

Ground levels and ionization energies for the neutral atoms

<i>Z</i>	Element	Ground-state configuration	Ground level	Ionization energy (eV)	Reference for ionization energy
1 H	Hydrogen	1 <i>s</i>	$^{2}S_{1/2}$	13.5984	(1983), (1985)
2 He	Helium	$1s^2$	$^{1}S_{0}$	24.5874	(1997), (1998)
3 Li	Lithium	$1s^2$ $2s$	² S _{1/2}	5.3917	Lorenzen & Niemax (1982)
4 Be	Beryllium	$1s^2 2s^2$	$^{1}S_{0}$	9.3227	Beigang et al. (1983)
5 B	Boron	$1s^2 \ 2s^2 \ 2p$	$^{2}P^{o}_{1/2}$	8.2980	(1970), (1974)
6 C	Carbon	$1s^2 2s^2 2p^2$	$^{3}P_{0}$	11.2603	Johansson (1966)
7 N	Nitrogen	$1s^2 2s^2 2p^3$	$4\mathrm{So}_{3/2}$	14.5341	Eriksson & Pettersson (1971)
8 O	Oxygen	$1s^2 \ 2s^2 \ 2p^4$	$^{3}P_{2}$	13.6181	Eriksson & Isberg (1968)
9 F	Fluorine	$1s^2 \ 2s^2 \ 2p^5$	$^{2}\mathrm{Po}_{3/2}$	17.4228	(1949), (1969)
10 Ne	Neon	$1s^2 \ 2s^2 \ 2p^6$	$^{1}S_{0}$	21.5645	Kaufman & Minnhagen (1972)
11 Na	Sodium	[Ne] 3s	² S _{1/2}	5.1391	(1992), (1998)
12 Mg	Magnesium	[Ne] $3s^2$	$^{1}S_{0}$	7.6462	(1987), (1991)
13 Al	Aluminum	[Ne] $3s^2 3p$	$^{2}P^{o}_{1/2}$	5.9858	(1990), (1991)
14 Si	Silicon	[Ne] $3s^2 3p^2$	$^{3}P_{0}$	8.1517	Martin & Zalubas (1983)
15 P	Phosphorus	[Ne] $3s^2 3p^3$	$^4\mathrm{So}_{3/2}$	10.4867	Svendenius (1980)
16 S	Sulfur	[Ne] $3s^2 3p^4$	$^{3}P_{2}$	10.3600	Martin et al. (1990)
17 Cl	Chlorine	[Ne] $3s^2 3p^5$	$^{2}P^{o}_{3/2}$	12.9676	Radziemski & Kaufman (1969)
18 Ar	Argon	[Ne] $3s^2 3p^6$	$^{1}S_{0}$	15.7596	Velchev et al. (1999)
19 K	Potassium	[Ar] 4s	² S _{1/2}	4.3407	(1983), (1985)
20 Ca	Calcium	[Ar] $4s^2$	$^{1}S_{0}$	6.1132	Sugar & Corliss (1985)
21 Sc	Scandium	[Ar] $3d 4s^2$	$^{2}D_{3/2}$	6.5615	Sugar & Corliss (1985)
22 Ti	Titanium	[Ar] $3d^2 4s^2$	$^{3}F_{2}$	6.8281	Sohl et al. (1990)
23 V	Vanadium	[Ar] $3d^3 4s^2$	$^{4}F_{3/2}$	6.7462	<u>James et al. (1994)</u>
24 Cr	Chromium	[Ar] $3d^{5} 4s$	$7S_3$	6.7665	Sugar & Corliss (1985)
25 Mn	Manganese	[Ar] $3d^5 4s^2$	$^{6}S_{5/2}$	7.4340	Sugar & Corliss (1985)
26 Fe	Iron	[Ar] $3d^6 4s^2$	$^5\mathrm{D}_4$	7.9024	Sugar & Corliss (1985)
