```
import numpy as np
import pandas as pd
```

```
deaths_df = pd.read_csv('data/da5e144e-7525-4f18-9def-833f7ced4994.csv')
population_df = pd.read_csv('data/co-est2020.csv')
cig_df = pd.read_csv('Cig_Data2.csv').loc[:57,:'Cig_Rates']
cig_df['County'] = cig_df['County'].str.strip()
cig_df
#population_df
#deaths_df
       County object
                          Cig_Rates float64
                          0.06 - 0.25
       Alameda ..... 1.7%
       Alpine ..... 1.7%
       56 others ...... 96.6%
    0
      Alameda
                                       0.1
    1
       Alpine
                                      0.15
    2
       Amador
                                      0.15
       Butte
                                      0.17
    4
       Calaveras
                                      0.15
       Colusa
                                       0.2
    5
    6
      Contra Costa
                                      0.12
                                       0.2
    7
       Del Norte
    8
       FI Dorado
                                      0.15
    9
       Fresno
                                      0.15
```

- EACH ROW REPRESENTS A PART OF THE POPULATION WHO DIED IN A COUNTY
- Year: Year of death
- County: Name of County where the people either died or were residents from depending on

Geography type

Geography_Type:

Residence: California residents even if death happened outside California

Occurrence: happened in California even if people were non-residents

- Strata: General demographic or category. Total Population represents the whole population in County
- Strata_Name: Specific General demographic or category people were categorized as.
- Cause: ALL = All causes, rest are causes of death
- Cause_Desc: All causes (total) if cause is ALL, rest are descriptions of cause of death
- Count: Number of events/deaths in the rows category
- Annotation_Code: Code when Count is NaN, blank=no annotation, 1=cell suppressed for small numbers, 2 = cell suppressed for complementary cell, 3 = no data is available, 4 = statistically unstable value.
- Annotation_Desc: Description of code (already provided above)

Data Cleaning

```
State-level FIPS codes have two digits, county-level FIPS codes have five digits of which first two are the FIPS code of the state to which the county belongs.

str_state_num=population_df[['STATE']].astype(str)
zero_extend_str_state = ['0'+x if len(x)==1 else x for x in str_state_num['STATE']]
str_county_num=population_df[['COUNTY']].astype(str)
zero_extend_str_county = ['00'+x if len(x)==1 else '0'+x if len(x)==2 else x for x in str_str_state_num['STATE'] = zero_extend_str_state
str_county_num['COUNTY'] = zero_extend_str_county
FIPS = str_state_num['STATE'] + str_county_num['COUNTY']
population_df['FIPS'] = FIPS

deaths_df = deaths_df[deaths_df['Year']!=2020]
cali_df = population_df[population_df['STNAME'] == 'California'].loc[:,'CTYNAME':]
cali_df.drop(['CENSUS2010POP', 'ESTIMATESBASE2010', 'POPESTIMATE2010', 'POPESTIMATE2011', 'POP
```

```
import re
pattern = r'([\w, ]+) County'
cali_df['CTYNAME'] = cali_df['CTYNAME'].str.extract(pattern)
cali_df.drop(191, inplace=True)
```

cali_df.rename(columns={"POPESTIMATE2014": "2014", "POPESTIMATE2015": "2015", "POPESTIMATE
cali_df

	CTYNAME object	2014 int64	2015 int64	2016 int64	2017 int64
	Alameda	1083 - 10033449	1080 - 10077263	1053 - 10094865	1116 - 10092365
242	Sutter	94721	95224	95769	96161
243	Tehama	62797	63150	63468	63827
244	Trinity	13126	13094	12827	12727
245	Tulare	454858	456794	458991	462072
246	Tuolumne	53830	53599	53729	53953
247	Ventura	842113	845599	846921	848264
248	Yolo	208368	211998	215569	218470
249	Yuba	73527	74039	74920	76575

```
# Forloop to get population per year
population_per_year_county = []
fips_lst = []
cig_lst = []
df = deaths_df[['Year', 'County']]
for index in df.index:
   year = df['Year'][index]
   county = df['County'][index]
   pop_row = cali_df[cali_df['CTYNAME']==county]
   population = list(pop_row[f'{year}'])
   fips = list(pop_row['FIPS'])
   cig_row = cig_df[cig_df['County'] == county]
   cigs = list(cig_row['Cig_Rates'])
   population_per_year_county.append(population[0])
   fips_lst.append(fips[0])
   cig_lst.append(cigs[0])
population_per_year_county = np.array(population_per_year_county)
fips_lst = np.array(fips_lst)
cig_lst = np.array(cig_lst)
deaths_df['Population'] = population_per_year_county
deaths_df['Fips'] = fips_lst
deaths_df['Cig_Rate'] = cig_lst
```

deaths_df

	Year int64	County object	Geography_Type	Strata object	Strata_Name obje	C
0	2014	Alameda	Occurrence	Total Population	Total Population	Δ
1	2014	Alameda	Occurrence	Age	Under 1 year	Α
2	2014	Alameda	Occurrence	Age	1-4 years	Α
3	2014	Alameda	Occurrence	Age	5-14 years	Α
4	2014	Alameda	Occurrence	Age	15-24 years	Α
5	2014	Alameda	Occurrence	Age	25-34 years	Α
6	2014	Alameda	Occurrence	Age	35-44 years	Α
7	2014	Alameda	Occurrence	Age	45-54 years	Α
8	2014	Alameda	Occurrence	Age	55-64 years	Α
9	2014	Alameda	Occurrence	Age	65-74 years	Δ

deaths_df.isna().sum()

0 Year 0 County 0 Geography_Type 0 Strata Strata_Name 0 Cause 0 Cause_Desc 0 Count 38849 Annotation_Code 87823 Annotation_Desc 87823 Population 0 Fips 0 Cig_Rate 0 dtype: int64

```
deaths_df['Count'].replace(np.NaN,1,inplace=True)
deaths_df.drop(['Annotation_Code','Annotation_Desc'],axis=1,inplace=True)
```

```
deaths_df.to_csv(r'main_df.csv', index = False)
```