МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения» ТЕМА: «Расчет метрических характеристик качества разработки программ по метрикам Холстеда»

Студент гр. 7304	Дементьев М.Е.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

№	Оператор	Количество
1	:=	15
2	() или begin	15
	end	
3	;	11
4	*	8
5	+	4
6	-	4
7	/	4
8	fx	3
11	abs	2
10	div	1
11	for to do	1
12	<=	1
13	repeat until	1
14	trapez	1
15	sqrt	1
Всего		72

№	Операнд	Количество
1	pieces	6
2	lower	5
3	sum	6
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	2
9	sum1	2
10	tol	2
11	fx	1
12	X	3
13	1.0	2
14	2.0	3
15	1	2
16	2	2
17	0.0	1
18	0.5	1
19	1.0E-6	1
Всего		55

Программный расчёт измеримых характеристик представлен в таблице 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

№	Оператор	Количество
1	=	15
2	0	13
3	;	36
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	const	1
10	abs	2
11	function	1
12	for	1
13	<=	1
14	repeat	1
15	trapez	2
16	real	6
17	program	1
18	procedure	1
19	integer	1
20	sqrt	1
Bcei	O	110

		•
$N_{\underline{0}}$	Операнд	Количество
1	0.0	1
2	0.5	1
3	1	2
4	1.0	3
5	1.0E-6	1
6	2	2
7	2.0	3
8	9.0	1
9	delta_x	6
10	end_sum	4
11	fx	1
12	i	2
13	lower	8
14	mid_sum	5
15	pieces	7
16	sum	8
17	sum1	3
18	tol	4
19	trap2	1
20	upper	7
21	X	5
Всег	0	75
	·	

Расчетные характеристики представлены в таблице 3.

Таблица 3 – Расчётные характеристики (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	15	20
Число простых операндов n ₂	19	21
Общее число всех операторов N ₁	72	110
Общее число всех операндов N ₂	55	75
Словарь п	34	41
Длина N _{опыт}	147	184
Теоретическая длина N _{теор}	139.314	178.677
Объём V	747.86	985.79
Потенциальный объём V*	19.6515	19.6515
Уровень программы L	0.0262770	0.0199348
Интеллектуальное содержание I	25.2609	27.6021
Работа программиста Е	28460.5	49450.8
Время программирования Т	2846.05	2747.27
Уровень языка λ	0.516383	0.391748
Ожидаемое число ошибок в	1	0.449084
программе В		

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	14
2	() или {}	20
3	;	16
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	3
9	fabs	2
10	<=	1
11	for	1
12	>	1
13	do while	1
14	trap2	1
15	++	1
16	return	1
17	sqrt	1
Bcei	70	84

№	Операнд	Количество
1	pieces	5
2	lower	5
3	sum	5
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	4
9	sum1	2
10	tol	1
11	X	3
12	1.0	2
13	2.0	3
14	1	1
15	2	2
16	0.0	2
17	0.5	1
Всег	0	52

Программный расчёт измеримых характеристик представлен в таблице 5. Файл с результатами программных расчётов представлен в приложении Γ . Таблица 5 — Программный расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	16
2	()	9
3	;	24
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	,	9
10	fabs	2
11	<=	1
12	for	1
13	>	1
14	do while	1
15	trap2	2
16	++	1
17	return	1
18	void	1
19	int	3
20	main	1
21	double	9
22	const	1
23	sqrt	1
Bcer	0	109

$N_{\underline{0}}$	Операнд	Количество
1	pieces	6
2	lower	8
3	sum	6
4	delta_x	6
5	upper	7
6	mid_sum	5
7	end_sum	4
8	i	4
9	sum1	3
10	tol	4
11	x	5
12	1.0	3
13	2.0	3
14	1	2
15	2	2
16	0.0	2
17	0.5	1
18	9.0	1
19	1.0E-6	1
Bcei	О	73

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчетные характеристики (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов	17	23
n_1		
Число простых операндов	17	19
n_2		
Общее число всех	84	109
операторов N ₁		
Общее число всех	52	73
операндов N ₂		
Словарь п	34	42
Длина N _{опыт}	136	182
Теоретическая длина N _{теор}	138.974	184.753
Объём V	691.895	981.402
Потенциальный объём V*	19.6515	19.6515
Уровень программы L	0.0284024	0.0200239
Интеллектуальное	26.6113	22.2116
содержание I		
Работа программиста Е	24360.43	49011.5
Время программирования Т	2436.04	2722.86
Уровень языка λ	0.5582	0.393499
Ожидаемое число ошибок в	1	0.446421
программе В		

3. Определение метрических характеристик для программы на Ассемблере.

