2025 Digital IC Design Homework 4

2025 Digital IC Design Homework 4					
	陳冠言				
Student ID P76134082					
ATCONV Simulation Result					
Functional	Pass		Pre-Layout	Pass	
simulation	1 433		simulation	1 455	
5 U M M A R Y			#		
# Congratulations! Layer 0 data have been generated successfully! The result is PAS #			. . .		
# Congratulations! Layer 1 data have been generated successfully! The result is FA			# · · · · · · · · · · · · · · · · · · ·		
# terminate at 51206 cycle			f terminate at \$1206 cycle		
<pre># ** Note: \$finish : D:/intelFPGA/DIC/HW4/testfixture.sv(224) # Time: 2560300 ns Iteration: 0 Instance: /testfixture</pre>			<pre># ** Note: Gfinish : D:/intelFPGA/DIC/WH4_1/testfixture.sv(224) # Time: 2560307525 ps Iteration: 0 Instance: /testfixture</pre>		
System Simulation Result					
Functional			Pre-Layout	Pass	
simulation	Pass		simulation	Pass	
5 S U M M A R Y			SUMMARY		
# Congratulations! Layer 0 data have been generated successfully! The result is FRSS!! # Congratulations! Layer 1 data have been generated successfully! The result is FRSS!!			Congratulations! Layer 0 data have been generated successfully! The result is PASS!! Congratulations! Layer 1 data have been generated successfully! The result is PASS!!		
terminate at 143365 cycle			# Comprehisations: Layer 1 data have been generated successfully: The result is PASS:: # terminate at 143365 cycle		
* Hote: Sfinish : D:/intelFPGA/DIC/HH4_2/testfixture.sv(228) * Time: 7160350 ns Iteration: 0 Instance: /testfixture			# Hote: Gfinish : D:/intelFPGA/DIC/HW4_3/testfixture.sv(228)		
# 1 # Break in Module testfixture at D:/intelFPGA/DIC/HW4_2/testfixture.sv line 228			<pre># Time: 7160258217 ps Iteration: 0 Instance: /testfixture # 1 # Break in Module testfixture at D:/intelFPGA/DIC/EM4_3/testfixture.sv line 228</pre>		
			•		
ATCONV Synthesis Result					
Total logic elements		461	461 / 55,856 (< 1 %)		
Total memory bits		0 / 2,396,160 (0 %)			
Total registers		138			
Embedded multiplier 9-bit elements		0/3	0/308(0%)		
Total Cycle used			06 cycle		

Flow Summary <<Filter>> Flow Status Successful - Thu May 08 23:03:23 2025 Quartus Prime Version 20.1.1 Build 720 11/11/2020 SJ Lite Edition Revision Name ATCONV Top-level Entity Name Family Cyclone IV E Device EP4CE55F23A7 Timing Models Total logic elements 461 / 55,856 (< 1 %) Total registers 138 124 / 325 (38 %) Total pins Total virtual pins Total memory bits 0 / 2,396,160 (0 %) Embedded Multiplier 9-bit elements 0 / 308 (0 %) Total PLLs 0/4(0%)

System Synthesis Result			
Total logic elements	813 / 55,856 (1 %)		
Total memory bits	0 / 2,396,160 (0 %)		
Total registers	375		
Embedded multiplier 9-bit elements	0/308(0%)		
Total Cycle used	143365 cycle		

Flow Status Quartus Prime Version Revision Name Top-level Entity Name Family Device Successful - Wed May 21 22:58:44 2025 20.1.1 Build 720 11/11/2020 SJ Lite Edition top top Cyclone IV E EP4CE55F23A7

Timing Models Final
Total logic elements 813 / 55,856 (1%)
Total registers 375

Total pins 124 / 325 (38 %)

Total virtual pins 0

Total memory bits 0 / 2,396,160 (0 %)
Embedded Multiplier 9-bit elements 0 / 308 (0 %)
Total PLLs 0 / 4 (0 %)

Description of your design

1. ATCONV Design Specifications:

本設計包含一個主要的狀態機控制系統,能夠處理 64x64 輸入圖像,並通過稀疏卷積和最大池化操作產生 32x32 的輸出。設計採用了模組化架構,由幾個關鍵部分組成:狀態控制器、卷積計算單元、地址生成器及記憶體介面管理器。

主要狀態機

- INIT:初始化狀態
- ATCONV 9PIXELS:執行9像素的稀疏卷積
- LAYERO WRITERELU: 將結果寫入 Layer 0 並應用 ReLU 激活
- MAXPOOL 4PIXELS:對 Layer 0 輸出執行 2x2 最大池化
- LAYER1 WRITECEILING:將向上取整後的池化結果寫入 Layer 1
- FINISH:完成處理並發出 done 信號 1

