RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN INSTITUT FÜR MATHEMATIK

nach Vorlesungen im Wintersemester 2002/2003 an der Universität Bonn und in den Wintersemestern 2007/2008, 2009/2010, 2011/2012, 2017/2018 an der RWTH Aachen

Variationsrechnung I

Prof. Dr. Heiko von der Mosel

Letzte Änderung: 7. Februar 2018

© Copyright 2002–2003, 2007-2008, 2009-2010, 2011-2012, 2017-2018 Prof. Dr. H. von der Mosel

Korrekturen bitte an heiko@instmath.rwth-aachen.de

Erstellt und ausgearbeitet im WS02-03 von:

Nils Carqueville Kai Kaminski Felix Plöger Allan Zulficar

Bearbeitet im WS02-03 von:

Philipp Reiter

Überarbeitet in den Wintersemestern 07-08, 09-10, 11-12, 17-18 von:

Heiko von der Mosel

Dank an die Hörer der Vorlesungen in Bonn und Aachen für zahlreiche Hinweise und Korrekturvorschläge. Mein spezieller Dank geht an die Herren Ulrich Menne, Henryk Gerlach, Michael Dahmen, Tobias Hermes und Matthias Schlottbom, sowie an Anne Faber, Angela Klewinghaus, Nicola Rieke, Andreas Platen, Felix Voigtländer und Alexandra Gilsbach.

Inhaltsverzeichnis

1	Indirekte Methoden: Variationsgleichungen	1
	1.1 Erste Variation, Euler-Lagrange-Gleichungen	1
	1.2 Innere Variation, NOETHER-Gleichungen	12
	1.3 Variationsprobleme mit Nebenbedingungen, Lagrange-Multiplikatorregel .	19
	1.4 Hamiltonsche Gleichungen	31
2	Sobolevräume	45
3	Direkte Methoden: Unterhalbstetigkeit und Existenztheorie	7 3
4	Regularitätstheorie und Singularitäten	7 5
5	Anwendungen	77
\mathbf{A}	Resultate aus der Funktionalanalysis	7 9
	Index	I

Kapitel 1

Indirekte Methoden: Variationsgleichungen

1.1 Erste Variation, Euler-Lagrange-Gleichungen

Wir betrachten Variationsintegrale der Form

$$\mathcal{F}(u) := \int_{I} F(x, u(x), u'(x)) \, \mathrm{d}x. \tag{1.1}$$

Dabei sei $I=(a,b)\subset\mathbb{R},\ -\infty< a< b<\infty,\ u\in C^1(\overline{I},\mathbb{R}^N)$ und $F=F(x,z,p)\in C^1(\mathbb{R}\times\mathbb{R}^N\times\mathbb{R}^N)$ mit $N\in\mathbb{N}.$ Wir nennen F eine Lagrange-Funktion.

Sei $U \subset \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ eine offene Umgebung von $G := \{(x, u(x), u'(x)) : x \in \overline{I}\}$. Diese Menge G wird als 1-Graph der Funktion u bezeichnet. Es reicht oft, wenn $F \in C^1(U)$.

Wenn nun $F \in C^1(\overline{U})$ und $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann ist $\mathcal{F}(v)$ wohldefiniert für alle $v \in C^1(\overline{I}, \mathbb{R}^N)$ mit $\|u - v\|_{C^1(\overline{I}, \mathbb{R}^N)} \ll 1$. Genauer gesagt, es existiert eine Zahl $\delta = \delta(u, U)$ abhängig von der Funktion u und der Umgebung U des 1-Graphen von u, so dass $\mathcal{F}(v)$ wohldefiniert und endlich ist für alle $v \in C^1(\overline{I}, \mathbb{R}^N)$ mit $\|u - v\|_{C^1(\overline{I}, \mathbb{R}^N)} < \delta$. Die Norm $\|v\|_{C^k(\overline{I}, \mathbb{R}^N)}$ für ein $k \in \mathbb{N}$ ist dabei folgendermaßsen definiert:

$$||v||_{C^{k}(\overline{I},\mathbb{R}^{N})} := ||v||_{C^{0}(\overline{I},\mathbb{R}^{N})} + ||v'||_{C^{0}(\overline{I},\mathbb{R}^{N})} + \dots + ||v^{(k)}||_{C^{0}(\overline{I},\mathbb{R}^{N})}$$

und

$$||v||_{C^0(\overline{I},\mathbb{R}^N)} := \sup_{x \in \overline{I}} |v(x)|.$$

Folglich ist auch $\mathcal{F}(u+\varepsilon\varphi)$ wohldefiniert für $\varphi\in C^1(\overline{I},\mathbb{R}^N)$ und alle $|\varepsilon|\ll 1$. Für ein hinreichend klein gewähltes $\varepsilon_0=\varepsilon_0(\varphi)>0$ und $|\varepsilon|\leq \varepsilon_0(\varphi)$ hat $u+\varepsilon\varphi$ nämlich einen 1-Graphen, der vollständig in U liegt.

Betrachten wir nun den Fall, dass u das Funktional $\mathcal F$ lokal minimiert, d.h, wir nehmen an, dass

$$\mathcal{F}(u) \leq \mathcal{F}(v)$$
 für alle $v \in C^1(\overline{I}, \mathbb{R}^N)$ mit $||u - v||_{C^1(\overline{I}, \mathbb{R}^N)} \ll 1$.

Dann ist auch $\mathcal{F}(u) \leq \mathcal{F}(u + \varepsilon \varphi)$ für gegebenes $\varphi \in C^1(\overline{I}, \mathbb{R}^N)$ und alle $|\varepsilon| \leq \varepsilon_0 \ll 1$. Definiert man nun die Funktion $\Phi : (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}$ durch

$$\Phi(\varepsilon) := \mathcal{F}(u + \varepsilon \varphi),$$

erhält man

$$\Phi(0) \le \Phi(\varepsilon) \text{ für alle } \varepsilon \in (-\varepsilon_0, +\varepsilon_0).$$
(1.2)

Nun ist die Funktion Φ aber differenzierbar (siehe z.B. [3]), wenn $u, \varphi \in C^1(\overline{I}, \mathbb{R}^N)$, und es folgt aus (1.2)

$$0 = \Phi'(0)$$

$$= \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \Big|_{\varepsilon=0} \left(\int_{I} F(x, u(x) + \varepsilon \varphi(x), u'(x) + \varepsilon \varphi'(x)) \, \mathrm{d}x \right)$$

$$= \int_{I} \left(F_{z}(x, u(x), u'(x)) \cdot \varphi(x) + F_{p}(x, u(x), u'(x)) \cdot \varphi'(x) \right) \mathrm{d}x.$$

Definition 1.1 [ERSTE (ÄUSSERE) VARIATION]

 $\delta \mathcal{F}(u,\varphi) := \Phi'(0)$ heißt die erste (äußere) Variation von \mathcal{F} an der Stelle u in Richtung φ .

Bemerkung:

Auch wenn $\Phi'(0)$ unter schwächeren Voraussetzungen an F, u und φ existiert, nennen wir diesen Ausdruck zukünftig erste (äußere) Variation.

Das Funktional $\delta \mathcal{F}(u,\cdot):C^1(\overline{I},\mathbb{R}^N)\to\mathbb{R}$ ist linear und stetig, es genügt folgender Abschätzung:

$$|\delta \mathcal{F}(u,\varphi)| \leq c(F,u) \|\varphi\|_{C^1(\overline{I},\mathbb{R}^N)}.$$

Definition 1.2 [SCHWACHER KRITISCHER PUNKT]

Sei $F \in C^1(I \times \mathbb{R}^N \times \mathbb{R}^N)$. Eine Funktion $u \in C^1(I, \mathbb{R}^N)$ mit

$$\int_{I} \left(F_z(x, u(x), u'(x)) \cdot \varphi(x) + F_p(x, u(x), u'(x)) \cdot \varphi'(x) \right) dx = 0$$
(1.3)

für alle $\varphi \in C_0^\infty(I, \mathbb{R}^N)$ heißt schwacher kritischer Punkt von \mathcal{F} oder kurz: schwach \mathcal{F} -kritisch. Hierbei bezeichnet $C_0^\infty(I, \mathbb{R}^N)$ die Klasse der unendlich oft differenzierbaren Funktionen $f: I \to \mathbb{R}^N$ mit kompaktem Träger in I. Der Träger einer beliebigen Funktion f auf I ist gegeben durch

$$\operatorname{supp} f := \overline{\{x \in I : f(x) \neq 0\}}.$$

Falls $u \in C^1(\overline{I}, \mathbb{R}^N)$ schwach \mathcal{F} -kritisch ist, so gilt $\delta \mathcal{F}(u, \varphi) = 0$ für alle $\varphi \in C_0^{\infty}(I, \mathbb{R}^N)$. Statt $C_0^{\infty}(I, \mathbb{R}^N)$ könnte man auch einfach $C_0^1(I, \mathbb{R}^N)$ verlangen, vgl. Satz A.21 (ii).

Proposition 1.3

Sei $F \in C^1(\overline{I} \times \mathbb{R}^N \times \mathbb{R}^N)$. Falls $u \in C^1(\overline{I}, \mathbb{R}^N)$ mit $\mathcal{F}(u) \leq \mathcal{F}(u+\varphi)$ für alle $\varphi \in C_0^\infty(I, \mathbb{R}^N)$ mit $\|\varphi\|_{C^1(\overline{I}, \mathbb{R}^N)} \ll 1$ (d.h. u ist lokaler Minimierer von \mathcal{F}), dann ist $\delta \mathcal{F}(u, \varphi) = 0$ für alle $\varphi \in C_0^\infty(I, \mathbb{R}^N)$, d.h. u ist schwacher kritischer Punkt von \mathcal{F} .

Aber Vorsicht: Nicht jeder schwache kritische Punkt in $C^1(\overline{I}, \mathbb{R}^N)$ ist lokaler Minimierer oder Maximierer; es könnten durchaus auch Sattelpunkte von Funktionalen auftreten, die weder lokale Minimierer noch Maximierer sind.

Als Motivation für die nächsten Sätze berechnen wir für $F \in C^2(I \times \mathbb{R}^N \times \mathbb{R}^N)$ und

 $u \in C^2(I, \mathbb{R}^N)$:

$$0 = \delta \mathcal{F}(u, \varphi)$$

$$= \int_{I} (F_{z}(\cdot, u, u') \cdot \varphi + F_{p}(\cdot, u, u') \cdot \varphi') dx$$

$$= \int_{I} (F_{z}(\cdot, u, u') - \frac{d}{dx} F_{p}(\cdot, u, u')) \cdot \varphi dx$$

für alle $\varphi \in C_0^\infty(I, \mathbb{R}^N)$. Dann folgt mit dem noch zu formulierenden Fundamentallemma, Lemma 1.4:

$$F_z(\cdot, u, u') - \frac{\mathrm{d}}{\mathrm{d}x} F_p(\cdot, u, u') = 0$$
 auf I .

Lemma 1.4 [FUNDAMENTALLEMMA]

Sei $f \in C^0(I)$ und es gelte

$$\int_{I} f(x) \eta(x) dx = 0$$
(1.4)

für alle $\eta \in C_0^{\infty}(I)$. Dann ist $f \equiv 0$ auf I.

Beweis. Zu einem gegebenen Punkt $x_0 \in I$ sei $\delta = \delta(x_0)$ so klein gewählt, dass

$$\overline{B_{2\delta}(x_0)} := [x_0 - 2\delta, x_0 + 2\delta] \subset I.$$

Wir definieren die charakteristische Funktion

$$\chi_0(x) := \chi_{[x_0 - \delta, x_0 + \delta]}(x) := \begin{cases} 1 & \text{falls } x \in [x_0 - \delta, x_0 + \delta] \\ 0 & \text{falls } x \in \mathbb{R} \setminus [x_0 - \delta, x_0 + \delta] \end{cases}$$

und nutzen den Satz, dass $C_0^\infty(I)$ fi $\frac{1}{2}$ r alle $p \in [1, \infty)$ dicht in $L^p(I)$ liegt, siehe Korollar A.22 im Anhang. Insbesondere gibt es wegen $\chi_0 \in L^1(I)$ fi $\frac{1}{2}$ r jedes $0 < \varepsilon < \delta$ eine Funktion $\chi_0^\varepsilon \in C_0^\infty(I)$ mit $\|\chi_0 - \chi_0^\varepsilon\|_{L^1(I)} \le \varepsilon$ und supp $\chi_0^\varepsilon \subset (x_0 - 2\delta, x_0 + 2\delta)$. Damit betrachten wir

$$\int_{x_0-\delta}^{x_0+\delta} f(x) dx = \int_I f(x)\chi_0(x) dx$$
$$= \int_I f(x)\chi_0^{\varepsilon}(x) dx + \int_I f(x) \Big(\chi_0(x) - \chi_0^{\varepsilon}(x)\Big) dx.$$

Das erste Integral auf der rechten Seite verschwindet nach Voraussetzung, und das zweite lässt sich folgendermaßen abschätzen:

$$\left| \int_{I} f(x) \Big(\chi_{0}(x) - \chi_{0}^{\varepsilon}(x) \Big) dx \right| \leq \int_{I} |f(x)| |\chi_{0}(x) - \chi_{0}^{\varepsilon}(x)| dx$$

$$\leq \varepsilon ||f||_{C^{0}([x_{0} - 2\delta, x_{0} + 2\delta])}$$

$$\xrightarrow{\varepsilon \to 0} 0.$$

wobei wir zuletzt benutzt haben, dass $f \in C^0([x_0 - 2\delta, x_0 + 2\delta])$.

Es folgt also $\int_{x_0-\delta}^{x_0+\delta} f(x) dx = 0$ und damit

$$\int_{x_0-\delta}^{x_0+\delta} f(x) dx := \frac{1}{2\delta} \int_{x_0-\delta}^{x_0+\delta} f(x) dx = 0,$$

und für den Grenzwert $\delta \to 0$ ergibt der Mittelwertsatz der Integralrechnung $f(x_0) = 0$. Da aber x_0 beliebig in I gewählt war, gilt f(x) = 0 für alle $x \in I$.

Lemma 1.5 [ERWEITERTES FUNDAMENTALLEMMA]

Sei $f \in L^1_{loc}(I)$ mit

$$\int_{I} f(x) \eta(x) dx = 0 \qquad \forall \eta \in C_0^{\infty}(I).$$
(1.5)

Dann ist f(x) = 0 für \mathcal{L}^1 -fast alle $x \in I$.

Beweis. Zu einem gegebenen Punkt $x_0 \in I$ sei $0 < \delta = \delta(x_0) \ll 1$ so klein gewählt, dass

$$\overline{B_{3\delta}(x_0)} = [x_0 - 3\delta, x_0 + 3\delta] \subset I.$$

Dann definieren wir zu $0<\varepsilon<\delta$ die stückweise lineare Funktion $\eta_\varepsilon\in C^0_0(I)$ durch

$$\eta_{\varepsilon}(x) := \begin{cases} 1 & \text{falls } x \in [x_0 - \delta, x_0 + \delta] \\ 0 & \text{falls } x \in I \setminus (x_0 - \delta - \varepsilon, x_0 + \delta + \varepsilon) \\ \text{linear fortgesetzt} & \text{sonst} \end{cases}$$

und bemerken, dass mit $\varepsilon \to 0$

$$\eta_{\varepsilon}(x) \to \chi_0(x) = \chi_{[x_0 - \delta, x_0 + \delta]} \text{ für alle } x \in I.$$
 (1.6)

Nach Satz A.21 im Anhang gibt es nun für alle $\sigma>0$ ein $\eta_{\varepsilon}^{\sigma}\in C_{0}^{\infty}(I)$ mit $\|\eta_{\varepsilon}-\eta_{\varepsilon}^{\sigma}\|_{C^{0}(\overline{I})}<\sigma$ und

$$\operatorname{supp} \eta_{\varepsilon}^{\sigma} \subset B_{3\delta}(x_0) = (x_0 - 3\delta, x_0 + 3\delta),$$

und wir schreiben

$$\int_I f(x) \eta_\varepsilon(x) \, \mathrm{d}x = \int_{B_{3\delta}(x_0)} f(x) \eta_\varepsilon(x) \, \mathrm{d}x = \int_{B_{3\delta}(x_0)} f(x) [\eta_\varepsilon(x) - \eta_\varepsilon^\sigma(x)] \, \mathrm{d}x + \int_I f(x) \eta_\varepsilon^\sigma(x) \, \mathrm{d}x.$$

Das zweite Integral auf der rechten Seite verschwindet nach Voraussetzung, und für das erste gilt

$$\left| \int_{B_{3\delta}(x_0)} f(x) [\eta_{\varepsilon}(x) - \eta_{\varepsilon}^{\sigma}(x)] dx \right| \leq \|\eta_{\varepsilon} - \eta_{\varepsilon}^{\sigma}\|_{C^0(\overline{I})} \int_{B_{3\delta}(x_0)} |f(x)| dx < \sigma \int_{B_{3\delta}(x_0)} |f(x)| dx \stackrel{\sigma \to 0}{\longrightarrow} 0.$$

Es ist also $\int_I f(x) \eta_{\varepsilon}(x) dx = 0$ für alle $0 < \varepsilon < \delta$, und im Grenzwert $\varepsilon \to 0$ folgt mit (1.6) und der Abschätzung

$$|f(x)\eta_{\varepsilon}(x)| \leq |f(x)\chi_{B_{2\delta}}(x_0)(x)|$$
 für \mathscr{L}^1 -fast alle $x \in I$

aus dem Lebesgueschen Satz über dominierte Konvergenz

$$0 = \frac{1}{2\delta} \int_{I} f(x) \eta_{\varepsilon}(x) dx \xrightarrow{\varepsilon \to 0} \frac{1}{2\delta} \int_{I} f(x) \chi_{0}(x) dx = \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx.$$

Mit dem Grenzübergang $\delta \to 0$ folgt

$$f(x_0) = 0$$
.

falls x_0 ein Lebesgue-Punkt von f ist. Da \mathcal{L}^1 -fast alle Punkte in I Lebesgue-Punkte von f sind, ist die Behauptung gezeigt, vgl. A.14.

Proposition 1.6 [EULER-LAGRANGE-GLEICHUNG]

Sei $u \in C^2(I, \mathbb{R}^N)$ ein schwacher kritischer Punkt von \mathcal{F} und $F \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$. Dann gilt:

$$\frac{\mathrm{d}}{\mathrm{d}x}F_p(x,u(x),u'(x)) - F_z(x,u(x),u'(x)) = 0 \quad \text{ für alle } x \in I.$$
 (ELG)

Gleichung (ELG) ist ein System von N Gleichungen. Diese werden als EULER-LAGRANGE-Gleichungen bezeichnet.

Beweis. Die Funktion u ist schwach \mathcal{F} -kritisch, es gilt also

$$\int_{I} [F_p(x, u(x), u'(x)) \cdot \varphi'(x) + F_z(x, u(x), u'(x)) \cdot \varphi(x)] dx = 0 \quad \forall \varphi \in C_0^{\infty}(I, \mathbb{R}^N),$$

und nach einer partiellen Integration

$$\int_{I} \left[-\frac{\mathrm{d}}{\mathrm{d}x} F_p(x, u(x), u'(x)) + F_z(x, u(x), u'(x)) \right] \cdot \varphi(x) \, \mathrm{d}x = 0.$$

Wählt man nun $\varphi = (0, \dots, 0, \eta, 0, \dots, 0)$, wobei $\eta \in C_0^{\infty}(I)$ an der *i*-ten Stelle steht, so lässt sich das Fundamentallemma der Variationsrechnung, Lemma 1.4, anwenden, und es ergibt sich das System der Euler-Lagrange-Gleichungen

$$-\frac{\mathrm{d}}{\mathrm{d}x}F_{p^{i}}(x,u(x),u'(x)) + F_{z^{i}}(x,u(x),u'(x)) = 0, \quad i = 1,\ldots,N \text{ für alle } x \in I.$$

Definition 1.7 [\mathcal{F} -KRITISCH]

Sei $F \in C^2(I \times \mathbb{R}^N \times \mathbb{R}^N)$. Jede Lösung $u \in C^2(I, \mathbb{R}^N)$ der Euler-Lagrange-Gleichungen (ELG) heißt kritischer Punkt von \mathcal{F} oder kurz: \mathcal{F} -kritisch.

Bemerkung:

Es handelt sich bei den Euler-Lagrange-Gleichungen um ein System von quasilinearen gewöhnlichen Differentialgleichungen zweiter Ordnung, d.h. die höchsten auftretenden Ableitungen sind von zweiter Ordnung, und diese treten nur linear auf, während die Koeffizienten Ableitungen bis zur ersten Ordnung einschließlich enthalten können. Offensichtlich lassen sich mit Hilfe des erweiterten Fundamentallemmas, Lemma 1.5, die Voraussetzungen an die Regularität von F und u in Proposition 1.6 und Definition 1.7 abschwächen.

Beispiel $\boxed{1.1}$

Sei N=1 und das Funktional \mathcal{F} definiert durch

$$\mathcal{F}(u) := \int_{I} \left(u'^{2}(x) + c(x) u^{2}(x) \right) dx.$$

In diesem Fall ist also $F(x, z, p) = p^2 + c(x)z^2$ mit $F_z(x, z, p) = 2c(x)z$ und $F_p(x, z, p) = 2p$. Die zugehörige EULER-LAGRANGE-Gleichung lautet dann:

$$\frac{\mathrm{d}}{\mathrm{d}x} 2u'(x) - 2c(x) u(x) = 0 \iff$$

$$-u''(x) + c(x) u(x) = 0, \quad x \in I. \tag{ELG}_{1.1}$$

Eine solche Gleichung ist eine *Differentialgleichung vom* Sturm-Liouville-*Typ*, die bereits intensiv untersucht ist; siehe z.B. in dem Buch von Protter und Weinberger [46].

Beispiel 1.2

Wir betrachten für N=3 das Funktional

$$\mathcal{F}(u) = \int_{I} \left(\frac{m}{2} |u'(x)|^2 - V(u(x)) \right) dx.$$

Dann ist $F(x,z,p)=\frac{m}{2}|p|^2-V(z)$ mit $F_z(x,z,p)=-V_z(z)$ und $F_p(x,z,p)=mp$. Die EULER-LAGRANGE-Gleichung lautet

$$\frac{\mathrm{d}}{\mathrm{d}x}mu'(x) + V_z(u(x)) = 0, \quad x \in I.$$
 (ELG_{1.2})

Nach Umbenennung der Variablen $(x \mapsto t \text{ und } u \mapsto x)$ erhält man

$$m\ddot{x}(t) = -V_x(x(t)), \quad t \in I.$$
 (BWGl_{1,2})

In dieser Formulierung entspricht \mathcal{F} dem Wirkungsfunktional der Bewegung $x=x(t), t\in I$, einer Punktmasse m in einem konservativen Kraftfeld mit dem Potential V(x), und die EULER-LAGRANGE-Gleichung ist die NEWTONsche Bewegungsgleichung.

Beispiel 1.3

Für N=1 sei

$$\mathcal{F}(u) := \int_{I} \omega(x, u(x)) \sqrt{1 + u'^2(x)} \, \mathrm{d}x, \qquad \omega > 0.$$

Dies ist ein gewichtetes Längenfunktional in nicht-parametrischer Form, also für Kurven, die als Graphen

$$\{(x, u(x)) : x \in I\}$$

parametrisiert sind. Entsprechende Funktionale in parametrischer Form , also Funktionale für allgemeinere parametrisierte Raumkurven, und ihre geometrische und physikalische Bedeutung werden in Abschnitt ?? beschrieben. Hier ist $F(x,z,p)=\omega(x,z)\sqrt{1+p^2}$ mit $F_z(x,z,p)=\omega_z(x,z)\sqrt{1+p^2}$ und $F_p(x,z,p)=\omega(x,z)\frac{p}{\sqrt{1+p^2}}$. Die Euler-Lagrange-Gleichung lautet also:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\omega(x, u(x)) \frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right) - \omega_z(x, u(x)) \sqrt{1 + u'^2(x)} = 0.$$

Dies lässt sich weiter umformen zu

$$0 = \omega(x, u(x)) \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right) + (\omega_x(x, u(x)) + \omega_z(x, u(x))u'(x)) \frac{u'(x)}{\sqrt{1 + u'^2(x)}} - \omega_z(x, u(x))\sqrt{1 + u'^2(x)},$$

so dass

$$0 = \omega(x, u(x)) \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right) \sqrt{1 + u'^2(x)} + (\omega_x(x, u(x)) + \omega_z(x, u(x))u'(x))u'(x)$$
$$- \omega_z(x, u(x))(1 + u'^2(x))$$
$$= \omega(x, u(x)) \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right) \sqrt{1 + u'^2(x)} + \omega_x(x, u(x))u'(x) - \omega_z(x, u(x)).$$

Wir behaupten nun, dass

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'}{\sqrt{1 + u'^2}} \right) = \kappa,\tag{1.7}$$

wobei κ die Krümmung des Graphen $\{(x,u(x)):x\in I\}$ ist. Dann ergibt sich unter der Voraussetzung $\omega>0$ für die Lösungen der Euler-Lagrange-Gleichung die Krümmungsgleichung

$$\kappa(x) = \frac{\omega_z(x, u(x)) - \omega_x(x, u(x))u'(x)}{\omega(x, u(x))\sqrt{1 + u'^2(x)}}.$$
 (ELG_{1.3})

Tatsächlich ist für die Kurve $\gamma(x) := (x, u(x))$ die erste Ableitung $\gamma'(x) = (1, u'(x))$ und

$$\frac{\gamma'(x)}{|\gamma'(x)|} = T(x) = \left(\frac{1}{\sqrt{1 + u'^2(x)}}\right) (1, u'(x))$$

die Einheitstangente an γ . Der Einheitsnormalenvektor von γ an der Stelle $x \in I$, der zusammen mit T(x) ein positiv orientiertes Orthonormalsystem im \mathbb{R}^2 bildet, ist

$$N(x) = -\left(\frac{1}{\sqrt{1 + u'^2(x)}}\right)(u'(x), -1).$$

Nun ordnet $s(x) := \int_a^x |\gamma'(t)| \, \mathrm{d}t$ jedem $x \in [a,b]$ die Bogenlänge der Kurve $\gamma|_{[a,x]}$ zu, wobei

$$s(a) = 0$$
 und $s(b) = \int_a^b |\gamma'(t)| dt = \mathcal{L}(\gamma)$ = Länge von γ .

Wegen $\frac{d}{dx}s(x) = |\gamma'(x)| > 0$ existiert $s^{-1}: [0, \mathcal{L}(\gamma)] \to [a, b]$, und wir nennen $\Gamma := \gamma \circ s^{-1}$ die Bogenlängenparametrisierung mit

$$|\Gamma'(s)| = |\frac{d}{ds}\Gamma(s)| = |\frac{d}{dx}\gamma(x(s))\frac{d}{ds}x(s)| = |\gamma'(x(s))| \cdot \frac{1}{|\gamma'(x(s))|} = 1.$$

Benutzt man die Frenet-Gleichungen (siehe z.B. [23, S. 421ff] oder [15, S. 16])

$$T_s = \kappa N$$
$$N_s = -\kappa T,$$

wobei κ die Krümmung der Kurve γ bezeichnet, so erhält man $T_s = T_x \frac{dx}{ds} = T_x (\frac{ds}{dx})^{-1}$, wobei $\frac{ds}{dx} = |\gamma'| = \sqrt{1 + u'^2}$. Also ist

$$\left(\begin{bmatrix} (\sqrt{1+u'^2})^{-1} \\ \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'}{\sqrt{1+u'^2}} \right)^x \end{bmatrix} = T_x = \sqrt{1+u'^2} T_s = \sqrt{1+u'^2} \kappa N = \kappa \begin{pmatrix} -u' \\ 1 \end{pmatrix}.$$

Aus der zweiten Komponente dieser Vektorgleichung liest man die behauptete Identität (1.7) für die Krümmung κ ab.

Proposition 1.8 ["Lokales Minimum erfüllt Euler-Lagrange-Gleichung"] Sei $u \in C^2(I, \mathbb{R}^N) \cap C^1(\overline{I}, \mathbb{R}^N)$, $F \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$, $\mathcal{F}(u) \leq \mathcal{F}(w)$ für alle $w \in C^1(\overline{I}, \mathbb{R}^N)$ mit $\|u - w\|_{C^1(\overline{I}, \mathbb{R}^N)} \leq \delta \ll 1$ und u = w auf ∂I . Dann erfüllt u die Euler-Lagrange-Gleichung (ELG).

Beweis. Für alle $\varphi \in C_0^{\infty}(I, \mathbb{R}^N)$ mit $\|\varphi\|_{C^1(\overline{I}, \mathbb{R}^N)} \leq \delta$ gilt $\mathcal{F}(u) \leq \mathcal{F}(u + \varphi)$. Nach Proposition 1.3 ist u dann ein schwacher kritischer Punkt von \mathcal{F} , und da $u \in C^2(I, \mathbb{R}^N)$, erfüllt u wegen Proposition 1.6 die EULER-LAGRANGE-Gleichungen.

Bemerkung:

Nicht jeder Minimierer ist in $C^2(I, \mathbb{R}^N)$.

Beispiel 1.4

Sei N = 1 und I = (-1, +1). Wir betrachten die Klasse

$$\mathcal{C} := \{ v \in C^1(\overline{I}) : v(-1) = 0, v(+1) = 1 \}$$

und stellen fest, dass die Werte der Funktionals

$$\mathcal{F}(u) := \int_{-1}^{+1} u^2(x) (2x - u'(x))^2 dx$$

nichtnegativ sind. Daher ist auch $\inf_{\mathcal{C}} \mathcal{F}(\cdot) \geq 0$. Für die $C^1(\overline{I})$ -Funktion u^* , definiert durch

$$u^*(x) := \begin{cases} 0 & \text{für } x \in [-1, 0) \\ x^2 & \text{für } x \in [0, 1], \end{cases}$$

gilt $u^* \in \mathcal{C}$ und $\mathcal{F}(u^*) = 0$, und damit $\mathcal{F}(u^*) = \inf_{\mathcal{C}} \mathcal{F}(\cdot)$, doch $u^* \notin C^2(I)$. Man kann zeigen, dass u^* der eindeutige Minimierer von \mathcal{F} in \mathcal{C} ist.

Das Hauptziel des verbleibenden Teils dieses Abschnitts ist es nun, die Euler-Lagrange-Gleichungen (ELG) auch für Funktionen $u \in C^1(I, \mathbb{R}^N)$ zu beweisen. Entscheidend ist dabei die

Proposition 1.9 [DuBois-Reymond-Gleichung]

Sei $I = (a,b) \subset \mathbb{R}$, $u \in C^1(I,\mathbb{R}^N)$ ein schwacher kritischer Punkt von \mathcal{F} und $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$. Dann existiert für jedes $d \in (a,b)$ ein Vektor $c_d \in \mathbb{R}^N$, so dass

$$F_p(x, u(x), u'(x)) = c_d + \int_d^x F_z(y, u(y), u'(y)) \, \mathrm{d}y \quad \forall x \in I.$$
 (DBR)

Gilt zusätzlich $u \in C^1(\overline{I}, \mathbb{R}^N)$, so gilt (DBR) sogar auf \overline{I} . Weiterhin könnte man dann in (DBR) auch a anstelle von d wählen, so dass in dem Fall ein Vektor $c_a \in \mathbb{R}^N$ anstelle von c_d in (DBR) aufträte.

Beweis. Nach Voraussetzung ist u ein schwacher kritscher Punkt von \mathcal{F} , also gilt für alle $\varphi \in C_0^{\infty}(I, \mathbb{R}^N)$

$$\int_{I} [F_p(x, u(x), u'(x)) \cdot \varphi'(x) + F_z(x, u(x), u'(x)) \cdot \varphi(x)] dx = 0,$$

und nach einer partiellen Integration

$$\int_{I} \left[F_p(x, u(x), u'(x)) - \left(\int_{d}^{x} F_z(y, u(y), u'(y)) \, \mathrm{d}y \right) \right] \cdot \varphi'(x) \, \mathrm{d}x = 0.$$

Aufgrund des im Anschluss bewiesenen Fundamentallemmas 1.10 von DuBois-Reymond gibt es deshalb einen Vektor $c_d \in \mathbb{R}^N$, so dass

$$F_p(x,u(x),u'(x)) - \int_d^x F_z(y,u(y),u'(y)) \,\mathrm{d}y = c_d \quad \text{für } \mathscr{L}^1\text{-fast alle } x \in I,$$

und wegen der Stetigkeit aller Ausdrücke als Funktion von x auf I gilt diese Identität dann auch für alle $x \in I$.

Falls $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann erhält man durch die stetige Fortsetzbarkeit aller auftretenden Ausdrücke die Identität (DBR) auf ganz \overline{I} . Weiterhin kann man in dem Fall anstelle von d die linke Intervallgrenze a wählen und dieselbe Argumentation wie oben verwenden. Dann erhält man (DBR) (mit a anstelle von d und einem Vektor c_a anstelle von c_d) zunächst auf I, kann aber erneut wegen der stetigen Fortsetzbarkeit aller auftretenden Ausdrücke diese Relation auch auf \overline{I} fortsetzen.

Lemma 1.10 [Fundamentallemma von DuBois-Reymond] Sei $f \in L^1_{loc}(I)$ und erfülle die Gleichung

$$\int_{I} f(x)\eta'(x) \, \mathrm{d}x = 0 \quad \forall \eta \in C_0^{\infty}(I). \tag{1.8}$$

Dann existiert eine Konstante $f_0 \in \mathbb{R}$, so dass $f(x) = f_0$ für \mathcal{L}^1 -fast alle $x \in I$ gilt.

Beweis. Für zwei beliebige LEBESGUE-Punkte $x_0, \xi_0 \in I, x_0 < \xi_0$, von f wählen wir $\delta > 0$ so klein, dass $[x_0 - 3\delta, \xi_0 + 3\delta] \subset I$. Dann definieren wir für $0 < \varepsilon < \delta$ die Funktionen $\xi_\varepsilon \in C_0^{0,1}((x_0 - \delta, \xi_0 + \delta))$ durch

$$\zeta_{\varepsilon}(x) := \begin{cases} 1 & \text{falls } x \in [x_0, \xi_0] \\ 0 & \text{falls } x \in I \setminus [x_0 - \varepsilon, \xi_0 + \varepsilon] \\ \text{linear fortgesetzt} & \text{sonst.} \end{cases}$$

Nun gibt es nach Satz A.21 im Anhang zu jedem $0 < \sigma < \varepsilon$ approximierende Funktionen $\zeta_{\varepsilon}^{\sigma} \in C_0^{\infty}((x_0 - 2\delta, \xi_0 + 2\delta))$ mit

$$\|\zeta_{\varepsilon}^{\sigma}\|_{C^{0,1}(\overline{I})} = \|\zeta_{\varepsilon}^{\sigma}\|_{C^{0,1}([x_0 - 2\delta, \xi_0 + 2\delta])} \le \|\zeta_{\varepsilon}\|_{C^{0,1}([x_0 - 3\delta, \xi_0 + 3\delta])} = \|\zeta_{\varepsilon}\|_{C^{0,1}(\overline{I})} = 1 + \frac{1}{\varepsilon}, \quad (1.9)$$

so dass darüberhinaus

$$\zeta_{\varepsilon}^{\sigma\prime}(x) \to \zeta_{\varepsilon}'(x) \quad \text{für } \mathscr{L}^1\text{-fast alle } x \in I,$$
(1.10)

siehe Anhang, Satz A.21 und Teil (ii) der Proposition 2.5. Wir schreiben

$$\int_{I} f(x)\zeta_{\varepsilon}'(x) dx = \int_{I} f(x)\zeta_{\varepsilon}''(x) dx + \int_{I} f(x) \left(\zeta_{\varepsilon}'(x) - \zeta_{\varepsilon}''(x)\right) dx,$$

und bemerken, dass das erste Integral nach Voraussetzung verschwindet. Das zweite Integral konvergiert wegen (1.9) und (1.10) für $\sigma \to 0$ gegen 0 nach dem Satz über dominierte Konvergenz von Lebesgue. Es ist also

$$0 = \int_{I} f(x)\zeta'_{\varepsilon}(x) dx = \int_{x_0 - \varepsilon}^{x_0} f(x) \frac{1}{\varepsilon} dx - \int_{\xi_0}^{\xi_0 + \varepsilon} f(x) \frac{1}{\varepsilon} dx \qquad \forall \varepsilon > 0,$$

und im Grenzwert $\varepsilon \to 0$ folgt $f(x_0) - f(\xi_0) = 0$, also $f(x_0) = f(\xi_0) =: c_1$. Da x_0 und ξ_0 beliebig gewählte LEBESGUE-Punkte sind, folgt die Behauptung.¹

Korollar 1.11

Jeder schwache kritische Punkt $u \in C^1(I, \mathbb{R}^N)$ von \mathcal{F} mit $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ erfüllt die EULER-LAGRANGE-Gleichung (ELG). Ist darüberhinaus $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann gilt (ELG) für alle $x \in \overline{I}$.

Beweis. Seien $x_0, d \in I$ beliebig gewählt. Dann gilt die DuBois-Reymond-Gleichung (DBR) für alle $x \in I$ mit einem konstanten Vektor $c_d \in \mathbb{R}^N$. Für $0 < \varepsilon < \min\{x_0 - a, b - x_0\}$ ist die rechte Seite und damit auch die linke Seite von (DBR) in $C^1(B_\varepsilon(x_0), \mathbb{R}^N)$, und wir können nach x differenzieren, um die Euler-Lagrange-Gleichung (ELG) in $B_\varepsilon(x_0)$, also insbesondere in x_0 zu erhalten. Da $x_0 \in I$ beliebig gewählt war, folgt die Behauptung. Ist $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann ist die Funktion $x \mapsto F_z(x, u(x), u'(x))$ stetig auf \overline{I} fortsetzbar. Nach der gerade bewiesenen Euler-Lagrange-Gleichung (ELG) stimmt aber dieser Term auf dem offenen Intervall I mit $\frac{d}{dx}(F_p(\cdot, u(\cdot), u'(\cdot))$ überein, so dass auch dieser Term und damit die gesamte Euler-Lagrange-Gleichung auf ganz \overline{I} fortsetzbar ist.

Bemerkung:

Das Anwenden der Kettenregel auf die Euler-Lagrange-Gleichung ist hier im Allgemeinen nicht erlaubt, da weder $u \in C^2(I, \mathbb{R}^N)$ noch $F_p \in C^1$ vorausgesetzt war. Andererseits kann man die Gültigkeit der Euler-Lagrange-Gleichungen \mathcal{L}^1 -fast überall auch für schwach \mathcal{F} -kritische Punkte der Klasse $C^{0,1}(I, \mathbb{R}^N)$ nachweisen.

