Rubin, Jean E. (1967). Set Theory for the Mathematician. San Francisco: Holden-Day. $\verb|https://github.com/kmi-ne/Math-MyNotes||$

Chapter 1

Class algebra

1.1 Class

Definition 1.1 — x is a set/proper class

 $\mathsf{M}(x) : \leftrightarrow \exists u \ (x \in u)$ 2. $Pr(x) : \leftarrow \neg M(x)$

> - label: dfn M dfn_Pr

Axiom 1.2 — Axiom of Extensionality

$$\forall u \ (u \in x \leftrightarrow u \in y) \to x = y$$

label: axm_ext

Definition 1.3 — x is a subclass/proper subclass of y

 $x \subseteq y : \leftrightarrow \forall u \ (u \in x \to u \in y)$ 2.

 $x \subset y : \leftrightarrow x \subseteq y \neq x$

— label: dfn_sbc dfn_psbc

Proposition 1.4

1. $x \subseteq x$

2. $x \subseteq y \subseteq z \to x \subseteq z$ 3. $x \subseteq y \subseteq x \rightarrow x = y$

- label: thm_sbc_tr thm_sbc_atsy

Proof:

- 1. By $\forall u \ (u \in x \to u \in x)$ and Definition 1.3.1.
- 2. Assume (A1) $x \subseteq y \subseteq z$.

By Definition 1.3.1 and (A1), $\forall u \ (u \in x \to u \in y)$ and $\forall u \ (u \in y \to u \in z)$. Thus, $\forall u \ (u \in x \to u \in z)$. Thus, by Definition 1.3.1, $x \subseteq z$. Release (A1)

3. Assume (A1) $x \subseteq y \subseteq x$.

By Definition 1.3.1 and (A1), $\forall u \ (u \in x \to u \in y)$ and $\forall u \ (u \in y \to u \in x)$. Thus, $\forall u \ (u \in x \leftrightarrow u \in y)$. Thus, by Axiom of Extensionality, x = y. Release (A1)

Proposition 1.5

1. $x \subset y \leftrightarrow \begin{cases} x \subseteq y \\ \exists u \ (u \in y \land u \notin x) \end{cases}$ 2. 3. $x \subset y \subseteq z \to x \subset z$ 4. $x \subset y \subset z \to x \subset z$ $x \subset y \subset z \to x \subset z$ 5. 6. $x \subseteq y \leftrightarrow (x \subset y \lor x = y)$

Proof:

- 1. By x = x and Definition 1.3.2.
- 2. (\leftarrow) Assume (A1) $x \subseteq y$ and (A2) $\exists u \ (u \in y \land u \notin x)$.

By (A2), $x \neq y$. Thus, by (A1) and Definition 1.3.2, $x \subset y$. Release (A1, A2)

 (\rightarrow) Assume (A1) $x \subset y$.

By (A1) and Definition 1.3.2, $x \subseteq y$ and $x \neq y$.

Thus, by Proposition 1.4.2, $\neg(y \subseteq x)$. Thus, by Definition 1.3.1, $\exists u \ (u \in y \land u \notin x)$. Release (A1)

- 3. Assume (A1) $x \subset y \subseteq z$.
 - (1) By (A1) and Definition 1.3.2, $x \subseteq y \subseteq z$. Thus, by Proposition 1.4.2, $x \subseteq z$.
 - (2) By (A1) and Proposition 1.5.2, $\exists u \ (u \in y \land u \notin x)$. Take such u.

By (A1) and Definition 1.3.1, $u \in y \to u \in z$. Thus, $u \in z \land u \notin x$. Thus, $\exists u \ (u \in z \land u \notin x)$.

Thus, by Proposition 1.5.2, $x \subset z$. Release (A1)

- 4. Assume (A1) $x \subseteq y \subset z$.
 - (1) By (A1) and Definition 1.3.2, $x \subseteq y \subseteq z$. Thus, by Proposition 1.4.2, $x \subseteq z$.
 - (2) By (A1) and Proposition 1.5.2, $\exists u \ (u \in z \land u \notin y)$. Take such u.

