Lernkontrolle: Lineare Algebra I

1 Aussagenlogik

Seien A, B und C Aussagen, für die $A \implies B$ und $B \implies C$ gilt. Welche der folgenden Aussagen ist dann richtig?

#	Aussage	Wahr	Falsch	Begründung
1	$A \implies C$			
	$\neg A \implies C$			
	$\neg A \implies \neg C$			
	$C \Longrightarrow A$			
	$\neg B \implies A$			
6	$\neg B \implies \neg A$			
7	$\neg C \implies A$			
8	$\neg C \implies \neg A$			

2 Mengen

Seien A und B Mengen.

#	Aussage	Wahr	Falsch	Begründung bzw. Gegenbeispiel
9	$ A \cup B = A + B $			
10	$ A \cup B = A + B $			
	falls A und B endlich sind			
11	$A \cap B$ endlich \Longrightarrow			
	A, B endlich			
12	,			
13	$A \setminus B = \emptyset \implies A = B \text{ falls A}$			
	und B endlich sind			
14	$\forall x \in A : x \notin B \implies A \neq B$			

3 Äquivalenzrelationen

Geben Sie, falls möglich, jeweils ein Beispiel für eine Menge X und eine Relation R an, für die folgende Eigenschaften gelten. Falls es nicht möglich ist, begründen Sie warum.

Ordnen Sie zusätzlich die Symbole =, \neq , \leq , < , \geq , > , \Rightarrow , \Leftrightarrow , \equiv ein.

#	Aussage	Beispiele
15	R ist reflexiv, symmetrisch und transi-	
	tiv	
16	R ist reflexiv und symmetrisch, aber	
	nicht transitiv	
17	R ist reflexiv und transitiv, aber nicht	
	symmetrisch	
18	R ist symmetrisch und transitiv, aber	
	nicht reflexiv	
19	R ist reflexiv, antisymmetrisch und	
	transitiv	
20	R ist reflexiv, symmetrisch, antisymme-	
	trisch und transitiv	
21	R ist reflexiv und antisymmetrisch,	
	aber nicht transitiv	
22	R ist antisymmetrisch und transitiv,	
	aber nicht reflexiv	

4 Abbildungen

Welche der folgenden Abbildungen ist surjektiv, welche injektiv?

#	Abbildung	sur	inj	Begründung
23	$f: \mathbb{R} \to \mathbb{R}, f(x) := x$			
24	$f: \mathbb{R} \to \mathbb{R}, f(x) := x^2$			
25	$f: \mathbb{R} \to \mathbb{R}, f(x) := x^3$			
26	$f: \mathbb{R}^+ \to \mathbb{R}, f(x) := x^2$			
27	$f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) := x^2$			
28	$f: \mathbb{R} \to \mathbb{R}, f(x) := e^x$			
29	$f: \mathbb{R}^+ \to \mathbb{R}, f(x) := log(x)$			
30	$f: (-\frac{1}{2}\pi, +\frac{1}{2}\pi) \to \mathbb{R}$			
	f(x) := tan(x)			
31	$f: \text{Hauskatzen} \to \text{Mensch}$			
	f(x) := Besitzer(x)			

5 Körper

#	Aussage	Wahr	Falsch	Begründung
32	$\forall n \in \mathbb{N} \text{ mit } n \geq 2$: Es gibt einen Körper mit n Elementen.			
33	$\forall p \in \mathbb{N} \text{ mit } p \geq 2 \text{ und } p \text{ ist prim:}$ Es gibt einen Körper mit p Elementen.			
34	$\forall p \in \mathbb{N} \text{ mit } p \geq 2 \text{ und } p \text{ ist prim:}$ Es gibt einen Körper mit p^2 Elementen.			
35	$(\mathbb{R},+,\cdot)$ ist ein Körper.			1. 2. 3. 4. 5. 6. 7. 8. 9.
36	$(\mathbb{R},\cdot,+)$ ist ein Körper.			
37	$(\mathbb{N}, +, \cdot)$ ist ein Körper.			
38	$(\mathbb{Z},+,\cdot)$ ist ein Körper.			
39	$(\mathbb{Q},+,\cdot)$ ist ein Körper.			
40	$(\mathbb{C},+,\cdot)$ ist ein Körper.			

6 Vektorräume

Im Folgenden wird Vektorraum mit VR abgekürzt. Sei V ein beliebiger VR, \mathbb{K} ein beliebiger Körper und $m, n \in \mathbb{N}$ beliebige natürliche Zahlen.

#	Aussage	Wahr	Falsch	Begründung
41	\mathbb{R}^3 ist ein VR.			V1:
				V2 :
				(a)
				(b)
				(c) (d)
42	\mathbb{K}^n ist ein VR.			(4)
43	Die Menge aller $m \times n$ Matri-			
	zen mit der üblichen Addition			
	und Multiplikation ist ein VR			
	$(\mathbb{K}^{m \times n}, +, \cdot)$			
44	Sei V die Menge aller unendlicher			
	Folgen. Die Addition und Multi-			
	plikation seien komponentenweise definiert. $(V, +, \cdot)$ ist ein Kör-			
	per. $(v, +, \cdot)$ ist em Kor-			
45	Für alle VR existiert eine Basis.			
46	Für alle VR existiert genau eine			
	Basis.			
47	Es existiert ein VR, für den ge-			
	nau eine Basis existiert.			
48	Es existiert ein VR, für den un-			
	endlich viele Basisen existieren.			
49	Es existiert eine Basis, die un-			
F0	endlich viele Vektoren hat.			
50	Sei V eindimensional. $\forall x \in V : x \text{ ist eine Basis von V.}$			
51	Eine Basis ist ein Erzeugenden-			
91	system.	Ш		
52	Basis und Erzeugendensystem			
_	sind Synonyme.	1]	
53	Basis und Erzeugendensystem			
	sind Synonyme, falls der VR			
	nicht endlichdimensional ist.			
54	Eine Basis ist eine maximal line-			
	ar unabhängige Menge.			
55	$\forall u, v, w \in V \text{ gilt:}$			
F.0	$u \cdot (v \cdot w) = (u \cdot v) \cdot w$			
56	Jeder Vektor der Form (x, x, x) kann zu einer Basis ergänzt wer-			
	den.			
	uon.			

7 Lineare Abbildungen

Seien V, W Vektorräume. Sei $\Phi:V\to W$ eine lineare Abbildung.

#	Aussage	Wahr	Falsch	Begründung
57	Φ ist ein VR-Homomorphismus.			1.
				2.
58	Jeder Isomorphismus ist ein Au-			Isomorphismus :=
	tomorphismus.			
59	Jeder Automorphismus ist ein			Automorphismus :=
	Isomorphismus.			
60	Jeder Endomorphismus ist ein			$\operatorname{Endomorphismus} :=$
	Isomorphismus.			
61	$\Phi'V \to V$ ist ein Automorphis-			
	mus			

8 Dies und Das

Seien V, W Vektorräume. Sei $\Phi:V\to W$ eine lineare Abbildung.

#	Aussage	Wahr	Falsch	Begründung
62	Jeder Vektorraum hat min. einen			
	Eigenwert bzgl. jeder beliebigen			
	linearen Abbildung.			
63	Zu jedem Eigenwert hat jeder			
	Vektorraum min. einen Eigen-			
	vektor.			