Jump and volatility risk in the cross-section of corporate bond returns

Xi Chen Junbo Wang, Chunchi Wu (Journal of Financial Markets, 2022)

1.Introduction

aggregate risks--stock return: focused on the time series

- aggregate volatility has important implications for asset prices in the cross-section (Ang et al., 2006; Chung , 2019)
- a significant temporal relation between systematic jump risk and stock market returns (Bates, 1991; Santa, 2010; Yan, 2011).
- → whether jump risk is priced in the cross-section of corporate bond returns?

1.Introduction

Debate: whether aggregate jump and volatility priced separately?

- market more volatile when there are large price movements → jump and volatility risk are alike
- Aggregate volatility risk is a combination of jump and diffusive risk and earlier cross-sectional studies did not attempt to separate these effects (Ang et al., 2006a,b)

Branger et al. (2007) present a general equilibrium model with both jumps and stochastic volatility

Bates (2008) develops a model with risk- and crash-averse investors, who treat jump and diffusive risk differently and require separate premiums

Chen (2010) proposes a model that links jump risk to macroeconomic shocks and finds that both jump and Brownian risks are important determinants of the credit risk premium.

1.Introduction

Empirical:

- Cremers et al. (2015) are the first to investigate both jump and vol risk in the cross-section of stock returns--high return sensitivities to aggregate jump risk have low expected returns: investors are crash-averse-- seek to hedge against extreme events
- However, it remains unclear whether jump risk is priced in other classes of risky assets, such as corporate bonds

stock risk factor ofen priced in bond;

contingent claims for cash flows of the same firm;

Firms with bond issues have **higher exposure to bankruptcy** risk than those without.

2.1. The pricing of jump risk

A structural model for corporate debts with jump:

$$dV_{t} = \widehat{\mu} V_{t} dt + \sigma V_{t} d\widehat{W}_{t} - \nu V_{t-} d(N_{t} - \widehat{\lambda} t)$$

$$= (\widehat{\mu} + \nu \widehat{\lambda}) V_{t} dt + \sigma V_{t} d\widehat{W}_{t} - \nu V_{t-} dN_{t},$$

Firm's income before interest expense $V_{i,t}$ follows a stochastic process that includes a geometric Brownian motion with average growth rate $\hat{\mu}$ and volatility σ , and a jump process.

where W_t is a standard Brownian motion, N_t is a jump process, $\hat{\lambda}$ is the jump intensity, v is the loss rate when a jump shock occurs, and $N_t - \hat{\lambda}t$ is the compensated jump process.

2.1. The pricing of jump risk

Assume that the firm's debt is a consol bond with a coupon payment C. When a firm is solvent, the claim on the firm's asset satisfies the equation:

$$\frac{1}{2}\sigma^{2}V_{t}^{2}\frac{\partial^{2}}{\partial V^{2}}F(V_{t}) + (\mu + \nu\lambda)V_{t}\frac{\partial}{\partial V}F(V_{t}) - rF(V_{t}) + C + \lambda[F(V_{t-}(1-\nu)) - F(V_{t-})] = 0$$

merton(1974)BS定价的偏微分方程

$$\begin{cases} V_t < C \\ V_t(1-\nu) < C \end{cases} \xrightarrow{\text{assume}} F(V_t(1-\nu)) = 0 \\ \frac{1}{2}\sigma^2 V_t^2 \frac{\partial^2}{\partial V^2} F(V_t) + (\mu + \nu \lambda) V_t \frac{\partial}{\partial V} F(V_t) - rF(V_t) + C - \lambda F(V_{t-}) = 0. \\ \text{subject to} \quad F(C) = 0. \qquad V_t \to \infty, F(V_t) \to \frac{C}{r+\lambda} \end{cases}$$

2.1. The pricing of jump risk

$$\frac{1}{2}\sigma^2 V_t^2 \frac{\partial^2}{\partial V^2} F(V_t) + (\mu + \nu \lambda) V_t \frac{\partial}{\partial V} F(V_t) - rF(V_t) + C - \lambda F(V_{t-}) = 0.$$

$$F(C) = 0.$$

subject to
$$F(C) = 0$$
. $V_t \to \infty, F(V_t) \to \frac{C}{r + \lambda}$

$$F(V_t) = \frac{C}{r+\lambda} \left[1 - \left(\frac{V_t}{C}\right)^b \right] \qquad b = -\frac{1}{\sigma^2} \left[(\mu + \nu\lambda) - \frac{\sigma^2}{2} + \sqrt{\left(\mu + \nu\lambda - \frac{\sigma^2}{2}\right)^2 + 2(r+\lambda)\sigma^2} \right]$$

both jump(λ) and volatility (σ) risk affect the value of corporate bonds.

2.1. The pricing of jump risk

The yield spread of this bond is given by:

$$s(V_t) = y_t - r = \frac{C}{F(V_t)} - r = \frac{r + \lambda}{1 - (\frac{V_t}{C})^b} - r$$

The expected bond return at time t in the first-order approximation is equal to:

$$E_t(R_{t+1}) = y_t \times dt - MD \times \Delta y_{t+1}$$
 $y_t = \frac{r+\lambda}{1-\left(\frac{V_t}{C}\right)^b}$

Setting dt = 1,
$$E_t(R_{t+1}) - r = (y_t - r) - MD \times \Delta y_{t+1}$$

- both jump and volatility risk affect the bond's expected return.σ⇒b
- jump and volatility risk are priced separately in expected corporate bond returns.

2.2. Jump and volatility factors

Two option trading strategies (Cremers et al., 2015):

JUMP: market (delta)-neutral and vega-neutral but gamma-positive

- Long: 1 market-neutral at-the-money straddle with a shorter maturity
- Short: <1 unit of market-neutral at-the-money straddle with a longer maturity.

Due to a positive gamma: positive return - a large move.

9

2.2. Jump and volatility factors

VOLA: market (delta)-neutral and gamma-neutral but vega-positive

- Long: 1 market-neutral at-the-money straddle with a longer maturity
- Short: <1 unit of market-neutral at-the-money straddle with a shorter maturity.

Due to a positive vega: positive return - volatility increases

two pairs of at-the-money call and put **S&P 500 Index options** on one trading day, and another two pairs of at-the-money options the next day

→ portfolios daily returns on the jump and volatility risk factors.

2.3. Jump and volatility betas

预期: 负, 风险厌恶

$$R_{t}^{i} = \alpha_{i} + \beta_{MKT_{t}}^{i} \cdot MKT_{t} + \beta_{MKT_{t-1}}^{i} \cdot MKT_{t-1} + \beta_{X_{t}}^{i} \cdot X_{t} + \beta_{X_{t-1}}^{i} \cdot X_{t-1} + \varepsilon_{t}^{i}$$

- R_t^i : return in excess of the one-month Treasury bill rate (bond i in month t)
- MKT_t: excess return on the stock market portfolio
- X_t : return on either the jump or volatility risk factor mimicking portfolio
- rolling 24-month window
- exclude other conventional risk factors to reduce noise(Ang,2006; Cremers,2015)
- bond transactions infrequent \Rightarrow prices not respond quickly \Rightarrow add lagged \Rightarrow $\beta^i_{X_t} + \beta^i_{X_{t-1}}$ as beta

3.Data

- enhanced TRACE: transaction data of all publicly traded corporate bonds
- Mergent FISD: bond issue- and issuer-related characteristics

data clean:

- exclude bonds with call, put, and conversion options, sinking funds, and bonds backed by assets or mortgages
- exclude bonds maturity <1 or >30

Bessembinder et al. (2009)

- eliminate cancelled, corrected, commission, and small (below \$100,000) trades
- → 9104 bonds issued by 1737 firms from July 2002 to June 2019.

3.Data

daily prices: the trade size-weighted average of intraday prices

$$R_{t} = \frac{(P_{t} + AI_{t}) + C_{t} - (P_{t-1} + AI_{t-1})}{P_{t-1} + AI_{t-1}}$$

 P_t : month-end price ; AI_t :accrued interest ; C_t :coupon payment if any.

The S&P 500 Index option data are from OptionMetrics.

