Rényi relative entropies and noncommutative L_p -spaces II

Anna Jenčová *

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, 814 73 Bratislava, Slovakia

Let \mathcal{M} be a von Neumann algebra and $L_p(\mathcal{M})$, the Haagerup L_p -spaces, $1 \leq p \leq \infty$. We will (mostly) work in the standard representation

$$(\lambda(\mathcal{M}), L_2(\mathcal{M}), J, L_2(\mathcal{M})^+). \tag{1}$$

1 Interpolation norms in $L_2(\mathcal{M})$

Let $\varphi \in \mathcal{M}_*^+$ be faithful. Let us consider the continuous positive embedding $\mathcal{M} \to L_2(\mathcal{M})$ by

$$x \mapsto h_{\varphi}^{1/2} x, \qquad x \in \mathcal{M}.$$

The image of \mathcal{M} is dense in $L_2(\mathcal{M})$. Using this embedding, we define the interpolation spaces

$$L_p^2(\mathcal{M}, \varphi) := C_{2/p}(\mathcal{M}, L_2(\mathcal{M})), \qquad 2 \le p < \infty.$$

Let us denote the norm in this space by $\|\cdot\|_{p,\varphi}^{BST}$, the reason for this notation will become clear later. The following polar decomposition in $L_p^2(\mathcal{M},\varphi)$ is easily proved using the results of Kosaki [6] and the fact that the map

$$i_2^R: L_2(\mathcal{M}) \ni \xi \mapsto h_{\varphi}^{1/2} \xi \in L_1(\mathcal{M})$$

provides an isometric isomorphism of $L_p^2(\mathcal{M}, \varphi)$ onto the space $L_p(\mathcal{M}, \varphi)^R$, defined therein (ref).

Theorem 1. Let $\xi \in L_2(\mathcal{M})$. Then $\xi \in L_p^2(\mathcal{M}, \varphi)$ if and only if there is some $\mu \in \mathcal{M}_*^+$ and a partial isometry $u \in \mathcal{M}$ with $uu^* = s(\mu)$ such that

$$\xi = h_{\varphi}^{1/2 - 1/p} h_{\mu}^{1/p} u.$$

Moreover, in this case, μ and u are unique and $\|\xi\|_{p,\varphi}^{BST} = \mu(1)^{1/p}$.

^{*}jenca@mat.savba.sk

Let us now define for all $\xi \in L_2(\mathcal{M})$:

$$\|\xi\|_{p,\varphi}^{BST} := \begin{cases} \|\xi\|_{p,\varphi}^{BST}, & \text{if } \xi \in L_p^2(\mathcal{M}, \varphi) \\ \infty, & \text{otherwise.} \end{cases}$$

As remarked in [4], this norm coincides with the norm defined in [?] by the variational formula

$$\|\xi\|_{p,\varphi}^{BST} = \sup_{\zeta \in L_2(\mathcal{M}), \|\zeta\|_2 = 1} \|\Delta(\zeta/\varphi)^{1/2 - 1/p} \xi\|_2 = \sup_{\omega \in \mathfrak{S}_*(\mathcal{M})} \|\Delta_{\omega,\varphi}^{1/2 - 1/p} \xi^*\|_2.$$

The norm can be extended to non-faithful functionals φ by restriction to the support. More precisely, let $e = s(\varphi)$ and let

$$\varphi_0 := \varphi + \sigma \tag{2}$$

where $\sigma \in \mathcal{M}_*^+$ is any functional such that $s(\sigma) = 1 - e$. We then define

$$\|\xi\|_{p,\varphi}^{BST} := \begin{cases} \|\xi\|_{p,\varphi_0}^{BST}, & \text{if } e\xi = \xi\\ \infty, & \text{otherwise,} \end{cases}$$

this again agrees with the definition in [?]. We also have a unique polar decomposition in this case.

Proposition 2. Let $\varphi \in \mathcal{M}_*^+$, $s(\varphi) = e$ and $\xi \in L_2(\mathcal{M})$. Then $\|\xi\|_{p,\varphi}^{BST} < \infty$ if and only if

$$\xi = h_{\varphi}^{1/2 - 1/p} h_{\mu}^{1/p} u$$

for some $\mu \in \mathcal{M}_*^+$ with $s(\mu) \leq e$ and a partial isometry $u \in \mathcal{M}$ such that $u^*u = s(\omega_{\xi^*})$ and $uu^* = s(\mu)$. Moreover, such μ and u are unique and we have $\|\xi\|_{p,\varphi}^{BST} = \mu(1)^{1/p}$.

Proof. Assume $\|\xi\|_{p,\varphi}^{BST} < \infty$, then we must have $e\xi = \xi$ and $\|\xi\|_{p,\varphi_0}^{BST} = \|\xi\|_{p,\varphi}^{BST} < \infty$. Since φ_0 is faithful, we have a polar decomposition as in Theorem 1, with $\mu \in \mathcal{M}_+^+$ and a partial isometry $u \in \mathcal{M}$ such that $u^*u = s(\omega_{\xi^*})$, $uu^* = s(\mu)$ and $\|\xi\|_{p,\varphi_0}^{BST} = \mu(1)^{1/2}$. From $\xi = e\xi$, we obtain

$$h_{\varphi_0}^{1/2-1/p}h_{\mu}^{1/p}u=eh_{\varphi_0}^{1/2-1/p}h_{\mu}^{1/p}u=h_{\varphi}^{1/2-1/p}h_{\mu}^{1/p}u$$

which implies that $h_{\sigma}^{1/2-1/p}h_{\mu}^{1/p}=0$. Notice that the function

$$f: \{z \in \mathbb{C}, 0 \le Re(z) \le 1/p\} \ni z \mapsto h_{\sigma}^{1/2-z} h_{\mu}^z \in L_2(\mathcal{M})$$

is bounded and continuous and analytic on the interior of the strip, and we have f(1/p+it)=0 for all $t\in\mathbb{R}$. Hadamard three lines theorem now implies that f(z)=0 for all z, in particular, for z=0 we obtain $h_{\sigma}^{1/2}s(\mu)=0$. It follows that $s(\mu)\leq e$.

Conversely, assume that ξ has the polar decomposition as required. Then since $s(\mu) \leq e$, we have

$$\xi = h_{\varphi}^{1/2-1/p} h_{\mu}^{1/2} u = h_{\varphi_0}^{1/2-1/p} h_{\mu}^{1/p} u$$

and Theorem 1 implies that $\|\xi\|_{p,\varphi_0}^{BST} < \infty$. Since the decomposition also implies that $e\xi = \xi$, the statement follows. Uniqueness follows by the uniqueness in Theorem 1.

