Convex Optimization

Hu SiXing, Hakki Can Karaimer, Pan An, Philipp Keck

National University of Singapore

January 29, 2016

Linear Regression Example

Linear Regression

There should be a picture here.

rannary Boast Squares

$$\begin{array}{ll} \text{Input: points } (x_i,y_i) & & & (\vec{x_i},y_i) \\ \text{Regression line: } y = mx + b & & y = \vec{w} \cdot \vec{x} + b \\ \text{Objective:} & & \min_{m,b} \sum_i (y_i - mx_i - b)^2 & & \min_{\vec{w}} \sum_i (y_i - \vec{w} \cdot \vec{x_i} - b)^2 \end{array}$$

- Easily Solved: $\vec{w}^*(X^TX) 1X^T\vec{y}$
- But what if $\dim \vec{x}$ is large?
- What about other similar regressions?

- Ordinary Linear
Regression: $\min_{\vec{w}} \sum_{\cdot} (y_{i} \vec{w} \cdot \vec{x_{i}})^{2}$
- General: $\min f(x)$ where f(x) is convex
- Set C is convex $\iff \exists x,y \in C, 0 \leqslant t \leqslant 1 : tx + (1-t)y \in C$
- Function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is convex and $\exists x, y \in \text{dom } f, 0 \leq t \leq 1$:

$$f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y)$$

• Unconstrained.

Outliers

Linear Regression

Supposed to be a picture here.

Outlier Penalty

Linear Regression

pic

Capped Penalty

Linear Regression 000000

pic

Huber Penalty Function pic

Linear Regression ○○○○○○●

- Minimize f(x);
- Where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and twice differentiable;
- No additional constraints;
- Assume that unique minimum x^* exists.

- Objective: minimize f(x)
- Necessary and sufficient condition: $\nabla f(x^*) = 0$
 - Solve analytically
 - Iterative algorithms

Iterative Algorithm:

$$x^{(0)}, x^{(1)}, ... \in dom f$$

$$k \to \infty$$
, $f(x^{(k)}) < f(x^*)$

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)},$$
s.t. $f(x^{(k+1)}) < f(x^{(k)})$

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \mathbf{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$
 (1)

Linear Regression

Given $x^{(0)} \in \text{dom } f$: repeat

Determine a descent direction Δx :

Choose a step size t > 0;

Update
$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)};$$

until Δx is within an acceptable range and is stable;

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

Descent Method:

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \mathbf{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$
 (1)

Theorem

Linear Regression

For a continuously differentiable function f:

Proof

$$f(x^{(k+1)}) \geqslant f(x^{(k)}) + f'(x^{(k)}) \Delta x^{(k)}$$
$$\nabla f(x^{(k)}) \leqslant f(x^{(()}k+1)) - f(x^{(k)}) < 0$$

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

Descent Method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{x}^{(k)}, \mathbf{s.t.} \mathbf{f}(\mathbf{x}^{(k+1)}) < \mathbf{f}(\mathbf{x}^{(k)})$$
 (1)

Algorithm:

Linear Regression

Given $x^{(0)} \in \text{dom } f$; repeat

Determine a descent direction $\Delta x \Rightarrow Gradient/SteepestDescent$; Choose a step size $t > 0 \Rightarrow$ LineSearchAlgo;

Update $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$;

until Δx is within an acceptable range and is stable;;

Noticing that f is convex:

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0 \tag{2}$$

- - - - 11 / 20

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{x}^{(k)}, \mathbf{f}(\mathbf{x}^{(k+1)}) \leftarrow \mathbf{f}(\mathbf{x}^{(k)})$$

Should be pics
Exact Line Search Method:

$$t = \underset{s \leq 0}{\operatorname{argmin}} \{ f(x + s\Delta x) \}$$

Line Search

Linear Regression

• Armijo Condition:

$$f(x^{(k)} + t\Delta x^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)}, c_1 > 0$$

• Wolfe Conditions (Including Armijo Condition):

$$\nabla f(x^{(k)} + t\Delta x^{(k)})^{\mathsf{T}} p^{(k)} \geqslant c_2 \nabla f(x^{(k)})^{\mathsf{T}} p^{(k)}, 0 < c_1 < c_2 < 1$$

Theorem:

Gradient descent will find local minimum if step size α satisfies Wolfe conditions.

