

KARMA

Pedro Szekely and Craig A. Knoblock pszekely@isi.edu, knoblock@isi.edu University of Southern California, Information Sciences Institute

Work in collaboration with Mohsen Taheriyan, Jason Slepicka, Bo Wu, Dipsy Kapoor, Jose Luis Ambite, Yao-Yi Chiang, Aman Goel, Shubham Gupta, Maria Muslea, Kristina Lerman and many students.

Outline

- Integrating data silos
- Our Karma tool
- Use cases

Data Integration Approaches

Data Integration Approaches

Data Integration Approach

Information Integration Using Source Mappings

Karma:

Our Information Integration Toolkit

Information Integration Using Karma

Information Integration Using Karma

Karma's Secret Sauce

Karma Understands Your Data

Karma semi-automatically builds a semantic model of your data

Semantic Types: Meaning of Data in Columns

Semantic vs Syntactic Types

String	String	Strin	g Date S	trir	ng String
Perpetrator Values	Nationality	Location	Time	Туре	Description
Zian Akhtar Mehmood Afzal				Riot	Seen in demonstration o
Abdul Nomaz Faroq Nomaz	Somalia	Nairobi	12/24/2011 17:00Z	IED	
		Nairobi	•••		
Khair Shahed Riaz Afredi Zoha Afredi	***		12/24/2011 13:00Z	IED	•••

Not useful for information integration

Semantic Types Capture the Meaning of Data in Columns

Semantic vs Syntactic Types

Semantic Types Defined Using an Ontology

Ontology

Karma Learns the Semantic Types

- 1. User specifies them once
- 2. Karma learns features to recognize them
- 3. Next time Karma sees similar data it automatically proposes semantic types

Relationships Among Columns

Relationships Among Specified in Terms of Classes and Properties

Karma Automatically Infers Relationships

Perpetrator Values	Nationality	Location	Time	Туре	Description
Zian Akhtar Mehmood Afzal			•••	Riot	Seen in demonstration o
Abdul Nomaz Faroq Nomaz	Somalia	Nairobi	12/24/2011 17:00Z	IED	
		Nairobi			

- Karma
 automatically finds
 relationships using
 the ontology
- 2. When proposed relationships are incorrect, the user adjusts them

Approach

Dimensions

H: 3.5 in, W: 2.5 in

H: 64 in, W: 51.5 in,

D: .75 in

L: 57 in, center back: 23 in

...

- 1. User specifies
- 2. System learns

Dimensions

H: 3.5 in, W: 2.5 in

H: 64 in, W: 51.5 in,

D: .75 in

L: 57 in, center back: 23 in

Extent

52.1 x 71.4 cm (20 1/2 x 28 1/8 in.)

9 3/4 x 7 9/16 in.

H: 19 x W: 15 1/4 x

D: 8 1/4 in.

•••

System Suggests Semantic Types

Dimensions

H: 3.5 in, W: 2.5 in

H: 64 in, W: 51.5 in,

D: .75 in

L: 57 in, center back: 23 in

...

Extent

52.1 x 71.4 cm (20 1/2 x 28 1/8 in.)

9 3/4 x 7 9/16 in.

H: 19 x W: 15 1/4 x

D: 8 1/4 in.

•••

- Requirements:
 - Learn from a small number of examples
 - Distinguish both string and numeric values
 - Can be learned quickly and is highly scalable to large numbers of semantic types

Person City State Organization name birthdate name name name					
	name	date	city	state	workplace
1	Fred Collins	Oct 1959	Seattle	WA	Microsoft
2	Tina Peterson	May 1980	New York	NY	Google

Approach for Textual Data

Dimensions

H: 3.5 in, W: 2.5 in

H: 64 in, W: 51.5 in,

D: .75 in

L: 57 in, center

back: 23 in

Each semantic label has a characteristic set of tokens

Each column of data is a document

Use information retrieval techniques to compare documents

Labeled data is indexed using Apache Lucene

Compare documents using TF-IDF cosine similarity

Semantic Types for Text Data

Approach for Numeric Data

Total Population	
107875	
47823	
60704	•
81034	

Number of people
11070
41542
33039
780058

Distribution of values in different semantic type is different

E.g., distribution of population is different from distribution of temperatures

Use Statistical Hypothesis testing to see which distribution fits best

Approaches: Welch's T-test, Mann-Whitney U-test and Kolmogorov-Smirnov Test

Approach for Numeric Data

Combined Approach

Combined Approach:

- Training
 - Add new example data as training for either textual or numeric types
 - If ambiguous, train as both textual and numeric
- Testing
 - If textual, apply tf/idf
 - If numeric apply KS-test
 - If ambiguous and at least 70% numeric apply KS-test
 - otherwise tf/idf
- Top-k suggestions returned based on the confidence scores

Evaluation of Semantic Typing

- Museum Dataset 29 data sources from different art museums in the US. Ontologies: EDM, AAC, FOAF, SKOS, Dublin Core Metadata Terms, ORE, ElementsGr2
- City Dataset 10 data sources about various cities in the world - manually extracted from DBpedia.

