

TIGER SOM-RK3588-Q7

Power efficient **System-on-Module** with Octa-Core ARM featuring the **Rockchip RK3588** application processor

USER MANUAL

Document revision: v1.2.0 Issue date: Apr 07, 2024

Contents

1	Intro 1.1		1
2	First	Steps	2
_	2.1	· ·	<u>-</u> 2
	2.2		2
	2.3		3
	2.4		3
	۷.4	Tower op	J
3	Usino	g the DEVKIT	5
	3.1		5
	3.2		6
	3.3		7
	3.4		7
	3.5		9
	3.6	200.0.00.	9
	3.7	RS-232 and RS-485	•
	3.8	TTL UART	
	3.9	Ethernet	
	3.10	SD-Card	
	3.11	USB Interfaces	
	3.11	Display and Camera	
		! /	
		FFC Expansion Connectors	
		SPI and I2C	
		GPIOs	
		Audio	
		CAN Bus	
		CTRL I/O Connector	
	3.20	MISC Connector	5
4	C - 44	vare Overview 20	,
4			
	4.1		
	4.2	Compiling Linux Applications	6
5	Dobis	an image guide 2'	7
J	5.1	Prepare the host PC	
	5.2	Compile the ATF	
		·	
	5.3	Compile U-Boot	
	5.4	Compile the Linux kernel	
	5.5	Building the debos image	7
6	Denla	oy a disk image 3	1
U	6.1	Deploy on SD Card	
	6.2	Deploy on internal eMMC	
	0.2	Deploy of internat emino	'
7	Comi	panion controller features 33	3
•	7.1	How to flash Mule-ATtiny	
	,.,	The to last rate rating	
8	Seria	al Number 3/	4
	8.1	Serial Number	4
		• • • • • • • • • • • • • • • • • • • •	
9	Hard	ware Guide 3	5
	9.1	Q7 Implementation	5
	9.2	Q7 Connector Pinout	
	9.3	FFC Expansion Connector Pinout	
	9.4	Signal Details	

	9.5	On-board Devices	+5
	9.6	Jsing GPIOs	¥6
	9.7	Electrical Specification	<u> 1</u> 9
	9.8	Mechanical Specification	50
10	Conta	t !	51
11	Revis	on History	52

1 Introduction

Congratulations for acquiring CHERRY Embedded Solutions new product, combining best-in-class performance with a rich set of peripherals.

Note: The latest version of this manual and related resources can always be found on our website at the following address:

https://embedded.cherry.de/products/tiger-som-rk3588-q7/

1.1 Device Overview

TIGER SOM-RK3588-Q7 is an octa-core 64-bit flagship processor manufactured in an advanced 8nm process. It features an Arm Mali-G610 MP4 quad-core GPU which enables complex use cases from gaming graphics to machine learning (ML). The TIGER SOM-RK3588-Q7 also features an Neural Process Unit (NPU) with computing power up to 6 TOPS with an ability to receive camera sensor input through a MIPI-CSI interface and to process the resulting imagestream in real-time with the powerful ARM processor and NPU cores which enables AI, vision and image-analytics applications.

2 First Steps

This chapter provides instructions for getting the TIGER SOM-RK3588-Q7 DEVKIT running after opening the box.

2.1 Insert TIGER SOM-RK3588-Q7

Insert the TIGER SOM-RK3588-Q7 module at a 30-degree angle into the HAIKOU CB-MINI-ITX Qseven connector. Once fully inserted, push it down until it rests on the standoffs and check alignment of the mounting holes.

Note: The module springs back into the 30-degree angle once released. This is expected, and alignment will be kept. The module will be secured into place.

Fig. 2.1: Module mounting

2.2 Mount the Heatsink

The heatsink has the thermal pad attached on the bottom. Peel off the red protective foil.

Fig. 2.2: Thermal pad protective foil

Push the module down flat and place the heatsink spacer on the module with the smooth side facing up. Make sure the orientation is correct by checking alignment of the mounting holes. Place the heatsink on the spacer and screw it down gently using the four included M2.5 screws.

2.3 Mount the Fan

Using the module for short scripts and a couple of commands does not require a mounted fan. However, as TIGER SOM-RK3588-Q7 is designed for computationally intensive use cases a fan is recommended.

2.4 Power Up

For bootloader configuration and Linux console, the serial interface can be used. Connect either a Micro-USB or RS-232 cable to the corresponding port. Select the correct UART with UART selector slider (1). For Micro-USB, the slider has to be in the right position to route the default console (UARTO) to the USB-UART bridge. For RS-232, the slider has to be in the left position and the protocol slider (2) has to be in the RS-232 position (see Fig. 2.3 Serial console and boot configuration).

Connect the power supply and verify the sliders are in the position Normal Boot (3) and Normally Off (4). Press the Power Button (5) to power HAIKOU CB-MINI-ITX. You will see the boot progress and later on a login prompt on the serial interface. If the display is connected, video output will follow shortly after.

Fig. 2.3: Serial console and boot configuration

3 Using the DEVKIT

This chapter provides instructions for using HAIKOU CB-MINI-ITX, such as booting and how to configure and use I/O peripherals (e.g. serial console, Ethernet).

3.1 HAIKOU CB-MINI-ITX Overview

An overview of the available connectors and devices on HAIKOU CB-MINI-ITX is shown below.

Fig. 3.1: HAIKOU CB-MINI-ITX with TIGER SOM-RK3588-Q7

3.2 Power Supply

HAIKOU CB-MINI-ITX can operate with a single 12V DC power supply. The 12V DC connector is highlighted below.

Fig. 3.2: 12V Power connector

Power can be controlled manually from the carrier board using the Power control buttons and switches, located on the lower right side of the carrier board (see Section 3.1 HAIKOU CB-MINI-ITX Overview).

Depending on the setting of Power Mode (Normally On / Normally Off) switch, HAIKOU CB-MINI-ITX will boot as soon as it receives power.

3.3 Control Buttons and Switches

The control buttons (see Fig. 3.1 HAIKOU CB-MINI-ITX with TIGER SOM-RK3588-Q7) provide the following functionality:

- Power toggles the module power supply.
- Reset triggers a module reset.
- Batlow, Sleep and Wake are routed to GPIOs on the Q7 module.

Several slider switches are located on the lower left:

- LID SW is routed to a GPIO on the module, simulates lid open/close.
- Power Mode (Normally On / Normally Off), as described above, sets the state after power loss.
- BOOT SW (BIOS Disable / Normal Boot) forces SD card boot or the normal boot order, respectively.

3.4 CPU Fan

Intensive applications require a CPU fan, the fan connector is located next to the bottom right corner of the Q7 expansion area.

Fig. 3.3: Fan connector

Note: TIGER SOM-RK3588-Q7 is designed for highly intensive tasks, so it normally emits heat. In normal use-cases and normal conditions, TIGER SOM-RK3588-Q7 emits heat while operating.

3.5 Boot Order

The used boot order of TIGER SOM-RK3588-Q7 depends on the value of the BIOS_DISABLE# signal. On HAIKOU CB-MINI-ITX this signal can be set using a slider switch (BOOT SW), with the two positions labeled Normal Boot, and BIOS Disable.

As shown in the table below, the BIOS Disable position disables the eMMC storage device:

	Normal Boot	BIOS Disable
1	eMMC storage	SD card
2	SD card	USB loader
3	USB loader	

If no bootloader is found on any storage device, TIGER SOM-RK3588-Q7 module will go into USB loader mode, showing up as a USB device on the USB-OTG port.

The electrical state of the BIOS_DISABLE# signal for both slider positions is shown below:

Slider Position	BIOS_DISABLE# signal
Normal Boot	Floating (on-module pull-up to 3.3V)
BIOS Disable	GND

3.6 USB Serial Console

HAIKOU CB-MINI-ITX contains an on-board Silicon Labs CP2102N USB-serial converter. Connect the included Micro-USB cable to the Micro-USB jack labeled USB-UART Bridge:

Fig. 3.4: USB UART

The serial converter does not require additional drivers on Windows and Linux.

For macOS, drivers are available from Silicon Labs: https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

TIGER SOM-RK3588-Q7 has two external UARTs:

- UARTO is, by default, used for the serial console for interactive login.
- UART1 is unused by default and can be freely used for machine-to-machine communications or other purposes.

The switch UARTO / UART1 cross-switches UARTO and UART1 between the RS232 / RS485 jack and the on-board USB-serial converter:

Switch Position	RS232 / RS485 jack connected to:	USB-serial converter connected to:
UART0	UARTO (interactive console)	UART1
UART1	UART1	UARTO (interactive console)

For interactive login through the USB-serial converter, make sure the switch is on the UART1 position.

Note: UART1 is the name of the UART exposed on HAIKOU CB-MINI-ITX. It is actually connected to the UART5 controller on the RK3588 SoC.

