Constantes physiques

Vitesse de la lumière	$c = 2,99792458 \; . \; 10^8 \; \mathrm{m.s^{-1}}$
Charge élémentaire	$e = 1,60219 \cdot 10^{-19} \text{ C}$
Nombre d'Avogadro	$\mathcal{N}_A = 6,02204 \; . \; 10^{23} \; mol^{-1}$
Constante gravitationnelle	$G = 6,672 \cdot 10^{-11} \text{ N.m}^2.\text{kg}^{-2}$
Constante des gaz parfaits	$R = 8,3144 \; J.K^{-1}.mol^{-1}$
Constante de Faraday	$\mathcal{F} = 96484 \text{ C.mol}^{-1}$
Constante de Boltzmann	$k_{\rm B} = 1,38066 \cdot 10^{-23} \; \rm J.K^{-1}$
Constante de Planck	$h = 6,62617 \cdot 10^{-34} \text{ J.s}$
Masse de l'électron	$m_{\rm e}=9,10953$. $10^{-31}~{\rm kg}$
Masse du neutron	$m_{\rm n}=1,675$. $10^{-27}~{\rm kg}$
Masse du proton	$m_{\rm p}=1,673$. $10^{-27}~{\rm kg}$
Permittivité du vide	$\varepsilon_0 = 8,85419 \cdot 10^{-12} \text{ F.m}^{-1}$
Perméabilité du vide	$\mu_0 = 4 \pi \cdot 10^{-7} \; \mathrm{H.m^{-1}}$
Masse du Soleil	$1,9891 \cdot 10^{30} \text{ kg}$
Masse de la Terre	$5,9736$. $10^{24}~{\rm kg}$
Masse de la Lune	$7,34$. $10^{22}~\rm kg$
Rayon du Soleil	$696000~\mathrm{km}$
Rayon de la Terre (équateur)	$6378,14~\mathrm{km}$
Rayon de la Lune (équateur)	$3474,6~\mathrm{km}$

 $149\,597\,870~\rm km$

 $384\,400~\mathrm{km}$

Distance Soleil-Terre (demi grand axe)

Distance Terre-Lune (demi grand axe)

Constantes chimiques

I Principaux indicateurs colorés de pH

	Couleur de la forme acide	Zone de virage	Couleur de la forme basique		
rouge de métacrésol	rouge	1, 2 - 2, 8	jaune		
hélianthine	rouge	${f 3, 1-4, 4}$	jaune		
vert de bromocrésol	jaune	3, 8-5, 4	bleu		
rouge de chlorophénol	jaune	4, 8-6, 4	rouge		
bleu de bromothymol	jaune	${f 6, 0-7, 6}$	bleu		
rouge neutre	rouge	6, 8 - 8, 0	jaune		
rouge de crésol	jaune	7, 2-8, 8	rouge		
phénolphtaléine	incolore	${f 8,2-10,0}$	rouge violacé		
jaune d'alizarine R	jaune	10, 0-12, 1	rouge		
carmin d'indigo	bleu	11, 6-14	jaune		

II Principaux indicateurs colorés rédox

	Couleur de la forme oxydée	Potentiel standard à $pH = 0$ (en V)	Couleur de la forme réduite
Fe II, 1-10 phénanthroline	bleu pâle	1,14	rouge
Fe II, $2-2'$ bipyridyl	bleu très pâle	1,02	rouge
acide N phénylanthranilique	rouge pourpre	0,89	incolore
acide diphénylamine- sulfonique	rouge violet	$0,\!85$	incolore
diphénylamine	violet	0,76	incolore
empois d'amidon	bleu	0 , 53	incolore
bleu de méthylène	bleu	0,52	incolore

III Valeurs de pKa les plus utiles

1 Acides nivelés

Dans les couples suivants, l'acide est nivelé (il n'existe pas dans l'eau) et la base est indifférente (elle n'a pas d'action sur l'eau).

$$\begin{array}{cccc} {\rm HI/I^{-}} & {\rm HBr/Br^{-}} & {\rm HCl/Cl^{-}} & {\rm H_{2}SO_{4}/HSO_{4}^{-}} \\ {\rm HNO3/NO_{3}^{-}} & {\rm HClO_{4}/ClO_{4}^{-}} & {\rm C_{2}H_{5}OH_{2}^{+}/C_{2}H_{5}OH} \end{array}$$

