Introduction to Feature Engineering in Machine Learning Understanding Feature Engineering

Definition

- . According to Wikipedia:
 - Feature Engineering is the process of using domain knowledge to extract features from raw data that can improve the performance of machine

Data Retrieval

Data Retrieval

Data Retrieval

Data Processing & Scaling &

- · Simplified Explanation:
 - o Preparing raw data into a format that machine learning algorithms can understand and learn from effectively.
 - o Involves transforming, constructing, selecting, and extracting features to enhance model performance.

Importance

- Key Points:
 - o **Critical Step**: Feature engineering is crucial in the machine learning pipeline.
 - o Impact on Models: Better features can significantly improve model performance, even more than choosing a powerful algorithm.
 - Analogy: Feeding high-quality ingredients (features) into a simple recipe (algorithm) can produce better results than using poor ingredients with a
 complex recipe.
- Quote:
 - o "A bad algorithm with good features can outperform a good algorithm with bad features."

The Machine Learning Pipeline

- Overview:
 - 1. Data Gathering: Collecting raw data.
 - 2. Data Preprocessing: Initial cleaning, handling missing values.
 - 3. Exploratory Data Analysis (EDA): Understanding data distributions and relationships.
 - 4. Feature Engineering: Today's focus.
 - 5. Model Training: Building machine learning models.
 - **6. Model Evaluation**: Assessing model performance.
 - 7. **Deployment**: Using the model in production.

Types of Feature Engineering Techniques

Overview

Feature engineering can be broadly classified into four categories:

- 1. Feature Transformation
 - \circ $\,$ Modifying existing features to make them suitable for modeling.
- 2. Feature Construction
 - o Creating new features from existing data.
- 3. Feature Selection
 - o Selecting the most relevant features for the model.
- 4. Feature Extraction
 - o Reducing dimensionality by transforming data into a lower-dimensional space.

Visual Representation

• A flowchart illustrating the types and subtypes of feature engineering techniques.

1. Feature Transformation

Objective

• Transform existing features into a suitable format for machine learning algorithms.

Techniques

- a. Handling Missing Values (Imputation)
 - Problem: Real-world datasets often contain missing values, which can cause issues during model training.
 - Solutions:
 - o **Removal**: If missing values are minimal, they can be removed.
 - Imputation: Filling missing values using:
 - Mean: For numerical data.
 - Median: When data is skewed.
 - Mode: For categorical data.
 - Upcoming Content: Detailed methods for imputation will be discussed in future.

b. Handling Categorical Variables

- Problem: Machine learning algorithms require numerical input; categorical data must be converted.
- Solutions:
 - Encoding Techniques:
 - One-Hot Encoding:
 - □ Create binary columns for each category.
 - □ Example:
 - [®] Categories: Dog, Cat, Sheep.
 - ® New columns: Is_Dog, Is_Cat, Is_Sheep.
 - Label Encoding:
 - ☐ Assign a unique integer to each category.
 - Binning Numerical Variables:
 - Convert numerical variables into categorical bins.

- ☐ Assign a unique integer to each category.
- o Binning Numerical Variables:
 - Convert numerical variables into categorical bins.
 - Example:
 - ☐ Age groups: 0-12 (Child), 13-19 (Teenager), 20-59 (Adult), 60+ (Senior).

c. Outlier Detection and Handling

- **Problem**: Outliers can skew data distributions and affect model performance.
- Solutions:
 - o **Detection**: Identify outliers using statistical methods (e.g., z-scores, IQR).
 - Removal: Remove or cap outliers to minimize their impact.
- Visualization:
 - o Scatter Plots: To visually detect outliers.
- Analogy:
 - o In a class where most students score between 60-80, a student scoring 100 is an outlier.

d. Feature Scaling

- Problem: Features with different scales can bias models, especially those based on distance calculations (e.g., KNN).
- Solutions:
 - Normalization:
 - Scales data to a range of [0, 1].
 - Formula: (X X min) / (X max X min).
 - Standardization:
 - Scales data to have a mean of 0 and standard deviation of 1.
 - Formula: (X μ) / σ.
- Importance:
 - $\circ \;\;$ Ensures that no single feature dominates due to scale.
- · Analogy:
 - o Comparing the heights and weights of individuals; without scaling, weight may dominate due to larger numerical values.

2. Feature Construction

Objective

• Create new features that can better capture the underlying patterns in the data.

