1. Let G be a context-free grammar. Prove that the problem whether $\mathcal{L}(G) = \mathcal{L}(G)$ is undecidable.

HP
$$\leq$$
 $\left\{G \mid \mathcal{A}(G) = \Delta^{*}\right\}$

M# $\mathcal{X} \longmapsto G_{1}$ S.t. $\mathcal{A}(G) = VALCOMP(M, N)$

If M does not half on \mathcal{X}_{1} then $\mathcal{L} = \Delta^{*}$

If M halfs on \mathcal{X}_{2} then $\mathcal{L} \neq \Delta^{*}$

For this exercise, the same veduction works.

a valid to $\mathcal{A}(G) = \Delta^{*}$

who history $\mathcal{A}(G) = \Delta^{*}$
 $\mathcal{A}(G) = \Delta^{*}$

If $\mathcal{A}(G) = \Delta^{*}$
 $\mathcal{$

2. For a Turing machine M and an input w for M, define

VALCOMP-ALT(M,w) = { $\# C_0 \# C_1^R \# C_2 \# C_3^R \# \cdots \# | C_0C_1C_2C_3\cdots$ is a valid computation history of M on w }

Prove the following assertions.

(a) The complement of VALCOMP-ALT(M,w) is context-free.

(b) VALCOMP-ALT(M,w) is the intersection of two DCFLs.

3. Prove that it is undecidable whether the intersections of two CFLs is empty.