# CS224N : Lecture 15 - Add Knowledge to Language Models

### What does a LM know?

- Takeaway: predictions generally make sense (e.g. the correct types), but are not all factually correct.
- Why might this happen?
  - Unseen facts: some facts may not have occurred in the training corpora at all
  - Rare facts: LM hasn't seen enough examples during training to memorize the fact
  - Model sensitivity: LM may have seen the fact during training, but is sensitive to the phrasing of the prompt
    - Correctly answers "x was <u>made</u> in y" templates but not "x was <u>created</u> in y"
- The inability to reliably recall knowledge is a key challenge facing LMs today!
  - Recent works have found LMs can recover some knowledge, but have a way to go.

## Techniques to add knowledge to LMs

### **Techniques to add knowledge to LMs**



#### Add pretrained entity embeddings

- ERNIE
- KnowBERT



### Use an external memory

- KGLM
- kNN-LM



### Modify the training data

- WKLM
- · ERNIE (another!), salient span masking

## **Evaluating knowledge in LMs**

### LAnguage Model Analysis (LAMA) Probe [Petroni et al., EMNLP 2019]

- How much relational (commonsense and factual) knowledge is already in off-the-shelf language models?
  - Without any additional training or fine-tuning
- Manually constructed a set of cloze statements to assess a model's ability to predict a missing token. Examples:

The theory of relativity was developed by [MASK].

The native language of Mammootty is [MASK].

Ravens can [MASK].

You are likely to find a overflow in a [MASK].



### LAnguage Model Analysis (LAMA) Probe [Petroni et al., EMNLP 2019]

- Generate cloze statements from KG triples and question-answer pairs
- Compare LMs to supervised relation extraction (RE) and question answering systems
- Goal: evaluate knowledge present in existing pretrained LMs (this means they may have different pretraining corpora!)

#### Mean precision at one (P@1)

BERT struggles on N-to-M relations I

| Corpus     | DrQA | RE<br>baseline | fairseq-<br>fconv | Transformer-<br>XL | ELMo | ELMo<br>(5.5B) | BERT-<br>base | BERT-<br>large |
|------------|------|----------------|-------------------|--------------------|------|----------------|---------------|----------------|
| Google-RE  | -    | 7.6            | 2.6               | 1.6                | 2.0  | 3.0            | 9.8           | 10.5           |
| T-REx      | -    | 33.8           | 8.9               | 18.3               | 4.7  | 7.1            | 31.1          | 32.2           |
| ConceptNet | -    | -              | 3.6               | 5.7                | 6.1  | 6.2            | 15.6          | 19.2           |
| SQuAD      | 37.5 | -              | 3.6               | 3.9                | 1.6  | 4.3            | 14.1          | 17.4           |

LMs are NOT finetuned!

49

LAnguage Model Analysis (LAMA) Probe [Petroni et al.

You can try out examples to assess knowledge in popular LMs:

https://github.com/faceb ookresearch/LAMA

# The cat is on the [MASK].

[1] Example courtesy of the authors at link above.

50

| ert:                  |                        |                                                |                 |                                                | 100          |
|-----------------------|------------------------|------------------------------------------------|-----------------|------------------------------------------------|--------------|
|                       |                        |                                                |                 | 26 9                                           | Maria Maria  |
| Top1                  | 0 predictions          |                                                |                 |                                                |              |
| )                     | phone                  | -2.345                                         |                 |                                                | The South    |
| L                     | floor                  | -2.630                                         |                 |                                                | (A)          |
| 2                     | ground                 | -2.968                                         |                 |                                                |              |
| 3                     | couch                  | -3.387                                         |                 | The same of                                    |              |
| 4                     | move                   | -3.649                                         |                 |                                                |              |
| 5                     | roof                   | -3.651                                         |                 |                                                |              |
| 6                     | way                    | -3.718                                         |                 |                                                |              |
| 7                     | run                    | -3.757                                         |                 |                                                |              |
| 8                     | bed                    | -3.802                                         |                 |                                                |              |
| 9                     | left                   | -3.965                                         |                 |                                                |              |
|                       |                        |                                                |                 |                                                |              |
|                       | token                  | log prob                                       | prediction      | log prob                                       | rank@1000    |
| index                 | token                  |                                                |                 |                                                |              |
|                       |                        |                                                |                 |                                                |              |
| 1                     | The                    | -5.547                                         |                 | -0.607                                         | 14           |
| 1<br>2                | The<br>cat             | -5.547<br>-0.367                               | cat             | -0.607<br>-0.367                               | 14<br>0      |
| <br>1<br>2<br>3       | The<br>cat<br>is       | -5.547<br>-0.367<br>-0.019                     |                 | -0.607<br>-0.367<br>-0.019                     | 14<br>0<br>0 |
| 1<br>2<br>3<br>4      | The<br>cat<br>is<br>on | -5.547<br>-0.367<br>-0.019<br>-0.001           | cat<br>is<br>on | -0.607<br>-0.367<br>-0.019<br>-0.001           | 14<br>0<br>0 |
| 1<br>2<br>3<br>4      | The<br>cat<br>is       | -5.547<br>-0.367<br>-0.019<br>-0.001<br>-0.002 | cat<br>is       | -0.607<br>-0.367<br>-0.019<br>-0.001<br>-0.002 | 14<br>0<br>0 |
| 1<br>2<br>3<br>4<br>5 | The<br>cat<br>is<br>on | -5.547<br>-0.367<br>-0.019<br>-0.001           | cat<br>is<br>on | -0.607<br>-0.367<br>-0.019<br>-0.001           | 14<br>0<br>0 |

# A More Challenging Probe: LAMA-UnHelpful Names (LAMA-UHN) [Poerner et al., EMNLP 2020]

- Key idea: Remove the examples from LAMA that can be answered without relational knowledge
- Observation: BERT may rely on surface forms of entities to make predictions
  - String match between subject and object
  - "Revealing" person name
    - Name can be a (possibly incorrect) prior for native language, place of birth, nationality, etc.
- BERT's score on LAMA drops ~8% with LAMA-UHN
  - Knowledge-enhanced model E-BERT score drops only <1%</li>

Native language of French-speaking actors according to BERT

| Person Name     | BERT     |  |  |
|-----------------|----------|--|--|
| Jean Marais     | French   |  |  |
| Daniel Ceccaldi | Italian  |  |  |
| Orane Demazis   | Albanian |  |  |
| Sylvia Lopez    | Spanish  |  |  |
| Annick Alane    | English  |  |  |

CS224N: Lecture 15 - Add Knowledge to Language Models

4