Journal meeting

- Efficient Neural Architecture Search (ENAS)

2020. 04. 17.

Hyunsoo, Yu Heesang, Eom

INDEX

NAS Review

- Procedure
 - Generate model with RNN (controller)
 - Update controller parameter
- Limitations

ENAS

- Introduction
- Methods
 - Designing Recurrent Cells
 - Designing Convolution Neural Networks
 - Training ENAS and Deriving Architectures
 - Training W (shared parameter of child models)
 - Training θ (parameter of controller)
- Results
- Conclusion

Controller RNN is generate Neural Networks structure hyperparameters

Train is proceed after generate one child network from RNN controller

Record child network accuracy

 $heta_c^{ heta_{c:RNN\ controllers\ parameter}}$ For Maximize Expected Validation Accuracy, $heta_c$ is optimized

Generate model with RNN (Controller)

Controller RNN is generate Neural Networks structure hyperparameters

- We use RNN as controller.
 - For setting layer structure, string is used. (Tokenization)

```
["Filter Width: 5", "Filter Height: 3", "Num Filters: 24"]
```

Dealing with string, RNN is normally applied.

: Reason why RNN is used as controller

Increase architecture complexity with 'skip connection'

Controller RNN is generate Neural Networks structure hyperparameters

Add anchor point

 $P(\text{Layer j is an input to layer i}) = \text{sigmoid}(v^{\text{T}} \text{tanh}(W_{prev} * h_j + W_{curr} * h_i))$

- Solve 'Compilation failure' with
 - Different size => zero padding
 No input connection to layer => input : the image

Trainable parameter

Many input => concatenateIn final layer => take all output

Figure 4: The controller uses anchor points, and set-selection attention to form skip connections.

(First input)

Update controller parameter θ

* Method : Monte-Carlo Policy Gradient (REINFORCE)

: Because REINFORCE is easy to tuning

Number of hyperparameters that controller has to predict for design new neural network structure
$$\frac{1}{m}\sum_{k=1}^{m}\sum_{t=1}^{T}\nabla\theta_{c}\log P(a_{t}|a_{(t-1):1};\theta_{c})R_{k}$$

Number of models in minibatch

Base line for reduce high variance in this prediction
$$\frac{1}{m}\sum_{k=1}^{m}\sum_{t=1}^{T} \bigtriangledown_{\theta_c} \log P(a_t|a_{(t-1):1};\theta_c)(R_k-b)$$

Update controller parameter θ

* each gradient update to the controller parameters θ

= train one child network to convergence

Figure 3: Distributed training for Neural Architecture Search. We use a set of S parameter servers to store and send parameters to K controller replicas. Each controller replica then samples m architectures and run the multiple child models in parallel. The accuracy of each child model is recorded to compute the gradients with respect to θ_c , which are then sent back to the parameter servers.

NAS Review - Limitations

- <Parameter-server scheme to speed up learning process >
- Solution: ENAS

Efficient Neural Architecture Search

- Despite of this scheme, it takes too long.
 - take 'one month' with 800 GPUs in CIFAR-10 image
 classification
- Cause : child models don't reuse weights.
 - After making new model, they throw away weights and learn again.

ENAS - Introduction

- NAS is computationally expensive and time consuming, *e.g.* Zoph et al.(2018) use 450 GPUs for 3-4 days (*i.e.* 32,400-43,200 GPU hours).
 - ENAS : using single GTX 1080Ti GPU, the search for architectures takes less than 16hours (compared to NAS, reduction is more than 1000x)
- Authors observe that the computational bottleneck of NAS is the training of each child model to convergence, only to measure its accuracy whilst throwing away all the trained weights.
- Improving the efficiency of NAS by forcing all child models to share weights to eschew training each child model from scratch to convergence.

