Using Genetic Algorithms in the Design of Two-phase Studies

Osvaldo Espin-Garcia, PhD^{1,2}

¹Department of Epidemiology and Biostatistics, Western University ²Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto

Canadian Mathematical Society Winter Meeting
December 5th, 2022

Outline

- Background
- Statistical Framework
- Phase 2 Designs
- 4 Challenges of GAs
- 5 Future Work

Background

Given typically modest genetic effect sizes, large-scale population studies are necessary

Background

Given typically modest genetic effect sizes, large-scale population studies are necessary

Post-GWAS analysis often focuses on fine-mapping targeted genetic regions

Background

Given typically modest genetic effect sizes, large-scale population studies are necessary

Post-GWAS analysis often focuses on fine-mapping targeted genetic regions

Costs of next-generation sequencing remain prohibitively expensive for large studies

Motivation: Two-phase Fine-mapping Studies

Y is an outcome of interest (quantitative trait, QT), Z is the lead SNP, and G is a (fine-mapped) sequence variant

Motivation: Two-phase Fine-mapping Studies

Y is an outcome of interest (quantitative trait, QT), Z is the lead SNP, and G is a (fine-mapped) sequence variant

Aim: Identify designs that select informative individuals for S_2 data collection

Outline

- Background
- Statistical Framework
- Phase 2 Designs
- 4 Challenges of GAs
- 5 Future Work

Regression via Maximum Likelihood Methods

The observed data likelihood is defined as:

$$L(\boldsymbol{\beta}, \boldsymbol{p}) \propto \prod_{i=1}^{N} \left[f_{\beta}(y_i | g_i, z_i) p(g_i, z_i) \right]^{R_i} \left[\sum_{g \in \mathcal{G}} f_{\beta}(y_i | g, z_i) p(g, z_i) \right]^{(1-R_i)}$$
(1)

$$= \prod_{i \in S_2} f_{\beta}(y_i|g_i, z_i) p_{g_i, z_i} \prod_{i \in \overline{S}} \sum_{g \in \mathcal{G}} f_{\beta}(y_i|g, z_i) p_{g, z_i}$$
(2)

Regression via Maximum Likelihood Methods

The observed data likelihood is defined as:

$$L(\boldsymbol{\beta}, \boldsymbol{p}) \propto \prod_{i=1}^{N} \left[f_{\beta}(y_i | g_i, z_i) p(g_i, z_i) \right]^{R_i} \left[\sum_{g \in \mathcal{G}} f_{\beta}(y_i | g, z_i) p(g, z_i) \right]^{(1-R_i)}$$
(1)

$$= \prod_{i \in S_2} f_{\beta}(y_i|g_i, z_i) p_{g_i, z_i} \prod_{i \in \overline{S}_2} \sum_{g \in \mathcal{G}} f_{\beta}(y_i|g, z_i) p_{g, z_i}$$
(2)

where

- $R_i = \mathbb{1}\{i \in S_2\}$ with $\mathbb{P}(R_i = 1|y_i, z_i) = \pi(y_i, z_i; \psi)$, $\mathbf{R} = (R_1, \dots, R_N)'$, and $\sum_{i=1}^N R_i = n$.
- $f_{\beta}(y|g,z)$ is a member of the exponential family, focus on $Y|G=g,Z=z\sim\mathcal{N}(\beta_0+\beta_1g+\beta_2z,\sigma^2)$ with $\boldsymbol{\beta}=(\beta_0,\beta_1,\beta_2)$.
- $p_{g,z}$ is the joint probability of G = g and Z = z, $p = \{p_{g,z}\}_{g \in \mathcal{G}, z \in \mathcal{Z}}$.
- \mathcal{G} , \mathcal{Z} are sets of uniquely observed values of G (in S_2) and Z (in $S_2 \cup \overline{S}_2$).
- \bar{S}_2 is the set of N-n unselected subjects.

