

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 5/10, A01H 5/00, C07K 14/415		A1	(11) International Publication Number: WO 97/17452 (43) International Publication Date: 15 May 1997 (15.05.97)
(21) International Application Number: PCT/EP96/04807		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 4 November 1996 (04.11.96)			
(30) Priority Data: 9522558.7 3 November 1995 (03.11.95) GB			
(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB).			
(72) Inventors; and		Published	
(75) Inventors/Applicants (for US only): WOODHEAD, Mary, Rose [GB/GB]; Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA (GB). TAYLOR, Mark, Andrew [GB/GB]; Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA (GB). BRENNAN, Rex, Michael [GB/GB]; Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA (GB).		<i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(74) Agent: DENHOLM, Anna, Marie; SmithKline Beecham, Corporate Intellectual Property, Two New Horizons Court, Brentford, Middlesex TW8 9EP (GB).			

(54) Title: **BLACKCURRANT PROMOTERS AND GENES**

(57) Abstract

Promoters and a process for isolating a promoter capable of driving fruit-specific expression of DNA sequences in transgenic blackcurrant and other non-climacteric fruit.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

BLACKCURRANT PROMOTERS AND GENES

The present invention relates to transgenic plant production and the expression of gene sequences introduced by genetic transformation procedures. In particular the present invention relates to blackcurrant (*Ribes nigrum* L.) fruit-specific gene promoters and their use in the expression of nucleic acid sequences in transgenic fruit.

Studies on the molecular basis of fruit ripening have concentrated on species whose fruit exhibit a climacteric pattern of ripening, for example tomato, avocado, apple, kiwifruit, peach and mango. Ripening in the fruit from these species is accompanied by a burst in the rate of respiration and a generally large increase in the rate of biosynthesis of the plant growth regulator, ethylene.

Non-climacteric fruit have a considerably different ripening mechanism. Examples of non-climacteric fruit are blueberry, cucumber, grape, orange and strawberry.

Fruit ripening is an important area of scientific research with particular attention being paid to high value fruits such as tomato, kiwifruit and avocado. In the tomato some of the genes involved in the ripening process have been isolated and characterised, for example the gene for polygalacturonase , an enzyme which acts on cell wall pectin. The level of expression of the polygalacturonase gene has been down-regulated in transgenic tomato fruit resulting in increased fruit firmness and consequently extended storage life (Schuch *et al*, 1991).

In contrast, less is known about the molecular basis of fruit ripening in non-climacteric fruit. In the work leading to the present invention we have found from measurements of respiration rate that blackcurrant fruit do not exhibit a respiratory climacteric during ripening and that ripe fruit produce very low levels of ethylene, hence blackcurrant can be classed as a non-climacteric fruit.

The blackcurrant is the most widely grown bush fruit in Europe, valued particularly for its high content of ascorbic acid and anthocyanin pigments. Areas for potential improvement in blackcurrants include enhancing pigment levels, aroma, flavour, texture, nutritional values (e.g. vitamin content), storage life,

weather resistance, pest or pesticide resistance and manipulating sugar, soluble solids or acid levels in the fruit.

Plants with novel/improved characteristics can be produced by introducing genes or DNA sequences from the same or a different organism. Many examples 5 are now in the literature of plant DNA sequences which have been used to drive the expression of foreign genes in plants. In most instances the regions adjacent to the 5' terminus of the coding regions of genes have been used in gene constructs. These regions are referred to as promoter sequences. In order to produce novel 10 phenotypes it is necessary to have active expression of the introduced DNA sequence by cloning the sequence downstream of a promoter sequence active in plant tissue. These promoters may be derived from plant DNA or from other sources e.g. viruses. In most cases sequences up to 500-1000 bases are sufficient to allow for the regulated expression of foreign genes. However sequences longer than 15 1 kb may have useful features which permit high levels of gene expression in transgenic plants. Examples of fruit-specific promoters isolated from climacteric fruit such as tomato include the 2AII promoter, and the polygalacturonase gene promoter.

Of considerable importance to the development of genetically improved blackcurrants is the finding in the work of the present invention that blackcurrant is 20 in fact a non-climacteric fruit.

Promoters can vary in the level of expression and in the tissue-specific or developmental stage-specific pattern of expression that they drive. Some promoters are expressed in a tissue-specific or developmental stage-specific manner whereas others are expressed in each and every cell and are called constitutive promoters.

25 The most widely used constitutive promoters are the Cauliflower Mosaic Virus (CaMV) 35S promoter, nopaline synthetase (*nos*) and the octopine synthetase (*ocs*) promoters. Due to the different molecular mechanisms of ripening between climacteric and non-climacteric fruit it is hardly appropriate to use fruit-specific promoters isolated from climacteric fruit such as tomato (e.g. the 2AII promoter or 30 the polygalacturonase gene) in non-climacteric fruit.

Climacteric fruit-specific promoters therefore may not be suitable for many potential biotechnological applications for the improvement of non-climacteric fruit

such as the blackcurrant which ideally require low levels of fruit-specific expression. In the case of the commonly used constitutive promoters, they have the disadvantage that they drive expression at high levels in all or nearly all cell types and throughout the development of the plant. Expression of the introduced gene or 5 DNA sequence driven by a constitutive promoter can have a deleterious effect on normal plant development. Additionally, the commonly used constitutive promoters are derived from plant infectious agents such as plant viruses or *Agrobacterium*, a soil-borne infectious bacteria. The source of these promoters is a cause for concern in risk assessment of transgenic plant production.

10 Accordingly, the present invention provides promoters and a process for obtaining promoters capable of driving fruit-specific expression of DNA sequences in transgenic blackcurrant and other non-climacteric fruit. The process is as defined in claim 1 and the promoters as defined in claim 2. Preferably the promoter comprises the sequence of nucleic acid bases in Figure 9 or IDSEQ 11 herein 15 designated the RIBI promoter or in IDSEQ 14 herein designated the RIB 7 promoter. No previous promoters have been reported to be suitable to drive fruit-specific expression in blackcurrant and other non-climacteric fruit.

One advantage of the present invention is that because of the developmental stage specificity of the expression ie. it offers high level expression in fruit and 20 only very low levels in other tissues, there is a reduced chance that the introduced DNA sequences will have an adverse effect on normal plant development.

The promoters of the present invention also have the advantage over some constitutive promoters in that they are naturally occurring plant gene sequences derived from blackcurrants, ie. a plant that is consumed by humans and not from 25 plant pests or other infectious agents; this overcomes objections to the use of such sequences due to potential recombination.

The isolation and characterisation of blackcurrant fruit-specific gene promoters and how they can be used to drive the expression of genes of interest in plants is given below and in the following examples. This description is purely for 30 the purpose of illustrating the invention. It should be noted that the gene promoter may function in a similar (that is, fruit-specific) manner in other related species of non-climacteric fruit, in particular other *Ribes* species.

Promoter or use in the invention may be isolated from genomic libraries by the use of cDNA probes. The cDNA clones of genes highly expressed specifically in ripe blackcurrant fruit were obtained by differentially screening a cDNA library constructed from mRNA isolated from ripening blackcurrant fruit.

5 In a further aspect of the invention there is also provided cDNA for genes which exhibit differential expression in fruit during the ripening period of fruit development. In particular the cDNA is identified herein as pRIB1, pRIB3, pRIB5, pRIB6 and pRIB7.

10 The promoters of the present invention can be used to control the expression of one or more genes in non-climacteric and/or climacteric fruit. Preferably the non-climacteric fruit is the blackcurrant. Suitably the genes are novel/exogenous.

15 According to the present invention we also provide the use of promoters of the present invention in the transformation of plant cells to control the expression of one or more genes in non-climacteric/climacteric fruit.

In a further aspect of the invention there are provided novel plant cells and plants transformed using the promoter according to the present invention. Preferably the plants or seeds are blackcurrants.

20 According to the present invention, plant cells may be transformed using promoters of the invention using a variety of known transformation methods such as *Agrobacterium* - mediated or other vector- mediated transformation methods or physical transformation methods such as biolistics, chemical or electrical transfection or micro-injection.

25 In particular the RIB1 or RIB 7 promoter regions are suitable for incorporation into plasmid vectors designed for general use in construct production in *E. coli*, and for use in stable, *Agrobacterium*-mediated transformation (Bevan, 1984) and in transient transformation (Fromm *et al.*, 1985) or stable, physical transformation methods (Klein *et al.*, 1987). DNA sequences which one wishes to have expressed only in the fruit of transgenic blackcurrants and possibly other 30 non-climacteric soft fruit can be inserted downstream of the promoter region of the blackcurrant RIB1 or RIB 7 gene, prior to introduction into plant cells or production of transgenic plants.

The transformed cells may then, in suitable cases, be regenerated into whole plants in which the new nuclear material is stably incorporated into the genome.

Examples of genetically modified plants according to the invention include as well as blackcurrants, fruits such as blueberry, cucumber, grape, orange and 5 strawberry. Plants produced by the process of the invention may contain more than one recombinant gene. In order to prepare RNA suitable for a cDNA library construction, an improved method for the RNA extraction was developed as the available methods were found not to be applicable to blackcurrent fruit. The problems in working with blackcurrant tissue include the combination of the high 10 levels of phenolic compounds and polysaccharides and the high acidity of berry extracts.

Accordingly in a further aspect of the present invention there is provided a method of extracting nucleic acid in particular RNA from blackcurrant fruit. One known method for grape berries (Tesniere & Vayda, 1991) was found to be unable 15 to yield large quantities of good quality RNA from blackcurrant fruit which was not contaminated with coloured substances. This method was the basis for the modified method for the extraction of RNA from blackcurrant fruit.

Two key modifications were the method of tissue homogenisation and the inclusion of 8.5% (w/v) insoluble polyvinylpolypyrrolidone (PVPP) in the 20 homogenisation buffer. The use of PVPP resulted in the removal of pigment from the fruit pulp at the start of the extraction procedure producing a clear final RNA pellet. Pulping fruit in the homogenisation buffer rather than grinding frozen fruit in a fine powder in liquid nitrogen and then adding the buffer was a less harsh method of tissue maceration and resulted in less disruption of cells and a reduction in the 25 amount of gelatinous material. Pulping also reduced the problem of extracting large amounts of seed as well as fruit RNA which otherwise occurred during grinding in liquid nitrogen. Each fruit can frequently contain over twenty seeds and these are impossible to manually extract quickly enough to prevent the expression and subsequent isolation of wound-induced mRNA's from the fruit. In ripe fruit the 30 problem can be solved using a juicerator (Acme). This macerates the fruit tissue to a pulp which can be collected and retains the seed and large pieces of skin material.

Unripe fruit (i.e. yellow or green/red) were too hard to be pulped using this method so a coffee grinder was used instead.

The average yield of total RNA using this method is 15-20 µg RNA per g fresh weight of fruit, for each stage of ripening investigated. The ratio of 5 A₂₆₀/A₂₈₀ nm was between 1.8-2.0. The yield was the same whether RNA was extracted from the pulp on the day of fruit harvest or whether the pulp was stored at -80 °C, defrosted and subsequently used in an extraction. This implies that the RNA remains stable in the pulp. The yields are similar to those obtained from other fruit tissues e.g. apples (13 µg RNA per g fresh weight Lay-Yee et al., 1990) and 10 peaches (12-15 µg RNA per g fresh weight, Callahan *et al.*, 1989).

Denaturing agarose gel electrophoresis revealed that two ribosomal RNA bands were clearly visible suggesting that the RNA extracted using this new procedure was undegraded. In addition the RNA isolated from the fruit was capable of directing the synthesis of polypeptides as demonstrated by *in vitro* translation 15 using a wheat germ lysate system. Polypeptides of up to approximately 80 kD were synthesised and the incorporation of ³⁵S - methionine into TCA precipitable products was about 30 times higher than background values when 20 µg of total RNA were used compared with the minus RNA control.

The new extraction method described below in Example 2 allowed for the 20 first time the extraction of RNA from blackcurrant fruit. This RNA has been shown to be biologically active, as demonstrated by *in vitro* translation results. In addition this RNA has been used to construct a cDNA library from an early ripening stage (Example 4 below). The cDNA library contained approx. 6.6×10^6 primary clones with an average insert size of 900 base pairs. Differential screening 25 of 10,000 clones has resulted in the isolation of 5 clones which show an increase in expression during ripening.

The invention will be described further with reference to the following figures, in which;

Figure 1 shows the results of an RNA blot analysis of total RNA isolated 30 from blackcurrant (cv Ben Alder);

Figure 2 shows the results of a DNA blot analysis;

Figure 1 shows the nucleotide sequence of the pRIB1 cDNA clone (IDSEQ 1);

Figure 4 shows the deduced amino acid sequence encoded by pRIB1 (IDSEQ 2);

5 Figure 5 shows the nucleotide and predicted amino acid sequence of pRIB3 (IDSEQ 3 and 4 respectively);

Figure 6 shows the nucleotide and predicted amino acid sequence of pRIB 5 (IDSEQ 5 and 6 respectively);

10 Figure 7 shows the nucleotide and predicted amino acid sequence of pRIB 6 (IDSEQ 7 and 8 respectively);

Figure 8 shows the nucleotide and predicted amino acid sequence of pRIB 7 (IDSEQ 9 and 10 respectively);

Figure 9 shows the nucleotide sequence of the RIB1 promoter up to the transcription start site (IDSEQ 11), and

15 Figure 10 shows the RIB1 gene sequence (IDSEQ 12) and the deduced amino acid sequence (IDSEQ 13). The transcription start site was located by primer extension analysis and this C residue in position 1797 is indicated in bold type and underlined in the figure.

20 EXAMPLES

Unless indicated otherwise the methods and standard techniques used below are as given in Sambrook *et al* (1989).

EXAMPLE 1 - Pigment and respiratory analysis

25 1.1 Plant material

Fruit, leaves and stems were harvested from blackcurrant (*Ribes nigrum* L. cv. Ben Alder) plants grown in experimental field plots at the Scottish Crop Research Institute, Invergowrie, Dundee, UK. Blackcurrant tissues were harvested and frozen immediately in liquid nitrogen. Thereafter, tissues were stored at -80°C prior to 30 analysis. Roots, leaves and stems were harvested from either one year old plants that had not yet borne fruit or from two-year-old plants that were producing fruit. Fruits

were harvested at five stages of ripening as determined by fruit colour (designated green, green/red, red/green, red and black).