Let us now turn to the case $1 . Let us again suppose first that <math>\varphi \in \mathcal{M}_*^+$ is faithful and use complex interpolation, but this time with the continuous embedding $i_2^R : L_2(\mathcal{M}) \to L_1(\mathcal{M})$, defined above. By [6,], we have

$$C_{2/p-1}(L_2(\mathcal{M}), L_1(\mathcal{M})) = L_p(\mathcal{M}, \varphi)^R,$$

notice that $i_2^R(L_2(\mathcal{M})) \subseteq L_p(\mathcal{M}, \varphi)^R$. We will denote by $\|\cdot\|_{p,\varphi}^{BST}$ the norm in $L_2(\mathcal{M})$ induced by this embedding, that is

$$\|\xi\|_{p,\varphi}^{BST} := \|i_2^R(\xi)\|_{p,\varphi}^R.$$

If $s(\varphi) = e$, we put

$$\|\xi\|_{p,\varphi}^{BST} := \|e\xi\|_{p,\varphi_0}^{BST},$$

where φ_0 is given by (2). The following result gives a unique polar decomposition with respect to this norm.

Proposition 3. Let $1 and let <math>\varphi \in \mathcal{M}_*^+$, $\xi \in L_2(\mathcal{M})$. Then $\|\xi\|_{p,\varphi}^{BST} = \mu(1)^{1/p}$, where $\mu \in \mathcal{M}_*^+$ is obtained from the (unique) polar decomposition

$$h_{\varphi}^{1/p-1/2}\xi = h_{\mu}^{1/p}u$$

in $L_p(\mathcal{M})$. Moreover, we have $s(\mu) \leq e$.

Proof. Since $\xi \in L_2(\mathcal{M})$, we have $h_{\varphi}^{1/p-1/2}\xi \in L_p(\mathcal{M})$, so that $h_{\varphi}^{1/p-1/2}\xi = h_{\mu}^{1/p}u$ for some $\mu \in \mathcal{M}_*^+$ and a partial isometry $u \in \mathcal{M}$, clearly, $s(\mu) \leq e$. Moreover,

$$i_2^R(e\xi) = h_{\varphi_0}^{1/2} e\xi = h_{\varphi_0}^{1/q} h_{\varphi_0}^{1/p-1/2} e\xi = h_{\varphi_0}^{1/q} h_{\varphi}^{1/p-1/2} \xi$$

and by [6, Theorem],

$$\|h_{\varphi_0}^{1/q}h_{\varphi}^{1/p-1/2}\xi\|_{p,\varphi_0}^R = \|h_{\varphi}^{1/p-1/2}\xi\|_p = \mu(1)^{1/p}.$$

We again show that this norm coincides with the one given in [?]

Proposition 4. Let $1 . The norm <math>\|\cdot\|_{p,\varphi}^{BST}$ satisfies the variational formula

$$\|\xi\|_{p,\varphi}^{BST} = \inf_{\zeta \in L_2(\mathcal{M}), \|\zeta\|_2 = 1, s(\omega_{\zeta}') \geq s(\omega_{\xi}')} \|\Delta(\zeta/\varphi)^{1/2 - 1/p} \xi\|_2 = \inf_{\omega \in \mathfrak{S}_*(\mathcal{M}), s(\omega) \geq s(\omega_{\xi^*})} \|\Delta_{\omega,\varphi}^{1/2 - 1/p} \xi^*\|_2.$$

Proof. Let μ and u be as in Proposition 3. Assume that $\omega \in \mathfrak{S}_*(\mathcal{M})$ is such that $s(\omega_{\xi^*}) \leq s(\omega)$ and $\xi^* \in \mathcal{D}(\Delta_{\omega,\varphi}^{1/2-1/p})$. By [4, Appendix A.1], we have $\xi \in \mathcal{D}(\Delta_{\varphi,\omega}^{1/p-1/2})$ and

$$\|\Delta_{\omega,\varphi}^{1/2-1/p}\xi^*\|_2 = \|J\Delta_{\varphi,\omega}^{1/p-1/2}J\xi^*\|_2 = \|\Delta_{\varphi,\omega}^{1/p-1/2}\xi\|_2.$$

Let $k = \Delta_{\varphi,\omega}^{1/p-1/2} \xi$, then

$$h_{\mu}^{1/p}u=h_{\varphi}^{1/p-1/2}\xi=h_{\varphi}^{1/p-1/2}\xi s(\omega)=kh_{\omega}^{1/p-1/2}.$$

By Hölder's inequality, we obtain

$$\|\xi\|_{p,\varphi}^{BST} = \mu(1)^{1/p} = \|h_{\mu}^{1/p}u\|_{p} \le \|k\|_{2} \|h_{\omega}^{1/p-1/2}\|_{2p/(2-p)} = \|k\|_{2} = \|\Delta_{\omega,\varphi}^{1/2-1/p}\xi^{*}\|_{2}.$$
(3)

On the other hand, assume first that φ is faithful and put $\omega(a) = \mu(1)^{-1}\mu(uau^*)$. Then $\omega \in \mathfrak{S}_*(\mathcal{M})$, but note that in general we have $s(\omega) = u^*u \leq s(\omega_{\xi^*})$. Let $\omega_0 \in \mathfrak{S}_*(\mathcal{M})$ be any state with $s(\omega_0) = s(\omega_{\xi^*}) - s(\omega)$ and put

$$\omega_{\epsilon} := \epsilon \omega + (1 - \epsilon)\omega_0, \quad \epsilon \in (0, 1).$$

Then we have $s(\omega_{\epsilon}) = s(\omega_{\xi^*})$. Moreover, $\xi \in \mathcal{D}(\Delta_{\varphi,\omega_{\epsilon}}^{1/p-1/2})$ with

$$\Delta_{\varphi,\omega_{\epsilon}}^{1/p-1/2}\xi = \epsilon^{1/2-1/p}\mu(1)^{1/p-1/2}h_{\mu}^{1/2}u$$

so that

$$\|\Delta_{\omega,\omega_{\epsilon}}^{1/p-1/2}\xi\|_{2} = \epsilon^{1/2-1/p}\mu(1)^{1/p}.$$

Letting $\epsilon \to 1$, we obtain the result.

Note that the variational definitions with spatial derivative can be applied to any representing Hilbert space \mathcal{H} and any *-representation $\pi: \mathcal{M} \to B(\mathcal{H})$, as was originally done in [?].

