- Ex 1 Démontrer les propriétés suivantes à partir de la définition
 - a) Si $\lim u_n = +\infty$ et $\lim v_n = \ell \in \mathbb{R}$, alors $\lim (u_n + v_n) = +\infty$
 - b) Si $\lim u_n = -\infty$ et $\lim v_n = \ell \in \mathbb{R}_+^*$, alors $\lim (u_n v_n) = +\infty$
 - c) Si $\lim u_n = \ell \neq 0$, alors $\lim \frac{1}{u_n} = \frac{1}{\ell}$
- **Ex 2** A l'aide de la définition, montrer que $\lim \arctan(n) = \frac{\pi}{2}$
- **Ex 3** Soit $u_n = \cos n$: montrer que (u_n) diverge. On pourra considérer les sous suites (u_{n+1}) , (u_{n-1}) , (u_{2n})
- **Ex 4** Soit $n \ge 2$. Montrer que si $2 \le k \le n-2$, $\binom{n}{k} \ge \binom{n}{2}$, et en déduire la limite de $u_n = \sum_{k=0}^{n} \binom{n}{k}^{-1}$.
- **Ex 5** Montrer que la suite définie par $I_n = \int_0^n x^n e^{-nx} dx$ converge vers 0.
- **Ex 6** En remarquant que $\forall k \geqslant 2$, $\frac{1}{k^2} \leqslant \frac{1}{k-1} \frac{1}{k}$, montrer que la suite de terme général $u_n = \sum_{k=1}^n \frac{1}{k^2}$ converge.
- **Ex 7** Soit $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

 a) Démontrer que pour tout $n \in \mathbb{N}^*$, $2\sqrt{n+1} 2 \leqslant S_n \leqslant 2\sqrt{n}$, et en déduire un équivalent de S_n . On pourra raisonner par récurrence ou utiliser l'inégalité $2\left(\sqrt{k+1}-\sqrt{k}\right) \leqslant \frac{1}{\sqrt{k}} \leqslant 2\left(\sqrt{k}-\sqrt{k-1}\right)$
 - b) Montrer que la suite $S_n 2\sqrt{n}$ converge.
- **Ex 8** Constante d'Euler. Soient $u_n = \sum_{n=1}^{n} \frac{1}{k}$ et $v_n = \sum_{n=1}^{n} \frac{1}{k} \ln n$.
 - $\text{a)} \ \ \text{D\'emontrer que pour tout } k \in \mathbb{N}^*, \, \frac{1}{k+1} \leqslant \ln{(k+1)} \ln{k} \leqslant \frac{1}{k}.$
 - b) En déduire que (v_n) est convergente (sa limite, notée γ , est appelée constante d'Euler).
 - c) Donner un équivalent simple de (u_n) .
- **Ex 9** Soient $f: x \mapsto \frac{x}{\sqrt{1+x}}$, et pour $n \in \mathbb{N}$, $S_n = \sum_{i=1}^n f\left(\frac{k}{n^2}\right)$, et $T_n = \sum_{i=1}^n \frac{k}{n^2}$

Montrer que $\forall x \geqslant 0$, $0 \leqslant x - f(x) \leqslant \frac{x^2}{2}$, et en déduire la convergence et la limite de $(S_n)_{n \in \mathbb{N}}$.

- **Ex 10** Soit $u_n = 2^n \sqrt{2 \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}$ (il y a *n* radicaux).
 - a) Montrer que $\forall n \in \mathbb{N}^*$, $\begin{cases} \cos \frac{\pi}{2^{n+1}} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}} \\ \sin \frac{\pi}{2^{n+1}} = \frac{1}{2} \sqrt{2 \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}} \end{cases}$
 - b) En déduire la convergence de (u_n) et sa limite.
- Ex 11 Soit (u_n) une suite strictement positive, telle que $\lim \frac{u_{n+1}}{u_n} = \ell \in [0,1[$.: montrer (u_n) converge vers 0. Application : utiliser ce résultat pour redémontrer $a^n \ll n! \ll n^n$ (a>1)
- **Ex 12** a) Montrer que $\forall n \in \mathbb{N}^*$, l'équation $x^n + x 1 = 0$ admet une unique solution $x_n \in [0, 1]$.
 - b) A l'aide de la fonction f définie par $f\left(x\right)=\frac{\ln\left(1-x\right)}{\ln x}$, calculer $\lim x_{n}$.
- **Ex 13** a) Montrer que $\forall n \in \mathbb{N}$, l'équation $\tan x = x$ admet une unique solution $x_n \in \left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi\right[$. Calculer $\lim x_n$, et donner un équivalent de x_n .
 - b) Calculer $\lim (x_n n\pi)$ puis trouver un équivalent de $u_n = x_n n\pi \frac{\pi}{2}$ (utiliser $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$).

