

Radhakrishnan S, Ph.D.

Department of Science and Humanities

Unit I: Review of concepts leading to Quantum Mechanics

Week #2 Class #6

- Double slit experiment
- De Broglie hypothesis
- Dual nature of matter
- Concept of matter waves

Unit I: Review of concepts leading to Quantum Mechanics

- > Suggested Reading
 - 1. Concepts of Modern Physics, Arthur Beiser, Chapter 2
 - 2. Learning Material prepared by the Department of Physics
- > Reference Videos
 - 1. Video lectures: MIT 8.04 Quantum Physics I

Young's double slit experiment

- Young's classic double slit experiment on interference and diffraction of radiations
- Characteristic wave experiment

de Broglie hypothesis

- Louis de Broglie hypothesis
 - Moving matter should exhibit wave characteristics
 - ightharpoonup Wavelength of the associated waves $\lambda = \frac{h}{p}$ where p is the momentum of the particle
- Wavelengths of macro particles are extremely small to be measured
- Wavelengths of moving sub atomic particles can be in the measurable range ($\sim 10^{-10} m$)

- Davisson and Germer's experiment with electron scattering by Ni crystals
- de Broglie wavelength $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2meV}}$
- Electron diffraction confirmed at particular settings
- Satisfy Bragg's law $\lambda = 2d \sin \theta$
- **Dual nature of matter!**

Double slit experiment with electrons

- Feynman's intuition of double slit experiment with electrons
- Diffraction is characteristic wave experiment
- Single photon diffraction also confirm particle diffraction

Concept of Matter waves

PES UNIVERSITY ONLINE

- Position and momentum are the two generalized parameters needed to describe the state of any system
- Position and momentum are conjugate parameters

$$(x_1, t_1) \qquad (x_2, t_2)$$

$$v = \frac{dx}{dt}$$

Concept of Matter waves

- Wave phenomena need a mathematical concept to describe the state of the system
- Any representative wave should be able to give information about the position and momentum of the system

Concept of Matter waves

- Simple sine or cosine waves fall short
 - \succ Momentum can be inferred from wavelengths $p=rac{h}{\lambda}$
 - Position is not well defined

Important - the sine wave is not the path of the particle

Need for a new wave format for matter waves!

Class #6 Quiz....

PES UNIVERSITY ONLINE

The following concepts are not true of matter waves

- 1. de Broglie wavelength of moving particles cannot be measured
- 2. Double slit experiments cannot be performed with particles
- 3. Single photon experiments can be performed
- 4. Sine or cosine waves can describe particle motion accurately
- 5. The momentum of a particle is independent of the position of the particle

THANK YOU

Radhakrishnan S, Ph.D.

Professor, Department of Science and Humanities

sradhakrishnan@pes.edu

+91 80 21722683 Extn 759