Let $\varphi \in \mathcal{M}_*^+$ and let $\pi : \mathcal{M} \to B(\mathcal{H})$ be any *-representation. For $\xi \in \mathcal{H}$, let ω_{ξ} be the functional given by ξ , that is $\omega_{\xi}(a) = (\xi, \pi(a)\xi)$. We also denote by ω'_{ξ} the corresponding functional on the commutant: $\omega'_{\xi}(a') = (\xi, a'\xi), a' \in \pi(\mathcal{M})'$. Let $\Delta(\xi/\varphi)$ denote the spatial derivative as defined in [?, Sec. 2.2] (see also [?, Appendix A.2]). The φ -weighted p-norm of $\xi \in \mathcal{H}$ is defined as:

1. for
$$2 \le p < \infty$$
,
$$\|\xi\|_{p,\varphi}^{BST} := \sup_{\zeta \in \mathcal{H}, \|\zeta\| = 1} \|\Delta(\zeta/\varphi)^{1/2 - 1/p} \xi\|$$

if $s(\omega_{\xi}) \leq s(\varphi)$ and $+\infty$ otherwise. Note that the supremum can be infinite also if the condition on the supports holds.

2. for 1 , we define

$$\|\xi\|_{p,\varphi}^{BST}:=\inf_{\zeta\in\mathcal{H},\|\zeta\|=1,s(\omega_\zeta')\geq s(\omega_\xi')}\|\Delta(\zeta/\varphi)^{1/2-1/p}\xi\|.$$

According to [?], this quantity depends only on the functionals φ and ω_{ξ} and not on the representation π or the representing vector ξ . For a faithful φ and a standard form for \mathcal{M} , the BST-norm is the Araki-Masuda L_p -norm (with respect to the commutant \mathcal{M}').

We start by writing the BST-norm in the standard representation on $L_2(\mathcal{M})$. By [?, Appendix A.2] (notice a small mistake there)

$$\Delta(\eta/\varphi) = F_{\eta,h_{\varphi}^{1/2}}^* \bar{F}_{\eta,h_{\varphi}^{1/2}}.$$

Let $\omega = \omega_{\eta}$ and let $\eta = h_{\omega}^{1/2} u$ for a partial isometry $u \in \mathcal{M}$. Then using [?, (C12)], we have

$$\bar{F}_{\eta,h_{\varphi}^{1/2}} = \Delta_{\eta,h_{\varphi}^{1/2}}^{1/2} J_{\eta,h_{\varphi}^{1/2}} = \Delta_{\eta,h_{\varphi}^{1/2}}^{1/2} \rho(u) J$$

where $\rho(u) \in B(L_2(\mathcal{M}))$ is the right multiplication operator: $\rho(u)\xi = \xi u, \xi \in L_2(\mathcal{M})$.

where $\omega = \omega_{\eta^*}$. It follows that for all $\xi \in L_2(\mathcal{M})$, we have

$$\|\xi\|_{p,\varphi}^{BST} = \begin{cases} \sup_{\omega \in \mathfrak{S}_*(\mathcal{M})} \|\Delta_{\omega,\varphi}^{1/2 - 1/p} \xi^*\|_2 & \text{if } s(\omega_{\xi}) \le s(\varphi) \\ +\infty & \text{otherwise} \end{cases}, \quad 2 \le p < \infty, \quad (4)$$

$$\|\xi\|_{p,\varphi}^{BST} = \inf_{\omega \in \mathfrak{S}_{*}(\mathcal{M}), s(\omega) > s(\omega \in *)} \|\Delta_{\omega,\varphi}^{1/2 - 1/p} \xi^{*}\|, \qquad 1 (5)$$

The next lemma shows that we may always assume that the state φ is faithful (or reduce the norms to this case). The proof follows easily from the expressions (4), (5) and the results in [?, Appendix A.1].

Lemma 5. Let $e := s(\varphi)$ and let $\sigma \in \mathcal{M}_*^+$ be such that $s(\sigma) = 1 - e$. Put $\varphi_0 = \varphi + \sigma$, then φ_0 is faithful and

(i) for $2 \le p < \infty$, we have

$$\|\xi\|_{p,\varphi}^{BST} = \|\xi\|_{p,\varphi_0}^{BST}, \quad \forall \xi \in L_2(\mathcal{M}), \ s(\omega_{\xi}) \le e;$$

(ii) for 1 , we have

$$\|\xi\|_{p,\varphi}^{BST} = \|e\xi\|_{p,\varphi_0}^{BST}, \quad \forall \xi \in L_2(\mathcal{M}).$$

1.1 Polar decomposition and duality

As noted in [?, Lemma 3.2] for $p \geq 2$ and faithful φ , the relation to the Araki-Masuda L_p -norm gives a form of polar decomposition for elements in $L_2(\mathcal{M})$ with finite BST-norm. The next two lemmas complete this result for all $\varphi \in \mathcal{M}_*^+$ and 1 .

The following duality relation was mentioned also in [?].

Lemma 6. Let $\xi, \eta \in L_2(\mathcal{M}), \varphi \in \mathcal{M}_*^+, 1 . Then$

(i)
$$|(\xi, \eta)| \le ||\xi||_{p,\varphi}^{BST} ||\eta||_{q,\varphi}^{BST};$$

(ii) if $s(\omega_{\xi}) \leq s(\varphi)$ or 1 , then

$$\|\xi\|_{p,\varphi}^{BST} = \sup\{|(\xi,\eta)|, \|\eta\|_{q,\varphi}^{BST} \le 1\};$$

(iii) Let $1 and let <math>h_{\varphi}^{1/p-1/2}\xi = h_{\mu}^{1/p}u$. Put $\tilde{\xi} := \mu(1)^{-1/q}h_{\varphi}^{1/2-1/q}h_{\mu}^{1/q}u$, then $\|\tilde{\xi}\|_{q,\varphi}^{BST} = 1$ and

$$\|\xi\|_{p,\varphi}^{BST} = (\xi, \tilde{\xi}).$$

Moreover, $\tilde{\xi}$ is the unique element in $s(\varphi)L_2(\mathcal{M})$ with these properties.

Proof. If φ is faithful, (i) and (ii) follow from duality of Araki-Masuda L_p -spaces, [?, Theorem 1]. The equality in (iii) is easy to see and uniqueness follows by uniform convexity of the L_p -spaces [?, Theorem].

