Spherically Symmetric Problem

Next, we review the quantum mechanical problem of a single particle moving in a 3D spherically symmetric time-independent potential $V(\mathbf{r})$. In 3D, the momentum operator changes to a vector

operator $\overrightarrow{p} \equiv \mathbf{p} = -i\hbar \overrightarrow{\nabla} \equiv -i\hbar \nabla$, where $\overrightarrow{\nabla}$ is 3D gradient vector, which in Cartesian coordinates is

 $\overrightarrow{\nabla} = \overrightarrow{e}_x \partial_x + \overrightarrow{e}_y \partial_y + \overrightarrow{e}_z \partial_z$ (vector quantities are interchangeably denoted either by bold font, or by an arrow on top of a character). Then, the time-dependent and time-independent Schrödinger equations in 3D become respectively (see Eqs. (1) and (3) in live script *Particle in Box*)

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi \tag{14}$$

and

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi, \qquad (15)$$

where $\Psi(\mathbf{r},t) = \psi(\mathbf{r})\varphi(t)$ and $\nabla^2 = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla}$ is 3D Laplacian, which in Cartesian coordinates is: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

The potential energy $V(\mathbf{r})$ and wave function $\psi(\mathbf{r})$ are now functions of 3D position vector $\mathbf{r} = \mathbf{r}(x, y, z)$, thus, the normalization of wave function in 3D is

$$\int |\psi(\mathbf{r})|^2 d^3 \mathbf{r} = 1, \qquad (16)$$

where infinitesimal volume element in 3D space is denoted by $d^3\mathbf{r}$ and in Cartesian coordinates it is $d^3\mathbf{r} \to |d\mathbf{r}_x \wedge d\mathbf{r}_y \wedge d\mathbf{r}_z| = dxdydz|\overrightarrow{e}_x \wedge \overrightarrow{e}_y \wedge \overrightarrow{e}_z| = dxdydz$, where we used $d\mathbf{r}_x = \mathbf{r}(x + dx, y, z) - \mathbf{r}(x, y, z) = \overrightarrow{e}_x dx$, with $\overrightarrow{e}_x = \frac{\partial \mathbf{r}}{\partial x}$, etc.

To utilize the symmetry in atoms with centrally symmetric potentials, we introduce **spherical coordinates** $\mathbf{r} = \mathbf{r}(r, \theta, \phi)$, as sketched in Fig. 1, where $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ and θ is a polar angle, while ϕ is called azimuthal angle.

Figure 1: Illustration of spherical and Cartesian coordinates of point *P*.

Cartesian coordinates are global, i.e. \overrightarrow{e}_j (for j=x,y,z) are constant, space independent, unit vectors: $\partial_x \overrightarrow{e}_j = \partial_y \overrightarrow{e}_j = \partial_z \overrightarrow{e}_j = 0$. Such relations in general do not hold in spherical coordinates e.g. $\partial_\theta \overrightarrow{e}_r = \overrightarrow{e}_\theta \neq 0$, since $\overrightarrow{e}_r(r,\theta+\Delta\theta,\phi)$ points in the direction different from $\overrightarrow{e}_r(r,\theta,\phi)$. Even though that $\partial_r \overrightarrow{e}_\alpha = 0$ and $\overrightarrow{e}_\alpha$ in spherical coordinates (for $\alpha = r,\theta,\phi$) are also orthogonal set of unit length vectors, their direction is not constant and changes from point to point in general.

Figure 2: Path $\ell_{\phi} = r \sin \theta \Delta \phi$ on a sphere, fox fixed r and θ and varying $\phi \to \phi + \Delta \phi$.

Red dots and a dashed path are located on a sphere with radius r, at same value of θ .

If we fix r and θ and just vary ϕ , as shown in Fig. 2 we get:

$$\Delta \mathbf{r}_{\phi} = \mathbf{r}(r, \theta, \phi + \Delta \phi) - \mathbf{r}(r, \theta, \phi) = r \sin \theta \Delta \phi \stackrel{\rightarrow}{e}_{\phi}$$

Analogically we have:

•
$$d\mathbf{r}_{\theta} \equiv \frac{\partial \mathbf{r}}{\partial \theta} d\theta = \mathbf{r}(r, \theta + d\theta, \phi) - \mathbf{r}(r, \theta, \phi) = rd\theta \stackrel{\rightarrow}{e}_{\theta}$$

$$d\mathbf{r}_r = \mathbf{r}(r + dr, \theta, \phi) - \mathbf{r}(r, \theta, \phi) = \overrightarrow{dr} e_r.$$

Hence the total differential of radius vector **r** is:

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial r}dr + \frac{\partial \mathbf{r}}{\partial \theta}d\theta + \frac{\partial \mathbf{r}}{\partial \phi}d\phi = d\mathbf{r}_r + d\mathbf{r}_{\theta} + d\mathbf{r}_{\phi} = dr\overrightarrow{e}_r + rd\theta\overrightarrow{e}_{\theta} + r\sin\theta d\phi\overrightarrow{e}_{\phi} = dr\overrightarrow{e}_r + rd\overrightarrow{e}_r,$$

where last equality follows from $\mathbf{r} = r \vec{e}_r$ (hence coordinates of a radius vector \mathbf{r} in a local spherical coordinate basis \vec{e}_r , \vec{e}_θ , and \vec{e}_ϕ are $r_r = (\mathbf{r} \cdot \vec{e}_r) = r$, $r_\theta = r_\phi = 0$) and a chain rule (when applying differential to both sides of this equation) and implies:

$$\overrightarrow{de_r} = \overrightarrow{e}_{\theta} d\theta + \overrightarrow{e}_{\phi} \sin \theta d\phi, \text{ hence: } \frac{\overrightarrow{\partial e_r}}{\partial \theta} = \overrightarrow{e}_{\theta} \text{ and } \frac{\overrightarrow{\partial e_r}}{\partial \phi} = \sin \theta \overrightarrow{e}_{\phi}.$$

