Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma	13
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
Ω	Transformada de Laplace 10	12
Э.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Lapiace	L٦
10	O.Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	18
	10.4. Sistema de ecuaciones lineales	2(
11	1.Polinomios ortogonales 12	23
	11.1. Definiciones	
	11.2. Teoremas	
	11.3. Relación de recurrencia	
16	2.Polinomios de Hermite	. –
14	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite)]
13	3.Polinomios de Laguerre 13	
	13.1. Definición	
	13.2. Función generatriz	33
	13.3. Relaciones de recurrencia	} [
	13.4. Ecuación de Laguerre	} [
	13.5. Ortogonalidad	36
	13.6. Polinomios asociados de Laguerre	38
1⊿	4.El problema de Sturm-Liouville 13	}C
	14.1. Operadores diferenciales autoadjuntos	
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades	145
15.1. Puntos singulares	145
15.2. Solución por serie: método de Frobenius	146
15.3. Limitaciones del método. Teorema de Fuchs	149
15.4. Una segunda solución	151

Capítulo 14

El problema de Sturm-Liouville

versión preliminar 1.0-28 octubre 2002

Una gran cantidad de problemas físicos están descritos por ecuaciones diferenciales en las que interviene un operador Laplaciano (la ecuación de Laplace, la ecuación de onda, la ecuación de Schrödinger, etc.). Matemáticamente, estas ecuaciones corresponden a casos particulares del *problema de Sturm-Liouville*, vale decir, ecuaciones de autovalores para un un operador diferencial autoadjunto. Las propiedades que demostramos en general para los polinomios ortogonales (Cap. 11), y reencontramos en dos casos particulares (Caps. 12 y 13), son en realidad propiedades generales de las soluciones de problemas de Sturm-Liouville, como veremos en este capítulo.

14.1. Operadores diferenciales autoadjuntos

Consideremos el operador diferencial \mathcal{L} de la forma:

$$\mathcal{L}u(x) = \left[p_0(x) \frac{d^2}{dx^2} + p_1(x) \frac{d}{dx} + p_2(x) \right] u(x) , \qquad (14.1)$$

donde u(x) es una función compleja dos veces diferenciable, y los $\{p_j(x)\}$ son funciones reales que cumplen:

- $p_0''(x)$, $p_1'(x)$, $p_2(x)$ existen y son continuas en [a, b].
- $p_0(x)$ no tiene ceros en (a,b).

 $p_0(x)$ puede (y suele) tener ceros en los extremos del intervalo, y el intervalo [a,b] podría ser semi-infinito o infinito.

Consideremos una segunda función derivable dos veces, v(x). Definimos

$$\langle v | \mathcal{L} | u \rangle \equiv \langle v, \mathcal{L}u \rangle = \int_a^b dx \, v^*(x) \mathcal{L}u(x) .$$
 (14.2)

Integrando por partes y usando la continuidad de $p'_0(x)$ y $p_1(x)$,

$$\int_a^b dx \, v^*(x) p_1(x) u'(x) = v^*(x) u(x) p_1(x) \Big|_a^b - \int_a^b dx \, u(x) [v^*(x) p_1(x)]' ,$$

У

$$\int_{a}^{b} dx \, v^{*}(x) p_{0}(x) u''(x) = v^{*}(x) u'(x) p_{0}(x) \Big|_{a}^{b} - \int_{a}^{b} dx \, u'(x) [v^{*}(x) p_{0}(x)]'$$

$$= \left\{ v^{*}(x) u'(x) p_{0}(x) - u(x) [v^{*}(x) p_{0}(x)]' \right\} \Big|_{a}^{b} + \int_{a}^{b} dx \, u(x) [v^{*}(x) p_{0}(x)]''.$$

Entonces, podemos escribir

$$\langle v | \mathcal{L} | u \rangle = \int_{a}^{b} dx \, u(x) \overline{\mathcal{L}} v^{*}(x)$$

$$+ \left\{ u(x) v^{*}(x) [p_{1}(x) - p'_{0}(x)] + p_{0}(x) [u'(x) v^{*}(x) - u(x) v^{*\prime}(x)] \right\} \Big|_{a}^{b} , \quad (14.3)$$

donde

$$\overline{\mathcal{L}}u(x) = \frac{d^2}{dx^2} [p_0(x)u(x)] - \frac{d}{dx} [p_1(x)u(x)] + p_2(x)u(x) , \qquad (14.4a)$$

$$\overline{\mathcal{L}}u(x) = \left\{ p_0(x) \frac{d^2}{dx^2} + \left[2p_0'(x) - p_1(x) \right] \frac{d}{dx} + \left[p_2(x) - p_1'(x) + p_0''(x) \right] \right\} u(x)$$
 (14.4b)

es el operador adjunto a \mathcal{L} .

