Problem 1 (25 points)

A food-services company with a 480 V, three-phase service entrance has the following set of loads:

• A 75,000 BTU/hr food dehydrator

• A conveyor belt system consisting of 10 continuous-duty induction motors: each 5 HP, 81% efficient, PF = 0.73 lagging

• A 7 ton walk-in refrigeration unit: 2 COP of 1.2 and 0.78 lagging power factor

• A 20 kVA T8 fluorescent lighting system with electronic ballasting (PF = 0.93 leading)

Consider the case when all systems are fully loaded. Calculate the reactive power required to compensate this customer's load to a 0.92 lagging power factor.

$$|52| = \frac{4.60 \text{kW}}{0.73} = 6.31 \text{kVA}$$

 $\theta_2 = \cos^2(0.73) = 43.1^\circ$
 $|52| = 6.31 \text{kVA} |43.1^\circ|$

POUX = C-O.P. . PIN

$$53 = \frac{\rho_3}{\rho F_3} = \frac{20.5 \text{km}}{0.78} = 26.3 \text{km}$$

 $^{1 \}text{ 1kW} = 3.4 \text{kBTU/hr}$

 $^{^2}$ 1 ton of refrigeration = 3.517kW. COP = $\eta/100\%$

CONSUMER LOPO

Problem 2 (25 points)

Open-circuit and short-circuit tests were performed under rated conditions on the primary side of a 250 kVA, single-phase 7.62k-277 V distribution transformer³. Test data are presented in Table 1. The transformer is load regulated.

- a. Determine the primary-side cantilever equivalent circuit for the transformer.
- b. Determine the transformer voltage regulation (load regulated) under full load with a 0.90 lagging PF.

Table 1 Short-circuit and open-circuit test data

Table 1 Snort-circuit and open-circuit test data			
	Open-Circuit Test Data Shor	-Circuit Test Data	
	$I_{OC} = 15 A$ $V_{SC} =$	360 V	
	$P_{OC} = 4.5 \text{ kW}$ $P_{SC} =$	5500 W	
	Voc = 7.62 kV Isc	250KVA/7,62KV = 32,8 A	
	Stofted = 520 KNV		
		1/ Poc \ - 07 7°	
	1 - Joc = 1 97 mS	$\Theta_{oc} = \cos^{-1}\left(\frac{P_{oc}}{V_{oc}I_{oc}}\right) = 87.7^{\circ}$	
4)) You = Joc = 1.97 ms	/	
	Yoc = 1.97 m S & 87.	Reore = $\frac{1}{G} = 12.7 \text{ RJZ}$ MS $X_{M} = \frac{1}{B} = 0.51 \text{ kJZ}$	
	You - 1,41 W	C G	
	70c = 0.079 + j 1.97	M) V. 1 = 0.51 ks	
		VM B	
	G B		
		1 PSC \ - (2 2°	
	Zsc = Vx = 10.98 JL	$\theta_{sc} = \cos^{-1}\left(\frac{\beta_{sc}}{\beta_{sc}}\right) = 62.2^{\circ}$	
	Csc Isc	/ Use 3 SC	
	31.1270	~ 17 .	
	Z3 = 10,98 & 62.7°	Req. P = 5.12 D	
	- 5.12+ , 9.71	X09,P = 9.71 JZ	
	- 0, 2	V. (1)1	
	2150		
	5.1272 97.715		
	0-1		
+	+ 5-1-1 Fs/9 -		
_	+ 35 3051RR alk		
Ūρ	p ~ Z P		
		Lyl.	
-			

³ Designed for a 12.47kV-120/240V step down service.

b)
$$I_{3/a} = (\frac{3}{V})^* = (\frac{250 \text{ kVA}}{7.62 \text{ kV}})^*$$

 $= 32.8 \text{ A} \times -25.8^{\circ}$
 $= (32.8 \text{ A} \times -25.8^{\circ})(5.12^{\circ})^{0.710}) + 7.62 \text{ kV}$
 $= 7.91 \text{ kV} \times 1.55^{\circ}$
 $|V_{pl}| = |V_{pl}| = 7.91 \text{ kV}$
 $|V_{pl}| = 7.62 \text{ kV}$
 $|V_{pl}| = 7.62 \text{ kV}$
 $|V_{pl}| = \frac{1000 \text{ kV}}{1000 \text{ kV}} = \frac{1000 \text{ kV}}{1000 \text{ kV}} = \frac{7.91 - 7.62}{7.62} = 0.038$

Problem 3 (25 points)

A three-phase, variable-frequency drive (VFD) draws lagging non-sinusoidal line current, resulting in significant waveform distortion. The VFD is connected to a 480 V service and draws 80 kW.

Spectral analysis of the current reveals the following:

Table 2 Harmonic RMS line current magnitudes

N	I _{RMS} (A)
1	102
3	62
5	32
7	11
9	2

- a. Calculate the Distortion power factor4.
- b. Calculate the Displacement power factor.
- c. Calculate the neutral current magnitude.

a) Since only the current is distorted,

$$PF_{Distortion} = \sqrt{\frac{1}{1 + (\frac{THD_{1}}{10000})^{2}}}$$

$$THD_{I} = \sqrt{\frac{Z}{I_{1,000}}} = \sqrt{\frac{(62)^{2} + (32)^{2} + (11)^{2} + (2)^{2}}{10000}} = \frac{69.3\%}{1000}$$

So $PF_{Distortion} = \sqrt{\frac{1}{1 + (0.693)^{2}}} = \frac{1}{\sqrt{1 +$

⁴ IEEE THD definition

C) Ineutral, rms is the RMS of the sum of the triplens harmonies

I rentral, rms =
$$\sqrt{(3.62 \, \text{A})^2 + (3.2 \, \text{A})^2}$$

= $186 \, \text{A}$

Problem 4 (25 points)

A 60 Hz, pad-mount three-phase transformer for an off-shore wind turbine must be designed to handle 4.5 MVA and have a bank ratio of 1000 V-34.5 kV.

The transformer shall be built using three 60 Hz single-phase transformers. Specify the high and low side voltages, rated power, rated coil currents, and the turns ratio of these transformers if they are to be connected in a Δ -Wye configuration. The transformer bank

