Criptografia Aplicada

Introdução à criptografia

Introdução à criptografia

- Definições básicas
 - Cifragem x decifragem
 - Criptoanálise
 - Criptografia Simétrica
 - Criptografia Assimétrica
 - o Requisitos de segurança
- Criptografia Clássica

Definições básicas

Criptossistema: especificação completa de chaves e como elas são usadas para cifragem e decifragem

Definições básicas

O princípio de Kerckhoffs: um sistema de criptografia deve ser seguro ainda que o adversário conheça todos os detalhes do sistema, com exceção da chave secreta

Criptoanálise

Criptografia: área que estuda os esquemas utilizados para cifragem e decifragem.

- Tipos de operações utilizadas para transformar texto claro em texto cifrado
- Número de chaves utilizado
- A forma como o texto claro é processado

Criptoanálise: área que estuda técnicas de decifragem sem conhecimento da chave.

- Força bruta
- Ataque na natureza do algoritmo (falhas ou vazamento de informação)
- Características do texto (claro e cifrado)

Criptografia Simétrica

Criptografia Assimétrica

Criptografia Assimétrica

Requisitos de segurança

- Confidencialidade
- Integridade
- Disponibilidade (availability)
- Autenticidade
- Responsabilização (accountability)

Fonte: W. Stallings. Cryptography and network security. Cap 1.1

Conceitos básicos de criptografia

Definições básicas

- Cifragem x decifragem
- Criptoanálise
- Criptografia Simétrica
- Criptografia Assimétrica
- Requisitos de segurança

• Criptografia Clássica

- História da criptografia
- Cifradores mono-alfabéticos
- Cifradores poli-alfabéticos
- Máquinas de rotores

- A história da criptografia é marcada por diversos períodos.
- Com o passar do tempo, a criptografia evoluiu junto com a civilização

antiquity	1500 BC – 100 AD
Arab civilization	800 - 1400
European Middle Ages	1000 - 1500
Renaissance	1450 - 1600
Baroque, salon cryptography	1600 - 1850
mechanical devices	1580 - 1950
electromechanical devices	1920 - 1950
computers	1943 – present
public key systems	1976 – present

Table A.4: Cryptographic time periods.

- Antigamente, o conhecimento da escrita era tão exclusivo que, de maneira geral, não havia necessidade de proteger textos escritos;
- entretanto, alguns textos eram considerados extremamente secretos, e portanto apenas o mais alto nível de realeza poderia acessar;
- foi então que surgiu a necessidade de garantir confidencialidade.

- Egito (1332 1322 AC):
 - Hieróglifos modificados da tumba do faraó
 Tutankhamon;
 - comunicação de informações religiosas secretas ao faraó;
 - indecifrável por qualquer pessoa fora do círculo real.

Figure A.6: Two goddesses around a pole representing Re.

Fonte: Joachim von zur Gathen, *CryptoSchool*, Capítulo A.

- Roma (464 167 AC):
 - Utilizada na primeira guerra da Macedônia;
 - cinco tochas de cada lado, as da direita indicam a linha e as da esquerda a coluna;
 - sistema parecido foi usado pelos EUA durante a guerra civil, com bandeiras no lugar de tochas.

Figure A.9: Polybius' signalling system as interpreted by Myer (1879).

	1	2	3	4	5
1	Α	В	C	D	Ε
2	F	G	H	I	K
2	L	M	N	O	P
4	Q	R	S	T	U
5	V	W	X	Y	Z

Figure A.10: The Polybius Square.

Cifras de substituição

- Consistem na substituição de letras do texto claro por outras letras ou símbolos.
- Exemplos de cifras de substituição:
 - Cifra de César
 - Cifradores mono-alfabéticos
 - Playfair
 - Cifradores poli-alfabéticos
 - Vigenère
 - Vernam
 - One-time pad

Imagem: https://tinyurl.com/cifra-cesar

Cifra de César (100 - 44 AC)

- Substituímos cada letra da mensagem pela letra 3 casas a frente
 - o Texto Claro: me encontre depois da aula
 - Texto Cifrado: PH HQFRQWUH GHSRLV GD DXOD
- Matematicamente:
 - \circ c = E(m, 3) = (m + 3) mod 26
 - Ou mais genérico: $c = E(m, i) = (m + i) \mod 26$

Cifra de César (100 - 44 AC)

- Decifragem:
 - $om = D(c, i) = (c i) \mod 26$
- Criptoanálise:
 - Chave: valor de i
 - Força Bruta: tentar todas as 25 possibilidades de chaves

Figure 3.3 Brute-Force Cryptanalysis of Caesar Cipher

Fonte: W. Stallings. *Cryptography* and network security. Cap 3.2

Cifradores mono-alfabéticos

- Mapeia de um alfabeto para outro alfabeto
- Troca de uma letra por outra letra qualquer
 - Variação da cifra de César.
 - Chave: 26 letras que representam o mapeamento do alfabeto original para o de cifragem
- Espaço de Chaves:
 - o 26! = 4 x 1026
 - Maior que DES
- Criptoanálise:
 - Análise de frequência
 - Análise de duplas, triplas

