Familles sommables

17 janvier 2019

Produit de Cauchy de deux séries

1.1

Donner un exemple de deux séries convergentes dont le produit de Cauchy diverge.

1.2 Cesaro

Soient $\sum a_n$, $\sum b_n$, $\sum c_n$ trois séries convergentes. On pose $c=a\star b$. Montrer que C=AB en vérifiant que C=AB en v

1.3 Cauchy-Mertens

Soient $\sum a_n$ et $\sum b_n$ deux séries numériques convergentes, la première étant absolument convergente. On se propose de montrer que leur série produit de Cauchy $c = a \star b$ converge vers le produit AB de leurs sommes respectives.

- a) Montrer que l'on peut suppose B = 0.
- b) Vérifier que $\sum_{k=0}^{n} c_k = \sum_{k=0}^{n} a_k B_{n-k}$ et montrer que cette suite tend vers

1.4Pringsheim

Soient (u_n) et (v_n) deux suites réelles décroissant vers 0, et $w = u \star v$. Montrer que $\sum (-1)^{n-1} w_n$ converge ssi la suite w tend vers 0. [(w.w) { w. ww. w. { (w.w)

Sommablilité

Etudier la famille Sommabilité des familles $(\frac{1}{(m+n)^a})_{(m,n)\in\mathbb{N}^*\times\mathbb{N}^*}, a>0$; $(\frac{1}{(m^2-mn+n^2)^a})$.

Soit z_n une suite de nombres complexes non nuls telle que, pour tout couple $(m,n)\in \mathbb{N}^2$ tel que $m\neq n$ on ait $|z_n-z_m|\geq 1$. Montrer que, pour $\alpha>2$, la série $\sum \frac{1}{|z_n|^{\alpha}}$ converge.

fo f

equivalence des mornes + estimen le vadinal de AN= { a 672 m/ mox/arl-nj

E D(m) = (1) k

2.3

On se donne une norme $\| \| \sup \mathbf{R}^n$, étudier la sommabilité de la famille $(\frac{1}{\|a\|}^{\alpha})$ selon $\alpha > 0$.

3 Identités obtenues par développement

On reverra avec profit la dernière partie du devoir : séries de Dirilchet.

3.1

La fonction zeta est celle de Riemann. Calculer $\sum \zeta(n) - 1$.

3.2

La fonction ϕ est l'indicatrice d'Euler. Calculer : $\sum_{n=1}^{+\infty} \frac{\phi(n)}{2^n-1}.$

3.3

On désigne par γ la constante d'Euler.

- a) Montrer que l'on a : $\gamma = \sum_{n=1}^{+\infty} (\frac{1}{n} \ln(1 + \frac{1}{n}))$.
- b) La famille $(\frac{(-1)^k}{kn^k})$, $n \ge 1$, $k \ge 2$ est-elle sommable? Et si l'on se restreint à n > 2?
- c) Montrer que $\gamma = \sum_{k=2}^{+\infty} \frac{(-1)^k}{k} \zeta(k)$.

4 Ensembles de mesure nulle

On dit qu'un ensemble $A \subset \mathbf{R}$ est de mesure nulle lorsque :

 $\forall \varepsilon > 0, \ \exists \left(I_{\lambda}\right)_{\lambda \in \Lambda} \text{ intervalles ouverts de } \mathbf{R}, \ \left(A \subset \bigcup_{\lambda \in \Lambda} I_{\lambda}\right) \text{ et } \left(\sum_{\lambda \in \Lambda} l(I_{\lambda}) \leq \varepsilon\right)$

- a) Montrer que Q est de mesure nulle.
- b) Montrer que si $(A_p)_{p\in\mathbb{N}}$ est de mesure nulle, alors $\bigcup A_p$ aussi.
- c) Soit $(a, b) \in \mathbb{R}^2$, avec a < b. Montrer que [a, b] n'est pas de mesure nulle.
- d) Montrer que l'ensemble des réels 3-approchables est de mesure nulle.

PI

famille prative

l'un des grayaments CV

dunc famille sommable

strate les familles Cr

() o