

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 4 Análisis Funcional

8 de septiembre de 2022

Problema 3. Sea $(X, \|\cdot\|_X)$ e.v.n y sea $p: X \to \mathbb{R}$ una función tal que

- 1. $p(x+y) \le p(x) + p(y)$
- 2. Para cada $x \in X$ la función $\lambda \mapsto p(\lambda x)$ es continua
- 3. Si $(y_n) \subseteq X$ es tal que $p(y_n) \to 0$ entonces $p(\lambda y_n) \to 0$ para todo $\lambda \in \mathbb{R}$

Asuma que $(x_n) \subseteq X$ es tal que $p(x_n) \to 0$ y $(\alpha_n) \subseteq \mathbb{R}$ es una sucesión acotada. Pruebe que p(0) = 0 y que $p(\alpha_n x_n) \to 0.$

Concluir que si $(x_n) \subseteq X$ es tal que $p(x_n - x) \to 0$ para algún $x \in X$ y $(\alpha_n) \subseteq \mathbb{R}$ es tal que $\alpha_n \to \alpha$ entonces $p(\alpha_n x_n) \top p(\alpha x)$.

Indicación: Argumente por contradicción y considere los conjuntos

$$F_n = \{ \lambda \in \mathbb{R} : |p(\lambda x_k)| \le \varepsilon \quad \forall k \ge n \}$$

Utilice el Lema de Baire de manera adecuada.

Demostración. Considere $(x_n) \subseteq X$ tal que $p(x_n) \to 0$ y $(\alpha_n) \subseteq \mathbb{R}$ acotada. En primer lugar, notamos que por la condición 1. $p(0) \le p(0) + p(0) \Rightarrow p(0) \ge 0$, y por otro lado

$$p(0) \le p(x_n) + p(-x_n) \to 0 \Rightarrow p(0) \le 0$$

así que p(0) = 0.

Por contradicción supongamos que $p(\alpha_n x_n) \to 0$. Esto significa que existe $\varepsilon > 0$ y una subsucesión de tal modo que $|p(\alpha_n x_n)| > 2\varepsilon$. Tomando nuevamente subsucesión podemos asumir sin pérdida de generalidad que $\alpha_n \to \alpha$ (toda sucesión acotada en \mathbb{R} posee subsucesión convergente). Continuamos denotando a estas subsucesiones por (α_n) y

Notemos ahora que los conjuntos F_n definidos en la indicación son cerrados pues si denotamos $p_{x_k}: \mathbb{R} \to \mathbb{R}, \quad \lambda \mapsto$ $p(\lambda x_k)$ entonces

$$F_n = \{\lambda \in \mathbb{R} : |p(\lambda x_k)| \le \varepsilon \quad \forall k \ge n\} = \bigcap_{k \ge n} \{\lambda \in \mathbb{R} : -\varepsilon \le p(\lambda x_k) \le \varepsilon\} = \bigcap_{k \ge n} p_{x_k}^{-1}([-\varepsilon, \varepsilon])$$

y la condición 2. del enunciado afirma que las funciones p_{x_k} son continuas. Por otro lado, podemos notar que

$$\bigcup_{n\in\mathbb{N}} F_n = \mathbb{R}$$

En efecto, para $\lambda \in \mathbb{R}$ arbitrario, la condición 3. significa que $p(\lambda x_n) \to 0$, y por lo tanto existe $N \in \mathbb{N}$ tal que $|p(\lambda x_k)| \leq \varepsilon \ \forall k \geq N$, así que $\lambda \in F_N$. El lema de Baire entonces afirma que existe $n_0 \in \mathbb{N}$ tal que $\inf(F_{n_0}) \neq \emptyset$. Esto entonces significa que existen $\lambda_0 \in \mathbb{R}, \delta > 0$ tal que

$$\lambda \in F_{n_0} \qquad \forall |\lambda - \lambda_0| < \delta, \forall k \ge n_0$$

Si definimos $t := \lambda - \lambda_0$ la condición anterior se traduce en que

$$|p((\lambda_0 + t)x_k)| \le \varepsilon \quad \forall |t| < \delta, \forall k \ge n_0$$

MAT227 UTFSM

Por la condición 1. tenemos que

$$p(\alpha_k x_k) \le p((\lambda_0 + \alpha_k - \alpha)x_k) + p((\alpha - \lambda_0)x_k)$$
$$-p(\alpha_k x_k) \le -p((\lambda_0 + \alpha_k - \alpha)x_k) + p((\lambda_0 - \alpha)x_k)$$

y dado que $\alpha_k \to \alpha$ podemos escoger k suficientemente grande tal que $|\alpha - \alpha_k| < \delta$ y así $|p(\alpha_k x_k)| \le 2\varepsilon$, lo cual es una contradicción.

