Diszkrét matematika 2 összefoglaló

Vig Levente 2017

DA .	4
R^n	1
Skaláris szorzat -ben (belső szorzat)	1
Vektorok	1
Műveletek vektorokkal	1
Összeadás	1
Skalárral való szorzás	2
Norma	2
Távolság -ben:	2
Szög	2
Merőleges vetület	2
Pitagorasz-tétel	3
Cauchy-Schwarz egyenlőtlenség	3
Minkowski egyenlőtlenség	3
Egyenes egyenlete	4
A sík normálvektoros egyenlete	4
Mátrixok	5
Műveletek mátrixokkal	5
Mátrixok összeadása	5
Skalárral való szorzás	5
Mátrixok szorzása	5
Mátrix transzponáltja	5
Mátrix inverze	6
Inverz kiszámítása Gauss eliminációval:	6
Mátrixok rangja	6
Determinánsok	7
2x2-es mátrixok determinánsa	7
3x3-as mátrixok determinánsa	8

Kifejtési tétel	8
Lineáris egyenletrendszerek	8
Homogén és inhomogén lineáris egyenletrendszerek	8
Elemi sorműveletek	9
A megoldáshalmaz jellemzése	9
Feltételek a megoldhatóságra	9
Sorekvivalens mátrixok	10
Trapéz alakú mátrixok	10
Gauss elimináció	10
Inhomogén lineáris egyenletrendszer	10
Vektorterek	11
Vektortér	11
Példák vektorterekre	11
Altér	12
Példák alterekre	12
Altérkritérium	12
Lineáris függőség, függetlenség	12
Generátorrendszer	13
Bázis	13
Dimenzió	13
Bázisra vonatkozó koordináták	13
Báziscsere	13
Lineáris leképezések	13
Lineáris leképezések	13
Képtér és magtér	14
Példák	14
Koordináta függvények	14
Fontos speciális eset:	14
,	14
Lineáris leképezések vektorteret alkotnak	14
Képtér és magtér alteret alkot	15
Nullitás + Rang tétel	15
Lineáris leképezések mátrix reprezentációja	15
Belsőszorzat-terek, ortogonalitás	16

Belsőszorzat (skaláris szorzat)	16
Ortogonalitás	16
Ortogonális komplementer	16
Pitagorasz tétel	16
Cauchy-Schwarz egyenlőtlenség	16
Minkowski egyenlőtlenség	16
Legjobban approximáló elem	16
Bessel egyenlőtlenség	16
Fourier együtthatók	16
Fourier sor	16
Ortonormált rendszer	17
Ortogonális rendszer	17
Gram-Schmidt ortogonalizáció	17
Sajátérték, sajátvektor	17
Lineáris leképzések és mátrixok sajátértékei, sajátvektorai	17
Sajátvektorok alteret alkotnak	17
Különböző sajátértékekhez tartozó sajátvektorok lineárisan függetlenek	17
Karakterisztikus polinom	17
Szimmetrikus mátrixok sajátértéke, sajátvektora	17
Szimmetrikus mátrixok diagonalizálhatósága	17

Rⁿ

Skaláris szorzat \mathbb{R}^n -ben (belső szorzat)

Legyen $x, y \in \mathbb{R}^n$, ekkor az

$$\langle x, y \rangle = x_1 y_1 + ... + x_n y_n = \sum_{i=1}^{n} x_i y_i$$

számot x és y skaláris szorzatának nevezzük.

$$<,>: \mathbb{R}^n x \mathbb{R}^n \mapsto \mathbb{R}$$
 (skaláris szorzat)

Skaláris szorzat tulajdonságai:

- Mindkét változóban homogén, azaz $<\lambda x, y>=\lambda < x, y>$ és $< x, \lambda y>=\lambda < x, y>$
- Szimmetrikus, azaz $\langle x, y \rangle = \langle y, x \rangle$
- · Mindkét változóban addítv, azaz
 - $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ és
 - $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
 - Biz(4)

Vektorok

$$\mathbb{R}^n = \{(x_1, \dots x_n) | x_i \in \mathbb{R}, i = 1, \dots, n\}$$

Műveletek vektorokkal

Művelet: olyan függvény mely nem vezet ki a halmazból.

<u>Összeadás</u>

Legyen $x, y \in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix} y = \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}, \text{ ekkor}$$
$$x + y = x = \begin{pmatrix} x_1 + y_1 \\ \cdots \\ x_n + y_n \end{pmatrix}$$

Az összeg is $\in \mathbb{R}^n$, azaz nem vezet ki a halmazból.

$$+: \mathbb{R}^n x \mathbb{R}^n \mapsto \mathbb{R}^n$$

A vektorok összeadásának tulajdonságai:

- Ha $x, y \in \mathbb{R}^n$, akkor $x + y \in \mathbb{R}^n$
- Kétváltozós művelet \mathbb{R}^n -en
- Asszociatív (csoportosítható), azaz minden $x, y \in \mathbb{R}^n$ esetén teljesül, hogy
- (x + y) + z = x + (y + z)
- Létezik $0 \in \mathbb{R}^n$ úgy, hogy tetszőleges $x \in \mathbb{R}^n$ esetén x + 0 = 0 + y = x

$$0 = \begin{pmatrix} 0 \\ \cdots \\ 0 \end{pmatrix}$$
 additív egységelem

- Tetszőleges $x \in \mathbb{R}^n$ -hez létezik olyan $y \in \mathbb{R}^n$,hogy x + y = y + x = 0
 - Ekkor y-t −x-el jelöljük és x additív inverzének nevezzük.

