

WEST Search History**Hide Items Restore Clear Cancel***updated search
4/10/05
ref*

DATE: Thursday, April 28, 2005

<u>Hide?</u>	<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L1	holmes.in. and (holotoxin\$ or holo-toxin\$ or ab-5 or ab5 or adribosylating or adp-ribosylat\$ or rtx or rtxs)	59
<i>DB=USPT; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L2	l1 and cholera	24
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L3	l1 and cholera	47
<input type="checkbox"/>	L4	L3 not l2	23
<i>DB=PGPB; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L5	US-20040176571-A1.did.	1
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L6	(jobling or eldrige or hancock or peek).in.	5209
<input type="checkbox"/>	L7	l6 and cholera	25
<input type="checkbox"/>	L8	L7 not l4 not l2	18
<input type="checkbox"/>	L9	L7 not l4 not l2	18
<input type="checkbox"/>	L10	(holotoxin\$ or holo-toxin\$ or ab-5 or ab5 or adribosylating or adp-ribosylat\$ or rtx or rtxs).clm.	133
<input type="checkbox"/>	L11	L10 and (changes or changed or modified or mutant or mutation or mutagenesis or alter or altered or modification or substitution or deletion or insertion).clm.	76
<input type="checkbox"/>	L12	L11 and (glutamic or aspartic).clm.	6
<input type="checkbox"/>	L13	L11 and (glutamine or aspartic).clm.	7

END OF SEARCH HISTORY

1. 20040197348. 20 Feb 04. 07 Oct 04. Enhanced immune response to attachment (G) protein of respiratory Syncytial virus. Hancock, Gerald E., et al. 424/186.1; 530/350 C07K014/005 C12Q001/70 A61K039/12.

2. 20040057948. 03 Jun 03. 25 Mar 04. Component of bromelain. Mynott, Tracey Lehanne, et al. 424/94.65; 435/212 A61K038/46 C12N009/48.

3. 20020188107. 28 Dec 01. 12 Dec 02. Component of stem bromelain. Mynott, Tracey Lehanne, et al. 530/379; 435/219 530/300 530/350 530/370 530/412 536/23.72 C12N009/50 C07H021/04 C07K002/00 C07K004/00 C07K005/00 C07K007/00 C07K014/00 C07K016/00 C07K017/00 A61K038/00 C07K001/00 A61K035/78 A61K035/80 A23J001/00.

4. 20020102253. 29 Dec 00. 01 Aug 02. Component of bromelain. Mynott, Tracey Lehanne, et al. 424/94.65; 435/219 A61K038/46 C12N009/50.

5. 6699478. 15 Mar 00; 02 Mar 04. Enhanced immune response to attachment (G) protein of Respiratory Syncytial Virus. Hancock; Gerald E., et al. 424/211.1; 424/186.1 424/202.1 424/204.1 435/235.1 530/300 530/350. A61K039/155 A61K039/295 A61K039/12 C12N007/01 C07K007/00 C07K017/00.

6. 6335427. 25 Aug 99; 01 Jan 02. Component of stem bromelain. Mynott; Tracey Lehanne, et al. 530/379; 530/350 530/370 530/412. A61K035/78.

7. 6309851. 19 Mar 98; 30 Oct 01. Method for producing a recombinant protein. Taylor; Ronald K., et al. 435/25; 435/69.1. C12Q001/26.

8. 6024983. 07 Sep 93; 15 Feb 00. Composition for delivering bioactive agents for immune response and its preparation. Tice; Thomas R., et al. 424/501; 424/237.1 424/256.1 424/497 424/499 424/810 428/402.21 428/402.24 514/885 514/889 514/958 514/963. A61K009/52 A61K039/085 A61K039/12 A61K039/39.

9. 5942252. 06 Jun 95; 24 Aug 99. Method for delivering bioactive agents into and through the mucosally-associated lymphoid tissues and controlling their release. Tice; Thomas R., et al. 424/501; 424/426 424/430 424/434 424/435 424/436 424/451 424/464. A61K009/50 A61K009/48 A61F002/02 A61F009/02.

10. 5853763. 06 Jun 95; 29 Dec 98. Method for delivering bioactive agents into and through the mucosally-associated lymphoid tissue and controlling their release. Tice; Thomas R., et al. 424/489; 424/184.1 424/204.1 424/206.1 424/234.1 424/237.1 424/434 424/435 424/436 424/499 424/501 424/810 514/885 514/888 514/963. A61K009/52 A61K039/085 A61K039/12 A61K039/39.

11. 5820883. 06 Jun 95; 13 Oct 98. Method for delivering bioactive agents into and through the mucosally-associated lymphoid tissues and controlling their release. Tice; Thomas R., et al. 424/501; 424/237.1 424/256.1 424/497 424/810 514/885 514/888 514/963. A61K009/52 A61K039/085 A61K039/12 A61K039/39.

12. 5814344. 06 Jun 95; 29 Sep 98. Method for delivering bioactive agents into and through the mucosally associated lymphoid tissues and controlling their release. Tice; Thomas R., et al. 424/501; 424/237.1 424/256.1 424/497 424/810 514/885 514/888 514/963. A61K009/52 A61K039/085 A61K039/12 A61K039/39.

13. 5811128. 07 Sep 93; 22 Sep 98. Method for oral or rectal delivery of microencapsulated vaccines and compositions therefor. Tice; Thomas R., et al. 424/501; 424/237.1 424/256.1 424/497 424/810 428/402.21 428/402.24 514/885 514/888 514/963. A61K009/52 A61K039/085 A61K039/12 A61K039/39.

14. 5786166. 17 Jan 95; 28 Jul 98. Methods for determining effects of a compound on the activity of bacterial periplasmic oxidoreductase enzymes. Taylor; Ronald K., et al. 435/25; 435/184 435/32. C12Q001/26 C12Q001/18 C12N009/99.

15. 5382660. 25 Oct 91; 17 Jan 95. TcpG gene of vibrio cholerae. Taylor; Ronald K., et al. 536/23.2; 536/23.1 536/23.7. C12N015/31 C12N015/52.

16. 4937182. 07 Feb 89; 26 Jun 90. Method for predicting chemosensitivity of anti-cancer drugs. Hancock; Miriam E. C., et al. 435/29;. C12Q001/02.

17. 4816395. 19 Dec 85; 28 Mar 89. Method for predicting chemosensitivity of anti-cancer drugs. Hancock; Miriam E. C., et al. 435/29; 436/800 436/813. C12Q001/02.

18. US 5382660A. New TcpG gene from Vibrio cholerae - used for insertion to bacterial genetic material to increase the prodn of non-bacterial or bacterial proteins.. PEEK, J A, et al. C12N015/31 C12N015/52.

[Generate Collection](#)

[Print](#)

Terms	Documents
L7 not L4 not L2	18

[Prev Page](#) [Next Page](#) [Go to Doc#](#)

US-PAT-NO: 6309851

DOCUMENT-IDENTIFIER: US 6309851 B1

TITLE: Method for producing a recombinant protein

DATE-ISSUED: October 30, 2001

INT-CL: [07] C12 Q 1/26

US-CL-ISSUED: 435/25; 435/69.1

US-CL-CURRENT: 435/25; 435/69.1

FIELD-OF-SEARCH: 435/172.1, 435/243, 435/252.1, 435/252.3, 435/69.1

1. Document ID: US 20040176571 A1

L5: Entry 1 of 1

File: PGPB

Sep 9, 2004

PGPUB-DOCUMENT-NUMBER: 20040176571

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040176571 A1

TITLE: Mutant forms of cholera holotoxin as an adjuvant

PUBLICATION-DATE: September 9, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Green, Bruce A.	Pittsford	NY	US	
Holmes, Randall K.	Golden	CO	US	
Jobling, Michael G.	Aurora	CO	US	
Zhu, Duzhang	Rochester	NY	US	

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	COUNTRY	TYPE CODE
Wyeth Holdings Corporation	Madison	NJ	US	02

APPL-NO: 10/ 478308 [PALM]

DATE FILED: December 4, 2003

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/296531, filed June 7, 2001,

PCT-DATA:

DATE-FILED	APPL-NO	PUB-NO	PUB-DATE	371-DATE	102 (E) -DATE
Jun 5, 2002	PCT/US02/21008				

INT-CL: [07] A61 K 39/106, C07 K 1/00, C07 K 14/00, C07 K 17/00

US-CL-PUBLISHED: 530/350

US-CL-CURRENT: 530/350

ABSTRACT:

Mutant cholera holotoxins having single or double amino acid substitutions or insertions have reduced toxicity compared to the wild-type cholera holotoxin. The mutant cholera holotoxins are useful as adjuvants in antigenic compositions to enhance the immune response in a vertebrate host to a selected antigen from a pathogenic bacterium, virus, fungus, or parasite, a cancer cell, a tumor cell, an allergen, or a self-molecule.

CROSS-REFERENCE TO OTHER APPLICATIONS

[0001] This application claims the benefit of the priority of U.S. provisional patent application No. 60/296,531, filed Jun. 7, 2001.