1.2 Determination of fruit anthocyanin content

Blackcurrant fruit (0.5 g FWt) was ground to fine powder in liquid nitrogen and extracted with 1 ml of methanol containing 1% (v/v) trifluoroacetic acid. After centrifugation (16000 g, 10 min) the pellet was re-extracted with a further 1 ml of methanol/trifluoroacetic acid. The absorbance of the combined extracts at 518 nm was determined spectrophotometrically. Anthocyanin concentration in the extracts was estimated by comparison with a standard curve produced using the artificial pigment, amaranth (trisodium 3-hydroxy-4-(4-sulphonato-1-naphthylazo)naphthalene-2, 7-disulphonate).

1.3 Ethylene and CO₂ determinations

The rate of ethylene and CO₂ evolution from harvested blackcurrant fruit was determined using a Hewlett Packard 5890A gas chromatograph. Blackcurrant fruit were placed in gas-tight jars and incubated at 15°C for up to 24 h. Sampling was carried out using a gas-tight syringe. For CO₂ determinations, the gas chromatograph was fitted with a thermal conductivity detector and a Porapak Q column (2 mm internal diameter, 1.85 M length) maintained at 50°C. A flow rate of 20 cm³ min⁻¹ was set for the carrier gas (helium) and the peaks were integrated on a Spectra-Physics integrator (San Jose, California, USA). The chromatograph was calibrated with injections of 1 ml samples of 1% CO₂ (Phase Separations Ltd, Clwyd, Wales, UK). For ethylene measurements, the gas chromatograph was fitted with a flame ionization detector and a Porapak R column (2 mm internal diameter, 1.85 M length) maintained at 80°C. The flow rate of carrier gas (helium) was 50 cm³ min⁻¹ and the system was calibrated by injecting 1 ml samples of ethylene gas at a concentration of 91 ppm (Phase Separations Ltd, Clwyd, Wales, UK). All peaks were integrated using a Hewlett-Packard 3390A integrator.

Results

30 Rate of ethylene and carbon dioxide production by blackcurrant fruit

Very low levels of ethylene were produced by fruit from all stages of ripening (the level of ethylene from green, green/red and red/green fruit was below the

detection limit of gas chromatograph (approximate ppm)). As an indication of the rate of respiration of the ripening fruit, the rate of CO₂ production was determined. There was no burst in respiration rate as the fruit ripened. In fact, the highest rate of CO₂ production was produced by green fruit. In the later ripening stages, the level was approximately 20% lower than in the green fruit and remained constant as the fruit ripened from the green/red to the black stage.

EXAMPLE 2 - RNA Extraction

RNA was extracted from Ben Alder fruit at five ripening stages, and from leaf, root and stem material from fruited and non-fruited Ben Alder plants.

Glassware was baked at 180°C for 12 h and plasticware and Miracloth (Calbiochem) were autoclaved prior to use. Solutions were prepared from stocks by dilution in sterile DEPC-treated (diethyl pyrocarbonate) distilled water before autoclaving. Unless otherwise stated, the procedures were carried out at 4°C.

Freshly harvested berries were weighed into 50 g portions and stored on ice. Leaf, root and stem material was harvested, rapidly frozen in liquid nitrogen and stored at -80°C until required. Fruit (50 g) was pulped with 100 ml of homogenisation buffer (200 mM Tris.HCl pH 8.5, 300 mM LiCl, 10 mM Na₂EDTA; 1% (w/v) sodium deoxycholate, 1.5% (w/v) sodium dodecyl sulphate, 8.5% (w/v) insoluble polyvinylpolypyrrolidone (PVPP), 1% (v/v) Nonidet P-40, 1 mM aurintricarboxylic acid, 5 mM thiourea, and 10 mM dithiothreitol (the last three components were added as solids after autoclaving)) in a domestic coffee grinder for 45 s. Leaves, roots and stems were ground to a fine powder in a sterile pestle and mortar, with a little sand (previously baked at 180°C for 12 h) in liquid nitrogen and 5 vol of homogenisation buffer (containing 4% PVPP instead of 8.5%) was added per gramme of tissue. The viscous material was poured into sterile 50 ml tubes. If not required for immediate use, the fruit pulp was frozen in liquid nitrogen and stored at -80°C.

Frozen fruit pulp was defrosted rapidly in a microwave oven prior to use in the extraction. To proceed with the extraction, the homogenate was diluted 1:1 with sterile water and mixed well. 20 ml of diluted homogenate was placed in a 50 ml Oak Ridge-type centrifuge tube containing 15 ml homogenisation buffer and

shaken. The tubes were placed in a waterbath at 65°C for 10 min, with occasional mixing, and then centrifuged at 12,000 x g for 30 min at 4°C. The supernatant was filtered through two layers of Miracloth and collected in an Oak Ridge-type centrifuge tube and solid CsCl was dissolved in the supernatant to a final concentration of 0.2 g CsCl per ml of filtered extract. The extract was gently layered onto a 10 ml cushion of 5.7 M CsCl containing 10 mM Tris.HCl pH 7.5 and 10 mM Na₂EDTA, in a Beckman 50 ml ultracentrifuge tube and centrifuged at 100,000 x g for 20 h at 20°C. After centrifugation, the supernatant was carefully removed with a syringe and discarded. The RNA pellet remained at the bottom of the tube.

The pellet was washed with 5 ml of ice-cold 70% ethanol, centrifuged at 10,000 x g for 10 min at 4°C and the tubes inverted to allow the pellet to dry. The RNA was resuspended in a total of 1 ml of sterile distilled water and transferred to a sterile microfuge tube. 200 µl of 3 M LiCl (0.5 M final concentration) and 2.5 ml of 95% ethanol was added to precipitate the RNA (overnight at -20°C).

RNA was recovered by centrifugation at 16,000 x g for 30 min at 4°C, and the pellet was washed three times with 0.5 ml 2.5 M sodium acetate (pH 5.5). Following centrifugation at 16,000 x g for 15 min at 4°C and removal of the supernatant, the pellet was resuspended in 100 µl of sterile distilled water. Ethanol (95%) was slowly added to a final concentration of 30% (v/v) of the total and the tube vortexed briefly. After centrifugation at 16,000 x g for 2 min at 4°C the supernatant containing the RNA was transferred to a fresh microfuge tube and precipitated by the addition of 0.1 vol sodium acetate pH 5.2 and 3 vol ethanol and incubation at -20°C overnight. The RNA was recovered by centrifugation at 16,000 x g for 30 min at 4°C, the pellet washed in 0.5 ml 70% ethanol and allowed to dry before it was suspended in sterile water.

EXAMPLE 3 -RNA analysis

Total RNA was extracted from blackcurrant tissues as described above in Example 2. Steady-state transcript levels were determined by RNA blot analysis. Total RNA (15 µg/track) was separated electrophoretically under denaturing conditions and transferred by capillary action onto Hybond-N membranes

(Amersham) as recommended by the manufacturer. Gels were probed with ^{32}P labelled cDNA inserts isolated from cDNA clones following restriction endonuclease digestion. Inserts were separated by electrophoresis through agarose gels and purified by electroelution. After hybridisation for 16-24 h at 42°C in 50% formamide, filters
5 were washed sequentially in 2 x SSC, 0.5% SDS followed by 2 x SSC, 0.1% SDS and then 0.1% x SSC, 0.1% SDS for 20 min per wash at 52°C prior to exposure to X-ray film at -70°C for between 24 and 96 h. Transcript size was determined by comparison of electrophoretic mobility with RNA markers of known sizes (Life Technologies).
10 The intensity of the hybridisation signal was determined by densitometry using a Millipore Bio-Imager (Millipore, Michigan, USA).

Figure 1 shows the results of one RNA blot analysis. Total RNA was isolated from blackcurrant (cv. Ben Alder) leaves (L), stems (S) and roots (R) from plants that had borne fruit and from those that had not, and from fruit at five ripening stages (G = green; GR = green/red; R/G = red/green; R = red; B = black).
15 Total RNA (20 µg per lane) was analysed by electrophoresis through a 1.2% denaturing agarose gel, blotted onto nylon membrane and hybridised with a labelled probe prepared to pRIB1, using standard techniques.

EXAMPLE 4 - cDNA clone isolation and analysis

20 A cDNA library was constructed from polyadenylated RNA (7 µg) extracted from green/red blackcurrant fruit. Polyadenylated RNA was prepared by affinity chromatography using oligo d(T) cellulose (Life Technologies). Double stranded cDNA was synthesised and directionally ligated into *Eco*RI/*Xba*I digested lambda Zap arms using a Uni-Zap XR vector kit (Stratagene). The library was packaged using an
25 *in vitro* kit (Stratagene) and plated on the XL1-Blue strain of *E.coli* (Stratagene).

Differential gene expression during ripening

The cDNA library was screened with ^{32}P labelled cDNA from green fruit and green/red fruit. By differentially screening a total of 10,000 plaques, five were found to be differentially expressed between these stages. The *in vivo* excision protocol of
30 Stratagene with the R408 helper phage was used to rescue putative ripening-related cDNAs in pBluescript SK (-) plasmids. The plasmids were purified using Qiagen columns (Qiagen Ltd., Dorking, UK). Steady-state expression levels of the

corresponding genes (designated RIB1, RIB3, RIB5, RIB6 and RIB7) were determined by RNA blot analysis. The intensities of the hybridisation signals were determined by densitometry. For all clones, very low or negligible levels of expression could be detected in the green fruit and the highest levels of expression 5 were detected in black, fully ripe fruit. In the quantitative densitometric analysis therefore, steady-state transcript levels are expressed relative to the level in black fruit. In order to demonstrate equal loading and transfer of RNA during this analysis, filters were stripped and hybridised with a potato 25S ribosomal RNA probe. An equivalent hybridisation signal was detected for RNA extracted from tissue at all 10 stages (data not shown).

Expression in other blackcurrant tissues

Steady-state expression levels of the RIB genes were also determined in leaves, stems and roots of blackcurrant plants that had borne fruit and from those that had not. A variety of expression patterns were observed. For example, the expression 15 of RIB1 and RIB7 was confined largely to fruit. RIB3, RIB5 and RIB 6 expression however was less specific to fruit and relatively high expression levels could be detected in some of the other plant tissues that were tested. The expression level of some of the clones was different depending on whether the blackcurrant plants had produced fruit or not. For example, the expression level of RIB5 was higher in plants 20 that had never produced fruit compared with tissues from plants that had.

The clone pRIB1 hybridised to cDNA probes prepared from mRNA from ripe fruit but not to cDNA probes prepared from green, unripe fruit. Using the cloned pRIB 1 cDNA as a probe, a blackcurrant (cv. Ben Alder) genomic library constructed in λ Fix II (custom synthesised by Stratagene Ltd, Cambridge, UK) was 25 screened using standard techniques (Sambrook *et al.*, 1989). A genomic clone corresponding to the cDNA clone was isolated and the blackcurrant RIB1 genomic clone was plaque purified. DNA was prepared and fragments subcloned into plasmid vectors by standard procedures (Sambrook *et al.*, 1989). The RIB1 genomic clone contained an insert of 18 kilobase pairs (kbp) from which the 30 relevant sub-fragments were cloned into plasmid vectors. One subclone contains approximately 3 kbp of gene sequence (two exons and one intron) including

approximately [REDACTED] kbp of 5' flanking sequence which contains the blackcurrant RIB1 promoter region.

RNA blot analysis (Sambrook *et al.*, 1989) of blackcurrant tissues indicates that the gene is highly expressed in ripe blackcurrant fruit and expressed at negligible levels in other tissues of the blackcurrant plant (Figure 1). Therefore this promoter region will be suitable to drive the expression of any piece of DNA cloned downstream of it (that is, following the 3' terminus of the promoter region) in ripening fruit but not in unripe fruit.

10 A positive genomic clone corresponding to the RIB 7 cDNA (RIB 7) was isolated from the blackcurrant (*Ribes nigrum* L., cv. Ben Alder) genomic library and sub-cloned using the same techniques as for RIB 1. Two adjacent sub-clones (as determined by PCR) were sequenced and the RIB7 gene is contained within this sequence.

15

DNA sequence analysis

Plasmid DNA for sequencing was prepared using Qiagen columns. DNA sequence was obtained from both strands of alkaline denatured plasmid by manual dideoxysequencing using Sequenase version 2.0 (United States Biochemical Corporation) or by automated sequencing using an AB1 373 automated sequencer. DNA sequences were compiled and compared using the sequence analysis software and databases available on the SEQNET Computational Molecular Biology facility at SERC Daresbury Laboratory, UK.

Genomic DNA isolation and Southern analysis

25 Genomic DNA was isolated from the leaves of three blackcurrant cultivars (Ben Alder, Ben Sarek and Baldwin), Tayberries (*Rubus loganobaccus*) and raspberries (*Rubus idaeus* cv. Glen Moy). Leaves (1 g FWt) were ground to a fine powder in liquid nitrogen. 2.5 ml buffer containing 2% (w/v) CTAB, 100 mM Tris.HCl pH 8.0, 1.4 M NaCl, 20 mM Na₂EDTA, 0.1% (w/v) DTT at 65°C was
30 added and mixed gently prior to the addition of 0.1 g Polyclar AT (BDH). After a 30 min incubation at 65°C, 7.5 ml of chloroform:isoamyl alcohol (24:1 [v/v]) was added and gently mixed. Following centrifugation (5000 g, 5 min) the aqueous phase was

removed and mix [redacted] with an equal volume of propan-2-ol. After a 15 min incubation at room temperature, nucleic acids were pelleted by centrifugation (10000 g, 15 min).

The air-dried pellet was resuspended in 0.85 ml water before the addition of 50 µl 1M KAc, pH 5.5, 20 µl of 0.5 M Na₂EDTA, 50 µl Caylase (10 mg/ml [Cayla, Toulouse, France]), 1 µl RNase A (10 mg/ml [Sigma]) and 29 µl water. The mixture was incubated for 14 h at 37°C. 50 µl of 1 M Tris.HCl (pH 8.0) was then added to the solution prior to extraction with one volume of chloroform:IAA (24:1 [v/v]). Genomic DNA was precipitated with three volumes of ethanol, washed with 70% ethanol, air dried and finally resuspended in TE buffer (pH 8.0).

5 5 µg of each DNA sample was digested separately with the restriction endonucleases *EcoRI*, *BamHI* and *HindIII* and resolved by electrophoresis on 0.8% (w/v) agarose gels. DNA was transferred under vacuum to Hybond N membranes (Amersham) and hybridised with the ³²P labelled inserts of the pRIB 1 clone, prepared as above. Filters were washed at high stringency (0.1 x SSC, 0.1% SDS at 15 65°C) and exposed to X-ray film for 24-72 h at -70°C with intensifying screens. Figure 2 shows the results of one DNA blot analysis : Genomic DNA (5 µg per lane) from the blackcurrant cultivars Ben Alder (lane 1), Ben Sarek (lane 2) and Baldwin (lane 3), Tayberry (lane 4) and the raspberry cultivar Glen Moy (lane 5), was digested with either of the restriction endonucleases *EcoRI*, *BamHI* or *HindIII*, and 20 fractionated on an 0.8% (w/v) agarose gel. The DNA was blotted onto nylon membrane hybridised with a labelled probe prepared to pRIB1, using standard techniques (Sambrook *et al.*, 1989).