Para concluir, consideramos la desigualdad

$$p(\alpha_n x_n) - p(\alpha x) \le p(\alpha_n (x_n - x)) + p(\alpha_n x) - p(\alpha x)$$

Ya vimos que $p(\alpha_n(x_n-x)) \to 0$, y por la condición 2. del enunciado $p(\alpha_n x) \to p(\alpha x)$, así que $p(\alpha_n(x_n-x)) + p(\alpha_n x) - p(\alpha x) \to 0$. Además, dado que

$$p(\alpha_n x) \le p(\alpha_n (x - x_n)) + p(\alpha_n x_n)$$

y luego por argumentos similares a lo dados anteriormente

$$p(\alpha_n x_n) - p(\alpha x) \ge -p(\alpha_n (x_n - x)) + p(\alpha_n x) - p(\alpha x) \to 0$$

deduciendo que $p(\alpha_n x_n) \to p(\alpha x)$.

Problema 2. Sean X,Y espacios de Banach y $B:X\times Y\to Z$ aplicación bilineal, Z e.v.n.. Suponga que B es separadamente continua, esto es,

- 1. Para cada $x \in X$ la aplicación $y \mapsto B(x,y)$ es continua.
- 2. Para cada $y \in Y$ la aplicación $x \mapsto B(x, y)$ es continua.

Demuestre que existe $C \ge 0$ tal que

$$||B(x,y)||_Z \le C||x||_X||y||_Y \qquad \forall x \in X, \forall y \in Y$$

Demostración. Denotamos $B_x: Y \to Z, y \mapsto B(x,y)$ y similar $B_y: X \to Z, x \mapsto B(x,y)$. Por la hipótesis de continuidad tenemos que para cada $x \in X$ existe $K_x \ge 0$ tal que

$$||B_y(x)||_Z = ||B(x,y)||_Z \le K_x ||y||_Y \quad \forall y \in Y$$

Lo anterior indica que el conjunto de operadores $\mathcal{L}_y := \{B_y | y \in Y, ||y||_Y = 1\} \subseteq \mathcal{L}(X, Z)$ está puntualmente acotado. El teorema de Banach-Steinhaus implica que existe $C \ge 0$ de tal modo que

$$\sup_{\substack{y \in Y \\ \|y\|_Y = 1}} \|B_y\| \le C$$

Lo anterior entonces permite decir que

$$||B(x,y)||_Z \le C||x||_X \quad \forall x \in X, \forall y \in B_Y[0,1]$$

Luego, para $y \in Y \setminus \{0\}$ tenemos

$$||B(x,y)||_{Z} = \left||B\left(x, \frac{y}{||y||_{Y}}\right)\right||_{Z} \cdot ||y||_{Y} \le C||x||_{X}||y||_{Y} \quad \forall x \in X, \forall y \in Y$$

2

MAT227 UTFSM

Problema 3. Sea X espacio de Banach separable. El objetivo de este problema es probar que existe un subespacio cerrado $M \subseteq \ell^1(\mathbb{R})$ tal que $X \cong \ell^1(\mathbb{R})/M$ son isométricamente isomorfos. Para ello proceda como sigue:

- 1. Considere $(x_n) \subseteq B_X[0,1]$ denso numerable y defina $T: \ell^1(\mathbb{R}) \to X, (\lambda_n) \mapsto \sum_n \lambda_n x_n$ lineal. Pruebe que es acotado.
- 2. Para $x \in B_X[0,1]$ demuestre que existe una subsucesión (x_{n_k}) tal que

$$\left\| x - \sum_{j=0}^{k} 2^{-j} x_j \right\| \le 2^{-(j+1)}$$

y deduzca que T es sobreyectivo.

3. Considere la aplicación inducida en el cociente y pruebe que define una isometría.

Demostración. Sea $(x_n) \subseteq B_X[0,1]$ denso y definimos $T: \ell^1 \to X, (\lambda_n) \mapsto \sum_n \lambda_n x_n$ lineal. T es acotado pues

$$||T((\lambda_n))||_X \le \sum_{n \in \mathbb{N}} |\lambda_n| ||x_n||_X \le ||(\lambda_n)||_{\ell^1}$$

Probemos ahora la sobreyectividad. Sea $x \in B_X[0,1]$. Dado que (x_n) es densa en $B_X[0,1]$ existe $n_0 \in \mathbb{N}$ tal que $||x - x_{n_0}||_X \le 1/2$. Luego $2(x - x_{n_0}) \in B_X[0,1]$ y existe $n_1 \in \mathbb{N}$ de tal modo que $||2(x - x_{n_0}) - x_{n_1}|| \le 1/2$. Luego de k pasos tenemos que

$$\|2^{k-1}(x-x_{n_0})-2^{k-2}x_{n_1}-\ldots-x_{n_{k-1}}\|_X \le \frac{1}{2} \Rightarrow \left\|x-\sum_{j=0}^{k-1}2^{-j}x_{n_j}\right\|_X \le \frac{1}{2^k}$$