UARTO on HAIKOU CB-MINI-ITX is connected to the UART2 controller on the RK3588 SoC.

Picocom can be used to connect via the serial line (assuming the USB-serial converter is USB0):

picocom -b 115200 /dev/ttyUSB0

Note: Make sure to disable software flow-control (XON/XOFF). Otherwise, serial input may not be recognized.

After system boot-up, the login console appears on the terminal:

RK3588-Q7 login:

You can log in as root with password root.

3.7 RS-232 and RS-485

To connect via RS-232 or RS-485, connect to the RS232 / RS485 jack on HAIKOU CB-MINI-ITX.

Fig. 3.5: RS-232 connector

The switch labeled RS-232 / RS-485 selects between RS-232 and RS-485 mode on the jack.

In RS-485 mode, the switch labeled Full Duplex / Half Duplex selects full- or half-duplex mode, respectively. It has no effect in RS-232 mode, which is always full-duplex.

3.8 TTL UART

UARTO and UART1 are also available through the pin headers P12 UARTO and P30 UART1 next to the RS232 / RS485 jack. The signal level is 3.3V.

3.9 Ethernet

TIGER SOM-RK3588-Q7 has built-in Gigabit Ethernet (1 Gbit/s) routed to a standard RJ-45 jack on HAIKOU CB-MINI-ITX.

The SD card that is shipped with the DEVKIT is configured to automatically retrieve an IP address via DHCP and provides SSH login on port 22.

3.10 SD-Card

TIGER SOM-RK3588-Q7 supports UHS SD cards and maximum writing speed on the SD card is 50 MB/s. The practical writing and reading speeds depend on the capabilities of the inserted SD card.

3.11 USB Interfaces

TIGER SOM-RK3588-Q7 provides four USB ports:

- 1x USB 3.0 OTG
- 2x USB 3.0 Host
- 1x USB 2.0 Host

Fig. 3.6: USB 3.0 OTG port (dual-role port: can be used as a host or device interface)

Fig. 3.7: USB 2.0 host port (vertical) and 2 x USB 3.0 host ports (stacked horizontal)

3.11.1 Connecting an External USB Drive

To connect a USB drive, plug it into one of the USB ports. The system should recognize the drive immediately. Check the kernel log to find the device name:

dmesg -f

You will be able to mount its partitions (assuming mapping to /dev/sdb1):

mkdir /mnt/usb1
mount /dev/sdb1 /mnt/usb1
ls /mnt/usb1

3.12 Display and Camera

TIGER SOM-RK3588-Q7 supports display output on the eDP0/LVDS A interface and the camera on the eDP1/LVDS B interface. For MIPI-DSI and MIPI-CSI, the Qseven LVDS pins are used. Those pins are routed to the Video connector. This expansion slot uses a PCIe connector as mechanical connection, which allows easy development of adapter boards for various different display types.

Qseven Port	Function
eDP0/LVDS A	MIPI-DSI
eDP1/LVDS B	MIPI-CSI

Fig. 3.8: Video connector pinout

3.13 FFC Expansion Connectors

Fig. 3.9: Top FFC expansion connector. The second connecter is right below on the bottom of the PCB.

TIGER SOM-RK3588-Q7 has two FFC connectors that enables it to support multiple cameras..

3.14 RTC

TIGER SOM-RK3588-Q7 contains a real-time clock (RTC) on-module.

Note: This functionality is implemented in the optional Mule companion controller (see Section 9.5.3 Companion Controller).

The RTC is read by the kernel on boot-up and used to set the system clock.

To check the RTC value, use hwclock:

```
$ hwclock
Thu 20 Oct 2022 01:49:20 PM CEST -0.826662 seconds
```

The RTC will be automatically set to the system clock on shutdown, so you can set the system clock using the date command and reboot to update the RTC:

```
date --set 2022-10-22
date --set 04:12:33
```

You can also update the RTC immediately, again with hwclock:

```
hwclock -w
```

3.15 SPI and I2C

SPI and I2C interfaces are both available on the pin header labeled SPI+I2C+1-Wire. TIGER SOM-RK3588-Q7 does not support 1-Wire.

Fig. 3.10: I2C and SPI header

Additional I2C buses are available on the SMBUS header. (shown in thin font in Fig. 3.11).

Fig. 3.11: SMBUS header

For I2C, the i2c-tools package is available in Debian:

apt-get install i2c-tools

3.15.1 Linux I2C Bus Numbering

Linux identifies each I2C bus by a bus number. The table below shows the mapping between Q7 names, Linux bus number and HAIKOU CB-MINI-ITX header.

Q7 signal	Linux bus	connections/headers
Q7_I2C_CLK, Q7_I2C_DAT	5	SPI+I2C+1-Wire
Q7_SMB_CLK, Q7_SMB_DAT	8	SMBus
Q7_HDMI_CTRL_CLK, Q7_HDMI_CTRL_Dat		HDMI
LVDS_DID_CLK/GP2_I2C_DAT, LVDS_DID_CLK/GP2_I2C_DAT	6	"SMBus & Video connector"
LVDS_BLC_CLK, LVDS_BLC_DAT	1	"SMBus & Video connector"

The FFC expansion connector provides additional I2C buses:

FFC signal	Linux bus	connections/headers
I2C4_SCL_M4, I2C4_SDA_M4	4	P2 FFC connector Pins -> (18-19)
12C3_SCL_M0, 12C3_SDA_M0	3	P3 FFC connector Pins -> (18-19)
12C2_SCL_M3, 12C2_SDA_M3	2	P2 FFC connector Pins -> (23-24)

The other I2C buses (as reported by i2cdetect -l) are internal to the module and not routed to external connectors.

3.16 GPI0s

Eight GPIOs are provided on the pin header labeled GPIO.

The location on HAIKOU CB-MINI-ITX is displayed below:

Fig. 3.12: GPIO header

The GPIO numbers printed on the carrier board refer to numbers used in the Qseven specification. They are different from the ones used in Linux via /sys/class/gpio. see (Section 9.6 Using GPIOs).

3.17 Audio

HAIKOU CB-MINI-ITX provides two audio connectors for input and output. Line-in is on top and Headphones is on bottom of the audio connector.

Note: The codec on HAIKOU CB-MINI-ITX only supports a sample rate 48kHz . This restriction only applies to this specific codec on HAIKOU CB-MINI-ITX.

The I2S bus on TIGER SOM-RK3588-Q7 supports a sample rate up to 192kHz.

Additionally, an expansion connector for I2S audio is available on the bottom row of the carrier board:

Fig. 3.13: Audio jacks and I2S header

3.18 CAN Bus

HAIKOU CB-MINI-ITX provides a CAN connector on the bottom row.

Fig. 3.14: CAN header

3.19 CTRL I/O Connector

HAIKOU CB-MINI-ITX provides signals for watchdog trigger in- and output, SoM PMIC power-on input, reset and external display power enable.

Fig. 3.15: CTRL I/O header

3.20 MISC Connector

HAIKOU CB-MINI-ITX provides signals for thermal overheat of external hardware and the processor, utility signals for SD and GPI00.

Fig. 3.16: MISC header

4 Software Overview

This chapter provides instructions for compiling and deploying the BSP (Board Support Package) software to TIGER SOM-RK3588-Q7.

4.1 Supported Distributions

Two of the most popular embedded systems distributions are supported. The following chapters describe how to build a disk image for:

• Debian: Section 5 Debian image guide

4.2 Compiling Linux Applications

The easiest option is to compile your applications directly on a module running Debian. Install the gcc package and related utilities and you are good to go:

sudo apt-get install build-essential

The second option is to cross-compile your applications on a host PC. The compiler that was installed in Section 5.1 Prepare the host PC is suitable.

5 Debian image guide

As opposed to Yocto, Debian does not provide a completely integrated build experience by itself. Linux kernel and U-Boot have to be compiled manually and copied to the appropriate directory to be picked up by Debian build system.

This chapter will go through all neccessary steps, finally building a complete image using the debos Debian image builder. The result will be a fully-functional Debian system.

Alternatively, prebuilt images can be downloaded from https://downloads.embedded.cherry.de/tiger/

At the time of writing this document, the following Debian image variants are available for TIGER SOM-RK3588-Q7:

- Debian 12 Bookworm
- Debian 12 Bookworm with Phosh graphical shell.

Note: While Debian is a great tool for fast prototyping of your product, it is highly recommended to use a distribution/image tailored to your need. This can be achieved by Yocto or Buildroot for example.

5.1 Prepare the host PC

The debos Debian OS Builder is only available for Debian and Debian-based distributions (like Ubuntu). This chapter assumes you use Debian or a Debian-based distribution as the host PC.