27 Co	Cobalt	[Ar] $3d^7 4s^2$	$^{4}F_{9/2}$	7.8810	Page & Gudeman (1990)
28 Ni	Nickel	[Ar] $3d^{8} 4s^{2}$	$3F_4$	7.6398	Page & Gudeman (1990)
29 Cu	Copper	[Ar] $3d^{10} 4s$	$^{2}S_{1/2}$	7.7264	(1948), (1980), (1999)
30 Zn	Zinc	[Ar] $3d^{10} 4s^2$	$^{1}S_{0}$	9.3942	Brown et al. (1975)

31 Ga	Gallium	[Ar] $3d^{10} 4s^2$	4 <i>p</i>	² Po _{1/2}	5.9993	Tursunov & Eshkobilov (1985)
32 Ge	Germanium	[Ar] $3d^{10} 4s^2$	$4p^{2}$	$^{3}P_{0}$	7.8994	Sugar & Musgrove (1993)
33 As	Arsenic	[Ar] $3d^{10} 4s^2$	$4p^{3}$	$4S_{03/2}$	9.7886	Bhatia & Jones (1971)
34 Se	Selenium	[Ar] $3d^{10} 4s^2$	$4p^{4}$	$^{3}P_{2}$	9.7524	(1974), (1983)
35 Br	Bromine	[Ar] $3d^{10} 4s^2$	$4p^{5}$	² Po _{3/2}	11.8138	(1961), (1967)
36 Kr	Krypton	[Ar] $3d^{10} 4s^2$	$4p^{6}$	$^{1}S_{0}$	13.9996	Sugar & Musgrove (1991)
25. 21	D 111	FY7. 3		20		
37 Rb	Rubidium	[Kr] 5 <i>s</i>		$^{2}S_{1/2}$	4.1771	(1961), (1983)
38 Sr	Strontium	[Kr] $5s^2$		${}^{1}S_{0}$	5.6949	Rubbmark & Borgstrom (1978)
39 Y	Yttrium	[Kr] $4d 5s^2$		$^{2}D_{3/2}$	6.2173	(1973), (2000)
40 Zr	Zirconium	[Kr] $4d^2 5s^2$		$^{3}F_{2}$	6.6339	Hackett et al. (1986)
41 Nb	Niobium	[Kr] $4d^4$ 5s		$^{6}\mathrm{D}_{1/2}$	6.7589	Rayner et al. (1987)
	Molybdenum	[Kr] 4d ⁵ 5s		$^{7}S_{3}$	7.0924	Rayner et al. (1987)
43 Tc	Technetium	[Kr] $4d^5 5s^2$		$^{6}S_{5/2}$	7.28	Finkelnburg & Humbach (1955)
44 Ru	Ruthenium	[Kr] $4d^7 5s$		⁵ F ₅	7.3605	(1979), (1988)
45 Rh	Rhodium	[Kr] 4d ⁸ 5s		$^{4}\text{F}_{9/2}$	7.4589	Callender et al. (1988)
46 Pd	Palladium	[Kr] $4d^{10}$		$^{1}S_{0}$	8.3369	Callender et al. (1988)
47 Ag	Silver	[Kr] $4d^{10} 5s$		$^{2}S_{1/2}$	7.5762	(1940), (1999)
48 Cd	Cadmium	[Kr] $4d^{10} 5s^2$		$^{1}S_{0}$	8.9938	Brown et al. (1975)
49 In	Indium	[Kr] $4d^{10} 5s^2$	5 <i>p</i>	$^{2}\mathrm{Po}_{1/2}$	5.7864	Dönszelmann & Neijzen (1983)
50 Sn	Tin	[Kr] $4d^{10} 5s^2$	$5p^{2}$	$^{3}P_{0}$	7.3439	Brown et al. (1977)
51 Sb	Antimony	[Kr] $4d^{10} 5s^2$	$5p^{3}$	$4\mathrm{So}_{3/2}$	8.6084	Beigang & Wynne (1986)
52 Te	Tellurium	[Kr] $4d^{10} 5s^2$	$5p^{4}$	$^{3}P_{2}$	9.0096	Cantú et al. (1986)
