ЛЕКЦИЯ 7

§15. Несобственные интегралы с бесконечными пределами

При рассмотрении определённых интегралов мы предполагали, что область интегрирования ограничена (более конкретно, является отрезком [a,b]); для существования определённого интеграла $\int_a^b f(x)dx$ необходима ограниченность подынтегральной функции на отрезке [a,b]. Будем называть определённые интегралы, для которых выполняются оба эти условия (ограниченность и области интегрирования и подынтегральной функции) *собственными*; интегралы, для которых нарушаются эти требования (т.е. не ограничена либо подынтегральная функция, либо область интегрирования, либо и то и другое вместе) *несобственными*.

Определение 1 (несобственного интеграла с бесконечным верхним пределом). Пусть функция f(x) определена на полуоси $[a,+\infty)$ и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла $\int_a^b f(x) dx$ при $b \to +\infty$ называется несобственным интегралом функции f(x) от a до $+\infty$ и обозначается $\int_a^{+\infty} f(x) dx$.

Итак, по определению,

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

Если этот предел существует и конечен, интеграл $\int_{a}^{+\infty} f(x)dx$ называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от $-\infty$ до b. Определение 2(несобственного интеграла с бесконечным нижним пределом). Пусть функция f(x) определена на полуоси $(-\infty,b]$ и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла $\int_a^b f(x) dx$ при $a \to -\infty$ называется несобственным интегралом функции f(x) от $-\infty$ до b и обозначается $\int_a^b f(x) dx$.

Итак, по определению,

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

Если этот предел существует и конечен, интеграл $\int_{-\infty}^{b} f(x)dx$ называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Определение 3 (несобственного интеграла с бесконечными верхним и нижним пределами). Пусть функция f(x) определена на всей числовой оси и интегрируема по любому отрезку [a,b]; c - произвольная (конечная) точка числовой оси. Тогда

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx.$$

Интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела.

Замечание. Пользуясь свойством аддитивности определённого интеграла, можно показать, что существование конечных пределов и их сумма не зависят от выбора точки c.

Другими словами,

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx,$$

если оба интеграла справа сходятся.

Примеры.

1.
$$\int_{0}^{+\infty} \cos x dx = \lim_{b \to +\infty} \int_{0}^{b} \cos x dx = \lim_{b \to +\infty} \sin x \Big|_{0}^{b} = \lim_{b \to +\infty} \left(\sin b - \sin 0 \right) = \lim_{b \to +\infty} \sin b;$$

этот предел не существует; следовательно, исследуемый интеграл расходится.

$$2. \int_{a}^{+\infty} \frac{1}{x^2 + 1} dx = \lim_{b \to +\infty} \int_{0}^{b} \frac{1}{x^2 + 1} dx = \lim_{b \to +\infty} \arctan x \Big|_{0}^{b} = \lim_{b \to +\infty} (\arctan b - \arctan b) = \pi/2.$$

Следовательно, интеграл сходится и равен $\pi/2$.

3.
$$\int_{-\infty}^{0} e^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} e^{x} dx = \lim_{a \to -\infty} e^{x} \Big|_{a}^{0} = \lim_{a \to -\infty} (1 - e^{a}) = 1$$
. Интеграл сходится и равен 1.

$$4. \int_{-\infty}^{+\infty} \frac{1}{x^2 + 4x + 5} dx = \int_{-\infty}^{-2} \frac{1}{x^2 + 4x + 5} dx + \int_{-2}^{+\infty} \frac{1}{x^2 + 4x + 5} dx =$$

$$= \lim_{a \to -\infty} \int_{a}^{-2} \frac{1}{(x+2)^2 + 1} dx + \lim_{b \to +\infty} \int_{-2}^{b} \frac{1}{(x+2)^2 + 1} dx = \lim_{a \to -\infty} \arctan(x+2) \Big|_{a}^{-2} + \lim_{b \to +\infty} \arctan(x+2) \Big|_{-2}^{b} =$$

$$= \left(\arctan(0 - \lim_{a \to -\infty} \arctan(a+2)) + \left(\lim_{b \to +\infty} \arctan(a+2) - \arctan(a)\right) = -\left(-\pi/2\right) + \pi/2 = \pi.$$

Следовательно, интеграл сходится и равен.

