Class 29 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-11-11

Lab 02

▶ Open RStudio and start a new project in a folder called lab02

Lab 02

- ▶ Open RStudio and start a new project in a folder called lab02
- ▶ Go to File > New File > R Script. Save the file as lab02.R.

Lab 02

- ▶ Open RStudio and start a new project in a folder called lab02
- ▶ Go to File > New File > R Script. Save the file as lab02.R.
- Download the file nhanes.xlsx from Canvas under Lab 1 or find it in your lab01 project folder.

Files View

Importing a Dataset

Importing Files - Excel

Importing Files - Excel

Importing Files - Excel (Code)

```
File Edit Code View Plots Session Build Debug Profile Tools Help
                   🔒 📥 📄 🕜 Go to file/function
                                                       Addins *
B lab02.R
             nhanes ×
               Source on Save
     library(readxl)
     nhanes <- read_excel("nhanes.xlsx")</pre>
     View(nhanes)
  4
  5
```

Load packages

- readx1: read_xlsx() function
- ► Hmisc: describe() function
- dplyr: summarize() and select() functions

Codebook

- Gender: male or female
- AlcoholYear: count of the number of days in a year the subject drinks alcohol

How many days in a year do men and women drink on average?

How many days in a year do men and women drink on average?

Point estimates by gender $(\bar{x}_m \text{ and } \bar{x}_f, \, s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$

How many days in a year do men and women drink on average?

- Point estimates by gender $(\bar{x}_m \text{ and } \bar{x}_f, \, s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$
- $\begin{array}{c} \blacktriangleright \ \, \text{Sampling distributions for sample statistics} \\ \bar{x}_m \sim \mathsf{N}\left(\mu_m, SE_{\bar{x}_m}\right) \ \text{and} \ \bar{x}_f \sim \mathsf{N}\left(\mu_f, SE_{\bar{x}_f}\right) \end{array}$

How many days in a year do men and women drink on average?

- Point estimates by gender $(\bar{x}_m$ and \bar{x}_f , s_m and s_f) and sample sizes $(n_m$ and n_f)
- $\begin{array}{c} \blacktriangleright \text{ Sampling distributions for sample statistics} \\ \bar{x}_m \sim \mathsf{N}\left(\mu_m, SE_{\bar{x}_m}\right) \text{ and } \bar{x}_f \sim \mathsf{N}\left(\mu_f, SE_{\bar{x}_f}\right) \end{array}$
- \blacktriangleright Confidence intervals for population means $\bar{x}_m \pm T_{\rm df}^* \times {\rm SE}_{\bar{x}_m}$ and $\bar{x}_f \pm T_{\rm df}^* \times {\rm SE}_{\bar{x}_f}$

On average, do men and women drink the same number of days out of the year?

Point estimate of difference $(\bar{x}_m - \bar{x}_f)$, standard deviations $(s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$

- Point estimate of difference $(\bar{x}_m \bar{x}_f)$, standard deviations $(s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$
- $\begin{tabular}{l} \blacktriangleright \ \, {\sf Sampling distribution} \ \, \bar{x}_m \bar{x}_f \sim {\sf N}\left(0, {\sf SE}_{\bar{x}_m \bar{x}_f}\right) \ \, {\sf for null hypothesis} \ \, H_0 \colon \mu_m \mu_f = 0 \\ \end{tabular}$

- Point estimate of difference $(\bar{x}_m \bar{x}_f)$, standard deviations $(s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$
- $\begin{tabular}{l} \blacktriangleright \ \, {\sf Sampling distribution} \ \, \bar{x}_m \bar{x}_f \sim {\sf N}\left(0, {\sf SE}_{\bar{x}_m \bar{x}_f}\right) \ \, {\sf for null hypothesis} \ \, H_0 \colon \mu_m \mu_f = 0 \\ \end{tabular}$
- ▶ Test statistic t for observed $\bar{x}_m \bar{x}_f$ under null distribution $\bar{x}_m \bar{x}_f \sim \mathsf{N}\left(0,\mathsf{SE}_{\bar{x}_m \bar{x}_f}\right)$

