Non-backtracking Random Walks

Cory Glover

Brigham Young University Department of Mathematics

Joint work with Mark Kempton, Brigham Young University Tyler Jones, Brigham Young University

> SCR 2020 Provo, UT February 29,2020

Problem

Is the mixing rate of a non-backtracking random walk faster than that of a simple random walk on a graph?

Mixing Rate

Definition

Let P be the transition probability matrix of a graph G and let π be the stationary distribution of a random walk on G. Then the **mixing rate** of a random walk on a graph G is defined pointwise by

$$\rho = \limsup_{t \to \infty} \max_{u,v} |P^t(u,v) - \pi(v)|^{1/t}.$$

Mixing Rate and Eigenvalues

Theorem (Lovasz 1993)

Let G be a connected non-bipartite graph with transition probability matrix P. Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ be the eigenvalues of P. Then the mixing rate of G is $\rho = \max\{|\mu_2|, |\mu_n|\}$.

Hashimoto Matrix

Definition

The **Hashimoto Matrix** of a graph *G* is

$$B((u,v),(x,y)) = \begin{cases} 1 & v = x \text{ and } u \neq y \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Ihara's Theorem

Theorem (Ihara)

Given a graph G with n vertices and m edges, define B to be the Hashimoto matrix of G. Let A be the adjacency matrix of G and let D be the diagonal degree matrix. Then

$$det(I - \mu B) = (1 - u^2)^{m-n} det(I - \mu A + \mu^2(D - I)).$$

Thus, the eigenvalues of B are μ .

The Matrix K

From Krzakala et. al. (2013), the matrix K of a graph G

$$K = \begin{pmatrix} A & D - I \\ -I & \mathbf{0} \end{pmatrix}$$

is a invariant subspace of B.

The Matrix *K*

Define the following matrices:

$$S((u,v),x) = \begin{cases} 1 & v = x \\ 0 & \text{otherwise} \end{cases}$$

$$T(x,(u,v)) = \begin{cases} 1 & u = x \\ 0 & \text{otherwise} \end{cases}.$$

Then

$$B(S T^T) v = (S T^T) Kv.$$

If ν is an eigenvector of K with eigenvalue μ , then

$$B\begin{pmatrix} S & T^T \end{pmatrix} v = \mu\begin{pmatrix} S & T^T \end{pmatrix} v.$$

Eigenvalues of K

If $(x \ y)^T$ is an eigenvector of K,

$$\begin{pmatrix} A & D - I \\ -I & \mathbf{0} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mu \begin{pmatrix} x \\ y \end{pmatrix},$$

then $x=-\mu y$. This means that $\mu^2 y - \mu A y + (D-I) y = \mathbf{0}$ for all $\mu \in \sigma(K)$.

Ihara's Theorem

Theorem (Ihara, 1966)

Given a graph G and the associated Hasimoto matrix B, adjacency matrix A, and diagonal degree matrix D, the following is true:

$$det(I - \mu B) = (1 - u^2)^{m-n} det(I - uA - u^2(D - I)).$$

So the eigenvalues of B are the $\frac{1}{u}$.

Relationship Between A and K

Let \mathbf{x} be the eigenvector associated with λ_2 (the second largest eigenvalue) of A. Let μ_2 be the second largest eigenvalue of K such that $K \begin{pmatrix} -\mu_2 \mathbf{y} & \mathbf{y} \end{pmatrix}^T = \mu_2 \begin{pmatrix} -\mu_2 \mathbf{y} & \mathbf{y} \end{pmatrix}^T$. Scale \mathbf{x} such that $\mathbf{x}^T \mathbf{y} = 1$.

Then,

$$\mu_2^2 \mathbf{x}^T \mathbf{y} - \mu_2 \mathbf{x}^T A \mathbf{y} + \mathbf{x}^T (D - I) \mathbf{y} = 0,$$

$$\mu_2^2 - \mu_2 \lambda_2 + \mathbf{x}^T (D - I) \mathbf{y} = 0.$$

Solving for μ_2 ,

$$\mu_2 = \frac{\lambda_2 \pm \sqrt{\lambda_2^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2}.$$

Questions That Arise

$$\mu = \frac{\lambda \pm \sqrt{\lambda^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2}$$

- How are μ and λ related?
- Is it + or −?
- Can we get all eigenvalues μ ?
- How to convert μ to ρ ?

Relating μ and λ

Assume that $\lambda \geq 2\sqrt{\mathbf{x}^T(D-I)\mathbf{y}}$:

$$\begin{split} \mu &= \frac{\lambda + \sqrt{\lambda^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2} \leq \frac{\lambda + \lambda}{2} = \lambda \\ \mu &= \frac{\lambda - \sqrt{\lambda^2 - 4\mathbf{x}^T(D-I)\mathbf{y}}}{2} \leq \frac{\lambda}{2}. \end{split}$$

In either case $\mu \leq \lambda$.

Bipartite Graphs and K

INSERT PICTURE OF BIPARTITE GRAPH HERE

Bipartite Graphs and K

Theorem

The following are equivalent for a graph G:

- G is bipartite,
- 2 The spectrum of B is symmetric,
- The spectrum of K is symmetric,
- \bullet -1 is an eigenvalue of K.