Figure 3: Illustration of unit vectors \overrightarrow{e}_r - in the direction of radius vector,

 $\stackrel{
ightarrow}{e}_{\theta}$ - tangent to meridian, and $\stackrel{
ightarrow}{e}_{\phi}$ - tangent to parallel.

From geometrical considerations, since $\frac{\partial \overrightarrow{e}_{\phi}}{\partial r} = \frac{\partial \overrightarrow{e}_{\phi}}{\partial \theta} = 0$ (see Fig. 3), for differential of $\overrightarrow{e}_{\phi}$ we have:

$$\overrightarrow{de}_{\phi} = \overrightarrow{e}_{z} \times \overrightarrow{e}_{\phi} d\phi = \overrightarrow{e}_{z} \times (\overrightarrow{e}_{r} \times \overrightarrow{e}_{\theta}) d\phi$$
.

Using $\overrightarrow{e}_z = \cos\theta \overrightarrow{e}_r - \sin\theta \overrightarrow{e}_\theta$ (since $(\overrightarrow{e}_z \cdot \overrightarrow{e}_r) = (\overrightarrow{e}_z \cdot \overrightarrow{r}/r) = z/r = \cos\theta$ and since $|\overrightarrow{e}_z| = 1$, then it follows that $(\overrightarrow{e}_z \cdot \overrightarrow{e}_\theta) = -\sin\theta$) and opening the triple vector product leads to:

$$\stackrel{\bullet}{d\stackrel{\rightarrow}{e}_{\phi}} = (-\stackrel{\rightarrow}{e}_{r}\sin\theta - \stackrel{\rightarrow}{e}_{\theta}\cos\theta)d\phi, \text{ hence: } \frac{\partial\stackrel{\rightarrow}{e}_{\phi}}{\partial\phi} = -\stackrel{\rightarrow}{e}_{r}\sin\theta - \stackrel{\rightarrow}{e}_{\theta}\cos\theta,$$

$$\overrightarrow{de}_{\theta} = \overrightarrow{d(e}_{\phi} \times \overrightarrow{e}_{r}) = \overrightarrow{e}_{\phi} \cos \theta d\phi - \overrightarrow{e}_{r} d\theta$$
, hence: $\frac{\overrightarrow{\partial e}_{\theta}}{\partial \theta} = -\overrightarrow{e}_{r}$ and $\frac{\overrightarrow{\partial e}_{\theta}}{\partial \phi} = \cos \theta \overrightarrow{e}_{\phi}$.

Next, we note that differential of any scalar function can be written as:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = \frac{\partial f}{\partial r}dr + \frac{\partial f}{\partial \theta}d\theta + \frac{\partial f}{\partial \phi}d\phi = \overrightarrow{\nabla} f \cdot d\mathbf{r}.$$

Hence, for the gradient vector we get (see another derivation in Appendix A)

$$\overrightarrow{\nabla} = \overrightarrow{e}_x \frac{\partial}{\partial x} + \overrightarrow{e}_y \frac{\partial}{\partial y} + \overrightarrow{e}_z \frac{\partial}{\partial z} = \overrightarrow{e}_r \frac{\partial}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \overrightarrow{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}$$

and consequently the Laplacian in spherical coordinates takes the form

$$\nabla^2 \equiv \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right). \tag{17}$$

For the 3D volume element in spherical coordinates we get:

$$d^{3}\mathbf{r} \to |d\mathbf{r}_{r} \wedge d\mathbf{r}_{\theta} \wedge d\mathbf{r}_{\phi}| = |dr \overrightarrow{e}_{r} \wedge rd\theta \overrightarrow{e}_{\theta} \wedge r \sin\theta d\phi \overrightarrow{e}_{\phi}| = r^{2} \sin\theta dr d\theta d\phi.$$

We can confirm the obtained expression of 3D volume element, by computing Jacobian of transformation between the spherical and Cartesian coordinates.

Define the transformation from spherical to Cartesian coordinates.

$$R = (r\cos(\phi)\sin(\theta) - r\sin(\phi)\sin(\theta) - r\cos(\theta))$$

Find the Jacobian of the coordinate change from spherical coordinates to Cartesian coordinates.

J=jacobian(R,[r,phi,theta])

ans =
$$r^2 \sin(\theta)$$

Note, $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{1}{\hbar^2 r^2} \hat{\mathbf{L}}^2$ (see Appendix B), where $\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$ is the angular momentum vector operator

that commutes with the Hamiltonian of the system with central symmetric potential V(r) and hence is a conserved quantity. Dirac, using the commutation relations between angular momentum components $[\hat{L}^i,\hat{L}^j]=i\hbar\epsilon_{ijk}\hat{L}^k$ (with Levi-Civita epsilon) has proved that eigenvalues of $\hat{\mathbf{L}}^2$ must be necessarily quantized as $\ell(\ell+1)\hbar^2$, where ℓ is an integer or half-integer non-negative number. Since $\hat{\mathbf{L}}^2$ commutes with $\hat{\mathbf{L}}$ (and hence with each of its components), we can search for eigenfunctions of $\hat{\mathbf{L}}^2$ which will be simultaneously eigenfunctions of \hat{L}^z , see Eq. (25) below (hence $\hat{\mathbf{L}}^2|\ell,m\rangle=\ell(\ell+1)\hbar^2|\ell,m\rangle$ and $\hat{L}^z|\ell,m\rangle=m\hbar|\ell,m\rangle$). Eigenvalues of \hat{L}^z (in units of \hbar), denoted by m can take on only the following values $m=-\ell,-\ell+1,...\ell$.

