MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2011 SOLUTION KEY

Round 3

A) Since *K* is a right angle, isosceles triangle *PTK* must be 45 - 45 - 90 and KT = KP.

Thus, \overline{KR} must be the longer side.

$$KP = RA = 3$$
, $KR = PA = 5 \Rightarrow TR = 2$

Use the area formula for a trapezoid directly

Area =
$$\frac{1}{2}3(2+5) = \frac{21}{2} = \underline{10.5}$$

or determine the area of the rectangle *PARK* and subtract the area of the triangle *PKT*.

Area =
$$15 - \frac{1}{2} \cdot 3 \cdot (5 - 3) = 15 - 4.5 = \underline{10.5}$$

B) $(3x)^2 + (2x)^2 = 3328 \implies x^2 = \frac{3328}{13} = 256 \implies x = 16$

Thus, the sides of the squares are 32 and 48 units.

 \overline{PQ} is the hypotenuse of a right triangle with a horizontal base of 80 and a vertical height of 48. (48,80,PQ) is a Pythagorean triple. $(48,80,PQ) = 16(3,5,x) \Rightarrow x = \sqrt{34} \Rightarrow PQ = \underline{16\sqrt{34}}$.

C) Let x denote the side of the square. The side of the larger square is $x + \frac{1}{4}x = \frac{5}{4}x$

The perimeter of the rectangle is $2(2k + 5k) = 28 \Rightarrow k = 2$.

The rectangle is 4 x 10, resulting in an area of 40.

Thus,
$$\left(\frac{5}{4}x\right)^2 = 40 \implies x^2 = \frac{40 \cdot 4^2}{5^2} = \frac{2^2 \cdot 4^2 \cdot 10}{5^2} \implies x = \frac{8}{5}\sqrt{10}$$
.