Exercises

- 1) Give four examples of application (uses) of HMMs in computational biology. Gene finding, conserved/regulatory/chromatin regions, CNV, homologs
- 2) What is the probability of x = AATTCG under the CpG island Markov chain and under the non-CpG island Markov chain (described in the slides)? next slide
- 3) How do you avoid overflow errors caused by operations on really small numbers? add log values
- 4) What are two disadvantages of using a sliding window with a cutoff to identify CpG islands? cutoff, window size
- 5) In HMMs, the labels (states) are hidden/observed, and the emissions are hidden/observed?

CpG island

	Α	G	С	Т
Α	0.19	0.27	0.40	0.14
G	0.17	0.33	0.36	0.14
С	0.19	0.36	0.25	0.20
Т	0.10	0.34	0.38	0.19

x = AATTCG

$$P(x) = 0.36*0.38*0.19*0.14*$$

0.19*0.16

$$P(x) = 1.10622e-04$$

Non-CpG island

	Α	G	С	Т
Α	0.34	0.23	0.18	0.25
G	0.30	0.25	0.20	0.25
С	0.38	0.04	0.26	0.33
Т	0.22	0.26	0.21	0.31

x = AATTCG

$$P(x) = 0.04*0.21*0.31*0.25*$$

0.34*0.31

$$P(x) = 6.86e-05$$

6) What is the probability of AACG with hidden states OOII under the following HMM:

Α	I	0
I	8.0	0.2
0	0.2	8.0

E	Α	G	С	Т
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

```
AACG P = initial *

00II 0.8*0.2*0.8 (transitions)
0.25*0.25*0.4*0.4 (emissions)
If initial = 0.5, P = 0.00064
```

- 7) In the diagram below, we observed x1-x4 but not p1-p4:
- a) does P(p3) depend on p2? yes
- b) does P(p3) depend on x3? yes
- c) does P(p3) depend on x2? yes
- d) does P(p3) depend on x4? yes
- e) does P(p3|p2) depend on x2? no

8) Fill	in the last column using	
vite	erbi and A and E from prior	
slic	des.	

A	FL	
F	0.6	0.4
L	0.4	0.6

Е	Н	Т
F	0.5	0.5
L	0.8	0.2

9) Whats the most likely path?

FFFL

X	Т	Н	Т	Н
S _{F,i}	E(T F) A(F) S _{F,1} =.25	E(H F)=.5 $S_{E,1}$ $A(F F)$ $S_{L,1}$ $A(F L)$ $S_{F,2}$ $= .075$	$E(T F)=.5$ $\underline{S}_{E,2} \underline{A(F F)}$ $S_{L,2} \underline{A(F L)}$ $S_{F,3}=.0225$	$S_{F,4} = E \times max\{S_{k,3} \times A\}$ E(H F) = 0.5 $S_{F,3} \times A(F F) = .0225*.6 max$ $S_{L,3} \times A(F L) = .0096*.4$ $S_{F,4} = .00675$
S _{L,i}	E(T L) A(L) S _{L,1} =.1	$E(H L) = .8$ $\underline{S}_{E,1} A(L F)$ $S_{L,1} A(L L)$ $S_{L,2} = .08$	E(T L) = .2 $S_{F,2} A(L F)$ $S_{L,2} A(L L)$ $S_{L,3} = .0096$	$S_{L,4} = E \times max\{S_{k,3} \times A\}$ E(H L) = 0.8 $S_{E,3} \times A(L F) = .0225*.4 max$ $S_{L,3} \times A(L L) = .0096*.6$ $S_{L,4} = .0072 (max)$

Today's objectives

- HMM, formulation of models
- Forward/backward
- Gene finding
- Profile HMMs

Constructing HMMs

- Labeling problems are common in genomics
- HMMs provide a general solution to labeling problems because of their flexibility

- HMMs can have huge number of parameters
- HMMs trained on known examples gene emits {A, G, C, T}
- HMMs learned using Baum-Welsh inter emist {A, G, C, T}

CpG island HMM

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

CpG island HMM training

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

Viterbi output

Example 1 using HMM idea 1:

A		0
I	0.8	0.2
0	0.2	0.8

E	Α	C	G	Т
ı	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATATACGCGCGCGCGCGCGATATATATATA

(from Viterbi)

Viterbi output 2

Example 3 using HMM idea 1:

A	I	0
ı	8.0	0.2
0	0.2	0.8

E	А	С	G	Т
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATATACCCCCCCCCCCCCATATATATATA

(from Viterbi)

Oops - not a CpG island!

