# Tarefa1\_corrigida

April 6, 2024

## 1 Tarefa 1

Rafael Ragozoni Conrado 290268

Defina uma pergunta. Escolha um dataset num dos repositórios RDatasets, UC Irvine Machine Learning Repository, Kaggle e Base dos Dados (dados tratados). Use os recursos disponíveis em ggplot2/plotnine para explorar os dados do dataset selecionado e o procedimento de resolução de problemas discutido para responder a pergunta formulada.

A pergunta a ser respondida é: regulamentação de armas diminui a violência?

## 1.0.1 Importação das bibliotecas necessárias

```
[]: import numpy as np
import pandas as pd
from plotnine import *
import matplotlib as mpl
mpl.rcParams['figure.facecolor'] = 'white'
```

### 1.0.2 Carregar a base de dados com Pandas

A base for carregada nesse link

```
[]: data = pd.read_csv('Guns.csv')
  data.head()
```

```
[]:
        rownames
                   year
                         violent
                                   murder
                                           robbery prisoners
                                                                     afam
                                                                                cauc
     0
               1
                   1977
                           414.4
                                     14.2
                                              96.8
                                                                 8.384873
                                                                           55.12291
                                                             83
     1
                2
                   1978
                           419.1
                                     13.3
                                              99.1
                                                             94
                                                                 8.352101
                                                                           55.14367
     2
                3
                   1979
                           413.3
                                     13.2
                                              109.5
                                                           144
                                                                 8.329575
                                                                           55.13586
     3
                4
                   1980
                           448.5
                                     13.2
                                              132.1
                                                           141
                                                                 8.408386
                                                                           54.91259
     4
                5
                   1981
                           470.5
                                     11.9
                                              126.5
                                                           149
                                                                 8.483435
                                                                           54.92513
                   population
                                  income
                                           density
                                                       state law
        18.17441
                     3.780403
                               9563.148
                                          0.074552
                                                     Alabama
        17.99408
                     3.831838
                               9932.000
                                          0.075567
     1
                                                     Alabama
                                                              nο
     2
       17.83934
                     3.866248
                               9877.028
                                          0.076245
                                                     Alabama no
     3
        17.73420
                     3.900368
                               9541.428
                                          0.076829
                                                     Alabama
                                                              no
       17.67372
                     3.918531
                               9548.351
                                          0.077187
                                                    Alabama no
```

Como pode ser visto acima o dataset conta com os seguintes dados: - violent<br/>: Crimes violentos por 100.000 pessoas

- murder: Assassinatos por 100.000 pessoas
- robbery: Roubos por 100.000 pessoas
- prioseners: Prisioneiros presos no ano anterior por 100.000 pessoas
- afam: Porcentagem da população Afro-americana do estado (idades de 10 a 64 anos)
- cauc: Porcentagem da população Caucasiana do estado (idades de 10 a 64 anos)
- male: Porcentagem da população Masculina do estado (idades de 10 a 29 anos)
- population: População do estado em milhões de pessoas
- income: Renda pessoal per capita no estado em dolares
- density: População/milha quadrada de área do estado dividida por 1000
- state: Nome do estado.
- law: Aplicação de lei que dificulta porte de arma.

Como a violência é medida pelo número de crimes violentos para cada 100.000 pessoas, com certeza estados com mais pessoas teram um 'violent' maior. Então para poder medir a taxa de violencia será alterado o campo para "violencia por pessoa" dividindo violent pela população do estado em cada ano.

```
[]: violent = data['violent']
pop = data['population']
violent_per_person = violent/pop
data['violent'] = violent_per_person
```

