MATH 570, Homework 5

Colin Roberts
September 21, 2017

Solutions

Problem 1.

- (a) Prove that a topological space X is disconnected if and only if there exists a surjective continuous function from X to the discrete space $\{0,1\}$.
- (b) Prove that if *X* is path-connected and $f: X \to Y$ is continuous, then f(X) is path-connected.

:

Proof (Part (a)). For the forward direction, suppose that X is disconnected. Thus we can say that there exists $A \subset X$ with $A \neq \emptyset$ which is open and closed in X. Then $X \setminus A$ is also open and closed. Let $f: X \to \{0,1\}$ with f(A) = 0 and $f(X \setminus A) = 1$. Then $f^{-1}(0) = A$ and $f^{-1}(1) = X \setminus A$. Thus we have that f is continuous since $\{0\}, \{1\}$ are open in $\{0,1\}$ and $A, X \setminus A$ are open.

For the reverse direction, suppose we have $f: X \to \{0,1\}$ is continuous and surjective. Thus $f^{-1}(0) \subseteq X$ and $f^{-1}(1) \subseteq X$ are nonempty and open due to surjectivity and continuity respectively. Thus $X \setminus f^{-1}(0)$ and $X \setminus f^{-1}(1)$ are nonempty, open and closed in X. Thus X is disconnected. \square

:

Proof (Part (b)). Suppose F is path connected and $f: X \to Y$ is continuous. Let $\gamma: [0,1] \to X$ be an arbitrary path connected x_1, x_2 (i.e., $\gamma(0) = x_1$ and $\gamma(1) = x_2$). Then $f \circ \gamma$ is a path in f(x) with $f \circ \gamma(0) = f(x_1)$ and $f \circ \gamma(1) = f(x_2)$. This is a continuous function since composition of continuous functions is continuous. Since x_1, x_2 were arbitrary we have that $f(x_1)$ and $f(x_2)$ are arbitrary points in f(X) and thus f(X) is path connected.

Problem 2. Prove Lemma 4.27 in our book, which says that if X is a topological space, then $A \subseteq X$ (with the subspace topology) is compact if and only if every cover of A by open subsets of X has a finite subcover.

:

Proof. For the forward direction, let $A \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ with each U_{α} open in X. Since we are supposing A is compact, there exists a finite collection of U_{α} so that $A \subseteq \bigcup_{i=1}^{n} U_{\alpha_{i}}$. So A has a finite subcover for an arbitrary cover given by a collection of open subsets in X.

For the reverse direction, suppose that we have an arbitrary open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of A. Since $A\subseteq X$, these $U_{\alpha}\subseteq X$ and thus we have a finite subcover of A given by $A\subseteq \cup_{i=1}^n U_{\alpha_i}$. Which means that $A=\bigcup_{i=1}^n A\cap U_{\alpha_i}$ is a finite open cover for A and we have that A is compact since our original cover was arbitrary. \square

Problem 3. Solutions to this problem are in our book – feel free to learn and use those solutions!

- (a) Let *X* be a Hausdorff space and let $A, B \subseteq X$ be disjoint compact subsets. Prove that there exist disjoint open sets $U, V \subseteq X$ with $A \subseteq U$ and $B \subseteq V$.
- (b) Prove that every compact subset *A* of a Hausdorff space *X* is closed.

:

Proof (Part (a)). I will use the proof from the book, but just rewritten slightly. First, consider $B = \{q\}$ and then we have for all $p \in A$ that there exists open subsets $p \in U_p \subseteq X$ and $q \in V_p \subseteq X$ with $U_p \cap V_p = \emptyset$. Then $\cup_{p \in A} U_p$ is an open cover of A and so we have $\mathbb{U} = \bigcup_{i=1}^n U_{p_i}$ is a finite open subcover. Then $\mathbb{V} = \bigcap_{i=1}^n V_{p_i}$ is disjoint from \mathbb{U} with $A \subseteq \mathbb{U}$ and $\{q\} \in \mathbb{V}$.

Now, suppose that $B \subseteq X$ is compact and disjoint from A. Then for each $q \in B$ we have open subsets created as in the above paragraph which we denote \mathbb{U}_q , \mathbb{V}_q with $A \subseteq \mathbb{U}_q$ and $q \in \mathbb{V}_q$. Since B is compact, we have $\mathbb{B} = \bigcup_{i=1}^m \mathbb{V}_{q_i}$ covers B and $\mathbb{A} = \bigcap_{i=1}^m \mathbb{U}_{q_i}$ is a cover of A disjoint from \mathbb{B} .

.

