

planetmath.org

Math for the people, by the people.

isomorphism of rings of real and complex matrices

 ${\bf Canonical\ name} \quad {\bf IsomorphismOfRingsOfRealAndComplexMatrices}$

Date of creation 2013-03-22 16:17:15 Last modified on 2013-03-22 16:17:15 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 10

Author Wkbj79 (1863)

Entry type Theorem
Classification msc 15-01
Classification msc 15A33
Classification msc 15A21

Note that http://planetmath.org/Submatrixsubmatrix notation will be used within this entry. Also, for any positive integer n, $M_{n\times n}(R)$ will be used to denote the ring of $n \times n$ matrices with entries from the ring R, and R_n will be used to denote the following subring of $M_{2n\times 2n}(\mathbb{R})$:

$$R_n = \left\{ P \in M_{2n \times 2n}(\mathbb{R}) : P = \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \text{ for some } A, B \in M_{n \times n}(\mathbb{R}) \right\}$$

Theorem. For any positive integer n, $R_n \cong M_{n \times n}(\mathbb{C})$.

Proof. Define
$$\varphi \colon R_n \to M_{n \times n}(\mathbb{C})$$
 by $\varphi \left(\left(\begin{array}{cc} A & B \\ -B & A \end{array} \right) \right) = A + iB$ for $A, B \in M_{n \times n}(\mathbb{R})$.

Let
$$A, B, C, D \in M_{n \times n}(\mathbb{R})$$
 such that $\varphi\left(\begin{pmatrix} A & B \\ -B & A \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} C & D \\ -D & C \end{pmatrix}\right)$.

Then
$$A+iB=C+iD$$
. Therefore, $A=C$ and $B=D$. Hence, $\begin{pmatrix} A & B \\ -B & A \end{pmatrix}=$

$$\begin{pmatrix} C & D \\ -D & C \end{pmatrix}$$
. It follows that φ is injective.

Let
$$Z \in M_{n \times n}(\mathbb{C})$$
. Then there exist $X, Y \in M_{n \times n}(\mathbb{R})$ such that $X + iY = Z$. Since $\varphi\left(\begin{pmatrix} X & Y \\ -Y & X \end{pmatrix}\right) = X + iY = Z$, it follows that φ is surjective. Let $A, B, C, D \in M_{n \times n}(\mathbb{R})$. Then

$$\varphi\left(\left(\begin{array}{cc}A & B\\-B & A\end{array}\right) + \left(\begin{array}{cc}C & D\\-D & C\end{array}\right)\right) &= \varphi\left(\left(\begin{array}{cc}A + C & B + D\\-B - D & A + C\end{array}\right)\right)$$

$$= A + C + i(B + D)$$

$$= A + iB + C + iD$$

$$= \varphi\left(\left(\begin{array}{cc}A & B\\-B & A\end{array}\right)\right) + \varphi\left(\left(\begin{array}{cc}C & D\\-D & C\end{array}\right)\right)$$

and

$$\varphi\left(\left(\begin{array}{cc}A & B\\-B & A\end{array}\right)\left(\begin{array}{cc}C & D\\-D & C\end{array}\right)\right) = \varphi\left(\left(\begin{array}{cc}AC - BD & AD + BC\\-AD - BC & AC - BD\end{array}\right)\right)$$

$$= AC - BD + i(AD + BC)$$

$$= (A + iB)(C + iD)$$

$$= \varphi\left(\left(\begin{array}{cc}A & B\\-B & A\end{array}\right)\right)\varphi\left(\left(\begin{array}{cc}C & D\\-D & C\end{array}\right)\right).$$

It follows that φ is an http://planetmath.org/RingIsomorphism.