

Data-centric Graph Machine Learning

By Dr. Laura Toni

Presenter: Keyue Jiang

Introduction

Graph

- A powerful and ubiquitous representation of complex data in many network systems
- A graph $G = \{V, \mathcal{E}\}$ consists of a set of nodes $V = \{v_i\}_{i \in [N]}$, a set of edges $\mathcal{E} = \{e_{ij}\}$

Graph-structured Data are Pervasive

congestion in road junctions

activities in brain regions

preferences of individuals

properties of atoms

Graph Machine Learning

Machine Learning on Graphs

- Graph-level tasks: predict a label $y_{\mathcal{G}}$, given Graph \mathcal{G} and Node Features $\{X_i\}_{i\in[N]}$
- O Node-level tasks: predict a label y_i for node v_i , given graph \mathcal{G} and $\{X_i\}_{i\in[N]}$

graph-level classification (supervised)

node-level classification (semi-supervised)

The models for GML - Graph Neural Networks

Graph Neural Networks

Machine Learning on Graphs

- Graph-level tasks: predict a label $y_{\mathcal{G}}$, given Graph \mathcal{G} and Node Features $\{X_i\}_{i\in[N]}$
- Node-level tasks: predict a label y_i for node v_i , given graph \mathcal{G} and $\{X_i\}_{i\in[N]}$

graph-level classification (supervised)

node-level classification (semi-supervised)

Projects

- Understanding Dropout in Graphs Neural Networks from a Bayesian Approach
 - Graph-level tasks: predict a label y_g , given Graph g and Node Features $\{X_i\}_{i\in[N]}$

Projects

- Graph Neural Networks with Adaptive Architecture
 - Graph-level tasks: predict a label y_g , given Graph g and Node Features $\{X_i\}_{i\in[N]}$

Graph Machine Learning

Graph

- A graph $G = \{V, \mathcal{E}\}$ consists of a set of nodes $V = \{v_i\}_{i \in [N]}$, a set of edges $\mathcal{E} = \{e_{ij}\}$
- Usually, each node v_i is associated with a feature X_i .

Machine Learning on Graphs

- Graph-level tasks: predict a label $y_{\mathcal{G}}$, given \mathcal{G} and $\{X_i\}_{i\in[N]}$
- Node-level tasks: predict a label y_i for node v_i , given graph \mathcal{G} and $\{X_i\}_{i\in[N]}$