Ontology: DBpedia Ontology

Evaluation

Combined approach achieves 97% accuracy on the top-4 accuracy

Reduced the training time from 110s to 0.45s

Approach

Construct a Graph

Construct a graph from semantic types and ontology

Inferring the Relationships

- Search for minimal explanation (source description)
- Steiner tree connecting semantic types over ontology graph
 - Given graph G=(V,E), nodes $S \subset V$, cost c: $E \to \Re$
 - Find a tree of G that spans S with minimal total cost
 - Unfortunately, NP-complete
- Approximation Algorithm [KMB, 1981]
 - Worst-case time complexity: O(|V|²|S|)
 - Approximation Ratio: less than 2

Drug_Name	Gene_Name
Antineoplastic	ABCB1
Antineoplastic	ABCC4
Atorvastatin	ABCB1

Pathway

Inferring the Relationships

- Search for minimal explanation (source description)
- Multiple explanations:

 - Drug that treats disease caused by gene (→ →)

Drug_Name	Gene_Name			
Antineoplastic	ABCB1			
Antineoplastic	ABCC4			
Atorvastatin	ABCB1			

Steiner Tree Algorithm

Steiner nodes: {V1, V2, V3, V4}

1. construct the complete graph (Nodes: Steiner Nodes, Links Weights: shortest path from each pair in original G)

2. Compute MST

3. replace each <u>link</u> with the corresponding shortest path in original G

4. Compute MST

5. remove extra links until all <u>leaves</u> are Steiner nodes

Determine Relationships

Select minimal tree that connects all semantic types

A customized Steiner tree algorithm [Kou & Markowsky, 1981]

Result in Karma

Refining the Model

Impose constraints on Steiner Tree Algorithm

Final Semantic Model

Improved Approach Taheriyan et al., ISWC 2013, ICSC 2014

Results on 17 Geospatial Sources

	#Attributes	GED	
Source Signature		Previous	Current
		work	Approach
nearestCity(lat, lng, city, state, country)	5	6	1
findRestaurant(zipcode, restaurantName, phone, address)	4	1	0
zipcodesInCity(city, state, postalCode)	3	3	1
parseAddress(address, city, state, zipcode, country)	5	6	1
citiesOfState(state, city)	2	1	0
ocean(lat, lng, name)	3	2	1
postalCodeLookup(zipCode, city, state, country)	4	6	1
country(lat, lng, code, name)	4	2	0
companyCEO(company, name)	2	1	0
personalInfo(firstname, lastname, birthdate, brithCity, birthCountry)	5	4	1
businessInfo(company, phone, homepage, city, country, name)	6	10	8
restaurantChef(restaurant, firstname, lastname)	3	2	1
findSchool(city, state, name, code, homepage, ranking, dean)	7	8	6
employees(organization, firstname, lastname, birthdate)	4	1	2
education(person, hometown, homecountry, school, city, country)	6	9	4
administrativeDistrict(city, province, country)	3	4	1
capital(country, city)	2	2	1
TOTAL	68	68	29

Results on 6 Museum Sources

Source Signature	#Attributes	GED	
		Previous work	Current Approach
S1(Attribution, BeginDate, EndDate, Title, Dated, Medium, Dimensions)	7	1	0
S2(ObjectID, ObjectTitle, ObjectWorkType, ArtistName, ArtistBirthDate, ArtistDeathDate, ObjectEarliestDate, ObjectRights, ObjectFacetValue1)	9	2	3
S3(death, birth, name)	3	0	0
S4(accessionNumber, artist, creditLine, dimensions, imageURL, materials, relatedArtworksURL, creationDate, provenance, keywordValues)	10	9	6
S5(AccessionNumber, Classification, CreditLine, Date, Description, DimensionsOrphan, WhatValues, Who, image, relatedArtworksValues)	10	9	5
S6(Artist, ArtistBornDate, ArtistDiedDate, Classification, Copyright, CreditLine, Image, KeywordValues, Ref, SitterValues)	10	8	6
TOTAL	49	29	20

Karma Use Cases

Source Mapping Phase

Source Mapping and Query Time

Related Work

- Mapping Databases into RDF
 - D2R & R2R [Bizer & Cyganiak, 2006, Bizer & Shultz, 2010]
 - Semion [Nuzzolese, Gangemi, Presutti, & Ciancarini, 2010]
 - Maps a database into RDF using the DB schema
 - Mannually defines the mappings of triples to another ontology
- Ontology Matching
 - [Doan et al., 2000]
 - Learn mappings to the ontology using data, but would be analogous to just doing the semantic typing
- Schema Matching
 - [Rahm et al., 2001]
 - Generates alignments between schemas, not a fine-grained model of the data
- Schema mapping
 - Interactively builds detailed mappings, but limited to relational data (Clio [Fagin et al., 2009])
- Semantic Integration of Bioinformatics Data
 - Bio2RDF [Belleau et al., 2008]
 - Manual conversion of sources into RDF

Links

http://www.isi.edu/integration/karma/

