Grafos

Aula 19: Problema do Isomorfismo e Representação de Grafos por Matrizes

Conteúdo:

Grafos Isomorfos

Representação de Grafos por Matrizes

- Matriz de Adjacência
- Matriz de Incidência

cederj

Grafos 19.2

Grafos Isomorfos:

Vimos que é possível que duas representações geométricas de um grafo sejam muito diferentes, mas representem o mesmo grafo.

Exemplo 1: (foi o nosso primeiro exemplo de grafo - aula 17)

ceder

$$V(G) = \{ a, b, c, d, e \}$$

 $E(G) = \{ (a, b), (b, c), (a, c), (a, e), (c, d), (e, d) \}$

Exemplo 2:

O grafo completo com 4 vértices, K_4 , pode ser representado geometricamente de várias formas:

Por outro lado, é possível que duas representações geométricas pareçam iguais, mas representem grafos diferentes.

Exemplo 3:

$$V(H_1) = V(H_2) = \{ 1, 2, a, b \}$$

Mas,

$$E(H_1) = \{(1, a), (1, b), (2, a), (2, b)\} \neq E(H_2) = \{(1, a), (1, 2), (b, a), (b, 2)\}$$

Mas, se em H_2 , renomeássemos os vértices de maneira que obtivéssemos H_1 (mudando b com 2) voltaríamos a ter o mesmo grafo.

Problema do Isomorfismo:

Dadas duas representações geométricas, elas correspondem a um mesmo grafo?

Em outras palavras, é possível fazer coincidir, respectivamente, os pontos das duas representações geométricas, de modo a preservar adjacências (ou seja, de modo que as arestas coincidam)?

Formalizando

Dados dois grafos G_1 e G_2 , dizemos que G_1 e G_2 são isomorfos e denotamos $G_1 \approx G_2$ quando existir uma <u>função bijetora</u> (injetora e sobrejetora)

$$f: V(G_1) \rightarrow V(G_2)$$

tal que

$$(\mathbf{v}_1, \mathbf{v}_2) \in \mathbf{E}(\mathbf{G}_1) \iff (f(\mathbf{v}_1), f(\mathbf{v}_2)) \in \mathbf{E}(\mathbf{G}_2)$$

Note que essa função preserva as adjacências.

Observações:

Como f é injetora e sobrejetora

$$\Rightarrow |V(G_1)| = |V(G_2)|$$

■ E como para cada par $(v, w) \in |E(G_1)|$ temos um par correspondente $(f(v), f(w)) \in |E(G_2)|$

$$\Rightarrow |\mathbf{E}(\mathbf{G}_1)| = |\mathbf{E}(\mathbf{G}_2)|$$

Exemplo 4:

Sejam G_1 e G_2 os grafos abaixo (dados pela sua representação geométrica)

 \mathbf{G}_1 $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{8}$

 \mathbf{G}_2 \mathbf{c} \mathbf{d} \mathbf{b}

G₁ e G₂ são isomorfos?

Observe que: $|V(G_1)| = |V(G_2)| = 8$ e $|E(G_1)| = |E(G_2)| = 12$ G_1 e G_2 são 3 - regulares.

Grafos: Grafos isomorfos

19.9

Seja $f: V(G_1) \rightarrow V(G_2)$ dada pela seguinte tabela:

V	$f(\mathbf{v})$	Precisamos verificar se
1	a	$(v, w) \in E(G_1) \iff (f(v), f(w)) \in E(G_2)$
2	c	para todo par $(v, w) \in E(G_1)$
3	d	<u>-</u>
4	b	$(1, 2) \in E(G_1) \iff (f(1), f(2)) = (a, c) \in E(G_2)$
5	g	$(1, 4) \in E(G_1) \iff (f(1), f(4)) = (a, b) \in E(G_2)$
6	e	$(1, 5) \in E(G_1) \iff (f(1), f(5)) = (a, g) \in E(G_2)$
7	\mathbf{f}	$(1,0) \in \mathbf{E}(\mathbf{G}_1) \iff (f(1),f(0)) = (a,g) \in \mathbf{E}(\mathbf{G}_2)$
8	h	:

G₁ e G₂ são isomorfos.

O problema de determinar se dois grafos com o mesmo número de vértices são isomorfos é um problema difícil.

Procedimento natural: (força bruta)

Examinar cada uma das possíveis n! permutações de vértices

(ou seja, examinar cada função possível)

Exemplo 5:

Sejam G_1 e G_2 os grafos abaixo.

G₁ e G₂ são isomorfos?

(Antes de tentarmos provar que são isomorfos vamos verificar alguns parâmetros)

$$|V(G_1)| = |V(G_2)| = 8$$
 $|E(G_1)| = |E(G_2)| = 10$

Sequência de vértices de G_1 : (2, 2, 2, 2, 3, 3, 3, 3) Sequência de vértices de G_2 : (2, 2, 2, 2, 3, 3, 3, 3)

Grafos: Grafos isomorfos

19.12

Em G₁, temos o vértice 1 de grau 3 adjacente a dois vértices de grau 2 e um de grau 3.