In case of a central potential V(r), we represent the wave function as a product of two functions describing radial and angular dependencies, i.e. $\psi(r,\theta,\phi)=R(r)Y(\theta,\phi)$. The time-independent Schrödinger equation becomes

$$\left\{\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{2mr^2}{\hbar^2}[V(r) - E]\right\} + \frac{1}{Y}\left\{\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\phi^2}\right\} = 0, \tag{18}$$

which could be separated into **radial equation** and **angular equation** by introducing the **azimuthal quantum number** ℓ ,

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{2mr^2}{\hbar^2}[V(r) - E] = \ell(\ell+1)$$
 (19)

$$\frac{1}{Y} \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right\} = -\frac{1}{Y \hbar^2} \hat{\mathbf{L}}^2 Y = -\ell(\ell+1). \tag{20}$$

By changing the variable u(r) = rR(r), the radial equation Eq. (19) can be simplified further.

We will show that $\frac{r}{u(r)}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)\left(\frac{u(r)}{r}\right) = \frac{r^2}{u(r)}\frac{d^2u(r)}{dr^2}$ using symbolic calculation below [*]:

syms u(r) % define symbolic function simplify($r/u*diff(r^2*diff(u/r))$)

ans(r) =
$$r^2 \frac{\partial^2}{\partial r^2} u(r)$$

For Eq. (19) in variable u(r) we obtain:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right]u = Eu$$
 (21)

which can be rendered as a Schrödinger equation in 1D by extending r to the whole real axes, $r \in (-\infty, \infty)$, and defining the effective potential as

$$V_{\text{eff}}(r) = V(r) + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2}, \text{ for } r \ge 0$$
 (21a)

$$V_{\text{eff}}(r) = +\infty$$
, for $r < 0$ (21b).

Solution of Eq. (21) depends on quantum number $\ell = 0, 1, 2, ...$, hence we denote them as u_{ℓ} . For different values of ℓ , the effective potential that particle feels is different. Due to Eq. (21b) all finite-energy solutions of Eq. (21) vanish for any ℓ at $r \le 0$, hence:

$$u(0) = 0.$$
 (21*c*)

For angular equation Eq. (20), again, we assume $Y(\theta, \phi)$ is also separable,

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi). \tag{22}$$

Plugging this in Eq. (20), and rearranging the equation, we get

$$\left\{ \frac{1}{\Theta} \left[\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) \right] + \ell(\ell+1) \sin^2 \theta \right\} + \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = 0. \tag{23}$$

Eq. (23) can be represented by 2 separate equations by introducing the **magnetic quantum number** m,

$$\frac{1}{\Theta} \left[\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) \right] + \ell(\ell+1) \sin^2 \theta = m^2, \tag{24}$$

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -m^2. \tag{25}$$

```
syms m Phi(phi)
ode1 = laplacian(Phi,phi)/Phi == -m^2
```

ode1(phi) =

$$\frac{\partial^2}{\partial \phi^2} \Phi(\phi) = -m^2$$

dsolve(ode1)

ans =
$$C_1 e^{-m\phi i} + C_2 e^{m\phi i}$$

If there is a time-reversal symmetry in the problem (e.g. when there is no external magnetic field and preferred direction) we can choose wave function, eigen state of time-reversal symmetric Hamiltonian, to be real, hence we can specify $C_1 = \pm C_2$. More popular (and practical) way to specify further the solution of Eq. (25), is to use another condition on wave function, namely that $\Phi(\phi)$ should be also an eigen function of the \hat{L}_z operator,

which is the z component of angular momentum $\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$ (hence we implicitly assume some preferred direction \overrightarrow{e}_z). In spherical coordinates, we have

$$\hat{L}_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = -i\hbar \frac{\partial}{\partial \phi}$$
 (26)

and

$$\hat{L}_z \Phi = \hbar m \Phi. \tag{27}$$

Observe, for the real non-zero eigen value $m \neq 0$ (eigen values of Hermitian operators are real), Eq. (27) involves imaginary number i, hence eigen functions of \hat{L}_z operator can not be real if $m \neq 0$.

```
ode2 = ( -1i*diff(Phi,phi) ) == m*Phi

ode2(phi) = -\frac{\partial}{\partial \phi} \Phi(\phi) i = m \Phi(\phi)

Phi(phi)=dsolve(ode2)
```

```
Phi(phi) = C_1 e^{m \phi i}
```

Thus, ignoring the multiplicative constant C_1 , which can be absorbed into the overall normalization of the wave function $\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$, the solution of Φ could be written in the exponential form:

$$\Phi(\phi) = e^{im\phi}, \qquad (28)$$

where m must be a real number, since it is an eigen value of Hermitian operator \hat{L}_z .