Consider the S&P 500 Index options with a maturity of 30 days as shorter-dated options and 60 days as longer-dated options

 For jump risk, there are more positive (up) jumps, especially in the later part of our sample period coincident with the recent long bull market

3.Data

	Mean	Std. dev.	Median	Q1	Q3
Panel A: Bond charact	eristics				
Rating	6.0605	3.6590	5.0000	4.0000	8.0000
Size	0.9043	7.0857	0.4000	0.2000	1.0000
Maturity	6.7467	6.4923	4.2083	2.3750	8.4611
Age	5.9171	5.2535	4.3222	1.8583	8.2667
Coupon	5.7011	1.9752	5.8750	4.3750	7.1250
Panel B: Risk factors					
MKT	0.0073	0.0418	0.0118	-0.0143	0.0324
SMB	0.0014	0.0243	0.0017	-0.0145	0.0179
HML	-0.0007	0.0246	-0.0023	-0.0140	0.0129
DEF	0.0029	0.0172	0.0029	-0.0064	0.0137
TERM	0.0032	0.0199	0.0019	-0.0077	0.0141
LIQ	0.0000	0.0039	-0.0002	-0.0015	0.0011
VIX	18.9696	8.5121	16.2842	13.4793	21.401
JUMP	0.0358	0.1001	0.0225	-0.0234	0.0944
VOLA	-0.0002	0.0332	-0.0009	-0.0224	0.0234
Panel C: Betas	11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	100000000000000000000000000000000000000		0.000 1.000 900 00000	
Excess return	0.0043	0.0192	0.0028	-0.0028	0.0111
Raw return	0.0054	0.0191	0.0040	-0.0015	0.0122
β_{MKT}	0.0217	0.1701	0.0147	-0.0306	0.0701
β_{SMB}	-0.0043	0.1962	-0.0091	-0.0528	0.0384
β_{HML}	0.0031	0.2039	0.0008	-0.0663	0.0597
β_{DEF}	0.3165	0.4543	0.2246	0.0568	0.5003
β_{TERM}	0.3614	0.3073	0.3198	0.1671	0.5312
β_{LQ}	0.1620	1.7051	0.1691	-0.2758	0.5788
β_{VIX}	-0.0003	0.0017	-0.0002	-0.0008	0.0002
β_{JUMP}	-0.0524	0.0958	-0.0448	-0.0896	-0.01
β_{VOLA}	-0.0406	0.1785	-0.0216	-0.1147	0.0494

• frequent large up jumps in sample can explain the positive average return

Fig. 3. Monthly returns on the JUMP and VOLA factors. This figure shows the monthly return series of the JUMP and VOLA factors constructed by the investable option approach from July 2002 to June 2019.

Fig. 4. Cumulative daily returns on the JUMP and VOLA factors

- JUMP factor is more volatile.
- both strategies earn negative average returns in the long term

3.Data

We estimate the betas of standard risk factors over rolling two-year horizons using the following time series regression:

$$R_{t}^{i} = \alpha_{i} + \beta_{MKT_{t}}^{i} \cdot MKT_{t} + \beta_{SMB_{t}}^{i} \cdot SMB_{t} + \beta_{HML_{t}}^{i} \cdot HML_{t} + \beta_{DEF_{t}}^{i} \cdot DEF_{t} + \beta_{TERM_{t}}^{i} \cdot TERM_{t} + \beta_{LIQ_{t}}^{i} \cdot LIQ_{t} + \varepsilon_{t}^{i},$$

 $R_{i,t}$ and risk factors are measured over a two-year investment horizon

S	P														
	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{VIX}	β_{JUMP}	β_{VOLA}	ILLIQ	Maturity	Age	Coupon	Size	Rating
β_{MKT}		-0.1833	0.1548	-0.4800	0.0571	0.0530	-0.2977	-0.0101	-0.0121	0.0179	-0.0072	0.0111	0.0580	0.0234	0.1805
β_{SMB}	-0.2039		-0.1003	-0.0292	0.1320	-0.0393	0.0642	0.0462	-0.0463	0.0059	0.0095	0.0303	0.0106	-0.0050	-0.0276
β_{HML}	0.1359	-0.1046		-0.2595	0.1234	0.0167	0.0345	0.0096	-0.0288	0.0307	0.0090	0.0026	0.0161	0.0103	0.0881
β_{DEF}	-0.3678	-0.0251	-0.2076		-0.0950	-0.0483	0.0756	-0.0415	-0.0872	0.0753	0.1683	0.0367	0.0926	-0.0188	0.1075
β_{TERM}	0.0854	0.1049	0.0811	-0.0182		-0.1319	0.0210	-0.1081	-0.1090	0.1131	0.4655	0.0116	0.1259	0.1039	-0.0188
β_{LIQ}	-0.0086	-0.0698	-0.0449	0.0381	-0.0910		-0.0292	-0.0270	0.0089	-0.0199	-0.0166	0.0007	-0.0063	0.0046	-0.0148
β_{VIX}	-0.3547	0.0617	0.0355	0.0768	0.0024	-0.0628		0.1936	0.1279	-0.0282	-0.0020	-0.0338	-0.0711	0.0257	-0.1701
β_{JUMP}	-0.0534	0.0677	0.0383	-0.0803	-0.1958	-0.0622	0.2254		0.2385	-0.1233	-0.1533	-0.0211	-0.0782	0.0418	-0.0961
β_{VOLA}	-0.0301	-0.0285	0.0040	-0.1339	-0.1564	0.0097	0.1373	0.2258		-0.1373	-0.1599	-0.0732	-0.1318	0.0521	-0.1890
ILLIQ	-0.0039	0.0052	0.0154	0.1301	0.2589	-0.0237	-0.0285	-0.1261	-0.1493		0.3665	0.3605	0.3266	-0.4761	0.2674
Maturity	0.0399	-0.0030	0.0028	0.1396	0.6592	-0.0125	-0.0170	-0.2090	-0.2107	0.4809		0.1957	0.3326	-0.0660	0.1221
Age	-0.0114	0.0495	-0.0007	0.0936	-0.0295	-0.0068	-0.0218	-0.0162	-0.0666	0.4653	0.1030		0.7185	-0.3301	0.2847
Coupon	0.0590	0.0213	0.0235	0.1703	0.1682	-0.0034	-0.0800	-0.1089	-0.1641	0.4542	0.3692	0.6967		-0.2238	0.4505
Size	0.0423	-0.0283	-0.0096	-0.0230	0.1411	0.0122	0.0047	0.0027	0.0430	-0.5224	-0.0474	-0.3660	-0.2535		-0.2049
Rating	0.1533	-0.0011	0.0868	0.2222	0.0191	-0.0112	-0.1639	-0.1029	-0.2035	0.3048	0.1562	0.2907	0.4699	-0.2406	

The Spearman (Pearson) correlation between β JUMP and β VOLA is 0.23 (0.24), which is quite moderate

4. Empirical results

Panel A: Mean betas, excess returns, characteristic-adjusted returns, and alphas of quintile portfolios

	Portfolios s	orted by β_{JUMP}					
	1	2	3	4	5	5–1	t-stat
β_{JUMP}	-0 <u>.2109</u>	-0.0831	-0.0383	-0.0001	0.1132	0.3241***	(7.97)
β_{VOLA}	-0.0978	-0.1520	-0.0677	-0.0351	-0.1257	-0.0279	(-0.09)
Return	0.1235	0.0916	0.0746	0.0668	0.0656	-0.0578***	(-5.18)
AdjRet	0.0154	0.0073	0.0010	-0.0036	-0.0234	-0.0388***	(-3.94)
Return Alpha	0.1077	0.0759	0.0613	0.0589	0.0354	-0.0724***	(-11.83)
AdjRet Alpha	0.0241	0.0103	-0.0003	-0.0033	-0.0358	-0.0599***	(-9.90)

	Portfolios s	orted by β_{VOLA}					
	1	2	3	4	5	5–1	t-stat
β_{JUMP}	-0.0478	-0.0189	-0.0123	-0.0159	0.0091	0.0570	(0.60)
β_{VOLA}	-0.4597	-0.1674	-0.0666	0.0143	0.2283	0.6880***	(8.47)
Return	0.1224	0.0910	0.0763	0.0732	0.0628	-0.0596***	(-4.77)
AdjRet	0.0146	0.0075	0.0032	-0.0021	-0.0270	-0.0416***	(-5.20)
Return Alpha	0.0942	0.0793	0.0627	0.0654	0.0397	-0.0545***	(-5.23)
AdjRet Alpha	0.0172	0.0146	0.0028	-0.0018	-0.0379	-0.0551***	(-11.83)

