<u>ЛЕКЦИЯ 2</u>

Регулярные языки и лексический анализ

Пример: Текст программы, который идет на вход лексического анализатора:

Program prim;

Var x, y, z: real;

Begin

X := 5;

Y := 5;

Z := X + Y;

End.

Известны коды типов лексем:

10 - ключевое слово.

20 - разделитель.

30 – идентификатор.

40 - константа.

Внутренние таблицы лексического анализатора

Таблица ключевых слов: Таблица разделителей:

№	Ключевое слово
1	PROGRAM
2	BEGIN
3	END
4	FOR
5	REAL
6	VAR

№	РАЗДЕЛИТЕЛЬ
1	;
2	,
3	+
4	-
5	/
6	*
7	:
8	=
9	

Выход лексического анализатора

Таблица идентификаторов:

N ₂	Идентификатор
1	PRIM
2	X
3	Y
4	Z

Таблица констант:

№	Значение
1	5

Дескрипторный текст:

$$(10,1)$$
 $(30,1)$ $(20,1)$ $(10,6)$ $(30,2)$ $(20,2)$ $(30,3)$ $(20,2)$ $(30,4)$ $(20,7)$ $(10,5)$ $(20,1)$ $(10,2)$ $(30,2)$ $(20,7)$ $(20,8)$ $(40,1)$ $(20,1)$ $(30,3)$ $(20,7)$ $(20,8)$ $(40,1)$ $(20,1)$ $(30,4)$ $(20,7)$ $(20,8)$ $(30,2)$ $(20,3)$ $(30,3)$ $(20,1)$ $(10,3)$ $(20,9)$

Конечные автоматы

Конечным автоматом называется $A = \{V, Q, \Delta, q_0, F\}$, где

- V = { $a_1, a_2, a_3, \ldots, a_m$ } конечное множество символов входного алфавита.
- $Q = \{ q_0, q_1, q_2, q_3, \dots, q_{n-1} \}$ конечное множество алфавита состояний.
- q₀ ∈ Q начальное состояние автомата.
- $\Delta: Q \times V \to Q функция переходов.$
- $F \subseteq Q$ множество допустимых состояний или заключительных.

КА можно представить следующим образом:

Функцию переходов можно представить в виде:

- команды (q_i , a_j) \rightarrow q_m , где q_i и $q_m \in Q$, $a_j \in V$
- q_1 $q_{\rm m}$

- дуг графа (графическое представление)
- матрицы переходов

Пример: Пусть дан алфавит $V = \{0, 1\}$, множество состояний $Q = \{A, B\}$, где начальное состояний $q_0 = A$, а $F = \{A\}$.

Переходы

- $\delta(A, 0) = A$
- $\delta(A, 1) = B$
- $\delta(B, 0) = B$
- $\delta(B, 1) = A$

	0	1	
A	A	В	1
В	В	A	0

При чтении цепочки 01001011 управление последовательно передается в следующем порядке:

 $A^0 \to A^1 \to B^0 \to B^0 \to B^1 \to A^0 \to A^1 \to B^1 \to A$ – данная цепочка допускается, т.к. А – допускающее состояние.

Построение конечного автомата (КА) по регулярной грамматике

Пусть дана регулярная грамматика $G=\{N, T, P, S\}$.

Правила G имеют вид: $A_i \rightarrow a_i A_k$ или $A_i \rightarrow a_i$, где A_i , $A_k \in N$ и $a_i \in T$.

Тогда КА $A=\{V, Q, \delta, q_0, F\}$, допускающий тот же самый язык, что порождает регулярная грамматика G, строится следующим образом:

- 1. V=T;
- Q=N U{Z}, Z∉T, Z∉N, Z заключительное состояние КА;
- 3. $q_0 = \{S\}$;
- 4. $F=\{Z\}$;
- δ строится в след. виде:
- а) каждому правилу подстановки в грамматике G вида $A_i \rightarrow a_i A_k$ ставится в соответствие команда $(A_i, a_i) \rightarrow A_k$.
- b) каждому правилу подстановки в грамматике G вида $A_i \rightarrow a_i$ ставится в соответствие команда $(A_i, a_i) \rightarrow Z$.

Пример: $G=\{N, T, P,S\}$, б, ц – обозначения букв и цифр соответственно.

 $N=\{I,K\}, T=\{\delta,\Pi\}, S=\{I\},\$

- Р={ 1. І→б
 - 2. І→бК
 - 3. К→бК
 - 4. K→πK
 - 5. K→6
 - 6. К→ц }.

