Specification of Ethernet MDIO

Version 0 Revision 1

Oct. 10, 2018 (July 7, 2018)

Future Design Systems, Inc. www.future-ds.com/ / contact@future-ds.com

Copyright © 2018 Future Design Systems, Inc.

Abstract

This document describes specifications Ethernet MDIO (Management Data Input/output).

Table of Contents

Copyright © 2018 Future Design Systems, Inc	1
Abstract	1
1 General description	2
2 IO ports and internal structure	2
2.1 IO ports	2
2.2 Parameters and macros	3
2.2.1 Macros and parameters	
3 Control and Status Registers	
4 MDIO interface	5
4.1 How to control MDIO through CSR	6
5 Control API	6
6 Testing setup and scenario	7
7 Trouble shooting	7
8 Wish list	
9 References	
10 Povision history	7

Future Design Systems	FDS-TD-2018-10-00x

1 General description

Figure 1: Ethernet MDIO block

2 IO ports and internal structure

2.1 IO ports

Figure 2: Ports

The table below summarizes the ports of MCB Gigabit Ethernet MAC.

Table 1: Ports

group	port	width	direction	description
	HRESETn	1	Input	Asynchronous reset
common	HCLK	1	Input	clock
	IRQ	1	Output	Interrupt
	HSEL	1	Input	
	HADDR	32	Input	
ALID	HPROT	4	Input	
AHB slave	HTRANS	2	Input	
port	HWRITE	1	Input	
port	HSIZE	3	Input	
	HBURST	3	Input	
	HWDATA	32	Input	

Future Design Systems	FDS-TD-2018-10-00x

	HRDATA	32	Output	
	HRESP	2	Output	
	HREADYin	1	Input	
	HREADYout	1	Output	
	MDC	1	Output	MDIO clock
Etc	MDIO_I	1	Input	MDIO data input
EIC	MDIO_O	1	Output	MDIO data output
	MDIO_T	1	Output	MDIO data output enable when low

2.2 Parameters and macros

2.2.1 Macros and parameters

The following parameters and macros are used in the design.

Table 2: Macros

Macro name	Default value	Meaning
MDIO_VERSION	32'h2018_1011	Defines the current version of RTL. It is used by API in order to check compatibility.

Table 3: Parameters

Macro name	Default value	Meaning
P_CLK_FREQ	50_000_000	Main clock (PCLK or HCLK) frequency to calculate
P_MDC_FREQ	2_000_000	Default frequency of MDC. ■ Clock division number for MDC equation ■ N = (Freq of CLK)/((Freq of MDC)*2)-1 ■ Note that MDC can be 2.5Mhz at most.

3 Control and Status Registers

The address field indicates a relative address in hexadecimal. All register except CONTROL and STATUS should not be altered while CONTROL.TX_EN/RX_EN is '1'.

Table 4: Ethernet MDIO Controller CSR

Name	Address		description
	offset	Bit#	
NAME0	+000h	RO	Name character 0 ~ 3
NAME1	+004h	RO	Name character 4 ~7
NAME2	+008h	RO	Name character 8 ~ 11
NAME3	+00Ch	RO	Name character 12 ~ 15
COMP0	+010h	RO	Company name 0 ~ 3

