Voronoi Diagrams—CSC/Math 870 Lecture, April 5, 2007 Brendan Colloran

Motivation

Voronoi diagrams are used to partition a metric space by proximity to a discrete set of objects. Some example of problems for which Voronoi diagrams are useful include:

- Post office problem
- Trade influence of cities
- Local resource use for plants ("potential area available to a tree")
- Territory of central place foragers (and other types of animal territoriality)
- Modeling grain growth in metals
- Regional gravitational influence of astronomical objects

For many more examples, see http://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html

Definition

Given a set of points (or "sites") $P := \{p_1, p_2,...,p_n\}$, the Voronoi diagram of P is a subdivision of the plane into n cells (one for each element of P) such that a point q is in cell i if and only if q is closer to p_i than it is to any other element of P.

Notation

The Voronoi diagram of a point set P will be denoted 'Vor(P)'; abusing this terminology, we will also use 'Vor(P)' to denote the vertices and edges of this planar subdivision.

We denote the Voronoi cell of site p_i by $V(p_i)$.

Glossary

Site A point p_i in the set $P := \{p_1, p_2,...,p_n\}$.

Voronoi cell of p_i The portion of the plane that is closer to site p_i than any other site.

The beach line: For a given position of the sweep line L, each site p_i above L defines a parabola

 Π_i with focus p_i and directrix L. The *beach line* is the function

 $f(x) = \min\{\Pi_i(x)\}\$

for all i such that p_i is above L.

Breakpoints: The points at which consecutive parabolic arcs on the beach line meet.

Site events: The event that occurs when the sweep line encounters a new site.

Circle events: The event that occurs when the sweep line reaches the lowest point on the

circle through the sites defining three consecutive points on the beach line.

False alarm: A potential circle event that is deleted from the event queue before it can take

place.

Theorems, Observations, Lemmas

Observation 7.1 Let $Bis(p_i,p_j)$ denote the perpendicular bisector of the line segment connecting p_i and p_j , and let $h(p_i,p_j)$ denote the half-plane containing p_i that is defined by $Bis(p_i,p_j)$. Then $V(p_i)$ is the intersection of the half-spaces $h(p_i,p_j)$ with $i \neq j$.

Observation 7.1.a Each cell $V(p_i)$ has at most n-1 vertices and edges.

Theorem 7.2 Let P be a set of points in the plane. If all the points are collinear, then Vor(P) consists of n - 1 parallel lines. Otherwise, Vor(P) is connected, and its edges are segments or half-lines.

- *Theorem 7.3* For $n \ge 3$, Vor(P) has has at most 2n 5 vertices and 3n 6 edges.
- Theorem 7.4 For a set of points P, define the largest empty circle about q with respect to P, denoted $C_P(q)$, as the largest circle with center q that does not contain any other points in P. Then:
 - i. A point q is a vertex of Vor(P) if and only if $C_P(q)$ has three or more sites on its boundary.
 - ii. The bisector between sites p_i and p_j defines an edge of Vor(P) if and only if there is a point q on the bisector such that the boundary of C_P (q) contains p_i and p_j , but no other site in P.
- *Lemma 7.6* New arcs can appear on the beach line only by way of site events.
- *Lemma 7.7* Existing arcs can disappear from the beach line only by way of circle events.
- *Lemma 7.8* Every Voronoi vertex is detected by way of a circle event.
- Lemma 7.9 Fortune's algorithm runs in $O(n \log n)$ time and uses O(n) storage.

Data Structures

- The Voronoi diagram is stored in a doubly-connected edge list *D* (see Ch. 2). (Note that because a Voronoi diagram has half-lines as well as full lines, we must add a bounding box to complete the doubly connected edge list.)
- Events are stored in a priority queue *Q*, where an event's priority is its *y*-coordinate.
- The beach line is stored in a balanced binary search tree T, in which the leaves correspond to arcs on the beach line and internal nodes correspond to breakpoints. Breakpoints are stored as ordered tuples (p_i,p_j) , where p_i represents arc to the left of the breakpoint and p_j represents the arc to the right of the breakpoint. This allows us to calculate the x-coordinate of the breakpoints at each site event, and hence to find the arc of the beach line that is above a new site.

We also store pointers in T to our other data structures. Each leaf (representing an arc) has a pointer to the circle event in Q that will cause the arc to disappear (this is set to nil if no such event has been detected), and each internal node (p_i, p_j) has a pointer to a half edge in the doubly connected edge list that is traced by the breakpoint (p_i, p_j) .

The Algorithm

VoronoiDiagram(P)

Input A set *P* of point sites in the plane.

Output A doubly connected edge list D representing Vor(P) inside a bounding box

- 1. Initialize Q with all site events, and initialize T and D (both empty).
- 2. **while** *Q* is not empty
- 3. **do** Remove the highest priority event from *Q*
- 4. **if** the event is a site event occurring at p_i
- 5. **then** HandleSiteEvent(p_i)
- 6. **else** HandleCircleEvent(a), where a is the leaf of T representing the arc that will disappear
- 7. The internal nodes still in T correspond to half-infinite edges. Compute a bounding box that contains all the sites of P and all the vertices of Vor(P), and attach the half-infinite edges to the bounding box.
- 8. Complete the doubly-connected edge list by adding cell records and pointers to corresponding edges of Vor(P)

$HandleSiteEvent(p_i)$

- 1. If T is empty, insert p_i into T and return; otherwise, proceed with steps 2-5.
- 2. Search T for the arc α vertically above p_i . If this arc has a corresponding circle event in Q that circle event is a false alarm and must be deleted.
- 3. Replace the leaf of T representing α with a subtree having three leaves: the middle leaf stores the new site p_i , and the two other leaves store the site p_j that was originally stored with α . Store the tuples (p_j, p_i) and (p_i, p_j) representing the new breakpoints at the two new internal node. Perform balancing operations on T.
- 4. Create new half-edge records in D for the edge separating $V(p_i)$ and $V(p_j)$.
- 5. Check the triple of consecutive arcs with p_i as the left arc to see if the breakpoints converge; if they do, insert a circle event in Q and add pointers between the nodes in T and Q. Do the same for the triple with the new arc on the right.

HandleCircleEvent(a)

- 1. Delete the leaf a that represents the arc α disappearing from T. Update the tuples at internal nodes representing breakpoints. Rebalance T. Delete all circle events involving α from Q (these can be found using the pointers from the predecessor and successor of a in T).
- 2. Add the center of the circle causing the event to *D* as a vertex. Create two half-edge records in *D* corresponding to the new breakpoint, and set the appropriate pointers. Attach the three relevant half-edges, including the new one, to the new vertex.
- 3. Check the new triple of consecutive arcs that has the former left neighbor of α as it middle arc to see if its breakpoints converge; if they do, insert a circle event in Q and add pointers between the nodes in T and Q. Do the same for the triple with the former right neighbor of α as it middle arc.