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

№	Оператор	Количество
1	pushq	3
2	popq	1
3	movq	13
4	movl	5
5	movsd	37
6	movapd	3
7	addsd	6
8	addl	2
9	subsd	4
10	subq	2
11	andpd	2
12	divsd	4
13	ret	3
14	cvtsi2sd	3
15	call fx	3
16	call trapez	1
17	mulsd	5
18	pxor	1
19	sall	1
20	jmp .L4	1
21	shrl	1
22	sarl	1
23	cmpl	1
24	jle .L5	1
25	ja .L6	1
26	ucomisd	1
27	nop	1

No	Операнд	Количество
1	%rbp	7
2	%rsp	5
3	%xmm0	56
4	%xmm1	24
5	%xmm2	4
6	\$88	1
7	\$1	3
8	%rax	8
9	%eax	6
10	%edx	3
11	\$31	1
12	\$8	1
13	\$0	1
14	-8(%rbp)	6
15	-56(%rbp)	5
16	-64(%rbp)	4
17	-72(%rbp)	2
18	-48(%rbp)	5
19	-32(%rbp)	5
20	-80(%rbp)	6
21	-88(%rbp)	2
22	-24(%rbp)	3
23	-40(%rbp)	4
24	-16(%rbp)	2
25	-44(%rbp)	4
26	.LC0(%rip)	3
27	.LC1(%rip)	1

28	leave	2
Всего		109

28	sum(%rip)	5
29	.LC3(%rip)	1
30	.LC4(%rip)	2
31	lower(%rip)	2
32	.LC5(%rip)	1
33	upper(%rip)	2
34	.LC6(%rip)	1
Всего		186

Определение расчетных характеристик представлено в таблице 8. Таблица 8 — Расчёт расчетных характеристик (Ассемблер)

Характеристика	Ручной расчёт
Число простых операторов п	28
Число простых операндов п2	34
Общее число всех операторов N ₁	109
Общее число всех операндов N2	186
Словарь п	62
Длина N _{опыт}	295
Теоретическая длина N _{теор}	307.579
Объём V	1756.4879
Потенциальный объём V*	15.5098
Уровень программы L	0.008829
Интеллектуальное содержание I	22.93417
Работа программирования Е	198922.92
Время программирования Т	13452.63
Уровень языка λ	0.136951
Ожидаемое число ошибок в программе В	2

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный	расчёт Си	мный	расчёт
	Pascal	расчёт		расчёт Си	Ассемблер
		Pascal			
Число простых операторов	15	20	17	23	28
n_1					
Число простых операндов n ₂	19	21	17	19	34
Общее число всех	72	110	84	109	109
операторов N ₁					
Общее число всех	55	75	52	73	186
операндов N ₂					
Словарь п	34	41	34	42	62
Длина N _{опыт}	147	184	136	182	295
Теоретическая длина N _{теор}	139.314	178.677	138.974	184.753	307.579
Объём V	747.86	985.79	691.895	981.402	1756.4879
Потенциальный объём V*	19.6515	19.6515	19.6515	19.6515	15.5098
Уровень программы	0.0262770	0.0199348	0.0284024	0.0200239	0.008829
Интеллектуальное	25.2609	27.6021	26.6113	22.2116	22.93417
содержание I					
Работа программиста Е	28460.5	49450.8	24360.43	49011.5	198922.92
Время программирования Т	2846.05	2747.27	2436.04	2722.86	13452.63
Уровень языка λ	0.516383	0.391748	0.5582	0.393499	0.136951
Ожидаемое число ошибок в	1	0.449084	1	0.446421	2
программе В					

Опытная длина и объем программ на Pascal и Си близки по значению и меньше длины и объема программы на ассемблере более чем в 2 раза. Разница между теоретической и опытной длиной программ на Си и Pascal не существенна. Ассемблер является низкоуровневым языком программирования, это можно увидеть по метрике уровня языка. Pascal и Си находятся практически на одном уровне. Ожидаемое количество ошибок

больше всего у Ассемблера и одинаковое у Pascal и СИ. Время программирования (и другие метрики), рассчитанное вручную, отличается от программного расчета: это связано с тем, что в программном расчете учитывались операторы и операнды, задействованные в части описания или отладки программы.

