# 离散数学

命题逻辑 1.4范式

#### 范式

- ■析取范式与合取范式
- ■主析取范式与主合取范式

#### 范式

- 范式就是命题公式形式的规范形式。这里约定在范式中只含有联结词一、 >和 ^。
- 文字:命题变项及其否定的总称
- 简单析取式:有限个文字构成的析取式,如  $p, \neg q, p \lor \neg q, p \lor q \lor r, \dots$
- 简单合取式:有限个文字构成的合取式,如  $p, \neg q, p \land \neg q, p \land q \land r, \dots$
- 析取范式:由有限个简单合取式组成的析取式 $A_1 \lor A_2 \lor ... \lor A_r$ ,其中  $A_1 , A_2 , ... , A_r$ 是简单合取式
- 合取范式:由有限个简单析取式组成的合取式 $A_1 \wedge A_2 \wedge ... \wedge A_r$ ,其中  $A_1, A_2, ..., A_r$ 是简单析取式

#### 析取范式与合取范式

- · 公式A的析取范式: 与A等值的析取范式
- · 公式A的合取范式: 与A等值的合取范式
- 说明: 单个文字既是简单析取式,又是简单合取式。
- • $p \land \neg q \land r, \neg p \lor q \lor \neg r$ ,是析取范式,还是合取范式?

#### 命题公式的范式

- 定理 任何命题公式都存在着与之等值的析取范式与合取范式.
- 求公式A的范式的步骤:
  - (1) 消去A中的 $\rightarrow$ ,  $\leftrightarrow$  (若存在)
  - (2) 否定联结词一的内移或消去
  - (3) 使用分配律
    - ^对~分配(析取范式)
    - ∨对∧分配(合取范式)
- 公式的范式存在,但不惟一

#### 求公式的范式举例

例 求下列公式的析取范式与合取范式

$$(1) A = (p \rightarrow \neg q) \lor \neg r$$
解  $(p \rightarrow \neg q) \lor \neg r$ 

$$\Leftrightarrow (\neg p \lor \neg q) \lor \neg r \qquad (消去 \rightarrow)$$

$$\Leftrightarrow \neg p \lor \neg q \lor \neg r \qquad (结合律)$$

• 这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)

#### 求公式的范式举例(续)

#### 主析取范式与主合取范式

- •一个公式的析取范式与合取范式的形式是不唯一的,因此不能作为同一真值函数所对应的命题公式的标准形式。
- 定义形式唯一的主析取范式与主合取范式。
- 定义 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式出现且仅出现一次,称这样的简单合取式(简单析取式)为极小项(极大项)。
- 例如,有两个变元的极小项:
  - $P \wedge Q$ ,  $P \wedge \neg Q$ ,  $\neg P \wedge Q$ ,  $\neg P \wedge \neg Q$

#### 极小项与极大项

- n个命题变项产生2n个极小项和2n个极大项
- 2<sup>n</sup>个极小项(极大项)均互不等值
- 在极小项和极大项中, 文字均按下标或字母顺序排列
- •用 $m_i$ 表示第i个极小项,其中i是该极小项成真赋值的十进制表示。用 $M_i$ 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, $m_i(M_i)$ 称为极小项(极大项)的名称.
- • $m_i$ 与 $M_i$ 的关系:  $\neg m_i \Leftrightarrow M_i$ ,  $\neg M_i \Leftrightarrow m_i$

#### 极小项与极大项(续)

•由p,q两个命题变项形成的极小项与极大项

| 极小项                    |      |       | 极大项                  |      |       |
|------------------------|------|-------|----------------------|------|-------|
| 公式                     | 成真赋值 | 名称    | 公式                   | 成假赋值 | 名称    |
| $\neg p \wedge \neg q$ | 0 0  | $m_0$ | $p \vee q$           | 0 0  | $M_0$ |
| $\neg p \wedge q$      | 0 1  | $m_1$ | $p \vee \neg q$      | 0 1  | $M_1$ |
| $p \wedge \neg q$      | 1 0  | $m_2$ | $\neg p \lor q$      | 1 0  | $M_2$ |
| $p \wedge q$           | 1 1  | $m_3$ | $\neg p \lor \neg q$ | 1 1  | $M_3$ |

 $m_i$ 与 $M_i$ 的关系:  $\neg m_i \Leftrightarrow M_i$ ,  $\neg M_i \Leftrightarrow m_i$ 