Results

Sequence analysis of the pRIB clones

25 pRIB 1

The size of the insert in pRIB1 is 882 base pairs, similar to that expected from the estimate of transcript size. A potential long open reading frame was identified from nucleotide position 3 to the TAA termination codon at position 489. A translation start codon is not present in this ORF indicating that the 5' portion of the 30 cDNA is absent. A polyadenylation signal was identified in the cDNA sequence. Comparison of the deduced amino acid sequence of this ORF and the nucleotide sequence of the cDNA did not reveal any significant sequence similarity to other

sequences in the European Molecular Biology Laboratory (EMBL) database of gene sequences.

When compared with the SwissProt protein database using the 'Blitz' programme (MPsrch programme, Biocomputing Research Unit, University of Edinburgh, UK) the putative amino acid sequence shows similarity (% 50.9 % similarity, 36.9 % identity) to a cDNA encoding a protein isolated from kiwifruit (Ledger and Gardner, 1994). The steady state level of the kiwifruit transcript increases during fruit development, but declines during ripening. This is in contrast to the expression of the RIB1 gene in blackcurrant fruit where the steady state transcript level increases during the ripening period. Importantly, like the blackcurrant transcript, the kiwifruit gene is expressed almost entirely in the fruit.

pRIB 3

The ORF present in pRIB3 encodes a polypeptide which shares a high degree of sequence similarity with group one metallothioneins. The most similar metallothionein protein to the blackcurrant deduced sequence was from kiwifruit (79% similarity, 67% identity). Typical of metallothioneins, the putative blackcurrant polypeptide has a low M_r value (M_r 6808) and is acidic (pI 4.56). Metallothioneins also contain characteristic cysteine rich domains and the arrangement of these regions in blackcurrant and in a kiwifruit metallothionein is highly conserved. There are two Cys pairs in the N-terminal domain and three Cys pairs in the C-terminal domain separated by a hydrophobic domain. This organisation has also been observed in putative metallothioneins isolated from rice and *Arabidopsis* but differs from some plant sequences where there are three Cys pairs in the N-terminal domain.

25

pRIB 5

A long ORF was also identified in the pRIB5 cDNA sequence, extending from the nucleotide in position 3 to the termination codon in position 777. A methionine initiation codon was not present in this ORF indicating that the cDNA was not full length. Searches of the EMBL database with the deduced amino acid sequence of this ORF and also with the nucleotide sequence did not reveal any significant similarities

to known sequences. The putative amino acid sequence encoded by pRIB5 does not show significant similarity to other amino acid sequences in the SwissProt database.

p RIB 6

5 pRIB6 encodes the C-terminal portion of a polypeptide that shares sequence similarity with the cysteine proteinase family. This group of proteins includes actininidin from kiwifruit, papain from papaya and bromelain from pineapple. The putative protein encoded by pRIB6 shows most similarity to a cysteine proteinase precursor from *Arabidopsis thaliana* (74% similarity, 60% identity), the expression of which is induced by high salt conditions. Five of the highly conserved residues found 10 in or near the active site of all cysteine proteases are present in the blackcurrant sequence.

pRIB7.

15 pRIB7 contains a long ORF extending from a putative methionine initiation codon at nucleotide 29 to a TAA termination codon at position 860. The ORF encodes a protein of M_r 29,215 and a pI of 7.9. However, a common poly(A)⁺ addition sequence is not present. The pRIB7 ORF was most similar to the yeast mitochondrial protein MRS4, a mitochondrial RNA splicing protein (62% similar and 20 42% identical at the amino acid level). Hydropathy plots have shown that the MRS4 protein contains potential membrane spanning domains and analysis of the pRIB7 ORF sequence shows that this may also be the case for the blackcurrant polypeptide. The MRS4 protein contains three repeated amino acid sequences of approximately 100 residues and a characteristic highly conserved domain. Such sequence motifs are 25 also seen in a number of mitochondrial carrier proteins.

RIB 7

The 5150 nucleotide sequence contains a 'TATA box' element at nucleotide 3041 and a putative ATG translational start codon at position 3156. This translational 30 start codon is in the context TTTCAATGGCG and matches the optimal context consensus sequence (NNANNATGGCT), where N is any nucleotide) proposed by Heidecker and Messing (1986) in all but two positions (these are underlined).

By comparison with the cDNA sequence, the RIB 7 gene contains two exons and one intron. The 454 nucleotide intron is located between bases 3927 and 4381. On the basis of the translational start codon being located at position 3156, the putative polypeptide encoded by the RIB 7 gene is composed of 328 amino acids. The deduced amino acid sequence has been compared with others in the SwissProt database and is most similar to a mitochondrial RNA splicing protein (MRS4 : Accession number P32500) from yeast (60.3% similarity and 40.3% identity).

5 Southern analysis

10 Southern blots of genomic DNA from *R. nigrum* (cvs Ben Alder, Ben Sarek and Baldwin), *R. loganobaccus* (Tayberry) and *R. idaeus* (cv Glen Moy), were hybridised with probes from the RIB genes. Generally, with all these probes, a small number (2 to 4) of hybridising bands were detected by Southern analysis when the genomic DNA was digested with *Bam*HI, *Eco*RI or *Hind*III. This indicates that the 15 RIB genes are present in low copy number in the genomes of these diploid species. Blots probed with RIB3 and RIB5 showed that these or similar sequences are not present in the genomes of raspberry and Tayberry as no hybridising bands could be detected on the Southern blots (data not shown). As a control, these blots were stripped and re-probed with a potato β -tubulin probe which gave multiple 20 hybridisation signals with genomic DNA from all the samples that were probed (data not shown).

Discussion

On the basis of respiration measurements, blackcurrants do not exhibit a typical climacteric pattern of ripening. Additionally, the large increase in ethylene 25 evolution that commonly accompanies the respiratory climacteric was not detected. Compared with the rate of ethylene production from ripening avocado fruit (internal ethylene levels increase 1000-fold between the pre-climacteric and climacteric peak) the amount of ethylene produced by blackcurrant fruit was very low. It is not clear which plant growth regulators trigger ripening processes in blackcurrant fruit.

30 Irrespective of the plant growth regulators that control ripening in blackcurrant fruit, until now, none of the genes that are differentially expressed during fruit ripening have been isolated. A cDNA library constructed from the green/red stage of

ripening was differentially screened with probes from this stage and from green fruit, since genes that are differentially expressed as anthocyanin accumulation commences are good candidates for having an important role in this and other ripening processes. In fact the expression of all five genes corresponding to the isolated cDNAs, 5 continued to increase as ripening progresses and reached a maximum steady-state level in fully ripe, black fruit (Figure 1). The expression of these genes showed varying degrees of fruit specificity. RIB1 and RIB7 were expressed only at very low levels in non-fruit tissues. The promoters driving the expression of these two genes therefore are good candidates for being fruit specific promoters and therefore suitable 10 for use in manipulating ripening processes in transgenic fruit. RIB3, RIB5 and RIB6 were also expressed in roots leaves and stems. RIB3 exhibited a markedly different expression pattern in stems and roots from plants that had not borne fruit (no detectable expression) compared with plants that had (relatively high steady-state transcript levels). It seems likely that the expression of these genes is highly regulated 15 in a tissue- and developmental-stage specific manner.

In order to determine the copy number and occurrence of the RIB genes in other soft fruit species, Southern blot analyses were performed. Of the five clones isolated from the cDNA library, three of them, pRIB1, pRIB6 and pRIB7 hybridised to DNA from three blackcurrant cultivars, Tayberry and red raspberry. These clones 20 may represent genes that occur widely in soft fruit species. Interestingly, in Southern blots probed with pRIB3 and pRIB5, hybridising bands were only present in lanes containing blackcurrant DNA, suggesting these genes and related sequences are absent in other soft fruit species.

It was possible to identify tentatively three of the blackcurrant sequences 25 based on similarity searches of databases. Sequences similar to pRIB3, encoding a metallothionein-like protein and pRIB6, encoding a cysteine proteinase have been found previously to be expressed in many plant species. A number of highly conserved amino acid residues, essential for protease activity, are present in the putative blackcurrant sequence.

30 The pRIB3 ORF has strong sequence similarity to a number of metallothionein-like proteins that have been isolated previously from plants. It is interesting, that of these proteins, the most similar to the pRIB3 sequence, was

isolated from the ripening fruit of kiwifruit. Like pRIB₁ high steady-state transcript levels of the kiwifruit gene were detected in ripe fruit. In animals, metallothioneins function to maintain metal ion homeostasis and are involved in metal ion detoxification. Additionally they may provide protection against oxidative stress.

5 Although no similar functions have yet been demonstrated for plant metallothioneins, it is possible that they have similar roles. Indeed plant metallothionein-like proteins have been shown to bind cadmium and copper. However it is unclear at the moment, why the steady-state level of the metallothionein-like protein specific transcript increases in ripe fruit. It is interesting that DNA sequences hybridising to the RIB3

10 probe on the Southern blot were only present in blackcurrant, and not in raspberry or Tayberry.

pRIB7 was most significantly similar to a gene that has not been previously found to be expressed in plants, the yeast MRS4 gene. This nuclear gene encodes a mitochondrial RNA splicing protein. Although most similar to the MRS4 gene product, the pRIB7 ORF shares some sequence motifs with a number of mitochondrial carrier proteins such as the phosphate carrier protein and the ADP/ATP translocase. The mitochondrial carrier family is characterised by three tandem repeats of a domain of approximately 100 residues, and a highly conserved region within the repeated domain serves as a signature pattern. This consensus pattern (P-Xaa-[D,E]-

15 Xaa [L, I, V, A, T]-[R, K]-Xaa-[L,R]-[L, I, V, M, F, Y]) is found three times in the pRIB7 ORF although one amino acid residue in the repeat in the -COOH-domain differs from this consensus pattern (Q in place of L or R). The role of the pRIB7 polypeptide therefore is unknown but it may be related to changes in solute transport across the mitochondrial membrane, reflecting changes in metabolism as fruit ripen.

20 25 The pRIB1 and pRIB5 ORFs did not show any sequence similarity to known sequences in the EMBL database.

REFERENCES

Bevan, M. (1984). *Nucl. Acid. Res.* 12, 8177.

30 Callahan, H., Morgens, P and Walton, E (1989). *Hortsci.* 24, 356-358

Fromm, M.E., Taylor, L.P. & Walbot, V. (1985). *Proc. Natl. Acad. Sci. USA* 82, 5824-8.

Heidecker, B. and Messing, J. (1986). *Ann. Review of Plant Physiology*, 37, 439-466.

Klein, T.M., Wolf, E.D., Wu, R. & Sandford, J.C. (1987). *Nature* 327, 70-73.

5 Lay-Yee, M., Dellapenna, D. and Ross, G.S. (1990). *Plant Physiol.* 94, 850-853

Ledger, S.E. and Gardner, R. C. (1994) *Plant Mol. Biol.* 25, 877-886

Martin, C., Prescott, A., Mackay, S., Bartlett, J. & Vrijlandt, E. (1991). *Plant J.* 1, 37-49.

10 Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*, 2nd Edn. Cold Spring Harbor Laboratory Press.

Schuch, W., Kanczler, J., Robertson, D., Hobson, G., Tucker, G., Grierson, D., Bright, S., Bird, C. *Hortsci* 26, 1517-1520. (1991).

Tesniere, C. & Vayda, M.E. (1991). *Plant Mol. Biol. Rept.* 9, 242-251.

SEQUENCE LIST

(1) GENERAL INFORMATION:

5

(i) APPLICANT:

- (A) NAME: SmithKline Beecham plc
- (B) STREET: New Horizons Court
- (C) CITY: Brentford
- 10 (D) STATE: Middlesex
- (E) COUNTRY: England
- (F) POSTAL CODE (ZIP): TW8 9EP
- (G) TELEPHONE: 0181 975 6334
- (H) TELEFAX: 0181 975 6177

15

(ii) TITLE OF INVENTION: Novel product and process

(iii) NUMBER OF SEQUENCES: 15

20

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

25

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

30

- (A) LENGTH: 882 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: unknown
- (D) TOPOLOGY: unknown

35

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

5 (A) ORGANISM: *Ribes nigrum*
 (B) STRAIN: Ben Alder

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	CAGCATTCCA AGAGGAAAAA AAACATGATC AAGAAGTAAT TACTACAAA GAGGAAGCTG	60
	TAGTAGTAAC TGCACCACCA CCATCAGAAA CAGCAGAGCC AGCTGCAGCT GTTGTGCCG	120
15	AGGAAGAGAC AACAAAGGAG CAAGAAGAGC CGCCAGCAGT ATCGGCCGAG AACCTGTGG	180
	CCCCAGCTGA AGTAGAGACA AAGGTGGAAG TTACAGAAGA ACCACCAAAA GTTGAGGAGA	240
20	AACCAGCAGA AGTAGAGGAG GCTCCAAAGG AACAGTAGA AACAGAACCA GCTGTTGAGA	300
	AGACCATCAA GGAGGAAACT GTAGAGGACT CTGTCGTGGC ACCTGCTCCC GAACCGGAAG	360
	CCGAAGTCCC AAAAGAGAAG GTAATTGCTA CTACTGAAAC TACTGAGGAA GAAGAAAAAG	420
25	TGGCAGTTGA AGAAGTTGAA GTGAAAGTTG AACAGAGGA GGGAGAAGTT ACTGAGGAGA	480
	AGACTGAGTA AAATAAGTTG TACAACATT ATTATGCACGC CTTATTTCT CAATTGGAAG	540
30	TTTATAATGT AGTGGGCTTT TGGTAATATT TGGGGTTTA ATAAGTGGTT TAAAGTGGTT	600
	AAGGCTTTT TGGAAATTAG ATATTTGGGT AAAGGCCTAC TTGAACAAAA CATAGAAATT	660
	TGGCACACAT GGGTAAAAGT CAAACTTGT TGAGGATGTT TTCTTGTGG TAAATGTGT	720
35	GTGCCAAGTA GTAGAATGTG GTGGTTGAA TGTAAAGTCT CAAGTAGGGT TTATGAGTCC	780
	TAGTATTATG CTTGATTGTA TGTTGATATG AAAATGGGG TATGTTGGCT TTGAATAAAA	840

