejšia krvná skupina A** (42 % populácie SR) potom skupina 0 (38 %), B (13 %) a AB (7 %). Pri transfúzii krvi je životne dôležité použiť krvnú skupinu, ktorá príjemcu nepoškodí. Nasledujúca tabuľka ukazuje povolené kombinácie krvi darcu a príjemcu.

Tabuľka kompatibility krvi										
	darca									
príjemca	0-	0+	В-	B+	A-	A+	AB-	AB+		
AB+	*	*	*	*	*	*	*	*		
AB-	*		*		*		*			
A +	*	*			*	*				
A -	*				*					
B+	*	*	*	*						
B-	*		*							
0+	*	*								
0-	*									

Tabuľka názorne ukazuje, že príjemca s krvou AB+ môže obdržať krv akéhokoľvek darcu, preto sa mu tiež hovorí *univerzálny príjemca*. Naopak krv skupiny 0– môže byť darovaná všetkým príjemcom, ide o *univerzálneho darcu*.

a. nedochádza k aglutinácii

krv sa nevyzráža vhodný darca

b. Aglutinácia

Vznik krv.zrazenín a hemolýza

nevhodný darca

Krvná skupina BOMBAY:

- krvná skupina objavená v Bombaji v roku 1952
- na rozdiel od iných krvných skupín táto krvná skupina nemá antigén H. Preto nie sú na povrchu červených krvinkách ľudí, ktorí majú túto krvnú skupinu, prítomné žiadne antigény (A, B, H).
- táto krvná skupina má však anti-H protilátky, ktoré sa v iných krvných skupinách nenachádzajú.
- pretože bombajská krvná skupina neobsahuje antigény A a B, možno ju mylne identifikovať za krvnú skupinu O.

Rh-systém

Je to tiež systém skupinových erytrocytových antigénov. Rh-systém obsahuje 6 základných antigénov. Označujú sa D. C. E. d. c. e. Ústredným antigénom tohto systému je **D!!!** Ery, ktoré obsahujú na svojej membráne antigén D sú Rh-pozitívne. Krvinky, na ktorých sa antigén D nevyskytuje, sú Rh-negatívne. Na rozdiel od AB0 systému neexistujú v krvi Rhnegatívnych osôb prirodzené anti-Rh protilátky (anti-D). Tie sa však u nich môžu vytvoriť, ak im je pri transfúzii podaná krv Rh-pozitívnej osoby, alebo opakovaným otehotnením Rhnegatívnej matky Rh-pozitívnym plodom. Ak Rh-negat. matka nosí plod, ktorý je Rh-pozit. dochádza na konci tehotenstva a zvlášť pri pôrode k tomu, že pri placentárnom krvácaní (pri pôrode) prestupuje väčší počet Ery dieťaťa do krvného obehu matky, v tele matky sa tvoria protilátky anti-D. Pri každom ďalšom takomto tehotenstve imunitný systém matky tvorí tieto protilátky, ktoré prechádzajú placentou do krvného obehu dieťaťa. Ich reakcia s antigénom D na fetálnych Ery spôsobí deštrukciu Ery dieťaťa – hemolytická choroba novorodencov. Ak je rozpad Ery veľký – plod umiera. Pri slabšej protilátkovej reakcii plod nezomrie, ale v jeho krvi sa výrazne zvýši obsah bilirubínu, farbiva, ktoré vzniklo z rozpadu Ery. Dôsledkom je žlté sfarbenie pokožky novorodencov. Vysoký obsah bilirubínu v krvi je toxický pre mozog plodu. Zhruba 85 % slovenskej populácie je Rh pozitívnych.