Entry 6 of 7

File: USPT

Jul 20, 1999

US-PAT-NO: 5925546

DOCUMENT-IDENTIFIER: US 5925546 A

TITLE: Immunologically active polypeptides with altered toxicity useful for the preparation of an antipertussis vaccine

DATE-ISSUED: July 20, 1999

INT-CL: [06] C12 P 21/02, C12 N 15/00

US-CL-ISSUED: 435/69.3; 435/320.1, 536/23.7, 424/190.1, 424/254.1, 424/832

US-CL-CURRENT: 435/69.3; 424/190.1, 424/254.1, 424/832, 435/320.1, 536/23.7

FIELD-OF-SEARCH: 530/350, 424/240.1, 424/190.1, 424/254.1, 424/832, 435/69.1, 435/69.3, 435/172.3, 435/320.1, 536/23.7

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

L4: Entry 19 of 23

File: EPAB

Dec 12, 2002

PUB-NO: WO002098369A2

DOCUMENT-IDENTIFIER: WO 2098369 A2

TITLE: MUTANT FORMS OF CHOLERA HOLOTOXIN AS AN ADJUVANT

PUBN-DATE: December 12, 2002

INVENTOR-INFORMATION:

NAME	COUNTRY
GREEN, BRUCE A	US
HOLMES, RANDALL K	US
JOBLING, MICHAEL G	US
ZHU, DUZHANG	US

ASSIGNEE-INFORMATION:

NAME	COUNTRY
AMERICAN CYANAMID CO	US
GOVERNMENT OF THE US UNIFORMED	US
GREEN BRUCE A	US
HOLMES RANDALL K	US
JOBLING MICHAEL G	US
ZHU DUZHANG	US

APPL-NO: US00221008

APPL-DATE: June 5, 2002

PRIORITY-DATA: US29653101P (June 7, 2001)

INT-CL (IPC): A61 K 0/

EUR-CL (EPC): A61K039/39; C07K014/28

ABSTRACT:

CHG DATE=20030204 STATUS=O>Mutant cholera holotoxins having single or double amino acid substitutions or insertions have reduced toxicity compared to the wild-type cholera holotoxin. The mutant cholera holotoxins are useful as adjuvants in antigenic compositions to enhance the immune response in a vertebrate host to a selected antigen from a pathogenic bacterium, virus, fungus, or parasite, a cancer cell, a tumor cell, an allergen, or a self-molecule.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

PUB-NO: WO002098368A2

DOCUMENT-IDENTIFIER: WO 2098368 A2

TITLE: MUTANT FORMS OF CHOLERA HOLOTOXIN AS AN ADJUVANT

PUBN-DATE: December 12, 2002

INVENTOR-INFORMATION:

NAME	COUNTRY
GREEN, BRUCE A	US
HOLMES, RANDALL K	US
JOBLING, MICHAEL G	US
ZHU, DUZHANG	US

ASSIGNEE-INFORMATION:

NAME	COUNTRY
AMERICAN CYANAMID CO	US
UNIV COLORADO	US
GREEN BRUCE A	US
HOLMES RANDALL K	US
JOBLING MICHAEL G	US
ZHU DUZHANG	US

APPL-NO: US00220978

APPL-DATE: June 5, 2002

PRIORITY-DATA: US29653701P (June 7, 2001)

INT-CL (IPC): A61 K 0/

EUR-CL (EPC): A61K039/39; C07K014/28

ABSTRACT:

CHG DATE=20030204 STATUS=O>Mutant cholera holotoxins comprising a cholera toxin subunit (A) having single amino acid substitutions in the amino acid positions (16 or 72) or a double amino acid positions (16 and 68) or (68 and 72) have reduced toxicity compared to the wild-type cholera holotoxin. The mutant cholera holotoxins are useful as adjuvants in immunogenic compositions to enhance the immune response in a vertebrate host to a selected antigen from a pathogenic bacterium, virus, fungus, or parasite, a cancer cell, a tumor cell, an allergen, or a self-molecule.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

[Full](#) | [Title](#) | [Citation](#) | [Front](#) | [Review](#) | [Classification](#) | [Date](#) | [Reference](#) | [Sequences](#) | [Attachments](#) | [Claims](#) | [KMC](#) | [Drawn D.](#)

[Clear](#)

[Generate Collection](#)

[Print](#)

[Fwd Refs](#)

[Bkwd Refs](#)

[Generate GACS](#)

Terms

Documents

US-20040176571-A1.did.

1

DOCUMENT-IDENTIFIER: US 20040197348 A1

TITLE: Enhanced immune response to attachment (G) protein of respiratory Syncytial virus

INVENTOR:

Hancock, Gerald E.

Detail Description Paragraph:

[0064] Suitable adjuvants include vegetable oils or emulsions thereof, surface active substances, e.g., hexadecylamin, octadecyl amino acid esters, octadecylamine, lysolecithin, dimethyl-dioctadecylammonium bromide, N,N-dicoctadecyl-N'-N"bis(2-hydroxyethyl-propane diamine), methoxyhexadecylglycerol, and pluronic polyols; polyamines, e.g., pyran, dextransulfate, poly IC, carbopol; peptides, e.g., muramyl dipeptide, dimethylglycine, tuftsin; immune stimulating complexes; oil emulsions; mineral gels; aluminum compounds such as aluminum hydroxide and aluminum phosphate; MPL.TM. (3-O-deacylated monophosphoryl lipid A, RIBI ImmunoChem Research, Inc., Hamilton, Mont.); detoxified mutants of Cholera toxin and E. coli heat labile toxin; naked DNA CpG motifs; and Stimulon.TM. QS-21 (Aquila Biopharmaceuticals, Inc., Framingham, Mass.). The altered G protein or polypeptide of this invention can also be incorporated into liposomes or ISCOMS (immunostimulating complexes), and supplementary active ingredients may also be employed. The antigens of the present invention can also be administered in combination with lymphokines, including, but not limited to, IL-2, IL-3, IL-12, IL-15, IFN-.gamma. and GM-CSF.

DOCUMENT-IDENTIFIER: US 6309851 B1
TITLE: Method for producing a recombinant protein

INVENTOR (2):

Peek; Joel A.

Brief Summary Text (8):

The parent application teaches that preventing a microorganism from producing its oxidoreductase enzyme results in the production of inactive virulence determinants due to the lack of active 3-dimensional conformation. The parent application presents data showing that the lack of the periplasmic oxidoreductase enzyme TcpG in mutant Vibrio cholerae is responsible for failure of the mutants to produce active virulent cholera toxin.

Drawing Description Text (5):

FIG. 4 is a western blot showing a comparison of 0395, JP100 and KP8-96 cholera toxins.

DOCUMENT-IDENTIFIER: US 5820883 A

TITLE: Method for delivering bioactive agents into and through the mucosally-associated lymphoid tissues and controlling their release

INVENTOR (3):

Eldridge; John H.

Detailed Description Text (125):

In both man and animals, it has been shown that systemic immunization coupled with mucosal presentation of antigen is more effective than any other combination in promoting mucosal immune responses (Pierce, N. F. and Gowans, J. L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J. Exp. Med. 142:1550; 1975). Three groups of mice were primed by IP immunization with 100 micrograms of microencapsulated SEB toxoid and 30 days later were challenged with 100 micrograms of microencapsulated SEB toxoid by either the IP, oral or IT routes. This was done to directly determine if a mixed immunization protocol utilizing microencapsulated antigen was advantageous with respect to the levels of sIgA induced.

First Hit Fwd Refs

L8: Entry 15 of 18

File: USPT

Jan 17, 1995

DOCUMENT-IDENTIFIER: US 5382660 A
TITLE: TcpG gene of vibrio cholerae

INVENTOR (2):
Peek; Joel A.

Detailed Description Text (13):

J. Altered cholera toxin subunit profile in KP8-96. Homology to thiol:sulfide interchange proteins led us to investigate whether other disulfide bond containing ToxR regulated virulence factors were affected by a mutation in TcpG. The A subunit of cholera toxin contains a disulfide bond. To assess the effects of TcpG on toxin, cultures of KP8-96 and 0395 were grown to an equivalent optical density at 600 nm under toxin expressing conditions. Both whole cell and supernatant samples were resolved by SDS-PAGE and analyzed by Western blot using a polyclonal anti-holotoxin antibodies or anti-toxin A subunit antibodies. There are several differences that are notable between the two strains. More toxin B subunit is present in the monomeric form in KP8-96 than in the wild type strain. This corresponds to a reduced pentamerization of the B subunit in the mutant strain. Most interestingly, the toxin A subunit profiles are markedly different between the two strains. The A subunit of 0395 was found in the unnickled A form in the whole cell extracts, and both the unnickled A and A1 forms in the culture supernatant. KP8-96, on the other hand, showed elevated levels of unnickled A and virtually no A1 form in the culture supernatant. Thus, the A1 form was unable to migrate out of the bacterium due to the lack of the TcpG enzyme. The wild type 0395, however, with an intact TcpG gene sequence, was able to secrete both A and A1. This result suggests that the TcpG-PhoA fusion causes a greatly decreased ability of the A subunit to associate with the B subunit in an export competent form. A similar result is seen with a tcpG knockout mutation that does not produce a hybrid TcpG protein that could possibly interfere with the extracellular secretion process.

Other Reference Publication (3):

D. M. Gill, "Mechanism of Action of Cholera Toxin", in Advances in Cyclic Nucleotide Research, ed. P. Greengard, et al., Raven Press, New York, pp. 85-118 (1977).

Other Reference Publication (9):

R. K. Taylor, et al., "Use of phoA Gene Fusions to Identify a Pilus Colonization Factor Coordinately Regulated With Cholera Toxin", Proc. Natl. Acad. Sci. USA, vol. 84, pp. 2833-2837 (1987).

DOCUMENT-IDENTIFIER: US 5925546 A

TITLE: Immunologically active polypeptides with altered toxicity useful for the preparation of an antipertussis vaccine

CLAIMS:

1. A method for the preparation of an immunologically active mutant polypeptide having no or reduced toxicity, which method comprises:

(a) modifying by site-directed mutagensis the DNA of the S1 subunit of the gene in the operon which codes for pertussis toxin by substitution in one or more sites of said S1 subunit the DNA sequence coding for a substitute amino acid for the DNA coding for an amino acid at said site in said S1 subunit;

(b) constructing a hybrid plasmid linking a cloning vector with said DNA of said S1 subunit;

(c) transforming a host microorganism with said hybrid plasmid;

(d) cultivating said transformed microorganism in a suitable culture medium; and

(e) recovering said mutant polypeptide produced by said microorganism;

said substitution comprising said substitute amino acids being selected from the group consisting of:

(1) glutamic acid at position 129 substituted by glycine at position 129;

(2) tyrosine at position 8 and arginine at position 9 substituted by aspartic acid at position 8 and glycine at position 9; and

(3) phenylalanine at position 50 and threonine at position 53 substituted by glutamic acid at position 50 and isolucine at position 53.