Утверждение. Интеграл $\int\limits_a^{+\infty} f(x) dx cxo dumcя тогда и только тогда, когда для$

любого c, удовлетворяющего неравенству c > a, сходится интеграл $\int\limits_{c}^{\infty} f(x) dx$.

Доказательство. Так как при a < c < b по свойству аддитивности

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

и интеграл $\int_a^c f(x)dx$ от **b** не зависит, то конечный предел при $b \to +\infty$ для интеграла в левой части существует тогда и только тогда, когда существует конечный предел для интеграла в правой части равенства.

Формула Ньютона-Лейбница для несобственного интеграла

В приведённых примерах мы сначала вычисляли с помощью первообразной функции определённый интеграл по конечному промежутку, а затем выполняли предельный переход. Объединим два этих действия в одной формуле. Положим

$$F(+\infty) = \lim_{x \to +\infty} F(x), F(-\infty) = \lim_{x \to -\infty} F(x).$$

Тогда можно записать

$$\int_{a}^{+\infty} f(x)dx = F(x)\Big|_{a}^{+\infty}, \int_{-\infty}^{b} f(x)dx = F(x)\Big|_{-\infty}^{b}, \int_{-\infty}^{+\infty} f(x)dx = F(x)\Big|_{-\infty}^{+\infty},$$

подразумевая в каждом из этих случаев существование и конечность соответствующих пределов. Теперь решения примеров выглядят более просто:

Примеры.

1.
$$\int_{5}^{+\infty} \frac{dx}{x^3} = -\frac{1}{2x^2} \bigg|_{5}^{+\infty} = -\left(0 - \frac{1}{2 \cdot 25}\right) = \frac{1}{50}, \text{ интеграл сходится.}$$

2.
$$\int_{5}^{+\infty} \frac{dx}{\sqrt{x}} = 2\sqrt{x} \Big|_{5}^{+\infty} = +\infty, \text{ интеграл расходится.}$$

Для несобственных интегралов применимы формулы интегрирования по частям и замены переменной.

Примеры.

1.
$$\int_{1}^{+\infty} xe^{-x} dx = \begin{vmatrix} u = x \\ du = dx \\ dv = e^{-x} dx \end{vmatrix} = -xe^{-x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} e^{-x} dx = e^{-1} - e^{-x} \Big|_{1}^{+\infty} = e^{-1} + e^{-1} = 2e^{-1}.$$

2. При замене переменной несобственный интеграл может преобразоваться в собственный интеграл.

$$J = \int_{1}^{+\infty} \frac{dx}{x\sqrt{x^2 + x + 1}}.$$

Выполним замену переменной:

$$x = \frac{1}{t}, dx = -\frac{dt}{t^2}, x = 1 \Rightarrow t = 1, x = +\infty \Rightarrow t = 0,$$

$$\sqrt{x^2 + x + 1} = \sqrt{\left(\frac{1}{t}\right)^2 + \frac{1}{t} + 1} = \frac{\sqrt{t^2 + t + 1}}{t}.$$

Поэтому

$$J = \int_{1}^{+\infty} \frac{dx}{x\sqrt{x^2 + x + 1}} = -\int_{1}^{0} \frac{t \cdot tdt}{t^2 \sqrt{t^2 + t + 1}} = \int_{0}^{1} \frac{dt}{\sqrt{t^2 + t + 1}} = \int_{0}^{1} \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}} = \int_{0}^{1} \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}} = \int_{0}^{1} \frac{dt}{\sqrt{t^2 + t + 1}} = \int_{0}^{1} \frac{dt}{\sqrt{t^2 + t + 1}} = \int_{0}^{1} \frac{dt}{\sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}} = \int_{0}^{1} \frac{dt}{\sqrt{t^2 + t + 1}} = \int_{0}^{1$$

(это уже собственный интеграл)

$$= \ln\left(t + \frac{1}{2} + \sqrt{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}}\right)\Big|_0^1 = \ln\left(\frac{3}{2} + \sqrt{3}\right) - \ln\frac{3}{2} = \ln\left(1 + \frac{2}{\sqrt{3}}\right).$$

Признаки сравнения для интегралов от неотрицательных функций

В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли интеграла, вычисляя его: если существует конечный предел сходимость первообразной при стремлении $x \to +\infty$ или $x \to -\infty$, то интеграл сходится, в противном случае интеграл расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.