Exact Line Search Method:

$$t = \underset{s \leqslant 0}{\operatorname{argmin}} \{ f(x + s\Delta x) \}$$

• Armijo Condition:

$$f(x^{(k)} + t\Delta x^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)}, c_1 > 0$$

Algorithm:

```
Given a descent direction \Delta x for f at x \in \text{dom } f, \alpha \in (0, 0.5), \beta \in (0, 1), t = 1; repeat  \big| \quad t = \beta t; until f(x^{(k)} + t\Delta x^{(k)}) \leqslant f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T \Delta x^{(k)};
```

Exact Line Search Method:

$$t = \underset{s \leqslant 0}{argmin} \{ f(x + s\Delta x) \}$$

- Gradient Descent Method
- Steepest Descent Method

 Δx satisfies:

$$\nabla f(x^{(k)})^\mathsf{T} \Delta x < 0$$

Gradient Descent Method

```
\begin{split} \Delta x &= -\nabla f(x) \\ \text{Given } x^{(0)} \in \text{dom } f; \\ \text{repeat} \\ & \Delta x = -\nabla f(x^{(k)}); \\ \text{Choose a step size } t > 0, [\texttt{LineSearch}]; \\ & \text{Update } x^{(k+1)} = x^{(k)} + t\Delta x; \\ \text{until } \Delta x \text{ is within an acceptable range and is stable}; \end{split}
```

 $\Delta x = \Delta x_{sd}$ Taylor Series:

Linear Regression

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x} \nabla f(\mathbf{x}) \Delta \mathbf{x}$$

$$f(\mathbf{x} + \mathbf{v}) \approx \hat{f}(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} \mathbf{v}$$

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \text{s.t.} f(x^{(k+1)}) < f(x^{(k)})$$

Where **v** is a descent direction if $\nabla f(\mathbf{x})^{\mathsf{T}} < 0$

$$f(\mathbf{x} + \mathbf{v}) \approx \hat{f}(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v}$$

Normalized Steepest Descent Direction:

$$\Delta \mathbf{x}_{\text{nsd}} = \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| = 1\}$$
$$= \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| \leq 1\}$$
 (3)

Steepest Descent Method

Dual Norm, denoted $\|\cdot\|_*$, is defined as:

$$||z||_* = \sup\{z^{\mathsf{T}}x | ||x|| \le 1\}$$

Unnormalized Steepest Descent Direction:

$$\Delta \mathbf{x} = \left\| \nabla f(\mathbf{x}) \right\|_* \cdot \Delta \mathbf{x}_{nsd}$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} = \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x}_{sd}$$

$$= \|f(\mathbf{x})\|_{*} \nabla f(\mathbf{x})^{\mathsf{T}} \Delta \mathbf{x}_{nsd}$$

$$= - \|\nabla f(\mathbf{x})\|_{*}^{2}$$

Proof

$$\begin{split} \Delta \mathbf{x}_{nsd} &= \text{argmin}\{\nabla f(\mathbf{x})^\mathsf{T} \mathbf{v} | \| \mathbf{v} \| = 1\} \\ &= -\text{argmax}\{\nabla f(\mathbf{x})^\mathsf{T} \mathbf{v} | \| \mathbf{v} \| \leqslant 1\} \\ &\| \nabla f(\mathbf{x}) \|_*^2 = \sup\{\nabla f(\mathbf{x})^\mathsf{T} \mathbf{v} | \| \mathbf{v} \| \leqslant 1\} \\ &\Rightarrow \| \nabla f(\mathbf{x}) \|_*^2 = -\nabla f(\mathbf{x})^\mathsf{T} \Delta \mathbf{x}_{nsd} \end{split}$$

Steepest Descent Method

$$\Delta \mathbf{x}_{nsd} = \operatorname{argmin} \{ \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \| \mathbf{v} \| \leq 1 \}$$

$$\Delta \mathbf{x}_{sd} = \| \nabla f(\mathbf{x}) \|_* \Delta \mathbf{x}_{nsd}$$

