Taccalonolides W-Y, Three New Pentacyclic Steroids from *Tacca plantaginea*

by Jun-Yun Yang^a)^b), Rong-Hua Zhao^b), Chang-Xiang Chen^a), Wei Ni^a), Fei Teng^a), Xiao-Jiang Hao^a), and Hai-Yang Liu*^a)

a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China

(phone: +86-871-5223245; fax: +86-871-5223246; e-mail: haiyangliu@mail.kib.ac.cn)

Three new pentacyclic steroids, taccalonolides W-Y (2-4, resp.), have been isolated from the whole plants of *Tacca plantaginea*. Their structures were elucidated on the basis of spectroscopic methods including extensive 1D- and 2D-NMR experiments.

Introduction. – Plants of the genus Tacca are phenomenal resources of taccalonolide steroids, which possess a special pentacyclic steroidal skeleton, and some of which show antitumor activity [1][2]. Up to now, the 22 taccalonolides A-V have been isolated from T. plantaginea, T. subflaellata, and T. paxiana [1][3–9]. The rhizome of Tacca plantaginea has long been used in China as folk medicine for analgesic, antipyretic, anti-inflammatory, and incised wounds [10]. Previous chemical investigation of this plant led to the isolation of four new steroidal saponins, and five new withanolides, plantagiolides A-E [11–13], as well as 13 taccalonolides A-M [1][3–6]. As part of our continuing work to search for novel compounds, three new taccalonolides W-Y (2–4, resp.) were isolated from the species besides the known taccalonolide A. The isolation and structure elucidation of compounds 2–4 are the subject of this report.

Results and Discussion. – The CHCl₃-soluble part of the extract from the whole plants of T. plantaginea using 95% EtOH was subjected to repeated column chromatography on silica gel and semi-preparative HPLC to afford taccalonolides A, W, X, and Y (1-4).

Taccalonolide W (2) was obtained as a white powder. The molecular formula of 2 was deduced to be $C_{34}H_{44}O_{14}$ from HR-ESI-MS at m/z 699.2618 ($[M+Na]^+$; calc. 699.2629), indicating 13 degrees of unsaturation. The IR spectrum showed absorptions at 3420, 1818, 1745, and 1693 cm⁻¹, which implied the presence of OH groups, an enol γ -lactone, Ac groups, and C=C bonds, respectively. The ¹H-NMR spectrum of 2 (*Table 1*) exhibited characteristic resonances similar to those of taccalonolides, including five Me groups at $\delta(H)$ 0.83, 1.05, 1.35, 1.37, and 1.74, and an olefinic H-atom at 5.26. A detailed comparison of the ¹H- and ¹³C-NMR and DEPT spectroscopic data (*Tables 1* and 2) of 2 with those of taccalonolide B [1] revealed the absence of a *doublet* for Me(21) in the ¹H-NMR spectrum, and a missing CH signal for C(20) in the

b) Graduate School of Yunnan University of Traditional Chinese Medicine, Kunming 650200, P. R. China

¹³C-NMR spectrum, but instead the presence of a Me *singlet* at $\delta(H)$ 1.35 for Me(21) in the ¹H-NMR spectrum, and a quaternary oxygenated C-atom at $\delta(C)$ 72.7 in the ¹³C-NMR spectrum for C(20) in **2**. This was confirmed by HMBC correlations of the C-atom at $\delta(C)$ 72.7 (s, C(20)) with the H-atoms at $\delta(H)$ 2.48–2.52 (m, H–C(16)), 2.44–2.48 (m, H–C(17)), 1.35 (s, Me(21)), and 5.26 (br. s, H–C(22)). The relative configuration of **2** was determined by the analysis of a ROESY experiment, in which correlations of Me(18)/H–C(11) and H–C(12), Me(19)/H–C(1) and H–C(11) indicated that the AcO groups at C(1), C(11), and C(12) are in α -orientation, while the correlations of H–C(1)/H–C(2) and H–C(2)/H–C(3) confirmed the β -orientation of H–C(2) and H–C(3). The observed ROESY correlations for H–C(14)/H–C(7) and H–C(17), Me(18)/H–C(16), Me(21), and Me(28), and H–C(17)/Me(27) suggested that HO–C(7), HO–C(25), Me(21), and Me(28) were in the β -orientation. The H–C(5) and HO–C(15) were assigned α on the basis of ROESY correlations for H–C(5)/H–C(7) and H–C(15)/Me(18). From the above analysis, the structure of **2** was unequivocally determined as shown and named taccalonolide W.