Install packages for compiling the parts and the complete image:

```
sudo apt-get -y install debos git build-essential gcc-aarch64-linux-gnu make bison bc flex \
libssl-dev device-tree-compiler python3-dev python3-pkg-resources swig fdisk \
bmap-tools python-is-python3
```

As debos internally uses kvm virtualization, your user must be a member of the kvm group:

```
sudo adduser "$(id -un)" kvm
```

Log out and back for the change to take affect. Then verify that kvm is listed in your groups:

```
id -Gn
```

Note: If you are not using Debian distribution on your host PC you need to use podman to build debos image:

```
sudo apt-get install podman
```

5.2 Compile the ATF

Get the source code and compile the Arm Trusted Firmware as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://github.com/rockchip-linux/rkbin
```

(continued from previous page)

```
cd rkbin || return
# Tag linux-5.10-gen-rkr4.1
git checkout "1356c978"
export RKBIN_FOLDER="$PWD"
export BL31="$RKBIN_FOLDER/bin/rk35/rk3588_bl31_v1.38.elf"
export BL32="$RKBIN_FOLDER/bin/rk35/rk3588_bl32_v1.13.bin"
export TPL="$RKBIN_FOLDER/bin/rk35/rk3588_ddr_lp4_2112MHz_lp5_2736MHz_v1.11.bin"
# shellcheck disable=SC2103 # we want to export variables, not possible within subshell
cd ..
```

This step should take under 1 minute total.

5.3 Compile U-Boot

Note: Variables BL31, BL32, TPL must be already set as described in Section 5.2 Compile the ATF.

Get the source code and compile the U-Boot bootloader as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://git.embedded.cherry.de/tiger-u-boot.git
cd tiger-u-boot || return
# Load u-boot config
make tiger-rk3588_defconfig
# Build idbloader.img
make spl/u-boot-spl.bin -j"$(nproc)"
./tools/mkimage -n rk3588 -T rksd -d "$TPL":spl/u-boot-spl.bin idbloader.img
# Build u-boot.dtb/u-boot.itb
cp "$BL31" bl31.elf
cp "$BL32" tee.bin
make u-boot.dtb u-boot.itb -j"$(nproc)"
# Make the resulting file available to later steps
export TIGER_UBOOT_DIR="$PWD/tiger-u-boot"
```

This step should take about 1 minute total.

5.4 Compile the Linux kernel

Get the source code and compile the Linux kernel as follows:

```
# Set up cross-compilation
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
# Download the source code
git clone https://git.embedded.cherry.de/tiger-linux.git
(
```

(continued from previous page)

```
cd tiger-linux || return

# Compile
make tiger-rk3588_defconfig
make -j"$(nproc)"

## Make sure there are no modules from older builds, otherwise may pollute rootfs
## if using debos-recipes instructions.
rm --recursive --force overlay/
make -j"$(nproc)" INSTALL_MOD_PATH=overlay modules_install
)

# Make the resulting files available to later steps
export TIGER_LINUX_DIR="$PWD/tiger-linux"
```

The time required for this step heavily depends on your internet connection and CPU power. On a quad-core 2.9GHz machine with an 1Gb/s internet connection, it takes about 20 minutes total.

Warning: It is essential the kernel modules installed on the system are built from the exact same sources as the kernel Image itself or the modules will fail to be detected by the kernel.

Note: One can install new modules without needing to recompile the debos image entirely by running the following command:

```
export IP=10.11.12.13 # set to the IP address of the device rsync --delete --recursive overlay/lib/modules/ root@"$IP":/lib/modules
```

Update the kernel Image if there was some change made to it so that it will find the new modules upon reboot. Reboot for the new modules to be loaded.

5.5 Building the debos image

5.5.1 Prepare required components

Note: The variables TIGER_UB00T_DIR and TIGER_LINUX_DIR must be already set as described in Section 5.3 Compile U-Boot and Section 5.4 Compile the Linux kernel, respectively.

Get the source code for the debos recipe and copy necessary components built in previous steps:

```
# Download the source code
git clone https://git.embedded.cherry.de/debos-recipes.git
cd debos-recipes || return

# Copy Linux binaries into the ``tiger`` folder
cp "$TIGER_LINUX_DIR"/arch/arm64/boot/Image tiger/overlay/boot/
## Match dtb and dtbo
cp "$TIGER_LINUX_DIR"/arch/arm64/boot/dts/rockchip/rk3588-tiger*.dtb* tiger/overlay/boot/
rm --recursive --force tiger/overlay/lib/modules
mkdir --parents tiger/overlay/lib/modules
cp --archive "$TIGER_LINUX_DIR"/overlay/lib/modules/ tiger/overlay/lib/
## Remove known problematic symlinks as debos would dereference them
rm tiger/overlay/lib/modules/*/build
rm tiger/overlay/lib/modules/*/source

# Copy U-Boot binaries into the ``tiger`` folder
```

```
cp "$TIGER_UB00T_DIR"/idbloader.img tiger/
cp "$TIGER_UB00T_DIR"/u-boot.itb tiger/
```

5.5.2 Build a complete image

Both bookworm and bookworm-phosh Debian images are available. You can build one of your choice or both of them. Default variant is Debian 12 Bookworm. The other variant can be chosen by setting the debos_variant environment variable when running build.sh.

Depending on your host PC and internet connection, this step should complete in about 5-10 minutes.

The resulting image is a file called sdcard-tiger-debos-bookworm.XXX.YYY.img and, for convenience, the symlink sdcard-tiger-debos-bookworm.img that always points to the latest version.

Debian 12 Bookworm

```
# Build the image using debos
build_board=tiger ./build.sh

# Or: Build the image using podman (for host PCs not using Debian)
# build_board=tiger debos_host=podman ./build.sh

# Make the resulting image available to later steps
export SDCARD_IMG="$PWD/sdcard-tiger-debos-bookworm.img"
```

Note: When running inside a virtual machine that does not support nesting, you may get an error like this:

```
open /dev/kvm: no such file or directory
```

In this case, prepend debos_host=chroot to the build.sh command, resulting in:

```
debos_host=chroot build_board=tiger ./build.sh
```

The debos_host=chroot mode uses sudo internally as it requires root permissions.

6 Deploy a disk image

This chapter describes how to write a disk image of the Debian 12 bookworm variant as generated in the previous chapter.

Note: The variable SDCARD_IMG must be already set as described in respective chapter.

Warning: Avoid having the disk image on both the SD Card and the internal eMMC of the module.

As the Linux kernel on the module uses PARTLABEL and PARTUUID to identify partitions to mount, it will be unpredictable whether the SD Card or the internal eMMC is used.

6.1 Deploy on SD Card

Insert an SD card into the host PC and check dmesg -w to find out the device name that was used.

To flash the image on an SD card, bmaptool can be used, it is both faster and safer than a traditional dd. For that, the .bmap companion file, automatically built by the Yocto Project or build.sh debos-recipes wrapper script, should be in the same directory as the SDCARD_IMG artifact.

Then run the following command, with /dev/sdX replaced by the block device representing the user's SD card:

```
sudo bmaptool copy "$SDCARD_IMG" /dev/sdX
```

6.2 Deploy on internal eMMC

6.2.1 Compile rkdeveloptool

To write the image directly onto the on-board eMMC, the flashing tool rkdeveloptool is used, and it must be compiled on the host PC:

```
# Install compile dependencies
sudo apt-get -y install git libudev-dev libusb-1.0-0-dev dh-autoreconf pkg-config build-essential
# Download rkdeveloptool source code
git clone https://github.com/rockchip-linux/rkdeveloptool.git
cd rkdeveloptool || return
# Compile rkdeveloptool
autoreconf -i
CPPFLAGS=-Wno-format-truncation ./configure
make
# Download miniloaders used for flashing
git clone https://github.com/rockchip-linux/rkbin.git tools/rk_tools
# Build miniloader binaries
cd tools/rk_tools/ || return
# Tag linux-5.10-gen-rkr4.1
git checkout "1356c978"
./tools/boot_merger RKBOOT/RK3588MINIALL.ini
```

```
# Make the resulting files available to later steps
export RKDEVELOPTOOL_DIR="$PWD/tools/rk_tools/"
```

This step should take about 1 minute total.

6.2.2 Enter USB flashing mode

To enter the USB flashing mode, make sure the BOOT SW slider (see Fig. 3.1 HAIKOU CB-MINI-ITX with TIGER SOM-RK3588-Q7) is in BIOS Disable mode and there's no SD card inserted in HAIKOU CB-MINI-ITX.

Then, insert a micro-USB cable into the USB-OTG port (see Fig. 3.6 USB 3.0 OTG port (dual-role port: can be used as a host or device interface)) on HAIKOU CB-MINI-ITX and into a USB port of your host PC.

Then, power cycle the device by unplugging and replugging the power supply or by pressing the Reset button. The Lsusb command on your host PC should return the following:

```
$ lsusb -d 2207:350b
Bus xxx Device 0xx: ID 2207:350b Fuzhou Rockchip Electronics Company
```

Now, put the BOOT SW slider back into the Normal Boot mode.

