1

Capítulo 5 – Ajuste de Curvas

Método dos Mínimos Quadrados

Objetivo

- Obter uma função g(x) que aproxime dados tabelados $\{x_i, f(x_i)\}$ afetados por erros inerentes.
- A função g(x) não passa pelos pontos da tabela, g(x_i) ≠ f(x_i), mas fornece o melhor ajuste no sentido dos mínimos quadrados.

Aplicações

- Resultados experimentais (presença de erros inerentes)
- Grande quantidade de dados
- A obtenção da curva de ajuste muitas vezes está associada a um tratamento estatístico dos dados.

Considere a seguinte tabela genérica de pontos:

X_i	\mathbf{x}_0	\mathbf{x}_1	•	X _n
Y_{i}	\mathbf{y}_0	\mathbf{y}_1	•••	y _n

Seja $e_i = y_i - g(x_i)$ para i = 0,...,n o erro em cada ponto x_i

O critério de ajuste será:

$$\sum_{i=1}^{n} e_i^2 = \min! \qquad ||e||_2^2 = \min!$$

Função de ajuste na forma geral, onde M << n:

$$g(x) = c_0 \phi_0 + c_1 \phi_1 + \ldots + c_M \phi_M$$

g(x) é a função de ajuste e φi são as funções de base

$$\left\{\phi_k\left(x\right)\right\}_{k=0}^M$$

 O objetivo do ajuste por mínimos quadrados é escolher uma coleção de funções e determinar os coeficientes

$$\{c_k\}_{k=0}^M$$

de modo que a soma

$$\sum_{i=0}^{n} \left(y_i - g(x_i) \right)^2$$

seja mínima.

• Erro total via mínimos quadrados:

$$E(c_0, c_1, \dots, c_M) = \sum_{i=0}^{n} (y_i - g(x_i))^2 = \sum_{i=0}^{n} (y_i - \sum_{k=0}^{M} c_k \phi_k(x_i))^2$$

• Precisamos determinar

$$\left\{c_k\right\}_{k=0}^M$$

de modo a minimizar

$$E(c_0, c_1, \dots, c_M)$$

• Do cálculo diferencial, sabemos que devemos impor

$$\frac{\partial E}{\partial c_k} = 0, \qquad k = 0, 1, \dots, M$$

Então

$$\frac{\partial E}{\partial c_{i}} = 2\sum_{i=0}^{n} \left\{ y_{i} - \sum_{k=0}^{M} c_{k} \phi_{k}(x_{i}) \right\} \left\{ -\phi_{j}(x_{i}) \right\} = 0 , \quad j = 0,1,...,M$$

$$\therefore \sum_{i=0}^{n} \left\{ y_i - \sum_{k=0}^{M} c_k \phi_k(x_i) \right\} \left\{ -\phi_j(x_i) \right\} = 0 , \quad j = 0, 1, ..., M$$

• Fazendo j = 0, 1, ..., M, obtemos

$$\begin{split} &\sum_{i=0}^{n} \left\{ c_{0}\phi_{0}(x_{i}) + c_{1}\phi_{1}(x_{i}) + \ldots + c_{M}\phi_{M}(x_{i}) \right\} \phi_{0}(x_{i}) = \sum_{i=0}^{n} y_{i}\phi_{0}(x_{i}) \\ &\sum_{i=0}^{n} \left\{ c_{0}\phi_{0}(x_{i}) + c_{1}\phi_{1}(x_{i}) + \ldots + c_{M}\phi_{M}(x_{i}) \right\} \phi_{1}(x_{i}) = \sum_{i=0}^{n} y_{i}\phi_{1}(x_{i}) \\ &\vdots \\ &\sum_{i=0}^{n} \left\{ c_{0}\phi_{0}(x_{i}) + c_{1}\phi_{1}(x_{i}) + \ldots + c_{M}\phi_{M}(x_{i}) \right\} \phi_{M}(x_{i}) = \sum_{i=0}^{n} y_{i}\phi_{M}(x_{i}) \end{split}$$

Obtemos o seguinte sistema de equações:

$$\begin{bmatrix} \sum_{i=0}^{n} \phi_{0}(x_{i})\phi_{0}(x_{i}) & \sum_{i=0}^{n} \phi_{1}(x_{i})\phi_{0}(x_{i}) & \cdots & \sum_{i=0}^{n} \phi_{M}(x_{i})\phi_{0}(x_{i}) \\ \sum_{i=0}^{n} \phi_{0}(x_{i})\phi_{1}(x_{i}) & \sum_{i=0}^{n} \phi_{1}(x_{i})\phi_{1}(x_{i}) & \cdots & \sum_{i=0}^{n} \phi_{M}(x_{i})\phi_{1}(x_{i}) \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=0}^{n} \phi_{0}(x_{i})\phi_{M}(x_{i}) & \sum_{i=0}^{n} \phi_{1}(x_{i})\phi_{M}(x_{i}) & \cdots & \sum_{i=0}^{n} \phi_{M}(x_{i})\phi_{M}(x_{i}) \end{bmatrix} \times \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{M} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_{i}\phi_{0}(x_{i}) \\ \sum_{i=0}^{n} y_{i}\phi_{1}(x_{i}) \\ \vdots \\ \sum_{i=0}^{n} y_{i}\phi_{M}(x_{i}) \end{bmatrix}$$

- Esta matriz é simétrica de ordem (M+1)x(M+1), M<<n.
- As equações associadas a este sistema são denominadas equações normais.

Fatos:

- $\{\phi_k(x)\}_{k=0}^M$ devem ser L.I. para que o sistema admita solução
- a solução de fato minimiza o erro
- A matriz resultante é geralmente mal condicionada.