By the periodicity of the angular variable ϕ , we have

$$\Phi(\phi) = \Phi(\phi + 2\pi) = \Phi(\phi)e^{i2m\pi}, \tag{29}$$

```
assume(m,'real')
Phi(phi) = exp(1i*m*phi);
solve(Phi(phi)==Phi(phi+2*pi),m,'ReturnConditions',true)
ans = struct with fields:
```

so that $e^{i2m\pi}=1$, from which it follows that m must be an integer and hence ℓ must be non-negative integer such that $-\ell \le m \le \ell$.

By introducing $x = \cos(\theta)$, we can rewrite Eq. (24) for Θ as

$$(1 - x^2)\frac{\mathrm{d}^2\Theta(x)}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}\Theta}{\mathrm{d}x} + \left(\ell(\ell+1) - \frac{m^2}{1 - x^2}\right)\Theta(x) = 0$$

and solve it using symbolic computation.

```
syms Theta(x) 1 m
assume(abs(x) <=1)
assume(1,["integer","positive"])
assume(m,'integer')
assumeAlso(1-abs(m)>=0)
ode3 = (1-x^2)*laplacian(Theta,x)-2*x*diff(Theta,x)+(1*(1+1)+m^2/(x^2-1))*Theta==0
```

ode3(x) =

$$-(x^2 - 1)\frac{\partial^2}{\partial x^2}\Theta(x) - 2x\frac{\partial}{\partial x}\Theta(x) + \Theta(x)\left(l(l+1) + \frac{m^2}{x^2 - 1}\right) = 0$$

ySol(x) = dsolve(ode3)

ySol(x) =

$$\frac{C_2 x^{l+m} {}_2F_1\left(-\frac{l}{2} - \frac{m}{2}, \frac{1}{2} - \frac{m}{2} - \frac{l}{2}; \frac{1}{2} - l; \frac{1}{x^2}\right)}{\sigma_1} + \frac{C_1 x^{m-l-1} {}_2F_1\left(\frac{l}{2} - \frac{m}{2} + 1, \frac{l}{2} - \frac{m}{2} + \frac{1}{2}; l + \frac{3}{2}; \frac{1}{x^2}\right)}{\sigma_1}$$

where

$$\sigma_1 = (x^2 - 1)^{m/2}$$

The first solution ${}_2F_1\left(-\frac{\ell}{2}-\frac{m}{2},\frac{1-\ell-m}{2};\frac{1}{2}-\ell;\frac{1}{x^2}\right)\frac{x^{\ell+m}}{(1-x^2)^{m/2}}$ is everywhere real, finite and continuous for $x\in[-1,1]$ for any integers m and ℓ such that $0\leq |m|\leq \ell$.

The second solution ${}_2F_1\left(\frac{\ell}{2}-\frac{m}{2}+1,\frac{1+\ell-m}{2};\frac{3}{2}+\ell;\frac{1}{x^2}\right)\frac{x^{m-\ell-1}}{(1-x^2)^{m/2}}$ is in general complex, having nonzero real and imaginary parts, which are either not everywhere finite on interval $x \in [-1,1]$ or not continuous at $x=\pm 1$ or x=0 points, hence for physically acceptable solutions we put $C_1=0$.

For $|x| \le 1$ the hypergeometric function $_2F_1\left(-\frac{\ell}{2}-\frac{m}{2},\frac{1-\ell-m}{2};\frac{1}{2}-\ell;\frac{1}{x^2}\right)$ is related with the associated

Legendre polynomial $P_{\ell}^{m}(x)$ as:

$$P_{\ell}^{m}(x) = \frac{2^{\ell} \Gamma(\ell+1/2)}{\sqrt{\pi} \Gamma(\ell+1-m)} {}_{2}F_{1}\left(-\frac{\ell}{2} - \frac{m}{2}, \frac{1-\ell-m}{2}; \frac{1}{2} - \ell; \frac{1}{x^{2}}\right) \frac{x^{\ell+m}}{(1-x^{2})^{m/2}}.$$

We confirm the above relation between the associated Legendre polynomial and the hypergeometric function using isAlways() function and also by plotting together both sides of the above equation.

syms x

```
l=3;
m=0;
isAlways(2^l*gamma(l+1/2)/(sqrt(pi)*gamma(l+1-m))*hypergeom([- 1/2 - m/2, 1/2 - m/2 - 1/2], 1/2 - 1, 1/x^2)*x^(l + m)/(1-x^2)^(m/2)==AssociatedLegendreP(l,m))
```

```
ans = logical
1
```


Hence, we can write:

$$\Theta(\theta) \sim P_{\ell}^{m}(\cos \theta),$$
 (30)

where P_{ℓ}^{m} for $\ell \geq m \geq 0$ satisfy

$$P_{\ell}^{m}(x) = (-1)^{m} (1 - x^{2})^{m/2} \left(\frac{d}{dx}\right)^{m} P_{\ell}(x). \tag{31}$$

For negative values of $\widetilde{m}=-1,-2,...$, expression of $P_{\ell}^{\widetilde{m}}$ can be obtained by:

$$P_{\ell}^{\widetilde{m}}(x) = (-1)^{m} \frac{(\ell - m)!}{(\ell + m)!} P_{\ell}^{m}(x), \tag{32}$$

where $m = -\widetilde{m} > 0$ and $P_{\ell}(x) = P_{\ell}^{0}(x)$ is the ℓ -th Legendre polynomial that can be written, using Rodrigues' formula, as:

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 - 1)^{\ell}.$$
 (33)

As already discussed, ℓ and m can only take following values:

$$\ell = 0, 1, 2, \dots, \quad m = -\ell, -\ell + 1, \dots, -1, 0, 1, \dots, \ell - 1, \ell.$$
 (34)

Conditions in Eq. (34) follow from the commutation relations between angular momentum components (Dirac's proof that restricts values of both ℓ and m to integer or half-integer values with $\ell \ge 0$ and $|m| \le \ell$) and Eq. (29) that demands periodicity of the wave function and restricts m (and hence ℓ) to integer values (non-negative integers).

