Klausur zur Einführung in die Ökonometrie

Wintersemester 16/17

(6 ECTS)

06. Februar 2017

Anmerkungen:

- Überprüfen Sie bitte sofort, ob Ihre Klausur vollständig ist. Sie sollte aus insgesamt 9 Seiten inklusive Deckblatt bestehen und 5 Aufgaben enthalten. Die letzten 4 Seiten enthalten Verteilungstabellen.
- Schreiben Sie auf dieses Blatt Ihren Namen und Ihre Matrikelnummer und unterschreiben Sie unten.
- Zugelassene Hilfsmittel: Taschenrechner, Wörterbücher, handgeschriebene Formelsammlung auf einem DIN A4 Blatt (2 Seiten), keine Kopien und keine Ausdrucke erlaubt!
- Es können maximal 100 Punkte erreicht werden.

Ich habe die Anweisungen zur Kenntnis genommen und die Angabe auf Vollständigkeit überprüft.

	Name														
Studiengang/Fachsemester															
	Matrikelnummer Unterschrift														
Aufgabe	1	2	3	4	5	6	\sum								
Punkte															

Viel Erfolg!!

Aufgabe 1 (30 Punkte)

Die zwei Stromversorger Äon und Wattenfall teilen sich die gesamte Angebotsseite des Elektrizitätsmarktes der Vereinigten Staaten von Iranium, d.h. sie bilden ein sogenanntes Duopol. Äon möchte die Strommenge prognostizieren, die es in 2006 absetzen wird, und unterstellt zu diesem Zwecke, dass seine abgesetzte Strommenge vom verfügbaren realen Pro-Kopf-Einkommen der privaten Haushalte und seinem Angebotspreis abhängt. Unter der zusätzlichen Annahme eines linearen funktionalen Zusammenhangs lautet die Modellspezifikation

$$y_t = \beta_1 x_{t1} + \beta_2 x_{t2} + u_t \,, \tag{1}$$

 $_{
m mit}$

 y_t = abgesetzte Strommenge (in Mio. kWh)

 x_{t1} = verfügbares reales Pro-Kopf-Einkommen (in Tsd. \$)

 x_{t2} = Angebotspreis von $\ddot{A}on$ (in \$ pro kWh).

Alle Daten sind mittelwertbereinigt und auf Jahresbasis von 1973 bis 2005 erhoben worden, d.h. t = 1, ..., 33. Diese Daten sind in den folgenden Produktsummen zusammengefasst:

$$\begin{array}{lll} \sum_{t=1}^{33} x_{t1} x_{t2} = 22,19 & \sum_{t=1}^{33} x_{t2} y_{t} = 22,99 & \sum_{t=1}^{33} y_{t}^{2} = 505,92 \\ \sum_{t=1}^{33} x_{t1} y_{t} = 345,42 & \sum_{t=1}^{33} x_{t1}^{2} = 268,02 & \sum_{t=1}^{33} x_{t2}^{2} = 226,00 \end{array}$$

(a) Zeigen Sie, dass der KQ-Schätzer $\hat{\beta}_{KQ}$ die Orthogonalitätsbedingung $X'\hat{u}=0$ erfüllt, und interpretieren Sie diese Orthogonalitätsbedingung. Zeigen Sie außerdem, dass der KQ-Schätzer des Modells (1) gleich den entsprechenden Elementen des KQ-Schätzers des Modells

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + u_t \tag{2}$$

ist, wobei die Variablen in (2) nicht mittelwertbereinigt, sondern Rohdaten sind. Wie würden Sie $\hat{\beta}_0$ nach der Schätzung von Modell (1) berechnen? [7 Punkte]