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.
 - Parametric part corresponds to a generalized linear model (β) .

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.
 - Parametric part corresponds to a generalized linear model (β) .
 - Nonparametric part models the joint probability between Z and G(p).

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.
 - Parametric part corresponds to a generalized linear model (β) .
 - Nonparametric part models the joint probability between Z and G(p).
- Maximum likelihood estimates are obtained via the EM algorithm.

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.
 - Parametric part corresponds to a generalized linear model (β) .
 - Nonparametric part models the joint probability between Z and G(p).
- Maximum likelihood estimates are obtained via the EM algorithm.
- The variance-covariance matrix (VCM) is computed via the Louis' method (1982).

- A missing (by design) data problem ⇒ semiparametric maximum likelihood.
 - Parametric part corresponds to a generalized linear model (β) .
 - Nonparametric part models the joint probability between Z and G(p).
- Maximum likelihood estimates are obtained via the EM algorithm.
- The variance-covariance matrix (VCM) is computed via the Louis' method (1982).
- Main interest lies in testing for $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$.

Outline

- Background
- Statistical Framework
- Phase 2 Designs
- 4 Challenges of GAs
- 5 Future Work

Outcome/Covariate - Dependent Sampling

Let $R_i = \mathbb{1}\{i \in S_2\}$ and

$$\mathbb{P}(R_i = 1 | Z_i, Y_i, G_i) = \mathbb{P}(R_i = 1 | Z_i, Y_i) = \pi_i, i = 1, \dots, N$$
 (Missing at random)

Outcome/Covariate - Dependent Sampling

Let $R_i = \mathbb{1}\{i \in S_2\}$ and

$$\mathbb{P}(R_i = 1 | Z_i, Y_i, G_i) = \mathbb{P}(R_i = 1 | Z_i, Y_i) = \pi_i, \ i = 1, \dots, N$$
 (Missing at random)

Marginal sampling:

$$\mathbb{P}(R_i = 1 | Z_i, Y_i) = \left\{ egin{array}{ll} \pi(Z_i) & ext{covariate-dependent} \\ \pi(Y_i) & ext{outcome-dependent} \end{array}
ight.$$

Outcome/Covariate - Dependent Sampling

Let $R_i = \mathbb{1}\{i \in S_2\}$ and

$$\mathbb{P}(R_i = 1 | Z_i, Y_i, G_i) = \mathbb{P}(R_i = 1 | Z_i, Y_i) = \pi_i, i = 1, \dots, N$$
 (Missing at random)

Marginal sampling:

$$\mathbb{P}(R_i = 1 | Z_i, Y_i) = \left\{ egin{array}{ll} \pi(Z_i) & ext{covariate-dependent} \\ \pi(Y_i) & ext{outcome-dependent} \end{array}
ight.$$

Joint sampling:

$$\mathbb{P}(R_i = 1 | Z_i, Y_i) = \pi(Z_i, Y_i)$$

For the lead SNP (Z) sampling, strata are naturally defined by the number of copies of the minor allele.

To operationalize the outcome sampling, we discretize Y into a K strata variable Y_{st} , (T_1, \ldots, T_K) using pre-specified cut-offs (C_1, \ldots, C_{K-1}) .

A First Approach

Let *N* be the phase 1 sample size and *n* be the phase 2 sample size (N > n)

$Z \backslash Y_{st}$
0
1
2
M_Y
1 2

Phase 1 data				
T_1		T_K	M_Z	
N_{01}		N_{0K}	N_0 .	
N_{11}		N_{1K}	N_1 .	
N_{21}		N_{2K}	N_2 .	
$N_{\cdot 1}$		$N_{\cdot K}$	N	

Phase 2 design				
T_1		T_K	M_Z	
n_{01}		n_{0K}	n_0 .	
n_{11}		n_{1K}	n_1 .	
n_{21}		n_{2K}	n_2 .	
$n_{\cdot 1}$		$n_{\cdot K}$	n	

where

$$n_{I_z,I_y} = \# \{i : Z_i \in I_z, Y_i \in I_y\}$$

is the number of subjects to be allocated in each stratum for the joint sampling design.

