Planejamento em IA - Relatório Parcial 2 Projeto 1

Equipe:

Crislânio Macêdo Macilio Fereira

Sumário

- 1 O que foi feito
- 2 Tempo de Execução
- 3- Curiosidades
- 4- O que será feito

1 - O que foi feito.

Nesta fase do projeto foi finalizado o parser para a criação das CNF's, que serão utilizadas pelo SAT Solver para a resolução do problema. O processo de criação das CNF's constitui-se na utilização de cinco restrições:

Restrição 01: Fluentes do estado inicial são verdadeiros e os demais falsos

Todos os fluentes que estão no estado inicial são verdadeiros, assim como todos aqueles que não estão tem de ser especificados como falso.

Restrição 02: Fluentes do estado final são verdadeiros

A meta tem que está definida, ou seja, seu estado final tem que ser adicionado como verdadeiro. Assim cada fluente do estado final ou objetivo, tem que ser especificado como verdadeiro.

Restrição 03: Ação implica em precondição e nos efeitos

Toda ação implica nas precondições e nos efeitos, assim na lista de CNF's deve-se ter uma sequência de CNF's onde a mesma especifica essa implicação das ação nas precondições da mesma, e uma outra que especifica a implicação da ação nos efeitos que ela causa.

Restrição 04: Explicação do processo de transição de estados

É necessário uma restrição que "especifique" ou "explique" o processo de transição de um estado para outro, ou seja, qual ação ocorreu ou deveria ter ocorrido para que no tempo i+1 o fluente seja positivo, isso implica que no tempo i ele pode ser negativo e uma ação o tornou positivo e vice-versa, assim como pode ocorrer o fato da permanência, que seria o fato dele não alterar seu valor verdade do tempo i para o tempo i+1.

Deste modo é possível definir qual ação ocorreu para que o fluente ter chegado no estado em que está. Pois como existe esse conjunto de especificações o Sat consegue inferir o valor verdade do mesmo em cada instante de tempo.

Restrição 05: Pelo menos uma ação por período de tempo e no máximo uma

Somente uma ação deve ocorrer por período de tempo, e pelo menos uma deve ocorrer, restringir isso permite a transição de estado, pois caso contrário o SAT Solver tentaria resolver o problema em tempo igual a 1.

Com esse conjunto de restrições é possível ter um conjunto de CNF robust e assim permite que o SAT Solver consiga resolver o problema da forma esperada.

2 - Tempo de Execução.

Nessa etapa mostramos o tempo de execução para cada instância do problema, observamos que o tempo de execução de uma instância para outra não diverge muito.

Instância de tamanho 04:

Tempo de Estados: 6

Tempo de Execução: 0 minutos e 0.184 segundos

Instância de tamanho 4-1:

Tempo de Estados: 10

Tempo de Execução: 0 minutos e 0.341 segundos

Instância de tamanho 4-2:

Tempo de Estados: 6

Tempo de Execução: 0 minutos e 0.157 segundos

Instância de tamanho 05:

Tempo de Estados: 12

Tempo de Execução: 0 minutos e 0.881 segundos

Instância de tamanho 5-1:

Tempo de Estados: 10

Tempo de Execução: 0 minutos e 0.648 segundos

Instância de tamanho 5-2:

Tempo de Estados: 16

Tempo de Execução: 0 minutos e 1.601 segundos

Instância de tamanho 6-0:

Tempo de Estados: 12

Tempo de Execução: 0 minutos e 1.716 segundos

Instância de tamanho 6-1:

Tempo de Estados: 10

Tempo de Execução: 0 minutos e 1.289 segundos

Instância de tamanho 6-2:

Tempo de Estados: 20

Tempo de Execução: 0 minutos e 6.829 segundos

Instância de tamanho 7-0:

Tempo de Estados: 20

Tempo de Execução: 0 minutos e 7.779 segundos

Instância de tamanho 7-1:

Tempo de Estados: 22

Tempo de Execução: 0 minutos e 57.139 segundos

Instância de tamanho 7-2:

Tempo de Estados: 20

Tempo de Execução: 0 minutos e 17.521 segundos

Instância de tamanho 8-0:

Tempo de Estados: 18

Tempo de Execução: 0 minutos e 23.936 segundos

Instância de tamanho 8-1:

Tempo de Estados: 20

Tempo de Execução: 1 minutos e 10.789 segundos

Instância de tamanho 8-2:

Tempo de Estados: 16

Tempo de Execução: 0 minutos e 12.065 segundos

Instância de tamanho 9-0:

Tempo de Estados: 30

Tempo de Execução: 8 minutos e 0.412 segundos

Instância de tamanho 10:

Tempo de Estados: 34

Tempo de Execução: 21 minutos e 0.674 segundos

3 - Curiosidades.

Observamos que o tempo de execução para a resolução do problema usando busca em largura é muito diferente em comparação com o SATPLAN, por exemplo existem instâncias do problema que eram intratáveis para o algoritmo que usa busca em largura, e que com o SATPLAN é resolvido em minutos.

Abaixo observamos alguns casos e vemos essa disparidade.

BUSCA	SATPLAN
blocks-4-0: 0.85 e 0.79 segundos	blocks-4-0:0.184 segundos
blocks-5-0: 15.34 e 16.13 minutos	blocks-5-0: 0.881 segundos
blocks-6-0: 5.96 horas	blocks-6-0:1.716 segundos
blocks-10-0: intratável	blocks-10-0: 21 minutos e 0.674 segundos

A estrategia usada para resolver o problema usando o SATPLAN é a melhor, como podemos ver acima.

4 - O que será feito.

Nesta etapa do planejamento utilizamos o <u>Satplan</u> que é um planejador automatizado, ele converte um problema de planeamento para uma instância do problema de satisfabilidade booleano, e assim estabelece um conjunto de valores para satisfazer tal instância, processo este chamado de estabelecimento de satisfabilidade.

Na próxima etapa será utilizado o <u>Graphplan</u> que é um algoritmo para o planejamento automatizado, ele toma como entrada um problema de planejamento e produz, se for possível, uma sequência de operações para se chegar a um estado meta.

Deste modo, nosso objetivo essa semana é adequar nosso algoritmo para ser usado pelo graphplan e assim terminar o projeto de planejamento.

Para mais informações acesse:

http://www.crislaniomacedo.zz.vc/2016/04/planejamento-em-inteligencia-artificial-satplan/