Feuille d'exercices n° 14 : correction

Exercice 1.

1. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

$$E_{1} = \{(x, y) \in \mathbb{R}^{2} \mid -9x + 7y = 0\}$$

$$E_{2} = \{(x, y) \in \mathbb{R}^{2} \mid 2x - 5y = 1\}$$

$$E_{3} = \{(x, y) \in \mathbb{R}^{2} \mid xy \geqslant 0\}$$

$$E_{4} = \{(x, y) \in \mathbb{R}^{2} \mid x = 0\}$$

$$E_{5} = \{(x, y) \in \mathbb{R}^{2} \mid x \leqslant y\}$$

$$E_{6} = \{(x, y) \in \mathbb{R}^{2} \mid |x| = |y|\}$$

$$E_2 = \{(x, y) \in \mathbb{R}^2 \mid 2x - 5y = 1\}$$

$$E_3 = \{(x, y) \in \mathbb{R}^2 \mid xy \geqslant 0\}$$

$$E_4 = \{(x, y) \in \mathbb{R}^2 \mid x = 0\}$$

$$E_5 = \{(x, y) \in \mathbb{R}^2 \mid x \leqslant y\}$$

$$E_6 = \{(x, y) \in \mathbb{R}^2 \mid |x| = |y|\}$$

2. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?

$$E_7 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z \ge 0\}$$
 $E_8 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$

$$E_8 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$$

3. Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

L'ensemble E_9 des suites croissantes

L'ensemble E_{10} des suites monotones

L'ensemble E_{11} des suites bornées

L'ensemble E_{12} des suites convergeant vers 0

L'ensemble E_{13} des suites arithmétiques

L'ensemble E_{14} des suites géométriques

- L'ensemble E_{15} des suites $(x_n)_{n\in\mathbb{N}}$ telles que : $\forall n\in\mathbb{N},\ x_{n+2}=4x_{n+1}-2x_n$
- 4. Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$?

L'ensemble E_{16} des fonctions positives

L'ensemble E_{17} des fonctions s'annulant en 0

L'ensemble E_{18} des fonctions continues

L'ensemble E_{19} des fonctions dérivables

L'ensemble E_{20} des fonctions 2π -périodiques

L'ensemble E_{21} des f telles que f(3) = 2f(5) - 1

Solution. Ici, on ne démontre que dans le cas où E n'est pas un espace vectoriel. Il faut faire la preuve dans le cas positif aussi.

1. Oui

8. Oui

15. Oui

- 2. Non: $(0,0) \notin E$
- 3. Non. $(0,1) \in E$ et $(-1,0) \in$ E mais $(-1,1) \notin E$
- 9. Non. Si u est strict. croissante alors -u est strict. décroissante
- 16. Non. $x^2 \ge 0$ mais $-x^2 \le 0$

4. Oui

11. Oui

17. Oui

- E mais 5. Non. (1,2) \in $-(1,2) \notin E$

18. Oui

- 6. Non. $(-1,1) \in E$ et $(1,1) \in$ E mais $(0,2) \notin E$
- 12. Oui 13. Oui

19. Oui

- 7. Non. $(1,1,1) \in E$ mais $-(1,1,1) \notin E$
- 14. Non. $u_n = 2^n \text{ et } v_n = 3^n$.

10. Non. $u_n = 2n - n^2$.

- 20. Oui
- Mais $2^n + 3^n$ n'est pas géométrique
- 21. Non. $0 \notin E_{21}$.

Exercice 2. Équation du sous-espace engendré.

- 1. À quelle condition sur le réel a, a-t-on : $(1, a, 2) \in \text{Vect}((1, 1, 3), (0, 1, 1))$?
- 2. Déterminer de même une condition nécessaire et suffisante sur (a,b,c) pour que : $(a, b, c) \in Vect((1, 1, 3), (2, -1, 3), (0, 1, 1))$

Solution.

- 1. $(1, a, 2) \in \text{Vect}((1, 1, 3), (0, 1, 1)) \Leftrightarrow a = 0$. On a alors : (1, 0, 2) = (1, 1, 3) (0, 1, 1)
- 2. $(a, b, c) \in \text{Vect}((1, 1, 3), (2, -1, 3), (0, 1, 1)) \Leftrightarrow 2a + b c = 0$. Le sous-espace Vect((1, 1, 3), (2, -1, 3), (0, 1, 1)) est donc le plan d'équation cartésienne 2x + y z = 0.