6.2.3 Flash the eMMC

To write the image file path stored in the variable SDCARD_IMG to the on-board eMMC, run:

```
cd "$RKDEVELOPTOOL_DIR" || return
sudo ./rkdeveloptool db tools/rk_tools/rk3588_spl_loader_v* && sleep 1
sudo ./rkdeveloptool wl 0 "$SDCARD_IMG"
sudo ./rkdeveloptool rd
```

This step should take about 1 minute for the Debian image.

7 Companion controller features

This chapter describes the companion controller (Mule ATtiny) features.

7.1 How to flash Mule-ATtiny

The ATtiny can be flashed through the UPDI lines, from the running system on TIGER SOM-RK3588-Q7 (No additional hardware required). For convenience, mule-attiny.sh tool is available for flashing the Mule ATtiny microcontroller. The tool is available here: https://git.embedded.cherry.de/som-tools.git/tree/mule-attiny

7.1.1 Requirements

• avrdude tool (minimum v7.1)

7.1.2 Install avrdude

apt-get install avrdude

7.1.3 Flashing Mule ATtiny

MULE_FIRMWARE="/path/to/mule-ATtiny816-xxxxxxxx.hex"
./mule-attiny.sh --flash "\$MULE_FIRMWARE"

Note: The above commands should be run with root privileges.

Note: It is highly recommended that one reboots the main SoC interacting with the companion microcontroller after flashing to make sure device drivers are properly initialized.

8 Serial Number

8.1 Serial Number

Each TIGER SOM-RK3588-Q7 has a unique serial number that can be read by software.

In U-Boot, the serial number is contained in the environment variable serial#. You can print it using the command:

printenv serial#

Under Linux, it is represented by a simple text file in /sys:

cat /sys/firmware/devicetree/base/serial-number

The serial number is fixed in hardware (derived from the SoC CPU ID) and cannot be modified.

9 Hardware Guide

This Hardware Guide provides information about the features, connectors and signals available on TIGER SOM-RK3588-Q7, as TIGER SOM-RK3588-Q7 has 2 different connectors; the main connection is Q7 and the sub connection is the FFC Connector, and so the FFC Connector will be discussed in related sections.

9.1 Q7 Implementation

Q7 has mandatory and optional features. Following table shows the feature set of TIGER SOM-RK3588-Q7 compared to the minimum ARM/RISC based and maximum configuration according to the Q7 standard.

System I/O Interface	Q7 Minimum	RK3588_Q7	Q7 Maximum
PCI Express lanes	0	4	4
Serial ATA channels	0	2	2
USB 2.0 ports	1	1	8
USB 3.0 ports	0	3	3
LVDS channels	0	0	2
Embedded Display Port/ HDMI output	0	1	1
MIPI_CSI	0	1+(2 on FFC connectors)	2
HDMI input	0	(1 on FFC connectors)	0
High Definition Audio / AC'97 / I2S	0	1	1
Ethernet 10/100/1000 Mbps	0	1x Gigabit	1x Gigabit
UART	0	1+1 shared with GPIO	1
GPI0	0	8	8
Secure Digital I/O	0	1	1
System Management Bus	0	1	1
I ² C Bus	1	4	4
SPI Bus	0	1	1
CAN Bus	0	1	1
Watchdog Trigger	1	1	1
Power Button	1	1	1
Power Good	1	1	1
Reset Button	1	1	1
LID Button	0	1	1
Sleep Button	0	1	1
Suspend to RAM (S3 mode)	0	1	1
Wake	0	1	1
Battery low alarm	0	1	1
Thermal control	0	1	1
FAN control	0	1	1

Note: TIGER SOM-RK3588-Q7 module is available in different variants. This document describes the maximum configuration. For details about orderable variants please refer to the order_code document.

Note: Not all interfaces are available at the same time as they might conflict with others.

9.2 Q7 Connector Pinout

The following table shows the signals on the edge connector of the TIGER SOM-RK3588-Q7 module. Empty cells are simply not connected pins.

no.	Q7 name	CPU Pin name	no.	Q7 name	CPU Pin name
1	GND		2	GND	
3	GBE MDI3	(ETH PHY)	4	GBE MDI2	(ETH PHY)
5	GBE MDI3+	(ETH PHY)	6	GBE MDI2+	(ETH PHY)
7	GBE LINK100#	(ETH PHY)	8	GBE LINK1000#	(ETH PHY)
9	GBE MDI1	(ETH PHY)	10	GBE MDI0	(ETH PHY)
11	GBE MDI1+	(ETH PHY)	12	GBE MDI0+	(ETH PHY)
13	GBE_LINK#	(ETH PHY)	14	GBE ACT#	(ETH PHY)
15	GBE CTREF	(=,	16	SUS S5#	GPI03 A5
17	WAKE#	GPI03 C6	18	SUS S3#	GPI03 A6
19	GP00	GPI03_B0	20	PWRBTN#	0.100_10
21	SLP BTN#/ GPII1	GPI04 B3	22	LID_BTN#/ GPII0	GPI03 D4
23	GND	01 104_80	24	GND	01 100_B4
25	GND		26	PWGIN	GPIO3 A0
27	BATLOW#/ GPII2	GPI03 B5	28	RSTBTN#	nPOR/ RESETB
29	SATAO TX+	Q7 PCIE20 0 TX/	30	SATA1_TX+	Q7_PCIE20_1_TX/
27	JAIAU_IX+	SATA30 0 TX P	30	SAIAI_IX+	SATA30 1 TX P
31	SATA0_TX	Q7_PCIE20_0_TX/	32	SATA1 TX	Q7_PCIE20_1_TX/
01	JAIAO_IX	SATA30_0_TX_N	02	JAIAI_IX	SATA30_1_TX_N
33	SATA ACT#	GPI01 A1	34	GND	3/11/100_1_1/_11
35	SATAO RX+	Q7 PCIE20 0 RX/	36	SATA1_RX+	Q7_PCIE20_1_RX/
00	3/11/10_10/1	SATA30_0_RX_P	00	3/1//1_1//	SATA30_1_RX_P
37	SATA0_RX	Q7_PCIE20_0_RX/	38	SATA1_RX	Q7_PCIE20_1_RX/
37	JAIAO_IIX	SATA30 0 RX N	50	JAIAI_IIX	SATA30 1 RX N
39	GND	3A1A30_0_1(X_1	40	GND	3A1A30_1_1(X_14
41	BIOS DISABLE#/	SARA_IN0_BOOT	42	SDIO_CLK#	GPI04 D5
7.	BOOT ALT#	3AIA_II10_B001	72	3510_021(1)	01 104_80
43	SDIO_CD#	GPIO0 A4	44	Reserved (was SDIO_LED)	
45	SDIO_CMD	GPI04 D4	46	SDIO WP	GPI01 A4
47	SDIO_PWR#	GPI01 B4	48	SDIO_WI	GPI04 D1
49	SDIO_I WITH	GPI04 D0	50	SDIO_DAT3	GPI04_B1
51	SDIO_DATO	GPI04_D0	52	Reserved (was	01 104_00
51	JDIO_DAIZ	01 104_02	52	SDIO DAT5)	
53	Reserved (was		54	Reserved (SDIO_DAT7)	
55	SDIO_DAT4)		04	Neserved (SDIO_BATT)	
55	Reserved (was		56	USB OTG PEN	GPI01 B5
55	SDIO_DAT6)		50	03B_010_1 EN	01 101_00
57	GND		58	GND	
59	HDA_SYNC/	GPI03 A2	60	SMB_CLK/ GP1_I2C_CLK	GPI01 D6
37	12S_WS	01 103_A2	00	3141B_0E1() 01 1_120_0E1(01 101_00
61	HDA_RST#/	GPI01 A0	62	SMB_DAT/ GP1_I2C_DAT	GPI01_D7
O I	I2S RST#	01.101_A0	UZ	3141D_DA1/ 01 1_120_DA1	01.101_07
63	HDA_BITCLK/	GPI03_A1	64	SMB_ALERT#	GPI03_C2
00	I2S_CLK	01 100_A1	04	JIND_ALLINI#	01 100_02
65	HDA_SDI/ I2S_SDI	GPI03_A4	66	GP0 I2C CLK	GPI04 B6
67	HDA_SD0/	GPI03_A3	68	GP0_I2C_DAT	GPI04_B0
07	12S_SD0	31 100_A0	00	5. 5_120_BA1	51.104_D/
69	THRM#	GPI04 A1	70	WDTRIG#	ATtiny pinPC2
71	THRMTRIP#	GPI04_A1	72	WD0UT	ATtiny pinPB5
73	GND	51 104_A0	74	GND	Artilly Pilli Do
75	USB_P7/	TYPEC1_SSTX1N/	76	USB_P6/ USB_SSRX0	TYPEC1_SSRX1N/
75	USB_SSTX0	DP1_TX1N	, 0	030_1 0/ 030_331(\)0	DP1_TX0N
	030_33170	חו ו_ועווא			DF I_IXUN