• Tetszőleges $x, y \in \mathbb{R}^n$ esetén x + y = y + x, azaz a vektorok összeadása **kommutatív** (felcserélhető)

Skalárral való szorzás

Legyen $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, ekkor

$$\lambda \cdot x = \begin{pmatrix} \lambda \cdot x_1 \\ \cdots \\ \lambda \cdot x_n \end{pmatrix}$$

A skalárral való szorzás komponensenkét történik.

$$\cdot: \mathbb{R} x \mathbb{R}^n \mapsto \mathbb{R}^n$$

A skalárral való szorzás tulajdonságai:

- Ha $\lambda, \mu \in \mathbb{R}$ és $x \in \mathbb{R}^n$, akkor $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- Ha $\lambda \in \mathbb{R}$ és $x, y \in \mathbb{R}^n$, akkor $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$
- Ha $x \in \mathbb{R}^n$, akkor $1 \cdot x = x \cdot 1 = x$
- $\lambda, \mu \in \mathbb{R}$ és $x \in \mathbb{R}^n$, akkor $(\lambda \cdot \mu) \cdot x = \lambda \cdot (\mu \cdot x)$

Norma

Legyen $x \in \mathbb{R}^n$, ekkor

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

A norma tulajdonságai:

- Minden $x \in \mathbb{R}^n$ esetén $||x|| \ge 0$ és ha ||x|| = 0 akkor x = 0
 - · A norma nemnegatív függvény, csak a nullvektor vehet fel nullát.
 - Biz (1)
- Ha $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, akkor $||\lambda x|| = |\lambda| ||x||$
 - A norma pozitív homogén
 - Biz (2)
- · Háromszög egyenlőtlenség
 - Ha $x, y \in \mathbb{R}^n$, akkor $||x + y|| \le ||x|| + ||y||$

Távolság \mathbb{R}^n -ben:

Legyen $x, y \in \mathbb{R}^n$, ekkor x és y távolsága ||x - y|| = d(x, y)

A távolság tulajdonságai:

- $d(x, y) \ge 0$ valamint d(x, y) = 0 ha x = y
- Szimmetrikus, azaz d(x, y) = d(y, x)
- Háromszög egyenlőtlenség: $d(x, z) \le d(x, y) + d(y, z)$

Szög

Vektorok szöge:

$$\cos \theta_{xy} = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

Merőleges vetület

Az x vektor merőleges vetülete y-ra:

$$y_{r} = \lambda \cdot y$$

$$\langle x - y_x, y_x \rangle = 0$$

$$\langle x, y_x \rangle - \langle y_x, y_x \rangle = 0$$

$$\langle x, \lambda y \rangle = \langle \lambda y, \lambda y \rangle$$

$$\lambda \langle x, y \rangle = \lambda^2 \langle y, y \rangle = \lambda^2 ||y||$$

$$\lambda = \frac{\langle x, y \rangle}{||y||^2}$$

Ezt visszahelyettesítve ez első egyenletbe:

$$y_x = \frac{\langle x, y \rangle}{\|y\|^2} y$$

Pitagorasz-tétel

Ha x és y merőlegesek egymásra (< x, y > = 0), akkor

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Ennek bizonyításához a definíciókat használjuk fel, konkrétan

$$||x + y||^2 = \langle x + y, x + y \rangle = x^2 + 2 \langle x, y \rangle + y^2 = ||x||^2 + ||y||^2$$

mivel < x, y > = 0, és $< x, x > = ||x||^2$, $< y, y > = ||y||^2$ definíció szerint.

Cauchy-Schwarz egyenlőtlenség

Ha $x, y \in \mathbb{R}^n$, akkor

$$\langle x, y \rangle^2 \le ||x||^2 \cdot ||y||^2$$

 $|\langle x, y \rangle| \le ||x|| ||y||$

és egyenlőség pontosan akkor áll fenn, ha létezik $\lambda \in \mathbb{R}$ úgy, hogy $x = \lambda y$

Bizonyítás:

Legyen $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$

$$0 \le ||x + \lambda y||^2 = \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle = ||y||^2 \lambda^2 + 2 \langle x, y \rangle \lambda + ||x||^2$$

Az átalakításokat követően egy λ -ban másodfokú kifejezést kapunk, melynek diszkrimánsa nem pozitív , azaz

$$4 < x, y >^{2} - 4||y||^{2}||x||^{2} \le 0$$

$$4 < x, y >^{2} \le 4||y||^{2}||x||^{2}$$

$$< x, y >^{2} \le ||y||^{2}||x||^{2}$$

Ezzel az állításunk bizonyítást nyert.

Minkowski egyenlőtlenség

Legyen $x, y \in \mathbb{R}^n$, akkor

$$||x + y|| \le ||x|| + ||y||$$

Bizonyítás:

Mivel az egyenlőtlenség mindkét oldala nemnegatív, ezért ekvivalens a következővel:

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$
$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

ahol

$$2 < x, y > \le 2 | < x, y > | \le 2 | x | | y |$$

és a Cauchy-Schwarz egyenlőtlenség miatt ez

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2$$

ami pedig az eredeti állításunk jobb oldala. Ezzel az állításunk bizonyítást nyert.