Exercice 3. Dans \mathbb{R}^3 , montrer que Vect((1,1,1),(2,1,-1)) = Vect((1,2,4),(3,1,-3)).

Solution. On résout : x(1,1,1) + y(2,1,-1) = a(1,2,4) + b(3,1,-3), d'inconnue (x,y), puis d'inconnue (a,b). On trouve une solution pour chaque système . Donc, par double inclusion, $\boxed{\operatorname{Vect}((1,1,1),(2,1,-1)) = \operatorname{Vect}((1,2,4),(3,1,-3))}$.

Exercice 4. On considère dans \mathbb{R}^3 les deux sous-ensembles suivants :

$$F = \{(x, y, z) \mid 2x + y - 3z = 0\} \quad \text{et} \quad G = \{(2a + b, a - b, 3a - b) \mid (a, b) \in \mathbb{R}^2\}.$$

Montrer qu'il s'agit de deux sous-espaces vectoriels de \mathbb{R}^3 , et déterminer leur intersection $F \cap G$.

Solution. F est un sous-espace vectoriel de \mathbb{R}^3 (méthode 1) et G est un espace vectoriel (méthode 2 : G = Vect((2,1,3),(1,-1,-1))). On trouve $F \cap G = \text{Vect}((3,0,2))$

Exercice 5. Dans les cas suivants, on donne trois ensembles E, F et G. Montrer que F et G sont deux sous-espaces supplémentaires de E.

- 1. Soient E l'ensemble des suites réelles convergentes, F celui des suites constantes et G l'ensemble des suites convergeant vers 0.
- 2. Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} dérivables. On pose $F = \{f \in E \mid f(0) = f'(0) = 0\}$ et G l'ensemble des fonctions affines.
- 3. $E = \mathcal{C}^0([-1,1],\mathbb{R})$; $F = \{f \in E \mid \int_{-1}^1 f(t) \ dt = 0\}$ et G l'ensemble des fonctions constantes sur [-1,1].
- 4. $E = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+3} u_{n+2} u_{n+1} + u_n = 0\};$ $F = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+1} + u_n = 0\} \text{ et } G = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+2} - 2u_{n+1} + u_n = 0\}.$

Solution. Il faut à chaque fois montrer que :

- F, G sont des sous-espaces vectoriels de E;
- tout élément de E s'écrit de manière unique comme la somme d'un élément de F et d'un élément de G.
- 1. $F = \text{Vect}((1)_{n \in \mathbb{N}})$ et G est un espace vectoriel par la méthode 1 (à faire). Montrons que $E = F \oplus G$. Soit $w \in E$. Montrons par analyse-synthèse qu'il existe un unique couple $(u, v) \in F \times G$ tel que w = u + v

Analyse: soit $(u, v) \in F \times G$ tel que $w_n = u_n + v_n$ pour tout $n \in \mathbb{N}$.

La suite u est constante par hypothèse donc $w_n = u_0 + v_n$. Comme $u \in E$, elle converge vers une limite $\ell \in \mathbb{R}$ et puisque $v_n \to 0$ par hypothèse, on a $\ell = \lim_{n \to +\infty} u_0 + v_n = u_0$. Ainsi u est la suite constante égale à ℓ et $v_n = w_n - \ell$ pour tout $n \in \mathbb{N}$.

Synthèse : on pose $u_n = \lim_{n \to +\infty} w_n = \ell$ et $v_n = w_n - \ell$ pour tout $n \in \mathbb{N}$. Alors $u \in F$; $v_n \to 0$ donc $v \in G$ et enfin w = u + v.

2. F est un espace vectoriel (méthode 1) et $G = \text{Vect}(x \mapsto x, x \mapsto 1)$.

Montrons que $E = F \oplus G$. Soit $h \in E$. Montrons par analyse-synthèse qu'il existe un unique couple $(f,g) \in F \times G$ tel que h = f + g

Analyse : soit $(f,g) \in F \times G$ tel que h(x) = f(x) + g(x) pour tout $x \in \mathbb{R}$.

En dérivant cette relation, on a aussi h'(x) = f'(x) + g'(x) pour tout $x \in \mathbb{R}$. En évaluant ces deux dernières égalités en x = 0, on obtient g(0) = h(0) et g'(0) = h'(0). Or, g est affine par hypothèse donc il existe des constantes $a, b \in \mathbb{R}$ telles que g(x) = ax + b pour tout $x \in \mathbb{R}$. Avec ce qui précède, on trouve a = h'(0) et b = h(0). Ainsi, pour tout $x \in \mathbb{R}$, on a g(x) = h'(0)x + h(0) et f(x) = h(x) - h'(0)x - h(0).