Também é interessante fazer uma matrix de correlação para ver como os valores de cada coluna tem tendencias parecidas, podendo ser tanto causas de um mesmo efeito (como violência e assassinatos por exemplo) ou se influenciam uma na outra (como densidade e violência).

```
[]: data_for_correlation = data.drop(columns=['state', 'law'])
    correlation_matrix = data_for_correlation.corr()
    correlation_matrix
```

```
[]:
                                                           robbery
                                                                    prisoners
                 rownames
                               year
                                      violent
                                                 murder
                           0.019589 -0.202769 -0.241020 -0.250114
                                                                    -0.204212
     rownames
                 1.000000
                           1.000000 0.017418 -0.033013 -0.014163
     vear
                 0.019589
                                                                     0.504058
     violent
                -0.202769
                           0.017418
                                     1.000000
                                               0.778886
                                                         0.662118
                                                                     0.620813
    murder
                                     0.778886
                                               1.000000
                -0.241020 -0.033013
                                                          0.797606
                                                                     0.709608
    robbery
                -0.250114 -0.014163
                                     0.662118
                                               0.797606
                                                          1.000000
                                                                     0.566850
                -0.204212 0.504058
                                     0.620813
                                               0.709608
    prisoners
                                                          0.566850
                                                                     1.000000
                -0.309655
    afam
                          0.068607
                                     0.489769
                                               0.601833
                                                         0.581202
                                                                     0.530776
     cauc
                 0.311353 -0.033456 -0.476702 -0.615368 -0.584192
                                                                    -0.527107
                                    0.001946
    male
                -0.007360 -0.865828
                                               0.014979 -0.086037
                                                                    -0.446318
    population -0.056682 0.059360 -0.272529
                                               0.099922 0.317193
                                                                     0.095341
```

```
income
           -0.193010 0.525232 0.333314 0.220553 0.414849
                                                               0.461456
           -0.165600 -0.003956
                                0.841116
                                          0.748592 0.781834
                                                               0.559313
density
                afam
                                          population
                                                                 density
                          cauc
                                    male
                                                        income
           -0.309655
                     0.311353 -0.007360
                                           -0.056682 -0.193010 -0.165600
rownames
            0.068607 -0.033456 -0.865828
                                            0.059360 0.525232 -0.003956
year
            0.489769 -0.476702 0.001946
                                           -0.272529 0.333314
violent
                                                               0.841116
murder
            0.601833 -0.615368 0.014979
                                            0.099922 0.220553
                                                                0.748592
robbery
            0.581202 -0.584192 -0.086037
                                            0.317193 0.414849
                                                                0.781834
prisoners
            0.530776 -0.527107 -0.446318
                                            0.095341 0.461456
                                                                0.559313
afam
            1.000000 -0.981978 0.016191
                                            0.058076 0.262694 0.543244
cauc
           -0.981978 1.000000 -0.012602
                                           -0.065438 -0.191164 -0.555113
male
            0.016191 -0.012602 1.000000
                                           -0.097503 -0.527856 -0.063715
population
           0.058076 -0.065438 -0.097503
                                            1.000000 0.215201 -0.078022
            0.262694 -0.191164 -0.527856
income
                                            0.215201
                                                      1.000000
                                                                0.343284
density
            0.543244 -0.555113 -0.063715
                                           -0.078022
                                                      0.343284
                                                                1.000000
```

É interessante saber quais as taxas de violência de cada estado.

Para isso será tirada a média das taxas de violência por cada estado entre 1977 e 1999 e ordenados de forma a mostrar do estado mais violento ao menos.

```
[]: violent_mean = data.groupby('state')['violent'].mean()
violent_mean.columns = ['state', 'violent']
violent_mean.sort_values(ascending=False)
```

#### []: state

| District of Columbia | 3433.092208 |
|----------------------|-------------|
| Alaska               | 1134.379588 |
| Delaware             | 852.436928  |
| Nevada               | 709.575492  |
| Wyoming              | 608.121593  |
| New Mexico           | 494.452936  |
| Rhode Island         | 377.572053  |
| Idaho                | 254.058377  |
| Vermont              | 245.857416  |
| Hawaii               | 242.363624  |
| South Carolina       | 231.547216  |
| Montana              | 224.183492  |
| South Dakota         | 222.675757  |
| Nebraska             | 187.336155  |
| Maryland             | 184.150594  |
| Arkansas             | 184.094512  |
| Louisiana            | 181.371961  |
| Arizona              | 177.003149  |
| Oregon               | 176.279517  |
| Utah                 | 166.202285  |
| Kansas               | 157.895459  |
|                      |             |

| 153.802888 |
|------------|
| 147.951685 |
| 136.947364 |
|            |
| 136.102705 |
| 130.688548 |
| 130.610204 |
| 126.538884 |
| 117.411699 |
| 113.753111 |
| 104.773631 |
| 103.766102 |
| 101.636992 |
| 95.097148  |
| 93.846459  |
| 89.450914  |
| 87.281939  |
| 82.755722  |
| 79.892315  |
| 74.372600  |
| 71.916309  |
| 71.437915  |
| 71.163826  |
| 63.520943  |
| 53.775165  |
| 52.604324  |
| 45.825560  |
| 40.821834  |
| 36.636492  |
| 32.173402  |
| 31.477514  |
|            |

Name: violent, dtype: float64

Como é possível ver acima, o estado mais violento no período é 'District of Columbia' com cerca 2048 crimes violentos para cada 100.000 pessoas e o menos 'North Dakota' com cerca de 68 crimes violentos para cada 100.000 pessoas.

Como 'District of Columbia' é muito distante de todos outros estados e pode afetar a analíse, o mesmo será retirado.

