FUNÇÕES EXPONENCIAIS

1. Equações exponenciais

1.1 Definição

Equações exponenciais são equações com a incógnita no expoente.

Exemplos:
$$2^{X} = 16$$
;

$$5^{2x-4}=25$$

$$5^{2x-4} = 25;$$
 $3^{x+1} + 3^x - 3^{x+2} = -5$

1.2 Resolução

Para resolver uma equação exponencial é necessário aplicar as propriedades de potência estudadas na unidade I, procurando igualar as bases, ou seja,

$$\mathbf{a}^{\mathbf{x}} = \mathbf{a}^{\mathbf{t}} \iff \mathbf{x} = \mathbf{t} \text{ com } \mathbf{a} > 0 \text{ e } \mathbf{a} \neq 1.$$

A partir dessa igualdade, igualamos os expoentes e reduzimos a equação a uma de solução conhecida.

Exemplos: a)
$$2^x = 16$$

$$2^{x} = 16$$
 $2^{x} = 2^{4}$
 $x = 4$
 $S = \{4\}$
 $2^{x} = 3^{4}$

b)
$$5^{2x-4} = 25$$

$$5^{2x-4} = 5^2$$

 $2x - 4 = 2$
 $x = 3$

$$X = 3$$

 $S = \{3\}$

c)
$$3^{x+1} + 3^x - 3^{x+2} = -5$$

 $3^x \cdot 3 + 3^x - 3^x \cdot 3^2 = -5$

$$3^{x}(3+1-9)=-5$$

$$3^{x}(-5) = -5$$

$$3^{x} = -5/-5 = 1$$

$$3^{x} = 1$$

$$3^{x} = 3^{0}$$

$$x = 0$$

 $S = \{0\}$

$$S=\{0\}$$

d)
$$4^{x} - 20 \cdot 2^{x} + 64 = 0$$

 $(2^{2})^{x} - 20 \cdot 2^{x} + 64 = 0$
 $(2^{x})^{2} - 20 \cdot 2^{x} + 64 = 0$ substituindo $2^{x} = y$
 $y^{2} - 20y + 64 = 0 \rightarrow y = 16 e y = 4$
fazendo:

$$2^{x} = y \rightarrow 2^{x} = 16$$
 $2^{x} = 4$ $2^{x} = 2^{4}$ $2^{x} = 2^{2}$ $2^{x} = 4$ $2^{x} =$

