# Obliczenia naukowe

# Felix Zieliński 272336

### Lista 2

TODO OPIS, czy zadanie 2? CO SIE STALO Z GNUPLOTEM zadanie 3, ta bogusowa tabela w 4, zadanie 5 opis i wnioski, zadanie 6, opisy funkcji, wnioski koncowe, wszystkie bogusowe tabele i obrazki

Zadanie 1. Niewielkie zmiany danych oraz ich wpływ na wyniki obliczeń.

W ramach przypomnienia zadania: na poprzedniej liście należało obliczyć iloczyny skalarne dwóch wektorów na cztery rózne sposoby.

Zaimplementowałem każdy z podanych w poleceniu sposobów, tak więc funkcja a liczy "w przód", od pierwszych indeksów, funkcja b "w tył", analogicznie, a c oraz d liczą, odpowiednio, od największego do najmniejszego oraz od najmniejszego do największego względem ich wartości absolutnej.

Różnica w tym zadaniu, a zadaniu 5. z poprzedniej listy polegała na dokonaniu drobnej zmiany w niektórych wartościach wektora. Poniżej prezentuję wyniki otrzymane po, jak i przed tej zmianie:

| Sposób | Float32 stare | Float32 nowe | Float64 stare           | Float64 nowe          |
|--------|---------------|--------------|-------------------------|-----------------------|
| a      | -0.4999443    | -0.4999443   | 1.0251881368296672e-10  | -0.004296342739891585 |
| b      | -0.4543457    | -0.4543457   | -1.5643308870494366e-10 | -0.004296342998713953 |
| С      | -0.5          | -0.5         | 0.0                     | -0.004296342842280865 |
| d      | -0.5          | -0.5         | 0.0                     | -0.004296342842280865 |

Tabela 1: Porównanie nowych i starych danych

gdzie wartość prawidłowa wynosi:

### -1.00657107000000e-11

Jak widać, wyniki dla typu Float32 nie zmieniły się. Jest to spowodowane niewystarczającą do zauważenia różnicy precyzją zapisu liczby zmiennopozycyjnej w tym typie.

Natomiast w typie Float64 różnica jest znaczna mimo tak niewielkiej zmiany danych. Mimo że wyniki nadal odbiegają od prawidłowego, są one mu znacznie bliższe.

Można więc stwierdzić, że zadanie to było **źle uwarunkowane** - o wysokim wskaźniku uwarunkowania. Wskaźnik ten określa, w jakim stopniu błąd reprezentacji numerycznej danych wejściowych dla danego problemu będzie wpływać na błąd wyniku. Małe zmany danych w tym zadaniu spowodowały znaczną zmianę wyników.

Zadanie 2. W tym zadaniu należało narysować wykres funkcji

$$f(x) = e^x \ln(1 + e^{-x})$$

w dwóch różnych programach do wizualizacji danych. Zdecydowałem się na użycie WolframaAlpha, Desmosa oraz Gnuplota



Rysunek 1: Wolfram Alpha: plot  $e^x * \ln(1 + e^{-x})$  from x = -10 to x = 40



Rysunek 2: Desmos

Granica tej funkcji dla x zmierzającego do nieskończoności wynosi

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

Jak można zauważyć, dla wartości x >= 32 wykresy zaczynają wskazywać błędne wartości, każdy na trochę inny sposób. Oscylują one wokół 1, coraz bardziej odbiegając od jej wartości, a następnie spadają do 0.

Dzieje się tak, gdyż dla x > 30 wartości  $e^x$  są już tak duże, że mnożenie jej z niewielką wartością  $ln(1+e^{-x})$  skutkuje znacznymi błędami przybliżenia, które dla ok x = 38 powodują zwracanie wartości 0. Jest to spowodowane przybliżeniem  $1+e^{-x}\approx 1$ , i tym samym całej wartości logarytmu do 0. Tak więc algorytm obliczający wartości f(x) nie jest stabilny numerycznie.