3. The method of claim 1 wherein wherein said substitute amino acids comprise tyrosine at position 8 and arginine at position 9 substituted by aspartic acid at position 8 and glycine at position 9.

5. The method of claim 1 wherein said mutant polypeptide exhibits a complete loss of ADP-ribosylation activity as compared with natural pertussis toxin.

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

20040181036. 04 Dec 03. 16 Sep 04. Mutant forms of cholera holotoxin as an adjuvant. Green, Bruce A, et al. 530/350; A61K039/106 C07K001/00 C07K014/00 C07K017/00.

2. 20040176571. 04 Dec 03. 09 Sep 04. Mutant forms of cholera holotoxin as an adjuvant. Green, Bruce A., et al. 530/350; A61K039/106 C07K001/00 C07K014/00 C07K017/00.

3. WO 200298369A. Novel immunogenic, mutant cholera holotoxin useful for enhancing immune response of vertebrate host to antigen, comprises amino sequence of subunit A of wild-type cholera toxin. GREEN, B A, et al. A61K000/00 A61K006/00 A61K039/00 A61K039/002 A61K039/008 A61K039/015 A61K039/02 A61K039/04 A61K039/05 A61K039/07 A61K039/08 A61K039/085 A61K039/09 A61K039/095 A61K039/10 A61K039/102 A61K039/106 A61K039/108 A61K039/112 A61K039/118 A61K039/12 A61K039/125 A61K039/13 A61K039/145 A61K039/15 A61K039/155 A61K039/165 A61K039/175 A61K039/20 A61K039/205 A61K039/21 A61K039/215 A61K039/23 A61K039/235 A61K039/245 A61K039/255 A61K039/265 A61K039/29 A61K039/35 A61K039/39 A61K039/42 C07K001/00 C07K014/00 C07K014/28 C07K017/00 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N015/09 C12P021/02.

4. WO 200298368A. Novel immunogenic mutant cholera holotoxin for preparing immunogenic composition for enhancing immune response of vertebrate host to bacterial or viral antigen, has reduced toxicity compared to wild-type cholera toxin. GREEN, B A, et al. A61K000/00 A61K039/00 A61K039/002 A61K039/008 A61K039/02 A61K039/05 A61K039/102 A61K039/106 A61K039/12 A61K039/245 A61K039/35 A61K039/39 A61K039/42 C07K001/00 C07K014/00 C07K014/28 C07K017/00 C12N001/15 C12N001/19 C12N005/10 C12N015/09 C12P021/02.

5. WO 200018434A. New mutant cholera holotoxin having a point mutation at amino acid position 29 of the A subunit useful as an adjuvant in an antigenic composition to enhance the immune response in a vertebrate host to a selected antigen from a pathogen. ELDRIDGE, J H, et al. A61K039/00 A61K039/002 A61K039/02 A61K039/095 A61K039/102 A61K039/106 A61K039/12 A61K039/15 A61K039/155 A61K039/245 A61K039/39 A61P037/04 C07K014/14 C07K014/22 C07K014/28 C07K014/285 C07K014/28 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N015/09 C12N015/63 C12P021/02.

6. 3192658. 06 Jul 65. Classified directory structure. MCGURN ROBERT S. 40/389;.

[Generate Collection](#)

[Print](#)

Terms	Documents
ctcrm or ct-crm	6

[Prev Page](#) [Next Page](#) [Go to Doc#](#)

CLUSTAL W (1.74) multiple sequence alignment

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

MVKIIIFVFFI---FLSSFSYANDDKLYRADSRRPPDEIKQSGGLMPRGQSE
 MVKIIIFVFFI---FLSSFSYANDDKLYRADSRRPPDEIKQSGGLMPRGQSE
 MKNITFIFI---LLASPLYANGDRLYRADSRRPPDEIKRSGGLMPRGHNE
 MKNITFIFI---LLASPLYANGDKLYRADSRRPPDEIKRSGGLMPRGHNE
 MKNITFIFI---LLASPLYANGDKLYRADSRRPPDEIKRSGGLMPRGHNE
 -----RADSRRPPDEIKQSGGLMPRGQSE
 -----WADSRRPPDEIKQSGGLMPRGQSE
 -MAKVISFFISLFLISFPLYAN--DYFRADSRTPDEVRRSGGLIPRGQDE
 MIKHVLLFFV---FISFSVSAN--DFFRADSRTPDEIRRAGGLLPRGQQE
 *****.*****:;:*****:*****:.*

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

YFDRGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRS AHLVGQTI LSG
 YFDRGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRS AHLVGQTI LSG
 YFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSISLRS AHLLAGQSI LSG
 YFDRGTQMNINLYDHARGTQTGFVRYDDGYVSTSISLRS AHLLAGQSI LSG
 YFDRGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRS AHLVGQTI LSG
 YFDRGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRS AHLVGQTI LSG
 AYERGTPININLYDHARGTATGNTRYNDGYVSTTTL RQAHLLGQNMLGG
 AYERGTPININLYEHARGTVGNTRYNDGYVSTTVTL RQAHLLGQNMLGS
 :**** :*****:***** ** .*:*****: :***.*** ***.:**

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

HSTYYIYVIATAPNMFNVNDVLGAYSPHPDEQEVS ALGGI PYSQIYGWYR
 HSTYYIYVIATAPNMFNVNDVLGAYSPHPDEQEVS ALGGI PYSQIYGWYR
 YSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVS ALGGI PYSQIYGWYR
 YSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVS ALGGI PYSQIYGWYR
 YSTYYIYVIATAPNMFNVNDVLGVYSPHPYEQEVS ALGGI PYSQIYGWYR
 HSTYYIYVIATAPNMFNVNDVLGAYSPHPDEQEVS ALGGI PYSQIYGWYR
 HSTYYIYVIATAPNMFNVNDVLGAYSPHPDEQEVS ALGGI PYSQIYGWYR
 YNEYIYVVAAPNLFDVNGVLGRYSPYPSENEYA ALGGIPLSQIIGWYR
 YNEYIYVVAAPNLFDVNGVLGRYSPYPSENEFA ALGGIPLSQIIGWYR
 :. ****:*.****:*.****: *: :*****: *: :*****: *: :*****:

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

VHFGVLDEQLHRNRGYRDYYSNLDIAPAADGYGLAGFPPEHRAWREEPW
 VHFGVLDEQLHRNRGYRDYYSNLDIAPAADGYGLAGFPPEHRAWREEPW
 VNFGVIDERLHRNRGYRDYYRNLNIAPAEDGYRLAGFPDPHQAWREEPW
 VNFGVIDERLHRNRGYRDYYRNLNIAPAEDGYRLAGFPDPHQAWREEPW
 VNFGVIDERLHRNRGYRDYYRNLNIAPAEDGYRLAGFPDPHQAWREEPW
 VHFGVLDEQLHRNRGYRDYYSNLDIAPAADGYGLAGFPPEHRAWREEPW
 VHFGVLDEQLHRNRGYRDYYSNLDIAPAADGYGLAGFPPEHRAWREEPW
 VSFGAIEGGMHRNRDYRDLFRGLSAAPNEDGYRIAGFPDGFPAWEV PW
 VSFGAIEGGMQRNRDYRGDLFRGLTVAPNEDGYQLAGFPSNFPAWREMPW
 * * .: :**** ** : .* ** *** :**** . **.**

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

IHHAPP GCGNAPRSSMSNTCDEKTQSLGVKFLDEYQSKVKRQIFSGYQSD
 IHHAPP GCGNAPRSSMSNTCDEKTQSLGVKFLDEYQSKVKRQIFSGYQSD
 IHHAPQGCGNNSRTITGDT CNEETQNLSTIYLREYQSKVKRQIFSDYQSE
 IHHAPQGCGNNSRTITGDT CNEETQNLSTIYLRYQSKVKRQIFSDYQSE
 IHHAPQGCGNNSRTITGDT CNEETQNLSTIYLRYQSKVKRQIFSDYQSE
 IHHAPP GCGNAPRSS-----
 IHHAPP GCGNAPRSS-----
 REFAPNSCLPNKASSDTTCASLTNKLSQHDLADFKKYIKRKFTLMTLLS
 STFAPEQCVNNKEFKGGVCISATNVLSKYDLMNFKKLLKRRLLALTFFMS
 .** * :

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH

ID-----THNRIKDEL
 ID-----THNRIEDEL

sp P06717 ELAP_ECOLI	VD-----IYNRIRDEL
tr O66280 O66280_ECOLI	VD-----IYNRIRDEL
sp P43530 ELAH_ECOLI	VD-----IYNRIRNEL
tr Q6U8A2 Q6U8A2_VIBCH	-----
tr Q6U8A3 Q6U8A3_VIBCH	-----
sp P43528 E2BA_ECOLI	INNDGFFSNNGGKDEL
sp P13810 E2AA_ECOLI	E--DDEFIGVHGERDEL

PileUp

MSF: 266 Type: P Check: 944 ..