- Point estimate of difference $(\bar{x}_m \bar{x}_f)$, standard deviations $(s_m \text{ and } s_f)$ and sample sizes $(n_m \text{ and } n_f)$
- $\begin{tabular}{l} \blacktriangleright \begin{tabular}{l} {\sf Sampling distribution } \bar{x}_m \bar{x}_f \sim {\sf N}\left(0, {\sf SE}_{\bar{x}_m \bar{x}_f}\right) \mbox{ for null hypothesis } H_0 \colon \mu_m \mu_f = 0 \end{tabular}$
- ▶ Test statistic t for observed $\bar{x}_m \bar{x}_f$ under null distribution $\bar{x}_m \bar{x}_f \sim \mathsf{N}\left(0,\mathsf{SE}_{\bar{x}_m \bar{x}_f}\right)$
- P-value for test statistic t from Student's t distribution with degrees of freedom $\mathrm{df}=\min\left(n_m,n_f\right)-1$

What proportion of days in a year do men and women drink on average?

What proportion of days in a year do men and women drink on average?

 \blacktriangleright Point estimates by gender $(\hat{p}_m$ and $\hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$

What proportion of days in a year do men and women drink on average?

- Point estimates by gender $(\hat{p}_m$ and $\hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$
- $\begin{array}{c} \blacktriangleright \text{ Sampling distributions for sample statistics} \\ \hat{p}_m \sim \mathsf{N}\left(p_m, SE_{\hat{p}_m}\right) \text{ and } \hat{p}_f \sim \mathsf{N}\left(p_f, SE_{\hat{p}_f}\right) \end{array}$

What proportion of days in a year do men and women drink on average?

- Point estimates by gender $(\hat{p}_m$ and $\hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$
- $\begin{array}{c} \blacktriangleright \text{ Sampling distributions for sample statistics} \\ \hat{p}_m \sim \mathsf{N}\left(p_m, SE_{\hat{p}_m}\right) \text{ and } \hat{p}_f \sim \mathsf{N}\left(p_f, SE_{\hat{p}_f}\right) \end{array}$
- \blacktriangleright Confidence intervals for population means $\hat{p}_m \pm Z^* \times \mathsf{SE}_{\hat{p}_m}$ and $\hat{p}_f \pm Z^* \times \mathsf{SE}_{\hat{p}_f}$

On average, do men and women drink the same proportion of days out of the year?

Point estimate of difference $(\hat{p}_m - \hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$

- Point estimate of difference $(\hat{p}_m \hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$
- $\begin{tabular}{l} \blacktriangleright \begin{tabular}{l} {\sf Sampling distribution } \hat{p}_m \hat{p}_f \sim {\sf N}\left(0, {\sf SE}_{\hat{p}_m \hat{p}_f}\right) \mbox{ using } \hat{p}_{\sf pool} \\ \mbox{for null hypothesis } H_0 \colon \mu_m \mu_f = 0 \\ \end{tabular}$

- \blacktriangleright Point estimate of difference $(\hat{p}_m \hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$
- $\begin{tabular}{l} \blacktriangleright \begin{tabular}{l} {\sf Sampling distribution } \hat{p}_m \hat{p}_f \sim {\sf N}\left(0, {\sf SE}_{\hat{p}_m \hat{p}_f}\right) \mbox{ using } \hat{p}_{\sf pool} \\ \mbox{for null hypothesis } H_0 \colon \mu_m \mu_f = 0 \\ \end{tabular}$
- $\begin{array}{c} \blacktriangleright \text{ Test statistic } Z \text{ for observed } \hat{p}_m \hat{p}_f \text{ under null distribution} \\ \hat{p}_m \hat{p}_f \sim \mathsf{N}\left(0, \mathsf{SE}_{\hat{p}_m \hat{p}_f}\right) \end{array}$

- Point estimate of difference $(\hat{p}_m \hat{p}_f)$ and sample sizes $(n_m$ and $n_f)$
- $\begin{tabular}{l} \blacktriangleright \begin{tabular}{l} {\sf Sampling distribution } \hat{p}_m \hat{p}_f \sim {\sf N}\left(0, {\sf SE}_{\hat{p}_m \hat{p}_f}\right) \mbox{ using } \hat{p}_{\sf pool} \\ \mbox{for null hypothesis } H_0 \colon \mu_m \mu_f = 0 \\ \end{tabular}$
- ▶ Test statistic Z for observed $\hat{p}_m \hat{p}_f$ under null distribution $\hat{p}_m \hat{p}_f \sim \mathsf{N}\left(0, \mathsf{SE}_{\hat{p}_m \hat{p}_f}\right)$
- $lackbox{P-value}$ for test statistic Z from the standard normal Z distribution