Integers

Paolo Bettelini

Contents

	Divides operator 1.1 Definition	
2	Division with remainder	2
3	Euclidean algorithm	2
4	Bézout's identity	3
	Greatest common divisor of multiple integers 5.1 Coprime numbers	3

1 Divides operator

1.1 Definition

Given two integers a and b, we say that $a \mid b$ if a divides b, meaning that

$$\exists x \mid ax = b$$

.

1.2 Properties

Given the integers a, b and c

$$a \mid b \iff -a \mid b \iff a \mid -b$$
$$\mid a \mid \leq \mid b \mid, \quad b \neq 0$$
$$a \mid b \implies a \mid bc$$
$$a \mid b \land b \mid c \implies a \mid c$$

2 Division with remainder

Given two integers a and b with b > 0,

$$\exists_{=1}q, r \mid a = bq + r, \quad 0 \le r < b$$

Let q and r be the quotient and remainder of the division of b by a. The common divisors of a and b are equivalent to the common divisors of r and q.

3 Euclidean algorithm

Euclid's algorithm, is an efficient method for computing the greatest common divisor of two integers a and b where b > 0.

Consider

$$a = bq + r$$

The process is iterative. For each iteration take the coefficient of the quotient (b) and divide it by the remainder.

$$\begin{array}{ll} a = bq + r, & 0 \leq r < b \\ b = rq_1 + r_1, & 0 \leq r_1 < r \\ r = r_1q_2 + r_2, & 0 \leq r_2 < r_1 \\ \vdots & \\ r_n = r_{n+1}q_{n+2} + r_{n+1}, & 0 \leq r_{n+2} < r_{n+1} \\ r_{n+1} = r_{n+2}q_{n+3} + 0 & \end{array}$$

This sequence is strictly decreasing and will terminate with a null remainder. The last remainder r_{n+2} is then the greatest common divisor between a and b.

4 Bézout's identity

Let a and b be integers with greatest common divisor d. Then, there exist integers x and y such that

$$ax + by = d$$

Furthermore, the integers az + bt are multiples of d.

5 Greatest common divisor of multiple integers

The greatest common divisors of a_0, a_1, \dots, a_n , denoted $\gcd(a_0, a_1, \dots, a_n)$, is the greatest integer n such that $n \mid a_k$.

There exists integers u_k such that

$$a_0u_0 + \cdots + a_nu_n = \gcd(a_0, a_1, \cdots, a_n)$$

For $n \geq 2$, $\gcd(\gcd(a_0, \dots, a_{n-1}), a_n) = \gcd(a_0, \dots, a_n)$.

Given an integer c, $\gcd(ca_0, ca_1, \dots, ca_n) = c \cdot \gcd(a_0, a_1, \dots, a_n)$.

5.1 Coprime numbers

Two integers a and b are said to be **coprime** if they have no common divisor other than 1, meaning that gcd(a, b) = 1.

Let $d = \gcd(a, b) \neq 0$. Then, the integers a' and b' where a = da' and b = db' are coprime because $d = \gcd(da', db') = d \cdot \gcd(a', b') \implies \gcd(a', b') = 1$.