高等微积分笔记

mny

2023年10月9日

目录

1	微积	只分简介		2
	1.1	阿基米德时代		2
	1.2	Newton 时代		2
2	集合	5 与映射		3
	2.1	映射的性质		4
	2.2	范畴中的映射		4
3	实数	Ż		7
	3.1	戴德金分割		7
	3.2	确界定理		8
	3.3	确界定理应用		11
4	极限	·····································	- -	11
	4.1	极限的性质		13
	4.2	极限的计算方法		15
		4.2.1 从定义直接计算		15
		4.2.2 极限的四则运算		16
		4.2.3 夹逼定理		18
		4.2.4 Stolz 定理		20
		4.2.5 单调极限定理		21

1 微积分简介 2

1 微积分简介

1.1 阿基米德时代

问题: 设 $D=\{(x,y)|a\leq x\leq b,\quad 0\leq y\leq h(x)\}$ 求曲边梯形 D 的面积 area (D). 特例: a=0, 剖分 $D=\bigcup D_i$, 分点 $x_i=\frac{ib}{n}$

- $\mbox{$\sharp$ area}(D_i) \simeq (x_i x_{i-1}) h(\xi_i), \quad \xi_i \in [x_{i-1}, x_i]$
- 求和

area
$$(D) \simeq \sum_{i=1}^{n} (x_{i-1} - x_i) h(\xi)$$
 (1.1)

• 相信随着剖分越来越细, 上述近似越来越好

例 1.1. $h(x) = x^2$

area
$$(D) \simeq \sum_{i=1}^{n} \frac{b}{n} h\left(\xi_i = x_i\right) = \sum_{i=1}^{n} \frac{b}{n} \left(\frac{ib}{n}\right)^2 = \frac{b^3}{n^3} \sum_{i=1}^{n} i^2$$
 (1.2)

$$=\frac{b^3}{n^3}\frac{1}{6}n(n+1)(2n+1)\tag{1.3}$$

$$= \frac{b^3}{6} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) \tag{1.4}$$

$$= \frac{b^3}{6} \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) \xrightarrow{\text{if } h} x_n \tag{1.5}$$

研究: 当 n 越大时, x_n 最终会靠近哪个常值 L

例 1.2. $h(x) = x^k$, $(k \ge 2)$ 相应的

area
$$(D) \simeq \frac{b^{k+1}}{n^{k+1}} \sum_{i=1}^{n} i^{k}$$
 (1.6)

更接近哪个数 L? 对于更一般 h, 以上计算更加复杂.

1.2 Newton 时代

上述问题反问题: 已知面积函数 S(a), 如何求高度? x 流动到 x + o,

$$S(x+o) - S(x) \simeq o \cdot h(x) \tag{1.7}$$

$$\implies h(x) \simeq \frac{S(x+o) - S(x)}{o} \quad (流数法)$$
 (1.8)

相信当 o 越接近零, 此近似越好.

例 1.3. $S(a) = a^m, \quad (m \in \mathbb{Z}_+)$

$$\implies h(x) \simeq \frac{(x+o)^m - x^m}{o} \tag{1.9}$$

使用牛顿二项式公式

$$(x+y)^{m} = x^{m} + C_{m}^{1} x^{m-1} y + \dots + C_{m}^{m} y^{m}$$
(1.10)

带入, 得到

$$h(x) \simeq C_m^1 x^{m-1} + C_m^2 x^{m-2} o \cdots + C_m^m o^{m-1} \xrightarrow{\frac{c}{2} o \text{ f-π}} m x^{m-1}$$
 (1.11)

由此可知, 例1.2 答案为 $S(a) = \frac{1}{k+1}a^{k+1}$

- 从高度函数得到面积称作积分 $S(b) = \int_0^b h(x) dx$
- 从面积函数得到高度函数称作求导 h(x) = S'(x)

进行一个循环, 可以得到

$$\left(\int_0^x h(\xi) \,\mathrm{d}\xi\right)' = h(x) \tag{1.12}$$

和

$$\int_{0}^{b} S'(x) \, \mathrm{d}x = S(b) - S(0) \tag{1.13}$$

2 集合与映射

定义 2.1. 设 X,Y 是集合,所谓 X 到 Y 的一个映射是指如下的数据

对于 X 中的每一个元素 x, 指定 Y 中唯一的元素 (记为 f(x)) 与之对应. 记此映射为

$$f: X \to Y$$
 (2.1)

(这个符号直到 1940 年代才开始出现, 标志着范畴论的开始)

称 X 为 f 的定义域 domain, Y 为 f 的陪域 co-domain.

$$\forall A \subseteq X, \quad f(A) = \{ y \in Y | \exists a \in A \notin y = f(a) \}$$
 (2.2)

称之为 A 在 f 下的像集. 特别的, 称 f(X) = Im(f) 为 f 的值域或像集.

定义 2.2. 原像集. 对 $V \subseteq Y$, 定义在 f 下的原像集

$$f^{-1}(V) = \{x \in X | f(x) \in V\} = \bigcup_{y \in V} F_y$$
 (2.3)

对于 V 的补集 V^c 显然有,

$$f^{-1}(V^c) = (f^{-1}(V))^c (2.4)$$

显然有

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \tag{2.5}$$

2.1 映射的性质

• 映射可复合. 设 $f: X \to Y$, $g: Y \to Z$, 可定义复合映射 $g \circ f: X \to Z$,

$$g \circ f(x) = g(f(x)), \quad \forall x \in X$$
 (2.6)

• 映射的复合满足结合律. 设 $f: X \to Y, g: Y \to Z, h: Z \to W, 则$

$$h \circ (g \circ f) = (h \circ g) \circ f \tag{2.7}$$

证明是直接的.