A First Approach

Let N be the phase 1 sample size and n be the phase 2 sample size (N > n)

$Z \backslash Y_{st}$
0
1
2
M_Y

Phase 1 data				
T_1		T_K	M_Z	
N_{01}		N_{0K}	N_0 .	
N_{11}		N_{1K}	N_1 .	
N_{21}		N_{2K}	N_2 .	
$N_{\cdot 1}$		$N_{\cdot K}$	N	

Phase 2 design				
T ₁		T_K	M_Z	
n_{01}		n_{0K}	n_0 .	
n_{11}		n_{1K}	n_1 .	
n_{21}		n_{2K}	n_2 .	
$n_{\cdot 1}$		$n_{\cdot K}$	n	

where

$$n_{I_z,I_y} = \# \{i : Z_i \in I_z, Y_i \in I_y\}$$

is the number of subjects to be allocated in each stratum for the joint sampling design.

Q: How to allocate samples for the phase 2 design?

Heuristic designs

Strata are defined using *Y* and *Z* (observed at phase 1)

- Y, the QT, is discretized into a K=3 strata variable Y_{st} (T_1, T_2, T_3)
- Z, the lead SNP, is defined by the number of copies of the minor allele (0,1,2)

Figure: Heuristic designs when $n \approx N/2$, $Y \sim \mathcal{N}(2, 2.25)$, minor allele frequency (MAF) for $Z, q_Z = 0.3$

Heuristic designs

Strata are defined using *Y* and *Z* (observed at phase 1)

- Y, the QT, is discretized into a K=3 strata variable Y_{st} (T_1, T_2, T_3)
- Z, the lead SNP, is defined by the number of copies of the minor allele (0,1,2)

Figure: Heuristic designs when $n \approx N/2$, $Y \sim \mathcal{N}(2, 2.25)$, minor allele frequency (MAF) for $Z, q_Z = 0.3$

Q: Is there a better way to find phase 2 designs given a fixed n?

Optimality in Two-Phase Studies

Let $\theta = (\beta^t, p^t)^t$, under regularity conditions, the limiting distribution of $\hat{\theta}$ follows asymptotically:

$$\sqrt{N}(\hat{\theta} - \theta) \sim \mathcal{N}(0, \mathbb{J}(\Phi)^{-1}),$$

where $\Phi = (\theta^t, \psi^t)^t$, and

- ψ is a parameter determining $\pi(y_i, z_i; \psi) = \mathbb{P}(R_i = 1 | y_i, z_i; \psi)$, and
- $\mathbb{J}(\Phi)$ is the expected information matrix.

Optimality in Two-Phase Studies

Let $\theta = (\beta^t, p^t)^t$, under regularity conditions, the limiting distribution of $\hat{\theta}$ follows asymptotically:

$$\sqrt{N}(\hat{\theta} - \theta) \sim \mathcal{N}(0, \mathbb{J}(\Phi)^{-1}),$$

where $\Phi = (\theta^t, \psi^t)^t$, and

- ψ is a parameter determining $\pi(y_i, z_i; \psi) = \mathbb{P}(R_i = 1 | y_i, z_i; \psi)$, and
- $\mathbb{J}(\Phi)$ is the expected information matrix.