Let now $s(\varphi) = e$ and let φ_0 be as in Lemma 5. For (i), let, say, $p \geq 2$ and assume that $\|\xi\|_{p,\varphi}^{BST} < \infty$. Then $\xi = e\xi$ and

$$|(\xi,\eta)| = |(\xi,e\eta)| \le \|\xi\|_{p,\varphi_0}^{BST} \|e\eta\|_{q,\varphi_0}^{BST} = \|\xi\|_{p,\varphi}^{BST} \|\eta\|_{q,\varphi}^{BST}.$$

For (ii), let $1 and let <math>\|\eta\|_{q,\varphi_0}^{BST} \le 1$. Then by Lemma ??, $\eta = h_{\varphi_0}^{1/2-1/q}k$ for some $k \in L_q(\mathcal{M})$ with $\|k\|_q \le 1$. It follows that

$$e\eta = h_{\varphi}^{1/2 - 1/q} ek,$$

so that $||e\eta||_{q,\varphi}^{BST} = ||ek||_q \le ||k||_q \le 1$. We obtain

$$\begin{split} \|\xi\|_{p,\varphi}^{BST} &= \|e\xi\|_{p,\varphi_0}^{BST} = \sup\{|(e\xi,\eta)|, \ \|\eta\|_{q,\varphi_0}^{BST} \leq 1\} \\ &= \sup\{|(\xi,e\eta)|, \ \|\eta\|_{q,\varphi_0}^{BST} \leq 1\} \leq \sup\{|(\xi,\eta)|, \ \|\eta\|_{q,\varphi}^{BST} \leq 1\} \leq \|\xi\|_{p,\varphi}^{BST}. \end{split}$$

If $2 \le p < \infty$ and $s(\omega_{\xi}) \le e$, the statement (ii) is obtained similarly from Lemma 5 and

$$\|\eta\|_{q,\varphi}^{BST} = \|h_{\varphi}^{1/q-1/2}\eta\|_q = \|eh_{\varphi_0}^{1/q-1/2}\eta\|_q \leq \|h_{\varphi_0}^{1/q-1/2}\eta\|_q = \|\eta\|_{q,\varphi_0}^{BST}.$$

The only thing left to prove is the uniqueness in (iii). So let $\hat{\xi} \in eL_2(\mathcal{M})$ be such that $\|\hat{\xi}\|_{q,\varphi}^{BST} = 1$ and $(\xi,\hat{\xi}) = \|\xi\|_{p,\varphi}^{BST}$. Then also $\|\hat{\xi}\|_{q,\varphi_0}^{BST} = \|\hat{\xi}\|_{q,\varphi}^{BST} = 1$ and

$$(e\xi, \hat{\xi}) = (\xi, \hat{\xi}) = \|\xi\|_{p,\varphi}^{BST} = \|e\xi\|_{p,\varphi_0}^{BST}.$$

By uniqueness in the faithful case, we obtain $\hat{\xi} = \tilde{\xi}$.

1.2 Interpolation

Using the polar decompositions, the BST norms can be written in terms of interpolation L_p -spaces studied in [6]. Let $1 and let <math>\varphi_0$ be the faithful positive functional as in Lemma 5. Let us consider the the interpolation spaces and the corresponding norms (see [?, Appendix C] for the notations)

$$L_p^R(\mathcal{M}, \varphi_0) := C_{1/p}(i_\infty^R(\mathcal{M}), L_1(\mathcal{M})), \qquad \|\cdot\|_{p,\varphi_0}^R := \|\cdot\|_{1/p},$$

where $i_{\infty}^{R}: \mathcal{M} \to L_{1}(\mathcal{M})$ is the embedding

$$i_{\infty}^R: x \mapsto h_{\varphi_0}x.$$

By [6, Theorem 9.1], for 1 ,

$$i_p^R: L_p(\mathcal{M}) \ni h \mapsto h_{\varphi_0}^{1/q} h$$

is an isometric isomorphism of $L_p(\mathcal{M})$ onto $L_p^R(\mathcal{M}, \varphi_0)$.

Proposition 7. Let $\xi \in L_2(\mathcal{M})$. Then

(i) for $2 \le p < \infty$, $\|\xi\|_{p,\varphi}^{BST} < \infty$ if and only if $\xi = e\xi$ and $i_2^R(\xi) \in L_p^R(\mathcal{M}, \varphi_0)$, in this case

$$\|\xi\|_{p,\varphi}^{BST} = \|i_2^R(\xi)\|_{p,\varphi_0}^R;$$

(ii) for $1 , <math>\|\xi\|_{p,\varphi}^{BST} = \|i_2^R(e\xi)\|_{p,\varphi_0}^R$.

Proof. Using Lemma 5, we may assume that $\varphi = \varphi_0$ is faithful. The statement (i) follows immediately from Lemma ??, (ii) is obtained from Lemma ?? and the fact that

$$i_2^R(\xi) = h_{\varphi}^{1/2}\xi = h_{\varphi}^{1/q}(h_{\varphi}^{1/p-1/2}\xi).$$

Let $1 and let <math>S \subset \mathbb{C}$ be the strip $S = \{z \in \mathbb{C}, 0 \leq Re(z) \leq 1\}$. Let $\xi \in L_2(\mathcal{M})$ with $\|\xi\|_{p,\varphi}^{BST} < \infty$ and let μ and u be as in the polar decomposition in Lemma ?? or ??. Put

$$f_{p,\varphi;\xi}^{R}(z) := \begin{cases} \mu(1)^{1/p-z} h_{\varphi}^{1-z} h_{\mu}^{z} u & \text{if } \mu(1) > 0\\ 0 & \text{otherwise,} \end{cases} \quad z \in S.$$
 (6)

Lemma 8. We have $f_{p,\varphi;\xi}^R \in \mathcal{F}(i_\infty^R(\mathcal{M}), L_1(\mathcal{M}))$ and

$$\|\xi\|_{p,\varphi}^{BST} = \||f_{p,\varphi;\xi}^R\||_{\mathcal{F}}.$$

Proof. If φ is faithful, the statement follows from Proposition 7 and [6, proof of Thm. 9.1]. In the general case, we use Lemma 5 and the fact that under the above assumptions, $f_{p,\varphi;\xi}^R = f_{p,\varphi_0;e\xi}^R$.

One can prove similar statements for such functions as in [?, Section 2.], by very much the same methods.

2 Rényi relative entropies

We now recall the definition of the divergences in [?].