GTTTTAATT AAAAAA AAAAAAAA AAAAAAAA

(2) INFORMATION FOR SEQ ID NO: 2:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 162 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: unknown
- (D) TOPOLOGY: unknown

10

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

15 (iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Ala Phe Gln Glu Glu Lys Lys His Asp Gln Glu Val Ile Thr Thr Lys
1 5 10 15

30 Glu Glu Ala Val Val Val Thr Ala Pro Pro Pro Ser Glu Thr Ala Glu
20 25 30

Pro Ala Ala Ala Val Val Ala Glu Glu Glu Thr Thr Lys Glu Gln Glu
35 40 45

35 Glu Pro Pro Ala Val Ser Ala Glu Glu Pro Val Ala Pro Ala Glu Val
50 55 60

Glu Thr Lys Val Glu Val Thr Glu Glu Pro Pro Lys Val Glu Glu Lys

65

70

7

80

Pro Ala Glu Val Glu Glu Ala Pro Lys Glu Thr Val Glu Thr Glu Pro

85

90

95

5

Ala Val Glu Lys Thr Ile Lys Glu Glu Thr Val Glu Asp Ser Val Val

100

105

110

10

Ala Pro Ala Pro Glu Pro Glu Ala Glu Val Pro Lys Glu Lys Val Ile

115

120

125

15

Ala Thr Thr Glu Thr Thr Glu Glu Glu Lys Val Ala Val Glu Glu

130

135

140

Val Glu Val Lys Val Glu Thr Glu Glu Gly Glu Val Thr Glu Glu Lys

145

150

155

160

Thr Glu

20

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 519 base pairs

25

(B) TYPE: nucleic acid

(C) STRANDEDNESS: unknown

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

30

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

35

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

	AAACAAACAAA CTTTTTCATC AATCTTCTTT CTTTAATCAT CACCATGTGAG	AGCTGCGGAA	60
5	ACTGCCACTG TGCCGACAAG ACCAACTGCC CAAAGAAGGG AAACAGCTAC GGCTTGACA		120
	TCATTGAGAC CCAGAACAGC TACGATGACG TCGTGGTGAT GGATGTTGAG GCAGCTGAGA		180
10	ATGATGGCAA GTGCAAGTGC GGCCCGAGCT GCAGTTGTGT GGGCTGCAGC TGTGGTCATT		240
	AAGTTAAACA CAACATTATC ATGTTATAGT GAATAATGAT GTGTGTGATG AATATAGGTG		300
	AAAAATCTGT GGTGTGATAA AAACCGTTGG TGAATAAATA GGTGTATATT TCGTGTGCAC		360
15	CTTCTACGAG TACTTGTGCT TGTTGGGTGA AAGAAATATG CACCTAAGTG TCAGTTGTTT		420
	TCCGTGTTTT TCGCCGTGTC CCTTGTAATG GTCATGTTTG TGTTTCTTG TGGTTAAATT		480
20	AAATGAACTA GTAATGTTAT GTAAAAAAAAA AAAA		519

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

- 30 (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: YES

- (iv) ANTI-SENSE: NO

- 35 (v) FRAGMENT TYPE: N-terminal

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ser Ser Cys Gly Asn Cys Asp Cys Ala Asp Lys Thr Asn Cys Pro
1 5 10 15

Lys Lys Gly Asn Ser Tyr Gly Phe Asp Ile Ile Glu Thr Gln Lys Ser
10 20 25 30

Tyr Asp Asp Val Val Val Met Asp Val Gln Ala Ala Glu Asn Asp Gly
15 35 40 45

Lys Cys Lys Cys Gly Pro Ser Cys Ser Cys Val Gly Cys Ser Cys Gly
20 50 55 60

His
20 65

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 1046 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: unknown
(D) TOPOLOGY: unknown

30 (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

35

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum
(B) STRAIN: Ben Alder

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

5	GGAGGAGATC ACCAGTTCCA CCAACACGTC GTCGTAATGA GACACGGCGA TCGGATAGAC	60
	AACTTCGAGC CACTGTGGGT GAAGACGGCG GCGAACGATG GGACCCACCC TTGGTCGATG	120
	AAGGCAAGCT CCGTACCTTC CGGACAGGTC TGAAGCTCCG AACCAATTG GATTTCCGA	180
10	TCCATCGTGT CTTTGTATCA CCTTTCTCC GGTGCGTACA GACAGCATCG GAAGTCATCT	240
	CCGCTCTCTG CGCCGTCGAC GATATTCCCG CCACCACTAA TAGAGGCGAT CAAGTACAAA	300
15	TCGATCCATC CAAGATCAAG GTCTCTATTG AGTATGGATT ATGTGAAATG TTGAACATGC	360
	AAGCCATAAG ACTTGGTATG GATTTCAGCA ATGGGAATTG GGGTTTCGAT AAATCACACC	420
	TTGAATCAAC ATTCCCAGTT GGGACGGTGG ATCATAGTGT GGAACCACTC TATAAAGAGA	480
20	TGCCAAAATG GGAAGAGACA GTCAATGGCG CAAGGGCCAG ATATGAAGAG GTTATTTCAGG	540
	CCCTAGCAGA TAAATACCCC ACGGAGAACT TGTTGCTTGT TACACATGGG GAAGGAGTTG	600
25	GCGTTGCAGT TTCTGCCTTC ATGAAGGATG TTACAGTGTGTA CGAACCGCAT TATTGTGCCT	660
	ATACACACGC AAGAAGATCC ATTGTCTTGG GCAAAAAACCA GTCATTTACT GCTGAAAAC	720
	TTGAAGTATT ACCAAAACAA GGCCAAACTG GTGTCAGTTA CGTCCTTGAA CAGCATTGAT	780
30	GGAACTGTAT GACCTAATTG TGGCAGCCGA TGATTACAGA AACAAATTCC ACACCTTTTT	840
	TCTTTTTTCG GCCATTTGCC TACATTTAT AATTAATTAG GCATTCTCAT AGCTAAGGCT	900
35	CATTGGATTAC ACATCCCTAC TTGTTAAAG GAGACTTTGA TTTGTTGCCT CCAAACAGAA	960
	CATATGTTGC TGTGTCCATC AGCTTTTTT AACTGGGATT TCTATTTTA CAGTGTGTAA	1020
	AAAAAAAAA AAAAAAAAAA AAAAAA	1046

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 258 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: unknown
 (D) TOPOLOGY: unknown

10 (ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

15 (v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Ribes nigrum*
20 (B) STRAIN: Ben Alder

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

25 Arg Arg Ser Pro Val Pro Pro Thr Arg Arg Arg Asn Glu Thr Arg Arg
1 5 10 15

Ser Asp Arg Gln Leu Arg Ala Thr Val Gly Glu Asp Gly Gly Glu Arg
30 20 25 30

Trp Asp Pro Pro Leu Val Asp Glu Gly Lys Leu Arg Thr Phe Arg Thr
35 40 45

35 Gly Leu Lys Leu Arg Thr Asn Phe Asp Phe Pro Ile His Arg Val Phe
50 55 60

Val Ser Pro Phe Leu Arg Cys Val Gln Thr Ala Ser Glu Val Ile Ser
 65 70 75 80

WO 97/17452

Ala Leu Cys Ala Val Asp Asp Ile Pro Ala Thr Thr Asn Arg Gly Asp
 85 90 95
 Gln Val Gln Ile Asp Pro Ser Lys Ile Lys Val Ser Ile Glu Tyr Gly
 5 100 105 110
 Leu Cys Glu Met Leu Asn Met Gln Ala Ile Arg Leu Gly Met Asp Phe
 115 120 125
 10 Ser Asn Gly Asn Trp Gly Phe Asp Lys Ser His Leu Glu Ser Thr Phe
 130 135 140
 Pro Val Gly Thr Val Asp His Ser Val Glu Pro Leu Tyr Lys Glu Met
 15 145 150 155 160
 Pro Lys Trp Glu Glu Thr Val Asn Gly Ala Arg Ala Arg Tyr Glu Glu
 165 170 175
 20 Val Ile Gln Ala Leu Ala Asp Lys Tyr Pro Thr Glu Asn Leu Leu
 180 185 190
 Val Thr His Gly Glu Gly Val Gly Val Ala Val Ser Ala Phe Met Lys
 195 200 205
 25 Asp Val Thr Val Tyr Glu Ala Asp Tyr Cys Ala Tyr Thr His Ala Arg
 210 215 220
 Arg Ser Ile Val Leu Gly Lys Asn Gln Ser Phe Thr Ala Glu Asn Phe
 30 225 230 235 240
 Glu Val Leu Pro Lys Gln Gly Gln Thr Gly Val Ser Tyr Val Leu Glu
 245 250 255
 35 Gln His

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1017 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: unknown
- 5 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

10

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

15

- (A) ORGANISM: Ribes nigrum
- (B) STRAIN: Ben Alder

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

20

GTTGATGGCA GATGTGACCA ACTCAGGAAA AATGCCAGGG TTGTTGCAAT TGATTCTTAC	60
GAAGATGTTTC CTTTGAAACGA TGAGAACGCA TTGAAAAAAGG CAGTGGCTAG TCAGCCTGTG	120
25 CGCGTCGCCA TTGAAGGAGG TGGCAGGGAT TTCCAACCT ATCAATCAGG CGTCTTTACT	180
GGATCATGTG GGACGGCCCT AGACCATGGT GTGGCTGCTG TTGGGTATGG CACAGAAAAT	240
30 GGTGTGGATT ACTGGATTGT AAGGAACTCA TGGGGTGCAA GCTGGGGAGA GAGCGGCTAC	300
ATCAGGATGG AACGTAATCT GGCAGGCACA GCTACGGCA AATGTGGTAT TGCAATGGAA	360
GCCTCTTACC CTATTAAGAA AGGCCAAAAT CCCCCAAACC CAGGACCATC TCCTCCATCT	420
35 CCAATAAAGA CCTCCAACAG TTTTGTGACA ATTACTATAC CTTGGCTGAA AGCACCACTT	480
GCTGCTGTCT ATTTGAGTTT GGCAGGTATT GCTTCGAGTG GGGATGTTGC CCACTCGAGG	540
CTGCCACTTG CTGTGATGAC CATTACAGTT GCTGCCACCA TGAGTATCCC ATCTGCAACC	600

TTAATGCAGG GACGTGTATG ATGAGAAGGA CAACCCATTG AGTGTGAAGG CATTGAAGCG 660
5
TACTCCGCT AAACCTCATT GGGCCTTGG GAACCGTGGC AAGAGCAGCA GTGCTTAAGA 720
ACATTGTGTC ATCTATACAG TGAAAGTAAA ACGAGGATGA AAAGTTGTAT CAGGCAGGGC 780
TTGATGATCT CCTCGGTTTT ATAGTACCGC ATACCCTCAT TCTCCATTAA GGTCAATAC 840
10 ATATGGACGG TTTATCAAAG TTTATTCAAGA TGCTAATTAT GTATATATCA TTTCTCAGTC 900
TCTGTATTTC ATTTAACGA AACATAAAC AGATCGTTAT CAGCTACCAA TTTCCACTGT 960
AAATCACGTT ATCAATTATT TACTGGCCTC GCTGAAAAAA AAAAAAAA AAAAAAA 1017
15

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 206 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: unknown
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

25 (iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

30 (v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum
(B) STRAIN: Ben Alder

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Val Asp Arg Cys Asp Gln Leu Arg Lys Ala Arg Val Val Ala
1 5 10 15

Ile Asp Ser Tyr Glu Asp Val Pro Leu Asn Asp Glu Asn Ala Leu Lys
5 20 25 30

Lys Ala Val Ala Ser Gln Pro Val Arg Val Ala Ile Glu Gly Gly Gly
35 40 45

Arg Asp Phe Gln Leu Tyr Gln Ser Gly Val Phe Thr Gly Ser Cys Gly
10 50 55 60

Thr Ala Leu Asp His Gly Val Ala Ala Val Gly Tyr Gly Thr Glu Asn
65 70 75 80

Gly Val Asp Tyr Trp Ile Val Arg Asn Ser Trp Gly Ala Ser Trp Gly
15 85 90 95

Glu Ser Gly Tyr Ile Arg Met Glu Arg Asn Leu Ala Gly Thr Ala Thr
20 100 105 110

Gly Lys Cys Gly Ile Ala Met Glu Ala Ser Tyr Pro Ile Lys Lys Gly
115 120 125

Gln Asn Pro Pro Asn Pro Gly Pro Ser Pro Pro Ser Pro Ile Lys Thr
25 130 135 140

Ser Asn Ser Phe Val Thr Ile Thr Ile Pro Trp Leu Lys Ala Pro Leu
145 150 155 160

Ala Ala Val Tyr Leu Ser Leu Ala Gly Ile Ala Ser Ser Gly Asp Val
30 165 170 175

Ala His Ser Arg Leu Pro Leu Ala Val Met Thr Ile Thr Val Ala Ala
35 180 185 190

His Met Ser Ile Pro Ser Ala Thr Leu Met Gln Gly Arg Val
195 200 205

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 1311 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: unknown
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

10

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

15

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum
 (B) STRAIN: Ben Alder

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GACGCCACTC	ACCCCTGAATT	TCTCCACGTA	CCAAAACCTA	AACCTCATGA	ATTCCACCCA	60	
25	GAAATCTCTA	TCGCGCCGTC	GCATGATGGC	CTTCAGTTCT	GGCAGTTCAT	GATGCCGGT	120
	TCAATCGCTG	GATCAATCGA	GCATATGGCG	ATGTATCCGG	TTGATAACGCT	AAAAACTCGC	180
30	ATACAGGCTA	TTGGGTCATG	TTCCGGCTCAA	TCCGCCGGTC	TCCGACAAGC	CCTTGGGTCG	240
	ATACTGAAAG	TTGAAGGTCC	CGCCGGACTT	TACCGTGGCA	TTGGTGCAAT	GGGTCTCGGT	300
	GCAGGACCAG	CTCACGGCAGT	GTATTTCTCC	GTAAACGAGA	TGTGTAAGGA	GACTTTTCT	360
35	CATGGTGATC	CGAGCAATTC	CGGTGCGCAC	GCCGTTCCGG	GGGTGTTCGC	GACGGTGGCA	420
	AGCGACGCGG	TGATTACGCC	GATGGATGTG	GTGAAACAGA	GGTTGCAGTT	GCAGAGCAGT	480
	CCGTACAAGG	GTGTTGTTGA	TTGCGTGAGG	AGGGTGTGG	TAGAAGAAGG	GATTGGCGCA	540

