BIG MOUNTAIN RESORT

Ticket Price Modeling

PROBLEM IDENTIFICATION

- Big Moutain Resort provides a premium ski experience (excellent views, runs, chairs, etc.)
- Ticket Price Increase?
- Reduce Operating Costs?
- Constraint: provide same premium service

Ticket price increase up to \$95 (+/- \$10) supported by model

NB: Big Mountain Resort already highest priced ticket in Montana

Key drivers of price (in the available data) are:

- Number of fast quads
- Number of runs
- Snow making area
- Vertical drop

Closing one run has no impact on price

Closing 3, 4, or 5 runs has the same impact on price

New services unlikely to be profitable if they need a new chairlift

(e.g. increasing vertical drop, number of runs)

NB: Latest chair cost \$1.5M last season

RECOMMENDATIONS

- Increase price incrementally over several seasons with final target ticket price of \$90
 - Track visitors, revenue
- Close one run, and perhaps up to 5 depending on remaining run coverage and possible cost optimization
 - Track run usage

MODELING RESULTS – BEST MODEL

- Best Model is Random Forest model
 - Best Params: N=69; replace missing prices with median price
 - Ticket price \$95.97; Mean absolute error \$10.39

- Benefits of Random Forest:
 - Reports feature importance; allows management "gut check"
 - Allows future models to use categorical data
 - Easily made available to run new operation scenarios

MODELING RESULTS – SCENARIOS

Scenario	Result
I. Close up to 10 runs	Closing I run: no impact on ticket price Closing 2 runs: -\$0.40 Closing 3-5 runs: -\$0.67
2.Add I run, increase vertical drop 150 ft, add chair	Increase ticket price \$1.99 Additional revenue unlikely to offset cost of new chair
3. Same as 2, but add 2 acres of snow making	No additional ticket price lift (i.e. same as scenario 2)
4. Increase run length 0.2 mi, Increase snow making area 4 acres	No impact

MODELING RESULTS – LIMITATIONS

- All states pooled Are higher-cost states good comparison to Montana? (e.g. California, New York)
- No revenue/visitor information Operational scenarios only estimate revenue impacts

ADDITIONAL DATA?

- Historical data to quantify impacts of service & price changes
- Visitors
- Operational costs of services (e.g. chairs, run maintenance, quads, trams, etc.)
- Installation costs of new services

SUMMARY AND CONCLUSIONS

- Recommendations
 - Increase ticket price to \$90 per day, close I-5 runs
- Incorporate management feedback and revise model?
- Release final model to management team
- Incorporate additional data?
 - Historical data, visitors, operational costs