Definition 1. [?] Let $\psi, \varphi \in \mathcal{M}_*^+$ and $\alpha \in [1/2, 1) \cup (1, \infty)$. Let ξ_{ψ} be any vector representative of ψ for a *-representation $\pi : \mathcal{M} \to B(\mathcal{H})$. Then

$$D_{\alpha}^{BST}(\psi \| \varphi) = \begin{cases} \frac{2\alpha}{\alpha - 1} \log \|\xi_{\psi}\|_{2\alpha, \varphi}^{BST} & \text{if } \|\xi_{\psi}\|_{2\alpha, \varphi}^{BST} > 0\\ \infty & \text{otherwise.} \end{cases}$$
 (7)

It was proved in [?] that for $\alpha > 1$, this quantity coincides with \tilde{D}_{α} . In the sequel, we will use the notation $\tilde{D}_{\alpha} := D_{\alpha}^{BST}$ also for $\alpha \in [1/2, 1)$. The following expression follows easily from Lemma ??, using the vector representative $h_{\psi}^{1/2} \in L_2(\mathcal{M})$ for ψ .

Theorem 9. Let $\psi \in \mathcal{M}_*^+$, $\alpha \in [1/2, 1)$. Then

$$\tilde{D}_{\alpha}(\psi \| \varphi) = \frac{1}{\alpha - 1} \log \| h_{\varphi}^{\frac{1 - \alpha}{2\alpha}} h_{\psi}^{1/2} \|_{2\alpha}^{2\alpha}.$$

2.1 Properties of the function $\alpha \mapsto \tilde{D}_{\alpha}$

We will consider $\alpha \in [1/2, 1)$, the case of $\alpha > 1$ was treated in [?].

Proposition 10. Let $\psi, \varphi \in \mathfrak{S}_*(\mathcal{M})$, $e := s(\varphi)$ and let $\alpha \in [1/2, 1)$. Then

- (i) $\tilde{D}_{\alpha}(\psi,\varphi) > 0$, with equality if and only if $\varphi = \psi$.
- (ii) $\tilde{D}_{\alpha}(\psi \| \varphi)$ is finite whenever $eh_{\psi}^{1/2} \neq 0$.
- (iii) If $eh_{\psi}^{1/2} \neq 0$ and $\psi \neq \varphi$, the function $\alpha \mapsto \tilde{D}_{\alpha}(\psi \| \varphi)$ is continuous and strictly increasing.

Proof. The inequality in (i) follows easily from Theorem 9 an Hölder inequality:

$$\|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}\|_{2\alpha}^{2\alpha} \le \|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}\|_{2\alpha/(1-\alpha)}\|h_{\psi}^{1/2}\|_{2} = 1$$

For the equality, assume first that $\alpha=1/2$, then $\tilde{D}_{\alpha}(\psi,\varphi)=0$ iff $\|h_{\varphi}^{1/2}h_{\psi}^{1/2}\|_{1}=1$. Let $v|h_{\varphi}^{1/2}h_{\psi}^{1/2}|$ be the polar decomposition of $h_{\varphi}^{1/2}h_{\psi}^{1/2}$, then we obtain

$$1 = \|h_{\varphi}^{1/2} h_{\psi}^{1/2}\|_{1} = \operatorname{Tr} v^{*} h_{\varphi}^{1/2} h_{\psi}^{1/2} = (h_{\psi}^{1/2}, h_{\varphi}^{1/2} v) \leq \|h_{\psi}^{1/2}\|_{2} \|h_{\varphi}^{1/2} v\|_{2} \leq 1,$$

which implies that $h_{\psi}^{1/2} = h_{\varphi}^{1/2}v$. From this, we see that $eh_{\psi}^{1/2} = h_{\psi}^{1/2}$, so that $s(\psi) \leq e$. Moreover,

$$1 = \|h_{\varphi}^{1/2} h_{\psi}^{1/2}\|_{1} = \|h_{\varphi}^{1/2} s(\psi) h_{\psi}^{1/2}\| \le \|h_{\varphi}^{1/2} s(\psi)\|_{2} \le 1,$$

which implies that $s(\psi) = e$. By uniqueness of the polar decomposition, we obtain $h_{\psi} = h_{\varphi}$.

Let now $\alpha \in (1/2,1)$ and let $p=2\alpha$. Let $h_{\varphi}^{1/p-1/2}h_{\psi}^{1/2}=h_{\mu}^{1/p}u$, then equality implies that $\mu(1)=1$. Let

$$f(z) = \text{Tr } u^* h_{\mu}^{z/2} h_{\varphi}^{(1-z)/2} h_{\psi}^{1/2}, \qquad z \in S,$$

then $f: S \to \mathbb{C}$ is continuous, $|f(z)| \le 1$ on S and analytic in the interior of S, moreover, f(1/q) = 1, so that we must have f(z) = 1 for all z. In particular, for z = 0, we obtain

$$1 = \operatorname{Tr} u^* h_{\varphi}^{1/2} h_{\psi}^{1/2} \le \|h_{\varphi}^{1/2} h_{\psi}^{1/2}\|_1 \le 1.$$

The equality $\varphi = \psi$ is now obtained as before.

The statement (ii) is clear from Theorem 9, continuity and monotonicity in (iii) was already proved in [?]. We give a similar proof in our setting, since it is used in the proof of the fact the monotonicity is strict. So let $1/2 < \alpha < \alpha' < 1$ and let $p = 2\alpha$, $p' = 2\alpha'$, so that $1 . Let <math>\eta \in [0,1]$ be such that $1/p' = \eta/p + (1-\eta)/2$. Consider the constant function

$$f(z) \equiv h_{\varphi}^{1/2} h_{\psi}^{1/2} = h_{\varphi_0}^{1/2} e h_{\psi}^{1/2} \in L_1(\mathcal{M}), \quad z \in S.$$

Then $f \in \mathcal{F}(L_2^R(\mathcal{M}, \varphi_0)), L_p^R(\mathcal{M}, \varphi_0))$, see Section ??. By Proposition 7 and Hadamard three lines, we have

$$\|h_{\psi}^{1/2}\|_{p',\varphi}^{BST} = \|h_{\varphi}^{1/2}h_{\psi}^{1/2}\|_{p',\varphi_0}^{R} \le (\|h_{\varphi}^{1/2}h_{\psi}^{1/2}\|_{p,\varphi_0}^{R})^{\eta} = (\|h_{\psi}^{1/2}\|_{p,\varphi}^{BST})^{\eta}, \tag{8}$$

this implies that the function is nondecreasing. Now assume that $D_{\alpha}(\psi \| \varphi) = D_{\alpha'}(\psi \| \varphi)$ It can be proved similarly as in [?, Lemma 2.10] that equality in (8) is attained if and only if

$$f(z) = f_{p',\varphi;h_{s_i}^{1/2}}(z/p + (1-z)/2)M^{z-\eta}, \quad \forall z \in S$$

for some constant M > 0 and we can see from the proof of that lemma that M = 1. In particular, by putting z = 0 and z = 1, we obtain

