# Generating random supersingular Elliptic Curves using modular polynomials

Simon Pohmann Supervisor: Cristophe Petit

June 7, 2022

### Elliptic Curves

#### Definition

An *Elliptic Curve* is a projective variety with a defining equation of the form

$$y^2z = x^3 + Axz^2 + Bz^3$$

▶ Affine points of E are  $(x,y) \in \bar{k}^2$  such that  $y^2 = x^3 + Ax + B$ 



### Elliptic Curves

#### Definition

An *Elliptic Curve* is a projective variety with a defining equation of the form

$$y^2z = x^3 + Axz^2 + Bz^3$$

- ▶ Affine points of *E* are  $(x, y) \in \bar{k}^2$  such that  $y^2 = x^3 + Ax + B$
- ► One point "at infinity"

### Elliptic Curves

#### Definition

An *Elliptic Curve* is a projective variety with a defining equation of the form

$$y^2z = x^3 + Axz^2 + Bz^3$$

- ▶ Affine points of E are  $(x, y) \in \bar{k}^2$  such that  $y^2 = x^3 + Ax + B$
- One point "at infinity"
- ▶ *E* defined over field *k* if  $A, B \in k$

### Elliptic Curves are groups

#### Proposition

Let E be an Elliptic Curve over k. Then there is  $+_E : E \times E \to E$  such that E becomes a group. Further,  $+_E$  is (locally) given by polynomials.

► E is an algebraic group

### Elliptic Curves are groups

#### Proposition

Let E be an Elliptic Curve over k. Then there is  $+_E : E \times E \to E$  such that E becomes a group. Further,  $+_E$  is (locally) given by polynomials.

- ► E is an algebraic group
- ► For  $x_1 \neq x_2$ , define  $(x_1, y_1) +_E (x_2, y_2)$  to be

$$\left(\left(\frac{y_2-y_1}{x_2-x_1}\right)^2-x_1-x_2,\ (2x_1+x_2)\frac{y_2-y_1}{x_2-x_1}-\left(\frac{y_2-y_1}{x_2-x_1}\right)^3-y_1\right)$$

#### Definition

An algebraic map (i.e. morphism) between Elliptic Curves  $E \to E'$  is called isogeny, if it maps  $\infty \mapsto \infty$ .

"algebraic map" = "locally given by polynomials"

#### Definition

- "algebraic map" = "locally given by polynomials"
- isogenies are automatically group homomorphisms

#### Definition

- "algebraic map" = "locally given by polynomials"
- isogenies are automatically group homomorphisms
- important subclass: separable isogenies

#### Definition

- "algebraic map" = "locally given by polynomials"
- isogenies are automatically group homomorphisms
- ▶ important subclass: *separable* isogenies
- ▶ 1-1 correspondence

separable isogenies 
$$E \to E' \leftrightarrow \text{subgroups } G \le E$$
 
$$\phi \mapsto \text{ker}(\phi)$$

#### Definition

An algebraic map (i.e. morphism) between Elliptic Curves  $E \to E'$  is called isogeny, if it maps  $\infty \mapsto \infty$ .

- "algebraic map" = "locally given by polynomials"
- isogenies are automatically group homomorphisms
- important subclass: separable isogenies
- ▶ 1-1 correspondence

separable isogenies 
$$E \to E' \leftrightarrow \text{subgroups } G \le E$$
  $\phi \mapsto \text{ker}(\phi)$ 

• degree of separable isogeny is  $\# \ker(\phi)$ 

#### Definition

- "algebraic map" = "locally given by polynomials"
- isogenies are automatically group homomorphisms
- important subclass: separable isogenies
- ▶ 1-1 correspondence

separable isogenies 
$$E \to E' \leftrightarrow \text{subgroups } G \le E$$
 
$$\phi \mapsto \text{ker}(\phi)$$

- ▶ degree of separable isogeny is  $\# \ker(\phi)$
- I-isogeny := degree / isogeny

### Isogenies (continued)

#### Definition

An algebraic map (i.e. morphism) between Elliptic Curves  $E \to E'$  is called isogeny, if it maps  $\mathcal{O} \mapsto \mathcal{O}$ .