Taccalonolide X (3) was isolated as a colorless powder. Its molecular formula, $C_{36}H_{44}O_{14}$ was determined by HR-ESI-MS at m/z 723.2626 ([M+Na]⁺; calc. 723.2629), corresponding to 15 degrees of unsaturation. The UV spectrum of 3 showed an absorption maximum at 244 nm, indicating the presence of a conjugated enone system, while the absorptions in the IR spectrum at 3439, 1813, 1745, and 1659 cm⁻¹ suggested the presence of OH groups, a δ -lactone, an Ac group, and C=C bonds, respectively. The ¹³C-NMR spectrum indicated 36 C-atom resonances as required by the HR-ESI-MS. There were two signals for C=O groups at δ (C) 202.4 and 198.0, five ester C=O groups at 170.9, 170.6, 169.7, 169.6, and 169.2, one trisubstituted C=C bond at 160.9 and 130.0, nine Me groups, one CH₂ group, 13 CH groups, thereof seven oxygenated, four quaternary C-atoms, thereof one oxygenated. The general NMR characteristics indicated that 3 is quite similar in structure to taccalonolide C [3]. The major

Table 1. ${}^{1}H$ -NMR Data of Compounds 2–4. δ in ppm, J in Hz.

	2 ^a)	3 ^a)	4 ^b)		
H-C(1)	4.72 (d, J = 5.4)	4.73 (d, J = 5.5)	4.79 (d, J = 5.2)		
H-C(2)	3.51 (dd, J = 3.7, 5.4)	3.46 (dd, J = 3.7, 5.5)	3.82 (d, J = 5.2)		
H-C(3)	3.40 (br. s)	3.37 - 3.38 (m)	3.50 (br. s)		
$CH_2(4)$	2.08-2.10 (m),	2.00-2.11 (m),	2.03-2.05 (m), 2.30-2.33 (m)		
	2.20-2.26 (m) $2.17-2.20 (m)$				
H-C(5)	2.79 (dd, J = 6.1, 11.0)	$2.84 - 2.88 \ (m)$	_		
H-C(6)	_	_	2.88 (d, J = 3.4)		
H-C(7)	4.16 (d, J = 10.8)	5.28 (d, 11.5)	3.13 (br. <i>s</i>)		
H-C(8)	$1.78 - 1.83 \ (m)$	2.06-2.13 (m)	$1.70 - 1.72 \ (m)$		
H-C(9)	2.72-2.77 (m)	2.87 - 2.92 (m)	2.34-2.36 (m)		
$H-C(11)$ or $CH_2(11)$	5.31 (d, J = 2.4)	5.38 (dd, J = 2.6, 11.5)	1.48 - 1.50 (m),		
			1.56 - 1.59 (m)		
H-C(12)	5.28 (br. s)	5.43 (d, J = 2.6)	5.06 (br. s)		
H-C(14)	2.08-2.11 (m)	2.50-2.53 (m)	2.60-2.62 (m)		
$H-C(15)$ or $CH_2(15)$	$4.43 \ (dd, J = 8.0, 9.1)$	5.06 (dd, J = 2.0, 8.5)	1.40-1.43 (m),		
			2.62-2.65 (m)		
H-C(16)	2.48 - 2.52 (m)	2.48 - 2.50 (m)	$1.90-1.93 \ (m)$		
H-C(17)	2.44-2.48 (m)	3.76 (d, J = 12.8)	2.21-2.25 (m)		
Me(18)	1.05(s)	1.06(s)	0.87(s)		
Me(19)	0.83(s)	0.83(s)	0.71 (s)		
H-C(20)	_	_	2.03-2.05 (m)		
$Me(21)$ or $CH_2(21)$	1.35(s)	1.93(s)	3.85 - 3.88 (m),		
- ,			$4.01-4.03 \ (m)$		
H-C(22)	5.26 (br. s)	5.84(s)	5.30 (br. s)		
$CH_2(23)$	_	_	1.43 (d, J = 4.8),		
			2.20-2.22 (m)		
Me(27)	1.74(s)	1.63(s)	1.45 (s)		
Me(28)	1.37 (s)	1.25(s)	1.15 (s)		
Ac	2.00(s), 2.10(s),	2.02(s), 2.12(s),	1.96(s), 2.03		
	2.16 (s)	2.12(s), 2.16(s)	(s)		

^a) In CDCl₃. ^b) In (D₅)pyridine.