By (A1) and Definition 1.3.1, $u \in x \to u \in y$. Thus, $u \in z \land u \notin x$. Thus, $\exists u \ (u \in z \land u \notin x)$.

Thus, by Proposition 1.5.2, $x \subset z$. Release (A1)

5. By Definition 1.3.2, $x \subset y \subset z \to x \subseteq y \subset z$. Thus, by Proposition 1.5.3, $x \subset z$.

Axiom 1.6 — Axiom of Comprehension

(x is not free in NBG-formula ϕ)

$$\exists x \ \forall u \ (u \in x \leftrightarrow \phi \land \mathsf{M}(u))$$

— label: axm_comp

Theorem 1.7

 $(x \text{ is not free in NBG-formula } \phi)$

$$\exists ! x \ \forall u \ (u \in x \leftrightarrow \phi \land \mathsf{M}(u))$$

Proof:

Existence By Axiom of Comprehension.

Uniqueness Assume (A1) $\forall u \ (u \in x_1 \leftrightarrow \phi \land \mathsf{M}(u)) \text{ and } \forall u \ (u \in x_2 \leftrightarrow \phi \land \mathsf{M}(u)).$

By (A1), $\forall u \ (u \in x_1 \leftrightarrow u \in x_2)$. Thus, by Axiom of Extensionality, $x_1 = x_2$. Release (A1)

本来はここに $\{u \mid \phi\}$ の定義などが入るが省略.

$$v \in \{u \mid \phi\} \leftrightarrow \phi[v/u] \land \mathsf{M}(v)$$

$$(\phi \to \psi) \to \{u \mid \phi\} \subset \{u \mid \psi\}$$

$$(\phi \leftrightarrow \psi) \rightarrow \{u \mid \phi\} = \{u \mid \psi\}$$

$$\{u \mid u \in \{v \mid \phi\}\} = \{u \mid \phi[u/v]\}\$$

$$\{u \mid u \notin \{v \mid \phi\}\} = \{u \mid \neg \phi[u/v]\}\$$

$$x = \{u \mid u \in x\}$$

Definition 1.8

3.

1. $\emptyset \coloneqq \{u \mid u \neq u\}$

 $\mathbf{U} := \{ u \mid u = u \}$

 $\mathbf{R}\mathbf{u} \coloneqq \{u \mid u \notin u\}$

Proposition 1.9

1.	$u \notin \varnothing$
2.	$M(u) o u \in \mathbf{U}$
3.	$\varnothing\subseteq x$
4.	$x \subseteq \mathbf{U}$
5.	$Pr(\mathbf{Ru})$
	— label: thm_emp_nin
	thm_M_in_univ

Proof:

- 1. By $u \in \emptyset \leftrightarrow u \neq u \land \mathsf{M}(u)$.
- 2. By $u \in \mathbf{U} \leftrightarrow u = u \wedge \mathsf{M}(u)$.
- 3. By Proposition 1.9.1, $\forall u \ (u \in \emptyset \to u \in x)$. Thus, by Definition 1.3.1, $\emptyset \subseteq x$.
- 4. By Definition 1.1.1, $u \in x \to \mathsf{M}(u)$. Thus, by Proposition 1.9.2, $u \in x \to u \in \mathbf{U}$. Thus, $\forall u \ (u \in x \to u \in \mathbf{U})$. Thus, by Definition 1.3.1, $x \subseteq \mathbf{U}$.
- 5. By $\mathbf{Ru} \in \mathbf{Ru} \leftrightarrow \mathbf{Ru} \notin \mathbf{Ru} \wedge \mathsf{M}(\mathbf{Ru})$, $\mathbf{Ru} \notin \mathbf{Ru} \leftrightarrow \neg (\mathbf{Ru} \notin \mathbf{Ru} \wedge \mathsf{M}(\mathbf{Ru}))$. Thus, $\neg \mathsf{M}(\mathbf{Ru})$. Thus, by Definition 1.1.2, $\mathsf{Pr}(\mathbf{Ru})$.

