Assigned MPc1250Help INTRODUC https://eduassistpro.gTER.SCIENCE

Add ₩elQk-3:edu_assist_pro

Giulia Alberini, Fall 2020

Slides adapted from Michael Langer's

- How to build a Aresignmized Project ta Follow releduse
- write removeMin(https://eduassistpro.github.io/
- Faster algorithm for building a hedu_assist_pro

HOW TO BUILD A HEAP?

Suppose we have a list with *n* elements, we can create an empty heap and use add() to add one element at a time to the heap:

Assignment Project Exam Help

```
buildHeap(list) { https://eduassistpro.github.io/
    create new heap darway Chat edu_assist_prolist.size()
    for (k = 0; k < list.siz
        add( list[k] ) // add the element to the heap
}</pre>
```

Note that you could write the buildHeap algorithm slightly differently by putting all the list elements into the array at the beginning, and then 'upheaping' each one.

BEST CASE OF BUILDHEAP IS ... ? -

https://eduassistpro.github.io/

Suppose we want to apply the edu_assist property heap:

a c b e l u k m f

How many swaps do we need to add each element?

In the best case, ...

BEST CASE OF BUILDHEAP IS O(n) -

https://eduassistpro.github.io/

Suppose we want toggddysome all edu_assist propty heap:

a c b e l u k m f

How many swaps do we need to add each element?

In the best case, the order of elements that we add is already a heap, and no swaps are necessary.

How many swaps do we need to add the i-th element?

How many swaps do we need to add the i-th element? Element i gets added to some level, such that:

$$2^{level} < i < 2^{level+1}$$

$$2^{level} \le i < 2^{level+1}$$

 $level \le \log_2 i < level+1$

Thus, $level = floor(\log_2 i)$

Suppose there are n elements to add, then in the worst case the number of swaps needed to add all the elements is:

$$t(n) = \sum_{i=1}^{n} floor(\log_2 i)$$

Assignment Project Exam Help

8

https://eduassistpro.github.io/

$$t(n) = \frac{1}{2} \sum_{i=1}^{n} w_i e Gha e du_assist \underline{i} pro$$

4

Area under the dashed curve is the *total* number of swaps (worst case) of buildHeap.

0

0 1000 2000 3000 4000 5000 *i*

WORST CASE OF BUILDHEAP IS $O(n * log_2 n)$

Thus, in the worst case scenario for buildHeap() is $O(n * \log n)$

"downHeap"

"upHeap"

E.G. removeMin()

E.G. removeMin()

E.G. removeMin()

REMOVEMIN() - IMPLEMENTATION

Let heap be the underlying array, and let size be the number of elements in the heap.

Assignment Project Exam Help

REMOVEMIN() - IMPLEMENTATION

Let heap be the underlying array, and let size be the number of elements in the heap.

Assignment Project Exam Help

```
removeMin() {
    tmpElemen
    https://eduassistpro.github.io/
        not used.

heap[1] = Achd WeChat edu_assist_pro
    heap[size] = null // not necessary
    size = size - 1
    downHeap(1, size)
    return tmpElement
}
```

DOWNHEAP() - IMPLEMENTATION

DOWNHEAP() - IMPLEMENTATION

```
downHeap( startIndex , maxIndex ) {
  i = startIndex
  while (2*i <= maxIndex) { // if there is a left child child = 2*i Assignment Project Exam Help
     child = 2*i
        if (child < maxInde</pre>
           child = child + 1
                       Add WeChat edu_assist_pro
```

DOWNHEAP() - IMPLEMENTATION

```
downHeap( startIndex , maxIndex ) {
   i = startIndex
   while (2*i <= maxIndex) { // if there is a left child child = 2*i Assignment Project Exam Help
       child = 2*i
                                                      right sibling
       if (child < maxInde</pre>
          if (heap[child + https://eduassistpro.github.io/htchild < leftchild
             child = child + 1
                             Add WeChat edu_assist_pro
       if (heap[child] < heap[i]) { // Do we need to swap with child?
          swapElements(i , child)
          i = child
       } else
          break
```


HOW TO BUILD A HEAP? (FAST)

Observations:

- Half the nodes of a heap are leaves.
 (Each leaf is a heap with one node)
- The last non-leaf node has index size/2.

