

А.А. Абдуллин, К.С. Горшков, С.Ю. Ловлин Н.А. Поляков, М.В. Никитина

ОБЩАЯ ЭЛЕКТРОТЕХНИКА

Методические указания к лабораторному практикуму в программе Ltspice

Учебно-методическое пособие

Санкт-Петербург 2019г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

А.А. Абдуллин, К.С. Горшков, С.Ю. Ловлин, Н.А. Поляков, М.В. Никитина

ОБЩАЯ ЭЛЕКТРОТЕХНИКА

Методические указания к лабораторному практикуму в программе LTspice

Учебно-методическое пособие

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО

по направлению подготовки 11.03.03, 13.03.02, 14.03.01, 15.03.02, 15.03.04, 15.03.06, 27.03.04 в качестве учебно-методического пособия для реализации образовательных программ высшего образования бакалавриата

Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А. Никитина М.В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice – СПб: Университет ИТМО, 2019. – 52 с.

Рецензенты:

Демидова Галина Львовна, кандидат технических наук, доцент (квалификационная категория "ординарный доцент") факультета систем управления и робототехники, Университета ИТМО.

Методическое пособие содержит описание шести лабораторных работ, которые могут быть использованы в курсах «Общая электротехника» и «Теоретические основы электротехники» в рамках общеобразовательной программы, и рекомендуется студентам, проходящим подготовку по направлению 13.03.02 «Электроэнергетика и электротехника». Эти лабораторные работы предназначены для освоения основных разделов теории электрических цепей с помощью имитационного моделирования. Выполнение лабораторных работ данного курса дает студентам возможность приобрести не только общие знания в рамках теории электрических цепей, но и навыки работы в программной среде LTspice, что позволит им с легкостью начать самостоятельные исследования и разработки.

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2019

© Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А., Никитина М.В., 2019

СОДЕРЖАНИЕ

Введение	4
Знакомство с программной средой LTspice	6
Интерфейс приложения	
Редактирование параметров элементов	
Моделирование электрической цепи	8
Моделирование работы источников напряжения и тока	10
Моделирование работы электрического ключа	
Измерение электрических величин	12
Лабораторная работа №1: «Исследование характеристик и	источника
электрической энергии постоянного тока».	15
Порядок выполнения работы	
Содержание отчёта	
Лабораторная работа №2: «Исследование линейных двухполю	сников в
электрических цепях однофазного синусоидального тока»	18
Порядок выполнения работы	18
Содержание отчёта	22
Лабораторная работа №3: «Исследование трёхфазных электрически	их цепей»
	23
Порядок выполнения работы	23
Содержание отчёта	
Лабораторная работа №4: «Исследование переходных прог	цессов в
электрических цепях»	29
Порядок выполнения работы	
Содержание отчета	
Лабораторная работа №5: «Исследование электрических	с цепей
несинусоидального периодического тока»	37
Порядок выполнения работы	
Содержание отчета	
Литература	42.

Введение

В настоящем методическом пособии содержится описание шести лабораторных работ. В этих лабораторных работах исследуются основные свойства и законы электрических цепей методами имитационного моделирования в программной среде LTspice [1], которые расширяют материал учебного пособия [2] и являются логическим продолжением.

Суть имитационного моделирования заключается в исследовании реализуемых на компьютерах имитационных моделей, в частности, моделей Преимущество цепи. такого метода относительно быстрого исследования свойств объекта исследования и его поведения в различных ситуациях, что его выгодно отличает от проведения реальных экспериментов. Уровень развития современных вычислительных методов и технических средств информатики позволяет изучать объекты подробно и в достаточной полноте, что недоступно чисто теоретическому (аналитический подход). Таким образом, имитационное подходу моделирование сочетает в себе достоинства как теоретических, так и экспериментальных методов изучения объектов.

В большинстве проектных организаций работа над любым проектом начинается с теоретических расчетов и со следующего за ними имитационного моделирования. Благодаря этому курсу лабораторных работ студенты знакомятся с таким подходом к проектированию, что позволит им в будущем при найме на работу в проектные организации с легкостью начать свои разработки и исследования.

Лабораторные работы охватывают основные темы теории электрических цепей: источники электрической энергии постоянного тока, линейные двухполюсники в цепях однофазного синусоидального тока, трехфазные электрические цепи, переходные процессы в электрических цепях, цепи несинусоидального периодического тока.

По окончании выполнения этого курса лабораторных работ студенты будут знать: физические процессы в источниках энергии постоянного и переменного тока; свойства и характеристики элементов электрических цепей постоянного и переменного тока, закон Ома, законы Кирхгофа, методы расчета параметров в элементарной электрической цепи постоянного и переменного тока в установившихся и в переходных режимах, методы измерения электрических параметров в элементарной электрической цепи; экспериментального определения основных характеристик электрических цепей постоянного и переменного тока в установившихся и в переходных режимах. В процессе выполнения лабораторных работ они научатся применять эти знания на практике, а также овладеют навыками организации эксперимента по измерению электрических параметров в элементарной электрической цепи и определению основных характеристик электрических цепей постоянного и переменного тока в установившихся и в переходных режимах.

Курс лабораторных работ рекомендуется студентам, проходящим подготовку по направлению 13.03.02 «Электроэнергетика и электротехника», а также тем, кто проходит курс «Общая электротехника» в рамках общеобразовательных дисциплин.

Знакомство с программной средой LTspice

LTspice – программа, предназначенная для моделирования электрических цепей. По своей стути LTspice является SPICE-программой (Simulation Program with Integrated Circuit Emphasis – программа моделирования электронных схем общего назначения с открытым исходным кодом) со своим графическим интерфейсом, обширной библиотекой электронных компонентов и средствами анализа работы электрических цепей.

Интерфейс приложения

Начнём знакомство с программой LTspice с описания графического интерфейса (рисунок 0.1).

Рисунок 0.1 – Графический интерфейс программы LTspice.

На рисунке 0.1 представлен интерфейс редактора схем программы LTspice, цифрами обозначены следующие элементы главной панели (в скобках указаны клавиши быстрого доступа): 1 – создать новую схему, 2 – открыть сохранённую схему, 3 - сохранить текущую схему, 4 - панель управления, 5 – запуск моделирования, 6 – нарисовать проводник (F3), 7 – добавить глобальный узел «земли» или нулевой потенциал (G), 8 – добавить порт или именованный проводник (F4), 9 – добавить резистор (R), 10 – добавить конденсатор (С), 11 – добавить катушку индуктивности (L), 12 – добавить диод (D), 13 – добавить элемент из библиотеки электронных компонентов (F2), 14 – переместить элемент, отсоединив его от схемы (F7), 15 – переместить элемент, не отсоединяя его от схемы (F8), 16, 17 – соответственно отмена действия и повтор отменённого действия (F9, Shift+F9), 18 – поворот элемента (Ctrl+R), 19 – зеркальное отображение элемента (Ctrl+E), команды 18 и 19 можно выполнить только в процессе установки или переноса элемента, 20 – добавить текст (Т), 21 – добавить SPICE-директиву (S).

Все рассмотренные команды можно выполнить, перейдя во вкладку «Edit» на главной панели.

Редактирование параметров элементов

После установки элемента на схему необходимо установить основные параметры, определяющие этот элемент, например, сопротивление резистора, ёмкость и активное сопротивление конденсатора, напряжение источника и так далее. Все эти параметры могут быть отредактированы несколькими способами, но в рамках данного методического пособия мы рассмотрим основной способ.

Для того, чтобы отредактировать параметры элемента, необходимо навести курсор на иконку элемента и нажать правой кнопкой мыши. После нажатия появится меню, вид которого будет отличаться в зависимости от элемента (рисунок 0.2).

