Apunts d'estructures algrebraiques

ALEIX TORRES I CAMPS

Jordi Guardia (jordi.guardia-rubies@upc.edu), Anna Rio i Santi Molina (Martí Oller)

1 Introducció

Definició 1. Una operació en un conjunt A és una aplicació $\phi: A \times A \to A$

Possibles propietats de les operacions

- 1. (PC) Propietat commutativa (o abeliana) $\forall a, b \in A \ \phi(a, b) = \phi(b, a)$.
- 2. (PA) Propietat associativa $\forall a, b, c \in A \ \phi(a, \phi(b, c)) = \phi(\phi(a, b), c)$.
- 3. (EN) Element neutre $\exists e \in A$ tal que $\forall a \in A\phi(e, a) = \phi(a, e) = a$.

Clarament, l'element neutre és únic. En efecte, si n'existisin 2 elements neutres, e i e', aleshores $e = \phi(e, e') = e'$, amb la qual cosa hem arribat a contradicció.

4. (PI) Invers d'un element $a \in A$ és $b \in A$ tal que $\phi(a,b) = \phi(b,a) = e$.

Si existeix i és associatiu també és únic. En efecte, si $\exists b, c$ tals que $\phi(a, b) = \phi(b, a) = \phi(a, c) = \phi(c, a) = e$. En aquest cas, $b = \phi(b, \phi(a, c)) = \phi(\phi(b, a), c) = c$, per tant, b = c i són el mateix element.

5. (PD) Si tenim dues operacions, que la primera (ϕ) sigui distributiva respecte la segona (μ) vol dir que $\phi(a, \mu(b, c)) = \phi(\mu(a, b), \mu(a, c))$ i que $\phi(\mu(b, c), a) = \phi(\mu(b, a), \mu(b, c))$.

1.1 Estructures algebraiques bàsiques

Definició 2. Un Grup (G, *) cal que compleixi EN, PA, PI.

Definició 3. Un Semigrup (G,*) cal que compleixi EN, PA.

Definició 4. Un Grup Abelià és un grup amb PC.

Definició 5. Una Anell (A, +, *) cal que (A, +) sigui un grup abelià, (A, *) un semigrup i la PD respecte la primera.

Definició 6. Un Anell communtatiu (o abelià) és un anell on (A, *) és commutatiu.

Definició 7. Un Cos és un Anell (A, +, *) tal que $(A \setminus \{0\}, *)$ és un grup abelià. On 0 és l'element neutre de (A, +).

Definició 8. Mòdul (M, +) és un mòdul sobre l'Anell A tal que: (M, +) és un grup abelià i $A \times M \to M$ (multiplicació per escalars) tal que: $a(m_1 + m_2) = am_1 + am_2$, (a+b)m = am + bm, a(bm) = (ab)m i $1_A m = m$ ($\forall a, b \in A, \forall m, m_1, m_2 \in M$.

Definició 9. Un espai vectorial és un mòdul sobre un Cos.

2 Anells

Sigui $(A, +, \Delta)$ un Anell (sempre ens referirem a Anells commutatius sense haver de dir-ho cada vegada).

Notació: 0_A és l'emenent neutre de la suma (+), el "zero". I a l'element neutre del producte (·) és 1_A , l'ü". Denotarem -a l'element invers d'a respecte + (l'"oposat"). a^{-1} l'element invers d'a respecte del producte. $A^* = \{a \in A \text{ tal que } \exists a^{-1}\}$ obtinc un grup abelià.

Proposició 10. Propietats:

- 1. $\forall a, b, c \in A \text{ si } a + b = a + c \text{ llavors } b = c.$
- 2. $\forall a \in A \text{ es compleix que } 0_A \Delta a = 0_A$.
- 3. $\forall a \in A \text{ es compleix que } (-1_A)\Delta(-a) = a$.
- 4. $\forall a \in A \text{ es compleix que } (-1_A)\Delta(a) = -a.$

Demostració.

1.
$$-a + (a+b) = -a + (a+c) \iff (per\ PA)(-a+a) + b = (-a+a) + c \iff O_A + b = O_A + c \iff b = c$$
.

2.
$$0_A \Delta a + 0_A = 0_A \Delta a = (0_A + 0_A) \Delta a = [PD] = 0_A \Delta a + 0_A \Delta a \implies 0_A = 0_A \Delta a$$

- 3. Coses
- 4. Coses

Exemple 1. 1. $\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$

2.
$$Z[x] \subset Q[x] \subset R[x] \subset C[x]$$

3.
$$M_n(A)$$
 on A és un Anell

4.
$$\mathbf{Z}[J] = \{a_0 + a_1 J + a_2 J^2 + a_3 J^3 + a_4 J^4 : a_i \in \mathbf{Z}\}\ J = e^{2\pi i/5}$$

- 5. $\mathbf{Z}/n\mathbf{Z}$ Taules d'operacions per n=6,8.
- 3 Cossos
- 4 Grups
- 5 Moduls