Synthèse : on pose g(x) = h'(0)x + h(0) et f(x) = h(x) - h'(0)x - h(0) pour tout $x \in \mathbb{R}$. On a bien :

- f(0) = 0 et f'(0) = 0 donc $f \in F$;
- $g \in G$;
- h = f + g.

Exercice 6. Déterminer une famille génératrice pour les ensembles suivants :

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 2z\} \qquad B = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 2z, x + y + z = 0\}$$

Solution.
$$A = \text{Vect}((1, 1, 0), (2, 0, 1)) \mid B = \text{Vect}((1, -3, 2))$$

Exercice 7. Pour A et B des sous-espaces vectoriels de \mathbb{R}^3 . Déterminer une famille génératrice de $A \cap B$.

1.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x = y + z\} \text{ et } B = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 3z\}.$$

2.
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 3z\} \text{ et } B = \text{Vect}((1, 1, 2), (2, 1, 1)).$$

3.
$$A = Vect((1, 2, 2), (3, 2, 2))$$
 et $B = Vect((1, 0, 1), (1, 1, 2))$.

Solution.

1.
$$A \cap B = Vect((5, 2, 3))$$

2.
$$A \cap B = Vect((7,4,5))$$

3.
$$A \cap B = \text{Vect}((0, -1, -1))$$

Exercice 8. Les familles suivantes sont-elles libres? génératrices? Sont-elles des bases?

1.
$$((1,2,5,4),(2,4,10,7))$$
 dans \mathbb{R}^4 .

2.
$$((1,2,3),(-5,-10,-15))$$
 dans \mathbb{R}^3 .

3.
$$((1,0,0),(1,1,0),(1,1,1))$$
 dans \mathbb{R}^3 .

4.
$$((3,1,-4,6),(1,1,4,4),(1,0,-4,\alpha))$$
 dans \mathbb{R}^4 , avec $\alpha \in \mathbb{R}$.

Solution.

- 1. libre, pas génératrice
- 2. pas libre, pas génératrice
- 3. libre, génératrice, base

4. pas génératrice. libre si et seulement si $\alpha \neq 1$

Exercice 9. Dans $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, les vecteurs suivants forment-ils une famille libre? forment-ils une famille génératrice de E?

- 1. $u: x \mapsto \cos x$, $v: x \mapsto \sin x$, $w: x \mapsto e^x$;
- 2. $u_1: x \mapsto 2\cos x$, $u_2: x \mapsto \cos 2x$, $u_3: x \mapsto \cos^2 x$, $u_4: x \mapsto \sin^2 x$

Solution.

- 1. libre, pas génératrice
- 2. pas libre $(u_2 = u_3 u_4)$, pas génératrice

Exercice 10. Dans chacun des cas suivants, montrer que la famille \mathcal{F} est une base de E, et déterminer les coordonnées de u dans \mathcal{F} .

1.
$$E = \mathbb{R}^3$$
; $\mathcal{F} = ((-1,1,1); (1,-1,1); (1,1,-1))$ et $u = (2,3,4)$.

2.
$$E = \mathcal{M}_2(\mathbb{R}); \mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right) \text{ et } u = I_2.$$

Solution.

1. coordonnées de
$$u$$
 dans \mathcal{F} :
$$X_u = \begin{pmatrix} 7/2 \\ 3 \\ 5/2 \end{pmatrix}$$

2. coordonnées de
$$u$$
 dans \mathcal{F} :
$$X_u = \begin{pmatrix} 1 \\ -1/2 \\ 0 \\ -1/2 \end{pmatrix}$$

Exercice 11.

- 1. Donner une base de F = Vect(u, v, w), où u = (1, -1, 1), v = (0, -1, 2) et w = (1, -2, 3) dans \mathbb{K}^3 .
- 2. Donner une base de $G = \{(x, y, z) \in \mathbb{K}^3 \, | \, x + 2y + z = 0\}.$
- 3. Montrer que F = G.

Solution.