Для таких элементов, как резистор, конденсатор или катушка индуктивности, есть возможность выбрать элемент с параметрами из стандартного ряда – кнопка «Select Inductor/Capacitor/Resistor».

Стандартные настройки источника напряжения включают значение напряжения — «DC Value [V]» и внутреннее сопротивление — «Series Resistance [Ω]» (международное обозначение электрического сопротивления — [Ω]), включенное последовательно.

Рисунок 0.2 – Редактирование параметров элементов.

Дополнительные настройки источника напряжения появятся при нажатии на кнопку «Advanced», они будут рассмотрены в подразделе «Моделирование электрической цепи».

При редактировании параметров можно воспользоваться приставками для кратных единиц, представленными в таблице 0.1.

Таблица 0.1

Приставка	Значение
K, k, kilo	10^{3}
M, m, milli	10-3
MEG, meg	10^{6}
U, u, micro	10 ⁻⁶
G, g, giga	10^{9}
N, n, nano	10-9
T, t, terra	10^{12}
P, p, pico	10 ⁻¹²
F, f, femto	10 ⁻¹⁵

Моделирование электрической цепи

Перед началом моделирования необходимо убедиться, что все элементы напрямую или косвенно подключены к нулевому потенциалу, иначе LTspice сообщит об ошибке моделирования «This circuit does not have a conduction path to ground! Please flag a node as ground». Нулевых потенциалов в схеме может быть несколько, и все они будут обозначать один и тот же потенциал (рисунок 0.3). Также требуется, чтобы были выставлены основные параметры всех элементов.

Рисунок 0.3 – Подключение элементов цепи к нулевому потенциалу.

Запуск моделирования осуществляется нажатием на кнопку 5 на главной панели (рисунок 0.1). При первом запуске автоматически откроется меню редактирования параметров моделирования «Edit Simulation Command» (рисунок 0.4).

Рисунок 0.4 – Меню редактирования параметров моделирования.

Это меню находится во вкладке «Simulate» на главной панели, при этом окно редактора схем должно быть активным. Основными параметрами моделирования являются: «Stop time» – время моделирования, «Time to start saving data» – время, с которого LTspice начнёт сохранять результаты моделирования, «Maximum Timestep» – шаг моделирования, «Start external DC supply voltages at 0V» – начальные условия, если этот параметр включен, то начальные условия нулевые.

Чем меньше параметр «Махітит Timestep», тем точнее будут вычисления, но тем больше вычислительных ресурсов потребуется, и это может привести замедлению процесса моделирования. Рекомендуется использовать значения из диапазона [1e-5; 1e-9].

При моделировании переходных процессов в электрических цепях с реактивными элементами параметр «Start external DC supply voltages at 0V» должен быть включен, то есть начальные условия должны быть нулевыми.

Когда параметры моделирования заданы, в окне редактора схем должна появиться SPICE-директива «.tran <Tprint> <Tstop> <Tstart> <Tmaxstep>», где <Tprint> = 0, а остальные три параметра соответствуют параметрам, заданным в меню редактирования параметров моделирования. Если удалить эту директиву из окна редактора, то перед следующим моделированием опять автоматически откроется меню редактирования параметров моделирования. SPICE-директива представляет собой строку, которая начинается с точки, за которой следует ключевое слово — команда, которая указывает, какой тип анализа будет проводиться при моделировании. Есть шесть SPICE-директив, определяющих шесть основных типов анализа: «small signal AC – .AC», «DC sweep — .DC», «noise — .noise», «DC operating point — .OP», «small signal DC transfer function — .TF», «transient analysis — .tran», а также множество директив, задающих дополнительные настройки моделирования. Подробнее с SPICE-директивами можно ознакомиться в руководстве пользователя программы LTspice (F1 \rightarrow LTspice \rightarrow Dot Commands).

Моделирование работы источников напряжения и тока

Источники напряжения и тока, как элементы программы LTspice, располагаются в меню выбора компонентов «Edit → Component» под названиями «voltage» и «сиггеnt» соответственно. Ранее было отмечено, что элемент источника напряжения или тока имеет дополнительные настройки, меню этих настроек представлено на рисунке 0.5. В этом меню мы будем пользоваться настройками, объединёнными блоком «Functions». Эти настройки включают выбор функции напряжения или тока, а также параметры выбранной функции. В рамках лабораторных работ, представленных в данном методическом пособии, помимо моделирования источников постоянного напряжения, также будут использоваться функции «SINE» и «PULSE».

Рисунок 0.5 – Меню дополнительных настроек источника напряжения.

Параметры источника синусоидального напряжения «SINE»: «DC offset [V]» — напряжение смещения или постоянная составляющая синусоидального напряжения, «Amplitude [V]» — амплитуда напряжения, «Freq [Hz]» — частота напряжения в герцах, «Tdelay [s]» — задержка, время, по истечении которого на выводах источника появляется напряжение, «Theta [1/s]» — коэффициент затухания, «Phi [deg]» — начальная фаза напряжения, «Ncycles» — количество периодов функции, в течение которого на выводах источника формируется синусоидальное напряжение. Тогда, при условии t < Tdelay, напряжение на выводах источника равно нулю; при

условии
$$Tdelay \le t \le Tdelay + \frac{Ncycles}{Freq}$$
 напряжение будет иметь вид

$$u(t) = DC \text{ offset} + e^{-\text{Theta} \cdot t} \cdot \text{Amplitude} \cdot \sin(2 \cdot \pi \cdot \text{Freq} \cdot t + \text{Phi} \cdot \pi / 180).$$

Параметры импульсного источника напряжения «PULSE»: «Vinitial [V]», «Von [V]» — эти параметры определяют размах напряжения (от Vinitial до Von), «Tdelay [s]» — задержка, время, по истечении которого на выводах источника установится напряжение Von, до этого момента напряжение будет равно Vinitial, «Trise [s]» — время, за которое происходит переход от Vinitial к Von и «Tfall [s]» — наоборот, от Von к Vinitial, «Ton [s]» — время работы источника с напряжением Von, «Tperiods [s]» — период переключения, то есть в течение «Трегiods-Топ» на выводах источника напряжение Vinitial, «Ncycles» — количество циклов переключения. Пример работы такого источника представлен на рисунке 0.6 (Ncycles = 2).

Рисунок 0.6 – График напряжения, соответствующего функции «PULSE».

Моделирование работы электрического ключа

В стандартной библиотеке компонентов LTspice имеется элемент под названием «SW», представляющий собой электрический ключ, управляемый напряжением (рисунок 0.7).

Рисунок 0.7 – Электрический ключ, управляемый напряжением.

Этот элемент будет использоваться при моделировании в третьей части лабораторной №4: «Исследование переходных процессов в электрических цепях». К выводам «+» и «-» ключа подключается источник напряжения, как показано на рисунке 0.7, управляющий состоянием ключа. Если напряжение источника больше нуля, то ключ находится в открытом состоянии и пропускает ток, иначе ключ закрыт, то есть между выводами n1 и n2 — разрыв.

Работа ключа, помимо подключаемого к выводам «+» и «-» напряжения, управляется SPICE-директивой «.model Value SW(Ron, Roff, Vt, Vh, Lser, Vser)», где «Value» соответствует параметру «Value» ключа на схеме (по

умолчанию «SW»), для которого задаются параметры. Подробное описание параметров и режимов работы ключа представлено в руководстве пользователя (F1 \rightarrow LTspice \rightarrow Circuit Elements \rightarrow Voltage Controlled Switch), а в рамках лабораторной работы №4 будет использоваться ключ, который по своим характеристикам приближен к идеальному ключу, то есть в закрытом состоянии сопротивление ключа $R = Roff = \infty$, а в открытом R = Ron = 1 [мкОм]. Тогда SPICE-директива будет иметь следующий вид «.model SW SW(Ron = 1u)».

