Nova methodus numeros compositos a primis dignoscendi illorumque factores inveniendi.

P. Seelhoff.

Quaeruntur divisores numeri N.

Sit
$$N = w^2 + r$$

atque $N \equiv \rho(p)$, ρ significante residuum aliquod quadrati cum ipsius p, numeri primi, ita ut $w_1^2 \equiv \rho(p)$ existat.

Sumatur $N = w_1^2 + (w + w_1)(w - w_1) + r$ et designetur $(w + w_1)(w - w_1) + r$ litera b, unde sequitur $b = w^2 + r - w_1^2$.

$$\text{hinc} \quad \begin{array}{c} \text{At} \quad w^2 + r \equiv \quad \rho \left(p \right) \\ - \, w_1^2 \equiv - \, \rho \left(p \right) \\ \\ b = \overline{w^2 + r - w_1^2 \equiv 0 \left(p \right)} \end{array}$$

Radix w_1 in $w_1 + py$ amplificate dat

$$N = (w_1 + py)^2 + \{w + (w_1 + py)\}\} w - (w_1 + py)\} + r.$$

Repertis ergo valoribus w, pro numeris primis usque ad 97 circiter, nisi N nimis magnus est (15 figuras non excedens) et pro binariis illorum potestatibus (pro 2, 3, 5 altiores etiam potestates adhibendae sunt), sin autem N major est, modulo congruentiarum pari passu extenso, plures simplices binariae quadratae repraesentationes comparando illos valores evadent et sequentia statui possunt.

Si numerus N compositus est, mox aut duas repraesentationes ejusdem determinantis aut plures adipisceris, e quibus elimininandis communibus factoribus duae ut $a_1^2 + mc_1^2 = \mu N$

et
$$a_1^2 + mc_1^2 = \mu N$$

sequentur, quae ad dispares radices congruentiae $z^2 \equiv -m(N)$ pertinent itaque duos divisores ipsius N producunt.

Sin vero numerus N est primus, haud secus facile ad tales eliminationes pervenies, quae e contrario ad eandem radicem $\pm z$ perducunt. N numerum primum esse pluribus determinantibus unius factoris evadentibus aut ambobus determinantibus $+ \Delta$ et $-\Delta$ saepius occurrentibus affirmatur. Certitudinis causa auxilio determinantium repertorum omnes illi numeri primi quorum hi nonresidua sunt quasi inepti ad divisionem excludi possunt.

Variatio quaedam utilis erit, nisi N formam 8n+1 praebet. Sit e. g., N=8n+3; jam ponatur $N=3w^2+r$ et $w_1^2\equiv \frac{\rho+px}{3}(p)$, ita ut aliis numeris primis opus sit. Hoc modo factor 2^n pro b non omittitur.

Habemus similiter atque prius

$$N = 3w_1^2 + 3(w + w_1)(w - w_1) + r.$$
At $3w^2 + r \equiv \rho(p)$

$$-3w_1^2 \equiv -(\rho + px) \equiv -\rho(p), \text{ unde}$$

$$b = 3(w + w_1)(w - w_1) + r \equiv 0(p).$$

Pro calculo ipso ponatur

$$w \mp (w_1 + py) = \alpha$$
, unde
 $w_1 + py = \pm (w - \alpha)$ et
 $w + (w_1 + py)$ aut $w - (w_2 + py) = 2w - \alpha$
 $N = (w - \alpha)^2 + 2(w - \alpha)\alpha + r$.
 $2w \equiv \pm 2\beta(p)$

Sit praeterea

$$egin{array}{ll} w \equiv \pm & 2eta\left(p
ight) \ r \equiv & \gamma\left(p
ight), \end{array}$$

tum solvenda est congruentia

$$(\pm 2\beta - \alpha) \alpha \equiv -\gamma(p) \text{ sive}$$

$$\alpha^2 \mp 2\beta \alpha \equiv \gamma(p) \text{ et ponendo}$$

$$\alpha = \pm \beta + z$$

$$z^2 - (\beta^2 + \gamma) \equiv 0(p).$$

$$\beta^2 \equiv w^2$$

$$\gamma \equiv r$$

$$\beta^2 + \gamma \equiv w^2 + r \equiv \rho(p), \text{ sive ut antea}$$

$$z^2 - \rho \equiv 0 \text{ et } z = w_1.$$

Est autem

Sit, ut ad finem perveniam

$$\beta = \pm (w - py)$$
, habetur atque prius $\alpha = w \mp (w_1 + py)$.