Exercícios

01. Resolva as equações:

a)
$$2^{x+1} = \frac{1}{2}$$

b)
$$3^{2x} = \frac{1}{9}$$

c)
$$4^{x-1} = \frac{1}{16}$$

d)
$$5^{x+7} = \frac{1}{25}$$

e)
$$8^{x+3} = 128$$

f)
$$9^{x-1} = 27^x$$

g)
$$4^{x+1} = 32^{x-1}$$

h)
$$5^{2x+1} = \sqrt{5}$$

i)
$$8.2^{x+1} = \sqrt{8}$$

02. Resolva as equações exponenciais:

a)
$$9^{x+2} = 27^{1-x}$$

b)
$$125^{x-1} = 25^{x+2}$$

c)
$$49^{x+3} = \sqrt{343}$$

d)
$$16^{2x+3} = 0.25$$

e)
$$\left(\frac{1}{8}\right)^{x+1} = 0.5^x$$

f)
$$\left(\frac{1}{9}\right)^{x+7} = \sqrt{243}$$

g)
$$16^{2x-1} = \frac{1}{128^x}$$

h)
$$\sqrt[3]{16^{x+1}} = 0.5$$

i)
$$\left(\frac{1}{2}\right)^{x-1} = \sqrt{2^x}$$

03. Resolver cada equação exponencial:

a)
$$2^x + 2^{x-1} = 3$$

b)
$$2^x - 2^{x-1} = 2$$

c)
$$3^x + 3^{x-1} = 4$$

d)
$$5^x + 5^{x+1} = 6$$

e)
$$7^x + 7^{x+1} = 8$$

f)
$$2^x + 2^{x+2} = 5$$

g) $3^{x-1} + 3^x + 3^{x+1} + 3^{x+2} = \frac{40}{3}$

h) $2^{x-3} - 2^{x+1} + 2^x = -7$ i) $3^{x+4} - 3^{x+5} + 3^{x+7} = 25$

04. Qual é a solução das equações a seguir:

a)
$$2^x + 2^{x+1} + 2^{x+2} = 7$$

b)
$$3^x - 3^{x-1} + 3^{x+1} = 11$$

c)
$$5^x + 5^{x+2} = 26$$

d)
$$3^{x-2} + 3^{x+1} = 28$$

e)
$$2^{x-1} + 2^x + 2^{x+1} = 7$$

f)
$$5^{x-3} + 5^{x+1} = 626$$

05. Resolva as seguintes equações:

a)
$$2^x = 64$$

c)
$$(0,5)^{2x} = 2^{1-3x}$$

b)
$$5^{x^2-2x} = 125$$

d)
$$\left(\frac{1}{16}\right)^{x-2} = 8^x$$

$$1) \quad 1 + \frac{3^x - 1}{3^x} = -1$$

e)
$$(4^x)^x = 512^2$$

m)
$$3^{2x} + 2.3^x - 15 = 0$$

f)
$$3^{x-5} = 27^{1-x}$$

$$n) \ \ 2^{2x+1} + 3.2^{x+1} = 8$$

g) 2.
$$3^{x-2} = 162$$

o)
$$\frac{9^x + 3}{4} - 3^x = 0$$

h)
$$5.2^{x^2-4} = 160$$

p)
$$3^x - \frac{9}{3^x} = 8$$

i)
$$2^x + 2^{x-1} = 12$$

q)
$$\frac{25^x + 125}{6} = 5^{x+1}$$

j)
$$3^{x-2} + 3^{x+1} = 84$$

k) $4.2^x + 2^{x-1} = 72$

06. Assinale a(s) potência(s) que está(ão) definidas em R, e some o(s) valor(es) a ela(s) associado(s).

01. 0-3

02.
$$(-4)^{\frac{1}{2}}$$

04.
$$(-5)^{\frac{1}{3}}$$

08.
$$(0)^{-\frac{2}{3}}$$

16.
$$(-9)^{-\frac{5}{8}}$$

32.
$$(-5)^{\frac{1}{5}}$$

07. (FEI-SP) Efetuando $\frac{10.0,0001 + 0,2.10^{-3}}{0,005} - \frac{0,004.3.10^{-5}}{0,0005.10^{-3}}$ obtemos:

a) 0b) 100

c) $\frac{12}{5}$

d) 0,01

08. (FGV-SP) São dados os números $x = 0,00375.10^{-6}$ e $y = 22,5.10^{-8}$. É correto afirmar que:

a)
$$y = 6\% x$$

c)
$$y = \frac{2}{3}x$$

e)
$$y = 60 x$$

b)
$$x = \frac{2}{3}y$$

d)
$$x = 60 y$$

Matemática —————

09. (MACK-SP) O valor da expressão
$$\frac{2^{n+4} + 2^{n+2} + 2^{n-1}}{2^{n-2} + 2^{n+1}}$$
 é:

- a) 1
- b) 2ⁿ⁺¹
- c) $\frac{3}{83}$ d) $\frac{82}{9}$
- e) n

2. Inequações exponenciais

2.1 Definição

Inequações exponenciais são as inequações onde a incógnita aparece no expoente.

Exemplos: $2^x > 16$: $5^{2x-4} \le 25$: $3^{x+1} + 3^x - 3^{x+2} < -5$

2.2 Resolução

Para resolver uma inequação exponencial é necessário aplicar as propriedades de potência estudadas na unidade I, transformando a inequação em uma desigualdade de potências de mesma bases, ou seja,

$$a^x > a^t$$
; $a^x \ge a^t$;

$$a^{x} \geq a^{t}$$
;

$$a^x < a^t$$
;

$$a^x \le a^t$$
.