Second HMM try

$$Q = \{ I, O \}$$

$$Q = \{ I, O \} \times \{ A, C, G, T \}$$

Second HMM try

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

Idea 2: Q = { A_i, C_i, G_i, T_i, A_o, C_o, G_o, T_o }, Σ = { A, C, G, T }

Second HMM try

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

Α	Ai	Ci	Gi	Ti	Ao	Co	Go	To
Ai								
Ci								
Gi								
T _i		•		ating	ata Di	CIT	\	-
Ao				Estima Fraction	on of	all		
Co				dinucleotides where first is an inside T,				
Go				secon	d is a	n insi	ide C	
T _o								

E	Α	C	G	Т
Ai	1	0	0	0
Ci	0	1	0	0
Gi	0	0	1	0
Ti	0	0	0	1
Ao	1	0	0	0
Co	0	1	0	0
Go	0	0	1	0
T _o	0	0	0	1

Filling in with real data

Α	IA	IG	IC	ΙΤ	ОА	OG	ОС	ОТ
IA								
IG								
IC								
IT								
ОА								
OG								
ОС								
ОТ								

red: highest probability
Orange: high probability
Yellow: low probability

White: zero

CpG islands end with a CG not just G

Positive:

High GC content inside CG rare outside

Negative

End on G start on C

CpG islands start with a CG not just C

Higher order HMMs

For higher-order HMMs, Viterbi $S_{k,i}$ no longer depends on just the previous state assignment

Composite states

Now *one* state encodes the last *two* "loadedness"es of the coin

$$Q = \{ F, L \} \times \{ F, L \}$$

Forward and Backward Algorithm

What is the joint probability of p and x? $P(p_1,..., p_n, X_1,..., X_n)$

What is the most likely path? (decoding = viterbi algorithm) $p^* = argmax P(p_1, ..., p_n | x_1, ..., x_n)$

What is the probability p is in state t and emitting $x_1 \dots x_i$ $P(p_i = t, x_1, ..., x_i)$ – forward algorithm

What is the probability of emitting $x_{i+1} \dots x_n$ given $p_i = t$?

$$P(x_{i+1}...x_n | p_i = t) - backward algorithm$$

What is the conditional probability of hidden state p at site i $P(p_i | x_1,...x_n)$ -- forward and backward algorithm

Forward algorithm

What is the probability that $p_i = \text{state t}$ $P(p_i=t, x_1 ... x_i) - \text{forward algorithm}$

Sum instead of max (viterbi)

Backward algorithm

What is the probability of emitting $x_i ... x_n$ given $p_i = t$? $P(x_{i+1}...x_n | p_i = t) - backward algorithm$

Sum instead of max (viterbi)

Forward-Backward Algorithm

Forward P(p_3 , $x_1...x_3$) Backward P($x_4...x_n | p_3$)

Foward/backward

P(
$$p_3 | x_1...x_n$$
) proportional to P($p_3, x_1...x_n$)
P($p_3, x_1...x_n$) = P($p_3, x_1...x_3$) P($x_4...x_n | p_3$)
= F(t,i) B(t,i)

What is the conditional probability of hidden state p at site i $P(p_i \mid x)$ -- forward and backward algorithm

Baum-Welch algorithm

Pseudocounts: an amount (small constant) added to the number of observed cases in order to change the expected probability in a model of those data, when not known to be zero. (avoids P = 0)
Training when rates are unknown

The Baum–Welch algorithm uses the Expectation Maximization (EM) algorithm to find the maximum likelihood estimate of the parameters of a HMM given a set of observed feature vectors.

Baum-Welch Algorithm

Initialize by picking arbitrary model parameters Recurrence:

Set all A and E variables to their pseudocount values

For each sequence j = 1..n:

Calculate F(t,i) for sequence j using forward

Calculate B(t,i) for sequence j using backward

Add contribution of sequence j to A and E

Calculate new model parameters

Calculate log likelihood

Termination: change in log likelihood is small or max iterations

Eukaryotic genes: a challenge

ATATCTTAGAGGGAGGGCTGAGGGTTTGAAGTCCAACTCCTAAGCCAGTGCCAGAAGAGCCAAGGACAGGTACGGCTGTC ATCACTTAGACCTCACCCTGTGGAGCCACACCCTAGGGTTGGCCAATCTACTCCCAGGAGCAGGGAGGCAGGAGCCAGG CAGACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTT **GGTGGTGAGGCCCTGGGCAG**GTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGA GTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGT GAAGGCTCATGGCAAGAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCA CACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACGCTTGATGTTTT $\mathsf{CTTTCCCCTTCTTTCTATGGTTAAGTTCATGTCATAGGAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAG$ ACGAATGATTGCATCAGTGTGGAAGTCTCAGGATCGTTTTAGTTTCTTTTATTTGCTGTTCATAACAATTGTT TTTTTTTTTCTTCCGCAATTTTTACTATTATACTTAATGCCTTAACATTGTGTATAACAA ATGTGTGCTTATTTGCAT Homo sapiens hemoglobin, beta (HBB) TGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATCT TGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTA ${\sf CCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCA}$ TACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACC CCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTT TATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACTGGGGGATATTATGAAGGGC GAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAATGATGTATTTAAATTATTTCTGAATATTTTACTA AAAAGGGAATGTGGGAGGTCAGTGCATTTAAAACATAAAGAAATGAAGAGCTAGTTCAAACCTTGGGAAAATACACTATA

HMM gene finder

Parts: non-genes, exons (both coding and non-coding portions), introns

Sequence signals: acceptors, donors, branch sites, pyrimidine-rich sites, nucleotide compositions

Nucleotide composition and codon bias

HMM for genes

Attempt 1:

Emissions are nucleotides

I = intron

E = exon

N = intergenic (between genes)

q0 is a *start state*; guarantees we start in the N (intergenic) state

Each with their own nucleotide frequencies

Model captures:

Genes, exons and introns

Does not capture:

Start/stop codons, acceptors/donors, codons

Problem
Codon bias
Sum of exons not
multiple of 3

Attempt 2:

Three exon states additionally capture *codons*

Problems

Sum exons = 3 11 234 255534 255234 Splice junction (AG) Start and Stop codons

Attempt 3:

States 2-4 capture start codon

13, 14 capture donor

16, 17 capture acceptor

8-12 capture stop codons

Why not arrow from 5 to 8?

Codon would be 1TGA|

1TAG|1TAA – not a stop

Do exons end 2nd position in coding and start at 3rd?

Not always

Attempt 4:

Additional copies of the accepter/intron/donor loop allow us to pick up where we left off in reading frame

Recall transition probability matrix has | Q | 2 elements

27 states → 729 transition probs

How is codon bias incorporated?

States 5, 6, 7 7 = third position 7 emits GC (bias) more than AT

Phylogenetic Hidden Markov Model: Markov chains in time and space

$$\mathbf{X} = \mathtt{TAACGGCAGA}\dots$$

HMM in time and space

A. HMM

 \mathbf{X}_{i+1}

- B. Phylogenetic model
- C. Phylo-HMM

Phylo-gene finding HMM is also possible and improves performance

Copy number variation

Emissions: read counts or log2(ratio) is discretized

Profile HMMs

Pfam is a database of protein families that includes their annotations and multiple sequence alignments generated using profile HMMs (HMMER software)

```
HBA HUMAN
             ...VGA--HAGEY...
             ...V----NVDEV...
HBB_HUMAN
             ...VEA--DVAGH...
MYG_PHYCA
GLB3_CHITP
             ...VKG----D...
GLB5 PETMA
            ...VYS--TYETS...
LGB2_LUPLU
             ...FNA--NIPKH...
GLB1_GLYDI
             ...IAGADNGAGV...
"Matches":
                ***
                     ****
```

- Improve genome annotations
- Better remote homology
- Better handle variable domain architectures

Profile HMM is equivalent to position specific scoring matrix (PSSM)

Profile HMMs

 Make close alignment Train HMM Find distant homologues Begin End Match-state, Insert-state, Delete-state

Delete-states are silent and do no have emissions Insert and delete states account for aligned columns with gaps Insert/delete if more than 50% sequences gapped.

Example of Hmmer alignment

Chromatin-HMM

Exercises

1) Fill in the A and E matrix given this training data

E	Α	G	С	Т
I				
0				

Α	I	0
Ì		
0		

Sequence: AAAAATCGGGATAT

Labels: 00000IIIII0I0I

- 2) Huntington's disease is caused by $(CAG)_n$ repeats. Propose an HMM that would identify such repeats.
- 3) Give one possible sequence and labels for the following HMM, assuming orange is possible, white is not possible, IA emits A, etc.

Α	IA	ıc	ıc	ıт	ΟΛ	00	ос	ОТ
	IA	10	iC	'''	UA	OG	oc	O1
IA								
IG								
IC								
IT								
ОА								
OG								
ос								
ОТ								

Exercises

1) What are pseudocounts used to avoid in the EM algorithm?

2) Why does this model not work well in identifying CpG

islands:

A	I	0	
	0.8	0.2	
0	0.2	0.8	

Е	Α	C	G	Т
	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

- 3) Why do profile HMMs work better for distant homology searches?
- 4) Propose an HMM model (A and E matrix) for the following:

Sequence: ATCGAAAATCGGGATATATATGACTTAATTCTCGTA