$$h_{\varphi}^{1/2}h_{\psi}^{1/2} = \mu(1)^{1/p}h_{\varphi}u = \mu(1)^{1/p-1}h_{\mu}u = \mu(1)^{1/p}h_{\tilde{\mu}}u,$$

where $\tilde{\mu} = \mu(1)^{-1}\mu \in \mathfrak{S}_*(\mathcal{M})$. Since $uu^* = s(\tilde{\mu})$ and both φ and $\tilde{\mu}$ are states, we must have $uu^* = e$ and $\varphi = \tilde{\mu}$, moreover, $h_{\varphi}^{1/2}u$ is a vector representative of φ . The above equality also implies that

$$eh_{\psi}^{1/2} = ch_{\varphi}^{1/2}u, \qquad c := \mu(1)^{1/p}.$$

It follows that for any $1 < p'' < \infty$,

$$\|h_{\psi}^{1/2}\|_{p'',\varphi}^{BST} = \|h_{\varphi}^{1/2}h_{\psi}^{1/2}\|_{p'',\varphi_0}^{R} = c\|h_{\varphi}^{1/p''}u\|_{p''} = c,$$

so that $D_{\alpha''}(\psi \| \varphi) = \frac{2\alpha''}{\alpha''-1} \log c$. But, by assumption, $D_{\alpha'}(\psi \| \varphi) = D_{\alpha}(\psi \| \varphi)$, so that we must have c = 1 and $\psi = \varphi$.

Remark 11. For $\alpha = 1/2$, it was observed in [?] that $\tilde{D}_{1/2}(\psi \| \varphi) = \log F(\psi \| \varphi)$, where $F(\psi \| \varphi)$ is the fidelity. The statement (i) also follows from properties of F.

2.2 Relation to standard Rényi relative entropy

Recall that the standard Rényi relative entropy for $\alpha \in (0,1)$ is defined as

$$D_{\alpha}(\psi \| \varphi) = \frac{1}{\alpha - 1} \log(\operatorname{Tr} h_{\psi}^{\alpha} h_{\varphi}^{1 - \alpha}) = \frac{1}{\alpha - 1} \log \| h_{\varphi}^{\frac{1 - \alpha}{2}} h_{\psi}^{\frac{\alpha}{2}} \|_{2}^{2}.$$

Let $p = 2\alpha$, $\alpha \in [1/2, 1)$ and let 1/p + 1/q = 1. Let $\varphi, \psi \in \mathcal{M}_*^+$.

Proposition 12. Let $\varphi, \psi \in \mathcal{M}_*^+$, $\alpha \in [1/2, 1)$. Then we have

$$\|h_{\varphi}^{\frac{1-\alpha}{2}}h_{\psi}^{\frac{\alpha}{2}}\|_{2}^{2} \leq \|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}\|_{2\alpha}^{2\alpha} \leq \psi(1)^{1-\alpha}\|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1-\frac{1}{2\alpha}}\|_{2}^{2\alpha}$$

Proof. By Hölder,

$$\|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}\|_{2\alpha} = \|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1-\frac{1}{2\alpha}}h_{\psi}^{\frac{1-\alpha}{2\alpha}}\|_{2\alpha} \leq \psi(1)^{\frac{1-\alpha}{2\alpha}}\|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1-\frac{1}{2\alpha}}\|_{2},$$

this implies the second inequality. For the first one, let us define a function

$$f(z) = h_{\varphi}^{1-\alpha z} h_{\psi}^{\alpha z} = h_{\varphi_0}^{1-\alpha z} e h_{\psi}^{\alpha z} \in L_1(\mathcal{M}), \qquad z \in S.$$

Then $f \in \mathcal{F}(i_{\infty}^R(\mathcal{M}), L_1(\mathcal{M}))$, so that we can use the properties of the interpolation spaces $L_p^R(\mathcal{M}, \varphi_0)$. Note that $||f(1/2)||_{2,\varphi}^R = ||h_{\varphi}^{\frac{1-\alpha}{2}}h_{\psi}^{\frac{\alpha}{2}}||_2$. Since $1/2 = \alpha \frac{1}{2\alpha} + (1-\alpha)0$, we obtain by Hadamard three lines that

$$||f(1/2)||_{2,\varphi}^{R} \le (\sup_{t \in \mathbb{R}} ||f(it)||_{\infty,\varphi}^{R})^{1-\alpha} (\sup_{t \in \mathbb{R}} ||f(\frac{1}{2\alpha} + it)||_{2\alpha,\varphi}^{R})^{\alpha}$$

Let $u_t = h_{\varphi}^{-i\alpha t} h_{\psi}^{i\alpha t}$, then $u_t \in \mathcal{M}$ is a partial isometry, so that

$$||f(it)||_{\infty,\omega}^R = ||h_{\varphi}u_t||_{\infty,\omega}^R = ||u_t|| = 1.$$

Let ψ_0 be a faithful state obtained from ψ similarly as φ_0 from φ . Then for $t \in \mathbb{R}$,

$$||f(\frac{1}{2\alpha}+it)||_{2\alpha,\varphi}^{R} = ||h_{\varphi_0}^{-i\alpha t}h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}h_{\psi_0}^{i\alpha t}||_{2\alpha} = ||h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}||_{2\alpha},$$

the last equality holds by [6, Lemma 10.1].

The next statement is an extension of [?, Coro] to all values of α . Note that this result for states of a finite dimensional algebra was proved in [?]. The proof follows easily from Proposition 12.

Theorem 13. Let $\psi, \varphi \in \mathfrak{S}_*(\mathcal{M})$ and let $\alpha \in (1/2, 1)$. Then

$$D_{2-1/\alpha}(\psi\|\varphi) \le \tilde{D}_{\alpha}(\psi\|\varphi) \le D_{\alpha}(\psi\|\varphi).$$

The next result is immediate from the properties of D_{α} .

Corollary 14. $\lim_{\alpha \nearrow 1} \tilde{D}_{\alpha}(\psi \| \varphi) = D_1(\psi \| \varphi).$

2.3 Order relations and joint lower semicontinuity

Proposition 15. Let $\psi, \psi_0, \varphi, \varphi_0 \in \mathcal{M}_*^+$ and $\psi_0 \leq \psi, \varphi_0 \leq \varphi$. Then for $\alpha \in (1/2, 1)$, we have $\tilde{D}_{\alpha}(\psi_0 || \varphi)$???

