Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate

Tao Zeng, a* Yu-Ping Hou, b Wan-Zhong Ren and Wen-You Xu

^aChemistry & Biology College, Yantai University, Yantai 264005, People's Republic of China, and ^bYantai University, Yantai 264005, People's Republic of China Correspondence e-mail: zengtaotj@126.com

Received 11 December 2011; accepted 20 December 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.053; wR factor = 0.151; data-to-parameter ratio = 15.9.

The title molecule, $C_{37}H_{56}O_6$, possesses twofold symmetry, with the twofold axis passing through the quaternary C atom. In the crystal, neighbouring molecules are linked *via* O— H···O hydrogen bonds involving the phenol OH group and the carbonyl O atom, forming chains propagating in [101]. Within these chains, rings are formed with an $R_2^2(20)$ motif. There are also C—H···O interactions present within the rings.

Related literature

For hindered phenol antioxidants and their applications, see: Eggensperger *et al.* (1974, 1976); Breese *et al.* 2000; Yamazaki & Seguchi (1997). For the synthesis of hindered phenol antioxidants, see: Eggensperger *et al.* (1974, 1976). For hydrogenbond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{37}\text{H}_{56}\text{O}_{6} & & b = 13.610 \text{ (4) Å} \\ M_{r} = 596.82 & & c = 14.252 \text{ (4) Å} \\ \text{Monoclinic, } C2/c & & \beta = 111.344 \text{ (5)}^{\circ} \\ a = 20.006 \text{ (6) Å} & & V = 3614.4 \text{ (18) Å}^{3} \end{array}$

Z = 4 T = 294 K Mo $K\alpha$ radiation 0.22 × 0.18 × 0.16 mm μ = 0.07 mm⁻¹

Data collection

Bruker SMART 1000 9457 measured reflections diffractometer 3280 independent reflections Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.984, \ T_{\max} = 0.989$ $R_{\text{int}} = 0.042$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.053 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.151 & \text{independent and constrained} \\ S=1.06 & \text{refinement} \\ 3280 \text{ reflections} & \Delta\rho_{\max}=0.34 \text{ e Å}^{-3} \\ 206 \text{ parameters} & \Delta\rho_{\min}=-0.25 \text{ e Å}^{-3} \\ 1 \text{ restraint} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H···A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} O1 - H1 \cdot \cdot \cdot O2^{i} \\ C12 - H12C \cdot \cdot \cdot O2^{i} \end{array} $	0.80 (2)	2.38 (2)	2.996 (2)	134 (2)
	0.96	2.46	3.398 (3)	167

Symmetry code: (i) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors gratefully acknowledge financial support from the Technology Development Project of Shandong Province (No. 2010GGX10316) and the University Science and Technology Project of Shandong Province Education Committee (No. J09LB56).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2240).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.

Breese, K. D., Lameathe, J.-F. & DeArmitt, C. (2000). *Polym. Degrad. Stabil.* **70**, 89–96.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3856846.

Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3950382.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yamazaki, T. & Seguchi, T. (1997). Polym. Sci. A Polym. Chem. 35, 2431-2439.

supplementary m	aterials	

Acta Cryst. (2012). E68, o448 [doi:10.1107/S1600536811054900]

Diethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate

T. Zeng, Y.-P. Hou, W.-Z. Ren and W.-Y. Xu

Comment

A series of compounds containing the 2,6-di-*tert*-butylphenol moiety have been used in both polymers and lubricants as antioxidants (Eggensperger *et al.*, 1974, 1976). They are often called hindered phenol antioxidants due to the presence of the extremely large 2,6-di-*tert*-butylphenol moiety (Breese *et al.*, 2000; Yamazaki & Seguchi, 1997). As part of our ongoing studies of the chemistry of such compounds, we present herein the synthesis and the crystal structure of the title compound.

The title molecule is located about a 2-fold axis (Fig. 1), which passes through the quaternary carbon atom, C16. The bond angles involving C16 vary from 106.2 (2) to 111.9 (2)°. The remainder of the geometric parameters are within normal ranges.

In the crystal, neighbouring molecules are linked by O—H···O hydrogen bonds (Tab. 1 and Fig. 2), involving the phenolic OH group and the carbonyl O atom, forming chains in direction [1 0 1] that contain rings with a $R^2_2(20)$ motif (Bernstein *et al.*, 1995). These rings are situated about the i nversion centres (the Wyckoff position 4c). C-H···O interactions are also present within the rings (Tab. 1).