Egyenes egyenlete

A $P \in \mathbb{R}^3$ ponton átmenő \overrightarrow{v} irányvektorú egyenes paraméteres egyenlete:

$$x = P + t\overrightarrow{v}$$

ahol $t \in \mathbb{R}$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} P_1 + t v_1 \\ P_2 + t v_2 \\ P_3 + t v_3 \end{pmatrix}$$

vagyis $x_1=P_1+t\,v_1$ és $x_2=P_2+t\,v_2$ és $x_3=P_3+t\,v_3$ Tegyük fel, hogy $v_1\neq 0$ és $v_2\neq 0$ és $v_2\neq 0$, azaz \overrightarrow{v} egyik tengellyes sem párhuzamos. Ilyenkor

$$t = \frac{x_1 - P_1}{v_1}, t = \frac{x_2 - P_2}{v_2}, t = \frac{x_3 - P_3}{v_3}$$

azaz

$$\frac{x_1 - P_1}{v_1} = \frac{x_2 - P_2}{v_2} = \frac{x_3 - P_3}{v_3}.$$

A sík normálvektoros egyenlete

$$x - p \perp n$$

$$< x - p, n > = 0$$

$$< \begin{pmatrix} x_1 - p_1 \\ x_2 - p_2 \\ x_3 - p_3 \end{pmatrix}, \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} > = 0$$

$$(x_1 - p_1)n_1 + (x_2 - p_2)n_2 + (x_3 - p_3)n_3$$

$$x_1n_1 + x_2n_2 + x_3n_3 = p_1n_1 + p_2n_2 + p_3n_3$$

Mátrixok

Műveletek mátrixokkal

Mátrixok összeadása

Legyen $A, B \in \mathcal{M}_{nxm}$ és $A = (a_{ij})_{i=1, j=1}^{n,m}$ és $B = (b_{ij})_{i=1, j=1}^{n,m}$, ekkor

$$A + B = (a_{ij} + b_{ij})_{i=1, i=1}^{n,m}$$

Tulajdonságok:

- · Művelet, azaz nem vezet ki a halmazból.
- Asszociatív, azaz $(A+B)+C=A+(B+C) \forall A,B,C \ in \mathcal{M}_{n\times m}$.
- Létezik olyan $0 \in \mathcal{M}_{nxm}$ mátrix, hogy A + 0 = 0 + A, minden $A \in \mathcal{M}_{nxm}$ esetén.
- Minden $A \in \mathcal{M}_{nxm}$ mátrixhoz létezik $-A \in \mathcal{M}_{nxm}$, hogy A + (-A) = (-A) + A = 0, ez az ún. additív inverz.
- Kommutatív, azaz $A + B = B + A, \forall A, B \in \mathcal{M}_{n \times m}$

Skalárral való szorzás

Legyen $A \in \mathcal{M}_{n \times m}$ és $\lambda \in \mathbb{R}$, akkor

$$\lambda A = (\lambda \cdot a_{ij})_{i=1, i=1}^{n,m}$$

Tulajdonságok:

- $1 \cdot A = A \cdot 1 = A$
- $(\lambda \mu)A = \lambda(\mu A)$
- $(\lambda + \mu)A = \lambda A + \mu A$
- $\lambda(A+B) = \lambda A + \lambda B$

Mátrixok szorzása

Ha $A \in \mathcal{M}_{n \times m}$, akkor A_i jelöli A i. sorát és A^j jelöli A j. oszlopát.

Legyen $A \in \mathcal{M}_{nxm}$ és $B \in \mathcal{M}_{mxk}$, ekkor

$$A \cdot B = C \in \mathcal{M}_{n \times k}$$

és

$$C = \begin{bmatrix} A_1 B^1 & \dots & A_1 B^k \\ \vdots & & \vdots \\ A_n B^1 & \dots & A_n B^k \end{bmatrix}$$

Ha
$$C = (c_{st})_{s=1,t=1}^{n,k}$$
, akkor $c_{st} = \sum_{r=1}^{m} a_{sr} - b_{rt}$

Tulajdonságok:

- Asszociatív, azaz $A \cdot (B \cdot C) = (A \cdot B) \cdot C$, amennyiben a megfelelő szorzatok léteznek.
- Az összeadásra nézve disztibutív, azaz $A \cdot (B+C) = AB + AC$, amennyiben a megfelelő szorzatok léteznek és B azonos típusú C-vel.
- $(AB)^T = B^T A^T$, amennyiben az AB szorzat létezik.
 - Biz (5)
- Nem kommutatív

Mátrix transzponáltja

Egy mátrix transzponálása sorainak és oszlopainak a felcserélését jelenti. Ha $A \in \mathcal{M}_{nxm}$, akkor az $A^T \in \mathcal{M}_{mxn}$ mátrixot A transzponáltjának nevezzük.

Továbbá ha $A = (a_{ij})_{i=1,j=1}^{n,m}$, akkor $A^T = (a_{ji})_{j=1,i=1}^{m,n}$ és $a_{ij} = a'_{ji}$.

Tulajdonságok:

•
$$(A^T)^T = A$$

Egy mátrix szimmetrikus ha transzponáltja önmaga, azaz $A^T = A$

Mátrix inverze

Legyen $A \in M_{nxn}$, ha létezik $B \in M_{nxn}$ úgy, hogy AB = BA = I, akkor azt mondjuk, hogy A invertálható és B-t A^{-1} -el jelöljük és A inverzének nevezzük.