	TTTTACGCAT CTTATCGAAC AACTGTGGTC ATGAATGCC CGTTTACGGC CGTTCACTTC	600
	GCCACATATG AAGCCACGAA GAAAGGGTTG TTGGAGGTGT CGCCGGAGAC TGCGAACGAT	660
5	GAGAATTGT TAGTGCATGC TACTGCTGGT GCTGCTGCTG GAGCTTGCG TGCAGTAGTA	720
	ACCACTCCAC TAGATGTTGT CAAAACTCAG TTGCAGTGCC AAGGTGTTG CGGATGCGAC	780
10	AGATTTCTA GCAGTTCGAT TCAGGATGTT ATAGGAAGCA TAGTGAAGAA AAATGGATAT	840
	GTCGGGTTAA TGAGGGGGTG GATTCCCAGA ATGCTATTTC ATGCTCCTGC TGCAGCAATC	900
	TGCTGGTCTA CTTATGAAGC CTCCAAAACA TTCTTTCAA AACTCAATGA GAGCAATAGC	960
15	AACAGCTCAG TTACCTAAGA TTTCATATGT TTTTGTGCT CTACTAGGCT TATCCAAAAT	1020
	CATGTCGATT GGTTTCACTT CACCACAGTT GCCATGAACA ACTCAAAGCA TCGAATTTA	1080
20	CATGTATATT ATGCAATCTA GATGCTTCTT GATATTATT TTTATTTTTT CTTTTCCAAC	1140
	TTTTGTAATT AGAATTAGCT ACTATGGTTA TGGCATGGAG TGTTTATAA TTGCTAATAT	1200
	CATCGTATAA GCAATGCTAT TTGAGAAATT GTGGTGTAAAG GTTAGAGTAA TGTTATTTGC	1260
25	ACAATCCACT TACATAGACC GCGGGACTCA TTTAAAAAAA AAAAAAAA A	1311

(2) INFORMATION FOR SEQ ID NO: 10:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 289 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: unknown
- (D) TOPOLOGY: unknown

35 (ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(iv) ANTISENSE: NO

(v) FRAGMENT TYPE: N-terminal

5 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ile Ala Gly Ser Ile Ala Gly Ser Ile Glu His Met Ala Met Tyr
1 5 10 15

15

Pro Val Asp Thr Leu Lys Thr Arg Ile Gln Ala Ile Gly Ser Cys Ser
20 25 30

20

Ala Gln Ser Ala Gly Leu Arg Gln Ala Leu Gly Ser Ile Leu Lys Val
35 40 45

Glu Gly Pro Ala Gly Leu Tyr Arg Gly Ile Gly Ala Met Gly Leu Gly
50 55 60

25

Ala Gly Pro Ala His Ala Val Tyr Phe Ser Val Tyr Glu Met Cys Lys
65 70 75 80

Glu Thr Phe Ser His Gly Asp Pro Ser Asn Ser Gly Ala His Ala Val
85 90 95

30

Ser Gly Val Phe Ala Thr Val Ala Ser Asp Ala Val Ile Thr Pro Met
100 105 110

35

Asp Val Val Lys Gln Arg Leu Gln Leu Gln Ser Ser Pro Tyr Lys Gly
115 120 125

Val Val Asp Cys Val Arg Arg Val Leu Val Glu Glu Gly Ile Gly Ala
130 135 140

	Phe Tyr	Ser Tyr Arg Thr Thr Val Val	Asn Ala Pro Phe Thr
	145	150	155
	Ala Val His Phe Ala Thr Tyr Glu Ala Thr Lys Lys Gly Leu Leu Glu		
5	165	170	175
	Val Ser Pro Glu Thr Ala Asn Asp Glu Asn Leu Leu Val His Ala Thr		
	180	185	190
10	Ala Gly Ala Ala Ala Gly Ala Leu Ala Ala Val Val Thr Thr Pro Leu		
	195	200	205
	Asp Val Val Lys Thr Gln Leu Gln Cys Gln Gly Val Cys Gly Cys Asp		
	210	215	220
15	Arg Phe Ser Ser Ser Ser Ile Gln Asp Val Ile Gly Ser Ile Val Lys		
	225	230	235
	Lys Asn Gly Tyr Val Gly Leu Met Arg Gly Trp Ile Pro Arg Met Leu		
20	245	250	255
	Phe His Ala Pro Ala Ala Ile Cys Trp Ser Thr Tyr Glu Ala Ser		
	260	265	270
25	Lys Thr Phe Phe Gln Lys Leu Asn Glu Ser Asn Ser Asn Ser Val		
	275	280	285
	Thr		
30			

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1797 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: unknown
- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

5

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

15

GATCTTATAT TGAGGGATGCA AAGTTTCAAA TTACCTGATA TGTAACTCTC AACAAAATCA

60

15

AGCTTTGAT CATATAAACATC GAAACCAACA CACAATAATT ATGAATTCT TTGACTCTT

120

GTCTCTGTAC CAAAATACGC ACACCACAAA AAATTCTTT TGTATTATAT TCGTTTTTA

180

20

TTTTTTAAC GTTTGGTAT TCAAACATCA TATAAGTAAG GGGGAATATT ATTGGGACTC

240

CTCCAAAAAC TTATGACATT GTGATTACAC ATTTGAATGA CAGAAGTTT TGATGAAGTG

300

25

CCAATATCAA TCTTTCTTA ATTGCTTCAT AAAGGGTGT TTTGTAATTA AAAGAAAGAT

360

AAGGAAATTT AGCAAGAAGT GCATTATTGG GACTGGTATA TATGACAAGG ATCTGACGTG

420

GCAAAGAAAG AAAGTGGGTC CTGAGTCAGG TGTGTCCCAT CTGCAATAT TCTTCAAAAG

480

30

AGAGTCCACC ATCTCATAGA TGAGATTTAG AAAGTGGTTT CCACAAAAAA ATATGACACA

540

ACCCATCCAT GAACCAATAA AAACATGACA GGTCATCATT TCTTCTTATT TTTTCTCTC

600

AAGATAATAA TACCTATTAG TGTCTTAAC ACCGGCCTAA CTTTGCATTT CTTGTCATTT

660

35

GGTGACTTTT TATTGCCAA TTGTGGCTTG AAGGAAATAA AAAGGAAAGT CTTTTCTTG

720

AACCCATATG GAAGCAATT CAATGAGAGA GATAGAGAGG AGGGATGGAG ATTGGGGTGG

780

	AGAATTGATA C	CTTCT TTAATTGGTA TATGTAAATC A	AGAAAC ACGTATACCA	840
	TATATGCATC AATGTCAATG TCACAGAAAA CGTAACTCAC GAACACATTT CGTAACATGC			900
5	ATGCACCAAT CATAcATTAT AACATAGTGT TACGACAATA AAAGATCTTT AGTCGTAAGA			960
	GCATTAGCTC GTGACAAGAA CAAAAACGTG GATTCCCAAC CTAAAGAAGG GTATATCTTT			1020
	TATTCATATA TCTACTTTG ATATGACCTA AACCTTGTGT CACCCACAAT GTTCAGTACG			1080
10	ATCGATAATT GTTGACTTG TGTGGATGA GAAAATGTAT GAGACTGGCC ATTAGTTTTA			1140
	GCCGGATGTG ATTTGGGTAT ATTGATGACA ATATAAGATA TATAAAACTT GAACAAAACA			1200
15	ATTTCTAAC AAATTAAACT ACAAGATAAT CTCCCTTCAG ATGATAAACT AAATGGTAGA			1260
	ATATCCGTTG AGTACCCCCA ATAATTAAA ATCTCCAGCA AATACTGTGA TTCCTTTCT			1320
	TCGAAGCGAA ATTCCCTTCCT TCCAAACACC TTAACAAATG TAAAATTCGT TAGTAAGATT			1380
20	AAATTTGAAA TGATAACACA AGAGTGAATA AAGGTCATGG TCACCTACTT ACCCAAATGC			1440
	ACAAAACACA CAAGCACACA TCCAAAAGTA GTAGTATGAT TACACACATT TGAAAAAATG			1500
25	ACCTCCATTA TTTAGCCAC CTCTCTTGTAA AAAAGATTA CAAACAAATT ACTCCTATCA			1560
	TTATTATAAA AATAGTAGCA TAACCTCATC TCCAATCCAC ACCATATATT TTACATTATT			1620
	GCCAAACATG CTAAAAGCTT CTTGTATTCA GTGAAAATGT GGTGTCAAAT CCCAAGATTG			1680
30	TTCATGTGCC CTCTCTCTCT CTCTCTCTCT CTCTCCTCCT CCTCCTCCTC TCTCTCTCTC			1740
	ATCAACTTGA GGGCTTTAGG ACCTCTATAT AAACCTCTCT CAATTGATCA TCTCTGC			1797

35 (2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3292 base pairs
- (B) TYPE: nucleic acid

(C) TRANDEDNESS: unknown

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

5

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GATCTTATAT TGAGGATGCA AAGTTTCAAA TTACCTGATA TGTAACTCTC AACAAAATCA

60

20 AGCTTTGAT CATATAAAC GAAACCAACA CACAATAATT ATGAATTCTT TTGACTCTTT

120

GTCTCTGTAC CAAAATACGC ACACCACAAA AAATTCTTTT TGTATTATAT TCGTTTTTA

180

TTTTTTAAC GTTTGGTAT TCAAACATCA TATAAGTAAG GGGGAATATT ATTCCGGACTC

240

25

CTCCAAAAAC TTATGACATT GTGATTACAC ATTTGAATGA CAGAAGTTT TGATGAAGTG

300

CCAATATCAA TCTTTCTTA ATTGCTTCAT AAAGGGTGT TTTGTAATTA AAAGAAAGAT

360

30 AAGGAAATT AGCAAGAAGT GCATTATTGG GACTGGTATA TATGACAAGG ATCTGACGTG

420

GCAAAGAAAG AAAGTGGGTC CTGAGTCAGG TGTGTCCCAT CTGTCAATAT TCTTCAAAAG

480

AGAGTCCACC ATCTCATAGA TGAGATTTAG AAAGTGGTTT CCACAAAAAA ATATGACACA

540

35

ACCCATCCAT GAACCAATAA AAACATGACA GGTCACTATT TCTTTCTATT TTTTCTCTC

600

AAGATAATAA TACCTATTAG TGTCTTTAAC ACCGGCCTAA CTTTGCATT CTTGTCAATT

660

	GGTGACTTTT TA	CCCAA TTGTGGCTTG AAGGAAATAA AA	GAAAGT CTTTTCTTG	720
	AACCCATATG GAAGCAATT CAATGAGAGA GATAGAGAGG AGGGATGGAG ATTGGGGTGG		780	
5	AGAATTGATA CGGATCTTCT TTAATTGGTA TATGTAAATC ACTCAGAAC ACGTATAACCA		840	
	TATATGCATC AATGTCAATG TCACAGAAAA CGTAACTCAC GAACACATT CGTAACATGC		900	
	ATGCACCAAT CATACTATT AACATAGTGT TACGACAATA AAAGATCTTT AGTCGTAAGA		960	
10	GCATTAGCTC GTGACAAGAA CAAAAACGTG GATTCCCAAC CTAAAGAAGG GTATATCTT		1020	
	TATTCATATA TCTACTTTG ATATGACCTA AACCTTGTGT CACCCACAAT GTTCAGTACG		1080	
15	ATCGATAATT GTTGACTTG TGTGGATGA GAAAATGTAT GAGACTGGCC ATTAGTTTA		1140	
	GCCGGATGTG ATTTGGGTAT ATTGATGACA ATATAAGATA TATAAAACTT GAACAAAACA		1200	
	ATTTCTCAAC AAATTAAACT ACAAGATAAT CTCCCTTCAG ATGATAAACT AAATGGTAGA		1260	
20	ATATCCGTTG AGTACCCCCA ATAATTAAA ATCTCCAGCA AATACTGTGA TTCCTTTCT		1320	
	TCGAAGCGAA ATTCTTCCT TCCAAACACC TTAACAAATG TAAAATTCTG TAGTAAGATT		1380	
25	AAATTGAAA TGATAACACA AGAGTGAATA AAGGTATGG TCACCTACTT ACCCAACTGC		1440	
	ACAAAACACA CAAGCACACA TCCAAAAGTA GTAGTATGAT TACACACATT TGAAAAAATG		1500	
	ACCTCCATTA TTTAGCCAC CTCTCTGTAA AAAAGATTA CAAACAAATT ACTCCTATCA		1560	
30	TTATTATAAA AATAGTAGCA TAACCTCATC TCCAATCCAC ACCATATATT TTACATTATT		1620	
	GCCAAACATG CTAAAGCTT CTTGTATTCA GTGAAAATGT GGTGTCAAAT CCCAAGATTC		1680	
35	TTCATGTGCC CTCTCTCTCT CTCTCTCTCT CTCTCCTCCT CCTCCTCCTC TCTCTCTCTC		1740	
	ATCAACTTGA GGGCTTTAGG ACCTCTATAT AAACCTCTCT CAATTGATCA TCTCTGCATC		1800	
	ACACTCTCAA GCATTCTTTC TCTCTACTTT CTTTTAGGTC AACTACACTT CCCTTGAGT		1860	

	TTCCAATGGC CACTGTTGAG GTAAATCAAG TGATATATAAC ATAAATTTA TTTGAAAGAT	1920
	GATTGATTCA AAGAGAACCC TTTTGTGTT TCTTTAATAA GATCCATGTA TATGAAGTTT	1980
5	TAATGTTCA TGTTTTTTA TTTTTGTTA ATTTTTTTT AATTAGGCA TTTTGCAAT	2040
	ATCCCATTG TGAAAAGATC TGTTTCCTT TGGAAGAGAT TAGAATTCGT TTCTGTCGA	2100
10	TTCATCATGA AAATCAATCT GGGCTAGCT TTAATTGTGC TGATCTTGAC CGGACTGTTA	2160
	GATGATTCGT TTTATATGTA GGCCAATAG AGAGTGATAG TATTCCGAA ATAATACAAA	2220
	TCCGAGCAA CTATAATCCT CAATAGTAAC TTTGTAATCT CTAAATAATC AAAAAATAAT	2280
15	GCTTATTGGG GTGATTGGTG TGTTGATGC AGGTTGTATC AGCGCAGACA GCATTCCAAG	2340
	AGGAAAAAAA ACATGATCAA GAAGTAATTA CTACAAAAGA GGAAGCTGTA GTAGTAACTG	2400
20	CACCACCACC ATCAGAAACA GCAGAGCCAG CTGCAGCTGT TGTTGCCGAG GAAGAGACAA	2460
	CAAAGGAGCA AGAAGAGCCG CCAGCAGTAT CGGCCGAGGA ACCTGTGGCC CCAGCTGAAG	2520
	TAGAGACAAA GGTGGAAGTT ACAGAAGAAC CACCAAAAGT TGAGGAGAAA CCAGCAGAAG	2580
25	TAGAGGAGGC TCCAAAGGAA ACAGTAGAAA CAGAACCAAGC TGTTGAGAAG ACCATCAAGG	2640
	AGGAAACTGT AGAGGACTCT GTCGTGGCAC CTGCTCCGA ACCGGAAGCC GAAGTCCCAA	2700
30	AAGAGAAGGT AATTGCTACT ACTGAAACTA CTGAGGAAGA AGAAAAAGTG GCAGTTGAAG	2760
	AAGTTGAAGT GAAAGTTGAA ACAGAGGAGG GAGAAGTTAC TGAGGAGAAG ACTGAGTAAA	2820
	ATAAGTTGTA CAACTATTT ATGCACGCCT TATTTTCTCA ATTGGAAGTT TATAATGTAG	2880
35	TGGGCTTTG GTAATATTG GGGTTTAAT AAGTGGTTA AGTGGTTAA GGCTTTTTG	2940
	GAATTAGAT ATTTGGTAA AGGCCTACTT GAACAAAACA TAGAAATTG GCACACATGG	3000