The volume element in spherical coordinates is $d\mathbf{r} = r^2 \sin \theta dr d\theta d\phi$, thus the normalization condition becomes

$$\int |\psi|^2 r^2 \sin\theta dr d\theta d\phi = \int |R|^2 r^2 dr \int |Y|^2 \sin\theta d\theta d\phi = 1.$$
 (35)

Usually we normalize radial and angular parts of the wave function separately,

$$\int_{0}^{\infty} |R|^{2} r^{2} dr = 1 \text{ and } \int_{0}^{\pi} \int_{0}^{2\pi} |Y|^{2} \sin \theta d\theta d\phi = 1.$$
 (36)

The normalized angular wave functions are called spherical harmonics:

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi}} e^{im\phi} P_{\ell}^{m}(\cos\theta). \tag{37}$$

Expressions of $P_{\ell}^m(\cos\theta)$ for $\ell=0$ and $\ell=1$ are: $P_0^0(\cos\theta)=1$, $P_1^1(\cos\theta)=-\sin\theta$, $P_1^0(\cos\theta)=\cos\theta$, $P_1^{-1}(\cos\theta)=\frac{\sin\theta}{2}$ and we used that $|\sin\theta|=\sin\theta$ for $0\leq\theta\leq\pi$.

Expressions of $Y_{\ell}^{m}(\theta,\phi)$ for $\ell=0$ and $\ell=1$ are: $Y_{0}^{0}(\theta,\phi)=\frac{1}{2\sqrt{\pi}},\ Y_{1}^{1}(\theta,\phi)=-\frac{\sqrt{3}}{\sqrt{8\pi}}\sin\theta e^{i\phi},$

$$Y_1^0(\theta, \phi) = \frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta, \ Y_1^{-1}(\theta, \phi) = \frac{\sqrt{3}}{\sqrt{8\pi}}\sin\theta e^{-i\phi}.$$

Snippet below calculates $P_{\ell}^m(\cos\theta)$ and $Y_{\ell}^m(\theta,\phi)$ for arbitrary values of $\ell\geq 0$ and $m=-\ell,...\ell$.

```
assume(0<=theta & theta<=pi);
m_allowed = string((-1:1));
m = double(m_allowed(3));
P_lm=simplify(subs(AssociatedLegendreP(l,m),x,cos(theta)),Steps=50);
simplify(P_lm)</pre>
```

ans = $-\sin(\theta)$

```
% function AssociatedLegendreP(l,m) is defined in the end
Y_lm(theta,phi)=sqrt((2*l+1)*factorial(l-m)/
(4*sym(pi)*factorial(l+m)))*P_lm*exp(1i*m*phi)
```

Y_lm(theta, phi) =
$$-\frac{\sqrt{3} \sqrt{8} e^{\phi i} \sin(\theta)}{8 \sqrt{\pi}}$$

Next we plot associated Legendre function $P_{\ell}^{m}(\cos\theta)$ as function of polar angle θ .

```
fplot(theta,P_lm,[0,pi])
xlabel("$\theta $",'Interpreter','latex',Fontsize=15)
xticks([0,pi/2,3.1415])
xticklabels({'0', '\pi/2','\pi'})
ylabel("$P_{\ell}^m(\cos{\theta})$",'Interpreter','latex',Fontsize=15)
title(['$P_{\ell}^m$ for $\ell=$',num2str(1), ' and $m=$',
num2str(m)],'Interpreter','latex',Fontsize=15)
```


Next we will visualize absolute value of normalized spherical harmonics.

```
figure;
1 = 3;
m_allowed = string((-1:1));
m = double(m_allowed(1));
dalpha = pi/60;
pol = 0:dalpha:pi;
az = 0:dalpha:2*pi;
[phi,theta] = meshgrid(az,pol);
Plm = legendre(1,cos(theta));
%Plm is 3D Tensor, first index of tensor corresponds to different m values:
m=0,1,2,...1
if 1 ~= 0
    Plm = reshape(Plm(abs(m)+1,:,:),size(phi));
end
a = (2*l+1)*factorial(l-abs(m));
b = 4*pi*factorial(l+abs(m));
C = sqrt(a/b);
[x,y,z] = sph2cart(phi,pi/2-theta,abs(C*exp(1i*m*phi).*Plm));
surf(x,y,z,abs(z));
```


Exercises

Exercise 1: Show that for function u(r) that does not depend on angular variables θ and ϕ , following relation holds: $\nabla^2 \left(\frac{u(r)}{r} \right) = \frac{1}{r} \frac{d^2 u(r)}{dr^2} - 4\pi u(0) \delta^3(\mathbf{r})$, where $\delta^3(\mathbf{r})$ is Dirac's 3D delta function.