Name: sp|P01555|CHTA_VIBCH oo Len: 266 Check: 1990 Weight: 0.100
 Name: tr|Q8L356|Q8L356_VIBCH oo Len: 266 Check: 1780 Weight: 0.100
 Name: sp|P06717|ELAP_ECOLI oo Len: 266 Check: 3718 Weight: 0.100
 Name: tr|O66280|O66280_ECOLI oo Len: 266 Check: 3441 Weight: 0.100
 Name: sp|P43530|ELAH_ECOLI oo Len: 266 Check: 3939 Weight: 0.100
 Name: tr|Q6U8A2|Q6U8A2_VIBCH oo Len: 266 Check: 3206 Weight: 0.100
 Name: tr|Q6U8A3|Q6U8A3_VIBCH oo Len: 266 Check: 3384 Weight: 0.100
 Name: sp|P43528|E2BA_ECOLI oo Len: 266 Check: 1062 Weight: 0.100
 Name: sp|P13810|E2AA_ECOLI oo Len: 266 Check: 8424 Weight: 0.100

//

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

MVKIIFVFFI ...FLSSFSY ANDDKLYRAD SRPPDEIKQS GGLMPRGQSE
 MVKIIFVFFI ...FLSSFSY ANDDKLYRAD SRPPDEIKQS GGLMPRGQSE
 MKNITFIFFI ...LLASPLY ANGDRLYRAD SRPPDEIKRS GGLMPRGHNE
 MKNITFIFFI ...LLASPLY ANGDKLYRAD SRPPDEIKRS GGLMPRGHNE
 MKNITFIFFI ...LLASPLY ANGDKLYRAD SRPPDEIKRS GGLMPRGHNE
RAD SRPPDEIKQS GGLMPRGQSE
WAD SRPPDEIKQS GGLMPRGQSE
 .MAKVISFFI SLFLISFPLY AN..DYFRAD SRTPDEVRRS GGLIPRGQDE
 MIKHVILLFFV ...FISFSVS AN..DFFRAD SRTPDEIRRA GGLIPRGQDE

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

YFDRGTQMNI NLYDHARGTQ TGFVRHDDGY VSTSISLRSA HLVGQTILSG
 YFDRGTQMNI NLYDHARGTQ TGFVRHDDGY VSTSISLRSA HLVGQTILSG
 YFDRGTQMNI NLYDHARGTQ TGTVRYDDGY VSTSLSLRSA HLAGQSILSG
 YFDRGTQMNI NLYDHARGTQ TGTVRYDDGY VSTSLSLRSA HLAGQSILSG
 YFDRGTQMNI NLYDHARGTQ TGTVRYDDGY VSTSLSLRSA HLAGQSILSG
 YFDRGTQMNI NLYDHARGTQ TGTVRHDDGY VSTSISLRSA HLVGQTILSG
 YFDRGTQMNI NLYDHARGTQ TGTVRHDDGY VSTSISLRSA HLVGQTILSG
 AYERGTPINI NLYDHARGTA TGNTRYNDGY VSTTTTLRQA HLLGQNMLGG
 AYERGTPINI NLYEHARGTV TGNTRYNDGY VSTTVTLRQA HLIGQNILGS

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH
 sp|P43528|E2BA_ECOLI
 sp|P13810|E2AA_ECOLI

HSTYYIYVIA TAPNMFNVND VLGAYSPHPD EQEV SALGGI PYSQIYGWYR
 HSTYYIYVIA TAPNMFNVND VLGAYSPHPD EQEV SALGGI PYSQIYGWYR
 YSTYYIYVIA TAPNMFNVND VLGVYSPHPY EQEV SALGGI PYSQIYGWYR
 YSTYYIYVIA TAPNMFNVND VLGVYSPHPY EQEV SALGGI PYSQIYGWYR
 YSTYYIYVIA TAPNMFNVND VLGVYSPHPY EQEV SALGGI PYSQIYGWYR
 HSTYYIYVIA TAPNMFNVND VLGAYSPHPD EQEV SALGGI PYSQIYGWYR
 HSTYYIYVIA TAPNMFNVND VLGAYSPHPD EQGV SALGGI PYSQIYGWYR
 YNEYIYVVA AAPNLFDVNG VLGRYSPYPS ENEYAALGGI PLSQIIGWYR
 YNEYIYVVA AAPNLFDVNG VLGRYSPYPS ENEFAALGGI PLSQIIGWYR

sp|P01555|CHTA_VIBCH
 tr|Q8L356|Q8L356_VIBCH
 sp|P06717|ELAP_ECOLI
 tr|O66280|O66280_ECOLI
 sp|P43530|ELAH_ECOLI
 tr|Q6U8A2|Q6U8A2_VIBCH
 tr|Q6U8A3|Q6U8A3_VIBCH

VHFGVLDEQL HRNRGYRDRY YSNLDIAPAA DGYGLAGFPP EHRAWREEPW
 VHFGVLDEQL HRNRGYRDRY YSNLDIAPAA DGYGLAGFPP EHRAWREEPW
 VNFGVIDERL HRNREYRDRY YRNLNIAAPE DGYRLAGFPP DHQAWREEPW
 VNFGVIDERL HRNREYRDRY YRNLNIAAPE DGYRLAGFPP DHQAWREEPW
 VNFGVIDERL HRNREYRDRY YRNLNIAAPE DGYRLAGFPP DHQAWREEPW
 VHFGVLDEQL HRNRGYRDRY YSNLDIAPAA DGYGLAGFPP EHRAWREEPW
 VHFGVLDEQL HRNRGYRDRY YSNLDIAPAA DGYGLAGFPP EHRAWREEPW

sp|P43528|E2BA_ECOLI
sp|P13810|E2AA_ECOLI

VSFGAIEGGM HRNRDYRRDL FRGLSAAPNE DGYRIAGFPD GFPAWEEVPW
VSFGAIEGGM QRNRDYRGDL FRGLTVAPNE DGYQLAGFPS NFPAWREMPW

sp|P01555|CHTA_VIBCH
tr|Q8L356|Q8L356_VIBCH
sp|P06717|ELAP_ECOLI
tr|O66280|O66280_ECOLI
sp|P43530|ELAH_ECOLI
tr|Q6U8A2|Q6U8A2_VIBCH
tr|Q6U8A3|Q6U8A3_VIBCH
sp|P43528|E2BA_ECOLI
sp|P13810|E2AA_ECOLI

IHHAPPGCGN APRSSMSNTC DEKTQSLGVK FLDEYQSKVK RQIFSGYQSD
IHHAPPGCGN APRSSMSNTC DEKTQSLGVK FLDEYQSKVK RQIFSGYQSD
IHHAPQGCGN SSRTITGDTC NEETQNLSTI YLREYQSKVK RQIFSDYQSE
IHHAPQGCGN SSRTITDDTC NEETQNLSTI YLRKYQSKVK RQIFSDYQSE
IHHAPQGCGN SSRTITGDTC NEETQNLSTI YLRKYQSKVK RQIFSDYQSE
IHHAPPGCGN APRSS.....
IHHAPPGCGN APRSS.....
REFAPNSCLP NNKASSDTTC ASLTNKLSQH DLADFKKYIK RKFTLMTLS
STFAPEQCVP NNKEFKGGVC ISATNVLSKY DLMNFKKLLK RRLALTFFMS

sp|P01555|CHTA_VIBCH
tr|Q8L356|Q8L356_VIBCH
sp|P06717|ELAP_ECOLI
tr|O66280|O66280_ECOLI
sp|P43530|ELAH_ECOLI
tr|Q6U8A2|Q6U8A2_VIBCH
tr|Q6U8A3|Q6U8A3_VIBCH
sp|P43528|E2BA_ECOLI
sp|P13810|E2AA_ECOLI

ID.....THN RIKDEL
ID.....THN RIEDEL
VD.....IYN RIRDEL
VD.....IYN RIRDEL
VD.....IYN RIRNEL
.....
.....
INNDGFFSNN GGKDEL
E..DDFIGVH GERDEL

[ExPASy Home page](#)[Site Map](#)[Search ExPASy](#)[Contact us](#)[Swiss-Prot](#)Search Swiss-Prot/TrEMBLfor cholera toxin subunit ε

UniProtKB/Swiss-Prot entry P01555

[Printer-friendly view](#)[Submit update](#)[Quick Blast!](#)
[\[Entry info\]](#)
[\[Name and origin\]](#)
[\[References\]](#)
[\[Comments\]](#)
[\[Cross-references\]](#)
[\[Keywords\]](#)

[\[Features\]](#)
[\[Sequence\]](#)
[\[Tools\]](#)

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name	CTA_VIBCH
Primary accession number	P01555
Secondary accession numbers	Q56634 Q9JPV1
Entered in Swiss-Prot in	Release 01, July 1986
Sequence was last modified in	Release 02, October 1986
Annotations were last modified in	Release 47, May 2005
Name and origin of the protein	
Protein name	Cholera enterotoxin, A chain [Precursor]
Synonyms	NAD(+)–diphthamide ADP-ribosyltransferase EC 2.4.2.36
	Cholera enterotoxin A subunit
	(Cholera enterotoxin A1 chain)
	(Cholera enterotoxin alpha chain)
Contains	Cholera enterotoxin subunit A2
	(Cholera enterotoxin A2 chain)
	(Cholera enterotoxin gamma chain)
Gene name	Name: ctxA
	Synonyms: toxA
From	OrderedLocusNames: VC1457
Taxonomy	Vibrio cholerae [TaxID: 666] Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales; Vibrionaceae; Vibrio.

References

[1] NUCLEOTIDE SEQUENCE.

STRAIN=El Tor 2125;
 MEDLINE=84068199;PubMed=6646234 [NCBI, ExPASy, EBI, Israel, Japan]
 Mekalanos J.J., Swartz D.J., Pearson G.D.N., Harford N., Groyne F., de Wilde M.;
 "Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development.";
 Nature 306:551-557(1983).

[2]

NUCLEOTIDE SEQUENCE.