Future Design Systems	FDS-TD-2018-10-00x

COMP1	+014h		RO	Company name 4 ~ 7
COMP2	+018h		RO	Company name 8 ~ 11
COMP3	+01Ch		RO	Company name 12 ~ 15
VERSION	+020h		RO	Version (0x2011_0707)
RESERVED	+024h			Reserved
	+028h			Reserved
	+02Ch			Reserved
MDIO_CONTROL	+030h		RW	(default: 0x0000_0031)
			31	EN_MDIO: enable when 1
			30:18	Reserved
			17	IE_MDIO_RD_DONE - Enables interrupt on completion of MDIO RD
			16	IE_MDIO_WR_DONE - Enables interrupt on completion of MDIO WR
			15:0	CLKDIV_MDIO: Clock division (MDC frequency) = (HCLK frequency)/(2x(value+1))
MDIO_STATUS	+034h		RW	(default: 0x0000_0000)
			31:18	reserved
			17	IP_MDIO_RD_DONE - It is set when MDIO RD completes and 'IE_MDIO_RD_DONE is '1' It is cleared by writing '1'.
		SO	16	IP_MDIO_WR_DONE - It is set when MDIO WR completes and 'IE_MDIO_WR_DONE' is '1' It is cleared by writing '1'.
			15:3	reserved
C	0),,	*	2	Status when DONE is '1'. (read-only) - 0: OK - 1: Error
5			1	Done when '1' (read-only) It will be '0' when 'BUSY' is '0' and MDIO_WR/RD_CMD is written. And then it will be '1' on completion.
			0	Busy state when '1'. (read-only) It will be '0' on completion.
MDIO_WR_CMD	+038h		RW	Writing to this starts MDIO write It is recommended that check 'MDIO_STATUS.busy' is '0' Msb-bit is driven first at MDIO pin.
			31:28	2'b11 - fixed
			29:28	Start (2'b01) - fixed
			27:26	Opcode (2'b01) – fixed
			25:21	Physical address
			20:16	MII register address
			15:0	data to be written

Future Design Systems	FDS-TD-2018-10-00x

MDIO_RD_CMD	+03Ch	RW	Writing to this starts MDIO read It is recommended that check 'MDIO_STATUS.busy' is '0' Msb-bit is driven first at MDIO pin.
		31:28	2'b11 – fixed
		29:28	Start (2'b01) – fixed
		27:26	Opcode (2'b10) -fixed
		25:21	Physical address
		20:16	MII register address
		15:0	Valid data when 'MDIO_STATUS.DONE' is '1'.
Reserved	+140h	RW	N(YO)

4 MDIO interface

Each MDIO transaction should be followed by 32-bit preamble (all in '1') and consists of two parts, which are address phase and data phase. The address phase is divided further into ST (start), OP (opcode), PHYAD (PHY address), and REGAD (register address). Before data phase, 2-bit TA (turnaround) is required.

Figure 3: MDIO frame format

Figure 4: MDIO write timing diagram

Future Design Systems	FDS-TD-2018-10-00x

Figure 5: MDIO read timing diagram

Since 5-bit is allocated to PHYAD, up to 32 different MDIO devices can exist on the same MDIO bus. Since 5-bit is allocated to REGAD, there can be up to 32 registers in each MDIO device. The frequency of MDC can be up to 2.5Mhz¹, i.e., 400ns. The actual frequency is determined by the following equation.

f(MDC) = f(HCLK) / (2*(1+(Value of MDC_CONTROL.CLK_DIV)))

4.1 How to control MDIO through CSR

Write

MDIO_CONTROL.EN_MDIO <== 1
MDIO_STATUS.BUSY == 0
MDIO_WR_CMD <= {PHY_ADDR, REG_ADDR, DATA}
MDIO_STATUS_DONE == 1

Read

MDIO_CONTROL.EN_MDIO <== 1
MDIO_STATUS.BUSY == 0
MDIO_RD_CMD <= {PHY_ADDR, REG_ADDR}
MDIO_STATUS_DONE == 1
DATA <= MDIO_RD_CMD.DATA

5 Control API

It checks version and returns 0 when OK. Otherwise, returns 1.	
,	
It clears all CSR.	
it dears all COIX.	

¹ It depends on real PHY chip.

Future Design Systems	FDS-TD-2018-10-00x

6 Testing setup and scenario

7 Trouble shooting

8 Wish list

9 References

- [1] ARM, AMBA Specification (Rev 2.0), ARM IHI 0011A, 1999.
- [2] IEEE, IEEE Std. 802.3-2008, Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications, Section 2.

10 Revision history

☐ 2018.09.15: Document started by Ando Ki (adki@dynalith.com)