Legyen $I \in M_{nxn}$, és $I = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & 1 & \vdots \\ 0 & \dots & 1 \end{bmatrix}$ alakú mátrixokat nxn-es egységmátrixnak nevezzük.

Állítás: Ha $A \in M_{nxn}$, akkor IA = AI = A.

Állítás: Ha A invertálható, akkor az inverze egyértelmű.

Bizonyítás: Tegyük fel, hogy A-nak B és B' is inverze, ekkor B' = B'(AB) = (B'A)B = B, de AB = B'A = I, azaz B' = B.

Inverz kiszámítása Gauss eliminációval:

Legyen A adott, keressük A^{-1} -et, melyet X-el fogunk jelölni.

Az alábbi lineáris egyenletrendszer megoldásai adják a keresett mátrixot.

$$AX = I$$

A Gauss elimináció:

$$(A | I) \sim \ldots \sim (I | A^{-1})$$

Elemi sorműveletek:

- · Sor szorzása nem 0 skalárral.
- · Egy sorhoz hozzáadni egy másikat.
- 2 sor felcsrélése

Definíció: 2 azonos típusú mátrix **sorekvivalens**, ha egyik a másikba elemi sorműveletekkel átvihető.

Definíció: Egy mátrix trapézalakú, ha

Mátrixok rangja

Egy $n \times m$ -es mátrix rangján a mátrix oszlopai által generált \mathbb{R}^n -beli altér dimenzióját értjük. A mátrix rangja tehát k, ha oszlopai közül kiválasztható k db lineárisan független, de k+1 db már nem.

Legyen $A \in M_{nxn}$, ekkor A sorekvivalens egy olyan $B \in M_{nxn}$ mátrixszal, amely bal felső sarkában egy rxr-es egységmátrixot tartalmaz, a többi eleme pedig 0, ahol $r \leq min\{n,m\}$. Ekkor r-et az A mátrix rangjának nevezzük.

Markov mártix Forgatás mátrix

Determinánsok

2x2-es mátrixok determinánsa

Legyen
$$A \in \mathcal{M}_{2x2}$$
, és $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, ilyenkor

$$det(A) = ad - bc$$

Tulajdonságok:

Az oszlopainak és a sorainak is bilineáris függvénye, azaz

$$det \begin{bmatrix} a+a' & b \\ c+c' & d \end{bmatrix} = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} + det \begin{bmatrix} a' & b \\ c' & d \end{bmatrix} \text{ és}$$

$$det \begin{bmatrix} \lambda a & b \\ \lambda c & d \end{bmatrix} = \lambda det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

· Az egségmátrix determinánsa 1, pl:

$$det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$$

$$det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -det \begin{bmatrix} b & a \\ d & c \end{bmatrix}$$

Tétel: Ha $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \mathbb{R}$ olyan függvény ami rendelkezik a fenti tulajdonságokkal, akkor az csak a determináns függvény lehet.

További tulajdonságok:

- Egy mátrix determinánsa megegyezik a transzponáltjának determinánsával.

•
$$det(A) = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

• $det(A^T) = det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - cb$

- · Ha két oszlopa vagy sora megegyezik akkor a determináns nulla.

•
$$det(A) = det \begin{bmatrix} a & a \\ b & b \end{bmatrix} = ab - ab = 0$$

· Pontosan akkor invertálható egy mátrix, ha a determinánsa nem nulla, ekkor

$$det(A^{-1}) = \frac{1}{det(A)}$$

· Biz:

• Legyen
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

• Tegyük fel, hogy
$$det(A) = det \begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq 0$$

$$\bullet A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• regytic left, flogy
$$det(A) = det \begin{bmatrix} c & d \end{bmatrix} \neq 0$$
• $A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
• $AA^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \frac{1}{det(A)} = \begin{bmatrix} ad - bc & -ab + ab \\ cd - cd & -cb + ad \end{bmatrix} \frac{1}{det(A)} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Legyen $A^1, \ldots, A^i, A^{i-1}, C, C', A^{i+1}, \ldots, A^n \in \mathbb{R}^n$, ilyenkor
• $det(A^1, \ldots, A^i, A^{i-1}, C + C', A^{i+1}, \ldots, A^n) = det(A^1, \ldots, A^i, A^{i-1}, C, A^{i+1}, \ldots, A^n) + det(A^n, \ldots, A^n, A^n) = det(A^n, \ldots, A^n, A^n) + det(A^n, \ldots, A^n) + de$

•
$$det(A^1, ..., A^i, A^{i-1}, C + C', A^{i+1}, ..., A^n) = det(A^1, ..., A^i, A^{i-1}, C, A^{i+1}, ..., A^n) + det(A^1, ..., A^i, A^{i-1}, C', A^{i+1}, ..., A^n)$$

- azaz a determináns a mátrix oszlopainak additív függvénye.
- Ha a mátrix két oszlopát felcseréljük, akkor a determináns előjelet vált.
- · A determinánsok szorzástétele:
 - $det(AB) = det(A) \cdot det(B)$
- Ha egy mátrix oszlopának konstans szorosát hozzáadoom egy másik oszlophoz, akkor a determináns értéke nem változik. (azaz, a Gauss elimináció használható)

 Diagonális, illetve felső háromszög mátrix determinánsa egyenlo a főátlóbeli elemek sorzatával.

3x3-as mátrixok determinánsa

Sarrus-szabály: csak 2x2-es és 3x3-as mátrixora használható.