- 对于集合 X 有一个恒同映射, $id_X: X \to X$, 定义为 $Id_X(x) = x$, $\forall x \in X$
- 恒同映射是映射复合的单位, 即 $\forall f: X \to Y$ 有

$$id_Y \circ f = f = f \circ id_X \tag{2.8}$$

对于两个集合 X,Y, 存在一个集合

$$\operatorname{Hom}(X,Y) = \{ \mathbb{A} X \text{ in } Y \text{ in } \mathbb{H} \}$$
 (2.9)

2.2 范畴中的映射

定义 2.3. 所谓一个范畴 (Category) C 是指如下一个数据:

- 对象 X, Y, Z^1 , 构成 object Obi(C)
- 对任何 $X,Y \in \mathcal{C}$, 指定一个集合 $\mathrm{Hom}_{\mathcal{C}}(X,Y)$, 称 $\mathrm{Hom}_{\mathcal{C}}$ 中的任意元素为范畴 \mathcal{C} 中的一个态射 (morphism), 记 $\mathrm{Hom}_{\mathcal{C}}$ 中的元素为

$$f: X \to Y$$
 (2.10)

• 态射可复合, 即 $\forall X, Y, Z \in \mathrm{Obj}(\mathcal{C})$, 指定出映射

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,Z)$$
 (2.11)

记为

$$(f,g) \to g \circ f \in \operatorname{Hom}_{\mathcal{C}}(X,Z)$$
 (2.12)

¹在线性代数里面它们是线性空间

• 态射复合是结合的, 即 $\forall X, Y, Z, W \in \text{Obj}(\mathcal{C})$, 设

$$f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), \ g \in \operatorname{Hom}_{\mathcal{C}}(Y, Z), \ h \in \operatorname{Hom}_{\mathcal{C}}(Z, W),$$
 (2.13)

有 (结合律)

$$h \circ (g \circ f) = (h \circ g) \circ f \tag{2.14}$$

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W \tag{2.15}$$

• 态射的复合是有单位元的, 对任何对象 $X \in \mathrm{Obj}(\mathcal{C})$, 指定态射

$$id_X \in \operatorname{Hom}_{\mathcal{C}}(X, Y) \tag{2.16}$$

满足, 对 $\forall f \in \text{Hom}_{\mathcal{C}}(X,Y), \ \forall g \in \text{Hom}_{\mathcal{C}}(W,X), \ 有$

$$f \circ \mathrm{id}_X = f, \ \mathrm{id}_X \circ g = g$$
 (2.17)

例 2.1. 范畴 Set, 其中的对象是集合 X,Y, 此时

• 态射 ←→ 映射

$$\operatorname{Hom}_{Set}(X,Y) = \{ \mathfrak{R} \mathfrak{h} f \colon X \to Y \} \tag{2.18}$$

- 态射复合 ←→ 映射复合
- id_X = 恒同映射

例 2.2. 矢量空间 Vect: 对象是线性空间, 态射是线性映射.

例 2.3. 拓扑空间 Top: 对象是拓扑空间, 态射是连续映射.

定义 2.4 (集合论中). 称映射 $f: x \to y$ 是

- $\forall x \neq x', \ f(x) \neq f(x').$
- 满射 $\iff \forall y \in Y, \exists x \in X \notin f(x) = y.$
- 双射 ⇒ 既单又满.

定义 2.5. 称映射 $f: X \to Y$ 是

• 单射

$$\iff$$
 ∃映射 $g: Y \to X$, 使 $g \circ f = \mathrm{id}_X$ (只在集合当中适用) (2.19)

一般的范畴中:

$$\iff \forall \text{\sharp} \, \text{\sharp} \, \text{\Leftrightarrow} \, \forall \text{\sharp} \, \text{\Leftrightarrow} \, \text{\downarrow} \, \text{$\downarrow$$

• 满射

$$\iff \forall \text{\& } \triangle Z, \forall \text{ wheth } h_1, h_2 \colon Y \to Z. \vec{\pi} \land h_1 \circ f = h_2 \circ f, \text{ } \emptyset \land h_1 = h_2$$
 (2.21)

定理 **2.1.** 映射 $f: X \to Y$ 是双射 $\iff \exists$ 映射 $g: Y \to X$ 使 $g \circ f = \mathrm{id}_X$ 且 $f \circ g = \mathrm{id}_Y$ 证明. 从充分和必要两个方面说明.

" ⇒ ":

由 f 满知 $f^{-1}(\{y\}) \neq \emptyset$.

由 f 单知 $f^{-1}(\{y\})$ 至多一个元素.

于是 $\forall y \in Y$ 有 $f^{-1}(\{y\})$ 是单元集. 记 $f^{-1}(\{y\}) = \{g(y)\}$, 得到映射 g.

" ⇐ ":

设 $\exists g \colon Y \to X$ 使

$$g \circ f = \mathrm{id}_X, \ f \circ g = \mathrm{id}_Y$$
 (2.22)

证 f 单: 若 f(x) = f(x'), 则

$$g \circ f(x) = g[f(x)] = g[f(x')] = g \circ f(x')$$
 (2.23)

即

$$x = x' \tag{2.24}$$

矛盾, 故 f 单.

证 f 满:

$$\forall y \in Y, \ f[g(y)] = f \circ g(y) = \mathrm{id}_Y(y) = y \tag{2.25}$$

所以 $y \in \text{Im } f$, 故 f 满.