Experimental

A mixture of diethyl malonate (4.0 g, 0.025 mol) and 2,6-di-*tert*-butyl-4-((dimethylamino)methyl)phenol (13.2 g, 0.05 mol) in 80 ml of toluene was heated to 373 K under a nitrogen atmosphere. Lithium amide (0.2 g) was then added and the mixture was stirred for further 6 h. The reaction mixture was then diluted with toluene (60 ml), washed with water (40 ml), and the oil layer was separated and dried with anhydrous MgSO₄. After filtration and concentration, the solution was allowed to evaporate in the air to give the title product as a white powder [yield 13.1 g; 87.9%]. Block-like colourless crystals with dimensions at about 2-3 mm were obtained by slow evaporation of the solution of the title compound in toluene/ethanol (3:1; v:v).

Refinement

All the H-atoms could be located in difference Fourier maps. The hydroxyl H-atom was refined with a distance restraint of O—H = 0.82 (2) Å, and $U_{iso}H = 1.2U_{eq}(O)$. The C-bound H-atoms were included in calculated positions and refined as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH₂ and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(Parent C-atom)$, where k = 1.5 for CH₃ H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1. A view of the molecular structure of the title molecule, with the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level. The 2-fold axis bisects atom C16 [symmetry code: (a) -x+1, y, -z+1/2].

Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the O—H···O hydrogen bonds and as dashed cyan lines [C-bound H atoms have been omitted for clarity; see Tab. 1 for details].

Diethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate

Crystal data

 $C_{37}H_{56}O_6$ F(000) = 1304 $M_r = 596.82$ $D_x = 1.097 \text{ Mg m}^{-3}$

Monoclinic, C2/c Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc Cell parameters from 2211 reflections

 $0.22 \times 0.18 \times 0.16 \text{ mm}$

 $a = 20.006 (6) \, \text{Å}$ $\theta = 2.2 - 23.3^{\circ}$ $b = 13.610 (4) \, \text{Å}$ $\mu = 0.07 \, \text{mm}^{-1}$ $c = 14.252 (4) \, \text{Å}$ $T = 294 \, \text{K}$ $\beta = 111.344 (5)^{\circ}$ Block, colourless

 $V = 3614.4 (18) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART 1000 3280 independent reflections

Radiation source: fine-focus sealed tube 2010 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.042$

 $\theta_{\text{max}} = 25.3^{\circ}, \, \theta_{\text{min}} = 1.9^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -24 \rightarrow 20$ $T_{min} = 0.984, T_{max} = 0.989$ $k = -16 \rightarrow 11$ $l = -14 \rightarrow 17$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.053$

 $wR(F^2) = 0.151$

S = 1.06

3280 reflections

206 parameters

1 restraint

102 constraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0716P)^2 + 0.7136P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\text{max}} = 0.34 \text{ e Å}^{-3}$

 $\Delta \rho_{min} = -0.25 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.009 (1)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	\boldsymbol{z}	$U_{\rm iso}*/U_{\rm eq}$
O1	0.71866 (9)	0.42187 (11)	0.62113 (12)	0.0666 (5)
H1	0.7512 (12)	0.3850 (16)	0.6488 (18)	0.080*
O2	0.62147 (8)	0.10154 (10)	0.29387 (12)	0.0648 (5)
O3	0.54675 (8)	0.02822 (10)	0.35618 (12)	0.0569 (5)
C1	0.66141 (11)	0.37176 (15)	0.55316 (15)	0.0447 (5)
C2	0.64934 (10)	0.27165 (15)	0.56606 (14)	0.0427 (5)
C3	0.59129 (11)	0.22877 (15)	0.49092 (14)	0.0442 (5)
Н3А	0.5820	0.1627	0.4976	0.053*
C4	0.54664 (10)	0.27825 (14)	0.40700 (14)	0.0410 (5)
C5	0.55917 (10)	0.37794 (14)	0.40102 (15)	0.0442 (5)
H5A	0.5288	0.4130	0.3460	0.053*
C6	0.61499 (11)	0.42780 (14)	0.47341 (14)	0.0433 (5)
C7	0.62391 (12)	0.54031 (16)	0.46818 (17)	0.0563 (6)
C8	0.69596 (16)	0.56725 (19)	0.4609 (2)	0.0836 (9)
H8A	0.6997	0.6374	0.4579	0.125*