Rysunek 3: Gnuplot

**Zadanie 3.** W zadaniu tym należało rozwiązać liniowy układ równań  $\mathbf{A} * \mathbf{x} = \mathbf{b}$  dla danej macierzy współczynników  $A \in \mathbb{R}^{n \times n}$  i wektora prawych stron  $b \in \mathbb{R}^n$ . Macierze były generowane poprzez dostarczone przez prowadzącego funkcje: generującą macierz Hilberta  $\mathbf{n}$ -tego stopnia oraz generującą losową macierz  $\mathbf{n}$ -tego stopnia z zadanym wskaźnikiem uwarunkowania.

W tabelach przedstawiłem błędy względne dla zadanych algorytmów: eliminacji Gaussa oraz inwersji. Uwarunkowanie oraz rząd macierzy są obliczanie poprzez wbudowane w paczkę LinearAlgebra funkcje cond() oraz rank().

Im wyższe uwarunkowanie, tym wyższy błąd względny dla obu metod.

Tak jak przy macierzach Hilberta, w wynikach dla macierzy losowych można zaobserwować rosnący błąd względny. Ponadto widać, że funkcja cond() nie oblicza dokładnie uwarunkowania, tylko je przybliża. Ponadto wartości tych przybliżeń są różne dla różnych procesorów.

Powyższe tabele pozwalają na wyciągnięcie wniosku, że zadanie to było źle uwarunkowane, zwłaszcza dla macierzy Hilberta - wraz ze wzrostem stopnia macierzy ostro rośnie też wskaźnik uwarunkowania i, jednocześnie, błąd względny. Dla macierzy losowych dzieje się podobnie, jednakże ten wzrost jest wolniejszy (błędy są mniejsze).

**Zadanie 4.** W zadaniu tym należało obliczyć miejsca zerowe zadanego wielomianu P(x) i przedstawić wyniki dla  $z_k, 1 \le k \le 20$ , obliczając  $|P(z_k)|, |p(z_k)|$ 

| n  | uwarunkowanie         | rząd | błąd metody Gaussa     | błąd metody inwersji   |
|----|-----------------------|------|------------------------|------------------------|
| 1  | 1.0                   | 1    | 0.0                    | 0.0                    |
| 2  | 19.281470067903967    | 2    | 5.661048867003676e-16  | 1.1240151438116956e-15 |
| 3  | 524.0567775860627     | 3    | 8.351061872731819e-15  | 9.825526038180824e-15  |
| 4  | 15513.738738929662    | 4    | 4.2267316576255873e-13 | 3.9600008750140806e-13 |
| 5  | 476607.2502419338     | 5    | 1.256825919192874e-12  | 8.128168770215688e-12  |
| 6  | 1.495105864177819e7   | 6    | 1.5435074657413347e-10 | 1.0423794065751672e-10 |
| 7  | 4.753673568766496e8   | 7    | 6.520804933066021e-9   | 4.3299229851434615e-9  |
| 8  | 1.5257575563722723e10 | 8    | 3.6010489197068436e-7  | 4.0236799996435915e-7  |
| 9  | 4.9315332284138226e11 | 9    | 1.3216991540025553e-5  | 1.4626798972086921e-5  |
| 10 | 1.6024980732174455e13 | 10   | 0.0004194170177181955  | 0.00040714905218460087 |
| 11 | 5.224780779168285e14  | 10   | 0.01004906783345069    | 0.010645959401385671   |
| 12 | 1.6425917529444498e16 | 11   | 0.5502106922296848     | 0.6697890564301745     |
| 13 | 4.4936679531246986e18 | 11   | 70.1556197115221       | 82.66675811171989      |
| 14 | 3.2198422552156205e17 | 11   | 9.649642437452474      | 10.094732062453225     |
| 15 | 3.3660126672602944e17 | 12   | 692.4295360390742      | 715.740988667373       |
| 16 | 2.249940193352714e18  | 12   | 10.414656083840297     | 8.442143351389534      |
| 17 | 6.26204622473199e17   | 12   | 18.67581817300634      | 17.157982115668773     |
| 18 | 3.266632306940269e18  | 12   | 5.40548300394664       | 3.742412802776696      |
| 19 | 3.462302955915255e18  | 13   | 15.073941146224387     | 16.84769281513296      |
| 20 | 6.806966421072721e18  | 13   | 28.79267493699834      | 30.751202239608727     |

Tabela 2: Macierze Hilberta

i  $|z_k-k|.$  Następnie należało powtórzyć eksperyment Wilkinsona, czyli lekko zmodyfikować wielomian i przeprowadzić ponownie obliczenia.