定义 2.6. 在范畴 C 中, 称态射 $f \in \text{Hom}_{\mathcal{C}}(X,Y)$ 为一个同构, 如果

$$\exists g \in \operatorname{Hom}_{\mathcal{C}}(Y, X) \tag{2.26}$$

使得

$$g \circ f = \mathrm{id}_X \ \perp f \circ g = \mathrm{id}_Y \tag{2.27}$$

称对象 X 与对象 Y 同构, 如果 ∃同构态射 $f: X \to Y$.

命题 **2.1.** 满足(2.27)的 g 至多一个.

证明. 若 $g_1, g_2: Y \to X$ 都满足(2.27), 则

$$g_2 = (g_1 \circ f) \circ g_2 = g_1 \circ (f \circ g_2) = g_1 \circ \mathrm{id}_Y = g_1.$$
 (2.28)

3 实数 7

3 实数

出于计数的需要, 引入了自然数 0,1,2,3,.... 由于要做不交并,

$$|S \cup T| = |S| + |T| \tag{3.1}$$

引入了加法.

由于要做笛卡尔积,

$$S \times T = \{(s,t)|s \in S, t \in T\}$$

$$(3.2)$$

引入了乘法.

加法在 \mathbb{N} 上未必有逆, 引入负整数. 这样将整数集扩充为 \mathbb{Z} . 但 \mathbb{Z} 上乘法未必有逆, 形式化引入分数 $\frac{m}{n}$, $(m \in \mathbb{Z}, n \in \mathbb{Z}_+)$, 将 \mathbb{Z} 扩充为 \mathbb{Q} 2 .

命题 3.1. $\sqrt{2}$ 不是有理数 (定义 $\sqrt{2}$ 是满足 $x^2 = 2$ 的正数).

证明. 假设 $\sqrt{2} = \frac{m}{n}, m, n$ 无公因子. 则 $2 = \frac{m^2}{n^2}$. $m^2 = 2n^2$ 说明 m 是偶数, 代回发现 n 是偶数.

这表明有理数集 ℚ 需要进一步扩充.

命题 3.2. x 是有理数 $\iff x$ 是有限或无限循环小数.3

微积分当中需要介值定理,但人们一直没有严格证明,问题在于没有实数的严格定义. 1872 年戴德金首次严格定义实数.

3.1 戴德金分割

定义 3.1. 所谓戴德金分隔是指一个有序对 (A,B), 满足:

- A,B 是 ℚ 的非空子集.
- $A \cap B = \emptyset$, $A \cup B = \mathbb{Q}$
- $\forall x \in A, \forall y \in B, \, \forall x < y$
- 集合 A 无最大元素.

$$\int f(x) dx = \{ \Re F(x) | F' = f \}. \tag{3.3}$$

²这些"逆"都是等价类,就像不定积分那样,可以理解为一个集合

³小数的定义略去. 但是小数是无穷级数, 加法和乘法的定义现在都没定义.

3 实数 8

称两个戴德金分割 $(A,B) = (A',B') \iff A = A'$.

定义 3.2. 所谓一个戴德金实数, 就是一个戴德金分割.

$$\mathbb{R}_D = \{ \text{mfi idead} \} \tag{3.4}$$

• 每个有理数 a 确定一个戴德金分割

• 序.

定义
$$(A,B) \leq (A',B') \iff A \subseteq A'$$

• 和.

$$(A,B) + (A',B') = (A+A', \mathbb{Q}/(A+A'))$$
(3.6)

• 称一个戴德金实数 (A,B) 为一个戴德金有理数 \iff A 有最大元素.

以上定义好实数集 ℝ,由此可以证出介值定理,严格建立微积分.

3.2 确界定理

定义 3.3. 设非空集合 $E \in \mathbb{R}$, 称 E 的元素 a 为 E 的最大元素, 如果 $\forall x \in E, x \leq a$, 记为 $a = \max E$

最小元素: $a = \min E \iff a \in E$ 且 $\forall x \in E$ 有 $x \geq a$

定义 3.4. 上界和下界.

称 c 为 E 的一个上界, 如果 $\forall x \in E$ 有 $x \le c$. 称 d 为 E 的一个下界, 如果 $\forall x \in E$ 有 $x \ge d$.

定义 3.5. 确界.

称 $c \neq E$ 的上确界 (supremum), 记作 $c = \sup E$, 如果 $c \neq E$ 的最小的上界.

 $\iff c = \min\{E \text{ 的上界}\}$

称 $d \neq E$ 的下确界 (infimum), 记作 $d = \inf E$, 如果 $d \neq E$ 的最大的下界.

 $\iff d = \max\{E \text{ 的下界}\}$

命题 3.3. 任意非空实数集 F, $\min F$, $\max F$ 非必存在.

例 3.1. F = (0,1), 则 $\min F$, $\max F$ 皆不存在.

证明. 因为

$$\forall a \in F \implies \frac{a}{2} \in F \implies a$$
不是最小元素, (3.7)

$$\forall b \in F \implies \frac{b+1}{2} \in F \implies b$$
不是最大元素. (3.8)

这样,从字面上有

- 若 E 无上界, 则 E 无上确界.

定理 3.1 (确界定理). 有上界的非空实数集一定有上确界, 有下界的非空实数集一定有下确界. 证明. 只证明上确界. 对于实数采用戴德金实数的定义.

设

$$E = \{x_{\alpha} = 戴德金分割 \ (A_{\alpha}, B_{\alpha}) | \alpha \in 指标集 \ \Lambda\}$$
 (3.9)

已知 E 有上界 $\tilde{c} = (\tilde{A}, \tilde{B}), (\tilde{A} \subsetneq \mathbb{Q}).$

由 $\forall \alpha, \ \tilde{c} \geq x_{\alpha}$, 根据定义有

$$\forall \alpha, \ \tilde{A} \supseteq A_{\alpha} \implies \tilde{A} \supseteq \bigcup_{\alpha \in \Lambda} A_{\alpha} \xrightarrow{\underline{\mathbb{E}} \chi h} \{ y | \exists \alpha \in \Lambda \not \in Y \in A_{\alpha} \}$$
 (3.10)

考虑 $(A, B = \mathbb{Q}/A)$, 可以直接验证它是一个戴德金分割.