2 Bases nivelées

Dans les couples suivants, la base est nivelée (elle n'existe pas dans l'eau) et l'acide est indifférent (il n'a pas d'action sur l'eau).

$$OH^{-}/O^{2-}$$
 NH_{3}/NH_{2}^{-} $C_{2}H_{5}OH/C_{2}H_{5}O^{-}$

3 Couples acide faible / base faible

	Acide	pKa	Base	
	$_{\mathrm{H_2O}}$	14	OH-	
	HS^-	13,0	S^{2-}	
	$\mathrm{HPO_4}^{2-}$	12, 7	PO_4^{3-}	ion phosphate
	HCO_3^-	10, 2	CO_3^{2-}	ion carbonate
phénol	C_6H_5OH	9, 9	$C_6H_5O^-$	ion phénolate
ion ammonium	$\mathrm{NH_4}^+$	9, 2	NH_3	ammoniac
acide hypobromeux	$_{ m HBrO}$	8, 7	${\rm BrO^-}$	ion hypobromite
	$\mathrm{H_2PO_4}^-$	7, 2	$\mathrm{HPO_4}^{2-}$	
acide sulfhydrique	$\mathrm{H_2S}$	7,0	HS^-	
	$\mathrm{H}_2\mathrm{CO}_3$	6, 4	HCO_3^-	
	$\mathrm{CH_{3}COOH}$	4,7	$\mathrm{CH_{3}COO^{-}}$	
	C_6H_5COOH	4, 2	$C_6H_5COO^-$	ion benzoate
acide nitreux	HNO_2	3, 4	$\mathrm{NO_2}^-$	ion nitrite
acide phosphorique	$\mathrm{H_{3}PO_{4}}$	2, 1	$\mathrm{H_2PO_4}^-$	
	$\mathrm{HSO_4}^-$	1,9	SO_4^{2-}	
acide picrique	$(NO_2)_3C_6H_2OH$	0,4	$(\mathrm{NO_2})_3\mathrm{C_6H_2O^-}$	ion picrate
ion hydronium	$\mathrm{H_{3}O^{+}}$	0	$_{\mathrm{H_2O}}$	
EDTA	$\mathrm{H_{4}Y}$	2,0	$\mathrm{H_{3}Y^{-}}$	
	${ m H_3Y^-}$	2, 7	$\mathrm{H_2Y^{2-}}$	
	$\mathrm{H_2Y^{2-}}$	6, 2	HY^{3-}	
	HY^{3-}	10, 2	Y^{4-}	

IV Potentiels standard des couples rédox courants

Les potentiels (en V) sont mesurés à $\mathrm{pH}=0$ par rapport à l'E.S.H.