#### •由p,q,r三个命题变项形成的极小项与极大项

| 极小项                                |          |                       | 极大项                              |          |       |
|------------------------------------|----------|-----------------------|----------------------------------|----------|-------|
| 公式                                 | 成真<br>赋值 | 名称                    | 公式                               | 成假<br>赋值 | 名称    |
| $\neg p \land \neg q \land \neg r$ | 000      | $m_0$                 | $p \lor q \lor r$                | 000      | $M_0$ |
| $\neg p \land \neg q \land r$      | 001      | $m_1$                 | $p \lor q \lor \neg r$           | 001      | $M_1$ |
| $\neg p \land q \land \neg r$      | 010      | $m_2$                 | $p \vee \neg q \vee r$           | 010      | $M_2$ |
| $\neg p \land q \land r$           | 011      | $m_3$                 | $p \vee \neg q \vee \neg r$      | 011      | $M_3$ |
| $p \land \neg q \land \neg r$      | 100      | $m_4$                 | $\neg p \lor q \lor r$           | 100      | $M_4$ |
| $p \land \neg q \land r$           | 101      | $m_5$                 | $\neg p \lor q \lor \neg r$      | 101      | $M_5$ |
| $p \land q \land \neg r$           | 110      | $m_6$                 | $\neg p \lor \neg q \lor r$      | 110      | $M_6$ |
| $p \land q \land r$                | 111      | <i>m</i> <sub>7</sub> | $\neg p \lor \neg q \lor \neg r$ | 111      | $M_7$ |

#### 主析取范式与主合取范式

- 主析取范式: 由极小项构成的析取范式
- 主合取范式: 由极大项构成的合取范式
- 例如,n=3,命题变项为p,q,r时,  $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \Leftrightarrow m_1 \lor m_3 \text{ 是主析取范式}$   $(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \Leftrightarrow M_1 \land M_5 \text{ 是主合取范式}$
- A的主析取范式: 与A等值的主析取范式
- A的主合取范式: 与A等值的主合取范式

#### 主析取范式与主合取范式(续)

- 定理 任何命题公式都存在着与之等值的主析取范式和主合取范式,并且是唯一的。
- 主析取范式的求法
- 方法1: 列真值表
  - (1)列出给定公式的真值表。
- (2)找出真值表中每个"T"对应的极小项。 (如何根据一组指派写对应的为"T"的项:如果变元P被指派为T,P在极小项中以P形式出现;如变元P被指派为F,P在极小项中以一P形式出现(因要保证该极小项为T))
  - (3)用"v"联结上述极小项,即可。

例 求 P→Q和P↔Q的主析取范式

| P | Q | $P \rightarrow Q$ | P↔Q |
|---|---|-------------------|-----|
| F | F | T                 | T   |
| F | T | T                 | F   |
| T | F | F                 | F   |
| T | T | T                 | T   |

$$P \rightarrow Q \Leftrightarrow m_0 \lor m_1 \lor m_3$$

$$\Leftrightarrow (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

$$P \leftrightarrow Q \Leftrightarrow m_0 \lor m_3$$

$$\Leftrightarrow (\neg P \land \neg Q) \lor (P \land Q)$$

思考题:永真式的主析取范式是什么样?

#### 课堂练习

1.已知A(P,Q,R)的真值表如图: 求它的主析取和主合取范式。

| P            | Q            | R            | A(P,Q,R)     |
|--------------|--------------|--------------|--------------|
| F            | $\mathbf{F}$ | $\mathbf{F}$ | $\mathbf{T}$ |
| $\mathbf{F}$ | ${f F}$      | $\mathbf{T}$ | ${f F}$      |
| $\mathbf{F}$ | T            | $\mathbf{F}$ | $\mathbf{F}$ |
| F            | T            | $\mathbf{T}$ | ${f T}$      |
| T            | $\mathbf{F}$ | $\mathbf{F}$ | T            |
| T            | ${f F}$      | T            | $\mathbf{F}$ |
| T            | T            | $\mathbf{F}$ | ${f T}$      |
| T            | T            | T            | T            |

2.已知A(P,Q,R)的主析取范式中含有下面极小项 $m_1$ ,  $m_3$ ,  $m_5$ ,  $m_7$ 求它的主合取范式.