$$\text{Hint: } \nabla^2 \left(\frac{u(r)}{r} \right) = \lim_{\varepsilon \to 0} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \left(\frac{u(r)}{\sqrt{r^2 + \varepsilon^2}} \right) = \frac{1}{r} \frac{d^2 u(r)}{dr^2} - 4\pi u(0) \delta^3(\mathbf{r}) + \lim_{\varepsilon \to 0} \frac{2u'(0)\varepsilon^2}{r(r^2 + \varepsilon^2)^{3/2}} \text{ , where }$$

 $4\pi\delta^3(\mathbf{r}) = \lim_{\varepsilon \to 0} \frac{3\varepsilon^2}{(r^2 + \varepsilon^2)^{5/2}}$ and the integral over the 3D space for the last term produces $8\pi u'(0)\varepsilon$, hence, in the

limit $\varepsilon \to 0$ it vanishes and can be safely ignored. Hence:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \left(\frac{u(r)}{r} \right) = \frac{1}{r} \frac{d^2 u(r)}{dr^2} - 4\pi u(0) \delta^3(\mathbf{r}) \tag{38},$$

and multiplying both sides of Eq. (38) with r^2 leads to: $\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \left(\frac{u(r)}{r} \right) = r \frac{d^2 u(r)}{dr^2}$, since $r^2 \delta^3(\mathbf{r}) = 0$.

Exercise 2: Prove the following equations and then prove the expression in Eq. (26).

$$x\frac{\partial\phi}{\partial y} - y\frac{\partial\phi}{\partial x} = 1$$
, $x\frac{\partial\theta}{\partial y} - y\frac{\partial\theta}{\partial x} = 0$, $x\frac{\partial r}{\partial y} - y\frac{\partial r}{\partial x} = 0$

```
syms x y z real
phi = atan2(y,x);
theta = atan2(z,sqrt(x^2 + y^2));
r = sqrt(x^2 + y^2 + z^2);
simplify(x*diff(phi,y)-y*diff(phi,x))
```

ans = 1

```
simplify(x*diff(theta,y)-y*diff(theta,x))
```

ans = ()

ans = 0

Exercise 3: Using symbolic computation obtain explicit expressions of $Y_{\ell}^{m}(\theta,\phi)$ for values of $\ell=1,2,3$ and

$$-\ell \leq m \leq \ell \text{ and show that: } \sum_{m=-\ell}^\ell Y_\ell^{m*}(\theta,\phi) Y_\ell^m(\theta,\phi) = \frac{2\ell+1}{4\pi}.$$

Exercise 4: By similar steps as presented for spherical coordinates, derive expression of the differential $d\mathbf{r} = d\mathbf{r}_z + d\mathbf{r}_\rho + d\mathbf{r}_\phi$, where $\mathbf{r} = \mathbf{r}(z, \rho, \phi)$, gradient vector $\overset{\rightarrow}{\nabla}$, Laplacian ∇^2 and 3D volume element $d^3\mathbf{r} \to |d\mathbf{r}_z \wedge d\mathbf{r}_\rho \wedge d\mathbf{r}_\phi|$ in cylindrical coordinates.

Hint: from geometrical considerations derive and use the following relations:

$$\overrightarrow{de}_{z} = 0$$

•
$$d\overrightarrow{e}_{\phi} = -\overrightarrow{e}_{\rho}d\phi$$

•
$$d\overrightarrow{e}_{\rho} = \overrightarrow{e}_{\phi}d\phi$$

Confirm the expression of 3D volume element, using symbolic computation.

```
syms rho phi z real
assume(rho>=0)
```

Define the coordinate transformation from cylindrical coordinates to Cartesian coordinates.

$$R = [rho*cos(phi), rho*sin(phi), z] %[x, y, z]$$

$$R = (\rho \cos(\phi) \ \rho \sin(\phi) \ z)$$

Find the Jacobian of the coordinate change from cylindrical to Cartesian coordinates.

J=jacobian(R,[rho,phi,z])

J =

$$\begin{pmatrix}
\cos(\phi) & -\rho\sin(\phi) & 0 \\
\sin(\phi) & \rho\cos(\phi) & 0 \\
0 & 0 & 1
\end{pmatrix}$$

simplify(abs(det(J)))

ans =
$$\rho$$

Exercise 5: Calculate divergence and curl (rotor) of a vector field $\mathbf{E}(r,\theta,\phi)$ in spherical coordinates.

Hint: $\operatorname{div}(\mathbf{E}) = \nabla \cdot \mathbf{E}$, where in spherical coordinates

$$\nabla = \overrightarrow{e}_r \frac{\partial}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \overrightarrow{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \text{ and } \mathbf{E} = E_r \overrightarrow{e}_r + E_\theta \overrightarrow{e}_\theta + E_\phi \overrightarrow{e}_\phi.$$

A dot product of a gradient vector with \mathbf{E} gives (using $\partial_{\theta} \vec{e}_{r} = \vec{e}_{\theta}$, etc.):

$$\nabla \cdot \mathbf{E} = \left(\overrightarrow{e}_r \frac{\partial}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \overrightarrow{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \right) \cdot \left(E_r \overrightarrow{e}_r + E_\theta \overrightarrow{e}_\theta + E_\phi \overrightarrow{e}_\phi \right)$$

$$= \partial_r E_r + \frac{E_r}{r} + \frac{1}{r} \partial_\theta E_\theta + \frac{E_r}{r} + \frac{E_\theta \cos \theta}{r \sin \theta} + \frac{1}{r \sin \theta} \partial_\phi E_\phi$$

$$= \partial_r E_r + \frac{2E_r}{r} + \frac{1}{r} \partial_\theta E_\theta + \frac{E_\theta \cos \theta}{r \sin \theta} + \frac{1}{r \sin \theta} \partial_\phi E_\phi$$

Hence, divergence of a vector field $\mathbf{E}(r, \theta, \phi)$ in spherical coordinates is:

$$\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 E_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta E_\theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} E_\phi.$$

Similarly, calculate **curl**(E) = $\nabla \times$ E, using $\overrightarrow{e}_{\theta} = \overrightarrow{e}_{\phi} \times \overrightarrow{e}_{r}$, etc.