Jak można zauważyć, obliczone miejsca zerowe przy pomocy roots() są zbliżone, ale nie równe wartościom prawidłowym.

# Zadanie 5.

| n  | 1. eksperyment | 2. eksperyment (z obcięciem) | 3. eksperyment (Float64) |  |
|----|----------------|------------------------------|--------------------------|--|
| 0  | 0.01           | 0.01                         | 0.01                     |  |
| 1  | 0.0397         | 0.0397                       | 0.0397                   |  |
| 2  | 0.15407173     | 0.15407173                   | 0.15407173000000002      |  |
| 3  | 0.5450726      | 0.5450726                    | 0.5450726260444213       |  |
| 4  | 1.2889781      | 1.2889781                    | 1.2889780011888006       |  |
| 5  | 0.1715188      | 0.1715188                    | 0.17151914210917552      |  |
| 6  | 0.5978191      | 0.5978191                    | 0.5978201201070994       |  |
| 7  | 1.3191134      | 1.3191134                    | 1.3191137924137974       |  |
| 8  | 0.056273222    | 0.056273222                  | 0.056271577646256565     |  |
| 9  | 0.21559286     | 0.21559286                   | 0.21558683923263022      |  |
| 10 | 0.7229306      | 0.7229306                    | 0.722914301179573        |  |
| 11 | 1.3238364      | 1.3241479                    | 1.3238419441684408       |  |
| 12 | 0.037716985    | 0.036488414                  | 0.03769529725473175      |  |
| 13 | 0.14660022     | 0.14195944                   | 0.14651838271355924      |  |

| 14 | 0.521926    | 0.50738037  | 0.521670621435246     |
|----|-------------|-------------|-----------------------|
| 15 | 1.2704837   | 1.2572169   | 1.2702617739350768    |
| 16 | 0.2395482   | 0.28708452  | 0.24035217277824272   |
| 17 | 0.7860428   | 0.9010855   | 0.7881011902353041    |
| 18 | 1.2905813   | 1.1684768   | 1.2890943027903075    |
| 19 | 0.16552472  | 0.577893    | 0.17108484670194324   |
| 20 | 0.5799036   | 1.3096911   | 0.5965293124946907    |
| 21 | 1.3107498   | 0.09289217  | 1.3185755879825978    |
| 22 | 0.088804245 | 0.34568182  | 0.058377608259430724  |
| 23 | 0.3315584   | 1.0242395   | 0.22328659759944824   |
| 24 | 0.9964407   | 0.94975823  | 0.7435756763951792    |
| 25 | 1.0070806   | 1.0929108   | 1.315588346001072     |
| 26 | 0.9856885   | 0.7882812   | 0.07003529560277899   |
| 27 | 1.0280086   | 1.2889631   | 0.26542635452061003   |
| 28 | 0.9416294   | 0.17157483  | 0.8503519690601384    |
| 29 | 1.1065198   | 0.59798557  | 1.2321124623871897    |
| 30 | 0.7529209   | 1.3191822   | 0.37414648963928676   |
| 31 | 1.3110139   | 0.05600393  | 1.0766291714289444    |
| 32 | 0.0877831   | 0.21460639  | 0.8291255674004515    |
| 33 | 0.3280148   | 0.7202578   | 1.2541546500504441    |
| 34 | 0.9892781   | 1.3247173   | 0.29790694147232066   |
| 35 | 1.021099    | 0.034241438 | 0.9253821285571046    |
| 36 | 0.95646656  | 0.13344833  | 1.1325322626697856    |
| 37 | 1.0813814   | 0.48036796  | 0.6822410727153098    |
| 38 | 0.81736827  | 1.2292118   | 1.3326056469620293    |
| 39 | 1.2652004   | 0.3839622   | 0.0029091569028512065 |
| 40 | 0.25860548  | 1.093568    | 0.011611238029748606  |
|    |             |             |                       |

Tabela 5: Model logistyczny - wyniki

**Zadanie 6.** W zadaniu tym, podobnie jak w poprzednim, należało rozważyć równanie rekurencyjne

$$x_{n+1} := x_n^2 + c$$
 dla  $n = 0, 1, \dots$ 

Należało, w arytmetyce Float64, iterować 40-sto krotnie powyższe równanie, z różnymi wartościami początkowymi x oraz c. Poniżej znajdują się reprezentacje graficzne, wykonane przy pomocy paczki Plots języka Julia, dla poszczególnych wartości.

