DSC 215 - PROBABILITY AND STATISTICS FOR DATA SCIENCE

CONFIDENCE INTERVALS FOR A PROPORTION

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Confidence Intervals Using the CLT

- The sample proportion \hat{p} , is a point estimate for the population proportion p.
- As such, it is a single plausible value for p. It is **not a perfect estimate**, and has a standard error associated with it as we have seen.
- Instead of just reporting our imperfect estimate \hat{p} , we can report a range of plausible values for p.
- How do we do this?
 - CLT to the rescue!
 - When CLT conditions are satisfied: \hat{p} follows a **normal distribution**, so if we repeat an experiment many many times, 95 % of the time, \hat{p} would fall within 1.96 standard deviations of p.

Confidence Intervals Using the CLT

- We can say we are 95% confident that the interval $I=(\hat{p}-1.96\cdot SE_{\hat{p}}\quad,\quad \hat{p}+1.96\cdot SE_{\hat{p}})$ captures p.
- Interpretation: If we repeatedly collect n random samples and, each time, use them to calculate the sample proportions $\hat{p}_1, \hat{p}_2, \hat{p}_3, \ldots$, and construct the 95% confidence intervals

$$I_j = (\hat{p}_j - 1.96 \cdot SE_{\hat{p}}), \quad \hat{p}_j + 1.96 \cdot SE_{\hat{p}}), \quad j = 1, 2, 3, \dots$$

then, $\approx 95\%$ of the intervals would contain the population mean p.

• Importantly: $\approx 5\%$ of our intervals would not contain p!

Confidence Intervals Using the CLT

- But where did the 1.96 come from?
- Mathematically, we are looking for an interval I, so that $\mathbb{P}(p \in I) \approx 0.95$. Here the randomness is on the draw of the samples.
- Using the CLT approximation, we can choose $I=(\hat{p}-z^{\star}\cdot SE_{\hat{p}})$, $\hat{p}+z^{\star}\cdot SE_{\hat{p}}$). What we need is a value of z^{\star} , so that $\mathbb{P}(p\in I)\approx 0.95$.
- In other words solve for z^{\star} in: $\frac{1}{\sqrt{2\pi\cdot SE_{\hat{p}}}}\int_{\hat{p}-z^{\star}\cdot SE_{\hat{p}}}^{\hat{p}+z^{\star}\cdot SE_{\hat{p}}}e^{\frac{(x-\hat{p})^2}{SE_{\hat{p}}^2}dx}\approx 0.95$
- Turns out, the right value of z^* to achieve 95 % confidence, is $z^* = 1.96$. (Use probability tables, or software to find z^*).

Interpretation of CI

- On the right is a graph, showing 20 experiments.
- In each one, *n* random samples are drawn and a sample proportion is calculated, and a 50 % Confidence Interval is constructed (the colored lines).
- The distribution on top represents the underlying normal distribution with mean μ .
- As these are 50% CI, you can see that the "blue intervals" which contain μ , constitute about 50% of all intervals.

Example: Confidence Intervals Using the CLT

• **Example:** In our favorite example, 761 out of 1000 people sampled support candidate A. Compute and interpret a 95% confidence interval for the population proportion.

Answer:

$$\hat{p} = 0.761, SE_{\hat{p}} \approx 0.0135$$

$$I = (\hat{p} - 1.96 \cdot SE_{\hat{p}} , \hat{p} + 1.96 \cdot SE_{\hat{p}})$$

$$\implies I = (0.761 - 1.96 \times 0.0135, 0.761 + 1.96 \times 0.0135)$$

$$\implies I = (0.7346, 0.7874)$$

Variations with Different Confidence Levels

- Suppose we want to construct a Confidence Interval with a $99\,\%$ confidence level.
- First, let's notice that this interval should be wider than the interval at the $95\,\%$ level.
- We are now looking for an interval, so that $\mathbb{P}(p \in I) \approx 0.99$.
- Using the CLT approximation, we can write $I=(\hat{p}-z^{\star}\cdot SE_{\hat{p}})$, $\hat{p}+z^{\star}\cdot SE_{\hat{p}}$. What we need is a value of z^{\star} , so that $\mathbb{P}(p\in I)\approx 0.99$.
- Turns out (probability tables/software), choosing $z^* = 2.58$ gives

$$\frac{1}{\sqrt{2\pi \cdot SE_{\hat{p}}}} \int_{\hat{p}-z^{\star}\cdot SE_{\hat{p}}}^{\hat{p}+z^{\star}\cdot SE_{\hat{p}}} e^{\frac{(x-\hat{p})^{2}}{SE_{\hat{p}}^{2}}} dx \approx 0.99$$

Summary: Confidence Interval for a Single Proportion

To construct a confidence interval for a single proportion:

- 1. Identify \hat{p} and n and determine what confidence level you wish to use.
- 2. Verify the independence and success/failure conditions to ensure \hat{p} is nearly normal. Use \hat{p} in place of p to check the success/failure condition.
- 3. If the conditions hold, compute SE using \hat{p} , find the relevant z^* , and **construct the interval.**
- 4. Interpret the confidence interval in the context of the problem.