Измерение электрических величин

По окончании моделирования автоматически появляется пустое окно графиков *.raw (* — название схемы), в котором будут отображаться все требуемые величины (рисунок 0.8 Draft1.raw). При этом в рабочей директории появится файл *.raw. Окно графиков можно самостоятельно открыть, перейдя на главной панели во вкладку «View» (View \rightarrow Visible Traces).

Рисунок 0.8 – Отображение результатов моделирования в LTspice.

Для того, **чтобы измерить напряжение** на участке цепи между заданным потенциалом и нулевым потенциалом, достаточно щёлкнуть левой кнопкой мыши на любом проводе на схеме. При этом курсор мыши будет отображаться в виде щупа красного цвета. Для измерения напряжения между заданными потенциалами, необходимо нажать левой кнопкой мыши на одном потенциале (красный щуп) и, удерживая, перетянуть к следующему потенциалу (чёрный щуп; стрелкой указано движение мыши).

Чтобы измерить ток в ветви, достаточно щёлкнуть левой кнопкой мыши по элементу ветви либо, удерживая кнопку «Alt», — по самой ветви. При этом курсор мыши будет отображаться в виде токовых клещей, стрелка указывает выбранное (выбирается автоматически и не всегда совпадает с реальным

направлением тока) положительное направление тока при измерении (рисунок 0.9 а).

Рисунок 0.9 – Измерение тока а) и мощности б) на схеме.

Чтобы измерить мгновенную мощность, нужно, удерживая кнопку «Alt», щелкнуть по элементу. Курсор мыши при этом будет отображаться в виде термометра (рисунок 0.9 б).

Помимо описанных выше способов, можно вывести графики токов, напряжений, мощностей или любых функций от этих величин посредством вызова контекстного меню в окне вывода графиков. Для этого необходимо щёлкнуть правой кнопкой мыши в окне вывода графиков и выбрать команду «Add Traces» (рисунок 0.10).

Рисунок 0.10 – Вывод графиков посредством команды «Add Traces».

В поле «Expression(s) to add» можно записать необходимую для вывода функцию, например «V(n001)*I(R1)», что соответствует мгновенной мощности источника на представленной схеме. Полный список функций можно посмотреть в руководстве пользователя (F1 \rightarrow Waveform Viewer \rightarrow Waveform Arithmetic).

В окне вывода графиков также можно вывести среднее и среднеквадратичное значение измеренных напряжений, токов или мощностей. Для этого нужно, удерживая кнопку «Ctrl», щёлкнуть по названию графика (рисунок 0.11).

Рисунок 0.11 – Среднее и среднеквадратичное значения функции.

В окне «Waveform» поля «Interval Start» и «Interval End» определяют временной отрезок, на котором вычисляются среднее значение функции – «Average» и среднеквадратичное значение – «RMS».

Лабораторная работа №1: «Исследование характеристик источника электрической энергии постоянного тока».

Цель работы

Исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

К выполнению работы следует приступать после изучения раздела «Источники электрической энергии».

План работы

Исследование внешней характеристики источника электрической энергии.

Определение параметров схемы замещения источника по экспериментальным данным.

Порядок выполнения работы

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 1.1.
 - На рисунке 1.1 блок «Electric source» представляет собой последовательную схему замещения реального источника электрической энергии с внутренним сопротивлением г и электродвижущей силой Е, блок «Electric load» представляет собой резистивную нагрузку с сопротивлением Rn.
- 2. Установить заданные преподавателем значения параметров элементов источника питания r и E. Далее эти параметры необходимо определить экспериментальным путём.
- 3. Измерить напряжение холостого хода U₀ и занести полученный результат в таблицу 1.1. Для этого в приложении «LTspice» достаточно удалить сопротивление Rn, оставив разрыв.

Рисунок 1.1 – Схема замещения источника электрической энергии и нагрузки в приложении LTspice.

- 4. Изменяя сопротивление Rn, определить значение, при котором напряжение в нагрузке будет равно $U_0/2$; занести в таблицу значение \mathbf{r} .
- 5. Изменяя сопротивление Rn от значения 100 [Ом] до 10000 [Ом] согласно таблице 1.1, произвести измерения напряжения Un и занести в таблицу.
- 6. Рассчитать и занести в таблицу 1.1 значения (k = 1...10):
 - ток в нагрузке $In_k = Un_k/Rn_k$ [A];
 - мощность, рассеиваемая в нагрузке $Pn_k = Un_k^2/Rn_k$ [Вт].
- 7. Для каждой пары значений токов и напряжений строк k=2...9 рассчитать и занести в таблицу 1.1 внутреннее сопротивление источника $-\mathbf{r}_k = (U\mathbf{n}_k U\mathbf{n}_{k+1})/(I\mathbf{n}_{k+1} I\mathbf{n}_k)$ [Ом]; найти оценку внутреннего сопротивления источника \mathbf{r} в виде среднего квадратического значения

$$r = \sqrt{\sum_{k=2}^{9} r_k^2 / 8}$$
.

- 8. Рассчитать и занести в таблицу 1.1 значения:
 - коэффициент полезного действия $\eta_k = Rn_k/(r + Rn_k)$;
 - ток короткого замыкания источника $Isc = U_0/r$ [A].
- 9. Через точки $[0, E = U_0]$ и [Isc, 0] построить линию расчетной внешней характеристики и на этой же плоскости показать точки экспериментальной характеристики в соответствии с таблицей 1.1.
- 10. По данным таблицы 1.1 построить зависимости мощности в нагрузке Pn(In) и КПД $\eta(In)$.

Таблица 1.1

k	Изме	рения	Расчёт r =[Oм], E =[B], Isc =[мА]							
		•	r = [[MA]						
0	Rn [Ом]	Un [B]	In [мА]	Pn [Bt]	η	r [Ом]				
1	r =	$U_0 = _{__}$	0	0	1					
2	10000									
3	8000									
4	6000									
5	5000									
6	2500									
7	1000									
8	500									
9	250									
10	100									

Содержание отчёта

- 1. Схема эксперимента.
- 2. Заполненная таблица 1.1.
- 3. Пример расчёта для одной произвольной строки таблицы.
- 4. Расчётная внешняя характеристика источника.
- 5. Графики зависимости Pn(In) и $\eta(In)$.
- 6. Выводы по работе.

Лабораторная работа №2: «Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока»

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

К выполнению работы следует приступать после изучения разделов «Электрические цепи синусоидального тока» и «Резонанс в электрических цепях».

План работы

Часть 1:

1. Измерение действующих значений входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника таблицы 2.1. Сравнение результатов с расчётными значениями.

Часть 2:

- 1. Исследование и анализ частотных характеристик электрической цепи с последовательным соединением резистивного, индуктивного и ёмкостного элементов.
- 2. Исследование и анализ частотных характеристик электрической цепи с параллельным соединением ветвей с индуктивным и ёмкостным элементами.

Порядок выполнения работы

Часть 1

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 2.1.
- 2. Установить заданные преподавателем значения параметров источника питания (амплитуда ЭДС «Amplitude», частота «Freq», внутреннее сопротивление «Series Resistance»).
- 3. Собрать схему нагрузки (пассивный двухполюсник) в соответствии с таблицей 2.1 и установить заданные преподавателем параметры элементов.
- 4. Измерить действующие значения входного (по отношению к двухполюснику) напряжения и тока.
- 5. Измерить фазовый сдвиг $\phi = 180^{\circ} \cdot \Delta h/h$ между входным напряжением и током, как показано на рисунке 2.2 (h половина периода синусоиды, измеренная в секундах, Δh расстояние между моментами перехода синусоид напряжения и тока от отрицательных значений к положительным). Если ток опережает напряжение, то $\phi < 0$, если отстаёт $\phi > 0$.

6. Занести результаты измерений и вычислений в таблицу 2.2.

