# God of Juggling

1 sec, 128 MB

การเล่น Juggling คือการใช้มือสองมือโยนบอลจำนวนหนึ่งที่ละลูก จากมือข้างหนึ่งไปยังอีกข้างหนึ่ง การโยนนั้นเราต้องโยนสลับมือกัน Juggling ถือเป็นความสามารถพิเศษอย่างหนึ่งที่ผู้เล่นจะต้องได้รับ การฝึกฝน จนเกิดความชำนาญถึงจะโยนบอลได้อย่างสวยงาม แล้วก็ไม่ปล่อยให้บอลตกพื้น ยิ่งเล่นกับลูก บอลจำนวนมากเท่าไหร่ ก็ยิ่งควบคุมยากมากเท่านั้น โดยทั่วไปผู้เล่นจะโยนบอลได้อย่างมากไม่เกิน 20 ลูกในเวลาเดียวกัน แต่มี God of Juggling อยู่คนหนึ่งที่สามารถโยนบอลได้จำนวนไม่จำกัด โดย วิธีการเล่นของเขาจะมีอยู่สองแบบ สมมติว่าเขาเริ่มเล่นกับบอลจำนวน  $\mathbf N$  ลูก เขาจะเริ่มใช้มือสองข้างลือ บอลจำนวนละเท่า ๆ กัน ถ้า  $\mathbf N$  เป็นเลขคี่เขาจะใช้มือที่ถนัดถือ ( $\mathbf N$ +1) / 2 ลูก เพื่อไม่ให้การเล่นง่าย เกินไป  $\mathbf N$  >= 3 เสมอ โดยเริ่มแรก



มือที่ถนัดจะถือบอลลูกที่ 1, 3, 5, 7, 9, ... มืออีกข้างจะถือบอลลูกที่ 2, 4, 6, 8, 10, ...

God of Juggling ถนัดมือขวาและจะโยนบอลด้วยความเร็วสม่ำเสมอ คือวินาทีละ 1 ลูก โดยเริ่มจากมือที่ถนัด เริ่มแรกที่เวลา t = 1 เขาจะเริ่มโยนบอลลูก หนึ่งจากมือขวาไปมือซ้าย, t = 2 เขาจะโยนบอลลูกหนึ่งจากมือซ้ายไปมือขวา, t = 3 โยนจากขวาไปซ้าย สลับไปเรื่อย ๆ

#### เทคนิคการ โยนจะมีสองแบบ

- ใน N วินาทีแรก จะต้องโยนบอลตามลำดับ 1, 2, 3, .., N หลังจากนั้นบอลที่อยู่ในมือข้างที่จะโยนเป็นเวลานานสุดจะต้องถูกโยนก่อน (Queue: First In First Out) ตัวอย่างเช่นถ้า N = 4 ลำดับการโยนของ 7 วินาทีแรกจะเป็นดังนี้: 1, 2, 3, 4, 2, 1, 4
- 2. เราสามารถโยนบอลลูกใหนก็ได้ที่อยู่ในมือที่กำลังจะโยน (วิธีนี้โกง จะไม่พบในการเล่น Juggling จริง ๆ)

สมมติว่าถ้า N = 5 รูปแบบการโยนสามารถเป็นไปคังนี้

| ເວລາ t | วิธีแรก         |                 | วิธีที่สอง      |                 |
|--------|-----------------|-----------------|-----------------|-----------------|
|        | บอลในมือขวา     | บอลในมือซ้าย    | บอลในมือขวา     | บอลในมือซ้าย    |
| 1      | <b>1</b> , 3, 5 | 2, 4            | 1, <b>3</b> , 5 | 2, 4            |
| 2      | 3, 5            | <b>2</b> , 4, 1 | 1, 5            | 2, <b>4</b> , 3 |
| 3      | <b>3</b> , 5, 2 | 4, 1            | 1, 5, <b>4</b>  | 2, 3            |
| 4      | 5, 2            | <b>4</b> , 1, 3 | 1, 5            | <b>2</b> , 3, 4 |

| 5 | <b>5</b> , 2, 4 | 1, 3            | <b>1</b> , 5, 2 | 3, 4            |
|---|-----------------|-----------------|-----------------|-----------------|
| 6 | 2, 4            | <b>1</b> , 3, 5 | 5, 2            | <b>3</b> , 4, 1 |