STRAIN=Classical 569B / ATCC 25870 / Serotype O1;
 DOI=10.1016/0167-4781(91)90050-V;MEDLINE=91355224;PubMed=1883840 [NCBI, ExPASy, EBI, Israel, Japan]
 Dams E., de Wolf M., Dierick W.;

- "Nucleotide sequence analysis of the CT operon of the *Vibrio cholerae* classical strain 569B.";
Biochim. Biophys. Acta 1090:139-141(1991).
- [3] NUCLEOTIDE SEQUENCE.
STRAIN=1854 / O139-Bengal;
Yamamoto K., Do V.G.R.F., Xu M., Iida T., Miwatani T., Albert M.J., Honda T.;
Submitted (MAY-1994) to the EMBL/GenBank/DDBJ databases.
- [4] NUCLEOTIDE SEQUENCE.
STRAIN=El Tor 2125;
Dams E., de Wolf M., Dierick W.;
Submitted (MAY-1991) to the EMBL/GenBank/DDBJ databases.
- [5] NUCLEOTIDE SEQUENCE.
STRAIN=KNIH002;
Shin H.J., Park Y.C., Kim Y.C.;
"Cloning and nucleotide sequence analysis of the virulence gene cassette from *Vibrio cholerae* KNIH002 isolated in Korea.";
Misainmurhag Hoiji 35:205-210(1999).
- [6] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
STRAIN=El Tor N16961 / Serotype O1;
DOI=10.1038/35020000;MEDLINE=20406833;PubMed=10952301 [NCBI, ExPASy, EBI, Israel, Japan]
Heidelberg J.F., Eisen J.A., Nelson W.C., Clayton R.A., Gwinn M.L., Dodson R.J., Haft D.H.,
Hickey E.K., Peterson J.D., Umayam L.A., Gill S.R., Nelson K.E., Read T.D., Tettelin H.,
Richardson D.L., Ermolaeva M.D., Vamathevan J.J., Bass S., Qin H., Fraser C.M.;
"DNA sequence of both chromosomes of the cholera pathogen *Vibrio cholerae*.";
Nature 406:477-483(2000).
- [7] NUCLEOTIDE SEQUENCE OF 1-212.
STRAIN=Classical 569B / ATCC 25870 / Serotype O1;
MEDLINE=85006737;PubMed=6090390 [NCBI, ExPASy, EBI, Israel, Japan]
Lockman H.A., Galen J.E., Kaper J.B.;
"Vibrio cholerae enterotoxin genes: nucleotide sequence analysis of DNA encoding ADP-ribosyltransferase.";
J. Bacteriol. 159:1086-1089(1984).
- [8] NUCLEOTIDE SEQUENCE OF 213-258.
MEDLINE=84061784;PubMed=6315707 [NCBI, ExPASy, EBI, Israel, Japan]
Lockman H., Kaper J.B.;
"Nucleotide sequence analysis of the A2 and B subunits of *Vibrio cholerae* enterotoxin.";
J. Biol. Chem. 258:13722-13726(1983).
- [9] PROTEIN SEQUENCE OF 19-27.
DOI=10.1016/0014-5793(81)80238-4;MEDLINE=81212799;PubMed=7238869 [NCBI, ExPASy, EBI, Israel, Japan]
Duffy L.K., Peterson J.W., Kurosky A.;
"Isolation and characterization of a precursor form of the 'A' subunit of cholera toxin.";
FEBS Lett. 126:187-190(1981).
- [10] PROTEIN SEQUENCE OF 19-38 AND 213-232.
DOI=10.1016/0019-2791(76)90173-7;MEDLINE=76259136;PubMed=955672 [NCBI, ExPASy, EBI, Israel, Japan]
Klapper D.G., Finkelstein R.A., Capra J.D.;
"Subunit structure and N-terminal amino acid sequence of the three chains of cholera enterotoxin.";
Immunochemistry 13:605-611(1976).

[11] PROTEIN SEQUENCE OF 27-72 AND 111-139.

DOI=10.1016/0014-5793(79)81136-9; MEDLINE=79169830; PubMed=437113 [NCBI, ExPASy, EBI, Israel, Japan]

Lai C.-Y., Cancedda F., Chang D.;

"Primary structure of cholera toxin subunit A1: isolation, partial sequences and alignment of the BrCN fragments.";

FEBS Lett. 100:85-89(1979).

[12] PROTEIN SEQUENCE OF 213-258.

MEDLINE=82053094; PubMed=7028752 [NCBI, ExPASy, EBI, Israel, Japan]

Duffy L.K., Peterson J.W., Kurosky A.;

"Covalent structure of the gamma chain of the A subunit of cholera toxin.";

J. Biol. Chem. 256:12252-12256(1981).

[13] INTERACTION BETWEEN CHOLERA TOXIN AND ADENYLATE CYCLASE.

PubMed=4323551 [NCBI, ExPASy, EBI, Israel, Japan]

Sharp G.W., Hynie S.;

"Stimulation of intestinal adenyl cyclase by cholera toxin.";

Nature 229:266-269(1971).

[14] SUBUNIT.

PubMed=3214 [NCBI, ExPASy, EBI, Israel, Japan]

Gill D.M.;

"The arrangement of subunits in cholera toxin.";

Biochemistry 15:1242-1248(1976).

[15] TRANSPORT OF CHOLERA TOXIN WITHIN THE INTESTINAL CELL.

DOI=10.1091/mbc.E03-06-0354; PubMed=13679513 [NCBI, ExPASy, EBI, Israel, Japan]

Fujinaga Y., Wolf A.A., Rodighiero C., Wheeler H., Tsai B., Allen L., Jobling M.G., Rapoport T., Holmes R.K., Lencer W.I.;

"Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum.";

Mol. Biol. Cell 14:4783-4793(2003).

[16] X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).

MEDLINE=95387395; PubMed=7658473 [NCBI, ExPASy, EBI, Israel, Japan]

Zhang R.-G., Scott D.L., Westbrook M.L., Nance S., Spangler B.D., Shipley G.G., Westbrook E.M.;

"The three-dimensional crystal structure of cholera toxin.";

J. Mol. Biol. 251:563-573(1995).

Comments

- **FUNCTION:** The A1 chain catalyzes the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, to activate the adenylate cyclase. This leads to an overproduction of cAMP and eventually to a hypersecretion of chloride and bicarbonate followed by water, resulting in the characteristic cholera stool. The A2 chain tethers A1 to the pentameric ring.
- **CATALYTIC ACTIVITY:** $\text{NAD}^+ + \text{peptide diphthamide} = \text{nicotinamide} + \text{peptide N-(ADP-D-ribosyl)diphthamide}$.
- **SUBUNIT:** The holotoxin (choleragen) consists of a pentameric ring of B subunits whose central pore is occupied by the A subunit. The A subunit contains two chains, A1 and A2, linked by a disulfide bridge.
- **DOMAIN:** The four C-terminal residues of the A2 chain occupy the central pore of the holotoxin. Deletion of this residues weakens the interaction between the A subunit and the B pentamer without impairing the pentamer formation.
- **MISCELLANEOUS:** After binding to gangliosides GM1 in lipid rafts, through the subunit B

pentamer, the holotoxin and the gangliosides are internalized. The holotoxin remains bound to GM1 until arrival in the ER. The A subunit has previously been cleaved in the intestinal lumen but the A1 and A2 chains have remained associated. In the ER, the A subunit disulfide bridge is reduced, the A1 chain is unfolded by the PDI and disassembled from the rest of the toxin. Then, the membrane-associated ER oxidase ERO1 oxidizes PDI, which releases the unfolded A1 chain. The next step is the retro-translocation of A1 into the cytosol. This might be mediated by the protein-conducting pore SEC61. Upon arrival in the cytosol, A1 refolds and avoids proteasome degradation. In one way or another, A1 finally reaches its target and induces toxicity.

Copyright

This Swiss-Prot entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use as long as its content is in no way modified and this statement is not removed.

Cross-references

	X00171; CAA24995.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	X58785; CAA41590.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	D30053; BAA06290.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	X58786; CAA41592.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
EMBL	K02679; AAA27514.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	AF175708; AAD51359.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	AE004224; AAF94614.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	K01170; AAA27572.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	D30052; BAA06288.1; -.	[EMBL / GenBank / DDBJ] [CoDingSequence]
PIR	A05129; XVVCA.	
	1S5B; X-ray; A=19-258.	[ExPASy / RCSB / EBI]
	1SSC; X-ray; A=19-258.	[ExPASy / RCSB / EBI]
	1SSD; X-ray; A=19-258.	[ExPASy / RCSB / EBI]
PDB	1SSE; X-ray; A/B=19-258.	[ExPASy / RCSB / EBI]
	1S5F; X-ray; A=19-258.	[ExPASy / RCSB / EBI]
	1XTC; X-ray; A=19-212, C=213-258.	[ExPASy / RCSB / EBI]
	Detailed list of linked structures.	
TIGR	VC1457; -.	
InterPro	IPR001144; Enterotoxin_A.	
	Graphical view of domain structure.	
Pfam	PF01375; Enterotoxin_a; 1.	
	Pfam graphical view of domain structure.	
PRINTS	PR00771; ENTEROTOXINA.	
ProDom	[Domain structure / List of seq. sharing at least 1 domain]	
HOGENOM	[Family / Alignment / Tree]	
BLOCKS	P01555.	
ProtoNet	P01555.	
ProtoMap	P01555.	
PRESAGE	P01555.	
DIP	P01555.	
ModBase	P01555.	
SWISS-2DPAGE	Get region on 2D PAGE.	
UniRef	View cluster of proteins with at least 50% / 90% identity.	
Keywords		
	3D-structure; Complete proteome; Direct protein sequencing; Enterotoxin; Glycosyltransferase;	

NAD; Signal; Toxin; Transferase.

