Name:

Homework 5 Due 5 Mar 2019

- 1. Use the MIL-HDBK pages copied in your text (pp. 136-143) to look up the following yield stress values. Use the A-basis for all values.
 - (a) 2024-T351 bare, t=0.25, LT direction
 - (b) 2024-T351 bare, t=0.25, L direction
 - (c) 7075-T651 bare, t=0.5, LT direction
 - (d) 7075-T651 bare, t=0.5, L direction
- 2. Use the charts provided in your text (pp. 111-121) to look up fracture toughness for the following conditions, at room temperature.
 - (a) 2024-T351 bare, t=0.25, T-L direction
 - (b) 2024-T351 bare, t=0.25, L-T direction
 - (c) 7075-T651 bare, t=0.5, T-L direction
 - (d) 7075-T651 bare, t=0.5, L-T direction
- 3. Use the Fedderson approach to plot residual strength vs. crack length for a center-cracked panel (W = 5 in.)
 - (a) For 2024-T351 bare aluminum, with t=0.25, in the T-L and L-T directions, at room temperature.
 - (b) For 7075-T651 bare aluminum, with t=0.5, in the T-L and L-T directions, at room temperature.
- 4. Based on a proposed inspection cycle and fatigue analysis for a 7075-T651 bare aluminum panel, we need to design a proof test to ensure there are no center-cracks greater than 0.25" long. What proof load must be applied to ensure this condition (W = 8 in., t = 0.4 in., check both grain directions, at room temperature).

- 5. A 120" diameter fuselage has an axial crack. The crack is centered on a circumferential stiffener. Stiffener spacing is 10", cross-section is 0.3788 in², skin thickness is 0.1875", and rivet spacing is 1". Use the charts on pp. 167-178 and the tables on pp. 194 196 to plot the σ_c vs. a curve for the skin under the following cases. Note: use $K_c = 68 \text{ ksi}\sqrt{\text{in}}$. Assume a skin stiffness of E = 11 Msi and a stiffener stiffness of $E_s = 23.4 \text{ Msi}$ and a stiffener yield strength of $\sigma_{YS} = 120 \text{ksi}$.
 - (a) without stiffeners
 - (b) with stiffeners
 - (c) with stiffeners, but the stiffener centered over the crack is broken

Note: Ignore net section yield for the skin in this problem

- 6. Plot the residual strength of the bolted lap joint shown. Compare the following cases
 - (a) Net Section Yield
 - (b) Brittle Fracture
 - (c) Linkup
 - (d) Modified Linkup

Where the MSD crack length c=0.05 in.. Compare Al 2024-T3, Al 2524-T3, and Al 7075-T6, using the data in Table 1. Although β will be a function of crack length, assume $\beta_a=0.934$ and $\beta_l=2.268$ for these calculations.

Table 1: Material properties for Problem 6

Material	$\sigma_{YS}(\text{ksi})$	$K_C(\mathrm{ksi}\sqrt{\mathrm{in}})$
2024-T3	40	120
2524-T3	40	140
7075 - T6	63	60

t = 0.063 in.

 σ

- 7. For the following panel assume $K_{IC} = 70 \text{ ksi}\sqrt{\text{in}}$ and a = 0.75 in.
 - (a) Determine the critical values of σ and τ as well as the crack extension angle using the maximum circumferential stress criterion.
 - (b) Determine the critical values of σ and τ as well as the crack extension angle using the principal stress criterion.

Note: Assume $\beta = \beta' = 1$

