$12a_{0835} \ (K12a_{0835})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{37} + 76u^{35} + \dots + b + 1, \ 2u^{37} + u^{36} + \dots + a - 3, \ u^{38} + 2u^{37} + \dots - 4u - 1 \rangle$$

 $I_2^u = \langle u^2 + b - 1, \ a - 1, \ u^3 - u^2 - 2u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 41 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -3u^{37} + 76u^{35} + \dots + b + 1, \ 2u^{37} + u^{36} + \dots + a - 3, \ u^{38} + 2u^{37} + \dots - 4u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{37} - u^{36} + \dots - 15u^{2} + 3 \\ 3u^{37} - 76u^{35} + \dots - 6u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 4u^{2} + 1 \\ -u^{10} + 6u^{8} - 11u^{6} + 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{36} + 25u^{34} + \dots - u + 2 \\ -u^{37} + 26u^{35} + \dots + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{37} - u^{36} + \dots - u + 3 \\ u^{37} - 25u^{35} + \dots + u^{2} - 2u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^{37} + 4u^{36} + \cdots + 31u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{38} - 4u^{37} + \dots - u - 1$
c_3, c_8	$u^{38} + u^{37} + \dots + 12u + 8$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$u^{38} + 2u^{37} + \dots - 4u - 1$
<i>C</i> 9	$u^{38} - 6u^{37} + \dots - 476u + 55$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{38} - 36y^{37} + \dots + 35y + 1$
c_3, c_8	$y^{38} - 21y^{37} + \dots - 848y + 64$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$y^{38} - 54y^{37} + \dots - 28y + 1$
<i>c</i> ₉	$y^{38} + 6y^{37} + \dots - 132856y + 3025$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.879915 + 0.280083I		
a = -0.422412 + 0.001593I	-4.46594 - 0.62155I	1.23906 - 1.00554I
b = 1.259570 + 0.041859I		
u = 0.879915 - 0.280083I		
a = -0.422412 - 0.001593I	-4.46594 + 0.62155I	1.23906 + 1.00554I
b = 1.259570 - 0.041859I		
u = 1.107830 + 0.111217I		
a = 1.127560 + 0.838416I	2.67127 + 0.72425I	3.65418 - 0.86134I
b = -0.893007 - 0.188118I		
u = 1.107830 - 0.111217I		
a = 1.127560 - 0.838416I	2.67127 - 0.72425I	3.65418 + 0.86134I
b = -0.893007 + 0.188118I		
u = -1.132560 + 0.171155I		
a = 0.264697 - 1.114460I	1.45072 - 3.23668I	4.64812 + 3.17787I
b = 0.795265 - 0.506019I		
u = -1.132560 - 0.171155I		
a = 0.264697 + 1.114460I	1.45072 + 3.23668I	4.64812 - 3.17787I
b = 0.795265 + 0.506019I		
u = 1.174750 + 0.191050I		0.04000
a = -0.51302 - 1.48671I	4.18688 + 5.41975I	6.64086 - 6.14271I
$\frac{b = 0.349369 + 0.196389I}{u = 1.174750 - 0.191050I}$		
	4 10000 5 41055	0.01000 . 0.11051 .
a = -0.51302 + 1.48671I	4.18688 - 5.41975I	6.64086 + 6.14271I
b = 0.349369 - 0.196389I		
u = -1.211660 + 0.074429I	e 20460 0 002707	11 55440 + 0.7
a = -0.357902 + 0.705905I	6.39460 - 0.99370I	11.55440 + 0.I
$\frac{b = -0.289689 + 0.133201I}{u = -1.211660 - 0.074429I}$		
	6 20460 + 0 002707	11 55440 + 0.7
a = -0.357902 - 0.705905I	6.39460 + 0.99370I	11.55440 + 0.I
b = -0.289689 - 0.133201I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.201030 + 0.253869I		
a = -0.05721 + 1.56031I	-1.60053 + 9.43906I	3.22111 - 6.40713I
b = 0.060414 + 0.164516I		
u = 1.201030 - 0.253869I		
a = -0.05721 - 1.56031I	-1.60053 - 9.43906I	3.22111 + 6.40713I
b = 0.060414 - 0.164516I		
u = -0.477067 + 0.497622I		
a = 0.243665 + 0.668012I	-6.95978 - 6.84371I	-0.65587 + 7.18457I
b = -0.819079 - 1.087840I		
u = -0.477067 - 0.497622I		
a = 0.243665 - 0.668012I	-6.95978 + 6.84371I	-0.65587 - 7.18457I
b = -0.819079 + 1.087840I		
u = -1.36368		
a = 1.08623	3.27250	0
b = -0.216111		
u = -0.423369 + 0.400375I		
