

ITEM# 10

INSTRUCTION MANUAL

2 MHz
DIGITAL DISPLAY
FUNCTION
GENERATOR

TEST INSTRUMENT SAFETY

WARNING

Normal use of test equipment exposes you to a certain amount of danger from electrical shock because testing must often be performed where exposed high voltage is present. An electrical shock causing 10 millamps of current to pass through the heart will stop most human heartbeats. Voltage as low as 35 volts dc or ac rms should be considered dangerous and hazardous since it can produce a lethal current under certain conditions. Higher voltages pose an even greater threat because such voltage can more easily produce a lethal current. Your normal work habits should include all accepted practices that will prevent contact with exposed high voltage, and that will steer current away from your heart in case of accidental contact with a high voltage. You will significantly reduce the risk factor if you know and observe the following safety precautions:

1. Don't expose high voltage needlessly. Remove housings and covers only when necessary. Turn off equipment while making test connections in high-voltage circuits. Discharge high-voltage capacitors after removing power.
2. If possible, familiarize yourself with the equipment being tested and the location of its high voltage points. However, remember that high voltage may appear at unexpected points in defective equipment.
3. Use an insulated floor material or a large, insulated floor mat to stand on, and an insulated work surface on which to place equipment; make certain such surfaces are not damp or wet.
4. Use the time-proven "one hand in the pocket" technique while handling an instrument probe. Be particularly careful to avoid contacting a nearby metal object that could provide a good ground return path.
5. When testing ac powered equipment, remember that ac line voltage is usually present on some power input circuits such as the on-off switch, fuses, power transformer, etc. any time the equipment is connected to an ac outlet, even if the equipment is turned off.

(continued on inside rear cover)

Instruction Manual

for

Model 3011B

2 MHz

DIGITAL DISPLAY

FUNCTION GENERATOR

MAXTEC INTERNATIONAL CORP.

6470 W. Cortland St. • Chicago, IL 60635

MODEL 3011B IS NOW "OUTPUT FUSED"

Effective with serial no. 147-27253, Model 3011B is factory equipped with an output fuse. A fuse has been added in series with the OUTPUT jack to help protect the instrument from damage to an external voltage.

Under normal operation, the generator output should never be connected to an external voltage other than low dc values that can be matched with the OFFSET control. Model 3011B was always overload protected so that shorting the output, even continuously, would cause no damage. The output fuse further protects the instrument against external voltage. The fuse may blow if the output is accidentally connected to an external voltage, but the blown fuse may prevent an expensive repair.

TABLE OF CONTENTS

	Page
TEST INSTRUMENT SAFETY	Inside Front Cover
SPECIFICATIONS.....	3
CONTROLS AND INDICATORS.....	5
OPERATING INSTRUCTIONS	8
Frequency And Waveform Selection	8
Considerations	9
Voltage Controlled Frequency Operation	10
TTL/CMOS Output	11
Duty Cycle Control	11
Function Generator Applications Guidebook	12
OUTPUT PROTECTION CONSIDERATIONS.....	13
MAINTENANCE	14
Disassembly And Reassembly	14
Line Voltage Selection	15
Fuse Replacement	15
Instrument Repair Service	15
WARRANTY SERVICE INSTRUCTIONS	16
LIMITED ONE YEAR WARRANTY	17
ORDERING INFORMATION - "B & K-Precision's Guidebook to Function Generators"	18

SPECIFICATIONS

(All specifications apply with coarse frequency dial between 0.2 and 2 times range).

Basic Outputs:	Sine Wave, Triangle Wave, Square Wave, TTL Pulse, and CMOS Pulse.	Sine Wave Function: Distortion: 0.2 Hz to 20 kHz; < 1%, 20 kHz to 200 kHz; < 2%.
Frequency Range:	0.2 Hz to 2 MHz (7 ranges). Four digit frequency counter display.	Frequency Response: 0.2 Hz to 100 kHz, < 0.2 dB, 100 kHz to 2 MHz; < 1 dB.
Frequency Control:	Separate coarse and fine tuning controls.	Square Wave Function: Symmetry: 0.2 Hz to 100 kHz; < 2%. Rise Time: < 120 ns.
Maximum Amplitude:	20 V p-p (open circuit). 10 V p-p (into 50 Ω load).	Triangle Wave Linearity: 0.2 Hz to 100 kHz; 98%, 100 kHz to 2 MHz; 95%.
Amplitude Control:	Continuously variable, 20 dB range typical.	TTL Output: Level: ≥ 3 V p-p. Rise Time: < 30 ns.
Attenuator:	-20 dB ±1 dB.	CMOS Output: Level: Continuously adjustable from 4 V p-p (±1 V p-p) to 14.5 V p-p (±0.5 V p-p). Rise Time: < 120 ns.
Output Impedance:	50 Ω ±10%	
DC Offset:	Continuously variable, from -10 V to +10 V (open circuit), -5 V to +5 V into 50 Ω.	
Duty Cycle Control:	Continuously variable from 1:1 to 10:1.	

