



## **Cambridge International Examinations**

Cambridge International Advanced Subsidiary and Advanced Level

| CANDIDATE<br>NAME     |                        |                     |                   |
|-----------------------|------------------------|---------------------|-------------------|
| CENTRE<br>NUMBER      |                        | CANDIDATE<br>NUMBER |                   |
| MATHEMATICS           |                        |                     | 9709/12           |
| Paper 1 Pure Mathe    | matics 1 (P1)          |                     | May/June 2017     |
|                       |                        |                     | 1 hour 45 minutes |
| Candidates answer of  | on the Question Paper. |                     |                   |
| Additional Materials: | List of Formulae (MF9) |                     |                   |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

## Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



| 1 | (i)  | Find the coefficient of x in the expansion of $\left(2x - \frac{1}{x}\right)^5$ .                  | [2] |
|---|------|----------------------------------------------------------------------------------------------------|-----|
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   | (ii) | Hence find the coefficient of x in the expansion of $(1 + 3x^2) \left(2x - \frac{1}{x}\right)^5$ . | [4] |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |
|   |      |                                                                                                    |     |

2

The point A has coordinates (-2, 6). The equation of the perpendicular bisector of the line AB is

| (1)           | Find the equation of $AB$ .        |  |
|---------------|------------------------------------|--|
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
|               |                                    |  |
| ( <b>ii</b> ) | ) Find the coordinates of $B$ .    |  |
| ( <b>ii</b> ) | ) Find the coordinates of $B$ .    |  |
| (ii)          | Find the coordinates of <i>B</i> . |  |
| (ii)          | Find the coordinates of <i>B</i> . |  |
| (ii)          |                                    |  |

|        |        | <br>       |
|--------|--------|------------|
|        |        | <br>       |
|        |        |            |
| •••••• | •••••• | <br>       |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
| •••••• | •••••• | <br>•••••• |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
| •••••• | •••••  | <br>•••••• |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
|        |        |            |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
|        |        |            |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |
|        |        | <br>       |
|        |        | <br>       |
|        |        | <br>       |
|        |        |            |

|        | solve the | `      | COS O  | ,      | 2      |                                         |                                         |         |       |
|--------|-----------|--------|--------|--------|--------|-----------------------------------------|-----------------------------------------|---------|-------|
|        |           |        |        |        |        |                                         |                                         |         | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••• | ••••••    | •••••• | •••••• | •••••• | •••••• |                                         | ••••••                                  | ••••••• | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••• |           | •••••• | •••••• | •••••• | •••••  |                                         | •••••                                   | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  |           | •••••• | •••••• | •••••• | •••••  |                                         | •••••                                   | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  |           | •••••• | •••••• | •••••• | •••••  |                                         | •••••                                   | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••• | •••••     | •••••  | •••••• | •••••• | •••••• | • • • • • • • • • • • • • • • • • • • • | ••••••                                  | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  | •••••     | •••••  | •••••• | •••••• | •••••• |                                         | • • • • • • • • • • • • • • • • • • • • | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  | •••••     | •••••  | •••••• | •••••• | •••••• |                                         | ••••••                                  | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  |           | •••••• | •••••• | •••••• | •••••• |                                         |                                         | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••• |           | •••••  | •••••• | •••••• | •••••  |                                         |                                         | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••  |           | •••••• | •••••• | •••••  | •••••  |                                         |                                         | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |
| •••••• |           | •••••  | •••••• | •••••• | •••••  |                                         |                                         | ••••••  | ••••• |
|        |           |        |        |        |        |                                         |                                         |         |       |
|        |           |        |        |        |        |                                         |                                         |         |       |

4



The diagram shows a circle with radius r cm and centre O. Points A and B lie on the circle and ABCD is a rectangle. Angle  $AOB = 2\theta$  radians and AD = r cm.

| (i) | Express the perimeter of the shaded region in terms of $r$ and $\theta$ . | [3] |
|-----|---------------------------------------------------------------------------|-----|
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |
|     |                                                                           |     |

| <br> |
|------|
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |
|      |

| 5 | A curve has equation $y = 3 +$ | $\frac{12}{2-x}$ . |
|---|--------------------------------|--------------------|
|   |                                | $\angle - x$       |