Table 9.1 – continued from previous page

	Table 9.1 – continued from previous page							
no.	Q7 name	CPU Pin name	no.	Q7 name	CPU Pin name			
77	USB_P7+/ USB_SSTX0+	TYPEC1_SSTX1P/ DP1_TX1P	78	USB_P6+/ USB_SSRX0+	TYPEC1_SSRX1P/ DP1_TX0P			
79	USB_6_7_0C#	GPI04_A6	80	USB_4_5_0C#	GPI04_A7			
81	USB_P5/ USB_SSTX2	USB30_2_SSTXN	82	USB_P4/ USB_SSRX2	USB30_2_SSRXN			
83	USB_P5+/ USB_SSTX2+	USB30_2_SSTXP	84	USB_P4+/ USB_SSRX2+	USB30_2_SSRXP			
85	USB_2_3_0C#	GPI04_B0	86	USB_0_1_0C#	GPI04_A2			
87	USB_P3	USB20_HOST1_DM	88	USB_P2	USB20_HOST0_DM			
89	USB_P3+	USB20_H0ST1_DP	90	USB_P2+	USB20_H0ST0_DP			
91	USB_VBUS	USB_VBUSDET	92	USB_ID	TYPEC0_USB20_OTG_ID			
93	USB P1	TYPEC0 USB20 OTG DM	94	USB P0	TYPEC1 USB20 OTG DM			
95	USB P1+	TYPECO USB20 OTG DP	96	USB P0+	TYPEC1 USB20 OTG DP			
97	GND		98	GND				
99	eDP0_TX0+/ LVDS_A0+	MIPI_DPHY0_TX_D0_P	100	eDP1_TX0+/ LVDS_B0+	MIPI_CSI1_D0_P			
101	eDP0_TX0/ LVDS_A0	MIPI_DPHY0_TX_D0_N	102	eDP1_TX0/ LVDS_B0	MIPI_CSI1_D0_N			
103	eDP0_TX1+/ LVDS_A1+	MIPI_DPHY0_TX_D1P	104	eDP1_TX1+/ LVDS_B1+	MIPI_CSI1_D1P			
105	eDP0_TX1/ LVDS_A1	MIPI_DPHY0_TX_D1N	106	eDP1_TX1/ LVDS_B1	MIPI_CSI1_D1N			
107	eDP0_TX2+/ LVDS_A2+	MIPI_DPHY0_TX_D2P	108	eDP1_TX2+/ LVDS_B2+	MIPI_CSI1_D2P			
109	eDP0_TX2/ LVDS_A2	MIPI_DPHY0_TX_D2N	110	eDP1_TX2/ LVDS_B2	MIPI_CSI1_D2N			
111	LVDS_PPEN	GPI03_C1	112	LVDS_BLEN	GPI03_C3			
113	eDP0_TX3+/ LVDS_A3+	MIPI_DPHY0_TX_D3P	114	eDP1_TX3+/ LVDS_B3+	MIPI_CSI1_D3P			
115	eDP0_TX3/ LVDS_A3	MIPI_DPHY0_TX_D3N	116	eDP1_TX3/ LVDS_B3	MIPI_CSI1_D3N			
117	GND		118	GND				
119	eDP0_AUX+/ LVDS_A_CLK+	MIPI_DPHY0_TX_CLKP	120	eDP1_AUX+/ LVDS_B_CLK+	MIPI_CSI1_CLK0P			
121	eDP0_AUX/ LVDS_A_CLK	MIPI_DPHY0_TX_CLKN	122	eDP1_AUX/ LVDS_B_CLK	MIPI_CSI1_CLK0N			
123	LVDS_BLT_CTRL/ GP_PWM_OUT0	GPI01_D2	124	GP_1Wire_Bus/ HDMI_CEC	GPI00_C6			
125	GP2_I2C_DAT/ LVDS_DID_DAT	GPI00_C7	126	eDP0_HPD#/ LVDS_BLC_DAT	GPI00_B6			
127	GP2_I2C_CLK/ LVDS_DID_CLK	GPI00_D0	128	eDP1_HPD#/ LVDS_BLC_CLK	GPI00_B5			
129	CANO_TX	GPI00_B7	130	CANO_RX	GPI00_C0			
131	DP_LANE3+/ TMDS_CLK+	HDMI_TX0_D3P	132	_	TYPEC0_SSTX1N			
133	DP_LANE3/ TMDS_CLK	HDMI_TX0_D3N	134	USB_SSTX1+	TYPEC0_SSTX1P			
135	GND		136	GND				
137	DP_LANE1+/ TMDS_LANE1+	HDMI_TX0_D1P	138	DP_AUX+	EDP_TX0_AUXP			
139	DP_LANE1/ TMDS_LANE1	HDMI_TX0_D1N	140	DP_AUX	EDP_TX0_AUXN			
141	GND		142	GND				
143	DP_LANE2+/ TMDS_LANE0+	HDMI_TX0_D0_P	144	USB_SSRX1	TYPEC0_SSRX1N			
145	DP_LANE2/ TMDS_LANE0	HDMI_TX0_D0_N	146	USB_SSRX1+	TYPEC0_SSRX1P			
					continues on next page			

Table 9.1 – continued from previous page

no.	Q7 name	CPU Pin name	no.	Q7 name	CPU Pin name
	GND		148	GND	
147 149	DP_LANE0+/	HDMI_TX0_D2P	150	HDMI_CTRL_DAT	GPI00_D4
147	TMDS_LANE2+	TIDIMI_TX0_DZI	130	HDMI_CTRL_DAT	01 100_B4
151	DP LANEO/	HDMI_TX0_D2N	152	HDMI_CTRL_CLK	GPI00 D5
101	TMDS_LANE2	1181411_17.0_8214	102	HBM_OTTL_OET	01 100_00
153	DP_HDMI_HPD#	GPI01_A5	154	DP HPD#	GPI04_B5
155	PCIE_CLK_REF+	_	156	PCIE_WAKE#	GPI04_A4
157	PCIE_CLK_REF		158	PCIE_RST#	GPI03_B6
159	GND		160	GND	
161	PCIE3_TX+	PCIE30_PORT1_TX1P	162	PCIE3_RX+	PCIE30_PORT1_RX1P
163	PCIE3_TX	PCIE30_PORT1_TX1N	164	PCIE3_RX	PCIE30_PORT1_RX1N
165	GND		166	GND	
167	PCIE2_TX+	PCIE30_PORT1_TX0P	168	PCIE2_RX+	PCIE30_PORT1_RX0P
169	PCIE2_TX	PCIE30_PORT1_TX0N	170	PCIE2_RX	PCIE30_PORT1_RX0N
171	UARTO_TX	GPI03_B1	172	UARTO_RTS#	GPI03_B3
173	PCIE1_TX+	PCIE30_PORT0_TX1P	174	PCIE1_RX+	PCIE30_PORT0_RX1P
175	PCIE1_TX	PCIE30_PORT0_TX1N	176	PCIE1_RX	PCIE30_PORT0_RX1N
177	UARTO_RX	GPI03_B2	178	UARTO_CTS#	GPI03_B4
179	PCIEO_TX+	PCIE30_PORTO_TX0P	180	PCIEO_RX+	PCIE30_PORTO_RX0P
181	PCIE0_TX	PCIE30_PORT0_TX0N	182	PCIEO_RX	PCIE30_PORT0_RX0N
183	GND	00107 00	184	GND GDIO1	ODIO/ 40
185	GPI00	GPIO4_CO	186	GPI01	GPIO4_A0
187	GPI02	GPIO4_A5	188	GPIO3	GPI03_B7
189	GPI04	GPIO3_D0	190	GPI05/ TSD_UART_TX	GPI03_C4
191	GPIO6/	GPI03_C5	192	GPI07	GPI01_B0
193	TSD_UART_RX VCC_RTC		194	SPKR/ GP_PWM_0UT2	ATtiny pin PB5
195	FAN_TACHOIN/	ATtiny pinPA6	196	- -	ATtiny pin PA4
1/3	GP_TIMER_IN	Artiny pini Ao	170	GP_PWM_OUT1	Artilly pill I A4
197	GND		198	GND	
199	SPI_MOSI	GPI03 D2	200	SPI_CS0#	GPI04_B2
201	SPI_MISO	GPI03_D1	202	SPI_CS1#	GPI04_B1
203	SPI_SCK	GPI03_D3	204		01 104_01
205	VCC_5V_SB	5. 166 <u>-</u> 26	206	VCC_5V_SB	
207	MFG_NC0/ TCLK		208	MFG_NC2/ TDI	
	MFG_NC1/TD0			MFG_NC3/ TMS	
211				NC	
213	NC		214	NC	
215				NC	
217				NC	
219	VCC		220	VCC	
221	VCC			VCC	
223	VCC			VCC	
	VCC			VCC	
	VCC		228	VCC	
229	VCC			VCC	

9.3 FFC Expansion Connector Pinout

The following table shows the signals on the FFC connectors of the TIGER SOM-RK3588-Q7 module. Empty cells are simply not connected pins.