Proposition 1.12 [Natürliche Randbedingungen] Sei $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ und $u \in C^1(\overline{I}, \mathbb{R}^N)$ erfülle

$$\delta \mathcal{F}(u,\varphi) = 0 \quad \forall \varphi \in C^{\infty}(\overline{I}, \mathbb{R}^N).$$

Dann gelten die natürlichen Randbedingungen

$$F_p(a, u(a), u'(a)) = 0 = F_p(b, u(b), u'(b)).$$

Beweis. Nach Korollar 1.11 löst u die Euler-Langrange-Gleichung

$$-\frac{\mathrm{d}}{\mathrm{d}x}F_p(x,u(x),u'(x)) + F_z(x,u(x),u'(x)) = 0 \qquad \forall x \in \overline{I}.$$
(1.11)

¹Alternativ kann man Lemma 1.10 auch beweisen, indem man die in Kapitel 2 behandelte Definition 2.1 der Sobolevfunktionen benutzt, um einzusehen, dass die Voraussetzung (1.8) impliziert, dass die Funktion $f \in W^{1,1}_{loc}(I)$ ist und eine verschwindende schwache Ableitung besitzt, was dann nach Lemma 2.4 die Konstanz von f fast überall in I impliziert.

Wir nutzen nun die stärkere Information, dass $\delta \mathcal{F}(u,\varphi) = 0$ für alle φ aus dem "größeren" Raum $C^{\infty}(\overline{I},\mathbb{R}^N)$, was dazu führt, dass beim partiellen Integrieren für $\varphi \in C^{\infty}(\overline{I},\mathbb{R}^N)$ im Allgemeinen Randterme auftreten:

$$0 = \delta \mathcal{F}(u, \varphi)$$

$$= \int_{I} \left(F_{p}(x, u(x), u'(x)) \cdot \varphi'(x) + F_{z}(x, u(x), u'(x)) \cdot \varphi(x) \right) dx$$

$$= \int_{I} \left(-\frac{d}{dx} F_{p}(x, u(x), u'(x)) + F_{z}(x, u(x), u'(x)) \right) \cdot \varphi(x) dx$$

$$+ \left[F_{p}(x, u(x), u'(x)) \cdot \varphi(x) \right]_{x=a}^{x=b}$$

$$= \left[F_{p}(x, u(x), u'(x)) \cdot \varphi(x) \right]_{x=a}^{x=b}.$$

Zu einem beliebigen Vektor $c \in \mathbb{R}^N$ wähle die Funktion

$$\varphi_c(x) := \frac{x-b}{a-b}c, \quad x \in \mathbb{R}.$$

Offensichtlich ist $\varphi_c \in C^{\infty}(\overline{I}, \mathbb{R}^N)$ mit $\varphi_c(a) = c$ und $\varphi_c(b) = 0$, so dass

$$F_p(a, u(a), u'(a)) \cdot c = 0$$

folgt. Setzen wir $c:=F_p(a,u(a),u'(a))$, erhalten wir $F_p(a,u(a),u'(a))=0$. Analog folgt $F_p(b,u(b),u'(b))=0$.

Bemerkung:

Natürliche Randbedingungen stellen sich automatisch bei Lösungen von sogenannten freien Randwertproblemen ein, bei denen man beispielsweise lediglich vorschreibt, dass die Lösungen am Rand auf einer vorgegebenen Stützmannigfaltigkeit liegen. Insbesondere in der Theorie der Minimalflächen gibt es dazu zahlreiche interessante Untersuchungen, siehe z.B. [10, Chapter 5].

Beispiel $\lfloor 1.5 \rfloor$ [Freie Randwertprobleme für das DIRICHLET-Integral und das Längenfunktional]

Wir betrachten mit $D(x,z,p)=D(p)=\frac{1}{2}|p|^2=\frac{1}{2}p\cdot p$ für $p\in\mathbb{R}^N$, das Variationsproblem für das DIRICHLET-Integral

$$\mathscr{D}(u) := \frac{1}{2} \int_{I} |u'(x)|^2 dx \longrightarrow \min! \text{ in der Klasse } C^1(\overline{I}, \mathbb{R}^N).$$

Für einen Minimierer $u \in C^1(\overline{I}, \mathbb{R}^N)$ erhält man aus den DuBois-Reymond-Gleichungen, Proposition 1.9, $u' \equiv konst$. auf \overline{I} und damit² $u(x) = \alpha x + \beta$ für alle $x \in \overline{I}$. Da für den Minimierer u die Ungleichung $\mathcal{F}(u) \leq \mathcal{F}(u + \varepsilon \varphi)$ für alle $\varphi \in C^1(\overline{I}, \mathbb{R}^N)$ gilt, folgen mit $\delta \mathcal{F}(u, \varphi) = 0$ für alle $\varphi \in C^1(\overline{I}, \mathbb{R}^N)$ nach Proposition 1.12 die natürlichen Randbedingungen

$$u'(a) = F_p(a, u(a), u'(a)) = 0 = F_p(b, u(b), u'(b)) = u'(b),$$

²Dies würde man auch bekommen, wenn man nur wüsste, dass $u \in C^1(I, \mathbb{R}^N)$ schwach \mathcal{F} -kritisch ist, da sich u' als konstanter Vektor stetig auf \overline{I} fortsetzen lässt.

so dass die Lösung $u \equiv konst$. lautet. Diese Beobachtung liefert aber keine eindeutigen Lösungen, weil sich die Konstante ohne weitere Informationen nicht weiter bestimmen lässt. Im Fall N=1 bildet der Graph der minimierenden Funktion u aber in jedem Fall an seinen Endpunkten mit den Wänden $\{(a,z):z\in\mathbb{R}\}$ und $\{(b,z):z\in\mathbb{R}\}$ einen rechten Winkel.

Eine analoge Rechnung führt im Fall N=1 für den Integranden $L(x,z,p)=L(p):=\sqrt{1+p^2}$ des Längenfunktionals für eindimensionale Graphen auf

$$L_p(u'(a)) = u'(a)/\sqrt{1 + (u'(a))^2} = 0 = L_p(u'(b)) = u'(b)/\sqrt{1 + (u'(b))^2} = 0,$$

woraus ebenfalls u'(a) = 0 = u'(b) und damit rechte Winkel an den begrenzenden Wänden $\{(a,z):z\in\mathbb{R}\}$ und $\{(b,z):z\in\mathbb{R}\}$ als natürliche Randbedingungen folgen.

Bei höherdimensionalen freien Randwertproblemen aus der Kapillaritätstheorie [21] bilden sich sogenannte Kontaktwinkel, die je nach Wahl der Energiedichte, also nach Wahl des Integranden des Variationsproblems, verschieden von $\pi/2$ sein können. Bei Minimalflächen ist ein Randwinkel von $\pi/2$ an den freien Rändern charakteristisch, was man in der Natur bei in Hohlkörpern eingespannten Seifenhäuten beobachten kann, siehe [4], [10], [11], [12, 14, 13].

1.2 Innere Variation, Noether-Gleichungen

Proposition 1.13 [ERHALTUNGSSATZ]

Sei $F = F(z, p) \in C^2(\mathbb{R}^N \times \mathbb{R}^N)$, $E := p \cdot F_p - F$, und $u \in C^2(I, \mathbb{R}^N)$ sei eine Lösung der EULER-LAGRANGE-Gleichung (ELG). Dann gilt

$$E(u(\cdot), u'(\cdot)) \equiv konst. \ auf \ I.$$
 (1.12)

Beweis.

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big(E(u(x), u'(x)) \Big) = u''(x) \cdot F_p(u(x), u'(x)) + u'(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \Big(F_p(u(x), u'(x)) \Big)
- F_z(u(x), u'(x)) \cdot u'(x) - F_p(u(x), u'(x)) \cdot u''(x)
= u'(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \Big(F_p(u(x), u'(x)) \Big) - F_z(u(x), u'(x)) \cdot u'(x)
= 0.$$

Beispiel 1.6 [Energieerhaltung in der klassischen Punktmechanik]

Für

$$F(z,p) := \frac{m}{2}|p|^2 - V(z), \quad z, p \in \mathbb{R}^3,$$

erhält man

$$E(z,p) = p \cdot F_p(z,p) - F(z,p)$$

$$= p \cdot mp - \frac{m}{2}|p|^2 + V(z)$$

$$= \frac{m}{2}|p|^2 + V(z).$$

Mit der physikalischen Interpretation von E(z,p) als Gesamtenergie und der Variablenumbenennung $x \mapsto t$ (Zeit), $z \mapsto x = x(t)$ (Bahnkurve) ergibt sich

$$E(x, \dot{x}) = \frac{m}{2}\dot{x}^2 + V(x),$$

und mit Proposition 1.13 erhält man den Energieerhaltungssatz

$$E(x(t), \dot{x}(t)) \equiv konst.$$

für alle Lösungen x = x(t) der Newtonschen Bewegungsgleichung

$$m\ddot{x} = -V_x(x), \tag{BWGl_{1.6}}$$

welche die Euler-Lagrange-Gleichung des zu F gehörigen Variationsintegrals ist; vgl. mit Beispiel $\boxed{1.2}$.

Bemerkung:

Häufig werden Lösungen der Euler-Lagrange-Gleichung gesucht, indem man die zugehörigen Erhaltungssätze analysiert. Es müssen aber im Allgemeinen nicht alle u, die dem Erhaltungssatz genügen, auch Lösungen der Euler-Lagrange-Gleichung sein, wie das folgende Beispiel zeigt.

Beispiel 1.7

Sei $u(\cdot) \equiv konst. =: c$ auf dem offenen Intervall $I \subset \mathbb{R}$ und $F = F(z, p) \in C^2(\mathbb{R}^N \times \mathbb{R}^N)$ mit $F(c, 0) = -h \in \mathbb{R}$ und $F_z(c, 0) \neq 0$. Dann ist

$$\frac{\mathrm{d}}{\mathrm{d}x}E(u(x),u'(x)) = \frac{\mathrm{d}}{\mathrm{d}x}\Big[u'(x)\cdot F_p(u(x),u'(x)) - F(u(x),u'(x))\Big] = -\frac{\mathrm{d}}{\mathrm{d}x}F(c,0) = 0,$$

und es folgt $E(u(\cdot), u'(\cdot)) \equiv konst.$ auf I, woraus

$$E(u(x), u'(x)) = E(c, 0) = 0 \cdot F_p(c, 0) - F(c, 0) = h$$

folgt. Es ist aber

$$\frac{\mathrm{d}}{\mathrm{d}x} [F_p(c,0)] - F_z(c,0) = -F_z(c,0) \neq 0,$$

also ist u keine Lösung der Euler-Lagrange-Gleichung.

Bis zu diesem Punkt geschah die Variation durch eine Störung der Funktionswerte u und u' um φ beziehungsweise φ' , und das Funktional $\mathcal F$ wurde an der Stelle $u+\varepsilon\varphi$ betrachtet. Stattdessen kann u auch gestört werden, indem man im Definitionsbereich einen von ε abhängigen Diffeomorphismus $\xi(\cdot,\varepsilon)$ vor das u schaltet, um damit eine Vergleichsfunktion $v(\cdot,\varepsilon):=u\circ\xi(\cdot,\varepsilon)$ zu erhalten. Wenn nun ε eine ganze Familie von Diffeomorphismen mit $(t,\varepsilon)\mapsto \xi(t,\varepsilon)\in C^2(\overline{I}\times(-\varepsilon_0,\varepsilon_0))$ von \overline{I} auf \overline{I} parametrisiert, kann man so für einen Minimierer $u=v(\cdot,0)$ das Verschwinden der Ableitung $\frac{d}{d\varepsilon}|_{\varepsilon=0}\mathcal F(v(\cdot,\varepsilon))$ ausnutzen, um eine neue Variationsformel herzuleiten. Dazu stellen wir an die Diffeomorphismen-Schar die folgenden Forderungen:

$$\xi(a,\varepsilon) = a \quad \forall \varepsilon \in (-\varepsilon_0, +\varepsilon_0),$$

$$\xi(b,\varepsilon) = b \quad \forall \varepsilon \in (-\varepsilon_0, +\varepsilon_0),$$

$$\xi(t,0) = t \quad \forall t \in I.$$

und die Umkehrfunktionen

$$\tau(\cdot,\varepsilon) = (\xi(\cdot,\varepsilon))^{-1} : \overline{I} \to \overline{I}$$

sollen genügend glatt sein, d.h. die Zuordnung $(x,\varepsilon)\mapsto \tau(x,\varepsilon)$ soll von der Klasse C^2 auf $\overline{I}\times(-\varepsilon_0,\varepsilon_0)$ sein.

Abbildung 1.1: Zulässige Parametervariation.

Definition 1.14

 $\{\xi(\cdot,\varepsilon)\}_{\varepsilon}$ mit diesen Eigenschaften heißt zulässige Parametervariation³. Die Funktionenschar $v(t,\varepsilon):=u(\xi(t,\varepsilon))$ heißt zulässige innere Variation. Die Funktion

$$\lambda(t) := \frac{\partial \xi}{\partial \varepsilon}(t, 0)$$

heißt das zugehörige Variationsvektorfeld .

Bemerkung:

Es gilt

$$v(a,\varepsilon) = u(\xi(a,\varepsilon)) = u(a),$$

$$v(b,\varepsilon) = u(\xi(b,\varepsilon)) = u(b),$$

$$v(t,0) = u(\xi(t,0)) = u(t).$$

Für das Folgende definieren wir noch die Funktion

$$\begin{split} \Psi(\varepsilon) &:= & \mathcal{F}(v(\cdot, \varepsilon)) \\ &= & \mathcal{F}\left(u(\xi(\cdot, \varepsilon))\right) \\ &= & \int_I F(t, v(t, \varepsilon), v_t(t, \varepsilon)) \, \mathrm{d}t, \end{split}$$

und lassen uns von der Idee leiten, dass im Fall $\mathcal{F}(u) \leq \mathcal{F}(v(\cdot,\varepsilon))$ für alle $\varepsilon \in (-\varepsilon_0,\varepsilon_0)$ und $\Psi \in C^1((-\varepsilon_0,\varepsilon_0))$ die Ableitung von Ψ an der Stelle Null verschwinden wird: $\Psi'(0) = 0$.

Definition 1.15 [ERSTE INNERE VARIATION]

 $\partial \mathcal{F}(u,\lambda) := \Psi'(0)$ heißt die erste innere Variation von \mathcal{F} an der Stelle u in Richtung des Variationsvektorfeldes λ .

³Man beachte, dass die Forderungen an die Erhaltung der Randwerte impliziert, dass es sich automatisch um eine Schar *orientierungserhaltender* Diffeomorphismen handelt.

Bemerkung:

Auch wenn $\Psi'(0)$ unter schwächeren Voraussetzungen an F, u und λ existiert, nennen wir diesen Ausdruck zukünftig erste innere Variation.

Proposition 1.16 [Innere Variation von \mathcal{F}]

Sei $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$, $u \in C^1(\overline{I}, \mathbb{R}^N)$ und $\lambda = \frac{\partial \xi}{\partial \varepsilon}(\cdot, 0)$ das Variationsvektorfeld einer zulässigen Parametervariation $\{\xi(\cdot, \varepsilon)\}_{\varepsilon}$. Dann gilt:

$$\partial \mathcal{F}(u,\lambda) = \int_{I} \left[\left[u'(x) \cdot F_{p}(x,u(x),u'(x)) - F(x,u(x),u'(x)) \right] \lambda'(x) - F_{x}(x,u(x),u'(x))\lambda(x) \right] dx. \tag{1.13}$$

Die Formel (1.13) gilt auch dann, wenn $u \in C^1(I, \mathbb{R}^N)$ ist und das Variationsvektorfeld λ kompakten Träger in I hat.

Beweis. Sei $\tau(\cdot, \varepsilon)$ die Umkehrfunktion zu $\xi(\cdot, \varepsilon)$, d.h. $t = \tau(\xi(t, \varepsilon), \varepsilon)$ für alle $t \in \overline{I}$ und alle $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$. Partielles Ableiten nach t beziehungsweise nach ε führt dann auf

$$1 = \tau_x(\xi(t,\varepsilon),\varepsilon)\xi_t(t,\varepsilon) \tag{1.14}$$

$$0 = \tau_x(\xi(t,\varepsilon),\varepsilon)\xi_{\varepsilon}(t,\varepsilon) + \tau_{\varepsilon}(\xi(t,\varepsilon),\varepsilon). \tag{1.15}$$

Aus $\xi(t,0) = t$ folgt $\tau(x,0) = x$ und damit durch Differentiation nach x (oder direkt aus (1.14) durch Einsetzen von $\varepsilon = 0$)

$$\tau_x(x,0) = 1,$$

und (1.15) schreibt sich für $\varepsilon = 0$

$$0 = \underbrace{\tau_x(t,0)}_{=1} \underbrace{\xi_{\varepsilon}(t,0)}_{=\lambda(t)} + \tau_{\varepsilon}(t,0) \text{ für alle } t \in \overline{I} \quad \Rightarrow \quad \tau_{\varepsilon}(x,0) = -\lambda(x) \text{ für alle } x \in \overline{I}, \quad (1.16)$$

wobei wir für die letzte Folgerung einfach die t-Variable in x umbenannt haben. Mit der Forderung $\tau \in C^2$ folgt aus der letzten Identität

$$\tau_{x\varepsilon}(x,0) = \tau_{\varepsilon x}(x,0) = -\lambda'(x)$$

Es ist

$$\Psi(\varepsilon) = \int_I F(t, v(t, \varepsilon), v_t(t, \varepsilon)) dt = \int_I F\left(\tau(\xi(t, \varepsilon), \varepsilon), u(\xi(t, \varepsilon)), u'(\xi(t, \varepsilon))\xi_t(t, \varepsilon)\right) dt,$$

und für die Substitution $x = \xi(t, \varepsilon)$ gilt x(a) = a, x(b) = b und $dx = \xi_t(t, \varepsilon) dt = dt/\tau_x(\xi(t, \varepsilon), \varepsilon)$, so dass nach dem Transformationssatz

$$\Psi(\varepsilon) = \int_{I} F\left(\tau(x,\varepsilon), u(x), u'(x) \frac{1}{\tau_x(x,\varepsilon)}\right) \tau_x(x,\varepsilon) dx$$

folgt. Die Ableitung nach ε und Auswertung an der Stelle $\varepsilon=0$ führen auf

$$\Psi'(0) = \int_{I} \left[F_{x}(x, u(x), u'(x)) \tau_{\varepsilon}(x, 0) + F_{p}(x, u(x), u'(x)) \cdot u'(x) \left(-\frac{\tau_{x\varepsilon}(x, 0)}{\tau_{x}^{2}(x, 0)} \right) \right] \tau_{x}(x, 0) dx
+ \int_{I} F(x, u(x), u'(x)) \tau_{x\varepsilon}(x, 0) dx
= \int_{I} \left(\left[F_{p}(x, u(x), u'(x)) \cdot u'(x) - F(x, u(x), u'(x)) \right] \lambda'(x) - F_{x}(x, u(x), u'(x)) \lambda(x) \right) dx.$$

Falls u nur von der Klasse $C^1(I, \mathbb{R}^N)$ ist und λ kompakten Träger in I hat, dann existiert ein Teilintervall $J := (c, d) \subset \subset I$, $-\infty < c < d < \infty$, (d.h. der Abschluss $\overline{J} = [c, d]$ ist ein endliches Teilintervall von I), so dass $u \in C^1(\overline{J}, \mathbb{R}^N)$, und so dass der Träger supp λ in J enthalten ist. Definiere die Fortsetzung

$$U(x) := \begin{cases} u(x) & \text{für } x \in \overline{J} \\ u(c) + u'(c)(x - c) & \text{für } x < c \\ u(b) + u'(b)(x - b) & \text{für } x > b, \end{cases}$$

von $u|_{[c,d]}$ auf ganz \mathbb{R} . Dann ist $U \in C^1(\mathbb{R}, \mathbb{R}^N) \subset C^1(\overline{I}, \mathbb{R}^N)$ und man beweist die Formel (1.13) zunächst für U. Da aber der Träger von λ in J enthalten ist, wo U mit u übereinstimmt, hat man (1.13) auch für u.

Lemma 1.17

Für eine beliebige Funktion $\lambda \in C_0^{\infty}(I)$ existiert eine zulässige Parametervariation $\{\xi(\cdot,\varepsilon)\}_{\varepsilon}$, deren Variationsvektorfeld mit λ übereinstimmt, d.h. mit

$$\lambda(t) = \frac{\partial \xi}{\partial \varepsilon}(t, 0).$$

Beweis. Für ein beliebiges $\lambda \in C_0^\infty(I)$ setze $\tau(x,\varepsilon) := x - \varepsilon \lambda(x)$, wobei $|\varepsilon| < \varepsilon_0(\lambda) \ll 1$. Wir werden beweisen, dass dann die Schar $\{\xi(\cdot,\varepsilon)\}_{\varepsilon} := \{(\tau(\cdot,\varepsilon))^{-1}\}_{\varepsilon}$ eine zulässige Parametervariation mit λ als Variationsvektorfeld ist. Tatsächlich ist $\tau(\cdot,\varepsilon)$ eine bijektive Abbildung für ε hinreichend klein und damit global umkehrbar auf \bar{I} . Die Differenzierbarkeit der eindeutigen Umkehrabbildung $\xi(\cdot,\varepsilon) := (\tau(\cdot,\varepsilon))^{-1}$ folgt dann aus dem Umkehrsatz (siehe z.B. [3], wenn man $\tau \in C^\infty(\bar{I} \times (-\varepsilon_0,\varepsilon_0))$ mit $\tau_x(x,\varepsilon) = 1 - \varepsilon \lambda'(x) \neq 0$ für alle $\varepsilon < 1/\|\lambda'\|_{C^0(\bar{I})}$ berücksichtigt. Tatsächlich ist wegen supp $\lambda \subset I$

$$\begin{split} \tau(a,\varepsilon) &= a\,, \quad \tau(b,\varepsilon) = b \quad \Rightarrow \xi(a,\varepsilon) = \xi(\tau(a,\varepsilon),\varepsilon) = a\,, \quad \xi(b,\varepsilon) = b, \\ \tau(x,0) &= x, \quad \Rightarrow \tau_x(x,0) = 1 \quad \text{ und } \ \xi(t,0) = t, \end{split}$$

womit die Schar $\{\xi(\cdot,\varepsilon)\}_{\varepsilon}$ nach Definition 1.14 eine zulässige Parametervariation ist, sobald man sich davon überzeugt hat, dass $\xi(\cdot,\cdot)\in C^2(\overline{I}\times(-\varepsilon_0,\varepsilon_0))$. Dazu fassen wir τ als Abbildung

$$\tau(\cdot,\cdot): \mathbb{R} \times (-\varepsilon_0,\varepsilon_0) \to \mathbb{R} \times (-\varepsilon_0,\varepsilon_0)$$

auf, was möglich ist, indem man $\lambda \in C_0^\infty(I)$ durch Null auf ganz $\mathbb R$ fortsetzt. Dann gilt für die C^∞ -glatte Abbildung

$$T: \mathbb{R} \times (-\varepsilon_0, \varepsilon_0) \to \mathbb{R} \times (-\varepsilon_0, \varepsilon_0)$$

definiert durch $T(x,\varepsilon) := (\tau(x,\varepsilon),\varepsilon)$, dass det $DT(x,\varepsilon) = 1 - \varepsilon \lambda'(x) > 0$ für alle $|\varepsilon| < 1/\|\lambda\|_{C^1(\mathbb{R})}$, so dass für alle $(x_1,\varepsilon_1) \in \mathbb{R} \times (-\varepsilon_0,\varepsilon_0)$ die (eindeutig bestimmte) Umkehrabbildung $S = T^{-1}$ auf einer offenen Umgebung von $(\tau(x_1,\varepsilon_1),\varepsilon_1)$ existiert. Das bedeutet

$$S(T(x,\varepsilon)) = (x,\varepsilon)$$
 für alle $(x,\varepsilon) \in B_{\delta}(x_1,\varepsilon_1) \subset \mathbb{R} \times (-\varepsilon_0,\varepsilon_0)$

und $S \in C^{\infty}(B_{\delta}(x_1, \varepsilon_1), \mathbb{R} \times \mathbb{R})$ für ein hinreichend kleines $\delta > 0$. Insbesondere gilt für die erste Komponente

$$S^1(T(x,\varepsilon)) = S^1(\tau(x,\varepsilon),\varepsilon) = x \quad \text{ für alle } |\varepsilon - \varepsilon_1| \ll 1.$$

Wegen der Eindeutigkeit der Umkehrabbildung ist aber $S^1(t,\varepsilon) = \xi(t,\varepsilon)$ für alle $(t,\varepsilon) \in \overline{I} \times (-\varepsilon_0,\varepsilon_0)$ mit $|t-\tau(x_1,\varepsilon_1)| + |\varepsilon-\varepsilon_1| \ll 1$, so dass $\xi \in C^{\infty}(B_{\sigma}(\tau(x_1,\varepsilon_1),\varepsilon_1))$ für $0 < \sigma \ll 1$. Da (x_1,ε_1) beliebig in $\mathbb{R} \times (-\varepsilon_0,\varepsilon_0)$ gewählt waren, also speziell beliebig in $\overline{I} \times (-\varepsilon_0,\varepsilon_0)$, folgt $\xi \in C^{\infty}(\overline{I} \times (-\varepsilon_0,\varepsilon_0))$ wie gewünscht.

Korollar 1.18

Sei $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$. Falls für $u \in C^1(\overline{I}, \mathbb{R}^N)$ die Ungleichung $\mathcal{F}(u) \leq \mathcal{F}(u(\xi(\cdot, \varepsilon)))$ für alle zulässigen Parametervariationen $\xi(\cdot, \varepsilon)$ erfüllt ist, oder falls für $u \in C^1(I, \mathbb{R}^N)$ auch nur die Identität

$$\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \mathcal{F}(u(\xi(\cdot,\varepsilon))) = 0 \tag{1.17}$$

für alle zulässigen Parametervariationen $\xi(\cdot,\varepsilon)$ mit Variationsvektorfeldern mit kompakten Trägern in I gilt, dann ist

$$\int_{I} \left(\left[u' \cdot F_p(\cdot, u, u') - F(\cdot, u, u') \right] \lambda' - F_x(\cdot, u, u') \lambda \right) dx = 0 \quad \forall \ \lambda \in C_0^{\infty}(I).$$

Beweis. Zu $\lambda \in C_0^\infty(I)$ existiert nach Lemma 1.17 eine zulässige Parametervariation $\{\xi(\cdot,\varepsilon)\}_{\varepsilon}$ mit λ als Variationsvektorfeld. Wenden wir Proposition 1.16 nun auf diese zulässige Parametervariation an, dann erhalten wir aus (1.13) die Form für die erste innere Variation in Richtung von λ . Das Verschwinden dieser ersten inneren Variation folgt aus der angenommenen Minimalität von u, oder aus der alternativ in (1.17) angenommenen Kritikalität von u bezüglich innerer Variationen mit Variationsvektorfeldern mit kompakten Trägern in I.

Proposition 1.19 [Erdmann- und Noether-Gleichung] Seien $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ und $u \in C^1(I,\mathbb{R}^N)$. Falls $\frac{d}{d\varepsilon}|_{\varepsilon=0}\mathcal{F}(u(\xi(\cdot,\varepsilon)))=0$ für alle zulässigen Parametervariationen ξ , deren Variationsvektorfelder kompakten Träger in I haben, dann existiert für jede Zahl $d \in (a,b)=I$ eine Konstante $c_d \in \mathbb{R}$, so dass

$$E(x, u(x), u'(x)) = c_d - \int_d^x F_x(y, u(y), u'(y)) dy \quad \text{ für alle } x \in I \quad \text{(Erdmann-Gleichung)}, \tag{1.18}$$

wobei $E(x, z, p) := p \cdot F_p(x, z, p) - F(x, z, p)$. Weiterhin gilt

$$\frac{\mathrm{d}}{\mathrm{d}x}\Big(E(x,u(x),u'(x))\Big) + F_x(x,u(x),u'(x)) = 0 \quad \text{für alle } x \in I \quad \text{(Noether-Gleichung)}.$$
(1.19)

Falls zusätzlich $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann gelten die Gleichungen (1.18) und (1.19) sogar auf \overline{I} . Weiterhin könnte man dann in (1.18) auch a anstelle von d wählen, so dass in dem Fall ein Vektor $c_a \in \mathbb{R}^N$ anstelle von c_d in (1.18) aufträte.

Bemerkung:

Im Spezialfall $F = F(z, p) \in C^2(\mathbb{R}^N \times \mathbb{R}^N)$ und $u \in C^2(I, \mathbb{R}^N)$ folgt (1.18) direkt aus Gleichung (1.12) in Proposition 1.13.

Beweis. Nach Korollar 1.18 gilt

$$\int_{I} \left(\left(u' \cdot F_p(\cdot, u, u') - F(\cdot, u, u') \right) \lambda' - F_x(\cdot, u, u') \lambda \right) dx = 0 \quad \text{für alle } \lambda \in C_0^{\infty}(I).$$

Für $d \in (a, b)$ ergibt sich nach einer partiellen Integration

$$\int_{I} \left(u'(x) \cdot F_{p}(x, u(x), u'(x)) - F(x, u(x), u'(x)) + \int_{d}^{x} F_{x}(y, u(y), u'(y)) \, \mathrm{d}y \right) \lambda'(x) \, \mathrm{d}x = 0.$$

Nach dem Fundamentallemma von DuBois-Reymond, Lemma 1.10, gibt es ein $c_d \in \mathbb{R}$, so dass

$$u'(x) \cdot F_p(x, u(x), u'(x)) - F(x, u(x), u'(x)) + \int_d^x F_x(y, u(y), u'(y)) dy = c_d \quad \forall \ x \in I,$$

womit (1.18) bewiesen ist.

Für $x_0 \in I$ wähle nun $\delta > 0$, so dass $B_{\delta}(x_0) \subset I$. Dann ist die Funktion

$$f(x) := \int_{d}^{x} F_x(y, u(y), u'(y)) dy, \quad x \in B_{\delta}(x_0),$$

in der Klasse $C^1(B_{\delta}(x_0))$, und wir können die Erdmann-Gleichung (1.18) in $B_{\delta}(x_0)$ differenzieren und erhalten so die Noether-Gleichung (1.19) für alle $x \in B_{\delta}(x_0)$, speziell also in x_0 selbst. Da $x_0 \in I$ beliebig gewählt war, folgt die Behauptung. Falls $u \in C^1(\overline{I}, \mathbb{R}^N)$, dann sind alle Ausdrücke in (1.18) und (1.19) stetig auf \overline{I} fortsetzbar. Zusätzlich könnte man in (1.18) dann auch a als Anfangspunkt der Integration wählen, so dass diese Gleichung (mit einem möglicherweise anderen Vektor c_a anstelle von c_d) auf ganz \overline{I} gilt.

Beispiel 1.8

Für eine Zahl $\alpha > 1$ sei die Funktion $H = H(z, p) \in C^1(\mathbb{R}^N \times (\mathbb{R}^N \setminus \{0\}))$ positiv α -homogen in p, d.h.

$$H(z,tp) = t^{\alpha}H(z,p)$$
 für alle $t > 0$. (H)

Zunächst folgt aus dieser Homogenitätsrelation durch den Grenzübergang $t\downarrow 0$, dass sich die Funktion H durch den Wert H(z,0):=0 für jedes $z\in\mathbb{R}^N$ stetig auf den Ganzraum $\mathbb{R}^N\times\mathbb{R}^N$ fortsetzen lässt. Differentiation von (H) nach der p-Variablen liefert $tH_p(z,tp)=t^\alpha H_p(z,p)$ und damit die positive $(\alpha-1)$ -Homogenität des Gradienten H_p in der p-Variablen. Da $\alpha-1>0$ nach Voraussetzung liefert dasselbe Fortsetzungsargument, dass wir ohne Einschränkung $H\in C^1(\mathbb{R}^N\times\mathbb{R}^N)$ annehmen dürfen. Durch Differentiation nach t folgt

$$H_{p}(z,tp) \cdot p = \alpha t^{\alpha-1} H(z,p) \quad \forall t > 0$$

$$\Rightarrow \quad H_{p}(z,p) \cdot p = \alpha H(z,p)$$

$$\Rightarrow \quad E := p \cdot H_{p} - H = (\alpha - 1)H$$

$$(1.19) \quad H(u(.),u'(.)) = konst. \text{ auf } \overline{I} \quad \forall u \in C^{1}(\overline{I},\mathbb{R}^{N}) \text{ mit } \partial \mathcal{H}(u,\lambda) = 0 \ \forall \lambda \in C_{0}^{\infty}(I),$$

wobei

$$\mathcal{H}(u) := \int_{I} H(u(x), u'(x)) \, \mathrm{d}x.$$

Sei nun speziell H(z,p) > 0 für alle $z \in \mathbb{R}^N$ und für $|p| \neq 0$ und außerdem $u(a) \neq u(b)$. Dann existiert ein $\xi \in (a,b)$ mit $u'(\xi) \neq 0$, und es folgt

$$0 < H(u(\xi), u'(\xi)) = H(u(x), u'(x))$$

$$\Rightarrow u'(x) \neq 0 \quad \forall x \in \overline{I},$$

denn wir hatten (nach Fortsetzung) H(z,0)=0. Damit ist $u\in C^1(\overline{I},\mathbb{R}^N)$ eine reguläre Kurve. Schwache kritische Punkte bezüglich innerer Variationen für Variationsintegrale mit derart homogenen Integranden sind also automatisch regulär parametrisiert. Diese Beobachtung lässt sich beispielsweise bei der Regularitätstheorie für Hindernisprobleme solcher Variationsintegrale ausnutzen. Tatsächlich kann man a priori mitunter nicht feststellen, ob und wo die Lösung das Hindernis berührt. Abhängig von der jeweiligen Berührsituation kann es schwierig oder gar unmöglich sein, zulässige äußere Variationen $u+\varepsilon\varphi$ zu finden. Innere Variationen hingegen führen zu keiner Änderung im Bildbereich der Lösung, so dass solche Variationen eine Hindernisbedingung automatisch respektieren und damit zulässig sind, siehe auch Kapitel 5, Abschnitt ??. Für ähnliche Schlüsse bei Variationsproblemen für parametrische Flächen siehe z.B. [32], [33], [34]; dort liefert das Verschwinden der ersten inneren Variation des Funktionals die konforme Parametrisierung der Lösungen.

1.3 Variationsprobleme mit Nebenbedingungen, LAGRANGE-Multiplikatorregel

In diesem Abschnitt werden Variationsprobleme der Art

$$\mathcal{F}(v) := \int_I F(x, v(x), v'(x)) dx \longrightarrow \min!$$

in bestimmten Funktionenklassen vom Typ

$$\mathcal{C} := \{v \in C^1(\overline{I}, \mathbb{R}^N) : \text{ Randdaten für } v \text{ auf } \partial I, \text{ Nebenbedingungen für } v\}$$

betrachtet. Hierbei gibt es unterschiedliche Arten von Nebenbedingungen, von denen wir einige im Folgenden nennen, und nur die erste Art dieser Nebenbedingungen soll hier anschließend näher betrachtet werden.

A. Isoperimetrische Nebenbedingungen

$$\mathcal{G}(v) := \int_I G(x, v(x), v'(x)) \, \mathrm{d}x \stackrel{!}{=} \omega \;, \quad \omega \in \mathbb{R}.$$

Beispiel

Betrachte für N=1 das Variationsintegral

$$\mathcal{F}(v) := \int_{I} \left(v'^{2}(x) + c(x)v^{2}(x) \right) dx \longrightarrow \min!$$

in der Klasse

$$\mathcal{C}(\alpha, \beta, \omega) := \{ v \in C^1(\overline{I}) : v(a) = \alpha, \ v(b) = \beta, \ \int_I v^2(x) \, \mathrm{d}x = \omega \}$$

für gegebene Randwerte $\alpha, \beta \in \mathbb{R}$, was auf Eigenwertprobleme für einen speziellen STURM-LIOUVILLE-Operator führt, vgl. Beispiel 1.1.

B. Holonome Nebenbedingungen

$$G(x, v(x)) = 0 \quad \forall x \in I.$$

Beispiel

Zu untersuchen ist für N=3

$$\mathcal{F}(v) := \int_{I} |v'(x)|^2 \, \mathrm{d}x \, \longrightarrow \, \min!$$

in der Klasse

$$C(P_1, P_2) := \{ v \in C^1(\overline{I}, \mathbb{R}^3) : v(a) = P_1, \ v(b) = P_2, \ |v(x)|^2 = 1 \ \forall x \in I \}.$$

Man minimiert also die Länge von Kurven auf der Einheitssphäre \mathbb{S}^2 mit fixierten Endpunkten $P_1, P_2 \in \mathbb{S}^2$. Im Gegensatz zu dem gewichteten Längenfunktional in Beispiel 1.3 für Graphen im \mathbb{R}^2 betrachten wir hier das ungewichtete parametrische Längenfunktional (mit Gewicht $\omega(x, z) \equiv 1$).

C. Nichtholonome Nebenbedingungen

$$G(x, v(x), v'(x)) = 0 \quad \forall x \in I.$$

Beispiel

Gegeben sei für N=3 das Minimierungsproblem

$$\mathcal{F}(v) := \int_{I} v^{3}(x) \, \mathrm{d}x \longrightarrow \min!$$

in der Klasse

$$\tilde{\mathcal{C}}(P_1, P_2) := \{ v = (v^1, v^2, v^3) \in C^1(\overline{I}, \mathbb{R}^3) : v(a) = P_1, \ v(b) = P_2,$$

$$|v(x)|^2 = 1, \ |v'(x)| = 1 \text{ für alle } x \in I \}.$$

Dieses Variationsproblem stellt ein einfaches Modell für einen nicht dehnbaren Faden mit Gewicht auf der Einheitssphäre \mathbb{S}^2 mit Endpunkten $P_1, P_2 \in \mathbb{S}^2$ dar.

D. Ungleichungsnebenbedingungen

$$G(x, v(x), v'(x)) \ge 0 \quad \forall x \in I.$$

Beispiel

Sei N=1 und I=(a,b) mit $-\infty < a \le -1 < 1 \le b < \infty$. Man betrachtet

$$\mathcal{F}(v) := \int_{I} \sqrt{1 + v'^{2}(x)} \, \mathrm{d}x \longrightarrow \min!$$

in der Klasse

$$\mathcal{C}(h) := \{ v \in C^1(\overline{I}) : v(a) = 0, \ v(b) = 0, \ v(x) \ge h(x) := 1 - |x| \}.$$

Dies entspricht dem in Abbildung 1.2 dargestellten Hindernisproblem.

Dieses Beispiel macht insbesondere deutlich, welche Schwierigkeiten mit der Wahl der betrachteten Klasse zusammenhängen: So ist etwa für a=-1,b=1 die kürzeste Verbindung der beiden Punkte, die der Ungleichung genügt, nämlich die Funktion u(x)=1-|x|=h(x), keine C^1 -Funktion.