- There is no evidence of a monotonic relation between β_{JUMP} and β_{VOLA} across the quintiles sorted on either factor loading.
- β_{JUMP} (β_{VOLA}) quintile portfolios (5–1) is -5.78% (-5.96%) per biennium, or -24.08 (-24.83) bps per month;**bonds with high sensitivities to jump** (volatility) risk have low returns.
- rating/maturity-adjusted excess returns: robust

4. Empirical results

Panel B: Mean values of other betas and bond characteristics of quintile portfolios

	Portfolios sorte	ed by β_{JUMP}				Portfolios son	ted by β_{VOLA}			
	1	2	3	4	5	1	2	3	4	5
β_{MKT}	0.0585	0.0427	0.0313	0.0315	0.0571	0.0582	0.0398	0.0360	0.0338	0.0533
β_{SMB}	-0.0400	-0.0337	-0.0176	-0.0067	-0.0176	0.0047	-0.0249	-0.0155	-0.0268	-0.0530
β_{HML}	0.0149	-0.0145	-0.0062	0.0126	0.0399	0.0353	0.0010	-0.0052	0.0041	0.0113
β_{DEF}	0.1959	0.0900	0.0459	0.0264	0.1471	0.2517	0.0830	0.0215	0.0278	0.1218
β_{TERM}	0.6016	0.4607	0.3891	0.3372	0.4521	0.5694	0.4699	0.3710	0.3542	0.4767
β_{LIQ}	0.0758	-0.1368	-0.1559	0.1252	-0.3771	0.1419	0.0451	-0.0830	-0.1674	-0.4057
Rating	7.5553	6.0148	5.4987	5.3665	7.2849	8.3397	6.2253	5.3646	5.1742	6.6147
Size	0.8685	1.2307	1.0198	1.0707	0.8728	0.7877	1.1286	1.2280	1.0899	0.8274
Maturity	9.2092	5.2054	3.6606	3.6150	7.4619	9.0549	5.5115	3.8219	3.6976	7.0735
Age	7.8259	6.8376	6.4631	6.3088	8.0571	8.3496	6.8552	6.3178	6.3048	7.6636
Coupon	6.0405	5.4937	5.1938	5.0198	5.8795	6.2342	5.5416	5.1229	5.0263	5.7025

• the negative relation between cross-sectional bond returns and β_{JUMP} (β_{VOLA}) is not correlated with systematic variations in **conventional betas** or **bond characteristics**.

5 × 5 independent double sorts on β_{IUMP} and β_{VOLA} each month

	β_{VOLA}										
β_{JUMP}		1		2	3		4	5		5–1	t-stat
	1	0.134	45	0.1216	0.1179		0.1125	0.0663		-0.0681***	(-6.41
	2	0.107		0.0906	0.0835		0.0910	0.0858		-0.0222**	(-2.50
	3	0.106	54	0.0785	0.0668	3	0.0676	0.0749	9	-0.0315**	(-2.22
	4	0.10	17	0.0817	0.0629)	0.0581	0.0638	ā	-0.0378**	(-2.05
	5	0.069	95	0.0774	0.0712	2	0.0636	0.0438	1	-0.0257**	(-2.03
	5–1		650***	-0.0441***	-0.04	67***	-0.0489***	-0.0225	5**		
	t-stat	(-5.3	1)	(-3.75)	(-4.20))	(-3.72)	(-2.56)			
Panel B: 5	Summary o	of bond charac	cteristics								
		$\frac{\beta_{VOLA}}{1}$	2	3	4	5	1	2	3	4	5
β_{JUMP}		Number of	Bonds				Rating				0200
	- 1	78	38	22	22	44	8.4580	7.0224	6.6932	6.6852	7.700
	2	36	50	46	42	32	7.6768	5.9745	5.4756	5.6018	6.140
	3	21	42	61	53	28	7.9463	5.7880	4.9524	4.9389	5.763
	4	22	40	49	54	39	8.0745	6.1964	4.9857	4.7316	5.413
	5	47	35	27	33	62	8.7653	6.9452	6.1086	5.6130	6.573
	-	Size).);			Coupon				
	1	0.8301	0.8564	1.9220	0.9654	0.5594	6.2656	5.8876	5.8199	5.8682	6.130
	2	0.8294	1.1333	1.8707	1.3753	0.6794	6.0171	5.4929	5.3002	5.3768	5.805
	3	0.6718	1.1299	1.0185	1.1558	0.7814	6.1246	5.3892	4.9648	4.9662	5.435
	4	0.6261	1.1486	1.0369	1.0695	0.9449	6.2266	5.5218	4.8533	4.7879	5.190
	5	0.5283	0.8545	0.9803	0.8915	1.0199	6.4288	5.9101	5.4960	5.2053	5.600
		Maturity									
	1	10.3579	8.4640	7.7085	7.8736	8.4783					
	2	7.8747	4.9966	4.1397	4.5527	6.0760					
	3	7.5376	4.1085	2.9283	2.7537	4.5768					
	4	7.7759	4.5468	2.8071	2.5128	4.3328					
	5	9.0789	6.4476	5.1134	4.6927	7.2250					

• jump and volatility risk contain separate information and do not subsume each other; robust in all segments of bonds with different characteristics.

20

4. Empirical results

5 × 5 double- sorting on β_{IUMP} and β_{VOLA} each month

$\{\beta_{\{JUMP\}\}}\}$	Long-short re	turns for each o	quintile portfoli	О				Long-short all	ohas for each qu	uintile portfolio				
control variable	1	2	3	4	5	H-L	t-stat	1	2	3	4	5	H-L	t-stat
Maturity	-0.0483***	-0.0442***	-0.0364***	-0.0297***	-0.0671***	-0.0451***	(-3.83)	-0.0452***	-0.0423***	-0.0458***	-0.0567***	-0.1308***	-0.0642***	(-7.87)
Соироп	-0.0204**	-0.0351**	-0.0438***	-0.0581***	-0.0819***	-0.0479***	(-4.49)	-0.0459***	-0.0712***	-0.0427***	-0.0768***	-0.0993***	-0.0672***	(-15.56
Size	-0.0852***	-0.0538***	-0.0498***	-0.0542***	-0.0449***	-0.0576***	(-4.98)	-0.1222***	-0.0529***	-0.0684***	-0.0563***	-0.0388***	-0.0677***	(-11.43
Age	-0.0358***	-0.0457***	-0.0599***	-0.0594***	-0.0792***	-0.0560***	(-4.93)	-0.0602***	-0.0483***	-0.0490***	-0.0758***	-0.1109***	-0.0688***	(-11.40
β_{MKT}	-0.0616***	-0.0424***	-0.0364***	-0.0403***	-0.0816***	-0.0524***	(-5.07)	-0.0857***	-0.0452***	-0.0435***	-0.0515***	-0.1116***	-0.0675***	(-13.06)
β_{SMB}	-0.0753***	-0.0486***	-0.0402***	-0.0433***	-0.0575***	-0.0530***	(-4.98)	-0.0986***	-0.0616***	-0.0429***	-0.0582***	-0.0787***	-0.0680***	(-11.78
β_{HML}	-0.0618***	-0.0388***	-0.0398***	-0.0411***	-0.0825***	-0.0528***	(-5.17)	-0.0879***	-0.0363***	-0.0392***	-0.0457***	-0.1167***	-0.0652***	(-11.67
β_{DEF}	-0.0663***	-0.0341***	-0.0402***	-0.0477***	-0.0700***	-0.0517***	(-5.18)	-0.0905***	-0.0317***	-0.0359***	-0.0592***	-0.1053***	-0.0645***	(-13.49
β_{TERM}	-0.0742***	-0.0427***	-0.0414***	-0.0360***	-0.0462***	-0.0481***	(-4.62)	-0.0741***	-0.0374***	-0.0517***	-0.0661***	-0.0923***	-0.0643***	(-12.69
		0.0405444	0.0400***	-0.0416***	-0.0664***	-0.0515***	(-5.24)	-0.0951***	-0.0560***	-0.0410***	-0.0362***	-0.0932***	-0.0643***	(-11.98)
β_{LIQ}	-0.0685***	-0.0406***	-0.0402***	-0.0410	-0.0004	0.0010	(0.2 1)	0.0701	0.0000	0.0 110		0.0702	0.00.10	(11.50
		100 00 100 90	D1 68 7/01		200	-0.0313	(0.21)	0.0701		0.0110		0.0302	0.00	(11.70
eta_{LIQ} Panel B: Long-sho eta_{VOLA}	ort excess return	100 00 100 90	or each quintile	portfolio sorte	200	-0.0313	(3.21)		phas for each q			0.0002		(11)0
Panel B: Long-sho	ort excess return	ns and alphas fo	or each quintile	portfolio sorte	2012	H-L	t-stat					5	H-L	t-stat
Panel B: Long-sho β_{VOLA}	ort excess return	ns and alphas fo	or each quintile	portfolio sorteo	d by β_{VOLA}				phas for each q	uintile portfolio)			
Panel B: Long-sho eta_{VOLA} control variable Maturity	Long-short re	ns and alphas for turns for each o	or each quintile quintile portfoli 3	portfolio sorteo o 4	d by β_{VOLA}	H-L	t-stat	Long-short al	phas for each q	uintile portfolio	4	5	H-L	t-stat
Panel B: Long-shopping eta_{VOLA} control variable $egin{array}{c} Maturity & Coupon & & & & & & & & & & & & & & & & & & &$	Long-short re 1 -0.0428***	ns and alphas for turns for each of 2 -0.0427***	or each quintile quintile portfoli 3 -0.0447***	portfolio sorteo 4 -0.0348***	5 -0.0745***	H-L -0.0479***	<i>t</i> -stat (-5.38)	Long-short al 1 -0.0340***	phas for each q 2 -0.0431***	uintile portfolio 3 -0.0470***	4 -0.0391***	5 -0.1145***	H-L -0.0556***	t-stat (-7.49 (-8.54
Panel B: Long-she β_{VOLA} control variable $Maturity$ $Coupon$ $Size$	Long-short re 1 -0.0428*** -0.0163**	ns and alphas for each of 2 -0.0427*** -0.0209*	or each quintile quintile portfoli 3 -0.0447*** -0.0430***	portfolio sorted 0 4 -0.0348*** -0.0571***	5 -0.0745*** -0.0897***	H-L -0.0479*** -0.0454***	t-stat (-5.38) (-4.53)	Long-short al 1 -0.0340*** -0.0293***	phas for each q 2 -0.0431*** -0.0285***	uintile portfolio 3 -0.0470*** -0.0278***	4 -0.0391*** -0.0559***	5 -0.1145*** -0.0969***	H-L -0.0556*** -0.0477***	t-stat (-7.49 (-8.54 (-5.43
Panel B: Long-she Byola control variable Maturity Coupon Size Age	Long-short re 1 -0.0428*** -0.0163** -0.0969***	2 -0.0427*** -0.0632***	or each quintile quintile portfoli 3 -0.0447*** -0.0430*** -0.0531***	portfolio sorted 0 4 -0.0348*** -0.0571*** -0.0357**	5 -0.0745*** -0.0897*** -0.0317	H-L -0.0479*** -0.0454*** -0.0561***	t-stat (-5.38) (-4.53) (-4.23)	Long-short al 1 -0.0340*** -0.0293*** -0.1079***	2 -0.0431*** -0.0285*** -0.0562***	uintile portfolio 3 -0.0470*** -0.0278*** -0.0573***	-0.0391*** -0.0559*** -0.0196**	5 -0.1145*** -0.0969*** -0.0135	H-L -0.0556*** -0.0477*** -0.0509***	t-stat (-7.49 (-8.54 (-5.43 (-5.23
Panel B: Long-she β_{VOLA} control variable Maturity Coupon Size Age β_{MKT}	Long-short re 1 -0.0428*** -0.0163** -0.0969*** -0.0274***	2 -0.0427*** -0.0632*** -0.0366**	or each quintile quintile portfoli 3 -0.0447*** -0.0430*** -0.0531*** -0.0652***	e portfolio sorted 0 4 -0.0348*** -0.0571*** -0.0357** -0.0568***	5 -0.0745*** -0.0897*** -0.0816***	H-L -0.0479*** -0.0454*** -0.0561*** -0.0535***	t-stat (-5.38) (-4.53) (-4.23) (-4.11)	Long-short al 1 -0.0340*** -0.0293*** -0.1079*** -0.0299***	2 -0.0431*** -0.0285*** -0.0562*** -0.0224**	3 -0.0470*** -0.0278*** -0.0573*** -0.0416***	-0.0391*** -0.0559*** -0.0196** -0.0599***	5 -0.1145*** -0.0969*** -0.0135 -0.0936***	H-L -0.0556*** -0.0477*** -0.0509*** -0.0495***	t-stat (-7.49 (-8.54 (-5.43 (-5.23 (-5.91
Panel B: Long-she β_{VOLA} control variable $Maturity$ $Coupon$ $Size$ Age β_{MKT} β_{SMB}	Long-short re 1 -0.0428*** -0.0163** -0.0969*** -0.0274*** -0.0575***	2 -0.0427*** -0.0209* -0.0632*** -0.0353***	auintile portfoli 3 -0.0447*** -0.0430*** -0.0531*** -0.0652*** -0.0306***	e portfolio sorted 0 4 -0.0348*** -0.0571*** -0.0357** -0.0568*** -0.0309***	5 -0.0745*** -0.0897*** -0.0816*** -0.0887***	H-L -0.0479*** -0.0454*** -0.0561*** -0.0535*** -0.0486***	t-stat (-5.38) (-4.53) (-4.23) (-4.11) (-4.91)	Long-short al 1 -0.0340*** -0.0293*** -0.1079*** -0.0299*** -0.0641***	2 -0.0431*** -0.0285*** -0.0562*** -0.0224** -0.0185**	3 -0.0470*** -0.0278*** -0.0573*** -0.0416*** -0.0313***	-0.0391*** -0.0559*** -0.0196** -0.0599*** -0.0434***	5 -0.1145*** -0.0969*** -0.0135 -0.0936*** -0.0878***	H-L -0.0556*** -0.0477*** -0.0509*** -0.0495*** -0.0490***	t-stat
Panel B: Long-she eta_{VOLA} control variable $egin{array}{c} Maturity \\ Coupon \\ Size \\ Age \\ eta_{MKT} \\ eta_{SMB} \\ eta_{HML} \\ \end{array}$	Long-short re 1 -0.0428*** -0.0163** -0.0969*** -0.0274*** -0.0575*** -0.0779***	2 -0.0427*** -0.0209* -0.0632*** -0.0353*** -0.0471***	or each quintile quintile portfoli 3 -0.0447*** -0.0430*** -0.0531*** -0.0652*** -0.0306*** -0.0361***	e portfolio sorted 0 4 -0.0348*** -0.0571*** -0.0357** -0.0568*** -0.0309*** -0.0348***	5 -0.0745*** -0.0897*** -0.0317 -0.0816*** -0.0887*** -0.0591***	H-L -0.0479*** -0.0454*** -0.0561*** -0.0535*** -0.0486*** -0.0510***	t-stat (-5.38) (-4.53) (-4.23) (-4.11) (-4.91) (-4.85)	Long-short all 1 -0.0340*** -0.0293*** -0.1079*** -0.0299*** -0.0641*** -0.0698***	2 -0.0431*** -0.0285*** -0.0562*** -0.0224** -0.0185** -0.0540***	3 -0.0470*** -0.0278*** -0.0573*** -0.0416*** -0.0313*** -0.0326***	-0.0391*** -0.0559*** -0.0196** -0.0599*** -0.0434*** -0.0428***	5 -0.1145*** -0.0969*** -0.0135 -0.0936*** -0.0878*** -0.0637***	H-L -0.0556*** -0.0477*** -0.0509*** -0.0495*** -0.0490*** -0.0526***	t-stat (-7.49 (-8.54 (-5.43 (-5.23 (-5.91 (-5.86
Panel B: Long-sho eta_{VOLA}	Long-short re 1 -0.0428*** -0.0163** -0.0969*** -0.0274*** -0.0575*** -0.0779*** -0.0766***	2 -0.0427*** -0.0209* -0.0632*** -0.0353*** -0.0471*** -0.0336***	or each quintile quintile portfoli 3 -0.0447*** -0.0430*** -0.0531*** -0.0652*** -0.0306*** -0.0361*** -0.0338***	e portfolio sorted 0 4 -0.0348*** -0.0571*** -0.0357** -0.0568*** -0.0309*** -0.0348*** -0.0397***	5 -0.0745*** -0.0897*** -0.0317 -0.0816*** -0.0887*** -0.0591*** -0.0710***	H-L -0.0479*** -0.0454*** -0.0561*** -0.0535*** -0.0486*** -0.0510*** -0.0509***	t-stat (-5.38) (-4.53) (-4.23) (-4.11) (-4.91) (-4.85) (-4.90)	Long-short all 1 -0.0340*** -0.0293*** -0.1079*** -0.0299*** -0.0641*** -0.0698*** -0.1110***	2 -0.0431*** -0.0285*** -0.0562** -0.0224** -0.0185** -0.0540*** -0.0312***	-0.0470*** -0.0278*** -0.0573*** -0.0416*** -0.0313*** -0.0326***	-0.0391*** -0.0559*** -0.0196** -0.0599*** -0.0434*** -0.0428*** -0.0332***	5 -0.1145*** -0.0969*** -0.0135 -0.0936*** -0.0878*** -0.0637*** -0.0521***	H-L -0.0556*** -0.0477*** -0.0509*** -0.0495*** -0.0490*** -0.0526*** -0.0502***	t-stat (-7.49 (-8.54) (-5.43) (-5.23) (-5.91) (-5.86) (-6.12)

• the negative premia of jump and volatility risk we identify are robust to controlling for the effects of conventional risk betas and bondcharacteristics.

Fama-MacBeth cross-sectional regressions

Intercept	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{JUMP}	β_{VOLA}	ILLIQ	Coupon	Size	Rating	Age	Maturity	Adj. R ²
0.0704***				-	73	-9 -9	-0.0202***					57		**	0.062
(3.38)							(-5.13)								
0.0696***	0.0037	0.0029	0.0020				-0.0199***	•							0.095
(3.45)	(1.52)	(0.94)	(1.24)				(-5.03)								
0.0608***	0.0083*	0.0060	0.0037	0.0136**	0.0107***		-0.0186***								0.161
(3.29)	(1.93)	(1.41)	(1.36)	(2.10)	(3.03)		(-5.40)								
0.0595***	0.0091*	0.0029	-0.0004	0.0188*	0.0089*	0.0137*	-0.0180***								0.176
(3.28)	(1.83)	(0.94)	(-0.09)	(1.82)	(1.89)	(1.91)	(-5.61)								
0.0163	-0.0002	-0.0029	-0.0044	0.0068	0.0034	0.0124**	-0.0146***			0.0154***	-0.0039***	0.0146**	-0.0044***	0.0096*	0.338
(1.24)	(-0.05)	(-0.93)	(-0.93)	(1.17)	(0.89)	(2.11)	(-4.64)			(6.25)	(-4.28)	(2.14)	(-2.87)	(1.88)	
0.0024	-0.0003	-0.0030	-0.0047	0.0068	0.0035	0.0127**	-0.0143***		0.0037	0.0154***	-0.0018	0.0144**	-0.0047***	0.0084*	0.347
(0.16)	(-0.13)	(-0.98)	(-0.98)	(1.21)	(0.92)	(2.14)	(-4.74)		(1.33)	(5.99)	(-0.97)	(2.13)	(-2.62)	(1.77)	
0.0719***	×					% 8	<u></u>	-0.0181***	S		-		-	-	0.062
(3.39)								(-4.37)							0.002
0.0720***	0.0016	0.0004	0.0020					-0.0181***	J						0.094
(3.45)	(0.84)	(0.13)	(1.17)					(-4.36)							0.094
0.0626***	0.0069	0.0048	0.0053*	0.0138**	0.0117***			-0.0181***							0.156
(3.31)	(1.55)	(1.00)	(1.75)	(2.04)	(3.17)			(-6.05)							0.150
0.0611***	0.0074	0.0017	0.0016	0.0182*	0.0104***	0.0134**		-0.0175***							0.171
(3.31)	(1.45)	(0.46)	(0.39)	(1.84)	(2.97)	(1.97)		-0.0173 (-6.25)							0.171
0.0182	-0.0011	-0.0037	-0.0029	0.0064	0.0049*	0.0121**		-0.0152***		0.0158***	-0.0039***	0.0137**	-0.0050***	0.0095	0.333
(1.32)	(-0.35)	(-1.14)	(-0.67)	(1.14)	(1.69)	(2.12)		(-5.54)		(6.74)	(-4.40)	(1.96)	(-3.71)	(1.63)	0.333
0.0037	-0.0012	-0.0038	-0.0032	0.0064	0.0053*	0.0123**		-0.0149***	0.0040	0.0158***	-0.0017	0.0134*	-0.0053***	0.0083	0.343
(0.24)	(-0.40)	(-1.20)	(-0.74)	(1.20)	(1.82)	(2.15)		(-5.44)	(1.37)	(6.43)	-0.0017 (-0.94)	(1.94)	(-3.29)	(1.51)	0.343
(0.24)	(-0.40)	(-1.20)	(-0.74)	(1.20)	(1.82)	(2.15)		(-5.44)	(1.37)	(6.43)	(-0.94)	(1.94)	(-3.29)	(1.51)	
0.0661***							-0.0182***	-0.0128***							0.108
(3.23)							(-5.50)	(-3.52)							
0.0662***	0.0029	0.0016	0.0027				-0.0179***	-0.0131***							0.137
(3.30)	(1.50)	(0.54)	(1.45)				(-5.51)	(-3.84)							
0.0593***	0.0078*	0.0068	0.0053*	0.0122*	0.0086***		-0.0172***	-0.0141***							0.191
(3.22)	(1.84)	(1.40)	(1.72)	(1.78)	(2.60)		(-6.11)	(-5.23)							
0.0581***	0.0084*	0.0039	0.0018	0.0167	0.0073**	0.0125**	-0.0168***	-0.0136***							0.204
(3.21)	(1.70)	(1.07)	(0.44)	(1.63)	(2.00)	(1.96)	(-6.12)	(-5.04)							
0.0154	-0.0002	-0.0019	-0.0025	0.0058	0.0032	0.0114**	-0.0127***	-0.0124***		0.0154***	-0.0036***	0.0133*	-0.0044***	0.0092*	0.356
(1.15)	(-0.06)	(-0.65)	(-0.58)	(0.96)	(1.02)	(2.15)	(-5.36)	(-7.01)	_	(6.44)	(-4.36)	(1.92)	(-2.94)	(1.75)	
0.0024	-0.0003	-0.0021	-0.0028	0.0058	0.0033	0.0117**	-0.0124***	-0.0123***	0.0034	0.0154***	-0.0017	0.0131*	-0.0047***	0.0082*	0.366
(0.17)	(-0.10)	(-0.72)	(-0.65)	(1.00)	(1.09)	(2.18)	(-5.51)	(-6.70)	(1.20)	(6.14)	(-0.96)	(1.92)	(-2.68)	(1.65)	

these two risk factors are separately priced in the corporate bond market.

4. Empirical results

- Consistent with theory: financial contracting theory (e.g.Smith and Warner, 1979): high volatility increases stock value but decreases bond value.
- The premia of jump and volatility risk are also different in bonds and stocks:

Cremers(2015): R_{h-l} for β_{VOLA} is about half of that sorted on β_{JUMP} in the stock market.

