1 Дискретни случайни величини и неравенство на Чебишев

Нека n, M и N са естествени числа, $\max(n, M) \leq N$, и $(\Omega, \mathfrak{A}, \mathbf{P})$ е вероятностното пространство на експеримент \mathcal{E} .

Дефиниция 1.1. Ще казваме, че случайната величина X е хипергеометрично разпределена с параметри $n,\ M$ и N, което ще записваме чрез $X\in HG(n,M,N),$ ако $X(\Omega)=\{0,1,\ldots,\min(n,M)\}$ и тегловата функция на X има вида $k\longmapsto \frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}},$ за $k=0,1,\ldots,\min(n,M).$

Една възможна интерпретация на хипергеометрично разпределена случайна величина с параметри $n,\ M$ и $N,\$ дава следната схема: дадени са N обекта, като точно M от тях имат фиксирано свойство P. Избираме произволни n обекта измежду дадените N. Вероятността на събитието "точно k измежду избраните n да имат свойство P" - се дава чрез функцията

$$k \longmapsto \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}.$$

Дефиниция 1.2. Ще казваме, че случайната величина X е геометрично разпределена с параметър $p \in (0,1)$, което ще записваме чрез $X \in G(p)$, ако $X(\Omega) = \{1,2\dots,\}$ или $X(\Omega) = \{0,1,\dots,\}$ и тегловата функция на X има съответно вида $k \longmapsto (1-p)^{k-1}p$ и $k \longmapsto (1-p)^kp$, $k=0,1,\dots$

Интерпретация на геометрично разпределена случайна величина с параметър p, дава биномна схема с параметри (∞, p) , като вероятността на събитието "първия успех настъпва на k-тия опит" е равна на $(1-p)^{k-1}p$. Аналогично, вероятността на събитието "k неуспеха (брой неуспехи) до първи успех" е равна на $(1-p)^kp$.

Пример 1.3. *Нека* $X \in G(p)$ *е с теглова функция:*

a)
$$k \mapsto (1-p)^k p, \ k = 0, 1, ...;$$

6)
$$k \longmapsto (1-p)^{k-1}p, \ k=1,2,...$$

Да се докаже, че $\mathbf{E}X = \frac{1-p}{p}$, $\mathbf{D}X = \frac{1-p}{p^2}$ за подточка а); $\mathbf{E}X = \frac{1}{p}$, $\mathbf{D}X = \frac{1-p}{p^2}$ за подточка б).

Пример 1.4. (Многомерно хипергеометрично разпределение): Нека $n, k, m_1, m_2, \ldots, m_k, N$ са естествени числа. Дадени са N обекта, като точно m_1 от тях имат свойство P_1 , точно m_2 от тях имат свойство $P_2, \ldots,$ точно m_k от тях имат свойство P_k , като $m_1 + \cdots + m_k = N$ и всеки обект има точно едно свойство. Избираме произволни n обекта измежду дадените N. Вероятността на събитието - точно s_1 измежду избраните n имат свойство P_1 , точно s_2 имат свойство $P_2, \ldots,$ точно s_k имат свойство P_k , като $s_1 + \cdots + s_k = n$ - e равна на

$$\frac{\binom{m_1}{s_1}\binom{m_2}{s_2}\cdots\binom{m_k}{s_k}}{\binom{N}{n}}.$$

Дефиниция 1.5. Ще казваме, че случайната величина X е Поасоново разпределена с параметър $\lambda \in \mathbb{R}^+$, което ще записваме чрез $X \in Po(\lambda)$, ако $X(\Omega) = \{0, 1, \ldots, \}$ и тегловата функция на X има вида $k \longmapsto \frac{e^{-\lambda}\lambda^k}{k!}$, $k = 0, 1, \ldots$

Интерпретация на Поасоново разпределена случайна величина с параметър λ ще дадем, когато разгледаме непрекъснати случайни величини, конкретно - експоненциално разпределена случайна величина с параметър λ , и стохастични процеси - поасонов процес. Поасоново разпределение $Po(\lambda)$ се използва в случаите, когато за дадено събитие A е известено

- \bullet средният брой настъпванията на A, за всеки единичен времеви интервал е константа $(=\lambda)$
- \bullet всяко настъпване на A е независимо от предходните, тоест предисторията на процеса не влияе на текущото му състояние

В този случай, вероятността събитието A да настъпи точно k пъти за единица време е $\frac{e^{-\lambda}\lambda^k}{k!}$.

