Procesamiento multivariante de datos en R

N. Sofía Huerta-Pacheco

Agenda

- 1. Introducción
- 2. Métodos de interdependencia
 - a. Análisis de Componentes Principales
 - b. Análisis de Correspondencia
- 3. Métodos de dependencia
 - a. Análisis de Correlación Canónica

¿Qué es?

Es el conjunto de métodos estadísticos cuya finalidad es analizar simultáneamente conjuntos de datos, esto quiere decir que hay varias variables medidas para cada individuo u objeto estudiado.

Que tiene como objetivos:

- 1. Proporcionar métodos cuya finalidad es el estudio conjunto de datos multivariantes que el análisis estadístico uni y bidimensional es incapaz de conseguir.
- 2. Ayudar al analista o investigador a tomar decisiones óptimas en el contexto en el que se encuentre, teniendo en cuenta la información disponible por el conjunto de datos analizados.

Tipos de variables - Escala de medición

Matriz de datos

=

¿Con que trabaja?

Conjunto de datos ordenados de individuos y variables

Individuos (n) y variables (m) de una muestra que pueden ser representativos o no de una población.

Variables	1	2	•••	•••	m
Individuos o Caso	Sexo	Edad (Años)	Lugar de nac.	Dosis (mg/6h)	Temperatura (°C)
1	F	18	Yucatán	600	38.4
2	M	22	Puebla	1300	40.3
0 0 0	•••	•••	•••	•••	•••
• • •	•••	•••	•••	•••	
n	F	19	Colima	800	36.1

Tipo de técnicas y/o métodos

¿Cómo se interpretan?

Conforme el tipo de información a trabajar y del análisis aplicado se pueden dar una interpretación general del comportamiento tanto de los individuos y de las variables, particularizando si se observan patrones, tendencias, relaciones, entre otros.

¿Cuando se aplican?

• Mientras se cumplan los criterios básicos, donde;

```
#Individuos (n) presente variabilidad y sean > 20
```

```
# Individuos (n) > # Variables (m) y las
# Variables (m) ≥ 2
```

- Se requiera:
 - Reducir dimensionalidad
 - Agrupar o dividir de segmentos
 - Asociar individuos o variables o ambos
 - Identificar diferencias

Métodos de interdependencia

PCA:

component axes that maximize the variance

Métodos con el objetivo de identificar qué variables están relacionadas, cómo lo están y por qué, sin importar si son dependientes o independientes.

"Relaciones entre las variables que no pueden ser consideradas ni dependientes ni independientes desde un punto de vista teórico"

Análisis de Componentes Principales (ACP o PCA)

Se utiliza para analizar interrelaciones entre un número elevado de variables métricas explicando dichas interrelaciones en términos de un número menor de variables denominadas factores (si son inobservables) o componentes principales (si son observables)

El fin esencial de la técnica es proveer al usuario resúmenes bidimensionales de la matriz de datos, con una pérdida mínima de información.

Análisis de Componentes Principales (ACP o PCA)

Por medio de procedimientos matemáticos de optimización tendientes a reproducir en el plano, lo mejor posible, los individuos y las variables, los cuales son vectores de espacios con dimensiones mayor que dos.

Es una de las herramientas más utilizadas de la estadística exploratoria multivariante

Datos a analizar en el PCA

Corpus de Lengua Oral del Español de México (CLOE)

Las variables del CLOE fueron extraídas de audios de entrevistas a personas del centro de México, cada variable presenta diferente escala de medición.

- → ID usuario y etiquetas
- → 5 formantes
- → Duración

Identificar los parámetros acústicos que representan la variación inter-hablantes

