Honors Linear Algebra: : Homework 02

January 25, 2024

Ahmed Saad Sabit, Rice University

1 Problem 01

Consider the base case. If \vec{u}_1 is a member of U, then $\lambda_1 \vec{u}_1$ is a member either. So this is for $\mu = 1$. Let's consider the case μ . Then \vec{u}_{μ} is a vector member, and hence is $\lambda_{\mu} \vec{u}_{\mu}$ Consider the case $\lambda_{\mu+1} \vec{u}_{\mu+1}$. Let's add the two vectors, which is a member of the subspace,

$$\lambda_{\mu}\vec{u}_{\mu} + \lambda_{\mu+1}\vec{u}_{\mu+1} = \vec{A}_{\mu} \in U$$

This being a member of the subspace let's try adding the next term too,

$$\vec{A}_{\mu} + \lambda_{\mu+2} \vec{u}_{\mu+2} \in U$$

Two vectors being a member, well adding the third one works too. Hence the induction is true for the whole series.

$$\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \dots + \lambda_m \vec{u}_m \in U$$

2 Problem

(a) Let's assume $(x_1, x_2, x_3) \in \mathbb{F}^3$ where \mathbb{F}^3 is either \mathbb{R}^3 or \mathbb{C}^3 . $0 \in U$ for this case $x_1 = 0$, $x_2 = 0$, $x_3 = 0$. We can take two solutions \vec{x} and \vec{x}' which still satisfy additive closure.

$$(x_1 + x_1') + 2(x_2 + x_2') + 3(x_3 + x_3') = 0$$

This is also closed multiplication closure.

$$\lambda x_1 + 2\lambda x_2 + 3\lambda x_3 = 0$$

3 Problem

Define the "zero function" in $\mathbb{R}^{[0,1]}$ as $z:[0,1]\to\mathbb{R}$ such that z(x)=0 for all $x\in[0,1]$. For $z\in U$, z being continuous, which it is, and $\int_0^1 z=b$. Since $\int_0^1 z=\int_0^1 0=0$, the latter is true if and only if b=0. Thus, $0\in U$ if and only if b=0.

Let's consider the two functions f and g, it's closed under addition

$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g = 0 + 0 = 0$$

It's weird to take integral without a dx.

Multiplicative closure is trivial

$$c \int_0^1 f = 0 = \int_0^1 cf$$

4 Problem

 $0 \in U$ with (0,0,0). This satisfies the conditions.

Additive closure (a, b, c) + (a', b', c') = (a + a', b + b', c + c') with conditions $a^3 = b^3$ and $a'^3 = b'^3$. So, this is (a + a', a + a', c + c'). But then (a + a') = (a + a') so this is still a member of U. Thus additive closure is achieved.

Multiplicative closure well $(a, b, c) \to (ka, kb, kc)$, then $(ka)^3 = (kb)^3$ with $k^3(a^3) = k^3(b^3)$. This is still a member of the subspace.

5 Problem

 $0 \in U$ because (0,0,0) is valid solution.

Additive closure can't perfectly work because for \mathbb{C} $a^3 = b^3$; $a \neq b$. This is not closed so this is not a subspace.

6 Problem

Both subset must have $\{0\}$.

Additive closure, well two vectors $u, v \in V_1 \cap V_2$, so the vectors exist in both subspaces. Now, because it's a subspace, and both have u, v, then both should also have u + v in common. Similarly all linear combination must be common in a way. The summation can be extended to a sum.

Multiplicative closure is also true because if they contain v, then they also contain all λ such that λv .

So this intersection is a subspace too.

7 Problem

Let's consider two set V and W. Let each subspaces contain vectors that are not member of the other. The can have vector v and w, and their combinations do NOT exist in the union because they are different separate vectors. So we can't have it as a subspace.

So we can't have pairs of vectors that are not common in both sets, hence either the two subsets should be exactly similar or they have to contain the other.

8 Problem

 $0 \in U$ so $0 \in U + U$. Consider two vectors in U such that \vec{u}_1 and \vec{u}_2 . The summation must be a member of the U itself, and also $ku_1, ku_2 \in U$ hence U + U is also a subspace.

9 Problem

Let V_1 and V_2 such that there are some vectors in V_1 that don't belong in V_2 . Then $V_1 + U$ is going to have vectors that don't belong in $V_2 + U$ so they can't be equal. So $V_1 = V_2$.

10 Problem

Let's consider a subspace (x, x, 0, 0), this is a subspace because it contains (0, 0, 0, 0) and (x, x, 0, 0) + (y, y, 0, 0) = (x + y, x + y, 0, 0) which is a member of the subspace. $\lambda(x, x, 0, 0)$ is $(\lambda x, \lambda x, 0, 0)$ which is a subspace member too. Similarly (0, 0, m, m) is a subspace too.

The direct sum would be with $x, m \in \mathbb{F}$ is

$$(x, x, 0, 0) \oplus (0, 0, m, m) = (x, x, m, m)$$

This is a subspace direct sum because $(x, x, 0, 0) \cap (0, 0, m, m) = \{0\}$