$\rm Ag^+/Ag_{(s)}$	0,80	$I_{2(s)}/I^-$	0,53
$\rm Al^{3+}/Al_{(s)}$	-1,66	$\mathrm{K^+/K_{(s)}}$	-2,93
$\mathrm{Ba^{2+}/Ba_{(s)}}$	-2,90	${\rm Li}^+/{\rm Li}_{({\rm s})}$	-3,03
$\mathrm{Be^{2+}/Be_{(s)}}$	-1,85	${ m Mg^{2+}/Mg_{(s)}}$	-2,37
$\mathrm{Br_{2}}_{(l)}/\mathrm{Br^{-}}$	1,06	$\mathrm{Mn^{2+}/Mn_{(s)}}$	-1, 19
${\rm BrO_3}^-/{\rm Br_{2(l)}}$	1,52	$\mathrm{MnO_4}^-/\mathrm{Mn}^{2+}$	1,51
$\mathrm{Ca^{2+}/Ca_{(s)}}$	-2,87	$\rm MnO_{2(s)}/Mn^{2+}$	1,23
$\mathrm{Cd}^{2+}/\mathrm{Cd}_{(s)}$	-0,40	$\mathrm{HNO_2/NO_{(g)}}$	0,99
$\mathrm{Cl}_{2(g)}/\mathrm{Cl}^-$	1,40	$\mathrm{NO_3}^-/\mathrm{HNO_2}$	0,94
$\mathrm{HClO_2}/\mathrm{HClO}$	1,64	$\mathrm{Na^{+}/Na_{(s)}}$	-2,70
$\mathrm{HClO/Cl_{2}}_{(g)}$	1,63	$\mathrm{Ni^{2+}/Ni_{(s)}}$	-0,23
${\rm ClO_4}^-/{\rm ClO_3}^-$	1, 19	$\mathrm{H_2O_2/H_2O}$	1,77
$\mathrm{Cr}^{3+}/\mathrm{Cr}^{2+}$	-0,41	$\mathrm{H_{3}PO_{4}/H_{3}PO_{3}}$	-0,28
${\rm Cr_2O_7}^{2-}/{\rm Cr}^{3+}$	1,33	$\mathrm{Pb}^{2+}/\mathrm{Pb}_{(\mathrm{s})}$	-0, 13
$\mathrm{Cs^+}/\mathrm{Cs_{(s)}}$	-2,95	$\mathrm{PbSO}_{4(s)}/\mathrm{Pb}_{(s)}$	-0,36
$\mathrm{Cu}^+/\mathrm{Cu}_{(\mathrm{s})}$	0,52	$\mathrm{PbO}_{2(s)}/\mathrm{Pb}^{2+}$	1,47
$\mathrm{Cu}^{2+}/\mathrm{Cu}_{(\mathrm{s})}$	0,34	$\mathrm{PbO}_{2(s)}/\mathrm{PbSO}_{4(s)}$	1,69
$\mathrm{Fe^{2+}/Fe_{(s)}}$	-0,44	$\mathrm{HSO_4}^-/\mathrm{H_2S_{(g)}}$	0, 32
$\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}$	0,77	$\mathrm{HSO_4}^-/\mathrm{SO_{2(g)}}$	0, 14
$\mathrm{H^+/H_{2(g)}}$	0,00	$S_4 O_6^{2-} / S_2 O_3^{2-}$	0,09
${\rm Hg_2}^{2+}/{\rm Hg_{(l)}}$	0,79	$\mathrm{Sn}^{2+}/\mathrm{Sn}_{(\mathrm{s})}$	-0, 14
$\rm Hg_2Cl_{2(s)}/Hg_{(l)}$	0,27	$\mathrm{Sn}^{4+}/\mathrm{Sn}^{2+}$	0,14
${\rm Hg}^{2+}/{\rm Hg_2}^{2+}$	0,91	$\rm Zn^{2+}/\rm Zn_{(s)}$	-0,76

Formulaire d'analyse vectorielle

I Les systèmes de coordonnées

1 Élément de volume

Coordonnées	$\mathrm{d} au$
cartésiennes	$\mathrm{d}x \times \mathrm{d}y \times \mathrm{d}z$
cylindriques	$\mathrm{d}r \times r \mathrm{d}\theta \times \mathrm{d}z$
sphériques	$dr \times rd\theta \times r\sin\theta d\varphi$

2 Dérivation des vecteurs de la base

- En coordonnées cartésiennes, les vecteurs de base sont constants : leurs dérivées par rapport à t sont nulles.
- En coordonnées cylindriques :

$$\frac{\mathrm{d}\overrightarrow{u_r}}{\mathrm{d}t} = \dot{\theta}\,\overrightarrow{u_\theta} \qquad \frac{\mathrm{d}\overrightarrow{u_\theta}}{\mathrm{d}t} = -\dot{\theta}\,\overrightarrow{u_r} \qquad \frac{\mathrm{d}\overrightarrow{u_z}}{\mathrm{d}t} = \overrightarrow{0}$$

• En coordonnées sphériques, la dérivation n'est pas utilisée car les dérivées ne sont pas simples.

II Expressions des différentielles

Coordonnées
$$\frac{dF}{cartésiennes}$$

$$\left(\frac{\partial F}{\partial x}\right) dx + \left(\frac{\partial F}{\partial y}\right) dy + \left(\frac{\partial F}{\partial z}\right) dz$$
 cylindriques
$$\left(\frac{\partial F}{\partial r}\right) dr + \left(\frac{\partial F}{\partial \theta}\right) d\theta + \left(\frac{\partial F}{\partial z}\right) dz$$
 sphériques
$$\left(\frac{\partial F}{\partial r}\right) dr + \left(\frac{\partial F}{\partial \theta}\right) d\theta + \left(\frac{\partial F}{\partial \varphi}\right) d\varphi$$

