Lenguajes Formales, Autómatas y Computabilidad Teoría de Lenguajes

Autómatas finitos no determinísticos con transiciones instantáneas

Primer Cuatrimestre 2025

Bibliografía

Capítulo 3, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- ▶ Autómatas finitos no determinísticos con transiciones instantáneas.
- ▶ Teorema: Equivalencia entre AFND- λ y AFND.

Definición (Autómata Finito No Determinístico con transiciones λ)

Un AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

Q es conjunto de estados

 Σ es el alfabeto

 q_0 es estado inicial

 \overline{F} es conjunto de estados finales

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q).$

Debemos definir formalmente el conjunto aceptado por AFND- λ .

Demostraremos que para todo AFND- λ hay un AFND que reconoce el mismo lenguaje. Vamos a necesitar herramientas.

Relaciones

Dados los conjuntos A y B, se llama relación de A en B a cualquier subconjunto de $A\times B$.

Una relación $R \subseteq A \times A$ es reflexiva cuando

$$\forall a \in A, (a, a) \in R.$$

Ejemplo: " \leq "sobre \mathbb{N} .

Una relación $R \subseteq A \times A$ es simétrica cuando

$$\forall a,b \in A, \Big(\mathrm{Si} \ (a,b) \in R \ \mathrm{entonces} \ (b,a) \in R \Big).$$

Ejemplo: " \neq "sobre \mathbb{N} .

Una relación $R \subseteq A \times A$ es transitiva cuando

$$\forall a,b,c \in A, \Big(\mathsf{Si} \ (a,b) \in R \ \land \ (b,c) \in R \ \text{ entonces } \ (a,c) \in R \Big).$$

Ejemplo: "a paralela a b", en el conjunto de rectas del plano.

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Composición de relaciones

Sean $A,\ B$ y C tres conjuntos, y sean R y G dos relaciones tales que $R\subseteq A\times B$ y $G\subseteq B\times C.$

La relación de composición: $G \circ R \subseteq A \times C$ se define como

$$G\circ R=\left\{ \left(a,c\right),a\in A,c\in C:\exists b\in B\text{ tal que }\left(a,b\right)\in R\wedge\left(b,c\right)\in G\right\} .$$

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \text{ si y solo si } a = b.$$

La relación de identidad es el elemento neutro de la composición. Dada una relación $R\subseteq A\times B$ es cierto que

$$id_B \circ R = id_A \circ R$$

Relación potencia

Dada una relación $R\subseteq A\times A$, y dado n se define la potencia $R^n\subseteq A\times A$ como

$$R^n = \left\{ \begin{array}{ll} id_A & \text{si } n = 0 \\ R \circ R^{n-1} & \text{si no} \end{array} \right.$$

 $con R = R^1.$

Notar que \mathbb{R}^n es un conjunto de pares, cualquiera sea el valor de n.

Clausura transitiva

Dada una relación $R \subseteq A \times A$ se define clausura transitiva R^+ ,

$$R^+ = \bigcup_{k=1}^{\infty} R^k.$$

Proposición

- 1. $R \subseteq R^+$
- 2. R^+ es transitiva
- 3. Si $S \subseteq A \times A$, $R \subseteq S$ y S es transitiva entonces $R^+ \subseteq S$.

Entonces, R^+ es la relación transitiva más pequeña que contiene a R.

Demostración de la proposición

- 1. Inmediato de la definición de R^+ .
- 2. Queremos ver que si $(a,b) \in R^+$ y $(b,c) \in R^+$ enonces $(a,c) \in R^+$. Si $(a,b) \in R^+$, entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $(d_1,d_2) \in R, (d_2,d_3) \in R,\ldots (d_{n-1},d_n) \in R$, donde $d_1=a$ y $d_n=b$. Por lo tanto, $(a,b) \in R^n$ Análogamente, como $(b,c) \in R^+$ entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $(e_1,e_2) \in R, (e_2,e_3) \in R,\ldots (e_{m-1},e_m) \in R$, donde $e_1=b$ y $e_m=c$. Por lo tanto $(b,v) \in R^m$. Concluimos que $(a,c) \in R^{n+m}$ y esto implica $(a,c) \in R^+$.
- 2. Demostremos que si $R\subseteq S$ y S es transitiva entonces $R^+\subseteq S$. Supongamos $(a,b)\in R^+$. Entonces, existe una secuencia de elementos c_1,\ldots,c_n tal que $(c_1,c_2)\in R,(c_2,c_3)\in R,\ldots(c_{n-1},c_n)\in R$, donde donde $c_1=a$ y $c_n=b$. Como $R\subseteq S$ tenemos que $(c_1,c_2)\in S,(c_2,c_3)\in S,\ldots(c_{n-1},c_n)\in S$, y como S es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que $(c_1,c_n)\in S$, o sea $(a,b)\in S$. \square