| •••••         | •••••  | •••••  | • • • • • • • • • • • • • • • • • • • • |        | ••••• | • • • • • • • • • • • • • • • • • • • • | •••••• | ••••• | • • • • • • • • • • • • • • • • • • • • | •••••  | • • • • • • • • • • • • • • • • • • • • | ••••• |       |
|---------------|--------|--------|-----------------------------------------|--------|-------|-----------------------------------------|--------|-------|-----------------------------------------|--------|-----------------------------------------|-------|-------|
| •••••         |        |        | •••••                                   |        |       |                                         |        | ••••• |                                         |        | •••••                                   |       |       |
| •••••         |        |        | •••••                                   |        | ••••• |                                         | •••••  |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       | •••   |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       | •••   |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
| • • • • • • • | •••••• | •••••• | •••••                                   | •••••  | ••••• | ••••••                                  | •••••  |       | •••••••                                 | •••••  | ••••••                                  | ••••• | •••   |
| •••••         | •••••• | •••••• | •••••                                   |        | ••••• |                                         | •••••  | ••••• |                                         | •••••• |                                         | ••••• | •••   |
|               | •••••  | •••••• | •••••                                   |        | ••••• | •••••                                   | •••••• | ••••• |                                         | •••••  |                                         | ••••• | •••   |
|               | •••••  | •••••  | •••••                                   |        | ••••• |                                         | •••••  | ••••• |                                         | •••••  |                                         | ••••• |       |
| •••••         | •••••  |        | •••••                                   |        |       |                                         |        | ••••• |                                         |        |                                         | ••••• |       |
|               |        |        | •••••                                   |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        | ••••• |                                         |        |                                         |       |       |
|               |        |        | •••••                                   |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
|               |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       |       |
| •••••         | •••••• | •••••• | •••••                                   | •••••• | ••••• | •••••                                   | •••••  | ••••• | ••••••                                  | •••••  | ••••••                                  | ••••• | •••   |
| •••••         |        | •••••• | •••••                                   | •••••• | ••••• | ••••••                                  | •••••  | ••••• | ••••••                                  | •••••  | ••••••                                  | ••••• | • • • |
| •••••         | •••••  | •••••  | •••••                                   |        | ••••• | •••••                                   | •••••  | ••••• |                                         | •••••  |                                         | ••••• | •••   |
| •••••         |        |        |                                         |        |       |                                         |        |       |                                         |        |                                         |       | •••   |

| oi 0.04 U | nits per sec | Joila. Fill | u me rat | e oi cha | nge or tr                               | ie y-coor | umate W                                 | x = 1  | 4.     |       |
|-----------|--------------|-------------|----------|----------|-----------------------------------------|-----------|-----------------------------------------|--------|--------|-------|
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| ••••••    |              | ••••••      | ••••••   | •••••    | •                                       | ••••••    | •                                       | •••••• | •••••• | ••••• |
| •••••     |              |             |          |          |                                         |           |                                         |        | •••••  |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| •••••     |              | ••••••      | ••••••   | •••••    | • • • • • • • • • • • • • • • • • • • • | •••••     | • • • • • • • • • • • • • • • • • • • • | •••••  | •••••  | ••••• |
|           |              | •••••       | •••••    |          |                                         | •••••     |                                         |        |        | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| ••••••    | ••••••       | •••••       | ••••••   | •••••    | • • • • • • • • • • • • • • • • • • • • | •••••     |                                         | •••••• | •••••• | ••••• |
| •••••     |              |             | •••••    |          |                                         |           |                                         |        |        | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| •••••     | ••••••       | •••••       | •••••    | •••••    |                                         | •••••     |                                         | •••••  | •••••  | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              | •••••       | •••••    |          |                                         |           |                                         |        | •••••• | ••••• |
| •••••     |              | ••••••      | •••••    | •••••    |                                         | •••••     |                                         | •••••  | •••••  | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| •••••     |              | •••••       | ••••••   |          | • • • • • • • • • • • • • • • • • • • • | •••••     | ••••••                                  | •••••  | •••••  | ••••• |
| •••••     |              |             | •••••    |          |                                         |           |                                         | •••••  |        | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| •••••     |              | •••••       | ••••••   | •••••    | • • • • • • • • • • • • • • • • • • • • | •••••     | • • • • • • • • • • • • • • • • • • • • | •••••  | •••••  | ••••• |
| •••••     |              | •••••       | •••••    |          |                                         | •••••     |                                         |        | •••••  | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
| •••••     |              | ••••••      | ••••••   | •••••    |                                         | •••••     | • • • • • • • • • • • • • • • • • • • • | •••••  | •••••  | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        | ••••• |
|           |              |             |          |          |                                         |           |                                         |        |        |       |
|           |              |             |          |          |                                         |           |                                         |        |        |       |



| The diagram shows the straight line $x + y = 5$ intersecting the curve $y = \frac{4}{x}$ at the points $A(1, 4)$ and $B(4, 1)$ . Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the $x$ -axis. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                               |

