Numerical Analysis Homework 7. Matrix Eigenvalues

102061125 陳冠鈞

1. Objective

In this assignment, I will apply QR iterations and shifted QR iterations to find all the eigenvalues of different size matrices, and observe the convergence behavior and the CPU time.

2. Approach

I implement the following functions:

void qrFact(MAT &A, MAT &Q, MAT &R); int EVqr(MAT &A, double tol, int maxiter); int EVqrShifted(MAT &A, double tol, int maxiter);

qrFact will apply QR decomposition to A and get Q and R matrices. EVqr and EVqrShifted use qrFact to do QR iterations and shifted QR iterations. For this homework, the tolerance is set to be 10^{-9}

2.1. Error

In QR iterations and shifted QR iterations, if $A = [a_{ij}], 1 \le i, j \le n$, the error for each iteration is defined as

$$\mathrm{error} = \max_{2 \le i \le n} \left| a_{i,i-1} \right|$$

2.1. Algorithm

Algorithm. QR decomposition

Input: a matrix A.

Output: Q and R matrices. $(A = Q \times R)$

$$r_{11} = \sqrt{(a_1)^T (a_1)}$$
 $q_1 = \frac{a_1}{r_{11}}$

for $(j = 2; j \le n; j = j + 1)$ do
 $q_j = a_j$

for $(i = 1; i < j; i = i + 1)$ do
 $r_{ij} = (q_i)^T q_i$
 $q_j = q_j - r_{ij}q_i$
end for
 $r_{jj} = \sqrt{(q_j)^T q_j}$
 $q_j = \frac{q_j}{r_{ij}}$

end for

(where a_i is the *i*-th column vector of matrix A, and q_j is the *j*-th column vector of matrix Q)

Algorithm. QR iterations

Input: a matrix A, converge criterion.

Output: solution when maxIteration is reached or the error is smaller than 10^{-9} .

$$k=0$$
 $T^{(0)}=A$ while (k < maxIteration) and (error > 10^{-9}) do $T^{(k)}=Q^{(k)}R^{(k)}$ $T^{(k+1)}=R^{(k)}Q^{(k)}$ calculate error for $T^{(k+1)}$ k = k + 1

end while

(where " $Q^{(k)}R^{(k)}$ " is the matrix QR decomposition, and " $R^{(k)}Q^{(k)}$ " is simply matrix multiplication.)

Algorithm. Shifted QR iterations

Input: a matrix A, a real number μ , converge criterion.

Output: solution when maxIteration is reached or the error is smaller than 10^{-9} .

$$k=0$$
 $T^{(0)}=A$ while (k < maxIteration) and (error > 10^{-9}) do $T^{(k)}-\mu I=Q^{(k)}R^{(k)}$ $T^{(k+1)}=R^{(k)}Q^{(k)}+\mu I$ calculate error for $T^{(k+1)}$ k = k + 1

end while

(where " $Q^{(k)}R^{(k)}$ " is the matrix QR decomposition, and " $R^{(k)}Q^{(k)}$ " is simply matrix multiplication.)

3. Computational Complexity

3.1. QR Decomposition

- Because of double loops, we have to do $1+2+3+\cdots+n-1$ iterations \rightarrow $\mathbf{0}(\mathbf{n}^2)$
- In second loop, we have to do a vector-vector multiplication \rightarrow $\mathbf{0}(\mathbf{n})$
- Overall computational complexity $\rightarrow 0(n^3)$

4. Results

4.1. Eigenvalues

Evqr	N	largest_1	largest_2	largest_3	smallest_1	smallest_2	smallest_3
m3	3	6.37228	2	0.627719	0.627719	2	6.37228
m4	10	67.8404	20.4317	4.45599	0.512543	0.55164	0.629808
m5	20	270.495	81.2238	17.2352	0.503097	0.512479	0.528819
m6	30	608.254	182.545	38.5387	0.501373	0.505511	0.512543
m7	40	1081.12	324.395	68.3641	0.500772	0.503093	0.507004
m8	50	1689.08	506.773	106.711	0.500494	0.501978	0.504468

Table 1. The three largest and smallest eigenvalues of m3 to m8, EVqr.