處理流程

Layer 0 處理:

- 1. 從 ROM 讀取當前中心點及其擴張卷積核覆蓋的 8 個鄰域像素
- 2. 計算卷積加權和並加上偏置
- 3. 應用 ReLU 激活函數 (負值變為零)
- 4. 將結果寫入 Layer 0 記憶體 1

Layer 1 處理:

- 1. 從 Layer 0 記憶體讀取 2x2 窗口的 4 個像素
- 2. 找出最大值
- 3. 對最大值進行向上取整(小數部分有任何位為1時,整數部分加1)
- 4. 將結果寫入 Layer 1 記憶體

記憶體控制

ROM 控制:

- 使用 ROM rd 信號控制 ROM 讀取操作
- 通過 iaddr 生成適當的地址以讀取所需像素 1

Layer 0/1 記憶體控制:

- 使用 layer0 ceb/layer1 ceb 控制記憶體啟用
- 使用 layer0 web/layer1 web 控制讀寫模式
- 通過 layer 0 A/layer 1 A 指定地址
- 將計算結果通過 layer0 D/layer1 D 寫入記憶體

2. System Design Specifications:

本設計是一個基於硬體加速的空洞卷積(Atrous Convolution)神經網路處理器,主要用於影像處理。系統由四個主要模塊組成:ATCONV_Wrapper、BUS、ROM Wrapper 以及 SRAM Wrapper。

ATCONV Wrapper

這是系統的核心處理,實現了空洞卷積、ReLU 激活以及最大池化操作:

1. 擴張卷精實現:

- 使用 3x3 卷積核與擴張率(atrous rate)為 2
- 採用9個固定權重(KERNEL_0到KERNEL_8)和一個偏置值 (KERNEL BIAS)
- 輸入影像大小為64x64像素
- 設計包含邊界處理機制,超出範圍時會自動進行鉗位操作

2. 量化與計算:

- 使用 16 位元定點數學運算
- 卷積結果經過 ReLU 非線性激活函數處理
- 池化操作採用 2x2 窗口,步長為 2
- 池化結果進行適當的量化與四捨五入處理

3. 狀態機控制:

- 設計包含11個狀態,從初始化到完成
- 包括 ROM 讀取、卷積計算、記憶體寫入/讀取、池化操作等狀態
- 當處理完所有數據後,會觸發 done 信號表示完成

BUS

匯流排負責連接 ATCONV Wrapper 與 ROM 和 SRAM:

1. 主從架構:

- 一個主設備 (Master) 連接三個從設備 (Slave)
- 使用 ID 識別不同的從設備: ID_0 對應 ROM, ID_1 對應 SRAM0, ID 2 對應 SRAM1

2. 數據路由:

- 根據 ID 標識,自動將地址、數據和控制信號路由到正確的從設備
- 處理讀寫操作的握手機制
- 支持突發傳輸操作

ROM Wrapper

這提供對唯讀記憶體的訪問 port,用於儲存輸入影像數據:

- 1. 狀態控制:
 - 實現簡單的狀態機,處理等待命令和讀取數據狀態
 - 管理突發讀取的計數和控制
- 2. 讀取操作:
 - 接收來自匯流排的讀取請求
 - 按照指定地址提取數據

SRAM_Wrapper

為靜態隨機存取記憶體提供接口,用於存儲中間結果和最終輸出:

- 1. 多功能狀態機:
 - 包含待命、讀取操作和寫入操作三個狀態
 - 根據匯流排請求切換適當的狀態
- 2. 讀寫控制:
 - 處理數據讀取和寫入操作
 - 管理記憶體地址和數據流
 - 支持突發傳輸

數據流程

- 1. 輸入階段:
 - 從 ROM 讀取輸入影像數據
 - 根據擴張卷積的需求,按特定模式訪問數據點
- 2. 卷積階段:
 - 將9個輸入數據與卷積核權重相乘並累加
 - 添加偏置值並進行移位操作(相當於除以16)
 - 應用 ReLU 激活函數 (負值置零)
- 3. 中間存儲:
 - 將卷積結果寫入 SRAM0
 - 完成整個影像的卷積操作
- 4. 池化階段:
 - 從 SRAMO 讀取卷積結果
 - 執行 2x2 最大池化操作
 - 進行適當的四捨五入處理
- 5. 輸出階段:
 - 將池化結果寫入 SRAM
 - 當所有數據處理完成時,觸發 done 信號