H8B	0.6992	0.5386	0.4011	0.125*
H8C	0.7342	0.5427	0.5189	0.125*
C9	0.56543 (16)	0.58469 (17)	0.3764 (2)	0.0934 (10)
H9A	0.5193	0.5717	0.3801	0.140*
H9B	0.5677	0.5559	0.3162	0.140*
Н9С	0.5725	0.6544	0.3753	0.140*
C10	0.61797 (15)	0.58785 (18)	0.5627 (2)	0.0780(8)
H10A	0.5727	0.5708	0.5673	0.117*
H10B	0.6213	0.6580	0.5584	0.117*
H10C	0.6562	0.5645	0.6215	0.117*
C11	0.69699 (12)	0.21224 (15)	0.65805 (15)	0.0509(6)
C12	0.77149 (12)	0.19636 (19)	0.6533 (2)	0.0744 (8)
H12A	0.7666	0.1663	0.5902	0.112*
H12B	0.7992	0.1543	0.7076	0.112*
H12C	0.7953	0.2585	0.6590	0.112*
C13	0.66642 (15)	0.10925 (19)	0.6605 (2)	0.0815 (9)
H13A	0.6176	0.1147	0.6563	0.122*
H13B	0.6944	0.0771	0.7223	0.122*
H13C	0.6682	0.0716	0.6046	0.122*
C14	0.7024(2)	0.2628 (2)	0.75627 (18)	0.1034 (11)
H14A	0.7281	0.3236	0.7627	0.155*
H14B	0.7276	0.2208	0.8121	0.155*
H14C	0.6551	0.2757	0.7557	0.155*
C15	0.48315 (10)	0.22752 (14)	0.32896 (15)	0.0432 (5)
H15A	0.4486	0.2774	0.2933	0.052*
H15B	0.4604	0.1860	0.3639	0.052*
C16	0.5000	0.16358 (19)	0.2500	0.0390(7)
C17	0.56390 (11)	0.09625 (14)	0.30121 (16)	0.0452 (5)
C18	0.60223 (15)	-0.04431 (19)	0.4048 (2)	0.0806 (9)
H18A	0.6138	-0.0811	0.3544	0.097*
H18B	0.6454	-0.0117	0.4487	0.097*
C19	0.5756 (2)	-0.1098 (2)	0.4627 (3)	0.1349 (15)
H19A	0.5583	-0.0721	0.5061	0.202*
H19B	0.6136	-0.1522	0.5027	0.202*
H19C	0.5372	-0.1487	0.4179	0.202*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0501 (10)	0.0581 (10)	0.0683 (11)	0.0038 (8)	-0.0064(8)	-0.0100 (8)
O2	0.0362 (9)	0.0680 (11)	0.0886 (12)	0.0093 (7)	0.0209(8)	0.0083 (9)
O3	0.0506 (9)	0.0445 (9)	0.0687 (10)	0.0078 (7)	0.0133 (8)	0.0154(8)
C1	0.0392 (12)	0.0532 (13)	0.0402 (12)	0.0006 (10)	0.0125 (10)	-0.0089 (10)
C2	0.0412 (12)	0.0520 (13)	0.0357 (11)	0.0039 (10)	0.0150 (10)	-0.0004 (10)
C3	0.0450 (12)	0.0457 (12)	0.0434 (12)	0.0003 (9)	0.0179 (10)	0.0027 (10)
C4	0.0370 (11)	0.0462 (12)	0.0406 (11)	0.0020 (9)	0.0149 (9)	-0.0023 (9)
C5	0.0405 (12)	0.0485 (13)	0.0403 (11)	0.0072 (9)	0.0107 (10)	0.0008 (10)
C6	0.0426 (12)	0.0442 (12)	0.0424 (12)	0.0030 (9)	0.0146 (10)	-0.0024(10)