	FFC	D2 (Tan EEQ) C:	D2 (Tan FFC)	D2 (batter: FFO)	D2 (hattam FFC)
no.	FFC Display-Name	P2-(Top-FFC) Sig- nal_Name	P2-(Top-FFC) CPU_Pin/function	P3-(bottom-FFC) Signal-Name	P3-(bottom-FFC) CPU_Pin/function
1	3V3	VCC3V3_S3		VCC3V3_S3	
2	3V3	VCC3V3_S3		VCC3V3_S3	
3	D0+	MIPI_CSI0_D0_P	MIPI_CSI0_D0_P	CSI2D0_P	MIPI_DPHY0_RX_D0_P/ MIPI_CPHY0RX_TRI00_B
4	D0-	MIPI_CSI0_D0_N	MIPI_CSI0_D0_N	CSI2D0_N	MIPI_DPHY0_RX_D0_N/ MIPI_CPHY0RX_TRI00_A
5	GND	GND		GND	
6	D1+	MIPI_CSI0_D1_P	MIPI_CSI0_D1P	CSI2D1_P	MIPI_DPHY0_RX_D1P/ MIPI_CPHY0RX_TRI01_A
7	D1	MIPI_CSI0_D1_N	MIPI_CSI0_D1N	CSI2D1_N	MIPI_DPHY0_RX_D1N/ MIPI_CPHY0RX_TRI00_C
8	GND	GND		GND	
9	D2+	MIPI_CSI0_D2_P	MIPI_CSI0_D2P		
10	D2	MIPI_CSI0_D2_N	MIPI_CSI0_D2N		
11	RST#	CSI0_RST	GP100_B0	CSI2_RST	SPI1CS1_M2/ PDM0SDI0_M0/ GPI01_D5
12	D3+	MIPI_CSI0_D3_P	MIPI_CSI0_D3P		
13	D3	MIPI_CSI0_D3_N	MIPI_CSI0_D3N		
14	GND	GND		GND	
15	CLK+	MIPI_CSI0_CLK_P	MIPI_CSI0_CLK0P	CSI2C_P	MIPI_DPHY0_RX_CLKP/ MIPI_CPHY0RX_TRI01_C
16	CLK	MIPI_CSI0_CLK_N	MIPI_CSI0_CLK0N	CSI2C_N	MIPI_DPHY0_RX_CLKN/ MIPI_CPHY0RX_TRI01_B
17	GND	GND		GND	
18	I2C_CLK	I2C4_SCL_M4	I2C4_SCL_M4/ GPI01_C7	I2C3_SCL_M0	12C3_SCL_M0/ GPI01_C1
19	I2C_DAT	I2C4_SDA_M4	PWM15IR_M2/ I2C4_SDA_M4/ GPI01_C6	I2C3_SDA_M0	I2C3_SDA_M0/ GPI01_C0
20	ENA#	CSI0_ENA	GPI02_B4	CSI2_ENA	GPI02_C5
21	MCLK	CSI1/ 2_MCLK	MIPI_CAM- ERA1_CLK_M0/ GPI01_B6	CSI2/3_MCLK	PWM13_M2/ MIPI_CAM- ERA2_CLK_M0/ GPI01_B7
22	ENA#	CSI1_ENA	GPI02_C4	HDMI_RX_HPD- OUT_H	HDMI_RX_HPDOUT_M1/ GPI03_D4
23	I2C_CLK	I2C2_SCL_M3	I2C2_SCL_M3/ GPI01_C5	HDMIRX_D2P	HDMIRX_D2P
24	I2C_DAT	I2C2_SDA_M3	PWM11IR_M2/ I2C2_SDA_M3/ GPI01 C4	HDMIRX_D2N	HDMIRX_D2N
25	GND	GND		GND	
26	CLK+	CAM1CLK0_P	MIPI_DPHY1_RX_CLKP/ MIPI_CPHY1RX_TRIO1_C	HDMIRX_CLKP	HDMIRX_CLKP
27	CLK	CAM1CLK0_N	MIPI_DPHY1_RX_CLKN/ MIPI_CPHY1RX_TRI01_B	HDMIRX_CLKN	HDMIRX_CLKN
28	GND	GND		GND	
29	D0+	CAM1D0_P	MIPI_DPHY1_RX_D0_P/ MIPI_CPHY1RX_TRI00_B	HDMIRX_D0_P	HDMIRX_D0_P
30	D0-	CAM1D0_N	MIPI_DPHY1_RX_D0_N/ MIPI_CPHY1RX_TRI00_A	HDMIRX_D0_N	HDMIRX_D0_N
					continues on next page

Table 9.2 – continued from previous page

no.	FFC Display-Name	P2-(Top-FFC) Sig- nal_Name	P2-(Top-FFC) CPU_Pin/function	P3-(bottom-FFC) Signal-Name	P3-(bottom-FFC) CPU_Pin/function
31	RST#	CSI1_RST	GPI04_C6	HDMI_RX_SDA_M0	HDMI_RX_SDA_M0/ GPI00_D1
32	D1+	CAM1D1_P	MIPI_DPHY1_RX_D1P/ MIPI_CPHY1RX_TRIO1_A	HDMIRX_D1_P	HDMIRX_D1P
33	D1	CAM1D1_N	MIPI_DPHY1_RX_D1N/ MIPI_CPHY1RX_TRIO0_C	HDMIRX_D1_N	HDMIRX_D1N
34	GND	GND		GND	
35	CAM0_GPI0	CSI0_GPI00	GPI02_B5	CSI2_GPI00	SPI4MISO_M0/ UART3RX_M0/ I2C3_SDA_M0/ GPI01_C0
36	CAM1_GPI0	CSI1_GPI01	GPI00_B2	HDMI_RX_SCL_M0	HDMI_RX_SCL_M0/ GPI00_D2

9.4 Signal Details

9.4.1 Ethernet

Q7 Signal	Туре	Signal Level	Description
GBE_MDI[0:3]+ GBE_MDI[0:3]-	I/O	Analog	Ethernet Controller: Media Dependent Interface Differential Pairs. The MDI can operate in 1000 and 100 Mbit/sec modes
GBE_ACT#	OC	3.3V	Ethernet Controller activity indicator, active low
GBE_LINK#	OC	3.3V	Ethernet Controller link indicator, active low
GBE_LINK100#	OC	3.3V	Internally connected to GBE_LINK#
GBE_LINK1000#	OC	3.3V	Internally connected to GBE_LINK#
GBE_CTREF	REF	Analog	Center Tap Voltage

9.4.2 USB

Q7 Signal	Туре	Signal Level	Description
USB_P[0:4]+ USB_N[0:4]-	I/O	USB	Hi-Speed USB differential pairs
USB_SSTX_P[0:2]+ USB_SSTX_N[0:2]-	1/0	USB	SuperSpeed USB differential transmit pairs
USB_SSRX_P[0:2]+ USB_SSRX_N[0:2]-	1/0	USB	SuperSpeed USB differential receive pairs
USB_0C#		3.3V	Over current detect input. The carrier board can signal an USB overcurrent condition pulling this pin low.
USB_ID	1	3.3V	Configures the mode of the USB Port 1. If the signal is an "active high" the Port will be configured as USB Client
USB_VBUS	I	5.0V	USB VBUS pin, 5V tolerant

9.4.3 SDIO

Q7 Signal	Type	Signal Level	Description
SDIO_CD#	I	3.3V	SDIO Card Detect. This signal indicates when a SDIO/MMC card is present
SDIO_CLK	0	3.3V	SDIO Clock
SDIO_CMD	I/O	3.3V	SDIO Command/Response
SDIO_WP	1	3.3V	SDIO Write Protect
SDIO_PWR#	0	3.3V	SDIO Power Enable. This signal is used to enable the power being supplied to a SD/MMC card device
SDIO_DATO_3	1/0	3.3V	SDIO Data lines

9.4.4 I2C

Q7 Signal	Type	Signal Level	Description
Q7_I2C_CLK	0	3.3V	I2C bus clock line connected to RK3588
Q7_I2C_DAT	I/O	3.3V	I2C bus data line connected to RK3588
Q7_SMB_CLK	0	3.3V	I2C bus clock line connected to RK3588
Q7_SMB_DAT	I/O	3.3V	I2C bus data line connected to RK3588
Q7_HDMI_CTRL _CLK	0	3.3V	I2C bus clock line connected to RK3588
Q7_HDMI_CTRL _DAT	1/0	3.3V	I2C bus data line connected to RK3588
LVDS_DID_CLK /GP2_I2C_CLK	0	3.3V	I2C bus clock line connected to RK3588, Secure Element, Attiny and Video connector
LVDS_DID_DAT /GP2_I2C_DAT	1/0	3.3V	I2C bus data line connected to RK3588, Secure Element, Attiny and Video connector
LVDS_BLC_DAT	0	3.3V	I2C bus clock line connected to RK3588, Video connector and carrier board EEPROM
LVDS_BLC_CLK	I/O	3.3V	I2C bus data line connected to RK3588, Video connector and carrier board EEPROM