Нека $(\Omega, \mathfrak{A}, \mathbf{P})$ е вероятностно пространство на експеримента \mathcal{E} и $X: \Omega \to \mathbb{R}, Y: \Omega \to \mathbb{R}$ са дискретни случайни величини.

Теорема 1.6. Сума на краен брой дискретни случайни величини върху Ω е дискретна случайна величина. Произведените на краен брой дискретни случайни величини е дискретна случайна величина. Произведение на дискретна случайна величина с реално число също е дискретна случайна величина величина. По-общо, ако $g: \mathbb{R} \to \mathbb{R}$ е "произволна" (Борелова) функция, то $g \circ X$ е дискретна случайна величина.

Директно следствие от теорема 1.6 е, че множеството от дискретните случайни величини върху Ω снабдено с операциите сума и произведение е алгебра , в частност - линейно пространство над \mathbb{R} . Нека $X:\Omega\to\mathbb{R}$ е дискретна случайна величина със средно EX. Изображението $I:\Omega\to\{1\},\ \omega\longmapsto 1$ е дискретна случайна величина, тогава rI също е дискретна случайна величина за всяко $r\in\mathbb{R}$. Така X-(EX)I е дискретна случайна величина, която ще записваме чрез X-EX. Ако съществува числото $E((X-EX)^2)$, то се нарича вариация на X и се означава с DX. Понеже математическото очакване E е линеен функционал (теорема 1.7) върху линейното пространство на случайните величини, то $DX=E((X-EX)^2)=E(X^2-2XEX+(EX)^2)=E(X^2)$

Да означим със $\mathfrak{S}(\Omega, \mathfrak{A}, P)$ алгебрата на дискретните случайни величини върху $(\Omega, \mathfrak{A}, P)$.

Теорема 1.7. Средната стойност E е линеен функционал върху $\mathfrak{S}(\Omega, \mathfrak{A}, P)$, тоест E(X+Y)=EX+EY и E(rX)=rEX за произволни $X,Y\in \mathfrak{S}(\Omega, \mathfrak{A}, P)$ и $r\in \mathbb{R}$. Означение: $E\in \mathsf{Hom}(\mathfrak{S}(\Omega, \mathfrak{A}, P), \mathbb{R})$.

Дефиниция 1.8. Дискретните случайни величини X_k , $k=1,2,\ldots,n$ са наричат независими, ако за всяко $l=2,\ldots,n$ и всеки $x_1,\ldots,x_n\in\mathbb{R}$ е в сила $P(X_{k_1}=x_1,\ldots,X_{k_l}=x_l)=P(X_{k_1}=x_1)\times\cdots\times P(X_{k_l}=x_l)$, при всеки k_1,\ldots,k_l такива, че $1\leq k_1<\ldots< k_l\leq n$.

Теорема 1.9. Нека X_k , $k=1,2,\ldots,n$ са независими дискретни случайни величини със средни стойности съответно равни на EX_k . Ако съществува средното $E(X_1X_2\cdots X_n)$, то $E(X_1X_2\cdots X_n)=EX_1EX_2\cdots EX_n$.

Теорема 1.10. Нека X_k , k = 1, 2, ..., n са независими дискретни случайни величини с вариации съответно равни на DX_k . Ако съществува вариацията $D(X_1 + \cdots + X_n)$, то $D(X_1 + \cdots + X_n) = DX_1 + \cdots + DX_n$.

Доказателство: Индукция: при n=2 получаваме $D(X_1+X_2)=E((X_1+X_2)^2)-(E(X_1+X_2))^2=EX_1^2+EX_2^2+2EX_1X_2-(EX_1)^2-(EX_2)^2-2EX_1EX_2=DX_1+DX_2+2EX_1X_2-2EX_1EX_2=DX_1+DX_2$, поради равенството $EX_1X_2=EX_1EX_2$, което следва от теорема 1.9. Нека предположим, че твърдението е вярно за n-1 и да разгледаме случая на n независими величини. Имаме $D(X_1+\cdots+X_{n-1}+X_n)=D((X_1+\cdots+X_{n-1})+X_n)=D(X_1+\cdots+X_{n-1})+D(X_n)=DX_1+\cdots+DX_{n-1}+DX_n$.

