11 Lebesgue's decomposition theorem

Throughout this section (Ω, \mathcal{A}) will denote a measurable space, and μ and ν will denote measures on this space.

Property 11.1. Let $f:\Omega\to[0,+\infty[$ be a density of ν with respect to μ . Then

$$\forall A \in \mathcal{A}: \quad \mu(A) \quad \Rightarrow \quad \nu(A) \tag{11.1}$$

Definition 11.2. We say that

- (i) ν is called **absolutely continuous** with respect to μ (symbolically $\nu \ll \mu$) if 11.1 holds,
- (ii) μ and ν are equivalent (symbolically $\mu \approx \nu$) if $\nu \ll \mu$ and $\mu \ll \nu$,
- (iii) μ is singular to ν (symbolically $\mu \perp \nu$) if there exists an $A \in \mathcal{A}$ such that

$$\mu(A) = 0$$
 and $\nu(\Omega \setminus A)$.

Remark 11.3.

- (i) \approx is an equivalence relation.
- (ii) $\mu \perp \nu \Leftrightarrow \nu \perp \mu$.

Let $f: \Omega \to [0, +\infty[$ be a measurable function. If $\nu = f\mu$, then ν is absolutely continuous with respect to μ . The situation is quite the opposite for, e.g., the Poisson distribution $\mu = \operatorname{Poi}_{\lambda}$ with parameter $\lambda > 0$ and $\nu = \mathcal{N}_{0,1}$. Here μ is singular to ν . The main goal of this chapter is to show that if μ and ν are σ -finite measures on (Ω, \mathcal{A}) , then ν can be decomposed into a part that is singular to μ and a part that is absolutely continuous with respect to μ .

Theorem 11.4 (Lebesgue's decomposition theorem). If μ and ν are σ -finites, then ν can be uniquely decomposed into an absolutely continuous part ν_a and a singular part ν_s (with respect to μ):

$$\nu = \nu_a + \nu_s$$

where ν_a has a density with respect to μ , and $\frac{d\nu_a}{d\mu}$ is \mathcal{A} -measurable and finite μ -a.e.

Corollary 11.5 (Radon–Nikodym theorem). If μ and ν are σ -finites, then

$$\nu$$
 has density w.r.t. $\mu \Leftrightarrow \nu \ll \mu$.

In this case, $\frac{d\nu}{d\mu}$ is \mathcal{A} -measurable and finite μ -a.e. And $\frac{d\nu}{d\mu}$ is called the **Radon–Nikodym** derivative of ν w.r.t. μ .