Decision free Regression classification Root rode child node child _ Leaf node Stump method of solve algorithm - 0 1D3 decision Tree Information Govn Gini Index

Entropy or Gine Index

Intomation Gam

In DT we do not required to label certegorical dates into numerical

Entropy and Gini Index ->
purity split in dataset

200

100

Information Gain -> DT feature
weight height olpobese/Nooben.
60 160 ob
70 170 NO
80 180 ob
90 190 No

No

(1) DT Regre Ssur

Regressio	m we	use star	rdascl
Jeviation	A	ISE / MAE	
t n	,		
weight	height	BMJ	
60	160	21	
70	170	22	
80	180	20	
85	190	23	
90	195	29	
		1 // 1	
	[Root]	_ Root node	
	THE		
	1		
Tchild no	le	Childn	ode
			_
	Leafnock		
	Leapito		[leat]
childnede		lleaf	
	Tank		
Teat	Tleaf		

Decision Tree Classifier

outlook	Temp	humidity	wind	play
sunny	H	High	weak	N
Synny	H	H	strong	N
overcust	H	H	W	Y
rain	M	H	W	Y
rain	С	Normal	W	Y
rain	C	N	S	\sim
overcust	C	N	W	
Sunny	M	H	W	\sim
Synny	C	N	\mathcal{W}	\rightarrow
rain	M	\mathcal{N}	W	Y
Sunny	M	\sim	S	\
overcust	M	high	S	Y
overcust	H	N	W	Y
rain	M	H	S	\sim
	•	•		

/ Feature can be numeric and contegorical Output can be numeric and ay 15N categorical outlook 4y/ON 34/2N /Sunny/ Rein Tovercust 9y/5N Temp 2//21 3-//1N [cos]

@ Entropy H(s)

=> Formulg (Binary class)

H(s) = -Pyes log2 (Pyes) - PNo loge (PNO)

mulficlass

14(s) = -Pc, log(Pc,) - Pc, log(Pc,) - Pc, log(Pc)

 $F_1 F_2 F_3 Olp$ 31/3N 31/0N

 $C_1 = H(s) = -\frac{3}{6} log(\frac{3}{6}) - \frac{3}{6} log(\frac{3}{6})$ => 1 impure split

 $(2 \Rightarrow H_{15}) = -\frac{3}{3} \log \frac{3}{3} - \frac{0}{3} \log \frac{0}{3}$

=> 0 puse split

For the pure split of feature

pule entropy should be zero (0)

for impuse split = 1

main formula -
$$n$$

$$G.T. = 1 - \sum_{i=1}^{n} (P)^{i}$$

brain class.

$$G_{1}.J_{2}=1-\sum_{i=1}^{N}\left[\left(Pc_{i}\right)^{2}+\left(Pc_{i}\right)^{2}\right]$$

<u>mulfidas</u>

$$G.T. = 1 - \sum_{i=1}^{\infty} \left[(Pc_i)^2 + (Pc_2)^2 + (Pc_3)^2 + \cdots \right]$$

Example

$$C_{1} \Rightarrow G.I. = 1 - \left[\left(\frac{2}{4} \right)^{2} + \left(\frac{2}{4} \right)^{2} \right]$$

$$= 0.5$$

$$C_{2} = 1 - \left[\left(\frac{2}{z} \right)^{2} + \left(\frac{0}{2} \right)^{2} \right]$$

$$= 0$$

@ Information Gain

formula -

$$gain(S,f_1) = H(s) - \sum \frac{|S_v|}{|S|} H(s_v)$$

EXP 94/5N 64/2N 37/3N

$$H(s) = -\frac{9}{14} \log \frac{9}{14} - \frac{5}{14} \log \frac{5}{14}$$

$$\left[H(s) = 0.94\right]$$

$$C_1 = H(s) = -\frac{6}{8} log \frac{6}{8} - \frac{2}{8} log \frac{2}{8}$$

$$\int H(s) = 0.81$$

$$H(s) = -\frac{3}{3} log \frac{3}{3} - \frac{0}{3} log \frac{0}{3}$$

$$\left[H(s) = 1 \right]$$

$$gain(s,f_1) = 0.94 - \left[\frac{8}{14} \times 0.81 + \frac{6}{14} \times 1\right]$$