Построить для регулярной грамматики G KA $A=\{V, Q, \delta, q_0, F\}$, где:

- 1. $V=T=\{6,11\};$
- 2. $Q=N \cup \{Z\}=\{I, K, Z\}, Z$ заключительное состояние KA;
- 3. $q_0 = \{S\} = \{I\};$
- 4. $F={Z};$
- функция δ: а) каждому правилу подстановки в G вида Ai→ajAk ставится в соответствие команда (Ai, aj)→Ak.
- b) каждому правилу подстановки в G вида Ai→aj ставится в соответствие команда (Ai, aj)→Z.

Решение:

в виде совокупности команд:

- $I \rightarrow Z$
- (I,δ)→K
- 3. (K,б)→K
- 4. (K,ц)→K
- 5. $(K,6)\rightarrow Z$
- 6. (K,ц)→Z.

в виде диаграммы состояний:

концевой маркер |---

Z – допустить входную цепочку;

О – запомнена ошибка во входной цепочке;

Е – отвергнуть входную цепочку.

Эквивалентные состояния

	0	1	
X	X	y	0
y	z	x	1
z	x	z	0

	0	1	
a	a	c	0
b	b	c	0
с	b	a	1

Состояния **a** и **x** не эквивалентны, т.к. имеется различающая цепочка 101:

$$a^1 o c^0 o b^1 o c o$$
допускающее $x^1 o y^0 o z^1 o z o$ отвергающее

Два состояния конечного автомата начинаются эквивалентными, когда, начав работу из этих состояний, конечный автомат будет допускать одни и те же цепочки.

Если для двух состояний автомата нет различающихся цепочек – эквивалентные состояния.

Проверка эквивалентности двух состояний

	y	z	
0	y 0	3	0
1	2	3 5 7	0
2	2	7	0
3	6	7	0
4	1	6	1
5	6	5	0
1 2 3 4 5 6 7	6	5 3 3	1
7	6	3	0

1)Состояния 0, 1, 2 эквивалентны. 2)Состояния 3, 5, 7 эквивалентны. 3)Состояния 4 и 6 не эквивалентны ни друг другу, ни другим состояниям.

Проверка эквивалентности двух состояний

Таблица эквивалентности состояний (0,1):

	y	z	
0	0 0	3	0
1	2	5	0
2	2 2 6	7	0
3	6	7	0
4	1	6	1
5	6	5	0
1 2 3 4 5 6 7	6	2 3 5 7 7 6 5 3	1
7	6	3	0

D ₂	у	z
(0,1)	(0,2)	(3,5)
(0,2)	(0,2)	(3,7)
(3,5)	(6)	(5,7)
(3,7)	(6)	(3,7)
(5,7)	(6)	(3,5)

	у	z
(0,7)	(0,6)	(3)
(0,6)		

Нарушено усл.1 для (0,6) у – различающая цепочка для пары (0,7)

Если из состояния 0 у нас выходной символ 0 – мы остаемся в у, если из состояния

То есть (0,1); (0,2); (3,5); (3,7); (5,7) эквиваленты. Т.к. эквивалентность транзитивна, то и (1,2) эквивалентно.

Введем следующие обозначения:

0,1,2 объединяем в А,

3,5,7 объединяем в В.

Упрощаем автомат, используя новые обозначения:

	Y	Z	
A	A	В	0
В	6	В	0
4	A	6	1
6	6	В	1

Недостижимые состояния

Пример:

	0	1	
s0	s1	s5	0
s1	s2	s7	1
s2	s2	s5	1
s3	s5	s7	0
s4	s5	s6	0
s5	s3	s1	0
s6	s8	s0	1
s7	s0	s1	1
s8	s3	s6	0

Недостижимые состояния — это состояния, которые не достижимы из начального состояния ни для какой входной цепочки.

(для примера выше - недостижимо c4 – так как его нигде нет. c6 только из c4, c8 только из c6, поэтому c6 и c8 тоже недостижимы)

Получение минимального автомата

Метод разбиения:

P0=({1,2,3,4},{5,6,7}) по допускающим и отвергающим

 $P1=(\{1,2\},\{3,4\},\{5,6,7\})$ по входу а

 $P2=(\{1,2\},\{3\},\{4\},\{5,6,7\})$ относительно а

 $P3=(\{1,2\},\{3\},\{4\},\{5\},\{6,7\})$ относительно а или b.

Состояния внутри каждого подмножества эквивалентны.

	a	b	
1	6	3	0
2	7	3	0
3	1	5	0
4	4	6	0
5	7	3	1
6	4	1	1
7	4	2	1

Метод разбиения:

	a	b	
1	6	3	0
2	7	3	0
3	1	5	0
4	4	6	0
5	7	3	1
6	4	1	1
7	4	2	1

Минимальный эквивалентный автомат

	a	b	
{1,2}	{6,7}	{3}	0
{3}	{1,2}	{5}	0
{4}	{4}	{6,7}	0
{5}	{6,7}	{3}	1
{6,7}	{4}	{1,2}	1