THLR 2013–2014 DM 4 – page 1/3

DM 4 Automates

Version du 16 septembre 2013

Ce dernier ¹ devoir à la maison est à rendre demain, vendredi, au début du TD.

Exercice 1 – Minimisation de Brzozowski

Soyez très méticuleux dans cet exercice. Comptez le nombre de a et de b lorsque vous recopiez un automate du brouillon vers la copie; comptez les flèches entrantes et sortantes de chaque état; n'oubliez pas de marquer les états initiaux et finaux. Le moindre oubli est fatal lorsqu'on enchaîne les opérations comme ici.

Notons \mathcal{A} l'automate non-déterministe suivant :

Le transposé de \mathcal{A} , noté $T(\mathcal{A})$, est l'automate dans lequel toutes les flèches de \mathcal{A} ont été retournées (même les états initiaux sont devenus finaux et vice-versa).

Le déterminisé de \mathcal{A} , noté $Det(\mathcal{A})$, est le DFA obtenu à partir de \mathcal{A} en utilisant l'algorithme de déterminisation du cours (qui est aussi un théorème du poly...).

- 1. Construisez $\mathcal{A}' = Det(T(\mathcal{A}))$.
- 2. Construisez $\mathcal{A}'' = Det(T(\mathcal{A}'))$. Note: \mathcal{A}'' possède 3 états. Si vous trouvez autre chose vous avez fait une erreur! ²
- 3. Justifiez que \mathcal{A} et \mathcal{A}'' reconnaissent le même langage.

Ne soyez pas surpris que l'automate \mathcal{A}'' soit plus petit que l'automate $D(\mathcal{A})$ (que vous pouvez construire au brouillon si le cœur vous en dit) et même, dans notre cas, plus petit que \mathcal{A} . En chaînant ces deux « codéterminisations » vous avez construit un DFA équivalent à \mathcal{A} de taille minimale : il n'en existe pas avec moins d'états.

Exercice 2 – Conversion d'automates en expressions rationnelles

Soit q et r deux expressions rationnelles dénotant les langages L(q) et L(r) de Σ^* . Considérons l'équation X = qX + r. Une expression rationnelle t dénotant le langage L(t) est solution de cette équation si

$$L(t) = L(q)L(t) \cup L(r) \tag{1}$$

^{1.} Courage!

^{2.} C'est triste, mais il vaut mieux faire les erreurs chez soi que pendant l'examen : le canapé est bien plus confortable.

THLR 2013–2014 DM 4 – page 2/3

1. Montrez (par récurrence sur n) que si t est une solution de (1), alors

$$\forall n \in \mathbb{N}, \ L(q)^n L(r) \subset L(t) \tag{2}$$

Note : par convention $L(q)^0 = \{\varepsilon\}$.

2. Montrez (par récurrence sur *n*) que si *t* est une solution de (1) alors

$$\forall n \in \mathbb{N}, L(t) \subset L(q)^n L(t) \cup L(q)^{n-1} L(r) \cup \dots \cup L(r). \tag{5}$$

Attention à ne pas mélanger les *r* et les *t* dans l'équation précédente!

- 3. Si $\varepsilon \notin L(q)$ et que t est une solution de cette équation, montrez que $L(t) \subset L(q^*r)$. Indice : si $\varepsilon \notin L(q)$ les mots de $L(q)^n$ sont au moins de taille n, prenez donc chaque mot de L(t) et regardez comment vous pouvez choisir n dans l'équation (5).
- 4. Déduisez des questions précédentes le théorème suivant :

Théorème 1. Soient q et r deux expressions rationnelles telles que $\varepsilon \notin L(q)$; si l'expression rationnelle t est une solution de l'équation $L(t) = L(q)L(t) \cup L(r)$, alors $L(q^*r) = L(t)$.

Même si plusieurs expressions t peuvent définir ce même langage, nous dirons que cette solution est unique (au sens du langage) pour q et r données.

- 5. Si $\varepsilon \in L(q)$, l'équation (1) n'admet pas forcément d'unique solution. Donnez une solution t qui ne dépende ni de q ni de r.
- 6. **Application.** Considérons l'automate \mathcal{D}_3 du DM précédent :

Nous notons t_i l'expression rationnelle dénotant le langage de tous les mots qui peuvent être acceptés par l'automate \mathcal{D}_3 à partir de de l'état i. On a par exemple $01 \in L(t_2)$ car il est possible d'atteindre un état final en lisant 01 à partir de l'état 2.

Nous pouvons énoncer des contraintes entre t_0 , t_1 , et t_2 en lisant la figure. Par exemple si on rajoute un 1 en tête d'un mot reconnu par t_2 , il restera reconnu par t_2 à cause de la boucle sur l'état 2. De même si on ajoute un 0 en tête d'un mot reconnu par t_1 , il sera cette fois-ci reconnu par t_2 . En fait l'expression t_2 satisfait l'équation $t_2 = 0t_1 + 1t_2$.

Si l'on fait cette lecture de l'automate pour tous les états, on obtient le système d'équations suivant :

$$t_0 = 0t_0 + 1t_1 + \varepsilon \tag{6}$$

$$t_1 = 0t_2 + 1t_0 \tag{7}$$

$$t_2 = 0t_1 + 1t_2 \tag{8}$$

Le ε a été ajouté à la première équation parce que l'état 0 est final : t_0 accepte donc le mot vide en plus d'accepter les mots de t_1 préfixés par 1 ainsi que ses propres mots préfixés par 0.

L'expression rationnelle t_0 , parce qu'elle est associée à l'état initial, dénote le langage accepté par l'automate. Pour reconstruire une expression rationnelle associée à l'automate, il nous suffit de résoudre le système d'équations (6)-(8) pour trouver t_0 .

^{3.} La seule difficulté, vraiment, c'est de bien se mettre dans la tête que nos produits sont des concaténations. La concaténation ne commute pas et n'est pas inversible.

THLR 2013–2014 DM 4 – page 3/3

Faisons la première étape ensemble. En remplaçant (7) dans (6) et (8) on élimine t_1 de notre système. Voici une bonne chose de faite :

$$t_0 = (0+11)t_0 + 10t_2 + \varepsilon \tag{9}$$

$$t_2 = (00+1)t_2 + 01t_0 (10)$$

C'est maintenant à vous de finir : **trouvez** t_0 .

Indices : Ces deux équations sont de la forme t = qt + r. Commencez donc par appliquer le théorème 1 à l'équation (10) pour exprimer t_2 en fonction de t_0 uniquement, puis injectez votre résultat dans 9 avant d'appliquer à nouveau le théorème.