

10/522475
Rec'd PCT/PTO 26 JAN 2005

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESES (PCT) VERÖFFENTLICHTE INTERNATIONALE MELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
2. September 2004 (02.09.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/074646 A1

- (51) Internationale Patentklassifikation⁷: **F01L 1/344**, F02D 41/34
- (21) Internationales Aktenzeichen: PCT/EP2004/000266
- (22) Internationales Anmeldedatum:
15. Januar 2004 (15.01.2004)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
103 07 307.8 20. Februar 2003 (20.02.2003) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): KUNZ, Franz [DE/DE]; Math.-Bauer-Str. 4, 93336 Altmannstein (DE). ZHANG, Hong [DE/DE]; Spitzweg Str. 16, 93105 Tegernheim (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE

(54) Bezeichnung: VERFAHREN ZUM STEUERN EINER BRENNKRAFTMASCHINE

(57) Abstract: The invention relates an internal combustion engine comprising a camshaft, whereby the phase thereof can be adjusted in relation to the crankshaft by means of an adjusting device. The invention also comprises a camshaft sensor which detects the angle of the camshaft (CRK) and a crankshaft sensor which detects the angle of the crankshaft (CAM). Said method comprises the following steps: A reference value (PH AD) of the phase is adapted in a predetermined position of the adjusting device when a predetermined condition is fulfilled. A measuring value (PH S) of the phase is determined according to the detected angle of the crankshaft (CRK) and the angle of the camshaft (CAM). A corrected measuring value of the phase is determined according to the reference value (PH AD) and the measuring value (PH S) of the phase. An actuator signal for controlling the internal combustion engine is determined according to the corrected measuring value.

(57) Zusammenfassung: Eine Brennkraftmaschine hat eine Nockenwelle, deren Phase zu einer Kurbelwelle mittels einer Verstelleinrichtung verstellbar ist. Ferner ist ein Kurbelwellensensor vorgesehen, der den Kurbelwellenwinkel (CRK) erfasst und ein Nockenwellensensor, der den Nockenwellenwinkel (CAM) erfasst. Das Verfahren umfasst folgende Schritte: Ein Referenzwert (PH AD) der Phase wird in einer vorgegebenen Position der Verstelleinrichtung adaptiert, wenn eine vorgegebene Bedingung erfüllt ist. Ein Messwert (PH S) der Phase wird abhängig von dem erfassten Kurbelwellenwinkel (CRK) und Nockenwellenwinkel (CAM) ermittelt. Ein korrigierter Messwert der Phase wird abhängig von dem Referenzwert (PH AD) und dem Messwert (PH S) der Phase ermittelt. Ein Stellsignal zum Steuern der Brennkraftmaschine wird abhängig von dem korrigierten Messwert ermittelt.

BEST AVAILABLE COPY

WO 2004/074646 A1

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

- (84) **Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart):** ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT,

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("*Guidance Notes on Codes and Abbreviations*") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung**Verfahren zum Steuern einer Brennkraftmaschine**

- 5 Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine mit einer Nockenwelle, deren Phase zu einer Kurbelwelle mittels einer Verstelleinrichtung verstellbar ist.
- 10 Aus der DE 101 08 055 C1 ist ein Verfahren zum Steuern einer Brennkraftmaschine mit einer Nockenwelle bekannt, deren Phase zu einer Kurbelwelle mittels einer Verstelleinrichtung verstellbar ist. Die dort offenbare Verstelleinrichtung ist ein Hydrauliksystem, mittels dessen die Phase zwischen der Kurbelwelle und der Nockenwelle verstellbar ist. Derartige Verstelleinrichtungen werden in modernen Brennkraftmaschinen vielfach eingesetzt und dienen zum Einen zur Leistungssteigerung und zum Anderen zur Verringerung der Emission in der Brennkraftmaschine.
- 15
- 20 Bei dem aus der DE 101 08 055 C1 bekannten Verfahren wird zeitnah zu einem Start der Brennkraftmaschine ein Messwert der Phase zwischen der Kurbelwelle und der Nockenwelle abhängig von erfassten Nocken- und Kurbelwellenwinkeln ermittelt.
- 25 Ein vorgegebener Initialisierungswert wird aus einem Speicher eingelesen. Der Initialisierungswert der Phasenlage ist der Wert der Phase, den die Nockenwelle und Kurbelwelle zueinander haben, wenn alle mechanischen Teile in der vorgegebenen Weise zueinander angeordnet sind. Derartige Initialisierungswerte werden typischerweise von dem Hersteller der Brennkraftmaschine für alle Brennkraftmaschinen einer Serie fest vorgegeben und in den dafür vorgesehenen Steuereinrichtungen abgespeichert.
- 30
- 35 Ein Korrekturwert für die Phase wird dann zeitnah zum Start der Brennkraftmaschine abhängig von der Differenz des Initialisierungswertes und des Messwertes der Phase ermittelt. Im