Appendix A

Here we derive expression of a gradient vector in spherical coordinates.

$$\overrightarrow{\nabla} = \overrightarrow{e}_{x} \frac{\partial}{\partial x} + \overrightarrow{e}_{y} \frac{\partial}{\partial y} + \overrightarrow{e}_{z} \frac{\partial}{\partial z}$$

$$= \overrightarrow{e}_{x} \left(\frac{\partial r}{\partial x} \partial_{r} + \frac{\partial \theta}{\partial x} \partial_{\theta} + \frac{\partial \phi}{\partial x} \partial_{\phi} \right)$$

$$+ \overrightarrow{e}_{y} \left(\frac{\partial r}{\partial y} \partial_{r} + \frac{\partial \theta}{\partial y} \partial_{\theta} + \frac{\partial \phi}{\partial y} \partial_{\phi} \right)$$

$$+ \overrightarrow{e}_{z} \left(\frac{\partial r}{\partial z} \partial_{r} + \frac{\partial \theta}{\partial z} \partial_{\theta} + \frac{\partial \phi}{\partial z} \partial_{\phi} \right)$$

$$= \left(\overrightarrow{e}_{x} \frac{\partial r}{\partial x} + \overrightarrow{e}_{y} \frac{\partial r}{\partial y} + \overrightarrow{e}_{z} \frac{\partial r}{\partial z} \right) \partial_{r}$$

$$+ \left(\overrightarrow{e}_{x} \frac{\partial \theta}{\partial x} + \overrightarrow{e}_{y} \frac{\partial \theta}{\partial y} + \overrightarrow{e}_{z} \frac{\partial \theta}{\partial z} \right) \partial_{\theta}$$

$$+ \left(\overrightarrow{e}_{x} \frac{\partial \phi}{\partial x} + \overrightarrow{e}_{y} \frac{\partial \phi}{\partial y} + \overrightarrow{e}_{z} \frac{\partial \phi}{\partial z} \right) \partial_{\theta}$$

$$= \overrightarrow{\nabla} r \partial_{r} + \overrightarrow{\nabla} \theta \partial_{\theta} + \overrightarrow{\nabla} \phi \partial_{\phi}$$

Hence we obtain that:

$$\overrightarrow{\nabla} = \overrightarrow{\nabla} r \partial_r + \overrightarrow{\nabla} \theta \partial_\theta + \overrightarrow{\nabla} \phi \partial_\phi = \overrightarrow{e}_r | \overrightarrow{\nabla} r | \partial_r + \overrightarrow{e}_\theta | \overrightarrow{\nabla} \theta | \partial_\theta + \overrightarrow{e}_\phi | \overrightarrow{\nabla} \phi | \partial_\phi,$$

where the last equality follows from relations in any orthogonal coordinate system: $\overrightarrow{\nabla}\alpha = \overrightarrow{e}_{\alpha}|\overrightarrow{\nabla}\alpha|$, for $\alpha = r, \theta, \phi$, where $|\overrightarrow{A}| = \sqrt{(\overrightarrow{A} \cdot \overrightarrow{A})}$ is a norm (length) of a vector.

Below we calculate the norms: $|\overrightarrow{\nabla} r|, |\overrightarrow{\nabla} \theta|, |\overrightarrow{\nabla} \phi|$.

```
syms x y z real
r=sqrt(x^2+y^2+z^2);
simplify(norm(gradient(r)))
ans = 1
```

```
theta=acos(z/sqrt(x^2+y^2+z^2));
```

simplify(norm(gradient(theta)))

ans =

$$\frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

phi=atan(y/x);
simplify(norm(gradient(phi)))

ans = $\frac{1}{\sqrt{x^2 + y^2}}$

$$\forall x + y$$
 \rightarrow 1

Using that $|\overrightarrow{\nabla}\theta| = \frac{1}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{r}$ and $|\overrightarrow{\nabla}\phi| = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{r\sin\theta}$, we obtain that

$$\overrightarrow{\nabla} = \overrightarrow{e}_r \frac{\partial}{\partial r} + \overrightarrow{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \overrightarrow{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}.$$

Unit vectors of local spherical coordinate system are: $\overrightarrow{e}_r = \frac{\overrightarrow{\nabla} r}{|\overrightarrow{\nabla} r|} = \overrightarrow{\nabla} r, \ \overrightarrow{e}_\theta = \frac{\overrightarrow{\nabla} \theta}{|\overrightarrow{\nabla} \theta|}, \ \text{and} \ \overrightarrow{e}_\phi = \frac{\overrightarrow{\nabla} \phi}{|\overrightarrow{\nabla} \phi|}.$

Using expression of gradient in Cartesian coordinates $\overrightarrow{\nabla} = \overrightarrow{e}_x \frac{\partial}{\partial x} + \overrightarrow{e}_y \frac{\partial}{\partial y} + \overrightarrow{e}_z \frac{\partial}{\partial z}$ we obtain:

 $\stackrel{\bullet}{e}_r = \stackrel{\rightarrow}{\nabla}_r = \frac{\partial r}{\partial x} \stackrel{\rightarrow}{e}_x + \frac{\partial r}{\partial y} \stackrel{\rightarrow}{e}_y + \frac{\partial r}{\partial z} \stackrel{\rightarrow}{e}_z$

$$\stackrel{\bullet}{e}_{\theta} = \frac{1}{|\nabla \theta|} \left(\frac{\partial \theta}{\partial x} \stackrel{\rightarrow}{e}_{x} + \frac{\partial \theta}{\partial y} \stackrel{\rightarrow}{e}_{y} + \frac{\partial \theta}{\partial z} \stackrel{\rightarrow}{e}_{z} \right)$$

$$\stackrel{\bullet}{e}_{\phi} = \frac{1}{|\nabla \phi|} \left(\frac{\partial \phi}{\partial x} \stackrel{\rightarrow}{e}_{x} + \frac{\partial \phi}{\partial y} \stackrel{\rightarrow}{e}_{y} + \frac{\partial \phi}{\partial z} \stackrel{\rightarrow}{e}_{z} \right)$$

Confirming that $(\overrightarrow{e}_r \cdot \overrightarrow{e}_\theta) = 0$

simplify(diff(r,x)*diff(theta,x)+diff(r,y)*diff(theta,y)+diff(r,z)*diff(theta,z))

ans = 0

Confirming that $(\overrightarrow{e}_r \cdot \overrightarrow{e}_\phi) = 0$

simplify(diff(r,x)*diff(phi,x)+diff(r,y)*diff(phi,y)+diff(r,z)*diff(phi,z))

ans = ()

Confirming that $(\overrightarrow{e}_{\theta} \cdot \overrightarrow{e}_{\phi}) = 0$

```
simplify(diff(theta,x)*diff(phi,x)+diff(theta,y)*diff(phi,y)
+diff(theta,z)*diff(phi,z))
```

ans = 0

Note, when we specify a point in 3D by three numbers (r, θ, ϕ) , which we call spherical coordinates of a point $\mathbf{r} = r \sin \theta \cos \phi \stackrel{\rightarrow}{e}_x + r \sin \theta \sin \phi \stackrel{\rightarrow}{e}_y + r \cos \theta \stackrel{\rightarrow}{e}_z$, these are not coordinates of the radius vector \mathbf{r} in local spherical coordinate systems. Coordinates of \mathbf{r} in local spherical coordinate system $\stackrel{\rightarrow}{e}_r, \stackrel{\rightarrow}{e}_\theta, \stackrel{\rightarrow}{e}_\phi$ are (r, 0, 0).

Appendix B

Here we show that $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{1}{\hbar^2 r^2} \hat{\mathbf{L}}^2$, where

$$\begin{split} \hat{\mathbf{L}} &= \hat{\mathbf{r}} \times \hat{\mathbf{p}} = -\hat{\mathbf{p}} \times \hat{\mathbf{r}}. \\ \hat{\mathbf{r}} &= \hat{r} \mathbf{e}_r = r \mathbf{e}_r, \quad \mathbf{p} = -i\hbar \nabla = \mathbf{e}_r \hat{p}_r + \mathbf{e}_\theta \hat{p}_\theta + \mathbf{e}_\phi \hat{p}_\phi \\ \hat{\mathbf{L}} &= r \mathbf{e}_r \times \mathbf{e}_\theta \hat{p}_\theta + \mathbf{e}_r \times \mathbf{e}_\phi \hat{p}_\phi = r \mathbf{e}_\phi \cdot \hat{p}_\theta - r \mathbf{e}_\theta \cdot \hat{p}_\phi \\ \hat{p}_r &= -i\hbar \frac{\partial}{\partial r} \\ \hat{p}_\theta &= -i\hbar \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \\ \hat{p}_\phi &= -i\hbar \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \\ \hat{\mathbf{L}}^2 &= -\hbar^2 \left(r \mathbf{e}_\phi \frac{1}{r} \frac{\partial}{\partial \theta} - r \mathbf{e}_\theta \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \right) \cdot \left(\mathbf{e}_\phi \frac{\partial}{\partial \theta} - \mathbf{e}_\theta \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right) \\ &= -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \end{split}$$

Since $\hat{\mathbf{L}} = -i\hbar \left(\mathbf{e}_{\phi} \frac{\partial}{\partial \theta} - \mathbf{e}_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right)$ then $\hat{L}^z = (\hat{\mathbf{L}} \cdot \mathbf{e}_z) = i\hbar (\mathbf{e}_{\theta} \cdot \mathbf{e}_z) \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} = -i\hbar \frac{\partial}{\partial \phi}$. We used that $(\mathbf{e}_{\phi} \cdot \mathbf{e}_z) = 0$ and $(\mathbf{e}_{\theta} \cdot \mathbf{e}_z) = -\sin \theta$ (see here).

Helper function for defining the associated Legendre function P_{ℓ}^{m} symbolically

```
function y = AssociatedLegendreP(1,m)
    arguments
        1 (1,1) {mustBeInteger,mustBeNonnegative}
        m (1,1) {mustBeInteger}
    end
    if m^2>1^2
        error('|m| can not exceed 1')
    end
```