Features

Feature table viewer

Feature aligner

Key	From	To	Length	Description
SIGNAL	1	18	18	
CHAIN	19	212	194	Cholera enterotoxin subunit A1.
CHAIN	213	258	46	Cholera enterotoxin subunit A2.
ACT_SITE	130	130		<i>By similarity.</i>
BINDING	25	25		NAD (<i>By similarity</i>).
BINDING	62	62		NAD (<i>By similarity</i>).
DISULFID	205	217		Interchain (between A1 and A2 chains).
CONFLICT	20	20		D → N (in Ref. 9).
CONFLICT	37	37		S → R (in Ref. 10).
CONFLICT	39	39		G → L (in Ref. 11).
CONFLICT	45	46		QS → SE (in Ref. 11).
CONFLICT	111	111		N → L (in Ref. 11).
CONFLICT	132	132		S → A (in Ref. 11).
CONFLICT	213	213		M → I (in Ref. 1).
CONFLICT	247	248		DI → ID (in Ref. 12).
CONFLICT	256	256		D → N (in Ref. 12).
STRAND	24	27	4	
HELIX	31	37	7	
TURN	38	38	1	
STRAND	39	40	2	
TURN	43	44	2	
TURN	48	49	2	
HELIX	59	63	5	
TURN	64	64	1	
TURN	75	76	2	
STRAND	77	81	5	
HELIX	85	89	5	
TURN	90	91	2	
TURN	96	97	2	
STRAND	101	106	6	
TURN	110	111	2	
STRAND	112	114	3	
HELIX	115	119	5	
HELIX	120	122	3	
HELIX	126	128	3	
STRAND	130	134	5	
STRAND	137	138	2	
TURN	139	141	3	
STRAND	142	148	7	
STRAND	153	159	7	
TURN	161	162	2	
HELIX	165	168	4	

TURN	169	170	2
HELIX	176	178	3
TURN	187	188	2
HELIX	190	193	4
TURN	195	196	2
HELIX	197	199	3
TURN	200	200	1
TURN	203	204	2
HELIX	215	251	37
TURN	252	253	2
HELIX	254	258	5

Sequence information

Length: 258 AA [This is the length of the unprocessed precursor]

Molecular weight: 29336 Da
[This is the MW of the unprocessed precursor]

CRC64: 0F7EBAE62069A5D0 [This is a checksum on the sequence]

10	20	30	40	50	60
MVKIIFVFFI FLSSFSYAND DKLYRADSRP PDEIKQSGGL MPRGQSEYFD RGTQMNINLY					
70	80	90	100	110	120
DHARGTQTGF VRHDDGYVST SISLRSAHLV GQTILSGHST YYIYVIATAP NMFNVDVLG					
130	140	150	160	170	180
AYSPHPDEQE VSALGGIPYS QIYGWYRVHF GVLDEQLHRN RGYRDRYYSN LDIAPAADGY					
190	200	210	220	230	240
GLAGFPPEHR AWREEPWIHH APPGCGNAPR SSMSNTCDEK TQSLGVKFID EYQSKVKRQI					
250					
FSGYQSDIDT HNRIKDEL					

P01555 in FASTA format

[View entry in original Swiss-Prot format](#)

[View entry in raw text format \(no links\)](#)

[Report form for errors/updates in this Swiss-Prot entry](#)

ScanProsite, MotifScan

Sequence analysis tools: ProtParam, ProtScale, Compute pI/Mw, PeptideMass, PeptideCutter, Dotlet (Java)

Submit a homology modeling request to SWISS-MODEL

[ExPASy Home page](#)

[Site Map](#)

[Search ExPASy](#)

[Contact us](#)

[Swiss-Prot](#)

Hosted by NCSC US

Mirror sites: [Australia](#) [Bolivia](#) [Brazil](#) [Canada](#) [Korea](#) [Switzerland](#) [Taiwan](#)

PileUp

MSF: 258 Type: P Check: 4420 ..

Name: sp|P01555|CHTA_VIBCH oo Len: 258 Check: 6104 Weight: 0.100
 Name: sp|P43530|ELAH_ECOLI oo Len: 258 Check: 8316 Weight: 0.100

//

No leader
218-212

29

sp|P01555|CHTA_VIBCH MVKIIIFVFFI FLSSFSYAND DKLYRADSRP PDEIKQSGGL MPRGQSEYFD
 sp|P43530|ELAH_ECOLI MKNITFIFFI LLASPLYANG DKLYRADSRP PDEIKRSGGL MPRGHNEYFD

sp|P01555|CHTA_VIBCH RGTQMNINLY DHARGTQTGF VRHDDGYVST SISLRS AHLV GQTILSGHST
 sp|P43530|ELAH_ECOLI RGTQMNINLY DHARGTQTGF VRYDDGYVST SLSLRS AHLA GQSILSGYST

sp|P01555|CHTA_VIBCH YYIYVIATAP NMFNNDVLG AYSHPDQE VSALGGIPYS QIYGWYRVHF
 sp|P43530|ELAH_ECOLI YYIYVIATAP NMFNNDVLG VYSPHPYEQE VSALGGIPYS QIYGWYRVNF

sp|P01555|CHTA_VIBCH GVLDEQLHRN RGYRDYYSN LDIAPAADGY GLAGFPPEHR AWREEPWIHH
 sp|P43530|ELAH_ECOLI GVIDERLHRN REYRDYYRN LNIAPAEDGY RLAGFPPDHQ AWREEPWIHH

sp|P01555|CHTA_VIBCH APPGCGNAPR SSMSNTCDEK TQSLGVKFLD EYQSKVKRQI FSGYQSDIDT
 sp|P43530|ELAH_ECOLI APQGCGNSSR TITGDTCEE TQNLSTIYLR KYQSKVKRQI FSDYQSEVDI

sp|P01555|CHTA_VIBCH HNRIKDEL
 sp|P43530|ELAH_ECOLI YNRIRNEL

CLUSTAL W (1.74) multiple sequence alignment

sp P01555 CHTA_VIBCH	MVKIIFVFFFILSSFSYANDDKLYRADSRRPDEIKQSGGLMPRGQSEYFDRGTQMNIN
sp P43530 ELAH_ECOLI	MKNITFIFFILLASPLYANGDKLYRADSRRPDEIKRSGGLMPRGHNEYFDRGTQMNIN
sp P01555 CHTA_VIBCH	DHARGTQTGFVRHDDGYVSTSISLRS AHLVGQTILSGHSTYYIYVIATAPNMFNVNDV
sp P43530 ELAH_ECOLI	DHARGTQTGFVRYDDGYVSTSISLRS AHLAGQSILSGY STYYIYVIATAPNMFNVNDV
sp P01555 CHTA_VIBCH	AYS PHPD E QEV SALGG I PYSQI YG WY RVH FG VL D EQI LHR NRG YRD RY YS NLD I A PAAD
sp P43530 ELAH_ECOLI	VYSPHPYE QEV SALGG I PYSQI YG WY RVN FG VIDE RLH RNR EY RD RY YRN LN I A PAED
sp P01555 CHTA_VIBCH	GLAGFPPEHRAWREEPWIHHAPP GCGNAPRSSMSNTCDEKTQSLGVKFLDEYQSKVKR
sp P43530 ELAH_ECOLI	RLAGFP PDHQAWREEPWIHHAPQGCGN SRTITGDTNEETQNLSTIYLRKYQSKVKR
sp P01555 CHTA_VIBCH	FSGYQSDIDTHNRIKDEL
sp P43530 ELAH_ECOLI	FSDYQSEVDIYNRIRNEL
	.*: * : ***: : **

CLUSTAL W (1.74) multiple sequence alignment

tr Q77DI6 Q77DI6_9VIRU	MVKIIFVFFIFLSSFSYANDDKLYRADSRPPDEIKQSGGLMPRGQSEYFD
tr O66280 O66280_ECOLI	MKNITFIFFILLASPLYANGDKLYRADSRPPDEIKRSGGLMPRGHNEYFD * :* * :****:*** * ***.*****:*****:*****:****
tr Q77DI6 Q77DI6_9VIRU	RGTQMNINLYDHARGTQTGFVRHDDGYVSTSISLRSAHLVGQTIILSGHST
tr O66280 O66280_ECOLI	RGTQMNINLYDHARGTQTGFVRYDDGYVSTSLSLRSAGQSLSGYST *****:*****:*****:*****:*****.**:****:**
tr Q77DI6 Q77DI6_9VIRU	YYIYVIATAPNMFNVNDVLGAYS PHPDEQEVSALGGIPYSQIYGWYRVHF
tr O66280 O66280_ECOLI	YYIYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGGIPYSQIYGWYRVNF *****:*****.***** ***** *****:*****:*****:*
tr Q77DI6 Q77DI6_9VIRU	GVLDEQLHRNRGYRDYYSNLDIAPAADGYGLAGFPPEHRAWREEPWIHH
tr O66280 O66280_ECOLI	GVIDERLHRNREYRDYYRNLNIAPAEDGYRLAGFPPDHQAWREEPWIHH ***:*****:***** * :***** *** ****:*****:*****:*****
tr Q77DI6 Q77DI6_9VIRU	APPGCNAPRSSMSNTCDEKTQSLGVKFLDEYQSKVKRQIFSGYQSDIDT
tr O66280 O66280_ECOLI	APQGCNNSRTITDDTCNEETQNLSTIYLRKYQSKVKRQIFSDYQSEVDI ** ****:.*: .:****:*.**.. :* :*****:****.****:*
tr Q77DI6 Q77DI6_9VIRU	HNRIKDEL
tr O66280 O66280_ECOLI	YNRIRDEL :****:***

PileUp

MSF: 258 Type: P Check: 4011 ..

