

X Math Crash-Course for Machine Learning 1

Machine Learning 1: Foundations

Billy Joe Franks (TUK)

Linear Algebra & Analysis

We will recap the following topics in Linear Algebra and Analysis

- Vectors & Matrices
- Scalar Product & Projection
- Dimension Theorem
- ▶ Eigenvalues & Eigenvectors ← today
- Matrix Decompositions
- Gradient
- ▶ Jacobian & Hessian Matrix

Eigenvalues

Let $A \in \mathbb{R}^{d \times d}$. $\lambda \in \mathbb{R}$ is called an **eigenvalue** of A if there is a vector $\mathbf{x} \in \mathbb{R}^d \setminus \{0\}$ such that $A\mathbf{x} = \lambda \mathbf{x}$. In that case \mathbf{x} is an eigenvector corresponding to the eigenvalue λ . For $\lambda \in \mathbb{R}$ and $A \in \mathbb{R}^{d \times d}$ it holds:

```
\lambda Eigenvalue of A
\Leftrightarrow \exists \mathbf{x} \neq 0 \in \mathbb{R}^d with: A\mathbf{x} = \lambda \mathbf{x}
\Leftrightarrow \exists \mathbf{x} \neq 0 \in \mathbb{R}^d with: A\mathbf{x} = \lambda I\mathbf{x}
\Leftrightarrow \exists \mathbf{x} \neq 0 \in \mathbb{R}^d with: \lambda I\mathbf{x} - A\mathbf{x} = 0
\Leftrightarrow \dim \operatorname{Ker}(\lambda I - A) > 0
\Leftrightarrow \dim \operatorname{Im}(\lambda I - A) < d
\Leftrightarrow \lambda I - A not invertible
\Leftrightarrow \det(\lambda I - A) = 0
```

Eigenvalue example

Let us try and calculate the eigenvalues of

$$B = \left(\begin{array}{cc} -6 & 3 \\ 4 & 5 \end{array}\right)$$

By the last slide we get:

$$\det \begin{pmatrix} \lambda + 6 & -3 \\ -4 & \lambda - 5 \end{pmatrix} = 0 \iff (\lambda + 6)(\lambda - 5) - 12 = 0 \iff \lambda^2 + \lambda - 42 = 0 \iff (\lambda + 7)(\lambda - 6) = 0$$

Apparently the eigenvalues of A are -7 and 6. We can also find the corresponding eigenvectors by resubstituting these values back into $B\mathbf{x} = \lambda \mathbf{x}$.

Facts about eigenvalues

Intuition on eigenvectors:

Eigenvectors preserve direction after the linear transformation, but not necessarily their length.(Clear from definition)

Here are some useful facts about eigenvalues and eigenvectors.

- The product of the eigenvalues is equal to the determinant of A
- ▶ If the eigenvalues of A are λ_i , and A is invertible, then the eigenvalues of A^{-1} are simply λ_i^{-1} .
- A can be inverted if and only if all eigenvalues are non-zero: $\lambda_i \neq 0 \quad \forall i$
- ▶ The eigenvectors of \mathbf{A}^{-1} are the same as the eigenvectors of \mathbf{A} .
- Eigenvectors of real symmetric matrices are orthogonal.

Invertible Matrices

The matrix
$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 is the identity matrix.

A matrix A is said to be invertible(regular)(non-singular) if there exists a matrix A^{-1} with $A^{-1} + A^{-1} +$

$$AA^{-1} = A^{-1}A = I$$

The following characterizations are equivalent.

- ▶ A is invertible
- ► The determinant det(A) is non-zero.
- ➤ The row vectors, or coloumn vectors of A are linearly independent.
- ► The eigenvalues of A are non-zero.

Matrix Properties

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix $(A^{\top} = A)$. We call A positive definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} > 0$. A negative definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} < 0$. A positive semi definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} \geq 0$. A negative semi definite : $\iff \forall \mathbf{x} \neq 0 \in \mathbb{R}^d : \mathbf{x}^T A \mathbf{x} \leq 0$. A orthogonal : $\iff A^{\top} A = A A^{\top} = I$

A diagonal: \iff all values not on the diagonal are zero.