Let $\psi, \psi' \in \mathcal{M}_*^+$, $\psi' \leq \psi$. By the Radon-Nikodym theorem [?], $h_{\psi'}^{1/2} = h_{\psi}^{1/2} a$ for some $a \in \mathcal{M}$ with $||a|| \leq 1$. Hence for any $\alpha \in [1/2, 1)$, we have

$$\|h_{\psi'}^{1/2}\|_{2\alpha,\varphi}^{BST} = \|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi'}^{1/2}\|_{2\alpha} \leq \|h_{\varphi}^{\frac{1-\alpha}{2\alpha}}h_{\psi}^{1/2}\|_{2\alpha} = \|h_{\psi}^{1/2}\|_{2\alpha,\varphi}^{BST}.$$

It follows that $\tilde{D}_{\alpha}(\psi' \| \varphi) \geq \tilde{D}_{\alpha}(\psi \| \varphi)$. (HMMM)

Let now $\varphi, \varphi' \in \mathcal{M}_*^+$, $\varphi' \leq \varphi$. Let us first assume that both are faithful. By the (commutant) Radon-Nikodym theorem []??, there is some $a \in \mathcal{M}$ such that $||a|| \leq 1$ and $h_{\varphi'}^{1/2} = ah_{\varphi}^{1/2}$. Let now $f = f_{2\alpha,\varphi,h_{\psi}^{1/2}}$, then $z \mapsto af(z)$ is a bounded continuous function, analytic in the interior of S and $af(1/2\alpha) = ah_{\varphi}^{1/2}h_{\psi}^{1/2} = h_{\varphi'}^{1/2}h_{\psi}^{1/2}$. For any $t \in \mathbb{R}$,

$$af(1/2+it) = \mu(1)^{1/p-1/2-it} h_{\varphi'}^{1/2} h_{\varphi}^{-it} h_{\mu}^{it} h_{\mu}^{1/2} u \in L_2^R(\mathcal{M}, \varphi')$$

and $||af(1/2+it)||_{2,\omega'}^R \leq \mu(1)^{1/2\alpha}$. Moreover, for all $t \in \mathbb{R}$,

$$||af(1+it)||_1 = \mu(1)^{1/p-1-it} ||ah_{\varphi}^{-it}h_{\mu}^{it}h_{\mu}u|| \le \mu(1)^{1/2\alpha}.$$

By reiteration theorem and the definition of the interpolation norm, we have

$$||h_{\psi}^{1/2}||_{2\alpha,\varphi'}^{BST} = ||h_{\varphi'}^{1/2}h_{\psi}^{1/2}||_{2\alpha,\varphi'}^{R} \le \max\{\sup_{t} ||af(1/2+it)||_{2,\varphi'}^{R}, \sup_{t} ||af(1+it)||_{1}\}$$

$$\le \mu(1)^{1/2\alpha} = ||h_{\psi}^{1/2}||_{2\alpha,\varphi}^{BST}$$
(hmmm)

3 Monotonicity, equality and sufficiency

Let $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ be a quantum channel (that is, a completely positive trace preserving map). Then the dual map $\Phi^*: \mathcal{N} \to \mathcal{M}$ is a completely positive unital normal map. Using Stinespring representation, there exists a Hilbert space \mathcal{K} , a normal *-representation $\pi: \mathcal{N} \to B(\mathcal{K})$ and an isometry $T: L_2(\mathcal{M}) \to \mathcal{K}$ such that

$$\Phi^*(a) = T^*\pi(a)T, \qquad a \in \mathcal{N}.$$

Let $k \in L_2(\mathcal{M})$ be a representing vector for $\psi \in \mathcal{M}_*^+$, then $Tk \in \mathcal{K}$ is a representing vector for $\Phi(\psi)$, hence we have

$$D_{\alpha}^{BST}(\Phi(\psi), \Psi(\varphi)) = \frac{2\alpha}{\alpha - 1} \log ||Tk||_{2\alpha, \Phi(\varphi)}^{BST}.$$

The following data processing inequality (DPI) for D_{α}^{BST} was proved in [2]:

$$D_{\alpha}^{BST}(\psi \| \varphi) \ge D_{\alpha}^{BST}(\Phi(\psi) \| \Phi(\varphi)), \qquad \alpha \in [1/2, 1) \cup (1, \infty].$$

This is equivalent to

$$||Tk||_{p,\Phi(\varphi)}^{BST} \le ||k||_{p,\varphi}^{BST}, \ 2 (9)$$

for any Stinespring dilation (K, π, T) . We next show that equality in DPI implies that the channel Φ is sufficient with respect to $\{\psi, \varphi\}$.

Theorem 16. Assume that $s(\psi) \leq s(\varphi)$ and let $\alpha \in (1/2, 1)$. Then $D_{\alpha}^{BST}(\psi \| \varphi) = D_{\alpha}^{BST}(\Phi(\psi) \| \Phi(\varphi))$ if and only if Φ is sufficient for $\{\psi, \varphi\}$.

Proof. Because of the assumption on the supports, we may suppose that both φ and $\Phi(\varphi)$ are faithful. Assume that the equality holds, so that $\|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} = \|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST}$, here $p = 2\alpha \in (1,2)$. Let $h_{\psi}^{1/2} = u\rho^{1/p}$ be the polar decomposition in $L_p^{AM}(\mathcal{M}, \varphi)$, then

$$\|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} = \|h_{\psi}^{1/2}\|_{p,\varphi}^{AM} = (\|k\|_{q,\varphi}^{AM})^{-1}(k,h_{\psi}^{1/2})_{L_2(\mathcal{M})},$$

where 1/p + 1/q = 1 and $k \in L_q^{AM}(\mathcal{M}, \varphi)$ has polar decomposition $k = u\rho^{1/q}$. By Lemma ??, $h_{\psi}^{1/2}h_{\varphi}^{1/p-1/2} = uh_{\rho}^{1/p}$ and we have $k = uh_{\rho}^{1/q}h_{\varphi}^{1/2-1/q}$. Since T is an isometry, we get using the norm duality in [2, Sec. 3.2]

$$(k, h_{\psi}^{1/2})_{L_2(\mathcal{M})} = (h_{\psi}^{1/2}, k^*)_{L_2(\mathcal{M})} = (Th_{\psi}^{1/2}, Tk^*)_{\mathcal{K}}$$

$$\leq ||Th_{\psi}^{1/2}||_{p,\Phi(\omega)}^{BST} ||Tk^*||_{q,\Phi(\omega)}^{BST}$$

