07) Sea  $C \subset \Re^3$  una curva suave de ecuación  $\overline{X} = \overline{g}(t)$  con  $t \in [a, b] = \overline{I}$  $s = \lambda(t) = \int_{a}^{t} \|\overline{g}'(\omega)\| d\omega$  es la *abscisa curvilínea* del punto  $\overline{g}(t) \in C$ . Observe var gre  $\lambda(a) = 0$ "parametrización intrinseca" que consiste en la signiente: es la longitud de la para t E [a, b] calculamos | | g'(u) | de (cambianos el mombre de la variable de integración variable de integración confundirla

| esteremos calculando la longitud de<br>un tozo de la cuma : el trozo que                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ve desde g(e) hasta g(t)                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                       |
| Llamamos s= A(t) a esta longitud                                                                                                                                                                                                                                                                                                                                                      |
| (obviamente defende del t que elijands)                                                                                                                                                                                                                                                                                                                                               |
| Rosultan                                                                                                                                                                                                                                                                                                                                                                              |
| $\lambda(e) = 0$                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                       |
| 7(b) = Long (C) = L                                                                                                                                                                                                                                                                                                                                                                   |
| Siendo $s' = \lambda'(t) = \ \overline{g}'(t)\  > 0 \implies \lambda$ estrictamente creciente $\Rightarrow \exists \lambda^{-1}$ tal que $t = \lambda^{-1}(s)$ , componiendo con $\overline{g}$ resulta: $\overline{X} = \underline{\overline{g}(\lambda^{-1}(s))}$ con $s \in I_s$ que es la ecuación <b>normal</b> de $C$ , donde $I_s$ es la imagen de $I$ a través de $\lambda$ . |
| agui se refieren a gre, como $\lambda(t) = \int \ \vec{g}'(u)\  du$ , republe $\lambda'(t) = \ \vec{g}'(t)\  > 0$                                                                                                                                                                                                                                                                     |
| : le punción $\lambda(t)$ es creciente (la cual es                                                                                                                                                                                                                                                                                                                                    |
| obvio porque cuanto mos cercars a b sea                                                                                                                                                                                                                                                                                                                                               |
| t, mayor es la longitud de trosp                                                                                                                                                                                                                                                                                                                                                      |
| de cure que consideramos)                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                       |
| $S = \lambda(t)$ es creciente entonce                                                                                                                                                                                                                                                                                                                                                 |
| existe la función inversa t = 2 (5)                                                                                                                                                                                                                                                                                                                                                   |



| nula la $dT/ds$ , esta derivada es ortogonal a $T(  T  $ constante) y quedan definidos                     |
|------------------------------------------------------------------------------------------------------------|
| el versor normal principal $N \doteq \frac{dT/ds}{\ dT/ds\ }$ y el versor binormal $B \doteq T \times N$ . |
| 41 M                                                                                                       |
| Como el vector tangente $T(5) = \overline{G}'(5)$ tiene                                                    |
| siempre modulo 1 por desiredo do des                                                                       |
| no tiene componente parable a ds                                                                           |
| 7 (que cambianie on magnitud) sino                                                                         |
| solo en dirección perpendicular e T,                                                                       |
| (que vous mes me dirección)                                                                                |
|                                                                                                            |
| Por en dT es un redor normal                                                                               |
|                                                                                                            |
| e le curre y N = ds es un reus                                                                             |
| <u>4</u>     <u>4</u>                                                                                      |
| mormal                                                                                                     |
|                                                                                                            |
| T                                                                                                          |
| $\overrightarrow{N}$                                                                                       |
|                                                                                                            |
|                                                                                                            |
|                                                                                                            |
| y entonces, el producto vectorial entre                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                      |
| $\vec{T}$ y $\vec{N}$ a binormal $\vec{B} = \vec{T} \times \vec{N}$                                        |
|                                                                                                            |
| (marcado & en el gráfico)                                                                                  |
|                                                                                                            |
|                                                                                                            |

Suponiendo existente y no

Para un tofijo, llamando

 $s_{o} = \lambda(t_{o})$  y suponiendo existentes  $\overline{g}'_{o} = \overline{g}'(t_{o})$ ,  $\overline{g}''_{o} = \overline{g}''(t_{o})$ ,  $\overline{g}''_{o} = \overline{g}''(t_{o})$  es posible demostrar que en todo  $\overline{X}_{o} = \overline{g}(t_{o}) \in C$ , si  $\overline{g}'_{o} \wedge \overline{g}''_{o} \neq \overline{0}$  resultan:

$$\boxed{T_{\rm o} = \frac{\overline{g}_{\rm o}'}{\parallel \overline{g}_{\rm o}' \parallel} \;,\; B_{\rm o} = \frac{\overline{g}_{\rm o}' \wedge \overline{g}_{\rm o}''}{\parallel \overline{g}_{\rm o}' \wedge \overline{g}_{\rm o}'' \parallel} \;,\; N_{\rm o} = B_{\rm o} \wedge T_{\rm o}} \;.$$

El triedro intrínseco de C en  $\overline{X}_o$  está formado por los planos normal, osculador y rectificante que son perpendiculares en dicho punto a  $T_o$ ,  $B_o$  y  $N_o$  respectivamente.

