Word2vec. Задачи NLP.

Маша Шеянова, masha.shejanova@gmail.com

Эмбеддинги слов

Дистрибутивная семантика

Что мы хотим:

- формальный способ считать лексическую близость
- · глобально: научить компьютер извлекать смыслы из текста

Как делать это автоматически?

Дистрибутивная гипотеза: значения слов полностью определяются их контекстами. Слова с похожими типичными контекстами имеют схожее значение.

Как найти, насколько близки слова?

- надо найти способ превратить слова в вектора так, чтобы они отражали контекст
- найти расстояние между этими векторами одним из способов

Источник картинки.

Как сделать из слов вектора?

Итак, основная идея — **учитывать контекст**. Но как? А вот про это есть большая наука.

Самый простой-наивный метод — **счётный**. Идея: для каждого слова возьмём ближайшие в некотором окне (например, -5 +5). Сделаем такой же мешок слов, как делали для документов с *CountVectorizer*, но для контекста.

Плюсы: легко и быстро.

Минусы: для большого корпуса — очень большие вектора.

Пример таблички с контекстами

По итогу у овощей будут контексты, похожие друг на друга, а у животных — друг на друга.

	редис	картошка	кот	 собака
редис		5	1	0
картошка	5	-	0	1
кот	1	0	:#::	6
- 100				
собака	0	1	6	-

Как устроена нейросеть

нейросеть как направленный граф

На входе — вектор признаков.

На каждой стрелочке — какие-то коэффициенты.

На выходе — вектор вероятностей того или иного класса.

"Нейрон" == один кружочек == функция от выдачи предыдущего слоя.

Нейросеть как функция

Нейросеть как функция

х — входные данные (признаки); W — веса

Output layer

$$h_1 = f_1(W_1 * x + b_1)$$

$$h_2 = f_2(W_2 * h_1 + b_2)$$

$$y_pred = f_3(W_3 * h_2 + b_3)$$

$$y_pred = f_3(W_3 * f_2(W_2 * h_1 + b_2) + b_3)$$

loss =
$$((y_pred - y_true)^2)$$
.mean()

Hidden layer

Word2vec

Word2vec

В двух словах, Word2Vec — это метод строить гораздо более компактные эмбеддинги с помощью нейросетей.

Методы:

- CBOW (Common Bag Of Words)
- skipgram

CBOW (common bag of words)

Источник картинки

Метод CBOW пытается **предсказать слово по его контексту**. Он берёт каждое слово из контекста слова *у* и пытается по нему предсказать слово *у*.

Здесь, каждый х и каждый у — one-hot вектора, где нули везде, кроме позиции, отвечающей за слово.

A *h* — внутренний слой такой ширины, как мы захотим.

Откуда берутся эмбеддинги

- на картинке однослойная нейросеть, как word2vec
- веса на стрелочках обучаются (градиентным спуском) так, чтобы слова из контекста хорошо предсказывались
- каждое слово one-hot вектор (везд нули, кроме позиции слова)
- а значит, информацию о контексте слова номер k хранят все веса на стрелочках, выходящих из узла x_k

skipgram

skipgram, в отличие от CBOW, пытается предсказывать контекст по слову.

- Skip Gram хорошо работает с маленьким объёмом данных и лучше представляет редкие слова
- **CBOW** работает быстрее и **лучше** представляет наиболее частые слова

Fasttext

Fasttext — почтиии то же самое, что и word2vec, но работает на уровне меньше, чем слово.

Идея такая: разбиваем каждое слово на *символьные нграммы*. Например, так: **apple → app**, **ppl**, **ple**

Обучаем нейросетку так, чтобы получить эмбеддинги этих кусочков. Финальный эмбеддинг слова — сумма эмбеддингов его кусочков.

В чём профит? Умеем представлять даже слова, которых не было в корпусе!

Главное достоинство word2vec

Так как мы можем регулировать ширину внутреннего слоя:

- мы можем "ужать" информацию о контексте слова до его размера,
 эффективно используя память
- мы можем выбирать силу сжатия
- модели, обученные на больших корпусах не будут весить сильно больше

Проблемы word2vec

Невозможно установить тип семантических отношений между словами: синонимы, антонимы и т.д. будут одинаково близки, потому что обычно употребляются в схожих контекстах (например, слова **хороший** и **плохой**).

Поэтому близкие в векторном пространстве слова называют семантическими **ассоциатами**. Это значит, что они семантически связаны, но как именно — непонятно.

Rusvectores, word2vec для русского

Ha rusvectores можно найти слова, наиболее близкие к данному, построить семантическую пропорцию и многое другое.

Где взять готовые эмбеддинги

Я рассказала, как обучить свои эмбеддинги. Но это долго, заморочно и не всегда нужно. Есть ли уже обученные эмбеддинги? Конечно!

Rusvectores! (для русских слов)

Задачи NLP в MO

О чём уже говорили

Класификация текста:

- spam detection
- жанры
- sentiment analysis (тональность)
- предсказание темы

Кластеризация текстов:

- новости
- topic modelling

Что ещё?

- на уровне текстов
- на уровне предложений
- на уровне слов
- speech, OCR, image captioning

Предложения

- Paraphrase
- Textual entailment
- QA systems
- machine translation

Слова

- POS-tagging
- named entity recognition

О ДЗ 2

Домашнее задание: классификация отзывов

Данные: отзывы на фильмы.

Что сделать:

- З балла считать датасет, обучить на нём любой из описанных сегодня классификаторов, измерить качество
- 3 балла перебрать как минимум 3 классификатора, найти лучший
- 2 балла (*) попробовать разные гиперпараметры, найти лучший
- бонусный 1 балл за понятный и чистый код :)

Дедлайн: следующий четверг

Ресурсы

Почитать

- про word2vec по-русски
- Introduction to Word Embedding and Word2Vec
- Word2Vec and FastText Word Embedding with Gensim
- word2vec tutorial на kaggle