This quiz is worth a total of **100 points**.

In accordance with the Georgia Institute of Technology Honor Code, I have neither given nor received aid on this quiz.

Signature:

Please make sure all of your answers are contained within the answer boxes or the fill-in lines.

Do not write your work in the answer boxes. You have been provided with extra paper for your scratch work. You will **NOT** be given credit for showing work. Having anything except the answer inside the boxes or above the fill-in lines reduces autograder performance and might cause incorrect results.

Make sure to write your name, username, and answers legibly. You will not receive credit for illegible answers.

Digital Logic: Truth Table from Expression

1. Complete the empty entries in the truth table with respect to the following boolean expression.

$$S = (A \& B) \mid C$$

A	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Digital Logic: Truth Table from Circuit

2. Complete the empty entries in the following truth table with respect to the circuit shown below.

Note: The 0 indicates a zero constant.

A	В	С	OUT
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Short Answer

- 3. For the following questions please answer in the space provided.
 - (a) Given a multiplexer with n select bits, what's the maximum number of outputs?

(b) Given a decoder with n select bits, what's the maximum number of outputs?

(c) Find an expression equivalent to (!A & !B) with ≤ 2 bitwise operators (!,&,|)

16

16

Multiple Choice

4. For the following questions please fill-in the appropriate circle.

 \bigcirc OR

 \bigcirc XOR

 \bigcirc ADD

(a) Which operator should one use to set bits? (b) Which operator should one use to clear bits? \bigcirc AND \bigcirc AND

 \bigcirc OR \bigcirc XOR

 \bigcirc ADD

(c) Which operator should one use to toggle bits?

- \bigcirc AND
- \bigcirc OR
- \bigcirc XOR
- \bigcirc ADD

10

16

Digital Logic: Adding and Subtracting

5. Consider the following diagram of a 4-bit adder-subtractor composed of four 1-bit full-adders. When the sel input is 0 the circuit should compute the operation A + B. When the sel input is 1 the circuit should compute the operation A - B.

 Hint : The sel input is connected both to the marked components and to the c_{in} of the first adder.

Which component should be inserted for the boxes with ?'s: \(\) AND \(\) OR \(\) XOR \(\) ADD

Bitmasking

- 6. Write a function which extracts all bits greater than and including the bit i from a 32-bit 2's complement integer such that:
 - num is a 32-bit 2's complement integer
 - i is the index bit with a range of (0, 31)

This must be completed in one line without multiplication, addition, division or modulus. All right shifts must be signed. You may use subtraction!

Note: Make sure your answer is of the form "return \hdots ,"

For example, upperBits(0x98765432,28) => 0x000000009

```
public static int upperBits(int num, int i)
{
}
```

Digital Logic: Circuit from Expression

7. Consider the following boolean expression with three inputs and one output: $Z = (\overline{A} \mid (\overline{B} \& \overline{C}))$. Draw the corresponding circuit. You are allowed (but not required) to simplify the expression!

You may use any of the following symbols: NOT (\triangleright) AND (\triangleright) OR (\triangleright) XOR (\triangleright) . Warning: If we cannot distinguish between your gates, you will receive NO credit.

Α

B

Ą

15