Steepest Descent Method

```
\label{eq:condition} \mbox{Given } x^{(0)} \in dom \, f; \\ \mbox{repeat}
```

Compute steepest descent direction Δx_{sd} ; Choose a step size t > 0, [LineSearch]:

Update $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{sd}^{(k)};$

until Δx is within an acceptable range and is stable;

General

Linear Regression

```
Given x^{(0)} \in \text{dom } f;
repeat
      Determine a descent direction \Delta x:
      Choose a step size t > 0;
      Update x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}:
until \Delta x is within an acceptable range and is stable:
```

```
Given x^{(0)} \in \text{dom } f:
repeat
      \Delta x = -\nabla f(x^{(k)}):
      Choose a step size t > 0, [LineSearch];
      Update x^{(k+1)} = x^{(k)} + t\Delta x;
until \Delta x is within an acceptable range and is
stable;
```

```
Given x^{(0)} \in \text{dom } f:
repeat
      Compute steepest descent direction \Delta x_{sd};
      Choose a step size t > 0, [LineSearch];
      Update x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{ad}^{(k)};
until \Delta x is within an acceptable range and is
```

stable;

General

Linear Regression

- $\Delta \mathbf{x}_{nsd} = \operatorname{argmin}\{\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v} | \|\mathbf{v}\| \leq 1\}$
- $\Delta \mathbf{x}_{sd} = \|\nabla f(\mathbf{x})\|_{\mathbf{x}} \cdot \Delta \mathbf{x}_{nsd}$
- If the norm $\|\cdot\|$ is Euclidean norm, $\Delta \mathbf{x} = -\nabla f(\mathbf{x})$

stable;

```
Given x^{(0)} \in \text{dom } f:
repeat
      \Delta x = -\nabla f(x^{(k)}):
      Choose a step size t > 0, [LineSearch];
      Update x^{(k+1)} = x^{(k)} + t\Delta x:
until \Delta x is within an acceptable range and is
```

```
Given x^{(0)} \in \text{dom } f:
repeat
      Compute steepest descent direction \Delta x_{s,d};
      Choose a step size t > 0. [LineSearch]:
      Update x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x_{ad}^{(k)};
until \Delta x is within an acceptable range and is
```

stable;

Linear Regression method is applicable only if nonlinear function is linear in terms of function parameters:

$$f(x; \alpha) = \sum_{k=1}^{m} \alpha_k h_k(x)$$

Many nonlinear functions are not like that, for example:

$$f_1(x) = \frac{x^2}{a_1 + (x - a_2)}$$

$$f_2(x, y, z) = \frac{x^2}{a_1 + x^2} + \frac{y^2}{a_2 + y^2} + \frac{z^2}{a_3 + z^2}$$

Convex Domain

There should be pic here;

To minimize the error, we need iterative optimization.

If step length is appropriate, f always decreases: converge. (well condition) pic here,

If step length is too large, f can increase: diverge. (ill condition)

Advantages – Disadvantages – Limitations

If parameters of f affect error equally,

Convex Domain

Advantages – Disadvantages – Limitations

If parameters of f affect error unequally, Pic here.

Advantages – Disadvantages – Limitations

If parameters of f affect error very unequally, Pic here.

Small step length can also cause divergence. (ill condition)

Condition Number

- The condition number of C gives a measure of its anisotropy or eccentricity.
- If the condition number of a set C is small (say, near one) it means that the set has approximately the same width in all directions, i.e., it is nearly spherical.
- If the condition number is large, it means that the set is far wider in some directions than in others.
- cond(f) = $\frac{\lambda_{max}(f)}{\lambda_{min}(f)}$
- λ_{max} and λ_{min} describes minimum and maximum eigenvalues in 2D.