Legyen
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, ilyenkor

$$det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Tulajdonságok:

· Lásd 2x2-es

Kifejtési tétel

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} det A_{ij}$$

Ahol $det A_{ij}$ az a_{ij} -hez tartozó aldetermináns.

Egy adott elemhez tartozó aldeterminánst úgy kaphatunk meg, hogy az eredeti mátrixból töröljük az elem sorát és oszlopát így az eredeti nxn-es mátrixból egy (n-1)x(n-1)-es mátrixot kapunk. A kifejtési tétel segítségével nxn-es mátrixok determinánsának kiszámítását visszavezethetjük 2x2-es vagy 3x3-as mátrixok determinánsára amikre pedig már alkalmazható a Sarrus-szabály.

Lineáris egyenletrendszerek

Homogén és inhomogén lineáris egyenletrendszerek

Legyen $m < n, m, n \in \mathbb{N}, A \in \mathcal{M}_{n \times m}$ és $b \in \mathbb{R}^n$ adottak, $x \in \mathbb{R}^m$ ismeretlen ekkor az

$$Ax = b$$

egyenletrendszert lineáris egyenletrenszernek nevezzük.

Ha $b \neq 0$ akkor **inhomogén** lineáris egyenletrendszerről beszélünk.

Ha b = 0, akkor **homogén** lineáris egyenletrendszerről beszélünk.

Példa:

$$2x + y = 2$$

$$4x - y = 3$$

ekkor

$$A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$$
$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$
$$b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Megjegyzés: A homogén rendszernek az x=0 mindig megoldása, ezt **triviális megoldás**nak nevezzük.

Tétel: Ha m < n, akkor a homogén lineáris

Bizonyítás: Indukcióval,

Legyen n > 1, m = 1, ekkor az egyenletrenszer az alábbi alakú

$$a_1x_1 + \ldots + a_nx_n = 0$$

Ha $a_1 = \ldots = a_n = 0$, akkor $\forall x \in \mathbb{R}^n$ megoldás lesz.

Ha legalább egy $a_i \neq 0$ akkor feltehető, hogy ez a_1 .

Ekkor

$$x_1 = \frac{-1}{a_1}(a_2x_2 + \ldots + a_nx_n)$$

Ha m < n, m-1-re feltesszük, hogy igaz, akkor az előzőekhez hasonlóan kapjuk, hogy

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + \dots a_{mn}x_n = 0$$

A feltételek miatt létezik $a_{1i} \neq 0$, i = 1,...,n, feltehető,hogy ez a_{11} , ekkor

$$x_1 = \frac{-1}{a_{11}}(a_{12}x_2 + \ldots + a_{1n}x_n)$$

és a

$$(A_2 - \frac{a_{21}}{a_{11}}A_1) = 0$$

$$(A_m - \frac{a_{m1}}{a_{11}} A_1) = 0$$

rendszerben már egyel kevesebb (m-1) változó szerepel.

Elemi sorműveletek

- 1. A mátrix egy sorát meg lehet szorozni egy nem nulla számmal.
- 2. Két sort össze lehet adni.
- 3. Két sort fel lehet cserélni.

A megoldáshalmaz jellemzése

Tétel: A homogén egyenlet megoldása altere \mathbb{R}^n -nek. Jelölje ezt L_A

Tétel: Az inhomogén egyenlet megoldáshalmaza $x_p + L_A$ alakú(lineáris sokaság), ahol L_A az inhomogén egyenlet megoldásatere, x_p pedig az inhomogén egyenlet egy partikuláris megoldása.

$$A_1 x = 1$$

$$\vdots$$

$$A_n x = 0$$

x pontosan akkor megoldás, ha $x \in lin[A_1, ..., A_n]$.

Feltételek a megoldhatóságra

Homogén lineáris egyenletrendszerek esetén

$$Ax = 0$$
,

ahol $A \in \mathcal{M}_{nxm}, x \in \mathbb{R}^m$, azaz

$$x_1A^1 + \dots + x_mA^m = 0.$$

Egy homogén lineáris egyenletrenszernek akkor van triviálistól különböző megoldása, ha az A mátrix oszlopvektorai lineárisan függők.

Tétel:

- 1. Ha m > n, akkor van triviálistól különböző megoldás.
- 2. Ha m = n, akkor pontosan akkor létezik nem triviális megoldás ha $A^1, ..., A^m$ lineárisan függő.
- 3. Ha m < n, akkor pontosan akkor létezik nem triviális megoldás ha $A^1, ..., A^m$ lineárisan függő.

Inhomogén lineáris egyenletrendszerek esetén

$$Ax = b$$
.

ahol $A \in \mathcal{M}_{n \times m}, x \in \mathbb{R}^m$, azaz

$$x_1A^1 + \dots + x_mA^m = b.$$

Tétel:

- 1. Ha m > n, teteszőleges b vektor esetén biztosan van megoldás, ha rangA maximális, azaz rangA = n. Ekkor végtelen sok megoldás van.
- 2. Ha m=n, tetszőleges b vektor esetén biztosan van megoldás, ha $A^1, ..., A^m$ bázisa a térnek. Ekkor pontosan egy megoldás van.
- 3. Ha m < n, tetszőleges b vektor esetén nem feltétlenül lesz megoldás.
- 4. Tetszőleges m, n esetén pontosan akkor lesz megoldás, ha b benne fekszik az A oszlopai által generált altérben.

Sorekvivalens mátrixok

Két azonos típusú mátrix sorekvivalens, ha az egyik a másikba elemi sorműveletekkel átvihető.