HOW TO BUILD A HEAP? (FAST)

```
Assignment Project Exam Help
buildHeapFast() {

// assume tha https://eduassistpro.github.io/ elements

for (k = size/Aid WeChat edu_assist_pro

downHeap( k, size )
}
```

1 2 3 4 5 6 -----

W Assignment Project Exam Help

k = 3 https://eduassistpro.github.io/

Add We Chat edu_assist_pro

2 X 3 t

4 p 6 f

1 2 3 4 5 6 -----

W Assignment Project Exam Help

k = 3 https://eduassistpro.github.io/

Add WeChat edu_assist_pro

downHeap(3,6)

1 2 3 4 5 6 -----

W Assignment Project Exam Help

k = 3 https://eduassistpro.github.io/

Add WeChat edu_assist_pro

downHeap(3,6)

W Assignment Project Exam Help https://eduassistpro.github.io/ k = 2Add WeChat edu_assist_pro downHeap(2,6)

W Assignment Project Exam Help https://eduassistpro.github.io/ k = 2Add WeChat edu_assist_pro downHeap(2,6)

W Assignment Project Exam Help https://eduassistpro.github.io/ k = 1Add WeChat edu_assistepp(1,6)

BUILDHEAPFAST() - IMPLEMENTATION

```
buildHeapFast(list) {
    // copy e Assignment Project Exam Helpy

    for (k = size https://eduassistpro.github.io/
        downHeap(k, size)
        Add WeChat edu_assist_pro
}
```

Claim: this algorithm is O(n).

What is the intuition for why this algorithm is so fast?

We tends to draw binary trees like this:

https://eduassistpro.github.io/

But the number of nodes double vel. So we should draw trees like that edu_assist_pro

BUILDHEAP ALGORITHMS

Most nodes swap ~h times in worst case.

Few nodes swap ~h times in worst case.

HOW TO SHOW BUILDHEAPFAST IS O(n)?

The worst case number of swaps needed to downHeap node i is the height of that node.

Assignment Project Exam Help

t(n) = https://eduassistpro.githold.eo/
Add WeChat edu_assist_pro

- $\frac{1}{2}$ of the nodes do no swaps.
- $\frac{1}{4}$ of the nodes do at most one swap.
- 1/8 of the nodes do at most two swaps....

ASSUME THE LAST LEVEL IS FULL

WORSE CASE OF BUILDHEAPFAST?

• How many elements at level l ? ($l \in 0,..., h$)

Assignment Project Exam Help

What is the heighhttps://eduassistpro.github.io/

WORSE CASE OF BUILDHEAPFAST?

- \neq How many elements at level l ? ($l \in 0,..., h$)
 - Assignment Project Exam Help
- What is the heighhttps://eduassistpro.github.io/
 - $\triangleright |h-l|$

$$t(n) = \sum_{i=1}^{n}$$
 height of node i

WORSE CASE OF BUILDHEAPFAST?

- \neq How many elements at level l ? ($l \in 0,..., h$)
 - Assignment Project Exam Help
- What is the heigh https://eduassistpro.github.io/

$$\triangleright h - l$$

$$t(n) = \sum_{i=1}^{n}$$
 height of node i

$$=\sum_{l=0}^{h} (h-l) 2^{l}$$

$$t_{worstcase}(h) = \sum_{l=0}^{h} (h-l) 2^{l}$$
$$= h \sum_{l=0}^{h} 2^{l} - \sum_{l=0}^{h} l 2^{l}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Easyld WeChatiedu_assist_pro

(number of nodes) (sum of node levels)

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Helpecond term index goes to h-1 only https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Since
$$n=2^{h+1}-1$$
, we get:

$$t_{worstcase}(n) = n - \log(n+1)$$

SUMMARY: BUILDHEAP ALGORITHMS

Assignment Project Exam Help In the next

- Hashing https://eduassistpro.github.io/
- Graphs Add WeChat edu_assist_pro