Em G₂ nenhum dos quatro vértices de grau 3 (a, b, g, h) tem adjacência semelhante.

a é adjacente a 2 vértices de grau 3 e 1 de grau 2 b é adjacente a 2 vértices de grau 3 e 1 de grau 2 g é adjacente a 2 vértices de grau 3 e 1 de grau 2 h é adjacente a 2 vértices de grau 3 e 1 de grau 2

Logo G₁ e G₂ não são isomorfos.

Grafos 19.13

Representação de Grafos por Matrizes:

- Vimos duas maneiras de representar um grafo G
 - Dando o seu conjunto de vértices: V(G)
 e o seu conjunto de arestas: E(G)
 - 2. Dando a sua representação geométrica no plano, ou seja, um diagrama consistindo de pontos (associados aos vértices) e linhas (correspondentes as arestas) que ligam pontos cujos vértices correspondentes são adjacentes.

Vamos agora examinar a representação de grafos por matrizes.

Essas representações são úteis em diversas aplicações práticas e especialmente adequadas ao uso em computador.

As matrizes são estruturas que podem ser manipuladas sem dificuldade em um computador.

Grafos 19.15

Matriz de Adjacência:

$$\mathbf{a}_{ij} = \begin{cases} 1 & \text{se } (v_i, v_j) \in E \\ 0 & \text{caso contrário} \end{cases}$$

Ou seja, $\mathbf{a}_{ij} = 1$ quando os vértices \mathbf{v}_i e \mathbf{v}_j são adjacentes e $\mathbf{a}_{ij} = 0$, caso contrário.

Consideremos o seguinte exemplo:

Exemplo 6:

G =
$$(V, E)$$
 V = $\{v_1, v_2, v_3, v_4, v_5\}$, $|V| = 5$, $|E| = 6$,

Propriedades

- → A diagonal principal é nula
- A matriz é simétrica (em relação a diagonal principal)
- → Número de 1's = 2m (pois cada aresta (v_i, v_j) dá origem a dois 1's em A, relativos a a_{ii} e a_{ii})
- Uma matriz de adjacência caracteriza univocamente um grafo.

Mas a um mesmo grafo G podem corresponder diversas matrizes diferentes (basta permutar a ordem dos vértices)

Exemplo 7:

Se no exemplo 6, permutássemos as posições dos vértices $(v_1, v_2, v_3, v_4, v_5)$ por $(v_3, v_2, v_5, v_1, v_4)$ a matriz de adjacência seria:

Ambas as matrizes representam o mesmo grafo.

Grafos 19.19

Matriz de Incidência:

$$b_{ij} = \begin{cases} 1 & \text{se o v\'ertice } v_i \text{ \'e incidente a aresta } e_j \\ 0 & \text{caso contr\'ario} \end{cases}$$

Ou seja, $b_{ij} = 1$ quando o vértice v_i for um extremo da aresta e_i e $b_{ij} = 0$, caso contrário.

Exemplo 8: (exemplo 6, rotulando as arestas)

- Número de 1's = 2m
 Cada coluna tem exatamente dois 1's (porque corresponde a uma aresta).
- Uma matriz de incidência caracteriza univocamente um grafo.

Mas a um mesmo grafo podem corresponder matrizes de incidência diferentes (basta permutar a ordem dos vértices e a ordem das arestas)

Exemplo 9:

Se no exemplo 8 consideramos as permutações:

Ambas as matrizes representam o mesmo grafo.

O problema do isomorfismo também pode ser colocado da seguinte forma:

Dadas duas matrizes de adjacência $n \times n$ (ou duas matrizes de incidência $n \times m$) elas representam o mesmo grafo?

Grafos

19.24

Resumo:

Dois grafos G_1 e G_2 são isomorfos se existe uma função $f: V(G_1) \to V(G_2)$ que preserva as adjacências, isto é, $(v, w) \in E(G_1) \Leftrightarrow (f(v), f(w)) \in E(G_2)$

O problema do isomorfismo, isto é, o de determinar se dois grafos são isomorfos é um problema difícil.

cederj

Grafos: Resumo

Seja
$$G = (V, E)$$
 um grafo, $|V| = n$ $|E| = m$

■ Um grafo G pode ser representado univocamente por sua matriz de adjacência $A = (a_{ij})$, $n \times n$,

$$\mathbf{a}_{ij} = \begin{cases} 1 \text{ se } (v_i, v_j) \in E(G) \\ 0 \text{ caso contrário} \end{cases}$$

■ Um grafo G pode ser representado univocamente por sua matriz de incidência $B = (b_{ii})$, $n \times m$,

$$b_{ij} = \begin{cases} 1 & \text{se } v_i \text{ \'e incidente a aresta } e_j \\ 0 & \text{caso contr\'ario} \end{cases}$$

cederj