Congruentiae igitur et aequationes, quibus tota methodus nititur, hae sunt:

$$N=w^2+r$$
 $N\equiv
ho_1(p),\ w_1^2\equiv
ho_1(p)$ $w\equiv \pm eta_1(p)$ $a=\pm eta_1+w_1$ praeterea $N\equiv
ho_2(p^2),\ w_2^2\equiv
ho_2(p^2)$ $w\equiv \pm eta_2(p^2)$ $a=\pm eta_2+w_2$ pro 2, 3, 5 denique $N\equiv
ho_n(p^n),\ w_n^2\equiv
ho_n(p^n)$ $w\equiv \pm eta_n(p^n)$ $a=\pm eta_n+w_n$ $M=(w-a)^2+\overline{(2w-a)\,a+r}.$

Si numerus N=8n+3, etc., ponendum est $N=3w^2+\rho$, et loco congruentiarum

$$w_1^2 \equiv \rho_1(p), \ w_2^2 \equiv \rho_2(p^2), \ w_n^2 \equiv \rho_n(p^n)$$

ponendae sunt

et loco

$$w_1^2 \equiv \frac{\rho + px}{3}(p), \ w_2^2 \equiv \frac{\rho_2 + p^2}{3}(p^2), \ w_n^2 \equiv \frac{\rho_n + p^n}{3}(p^n) \text{ etc.}$$

$$N = (w - a)^2 + (2w - a)a + r \text{ aequatio}$$

$$b$$

$$N = 3(w - a)^2 + 3(2w - a) + r$$

ponenda est, etc.; reliqua intacta remanent.

Dentur exempla:

I.
$$N = 7.2^{34} + 1 = 120259084289$$

 $N = 346783^2 + 635200$, unde
 $w = 346783$
 $N = (346783 - \alpha)^2 + (693566 - \alpha)\alpha + 635200$
 $N \equiv 20 (31), \ \rho_1 = 20; \ w \equiv +17 (31), \ \beta_1 \equiv -14$
 $w_1^2 \equiv 20 (31), \ w_1 = \pm 12$
 $\alpha = -14 \pm 12 = 5 \text{ et } 29$
sive $\alpha = 31y + 5, 29$
 $N \equiv 764 (31^2), \ \rho_2 = 764$ $w \equiv +823 (31^2), \ \beta_2 = -128$
 $w_2^2 \equiv 764 (31^2), \ w_2 = \pm 198$
 $\alpha = -128 \pm 198 = 60 \text{ et } 625$
sive $\alpha = 31^2y + 60, 625$.

Vol. VIII.

Hoc modo reperitur

$$\alpha = 2^{3}y + 0, 2, 4, 6; 2^{4}y + 0, 6, 8, 14; 2^{5}y + 0, 14, 16, 30;$$

$$2^{6}y + 0, 30, 32, 62; 2^{7}y + 30, 32, 94, 96; 2^{8}y + 30, 32, 158, 160;$$

$$2^{9}y + 158, 160, 414, 416; 2^{10}y + 158, 160, 670, 672.$$

$$\alpha = 5y + 0, 1; 5^{2}y + 0, 16; 5^{3}y + 16, 50; 5^{4}y + 141, 300.$$

$$\alpha = 7y + 2, 4; 7^{2}y + 2, 18.$$

$$\alpha = 11y + 2, 3; 11^{2}y + 47, 68.$$

$$\alpha = 19y + 1, 8; 19^{2}y + 115, 331.$$

$$\alpha = 31y + 5, 29; 31^{2}y + 60, 625.$$

$$\alpha = 37y + 12, 26; 37^{2}y + 271, 581. (1369)$$

$$\alpha = 47y + 10, 24; 47^{2}y + 762, 1387. (2209)$$

$$\alpha = 53y + 12, 49; 53^{2}y + 261, 2291. (2809)$$

$$\alpha = 67y + 2, 47; 67^{2}y + 114, 2146. (4489)$$

$$\alpha = 71y + 1, 37; 71^{2}y + 3871, 4119. (5041)$$

$$\alpha = 97y + 45, 68; 97^{2}y + 1911, 4798. (9409)$$

$$\alpha = 127y + 49, 97; 127^{2}y + 1748, 14400. (16129)$$

Habetur

- (1) $N = 344833^2 + 2.7.11.2960^2$ (Ex $\alpha = 1950$, 5y + 0 cum $37^2y + 581$)
- (2) $N = 203351^2 + 7.106172^2$ (Ex $\alpha = 143432$, 11y + 3 cum $127^2y + 14400$)
- (3) $N = 350619^2 2.11.11026^2 (\text{Ex } \alpha = -3836, 11y + 3 \text{ cum } 37^2y + 271)$

Ex (1) et (2) sequitur (4) $11.832082029^2 - 2.150479740^2 = 62953059.N$ unde, comparando cum (3),

$$50459950484647^2 - 26380527979530^2 = \mu.N.$$

Maximus communis divisor differentiae 50459950484647 - 26380527979530 et ipsius N, i. e. 317306291 est factor quaesitus, alter est 379.

