Operations Research III: Theory Gurobi and Python for Network Flow

Jenny Tzeng

Department of Information Management National Taiwan University

Road map

► Assignment problems.

Problem description

- ► In previous videos, we introduced the assignment problem as a special network flow model.
- ► In this instance, we need to assign four jobs to four workers.
- A job cannot be split, that is, the assignment must be one-to-one.
- ▶ The cost for worker j to complete job i is c_{ij} .
- ► The goal is to minimize the total costs.

Problem description

▶ The cost of each arc in this instance is below.

Arc	Cost	Arc	Cost
(A, E)	2	(C, E)	8
(A, F)	∞	(C, F)	2
(A, G)	10	(C, G)	5
(A, H)	7	(C, H)	∞
(B, E)	∞	(D, E)	7
(B, F)	4	(D, F)	∞
(B,G)	3	(D,G)	1
(B, H)	∞	(D, H)	6

IP formulation

- \triangleright Let I and J be the sets of jobs and workers.
- ► For the assignment problem:

$$\begin{aligned} & \min \quad & \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\ & \text{s.t.} \quad & \sum_{j=1}^m x_{ij} = 1 \quad \forall i \in I \\ & \sum_{i=1}^n x_{ij} = 1 \quad \forall j \in J \\ & x_{ij} \in \{0,1\} \quad \forall i \in I, j \in J. \end{aligned}$$

Solve and interpret

- ▶ An optimal solution, which is illustrated as the set of red arcs in the figure, is obtained. The objective value is 13.
- ► When constructing the model, we may change the variable type from BINARY to CONTINUOUS.
- ▶ It means we relax the IP to an LP relaxation, and we still have an integer solution. Why?
- ▶ In previous videos, we introduced that the solution of the LP relaxation for MCNF must be an integer solution because of total unimodularity.

