# Codility\_

## **Tasks Details**

Check out Codility training tasks

Medium

#### 1. CountNonDivisible

Calculate the number of elements of an array that are not divisors of each element.

Task Score Correctness Performance
100% 100% 100%

### Task description

You are given an array A consisting of N integers.

For each number A[i] such that  $0 \le i < N$ , we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.

For example, consider integer N = 5 and array A such that:

A[0] = 3

A[1] = 1

A[2] = 2

A[3] = 3

A[4] = 6

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

## Write a function:

```
class Solution { public int[] solution(int[] A); }
```

that, given an array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.

Result array should be returned as an array of integers.

For example, given:

A[0] = 3

A[1] = 1

A[2] = 2

A[3] = 3A[4] = 6

the function should return [2, 4, 3, 2, 0], as explained above.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..2 \* N].

### Solution



```
score: 100
1
     using System;
2
     using System.Linq;
3
     using System.Collections.Generic;
4
5
6
      * 11.1 - Count Non Divisible
      */
7
8
     class Solution {
9
         public int[] solution(int[] A) {
10
11
12
             var ans = new int[A.Length];
13
14
15
              * Count the number of occurrences
16
              */
17
             var max = A.Max();
18
             var cnt = new int[max + 1];
             for(var i = 0; i < A.Length; i++)</pre>
19
                  cnt[A[i]] += 1;
20
21
22
              * Count the number of divisors
23
24
25
             for (int i = 0; i < A.Length; i++)
26
```

Copyright 2009–2022 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

```
27
                  * Calculate how many of its divisors
28
                  * are in the array
29
30
                  */
31
                  int divisors = 0;
32
                  for (int j = 1; j * j <= A[i]; j++)
33
                      if (A[i] % j == 0)
34
35
                      {
36
                          divisors += cnt[j];
                          if (A[i] / j != j)
37
                              divisors += cnt[A[i] / j];
38
39
                      }
40
41
                  st Subtract the number of divisors
42
                  * from the number of elements in the \epsilon
43
                  */
44
45
                  ans[i] = A.Length - divisors;
46
             }
47
48
             return ans;
49
         }
50
     }
```

# Analysis summary

The solution obtained perfect score.

## Analysis

| expand all                                   | Example tests                   |
|----------------------------------------------|---------------------------------|
| example     example test                     | √ OK                            |
| expand all                                   | Correctness tests               |
| extreme_simple extreme simple                | e ✓ OK                          |
| ► double two elements                        | ✓ OK                            |
| simple simple tests                          | ✓ OK                            |
| primes prime numbers                         | ✓ OK                            |
| small_random                                 | ✓ <b>OK</b> nbers, length = 100 |
| expand all                                   | Performance tests               |
| medium_random r<br>medium, random r<br>5,000 |                                 |
| large_range 1, 2,, N, length =               | ✓ <b>OK</b><br>~20,000          |

| • | large_random                                          | ✓ OK |
|---|-------------------------------------------------------|------|
|   | large, random numbers, length =                       |      |
|   | ~30,000                                               |      |
|   |                                                       |      |
| • | large_extreme                                         | ✓ OK |
| • | large_extreme<br>large, all the same values, length = | ✓ OK |