SPECIFICATIONS

VCF (Voltage Controlled Frequency) Input:		Weight:	5.5 lb (2.5 kg).
Input Voltage:	Approximately +10 V (± 1 V) causes 10:1 frequency change.	Dimensions (W x H x D):	9.65 x 3.75 x 11", 245 x 95 x 280 mm.
Impedance:	Approximately 10 k Ω .	Accessories Supplied:	
Frequency Counter (Internal Only):		One cable, BNC to insulated clips. Power Cord. Spare Fuse. Instruction Manual. Schematic Diagram & Parts List.	
Accuracy:	\pm Time Base Accuracy ± 1 Count.		
Time Base Accuracy:	± 10 PPM (23° C ± 5 ° C).		
Power Source:	120/220/240 V AC $\pm 10\%$, 50/60 Hz.		

CONTROLS AND INDICATORS

Fig. 1. Controls And Indicators.

CONTROLS AND INDICATORS

1. **PWR Switch.** Turns power on and off.
2. **Range Selectors.** Selects frequency range. Decade frequency type, seven ranges from 1 Hz to 1 MHz. Frequency can be adjusted from 0.2 to 2 times the range selected. For example, if the 100 K range is selected, frequency can be adjusted (see **Frequency Control**) from 20 kHz to 200 kHz. Numbers under pushbuttons indicate gate time (see **GATE LED**).
3. **Function Selectors.** Selects square, triangle, or sine waveform at **OUTPUT** jack.
4. **AMPL Control.** Controls amplitude of signal at **OUTPUT** jack. When control is pulled out, signal is attenuated 20 dB (PULL -20dB).
5. **OUTPUT Jack.** Waveform selected by **FUNCTION** switches as well as the superimposed DC **OFFSET** voltage is available at this jack.
6. **TTL/CMOS.** When control is pushed in, a TTL signal is present at the **TTL/CMOS** jack. Level is fixed at 3 V p-p and turning control has no effect. When the control is pulled out (PULL CMOS), a CMOS signal is present at the **TTL/CMOS** jack. Turning the control clockwise increases the amplitude and turning the control counterclockwise decreases amplitude (amplitude is adjustable from approximately 4 V p-p to 14.5 V p-p).
7. **TTL/CMOS Jack.** Square wave selected by **TTL/CMOS** control (either TTL or CMOS) is available at this jack. The output is independent of the **AMPL** and **OFFSET** controls.
8. **OFFSET Control.** When control is pushed in, DC offset is set at zero. When control is pulled out (PULL ADJ), clockwise rotation changes DC offset in a positive direction and counterclockwise rotation changes DC offset in a negative direction. Full clockwise rotation gives approximately +5 V into 50 Ω load (+10 V open circuit). Full counterclockwise rotation gives approximately -5 V into 50 Ω load (-10 V open circuit).
9. **VCF IN Jack.** Voltage Controlled Frequency input. Permits external sweep or frequency control. Positive voltage decreases the output frequency.
10. **DUTY Control.** Rotation adjusts the duty cycle of both the main **OUTPUT** signal and the **TTL/CMOS** signal. Fully counterclockwise rotation is the **CAL** position (normal duty cycle). Duty cycle changes when control is rotated away from **CAL** position. When control is pulled out (PULL INV), the square wave at the main **OUTPUT** and the **TTL** or **CMOS** signal are inverted.
11. **FINE Frequency Control.** Vernier adjustment of output frequency for ease of setting to a precise frequency.
12. **COARSE Frequency Control.** Coarse adjustment of output frequency (main output and **TTL/CMOS** output) from .2 to 2 times the selected range.
13. **Frequency Counter Display.** Displays frequency of internally generated frequency.
14. **Hz and kHz LED.** Indicates whether display is showing Hz or kHz.

