ANOVA

Chapter 13 from Walpole book

Assumptions and Hypotheses in One-Way ANOVA

It is assumed that the k populations are independent and normally distributed with means $\mu_1, \mu_2, \ldots, \mu_k$ and common variance σ^2 . As indicated in Section 13.2, these assumptions are made more palatable by randomization. We wish to derive appropriate methods for testing the hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_k$,

 H_1 : At least two of the means are not equal.

Let y_{ij} denote the jth observation from the ith treatment and arrange the data as in Table 13.2. Here, $Y_{i.}$ is the total of all observations in the sample from the ith treatment, $\bar{y}_{i.}$ is the mean of all observations in the sample from the ith treatment, $Y_{i.}$ is the total of all nk observations, and $\bar{y}_{i.}$ is the mean of all nk observations.

Table 13.2: k Random Samples

Treatment:	1	2	• • •	i	• • •	\boldsymbol{k}	
	y_{11}	y_{21}		y_{i1}		y_{k1}	
	y_{12}	y_{22}	• • •	y_{i2}	• • • •	y_{k2}	
	:	:		÷		÷	
	y_{1n}	y_{2n}	• • • •	y_{in}	• • • •	y_{kn}	
Total	$Y_{1.}$	$Y_{2.}$		Y_{i} .		Y_k .	<i>Y</i>
Mean	$ar{y}_{1.}$	$ar{y}_{2}$.	• • • •	$ar{y}_{i.}$		\bar{y}_k .	$ar{y}_{\cdot \cdot}$

Theorem 13.1: Sum-of-Squares Identity

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$$

Sum of Squares, Unequal Sample Sizes

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2, \ SSA = \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2, \ SSE = SST - SSA$$

Three Important Measures of Variability

$$SST = \sum_{i=1}^{\kappa} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = \text{total sum of squares},$$

$$SSA = n \sum_{i=1}^{\kappa} (\bar{y}_{i.} - \bar{y}_{..})^2 = \text{treatment sum of squares},$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2 = \text{error sum of squares.}$$

The sum-of-squares identity can then be represented symbolically by the equation

$$SST = SSA + SSE.$$

Neil. Weis book formula

Sum of squares	Defining formula	Computing formula
Total, SST	$\Sigma (x_i - \bar{x})^2$	$\Sigma x_i^2 - (\Sigma x_i)^2/n$
Treatment, SSTR	$\Sigma n_j (\bar{x}_j - \bar{x})^2$	$\Sigma(T_i^2/n_j) - (\Sigma x_i)^2/n$
Error, SSE	$\Sigma(n_j-1)s_j^2$	SST — SSTR

Where

```
n = total \ no. \ of \ observations

n_j = size \ of \ jth \ sample

T_j = sum \ of \ jth \ sample
```

Table 13.3: Analysis of Variance for the One-Way ANOVA

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\begin{matrix} \text{Computed} \\ f \end{matrix}$
Treatments	SSA	k-1	$s_1^2 = \frac{SSA}{k-1}$	$\frac{s_1^2}{s^2}$
Error	SSE	k(n-1)	$s^2 = \frac{SSE}{k(n-1)}$	
Total	SST	kn-1		

Tab	ole A.6 Cri	itical Value	es of the F -	Distribution	n		α f_{α}		
				j	$f_{0.05}(v_1,v_2)$	2)			
					v_1				
v_2	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

 Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.05}(v_1,v_2)$									
					v	'1				
$oldsymbol{v_2}$	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
$\bf 24$	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

In Exercises 16.42–16.47, we provide data from independent simple random samples from several populations. In each case,

- a. compute SST, SSTR, and SSE by using the computing formulas given in Formula 16.1 on page 726.
- b. compare your results in part (a) for SSTR and SSE with those in Exercises 16.24–16.29, where you employed the defining formulas.
- c. construct a one-way ANOVA table.
- d. decide, at the 5% significance level, whether the data provide sufficient evidence to conclude that the means of the populations from which the samples were drawn are not all the same.

Sample 1	Sample 2	Sample 3
1	10	4
9	4	16
	8	10
	6	
	2	
	Sample 1 1 9	1 10 9 4 8 6

16.43	Sample 1	Sample 2	Sample 3
	8	2	4
	4	1	3
	6	3	6
			3

16.44	Sample 1	Sample 2	Sample 3	Sample 4
	6	9	4	8
	3	5	4	4
	3	7	2	6
		8	2	
		6	3	

7 5 6	
	5 7
4 9 7	7 9
5 4 5	7 11
4 4 4	4
8	4

16.46	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
	4	8	9	4	3
	2	5	6	0	6
	3	5	9	2	9

16.47	Sample 1	Sample 2	Sample 3	Sample 4
	11	9	16	5
	6	2	10	1
	7	4	10	3

16.47 (solution on excel)

- 1) H_0 : all four population means are equal
- 2) H_1 : atleat two population means are not equal
- *3*) $\alpha = 0.05$
- 4) Critical value and critical region

$$F_{critical} = F_{0.05,v_1,v_2} = F_{0.05,3,8} = 4.07$$

 $critical\ region\ is\ F > 4.07$

5) Test Statistic: (F - test)

Working below

	sample1	sample2	sample 3	sample4	total				
	11	. 9	16	5 5	41			grand mean	7
	e	5 2	10) 1	19				
	7	4	10) 3	24				
Total	24	15	36	5 9	84				
mean	8	5	12	2 3	28				
	SST						798-84^2/12		210
	121	. 81	256	5 25					
	36	5 4	100						
	49	16	100) 9					
total	206	101	456	35	798				
						SST	210		
	SSA				total				
yi.^2	576	225	1296	81	2178				
	SSA	2178/3-84^2/12	138	3					
	SSE	210-138	72						

ANOVA Table

		sum of squares	d.f	mean ss	F-ratio
	SSA	13	3	46	5.11111111
	SSE	7:	2 8	9	
Total	SST	210) 11		

test statistic value	5.1111		critical value	4.07
	6) conclusion	reject H_0		