Kernelized SVM

Part I

Outline

A Simple 1-Dimensional Classification Problem

A More Perplexing 1-Dimensional Classification Problem

Transform the Data by Adding a Second Dimension/Feature

The Data Transformation Makes it Possible With a Linear Classifier

What Does the Linear Decision Boundary in Feature Space Correspond to in the Original Input Space?

Mapping From 2D to 3D: Part I

Original input space

$$x_i = (x_0, x_1)$$

Mapping from 2D to 3D: Part II

Mapping from 2D to 3D: Part III

Mapping from 2D to 3D: Part IV

SVM With Non-Linear Decision Boundary

- The motto: instead of tweaking the definition of SVM to accommodate non-linear decision boundaries, we map the data into a feature space in which the classes are linearly separable (or nearly separable):
- Apply transform $\phi: \mathbb{R}^J \to \mathbb{R}^{J'}$ on training data

$$x_n \to \phi(x_n)$$

where typically J' is much larger than J.

Train an SVM on the transformed data

$$\{(\phi(x_1), y_1), (\phi(x_2), y_2), ..., (\phi(x_N), y_N)\}$$

The Kernel Trick

The *inner product* between two vectors is a measure of the similarity of the two vectors.

Definition

Given a transformation $\phi:\mathbb{R}^J\to\mathbb{R}^{J'}$, from input space \mathbb{R}^J to feature space $\mathbb{R}^{J'}$, the function $K:\mathbb{R}^J\times\mathbb{R}^J\to\mathbb{R}$ defined by

$$K(x_n, x_m) = \phi(x_n)^{\top} \phi(x_m), \quad x_n, x_m \in \mathbb{R}^J$$

is called the **kernel function** of ϕ .

Generally, **kernel function** may refer to any function $K: \mathbb{R}^J \times \mathbb{R}^J \to \mathbb{R}$ that measure the similarity of vectors in \mathbb{R}^J , without explicitly defining a transform ϕ .

Dual Representation: Part I

$$w^* = \sum_n \alpha_n^* x^n \qquad \text{Linear combination of data points}$$

$$\alpha_n^* \text{ may be sparse} \implies x^n \text{ with non-zero } \alpha_n^* \text{ are support vectors}$$

Dual Representation: Part II

$$w = \sum_{n} \alpha_{n} x^{n} = X \alpha \qquad X = \begin{bmatrix} x^{1} \\ x^{2} \\ \vdots \\ \alpha_{N} \end{bmatrix}$$

$$w = X \alpha$$
Step 1:
$$f(x) = w^{T} x$$

$$f(x) = \sum_{n} \alpha_{n} (x^{n} \cdot x)$$

$$= \sum_{n} \alpha_{n} K(x^{n}, x)$$

$$\begin{bmatrix} x^{1} \cdot x \\ x^{2} \cdot x \\ \vdots \\ x^{N} \cdot x \end{bmatrix}$$

Dual Representation: Part III

Step 1:
$$f(x) = \sum_{n} \alpha_n K(x^n, x)$$

Step 2, 3: Find $\{\alpha_1^*, \dots, \alpha_n^*, \dots, \alpha_N^*\}$, minimizing loss function L

$$L(f) = \sum_{n} l(\underline{f(x^n)}, \hat{y}^n)$$

$$= \sum_{n} l\left(\sum_{n'} \alpha_{n'} K(x^{n'}, x^n), \hat{y}^n\right)$$

We don't really need to know vector x

We only need to know the inner product between a pair of vectors x and z

Kernel Trick

Kernel Trick

Directly computing K(x, z) can be faster than "feature transformation + inner product" sometimes.

Kernel trick is useful when we transform all x to $\phi(x)$

$$K(x,z) = \phi(x) \cdot \phi(z) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} = (x_1 z_1 + x_2 z_2)^2 = (\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix})^2$$

$$= (x \cdot z)^2$$