#### 练习答案

1.A(P,Q,R)的主析取范式: A(P,Q,R)⇔ m<sub>0</sub>∨m<sub>3</sub>∨m<sub>4</sub>∨m<sub>6</sub>∨m<sub>7</sub> ⇔(¬P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧Q∧¬R)∨(P∧Q ∧R)

A(P,Q,R)的主合取范式:  $A(P,Q,R)\Leftrightarrow M_1 \wedge M_2 \wedge M_5$  $\Leftrightarrow (P \vee Q \vee \neg R) \wedge (P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee \neg R)$ 

2.  $A(P,Q,R) \Leftrightarrow M_0 \wedge M_2 \wedge M_4 \wedge M_6$  $\Leftrightarrow (P \vee Q \vee R) \wedge (P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee R) \wedge (\neg P \vee \neg Q \vee R)$ 

#### 方法2: 用公式的等值变换

- (1)先写出给定公式的析取范式  $A_1 \vee A_2 \vee ... \vee A_n$ 。
- (2)为使每个A<sub>i</sub>都变成小项,对缺少变元的A<sub>i</sub>补全变元,比如缺变元R,就用 ^ 联结永真式(R V ¬ R)形式补R。
- (3)用分配律等公式加以整理。

例 
$$P \rightarrow Q$$
  
 $\Leftrightarrow \neg P \lor Q$   
 $\Leftrightarrow (\neg P \land (Q \lor \neg Q)) \lor ((P \lor \neg P) \land Q)$   
 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q) \lor (\neg P \land Q)$   
 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$ 

例 求公式 $A=(p\rightarrow \neg q)\rightarrow r$ 的主析取范式与主合取范式.

(1) 求主析取范式

$$(p \rightarrow \neg q) \rightarrow r$$

$$\Leftrightarrow (p \land q) \lor r$$
, (析取范式) ①  $(p \land q)$ 

$$\Leftrightarrow (p \land q) \land (\neg r \lor r)$$

$$\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_6 \lor m_7$$
,

2

r

$$\Leftrightarrow (\neg p \lor p) \land (\neg q \lor q) \land r$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_7$$

3

②,③代入①并排序,得

$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$$
 (主析取范式)

#### (2) 求A的主合取范式

$$(p \rightarrow \neg q) \rightarrow r$$

$$\Leftrightarrow (p \lor r) \land (q \lor r) , \qquad (合取范式) \qquad (1)$$

$$p \lor r$$

$$\Leftrightarrow p \lor (q \land \neg q) \lor r$$

$$\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r)$$

$$\Leftrightarrow M_0 \wedge M_{2,}$$
 2 
$$q \vee r$$

$$\Leftrightarrow (p \land \neg p) \lor q \lor r$$

$$\Leftrightarrow (p \lor q \lor r) \land (\neg p \lor q \lor r)$$

$$\Leftrightarrow M_0 \land M_4$$
 3

②,③代入①并排序,得

$$(p \rightarrow \neg q) \rightarrow r \Leftrightarrow M_0 \land M_2 \land M_4 \qquad (主合取范式)$$

#### 主范式的用途——与真值表相同

(1) 求公式的成真赋值和成假赋值

例如  $(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$ ,其成真赋值为001,011,101,110,111,其余的赋值 000,010,100为成假赋值。

类似地,由主合取范式也可立即求出成假赋值和成真赋值。

- (2) 判断公式的类型
- 设A含n个命题变项,则

A为重言式 $\Leftrightarrow A$ 的主析取范式含 $2^n$ 个极小项 $\Leftrightarrow A$ 的主合取范式为1.

A为矛盾式 $\Leftrightarrow A$ 的主析取范式为 $0 \Leftrightarrow A$ 的主合取范式含 $2^n$ 个极大项

A为非重言式的可满足式⇔A的主析取范式中至少含一个且不含全部极小项⇔A的主合取范式中至少含一个且不含全部极大项

#### 主范式的用途(续)

(3)判断两个公式是否等值例用主析取范式判断下述两个公式是否等值:

- $(1) p \rightarrow (q \rightarrow r) = (p \land q) \rightarrow r$
- (2)  $p \rightarrow (q \rightarrow r) = (p \rightarrow q) \rightarrow r$

解  $p \rightarrow (q \rightarrow r) = m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$   $(p \land q) \rightarrow r = m_0 \lor m_1 \lor m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_7$   $(p \rightarrow q) \rightarrow r = m_1 \lor m_3 \lor m_4 \lor m_5 \lor m_7$ 故(1)中的两公式等值,而(2)的不等值.

#### 主范式的用途(续)

例 某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习。选派必须满足以下条件:

- (1) 若赵去,钱也去;
- (2) 李、周两人中至少有一人去;
- (3)钱、孙两人中有一人去且仅去一人;
- (4)孙、李两人同去或同不去;
- (5) 若周去,则赵、钱也去.

试用主析取范式法分析该公司如何选派他们出国?