1.2 Class algebra

Definition 1.10

TITITUTUTE TVIO		
1.	$x \cup y \coloneqq \{u \mid u \in x \lor u \in y\}$	
2.	$x \cap y \coloneqq \{u \mid u \in x \land u \in y\}$	
3.	$x \setminus y \coloneqq \{u \mid u \in x \land u \notin y\}$	
4.	$x^\complement \coloneqq \{u \mid u \notin x\}$	
		— label: dfn_cup
		dfn_cap
		dfn_cdif
		dfn_cmpl
4		

Proposition 1.11

 oposition rill		
1.	$x \cup y = y \cup x$	
2.	$x \cap y = y \cap x$	
3.	$(x \cup y) \cup z = x \cup (y \cup z)$	
4.	$(x\cap y)\cap z=x\cap (y\cap z)$	
5.	$x\cap (y\cup z)=(x\cap y)\cup (x\cap z)$	
6.	$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$	
7.	$x \cup x = x$	
8.	$x \cap x = x$	
9.	$x \subseteq x \cup y$	
10.	$x \cap y \subseteq x$	
11.	$x \subseteq y \leftrightarrow x \cup y = y$	
12.	$x \subseteq y \leftrightarrow x \cap y = x$	
		— label: thm_cup_sbc
		thm_cap_sbc

Proof:

1.
$$x \cup y = \{u \mid u \in x \lor u \in y\}$$

$$= \{u \mid u \in y \lor u \in x\}$$

$$= y \cup x$$

```
2.
                                                                   x \cap y = \{u \mid u \in x \land u \in y\}
                                                                            = \{ u \mid u \in y \land u \in x \}
                                                                            = u \cap x
 3.
                                                         (x \cup y) \cup z = \{u \mid u \in x \cup y \lor u \in z\}
                                                                          = \{ u \mid u \in x \lor u \in y \lor u \in z \}
                                                                          = \{u \mid u \in x \lor u \in y \cup z\}
                                                         (x \cap y) \cap z = \{u \mid u \in x \cap y \land u \in z\}
 4.
                                                                          = \{ u \mid u \in x \land u \in y \land u \in z \}
                                                                          = \{ u \mid u \in x \land u \in y \cap z \}
 5.
                                                x \cap (y \cup z) = \{u \mid u \in x \land u \in y \cup z\}
                                                                 = \{ u \mid u \in x \land (u \in y \lor u \in z) \}
                                                                 = \{ u \mid (u \in x \land u \in y) \lor (u \in x \land u \in z) \}
                                                                 = \{ u \mid u \in x \cap y \lor u \in x \cap z \}
                                                                 = (x \cap y) \cup (x \cap z)
 6.
                                                x \cup (y \cap z) = \{u \mid u \in x \lor u \in y \cap z\}
                                                                 = \{ u \mid u \in x \lor (u \in y \land u \in z) \}
                                                                 = \{ u \mid (u \in x \lor u \in y) \land (u \in x \lor u \in z) \}
                                                                 = \{ u \mid u \in x \cup y \land u \in x \cup z \}
                                                                 = (x \cup y) \cap (x \cup z)
 7.
                                                                   x \cup x = \{u \mid u \in x \lor u \in x\}
                                                                            = \{u \mid u \in x\}
                                                                            = x
 8.
                                                                   x \cap x = \{u \mid u \in x \land u \in x\}
                                                                            = \{u \mid u \in x\}
 9.
                                                                      x = \{u \mid u \in x\}
                                                                         \subseteq \{u \mid u \in x \lor u \in y\}
                                                                         = x \cup y
10.
                                                                   x \cap y = \{u \mid u \in x \land u \in y\}
                                                                            \subseteq \{u \mid u \in x\}
                                                                            = x
11. (\leftarrow) Assume (A1) x \cup y = y.
                                                                 x \subseteq x \cup y by Proposition 1.11.9
                                                                     = y by (A1)
             Release (A1)
      (\rightarrow) Assume (A1) x \subseteq y.
            By (A1), u \in x \to u \in y. Thus,
                                                                      x \cup y = \{u \mid u \in x \lor u \in y\}
                                                                               = \{u \mid u \in y\}
                                                                               = y
             Release ((A1))
12. (\leftarrow) Assume (A1) x \cap y = x.
                                                                    x = x \cap y by (A1)
                                                                       \subseteq y by Proposition 1.11.10
             Release (A1)
```

