Types of RNN

Types of RNN

1. One-to-Many

2. Many-to-One

3. Many-to-Many

One-to-Many

 A single input (or fixed-length vector) generates a sequence of outputs.

Image Captioning

- 1.CNN encodes an image into a feature vector.
- 2.An RNN decoder takes that vector as its initial hidden state and emits a word at each time step: "A" \rightarrow "dog" \rightarrow "running" \rightarrow ... \rightarrow <END>.

One-to-Many

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/RNN/slides-plain.html

Many-to-One

- A whole input sequence is read in; after the final time step, the model emits a single output.
- You unroll the RNN over all timesteps, then apply (e.g.) a dense layer to the last hidden state.

Many-to-One

Example:

- Sentiment Classification
 - Input: the word sequence of a movie review.
 - Output: one scalar (e.g. positive vs. negative) based on the final hidden state.
- Sequence Regression
 - Predicting tomorrow's stock price from the past week's closing prices.

Many-to-One

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/RNN/slides-plain.html

Many-to-Many

- Synchronized (Output length = Input length)

 Definition: One output for each input time step.

 Example:
 - Part-of-Speech Tagging
 - At each word in the sentence, you tag it as noun/verb/etc.
 - Named-Entity Recognition
 - Emit a label for every token ("O", "B-PERSON", "I-ORG", ...).

Many-to-Many

• Unsynchronized (Output length ≠ Input length)

Definition: You read the entire input sequence, then generate an output sequence (of different length).

Example:

- Machine Translation
 - Encoder RNN reads all words of the source sentence.
 - Decoder RNN then produces the target sentence one word at a time.

Many-to-Many