Procedimiento

```
#Paquetes
library(FactoMineR)
library(factoextra)
#Selección de variables
ruta<-file.choose()</pre>
datos<-read.csv(ruta)</pre>
head(datos)
dim(datos)
d<-datos[,c("F0","F1","F2","F3","F4","Time")]</pre>
#Análisis de Componentes Principales
result<-PCA(X = d, graph = FALSE)
```

```
fviz screeplot(result, addlabels = TRUE,
ylim = c(0, 100))
fviz contrib(result, choice = "var", axes
= 1, top = 10)
fviz pca ind(result, geom.ind="point",
col.ind="gray", axes=c(1, 2),
pointsize=0.5)
fviz pca var(result, col.var = "cos2",
geom.var = c("arrow","text"), labelsize=2,
repel = FALSE,label = "all")
fviz pca biplot(result, label="var",
col.var ="cos2", alpha.ind="contrib",
pointsize = 0.5)
```



```
> head(datos)
                     Labels
                                  FØ
                                                    F2
                                                             F3
                                                                             Time
                TD
                                           F1
                                                                       F4
1 CDMN3E1SM007_LEC
                      CLa_T 152.7063 573.4208 1428.229 2353.437 3353.938 0.05603
2 CDMN3E1SM007_LEC
                    COSDa_A 147.6651 549.0151 1404.217 2210.491 3547.161 0.04310
 CDMN3E1SM007_LEC
                     COBa_T 136.9980 564.0187 1323.520 2611.424 3519.893 0.06034
4 CDMN3E1SM007_LEC
                     CFAa_A 143.3070 595.4744 1254.156 2286.769 3362.817 0.04379
5 CDMN3E1SM007_LEC CLaCFA_T 128.0363 548.2760 1353.523 2791.432 3742.227 0.06034
                     CFLa_A 137.5528 547.5389 1247.473 2236.449 3608.978 0.04741
6 CDMN3E1SM007_LEC
```

> result\$eig

```
eigenvalue percentage of variance cumulative percentage of variance
        2.4639076
                                41.065127
                                                                     41.06513
comp 1
                                                                     58.20590
                                17.140771
comp 2
        1.0284463
comp 3
        0.8344214
                                13.907024
                                                                     72.11292
        0.6680664
                                11.134440
                                                                     83.24736
comp 4
        0.5357850
                                 8.929750
                                                                     92.17711
comp 5
comp 6
        0.4693733
                                 7.822888
                                                                    100.00000
```

Métodos de interdependencia

Visualización e interpretación

Proporción de Variabilidad Acumulada > al 70 % (0.7)

Consideraciones

Los vectores (->) mientras más largos, mejor representado están en esos componentes.

Si el ángulo entre pares de vectores es pequeño (<90º), se puede decir que existe una asociación positiva.

Si el ángulo entre pares de vectores es recto (aproximado o = 90º), se puede decir que no existe relación.

Si el ángulo entre pares de vectores es grande (>90º) si puede decir que existe asociación negativa.

Análisis de Correspondencia (AC o CA)

Se aplica a tablas de contingencia multidimensionales y persigue un objetivo similar al de las escalas multidimensionales, el cual es representar simultáneamente las filas y columnas de las tablas de contingencia.

Este puede ser simple (representación de dos variables no métricas) o múltiple que considera más de dos variables no métricas (categóricas).

Datos a analizar en el CA

Desaparecidos de México 2006 al 2018 Centro Nacional de Planeación, Análisis e Información para el Combate a la Delincuencia, PGR

Variables recolectadas en los registros de personas desaparecidas en México durante los años 2006 al 2018.

- → Información sociodemográfica
- → Temporalidad de registros
- → Características de media filiación
- → Estatus de localización

Identificar si existe dependencia del estatus de localización con respecto al lugar de desaparición de las personas reportadas.

Procedimiento

```
#Paquetes
library(readx1)
library(FactoMineR)
library(factoextra)
#Selección de variables
ruta<-file.choose()</pre>
datos<-read_excel(ruta)</pre>
datos<-as.data.frame(datos)</pre>
head(datos)
dim(datos)
names(datos)
d1<-datos[,c("ESTADO","VIVO O MUERTO")]</pre>
```

#Prueba de Chi-cuadrada

td1<-table(d1)
chisq <- chisq.test(td1)</pre>

#Análisis de Correspondencia Simple

result<-CA(td1, graph = FALSE)

fviz_screeplot(result, addlabels = TRUE,
ylim = c(0, 100))

fviz_contrib(result, choice = "row", axes
= 1:2, top = 15)

fviz_ca_biplot(result, repel = TRUE, arrow
= c(FALSE, TRUE),pointsize = 0.5,labelsize
= 2,col.col = "#16A085",col.row = "black")