- The main idea of ENAS is the observation that all of the graphs which NAS ends up iterating over can be viewed as sub-graphs of a larger graph.
 - -> NAS's search space can be represented as a single directed acyclic graph (**DAG**)

Figure 2. The graph represents the entire search space while the red arrows define a model in the search space, which is decided by a controller. Here, node 1 is the input to the model whereas nodes 3 and 6 are the model's outputs.

- Whole line
 - Entire model which have chance to be selected
- Red line
 - Selected model (optimal model)

- Designing Recurrent Cells
- To design recurrent cells, a DAG with N nodes are selected, where the nodes represent local computations, and the edges represent the flow of information between the N nodes.
- ENAS's controller is an RNN that decides:
 - edges are activated and computations are performed at each node in the DAG

: Controller(RNN)

- The role of Controller(RNN)
 - Choose previous index(j)
 - Choose which computation to do

$$h_1 = \tanh \left(\mathbf{x}_t \cdot \mathbf{W}^{(\mathbf{x})} + \mathbf{h}_{t-1} \cdot \mathbf{W}_1^{(\mathbf{h})} \right)$$

$$h_2 = \text{ReLU}(h_1 \cdot \mathbf{W}_{2,1}^{(\mathbf{h})})$$

$$h_3 = \text{ReLU}(h_2 \cdot \mathbf{W}_{3,2}^{(\mathbf{h})})$$

$$h_4 = \tanh \left(h_1 \cdot \mathbf{W}_{4,1}^{(\mathbf{h})} \right)$$

$$h_t = (h_3 + h_4)/2$$

- There is an independent parameter matrix $\mathbf{W}_{\ell,j}^{(\mathbf{h})}$ (each pair of nodes)
- By choosing the previous indices, the controller also decides which parameter matrices are used.
- Therefore, in ENAS, all recurrent cells in a search space share the same set of parameters.

Designing Convolution Neural Network

- Training ENAS and Deriving Architectures
 - In ENAS, there are two sets of learnable parameters
- Training the shared parameters ω of the child models
- Training the controller parameters θ
- The training procedure of ENAS consists of two interleaving phases

- Training the shared parameters ω
- Fix the controller's policy $\pi(\mathbf{m}; \theta)$ and perform stochastic gradient descent (SGD) on ω to minimize the expected loss function

$$\mathbb{E}_{\mathbf{m} \sim \pi} \left[\mathcal{L}(\mathbf{m}; \omega) \right].$$

• $\mathcal{L}(\mathbf{m};\omega)$: standard cross-entropy loss, computed on a training data, with a model m sampled from $\pi(\mathbf{m};\theta)$

$$\underline{\nabla_{\omega} \mathbb{E}_{\mathbf{m} \sim \pi(\mathbf{m}; \theta)} \left[\mathcal{L}(\mathbf{m}; \omega) \right]} \approx \frac{1}{M} \sum_{i=1}^{M} \nabla_{\omega} \mathcal{L}(\mathbf{m}_{i}, \omega)$$

Unbiased estimation

- Training the controller parameters θ
- fix ω and update the policy parameters θ , aiming to maximize the expected reward $\mathbb{E}_{\mathbf{m} \sim \pi(\mathbf{m}; \theta)} [\mathcal{R}(\mathbf{m}, \omega)]$.
- the gradient is computed using REINFORCE, with a moving average baseline to reduce variance.
- The reward $\mathcal{R}(\mathbf{m},\omega)$ is computed on the validation set (to avoid overfitting)

ENAS - Results

PPL : Perplexity

Architecture	Additional Techniques	Params (million)	Test PPL
LSTM (Zaremba et al., 2014)	Vanilla Dropout	66	78.4
LSTM (Gal & Ghahramani, 2016)	VD	66	75.2
LSTM (Inan et al., 2017)	VD, WT	51	68.5
LSTM (Melis et al., 2017)	Hyper-parameters Search	24	59.5
LSTM (Yang et al., 2018)	\overrightarrow{VD} , \overrightarrow{WT} , ℓ_2 , AWD, MoC	22	57.6
LSTM (Merity et al., 2017)	VD, WT, ℓ_2 , AWD	24	57.3
LSTM (Yang et al., 2018)	VD, WT, ℓ_2 , AWD, MoS	22	56.0
RHN (Zilly et al., 2017)	VD, WT	24	66.0
NAS (Zoph & Le, 2017)	VD, WT	54	62.4
ENAS	VD, WT, ℓ_2	24	55.8

