CS109 – Data Science

Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

AWS Clusters

 New and updated instructions for Spark 1.5 are on Piazza:

https://piazza.com/class/icf0cypdc3243c?cid=1369

Avoid Unnecessary Charges!

- Look at AWS console > Services > EMR
- There should be some terminated clusters there
- Check the region on the top right corner
- Make sure to change it to US East

https://piazza.com/class/icf0cypdc3243c?cid=1256

Region Setting in AWS

Announcements

- Final project
 - Team assignments have been posted to piazza
 - Make sure you are in a 3-4 person team
 - Try and date on the piazza thread
 - If you have problems write to staff@cs109.org

– Project proposals are due on Thursday
https://piazza.com/class/icf0cypdc3243c?cid=1317

Final Project Proposal

- Submit just one form per team.
- Do it as early as possible!
- No project approval until you meet your TF

https://piazza.com/class/icf0cypdc3243c?cid=1317

Supervised vs. Unsupervised

- We mainly talked about supervised learning so far
- Joe already moved to unsupervised with LDA
- In these settings we have no labels in our training data.

Unsupervised Setting

No y value

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

Unsupervised Learning

- Find patterns in unlabeled data
- Sometimes used for a supervised setting in which labels are hard to get
- Can identify new patterns that you were not aware of.

Clustering Applications

- Google image search categories show the
- Author Clustering: <u>http://academic.research.microsoft.com/Visu</u> alExplorer#1048044
- Opening a new location for a hospital, police station, etc. ophimizing
- Outlier detection

Unsupervised Learning

- K-means
- Mean-shift
- Hierarchical Clustering

Rand index, stability

K-means – Algorithm

• Initialization:

choose k random positions

— assign cluster centers $\boldsymbol{\mu}^{(j)}$ to these positions

K-means

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

K-means

- Until Convergence:
 - Compute distances $||x^{(i)} \mu^{(j)}||$
 - Assign points to nearest cluster center

– Update Cluster centers:

$$\mu^{(j)} = \frac{1}{N_j} \sum_{x_i \in C_j} x_i$$

K-means

Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

K-means Example

K-means Example

K-means Example

K-means Summary

- Guaranteed to converge
- Result depends on initialization

Number of clusters is important

- Sensitive to outliers
 - Use median instead of mean for updates

Initialization Methods

- Random Positions
- Random data points as Centers
- Random Cluster assignment to data points

Start several times

How to find K

- Extreme cases:
 - K = 1
 - -K=N
- Choose K such that increasing it does not model the data much better.

"Knee" or "Elbow" method

Cross Validation

 Use this if you want to apply your clustering solution to new unseen data

- Partition data into n folds
- Cluster on n-1 folds
- Compute sum of squared distances to centroids for validation set

Getting Rid of K

- Having to specify K is annoying
- Can we do without?

Mean Shift

- 1. Put a window around each point
- 2. Compute mean of points in the frame.
- 3. Shift the window to the mean
- 4. Repeat until convergence

Mean Shift

http://w ww.youtu be.com/w atch?v=k maQAsot T9s

Mean Shift

Fischer et al., "Clustering with the Connectivity Kernel", NIPS (2003)

Mean Shift Summary

- Does not need to know number of clusters
- Can handle arbitrary shaped clusters
- Robust to initialization
- Needs bandwidth parameter (window size)
- Computationally expensive
- Very good article:

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

Multi-feature object trajectory clustering for video analysis

Nadeem Anjum Andrea Cavallaro

Parameters parameters

- For K means we need K and result depends on initialization
- For mean shift we need the window size and a lot of computation

Hierarchical Clustering keeps a history of all possible cluster assignments

Tree of Life

http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html

- Produces complete structure
- No predefined number of clusters

- Similarity between clusters:
 - single-linkage: $\min\{d(x,y): x \in \mathcal{A}, y \in \mathcal{B}\}$
 - complete-linkage: $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$
 - average linkage: $\frac{1}{|\mathcal{A}|\cdot|\mathcal{B}|}\sum_{x\in\mathcal{A}}\sum_{y\in\mathcal{B}}d(x,y)$

Single Linkage

 $\min\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$

Complete Linkage

 $\max\{d(x,y):x\in\mathcal{A},y\in\mathcal{B}\}$

Linkage Matters

- Single linkage: tendency to form long chains
- Complete linkage: Sensitive to outliers
- Average-link: Trying to compromise between the two

Chaining Phenomenon

Outlier Sensitivity

+ 2*epsilon

- 1*epsilon

http://nlp.stanford.edu/IR-book/html/htmledition/img1569.png

Efficient Hierarchical Graph-Based Video Segmentation

Matthias Grundmann^{1,2}, Vivek Kwatra², Mei Han² and Irfan Essa¹

¹Georgia Tech ²Google Research

IEEE CVPR, San Francisco, USA, June 2010

Swiss Role Problem

only adjacent clusters can be merged together

Evaluation Criteria

- Based on expert knowledge
- Debatable for real data
- Hidden Unknown structures could be present
- Do we even want to just reproduce known structure?

Rand Index

- Percentage of correct classifications
- Compare pairs of elements:

$$R = \frac{tp + tn}{tp + tn + fp + fn}$$

Fp and fn are equally weighted

Stability

Stability

- What is the right number of clusters?
- What makes a good clustering solution?

Clustering should generalize!

Stability

Summary

- We have covered a lot today
- Clustering
 - K-means
 - Mean-shift
 - Hierarchical clustering
- Evaluation criteria
 - Rand index
 - Stability