• 定义中的第三条:

$$\forall x \in A, \ \exists \alpha \notin x \in A_{\alpha} \tag{3.11}$$

而且

$$B = \left(\bigcup A_{\alpha}\right)^{C} = \bigcap A_{\alpha}^{C} = \bigcap_{\alpha} B_{\alpha} \implies \forall y \in B, \forall \alpha, \ y \in B_{\alpha}$$
 (3.12)

即我们可以找到一个 α ,

$$x \in A_{\alpha}, y \in B_{\alpha} \implies x < y.$$
 (3.13)

• 定义中的第四条: 要证 A 中无最大元, 采用反证法.

若 A 中有最大元, 记为 z, 则

$$z \in A = \bigcup_{\alpha} A_{\alpha} \implies \exists \alpha \notin z \in A_{\alpha}.$$
 (3.14)

由于 z 是 A 最大元, 并且 $A_{\alpha} \subseteq A$, z 也是 A_{α} 最大元, 矛盾.

3 实数 10

这样 $y = (A, B) = (\bigcup_{\alpha} A, \bigcup_{\alpha} B)$ 是一个戴德金实数, **我们可以断言** $y = \sup E$, 分为两部分内容:

- $y \in E$ 上界 $\iff y \geq x_{\alpha} \iff A \supseteq A_{\alpha}, \forall \alpha$ 显然成立.
- $y \le E$ 的任何上界 $z \stackrel{\text{idh}}{=\!=\!=\!=} (A_0, B_0)$, 由 z 是上界可知,

$$\forall \alpha, \ A_0 \supseteq A_\alpha \implies A \supseteq \bigcup_{\alpha} A_\alpha = A \implies z > y.$$
 (3.15)

命题 3.4 (判断上确界). $C = \sup E$ 等价于下列两点同时成立:

- 1. $\forall x \in E \ f \ x \leq c$.
- 2. $\forall \varepsilon > 0 \ \exists x \in E \ \notin \ x \ge c \varepsilon$.

定义 3.6. 称 E 是有界的, 如果 E 既有上界又有下界. $\iff \exists k>0$ 使 $\forall x\in E$ 有 $|x|\leq k$

例 3.2. 设 E 是有界的非空实数集,则

$$\sup\{x - y | x, y \in E\} = \sup E - \inf E. \tag{3.16}$$

证明. 记 $F = \{x - y | x, y \in E\}$, 可知 F 非空有界.

由确界定理知, $\sup F$, $\sup E$, $\inf E$ 皆存在, 有

• $\sup E - \inf E \neq F$ 的上界,因为 $\forall x, y \in E$,有 $x \leq \sup E, y \geq \inf E$,所以

$$x - y \le \sup E - \inf E. \tag{3.17}$$

说明 $\sup E - \inf E$ 不小于 F 的任何成员, 是上界.

• 对于 $\forall \varepsilon > 0$, $\sup E - \frac{\varepsilon}{2}$ 不是 E 上界, $\inf E + \frac{\varepsilon}{2}$ 不是 E 下界.

$$\exists x, y \in E, \ x - y > \sup E - \inf E - \varepsilon \tag{3.18}$$

说明 $\forall \varepsilon > 0$, $\sup E - \inf E - \varepsilon$ 不是 F 上界.

所以
$$\sup E - \inf E = \sup F$$
.

3.3 确界定理应用: 证明阿基米德定理 (命题3.5)

命题 **3.5.** $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}$ 使x < n.

证明. 反证法. 假设结论不对, 则 $x \ge n$, $\forall n \in \mathbb{Z}$, 即 $x \in \mathbb{Z}$ 的一个上界. 这说明 \mathbb{Z} 非空且有上界.

由确界定理知, $\sup \mathbb{Z}$ 存在, 记 $M \equiv \sup \mathbb{Z}$, 那么

$$n+1 \in \mathbb{Z} \implies n+1 \le M \implies n \le M-1.$$
 (3.19)

这与 $M = \sup \mathbb{Z}$ 矛盾.

命题 3.6. 任何两个实数 a < b 之间必有有理数.

证明. 寻找一个有理数 $\frac{m}{n} \in (a,b)$

对于 $x = \frac{1}{b-a}$, 由命题3.5结论可知,

$$\exists n \in \mathbb{Z}, \ n > \frac{1}{b-a}. \tag{3.20}$$

对于 y = nb, 由命题3.5的结论可知, $m_1 \in \mathbb{Z}$, $m_1 > y$, 即有

$$\frac{m_1}{n} > b \quad (m_1 \in \mathbb{Z}) \tag{3.21}$$

对于 z = -na, 由命题3.5的结论可知, $\exists m \in \mathbb{Z}, m > -na$, 记 $m_0 = -m \in \mathbb{Z}$, 从而有

$$-m_0 > -na \iff \frac{m_0}{n} < a. \tag{3.22}$$

这样总能找到整数 m_0, m_1 使 $\frac{m_0}{n} < a < b < \frac{m_1}{n}$. 于是在 m_0 和 m_1 之间总有一个 m 满足 $a < \frac{m}{n} < b$.

4 极限理论

之前的阿基米德时代的问题 (例1.2) 中, 我们需要考虑 n 越来越大的时候, x_n 是否趋近于某个值 L. 我们需要定义越来越接近这个概念.