Таблица 2.1

		Таолица 2.1
№	Схема двухполюсника	Расчётные соотношения
1	$R_{\scriptscriptstyle 1}$	$I = U/Z, R = R_1, X = 0, Z = R_1,$
1	•———	$\varphi = \operatorname{arctg}(0/R_1) = 0$
2	"C	$I = U/Z, R = 0, X = -X_C = -1/(\omega \cdot C),$
		$Z = X_C$, $\varphi = \operatorname{arctg}(-\infty) = -\pi/2$
2	R_1 C	$I = U/Z, R = R_1, X = -X_C = -1/(\omega \cdot C),$
3		$Z = \sqrt{R^2 + X^2}$, $\varphi = \operatorname{arctg}(X/R)$
_	R. L	$I = U/Z, R = R_k, X = X_L = \omega \cdot L,$
4	R_k L	$Z = \sqrt{R^2 + X^2}$, $\varphi = arctg(X/R)$
_	R. R. L	$I = U/Z, R = R_1 + R_k, X = X_L = \omega \cdot L,$
5	R_1 R_k L	$Z = \sqrt{R^2 + X^2}$, $\varphi = arctg(X/R)$
	D C D I	$I = U/Z, R = R_1 + R_k,$
6	$R_1 C R_k L$	$X = X_{L} - X_{C} = \omega \cdot L - 1/(\omega \cdot C)$
		$Z = \sqrt{R^2 + X^2}$, $\varphi = \operatorname{arctg}(X/R)$
	R_1	
7		$I = U \cdot Y, G = 1/R_1, B = -B_C = -\omega \cdot C$
/	C	$Y = \sqrt{G^2 + B^2}, \varphi = arctg(B/G)$
	R.	$I = U \cdot Y, G = G_1 + G_k, G_1 = 1/R_1,$
		$G_k = R_k / (R_k^2 + X_L^2), B = B_k - B_1,$
8	D I	$B_1 = 0, B_k = X_L / (R_k^2 + X_L^2)$
	I L	$Y = \sqrt{G^2 + B^2}$, $\varphi = arctg(B/G)$
	D C	$I = U \cdot Y, G = G_1 + G_k, G_1 = R_1 / (R_1^2 + X_C^2),$
	K ₁ C	$G_k = R_k / (R_k^2 + X_L^2), B = B_k - B_1,$
9		
	$\left[\begin{array}{cc} R_k & L \\ R_k & R \end{array}\right]$	$B_1 = X_C / (R_1^2 + X_C^2), B_k = X_L / (R_k^2 + X_L^2)$
		$Y = \sqrt{G^2 + B^2}$, $\varphi = arctg(B/G)$
D		

 R_k — активное сопротивление катушки индуктивности; в приложении «LTspice» параметры R_k и L задаются как внутренние параметры «Series Resistance» и «Inductance» элемента «Inductor».

Рисунок 2.1 – Схема замещения источника переменной синусоидальной ЭДС и нагрузки (двухполюсник) в приложении LTspice.

Рисунок 2.2 – Измерение фазового сдвига между входным напряжением и током.

Таблица 2.2

									<u> </u>
Harran		Пара	метры		Pe	зультат	Результаты		
Номер	Į	цвухпол	юснико)B	измерений			вычислений	
схемы	R_1	R_k	L	C	U	I	φ	I	φ
цепи	Ом		Гн	мкФ	В	Α	0	A	0
1									
9									

Часть 2

- 1. Собрать электрическую цепь со схемой двухполюсника №6 из таблицы 2.1.
- 2. Рассчитать резонансную частоту для параметров элементов, заданных в части 1 лабораторной работы $f_0 = 1/(2\pi\sqrt{LC})$ Гц.
- 3. Установить частоту напряжения источника, соответствующую расчётному значению резонансной частоты f_0 .
- 4. Измерить в режиме резонанса действующие значения входного тока I, напряжения на резисторе U_{R1} , напряжения на конденсаторе U_{C} , напряжения на катушке индуктивности U_{k} и угол сдвига фаз между напряжением и током ϕ_{0} . Занести результаты измерений и вычислений в таблицу 2.3.

- 5. Изменяя частоту источника (параметр «Freq»), снять 20 точек зависимостей I(f), $\phi(f)$, $U_{R1}(f)$, $U_{k}(f)$, $U_{C}(f)$ в диапазоне частот от $0.1 \cdot f_0$ до $2 \cdot f_0$ и занести результаты измерений и вычислений в таблицу 2.3.
- 6. Занести в таблицу 2.3 расчётное Q_p и экспериментальное Q_e значения добротности контура $(Q_p = \rho/(R_1 + R_k),$ где $\rho = \sqrt{L/C}$ характеристическое сопротивление; $Q_e = U_{C0}/U$, где U_{C0} и U действующие значения напряжения на конденсаторе и входного напряжения измеренные в режиме резонанса).
- 7. Собрать электрическую цепь со схемой двухполюсника №9 из таблицы 2.1.
- 8. Рассчитать резонансную частоту для параметров элементов, заданных в Части 1 лабораторной работы $f_0' = \frac{1}{2\pi\sqrt{LC}}\sqrt{\frac{\rho^2-R_k^2}{\rho^2-R_1^2}}$ Гц.
- 9. Установить частоту напряжения источника, соответствующую расчётному значению резонансной частоты f'_0 .
- 10. Измерить в режиме резонанса действующие значения входного тока I, тока в ветви с катушкой индуктивности I_1 , тока в ветви с конденсатором I_2 и угол сдвига фаз ϕ между входным напряжением и током. Занести результаты измерений и вычислений в таблицу 2.4.
- 11. Изменяя частоту источника (параметр «Freq»), снять 20 точек зависимостей I(f) $\phi(f)$ $I_1(f)$ $I_2(f)$ в диапазоне частот от $0.1 \cdot f_0'$ до $2 \cdot f_0'$ и занести результаты измерений и вычислений в таблицу 2.4.

Таблица 2.3

										пца 2.5
		U = B	$; R_1 = _{_}$	Ом; R _k =	=Ом;	$L = _{M}$	Гн; С =_	_мкФ; f	$\hat{\mathbf{f}}_0 = \Gamma_{\mathbf{II}}$	
f			Расчёт				Эк	спериме	ент	
1			$Q_p = $					$Q_e = $		
	φ	I	U_{R1}	U_k	$U_{\rm C}$	φ	I	U_{R1}	U_k	$U_{\rm C}$
Гц	0	° A B					Α	В		
$0.1 \cdot f_0$										
•••										
f_0										
•••										
$2 \cdot f_0$										

Таблица 2.4

	U	$U = _B; R_1 = _O_M; R_k = _O_M; L = _M\Gamma_H; C = _M\kappa\Phi; f_0' = _\Gamma_\Pi$										
f		Pa	счёт		Эксперимент							
	φ	I	I_1	I_2	φ	I	I_1	I_2				
Гц	0		A		0	A						
$0.1 \cdot f_0'$												
•••												
f_0'												
•••												
$2 \cdot f_0'$												

Содержание отчёта

Часть 1

- 1. Схема исследуемой цепи (1-9).
- 2. Расчётные формулы и расчёты. Заполненная таблица 2.2.
- 3. Векторные диаграммы входных напряжений и токов для каждого из двухполюсников.
- 4. Выводы по части 1 лабораторной работы.

Часть 2

- 5. Схема исследуемой цепи (6, 9).
- 6. Расчётные формулы и расчёты. Заполненные таблицы 2.3 и 2.4.
- 7. Графики характеристик I(f), $\phi(f)$, $U_{R1}(f)$, $U_k(f)$, $U_C(f)$ для схемы №6.
- 8. Графики характеристик I(f), $I_1(f)$, $I_2(f)$, $\phi(f)$ для схемы №9.
- 9. Выполненные в масштабе векторные диаграммы для состояния резонанса в схемах №6 и №9.
- 10. Выводы по части 2 лабораторной работы.

