Assignment No. 4: Winter 2023 Due Date: 5:00 PM on March 22, 2023

The Peng-Robinson equation of state can be used to calculate the vapour pressure of pure substances and saturation pressure of gas-liquid mixtures under equilibrium conditions:

1) Calculate the vapor pressure of propane together with the densities of the liquid and gas at 104°F. Compare your answers with values from Figures 2-7, 2-12, and 3-4 (McCain Jr., W.D. *The Properties of Petroleum Fluids* (2nd Edition). PennWell Publishing Company, Tulsa, OK, 1990.).

2). Calculate the compositions and densities of the equilibrium liquid and gas of the mixture given below at 160°F and 2000 psia. Use binary interaction coefficients of 0.021 for methane-n-butane, 0.032 for methane-n-decane, and 0.0 for n-butane-n-decane. The pre-specified tolerance is for 0.098. Note: The first trial must be done manually; then use your own coded program to perform the

necessary iterations.

Commonant	Commodition male function			
Component	Composition, mole fraction			
Methane	0.5523			
<i>n</i> -Butane	0.3630			
<i>n</i> -Decane	0.0838			
	1.0000			

Compare your answer with experimental results shown below.

Commonant	Composition, mole fraction			
Component	liquid	gas		
Methane	0.485	0.826		
<i>n</i> -Butane	0.412	0.167		
<i>n</i> -Decane	0.103	0.0063		
	1.000	0.9993		

3). As for the crude oil sample in Assignment #2, the experimentally measured saturation pressures (*P*_b) for the two feeds are listed as follows:

Feed	CH4 mol%	C ₃ H ₈ mol%	Heavy oil mol%	T, °C	Pь, kPа	Swelling factor	Viscosity at P_b , cP
#1	0	57.94	42.06	20.7	664.9	1.304	31.6
#2	13.81	49.52	36.67	20.5	4368.5	1.362	/

1) With $\alpha = \left[1 + \left(0.37464 + 1.54226\omega - 0.26992\omega^2\right)\left(1 - T_r^{0.5}\right)\right]^2$ and your own coded computer program, calculate the saturation pressure for either Feed #1 or Feed #2 by treating heavy oil sample as one pseudocomponent (PC) and compare your result with the WinProp module.

2) With the modified
$$\alpha = \exp \begin{cases} (0.13280 - 0.05052\omega + 0.25948\omega^2)(1 - T_r) + \\ 0.81769 \ln \left[1 + (0.31355 + 1.86745\omega - 0.52604\omega^2)(1 - \sqrt{T_r}) \right]^2 \end{cases}$$
 and your coded computer program,

- (1) Determine the saturation for either Feed #1 or Feed #2 by treating heavy oil as 4-6 PCs.
- (2) Compare your results with the CMG WinProp module with your justification.
- (3) Submit your own coded computer program.