Problem: Selection

Design and Analysis: Adversary Arguments

- The selection problem
 - << Ranking elements of a set in nondecreasing order, find an element rank K >>
 - > Finding max and min
- Designing against an adversary
 - << An algorithm playing *Information* game against an adversary >>

Design and Analysis using Adversary arguments

- An algorithm is playing an *Information* game against an adversary.
 - The algorithm wants to get as much Information as possible in order to get as much work done as effective as possible.
 - → The adversary wants to give as least Information as possible to give the algorithm *the worst case*.
 - → The rule of the game is Consistency. The adversary can trick but cannot cause inconsistency in the given information.
- e.g. your algorithm needs to guess a date (a month and day) and your adversary gives yes/no answers.
 - → Let's play!

Strategy for Designing against an adversary

- Assume a strong adversary!
 - the adversary will give as least information as possible
- Choose questions (or operations) as balance as possible
 - \rightarrow e.g. for comparison of two keys, x > y
 - → Yes: x > y and
 - \rightarrow No: x not > y
 - + should provide about the same amount information

The Selection Problem

- Find an element with rank k
 - →in an array E using indexes 1 through n
 - > the elements in E are assumed to be unsorted
 - \rightarrow where 1 <= k <= n
- Finding an element with rank k is equivalent to answering the question:
 - → If the array were sorted in nondecreasing order
 - → which element would be in E[k]?
- The largest key (called max) should be k = n
- The smallest key (called min) should be k = 1
- The median key should be k = Ceiling[n/2]

Finding min, finding max, finding min and max

- Finding min in an unsorted array of n elements
 - → require at least n-1 comparisons
- Finding max in an unsorted array of n elements
 - → require at least n-1 comparisons
- Now we want to find both min and max
 - \rightarrow can we do better than 2(n-1)?
 - → What is the lower bound?
- Theorem: Any algorithm to find both min and max of n keys by comparison of keys must do at least 3n/2 – 2 key comparisons in the worst case.

Proof by adversary arguments and units of information

- To know that a key v is max, an algorithm must know that every key other than v has lost some comparison
 - To know that a key u is min, an algorithm must know that every key other than u has won some comparison.
- If we count each win as one *unit of information*
- · and each loss as one unit of information
 - Then an algorithm must have at least 2(n-1) units of information for finding both min and max
- We need to determine how many comparison are required (in the worst case) to get total 2(n-1) units of information.
 - The adversary to give us the worst case will provide as few information as possible.

The adversary strategy to give us the worst case Units of new Status of keys x and y New status information compared by an algorithm Adversary response W. L 2 N.N x > y1 W. L or WL. L W, N or WL, N x > yL, W 1 L, Nx < yW. WL 1 W, W x > yWL, L 1 L.L x > y0 W, L or WL, L or W, WL No change x > y0 WL, WL Consistent with No change

assigned values

Design an algorithm to find min and max

- Now we know the lower bound (in the worst case)
 - → Can we design an algorithm to reach the lower bound?
- Exercise
 - → design an algorithm to find both min and max
 - the algorithm should do at most (about) 3n/2 comparison (in the worst case) for a problem size of n elements

Our strategy to gain as must information

- Our algorithm can do at most n/2 comparisons of previously unseen keys
 - → suppose for the moment that n is even
 - → each of these comparison give us 2 units of information
 - now we have n units of information
- Our algorithm need total 2(n-1) = 2n 2, so now we need n 2 additional units of information
 - for each other comparison we gain at most one unit of information
 - → so we need at least n 2 additional comparisons
- In total our algorithm requires at least n/2 + n 2 comparisons. For n is odd, 3n/2 - 3/2 comparisons are needed. QED