Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

1 Introduction to Probability

1.1 Permutation-Combination

(a) 3

1. Three objects can be placed in 2 positions in – ways.

(b) 4

2.	. In how many ways can a team of 2 be formed from 4 people?					
	(a) 4	(b) 6	(c) 8	(d) 12		
3.	$^{n}p_{r}=$					
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$		
4.	$^{n}C_{r}=$					
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$		
	1.2 Conceptual	Questions				
5.	The probability of ty	wo disjoint sets happe	ning together is:			
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$		
6.	How many additive	laws of probability are	e there?			
	(a) 1	(b) 2	(c) 3	(d) 4		
7.	$P(A \cup B) = P(A) + P(A$	B) implies A & B are	_			
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent		
8.	Which is the formula	a of classical approach	of probability?			
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ble outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes		
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$			
9.		a of empirical/relative	e frequency approach	of probability?		
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$		(b) $P = \frac{\text{No. of total oute}}{\text{No. of favorable of }}$			
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$	AC Outcomes	(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	uvones		
10.	What is the correct	formula for conditions	al probability?			
		(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	- *	(d) $P(A B) = \frac{P(B A)}{P(B A)}$		
11.	The third axiom of p	probability is –				
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$			
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$			
12.	Possible value of pro	bability				
	i1 ii. 0.5 iii. 0					
	Which one is correct	?				
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		

(c) 6

(d) 8

13.	An act repeated und	er some specific cond	itions is called –				
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space			
14.	P(0) implies –						
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event			
15.	Events having some	common elements are	called –				
	(a) Complementary even	nts	(b) Mutually exclusive e	events			
	(c) Exhaustive events		(d) Non-Mutually exclusion	sive events events			
16.	The minimum value	of probability is					
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1			
17.	Each element of sam	ple space is called–					
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point			
18.	Two events not ocurr	ring together are calle	m ed-				
	(a) dependent Events		(b) Independent Events				
	(c) Mutually Exclusive	Events	(d) Marginal Events				
19.	If A and B are indep	endent, which formul	a is correct?				
	(a) $P(A \cap B) = P(A) \cdot A$		(b) $P(A \cap B) = P(\bar{A}) \cdot P(B)$				
	(c) $P(A \cap B) = P(A) \cdot B$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot P(B)$				
20.		eople in a city walk t does not walk to the		picked randomly, what is			
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01			
	1.3 Coin-Die						
21.	A coin is thrown thr	ice. How many outcom	mes are generated?				
	(a) 3	(b) 4	(c) 8	(d) 9			
22.	A die is thrown twice	e. This is called –					
	(a) An experiment	(b) sample space	(c) A random experiment	-(d) A trial			
23.	If a neutral die is the	rown, the probability	of having a digit grea	ter than 6 is			
	(a) $\frac{1}{6}$	(b) $\frac{0}{6}$	(c) $\frac{2}{3}$	(d) $\frac{3}{6}$			
24.	Tossing a coin twice	generates how many	outcomes?				
	(a) 4	(b) 16	(c) 8	(d) 2			
	1.4 Balls-Cards						
25.		plack, and 5 white batty that both are red?	lls in an urn. If two	balls are randomly taken,			
	(a) $\frac{1}{66}$	(b) $\frac{1}{22}$	(c) $\frac{2}{22}$	(d) $\frac{3}{11}$			
		ee questions based on	the following informa	ation.			
	A card is drawn from of pack of playing cards.						