Group law given by polynomials

$$\Rightarrow$$
 have isogeny  $[m]: E \to E, P \mapsto \underbrace{P + ... + P}_{m \text{ times}}$ 

### Isogenies (continued)

#### Definition

An algebraic map (i.e. morphism) between Elliptic Curves  $E \to E'$  is called isogeny, if it maps  $\mathcal{O} \mapsto \mathcal{O}$ .

► Group law given by polynomials

$$\Rightarrow$$
 have isogeny  $[m]: E \to E, P \mapsto \underbrace{P + ... + P}_{m \text{ times}}$ 

▶ If E defined over  $\mathbb{F}_q$ 

$$\Rightarrow$$
 have isogeny  $\pi: E \to E$ ,  $(x,y) \mapsto (x^q, y^q)$ 



### Supersingular and ordinary curves

The endomorphisms (isogenies  $E \to E$ ) of E form a ring  $\operatorname{End}(E)$ .

▶  $\mathbb{Z} \hookrightarrow \operatorname{End}(E)$  as [m] is isogeny

### Supersingular and ordinary curves

The endomorphisms (isogenies  $E \to E$ ) of E form a ring  $\operatorname{End}(E)$ .

▶  $\mathbb{Z} \hookrightarrow \operatorname{End}(E)$  as [m] is isogeny

#### Proposition

If  $k = \mathbb{F}_q$  is a finite field, then one of the following holds

- $ightharpoonup \operatorname{End}(E)$  is an order in a quadratic imaginary number field
- $ightharpoonup \operatorname{End}(E)$  is an order in a quaternion algebra

### Supersingular and ordinary curves

The endomorphisms (isogenies  $E \to E$ ) of E form a ring  $\operatorname{End}(E)$ .

▶  $\mathbb{Z} \hookrightarrow \operatorname{End}(E)$  as [m] is isogeny

#### Proposition

If  $k = \mathbb{F}_q$  is a finite field, then one of the following holds

- $ightharpoonup \operatorname{End}(E)$  is an order in a quadratic imaginary number field
- $ightharpoonup \operatorname{End}(E)$  is an order in a quaternion algebra

#### Definition

In the first case, E is called *ordinary*, otherwise *supersingular*.

Elliptic Curves up to isomorphism are classified by *j-invariant* j(E)

▶ *I*-isogeny graph:  $V = \{j(E) \mid E \text{ defined over } \mathbb{F}_q\}$  $E = \{(j(E), j(E') \mid \exists I \text{-isogeny } E \to E')\}$ 

Elliptic Curves up to isomorphism are classified by *j-invariant* j(E)

- ▶ *I*-isogeny graph:  $V = \{j(E) \mid E \text{ defined over } \mathbb{F}_q\}$   $E = \{(j(E), j(E') \mid \exists \text{ $I$-isogeny } E \to E')\}$
- ► The supersingular *l*-isogeny graph is an expander



Elliptic Curves up to isomorphism are classified by *j-invariant* j(E)

- ▶ *I*-isogeny graph:  $V = \{j(E) \mid E \text{ defined over } \mathbb{F}_q\}$   $E = \{(j(E), j(E') \mid \exists \text{ $I$-isogeny } E \to E')\}$
- ▶ The supersingular *l*-isogeny graph is an expander
  - Useful for cryptography



Elliptic Curves up to isomorphism are classified by j-invariant j(E)

- ▶ *I*-isogeny graph:  $V = \{j(E) \mid E \text{ defined over } \mathbb{F}_q\}$   $E = \{(j(E), j(E') \mid \exists \text{ $I$-isogeny } E \to E')\}$
- ▶ The supersingular *I*-isogeny graph is an expander
  - Useful for cryptography
- Ordinary I-isogeny graphs are "volcanoes"



Classical approach: Random walk in isogeny graph

Classical approach: Random walk in isogeny graph

#### Question

Is there a method that does not reveal a path to a fixed curve?

