

Mini Project Week03

Basic 1조: 이재승, 서지현

r.constant(['enether constant(['enether constant(['

Lookup.KeyValue

프로젝트 소개 및 목표

- 1. Glioma Tumor
- 2. Meningioma Tumor
- 3. Normal
- 4. Pituitary Tumor

평가 지표

	precision	recall	f1-score	support
0 1 2 3	0.96 0.83 0.96 0.94	0.86 0.92 0.98 0.94	0.91 0.87 0.97 0.94	184 179 81 175
accuracy macro avg weighted avg	0.92 0.92	0.92 0.91	0.91 0.92 0.91	619 619 619

		실제 정답			
		True	False		
분류 결과	True	True Positive	False Positive		
	False	False Negative	True Negative		

$$(Recall) = \frac{TP}{TP + FN}$$

데이터셋과전처리

Dataset

- •Keras API를 사용하여 Flip, Rotation, Contrast를 진행.
- •Sequential에 정의되어 있어, 미리 데이터를 증식하는게 아니라, 데이터 input이 들어올 때 증식 과정을 거침

모델설계및개발과정

- Data Augmentation
- Batch Normalization
- Bayesian Optimization
- Relu
- Dropout
- Callback

Batch Normalization & Relu

```
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(512, activation=None)(x)
x = tf.keras.layers.BatchNormalization()(x) # BatchNormalization 추가
x = tf.keras.layers.Activation('relu')(x) # 활성화 함수 적용
x = tf.keras.layers.Dropout(0.5)(x)
```



```
space = {
    'lr': hp.choice('lr', [0.1, 0.01, 0.001, 0.0001]),
    'units': hp.choice('units', [256, 512, 1024]),
    'dropout_rate': hp.uniform('dropout_rate', 0.3, 0.7)
}
```

- •Bayesian Optimization: 사전정보를 반영하여 최적의 하이퍼파라미터를 찾는 방법
- ·lr = 0.1,units = 512, dropout_rate = 0.47로 결정
- hp.choice: 후보들 중 하나의 값 선택
- hp.uniform: 범위 내의 실수값 선택

Callback

```
learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(
    monitor="val_loss", patience=2, factor=0.5, min_lr=0.00001, verbose=1)
Early_Stopping = tf.keras.callbacks.EarlyStopping(
    monitor="val_loss", patience=5, restore_best_weights=True)
```

- •Early Stopping: val_loss가 개선되지 않으면 학습을 조기 중단
- •Reduce Learning rate: val_loss가 개선되지 않으면 학습률 감소

결과 및 평가

Loss & Accuracy

Recall: 0.9220

F1-Score:[0.9193210129217769] Precision:[0.9191515992321595] Recall:[0.9220336317214386] Classification_Report								
	precision	recall	f1-score	support				
0 1 2 3	0.95 0.82 0.98 0.95	0.85 0.91 0.98 0.94	0.89 0.86 0.98 0.95	184 179 81 175				
accuracy macro avg weighted avg	0.92 0.91	0.92 0.91	0.91 0.92 0.91	619 619 619				

결론 및 느낀점

- •Recall: 0.9220 (base code보다 0.02향상)
- •성능 개선에 영향을 미친 방법
- Batch Normalization
- Bayesian optimization

- •이미 점수가 높은 베이스코드의 성능을 더 좋게 개선하는 것이 매우 어려웠다.
- •데이터셋의 특성을 이해하고 그 특성에 맞는 모델과 기법을 사용하는 것이 중요함을 깨달았다.
- •문제 특성에 따라 accuracy가 아닌 다른 평가 지표도 주의깊게 살펴볼 필요가 있음을 알 수 있었다.