I2C signals on P2 (Top FFC)

Signal	Type	Signal Level	Description
I2C4_SCL_M4	0	1.8V	I2C bus 4 clock line connected to RK3588
I2C4_SDA_M4	I/O	1.8V	I2C bus 4 data line connected to RK3588
I2C2_SCL_M3	0	1.8V	I2C bus 2 clock line connected to RK3588
I2C2_SDA_M3	1/0	1.8V	I2C bus 2 data line connected to RK3588

I2C signals on P3 (Bottom FFC)

Signal	Туре	Signal Level	Description
12C3_SCL_M0	0	1.8V	I2C bus data line connected to RK3588_Q7
12C3_SDA_M0	I/O	1.8V	I2C bus data line connected to RK3588_Q7

9.4.5 I2S

Q7 Signal	Туре	Signal Level	Description
Q7_I2S_RST	0	3.3V	I2S Codec Reset
Q7_I2S_SYNC	0	3.3V	I2S Word select
Q7_I2S_CLK	0	3.3V	I2S Serial Data Clock
Q7_I2S_SD0	0	3.3V	I2S Serial Data Output
Q7_I2S_SDI	1	3.3V	I2S Serial Data Input

9.4.6 Video

TIGER SOM-RK3588-Q7 supports MIPI-DSI.

The MIPI_DSI specifications are:

- MIPI DSI D_PHY v1.0
- Up to four data lanes
- Up to 1.0 Gbit/s per lane

The signal mapping is shown below:

Q7 Signal	Function
eDP0_TX0+/ LVDS_A0+	DSI_TX0+
eDP0_TX0/ LVDS_A0	DSI_TX0-
eDP0_TX1+/ LVDS_A1+	DSI_TX1+
eDP0_TX1/ LVDS_A1	DSI_TX1-
eDP0_TX2+/ LVDS_A2+	DSI_TX2+
eDP0_TX2/ LVDS_A2	DSI_TX2-
eDP0_TX3+/ LVDS_A3+	DSI_TX3+
eDP0_TX3/ LVDS_A3	DSI_TX3-
eDP0_AUX+/ LVDSA_CLK+	DSI_CLK+
eDP0_AUX/ LVDSA_CLK	DSI_CLK-

The TIGER SOM-RK3588-Q7 supports MIPI-CSI.

- MIPI CSI D_PHY v1.0
- Up to four data lanes
- Up to 1.0 Gbps per lane

The signal function mapping for Q7 is shown below:

Q7 Signal	Function
eDP1_TX0+/ LVDS_B0+	CSI_D0+
eDP1_TX0/ LVDS_B0	CSI_D0-
eDP1_TX1+/ LVDS_B1+	CSI_D1+
eDP1_TX1/ LVDS_B1	CSI_D1-
eDP1_TX2+/ LVDS_B2+	CSI_D2+
eDP1_TX2/ LVDS_B2	CSI_D2-
eDP1_TX3+/ LVDS_B3+	CSI_D3+
eDP1_TX3/ LVDS_B3	CSI_D3-
eDP1_AUX+/ LVDSB_CLK+	CSI_CLK+
eDP1_AUX/ LVDSB_CLK	CSI_CLK-

9.4.7 CAN

Q7 Signal	Туре	Signal Level	Description
Q7_CAN0_TX	0	3.3V	CAN TX output for CAN Bus channel 0 CPU pin GPI00_B7
Q7_CAN0_RX		3.3V	CAN RX input for CAN Bus channel 0 CPU pin GPI00_C0

9.4.8 SPI

Q7 Signal	Туре	Signal Level	Description
Q7_SPI_MOSI	0	3.3V	Master serial output/Slave serial input signal
Q7_SPI_MISO	I	3.3V	Master serial input/Slave serial output signal
Q7_SPI_SCK	0	3.3V	SPI clock output
Q7_SPI_CS0#	0	3.3V	SPI chip select 0 output
Q7_SPI_CS1#	0	3.3V	SPI chip select 1 output (used when two devices are connected)

9.4.9 UART

UARTO, as specified in the Q7 standard, is implemented including hardware flow control. This UART shows up in Linux as /dev/ttyS0.

Q7 Signal	Туре	Signal Level	Description
Q7_UART0_TX	0	3.3V	Serial data transmit
Q7_UART0_RX	I	3.3V	Serial data receive
Q7_UART0_CTS#	1	3.3V	Handshake signal: ready to send data
Q7_UART0_RTS#	0	3.3V	Handshake signal: ready to receive data

A second UART, UART1, can be enabled on the GPIO pins. This UART shows up in Linux as /dev/ttyS5.

Q7 Signal	Alternate function	Туре	Signal Level	Description
Q7_GPI05	UART1_TX	0	3.3V	Serial data transmit
Q7_GPI06	UART1_RX	I	3.3V	Serial data receive

the FFC connector is meant for use with cameras however its pins can also be used as an additional UART (not simultaneously): on FFC P2 (Top FFC Connector)

Signal	Туре	Signal Level	CPU/Linux Pin
CSI0_ENA	1	1.8V	UART7_RX_M0
CSI0_GPI00	0	1.8V	UART7_TX_M0

9.4.10 Misc

Signal	Туре	Signal Level	Description
WDTRIG#	1	3.3V	Watchdog trigger signal
WDOUT	0	3.3V	Watchdog event indicator
SPKR	0	3.3V	ATtiny pin PB5 used for external buzzer control
BIOS_DISABLE# /BOOT_ALT#	I	3.3V	Disables the onboard bootloader and uses the one the SD card instead. If no bootloader is available on the SD card it falls back to USB recovery mode
THRMTRIP#	0	3.3V	Thermal Trip indicates an overheating condition of the processor. If 'THRMTRIP#' goes active the system immediately transitions to the S5 State (Soft Off)
FAN_PWMOUT /GP_PWM_OUT1	0	3.3V	PWM output for fan speed control. Alternate function general purpose PWM output. Function based on microcontroller firmware
FAN_TACHOIN /GP_TIMER_IN	1	3.3V	Fan tachometer input. Alternate function general purpose timer input. Function based on microcontroller firmware

9.4.11 Power Management

Signal	Туре	Signal Level	Description
RSTBTN#	I	3.3V	Reset button input. An active low signal resets the module
BATLOW#	I	3.3V	Battery low input
WAKE#	1	3.3V	External system wake event. An active low signal wakes the module from a sleep state
SUS_S3#	0	3.3V	Indicated that the system is in suspend to ram (S3)
SUS_S5#	0	3.3V	Indicated that the system is in soft_off state (S5)
SLP_BTN#	l	3.3V	Sleep button. Signals the system with an falling edge to transition into sleep or wake from a sleep state
LID_BTN#	l	3.3V	LID button. Low active signal to detect a LID switch to transition into sleep or wake from a sleep state

9.4.12 Power

Signal	Nominal Input	Description
VCC	5V	Main supply for the module
VCC_RTC	3V	Backup supply for the RTC. If not used it can be left unconnected. Typical current: 1.4uA

9.5 On-board Devices

9.5.1 RAM

Up to 32 GB RAM of LPDDR4X RAM

9.5.2 eMMC

Up to 128GB eMMC connected through the 8-bit wide SDIO interface on the CPU.

Signal	CPU Pin	Linux GPIO #
RESET	GPI02_A3	67

9.5.3 Companion Controller

An On_board microcontroller provides additional features to the CPU. The controller is an ATtiny exposed via I2C and UPDI lines (pins UART4_TX_M2/GPI0_1_B3, UART4_RX_M2/GPI0_1_B2). As for the first controller, it emulates standard ICs and does not need custom drivers in Linux.

Feature	CPU Connection	Emulated IC	Qseven Pins
RTC	I2C	ISL1208	none
Temperature sensor and fan controller	I2C	AMC6821	FAN_TACHOIN, FAN_PWMOUT

Note: Please refer to Section 7 Companion controller features for instructions on how to flash Mule ATtiny.

9.5.4 Ethernet PHY

The Texas Instruments DP83825IRMQR is connected to the CPU via RGMII and MDIO. Further connections are shown below.