Теорема 1(признак сравнения). Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при $x \ge a$ удовлетворяют неравенствам $0 \le f(x) \le g(x)$. Если сходится интеграл $\int_a^{+\infty} g(x) dx$, то сходится и интеграл $\int_a^{+\infty} f(x) dx$; если расходится интеграл $\int_a^{+\infty} f(x) dx$, то расходится и интеграл $\int_a^{+\infty} g(x) dx$.

Замечание. Эти утверждения имеют простой смысл: если сходится интеграл от большей функции, то сходится интеграл от меньшей функции; если расходится интеграл от меньшей функции, то расходится интеграл от большей функции; в случаях, когда сходится интеграл от меньшей функции или расходится интеграл от большей функции, никаких выводов о сходимости второго интеграла сделать нельзя.

Доказательство. Если $0 \le f(x)$ и $0 \le g(x)$, то функции

$$F(b) = \int_{a}^{b} f(x) dx$$
и $G(b) = \int_{a}^{b} g(x) dx$

— монотонно возрастающие функции верхнего предела b (вследствие свойств аддитивности и монотонности интеграла) и $F(b) \le G(b)$. Монотонно возрастающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху.

Пусть интеграл $\int_{a}^{+\infty} g(x)dx$ сходится. Тогда G(b) ограничена. Поскольку $F(b) \le G(b)$,

то F(b) также ограничена, т.е. $\int_a^{+\infty} f(x)dx$ сходится. Пусть $\int_a^{+\infty} f(x)dx$ расходится,

тогда функция F(b) неограниченна, следовательно, G(b) неограниченна, т.е.

$$\int_{0}^{+\infty} g(x)dx$$
 расходится.

Примеры.

1. Исследовать на сходимость интеграл $\int_{0}^{+\infty} e^{-x^2} dx$.

Функция e^{-x^2} не имеет первообразной, выражающейся через элементарные функции, поэтому исследовать сходимость с помощью предельного перехода невозможно.

При $x \ge 1$ имеют место неравенства

$$-x^2 \le -x, e^{-x^2} \le e^{-x}$$

и интеграл $\int\limits_{1}^{+\infty}e^{-x}dx=-e^{-x}\Big|_{1}^{+\infty}=e^{-1}$ сходится. Следовательно, интеграл $\int\limits_{0}^{+\infty}e^{-x^2}dx$ также сходится.

- В качестве "стандартного" интеграла, с которым сравнивается данный, обычно берётся интеграл типа $\int_{1}^{+\infty} \frac{1}{x^p} dx$, часто называемый интегралом Дирихле.
 - **Лемма.** Интеграл $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ сходится, если p > 1, и расходится, если $p \le 1$.
 - **◄**Доказательство. Пусть $p \neq 1$:

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{+\infty} = \begin{cases} \frac{1}{p-1}, & p > 1, \\ +\infty, & p < 1. \end{cases}$$

В случае p = 1

$$\int_{1}^{+\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{+\infty} = +\infty. \blacktriangleright$$

Примеры.

1. Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{1}{x^7 + 1} dx$.

На всём промежутке интегрирования $\frac{1}{x^7+1} < \frac{1}{x^7}$; интеграл $\int\limits_1^{+\infty} \frac{1}{x^7} dx$ сходится, так как p=7>1. Поэтому исходный интеграл сходится.

- **2.** Исследовать на сходимость интеграл $\int_{2}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$.
- При $x \ge 3$ выполняется неравенство $\frac{\ln x}{\sqrt{x}} \ge \frac{1}{\sqrt{x}}$; интеграл $\int_{3}^{+\infty} \frac{1}{\sqrt{x}} dx$ расходится.