- (b) Schätzen Sie β_1 und β_2 . Sind die Vorzeichen der geschätzten Regressionsparameter $\hat{\beta}_1$ und $\hat{\beta}_2$ ökonomisch plausibel? [7 Punkte]
- (c) Berechnen Sie $\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{T-k-1}$, wobei k der Anzahl der zu schätzenden Parameter in (1) entspricht. Geben Sie einen ausführlichen Rechenweg an! Erklären Sie, wieso die korrekte Anzahl der Freiheitsgrade für das Modell (1) nicht T-k, sondern T-(k+1) ist. Welche Rolle spielt hierbei die Dimension der Orthogonalitätsbedingung? [5 Punkte]
- (d) Berechnen Sie die Punktprognose \hat{y}_P und das dazugehörige 95%-Prognoseintervall für 2006 unter der Annahme, dass $x_{P1} = 1,5$ und $x_{P2} = 1,0$. Verwenden Sie dabei $\hat{\sigma}_P^2 = 2,3088$ und (T k 1) Freiheitsgrade. Geben Sie einen ausführlichen Rechenweg an! [7 Punkte]
- (e) Angenommen, die tatsächliche Realisation der abgesetzten Strommenge in 2006 betrüge $y_P = -1,25$. Wie beurteilen Sie die Prognosegüte des geschätzten Modells? Nennen Sie eine mögliche Ursache hierfür. [4 Punkte]

Aufgabe 2 (30 Punkte)

Die Kartellbehörde von Iranium möchte das Treiben auf dem nationalen Elektrizitätsmarkt untersuchen und erweitert zu diesem Zwecke die Absatzfunktion (1) von $\ddot{A}on$ um den Regressor x_{t3} , der dem Angebotspreis von Wattenfall (in \$ pro kWh) entspricht:

$$y_t = \beta_1 x_{t1} + \beta_2 x_{t2} + \beta_3 x_{t3} + u_t . (3)$$

Unter den Angaben aus der Aufgabenstellung von Aufgabe 2 und den zusätzlichen Informationen

$$\sum_{t=1}^{33} x_{t1} x_{t3} = 22,25 \quad \sum_{t=1}^{33} x_{t2} x_{t3} = 226,39 \quad \sum_{t=1}^{33} x_{t3}^2 = 227,04$$

wurde das Modell (3) nach der KQ-Methode geschätzt:

$$\begin{array}{c|ccccc} & \beta_1 & \beta_2 & \beta_3 \\ \hline \hat{\beta}_i & 1,2909 & 0,1577 & -0,1824 \\ \hat{\sigma}_{\hat{\beta}_i} & 0,0887 & 2,7615 & 2,7552 \\ \end{array}$$

und

$$\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{T - k - 1} = 2,0896 \ .$$

- (a) Begründen Sie kurz, warum das von der Kartellbehörde geschätzte Modell (3), ökonomisch gesehen, vermutlich eine bessere Spezifikation sein wird als das von Äon geschätzte Modell (1). [2 Punkte]
- (b) Zeigen Sie, welche Auswirkungen die Schätzung von (1) auf die Erwartungstreue des KQ-Schätzers hätte, wenn (3) das korrekt spezifizierte Modell darstellen würde. Beschreiben Sie kurz, welche Auswirkungen die Schätzung von (1) auf Hypothesentests, Punktprognose und Prognoseintervalle hätte, wenn (3) das korrekt spezifizierte Modell darstellen würde. [7 Punkte]
- (c) Testen Sie mittels t-Test und zum Signifikanzniveau 5%, ob die Regressionsparameter in (3) einzeln signifikant von 0 verschieden sind. Testen Sie mittels F-Test und zum Signifikanzniveau 5% mit kritischem Wert $F_{krit} = 2,701$, ob die Regressionsparameter in (3) gemeinsam signifikant von 0 verschieden sind. Berechnen und interpretieren Sie das multiple Bestimmtheitsmaß R^2 . [16 Punkte]
- (d) Betrachten Sie Ihre Ergebnisse aus Aufgabe 2c. Welches Problem liegt offenbar für die in Modell (3) verwendete Regressormatrix vor? Erklären Sie kurz, wie diese Symptome zustande kommen. [5 Punkte]

Aufgabe 3 (15 Punkte)

Für eine Stichprobe von Querschnittsdaten wird die Regressionsgleichung

$$y_n = \beta_1 + \beta_2 x_{n2} + \beta_3 x_{n3} + u_n$$
 mit $n = 1, \dots, 300$

geschätzt. Werden die aus der KQ-Schätzung resultierenden Residuen \hat{u}_n gegen die entsprechenden Werte der Projektion \hat{y}_n abgetragen, erhält man folgende Abbildung:

- (a) Um welche Art von Streudiagramm handelt es sich bei dieser Abbildung? (Name!). Welche Annahme des klassischen linearen Regressionsmodells ist vermutlich verletzt? [2 Punkte]
- (b) Nennen Sie ein geeignetes Verfahren, um Ihre Vermutung zu testen! 1 Punkt]

Für eine Stichprobe aus Querschnittsdaten wird die Regressionsgleichung

$$y_n = \beta_1 + \beta_2 x_{n2} + \beta_3 x_{n3} + u_n$$

mit $n=1,\ldots,76$ geschätzt. Nach der Durchführung einer grafischen Analyse liegt die Vermutung nahe, dass sich die Beobachtungen der Querschnittsdaten in zwei Gruppen mit unterschiedlicher Störgrößenvarianz unterteilen lassen. Die Variable x_3 erscheint dabei als die sog. Threshold-Variable zu fungieren.

- (c) Welcher Test ist geeignet, um diese Vermutung zu überprüfen? Wie ist der Test konstruiert? Gehen Sie bei Ihrer Antwort auch auf die Hypothesen, die Teststatistik mit deren Verteilung unter H_0 und die Entscheidungsregel ein. [5 Punkt]
- (d) Führen Sie den unter Teilaufgabe (c) genannten Test zum Signifikanzniveau 5% mit $\hat{\boldsymbol{u}}_1'\hat{\boldsymbol{u}}_1 = 0.0102$ für $n = 1, \dots, 33$ und $\hat{\boldsymbol{u}}_2'\hat{\boldsymbol{u}}_2 = 0.0428$ für $n = 34, \dots, 76$ durch. [7 Punkte]

Aufgabe 4 (15 Punkte)

- (a) Leiten Sie die ersten beiden Momente des verallgemeinerten KQ-Schätzers $\hat{\beta}_{VKQ}$ her, wenn im klassischen linearen Regressionsmodell $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}$ für die Kovarianzmatrix der Störgrößen $\mathrm{E}[\boldsymbol{u}\boldsymbol{u}'] = \sigma^2\boldsymbol{\Omega}$ statt $\mathrm{E}[\boldsymbol{u}\boldsymbol{u}'] = \sigma^2\boldsymbol{I}_T$ gilt! [10 Punkte]
- (b) Geben sie eine allgemeine 3×3 Varianz-Kovarianzmatrix $\boldsymbol{\Sigma}_u$ für folgende Annahmen an:
 - (i) homoskedastische, unkorrelierte Fehler
 - (ii) heteroskedastische, unkorrelierte Fehler
 - [5 Punkte]

Aufgabe 5 (10 Punkte)

Sind folgende Aussagen wahr (W) oder falsch (F)?

Das Bestimmtheitsmaß \mathbb{R}^2 kann auch negative Werte annehmen.	()
Perfekte Multikollinearität führt zu einer aufgeblähten Kovarianzmatrix der KQ-geschätzten Regressionskoeffizienten.	()
Beim Vorliegen von Heteroskedastizität ist der KQ-Schätzer zwar verzerrt, aber konsistent.	()
Der verallgemeinerte KQ-Schätzer $\hat{\beta}_{VKQ}$ ist ein best, linear, unbiased estimator.	()
Die Schätzfehler von $\hat{m{\beta}}_{KQ}$ sind nicht kleiner als die von $\hat{m{\beta}}_{VKQ}$.	()
Das BIC hat einen gewichtigeren Strafterm als das AIC.	()
Der White-Test testet, ob die Streuung der Störgrößen von Regressorvariablen abhängen.	()
Der Ljung-Box-Test gilt nicht, wenn sich verzögerte abhängige Variablen unter den Regressoren befinden.	()
Wird $\hat{\beta}_{KQ}$ zur Schätzung der Regressionskoeffizienten eines linearen Modells mit autokorrelierten Störgrößen verwendet, so ist dieser zwar unverzerrt, jedoch inkonsistent und ineffizient.	()
Der Durbin-Watson Test ist nur für das Testen auf Autokorrelation erster Ordnung angelegt.	()

