Analyse | CM: 3

Par Lorenzo

19 septembre 2024

0.1 Propriété d'Archimède

L'ensemble \mathbb{R} est dit archimédien, i.e. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, \ x < n$

Proposition 0.1.

Il existe un unique entier dans \mathbb{Z} , appelé la partie entière E, tel que $E(x) \leq E(x) + 1$

Démonstration 0.1.

Existence: Supposons que $x \ge 0$. Comme \mathbb{R} est archimédien il existe un entier $n \in \mathbb{N}$ tel que x < n.

Ainsi on peut trouver un autre entier $m \in \mathbb{N}$ tel que $n \leq x$ et m < n. Il suffit de choisir m comme le plus grand entier inférieur ou égal à x et tel que $m \leq x < m+1$

Unicité: Supposons qu'il existe 2 entiers tel que $k \le x < k+1$ et $l \le x < l+1$ Par transitivité, il vient $k \le x < l+1$ et k < l+1, de même, $l \le x < k+1$ et $l < k+1 \implies l-1 < k$

Finalement l-1 < k < l+1 et comme entre les entiers l'entier l-1 et l+1 il n'y a que l, alors k=l

Example 0.1.

$$x = 3.14, E(x) = 3.$$

 $x = -12.2, E(x) = -13.$

Remarques 0.1.

On note parfois $E(x) = [x] = \lfloor x \rfloor$ On note $\{x\}$, la partie fractionnaire (e.g. $\{3.14\} = 0.14$)

0.2 La valeur absolue

Définition 0.1. Soit x un nombre réel. La valeur absolue de x est le nombre réel positif défini par

$$|x| = \begin{cases} x, & si \ x \ge 0 \\ -x, & si \ x < 0 \end{cases} \tag{1}$$

Soient $a, b, c \in \mathbb{R}$

Propriétés 0.1.

$$\begin{aligned} |a| &\geq 0, \quad a \leq |a|, \quad -|a| \leq a, \quad |-a| = |a| \\ \sqrt{a^2} &= |a| \\ |ab| &= |a||b| \\ \forall n \in \mathbb{Z}, |a^n| &= |a|^n \end{aligned}$$

$$si \ a \neq 0, |\frac{1}{a}| = \frac{1}{|a|} \ et \ |\frac{b}{a}| = \frac{|b|}{|a|}$$

Pour b > 0,

|a| = b, si et seulement si a = b ou a = -b

 $|a| \le b$ si et seulement si $-b \le a \le b$ (beaucoup utilisé pour passer de $a \ a \ |a|$)

 $|a| \ge b$ si et seulement si $a \le -b$ ou $a \ge b$

 $|a+b| \le |a| + |b|$ (l'inégalité triangulaire)

 $||a| - |b|| \le |a - b|$ (l'inégalité triangulaire inversée)

Les propriétés 1 à 6 sont démontrés par la définition de la valeur absolue Démontrons la proprétée 7.

Démonstration 0.2.

$$\begin{array}{ll} \textit{D'après} \ (1) & -|a| \leq a \leq |a| \ \textit{et} \ -|b| \leq b \leq |b| \\ \textit{En additionnant, on obtient} \ -|a| - |b| \leq a + b \leq |a| + |b| \\ -(|a| + |b|) \leq a + b \leq |a| + |b| \ \textit{avec} \ (6) \ \textit{on arrive} \ \grave{a} \\ |a + b| \leq |a| + |b| \end{array}$$

Démontrons la propriétée 8.

Démonstration 0.3.

$$a=a-b+b$$
 et $|a|=|a-b+b|\leq |a-b|+|b|$ (propriétée 7) $|a|\leq |a-b|+|b| \Longrightarrow |a|-|b|\leq |a-b|$

de même,

$$b = b - a + a$$
 et $|b| = |b - a + a| \le |b - a| + |a|$
 $|b| \le |b - a| + |a| \implies |b| - |a| \le |b - a|$

$$|b-a| = |-(a-b)| = |a-b|$$
 et

$$|a| - |b| \le |a - b|$$
 et $|b| - |a| = -(|a| - |b|) \le |a - b|$

Finalement par définition

$$||a| - |b|| = \begin{cases} |a| - |b|, & si |a| - |b| \ge 0 \\ -(|a| - |b|), & si |a| - |b| < 0 \end{cases}$$

