Landon theory

Note Title

14/02/2012

$$S(g) = \frac{kT}{a_2 + gg^2} \qquad (C(x) = e^{-x/\xi})$$

$$A_2 = \tilde{a}_2 t = \tilde{a}_1 \left(\frac{T - T_c}{T_c} \right) \qquad (T - T_c) \qquad (T$$

In general, OZ form: $C(r) = \frac{-r/3}{r}$ for $r \to \infty$ (classical)

At $T=T_c$ $\left(3\rightarrow\infty\right)$ $C(r)=\frac{1}{r^{d-2}}$ $S(q)\sim q^{-2}$ $\alpha_2=0$

Fisher's modification (@ T=Tc) (M.E. Fisher) S(g) = g-2+n

 $\Rightarrow C(r) = \frac{\eta : exponent}{(\eta = 0) \text{ For M.F.})}$

d, b, d, d, v, n

Later learn that $S(g) \propto T \times (g)$ $S(g) \propto T \frac{\chi(o)}{5^{-2} + g^2}$

 $S(g) = S_{nn}(g) + \sum S(\bar{g} - \bar{G})$ χ Order parameter

fluctuation

From C+L

Table 5.4.2. Some	critical	exponents	from	theory	and	experiment.
-------------------	----------	-----------	------	--------	-----	-------------

Exponent	α	β	γ	ν	η
Property	specific heat	order parameter	susceptibility	coherence length	correlation function
Definition	$C \sim t^{-\alpha}$	$\langle \phi \rangle \sim t^{\beta}$	$\chi \sim t^{-\gamma}$	$\xi \sim t^{-\nu}$	$G(q) \sim q^{-2+\eta}$
Mean-field	0	0.5	1	0.5	0
3D theory					
n = 0 (SAW)	0.24	0.30	1.16	0.59	
n=1 (Ising)	0.11	0.32	1.24	0.63	0.04
n=2(xy)	-0.01	0.35	1.32	0.67	0.04
n = 3 (Heisenberg)	-0.12	0.36	1.39	0.71	0.04
Experiment					
3D n = 1	$0.11^{+.01}_{03}$	$0.32^{+.16}_{04}$	$1.24^{.16}_{04}$	$0.63^{+.04}_{04}$	0.03 - 0.06
3D n = 3	$0.1^{+.05}_{04}$	$0.34^{+.04}_{04}$	$1.4^{+.07}_{07}$	$0.7^{+.03}_{03}$	
2D n = 1	$0.0^{+.01}_{003}$	0.3+.04	1.82 ^{+0.7} ₀₇	1.02+.07	

Experiments on 3D n = 1 compiled from liquid-gas, binary fluid, ferromagnetic, and antiferromagnetic transitions.

Experiments on 3D n = 3 transitions compiled from some ferromagnetic and antiferromagnetic transitions.

Experiments on 2D n = 1 complied from some antiferromagnetic transitions.

Example for B-brass

from: Jens Als-Nielsen, "Neutron Scattering
and Spatial Correlation near the critical
point,": Chap3 in Vol. 5a of the "Phase
Transitions and critical phenomena" series
edited by Domb and Lebowitz

Fig. 4.5. Critical scattering at a fixed temperature below T_e from a Cu⁶⁵/Zn crystal. The Bragg scattering at $\Delta T/T_e=0.00393$ is much lower than the Bragg scattering shown at $\Delta T/T_e=0.124$, and it is possible to subtract the Bragg scattering in the critical region for $q>0.02~\rm \AA^{-1}$.

112 Jens Als-Nielsen

Fig. 4.4. The line shape of critical scattering at fixed temperature is well approximated by a Lorentzian of half-width κ_1 outside the shaded region in which $\kappa_1/q < 1$. The ratio of equintensity temperatures in the Lorentzian region is constant, independent of q (lower part). Insert: The flat maximum above T_c is located near T_m given theoretically by $\kappa_1^2(T_m)/q^2 = 0.023$. Theoretical T_m values are indicated by arrows.

L.C (1st order) Mematic-Isotropic transition in Nematic L.C. Let's define $f(\theta, g)$ 1) \hat{n} director

(2-direction) as distribution for. (probability of finding molecule along the (0, y) is f(0, 9) ds2 Df(0, y) is indep. of y $(2) f(0) = f(\pi - 0)$ Q) What is the order parameter? (?) = \ ? f(0,9) dD.

Dipole? (cost) = 0 (Not working) Next? quadrupole $S = \frac{1}{2} \left(\left(3 \cos^2 \theta - 1 \right) \right) = \begin{cases} 1 & \text{for } \theta = 0, \pi \\ 0 & \text{for random orientation} \end{cases}$ (costa) = 1 => Generalization: Traceless, symmetric, 2nd rank tensor $Q_{\alpha\beta} = N_{\alpha}N_{\beta} - \frac{1}{3} \partial_{\alpha\beta}$ = diagonalize (for uniaxial nematic) $\widehat{Q} = \begin{pmatrix} -5/3 & 0 & 0 \\ 0 & -5/3 & 0 \\ 0 & 0 & 25/3 \end{pmatrix}$