Following experimental design literature, different optimality criteria, $\Lambda(\cdot)$, can be investigated:

A-optimality: minimizes trace of VCM, i.e. $\Lambda [\mathbb{J}(\Phi)] = \sum \text{diag}(\mathbb{J}(\Phi)^{-1})$

D-optimality: minimizes determinant of VCM, i.e. $\Lambda \left[\mathbb{J}(\Phi) \right] = \det(\mathbb{J}(\Phi)^{-1})$

Parameter-specific: minimizes the entry of the VCM corresponding to β_1 , i.e.

$$\Lambda \left[\mathbb{J}(\Phi) \right] = \left[\mathbb{J}(\Phi)^{-1} \right]_{\beta_1,\beta_1}$$

The Optimization Problem

We want to identify a design that satisfies the following optimization problem:

$$\min \ \Lambda \left[\mathbb{J}(\Phi) \right] \ \ \mathsf{subject to} \ \ \sum_{i=1}^N R_i = n,$$

The Optimization Problem

We want to identify a design that satisfies the following optimization problem:

$$\min \ \Lambda \left[\mathbb{J}(\Phi)
ight] \ \ \mathsf{subject to} \ \ \sum_{i=1}^N R_i = n,$$

or similarly

$$\min \ \Lambda \left[\mathbb{J}(\Phi) \right] \ \ \text{subject to} \ \ \mathbb{P}(\textbf{\textit{R}}=1|\textbf{\textit{Y}},\textbf{\textit{Z}}) = \frac{n}{N}.$$

Designs via Lagrange Multipliers

Aims to optimize the stratum-specific selection probabilities by minimizing the following expression

$$\Lambda\left[\mathbb{J}(\Phi)\right] + \lambda N^{-1} \left(\sum_{k,j \in Y_{st},Z} \pi_{kj}(\psi) N_{kj} - n\right)$$

where λ is a Lagrange multiplier (LM) that accounts for the budget constraint and N_{kj} is the phase 1 stratum size.

Designs via Lagrange Multipliers

Aims to optimize the stratum-specific selection probabilities by minimizing the following expression

$$\Lambda\left[\mathbb{J}(\Phi)\right] + \lambda N^{-1} \left(\sum_{k,j \in Y_{st},Z} \pi_{kj}(\psi) N_{kj} - n\right)$$

where λ is a Lagrange multiplier (LM) that accounts for the budget constraint and N_{kj} is the phase 1 stratum size.

Notes:

- $\theta = (\beta^t, p^t)^t$ are design quantities, i.e. need to be specified a priori
- Provides a set of optimal sampling fractions π_{kj}^* for each stratum
- A phase 2 subsample is drawn given $oldsymbol{\pi}^* = (\pi_{10}^*, \dots, \pi_{K2}^*)$

Designs via Genetic Algorithms

Aims to identify an "optimal" phase 2 subsample design (\mathbf{R}^*) .

Designs via Genetic Algorithms

Aims to identify an "optimal" phase 2 subsample design (\mathbf{R}^*) .

Notes:

- Suitable for discrete optimization in large search spaces (2^N).
- The budget constraint is accounted for via fixed-size subset selection.
- Hyper-parameter tuning is needed.

Rank-based Designs

Grounded in theoretical findings, these designs achieve a phase 2 sample size by selecting an equal number of subjects from each of the top and bottom rankings of the following quantities:

ODS: Outcome dependent sampling, i.e. $Y^{(1)}, \dots, Y^{(N)}$

Rank-based Designs

Grounded in theoretical findings, these designs achieve a phase 2 sample size by selecting an equal number of subjects from each of the top and bottom rankings of the following quantities:

ODS: Outcome dependent sampling, i.e. $Y^{(1)}, \dots, Y^{(N)}$

RDS: Residual dependent sampling, i.e. $\hat{e}^{(1)}, \dots, \hat{e}^{(N)}$, where $\hat{e}_i = Y_i - \hat{Y}_i$, $i = 1, \dots, N$

Rank-based Designs

Grounded in theoretical findings, these designs achieve a phase 2 sample size by selecting an equal number of subjects from each of the top and bottom rankings of the following quantities:

ODS: Outcome dependent sampling, i.e. $Y^{(1)}, \dots, Y^{(N)}$

RDS: Residual dependent sampling, i.e. $\hat{e}^{(1)}, \dots, \hat{e}^{(N)}$, where $\hat{e}_i = Y_i - \hat{Y}_i$, $i = 1, \dots, N$

TZL: Tao-Zeng-Lin's scaled residuals design. Tao et al. (2020) showed that scaling the residuals by $Var(G|Z)^{1/2}$ (unknown at design stage) yields a design with minimum variance under the score test, i.e. $\beta_1 = o(1)$.