Assim, reduzimos a inequação a uma de solução conhecida, porém o sinal da desigualdade original depende da base, isto é:

Exemplos:

A inequação $2^x > 2^4$, a solução é x > 4 (a base 2 é maior que 1)

A inequação $2^x \le 2^4$, a solução é $x \le 4$ (a base 2 é maior que 1)

A inequação $\left(\frac{1}{2}\right)^x > \left(\frac{1}{2}\right)^4$, a solução é x < 4 (a base $\frac{1}{2}$ é maior que 0 e menor que 1)

A inequação $\left(\frac{1}{2}\right)^x \le \left(\frac{1}{2}\right)^4$, a solução é $x \ge 4$ (a base $\frac{1}{2}$ é maior que 0 e menor que 1)

Exercícios

10. Resolva as seguintes inequações exponenciais:

- a) $2^{x} > 32$
- b) $\left(\frac{1}{2}\right)^{x+3} < \left(\frac{1}{2}\right)^{2x-7}$
- c) $81^x > 3^{2x+4}$

d)
$$2^{x+7} < 32$$

e)
$$10^{x-3} > 1$$

$$f) \qquad \frac{1}{9} < 9^{x-1} \le 3^x$$

g)
$$3^x + 2 \cdot 3^{x+1} - 7 > 0$$

h)
$$(7^x)^x - 7^{2x} \ge 0$$

i)
$$4^{x-1} + 4^x - 4^{x+1} > -\frac{11}{4}$$

j)
$$2.9^{x} + 6.3^{x} - 8 \le 0$$

3. Funções exponenciais

3.1 Definição

Função exponencial é toda função definida f: $R \rightarrow R$ onde $f(x) = a^x \text{ com } a > 0 \text{ e a} \neq 1.$

3.2 Domínio e Imagem

O domínio da função exponencial são todos os números reais, D(f) = R.

A **imagem** da função exponencial $f(x) = a^x$ são todos os números reais positivos, $Im(f) = R^*_{+}$.

3.3 Gráfico

O gráfico da função é uma curva acima do eixo das abcissas, não possui zeros (não intercepta o eixo dos x) e corta o eixo dos y no ponto (0, 1).

O aspecto da curva depende de a, isto é:

a > 1, é crescente

0 < a < 1, é decrescente

LEMBRE-SE: A função exponencial é injetora, pois, para $x_1 \neq x_2$, $f(x_1) \neq f(x_2)$.

Matemática

Prof. Bruno

3.4 Funções compostas com função exponencial

Existem funções com a incógnita no expoente que são obtidas a partir da função composta da exponencial ($f(x) = a^x$) e outra função real (1º grau, 2º grau, etc.).

Exemplo: A função $y = a^x + b$, com a > 0 e $a \ne 1$ e $b \in R$, é obtida da composição de g(x) = x + b e $f(x) = a^x$, ou seja $g(f(x)) = y = a^x + b$

Observe que, neste caso o domínio D(gof) = R porém a imagem será o intervalo aberto (b, ∞) , isto é $Im(gof) = \{ y \in R \mid y > b \}$.

3.5 Inversa da função exponencial

A função exponencial $f(x) = a^x$ é sobrejetora se for definida por $f: \mathbf{R} \to \mathbf{R}^*_+$, e sua inversa será definida por $f^{-1}(x) = \log_a x$, que será estudada na próxima unidade.

Exercícios

11. Classifique as funções abaixo em crescentes (C) ou decrescentes (D):

()
$$v = 4^{x}$$

()
$$y = (0,5)^{x}$$

()
$$y = (1,5)^{2x}$$

()
$$y = \left(\frac{1}{4}\right)^x$$

()
$$y = 3.(\sqrt{3})^x$$

$$() v = 3 + 5^{-x}$$

12. Determine o domínio e a imagem das funções:

a)
$$f(x) = 5 + 3^x$$

b)
$$f(x) = (2)^{-x}$$

c)
$$f(x) = \left(\frac{1}{4}\right)^{2x}$$

13. Calcule o valor de k para que a função:

- a) $f(x) = (2k + 1)^x$ seja crescente.
- b) $f(x) = (k^2 1)^x$ seja decrescente.

