

From ZEBRA to PandA: A New Open Hardware Platform

Isa Uzun
Accelerator Controls Team

On-The-Fly Scanning

Synchronous Operation

Instruments varies from beamline to beamline:

- Motion controllers
- Area Detectors
- ADC cards
- Counter/timer
- Multi Channel Analysers
- Timing system Receiver cards

Challenges

- Electrical I/O compatibility between instruments
- Synchronous triggering/operation of all instruments
- Control System Integration of many instrument
- Overall cost (especially VME-based hardware)

Zebra

- All-in-one:
 - Digital signal level converter
 - Triggering
 - Position compare
 - Data acquisition
- Developed in 2013 at Diamond
 - Available from Quantum Detectors
 - Used around the world

Zebra Application

Zebra – Flexibility via EPICS

Zebra's logic and data capture functions are fully configurable via EPICS interface.

Motivation behind PandA

- Analogue
- Signals < 20ns
- Absolute encoder protocols
- Sequencing
- Multi channel Position Compare
- Table-based Position Compare
- High bandwidth data transfer
- More FPGA resources

PandA Project Collaboration

Zebra

SPIETBOX

« PandA » Motion Project

- Started in 2015.
- SOLEIL → Electronics and Mechanics
- Diamond → Firmware, Software and Web GUI amond

2x LVDS Input 2x Outputs

Front Panel

6x TTL Inputs (Switchable termination)

Low Pin Count **FMC**

Gigabit Ethernet 3x SFPs (6.8Gbps)

10x TTL **Outputs** diamond

Oxfordshire SICS meeting at UKAEA November 2016

Rear Panel

External FPGA Clock

4-Channel RS-485 Encoder

USB Host ARM Terminal Console diamond

Firmware Architecture

- Large set of highly configurable <u>Function Blocks</u>
- Fully rewirable (in run-time) architecture diamond

Software Architecture

TCP Server

- Control
 - Interfaces to FPGA over registers
 - Publishes socket endpoint with simple ASCII command response protocol, E.g.

- Block structure defined in configuration file
- Data
 - Received from FPGA via DMA using kernel driver
 - Publishes socket endpoint with ASCII, BASE64 or BINARY data frame encoding

Web Server

- Malcolm
- Publishes websocket endpoint with JSON protocol
- Block structure defined by querying TCP server
- Save/Load functionality
- Can be run on or off the box
- When run off the box allows setup of areaDetector plugin chain for file writing

EPICS Interface

- Fixed block setup for common use cases
- Static CS-Studio or EDM GUI
- Connects to DATA port
- areaDetector driver produces NDArrays that are written to HDF file
- Used for runtime
- TANGO will be similar for SOLEIL

Firmware – Physical Interface

- TTL Input and Output
 - Front panel BNCs
 - Switchable termination
- LVDS Input and Output
 - Front panel Lemos
- Encoder Input and Output
 - Rear panel DB15s
 - Support for Quadrature, SSI, BiSS and EnDat
- FMC and SFP

Firmware – Functional Blocks

- LUT [x8]
 - 5-inputs
 - OUT = (A?B:C)=(A&B|~A&D)
- SRGate [x4]
- Pulse Generator [x4]
 - WIDTH/DELAY config
 - Support for pulse trains
- Pulse Divider [x4]
 - 32-bit divider
 - Pulse_N&D output

- Counter [x8]
 - 32-bit UP/DOWN
 - START&STEP config
- Sequencer [x4]
 - Auto-execution
 - 4 inputs/6-outputs
 - 1024 Frames
 - Frame and Table repeat
- Quadrature
 Encoder/Decoder [4x]
 - Internal wiring only

- Inputs from any Encoder, Counter and ADCs
- Linearly spaced pulse outputs
 - (START, STEP and WIDTH)
- User-defined table for irregular pulse outputs

Position Capture

- Captures EVERYTHING internal configurable
 - Encoder, Counter, ADC values
 - All discrete block outputs
 - Timestamps
- Frame mode for averaging (48-bits)
- Data throughput is limited by Gb Ethernet via Zynq
 - (Trigger Rate x Number of Fields)

Example App: Snake Scan

- Position compare to start each row
- Regularly spaced time based pulses within each row
- Reverse alternate rows
- Capture motor
 positions at centre
 of each frame

Snake scan with time based pulses

- 2 PCOMP blocks produce start of row
- SEQ block produces time based pulses
- Delay ½ deadtime for Det
- Delay ½ (deadtime + exposure) for PCAP

Project Status

- 4 prototypes received, and tested successfully
- Deployment on I18 and I08 in progress
- Initial production order placed via Quantum Detectors
- CERN Open Hardware Project created

http://www.ohwr.org/projects/pandabox

Future Plans

- FMC-24VIO and FMC-OCL under development
- D-TACQ Solutions, FMC-ADC integration
 - 8 channel 1MS/s 18-bit FMC
 - Position compare and capture
- Micro Research Event Receiver
- Sin/Cos Interpolator
- 1Gb UDP over SFP for software triggering
- PandA-to-PandA Communication Networking

Acknowledgements

Isa Uzun
Tom Cobb
Andrew Cousins
Michael Abbott
Chris Turner
Chris Colborne

Yves-Marie Abiven
Jérome Bisou
Guillaume Renaud
Frederic Ta
Paulo Monteiro

Thank you

