T1: Určete definiční obor funkcí a uveďte, zda jsou sudé nebo liché:

1.
$$f(x) = \frac{x^2}{1+x}$$

2.
$$f(x) = \sqrt{3x - x^3}$$

3.
$$f(x) = (x-2)\sqrt{\frac{1+x}{1-x}}$$

4.
$$f(x) = \ln(x^2 - 4)$$

5.
$$f(x) = \ln(x+2) + \ln(x-2)$$

6.
$$f(x) = \ln(1 - 4x^2)$$

7.
$$f(x) = \sqrt{3x^2 - 4x + 1}$$

8.
$$f(x) = \ln \frac{\pi}{x} + \operatorname{arctg} 2x$$

9.
$$f(x) = \frac{\sqrt{x}}{\ln(2-x)}$$

10.
$$f(x) = \ln(x^2 + 5x + 10)$$

11.
$$f(x) = 3x - x^3$$

12.
$$f(x) = \sqrt[3]{(1-x)^2} + \sqrt[3]{(1+x)^2}$$

13.
$$f(x) = a^x + a^{-x}, (a > 0)$$

14.
$$f(x) = \ln \frac{1-x}{1+x}$$

15.
$$f(x) = \ln(x + \sqrt{1 + x^2})$$

T2: Určete inverzní funkci $f^{-1}(x)$ a její definiční obor:

16.
$$f(x) = 2x + 3, \quad x \in \mathbb{R}$$

17.
$$f(x) = x^2, \quad x \le 0$$

18.
$$f(x) = x^2, \quad x > 0$$

19.
$$f(x) = \frac{1-x}{1+x}, \quad x \neq -1$$

20.
$$f(x) = \sqrt{1 - x^2}, \quad -1 \le x \le 0$$

21.
$$f(x) = \sqrt{1 - x^2}$$
, $0 < x < 1$

T3: Vypočítejte limitu posloupnosti:

22.
$$\lim_{n\to\infty} \frac{5-2n}{3n-7}$$

23.
$$\lim_{n\to\infty} \frac{n^2+4}{n+5}$$

24.
$$\lim_{n \to \infty} \frac{n^2}{n^3 + 5}$$

25.
$$\lim_{n\to\infty} \frac{(2n-1)(n^2-n+2)}{(n+1)(2n+1)(3n+1)}$$

26.
$$\lim_{n \to \infty} \frac{n!}{(n+1)! - n!}$$

27.
$$\lim_{n\to\infty} n^{\sin\frac{1}{n}}$$

28.
$$\lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$$

29.
$$\lim_{n\to\infty} \frac{2n + \sin n}{3n - 1}$$

$$30. \lim_{n\to\infty} \frac{\sqrt[3]{n^2}\sin n!}{n+1}$$

$$\mathbf{31.} \ \lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - n \right)$$

32.
$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})$$

33.
$$\lim_{n \to \infty} \frac{1 + a + a^2 + \dots + a^n}{1 + b + b^2 + \dots + b^n},$$
$$|a| < 1, |b| < 1$$

34.
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right)$$

35.
$$\lim_{n\to\infty} \sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \dots \sqrt[2^n]{2}$$

$$36. \lim_{n\to\infty} \left(\frac{n+4}{n+3}\right)^n$$

37.
$$\lim_{n\to\infty} \left(\frac{n-3}{n}\right)^n$$

T4: Pro následující posloupnosti najděte $\inf\{a_n\}_{n=1}^{\infty}$, $\sup\{a_n\}_{n=1}^{\infty}$ a vypočítejte $\liminf_{n\to\infty}a_n$, $\limsup_{n\to\infty}a_n$:

38.
$$a_n = \frac{1}{n}$$

42.
$$a_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$$

39.
$$a_n = 1 - \frac{1}{n}$$

43.
$$a_n = (-1)^n n$$

40.
$$a_n = \frac{(-1)^n}{n}$$

44.
$$a_n = n^{(-1)^n}$$

41.
$$a_n = -n$$

45.
$$a_n = 1 + n \sin \frac{n\pi}{2}$$

46. $a_n = \frac{1}{n-10.2}$

T5: Vypočítejte limity:

47.
$$\lim_{x\to 0} \frac{x^2-1}{2x^2-x-1}$$

57.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x} - x \right)$$

48.
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$

58.
$$\lim_{x \to -\infty} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right)$$

49.
$$\lim_{\substack{x\to 0\\m,n\in\mathbb{N}}} \frac{(1+mx)^n - (1+nx)^m}{x^2},$$

59.
$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

50.
$$\lim_{x \to \pm \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}}$$

60.
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

51.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 8x + 15}$$

61.
$$\lim_{x \to \pi} \frac{\sin mx}{\sin nx}, \quad m, n \in \mathbb{Z}$$

52.
$$\lim_{x\to 1} \frac{x^4 - 3x + 2}{x^5 - 4x + 3}$$

62.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$

53.
$$\lim_{x\to 16} \frac{\sqrt[4]{x}-2}{\sqrt{x}-4}$$

63.
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x}$$

54.
$$\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x} - 2}$$

64.
$$\lim_{x \to 0} x \cot 3x$$
65. $\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}$

55.
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

66.
$$\lim_{x\to 0} \frac{\sin 5x - \sin 3x}{\sin x}$$

55.
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{\sqrt{x} - 2}$$
56. $\lim_{x \to -8} \frac{\sqrt{1 - x} - 3}{2 + \sqrt[3]{x}}$

67.
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$

68.
$$\lim_{x \to +\infty} \left(\frac{x+2}{2x-1} \right)^{x^2}$$

$$69. \lim_{x\to 0} \left(\frac{\cos x}{\cos 2x}\right)^{\frac{1}{x^2}}$$

70.
$$\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$$

71.
$$\lim_{x\to 0} \frac{a^x - 1}{x}$$
, $a > 0$

72.
$$\lim_{x \to a} \frac{a^x - x^a}{x - a}, \quad a > 0$$

73.
$$\lim_{x\to 0} (x+e^x)^{\frac{1}{x}}$$

74.
$$\lim_{x\to 2} \arctan \frac{x-4}{(x-2)^2}$$

T6: Nalezněte body nespojitosti a určete jejich druh:

75.
$$f(x) = \frac{x}{(1+x)^2}$$

76.
$$f(x) = \frac{1+x}{1+x^3}$$

77.
$$f(x) = \frac{\frac{1}{x} - \frac{1}{x+1}}{\frac{1}{x-1} - \frac{1}{x}}$$

78.
$$f(x) = \frac{x}{\sin x}$$

79.
$$f(x) = \sqrt{\frac{1 - \cos \pi x}{4 - x^2}}$$

80.
$$f(x) = \cos^2 \frac{1}{x}$$

81.
$$f(x) = \operatorname{sgn} \sin \frac{\pi}{x}$$

82.
$$f(x) = \frac{\cos\frac{\pi}{x}}{\cos\frac{\pi}{x}}$$

83.
$$f(x) = \arctan \frac{1}{x}$$

84.
$$f(x) = \sqrt{x} \operatorname{arctg} \frac{1}{x}$$

85.
$$f(x) = e^{x + \frac{1}{x}}$$

86.
$$f(x) = \frac{1}{\ln x}$$

87.
$$f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$$

T7: Vypočítejte derivaci funkcí:

88.
$$f(x) = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$

89.
$$f(x) = \frac{2x}{1 - x^2}$$

90.
$$f(x) = \frac{1+x-x^2}{1-x+x^2}$$

91.
$$f(x) = \frac{x}{(1-x)^2(1+x)^3}$$

92.
$$f(x) = \frac{(1-x)^p}{(1+x)^q}$$

93.
$$f(x) = \frac{x^p(1-x)^q}{1+x}$$

94.
$$f(x) = x + \sqrt{x} + \sqrt[3]{x}$$

95.
$$f(x) = \frac{1}{x} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}$$

96.
$$f(x) = \sqrt[3]{x^2} - \frac{2}{\sqrt{x}}$$

97.
$$f(x) = x\sqrt{1+x^2}$$

98.
$$f(x) = \frac{x}{\sqrt{a^2 - x^2}}$$

99.
$$f(x) = \sqrt[3]{\frac{1+x^3}{1-x^3}}$$

100.
$$f(x) = \cos 2x - 2\sin x$$

101.
$$f(x) = (2 - x^2)\cos x + 2x\sin x$$

102.
$$f(x) = \sin \sin x$$

103.
$$f(x) = \frac{\sin^2 x}{\sin x^2}$$

104.
$$f(x) = \frac{\cos x}{2\sin^2 x}$$

105.
$$f(x) = (\sin^n x) \cos nx$$

106.
$$f(x) = \frac{1}{\cos^n x}$$

107.
$$f(x) = \frac{\sin x - x \cos x}{\cos x + x \sin x}$$

108.
$$f(x) = \operatorname{tg} \frac{x}{2} - \operatorname{cotg} \frac{x}{2}$$

109.
$$f(x) = \sin \cos^2 t g^3 x$$

110.
$$f(x) = e^{-x^2}$$

111.
$$f(x) = 2^{\lg \frac{1}{x}}$$

112.
$$f(x) = e^x (x^2 - 2x + 2)$$

113.
$$f(x) = \frac{(\ln 3)\sin x + \cos x}{3^x}$$

114.
$$f(x) = e^x + e^{e^x} + e^{e^{e^x}}$$

115.
$$f(x) = x^{a^a} + a^{x^a} + a^{a^x}, \quad a > 0$$

116.
$$f(x) = \ln^3 x^2$$

117.
$$f(x) = \ln \ln \ln x$$

118.
$$f(x) = \ln \ln^2 \ln^3 x$$

119.
$$f(x) = \frac{1}{4} \ln \frac{x^2 - 1}{x^2 + 1}$$

120.
$$f(x) = x(\sin \ln x - \cos \ln x)$$

121.
$$f(x) = \ln \operatorname{tg} \frac{x}{2} - (\cos x) \ln \operatorname{tg} x$$

122.
$$f(x) = \arctan \frac{x^2}{a}$$

123.
$$f(x) = \sqrt{x} - \arctan \sqrt{x}$$

124.
$$f(x) = \arccos \frac{1}{x}$$

125.
$$f(x) = \arcsin x$$

126.
$$f(x) = \arccos \cos^2 x$$

127.
$$f(x) = \arctan \frac{1+x}{1-x}$$

128.
$$f(x) = \ln\left(e^x + \sqrt{1 + e^{2x}}\right)$$

129.
$$f(x) = \arctan\left(x + \sqrt{1 + x^2}\right)$$

T8: Vypočítejte derivace funkcí y = f(x) daných implicitně:

130.
$$x^2 + 2xy - y^2 = 2x$$
, $y < x$ **133.** $\sqrt{x} + \sqrt{y} = \sqrt{a}$, $y > 0$ Vypočítejte $f'(2)$.

131.
$$y^2 = 2px$$
, $y > 0$

132.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $y > 0$

133.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
, $y > 0$

134.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, \quad y > 0$$

135.
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}, \quad y < x$$

T9: Geometrický význam derivace:

136. Napište rovnici tečny a normály ke grafu funkce

$$f(x) = (x+1)\sqrt[3]{3-x}$$

v bodech a) A = [-1, 0]; b) B = [2, 3]; c) C = [3, 0].