Proof (Part (b)). Let *A* be a compact subset of a Hausdorff space *X*. Suppose that $\exists p \in X \setminus A$ which is a limit point of *A*. So for every neighborhood of *p*, N(p), we have $N(p) \cap A \neq \emptyset$. But this means that points in *A* are not distinct from *p* since *X* is Hausdorff and each pair of distinct points can be contained in disjoint open sets. This contradicts $p \in X \setminus A$ and thus $p \in A$ and *A* must be closed since *p* was an arbitrary limit point.

Problem 4. Define $id: S^1 \to S^1$ by id(p) = p, and define $g: S^1 \to S^1$ by g(p) = -p. Find a homotopy $F: S^1 \times I \to S^1$ from id to g.

:

Solution. We have $id(p) = p = e^{i\theta}$ and $g(p) = -p = e^{i(\theta + \pi)}$. Then let $F: S^1 \times I \to S^1$ be given by $F(\theta, t) = e^{i(\theta + \pi t)}$. Then $F(\theta, 0) = id(p)$ and $F(\theta, 1) = g(p)$.

:

Proof. Suppose that our open subset $U \subseteq \mathbb{R}$ is multiple disjoint open intervals. Then U is not connected, but \mathbb{R}^n is. Thus there cannot be a homeomorphism. Since a single open interval is homeomorphic to \mathbb{R} , it suffices to show that \mathbb{R}^n is not homeomorphic to \mathbb{R} . Suppose, for a contradiction, we have a homeomorphism $h: \mathbb{R}^n \to \mathbb{R}$. Then we also have a homeomorphism on the set $\mathbb{R}^n \setminus \{\vec{p}\}$ given by $h: \mathbb{R}^n \setminus \{\vec{p}\} \to \mathbb{R} \setminus \{h(\vec{p})\}$. But $\mathbb{R} \setminus \{h(\vec{p})\}$ is not connected and $\mathbb{R}^n \setminus \{\vec{p}\}$ is. Thus we contradict h being a homeomorphism and we have that \mathbb{R}^n for n > 1 is not homeomorphic to any open subset of \mathbb{R} . \square

Problem 6. Let A be an infinite set, and let \mathbb{R}^A denote the Cartesian product of A copies of \mathbb{R} (namely $\mathbb{R}^A = \prod_{\alpha \in A} X_\alpha$ where $X_\alpha = \mathbb{R}$ for all $\alpha \in A$). Consider \mathbb{R}^A equipped with two different topologies: $(\mathbb{R}^A, \operatorname{product})$ with the product topology, and $(\mathbb{R}^A, \operatorname{box})$ with the box topology, as defined on page 63 of our book.

Show that $(\mathbb{R}^A, \text{box})$ equipped with the maps $\pi_{\alpha}^{\text{box}}$: $(\mathbb{R}^A, \text{box}) \to X_{\alpha} = \mathbb{R}$ defined via $\pi_{\alpha}^{\text{box}}((x_{\alpha})_{\alpha \in A}) = x_{\alpha}$ is not the categorical product of A copies of \mathbb{R} in the category of topological spaces, as follows (and *not* by using Corollary 3.39). Suppose for a contradiction $(\mathbb{R}^A, \text{box})$ satisfied the universal property on page 213. Choose W to be the actual categorical product $(\mathbb{R}^A, \text{product})$ equipped with the maps $\pi_{\alpha}^{\text{prod}}$: $(\mathbb{R}^A, \text{box}) \to X_{\alpha} = \mathbb{R}$ similarly defined via $\pi_{\alpha}^{\text{prod}}((x_{\alpha})_{\alpha \in A}) = x_{\alpha}$. Show that there is no continuous f making the necessary diagrams commute.

Hint: Note that $(0,1)^A$ is open in (\mathbb{R}^A, box) . Can you explain why $(0,1)^A$ is not open in \mathbb{R}^A , product)? Remark: When showing that an object is not a categorical product, it is often a good idea to choose "test object" W to be the actual categorical product.

Proof. We have the following diagram:

:

We have that $(\mathbb{R}^A,\operatorname{prod})$ is a product in the category of topological spaces and thus $\pi_\alpha^{\operatorname{prod}}$ is continuous. Note if this diagram commutes then $\pi_\alpha^{\operatorname{box}} \circ f = \pi_\alpha^{\operatorname{prod}}$ is continuous. Due to how $\pi_\alpha^{\operatorname{box}}$ and $\pi_\alpha^{\operatorname{prod}}$ are defined, $f \colon (\mathbb{R}^A,\operatorname{prod}) \to (\mathbb{R}^A,\operatorname{box})$ is given by $(V,\operatorname{prod}) \mapsto (V,\operatorname{box})$ for $U \subset \mathbb{R}^A$. But note that if $V = (0,1)^A$ then $f^{-1}((0,1)^A,\operatorname{box}) = ((0,1)^A,\operatorname{prod})$ is not open since the product topology is generated by a base where all but finitely many $U_\alpha = X_\alpha$, and this is not the case. Thus f is not continuous and this diagram does not commute.