In [1]:

```
import pandas as pd
```

In [2]:

```
df=pd.read_csv('aerofit.csv')
```

In [3]:

df

Out[3]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [4]:

#basic exploration
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int.64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

In [6]:

df.isnull().sum()

Out[6]:

Product 0 Age 0 Gender 0 Education 0 MaritalStatus 0 Usage 0 Fitness 0 Income 0 Miles 0 dtype: int64

In [7]:

df.describe()

Out[7]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

In []:

In [10]:

df['Product'].value_counts(normalize=True)*100

Out[10]:

KP281 44.44444 KP481 33.333333 KP781 22.222222

Name: Product, dtype: float64

In [12]:

```
df.groupby('Product')["Income"].describe()
```

Out[12]:

		count	mean	std	min	25%	50%	75%	max
ı	Product								
	KP281	80.0	46418.025	9075.783190	29562.0	38658.00	46617.0	53439.0	68220.0
	KP481	60.0	48973.650	8653.989388	31836.0	44911.50	49459.5	53439.0	67083.0
	KP781	40.0	75441.575	18505.836720	48556.0	58204.75	76568.5	90886.0	104581.0

In []:

#

In [14]:

```
import seaborn as suraaj
suraaj.boxplot(x='Gender', y='Income', hue='Product', data=df)
```

Out[14]:

<AxesSubplot:xlabel='Gender', ylabel='Income'>

In [15]:

#

In [16]:

```
suraaj.boxplot(x='Gender', y='Miles', hue='Product', data=df)
```

Out[161:

<AxesSubplot:xlabel='Gender', ylabel='Miles'>

In [18]:

```
df.groupby(['Gender','Product'])["Miles"].describe()
```

Out[18]:

		count	mean	std	min	25%	50%	75%	max
Gender	Product								
Female	KP281	40.0	76.200000	27.988276	38.0	56.0	75.0	87.25	188.0
	KP481	29.0	87.344828	33.456022	21.0	74.0	85.0	95.00	212.0
	KP781	7.0	180.000000	63.245553	100.0	140.0	200.0	200.00	280.0
Male	KP281	40.0	89.375000	28.573511	47.0	75.0	85.0	105.25	169.0
	KP481	31.0	88.483871	33.625259	42.0	58.5	95.0	106.00	170.0
	KP781	33.0	164.121212	60.014455	80.0	120.0	160.0	180.00	360.0

In []:

#

#Some more insights using different charts

In [19]:

```
suraaj.heatmap(df.corr(), annot=True)
```

Out[19]:

<AxesSubplot:>

In []:

```
#
#
#
#
```

In []:

#IQR is not mandatory

In [23]:

```
#gender and product
pd.crosstab(index=df['Gender'], columns=df['Product'])
```

Out[23]:

Product	KP281	KP481	KP781	
Gender				
Female	40	29	7	
Male	40	31	33	

In [24]:

```
pd.crosstab(index=df['Gender'], columns=df['Product'], margins=True)
```

Out[24]:

Product	KP281	KP481	KP781	All
Gender				
Female	40	29	7	76
Male	40	31	33	104
All	80	60	40	180

```
In [26]:
pd.crosstab(index=df['Gender'], columns=df['Product'], margins=True, normalize=True)*100
Out[26]:
Product
           KP281
                    KP481
                             KP781
                                          ΑII
 Gender
 Female 22.22222 16.111111
                           3.888889
                                     42.22222
   Male 22.22222 17.222222 18.333333
                                     57.77778
    All 44.44444 33.33333 22.22222 100.000000
In [ ]:
#p(female buying 781) - 3.8%
In [27]:
pd.crosstab(index=df['Gender'], columns=df['Product'], margins=True, normalize='index')*100
Out[27]:
Product
           KP281
                    KP481
                             KP781
 Gender
 Female 52.631579 38.157895
                           9.210526
   Male 38.461538 29.807692 31.730769
    All 44.44444 33.333333 22.222222
In [ ]:
#conditional
1. P(781 | Male) = 31.7%
#
In [30]:
pd.crosstab(index=df['Gender'], columns=df['Product'], margins=True, normalize='columns')*
Out[30]:
                 KP481 KP781
Product KP281
                                    ΑII
 Gender
 Female
          50.0 48.333333
                          17.5 42.222222
   Male
          50.0 51.666667
                         82.5 57.777778
In [ ]:
P (Male | 781) - 82.5%
```