Notes on Boosting

Shasha Liao Georgia Tech

November 3, 2020

Rationale: Combination of methods

General machine learning tasks, there is no algorithm that is always the most accurate. "Can a set of weak learners create a single strong learner?" - Kearns and Valiant (1988, 1989)

1 Two main approaches

- Boosting
 - Run weak learner on weighted example set
 - Combine weak learners linearly
 - Require knowledge on the performance of weak learner
- Bagging
 - Run weak learners on bootstrap replicates of the training set
 - Average weak learners
 - Reduces variance

2 Boosting

Boosting: general methods of converting weak learners into a more powerful one

- Each learner is independent on the previous one and focuses on the previous one's errors
- Data that are incorrectly predicted in the previous rounds are weighted more heavily when deciding a new learner.

Questions:

- How to adjust weights for data?
- How to combine learners?

Boosting Setup

- Given a set of base classifiers $\{h_1, h_2, ...\}, h_i : X \to \{1, -1\}.$
- Training data:

$$(x^{i}, y^{i}), i = 1, ..., m, x^{i} \in X \text{ and } y^{i} \in \{1, -1\}$$

- Construct:
 - a sequence of distributions (weights on data sum up to 1) D(i), i = 1, ..., m.
 - a sequence $\{\alpha_k\}$ of nonnegative weights of base classifiers
 - final classifier performs significantly better than any base classifier

AdaBoost:

- Adaptive in the sense that subsequent weak learners are adjusted in favor of those instances misclassified by previous classifiers
- Distribution and weights are adjusted adaptively.

There are many variant of AdaBoost. Here is a basic one:

- 1. Construct D_t : t = 1, ..., T, where T is the number of iterations for updating distribution and weights.
- 2. Initialize $D_1(i)$ for i = 1, 2, ..., m.
- 3. Given D_t and weak learner h_t : Compute weighted misclassification rate:

$$\epsilon_t = \sum_{i=1}^m D_t(i) \mathbb{I}\{y^i \neq h_t(x^i)\}$$

Compute weight for h_t :

$$\alpha_t = \frac{1}{2} \ln(\frac{1 - \epsilon_t}{\epsilon_t})$$

4. Update weights for data:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{-\alpha_t y^i h_t(x^i)} = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if} \\ e^{\alpha_t} & \text{otherwise.} \end{cases} y^i = h_t(x^i)$$

Here $Z_t = \text{normalizing constant}$. $Z_t = \sum_{i=1}^m D_t(i)e^{-\alpha_t y^i h_t(x^i)}$.

5. Final classifier:

$$H(x) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(x)).$$

Note that large ϵ_t gives small weight α_t and when $\epsilon_t > 0.5$, $\alpha_t < 0$ and the points classified correctly by h_t will have a higher weight in the next round. When $\epsilon_t < 0.5$, $\alpha_t > 0$ and the points classified incorrectly by h_t will have a higher weight in the next round. Check a toy example in the slides for better understanding.

Question: How are the weak learners h_t chosen? How are the updating rules in step 3 and 4 decided?

• Combined classifier:

$$f_t(x) = \alpha_1 h_1(x; \theta_1) + \dots + \alpha_t h_t(x; \theta_t)$$

• Exponential Loss:

$$\hat{L}(f_t) = \frac{1}{m} \sum_{i=1}^m \exp(-y^i f_t(x^i)) = \frac{1}{m} \prod_{s=1}^t Z_s \sum_{i=1}^m D_t(i) e^{-\alpha_t y^i h_t(x^i; \theta_t)}.$$

- We find h_t by finding θ_t that minimizes $\hat{L}(f_t)$, which also approximately minimizes ϵ_t .
- We find α_t by setting

$$\frac{\partial \hat{L}}{\partial \alpha_t} = 0,$$

which gives the updating rule in step 3.

• Why do we update D_t the way in step 4?

See more detailed steps in the slides.

3 Extensions

- There are many other more recent algorithms such as: LPBoost, TotalBoost, BrownBoost, XGBoost, MadaBoost, LogitBoost
- Generalization: **Gradient boosting** is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically **decision trees**; allowing optimization of an arbitrary differentiable loss function.