CONTROLS AND INDICATORS

15. **GATE LED.** Indicates when frequency counter display is updated. When the 10 K through 1 M frequency switches are selected, the LED will flash 10 times per second (every 0.1 second). When the 10 through 1 K

switches are selected, the LED will flash once each second and when the 1 switch is selected, the LED will light every 10 seconds. As the LED turns off, the display is updated.

OPERATING INSTRUCTIONS

FREQUENCY AND WAVEFORM SELECTION

1. With the unit plugged into a power source, depress the **PWR** switch.
2. Select the desired frequency range by depressing the appropriate range switch. The output frequency is displayed, with the appropriate decimal point, on the LED display. The **Hz** or **kHz** indicator is also lit.
3. Rotation of the **COARSE** frequency control will quickly set the output frequency to the approximate desired value. The **FINE** frequency control should then be used to easily set the output to the specific desired value. The frequency selected is available at both the **TTL/CMOS** jack and the **OUTPUT** jack.
4. Select the waveform desired (square, triangle, or sine) by depressing the appropriate **FUNCTION** switch. The phase relationships of the waveforms available are shown in Fig. 2. Be sure that the **DUTY** control is set to **CAL**.
5. The amplitude of the selected output signal at the main **OUTPUT** jack is adjusted with the **AMPL** control. Maximum signal level is 10 V p-p (into $50\ \Omega$), and signal level can be decreased by turning the control counterclockwise, or pulling the control out for an additional 20 dB step of attenuation (**PULL -20dB**).

6. For information on the TTL and CMOS signals, see the "**TTL/CMOS OUTPUT**" section of this manual.
7. A DC component can be added to the signal at the main **OUTPUT** jack by use of the **OFFSET** control. The DC component introduced is independent of the **AMPL** control and does not apply to the **TTL/CMOS** jack. The level of DC can be varied by ± 10 volts open circuited or ± 5 volts into $50\ \Omega$.

CONSIDERATIONS

1. The **COARSE** frequency control adjusts from approximately two-tenths to two times the indicated range value. For example, if the **10 K** range is selected and the **COARSE** frequency control is set to the most counterclockwise major line, the output frequency is approximately 2 kHz. When the **COARSE** frequency control is set to the most clockwise major line, the output frequency is approximately 20 kHz. Fig. 3 shows these major lines.
2. It is best not to set the **COARSE** frequency control beyond either the 0.2 or 2 position. Instead, select the next lower or higher range. When the **COARSE** control is set to such a position, erratic operation could occur.

Fig. 2. Output Waveform And Phase Relationship.

3. It is advisable to set the **FINE** frequency control to the approximately center of its range before setting the **COARSE** frequency control. This assures that the **FINE** control will not reach its limit of rotation while trying to finalize the frequency setting.
4. The **FINE** frequency control spans about 10% of the range. This gives a fine tuning capability so that it is easy to set the frequency to a precise value.

Fig. 3. COARSE Frequency Control.

5. When the **1 Hz** range is selected, the gate time is 10 seconds. This means that the display is updated once every 10 seconds, and that the resolution is 0.1 second. However, the result of a frequency change may not be displayed until 10 seconds later. Keep adjusting the frequency in progressively smaller steps and waiting for the display update until the desired frequency is obtained.
6. When using the higher output frequencies and when using the square wave output, terminate the cable into 50Ω to minimize ringing. Also, keep cables as short as possible.
7. Remember that the output signal swing of the generator is limited to ± 10 volts open circuited or ± 5 volts into

OPERATING INSTRUCTIONS

50 Ω . This applies to the combined signal and DC offset. Clipping occurs slightly above these levels. Fig. 4 illustrates the various operating conditions encountered when using the DC offset. If the desired output signal is large or if a large DC offset is required, an oscilloscope should be used to make sure that the desired combination is obtained without undesirable clipping.

Fig. 4. Use of DC OFFSET Control.