weiteren Betrieb der Brennkraftmaschine wird dann die jeweils aktuelle Phase aus der Summe des Messwertes und des Korrekturwertes ermittelt. Bei dem bekannten Verfahren wird davon ausgegangen, dass Fehler in dem Messwert der Phase im wesentlichen auf die Toleranzen des Kurbelwellensensors und des Nockenwellensensors zurückzuführen sind. Es hat sich jedoch gezeigt, dass trotz dieser Korrekturen nicht immer ein gewünschter emissionsarmer Betrieb der Brennkraftmaschine gewährleistet ist.

10

Die Aufgabe der Erfindung ist, ein Verfahren zum Steuern einer Brennkraftmaschine mit einer Nockenwelle zu schaffen, deren Phase zu einer Kurbelwelle mittels einer Verstelleinrichtung verstellbar ist, welches einen emissionsarmen Betrieb sicherstellt.

15

Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Patentanspruchs. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

20

Der Erfindung liegt die Erkenntnis zugrunde, dass sich während des Betriebs der Brennkraftmaschine bei einer starren Zuordnung des Initialisierungswertes zu einem Referenzwert während des Betriebs der Brennkraftmaschine ein Fehler beim Erzeugen des Stellsignals auftritt. Dabei hat sich überraschend gezeigt, dass Fehler nicht nur auf Toleranzen und Drifterscheinungen des Kurbelwellensensors und des Nockenwellensensors zurückzuführen sind, sondern auf Veränderungen oder Verschleiß im Bereich der Verstelleinrichtung oder auch weiteren Elementen, die zur Kopplung zwischen der Kurbelwelle und der Nockenwelle dienen, wie einem entsprechenden Zahnrad oder einer Kette. So können erhebliche Veränderungen in der tatsächlichen Phasenlage zwischen der Kurbelwelle und der Nockenwelle auftreten, die beispielsweise im Vergleich zu dem Initialisierungswert für die Phasenlage und bis zu $+/-15^\circ$ Kurbelwelle ausmachen können und so die Massenstromzufuhr in die Zylinder der Brennkraftmaschine erheblich beeinflussen.

Aufbauend auf dieser Erkenntnis wird gemäß des Gegenstands des unabhängigen Patentanspruchs ein Referenzwert der Phase in einer vorgegebenen Position der Verstelleinrichtung adaptiert, wenn eine vorgegebene Bedingung erfüllt ist. Im weiteren Betrieb der Brennkraftmaschine wird dann ein korrigierter Messwert der Phase abhängig von dem Referenzwert und einem Messwert der Phase ermittelt. So kann dann einfach sichergestellt werden, dass die Brennkraftmaschine emissionsarm betreibbar ist.

10

In einer vorteilhaften Ausgestaltung der Erfindung ist die vorgegebene Bedingung erfüllt, wenn ein Kraftfahrzeug, in dem die Brennkraftmaschine anordenbar ist, eine vorgegebene Fahrdistanz seit der letzten Adaption zurückgelegt hat und vorgegebene Umgebungsbedingungen vorliegen. Diese Ausgestaltung der Bedingung zeichnet sich dadurch aus, dass sie ein einfaches und genaues Adaptieren mit angemessenem Rechenaufwand gewährleistet.

20

Eine weitere vorteilhafte Ausgestaltung der Erfindung zeichnet sich dadurch aus, dass die Umgebungsbedingungen vorliegen, wenn die Temperatur der Brennkraftmaschine innerhalb eines vorgegebenen Bereichs liegt. Dies hat den Vorteil, dass bei der Adaption keine Verfälschung durch eine möglicherweise tatsächlich auftretende Temperaturdrift der Sensoren mit einfließt.

30

Wenn die Adaption zeitnah zum Start der Brennkraftmaschine erfolgt, so hat dies den Vorteil, dass die Verstelleinrichtung sich in der durch die Mechanik vorgegebenen Endposition befindet und so eine präzise Adaption des Referenzwertes gewährleistet ist.

35

Wenn die Adaption abhängig von einer Größe erfolgt, die die Belastung der Brennkraftmaschine charakterisiert, so kann dadurch einfach eine präzise Adaption erfolgen, da die Belas-

tung der Brennkraftmaschine maßgeblich verantwortlich ist für Veränderungen in der Referenzposition.

Das Verfahren wird dabei besonders einfach, wenn die Größe,
5 die die Belastung der Brennkraftmaschine charakterisiert, die Fahrdistanz ist oder das Verfahren wird besonders präzise, wenn diese Größe eine die Vollastbeschleunigung charakterisierende Größe ist.