Clausura transitivo-reflexiva : R^*

$$R^* = \bigcup_{i=0}^{\infty} R^i = R^+ \cup id$$

Clausura λ

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} .

Definición (clausura λ de un estado)

Dado un AFND- λ $(Q, \Sigma, \delta, q_o, F)$. Sea $R \subseteq Q \times Q$ tal que $R = \{(q, p) : p \in \delta(q, \lambda)\}$. Definimos $Cl_{\lambda} : Q \to \mathcal{P}(Q)$,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

Notar que $q \in Cl_{\lambda}(q)$.

Definición (clausura λ de un conjunto de estados P)

$$Cl_{\lambda}: \mathcal{P}(Q) \to \mathcal{P}(Q),$$

$$Cl_{\lambda}(P) = \bigcup_{q \in P} Cl_{\lambda}(q).$$

Definición (función transición-sin- $\lambda \ \overline{\delta}$)

Sea AFND- λ $M=(Q,\Sigma,\delta,q_0,F)$ con $\delta:Q\times(\Sigma\cup\{\lambda\})\to\mathcal{P}(Q).$ Definimos

$$\overline{\delta}: Q \times \Sigma \to \mathcal{P}\left(Q\right), \\ \overline{\delta}\left(q, a\right) = Cl_{\lambda}\Big(\bigcup_{p \in Cl_{\lambda}\left(q\right)} \delta(p, a)\Big)$$

$$\widehat{\overline{\delta}}: Q \times \Sigma^* \to \mathcal{P}(Q), \quad x \in \Sigma^*, a \in \Sigma$$

$$\widehat{\overline{\delta}}(q, \lambda) = Cl_{\lambda}(q), \quad \widehat{\overline{\delta}}(q, xa) = \left(\bigcup_{\substack{q \in \widehat{\overline{\delta}}(q, a)}} \overline{\delta}(p, a)\right).$$

Atención!!

Atencion:! Aqui se usa $\widehat{\overline{\delta}}$ para definir aceptación en AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$.

Definición (lenguaje aceptado por un AFND- λ)

Sea AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. El lenguaje aceptado por M, $\mathcal{L}(M)$, es el conjunto de cadenas aceptadas por M,

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\overline{\delta}}\left(q_0, x\right) \cap F \neq \phi\right\}.$$

Teorema (equivalencia entre AFND y AFND- λ)

Dado un AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ hay un AFND $M'=\langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que $\mathcal{L}(M)=\mathcal{L}(M')$.

Demostración del teorema

Sea AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde $\delta : Q \times \Sigma \cup \{\lambda\} \to \mathcal{P}(Q)$. Sea $\overline{\delta} : Q \times \Sigma \to \mathcal{P}(Q)$ la ya definida función de transición-sin λ ,

$$\overline{\delta}(q, a) = Cl_{\lambda} \left(\bigcup_{p \in Cl_{\lambda}(q)} \delta(p, a) \right)$$

Definimos AFND $M'=\langle Q,\Sigma,\delta',q_0,F'\rangle$, donde $\delta:Q\times\Sigma\to\mathcal{P}(Q)$, para todo $q\in Q,\ a\in\Sigma$,

$$\delta'(q, a) = \overline{\delta}(q, a)$$

Es decir, δ' es idéntica a $\overline{\delta}$ para todos los $q \in Q$ y $a \in \Sigma$.