Теорема 1.11. Нека X е дискретна случайна величина и $g: \mathbb{R} \to \mathbb{R}$ е Борелова функция. Ако съществува средното $E(g \circ X)$, то е в сила равенството $E(g \circ X) = \sum_{x \in X(\Omega)} g(x) P(X = x)$.

Теорема 1.12. Нека X е дискретна случайна величина със средна стойност и вариация съответно равни на EX и DX. Тогава за всяко $\alpha > 0$ е в сила $P(|X - EX| \ge \alpha) \le \frac{DX}{\alpha^2}$.

Доказателство:

$$DX = E((X - EX)^2) = \sum_{x \in X(\Omega)} (x - EX)^2 P(X = x) \ge \sum_{|x - EX| \ge \alpha} (x - EX)^2 P(X = x)$$

$$\ge \sum_{|x - EX| \ge \alpha} \alpha^2 P(X = x) = \alpha^2 \sum_{|x - EX| \ge \alpha} P(X = x) = \alpha^2 P(\bigcup_{|x - EX| \ge \alpha} \{X = x\})$$

$$= \alpha^2 P(|X - EX| \ge \alpha) \iff P(|X - EX| \ge \alpha) \le \frac{DX}{\alpha^2}.$$

1.1 Условия на задачите от упражнение 8

Задача 1 Хвърлят се два зара. Нека случайната величина X е сумата от падналите се точки. Да се намери разпределението, очакването и дисперсията на X, ако заровете са:

- а) правилни;
- б) неправилни с P(1) = P(6) = 1/4, P(2) = P(3) = P(4) = P(5) = 1/8.

Ще бъде ли необичайно, ако при хвърлянето на 1000 зара сумата е била повече от 3700?

Задача 2 От урна съдържаща 5 бели и 3 черни топки се избират последователно, една по една топки докато се появи бяла. Да се намери разпределението на случайната величина - "брой на изтеглените черни топки" и да се пресметне математическото очакване и дисперсията и, при извадка:

- а) без връщане;
- б) с връщане.

Опитът се повтаря 1000 пъти. Да се оцени вероятността да са извадени повече от 900 черни топки.

Задача 3 Вероятността за улучване на цел при един изстрел е 0,001. За поразяване на са необходими поне две попадения. Каква е вероятността за поразяване на целта, ако са направени

5000 изстрела?

Задача 4 В кутия има 7 лампи от които 3 са дефектни. По случаен начин се избират за проверка 4 лампи. Да се намери разпределението на случайната величина "брой на изпробваните качествени лампи" и да се пресметне нейното очакване.

Задача 5 В Патагония на месец се регистрират средно две слаби земетресения. Каква е вероятността за три месеца да има по-малко от четири слаби земетресения?

1.2 Решения на задачите от упражнение 8

Задача 1 Нека $X_i,\ i=1,2$ са случайните величини - брой точки паднали се на i-тия зар.

а) Тегловата функция на
$$X=X_1+X_2$$
 е $P(X=k)=\left\{ egin{array}{ccc} \frac{k-1}{36} & \mbox{за} & 2\leq k\leq 7; \\ \frac{13-k}{36} & \mbox{за} & 8\leq k\leq 12. \end{array} \right.$

$$EX = \sum_{k=2}^{12} k P(X=k) = \sum_{k=2}^{7} rac{k(k-1)}{36} + \sum_{k=8}^{13} rac{k(13-k)}{36} = 7$$
. Имаме $EX_1 = EX_2 = rac{\sum_{k=1}^6 k}{6} = 3.5$ От $X = X_1 + X_2$ и по теорема 1.7 получаваме $EX = E(X_1 + X_2) = EX_1 + EX_2 = 7$. Понеже X_1 и X_2 са независими и $DX_1 = DX_2 = rac{\sum_{k=1}^6 k^2}{6} - 3.5^2 = rac{35}{12}$, то $DX = D(X_1 + X_2) = DX_1 + DX_2 = 2DX_1 = rac{35}{6}$.