EVqrShifted	N	largest_1	largest_2	largest_3	smallest_1	smallest_2	smallest_3
m3	3	6.37228	2	0.627719	0.627719	2	6.37228
m4	10	67.8404	20.4317	4.45599	0.512543	0.55164	0.629808
m5	20	270.495	81.2238	17.2352	0.503097	0.512479	0.528819
m6	30	608.254	182.545	38.5387	0.501373	0.505511	0.512543
m7	40	1081.12	324.395	68.3641	0.500772	0.503093	0.507004
m8	50	1689.08	506.773	106.711	0.500494	0.501978	0.504468
m9	60	2432.15	729.679	153.58	0.500343	0.501373	0.503097
m10	70	3310.32	993.114	208.971	0.500252	0.501008	0.502273
m11	80	4323.6	1297.08	272.883	0.500193	0.500772	0.501739
m12	90	5471.98	1641.57	345.316	0.500152	0.50061	0.501373
m13	100	6755.46	2026.59	426.272	0.500123	0.500494	0.501112
m14	120	9727.73	2918.22	613.747	0.500086	0.500343	0.500772
m15	150	15199.4	4559.62	958.873	0.500055	0.500219	0.500494

Table 2. The three largest and three smallest eigenvalues of m3 to m15, EVqrShifted

4.2. CPU Time and Iterations

I want to discuss the relationship between N vs. CPU time, iterations using EVqr and EVqrShifted. (**N** means the # of row (col) of the square matrix, **iter** means the iterations and **avg_iter_time** means the average iteration time.)

Evqr	N	iter	time	avg_iter_time
m3	3	20	0	0
m4	10	249	0.046875	0.000188253
m5	20	909	1.07812	0.001186051
m6	30	1942	7.26562	0.003741308
m7	40	3325	30.6094	0.009205835
m8	50	5041	97.9688	0.019434398

Table 3. Iterations and average iteration time, EVqr.

EVqrShifted	N	iter	time	avg_iter_time
m3	3	17	0	0
m4	10	35	0	0
m5	20	67	0.015625	0.000233209
m6	30	100	0.140625	0.00140625
m7	40	133	0.390625	0.00293703
m8	50	167	0.9375	0.005613772
m9	60	209	1.98438	0.009494641
m10	70	244	4.39062	0.017994344
m11	80	262	6.95312	0.026538626
m12	90	310	11.2812	0.036390968
m13	100	326	16.7969	0.051524233
m14	120	383	35.5312	0.092770757
m15	150	506	80.75	0.15958498

Table 4. Iterations and average iteration time, EVqrShifted.

4.2.1. Average Iteration Time vs. N

Figure 1. average iteration time vs. N, EVqr

Figure 2. average iteration time vs. N, EVqrShifted

In each iteration of EVqr and EVqrShifted, there is a **QR decomposition**. In Figure 1 and Figure 2, both the average iteration time grows with N^3 . These results and my analysis in session 3 match up.

4.2.2. Iterations vs. N

Figure 3. Iterations vs. N, EVqr

Figure 4. Iterations vs. N, EVqrShifted

In Figure 3, the iterations of **QR iteration** grow with N^2 , but in Figure 4, the iterations of **shifted QR iteration** grow with N.

4.3. Overall Computational Complexity

Complexity	Average Iteration Time	Total Iterations	Overall	
EVqr	$O(n^3)$	$O(n^2)$	$O(n^5)$	
EVqrShifted	$O(n^3)$	$O(n^1)$	$O(n^4)$	

Figure 5. CPU time vs. N, EVqr

Figure 6. CPU time vs. N, EVqrShifted

5. Conclusion

- The overall computational complexity of EVqr and EVqrShifted are $O(n^5)$ and $O(n^4)$ respectively.
- After A doing shifted QR iterations, the diagonal elements of A from left-top to right-bottom are the eigenvalues with difference between μ from largest to smallest.
- In this homework, the smallest eigenvalue of all the matrices are near to 0.5, so if choose $\mu = 0.5$, after matrix A doing shifted QR iterations, the diagonal elements of A from left-top to right-bottom are the largest eigenvalue to smallest eigenvalue.