differences in the 13 C-NMR spectrum for **3** were the disappearance of signals for one CH and one CH₂ group each, and the presence of a signal for one trisubstituted C=C bond. The location of the C=C bond was deduced from the HMBC spectrum, which indicated important correlations of the CH H-atom at $\delta(H)$ 2.48–2.50 (m, H–C(16)) to the C-atom at $\delta(C)$ 160.9 (s, C(20)), of the methine H-atom at $\delta(H)$ 3.76 (d, H–C(17)) to the C-atoms at $\delta(C)$ 21.5 (q, C(21)), 160.9 (s, C(20)), and 130.0 (d, C(22)), and of the methine H-atom at $\delta(H)$ 5.84 (s, H–C(22)) to the C-atoms at $\delta(C)$ 21.5 (q, C(21)), 44.4 (d, C(17)), 198.0 (s, C(23)), and 47.6 (s, C(24)). These correlations indicated that the C=C bond connects C(20) with C(22). Extensive interpretation of the ROESY spectrum correlations, combined with comparison of the data with those of taccalonolide C, established the configuration of **3** as follows: H–C(1), H–C(2), H–C(3), H–C(11), H–C(12), H–C(15), Me(27), and Me(28) possess β -configuration, while H–C(5) and H–C(7) possess α -configuration. Consequently, the structure of **3** was unambiguously established and named taccalonolide X.

Table 2. ¹³C-NMR Data of Compounds 2-4. δ in ppm.

	2 ^a)	3 ^a)	4 ^b)		2 ^a)	3 ^a)	4 ^b)
C(1)	72.5 (d)	72.4 (d)	72.6 (d)	C(19)	13.1 (q)	12.8 (q)	16.3 (q)
C(2)	49.8(d)	49.5(d)	51.8(d)	C(20)	72.7(s)	160.9(s)	48.1 (d)
C(3)	52.0(d)	52.1 (d)	55.6 (d)	C(21)	26.1(q)	21.5(q)	60.1(t)
C(4)	21.4(t)	21.2(t)	33.6 (t)	C(22)	115.7(d)	130.0 (d)	76.5(d)
C(5)	42.4(d)	42.7(d)	70.6(s)	C(23)	153.1 (s)	198.0 (s)	40.4(t)
C(6)	208.5(s)	202.4(s)	56.9 (d)	C(24)	51.0(s)	47.6(s)	40.2(s)
C(7)	75.6(d)	76.7(d)	54.7 (d)	C(25)	79.2(s)	77.2(s)	77.5(s)
C(8)	42.5(d)	38.0 (d)	36.3 (d)	C(26)	174.9(s)	170.9(s)	180.3(s)
C(9)	39.3(d)	40.8(d)	29.7(d)	C(27)	21.6(q)	23.3(q)	27.6(q)
C(10)	43.2(s)	42.7(s)	40.6(s)	C(28)	25.4(q)	22.3(q)	22.4(q)
C(11)	70.2(d)	70.2(d)	25.4(t)	Ac	170.9(s)	170.6(s)	170.9(s)
C(12)	73.9(d)	73.0(d)	75.5(d)		170.0(s)	169.7(s)	170.5(s)
C(13)	44.5(s)	44.0 (s)	46.5(s)		170.0(s)	169.6 (s)	20.8(q)
C(14)	57.0(d)	57.3 (d)	44.1 (d)		21.0(q)	169.2 (s)	20.5(q)
C(15)	71.5(d)	78.4(d)	25.6(t)		21.3 (q)	21.1 (q)	
C(16)	44.8(d)	46.0(d)	52.4 (d)		20.5(q)	20.8(q)	
C(17)	49.6 (d)	44.4 (d)	41.1 (d)			20.6(q)	
C(18)	15.2 (q)	14.8 (q)	12.9(q)			20.5(q)	

a) In CDCl₃. b) In (D₅)pyridine.