137. Ve kterých bodech grafu funkce $f(x) = 2 + x - x^2$ je tečna a) rovnoběžná s osou x; b) rovnoběžná s přímkou y = x?

- 138. Pod jakým úhlem protíná graf funkce $f(x) = \ln x$ osu x?
- 139. Pod jakým úhlem se protínají grafy funkcí $f(x) = x^2$ a $g(x) = \sqrt{x}$?
- **140.** Pod jakým úhlem se protínají grafy funkcí $f(x) = \sin x$ a $g(x) = \cos x$?
- T10: Pomocí diferenciálu vypočítejte přibližně hodnoty:
 - **141.** $\sqrt[3]{1,02}$

143. $\cos 151^{\circ}$

142. $\sin 29^{\circ}$

- **144.** arctg 1,05
- T11: Vypočítejte derivaci 2. řádu funkcí:
 - **145.** $f(x) = x\sqrt{1+x^2}$
- **149.** $f(x) = (1+x^2) \arctan x$

146. $f(x) = \frac{x}{\sqrt{1-x^2}}$

150. $f(x) = x \ln x$

147. $f(x) = e^{-x^2}$

151. $f(x) = \ln \varphi(x)$

148. $f(x) = \operatorname{tg} x$

- **152.** $f(x) = x(\sin \ln x + \cos \ln x)$
- **T12:** Vypočítejte *n*-tou derivaci funkcí:
 - **153.** $f(x) = \frac{1}{1-x}$

155. $f(x) = \sin^2 x$

154. $f(x) = \cos x$

- **156.** $f(x) = e^x \sin x$
- T13: Dokažte nerovnosti
 - **157.** $|\sin x \sin y| \le |x y|$
 - **158.** $e^x > 1 + x$ pro $x \neq 0$
 - **159.** $x \frac{x^2}{2} < \ln(1+x) < x$ pro x > 0
 - **160.** $x \frac{x^3}{6} < \sin x < x \text{ pro } x > 0$
- T14: Najděte intervaly, na kterých je funkce rostoucí, resp. klesající:
 - **161.** $f(x) = 2 + x x^2$
- **164.** $f(x) = \frac{\sqrt{x}}{x + 100}$

162. $f(x) = 3x - x^3$

165. $f(x) = x + \sin x$

163. $f(x) = \frac{2x}{1+x^2}$

166. $f(x) = x + |\sin 2x|$

167.
$$f(x) = \cos \frac{\pi}{x}$$

169.
$$f(x) = x^n e^{-x}, \quad n > 0, \ x \ge 0$$

168.
$$f(x) = \frac{x^2}{2^x}$$

170.
$$f(x) = x^2 - \ln x^2$$

T15: Najděte lokální extrémy funkcí:

171.
$$f(x) = 2 + x - x^2$$

181.
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x + 1}$$

172.
$$f(x) = (x-1)^4$$

182.
$$f(x) = \sqrt{2x - x^2}$$

173.
$$f(x) = x^m (1-x)^n, m, n \in \mathbb{N}$$

183.
$$f(x) = x\sqrt[3]{x-1}$$

174.
$$f(x) = \cos x + \cosh x$$

184.
$$f(x) = xe^{-x}$$

175.
$$f(x) = (x+1)^{10}e^{-x}$$

185.
$$f(x) = \frac{\ln^2 x}{x}$$

176.
$$f(x) = |x|$$

186.
$$f(x) = \cos x + \frac{1}{2}\cos 2x$$

177.
$$f(x) = x^{\frac{1}{3}}(1-x)^{\frac{2}{3}}$$

187.
$$f(x) = \frac{10}{10}$$

178.
$$f(x) = x^3 - 6x^2 + 9x - 4$$

187.
$$f(x) = \frac{10}{1 + \sin^2 x}$$

179.
$$f(x) = x(x-1)^2(x-2)^3$$

188.
$$f(x) = \arctan x - \frac{1}{2} \ln(1 + x^2)$$

180.
$$f(x) = x + \frac{1}{x}$$

189.
$$f(x) = e^x \sin x$$

T16: Vyšetřete konvexnost, resp. konkávnost, funkcí:

190.
$$f(x) = 3x^2 - x^3$$

194.
$$f(x) = x + \sin x$$

191.
$$f(x) = \frac{a^3}{a^2 + r^2}, \quad a > 0$$

195.
$$f(x) = e^{-x^2}$$

192.
$$f(x) = x + \sqrt[3]{x^5}$$

196.
$$f(x) = \ln(1+x^2)$$

102
$$f(x) = \sqrt{1 + x^2}$$

197.
$$f(x) = x \sin \ln x$$

193.
$$f(x) = \sqrt{1 + x^2}$$

198.
$$f(x) = x^x, \quad x > 0$$

T17: Pomocí l'Hospitalova pravidla vypočítejte limity:

$$199. \lim_{x \to 0} \frac{\sin ax}{\sin bx}$$

201.
$$\lim_{x \to 0} \frac{\operatorname{tg} x - x}{x - \sin x}$$

6

200.
$$\lim_{x\to 0} \frac{\cosh x - \cos x}{x^2}$$

202.
$$\lim_{x \to 0} \frac{3 \operatorname{tg} 4x - 12 \operatorname{tg} x}{3 \sin 4x - 12 \sin x}$$

203.
$$\lim_{x \to \frac{\pi}{2}} \frac{\lg 3x}{\lg x}$$

204.
$$\lim_{x\to 0} \frac{x \cot x - 1}{x^2}$$

205.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\tan x} - 1}{2\sin^2 x - 1}$$

206.
$$\lim_{x \to 0} \frac{x(e^x + 1) - 2(e^x - 1)}{x^3}$$

207.
$$\lim_{x\to 0} \frac{1-\cos x^2}{x^2\sin x^2}$$

208.
$$\lim_{x\to 0} \frac{a^x - a^{\sin x}}{x^3}, \quad a>0$$

209.
$$\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$$

210.
$$\lim_{x \to 0} \frac{\ln \sin ax}{\ln \sin bx}$$

$$\mathbf{211.} \lim_{x \to 0} \frac{\cos \sin x - \cos x}{x^4}$$

212.
$$\lim_{x \to +\infty} \frac{x^n}{e^{ax}}$$
, $a > 0$, $n > 0$

213.
$$\lim_{x\to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}}$$

214.
$$\lim_{x \to +\infty} x^2 e^{-0.01x}$$

215.
$$\lim_{x \to 1^{-}} (\ln x) \ln(1-x)$$

216.
$$\lim_{x\to 0+} x^{\varepsilon} \ln x$$
, $\varepsilon > 0$

217.
$$\lim_{x\to 0+} x^x$$

218.
$$\lim_{x\to 0} x^{x^x-1}$$

219.
$$\lim_{x\to 0} \left(x^{x^x}-1\right)$$

220.
$$\lim_{x\to 0+} x^{\frac{k}{1+\ln x}}$$

221.
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

222.
$$\lim_{x\to 1} (2-x)^{\operatorname{tg} \frac{\pi x}{2}}$$

223.
$$\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$$

224.
$$\lim_{x\to 0} (\cot x)^{\sin x}$$

225.
$$\lim_{x\to 0+} \left(\ln \frac{1}{x}\right)^x$$

226.
$$\lim_{x\to 0} \left(\frac{a^x - x \ln a}{b^x - x \ln b}\right)^{\frac{1}{x^2}}$$

227.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

228.
$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$

229.
$$\lim_{x\to 0} \left(\cot x - \frac{1}{x} \right)$$

T18: Určete Taylorovy nebo Maclaurinovy polynomy daného stupně s v okolí bodu c funcí:

230.
$$f(x) = \frac{1}{x}$$
, $c = 2$, $s = 4$

231.
$$f(x) = \sqrt{x}$$
, $c = 1$, $s = 4$

232.
$$f(x) = \frac{1}{\cos x}, \quad c = 0, \quad s = 4$$

233.
$$f(x) = x^2 + 2x + 3$$
, $c = -2$, $s = 99$

- **T19:** Pomocí Taylorova vzorce vypočítejte přibližně
 - **234.** $\sqrt[3]{30}$