Classical approach: Random walk in isogeny graph

#### Question

Is there a method that does not reveal a path to a fixed curve?

- Experiments have shown correlation between supersingularity and having (multiple) *I*-isogenies  $E \to E^{(p)}$ , for fixed *I*.
  - ► First explored in [Boo+22], with limited success

Classical approach: Random walk in isogeny graph

#### Question

Is there a method that does not reveal a path to a fixed curve?

- Experiments have shown correlation between supersingularity and having (multiple) *I*-isogenies  $E \to E^{(p)}$ , for fixed *I*.
  - ► First explored in [Boo+22], with limited success

#### Question

How many ordinary resp. supersingular curves with 1-isogeny  $E \to E^{(p)}$  exist?



#### Proposition

There is a polynomial  $\Phi_I(x,y) \in \mathbb{Z}[x,y]$  such that  $\Phi_I(j(E),j(E'))=0$  if and only if there is an I-isogeny  $E \to E'$ .

#### Proposition

There is a polynomial  $\Phi_I(x,y) \in \mathbb{Z}[x,y]$  such that  $\Phi_I(j(E),j(E'))=0$  if and only if there is an I-isogeny  $E \to E'$ .

▶ Finding a curve with *I*-isogeny  $E \to E^{(p)}$  is as easy/as hard as finding a root of  $\Phi_I(x, x^p)$ 

#### Proposition

There is a polynomial  $\Phi_I(x,y) \in \mathbb{Z}[x,y]$  such that  $\Phi_I(j(E),j(E')) = 0$  if and only if there is an I-isogeny  $E \to E'$ .

- ► Finding a curve with *I*-isogeny  $E \to E^{(p)}$  is as easy/as hard as finding a root of  $\Phi_I(x, x^p)$
- ► Finding a curve with an  $I_1$ -and an  $I_2$  isogeny  $E \to E^{(p)}$  corresponds to finding a root of  $gcd(\Phi_h(x,x^p),\Phi_h(x,x^p))$

#### Proposition

There is a polynomial  $\Phi_I(x,y) \in \mathbb{Z}[x,y]$  such that  $\Phi_I(j(E),j(E')) = 0$  if and only if there is an I-isogeny  $E \to E'$ .

- ► Finding a curve with *I*-isogeny  $E \to E^{(p)}$  is as easy/as hard as finding a root of  $\Phi_I(x, x^p)$
- ► Finding a curve with an  $I_1$ -and an  $I_2$  isogeny  $E \to E^{(p)}$  corresponds to finding a root of  $gcd(\Phi_h(x,x^p),\Phi_h(x,x^p))$

#### Proposition

There is a polynomial  $\Phi_I(x,y) \in \mathbb{Z}[x,y]$  such that  $\Phi_I(j(E),j(E'))=0$  if and only if there is an I-isogeny  $E \to E'$ .

- ▶ Finding a curve with *I*-isogeny  $E \to E^{(p)}$  is as easy/as hard as finding a root of  $\Phi_I(x, x^p)$
- ► Finding a curve with an  $l_1$ -and an  $l_2$  isogeny  $E \to E^{(p)}$  corresponds to finding a root of  $gcd(\Phi_{l_1}(x,x^p),\Phi_{l_2}(x,x^p))$

#### Question

Is there a way to find a root of  $gcd(\Phi_{l_1}(x,x^p),\Phi_{l_2}(x,x^p))$  for exponentially large  $l_1,l_2$  (and of course p)?

## Thank you for your attention!



Jeremy Booher et al. Failing to hash into supersingular isogeny graphs. Cryptology ePrint Archive, Report 2022/518. https://ia.cr/2022/518. 2022.