Abbildung 1.2: v(x) soll für alle $v \in \mathcal{C}(h)$ größer oder gleich als h(x) = 1 - |x| sein.

Für isoperimetrische Nebenbedingungen ergibt sich die für die klassische Variationsrechnung zentrale

Proposition 1.20 [Lagrange-Multiplikator-Regel]

Seien $F, G \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$, $\omega \in \mathbb{R}$ und $\delta > 0$. Es gelte für ein $u \in C(\alpha, \beta, \omega)$

$$\mathcal{F}(u) \leq \mathcal{F}(v)$$
 für alle $v \in \mathcal{C}(\alpha, \beta, \omega)$ mit $||u - v||_{C^1(\bar{I}, \mathbb{R}^N)} < \delta$,

wobei

$$\mathcal{C}(\alpha,\beta,\omega) := \{ v \in C^1(\overline{I},\mathbb{R}^N) : v(a) = \alpha, \ v(b) = \beta, \ \mathcal{G}(v) := \int_I G(x,v(x),v'(x)) \, \mathrm{d}x = \omega \}.$$

Weiterhin existiere ein $\tilde{\psi} \in C_0^{\infty}(I, \mathbb{R}^N)$, so dass $\delta \mathcal{G}(u, \tilde{\psi}) \neq 0$. Dann gibt es ein $\lambda \in \mathbb{R}$, so dass u ein schwacher kritischer Punkt von $\mathcal{F} + \lambda \mathcal{G}$ ist, d.h.

$$\delta \mathcal{F}(u,\varphi) + \lambda \delta \mathcal{G}(u,\varphi) = 0 \quad \forall \varphi \in C_0^{\infty}(I,\mathbb{R}^N),$$
 (1.20)

und es gilt

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[F_p(\cdot, u, u') + \lambda G_p(\cdot, u, u') \right] - \left[F_z(\cdot, u, u') + \lambda G_z(\cdot, u, u') \right] = 0 \quad \text{auf } \overline{I}.$$
 (1.21)

Beweis. Wir definieren $\psi := \frac{\tilde{\psi}}{\delta \mathcal{G}(u,\tilde{\psi})}$, so dass $\delta \mathcal{G}(u,\psi) = 1$ wegen der Linearität des Funktionals $\delta \mathcal{G}(u,.)$. Desweiteren setzen wir für eine gegebene Funktion $\varphi \in C_0^{\infty}(I,\mathbb{R}^N)$

$$\Phi(\varepsilon, t) := \mathcal{F}(u + \varepsilon \varphi + t \psi),
\Gamma(\varepsilon, t) := \mathcal{G}(u + \varepsilon \varphi + t \psi)$$

für $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ und $t \in (-t_0, t_0)$, wobei

$$0 < \varepsilon_0 = \varepsilon_0(\varphi) := \frac{\delta}{2\|\varphi\|_{C^1(\overline{I},\mathbb{R}^N)} + 1}, \qquad 0 < t_0 = t_0(\psi) := \frac{\delta}{2\|\psi\|_{C^1(\overline{I},\mathbb{R}^N)}}.$$

Dann gilt $\Gamma(0,0) = \omega$ und $\Gamma_t(0,0) = \delta \mathcal{G}(u,\psi) = 1$. Um Γ nur noch als Funktion von ε auffassen zu können, verwenden wir den Satz über implizite Funktionen: Danach gibt es $\varepsilon_1 \in (0,\varepsilon_0]$, so dass eine Funktion $\tau = \tau(\varepsilon) \in C^1((-\varepsilon_1,+\varepsilon_1))$ mit $\tau(0) = 0$ existiert, so dass

$$\Gamma(\varepsilon, \tau(\varepsilon)) = \omega$$
 für alle $\varepsilon \in (-\varepsilon_1, +\varepsilon_1)$. (1.22)

Abbildung 1.3: u wird durch φ und ψ gestört.

Einerseits folgt daraus durch Differentiation nach ε

$$\Gamma_{\varepsilon}(0,0) + \underbrace{\Gamma_{t}(0,0)}_{=1} \tau_{\varepsilon}(0) = 0$$
, also $\tau_{\varepsilon}(0) = -\Gamma_{\varepsilon}(0,0) = -\delta \mathcal{G}(u,\varphi)$.

Andererseits gilt wegen (1.22)

$$u + \varepsilon \varphi + \tau(\varepsilon) \psi \in \mathcal{C}(\alpha, \beta, \omega)$$
 für alle $\varepsilon \in (-\varepsilon_1, \varepsilon_1)$.

Darüberhinaus findet man wegen der Stetigkeit von τ findet man $\varepsilon_2 \in (0, \varepsilon_1]$, so dass

$$\|u - (u + \varepsilon \varphi + \tau(\varepsilon)\psi\|_{C^1(\overline{I},\mathbb{R}^N)} < \delta$$
 für alle $\varepsilon \in (-\varepsilon_2, \varepsilon_2)$.

Wegen der Minimaleigenschaft von u gilt deshalb nun $\Phi(0,0) \leq \Phi(\varepsilon,\tau(\varepsilon))$ für alle $\varepsilon \in (-\varepsilon_2,\varepsilon_2)$, und damit

$$0 = \frac{\mathrm{d}}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0} \Phi(\varepsilon, \tau(\varepsilon)) = \Phi_{\varepsilon}(0, 0) + \Phi_{t}(0, 0)\tau_{\varepsilon}(0)$$
$$= \delta \mathcal{F}(u, \varphi) + \delta \mathcal{F}(u, \psi) (-\delta \mathcal{G}(u, \varphi)),$$

womit die Behauptung für $\lambda := -\delta \mathcal{F}(u, \psi)$ bewiesen ist. Nach Korollar 1.11 folgt auch (1.21).

Beispiel 1.9 [STURM-LIOUVILLESCHES EIGENWERTPROBLEM] Wir betrachten für N=1 das Variationsproblem

$$\mathcal{F}(v) := \int_{I} \left(v'^{2}(x) + c(x)v^{2}(x) \right) dx \longrightarrow \min!$$

(vgl. Beispiel 1.1) mit den Neben- und Randbedingungen

$$G(v) := \int_{I} v^{2}(x) dx \equiv \omega \neq 0, \qquad v(a) = 0 = v(b).$$
 (1.23)

Wir haben also für den Integranden $G(x,z,p)=z^2$ der isoperimetrischen Nebenbedingung mit $G_p(x,z,p)=0$ und $G_z(x,z,p)=2z$

$$\delta \mathcal{G}(u, \tilde{\psi}) = \int_{I} G_{z}(x, u(x), u'(x)) \tilde{\psi}(x) dx = 2 \int_{I} u(x) \tilde{\psi}(x) dx.$$

Wäre dieser Ausdruck gleich Null für alle $\tilde{\psi} \in C_0^{\infty}(I)$, dann erhielte man $u \equiv 0$ nach dem Fundamentallemma der Variationsrechnung, Lemma 1.4, woraus aber sofort $\mathcal{G}(u) = 0 \neq \omega$ im Widerspruch zu (1.23) folgen würde. Damit ist die Nichtentartungsbedingung

aus Proposition 1.20 für dieses Beispiel verifiziert. Die LAGRANGE-Multiplikatorregel mit Gleichung (1.21) ergibt für die Lösung $u \in C^2(I) \cap C^1(\overline{I})$ die Euler-Lagrange-Gleichung

$$\exists \lambda \in \mathbb{R} : \quad \frac{\mathrm{d}}{\mathrm{d}x} [2u'(x)] - [2c(x)u(x) + \lambda 2u(x)] = 0. \tag{ELG}_{1.9}$$

Die Lösung u ist also eine Eigenfunktion des Sturm-Liouville-Operators

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + c$$

zum reellen Eigenwert $-\lambda$.

Beispiel 1.10 [Klassisches isoperimetrisches Problem]

Wir untersuchen das Problem, diejenige einfache geschlossene Kurve $\gamma \subset \mathbb{R}^2$ mit vorgegebener Länge zu finden, welche den maximalen Flächeninhalt einschließt. Wir gehen dabei von der Annahme aus, dass eine C^2 -Kurve γ als Lösung existiert. Außerdem begnügen wir uns mit dem anschaulich leicht verständlichen graphischen Argument, dass die gesuchte Kurve konvex sein muss, da sonst der Flächeninhalt nicht maximal sein kann. Tatsächlich kann man im Falle einer nicht konvexen Kurve "Einbuchtungen" an einer zugehörigen St utzgeraden nach außen reflektieren und erhält somit eine Kurve gleicher Länge, die einen strikt größeren Flächeninhalt einschließt, siehe Abbildung 1.4. Zur Vereinfachung der folgenden Argumentation gehen wir davon aus, dass das von γ eingeschlossene Gebiet sogar strikt konvex ist.

Abbildung 1.4: Die Kurve muss konvex sein.

In Vorwegnahme des Ergebnisses gilt es nun zu beweisen, dass jedes Teilstück von γ ein Kreisbogen ist; daraus folgt dann auch sofort, dass die Kurve insgesamt eine Kreislinie ist, da vorausgesetzt war, dass γ von der Klasse C^2 ist.

Sei ein Teilstück von γ nun als Graph einer Funktion $u \in C^2([a,b])$ parametrisiert. Dann löst u zu gegebenem $w \in C^2([a,b])$ das folgende Variationsproblem:

$$\mathcal{A}(v) := \int_{a}^{b} (v(x) - w(x)) dx \longrightarrow \max!$$

in der Klasse

$$\mathcal{C}(P_1, P_2, \ell) := \{ v \in C^2([a, b]) : (a, v(a)) = P_1, (b, v(b)) = P_2, v > w,$$

$$\mathcal{L}(v) := \int_a^b \sqrt{1 + v'^2(x)} \, \mathrm{d}x \stackrel{!}{=} \ell \},$$

wobei wegen der strikten Konvexität des von γ eingeschlossenen Gebietes eine Gerade ausgeschlossen wird, also $\ell > |P_1 - P_2|$. Die Lösung u erfüllt folglich

$$\mathcal{A}(u) = \sup_{\mathcal{C}(P_1, P_2, \ell)} \mathcal{A}(.),$$

und wir bemerken, dass die Herleitung der Lagrange-Multiplikatorregel in Proposition 1.20 vollkommen analog verläuft, wenn man einen lokalen Maximierer in der zulässigen Menge anstelle eines lokalen Minimierers annimmt.

Abbildung 1.5: Zur Berechnung des Flächeninhalts.

Um nun die LAGRANGE-Multiplikator-Regel aus Proposition 1.20 tatsächlich anwenden zu können, muss noch nachgeprüft werden, ob ein $\tilde{\psi} \in C_0^{\infty}((a,b))$ existiert, so dass $\delta \mathcal{L}(u,\tilde{\psi}) \neq 0$. Da nun $\mathcal{L}(u) = \ell > |P_1 - P_2|$ gilt, ist mit Sicherheit $u' \neq konst.$, und damit verschwindet auch die Krümmung κ von u nicht identisch. Nach der Rechnung in Beispiel 1.3 wissen wir, dass

$$\delta \mathcal{L}(u, \tilde{\psi}) = \int_a^b \frac{u'(x)}{\sqrt{1 + u'^2(x)}} \tilde{\psi}'(x) \, \mathrm{d}x = -\int_a^b \kappa(x) \tilde{\psi}(x) \, \mathrm{d}x.$$

Wäre nun dieser Ausdruck gleich Null für alle $\tilde{\psi} \in C_0^{\infty}((a,b))$, dann hätten wir nach dem Fundamentallemma, Lemma 1.4, für dieses Teilstück von γ eine verschwindende Krümmung im Widerspruch zur Annahme der strikten Konvexität.

Auch ohne die geometrische Deutung als Krümmung kann man mit Lemma 1.4 aus der Widerspruchsannahme $\delta\mathcal{L}(u,\tilde{\psi})=0$ für alle $\psi\in C_0^\infty((a,b))$ schließen

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'}{\sqrt{1 + u'^2}} \right) = 0 \quad \text{auf } (a, b),$$

woraus folgt, dass

$$\frac{u'}{\sqrt{1+u'^2}} \equiv konst. =: c \quad \text{auf } (a,b).$$

Falls c=0 folgt sofort $u'\equiv 0$ im Widerspruch zur Annahme, dass u keine Gerade beschreibt. Da $u'\not\equiv 0$ gilt $c\in (-1,1)$, und damit wird folgende Umformung nach Quadrierung möglich:

$$u'^{2} = (1 + u'^{2})c^{2}$$

$$\Rightarrow u'^{2}(1 - c^{2}) = c^{2}$$

$$\Rightarrow u'^{2} = \frac{c^{2}}{1 - c^{2}},$$

was aber wieder bedeuten würde, dass $u' \equiv konst.$ wiederum im Widerspruch zur Annahme.

Da $u \in C^2([a,b])$, gibt es nach Proposition 1.20 einen LAGRANGE-Multiplikator $\lambda \in \mathbb{R}$ so dass die Euler-Lagrange-Gleichung

$$\frac{\mathrm{d}}{\mathrm{d}x}[A_p(x, u(x), u'(x)) + \lambda L_p(x, u(x), u'(x))] - [A_z(x, u(x), u'(x)) + \lambda L_z(x, u(x), u'(x))] = 0$$

erfüllt ist, wobei

$$A(x, z, p) = z - w(x)$$
 und $L(x, z, p) = \sqrt{1 + p^2}$.

Es ist

$$A_{z}(x, u(x), u'(x)) = 1,$$

$$A_{p}(x, u(x), u'(x)) = 0,$$

$$L_{z}(x, u(x), u'(x)) = 0,$$

$$L_{p}(x, u(x), u'(x)) = \frac{u'(x)}{\sqrt{1 + u'^{2}(x)}},$$

also

$$\lambda \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right) - 1 = 0 \quad \Leftrightarrow \quad \kappa = \frac{1}{\lambda} = konst.,$$
 (ELG_{1.10})

und da ein Geradenstück ausgeschlossen wurde, erlaubt die konstante Krümmung nur noch den Schluss auf einen Kreisbogen⁴.

Abbildung 1.6: Die hängende Kette.

Beispiel 1.11 [Die hängende Kette]

Eine idealisierte Kette fester Länge wird an ihren Enden in einem homogenen Schwerefeld an zwei Punkten P_1 und P_2 aufgehängt. Dabei krümmt sie sich derart, dass ihre potentielle Energie minimiert wird. Die potentielle Energie ist direkt proportional zur Höhe des

 $^{^4\}mathrm{Im}~\mathbb{R}^3$ hingegen könnte man auch noch Spiralen konstanter Krümmung erhalten, vgl. z.B. [15, Übung 1, S. 19].

Schwerpunktes. Der Schwerpunkt einer parametrisierten Kurve $t \mapsto \gamma(t) \in \mathbb{R}^N$, $t \in [t_1, t_2]$, wird durch den Vektor

$$\frac{\int_{\gamma} \gamma(s) ds}{\int_{\gamma} ds} := \frac{\int_{t_1}^{t_2} \gamma(t) |\dot{\gamma}(t)| dt}{\int_{t_1}^{t_2} |\dot{\gamma}(t)| dt}$$

beschrieben. Es ist vernünftig anzunehmen, dass die Lösungskurve als Graph einer skalaren Funktion $v:[a,b]\to\mathbb{R}$ darstellbar ist. Für eine solche Kurve hat der Ortsvektor des Schwerpunktes die folgende Form:

$$\frac{\int_a^b \left(\begin{array}{c} x \\ v(x) \end{array}\right) \sqrt{1 + v'^2(x)} \, \mathrm{d}x}{\int_a^b \sqrt{1 + v'^2(x)} \, \mathrm{d}x}.$$

Da die hängende Kette mit gegebener Länge sich so ausrichtet, dass ihr Schwerpunkt möglichst tief liegt, lautet das zugehörige Minimierungsproblem (vgl. Beispiel 1.3 für $\omega(x,z) := z$)

$$\mathcal{F}(v) := \int_{I} v(x) \sqrt{1 + v'^{2}(x)} \, \mathrm{d}x \longrightarrow \min!$$

in der Klasse

$$C(P_1, P_2, \omega) := \{ v \in C^1(\overline{I}) : (a, v(a)) = P_1, (b, v(b)) = P_2, \mathcal{L}(v) = \omega \} \quad \text{mit } \omega > |P_1 - P_2|.$$

Wie im vorherigen Beispiel gibt es wegen $\mathcal{L}(v) > |P_1 - P_2|$ eine Funktion $\tilde{\psi} \in C_0^{\infty}(I)$ mit $\delta \mathcal{L}(u, \tilde{\psi}) \neq 0$ für einen Minimierer $u \in \mathcal{C}(P_1, P_2, \omega)$, so dass nach Proposition 1.20 ein $\lambda \in \mathbb{R}$ existiert mit

$$\delta \mathcal{F}(u,\varphi) + \lambda \delta \mathcal{L}(u,\varphi) = 0 \quad \forall \varphi \in C_0^{\infty}(I).$$

Für einen Minimierer $u \in C^2(\overline{I})$ lautet dann die Euler-Lagrange-Gleichung

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{u(x)u'(x)}{\sqrt{1 + u'^2(x)}} + \lambda \frac{u'(x)}{\sqrt{1 + u'^2(x)}} \right] - \sqrt{1 + u'^2(x)} = 0.$$
 (ELG_{1.11})

Aus der Gestalt dieser Differentialgleichung liest man ab, dass $\tilde{u} := u + \lambda$ ein schwacher kritischer Punkt des Funktionals \mathcal{F} ist, also gilt⁵

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\tilde{u}(x)\tilde{u}'(x)}{\sqrt{1 + \tilde{u}'^2(x)}} \right] - \sqrt{1 + \tilde{u}'^2(x)} = 0$$

$$\Rightarrow \frac{\tilde{u}'^2(x)}{\sqrt{1 + \tilde{u}'^2(x)}} + \tilde{u}(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\tilde{u}'(x)}{\sqrt{1 + \tilde{u}'^2(x)}} \right] - \sqrt{1 + \tilde{u}'^2(x)} = 0$$

$$\Rightarrow \tilde{u}(x)\kappa(x)\sqrt{1 + \tilde{u}'^2(x)} = 1$$

$$\Rightarrow \kappa(x) \neq 0 \quad \forall x \in I.$$

Letzteres impliziert, dass \tilde{u} und damit auch u selbst entweder strikt konvex oder strikt konkav ist.

⁵Anstelle der expliziten Rechnung könnte man hier auch die Krümmungsgleichung (ELG_{1.3}) aus Beispiel 1.3 für das Gewicht $\omega(x,z) := z$ zitieren, aus der das Nichtverschwinden der Krümmung κ von \tilde{u} folgt.

Anstatt diese Differentialgleichung zu lösen, machen wir mit Proposition 1.13 von der Erhaltungsgröße $E(z, p) = pF_p(z, p) - F(z, p) \equiv h \in \mathbb{R}$ Gebrauch:

$$E(\tilde{u}(x), \tilde{u}'(x)) = \frac{\tilde{u}(x)\tilde{u}'^{2}(x)}{\sqrt{1 + \tilde{u}'^{2}(x)}} - \tilde{u}(x)\sqrt{1 + \tilde{u}'^{2}(x)} = h.$$

Dies können wir umformen zu

$$\tilde{u}\tilde{u}'^2 - \tilde{u}(1 + \tilde{u}'^2) = h\sqrt{1 + \tilde{u}'^2}$$

oder

$$\frac{\tilde{u}^2}{h^2} = 1 + \left(\frac{d\tilde{u}}{dx}\right)^2,$$

woraus

$$\frac{\mathrm{d}\tilde{u}(x)}{\mathrm{d}x} = \frac{1}{h}\sqrt{\tilde{u}^2(x) - h^2}$$

folgt, was wir nach Separation der Variablen integrieren können:

$$x - a = \int_{a}^{x} dy = h \int_{\tilde{u}(a)}^{\tilde{u}(x)} \frac{d\tilde{u}}{\sqrt{\tilde{u}^{2} - h^{2}}} = h \operatorname{arcosh}\left(\frac{\tilde{u}}{h}\right) \Big|_{\tilde{u}(a)}^{\tilde{u}(x)}.$$

Die hängende Kette wird also durch einen hyperbolischen Cosinus beschrieben, wobei die Integrationskonstanten noch aus den Randdaten zu bestimmen sind; denn direktes Nachrechnen ergibt, dass diese Lösung des Erhaltungssatzes auch Lösung der EULER-LAGRANGE-Gleichung ist.

Beispiel 1.12 [Rotationssymmetrische Minimalflächen]

Wie im vorigen Beispiel betrachten wir eine Kurve, die als Graph über der x-Achse zwei Punkte P_1 und P_2 miteinander verbindet. Durch Drehung um die x-Achse erzeugt diese Kurve als Profilkurve eine zweidimensionale Rotationsfläche Σ im \mathbb{R}^3 . Nun suchen wir Rotationsflächen mit minimalem Flächeninhalt, d.h. wir betrachten das Variationsproblem⁶

$$\mathcal{A}(\Sigma) := 2\pi \int_{I} |v(x)| \sqrt{1 + v'^{2}(x)} \, \mathrm{d}x \longrightarrow \min!$$
 (1.24)

in der Klasse

$$C(P_1, P_2, +) := \{ v \in C^1(\overline{I}) : (a, v(a)) = P_1, (b, v(b)) = P_2, v > 0 \}.$$

Es handelt sich also um ein Variationsproblem ohne isoperimetrische Nebenbedingung; die strikte Ungleichungsnebenbedingung ist automatisch für genügend kleine Variationen erfüllt. Die Berechnung der Lösung erfolgt wie im Beispiel 1.11 und führt zu der Kettenlinie als Profilkurve. Die durch sie aufgespannte Fläche heißt Katenoid. Ob das Katenoid tatsächlich die flächenminimierende Lösung liefert, hängt wesentlich vom Abstand der Randkurven, also der Kreislinien zentriert in a und b ab, siehe Bild 1.7. Tatsächlich hat die zweikomponentige

⁶Diese Formel für den Flächeninhalt ergibt sich aus der Aufintegration von Mantellinienlängen der erzeugenden Kreislinien mit Umfang $2\pi|\gamma^2(s)|$ entlang der zweidimensionale Profilkurve $\gamma=(\gamma^1,\gamma^2)\in C^1$, so dass $\mathcal{A}(\Sigma)=\int_{\gamma}2\pi|\gamma^2(s)\,ds$, was man dann in die Form (1.24) umschreiben kann, wenn die Profilkurve γ als Graph einer skalaren Funktion $v\in C^1(I)$ gegeben ist.

(und damit gewissermaßen entartete) Lösung bestehend aus den beiden durch die Randkreise berandeten Kreisscheiben oberhalb eines bestimmten Abstands |a-b| einen geringeren Flächeninhalt⁷. Unter der Voraussetzung, dass das Infimum über alle zusammenhängenden Lösungen strikt kleiner ist als das Infimum über die mehrkomponentigen (entarteten) Flächen (Douglas-Bedingung), kann man die Existenz mehrfach zusammenhängender flächenminimierender Lösungen beweisen, und damit das Douglas-Problem oder verallgemeinerte Plateau-Problem lösen; siehe z.B. Courant's Buch [4, Ch. IV], Nitsche [45, S. 520ff], oder [11, Ch. 11]. Für allgemeinere parametrische Variationsprobleme (vgl. Kapitel 7.3) ist das Douglas-Problem in [39] und [35] behandelt worden, und für ähnliche geometrische Variationsprobleme höherer Ordnung, also mit Krümmungstermen im Integranden verweisen wir z.B. auf [7, 8], [48], [26], [6], [17, 18] [9].

Abbildung 1.7: *u* erzeugt die Rotationsfläche.

Beispiel 1.13 [Elastischer Faden]

Wir betrachten einen Faden, der an den Stellen x = -1 und x = +1 festgehalten wird. Seine elastische Energie wächst in einer ersten groben Näherung proportional zu seiner Längenänderung relativ zur geraden Ruhelage und wird beschrieben durch⁸

$$\mathcal{E}_1(v) := k \int_{-1}^{+1} v'^2(x) \, \mathrm{d}x,$$

wobei k eine positive (Material-) Konstante ist. Unter Berücksichtigung eines homogenen Gravitationsfeldes mit der ebenfalls positiven Konstanten g lautet nun das Variationsproblem zur Beschreibung des Fadens:

$$\mathcal{E}_1(v) + g \int_{-1}^{+1} v(x) \, \mathrm{d}x \longrightarrow \min!$$

in der Klasse

$$\mathcal{C} := \{ v \in C^1([-1, +1]) : v(-1) = 0 = v(+1) \}.$$

Zur Lösung machen wir die Annahme, dass ein $u \in C^2([-1,+1])$ existiert, welches das Funktional in der gegebenen Klasse minimiert. Die EULER-LAGRANGE-Gleichung lautet dann

$$-2ku''(x) + g = 0, (ELG1.13)$$

⁷Fügt man dem Flächenfunktional allerdings noch einen Term höherer Ordnung zur Modellierung von elastischen Membraneigenschaften hinzu, etwa das Willmorefunktional , dann gibt es über einen weit größeren Bereich zusammenhängende Energieminimierer, siehe [48]

⁸Diese erste Näherung ergibt sich aus der Taylorentwicklung $\sqrt{1+u'^2}-1=(1/2)u'^2+O(|u'|^3)$ des Integranden des nichtparametrischen Längenfunktionals.

was sofort integriert werden kann:

$$-2ku(x) = -\frac{1}{2}gx^2 + c_1x + c_2.$$

Um die Integrationskonstanten zu bestimmen, verwendet man die Randbedingungen,

$$0 = -2ku(+1) = -\frac{g}{2} + c_1 + c_2$$

$$0 = -2ku(-1) = -\frac{g}{2} - c_1 + c_2,$$

so dass sich durch Addition und Subtraktion dieser Identitäten die Konstanten $c_1=0$ und $c_2=\frac{g}{2}$ ergeben. Die Lösung lautet schließlich

$$u(x) = \frac{g}{4k}(x^2 - 1).$$

Abschließend sei bemerkt, dass sich das Variationsproblem

$$\mathcal{E}_1(u) + gu(0) \longrightarrow \min!$$

mit den bisher entwickelten Methoden *nicht* lösen läßt. Es beschreibt einen Faden, der nicht in einem Schwerefeld hängt, sondern punktförmig in seiner Mitte belastet wird. Die (nichtglatte) Lösung lautet $u(x) = \frac{g}{4k}(|x|-1)$.

Beispiel 1.14 [Elastischer Balken]

Als letztes klassisches Beispiel betrachten wir einen Balken, der an seinen beiden Enden bei x = -1 und x = +1 eingespannt ist. In erster Näherung läßt sich die elastische Energie des Balkens durch folgendes Funktional beschreiben⁹:

$$\mathcal{E}_2(v) := H \int_{-1}^{+1} (v''(x))^2 \, \mathrm{d}x,$$

wobei H wieder eine positive (Material-) Konstante ist. Im homogenen Schwerefeld haben wir also das Variationsproblem

$$\mathcal{E}_2(v) + g \int_{-1}^{+1} v(x) \, \mathrm{d}x \longrightarrow \min!$$

in der Klasse

$$\tilde{\mathcal{C}} := \{ v \in C^4([-1, +1]) : v(-1) = 0 = v(+1), \ v'(-1) = 0 = v'(+1) \};$$

die zweite Randbedingung bedeutet dabei, dass die Enden des Balkens auch in ihrer Richtung fixiert sind.

$$\kappa = \left(\frac{u'}{\sqrt{1 + u'^2}}\right)' = \frac{u''}{\sqrt{1 + u'^2}} \cong u''$$

⁹Hier ergibt sich die Näherung aus der Linearisierung der Krümmung unter der gleichzeitigen Annahme, dass sich die Länge bei Auslenkung des Balkens nur geringfügig ändert, also

Zur Lösung nehmen wir nun an, dass das Funktional einen Minimierer $u \in C^4([-1, +1])$ hat. Allgemein lauten die Euler-Langrange-Gleichungen für den Fall, dass das Funktional auch von der zweiten Ableitung abhängig ist, also mit einem Integranden F = F(x, z, p, r), wobei für r die zweiten Ableitungen u'' einer Funktion u eingesetzt werden,

$$F_z(x, u, u', u'') - \frac{\mathrm{d}}{\mathrm{d}x} F_p(x, u, u', u'') + \frac{\mathrm{d}^2}{\mathrm{d}x^2} F_r(x, u, u', u'') = 0.$$

In unserem Beispiel reduziert sich das zu

$$g + 2Hu''''(x) = 0,$$
 (ELG_{1.14})

einer gewöhnlichen Differentialgleichung vierter Ordnung, welche im Allgemeinen keine Maximumprinzipien zulassen. Hier aber liefert eine viermalige Integration

$$2Hu(x) = -\frac{g}{24}x^4 + \frac{c_1}{6}x^3 + \frac{c_2}{2}x^2 + c_3x + c_4.$$

Nutzt man nun die Randbedingungen

$$0 = 2Hu'(+1) = -\frac{g}{6} + \frac{c_1}{2} + c_2 + c_3 \tag{1.25}$$

$$0 = 2Hu'(-1) = \frac{g}{6} + \frac{c_1}{2} - c_2 + c_3 \tag{1.26}$$

$$0 = 2Hu(+1) = -\frac{g}{24} + \frac{c_1}{6} + \frac{c_2}{2} + c_3 + c_4$$
 (1.27)

$$0 = 2Hu(-1) = -\frac{g}{24} - \frac{c_1}{6} + \frac{c_2}{2} - c_3 + c_4, \tag{1.28}$$

so kann man die Werte der Integrationskonstanten berechnen.

Die Addition von (1.25) und (1.26) liefert $c_1 + 2c_3 = 0$, während deren Subtraktion auf $-g/3 + 2c_2 = 0$ führt. Die Addition von (1.27) und (1.28) impliziert $-g/12 + c_2 + 2c_4 = 0$, deren Subtraktion aber $c_1/3 + 2c_3 = 0$. Setzt man $c_1 = -2c_3$ in diese letzte Identität ein, so ergibt sich sofort $c_3 = 0$ und damit dann auch $c_1 = 0$. Setzt man zudem $c_2 = g/6$ in die Gleichung ein, in der c_2 und c_4 vorkommen, erhält man $c_4 = -g/24$ und damit schließlich die Lösung

$$u(x) = \frac{1}{2H} \left[-\frac{g}{24}x^4 + \frac{g}{12}x^2 - \frac{g}{24} \right] = -\frac{g}{48H}(x^2 - 1)^2.$$

Auch hier ist bei einer punktförmig in der Mitte ansetzenden Kraft das zugehörige Variationsproblem

$$\mathcal{E}_2(u) + qu(0) \longrightarrow \min!$$

mit den hier entwickelten Methoden nicht zu behandeln; man kann mit anderen Techniken zeigen, dass sich als (nichtglatte) Lösung die Funktion

$$u(x) = -\frac{g}{48H}(2|x|^3 - 3x^2 + 1)$$

ergibt.

Allgemein halten geometrische Randwertprobleme höherer Ordnung in höheren Dimensionen bis heute viele offene Fragen bereit.

1.4 Hamiltonsche Gleichungen

Als Alternative zu den Euler-Lagrange-Gleichungen kann mit Hilfe der Legendre-Transformation zu den Hamiltonschen Gleichungen übergehen. Das werden wir im Folgenden kurz ausführen. Wesentlich ausführlicher wird die Hamilton-Formulierung z.B. in [24] behandelt, unsere Darstellung orientiert sich eher an [5]. Modernere Entwicklungen finden sich z.B. in den Arbeiten von F. Hélein und Ko-Autoren [29, 28, 30, 31].

Definition 1.21 [Hamilton-Funktion] $F\ddot{u}r \ F \in C^k(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N), \ k \geq 2, \ definiert$

$$H(x, z, \zeta) := \sup_{p \in \mathbb{R}^N} \{ \zeta \cdot p - F(x, z, p) \} \in (-\infty, \infty]$$

die Hamilton-Funktion zu F.

Man bezeichnet dieses mit Hilfe von F gebildete Supremum auch mit $F^*(x,z,\zeta)$, die man auch die Legendre-Transformierte von $F(x,z,\cdot)$ nennt (bezüglich der dritten Variablen von F bei festgehaltenen Parametern x und z). Ziel dieses Abschnitts ist es, die Äquivalenz zwischen den Euler-Lagranger-Gleichungen und den sogenannten Hamilton-Gleichungen herzuleiten:

$$\begin{cases} u'(x) &= H_{\zeta}(x, u(x), v(x)) \\ v'(x) &= -H_{z}(x, u(x), v(x)) & \text{für alle } x \in I. \end{cases}$$
 (HAM)

Zunächst erkennt man, dass dieses System von Differentialgleichungen wiederum die Euler-Lagrange-Gleichungen des Wirkungsfunktionals

$$\mathcal{W}(u,v) := \int_{I} [u'(x)v(x) - H(x,u(x),v(x))] dx$$

sind. Tatsächlich ergibt sich (unter geeigneten Regularitätsannahmen an u, v und H) für beliebige Funktionen $\varphi, \psi \in C_0^\infty(I, \mathbb{R}^N)$ die Rechnung

$$\begin{split} \delta \mathcal{W}((u,v),(\varphi,\psi)) &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon}_{|\varepsilon=0} \mathcal{W}(u+\varepsilon\varphi,v+\varepsilon\psi) \\ &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon}_{|\varepsilon=0} \left(\int_{I} [(u'+\varepsilon\varphi')(v+\varepsilon\psi) - H(x,u+\varepsilon\varphi,v+\varepsilon\psi)] \, \mathrm{d}x \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}\varepsilon}_{|\varepsilon=0} \left(\int_{I} [u'v+\varepsilon\varphi'v+\varepsilon u'\psi - H(x,u+\varepsilon\varphi,v+\varepsilon\psi)] \, \mathrm{d}x + O(\varepsilon^{2}) \right) \\ &= \int_{I} [v\varphi'+u'\psi - H_{z}(x,u,v)\varphi - H_{\zeta}(x,u,v)\psi] \, \mathrm{d}x \\ &= \int_{I} [(-\varphi)(v'+H_{z}(x,u,v)) + \psi(u'-H_{\zeta}(x,u,v))] \, \mathrm{d}x, \end{split}$$

woraus mit dem Fundamentallemma, Lemma 1.4, die Gültigkeit von (HAM) folgt.

Die folgenden technischen Resultate enthalten die wesentlichen analytischen Grundlagen für den Übergang von den EULER-LAGRANGE-Gleichungen (ELG) zum HAMILTON-System (HAM).

Lemma 1.22

Sei $F \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ und erfülle die Bedingung

(F1) Es gibt stetige Funktionen $g: \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ und $\omega: [0, \infty) \to \mathbb{R}$ mit der Eigenschaft $\lim_{t \to \infty} \frac{\omega(t)}{t} = \infty$, so dass

$$F(x, z, p) \ge \omega(|p|) + g(x, z)$$
 für alle $(x, z, p) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$.

Dann existiert zu jedem $(x, z, \zeta) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ (mindestens) ein Vektor $p = p(x, z, \zeta) \in \mathbb{R}^N$ mit

$$H(x,z,\zeta) = \zeta \cdot p(x,z,\zeta) - F(x,z,p(x,z,\zeta)). \tag{1.29}$$

Weiterhin gilt

$$\zeta = F_p(x, z, p(x, z, \zeta))$$
 für alle solchen $p(x, z, \zeta)$, (1.30)

und für jedes R > 0 existiert eine Zahl $R_1 = R_1(R, F, g, \omega) > 0$, so dass

$$|p(x,z,\zeta)| \le R_1$$
 für alle $(x,z,\zeta) \in \overline{B_R(0)} \times \overline{B_R(0)} \times \overline{B_R(0)} \subset \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$. (1.31)

Darüberhinaus ist $H \in C^0(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$.

Beweis. Wäre die Behauptung (1.29) falsch, dann hätte man für jedes noch so groß gewählte R>0 die Ungleichung

$$H(x,z,\zeta) > \max_{p \in \overline{B_R(0)}} \{ \zeta \cdot p - F(x,z,p) \}. \tag{1.32}$$

Wenn nun zusätzlich $H(x,z,\zeta) < \infty$, dann existiert demnach eine Folge $\{p_m\} \subset \mathbb{R}^N$ mit $|p_m| \xrightarrow{m \to \infty} \infty$, so dass

$$\zeta \cdot 0 - F(x, z, 0) < H(x, z, \zeta) \leq \frac{1}{m} + \zeta \cdot p_m - F(x, z, p_m)
(F1) \frac{1}{m} + |p_m| \frac{\zeta \cdot p_m}{|p_m|} - \omega(|p_m|) - g(x, z)
= \frac{1}{m} + |p_m| \left[\frac{\zeta \cdot p_m}{|p_m|} - \frac{\omega(|p_m|)}{|p_m|} \right] - g(x, z)
\xrightarrow{m \to \infty} -\infty,$$

im Widerspruch zur Voraussetzung, dass $-F(x,z,0) \in \mathbb{R}$. Wenn aber $H(x,z,\zeta) \not< \infty$ und (1.32) gilt, dann gibt es auch eine Folge $\{p_m\} \subset \mathbb{R}^N$ mit $|p_m| \xrightarrow{m \to \infty} \infty$, so dass $-F(x,z,0) < \zeta \cdot p_m - F(x,z,p_m)$, was mit der gleichen Schlussweise wie gerade denselben Widerspruch erzeugt, womit (1.29) bewiesen ist.

Da der Vektor $p(x,z,\zeta) \in \mathbb{R}^N$ das Supremum in der Definition 1.21 von H realisiert gilt zudem

$$0 = \left. \frac{\partial}{\partial p^i} \right|_{p=p(x,z,\zeta)} \left\{ \zeta \cdot p - F(x,z,p) \right\} = \zeta^i - F_{p^i}(x,z,p(x,z,\zeta)) \text{ für } i=1,\ldots,N,$$

was (1.30) beweist.

Zum Nachweis der a priori Abschätzung bemerken wir, dass zu vorgegebenem R > 0 zwei Zahlen $R_2, R_3 > 0$ existieren, so dass wegen Voraussetzung (F1)

$$\begin{cases} \frac{\omega(|p|)}{|p|} \ge R + 1 & \text{für alle } |p| \ge R_2 \text{ vgl. Voraussetzung (F1)} \\ F(x, z, 0) - g(x, z) \le R_3 & \text{für alle } (x, z) \in \overline{B_R(0)} \times \overline{B_R(0)} \subset \mathbb{R} \times \mathbb{R}^N, \end{cases}$$
(1.33)

da F und g stetig sind.