Выводы

В ходе выполнения лабораторной работы была изучена система метрик Холстеда. Произведено сравнение программ на языках Pascal, Си и Ассемблер, в которых реализовано численное интегрирование методом трапеций.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program trap2;
      sum,upper,lower : real;
var
const tol
            = 1.0E-6;
function fx(x: real): real;
  fx:=1.0/sqrt(x)
end;
procedure trapez(lower,upper,tol: real;
                                : real);
             var sum
      pieces,i
                                 : integer;
var
      x,delta_x,end_sum,mid_sum,sum1 : real;
begin
 pieces:=1;
  delta_x:=(upper-lower)/pieces;
  end_sum:=fx(lower)+fx(upper);
  sum:=end_sum*delta_x/2.0;
 mid_sum:=0.0;
  repeat
    pieces:=pieces*2;
    sum1:=sum;
    delta_x:=(upper-lower)/pieces;
    for i:=1 to pieces div 2 do
    begin
      x:=lower+delta_x*(2.0*i-1.0);
      mid_sum:=mid_sum+fx(x)
  sum:=(end_sum+2.0*mid_sum)*delta_x*0.5;
  until abs(sum-sum1)<=abs(tol*sum)</pre>
end;
begin
  lower:=1.0;
  upper:=9.0;
  trapez(lower,upper,tol,sum);
end.
```

ПРИЛОЖЕНИЕ Б

Результаты parser_pas.exe

```
Statistics for module output.lxm
_____
The number of different operators : 20
The number of different operands
The total number of operators : 109
The total number of operands
                                : 75
Dictionary
                          ( D)
                                 : 41
Length
                           N)
                                 : 184
                          ( ^N)
Length estimation
                                : 178.677
Volume
                           V)
                                 : 985.79
                          ( *V)
Potential volume
                                 : 19.6515
                                 : 38.2071
Limit volume
                          (**V)
                         ( L)
                                : 0.0199348
Programming level
                               : 0.028
Programming level estimation ( ^L)
                         ( I)
Intellect
                                : 27.6021
                               : 2747.27
Time of programming
                          ( T)
Time estimation
                          ( ^T)
                                : 1899.35
Programming language level
                          (lambda): 0.391748
Work on programming
                          ( E) : 49450.8
Error
                          ( B)
                                 : 0.449084
Error estimation
                          ( ^B)
                                 : 0.328597
Table:
_____
Operators:
       14 | ()
  1
  2
        8
  3
        4
  4
        4
  5
        5
           1 /
     36 | ;
  6
  7
        1
           | <=
  8
        15 | =
  9
        2
           labs
  10
        1
          | const
  11
        1
           | for
          | function
  12
        1
  13
        4
          | fx
  14
        1
          | integer
  15 |
        1 | procedure
  16
          program
  17
          real
  18
          | repeat
        1
  19
        1
           sqrt
  20
        2
           | trapez
Operands:
  1
        1
           0.0
  2
        1
           1 0.5
  3
        2
           1
  4
        3
           1.0
           | 1.0E-6
  5
        1
  6
        2
             2
```

7

3

2.0

	8	1	9.0
	9	6	delta_x
	10	4	end_sum
	11	1	fx
	12	2	i
ĺ	13	8	lower
	14	5	mid_sum
	15	7	pieces
	16	8	sum
	17	3	sum1
	18	4	tol
	19	1	trap2
	20	7	upper
	21	5	x

Summary:

The number of different operators : 20
The number of different operands : 21
The total number of operators : 109
The total number of operands : 75

Dictionary (D) : 41 Length N) : 184 : 178.677 Length estimation ^N) Volume V) : 985.79 Potential volume (*V) : 19.6515 (**V) Limit volume : 38.2071 Programming level L) : 0.0199348 Programming level estimation (^L) : 0.028 Intellect I) : 27.6021 Time of programming T) : 2747.27 (^T) Time estimation : 1899.35 Programming language level (lambda): 0.391748 Work on programming E) : 49450.8 Error B) : 0.449084 Error estimation (^B) : 0.328597

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <stdio.h>
#include <math.h>
double sum = 0.0;
double upper, lower;
const double tol = 1.0E-6;
double fx(double x) {
      return 1.0 / sqrt(x);
}
void trap2(double lower, double upper, double tol) {
      int pieces = 1;
      double x,delta_x,end_sum,mid_sum,sum1;
      delta_x = ( upper - lower )/pieces;
      end_sum = fx(lower) + fx(upper);
      sum = end_sum * delta_x/2.0;
      mid sum = 0.0;
      do {
             pieces = pieces * 2;
             sum1 = sum;
             delta_x = (upper - lower) / pieces;
             for (int i = 1; i <= pieces/2; i++)
                   x = lower + delta_x * (2.0 * i - 1.0);
                   mid_sum = mid_sum + fx(x);
             sum = ( end_sum + 2.0 * mid_sum ) * delta_x * 0.5;
      } while (fabs(sum - sum1) > fabs(tol * sum));
int main() {
      lower = 1.0;
      upper = 9.0;
      trap2(lower, upper, tol);
}
```