La curvatura de flexión de C en  $\overline{X}_0$  es:

$$cf_o \doteq \left\| \frac{dT}{ds}(s_o) \right\| = \frac{\left\| \overline{g}'_o \wedge \overline{g}'_o \right\|}{\left\| \overline{g}'_o \right\|^3}$$

La curvatura de torsión de C en  $\overline{X}_{0}$  es:

$$ct_o \doteq \left\| \frac{dR}{ds}(s_o) \right\| = -\frac{(\overline{g}'_o \wedge \overline{g}''_o) \cdot \overline{g}'''_o}{\left\| \overline{g}'_o \wedge \overline{g}'_o \right\|^2}$$

of Plano normal -> tiere normal To

Brano or culador -> tiere normal Bo

T Plano redificante -> tiere normal No



a) Halle la ecuación normal de la curva de ecuación  $\overline{X} = (2\cos(t), 2\sin(t), 4t)$  con  $t \in [0, 2\pi]$ , definiendo como origen de abscisa curvilínea el punto  $(0, 2, 2\pi)$ .

$$a = \frac{1}{L}$$

$$g(t) = (2\cos(t), 2\sin(t), 4t)$$
,  $t \in [\frac{\pi t}{2}, 2\pi]$ 

$$\|\vec{g}'(t)\| = \sqrt{(-2)^2 \sin^2(t) + 2^2 \cos^2(t) + 4^2} = \sqrt{20}$$

$$S = A(t) = \int_{0}^{t} ||\hat{g}'(u)|| du = \sqrt{20} (t - \pi/2)$$

$$G(s) = \left(2\cos\left(\frac{\Delta}{\sqrt{20}} + \frac{1}{2}\right), 2\sin\left(\frac{\Delta}{\sqrt{20}} + \frac{1}{2}\right), \frac{4\Delta}{\sqrt{20}} + 2\pi\right)$$

$$= \left(2 \quad \text{Sen}\left(\frac{\Delta}{2\sqrt{5}}\right), -2 \cos\left(\frac{\Delta}{2\sqrt{5}}\right), \frac{2\Delta}{\sqrt{5}} + 2\pi\right)$$

$$\triangle \in \left[0, 2\sqrt{5} \left(2\pi - \frac{\pi}{2}\right)\right] =$$

ri se empieza a medin desde (0,2,2TL)

b) Halle la ecuación cartesiana del plano osculador de la curva C intersección del cilindro parabólico de ecuación  $z = x^2$  con el de ecuación  $z = x^2$  en el punto  $z = x^2$  en el punto  $z = x^2$  y calcule las curvaturas de flexión y de torsión de  $z = x^2$  en dicho punto.

$$\frac{1}{2} = x^{2}$$

$$\frac{1}{2} + x^{2} = 2$$

$$\frac{1}{2} (t) = (\sqrt{2} \cos(t)), \sqrt{2} \sin(t), 2 \cos^{2}(t)$$

$$\frac{1}{2} \cos(t) = 1$$

$$\frac{1}{2} \sin(t) = 1$$

$$\frac{1}{2} \cos^{2}(t) = 1$$

$$\frac{1}$$

Plans or culador & que pasa por (1,1,1):

$$p: [(x,3,2)-(1,1,1)].(-2,2,2)=0$$



curroture 
$$cf = ||\hat{q}'(t_0) \times \hat{q}''(t_0)|| = ||(-2, 2, 0)|| = 1$$

flexion

 $||\hat{q}'(t_0)||^3 = (6\sqrt{6} - 3\sqrt{3})$ 

curroture

 $ct = (|\hat{q}'(t_0)| \times |\hat{q}''(t_0)||^2 = 8 - 2$ 

Let to rish

 $||\hat{q}'(t_0) \times |\hat{q}''(t_0)||^2 = 8 - 2$ 

- c) Demuestre que toda recta, tiene curvatura de flexión nula en todos sus puntos.
- d) Demuestre que la circunferencia tiene igual curvatura de flexión en todos sus puntos.

En una recta:

$$g(t) = (a + t a_1, b + t b_1, c + t c_1)$$

$$g'(t) = (a_1, b_1, c_1)$$

$$g''(t) = \tilde{a}$$

$$f''(t) = \tilde{a}$$

$$f''(t) = \tilde{a}$$

$$f''(t) = \tilde{a}$$

En una cincumpenencia (en el plano XJ)  $\frac{1}{3}(t) = (2 + \Gamma \cos(t), b + \Gamma \operatorname{sen}(t), 0)$   $\frac{1}{3}(t) = (-\Gamma \operatorname{sen}(t), \Gamma \operatorname{cos}(t), 0)$   $\frac{1}{3}(t) = (-\Gamma \operatorname{cos}(t), -\Gamma \operatorname{sen}(t), 0)$ 

$$\therefore Cf = \frac{L_3}{L_5} = \frac{1}{L_5} + 4f$$