4.3 Vertical and Horizontal Asymptotes

Definition of a Rational Function

A rational function has the form: $h(x) = \frac{f(x)}{g(x)}$ f(x) and g(x) are polynomials.

Domain: all real numbers except values of x where g(x) = 0.

The zeros of h(x) are the zeros of f(x) if h(x) is in simplified form.

Example: Find the Domain, Range, and the Intercepts.

Intercepts.
(a)
$$f(x) = \frac{2}{x-3}$$

The function is not defined when x - 3 = 0.

Domain: $\{x \mid x \neq 3, x \in \Re\}$

$$f(0) = -\frac{2}{3}$$
 : y-intercept is $-\frac{2}{3}$

Range: $\{y \mid y \neq 0, y \in \Re\}$

Example: Find the Domain and the Intercepts.

(b)
$$g(x) = \frac{x}{x^2 - 2x - 3}$$

= $\frac{x}{(x-3)(x+1)}$

Domain: $\{x \mid x \neq 3, -1, x \in \Re\}$ g(0) = 0, x-intercept is zero and the y-intercept is zero.

Range: $\{y \mid y \in \Re\}$

Example: Find the Domain and the Intercepts.

(c)
$$h(x) = \frac{2x^2 - x - 3}{x^2 - 9}$$
$$= \frac{(2x - 3)(x + 1)}{(x - 3)(x + 3)}$$

Domain: $\{x \mid x \neq 3, -3, x \in \Re\}$

g(0) = 1/3, the y-intercept is 1/3.

x-intercepts are 3/2 and -1.

Vertical and Horizontal Asymptotes

A *vertical asymptote* occurs when the value of the function increases or decreases without bound as the value of *x* approaches *a* from the left or right.

If $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a^-$ or $x \to a^+$ then x = a is a vertical asymptote.

A *horizontal asymptote* occurs when the value of the function approaches a number L as x increases or decreases without bound.

If $h(x) \to L$ as $x \to \infty$ or as $x \to -\infty$, then y = L is a horizontal asymptote.

** ** **

Example: Find the vertical and horizontal asymptotes.

(a)
$$f(x) = \frac{x-2}{2x+1}$$

The function is undefined when 2x + 1 equals zero.

$$x = -\frac{1}{2}$$
 is a vertical asymptote.

y = 0.5 is a horizontal asymptote because f(x) approaches 0.5 as x increases or decreases.

Example: Find the vertical and horizontal asymptotes.

(b)
$$h(x) = \frac{1 - 2x^2}{4 - x^2}$$
$$= \frac{1 - 2x^2}{(2 - x)(2 + x)}$$

is undefined for $x = \pm 2$ so x = 2 and x = -2are vertical asymptotes.

v.	 Ω
\mathcal{A}	\mathbf{O}

X	81	
100 150 200	2.0007 2.0003 2.0002	
250 300	2.0001 2.0001	
350 400	2.0001 2	
Y1目(1-2X2)/(4-X		

$$x \rightarrow -\infty$$

X	Wi	
-100 -150 -200 -250 -300 -350 -400	2.0007 2.0003 2.0001 2.0001 2.0001 2.0001	
Y18(1-2X2)/(4-X		

y = 2 is a horizontal asymptote because f(x) approaches 2 as x increases or decreases.

Oblique Asymptotes

An *oblique asymptote* is neither horizontal nor vertical but slanted.

The line y = mx + b is an oblique asymptote if the vertical distance between the h(x) and mx + b approaches 0 as x increases or decreases. $\lim_{x \to \pm \infty} [h(x) - (mx + b)] = 0$

$$h(x) = \frac{f(x)}{g(x)}$$
 will have an oblique asymptote if the degree of $f(x)$ is one more $g(x)$.

Finding the equation of an oblique asymptote.

$$h(x) = \frac{x^2 - x - 2}{x - 3}$$

$$= \frac{(x - 2)(x + 1)}{x - 3}$$

Since the degree of the numerator is one more than the denominator the function will have an oblique asymptote.

The *x*-intercepts are 2 and -1.

f(0) = 2/3, so the y-intercept is 2/3.

The line x = 3 is the vertical asymptote.

	$x \rightarrow 3^+$	$x \rightarrow 3^-$
sign of $h(x)$	$\frac{(+)(+)}{(+)} = +$	$\frac{(+)(+)}{(-)} = -$
$h(x) \rightarrow$	8	- 8

To find the equation of the oblique asymptote, divide the numerator by the denominator.

$$h(x) = \frac{x^2 - x - 2}{x - 3}$$

$$h(x) = x + 2 + \frac{4}{x - 3}$$
As $x \to \pm \infty$

$$x + 2$$

$$x \to \pm \infty$$

$$x \to \pm \infty$$

$$\frac{x + 2}{x - 3}$$

$$x^2 - x - 2$$

$$-x^2 + 3x$$

$$2x - 2$$

$$-2x + 6$$

$$x \to \pm \infty$$

$$x \to \pm \infty$$

$$x \to \pm \infty$$

$$x \to \pm \infty$$

$$x \to \pm \infty$$
So $y = x + 2$ is the oblique asymptote.

$$h(x) = \frac{x^2 - x - 2}{x - 3}$$

$$y = x + 2$$

Limits at Infinity

The graph of a function will have a horizontal asymptote if the function has a finite limit L as as $x \to \pm \infty$.

Example 3: Find the equation of the horizontal

asymptote.

 $\lim_{x\to\infty}\frac{x^2+1}{2x^2+3}$

Both the numerator and denominator become large as $x \to \infty$.

$$\lim_{x\to\infty}\frac{x^2+1}{2x^2+3}$$

both the numerator and denominator become large as $x \to \infty$.

$$\frac{\infty}{\infty}$$
 is also the *indeterminate* form.

10	0.4975369
100	0.499975
1000	0.4999998

The table indicates that the limit is 0.5 as $x \to \infty$

$$-\lim_{x\to\infty}\frac{x^2+1}{2x^2+3}$$

Algebraic Method: Divide the numerator and denominator by the highest power of x in the denominator (x^2 in this case).

$$-\lim_{x \to \infty} \frac{\frac{x}{x^2} + \frac{1}{x^2}}{\frac{2x^2}{x^2} + \frac{3}{x^2}}$$

$$= \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{2 + \frac{3}{x^2}}$$

terms $\rightarrow 0$ as $x \rightarrow \infty$.

$$=\frac{1}{2}$$

4- Evaluate:
$$\lim_{x \to \infty} \frac{1 - 2x^2}{(4x + 3)^2}$$

expand denominator

$$\lim_{x \to \infty} \frac{1 - 2x^2}{16x^2 + 24x + 9}$$

divide by x^2

$$\lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{2x}{x^2}}{\frac{16x^2}{x^2} + \frac{24x}{x^2} + \frac{9}{x^2}}$$

$$\lim_{x \to \infty} \frac{\frac{1}{x^2} - 2}{16 + \frac{24}{x} + \frac{9}{x^2}}$$

$$=\frac{0-2}{16+0+0}$$

$$=-\frac{1}{8}$$