10 Besonders vorteilhaft ist, wenn die die Belastung der Brennkraftmaschine charakterisierende Größe eine die Laufunruhe charakterisierende Größe ist. Dadurch wird das Verfahren besonders präzise und kann auf eine Größe zurückgreifen, die für andere Steuerungs- oder Diagnosefunktionen der Brenn-
15 kraftmaschine in einer Steuerung der Brennkraftmaschine ohnehin berechnet wird.

Besonders einfach wird das Verfahren auch, wenn die Größe,
20 die die Belastung der Brennkraftmaschine die Betriebszeitdauer der Brennkraftmaschine ist.

Besonders vorteilhaft ist auch, wenn die Diagnose der Brennkraftmaschine erfolgt abhängig von dem adaptierten Referenzwert oder einem die Adaption bestimmenden Wert, so ist
25 gleichzeitig noch eine genaue Diagnose ermöglicht mit einem Wert, der mit dem Verfahren ohnehin berechnet wird.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:

30 Figur 1 eine Brennkraftmaschine mit einer Steuereinrichtung, in der das Verfahren zum Steuern der Brennkraftmaschine abgearbeitet wird,

Figur 2 eine der Brennkraftmaschine gemäß Figur 1 zugeordnete
35 Verstelleinrichtung zum Verstellen der Phase zwischen einer Nockenwelle und einer Kurbelwelle,

Figur 3 Ventilhubverlaufskurven der Gaswechselventile, aufgetragen über den Kurbelwellenwinkel,

Figur 4 ein Ablaufdiagramm eines Programms eines Teils des Verfahrens zum Steuern der Brennkraftmaschine,

5 Figur 5, 6 ein Ablaufdiagramm eines Programms eines weiteren Teils des Verfahrens zum Steuern der Brennkraftmaschine,

Figur 7 ein Programm eines Verfahrens zur Diagnose der Brennkraftmaschine.

10

Elemente gleicher Konstruktion oder Funktion werden figurenübergreifend mit den gleichen Bezugszeichen versehen.

15 Eine Brennkraftmaschine (siehe Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt umfasst vorzugsweise eine Drosselklappe 11, ferner einen Sammler 12 und ein Saugrohr 13, das hin zu einem Zylinder Z1 über einen Einlasskanal in den Motorblock geführt ist. Der Motorblock umfasst ferner eine 20 Kurbelwelle 21, welche über eine Pleuelstange mit dem Kolben des Zylinders Z1 gekoppelt ist.

Der Zylinderkopf umfasst einen Ventiltrieb mit einem Einlassventil 30, einem Auslassventil 31 und Ventilantrieben 32, 33.

25 Der Antrieb des Gaseinlassventils 30 und des Gasauslassvents 31 erfolgt dabei vorzugsweise mittels einer Nockenwelle 36 (siehe Figur 2) oder gegebenenfalls mittels zweier Nockenwellen, wobei je eine dem Gaseinlassventil 30 und dem Gasauslassventil 31 zugeordnet ist. Der Antrieb für das Gaseinlassventil 30 und/ oder das Gasauslassventil 31 umfasst vorzugsweise neben der Nockenwelle 36 eine Verstelleinrichtung 37, die einerseits mit der Nockenwelle 36 und andererseits mit der Kurbelwelle 21 gekoppelt ist, z. B. über Zahnkränze, die über eine Kette miteinander gekoppelt sind. Mittels der Verstelleinrichtung kann die Phase zwischen der Kurbelwelle 21 und der Nockenwelle 36 verstellt werden. Dies erfolgt im vorliegenden Ausführungsbeispiel durch Erhöhen des Drucks in den 30

35

Hochdruckkammern 38 der Verstelleinrichtung 37 bzw. Erniedrigen des entsprechenden Drucks je nachdem in welche Richtung die Verstellung erfolgen soll. Der mögliche Verstellbereich ist in der Figur 2 mit dem Pfeil 39 gekennzeichnet.

5

Die gestrichelt dargestellten Ventilerhebungskurven 46, 47 (Figur 3) der Einlassventile 30 und Auslassventile 31 zeigen den Fall, in dem sie mit dem Initialisierungswert übereinstimmen. Während des Betriebs der Brennkraftmaschine können 10 sich diese Ventilerhebungskurven jedoch hin zu den Ventilerhebungskurven 45 und 48 verändern. Dies hat zur Folge, dass in der Endposition des Verstellantriebs dann die Ventilüberschneidung zwischen dem Gaseinlass- und Gasauslassventilen unterschiedlich sein kann zu der ursprünglichen Ventilüberschneidung und auch deren Phasen oder deren Lage bezogen auf 15 den Kurbelwellenwinkel verschoben sein kann.

