EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE/SENIOR SERTIFIKAAT
NATIONAL SENIOR CERTIFICATE/
NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2020

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit 18 bladsye*.

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

REMEMBER: (A) next o the description of a tick implies accuracy mark

(A) langs die beskrywing van `n regmerk impliseer akkuraatheids-punt **ONTHOU**:

1.1.1	$x^2 - 6x = 0$ $x(x-6) = 0$	✓ common factor
	x = 0 or $x = 6$	✓ both answers (2)
1.1.2	$x^2 + 10x + 8 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-10\pm\sqrt{10^2-4(1)(8)}}{2(1)}$	✓ substitution into the correct formula
	$=\frac{-10\pm\sqrt{68}}{2}$	
	x = -0.88 or $x = -9.12$	$\checkmark -0.88 \checkmark -9.12$ (3)
1.1.3	(1-x)(x+2)<0	
	Critical values: $x = 1$ or $x = -2$	✓ critical values
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ correct method
	x < -2 or $x > 1$	✓ answer (3)
1.1.4	$\sqrt{x+18} = x-2 x+18 = x^2 - 4x + 4$	✓ squaring both sides (m)
	$0 = x^2 - 5x - 14$	✓ standard form
	(x-7)(x+2)=0	✓ factors
	$x = 7$ or $x \neq -2$	✓ both answers
		✓ rejection of $x = -2$ (5)

SC/SS/NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2020

$\begin{array}{c c} 1.2 & x+y=3 \end{array}$	
$y = 3 - x \dots (1)$ $\checkmark y \text{ subject of the}$	formula
$2x^2 + 4xy - y = 15 \dots (2)$	
Carl attacks (1) into (2)	
Substitute (1) into (2): $2x^2 + 4x(3-x) - (3-x) = 15$ \checkmark substitution	
$2x^{2} + 12x - 4x^{2} - 3 + x - 15 = 0$	
$-2x^{2} + 13x - 18 = 0$	
$2x^2 - 13x + 18 = 0$ \checkmark standard form	
$(2x-9)(x-2) = 0$ \checkmark factors	
$x = \frac{9}{2}$ or $x = 2$	
3 √ y-values	4.50
$y = -\frac{3}{2}$ or $y = 1$	(6)
OR	
OR	
$x + y = 3$ \(\sqrt{x} \) subject of the	formula
$x = 3 - y \dots (1)$	
$2x^2 + 4xy - y = 15 \dots (2)$	
Substitute (1) into (2): $2(3-y)^2 + 4(3-y)y - y - 15$ \checkmark substitution	
$2y^2 - 12y + 18 - 4y^2 + 12y - y - 15 = 0$	
$-2y^2 - y + 3 = 0$	
$2y^2 + y - 3 = 0$	
(2y+3)(y-1)=0 factors	
$y = -\frac{3}{2}$ or $y = 1$ \checkmark y-values	
$x = \frac{9}{2}$ or $x = 2$	(6)
	(6)
1.3 $n^{200} < 5^{300}$	
$\left(n^2\right)^{100} < \left(5^3\right)^{100}$	
$\left(n^2\right)^{100} < (125)^{100}$	
$n^2 < 125$ $\sqrt{n^2} < 125$	
Maximum value of n is 11.	(2)
	(3)
OR OR	
$200 \log n < 300 \log 5$ \checkmark use of logs	
$n < 10^{\frac{3}{2} \log 5}$	
$n < 10$ $n < 11,18$ $\checkmark n < 11,18$	
$\therefore n = 11$	
	(3)
OR OR	. ,

Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

4

DBE/November 2020

SC/SS/NSC/NSS-Marking~Guidelines/Nasienriglyne

$n^{200} < 5^{300} (n^2)^{100} < (5^3)^{100}$	$\checkmark (n^2)^{100} < (5^3)^{100}$
$\sqrt{n^2} < \sqrt{5^3}$	
$\sqrt{n^2} < \sqrt{5^3}$ $n < 5^{\frac{3}{2}}$	✓ n < 11,18
$n < 11,18$ $\therefore n = 11$	$\checkmark 11 \tag{3}$
OR	OR
$n^{200} < 5^{300}$ $n < 5^{\frac{300}{200}}$	$\checkmark n < 5^{\frac{300}{200}}$ $\checkmark n < 11,18$
$n < 11,18$ $\therefore n = 11$	$\checkmark n = 11 \tag{3}$
	[22]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