b) Означаваме $p_k = P(X = k), \ k = 2, 3, \dots, 12$. Тогава за разпределението на X получаваме:

$$p_k = p_{14-k}, \quad p_2 = p_3 = \frac{1}{16}, \quad p_4 = \frac{5}{64}, \quad p_5 = \frac{3}{32}, \quad p_6 = \frac{7}{64}, \quad p_7 = \frac{3}{16}.$$

$$EX_1=EX_2=rac{1+6}{4}+rac{2+3+4+5}{8}=rac{7}{2}$$
 и $DX_1=DX_2=rac{1^2+6^2}{4}+rac{2^2+3^2+4^2+5^2}{8}-3.5^2=rac{15}{4},$ следователно $EX=7$ и $DX=7.5$

Нека $X,\ X_i,\ i=1,2,\dots 1000$ са случайните величини - сума на падналите се точки при 1 хвърляне на 1000 зара; брой точки паднали се на i-тия зар . Тогава $X=\sum_{k=1}^{1000}X_k$ и $EX_1=\dots=EX_{1000}=3.5$ откъдето $EX=E\left(\sum_{k=1}^{1000}X_k\right)=\sum_{k=1}^{1000}EX_k=1000EX_1=3500$. Понеже $X_i,\ i=1,2,\dots 1000$ са независими и $DX_1=\dots=DX_{1000}=\frac{35}{12}$ за а) и $DX_1=\dots=DX_{1000}=\frac{15}{4}$ за b), то $DX=D\left(\sum_{k=1}^{1000}X_k\right)=\sum_{k=1}^{1000}DX_k=1000DX_1=\left\{\begin{array}{c}2916.6&\text{за a});\\3750&\text{за b}).\end{array}\right.$ Прилагаме неравенството на Чебишев $P(|X-EX|\geq k)\leq\frac{DX}{k^2}$ за $k=201:\ P(X>3700)\leq$

Прилагаме неравенството на Чебишев $P(|X-EX| \ge k) \le \frac{DX}{k^2}$ за k=201 : $P(X>3700) \le P(|X-EX| \ge 201) \le \frac{DX}{201^2} = \begin{cases} 0.07 & \text{за a}; \\ 0.09 & \text{зa b}, \end{cases}$

което означава, че е събитито $\{X>3700\}$ е малко вероятно.

 ${f 3}$ адача ${f 2}$ Нека X е случайната величина - брой изтеглени черни топки.

- а) Тегловата функция $k \longmapsto p_k$ на X е : $p_0 = \frac{5}{8}$, $p_1 = \frac{3}{8} \times \frac{5}{7}$, $p_2 = \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$, $p_3 = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$. Тогава $EX = \sum_{k=0}^3 k p_k = 1 \times \frac{3}{8} \times \frac{5}{7} + 2 \times \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} + 3 \times \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{2}$ и $DX = EX^2 (EX)^2 = \sum_{k=0}^3 k^2 p_k \frac{1}{4} = \frac{15}{28}$. Во случая $X \in \text{Ge}(\frac{5}{8})$ с теглова функция $k \longmapsto (1 \frac{5}{8})^k \frac{5}{8}$. По-общо, ако $X \in \text{Ge}(p)$, то $EX = \sum_{k=0}^3 k^2 p_k + \frac{1}{4} = \frac{15}{28}$.
- b) В случая $X \in \operatorname{Ge}(\frac{5}{8})$ с теглова функция $k \longmapsto (1 \frac{5}{8})^k \frac{5}{8}$. По-общо, ако $X \in \operatorname{Ge}(p)$, то $\operatorname{E} X = \sum_{k=0}^{\infty} kq^k p = pq \sum_{k=1}^{\infty} kq^{k-1} = pq \frac{d}{dx} \left(\sum_{k=1}^{\infty} x^k\right)|_{x=q} = pq \frac{d}{dx} \left(\frac{x}{1-x}\right)|_{x=q} = pq \left(\frac{1}{(1-x)^2}\right)|_{x=q} = \frac{q}{p} = \frac{1-p}{p}$ и $\operatorname{D} X = \sum_{k=0}^{\infty} k^2 q^k p \sum_{k=0}^{\infty} kq^k p = pq^2 \left(\sum_{k=1}^{\infty} k(k-1)q^{k-2} + \frac{1}{q} \sum_{k=1}^{\infty} kq^{k-1}\right) \frac{q^2}{p^2} = \frac{1-p}{p}$