() Assume (A1)
$$x\subseteq y$$
.
By (A1), $u\in x\to u\in y$. Thus,
$$x\cap y=\{u\mid u\in x\wedge u\in y\}$$

$$=\{u\mid u\in x\}$$

$$=x$$

Release (A1)

Proposition 1.12

1.	$x \cup \varnothing = x$
2.	$x\cap\varnothing=\varnothing$
3.	$x \cup \mathbf{U} = \mathbf{U}$
4.	$x \cap \mathbf{U} = x$

4.	$x \cap \mathbf{U} = x$
Proof:	
1.	$x \cup \varnothing = \{u \mid u \in x \lor u \in \varnothing\}$
	$=\{u\mid u\in x\vee u\neq u\}$
	$= \{u \mid u \in x\}$
	=x
2.	$x \cap \emptyset = \{ u \mid u \in x \land u \in \emptyset \}$
	$= \{ u \mid u \in x \land u \neq u \}$
	$=\{u\mid u\neq u\}$
	$=\varnothing$
3.	$x \cup \mathbf{U} = \{ u \mid u \in x \lor u \in \mathbf{U} \}$
	$= \{u \mid u \in x \lor u = u\}$
	$= \{u \mid u = u\}$
	$=\mathbf{U}$
4.	$x \cap \mathbf{U} = \{ u \mid u \in x \land u \in \mathbf{U} \}$
	$= \{u \mid u \in x \land u = u\}$
	$= \{u \mid u \in x\}$
	=x

Proposition 1.13

1.	$(x^\complement)^\complement=x$	
2.	$x \cup x^{\complement} = \mathbf{U}$	
3.	$x \cap x^{\mathbb{C}} = \emptyset$	
4.	$\mathbf{U}\setminus x=x^\complement$	
5.	$x \setminus y = x \cap y^\complement$	
6.	$x\subseteq y \leftrightarrow y^{\complement}\subseteq x^{\complement}$	
7.	$x \subset y \leftrightarrow y^{\mathbb{C}} \subset x^{\mathbb{C}}$	

Proof:

1.
$$(x^{\mathbb{C}})^{\mathbb{C}} = \{u \mid u \notin x^{\mathbb{C}}\}$$

$$= \{u \mid \neg (u \notin x)\}$$

$$= \{u \mid u \in x\}$$

$$= x$$

2.
$$x \cup x^{\mathbb{C}} = \{u \mid u \in x \lor u \in x^{\mathbb{C}}\}$$

$$= \{u \mid u \in x \lor u \notin x\}$$

$$= \{u \mid u = u\}$$

$$= \mathbf{U}$$
3.
$$x \cap x^{\mathbb{C}} = \{u \mid u \in x \land u \in x^{\mathbb{C}}\}$$

$$= \{u \mid u \in x \land u \notin x\}$$

$$= \{u \mid u \neq u\}$$

$$= \varnothing$$
4.
$$\mathbf{U} \setminus x = \{u \mid u \in \mathbf{U} \land u \notin x\}$$

$$= \{u \mid x = x \land u \notin x\}$$

$$= \{u \mid u \notin x\}$$

$$= x^{\mathbb{C}}$$
5.
$$x \setminus y = \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

$$= \{u \mid u \in x \land u \notin y\}$$

Proposition 1.14

1.	$(x \cup y)^{\complement} = x^{\complement} \cap y^{\complement}$
2.	$(x\cap y)^\complement=x^\complement\cup y^\complement$