2.1	7; x ; y ; -11 ; $a = 7$ $a + 3d = -11$ $7 + 3d = -11$ $d = -6$ $x = a + d = 7 + (-6) = 1$ $y = a + 2d = 7 + 2(-6) = -5$	√7 + 3d = -11 $ √d = -6 $ ✓ value of x ✓ value of y	(4)
	OR	OR	
	a + 3d = -11 $3d = -11 - 7$ $3d = -18$	$\checkmark 3d = -11 - 7$	
	3d = -18 $d = -6$	✓ d = -6	
	$ \begin{aligned} x &= 1 \\ y &= -5 \end{aligned} $	$\checkmark x = 1$ $\checkmark y = -5$	
	<i>y</i> ≡ −3	v y = −3	(4)
	OR	OR	(· /
	x - 7 = y - x and $y - x = -11 - y$	✓ 2 equations	
	2x-7 = y(1) $2y = -11 + x$ (2) (1) into (2) $2(2x-7) = -11 + x$	✓ substitution	
	4x - 14 = -11 + x		
	3x = 3 $x = 1$		
	y = 2(1) - 7 = -5	\checkmark value of x	
		\checkmark value of y	(4)
2.2.1	-3;6;27;60;		(4)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	12 12	✓ second difference	
	2a = 12 $a = 6$ $3a + b = 9$	$\checkmark a = 6$	
	3(6) + b = 9 $b = -9$ $a + b + c = -3$	✓ b = -9	
	$6-9+c=-3$ $c=0$ $T_n = 6n^2 - 9n$	$\checkmark c = 0$	(4)

6 SC/SS/NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2020

2.2.2	$T_{50} = 6(50)^2 - 9(50)$ $= 14 550$	Answer Only: Full Marks	✓ substitute 50 ✓ answer	(2)
2.2.3	9; 21; 33; a = 9 d = 12		$\checkmark a \text{ and } d$	
	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_n = \frac{n}{2} [2(9) + (n-1)(12)]$		✓ substitution into the correct formula	
	$= \frac{n}{2} [18 + 12n - 12]$ $= \frac{n}{2} [12n + 6]$ $= 6n^2 + 3n$		$\checkmark \frac{n}{2} [12n+6]$	
2.2.4	$-3+S_n=21060$		$\checkmark -3 + S_n = 21060$	(3)
	$S_n = 21063$ $6n^2 + 3n = 21063$ $6n^2 + 3n - 21063 = 0$ $2n^2 + n - 7021 = 0$		✓ equation ✓ standard form	
	$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
	$n = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-70)}}{2(2)}$	021)		
	$n = 59 \text{ or } n \neq \frac{-119}{2}$ $\therefore n = 59$		✓ answer	(4)
	OR			
	$T_n = 21060$ $6n^2 - 9n - 21060 = 0$ $2n^2 - 3n - 7020 = 0$ $n = 60$		✓ equation ✓ standard form	
	∴59 first differences mu	st be added.	✓ ✓ answer	(4)
				[17]

