

A knowledge-based T^2 -statistic to perform pathway analysis for quantitative proteomic data

June En-Yu Lai

TIGP Bioinformatics Program, Academia Sinica, Taiwan

August 18, 2017

Functional Analysis for Quantitative Proteomic Data

- Proteomic data v.s. gene expression data
 - ► Smaller sample size (number of experiments).
 - Fewer identified entities.
 - ► The results are sensitive to experimental conditions and instruments.
- ► Functional analysis
 - ► Pathway analysis (PLoS Computational Biology, 2017).
 - Responsive subpathway locating (working manuscript).

Pathway analysis — Data interpretation

Null hypothesis: Self-contained v.s. Competitive

Test statistic: Multivariate v.s. Univariate

The T^2 -statistic for pathway analysis

The proposed T^2 -statistic for a specific pathway $\mathcal P$ is then defined as,

$$T^2 = \mathbf{x}^T \mathbf{S}^{-1} \mathbf{x} \sim \chi_q^2$$

where

x is the vector of expression ratios,

 \mathbf{x}^T is the transpose of \mathbf{x} ,

 S^{-1} is the inverse of **the covariance matrix** S, and q is the number of mapped proteins in \mathcal{P} .

The T^2 -statistic for pathway analysis

- We use the confidence score provided by protein-protein interaction databases to represent the strength of the covariance, and the expression direction provided by the testing dataset to indicate the sign of the covariance.
- ▶ On the basis of the confidence scores in \mathfrak{I} and the protein expression ratios, each element s_{ij} of \mathfrak{S} is determined by the following four rules:

$$s_{ij} = \begin{cases} 0.4 & \text{if } i = j. \\ c_{p_i p_j} & \text{if } i \neq j, c_{p_i p_j} \in \mathfrak{I}, \text{ and } x_i \cdot x_j \geq 0. \\ -c_{p_i p_j} & \text{if } i \neq j, c_{p_i p_j} \in \mathfrak{I}, \text{ and } x_i \cdot x_j < 0. \\ 0.0 & \text{if } i \neq j \text{ and } c_{p_i p_j} \notin \mathfrak{I}. \end{cases}$$

The T^2 -statistic for pathway analysis

$$T^2 = \boldsymbol{x}^T \boldsymbol{S}^{-1} \boldsymbol{x} \sim \chi_q^2$$

- ▶ If *S* is degenerate, we construct a Moore-Penrose pseudoinverse of *S* as a substitute, and *q* becomes the rank of *S*.
- ▶ The *p*-value of the pathway $\mathcal P$ is derived from the χ^2_q distribution.

Pathway integration Pathway A n/a expressed n/a no evidence for pathway B

Performance evaluation — Really HARD!!!

- ► No accepted gold-standards.
- ▶ We tried to match the results reported by these methods to the biological ideas provided by the original publication (true positives).
- ► A good statistic should be able to test if a pathway is significant:
 - if a statistic reports very little significant pathways, it might have the problem of false negatives;
 - if a statistic reports a large number of significant pathways, it might have the problem of false positive.
- ▶ We supposed that the number of significant pathways is one of the attribute to evaluate these methods.

General comparison

Tools	Significance requirement	Ranking statistic
T^2	raw <i>p</i> -value ≤ 0.05	number of mapped proteins
DPA	raw <i>p</i> -value ≤ 0.05	<i>p</i> -value
GSEA	FDR adjusted <i>p</i> -value (i.e. <i>q</i> -value) ≤ 0.25	NES
DAVID	$EASE \le 0.1$	<i>p</i> -value
IPA	Benjamini corrected p -value ≤ 0.05	p-value

General comparison: Consistency

General comparison: Consistency

Database			KEGG	1			R	leactome			IPA
Method	2+5	2+XIR	DPA	CSEA	DAVID	2+5	2+HR	DPA	CSEA	DAVID	IPA
Uniprot	+	+	74	-	+	+	+	+	-	-	-
IPA	+	+	/-	-//	+	+	+	+	_	_	_
STRING	+	+	_	/ /	+	+	+	+	-	+	_
HitPredict	+	+		_	+	+	+	+	_	+	_
ST: low	+	+	_	_	+	+	+	+	-	_	_
ST: medium	+	+	_	_	+	+	+	+		_	_
ST: high	+	+	_	_	+	+	+	+	_	+	_
ST: highest	+	+	_	_	+	+	+	+	_	+	_
HP: low	+	+	_	_	+	+	+	+	_	_	_
HP: high	+	+	-	_	+	+	+	+	-	_	_