AGUASCALIENTES BAJA CALIFORNIA BAJA CALIFORNIA SUR CALIFORNIA CAMPECHE CHIAPAS CHIHUAHUA COAHUILA DE ZARAGOZA COLIMA DISTRITO FEDERAL DURANGO ESTADO DE MEXICO **GEORGIA GUANAJUATO GUERRERO** HIDALGO JALISCO MICHOACAN MORELOS NAYARIT NEW YORK NO ESPECIFICADO NUEVO LEON OAXACA PUEBLA QUERETARO QUINTANA ROO SAN LUIS POTOSI SINALOA SONORA TABASCO **TAMAULIPAS** TEXAS TLAXCALA VERACRUZ

> YUCATAN ZACATECAS

AUN SIN LOCALIZAR	MUERTO	VIVO
		0
•		•
	(¥	. 4
		0
		•
•		
		0
	79	•
		•
0		
•		
	- 4	
•		0
•		
	- 14	
		0.0
-		
	7.0	
0		0
	- *	
0	-	•
		•
	: *	•
	12	714
0	•	•
•		
		0
		19
	+	//4
	- 4	

#Prueba de Chi-cuadrada

td1<-table(d1)

chisq <- chisq.test(td1)</pre>

Pearson's Chi-squared test

data: td1

X-squared = 25953, df = 72, p-value < 2.2e-16

Prueba de Dependencia

Consideraciones

Las dimensiones (dos) representan la totalidad de variabilidad de la muestra.

Los individuos más cercanos a los vectores (->) muestran mayor asociación con ellos.

Si los vectores o individuos están muy cercanos o en el centro (0,0) no se encuentran bien representados.

Existen individuos con comportamientos distantes o no asociados a los vectores (->) evaluados.

Métodos de dependencia

LDA:

maximizing the component axes for class-separation

Métodos que suponen que las variables analizadas están divididas en dos grupos: dependientes e independientes; con el objetivo de determinar si el conjunto de variables independientes afectan al conjunto de dependientes, además de ver la forma de cómo se afectan.

"Sirve para explicar o predecir a las variables dependientes a partir de las independientes"

Análisis de la Correlación Canónica (ACC o CCA)

Tiene como objetivo relacionar simultáneamente varias variables métricas dependientes e independientes calculando combinaciones lineales de cada conjunto de variables que maximicen la correlación existente entre los dos conjuntos de variables.

Datos a analizar en el CCA

Desaparecidos de México 2006 al 2018 Centro Nacional de Planeación, Análisis e Información para el Combate a la Delincuencia, PGR

Variables recolectadas en los registros de personas desaparecidas en México durante los años 2006 al 2018.

- → Información sociodemográfica
- → Temporalidad de registros
- → Características de media filiación
- → Estatus de localización

Identificar la dependencia entre número de personas desaparecidas localizadas vivas y no localizadas por estado y temporalidad.

Procedimiento

```
#Paquetes
library("CCA")
#Selección de variables
ruta1<-file.choose()</pre>
datos1<-read.csv(ruta1)</pre>
ruta2<-file.choose()</pre>
datos2<-read.csv(ruta2)</pre>
head(datos1)
head(datos2)
dim(datos1)
ind <- match(datos1[,1], datos2[,1])</pre>
```

```
data<-data.frame(datos1[ind,],datos2[,2:14])</pre>
X <- data[,2:14]
Y <- data[,15:27]
#Análisis de Correlación Canónica
result <- matcor(X,Y)
img.matcor(result, type = 2)
cc \leftarrow cc(X,Y)
plt.cc(cc,ind.names = data[,1])
plt.cc(cc,d1=1,d2=2,type="v",var.label=TRUE)
```


1.0

Visualización e interpretación

-1.0

Matriz de conteos de personas localizadas con vida

-0.5

n = Estados m = 2006,..., 2018

0.5

Matriz de conteos de personas no localizadas

Cross-correlation

0.0

Gracias su atención

¿Preguntas? o ¡Comentario!

N. Sofía Huerta-Pacheco nshuerta@enacif.unam.mx