Taccalonolide Y (4) was obtained as a white powder. Its positive FAB-MS indicated the pseudomolecular ion at m/z 605 ($[M+H]^+$), and the HR-ESI-MS indicated the molecular formula C₃₂H₄₄O₁₁ with eleven degrees of unsaturation. The IR spectrum showed characteristic absorptions at 3448, 1730, and 1635 cm⁻¹ which indicated the presence of OH and Ac groups, as well as a δ -lactone. The ¹H-NMR showed signals for six Me groups, four epoxy H-atoms, one HO-CH2, and three downfield-shifted Hatoms. As for taccalonolides A, W, and X (1-3), the basic skeleton of taccalonolide Y (4) was that of a pentacyclic steroid, except that the side chain was enlarged from C₅ to C₆, and ring B contained an epoxy group. According to the ¹H- and ¹³C-NMR spectral data, 4 was very similar to the known compound taccalonolide Q [8], except for the lack of a COOH group and the presence of a HO-CH₂ (δ (C) 60.1) connected to C(20) (δ (C) 48.1). Thus, it was supposed that the COOH group at C(20) of taccalonolide Q was reduced to a HO-CH₂ group, which was confirmed by the mass difference of 14 amu and the HMBC spectrum. In the HMBC spectrum, cross-peaks between $\delta(H)$ 2.21-2.25 (m, H-C(17)) with δ (C) 44.1 (d, C(14)), 52.4 (d, C(16)), 12.9 (q, C(18)), 48.1 (d, C(20)), 60.1 (t, C(21)), and 76.5 (d, C(22)), and between δ (H) 5.30 (br. s, H-C(22)) and $\delta(C)$ 41.1 (d, C(17)), 60.1 (t, C(21)), 40.4 (t, C(23)), 40.2 (s, C(24)), and 180.3 (s, C(26)) were observed. The relative configuration was determined by a ROESY experiment with cross-peaks between Me(18)/H-C(12) and H-C(16), H-C(16)/H-C(22), H-C(22)/H-C(20) and Me(28), Me(28)/Me(27), and Me(19)/Me(27)H-C(1), H-C(2), H-C(3), H-C(6), and H-C(7). Therefore, the structure of 4 was assigned as shown and named taccalonolide Y.

This project was supported by the *Natural Science Foundation of Yunnan Province* (No. 2007C094 M) and a grant from the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

Experimental Part

General. Semiprep. HPLC: Agilent 1100 apparatus equipped with a Zorbax SB-C-18 column (Agilent, 9.4 mm × 25 cm). Column chromatography (CC): silica gel (SiO₂) (200–300 mesh; Qingdao Marine Chemical Inc., China) or SiO₂ H (10–40 μm, Qingdao Marine Chemical Inc.), and Lichroprep RP-18 (43–63 μm, Merck). Fractions were monitored by TLC, and spots were visualized by heating SiO₂ plates sprayed with 10% H₂SO₄ in EtOH. Optical rotations: Jasco DIP-370 digital polarimeter. UV Spectra: Shimadzu UV-2401 PC spectrophotometer; $\lambda_{\rm max}$ in nm. IR Spectra: Bio-Rad FTS-135 infrared spectrophotometer with KBr pellets. 1D- and 2D-NMR Spectra: Bruker AM-400 and DRX-500 instruments using Me₄Si as the internal standard; δ in ppm rel. to solvent signals. ESI-MS and HR-ESI-MS Spectra: API Qstar Pulsar LC/TOF spectrometer; in m/z (rel. %).

Plant Material. The whole plants of *Tacca plantaginea* were collected in Guilin, Guangxi Zhuang Autonomous Region, P. R. China, in August 1999, and identified by Professor *De-Ding Tao*, Kunming Institute of Botany, the Chinese Academy of Sciences (CAS). The voucher was deposited with the Herbarium of Kunming Institute of Botany, CAS.

Extraction and Isolation. The powdered air-dried plants of T. plantaginea (30 kg) were exhaustively extracted three times with 400 l of 95% EtOH under reflux. After evaporation of the solvent, the resulting residue (1.5 kg) was successively extracted with CHCl₃ and BuOH. The CHCl₃ extract (700 g) was subjected to CC (SiO₂) eluting with a petroleum ether/AcOEt gradient (1:0, 10:1, 5:1, 7:1, 1:1) to give five fractions. Fr. 4 (150 g) was repeatedly chromatographed on SiO₂ (CHCl₃/MeOH, 100:1) and semiprep. HPLC (MeCN/H₂O, 30:70) to afford 1 (1.1 g), 2 (20 mg), 3 (4 mg), and 4 (21 mg).

Taccalonolide W (= (1S,5S,5aS,6R,7R,8aS,9aS,10aS,11R,11aR,12S,13R,13aR)-11,12,13-Tris(acetyl-oxy)-5,5a,5b,6,6a,6b,7,8a,9,9a,10a,11,11a,11b,12,13,13a,13b-octadecahydro-1,5,6,7-tetrahydroxy-1,5,5a, 11a,13a-pentamethyl-1H-oxireno[6',7']naphtho[1',2':7,8]fluoreno[2,1-b]fluran-4,8-dione; **2**). White powder. [α] $_{1}^{19}$ = +39.5 (c = 0.50, CHCl $_{3}$). IR (KBr): 3420, 2975, 2930, 1818, 1745, 1693, 1434, 1375, 1250, 1126, 1091, 1041, 751. $_{1}^{1}$ H- and $_{1}^{13}$ C-NMR: Tables 1 and 2. FAB-MS: 677 (4, [M + H] $_{1}^{+}$). HR-EI-MS: 699.2618 ([M + Na] $_{1}^{+}$, C_{34} H $_{44}$ NaO $_{14}^{+}$; calc. 699.2629).

