PARSHVANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Cut Set

A cut set of a connected graph G is a set S of edges with the following properties

- The removal of all edges in S disconnects G.
- The removal of some (but not all) of edges in S does not disconnects G.

As an example consider the following graph

We can disconnect G by removing the three edges bd, bc, and ce, but we cannot disconnect it by removing just two of these edges. Note that a cut set is a set of edges in which no edge is redundant.

Cut-Vertex

A cut-vertex is a single vertex whose removal disconnects a graph.

It is important to note that the above definition breaks down if G is a complete graph, since we cannot then disconnects G by removing vertices. Therefore, we make the following definition.

Connectivity of Complete Graph

The connectivity $k(k_n)$ of the complete graph k_n is n-1. When n-1 $\geq k$, the graph k_n is said to be k-connected.

Vertex-Cut set

A vertex-cut set of a connected graph G is a set S of vertices with the following properties.

- a. the removal of all the vertices in S disconnects G.
- b. the removal of some (but not all) of vertices in S does not disconnects G.

Consider the following graph

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

We can disconnects the graph by removing the two vertices b and e, but we cannot disconnect it by removing just one of these vertices. the vertex-cutset of G is {b, e}.

Note that the connectivity k(G) does not exceed the edge-connectivity $\lambda(G)$. This inequality holds for all connected graph.

Formally, for any connected graph G we have

$$K(G) \le \lambda(G) \le \delta(G)$$

where $\delta(G)$ is the smallest vertex-degree in G. But it is certainly possible for both inequality in above theorem to be strict inequalities (that is, $k(G) < \delta(G)$) For example, in the following graph,

K(G)=1, $\lambda(G)=2$, and $\delta(G)=3$.