III Expressions des opérateurs

1 Le gradient

2 La divergence

Coordonnées		$\operatorname{div} \overrightarrow{\mathbf{F}}$	
cartésiennes	$\frac{\partial \mathbf{F}_x}{\partial x}$ +	$\frac{\partial \mathbf{F}_y}{\partial y}$	$+ \frac{\partial \mathbf{F}_z}{\partial z}$
cylindriques	$\frac{1}{r}\frac{\partial (r\mathbf{F}_r)}{\partial r} +$	$\frac{1}{r}\frac{\partial \mathbf{F}_{\theta}}{\partial \theta}$	$+ \frac{\partial \mathbf{F}_z}{\partial z}$
sphériques	$\frac{1}{r^2}\frac{\partial(r^2\mathbf{F}_r)}{\partial r} + \frac{1}{r\mathrm{si}}$	$\frac{1}{\ln \theta} \frac{\partial (F_{\theta} \sin \theta)}{\partial \theta} +$	$+\frac{1}{r\sin\theta}\frac{\partial \mathbf{F}_{\varphi}}{\partial \varphi}$

3 Le rotationnel

Coordonnées	$\overrightarrow{\mathrm{rot}} \ \overrightarrow{\mathrm{F}}$
cartésiennes	$\left(\frac{\partial \mathbf{F}_z}{\partial y} - \frac{\partial \mathbf{F}_y}{\partial z}\right) \overrightarrow{e_x} + \left(\frac{\partial \mathbf{F}_x}{\partial z} - \frac{\partial \mathbf{F}_z}{\partial x}\right) \overrightarrow{e_y} + \left(\frac{\partial \mathbf{F}_y}{\partial x} - \frac{\partial \mathbf{F}_x}{\partial y}\right) \overrightarrow{e_z}$
cylindriques	$\frac{1}{r} \left(\frac{\partial \mathbf{F}_z}{\partial \theta} - \frac{\partial (r \mathbf{F}_\theta)}{\partial z} \right) \overrightarrow{e_r} + \left(\frac{\partial \mathbf{F}_r}{\partial z} - \frac{\partial \mathbf{F}_z}{\partial r} \right) \overrightarrow{e_\theta} + \frac{1}{r} \left(\frac{\partial (r \mathbf{F}_\theta)}{\partial r} - \frac{\partial \mathbf{F}_r}{\partial \theta} \right) \overrightarrow{e_z}$
sphériques	$\frac{1}{r^2 \sin \theta} \left(\frac{\partial (\mathbf{F}_{\varphi} r \sin \theta)}{\partial \theta} - \frac{\partial (r \mathbf{F}_{\theta})}{\partial \varphi} \right) \overrightarrow{e_r}$
	$+ \frac{1}{r\sin\theta} \left(\frac{\partial F_r}{\partial \varphi} - \frac{\partial (F_\varphi r \sin\theta)}{\partial r} \right) \overrightarrow{e_\theta}$
	$+ \; rac{1}{r} \left(rac{\partial (r \mathrm{F}_{ heta})}{\partial r} - rac{\partial \mathrm{F}_r}{\partial heta} ight) \overrightarrow{e_{arphi}}$

4 Le laplacien

Coordonnées		Δf		
cartésiennes	$\frac{\partial^2 f}{\partial x^2}$ +	$\frac{\partial^2 f}{\partial y^2}$	+	$\frac{\partial^2 f}{\partial z^2}$
cylindriques	$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right)+$	$\frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$	+	$\frac{\partial^2 f}{\partial z^2}$
sphériques	$\frac{1}{r}\frac{\partial^2}{\partial r^2}(rf) + \frac{1}{r^2\sin^2\theta}$	$\frac{\partial}{\partial \theta} \left(\sin \theta \times \frac{\partial}{\partial \theta} \right)$	$\left(\frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2}$	$\frac{1}{2\sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2}$

5 Le laplacien vectoriel

Le laplacien vectoriel est défini par la relation :

$$\Delta\overrightarrow{F} = \overrightarrow{grad} (\operatorname{div} \ \overrightarrow{F}) - \overrightarrow{rot} (\overrightarrow{rot} \ \overrightarrow{F})$$

Il ne s'exprime simplement qu'en coordonnées cartésiennes :

$$\Delta \overrightarrow{\mathbf{F}}(x,y,z,t) = \Delta \mathbf{F}_x \overrightarrow{e_x} + \Delta \mathbf{F}_y \overrightarrow{e_y} + \Delta \mathbf{F}_z \overrightarrow{e_z}$$