Állítás: Minden mátrix sorekvivalens egy trapéz alakú mátrixszal. Tétel: Ha A és A' sorekvivalensek, akkor az Ax = 0 illetve az A'x = 0 egyenletrendszerek megoldáshalmaza egegyezik.

Trapéz alakú mátrixok

Egy mátrix trapéz alakú, ha minden csupa 0 sor a mátrix alján szerepel, továbbá két egymás követő sorban az alul lévő első nem nulla eleme fölötti elemtől balra van nem nulla elem.

Gauss elimináció

Általánosan: Ax = 0 — Gauss elimináció — > A'x = 0, ahol az A' mátrix trapéz alakú.

Inhomogén lineáris egyenletrendszer

Legyen $m < n, A \in M_{mxn}, b \in \mathbb{R}^n \setminus \{0\}$ adottak, ekkor az

$$Ax = b$$

egyenletrendszert inhomogén lineáris egyenletrendszernek nevezzük.

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

 \vdots \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$

ahol legalább egy $b_i \neq 0$, i = 1,...,m. Jelölje A^j az A mátrix j. oszlopát, ekkor

$$x_1A^1 + \dots + x_nA^n = b$$

<u>Definíció</u>: Legyenek $a_1, ..., a_n \in \mathbb{R}^n, x_1, ..., x_n \in \mathbb{R}$, ekkor az

$$x_1a_1 + \dots x_na_n$$

kifejezést az $a_1, ..., a_n$ vektorok $x_1, ..., x_n$ skalárokkal vett **lineáris kombináció**jának nevezzük.

<u>Definíció</u>: Az Ax = b, $b \neq 0$ inhomogén egyenletrendszer $x_p \in \mathbb{R}^n$, $Ax_p = b$ megoldását partikuláris megoldásnak nevezzük.

Ha x olyan, hogy Ax = 0, akkor azt a homogén rész megoldásának nevezzük.

<u>Tétel</u>: Az Ax = b inhomogén egyenletrenszer összes megoldása $x_p + x$ alakban áll elő, ahol x_p egy partikuláris megoldás, x pedig a homogén rész megoldása.

Az Ax = b egyenletrendszer esetén az

$$[A,B] = \begin{bmatrix} a_{11} & \dots & a_{1n} | & b_1 \\ \vdots & & \vdots | & \vdots \\ a_{m1} & \dots & a_{mn} | & b_m \end{bmatrix}$$

mátrixot a rendszer kibővített mátrixának nevezzük

Vektorterek

Vektortér

Legyen $V \neq 0$ halmaz, és tegyük fel, hogy adott két leképezés

$$+: VxV \mapsto V$$

illetve

$$\cdot: \mathbb{R}xV \mapsto V$$

a következő tulajdonságokkal:

- Tetszőleges $v, w, u \in V$ esetén (v + w) + u = v + (w + u)
- Létezik olyan 0-val jelölt eleme V-nek, hogy v + 0 = 0 + v = v, minden $v \in V$ esetén.
- Minden $v \in V$ -hez létezik $(-v) \in V$, hogy v + (-v) = (-v) + v = 0
- Tetszőleges $v, w \in V$ esetén v + w = w + v.

valamint:

- Minden $\lambda, \mu \in \mathbb{R}$ és $v \in V$ esetén $(\lambda + \mu)v = \lambda v + \mu v$.
- Minden $\lambda \in \mathbb{R}$ és $v, w, u \in V$ esetén $\lambda(v + w) = \lambda v + \lambda w$.
- Minden $v \in V$ esetén $1 \cdot v = v \cdot 1 = v$.
- Minden $\lambda, \mu \in \mathbb{R}$ és $\nu \in V$ esetén $(\lambda \mu) \cdot \nu = \mu \cdot (\lambda \nu)$.

Ekkor V-t vektortérnek nevezzük \mathbb{R} felett.

Megjegyzés: \mathbb{R} helyett tekinthetünk más számhalmazokat is amely rendelkezik \mathbb{R} -hez hasonló tulajdonságokkal, azaz algebrai értelemben testet alkot.

Ilyen például a racionális számok teste Q, vagy a véges testek (pl.: mod 2 maradékosztályok).

Példák vektorterekre

- \mathbb{R}^n vektortér \mathbb{R} felett.
- \mathbb{C}^n vektortér \mathbb{C} illetve \mathbb{R} felett.
- $M_{nxm}(\mathbb{R})$ vektortér \mathbb{R} felett.

- $P = \{p : \mathbb{R} \mapsto \mathbb{R} \mid p(x)\}, P$ -t a valós polinomok halmazának nevezzük.
- $F = \{ f : \mathbb{R} \mapsto \mathbb{R} \mid f \text{ függvény} \}.$

Altér

Legyen V egy vektortér, és legyen S egy részhalmaza V-nek.

Tegyük fel, hogy *S* eleget tesz az alábbi feltételeknek:

- 1. Ha $v, w \in S$, akkor az összegük v + w is eleme S-nek.
- 2. Ha $v \in S$ és $c \in \mathbb{R}$, akkor cv is eleme S-nek.

Ekkor *S* maga is egy vektortér. Valóban, a fent említett <u>tulajdonságok</u> teljesülnek *V* minden elemére, valamit teljesülnek *S* elemeire is. Ilyenkor *S*-et *V* alterének nevezzük.