26.	26. What is the probability that the card is a King?					
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769		
27.	P(The card is not fre	om Diamonds)–				
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$		
28.	P(The card is red or	Clubs)				
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$		
	1.5 Set-Problem	s				
	Answer the next two	questions based on t	the following informat	ion		
	For	two exhaustive evenst A	A & B, P(A) = 0.7 and P	f(B) = 0.4		
29.	$P(A \cap B) = ?$					
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1		
30.	The events A & B as	re –				
	i. independent ii. dependent					
	iii. not mutually exclusive Which one is correct					
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
	(a) Choice	(b) Choice	(c) Choice	(d) Choice		
	Answer the next thr	ee questions using the	e following information	n		
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{2} \& I$	$P(A \cup B) = \frac{7}{12}$				
31.	$P(A \cap B) = ?$	4		15		
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$		
32.	$P(A \cap \bar{B}) = ?$	a > 2	, , E	(n) 1		
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$		
33.		lity that B occurs or		(n) 11		
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$		
34.	An un contains 10 regetting two red balls		Two balls are drawn;	what is the probability of		
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$		
	2 Random Va	ariables				
	_	Random Variable				
35.	Which is a discrete i	random variable?	(L) A (CD) 1	: : ft		
	(a) Age of students (c) Height of workers		(b) Amount of Producti			
	(c) Height of workers		(d) Page size in word pr	ocessing softwares		

36.	${f A}$ set of sample points tabulated along with their respective probabilities is an example of $-$						
	(a) Probability distribution(c) Frequency distribution		(b) Probability funct				
0.7	. ,		(d) Marginal probability distribution				
37.		ons does a probability (b) 3	(c) 4	/e: (d) 5			
38.	(a) 2 A coin is tossed two values of X are the	vice and no. of heads	,	d by X. How many possible			
	(a) 1	(b) 2	(c) 0	(d) 3			
	Answer the next tv	vo questions based on	the following inform	ation			
		$\frac{X}{P(x)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
39.	What is F(1) (a) 0.65	(b) 0.75	(c) 0.5	(d) 1			
40.	$P(X \le 1 \le 3) = -$ (a) 0.75	(b) 0.70	(c) 0.95	(d) 1			
41. Which one is a property of marginal probability density function?							
	(a) $\int_x f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$			
42.	Which one is NOT	an example of a conti	inuous random varia	ble –			
	(a) Weight	(b) Height	(c) Time	(d) Size of television			
43.	Integrated value of (a) $\frac{1}{20}x^5$	$(\frac{1}{4}x^4 - (b) \frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$			
44.	The conditions of a i. $\sum P(X) = 1$ ii. $\sum P(X) = 0$ iii. $0 \le P(X) \le 1$ Which one is correct	probability distributi					
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii			
45.	What is $F(\infty)$ for a	distribution function	F(x)?				
	(a) $-\infty$	(b) -1	(c) 0	(d) 1			
46.	What is $F(-\infty)$ for (a) $-\infty$	a distribution function (b) -1	on $F(x)$? (c) 0	(d) 1			
47.	How many types of	f random variables are	e there?				
	(a) 2	(b) 3	(c) 4	(d) 5			
48.	Which of the follow (a) umber of students (c) Number of heads i	ving is not a discrete r	random variable? (b) Weight (d) Population				