Frequência Relativa das Letras

Imagem: https://tinyurl.com/frequencia-en

Frequência (inglês)

Imagem: https://tinyurl.com/frequencia-pt

Frequência (português)

Cifradores poli-alfabéticos

- Usam um conjunto de substituições mono-alfabéticas
- Uma chave determina qual substituição será utilizada em cada letra
- Objetivo: tornar a criptoanálise mais difícil
- Cifras poli-alfabéticas:
 - o Vigenère
 - Vernam
 - One-time pad

One-Time Pad (1917)

- Transformação do texto em bits
- Transformação da chave em bits
- Ou-Exclusivo bit a bit
- Cifragem: c_i = m_i ⊕ k_i
- Decifragem: m_i = c_i ⊕ k_i

Mensagem	H	E	L	L	O
	01001000	01000101	01001100	01001100	01001111
Chave	P	L	U	T	O
	01010000	01001100	01010101	01010100	01001111
Texto cifrado	00011000	00001001	00011001	00011000	00000000

One-Time Pad (1917)

- Chave aleatória tão grande quando a mensagem e de uso único.
- Essa modificação torna o sistema inquebrável (perfect secrecy)
 - segurança baseada na aleatoriedade da chave
 - o texto cifrado não tem nenhuma relação estatística com o texto claro
 - força bruta geraria diversos textos claros plausíveis

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

plaintext: mr mustard with the candlestick in the hall

key: pftgpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

plaintext: miss scarlet with the knife in the library

One-Time Pad (1917)

Limitações:

- Para que seja inquebrável, a chave precisa ser aleatória e nunca reutilizada
- Geração de grandes quantidades de chaves aleatórias é muito difícil
- Distribuição dessas chaves entre emissor e receptor é muito difícil
- Uso do one-time pad é limitado a aplicações que requerem um nível de segurança muito grande

Máquinas de rotores

- Usar múltiplas etapas de cifragem faz com que o algoritmo fique mais resistente à criptoanálise
 - Tanto em cifras de substituição quanto nas de transposição.
 - A aplicação mais importante desse princípio (antes do DES/AES) foi nas máquinas de rotores.
- Usada nas comunicações da segunda guerra mundial
 - Pela Alemanha com a máquina Enigma
 - Pelo Japão com a máquina Purple
- Sistema eletro-mecânico complexo.

Fonte: Joachim von zur Gathen, *CryptoSchool*, Capítulo J.1.

Figure J.1: An ENIGMA machine with open lid.

Máquinas de rotores

- Conjunto de cilindros (rotores) independentes.
- Cada cilindro é um cifrador mono-alfabético com 26 entradas e 26 saídas.
- Conexões internas ligam cada entrada à uma única saída.
- Cada saída de um cilindro é ligada à entrada de outro
 - Na figura, a letra A é substituída pela letra B.
- Depois de cifrar uma letra, há um shift nos cilindros e uma nova substituição mono-alfabética é definida.

Fonte: W. Stallings. Cryptography network security. Cap 3.4

Máquinas de rotores

- Depois de cifrar uma letra, há um shift nos cilindros e uma nova substituição mono-alfabética é definida.
 - Houve um shift no primeiro rotor, então a letra A é substituída pela letra Y.
 - Com 3 rotores, existem 26x26x26 = 17576 alfabetos de substituição diferentes antes que o sistema repita o mapeamento

Chave:

- Segurança baseada apenas no segredo da chave
- Escolha e sequência dos rotores, configuração dos rotores, conexões do plugboard.
- Combinação de 2⁶⁷ possíveis chaves

Criptoanálise:

- Extremamente complexa, contou com o auxílio de espiões e de modos de operação inseguros
- Trabalho de Turing

Direction of motion

(b) Setting after one keystroke

Fonte: W. Stallings. Cryptography network security. Cap 3.4

E hoje?

- Com o surgimento dos computadores, a criptografia precisou evoluir
- Criptografia clássica tinha por objetivo apenas a confidencialidade
- A criptografia moderna busca também outras garantias de segurança

Para a próxima aula

Instalar e testar o <u>openssl</u>

Referências

- W. Stallings. Cryptography and network security. 7a edição.
 - o Capítulos 1.1, 3.2, 3.3, 3.4, 9.1
- D. Stinson e M. Paterson. *Cryptography: Theory and Practice*. 4a edição.
 - o Capítulos 1.1, 2.1, 2.2, 3.3
- Joachim von zur Gathen. CryptoSchool. 1a edição.
 - Capítulo A.1, A.2, F.2, J.1, 9.4
- Imagens: Flaticon.com