Versuche haben ergeben, dass sich dabei eine Verschiebung bis zu +/-15° Kurbelwelle ergeben können. Derartige Verschiebungen führen dann zu veränderten Gaswechselvorgängen und veränderten Brennvorgängen, wodurch dann ohne das im folgenden geschilderte Verfahren nicht mehr sichergestellt werden kann, dass das gewünschte Drehmoment einerseits eingestellt wird und andererseits ein emissionsarmer Betrieb der Brennkraftmaschine gewährleistet ist.

Der Zylinderkopf 3 (Figur 1) umfasst ferner ein Einspritzventil 34 und eine Zündkerze 35. Alternativ kann das Einspritzventil auch in dem Ansaugkanal angeordnet sein.

30

In dem Abgastrakt ist ein Katalysator 40 angeordnet. Ferner ist eine Steuereinrichtung 6 vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Messwert der Messgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern

35

der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden.

Die Sensoren sind ein Pedalstellungsgeber 71, welche die
5 Stellung eines Fahrpedals erfasst, ein Luftmassenmesser 14, welcher eine Luftmassenstrom stromaufwärts der Drosselklappe 11 erfasst, ein Temperatursensor 15, welche die Ansauglufttemperatur erfasst, ein Drucksensor 16, welcher den Saugrohrdruck erfasst, ein Kurbelwellenwinkelsensor 22, welcher einen
10 Kurbelwellenwinkel CAM erfasst, ein weiterer Temperatursensor 23, welcher eine Kühlmitteltemperatur erfasst, ein Nockenwellensensor 36, welcher den Nockenwellenwinkel CRK erfasst und eine Sauerstoffsonde 41, die den Restsauerstoffgehalt des Abgases in dem Abgastrakt 4 erfasst und diesem eine Luftzahl
15 zuordnet. Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren oder auch zusätzliche Sensoren vorhanden sein.

Die Stellglieder sind beispielsweise die Drosselklappe 11,
20 die Gaseinlass- und Gasauslassventile 30, 31, das Einspritzventil 34, die Zündkerze 35. Sie werden mittels elektrischer, elektromechanischer, hydraulischer, mechanischer Piezo oder weiterer dem Fachmann bekannter Stellantriebe angesteuert. Im folgenden wird auf die Stellantriebe und Stellglieder mit
25 Stellglieder Bezug genommen.

Neben dem detailliert dargestellten Zylinder Z1 sind in der Brennkraftmaschine in der Regel noch weitere Zylinder Z2 bis Z4 vorhanden, denen dann entsprechende Saugrohre, Abgaskanäle
30 und Stellglieder zugeordnet sind.

Figur 4 zeigt ein Ablaufdiagramm eines Programms eines ersten Teils des Verfahrens zum Steuern der Brennkraftmaschine. Das Programm wird in einem Schritt S1 gestartet und zwar vorzugsweise dann, wenn die Brennkraftmaschine fertig montiert ist und einem Endtest unterzogen wird, der sogenannte Bandend-Test. Es ist jedoch auch vorteilhaft, das Verfahren jeweils

dann zu starten, wenn mechanische Eingriffe in die Kurbelwelle 21, die Nockenwelle 36, die Verstelleinrichtung 37 oder in sonstige zur Kopplung zwischen der Kurbelwelle 21 und der Nockenwelle 36 dienende Teile erfolgt ist. Ein derartiger Fall
5 ist beispielsweise dann gegeben, wenn die Kette, über die die Kurbelwelle mit der Nockenwelle gekoppelt ist, ausgetauscht wird oder nachgespannt worden ist.

In einem Schritt S2 wird ein Messwert der Phase abhängig von
10 den durch den Nockenwellensensor 36a und den Kurbelwellenwin-
kelsensor 22 ermittelten Messwerten des Nockenwellenwinkels
CAM und des Kurbelwellenwinkels CRK berechnet. Die Phase zwi-
schen der Nockenwelle und der Kurbelwelle wird dabei bezogen
auf Grad-Kurbelwelle, den oberen Totpunkt TDC des jeweils dem
15 Zylinder Z1 zugeordneten Kolbens und dem Scheitelpunkt der
Ventilerhebung VL des Einlassventils 30 bzw. des Auslassven-
tils 31. Das Erfassen des Messwertes PH_S der Phase erfolgt
in dem Schritt S2 unter vorgegebenen Umgebungsbedingungen,
vorzugsweise bei einer vorgegebenen Temperatur der Brenn-
20 kraftmaschine.