- 1. On constate : u + v = w. Donc F = Vect(u, v). (u, v) est libre. Donc c'est une base de F.
- 2. G = Vect((-2, 1, 0), (-1, 0, 1)). La famille ((-2, 1, 0), (-1, 0, 1)) est libre : c'est une base de G.
- 3. $u \in G$ et $v \in G$ car ils vérifient l'équation de G. Donc $F \subset G$. On a : $(-2,1,0) = -2u + 3v \in F$ et $(1,-2,3) = u + v \in F$. Donc $G \subset F$. Finalement : F = G

Exercice 12. Donner une base des espaces vectoriels suivants :

1.
$$E_1 = \{(x, y, z) \in \mathbb{K}^3 \mid x - 2y + 3z = 0\}$$

2.
$$E_2 = \{(x, y, z) \in \mathbb{K}^3 \mid x = 2y = 3z\}$$

3.
$$E_3 = \{(x, y, z, t) \in \mathbb{K}^4 \mid x + y = y + z = z + t = t + x = 0\}$$

4.
$$E_4 = \{(x, y, z, t) \in \mathbb{K}^4 \mid x + 2y - z = x - y = t = 0\}$$

5.
$$E_5=$$
 l'ensemble des suites arithmétiques dans $\mathbb{K}^{\mathbb{N}}$

6.
$$E_6$$
 = l'ensemble des solutions réelles de l'équation différentielle $y''=0$

7.
$$E_7$$
 = l'ensemble des solutions réelles de l'équation différentielle $y'' + 4y = 0$

8.
$$E_8=$$
 l'ensemble des solutions réelles de l'équation différentielle $y'+8\cos(4x)y=0$

Solution. On cherche une famille génératrice de l'espace. On vérifie qu'elle est libre.

1.
$$((2,1,0),(-3,0,1))$$

3.
$$(1, -1, 1, -1)$$

5. On pose v la suite constante égale à 1 et $w_n = n$. Alors (v, w) est une base. $(u = u_0 \times v + r \times w)$

6.
$$y'' = 0 \Leftrightarrow y(x) = ax + b$$
 avec a et b réels. Une base est : $(x \mapsto x, x \mapsto 1)$.

7.
$$(x \mapsto \cos 2x, x \mapsto \sin 2x)$$

8.
$$(x \mapsto \exp(-2\sin(4x)))$$

Exercice 13. Compléter en une base de \mathbb{K}^4 la famille ((1,1,1,1),(1,1,-1,-1)).

Solution. Beaucoup de réponses possibles : ((1,1,1,1),(1,1,-1,-1),(0,0,1,0),(0,1,0,0)).

Exercice 14. Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplémentaires.

1.
$$E = \mathbb{R}^2$$
; $F = \{(x, y) \mid x + y = 0\}$ et $G = \{(x, y) \mid x - y = 0\}$.

2.
$$E = \mathbb{R}^3$$
; $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y \text{ et } x + z = 0\} \text{ et } G = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}.$

3.
$$E = \mathbb{R}^3$$
; $F = \{(x, y, z) \mid x - y + z = 0\}$ et $G = \text{Vect}((3, 2, 1))$.

4.
$$E = \mathbb{R}_2[X]$$
; $F = \text{Vect}(X, X^2)$ et $G = \{P \mid P' = 0\}$.

5.
$$E = \mathbb{R}_6[X]$$
; $F = \{P \in E \mid P \text{ est une fonction paire}\}$ et $G = \{P \in E \mid P \text{ est une fonction impaire}\}$.

Solution. On donne une base de F et G à chaque fois. On utilise ensuite le fait que $F \oplus G = E$ si et seulement si lorsqu'on concatène une base de F et une base de G, on obtient une base de E.

1.
$$F = \text{Vect}((-1,1))$$
 et $G = \text{Vect}((1,1))$. Or $((-1,1),(1,1))$ est une base de \mathbb{R}^2 . Donc $F \oplus G = E$.

2.
$$F = \text{Vect}((1, 1, -1))$$
 et $G = \text{Vect}((-2, 1, 0), (-1, 0, 1))$. Or $((1, 1, -1), (-2, 1, 0), (-1, 0, 1))$ est une base de \mathbb{R}^3 . $F \oplus G = E$.

Exercice 15. Dans $E = \mathbb{R}^3$ soit F = Vect((1, 1, 0), (0, 1, 1)) et G = Vect((1, 1, 1)). Déterminer $F \cap G$ et F + G.

Solution.
$$u \in F \cap G \Leftrightarrow u = x(1,1,0) + y(0,1,1) = a(1,1,1) \Leftrightarrow x = y = a = 0$$
. Donc $F \cap G = \{(0,0,0)\}$. $((1,1,0),(0,1,1),(1,1,1))$ est une base de \mathbb{R}^3 . Donc $F \cap G = \{(0,0,0)\}$.