Für $R_1 := \max\{R_2, R_3\}$ und $(x, z, \zeta) \in \overline{B_R(0)} \times \overline{B_R(0)} \times \overline{B_R(0)} \subset \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ gilt demnach für $\bar{p} := p(x, z, \zeta)$ wegen Voraussetzung (F1) und (1.29)

$$\omega(|\bar{p}|) + g(x,z) - |\zeta||\bar{p}| \leq F(x,z,\bar{p}) - \zeta \cdot \bar{p} = -H(x,z,\zeta) \leq -\{\zeta \cdot 0 - F(x,z,0)\} = F(x,z,0).$$

Daraus folgt wegen (1.33) für diese (x, z, ζ)

$$R_{1} \geq R_{3} \underset{(1.33)}{\geq} F(x, z, 0) - g(x, z) \geq \omega(|\bar{p}|) - |\zeta||\bar{p}|$$

$$= |\bar{p}| \left[\frac{\omega(|\bar{p}|)}{|\bar{p}|} - |\zeta| \right]$$

$$\geq |\bar{p}| \left[\frac{\omega(|\bar{p}|)}{|\bar{p}|} - R \right] \underset{(1.33)}{\geq} |\bar{p}|,$$

falls $|\bar{p}| \geq R_2$. Falls nicht, dann gilt aber $|\bar{p}| < R_2 \leq R_1$ nach Definition. Also folgt in jedem Falle $|\bar{p}| \leq R_1$, was die Behauptung (1.31) beweist.

Nun bleibt noch zu zeigen, dass H stetig ist. In der Tat existieren zu Tripeln (x, z, ζ) und (x', z', ζ') eine Zahl R > 0, so dass

$$(x, z, \zeta), (x', z', \zeta') \in B_R(0) \times B_R(0) \times B_R(0) \subset \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N,$$

und Vektoren $p = p(x, z, \zeta), p' = p(x', z', \zeta') \in \mathbb{R}^N$, so dass nach (1.29)

$$H(x,z,\zeta) = \zeta \cdot p - F(x,z,p)$$
 und $H(x',z',\zeta') = \zeta' \cdot p' - F(x',z',p')$.

Folglich gelten die Abschätzungen

$$H(x, z, \zeta) - H(x', z', \zeta') = \zeta \cdot p - F(x, z, p) - H(x', z', \zeta')$$

$$\leq \zeta \cdot p - F(x, z, p) - (\zeta' \cdot p - F(x', z', p))$$

$$= (\zeta - \zeta') \cdot p + F(x', z', p) - F(x, z, p)$$

und

$$H(x', z', \zeta') - H(x, z, \zeta) = \zeta' \cdot p' - F(x', z', p') - H(x, z, \zeta)$$

$$\leq \zeta' \cdot p' - F(x', z', p') - (\zeta \cdot p' - F(x, z, p'))$$

$$= (\zeta' - \zeta) \cdot p' + F(x, z, p') - F(x', z', p'),$$

so dass durch Kombination dieser beiden Ungleichungen

$$\begin{aligned} |H(x,z,\zeta) - H(x',z',\zeta')| &\leq |\zeta - \zeta'| \max\{|p|,|p'|\} \\ &+ \max\{|F(x',z',p) - F(x,z,p)|,|F(x,z,p') - F(x',z',p')|\} \\ &\leq \underset{(1.31)}{\leq} R_1 |\zeta - \zeta'| + \|\nabla F\|_{C^0(\overline{B_R(0)} \times \overline{B_R(0)} \times \overline{B_{R_1}(0)},\mathbb{R}^{1+2N})} \Big(|x - x'|^2 + |z - z'|^2\Big)^{1/2} \end{aligned}$$

folgt. Für die Gültigkeit der letzten Ungleichung betrachte man beispielsweise

$$\begin{split} |F(x',z',p)-F(x,z,p)| &= \left| \int_0^1 \frac{d}{dt} \Big[F(\underbrace{tx'+(1-t)x,tz'+(1-t)z,p}) \Big] \, \mathrm{d}t \right| \\ &\leq \int_0^1 |F_x(\eta(t))(x'-x)+F_z(\eta(t))\cdot(z'-z)| \, \mathrm{d}t \\ &= \int_0^1 \left| \nabla F(\eta(t))\cdot \begin{pmatrix} x'-x\\z'-z\\0 \end{pmatrix} \right| \, \mathrm{d}t \\ &\leq \|\nabla F\|_{C^0(\overline{B_R(0)}\times\overline{B_R(0)}\times\overline{B_{R_1}(0)},\mathbb{R}^{1+2N})} \left| \begin{pmatrix} x'-x\\z'-z\\0 \end{pmatrix} \right|, \end{split}$$

da
$$\eta(t) = (tx' + (1-t)x, tz' + (1-t)z, p) \in B_R(0) \times B_R(0) \times B_{R_1}(0)$$
 für alle $t \in (0,1)$ wegen (1.31).

Korollar 1.23

Falls zusätzlich zu den Voraussetzungen von Lemma 1.22 die Zuordnung $p \mapsto F(x, z, p)$ strikt konvex ist für alle $(x, z) \in \mathbb{R} \times \mathbb{R}^N$, dann ist der in (1.29) gefundene Vektor $p(x, z, \zeta)$ für gegebene Tripel $(x, z, \zeta) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ jeweils eindeutig.

Beweis. Zunächst beweisen wir die aus der konvexen Analysis bekannte strikte Monotonie des Gradienten F_p . Dazu nutzen wir die strikte Konvexität von $p\mapsto F(x,z,p)$ für festgehaltene Variablen $(x,z)\in\mathbb{R}\times\mathbb{R}^N$, um für beliebige $p_1\neq p_2,\ p_1,p_2\in\mathbb{R}^N$

$$F(x, z, p_1) > F(x, z, p_2) + F_p(x, z, p_2) \cdot (p_1 - p_2),$$

 $F(x, z, p_2) > F(x, z, p_1) + F_p(x, z, p_1) \cdot (p_2 - p_1)$

zu schließen. Addition dieser beiden strikten Ungleichungen liefert

$$0 > F_p(x, z, p_2) \cdot (p_1 - p_2) + F_p(x, z, p_1) \cdot (p_2 - p_1),$$

oder

$$(F_p(x, z, p_1) - F_p(x, z, p_2)) \cdot (p_1 - p_2) > 0.$$
(1.34)

Gäbe es neben $p \in \mathbb{R}^N$ noch einen weiteren von p verschiedenen Vektor $\bar{p} \in \mathbb{R}^N$, der auch die Beziehung (1.29) und damit auch (1.30) erfüllt, also so dass

$$\zeta = F_p(x, z, p) = F_p(x, z, \bar{p}),$$

dann folgt mit $0 = F_p(x, z, p) - F_p(x, z, \bar{p})$ durch Multiplikation mit dem Vektor $p - \bar{p}$ der Widerspruch zu der strikten Monotonie des Gradienten F_p in (1.34)

$$0 = (F_p(x, z, p) - F_p(x, z, \bar{p}) \cdot (p - \bar{p}) > 0,$$

was die Eindeutigkeitsaussage beweist.

Korollar 1.24

Ist zusätzlich zu den Voraussetzungen von Korollar 1.23 F_p lokal Lipschitz-stetig auf $\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ und ist die Zuordnung $p \mapsto F(x,z,p)$ lokal stark konvex, d.h. existiert für alle $\rho, \rho_1 > 0$ eine Konstante $\underline{c}(\rho, \rho_1) > 0$, so dass die Zuordnung $p \mapsto F(x,z,p) - (c/2)|p|^2$ für alle $(x,z) \in \overline{B_\rho(0)} \times \overline{B_\rho(0)}$ konvex auf $\overline{B_{\rho_1}(0)}$ ist, dann ist die eindeutige Zuordnung $(x,z,\zeta) \mapsto p(x,z,\zeta)$ aus Korollar 1.23 lokal Lipschitz-stetig.

Beweis. Zunächst ist nach (1.31) die Funktion $p = p(x, z, \zeta)$ lokal beschränkt:

Für alle R > 0 existiert $R_1 = R_1(R) > 0$, so dass $||p||_{L^{\infty}(B_R(0) \times B_R(0) \times B_R(0), \mathbb{R}^N)} \le R_1$.

 F_p ist nach Voraussetzung lokal LIPSCHITZstetig, d.h. es gibt eine Zahl $\gamma_1 = \gamma_1(R) > 0$, so dass

$$|F_p(x,z,p) - F_p(x',z',p')| \le \gamma_1 (|x-x'| + |z-z'| + |p-p'|)$$
 (1.35)

für alle $(x,z,p), (x',z',p') \in \overline{B_R(0)} \times \overline{B_R(0)} \times \overline{B_{R_1}(0)}$. Wir nutzen nun die vorausgesetzte lokal starke Konvexität für $\rho := R$ und $\rho_1 := R_1$, um eine quantitative Form der strikten Monotonie des Gradienten F_p nachzuweisen. Tatsächlich existiert also eine Konstante $c = c(R,R_1) > 0$, so dass die Zuordnung $p \mapsto F(x,z,p) - (c/2)|p|^2$ für alle $(x,z) \in \overline{B_R(0)} \times \overline{B_R(0)}$ konvex auf $\overline{B_{R_1}(0)}$ ist, so dass für alle $p_1,p_2 \in \overline{B_{R_1}(0)}$ gilt

$$F(x, z, p_{1}) - (c/2)|p_{1}|^{2} \geq F(x, z, p_{2}) - (c/2)|p_{2}|^{2}$$

$$+\nabla_{p}(F(x, z, p) - (c/2)|p|^{2})|_{p=p_{2}} \cdot (p_{1} - p_{2})$$

$$= F(x, z, p_{2}) - (c/2)|p_{2}|^{2} + (F_{p}(x, z, p_{2}) - cp_{2}) \cdot (p_{1} - p_{2})$$

$$= F(x, z, p_{2}) + F_{p}(x, z, p_{2}) \cdot (p_{1} - p_{2}) + (c/2)|p_{1} - p_{2}|^{2} - (c/2)|p_{1}|^{2},$$

also

$$F(x, z, p_1) \ge F(x, z, p_2) + F_p(x, z, p_2) \cdot (p_1 - p_2) + (c/2)|p_1 - p_2|^2$$
(1.36)

für alle $(x,z) \in \overline{B_R(0)} \times \overline{B_R(0)}$ und $p_1, p_2 \in \overline{B_{R_1}(0)}$. Wenn wir eine analoge Ungleichung mit vertauschten Rollen von p_1 und p_2 hinschreiben und anschließend zu der Ungleichung (1.36) addieren, ergibt sich ähnlich wie im Beweis von (1.34) die quantitative Monotonie von F_p in der Form

$$(F_p(x, z, p_1) - F_p(x, z, p_2) \cdot (p_1 - p_2) \ge c|p_1 - p_2|^2$$
(1.37)

für alle $(x, z) \in \overline{B_R(0)} \times \overline{B_R(0)}$ und alle $p_1, p_2 \in \overline{B_{R_1}(0)}$. Insbesondere ist mit der Ungleichung von Cauchy-Schwarz

$$|F_p(x, z, p_1) - F_p(x, z, p_2)| \ge \gamma_2 |p_1 - p_2|$$
 (1.38)

für alle $(x,z)\in \overline{B_R(0)}\times \overline{B_R(0)},\, p_1,p_2\in \overline{B_{R_1}(0)}.$ Nun schließen wir für

$$(x, z, \zeta), (x', z', \zeta') \in \overline{B_R(0)} \times \overline{B_R(0)} \times \overline{B_R(0)}$$

und zugehörige Vektoren $p_1:=p=p(x,z,\zeta),\;p_2:=p'=p(x',z',\zeta')\in\overline{B_{R_1}(0)}$ mit (1.38),

(1.30) und (1.35) wie folgt:

$$\gamma_{2}|p-p'| \leq \underbrace{|F_{p}(x,z,p) - F_{p}(x,z,p')|}_{(1.38)} - F_{p}(x,z,p') |$$

$$= |\zeta - \underline{\zeta' + F_{p}(x',z',p')} - F_{p}(x,z,p')|$$

$$\leq \underbrace{|\zeta - \zeta'| + \gamma_{1}(|x-x'| + |z-z'| + \underline{|p'-p'|})}_{(1.35)}.$$

Damit ist die Zuordnung $(x, z, \zeta) \mapsto p(x, z, \zeta)$ lokal Lipschitzstetig.

Eine weitere Verschärfung der Regularitäts- und Konvexitätseigenschaften von F führt schließlich auf eine höhere Regularität der Hamiltonfunktion und auf die entscheidenden Gleichungen, die im nachfolgenden Satz 1.26 die Brücke zwischen den Euler-Lagrange-Gleichungen und dem Hamilton-System liefern.

Lemma 1.25

Sei $k \in \mathbb{N} \setminus \{1\}$, und $F \in C^k(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ erfülle die Bedingungen

(F1) Es gibt stetige Funktionen $g: \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ und $\omega: \mathbb{R} \to \mathbb{R}$ mit der Eigenschaft $\lim_{t\to\infty} \frac{\omega(t)}{t} = \infty$, so dass

$$F(x,z,p) \ge \omega(|p|) + g(x,z)$$
 für alle $(x,z,p) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$;

(F2)

$$\sum_{i,j=1}^{N} F_{p^i p^j}(x,z,p) \xi^i \xi^j > 0 \quad \text{ für alle } \xi \in \mathbb{R}^N \setminus \{0\}, \ (x,z,p) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N.$$

Dann ist $H \in C^k(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ und erfüllt die Gleichungen

(H1)

$$H_x(x, z, \zeta) = -F_x(x, z, H_{\zeta}(x, z, \zeta)),$$

$$H_z(x, z, \zeta) = -F_z(x, z, H_{\zeta}(x, z, \zeta)),$$

(H2)
$$H(x,z,\zeta) = \zeta H_{\zeta}(x,z,\zeta) - F(x,z,H_{\zeta}(x,z,\zeta)),$$

(H3)
$$\zeta = F_p(x, z, p) \iff p = H_{\zeta}(x, z, \zeta).$$

Wenn man statt (F2) nur verlangt, dass die Zuordnung $p \mapsto F(x, z, p)$ für alle $(x, z) \in \mathbb{R} \times \mathbb{R}^N$ strikt konvex ist, kann man nicht erwarten, dass die Hamilton-Funktion H glatter ist als C^1 , wie das folgende Beispiel zeigt.

Beispiel 1.15

Es sei N=1. Man kann zeigen, dass die zu $F(x,z,p)=F(p):=\frac{1}{4}|p|^4$ gehörige HAMILTON-Funktion $H(x,z,\zeta):=\frac{3}{4}|\zeta|^{4/3}$ ist, und diese Funktion ist nicht von der Klasse $C^2(\mathbb{R})$.

Lemma 1.25 bleibt zudem noch in Teilen richtig, wenn auch das superlineare Wachstum von F in p, also die Bedingung (F2) verletzt ist. Allerdings könnte die Hamilton-Funktion dann auch unendliche Werte annehmen:

Beispiel 1.16

Die Funktion $F(x,z,p) = F(p) := \sqrt{1+p^2}$ ist strikt konvex und besitzt die Funktion

$$H(x,z,\zeta) = H(\zeta) := \begin{cases} -\sqrt{1-\zeta^2} & \text{ für } |\zeta| \le 1 \\ +\infty & \text{ für } |\zeta| > 1 \end{cases}$$

als Hamilton-Funktion.

Beweis von Lemma 1.25. Wir zeigen zunächst, dass die Zuordnung $(x, z, \zeta) \mapsto p(x, z, \zeta)$ von der Klasse $C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N, \mathbb{R}^N)$ ist.

Tatsächlich ist die Gleichung

$$0 = G(x, z, \zeta, p) := \zeta - F_p(x, z, p)$$

nach der Identität (1.30) erfüllt für den Vektor $p = p(x, z, \zeta)$, und zusätzlich gilt wegen Voraussetzung (F2)

$$\det(D_p G(x, z, \zeta, p)) = (-1)^N \det F_{pp}(x, z, p) \neq 0,$$
(F2)

so dass nach dem Satz über implizite Funktionen zu einem beliebigen Punkt $(x, z, \zeta) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ eine offene Umgebung $V = V_{(x,z,\zeta)} \subset \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ existiert, die (x,z,ζ) enthält, und es gibt eine eindeutig bestimmte Funktion $P \in C^1(V,\mathbb{R}^N)$, so dass

$$0 = G(x', z', \zeta', P(x', z', \zeta')) \quad \text{ für alle } (x', z', \zeta') \in V.$$

Damit stimmt die bereits global definierte Funktion $p(\cdot,\cdot,\cdot)$ auf dieser Umgebung V mit der C^1 -Funktion P überein, woraus folgt, dass $p(\cdot,\cdot,\cdot) \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$, da die stetige Differenzierbarkeit eine lokale Eigenschaft ist und da (x,z,ζ) beliebig in $\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ gewählt werden kann. Damit ist die C^1 -Regularität von H bewiesen.

Abschließend bemerken wir, dass aufgrund der Regularitätsvoraussetzung an F in Kombination mit der gerade bewiesenen \mathbb{C}^1 -Regularität von H die Zuordnungen

$$\begin{array}{cccc} (x,z,\zeta) & \mapsto & p(x,z,\zeta) \\ (x,z,\zeta) & \mapsto & F_x(x,z,p(x,z,\zeta)) \\ (x,z,\zeta) & \mapsto & F_z(x,z,p(x,z,\zeta)) \\ (x,z,\zeta) & \mapsto & F_p(x,z,p(x,z,\zeta)) \end{array}$$

sämtlich von der Klasse C^1 auf $\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ sind, so dass mit (1.29) direkt $H \in C^1(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ folgt. Durch Differentiation erhält man mit Hilfe von (1.30)

$$H_{x}(x,z,\zeta) = \zeta \cdot p_{x}(x,z,\zeta) - F_{x}(x,z,p(x,z,\zeta)) - F_{p}(x,z,p(x,z,\zeta)) \cdot p_{x}(x,z,\zeta)$$

$$= \left[\underbrace{\zeta - F_{p}(x,z,p(x,z,\zeta))}_{==0}\right] \cdot p_{x}(x,z,\zeta) - F_{x}(x,z,p(x,z,\zeta)), \qquad (1.39)$$

und

$$H_{z}(x,z,\zeta) = \zeta \cdot p_{z}(x,z,\zeta) - F_{z}(x,z,p(x,z,\zeta)) - F_{p}(x,z,p(x,z,\zeta)) \cdot p_{z}(x,z,\zeta)$$

$$= \left[\underbrace{\zeta - F_{p}(x,z,p(x,z,\zeta))}_{(1.30)}\right] \cdot p_{z}(x,z,\zeta) - F_{z}(x,z,p(x,z,\zeta)), \qquad (1.40)$$

sowie

$$H_{\zeta}(x,z,\zeta) = p(x,z,\zeta) + \zeta \cdot p_{\zeta}(x,z,\zeta) - F_{p}(x,z,p(x,z,\zeta)) \cdot p_{\zeta}(x,z,\zeta)$$

$$= p(x,z,\zeta) + \left[\underbrace{\zeta - F_{p}(x,z,p(x,z,\zeta))}_{= 0}\right] \cdot p_{\zeta}(x,z,\zeta)$$

$$= p(x,z,\zeta),$$

$$= p(x,z,\zeta),$$

$$(1.41)$$

woraus sofort $H \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ folgt, falls $k \geq 2$. Allgemeiner erhält man über den Impliziten Funktionensatz wie zu Beginn des Beweises aus der Voraussetzung $F \in C^k(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ die Regularität $p(\cdot,\cdot,\cdot) \in C^{k-1}(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$, so dass die Zuordnungen

$$\begin{array}{cccc} (x,z,\zeta) & \mapsto & p(x,z,\zeta) \\ (x,z,\zeta) & \mapsto & F_x(x,z,p(x,z,\zeta)) \\ (x,z,\zeta) & \mapsto & F_z(x,z,p(x,z,\zeta)) \\ (x,z,\zeta) & \mapsto & F_p(x,z,p(x,z,\zeta)) \end{array}$$

sämtlich von der Klasse C^{k-1} auf $\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$ sind, so dass man aus (1.29) zunächst $H \in C^{k-1}(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ gewinnt, um dann aus (1.39)–(1.42) zu schließen, dass $H \in C^k(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$.

Mit (1.42) folgen die Behauptungen (H1) aus (1.39) und (1.40), (H2) aus (1.29). Zum Beweis von (H3) bemerken wir, dass jeder Vektor $p \in \mathbb{R}^N$ mit $\zeta = F_p(x,z,p)$ ein kritischer Punkt der Funktion $q \mapsto \{\zeta \cdot q - F(x,z,q)\}$ ist, und damit automatisch ein Maximum dieser Funktion, da deren Hessesche durch die negativ definite symmetrische Matrix $-F_{qq}(x,z,q)$ gegeben ist. Wir hatten aber schon in Korollar 1.23 unter schwächeren Voraussetzungen an F bewiesen, dass es genau ein Maximum gibt, so dass dieser kritische Punkt p mit $p(x,z,\zeta)$ übereinstimmen muss. Damit folgt $p = H_{\zeta}(x,z,\zeta)$ aus (1.42) und damit eine Richtung in der behaupteten Äquivalenz in (H3).

Nimmt man umgekehrt an, dass $p=H_{\zeta}(x,z,\zeta)$, dann schließt man in folgender Weise: Wir wissen aus (1.29) in Lemma 1.22, dass $p(x,z,\zeta)\in\mathbb{R}^N$ existiert, so dass

$$H(x, z, \zeta) = \zeta \cdot p(x, z, \zeta) - F(x, z, p(x, z, \zeta)),$$

und für diesen Vektor $p(x, z, \zeta)$ haben wir die Gleichung (1.42) hergeleitet, aus der dann sofort $p = p(x, z, \zeta)$ folgt. Andererseits gilt für $p(x, z, \zeta)$ die Gleichung (1.30), und damit auch für p, was die Behauptung für die Rückrichtung in (H3) ist.

Damit ist das Lemma vollständig bewiesen.

Satz 1.26 [Hamilton-Gleichungen]

Sei $F \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ und H die zugehörige Hamilton-Funktion. Weiterhin erfülle F die Voraussetzungen

(F1) Es gibt stetige Funktionen $g: \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ und $\omega: \mathbb{R} \to \mathbb{R}$ mit der Eigenschaft $\lim_{t\to\infty} \frac{\omega(t)}{t} = \infty$, so dass

$$F(x,z,p) \ge \omega(|p|) + g(x,z)$$
 für alle $(x,z,p) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N$;

(F2)

$$\sum_{i,j=1}^{N} F_{p^i p^j}(x,z,p) \xi^i \xi^j > 0 \quad \text{ für alle } \xi \in \mathbb{R}^N \setminus \{0\}, \ (x,z,p) \in \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N.$$

Dann gilt für Funktionen $u, v \in C^1(I, \mathbb{R}^N)$ mit

$$\begin{cases} u'(x) &= H_{\zeta}(x, u(x), v(x)) \\ v'(x) &= -H_{z}(x, u(x), v(x)) & \text{für alle } x \in I \end{cases}$$
 (HAM)

die höhere Regularität $u, v \in C^2(I, \mathbb{R}^N)$, und u erfüllt die Euler-Lagrange-Gleichung

$$\frac{d}{dx}\Big[F_p(x,u(x),u'(x))\Big] = F_z(x,u(x),u'(x)) \quad \text{für alle } x \in I.$$
 (ELG)

Falls umgekehrt $u \in C^2(I, \mathbb{R}^N)$ die Gleichung (ELG) auf I löst, dann lösen u, v das Hamilton-System (HAM) auf I, wenn

$$v(x) := F_p(x, u(x), u'(x)), \quad x \in I,$$

gesetzt wird, und v ist von der Klasse $C^2(I, \mathbb{R}^N)$.

Beweis. Falls u,v die Gleichungen (HAM) auf I erfüllen, dann folgt aus der ersten Gleichung in (HAM) bereits, dass u' mit einer stetig differenzierbaren Funktion übereinstimmt, da $H \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ nach Lemma 1.25. Also ist $u \in C^2(I,\mathbb{R}^N)$. Aus der zweiten Gleichung folgt analog, dass $v \in C^2(I,\mathbb{R}^N)$. Nach (H3) aus Lemma 1.25 folgt aus den HAMILTON-Gleichungen (HAM)

$$u'(x) \underset{(\text{HAM})}{=} H_{\zeta}(x, u(x), v(x)) \underset{(\text{H3})}{\Longleftrightarrow} v(x) = F_p(x, u(x), u'(x))$$
 für alle $x \in I$.

Daraus folgt durch Differentiation erneut mit (HAM)

$$\frac{d}{dx} \Big[F_p(x, u(x), u'(x)) \Big] = v'(x) = -H_z(x, u(x), v(x))$$

$$= (H1) F_z(x, u(x), \underbrace{H_\zeta(x, u(x), v(x))}_{=u'(x))},$$

$$= u'(x)$$

$$= u'(x)$$

$$= u'(x)$$

was (ELG) beweist.

Andererseits folgt aus $v(x) = F_p(x, u(x), u'(x))$ nach (H3) die Beziehung $u'(x) = H_{\zeta}(x, u(x), v(x))$ für alle $x \in I$, also damit die erste Gleichung in (HAM). Weiterhin ist

wegen $u \in C^2(I, \mathbb{R}^N)$ und $F \in C^2(\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N)$ die Funktion v von der Klasse $C^1(I, \mathbb{R}^N)$ und Differentiation ergibt unter Ausnutzung von (ELG) und (H1)

$$v'(x) = \frac{d}{dx} \Big[F_p(x, u(x), u'(x)) \Big] \qquad \underset{(\text{ELG})}{=} \qquad F_z(x, u(x), u'(x))$$

$$= \qquad F_z(x, u(x), H_\zeta(x, u(x), v(x)))$$

$$= \qquad -H_z(x, u(x), v(x)) \qquad \text{für alle } x \in I,$$

womit (HAM) vollständig bewiesen ist. Aus dieser letzten Gleichung lässt sich auch direkt ablesen, dass v' überall auf I mit einer C^1 -Funktion übereinstimmt, woraus $v \in C^2(I, \mathbb{R}^N)$ folgt.

Beispiel 1.17

Für $N = \overline{1, m} > 0$, $I = (a, b) \subset \mathbb{R}$ mit $\mathscr{L}^1(I) < \infty$ sei $g \in C^2(\mathbb{R})$, und wir betrachten (vgl. Beispiel 1.6) die Funktion $F \in C^2(\mathbb{R} \times \mathbb{R} \times \mathbb{R})$ gegeben durch

$$F(x,z,p) := \frac{m}{2}p^2 - g(x)z$$
 für $(x,z,p) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

mit partiellen Ableitungen $F_p(x,z,p) = mp$ und $F_z(x,z,p) = -g(x)$ und $F_{pp}(x,z,p) = m > 0$. Damit erfüllt F die Voraussetzungen (F1) und (F2) von Satz 1.26. Die EULER-LAGRANGE-Gleichung ELG ist in diesem Beispiel die NEWTONsche Bewegungsgleichung

$$mu''(x) = -g(x)$$
 für alle $x \in I$. (ELG_{1.17})

Die Hamilton-Funktion H von F lässt sich wie folgt umschreiben:

$$H(x,z,\zeta) = \sup_{p \in \mathbb{R}} \{ \zeta p - F(x,z,p) \} = \sup_{p \in \mathbb{R}} \{ \zeta p - \frac{m}{2} p^2 + g(x)z \}$$
$$= \zeta p^* - \frac{m}{2} (p^*)^2 + g(x)z, \tag{1.43}$$

wobei

$$0 = \frac{d}{dp}_{|_{p=p^*}} \{ \zeta p - \frac{m}{2} p^2 + g(x)z \}$$

= $\zeta - mp^*$,

woraus $p^* = \zeta/m$ folgt. Einsetzen von p^* in (1.43) ergibt

$$H(x,z,\zeta) = \zeta \cdot \frac{1}{m}\zeta - \frac{m}{2}\left(\frac{1}{m}\zeta\right)^2 + g(x)z$$
$$= \left(\frac{1}{m} - \frac{m}{2} \cdot \frac{1}{m^2}\right)\zeta^2 + g(x)z$$
$$= \frac{1}{2m}\zeta^2 + g(x)z,$$

und damit $H_{\zeta}(x,z,\zeta) = \frac{1}{m}\zeta$ und $H_{z}(x,z,\zeta) = g(x)$. Also folgt aus Satz 1.26 das Hamilton-System

$$\begin{cases} u'(x) &= H_{\zeta}(x, u(x), v(x)) = \frac{1}{m}v(x) \\ v'(x) &= -H_{z}(x, u(x), v(x)) = -g(x) \end{cases}$$
(HAM_{1.17})

für die Impulsvariable

$$v(x) := F_p(x, u(x), u'(x)) = mu'(x).$$

Beispiel 1.18

Für $N = \overline{1, q} > 1$ und $\frac{1}{q} + \frac{1}{q'} = 1$, also $q' = \frac{q}{q-1}$ und mit einer Funktion $g \in C^2(\mathbb{R} \times \mathbb{R})$ betrachte die in p strikt konvexe und superlinear wachsende Funktion $F \in C^1(\mathbb{R} \times \mathbb{R} \times \mathbb{R})$ gegeben durch

$$F(x, z, p) := \frac{1}{q} |p|^q - g(x, z)$$

mit partiellen Ableitungen

$$F_p(x, z, p) = |p|^{q-2}p$$
 und $F_z(x, z, p) = -g_z(x, z)$.

Damit ist zwar Lemma 1.25 nicht unmittelbar anwendbar, aber es gelten immerhin die Resultate aus Lemma 1.22 und Korollar 1.23, und man kann die zugehörige Hamiltonfunktion H ermitteln (siehe Übungsaufgabe). Es ergibt sich die C^1 -Funktion

$$H(x,z,\zeta) := \frac{1}{q'}|\zeta|^{q'} + g(x,z)$$

mit partiellen Ableitungen

$$H_{\zeta}(x,z,\zeta) = |\zeta|^{q'-2}\zeta$$
 und $H_{z}(x,z,\zeta) = g_{z}(x,z).$

Als Euler-Lagrange-Gleichung erhält man

$$\frac{d}{dx}\Big[|u'(x)|^{q-2}u'(x)\Big] = -g_z(x, u(x)),$$
 (ELG_{1.18})

und eine Argumentation 10 wie in Satz 1.26 liefert das Hamilton-System

$$\begin{cases} u'(x) &= H_{\zeta}(x, u(x), v(x)) = |v(x)|^{q'-2}v(x) \\ v'(x) &= -H_{z}(x, u(x), v(x)) = -g_{z}(x, u(x)). \end{cases}$$
(HAM_{1.18})

Beispiel 1.19

Betrachte $F = F(p) \in C^2(\mathbb{R})$ mit F''(p) > 0 für alle $p \in \mathbb{R}$ (oder zumindest sei F strikt konvex) mit superlinearem Wachstum:

$$\lim_{|p| \to \infty} \frac{F(p)}{|p|} = +\infty,$$

womit die Voraussetzungen des Satzes 1.26 erfüllt sind. Die zugehörige Euler-Lagrange-Gleichung lautet

$$\frac{d}{dx} \Big[F_p(u'(x)) \Big] = 0, \tag{ELG}_{1.19}$$

woraus die Existenz einer Konstanten $c_1 \in \mathbb{R}$ folgt, so dass

$$F_p(u'(x)) = c_1 \quad \text{für alle } x \in I. \tag{1.44}$$

Die Hamilton-Funktion

$$H(x, z, \zeta) = H(\zeta) = \sup_{p \in \mathbb{R}} \{\zeta p - F(p)\}\$$

 $^{^{10}}$ Satz 1.26 ist nicht unmittelbar anwendbar, da F nicht genügend glatt ist und Voraussetzung (F2) nicht erfüllbar ist, wenn $q \in (1, 2)$.

ist nach Lemma 1.25 von der Klasse C^2 und hat hat die partiellen Ableitungen $H_{\zeta}(\zeta) = H'(\zeta)$ und $H_z(\zeta) = 0$, womit das Hamilton-System folgende Gestalt nach Satz 1.26 hat:

$$\begin{cases} u'(x) &= H_{\zeta}(x, u(x), v(x)) = H'(v(x)) \\ v'(x) &= -H_{z}(x, u(x), v(x)) = -H_{z}(v(x)) = 0. \end{cases}$$
(HAM_{1.19})

Aus der zweiten Hamilton-Gleichung folgt sofort, dass v(x) konstant auf I ist. Diese Konstante ist hier aber wegen (H3) in Lemma 1.25 bereits durch (1.44) festgelegt:

$$v(x) := F_p(u'(x)) = c_1$$
 für alle $x \in I$.

Damit impliziert aber die erste Gleichung in $(HAM_{1,19})$ $u'(x) = H'(c_1)$ und folglich

$$u(x) = H'(c_1)x + c_2$$

für eine Konstante $c_2 \in \mathbb{R}$. Diese Lösung beschreibt also eine gleichförmige lineare Bewegung, und der Impuls v ist konstant.

Beispiel 1.20

Wir wollen nun einen direkten Bezug zu dem Erhaltungssatz Proposition 1.13 herstellen. Sei dazu $N=1, F(x,z,p)=F(z,p)\in C^2(\mathbb{R}\times\mathbb{R})$, und F erfülle die Voraussetzungen von Satz 1.26. Die EULER-LAGRANGE-Gleichung lautet

$$\frac{d}{dx}\Big[F_p(u(x), u'(x))\Big] = F_z(u(x), u'(x)). \tag{ELG}_{1.20}$$

Andererseits gilt für die Hamilton-Funktion

$$H(x, z, \zeta) = H(z, \zeta) = \sup_{p \in \mathbb{R}} \{\zeta p - F(z, p)\} = \zeta p^* - F(z, p^*)$$

mit $\zeta = F_p(z, p^*)$ (vgl. Lemma 1.25) nach Satz 1.26 das HAMILTON-System

$$\begin{cases} u'(x) &= H_{\zeta}(u(x), v(x)) \\ v'(x) &= -H_{z}(u(x), v(x)) \end{cases}$$
(HAM_{1.20})

für $v(x) := F_p(u(x), u'(x))$, so dass

$$\frac{d}{dx} \Big[H(u(x), v(x)) \Big] = H_z(u(x), v(x)) u'(x) + H_{\zeta}(u(x), v(x)) v'(x)$$

$$= -v'(x) u'(x) + u'(x) v'(x) = 0 \quad \text{für alle } x \in I.$$

Folglich ist H eine Erhaltungsgröße entlang der Lösungen (u,v) von $(HAM_{1.20})$. Dies ist allerdings keine Erweiterung des klassischen Erhaltungssatzes, Proposition 1.13; denn nach (H2) und (H3) in Lemma 1.25 gilt für F=F(z,p)

$$H(u(x), v(x)) = v(x)H_{\zeta}(u(x), v(x)) - F(u(x), H_{\zeta}(u(x), v(x))$$

$$= v(x)u'(x) - F(u(x), u'(x))$$

$$= (HAM_{1.20}) V(x)u'(x) - F(u(x), u'(x)) = E(u(x), u'(x)) \text{ für alle } x \in I.$$

Mit anderen Worten, falls F=F(z,p) die Voraussetzungen 11 von Satz 1.26 erfüllt, dann ist die Hamilton-Funktion H entlang der Lösungen (u,v) des Hamilton-Systems (HAM_{1.20}) identisch mit der klassischen Erhaltungsgröße $E(z,p)=pF_p(z,p)-F(z,p)$ entlang der Lösung u der Euler-Lagrange-Gleichung (ELG_{1.20}).

 $^{^{11}\}mathrm{Man}$ beachte, dass die Voraussetzungen des Satzes 1.26 insbesondere wegen der Konvexitätsforderung (F2) wesentlich stärker sind als die von Proposition 1.13.

Kapitel 2

Sobolevräume

Bereits im ersten Kapitel wurde an verschiedenen Beispielen verdeutlicht, dass die Räume der klassisch differenzierbaren Funktionen häufig zu klein sind, um Existenz von Minimieren (oder Maximierern) zu beweisen. Tatsächlich kann man in manchen Fällen sogar die Nichtexistenz von klassischen Lösungen nachweisen.

Modellhaft wollen wir mit dem Ansatz der direkten Methode¹ für die Existenztheorie aufzeigen, wo man mit klassischen Funktionenräumen auf Probleme stößt. Wir betrachten dazu für N=1 die DIRICHLET-Energie

$$\mathscr{D}(u) := \frac{1}{2} \int_{I} |u'(x)|^2 dx,$$

die wir für gegebene Konstanten $\alpha, \beta \in \mathbb{R}$ in der Klasse

$$\mathcal{C}(\alpha,\beta) := \left\{ v \in C^1(\overline{I}) : v(a) = \alpha, v(b) = \beta \right\}$$

minimieren möchten. Da $\mathcal{C}(\alpha, \beta) \neq \emptyset$, können wir eine *Minimalfolge* $\{u_i\}_{i \in \mathbb{N}} \subset \mathcal{C}(\alpha, \beta)$ mit der Eigenschaft

$$\mathscr{D}(u_i) \xrightarrow[i\to\infty]{} \inf_{\mathcal{C}(\alpha,\beta)} \mathscr{D} \in [0,\infty)$$

wählen. Folglich existiert ein Index i_0 , so dass für alle $i \geq i_0$

$$\mathscr{D}(u_i) \le \inf_{\mathcal{C}(\alpha,\beta)} \mathscr{D} + 1 < \infty. \tag{2.1}$$

Die zentralen Fragen der direkten Methode sind nun,

- 1. ob eine Teilfolge $\{u_{i_k}\}\subset\{u_i\}$ in einer geeigneten Topologie gegen eine Funktion u konvergiert,
- 2. ob $u \in \mathcal{C}(\alpha, \beta)$, und
- 3. ob $\mathscr{D}(u) = \lim_{k \to \infty} \mathscr{D}(u_{i_k}) = \inf_{\mathcal{C}(\alpha,\beta)} \mathscr{D}(\cdot)$, oder ob zumindest $\mathscr{D}(u) \leq \lim\inf_{k \to \infty} \mathscr{D}(u_{i_k}) = \inf_{\mathcal{C}(\alpha,\beta)} \mathscr{D}(\cdot)$.

¹Systematisch wird die direkte Methode in Kapitel 3 behandelt.

Es ist nicht klar (und i.A. auch falsch), dass (2.1) eine Konvergenz $u_{i_k} \to u$ in $C^1(\overline{I})$ impliziert. Eine möglicherweise weniger restriktive Topologie könnte unter Umständen eine schwächere Form der Konvergenz sichern, andererseits aber dazu führen, dass die Grenzfunktion u nicht mehr die Randwerte α und β annimmt, oder vielleicht nicht mehr in der Klasse $C^1(\overline{I})$ liegt. Zudem könnte es sein, dass das Funktional \mathscr{D} in einer anderen Topologie keine ausreichenden Stetigkeitseigenschaften mehr hat.