Taccalonolide X (= (3aS,4S,6aR,7R,8aS,9aS,10aS,11R,11aR,12S,13R,13aR)-7,11,12,13-Tetrakis(acetyloxy)-3a,4,6a,6b,6c,7,8a,9,9a,10a,11,11a,11b,12,13,13a,13b,13c-octadecahydro-4-hydroxy-1,3a,4,11a,13a-pentamethyl-3H-oxireno[6',7']naphtho[1',2':7,8]fluoreno[9,1-bc]pyran-3,5,8-trione; **3**). Colorless powder. [α] $_{\rm D}^{\rm 19}$ = +23.8 (c =0.13, MeOH). UV (CHCl $_{\rm 3}$): 244. IR (KBr): 3439, 2926, 2854, 1813, 1745, 1659, 1438, 1376, 1248, 1124, 1040, 761. $^{\rm 1}$ H- and $^{\rm 13}$ C-NMR: Tables 1 and 2. ESI-MS: 723 (100, [M + Na] $^{\rm +}$). HR-EI-MS: 723.2626 ([M + Na] $^{\rm +}$, $C_{\rm 36}$ H $_{\rm 44}$ NaO $_{\rm 14}^{\rm +}$; calc. 723.2629).

Taccalonolide Y = (1a\$, 1b\$, 2a\$, 3a\$, 4\$, 4a\$, 6\$, 6a\$, 7\$, 8\$, 11\$, 12\$, 13c\$) - 4,6 - Bis (acetyloxy) icosahydro-1b,11-dihydroxy-7-(hydroxymethyl)-4a,6a,11,12-tetramethyl-8,12-methanobisoxireno[3',4':6',7']-naphtho[2',1':4,5]indeno[1,2-d]oxocin-10(2H)-one;**4** $): White powder. <math>[a]_D^{56} = +7.7 \ (c=0.23, MeOH)$. IR (KBr): 3448, 2976, 2941, 1730, 1635, 1378, 1254, 1131, 1032. 1 H- and 1 C-NMR: Tables 1 and 2. FAB-MS: 605 (49, $[M+H]^+$), 545 (100, $[M-AcOH]^+$), 527 (70, $[M-AcOH-H_2O]^+$). HR-EI-MS: 627.2778 ($[M+Na]^+$, $C_{32}H_{44}NaO_{11}^+$; calc. 627.2781).

REFERENCES

- [1] Z. L. Chen, B. D. Wang, M. Q. Chen, Tetrahedron Lett. 1987, 28, 1673.
- [2] T. L. Tinley, D. A. Randall-Hlubek, R. M. Leal, E. M. Jackson, J. W. Cessac, J. C. Quada, T. K. Hemscheidt, S. L. Mooberry, *Cancer Res.* 2003, 63, 3211.
- [3] Z. L. Chen, B. D. Wang, J. H. Shen, Phytochemistry 1988, 27, 2999.
- [4] J. H. Shen, Z. L. Chen, Y. S. Gao, Chin. J. Chem. 1991, 1, 92.
- [5] J. H. Shen, Z. L. Chen, Y. S. Gao, *Phytochemistry* **1996**, 42, 891.

- [6] Z. L. Chen, J. H. Shen, Y. S. Gao, M. Wichtl, Planta Med. 1997, 63, 40.
- [7] A. Mühlbauer, M. Gehling, R. Velten, W. Andersch, C. Erdelen, A. Harder, P. Marczok, R. Nauen, A. Turberg, V. S. Tran, G. Adam, J. K. Liu, Int. Pat. WO 01/04256 to *Bayer AG* Germany, 2001.
- [8] Y. Huang, J. K. Liu, A. Mühlbauer, T. Henkel, Helv. Chim. Acta 2002, 85, 2553.
- [9] A. Mühlbauer, S. Seip, A. Nowak, V. S. Tran, Helv. Chim. Acta 2003, 86, 2065.
- [10] Jiangsu New Medical College, 'The Dictionary of Traditional Chinese Medinces', Shanghai Science and Technology Press, Shanghai, 1977, p. 524.
- [11] H. Y. Liu, C. X. Chen, Chin. Chem. Lett. 2002, 13, 633.
- [12] H. Y. Liu, W. Ni, X. J. Hao, C. X. Chen, J. Asian Nat. Prod. 2006, 8, 293.
- [13] H. Y. Liu, W. Ni, B. B. Xie, L. Y. Zhou, X. J. Hao, X. Wang, C. X. Chen, Chem. Pharm. Bull. 2006, 54, 992.

Received February 4, 2008