Sin embargo, $\widehat{\overline{\delta}}(q_0,\lambda)=Cl_\lambda(q_0)$ y $\widehat{\delta'}(q_0,\lambda)=\{q_0\}$, entonces pueden diferir.

Definimos

$$F' = \begin{cases} F \cup \{q_0\} & \text{si } Cl_{\lambda}\left(q_0\right) \cap F \neq \emptyset \\ F & , \text{caso contrario} \end{cases}$$

Observar que $F' \supseteq F$.

Demostración del teorema

$$\begin{split} & \text{Consideremos } \widehat{\overline{\delta}}: Q \times \Sigma^* \to \mathcal{P}(Q), \\ & \widehat{\overline{\delta}}(q,\lambda) = Cl_{\lambda}(q) \\ & \widehat{\overline{\delta}}(q,xa) = \bigcup_{p \in \widehat{\overline{\delta}}(q,x)} \overline{\delta}(p,a), \quad x \in \Sigma^*, a \in \Sigma \\ & \text{Por la definicion clásica en AFD, } \widehat{\delta'}: Q \times \Sigma^* \to \mathcal{P}(Q), \\ & \widehat{\delta'}(q,\lambda) = \{q_0\} \\ & \widehat{\delta'}(q,xa) = \bigcup_{p \in \widehat{\delta}(q,x)} \delta'(p,a), \quad x \in \Sigma^*, a \in \Sigma \end{split}$$

Debemos ver para toda $x \in \Sigma^*$, $x \in \mathcal{L}(M)$ si y solo si $x \in \mathcal{L}(M')$.

Caso $x = \lambda$.

Supongamos $\lambda \in \mathcal{L}(M)$. Entonces, $\widehat{\overline{\delta}}(q_0,\lambda) \cap F \neq \emptyset$.

Como $\overline{\delta}(q_0,\lambda) = Cl_{\lambda}(q_0)$ tenemos $Cl_{\lambda}(q_0) \cap F \neq \emptyset$.

Luego $F'=F\cup\{q_0\}$ y por lo tanto $q_0\in F'$, entonces $\lambda\in\mathcal{L}(M').$

Supongamos $\lambda \in \mathcal{L}(M')$. Entonces, $\widehat{\delta'}(q_0,\lambda) \cap F' \neq \emptyset$.

Dado que $\hat{\delta'}(q_0, \lambda) = \{q_0\}$. Luego $q_0 \in F'$.

Necesariamente $Cl_{\lambda}(q_0) \cap F \neq \emptyset$ (asumir $Cl_{\lambda}(q_0) \cap F = \emptyset$ implica $q_0 \notin F$, F = F' y $q_0 \notin F'$, lo que contradice $q_0 \in F'$).

Dado que $\widehat{\overline{\delta}}(q_0,\lambda) = Cl_\lambda(q_0)$, tenemos $\widehat{\overline{\delta}}(q_0,\lambda) \cap F \neq \emptyset$, y por la definición de palabra aceptada en AFND- λ , $\lambda \in \mathcal{L}(M)$.

Caso $x \neq \lambda$. Debemos ver que $x \in \mathcal{L}\left(M\right)$ si y solo si $x \in \mathcal{L}\left(M'\right)$. Dado que

Demostremos primero que $\widehat{\delta'}(q_0,x) = \widehat{\overline{\delta}}(q_0,x)$, para todo $x \in \Sigma^+$. Lo hacemos por inducción en la estructura de la cadena.

Caso base $x=a,\,a\in\Sigma$, por lo tanto |x|=1. Por definición de $M',\,\delta'\left(q,a\right)=\overline{\delta}\left(q,a\right).$ Y tenemos que $\widehat{\delta'}\left(q,a\right)=\delta'\left(q,a\right),\,\widehat{\overline{\delta}}\left(q,a\right)=\overline{\delta}\left(q,a\right).$ Por lo tanto, $\widehat{\delta'}\left(q,a\right)=\widehat{\overline{\delta}}\left(q,a\right).$

Caso inductivo x=wa, $w\in \Sigma^*$ con |w|=n, $a\in \Sigma$, y asumamos que la propiedad vale para w. Entonces,

$$\widehat{\delta'}\left(q_0,wa\right) = \bigcup_{p \in \widehat{\delta'}\left(q_0,w\right)} \delta'(p,a) = \bigcup_{p \in \widehat{\overline{\delta}}\left(q_0,w\right)} \overline{\delta}(p,a) = \widehat{\overline{\delta}}(q_0,wa)$$

ya que , por HI, las expresiones debajo de las uniones son iguales. por la definicion de δ' , $\delta'(p,a)=\overline{\delta}(p,a)$.