Si

$$\overline{\mathcal{L}} = \mathcal{L} , \qquad (14.5)$$

decimos que \mathcal{L} es autoadjunto.

Comparando (14.1) y (14.4), se sigue que \mathcal{L} es autoadjunto si y sólo si

$$2p_0'(x) - p_1(x) = p_1(x)$$

У

$$[p_1(x) - p'_0(x)]' = 0 ,$$

es decir, si

$$p_0'(x) = p_1(x) . (14.6)$$

Muchos problemas interesantes corresponden a operadores autoadjuntos; por ejemplo, el oscilador armónico simple, mientras que otros, como las ecuaciones de Hermite y Laguerre, no. Sin embargo la teoría de operadores diferenciales autoadjuntos de segundo orden es completamente general, pues cualquier operador de segundo orden puede ser transformado a una forma autoadjunta. En efecto, puesto que $p_0(x)$ no tiene ceros en (a, b), consideremos

$$h(x) = \frac{1}{p_0(x)} \exp \left[\int_{x_0}^x dt \, \frac{p_1(t)}{p_0(t)} \right] ,$$

y definamos

$$\overline{p_0}(x) = h(x)p_0(x) ,$$

$$\overline{p_1}(x) = h(x)p_1(x) .$$

Entonces

$$\overline{p_0}'(x) = \frac{d}{dx} \exp\left[\int_{x_0}^x dt \, \frac{p_1(t)}{p_0(t)}\right] = \frac{p_1(x)}{p_0(x)} \exp\left[\int_{x_0}^x dt \, \frac{p_1(t)}{p_0(t)}\right] = \overline{p_1}(x) ,$$

es decir, $h(x)\mathcal{L}$ es autoadjunto.

Usando (14.6), y definiendo $A(x) = p_0(x)$, $B(x) = p_2(x)$, se sigue que todo operador autoadjunto se puede escribir en la forma:

$$\mathcal{L}u(x) = \frac{d}{dx} \left[A(x) \frac{du(x)}{dx} \right] + B(x)u(x) . \tag{14.7}$$

Además, para operadores autoadjuntos (14.3) queda

$$\langle v | \mathcal{L} | u \rangle = \int_a^b dx \, u(x) \overline{\mathcal{L}} v^*(x) + A(x) [u'(x)v^*(x) - u(x)v^{*\prime}(x)] \bigg|_a^b . \tag{14.8}$$

14.2. Operadores autohermíticos

Limitémonos ahora a un subespacio $\mathcal H$ de nuestro espacio de funciones, en el cual se cumple

$$A(x)\frac{du(x)}{dx}v^*(x)\bigg|_{x=a} = A(x)\frac{du(x)}{dx}v^*(x)\bigg|_{x=b} , \quad \forall u, v \in \mathcal{H} .$$
 (14.9)

Es inmediato mostrar que \mathcal{H} es un espacio vectorial.

Entonces, de (14.8) se sigue que, si $u(x), v(x) \in \mathcal{H}$, y si \mathcal{L} es autoadjunto, entonces

$$\langle v, \mathcal{L}u \rangle = \int_{a}^{b} dx \, u(x) \mathcal{L}v(x) = \langle \mathcal{L}v, u \rangle .$$
 (14.10)

Se dice entonces que \mathcal{L} es autohermítico en \mathcal{H} .

14.3. Problema de autovalores

Sea w(x) una función real positiva, la cual a lo más puede tener ceros aislados en [a,b] (función de peso). Consideremos la ecuación

$$\mathcal{L}u(x) + \lambda w(x)u(x) = 0 , \quad \lambda \in \mathbb{C} ,$$
 (14.11)

con determinadas condiciones de borde (en este caso, nos interesarán las condiciones que determinan el subespacio \mathcal{H}). Las soluciones de (14.11), debido precisamente a las condiciones de borde, no existen para todo λ , sino para cierto número discreto $\{\lambda_i\}_{i\in\mathbb{N}}$, asociados a ciertas funciones $\{u_i\}_{i\in\mathbb{N}}$. Los λ_i se denominan autovalores y las funciones asociadas u_i , autofunciones.