GTAAAAGTCA A TGTG AGGATGTTT CTTGTTGGTT A GTGTGT GCCAAGTAGT 3060
AGAATGTGGT GGTTGTAATG TAAGTTCTCA AGTAGGGTTT ATGAGTCCTA GTATTATGCT 3120
5 TGATTGTATG TTGATATGAA AATGGGGTA TGTTGGCTTT GAATAAAAGT TTTTAATT 3180
ATATAATAAG TGTATTTTG TTTAATATCA TTCTTCATT CTCTCGGATC AACTACTGAT 3240
CATCGCCTTG GTAAGCTATT GCCTCACCAA CTAGCTAAC CC 3292

10

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 173 amino acids

15

(B) TYPE: amino acid

(C) STRANDEDNESS: unknown

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

20

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

25

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

35 Met Ala Thr Val Glu Val Val Ser Ala Gln Thr Ala Phe Gln Glu Glu
1 5 10 15Lys Lys His Asp Gln Glu Val Ile Thr Thr Lys Glu Glu Ala Val Val
20 25 30

	Val Thr Ala Pro Pro Pro Ser Glu Thr Ala Glu Pro Ala Ala Ala Val.		
	35	40	45
5	Val Ala Glu Glu Glu Thr Thr Lys Glu Gln Glu Glu Pro Pro Ala Val		
	50	55	60
	Ser Ala Glu Glu Pro Val Ala Pro Ala Glu Val Glu Thr Lys Val Glu		
	65	70	75
10	Val Thr Glu Glu Pro Pro Lys Val Glu Glu Lys Pro Ala Glu Val Glu		
	85	90	95
	Glu Ala Pro Lys Glu Thr Val Glu Thr Glu Pro Ala Val Glu Lys Thr		
15	100	105	110
	Ile Lys Glu Glu Thr Val Glu Asp Ser Val Val Ala Pro Ala Pro Glu		
	115	120	125
20	Pro Glu Ala Glu Val Pro Lys Glu Lys Val Ile Ala Thr Thr Glu Thr		
	130	135	140
	Thr Glu Glu Glu Lys Val Ala Val Glu Glu Val Glu Val Lys Val		
	145	150	155
25	160	Glu Thr Glu Glu Gly Glu Val Thr Glu Glu Lys Thr Glu	
	165	170	

(2) INFORMATION FOR SEQ ID NO: 14:

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5150 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: unknown

35

- (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

5 (A) ORGANISM: *Ribes nigrum*
 (B) STRAIN: Ben Alder

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	AGCTTATGAT TACAACATAA AAATCAATGC GTGGAAATCA CAAAAACTGG AAATGCTATG	60
	CTATGGACGA TCAACTGATA AAACTGGAAA TAGGACTAAG AACTGTGAGA ACTAAACTAG	120
15	AGAAAACCTTA ATGATCTAAA CTAAAAGTGA CAGCATTTC GCAAATCTAA AAAGAGAGGT	180
	TCATTGTCTG ATGATTGGTC CTTTCGTGCT TCCTCCTCCT TTGATTTTA TAGGGCTTTC	240
20	ATCATTAAAT ATTACGATTG CCCAGCTGTC CATGATCCGG CCATAAAATAG CCGGATATTC	300
	TTGATTGGTA ATGGCTGTGC TTGATTGGCG GTATTTAACCA CCTGCCGTTT TATTTGTAAA	360
	AACCGTTATG GATTCTCTGA TGAGCATAAA CCACGCTGAA TCGGCCTATT GGTCGATTGG	420
25	TGTAAGGCCA TACTCTGAAC AGCCTTGGGG ATTCTGATGA CCGTAGATTC GGCCTTAATG	480
	GGCATTATGA TCGTTACTTC GTCTCATGGT AACTCCATT CGCAGTTTA CCTATGGTGT	540
30	TCCTTGTCAAT GAGTGTACCG GTCATTCCCCTT CTTCGTCAGA CACCTTTATC AGCCTAATCC	600
	TAGGTCCATT AAAGTCTGGG GACCTGGATT TGTTATCCTC TAAATTAGAA AGACTATCCT	660
	GATCATTTCGTTT GTTCTTCGGT CATTAGCACC TAGGAGGTTT GGCCAGAAC AGTCTCGTCC	720
35	TTTTGATCTT TCAGGCCTCGC CAGGCCGGGT GGGTTTCCTG ATACAGAACT CGGCCTATAA	780
	GCCGATTAT ATGAGATGTA AACAGACACA AGATTGGTAA GTTATTTCC ATGTCTAAGT	840

TCGACTCTCC	CCGTGA CCGTGACCGT TCTCCCTTG	CAAATTG TTAGTTAAC	900
	AAAAATACTG GACAATTCT CACTTGAGTA GTTATTCCA ATTTGTTT CAAACTCTAT		960
5	CTGATGCAGC GGATTATGAA AGGTTAAGAA TTAAACAAGA ATATCACGTA TTCTCGTAAG		1020
	AAGAAGAAGA ACACAGAGAA AAGTTCTAG TTTTATTGA TAAAATATGA ATAATAATCC		1080
	CTAAAACAAC TTAGAAGTCT TGTTAAATA GAAGCTAGCA AATCCTAATA TGAATAGGAA		1140
10	ACCCCTAAC GAAAATAAGA AATTACGATA AAAACTCAAC AGATAACGAA ATTACGAAAC		1200
	TGTCTGAAA CACTAAA TAAATACAAG GTCCTTAATG ACGGAATTG ACTAAAATCA		1260
15	CGAGACCAGT TTACTTTGT AACATGTCTT GAAGATCTCG ACGTTCGCA CCAAGTCACC		1320
	AAATTCACA TAATTCCAAC ACTATTGCTA CTATTACAGA ACCAAAATT CTCGAAACA		1380
	ACAGATTAA CTTTACAGTC CAAGCTCCCT ACATCAGGCT CCCCTCTTG AAAAGAACTC		1440
20	ATCCTCGATT TTCTTCGAA AATTGAATT TGCCCTCCCA TTGAAATAAA TACTTTGAAT		1500
	ATACATTTG CTTCAACCTT TTGGGCTCAA CAAAAATCAA CTTTCTTCC ATCTCCAAT		1560
25	TTTGCACAAT ATCCAATAAT AAAGGATTAG AGAGAAAATT TTCAACCCCA ATAAAATCAA		1620
	TTTGTGGAT CTCATTAAT TGAATGAAAT CATGATTTT TTGCTCAACA ATTTCTGATT		1680
	TTATTTGCTT GATTCTTCA TGCAACTCTT CTTGAGAACT ATCTTGCCTA ATAAAATCGC		1740
30	ATGTTTCAT AGACTCAATG GAATCAAAG TTTCTCCCTT CACTCATTC AAATCATAAA		1800
	CATATTCTTC AACTAAATCA ACATCTTGAT TTGATATGAT TTCTTCTACA ACTCCACCTT		1860
35	TATTTGGTT GTCTTCGTTG ATCCCTTGGA TTTCACACAA AGTTGGTTCA TGGTCAACAA		1920
	CATGTGCTCT CCACGAAATT CCATCACATG ATTGTTAATA TTTGTTCTT TCACACTATA		1980
	TTTATTTCT AATATTTGTT CATAATTCCA CGGTAAAAAT TTACTTTCCA TGAGTTTCCT		2040

	CATTCTTGAC CAACAACGAA TACGACGTTT ACCTTGATGT TCTCTTGATT CTTGTAATT	2100
	TAACCACCAAC CATAACGCTG GACCTGCAAG TTTGCGTAAC ACATACCCCC ACTTCTCTTC	2160
5	TTCCGGAATA TTCATATGCT CAAAGAAATC TTCCATGTCC AATACCCAAT CAAGAAAATC	2220
	TTCAAAGTAA ACACAACCGT TGAAACTAGG CATATTATTA TAATACCTAA AATCTCGACG	2280
10	AAGAGAAACA TAAACGTCAA CAAATCGATT AGCCGCTTGA ATCTCTTGAC GAAACTCCTG	2340
	CCGGAGTTCC ATAAAATCTC CCACAGTCAC CACACTCCC TCACGTTCAC CGTCCATGAG	2400
	GATGGCTTG ATACCAACTT GACGCAGCGG ATTATGAAAG GTTAAGAATT AAACAAGAAT	2460
15	AGCACGTATT CTCGTAAGAA GAAGAAGAAC ACGGAGAAAA GTTCTCAGTT TTTATTGATA	2520
	AAATATGAAT AATAATCCCT GAAACAACCT AGAAAGTCTTG TTTAAATAGA AGCTAGCAA	2580
20	TCCTAATATG AATAGGAAAT CCTAATACGA AAATAAGAAA TTACGATAAA AACTCAACAA	2640
	ATAACGAAAT TACGAAATTG TCTGAAAACA CTAAAACCTTA AATACGAGGT CCTTAACGAC	2700
	GGAATTGAC TAAAATCACG AGACCATGTT ATGTAACATG TCTTGAAGAT CTCGACGTTT	2760
25	CGCACCAAGT CAACAAATT CAACATAATT CCAATACTGT TACTACTATT CACGAACCCA	2820
	AATTCTCGCA AACAAACCGAT TTAACCTTAC CGTCCAAGCT CCATACATCA CTATCCAACA	2880
30	CAAAAATGAA AGAACATACA ATTTTACAAA CTTCATCTTT TCTTCTGATT CTTTCCTTCA	2940
	CTTTAAAATA GAAAGAAAAA AGAAAACAC ACTGATAGCT CCTTCCATTC CCATATCTCC	3000
	CACTTGATTC TCAAAAACAC ATTTCTCCAA AATAATTGTG TATATGGCGA CAACAACCCA	3060
35	TGAAAGCGAT CTCCAATCTC CAATTATTCA CTCCCTCCATC TCCATTATA CATTAACCCC	3120
	TCAACCTTAA CTCTTCACCTT CCACACTCCA TTTTCATGGC GACCGACGCC ACTCACCCTG	3180

AATTCCTCCA	CCAAAA CCTAACCTC ATGAATTCCA	GAAATC TCTATCGCGC	3240
	CGTCGCATGA TGGCCTTCAG TTCTGGCAGT TCATGATCGC CGGTTCAATC GCTGGATCAA		3300
5	TCGAGCATAT GGCGATGTAT CCGGTTGATA CGCTTAAAAC TCGCATAACAG GGTATTGGGT		3360
	CATGTTCGGC TCAATCCGCC GGTCTCCGAC AAGCCCTGG GTCGATACTG AAAGTTGAAG		3420
	GTCCCCCGGG ACTTTACCGT GGCATTGGTG CAATGGGTCT CGGTGCAGGA CCAGCTCACG		3480
10	CAGTGTATTT CTCCGTTAC GAGATGTGTA AGGAGACTTT TTCTCATGGT GATCCGAGCA		3540
	ATTCCGGTGC GCACGCCGTT TCGGGGGTGT TCGCGACGGT GGCAAGCGAC GCGGTGATTA		3600
15	CGCCGATGGA TGTGGTGAAA CAGAGGTTGC AGTTGCAGAG CAGTCCGTAC AAGGGTGTG		3660
	TTGATTGCGT GAGGAGGGTG TTGGTAGAAG AAGGGATTGG CGCATTTCAC GCATCTTATC		3720
	GAACAACGTG GTTCATGAAT GCCCCGTTA CGGCCGTTCA CTTGCCACA TATGAAGCCA		3780
20	CGAAGAAAGG GTTGGTGGAG GTGTCGCCGG AGACTGCGAA CGATGAGAAT TTGTTAGTGC		3840
	ATGCTACTGC TGGTGCTGCT GCTGGAGCTT TGGCTGCAGT AGTAACCACT CCACTAGATG		3900
25	TTGTCAAAAC TCAGTTGCAG TGCCAAGTAA GTCCCTTTA ACTTGCAC TAAAAAAAAA		3960
	TAAGATTCAC TGTTCTAATT TCAGAATTAC ACCAATAAAA AAGGACAGAG CTAGCAATGA		4020
	CTTGATTCTC TGAATTGCCA ATACGATAAT TCAGTATTGA TAGCTTATAG TATGTGGCCA		4080
30	AGCCAAGGCG TAGGATGAAT TTACCAGCCA GTTTGGAAAGT TAATATCTTT TTTTGTATGG		4140
	AGATATCGAT GAAAGTTGGTG TGATTTTGAGTCACTAAA TGAGCTGCTA TCGCATGATA		4200
35	TATTGATGTG TAAAAATATT GAAAAGTGA AACGTTCC AGAGAAACAA GCAACTCATC		4260
	TTTATTCTTT AGAGATGGAG CTCGATTATG ATATGAACCTT TGAAGCTTTG AATTGATCGA		4320
	TGAAGCAACA AGACAAAATC TTTTATATTA AAAAAGTTGT CTTCTGGTG GTTTATTCA		4380

