Protection & Security

Operating System Concepts - 9th Edition

Chapter 14: Protection

- Security and Protection Goals, Principles in normal OS for security,
- Access Control models and methods.

Goals of Protection

- protection is a method of safeguarding data and processes against malicious and intentional intrusion.
- Protection model
 - Computer consists of a collection of objects (hardware or software)
 - Each object has a unique name
 - Objects can be accessed through a well-defined set of operations
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so
 - Controlling shared access
 - Implementing an interface to allow shared access
 - Identification and authentication
 - Naming and communication among processes
 - Scheduling and reclaiming and reusing objects

Operating System Concepts - 9th Edition

14.3

Principles of Protection

- For protection we have protection policies
 - How the processes are to access the resources (CPU, memory, software and even the OS) present in the computer system,
 - Guiding principle principle of least privilege
 - 4 Programs, users and systems should be given just enough privileges to perform their tasks
 - 4 Limit the access of each process with respect to their resource handling.
 - 4 A process is bound to use only those resources which it requires to complete its task, in the time limit that it requires and also the mode in which it is required.
 - Limits damage if entity has a bug, gets abused
 - Can be static (during life of system, during life of process)
 - Or dynamic (changed by process as needed) domain switching, privilege escalation

Domain Structure

- Access-right = <object-name, rights-set>
 where rights-set is a subset of all valid operations that can be performed on the object
- Domain = set of access-rights (a set of objects and the operations that can be performed on them)
- A domain element is described as <object, {set of operations on object}>.
- A domain can consist of a process or a procedure or a user.
- Then, if a domain corresponds to a procedure, then changing domain would mean changing procedure ID.
- Objects may share common operations. Then the domains overlap.

Object Control Mechanisms

Directory

Each user (subject) has a file directory, which lists all files accessible by user - User has a list to determine access to an object

Problem – large lists if many shared objects, revocation of access is time consuming, Cannot revoke rights of everyone to an object and different

users use different names for same file

Silberschatz, Galvin and Gagne ©2013

Object Control Mechanisms

Access Control List

One list for each object - The list showing all subjects & their access rights

Operating System Concepts - 9th Edition

Silberschatz, Galvin and Gagne ©2013

Access Matrix

- View protection as a matrix (access matrix)
- Rows represent domains
- Columns represent objects
- Access (i, j) is the set of operations that a process executing in Domain, can invoke on Object

object domain	F ₁	F ₂	F ₃	printer
D ₁	read		read	
D ₂				print
D ₃		read	execute	
D ₄	read write		read write	

Use of Access Matrix

- If a process in Domain D_i tries to do "op" on object O_j, then "op" must be in the access matrix
- User who creates object can define access column for that object
- Can be expanded to dynamic protection
 - Operations to add, delete access rights
 - Special access rights:
 - 4 owner of O_i
 - 4 copy op from O_i to O_i (denoted by "*")
 - 4 $control D_i$ can modify D_i access rights
 - 4 $transfer switch from domain D_i to D_i$
 - Copy and Owner applicable to an object
 - Control applicable to domain object

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9th Edition

Access Matrix of Figure A with Domains as Objects

object domain	F ₁	F ₂	F ₃	laser printer	<i>D</i> ₁	<i>D</i> ₂	D ₃	D_4
D_1	read		read			switch		
<i>D</i> ₂				print			switch	switch
<i>D</i> ₃		read	execute					
D_4	read write		read write		switch			

Access Matrix with Copy Rights

object domain	F ₁	F ₂	F ₃
D ₁	execute		write*
D ₂	execute	read*	execute
<i>D</i> ₃	execute		

(a)

object domain	F ₁	F ₂	F ₃
D ₁	execute		write*
D ₂	execute	read*	execute
<i>D</i> ₃	execute	read	

(b)

Access Control Models

Access control is the process of:

- Identifying a person
- Authenticating them by looking at their identification
- Granting a person only the key to the door or computer that they need access to and nothing more
- Granting access via a username and password
- allowing them access to files, computers, or other hardware or software they need
- ensuring they have the right level of permission to do their job
- Access control models have four types:
 - a. Mandatory Access Control (MAC)
 - b. Role-Based Access Control (RBAC)
 - C. Discretionary Access Control (DAC)
 - d. Rule-Based Access Control (RBAC or RB-RBAC)

Operating System Concepts - 9th Edition

14.12

Access Control Models

- The Mandatory Access Control, or MAC, model gives only the owner and custodian management of the access controls.
- End user has no control over any settings that provide any privileges to anyone.
- The Role-Based Access Control, or RBAC, model provides access control based on the position an individual fills in an organization.
- The Discretionary Access Control, or DAC, model is the least restrictive model compared to the most restrictive MAC model. DAC allows an individual complete control over any objects they own along with the programs associated with those objects.
- Rule-Based Access Control, will dynamically assign roles to users based on criteria defined by the custodian or system administrator. For example, if someone is only allowed access to files during certain hours of the day, we can set up Rules accordingly

14.13

Security

System is **secure** if resources used and accessed as intended under all circumstances

Intruders (crackers) attempt to breach security

Threat is potential security violation Attack is attempt to breach security Example violations

Breach of confidentiality - Unauthorized reading of data

Breach of integrity - Unauthorized modification of data

Breach of availability - Unauthorized destruction of data

Theft of service - Unauthorized use of resources

Denial of service (DOS) - Prevention of legitimate use

Cryptography - a security tool (Encryption, Hashing . Digital

14.14

Signatures)

Operating System Concepts – 9th Edition