General comparison: Target pathways

Dataset		TCR		PI	ζA	Myog	enesis	CA	ИL	МАРК
Treatment		α -CD3 ϵ		PGE2		Serum-free		Dasatinib		U0126
	5 min	15 min	60 min	1 min	60 min	24 hr	72 hr	5 nM	50 nM	10 μΜ
KEGG pathway	T cell receptor signaling pathway					Chronic myeloid leukemia		MAPK signaling pathway		
T ² ×ST p-value	1/13 < 0.0001	1/57 < 0.0001	2/36 0.0019	16/45 < 0.0001	17/47 < 0.0001	15/54 < 0.0001	16/75 < 0.0001	20/111 < 0.0001	23/119 < 0.0001	3/118 < 0.0001
$T^2 \times HP$ _{p-value}	1/14 < 0.0001	1/59 0.0002	2/17 0.0011	17/49 < 0.0001	18/51 < 0.0001	16/56 < 0.0001	15/70 < 0.0001	20/113 < 0.0001	25/121 < 0.0001	3/117 < 0.0001
DPA p-value	-	8/68 0.0007	20/71 0.0024	11/15 0.0414	7/19 0.0178	18/73 0.0004			<i>j</i> -	2/17 0.0007
GSEA q-value	68/69 0.1786	7/60 0.1039	-	-	-	22/31 0.1416	-	-	-	-
DAVID p-value	1/47 < 0.0001	1/53 < 0.0001	1/35 < 0.0001	-	-	40/73 0.0041	40/73 0.0041	8/54 0.0004	8/54 0.0004	8/119 0.0002
IPA p-value	1/225 < 0.0001	2/232 < 0.0001	89/185 0.0022	60/79 0.0186	60/79 0.0191	-	-	52/129 0.0013	52/129 0.0013	-

Case Study: TCR downstream phosphoproteome

Case Study: TCR downstream phosphoproteome

Dataset	Pathway Title	$\mathbf{T}^2 \times ST$	$\mathbf{T}^2 \times HT$	DPA	GSEA	DAVID	IPA
5 min	T cell rec <mark>eptor signaling pathway</mark>	1/13	1/14	7-1	68/69	1/47	1/225
	Ras signaling pathway	2/57	2/59	- \	1 - 1	10/53	Main.
15 .	Regulation of actin cytoskeleton	3/57	3/59	-	-	9/53	15/232
15 min	MAPK signaling pathway	4/57	4/59	65/68	-	41/53	4/232
	PI3K-Akt signaling pathway	24/57	25/59	-	6/60	-	169/232
60 min	mTOR signaling pathway	25/36	-	67/71	-	24/35	68/185

Accurate and inaccurate estimation: Toy example

	Correlated Data (generated by S)	Independent Data (generated byï¡đ <i>I</i>)
Correlated Null (normalized by S)	M2: accurate estimation	M4: inaccurate due to false positive PPI scores
Independent Null (normalized by <i>I</i>)	M3: inaccurate due to incomplete knowledge	M1: accurate estimation

Accurate and inaccurate estimation: Real cases

Dataset	Experiment	Pathway Title	original <i>p</i> -value	30% permuted	60% permuted	30% purged	60% purged
-	5 min	T cell receptor signaling pathway	< 0.0001	100%	100%	100%	100%
	A	Ras signaling pathway	0.0017	100%	100%	100%	100%
TCR	15 min	Regulation of actin cytoskeleton	< 0.0001	100%	100%	100%	100%
ICK	is min	MAPK signaling pathway	< 0.0001	100%	100%	100%	100%
		PI3K-Akt signaling pathway	< 0.0001	100%	100%	100%	100%
_	60 min	mTOR signaling pathway	0.0002	97%	98%	100%	100%
	1 min	Regulation of actin cytoskeleton	< 0.0001	100%	100%	100%	100%
		PI3K-Akt signaling pathway	< 0.0001	92%	81%	86%	84%
		MAPK signaling pathway	< 0.0001	100%	100%	100%	100%
		Rap1 signaling pathway	< 0.0001	100%	100%	100%	100%
PKA		cAMP signaling pathway	< 0.0001	100%	100%	100%	100%
-		Glycolysis / Gluconeogenesis	1	0%	0%	0%	0%
		Cell cycle	< 0.0001	100%	100%	100%	100%
	60 min	mTOR signaling pathway	0.0024	100%	100%	100%	100%
		Base excision repair	< 0.0001	100%	100%	100%	100%