14. (OSEC-SP) O domínio da função $f(x) = \frac{1}{\sqrt{\left(\frac{1}{3}\right)^x - 243}}$ é:

d)] 5, +∞[

e)]-5, 5[

15. (UFBA) O esboço do gráfico da função $f(x) = 2^{|1-x|}$ é:

TESTES

255. (ACAFE) Simplificando a fração $\frac{3^{n-1}+3^n+3^{n+1}}{3^{n+2}-3^n}$, obter-se-á:

a) $\frac{5}{12}.3^n$

c) $\frac{13}{24}$

e) $\frac{5}{24}$

b) $\frac{10}{27}$

d) $\frac{13}{27}.3^n$

256. (PUC-SP) Escreva a expressão $\frac{(2^{n-1} + 2^n + 2^{n+1}).(3^{n-1} + 3^n + 3^{n+1})}{6^n + 6^{n+1}}$ sua forma mais simples, em que $n \in Z$.

257. (ACAFE) Dada a equação 3^{x-4} . $81^x = 1$, então x é:

a) $x = \frac{4}{5}$

c) x = 0 ou x = 2

d) $x = -\frac{5}{4}$

b) x = -2 ou x = 2

258. (FMU-FIAM) A solução da equação $5^{2x-1} = \frac{1}{625}$ em R é:

- a) $\frac{3}{2}$
- b) $\frac{2}{3}$ c) $-\frac{2}{3}$ d) $-\frac{3}{2}$
- e) 1

259. (FCC-SP) A solução da equação $\left(\frac{1}{81}\right)^{x-2} = \left(\sqrt{27}\right)^{x}$ pertence ao intervalo:

a)] 0,1 [

c)] 2,3 [

e) 14,5 [

b)] 1,2 [

d) 13.4 [

260. (PUC) O valor de \mathbf{x} , $x \in R$, que é solução da equação $4^{x+2} = 8^{-x+3}$ é:

- a) 0
- b) $\frac{1}{5}$
- c) $\frac{1}{2}$
- d) 1 e) $\frac{4}{3}$

261.(ESPM-SP) As soluções da equação $x^{5x^2-25x+25} = \frac{1}{x^5}$, $(x\neq 0)$ em R₊ são:

a) 1, 2 e 3

c) 2, 5 e 25 d) 3, 5 e 25

e) 2,3e5

b) 1,5 e 6

262. (ESAL-MG) Resolva a equação $2^{1+x} + \sqrt{8} = \sqrt{72}$

263. (MACK-SP) O produto das raízes da equação $(3^{x^2} - 4\sqrt{5}) \cdot (3^{x^2} + 4\sqrt{5}) = 1$ é:

- a) -4
- b) -2
- c) $\sqrt{2}$
- e) 2

264. (UFOP-MG) Determine a raiz quadrada da soma dos quadrados das raízes da equação: $2^{-5x+x^2} = \frac{1}{2}$

265. (UCS-RS) A solução da equação $\frac{8^{x-1}}{4} = 16^{2-3x}$ é:

- a) $\frac{15}{12}$
- b) zero c) $\frac{13}{15}$ d) $\frac{11}{15}$
- e) $\frac{15}{44}$

266. (UNICAMP) A equação exponencial $(\sqrt{3})^x = \sqrt[3]{81}$, tem como resultado:

- b) $x = \frac{3}{8}$ c) $x = -\frac{8}{8}$ d) $x = -\frac{3}{8}$

267. (MACK-SP) Se $(0,1)^{x-5} = 10$, então x vale:

- a) -5
- b) 0
- c) 4
- d) 10
- e) 6

268. (ACAFE) O valor de x que satisfaz a igualdade $\sqrt{\left(\frac{3}{5}\right)^{1-7x}} = \frac{25}{9}$ é :

- a) $\frac{5}{7}$ b) $-\frac{3}{7}$ c) $\frac{7}{5}$ d) $-\frac{7}{3}$ e) $\frac{5}{24}$

324. (FCC-SP) A solução da equação $0.5^{2x} = 0.25^{1-x}$ é um número x, tal que:

a) 0 < x < 1

c) 2 < x < 3

e) x < 0

b) 1 < x < 2

d) x > 3

325. (EEM-SP) O conjunto solução da equação exponencial $7^x + 7^{x-1} = 8$ é:

a) {2}

c) {-2}

e) n.r.a.

b) {-1}

d) {1}

326. (FESP) O triplo do valor de x que satisfaz a equação $\frac{4^{\frac{2}{2}}}{2} - \frac{2^{x-1}}{3} = \frac{4}{3}$ é:

- a) 2
- b) 6
- c) 0
- d) 9

Prof. Bruno

327. (CEFET-SP) O conjunto solução da equação $(0,25)^{2x} = \sqrt{32}$ é:

- a) $-\frac{5}{8}$ b) $-\frac{5}{4}$ c) $\frac{5}{8}$ d) $\frac{5}{4}$ e) $\frac{1}{2}$

328. (Unifor-CE) O valor da expressão $3^{x^2} - 5^{x+1} \cdot 2^{2x}$, para x = -1, é:

- a) $-\frac{5}{26}$ b) $\frac{11}{4}$ c) 3 d) $\frac{37}{9}$ e) 7

329. Se (a, b) é solução do sistema $\begin{cases} 2^x + 3^y = 11 \\ 2^x - 3^y = 5 \end{cases}$, qual o valor de a + b?

330. (FGV-SP) O produto das soluções da equação $\begin{cases} 2^x . 3^y = 108 \\ 4^x . 2^y = 128 \end{cases}$ é:

a) -4

c) 18

e) 12

b) -2

d) 6

331. (UFSC - 94) Dado o sistema $\begin{cases} 5^{x-y} = \frac{1}{125}, \text{ o valor de (x.y)}^3 \text{ \'e:} \\ 3^{x+y} = 243 \end{cases}$

332. (UFSC - 92) O valor de x que satisfaz a equação $\frac{5^{4x-12}}{5^{3x+8}} = \frac{1}{125}$ é:

333. (OSEC - SP) Se $4^x - 4^{x-1} = 24$, então $(2x)^x$ é igual a:

a) $5\sqrt{5}$

c) $25\sqrt{5}$

e) 5

b) $\sqrt{5}$

d) 125

334. (UFSC - 96) Determinar o valor de x na equação $5^{x+1} + 5^x + 5^{x-1} = 775$.

335. (ITA-SP) Dê o conjunto verdade da equação exponencial $3 \cdot 5^{x^2} + 3^{x^2+1} - 8 \cdot 3^{x^2} = 0$

336. (ESSAP) A solução da equação $25^{\sqrt{x}} - 124.5^{\sqrt{x}} = 125 \, \text{\'e}$:

- a) 7
- b) 8
- c) 9
- d) 10
- e) 11

337. (FGV-SP) Dada a expressão $\left(\frac{1}{2}\right)^{4x-x^2}$, então:

- a) o maior valor da expressão é 1.
- b) o menor valor da expressão é 1.
- c) o menor valor da expressão é $\frac{1}{16}$.
- d) o maior valor da expressão é $\frac{1}{4}$.
- e) o menor valor da expressão é $\frac{1}{4}$.

338. (FEI-SP) A equação 2x + 2 1-x = 3 tem duas raízes reais. O produto delas é:

- a) -1
- b) 0
- c) 1
- d) 2
- e) 3

339. (PUC-MG) A soma dos zeros da função $f(x) = 2^{x-1} - 3\sqrt{2^{x-1}} + 2$ é:

- a) 1,5
- b) 2,5
- c) 3,0
- d) 4,0
- e) 5,0

340. (PUC-SP) O conjunto verdade da equação $3 \cdot 9^{X} - 26 \cdot 3^{X} - 9 = 0$ é:

a) {3}

c) {-3}

e) ∅

b) {-2}

d) {2}

341.(FAAP-SP) O conjunto solução da equação exponencial $2^{2x} - 12 \cdot 2^x + 32 = 0$, é:

- a) $\{ x \in \mathbf{R} \mid x = -2 \text{ ou } x = 3 \}.$
- d) \emptyset .
- b) $\{ x \in \mathbb{R} \mid x = 2 \text{ ou } x = -3 \}.$
- e) $\{ x \in \mathbb{R} \mid x = 2 \text{ ou } x = 3 \}.$
- c) $\{ x \in \mathbf{R} \mid x = -2 \text{ ou } x = -3 \}.$

Matemática

Prof. Bruno

342. (UCDB-MS) O coniunto verdade da eguação exponencial $\frac{2^{2x}}{2^{2x}} + 1 = \frac{13 \cdot 2^{x-1}}{2^{x+1}}$ é:

- a) $\left\{\frac{2}{3}, \frac{3}{2}\right\}$ b) $\left\{-\frac{2}{3}, -\frac{3}{2}\right\}$ c) $\left\{-\frac{2}{3}, \frac{3}{2}\right\}$ d) $\{1, 0\}$ e) $\{1, -1\}$

343. (PUC-SP) Se a = 16 e x = 1,25 , quanto vale a $^{\times}$?