Characteristics of the Studied Designs

Feature	Design				
	Heuristic	LM	GA	ODS/RDS	TZL
Design quantities β , p need to be specified	×	$\sqrt{}$	$\sqrt{}$	×	$\sqrt{}$
Subject to sampling variability	\checkmark	\checkmark	×	×	×
Computationally intensive	×	×	$\sqrt{}$	×	×
Depends on strata definition	\checkmark	$\sqrt{}$	×	×	×

Simulation results in realistic scenario

- GA demonstrates less estimation bias compared to TZL.
- GA shows comparable power to TZL when Var(G|Z) is misspecified.

Summary

- The proposed GA designs can be more powerful than heuristic designs and comparable to rank-based designs.
- Similar results for GA over different MAFs, LDs and sample sizes (N,n).
- GA achieves power similar to complete data with half sequencing info.
- GA can be implemented across a variety of models.
- Implementation available at github.com/egosv/twoPhaseGAS.

Outline

- Background
- Statistical Framework
- Phase 2 Designs
- Challenges of GAs
- 5 Future Work

Convergence

Popn size - 125 - 200 · · 300

Solution Uniqueness

Outline

- Background
- Statistical Framework
- Phase 2 Designs
- Challenges of GAs
- Future Work

High-dimensional Covariate Settings

Let $Z \in \mathbb{R}^p$ be a high-dimensional covariate vector, with observed likelihood:

$$L(oldsymbol{eta},oldsymbol{\gamma}) = \prod_{i=1}^N \left\{ f_eta(Y_i|G_i,\mathbf{Z}_i) h_\gamma(G_i,\mathbf{Z}_i)
ight\}^{R_i} imes \left\{ \int f_eta(Y_i|g,\mathbf{Z}_i) h_\gamma(g,\mathbf{Z}_i) \mathrm{d}g
ight\}^{1-R_i},$$

High-dimensional Covariate Settings

Let $Z \in \mathbb{R}^p$ be a high-dimensional covariate vector, with observed likelihood:

$$L(oldsymbol{eta},oldsymbol{\gamma}) = \prod_{i=1}^N \left\{ f_eta(Y_i|G_i,\mathbf{Z}_i) h_\gamma(G_i,\mathbf{Z}_i)
ight\}^{R_i} imes \left\{ \left. \int f_eta(Y_i|g,\mathbf{Z}_i) h_\gamma(g,\mathbf{Z}_i) \mathrm{d}g
ight\}^{1-R_i},$$

the optimization problem becomes:

$$\begin{split} & \text{min} & -\log L(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{R}) + \Lambda \Big[\mathbb{J}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{R})^{-1} \Big] \\ & \text{subject to} & \sum_{i=1}^{N} R_i = n, \ \sum_{j=2}^{p+2} c_{1j} \mathbb{1}(\beta_j) \leq C_1, \ \sum_{j=2}^{p+2} c_{2j} \mathbb{1}(\gamma_j) \leq C_2, \end{split}$$