239. ln 1.2

235. $\sqrt[5]{250}$

240. arctg 0.8

236. $\sqrt[12]{4000}$

241. $\arcsin 0.45$

237. \sqrt{e}

238. $\sin 18^{\circ}$

- **242.** 1.1^{1.2}
- **T20:** Odhadněte chybu Maclaurinova polynomu:
 - **243.** stupně 5 funkce $\sin x$ při aproximaci $\sin 0.2$
 - **244.** stupně 6 funkce $\cos x$ při aproximaci $\cos 1$
 - **245.** stupně 2 funkce $\frac{1}{\cos^2 x}$ při aproximaci $\frac{1}{\cos^2 x}$
- **T21:** Určete Maclaurinovu řadu funcí:

246.
$$f(x) = e^x$$

249.
$$f(x) = \sin x$$

247.
$$f(x) = 2^x$$

250.
$$f(x) = \cos x$$

248.
$$f(x) = \frac{1}{1-x}$$

251.
$$f(x) = \ln(1+x)$$

T22: Vyšetřete průběh funkcí a nakreslete jejich grafy:

252.
$$f(x) = 3x - x^3$$

260.
$$f(x) = \frac{x^3}{3 - x^2}$$

253.
$$f(x) = (x^2 - 1)^3$$

261.
$$f(x) = \frac{x^4}{x^3 - 2}$$

254.
$$f(x) = x^2 - 4|x| + 3$$

262.
$$f(x) = \frac{x^2(x-1)}{(x+1)^2}$$

255.
$$f(x) = 1 + x^2 - \frac{x^4}{2}$$

263.
$$f(x) = \frac{x}{(1-x^2)^2}$$

256.
$$f(x) = (x+1)(x-2)^2$$

264.
$$f(x) = \frac{x^4}{(x+1)^3}$$

257.
$$f(x) = \frac{x}{1+x^2}$$

265.
$$f(x) = \left(\frac{1+x}{1-x}\right)^4$$

258.
$$f(x) = \frac{x}{x^2 - 1}$$

266.
$$f(x) = \frac{x}{(1+x)(1-x)^2}$$

259. $f(x) = \frac{x^2}{x^2 - 1}$

267.
$$f(x) = \frac{x^2 - 1}{x^2 - 5x + 6}$$

268.
$$f(x) = \frac{x^4 + 8}{x^3 + 1}$$

269.
$$f(x) = \frac{2 - x^2}{1 + x^4}$$

270.
$$f(x) = \frac{1}{x} + 4x^2$$

271.
$$f(x) = x^2 + \frac{1}{x^2}$$

272.
$$f(x) = (x-3)\sqrt{x}$$

273.
$$f(x) = \sqrt{8x^2 - x^4}$$

274.
$$f(x) = \frac{x-2}{\sqrt{x^2+1}}$$

275.
$$f(x) = \sin x + \cos^2 x$$

276.
$$f(x) = x + \sin x$$

277.
$$f(x) = 2x - \operatorname{tg} x$$

278.
$$f(x) = x^2 e^{-x}$$

279.
$$f(x) = xe^{-x}$$

T23: Najděte primitivní funkce:

293.
$$\int \frac{dx}{x+a}$$

294.
$$\int (2x-3)^{10} dx$$

295.
$$\int \sqrt[3]{1-3x} \, dx$$

296.
$$\int \frac{dx}{4+9x^2}$$

297.
$$\int (\sin 5x - \sin 5\alpha) \, dx$$

298.
$$\int \frac{dx}{\sin^2(2x + \frac{\pi}{4})}$$

299.
$$\int \sin^2 x \, dx$$

280.
$$f(x) = \frac{e^x}{x}$$

281.
$$f(x) = e^{2x-x^2}$$

282.
$$f(x) = \frac{e^x}{1+x}$$

283.
$$f(x) = \frac{1}{e^x - 1}$$

284.
$$f(x) = x + e^{-x}$$

285.
$$f(x) = \sqrt{x} \ln x$$

286.
$$f(x) = \frac{\ln x}{\sqrt{x}}$$

287.
$$f(x) = x^2 \ln^2 x$$

288.
$$f(x) = \ln(x^2 + 1)$$

289.
$$f(x) = x - \ln(x+1)$$

290.
$$f(x) = x + \frac{\ln x}{x}$$

291.
$$f(x) = \ln \cos x$$

292.
$$f(x) = x + \arctan x$$

300.
$$\int \frac{x \, dx}{3 - 2x^2}$$

301.
$$\int \frac{x \, dx}{(1+x^2)^2}$$

302.
$$\int \frac{x \, dx}{4 + x^4}$$

303.
$$\int \frac{dx}{e^x + e^{-x}}$$

304.
$$\int \operatorname{tg} x \, dx$$

305.
$$\int \cot x \, dx$$

306.
$$\int \frac{\cos^3 x}{\sin x} dx$$

T24: Metodou per partes najděte primitivní funkce:

307.
$$\int x \ln x \, dx$$

311.
$$\int \ln^2 x \, dx$$

308.
$$\int \ln x \, dx$$

312.
$$\int xe^{-x} dx$$

$$309. \int \sqrt{x} \ln^2 x \, dx$$

313.
$$\int x \sin^2 x \, dx$$

$$310. \int \frac{\ln^2 x}{x^2 \sqrt{x}} dx$$

314.
$$\int x^2 \sin 2x \, dx$$

T25: Rozkladem na parciální zlomky najděte primitivní funkce:

315.
$$\int \frac{dx}{(x-1)(x+3)}$$

320.
$$\int \frac{x \, dx}{x^3 - 3x + 2}$$

316.
$$\int \frac{dx}{x^2 + x - 2}$$

321.
$$\int \frac{dx}{(x+1)(x^2+1)}$$

317.
$$\int \frac{x \, dx}{(x+2)(x+3)}$$

322.
$$\int \frac{dx}{x^3+1}$$

318.
$$\int \frac{2x+3}{(x-2)(x+5)} \, dx$$

323.
$$\int \frac{x \, dx}{x^3 - 1}$$

319.
$$\int \frac{x \, dx}{2x^2 - 3x - 2}$$

324.
$$\int \frac{dx}{x^4-1}$$

T26: Použitím Leibnizova–Newtonova vzorce vypočítejte integrály:

325.
$$\int_{-1}^{8} \sqrt[3]{x} \, dx$$

328.
$$\int_0^2 |1 - x| \, dx$$

$$326. \int_0^\pi \sin x \, dx$$

329.
$$\int_0^{100\pi} \sqrt{1 - \cos 2x} \, dx$$

327.
$$\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1+x^2}$$

330.
$$\int_0^1 a^x dx$$
, $a > 0$

T27: Pomocí Riemannova integrálu vypočítejte limity posloupností:

331.
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$
 [ln 2]

332.
$$\lim_{n\to\infty} n\left(\frac{1}{n^2+1^2}+\frac{1}{n^2+2^2}+\cdots+\frac{1}{2n^2}\right)$$
 $\left[\frac{\pi}{4}\right]$

333.
$$\lim_{n\to\infty}\frac{1}{n}\left(\sin\frac{\pi}{n}+\sin\frac{2\pi}{n}+\cdots+\sin\frac{n-1}{n}\pi\right)$$
 $\left[\frac{2}{\pi}\right]$

334.
$$\lim_{n\to\infty} \frac{1}{n} \left(\sqrt{1+\frac{1}{n}} + \sqrt{1+\frac{2}{n}} + \dots + \sqrt{1+\frac{n}{n}} \right)$$
 $\left[\frac{2}{3} (\sqrt{8} - 1) \right]$

335.
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}$$

336.
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{2n-1}{n^2}\right)$$
 [2]