| the progression which must be taken for their sum to exceed 20 000. |        |
|---------------------------------------------------------------------|--------|
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     | ,      |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••• |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     |        |
|                                                                     | •••••  |
|                                                                     |        |
|                                                                     |        |

|     |       | on.    |        |                                         |                                         |        |        |
|-----|-------|--------|--------|-----------------------------------------|-----------------------------------------|--------|--------|
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| • • |       | •••••  | •••••  | •••••                                   |                                         |        | •••••  |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ٠.  |       | •••••  |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       | •••••• | •••••• | ••••••                                  | ••••••••                                | •      | •••••• |
|     |       | •••••  |        | •••••                                   |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  | ••••• | •••••  | •••••  | •••••                                   | • • • • • • • • • • • • • • • • • • • • | •••••• | •••••  |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       | •••••  | •••••  | •••••                                   |                                         |        | •••••  |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
|     |       | •••••  |        | •••••                                   |                                         |        | •••••  |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       |        | •••••• | • • • • • • • • • • • • • • • • • • • • | •                                       | •      | •••••• |
|     |       | •••••  | •••••  | •••••                                   |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       | •••••  | •••••  | •••••                                   | ••••••                                  | •••••• | •••••• |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       | •••••  | •••••  | •••••                                   | ••••••                                  |        | •••••  |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       |        | •••••  | •••••                                   |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |
| ••  |       | •••••• | •••••  | •••••                                   | ••••••                                  | •••••• | •••••  |
|     |       |        |        |                                         |                                         |        |        |
|     |       |        |        |                                         |                                         |        |        |

| <b>8</b> Relative to an origin $O$ , the position vectors of three points $A$ , $B$ and $C$ are $S$ | given by |
|-----------------------------------------------------------------------------------------------------|----------|
|-----------------------------------------------------------------------------------------------------|----------|

 $\overrightarrow{OA} = 3\mathbf{i} + p\mathbf{j} - 2p\mathbf{k}$ ,  $\overrightarrow{OB} = 6\mathbf{i} + (p+4)\mathbf{j} + 3\mathbf{k}$  and  $\overrightarrow{OC} = (p-1)\mathbf{i} + 2\mathbf{j} + q\mathbf{k}$ , where p and q are constants.

| (i) | In the case where $p = 2$ , use a scalar product to find angle $AOB$ . | [4]    |
|-----|------------------------------------------------------------------------|--------|
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        |        |
|     |                                                                        | •••••• |

| ••• | <br>  |
|-----|-------|
|     |       |
| ••• |       |
|     |       |
|     |       |
| ••• |       |
|     |       |
| ••• | <br>  |
|     |       |
| ••• |       |
|     | <br>  |
|     |       |
| ••• |       |
|     |       |
| ••• |       |
|     |       |
| ••• |       |
|     |       |
|     |       |
| ••• |       |
|     |       |
| ••• |       |
|     | <br>  |
|     |       |
| ••• | <br>  |
|     |       |
| ••• |       |
|     |       |
|     |       |
|     |       |
|     |       |
| ••• | <br>  |
|     |       |
| ••• | ••••• |
|     | <br>  |
|     |       |
| ••• |       |
|     |       |
| ••• | <br>  |
|     |       |

|     | Find the coordinates of the stationary point of the curve.                                                    |
|-----|---------------------------------------------------------------------------------------------------------------|
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     | $\mathrm{d}^2\mathrm{v}$                                                                                      |
| ii) | Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary po |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |
|     |                                                                                                               |

| (iii) | Find the values of $x$ at which the line $y = 6$ meets the curve.                  | [3]    |
|-------|------------------------------------------------------------------------------------|--------|
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    |        |
| (iv)  | State the set of values of $k$ for which the line $y = k$ does not meet the curve. | [1]    |
|       |                                                                                    | •••••  |
|       |                                                                                    |        |
|       |                                                                                    |        |
|       |                                                                                    | •••••• |
|       |                                                                                    | •••••  |
|       |                                                                                    |        |
|       |                                                                                    |        |

| (i)  |                                                                                    |               |
|------|------------------------------------------------------------------------------------|---------------|
| (-)  | Solve the equation $f(x) + 4 = 0$ , giving your answer correct to 1 decimal place. |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    | ••••••        |
|      |                                                                                    | •••••         |
| (ii) | Find an expression for $f^{-1}(x)$ and find the domain of $f^{-1}$ .               |               |
|      |                                                                                    |               |
|      |                                                                                    | • • • • • • • |
|      |                                                                                    |               |
|      |                                                                                    | •••••         |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |
|      |                                                                                    |               |

(iii) Sketch, on the same diagram, the graphs of y = f(x) and  $y = f^{-1}(x)$ . [3]

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.