In vielen Fällen liefern die im Folgenden definierten SOBOLEVräume genau die Eigenschaften, die für die gerade skizzierte direkte Methode der Variationsrechnung relevant sind. Da die Theorie der SOBOLEVfunktionen in vielen Feldern der Mathematik zum Standardrepertoire gehören, behandeln wir hier die wichtigsten Sätze und Definitionen für den Fall von n-dimensionalen Definitionsbereichen, also offenen Mengen $\Omega \subset \mathbb{R}^n$. An manchen Stellen verzichten wir auf den vollständigen Beweis und verweisen auf die einschlägige Literatur [1], [2], [19], [20], [25], [42], [52]. Der Beweis des SOBOLEVschen und MORREYschen Einbettungssatzes wird hier nur in der wesentlich vereinfachten Situation eindimensionaler Definitionsbereiche geführt, siehe Satz 2.15.

Definition 2.1 [SOBOLEVRÄUME]

Seien $k \in \mathbb{N}$, $q \in [1, \infty]$, $\Omega \subset \mathbb{R}^n$, Ω offen und $\Omega \neq \emptyset$.

(i) Der Raum $W^{k,q}(\Omega)$ der Sobolevfunktionen von der Differenzierbarkeitsordnung k und mit Integrabilität q ist definiert durch

$$W^{k,q}(\Omega) := \Big\{ u \in L^q(\Omega) : \forall \text{ Multiindizes } \gamma \text{ mit } |\gamma| \le k \ \exists u^\gamma \in L^q(\Omega) : \\ \int\limits_{\Omega} u(x) \partial^\gamma \varphi(x) \ \mathrm{d}x = (-1)^{|\gamma|} \int\limits_{\Omega} u^\gamma(x) \varphi(x) \ \mathrm{d}x \ \forall \varphi \in C_0^\infty(\Omega) \Big\}.$$

Die zu u gehörigen Funktionen $u^{\gamma} := \partial^{\gamma} u$ heißen schwache Ableitungen von u (zum Multiindex γ). Weiterhin definieren wir $W^{0,q}(\Omega) := L^q(\Omega)$.

(ii) Als Norm auf
$$W^{k,q}(\Omega)$$
 definieren wir $||u||_{W^{k,q}(\Omega)} := \left(\sum_{|\gamma| \leq k} \int_{\Omega} |\partial^{\gamma} u|^q dx\right)^{1/q}$ für $q \in [1,\infty)$ und $||u||_{W^{k,\infty}(\Omega)} := \sum_{|\gamma| \leq k} \text{esssup}_{x \in \Omega} |\partial^{\gamma} u(x)|$.

Bemerkungen: 1. Gilt für eine Funktion $v:\Omega\to\mathbb{R}$ die Identität v(x)=u(x) für \mathscr{L}^n fast alle $x\in\Omega$, wobei u eine Sobolevfunktion der Klasse $W^{k,q}(\Omega)$ ist, dann ist auch $v\in W^{k,q}(\Omega)$, und repräsentiert dieselbe Äquivalenzklasse wie u, oder kurz v=u in $W^{k,q}(\Omega)$. Andererseits ist aber eine Sobolevfunktion $u\in W^{k,q}(\Omega\setminus A)$ für eine abgeschlossene Menge $A\subset\Omega$ im Allgemeinen nicht automatisch von der Klasse $W^{k,q}(\Omega)$, selbst wenn $\mathscr{L}^n(A)=0$.

2. Eine auf $\overline{\Omega} \subset\subset \mathbb{R}^n$ klassisch differenzierbare Abbildung ist auch in dem entsprechenden Sobolevraum zu jeder Integrabilität. Das ist i.A. falsch, wenn man die Differenzierbarkeit nur in Ω hat:

$$\begin{array}{cccc} u \in C^k(\overline{\Omega}), \; \Omega \subset \subset \mathbb{R}^n & \Rightarrow & u \in W^{k,q}(\Omega) & \text{ für alle } \; q \in [1,\infty] \\ u \in C^k(\Omega) & \not\Rightarrow & u \in W^{k,q}(\Omega). \end{array}$$

Proposition 2.2 [Sobolevräume sind Banachräume]

Der Sobolevraum $W^{k,q}(\Omega)$ ist ein Banachraum, d.h. ein vollständiger linearer normierter

Raum, für alle $1 \le q \le \infty$. Für q=2 ist dieser Banachraum ein Hilbertraum mit dem Skalarprodukt

$$\langle f, g \rangle_{W^{k,2}(\Omega)} := \sum_{0 \le |\gamma| \le k} \int_{\Omega} \partial^{\gamma} f(x) \ \partial^{\gamma} g(x) \ \mathrm{d}x.$$

Beweis. Wir werden zeigen, dass der Raum $W^{k,q}(\Omega)$ isometrisch isomorph zu einem abgeschlossenen Unterraum von $L^q(\Omega) \times \cdots \times L^q(\Omega)$ versehen mit der Norm

$$\|(u^1, u^2, \dots, u^M)\|_{L^q(\Omega) \times \dots \times L^q(\Omega)} := \left(\sum_{i=1}^M \|u^i\|_{L^q(\Omega)}^q\right)^{1/q}$$

ist, wobei M die Anzahl der Multiindizes γ ist mit $|\gamma| \leq k$. Da das endliche kartesische Produkt der Banachräume $L^q(\Omega)$ wieder ein Banachraum ist und jeder abgeschlossene Unterraum eines Banachraumes selbst ein Banachraum ist (siehe z.B. [2, Übung U0.8]), ist auch der Sobolevraum $W^{k,q}(\Omega)$ ein Banachraum. Dazu betrachtet man die isometrische lineare Abbildung

$$J: W^{k,q}(\Omega) \rightarrow L^q(\Omega) \times \cdots \times L^q(\Omega),$$

 $u \mapsto (u^{\gamma})_{|\gamma| \le k},$

deren Bild nach Definition 2.1

$$J\left(W^{k,q}(\Omega)\right) = \left\{ (u^{\gamma})_{|\gamma| \le k} \in L^{q}(\Omega) \times \dots \times L^{q}(\Omega) : \int_{\Omega} u \, \partial^{\gamma} \varphi = (-1)^{|\gamma|} \int_{\Omega} u^{\gamma} \varphi \quad \forall \varphi \in C_{0}^{\infty}(\Omega), |\gamma| \le k \right\}$$

ein abgeschlossener Unterraum von $L^q(\Omega) \times \cdots \times L^q(\Omega)$ ist. Tatsächlich gilt für $u_i \to u$ in $W^{k,q}(\Omega) \ (\Rightarrow u_i^{\gamma} \longrightarrow u^{\gamma} \ \text{in} \ L^q(\Omega) \ \text{für alle} \ |\gamma| \le k)$

$$\int\limits_{\Omega}u\partial^{\gamma}\varphi\,\mathrm{d}x \underset{i\to\infty}{\longleftarrow} \int\limits_{\Omega}u_{i}\;\partial^{\gamma}\varphi\,\mathrm{d}x \quad = \quad (-1)^{|\gamma|}\int\limits_{\Omega}u_{i}^{\gamma}\varphi\,\mathrm{d}x \underset{i\to\infty}{\longrightarrow} \int\limits_{\Omega}u^{\gamma}\varphi\,\mathrm{d}x \quad \text{für alle} \;\; \varphi\in C_{0}^{\infty}(\Omega).$$

Für q = 2 prüft man die Skalarprodukteigenschaften direkt nach.

Definition 2.3

(i) $F\ddot{u}r \ 1 \leq q < \infty$ definieren wir

$$W_0^{k,q}(\Omega) := \overline{C_0^{\infty}(\Omega)}^{\|\cdot\|_{W^{k,q}(\Omega)}}.$$

Der Ausdruck auf der rechten Seite bezeichnet den Abschluss oder die Vervollständigung des Raumes $C_0^{\infty}(\Omega)$ bezüglich der in Definition 2.1 eingeführten $W^{k,q}$ -Norm. Diesen Raum nennen wir den Sobolevraum der Ordnung k und Integrabilität q mit schwachen Nullrandwerten.

(ii) $F\ddot{u}r \Omega \subset A \subset \overline{\Omega}$ definieren wir den lokalen Sobolevraum

$$W_{loc}^{k,q}(A) := \left\{ u \in L_{loc}^{q}(\Omega) : \forall x \in A \ \exists \rho_x > 0 : u \in W^{k,q}(\Omega \cap B_{\rho_x}(x)) \right\},\,$$

und speziell: $W_{loc}^{k,q}(\Omega) := \{ u \in L_{loc}^q(\Omega) : \forall \Omega' \subset\subset \Omega : u \in W^{k,q}(\Omega') \}.$

Bemerkung:

Jede Funktion in $W_0^{k,q}(\Omega)$ für $q \in [1,\infty)$ ist demnach der Grenzwert einer bezüglich der $W^{k,q}$ -Norm konvergenten Funktionenfolge in $C_0^{\infty}(\Omega) \subset W^{k,q}(\Omega)$ und deswegen nach Proposition 2.2 automatisch selbst wieder eine $W^{k,q}$ -Funktion. Es gilt also $W_0^{k,q}(\Omega) \subset W^{k,q}(\Omega)$, und zu $u \in W_0^{k,q}(\Omega)$ und $\varepsilon > 0$ finden wir eine Funktion $u_{\varepsilon} \in C_0^{\infty}(\Omega)$ mit

$$||u - u_{\varepsilon}||_{W^{k,q}(\Omega)} < \varepsilon.$$

Darüberhinaus ist $W_0^{k,q}(\Omega)$ nach Definition ein abgeschlossener Unterraum eines Banachraums und damit nach [2, Übung U0.8] selbst wieder ein Banachraum, für q=2 sogar ein HILBERTraum.

Wenn die schwachen Ableitungen identisch verschwinden, dann ist die SOBOLEVfunktion auf Zusammenhangskomponenten des Definitionsbereichs konstant²:

Lemma 2.4 $[\nabla u \equiv 0 \Rightarrow u \equiv \text{KONST.}]$

Falls Ω offen und zusammenhängend ist und für $u \in W^{1,1}_{loc}(\Omega)$ die Identität $\nabla u = 0$ in Ω gilt, dann gibt es eine Konstante $c \in \mathbb{R}$, so dass

$$u(x) = c$$
 für \mathcal{L}^n -fast alle $x \in \Omega$.

Bemerkung:

Speziell können wir durch Abänderung auf einer \mathcal{L}^n -Nullmenge einen (guten) Repräsentanten

$$u^* \in [u] : u^*(x) = \text{konst.}$$
 für alle $x \in \Omega$

finden. In der Regel können wir ohne Einschränkung mit dem optimalen Repräsentanten u^* (weiter)rechnen, wobei wir dann der Einfachheit halber die Bezeichnung u wählen. Allerdings gibt es Situationen, bei denen die Auswahl ausgezeichneter Sobolev-Repräsentanten mit Vorsicht getroffen werden sollte, siehe hierzu z.B. die Arbeit von P. Hajlasz [27] und die dort zitierte Literatur.

Beweis von Lemma 2.4. Für $x_0 \in \Omega$ wählt man $\rho > 0$, so dass $B_{2\rho}(x_0) \subset \Omega$, und zu $0 < \varepsilon < \rho$ betrachtet man den Faltungskern (siehe Definition A.20 im Anhang) $\varphi_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \varphi(\frac{x}{\varepsilon}), \ \varphi \in C_0^{\infty}(B_1(0))$. Für $x \in B_{\rho}(x_0)$ gilt dann

$$\varphi_{\varepsilon}(x-\cdot) \in C_0^{\infty}(B_{\varepsilon}(x)) \subset C_0^{\infty}(B_{2\rho}(x_0)) \subset C_0^{\infty}(\Omega).$$

²Diese Aussage kann man auch nutzen, um einen sehr kurzen Alternativbeweis für das Fundamentallemma von DuBois-Reymond, Lemma 1.10, zu führen, siehe dortige Fußnote gegen Ende des Beweises.

Für die Faltung $u_{\varepsilon} := \varphi_{\varepsilon} * u = \int_{\mathbb{R}^n} \varphi_{\varepsilon}(1-y)u(y) \, dy$ berechnen wir für $x \in B_{\rho}(x_0)$

$$\nabla_{x} u_{\varepsilon}(x) = \int_{\mathbb{R}^{n}} \nabla_{x} (\varphi_{\varepsilon}(x - y)) u(y) dy$$

$$= -\int_{\mathbb{R}^{n}} \nabla_{y} (\varphi_{\varepsilon}(x - y)) u(y) dy$$

$$= \int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(x - y) \nabla_{y} u(y) dy$$
schwache Ableitung
$$= \int_{\Omega} \varphi_{\varepsilon}(x - y) \underbrace{\nabla_{y} u(y)}_{\text{von u}} dy$$

$$= (\nabla u)_{\varepsilon}(x) = 0.$$

Also existiert eine Konstante $c_{\varepsilon} \in \mathbb{R}$, so dass $u_{\varepsilon}(x) = c_{\varepsilon}$ für alle $x \in B_{\rho}(x_0)$. Aus Satz A.21 im Anhang wissen wir, dass $u_{\varepsilon} \longrightarrow u$ in $L^1_{loc}(\Omega)$ für $\varepsilon \to 0$, speziell also für eine Teilfolge, die wir wieder mit u_{ε} bezeichnen, $u_{\varepsilon} \longrightarrow u$ \mathscr{L}^n -fast überall in Ω für $\varepsilon \to 0$.

Wähle also $x \in B_{\rho}(x_0)$ als einen Lebesgue-Punkt von u, so dass speziell $u(x) \in \mathbb{R}$, und so dass gleichzeitig $u_{\varepsilon}(x) \to u(x)$ für $\varepsilon \to 0$ gilt. (\mathscr{L}^n -fast alle Punkte $x \in \Omega$ erfüllen beide Forderungen.) Damit folgt

$$c_{\varepsilon} = u_{\varepsilon}(x) \to c_0 := u(x) \quad \text{für } \varepsilon \to 0,$$
 (2.2)

und gleiches gilt auch für alle anderen Punkte $y \in B_{\rho}(x_0)$, für die $c_{\varepsilon} = u_{\varepsilon}(y) \to u(y)$ für $\varepsilon \to 0$, so dass schließlich wegen (2.2)

$$u(y) = c_0$$
 für \mathcal{L}^n -fast alle $y \in B_\rho(x_0)$. (2.3)

Um zu zeigen, dass u auch konstant in Ω ist, definieren wir die Menge

$$M_{c_0}:=\{\xi\in\Omega:\exists \rho_\xi>0: u|_{B_{\rho_\xi}(\xi)}=c_0 \text{ fast "uberall}\}.$$

Diese Menge ist nicht leer, da $x_0 \in M_{c_0}$. Weiterhin ist M_{c_0} eine offene Teilmenge des \mathbb{R}^n , da zu $z \in M_{c_0}$ ein Radius $\rho_z > 0$ existiert, so dass $u|_{B_{\rho_z}(z)} = c_0$ fast überall, und damit für jedes $\zeta \in B_{\rho_z}(z)$ der Radius $\rho_\zeta := (\rho_z - |\zeta - z|)/2 > 0$ existiert, so dass $B_{\rho_\zeta}(\zeta) \subset B_{\rho_z}/z)$, und dadurch $u|_{B_{\rho_\zeta}(\zeta)} = c_0$ fast überall gilt. Damit ist gezeigt, dass der ganze Ball $B_{\rho_z}(z)$ in M_{c_0} enthalten ist, also ist M_{c_0} eine offene Teilmenge des \mathbb{R}^n . Folglich ist M_{c_0} relativ offen in Ω .

 M_{c_0} ist aber auch relativ abgeschlossen in Ω , da wir nun zeigen werden, dass $M_{c_0} = \overline{M_{c_0}} \cap \Omega$. Die Inklusion $M_{c_0} \subset \overline{M_{c_0}} \cap \Omega$ folgt direkt aus der Definition von M_{c_0} . Andererseits gibt es für einen Punkt $x \in \overline{M_{c_0}} \cap \Omega$ eine Folge von Punkten $x_i \in M_{c_0}$, so dass $x_i \to x$ für $i \to \infty$. Zu x finden wir wie zu Beginn des Beweises ein $\rho_x > 0$, so dass $B_{2\rho_x}(x) \subset \Omega$, so dass wir das Faltungsargument wiederholen können, um zu zeigen, dass eine Konstante $\tilde{c} \in \mathbb{R}$ existiert, so dass

$$u|_{B_{\alpha n}(x)} = \tilde{c}$$
 fast überall (2.4)

gilt. Wähle dann i so groß, dass $x_i \in B_{\rho_x}(x)$. Dazu existiert ein Radius $\rho_{x_i} > 0$, so dass $u|_{B_{\rho_{x_i}}(x_i)} = c_0$ fast überall, und damit wegen (2.4) $\tilde{c} = c_0$ folgt, da $B_{\rho_x}(x) \cap B_{\rho_{x_i}}(x_i) \neq \emptyset$. Also ist $x \in M_{c_0}$, womit wir schließlich bewiesen haben, dass M_{c_0} nichtleer, relativ offen und relativ abgeschlossen ist, was wegen des Zusammenhangs von Ω impliziert, dass $M_{c_0} = \Omega$, also $u(x) = c_0$ für \mathcal{L}^n -fast alle $x \in \Omega$.

Zentral für das Arbeiten mit Sobolevfunktionen ist die Tatsache, dass man solche Funktionen mit Hilfe von glatten Funktionen approximieren kann.

Proposition 2.5 [Lokale Approximation von $W^{k,q}$ -Funktionen] Seien $k \in \mathbb{N} \cup \{0\}, \ 1 \leq q < \infty$.

- (i) Sei $u \in W_{loc}^{k,q}(\Omega)$ und u_{ε} die Faltung von u wie im Beweis von Lemma 2.4. Dann gilt $u_{\varepsilon} \in C^{\infty}(\Omega')$ für alle $\Omega' \subset\subset \Omega$ und $0 < \varepsilon < \operatorname{dist}(\Omega', \partial\Omega)$ und $u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u$ in $W_{loc}^{k,q}(\Omega)$. Falls $u \in W^{k,q}(\Omega)$, dann ist $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$.
- (ii) Falls $u \in W^{k,q}(\Omega)$ und supp $u \subset\subset \Omega$, dann existiert eine Folge $\{u_m\}_{m\in\mathbb{N}}\subset C_0^\infty(\Omega)$, so dass $u_m \xrightarrow[m\to\infty]{} u$ in $W^{k,q}(\Omega)$, also ist $u \in W_0^{k,q}(\Omega)$.

Falls $\Omega = \mathbb{R}^n$ und $u \in W^{k,q}(\mathbb{R}^n)$, dann existert eine Folge $\{u_m\}_{m \in \mathbb{N}} \subset C_0^{\infty}(\mathbb{R}^n)$, so dass $u_m \xrightarrow[m \to \infty]{} u$ in $W^{k,q}(\mathbb{R}^n)$. (In diesem Sinne ist $W^{k,q}(\mathbb{R}^n) = W_0^{k,q}(\mathbb{R}^n)$.)

(iii) Falls $\Omega = \mathbb{R}^n_+ := \mathbb{R}^{n-1} \times (0, \infty)$ und $u \in W^{k,q}(\mathbb{R}^n_+)$, dann existiert eine Folge $\{u_m\}_{m \in \mathbb{N}} \subset C_0^{\infty}(\mathbb{R}^{n-1} \times [0, \infty)) : u_m \xrightarrow[m \to \infty]{} u \text{ in } W^{k,q}(\mathbb{R}^n_+).$

Beweis. Wir werden hier nur die für uns relevanten Teile (i) und (ii) beweisen.

(i) Da der Faltungskern φ_{ε} von der Klasse $C_0^{\infty}(B_{\varepsilon}(0)) \subset C^{\infty}(\mathbb{R}^n)$ ist, muss man für die Glattheit von u_{ε} lediglich den Definitionsbereich von u beachten. Für $x \in \Omega' \subset\subset \Omega$ und $0 < \varepsilon < \operatorname{dist}(\Omega', \partial\Omega)$ ist

$$\operatorname{supp}\,\varphi_{\varepsilon}(x-\cdot)\subset\subset B_{\varepsilon}(x)\subset B_{\varepsilon}(\Omega'):=\{y\in\mathbb{R}^n:\operatorname{dist}(y,\Omega')<\varepsilon\}\subset\Omega,$$

und wegen $u \in L^q_{loc}(\Omega)$ ist u auf supp $\varphi_{\varepsilon}(x-.)$ definiert und $|u|^q$ integrabel. Weiterhin sind alle Voraussetzungen für die Vertauschbarkeit von Differentiation und Integration erfüllt (siehe z.B. [3, p. 289]), womit man durch wiederholtes Differenzieren die Relation $u_{\varepsilon} \in C^{\infty}(\Omega')$ nachweist. Falls $u \in W^{k,q}(\Omega)$, kann man u als L^q -Funktion (aber im Allgemeinen nicht als $W^{k,q}$ -Funktion, vgl. den kommenden Fortsetzungssatz Satz 2.13!) durch den Wert Null auf ganz \mathbb{R}^n fortsetzen, womit $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ folgt.

Für
$$x \in \Omega$$
 und $0 < \varepsilon < \operatorname{dist}(x, \partial\Omega)$ betrachten wir $\varphi_{\varepsilon}(x - \cdot) \in C_0^{\infty}(B_{\varepsilon}(x)) \subset C_0^{\infty}(\Omega)$

³Diesen Teil der Proposition benutzt man für den letzten Grenzübergang (1.10) im Beweis des Fundamentallemmas von DuBois-Reymond, Lemma 1.10. Man muss dort nur nachweisen, dass die stückweise linearen Funktionen ζ_{ε} kompakten Träger haben und von der Klasse $W^{1,q}(I)$ für ein $q \in [1, \infty)$ sind. Letzteres kann man entweder direkt anhand von Definition 2.1 nachweisen, oder man zitiert den noch zu beweisenden Satz 2.7.

und berechnen wie im Beweis von Lemma 2.4

$$\partial_x^{\gamma} u_{\varepsilon}(x) = \int_{\mathbb{R}^n} \partial_x^{\gamma} (\varphi_{\varepsilon}(x - y)) \ u(y) \, \mathrm{d}y$$

$$= (-1)^{|\gamma|} \int_{\mathbb{R}^n} \partial_y^{\gamma} (\varphi_{\varepsilon}(x - y)) \ u(y) \, \mathrm{d}y$$

$$\stackrel{=}{\underset{\mathrm{Def.2.1}}{=}} \int_{\mathbb{R}^n} \varphi_{\varepsilon}(x - y) \underbrace{\partial^{\gamma} u(y)}_{\underset{\mathrm{Schwache}}{=}} \, \mathrm{d}y = (\partial^{\gamma} u)_{\varepsilon}(x).$$

Nun liefert der Satz A.21 im Anhang für alle Multiindizes γ mit $|\gamma| \leq k$:

$$\partial^{\gamma}(u_{\varepsilon}) = (\partial^{\gamma}u)_{\varepsilon} \underset{\varepsilon \to 0}{\longrightarrow} (\partial^{\gamma}u) \text{ in } L^{q}_{loc}(\Omega).$$

Somit folgt $u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u$ in $W_{loc}^{k,q}(\Omega)$.

(ii) Für $0 < \varepsilon < \sigma := \frac{1}{2} \operatorname{dist}(\operatorname{supp} u, \partial \Omega)$ gilt $\operatorname{supp} u_{\varepsilon} \subset B_{\varepsilon}(\operatorname{supp} u) \subset B_{\sigma}(\operatorname{supp} u) \subset \Omega$, und daher $u_{\varepsilon} \in C_0^{\infty}(\Omega)$. Aus dem oben bewiesenen Teil (i) folgt $u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u$ in $W_{loc}^{k,q}(\Omega)$ und damit hat man

$$\|u - u_{\varepsilon}\|_{W^{k,q}(\Omega)} = \|u - u_{\varepsilon}\|_{W^{k,q}(\overline{B_{\sigma}(\operatorname{Supp} u)})} \longrightarrow 0 \quad \text{für } \varepsilon \to 0.$$

Falls $\Omega = \mathbb{R}^n$, so betrachte die Faltung $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$, mit Satz A.21 im Anhang und Teil (i) folgt nun $u_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} u$ in $W^{k,q}(\mathbb{R}^n)$. Allerdings haben diese approximierenden Funktionen u_{ε} i.A. keinen kompakten Träger im \mathbb{R}^n . Deswegen betrachtet man Abschneidefunktionen $\eta_R \in C_0^{\infty}(B_{2R}(0))$, wobei $\eta_R \equiv 1$ auf $B_R(0)$ und $0 \le \eta_R \le 1$, mit den Eigenschaften⁴

$$|\partial^{\gamma}\eta_R| \ \leq \ \frac{C(l)}{R^l}\chi_{B_{2R}\backslash B_R(0)} \quad \text{ für alle } \ l\in\mathbb{N}, \ |\gamma|=l.$$

Dann folgt für $u_{\varepsilon,R} := \eta_R u_{\varepsilon}$

$$\begin{split} \partial^{\gamma}u_{\varepsilon,R} &= \sum_{0 \leq \beta \leq \gamma} \binom{\gamma}{\beta} \partial^{\beta}\eta_{R} \ \partial^{\gamma-\beta}u_{\varepsilon} \quad \text{ für alle } |\gamma| \leq k, \\ \|\partial^{\gamma}u_{\varepsilon,R} - \eta_{R}\partial^{\gamma}u_{\varepsilon}\|_{L^{q}(\mathbb{R}^{n})} &= \left\| \sum_{\substack{0 \leq \beta \leq \gamma \\ |\beta| > 0}} \binom{\gamma}{\beta} \partial^{\beta}\eta_{R} \ \partial^{\gamma-\beta}u_{\varepsilon} \right\|_{L^{q}(\mathbb{R}^{n})} \\ &\leq \sum_{R \geq 1} \frac{C(k,n)}{R} \underbrace{\|u_{\varepsilon}\|_{W^{k,q}(\mathbb{R}^{n})}}_{<\infty} \quad \xrightarrow{R \to \infty} 0. \end{split}$$

$$|\partial^{\gamma} \eta_R(x)| = \frac{1}{R^{|\gamma|}} |(\partial^{\gamma} u)(x/R)| \le \frac{\max_{|\gamma|=l} \|\partial^{\gamma} u\|_{\infty}}{R^l} =: \frac{C(l)}{R^l} \quad \text{für } l \in \mathbb{N}, \ |\gamma| = l.$$

⁴Die Schranken an die Ableitungen von η_R kann man einsehen, indem man z.B. eine Funktion $\eta \in C_0^{\infty}(B_2(0))$ mit $\eta|_{B_1(0)} \equiv 1$ und $0 \leq \eta(\cdot) \leq 1$ durch $\eta_R(x) := \eta(x/R)$ für R > 0 skaliert, so dass weiterhin $0 \leq \eta_R(\cdot) \leq 1$ und nun $\eta_R|_{B_R(0)} \equiv 1$ gilt, zusammen mit den Abschätzungen

Weiterhin gilt nach dem Lebesgueschen Konvergenzsatz

$$\eta_R \ \partial^{\gamma} u_{\varepsilon} \xrightarrow[R \to \infty]{} \partial^{\gamma} u_{\varepsilon} \quad \text{in } L^q(\mathbb{R}^n) \quad \text{ für alle } |\gamma| \leq k.$$

Also können wir für alle $\varepsilon > 0$

$$\partial^{\gamma} u_{\varepsilon,R} \longrightarrow \partial^{\gamma} u_{\varepsilon}$$
 in $L^{q}(\mathbb{R}^{n})$ für $R \to \infty$ für alle $|\gamma| \le k$

konstatieren. Das bedeutet

$$u_{\varepsilon,R} \longrightarrow u_{\varepsilon}$$
 in $W^{k,q}(\mathbb{R}^n)$ für $R \to \infty$.

Für alle $\sigma > 0$ wähle $0 < \varepsilon \ll 1$, so dass $\|u_{\varepsilon} - u\|_{W^{k,q}(\mathbb{R}^n)} < \frac{\sigma}{2}$ und dann $R \gg 1$, so dass $\|u_{\varepsilon} - u_{\varepsilon,R}\|_{W^{k,q}(\mathbb{R}^n)} < \frac{\sigma}{2}$. Damit folgt nun $\|u - u_{\varepsilon,R}\|_{W^{k,q}(\mathbb{R}^n)} < \sigma$.

Beispiel 2.1

Wir betrachten für $\alpha>0$ die stückweise definierte und damit im Ursprung singuläre Funktion

$$u: \Omega := B_1(0) \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

erklärt durch

$$u(x) := \begin{cases} \frac{1}{|x|^{\alpha}} & \text{für } x \neq 0\\ 17 & \text{für } x = 0. \end{cases}$$

Es gilt $u \notin C^1(B_1(0))$, aber es stellt sich die Frage:

Für welche
$$q, n, \alpha$$
 ist $u \in W^{1,q}(B_1(0))$?

Zunächst stellen wir fest, dass $u \in C^{\infty}(B_1(0) \setminus \{0\})$ und wir berechnen für $x \neq 0$ und $\alpha > 0$ die ersten Ableitungen

$$\begin{aligned} \partial_i u(x) &= & -\frac{\alpha}{|x|^{\alpha+1}} \frac{x_i}{|x|} = -\alpha \frac{x_i}{|x|^{\alpha+2}}, \\ \Rightarrow & |\nabla u(x)| &= & \sqrt{\sum_{i=1}^n \frac{(-\alpha x_i)(-\alpha x_i)}{|x|^{2(\alpha+2)}}} = |\alpha| \frac{1}{|x|^{\alpha+1}}. \end{aligned}$$

Diese klassischen partiellen Ableitungen dienen uns als Kandidaten für die entsprechenden schwachen Ableitungen, also testen wir zunächst deren Integrabilität. Falls $\alpha + 1 < n$, so folgt $|\nabla u| \in L^1(B_1(0))$; denn mit Hilfe von Polarkoordinaten berechnet man

$$\int_{B_1(0)} |\nabla u(x)| \, \mathrm{d}x = |\alpha| \int_{B_1(0)} \frac{\mathrm{d}x}{|x|^{\alpha+1}}$$

$$= |\alpha| \int_0^1 \frac{r^{n-1}}{r^{\alpha+1}} \, \mathrm{d}r \underbrace{\mathscr{H}^{n-1}(\mathbb{S}^{n-1})}_{n\omega_n} = \frac{|\alpha|n\omega_n}{n-\alpha-1} \left[r^{n-(\alpha+1)}\right]_0^1$$

$$=: C(\alpha, n) \left[r^{n-(\alpha+1)}\right]_0^1 < \infty,$$

wobei $\omega_n := \mathcal{L}^n(B_1(0))$. Mit einer analogen Rechnung erhält man für $0 < \alpha < n$, dass $u \in L^1(B_1(0))$. Zur Überprüfung der in Definition 2.1 enthaltenen Regel der partiellen Integration schneidet man zunächst die Singularität im Ursprung aus dem Integrationsgebiet. D.h. für $\varepsilon > 0$ und für alle $\varphi \in C_0^{\infty}(B_1(0))$ betrachtet man mit Hilfe der klassischen Regel der partiellen Integration

$$\int_{B_1(0)\backslash B_{\varepsilon}(0)} u(x) \, \partial_i \varphi(x) \, \mathrm{d}x = (-1) \int_{B_1(0)\backslash B_{\varepsilon}(0)} \partial_i u(x) \, \varphi(x) \, \mathrm{d}x + \int_{\partial B_{\varepsilon}(0)} u(\zeta) \varphi(\zeta) \, \nu_i(\zeta) \, \mathrm{d}\mathscr{H}^{n-1}(\zeta),$$

wobei ν_i die *i*-te Komponente des äußeren Einheitsnormalenvektors an den Rand des Integrationsbereichs bezeichnet. Der Grenzübergang $\varepsilon \to 0$ liefert mit dem Konvergenzsatz von LEBESGUE

$$\int_{B_1(0)} u(x) \, \partial_i \varphi(x) \, \mathrm{d}x = (-1) \int_{B_1(0)} \partial_i u(x) \, \varphi(x) \, \mathrm{d}x + 0;$$

denn aus $\alpha + 1 < n$ folgt für das Randintegral

$$\left| \int_{\partial B_{\varepsilon}(0)} \frac{1}{\varepsilon^{\alpha}} \varphi(\zeta) \nu_{i}(\zeta) \, d\mathcal{H}^{n-1}(\zeta) \right| \leq \|\varphi\|_{C^{0}(\overline{B_{1}(0)})} \frac{1}{\varepsilon^{\alpha}} C(n) \varepsilon^{n-1} \underset{\varepsilon \to 0}{\longrightarrow} 0.$$

Falls $\alpha + 1 < n$ erfüllt ist, gilt folglich $u \in W^{1,1}(B_1(0))$.

Entsprechend ist $u \in W^{1,q}(B_1(0))$, falls $\alpha + 1 < \frac{n}{q}$ für $q \in [1, \infty)$, da $\alpha + 1 < \frac{n}{q} \le n$ für alle $q \ge 1$. Tatsächlich gilt die Regel der partiellen Integration, da wir für die obige Rechnung nur $u \in L^1$ und $\nabla u \in L^1$ benötigen. Weiterhin prüft man für $\alpha + 1 < \frac{n}{q}$ leicht nach, dass $\nabla u \in L^q(B_1(0))$, denn aus $(\alpha + 1)q < n$ folgt

$$\int_{B_1(0)} |\nabla u|^q \, dx = C(n, \alpha) \int_0^1 \frac{r^{n-1}}{r^{(\alpha+1)q}} \, dr = C(n, \alpha) \left[r^{n-(\alpha+1)q} \right]_0^1 < \infty.$$

Analog zeigt man, dass $u \in L^q(B_1(0))$. Andererseits sieht man mit diesen Rechnungen, dass $u \notin W^{1,q}(B_1(0))$ für $q \ge n$. Zusammenfassend haben wir für diese Beispielfunktion

$$u \in W^{1,q}(B_1(0)) \quad \Leftrightarrow \quad 0 < \alpha < \frac{n}{q} - 1.$$

Die von Nirenberg in [44] entwickelte Technik von Regularitätsbeweisen mittels Differenzenquotienten basiert im Wesentlichen auf dem folgenden Lemma. In der Regularitätstheorie der Variationsrechnung (und bei partiellen Differentialgleichungen) nutzt man dabei Differenzenquotienten der Lösungen als zulässige Testfunktionen in den schwachen Euler-Lagrange-Gleichungen, um Integralabschätzungen für Potenzen dieser Differenzenquotienten zu gewinnen. Dann verbessert Teil (ii) des folgenden Resultates die Differenzierbarkeitsordnung der Lösung um eine Stufe, was einen Regularitätsgewinn bedeutet. Wir werden diese Technik z.B. bei der Untersuchung eines Hindernisproblems in Abschnitt ?? benutzen.

Lemma 2.6 [Differenzenquotienten in Sobolevräumen]

Sei $k \in \mathbb{N}$, $\Omega \subset \mathbb{R}^n$ offen, $h \in \mathbb{R} \setminus \{0\}$, $l \in \{1, ..., n\}$, und $e_l \in \mathbb{S}^{n-1}$ sei der l-te Standard-basisvektor, $u \in L^1_{loc}(\Omega)$, und

$$\Delta_h^{e_l} u(x) := \frac{u(x + he_l) - u(x)}{h}$$

der für \mathcal{L}^n -fast alle $x \in \Omega$ und genügend kleine |h| > 0 definierte Differenzenquotient von u in die l-te Koordinatenrichtung. Dann ist Folgendes wahr:

(i) Für alle $\Omega' \subset\subset \Omega$ und $0 < |h| < dist(\Omega', \partial\Omega)$ und für $u \in W^{k,q}(\Omega), 1 \leq q < \infty$, gilt

$$\|\Delta_h^{e_l}u\|_{W^{k-1,q}(\Omega')} \le \|\partial_l u\|_{W^{k-1,q}(\Omega)}$$
 für alle $l = 1, \dots, n$,

und

$$\Delta_h^{e_l} u \xrightarrow[h \to 0]{} \partial_l u \quad in \quad W_{loc}^{k-1,q}(\Omega).$$

(ii) Falls $u \in W^{k-1,q}_{loc}(\Omega)$, $1 < q < \infty$, und falls für alle $\Omega' \subset\subset \Omega$ eine Konstante $C(\Omega') < \infty$ existiert, die unabhängig von h mit $0 < |h| < dist(\Omega', \partial\Omega)$ ist, so dass

$$\|\Delta_h^{e_l} u\|_{W^{k-1,q}(\Omega')} \le C(\Omega'),$$

dann ist $u \in W_{loc}^{k,q}(\Omega)$.

Beweis. (i) Sei zunächst $u \in W^{k,q}(\Omega) \cap C^{\infty}(\overline{\Omega}), |\gamma| \leq k-1$. Es gilt für $x \in \Omega'$ und $0 < |h| < \mathrm{dist}(\Omega', \partial\Omega)$

$$\partial^{\gamma} \Delta_{h}^{e_{l}} u(x) = \frac{1}{h} \left(\partial^{\gamma} u(x + he_{l}) - \partial^{\gamma} u(x) \right) = \frac{1}{h} \int_{0}^{1} \frac{d}{dt} \partial^{\gamma} u(x + the_{l}) dt$$
$$= \frac{1}{h} \int_{0}^{1} \nabla \partial^{\gamma} u(x + the_{l}) \cdot he_{l} dt = \int_{0}^{1} \partial_{l} \partial^{\gamma} u(x + the_{l}) dt.$$

Also folgt mit der Jensen-Ungleichung und dem Satz von Fubini

$$\|\partial^{\gamma} \Delta_{h}^{e_{l}} u\|_{L^{q}(\Omega')}^{q} \leq \int_{\Omega'} \int_{0}^{1} |\partial^{\gamma} \partial_{l} u(x + the_{l})|^{q} dt dx = \int_{0}^{1} \int_{\Omega'} |\partial^{\gamma} \partial_{l} u(x + the_{l})|^{q} dx dt$$
$$\leq \int_{0}^{1} \int_{\Omega} |\partial^{\gamma} \partial_{l} u(z)|^{q} dz dt = \|\partial^{\gamma} \partial_{l} u\|_{L^{q}(\Omega)}^{q},$$

wobei wir in der letzten Ungleichung zunächst die Substitution $z := x + the_l \in \Omega$ mit dz = dx benutzt haben, um anschließend den Integrationsbereich auf ganz Ω zu vergrößern.

Weiterhin gilt $\Delta_h^{e_l} u \xrightarrow[h \to 0]{} \partial_l u$ in $C^s(\overline{\Omega})$ für alle $s \in \mathbb{N}$ und $l = 1, \ldots, n$, da $u \in C^{\infty}(\overline{\Omega})$.