53 I	Iodine	[Kr] $4d^{10} 5s^2$	$5p^{5}$	$^{2}\mathrm{Po}_{3/2}$	10.4513	Minnhagen (1962)
54 Xe	Xenon	[Kr] $4d^{10} 5s^2$	$5p^{6}$	$^{1}S_{0}$	12.1298	(1985), (2001)
	Cesium	[Xe]	6 <i>s</i>	$^{2}S_{1/2}$	3.8939	Weber & Sansonetti (1984)
	Barium	[Xe]	$6s^2$	$^{1}S_{0}$	5.2117	Post et al. (1985)
	Lanthanum	[Xe] $5d$	$6s^2$	-	5.5769	
	Cerium			$^{2}D_{3/2}$		Garton & Wilson (1966)
		[Xe] $4f 5d$	$6s^2$	$^{1}\text{Go}_{4}$	5.5387	Worden et al. (1978)
59 Pr	Praseodymium		$6s^2$	⁴ I ^o _{9/2}	5.473	Worden et al. (1978)
	Neodymium	[Xe] $4f^4$	$6s^2$	⁵ I ₄	5.5250	Worden et al. (1978)
	Promethium	[Xe] 4f ⁵	$6s^2$	⁶ Ho _{5/2}	5.582	Worden et al. (1978)
	Samarium	[Xe] 4f ⁶	$6s^2$	$^{7}\text{F}_{0}$	5.6437	T. Jaysekharan et al. (2000)
	Europium	[Xe] $4f^7$	$6s^2$	⁸ S ^o _{7/2}	5.6704	Nakhate et al. (2000)
64 Gd		[Xe] $4f^7 5d$	$6s^2$	⁹ D ^o ₂	6.1498	Miyabe et al. (1998)
65 Tb	Terbium	[Xe] $4f^9$	$6s^2$	⁶ Ho _{15/2}	5.8638	Worden et al. (1978)
-	Dysprosium	[Xe] $4f^{10}$	$6s^2$	⁵ I ₈	5.9389	Worden et al. (1978)
67 Ho	Holmium	[Xe] $4f^{11}$	$6s^2$	⁴ I ^o _{15/2}	6.0215	Worden et al. (1978)
68 Er	Erbium	[Xe] $4f^{12}$	$6s^2$	$^{3}\mathrm{H}_{6}$	6.1077	Worden et al. (1978)
	Thulium	[Xe] $4f^{13}$		$^{2}\text{Fo}_{7/2}$	6.1843	<u>Camus (1971)</u>
	Ytterbium	[Xe] $4f^{14}$		$^{1}S_{0}$	6.2542	Aymar et al. (1980)
71 Lu	Lutetium	[Xe] $4f^{14} 5d$	$6s^2$	$^{2}D_{3/2}$	5.4259	(1972), (1989)

72	Hf	Hafnium	[Xe] $4f^{14} 5d^2$	$6s^{2}$	$^{3}F_{2}$	6.8251	Callender et al. (1988)
73	Ta	Tantalum	[Xe] $4f^{14} 5d^3$	$6s^{2}$	$^{4}F_{3/2}$	7.5496	Simard et al. (1994)
74	W	Tungsten	[Xe] $4f^{14} 5d^4$	$6s^{2}$	$5D_0$	7.8640	Campbell-Miller & Simard (1996)
75	Re	Rhenium	[Xe] 4f ¹⁴ 5d ⁵	$6s^2$	$^{6}S_{5/2}$	7.8335	Campbell-Miller & Simard (1996)
76	Os	Osmium	[Xe] 4f ¹⁴ 5d ⁶	$6s^{2}$	$5D_4$	8.4382	Colarusso et al. (1997)
77	Ir	Iridium	[Xe] $4f^{14} 5d^7$	$6s^2$	$^{4}F_{9/2}$	8.9670	Colarusso et al. (1997)
78	Pt	Platinum	[Xe] $4f^{14} 5d^9$	6 <i>s</i>	$^{3}\mathrm{D}_{3}$	8.9588	(1995), (2000)
79	Au	Gold	[Xe] $4f^{14} 5d^{10}$	6s	$^{2}S_{1/2}$	9.2255	(1978), (1999)