High-dimensional Covariate Settings

Let $Z \in \mathbb{R}^p$ be a high-dimensional covariate vector, with observed likelihood:

$$L(oldsymbol{eta}, oldsymbol{\gamma}) = \prod_{i=1}^N \left\{ f_eta(Y_i|G_i, \mathbf{Z}_i) h_\gamma(G_i, \mathbf{Z}_i)
ight\}^{R_i} imes \left\{ \int f_eta(Y_i|g, \mathbf{Z}_i) h_\gamma(g, \mathbf{Z}_i) \mathrm{d}g
ight\}^{1-R_i},$$

the optimization problem becomes:

$$\begin{split} & \text{min} & -\log L(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{R}) + \Lambda \Big[\mathbb{J}(\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{R})^{-1} \Big] \\ & \text{subject to} & \sum_{i=1}^{N} R_i = n, \ \sum_{j=2}^{p+2} c_{1j} \mathbb{I}(\beta_j) \leq C_1, \ \sum_{j=2}^{p+2} c_{2j} \mathbb{I}(\gamma_j) \leq C_2, \end{split}$$

here

- 1(·) is the indicator function denoting whether the jth parameter is to be selected,
- c_{kj} , $k = 1, 2; j = 2, \dots, p + 2$ represent covariate-specific costs, and
- C_k , k = 1, 2, are budget constraints for the parameters in f and h.

Alternative Optimization Methods

- Dynamic Programming (knapsack problem)
- Simulated Annealing
- Estimation of Distribution Algorithms

Acknowledgments

Shelley B. Bull (DLSPH, U of T/LTRI)

Radu V. Craiu (Statistical Sciences, U of T)

Guan Wang (Master's student, DLSPH, U of T)

Selected References

- Z. Chen, R. V. Craiu, and S. B. Bull. Two-phase stratified sampling designs for regional sequencing. Genetic Epidemiology, 36(4):320–332, 2012.
- [2] O. Espin-Garcia, R. V. Craiu, and S. B. Bull. Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing. Genetic Epidemiology, 42(1):104–116, 2018.
- [3] O. Espin-Garcia, R. V. Craiu, and S. B. Bull. Two-phase sample selection strategies for design and analysis in post-genome wide association fine-mapping studies. Statistics in Medicine, 40(30):6792–6817, 2021.
- [4] J. H. Holland. Genetic Algorithms. Scientific American, 267(1):66–73, 1992.
- [5] J. F. Lawless, J. D. Kalbfleisch, and C. J. Wild. Semiparametric methods for response-selective and missing data problems in regression. *Journal of the Royal Statistical Society. Series B(Statistical Methodology)*, 61(2):413–438, 1999.
- [6] D.-Y. Lin, D. Zeng, and Z. Z. Tang. Quantitative trait analysis in sequencing studies under trait-dependent sampling. Proceedings of the National Academy of Sciences of the United States of America, 110(30):12247–52, 2013.
- [7] M. A. McIsaac and R. J. Cook. Response-dependent two-phase sampling designs for biomarker studies. Canadian Journal of Statistics, 42(4):268–284, 2014.
- [8] M. Reilly. Optimal sampling strategies for two-stage studies. American Journal of Epidemiology, 143(1):92–100, 1996.
- [9] D. J. Schaid, G. D. Jenkins, J. N. Ingle, and R. M. Weinshilboum. Two-phase designs to follow-up genome-wide association signals with DNA resequencing studies. Genetic Epidemiology, 37(3):229–238, 2013.
- [10] R. Song, H. Zhou, and M. R. Kosorok. A note on semiparametric efficient inference for two-stage outcome-dependent sampling with a continuous outcome. *Biometrika*, 96(1):221–228, 2009.
- [11] R. Tao, D. Zeng, and D.-Y. Lin. Optimal Designs of Two-Phase Studies. Journal of the American Statistical Association, 115(532):1946–1959, 2020.
- [12] D. C. Thomas, Z. Yang, and F. Yang. Two-phase and family-based designs for next-generation sequencing studies. Frontiers in Genetics, 4(December):1–20, 2013.
- [13] Y. Zhao, J. F. Lawless, and D. L. McLeish. Likelihood methods for regression models with expensive variables missing by design.

 Biometrical Journal, 51(1):123–136, 2009.

Thank you for listening!

Questions?