Lecture 17: Midterm 1 and problem-solving

Nisha Chandramoorthy

October 24, 2023

Last time

VCDim of FCNN, VC generalization bounds, then implementation

Last time

- VCDim of FCNN, VC generalization bounds, then implementation
- Today: Midterm 1 and problem-solving

Last time

- VCDim of FCNN, VC generalization bounds, then implementation
- Today: Midterm 1 and problem-solving
- After this: CNNs, VAEs, feature extraction/Dimension reduction

Asking questions

Understanding Deep Learning (Still) Requires Rethinking Generalization

By Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals

Training data consists of random labels.

Asking questions

Understanding Deep Learning (Still) Requires Rethinking Generalization

By Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals

Training data consists of random labels.

Does our understanding of generalization hold?

Hand-wavy: test error is higher when we expect complexity to be higher.

How to improve generalization?

Early stopping (implicit regularization)

How to improve generalization?

- ► Early stopping (implicit regularization)
- ▶ Batch normalization: normalize the inputs to each layer for each mini-batch, i.e., make the inputs have zero mean and unit variance.

How to improve generalization?

- Early stopping (implicit regularization)
- Batch normalization: normalize the inputs to each layer for each mini-batch, i.e., make the inputs have zero mean and unit variance.
- Dropout: randomly set some activations to zero.

▶ Bias-complexity tradeoff

- ▶ Bias-complexity tradeoff
- Need to get new ideas/insights into generalization

- Bias-complexity tradeoff
- Need to get new ideas/insights into generalization
- The role of the data distribution...

- Bias-complexity tradeoff
- Need to get new ideas/insights into generalization
- ► The role of the data distribution...
- ▶ Bubeck Sellke 2021:

- 2. The distribution μ of the covariates x_i satisfies isoperimetry (or is a mixture theoreof).
- The expected conditional variance of the output (i.e., the "noise level") is strictly positive, denoted σ² := E^μ[Var[y|x]] > 0.

Then, with high probability over the sampling of the data, one has simultaneously for all $f \in \mathcal{F}$:

$$\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 \le \sigma^2 - \epsilon \implies \operatorname{Lip}(f) \ge \widetilde{\Omega}\left(\epsilon \sqrt{\frac{nd}{p}}\right).$$

What are the assumptions?

- ▶ Isoperimetry: if for an *I*-Lipschitz function $h : \mathbb{R}^d \to \mathbb{R}$, $\mathbb{P}[|h(X) Eh| \geqslant t] \leqslant 2e^{(-dt^2)/(2cl^2)}$, then, the distribution of X is c-isoperimetric.
- ▶ for learning smooth functions (Lip(f) \leq I), the number of parameters is $\Omega(nd\epsilon^2/I)$

What are the assumptions?

- ▶ Isoperimetry: if for an *I*-Lipschitz function $h : \mathbb{R}^d \to \mathbb{R}$, $\mathbb{P}[|h(X) Eh| \ge t] \le 2e^{(-dt^2)/(2cl^2)}$, then, the distribution of X is c-isoperimetric.
- ▶ for learning smooth functions (Lip(f) \leq I), the number of parameters is $\Omega(nd\epsilon^2/I)$
- ► For imagenet, Bubeck and Sellke estimate needing $O(10^{10} 10^{11})$ parameters.

Thinking from first principles

Kernel ridge regression: "Simply applying a Gaussian kernel on pixels and using no regularization achieves 46% test error." [Zhang et al 2021]

Thinking from first principles

- Kernel ridge regression: "Simply applying a Gaussian kernel on pixels and using no regularization achieves 46% test error."
 [Zhang et al 2021]
- ► "By preprocessing with a random convolutional neural net with 32,000 random filters, this test error drops to 17% error" [Zhang et al 2021]

Thinking from first principles

- Kernel ridge regression: "Simply applying a Gaussian kernel on pixels and using no regularization achieves 46% test error."
 [Zhang et al 2021]
- ➤ "By preprocessing with a random convolutional neural net with 32,000 random filters, this test error drops to 17% error" [Zhang et al 2021]
- \triangleright ℓ^2 regularization leads to better generalization. Why?

Regularization and generalization

* "the ℓ^2 -norm of the minimum norm solution with no preprocessing is approximately 220. With wavelet preprocessing, the norm jumps to 390. Yet the test error drops by a factor of 2" [Zhang et al 2021]

Regularization and generalization

- * "the ℓ^2 -norm of the minimum norm solution with no preprocessing is approximately 220. With wavelet preprocessing, the norm jumps to 390. Yet the test error drops by a factor of 2" [Zhang et al 2021]
- "So while this minimum-norm intuition may provide some guidance to new algorithm design, it is only a very small piece of the generalization story"

Regularization and generalization

- * "the ℓ^2 -norm of the minimum norm solution with no preprocessing is approximately 220. With wavelet preprocessing, the norm jumps to 390. Yet the test error drops by a factor of 2" [Zhang et al 2021]
- "So while this minimum-norm intuition may provide some guidance to new algorithm design, it is only a very small piece of the generalization story"
- Rademacher complexity of linear class (on features) lower.

Theoretical and computational problems are always intertwined

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution
- Implementing algorithms improves understanding

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution
- Implementing algorithms improves understanding
- Reading papers, books, but working on your own

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution
- Implementing algorithms improves understanding
- Reading papers, books, but working on your own
- Question-first approach may be more efficient

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution
- Implementing algorithms improves understanding
- Reading papers, books, but working on your own
- Question-first approach may be more efficient
- Pattern-matching is non-trivial

- Theoretical and computational problems are always intertwined
- Spending time (struggling) with problems productively
- Crisis, reflection on concepts that lead to resolution
- Implementing algorithms improves understanding
- Reading papers, books, but working on your own
- Question-first approach may be more efficient
- Pattern-matching is non-trivial
- Repetition helps!

 Computational science: intersection of math, data science, computer science, and domain science

- Computational science: intersection of math, data science, computer science, and domain science
- Developing computational thinking takes time

- Computational science: intersection of math, data science, computer science, and domain science
- Developing computational thinking takes time
- Difficulties compounded by various intersections!

- Computational science: intersection of math, data science, computer science, and domain science
- Developing computational thinking takes time
- Difficulties compounded by various intersections!
- No need to panic or despair or feel inadequate!

- Computational science: intersection of math, data science, computer science, and domain science
- Developing computational thinking takes time
- Difficulties compounded by various intersections!
- No need to panic or despair or feel inadequate!
- Flourishing? "Mathematics for human flourishing" Francis Su