PCSI 1 Thiers 2019/2020

Ex 14 Soient
$$u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$
, $v_n = u_{2n}$, et $w_n = u_{2n+1}$.

a) Montrer que (v_n) et (w_n) sont adjacentes, et en déduire que (u_n) converge.

b) En remarquant que
$$\frac{1}{k} = \int_0^1 x^{k-1} dx$$
, calculer la limite de (u_n) .

Ex 15 Montrer que les suites suivantes sont adjacentes :

a)
$$u_n = \sum_{k=1}^n \frac{1}{k^p}$$
 et $v_n = u_n + \frac{1}{n^{p-1}}$ $(p \ge 2)$.

$$\mathrm{b)}\ u_n=\prod_{k=1}^n\left(1+\frac{1}{k^2}\right)\ \mathrm{et}\ v_n=\left(1+\frac{1}{n}\right)u_n.$$

Ex 16 Soient $0 . On définit les suites <math>(u_n)$ et (v_n) par $u_0 = p$, $v_0 = q$, et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{qu_n + pv_n}{p+q}, \quad v_{n+1} = \frac{pu_n + qv_n}{p+q}$$

Montrer que (u_n) et (v_n) sont adjacentes et calculer leur limite commune

Ex 17 Critère de Cauchy : on suppose que $(x_n) \in \mathbb{R}^{\mathbb{N}}$ vérifie $\lim_{\min(p,q) \to \infty} |x_q - x_p| = 0$.

On considère $M_n = \sup_{p \geqslant n} (x_p)$ et $m_n = \inf_{p \geqslant n} (x_p)$. Montrer que (M_n) et (m_n) sont adjacentes et en déduire que (x_n) converge.

Ex 18 Soit
$$(u_n)$$
 la suite définie par récurrence par
$$\begin{cases} 0 < u_0 < \frac{\pi}{2} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sin u_n \end{cases} .$$

- a) Montrer que $\forall n \in \mathbb{N}, u_n \geqslant 0$, puis que (u_n) est décroissa
- b) En déduire la convergence de (u_n) , sa limite, et montrer que $u_{n+1} \sim u_n$.

Ex 19 Soit (u_n) la suite définie par $u_0 = 9$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{6 + u_n}$. On pose $f(x) = \sqrt{6 + x}$.

- a) Montrer que $[3, +\infty[$ est stable par f. Qu'en déduit-on. Quelles sont les limites possibles de (u_n) .
- b) Montrer que (u_n) est décroissante et conclure sur la convergence de (u_n) .
- c) Calculer $\sup_{[3,+\infty[} f'$ et en déduire que $\forall n \in \mathbb{N}, \ 0 < u_n 3 < \frac{1}{6^{n-1}}$.

Ex 20 Soit
$$f(x) = \ln \frac{e^x - 1}{x}$$
. On donne $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$.

- a) Montrer que f se prolonge en une fonction continue sur \mathbb{R}_+ , et montrer que f est strictement positive sur \mathbb{R}_+^* .
- b) Soit $g: x \mapsto f(x) x$. Montrer que $\forall x > 0, \ g(x) < 0$.
- c) Etudier la suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

Ex 21 Soit
$$a > 0$$
 et (u_n) la suit définie par $u_1 = \ln a$, et $\forall n \ge 2$, $u_n = \sum_{k=1}^{n-1} \ln (a - u_k)$.

Trouver une relation de récurrence vérifiée par (u_n) , et en déduire l'étude de (u_n)

Ex 22 Etudier la suite définie par
$$u_0 = \frac{1}{2}$$
, et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 - u_n^2$.
Aide: montrer que l'intervalle $[0,1]$ est stable par $f: x \to 1 - x^2$. Considérer $g = f \circ f$, et factoriser $g(x) - x$.

Ex 23 Méthode de Césarò : si
$$(u_n)_{n\geqslant 1}$$
 est une suite, on pose $v_n=\frac{u_1+u_2+\cdots+u_n}{n}$

- a) On suppose que (u_n) converge vers 0. Soit $\varepsilon > 0$. Justifier l'existence d'un entier n_0 tel que : $\forall n \geqslant n_0$, $\left| \frac{u_{n_0} + u_{n_0+1} + \dots + u_n}{n} \right| \leqslant \frac{\varepsilon}{2}$, En déduire que (v_n) converge vers 0
- b) Montrer que si (u_n) converge vers ℓ , alors (v_n) aussi.
- c) Montrer que si $\lim (u_{n+1} u_n) = \ell \neq 0$, alors $u_n \sim n\ell$