40	Wile: 1		1:-4:14:2		
49.		erty of a probability of		$(1) \int D(V) I = 1$	
			(c) $\Sigma P(x_i) = 1$	(d) $\int_{x} P(X) dx \le 1$	
50.		liscrete random varial			
	(a) Number of studnets		(b) Weight		
	(c) Number of heads in	five coin tosses	(d) Released version nu	mber of a software	
51.	Which one is a prope	erty of joint probabili	ty distribution?		
	(a) $P(X_i, Y_j) < 1$	(b) $P(X_i, Y_j) = 0$	(c) $P(X_i, Y_j) < 0$	$(d) 0 \le P(X_i, Y_j) \le 1$	
	2.2 Misc				
	Answer the next two	questions based on t	the following informat	ion	
			_		
		f(x) =	kx; 0 < x < 5		
52.	What is the value of	P(2 < x < 3)			
	(a) $\frac{4}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$	
53.	P(X>0)				
	(a) 0.99	(b) 0.5	(c) 1	(d) 0	
	Answer the next two	questions using the	following information		
		v 1 2	3 4 5 6		
		$\frac{\mathbf{x} 1 2}{\mathbf{P}(\mathbf{x}) \mathbf{k} 2\mathbf{k}}$	3k 4k 5k 6k		
		· /			
54.	What is the value of	' k?			
	(a) $\frac{7}{21}$	(b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1	
55.	What is the type of	variable X?			
	(a) Discrete	(b) Discrete random	(c) Continuous	(d) Continuous random	
	Answer the next TH	REE questions using	the following informa	tion	
		x	+1		
		P(x) = -	$\frac{+1}{k}; x = 1, 2, 3, 4$		
56.	What is the value of	' k?			
	(a) 10	(b) 11	(c) 14	(d) 15	
57.	F(2) = -				
	(a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$	
58	P(x) is a –	(/ 11	(/ 14	(/ 11	
50.	(a) Joint probability dis	etribution	(b) Cumulative probabi	lity distribution	
	(c) Probability mass fur		(b) Cumulative probability distribution(d) Probability Density function		
			, ,	Tunction	
59.	-	screte random variabl	e is–		
	i. Binomial variate				
	ii. Poisson variate				
	iii. Normal variate	.9			
	Which one is correct		(a) ii and iii	(d); ;; and ;;;	
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	

02.	$\mathbf{r}(\mathbf{y}) = \mathbf{i}$			
	(a) $\frac{y+2}{7}$	(b) $\frac{y+3}{7}$	(c) $\frac{3y+2}{7}$	(d) $\frac{y+2}{9}$
63.	If $f(x) = kx^3$; $-1 \le x \le$	1, then k is		
	i) positiveii) negativeiii) lies from -1 to 1			
	(a) i	(b) ii	(c) iii	(d) i and ii
	Answer the next two	questions based on t	he following informat	ion.
		$\begin{array}{ c c c c c }\hline x & 4 & 5 \\\hline P(X) & \frac{1}{6} & \frac{1}{6} \\\hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
64.	The value of $P(3 < X)$	< 5) is:		
	(a) $\frac{1}{2}$	(b) $\frac{1}{6}$	(c) $\frac{1}{3}$	(d) 0
65.	$P(x \neq 2)is$:			
	(a) $\frac{5}{6}$		(b) 0	
	(c) 1		(d) Can't be found from	this information

(c) 1

(d) 0

60. f(x) = 2x; 0 < X < 3; What is **F(3)?**

 $P(x,y) = \frac{1}{21}(x+y); x = 1, 2, 3 \text{ and } y = 1, 2$

(b) 0

Answer the next two questions based on the following information:

(a) $P(x) = \frac{2x+3}{21}$ (b) $P(x) = \frac{x+3}{27}$ (c) $P(x) = \frac{4x+3}{21}$ (d) $P(x) = \frac{2x+5}{21}$

(a) 3

61. P(x)=?

62. **P**(**y**)=?