Seguimos con el caso $|x| \ge 1$.

Supongamos $x \in \mathcal{L}(M)$. Entonces, $\widehat{\delta}(q_0, x) \cap F \neq \emptyset$,

Por lo tanto, usando $\widehat{\delta'}(q,x) = \widehat{\overline{\delta}}(q,x)$ y $F \subseteq F'$, $\widehat{\delta'}(q_0,x) \cap F' \neq \varnothing$. Concluimos $x \in \mathcal{L}(M')$.

Supongamos $x \in \mathcal{L}(M')$. Entonces, $\widehat{\delta'}(q_0, x) \cap F' \neq \emptyset$.

Usando $\widehat{\delta'}(q,x)=\widehat{\overline{\delta}}(q,x)$ y (F'=F, ó, $F'=F\cup\{q_0\}$), tenemos $\left(\widehat{\overline{\delta}}\left(q_0,x\right)\cap F\neq\varnothing\right)$ ó $\left(\widehat{\overline{\delta}}\left(q_0,x\right)\cap\{q_0\}\neq\varnothing\wedge Cl_\lambda\left(q_0\right)\cap F\neq\varnothing\right)$

La parte izquierda nos dice que $x \in \mathcal{L}(M)$.

La parte derecha nos dice dos cosas. La primera es que

 $q_0 \in \widehat{\overline{\delta}}\left(q_0,x\right)$. Entonces por la definición de $\overline{\delta}$, $Cl_{\lambda}\left(q_0\right) \subseteq \widehat{\overline{\delta}}\left(q_0,x\right)$, La segunda es que $Cl_{\lambda}\left(q_0\right) \cap F \neq \varnothing$

Juntando la primera y la segunda tenemos $\widehat{\overline{\delta}}(q_0,x) \cap F \neq \emptyset$, lo que implica que $x \in \mathcal{L}(M)$.

Juntando izquierda y derecha obtenemos $x\in\mathcal{L}\left(M\right)$ ó $x\in\mathcal{L}\left(M\right)$

Concluimos,

$$x \in \mathcal{L}(M)$$
.

Hemos demostrado que para todo AFND- λ M existe AFND M' tal que $\mathcal{L}(M) = \mathcal{L}(M')$, y

Y la clase pasada demostramos que para todo AFND N existe AFD N' tal que $\mathcal{L}(N)=\mathcal{L}(N')$. Concluimos

Teorema

Para todo AFND- λ M existe AFD M' tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Ejercicios

- 1. Demostrar que ara cada AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ existe otro AFND - λ $M'=\left\langle Q',\Sigma,\delta',q_0',F'\right\rangle$ tal que $\mathcal{L}(M)=\mathcal{L}(M')$ y F' tiene un único estado final.
- 2. Indicar Verdadero o Falso y justificar

Sea Σ un alfabeto con al menos dos símbolos, y sea a un símbolo de Σ . Sea AFND $M=\langle Q, \Sigma, \delta, q_0, F \rangle$. Considerar el AFND- λ $M'=\langle Q, \Sigma \setminus \{a\}, \delta', q_0, F \rangle$ que se obtiene de reemplazar todas las

transiciones con el símbolo a por transiciones λ . Es decir,

- para todo $q \in Q$, para todo $x \in \Sigma$ tal que $x \neq a$, $\delta'(q, x) = \delta(q, x)$,
- para todo $q \in Q$, $\delta'(q, \lambda) = \delta(q, a)$, ¿Cual es el lenguaje aceptado por M'?
- 3. ¿Se puede acotar superiormente cuantas transiciones requiere la aceptación de una palabra en un AFND-λ?
- 4. ¿ Puede haber ciclos de transiciones- λ ?