

Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУКЗ «Системы автоматического управления»

ЛАБОРАТОРНАЯ РАБОТА №3

«Описание систем в форме передаточных функций. Типовые соединения звеньев. Преобразование структурных схем»

ДИСЦИПЛИНА: «Общая теория автоматического управления»

Выполнил: студент гр. <u>ИУК3-51Б</u>	(Подпись)	(<u>Смирнов Ф. С.</u>)
Проверил:	(Подпись)	(<u>Корнюшин Ю.П</u>) _(Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльная	оценка:	
- Оценка:		

Калуга, 2023

Цель лабораторной работы: формирование практических навыков по описанию систем в форме передаточных функций.

Задача лабораторной работы: освоение формул, определяющих типовые соединения звеньев. Применение операторов МАТLAВ для преобразования структурных схем. Закрепление полученных знаний на практике.

No	$W_1(s)$					$W_2(s)$				
	a_2	a_1	a_0	b_1	b_0	c_2	c_1	c_0	d_1	d_0
10	1	0	5	4	0	1	0	1	1	0

Задание 2

Подберем физически реализуемые ПФ:

$$W_1(s) = \frac{4s}{1s^2+5}$$
 – первая передаточная функция;

$$W_2(s) = \frac{1s}{s^2+1}$$
 – вторая передаточная функция.

Задание 3

Эквивалентная ПФ при последовательном подключении по формуле равна:

$$W_{9}(s) = \prod_{i=1}^{2} W_{i}(s) = \frac{4s}{1s^{2} + 5} \cdot \frac{1s}{s^{2} + 1} = \frac{4s^{2}}{s^{4} + 6s^{2} + 5}$$

Что соответствует выводу программы:

1 =

$$s^4 + 6 s^2 + 5$$

Задание 4

Эквивалентная ПФ при параллельном подключении по формуле:

$$W_{3}(s) = \sum_{i=1}^{2} W_{i}(s) = \frac{4s}{1s^{2} + 5} + \frac{1s}{s^{2} + 1} = \frac{5s^{3} + 9s}{s^{4} + 6s^{2} + 5}$$

Что соответствует выводу программы:

$$W = parallel(W1, W2)$$

$$>>$$
W=

$$5 s^3 + 9 s$$

$$s^4 + 6 s^2 + 5$$

Задание 5

Эквивалентная ПФ при обратной связи по формуле:

$$W_{9}(s) = \frac{W_{1}}{1 + W_{1}W_{2}} = \frac{\frac{4s}{1s^{2} + 5}}{1 + \frac{4s^{2}}{1s^{4} + 6s^{2} + 5}} = \frac{4s^{3} + 4s}{s^{4} + 10s^{2} + 5}$$

Что соответствует выводу программы:

$$>>$$
W = feedback(W1,W2)

$$W =$$

$$4 s^3 + 4 s$$

$$s^4 + 10 s^2 + 5$$

Задание 6

Эквивалентная ПФ при единичной отрицательной связи, включающую подсистему $W_1(s)$, будет иметь вид:

$$W_{3}(s) = \frac{W_{1}(s)}{1 + W_{1}(s)} = \frac{\frac{4s}{1s^{2} + 5}}{1 + \frac{4s}{1s^{2} + 5}} = \frac{4s^{3} + 20s}{s^{4} + 26s^{2} + 25}$$

Что соответствует выводу программы:

W =

$$4 s^3 + 20 s$$

$$s^4 + 26 s^2 + 25$$

Эквивалентная П Φ при единичной отрицательной связи, включающую подсистему $W_2(s)$, будет иметь вид:

$$W_{9}(s) = \frac{W_{2}(s)}{1 + W_{2}(s)} = \frac{\frac{1s}{s^{2} + 1}}{1 + \frac{1s}{s^{2} + 1}} = \frac{s^{3} + s}{1 + s^{4} + 3s^{2}}$$

Что соответствует выводу программы:

$$>>$$
W = feedback(W22,W22)

$$\mathbf{W} =$$

$$s^3 + s$$

$$s^4 + 3 s^2 + 1$$