3 Mathematical Expectation

66.	E(X) + E(Y) = ?					
	(a) $E(X)$ - $E(Y)$	(b) $E(X) + E(Y)$		(c) 2E	(X) - E(Y)	(d) $E(X) \times E(Y)$
	Answer the next TH	REE questions	based o	n the	followin	ng information
			X 0	1	2	
			$\begin{array}{cc} X & 0 \\ P(x) & \frac{1}{3} \end{array}$	$\frac{1}{4}$	$\frac{5}{12}$	
c 	3371 4 2 41 1 6	E(V)				
67.	What is the value of (a) $\frac{15}{12}$	$E(X)$ (b) $\frac{13}{12}$,	(a) 1		(d) 11
			((c) $\frac{1}{12}$		(d) $\frac{11}{13}$
68.	What is the value of	1.0		() 23		(1) 25
	(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	((c) $\frac{23}{12}$		(d) $\frac{25}{13}$
69.	What is $V(2X)$?	(2)		<i>,</i> , , , , , , , , , , , , , , , , , ,		40.
	(a) 2.93	(b) 2.91	((c) 1.9	7	(d) 2.97
70.	What is the expected from their mean?	d value of of the	e square	d dev	iation of	the value of the random variable
	(a) Arithmetic Mean	(b) Expectation	((c) Va	riance	(d) Co-variance
71.	What is the minimum	m value of varia	ance a r	andoı	n variabl	le?
	(a) $-\infty$	(b) 1	((c) 0		(d) -1
72.	If $y = ax + b$, what is	the value of V	(y)?			
	(a) $aV(X)$	(b) $a^2V(X)$		(c) V(X)	(d) a^2
73.	If $y = ax + b$, what is	the value of $E($	(y)?			
	(a) $aE(X) + b$			(c) E(X)	(d) <i>b</i>
74.	What is the value of	V(5)?				
	(a) 0	(b) 25	((c) 5		(d) 1
75	If $P(x) = \frac{1}{n}$; $x = 1, 2, 3$,	\dots n what is		. ,	E(X)?	. ,
10.	(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$		(c) $\frac{n+1}{2}$		(d) $n+1$
	2	. , 2		`		
76.	If $P(x) = \frac{4 - 5 - x }{k}$; $x = 2, 3, 4, \dots 8$, what is the value of k?					
	(a) 5	(b) 8	((c) 16		(d) 24
77.	Expected value of a	constant a is –				
	(a) 1	(b) Variance	((c) a		(d) a+1
78.	The variance of a con	nstant m is –				
	(a) 0	(b) 1	((c) m		(d) m^2
79	What is $V(X-Y)$ eq	ual to?				
	(a) $V(X) + V(Y)$, -	((b) V(X) + V(Y)	Y) - 2Cov(X, Y)
	(c) $V(X) - V(Y)$					(Y) + 2Cov(X, Y)

80.	What is the value of	V(2X+5)?			
	(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0	
81.	If $P(x) = \frac{1}{20}$; $x = 1, 2, 3$	$3, \cdots, 20$, what is the st	tandard deviation?		
	(a) 1	(b) 5.77	(c) 7.75	(d) 12.57	
82.	Expectation measure	es –			
	(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency	
83.	If $E(X) = -0.5$, then	E(1-2X) = ?			
	(a) 0	(b) -1	(c) 2	(d) 1	
84.	If $P(X) = \frac{1}{10}$; $x = 1, 2$,	$\cdots 10$, then $E(X) = ?$			
	(a) 10	(b) 5.5	(c) 0	(d) 11	
85.	Which formula of va				
			(b) $V(X + Y) = V(X)$		
	(c) $V(X+Y) = V(X)$	+V(Y) - 2Cov(X,Y)	(d) $V(X+Y) = V(X)$	-V(Y) + 2Cov(X,Y)	
86.	6. X is a constant; what is the value of $V(\frac{X}{2})$?				
	i) 0 ii) 1				
	ii) $\frac{1}{2}$ iii) $\frac{1}{4}$				
	(a) ii	(b) i	(c) iii	(d) i and iii	
87.	If $E(X) = 2, E(X^2) = 3$	8, V(X) =			
	(a) 0	(b) 2	(c) 4	(d) 8	
88.	If $P(x) = \frac{4- 5-x }{k}$; $x = \frac{4}{k}$	$2,3,4,\cdots 8$, what is the	value of $E(X)$?		
	(a) 3	(b) 8	(c) 16	(d) 5	
89.	If $P(x) = \frac{6 - 7 - x }{k}$; $x = \frac{6}{k}$	$2,3,4,\cdots 12$, what is th	e value of $E(X)$?		
	(a) 6	(b) 9	(c) 13	(d) 36	
90.	If $P(x) = \frac{3- 4-x }{k}$; $x = \frac{3}{k}$	$2,3,4,\cdots 6$, what is the	value of k?		
	(a) 6	(b) 9	(c) 10	(d) 40	
91.	If the variance of X	is 3, what is the varia	nce of $V(3)$?		
	(a) 1	(b) 2	(c) 3	(d) 0	
92.	If $V(X) = 5$,, what is	V(X+5)?			
	(a) 0	(b) 5	(c) 10	(d) 25	
93.	If $V(X) = 5$,, what is	V(2X+5)?			
	(a) 20	(b) 5	(c) 10	(d) 25	
94.	If $E(X) = 2$ and $E(X)$	(2) = 8, then the value	of the $V(X) = ?$		
	(a) 0	(b) 2	(c) 4	(d) 8	
95.	If $P(x) = \frac{1}{15}$; $x = 1, 2, 3$	$3, \cdots 15$, what is the va	lue of the expectation	1?	
	(a) 8.5	(b) 7.5	(c) 7	(d) 8	