Лабораторная работа №3: «Исследование трёхфазных электрических цепей»

Цель работы

Исследование свойств линейных трёхфазных цепей синусоидального тока при соединении приёмников звездой и треугольником с равномерной и неравномерной нагрузкой.

К выполнению лабораторной работы следует приступать после изучения раздела «Цепи трёхфазного тока».

План работы

Часть 1

Опытная проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «звезда», в следующих режимах:

- 1. Симметричная нагрузка с нулевым проводом.
- 2. Симметричная нагрузка без нулевого провода.
- 3. Несимметричная нагрузка с нулевым проводом.
- 4. Несимметричная нагрузка без нулевого провода.
- 5. Обрыв линейного провода с нулевым проводом.
- 6. Обрыв линейного провода без нулевого провода.
- 7. Короткое замыкание одной фазы нагрузки без нулевого провода.

Часть 2

Опытная проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «треугольник», в следующих режимах:

- 1. Симметричная нагрузка.
- 2. Несимметричная нагрузка.
- 3. Обрыв одной фазы нагрузки.
- 4. Обрыв двух фаз нагрузки.
- 5. Обрыв линейного провода с симметричной нагрузкой.
- 6. Обрыв линейного провода с несимметричной нагрузкой.

Порядок выполнения работы

Часть 1

1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 3.1. Параметры источника и приёмника выдаются преподавателем. $R_{Nn} = 0.09 \, [\text{Ом}] -$ активное сопротивление медного провода с площадью поперечного сечения 0.196 [мм²] и длиной 1 [м]. При выполнении пункта 7 части 1 используйте сопротивление $R = R_{Nn}$ вместо нагрузки в соответствующей фазе.

2. Провести измерения действующих значений токов, напряжений и мощностей в фазах в соответствии с режимами работы цепи, описанными в части 1 программы работы. Занести результаты измерений в таблицу 3.1.

Рисунок 3.1 – Схема замещения трёхфазной цепи с нагрузкой, соединённой по схеме «звезда».

Часть 2

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 3.2. Параметры источника и приёмника выдаются преподавателем.
- 2. Провести измерения действующих значений токов, напряжений и мощностей в фазах в соответствии с режимами работы цепи, описанными в части 2 программы работы. Занести результаты измерений в таблицу 3.2.

Рисунок 3.2 – Схема замещения трёхфазной цепи с нагрузкой, соединённой по схеме «треугольник».

Выражения для расчётов в схеме «звезда».

Напряжение смещения нейтрали: $\underline{U}_{Nn} = \frac{\underline{E}_A \underline{Y}_a + \underline{E}_B \underline{Y}_b + \underline{E}_C \underline{Y}_c}{\underline{Y}_a + \underline{Y}_b + \underline{Y}_c}, \quad \text{где}$ $\underline{E}_A = E_A \cdot e^{j0^\circ}, \quad \underline{E}_B = E_B \cdot e^{-j120^\circ}, \quad \underline{E}_C = E_C \cdot e^{j120^\circ}, \quad E_A, E_B, E_C \quad - \quad \text{действующие}$ значения ЭДС в фазах источника, $\underline{Y}_a, \underline{Y}_b, \underline{Y}_c$ - комплексные действующие значения проводимостей фаз.

Комплексные действующие значения напряжений в фазах приёмника: $\underline{U}_a = \underline{E}_A - \underline{U}_{Nn}$, $\underline{U}_b = \underline{E}_B - \underline{U}_{Nn}$, $\underline{U}_c = \underline{E}_C - \underline{U}_{Nn}$.

Комплексные действующие значения фазных токов и тока нейтрального провода: $\underline{I}_a = \underline{U}_a \underline{Y}_a$, $\underline{I}_b = \underline{U}_b \underline{Y}_b$, $\underline{I}_c = \underline{U}_c \underline{Y}_c$, $\underline{I}_{Nn} = \underline{I}_a + \underline{I}_b + \underline{I}_c$.

Активная мощность фаз приёмника: $P_a = U_a I_a \cos \phi_a$, $P_b = U_b I_b \cos \phi_b$, $P_c = U_c I_c \cos \phi_c$, где ϕ_a , ϕ_b , ϕ_c — разности фаз между током и напряжением в фазах приёмника.

Выражения для расчётов в схеме «треугольник».

Комплексные действующие значения напряжений в фазах приёмника: $\underline{U}_{ab} = \underline{E}_A - \underline{E}_B$, $\underline{U}_{bc} = \underline{E}_B - \underline{E}_C$, $\underline{U}_{ca} = \underline{E}_C - \underline{E}_A$.

Комплексные действующие значения токов в фазах приёмника: $\underline{I}_{ab} = \underline{U}_{ab}\,\underline{Y}_{ab}\,,\;\underline{I}_{bc} = \underline{U}_{bc}\,\underline{Y}_{bc}\,,\;\underline{I}_{ca} = \underline{U}_{ca}\,\underline{Y}_{ca}\,.$

Комплексные действующие значения линейных токов: $\underline{I}_A = \underline{I}_{ab} - \underline{I}_{ca}$, $\underline{I}_B = \underline{I}_{bc} - \underline{I}_{ab}$, $\underline{I}_C = \underline{I}_{ca} - \underline{I}_{bc}$.

Рисунок 3.3 – Схема замещения нагрузки, соединённой по схеме а) «звезда», б) «треугольник».

Таблица 3.1

$N_{\underline{0}}$	-	-	c	7	,	n	_	1	v	·	4	0	1	`
Вид нагрузки	Симметричная	нагрузка с нулевым проводом	Симметричная	нагрузка оез нулевого провода	Несимметричная	нагрузка с нулевым проводом	Несимметричная	на рузка оез нулевого провода	Обрыв линейного	провода с нулсвым проводом	Обрыв линейного	провода оез нулевого	Короткое замыкание	однои фазы нагрузки без нулевого провода
	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч
Ua, B														
Ub, B														
Uc, B														
Ia, A														
Ib, A														
Ic, A														
Pa, Br														
Pb, Br														
Pc, Br														
\mathbf{U}_{Nn} , \mathbf{B}														
$I_{\mathrm{Nn}}, \ \mathrm{A}$														
Za, Om														
Zb, Om														
Zc, Om														

Таблица 3.2

№ Вид	-	Cam		7		ā, 		4 	5 Симм		, 06pi	
Вид нагрузки		Симметричная нагрузка		Несимметричная нагрузка		Обрыв одной фазы нагрузки		Оорыв двух фаз нагрузки	Обрыв линейного провода с	симметричной нагрузкой	Обрыв линейного провода с	несимметричной нагрузкой
	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч	Изм	Выч
la, A												
lb, A												
Ic, A												
Iab, A												
Ibc, A												
Ica, A												
Pab, BT												
Pbc, BT												
Pca, BT												
Zab, Om												
Zbc, Om												
Zca, Ом											Таоли	,

Содержание отчёта

- 1. Схема исследуемой цепи.
- 2. Заполненные таблицы 3.1 и 3.2.
- 3. Расчётные формулы и расчёты. Сравнение результатов расчёта и эксперимента.
- 4. Векторные диаграммы напряжений и токов приёмника для всех пунктов работы, построенные по опытным данным.
- 5. Выводы по работе.

Лабораторная работа №4: «Исследование переходных процессов в электрических цепях»

Цель работы

Исследование переходных процессов в электрических цепях первого и второго порядков с источником постоянного и переменного напряжения.

К выполнению работы следует приступать после изучения раздела «Переходные процессы».

План работы

Часть 1

Исследование переходных процессов в цепях первого порядка с источником постоянного напряжения.