$$=$$
 gein $(s, f_i) = 0.049$

$$f_2 \rightarrow H(s) = -\frac{7}{7} lg \frac{7}{7} - \frac{7}{7} lg \frac{7}{7}$$

$$C_1 - 3 + 495 = -\frac{3}{5} + \frac{3}{5} - \frac{2}{5} + \frac{3}{5} = \frac{2}{5} = \frac{3}{5} = \frac{3}{5}$$

$$= 0.133 + 0.159$$

$$= 0.29$$

$$(2 = 1) H(s) = -\frac{4}{9} log \frac{4}{9} - \frac{5}{9} log \frac{5}{9}$$

$$= 6.014$$

$$f_2 \text{ gen}(S, S_2) = 0 - \left[\frac{5}{14} \times 0.29 + \frac{9}{14} \times 0.019 \right]$$

$$= 0 - \left[0.10 + 0.009 \right]$$

$$= -0.10$$

Since Fz has higher value of information gain's among the all feature so that It will be ory not node.

*	Indepen	dent	analy sis	,	b-efi	52
	. /	• 1		Λ		

build DT with numerical feature

weight heart De.

220
186

225

190

N

155

weight Heart

155 > 167.5 N

180 > 185 N

220 > 204 Y

225 > 222.4 Y

with respect to every point arg. value need to find out gmi index / Entropy

\(\left \) \(\left \

Gini impusity = 1- \(\frac{1}{121} P, \)

gini (Lett) = 0

gini (Right) = $1 - \left[\left(\frac{3}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right]$

= 0.375

Information gain = G.J. [Root] - \(\sum \frac{|Sv|}{Value 15|} C.J.

[child]

G.J. [RNO +] = 648

I.G. [167.5] = 0.48[= x0+4x0.325]

I. a. [167.5] = 6.18 =

Information Gain should be high and Gini Index should be low.

height weight

160 > 162.5

165 > 167.5

170 > 172.5

170 > 177.5

180 | 177.5

EX	height	weight		17
162.5	<165	65	160 >	
107	160	5 D	165	
109.5	<160 180	90	175	
179.5		85	180	
1,14.7	175	70		

Regression problem weight calculated with respect to height

- Short the value of height column (x featur) O Step.
- (2) step -Find Adjcent Arg. value blw data point
- (3) slep help of entropy and Gini Index.

Theight > 162.5 (65, 85,70,90)

mean = 77.5

(1) m-ean = 77.5

@ msE, RMSE, MAE

 $MSE = \frac{1}{h} \sum_{i=1}^{h} (y-\hat{y})^{2}$

overall = 50 + 65 + 85 + 70 + 90 = 72.

height (variance) = $(72-50)^2 + (72-65)^2 + (72-85)^2$ + $(72-70)^2 + (72-90)^2$

$$Var(eight) = (77.5-65)^{2} + (77.5-85)^{2} + (77.5-85)^{2} + (77.5-90)^{2} + (77.5-90)^{2}$$

& reduction in varione

Reduction variance = 121

We conclude MSE for all the datapoint whichever is less will be thresold.

height	gendei	weight	20
U	U	O	
(60	\sim	65	
165	F	70	
170	M	80	
175	\sim	90	
180	F	100	

From height/Gender, choose root nide

for height msE = 55.5 For gendes msE = 53

so value of gender msE is less It will be one root node.

pre-pruning and post-pruning

max - Depth = 5 mini - sample - leaf = 10 mm - sample - split = 8 max - feature = 6 These 4 hyperparemeter selected for pre-pruning before build DT. algorithms.

Post pruning =)

Domake DT till end

Domake DT till end

Out DT. using cop value.

Domake DT till end

Cop value is nothing but

Therefold for gini / Entropy.

CCP value is responsible for Lepth of Tree. If CCP is less, the depth will be less.

High ccp value the Lepth will be more.

CCP = [0.4, 6.5, 6.6, 0.0]

For model bodining either we can use pre-prunning or post-prunning. (1) When we have large destaset at this time we use pre-prunning. (2) When we have small dataset at this time we use postprunning.
at this time we use use postmining
Why we use post or pre-prining.
=> To avoid model overfitting 1
0.4
0.2
0.1