Tenemos entonces que $x = \sum_{j=0}^{\infty} 2^{-j} x_{n_j}$. Si definimos $\lambda_n = 2^{-n}$ cuando $n = n_j$ y $\lambda_n = 0$ en otro caso, entonces $T((\lambda_n)) = x$, por lo que hemos encontrado una preimagen para x. Ahora, si $x \in X \setminus \{0\}$ y $||x|| \neq 1$ considere x' = x/||x||. Por lo anterior existe entonces $\lambda' \in \ell^1$ tal que $T(\lambda') = x'$ y luego por linealidad $T(||x||\lambda') = x$. En última instancia, si x = 0 basta tomar $\lambda = 0$ en ℓ^1 . Concluimos la sobreyectividad de T.

Considere $\widetilde{T}: \ell^1/\ker(T) \to X$ la aplicación inducida en el cociente, la cual es biyectiva pues T es sobreyectiva. Dado que X y ℓ^1 son Banach, el teorema de la aplicación abierta implica la continuidad de \widetilde{T}^{-1} .

Resta entonces probar que \widetilde{T} es una isometría, i.e., que $\|[\lambda]\|_{\ell^1/\ker(T)} = \|T(\lambda)\|_X$. Si $\|x\|_X = 1$, notar que el argumento del punto anterior se puede realizar cambiando 2 por cualquier r > 1 para obtener una subsucesión $(x_{n_j}^r)$ verificando $\|x - \sum_{j=0}^k r^{-j} x_{n_j}^r\|_X \le r^{-(k+1)}$ y si definimos $\lambda^r \in \ell^1$ como $\lambda_n^r = r^{-j}$ si $n = n_j$ y $\lambda_n^r = 0$ en otro caso, entonces $\lambda^r \in \ell^1$ y además $T(\lambda^r) = x$. Entonces $\lambda - \lambda^r \in \ker(T)$ y luego

$$\|[\lambda]\|_{\ell^1/\ker(T)} \le \|\lambda - (\lambda - \lambda^r)\|_{\ell^1} = \|\lambda^r\|_{\ell^1} \le \sum_{j=0}^{\infty} r^{-j} = \frac{r}{r-1}$$

Haciendo $r \to \infty$ tenemos que $\|[\lambda]\|_{\ell^1/\ker(T)} \le 1$.

Por otro lado, si $\lambda \in \ell^1, \lambda' = \lambda/\|T(\lambda)\|_X$ y $x' = T(\lambda')$, como $\|x'\| = 1$ entonces

$$\|[\lambda']\|_{\ell^1/\ker(T)} \le 1 \quad \Rightarrow \quad \|[\lambda]\|_{\ell^1/\ker(T)} \le \|T(\lambda)\|_X = \|\widetilde{T}([\lambda])\|_X$$

Finalmente, como T es lineal siempre se tiene que

$$\|\widetilde{T}(\lambda)\|_{X} = \|T(\lambda)\|_{X} = \|T(\lambda) - T(\lambda')\|_{X} \le \|\lambda - \lambda'\|_{\ell^{1}} \quad \forall \lambda' \in \ker(T)$$

así que $\|\widetilde{T}([\lambda])\|_X \leq \|[\lambda]\|_{\ell^1/\ker(T)}$.

MAT227 UTFSM

Problema 4. Sean X,Y espacios de Banach y $T \in \mathcal{L}(X,Y)$ lineal, continua y sobreyectiva. Muestre que si existe r > 0 tal que $T(B_X(0,r))$ está contenido en un compacto, entonces dim $Y < +\infty$.

Demostración. El teorema de la aplicación abierta afirma la existencia de c>0 tal que

$$B_Y(0,c) \subseteq T(B_X(0,1))$$

La hipótesis significa que existe $K \subseteq Y$ compacto y r > 0 tal que $T(B_X(0,r)) \subseteq K$. Dado que $B_X(0,1) = \frac{1}{r}B_X(0,r)$ y T es lineal tenemos que

$$T(B_X(0,1)) \subseteq \frac{1}{r}K =: K'$$

con $K' \subseteq Y$ compacto. Luego tenemos que

$$\overline{B_Y(0,c)} \subseteq \overline{T(B_X(0,1))} \subseteq K'$$

y dado que K' es compacto, entonces $\overline{B_Y(0,c)}$ también lo es, y por teorema visto en clases $\dim(Y) < +\infty$.