2024. november 20-i gyakorlat

Indexszámítás

Egyedi értékindex (érték = $\underline{\text{value}}$): $i_v = \frac{v_1}{v_0}$ Egyedi árindex (ár = $\underline{\text{price}}$): $i_p = \frac{p_1}{p_0}$ Egyedi volumenindex (mennyiség = $\underline{\text{quantity}}$): $i_q = \frac{q_1}{q_0}$

$$i_v = i_q \cdot i_p$$

Érték-, ár- és volumenindexek az összes termékre:

$$I_{\nu} = \frac{\sum q_1 p_1}{\sum q_0 p_0} = \frac{\sum \nu_1}{\sum \nu_0} \qquad I_p^s = \frac{\sum q_s p_1}{\sum q_s p_0} \qquad I_q^s = \frac{\sum q_1 p_s}{\sum q_0 p_s}$$

Laspayres-féle index: s = 0, bázisidőszaki súlyozású Paasche-féle index: s = 1, tárgyidőszaki súlyozású

Fischer-féle index: s = F, a bázis- és tárgyidőszaki indexek mértani átlaga

$$I_v = I_q^0 \cdot I_p^1 = I_q^1 \cdot I_p^0 = I_q^F \cdot I_p^F$$

1. Egy cipőbolt forgalmát vizsgáljuk 2000 és 2005 között. A következő adatokat ismerjük:

Kínálat	A bázisév árbevétele	Eladási ár változása	Volumenváltozás
	(millió Ft)	(bazisév=100%)	(bázisév=100%)
Női cipő	80	108	110
Férfi cipő	60	102	90
Gyermek cipő	60	120	80

- (a) Határozza meg a Fischer-féle árindexeket!
- (b) Számítsa ki az értékindexet és mindkét súlyozású volumenindexet!
- (c) Hány forint a bolt többletbevétele (vagy bevételcsökkenése) az árváltozás miatt, ha 2005-ös eladott mennyiségekkel számolunk?

Minden eredményt szövegesen is értékeljen!

2. Egy cukorgyár 2005-ös és 2006-os termelési eredményeiről tudjuk:

	Árbevétel 2006-ban	Árbevétel változása	Eladási ár változása
Fajta	(MFt)	$(2005 {=} 100\%)$	(2005=100%)
Kristály	60	80	108
Kocka	80	120	91

Számítsa ki és szövegesen is értelmezze a

- (a) Laspeyres-féle árindexet!
- (b) Paasche-féle volumenindexet!
- (c) a termelés értékindexét!

Statisztikai táblázatok használata

3. Legyen $\xi \sim \mathcal{N}(0,1)$ valószínűségi változó. Adja meg a következő valószínűségeket illetve az ismeretlen x értékét!

(a)
$$P(\xi < 0.47)$$

(d)
$$P(\xi < x) = 0.9750$$

(b)
$$P(\xi < 2.06)$$

(e)
$$P(\xi < x) = 0.8$$

(c)
$$P(\xi < -2.2)$$

(f)
$$P(\xi < x) = 0.25$$

4. (a) Legyen $\xi \sim t(7)$ valószínűségi változó. $P(\xi < x) = 0.9$ Adja meg az x értékét!

(b) Legyen $\xi \sim t(13)$ valószínűségi változó. $P(\xi < x) = 0.99$ Adja meg az x értékét!

(c) Legyen $\xi \sim t(9)$ valószínűségi változó. $P(\xi < x) = 0.05$ Adja meg az x értékét!

5. (a) Legyen $\xi \sim \chi^2(11)$ valószínűségi változó. $P(\xi < x) = 0.95$ Adja meg az x értékét!

(b) Legyen $\xi \sim \chi^2(22)$ valószínűségi változó. $P(\xi < x) = 0.01$ Adja meg az x értékét!

Pontbecslés

Várható érték torzítatlan becslése: átlag

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Szórásnégyzet torzítatlan becslése: korrigált tapasztalati (empirikus) szórásnégyzet

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2} \right]$$

6. Valamely azonnal oldódó kávékivonatot automata tölti az üvegekbe. Előző adatfelvételekből ismeretes, hogy a gép által töltött súly normális eloszlású valószínűségi változó 1.5 g szórással. A gép pontosságának ellenőrzésére vett 16 elemű mintában az üvegekben lévő kávégranulátum súlya (g):

Adja meg a töltősúly várható értékének és szórásnégyzetének torzítatlan becslését!