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_{(2)}^2) \quad \gamma > 0$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$

$$x_{(1)}^{(k)} = \gamma (\frac{\gamma - 1}{\gamma + 1})^k, \quad x_{(2)}^{(k)} = \gamma (-\frac{\gamma - 1}{\gamma + 1})^k$$

- Hessian of f has eigenvalues 1 and γ . And, $m = \min 1, \gamma$, and $M = \max 1, \gamma$
- In particular, f(x_(k)) converges to p*, optimal value, at least as fast as a geometric series with an exponent that depends (at least in part) on the condition number bound
- Very slow if $\gamma > 1$ or $\gamma < 1$
- Useless if $\gamma > 20$.

Linear Regression

• Example for $\gamma = 10$.

Should be a pic beside itemize.

Advantages – Disadvantages – Limitations

Left Number of iterations of the gradient method as a function of γ which can be thought of as amount of diagonal scaling. Right Condition number of the Hessian of the function at its minimum as a function of γ .

We see that the condition number has a very strong influence on convergence rate.

Pics here but strongly recommend you guys draw pictures yourself next time.

Exact Line Search VS. Backtracking Line Search with Non-Quadratic Example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Pics here

Linear Regression

- With exact line search, the error is reduced about 10^{-8} in 20 iterations, i.e., a reduction by a factor of 20 about $10^{-\frac{8}{20}} \approx 0.4$ per iteration.
- With backtracking line search, the error is reduced about 10^{-8} in 15 iterations, i.e., a reduction by a factor of 15 about

Should be a pic right side at the itemize

Exact Line Search VS. Backtracking Line Search with a Problem in R¹⁰⁰

$$f(x) = c^{\mathsf{T}} x - \sum_{i=1}^{500} \log(b_i - \alpha_i^{\mathsf{T}} x)$$

A larger example, of the form with m = 500 terms and n = 100 variables.

pics here.

Linear Regression

linear convergence, i.e., a straight line on a semilog plot

Exact Line Search VS. Backtracking Line Search with a $\overline{\text{Problem in }}$ R¹⁰⁰

The progress of the gradient method with backtracking line search, with parameters $\alpha = 0.1$, $\beta = 0.5$.

Average error reduction is $10^{-\frac{6}{175}} \approx 0.92$ per iteration. In the convergence of the gradient method with exact line search, 6 average error reduction is $10^{-\frac{6}{140}} \approx 0.91$ per iteration. A bit faster than the gradient method with backtracking line search.

Here is some pic

Exact Line Search VS. Backtracking Line Search with a $\overline{\text{Problem in } R^{100}}$

- These experiments, done by the book authors, show that the effect of the backtracking parameters on the convergence is not large.
- Experiment 1: (effect of the choice of α): Fix $\beta = 0.5$, and vary α . This experiment suggests that the gradient method works better with fairly large α , in the range (0.2, 0.5).
- Experiment 2: (effect of the choice of β): Fix $\alpha = 0.1$, and vary β . This experiment suggests that $\beta \approx 0.5$ is a good choice.

Image Processing — Lucas-Kanade

Classic examples are optical flow techniques like Lucas-Kanade (VideoTracking), Horn-Schunck.

Lucas-Kanade

Linear Regression

Goal of Lucas-Kanade

Minimize the sum of squared error between two images.

Assumption

The displacement of the image contents between two nearby instants (frames) is small and approximately constant within a neighborhood of the point $\mathfrak p$ under consideration.

Optical Flow Equation (2 Dementional)

For a pixel location (x, y, t), the intensity has moved by Δx , Δy , Δt , the basic assumption can be represented as:

$$I(x,y,t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Optical Flow Effect:

For all pixels within a window centered at p:

$$I_x(q_i)V_x + I_y(q_i)V_y = -I_t(q_i)$$

Where i = 1, 2, 3...n.

Abbreviations:

$$A = [I_x(q_i)^T, I_y(q_i)^T]$$

$$V = [v_x, v_y]^T$$

$$b = [-I_t(q_i)]^T$$

Lucas-Kanade Method Abstraction:

LK method tries to solve 2×2 system:

$$A^{\mathsf{T}}AV = A^{\mathsf{T}}b$$

A.K.A:

$$V = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$$

Notice:

 $V = [v_x, v_u]^T$ is variable. Which means that the system does not know the actual velocity of the system.

