Semaine du 27 Janvier - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. H est le noyau d'une forme linéaire non-nulle équivaut à H admet une droite vectorielle pour supplémentaire.
- 2. (Énoncer seulement) : Théorème de décompositions en éléments simples dans $\mathbb{R}(X)$.

Exercice nº 2:

(Arithmétique dans $\mathbb{K}[X]$) : On considère les polynômes $P=3X^4-9X^3+7X^2-3X+2$ et $Q=X^4-3X^3+3X^2-3X+2$.

- 1. Décomposez P et Q en facteurs irréductibles sur $\mathbb{R}[X]$, puis sur $\mathbb{C}[X]$.
- 2. Déterminer le PPCM et le PGCD des polynômes P et Q.

Exercice no 3:

(Application) : Calculer l'intégrale suivante :

$$\int_0^1 \frac{1}{(x^2+4)(x+1)} \mathrm{d}x$$

Semaine du 27 Janvier - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Caractérisation de P irréductible.
- 2. Décomposition en éléments simples de $\frac{P'}{P}$.

Exercice nº 2:

(Arithmétique dans $\mathbb{K}[X]$) : On considère les polynômes $P=X^3+1$ et $Q=X^4+X^2+1$.

- 1. Décomposez P et Q en facteurs irréductibles sur $\mathbb{R}[X]$, puis sur $\mathbb{C}[X]$.
- 2. Déterminer le PPCM et le PGCD des polynômes P et Q.

Exercice nº 3:

(Application) : Calculer les intégrales suivantes :

$$\int_0^1 \frac{x^3}{(x+1)^3} dx \quad \text{et} \quad \int_0^1 \frac{x}{(x+1)(x^3+1)} dx$$

Semaine du 27 Janvier - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions précédentes :

- 1. En dimension n, l'intersection de m hyperplans est de dimension au moins n-m.
- 2. Si $F = \frac{A_1}{B_1} = \frac{A}{B}$ avec $A \wedge B = 1$, alors $A_1 = CA$ et $B_1 = CB$.

Exercice nº 2:

(Arithmétiques dans $\mathbb{K}[X]$): Soient $A = X^4 + X^3 - X^2 + X - 2$ et $B = 2X^4 - X^3 + 5X^2 - X + 3$.

- 1. Calculer le PGCD de A et B,
- 2. En déduire les décompositions de A et B en produit de facteurs irreductibles unitaires dans $\mathbb{R}[X]$ puis $\mathbb{C}[X]$.
- 3. Donner la forme factorisée du PPCM de A et B.

Exercice nº 3:

(Application) : Calculer l'intégrale suivante :

$$\int_0^1 \frac{x}{(x-2)^2(x+1)} \mathrm{d}x$$