- 1. Исследование переходного процесса в RC-цепи.
- 2. Исследование переходного процесса в RL-цепи.

Часть 2

Исследование переходных процессов в цепи второго порядка с источником постоянного напряжения.

- 1. Исследование апериодического переходного процесса.
- 2. Исследование колебательного переходного процесса.

Часть 3

1. Исследование переходного процесса в RL-цепи с источником переменного синусоидального напряжения.

Порядок выполнения работы

Часть 1

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 4.1 а. Параметры генератора прямоугольного напряжения Е и нагрузки выдаются преподавателем.
- 2. Измерить ток в цепи и напряжение на конденсаторе в момент коммутации (t=0+) и в установившемся $(t=\infty)$ режимах. Графики переходных процессов будут иметь вид функций, представленных на рисунке 4.2.
- 3. Экспериментально определить постоянную времени τ. Постоянная времени определяет длительность переходного процесса. В технике время переходного процесса это время, за которое экспоненциальная функция достигает значения, отличающегося от установившегося значения не более чем на 5%, что соответствует значению 3τ. То есть определив по графику время переходного процесса t_p можно определить постоянную времени как t_p/3.

Более точно определить постоянную времени можно следующим образом. В цепях первого порядка переходные процессы имеют вид функций $a(t) = A \cdot e^{-t/\tau}$ и $a(t) = A \cdot (1 - e^{-t/\tau})$, их относительные уровни равны

$$d = a(t_d)/A = e^{-t_d/\tau}$$
 и $d = 1 - a(t_d)/A = e^{-t_d/\tau}$, (4.1)

где $0 \le d \le 1$ — относительный уровень сигнала в момент времени t_d . Таким образом, определить значение τ можно, например, по времени $t_{0.5}$, когда ток или напряжение на любом элементе цепи достигают половины своего амплитудного значения

$$0.5 = e^{\frac{-t_{0.5}}{\tau}} \Rightarrow \ln(0.5) = -\frac{t_{0.5}}{\tau} \Rightarrow \boxed{\tau = \frac{t_{0.5}}{\ln 2} \approx 1.44 \cdot t_{0.5}}.$$
 (4.2)

Рисунок 4.1 - Схема замещения генератора прямоугольного напряжения с а) активно-ёмкостной нагрузкой; б) активно-индуктивной нагрузкой.

Рисунок 4.2 – Графики переходных процессов в цепи с активно-ёмкостной нагрузкой.

4. Произвести расчёт тока в цепи и напряжения на конденсаторе в момент коммутации (t = 0+) и в установившемся $(t = \infty)$ режимах по формулам, представленным в таблице 4.1. Постоянная времени рассчитывается по

- формуле $\tau = RC$. Занести результаты измерений и вычислений в таблицу 4.2.
- 5. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 4.1 б. Параметры генератора прямоугольного напряжения Е и нагрузки выдаются преподавателем.
- 6. Измерить ток в цепи и напряжение на катушке индуктивности в момент коммутации (t=0+) и в установившемся $(t=\infty)$ режимах. Графики переходных процессов будут иметь вид функций, представленных на рисунке 4.3.

Рисунок 4.3 – Графики переходных процессов в цепи с активно-индуктивной нагрузкой.

- 7. Экспериментально определить постоянную времени т.
- 8. Произвести расчёт тока в цепи и напряжения на катушке индуктивности в момент коммутации (t=0+) и в установившемся $(t=\infty)$ режимах по формулам, представленным в таблице 4.1. Постоянная времени рассчитывается по формуле $\tau = L/(R+R_k)$, R_k активное сопротивление катушки индуктивности. Занести результаты измерений и вычислений в таблицу 4.3.

Таблица 4.1

Тип нагрузки	Начальные значения	Установившиеся значения
RC	$U_{C}(0+)=U_{C}(0-)=E(0-),$ $I(0+)=(E+U_{C})/R;$	$U_{C}(\infty) = E(0+),$ $I(\infty) = I(0-) = 0;$
RL	$I(0+)=I(0-)=E(0-)/(R+R_k),$ $U_L(0+)=E(0+)-I(0-)\cdot R;$	$I(\infty) = E(0+)/(R+R_k),$ $U_L(\infty) = I(\infty) \cdot R_k.$

U_L – напряжение на катушке индуктивности.

Таблица 4.2

R,	C,	Тип	I(0+),	$I(\infty)$,	$U_{C}(0+),$	$U_{C}(\infty)$,	τ,
[Ом]	[мкФ]	данных	[MA]	[мА]	[B]	[B]	[мкс]
		эксп.					
		расч.					

Таблица 4.3

R,	L,	R _k ,	Тип	I(0+),	$I(\infty)$,	$U_{L}(0+),$	$U_L(\infty)$,	τ,
[Ом]	[мГн]	[Ом]	данных	[MA]	[MA]	[B]	[B]	[мкс]
			эксп.					
			расч.					

Часть 2

В цепях второго порядка переходные процессы, в зависимости от параметров, могут иметь апериодический (непериодический) или колебательный характер. Другими словами, функции переходных процессов могут иметь один или несколько экстремумов. Математически характер переходного процесса в цепи, представленной на рисунке 4.4, определяется корнями характеристического уравнения $LC \cdot s^2 + RC \cdot s + 1 = 0$, где s – оператор Лапласа. То есть характер переходного процесса можно изменить вариацией одного из параметров R, L или C, но проще всего это сделать изменением резистивного сопротивления R.

При апериодическом переходном процессе все корни характеристического уравнения вещественные, и процесс описывается функцией, представляющей собой сумму двух экспонент с постоянными времени $\tau_1 = \left|1/s_1\right|$ и $\tau_2 = \left|1/s_2\right|$, где $s_{1,2}$ – корни характеристического уравнения. При условии, что $\tau_1 \gg \tau_2$ длительность переходного процесса с достаточной точностью можно определить по первому корню характеристического уравнения

$$t_{p} = 3\tau_{1} = \frac{3}{\delta - \sqrt{\delta^{2} - \omega_{0}^{2}}},$$
 (4.3)

где — $\delta = R/2L$ коэффициент затухания и $\omega_0 = \sqrt{1/LC}$ резонансная частота.

Колебательный переходный процесс в цепи второго и высших порядков говорит о наличии комплексно-сопряжённых корней характеристического уравнения. При этом в цепи второго порядка коэффициент затухания δ и частоту собственных или свободных затухающих колебаний ω_c можно определить расчётным путём как

$$\delta = \frac{R}{2L} \text{ if } \omega_c = \sqrt{\frac{1}{LC} - \delta^2} . \tag{4.4}$$

Экспериментально эти параметры можно определить по двум соседним амплитудам колебаний тока I_{m1} , I_{m2} и периоду колебаний T (рисунок 4.4):

$$\delta^* = \frac{\ln\left(\frac{I_{m1}}{I_{m2}}\right)}{T} \text{ if } \omega_c^* = \frac{2\pi}{T}.$$
 (4.5)

Рисунок 4.4 – Переходный процесс по току в RLC цепи; экспериментальное определение параметров.

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 4.5. Параметры генератора прямоугольного напряжения Е, катушки индуктивности и конденсатора выдаются преподавателем.
- 2. Рассчитать сопротивление резистора, при котором выполняется условие $R = 4 \cdot \rho$ (ρ характеристическое сопротивление цепи) и промоделировать цепь.
- 3. Измерить напряжение на конденсаторе $U_C(0+)$, катушке индуктивности $U_L(0+)$ и ток в цепи I(0+) в момент коммутации. Определить по графику напряжения на конденсаторе время переходного процесса t_p .
- 4. Рассчитать напряжение на конденсаторе, катушке индуктивности и ток в цепи в момент коммутации по формулам, представленным в таблице 4.6. Рассчитать время переходного процесса по формуле (4.3). Занести результаты измерений и вычислений в таблицу 4.4.