- a) $\sqrt{2}$
- b)32
- c) 20
- d) $16\sqrt{2}$
- e) 64

344. (FCC-SP) Se 3^{x^2-1} < 27, então x pertence ao intervalo:

a) 1-3,3[

c) 1-∞, 2[

e) 1-2,2[

b)]0,4[

d) [-2,2]

345. (UFPA) O conjunto solução da desigualdade $\left(\frac{1}{2}\right)^{x^2-2} < \frac{1}{4}$ é:

a) $\{x \in R \mid -2 < x < 2\}$

d) $\{x \in R \mid 0 < x < 2\}$

b) $\{x \in R \mid x < -2 \text{ ou } x > 2\}$

e) $\{x \in R \mid x < -2 \text{ ou } x > 0\}$

c) $\{x \in R \mid x < 0 \text{ ou } x > 2\}$

 $\left(\frac{1}{5}\right)^{2x-3} \leq \frac{1}{5} \quad é:$ 346. (ACAFE) O conjunto solução da inequação

a) $\{x \in R \mid x > \frac{3}{2}\}$

d) $\{x \in R \mid -2 \le x \le -1\}$

b) $\{x \in R \mid x \le -2\}$

e) $\{x \in R \mid -\frac{3}{2} \le x \le 2\}$

c) $\{x \in R \mid x \geq 2\}$

347. (FATEC-SP) Se x é um número real tal que 2^{-x} . $4^x < 8^{x+1}$, então:

a) -2 < x < 2

d) $x < \frac{3}{2}$

b) x = 1

e) $x > -\frac{3}{2}$

c) x = 0

	c) x = 3 e a < 1. d) x = -2 e a < 1.	e) $x = 2 e a > 1$.				
352. (ITA-SP) Resolva a equação $3^x - \frac{15}{3^{x-1}} + 3^{x-3} = \frac{23}{3^{x-2}}$.						
353. (UFRN) Qual o conjunto solução da equação $4^{2x-2} - 17 \cdot 4^{x-2} + 1 = 0$?						
354. (FEI-SP) A equação 2 ^x + 2 ^{1-x} = 3 tem duas raízes reais. O produto delas é:						
· · · · · · · · · · · · · · · · · · ·	c) 1	•				
355. (ITA-SP) A soma de todos os valores de x que satisfazem à identidade: $9^{x-\frac{1}{2}} - \frac{4}{3^{1-x}} = -1 \text{ \'e}:$						
a) 0 b) 1	c) 2	d) 3 e) n.d.a.				
——— Matemática —————		Prof. Bruno ————				

348. (ACAFE) A solução da inequação $(0,0001)^{x-1} \ge (0,1)^{2x}$, em **R** é: c) x < 2

d) $x \ge 2$

349. (ACAFE) O conjunto solução da inequação $\left(\frac{1}{8}\right)^{x+4} > 2^6$ é

350. (CESESP-PE) Determine a menor solução inteira da inequação

c) -14

351. (PUC-SP) Considere a sentença $a^{2x+3} > a^8$, na qual **x** é uma variável real e a é uma constante real positiva. Essa sentença é verdadeira se, por exemplo:

d) $\{x \in R \mid x < -12\}$

a) $\{x \in R \mid x > -6\}$ c) $\{x \in R \mid x < -6\}$

b) -12

e) $x \le 2$

e) Ø

e) 1

d) 0

a) x = 2

b) x > 2

a) -13

b) $\{x \in R \mid x > -12\}$

356. O conjunto solução do sistema de inequações $\begin{cases} 2^{x} \le 8 \\ 3x - 6 > 0 \end{cases}$ é:

a) $S = \emptyset$

d) $\{x \in R \mid 2 \le x \le 3\}$

b) $\{x \in R \mid x \le 3\}$

e) $\{x \in R \mid 2 < x \le 3\}$

c) $\{x \in R \mid x > 2\}$

357.(FCC-SP) A expressão $\sqrt{2^x + 2^{x+1}} - 12$ é um número real se, e somente se:

a) -1 < x < 0

c) 0 < x ≤ 2

e) $x \ge 2$

- b) x > 0 e $x \ne 1$
- d) x < $\frac{11}{2}$

358.(PUCC-SP) Numa certa cidade, o número de habitantes, num raio de r km a partir do seu centro, é dado por $P(r) = k.2^{3r}$, em que k é constante e r > 0. Se há 98304 habitantes num raio de 5 km do centro, quantos habitantes há num raios de 3 km do centro?