Billy Joe Franks: X Math Crash-Course for Machine Learning 1

Spectral Decomposition for real valued matrices

Let A be a real valued symmetric matrix. Then we can decompose A as

 $A = Q \wedge Q^{\top} \qquad \begin{array}{c} \bigcirc \qquad \bigwedge^{\gamma} \bigcirc ^{\mathsf{T}} \\ A^{\mathsf{Z}} : \bigwedge \Delta = \bigcirc \bigwedge^{\mathsf{Z}} \bigcirc ^{\mathsf{T}} \end{array}$

where Q is an orthogonal matrix whose columns are the eigenvectors of A, and Λ is a diagonal matrix whose entries are the eigenvalues of A

Singular Value Decomposition

$$A_{x} = \lambda_{x}^{U}$$

Any real valued matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$A = UDV^{\top}$$

with $U \in \mathbb{R}^{m \times m}$, $D \in \mathbb{R}^{m \times n}$, $V^{\top} \in \mathbb{R}^{n \times n}$. U and V are orthogonal and D is a diagonal matrix.

Gradient(Special Case of Jacobian)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable. We define the gradient by:

$$\nabla f = \operatorname{grad} f =: \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^{\top}$$

We observe that ∇f is again a function. Each component of the gradient tells us how fast our function is changing in each direction.

To see how fast the change is at a point **p** at direction **v**, we would multiply $\nabla f(p)^{\mathsf{T}} \mathbf{v}$.

Observe that this scalar product is maximized if \mathbf{v} is parallel to $\nabla f(p)$ which shows that ∇f shows in the direction of the steepest ascent.

Jacobian

Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is a function such that each of its first-order partial derivatives exist on \mathbb{R}^n . This function takes a point $\mathbf{x} \in \mathbb{R}^n$ as input and produces the vector $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^m$ as output. Then the Jacobian matrix of \mathbf{f} is defined to be an $m \times n$ matrix, denoted by \mathbf{J} , whose (i,j) th entry is $\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_j}$, or explicitly

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Hessian (Second Derivative Generalization)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a function taking as input a vector $\mathbf{x} \in \mathbb{R}^n$ and outputting a scalar $f(\mathbf{x}) \in \mathbb{R}$. If all second partial derivatives of f exist and are continuous over the domain of the function, then the Hessian matrix \mathbf{H} of f is a square $n \times n$ matrix, usually defined and arranged as follows:

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

or, by stating an equation for the coefficients using indices i and j $(\mathbf{H}_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_i}$.

Hessian Properties

- ▶ The Hessian matrix of a function f is the Jacobian matrix of the gradient of the function f; that is: $\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x}))$.
- ► The Hessian matrix is symmetric.
- The Hessian matrix of a convex function is positive semi-definite.
- ▶ If the Hessian is positive-definite at *x*, then *f* attains an isolated local minimum at *x*.
- ▶ If the Hessian is negative-definite at *x*, then *f* attains an isolated local maximum at *x*.

Useful Derivatives

Prove them yourself!

$$ightharpoonup rac{\partial}{\partial \mathbf{x}} \mathbf{c}^{ op} \mathbf{x} = \mathbf{c}$$

$$ightharpoonup \frac{\partial}{\partial \mathbf{x}} A \mathbf{x} = A$$

► $\frac{\partial}{\partial \mathbf{x}} \mathbf{c}^{\top} \mathbf{x} = \mathbf{c}$ $\frac{\delta}{\delta \mathbf{x}} \mathbf{a} \times \mathbf{z} = \mathbf{a}$ ► $\frac{\partial}{\partial \mathbf{x}} A \mathbf{x} = A$ $\frac{\delta}{\delta \mathbf{x}} \mathbf{a} \times \mathbf{z} = \mathbf{z} \mathbf{a} \times \mathbf{z}$ ► $\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{T} A \mathbf{x} = (A + A^{\top}) \mathbf{x}$ (Way more useful than it looks!)

$$\blacktriangleright \ \tfrac{\partial}{\partial x} ||x||^2 = \tfrac{\partial}{\partial x} x^\top x = 2x$$

These should suffice to take the derivative of most things!