VOLTAGE CONTROLLED FREQUENCY OPERATION

The Model 3011B can be operated as a voltage-controlled oscillator (VCO) by using an external control voltage applied to the VCF IN jack. The externally applied voltage will vary the frequency which is preselected by the range switches and the frequency control controls. Applying approximately +10 V will cause the frequency to decrease by about 10 times (a 10:1 ratio).

CAUTION

Do not apply more than ± 15 volts (dc or dc + ac peak) to the VCF IN jack. Inputs of more than 15 volts will not cause any further shift in the frequency and could cause damage to the Function Generator.

1. Select the desired frequency range and function.
2. Set the DC offset, if required.
3. Set the starting frequency and amplitude to the desired level.

NOTE

Keep the (starting) COARSE frequency control between the 0.2 and 2 positions (see Fig. 3).

4. To operate the function generator as a sweep generator, apply a positive going ramp signal to the VCF IN jack. As the voltage increases, the frequency decreases. A

- ramp that goes from 0 to +10 V will cause the frequency to decrease by a factor of 10 (i.e., if the starting frequency is 10 kHz, when the ramp reaches +10 V, the output frequency will be 1 kHz). The rate of sweep can be adjusted by varying the frequency of the ramp signal.
5. Specific frequencies can be selected by applying a fixed dc voltage to the **VCF IN** jack or the frequencies can be stepped by applying a stepped dc voltage.

TTL/CMOS OUTPUT

The **TTL/CMOS** output jack provides a fast rise time square wave output (no triangle or sine output available). Either a fixed 3 V p-p TTL or a variable (approximately 4 V p-p to 14.5 V p-p) CMOS output are available. The output pulses always go positive with respect to ground. This signal can be used as an external sync pulse for oscilloscopes or as a variable frequency signal source for exercising logic circuits.

NOTE

Because of the fast rise time of this output, cable length should be minimized to limit ringing and overshoot.

1. Select the desired frequency range and adjust the frequency controls as required. The **AMPL** and **OFFSET** controls have no effect on the signal at the **TTL/CMOS** jack.

2. Select a TTL signal by pushing in the **TTL/CMOS** control. Select a CMOS signal by pulling out the **TTL/CMOS** control (PULL CMOS) and adjust the level of the CMOS signal by rotating the control (the TTL level is fixed).

DUTY CYCLE CONTROL

The Model 3011B Function Generator has a variable duty cycle control to provide ramps (sawtooth) or pulses. The duty cycle control affects both the main **OUTPUT** and the **TTL/CMOS** output. If a standard square, triangle, or sine waveform are desired (normal duty cycle) the **DUTY** control should be set to **CAL** (fully counterclockwise). Fig. 5 illustrates the function of the **DUTY** control.

NOTE

As the **DUTY** cycle is changed, the frequency will decrease. Be sure to set the desired frequency after the **DUTY** cycle has been adjusted.

1. Select the desired function (either square or triangle wave if the main **OUTPUT** is to be used or TTL or CMOS if the **TTL/CMOS** output is to be used) and frequency range.
2. Adjust the amplitude and DC offset if the main **OUTPUT** is to be used or adjust the CMOS level if a CMOS signal is to be used (the TTL has a fixed level).

OPERATING INSTRUCTIONS

Fig. 5. Effect Of DUTY Control On Square Wave, TTL, And CMOS Signal.

3. Adjust the **DUTY** control so that the desired duty cycle is obtained (display on an oscilloscope for set-up if desired).
4. Adjust the frequency of the signal using the **COARSE** and **FINE** frequency controls. The **DUTY** control can be pulled out to cause a negative going pulse (PULL INV) at either the main **OUTPUT** jack (for square wave only) or the **TTL/CMOS** jack (the triangle and sine wave cannot be inverted).

FUNCTION GENERATOR APPLICATIONS GUIDEBOOK

B & K-Precision offers a "Guidebook to Function Generators" which describes numerous applications for this instrument, including hook-up details. It also includes a glossary of function generator terminology and an explanation of function generator circuit operation. It may be obtained free of charge by filling out and mailing the postage paid card enclosed with the Model 3011B.

OUTPUT PROTECTION CONSIDERATIONS

Use care when connecting the function generator output to a signal injection point. Excessive voltage at the point of signal injection is fed into the function generator and causes internal damage. The TTL output is particularly susceptible to damage from external voltage greater than +6 volts or any negative polarity voltage.

