Séries de Engel

On note E l'ensemble formé des suites de nombres entiers $p=(p_n)_{n\in\mathbb{N}}$ vérifiant :

$$p_0 > 1$$
 et pour tout $n \ge 0$, $p_n \le p_{n+1}$.

1. Etant donnée une suite $p=(p_n)_{n\in\mathbb{N}}$ de E, on forme une suite réelle (x_n) en posant pour tout $n\in\mathbb{N}$:

$$x_n = \sum_{k=0}^n \frac{1}{p_0 p_1 \dots p_k} = \frac{1}{p_0} + \frac{1}{p_0 p_1} + \dots + \frac{1}{p_0 p_1 \dots p_n}$$

- 1.a Calculer x_n quand la suite (p_n) est constante égale à $p \in \mathbb{N} \setminus \{0,1\}$. Quelle est alors la limite de la suite (x_n) ?
- 1.b On revient au cas général.

 Montrer que la suite (x_n) converge vers un réel $x \in]0,1]$.

On pose alors f(p) = x ce qui définit une application $f: E \rightarrow]0,1]$

- 2. Soit $p = (p_n)_{n \in \mathbb{N}}$ et $q = (q_n)_{n \in \mathbb{N}}$ deux suites de E.
- 2.a On suppose $p_0 > q_0$. Etablir que f(p) < f(q).
- 2.b Montrer que f est injective.
- 3. Soit x un réel de l'intervalle [0,1]. On définit une suite (y_n) comme suit :

$$y_0=x\in \left]0,1\right] \text{ puis pour tout } n\geq 0$$

$$y_{n+1}=p_ny_n-1 \text{ avec } p_n \text{ la partie entière de } 1+y_n^{-1}\,.$$

- 3.a Justifier que la suite (y_n) est bien définie et que c'est une suite décroissante d'éléments de [0,1].
- 3.b Exprimer x en fonction $p_0, p_1, ..., p_n$ et de y_n .
- 3.c Conclure que la fonction f est surjective.
- 4. Soit x un réel de l'intervalle]0,1] et $p=(p_n)$ l'unique suite de E telle que f(p)=x . Montrer que :

$$x \in \mathbb{Q} \Leftrightarrow \exists N \in \mathbb{N}, \forall n \geq N, p_n = p_N$$