Chapter 4

Consumer Choice

Professor Lakshmi K. Raut

Key issues

- 1. Properties of preferences
- 2. Utility Function
- 3. Budget constraint
- 4. Consumer's constrained choice: Utility Maximization problem

Individual decision making

- individual tastes (preferences) determine pleasure people derive from goods
- consumers face constraints on their choices
- consumers maximize their pleasure from consumption subject to constraints
- we want to predict behavior not judge it

Consumer's problem

- consumer allocates money over goods: buys a bundle or market basket of goods
- 2 possible theories of consumer behavior
 - maximizing behavior
 - random behavior

Assumptions about consumer preferences

- 1. completeness
- 2. transitivity
- 3. more is better

(Aside: It has been shown that when a preference ordering satisfies those properties, it could be represented by a utility function).

Assumption 1: Completeness

- consumer can rank any two bundles of goods
- only one of following is true: consumer
 - prefers bundle x to bundle y
 - prefers bundle y to bundle x
 - is indifferent between them

Assumption 2: Transitivity (rationality)

- consumer's preference over bundles is consistent:
- if consumer prefers
 - Bundle z to Bundle y and
 - Bundle y to Bundle x
- then consumer prefers Bundle z to Bundle x

Assumption 3: More is better

- more of a good is better than less of it
 - good: commodity for which more is preferred to less at least at some levels of consumption
 - bad: something for which less is preferred to more, such as pollution
- consumers are not satiated

Indifference curve

- we ask Lisa to identify all the bundles that give her the same amount of pleasure as consuming bundle e
- her answer: Curve I in Figure 4.1b, "Indifference Curve"

Indifference curve properties

- 1. bundles on indifference curves farther from the origin are preferred to those on indifference curves closer to the origin
- 2. there is an indifference curve through every possible bundle
- 3. indifference curves cannot cross
- 4. indifference curves are "thin"
- 5. indifference curves slope down

Willingness to substitute

- downward-sloping indifference curve ⇒
 consumer is willing to substitute one good
 for the other
- marginal rate of substitution (*MRS*) of burritos (rise) for pizza (run), is slope of indifference curve:

$$MRS = \frac{\Delta B}{\Delta Z}$$

MRS varies along the indifference curve

- indifference curve bow away from the origin (convex)
- indicates diminishing marginal rates of substitution (*MRS*)
- When MRS = -1, i.e., indifference curve is downward slopping straight line with slope -1, two goods are perfect substitute. (See Figure 4.4(a).

Utility

- numerical value that reflects relative rankings of various bundles of goods
- if Lisa prefers bundle a to b, then utility from a > utility from b
- utility function:
 - relationship between utility measure and every possible bundle of good
 - succinct summary of information in indifference map

Utility and indifference curves

- Indifference curves are obtained for each level of utility as follows:
- When you plot all those bundles (x,y) that give the same utility level say 10, you get one indifference curve (cf. I¹ in figure 4.1c). If you plot all those bundles (x,y) that produce another utility level say 15, you will get another indifference curve (cf. I² in figure 4.1c). The second curve is on the right side of the first curve. The indifference curves help to find an optimal choice. I will explain this later.

Utility and marginal utility

• marginal utility of Z

$$MU_Z = \frac{\Delta U}{\Delta Z}$$

• change in utility from a small increase in *Z* holding *B* fixed

Utility and marginal of substitution

Lisa trades from one bundle on an indifference curve to another by giving up some burritos to gain more pizza

$$MRS = \frac{\Delta B}{\Delta Z} = -\frac{MU_Z}{MU_B}$$

Numerical illustrations:

- Suppose U(x,y) = x + y, then MRS between x and y, i.e. to get one more nit of x, the amount of y you would like to give-up is given by
- $MRS == -\frac{MU_x}{MU_y} = -\frac{1}{1}$

Budget constraint

- Lisa spends all her income, Y, on pizza and burritos
- her budget constraint is

$$p_B B + p_Z Z = Y$$

- $p_B B + p_Z Z = Y$ $p_B B$ = expenditure on B burritos
- $p_z Z =$ expenditure on Z pizzas

A Numerical Example

Budget constraint: $P_BB + p_ZZ = Y$

Which is in the y = b + m x form that u are familiar with What is the slope of the budget line? $-\frac{P_Z}{}$

Which can be rewritten as (with B as the y-axis good and Z as the x-axis good) as follows:

$$B = \frac{Y}{P_{\scriptscriptstyle D}} - \frac{P_{\scriptscriptstyle Z}}{P_{\scriptscriptstyle D}} Z$$

 $B = \frac{Y}{P_B} - \frac{P_Z}{P_B} Z$ Consider this numerical example $P_Z = \$1, p_B = \$2, Y = \$50$ Use this numerical example in the next three slides:

Table 4.1 Allocations of a \$50 Budget Between Burritos and Pizza

Burritos	Pizza
25	0
20	10
10	30
0	50
	20

Slope of budget constraint

• is called the marginal rate of transformation (the amount of y-axis good that the consumer has to give-up in the market to get one unit of x-axis good. From equation 4.3, $B = \frac{Y}{p_B} - \frac{p_Z}{p_B} Z$ slope = ? $MRT = \frac{\Delta B}{\Delta Z} = -\frac{p_Z}{p_B}$

$$MRT = \frac{\Delta B}{\Delta Z} = -\frac{p_Z^{p_B}}{p_B}$$

in our example:

$$MRT = -\frac{p_Z}{p_B} = -\frac{\$1}{\$2} = -\frac{1}{2}$$

Utility Maximization: Budget line meets indifference curves

- maximize utility subject to the budget constraint
- optimal bundle, two possibilities:
 - interior solution: buy some units of all goods
 - corner solution: buy only one good

Animated Graph: Explaining utility maximization Problem

- Putting all the pieces together, we have the following
- (Animated Graph: Utility Maximization)

Interior solution

- consumer buys some units of all goods
- optimum bundle, *e*, where highest indifference curve touches the budget line

Tangency property

• at interior optimum, indifference curve is tangent to budget line:

$$MRS = -\frac{MU_Z}{MU_B} = -\frac{p_Z}{p_B} = MRT$$

Summary: Utility maximized

consumers maximize their well-being subject to the budget constraint where

- highest possible indifference curve hits budget constraint
- indifference curve is tangent to budget constraint (if both goods are purchased): MRS = MRT

Optimal bundle: Corner solution

• It is possible to have a corner solution, see for instance the following graph.

Solved problem: Food stamps

Are poor people necessarily better off receiving food stamps or a comparable amount of cash?

Answer

- cash gives a greater choice
- whether that greater choice matters depends on the tastes of poor people (how much food they eat)

Food Stamp Example: Animated Graph

- I illustrate the above using an animated graph first and then I explain once again the steps of the animated graph.
- Animated Graph: Food stamp example