1I. Membrum quadragesimum octavum seriei 0, 1, 1, 2, 3, 5 . . . est

$$N = 2971215073 = 54508^2 + 93009$$
, et $w = 54508$

$$N = (54508 - \alpha)^2 + (10916 - \alpha)\alpha + 93009.$$

Simili modo atque in antecedente exemplo habebitur

pro 1,
$$\alpha =$$
 59 $b =$ 2.7.17.72³
2, $\alpha =$ 4109 $b =$ 2.3.7.3204²
3, $\alpha =$ 1 $b =$ 2.3.23.29.2²
4, $\alpha =$ 387 $b =$ 3.7.17.344²

5,
$$\alpha = -$$
 831
 $b = 2.3.23.31.146^2$

 6, $\alpha = -$
 5987
 $b = 2.7.97.712^2$

 7, $\alpha = -$
 93
 $b = 2.7.29.144^2$

 8, $\alpha = -$
 7519
 $b = 2.31.37.618^2$

 9, $\alpha = -$
 3187
 $b = 2.3.7.31.524^2$

 10, $\alpha = -$
 1517
 $b = 2.7.17.828^8$

 11, $\alpha = -$
 3323
 $b = 3.7.17.992^2$

 12, $\alpha = -$
 3827
 $b = 3.7.29.43.124^2$

 13, $\alpha = -$
 7051
 $b = 7.10812^2$

 14, $\alpha = -$
 15421
 $b = 7.31.37.424^3$

 15, $\alpha = -$
 28707
 $b = 2.7.23.3504^2$

 16, $\alpha = -$
 31143
 $b = 2.3.43.3066^2$

 17, $\alpha = -$
 20561
 $b = 2.3.7.314^2$

 18, $\alpha = -$
 5891
 $b = 2.3.7.23.1856^2$

 20, $\alpha = -$
 18305
 $b = 2.3.7.23.73.406^2$

 21, $\alpha = -$
 94257
 $b = 2.3.23.3204^2$

 22, $\alpha = -$
 21801
 $b = 2.3.17802^2$
 <

(a) Ex 15 habemus
$$83215^2 - 2.7.23.3504^2 = N$$

" 19 " $68081^2 - 3.7.23.1856^2 = N$, unde sequitur $3.4969913^2 - 2.4826470^2 = 9259.N$ et $1670196456^2 \equiv 6(N)$.

Eadem congruentia ex 25

$$54607^2 - 2.3.1336^2 = N$$

derivari potest. Idem attingit in aliis casibus.

- (b) Perspicuum est, multas repraesentationes atque $x^2 + cy^2 = \mu N$ eliminandis communibus factoribus formari posse, quarum determinans ex uno factore constat.
- (c) Habentur determinantes +7(13) et -7(24); +6(25) et -6(22) etc. Unde concludi potest, numerum N esse primum. Revera auxilio determinantium repertorum cuncti numeri primi usque ad \sqrt{N} quasi inepti ad divisionem excludendi sunt; numerus 2971215073 est igitur numerus primus.

Ut valor ipsius α quam facillime obtineatur, tabulas composui, exhibentes radices congruentiae $w_1^2 \equiv \rho_1(p)$ pro numeris a 7 usque ad 199, radices congruentiae $w_2^2 \equiv \rho_2(p^2)$ pro numeris a 7^2 usque ad 47^2 , radices congruentiae $w_2^2 \equiv \rho_2(p^2)$

pro numeris a 7² usque ad 47², radices congruentiae $w_n^2 \equiv \rho_n (p^n)$ pro 2³ usque ad 2¹⁰, 3' usque ad 3⁶, 5' usque ad 5⁴.

Praeterea autem tabulas auxiliares construxi pro modulo p^2 a 53º usque ad 199º.

Nam

$$\rho_2 \equiv \rho_1(p) \text{ sive } \rho_2 = q \cdot p + \rho_1$$

$$w_1^2 \equiv \rho_1(p) \text{ sive } w_1^2 = q_0 p + \rho_1$$

$$2\rho_1 u \equiv 1(p) \text{ et}$$

$$(q - q_0) u \equiv \delta(p)$$

sequitur $w_2 = \pm \delta + w_1$.

Tabulae auxiliares amplectuntur igitur quatuor columnas, quarum inscriptiones sunt ho_1 . q_0 . u . w_1 .

BREMEN, Mai 1885.