

Concours A2GPsession 2017

Composition: Mathématiques 5 (algèbre, analyse)

Durée : 3 Heures

EXERCICE I

PARTIE A

Pour tout entier naturel non nul, on considère la fonction f_n définie par $f_n(x) = x^n e^{x^2}$, $x \in IR$ (e désigne l'exponentielle népérienne). On note (C_n) la courbe représentative de f_n dans le plan muni du repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$.

- 1-Montrer que toutes les courbes (C_n) passent par deux points fixes A et B à préciser.
- 2- On considère l'équation différentielle (E_n) : $y'-2xy=nx^{n-1}e^{x^2}$
 - a/ Montrer que f_n est une solution de (E_n) .
 - b/ Intégrer l'équation différentielle (E_n).

PARTIE B

- 1- a/Calculer $f_n(x)$
 - b/ Montrer que $f_n^{'}(x)$ est du signe de $x^{n-1} \forall n \in IN^*$
- 2- Etudier suivant la parité de n, le sens de variation de f_n et dresser son tableau de variation.

PARTIE C

On considère la suite (I_n) définie pour $n \in IN^*$ par : $I_n = \int_0^1 f_n(x) dx$

- 1 a/ Montrer que la fonction F_1 définie par $F_1(x) = \frac{1}{2}e^{x^2}$ est une primitive de f_1 sur IR.
 - b/ En déduire la valeur de I₁.
 - c/ Pour tout $n \in IN^*$ et tout réel x, on pose $h_n(x)=x^n$.

Montrer que $(h_{n+1}.F_1)(x) = f_{n+2}(x) + \frac{n+1}{2}f_n(x)$ où $h_{n+1}.F_1$ désigne le produit des fonctions h_{n+1} et F_1 .

d/ En déduire que
$$I_{n+2} = \frac{1}{2}e - \frac{n+1}{2}I_n$$

- e/ Calculer I₃ et I₅
- $2 \qquad \text{ a/ Montrer que, } \forall n \in \text{IN}^*, \ I_n \geq 0.$
 - b/ Montrer que la suite (I_n) est décroissante.

EXERCICE II

On veut sommer la série entière suivante : $f(x) = \sum_{n=3}^{+\infty} \frac{x^n}{(n-2)(n+1)(n+3)}$

1/ Quel est le développement en série entière de ln(1-x). (In désigne la fonction logarithme népérien)

2/Décomposer en éléments simple la fraction suivante :
$$P(n) = \frac{1}{(n-2)(n+1)(n+3)}$$

$$3/ \ Sommer \ les \ séries \ entières \ suivantes : \ \sum_{n=3}^{+\infty} \frac{x^n}{\left(n-2\right)} \ ; \ \sum_{n=3}^{+\infty} \frac{x^n}{\left(n+3\right)} \ ; \ \sum_{n=3}^{+\infty} \frac{x^n}{\left(n+1\right)}$$

4/En déduire f(x).

EXERCICE III

On considère l'espace vectoriel de IR^3 muni de sa base canonique $\mathcal{E}=(e_1, e_2, e_3)$ et les endomorphismes f et g de IR^3 dont les matrices respectives sont A et B.

On note B =
$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$$
 la matrice associée à g dans la base \mathcal{B}

On pose $q(\lambda)$ =det(B - λI) où I est la matrice unité d'ordre 3 et E_{λ} =Ker(g - λi_{dIR}^3). (i_{dIR}^3 désigne l'application identité de IR^3).

1°/

- a) Calculer $q(\lambda)$
- b) Montrer que $E_{\lambda} \neq \{0_{\mathbb{R}^3}\}$ si, et seulement si $\lambda=1$ ou $\lambda=2$.
- 2° / Soient $v_1=e_1+e_2-e_3$; $v_2=e_1-e_2$ et $v_3=e_1-e_3$.
- a) Montrer que v_1 est une base de E_1 et que (v_2, v_3) est une base de E_2
- b) Montrer que $\mathcal{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- c) Déterminer alors la matrice D' de g dans la base \$\mathcal{B}\$'.
- d) On note P la matrice de passage de la base \$\mathcal{B}\$ à la base \$\mathcal{B}\$.

On considère la matrice Q suivante,
$$Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & -2 \end{pmatrix}$$

Calculer le produit matriciel PQ et déterminer P-1 l'inverse de P.

- 3°/ On suppose que la matrice A' de f dans \mathcal{B} ' vérifie l'égalité D'A' = $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix}.$
- a) Déterminer A', puis la matrice A.
- b) Déterminer Ker f et Im f. (Ker f désigne le noyau de l'endomorphisme f et Im f désigne l'image de l'endomorphisme f)
 - domorphisme 1)

 4°) Résoudre le système différentiel linéaire d'ordre 1 noté (S) défini par : (S): $\frac{dx}{dt} = x y z$ $\frac{dy}{dt} = -x + y z$ $\frac{dz}{dt} = x + y + 3z$