C7	0.0490 (14)	0.0466 (13)	0.0623 (15)	0.0011 (10)	0.0071 (12)	-0.0023 (11)
C8	0.081 (2)	0.0697 (17)	0.105 (2)	-0.0119 (14)	0.0392 (17)	0.0075 (16)
C9	0.098 (2)	0.0500 (15)	0.091 (2)	-0.0007 (14)	-0.0152 (17)	0.0087 (14)
C10	0.083 (2)	0.0578 (16)	0.0886 (19)	0.0071 (13)	0.0263 (16)	-0.0202 (14)
C11	0.0536 (14)	0.0575 (14)	0.0390 (12)	0.0061 (10)	0.0137 (10)	0.0040 (10)
C12	0.0547 (16)	0.0748 (17)	0.0890 (19)	0.0154 (12)	0.0204 (14)	0.0210 (15)
C13	0.0780 (19)	0.0861 (19)	0.0679 (17)	-0.0075 (15)	0.0115 (14)	0.0331 (15)
C14	0.146 (3)	0.114 (2)	0.0415 (15)	0.039 (2)	0.0247 (17)	0.0077 (15)
C15	0.0357 (11)	0.0466 (12)	0.0462 (12)	0.0021 (9)	0.0135 (9)	0.0023 (10)
C16	0.0318 (15)	0.0369 (15)	0.0434 (16)	0.000	0.0079 (13)	0.000
C17	0.0389 (13)	0.0398 (12)	0.0529 (13)	-0.0006 (9)	0.0118 (10)	-0.0039 (10)
C18	0.080 (2)	0.0642 (17)	0.088 (2)	0.0283 (14)	0.0186 (16)	0.0248 (15)
C19	0.120(3)	0.099 (2)	0.193 (4)	0.031 (2)	0.066 (3)	0.083 (3)
	(8 0)					
Geometric pai	rameters (Å, °)					
O1—C1		1.381 (2)		–H10B	0.96	
O1—H1		0.803 (16)		–H10C	0.96	
O2—C17		1.196 (2)	C11–			8 (3)
O3—C17		1.336 (2)	C11–		1.532 (3)	
O3—C18		1.459 (3)	C11–		1.535 (3)	
C1—C6		1.403 (3)		–H12A	0.9600	
C1—C2		1.407 (3)		–H12B	0.9600	
C2—C3		1.389 (3)		-H12C	0.96	
C2—C11		1.540 (3)		-H13A	0.96	
C3—C4		1.380 (3)		–H13B	0.96	
C3—H3A		0.9300		-H13C	0.96	
C4—C5		1.388 (3)		-H14A	0.96	
C4—C15		1.516 (3)		-H14B	0.96	
C5—C6		1.390 (3)		-H14C	0.96	
C5—H5A		0.9300	C15-			4 (2)
C6—C7		1.547 (3)		-H15A	0.97	
C7—C9		1.526 (3)		–H15B	0.97	
C7—C8 C7—C10		1.527 (4) 1.538 (3)	C16–	-C17 ⁱ		6 (2) 6 (2)
C8—H8A		0.9600		–C17 –C15 ⁱ		4 (2)
C8—H8B		0.9600	C16–			2 (4)
С8—Н8С		0.9600		–C19 –H18A	0.97	
C9—H9A		0.9600		–H18В	0.97	
C9—H9B		0.9600		–H16В –H19А	0.96	
C9—H9C		0.9600		-H19B	0.96	
C10—H10A		0.9600		-H19C	0.96	
C1—O1—H1		110.7 (19)		-C11C2		30 (17)
C17—O3—C1	8	115.76 (19)		-C11—C2		76 (18)
O1—C1—C6		115.80 (19)		-C12—H12A	109.	
O1—C1—C2		121.62 (18)		-C12—H12B	109.	
C6—C1—C2		122.53 (18)		A—C12—H12B	109.	
C3—C2—C1		116.16 (18)		-C12—H12C	109.	