Damage of this type usually occurs by accidentally connecting the output of the function generator to a voltage in the equipment under test. The following protective measures are strongly recommended:

1. The user should understand the equipment under test well enough to identify valid signal injection points (ie; the base of a transistor, a logic input of a gate, etc.). The voltage at valid signal injection points is rarely high enough to damage the instrument.
2. If in doubt about the safety of a signal injection point, measure the voltage present at the intended point of signal injection before connecting the function generator output to that point.
3. When applying the main output of the function generator to a circuit point containing a dc level, adjust

the **DC OFFSET** control so that dc level at the main output matches the circuit voltage.

4. Connect the **TTL OUTPUT** only to TTL-level circuits. Connect the **CMOS OUTPUT** only to CMOS circuits. Measure the V_{cc} of the circuit under test and adjust the **CMOS ADJUST** as instructed in the manual.
5. When the function generator is used by students or other inexperienced users, the following circuit could be added into your TTL output probe or test clip set. It will protect the TTL output of the generator against external voltages up to ± 20 volts.

Fig. 6. Circuit for Protection of TTL Output.

MAINTENANCE

WARNING

The following instructions are for use by qualified service personnel only. To avoid electrical shock, do not perform servicing other than contained in the operating instructions unless you are qualified to do so.

Remember that ac line voltage is present on line voltage input circuits any time the instrument is plugged into an ac outlet, even if turned off. Always unplug the Function Generator before performing service procedures.

DISASSEMBLY AND REASSEMBLY

In order to access the fuse and the line voltage selector, the bottom half of the case must be removed. To remove the bottom of the case:

Disassembly

1. Unplug the Function Generator and turn the unit upside down. Remove the four screws and the rubber foot pads from the bottom of the unit.
2. Lift the bottom section of the case up.

Reassembly

1. Line up the slots in the bottom case half with the front panel and put the two case halves together.
2. Replace the rubber foot pads and screws.

Fig. 7. Fuse And Line Voltage Selector Location.

LINE VOLTAGE SELECTION

1. If the line voltage needs to be changed, disassemble the function generator case (see the **DISASSEMBLY** section above) and unplug the plastic connector by pulling it straight up (see Fig. 7 for location).
2. Align the plastic connector with the desired voltage selector pin and push the plug down over the pin. Be sure that the correct fuse is installed (0.5 A for 110 V operation and 0.3 A for 220 or 240 V operation) in the fuse holder. Reassemble the case.

FUSE REPLACEMENT

Power Fuse F101

If fuse F202 opens, the LED display will not light and no functions will operate.

1. To replace the fuse, disassemble the case and remove the blown fuse (see Fig. 7 for location).
2. The fuse should not normally open unless a problem has developed with the unit. Try to determine and correct the cause of the blown fuse, then replace only with the correct value fuse (0.5 A for 100 or 120 V operation and 0.3 A for 220 or 240 V operation). Reassemble the case.

Output Fuse F501

If fuse F501 opens, there will be no output signal or DC offset voltage available at the OUTPUT jack. All other functions will be normal. The OUTPUT can be measured with an oscilloscope or multimeter.

1. To replace fuse F501, disassemble the case.
2. The fuse is connected in series with the OUTPUT jack. Unsolder the axial lead type fuse and replace only with an identical 200 mA slow blow fuse.

INSTRUMENT REPAIR SERVICE

Because of the specialized skills and test equipment required for instrument repair and calibration, many customers prefer to rely upon **B & K-Precision** for this service. We maintain a network of **B & K-Precision** authorized service agencies for this purpose. To use this service, even if the instrument is no longer under warranty, follow the instructions given in the **WARRANTY SERVICE INSTRUCTIONS** portion of this manual. There is a nominal charge for instruments out of warranty.

WARRANTY SERVICE INSTRUCTIONS
(For U.S.A. and its Overseas Territories)

1. Refer to the MAINTENANCE section of your B & K-Precision instruction manual for adjustments that may be applicable.
2. If the above-mentioned does not correct the problem you are experiencing with your unit, pack it securely (preferably in the original carton or double-packed).
3. Enclose a letter describing the problem and include your name and address.
4. Deliver to, or ship PREPAID (UPS preferred in U.S.A.) to the nearest B & K-Precision authorized service agency (see list enclosed with unit).

