1 Newton の運動の 3 法則 ¹⁾

- 1.1 作用·反作用²⁾の法則(第3法則)
- "押す"と "押し返される" ← 「何が」「何を」押すのかに注意

例1 壁を押すとき

例2 イスに座っているとき

ある物体から他の物体に力を加えると、 逆に"ある物体"は"他の物体"から、

- 大きさが 1_ _ _ _ ,
- 向きが₂₋₋₋₋で,
- 3_____作用線上の

力がはたらく.

まとめると,

4

 $^{^{1)}}$ Newton's laws of motion

 $^{^{2)}}$ action, reaction

! 注意点!

「作用・反作用の法則」は、「力のつりあい」の条件と似ていると思うかもしれない。

・力のつりあい 一

2 つの力が、

- 大きさが等しく、
- 向きが反対で,
- 同じ作用線上に

はたらいているとき、この2力は「つりあっている」という.

しかし,これらは,

- 力のつりあい:ひとつの物体に はたらく力の合計がゼロ
- 作用・反作用の法則:ふたつの物体は お互いに力を及ぼし合う

という,全くの別物である.

これまでの「力」のまとめ

「押す」「押し返す」「引く」「受ける」「及ぼす」と様々な表現があるけれども、

力は、物体が 別の物体に与えるもの

であり、その力によって、

"物体"の運動の状態(速度)が変わったり、"物体"が変形したり

する. その種類は,

- 2 物体が接触していないときにはたらく力 重力(万有引力),静電気力³⁾,電磁力⁴⁾
- 2 物体が接触しているときにはたらく力 (=接触力) 抗力 (垂直抗力,摩擦力),弾性力,張力 (,浮力) など

がある. また, このとき,

"別の物体"も"物体"に力を与えている.

 $^{^{3)}}$ Coulomb 力

 $^{^{4)}}$ Lorentz 力

$oxed{Question}$ ばね $oxed{S}$ の伸びが最も大きいのは,どの場合か?

ア. ① イ. ② ウ. ③ エ. すべて同じ

- Newton の運動の 3 法則 ー

第1法則(慣性の法則)

外部から力を受けないか,あるいは受ける力がつりあっている場合には,静止している物体はいつまでも静止をし続け,運動している物体は等速直線運動をし続ける.

第2法則(運動方程式)

物体にいくつかの力がはたらくとき、物体にはそれらの合力 \vec{F} の向きに加速度 \vec{a} が生じる.その加速度の大きさは合力の大きさに比例し、物体の質量 m に反比例する.

第3法則(作用・反作用の法則)

物体 A から物体 B に力をはたらかせると、物体 B から物体 A に、同じ作用線上で、大きさが等しく、向きが反対の力がはたらく.

Newton は、「物体の運動はその物体にはたらく力によって引き起こされる」という"信念"のもとで、物体の運動と力との関係を、「力」とは何か?ということに重点をおいて、まとめ上げた。この理論体系は、現在では「Newton 力学 5 」として確たる地位を得ており、様々なところに応用されている。まず初めに、

物体に力がはたらいていないときに何が起こるか

を考えることで,

「それが起こるような"舞台"での現象を扱いますよ」という舞台設定

をした. 舞台が整ったところで, 次に,

物体に力がはたらいたら運動はどうなるか

という、Newton 力学の基礎となる部分を考えた.これが今日では、 $m\frac{\Delta \vec{v}}{\Delta t}=\vec{F}$ などの形で書き表されている.ここまでで、「力とはどのような効果をもつか」ということについては考えてきたのだが、更に

そもそも, 力はどのように(どこで)発生するのか

という「力の起源」についても考え、Newton は「力は他の物体によって与えられる」という形式に仕上げた.

©モブメガネ

⁵⁾Newtonian mechanics