IV Relations entre les opérateurs

Relations de compositions entre opérateurs:

$$\begin{aligned} \operatorname{div} & (\overrightarrow{\operatorname{rot}} \ \overrightarrow{\operatorname{F}}) = 0 \\ \operatorname{div} & (\overrightarrow{\operatorname{grad}} \ f) = \Delta f \\ \overrightarrow{\operatorname{rot}} & (\overrightarrow{\operatorname{grad}} \ f) = \overrightarrow{0} \\ \overrightarrow{\operatorname{rot}} & (\overrightarrow{\operatorname{rot}} \ \overrightarrow{\operatorname{F}}) = \overrightarrow{\operatorname{grad}} & (\operatorname{div} \ \overrightarrow{\operatorname{F}}) - \Delta \overrightarrow{\operatorname{F}} \end{aligned}$$

Relations de composition entre arguments:

$$\overrightarrow{\operatorname{grad}}(fg) = f \overrightarrow{\operatorname{grad}} g + g \overrightarrow{\operatorname{grad}} f$$

$$\operatorname{div}(f\overrightarrow{F}) = f \operatorname{div} \overrightarrow{F} + \overrightarrow{F} \cdot \overrightarrow{\operatorname{grad}} f$$

$$\overrightarrow{\operatorname{rot}}(f\overrightarrow{F}) = f \overrightarrow{\operatorname{rot}} \overrightarrow{F} + (\overrightarrow{\operatorname{grad}} f) \wedge \overrightarrow{F}$$

$$\operatorname{div}(\overrightarrow{F} \wedge \overrightarrow{G}) = \overrightarrow{G} \cdot \overrightarrow{\operatorname{rot}} \overrightarrow{F} - \overrightarrow{F} \cdot \overrightarrow{\operatorname{rot}} \overrightarrow{G}$$

V Les théorèmes d'analyse

1 Le théorème de Stokes

Ce théorème permet de ramener le calcul d'une circulation le long d'un contour fermé à une intégration sur une surface, ce qui peut être plus simple (par exemple en choisissant pour surface une demi-sphère).

On considère un concours fermé (C) sur lequel on choisit un sens de parcours arbitraire. On note (S) une surface s'appuyant sur (C). En un point de (S), on oriente le vecteur normal unitaire \overrightarrow{n} selon la règle du tire-bouchon:

En notant $\oint_{(C)} \overrightarrow{f} \cdot \overrightarrow{d\ell}$ la circulation de \overrightarrow{f} sur le contour (C), le théorème de Stokes donne :

$$\oint_{(C)} \overrightarrow{f} \cdot \overrightarrow{d\ell} = \iint_{(S)} \overrightarrow{rot} \overrightarrow{f} \cdot d\overrightarrow{S}$$

2 Le théorème de Green-Ostrogradski

Ce théorème permet de ramener un calcul sur une surface à un calcul sur un volume. On considère une surface fermée (S) limitant un volume (V). Par convention, le vecteur unitaire \overrightarrow{n} normal à (S) est choisi sortant.

En notant $\oint_{(S)} \overrightarrow{F} \cdot \overrightarrow{dS}$ le flux de \overrightarrow{F} sortant de la surface fermée (S), le théorème de Green-Ostrogradski donne :

3 Les corollaires

Les notations sont les mêmes que précédemment.

Formule de Kelvin
$$\oint_{(C)} f \ \overrightarrow{d\ell} = - \iint_{(S)} \overrightarrow{\operatorname{grad}} \ f \wedge \overrightarrow{\mathrm{dS}}$$
Formule du gradient
$$\oiint_{(S)} f \ \overrightarrow{\mathrm{dS}} = \iiint_{(V)} \overrightarrow{\operatorname{grad}} \ f \ \mathrm{dV}$$
Formule du rotationnel
$$\oiint_{(S)} \overrightarrow{\mathrm{dS}} \wedge \overrightarrow{\mathrm{F}} = \iiint_{(V)} \overrightarrow{\operatorname{rot}} \ \overrightarrow{\mathrm{F}} \ \mathrm{dV}$$

