Lecture11: MOSFET IV

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Q&A

- Various definition of V_{TH} ?
 - Which is the exact one?

- Linear $Q_{elec} V_G$ relation. Why?
 - Surface potential pinning

Device structure

- 2D cross-section
 - "Potential" can be dependent on the position, V(x).

Our goal: IV relation

Current densities

In the 1D structure (along the x direction),

$$J_{n,x}^{diff} = qD_n \frac{dn}{dx}$$
$$J_{n,x}^{drift} = q\mu_n n E_x$$

We assume that the drift current is dominant.

Terminal current

- A correct sign!
- In the 1D structure, the drain current would be

$$I_D = -Area \times \left(J_{n,x}^{diff} + J_{n,x}^{drift}\right)$$

Electron is not uniformly distributed along the vertical direction.

Derivation of IV (1)

Drain current

- Q_{elec} is the electron charge density *per unit length*.
- It follows (with a correct sign)

$$Q_{elec} = -WC_{ox}[V_G - V(x) - V_{TH}]$$
 (Razavi 6.3)

- At a certain position of x, the current is given by

$$I(x) = Q_{elec}(x) v(x)$$
 (Razavi 6.4)

Also v is the electron velocity.

$$v = -\mu_n E = +\mu_n \frac{dV}{dx}$$
 (Razavi 6.5 and 6.6)

Derivation of IV (2)

- Drain current (Continued)
 - It is easy to understand that $I_D = -I(x)$.
 - The drain current is

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$
 (Razavi 6.7)

Simply re-arranging,

$$I_D dx = \mu_n C_{OX} W[V_G - V(x) - V_{TH}] dV$$

When integrated,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Differential equation

Equation

- A differential equation for V(x)

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$

– Let's solve it together!

Its solution

Equation

Its solution

$$V(x) = V_G - V_{TH} - \sqrt{(V_G - V_{TH})^2 - \frac{2I_D}{\mu_n C_{ox} W}} x$$

- Apply boundary conditions: $V(0) = V_S$ and $V(L) = V_D$
- Drain current

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Solution, "potential"

• $V_{GS} = V_{DD} = 1.8 \text{ V}$. V_{DS} from 0 V to $V_{DD} - V_{TH} = 1.4 \text{ V}$

Position (µm)

Solution, electron density

• $V_{GS} = V_{DD} = 1.8 \text{ V}. V_{DS} \text{ from 0 V to } V_{DD} - V_{TH} = 1.4 \text{ V}$

Saturation mode

Current usually increases as the voltage increases...

$$|Q_{elec}| = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (Razavi 6.3)

- What happens when $V(x) = V_G - V_{TH}$?

State-of-the-art MOSFET (1)

- C. Auth et al. (Intel, IEDM 2017)
 - Slight increase of I_D in the saturation region

GIST Lecture on April 22, 2020 (Internal use only)

State-of-the-art MOSFET (2)

- G. Yeap et al. (TSMC, IEDM 2019)
 - $I_D V_G$ curves (NMOSFET & PMOSFET)

GIST Lecture on April 22, 2020 (Internal use only)