If your list of authorized B & K-Precision service agencies has been misplaced, contact your distributor for the name of your nearest service agency, or write to:

B & K-Precision, Factory Service Department
Maxtec International Corporation
6470 West Cortland Street
Chicago, Illinois 60635
Tel (312) 889-1448

Also use this address for technical inquiries
and replacement parts orders.

LIMITED ONE-YEAR WARRANTY

MAXTEC INTERNATIONAL CORPORATION warrants to the original purchaser that its **B & K-Precision** product, and the component parts thereof, will be free from defects in workmanship and materials for a period of one year from the date of purchase.

MAXTEC will, without charge, repair or replace, at its option, defective product or component parts upon delivery to an authorized **B & K-Precision** service contractor or the factory service department, accompanied by proof of the purchase date in the form of a sales receipt.

To obtain warranty coverage in the U.S.A., this product must be registered by completing and mailing the enclosed warranty registration card to MAXTEC, **B & K-Precision**, 6470 West Cortland Street, Chicago, Illinois 60635 within fifteen (15) days from the date of purchase.

Exclusions: This warranty does not apply in the event of misuse or abuse of the product or as a result of unauthorized alterations or repairs. It is void if the serial number is altered, defaced or removed.

MAXTEC shall not be liable for any consequential damages, including without limitation damages resulting from loss of use. Some states do not allow limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific rights and you may also have other rights which vary from state to state.

For your convenience we suggest you contact your **B & K-Precision** distributor, who may be authorized to make repairs or can refer you to the nearest service contractor. If warranty service cannot be obtained locally, please send the unit to **B & K-Precision Service Department**, 6470 West Cortland Street, Chicago, Illinois 60635, properly packaged to avoid damage in shipment.

B & K-Precision Test Instruments warrants products sold only in the U.S.A. and its overseas territories. In other countries, each distributor warrants the **B & K-Precision** products which it sells.

FREE

FUNCTION GENERATOR APPLICATIONS MANUAL

A copy of the "B&K-Precision's Guidebook To Function Generators" Applications Manual is offered FREE to purchasers of B&K-Precision Function Generators.

CONTAINS:

- Numerous Application Examples Showing How To Gain The Most From Your Function Generator's Features And Capabilities.
- Function Generator Terminology.
- Typical Function Generator Controls And Their Usage.
- Function Generator Theory Of Operation.

Obtain your free copy by filling out and returning the enclosed Coupon Card.

(continued from inside front cover)

6. Some equipment with a two-wire ac power cord, including some with polarized power plugs, is the "hot chassis" type. This includes most recent television receivers and audio equipment. A plastic or wooden cabinet insulates the chassis to protect the customer. When the cabinet is removed for servicing, a serious shock hazard exists if the chassis is touched. Not only does this present a dangerous shock hazard, but damage to test instruments or the equipment under test may result from connecting the ground lead of most test instruments to a "hot chassis". To test "hot chassis" equipment, always connect an isolation transformer between the ac outlet and the equipment under test. The **B+K Precision** Model TR-110 or 1604 Isolation Transformer, or Model 1653 or 1655 AC Power Supply is suitable for most applications. To be on the safe side, treat all two wire ac powered equipment as "hot chassis" unless you are sure it has an isolated chassis or an earth ground chassis.
7. On test instruments or any equipment with a 3-wire ac power plug, use only a 3-wire outlet. This is a safety feature to keep the housing or other exposed elements at earth ground.
8. **B+K Precision** products are not authorized for use in any application involving direct contact between our product and the human body, or for use as a critical component in a life support device or system. Here, "direct contact" refers to any connection from or to our equipment via any cabling or switching means. A "critical component" is any component of a life support device or system whose failure to perform can be reasonably expected to cause failure of that device or system, or to affect its safety or effectiveness.
9. Never work alone. Someone should be nearby to render aid if necessary. Training in CPR (cardio-pulmonary resuscitation) first aid is highly recommended.

BK PRECISION®

MAXTEC INTERNATIONAL CORP.

6470 W. Cortland St. • Chicago, IL 60635

© 1992 Maxtec International Corp.

480-653-9-001F

Printed in Malaysia