Name		
Maille		

PLEASE WRITE LEGIBLY. IF THE GRADER CANNOT READ YOUR ANSWER IT WILL BE MARKED WRONG. Multiple choice questions (20 pts/1 pt each) Please write the letter for the correct answer in the appropriate space. (circled answers will not receive credit)
1. DNA replication is said to be semi-conservative because a.) the parental duplex gives rise to two daughter duplexes, each containing one original parental strand and one new strand
 the parental duplex gives rise to two daughter duplexes, one containing two parental strands and one containing two new strands
 c. during replication all strands synthesized contain new nucleotides d. only one strand is used as a template during DNA replication
2. How does the <i>Ecoli</i> circular chromosome stop replication? a. Termination occurs when the supply of nucleotides is depleted b. Short 23bp sequences called ter sites recognized by the Tus protein that stops replication c. The oriC site is recognized by the Tus protein that terminates replication d. A polymerase falls off at the correct time, different polymerases last different amounts of time
3. In bacteria, the annulus is: a. A site in the inner bacterial membrane to which the chromosomal DNA is a second of the chromosomal DNA is a second
b. A protein complex in the cytoplasm to which the chromosomal DNA binds to form nucleoids. (c. A ring around the midcenter of the cell where the structure of the cell envelope is altered. (d. A DNA-protein-complex that connects termination of DNA replication with cell division.
4. In eukaryotic chromosomes, replicons are: a) activated independently once each during S phase b. fired simultaneously once each during S phase c. fired simultaneously twice each during S phase d. activated independently twice each during S phase
5. What two proteins play a role in DNA replication by unwinding the duplex DNA and stabilizing the resulting single strands? a. DNA polymerase and DNA primase
b. DNA primase and DNA helicase c. DNA helicase and single-stranded DNA binding protein d. DNA primase and single-stranded DNA binding protein
6. The activity of both gyrase and DnaB depends on a. methylation of the DNA
b. the DNA polymerase activity c. ATP hydrolysis d. the direction of DNA synthesis
7. Why is an RNA primer considered essential for DNA synthesis by DNA polymerase III? a. The enzyme requires a free 3'-OH group. c. The enzyme requires a free 5'-PO4 group. b. The enzyme requires a free 5'-PO4 group. d. The enzyme requires a free 5'OH group

c. nick translation

__8. The proofreading activity of a DNA polymerase is provided by:

(b.) 3'-5' exonuclease

a. 5'-3' exonuclease

d. 3'-5' synthetase

9. The required ϵ	elements for DNA	ligase to seal a nick in d	ouble-stranded DNA are:
a. 5' and 3' phosphate e	nds adjacent to ea	ch and paired with ano	ther strand of DNA
b. 5' and 3' OH ends adj	scent to each othe	r and naired with anoth	per strand of DNA
(c) A 5' phosphate and a	3' OH and adjacen	t to each other and noi-	red with another strand of DNA.
d A E' OH and a 2' phase	shote and adjacen	t to each other and pair	ed with another strand of DNA.
u. Ab On and a 5 phos	onace end adjacen	t to each other and pair	red with another strand of DNA.
10. Homologous	recombination in	eukaryotes typically oc	curs duṛing:
a. Mitosis	o. interphase	c. Cell division	(d.)Meiosis
11. A classic exa	mple of site-specif	ic recombination is:	
a. HIV virus integration		_	lambda integration
b. Meiotic recombinatio	n		
b. Welotic recombinatio	ı ı	d. Recombination	repair
12 What arous			
12. what event	nitiates the proces	ss of yeast mating type	switching?
a. A double strand break	made at the MAT	focus by Spo11 endonu	ıclease
 b. A single strand nick m 	ade at the MAT lo	cus by Spo11 endonucle	ease
c. A double strand break	made at the MAT	locus by HO endonucle	ase
d.) A single strand nick m	ade at the MAT lo	cus by HO endonucleas	e e
1			-
13. Deamination	of cytosine in DNA	A results in	
a. A-T base pair	or by toomic in Dit.	c. G-C base pair	
(b.)U-G base pair			
b. 0-d base pair		d. T-U base pair	
. 44 Hansafaaa th			
	e uvr system repai		
a. uvrAB attracts ligase to	o the damaged are	ea, ligase cuts the DNA a	and uvrBC repairs the damage
b. uvrAB recognizes the o	lamaged area out	and uvrC displaces dam	aged as new DNA is synthesized
 c. uvr AB combine to ma 	ke DNA helicase II,	uvrC excises the damage	ged area, and ligase repairs the nicks
(d.) uvrAB recognizes dam	age, uvrA dissociat	tes with ATP. uvrBC mal	kes two nicks in the DNA, DNA helicase
removes the damaged re	zion	, , , , , , , , , , , , , , , , ,	tes two metes in the DNA, DNA helicase
	5.0		
15 How are the	narent and daught	or strands of naudy non	Stantad DNS dtate.
a. the daughter strands a	ra not immediatel	er strantis of newly rep	licated DNA distinguished in E. coli?
b. the daughter strands a	re methylated as s	soon as they are synthe	sized
c. the daughter strns con	tain ribonucleotid	es from RNA primers us	ed to initiate DNA synthesis
d. the daughter strands a	re not immediatel	y attached to histone p	roteins
16. What is the fu	inction of glycosyl	ases and lyases in DNA	repair?
a. To convert cytosine int	o uracil	•	•
b. To remove nucleotides		f DNA	
To remove nitrogenous		. 21111	
d. To remove nucleotides		EDNIA	
d. To remove nucleotides	from the 3 end o	TUNA	
17 All !=			
17. All insertion s	equences contain	a single open reading fr	
 a. reverse transcriptase 	(b.)) transpos	ase c. helicase	d. resolvase
	~		
	have the intr	insic ability to excise an	d transpose.
a. Transposase			s controlling elements
 b. Somatic controlling ele 	ments	d.)Autonomous co	
			· · · · · ·

