Практика 13.10

- 1. Докажите, что функтор $F:C\to D$ сопряжен слева функтору $G:D\to C$ тогда и только тогда, когда существуют естественные преобразования $\epsilon:FG\to Id_D$ и $\eta:Id_C\to GF$ такие, что $\epsilon_{FX}F\eta_X=Id_{FX}$ и $G\epsilon_Y\eta_{GY}=Id_{GY}$ для любых объектов X категории C и Y категории D.
- 2. Пусть даны функторы $F: C \to D$ и $G: D \to C$ и естественные преобразования $\epsilon: FG \to Id_D$ и $\eta: Id_C \to GF$ такие, что $(G\epsilon)(\eta G) = Id_G$. Докажите, что $(\epsilon F)(F\eta): F \to F$ является идемпотентом в D^C и что G имеет левый сопряженный тогда и только тогда, когда этот идемпотент расщепляется, т.е. существует функтор $F': C \to D$ и пара естественных преобразований $\alpha: F \to F'$ и $\beta: F' \to \beta$ таких, что $\alpha\beta = 1_{F'}$ и $\beta\alpha = (\epsilon F)(F\eta)$.
- 3. Докажите, что сопоставление группе G её группового кольца $\mathbb{Z}G$ и сопоставление кольцу его группы обратимых элементов это пара сопряженных функторов $\mathbf{Grp} \longleftrightarrow \mathbf{Ring}$.
- 4. Пусть $Rings_0$ категория колец, не обязательно имеющих единицу. Постройте левый сопряженный к вложению Rings (колец с единицей) в $Rings_0$.
- 5. Пусть $\mathcal{F}: C \longleftrightarrow D: \mathcal{G}$ пара сопряженных функторов, E малая категория. Докажите, что \mathcal{F} и \mathcal{G} задают сопряженность между категориями функторов Fun(E,C) и Fun(E,D).
- 6. Покажите, что, если функтор F имеет два правых сопряженных G и G', то существует естественный изоморфизм $G \simeq G'$.
- 7. В условиях задачи 1 докажите, что, если F полный функтор, то $\eta_{GX}G\epsilon_X=Id_{GFGX}$.
- 8. В условиях задачи 1 пусть G полный функтор, а морфизм η_X является мономорфизмом для любого объекта X категории C. Докажите, что для любого X морфизм η_X является и эпиморфизмом.
- 9. Пусть F левый сопряженный к G. Докажите, что G строгий тогда и только тогда, когда для лююых двух объектов X категории C и Y категории D естественный изоморфизм $Hom_C(X,GY) \cong Hom_D(FX,Y)$ переводит эпиморфизмы из X в GY в эпиморфизмы из FX в Y.