Problem 3.0.3. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Give an example of a relation from A to B containing exactly three elements such that the relation is not a function from A to B.

Let f be a function from A to B.

- 1. The *domain* of f is A which is denoted by dom f.
- 2. The range of f, denoted by rng f, is the set

$$\{b \in B \mid f(a) = b \text{ for some } a \in A\}.$$

Note that rng f may not contain all elements of B.

- 3. The function f is one-to-one if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$.
- 4. The function f is onto if rng f = B. In other words, $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$.
- 5. The function f is bijective if it is one-to-one and onto.

Example 3.0.4. The domain of the function $\{(x_1, x_2) \mid x_1, x_2 \in \mathbb{Z}, x_1^2 = x_2\}$ is \mathbb{Z} . The range of f is $\{x^2 \mid x \in \mathbb{Z}\}$. Since rng $f \neq \mathbb{Z}$ the function f is not onto. It is left a problem to show that f is one-to-one.

Problem 3.0.5. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. Then $f\{(a, y), (b, z), (c, y), (d, z)\}$ is a function from A to B. Determine dom f and rng f.

Problem 3.0.6. Let $A = \{w, x, y, z\}$ and $B = \{r, s, t\}$. Give an example of a function $f: A \to B$ that is neither one-to-one nor onto.

Theorem 3.0.7. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as $f(x) = 3x^3 - x$.

- 1. The function f is one-to-one.
- 2. The function f is not bijective.

Proof. 1. Proof by Contradiction

We want to show that f is not one-to-one is false.

Let $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$. Suppose $f(x_1) = f(x_2)$. Then

$$3x_1^3 - x_1 = 3x_2^3 - x_2 \Rightarrow 3x_1^3 - 3x_2^3 = x_1 - x_2$$
$$\Rightarrow 3(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = x_1 - x_2$$
$$\Rightarrow x_1^2 + x_1x_2 + x_2^2 = \frac{1}{3}.$$

However, this contradicts that $x_1^2 + x_1x_2 + x_2^2 \in \mathbb{Z}$ which must be the case since $x_1, x_2 \in \mathbb{Z}$. Therefore, f is one-to-one.

2. Direct Proof

We want to show that f is not onto which implies that f is not bijective.

Since $x \in \mathbb{Z}$, $3x^3$ and x are of the same parity. Hence $3x^3 - x$ is always even. Thus there does not exists $x \in \mathbb{Z}$ such that f(x) = 1. This shows that f is not onto. Therefore f is not bijective.

Problem 3.0.8. Show that the function $\{(x_1, x_2) \mid x_1, x_2 \in \mathbb{Z}, x_1^2 = x_2\}$ is one-to-one.

The absolute value of x, denoted by |x|, is x if $x \ge 0$ and -x otherwise. The floor of x, denoted by $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denoted by $\lceil x \rceil$, is the least integer greater than or equal to x

Example 3.0.9. It is the case that $|-3|=3=|3|, \lfloor 2.3 \rfloor = 2, \text{ and } \lceil \pi \rceil = 4.$