Se pueden mostrar las siguientes propiedades:

Proposición 14.1 Los autovalores de un operador autohermítico son reales.

Demostración Sean λ_j , λ_k autovalores asociados a autofunciones $u_j(x)$, $u_k(x)$, respectivamente. Entonces

$$\mathcal{L}u_j(x) + \lambda_j w(x) u_j(x) = 0 ,$$

$$\mathcal{L}u_k^*(x) + \lambda_k^* w(x) u_k^*(x) = 0 .$$

Multiplicando la primera ecuación por $u_k^*(x)$ e integrando en [a,b]:

$$\langle u_k, \mathcal{L}u_j \rangle + \lambda_j \int_a^b dx \, u_k^*(x) w(x) u_j(x) = 0 .$$

Haciendo algo similar con la segunda ecuación, pero multiplicando por $u_i^*(x)$,

$$\langle \mathcal{L}u_k, u_j \rangle + \lambda_k \int_a^b dx \, u_j(x) w(x) u_k^*(x) = 0.$$

Restando ambas expresiones, y usando (14.10),

$$(\lambda_j - \lambda_k^*) \int_a^b u_k^*(x) w(x) u_j(x) = 0.$$
 (14.12)

Ahora, si j = k,

$$0 = (\lambda_j - \lambda_j^*) \int_a^b |u_j(x)|^2 w(x) .$$

Como $w(x) \ge 0$, existen soluciones $u_j(x)$ no triviales si sólo si

$$\lambda_j = \lambda_j^* ,$$

es decir, $\lambda_j \in \mathbb{R}$.

q.e.d.

Proposición 14.2 Las autofunciones de un operador autohermítico se pueden elegir ortogonales entre sí.

Demostración Si escogemos ahora $\lambda_j \neq \lambda_k$, entonces de (14.12) se sigue que

$$0 = \int_a^b dx \, u_k^*(x) w(x) u_j(x) ,$$

es decir $u_k(x)$ y $u_j(x)$ son ortogonales con función de peso w(x). (Incidentalmente, vemos que la generalización del producto interno introducida en (11.1) emerge naturalmente al considerar el problema de autovalores de un operador autohermítico.)

Por lo tanto, autofunciones asociadas a autovalores distintos son ortogonales. Sin embargo, puede ocurrir que más de una autofunción esté asociada al mismo autovalor, es decir, que un

autovalor sea degenerado. Es fácil mostrar que las funciones asociadas a un mismo autovalor forman un espacio vectorial. En efecto, si $u_{j,1}(x)$, $u_{j,2}$ están asociadas al autovalor λ_j , se tiene

$$\mathcal{L}u_{j,1} + \lambda_j w(x)u_{j,1} = 0$$
,
 $\mathcal{L}u_{j,2} + \lambda_j w(x)u_{j,2} = 0$.

Entonces una combinación lineal de ellas también es autofunción de \mathcal{L} con el mismo autovalor:

$$\mathcal{L}\sum_{\alpha=1,2} u_{j,\alpha} + \lambda_j w(x) \sum_{\alpha=1,2} u_{j,\alpha} = \sum_{\alpha=1,2} [\mathcal{L}u_{j,\alpha} + \lambda_j w(x)u_{j,\alpha}] = 0.$$

Por lo tanto, es posible encontrar una base ortogonal del subespacio asociado a λ_j (vía Gram-Schmidt). Procediendo así con todos los subespacios de degeneración, podemos finalmente construir una base ortogonal para el espacio de funciones completo.

q.e.d.

Proposición 14.3 Las autofunciones de un operador autohermítico forman una base del espacio \mathcal{H} .

Demostración (Discusión)

La completitud de un conjunto de funciones usualmente se determina comparando con una serie de Laurent. Por ejemplo, para polinomios ortogonales, es posible encontrar una expansión polinomial para cada potencia de z:

$$z^n = \sum_{i=0}^n a_i P_i(z) ,$$

donde $P_i(z)$ es el *i*-ésimo polinomio. Una función f(z) se puede entonces expandir en una serie de Laurent, y en definitiva en una combinación lineal de los polinomios $P_i(z)$. Así, podemos mostrar que la expansión polinomial existe y que es única. La limitación de este desarrollo en serie de Laurent es que f(z) debe ser analítica. Las funciones pueden ser más generales que eso (recordemos la expansión de la función "dientes de sierra" en series de Fourier, por ejemplo). Una demostración de que nuestras autofunciones de problemas de Sturm-Liouville son completas aparece en el libro de Courant y Hilbert [R. Courant y D. Hilbert, "Metodos de la Física Matemática", Vol. 1, Cap. 6, Sec. 3].

q.e.d.