7

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

3.1	$\sum_{k=1}^{\infty} 4.3^{2-k} = 12 + 4 + \frac{4}{3} + \dots$ $r = \frac{4}{12} = \frac{1}{3}$ $-1 < \frac{1}{3} < 1$ $\therefore \text{ series is convergent } (-1 < r < 1)$	✓ $12+4+\frac{4}{3}+$ or $36\left(\frac{1}{3}\right)^k$ ✓ value of r ✓ $-1 < r < 1$ (3)
3.2	$\sum_{k=p}^{\infty} 4.3^{2-k} = 4.3^{2-p} + 4.3^{1-p} + 4.3^{-p} + \dots$ $a = 4.3^{2-p}$ $r = \frac{1}{3}$	\checkmark expression for a
	$S_{\infty} = \frac{a}{1 - r}$ $\frac{2}{9} = \frac{4 \cdot 3^{2 - p}}{1 - \frac{1}{3}}$	✓ substitution of a , r and S_{∞}
	$4.3^{2-p} = \frac{4}{27}$ $3^{2-p} = 3^{-3}$ $2-p = -3$ $p = 5$	✓ simplification $\left(4.3^{2-p} = \frac{4}{27}\right)$ ✓ $3^{2-p} = 3^{-3}$ ✓ answer (5)
		[8]

8

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

		T
4.1.1	$ \begin{aligned} x &= 1 \\ y &= 2 \end{aligned} $	$ \begin{array}{c} \checkmark \ x = 1 \\ \checkmark \ y = 2 \end{array} \tag{2} $
4.1.2	$y = mx + c y - y_1 = m(x - x_1) y = -(x - p) + q$ $2 = -1 + c \text{or} y - 2 = -1(x - 1) \text{or} = -(x - 1) + 2$ $c = 3 y - 2 = -x + 1 y = -x + 3$ $y = -x + 3$	✓ substitution of $m = -1$ and (1; 2) ✓ answer (2)
4.1.3	$\frac{y}{2}$ $\frac{5}{2}$ x	✓ vertical asymptote: $x = 1$ and horizontal asymptote: $y = 2$ ✓ x -intercept: $\frac{5}{2}$ ✓ y -intercept: 5 ✓ shape (A)
421	(5.9)	(4)
4.2.1	(-5; -8)	$\checkmark x = -5 \checkmark y = -8 \tag{2}$
4.2.2	$y \ge -8$ or $[-8; \infty)$	✓ answer (1)
4.2.3	$m = -5$ $n = g(-5)$ $= \frac{1}{2}(-5) + \frac{9}{2}$ $= 2$	✓ $m = -5$ ✓ substitution ✓ $n = 2$ (3)
4.2.4		
f	Area trapezium = $\frac{1}{2}$ (DE+OC)×OE = $\frac{1}{2}$ (2+4,5)×5 = $\frac{65}{4}$ or 16,25	✓ method ✓ correct substitution ✓ answer (3)
	OR	OR

9

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

Area $\Delta = \frac{1}{2}b.h$

$$=\frac{1}{2}(5)\left(\frac{5}{2}\right)$$

 $=\frac{25}{4}$

Area rect = b.h= (5)(2)

Area trapezium = $\frac{25}{4}$ + 10 = $\frac{65}{4}$ or 16,25

✓ method

✓ correct substitution

✓answer (3)

OR

OR

S(-9;0)

Area
$$\triangle$$
 SOC = $\frac{1}{2}b.h$

$$= \frac{1}{2}(9)(\frac{9}{2})$$

$$= \frac{81}{4}$$

Area \triangle SED = $\frac{1}{2}b.h = \frac{1}{2}(4)(2) = 4$

Area trapezium = area \triangle SOC - Area \triangle SED = $\frac{81}{4}$ - 4 = $\frac{65}{4}$ or 16,25 ✓ method

✓ correct substitution

✓answer (3)

4.2.5

$$g^{-1}: \quad x = \frac{1}{2}y + \frac{9}{2}$$

 g^{-1} : y = 2x - 9

 \checkmark changing x and y

✓answer

(2)