By the assumption and Proposition ??,

$$\|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST} = \|h_{\psi}^{1/2}\|_{p,\varphi}^{BST} \le (\|k^*\|_{q,\varphi}^{BST})^{-1}\|Tk^*\|_{q,\Phi(\varphi)}^{BST}\|Th_{\psi}^{1/2}\|_{p,\Phi(\varphi)}^{BST},$$

which implies that $||Tk^*||_{q,\Phi(\varphi)}^{BST} \ge ||k^*||_{q,\varphi}^{BST}$. By (9) for q > 2, we get the equality $||Tk^*||_{q,\Phi(\varphi)}^{BST} = ||k^*||_{q,\varphi}^{BST}$ which by Theorem ?? yields

$$\tilde{D}_{\beta}(\omega \| \varphi) = D_{\beta}^{BST}(\omega \| \varphi) = D_{\beta}^{BST}(\Phi(\omega) \| \Phi(\varphi)) = \tilde{D}_{\beta}(\Phi(\omega) \| \Phi(\varphi)),$$

where $\beta := q/2$ and $h_{\omega} = ||k||_2^{-2} k^* k$ is the state given by the (normalized) vector k^* . By [4, Thm. 7], this equality implies that Φ is sufficient with respect to $\{\omega, \varphi\}$. Since $h_{\omega} = ||k||_2^{-2} h_{\varphi}^{1/2\alpha} h_{\rho}^{1/\beta} h_{\varphi}^{1/2\alpha}$, [4, Lemma 8] implies that Φ is sufficient with respect to $\{\rho(1)^{-1}\rho, \varphi\}$.

Let $E: \mathcal{M} \to \mathcal{M}$ be a faithful normal conditional expectation as in [4, Lemma 7], so that $\varphi \circ E = \varphi$ and Φ is sufficient for $\{\psi, \varphi\}$ if and only if $\psi \circ E = \psi$. Let E_p be the extension of E to $L_p(\mathcal{M})$ ([5], [4, Appendix A.3]). We have by [4, Eq. (A.5)],

$$u^* h_{\psi}^{1/2} h_{\varphi}^{1/p-1/2} = h_{\rho}^{1/p} = E_p(h_{\rho}^{1/p}) = E_2(u^* h_{\psi}^{1/2}) h_{\varphi}^{1/p-1/2}.$$

Since φ is faithful, we have $uu^* = s(\psi)$ by the properties of polar decomposition, and the above equalities imply that $u^*h_{\psi}^{1/2} = E_2(u^*h_{\psi}^{1/2})$, hence

$$h_{\psi \circ E} = E_1(h_{\psi}) = h_{\psi}^{1/2} u u^* h_{\psi}^{1/2} = h_{\psi}$$

so that Φ is sufficient for $\{\psi, \varphi\}$. The converse is obvious from DPI.

Appendix: The spatial derivative

We recall the definition of the spatial derivative $\Delta(\eta/\varphi)$ of [2], using the standard representation $(l(\mathcal{M}), L_2(\mathcal{M}), L_2(\mathcal{M})^+, \cdot^*)$. Let $\mathcal{H}_{\varphi} := [\mathcal{M}h_{\varphi}^{1/2}] = L_2(\mathcal{M})s(\varphi)$ and let $k \in L_2(\mathcal{M})$ be such that the corresponding functional is majorized by φ :

$$\omega_k(a^*a) = ||ak||^2 \le C_k \varphi(a^*a), \quad \forall a \in \mathcal{M},$$

for some positive constant C_k . Then

$$R^{\varphi}(k): ah_{\varphi}^{1/2} \mapsto ak, \qquad a \in \mathcal{M}$$

extends to a bounded linear operator $\mathcal{H}_{\varphi} \to L_2(\mathcal{M})$. Obviously, $R^{\varphi}(k)$ extends to a bounded linear operator on $L_2(\mathcal{M})$ by putting it equal to 0 on $L_2(\mathcal{M})(1-s(\varphi))$. Moreover, this operator commutes with the left action of \mathcal{M} , so that it belongs to $l(\mathcal{M})' = r(\mathcal{M})$, where r is the right action $r(a) : h \mapsto ha$, $h \in L_2(\mathcal{M})$. In fact, ω_k is majorized by φ if and only if $k \in h_{\varphi}^{1/2}\mathcal{M}$, so that there is some $y_k \in \mathcal{M}$ such that $k = h_{\varphi}^{1/2}y_k$, $s(\varphi)y_k = y_k$ and we have $R^{\varphi}(k) = r(y_k)$.

Let now $h \in L_2(\mathcal{M})$, $\omega := \omega_h$. The spatial derivative $\Delta(h/\varphi)$ is a positive self-adjoint operator associated with the quadratic form $k \mapsto (h, R^{\varphi}(k)R^{\varphi}(k)^*h)$ as

$$\begin{split} (k, \Delta(h/\varphi)k) &= (\Delta(h/\varphi)^{1/2}k, \Delta(h/\varphi)^{1/2}k) = (h, R^{\varphi}(k)R^{\varphi}(k)^*h) \\ &= (R^{\varphi}(k)^*h, R^{\varphi}(k)^*h) = (hy_k^*s(\varphi), hy_k^*s(\varphi)) = (F_{h, h_{\varphi}^{1/2}}k, F_{h, h_{\varphi}^{1/2}}k), \end{split}$$

(see [4, Appendix A], for the definition of $F_{\eta,\xi}$). Since $h_{\varphi}^{1/2}\mathcal{M} + (1-s(\varphi))L_2(\mathcal{M})$ is a core for both $\Delta(h/\varphi)$ and $F_{h,h_{\varphi}^{1/2}}$, it follows that

$$\Delta(h/\varphi) = F_{h,h_{\omega}^{1/2}}^* F_{h,h_{\varphi}^{1/2}} = J \Delta_{\omega,\varphi} J.$$

This implies that for any $k \in L_2(\mathcal{M})$ and $\gamma \in \mathbb{C}$, we have

$$\|\Delta(h/\varphi)^{\gamma}k\|_2 = \|\Delta_{\omega,\varphi}^{\gamma}Jk\|_2 = \|\Delta_{\omega,\varphi}^{\gamma}k^*\|_2.$$

References

- [1] H. Araki and T. Masuda. Positive cones and L_p -spaces for von Neumann algebras. *Publ. RIMS, Kyoto Univ.*, 18:339–411, 1982.
- [2] M. Berta, V. B. Scholz, and M. Tomamichel. Rényi divergences as weighted non-commutative vector valued L_p -spaces. arXiv:1608.05317, 2016.
- [3] F. Hiai. Unpublished notes, 2017.
- [4] A. Jenčová. Rényi relative entropies and noncommutative L_p -spaces. arXiv:1604.08462, 2016.
- [5] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. *Ann. Probab.*, 31:948–995, 2003.
- [6] H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L_p -spaces. J. Funct. Anal., 56:26–78, 1984.