Also gilt die Konvergenz auch in $W_{loc}^{k-1,q}(\Omega)$. Für eine allgemeine Funktion $u \in W^{k,q}(\Omega)$ existiert nach Proposition 2.5 eine Folge $\{u_m\}_m \subset C^{\infty}(\overline{\Omega})$ mit $u_m \underset{m \to \infty}{\longrightarrow} u$ in $W_{loc}^{k,q}(\Omega)$. Für $0 < |h| < \operatorname{dist}(\Omega', \partial\Omega)$ wähle $\delta \in (|h|, \operatorname{dist}(\Omega', \partial\Omega))$ und setze

$$\Omega'' := B_{\delta}(\Omega') := \{ x \in \mathbb{R}^n | \operatorname{dist}(x, \Omega') < \delta \}.$$

Dann hat man

$$\|\Delta_h^{e_l}u\|_{W^{k-1,q}(\Omega')} \underset{m \to \infty}{\longleftarrow} \|\Delta_h^{e_l}u_m\|_{W^{k-1,q}(\Omega')} \leq \|\partial_l u_m\|_{W^{k-1,q}(\Omega'')}$$
$$\underset{m \to \infty}{\longrightarrow} \|\partial_l u\|_{W^{k-1,q}(\Omega'')} \leq \|\partial_l u\|_{W^{k-1,q}(\Omega')}.$$

Folglich ist nach der soeben bewiesenen Abschätzung angewendet auf die Differenz $u-u_m \in W^{k,q}(\Omega)$ und die Definitionsbereiche $\Omega' \subset\subset \Omega'' \subset\subset \Omega$

$$0 \leq \liminf_{0 \neq h \to 0} \|\Delta_{h}^{e_{l}} u - \partial_{l} u\|_{W^{k-1,q}(\Omega')}$$

$$\leq \limsup_{0 \neq h \to 0} \|\Delta_{h}^{e_{l}} u - \partial_{l} u\|_{W^{k-1,q}(\Omega')}$$

$$\leq \limsup_{h \to 0} \|\Delta_{h}^{e_{l}} (u - u_{m})\|_{W^{k-1,q}(\Omega')} + \limsup_{h \to 0} \|\Delta_{h}^{e_{l}} u_{m} - \partial_{l} u_{m}\|_{W^{k-1,q}(\Omega')}$$

$$+ \limsup_{h \to 0} \|\partial_{l} (u - u_{m})\|_{W^{k-1,q}(\Omega')} \xrightarrow{m \to \infty} 0;$$

$$\leq 2\|\partial_{l} (u - u_{m})\|_{W^{k-1,q}(\Omega'')} \xrightarrow{m \to \infty} 0;$$

denn aus der Glattheit von u_m folgt $\limsup_{h\to 0} \|\Delta_h^{e_l} u_m - \partial_l u_m\|_{W^{k-1,q}(\Omega')} = 0$. (ii) $L^q(\Omega)$ ist ein reflexiver Banachraum (siehe Definition A.4 im Anhang) und damit auch $W^{k-1,q}(\Omega)$ für $1 < q < \infty$. Man wählt eine $Ausschöpfung \{\Omega_i\}_i$ von Ω mit

$$\Omega_i \subset\subset \Omega_{i+1}$$
 für alle $i \in \mathbb{N}$ und $\Omega = \bigcup_{i=1}^{\infty} \Omega_i$.

Nach Voraussetzung gilt

$$\|\Delta_h^{e_l} u\|_{W^{k-1,q}(\Omega_i)} \le C(\Omega_i)$$
 für $0 < |h| < \operatorname{dist}(\Omega_i, \partial\Omega)$.

Zu Ω_1 gibt es eine Teilfolge $h_1 \to 0$ und Funktionen $v_1^{\gamma,l} \in L^q(\Omega_1)$ mit

$$\partial^{\gamma} \Delta_{h_1}^{e_l} u \underset{h_1 \to 0}{\rightharpoonup} v_1^{\gamma,l} \quad \text{in } L^q(\Omega_1) \ \forall |\gamma| \le k-1, \ l=1,\ldots,n.$$

Zu Ω_2 existieren eine Teilfolge $\{h_2\}\subset\{h_1\}$ und Funktionen $v_2^{\gamma,l}\in L^q(\Omega_2)$ mit $h_2\to 0$ und

$$\partial^{\gamma} \Delta_{h_2}^{e_l} u \underset{h_2 \to 0}{\rightharpoonup} v_2^{\gamma,l} \quad \text{in } L^q(\Omega_2) \ \forall |\gamma| \le k-1, \ l=1,\ldots,n.$$

Die Fortsetzung dieses Auswahlverfahrens und ein darauffolgendes Diagonalfolgenargument liefert eine Folge $h \to 0$ und Funktionen $u^{\gamma,l} \in L^q_{\text{loc}}(\Omega)$ definiert durch

$$u^{\gamma,l}(x) := v_N^{\gamma,l}(x)$$
 für $x \in \Omega_N$,

so dass

$$\partial^{\gamma} \Delta_h^{e_l} u \underset{h \to 0}{\rightharpoonup} u^{\gamma,l} \quad \text{in } L_{loc}^q(\Omega) \ \forall |\gamma| \le k - 1, \ l = 1, \dots, n,$$
 (2.5)

d.h. schwache Konvergenz in $L^q(K)$ für jedes Kompaktum⁵ $K \subset \Omega$.

$$\partial^{\gamma} \Delta_h^{e_l} u \rightharpoonup v_N^{\gamma,l} = u^{\gamma,l}|_K \quad \text{in } L^q(K).$$

⁵Tatsächlich findet man zu einem beliebigen Kompaktum $K\subset\Omega$ ein $N\in\mathbb{N}$, so dass aufgrund der Ausschöpfungseigenschaft $K\subset\Omega_N$, und daraus folgt

Zu einem Multiindex $\bar{\gamma}$ mit $|\bar{\gamma}| = k, k \in \mathbb{N}$, findet man einen Multiindex γ mit $|\gamma| = k-1$ und eine Koordinatenrichtung gegeben durch den Standardbasisvektor $e_l \in \mathbb{S}^{n-1}$ für ein $l \in \{1, \ldots, n\}$, so dass $\bar{\gamma} = \gamma + e_l$. Damit ergibt sich für $\varphi \in C_0^{\infty}(\Omega)$ mit der Regel der diskreten partiellen Integration

$$\int_{\Omega} u \partial^{\bar{\gamma}} \varphi \, dx \underset{h_{i} \to 0}{\longleftarrow} \int_{\Omega} u \Delta_{-h_{i}}^{e_{l}} \partial^{\gamma} \varphi \, dx = (-1) \int_{\Omega} \Delta_{h_{i}}^{e_{l}} u \partial^{\gamma} \varphi \, dx$$

$$= (-1)^{|\bar{\gamma}|} \int_{\Omega} \left(\partial^{\gamma} \Delta_{h_{i}}^{e_{l}} u \right) \varphi \, dx$$

$$\xrightarrow[h_{i} \to 0]{} (-1)^{|\bar{\gamma}|} \int_{\Omega} u^{\gamma, l} \varphi \, dx,$$

wobei wir für den letzten Grenzübergang die (lokal) schwache Konvergenz in (2.5) ausgenutzt haben. Aufgrund von Definition 2.1 gilt somit $u \in W^{k,q}_{loc}(\Omega)$ mit schwachen Ableitungen $\partial^{\bar{\gamma}}u := u^{\gamma,l}$.

Wir beweisen nun die folgende Charakterisierung von LIPSCHITZstetigen Funktionen.

Satz 2.7
$$[C^{k-1,1}(\overline{\Omega}) \cong W^{k,\infty}(\Omega)]$$

Sei $k \in \mathbb{N}$, $\Omega \subset \mathbb{R}^n$ offen. Dann gilt:

- (i) $C^{k-1,1}(\overline{\Omega}) \subset W^{k,\infty}(\Omega)$.
- (ii) Falls Ω beschränkt ist und $\partial\Omega \in C^{k-1,1}$, dann gilt $W^{k,\infty}(\Omega) \subset C^{k-1,1}(\overline{\Omega})$ mit der Abschätzung $\operatorname{Lip}_{\Omega} u \leq \|\nabla u\|_{L^{\infty}(\Omega)}$.

Bemerkung:

Teil (ii) besagt genauer: Es gibt einen Repräsentanten u^* in der Funktionenklasse $[u] \in W^{k,\infty}(\Omega)$, so dass $u^* \in C^{k-1,1}(\overline{\Omega})$. Mit diesem (schönen) Repräsentanten u^* wird in der Regel weitergerechnet und man verwendet stillschweigend die Bezeichnung u. Man beachte aber die grundsätzliche Bemerkung zur Auswahl von günstigen Repräsentanten nach Lemma 2.4.

Beweis. Wir führen den Beweis exemplarisch für k=1, für k>1 betrachtet man anstelle von u die Ableitungen von u zur Ordnung k.

(i) Klar ist, dass $u \in L^1_{loc}(\Omega)$. Man hat für alle $\varphi \in C_0^{\infty}(\Omega)$ mit Hilfe der diskreten partiellen Integration

$$\left| \int_{\Omega} u \, \partial_{l} \varphi \, dx \right| \underset{h \to 0}{\longleftarrow} \left| \int_{\Omega} u \, \Delta_{-h}^{e_{l}} \varphi \, dx \right| = \left| - \int_{\Omega} \Delta_{h}^{e_{l}} u \, \varphi \, dx \right| \leq \operatorname{Lip}_{\Omega} u \, \|\varphi\|_{L^{1}(\Omega)};$$

denn es gilt

$$\frac{1}{h}|u(x+he_l) - u(x)| \le \frac{|he_l|}{h} \mathrm{Lip}_{\Omega} u.$$

Mit dem weiter unten bewiesenen Lemma 2.8 folgt $u \in W^{1,\infty}(\Omega)$.

(ii) Sei $\Omega = B_1(0)$. Der allgemeinere Fall folgt aus einem Überdeckungsargument⁶, auf das wir hier verzichten werden. Betrachte nun die Faltung $u_{\varepsilon} = \varphi_{\varepsilon} * u$ für einen Faltungskern

 $^{^6\}mathrm{F\ddot{u}r}$ dieses Argument wird die Regularität des Randes von Ω benötigt.

 $\varphi \in C_0^{\infty}(B_1(0))$ mit $\varphi \geq 0$ und $\int_{\mathbb{R}^n} \varphi = 1$, so dass $\varphi_{\varepsilon}(x - \cdot) \in C_0^{\infty}(B_{\varepsilon}(x)) \subset C_0^{\infty}(B_1(0))$ für $x \in B_{1-\varepsilon}(0)$. Dies erlaubt nach Definition 2.1 die Rechnung

$$\nabla_{x} (u_{\varepsilon}) (x) = \nabla_{x} \int_{B_{1}(0)} \varphi_{\varepsilon}(x - y) u(y) dy = \int_{B_{1}(0)} \nabla_{x} \varphi_{\varepsilon}(x - y) u(y) dy$$
$$= -\int_{B_{1}(0)} \nabla_{y} \varphi_{\varepsilon}(x - y) u(y) dy = \int_{B_{1}(0)} \varphi_{\varepsilon}(x - y) \nabla_{y} u(y) = (\nabla u)_{\varepsilon}(x) dy$$

für alle $x \in B_{1-\varepsilon}(0)$. Wegen $\int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) dx = 1$ (siehe Bemerkung nach der Definition A.20 und Teil (iii) des Satzes A.21 im Anhang) folgt

$$||u_{\varepsilon}||_{C^{0}(\overline{B_{1-\delta}(0)})} \le ||u_{\varepsilon}||_{C^{0}(\overline{B_{1-\varepsilon}(0)})} \le ||u||_{L^{\infty}(\Omega)} \quad \text{für } 0 < \varepsilon < \delta$$
 (2.6)

und

$$\operatorname{Lip}_{B_{1-\delta}(0)} u_{\varepsilon} \leq \operatorname{Lip}_{B_{1-\varepsilon}(0)} u_{\varepsilon} \leq \|\nabla u_{\varepsilon}\|_{C^{0}(\overline{B_{1-\varepsilon}(0)},\mathbb{R}^{n})} \leq \|\nabla u\|_{L^{\infty}(B_{1}(0),\mathbb{R}^{n})} \text{ für } 0 < \varepsilon < \delta.$$

$$(2.7)$$

Sei $\delta_j \to 0$ eine beliebige streng monoton fallende Nullfolge. Zunächst liefert der Satz von Arzelà-Ascoli eine Teilfolge $u_{\varepsilon_i} \underset{i \to \infty}{\longrightarrow} u$ in $C^0(\overline{B_{1-\delta_1}(0)})$ für beliebiges $\delta_1 \in (0,1)$. Für $\delta_2 \in (0,\delta_1)$ können wir aus dieser Teilfolge eine weitere Teilfolge auswählen, die gleichmäßig auf $\overline{B_{1-\delta_2}(0)}$ konvergiert, und so fahren wir für alle δ_j fort. Die Auswahl einer Diagonalfolge liefert schließlich die lokal gleichmäßige Konvergenz gegen eine Funktion $u^* \in C^0(B_1(0))$, die aber wegen der nach Satz A.21 (i) schon bekannten Konvergenz $u_{\varepsilon} \to u$ in $L^q_{\text{loc}}(B_1(0))$ für $q \in [1,\infty)$ fast überall in $B_1(0)$ mit u übereinstimmen muss. Wir können für die Diagonalfolge u_{ε} also schließen

$$u_{\varepsilon} \xrightarrow{\varepsilon \to 0} u$$
 lokal gleichmäßig in $B_1(0)$.

Dann folgt für beliebige Punkte $x, y \in B_1(0)$ und

$$0 < \varepsilon < d < \frac{1}{2} \min \left(\operatorname{dist}(x, \partial B_1(0)), \operatorname{dist}(y, \partial B_1(0)) \right)$$

die Abschätzung

$$|u(x) - u(y)| \leq |u(x) - u_{\varepsilon}(x)| + |u_{\varepsilon}(x) - u_{\varepsilon}(y)| + |u_{\varepsilon}(y) - u(y)|$$

$$\leq 2||u - u_{\varepsilon}||_{C^{0}(\overline{B_{1-d}(0)})} + \operatorname{Lip}_{B_{1-d}(0)}u_{\varepsilon}|x - y|$$

$$\leq 2||u - u_{\varepsilon}||_{C^{0}(\overline{B_{1-d}(0)})} + ||\nabla u||_{L^{\infty}(B_{1}(0))}|x - y|,$$

$$\xrightarrow[\varepsilon \to 0]{}$$

also $u \in C^{0,1}(B_1(0))$ mit $\operatorname{Lip}_{B_1(0)} u \leq \|\nabla u\|_{L^{\infty}(B_1(0))}$. Nach stetiger Fortsetzung dieser auf $B_1(0)$ gleichmäßig stetigen Funktion u folgt auch $u \in C^{0,1}(\overline{B_1(0)})$.

Wir haben bei dem Beweis von Satz 2.7 die auch in anderen Situationen sehr nützliche Charakterisierung von SOBOLEVfunktionen verwendet:

Lemma 2.8 [Charakterisierung von $W^{k,q}$] Sei $k \in \mathbb{N} \cup \{0\}$, $1 < q \le \infty$. Dann sind äquivalent:

(i)
$$u \in W^{k,q}(\Omega)$$
,

(ii) $u \in L^1_{loc}(\Omega)$ und es gibt eine Konstante $M = M_u$, so dass

$$\left|(-1)^{|\gamma|}\int_{\Omega}u\partial^{\gamma}\varphi\,\,\mathrm{d}x\right|\leq M_{u}\|\varphi\|_{L^{q'}(\Omega)}\quad \text{ für alle } \varphi\in C_{0}^{\infty}(\Omega), |\gamma|\leq k, \text{ wobei } \frac{1}{q}+\frac{1}{q'}=1.$$

Falls (ii) gilt, dann kann man zusätzlich zeigen, dass die schwachen Ableitungen $\partial^{\gamma} u$ für alle $|\gamma| \leq k$ die Abschätzung $\|\partial^{\gamma} u\|_{L^{q}(\Omega)} \leq M_u$ erfüllen.

Beweis. Falls (i) gilt, können wir mit der HÖLDER-Ungleichung abschätzen:

$$\left| (-1)^{|\gamma|} \int_{\Omega} u \partial^{\gamma} \varphi \, dx \right| \underset{\text{Def. 2.1}}{=} \left| \int_{\Omega} \partial^{\gamma} u \varphi \, dx \right| \underset{\text{H\"older-Ungl.}}{\leq} \underbrace{\|\partial^{\gamma} u\|_{L^{q}(\Omega)}}_{\leq \|u\|_{W^{k,q}(\Omega)} =: M_{u}} \|\varphi\|_{L^{q'}(\Omega)},$$

und es gilt $u \in L^q(\Omega) \subset L^1_{loc}(\Omega)$.

Für den Fall, dass (ii) wahr ist, bemerken wir zunächst, dass für $q' \in [1, \infty)$ der Raum $C_0^\infty(\Omega)$ eine bezüglich der $L^{q'}$ -Norm dichte Teilmenge in $L^{q'}(\Omega)$ ist, da bekanntlich $C_0^0(\Omega)$ dicht in $L^{q'}(\Omega)$ liegt, und man C_0^0 -Funktionen durch Faltung mit C_0^∞ -Funktionen in der C^0 -Norm und damit auch in der $L^{q'}$ -Norm approximieren kann, vergleiche Korollar A.22 im Anhang.

Für jeden Multiindex γ mit $|\gamma| \leq k$ ist die Zuordnung $\varphi \mapsto L_{\gamma}(\varphi) := (-1)^{|\gamma|} \int_{\Omega} u \, \partial^{\gamma} \varphi \, dx$ ein lineares und nach Voraussetzung bezüglich der $L^{q'}$ -Norm stetiges Funktional auf $C_0^{\infty}(\Omega)$. Durch stetige Fortsetzung erhält man für jeden Multiindex γ mit $|\gamma| \leq k$ ein Funktional

$$\tilde{L}_{\gamma} \in \left(L^{q'}(\Omega)\right)^*$$
.

Bekanntlich ist $(L^{q'}(\Omega))^*$ isometrisch isomorph zu dem Funktionenraum $L^q(\Omega)$ (siehe z.B. [2, Satz 4.12]). Dies liefert die Existenz einer Funktion $u^{\gamma} \in L^q(\Omega)$ mit

$$\tilde{L}_{\gamma}(\varphi) = \int_{\Omega} u^{\gamma} \varphi \, \mathrm{d}x$$
 für alle $\varphi \in L^{q'}(\Omega)$,

speziell also

$$\tilde{L}_{\gamma}(\varphi) = L_{\gamma}(\varphi) = (-1)^{|\gamma|} \int_{\Omega} u \, \partial^{\gamma} \varphi \, \, \mathrm{d}x = \int_{\Omega} u^{\gamma} \varphi \, \, \mathrm{d}x \quad \text{ für alle } \varphi \in C_0^{\infty}(\Omega).$$

Als schwache Ableitungen von u erhalten wir also $\partial^{\gamma}u := u^{\gamma} \in L^{q}(\Omega)$ für $|\gamma| \leq k$. Schließlich beachtet man, dass für $\gamma = 0$ nach dem auch in höheren Dimensionen gültigen Fundamentallemma, Lemma 1.5 mit $\Omega \subset \mathbb{R}^n$ anstelle von $I \subset \mathbb{R}$, gilt $u = u^0 \mathcal{L}^n$ -fast überall auf Ω . Damit stimmt $u \mathcal{L}^n$ -fast überall mit der Funktion $u^0 \in L^q(\Omega)$ überein, also ergibt sich sogar $u \in L^q(\Omega)$. Zusammen ergibt dies nach Definition 2.1 $u \in W^{k,q}(\Omega)$. Zusätzlich gilt wegen der (nach [2, Satz 4.12] gültigen) isometrischen Isomorphie $(L^{q'}(\Omega))^* \cong L^q(\Omega)$ und wegen der Dichtheit⁷ von $C_0^{\infty}(\Omega)$ in $L^{q'}(\Omega)$

$$\|\partial^{\gamma} u\|_{L^{q}(\Omega)} = \|u^{\gamma}\|_{L^{q}(\Omega)} = \|\tilde{L}_{\gamma}\|_{(L^{q'}(\Omega))^{*}} = \sup_{\substack{f \in L^{q'}(\Omega) \\ \|f\|_{L^{q'}} \le 1}} |\tilde{L}_{\gamma}(f)| = \sup_{\substack{\varphi \in C_{0}^{\infty}(\Omega) \\ \|\varphi\|_{L^{q'}(\Omega)} \le 1}} |L_{\gamma}(\varphi)| \stackrel{\leq}{\leq} M_{u}.$$

⁷Diese Dichtheit geht in der Tat in der letzten Gleichheit des Beweises ein; denn die Norm einer beschränkten linearen Abbildung auf einem linearen normierten Raum ist identisch mit der Norm auf einer dichten Teilmenge des Funktionenraums.

Von fundamentaler Bedeutung für die Beziehung zwischen verschiedenen SOBO-LEVräumen und zwischen SOBOLEVräumen und klassischen Funktionenräumen sind die Einbettungssätze von SOBOLEV und MORREY, die wir hier für allgemeine Raumdimensionen $n \geq 1$ nur nennen, aber nicht beweisen wollen. Die in unserem Kontext relevante Raumdimension n = 1 erlaubt allerdings einen elementaren Beweis von stärkeren Einbettungsaussagen, die wir später in Satz 2.15 nachholen.

Satz 2.9 [EINBETTUNGSSÄTZE FÜR SOBOLEVFUNKTIONEN] Seien $k, l \in \mathbb{N} \cup \{0\}, \ 1 \leq p, q < \infty, \ \alpha \in (0,1) \ und \ \Omega \subset \mathbb{R}^n \ mit \ \partial \Omega \in C^{0,1}$. Dann gelten die Aussagen:

(i) (SOBOLEV) Falls $k \geq l$ und $k - \frac{n}{q} \geq l - \frac{n}{p}$, dann existiert eine stetige Einbettung

$$W^{k,q}(\Omega) \hookrightarrow W^{l,p}(\Omega).$$

Das bedeutet, dass $W^{k,q}(\Omega) \subset W^{l,p}(\Omega)$ und dass es eine von u unabhängige Konstante $C = C(\Omega, n, p, q, l, k)$ gibt, so dass $\|u\|_{W^{l,p}(\Omega)} \leq C\|u\|_{W^{k,q}(\Omega)}$ für alle $u \in W^{k,q}(\Omega)$.

Falls zusätzlich $k - \frac{n}{q} > l - \frac{n}{p}$ und k > l, dann ist diese Einbettung kompakt, das heißt, falls $\{u_i\}_i \subset W^{k,q}(\Omega)$ mit $\|u_i\|_{W^{k,q}(\Omega)} \leq C$ (unabhängig von i), dann existiert eine Teilfolge $\{u_{i_j}\}_j$ mit $u_{i_j} \xrightarrow[j \to \infty]{} u$ in $W^{l,p}(\Omega)$.

(ii) (Morrey) Falls $k - \frac{n}{q} \ge l + \alpha$, dann gibt es eine stetige Einbettung

$$W^{k,q}(\Omega) \hookrightarrow C^{l,\alpha}(\overline{\Omega}).$$

Falls zusätzlich $k - \frac{n}{q} > l + \alpha$, dann ist diese Einbettung kompakt.

- Bemerkung: 1. Wie schon mehrfach bemerkt (vgl. z.B. die Bemerkung im Anschluss an Lemma 2.4), muss man die Einbettungsaussagen im Sinne von Repräsentanten verstehen. So bedeutet beispielsweise Teil (ii) der obigen Aussage genauer: unter den genannten Voraussetzungen an die Exponenten k, l, n, q und α gibt es zu jeder Funktionenklasse $[u] \in W^{k,q}(\Omega)$ einen Vertreter $u^* \in [u]$ mit $u^* \in C^{l,\alpha}(\overline{\Omega})$. In der Regel wird man mit diesem durch seine Regularität ausgezeichneten Vertreter weiterargumentieren. Der Einfachheit halber nennt man diesen Repräsentanten wieder u.
 - 2. Falls man den Differenzierbarkeitsindex k der SOBOLEVfunktion genügend weit "hochschrauben" kann (z.B. mit Hilfe von Differenzenquotienten bei Lösungen von Variationsproblemen (vgl. Kapitel ??)), dann liefert (ii) klassische Regularität.
 - 3. Betrachte den Grenzfall $p=\infty$, der in Teil (i) nicht erlaubt ist, für $k=1,\ l=0$. Mit $q:=\infty$ ergibt sich $1-\frac{n}{q}=0-\frac{n}{\infty}=0$, also ist die in (i) geforderte nicht strikte Ungleichung an k,n,q,l,p erfüllt, aber es gilt

$$W^{1,n}(\Omega) \not\subset L^{\infty}(\Omega).$$

Das sieht man etwa durch die Funktion $u(x) := \log(1 + |\log|x||)$ für $x \in B_1(0)$; denn $u \notin L^{\infty}(B_1(0))$ aber für $n \geq 2$ ist $u \in W^{1,n}(B_1(0))$. Für n = 1 hingegen gilt $W^{1,1}(\Omega) \subset C^0(\overline{\Omega}) \subset L^{\infty}(\Omega)$, wie wir in Satz 2.15 beweisen werden.

Aus dem hier unbewiesenen Satz 2.9 lassen sich einige für den Umgang mit Sobolevfunktionen im \mathbb{R}^n sehr nützliche Hilfsmittel herleiten, die wir hier nur zum Teil beweisen werden: Poincaré-Ungleichungen (Korollare 2.10 und 2.11), Produkt- und Kettenregel (Proposition 2.12 (i), (ii)), Transformationssatz (Proposition 2.12 (iii)) und einen Fortsetzungssatz für Sobolevfunktionen (Satz 2.13). Auch für diese Resultate kann man im Fall n=1 teilweise stärkere Versionen mit elementaren Beweisen erzielen, siehe z.B. die für die Existenztheorie nützlichen Varianten der auf Satz 2.15 beruhenden Poincaré-Ungleichungen, die wir im Anschluss an diesen Satz angeben.

Korollar 2.10 ["Abstrakte" Poincaré-Ungleichung]

Sei $1 \leq q \leq \infty$, Ω eine beschränkte, zusammenhängende, offene Teilmenge des \mathbb{R}^n mit Lipschitzrand. Sei $\mathcal{K} \subset W^{1,q}(\Omega)$ eine bezüglich $\|\cdot\|_{W^{1,q}}$ abgeschlossene Menge, die zusätzlich ein Kegel ist, das heißt für $u \in \mathcal{K}$ ist auch $\lambda u \in \mathcal{K}$ für alle $\lambda > 0$, und $0 \in \mathcal{K}$ sei die einzige konstante Funktion in \mathcal{K} .

Dann existiert eine Konstante $C = C(n, q, \Omega, K)$ mit

$$||u||_{L^q(\Omega)} \le C||\nabla u||_{L^q(\Omega)}$$
 für alle $u \in \mathcal{K}$.

Beweis. Die Annahme des Gegenteils führt auf die Existenz einer Folge $\{u_m\}_m \subset \mathcal{K} \setminus \{0\}$, so dass

$$\|\nabla u_m\|_{L^q(\Omega)} < \frac{1}{m} \|u_m\|_{L^q(\Omega)}$$
 für alle $m \in \mathbb{N}$,

so dass auch speziell $\|u\|_{L^q(\Omega)} > 0$ für alle $m \in \mathbb{N}$. Dies erlaubt die Betrachtung der normierten Funktionen $v_m := \frac{u_m}{\|u_m\|_{L^q(\Omega)}}$, mit $\|v_m\|_{L^q(\Omega)} = 1$ für alle m, und

$$\|\nabla v_m\|_{L^q(\Omega)} = \frac{\|\nabla u_m\|_{L^q(\Omega)}}{\|u_m\|_{L^q(\Omega)}} < \frac{1}{m} \quad \text{für alle } m \in \mathbb{N}.$$
 (2.8)

Das bedeutet insbesondere

$$||v_m||_{W^{1,q}(\Omega)} \le \left(1 + \left(\frac{1}{m}\right)^q\right)^{1/q} \le 2.$$

Wir unterscheiden jetzt die beiden folgenden Fälle:

1. Fall:
$$q = \infty$$

Satz 2.7 (ii) liefert $W^{1,\infty}(\Omega) \subset C^{0,1}(\overline{\Omega})$ und die Abschätzung $\|v_m\|_{C^{0,1}(\overline{\Omega})} \leq C$. Der Satz von ARZELÀ-ASCOLI liefert eine Teilfolge, für die gilt $v_{m_i} \underset{i \to \infty}{\longrightarrow} v$ in $C^0(\overline{\Omega})$. Also insbesondere $v_{m_i} \underset{i \to \infty}{\longrightarrow} v$ in $L^q(\Omega)$.

2. Fall:
$$q < \infty$$

Satz 2.9 (i) mit k=1, l=0 und der Tatsache $k-\frac{n}{q}>0-\frac{n}{q}$ liefert eine Teilfolge⁸ $\{v_{m_i}\}_i$, für die gilt $v_{m_i} \underset{i \to \infty}{\longrightarrow} v$ in $L^q(\Omega)$.

Damit folgt in beiden Fällen für die Grenzfunktion $||v||_{L^q(\Omega)} = 1$. Die Regel der partiellen Integration (Definition 2.1) liefert für alle $i \in \mathbb{N}, l \in \{1, ..., n\}$ und $\varphi \in C_0^{\infty}(\Omega)$ die Beziehung

$$\int_{\Omega} v_{m_i} \partial_l \varphi \, dx = -\int_{\Omega} \partial_l v_{m_i} \varphi \, dx.$$

⁸Normalerweise ist es üblich, für dieses Argument den Einbettungssatz von Rellich (siehe z.B. [2, Satz A6.1]) zu zitieren; der Sobolevsche Einbettungssatz, Satz 2.9 (i), ist hier eigentlich nicht nötig. Aus pragmatischen Gründen verzichten wir in unserer Darstellung aber auf den Rellichschen Satz.

Der Grenzübergang $i \to \infty$ liefert dann wegen (2.8) mit der HÖLDER-Ungleichung

$$\int_{\Omega} v \partial_l \varphi \, dx = -\int_{\Omega} 0\varphi \, dx \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega).$$
 (2.9)

Also ist $v \in W^{1,q}(\Omega)$ mit schwacher Ableitung $\nabla v = 0$, und aus (2.8) folgt $\nabla v_{m_i} \to 0 = \nabla v$ und damit insgesamt $v_{m_i} \xrightarrow{i \to \infty} v$ in $W^{1,q}(\Omega)$. Da \mathcal{K} ein abgeschlossener Kegel bezüglich $\|\cdot\|_{W^{k,q}}$ ist, gilt $v \in \mathcal{K}$. Da Ω als zusammenhängend vorausgesetzt ist, impliziert Lemma 2.4, dass v = v0 sein. Das ist jedoch ein Widerspruch zu v = v1.

Korollar 2.11 [POINCARÉ-UNGLEICHUNGEN]

Seien $\Omega \subset\subset \mathbb{R}^n$ offen und $1 \leq q \leq \infty$. Dann gilt:

(i) Falls $q \in [1, \infty)$, dann existiert eine Konstante $C = C(\Omega, n, q)$, so dass

$$\int_{\Omega} |u|^q \, dx \le C \int_{\Omega} |\nabla u|^q \, dx \quad \text{für alle } u \in W_0^{1,q}(\Omega).$$

(ii) Falls Ω zusammenhängend ist und $\partial\Omega\in C^{0,1}$, dann gibt es für alle $\beta\in(0,1]$ eine Konstante $C=C(\Omega,n,q,\beta)$, so dass

$$\int_{\Omega} |u|^q \, \mathrm{d}x \le C \int_{\Omega} |\nabla u|^q \, \mathrm{d}x \quad \text{für alle } u \in W^{1,q}(\Omega) \text{ mit } \mathscr{L}^n(\{u=0\}) \ge \beta \mathscr{L}^n(\Omega).$$

(iii) Falls Ω zusammenhängend ist und $\partial\Omega\in C^{0,1}$, dann gibt es eine Konstante $C=C(\Omega,n,q)$, so dass

$$\int_{\Omega} |u - \overline{u}_{\Omega}|^q dx \le C \int_{\Omega} |\nabla u|^q dx \quad \text{für alle } u \in W^{1,q}(\Omega),$$

wobei

$$\overline{u}_{\Omega} := \int_{\Omega} u(x) \, \mathrm{d}x.$$

Zusatz: Falls $\Omega = B_R(x)$ für ein $x \in \mathbb{R}^n$ und $1 \le q < \infty$, dann gilt $C(\Omega, n, q) = C(n, q)R^q$ in Teil (i) und (iii), sowie $C(\Omega, n, q, \beta) = C(n, q, \beta)R^q$ in Teil (ii).

Bemerkung:

Für den Grenzfall $q=\infty$, der in den Teilen (ii) und (iii) zugelassen ist, muss man die Integrale durch das essentielle Supremum ersetzen. Genauer gesagt gelten die Ungleichungen

$$||u||_{L^{\infty}(\Omega)} \leq C||\nabla u||_{L^{\infty}(\Omega,\mathbb{R}^n)}$$
 für alle $u \in W^{1,\infty}(\Omega)$ mit $\mathscr{L}^n(\{u=0\}) \geq \beta \mathscr{L}^n(\Omega)$

unter den Voraussetzungen in (ii), sowie

$$||u - \overline{u}_{\Omega}||_{L^{\infty}(\Omega)} \le C||\nabla u||_{L^{\infty}(\Omega,\mathbb{R}^n)}$$
 für alle $u \in W^{1,\infty}(\Omega)$.

⁹Diesen Schluss erhielte man für n=1 mit (2.9) auch durch Anwendung des Fundamentallemmas von DuBois-Reymond, Lemma 1.10 für $\Omega:=I=(a,b)\subset\mathbb{R}$.

Beweis. Der Teil (iii) folgt direkt aus der abstrakten Poincaré-Ungleichung, Korollar 2.10. Den Teil (i) kann man entweder direkt beweisen (vgl. z.B. [2, Lemma 4.7]) oder über ein indirektes Argument wie im Beweis von Korollar 2.10. Den Teil (ii) kann man ebenfalls über ein indirektes Argument ähnlich wie im Beweis von Korollar 2.10 zeigen – eine direkte Anwendung dieses Korollars auf die vorliegende Situation ist aber auch möglich. Die explizite Abhängigkeit vom Radius R für $\Omega = B_R(x)$ (oder für ähnlich gleichmäßig skalierende Gebiete wie z.B. für $\Omega := B_R(x) \setminus B_{R/2}(x)$) erhält man mit einem einfachen Skalierungsargument.

Mit Hilfe von Approximationsargumenten kann man aus der klassischen Produktund Kettenregel für glatte Funktionen die entsprechenden Differentiationsregeln für So-Bolevfunktionen herleiten. Gleiches gilt für den Transformationssatz, wenn man So-Bolevfunktionen mit Lipschitzstetigen Funktionen komponiert. Wenn man Sobo-Levfunktionen mit Sobolevfunktionen verknüpfen will, bedarf es einer eingehenden Untersuchung der Abbildungseigenschaften. Insbesondere die Lusineigenschaft ist dabei zu beachten: Eine Funktion besitzt die Lusineigenschaft, wenn sie Nullmengen auf Nullmengen abbildet. Diese Eigenschaft kann man in der Tat für Lipschitzstetige Transformationen vergleichsweise leicht nachweisen, siehe z.B. [2, Lemma 2.26]. Eine allgemeinere Kettenregel für Sobolevfunktionen findet man beispielsweise in [52]. Zur Lusineigenschaft auch im Zusammenhang mit der Gültigkeit der Flächenformel findet man interessante Informationen in [27] und in den dort zitierten Arbeiten. So haben Malý und Martio [41, 40] (siehe auch [36, 37]) durch Modifikation eines Beispiels von Cesari eine Sobolevfunktion $\psi \in W^{1,n}(\mathbb{R}^n, \mathbb{R}^n) \cap C^0(\mathbb{R}^n, \mathbb{R}^n)$ mit der überraschenden Eigenschaft

$$\psi([0,1] \times \{0\} \times \ldots \times \{0\}) = [0,1]^n \subset \mathbb{R}^n$$

konstruiert. Offensichtlich hat diese Funktion ψ nicht die Lusineigenschaft, so dass die Flächenformel und der Transformationssatz auf diese Transformation nicht anwendbar sind.

Proposition 2.12 [PRODUKT- UND KETTENREGEL, TRANSFORMATIONSSATZ]

(i) Seien $u \in W^{1,q}(\Omega), v \in W^{1,p}(\Omega)$ und $1 \leq p,q,r \leq \infty$ mit $\frac{1}{q} + \frac{1}{p} = \frac{1}{r}$. Dann ist $uv \in W^{1,r}(\Omega)$ mit

$$\nabla(uv) = (\nabla u)v + u(\nabla v).$$

(ii) Seien $f \in C^{0,1}(\mathbb{R})$ mit^{10} f(0) = 0, $und\ u \in W^{1,q}(\Omega)$, $1 \le q \le \infty$. Dann ist $f \circ u \in W^{1,q}(\Omega)$ mit

$$\nabla(f \circ u) = f'(u)\nabla u \quad \mathscr{L}^n$$
-fast überall in Ω .

(Nach dem Satz von RADEMACHER (siehe z.B. [53]) folgt aus $f \in C^{0,1}(\mathbb{R})$ die Existenz von f'(z) für \mathcal{L}^n -fast alle $z \in \mathbb{R}$; allgemeiner gilt für $F \in C^{0,1}(\mathbb{R}^n, \mathbb{R}^m)$ die (totale) Differenzierbarkeit von F \mathcal{L}^n -fast überall.)

(iii) Seien Ω_1, Ω_2 offen im \mathbb{R}^n , $\psi: \Omega_1 \to \Omega_2$ ein Bi-Lipschitzhomöomorphismus mit $Lip_{\Omega_1}\psi \leq L, Lip_{\Omega_2}\psi^{-1} \leq L$ und $u \in W^{1,q}(\Omega_2), 1 \leq q \leq \infty$. Dann ist $u \circ \psi \in W^{1,q}(\Omega_1)$ mit

$$\nabla(u \circ \psi) = [(\nabla u) \circ \psi] D\psi \quad \mathscr{L}^n \text{-fast "überall in } \Omega_1$$

 $^{^{10}}$ Die Zusatzbedingung f(0)=0 ist für beschränkte Gebiete nicht nötig, für $q=\infty$ ist sie auch für unbeschränkte Gebiete nicht nötig.

und

$$||u \circ \psi||_{W^{1,q}(\Omega_1)} \le C(n,L)||u||_{W^{1,q}(\Omega_2)}.$$

Beweis. Für Teil (iii) verweisen wir auf den Beweis von [2, Satz 2.25], der sich auf die vorliegende Situation übertragen lässt. Eine vereinfachte Variante von Teil (ii) wird in einer Übungsaufgabe behandelt, die allgemeine Aussage wird z.B. in dem Buch von ZIEMER [53] bewiesen.