ПРИЛОЖЕНИЕ Г

Результаты parser c.exe

```
Statistics for module output2.lxm
The number of different operators
                                 : 23
The number of different operands
                                 : 19
The total number of operators : 109
The total number of operands
                                : 73
Dictionary
                         ( D)
                               : 42
Length
                         ( N)
                                : 182
Length estimation
                         ( ^N)
                               : 184.753
Volume
                           V)
                                : 981.402
Potential volume
                         ( *V)
                                : 19.6515
                         (**V)
Limit volume
                                : 38.2071
                         ( L)
Programming level
                                : 0.0200239
Programming level estimation ( ^L)
                                 : 0.0226325
                         ( I)
( T)
Intellect
                                 : 22.2116
                               : 2722.86
Time of programming
                                : 2445.46
Time estimation
                         ( ^T)
Programming language level
                         (lambda): 0.393499
Work on programming
                         ( E) : 49011.5
                         ( B)
Error
                                 : 0.446421
Error estimation
                         ( ^B)
                                 : 0.327134
Table:
_____
Operators:
             ()
        8
  3
        4
             +
  4
        1
  5
        9
       4
  6
        5
  7
           | /
    | 24 | ;
  8
  9
        1
           | <=
  10 |
       16 | =
  11 |
        1
  12
        1
          | const
  13
        9
           | double
  14
        1
          | dowhile
  15
        2
           | fabs
          | for
  16
        1
  17 |
          | fx
        4
        3 | int
  18 |
  19
        1 | main
  20
        1 | return
  21 |
        1
           sart
```

oper ands.					
1	2	0.0			
2	1	0.5			
3	2	1			
4	3	1.0			
5	1	1.0E-6			
6	2	2			

2

1

| trap2

| void

22

23

7	3	2.0
8	1	9.0
9	6	delta_x
10	4	end_sum
11	4	i
12	8	lower
13	5	mid_sum
14	6	pieces
15	6	sum
16	3	sum1
17	4	tol
18	7	upper
19	5	Ιx

Summary:

The number of different operators : 23
The number of different operands : 19
The total number of operators : 109
The total number of operands : 73

Dictionary D) : 42 Length N) : 182 Length estimation ^N) : 184.753 Volume V) : 981.402 Potential volume (*V) : 19.6515 Limit volume (**V) : 38.2071 Programming level L) : 0.0200239 Programming level estimation (^L) : 0.0226325 Intellect I) : 22.2116 Time of programming T) : 2722.86 Time estimation (^T) : 2445.46 (lambda): 0.393499 Programming language level Work on programming E) : 49011.5 Error B) : 0.446421 (^B) Error estimation : 0.327134