Techniques

a. Combining Features

• Example:

P. Id	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
2	1	1	Cumings, Mrs. John Bradley (Florence Brigg	female	I 38	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2.	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05		S
6	0	3	Moran, Mr. James	male		0	0	330877	8.4583		Q
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.075		S
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmin	female	27	0	2	347742	11.1333		S
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0	237736	30.0708		C

o Titanic Dataset:

- Original Features:

 SibSp: Number of siblings/spouses aboard.
 Parch: Number of parents/children aboard.

 New Feature:

 FamilySize = SibSp + Parch + 1 (including the passenger).
- П
 - Captures the total number of family members traveling together.
- b. Creating Categorical Features from Numerical
 - Binning:

Benefit:

- o Convert continuous variables into categorical bins.
- o Example:
 - Age bins:
 - □ 0-12: Child.
 - □ 13-19: Teenager.
 - □ 20-59: Adult.
 - □ 60+: Senior.
- . Why Use Binning:
 - o Simplifies models by reducing the effect of minor observation errors.
 - o Can capture non-linear relationships.

c. Feature Interactions

- Definition:
 - o Creating new features by combining existing ones.
- Example:
 - o Multiplying Number of Rooms and House Age to create a new feature that captures the combined effect on housing prices.
- Analogy:
 - o In cooking, combining ingredients in a specific way to create new flavors.

3. Feature Selection

Objective

• Identify and select the most important features that contribute to the predictive power of the model.

Importance

- Reduces Overfitting:
 - By eliminating irrelevant features, the model focuses on the most significant variables.
- Improves Model Performance:
 - Reduces computational complexity.
 - Enhances model interpretability.

Techniques

- a. Filter Methods
 - Definition:
 - Use statistical measures to select features.
 - Examples:
 - Correlation Threshold:
 - Remove features with low correlation to the target variable.
 - Chi-Squared Test:
 - For categorical variables.

b. Wrapper Methods

- Definition:
 - Use a predictive model to evaluate combinations of features.
- Examples:
 - Recursive Feature Elimination (RFE):
 - Iteratively removes least important features.
 - Forward/Backward Selection:
 - Adds/removes features based on model performance.

c. Embedded Methods

- Definition:
 - Feature selection occurs during model training.
- Examples:
 - LASSO Regression:
 - Uses L1 regularization to penalize less important features.
 - Decision Trees:
 - Inherently perform feature selection.

d. Example in Image Data

- MNIST Dataset:
 - $\circ \quad \hbox{Contains images of handwritten digits}.$

- o Problem:
 - Each image has 784 pixels (features), making the dataset high-dimensional.
- o Solution:
 - Use feature selection to identify the most informative pixels.
 - Focus on central pixels where the digit is likely to be, ignoring background pixels.

4. Feature Extraction

Objective

• Transform the data into a lower-dimensional space while retaining most of the information.

Techniques

a. Principal Component Analysis (PCA)

- Definition:
 - o An unsupervised technique that transforms the data into a set of linearly uncorrelated variables called principal components.
- Benefits:
 - o Reduces dimensionality.
 - o Removes multicollinearity.
- Analogy:
 - Like summarizing a large book into key points.

b. Linear Discriminant Analysis (LDA)

- Definition:
 - A supervised method that projects data onto a lower-dimensional space maximizing class separability.
- Ilse Case
 - o Often used in classification tasks.

c. t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Definition:
 - A non-linear technique primarily used for data visualization in 2D or 3D space.

- Benefit:
 - o Captures complex relationships in data.

Importance

- Reduces Computational Cost:
 - $\circ \;\;$ Simplifies models by reducing the number of features.
- Enhances Visualization:
 - Easier to visualize and interpret data in lower dimensions.

The Art of Feature Engineering

Key Points

- Creativity and Intuition:
 - o Requires understanding of the domain and the data.
- No One-Size-Fits-All:
 - o Techniques vary depending on the dataset and problem.
- Iterative Process:
 - o Often involves experimenting with different techniques and evaluating their impact.

Analogy

- Cooking:
 - o Just as chefs experiment with ingredients to create a delicious dish, data scientists experiment with features to build effective models.

Conclusion

Recap

- · Feature Engineering:
 - o A crucial step in the machine learning pipeline.
 - o Involves transforming, constructing, selecting, and extracting features.
- Importance:
 - o Directly impacts model performance.
 - o Helps in handling real-world data issues.

Next Steps

- Upcoming Videos:
 - We will explore each feature engineering technique in detail.
 - o Practical implementations and examples will be provided.
- Learning Outcome:
 - o By the end of this series, you will be proficient in feature engineering and able to apply these techniques to your own datasets.

Final Thought

- Quote:
 - o "Data is the new oil, but it needs to be refined (through feature engineering) to unlock its true value."