Name: Student ID:
UNSW School of Mathematics and Statistics
MATH3411 Information Codes and Ciphers
2011 S2 TEST 2 VERSION A
• Time Allowed: 45 minutes
For the multiple choice questions, circle the correct answer ; each multiple choice question is worth 2 marks. For the true/false and written answer questions, use extra paper. Staple everything together at the end.
1. Using the LZ78 algorithm a message is encoded as $(0,a)(1,b)(2,a)(2,b)$. The message is
(a) aababbaba (b) abbbbabbb (c) abbaaaabb (d) aababaabb (e) aababbabb
2. Let $H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$, so that $H'(x) = \log_2 (x^{-1}-1)$. An asymptotic lineary phases with input $A = \{a : x\}$ and only $A = \{b_1, b_2\}$ has noise entropy $A(B \mid A) = 0.7p + 0.2$ in bits with $A(B) = H(0.1 + 0.4p)$ in bits and $p = P(a_1)$. The channel capacity is achieved when p has the value approximately
(a) https://powcoder.com (e) 0.55
3. Let $f(x) = x^4 + 2x^2 + 2$ and $g(x) = x^2 + 3x + 2$ be polynomials in $\mathbb{Z}_5[x]$. The remainder where $f(x)$ is wided by fram power of the polynomials of $f(x)$.
(a) 2 (b) $x^2 + 2x + 4$ (c) $3x$ (d) $x + 1$ (e) $4x + 4$
4. Applying the Pollard- ρ method with $x_0 = 3$ and $x_i = x_{i-1}^2 + 1 \pmod{n}$ for $i > 0$ finds which factor of $n = 1105 = 5 \times 13 \times 17$ first?
(a) 5 (b) 13 (c) 17 (d) 65 (e) 85
5. Suppose that the linear congruential pseudorandom number generator
$x_{i+1} \equiv 3x_i + 5 \pmod{7}$
is given the seed $x_0 = 3$. Then x_5 equals
(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

6. [10 marks] For each of the following, say whether the statement is true or false and giving a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) If a source S has binary entropy 2.5, then a Huffman coding of the fourth extension must have average length per original source symbol less than 2.8.
- ii) For a noisy binary channel the entropy of the output is always larger than the entropy of the input.
- iii) $5^{2011} \equiv 12 \pmod{13}$.
- iv) There are 42 primitive elements in the field GF(49).
- v) In the field $\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$, if α is a root of x^3+x+1 then $\alpha^6=\alpha^2+1$.
- 7. [10 marks] A source S has 5 symbols s_1, s_2, \ldots, s_5 with probabilities

Assignment ¹/₃Project ²/₅E¹/_xam Help respectively.

- i) Find the entropy of \$\frac{\psi}{p}\text{butcoder.com}\$
 ii) Find a **ternary** (radix 3) Shannon-Fano code for S and calculate its expected codeword length.
- iii) A binary Span on Whe code is a districted for 3 deposit try to find it.) Find the lengths of the two shortest codewords in this code.

For the multiple choice questions, circle the correct answer ; each multiple choice question is worth 2 marks. For the true/false and written answer questions, use extra paper. Staple everything together at the end.
 1. Using the LZ78 algorithm a message is encoded as (0, a)(1, b)(0, c)(2, a)(4, c)(5, b). What is the last dictionary entry after decoding? (a) abacb (b) abcab (c) abac (d) acbcb (e) abbcb
2. Let $H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$, so that $H'(x) = \log_2 (x^{-1}-1)$. An asymmetric binary channel with input $A = \{a_1 a_2\}$ and out $B = \{b_1, b_2\}$ has noise entropy $H(B \mid A) = 0.8p + 0.3$ in Jits with $H(B) = H(0.1 + 0.5p)$ in bits where $p = P(a_1)$. The channel capacity is achieved when p has the value approximately
 (a) https://powcoder.com (e) 0.62 3. Let f(x) = x⁴ + 2x³ + x and g(x) = x² + x + 2 be polynomials in Z₅[x]. The remainder what fix is wided by hat powcoder
 (a) 2x (b) x+3 (c) x²+x+2 (d) 2x+1 (e) 2x+4 4. Applying the Pollard-ρ method with x₀ = 3 and x_i = x²_{i-1} + 1 (mod n) for i > 0 finds which factor of n = 1001 = 7 × 11 × 13 first? (a) 7 (b) 11 (c) 13 (d) 91 (e) 143
5. Suppose that the linear congruential pseudorandom number generator $x_{i+1} \equiv 3x_i + 4 \pmod{7}$
is given the seed $x_0 = 1$. Given that the period of the generator is 6, which of these members of \mathbb{Z}_7 is not generated:
(a) 0 (b) 2 (c) 3 (d) 4 (e) 5

VERSION B

Name: Student ID:

MATH3411 Information Codes and Ciphers

TEST 2

UNSW SCHOOL OF MATHEMATICS AND STATISTICS

 $2011~\mathrm{S2}$

• Time Allowed: 45 minutes

6. [10 marks] For each of the following, say whether the statement is true or false and giving a brief reason or showing your working. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

Begin each answer with the word "true" or "false".

- i) If a source S has binary entropy 2.4, then the Shannon-Fano coding of the fifth extension must have average length per original source symbol less than 2.7.
- ii) For a noisy channel the entropy of the input can be larger than the entropy of the output.
- $2^{2011} \equiv 11 \pmod{13}$.
- iv) There are 32 primitive elements in the field GF(121).
- v) In the field $\mathbb{Z}_2[x]/\langle x^3+x^2+1\rangle$, if α is a root of x^3+x^2+1 then $\alpha^6=\alpha^2+1$.
- 7. [10 marks] A source S has 5 symbols s_1, s_2, \ldots, s_5 with probabilities

Assignment Project0Exam Help respectively.

- i) Find the entropy of #/pbits wooder.com
 ii) Find a ternary (radix 3) Shannon-Fano code for S and calculate its expected codeword length.
- iii) A binary Span on Whe ode is a districted for 3 deposit try to find it.) Find the lengths of the two longest codewords in this code.