Verteilungstabellen

Freiheitsgrade	$\alpha = 0.9$	$\alpha = 0.95$	$\alpha = 0.975$	$\alpha = 0.99$	$\alpha = 0.995$
1	3.0777	6.3138	12.7062	31.8205	63.6567
2	1.8856	2.9200	4.3027	6.9646	9.9248
3	1.6377	2.3534	3.1824	4.5407	5.8409
4	1.5332	2.1318	2.7764	3.7469	4.6041
5	1.4759	2.0150	2.5706	3.3649	4.0321
6	1.4398	1.9432	2.4469	3.1427	3.7074
7	1.4149	1.8946	2.3646	2.9980	3.4995
8	1.3968	1.8595	2.3060	2.8965	3.3554
9	1.3830	1.8331	2.2622	2.8214	3.2498
10	1.3722	1.8125	2.2281	2.7638	3.1693
11	1.3634	1.7959	2.2010	2.7181	3.1058
12	1.3562	1.7823	2.1788	2.6810	3.0545
13	1.3502	1.7709	2.1604	2.6503	3.0123
14	1.3450	1.7613	2.1448	2.6245	2.9768
15	1.3406	1.7531	2.1314	2.6025	2.9467
16	1.3368	1.7459	2.1199	2.5835	2.9208
17	1.3334	1.7396	2.1098	2.5669	2.8982
18	1.3304	1.7341	2.1009	2.5524	2.8784
19	1.3277	1.7291	2.0930	2.5395	2.8609
20	1.3253	1.7247	2.0860	2.5280	2.8453
21	1.3232	1.7207	2.0796	2.5176	2.8314
22	1.3212	1.7171	2.0739	2.5083	2.8188
23	1.3195	1.7139	2.0687	2.4999	2.8073
24	1.3178	1.7109	2.0639	2.4922	2.7969
25	1.3163	1.7081	2.0595	2.4851	2.7874
26	1.3150	1.7056	2.0555	2.4786	2.7787
27	1.3137	1.7033	2.0518	2.4727	2.7707
28	1.3125	1.7011	2.0484	2.4671	2.7633
29	1.3114	1.6991	2.0452	2.4620	2.7564
30	1.3104	1.6973	2.0423	2.4573	2.7500
31	1.3095	1.6955	2.0395	2.4528	2.7440
32	1.3086	1.6939	2.0369	2.4487	2.7385
33	1.3077	1.6924	2.0345	2.4448	2.7333
34	1.3070	1.6909	2.0322	2.4411	2.7284
35	1.3062	1.6896	2.0301	2.4377	2.7238
36	1.3055	1.6883	2.0281	2.4345	2.7195
37	1.3049	1.6871	2.0262	2.4314	2.7154
38	1.3042	1.6860	2.0244	2.4286	2.7116
39	1.3036	1.6849	2.0227	2.4258	2.7079
40	1.3031	1.6839	2.0211	2.4233	2.7045

Tabelle 1: Quantile der t-Verteilung.

