Непрерывные законы распределения

Равномерное распределение

1. Случайная величина X равномерно распределена на отрезке [-2; 2]. Найти плотность вероятностей и функцию распределения случайной величины X. Построить графики плотности вероятностей и функции распределения. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X. Найти третий квартиль случайной величины X.

Ответ:
$$f(x) = \begin{cases} \frac{1}{4} & \text{при } x \in [-2;2] \\ 0 & \text{при } x \notin [-2;2] \end{cases}$$
; $F(x) = \begin{cases} \frac{0}{x-10} & \text{при } x \le 10 \\ \frac{x-10}{10} & \text{при } 10 < x \le 20; \\ 1 & \text{при } x > 20 \end{cases}$; $M(X) = 0$; $D(X) = \frac{4}{2}$; $\sigma(X) = \frac{2\sqrt{3}}{2}$; $x_{0,75} = 1$

2. Случайная величина X — время ожидания поезда на станции метро имеет равномерный закон распределения. Известно, что интервал движения поездов составляет 3,5 минуты. Найти вероятность того, что вышедший на перрон пассажир будет ожидать поезд: a) от 2 до 4 минут; б) от 4 до 5 минут.

OTBET: a)
$$P(2 < X < 4) = \frac{3}{7}$$
; б) $P(4 < X < 5) = 0$

3. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения составляет 10 минут. Найти: а) среднее время ожидания автобуса на остановке; б) вероятность того, что подошедший к остановке пассажир будет ожидать очередной автобус менее 4 минут.

Otbet: a)
$$M(X) = 5$$
; 6) $P(0 < X < 4) = 0.4$

4. Найти закон распределения равномерно распределенной случайной величины X, если известно, что M(X)=15, $D(X)=\frac{25}{3}$. Найти медиану случайной величины X.

Ответ:
$$F(x) = \begin{cases} 0 & \text{при } x \le 10 \\ \frac{x-10}{10} & \text{при } 10 < x \le 20; \ x_{0,5} = 15 \\ 1 & \text{при } x > 20 \end{cases}$$

Показательное распределение

5. Случайная величина X, распределенная по показательному закону, задана плотностью вероятностей $f(x) = \begin{cases} 0 & \text{при } x < 0 \\ 2e^{-2x} & \text{при } x \geq 0 \end{cases}$ Найти параметр λ показательного распределения. Найти функцию распределения случайной величины X. Построить графики плотности вероятностей и функции распределения. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (1; 1,5). Определить 10%-ную квантиль случайной величины X.

Ответ:
$$\lambda = 2$$
; $F(x) = \begin{cases} 0 & \text{при } x \leq 0 \\ 1 - e^{-2x} & \text{при } x > 0 \end{cases}$; $M(X) = \frac{1}{2}$; $D(X) = \frac{1}{4}$; $\sigma(X) = \frac{1}{2}$;

$$P(1 < X < 1.5) \approx 0.09; x_{0.1} \approx 0.05$$

6. Случайная величина X, распределенная по показательному закону, задана функцией распределения $F(x) = \begin{cases} 0 & \text{при } x \leq 0 \\ 1 - e^{-0.4x} & \text{при } x > 0 \end{cases}$ Найти параметр λ показательного распределения. Найти плотность вероятностей случайной величины X. Построить графики плотности вероятностей и функции распределения. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (2,5; 5). Определить квантиль порядка 0,99 случайной величины X.

Ответ:
$$\lambda = 0.4$$
; $f(x) = \begin{cases} 0 & \text{при } x < 0 \\ 0.4e^{-0.4x} & \text{при } x \ge 0 \end{cases}$; $M(X) = \frac{5}{2}$; $D(X) = \frac{25}{4}$; $\sigma(X) = \frac{5}{2}$; $P(2.5 < X < 5) \approx 0.23$; $\chi_{0.99} \approx 11.5$

7. Длительность времени безотказной работы электронного устройства подчинена показательному закону распределения со средним проектным временем службы 10 лет. Найти вероятность того, что наудачу взятое устройство будет работать а) от 5 до 10 лет; б) менее 5 лет.

Otbet: a)
$$P(5 < X < 10) \approx 0.24$$
; 6) $P(0 < X < 5) \approx 0.39$

Нормальное распределение

8. Найти плотность вероятностей нормально распределенной случайной величины X, если известно, что: а) $m=1, \sigma=0.8$; б) M(X)=0, D(X)=0.25. Построить нормальные кривые (на одном рисунке).

Otbet: a)
$$f(x) = \frac{1}{0.8\sqrt{2\pi}} e^{-\frac{(x-1)^2}{1.28}}$$
; 6) $f(x) = \frac{1}{0.5\sqrt{2\pi}} e^{-\frac{x^2}{0.5}}$

9. Нормально распределенная случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{4\sqrt{2\pi}} e^{-\frac{(x+1)^2}{32}}$. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X.

Otbet:
$$M(X) = -1$$
, $D(X) = 16$, $\sigma(X) = 4$

- **10.** Текущая цена акции представляет собой нормально распределенную случайную величину X с математическим ожиданием (средней ценой) 100 у.е. и средним квадратическим отклонением 16 у.е. Найти вероятность того, что цена акции будет: а) находиться в пределах от 90 до 120 у.е.; б) меньше 95 у.е.; в) больше 110 у.е. Ответ: а) ≈ 0.6284 ; б) ≈ 0.3773 ; в) ≈ 0.266
- **11.** Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением $\sigma = 20~\Gamma$. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине $10~\Gamma$.

Ответ:
$$\approx 0,3829$$