Monthly Meeting on September

Yuichiro Honda Morita lab. M1

2016/09/09

- 1 Previous work
- Progress
- 3 Next step

matroid

definition

Let M = (S, I) where S is ground set, and I is a family satisfying $I \subseteq 2^S$. M is called a **matroid** when I satisfies:

$$\emptyset \in \mathcal{I}$$
 (1)

$$I_1 \subset I_2, I_2 \in \mathcal{I} \Rightarrow I_1 \in \mathcal{I} \tag{2}$$

$$I_1, I_2 \in \mathcal{I}, |I_1| < |I_2| \Rightarrow \exists i_2 \in I_2 \setminus I_1; \ I_1 \cup \{i_2\} \in \mathcal{I}$$
 (3)

On Disjoint Common Bases in Two Matroids

problem(open)

input: $M_1 = (S, \mathcal{I}_1), M_2 = (S, \mathcal{I}_2)$: matroids output: partition of S into common bases of M_1 and M_2

→ Can be solved in polynomial time?

On Disjoint Common Bases in Two Matroids

- Previous work
- 2 Progress
- 3 Next step

primitive plan

- 1 prepare some algorithm to find all common bases
- 2 check disjoint combination among them

primitive plan

- 1 prepare some algorithm to find all common bases
- 2 check disjoint combination among them (NP hard?)

primitive plan

Last month, I came across a paper that suggested a method to find all common bases in two matroids in $O(n(n^2 + t)\lambda)$: Finding all common bases in two matroids (Fukuda, Namiki 1993)

Hall's theorem

$$S = \{S_{\lambda} \mid \lambda \in \Lambda\}, S_{\lambda}$$
: finite set

transversal

 $X = \{x_{\lambda} \mid \lambda \in \Lambda\}$ is **transversal** of S when $\forall \lambda \in \Lambda$; $x_{\lambda} \in S_{\lambda}$.

marriage condition

 ${\cal S}$ satisfies the marriage condition when

$$\forall \mathcal{T} \subseteq \mathcal{S}; \ |\mathcal{T}| \leq \left| \bigcup_{A \in \mathcal{T}} A \right|$$

Hall's theorem

Hall's theorem

 $S = \{S_{\lambda} \mid \lambda \in \Lambda\}, S_{\lambda}$: finite set

Then,

 ${\mathcal S}$ satisfies marriage condition $\iff {\mathcal S}$ has transversal

Hall's theorem

Hall's theorem (graph theory)

G = (X + Y, E): bipartite graph (|X| = |Y|)

 $N_G(A)$: neibourhood of $A \subseteq X + Y$

Then,

 $\forall W \subseteq X$; $|W| \le |N_G(W)| \iff G$ has perfect matching

- Previous work
- Progress
- 3 Next step

next month

TODO:

- 1 continue to read a paper: Finding all common bases in two matroids (Fukuda, Namiki 1993)
- 2 think about whether $O(n(n^2 + t)\lambda)$ algorithm is applicable

Thank you for your attention.