Рисунок 4.5 — Схема замещения электрической цепи второго порядка.

- 5. Рассчитать сопротивление резистора, при котором выполняется условие $R = \rho/2$ и промоделировать цепь.
- 6. По графикам переходных процессов напряжений или тока и с использованием формул (4.5) определить значения коэффициента затухания и частоту собственных колебаний. Получить расчётные

значения этих коэффициентов по формулам (4.4). Занести результаты в таблицу 4.5.

Таблица 4.4

Параметры элементов цепи			U _C ((0+)	U _L (0+)	I(0) +)	t	p
R	L	С	расч	эксп	расч	эксп	расч	эксп	расч	эксп
[Ом] [мГн] [мкФ]		[B]	[B]	[B]	[B]	[A]	[A]	[мкс]	[мкс]	

Таблица 4.5

Парамет	ры элемент	ов цепи	· ·	3	$\omega_{ m c}$		
R [Ом]		расч [c ⁻¹]	эксп [c ⁻¹]	расч [c ⁻¹]	эксп [c ⁻¹]		

Таблица 4.6

функции **апериодический процесс**— Е ---- U_c ---- U_L — I

Переходные

Формулы

$$s_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} -$$
вещественные корни,

$$i(t) = \frac{E_{\Sigma}}{L(s_1 - s_2)} (e^{s_1 t} - e^{s_2 t}),$$

$$E_{\Sigma} = (|E(0-)| + |E(0+)|) \cdot sign(E(0+)),$$

$$U_R(t) = R \cdot i(t)$$
,

$$U_L(t) = \frac{E_{\Sigma}}{s_1 - s_2} (s_1 e^{s_1 t} - s_2 e^{s_2 t}),$$

$$U_{C}(t) = E(0+) - \frac{E_{\Sigma}}{s_{1} - s_{2}} \left(s_{1} e^{s_{2}t} - s_{2} e^{s_{1}t} \right)$$

колебательный процесс

$$s_{1,2} = -\delta \pm j\omega_c$$
 – комплексно-
сопряжённые корни,

$$\omega_{\rm c} = \sqrt{\frac{1}{\rm LC} - \delta^2} \; ,$$

$$i(t) = \frac{E_{\Sigma}}{\omega L} e^{-\delta t} \sin \omega t$$
,

$$U_{R}(t) = R \cdot i(t)$$

$$U_L(t) = E_{\Sigma} \varpi e^{-\delta t} \cos(\omega t + \beta),$$

$$U_{C}(t) = E(0+) - E_{\Sigma} \varpi e^{-\delta t} \cos(\omega t - \beta)$$

$$\varpi = \omega_0 / \omega$$
, $\beta = \operatorname{arctg}(\delta / \omega)$

Часть 3

- 1. В приложении «LTspice» собрать электрическую цепь, схема замещения которой представлена на рисунке 4.6. Методика моделирования ключа «sw» представлена в разделе «Знакомство с программной средой LTspice». Параметры генератора синусоидального напряжения Е и нагрузки выдаются преподавателем.
- 2. Рассчитать постоянную времени контура τ и выставить частоту f на генераторе, соответствующую периоду $T = \tau/2$; формулы для расчётов представлены в таблице 4.7.
- 3. Рассчитать угол сдвига фаз ϕ между входным напряжением u(t) и током i(t).

Рисунок 4.6 – Схема замещения генератора синусоидального напряжения с резистором и катушкой индуктивности.

Подключение источника синусоидального напряжения к нагрузке, содержащей индуктивный элемент, в общем случае сопровождается переходным процессом, представляющим собой затухающие колебания с частотой ω источника. В частном случае, в зависимости от момента времени, в который произошла коммутация, переходный процесс может либо сопровождаться сверхтоком, либо переходный процесс может отсутствовать. На рисунке 4.7 представлены графики тока в цепи с активно-индуктивной нагрузкой и источником синусоидального напряжения при различном времени коммутации.

Рисунок 4.7 – Графики переходных процессов в цепи с активно-индуктивной нагрузкой и источником синусоидального напряжения.

- 4. Рассчитать время коммутации t_{α} для случаев, когда угол включения $\alpha = \phi$, $\phi \pi/4$, $\phi + \pi/4$, $\phi + \pi/2$ и $\alpha = \pi$; формулы для расчётов представлены в таблице 4.7. Измерить ток i(t) в цепи и занести максимальное по модулю амплитудное значение i_{max} для каждого случая в таблицу 4.8.
- 5. Выставить частоту f на генераторе, соответствующую периоду $T = 2\tau$ и повторить пункт 4.

Таблица 4.7

Формула	Переменные
$t_{\alpha} = \frac{\alpha - \phi_{\rm E}}{}$;	$t_{\alpha}\left[c\right]$ – время коммутации;
$t_{\alpha} = \frac{1}{\omega}$;	α [рад] – угол включения;
$\omega = 2\pi f$;	φ _E [рад] – начальная фаза источника напряжения;
	ф [рад] – угол сдвига фаз между входным
$\varphi = \arctan\left(\frac{\omega L}{(R + R_k)}\right);$	напряжением и током;
$((R+R_k))$	ω [рад/с] – угловая частота входного напряжения;
L L	f [Гц] – линейная частота входного напряжения;
$1 - \frac{1}{R + R_{\perp}}$	L [Гн] – индуктивность;
K.	R [Ом] – сопротивление резистора;
	R_k [Ом] – активное сопротивление катушки
	индуктивности.

Таблица 4.8

	i_{max} , [A]					
α	φ	φ - π/4	$\varphi + \pi/4$	$\varphi + \pi/2$	π	
$T = \tau/2$						
$T=2\tau$						

Содержание отчета

Часть 1

- 1. Схема исследуемой цепи.
- 2. Расчётные формулы и расчёты. Графики переходных процессов (пример рисунок 4.2 и 4.3)
- 3. Заполненные таблицы 4.2 и 4.3.
- 4. Выводы по работе.

Часть 2

- 1. Схема исследуемой цепи.
- 2. Расчётные формулы и расчёты. Графики переходных процессов (пример представлен в таблице 4.6).
- 3. Заполненные таблицы 4.4 и 4.5.
- 4. Выводы по работе.

Часть 3

- 1. Схема исследуемой цепи.
- 2. Графики e(t), $i_{\alpha 1...5}(t)$, для $T = \tau/2$ и $T = 2\tau$ (пример рисунок 4.7).
- 3. Заполненная таблица 4.8.
- 4. Выводы по работе.

Лабораторная работа №5: «Исследование электрических цепей несинусоидального периодического тока»

Цель работы

Освоение методики использования резонансного фильтра для выделения гармонических составляющих несинусоидального напряжения. Измерение параметров спектра периодических напряжений различной формы.

План работы

- 1. Построение спектральной характеристики несинусоидального периодического напряжения заданной преподавателем амплитуды, частоты и формы. Расчет соотношения Umk/Um амплитуд гармоник входного и выходного сигналов.
- 2. Определение параметров резонансного фильтра для выделения гармонических составляющих сигнала.

Порядок выполнения работы

- 1. Преподаватель задает форму входного сигнала из таблицы 5.2, а также его амплитуду и частоту. Для построения спектральной характеристики несинусоидального напряжения необходимо выполнить его разложение в ряд Фурье. Для этого следует рассмотреть поведение функции в течение одного периода в установившемся режиме.
- 2. Представляем несинусоидальное напряжение аналитически в виде нелинейной функции (таблица 5.2). Разложение в ряд Фурье выполняется по следующим формулам:

$$\begin{split} U_0 &= \frac{1}{T} \int_0^T u_{in}(t) dt, \ \underline{U}_k = \frac{2}{T} \left(\int_0^T u_{in}(t) \cdot \sin(k\omega t) dt + j \int_0^T u_{in}(t) \cdot \cos(k\omega t) dt \right), \\ u(t) &= U_0 + |\underline{U}_1| \sin(\omega t + \arg(\underline{U}_1)) + \ldots + |\underline{U}_k| \sin(k\omega t + \arg(\underline{U}_k)). \end{split}$$

Расчет выполняется для постоянной составляющей и первых пяти или шести гармоник. Составляющие ряда помещаются в таблицу 5.1.