14.4. Ejemplos de funciones ortogonales

Distintas elecciones del operador diferencial \mathcal{L} (es decir, de las funciones A(x) y B(x) en (14.7), de la función de peso w(x) en el problema de autovalores asociado, y del intervalo [a, b] que determina las condiciones de borde (14.9), generan diversas funciones especiales. Algunas de ellas, de interés en problemas físicos, aparecen en la siguiente tabla:

Ver capítulo (??).

$a_ u$.	$\int dx x J_{\alpha}(a_{\mu}x) J_{\alpha}(a_{\nu}x) = \text{cte.} \cdot \delta_{a_{\mu}, a_{\nu}} .$	$J_{lpha}(a_{ u}$	$I_{\alpha}(a_{\mu}x)$	$\int_0^{\cdot} dx x.$				ı
nplazar $J_{lpha}(x)$ por $J_{lpha}(xa_{ u})$ en la ecuación diferencial, con	debemos reen	picas:	son atí	ciones de Bessel	e las fund	ortogonalidad de lose	^aLas relaciones de ortogonalidad de las funciones de Bessel son atípicas: debemos reemplazar $J_{\alpha}(a_{\nu})=0$, cumpliéndose	e 1
$J_{\alpha}(x) = \frac{1}{\pi} \frac{\left(\frac{1}{2}x\right)^{\alpha}}{\Gamma(\alpha + \frac{1}{2})} \int_{-1}^{1} dt (1 - t^{2})^{\alpha - \frac{1}{2}} \cos(xt)$	a_{ν}^2	⊢	0	x	- Ω x Ω	x	Bessel^a	
$H_n(x) = e^{x^2} \left(-\frac{d}{dx} \right)^n e^{-x^2}$	2n	8	8	e^{-x^2}	0	e^{-x^2}	Hermite (polinomios)	1
$L_n^{(m)}(x) = \left(\frac{d}{dx}\right)^m L_n(x)$	n-k	8	0	$x^k e^{-x}$	0	$x^{k+1}e^{-x}$	Laguerre (asociados)	Г
$L_n(x) = e^x \left(\frac{d}{dx}\right)^n (x^n e^{-x})$	n	8	0	e^{-x}	0	xe^{-x}	Laguerre (polinomios)	r
$C_n^{\alpha}(x) = \frac{\Gamma(2\alpha)\Gamma(\alpha + \frac{1}{2} + n)(1 - x^2)^{\frac{1}{2} - \alpha}}{2^n n! \Gamma(\alpha + \frac{1}{2})\Gamma(2\alpha + n)} \left(-\frac{d}{dx}\right)^n \left(1 - x^2\right)^{\alpha + n - \frac{1}{2}}$	$n(n+2\alpha)$	1	<u> </u>	$(1-x^2)^{\alpha-\frac{1}{2}}$	0	$(1-x^2)^{\alpha+\frac{1}{2}}$	Gegenbauer (ultraesféricas)	
$U_n(x) = \frac{(n+1)}{(2n+1)!!\sqrt{1-x^2}} \left(-\frac{d}{dx}\right)^n (1-x^2)^{n+\frac{1}{2}}$	n(n+2)	1	1	$\sqrt{1-x^2}$	0	$(1-x^2)^{3/2}$	Chebyshev II (polinomios)	
$T_n(x) = \frac{\sqrt{1-x^2}}{(2n-1)!!} \left(-\frac{d}{dx}\right)^n (1-x^2)^{n-\frac{1}{2}}$	n^2	⊣	-1	$\frac{1}{\sqrt{1-x^2}}$	0	$\sqrt{1-x^2}$	Chebyshev I (polinomios)	r
$P_l^m(x) = (1 - x^2)^{m/2} \left(\frac{d}{dx}\right)^m P_l(x)$	l(l+1)	<u> </u>	<u> </u>	1	$\frac{-m^2}{1-x^2}$	$1-x^2$	Legendre (asociados)	1
$P_l(x) = \frac{1}{2^2 l!} \left(\frac{d}{dx}\right)^l (x^2 - 1)^l$	l(l+1)	—	-1	1	0	$1 - x^2$	Legendre (polinomios)	ı
Fórmula generatriz	>	b	a	w(x)	B(x)	A(x)	Función	