80	Hg	Mercury	[Xe] $4f^{14} 5d^{10}$	$6s^2$	$^{1}S_{0}$	10.4375	Baig (1983)
81	Tl	Thallium	[Xe] $4f^{14} 5d^{10}$	$6s^2$ $6p$	$^{2}P^{o}_{1/2}$	6.1082	Baig & Connerade (1985)
82	Pb	Lead	[Xe] $4f^{14} 5d^{10}$	$6s^2 6p^2$		7.4167	Brown et al. (1977)
83	Bi	Bismuth	[Xe] $4f^{14} 5d^{10}$	$6s^2 6p^3$	$4\mathrm{So}_{3/2}$	7.2855	Matthews et al. (1989)
84	Po	Polonium	[Xe] $4f^{14} 5d^{10}$	$6s^2 6p^4$	$^{3}P_{2}$	8.414	<u>Charles (1966)</u>
85	At	Astatine	[Xe] $4f^{14} 5d^{10}$	$6s^2 6p^5$	$^2P^{o}_{3/2}$		
86	Rn	Radon	[Xe] $4f^{14} 5d^{10}$	$6s^2 6p^6$	$^{1}S_{0}$	10.7485	(1933), (1970)
					20		
	Fr	Francium	[Rn]	7 <i>s</i>	$^{2}S_{1/2}$	4.0727	Arnold et al. (1990)
		Radium	[Rn]	$7s^2$	${}^{1}S_{0}$	5.2784	Amstrong et al. (1980)
		Actinium		$7s^{2}$	$^{2}D_{3/2}$	5.17	<u>(1955), (1974)</u>
		Thorium		$7s^2$	$^{3}F_{2}$	6.3067	Köhler et al. (1997)
		Protactinium	[Rn] $5f^2(^3H_4)$		$(4,^{3}/_{2})_{11/2}$	5.89	<u>Sugar (1974)</u>
92		Uranium	[Rn] $5f^3(^4\text{Io}_{9/2}$		$(9/2, 3/2)^{0}$	6.1941	Coste et al. (1982)
	•	Neptunium	$[Rn] 5f^4(^5I_4) 6$		$(4,^3/_2)_{11/2}$	6.2657	(1979), (1994), (1997)
		Plutonium	[Rn] 5 <i>f</i> ⁶		$^{7}F_{0}$	6.0260	(1993), (1997)
95	Am	Americium	[Rn] $5f^7$		$8\mathrm{So}_{7/2}$	5.9738	Köhler et al. (1997)
96	Cm	Curium	[Rn] $5f^7$ 6d	$7s^{2}$	$^{9}\mathrm{D^{o}_{2}}$	5.9914	Köhler et al. (1997)
97	Bk	Berkelium	[Rn] 5f ⁹	$7s^2$	$^{6}\text{H}^{o}_{15/2}$	6.1979	Köhler et al. (1997)
98	Cf	Californium	[Rn] $5f^{10}$	$7s^{2}$	$^{5}I_{8}$	6.2817	Köhler et al. (1997)
99	Es	Einsteinium	[Rn] $5f^{11}$	$7s^{2}$	⁴ Io _{15/2}	6.42	<u>Sugar (1974)</u>
100	Fm	Fermium	[Rn] $5f^{12}$	$7s^{2}$	$^{3}\mathrm{H}_{6}$	6.50	<u>Sugar (1974)</u>
101	Md	Mendelevium	[Rn] $5f^{13}$	$7s^{2}$	$^2\mathrm{Fo}_{7/2}$	6.58	Sugar (1974)
102	No	Nobelium	[Rn] $5f^{14}$		$^{1}S_{0}$	6.65	<u>Sugar (1974)</u>
103	Lr	Lawrencium	[Rn] $5f^{14}$	$7s^2 7p$?	² Po _{1/2} ?	4.9 ?	Eliav et al. (1995)
104	Rf	Ruther for dium	[Rn] $5f^{14} 6d^2$	$7s^2$?	$^{3}F_{2}$?	6.0 ?	Eliav et al. (1995)

