Numerical Optimization

Shuai Lu 170742

Homework 1

Exercise 1.1

(a) [2 point] Let $A \in \mathbb{R}^{m \times n}$. Prove that

$$kerA := \{ v \in R^n : Av = 0 \}$$

and

$$RangeA := \{ w \in R^m : \exists v \in R^n : Av = w \}$$

are subspaces of \mathbb{R}^n and \mathbb{R}^m , respectively.

Solution:

 $\exists v = 0 \in \mathbb{R}^n, st. Av = 0. \text{ So } v \in ker A, ker A \neq \phi.$

 $\forall \alpha, \beta \in R$, if $x, y \in kerA$, $A(\alpha x + \beta y) = \alpha Ax + \beta Ay = 0$. So $\alpha x + \beta y \in kerA$.

So kerA is a linear subspace of \mathbb{R}^n .

 $v=0\in R^n, st.w=Av=0\in R^m.$ So $w\in RangeA, RangeA\neq \phi.$

 $\forall \alpha, \beta \in R$, if $x, y \in RangeA$ and $x = Av_1, y = Av_2, \alpha x + \beta y = \alpha Av_1 + \beta Av_2 = A(\alpha v_1 + \beta v_2)$. So $\alpha x + \beta y \in RangeA$. So RangeA is a linear subspace of R^m .

(b) [1 point] Compute the rank of

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ -3 & 4 & 1 \\ 1 & -1 & 0 \end{array} \right]$$

Solution:

Using Gaussian Elimination

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 4 & 1 \\ 1 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 10 & 10 \\ 0 & -3 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 10 & 10 \\ 0 & 0 & 0 \end{bmatrix}$$

It is obvious that RankA = 2.

Exercise 1.2

Consider $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = x^2 \cos y$$

(a) [1 point] Write down its gradient $\nabla f(x,y)$. Evaluate this gradient at $(x,y)=(3,\frac{\pi}{4})$.

Solution:

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} 2x \cos y \\ -x^2 \sin y \end{pmatrix}. \text{ So } \nabla f|_{\left(3, \frac{\pi}{4}\right)} = \begin{pmatrix} 3\sqrt{2} \\ -\frac{9\sqrt{2}}{2} \end{pmatrix}.$$

(b) [1 point] Write down its Hessian $\nabla^2 f(x,y)$. Due to which properties of f, the Hessian is symmetric? Evaluate this Hessian at $(x,y)=\left(3,\frac{\pi}{4}\right)$. Is the Hessian at this point positive or negative (semi-) definite, or indefinite?

Solution:

$$\nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2\cos y & -2x\sin y \\ -2x\sin y & -x^2\cos y \end{pmatrix}.$$

The Hessian is symmetric because the second partial derivatives of f are continuous.

$$\nabla^2 f \big|_{\left(3, \frac{\pi}{4}\right)} = \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -3\sqrt{2} & \frac{-9\sqrt{2}}{2} \end{pmatrix} = A.$$

Solving $det(\lambda I - A) = 0$, we get the $\lambda_1 \lambda_2 = \frac{-27}{2} < 0$. So the Hessian at $(x, y) = (3, \frac{\pi}{4})$ is indefinite.

Exercise 1.3

(a) [4 points] Implement a program (in C/C++/Java) that solves the linear system

$$Ax = b$$

for a given matrix $A \in \mathbb{R}^{n \times n}$ and a given vector $b \in \mathbb{R}^n (n < 100)$ by the Gaussian elimination. For the associated LU-decomposition, print the upper triangular matrix U and the product $L^{-1}b$. Test your code for

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -2 \\ 1 & 1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 4 \\ 6 \end{bmatrix}$$

(print the solution x).

Solution:

As shown in Fig1.

Figure 1: Gaussian Elimination

(b) [3 points] Extend your implementation with the pivoting strategy that uses the entry with the greatest absolute value in the column as the pivoting element. Test your code for

$$A = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 4 \\ 6 \end{bmatrix}$$

(print the upper triangular matrix U and the solution x).

Solution:

As shown in Fig2.

Exercise 1.4

Consider a two times continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$.

(a) [2 points] Let $x^* \in \mathbb{R}^n$ be a local minimizer of f. Prove that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \geq 0$.

Solution:

 $x^* \in R^n$ is a local minimizer of f, so $\exists \delta > 0$, if $\|x - x^*\| < \delta$, st. $f(x) - f(x^*) \ge 0$ Using Taylor expansion: $f(x) - f(x^*) = \nabla f\left(x^*\right)^{\mathrm{T}}\left(x - x^*\right) + o(x - x^*)^2 \ge 0$. Let $x = \alpha \nabla f\left(x^*\right) + x^*$, $o(x - x^*)^2$ is neglectable when α is small enough. So $\nabla f\left(x^*\right)^{\mathrm{T}}\left(x - x^*\right) = \alpha \nabla f\left(x^*\right)^{\mathrm{T}} \nabla f\left(x^*\right) \ge 0$

```
Microsoft Visual Studio Debug Console
Input A[3][1]=
 nput A[3][2]=
 nput b[1]=
 nput b[2]=
 nput b[3]=
```

Figure 2: Gaussian Elimination with Pivoting

Because α can be negative or positive, so $\nabla f(x^*)^T \nabla f(x^*) = 0$, which means $\nabla f(x^*) = 0$.

(b) [2 points] Let $x^* \in \mathbb{R}^n$ be a point with $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) > 0$. Prove that x^* is a local minimizer of f. Demonstrate by an example for n=1 that in this statement, the condition for $\nabla^2 f$ connot be weakened to $\nabla^2 f \geq 0$.

Solution:

```
Using Taylor expansion: f(x) - f(x^*) = \nabla f(x^*)^{\mathrm{T}} (x - x^*) + \frac{1}{2} (x - x^*)^{\mathrm{T}} \nabla^2 f(x^*) (x - x^*) + o(x - x^*)^3. \exists \delta > 0 small enough, when ||x - x^*|| < \delta, we can neglect o(x - x^*)^3. Due to \nabla f(x^*) = 0 and \nabla^2 f(x^*) > 0. So f(x) - f(x^*) = \frac{1}{2} (x - x^*)^{\mathrm{T}} \nabla^2 f(x^*) (x - x^*) \ge 0, when ||x - x^*|| < \delta. So x^* is a local minimizer of f. When n = 1, f(x) = x^3 st. \nabla f(x)|_{x=0} = 0, \nabla^2 f|_{x=0} = 0 \ge 0, but x = 0 is not a local minimizer of f(x) = x^3.
```