Példák alterekre

- *V*-n {0} és *V* mindig alterek, ezeket triviális altereknek nevezzük.
- Az $M_{n\times m}(\mathbb{R})$ -es mátrixok vektorterében a szimmetrikus mátrixok alteret alkotnak.
- P-ben P_n , a legfeljebb n-edfokú polinomok halmaza alteret alkot.
- *F*-ben a folytonos, illetve a differenciálható függvények is alteret alkotnak.

Altérkritérium

 $S \subset V$ pontosan akkor altér, ha minden $v, w \in S$ esetén

(1)
$$u - w \in S$$
,

valamint

bármely $\lambda \in \mathbb{R}$ és $v \in S$ esetén

(2)
$$\lambda v \in S$$
.

Bizonyítás:

Ha S altér, akkor nyilván zárt a műveletekre. Ha S zárt a műveletekre, akkor a vektorterekre vonatkozó tulajdonságok többsége automatikusan teljesülnek S-beli vektorokra, mivel azok speciális V-beli vektorok. Csak azt kell megvizsgálni, hogy a V-beli 0 beleesik-e S-be, illetve egy S-beli vektor V-beli ellentettje beleesik-e S-be:

Legyen $v \in S$ tetszőleges vektor. Ekkor (2) szerint

$$0 = 0v \in S$$
.

Legyen $v \in S$ tetszőleges vektor. Ekkor (2) szerint

$$-v = (-1)v = \in S$$
.

+füzet (Abel-csoport axiómák) oda-vissza

Lineáris függőség, függetlenség

Legyen $a_1, ..., a_n \in V$ vektorok és $\lambda_1, ..., \lambda_n \in \mathbb{R}$ skalárok, ekkor a

$$\lambda_1 a_1 + \ldots + \lambda_n a_n$$

kifejezést az a_1, \ldots, a_n vektorok $\lambda_1, \ldots, \lambda_n$ skalárokkal vett lineáris kombinációjának nevezzük.

Azt mondjuk, hogy az $a_1, ..., a_n$ vektorok **lineárisan függők**, ha léteznek olyan $\lambda_1, ..., \lambda_n$ nem mind 0 skalárok,hogy

$$\lambda_1 a_1 + \ldots + \lambda_n a_n = 0$$

Megjegyzés: A 0 vektort tartalmazó rendszer mindig lineárisan függő.

Az $a_1, ..., a_n$ vektorok lineárisan függetlenek, ha nem függők. $\[\] \[\] \[\]$

Generátorrendszer

Az $a_1, ..., a_n$ vektorrendszer generátorrendszere V-nek, ha bármely $v \in V$ lineárisan kikombinálható $a_1, ..., a_n$ -ből.

Megjegyzés: Ekkor V-t végesen generálhatónak nevezzük.

Bázis

Ha V végesen generált és $a_1, ..., a_n$ lineárisan független generátorrendszere, akkor $a_1, ..., a_n$ -et bázisnak nevezzük.

<u>Dimenzió</u>

Tétel: Tetszőleges végesen generált vektortérben, ha adott két bázis $a_1, ..., a_n$ és $v_1, ..., v_m$, akkor n = m, azaz bármely két bázis azonos számosságú.

Ezt a közös számosságot a vektortér dimenziójának nevezzük.

Példa: \mathbb{R}^2 két dimenziós.

Bázisra vonatkozó koordináták

Legyen V egy vektortér és $b_1, ..., b_m$ bázis V-ben. Ekkor tetszőleges $v \in V$ egyértelműen felírható

$$v = \beta_1 b_1 + \ldots + \beta_n b_n$$

alakban, ahol a $\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$ skalár $n\text{-est } v \; \{b_1, \dots, b_n\}$ bázisra vonatkozó koordinátáinak nevezzük.

Tehát tetszőleges $v \in V$ beazonosítható β -val, ha adott egy bázis.

$$v \in V < -\{b_1, ..., b_n\} - > \beta \in \mathbb{R}$$

bijekció

Tétel: Tetszőleges n-dimenziós valós vektortér beazonosítható \mathbb{R}^n -el.

Báziscsere

??

Lineáris leképezések

Lineáris leképezések

Legyenek U, V vektorterek azonos test fölött, ekkor az

$$L: U \mapsto V$$

leképezés lineáris, ha

- additív, azaz L(x + y) = Lx + Ly, minden $x, y \in U$ esetén, valamint
- homogén $L(\lambda x) = \lambda Lx$, minden $x \in U$ és λ skalár esetén.

Példa:

- Ha U vektortér \mathbb{R} fölött és $L:U\mapsto\mathbb{R}$ lineáris, akkor L-et lineáris funkcionálnak nevezzük.
 - PI: $U = \mathbb{R}$, akkor Lx = cx, ahol $c \in \mathbb{R}$ rögzített.
- Ha $U=\mathbb{R}^n$ m akkor $L:\mathbb{R}^n\mapsto\mathbb{R}$, pontosan akkor lináris ,ha létezik olyan $c\in\mathbb{R}^n$ vektor, hogy Lx=< c,x>

- Lx = 0, nulla lineáris leképezés
- Ha U=V, akkor az $L:U\mapsto U, Lx=x$ identukus leképezés
- $\frac{\sigma}{\sigma x}: P_n \mapsto P_{n-1}, (\frac{\sigma}{\sigma x})(x) = P'(x)$
- Első koordináta tengelyre való projekció: $L: \mathbb{R}^n \mapsto \mathbb{R}^n, L(x_1, ..., x_n) = (x_1, 0, ..., 0)$
 - Speciális eset: $L: \mathbb{R}^2 \mapsto \mathbb{R}^2, L(x_1, x_2) = (x_1, 0)$
- Az $L: \mathbb{R}^2 \mapsto \mathbb{R}$, $L(x_1, x_2) = x_1^2 + x_2^2$ leképezés **nem** lineáris.

