CSE 360 Workshop 3 Report

~Andrew Johnson~ Link to GitHub repo:

https://github.com/zaperone/cse-360-workshop-3

1. Potential Fields (file:

"workspace/WS3_PotentialFunctions.ipynb")

- a. Created each obstacle as a repelling charge, scaled to represent their size / how necessary it is to avoid the center of the object
- b. Ending point in an attractive charge

- d. https://youtu.be/vrRQB3hi3q0
- 2. BFS (file: "workspace/Grid_bfs.ipynb")
 - a. Used networkx python lib

C.

b. Discretized environment to 20 x 20 grid, manually added in obstacles

i. (grid representation vs. actual environment)

C.

d. <- resulting path

- i. Path represented as trajectory for robot
- f. https://youtu.be/GSnyowsOnQQ
- 3. A* (file: "workspace/Grid_a_star.ipynb")

- a. Used networkx python lib
- b. Discretized environment to 20 x 20 grid, manually added in obstacles
- c. (see **2b** for environment representation)

d. <- resulting path

- i. Path represented as trajectory for robot
- f. https://youtu.be/jIETK4-G1A0

4. Comparison

i. Potential function starting at (7.1, -8.6)

i. BFS

b.

c. 🗆

i. A*

ii. BFS and A* are similar, but slightly different. The potential field representation seems more accurate.