	GGTGTGCG GATGCGACAG ATTTCTAGC AGTCGATT AGGATGTTAGGAAAGCATA	4440
	GTAAGAAAA ATGGATATGT CGGGTTAATG AGGGGGTGGA TTCCCAGAAT GCTATTCAT	4500
5	GCTCCTGCTG CAGCAATCTG CTGGTCTACT TATGAAGCCT CCAAAACATT CTTTCAAAAA	4560
	CTCAATGAGA GCAATAGCAA CAGCTCAGTT ACCTAAGATT TCATATGTTT TTGTTGTCTC	4620
10	TACTAGGCTT ATCCAAAATC ATGTCGATTG GTTTCACCTTC ACCACAGTTG CCATGAACAA	4680
	CTCAAAGCAT CGAATTTTAC ATGTATATTA TGCAATCTAG ATGCTTCTTG ATATTTATT	4740
	TTATTTTTTC TTTTCCAATC TTTGTAATTA GAATTAGCTA CTATGGTTAT GGCATGGAGT	4800
15	GTGTTATAAT TGCTAATATC ATCGTATAAG CAATGCTATT TGAGAAATTG TGGTGTAAGG	4860
	TTAGAGTAAT GTTATTTGCC AATCCACTTA CATAGACCGC GGGACTCATT TATCATATGG	4920
20	ACCTACTTCT ATTCTTATT AGGCAACTAG ATTCTACAAA TAACATTCTC CCGAAGGCTA	4980
	TGTACAATGC ACCTTTTTG AATTACAAAC TCTTCTGTTC AATATAAGAG GAATCTGGAA	5040
	ATATCTGGTC CTAATTAATC ACAAGTCTAC AAGAACATG TCATGCCATT AAGGTTCACT	5100
25	TCAAGTAAAG GTGAACACAA ATTAGGAGAA ATTTAAATT AGAGACACTA	5150

(2) INFORMATION FOR SEQ ID NO: 15:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 328 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: unknown
- (D) TOPOLOGY: unknown

35 (ii) MOLECULE TYPE: peptide

 (iii) HYPOTHETICAL: YES

WO 97/17452

(iv) ANTISENSE: NO

(v) FRAGMENT TYPE: N-terminal

5 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Ribes nigrum

(B) STRAIN: Ben Alder

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Met Ala Thr Asp Ala Thr His Pro Glu Phe Leu His Val Pro Lys Pro			
1	5	10	15

15

Lys Pro His Glu Phe His Pro Glu Ile Ser Ile Ala Pro Ser His Asp			
20	25	30	

20

Gly Leu Gln Phe Trp Gln Phe Met Ile Ala Gly Ser Ile Ala Gly Ser			
35	40	45	50

Ile Glu His Met Ala Met Tyr Pro Val Asp Thr Leu Lys Thr Arg Ile			
50	55	60	

25

Gln Gly Ile Gly Ser Cys Ser Ala Gln Ser Ala Gly Leu Arg Gln Ala			
65	70	75	80

Leu Gly Ser Ile Leu Lys Val Glu Gly Pro Ala Gly Leu Tyr Arg Gly			
85	90	95	

30

Ile Gly Ala Met Gly Leu Gly Ala Gly Pro Ala His Ala Val Tyr Phe			
100	105	110	

35

Ser Val Tyr Glu Met Cys Lys Glu Thr Phe Ser His Gly Asp Pro Ser			
115	120	125	

Asn Ser Gly Ala His Ala Val Ser Gly Val Phe Ala Thr Val Ala Ser			
130	135	140	

	Asp Ala	Ile Thr Pro Met Asp Val Val	Gln Arg Leu Gln Leu
	145	150	155
	Gln Ser Ser Pro Tyr Lys Gly Val Val Asp Cys Val Arg Arg Val Leu		
5		165	170
	Val Glu Glu Gly Ile Gly Ala Phe Tyr Ala Ser Tyr Arg Thr Thr Val		
	180	185	190
10	Val Met Asn Ala Pro Phe Thr Ala Val His Phe Ala Thr Tyr Glu Ala		
	195	200	205
	Thr Lys Lys Gly Leu Leu Glu Val Ser Pro Glu Thr Ala Asn Asp Glu		
	210	215	220
15	Asn Leu Leu Val His Ala Thr Ala Gly Ala Ala Gly Ala Leu Ala		
	225	230	240
	Ala Val Val Thr Thr Pro Leu Asp Val Val Lys Thr Gln Leu Gln Cys		
20	245	250	255
	Gin Gly Val Cys Gly Cys Asp Arg Phe Ser Ser Ser Ile Gln Asp		
	260	265	270
25	Val Ile Gly Ser Ile Val Lys Lys Asn Gly Tyr Val Gly Leu Met Arg		
	275	280	285
	Gly Trp Ile Pro Arg Met Leu Phe His Ala Pro Ala Ala Ile Cys		
	290	295	300
30	Trp Ser Thr Tyr Glu Ala Ser Lys Thr Phe Phe Gln Lys Leu Asn Glu		
	305	310	315
	Ser Asn Ser Asn Ser Ser Val Thr		
35		325	

CLAIMS

1. A process for isolating a promoter capable of driving fruit-specific expression of DNA sequences in transgenic blackcurrant and other non-climacteric fruit comprising
 - 5 a) isolating mRNA from ripening blackcurrant fruit
 - b) preparing a cDNA library from the isolated mRNA
 - c) differentially screening the library from b) to identify genes expressed during the ripening period
- 10 and
 - d) screening a genomic library with probes prepared from cDNA identified according to c) to isolate the corresponding gene and its promoter region.
2. A promoter capable of driving fruit-specific expression of DNA sequences in transgenic blackcurrant and other non-climacteric fruit obtainable by the process of claim 1.
- 15 3. A promoter according to claim 2 which comprises the sequence of nucleic acid bases in Figure 9 or IDSEQ 11 (the RIB1 gene promoter) or IDSEQ 14 (the RIB 7 gene promoter)..
- 20 4. Promoter DNA sequences which hybridise to the DNA of claim 3 under conditions of high stringency.
- 25 5. cDNA for genes which exhibit differential expression in fruit during the ripening period of fruit development selected from pRIB1 (IDSEQ 1), pRIB3 (IDSEQ 3), pRIB5 (IDSEQ 5), pRIB6 (IDSEQ 7) and pRIB7 (IDSEQ 9).
- 30 6. DNA encoding the RIB1 or RIB 7 gene.
7. A vector comprising the DNA as claimed in any one of claims 2 to 6.
- 35 8. Use of a promoter according to claim 2,3 or 4 to control the expression of one or more genes in climacteric or non-climacteric fruit.

9. Use according to claim 8 wherein the non-climacteric fruit is blackcurrant.

10. Use of a promoter according to claim 2,3 or 4 in the transformation of plant cells.

5

11. Plant cells and plants transformed using a promoter according to claims 2,3 or 4 or a vector according to claim 7.

12. Plants comprising cells according to claim 11 and descendants thereof.

10

13. Plants and seeds according to claim 12 which are blackcurrants and products prepared therefrom.

14. A process according to claim 1 wherein the method for extracting nucleic acid from blackcurrant fruit comprises homogenising by pulping blackcurrant fruit in a buffer containing insoluble polyvinylpolypyrrolidone.

15. Proteins encoded by the DNA sequences of claims 5 or 6.

Figure 1

Figure 2

1 CAGCATTCCA AGAGGAAAAA AAACATGATC AAGAAGTAAT TACTACAAA
51 GAGGAAGCTG TAGTAGTAAC TGCACCAACCA CCATCAGAAA CAGCAGAGCC
101 AGCTGCAGCT GTTGTGCGG AGGAAGAGAC AACAAAGGAG CAAGAAGAGC
151 CGCCAGCACT ATCGGGCGAG GAACCTGTGG CCCCCAGCTGA AGTAGAGACA
201 AAGGTGGAAG TTACAGAAGA ACCACCAAAA GTTGAGGAGA AACCAGCAGA
251 AGTAGAGGAG GCTCCAAAGG AAACAGTAGA AACRGAACCA GCTGTTGAGA
301 AGACCATCAA GGAGGAAACT GTAGAGGACT CTGTCGTGGC ACCTGCTCCC
351 GAACCGGAAG CCGAAGTCCC AAAAGAGAAG GTAATTGCTA CTACTGAAAC
401 TACTGAGGAA GAAGAAAAAG TGGCAGTTGA AGAAGTTGAA GTGAAAGTTG
451 AAACAGAGGA GGGAGAAGTT ACTGAGGAGA AGACTGAGTA AAATAAGTTG
501 TACAACTATT TTATGCACGC CTTATTTCT CAATTGGAAG TTTATAATGT
551 AGTGGGCTTT TGGTAATATT TGGGGGTTA ATAAGTGGTT TAAGTGGGTT
601 AAGGCTTTTT TGGAAATTAG ATATTTGGGT AAAGGCCTAC TTGAACAAAA
651 CATAGAAATT TGGCACACAT GGGTAAAAGT CAAACTTGT TGAGGATGTT
701 TTCTTGTGG TTAAATGTGT GTGCCAAGTA GTAGAATGTG GTGGTTGTAA
751 TGTAAGTTCT CAAGTAGGGT TTATGAGTCC TAGTATTATG CTTGATTGTA
801 TGTGATATG AAAATGGGGG TATGTTGGCT TTGAATAAAA GTTTTTAATT
851 TTATAAAAAA AAAAAAAGAA AAAAAAAA AA

Figure 3

1 AFQEEKKHDQ EVITTKEEAV VVTAPPPSET AEFAAAVVAE EETTKEQEEP
51 PAVSAEEPVA PAEVETKVEV TEEPPKVEEK PAEVEEAPKE TVETEPAVEK
101 TIKEETVEDS VVAPAPEPEA EVPKEKVIAT TETTEEEEKV AVEEVEVKVE
151 TEEGEVTEEK TE

Figure 4

1 AAACAAACAAACTTTTCAATCTTCCTTAAATCATCACCATGTCGAGCTGCCGAA 60
T T N F F I N L L S L I I T M S S C G N

61 ACTGCCACTGTGCCGACAAGACCAACTGCCAAGAAGGGAAACAGCTACGGCTTGACA 120
C D C A D K T N C P K K G N S Y G F D I

121 TCATTGAGACCCAGAAGAGCTACGATGACGTGCGTGGTATGGATGTTCAAGGCAGCTGAGA 180
I E T Q K S Y D D V V V M D V Q A A E N

181 ATGATGGCAAGTGCAGTGGGCCCGAGCTGCAGTTGTGGCTGCAGCTGTGGTCATT 240
D G K C K C G P S C S C V G C S C G H *

241 AAGTTAACACAAACATTATCATGTTATACTGAATAATGATGTGTGATGAAATATAGGTG 300
301 AAAAATCTGTGGTGTGATAAAAACCCTGGTGAATAAAATAGGTGTATATTCTGTGCAC 360
361 CTTCTACGAGTACTTGTGCTTGGGTGAAAGAAAATATGCACCTAAGTGTCAAGTTGTT 420
421 TCCGTGTTTCGCCGTGTCCCTTGTAAATGGTCATGTTGTGTTCTTGTGGTTAAATT 480
481 AAATGAACTAGTAATGTTATGTAaaaaaaaaaaaaaaa 519

Figure 5

1 GGAGGAGATCACCAGTTCCACCAACACGTCGTCGAATGAGACACGGCGATCGGATAGAC 60
 R R S P V P P T R R R N E T R R S D R Q

 61 AACTCGAGCCACTGTGGGTGAAGACGGCGCGAACGATGGGACCCACCCCTGGTCATG 120
 L R A T V G E D G G E R W D P P L V D E

 121 AAGGCAAGCTCCGTACCTTCCGGACAGGTCTGAAGCTCCGAACCAATTITGATTTCCGA 180
 G K L R T F R T G L K L R T N F D F P I

 181 TCCATCGTGTCTTGATCACCTTCCTCCGGTGCACAGACAGCATCGGAAGTCATCT 240
 H R V F V S P F L R C V Q T A S E V I S

 241 CCGCTCTCTGCCCGTGCACGATATTCCGCCACCACTAATAGAGGCATCAAGTACAAA 300
 A L C A V D D I P A T T N R G D Q V Q I

 301 TCGATCCATCCAAGATCAGGTCTCTATTGAGTATGGATTATGTGAAATGTTAACATGC 360
 D P S K I K V S I E Y G L C E M L N M Q

 361 AAGCCATAAGACTTGGTATGGATTCAGCAATGGAAATTGGGTTTCGATAATCACACC 420
 A I R L G M D F S N G N W G F D K S H L

 421 TTGAATCAACATTCCCAGTTGGGACGGTGGATCATAGTGTGGAACCACTCTATAAGAGA 480
 E S T F P V G T V D H S V E P L Y K E M

 481 TGCCAAAATGGGAAGAGACAGTCATGGCGCAAGGGCAGATATGAAGAGGTTATTCAAGG 540
 P K W E E T V N G A R A R Y E E V I Q A

 541 CCCTAGCAGATAAAATACCCACGGAGAACCTGTTGCTTGTACACATGGGAAGGAGTTG 600
 L A D K Y P T E N L L V T H G E G V G

 601 GCGTTGCAGTTCTGCCTTCATGAAGGATGTTACAGTGTACGAAGCCGATTATTGTGCCT 660
 V A V S A F M K D V T V Y E A D Y C A Y

 661 ATACACACGCAAGAAGATCCATTGTCTTGGGCAAAACCACTGCTATTTACTGCTGAAACT 720
 T H A R R S I V L G K N Q S F T A E N F

 721 TTGAAGTATTACCAAAACAGGCCAAACTGGTGTCAAGTTACGTCTTGAACAGCATGAT 780
 E V L P K Q G Q T G V S Y V L E Q H *

 781 GGAACGTATGACCTAATTGGCAGCCGATGATTACAGAAACAATTCCACACCTTTT 840
 841 TCTTTTTTCTGGCATTGCTACATTATAATTAAATTAGGCATTCTCATAGCTAAGGCT 900
 901 CATTGGATTCAACATCCCTACTTGGTAAAGGAGACTTGATTGTTGCCTCAAACAGAA 960
 961 CATATGTTGCTGTCCATCAGCTTTTAACTGGGATTCTATTTTACAGTGTGTAA 1020
 1021 AAAAAAAAAAAAAAAA 1046