定义 4.1. 所谓一个无穷序列, 是指一个映射 $x: \mathbb{Z}_+ \to \mathbb{R}, n \mapsto x_n$, 记为

$$\{x_n\}_{n=1}^{\infty} = \{x_n\}_{n \in \mathbb{Z}_+} \tag{4.1}$$

称 x_n 为其第 n 项.

定义 4.2. 称数列 $\{x_n\}_{n=1}^{\infty}$ 以 L 为极限 (limit), (记为 $\lim_{n\to\infty}x_n=L)$ 如果对于任何 $\varepsilon>0$, 都存在 $n\in\mathbb{Z}_+$ 使得 $\forall n>N$ 总有 $|x_n-L|<\varepsilon$.

也称当 $n \to \infty$ 时, x_n 趋于 L.

这种定义称为 $\varepsilon - N$ 语言.

" $\{x_n\}$ 以 L 为极限"可以表示为

$$\forall \varepsilon > 0, \exists N \in \mathbb{Z}_{+} \notin \exists \forall n \geq N \neq |x_n - L| < \varepsilon. \tag{4.2}$$

" $\{x_n\}$ 不以 L 为极限"可以表示为

$$\exists \varepsilon > 0 \forall N \in \mathbb{Z}_{+} \exists n \le N \oplus |x_n - L| \ge \varepsilon. \tag{4.3}$$

定义 4.3. 称 $\{x_n\}_{n=1}^{\infty}$ 是收敛的, 如果 \exists 实数 L, 使 $\{x_n\}$ 以 L 为极限. 否则, 称 $\{x_n\}$ 发散.

" $\{x_n\}$ 收敛"可以表示为

$$\exists L \in \mathbb{R} \forall \varepsilon > 0 \exists N \in \mathbb{Z}_{+} \forall n \ge N, \, \bar{\mathbf{1}} |x_n - L| < \varepsilon. \tag{4.4}$$

" $\{x_n\}$ 发散"可以表示为

$$\forall L \in \mathbb{R} \exists \varepsilon > 0 \forall N \in \mathbb{Z}_{+} \exists n \geq N \oplus |x_{n} - L| \geq \varepsilon. \tag{4.5}$$

例 **4.1.** $\lim_{n\to\infty}\frac{1}{n}=0.$

证明. $\forall \varepsilon > 0$, 取正整数 $N > \frac{1}{\varepsilon}$, 则 $\forall n \geq N$ 有

$$|x_n - 0| = \frac{1}{n} \le \frac{1}{N} < \varepsilon. \tag{4.6}$$

例 4.2. 设 a > 1, 求 $\lim_{n \to \infty} a^{\frac{1}{n}}$.

 \mathbf{R} 求证 $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$. 为此, $\varepsilon > 0$, 取 $N = \left\lfloor \frac{a-1}{\varepsilon} \right\rfloor + 1$, 则对 $\forall n \geq N$ 都有

$$(1+\varepsilon)^n \ge 1 + n\varepsilon \ge 1 + N\varepsilon > a. \tag{4.7}$$

从而

$$1 + \varepsilon > \sqrt[n]{a}. \tag{4.8}$$

可以得到

$$\left|\sqrt[n]{a} - 1\right| < \varepsilon,\tag{4.9}$$

验证了

$$\lim_{n \to \infty} \sqrt[n]{a} = 1. \tag{4.10}$$

总结 $\forall a > 0$ 有 $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$.

例 4.3. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

证明. $\forall \varepsilon > 0$ 取 N 使 $\frac{N-1}{2}\varepsilon^2 > 1$, 则对于 $\forall n \geq N$ 有

$$(1+\varepsilon)^n = 1 + C_n^1 \varepsilon + C_n^2 \varepsilon^2 + \dots \ge C_n^2 \varepsilon^2.$$
(4.11)

$$\geq \frac{(n+1)n}{2}\varepsilon^2\tag{4.12}$$

$$\geq \frac{N+1}{2}\varepsilon^2 n > 1 \cdot n \tag{4.13}$$

从而 $\sqrt[n]{n} < 1 + \varepsilon$, 得到

$$|\sqrt[n]{n} - 1| < \varepsilon. \tag{4.14}$$

4.1 极限的性质

命题 **4.1** (充分大指标的项保持极限不等式). 设 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$, 则 $\exists N \in \mathbb{Z}_+$ 使 $\forall n \geq N$ 有 $a_n < b_n$.

证明. 设 $\lim_{n \to \infty} a_n = A < B = \lim_{n \to \infty} b_n$, 取 $\varepsilon = \frac{B-A}{2} > 0$. 由 $\lim_{n \to \infty} a_n = A$ 定义知

$$\exists N_1 \in \mathbb{Z}_+ \forall n \ge N_1 \hat{\mathbf{\tau}} | a_n - A | < \varepsilon. \tag{4.15}$$

由 $\lim_{n\to\infty} b_n = B$ 定义知

$$\exists N_2 \in \mathbb{Z}_+ \forall n \ge N_2 \overleftarrow{\uparrow} |b_n - B| < \varepsilon. \tag{4.16}$$

取 $N = \max\{N_1, N_2\}$, 则 $\forall n \geq N$ 有

$$a_n < A + \varepsilon = B - \varepsilon < b_n. \tag{4.17}$$

推论 设 $\{a_n\}$ 是正数列, 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q < 1$, 则 $\lim_{n\to\infty} a_n = 0$.

证明. 取 q < r < 1, 则

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < \lim_{n \to \infty} r. \tag{4.18}$$

由命题4.1可知, $\exists N \in \mathbb{Z}_+$ 使 $\forall n \geq N$ 有 $\frac{a_{n+1}}{a_n} < r$.