C3—C2—C11	121.36 (18)	H12A—C12—H12C	109.5
C1—C2—C11	122.48 (18)	H12B—C12—H12C	109.5
C4—C3—C2	123.98 (19)	C11—C13—H13A	109.5
C4—C3—H3A	118.0	C11—C13—H13B	109.5
C2—C3—H3A	118.0	H13A—C13—H13B	109.5
C3—C4—C5	117.11 (18)	C11—C13—H13C	109.5
C3—C4—C15	121.26 (18)	H13A—C13—H13C	109.5
C5—C4—C15	121.46 (17)	H13B—C13—H13C	109.5
C4—C5—C6	123.08 (18)	C11—C14—H14A	109.5
C4—C5—H5A	118.5	C11—C14—H14B	109.5
C6—C5—H5A	118.5	H14A—C14—H14B	109.5
C5—C6—C1	116.87 (19)	C11—C14—H14C	109.5
C5—C6—C7	121.54 (17)	H14A—C14—H14C	109.5
C1—C6—C7	121.56 (18)	H14B—C14—H14C	109.5
C9—C7—C8	107.1 (2)	C4—C15—C16	116.22 (15)
C9—C7—C10	107.7 (2)	C4—C15—H15A	108.2
C8—C7—C10	109.6 (2)	C16—C15—H15A	108.2
C9—C7—C6	111.54 (18)	C4—C15—H15B	108.2
C8—C7—C6	111.67 (18)	C16—C15—H15B	108.2
C10—C7—C6	109.11 (19)	H15A—C15—H15B	107.4
C7—C8—H8A	109.5	C17 ⁱ —C16—C17	106.2 (2)
C7—C8—H8B	109.5	C17 ⁱ —C16—C15 ⁱ	110.79 (10)
H8A—C8—H8B	109.5	C17—C16—C15 ⁱ	108.55 (11)
C7—C8—H8C	109.5	C17 ⁱ —C16—C15	108.55 (11)
H8A—C8—H8C	109.5	C17—C16—C15	110.79 (10)
H8B—C8—H8C	109.5	C15 ⁱ —C16—C15	111.9 (2)
C7—C9—H9A	109.5	O2—C17—O3	123.65 (19)
C7—C9—H9B	109.5	O2—C17—C16	126.01 (18)
H9A—C9—H9B	109.5	O3—C17—C16	110.34 (17)
C7—C9—H9C	109.5	C19—C18—O3	108.3 (3)
Н9А—С9—Н9С	109.5	C19—C18—H18A	110.0
H9B—C9—H9C	109.5	O3—C18—H18A	110.0
C7—C10—H10A	109.5	C19—C18—H18B	110.0
C7—C10—H10B	109.5	O3—C18—H18B	110.0
H10A—C10—H10B	109.5	H18A—C18—H18B	108.4
C7—C10—H10C	109.5	C18—C19—H19A	109.5
H10A—C10—H10C	109.5	C18—C19—H19B	109.5
H10B—C10—H10C	109.5	H19A—C19—H19B	109.5
C14—C11—C12	111.0 (2)	C18—C19—H19C	109.5
C14—C11—C13	106.6 (2)	H19A—C19—H19C	109.5
C12—C11—C13	105.9 (2)	H19B—C19—H19C	109.5
C14—C11—C2	111.06 (18)		
01—C1—C2—C3	-178.03 (19)	C1—C6—C7—C10	-59.1 (3)
C6—C1—C2—C3	4.5 (3)	C3—C0—C7—C10 C3—C2—C11—C14	-39.1 (3) -126.1 (3)
01—C1—C2—C1	2.3 (3)	C1—C2—C11—C14	-126.1 (3) 53.5 (3)
C6—C1—C2—C11	-175.11 (18)	C1—C2—C11—C14 C3—C2—C11—C12	
C1—C2—C11 C1—C2—C3—C4	0.2 (3)	C1—C2—C11—C12	110.4 (2) -69.9 (3)
C1—C2—C3—C4 C11—C2—C3—C4	179.83 (18)	C3—C2—C11—C12 C3—C2—C11—C13	-69.9 (3) -7.1 (3)
C11 -C2-C3-C4	177.03 (10)	C5 -C2C11C13	1.1 (3)

C2—C3—C4—C5	-3.3(3)	C1—C2—C11—C13	172.5 (2)
C2—C3—C4—C15	-178.59 (19)	C3—C4—C15—C16	-81.2 (2)
C3—C4—C5—C6	1.8 (3)	C5—C4—C15—C16	103.7 (2)
C15—C4—C5—C6	177.16 (19)	C4—C15—C16—C17 ⁱ	163.70 (16)
C4—C5—C6—C1	2.5 (3)	C4—C15—C16—C17	47.5 (2)
C4—C5—C6—C7	-175.45 (19)	C4—C15—C16—C15 ⁱ	-73.76 (15)
O1—C1—C6—C5	176.62 (18)	C18—O3—C17—O2	-2.7(3)
C2—C1—C6—C5	-5.8 (3)	C18—O3—C17—C16	176.81 (18)
O1—C1—C6—C7	-5.4 (3)	C17 ⁱ —C16—C17—O2	129.7 (2)
C2—C1—C6—C7	172.14 (19)	C15 ⁱ —C16—C17—O2	10.6 (3)
C5—C6—C7—C9	-0.2 (3)	C15—C16—C17—O2	-112.6 (2)
C1—C6—C7—C9	-178.0 (2)	C17 ⁱ —C16—C17—O3	-49.75 (12)
C5—C6—C7—C8	-120.0 (2)	C15 ⁱ —C16—C17—O3	-168.89 (16)
C1—C6—C7—C8	62.1 (3)	C15—C16—C17—O3	67.9 (2)
C5—C6—C7—C10	118.7 (2)	C17—O3—C18—C19	178.4 (3)
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H1···O2 ⁱⁱ	0.80(2)	2.38 (2)	2.996 (2)	134 (2)
C12—H12C···O2 ⁱⁱ	0.96	2.46	3.398 (3)	167

Symmetry codes: (ii) -x+3/2, -y+1/2, -z+1.

Fig. 1

Fig. 2