Lucas-Kanade

Goal of Lucas-Kanade Method:

To minimize $||A^TV - b||^2$.

Basic LK Derivation for Models(Stuff to be Tracked):

$$E[v_x, v_y] = \Sigma [I(x + v_x, y + v_y) - T(x, y)]^2$$

Where v_x, v_y is the hypothesized location of the model(s) to be tracked, and T(x,y) model.

Key Step for Implementation of GD (Step 1):

Generalizing LK approach by introducing warp function W:

$$E[v_x, v_y] = \Sigma[I(W(x, y); P) - T(x, y)]^2$$

Generalizing is used to solve the problem where the constant flow of larger picture frames for a long time is a total waste of calculation power. Warp function examples are Affine and Projective.

The warping function are the convergence factor for steepest descent algorithm.

Lucas-Kanade

Key Step for Implementation of GD (Step 2):

The key to the derivation is Taylor series approximation:

$$I(W(x,y); P + \Delta P) \approx I(W([x,y]; P)) + \nabla I \frac{\partial W}{\partial P} \Delta P$$

- The approximation equation is actually the abstract of the basic assumption of optical flow described in the slides before.
- Derivation of this equation can be discussed in forum (Too long for slides).

Some Explainations:

- Gradient image ∇I
- Image error $I_F = T(x, y) I(W[x, y]; P)$
- Jacobian matrix $\frac{\partial W}{\partial R}$
- Steepest image $I_S = \nabla I \frac{\partial W}{\partial P}$
- Hessian Matrix $\Sigma(\nabla I \frac{\partial W}{\partial P})^{\mathsf{T}}(\nabla I \frac{\partial W}{\partial P})$
- Iteration step $\Delta P = \Sigma I_S^T I_E$

Lucas-Kanade

Linear Regression

Algorithms:

- Warp image and get I(W[x,y]; P);
- Get image error I_E;
- Warp gradient image ∇I ;
- Evaluate Jacobian;
- Compute steepest descent image $I_S = \nabla I \frac{\partial W}{\partial P}$;
- Compute Hessian matrix $\Sigma I_S^T I_S$;
- Get warping step $\Delta P = I_S I_E$;
- Update warping parameter $P = P + \Delta P$;
- Repeat until ΔP is negligible.

APPLICATIONS – MACHINE LEARNING

Generalized Utilization of Convex: Delta Rule

- The delta rule is derived by attempting to minimize the error in the output of the neural network through gradient descent.
- Gradient Descent optimization is the most basic principle for training neurons even with different activation functions.
- Delta rule, can also be modified, if possible, with steepest descent method.

APPLICATIONS – MACHINE LEARNING

Delta Rule:

Linear Regression

$$\Delta w_{ji} = \alpha (t_j - y_j) g'(h_j) x_j$$

Where α is the learning rate, g(x) is the neuron's activation function. t_j and y_j is the target and actual output of the neuron. h_j is the weighted sum of the neuron's inputs. And x_i is the i_{th} input.

The above equation holds the following:

$$h_{j} = \sum x_{i} w_{ji}$$
$$y_{j} = g(h_{j})$$

Goal of Inverse Kinematics

Given a position in the space, calculate a way for a robot hand to reach a place.

Problem Abstract:

Linear Regression

$$\vec{e} = R_1 T_1 R_2 T_2 R_3 T_3 R_4 T_4 \vec{e_0}$$

Where T_i is a series of translation transformation and R_i is a series of rotation translation.

Abstraction for Convex Optimization:

$$\Delta \vec{\theta} = \alpha J^{\mathsf{T}} \vec{e}$$

The target for the optimization is to achieve $|\vec{e_p} - \vec{e_t}| = 0$, where $\vec{e_p}$ is the original position of the tip of the robotic arm and $\vec{e_t}$ is the target position. J is the jacobian matrix in terms of $\vec{\theta}$, which is the vector of all the spatial angles of all joints. α is the convergence rate and \vec{e} is the position derivation (step size).

About Inverse Kinematics

- Jacobian transpose is the implementation of gradient descent in the real physical world.
- It can actually achieve near linear solution for robotic arms with a fast convergence rate.