PHY signal	Connected to
RESET	CPU pin GPI04_C3
MDIO	CPU pin GPI04_C5
MDC	CPU pin GPI04_C4
LED1	Qseven GBE_LINK1000 and GBE_LINK100 and GBE_LINK (tied together)
LED2	Qseven GBE_ACT

9.5.5 Test points TIGER SOM-RK3588-Q7

Test point	Connected to
TP1	VCCA_1V8_S0
TP2	VDD_DDR_S0
TP3	VDD_GPU_S0
TP4	VCC_1V8_S0
TP5	VDDA_1V2_S0
TP6	VCCA_3V3_S0
TP7	VCCIO_SD_S0
TP8	VDD2_DDR_S3
TP9	VDD_CPU_LIT_S0
TP10	VDD_0V75_S3
TP11	VDDA_DDR_PLL_S0
TP12	VDDA_0V75_S0
TP13	VDDA_0V85_S0
TP14	VDD_0V75_S0
TP15	VDDQ_DDR_S0
TP16	VDD_LOG_S0
TP17	VCC_3V3_S3
TP18	VDD_VDENC_S0
TP19	VCC_1V8_S3
TP20	VCC_2V0_PLD0_S3
TP21	VDD_CPU_BIG0_S0
TP22	VDD_CPU_BIG1_S0
TP23	VDD_NPU_S0
TP24	VCC_1V1_NLD0_S3
TP25	VCC_1V2_S3
TP26	VDC
TP27	ETH_TXC
TP28	ATtiny DEBUG-RX
TP29	ATtiny DEBUG-TX

9.6 Using GPIOs

Many Qseven signals can be reused as a general purpose I/O pin. The following table shows the mapping of the Q7 pins to CPU Pin and Linux GPIO number.

All listed pins are bidirectional when configured as GPIO.

Q7 Pin	Signal	CPU Pin	Linux#
16	SUS_S5#	GPI03_A5	101
17	WAKE#	GPI03_C6	118
18	SUS_S3#	GPI03_A6	102
19	GPi00	GPI03_B0	104
21	SLP_BTN#	GPI04_B3	139
22	LID_BTN#	GPI03_D5	125
26	Q7_PWGIN	GPI03_A0	96
27	BATLOW#	GPI03_B5	109
42	SDIO_CLK#	GPI04_D5	157
43	SDIO_CD#	GPI00_A4	4
45	SDIO_CMD	GPI04_D4	156
46	SDIO_WP	GPI01_A4	36
47	SDIO_PWR#	GPI01_B4	44
48	SDIO_DAT1	GPI04_D1	153
49	SDIO_DAT0	GPI04_D0	152

Table 9.3 – continued from previous page

	Table 9.3 – continued from prev	nous page	
Q7 Pin	Signal	CPU Pin	Linux#
50	SDIO DAT3	GPIO4 D3	155
51	SDIO_DAT2	GPIO4 D2	154
56	USB_DRIVE_BUS	GPI01 B5	45
59	 I2S_WS	GPI03 A2	98
60	SMB_CLK	GPI01 D6	62
61	I2S_RST	GPI01 A0	32
62	SMB_DAT	GPI01 D7	63
63	I2S_CLK	GPI03_A1	97
64	SMB_ALERT	GPI03 C2	114
65	I2S_SDI	GPI03_A4	100
66	I2C_CLK	GPI04 B6	142
67	12S_SD0	GPI03 A3	99
68	GPO_I2C_DAT	GPI04 B7	143
69	THRM	GPI04 A1	129
71	THRMTRIP#	GPI04 A3	131
79	USB 6 7 OC	GPI04 A6	134
80	USB_4_5_0C	GPI04_A7	135
85	USB_2_3_0C	GPI04_B0	136
86	USB_0_1_0C	GPI04_B0	
111	eDP PPEN	GPI03 C1	113
112	eDP BLEN	GPI03_C3	115
123	eDP_BLT_CTRL GP_PWM_OUTO	GPI01 D2	58
125	LVDS DID DAT	GPI00 C7	23
126	LVDS_BLC_DAT	GPI00 B6	14
127	LVDS_BLC_BAT	GPIO0_B0	24
128	LVDS_BLC_CLK	GPI00_B5	13
129	CANO TX	GPI00_B3	15
130	CANO_RX	GPI00_C0	16
150	HDMI CTRL DAT	GPI00 D4	28
152	HDMI_CTRL_CLK	GPI00 D5	29
153	153 HDMI HPD#	GPI01_D5	37
154	DP HPD#	GPI04 B5	141
156	Q7 PCIE WAKE#	GPI04_B3	132
158	Q7 PCIE RST#	GPI03 B6	110
171	UARTO_TX	GPI03_B0	105
171	UARTO RTS#	GPI03_B1	103
172	UARTO RX	GPI03_B3	107
177	UARTO CTS#	GPI03_B2	108
185	GPI00	GP103_B4	144
186	GPI01	GPI04_C0	128
187	GPI01 GPI02	GPI04_A0	133
		_	
188	GPIO3	GPI03_B7	111 120
189	GPI04	GPIO3_D0	
190	GPIO5	GPIO3_C4	116
191	GPI06	GPI03_C5	117
192	GPIO7	GPI01_B0	40
199	SPI_MOSI	GPIO3_D2	122
200	SPI_CSO#	GPI04_B2	138
201	SPI_MISO	GPI03_D1	121
202	SPI_CS1#	GPI04_B1	137
203	SPI_SCK	GPI03_D3	123

The FFC expansion connectors are meant for use with cameras however it's pins can also be used as GPIOs: P3 (Bottom FFC connector):

Signal	Туре	Signal Level	CPU Pin	Linux GPI0#
I2C3_SCL_M0	1/0	1.8V	GPI01_C1	49
I2C3_SDA_M0	I/O	1.8V	GPI01_C0	48
CSI2_RST	I/O	1.8V	GPI01_D5	61
CSI2_ENA	I/O	1.8V	GPI02_C5	85
CSI2/3_MCLK	1/0	1.8V	GPI01_B7	47
HDMI_RX_HPD	1/0	3.3V	GPI03_D4	124
HDMI_RX_SDA	1/0	3.3V	GPI00_D1	25
HDMI_RX_SCL	1/0	3.3V	GPI00_D2	26
CSI2_GPI00	1/0	1.8V	GPI00_A0	0

P2 (Top FFC connector):

Signal	Туре	Signal Level	CPU Pin	Linux GPI0#
I2C4_SCL_M4	1/0	1.8V	GPI01_C7	55
I2C4_SDA_M4	1/0	1.8V	GPI01_C6	54
CSI0_ENA	1/0	1.8V	GPI02_B4	76
CSI1/ 2_MCLK	1/0	1.8V	GPI01_B6	46
CSI1_ENA	1/0	1.8V	GPI02_C4	84
CSI0_GPI00	1/0	1.8V	GPI02_B5	77
CSI1_GPI01	1/0	1.8V	GPI00_B2	10
I2C2_SCL_M3	1/0	1.8V	GPI01_C5	53
I2C2_SDA_M3	1/0	1.8V	GPI01_C4	52

To calculate the Linux GPIO # for CPU pins, use the following formula:

```
n = (block_number * 32) + (sub_block_number * 8) + index
```

Where:

- block_number ... index of the block number
- sub_block_number ... the alphabetical index of the block name, minus 1
- index ... the pin number within the block

Example:

```
GPI03_C6 \rightarrow (3 * 32) + (2 * 8) + 6 = 118
```

To enable a GPIO, write the Linux GPIO # to the special export file:

```
$ echo 118 > /sys/class/gpio/export
$ cat /sys/class/gpio/gpio118/direction
in
$ cat /sys/class/gpio/gpio118/value
0
```

To set the direction to output, write out in the GPIO's direction file:

```
echo out > /sys/class/gpio/gpio118/direction
echo 1 > /sys/class/gpio/gpio118/value
```

The GPIO will be set to a value of 1 (high at 3.3V).

9.7 Electrical Specification

9.7.1 Power Supply

The power supply requirements are listed in the table below and are identical to the Qseven specification.

Rail	Description	Nominal voltage	Tolerance
VCC	Main power supply	5V	4.75 5.25V
VCC_RTC	Backup battery	3V	2.4 3.3V

9.8 Mechanical Specification

9.8.1 Module Dimensions

The mechanical dimensions of the module are shown below.

Fig. 9.1: Module dimensions (all values in mm)

9.8.2 HAIKOU CB-MINI-ITX Dimension

The mechanical dimensions of HAIKOU CB-MINI-ITX match the Mini-ITX form factor and can be mounted in a standard Mini-ITX PC Case.

10 Contact

Cherry Embedded Solutions GmbH Seestadtstraße 27 1220 Vienna Austria

Inquiries: sales-es@cherry.de

Technical Support: support-es@cherry.de

11 Revision History

Date	Revision	Major changes
Jul 31, 2023	v0.0.1	First internal release
Dec 18, 2023	v1.0.0	recalled version
Feb 26, 2024	v1.1.0	Updates for Tiger v1.1
Mar 07, 2024	v1.1.1	debos build instructions corrections
Apr 02, 2024	v1.2.0	Add instructions on how to use kernel modules in debos Made shell code snippets pass shellcheck Theobroma Systems is now CHERRY Embedded Solutions