a = -0.726383 - 0.423149I	-0.93228 - 3.40297I	2.14199 + 8.41753I
b = 0.291431 + 0.956910I		
u = -0.423369 - 0.400375I		
a = -0.726383 + 0.423149I	-0.93228 + 3.40297I	2.14199 - 8.41753I
b = 0.291431 - 0.956910I		
u = -0.195413 + 0.544437I		
a = -1.31438 - 1.37135I	-7.79779 + 3.42232I	-3.36452 - 0.77365I
b = 0.069081 - 0.125786I		
u = -0.195413 - 0.544437I		
a = -1.31438 + 1.37135I	-7.79779 - 3.42232I	-3.36452 + 0.77365I
b = 0.069081 + 0.125786I		
u = 0.341654 + 0.397148I		
a = -1.48910 - 0.45750I	-3.23774 + 1.34870I	-0.24766 - 4.74966I
b = -0.079740 + 0.997605I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.341654 - 0.397148I		
a = -1.48910 + 0.45750I	-3.23774 - 1.34870I	-0.24766 + 4.74966I
b = -0.079740 - 0.997605I		
u = 0.477554 + 0.133920I		
a = 0.643576 + 0.290655I	0.891274 + 0.223442I	10.83666 - 1.68176I
b = -0.342626 - 0.376975I		
u = 0.477554 - 0.133920I		
a = 0.643576 - 0.290655I	0.891274 - 0.223442I	10.83666 + 1.68176I
b = -0.342626 + 0.376975I		
u = -0.229708 + 0.385709I		
a = 1.41072 + 0.84547I	-1.49424 + 0.71629I	-1.75673 + 0.24825I
b = 0.063553 - 0.396538I		
u = -0.229708 - 0.385709I		
a = 1.41072 - 0.84547I	-1.49424 - 0.71629I	-1.75673 - 0.24825I
b = 0.063553 + 0.396538I		
u = -1.70748		
a = 0.768656	4.46722	0
b = -0.625166		
u = -0.234823		_
a = 2.58144	-1.29292	-12.5790
b = 0.732163		
u = -1.76514 + 0.02788I		
a = 0.56054 - 1.49467I	13.15060 - 1.31489I	0
b = -1.66540 + 3.03614I		
u = -1.76514 - 0.02788I		
a = 0.56054 + 1.49467I	13.15060 + 1.31489I	0
b = -1.66540 - 3.03614I		
u = 1.76796 + 0.04114I		
a = 0.92517 + 2.50893I	12.00080 + 4.13178I	0
b = -1.34181 - 4.80741I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.76796 - 0.04114I		
a = 0.92517 - 2.50893I	12.00080 - 4.13178I	0
b = -1.34181 + 4.80741I		
u = -1.77750 + 0.04775I		
a = -0.01149 + 2.45709I	14.9410 - 6.4586I	0
b = 0.24659 - 4.97450I		
u = -1.77750 - 0.04775I		
a = -0.01149 - 2.45709I	14.9410 + 6.4586I	0
b = 0.24659 + 4.97450I		
u = -1.78301 + 0.06547I		
a = -0.63670 - 2.77800I	9.2442 - 10.8528I	0
b = 1.33294 + 5.47020I		
u = -1.78301 - 0.06547I		
a = -0.63670 + 2.77800I	9.2442 + 10.8528I	0
b = 1.33294 - 5.47020I		
u = 1.78759 + 0.01827I		
a = -0.73970 - 1.68325I	17.4040 + 1.4058I	0
b = 1.31660 + 3.30669I		
u = 1.78759 - 0.01827I		
a = -0.73970 + 1.68325I	17.4040 - 1.4058I	0
b = 1.31660 - 3.30669I		
u = 1.82025		
a = 1.74840	15.0989	0
b = -3.59779		

II.
$$I_2^u = \langle u^2 + b - 1, \ a - 1, \ u^3 - u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + u + 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7 c_9	$u^3 + u^2 - 2u - 1$
c_{10}, c_{11}, c_{12}	$u^3 - u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = 1.00000	4.69981	8.19810
b = -0.554958		
u = 0.445042		
a = 1.00000	-0.939962	11.2470
b = 0.801938		
u = 1.80194		
a = 1.00000	15.9794	9.55500
b = -2.24698		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^3)(u^{38}-4u^{37}+\cdots-u-1)$
c_3, c_8	$u^3(u^{38} + u^{37} + \dots + 12u + 8)$
c_4	$((u+1)^3)(u^{38} - 4u^{37} + \dots - u - 1)$
c_5, c_6, c_7	$(u^3 + u^2 - 2u - 1)(u^{38} + 2u^{37} + \dots - 4u - 1)$
<i>C</i> 9	$(u^3 + u^2 - 2u - 1)(u^{38} - 6u^{37} + \dots - 476u + 55)$
c_{10}, c_{11}, c_{12}	$(u^3 - u^2 - 2u + 1)(u^{38} + 2u^{37} + \dots - 4u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^3)(y^{38} - 36y^{37} + \dots + 35y + 1)$
c_3, c_8	$y^3(y^{38} - 21y^{37} + \dots - 848y + 64)$
c_5, c_6, c_7 c_{10}, c_{11}, c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{38} - 54y^{37} + \dots - 28y + 1)$
<i>c</i> ₉	$(y^3 - 5y^2 + 6y - 1)(y^{38} + 6y^{37} + \dots - 132856y + 3025)$