Bipartite $\Rightarrow \sigma(B)$ Is Symmetric

If G is bipartite, then

$$B = \begin{pmatrix} 0 & B_2 \\ B_1 & 0 \end{pmatrix}.$$

Let $\lambda \in \sigma(B)$. Then,

$$B(x \ y)^{T} = \lambda (x \ y)^{T} \tag{2}$$

$$(B_2 y \quad B_1 x)^T = \lambda (x \quad y)^T. \tag{3}$$

This means that

$$B(x -y)^{T} = \begin{pmatrix} -B_{2}y & B_{1}x \end{pmatrix}^{T}$$
 (4)

$$= \begin{pmatrix} -\lambda x & \lambda y \end{pmatrix}^T$$

$$= -\lambda \begin{pmatrix} x & -y \end{pmatrix}^T. \tag{6}$$

So
$$-\lambda \in \sigma(B)$$
.

(5)

$\sigma(B)$ Is Symmetric $\Rightarrow \sigma(K)$ Is Symmetric

Theorem (Ihara, 1966)

Given a graph G and the associated Hasimoto matrix B, adjacency matrix A, and diagonal degree matrix D, the following is true:

$$det(I - \mu B) = (1 - u^2)^{m-n} det(I - uA - u^2(D - I)).$$

$\sigma(K)$ is symmetric $\Rightarrow \sigma(B)$ is symmetric.

Theorem (Ihara, 1966)

Given a graph G and the associated Hasimoto matrix B, adjacency matrix A, and diagonal degree matrix D, the following is true:

$$det(I - \mu B) = (1 - u^2)^{m-n} det(I - uA - u^2(D - I)).$$

$\sigma(B)$ is symmetric $\Rightarrow G$ is bipartite

Consider B as the adjacency matrix of its own graph.

Paths: Cospectrality and Fractional Cospectrality

When can two vertices of a path be cospectral or fractionally cospectral?

Paths: Cospectrality and Fractional Cospectrality

When can two vertices of a path be cospectral or fractionally cospectral?

Lemma

Let u, v be vertices of a path on n vertices P_n

• u and v are cospectral if and only if $\{u,v\} = \{i,n-i\}$.

Paths: Cospectrality and Fractional Cospectrality

When can two vertices of a path be cospectral or fractionally cospectral?

Lemma

Let u, v be vertices of a path on n vertices P_n

- u and v are cospectral if and only if $\{u, v\} = \{i, n i\}$.
- u and v are fractionally cospectral (and not cospectral) if and only if n = 5d 1 for some positive integer d, and $\{u, v\} = \{d, 3d\}$ or (by symmetry) $\{u, v\} = \{2d, 4d\}$.

Fractional Cospectrality in Paths

We prove this by counting walks in paths

$$A^{2d+2j}(u,u) = {2d+2j \choose d+j} - {2d+2j \choose j}$$

$$A^{2d+2j}(v,v) = {2d+2j \choose d+j}$$

$$A^{2d+2j}(u,v) = {2d+2j \choose j}.$$

Paths: Eigenvalue Condition

The eigenvalues of P_{5d-1} are

$$\lambda_j = 2\cos\frac{\pi j}{5d}, \quad j = 1, ..., 5d - 1$$

Paths: Eigenvalue Condition

The eigenvalues of P_{5d-1} are

$$\lambda_j = 2\cos\frac{\pi j}{5d}, \quad j = 1, ..., 5d - 1$$

Lemma

Let m be an odd integer, $0 \le a < k$ integers. Then

$$\sum_{i=0}^{m-1} (-1)^i \cos\left(\frac{(a+ik)\pi}{km}\right) = 0.$$

Paths: Eigenvalue Condition

The eigenvalues of P_{5d-1} are

$$\lambda_j = 2\cos\frac{\pi j}{5d}, \quad j = 1, ..., 5d - 1$$

Lemma

Let m be an odd integer, $0 \le a < k$ integers. Then

$$\sum_{i=0}^{m-1} (-1)^i \cos\left(\frac{(a+ik)\pi}{km}\right) = 0.$$

Eigenvalue condition satisfied if and only if $d = 2^k$ for some k.

PGFR in Paths

Theorem

Vertices u and v of P_n exhibit PGFR if and only if we are in one of the following cases:

- There is PGST from u to v (characterized previously).
- $n = 5 \cdot 2^k 1$ and $\{u, v\} = \{2^k, 3 \cdot 2^k\}$ or $\{2 \cdot 2^k, 4 \cdot 2^k\}$.

Future Work

What other graphs have fractionally cospectral pairs of nodes?
 Which of these exhibit FR/PGFR?

Future Work

- What other graphs have fractionally cospectral pairs of nodes?
 Which of these exhibit FR/PGFR?
- Weighted paths?

Future Work

- What other graphs have fractionally cospectral pairs of nodes?
 Which of these exhibit FR/PGFR?
- Weighted paths?
- FR or PGFR among more than 2 nodes in paths?

The End

Thank You!