从而, $\forall n > N$, 有

$$\frac{a_n}{a_N} = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+1}}{a_N} < r^{n-N}. \tag{4.19}$$

即有

$$a_n < a_N r^{n-N}, \forall n > N. (4.20)$$

由于 $\frac{1}{r}>1,$ 记 $\frac{1}{r}=1+c,(c>0).$ 这样, 取 $N_0>N+\frac{a_N}{c\varepsilon},$ 对于 $\forall n\geq N_0,$ 有

$$\left(\frac{1}{r}\right)^{n-N} = (1+c)^{n-N} \ge (n-N)c \tag{4.21}$$

$$\geq (N_0 - N)c > \frac{a_N}{\varepsilon}. (4.22)$$

可得

$$a_n < a_N r^{n-N} < a_N \frac{\varepsilon}{a_N} = \varepsilon. \tag{4.23}$$

上面最后部分是在算等比级数的极限.

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & |r| < 1 \\ \text{ π 存在, } & |r| > 1 \ \text{ gr = -1} \\ 1, & r = 1 \end{cases}$$
 (4.24)

推论 数列极限是唯一的.

证明. 反证法. 设 $\{a_n\}$ 既以 A 为极限, 又以 B 为极限, 且 a < B, 从而

$$\lim_{n \to \infty} a_n = A < B = \lim_{n \to \infty} a_n. \tag{4.25}$$

由命题4.1可知,

$$\exists N \in Z_+, \forall n \ge N \, \text{ if } \, \mathbb{E} a_n > a_n, \tag{4.26}$$

矛盾!

推论 收敛的数列一定有界.

定义 4.4. 称数列有上界, 若 $\exists M \notin \forall n, a_n \leq M$. 称数列有下界, 若 $\exists K \notin \forall n, a_n \geq K$.

证明. 设 $\lim_{n \to \infty} x_n = L < L + 1 = \lim_{n \to \infty} L + 1$, 由命题4.1可知,

$$\exists N \in \mathbb{Z}_+, \forall n \ge N \bar{\uparrow} x_n < L + 1. \tag{4.27}$$

所以

$$x_n \le \max\{x_1, \cdots, x_N, L+1\}.$$
 (4.28)

推论 (极限不等式) 设 $a_n \leq b_n$, $\forall n \geq N_0$, 若 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} b_n$ 存在, 则 $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

证明. 反证法. 设
$$\lim_{n\to\infty}a_n>\lim_{n\to\infty}b_n$$
, 由命题4.1可知, $\exists n\geq N$ 有 $a_n>b_n$, 矛盾!

注意! ≤ 可过渡给极限式, 但 < 不一定能.

例 4.4.
$$a_n = 0 < b_n = \frac{1}{n}$$
,但 $\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n$.

4.2 极限的计算方法

4.2.1 从定义直接计算

例 4.5. 多项式增长远小于指数增长,

$$\lim_{n \to \infty} \frac{n^k}{q^n} = 0, \quad \pm q > 1 \text{ Bt.}$$

$$\tag{4.29}$$

证法一

证明. 记 $x_n = \frac{n^k}{q^n}$, 注意到

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(n+1)^k q^n}{q^{n+1} n^k}$$

$$= \lim_{n \to \infty} \left(\underbrace{\frac{n+1}{n} \frac{n+1}{n} \cdots \frac{n+1}{n}}_{k \uparrow} \cdot \frac{1}{q} \right)$$

$$= \frac{1}{q} < 1$$

$$(4.30)$$

由命题
$$4.1$$
知 $\lim x_n = 0$.

证法二 (从定义验证)

证明. 对 $\forall \varepsilon > 0$,取 $N \ge \max\left\{2k, \frac{(k+1)!2^k}{a^{k-1}\varepsilon}\right\}$. $\forall n \ge N$ 有 (记 $q = 1+a, \ a > 0$)

$$\frac{n^k}{q^n} = \frac{n^k}{(1+a)^n} \le \frac{n^k}{C_n^{k+1}a^{k+1}}$$

$$= \frac{n^k(k+1)!}{n(n-1)\cdots(n-k)a^{k+1}}$$

$$= \frac{(k+1)!}{a^{k+1}} \frac{1}{n} \frac{n}{n-1} \cdots \frac{n}{n-k}$$

$$< \frac{(k+1)!}{a^{k+1}} \frac{1}{n} 2 \cdot 2 \cdots 2$$

$$= \frac{(k+1)!}{a^{k+1}} 2^k \frac{1}{n} \le \frac{(k+1)!}{a^{k+1}} 2^k \frac{1}{N} < \varepsilon.$$
(4.31)

4.2.2 极限的四则运算

定理 4.1. 设 $\lim a_n = A$, $\lim b_n = B$, 则

$$\lim(a_n + b_n) = A + B \tag{4.32}$$

$$\lim(a_n - b_n) = A - B \tag{4.33}$$

$$\lim a_n b_n = AB \tag{4.34}$$

$$\lim \frac{a_n}{b_n} = \frac{A}{B} \quad (\beta + \pi \beta) \tag{4.35}$$

证明中用到三角不等式 (绝对值不等式).

$$|x+y| \le |x| + |y| \tag{4.36}$$

证明. 我们只证极限的乘积和商的性质.

