			M	4E	15	8	Le	ctu	we) {	3				
			•	4E	Ī)ec	,	3	21	02	4				
1															
Ad	11/0	W (en	rer	[:] کا	4	Hh) (We	kl	0	Pas	steo		
							Dra	g	Pro	oje (+ 	du	e F	Fid	ay
					_	1			1	//.	. 6	7 pr	1		
				_	- NC	He- . 1	it • it	- <i>J</i>	ate	.,	sal	mis	Sior	1 - 1	5% e
					l	vil	l b	ln	nark	cen	d	OW	7		3%
						for	~ ei	res (y	~	Th	our.	ς ,	LOUT	e
T	oda	us	•	96,	'e.c	НN	YS.	ب ن	Sta	bis	1,7	4 (Fin	ish	5
•	oda	U		U				1	Pri	Pu	ls	100)	_	
La	rst	+	1/24	e:		Tct	·	رر	fo	M	יישוני	ng	P	rope	er-fies
ا) <u>w</u> =	148	27 P	3	水 =	5 1 (7	>)H =	35 47	7. f	f ² }	A H	- 4.0	1
_ (<u>ء</u> ک	22.	73 f	t RA	erode	40 Q.M	K MA	C	L H' =	distan	ce be t	ween	Wing	, hori	z hil
	H assum	> U.	. 7	*	7 =	J Cm	- = - 10	\(\frac{1}{2}\)	2	71	. Z f+				
	assum	یے ہے	x	0.4:	3	JCL	JCm	10				À 1.5	7		
	what	is .		5UCh	the	ct	JC. 1	`	@ X	leas+	-(0.10			

$$\frac{dC_{n}c_{q}}{dc_{n}} = \frac{X}{c} - \left[\frac{dC_{n}y_{da}}{dc_{n}w_{da}}\left(1 - \frac{dc}{da}\right) \frac{SH^{n}q}{Su^{2}} - \frac{dc_{n}}{dc_{n}}\right] \left[1 + \frac{dC_{n}y_{da}}{dc_{n}w_{da}}\left(1 - \frac{dc}{da}\right) \frac{SH^{n}q}{Su^{2}}\right]$$

$$= \frac{dC_{n}c_{q}}{c} = \frac{ac_{n}y_{da}}{dc_{n}w_{da}} \left[1 - \frac{dc_{n}y_{da}}{dc_{n}}\left(1 - \frac{dc}{da}\right) \frac{SH^{n}q}{Su^{2}}\right]$$

$$= \frac{Ac_{n}c_{q}}{c} = \frac{ac_{n}c_{q}}{c}$$

Common propulsors: - Lubojets, turbofans turbo props, turboshaft - propellors Gas turbine -> air intake through inlet -> compressed

through inlet > compressed
in a compressor > heated
in combustor > expand

Speedup in a turbine

=> exit flow hot, fast

Thrust = d(mu) turbojet -> solve for thrust thrust = Gross thrust - Ram drag - m/, - m/o + (P. - Po) Ae m (Vj-Vo) + (Pj-Po)Ae mass flow through ergine

kg/s , lbs/s V' = exi+ velocity Vo = inlet velocity Pi = exit pressure Po = inlet-Roessure typically Pj-Po~0 Hus, T= m(Uj-Vo) m=pVoA simplest form (costant Area engine)

changes with altitude Behavior of TA Talt Fig 17.15 Shevell sea level TASL increase | altitude SOCO' 10000 20000 Mach -> Taalt I with altitude do esn't vary much with Mach# TSFC = specific fuel consumption

car also Change with

altitude

10 -> jet Aircraft overall Efficiency 10 = Use ful work performed by system heat available from combustion of fuel = T. Us = Vo twojets
T. CT. hf

TSFC hf = heat energy available in the full per weight of fuel 14.3 million ft-lb for jet

can split no = np · nt Mp = propulsive efficiences = use ful work

mechanical energy

n(V;-Vo) produced in system Mt = thermal efficiency = mechanical energy produced heat energy Vi + Vo $m \frac{Vj^2 - Vo^2}{z} =$ 2 C+ hf

T. C.t. hf

$$m(v_j-v_o)$$
 $N_o = V_o$
 $C_T \cdot hf$

Recal Breget Range Equation

 $R = \frac{V}{C_T} \cdot \frac{L}{D} \cdot ln(\frac{W_o}{W_o})$
 $= N_o \cdot hf \cdot \frac{L}{D} \cdot ln(\frac{W_o}{W_o})$

Type of fuel overall efficiency

for a type of Engine r approximate