19. How do cells minimize the potentially harmful effects of transposition?
transposon seqeunces are methylated b. immunoglobulins bind to the transposon-encoded proteins
c. transposon sequences are condensed into highly packed chromatin
d. transposon proteins are targeted for degradation within proteasomes by ubiquitin
21. (2) Adenovirus has a double strand linear genome. How is DNA synthesis initiated as the ends of
the Adenovirus genome? proteins constently linked to 5 and act as primers
GATCTNTTTTT TTATNCANA
The origin has
three 13 bp and four 9 bp repeats
and four 9 of repeats
p
22. (2) E. coli replication origin is shown in the figure. Why do origins of replication contain a core of AT
rich DNA? 11-1 bose pairs have to over 11-bonds than God there for an Attach
core is enough to melt than it is were 6-C not
23. (2) How are the replication forks initiated at the E. coli origin of replication?
onal bloods to the Oricington and brings in DNAB which has beliege
activity to separat the strand with the help of DNAC which helps logo he helicose
24. (2) What is the function of Dna B in DNA replication?
Ona B has helicase activity
25. (2) What is the function of primase (DnaG)? Dna () Dos a Roll sense to start recognition
·
because DNA pol 115 notes a free 3'011 to attach to and start polymentation.
26. (2) Why are single stranding hinding proteins (SSR = 1 SRA):
26. (2) Why are single stranding binding proteins (SSB and RPA) important in DNA replication?
SSB kerp the strands from coming together again either with the opposite strand
or with itself

27.	(2) Why can't the DNA polymerase move continuously on both strands during replication?
	TONA polymerase can only move 5-3' and be ease the replication
	fock only opens a segment of DNA at a hore the lagging should (3'-5')
	most be replicated discontinuously
28.	(2) How are Okazaki fragments primed in E coli? Primase (DNa 6)
	(2) How are Okazaki fragments primed in eukaryotes? primase alds a primer and DNA policy state to synthesize and the DNA got different and over
	(2)Removal of the primer is especially important on the lagging strand. Why must the primer be removed? The primer is made up of RNA which contain which is not a DNA base.
	(2) The lagging strand contains one primer for each Okazaki fragment. How is each primer removed in E coli? The lagging strand contains one primer for each Okazaki fragment. How is each primer when ONN Pol C oses note The handerton to replace the RMR was done.
	TWO SECTION TO SECTION
32.	(2) How are Okazaki fragment primers removed in eukaryotes? Flap endonuclease flips out the pointer and DNA pol d/c synthesis DIVIL
33.	(2) Why is one clamp loader needed at the replication fork when there are two template strands being replicated? The Clamp loader holds the helicase in place which separates
	the 7 strands it doesn't its self have anything to do with the template straws
	the 1 Divided in conserving the state of the
	(2) How does the yeast cell ensure that its genome is replicated completely only once per cell cycle? The licensing factor used can only be used once and then the cell must
	wait for a new licensing factor to come into the nucleus, which doesn't occur
	onth the rell goes through the extleyde