Para melhor vizualização será mostrado um gráfico comparando.

```
[]: print(len(data))
  data = data[data['state']!= 'District of Columbia']
  len(data)
```

1173

[]: 1150



O gráfico, partindo de y=0, mostra a comparação entre a violência nos estados ao longo dos anos, mas seria interessante mostrar a diferença entre estados que regulamentaram o porte de arma e que não regulamentaram.

Para isso, será separado o dataframe em 2, estados que regumelamentaram e que não regulamentaram.





Os gráficos acima são de violência por ano onde não teve lei restritiva para o porte de arma e onde

teve. No segundo os pontos indicam anos onde a lei estava em vigor.

Para uma melhor visualização de como a regulamentação possa ter afetado a violência em cada estado no período pode ser mostrado a curva individual de cada estado.



No geral, é possível ver que estados que acataram a lei tiveram uma redução na taxa de violência comparada com o ínicio do período. Mas para melhor visualização serão comparadas as mudanças na violência média, esperando poder representar as tendências gerais dos grupos.

Então para possibilitar uma melhor comparação sempre é interessante ver a tendencia total do país antes.

Primeiro, é legal ver o comportamento médio do grupo de estados que regulamentaram e que não regulamentaram.

```
[]: is_marked_state = np.where(data['state'].isin(yes_list), 'yes', 'no')
data['law_status'] = is_marked_state
```

```
[]: law_means = data.groupby(['year', 'law_status'])['violent'].mean().reset_index()
     mean_plot = ggplot(law_means) \
         + aes(x='year', y='violent', color = 'law_status') \
         + geom_line() \
         + ggtitle('Violence mean law vs no law') \
         + theme_seaborn() \
         + theme(aspect_ratio=0.4, figure_size=(8,5)
                 , text= element_text(colour = "white", face = "bold")
     # mean_plot_geral = ggplot(law_means) \
           + aes(x='year', y='violent') \setminus
           + geom line() \
           + ggtitle('Violence mean all states') \
           + theme seaborn() \
           + theme(aspect_ratio=0.4, figure_size=(8,5)
                   , text= element_text(colour = "white", face = "bold")
     #
     # mean_plot_geral.show()
     mean_plot.show()
```



Também é um dado importante saber como a variação da violência foi em cada grupo

```
[]: diff = law_means[law_means['year'].isin([1977, 1999])]
     diff_plot = ggplot(diff) \
         + aes(x='year', y='violent', color = 'law_status') \
         + geom_line() \
         + geom_text(aes(label=round(diff['violent'], 2)))\
         + ggtitle('Progression of violence mean start and end law vs no law') \
         + theme seaborn() \
         + theme(aspect_ratio=0.4, figure_size=(8,5)
                 , text= element_text(colour = "white", face = "bold")
     # diff_plot_geral = gqplot(diff) \
           + aes(x='year', y='violent') \
           + geom_line() \
     #
           + geom_text(aes(label=round(diff['violent'], 2)))\
           + ggtitle('Progression of violence mean all states mean') \
           + theme_seaborn() \
     #
           + theme(aspect_ratio=0.4, figure_size=(8,5)
                   , text= element_text(colour = "white", face = "bold")
     # diff_plot_geral.show()
     diff_plot.show()
```



Soma da taxa de alteração média de violência ao longo dos anos

```
[]: data['violent_diff'] = data.groupby(['state', 'law_status'])['violent'].

→diff(periods=1).fillna(0)
     year_wise_sum = data.groupby(['year', 'law_status'])['violent_diff'].sum()
     law_tendency = pd.DataFrame({'year':year_wise_sum.reset_index()['year'],__
      →'law_status':year_wise_sum.reset_index()['law_status'],'violent_diff':

year_wise_sum.values})
     # law_tendency
     law_tendency_plot = ggplot(law_tendency) \
          + aes(x='year', y='violent_diff') \
          + geom_line() \
          + facet_wrap('law_status', nrow = 1) \
          + scale_x_continuous(breaks = law_tendency['year'].unique()) \
          + ggtitle('Progression of violence mean start and end law vs no law') \
          + theme_seaborn() \
          + theme(aspect_ratio=0.2, figure_size=(20,4)
                  , text= element_text(colour = "white", face = "bold")
                  , strip_text = element_text(colour = "black", face = "bold")
                  )
     law_tendency_plot.show()
```



As conclusões que são vistas nos gráficos são: - As média taxas de violência no grupo de estados que não regulamentaram o porte de armas subiu, já o dos estados em que a lei estava em vigor diminuiu

• Após cerca de 1990 que parece ser o momento mais violento, estados com controle de armas de fogo tiveram quedas mais significates que os que não adotaram.