In einem Schritt S3 wird geprüft, ob der Messwert PH_S mehr
als ein erster Schwellenwert HYS von dem Initialisierungswert
PH_INI der Phase abweicht. Der Initialisierungswert PH_INI
25 ist ein vorgegebener Wert der Phase für mehrere baugleiche
Brennkraftmaschinen, also beispielsweise eine Serie von
Brennkraftmaschinen. Der Initialisierungswert PH_INI der Pha-
se wird idealerweise von allen Brennkraftmaschinen eingenom-
men, wenn sich die Verstelleinrichtung an ihrem Endanschlag
30 befindet, der durch den Fußpunkt des Pfeils 39 in Figur 2
vorgegeben ist.

Überschreitet die Abweichung in dem Schritt S3 den Schwellen-
wert HYS, so wird in einem Schritt S4 ein Notlaufbetrieb der
35 Brennkraftmaschine gesteuert, in dem nur noch ein einge-
schränkter Betrieb der Brennkraftmaschine ermöglicht wird.
Erfolgt der Start des Programms in dem Schritt S1 während ei-

nes Bandende-Tests, so kann in dem Schritt S8 durch geeignete Mittel auch signalisiert werden, dass die Brennkraftmaschine nicht ordnungsgemäß montiert ist oder nicht funktionsfähig ist.

5

Ist die Bedingung des Schrittes S3 jedoch nicht erfüllt, so wird in einem Schritt S5 dem Initialisierungswert PH_INI der Messwert PH_S zugeordnet. Dadurch wird dann die bei der jeweiligen individuellen Brennkraftmaschine vorhandene Phase im 10 Endanschlag der Verstelleinrichtung 37 präzise gespeichert. In einem Schritt S6 wird das Programm dann beendet.

Ein Programm für einen weiteren Teil des Verfahrens zum Steuern der Brennkraftmaschine wird in einem Schritt S7 (siehe 15 Figur 5) gestartet.

In einem Schritt S8 wird ein Messwert PH_S der Phase abhängig von den erfassten Kurbelwellenwinkeln CRK und Nockenwellenwinkeln CAM ermittelt. In einem Schritt S9 wird geprüft, ob 20 eine Aktualisierungsbedingung UPD erfüllt ist. Dabei wird vorzugsweise geprüft, ob die Brennkraftmaschine zeitnah gestartet wurde, also ob sie sich noch innerhalb der ersten Umdrehungen der Kurbelwelle befindet. Ferner wird geprüft, ob eine Mindestanzahl an gefahrenen Kilometern seit der letzten 25 Adaption eines Referenzwertes PH_AD erreicht wurden. Schließlich wird noch geprüft, ob gegebene Umgebungsbedingungen, wie vorzugsweise eine vorgegebene Temperatur der Brennkraftmaschine, eingehalten sind. Die Temperatur der Brennkraftmaschine wird dabei vorzugsweise abhängig von der erfassten 30 Kühlmitteltemperatur ermittelt.

Sind die Bedingungen des Schrittes S9 erfüllt, so wird in einem Schritt S10 ein Adoptionswert AD ermittelt. Das in eckigen Klammern aufgenommene n bedeutet jeweils, dass der zugeordnete Wert für den aktuellen Berechnungsdurchlauf als neuer Wert gültig ist, n-1 bedeutet hingegen, dass der entsprechen-

de Wert im vergangenen Berechnungsdurchlauf der aktuelle Wert war.

Der Adoptionswert wird in dem Schritt S10 abhängig von dem
5 Adoptionswert aus dem vergangenen Berechnungsdurchlauf,
und/oder einer Fahrdistanz DIST und/ oder einer Anzahl an
Vollastbeschleunigungen LJ und/ oder einer Betriebsdauer LT
ermittelt. Es kann auch zusätzlich oder ausschließlich abhän-
10 gig von einer die Laufunruhe der Brennkraftmaschine charakte-
risierenden Größe oder einer anderen die Belastung der Brenn-
kraftmaschine über ihre Betriebsdauer charakterisierende Grö-
ße ermittelt werden. In einem Schritt S11 wird dann ein Refe-
renzwert PH_AD für die Phase der Kurbelwelle und der Nocken-
15 welle in der Endposition der Verstelleinrichtung 37 aus der
Summe des Initialisierungswertes und des aktuellen Adoptions-
wertes AD ermittelt.

In einem Schritt S12 wird dann ein Korrekturwert PH_COR ab-
hängig von dem Referenzwert PH_AD und dem Messwert PH_S der
20 Phase ermittelt. Durch diesen Korrekturwert PH_COR werden
dann Temperatur und sonstige Sensorfehler einfach zusätzlich
kompensiert. Der Schritt S12 wird auch abgearbeitet, wenn die
Bedingungen des Schrittes S9 nicht erfüllt sind.