	ther high fidelity DNA polymerase have proofreading activity.
	Hylations. 3'-5' endonvolvage activity and by a viscommunation
	ne DNA polymerases since their use is guaranteed to make 1s a better alternative then the cell dreing because the PNA
37. (2) How does methylation of GATC	regulate initiation of replication in E coli
The Ain GATC is melhylated an	o that methylation is reagained by onat
repair? The daughter strand is	iATC is methylated. What is the role of methylation in mismatch no immediately methylated after replication so the unmethylated animals. Is found ble it is
most likely the strand that has a	
excision. Which process is used for	epaired, repaired via nucleotide excision or repaired via base the repair of:
	during daylight owech, repaired
$3^{1/10^{5}}$ \sim b. Thymidine dimer in humans	during daylight <u>nucleohide (XUSIU n</u>
c. Thymidine dimers in E coli d	luring daylight directly repaired
d. Thymidine dimers in E coli a	t nighttimenucleofide exclsion
e. Spontaneous deamination of	of cytosinenucleofice excisione
40. (2) If a replication error that create	es an AG mismatch is not repaired before the next round of
A T > / C	nces of the two daughter DANs after replication?
A	opere de

41. (2) Why are transcriptionally active genes preferentially repaired?___

because they are more likely to have a debilitating effect on the organism

42. (2) RecA, Rad51 and Dmc1 have equivalent roles in recombination. What is the role of these

proteins? Paning of romologous DNH & strong masion

43. (2) When DNA polymerase encounters as a nick in one strand of the template, it results in replication fork collapse. If this is not repaired, the cell may die. How is this repaired in E. coli?

cell may die. How is this repaired in E. coli?

The niclosed strand invalues the non niclosed Brand and uses that

anowly, synthesized strand as a template until it by passes the niclosthen

the force is remade further along and synthesis continues

44. (2) Homologous recombination, homologous repair and gene conversion begin in a similar way.

How are these processes initiated?

A double shand used

45. (2) What is the result if resolution of the Holliday junction begins with nicks in both sets of exchanged strands? Patch recombination

Resolution of Holliday junction:

7

46. (2) How are recombinases (eg lambda integrase or Cre recombinase) similar to topoisomerase I? ____

r Both scrope bonds in the DNA; break I strained at a time

47. (2)Lambda is a bacteriophage (bacterial virus) that can integrate into the E.coli genome. What is the mechanism of integration (integration at random target site, site specific recombination, homologous recombination)? Site Specific recombination

48.(2) HIV (a human retrovirus) can integrate into the human genome. What is the mechanism of integration (integration at random target site, site specific recombination, homologous recombination)? Integration at random target site.

Modified T/F (2 points each). Indicate whether the statement is true or false. If false, why is it false?

49. ORC complexes associate with the eukaryotic replication origin only during S phase.

False ORC an bound moralisable the college to but on a actioned bound is prome

50. E coli replication origin is regulated by a licensing factor and by DNA methylation state.

True the A in GATC must be methylated

51. DNA polymerase I is the major replicating polymerase in E coli.

False DNA Polymorase TII

52. Each eukaryotic chromosome contains a single origin of replication

Falso contains indicate of ans in a disation

53. All RNA transposons (retrotransposons) move via replicative transposition

True RUA has some two for its horseffed to pake ONA make mean in RUA cores from

54. DNA transposons are only found in prokaryotes

False eulayotes also have 1948 tunsposons

55. The human disorder *xeroderma pigmentosum* is caused by mutations genes important for nucleotide excision repair.

veradema promotosom cont happole or ight very well ble the thipping disters rannot be received by nextestate excision repair

56. Short intersperse nuclear elements (SINES) are non autonomous LTR containing transposons.

Folse SINES So not continue LTR

Bonus (2points): What feature of the Ti plasmid makes it attractive for use in the generating genetically modified plants?

Lt can be used to transfer generating plant nucleur

in a methanism sitular to conjugation