40	251.143	19.471	8.594	5.717	4.464	3.774	3.340	3.043	2.826	2.661	2.531	2.426	2.339	2.266	2.204	2.151	2.104	2.063	2.026	1.994	1.965	1.938	1.914	1.892	1.872	1.853	1.836	1.820	1.806	1.792	1.779	1.767	1.756	1.745	1.735	1.726	1.717	1.708	1.700	1.693
30	250.095	19.462	8.617	5.746	4.496	3.808	3.376	3.079	2.864	2.700	2.570	2.466	2.380	2.308	2.247	2.194	2.148	2.107	2.071	2.039	2.010	1.984	1.961	1.939	1.919	1.901	1.884	1.869	1.854	1.841	1.828	1.817	1.806	1.795	1.786	1.776	1.768	1.760	1.752	1.744
25	249.260	19.456	8.634	5.769	4.521	3.835	3.404	3.108	2.893	2.730	2.601	2.498	2.412	2.341	2.280	2.227	2.181	2.141	2.106	2.074	2.045	2.020	1.996	1.975	1.955	1.938	1.921	1.906	1.891	1.878	1.866	1.854	1.844	1.833	1.824	1.815	1.806	1.798	1.791	1.783
20	248.013	19.446	8.660	5.803	4.558	3.874	3.445	3.150	2.936	2.774	2.646	2.544	2.459	2.388	2.328	2.276	2.230	2.191	2.155	2.124	2.096	2.071	2.048	2.027	2.007	1.990	1.974	1.959	1.945	1.932	1.920	1.908	1.898	1.888	1.878	1.870	1.861	1.853	1.846	1.839
15	245.950	19.429	8.703	5.858	4.619	3.938	3.511	3.218	3.006	2.845	2.719	2.617	2.533	2.463	2.403	2.352	2.308	2.269	2.234	2.203	2.176	2.151	2.128	2.108	2.089	2.072	2.056	2.041	2.027	2.015	2.003	1.992	1.982	1.972	1.963	1.954	1.946	1.939	1.931	1.924
12	243.906	19.413	8.745	5.912	4.678	4.000	3.575	3.284	3.073	2.913	2.788	2.687	2.604	2.534	2.475	2.425	2.381	2.342	2.308	2.278	2.250	2.226	2.204	2.183	2.165	2.148	2.132	2.118	2.104	2.092	2.080	2.070	2.060	2.050	2.041	2.033	2.025	2.017	2.010	2.003
10	241.882	19.396	8.786	5.964	4.735	4.060	3.637	3.347	3.137	2.978	2.854	2.753	2.671	2.602	2.544	2.494	2.450	2.412	2.378	2.348	2.321	2.297	2.275	2.255	2.236	2.220	2.204	2.190	2.177	2.165	2.153	2.142	2.133	2.123	2.114	2.106	2.098	2.091	2.084	2.077
6	240.543	19.385	8.812	5.999	4.772	4.099	3.677	3.388	3.179	3.020	2.896	2.796	2.714	2.646	2.588	2.538	2.494	2.456	2.423	2.393	2.366	2.342	2.320	2.300	2.282	2.265	2.250	2.236	2.223	2.211	2.199	2.189	2.179	2.170	2.161	2.153	2.145	2.138	2.131	2.124
∞	238.883	19.371	8.845	6.041	4.818	4.147	3.726	3.438	3.230	3.072	2.948	2.849	2.767	2.699	2.641	2.591	2.548	2.510	2.477	2.447	2.420	2.397	2.375	2.355	2.337	2.321	2.305	2.291	2.278	2.266	2.255	2.244	2.235	2.225	2.217	2.209	2.201	2.194	2.187	2.180
7	236.768	19.353	8.887	6.094	4.876	4.207	3.787	3.500	3.293	3.135	3.012	2.913	2.832	2.764	2.707	2.657	2.614	2.577	2.544	2.514	2.488	2.464	2.442	2.423	2.405	2.388	2.373	2.359	2.346	2.334	2.323	2.313	2.303	2.294	2.285	2.277	2.270	2.262	2.255	2.249
9	233.986	19.330	8.941	6.163	4.950	4.284	3.866	3.581	3.374	3.217	3.095	2.996	2.915	2.848	2.790	2.741	2.699	2.661	2.628	2.599	2.573	2.549	2.528	2.508	2.490	2.474	2.459	2.445	2.432	2.421	2.409	2.399	2.389	2.380	2.372	2.364	2.356	2.349	2.342	2.336
ಒ	230.162	19.296	9.013	6.256	5.050	4.387	3.972	3.687	3.482	3.326	3.204	3.106	3.025	2.958	2.901	2.852	2.810	2.773	2.740	2.711	2.685	2.661	2.640	2.621	2.603	2.587	2.572	2.558	2.545	2.534	2.523	2.512	2.503	2.494	2.485	2.477	2.470	2.463	2.456	2.449
4	224.583	19.247	9.117	6.388	5.192	4.534	4.120	3.838	3.633	3.478	3.357	3.259	3.179	3.112	3.056	3.007	2.965	2.928	2.895	2.866	2.840	2.817	2.796	2.776	2.759	2.743	2.728	2.714	2.701	2.690	2.679	2.668	2.659	2.650	2.641	2.634	2.626	2.619	2.612	2.606
က	215.707	19.164	9.277	6.591	5.409	4.757	4.347	4.066	3.863	3.708	3.587	3.490	3.411	3.344	3.287	3.239	3.197	3.160	3.127	3.098	3.072	3.049	3.028	3.009	2.991	2.975	2.960	2.947	2.934	2.922	2.911	2.901	2.892	2.883	2.874	2.866	2.859	2.852	2.845	2.839
2	199.500	19.000	9.552	6.944	5.786	5.143	4.737	4.459	4.256	4.103	3.982	3.885	3.806	3.739	3.682	3.634	3.592	3.555	3.522	3.493	3.467	3.443	3.422	3.403	3.385	3.369	3.354	3.340	3.328	3.316	3.305	3.295	3.285	3.276	3.267	3.259	3.252	3.245	3.238	3.232
	161.448	18.513	10.128	7.709	809.9	5.987	5.591	5.318	5.117	4.965	4.844	4.747	4.667	4.600	4.543	4.494	4.451	4.414	4.381	4.351	4.325	4.301	4.279	4.260	4.242	4.225	4.210	4.196	4.183	4.171	4.160	4.149	4.139	4.130	4.121	4.113	4.105	4.098	4.091	4.085
v_2/v_1		2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