10

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4.2.6	1, -2, -2		
	$f(x) = \frac{1}{2}(x+5)^2 - 8$		
	$f(x) = \frac{1}{2}(x^2 + 10x + 25) - 8$		
	$f(x) = \frac{1}{2}x^2 + 5x + 4.5$	$\checkmark f'(x)$	
	f'(x) = x + 5	•	
	h(x) = 2x - 9 + k $x + 5 = 2$	$\checkmark x+5=2$	
	x = -3 $y = -6$ $(-3; -6)$	$\checkmark x = -3 \checkmark y = -6$	
	OR	OR	(4)
	f(x) = h(x)	OK	
	$\frac{1}{2}(x+5)^2 - 8 = 2x - 9 + k$	✓ equating	
	$\frac{1}{2}x^2 + 3x + \frac{27}{2} - k = 0$		
	$x = \frac{-3}{2\left(\frac{1}{2}\right)} = -3 \qquad b^2 - 4ac = 0$	✓ turning point / $\triangle = 0$	
	y = -6 (-3; -6)	$\checkmark x = -3 \checkmark y = -6$	(4)
			[23]

11

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

5.1	A(0; 1)	✓ answer
		(1)
5.2	$9 = 3^{-x}$	✓ equating
	$3^2 = 3^{-x}$	$\checkmark 3^2 = 3^{-x}$
	x = -2	$\checkmark x = -2$
	B(-2; 9)	$\mathbf{v} \mathbf{x} = -2$
		(3)
5.3	$x \in (0, \infty)$ or $x > 0$	√√answer
		(2)
5.4	$h(x) = 27.3^{-x}$	
	$h(x) = 3^{-(x-3)}$	$\checkmark h(x) = 3^{-(x-3)}$
	f shifted 3 units to the right	✓3 units
		✓ right
		(3)
5.5	$\frac{27}{3^x} < 1$	
	$3^x > 27$ or $3^{-x+3} < 3^0$	$\checkmark 3^x > 27 \text{ or } 3^{-x+3} < 3^0$
	$3^{x} > 3^{3}$ $-x+3 < 0$	$\checkmark 3^x > 3^3 \text{ or } -x+3 < 0$
	$\begin{vmatrix} x > 3 & x > 3 \end{vmatrix}$	$\checkmark x > 3$
		(3)
	OR	
		OR
	The graph shifts 3 units to the right	✓ translation
	Thus the <i>y</i> -intercept shift 3 units to the right (3; 1)	✓ y-intercept
	$\therefore x > 3$	✓answer (3)
		[12]

6.1.1	$F = \frac{x[(1+i)^n - 1]}{i}$ $= \frac{1000[(1+\frac{0.075}{12})^{145} - 1]}{\frac{0.075}{12}}$ $= R234 888.53$	$ √ n = 145 $ $ √ i = \frac{0,075}{12} $ ✓ substitution into the correct formula ✓ answer (4)
6.1.2	$A = P(1+i)^n$	
	$= 234 888,53 \left(1 + \frac{0,075}{12}\right)^{12}$ $= R253 123,54$	✓ substitution into the correct formula ✓ answer (2)
6.2	$A = P(1-i)^n$	
	92 537,64 = 250 000 $(1-0.22)^n$ 0,37015056 = $(0.78)^n$	✓ substitution into the correct formula
		✓ correct use of logs
	$n = \frac{\log 0,37015056}{\log 0,78}$	0011001 450 01 1055
	n=4 years	✓answer
101	n-4 years	(3)
6.3.1	Loan amount: $ = \frac{x[1 - (1+i)^{-n}]}{i} $ $ = \frac{1500 \left[1 - \left(1 + \frac{0,113}{12} \right)^{-72} \right]}{\frac{0,113}{12}} $	✓ 72 ✓ substitution into the correct formula ✓ answer
	= R78 173,49323	(3)
6.3.2	Balance after 5 years: $P = \frac{x[1 - (1 + i)^{-n}]}{i}$ $= \frac{1500 \left[1 - \left(1 + \frac{0,113}{12}\right)^{-12}\right]}{\frac{0,113}{12}}$ $= R16 945,00629$	✓ substitution (A) ✓ R16 945,00629 (A)
	Amount paid: R1 $500 \times 60 = R90000$	
	Interest = Amount paid – [Loan – Balance] = R90 000 – [R78 173,49323 – R16 945,00629] = R28 771,51	✓ R90 000 – [Loan – Balance] ✓ answer (4)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