Name: tr|Q77DI6|Q77DI6_9VIRU oo Len: 258 Check: 6104 Weight: 0.100
 Name: tr|O66280|O66280_ECOLI oo Len: 258 Check: 7907 Weight: 0.100

//

tr|Q77DI6|Q77DI6_9VIRU MVKIIIEVFFI FLSSFSYAND DKLYRADSAP PDEIKQSGGL MPRGQSEYFD
 tr|O66280|O66280_ECOLI MKNITFIFI LLASPLYANG DKLYRADSAP PDEIKRSGGL MPRGHNEYFD

tr|Q77DI6|Q77DI6_9VIRU RGTQMNINLY DHARGTQTGF VRHDDGYVST SISLRS AHLV GQTILSGHST
 tr|O66280|O66280_ECOLI RGTQMNINLY DHARGTQTGF VRYDDGYVST SLSLRS AHLA GQSILSGYST

tr|Q77DI6|Q77DI6_9VIRU YYIYVIATAP NMFNNDVLG AYS PHPDQE VSALGGIPYS QIYGWYRVHF
 tr|O66280|O66280_ECOLI YYIYVIATAP NMFNNDVLG VYS PHPYEQE VSALGGIPYS QIYGWYRVNF

tr|Q77DI6|Q77DI6_9VIRU GVLDEQLHRN RGYRDYYSN LDIAPAADGY GLAGFPPEHR AWREEPWIIH
 tr|O66280|O66280_ECOLI GVIDERLHRN REYRDYYRN LNIAPAEDGY RLAGFPPDHQ AWREEPWIIH

tr|Q77DI6|Q77DI6_9VIRU APPGCGNAPR SSMSNTCDEK TQSLGVKFLD EYQSKVKRQI FSGYQSDIDT
 tr|O66280|O66280_ECOLI APQGCGNSSR TITDDTCNEE TQNLSTIYL R KYQSKVKRQI FSDYQSEVDI

tr|Q77DI6|Q77DI6_9VIRU HNRIKDEL
 tr|O66280|O66280_ECOLI YNRIRDEL

sp P06717 Heat-labile enterotoxin A chain precursor (LT-A, porcine) 258
ELAP_ECOLI (LTP-A)
[eltA] [Escherichia coli] AA align

Score = 427 bits (1099), Expect = e-119
Identities = 198/242 (81%), Positives = 222/242 (90%)

Query: 17 YANDDKLYRADSRPPDEIKQSGGLMPRGQSEYFDRGTQMNINLYDHARGTQTGFVRHDDG 76
YAN D+LYRADSRPPDEIK+SQQGLMPRG +EYFDRGTQMNINLYDHARGTQTGFVR +DDG
Sbjct: 17 YANGDRLYRADSRPPDEIKRSQGLMPRGHNEYFDRGTQMNINLYDHARGTQTGFVRYDDG 76

Query: 77 YVSTSISLRSAHLVGQTI LSGHSTYYI YYVIATAPNMFNVNDVLGAYSPHPDEQEVSALGG 136
YVSTS+SLRSAHL GQ+TLSG+STYYI YYVIATAPNMFNVNDVLG YSPHP EQEVSALGG
Sbjct: 77 YVSTSLSL RSAHLAGQSILSGYSTYYI YYVIATAPNMFNVNDVLGVYSPHPYEQEVSALGG 136

Query: 137 IPYSQIYGWYRVHFGVLDEQLHRNRGYRDRYYSNLDIAPAADGYGLAGFPPEHRAWREEP 196
IPYSQIYGWYRV+FGV+DE+LHRNR YDRYY NL+TAF A DGY LAGFPP+H+AWREEP
Sbjct: 137 IPYSQIYGWYRVNFGVIDERLHRNREYRDRYYRNLNIAPAEDGYRLAGFPPDHQAWREEP 196

Query: 197 WIHHAPPGCGNAPRSSMSNTCDEKTQSLGVKFLDEYQSKVKRQIFSGYQSDIDTHNRIKD 256
WIHHAP GCGN+ R+ +TC+E+TQ+L +L BYQSKVKRQIFS YQS++D +NRI+D
Sbjct: 197 WIHHAPQGCGNSSRTITGDTCNEETQNLSTIYLREYQSKVKRQIFSDYQSEVDIYNRIRD 256

Query: 257 EL 258
EL:
Sbjct: 257 EL 258

CLUSTAL FORMAT for T-COFFEE Version_1.37, CPU=0.13 sec, SCORE=11330, Nseq=2, Len=258

unk VIRT70 Blast_submission sp P06717 ELAP_ECOLI	MVKIIIFVFFIFLSSFSYANDDKLYRADSRPPDEIKQSGGLMPRGQSEYFDRGTQM MKNITFIFFILLASPLYANGDRLYRADSRPPDEIKRSGGLMPRGHNEYFDRGTQM * :* *:****:.*:***.*:*****:*****:*****:*****
unk VIRT70 Blast_submission sp P06717 ELAP_ECOLI	DHARGTQTGFVRHDDGYVSTSISLRS AHLVGQ TILSGHSTYYI YVIATAPNMFNV DHARGTQTGFVRYDDGYVSTSLSL RSAHLAGQ S ILSGY STYYI YVIATAPNMFNV *****:*****:*****:*****.**:****:*****:*****
unk VIRT70 Blast_submission sp P06717 ELAP_ECOLI	AYSPHPDQEVS ALGGIPYSQIYGWYRVHFGVLDEQLHRN RGYRD RY SNLDIA P VYSPHPYDQEVS ALGGIPYSQIYGWYRVNFGVIDERLHRN R EYRD RYRN LNIA P .*****:*****:*****:*****:*****:*****:*****:*****:*****
unk VIRT70 Blast_submission sp P06717 ELAP_ECOLI	GLAGFPPEHRAWREEPW IHHAPP GCGNAP RSSMSNT CDEKT QSLGVKFLDEYQSK RLAGFP PDHQAWREEPW IHHAPQGCGN SSRTITGDT CNEET QNLSTIYLREYQSK *****:*:*****:*****:*****:..*: .:****:****.**.. :* *****
unk VIRT70 Blast_submission sp P06717 ELAP_ECOLI	FSGYQSDIDTHNRIKDEL FSDYQSEVDIYNRIRDEL **.****:.* :***:***

[ExPASy Home page](#)[Site Map](#)[Search ExPASy](#)[Contact us](#)[Swiss-Prot](#)Search for

UniProtKB/Swiss-Prot entry P06717

[Printer-friendly view](#)[Submit update](#)[Quick Blast!](#)
[\[Entry info\]](#)
[\[Name and origin\]](#)
[\[References\]](#)
[\[Comments\]](#)
[\[Cross-references\]](#)
[\[Keywords\]](#)

[\[Features\]](#)
[\[Sequence\]](#)
[\[Tools\]](#)

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name **ELAP_ECOLI**Primary accession number **P06717**Secondary accession number **P01554**

Entered in Swiss-Prot in Release 06, January 1988

Sequence was last modified in Release 06, January 1988

Annotations were last modified in Release 47, May 2005

Name and origin of the protein

Protein name **Heat-labile enterotoxin A chain [Precursor]**Synonyms **LT-A, porcine****LTP-A**Gene name **Name: eltA**Synonyms: **ltpA**From **Escherichia coli [TaxID: 562]**Taxonomy **Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia.**

References

[1] NUCLEOTIDE SEQUENCE.

STRAIN=Isolate P307 / ETEC, and Isolate PCG86 / ETEC;**MEDLINE=**87137303;PubMed=3546273 [NCBI, ExPASy, EBI, Israel, Japan]

Yamamoto T., Gojobori T., Yokota T.;

"Evolutionary origin of pathogenic determinants in enterotoxigenic *Escherichia coli* and *Vibrio cholerae* O1.;"

J. Bacteriol. 169:1352-1357(1987).

[2] NUCLEOTIDE SEQUENCE.

STRAIN=Isolate P307 / ETEC;

Dykes C.W., Halliday I.J., Hobden A.N., Read M.J., Harford S.;

"A comparison of the nucleotide sequence of the A subunit of heat-labile enterotoxin and cholera toxin.;"

FEMS Microbiol. Lett. 26:171-174(1985).

[3] NUCLEOTIDE SEQUENCE.

STRAIN=Isolate P307 / ETEC;**MEDLINE=**82167425;PubMed=6279611 [NCBI, ExPASy, EBI, Israel, Japan]

Spicer E.K., Noble J.A.;

"Escherichia coli heat-labile enterotoxin. Nucleotide sequence of the A subunit gene.;"

J. Biol. Chem. 257:5716-5721(1982).

[4] NUCLEOTIDE SEQUENCE OF 19-258.

STRAIN=Isolate P307 / ETEC;

MEDLINE=91093102;PubMed=2266142 [NCBI, ExPASy, EBI, Israel, Japan]

Tsuji T., Inoue T., Miyama A., Okamoto K., Honda T., Miwatani T.;

"A single amino acid substitution in the A subunit of Escherichia coli enterotoxin results in a loss of its toxic activity.";

J. Biol. Chem. 265:22520-22525(1990).

[5] NUCLEOTIDE SEQUENCE OF 1-40.

Trachman J.D., Maas W.K.;

Submitted (JUL-1991) to the EMBL/GenBank/DDBJ databases.

[6] X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS).

DOI=10.1038/351371a0;MEDLINE=91238966;PubMed=2034287 [NCBI, ExPASy, EBI, Israel, Japan]

Sixma T.K., Pronk S.E., Kalk K.H., Wartna E.S., van Zanten B.A.M., Witholt B., Hol W.G.J.;

"Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli.";

Nature 351:371-377(1991).

[7] X-RAY CRYSTALLOGRAPHY (1.95 ANGSTROMS).

