

第 13 章 抢占式多任务

汪辰

- 抢占式多任务
- > 抢占式多任务的设计
- **兼容协作式多任务**

- ➤ 【参考 1】: The RISC-V Instruction Set Manual , Volume I: Unprivileged ISA , Document Version 20191213
- ➤ 【参考 2】: The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20190608-Priv-MSU-Ratified
- ► 【参考 3】:SiFive FU540-C000 Manual, v1p0

- 抢占式多任务
- > 抢占式多任务的设计
- **兼容协作式多任务**

- ▶ **协作式多任务 (Cooperative Multitasking):** 协作式环境下,下一个进程被调度的前提是当前进程主动放弃时间片。
- ▶ 抢占式多任务 (Preemptive Multitasking): 抢 占式环境下,操作系统完全决定进程调度方案,操 作系统可以剥夺耗时长的进程的时间片,提供给其 它进程。

- 抢占式多任务
- > 抢占式多任务的设计
- **兼容协作式多任务**

抢占式多任务的设计

Task A

Task B

抢占式多任务的设计

抢占式多任务的设计

- 抢占式多任务
- > 抢占式多任务的设计
- **兼容协作式多任务**

兼容 task_yield()


```
/*
 * DESCRIPTION
 * task_yield() causes the calling task to relinquish the CPU and a new
 * task gets to run.
 */
void task_yield()
```

RISC-V 中断(Interrupt)的分类

ISCAS MIST

- ➤ 本地(Local)中断
 - software interrupt
 - timer interrupt
- → 全局(Global)中断
 - externel interrupt

──M mode Software Interrupt	
M mode Timer Interrupt	
——M and S mode External Interrupt→	U54 Hart1

Interrupt	Exception Code	Description
1	0	User software interrupt
1	1	Supervisor software interrupt
1	2	Reserved for future standard use
1	3	Machine software interrupt
1	4	User timer interrupt
1	5	Supervisor timer interrupt
1	6	Reserved for future standard use
1	7	Machine timer interrupt
1	8	User external interrupt
1	9	Supervisor external interrupt
1	10	Reserved for future standard use
1	11	Machine external interrupt
1	12-15	Reserved for future standard use
1	≥16	Reserved for platform use

[参考 2] Table 3.6: Machine cause register (mcause) values after trap.

【参考 3】 Figure 3: FU540-C000 Interrupt Architecture Block Diagram.

Core Local INTerruptor

Figure 3: FU540-C000 Interrupt Architecture Block Diagram.

~ -

CLINT 编程接口 - 寄存器(software interrupt 部分)

可编程寄存器	功能描述	内存映射地址
MSIP	32-bit 字长。高 31 位不可用,最低位和 CSR mip.MSIP 对应。写入 1 时触发 software interrupt,写入 0 表示对该中断进行应答。	BASE + 4 * (hart)

- PRISCV 规范规定, Machine 模式下的 mip.MSIP 对应到一个 memory-mapped 的控制寄存器。 QEMU-virt 映射到 CLINT 的 MSIP。
- 具体寄存器编址采用 base + offset 的格式,且 base 由各个特定 platform 自己定义。针对 QEMU-virt ,其 CLINT 的设计参考了 SFIVE , base 为 0x2000000 。

谢谢

欢迎交流合作