Es soll hier nur Teil (i) für den Fall $p,q<\infty$ bewiesen werden. Zunächst stellen wir ganz allgemein mit Hilfe der HÖLDER-Ungleichung fest, dass für $f\in L^q(\Omega)$ und $g\in L^p(\Omega)$ das Produkt $f\cdot g$ von der Klasse $L^r(\Omega)$ ist; denn

$$\int_{\Omega} |f \cdot g|^r \, \mathrm{d}x \le \left(\int_{\Omega} |f|^{r\frac{q}{r}} \, \mathrm{d}x \right)^{\frac{r}{q}} \left(\int_{\Omega} |g|^{r\frac{p}{r}} \, \mathrm{d}x \right)^{\frac{r}{p}}.$$

Außerdem gilt für Funktionen $f_i \to f$ in $L^q_{\rm loc}(\Omega)$ für $i \to \infty$ die Konvergenz $f_i \cdot g \to f \cdot g$ in $L^r_{\rm loc}(\Omega)$; denn

$$\int_{\Omega'} |f_i \cdot g - f \cdot g|^r \, \mathrm{d}x \leq \left(\int_{\Omega'} |f_i - f|^{r\frac{q}{r}} \, \mathrm{d}x \right)^{\frac{r}{q}} \left(\int_{\Omega'} |g|^{r\frac{p}{r}} \, \mathrm{d}x \right)^{\frac{r}{p}} \\
= \|f_i - f\|_{L^q(\Omega')}^r \cdot \|g\|_{L^p(\Omega')}^r \xrightarrow[i \to \infty]{} 0 \text{ für alle } \Omega' \subset\subset \Omega$$

Analog weist man nach, dass für $f \in L^q(\Omega)$ und $g_i \to g$ in $L^p_{loc}(\Omega)$ die Konvergenz $g_i \cdot f \to g \cdot f$ in $L^r_{loc}(\Omega)$ folgt, was unsere allgemeinen Vorüberlegungen abschließt.

Nach Proposition 2.5 (i) existieren $u_m, v_m \in C^{\infty}(\overline{\Omega})$, so dass $u_m \to u$ in $W^{1,q}_{loc}(\Omega)$ und $v_m \to v$ in $W^{1,p}_{loc}(\Omega)$. Nach den Vorbemerkungen stellen wir also fest, dass die Funktionen $u \cdot v$, $u_m \cdot v$ und $u_m \cdot v_{m'}$ für $m, m' \in \mathbb{N}$ von der Klasse $L^r(\Omega)$ sind. Dasselbe gilt für die Summen von Produkten $(\partial_l u_m) \cdot v_{m'} + u_m \partial_l v_{m'}$, $(\partial_l u_m) \cdot v + u_m \partial_l v$, und $(\partial_l u) \cdot v + u \partial_l v$.

Nach der klassischen Produktregel gilt

$$\int_{\Omega} u_m v_{m'}(\partial_l \varphi) \, dx = -\int_{\Omega} ((\partial_l u_m) v_{m'} + u_m(\partial_l v_{m'})) \varphi \, dx \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega),$$

also nach dem Grenzübergang $m' \to \infty$ für festes $m \in \mathbb{N}$ nach der obigen allgemeinen Vorüberlegung zur L^r_{loc} -Konvergenz angewandt auf $g_{m'} := v_{m'}$ bzw. $g_{m'} := \partial_l v_{m'}$ und $f := u_m(\partial_l \varphi)$ bzw. $f := (\partial_l u_m) \varphi$ bzw. $f := u_m \varphi$

$$\int_{\Omega} u_m v(\partial_l \varphi) \, dx = -\int_{\Omega} ((\partial_l u_m) v + u_m(\partial_l v)) \varphi \, dx \quad \text{für alle } \varphi \in C_0^{\infty}(\Omega)$$

mit $(\partial_l u_m)v + u_m(\partial_l v) =: \partial_l(u_m v) \in L^r(\Omega)$. Also ist wegen $u_m v \in L^r(\Omega)$ das Produkt $u_m v$ in dem SOBOLEVraum $W^{1,r}(\Omega)$ mit schwacher Ableitung $\partial_l(u_m v) = (\partial_l u_m)v + u_m(\partial_l v)$.

Durch erneute Anwendung der allgemeinen Vorbemerkungen zeigt man im letzten Schritt für $m \to \infty$ die L^r_{loc} -Konvergenz $\partial_l(u_m v) \to \partial_l(uv) := (\partial_l u)v + u(\partial_l v) \in L^r(\Omega)$. Also gilt

$$(u_m v, \partial_l(u_m v)) \to (uv, \partial_l(uv))$$
 in $L^r(\Omega') \times L^r(\Omega')$ für alle $\Omega' \subset\subset \Omega$,

also ist $\{u_m v\}$ eine Cauchy-Folge in $W^{1,r}(\Omega')$ für alle $\Omega' \subset\subset \Omega$ und, da $W^{1,r}(\Omega')$ für jedes $\Omega' \subset\subset \Omega$ ein BANACHraum ist, folgt $uv \in W^{1,r}(\Omega')$ für jedes $\Omega' \subset\subset \Omega$ mit schwacher Ableitung $\partial_l(uv) \in L^r(\Omega)$. Damit ist zunächst $uv \in W^{1,r}_{loc}(\Omega)$, aber neben $\partial_l(uv)$ ist nach der Vorüberlegung auch $uv \in L^r(\Omega)$, sodass $uv \in W^{1,r}(\Omega)$ mit schwachem Gradienten $\nabla(uv) = (\nabla u)v + (u\nabla v) \in L^r(\Omega)$ gezeigt ist.

SOBOLEVfunktionen lassen sich auf größere Gebiete fortsetzen, falls der Rand des ursprünglichen Definitionsbereichs genügend glatt ist. Dabei erhält man auf dem größeren Gebiet eine SOBOLEVfunktion mit verallgemeinerten Nullranddaten. Auch für weniger glatte Gebiete kann man Fortsetzungssätze beweisen, siehe dazu z.B. [51].

Satz 2.13 [Fortsetzungssatz]

Seien $1 \leq q < \infty, k \in \mathbb{N}, \Omega \subset \mathbb{R}^n$ mit $\partial \Omega \in C^{k-1,1}$. Dann existiert für alle $\widetilde{\Omega} \supset \Omega$ eine lineare Abbildung $E: W^{k,q}(\Omega) \to W^{k,q}_0(\widetilde{\Omega})$ mit $(Eu)|_{\Omega} = u$ und

$$\|Eu\|_{W^{l,p}(\widetilde{\Omega})} \leq C(\Omega,\widetilde{\Omega},k,q) \|u\|_{W^{l,p}(\Omega)} \quad \text{für alle } 0 \leq l \leq k \ \ und \ 1 \leq p \leq q$$

 $f\ddot{u}r \ alle \ u \in W^{k,q}(\Omega).$

Beweis. Betrachte zunächst die folgende Modellsituation. Für $u \in C_0^{\infty}(\mathbb{R}^{n-1} \times [0,\infty))$ definiere

$$E_0 u(y,t) := \begin{cases} u(y,t) & \text{für } t \ge 0, \\ \sum_{i=1}^{k+1} \sigma_i u(y,-it) & \text{für } t < 0, \end{cases}$$

wobei $\sum_{i=1}^{k+1} \sigma_i(-i)^m = 1$ für alle $m = 0, \dots, k$ gelte. Nach dem Resultat einer Übungsaufgabe hat man $E_0u \in C_0^k(\mathbb{R}^n)$.

Da nach Voraussetzung $\Omega \subset \subset \mathbb{R}^n$ und $\partial\Omega \in C^{k-1,1}$, existieren Punkte $x_j \in \partial\Omega, j = 1, \ldots, R$, und Umgebungen U_j mit $x_j \in U_j$ sowie Abbildungen $\varphi_j \in C^{k-1,1}(D_j)$ auf Gebieten $D_j \subset \mathbb{R}^{n-1}$, so dass $U_j \cap \partial\Omega = \operatorname{graph}(\varphi_j)$.

Damit existieren weiterhin invertierbare Abbildungen $\psi_j \in C^{k-1,1}(U_j, \mathbb{R}^n)$ mit $\psi_j(U_j) = B_1(0)$ und $\psi_j^{-1} \in C^{k-1,1}(B_1(0), \mathbb{R}^n)$, die (nach geeigneter Rotation) gegeben sind durch

$$\psi_j(y,t) := \frac{1}{\lambda_j} \left((y, t - \varphi_j(y)) - x_j \right)$$
 für alle $(y,t) \in U_j$

und

$$\psi_j^{-1}(\xi,\tau) = x_j + \lambda_j(\xi,\tau + \varphi(\xi))$$
 für alle $(\xi,\tau) \in B_1(0)$,

wobei $\lambda_j > 0$ geeignete Streckungsfaktoren sind. Es gilt $\psi_j(x_j) = 0$ und $\psi_j(U_j \cap \Omega) = B_1^+(0) = B_1(0) \cap \{\mathbb{R}^{n-1} \times (0,\infty)\}$, und durch Auswahl eventuell kleinerer Teilgebiete kann man es einrichten, dass $\partial \Omega \subset U_1 \cup \ldots \cup U_R \subset \subset \widetilde{\Omega}$. Zusätzlich existiert ein $U_0 \subset \Omega$ offen, so dass $\overline{\Omega} \subset \bigcup_{j=0}^R U_j$. Wählt man nun zu dieser Überdeckung eine Zerlegung der Eins, d.h. Funktionen $\eta_j \in C_0^\infty(U_j)$ mit $0 \leq \eta_j \leq 1$ und $\sum_{j=0}^R \eta_j = 1$ in Ω , dann gilt für

$$E_j u := \left(E_0 \left((\eta_j u) \circ \psi_j^{-1} \Big|_{B_r^+(0)} \right) \right) \circ \psi_j,$$

dass

$$\operatorname{supp}\left((\eta_{j}u)\circ\psi_{j}^{-1}\Big|_{B_{1}^{+}(0)}\right)\subset\subset B_{1}^{+}(0)\cup\left(B_{1}^{n-1}(0)\times\{0\}\right)$$

und durch Fortsetzung durch den Wert Null außerhalb des Trägers

$$(\eta_j u) \circ \psi_j^{-1} \Big|_{B_1^+(0)} \in W^{k,q}(\mathbb{R}^{n-1} \times (0,\infty)).$$

Damit ist supp $(E_j u) \subset\subset U_j \subset\subset \widetilde{\Omega}$, und nach Proposition 2.5 (ii) ist $E_j u \in W_0^{k,q}(\widetilde{\Omega})$. Mit Proposition 2.12 gilt dann

$$||E_j u||_{W^{k,q}(\widetilde{\Omega})} \le C(\psi_j, U_j, n, k) ||u||_{W^{k,q}(\Omega)}.$$

Man hat

$$E_{j}u|_{\Omega} = \left(E_{0}\left(\left(\eta_{j}u\right) \circ \psi_{j}^{-1}\Big|_{B_{1}^{+}(0)}\right)\right) \circ \psi_{j}|_{\Omega}$$

$$= \left(E_{0}\left(\left(\eta_{j}u\right) \circ \psi_{j}^{-1}\Big|_{B_{1}^{+}(0)}\right)\right)\Big|_{B_{1}^{+}(0)} \circ \psi_{j}|_{\Omega}$$

$$= \left(\eta_{j}u\right) \circ \psi_{j}^{-1}\Big|_{B_{1}^{+}(0)} \circ \psi_{j}|_{\Omega}$$

$$= \eta_{j}u.$$

Die Setzung $Eu := \eta_0 u + \sum_{j=1}^R E_j u$ liefert also mit Hilfe der Eigenschaften der Zerlegung der Eins

$$\|Eu\|_{W^{k,q}(\widetilde{\Omega})} \le C(\Omega, \widetilde{\Omega}, n, k) \|u\|_{W^{k,q}(\Omega)}$$

und
$$Eu|_{\Omega} = \eta_0 u + \sum_{j=1}^R E_j u|_{\Omega} = \sum_{j=0}^R \eta_j u = u.$$

Mit Hilfe dieses Fortsetzungssatzes kann man das lokale Approximationsresultat für SOBOLEVfunktionen, Proposition 2.5, durch einen globalen Approximationssatz ergänzen.

Korollar 2.14 [GLOBALE APPROXIMATION]

Seien $1 \leq q < \infty, k \in \mathbb{N}$ und $\Omega \subset \mathbb{R}^n$ mit $\partial \Omega \in C^{k-1,1}$. Dann existiert zu $u \in W^{k,q}(\Omega)$ eine Folge $\{u_m\} \subset C^{\infty}(\overline{\Omega})$ mit $u_m \to u$ in $W^{k,q}(\Omega)$.

Beweis. Betrachte mit Satz 2.13 $Eu \in W_0^{k,q}(\widetilde{\Omega})$ für ein Gebiet $\widetilde{\Omega} \supset \Omega$. Dann existieren nach Definition 2.1 (iii) $v_m \in C_0^{\infty}(\widetilde{\Omega})$ mit $v_m \underset{m \to \infty}{\longrightarrow} Eu$ in $W^{k,q}(\widetilde{\Omega})$. Damit folgt für $u_m := v_m|_{\Omega} \in C^{\infty}(\overline{\Omega})$ die Konvergenz $u_m \underset{m \to \infty}{\longrightarrow} u$ in $W^{k,q}(\Omega)$.

Wir beenden dieses Kapitel mit einigen Resultaten für die spezielle Situation einer Raumdimension. Von zentraler Bedeutung für den weiteren Verlauf der Vorlesung ist der folgende Einbettungssatz, den man elementar beweisen kann. Daraus ergeben sich einfache Varianten der Poincaré-Ungleichungen und ein Hebbarkeitssatz für Singularitäten von Sobolevfunktionen auf Intervallen. Letzteres erlaubt eine einfache Konstruktion von Vergleichsfunktionen für Variationsprobleme durch "Zusammenkleben" geeigneter Sobolevfunktionen sowie eine elementare Version des Fortsetzungssatzes von Sobolevfunktionen für n=1.

Satz 2.15 [EINBETTUNGSSATZ FÜR n=1] Sei $\Omega = I = (a,b) \subset \mathbb{R}$ mit $-\infty < a < b < \infty$.

(i) Sei $u \in W^{1,1}(I)$, dann ist $u \in C^0(\bar{I})$ mit

$$||u||_{C^0(\bar{I})} \le \int_I |u(x)| dx + \int_I |u'(x)| dx \le C(I)||u||_{W^{1,1}(I)}$$

und

$$u(x) - u(y) = \int_{y}^{x} u'(t) dt$$
 für alle $x, y \in \overline{I}$.

(ii) Sei $u \in W^{1,q}(I)$ für $q \in (1,\infty]$, dann ist $u \in C^{0,1-\frac{1}{q}}(\bar{I})$ mit

$$||u||_{C^0(\bar{I})} \le \left(\oint_I |u(x)|^q \, \mathrm{d}x \right)^{\frac{1}{q}} + \mathcal{L}^1(I)^{1-\frac{1}{q}} \left(\int_I |u'(x)|^q \, \mathrm{d}x \right)^{\frac{1}{q}}$$

und

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{q}} ||u'||_{L^q(I)}$$
 für alle $x, y \in \overline{I}$.

Bemerkung:

Teil (i) beinhaltet also die stetige Einbettung $W^{1,1}(I)\hookrightarrow C^0(\bar{I})$. Wir erinnern daran, dass dies in höheren Raumdimensionen nicht richtig ist: $W^{1,n}(\Omega)\not\hookrightarrow C^0(\bar{\Omega})$ für $n\geq 2$, vgl. Bemerkung 3 nach Satz 2.9 und die zugehörige Übungsaufgaben. $W^{1,n}$ -Funktionen sind für $n\geq 2$ noch nicht einmal beschränkt. Der Teil (ii) von Satz 2.15 konstatiert die stetige Einbettung $W^{1,q}(I)\hookrightarrow C^{0,1-\frac{1}{q}}(\bar{I})$ für $q\in (1,\infty]$. Für q>1 ist die Einbettung $W^{1,q}(I)\hookrightarrow C^{0,1-(1/q')}$ für alle $q'\in [1,q)$ sogar kompakt. Im Grenzfall $q=\infty$ muss man die L^q -Normen auf der rechten Seite der Abschätzungen jeweils durch das essentielle Supremum von u und u' ersetzen (vgl. auch Satz 2.7 für $n\geq 2$):

$$||u||_{C^0(\bar{I})} \le ||u||_{L^{\infty}(I)} + ||u'||_{L^{\infty}(I)} \mathscr{L}^1(I)$$

und

$$|u(x) - u(y)| \le |x - y| ||u'||_{L^{\infty}(I)}$$
 für alle $x, y \in \overline{I}$,

so dass man eine Konstante C = C(I) findet, so dass

$$||u||_{C^{0,1}(\bar{I})} \le C(I)||u||_{W^{1,\infty}(I)}.$$

Beweis. (i) Zu beliebigen Punkten $x, y \in I$ wähle ein offenes Intervall $I' \subset I$, welches x und y enthält. Nach Proposition 2.5 existieren $u_m \in C^{\infty}(\bar{I})$ mit $u_m \to u$ in $W^{1,1}(I')$. Es gilt nach dem Hauptsatz der Differential- und Integralrechnung

$$u_m(x) - u_m(y) = \int_y^x u'_m(t) dt$$
 für alle $x, y \in \bar{I}$ und für alle $m \in \mathbb{N}$. (2.10)

Zwischenbehauptung: Die Mengenfunktionen $E \mapsto \int_E |u_m'(t)| dt$ für BORELmengen $E \subset I'$ sind gleichmäßig absolutstetig, d.h. für alle $\varepsilon > 0$ existiert ein $\delta(\varepsilon) > 0$, so dass

$$\int_E |u_m'(t)| \, \mathrm{d}t < \varepsilon \quad \text{für alle Borelmengen } E \subset I' \text{ mit } \mathscr{L}^1(E) < \delta \text{ und für alle } m \in \mathbb{N}.$$

Beweis der Zwischenbehauptung: Wir wählen zu $\varepsilon>0$ ein $\delta_1>0$ und ein $M(\varepsilon)\in\mathbb{N},$ so dass

$$\int_E |u'(t)| \, \mathrm{d}t < \frac{\varepsilon}{2} \quad \text{für alle Borelmengen } E \subset I' \quad \text{mit } \mathscr{L}^1(E) < \delta_1$$

und

$$\int_{U} |u'_m(t) - u'(t)| \, \mathrm{d}t < \frac{\varepsilon}{2} \quad \text{für alle } m \ge M(\varepsilon).$$

Damit folgt

$$\int_{E} |u'_m(t)| \, \mathrm{d}t \le \int_{E} |u'(t)| \, \mathrm{d}t + \int_{U} |u'_m(t) - u'(t)| \, \mathrm{d}t < \varepsilon$$

für alle BORELmengen $E \subset I'$ mit $\mathcal{L}^1(E) < \delta_1$ und für alle $m \geq M(\varepsilon)$. Wähle nun noch ein $\delta \leq \delta_1$, so dass

$$\sum_{m=1}^{M(\varepsilon)-1} \int_E |u_m'(t)| \,\mathrm{d}t < \varepsilon \quad \text{für alle Borelmengen} E \subset I' \quad \text{mit } \mathscr{L}^1(E) < \delta.$$

Damit folgt die Zwischenbehauptung.

Benutzt man $|u_m(\xi) - u_m(\eta)| \le \left| \int_{\eta}^{\xi} |u_m'(t)| \, \mathrm{d}t \right|$, so findet man zu jedem $\varepsilon > 0$ also ein $\delta > 0$, so dass

$$|u_m(\xi) - u_m(\eta)| \le \varepsilon$$
 für alle $\xi, \eta \in I'$ mit $|\xi - \eta| < \delta$ und für alle $m \in \mathbb{N}$. (2.11)

Es gilt auch $|u_m(\xi)| \leq |u_m(\eta)| + \left| \int_{\eta}^{\xi} |u'_m(t)| dt \right|$. Integration bezüglich η über I' liefert

$$\mathscr{L}^{1}(I')|u_{m}(\xi)| \leq \int_{I'} |u_{m}(\eta)| \,\mathrm{d}\eta + \mathscr{L}^{1}(I') \left| \int_{I'} |u'_{m}(t)| \,\mathrm{d}t \right| \quad \text{für alle} \ m \in \mathbb{N},$$

also

$$||u_m||_{C^0(\overline{I'})} \le \int_{I'} |u_m(\eta)| d\eta + \int_{I'} |u'_m(t)| dt \underset{m \to \infty}{\longrightarrow} \int_{I'} |u(\eta)| d\eta + \int_{I'} |u'(t)| dt.$$
 (2.12)

Wegen (2.11) und (2.12) gibt es nach dem Satz von Arzelà-Ascoli eine Teilfolge $u_{m_k} \to \tilde{u}$ in $C^0(\overline{I'})$. Wegen der Eindeutigkeit des Grenzwerts folgt $\tilde{u} = u$ fast überall auf I', also ist $\tilde{u} \in C^0(\overline{I'})$ der eindeutige stetige Repräsentant von $u|_{I'} \in W^{1,1}(I')$, und wir schreiben einfach $u \in C^0(\overline{I'})$. Der Grenzübergang $m_k \to \infty$ in (2.10) liefert für die anfangs beliebig gewählten Punkte $x, y \in I$

$$u(x) - u(y) = \int_{y}^{x} u'(t) dt.$$
 (2.13)

Die Absolutstetigkeit der Mengenfunktion $E \mapsto \int_E u'(t) \, \mathrm{d}t$, für Borelmengen $E \subset I$ impliziert, dass die rechte Seite von (2.13) eine gleichmäßig stetige¹¹ Funktion von x und y ist. Folglich können wir u stetig auf \overline{I} fortsetzen und erhalten die Gültigkeit von (2.13) für alle $x,y\in \overline{I}$. Die behauptete Abschätzung der C^0 -Norm von u auf \overline{I} folgt aus dieser Identität in derselben Weise, wie wir es für die approximierenden Funktionen u_m auf I' gezeigt haben. (ii) Da I beschränkt ist, gilt $W^{1,q}(I) \subset W^{1,1}(I)$, und wir können (2.13) für alle $x,y\in \overline{I}$ verwenden, um mit der HÖLDER-Ungleichung zu schließen

$$|u(x)-u(y)| \leq \left| \int_u^x |u'(t)| \, \mathrm{d}t \right| \leq \left(\int_I |u'(t)|^q \, \mathrm{d}t \right)^{\frac{1}{q}} |x-y|^{1-\frac{1}{q}} \quad \text{für alle } x,y \in \bar{I}.$$

$$|u(x) - u(y)| \le \left| \int_y^x u'(t) dt \right| \le \int_{[u,x]} |u'(t)| dt < \varepsilon.$$

Tatsächlich ist wegen $u' \in L^1(I)$ die Funktion $x \mapsto \int_y^x u'(t) \, \mathrm{d}t$ gleichmäßig stetig; denn für alle $\varepsilon > 0$ gibt es $\delta(\varepsilon) > 0$, so dass $\int_E u'(t) \, \mathrm{d}t < \varepsilon$ für alle $E \subset I$ mit $\mathscr{L}^1(E) < \delta(\varepsilon)$, also ist für $x, y \in I$ mit $|x - y| < \delta(\varepsilon)$

Damit ist $u \in C^{0,1-\frac{1}{q}}(\overline{I})$. Ebenfalls wie im Beweis von Teil (i) erhält man für die Abschätzung der C^0 -Norm

$$|u(x)| \leq \int_{I} |u(t)| dt + \int_{I} |u'(t)| dt$$

$$\leq \left(\int_{I} |u(t)|^{q} dt \right)^{\frac{1}{q}} + \mathcal{L}^{1}(I)^{1-\frac{1}{q}} \left(\int_{I} |u'(t)|^{q} dt \right)^{\frac{1}{q}} \quad \text{für alle } x \in \overline{I}.$$

Bemerkung:

Die Gültigkeit des Hauptsatzes der Differential- und Integralrechnung für SOBO-LEVfunktionen (siehe Teil (i) von Satz 2.15) impliziert die für die eindimensionale Variationsrechnung sehr nützlichen POINCARÉ-Ungleichungen

$$\int_{I} |u(x) - u(x_0)|^q dx \le (\mathcal{L}^1(I))^q \int_{I} |u'(x)|^q dx \text{ für alle } u \in W^{1,q}(I), \ q \in [1, \infty) \ x_0 \in \overline{I},$$

und damit auch

$$\int_{I} |u(x) - \bar{u}_{I}|^{q} dx \leq (\mathcal{L}^{1}(I))^{q} \int_{I} |u'(x)|^{q} dx \text{ für alle } u \in W^{1,q}(I), q \in [1, \infty)$$

wobei $\bar{u}_I := \int_I u(x) \, \mathrm{d}x$ den Integralmittelwert bezeichnet, vgl. Korollar 2.11. Auch für $q = \infty$ lassen sich solche Ungleichungen folgern, wenn man die oben auftretenden L^q -Normen geeignet durch essentielle Suprema ersetzt.

Korollar 2.16 $[u' = 0 \text{ f.ü. auf } \{u = 0\}]$ $F\ddot{u}r \ u \in W^{1,q}(I), \ q \in [1,\infty], \ gilt$

$$u'(x)=0 \quad \text{für } \mathscr{L}^1\text{-fast alle } x\in\{z\in I: u(z)=0\}.$$

Beweis. Setze $N_u := \{z \in I : u(z) = 0\}$ und definiere die Teilmenge $N_u^H \subset N_u$ als die Menge der Häufungspunkte von N_u . Dann ist das Komplement $N_u \setminus N_u^H$ abzählbar; denn für $x \in N_u \setminus N_u^H$ existiert $r_x > 0$, so dass $B_{r_x}(x) \cap N_u = \{x\}$. Dann liefert $\{B_{r_x/2}(x) : x \in N_u \setminus N_u^H\}$ eine offene Überdeckung von $N_u \setminus N_u^H$. Da $N_u \setminus N_u^H$ als Teilmenge von I das zweite Abzählbarkeitsaxiom erbt, hat diese Menge die LINDELÖF-Eigenschaft, d.h. es existiert eine abzählbare Teilüberdeckung

$$N_u \setminus N_u^H \subset \bigcup_{n \in \mathbb{N}} B_{r_{x_n/2}}(x_n),$$

so dass für $x \in N_u \setminus N_u^H$ ein $n \in \mathbb{N}$ existiert, so dass $x \in B_{r_{x_n/2}}(x_n) \cap N_u = \{x_n\}$. Also ist tatsächlich $N_u \setminus N_u^H$ abzählbar und damit eine Nullmenge. Nehmen wir nun einen Lebesgue-Punkt x_0 von u', der gleichzeitig Häufungspunkt von N_u ist. Nach Teil (i) von Satz 2.15 gilt für $\{z_i\} \subset N_u \setminus \{x_0\}$ mit $z_i \to x_0$

$$0 = u(z_i) - u(x_0) = \int_{x_0}^{z_i} u'(t) dt \quad \text{für alle } i \in \mathbb{N}$$

und damit auch

$$0 = \frac{1}{(z_i - x_0)} \int_{x_0}^{z_i} u'(t) dt \xrightarrow[i \to \infty]{} u'(x_0).$$

Lemma 2.17 [Hebbarkeitssatz]

Seien $I = (a, b) \subset \mathbb{R}$ mit $-\infty < a < b < \infty, 1 \le q \le \infty$ und $c \in (a, b)$. Dann gilt

$$u \in W^{1,q}(I) \iff u \in W^{1,q}(I \setminus \{c\}) \ und \ \lim_{y \to c^-} u(y) =: u(c^-) = u(c^+) := \lim_{y \to c^+} u(y).$$

Bemerkungen:

1. Zur Präsisierung dieser Aussage sei bemerkt, dass unter der Voraussetzung $u \in W^{1,q}(I)$ die Grenzwertaussage des Lemmas für den eindeutigen stetigen Repräsentanten von u gilt. Die Rückrichtung lässt sich so interpretieren: Gilt für die stetigen Repräsentanten der beiden Sobolevfunktionen $u_1 := u|_{(a,c)}$ und $u_2 := u|_{(c,b)}$ die Grenzwertaussage, dann kann man diese Funktionen zu einer globalen Sobolevfunktion

$$u := \begin{cases} u_1 & \text{auf } (a, c) \\ u_2 & \text{auf } (c, b) \end{cases}$$

"zusammenkleben".

Für $W^{k,q}(I)$ mit k>1 ist diese Aussage falsch. Um z.B. zwei $W^{2,2}$ -Funktionen auf angrenzenden Intervallen (a,c) und (c,b) "zusammenzukleben", muss man dafür sorgen, dass auch die ersten Ableitungen der beiden Funktionen bei c übereinstimmen.

2. Mit Satz 2.15 und dem Hebbarkeitsresultat, Lemma 2.17, ergibt sich für n=1 auch eine einfache Variante des Fortsetzungssatzes, Satz 2.13: Eine Funktion $u \in W^{1,q}((a,b))$ besitzt nach Satz 2.15 klassische Randwerte u(a) und u(b). Falls $I \subset \widetilde{I}$, $\widetilde{I} = (c,d)$, dann kann man lineare Funktionen l_1, l_2 mit $l_1(a) = u(a), l_2(b) = u(b)$ wählen, so dass $l_1(c) = 0$ und $l_2(d) = 0$. Die zusammengesetzte Funktion

$$\tilde{u}(x) := \begin{cases} l_1(x) & \text{für } x \in (c, a] \\ u(x) & \text{für } x \in (a, b) \\ l_2(x) & \text{für } x \in [b, d) \end{cases}$$

ist dann nach Lemma 2.17 in der Klasse $W^{1,q}(\widetilde{I})$ und nach einer Übungsaufgabe sogar in $W^{1,q}_0(\widetilde{I})$. Da der Fortsetzungssatz, Satz 2.13 auch die globale Approximierbarkeit von Sobolevfunktionen impliziert (vgl. 2.14), hat man mit der obigen einfachen Fortsetzungstechnik für n=1 auch eine einfache Möglichkeit Sobolevfunktionen global durch glatte Funktionen zu approximieren.

Beweis von Lemma 2.17. " \Rightarrow ": Für $u, u' \in L^q(I)$ gilt $u, u' \in L^q(I \setminus \{c\})$ und die Regel der partiellen Integration in Definition 2.1 gilt auch für alle $\varphi \in C_0^{\infty}(I \setminus \{c\})$. Außerdem ist $u \in W^{1,q}(I) \hookrightarrow C^0(\bar{I})$ nach Satz 2.15.

" \Leftarrow ": Für $a < x_1 < y_1 < c < y_2 < x_2 < b$ gilt mit Satz 2.15 für den eindeutigen stetigen

Vertreter von u auf (a, c) und für den stetigen Vertreter von u auf (c, b)

$$u(x_{2}) - u(x_{1}) - (u(y_{2}) - u(y_{1}))$$

$$= u(y_{1}) - u(x_{1}) + u(x_{2}) - u(y_{2})$$

$$= \int_{x_{1}}^{y_{1}} u'(t) dt + \int_{y_{2}}^{x_{2}} u'(t) dt$$

$$= \int_{[x_{1}, x_{2}] \setminus [y_{1}, y_{2}]} u'(t) dt$$

$$= \int_{x_{1}}^{x_{2}} u'(t) dt - \int_{y_{1}}^{y_{2}} u'(t) dt - \int_{c}^{y_{2}} u'(t) dt.$$

Der Grenzübergang $y_1 \to c^-, y_2 \to c^+$ auf beiden Seiten liefert dann $u(x_2) - u(x_1) = \int_{x_1}^{x_2} u'(t) dt$. Mit $u, u' \in L^q(I \setminus \{c\}) = L^q(I)$ und mit dem Resultat einer Übungsaufgabe folgt damit $u \in W^{1,1}(I)$ und damit $u \in W^{1,q}(I)$.

Bemerkung:

Eine Anwendung von Lemma 2.17 ist die Konstruktion von (zulässigen) Vergleichsfunktionen für Minimierungsaufgaben: Wir nehmen im Vorgriff auf die Regularitätstheorie, Kapitel 4, an, dass

$$\mathcal{F}(u) \leq \mathcal{F}(v)$$
 für alle $v \in W^{1,q}(I)$ mit $u - v \in W_0^{1,q}(I)$,

und stellen die Frage:

Besitzt
$$u \in W^{1,q}(I)$$
 eine höhere Regularität?

Ein möglicher erster Schritt zur Beantwortung dieser Frage ist die Konstruktion von zulässigen Vergleichsfunktionen.

Abbildung 2.1: Konstruktion zulässiger Vergleichsfunktionen durch Ersetzung auf $(x_1, x_2) := B_{\varepsilon}(x_0)$.

Sei $x_0 \in I$. Dann betrachtet man

$$v(x) := \begin{cases} u(x) & \text{für } x \in I \backslash B_{\varepsilon}(x_0), \\ h(x) & \text{für } x \in B_{\varepsilon}(x_0), \end{cases}$$

wobei $h|_{\partial B_{\varepsilon}(x_0)} = u|_{\partial B_{\varepsilon}(x_0)}$ und $\varepsilon < \operatorname{dist}(x_0, \partial I)$. Man hat also den Minimierer u lokal um x_0 durch eine andere Funktion h ersetzt und erhofft sich dadurch Aussagen über die Regularität von u nahe x_0 . Zunächst hat man dadurch die Minimierungseigenschaft von u auf $B_{\varepsilon}(x_0)$ lokalisiert:

$$\mathcal{F}_{I\setminus B_{\varepsilon}(x_0)}(u) + \mathcal{F}_{B_{\varepsilon}(x_0)}(u) = \mathcal{F}_{I}(u) \le \mathcal{F}_{I}(v) = \mathcal{F}_{I\setminus B_{\varepsilon}(x_0)}(u) + \mathcal{F}_{B_{\varepsilon}(x_0)}(h),$$

also $\mathcal{F}_{B_{\varepsilon}(x_0)}(u) \leq \mathcal{F}_{B_{\varepsilon}(x_0)}(h)$. Diese Ungleichung kann man nun durch Wahl besonderer Vergleichsfunktionen h auf $B_{\varepsilon}(x_0)$ ausnutzen. Ideen von Morrey folgend kann man z.B. h harmonisch wählen, was insbesondere für den Fall n=2 für Minimalflächen oder H-Flächen erfolgreich ist (vgl. [43] und [10], [11], oder [12, 14, 13]). Für den Fall allgemeiner parametrischer Variationsprobleme, also für Cartan-Funktionale auf Flächen (n=2) hat Morrey auch biharmonische Vergleichsfunktionen h eingesetzt (vgl. [43, Chapter 9]). Auch für Variationsprobleme höherer Ordnung können biharmonische Vergleichsfunktionen nützlich sein, siehe etwa die richtungsweisende Arbeit von L. Simon [50] zur Existenz von Tori, die das Willmorre-Funktional

$$\int_{\Sigma} H^2 \, \mathrm{d}A$$

minimieren, wobei H die mittlere Krümmung der Fläche Σ bezeichnet; siehe auch [49]. Für die Regularitätstheorie allgemeiner Variationsprobleme mit nichtglatten Integranden kann auch eine geeignete Konvexkombination von u und $f_{\Omega}u$ als Vergleichsfunktion h gewählt werden, siehe z.B. [22, Chapter V, Theorem 3.1].

Kapitel 3

Direkte Methoden: Unterhalbstetigkeit und Existenztheorie

Kapitel 4

Regularitätstheorie und Singularitäten Kapitel 5

Anwendungen

Anhang A

Resultate aus der Funktionalanalysis

Im Folgenden werden wir einige Definitionen und Resultate aus der Funktionalanalysis und verwandten Gebieten angeben, die im vorliegenden Skript benutzt werden. Für Details der nachstehenden Sätze verweisen wir, soweit nicht anders vermerkt, auf [2], wobei wir uns hier bei linearen Räumen auf R-Vektorräume beschränken.

- **Definition A.1** [BANACHRÄUME, DICHTE UND SEPARABLE TEILMENGEN] (i) Ein linearer normierter Raum X heißt BANACHraum, wenn er vollständig ist, d.h. wenn alle Cauchy-Folgen in X konvergieren.
 - (ii) Sei X ein Banachraum. Eine Teilmenge $A \subset X$ heißt dicht in X, wenn der bezüglich der Norm $\|\cdot\|_X$ gebildete Abschluss von A mit X übereinstimmt, d.h. $\overline{A} = X$. X heißt separabel, wenn eine abzählbare, dichte Teilmenge $A \subset X$ existiert.
- (iii) Ein Banachraum X heißt uniform konvex, wenn es zu jedem $\varepsilon > 0$ ein $\delta(\varepsilon) > 0$ gibt, so dass gilt: Für $u, v \in X$ mit $\|u\|_X = \|v\|_X = 1$ und mit $\|u v\|_X \ge \varepsilon$ gilt $\|u + v\|_X \le 2(1 \delta)$; siehe [38, Kapitel 5, \$26.6]. (Gleichbedeutend ist: Aus $\|u_k\|_X = \|v_k\|_X = 1$ und $\|u_k + v_k\|_X \to 2$ folgt $\|u_k v_k\|_X \to 0$ für $k \to \infty$.)
- (iv) Ein linearer Raum X mit einem Skalarprodukt (inneren Produkt) $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$, welcher bezüglich der von dem Skalarprodukt induzierten Norm $\| \cdot \|_X := \sqrt{\langle \cdot, \cdot \rangle}$ vollständig ist, heißt HILBERTraum.
- **Definition A.2** [LINEARE ABBILDUNGEN] (i) Seien X und Y lineare normierte Räume. Dann heißt $L: X \to Y$ eine lineare Abbildung, falls $L(\alpha x_1 + \beta x_2) = \alpha L(x_1) + \beta L(x_2)$ für alle $x_1, x_2 \in X$ und $\alpha, \beta \in \mathbb{R}$.
 - (ii) Eine lineare Abbildung heißt stetig (oder beschränkt oder ein beschränkter linearer Operator), wenn es eine Konstante $C \in \mathbb{R}$ gibt, so dass $||Lx||_Y \leq C||x||_X$ für alle $x \in X$. Mit L(X,Y) bezeichnen wir den Raum der stetigen linearen Abbildungen von X nach Y, der mit der Operatornorm

$$||L||_{L(X,Y)} := \sup_{||x||_X \le 1} ||Lx||_Y < \infty$$

ein normierter linearer Raum ist.

(iii) Der Raum $X^* := L(X, \mathbb{R})$ heißt der Dualraum von X, die Elemente von X^* nennt man auch lineare Funktionale .

- (iv) Eine injektive lineare stetige Abbildung $L \in L(X,Y)$ heißt Einbettung.
- (v) Eine bijektive lineare stetige Abbildung $L \in L(X,Y)$ heißt invertierbar oder ein stetiger Isomorphismus.
- (vi) Eine Abbildung $L \in L(X,Y)$ heißt Isometrie oder isometrisch, wenn $||Lx||_Y = ||x||_X$ für alle $x \in X$.
- (vii) Falls X und Y BANACHräume sind, und wenn für eine Abbildung $K \in L(X,Y)$ jede Folge $\{K(x_k)\}\subset Y$ eine in Y konvergente Teilfolge besitzt, solange die Urbildfolge $\{x_k\}\subset X$ beschränkt ist, dann heißt K kompakt. Ist diese Abbildung K zusätzlich eine Einbettung, dann spricht man kurz von einer kompakten Einbettung.