MEDLINE=93240541;PubMed=8478941 [NCBI, ExPASy, EBI, Israel, Japan]

Sixma T.K., van Zanten B.A.M., Dauter Z., Hol W.G.J.;

"Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin.";

J. Mol. Biol. 230:890-918(1993).

[8] X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 19-258, AND MUTAGENESIS OF ARG-25; VAL-71; ARG-72; TYR-77; SER-81; ALA-90; VAL-115; TYR-122; HIS-125; GLU-128; GLU-130; SER-132 AND ARG-210.

PubMed=7830560 [NCBI, ExPASy, EBI, Israel, Japan]

Pizza M., Domenighini M., Hol W., Giannelli V., Fontana M.R., Giuliani M.M., Magagnoli C.,

Peppoloni S., Manetti R., Rappuoli R.;

"Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis.";

Mol. Microbiol. 14:51-60(1994).

[9] DISCUSSION OF SEQUENCE.

MEDLINE=95349400;PubMed=7623669 [NCBI, ExPASy, EBI, Israel, Japan]

Domenighini M., Pizza M., Jobling M.G., Holmes R.K., Rappuoli R.;

"Identification of errors among database sequence entries and comparison of correct amino acid sequences for the heat-labile enterotoxins of Escherichia coli and Vibrio cholerae.";

Mol. Microbiol. 15:1165-1167(1995).

Comments

- **FUNCTION:** The biological activity of the toxin is produced by the A chain, which activates intracellular adenyl cyclase.
- **SUBUNIT:** Heterohexamer of one A chain and of five B chains.

Copyright

This Swiss-Prot entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use as long as its content is in no way modified and this statement is not removed.

Cross-references

M15361; AAA24791.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

M15362; AAA24793.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

M35581; AAA98202.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

V00275; CAA23532.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

M57244; AAB59161.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

EMBL

PIR M61015; AAA24335.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]
 A04913; CAA00402.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]
 I55231; QLECA.

PDB 1HTL; X-ray; A=19-209, C=210-258. [ExPASy / RCSB / EBI]
 1LT3; X-ray; A=19-258. [ExPASy / RCSB / EBI]
 1LT4; X-ray; A=19-258. [ExPASy / RCSB / EBI]
 1LTA; X-ray; A=19-206, C=210-258. [ExPASy / RCSB / EBI]
 1LTB; X-ray; A=22-206, C=210-254. [ExPASy / RCSB / EBI]
 1LTG; X-ray; A=19-209, C=210-258. [ExPASy / RCSB / EBI]
 1LTI; X-ray; A=19-210, C=211-258. [ExPASy / RCSB / EBI]
 1LTS; X-ray; A=22-206, C=214-254. [ExPASy / RCSB / EBI]
 1LTT; X-ray; A=22-206, C=214-254. [ExPASy / RCSB / EBI]
 Detailed list of linked structures.

InterPro IPR001144; Enterotoxin_A.
 Graphical view of domain structure.

Pfam PF01375; Enterotoxin_a; 1.
 Pfam graphical view of domain structure.

PRINTS PR00771; ENTEROTOXINA.

ProDom [Domain structure / List of seq. sharing at least 1 domain]

HOGENOM [Family / Alignment / Tree]

BLOCKS P06717.

ProtoNet P06717.

ProtoMap P06717.

PRESAGE P06717.

DIP P06717.

ModBase P06717.

SWISS-2DPAGE Get region on 2D PAGE.

UniRef View cluster of proteins with at least 50% / 90% identity.

Keywords

3D-structure; Enterotoxin; Signal; Toxin.

Features

Feature table viewer

Key	From	To	Length	Description
SIGNAL	1	18	18	
CHAIN	19	258	240	Heat-labile enterotoxin A chain.
ACT_SITE	130	130		
NP_BIND	25	39	15	NAD.
DISULFID	205	217		
VARIANT	130	130	1	E -> K (in inactive mutant).
MUTAGEN	25	25		R->K: Abolishes toxicity.
MUTAGEN	71	71		V->D, E: Abolishes toxicity.
MUTAGEN	72	72		R->A, K: No effect.
MUTAGEN	77	77		Y->M: No effect.
MUTAGEN	81	81		S->K: Abolishes toxicity.

MUTAGEN	90	90	A->E, H, R: No effect.
MUTAGEN	115	115	V->K: Abolishes toxicity.
MUTAGEN	122	122	Y->D, K: Abolishes toxicity.
MUTAGEN	125	125	H->E: Strongly reduces toxicity.
MUTAGEN	128	128	E->S: Abolishes toxicity.
MUTAGEN	130	130	E->S: Abolishes toxicity.
MUTAGEN	132	132	S->E, K: Abolishes toxicity.
MUTAGEN	210	210	R->N: No effect.
CONFLICT	37	39	SGG -> FRS (in Ref. 3).
CONFLICT	45	45	Missing (in Ref. 3).
CONFLICT	93	93	S -> Y (in Ref. 3).
CONFLICT	100	110	TYYIYVIATAP -> LTIYIVIA (in Ref. 3).
CONFLICT	119	120	LG -> IS (in Ref. 3).
CONFLICT	159	159	R -> G (in Ref. 4).
CONFLICT	207	207	N -> D (in Ref. 3).
STRAND	23	27	5
HELIX	31	37	7
TURN	38	38	1
STRAND	39	40	2
TURN	43	44	2
TURN	48	49	2
TURN	51	52	2
HELIX	59	64	6
STRAND	67	67	1
TURN	68	69	2
STRAND	70	70	1
STRAND	77	81	5
HELIX	84	94	11
TURN	96	97	2
STRAND	100	106	7
TURN	110	111	2
STRAND	112	114	3
HELIX	115	119	5
HELIX	120	122	3
TURN	127	128	2
STRAND	130	134	5
TURN	135	135	1
STRAND	137	138	2
HELIX	139	141	3
STRAND	142	149	8
TURN	150	151	2
STRAND	152	159	8
TURN	161	162	2
HELIX	165	168	4
TURN	169	170	2
STRAND	174	174	1
HELIX	176	178	3
TURN	179	179	1

HELIX	180	182	3
TURN	187	188	2
HELIX	190	193	4
TURN	195	196	2
HELIX	197	200	4
TURN	203	204	2
HELIX	215	240	26
HELIX	241	244	4
HELIX	250	253	4

Sequence information

Length: 258 AA [This is the length of the unprocessed precursor]

Molecular weight: 29902 Da [This is the MW of the unprocessed precursor]

CRC64: 2F0786442619F81F [This is a checksum on the sequence]

10	20	30	40	50	60
MKNITFIFFI	LLASPLYANG	DRLYRADSRP	PDEIKRSGGL	MPRGHNEYFD	RGTQMNINLY
70	80	90	100	110	120
DHARGTQTGF	VRYDDGYVST	SLSLRS AHLA	GQSILSGYST	YYIYVIATAP	NMFNVNDVLG
130	140	150	160	170	180
VYS PHPYEQE	VSALGGIPYS	QIYGWYRVNF	GVIDERLHRN	REYRDRYYRN	LNIAPAEDGY
190	200	210	220	230	240
RLAGFPPDHQ	AWREEPWIHH	APQGCGNSSR	TITGDTNEE	TQLNSTIYL R	EYQSKVKRQI
250					
FSDYQSEVDI	YNRIRDEL				

P06717 in FASTA format

[View entry in original Swiss-Prot format](#)

[View entry in raw text format \(no links\)](#)

[Report form for errors/updates in this Swiss-Prot entry](#)

BLAST submission on
ExPASy/SIB
or at NCBI (USA)

Sequence analysis tools: ProtParam, ProtScale,
Compute pI/Mw, PeptideMass, PeptideCutter,
Dotlet (Java)

Submit a homology modeling request to SWISS-MODEL

[ExPASy Home page](#)

[Site Map](#)

[Search ExPASy](#)

[Contact us](#)

[Swiss-Prot](#)

Hosted by NCSC
US

Mirror
sites:

Australia Bolivia Brazil Canada Korea Switzerland Taiwan

[0038] Other suitable CT-CRM proteins may include those in which one or more of the amino acid residues includes a substituted group. Still another suitable CT-CRM holotoxin protein is one in which the CT-CRM polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol). Another suitable CT-CRM protein is one in which additional amino acids are fused to the polypeptide, such as a leader or secretory sequence, or a sequence which is employed to enhance the immunogenicity of the CT-CRM protein. Still other modifications of the CT-CRMs include the above-mentioned deletion of the CT-A signal or leader sequence at the N terminus of CT, i.e., amino acids 1-18 of SEQ ID NO: 1 and/or the deletion of the CT-B signal or leader sequence at amino acids 259-279 of SEQ ID NO: 1, and/or the deletion of other regions that do not effect immunogenicity. Similarly, a modification of the CT-CRMs described herein includes include replacing either signal or leader sequence with another signal or leader sequence. See, e.g., U.S. Pat. No. 5,780,601, incorporated by reference herein.

CT-~~CRM~~

[0063] The terms "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 70% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, a program in GCG Version 6.1. The term "homologous" as used herein, refers to the sequence similarity between two polymeric molecules, e.g., between two nucleic acid molecules, e.g., two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a nucleotide or amino acid position in both of the two molecules is occupied by the same monomeric nucleotide or amino acid, e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position. The homology between two sequences is a direct function of the number of matching or homologous positions, e.g. if half (e.g., five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous. If 90% of the positions, e.g., 9 of 10, are matched or homologous, the two sequences share 90% homology. By way of example, the DNA sequences 3'ATTGCCS' and 3'TATGCGS' share 50% homology. By the term "substantially homologous" as used herein, is meant DNA or RNA which is about 70% homologous, more preferably about 80% homologous and most preferably about 90% homologous to the desired nucleic acid.