 $pq^2\left(\frac{d^2}{dx^2}(\sum_{k=1}^{\infty}x^k)|_{x=q}+\frac{1}{q}\frac{d}{dx}(\sum_{k=1}^{\infty}x^k)|_{x=q}\right)-\frac{q^2}{p^2}=\frac{1-p}{p^2}$. Следователно Е $X=\frac{q}{p}=\frac{3}{5}$, D $X=\frac{1-p}{2}$

 $\frac{1-p}{p^2}=\frac{24}{25}$. Нека $X,~X_i,~i=1,2,\dots 1000$ са случайните величини - брой изтеглени черни топки при 1000независими опита; брой изтеглени черни топки при i-тия опит. Тогава $X=\sum_{i=1}^{1000} X_i$

$$EX = 1000EX_1 = \begin{cases} 500 & \text{3a a} \\ 600 & \text{3a b} \end{cases}$$
$$DX = 1000DX_1 = \begin{cases} 535.7 & \text{3a a} \\ 960 & \text{3a b} \end{cases}$$

Прилагаме неравенството на Чебишев
$$P(X>900) \leq P(|X-EX| \geq 400) \leq \frac{DX}{400^2} = \frac{535.7}{400^2} = 0.003 \text{ за a}),$$

$$P(X>900) \leq P(|X-EX| \geq 300) \leq \frac{DX}{300^2} = \frac{960}{300^2} = 0.01 \text{ за b}).$$

Задача 3 Нека $X\in \mathrm{Bi}(5000,\ \frac{1}{1000}),$ то търсената вероятност е $P=P(X\geq 2)=1-P(X<2)=1-P(\{X=0\}\cup\{X=1\})=1-P(X=0)-P(X=1)=1-(1-\frac{1}{1000})^{5000}-\binom{5000}{1}\frac{1}{1000}\times(1-\frac{1}{1000})^{4999}\approx 1-e^{-5}-5e^{-5}=1-6e^{-5}\approx 0.959$

Задача 4 Нека X е случайната величина - брой изпробвани качествени лампи. Тогава $X \in$ HG(n,M,N), където $n=M=4,\ N=7$, тоест X е с хипегеометрично разпределение и теглова функция $k\longmapsto p_k=rac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}},\ k=0,1,\ldots,\min(n,M)$. Пресмятаме $\mathbf{E}X=\ldots=rac{nM}{N}$ и в частност при n = M = 4, N = 7 имаме $EX = \frac{16}{7}$

Задача 5 Нека $X_i, i=1,2,3$ са случайните величини - брой земетресения за i-тия месец. По условие $X_i \in \text{Po}(2)$ са независими. Търсим вероятността $P(X_1 + X_2 + X_3 < 4)$. Ще докажем, че ако $Y_j \in Po(\lambda_j), \ j=1,\dots,n$ са независими, то случайната величина $Y=\sum_{j=1}^n Y_j$ е поасоново разпределена с параметър $\sum_{j=1}^n \lambda_j$. При n=2 имаме $P(Y_1+Y_2=k)=P(\cup_{j=0}^k \{Y_1=k\})$ $j, \ Y_2 = k - j\}) = \sum_{j=0}^k P(\{Y_1 = j, \ Y_2 = k - j\}) = \sum_{j=0}^k P(\{Y_1 = j\} \cap \{Y_2 = k - j\}) = \sum_{j=0}^k P(\{Y_1 = j\} \cap \{Y_2 = k - j\}) = \sum_{j=0}^k P(Y_1 = j) P(Y_2 = k - j) = \sum_{j=0}^k \frac{e^{-(\lambda_1 + \lambda_2)} \lambda_1^j \lambda_2^{k-j}}{j!(k-j)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} \times \lambda_1^j \lambda_2^{k-j} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{j=0}^k \binom{n}{j} \lambda_1^j \lambda_2^{k-j} = \frac{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^k}{k!} \dots \text{ (е базата на индукцията)} \dots - ще го докажем}$ чрез пораждащи функции на упражнение 8

В частност
$$X=X_1+X_2+X_3\in Po(6)$$
 и $P(X<4)=\sum_{k=0}^3\frac{e^{-6}6^k}{k!}=61e^{-6}\approx 0.1512$