Tabelle 2: 0.95-Quantile der F-Verteilung mit v_1 und v_2 Freiheitsgraden.

Tabelle 3: 0.99-Quantile der ${\cal F}\text{-Verteilung}$ mit v_1 und v_2 Freiheitsgraden.

Freiheitsgrade	$\alpha = 0.9$	$\alpha = 0.95$	$\alpha = 0.975$	$\alpha = 0.99$	$\alpha = 0.995$
1	2.7055	3.8415	5.0239	6.6349	7.8794
2	4.6052	5.9915	7.3778	9.2103	10.5966
3	6.2514	7.8147	9.3484	11.3449	12.8382
4	7.7794	9.4877	11.1433	13.2767	14.8603
5	9.2364	11.0705	12.8325	15.0863	16.7496
6	10.6446	12.5916	14.4494	16.8119	18.5476
7	12.0170	14.0671	16.0128	18.4753	20.2777
8	13.3616	15.5073	17.5345	20.0902	21.9550
9	14.6837	16.9190	19.0228	21.6660	23.5894
10	15.9872	18.3070	20.4832	23.2093	25.1882
11	17.2750	19.6751	21.9200	24.7250	26.7568
12	18.5493	21.0261	23.3367	26.2170	28.2995
13	19.8119	22.3620	24.7356	27.6882	29.8195
14	21.0641	23.6848	26.1189	29.1412	31.3193
15	22.3071	24.9958	27.4884	30.5779	32.8013
16	23.5418	26.2962	28.8454	31.9999	34.2672
17	24.7690	27.5871	30.1910	33.4087	35.7185
18	25.9894	28.8693	31.5264	34.8053	37.1565
19	27.2036	30.1435	32.8523	36.1909	38.5823
20	28.4120	31.4104	34.1696	37.5662	39.9968
21	29.6151	32.6706	35.4789	38.9322	41.4011
22	30.8133	33.9244	36.7807	40.2894	42.7957
23	32.0069	35.1725	38.0756	41.6384	44.1813
24	33.1962	36.4150	39.3641	42.9798	45.5585
25	34.3816	37.6525	40.6465	44.3141	46.9279
26	35.5632	38.8851	41.9232	45.6417	48.2899
27	36.7412	40.1133	43.1945	46.9629	49.6449
28	37.9159	41.3371	44.4608	48.2782	50.9934
29	39.0875	42.5570	45.7223	49.5879	52.3356
30	40.2560	43.7730	46.9792	50.8922	53.6720
31	41.4217	44.9853	48.2319	52.1914	55.0027
32	42.5847	46.1943	49.4804	53.4858	56.3281
33	43.7452	47.3999	50.7251	54.7755	57.6484
34	44.9032	48.6024	51.9660	56.0609	58.9639
35	46.0588	49.8018	53.2033	57.3421	60.2748
36	47.2122	50.9985	54.4373	58.6192	61.5812
37	48.3634	52.1923	55.6680	59.8925	62.8833
38	49.5126	53.3835	56.8955	61.1621	64.1814
39	50.6598	54.5722	58.1201	62.4281	65.4756
40	51.8051	55.7585	59.3417	63.6907	66.7660

Tabelle 4: Quantile der Chi-Quadrat-Verteilung.