乘积 对于任何 $\varepsilon > 0$,

$$|a_n b_n - AB| = |(a_n - A)b_n + A(b_n - B)| \le |a_n - A| \cdot |b_n| + |A| \cdot |b_n - B| \tag{4.37}$$

- 由 $\{b_n\}$ 收敛知其有界, 即 $\exists M$ 使 $|b_n| \leq M, \forall n$.
- $\lim_{n\to\infty} a_n = A \mbox{ } \exists N_1 \in \mathbb{Z}_1, \forall n \geq N_1 \mbox{ } \overleftarrow{a}_n A | < \frac{\varepsilon}{2M}.$
- $\lim_{n\to\infty} b_n = B \not \exists N_2 \in \mathbb{Z}_1, \forall n \geq N_2 \not \exists |b_n B| < \frac{\varepsilon}{2(|A|+1)}.$

从而, 令 $N = \max\{N_1, N_2\}$, 对 $n \geq N$, 代回(4.37)得

$$|a_n b_n - AB| \le \frac{\varepsilon}{2M} M + |A| \frac{\varepsilon}{2(|A|+1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}. \tag{4.38}$$

这证明了 $\lim a_n b_n = AB$.

商

$$\left| \frac{a_n}{b_n} - \frac{A}{B} \right| = \left| \frac{a_n B - b_n A}{b_n B} \right| = \left| \frac{(a_n - A)B + A(B - b_n)}{b_n B} \right|$$

$$\leq \frac{|a_n - A|}{|b_n|} + \frac{|A| \cdot |B - b_n|}{|b_n||B|}.$$
(4.39)

- 由 $B \neq 0$, 不妨设 B > 0. 由命题4.1知 $\exists M \in \mathbb{Z}_+$ 使 $\forall n \geq M$ 有 $b_n > \frac{B}{2}$
- 由 $\lim_{n\to\infty} a_n = A$ 知 $\exists N_2, \forall n \geq N_2$ 有 $|a_n A| < \varepsilon' = \frac{\varepsilon}{2} \frac{B}{2}$
- $\text{ in } \lim_{n\to\infty}b_n=B \text{ } \exists N_3, \forall n\geq N_3 \text{ } fi \text{ } |b_n-B|<\varepsilon''=\frac{\varepsilon}{2}\frac{\frac{1}{2}B^2}{|A|+1}$

 $\forall \varepsilon > 0$ 取 $N = \max\{N_1, N_2, N_3\}$, 对 $\forall n \geq N$ 有 (代回(4.39))

$$\left| \frac{a_n}{b_n} - \frac{A}{B} \right| \le \frac{\frac{\varepsilon}{2} \frac{B}{2}}{\frac{B}{2}} + \frac{|A| \frac{\varepsilon}{2} \frac{\frac{1}{2} B^2}{|A|+1}}{\frac{B}{2} B} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \tag{4.41}$$

推论 有限次四则运算和极限可交换.

$$\lim_{k \to \infty} \sum_{i=1}^{n} x_{i,k} = \sum_{i=1}^{n} \lim_{k \to \infty} x_{i,k}$$
(4.42)

$$\lim_{k \to \infty} \left(\prod_{i=1}^{n} x_{i,k} \right) = \prod_{i=1}^{n} \left(\lim_{k \to \infty} x_{i,k} \right)$$

$$\tag{4.43}$$

证明. 只需 k-1 次使用前述定理.

注意 无限和/无限积与极限未必可交换.

$$\lim_{k \to \infty} \sum_{i=1}^{\infty} x_{i,k} \neq \sum_{i=1}^{\infty} \left(\lim_{k \to \infty} x_{i,k} \right)$$
(4.44)

例 4.6. 对于一个下表这样一个数列 $x_{i,k}$,

	k=1	k=2	k=3	
i = 1	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	
i = 2	0	$\frac{1}{2}$	$\frac{1}{3}$	
i=3	0	0	$\frac{1}{3}$	
:				

纵向求和, 值是 1, 但先取极限 $k \to \infty$ 每一项都变为零, 再纵向求和, 值是 0.

类似地, 有例子表明无限乘积与极限未必可交换.

4.2.3 夹逼定理

定理 **4.2.** 设 $a_n \leq b_n \leq c_n \ (\forall n \geq N_0), \ 如果$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \tag{4.45}$$

则 $\lim_{n\to\infty} b_n$ 存在且等于 L.

证明. 对于左右两边的数列极限,

• $\lim_{n\to\infty} a_n = L$ 定义可知,

$$\exists N_1, \ \forall n \ge N_1, \ f \ |a_n - L| < \varepsilon \tag{4.46}$$

从而

$$L - \varepsilon < a_n \tag{4.47}$$

• $\lim_{n\to\infty} c_n = L$ 定义可知,

从而

$$c_n < L + \varepsilon \tag{4.49}$$

结合起来, $\forall n \geq \max\{N_i\}$, 有 $L - \varepsilon < a_n \leq b_n \leq c_n < L + \varepsilon$.

例 4.7. 计算极限

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{n^k} = a_k \tag{4.50}$$

因为

$$LHS = \lim_{n \to \infty} \left(a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k} \right) \tag{4.51}$$

$$= \lim a_k + \lim \frac{a_{k-1}}{n} + \cdots \tag{4.52}$$

$$= a_k + 0 + \dots = a_k. \tag{4.53}$$

例 4.8.