4 Binomial Distribution

96.	How many parame	ters are there in a bin	omial distribution?	
	(a) 1	(b) 2	(c) 3	(d) 4
97.	What is the Mean	of Binomial Distributi	ion?	
	(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
98.	What is the Varian	ice of Binomial Distrib	oution?	
	(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
99.	What is the Standa	ard Deviation of Binor	mial Distribution?	
	(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
100	. What is the Coeff	icient of Variation of I	Binomial Distribution?	?
	(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}
101	. Which is true of n	nean (np) of Binomial	Distribution?	
	(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$
102	. In a Binomial dist	ribution, how are mea	an and variance related	d?
	(a) $Mean > Variance$	2	(b) $Mean < Variance$	
	(c) $Mean = Variance$	2	(d) $Mean = 2 \times Varia$	nce
103	. When does Binon	nial distribution tend t	to Poisson distribution	n?
	(a) $n \to \infty$ and $p \to \infty$	∞ (b) $n \to 0$ and $p \to 0$	(c) $n \to \infty$ and $p \to 0$	(d) $n \to 0$ and $p \to \infty$
	Answer the next tw	vo questions based on	the following informa	tion.
	X is a binomial variat	e with expectation 4 and	standard deviation $\sqrt{3}$.	
104	. What are the valu	es of the parameters	(mean and probability)?
	(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$
105	. What is $P(X \neq 0)$?	•		
	(a) 0	(b) 0.01	(c) 0.99	(d) 1
106	. The characteristic	s of binomial distribut	tion-	
	$ \begin{aligned} &\text{i. } E(X) > V(X) \\ &\text{ii. } E(X) = V(X) \\ &\text{iii. } E(X) = np \end{aligned} $			
	Which one is corre	ct?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
107	. What is true of bi	nomial distribution?		
	(a) There is one param	meter	(b) Number of trial is	fixed
	(c) Mean is greater th	nan variance	(d) Skewness is negative	re
108		ness of binomial distrib	bution?	
	(a) $\frac{(q-p)^2}{m^2}$	(b) $\frac{(q-p)^2}{m}$	(c) $\frac{(p+1)^2}{mn^2}$	(d) $\frac{(q+p)^2}{mns}$
	np	np	npq	npq