														0	_
$\mathbf{He}_{4,0}^{18}$	$\overset{10}{\mathrm{Ne}}\overset{20.2}{\mathrm{Ne}}$	18 A r	39,9	36	Kr	83,8	54	Xe	131,3	98	Rn	(222)	811	NN	(294)
17	9	בּב	35,5	35	Br	6,62	53	Ι	126,9	82	\mathbf{At}	(210)	117	$\overline{\mathrm{UUs}}$	
16	8 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 0.	32,1	34	\mathbf{Se}	79,0	22	Te	127,6	82	Po	(209)	116	UUh	(293)
15	$^{\prime}\mathrm{Z}_{0.4}^{2}$	<u>15</u> Д	31,0	33	$\mathbf{A}\mathbf{s}$	74,9	51	Sp	121,7	83	Bi	209,0	115	U	(288)
14	6	4 2	28,1	32	Qe G	72,6	20	Sn	118,7	82	Pb	207,2	114	$\overline{\mathrm{UUq}}$	(289)
13	ъ Б. В. В.	13 A1	27,0	31	ďя	2,69	49	In	114,8	81	Π	204,4	113	UUt	(284)
			12	30	Zn	65,4	48	Cq	112,4	80	$\overline{\mathrm{Hg}}$	200,6	112	$\overline{\text{UUb}}$	(285)
			11	59	$C\mathbf{n}$	63,5	47	Ag	107,9	62	$\mathbf{A}\mathbf{u}$	197,0	111	Rg	(280)
			10	28	Z	58,7	46	Pd	106,4	28	\mathbf{Pt}	195,1	110	$\overline{\mathbf{D}}$	(281)
			6	27	$\frac{\circ}{\circ}$	58,9	45	$\mathbf{R}\mathbf{h}$	102,9	22	Ir	192,2	109	Mt	(276)
	.		∞	26	\mathbf{Fe}	55,8	44	$\mathbf{R}\mathbf{u}$	101,1	92	$^{ m S}$	190,2	801	$\mathbf{H}\mathbf{s}$	(270)
$\sum_{\rm masse}^{\rm n}$			7	25	$\overline{\mathrm{Mn}}$	54,9	43	Γ	(86)	75	\mathbf{Re}	186,2	201	Bh	(272)
			9	24	$C_{\mathbf{r}}$	52,0	42	\overline{Mo}	95,9	74	>	183,8	106	S Ø	(271)
			ಒ	23		50,9	41	S	92,8	73	Ta	180,9	105	Dp	(268)
			4	22	Ţ	47,9	40	Zr	91,2	72	Hf	178,5	104	$\mathbf{R}\mathbf{f}$	(267)
			3	21	$\mathbf{S}^{\mathbf{c}}$	45,0	39	\prec	88,9	57-71	Lantha-	nides	89-103	Acti-	nides
$\begin{bmatrix} 1 \\ \mathbf{H} \\ 1,0 \end{bmatrix}$	$\overset{ ag{b}}{\overset{ heta}{\overset{ heta}}}{\overset{ heta}{\overset{ heta}}{\overset{ heta}{\overset{ h}}}}}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{\overset{ heta}{ he$	\overline{N}	24,3	20	Ca	40,1	38	\mathbf{Sr}	9,28	26	\mathbf{Ba}	137,3	88	\mathbf{Ra}	226,0
$\mathbf{H}_{1,0}^{1}$	$\overset{\mathbf{i}}{\overset{6.9}{\text{Li}}}$	Z Z	23,0	19	X	39,1	37	\mathbb{R}^{b}	85,5	22	$\overset{ ext{S}}{ ext{C}}$	132,9	28	$\mathbf{F}_{\mathbf{r}}$	(223)

	٦	_		ي	_	
71	디 디	175,0	103	Lr	(262)	
20	V	173,0	701	$\overset{ ext{N}}{\overset{ ext{N}}{\text{N}}}$	(259)	
69	m			$\overline{\mathrm{Md}}$		
89	Er			Fm	(257)	
				$\mathbf{E}\mathbf{s}$	(252)	
	$\overline{\mathrm{Dy}}$			Ct		
92	$^{\mathrm{Lp}}$	158,9	46	$\mathbf{B}\mathbf{k}$	(247)	
	2g		96	Cm	(247)	
63	$\mathbf{E}\mathbf{n}$	152,0		Am		
62	$\frac{1}{2}$	150,4		Pu		
61	Pm	(145)	93	a Z	$(237\bar{)}$	
09	_	144,2	85	□	238,0	
29	Pr	140,9	16	Pa	231,0	
28	Ce	140,1		Th		
22	La	138,9	68	\mathbf{Ac}	(227)	