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_0}$$
(4.54)

$$= \lim_{n \to \infty} \left(\frac{a_k n^k + \dots + a_0}{n^k} \frac{n^l}{b_l n^l + \dots + b_0} n^{k-l} \right)$$
 (4.55)

$$= \begin{cases} a_k \cdot \frac{1}{b_l} \cdot 0 = 0, & k < l \\ a_k \cdot \frac{1}{b_l} \cdot 1 = 0, & k = l \\ \text{ π 存在 (由引理), } & k > l \end{cases}$$
 (4.56)

引理 4.1. 设

$$\lim_{n \to \infty} x_n = X \neq 0,$$

$$\lim_{n \to \infty} y_n = Y \neq 0,$$

$$\lim_{n \to \infty} Z_n$$
不存在,
$$(4.57)$$

则

$$\lim_{n \to \infty} (x_n y_n z_n) \, \mathcal{K} \, \dot{\rho} \, \dot{e} \, . \tag{4.58}$$

证明. 反证法, 设 $\lim_{n\to\infty} (x_n y_n z_n) = L$ 存在, 则

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \left[(x_n y_n z_n) \frac{1}{x_n} \frac{1}{y_n} \right]$$
(4.59)

$$= \lim_{n \to \infty} (x_n y_n z_n) \lim_{n \to \infty} \frac{1}{x_n} \lim_{n \to \infty} \frac{1}{y_n}$$

$$\tag{4.60}$$

$$= L \cdot X \cdot Y. \tag{4.61}$$

与条件
$$\lim_{n\to\infty} z_n$$
不存在 矛盾!

例 4.9. 设 a_1, a_2, \cdots, a_k 是正数, 求

$$\lim_{n \to \infty} (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}}.$$
 (4.62)

解 不妨设 $a_1 = \max\{a_i\}$, 有

$$(a_1^n)^{\frac{1}{n}} \le (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}} \le (ka_1^n)^{\frac{1}{n}}. \tag{4.63}$$

注意到

$$\lim_{n \to \infty} (a_1^n)^{\frac{1}{n}} = a_1, \lim_{n \to \infty} (ka_1^n)^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{k} a_1 = a_1.$$
 (4.64)

使用夹逼定理得到

$$\lim_{n \to \infty} (a_1^n, a_2^n, \cdots, a_k^n)^{\frac{1}{n}} = \max\{a_i\}$$
(4.65)

例 4.10. 进一步,

$$\lim_{n \to \infty} \left(a_1^{-n}, a_2^{-n}, \cdots, a_k^{-n} \right)^{-\frac{1}{n}} \tag{4.66}$$

$$= \lim_{n \to \infty} \frac{1}{\left[\left(\frac{1}{a_1} \right)^n + \dots + \left(\frac{1}{a_n} \right)^n \right]^{\frac{1}{n}}}$$
 (4.67)

$$= \frac{1}{\max\left\{\frac{1}{a_i}\right\}} = \frac{1}{1/\min\{a_i\}}$$
 (4.68)

$$=\min\{a_i\}. \tag{4.69}$$

4.2.4 计算极限的一个有用方法: Stolz theorem

定义 4.5. 称 $\lim_{n\to\infty} x_n = +\infty$, 如果对 $\forall k > 0$,

$$\exists n \in \mathbb{Z}_+, \ \forall n \ge N \, \bar{\eta} \, x_n > k. \tag{4.70}$$

定理 4.3 (Stolz Theorem). 设 $\{b_n\}$ 严格单调递增且无上界 (或等价地说 $\lim b_n=+\infty$). 设 $\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$,则

设
$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$$
,则

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L. \tag{4.71}$$

证明 Stolz 定理. 由 $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$ 的定义可知, $\exists N\in\mathbb{Z}_+,\ \forall n\geq N$ 有

$$L - \varepsilon < \frac{a_{i+1} - a_i}{b_{i+1} - b_i} < L + \varepsilon \implies (L - \varepsilon)(b_{i+1} - b_i) < a_{i+1} - a_i < (L + \varepsilon)(b_{i+1} - b_i)$$
 (4.72)

我们可以对上式对 i 从 N 到 n-1 求和, 得到

$$(L - \varepsilon)(b_n - b_N) < a_n - a_N < (L + \varepsilon)(b_n - b_N)$$
(4.73)

$$\stackrel{\text{lighth}}{\Longrightarrow} (L - \varepsilon) \left(1 - \frac{b_N}{b_n} \right) + \frac{a_N}{b_n} < \frac{a_n}{b_n} < (L + \varepsilon) \left(1 - \frac{b_N}{b_n} \right) + \frac{a_N}{b_n}. \tag{4.74}$$

同时注意到

$$\lim_{n \to \infty} \frac{b_N}{b_n} = 0, \ \lim_{n \to \infty} \frac{a_N}{b_n} = 0 \tag{4.75}$$

由于命题4.1"充分大指标的项保持极限不等式", 可知 $\exists N_0 \in \mathbb{Z}_+$, 使得 $\forall n > N_0$ 都有

$$\left| \frac{a_n}{b_n} - L \right| < 2\varepsilon. \tag{4.76}$$

4.2.5 单调极限定理 (Weierstrass 定理)(Monotone Converge Theorem)

定理 4.4 (单调极限定理). 有上界且递增的数列一定收敛; 有下界且递降的数列一定收敛.

证明. 设 $\{x_i\}$ 递增且有上界, 考虑单步点集

$$X = \{x_n | n \in \mathbb{Z}_+\},\tag{4.77}$$

可知 X 非空且有上界, 由确界定理知, $\sup X$ 存在, 记为 L.

由 $\sup X = L$ 的定义知,

$$\forall \varepsilon > 0, \ L - \varepsilon$$
不是 X 上界, (4.78)

即 $\exists N \in \mathbb{Z}_+$, 使得 $x_N > L - \varepsilon$, 从而对于 $\forall n \geq N$ 都有

$$L - \varepsilon < x_N \le x_n \le L,\tag{4.79}$$

即

$$|x_n - L| < \varepsilon. \tag{4.80}$$

这表明
$$\lim_{n\to\infty} x_n = L$$
.

定理 **4.5** (Euler). $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ 存在 (记为 e).

证明. 记
$$x_n = \left(1 + \frac{1}{n}\right)^n$$
. $\{x_n\}$ 有上界, 因为 待补充 \Box