Следовательно, $\int_{3}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$ расходится и $\int_{2}^{+\infty} \frac{\ln x}{\sqrt{x}} dx$ также расходится.

3. Исследовать на сходимость интеграл $\int_{2}^{+\infty} \frac{\ln x}{x\sqrt{x}} dx$.

Здесь сравнить подынтегральную функцию с какой-либо степенью x невозможно, так как числитель - неограниченная функция, поэтому рассуждаем подругому. При $x \to +\infty$ функция $\ln x$ - бесконечно большая низшего порядка по сравнению с любой положительной степенью x, например, $\ln x = o\left(x^{1/4}\right), x \to +\infty$ Поэтому $\frac{\ln x}{x^{1/4}}$ является ограниченной функцией: $\exists C = \text{const} > 0 : \frac{\ln x}{x^{1/4}} \le C$

Следовательно, $\frac{\ln x}{x\sqrt{x}} = \frac{\ln x}{x^{3/2}} = \frac{\ln x}{x^{1/4} \cdot x^{5/4}} \le \frac{C}{x^{5/4}}$. Так как интеграл $\int\limits_{2}^{+\infty} \frac{C}{x^{5/4}} dx$ сходится, то

исходный интеграл также сходится.

Теорема 2 (предельный признак сравнения). Пусть неотрицательные функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и пусть существует конечный $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = K, K \neq 0, K \neq \infty$. Тогда несобственные интегралы $\int_a^{+\infty} f(x) dx$ и

 $\int_{a}^{+\infty} g(x)dx \ cxodsmcs \ или \ pacxodsmcs \ odнoвременно.$

Примеры.

- 1. $\int_{1}^{+\infty} \frac{1}{\sqrt{4x+\ln x}} dx$. Интеграл расходится.
- **2.** $\int_{1}^{+\infty} \left(1 \cos \frac{1}{\sqrt[4]{x}}\right) dx$. Интеграл расходится.
- 3. $\int_{4}^{+\infty} \frac{x^2 3}{3x^5 + 4x^4 1} dx$. Интеграл сходится.

Абсолютная сходимость несобственных интегралов по бесконечному промежутку. В предыдущем разделе рассматривались интегралы от неотрицательных (знакопостоянных) функций; мы убедились, что для таких несобственных интегралов существуют хорошие методы исследования их сходимости. Естественен вопрос: нельзя ли свести исследование интеграла от произвольной функции f(x) к исследованию интеграла от неотрицательной функции |f(x)|?

Теорема 3. Если сходится интеграл $\int_{a}^{+\infty} |f(x)| dx$, то обязательно сходится интеграл $\int_{a}^{+\infty} f(x) dx$.

Идея доказательства: разобьем отрезок [a,b] на два множества, $X^+ = \big\{x \in [a,b]: f\left(x\right) \geq 0\big\}$ и $X^- = \big\{x \in [a,b]: f\left(x\right) \leq 0\big\}$, т.е. к первому множеству отнесены точки, в которых функция неотрицательна, ко второму - в которых функция неположительна. Тогда

$$\int_{a}^{b} f(x) dx = \int_{X^{+}} f(x) dx + \int_{X^{-}} f(x) dx, \int_{a}^{b} |f(x)| dx = \int_{X^{+}} f(x) dx - \int_{X^{-}} |f(x)| dx.$$

В последней сумме оба слагаемые - монотонно возрастающие с ростом \boldsymbol{b} , ограниченные сверху функции, следовательно, имеющие конечный предел при $b \to +\infty$. Отсюда следует, что имеет конечный предел и предыдущая сумма.

Замечание. Обратное утверждение неверно, т.е. при сходимости интеграла

$$\int_{a}^{+\infty} f(x)dx$$
 интеграл $\int_{a}^{+\infty} |f(x)|dx$ может расходиться.

Введём важное понятие абсолютной сходимости.