Powyższe wykresy są są stałe.

| n  | c         | uwarunkowanie         | rząd | błąd metody Gaussa     | błąd metody inwersji   |
|----|-----------|-----------------------|------|------------------------|------------------------|
| 5  | $10^{0}$  | 1.00000000000000007   | 5    | 2.0471501066083611e-16 | 1.7901808365247238e-16 |
| 5  | $10^{1}$  | 10.000000000000001    | 5    | 2.579925170969555e-16  | 1.4895204919483638e-16 |
| 5  | $10^{3}$  | 999.99999999956       | 5    | 4.154180998732242e-14  | 3.6649738390350505e-14 |
| 5  | $10^{7}$  | 9.999999992624711e6   | 5    | 1.2808136131610903e-10 | 1.2922561774440224e-10 |
| 5  | $10^{12}$ | 1.0000402198324714e12 | 5    | 2.4114718692896424e-5  | 2.1083207553058387e-5  |
| 5  | $10^{16}$ | 6.457380316295465e15  | 4    | 0.279866038431425      | 0.23511506127614903    |
| 10 | $10^{0}$  | 1.000000000000000009  | 10   | 3.1006841635969763e-16 | 2.6506211417561425e-16 |
| 10 | $10^{1}$  | 9.99999999999991      | 10   | 2.432376777795247e-16  | 3.255813018879823e-16  |
| 10 | $10^{3}$  | 999.999999999854      | 10   | 5.123291327463699e-15  | 4.80612456985904e-15   |
| 10 | $10^{7}$  | 9.99999999300524e6    | 10   | 2.613887510795298e-10  | 2.9367939862640613e-10 |
| 10 | $10^{12}$ | 9.999916908430352e11  | 10   | 2.5298084239916387e-5  | 2.7222350440303e-5     |
| 10 | $10^{16}$ | 5.260556228219448e16  | 9    | 0.2349713562983511     | 0.17164964730117435    |
| 20 | $10^{0}$  | 1.00000000000000000   | 20   | 5.450279209566124e-16  | 4.557326905135503e-16  |
| 20 | $10^{1}$  | 9.9999999999999       | 20   | 5.318651993048588e-16  | 3.430930459816227e-16  |
| 20 | $10^{3}$  | 1000.00000000000724   | 20   | 4.374127960791212e-14  | 3.7395403352225206e-14 |
| 20 | $10^{7}$  | 1.00000000008586796e7 | 20   | 4.8148086460727405e-12 | 7.333934288678081e-11  |
| 20 | $10^{12}$ | 1.000058179546536e12  | 20   | 5.063442743791289e-5   | 5.134232142086649e-5   |
| 20 | $10^{16}$ | 9.35903000507404e15   | 19   | 0.13171344480426542    | 0.16281145033250885    |

Tabela 3: Macierze losowe

| k | $z_k$ | $ Pz_k $ | $ pz_k $ | $ z_k-k $ |
|---|-------|----------|----------|-----------|

Tabela 4: Wielomian P(x)

niepoprawne wyniki, mniejsze od 2, chociaż, według intuicji, powinny one być bliskie 2.

Dla powyższych wykresów, wyniki są stabilne, oscylują wokół przewidywanych wartości.

Wykresy dla x = 0.75 oraz x = 0.25 po czasie stabilizują się i przyjmują, na zmianę, wartości -1 oraz 0.

Fakt, że dokładność arytmetyki liczb zmiennopozycyjnych jest skończona, wpływa na wyniki (wykresy dla x=0.75 oraz x=0.25, które zaczynają zbiegać do liczb całkowitych). Ponadto kumulowanie się błędu (jak podczas obliczeń z x=1.9999999999999999999999999999) powoduje znaczące odbieganie wyników od ich wartości prawidłowej. Gdy x jest liczbą całkowitą, wyniki zachowują się poprawnie.

Niewielkie zmiany w danych prowadzą w tym zadaniu do róznych wyników - możemy wnioskować, że jest to zadanie źle uwarunkowane.













