INDUX C) Y - 2 dente loplane relette 6d h (1) p(1) (es) pravo p $\Rightarrow 2)$ p(n) = p(n+1) de heiolego n => p(h) pert pravdp dle hoistepo m

Twierdzenie (Zasada indukcji matematycznej)

Niech p(n) będzie zdaniem dla dowolnego $n \in \mathbb{N}$. Jeżeli

- 1. zdanie p(1) jest prawdziwe,
- 2. dla każdego $n \in \mathbb{N}$ z prawdziwości p(n) wynika prawdziwość p(n+1),

to zdanie p(n) jest prawdziwe dla dowolnego $n \in \mathbb{N}$.

Previous buch indukayons (bara indukayon)

(bara indukayon)

Twierdzenie (Zasada indukcji matematycznej)

Załóżmy, że

1. p(1),

$$2. \bigwedge_{n\in\mathbb{N}} p(n) \Rightarrow p(n+1).$$

Wtedy

$$\bigwedge_{n\in\mathbb{N}}p(n).$$

Udowodnij, że

$$\frac{1+2+...+n}{2}, \quad n \in \mathbb{N}.$$

$$\frac{p(n)}{2}, \quad \frac{1}{2} = 1$$
2. Ustolary dovolve $n \in \mathbb{N}$.

$$\frac{1+n+n}{2} = \frac{n(n+1)}{2} = 1$$
2. Ustolary dovolve $n \in \mathbb{N}$.

$$\frac{1+n+n}{2} = \frac{n(n+1)}{2} = 1$$

$$\frac{1+n+n}{2} =$$

Udowodnij, że

owodnij, ze
$$(1+x)^n\geqslant 1+nx, \qquad x\geqslant -1$$

$$(1+x)^n\geqslant 1+nx, \qquad (x\geqslant -1) \underbrace{n\in\mathbb{N}}. \quad (Nierówność Bernoulliego)$$

$$1. n=1$$

1.
$$n=1$$
. $(1+x)^{1} \stackrel{?}{>} 1 + 1 \cdot x \stackrel{(=)}{>} 1 + x \stackrel{?}{>} 1 + x \stackrel{$

$$(1+x)^{n+1} = (1+x)^{n} \cdot (1+x)^{2} \cdot (1+x) = (1+x)^{n} \cdot (1+x)^{2} = (1+x)^{n} \cdot (1+x)^{2} = (1+x)^{n} \cdot (1+x)^{2} = (1+x)^{n} \cdot (1+x)^{n} (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} = (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} = (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} \cdot (1+x)^{n} = (1+x)^{n} \cdot (1+x)^$$

$$= 1 + x + hx + hx =$$

$$= 1 + x(h+1) + hx$$

$$= 1 + x(h+1) + hx$$

Inne wersje indukcji

Twierdzenie

Załóżmy, że n₀ jest liczbą całkowitą oraz

- 1. $p(\underline{n_0})$,
- $2. \bigwedge_{n \geqslant n_0} p(n) \Rightarrow p(n+1).$

Wtedy

$$\bigwedge_{n\geqslant n_0}p(n).$$

$$Q(1) = p(8),$$

$$Q(2) = p(9),$$

$$= -$$

rdane in 1

ho, not1, not2, ...

Inne wersje indukcji

Twierdzenie (Zasada indukcji zupełnej)

Załóżmy, że

- 1. p(1),
- 2. dla dowolnego $n \in \mathbb{N}$ z prawdziwości wszystkich zdań $p(1),\ldots,p(n)$ wynika prawdziwość p(n+1).

Wtedy

$$\bigwedge_{n\in\mathbb{N}}p(n).$$

$$d(v) = b(v) \vee b(v) \vee \cdots \vee b(v)$$

Rozważmy ciąg określony następująco: $a_1 = 3$, $a_2 = 5$ oraz

dla
$$n \in \mathbb{N}$$
.

1. $n=1$.

 $a_1=3$; $a_1=3$
 $n=2$.

 $a_2=5$; $a_2=5$; $a_2=5$

2. Nied $n \in \mathbb{N}$; $a_1>2$.

2. Nied $a_2=5$; $a_2=5$;

 $\frac{1}{2} = \left(c_k c_{h-1} - c_1 O \right)_{\tau} = 0$ pourstes 2.2. (Ch Ch-1...c, co) = (Chch-1...c, co)

Załóżmy, że w pewnym państwie jest $n \geqslant 1$ miast i każda para miast jest połączona jedną drogą jednokierunkową. Uzasadnij, że istnieje pewna droga, która przechodzi przez wszystkie miasta.

