1 Minimum spanning true

It is spanning tree which has minimum total cost. If we have a linked undirected graph with a weight combine with each edge. Then the cost of spanning tree would be the sum of the cost of its edge.

Application - in design of networks including computer networks, telecommunication networks, transportation networks

M a	12 3	Diglestra	Bellmann tord
9.2	Prim	O(E logv)	O(VE)
Time- Comple	O ((V+E) (ogv)	0 (5 (0))	
Compli	O(VEE)	$O(V^2)$	(N)
Space	Olivici		1

in Krushkalı [1,2,2,4,4,6,7,7,8,8,9,10,11,14]

Min wt = 37

min wt = 37

of) let me has initial shortest path S-7U->t.

- a) if we increase every edge by 10 units then also shortest path is same.
- 6) If we true multiplied every, edge by 10 units then also shortest puth is same

Q 5)

bijkstora			
node	1	dist	1 som s
ω		9	
V		9	
r		5	
Ч		+	

$$A_1 = \begin{cases} 0 \approx 63 \approx 0 \\ 3096 \approx 0 \\ \approx 0000 \approx 0 \end{cases}$$

$$A_{1} = \begin{bmatrix} 0 \times 6 & 3 \times 0 \\ 3 & 0 & 6 & 0 \\ 0 \times 0 & 0 & 2 \times 0 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 \times 6 & 3 \times 0 \\ 3 & 0 & 6 & 0 \\ 0 \times 0 & 0 & 2 \times 0 \\ 0 \times 1 & 1 & 0 \times 0 \\ 0 \times 4 & 0 & 2 & 0 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 \times 6 & 3 \times 0 \\ 3 \times 0 & 0 & 6 & 0 \\ 0 \times 0 & 0 & 2 \times 0 \\ 0 \times 4 & 13 & 2 & 0 \end{bmatrix}$$

$$A3 = \begin{bmatrix} 6620 & 6 & 3 & 20 \\ 3 & 0 & 4 & 6 & 20 \\ 2 & 0 & 0 & 2 & 20 \\ 2 & 0 & 1 & 1 & 0 & 20 \\ 2 & 0 & 1 & 1 & 3 & 2 & 0 \end{bmatrix}$$

$$A4 = \begin{bmatrix} 0 & 4 & 4 & 3 & 20 \\ 3 & 0 & 7 & 6 & 20 \\ 2 & 0 & 7 & 7 & 6 \\ 2 & 0 & 7 & 7 & 7 \\ 2 & 0 & 7 & 7 & 7 \\ 2 & 0 & 7 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 & 7 \\ 2 & 0 & 7 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7 & 7 \\ 2 & 0 & 7$$

$$A_{5} = \begin{bmatrix} 0 & 4 & 4 & 3 & \infty \\ 3 & 0 & 7 & 6 & \infty \\ 3 & 0 & 2 & \infty \\ 0 & 3 & 0 & 2 & \infty \\ 0 & 3 & 3 & 2 & 0 \end{bmatrix}$$