25 Konkrete Ausgestaltungen der Ermittlung des Adoptionswertes
AD in dem Schritt S10 sind in den Schritten S13 bis S16 dar-
gestellt. So wird der Adoptionswert beispielsweise mittels
der in dem Schritt S13 angegebenen Formel ermittelt, wobei
Min eine Minimalauswahl zwischen den beiden durch Kommata ge-
30 trennten Termen darstellt. Der zweite Term der Minimalauswahl
ist die Differenz zweier Werte, die abhängig von der Fahrdis-
tanz im aktuellen Berechnungszeitpunkt und im vorangegangenen
Berechnungszeitpunkt ermittelt werden und somit eine maximale
Änderung des Adoptionswertes AD zwischen zwei aufeinanderfol-
35 genden Adaptionen darstellen. Diese Werte sind dabei vorzugs-
weise durch entsprechende Fahrversuche und/oder eine entspre-
chende Modellbildung ermittelt und vorzugsweise in einem

Kennfeld abgelegt. Durch dieses Vorgehen ist auf einfache Weise gewährleistet, dass die Änderung des Adoptionswertes AD in dem Schritt S13 betragsmäßig auf eine durch eine Modellbildung vorgegebene maximale Änderung begrenzt wird.

5

Das Vorgehen gemäß des Schrittes S14 bei der Ermittlung des Adoptionswertes AD unterscheidet sich vom dem des Schrittes S13 dadurch, dass der zweite Term der Minimalauswahl ein Wert ist, der ermittelt wird abhängig von der Differenz der aktuellen Fahrdistanz DIST und der in dem letzten Durchlauf des Schrittes S14 vorhandenen Fahrdistanz DIST ermittelt wird. Der Wert stellt auch einen Modellwert dar, wobei hier im Gegensatz zum Schritt S13 nicht die absoluten Fahrdistanzen maßgeblich sind, sondern nur die relativen Fahrdistanzen berücksichtigt werden. Auch hier erfolgt die Berechnung des Wertes vorzugsweise mittels eines Kennfeldes.

In dem Schritt S15 und S16 erfolgt die Berechnung des Adoptionswertes mittels einer PT1-Filterung. Dazu wird zu dem in dem letzten Durchlauf des Schrittes S15 ermittelten Adoptionswert ein Term hinzu addiert, der einen Wichtungswert enthält, der abhängig ist von der Differenz der Fahrdistanz DIST im aktuellen Berechnungszeitpunkt und der bei dem letzten Be- rechnungsdurchlauf des Schrittes S15. Dieser Wichtungswert wird multipliziert mit der Differenz der Abweichung des aktuellen Messwertes PH_S und Initialisierungswertes PH_INI und des Adoptionswertes beim vorangegangenen Berechnungsdurchlauf des Schrittes S15. Der Wichtungsfaktor wird dabei vorzugsweise aus einem in der Steuereinrichtung 6 abgespeicherten Kennfeld ermittelt, das durch Fahrversuche oder am Motorprüfstand ermittelt wurde.

Der Schritt S16 unterscheidet sich von dem Schritt S15 dadurch, dass der Wichtungsfaktor zusätzlich oder alternativ abhängig von einer die Vollastbeschleunigungen kennzeichnenden Größe, also beispielsweise deren Anzahl ermittelt wird. Die in den Schritten S13 bis S16 beschriebenen Vorgehenswei-

sen zur Ermittlung des Adoptionswertes haben jeweils den Vorteil, dass die jeweiligen dort relevanten Größen einen Einfluss auf die Veränderung der Referenzposition haben und somit zu einer genauen und präzisen Adaption beitragen.

5

In einem Schritt S17 (siehe Figur 6), der auf den Schritt S12 folgt, geht das Programm in einen Wartezustand, bis eine vorgegebene Zeitdauer abgelaufen ist oder die Kurbelwelle sich um einen vorgegebenen Winkel weiterbewegt hat. In diesem Zustand wird das Programm vorzugsweise unterbrochen und die Rechnerleistung der Steuereinrichtung 6 anderen Programmen zur Verfügung gestellt.

In einem Schritt S18 wird dann ein Messwert PH_S der Phase abhängig von dem Nockenwellenwinkel CAM und dem Kurbelwellenwinkel CRK ermittelt. In einem Schritt S19 wird dann ein korrigierter Messwert PH_AKT aus der Summe des Messwerts PH_S und des Korrekturwerts PH_COR ermittelt.