Определение 4. Если сходится интеграл $\int_{a}^{+\infty} |f(x)| dx$, то интеграл $\int_{a}^{+\infty} f(x) dx$ называется сходящимся абсолютно. Если сходится интеграл $\int_{a}^{+\infty} f(x) dx$, а

интеграл $\int_{a}^{+\infty} |f(x)| dx$ расходится, то интеграл $\int_{a}^{+\infty} f(x) dx$ называется сходящимся условно.

Пример. Исследовать на абсолютную сходимость интеграл $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$.

Выполняется неравенство $\left| \frac{\sin x}{x^2} \right| \le \frac{1}{x^2}$. Интеграл $\int_{1}^{+\infty} \frac{1}{x^2} dx$ сходится, следовательно,

 $\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx$ сходится по признаку сравнения, исходный интеграл сходится абсолютно.

Приведённые примеры показывают, что переход от интеграла $\int\limits_a^\infty f(x)dx$ к

интегралу $\int_a^{+\infty} |f(x)| dx$ и применение к последнему интегралу методов исследования на сходимость несобственных интегралов от неотрицательных функций, в случае его сходимости, позволяет сделать вывод и о сходимости (притом, абсолютной) исходного интеграла. Если же интеграл от функции |f(x)| расходится, то решение задач значительно усложняется.

Пример условно сходящегося интеграла.

- Рассмотрим интеграл $\int_{1}^{+\infty} \frac{\cos x}{x} dx$.
- Докажем, что этот интеграл сходится. Интегрируем его по частям:

$$\int_{1}^{+\infty} \frac{\cos x}{x} dx = \int_{1}^{+\infty} \frac{d \sin x}{x} = \frac{\sin x}{x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{\sin x}{x^{2}} dx = -\sin 1 + \int_{1}^{+\infty} \frac{\sin x}{x^{2}} dx.$$

Последний интеграл сходится абсолютно, следовательно, исходный интеграл сходится.

Докажем, что для исходного интеграла абсолютной сходимости нет, т.е. что

$$\int_{1}^{+\infty} \left| \frac{\cos x}{x} \right| dx \text{ расходится. Так как } \left| \cos x \right| \ge \cos^2 x = \frac{1 + \cos 2x}{2} = \frac{1}{2} + \frac{1}{2} \cos 2x,$$

$$\int_{1}^{b} \left| \frac{\cos x}{x} \right| dx = \int_{1}^{b} \frac{\left| \cos x \right|}{x} dx \ge \int_{1}^{b} \frac{\cos^{2} x}{x} dx = \int_{1}^{b} \frac{1 + \cos 2x}{2x} dx = \frac{1}{2} \int_{1}^{b} \frac{dx}{x} + \frac{1}{2} \int_{1}^{b} \frac{\cos 2x dx}{x}.$$

Интеграл $\int_{1}^{+\infty} \frac{dx}{x}$ расходится, $\int_{1}^{+\infty} \frac{\cos 2x dx}{x}$ сходится, следовательно, $\int_{1}^{+\infty} \left| \frac{\cos x}{x} \right| dx$ расходится.

Вывод — исходный интеграл сходится условно.

§16. Несобственные интегралы от неограниченных функций

Определение 1(особенность на левом конце промежутка интегрирования). Пусть функция f(x) определена на полуинтервале (a,b], интегрируема по любому отрезку $[a+\varepsilon,b]$, $0<\varepsilon< b-a$, и функция f(x) не ограничена на (a,b]. Несобственным интегралом $\int_a^b f(x) dx$ от функции f(x) по полуинтервалу (a,b]

называется

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x) dx.$$

Если предел справа конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, то говорят, что интеграл расходится.

Примером функции, неограниченной на промежутке (a,b], может служить функция f(x), непрерывная на (a,b] и такая, что $\lim_{x\to a+0} f(x) = \infty$.

Примеры.

Примеры.

1.
$$\int_{0}^{2} \frac{1}{x\sqrt{x}} dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^{2} \frac{1}{x\sqrt{x}} dx = \lim_{\varepsilon \to +0} \left(-\frac{2}{\sqrt{x}} \Big|_{\varepsilon}^{2} \right) = \infty.$$
 Интеграл расходится.