Figure 6

1 GTTGATGGCAGATGTGACCAACTCAGGAAAAATGCCAGGGTTGGCAATTGATTCTTAC 60
 V D G R C D Q L R K N A R V Y A I D S Y

 61 GAAGATGTTCTTGAACGATGAGAACGCATTGAAAAAGGCAGTGGCTAGTCAGCCTGTG 120
 E D V P L N D E N A L K K A V A S Q P V

 121 CGCGTCGCCATTGAAGGAGGTGGCAGGGATTCACACTCTATCAATCAGGCGTCTTACT 180
 R V A I E G G G R D F Q L Y Q S G V F T

 181 GGATCATGTGGGACGGCCCTAGACCATTGGTGTGGCTGCTGGTATGGCACAGAAAAT 240
 G S C G T A L D H G V A A V S Y G T E N

 241 GGTGTGGATTACTGGATTGTAAGGAACCTCATGGGTGCAAGCTGGGAGAGAGCGGCTAC 300
 G V D Y W I V R N S W G A S W G E S G Y

 301 ATCAGGATGGAACGTAATCTGGCAGGCACAGCTACGGCAAAATGGTATTGCAATGGAA 360
 I R M E R N I A G T A T G K C G I A M E

 361 GCCTTTACCTATTAGAAAGGCCAAATCCCCAAACCCAGGACCATCTCCTCCATCT 420
 A S Y P I K K G Q N P P N P G P S P P S

 421 CCAATAAGACCTCAAACAGTTTGACAAATTACTATACCTGGCTGAAAGCACCACTT 480
 P I K T S N S F V T I T I P W L K A P L

 481 GCTGCTGTCTATTGAGTTGGCAGGTATTGCTCGAGTGGGATGGCCACTCGAGG 540
 A A V Y L S L A G I A S S G D V A H S R

 541 CTGCCACTTGCTGTGATGACCAATTACAGTTGCTGCCACATGAGTATCCATCTGCAACC 600
 L P L A V M T I T V A A H M S I P S A T

 601 TTAAATGCAGGGACGTGTATGATGAGAACGACAAACCTTGAGTGTGAAGGCATTGAAGCG 660
 I M Q G R V *

 661 TACTCCCGCTAAACCTCATTGGCCTTGGGACCGTGGCAAGAGCAGCAGTGCTTAAGA 720
 721 ACATTGTGTCATCTATACAGTGAAAGTAAACGAGGATGAAAAGTTGTATCAGGCAGGGC 780
 781 TTGATGATCTCCTCGGTTTATAGTACCGCATACCTCATTCATTAAAGGTATAC 840
 841 ATATGGACGGTTTATCAAAGTTATTCAAGATGCTATTATGATATATCATTCTCAGTC 900
 901 TTGTATTTCAATTAAACGAGAACATAAACAGATGCTTATCAGCTACCAATTCCACTGT 960
 961 AAAATCACGTTATCAATTATTTACTGGCCTCGCTGAAAAA 1017

Figure 7

1 CCGG [REDACTED] ATCGCTGGATCAATCGAGCATATGGCGAT [REDACTED] CCGGTTGATAACGCTTAAAC 60
 G [REDACTED] I A G S I E H M A M [REDACTED] P V D T L K T

 61 TCGCATACAGGCTATTGGGTATGTCGGCTCAATCCGCCGGTCTCCGACAAGCCCTGG 120
 R I Q A I G S C S A Q S A G L R Q A L G

 121 GTCGATACTGAAAGTTGAAGGTCCGCCGGACTTTACCGTGGCATTGGTGCAATGGGTCT 180
 S I L K V E G P A G L Y R G I G A M G L

 181 CGGTGCAGGACCAGCTCACGCAGTGTATTCCTCGTTACGAGATGTGTAAGGAGACTTT 240
 G A G P A H A V Y F S V Y E M C K E T F

 241 TTCTCATGGTATCCGAGCAATTCCGGTGCACGCCGTTTCGGGGGTGTTCGCACGGT 300
 S H G D P S N S G A H A V S G V F A T V

 301 GGCAAGCGACGCCGTGATTACGCCGATGGATGTGGTGAAACAGAGGTTGCAGTTGCAGAG 360
 A S D A V I T P M D V V K Q R L Q L Q S

 361 CAGTCCGTACAAGGGTGTGTTGATTCGCTGAGGAGGGTGTGGTAGAAGAAGGGATTGG 420
 S P Y K G V V D C V R R V L V E E G I G

 421 CGCATTTTACCGATCTTATCGAACACTGTGGTATGAATGCCCGTTACGCCGTCA 480
 A F Y A S Y R T T V V N N A P F T A V H

 481 CTTGCCACATATGAAGCCACGAAGAAAGGGTTCTGGAGGTGTCGCCGGAGACTGCGAA 540
 F A T Y E A T K K G L L E V S P E T A N

 541 CGATGAGAATTGTTAGTGCATGCTACTGCTGGTCTGCTGGAGCTTGGCTGCAGT 600
 D E N L L V H A T A G A A A G A L A A V

 601 AGTAACCACTCCACTAGATGTTGTCAAAACCTCAGTTGCAGTGCCAAGGTGTTGGGATG 660
 V T T P L D V V K T Q L Q C Q G V C G C

 661 CGACAGATTTCTAGCAGTTGATTCAAGGATGTTAGGAAGCATAGTGAAAGAAAAATGG 720
 D R E S S S S I Q D V I G S I V K K N G

 721 ATATGTCGGGTTAATGAGGGGGTGGATCCCAGAATGCTATTTCATGCTCCTGCTGCAGC 780
 Y V G L M R G W I P R M L F H A P A A A

 781 AATCTGCTGGTCTACTTATGAAGCCTCAAAACATTCTTCAAAAACCTCAATGAGAGCAA 840
 I C W S T Y E A S K T F F Q K L N E S N

 841 TAGCAACAGCTCAGTTACCTAACAGATTCTATGTTTGTGCTACTAGGCTTATCCA 900
 S N S S V T *

 901 AAATCATGTCGATTGGTTCACTTCACCCACAGTTGCCATGAACAACTCAAAGCATCGAAT 960
 961 TTTACATGTATATTATGCAATCTAGATGCTTCTGATATTTATTTTATTTTCTTTC 1020
 1021 CAACTTTGTAATTAGAATTAGCTACTATGGTTATGGCATGGAGTGTGTTATAATTGCTA 1080
 1081 ATATCATCGTATAAGCAATGCTATTGAGAAATTGTGGTGTAGAGTTAGAGTAATGTTAT 1140
 1141 TTGCACAATCCACTACATAGACCGCGGGACTCATTTAAAAAAAAAAAAAA 1195

Figure 8

Figure 9

1 GATCT [REDACTED] ATTGAGGGATGCAAAGTTCAAATTACCTG [REDACTED] GTAACTCTCAACAAAATCA 60
 61 AGCTT [REDACTED] GATCATATAAAATCGAAACCAACACACAATAAATGAATTCTTGTACTCTTT 120
 121 GTCTCTGTACCAAAATACGCACACCACACAAAAAATTCTTTGTATTATATTGTGTTTTTA 180
 181 TTTTTTAACGTTTGGTATTCAAACATCATATAAGTAAGGGGAATATTATTGTGACTCTTT 240
 241 CTCCAAAAACTTATGACATTGTGATTACACATTTGAATGACAGAAGTTTGATGAAGTG 300
 301 CCAATATCAATCTTCTTAATTGCTTCATAAAGGGTGTGTTGTAAATTAAAAGAAAGAT 360
 361 AAGGAAATTAGCAAGAAGTGCATTATTGGGACTGGTATATGTGACAAGGATCTGACGTG 420
 421 GCAGGAAAGAAAGTGGTCCCTGAGTCAGGTGTCCCCTCTGTCAATATTCTTCAAAG 480
 481 AGAGTCCACCATCTCATAGATGAGATTAGAAAGTGGTTCCACAAAAAAATATGACACA 540
 541 ACCCATCCATGAACCAATAAAACATGACAGGTCACTATTCTTCTATTCTCTC 600
 601 AAGATAATAATACCTATTAGTGTCTTAAACACCGCCTAACCTTGCAATTCTGTCAATT 660
 661 GGTGACTTTTATTGCCAATTGGCTTGAAGGAAATAAAAGGAAAGTCTTTCTTG 720
 721 AACCCATATGGAAGCAATTCAATGAGAGAGATAGAGAGGGGATGGAGATTGGGTGG 780
 781 AGAATTGATAACGGATCTTAAATTGGTATATGTAATCTCAGAAACACGTAACATGC 840
 841 TATATGCATCAATGTCATGTACAGAAAACGTAACCTCACGAAACACATTCTGTAACATGC 900
 901 ATGCACCAATCATACATTATAACATAGTGTACGACAATAAAAGATCTTAGTCGTAAGA 960
 961 GCATTAGCTCGTGACAAGAACAAAACGTGGATTCCACCTAAAGAAGGGTATATCTT 1020
 1021 TATTCAATATCTACTTTGATATGACCTAACCTTGTCACCCACAATGTTCACTACG 1080
 1081 ATCGATAATTGTTGACTTGTGAGGAAATGTATGAGACTGGCCATTAGTTTA 1140
 1141 GCCGGATGTGATTGGGTATTGATGACAATATAAGATATAAAACTTGAACAAAACA 1200
 1201 ATTTCTCAACAAATTAAACTACAAGATAATCTCCCTCAGATGATAAAACTAAATGGTAGA 1260
 1261 ATATCCGGTGGAGTACCCCCAATAATTAAATCTCCAGCAAAACTGTGATTCTTTCT 1320
 1321 TCGAAGCGAAATTCTTCTTCCAAACACCTAACAAATGTAATTCGTTAGTAAGATT 1380
 1381 AAATTGAAATGATAACACAAGAGTGAATAAGGTCACTGGTCACCTACTAACCAACTGC 1440
 1441 ACAAAACACACAAGCACACATCCAAAAGTAGTAGTGTGATTACACACATTGAAAAAAATG 1500
 1501 ACCTCCATTATTAGCCACCTCTTGTAAAAAGATTACAAAACAAATTACTCCTATCA 1560
 1561 TTATTATAAAATAGTAGCATAACCTCATCTCCATCCACACCATATATTACATTATT 1620
 1621 GCCAAACATGCTAAAGCTTCTGTATTCACTGAAATGTGGTGTCAAATCCCAAGATT 1680
 1681 TTCATGTGCCCTC 1740
 1741 ATCAACTTGAGGGCTTGTAGGACCTCTATATAACCTCTCTCAATTGATCATCTCTGCATC 1800
 1801 ACACCTCAAGCATTCTCTCTACTTTCTTAGGTCAACTACACTTCCCTTGAGT 1860
 1861 TTCCAATGGCCACTGTTGAGGTAAATCAAGTGTATATACATAAATTATTGAAAGAT 1920

M A T V E

1921 GATTGATTCAAAGAGAACCTTTGTGTTTCTTAATAAGATCCATGTATATGAAGTTT 1980
 1981 TAATGTTTCATGTTTTTATTTTTGTTAATTGTTAATTGAGGATTTTGCAAT 2040
 2041 ATCCCATTGTGAAAAGATCTGTTTCTTGGAGAGATTAGAATTGTTCTGTGTCGA 2100
 2101 TTCATCATGAAAATCAATTCTGGGTCTAGCTTTAATTGTCATCTGACCGGACTGTTA 2160
 2161 GATGATTGTTTATATGTAGGCCCATAAGAGAGTGTAGTAGTATTCCGAAATAACAAA 2220
 2221 TCCGAGCAAACATATAATCTCAATAGTAACCTTGTAATCTCTAAATAATCAAAAATAAT 2280
 2281 GCTTATTGGGGTATTGGTGTGTTGATGCAGGTTGATCAGCGCAGACAGCATTCAAG 2340

V V S A Q T A F Q E

2341 AGGAAAAAAACATGATCAAGAAGTAATTACTACAAAAGAGGAAGCTGTAGTAGTAACG 2400
 E K K H D Q E V I T T K E E A V V V T A
 2401 CACCAACACCATCAGAAACAGCGAGGCCAGCTGCAGCTGTTGCGAGAGACAA 2460
 P P P S E T A E P A A V V A E E E T T
 2461 CAAGGGAGCAAGAAGAGCCGCCAGCAGTATCGGCCGAGGAACCTGTGGCCCCAGCTGAAG 2520
 K E Q E E P P A V S A E E P V A P A E V
 2521 TAGAGACAAAGGTGGAAGTTACAGAAGAACCAAAAGTTGAGGAGAACAGCAGAAG 2580
 E T K V E V T E E P P K V E E K P A E V
 2581 TAGAGGAGGGCTCAAAGGAAACAGTAGAACAGAACCCAGCTGTTGAGAAGACCAAG 2640
 E E A P K E T V E T E P A V E K T I K E

2641 AGGAAACTGTAGAGGACTCTGTCGTGGCACCTGCTCCGAACCGGAAGCCGAAGTCCAA 2700
E T V E D S V V A P A P E P E A E V ? K
2701 AAGAGAAGGTAATTGCTACTACTGAAACTACTGAGGAAGAAGAAAAGTGGCAGTTGAAG 2760
E K V I A T T E T E E E E K V A V E E
2761 AAGTTGAAGTGAAGTTGAAACAGAGGGAGGAAGTTACTGAGGAGAAGACTGAGTAAA 2820
V E V K V E T E E G E V T E E K T E *
2821 ATAAGTTGTACAACATTTTATGCACGCCCTATTTCTCAATTGGAAGTTATAATGTAG 2880
2881 TGGGCTTTGGTAATATTGGGGTTAATAAGTGGTTAACGGCTTAAAGGCTTTTG 2940
2941 GAATTTAGATAATTGGGAAAGGCCACTTGAAACAAACATAGAAATTGGCACACATGG 3000
3001 GTAAAAGTCAAACCTTGTGAGGATGTTCTTGTGGTAAATGTGTGCAAGTAGGT 3060
3061 AGAATGTGGTGGTTGTAATGTAAGTCTCAAGTAGGGTTATGAGTCCTAGTATTATGCT 3120
3121 TGATTGTATGTTGATATGAAAATGGGGTATGGCTTGTGATAAAAAGTTTTAATT 3180
3181 ATATAATAAGTGTATTTGTTAATATCATTCTTCATTCTCGGATCAACTACTGAT 3240
3241 CATGCCCTGGTAAGCTATTGCCCTACCAACTAGCTAATCGAACGCGAGCCC 3292

Figure 10

INTERNATIONAL SEARCH REPORT

Int'l Application No

CT/EP 96/04807

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/82 C12N5/10 A01H5/00 C07K14/415

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N A01H C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PLANT CELL TISSUE ORGAN CULT., vol. 24, 1991, pages 91-95, XP000618648 J. GRAHAM AND R.J. MCNICOL: "Regeneration and transformation of Ribes" see the whole document. ---	1
A	WO 94 21794 A (ZENECA LTD.) 29 September 1994 see pages 2-8. -----	1

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

1

Date of the actual completion of the international search

6 March 1997

Date of mailing of the international search report

25. 03. 97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Yeats, S

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
WO/EP 96/04807

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9421794 A	29-09-94	AU 6262394 A CA 2158473 A EP 0689594 A JP 8507923 T	11-10-94 29-09-94 03-01-96 27-08-96