109. When is a binomia	l distribution positive	ly skewed?	
(a) $p > q$	(b) $p = q$	(c) p < q	(d) $p+q < 1$
Answer the next tw	o questions based on t	the following informat	ion
	In a binomial distribution	n, $P(x=4) = \frac{1}{2}P(x=5)$;	n = 10
110. What is the mean?			
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22
111. $P(x=2) =$			
(a) 0.0053	(b) 0.0069	(c) 0.0085	(d) 0.94
5 Poisson Dis	stribution		
112. The no. of parame	ters in a Poisson distr	ibution is —	
(a) 1	(b) 2	(c) 3	(d) 4
113. What is the mean	of Poisson distribution	1	
(a) $\frac{1}{\sqrt{m}}$	(b) <i>m</i>	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$
114. Which relationship	between mean and va	ariance of Poisson Dis	tribution is correct?
(a) $Mean > Variance$	(b) $Mean < Variance$	(c) $Mean = Variance$	(d) $Mean \neq Variance$
115. What is the Varian	ice of Poisson Distribu	ition(with parameter	m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) <i>m</i>	(d) $\frac{1}{m+1}$
116. What is the Standa	ard Deviation of Poiss	on Distribution(with p	parameter m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) \sqrt{m}	(d) $\frac{1}{m+1}$
117. Which one is true	of the parameter (m)	of Poisson Distributio	n?
(a) $m = 0$	(b) $m < 0$	(c) $m > 0$	(d) $m = 1$
118. The parameter of a	a Poisson Distribution	is 5. What is its mea	n?
(a) 2	(b) 5	(c) 2.24	(d) 25
119. When does Binomi	al Distribution tend t	o Poisson Distribution	n?
(a) $n \to \infty, p \to 0 \& np$		(b) $n \to \infty, p \to 0 \& np$	
(c) $n \to \infty, p0\infty \& np$	is finite	(d) $n \to 0, p \to \infty \& np$	is infinite
120. The parameter of a	a Poisson variate is 2.		
(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2
121. X is a Poisson varia	ate. $P(2) = P(4)$. Wh	at is the value of the	parameter?
(a) 12	(b) 3.46	(c) 3.6	(d) 4
122. Mean of a Poisson	variate is a. What is i	1	
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2

5.1 Problems

123. On average, 1 in 1000 houses in a city gets a fire-burn in a year. If there are 2000 houses, what is the probability that, in a certain year, exactly 5 house will be burnt?							
(a) 0.036	(b) 0.040	(c)	0.027		(d) 0.0	91	
6 Vital Statis	tics						
124. What is the called t	he ratio of the dep	pendent	popula	tion to t	he earn	ing popu	lation?
(a) Dependency ratio	(b) Sex ration	(c)	Populatio	n density	(d) Gr	owth rate	
125. What is the formula	a of population der	nsity?					
(a) $\frac{M}{F} \times 100$	(b) $\frac{F}{M} \times 100$	(c)	$\frac{B}{P} \times 100$		(d) $\frac{P}{A}$		
126. In the following data, what is the dependency ratio?							
Age	0-14 15-24	25-34	35-44	45-54	55-64	65+	
Populatation	1 31,500 40,000	48,000	41,000	32,000	25,000	16,000	
(a) 35.54%	(b) 25.54%	(c) :	23.24%		(d) 31	.25%	
127. Crude Birth Rate (CBR) is:						
(a) $\frac{B}{P} \times 100$	(b) $\frac{B}{P} \times 1000$	(c)	$\frac{P}{B} \times 100$		(d) $\frac{F}{P}$	\times 100	
128. Which one is a mea	sure of reproduction	on?					
i) CBR ii) CDR iii) NRR							
(a) i	(b) ii	(c) i	iii		(d) i a	nd ii	
129. The number of peop	ole living per unit	area is	called				
(a) Population Index		(b)	Population	on Density	y		
(c) Human Developmen	t Index	(d)	Depender	ncy Ratio			
130. Which formula of G	FR is accurate?						
(a) $GFR = \frac{B}{P} \times 1000$				$\frac{B}{F_{15-49}} \times 1$			
(c) $GFR = \frac{B_i}{F_i} \times 1000$		(d)	$GFR = \frac{1}{2}$	$\frac{G_i}{F15-49}$ \times	1000		
Answer the next two	questions based o	n the fo	ollowing	informa	tion		
Year 1 2 3 4 Population 100 110 120 130							
131. Which type of grow	th is seen here?						
(a) Arithmetic growth		th (c)	Exponent	ial growt	h (d) No	one	
132. What is the rate of	increase?						
(a) 1	(b) 0.1	(c)	10		(d) 1%	ó	

Answer Key:

23. (b)
$$\frac{0}{6}$$

3. (a)
$$\frac{n!}{(n-r)!}$$

25. (b)
$$\frac{1}{22}$$

47. (a)
$$2$$

$$(n-r)$$
:
 $n!$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

27. (c)
$$\frac{3}{4}$$

49. (c)
$$\Sigma P(x_i) = 1$$

51. (d) $0 \le P(X_i, Y_i) \le 1$

28. (d)
$$\frac{3}{4}$$

52. (d)
$$\frac{1}{5}$$

8. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 30$$
. (a) Choice

54. (c)
$$\frac{1}{21}$$

9. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 31.$$
 (c) $\frac{1}{4}$

10. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

32. (a)
$$\frac{1}{4}$$

57. (c)
$$\frac{5}{14}$$

11. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)^{33}$$
.

12. (c) ii and iii

59. (a) i and ii

- 13. (b) Experiment
- 36. (a) Probability distribution

35. (d) Page size in word processing softwares

61. (a) $P(x) = \frac{2x+3}{21}$

- 14. (c) An impossible event
- 37. (b) 3

62. (c) $\frac{3y+2}{7}$

- 15. (a) Complementary events
- 38. (d) 3

63. (a) i

16. (c) 0

39. (b) 0.75

64. (b) $\frac{1}{6}$

- 17. (d) Sample Point
- 40. (a) 0.75

65. (a) $\frac{5}{6}$

- 18. (c) Mutually Exclusive Events
- . ,

66. (b) E(X) + E(Y)

- 19. (a) $P(A \cap B) = P(A) \cdot P(B)$
- 49 (4) C:-- -f +-1--:-:-

41. (c) $\int f(x) dx = 1$

67. (b) $\frac{13}{12}$

20. (c) 0.90

- 42. (d) Size of television
- 68. (b) $\frac{13}{12}$

21. (c) 8

43. (b) $\frac{1}{20}x^5 + c$

69. (d) 2.97

- 22. (a) An experiment
- 44. (b) i and iii

70. (c) Variance

71. (c) 0

92. (b) 5

113. (b) m

72. (b) $a^2V(X)$

93. (a) 20

114. (c) Mean = Variance

- 73. (a) aE(X) + b
- 94. (c) 4

115. (c) m

74. (a) 0

95. (d) 8

116. (c) \sqrt{m}

75. (c) $\frac{n+1}{2}$

96. (b) 2

76. (c) 16

97. (a) np

117. (c) m > 0

118. (b) 5

77. (c) a

98. (b) npq

119. (a) $n \to \infty, p \to 0 \& np$ is finite

78. (a) 0

99. (d) \sqrt{npq}

120. (d) 2

- 79. (c) V(X) V(Y)
- 100. (c) $\frac{q}{np}$

121. (b) 3.46

80. (c) 4V(X)

101. (c) np > 0

122. (c) $a^{\frac{1}{2}}$

81. (a) 1

- 102. (a) Mean > Variance
- 123. (a) 0.036

- 82. (d) Central tendency
- 103. (c) $n \to \infty$ and $p \to 0$
- 124. (a) Dependency ratio

83. (c) 2

104. (a) $16, \frac{1}{4}$

125. (d) $\frac{P}{A}$

84. (b) 5.5

105. (c) 0.99

126. (b) 25.54%

- 85. (b) V(X+Y) = V(X) + V(Y) + 2Cov(X,Y)
- 86. (b) i

108. (a) $\frac{(q-p)^2}{np}$

128. (c) iii

107. (c) Mean is greater than variand 27. (b) $\frac{B}{P}\times 1000$

87. (c) 4

109. (b) p = q

129. (b) Population Density

88. (d) 5

110. (a) 6.25

130. (b) $GFR = \frac{B}{F_{15-49}} \times 1000$

89. (d) 36

111. (b) 0.0069

131. (a) Arithmetic growth

90. (b) 9 91. (d) 0

112. (a) 1

132. (b) 0.1