2.
$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to +0} \int_{-1+\varepsilon}^{0} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to +0} \arcsin x \Big|_{-1+\varepsilon}^{0} = \frac{\pi}{2}$$
. Интеграл сходится.

Теорема 1 (формула Ньютона-Лейбница). Если для функции f(x) на полуинтервале (a,b] существует первообразная F(x), $F(a) = \lim_{\varepsilon \to +0} F(a+\varepsilon)$, то

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b}.$$

Если $F(a) = \lim_{\varepsilon \to +0} F(a+\varepsilon)$ конечен, то интеграл сходится, если $F(a) = \infty$, то интеграл расходится.

Примеры.

1.
$$\int_{0}^{1} \ln x dx = x \ln x \Big|_{0}^{1} - \int_{0}^{1} dx = -x \Big|_{0}^{1} = -1.$$
Интеграл сходится.

2.
$$\int_{-3}^{1} \frac{dx}{x+3} = \ln(x+3)\Big|_{-3}^{1} = +\infty.$$
 Интеграл расходится.

Определение 2(особенность на правом конце промежутка интегрирования). Пусть функция f(x) определена на полуинтервале [a,b), интегрируема по любому отрезку $[a,b-\varepsilon]$, $0<\varepsilon< b-a$, и функция f(x) не ограничена на [a,b). Несобственным интегралом $\int_a^b f(x) dx$ от функции f(x) по полуинтервалу [a,b) называется

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x) dx.$$

Если предел справа конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, то говорят, что интеграл расходится.

Примером функции, неограниченной на промежутке [a,b), может служить функция f(x), непрерывная на промежутке [a,b) и такая, что $\lim_{x\to b-0} f(x) = \infty$.

Определение З(особенность во внутренней точке промежутка интегрирования). Пусть функция f(x) определена на полуинтервалах [a,c) и (c,b] где c — внутренняя точка этого отрезка. Пусть функция f(x) не ограничена на [a,c) и функция f(x) не ограничена на (c,b]. Пусть функция f(x) интегрируема на каждом отрезке $[a,c-\varepsilon]$ и на каждом отрезке $[c+\delta,b]$, $\delta>0$. Несобственным интегралом $\int_{a}^{b} f(x) dx$ от функции f(x) по отрезку [a,b] называется

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a}^{c-\varepsilon} f(x) dx + \lim_{\delta \to +0} \int_{c+\delta}^{b} f(x) dx.$$

Интеграл сходится, если оба предела справа существуют и конечны, в противном случае интеграл расходится.

Примером функции, удовлетворяющей условиям определения 3, служит такая функция f(x), что $\lim_{x\to c} f(x) = \infty$.

сравнения для неотрицательных функций. Как Признаки ДЛЯ несобственных интегралов с бесконечными пределами интегрирования, ДЛЯ интегралов от неограниченных функций вводится понятие абсолютной сходимости, позволяющее в ряде случаев свести исследование сходимости интегралов функций произвольных К исследованию сходимости интегралов OT неотрицательных функций, и рассматриваются признаки сравнения для таких интегралов. Ввиду того, что принципиальная сторона вопроса изучена для случая интегралов с бесконечными пределами интегрирования, кратко перечислим основные факты. Будем предполагать, что подынтегральная функция имеет особенность на левом конце промежутка интегрирования.

Теорема 2(признак сравнения). Пусть функции f(x) и g(x) интегрируемы по любому отрезку $[a+\varepsilon,b]$, $0<\varepsilon< b-a$ и при x>a удовлетворяют неравенствам $0 \le f(x) \le g(x)$. Тогда:

- если сходится интеграл $\int_a^b g(x)dx$, то сходится интеграл $\int_a^b f(x)dx$; если расходится интеграл $\int_a^b f(x)dx$, то расходится интеграл $\int_a^b g(x)dx$.

Теорема 3 (предельный признак сравнения). Пусть положительные функции f(x)и g(x) интегрируемы по любому отрезку $[a+\varepsilon,b]$, $0<\varepsilon< b-a$ и пусть

существует конечный предел $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = K, K \neq 0, K \neq \infty$. Тогда несобственные

интегралы $\int_{a}^{b} f(x)dx$ и $\int_{a}^{b} g(x)dx$ сходятся или расходятся одновременно.

