Variable Selection to Predict Crimes per Capita

Prepared by Emilie Campos

March 26, 2018

Introduction

The county demographic information (CDI) data set contains data from 440 of the most populous counties in the United States. Our objective is to develop a model to predict the number of serious crimes per capita, transformed to a rate per 1000 persons, i.e. crimesper1000 = 1000*crimes/pop.

Methods

The CDI data set consits of 440 of the most populous counties in the United States. The information generally pertains to the years 1990 and 1992. The 17 variables are given in Table 1. In order to create a predictive model, we split this data set into two parts: 75% training and 25% test. The summary statistics for each are provided in Table 2. The mean and standard error are given for continuous variables and the count and percentage are given for categorical variables.

Table 1: Variable Descriptions

Variable	Description				
Identification Number	1-440				
County	County name				
State	Two-letter state abbreviation				
Land area	Land area (square miles)				
Total Population	Estimated 1990 population				
Percent of population aged 18-34	Percent 1990 CDI popluation aged 18-34				
Percent of population 65 or older	Percent 1990 CDI population aged 65 years old or older				
Number of active physicians	Number of professionally active nonfederal physicians during 1990				
Number of hospital beds	Total number of beds, cribs, and bassinets during 1990				
Total serious crimes	Total number of serious crimes in 1990, including murder, rape, robbery, aggravated assault, burglary, larceny-theft, and motor vehicle theft, as reported by law enforcement agencies				
Percent high school graduates	Percent of adult population (persons 25 years old or older) who completed 12 or more years of school				
Percent bachelor's degrees	Percent of adult population (persons 25 years old or older with bachelor's degree				
Percent below poverty level	Percent of 1990 CDI popluation with income below poverty level				
Percent unemployment	Percent of 1990 CDI labor force that is unemployed				
Per capita income	Per capita income of 1990 CDI popluation (dollars)				
Total personal income	Total personal income of 1990 CDI population (in millions of dollars)				
Geographic region	Geographic region classification that is used by the US Bureau of the Census, where $1 = NE$, $2 = NC$, $3 = S$, $4 = W$				

Transformations

Upon inspection of the univariate and bivariate distributions, and component residual plots, we determined that we need to log-transform the variables: crimes per 1000 persons, number of beds, number of physicians, total population, total income, percent below the poverty line, percent of unemployment, and per capita income.

Model Selection

Beginning with a base model which includes all of our possible predictors:

$$log crimes per 1000 = \beta_0 + \beta_1 log beds + \beta_2 log docs + \beta_3 log pop + \beta_4 log total inc + \beta_5 log poverty \\ + \beta_6 log unemp + \beta_7 log pcincome + \beta_8 log area + \beta_9 pop 18 + \beta_{10} pop 65 \\ + \beta_{11} hsgrad + \beta_{12} bagrad + \beta_{13} ncregion + \beta_{14} sregion + \beta_{15} wregion,$$

we can then perform several variable selection procedures to find an optimal prediction model. For each variable selection procedure, the form of the model is given and the summary of regression coefficient values is given in Table 3. All analyses were performed in R 3.4.3 using packages: stats, olsrr, and glmnet.

i. Best a priori judgment:

Based on prior knowledge, we chose the following variables: total area, total population, percent of population aged 18-34, percent of high school graduates, percent below the poverty line, percent of unemployment, and per capita income. This is the model:

$$logcrimesper1000 = \beta_0 + \beta_1 logpop + \beta_2 logpoverty + \beta_3 logunemp + \beta_4 logpcincome + \beta_5 logarea + \beta_6 pop 18 + \beta_7 hograd$$

ii. Best subset selection:

We used the function ols_best_subset(). Based off a combination of factors including Mallow's Cp and AIC, this resulted in the following model with 5 predictors:

$$logcrimesper1000 = \beta_0 + \beta_1 logbeds + \beta_2 logpoverty + \beta_3 logpcincome + \beta_4 pop65 + \beta_5 ncregion + \beta_6 sregion + \beta_7 wregion$$

iii. Forward selection:

Using the criterion AIC and the function ols_stepaic_forward(), this resulted in the following model:

$$log crimes per 1000 = \beta_0 + \beta_1 log beds + \beta_2 log poverty + \beta_3 log p cincome + \beta_4 pop 65 + \beta_5 n cregion + \beta_6 s region + \beta_7 w region$$

iv. Backward elimination:

Using the criterion AIC and the function ols_stepaic_backward(), this resulted in the following model:

$$logcrimesper 1000 = \beta_0 + \beta_1 logbeds + \beta_2 logpop + \beta_3 logtotalinc + \beta_4 logpoverty + \beta_5 pop 65 + \beta_6 ncregion + \beta_7 sregion + \beta_8 wregion$$

v. Stepwise:

Using the criterion AIC and the function ols_stepaic_both(), this resulted in the following model:

$$logcrimesper1000 = \beta_0 + \beta_1 logbeds + \beta_2 logpoverty + \beta_3 logpcincome + \beta_4 pop65 + \beta_5 ncregion + \beta_6 sregion + \beta_7 wregion$$

vi. Lasso:

Using techniques from Introduction to Statistical Learning in R and the function cv.glmnet(), LASSO regression resulted in the following model:

$$log crimes per 1000 = \beta_0 + \beta_1 log beds + \beta_2 log docs + \beta_3 log poverty + \beta_4 pop 65 + \beta_5 ncregion + \beta_6 sregion + \beta_7 wregion$$

vii. Bivariate p-value selection:

By regressing each predictor singly and using a threshold of 0.25, we ended with the following model:

$$log crimes per 1000 = \beta_0 + \beta_1 log beds + \beta_2 log pop + \beta_3 log total inc + \beta_4 log poverty + \beta_5 log pcincome \\ + \beta_6 log area + \beta_7 pop 18 + \beta_8 pop 65 + \beta_9 hsgrad + \beta_{10} bagrad \\ + \beta_{11} ncregion + \beta_{12} sregion + \beta_{13} wregion$$

Discussion

The Best Subset, Forward and Stepwise Selection methods resulted in the same exact model. It appears that region was a very important factor in modeling the crime rate as it was included in each of the algorithmic variable selection methods. The Bivariate p-value approach included a lot more variables because it does not have a penalty for less parsimonious models. The model based on a priori judgement was very different from the other models, including the variables that most of the variable selection algorithms found unimportant. This highlights the fact that our perceptions about crime in the United States may be incorrect.

Each of the models had a fairly small root mean test error, taking on values between 0.44-0.47. In terms of intpretability, the model chosen by the best subset, forward, and stepwise methods would be the most parsimonious. If we are more concerned with prediction, the bivariate p-value approach has the smallest root mean test error. However, the difference is minimial.

One concern after training the model is that an outlier was randomly included in the training set. Had this value been excluded from the training set, the regression coefficients would have been different and the root mean test error could have been improved. In addition to this, the functions used in R were using AIC as the criterion for choosing variables and there was not an equivalent function for using BIC or Mallow's Cp. It would have been interesting to see if these would have led to the same models chosen based on AIC. This could be a potential future project.

Tables and Figures

Table 2: Summary Statistics

	Training Set	Test Set		
Land area, in square miles	1,049 (1,624.9)	1,019 (1,624.9)		
Total Population	360,721 (364,166.1)	489,881 (364,166.1)		
Percent of population aged 18-34	29 (4.31)	28 (4.31)		
Percent of population 65 or older	12 (4.07)	12 (4.07)		
Number of active physicians	912 (1,231.01)	1,216 (1,231.01)		
Number of hospital beds	1,343 (1,626.65)	1,806 (1,626.65)		
Total serious crimes	25,172 (47,480.29)	32,932 (47,480.29)		
Percent high school graduates	78 (7.25)	77 (7.25)		
Percent bachelor's degrees	21 (7.88)	20 (7.88)		
Percent below poverty level	9 (4.99)	9 (4.99)		
Percent unemployment	7 (2.42)	7 (2.42)		
Per capita income	18,611 (4,278.65)	18,414 (4,278.65)		
Total personal income, in millions	7,217 (8,120.44)	9,825 (8,120.44)		
Geographic region				
North East region	78 (24%)	25 (23%)		
North Central region	83 (25%)	25 (23%)		
South region	117 (35%)	35 (32%)		
West region	52 (16%)	25 (23%)		

Table 3: Estimated Coefficients by Selection Method

	A priori	Best Subset	Forward	Backward	Stepwise	Lasso	Bivariate
No. of hospital beds, 1% increase		0.181	0.181	0.16	0.181	0.142	0.143
No. of active physicians, 1% increase						0.088	
Total Population, 1% increase	0.189			-0.565			-39.964
Total personal income, 1% increase				0.595			39.991
Percent below poverty, 1% increase	0.688	0.395	0.395	0.407	0.395	0.247	0.417
Percent unemployment, 1% increase	-0.227						
Per capita income, 1% increase	0.656	0.589	0.589		0.589		-39.352
Land area, 1% increase	-0.006						
Percent of population aged 18-34	0.009						0.005
Percent of population aged 65 or older		-0.017	-0.017	-0.015	-0.017	-0.014	-0.014
Percent high school graduates	0.002						0.002
Percent bachelor's degrees							-0.003
Geographic Region							
North East		-3.968	-3.968	3.933	-3.968	1.792	547.574
North Central		0.232	0.232	0.236	0.232	0.242	0.235
South		0.549	0.549	0.546	0.549	0.546	0.55
West		0.469	0.469	0.459	0.469	0.456	0.459
Root Mean Test Error	0.4659	0.4499	0.4499	0.4501	0.4499	0.4516	0.4470