CYBERNETIQUE EN NORD

Description de la carte Electronical_Main_Board_32

Système électronique 1/16

Table des matières

1 Description de la carte Electronical Main Board	3
1.1.1 Présentation.	
1.1.2 Cahier des charges	3
2 Schéma fonctionnel	
3 Schéma Structurel	
4 PCB	
5 Liste des commandes, nomenclature	
6 Validation de la carte	
Alimentation	
Quartz	
ICD2 PIC	
RS232 port 2 + RESET.	
RS232 port 1	
AFFICHEUR	
GO	
PCF8574 + I2C + SWITCH	
7 Change Logs :	
V1-00 : Version de base	
V1-10	
V1-20.	
8 Photos	

1 Description de la carte Electronical Main Board

1.1.1 Présentation

Cette carte permet de configurer le fonctionnement du robot à l'aide de 16 switchs.

Elle permet de connecter un afficheur LCD 4*16.

Le Pic de cette carte est le maitre du Bus I2C.

Configuration du port serie 115200bds

1.1.2 Cahier des charges

Cette carte doit:

- Définir une config sur 14bits
- Etre fixer sur 6 colonettes
- Commander un afficheur à texte de 4*20 caractère avec le réglage du contraste
- Disposer de 2 Bus I2C
- Disposer de 4 ports RS232
- Disposer d'un cavalier pour le «GO »
- Commander 3 ports PWM
- Commander 4 ports entrées
- 1 connecteur ICD3
- 1 bouton poussoir RESET

Système électronique 3/16

2 Schéma fonctionnel

Système électronique 4/16

3 Schéma Structurel

Système électronique 5/16

4 PCB

Système électronique 6/16

Système électronique 7/16

5 Liste des commandes, nomenclature

Fournisseur	Code commande	Fabrican t	Description	Prix unitaire	QTY	Prix	Label
C1,C2,C3,C4,C5,C6,C7,C8, C10,C11	100N 0603						
D3,D4,D7,D8,D9,D10	LED 0603 Vert						
D5	LED 0603 Bleu						
J1,J2,J3,J4,J6,J7	Colonette						
J5	RJ12						
K1,K2,K3,K4,K5,K6,K7	KK-3						
L1	15μH 1206						
P1	HE10-16-D						
P2,P3,P4,P5,P6,P7	KK-4						
P8	KK-2						
Р9	KK-5						
R1	1k						
R2,R3,R4,R6	330						
R5,R16,R17,R18,R19,R20,R21, R22,R23,R24,R25,R26,R27,R28 ,R29	10k						
R7,R8,R9,R10,R11,R12,R13, R14,R15	2,1k						
R30,R31,R32,R33,R34,R35, R36,R37K	1,5k						

Système électronique 8/16

6 Validation de la carte

NE PAS CONNECTER LES ALIMENTATIONS NE PAS METTRE LE CIE PIC32_64

Alimentations

- Contrôle visuel.
- Test de continuité, vérifier qu'il n'y ai pas de cour-circuit.
- Test de la connexion +3,3V et GND.
- Test de la connexion +5VD et GND

Brancher P9

Verifier l'allumage des LEDs 5V et 3,3V

- Débrancher P9

Système électronique 9/16

ICD3 PIC

- Insérer la carte PIC32_64

- Connecter le module ICD3 sur J5

- Brancher P9

- On voit par transparence les leds +5V et +3v3 de la carte ELECTRONICAL_MAIN_BOARD et la led 3v3 de la carte PIC32_64

- Le message suivant s'affiche dans la page MPLAB

Système électronique 10/16

RS232 port 2 + RESET

- Configurer le logiciel Termite pour la liaison série comme ci-dessous

- Charger dans le pic le programme : **TEST ELECTRONICAL_MAIN_BOARD_32.mcp** et integrer le fichier **testUartPic32.c** dans Source Files

Système électronique 11/16

Modifier le numéro de l'UART à tester, compiler et programmer le PIC.

```
// Définition des 6 UART
//#define UART1 UART1A
//#define UART2 UART3A
//#define UART4 UART1B
//#define UART5 UART3E
//#define UART5 UART3E
//#define UART6 UART2F
// DEFINITION DU MORT A TE
#define UARTEST UART5
```

- Appuyer sur le bouton RESET

Le message suivant apparaît alors dans le terminal

- Effectuer les deux dernières étapes en modifiant le numéro de l'UART afin de tester les quatre UART de la carte.
 - UART1
 - UART2
 - UART5
 - UART6

Système électronique 12/16

TEST DES LEDS

- Changer le fichier source, compiler, et programmer le Pic32

-La séquence des leds est la suivante, elle comporte 6 phases en boucle avec une seconde entre chaque phase, cela permet de contrôler l'activation du quartz à 8Mhz.

Système électronique 13/16

SWITCH+GO

Test du GO - NOGO : Cavalier en position COM8 115200 bps, 8N1, no hands Lecture Switch :111111111111 NOGO - Go : Cavalier retiré COM8 115200 bps, 8N1, no COM8 115200 bps, 8N1, no Lecture Switch :111111111111 GO

Système électronique 14/16

AFFICHEUR

- Brancher l'afficheur
- Regler RVAR1 pour avoir un bon contrastre.

GO

Retirer le cavalier, contrôler l'extinction de la LED et verifier aue la séquence démarre

SWITCH

Changer la position de chaque switch un par un et verifier qu'à chaque reset, l'indication sur l'afficheur evolue de même

7 Change Logs:

V1-00 = V0-10: Version de base

V1-10

- Empreinte RJ12:épaissir les pastilles
- Empreinte HE10 pastille carrée trou de 1mm
- Empreinte KK-4 et -3 trou de 1 mm
- NET switch blindage GND
- NET RJ12 fixation GND
- Connecteur 3,3V et 12V a rajouter
- I2C rajout de résistance de 200k sur EN et Vref2 sur PCA9306
- Déplacer via sous potar LCD
- Changer empreinte potar LCD
- Ajout led + diviseur de tension pour le port entrée en 12V
- LED1 devient RC14
- LED2 devient RD11
- GO devient RG3

Système électronique 15/16

- SW13 devient RG2