Лемма. Интеграл $\int_{a}^{b} \frac{1}{(x-a)^{p}} dx$ сходится, если p < 1, и расходится, если $p \ge 1$.

◄Доказательство. Если $p \le 0$, то интеграл является собственным. Пусть $p \ne 1$:

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx = \frac{(x-a)^{1-p}}{1-p} \bigg|_{a}^{b} = \begin{cases} \frac{(b-a)^{1-p}}{1-p}, & 0 1. \end{cases}$$

B случае p=1

$$\int_{a}^{b} \frac{1}{x-a} dx = \ln(x-a)\Big|_{a}^{b} = +\infty. \blacktriangleright$$

Примеры.

$$1.\int_{0}^{1}\frac{\cos^{2}\left(1/x\right)}{\sqrt{x}}dx.$$

Так как $\frac{\cos^2(1/x)}{\sqrt{x}} \le \frac{1}{\sqrt{x}}$ и интеграл $\int_0^1 \frac{1}{\sqrt{x}} dx$ сходится, то данный интеграл сходится.

- $2. \int_{0}^{1} \frac{dx}{1-x^3}.$ Интеграл расходится.
- 3. $\int_{0}^{1} \frac{\ln(1+\sqrt[3]{x^2})}{\sqrt{x}\cdot\sin x} dx$. Интеграл расходится.
- 4. $\int_{0}^{1} \frac{x}{x \sin x} dx$. Интеграл расходится.

Абсолютная и условная сходимость несобственных интегралов от неограниченных функций определяется аналогично тому, как это было сделано для несобственных интегралов по бесконечному промежутку.

Определение 6. Несобственный интеграл от неограниченной функции $\int_{a}^{b} f(x) dx$ называется абсолютно сходящимся, если сходится интеграл $\int_{a}^{b} |f(x)| dx$, и условно сходящимся, если интеграл $\int_{a}^{b} f(x) dx$ сходится, а интеграл $\int_{a}^{b} |f(x)| dx$ расходится. (если сходится $\int_{a}^{b} |f(x)| dx$, то $\int_{a}^{b} f(x) dx$ тоже обязательно сходится).

Пример. Исследовать на сходимость интеграл $\int_{0}^{1} \frac{\cos(1/x)}{\sqrt[3]{x}} dx$.

Так как
$$\left| \frac{\cos(1/x)}{\sqrt[3]{x}} \right| = \frac{\left| \cos(1/x) \right|}{\sqrt[3]{x}} \le \frac{1}{\sqrt[3]{x}}$$
 и $\int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx$ сходится, то исходный интеграл

сходится абсолютно по признаку сравнения.

При отсутствии абсолютной сходимости установить условную сходимость можно с помощью признаков Абеля и Дирихле:

Признак сходимости Абеля. Пусть функции $f(x)u\ g(x)$ определены в промежутке $[a,+\infty)$, причём f(x) интегрируема в этом промежутке, т.е. интеграл $\int_a^{+\infty} f(x) dx$ сходится (условно или абсолютно). Пусть функция g(x) монотонна и ограничена. Тогда интеграл $\int_a^{+\infty} f(x)g(x)dx$ сходится.

Признак сходимости Дирихле. Пусть функции $f(x)u\ g(x)$ определены в промежутке $[a,+\infty)$. Пусть функция f(x) интегрируема в любом конечном промежутке [a,b] и интеграл по этому промежутку ограничен (как функция верхнего предела b). Пусть функция g(x) монотонно стремится к нулю при $x \to +\infty$. Тогда интеграл $\int_{-\infty}^{+\infty} f(x)g(x)dx$ сходится.

Применим, например, признак Дирихле к $\int_{1}^{+\infty} \frac{\cos \alpha x}{x} dx$, $\alpha \neq 0$. Здесь $f(x) = \cos \alpha x$, g(x) = 1/x, условия признака выполнены, поэтому интеграл сходится условно.