OR	OR
Balance	
$= 78173,49 \left(1 + \frac{0,133}{12}\right)^{60} - \frac{1500 \left(1 + \frac{0,113}{12}\right)^{60} - 1}{\frac{0,113}{12}}$	✓ substitution
Balance = R16 945.00	✓ R16 945,00629
Amount paid: R1 $500 \times 60 = R90000$	
Interest = Amount paid – [Loan – Balance] = R90 000 – [R78 173,49323 – R16 945,00629] = R28 771,51	✓ R90 000 – [Loan – Balance] ✓ answer (4)
	[16]

DBE/November 2020

QUESTION/VRAAG 7
Penalty of – 1 for notation only in 7.1

	of – 1 for notation only in 7.1	_
7.1	$f(x) = 2x^2 - 1$	
	$f(x+h) = 2(x+h)^2 - 1$	
	$=2(x^2+2xh+h^2)^2-1$	
	$=2x^2 + 4xh + 2h^2 - 1$	$\checkmark 2x^2 + 4xh + 2h^2 - 1$
	$f(x+h)-f(x) = 2x^2 + 4xh + 2h^2 - 1 - (2x^2 - 1)$	
	$=2x^2+4xh+2h^2-1-2x^2+1$	$\checkmark 4xh + 2h^2$
	$=4xh+2h^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$=\lim_{h\to 0}\frac{4xh+2h^2}{h}$	✓ substitution
	$=\lim_{h\to 0}\frac{h(4x+2h)}{h}$	✓ simplification
		Simplification
	$= \lim_{h \to 0} (4x + 2h)$	
	=4x	✓ answer (5)
7.2.1	$\frac{d}{dx}\left(\sqrt[5]{x^2} + x^3\right)$	
	$=\frac{d}{dx}\left(x^{\frac{2}{5}}+x^3\right)$	$\checkmark x^{\frac{2}{5}}$ $\checkmark \frac{2}{5}x^{-\frac{3}{5}} \checkmark 3x^{2}$
	$\frac{dy}{dx} = \frac{2}{5}x^{-\frac{3}{5}} + 3x^2$	$\checkmark \frac{2}{5}x^{-\frac{3}{5}} \checkmark 3x^2 \tag{3}$
7.2.2	$4x^2-9$	
	$f(x) = \frac{4x^2 - 9}{4x + 6}$	((2) (2)
	$=\frac{(2x-3)(2x+3)}{2(2x+3)}$	$\checkmark (2x-3)(2x+3)$
	2(2x+3)	$\checkmark 2(2x+3)$
	$=\frac{2x-3}{2}$ $=x-\frac{3}{2}$	
	3	d simplification to t
	$=x-\frac{1}{2}$	✓ simplification to two separate terms
	f'(x)=1	✓ answer
		(4)
		[12]

8.1	-1 < x < 2		✓✓ answer (2)
8.2	$x = \frac{-1+2}{2}$ $x = \frac{1}{2}$	Answer Only: Full Marks	✓ method ✓ answer (2)
8.3	From the graph $x > \frac{1}{2}$	Answer Only: Full Marks	✓✓ answer (2)
8.4	$g(x) = ax^{3} + bx^{2} + cx$ $g'(x) = 3ax^{2} + 2bx + c = -6x^{2}$ $3a = -6. 2b = 6 c = 1$ $a = -2 b = 3$ $g(x) = -2x^{3} + 3x^{2} + 12x$		$ ✓ g'(x) = 3ax^{2} + 2bx + c $ $ ✓ a = -2 $ $ ✓ b = 3 $ $ ✓ g(x) = -2x^{3} + 3x^{2} + 12x $ (4)
8.5	$g'\left(\frac{1}{2}\right) = -6\left(\frac{1}{2}\right)^{2} + 6\left(\frac{1}{2}\right) + 12$ $m = \frac{27}{2} \text{or } 13,5$ $y = -2\left(\frac{1}{2}\right)^{3} + 3\left(\frac{1}{2}\right)^{2} + 12\left(\frac{1}{2}\right)$ $y = \frac{13}{2} \text{or } 6,5$ $y - y_{1} = m(x - x_{1})$ $y - 6,5 = 13,5(x - 0,5)$ $y = 13,5x - 0,25$		✓ max gradient at $x = \frac{1}{2}$ ✓ answer ✓ y value ✓ substitution ✓ answer (5)
			[15]