### 例 (续)

解此类问题的步骤为:

- ①将简单命题符号化
- ② 写出各复合命题
- ③ 写出由②中复合命题组成的合取式
- ④ 求③中所得公式的主析取范式

### 例 (续)

- 解 ① 设p: 派赵去, q: 派钱去, r: 派孙去, s: 派李去, u: 派周去.
  - $\bigcirc$  (1)  $(p \rightarrow q)$ 
    - $(2) (s \vee u)$
    - $(3) ((q \land \neg r) \lor (\neg q \land r))$
    - $(4) ((r \land s) \lor (\neg r \land \neg s))$
    - $(5) (u \rightarrow (p \land q))$
  - ③ (1) ~ (5)构成的合取式为  $A=(p\rightarrow q)\land (s\lor u)\land ((q\land \neg r)\lor (\neg q\land r))\land ((r\land s)\lor (\neg r\land \neg s))\land (u\rightarrow (p\land q))$

 $A = (p \rightarrow q) \land (s \lor u) \land ((q \land \neg r) \lor (\neg q \land r)) \land ((r \land s) \lor (\neg r \land \neg s)) \land (u \rightarrow (p \land q))$ 

- 结论:由④可知, A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).
  A的演算过程如下:

$$A \Leftrightarrow (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r)) \land (s \lor u) \land (\neg u \lor (p \land q)) \land ((r \land s) \lor (\neg r \land \neg s))$$
 (交換律)

$$B_1 = (\neg p \lor q) \land ((q \land \neg r) \lor (\neg q \land r))$$

$$\Leftrightarrow ((\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (q \land \neg r)) \quad (分配律)$$

$$B_2 = (s \lor u) \land (\neg u \lor (p \land q))$$
 $\Leftrightarrow ((s \land \neg u) \lor (p \land q \land s) \lor (p \land q \land u))$  (分配律)
 $B_1 \land B_2 \Leftrightarrow (\neg p \land q \land \neg r \land s \land \neg u) \lor (\neg p \land \neg q \land r \land s \land \neg u)$ 
 $\lor (q \land \neg r \land s \land \neg u) \lor (p \land q \land \neg r \land s) \lor (p \land q \land \neg r \land u)$ 
再令  $B_3 = ((r \land s) \lor (\neg r \land \neg s))$ 
得  $A \Leftrightarrow B_1 \land B_2 \land B_3$ 
 $\Leftrightarrow (\neg p \land \neg q \land r \land s \land \neg u) \lor (p \land q \land \neg r \land \neg s \land u)$ 
注意: 在以上演算中多次用矛盾律

要求: 自己演算一遍

#### 例

安排课表,教语言课的教师希望将课程安排在第一或第三节; 教数学课的教师希望将课程安排在第二或第三节; 教原理课的教师希望将课程安排在第一或第二节。 如何安排课表,使得三位教师都满意。

解

令 $L_1$ 、 $L_2$ 、 $L_3$ 分别表示语言课排在第一、第二、第三节。  $M_1$ 、 $M_2$ 、 $M_3$ 分别表示数学课排在第一、第二、第三节。  $P_1$ 、 $P_2$ 、 $P_3$ 分别表示原理课排在第一、第二、第三节。

三位教师都满意的条件是:  $(L_1 \vee L_3) \wedge (M_2 \vee M_3) \wedge (P_1 \vee P_2)$  为真。将上式写成析取范式(用分配律)得:  $((L_1 \wedge M_2) \vee (L_1 \wedge M_3) \vee (L_3 \wedge M_2) \vee (L_3 \wedge M_3)) \wedge (P_1 \vee P_2)$ 

 $((L_1 \land IVI_2) \lor (L_1 \land IVI_3) \lor (L_3 \land IVI_2) \lor (L_3 \land IVI_3)) \land (P_1 \lor P_2)$ 

 $\Leftrightarrow (L_1 \land M_2 \land P_1) \lor (L_1 \land M_3 \land P_1) \lor (L_3 \land M_2 \land P_1) \lor (L_3 \land M_3 \land P_1) \lor (L_1 \land M_2 \land P_2) \lor (L_1 \land M_3 \land P_2) \lor (L_3 \land M_2 \land P_2) \lor (L_3 \land M_3 \land P_2)$ 

可以取( $L_3 \wedge M_2 \wedge P_1$ )、( $L_1 \wedge M_3 \wedge P_2$ )为T,得到两种排法。

# 作业

- P33
- 1.12(3)
- 1.13(1)

# 问题?