Bemerkung:

Falls der Zielraum Y ein BANACHraum ist, dann ist auch L(X,Y) ein BANACHraum. Falls X und Y BANACHräume sind und falls $L \in L(X,Y)$ eine invertierbare lineare stetige Abbildung ist, dann kann man zeigen, dass $L^{-1} \in L(Y,X)$, wobei $L^{-1}: Y \to X$ die Inverse von L bezeichnet.

Satz A.3 [Folgerung aus Hahn-Banach]

Sei X ein normierter linearer Raum und $x_0 \in X \setminus \{0\}$. Dann existiert ein lineares Funktional $l_0 \in X^*$, so dass $||l_0||_{X^*} = 1$ und $l_0(x_0) = ||x_0||_X$.

Bemerkung:

Mit der Abbildung $J_X: X \to (X^*)^* =: X^{**}$, definiert durch

$$(J_X x)(l) := l(x)$$
 für $x \in X$ und alle $l \in X^*$,

ist jeder Banachraum X in natürlicher Weise isometrisch in X^{**} eingebettet.

Definition A.4 [Reflexive Banachräume]

Ein Banachraum X heißt reflexiv, wenn die oben genannte isometrische Einbettung J_X : $X \to X^{**}$ surjektiv, also ein isometrischer Isomorphismus ist.

Satz A.5 [Darstellungssatz von Riesz für Hilberträume]

 $Jeder \ {\it Hilbert}$ raum X ist isometrisch isomorph zu seinem $Dualraum \ X^*$ mittels der Abbil $dung \ J: X \to X^* \ definiert \ durch$

$$x \mapsto J(x) := \langle x, \cdot \rangle \in X^*.$$

Korollar A.6 [Hilberträume sind reflexiv]

Jeder Hilbertraum ist reflexiv.

Definition A.7 [Schwache Konvergenz]

Sei X ein Banachraum.

- (i) Eine Folge $\{x_k\}$ in X konvergiert schwach für $k \to \infty$ gegen ein $x \in X$, wenn $l(x_k) \to l(x)$ für $k \to \infty$ für alle $l \in X^*$. Wir schreiben dafür $x_k \rightharpoonup x$ für $k \to \infty$.
- (ii) Eine Folge $\{l_k\}$ im Dualraum X^* konvergiert schwach* für $k \to \infty$ gegen ein $l \in X^*$, wenn $l_k(x) \to l(x)$ für $k \to \infty$ für alle $x \in X$. Wir schreiben dafür $l_k \stackrel{*}{\rightharpoonup} l$ für $k \to \infty$.

Lemma A.8 [EIGENSCHAFTEN SCHWACHER KONVERGENZ]

Sei X ein Banachraum, dann gilt:

- (i) Der schwache und auch der schwach* Grenzwert einer Folge in X bzw. einer Folge in X* ist eindeutig bestimmt.
- (ii) Falls $||x_k x||_X \to 0$ für $k \to \infty$ (also falls x_k stark gegen x konvergiert), dann gilt auch $x_k \rightharpoonup x$ für $k \to \infty$. Falls $||l_k l||_{X^*} \to 0$ für $k \to \infty$, dann gilt auch $l_k \stackrel{*}{\rightharpoonup} l$ für $k \to \infty$.
- (iii) Falls $l_k \stackrel{*}{\rightharpoonup} l$ in X^* für $k \to \infty$, dann gilt

$$||l||_{X^*} \leq \liminf_{k \to \infty} ||l_k||_{X^*}.$$

(iv) Falls $x_k \rightharpoonup x$ in X für $k \rightarrow \infty$, dann gilt

$$||x||_X \le \liminf_{k \to \infty} ||x_k||_X.$$

- (iv) Schwach konvergente Folgen in X und auch schwach* konvergente Folgen in X* sind beschränkt.
- (v) Falls x_k stark gegen x in X, d.h. $||x_k x||_X \to 0$, and $l_k \stackrel{*}{\rightharpoonup} l$ in X^* für $k \to \infty$, dann folgt

$$l_k(x_k) \to l(x)$$
 für $k \to \infty$.

Falls $x_k \rightharpoonup x$ in X und $||l_k - l||_{X^*} \to 0$ für $k \to \infty$, dann gilt ebenfalls

$$l_k(x_k) \to l(x)$$
 für $k \to \infty$.

Satz A.9 [Schwach* Folgenkompaktheit]

Für einen separablen BANACHraum X ist jede abgeschlossene Kugel im zugehörigen Dualraum X^* schwach* folgenkompakt, d.h. zu jeder in X^* beschränkten Folge $\{l_k\} \subset X^*$ gibt es eine Teilfolge $\{l_{k_i}\}$ und ein $l \in X^*$, so dass $l_{k_i} \stackrel{*}{\rightharpoonup} l$ für $i \to \infty$.

Satz A.10 [Schwache Folgenkompaktheit in Reflexiven Banachräumen] Sei X ein reflexiver Banachraum. Dann ist jede abgeschlossene Kugel in X schwach folgenkompakt, d.h. zu jeder in X beschränkten Folge $\{x_k\} \subset X$ gibt es eine Teilfolge $\{x_{k_i}\}$ und ein $x \in X$, so dass $x_{k_i} \rightharpoonup x$ für $i \rightarrow \infty$.

Satz A.11 [Starke Konvergenz aus Normkonvergenz und schwacher Konvergenz [16, Kapitel II.4.28]]

Sei X ein uniform konvexer BANACHraum. Dann folgt aus $||x_k||_X \to ||x||_X$ und $x_k \rightharpoonup x$ auch die starke Konvergenz $||x_k - x||_X \to 0$ für $k \to \infty$.

Satz A.12 [MAZUR]

Sei $C \subset X$ eine konvexe und abgeschlossene Menge eines linearen normierten Raumes X, dann ist C schwach folgenabgeschlossen, d.h. falls $x_k \in C$ für alle $k \in \mathbb{N}$ und $x_k \rightharpoonup x$ für $k \rightarrow \infty$, dann ist $x \in C$.

Definition A.13 [HÖLDERRÄUME]

Seien $n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{0\}$ und $\alpha \in (0,1]$. Für eine nichtleere offene Menge $\Omega \subset \mathbb{R}^n$ sei $C^k(\Omega, \mathbb{R}) = C^k(\Omega)$ der Raum der auf Ω k-mal stetig differenzierbaren Funktionen und

 $C^k(\bar{\Omega}, \mathbb{R}) = C^k(\bar{\Omega}) := \{ u \in C^k(\Omega) : \partial^{\gamma} u \text{ besitzt eine stetige Fortsetzung auf } \bar{\Omega} \text{ für alle } |\gamma| \leq k \},$

wobei γ ein Multiindex ist. Die Räume $C^{\infty}(\Omega)$ und $C^{\infty}(\bar{\Omega})$ bestehen aus allen Funktionen, die in $C^k(\Omega)$ bzw. in $C^k(\bar{\Omega})$ für alle $k \in \mathbb{N}$ sind. Weiterhin definieren wir die HÖLDERräume

$$C^{k,\alpha}(\bar{\Omega}) := \{ u \in C^k(\bar{\Omega}) : \text{H\"ol}_{\Omega,\alpha}(\partial^{\gamma} u) < \infty \text{ f\"ur alle } |\gamma| = k \},$$

wobei die HÖLDERkonstante einer Funktion $v:\Omega\to\mathbb{R}$ durch

$$\operatorname{H\"ol}_{\Omega,\alpha} v := \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}}$$

gegeben ist. Funktionen mit endlicher HÖLDERkonstante nennt man auch HÖLDERstetig. Falls $\alpha=1$ nennt man diese Konstante auch LIPSCHITZkonstante und bezeichnet sie auch mit Lip $_{\Omega}v$. Funktionen mit endlicher LIPSCHITZkonstante heißen LIPSCHITZstetig.

 $Mit\ C_0^k(A)\ bzw.\ C_0^{k,\alpha}(A)\ oder\ C_0^\infty(A)\ bezeichnen\ wir\ Funktionen\ u\ der\ entsprechenden\ Funktionenklasse,\ deren\ Träger$

$$\operatorname{supp} u := \overline{\{x \in A : u(x) \neq 0\}}$$

kompakt in A enthalten ist, wobei $\Omega \subset A \subset \bar{\Omega}$ zugelassen ist, etwa wenn $A = \Omega \cup \Gamma$ für eine Teilmenge $\Gamma \subset \partial \Omega$. (Der Raum $C^k(A)$ ist die Menge aller auf Ω k-mal stetig differenzierbaren Funktionen, deren sämtliche Ableitungen stetige Fortsetzungen auf $A \supset \Omega$ besitzen.)

Bemerkung: (i) Man kann zeigen, dass der Raum $C^k(\bar{\Omega})$ versehen mit der Norm

$$||u||_{C^k(\bar{\Omega})} := \sum_{|\gamma| < k} ||\partial^{\gamma} u||_{C^0(\bar{\Omega})}$$

ein Banachraum ist. Hierbei bezeichnet $||v||_{C^0(\bar{\Omega})} := \sup_{x \in \bar{\Omega}} |v(x)|$ die Supremumsnorm einer Funktion $v : \bar{\Omega} \to \mathbb{R}$. Desweiteren ist auch der Raum $C^{k,\alpha}(\bar{\Omega})$ versehen mit der Norm

$$||u||_{C^{k,\alpha}(\bar{\Omega})} := ||u||_{C^k(\bar{\Omega})} + \sum_{|\gamma|=k} \operatorname{H\"ol}_{\Omega,\alpha}(\partial^{\gamma}u)$$

ein Banachraum.

(ii) Für $\Omega \subset\subset \mathbb{R}^n$ (d.h. $\bar{\Omega}$ ist eine kompakte Teilmenge des \mathbb{R}^n) und $0 < \beta < \alpha$ kann man mit dem Satz von Arzelà-Ascoli beweisen, dass die Inklusionen

$$C^{0,\alpha}(\bar{\Omega}) \subset C^{0,\beta}(\bar{\Omega}) \subset C^0(\bar{\Omega})$$

durch kompakte Einbettungen realisiert werden, was zum Beispiel bedeutet, dass jede beschränkte Folge in $(C^{0,\alpha}(\bar{\Omega}),\|\cdot\|_{C^{k,\alpha}(\bar{\Omega})})$ eine in $(C^{0,\beta}(\bar{\Omega}),\|\cdot\|_{C^{k,\beta}(\bar{\Omega})})$ konvergente Teilfolge besitzt. Falls zusätzlich der Rand des Gebietes Ω von der Klasse $C^{0,1}$ ist, was bedeutet, dass sich der Rand $\partial\Omega$ lokal durch den Graphen einer Lipschitzstetigen Funktion darstellen lässt, dann ist für $k,l\in\mathbb{N}\cup\{0\},k\geq l,\alpha,\beta\in(0,1]$ mit $k+\alpha>l+\beta$ die Inklusion $C^{k,\alpha}(\bar{\Omega})\subset C^{l,\beta}(\bar{\Omega})$ eine kompakte Einbettung.

Definition A.14 [LEBESGUERÄUME]

Sei $\emptyset \neq \Omega \subset \mathbb{R}^n$ offen, $q \in [1, \infty]$. Dann ist der Lebesgueraum $L^q(\Omega)$ definiert durch

$$L^q(\Omega) := \{u : \Omega \to \mathbb{R} \quad \text{messbar} \, : \|u\|_{L^q(\Omega)} < \infty\},$$

wobei

$$||u||_{L^q(\Omega)} := \begin{cases} \left(\int_{\Omega} |u(x)|^q \, d\mathcal{L}^n(x) \right)^{1/q} & \text{ für } 1 \leq q < \infty, \\ \operatorname{ess } \sup_{\Omega} |u| & \text{ für } q = \infty. \end{cases}$$

Dabei ist

$$\text{ess } \sup_{\Omega} |u| \coloneqq \inf_{\mathscr{L}^n(N) = 0} \sup_{x \in \Omega \backslash N} |u(x)|.$$

Es gilt u = v in $L^q(\Omega)$ genau dann, wenn u = v \mathcal{L}^n -fast überall in Ω , d.h. u(x) = v(x) für alle $x \in \Omega \setminus N$ mit $\mathcal{L}^n(N) = 0$. In diesem Sinne ist eine Funktion $u \in L^1(\Omega)$ eine Äquivalenzklasse aller Funktionen, die \mathcal{L}^n -fast überall in Ω mit u übereinstimmen. Weiterhin setzt man

$$L_{loc}^q(\Omega) := \{ u : \Omega \to \mathbb{R} : u \in L^q(\Omega') \text{ für alle } \Omega' \subset\subset \Omega \},$$

und $u_m \to u$ in $L^q_{loc}(\Omega)$ bedeutet, dass $u_m \to u$ in $L^q(\Omega')$ für $m \to \infty$ für alle $\Omega' \subset\subset \Omega$. Ein Punkt $x_0 \in \Omega$ heißt LEBESGUE-Punkt der Funktion $u \in L^q_{loc}(\Omega)$, falls

$$\lim_{\delta \to 0} \frac{1}{\mathcal{L}^n(B_\delta(x_0))} \int_{B_\delta(x_0)} |u(x) - u(x_0)| \, dx = 0.$$

Bemerkung: (i) Für $u \in L^q_{loc}(\Omega)$ sind \mathscr{L}^n -fast alle Punkte aus Ω Lebesgue-Punkte; siehe z.B. [47, S. 138ff].

(ii) Sehr nützlich ist die (verallgemeinerte) HÖLDERungleichung: Für $q_i \in [1, \infty], i = 1, \ldots, m$, mit

$$\frac{1}{q_1} + \frac{1}{q_2} + \dots + \frac{1}{q_m} = 1$$

und Funktionen $u_i \in L^{q_i}(\Omega)$ gilt die Ungleichung

$$\left| \int_{\Omega} u_1(x) u_2(x) \cdots u_m(x) \, dx \right| \leq \|u_1\|_{L^{q_1}(\Omega)} \cdot \|u_2\|_{L^{q_2}(\Omega)} \cdots \cdot \|u_m\|_{L^{q_m}(\Omega)}.$$

(iii) Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere offene Menge. Dann sind die Räume $L^q(\Omega)$ für $q \in [1, \infty)$ separabel, da der Raum $C_0^0(\Omega)$ dicht in $L^q(\Omega)$ liegt, und stetige Funktionen mit Polynomen nach dem Weierstrassschen Approximationssatz approximierbar sind. Diese Polynome wiederum kann man durch solche mit rationalen Koeffizienten annähern, da $\bar{\mathbb{Q}} = \mathbb{R}$, also die rationalen Zahlen in \mathbb{R} dicht liegen. Falls Ω zusätzlich beschränkt ist, sind auch die Räume $C^k(\bar{\Omega})$ separabel.

Der Raum $L^{\infty}(\Omega)$ hingegen ist nicht separabel.

Satz A.15 [FISCHER-RIESZ]

Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere offene Menge. Dann sind für alle $q \in [1, \infty]$ die Räume $L^q(\Omega)$ vollständig.

Bemerkung:

Der eigentliche Satz von FISCHER-RIESZ bezieht sich auf den Fall endlicher Exponenten q, für $q = \infty$ reicht ein direktes und elementares Argument.

Satz A.16 [Dualraum von L^q für $q < \infty$]

Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere und offene Menge und $1 \leq q < \infty$. Dann ist der Dualraum $(L^q(\Omega))^*$ isometrisch isomorph zu dem Raum $L^{q'}(\Omega)$ für den zu q konjugierten Exponenten

 $q' \in (1, \infty]$ mit $\frac{1}{q} + \frac{1}{q'} = 1$. Dieser isometrische Isomorphismus $J : L^{q'}(\Omega) \to (L^q(\Omega))^*$ ist gegeben durch

$$v \mapsto J(v)(\cdot) := \int_{\Omega} \cdot v(x) \, dx \in (L^p(\Omega))^* \quad \text{für } v \in L^{q'}(\Omega),$$

also $J(v)(u) = \int_{\Omega} u(x)v(x) dx$ für $u \in L^{q}(\Omega)$.

Satz A.17 [RIESZ-RADON: DUALRAUM VON $C^0(\bar{\Omega})$ [16, BAND I, KAPITEL IV.6.3]] Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere und offene Menge. Dann ist der Dualraum $(C^0(\bar{\Omega}))^*$ isometrisch isomorph zu dem Raum $\mathscr{B}(\Omega)$ aller regulären BORELmaße auf Ω . Dieser isometrische Isomorphismus $I: \mathscr{B}(\Omega) \to C^0(\bar{\Omega})$ ist gegeben durch

$$\mu \mapsto I(\mu)(\cdot) := \int_{\Omega} \cdot d\mu \in (C^0(\bar{\Omega}))^* \quad \text{für } \mu \in \mathscr{B}(\Omega),$$

also $I(\mu)(u) = \int_{\Omega} u(x) d\mu(x)$ für $u \in C^0(\bar{\Omega})$. Außerdem gilt für reguläre BORELmaße $\mu, \nu \in \mathscr{B}(\Omega)$ mit $\mu(E) \geq \nu(E)$ für alle BORELmengen $E \subset \Omega$ dann auch, dass $I(\mu)(u) \geq I(\nu)(u)$ für alle $u \in C^0(\bar{\Omega})$ mit $u \geq 0$.

Korollar A.18 [Positive Funktionale auf $C_0^0(\Omega)$ [2, Übung 4.8]]

Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere und offene Menge, und es gebe eine lineare Abbildung $T: C_0^0(\Omega) \to \mathbb{R}$, so dass $T(u) \geq 0$ für alle $u \in C_0^0(\Omega, \mathbb{R}_+)$, wobei $\mathbb{R}_+ := \{x \in \mathbb{R} : x \geq 0\}$. Dann existiert ein nichtnegatives lokal beschränktes reguläres BORELmaß $\mu \in \mathscr{B}(\Omega)$, so dass

$$T(u) = \int_{\Omega} u(x) d\mu(x)$$
 für alle $u \in C_0^0(\Omega)$.

Satz A.19 [Reflexivität]

Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere offene Menge. Dann sind für $q \in (1, \infty)$ die Lebesgue-Räume $L^q(\Omega)$ und die Sobolevräume $W^{k,q}(\Omega)$, $k \in \mathbb{N}$ reflexiv. Dagegen sind $L^1(\Omega)$, $L^\infty(\Omega)$ nicht reflexiv. Auch der Raum $C^0(\bar{\Omega})$ der auf $\bar{\Omega}$ stetigen Funktionen ist nicht reflexiv.

Definition A.20 [FALTUNG UND DIRAC-FOLGE]

Für $u \in L^q(\mathbb{R}^n)$ und $\varphi \in L^1(\mathbb{R}^n)$ definiert man die Faltung $\varphi * u \in L^q(\mathbb{R}^n)$ von φ mit u durch

$$\varphi * u(x) := \int_{\mathbb{R}^n} \varphi(x - y)u(y) \, dy.$$

Eine Folge $\{\varphi_k\} \subset L^1(\mathbb{R}^n)$ heißt DIRAC-Folge, falls

$$\varphi_k \ge 0$$
, $\int_{\mathbb{R}^n} \varphi_k(x) \, dx = 1$, $\int_{\mathbb{R}^n \setminus B_r(0)} \varphi_k(x) \, dx \to 0$ für $k \to \infty$ $\forall r > 0$.

Bemerkung: (i) Für $\varphi \in L^1(\mathbb{R}^n)$ mit $\varphi \geq 0$, $\int_{\mathbb{R}^n} \varphi(x) dx = 1$ bilden die Funktionen

$$\varphi_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \varphi\left(\frac{x}{\varepsilon}\right), \quad \varepsilon > 0,$$

eine Dirac-Folge.

(ii) Für $\varphi \in C_0^{\infty}(B_1(0))$ ist $\varphi_{\varepsilon} \in C_0^{\infty}(B_{\varepsilon}(0))$ und damit die Faltung $u_{\varepsilon} := \varphi_{\varepsilon} * u$ auch für $u \in L^1_{loc}(\Omega)$ erklärt. Es gelten dann die folgenden Eigenschaften:

- (a) $u_{\varepsilon} \in C^{\infty}(\Omega')$ für alle $\Omega' \subset\subset \Omega$ mit $\operatorname{dist}(\Omega', \partial\Omega) > \varepsilon$.
- (b) Falls $u \in L^1(\Omega)$, dann ist $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$, wenn $u \equiv 0$ auf $\mathbb{R}^n \setminus \Omega$ gesetzt wird.
- (c) Falls supp $u \subset\subset \Omega$, dann ist $u_{\varepsilon} \in C_0^{\infty}(\Omega)$ für alle $\varepsilon < \operatorname{dist}(\operatorname{supp} u, \partial \Omega)$.
- (d) Für die charakteristische Funktion $u := \chi_{\Omega''}^{-1}$ mit $\Omega' \subset\subset \Omega'' \subset\subset \Omega$ und

$$\varepsilon < \min\{\operatorname{dist}(\Omega', \partial \Omega''), \operatorname{dist}(\Omega'', \partial \Omega)\}\$$

gilt: $u_{\varepsilon} \in C_0^{\infty}(\Omega)$, $0 \le u_{\varepsilon} \le 1$, und $u_{\varepsilon} \equiv 1$ auf Ω' .

Satz A.21 [APPROXIMATION DURCH FALTUNG [25, KAPITEL 7.2]] Sei $\Omega \subset \mathbb{R}^n$ eine nichtleere offene Menge.

- (i) Für $u \in L^q_{loc}(\Omega)$, $1 \le q < \infty$, gilt $u_{\varepsilon} \to u$ in $L^q_{loc}(\Omega)$ für $\varepsilon \to 0$. Ist $\Omega = \mathbb{R}^n$ und $u \in L^q(\mathbb{R}^n)$, $1 \le q < \infty$, dann hat man die Konvergenz $u_{\varepsilon} \to u$ in $L^q(\mathbb{R}^n)$ für $\varepsilon \to 0$.
- (ii) $F\ddot{u}r\ u\in C^0(\Omega)$ und alle $\Omega'\subset\subset\Omega$ gilt $u_\varepsilon\to u$ in $C^0(\overline{\Omega'})$ f $\ddot{u}r\ \varepsilon\to 0$.
- (iii) Für $u \in C^{k,\alpha}(\Omega)$, $0 < \beta < \alpha \le 1$, $k \in \mathbb{N} \cup \{0\}$ gilt $u_{\varepsilon} \to u$ für $\varepsilon \to 0$ in $C^{k,\beta}(\overline{\Omega'})$ für alle $\Omega' \subset\subset \Omega$. Zusätzlich gilt für alle $\Omega' \subset\subset \Omega'' \subset\subset \Omega$ die Abschätzung

$$||u_{\varepsilon}||_{C^{k,\alpha}(\overline{\Omega'})} \le ||u||_{C^{k,\alpha}(\overline{\Omega''})} \text{ für } \varepsilon < \operatorname{dist}(\Omega',\partial\Omega'').$$

Korollar A.22

Der Raum $C_0^{\infty}(\Omega)$ liegt dicht in $L^q(\Omega)$ für alle $1 \leq q < \infty$, d.h. zu einer Funktion $u \in L^q(\Omega)$ und $\sigma > 0$ gibt es eine Funktion $u_{\sigma} \in C_0^{\infty}(\Omega)$, so dass $||u - u_{\sigma}||_{L^q(\Omega)} < \sigma$. Für $q = \infty$ ist diese Aussage nicht richtig.

¹Die charakteristische Funktion χ_A einer Menge A ist definiert durch $\chi_A(x) = 1$, falls $x \in A$, und $\chi_A(x) = 0$, falls $x \notin A$.

Literaturverzeichnis

- [1] Adams, R. A. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.
- [2] Alt, H. W. Lineare Funktionalanalysis, 5. Aufl. 2006 ed. Springer Berlin Heidelberg, 2006.
- [3] BARNER, M., AND FLOHR, F. Analysis. II, second ed. de Gruyter Lehrbuch. [de Gruyter Textbook]. Walter de Gruyter & Co., Berlin, 1989.
- [4] COURANT, R. Dirichlet's principle, conformal mapping, and minimal surfaces. Springer-Verlag, New York-Heidelberg, 1977. With an appendix by M. Schiffer, Reprint of the 1950 original.
- [5] DACOROGNA, B. *Introduction to the calculus of variations*, third ed. Imperial College Press, London, 2015.
- [6] Dall'Acqua, A., Fröhlich, S., Grunau, H.-C., and Schieweck, F. Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4, 1 (2011), 1–81.
- [7] DECKELNICK, K., AND GRUNAU, H.-C. Boundary value problems for the one-dimensional Willmore equation. *Calc. Var. Partial Differential Equations* 30, 3 (2007), 293–314.
- [8] DECKELNICK, K., AND GRUNAU, H.-C. Stability and symmetry in the Navier problem for the one-dimensional Willmore equation. SIAM J. Math. Anal. 40, 5 (2008/09), 2055–2076.
- [9] DECKELNICK, K., GRUNAU, H.-C., AND RÖGER, M. Minimising a relaxed Willmore functional for graphs subject to boundary conditions. *Interfaces Free Bound.* 19, 1 (2017), 109–140.
- [10] DIERKES, U., HILDEBRANDT, S., KÜSTER, A., AND WOHLRAB, O. Minimal surfaces. I, vol. 295 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. Boundary value problems.
- [11] DIERKES, U., HILDEBRANDT, S., KÜSTER, A., AND WOHLRAB, O. Minimal surfaces. II, vol. 296 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. Boundary regularity.

- [12] DIERKES, U., HILDEBRANDT, S., AND SAUVIGNY, F. Minimal surfaces, second ed., vol. 339 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2010. With assistance and contributions by A. Küster and R. Jakob.
- [13] DIERKES, U., HILDEBRANDT, S., AND TROMBA, A. J. Global analysis of minimal surfaces, second ed., vol. 341 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2010.
- [14] DIERKES, U., HILDEBRANDT, S., AND TROMBA, A. J. Regularity of minimal surfaces, second ed., vol. 340 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2010. With assistance and contributions by A. Küster.
- [15] DO CARMO, M. P. Differentialgeometrie von Kurven und Flächen, vol. 55 of Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course]. Friedr. Vieweg & Sohn, Braunschweig, 1983. Translated from the English by Michael Grüter.
- [16] DUNFORD, N., AND SCHWARTZ, J. T. Linear Operators. I. General Theory. With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958.
- [17] EICHMANN, S. Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet boundary data. J. Geom. Anal. 26, 4 (2016), 2563–2590.
- [18] EICHMANN, S., AND KOELLER, A. Symmetry for Willmore surfaces of revolution. *J. Geom. Anal.* 27, 1 (2017), 618–642.
- [19] Evans, L. C. Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.
- [20] Evans, L. C., and Gariepy, R. F. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [21] FINN, R. Equilibrium capillary surfaces, vol. 284 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1986.
- [22] GIAQUINTA, M. Multiple integrals in the calculus of variations and nonlinear elliptic systems, vol. 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983.
- [23] GIAQUINTA, M., AND HILDEBRANDT, S. Calculus of variations. I, vol. 310 of Grund-lehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1996. The Lagrangian formalism.
- [24] GIAQUINTA, M., AND HILDEBRANDT, S. Calculus of variations. II, vol. 311 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1996. The Hamiltonian formalism.

- [25] GILBARG, D., AND TRUDINGER, N. S. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
- [26] Grunau, H.-C. The asymptotic shape of a boundary layer of symmetric Willmore surfaces of revolution. In *Inequalities and applications 2010*, vol. 161 of *Internat. Ser. Numer. Math.* Birkhäuser/Springer, Basel, 2012, pp. 19–29.
- [27] Hajl Asz, P. Sobolev mappings, co-area formula and related topics. In *Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999)* (2000), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, pp. 227–254.
- [28] HÉLEIN, F. Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory. In *Noncompact problems at the intersection of geometry, analysis, and topology*, vol. 350 of *Contemp. Math.* Amer. Math. Soc., Providence, RI, 2004, pp. 127–147.
- [29] HÉLEIN, F., AND KOUNEIHER, J. Finite dimensional Hamiltonian formalism for gauge and quantum field theories. J. Math. Phys. 43, 5 (2002), 2306–2347.
- [30] HÉLEIN, F., AND KOUNEIHER, J. Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl. *Adv. Theor. Math. Phys.* 8, 3 (2004), 565–601.
- [31] HÉLEIN, F., AND KOUNEIHER, J. The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables. *Adv. Theor. Math. Phys.* 8, 4 (2004), 735–777.
- [32] HILDEBRANDT, S., AND VON DER MOSEL, H. On two-dimensional parametric variational problems. Calc. Var. Partial Differential Equations 9, 3 (1999), 249–267.
- [33] HILDEBRANDT, S., AND VON DER MOSEL, H. Plateau's problem for parametric double integrals. I. Existence and regularity in the interior. *Comm. Pure Appl. Math.* 56, 7 (2003), 926–955. Dedicated to the memory of Jürgen K. Moser.
- [34] HILDEBRANDT, S., AND VON DER MOSEL, H. Conformal representation of surfaces, and Plateau's problem for Cartan functionals. *Riv. Mat. Univ. Parma* (7) 4* (2005), 1–43.
- [35] HILDEBRANDT, S., AND VON DER MOSEL, H. Conformal mapping of multiply connected Riemann domains by a variational approach. Adv. Calc. Var. 2, 2 (2009), 137–183.
- [36] Koskela, P., Malý, J., and Zürcher, T. Luzin's condition (N) and Sobolev mappings. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 23, 4 (2012), 455–465.
- [37] Koskela, P., Malý, J., and Zürcher, T. Luzin's condition (N) and modulus of continuity. Adv. Calc. Var. 8, 2 (2015), 155–171.
- [38] KÖTHE, G. Topologische lineare Räume. I. Die Grundlehren der mathematischen Wissenschaften, Bd. 107. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.

- [39] Kurzke, M., and von der Mosel, H. The Douglas problem for parametric double integrals. *Manuscripta Math.* 110, 1 (2003), 93–114.
- [40] Malý, J. The area formula for $W^{1,n}$ -mappings. Comment. Math. Univ. Carolin. 35, 2 (1994), 291–298.
- [41] MALÝ, J., AND MARTIO, O. Lusin's condition (N) and mappings of the class $W^{1,n}$.

 J. Reine Angew. Math. 458 (1995), 19–36.
- [42] MAZ'JA, V. G. Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.
- [43] MORREY, JR., C. B. Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966.
- [44] NIRENBERG, L. Remarks on nonlinear problems. In The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979). Springer, New York-Berlin, 1980, pp. 189–197.
- [45] NITSCHE, J. C. C. Vorlesungen über Minimalflächen. Springer-Verlag, Berlin-New York, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 199.
- [46] PROTTER, M. H., AND WEINBERGER, H. F. Maximum principles in differential equations. Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original.
- [47] Rudin, W. Real and complex analysis, third ed. McGraw-Hill Book Co., New York, 1987.
- [48] Scholtes, S. Elastic catenoids. Analysis (Munich) 31, 2 (2011), 125–143.
- [49] SCHYGULLA, J. Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203, 3 (2012), 901–941.
- [50] Simon, L. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1, 2 (1993), 281–326.
- [51] VOLOVSKIY, G. Die Poincaré Ungleichung und die Fortsetzungseigenschaft von Gebieten. Master's thesis, RWTH Aachen University, 2012.
- [52] ZIEMER, W. P. Change of variables for absolutely continuous functions. Duke Math. J. 36 (1969), 171–178.
- [53] ZIEMER, W. P. Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.

Index

\mathcal{F} -kritisch, 5	DIRICHLET
1-Graph	-Energie, 45
-einer Funktion, 1	DIRICHLET
	-Integral, 11
Abbildung	diskrete partielle Integration, 56
-beschränkte lineare, 79	Douglas
-invertierbare lineare stetige, 80	-Bedingung, 28
-isometrische lineare stetige, 80	-Problem, 28
-kompakte lineare stetige, 80	Dualraum, 79
-lineare, 79	DuBois-Reymond
-stetige lineare, 79	-Gleichung, 8
Ableitung	-Lemma von, 9
-schwache, 46	,
absolutstetige Mengenfunktion, 66	Eigenfunktion, 23
Approximation durch Faltung, 85	Eigenschaft
Ausschöpfung	-Lindelöf-, 68
-einer offenen Menge, 55	Eigenwert, 23
	Eigenwertproblem
BANACHraum, 79	-Sturm-Liouville, 23
-reflexiver, 80	Einbettung
beschränkte lineare Abbildung, 79	-kompakt, 80
beschränkter linearer Operator, 79	-kompakte, 59
Bewegungsgleichung	-lineare stetige, 80
-von Newton, 6, 13	-stetige, 59
Bogenlänge, 7	Einbettungssatz
Bogenlängenparametrisierung, 7	-von Morrey, 59
Borelmaße, 84	-von Sobolev, 59
Borelmengen, 84	Einheitsnormalenvektor, 7
Cartan-Funktional, 71	Einheitstangente, 7
	Eins-Graph
dicht, 79	-einer Funktion, 1
Differentialgleichung	elastischer Balken, 29
-quasilinear, 5	elastischer Faden, 28
-STURM-LIOUVILLE Typ, 5	Erdmann-Gleichung, 17
Differenzenquotient	Erhaltungssatz, 12
-von Sobolevfunktionen, 54	erste (äußere) Variation, 2
DIRAC-Folge, 84	Euler-Lagrange
direkte Methode, 45	-Gleichung, 39
Dirichlet	Euler-Lagrange-Gleichung, 5
DILICING	EULER-DAGRANGE-GIEICHUNG, 9

II

Extremale	-diskrete partielle, 56
$-\mathcal{F}$ -, 5	invertierbare lineare stetige Abbildung, 80
-schwache, 2	Isometrie, 80
	isometrische lineare stetige Abbildung, 80
Faltung, 49, 84	Isomorphismus
Faltungskern, 48	-stetiger, 80
FISCHER-RIESZ	
-Satz von, 83	Katenoid, 27
Flächenformel, 62	Kettenlinie, 27
folgenabgeschlossen	Kettenregel
-schwach, 81	-für Sobolevfunktionen, 60
folgenkompakt	kompakte Einbettung, 59, 80
-schwach, 81	kompakte lineare stetige Abbildung, 80
schwach*, 81	konforme
Frenet-Gleichungen, 7	-Parametrisierung
Fundamentallemma, 3	-von Flächen, 19
-erweitertes, 4	konjugierter Exponent, 83
Funktion	Konvergenz
-Hölderstetige, 82	-schwache, 80
-Lipschitzstetige, 82	schwach*, 80
Funktional	-starke, 81
-lineares, 79	konvex
-parametrisches, 6	-lokal stark, 35
-Cartan, 71	-uniform, 79
Funktionen	Krümmungsgleichung
-Sobolev-, 46	-für kritische Punkte gewichteter Län-
	genfunktionale, 7
geometrische Randwertprobleme	kritischer Punkt, 5
-höherer Ordnung, 30	-schwacher, 2
gewichtetes Längenfunktional, 6	sonwaoner, 2
gleichmäßig absolutstetige Mengenfunktio-	Längenfunktional
nen, 66	-gewichtetes, 6
h" d- W-44- 95	-nicht-parametrisches, 6
hängende Kette, 25	-parametrisches, 20
HAMILTON	Lagrange
-Funktion, 31	-Funktion, 1
HAMILTON	-Multiplikator
-Gleichungen, 31	-Regel, 21
HILBERTraum, 79	Lebesgueraum, 82
HÖLDERkonstante, 82	Lebesgue-Punkt, 83
HÖLDERraum, 82	LEGENDRE
HÖLDERstetigkeit, 82	-Transformation, 31
HÖLDERungleichung, 83	LINDELÖF-Eigenschaft, 68
homogen, 18	lineare Abbildung, 79
Impulsvariable, 40	lineare Funktionale, 79
innere Variation, 14	Lipschitzkonstante, 82
Integration	LIPSCHITZstetigkeit, 82
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

INDEX

lokaler Minimierer, 2	-natürliche, 10
L^q -Raum, 82	Randwerte
Lusineigenschaft, 62	-schwache, 47
	reflexiver Banachraum, 80
Mengenfunktion	reguläre Kurve, 19
-absolutstetig, 66	Regularitätstheorie, 75
Minimalfläche	Rotationsfläche, 27
-rotationssymmetrische, 27	Rudin, 83
Minimalfolge, 45	,
Minimierer	Satz von
-lokaler, 2	- Fischer-Riesz, 83
Morreyscher Einbettungssatz, 59	schwach
4" 1' 1 D 11 1' 10	$-\mathcal{F}$ -kritisch, 2
natürliche Randbedingungen, 10	schwach folgenabgeschlossen, 81
NEWTON 1.1 40	schwach folgenkompakt, 81
-Bewegungsgleichung, 40	schwache Ableitung, 46
NEWTONsche Bewegungsgleichung, 6, 13	schwache Extremale, 2
nicht-parametrisches Längenfunktional, 6	schwache Konvergenz, 80
NOETHER-Gleichung, 17	schwache Nullrandwerte, 47
Norm	schwacher kritischer Punkt, 2
-Operator-, 79	schwach* folgenkompakt, 81
-Supremums-, 82	schwach* Konvergenz, 80
Normalenvektor	separabel, 79
-Einheits-, 7	Singularitäten, 75
Operator	Sobolevfunktionen, 46
-beschränkter linearer, 79	Sobolevscher Einbettungssatz, 59
Operatornorm, 79	starke Konvergenz, 81
Operationini, 10	stetige Einbettung, 59
Parametervariation	stetige lineare Abbildung, 79
-zulässige, 14	stetiger Isomorphismus, 80
parametrische Funktionale, 6	Stützgerade, 23
parametrische Variationsprobleme, 28	Stützmannigfaltigkeit, 11
parametrisches Längenfunktional, 20	STURM-LIOUVILLE
Parametrisierung	-Differentialgleichung, 5
-konforme von Flächen, 19	-Eigenwertproblem, 23
Partielle Integration	Supremumsnorm, 82
-diskret, 56	,
PLATEAU	Tangente
-verallgemeinertes Problem von, 28	-Einheits-, 7
Poincaré-Ungleichung, 60	Träger
Produktregel	-einer Funktion, 2
-für Sobolevfunktionen, 60	
Profilkurve, 27	uniform konvex, 79
	Variation
quasilineare	-erste, 2
-Differentialgleichung, 5	-innere, 14
Randbedingungen	-zulässige innere, 14
1 contaboding ding on	Zulassige iiilele, 14

IV

Variationsvektorfeld, 14

Weierstrass

-Approximations satz von, $83\,$

WILLMORE

-Funktional, 28

Wirkungsfunktional, 6, 31