1. Ajuste Polinomial

Este ajuste é baseado em funções $\{\phi_k(x)\}_{k=0}^M$ polinomiais. Logo, considere

$$g(x) = c_0 + c_1 x + c_2 x^2 + ... + c_M x^M$$
, $M \ll n$

Então o sistema acima torna-se:

$$\begin{bmatrix} \sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} & \cdots & \sum_{i=0}^{n} x_{i}^{M} \\ \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \cdots & \sum_{i=0}^{n} x_{i}^{M+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=0}^{n} x_{i}^{M} & \sum_{i=0}^{n} x_{i}^{M+1} & \cdots & \sum_{i=0}^{n} x_{i}^{2M} \end{bmatrix} \times \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{M} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_{i} \\ \sum_{i=0}^{n} y_{i} x_{i} \\ \vdots \\ \sum_{i=0}^{n} y_{i} x_{i} \end{bmatrix}$$

$$\phi_0 = 1$$
, $\phi_1 = x$, $\phi_2 = x^2$, ..., $\phi_M = x^M$

O sistema acima pode ser reescrito também na forma

$$\sum_{k=0}^{M} c_k \left[\sum_{i=0}^{n} x_i^{j+k-1} \right] = \sum_{i=0}^{n} y_i x_i^{j}, \quad j = 0, 1, ..., M$$

A medida que elevamos o grau de *g*, o sistema torna-se mais e mais mal condicionado. Isso se deve ao fato de que os polinômios

$$1, x, x^2, x^3, \dots, x^M$$

São muito "parecidos", ou seja, são quase linearmente dependentes. Raramente devemos ir além de M=2.

1.a) Exemplo: Ajuste Linear

Suponha uma experiência que envolva a medição de 2 variáveis, x e y, para obter y = f(x). Considere os dados experimentais:

Xi	y _i	Xi	y _i	Xi	y _i
1.0	-1.945	2.4	-0.012	3.8	1.286
1.2	-1.253	2.6	-0.190	4.0	1.502
1.4	-1.140	2.8	0.452	4.2	1.582
1.6	-1.087	3.0	0.337	4.4	1.993
1.8	-0.760	3.2	0.764	4.6	2.473
2.0	-0.682	3.4	0.532	4.8	2.503
2.2	-0.424	3.6	1.073	5.0	2.322

- Podemos notar que f(x) é um polinômio linear. Assumindo isto como verdadeiro, temos que f(x) = ax + b, quanto valem as variáveis a e b? Qual a reta que melhor ajusta todos os pontos?
- Queremos usar os pontos (x_1,y_1) , ..., (x_n, y_n) para determinar y = f(x) tão precisamente quanto possível.
 - Estes pontos, que representam dados experimentais possuem erros.
- Determine o ajuste por mínimos quadrados para os dados da tabela acima

$$\phi_0 = 1$$
 , $\phi_1 = x$

$$m = 21$$

$$\sum_{i=1}^{m} x_i = 63.0 \qquad \sum_{i=1}^{m} x_i^2 = 219.8$$

$$\sum_{i=1}^{m} y_i = 9.326 \qquad \sum_{i=1}^{m} x_i y_i = 60.7302$$

• Temos o sistema Ax = b:

$$\begin{bmatrix} 21 & 63 \\ 63 & 219.8 \end{bmatrix} * \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 9.326 \\ 60.7302 \end{bmatrix}$$

$$a = 1.0634$$
 $b = -2.7461$

Logo,
$$f(x) = 1.064x - 2.7461$$

Como determinar qual o grau do polinômio mais adequado para o ajuste dos pontos tabelados?

• Calculamos a variância

$$\sigma_M^2 = \frac{1}{M} \sum_{i=0}^n [y_i - p_M(x_i)]^2, \quad M << n$$

 da estatística, sabemos que quando a tendência da tabela for adequadamente descrita por um polinômio de grau M, teremos

$$\sigma_0^2 > \sigma_1^2 > \dots > \sigma_M^2 = \sigma_{M-1}^2 = \sigma_{M-2}^2 = \dots = \sigma_{n-1}^2$$

- Portanto, devemos incrementar M até que a condição acima seja satisfeita.
- Note que M deve ser muito menor que n e que M > 2 origina problemas de mal condicionamento.

Exercícios:

1) Ajustar uma função linear pelo método dos mínimos quadrados os seguintes valores numéricos:

X	0	1,2	2,5	3,7
y	0,134	0,275	0,339	0,401

- 2) Ajuste os dados abaixo pelo método dos mínimos quadrados utilizando:
 - a) Uma reta
 - b) Uma parábola

X	1	2	3	4	5	6	7	8
y	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

- 3) Ajuste os dados abaixo pelo método dos mínimos quadrados utilizando:
 - a) Uma reta
 - b) Uma parábola

X	0	1	2	3	4
У	27	42	60	87	127

4) Ajuste o seguinte conjunto de dados utilizando funções exponenciais como funções de base:

T	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Ι	3.16	2.38	1.75	1.34	1.00	0.74	0.56

3) Outros Ajustes

• Ajuste Hiperbólico

$$y(x) = \frac{1}{a_0 + a_1 x}$$

• Ajuste Trigonométrico

$$y(x) = a_0 + a_1 \cos(\omega x)$$

$$y(x) = a_0 + \sum_{k=1}^{n} a_k \cos(k\omega x) + \sum_{k=1}^{n} b_k \sin(k\omega x)$$

• Para resolver o problema associado ao mal condicionamento da matriz, utilizar Polinômios Ortogonais.