 $Ainsi ||a| - |b|| \le |a - b|$

Corollaire: Soit r
 un réel positif $\forall x, a \in \mathbb{R},$ on a $|x-a| < r \implies -r < x-a < r \implies a-r < x < a+r$

Remarques 0.2. La valeur absolue |b-a| représent la distance entre a et b

1 Densité de $\mathbb Q$ dans $\mathbb R$

1.1 Intervalles de \mathbb{R}

Définition 1.1. On appelle intervalle de \mathbb{R} , tout sous-ensemble I de \mathbb{R} vérifiant $\forall a, b \in I, a \leq b$ et $x \in \mathbb{R}, a \leq x \leq b \implies x \in I$

Remarques 1.1. Un sous-ensemble ou partie I de \mathbb{R} , se note $I \subset \mathbb{R}$

Définition 1.2. Soient $a, b \in \mathbb{R}, a \leq b$

On appelle intervalle fermé et borné (ou segment) de \mathbb{R} tout l'ensemble de la forme $[a,b]=\{x\in\mathbb{R}|\ a\leq x\leq b\}$

On appelle intervalle ouvert de $\mathbb R$ tout l'ensemble de la forme

$$\begin{array}{ll}]a,b[=\{x \in \mathbb{R} | \ a < x < b\} & ou \\ ou &]-\infty,b[=\{x \in \mathbb{R} | \ x < b\} \\ \end{array}$$

Remarques 1.2. L'ensemble qui contient aucun élément est l'ensemble vide, noté Ø

Remarques 1.3. L'ensemble qui contient un seul élément est le singleton, noté $\{a\} = [a, a]$

Remarques 1.4. $x \in [a, b] \equiv \exists t \in [0, 1], x = (1 - t)a + tb$

Définition 1.3. On dit que V est un voisinage de a si $\exists \epsilon > 0$, $[a - \epsilon, a + \epsilon] \subset V$

1.2 Densité

Théorème 1.1. \mathbb{Q} est dense dans \mathbb{R} , tout intervalle ouvert, non vide de \mathbb{R} contient une infinité de nombres rationnels

Théorème 1.2. $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} , tout intervalle ouvert, non vide de \mathbb{R} contient une infinité de nombres irrationnels

Démonstration 1.1.

On cherche
$$\frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{N}^*$$
 tel que $a < \frac{p}{q} < b \implies aq < p < bq$

comme \mathbb{R} est archimédien, il existe un entier q tel que $q > \frac{1}{b-a} \implies \frac{1}{a} < b-a$

Prenons
$$p = E(aq) + 1$$

$$p = E(aq) + 1 \Longrightarrow p - 1 = E(aq) \le aq < E(aq) + 1 = p$$

On divise par q l'inégalité $p-1 \geq aq < p+1$

$$\implies \frac{p-1}{q} = \frac{p}{q} - \frac{1}{q} \le a < \frac{p}{q}$$

Ainsi
$$\frac{p}{q} - \frac{1}{q} \le a \implies \frac{p}{q} \le a + \frac{1}{q} < a + (b - a) = b$$

Finalement $a < \frac{p}{q} < b$

Il existe un nombre rationnels $\frac{p}{q}$ compris entre a et b.

On divise l'intervalle [a, b[en N sous-intervalles disjoints 2 à 2

Donc pour chaque intervalle on peut trouver un rationnels, on peut ensuite faire tendre N vers l'infini pour trouver un infinité de rationnels

Démonstration 1.2.

D'apres notre démonstration précédente il existe un infinité de rationnels pour $a-\sqrt{2}<\frac{p}{q}< b-\sqrt{2}\implies a<\frac{p}{q}+\sqrt{2}< b$

On en arrive avec la même logique que la démonstration précédente qu'il existe une infinité d'irrationnels entre deux réels.

2 Bornes sur \mathbb{R}

2.1 Maximum et minimum

Définition 2.1. Soit A une partie non vide de \mathbb{R} . Un réel M est le plus grand (resp. le plus petit) élément de A si $M \in A$ et $\forall x \in A, x \leq M$ (resp. $\forall x \in A, x \geq m$).

 $Si\ il\ existe,\ le\ plus\ grand\ \'el\'ement\ est\ unique\ et\ on\ le\ note\ max\ A.$

Si il existe, le plus petit élément est unique et on le note min A.