Для примера, на рисунке 5.1 показаны графики входного напряжения прямоугольной формы с Um=1 [B] и T=0.02 [c], аппроксимированного нелинейной функцией $u_{in1}(t)$ и рядом Фурье $u_{in2}(t)$.

Для экспериментального выделения гармонических составляющих несинусоидального напряжения в приложении «LTspice» составляется схема резонансного (полосового) фильтра, представленная на рисунке 5.2. Необходимо подобрать параметры емкости и индуктивности для настройки фильтра на частоту k-ой гармоники. Для этого используется формула расчёта резонансной частоты.

Рисунок 5.1 – Графики входного напряжения, аппроксимированного нелинейной функцией u_{in1} и рядом Фурье u_{in2} .

Рисунок 5.2 – Схема резонансного фильтра.

Входное сопротивление фильтра:

$$Z_{in}(j\omega) = R + j\frac{\omega L}{1 - \omega^2 LC} = R + jX_{LC}.$$

Коэффициент передачи фильтра:

$$K_{U}(j\omega) = \frac{U_{out}(j\omega)}{U_{in}(j\omega)} = \frac{jX_{LC}}{R + jX_{LC}}$$

В полосе пропускания Δ f=f₂-f₁ выходное напряжение приблизительно равно входному. Полосу пропускания рекомендуется брать в пределах от резонансной частоты фильтра. Частоты f₁ и f₂ определяются при спаде модуля коэффициента передачи на 3 дБ. Следовательно, можно записать тождество:

$$\frac{1}{\sqrt{2}} = \sqrt{\frac{\left(X_{LC}(f_{1,2})\right)^2}{R^2 + \left(X_{LC}(f_{1,2})\right)^2}},$$

с помощью которого несложно определить значение сопротивления R.

Для задания сигнала несинусоидальной формы 1-6 из таблицы 5.2 в системе «LTspice» используется функция источника Pulse (см. раздел «Моделирование работы источников напряжения и тока»).

Для задания сигнала несинусоидальной формы 7 и 8 из таблицы 5.2 в системе «LTspice» используются выпрямители на идеальных диодах,

представленные на рисунке 5.3 а и б соответственно. Функция источника напряжения при этом синусоидальная. Величину прямого напряжения идеального диода в «LTspice» можно брать примерно равным 0,6 [В]. Для обеспечения электрической развязки используется повторитель напряжения операционном усилителе. В этом случае выходное напряжение выпрямителя будет равно входному напряжению фильтра, и не будет зависеть от входного сопротивления фильтра. Используется операционный усилитель Component общего назначения (например, Edit \rightarrow **Opamps** Напряжение Up > UmUniversalOpamp2). рекомендуется питания использовать двуполярное (рисунок 5.4). Выпрямитель к резонансному фильтру подключается каскадно через повторитель напряжения, как показано на рисунке 5.5.

Рисунок 5.3 – Диодные выпрямители: однополупериодный (a) и двухполупериодный (б).

Рисунок 5.4 – Повторитель напряжения.

Рисунок 5.5 – Структурная схема эксперимента для анализа выпрямленного напряжения.

Измерения выходного напряжения резонансного фильтра проводятся в установившемся режиме. Следует выбрать участок графика 2-3 периода и получить действующее значение функции.

Таблица 5.1

Исследуемое напряжение			№ гарм.	Расчет		Эксперимент	
Форма	Um [B]	Частота [Гц]	k	Umk [B]	Umk Um	Umk [B]	Umk Um
			1				
			2				
			3				
			4				
			5				
			6				

Таблица 5.2

3.0		Аппроксимирующая	Программирование
№	Форма сигнала	функция	сигнала в «LTspice»
1	$\begin{array}{c c} Um & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$	if(t <t 0<="" 2)="" else="" td="" um=""><td>Тип функции: Pulse Trise=Tfall=Tperiod·10⁻⁶ Ton=Tperiod/2 Vinitial=0</td></t>	Тип функции: Pulse Trise=Tfall=Tperiod·10 ⁻⁶ Ton=Tperiod/2 Vinitial=0
2		if(t <t -um<="" 2)="" else="" td="" um=""><td>Тип функции: Pulse Trise=Tfall=Tperiod·10⁻⁶ Ton= Tperiod/2 Vinitial = -Von</td></t>	Тип функции: Pulse Trise=Tfall=Tperiod·10 ⁻⁶ Ton= Tperiod/2 Vinitial = -Von
3	Um T t	if(t <t 2)<br="">(2*Um/T)*t else Um-(2*Um/T)* *(t- T/2)</t>	Тип функции: Pulse Trise=Tfall=Tperiod/2 Ton=0
4	Um T t	if(t <t 3)<br="">(3*Um/T)*t else if (t<2*T/3) Um else Um-(3*Um/T)* *(t-2*T/3)</t>	Тип функции: Pulse Trise=Tfall=Tperiod/3 Ton=Tperiod/3
5	Um 0 T	if(t <t 2)<br="">(2*Um/T)*t else 2*Um/T*(t-T/2)</t>	Тип функции: Pulse Trise=Tperiod/2 Tfall=Tperiod·10 ⁻⁶ Ton=0 Vinitial=0
6	Um T t	if(t <t 2)<br="">Um-(2*Um/T)*t else Um-2*Um/T* *(t- T/2)</t>	Тип функции: Pulse Trise=Tperiod·10 ⁻⁶ Tfall=Tperiod/2 Ton=0 Vinitial=0

7	$\frac{\text{Um}}{0} \bigwedge_{T} t,$	if(t <t 2)<br="">Um*sin(2*π*t/T) else 0</t>	Тип функции: Sine
8	$\frac{\text{Um}}{0} \underbrace{\bigwedge_{T} t}_{t}$	if(t <t 2)<br="">Um*sin(2*π*t/T) else if(t<t 2)<br="">Um*sin(2*π* *(t-T/2)/T)</t></t>	Тип функции: Sine

Содержание отчета

- 1. Схема исследуемой цепи.
- 2. Расчётные формулы и расчёты.
- 3. График входного несинусоидального напряжения, построенный в «LTspice».
- 4. График входного несинусоидального напряжения, построенный по аппроксимирующей нелинейной функции.
- 5. График входного несинусоидального напряжения, построенный по ряду Фурье.
- 6. Спектральные характеристики входного сигнала.
- 7. Графики выходного напряжения для каждого эксперимента по выделению гармоник.
- 8. Заполненная таблица 5.1.
- 9. Выводы по работе.

Литература

- 1. Ссылка для загрузки приложения LTspice. Режим доступа: http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html, свободный.
- 2. Толмачёв В.А., Усольцев А.А., Лукичёв Д.В., Никитина М.В. Общая электротехника: Методические указания к лабораторному практикуму. СПб: СПбГУ ИТМО, 2009. 71 с.

Абдуллин Артур Александрович Горшков Константин Сергеевич Ловлин Сергей Юрьевич Поляков Николай Александрович Никитина Мария Владимировна

Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice

Учебно-методическое пособие

В авторской редакции
Редакционно-издательский отдел Университета ИТМО
Зав. РИО Н. Ф. Гусарова
Подписано к печати
Заказ №
Отпечатано на ризографе

Редакционно-издательский отдел

Университета ИТМО

197101, Санкт-Петербург, Кронверский пр., 49