By contrast, our results: R_{h-l} for β_{JUMP} and β_{VOLA} are similar in the corporate bond market. $(R_{h-l}$ for $\beta_{JUMP})$ < stock

→ Compared to stocks, corporate bonds are safer

Intra-rating jump and volatility risk pricing

-	istribution of b								- C1	4.4						
Rating	Portfolios	sorted by $\{\beta_{-}\}$							Portfolios sort		y {β_{{VOL	A }}}				
	1	2	3	4		5	5–1	t-stat	1	2		3	4	5	5–1	t-stat
AAA/AA	-0.1471	-0.0611	-0.023			0.0631	0.2102***	(7.74)	-0.2702		.0934	-0.0307	0.0200	0.1585	0.4287***	(8.14)
A	-0.1827	-0.0774	-0.03	-0.0	.0052	0.0750	0.2577***	(8.40)	-0.3452		.1301	-0.0507	0.0220	0.1933	0.5385***	(7.26)
BBB	-0.2228	-0.0983				0.1111	0.3339***	(8.04)	-0.4901		.2167	-0.1038	-0.0003	0.2256	0.7157***	(8.50)
Junk	-0.3026	-0.1174	-0.04	45 0.0	311	0.2409	0.5434***	(7.73)	-0.7226	-0	.3288	-0.1537	-0.0014	0.3847	1.1073***	(11.99
Panel B: E:	xcess returns a	nd alphas by r	ating													
Rating	Returns								Alphas							
	1	2	3	4	5	5-	1	t-stat	1	2	3		4	5	5–1	t-stat
β_{JUMP}																
AAA/AA	0.0765	0.0574	0.0489	0.042	5 0.0	552 –0	0.0213**	(-2.33)	0.0781	0.0	617 0	.0541	0.0444	0.0419	-0.0363***	(-4.90)
A	0.0975	0.0766	0.0626	0.057	6 0.0	633 –	0.0342***	(-3.85)	0.0931	0.07	712 0	.0585	0.0560	0.0429	-0.0502***	(-5.35)
BBB	0.1328	0.1094	0.0960	0.091	1 0.0	789 –	0.0539***	(-4.48)	0.1010	0.08	889 0	.0784	0.0764	0.0395	-0.0614***	(-6.53)
Junk	0.1760	0.1621	0.1493	0.143	8 0.0	682 –	0.1078***	(-6.68)	0.1364	0.13	138 0	.0980	0.0969	0.0233	-0.1131***	(-11.53)
β_{VOLA}																
AAA/AA	0.0700	0.0557	0.0469	0.048	2 0.0	584 –	0.0116	(-1.00)	0.0705	0.05	532 0	.0448	0.0504	0.0554	-0.0151	(-1.34)
A	0.0877	0.0748	0.0664	0.063			0.0252**	(-2.40)	0.0806	0.0		.0616	0.0598	0.0491	-0.0315***	(-3.06)
BBB	0.1250	0.1081	0.0981	0.095	3 0.0	795 –	0.0455***	(-3.69)	0.0970	0.08	872 0	.0781	0.0759	0.0483	-0.0487***	(-3.73)
Junk	0.1931	0.1718	0.1552	0.145	5 0.0	651 –	0.1280***	(-7.20)	0.1138	0.1	114 0	.1156	0.1212	0.0157	-0.0981***	(-10.47
Panel C: C	ross-sectional r	egressions of i	ndividual boı	nds by rating	3											
Rating	Intercept	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β _{ЈИМР}	β_{VOLA}		ILLIQ	Coupon	Size	Age	Maturity	Adj. R
AAA/AA	0.0180	0.0073	0.0046	0.0008	0.0124*	0.0056*	0.0071*	-0.0035	0.0004		0.0030*	0.0141**	* -0.0013	-0.004	2 0.0058	0.564
<u> </u>	(1.21)	(1.47)	(1.14)	(0.22)	(1.70)	(1.76)	(1.80)	(-1.32)	(0.13)	200	(1.75)	(3.27)	(-1.05)	(-1.51)	(1.08)	
A	-0.0072	-0.0005	-0.0007	-0.0070	0.0022	0.0025	0.0103	-0.0050**	-0.0061**	ir ir	0.0063**	0.0130**	* 0.0025	-0.005	66** 0.0108*	0.425
	(-0.89)	(-0.25)	(-0.35)	(-1.01)	(0.50)	(0.75)	(1.42)	(-2.41)	(-3.33)		(2.08)	(5.30)	(1.33)	(-2.15)	(1.73)	
BBB	0.0480*	0.0071**	-0.0023	-0.0019	0.0087*	0.0083***	0.0055**	-0.0133***	-0.0084**	Ar shr	0.0046**	0.0162**	* -0.0063	-0.004	4** 0.0115**	0.377
DDD	(1.65)	(1.98)	(-1.10)	(-0.80)	(1.80)	(2.94)	(2.19)	(-4.65)	(-2.62)		(2.13)	(7.56)	(-2.16)	(-2.09)		0.077
						-		-	· · · · · · · · · · · · · · · · · · ·	_			-			- 101
Junk	0.1363***	0.0015	-0.0027	-0.0005	-0.0002	0.0020	0.0170*	-0.0260***		* *	-0.0047	0.0065**				0.426
	(3.29)	(0.23)	(-0.36)	(-0.06)	(-0.02)	(0.28)	(1.88)	(-5.55)	(-6.39)	_	(-0.44)	(3.36)	(-1.14)	(-0.11)	(-0.17)	
Panel D: C	ross-sectional r	egressions of i	individual bo	nds with rati	ing dummy											
Intercept	β_{MKT} β_{S}	_{БМВ} β_{HMI}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{JUMP}	$\beta_{JUMP} \times J$	unk β _{VOLA}	$\beta_{VOLA} imes J$	lunk	ILLIQ	Соироп	Size I	Rating Age	Maturity	Adj. R
0.0047	-0.0004 -	0.0022 -0.0	0.006	0.0046	0.0116**	-0.0100*	** -0.0083*	-0.0078	-0.0143	***	0.0038	0.0161***	-0.0015	0.0102 -0.0	0.0085*	0.388
(0.33)	(-0.12)	0.77) (-0.5	57) (1.06)	(1.52)	(2.18)	(-4.30)	(-2.29)	(-4.82)	(-4.09)		(1.37)	(6.30)	(-0.86)	(1.61) (-2.9	06) (1.74)	

- bonds with lower ratings are more sensitive to jump and volatility risk.
- larger firms issuing AAA/AA bonds are better able to weather these risks.
- Investors :pay higher prices for hedging against JUMP and VOLA risk for junk
- Volatility risk plays a bigger role than jump risk in pricing low-rated bonds.

conditional skewness and kurtosis are related to jump risk (Chang, 2013;
 Cremers, 2015)⇒JUMP could be a proxy for coskewness and cokurtosis?

$$R_t^i = lpha_i + eta_t^i \cdot R_{m,t} + \gamma_t^i \cdot R_{m,t}^2 + arepsilon_t^i$$
 $R_t^i = lpha_i + eta_t^i \cdot R_{m,t} + \gamma_t^i \cdot R_{m,t}^2 + \kappa_t^i \cdot R_{m,t}^3 + arepsilon_t^i,$
market systematic systematic skewness kurtosis

 bond market factors constructed from the risk characteristics of corporate bonds can play a bigger role in corporate bond pricing than standard stock market factors (Bai et al., 2019)

$$R_{t}^{i} = \alpha_{i} + \beta_{MKT_{t}}^{i} \cdot MKT_{t} + \beta_{SMB_{t}}^{i} \cdot SMB_{t} + \beta_{HML_{t}}^{i} \cdot HML_{t} + \beta_{MKTb_{t}}^{i} \cdot MKTb_{t} + \beta_{DRF_{t}}^{i} \cdot DRF_{t} + \beta_{CRF_{t}}^{i} \cdot CRF_{t} + \beta_{LRF_{t}}^{i} \cdot LRF_{t} + \varepsilon_{t}^{i}$$

controlling for the stock market liquidity factor \ bond return reversals and momentum \ estimation windows

波动性预期, non-tradable proxy

 volatility risk measured by innovations of VIX is negatively priced in the cross-section of corporate bond returns (Chung et al. (2019))

Intercept	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{VIX}	β_{JUMP}	β_{VOLA}	ILLIQ	Coupon	Size	Rating	Age	Maturity	Adj. R ²
-0.0272	-0.0250***	-0.0066	-0.0021	-0.0070	0.0164	0.0063	-0.0143***			0.0099**	0.0108***	0.0025	0.0314***	-0.0035*	0.0153**	0.331
(-1.59)	(-2.65)	(-0.62)	(-0.32)	(-0.89)	(0.96)	(0.99)	(-2.82)			(2.11)	(4.85)	(0.79)	(2.77)	(-1.77)	(2.43)	
0.0015	-0.0021	-0.0035	-0.0043	0.0067	0.0037	0.0126**	-0.0040**	-0.0133***		0.0040	0.0154***	-0.0017	0.0142**	-0.0046***	0.0086*	0.356
(0.10)	(-0.74)	(-1.24)	(-0.85)	(1.20)	(0.96)	(2.06)	(-2.38)	(-4.53)		(1.46)	(5.99)	(-0.92)	(2.15)	(-2.64)	(1.79)	
0.0030	-0.0034	-0.0043	-0.0027	0.0063	0.0055*	0.0121**	-0.0052***		-0.0142***	0.0041	0.0158***	-0.0016	0.0130*	-0.0053***	0.0085	0.354
(0.20)	(-1.04)	(-1.40)	(-0.59)	(1.16)	(1.92)	(2.06)	(-3.46)		(-5.70)	(1.47)	(6.44)	(-0.89)	(1.91)	(-3.30)	(1.52)	
0.0017	-0.0018	-0.0028	-0.0027	0.0057	0.0036	0.0116**	-0.0029**	-0.0118***	-0.0119***	0.0036	0.0154***	-0.0016	0.0130*	-0.0047***	0.0085*	0.373
(0.12)	(-0.57)	(-1.03)	(-0.58)	(0.98)	(1.20)	(2.09)	(-2.04)	(-5.12)	(-6.97)	(1.29)	(6.14)	(-0.91)	(1.93)	(-2.70)	(1.68)	

- the option-based jump and volatility risk factors do a good job in capturing the information in aggregate volatility.
- the tradable jump and volatility risk factors perform better than the non-tradable proxy for aggregate volatility, ΔVIX

(VIX is a **biased estimator** of volatility in the presence of price discontinuities (Du ,2011))

- whether jump and volatility risk are priced differently in times of stress
 when market uncertainty exacerbates and investors' risk aversion elevates
- December 2007 to June 2009 as the crisis period

	Intercept	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{JUMP}	β_{VOLA}	ILLIQ	Coupon	Size	Rating	Age	Maturity	Adj. R ²
Panel A:	May 2008–De	ecember 201	0 in which a	rolling win	dow conta	ins at least 6	months in the	ne crisis period								
Crisis	0.0734*** (3.17)	0.0049 (0.45)	0.0035 (0.46)	0.0025 (0.53)	0.0017 (0.15)	0.0050 (1.26)	0.0204*** (9.68)	-0.0223*** (-6.22)	-0.0185*** (-3.46)	0.0012 (0.22)	0.0213*** (3.07)	-0.0057* (-1.69)	-0.0187 (-1.28)	-0.0052 (-0.70)	-0.0041 (-0.36)	0.283
Normal	-0.0124 (-1.10)	-0.0014 (-0.46)	-0.0032 (-1.15)	-0.0039 (-0.81)	0.0066 (1.05)	0.0030 (0.81)	0.0099 (1.59)	-0.0104*** (-5.45)	-0.0110*** (-8.72)	0.0038 (1.16)	0.0142*** (9.23)	-0.0008 (-0.47)	0.0197*** (4.90)	-0.0046*** (-4.30)	0.0107*** (2.81)	0.383
Panel B:	November 20	08–June 20	10 in which	a rolling wir	ndow cont	ains at least	12 months in	the crisis period	i	201	387 7/2	100 100	100 TW	40 TO	<i>(2)</i>	16T
Crisis	0.1065*** (6.25)	0.0062 (0.41)	0.0043 (0.37)	-0.0007 (-0.15)	0.0060 (0.39)	0.0093** (2.57)	0.0229*** (14.56)	-0.0230*** (-4.76)	-0.0177*** (-6.27)	-0.0012 (-0.28)	0.0203*** (2.79)	-0.0094*** (-4.74)	-0.0361** (-2.43)	-0.0048 (-0.55)	-0.0125 (-1.10)	0.256
Normal	-0.0101 (-0.97)	-0.0011 (-0.39)	-0.0028 (-1.03)	-0.0030 (-0.64)	0.0058 (0.97)	0.0026 (0.77)	0.0104* (1.79)	-0.0112*** (-5.68)	-0.0117*** (-7.82)	0.0039 (1.31)	0.0148*** (8.01)	-0.0007 (-0.43)	0.0190*** (4.48)	-0.0046*** (-4.28)	0.0107*** (2.76)	0.379

- β_{JUMP} , β_{VOLA} : more negative coefficient in the crisis period, consistent with theory: Investors require larger premia for jump and volatility risk in times of stress.
- jump risk is a much more important pricing factor during the crisis period:
 Corporate bonds are very vulnerable to default risk- heightens during stressed time,

Predicting future jump and volatility risk

过去的beta建立投资组合的未来收益

Panel A: Sor	rted by pa	ast 2-year re	alized jun	np and vol	atility betas																
Future realiz	zed						1	ortfolios	sorted by	past re	alized {,	3_{{JUMP	}}} (t - 23, t)	Portfolios	sorted b	y past re	ealized {β_{	(VOLA)	(t - 23, t)	
\left (\vphai						\hskip 0.25e	mt+24	U .	2	3	4	5	5–1	t-stat	1	2	3	4	5 5	5–1	t-stat
Return AdjRet Return Alpho AdjRet Alpho							().0038).0769	0.0812 -0.0052 0.0634 -0.0029	0.0565	0.070	53 0.009 5 0.108	0 0.0031 8 0.0061 9 0.0320*** 3 0.0216***	(0.90)	0.0064 0.1001	0.0889 -0.0002 0.0738 0.0026	0.0597	0.0709 51 -0.0057 0.0618 31 -0.0010	7 0.0037 - 0.0803 -	-0.0201** ¹ -0.0027 -0.0198** ¹	(-3.39) (-0.57) (-2.84) (1.03)
Panel B: Sor	rted by pi	edicted jum	p and vol	atility beta	as							_ _ i	t 去 的	炸	征和	The	ta₹ī	53016)	D	
B1: Fama-M	lacBeth re	egressions fo	or predicti	ng eta_{JUMP} a	nd β_{VOLA}								<u> </u>	הו ר	144-71 1		<u></u>	אנאוא	JUM.	Р	
Intercept	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	Lag_β_{JUMP}	Lag_β _{VOI}	A ILLIQ	Ske	ew	Kurt	β_{MKTb}	IVol	Сощ	pon S	VOE.	aning	Age	Maturity	Adj. R ²
Dependent v	variable:	β_{JUMP}			7.	208									2557	322	888	8			
	-0.0025 (-0.53)	0.0060 (1.39)	-0.0010 (-0.40)	-0.0010 (-0.47)	-0.0055*** (-2.68)	-0.0005** (-2.03)	-0.0089 (-0.89)	-0.002 (-0.60)	9 –0.062 (-2.51)	21** 0.0 (2.:		0.0010* (1.90)	0.8483*** (3.86)	-0.781 (-2.87)	9*** 0.06 (0.6		.0008 – .51) (-		0.0014** (4.15)	* -0.0007 (-0.55)	0.156
Dependent v	variable:	β_{VOLA}			-	12	2		5.5				-		200			3	S-		
0.0445 (0.95)	0.0096 (0.23)	0.0502*** (2.79)	-0.0163 (-1.58)	-0.0187 (-1.28)	-0.0233 (-1.64)	0.0014 (0.56)	0.0454 (1.23)	0.0003 (0.01)	-0.112 (-2.40)			0.0246** (1.99)	1.9969 (0.82)	-2.280 (-2.71)	8*** -0.7 (-0.7	뭐겠게 ㅜ		0.0070** 2.16)	0.0020** (2.02)	-0.0023 (-0.77)	0.266
B2: Portfolio	o sorts on	predicted /	3 _{JUMP} and ,	β_{VOLA}																	
Future realiz	zed	Predicted β_J	$_{UMP}(t+1)$	t + 24								Predicted	β_{VOLA} $(t +$	1, t + 2	4)						
(t+1, t+2)	24)	1	2	3	4	19	5	5–1		t-sta	t	1	2		3	4		5	5–1		t-stat
β Return AdjRet Return Alpha AdjRet Alpha	a	-0.1008 0.1308 0.0120 0.0967 0.0079	-0.057 0.0975 0.0001 0.0742 0.0016	0.0 -0 0.0	790 0 .0002 - 664 0	.0670 -0.0013 .0604	0.0083 0.0424 -0.0122 0.0409 -0.0135	-0.0 -0.0 -0.0	91***)884***)242***)558***)214***	(16.0 (-3.4 (-3.9 (-6.1 (-5.5	14) 96) .8)	-0.3065 0.1377 0.0123 0.1005 0.0054	-0.17 0.1014 -0.00 0.0770 0.0021	13	-0.1044 0.0777 -0.0022 0.0655 0.0002	-0.0 0.06 0.00 0.06 0.00	80 22 53	0.0165 0.0384 -0.0128 0.0379 -0.0155	-0.00	30*** 993*** 251*** 626*** 209***	(6.80) (-3.60) (-4.62) (-6.75) (-8.10)

- β_{IUMP} is strongly time-varying and cannot be predicted using only past realized betas.
- β_{IUMP} , β_{VOLA} can be predicted, to construct investable portfolios

whether idiosyncratic volatility will have a significant effect in the multifactor model with volatility and jump risk.