20 In einem Schritt S20 wird dann ein Stellsignal SG zum Steuern der Brennkraftmaschine, abhängig von dem korrigierten Messwert PH_AKT ermittelt. Dies erfolgt beispielsweise mittels eines sogenannten Saugrohrmodells, das über entsprechende Beobachter-Gleichungen einen Schätzwert der in den Zylinder Z1 zugemessenen Luftmasse ermittelt abhängig von dem korrigierten Messwert PH_AKT der Phase zwischen der Kurbelwelle 21 und der Nockenwelle 36 und weiteren Messgrößen, wie dem erfassten Luftmassenstrom, den Drosselklappenöffnungsgrad, der Temperatur der Ansaugluft und gegebenenfalls dem erfassten Saugrohrdruck. Abhängig von dem Schätzwert der in dem Zylinder Z1 zugemessenen Luftmasse wird dann eine gewünschte Kraftstoffmasse ermittelt und das Einspritzventil 34 dann mittels eines entsprechenden Stellsignals angesteuert. In einem Schritt S21 wird anschließend geprüft, ob eine Abbruchbedingung des Programms erfüllt ist. Diese kann beispielsweise darin bestehen, dass die Brennkraftmaschine gestoppt wird. Ist die Bedingung des Schrittes S19 erfüllt, so wird das Programm in dem

Schritt S22 beendet. Andernfalls wird das Programm in dem Schritt S17 fortgesetzt.

Mittels des in der Figur 7 dargestellten Programms erfolgt
5 eine Diagnose der Brennkraftmaschine. Das Programm wird in einem Schritt S23 gestartet. In einem Schritt S24 wird geprüft, ob der aktuelle Adoptionswert größer als ein weiterer Schwellenwert SWA ist. Der weitere Schwellenwert SWA ist fest vorgegeben und vorzugsweise durch Versuche an einem Motor-
10 prüfstand oder im Fahrbetrieb ermittelt. Ist die Bedingung des Schrittes S24 erfüllt, so wird in einem Schritt S25 die Brennkraftmaschine in einem Betriebszustand des Notlaufs versetzt. Ist die Bedingung des Schrittes S24 hingegen nicht erfüllt, so wird das Programm in dem Schritt S26 beendet. Al-
15 ternativ zu dem Schritt S24 kann auch ein Schritt S27 vorgesehen sein, in dem geprüft wird, ob die Änderung der Adaptionswerte von einem Berechnungszeitpunkt des Adoptionswertes hin zu dem nächsten Berechnungszeitpunkt einen vorgegebenen weiteren Schwellenwert SWB überschreitet. Ist dies der Fall,
20 so wird in dem Schritt S25 die Brennkraftmaschine in den Betriebszustand des Notlaufs gesteuert. Andernfalls wird das Programm in dem Schritt S26 beendet.

Patentansprüche

1. Verfahren zum Steuern einer Brennkraftmaschine mit einer Nockenwelle (36), deren Phase zu einer Kurbelwelle (21) mittels einer Verstelleinrichtung (37) verstellbar ist, mit einem Kurbelwellensensor (22), der den Kurbelwellenwinkel (CRK) erfasst und mit einem Nockenwellensensor (36a), der den Nockenwellenwinkel (CAM) erfasst, mit folgenden Schritten
 - ein Referenzwert (PH_AD) der Phase wird in einer vorgegebenen Position der Verstelleinrichtung (37) adaptiert, wenn eine vorgegebene Bedingung erfüllt ist,
 - ein Messwert (PH_S) der Phase wird abhängig von dem erfassten Kurbelwellenwinkel (CRK) und Nockenwellenwinkel (CAM) ermittelt,
 - ein korrigierter Messwert (PH_AKT) der Phase wird abhängig von dem Referenzwert (PH_INI) und dem Messwert (PH_S) der Phase ermittelt,
 - ein Stellsignal (SG) zum Steuern der Brennkraftmaschine wird abhängig von dem korrigierten Messwert (PH_COR) ermittelt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgegebene Bedingung erfüllt ist, wenn ein Kraftfahrzeug, in dem die Brennkraftmaschine anordenbar ist, eine vorgegebene Fahrdistanz (DIST) seit der letzten Adaption zurückgelegt hat und vorgegebene Umgebungsbedingungen vorliegen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Umgebungsbedingungen vorliegen, wenn die Temperatur der Brennkraftmaschine innerhalb eines vorgegebenen Bereichs liegt.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Adaption zeitnah zum Start der Brennkraftmaschine erfolgt.

5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Adaption abhängig von einer Größe erfolgt, die die Belastung der Brennkraftmaschine charakterisiert.

5

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Größe, die die Belastung der Brennkraftmaschine charakterisiert, die Fahrdistanz (DIST) ist.

10 7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Größe, die die Belastung der Brennkraftmaschine charakterisiert, eine die Vollastbeschleunigungen charakterisierende Größe ist.

