Due: Wednesday, April 30, 2003

1. For an n-channel Si MOSFET with an oxide thickness d=150 Å, a channel mobility $\mu_n=1000$ cm² /V-s, Z=100 μ m, and L=5 μ m, determine the threshold voltages for $N_a=10^{15}$ and 10^{17} /cm³, respectively. Calculate and tabulate $I_D(V_D,V_G)$ in the linear region at 300 K. Allow V_D to take on values of 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 V for $V_G=2$, 3, 4, and 5 V. Assume that $Q_i=5x10^{11}$ qC/cm². Also, determine I_{Dsat} in the saturation region for each gate bias and doping.

Solution:

Assume the gate material is n+. (At present, most practical gate is made from poly n+.)

$$\mathbf{f}_F = 0.0259 \ln \frac{N_a}{n_i}, \quad C_i = \frac{\mathbf{e}_i}{d} = \frac{3.9 \times 8.85 \times 10^{-14}}{150 \times 10^{-8}} = 2.301 \times 10^{-7} \, F \, / \, cm^2, \quad Q_d = -2 \sqrt{q \mathbf{e}_s \mathbf{f}_F N_a}$$

You can look up the Fig 6-17 to get Φ_{ms} , or by assuming n+ material havs E_F at $E_{C:}$ $\Phi_{ms} = -0.55 - f_F$

$$V_T = \Phi_{ms} - \frac{Q_i}{C_i} - \frac{Q_d}{C_i} + 2\mathbf{f}_F$$
 (please notice that Q_d is negative here).

N_a (cm ⁻³)	$f_{F}(V)$	Q_d (C/cm ²)	$\Phi_{ms}\left(\mathbf{V}\right)$	$V_{T}(V)$
10^{15}	0.288	-1.38×10^{-8}	-0.9	-0.613V
10^{17}	0.407	-1.65×10^{-7}	-1.05	0.133

We can use either equation 6-49 or 6-50. The solution offered below uses 6-49. If you use 6-50, the solution should be similar.

This problem is most easily solved using some computer programs such as MS-Excel or Matlab. There are three operation modes for MOSFET: cut-off, linear region, and saturation region. The condition and I_d equations for these three modes are:

Cutoff: happen when $V_G < V_T$, $I_d = 0$

Linear region:
$$V_G > V_T$$
, and $V_{DS} < V_G - V_T$, $I_{Linear} = \frac{m_i ZC_i}{L} \left[(V_G - V_T)V_D - \frac{1}{2}V_D^2 \right]$

Saturation Region:
$$V_G > V_T$$
, and $V_{DS} > V_G - V_T$, $I_{scat} = \frac{1}{2} \frac{m_i ZC_i}{L} (V_G - V_T)^2$

Use your favorite computer program, you should be able to obtain following table.

For $N_a = 10^{15} cm^{-3}$, Table for I_d (mA)

и						
$V_D(V)$	0.1	0.3	0.5	0.7	0.9	1.1
$V_{G}(V)$						
2	1.18	3.4	5.43	7.29	8.95	10.4
3	1.64	4.78	7.74	10.5	13.1	15.5
4	2.01	6.16	10.0	13.7	17.2	20.6
5	2.56	7.54	12.3	17.0	21.4	25.6

For $N_a = 10^{17} cm^{-3}$, Table for I_d (mA)

$V_D(V)$	0.1	0.3	0.5	0.7	0.9	1.1
$V_{G}(V)$						
2	0.836	2.37	3.72	4.89	5.87	6.67
3	1.30	3.75	6.02	8.11	10.1	11.7
4	1.76	5.13	8.32	11.3	14.2	16.8
5	2.22	6.51	10.6	14.6	18.3	21.9

Table for I_{DSAT} (mA):

D,3A1 ()				
$N_a(cm^{-3})$	10^{15}	10^{17}		
$V_G(V)$				
2	15.7	8.02		
3	30.0	18.9		
4	48.9	34.4		
5	72.5	54.5		

2. Plot I_D vs. V_D for $V_G = -2$, -3, and -4V for a thin-oxide (100Å) p-channel transistor. The substrate doping and effective interface charge are $N_d = 10^{16}$ cm³ and $Q_i = 5x10^{10}$ q C/cm², respectively. Assume that I_{Dsat} remains constant beyond pinch-off and $\mu_p = 200$ cm²/V-s and Z = 10L.

For pMOS:

$$\mathbf{f}_{F} = -0.0259 \ln \frac{N_{d}}{n_{i}} = -0.347V,$$

$$C_{i} = \frac{\mathbf{e}_{i}}{d} = \frac{3.9 \times 8.85 \times 10^{-14}}{100 \times 10^{-8}} = 3.452 \times 10^{-7} \, F/cm^{2},$$

$$Q_{d} = 2\sqrt{q\mathbf{e}_{s}\mathbf{f}_{F}}N_{a} = 4.816 \times 10^{-8} \, C/cm^{2}$$

You can look up the Fig 6-17 to get Φ_{ms} , or by assuming n+ material havs E_F at E_C : $\Phi_{ms} = -0.55 - f_F$ Here we use results from Fig 6-17, $\Phi_{ms} = -0.25V$

$$V_T = \Phi_{ms} - \frac{Q_i}{C_i} - \frac{Q_d}{C_i} + 2\mathbf{f}_F = -0.25 - \frac{5 \times 10^{10} \times 1.6 \times 10^{-19}}{3.542 \times 10^{-7}} - \frac{4.816 \times 10^{-8}}{3.542 \times 10^{-7}} - 2 \times 0.347 = -1.11 Volts$$

The condition and $I_{\text{\tiny d}}$ equations for three operation modes of a pMOS are:

Cutoff: happen when $V_G > V_T$, $I_d = 0$

Linear region:
$$V_G < V_T$$
, and $V_{DS} > V_G - V_T$, $I_{Linear} = \frac{\mathbf{m}_p ZC_i}{L} \left[(V_G - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$

Saturation Region:
$$V_G < V_T$$
, and $V_{DS} < V_G - V_T$, $I_{sat} = \frac{1}{2} \frac{m_p ZC_i}{I} (V_G - V_T)^2$

The plot is shown next page:

