

Introduction - European hake

- 1. <u>Shorter hakes</u> prefer depths of <u>170 200</u> meter
- 2. <u>Longer hakes</u> prefer depths of <u>70 100</u> meter

Introduction - Otoliths

- Lapillus (uot):
 Utricle → Acoustic function
- Asteriscus (lot):
 Lagena → Acoustic function
- Sagitta (sot):
 Saccule → Vestibular function

Introduction - Otoliths

Sulcus acusticus:

- Sulcus is in contact with macula
- Sulcus size : otolith size (S : O ratio)

Curvature:

- Younger otoliths are smoother
- Protuberances

Proximal face of right saccular otolith of European hake

Introduction - Data acquisition

24 micro-CT scans of right saccular otoliths of European hake:

- 6 juveniles (50 150 mm TL)
- 9 females (150 400 mm TL)
- 9 males (150 400 mm TL)

Proximal face of sagitta

External face of sagitta

Introduction - Research questions

RQ1: "How does the saccular sulcus size relate to the saccular otolith size for the European hake?" (sulcus analysis)

RQ2: "How does the curvature of the saccular otolith of the European hake change over time?" (curvature analysis)

Method - Data transformation

Objective: prepare **image stacks** for analysis

RQ1: "How does the saccular sulcus size relate to the saccular otolith size for the European hake?"

- 1. Partition sulcus
- Measure sulcus/otolith size:
 - Surface area
 - Volume
- 3. Perform experiments

Partition sulcus:

- 1. Detect peaks in slice
- 2. Use peaks to obtain sulcus area
- 3. Repeat for all slices

Sulcus reconstruction in slice 867 of otoF83.

Partition sulcus:

Juvenile (otol47)

Female (otoF83)

Male (otoM257)

Measure sulcus/otolith size:

- Transform image stack into triangular mesh (Marching Cubes)
- Use mesh to obtain:
 - Surface area
 - Volume

Triangular mesh of otol48

Perform experiments:

- 1. Total length vs sulcus/otolith size
- 2. Sulcus size vs otolith size (S: O ratio)
- 3. Total length vs S : O ratio
 - → Higher S : O ratio for shorter/younger hakes

RQ2: "How does the curvature of the saccular otolith of the European hake change over time?"

- 1. Derive mean curvature H
- 2. Localize protuberances (tops)
- 3. Perform experiments

Derive mean curvature H:

- 1. Image stack to mesh (Marching Cubes)
- Improve mesh topology
- 3. For vertex *p* derive *H*

Derive mean curvature H:

Localize protuberances (tops):

- 1. Filter *p* on direction of normal vector *n*
- 2. Filter p on H(p) > 0
- 3. Group filtrate on distance

Protuberance detection on otol9

Perform experiments:

- 1. Total length vs number of protuberances
- 2. Compare *H* for female and male otoliths

Surface area:

Surface area:

Volume:

Volume:

Results - Curvature analysis

Number of detected protuberances per total length

Results - Curvature analysis

Density curve for H on surface of all female/male otoliths

Discussion - Sulcus analysis

Surface area:

- SSA: OSA ratio for juveniles is higher
 - → Protuberances influence SSA : OSA ratio

Volume:

- SV: OV ratio more equally distributed among genders
 - \rightarrow less affected by protuberances

Discussion - Curvature analysis

Protuberances:

- Protuberances detection only detects tops
- High variability for matures
 - → Elongated region

Mean curvature:

Indeterminable error for H
 Solutions in literature are inaccessible

Elongated region for otoF83 (268 mm)

Elongated region for otoF73 (300 mm)

Conclusion - Sulcus analysis

RQ1: "How does the saccular sulcus size relate to the saccular otolith size for the European hake?" (sulcus analysis)

Surface area:

- 1. TL: SSA \rightarrow power equation (negative allometric)
- 2. TL: OSA \rightarrow power equation (negative allometric)
- 3. SSA: OSA \rightarrow linear equation
- 4. Average SSA: OSA ratio for juveniles is higher than for adults Protuberances influence ratio

Future work: Proximal surface area

Conclusion - Sulcus analysis

RQ1: "How does the saccular sulcus size relate to the saccular otolith size for the European hake?" (sulcus analysis)

Volume:

- 1. TL: $SV \rightarrow power equation (negative allometric)$
- TL : OV → power equation (negative allometric)
- 3. SV: OV \rightarrow linear equation
- 4. Average SV : OV ratio for juveniles is higher than for adults Ratio is more equally distributed among genders

Conclusion - Curvature analysis

RQ2: "How does the curvature of the saccular otolith of the European hake change over time?" (curvature analysis)

- For juveniles: # protuberances increase with TL
- For matures: high variability
- For equal TL: # protuberances female > # protuberances male (sex dimorphism)
- Density curve male > density curve female (sex dimorphism)

Future work:

- Improve protuberance detection
- Reduce mean curvature error

Questions?