a) 32768

c) 3024

e) 1536

b) 4608

d) 2048

359. (PUC-MG) O crescimento da população mundial obedece à equação P(t) = C.ekt em que t é o tempo em anos e P é o número de habitantes. Em 1950, o valor de P era de 2,6 bilhões e, em 1975, P valia 3,9 bilhões. A população da Terra, no ano 2000, será de X bilhões de habitantes. O valor aproximado de X é:

- a) 5.8
- b) 6.2
- c) 6,6
- d) 7.0 e) 7.4

360.(FGV-SP) Dado o sistema $\begin{cases} 2^x = 8^{y-1} \\ 9^y = 3^{x-9} \end{cases}$, pode-se dizer que x + y é igual a:

- a) 18
- b) -21
- c) 27
- e) -9

361. (PUC-MG) O gráfico de $f(x) = ax^2$ intersecta a curva $y = 2^x$ no ponto P de abscissa 1. O gráfico de f passa pelo ponto:

- a) (2, 1)

- b) (2, 4) c) (2, 8) d) (2, 9) e) (2, 16)

362. (PUC-SP) As funções $y = a^x e y = b^x$, com a > 0, b > 0 e $a \ne b$, têm gráficos que se encontram em:

Matemática

a) um ponto

- c) quatro pontos
- e) infinitos pontos

- b) dois pontos
- d) nenhum ponto

363. (UFES) O conjunto solução, em R, da inequação $3^{x-3} > \left(\frac{1}{9}\right)^{x+3}$ é:

a) $\{x \in R \mid x > -3\}$

d) $\{x \in R \mid x < 1\}$

b) $\{x \in R \mid 0 < x < 1\}$

e) $\{x \in R \mid x > -1\}$

c) $\{x \in R \mid x > 1\}$

364. Determine o conjunto solução da inequação $2^{x+2} + 2^{-1-x} < 3$.

365. (UFG) Os valores de x para os quais $(0.8)^{4x^2-x} > (0.8)^{3(x+1)}$ são:

a) -1.5 < x < 1.5

d) x < -0.5 ou x > 1.5

b) $-\frac{3}{2} > x > \frac{1}{2}$

e) $x > \frac{1}{2}$ ou $x < \frac{3}{2}$

c) -0.5 < x < 1.5

366. (UFV-MG) Seja a função $f: R \rightarrow R$ definida por $f(x) = 3^x$. Determine os valores de $x \in R$, tais que f(x+1) + f(-x+4) = 36.

367. (PUC-RS) Seja a função f : R→R definida por $f(x) = 2^x$. Então, f(a+1) - f(a) é igual a:

a) 2

c) f(a)

e) 2f(a)

b) 1

d) f(1)

368. (PUC-RS) Dentre os gráficos abaixo, o que melhor representa a função definida por $y = 2^{1-x}$ é:

369. (PUC-SP) Para a função f:R→R dada por $y = a^x$, com $a \in R$, a > 0 e a ≠ 1, podemos dizer que:

- a) ela é crescente se a \neq 1;
- b) ela é decrescente se a \neq 1;
- c) ela é crescente para qualquer x real, se a > 1, e decrescente se a < 1;
- d) ela é crescente para $x \in R^*_+$ e decrescente para $x \in R^*_-$;
- e) ela não é decrescente quando a < 1.

370. (FEI -SP) Sendo $f(x) = \frac{1}{4} - 2^x e g(x) = 4^x$, resolva a equação: f(x) + g(x) = 0.

371. (CESGRANRIO) O gráfico que melhor representa a função $f(x) = e^{-2x}$ é:

Matemática Prof Bruno