สีแดงแทนบอลที่กำลังจะ โยนในวินาทีนั้น ๆ

ปัญหาที่เราสงสัยคือ ถ้าเราได้ข้อมูลบันทึกการโยนบอลที่เวลาต่าง  $\gamma$  มา ให้ (X,Y) หมายถึงว่า God of Juggling โยนบอลหมายเลข Y ในวินาทีที่ X เช่น ข้อมูลอาจจะเป็นลิสต์ดังนี้  $\{(1,1),(2,2),(4,4)\}$  คือที่วินาทีที่ 1 โยนบอล 1, วินาทีที่ 2 โยนบอล 2, วินาทีที่ 4 โยนบอล 4 โดยเราไม่รู้ว่าเริ่มแรกนั้น God of Juggling ถือลูกบอลอยู่ที่ลูก

จงเขียนโปรแกรมเพื่อหาจำนวนของค่า N ที่เป็นไปได้ทั้งหมดของการโยนแต่ละวิธี โดยสำหรับการโยนแบบวิธีแรกนั้น เราจะสนใจเฉพาะ N ที่เป็น จำนวนคู่เท่านั้นหรือเป็นจำนวนคี่เท่านั้นในแต่ละชุดทดสอบ ถ้ามีไม่จำกัดให้ตอบ -1

# Input

บรรทัดแรกมีจำนวนเต็มสองจำนวน M กับ Q แทนจำนวนข้อมูลบันทึกการโยน และชนิดของคำถามที่เราสนใจ โดยที่

ถ้า Q = 0 เราจะสนใจคำตอบของการ โยนแบบวิธีที่สอง

ถ้า Q = 1 เราจะสนใจคำตอบของการโยนแบบวิธีแรก และ N ที่เป็นจำนวนคี่เท่านั้น และ

ถ้า Q = 2 เราจะสนใจคำตอบของการโยนแบบวิชีแรก และ N ที่เป็นจำนวนคู่เท่านั้น

บรรทัคที่ 2 ถึง M+1 จะมีเลขจำนวนเต็มสองจำนวน X กับ Y ซึ่งหมายถึงลูกที่ Y ถูกโยนที่วินาทีที่ X

## Output

จำนวนเต็มจำนวนเคียว แทนจำนวนของค่า N ที่เป็นไปได้ในการโยนสำหรับคำถามชนิด Q

#### Subtasks

สำหรับทุก ๆ ปัญหาย่อย: 1 <= M <= 100,000; 1 <= X, Y <= 1,000,000,000

Subtask 1 (7%): Q = 1; M <= 1,000; X, Y <= 10,000

Subtask 2 (23%): Q = 1

Subtask 3 (8%): Q = 2; M <= 1,000; X, Y <= 10,000

Subtask 4 (27%): Q = 2; M <= 1,000

Subtask 5 (10%): Q = 0; M <= 1,000; X, Y <= 10,000

Subtask 6 (25%): Q = 0

### Sample input/output

| Output 1 |
|----------|
| -1       |
|          |
|          |
|          |
|          |

| Input 2 2 1 13 1 19 1           | Output 2 1    |
|---------------------------------|---------------|
| Input 3 2 2 13 1 19 1           | Output 3<br>0 |
| Input 4 40 11 22 33 42          | Output 4 0    |
| Input 5 5 2 1 1 2 2 3 3 4 4 5 2 | Output 5      |

Clarification for sample 2: N ที่เป็นไปได้มีสองค่าคือ 1 และ 3 แต่เราสนใจแค่ N >= 3 ที่เป็นจำนวนคี่เท่านั้น (Q = 1)