15 8. Verfahren nach einem der Ansprüche 5 bis 7,.. dadurch gekennzeichnet, dass die Größe, die Belastungen der Brennkraftmaschine charakterisiert, eine die Laufunruhe charakterisierende Größe ist.

20 9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Größe, die die Belastung der Brennkraftmaschine charakterisiert, die Betriebszeitdauer (LT) der Brennkraftmaschine ist.

25 10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Diagnose der Brennkraftmaschine erfolgt abhängig von dem adaptierten Referenzwert (PH_AD) oder einem die Adaption bestimmenden Wert.

1/5

FIG 1

FIG 2

FIG 3

FIG 4

3/5

FIG 5

FIG 6

FIG 7

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/000266

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 F01L1/344 F02D41/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F01L F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 852 287 A (ATSUGI UNISIA CORP) 8 July 1998 (1998-07-08) abstract page 1 -page 9 ---	1-4,10
A	DE 101 08 055 C (SIEMENS AG) 8 August 2002 (2002-08-08) cited in the application the whole document ---	1-10
A	US 6 196 173 B1 (TAKAHASHI TATSUHIKO ET AL) 6 March 2001 (2001-03-06) the whole document ---	1-10
A	US 5 522 352 A (SHINOJIMA MASAAKI ET AL) 4 June 1996 (1996-06-04) the whole document ---	1-10 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the International search

28 April 2004

Date of mailing of the International search report

07/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Nicolás, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/000266

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Description of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 06, 31 July 1995 (1995-07-31) & JP 07 083080 A (NIPPONDENSO CO LTD), 28 March 1995 (1995-03-28) abstract -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2004/000266

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0852287	A	08-07-1998	JP	3510073 B2		22-03-2004
			JP	10196419 A		28-07-1998
			JP	3382491 B2		04-03-2003
			JP	10196421 A		28-07-1998
			DE	69801775 D1		31-10-2001
			DE	69801775 T2		21-02-2002
			EP	0852287 A1		08-07-1998
			US	5937805 A		17-08-1999
DE 10108055	C	08-08-2002	DE	10108055 C1		08-08-2002
			FR	2821114 A1		23-08-2002
			US	2002112683 A1		22-08-2002
US 6196173	B1	06-03-2001	JP	3061796 B2		10-07-2000
			JP	2000328969 A		28-11-2000
			DE	19954573 A1		30-11-2000
US 5522352	A	04-06-1996	JP	3508194 B2		22-03-2004
			JP	7217414 A		15-08-1995
			GB	2286261 A ,B		09-08-1995
JP 07083080	A	28-03-1995		NONE		

INTERNATIONALES RECHERCHENBERICHT

International Aktenzeichen
PCT/EP2004/000266

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F01L1/344 F02D41/34

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F01L F02D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 852 287 A (ATSUGI UNISIA CORP) 8. Juli 1998 (1998-07-08) Zusammenfassung Seite 1 -Seite 9 ---	1-4,10
A	DE 101 08 055 C (SIEMENS AG) 8. August 2002 (2002-08-08) in der Anmeldung erwähnt das ganze Dokument ---	1-10
A	US 6 196 173 B1 (TAKAHASHI TATSUHIKO ET AL) 6. März 2001 (2001-03-06) das ganze Dokument ---	1-10
A	US 5 522 352 A (SHINOJIMA MASAAKI ET AL) 4. Juni 1996 (1996-06-04) das ganze Dokument ---	1-10
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 - 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 - 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - 'P' Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
28. April 2004	07/05/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Nicolás, C

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/000266

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 06, 31. Juli 1995 (1995-07-31) & JP 07 083080 A (NIPPONDENSO CO LTD), 28. März 1995 (1995-03-28) Zusammenfassung -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationale Patentzeichen

PCT/EP2004/000266

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0852287	A	08-07-1998		JP 3510073 B2 JP 10196419 A JP 3382491 B2 JP 10196421 A DE 69801775 D1 DE 69801775 T2 EP 0852287 A1 US 5937805 A		22-03-2004 28-07-1998 04-03-2003 28-07-1998 31-10-2001 21-02-2002 08-07-1998 17-08-1999
DE 10108055	C	08-08-2002		DE 10108055 C1 FR 2821114 A1 US 2002112683 A1		08-08-2002 23-08-2002 22-08-2002
US 6196173	B1	06-03-2001		JP 3061796 B2 JP 2000328969 A DE 19954573 A1		10-07-2000 28-11-2000 30-11-2000
US 5522352	A	04-06-1996		JP 3508194 B2 JP 7217414 A GB 2286261 A ,B		22-03-2004 15-08-1995 09-08-1995
JP 07083080	A	28-03-1995		KEINE		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.