ПРИЛОЖЕНИЕ Д ИСХОДНЫЙ КОД НА АССЕМБЛЕРЕ

```
tol:
      .text
      .globl fx
      .type fx, @function
fx:
.LFB0:
      .cfi startproc
      pushq %rbp
     movq %rsp, %rbp
      movsd \%xmm0, -8(\%rbp)
      movsd .LC0(%rip), %xmm0
      divsd -8(%rbp), %xmm0
      popq %rbp
      ret
      .cfi endproc
.LFE0:
.globl trapez
      .type trapez, @function
trapez:
.LFB1:
      .cfi startproc
      pushq %rbp
      movq %rsp, %rbp
      subq $88, %rsp
      movsd %xmm0, -56(%rbp)
      movsd %xmm1, -64(%rbp)
      movsd %xmm2, -72(%rbp)
      movl $1, -48(%rbp)
      movsd -64(%rbp), %xmm0
      subsd -56(%rbp), %xmm0
      cvtsi2sd -48(%rbp), %xmm1
      divsd %xmm1, %xmm0
      movsd %xmm0, -32(%rbp)
      movq -56(%rbp), %rax
      movq %rax, -80(%rbp)
      movsd -80(%rbp), %xmm0
      call fx
      movsd %xmm0, -80(%rbp)
      movq -64(%rbp), %rax
      movq %rax, -88(%rbp)
      movsd -88(%rbp), %xmm0
      call fx
      addsd -80(%rbp), %xmm0
      movsd %xmm0, -24(%rbp)
      movsd -24(%rbp), %xmm0
```

mulsd -32(%rbp), %xmm0 movsd .LC1(%rip), %xmm1 divsd %xmm1, %xmm0 movsd %xmm0, sum(%rip) pxor %xmm0, %xmm0 movsd %xmm0, -40(%rbp)

.L6:

sall -48(%rbp)
movsd sum(%rip), %xmm0
movsd %xmm0, -16(%rbp)
movsd -64(%rbp), %xmm0
subsd -56(%rbp), %xmm0
cvtsi2sd -48(%rbp), %xmm1
divsd %xmm1, %xmm0
movsd %xmm0, -32(%rbp)
movl \$1, -44(%rbp)
jmp .L4

.L5:

cvtsi2sd -44(%rbp), %xmm0 addsd %xmm0, %xmm0 movsd .LC0(%rip), %xmm1 subsd %xmm1, %xmm0 mulsd -32(%rbp), %xmm0 movsd -56(%rbp), %xmm1 addsd %xmm1, %xmm0 movsd %xmm0, -8(%rbp) movq -8(%rbp), %rax movq %rax, -80(%rbp) movsd -80(%rbp), %xmm0 call fx movapd %xmm0, %xmm1 movsd -40(%rbp), %xmm0 addsd %xmm1, %xmm0 movsd %xmm0, -40(%rbp) addl \$1, -44(%rbp)

.L4:

movl -48(%rbp), %eax movl %eax, %edx shrl \$31, %edx addl %edx, %eax sarl %eax cmpl %eax, -44(%rbp) jle .L5 movsd -40(%rbp), %xmm0 addsd %xmm0, %xmm0 addsd -24(%rbp), %xmm0 mulsd -32(%rbp), %xmm0 movsd .LC3(%rip), %xmm1 mulsd %xmm1, %xmm0

```
movsd %xmm0, sum(%rip)
     movsd sum(%rip), %xmm0
     subsd -16(%rbp), %xmm0
     movq .LC4(%rip), %xmm1
     andpd %xmm1, %xmm0
     movsd sum(%rip), %xmm1
     mulsd -72(%rbp), %xmm1
     movq .LC4(%rip), %xmm2
     andpd %xmm2, %xmm1
     ucomisd %xmm1, %xmm0
     ja .L6 nop leave
     ret
     .cfi endproc
.LFE1:
.globl main
     .type main, @function
main:
.LFB2:
     .cfi startproc
     pushq %rbp
     movq %rsp, %rbp
     subq $8, %rsp
     movsd .LC0(%rip), %xmm0
     movsd %xmm0, lower(%rip)
     movsd .LC5(%rip), %xmm0
     movsd %xmm0, upper(%rip)
     movsd .LC6(%rip), %xmm1
     movsd upper(%rip), %xmm0
     movq lower(%rip), %rax
     movapd %xmm1, %xmm2
     movapd %xmm0, %xmm1
     movq %rax, -8(%rbp)
     movsd -8(%rbp), %xmm0
     call trapez
     movl $0, %eax leave
     ret
     .cfi endproc
```