Képtér és magtér

Legyen az $L:U\mapsto V$ leképezés lineáris, ekkor a $rangeL=\{v\in V\mid \exists u\in U, Lu=V\}\subset V$ halmazt L **képter**ének nevezzük.

Legyen az $L:U\mapsto V$ leképezés lineáris, ekkor a $nullL=\{u\in U\,|\, Lu=0\}\subset U$ halmazt L magterének nevezzük.

Tétel:

- L0 = 0
 - Biz: $L0 = L(0+0) = L0 + L0 = 2L0 \Rightarrow 0 = L0$
- L(-x) = -Lx

Példák

Koordináta függvények

Fontos speciális eset:

Ha $L: \mathbb{R}^n \mapsto \mathbb{R}^n$ lineáris, akkor $L = (l_1, ..., l_m)$, ahol $l_i: \mathbb{R}^n \mapsto \mathbb{R}, i = 1, ..., m$ lineáris funkcionál és $Lx = (l_1(x), ..., l_m(x)) \forall x \in \mathbb{R}^n$ esetén.

Az előbbi l_i , i = 1,...,m lineáris funkcionálokat L **koordinátafüggvényeinek** nevezzük.

Példa: $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L(x_1, x_2) = (x_1, -x_2)$, ekkor

$$l_1(x_1, x_2) = x_1,$$

valamint

$$l_2(x_1, x_2) = -x_2$$

Lineáris leképezések vektorteret alkotnak

Jelölje $\mathcal{L}(U,V)=\{L:U\mapsto V\,|\,L \text{ line\'aris}\}.$ Ha $L,T\in\mathcal{L}(U,V),$ akkor

$$L + Tx = Lx + Tx$$
.

továbbá

tetszőleges λ skalár esetén

$$(\lambda L)x = \lambda Lx$$
.

Az fenti műveletekkel $\mathcal{L}(U,V)$ vektortér.

Bizonyítás:

Képtér és magtér alteret alkot

 $\operatorname{Ha} L: U \mapsto V \operatorname{line\acute{a}ris}$, akkor

(1)
$$rangeL \subset V$$
,

illetve

(2)
$$null L \subset U$$

alterek.

Bizonyítás:

(1) Legyen $x, y \in rangeL$, ekkor létezik $u_x, u_y \in U$ úgy, hogy $Lu_x = x$ és $Lu_y = y$, ekkor

$$x - y = Lu_x - Lu_y = L(u_x - u_y) \Rightarrow x, y \in rangeL$$

és

$$\lambda \in \mathbb{R}, x \in rangeL$$

esetén

$$\lambda x = \lambda L u_x = L(\lambda u_x) \Rightarrow \lambda x \in rangeL \Rightarrow rangeL$$
 altér.

(2)Legyen $u, v \in nullL$, ekkor

$$L(u - v) = Lu - Lv = 0 \Rightarrow u - v \in nullL$$

valamint

$$L\lambda u = \lambda Lu = \lambda 0 = 0 \Rightarrow \lambda u \in nullL \Rightarrow nullL \text{ alt\'er}.$$

Nullitás + Rang tétel

Bizonyítás:

Lineáris leképezések mátrix reprezentációja

Legyen $L:U\mapsto V$ lineáris és $\{a_1,...,a_m\}$ bázis U-ban, $\{b_1,...,b_n\}$ bázis V-ben. Legyen $u\in U$ és Lu=v, ekkor

$$u = \sum_{i=1}^m u_1 a_1,$$

és

$$v = \sum_{j=1}^{n} v_{j} b_{j}$$

$$A \in \mathcal{M}_{nxm}, A \begin{pmatrix} u_{1} \\ \vdots \\ u_{m} \end{pmatrix} = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}.$$

Adott bázisok esetén a fenti egyenletrendszerseregnek pontosan egy megoldása létezik, ezt az L lineáris leképezés $\{a_1, ..., a_m\}$, $\{b_1, ..., b_n\}$ bázispárra vonatkozó mátrixának nevezzük.

Belsőszorzat-terek, ortogonalitás

Belsőszorzat (skaláris szorzat)
Példák
Ortogonalitás
Ortogonális komplementer
Pitagorasz tétel
Bizonyítás:
Cauchy-Schwarz egyenlőtlenség
Bizonyítás:
Minkowski egyenlőtlenség
Bizonyítás:
Legjobban approximáló elem
Tétel:
Bizonyítás:
Bessel egyenlőtlenség
Bizonyítás:
Dizonynao.
Fourier együtthatók
Fourier sor

Ortonormált rendszer
Ortogonális rendszer
Gram-Schmidt ortogonalizáció
Sajátérték, sajátvektor
Lineáris leképzések és mátrixok sajátértékei, sajátvektorai
Sajátvektorok alteret alkotnak
Bizonyítás:
Különböző sajátértékekhez tartozó sajátvektorok lineárisan függetlenek Bizonyítás:
Karakterisztikus polinom
Tétel:
Tétel:
Szimmetrikus mátrixok sajátértéke, sajátvektora
Szimmetrikus mátrixok diagonalizálhatósága