Method	GPUs	Times (days)	Params (million)	Error (%)
DenseNet-BC (Huang et al., 2016)	_	_	25.6	3.46
DenseNet + Shake-Shake (Gastaldi, 2016)	_	_	26.2	2.86
DenseNet + CutOut (DeVries & Taylor, 2017)			26.2	2.56
Budgeted Super Nets (Veniat & Denoyer, 2017)	_	_	_	9.21
ConvFabrics (Saxena & Verbeek, 2016)	_	_	21.2	7.43
Macro NAS + Q-Learning (Baker et al., 2017a)	10	8-10	11.2	6.92
Net Transformation (Cai et al., 2018)	5	2	19.7	5.70
FractalNet (Larsson et al., 2017)	_	_	38.6	4.60
SMASH (Brock et al., 2018)	1	1.5	16.0	4.03
NAS (Zoph & Le, 2017)	800	21-28	7.1	4.47
NAS + more filters (Zoph & Le, 2017)	800	21-28	37.4	3.65
ENAS + macro search space	1	0.32	21.3	4.23
ENAS + macro search space + more channels	1	0.32	38.0	3.87
Hierarchical NAS (Liu et al., 2018)	200	1.5	61.3	3.63
Micro NAS + Q-Learning (Zhong et al., 2018)	32	3	_	3.60
Progressive NAS (Liu et al., 2017)	100	1.5	3.2	3.63
NASNet-A (Zoph et al., 2018)	450	3-4	3.3	3.41
NASNet-A + CutOut (Zoph et al., 2018)	450	3-4	3.3	2.65
ENAS + micro search space	1	0.45	4.6	3.54
ENAS + micro search space + CutOut	1	0.45	4.6	2.89

- Macro search: the controller designs the entire network.
- Micro search: the controller designs modules or building blocks, which are combined to build the final network

ENAS - Conclusion

Conventional NAS's computational expense prevents it from being widely adopted.

■ In this paper, ENAS, a novel method that speeds up NAS by more than 1000x, in terms of GPU hours.

- ENAS's key contribution is the sharing of parameters across child models during the search for architectures.
 - This insight is implemented by searching for a subgraph within a larger graph that incorporates architectures in a search space

References

- https://arxiv.org/pdf/1709.07
- https://jamiekang.github.io/2017/06/19/neural-arc
- https://s3.us-west-2.amazonaws.com/secure.notion-static.com/1ef8107c-3f52-4ec9-a988-95df0c91f877/NASBSW.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAT73L2G45O3KS52Y5%2F20200413%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20200413T131137Z&X-Amz-Expires=86400&X-Amz-

Signature=ada51171f02c7645cdca754685029917f3f1740b6674b791640ee0d19a30f956&X-Amz-SignedHeaders=host&response-content-disposition=filename%20%3D%22NAS%255BBSW%255D.pdf%22hitecture-search-with-reinforcement-learning/417.pdf

https://arxiv.org/pdf/1802.03268.pdf

References

- http://www.secmem.org/blog/2019/07/19/Network-Architecture-Search/
- https://jamiekang.github.io/2017/06/19/neural-architecture-search-with-reinforcementlearning/
- https://www.slideshare.net/KihoSuh/neural-architecture-search-with-reinforcement-learning-76883153
- https://jayhey.github.io/deep%20learning/2018/03/15/ENAS/
- <u>http://openresearch.ai/t/enas-efficient-neural-architecture-search-via-parameter-sharing/155</u>
- https://www.slideshare.net/HoseongLee6/searching-for-activation-functions-paper-review