Formulation du problème en PLNE

December 2016

On dispose d'un ensemble $(P_i)_{i\in 1,n}$ de patients $(n \in N)$ et d'un ensemble $(c_j)_{j\in [\![1,p]\!]}$ de créneaux $(p \in N)$ avec $n \leq p$ auxquels on veut assigner chaque patient de façon optimale, pour le critère d'optimalité suivant : la répartition est optimale si elle minimise le mécontement globale des patients (on définit plus loin le mécontement).

Chaque créneau c_j est un intervalle de la forme $[t^j_{d\acute{e}but}, t^j_{fin}]$, avec

$$\forall j \in [1, p-1], \ t_{d\acute{e}but}^j < t_{fin}^j \le t_{d\acute{e}but}^{j+1}$$

(les créneaux ne se chevauchent pas).

Chaque patient P_i ordonne les créneaux selon ses préférences et assigne au créneau c_j le rang m_j^i (par exemple, $m_j^i = 1$ si c_j est le créneau qui lui convient le mieux et $m_j^i = p$ si c'est le créneau qui l'arrange le moins). On appelle m_j^i le **mécontement** de P_i relatif au créneau c_j (plus m_j^i est grand, plus P_i est mécontent qu'on lui assigne le créneau c_j).

On cherche alors à minimiser, pour chaque créneau c_j le mécontement global m_j qui lui est associé, défini comme le max des mécontements de chaque patient pour ce créneau. Autrement dit, :

$$\forall j \in [1, p], \ m_j = \min_{i \in [1, n]} m_j^i$$

Notre problème se met alors sous la forme d'un programme linéaire en nombres entiers de la façon suivante :

$$\operatorname{Min} \sum_{j=1}^{p} m_{j} x_{j}$$
s.c
$$\sum_{j=1}^{p} y_{i,j} x_{j} = 1, i \in [1, n]$$

$$x_{j} \in \{0, 1\}, j \in [1, p]$$

$$y_{i,j} \in \{0, 1\}, i \in [1, n], j \in [1, p]$$

où:

$$x_j = \begin{cases} 1 \text{ si on assigne le créneau } c_j \text{ à un patient} \\ 0 \text{ sinon} \end{cases}$$

$$y_{i,j} = \begin{cases} 1 \text{ si le patient } P_i \text{ est affecté au créneau } c_j \\ 0 \text{ sinon} \end{cases}$$