16 SC/SS/NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2020

9.1	Total surface area = $2\ell w + 2wh + 2\ell h$ but: $\ell = 3w$ Total surface area = $6w^2 + 2wh + 6wh$	$\checkmark 2\ell w + 2wh + 2\ell h$ $\checkmark \ell = 3w$
	$C = 15(6w^{2}) + 6(2wh + 6wh)$ $= 15(6w^{2}) + 6(8wh)$ $= 90w^{2} + 48wh$	$\checkmark 15(6w^2)$ $\checkmark 6(2wh + 6wh)$ (4)
9.2	$5 = 3w^{2}h$ $h = \frac{5}{3w^{2}}$ $C = 90w^{2} + 48wh$	$\checkmark h = \frac{5}{3w^2}$
	$C(w) = 90w^2 + 48w \left(\frac{5}{3w^2}\right)$	✓ substitution
	$= 90w^{2} + 80w^{-1}$ $C'(w) = 180w - 80w^{-2}$ $180w - 80w^{-2} = 0$	✓ $C(w) = 90w^2 + 80w^{-1}$ ✓ derivative ✓ equating derivative to zero
	$180w^{3} - 80 = 0$ $w^{3} = \frac{80}{180}$ $w = \sqrt[3]{\frac{80}{180}}$	
	$w = \sqrt[3]{\frac{180}{180}}$ $w = 0.76$	✓ value of w (6)
		[10]

17

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2020

QUESTION/VRAAG 10

10.1	10 ¹⁰ or 10 000 000 000	✓✓ answer	• .
		(2	2)
10.2.1			
	$8 \times 10 \times 10 \times 8 \times 8 \times 10 \times 2 \times 10 \times 10$	$\checkmark 8 \times 10 \times 10$	
	Area exchange number	or	
		<u>8</u> × <u>8</u> × <u>10</u>	
	No. of valid 10-digit numbers	$\checkmark 2 \times 10 \times 10 \times 10$	
	$= (8 \times 10 \times 10) \times (8 \times 8 \times 10) \times (2 \times 10 \times 10 \times 10)$		
	$=1,024\times10^9$	$\checkmark 1,024 \times 10^9$ (A) (3	3)
10.2.2	$1,024 \times 10^9$	1,024×10 ⁹	
	Probability = $\frac{1,024 \times 10^9}{10^{10}}$	$\checkmark \frac{1,024 \times 10^9}{10^{10}}$	
	64	-	
	$=\frac{64}{625}=0,1024=10,24\%$	✓ answer	
	025	(2	2)
		[7	71

Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

18

DBE/November 2020

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

11.2	P (Bull's eye at least twice in 3 shots) = $(0.5 \times 0.5 \times 0.5) + (0.5 \times 0.5 \times 0.5) + (0.5 \times 0.5 \times 0.5) + (0.5 \times 0.5 \times 0.5)$ = $0.125 + 0.125 + 0.125 + 0.125$	✓ $0.5 \times 0.5 \times 0.5$ ✓ four events	
	$=0.5$ or $\frac{1}{2}$	✓ answer (A)	(3)
11.3	Person shoots first:		
	$(0,5) + (0,5)^3 + (0,5)^5 + \dots$	$\checkmark (0,5) + (0,5)^3$	
	$P = \frac{a}{1-r}$	$\checkmark (0,5) + (0,5)^3$ $\checkmark + (0,5)^5 +$	
	$P = \frac{0.5}{1 - 0.25}$	$\checkmark P = \frac{0.5}{1 - 0.25}$	
	$P = \frac{2}{3} = 0,67$		(3)
			[8]

TOTAL/TOTAAL: 150