Inter.	Cross-section $\{\beta_{\perp} \}$	{β_	$\{\beta_{\perp} \}$	syncratic bone $\{\beta_{\perp} $ $\{\{\text{DEF}\}\}\}$	$\{eta_{-} \$ {{TERM}}}	{β_ {{LIQ}}}	{β_ {{JUMP}}}	{β_ {{VOLA}}}	IVol	ILLIQ	Coupon	Size	Rating	Age	Maturity	Adj. {{\cr \hskip0 R \vphantor {2}}	t.
0.0099	-0.0044*	-0.0066*	-0.0033	0.0135***	0.0057**	0.0056**			0.0072***	0.0033	0.0153	*** -0.002	8 0.0145	*** -0.0059*	** 0.0093**	0.348	
(0.59)	(-1.88)	(-1.90)	(-1.33)	(3.28)	(2.30)	(2.24)			(2.61)	(1.33)	(6.58)	(-1.63)	(2.58)	(-3.77)	(1.96)		
0.0089	-0.0031	-0.0054*	-0.0020	0.0105***	0.0040	0.0043*	-0.0141***		0.0071***	0.0026	0.0149	*** -0.002	8* 0.0131	** -0.0051*	*** 0.0085*	0.375	
(0.57)	(-1.41)	(-1.70)	(-0.83)	(3.45)	(1.31)	(1.70)	(-4.92)		(2.78)	(1.03)	(6.29)	(-1.84)	(2.20)	(-3.04)	(1.95)		
0.0105	-0.0047*	-0.0060*	-0.0006	0.0119***	0.0057***	0.0054**		-0.0145***	0.0069**	0.0030	0.0151	*** -0.002	9** 0.0125	** -0.0056*	*** 0.0083*	0.371	
(0.68)	(-1.83)	(-1.88)	(-0.28)	(3.52)	(2.78)	(2.43)		(-5.45)	(2.38)	(1.19)	(6.53)	(-2.10)	(2.05)	(-3.58)	(1.66)		
0.0095	-0.0037	-0.0052*	-0.0004	0.0103***	0.0039	0.0046**	-0.0120***	-0.0117***	0.0070**	0.0024	0.0147	*** -0.002	9** 0.0121	** -0.0050*	*** 0.0080*	0.393	
(0.64)	(-1.56)	(-1.72)	(-0.18)	(3.53)	(1.45)	(1.96)	(-5.57)	(-6.68)	(2.57)	(0.95)	(6.27)	(-2.21)	(2.00)	(-2.97)	(1.76)		
Panel B:	Cross-section	nal regression	ns with idios	yncratic bone	d volatility by	rating											
Rating	Inter.	β_{MKT}	β_{SMB}	β_{HML}	β_{DEF}	β_{TERM}	β_{LIQ}	β_{JUMP}	β_{VOLA}	IVol	! 1	ILLIQ	Соироп	Size	Age	Maturity	Adj. R
AAA/AA	0.0181	0.0012	0.0000	0.0066*	** 0.0104**	0.0045	0.0015	-0.0040	-0.0013	0.00	059***	0.0031*	0.0135***	-0.0016	-0.0044*	0.0056	0.594
	(1.35)	(0.68)	(0.00)	(3.98)	(2.48)	(1.38)	(0.78)	(-1.48)	(-0.52)	(2.6	9)	(1.93)	(3.24)	(-1.42)	(-1.65)	(1.04)	
Α	0.0026	-0.0056	-0.0027	0.0009	0.0088**	0.0022	0.0032	-0.0063***	-0.0060*	** 0.00	079** (0.0058**	0.0116***	0.0008	-0.0063**	0.0105*	0.467
	(0.27)	(-1.78)	(-1.03)	(0.44)	(2.20)	(0.74)	(1.42)	(-2.81)	(-3.61)	(2.4	8)	(2.29)	(5.80)	(0.71)	(-2.38)	(1.84)	
BBB	0.0509*	0.0064*	-0.0053	* -0.0020	0.0142**	* 0.0013	0.0075***	-0.0119***	-0.0086*	** 0.00	071 (0.0043***	0.0140***	-0.0063***	-0.0042*	0.0107**	0.423
	(1.79)	(1.66)	(-1.93)	(-0.94)	(3.06)	(0.30)	(3.54)	(-4.21)	(-3.59)	(1.5	(4)	(2.78)	(8.76)	(-2.98)	(-1.75)	(2.18)	
Junk	0.1241**	-0.0030	-0.0127	** 0.0021	0.0247**	* -0.0044	0.0108	-0.0268***	-0.0306*	** 0.00	089***	-0.0051	0.0080***	-0.0089	0.0004	-0.0021	0.431
	(3.18)	(-0.62)	(-2.18)	(0.24)	(3.39)	(-0.41)	(1.59)	(-7.30)	(-6.02)	(3.2	(4)	(-0.48)	(3.91)	(-1.30)	(0.09)	(-0.59)	
Panel C:	Cross-section	nal regression	ns with syste	matic and id	iosyncratic bor	nd volatility				_							
Inter.	β_{MKT}	β_{SMB}	β_{HML} β	DEF /	β_{TERM} β_{LIQ}	β_{JUI}	$_{MP}$ β_{VOL}	A SVo	l IVo	ol	ILLIQ	Соироп	Size	Rating	Age	Maturity	Adj. R
0.0101	-0.0007	-0.0012	0.0048 0	.0190**	0.0046 0.00	96** -0.	0114** -0.0	0.00	0.0	008	0.0061	0.0150***	-0.0009	0.0158***	-0.0029	0.0100***	0.540
(0.60)	(-0.37)	(-0.36)	(1.33)	2.39)	(1.31) (2.1)	7) (-2.	32) (-2.0	0.9	07) (0.	15)	(1.05)	(11.87)	(-0.65)	(2.74)	(-1.58)	(2.83)	
0.0079	-0.0025	-0.0019	0.0023 0	0.0256***	0.0057 0.00	96**		0.0	129*** -0	.0007	0.0073	0.0147***	-0.0008	0.0177***	-0.0026	0.0074**	0.503
(0.44)	(-1.28)	(-0.45)	(1.14)	2.76)	(1.42) (2.2	6)		(3.2	(-0	.16)	(1.26)	(11.01)	(-0.47)	(2.90)	(-1.28)	(2.24)	

- IVOL is due to the omission of jump and vol risk in the conventional factor model ⇒ ×
- β_{IUMP} , β_{VOLA} robust; low rating
- Bai (2021): control systematic risk, the effect of idiosyncratic risk becomes weaker SVol, IVol (BBW residuals): SVol is subsumed by jump and volatility risk factors.
 SVol is significant while IVol is insignificant.

5. Conclusion

- A structural model to show that jump and volatility risk are separately priced factors in expected corporate bond returns.
- An investable option approach to separate the aggregate volatility factor into two orthogonal parts—jump and volatility risk factors
- Volatility and jump risk are separately priced in the corporate bond market.
 Bonds with high sensitivities to jump and volatility risk have low returns.
- The jump and volatility risk premia are larger for lower-quality bonds and in times of stress when external shocks and default risk are high.
- While the loadings of jump and volatility risk are time-varying, future betas can be predicted.