Algorithms and Analysis

Lesson 2: Know How Long A Program Takes

TSP, Sorting, time complexity, Big-Theta, Big-O, Big-Omega

Outline

- 1. **TSP**
- 2. Sorting
- 3. Big O

Travelling Salesperson Problem

• Given a set of cities

Travelling Salesperson Problem

- Given a set of cities
- A table of distances between cities

Travelling Salesperson Problem

- Given a set of cities
- A table of distances between cities
- Find the shortest tour which goes through each city and returns to the start

Example of Distance Table

	Lon	Car	Dub	Edin	Reyk	Oslo	Sto	Hel	Cop	Amst	Bru	Bonn	Bern	Rome	Lisb	Madr	Par
London	0	223	470	538	1896	1151	1426	1816	950	349	312	503	743	1429	1587	1265	337
Cardiff	223	0	290	495	1777	1277	1589	1985	1139	564	533	725	927	1600	1492	1233	492
Dublin	470	290	0	350	1497	1267	1628	2026	1239	756	775	956	1207	1886	1638	1449	777
Edinburgh	538	495	350	0	1374	933	1314	1708	984	662	758	896	1243	1931	1964	1728	872
Reykjavik	1896	1777	1497	1374	0	1746	2134	2418	2104	2020	2130	2255	2617	3304	2949	2892	2232
Oslo	1151	1277	1267	933	1746	0	416	788	481	917	1088	1048	1459	2011	2739	2390	1343
Stockholm	1426	1589	1628	1314	2134	416	0	398	518	1126	1281	1181	1542	1978	2987	2593	1543
Helsinki	1816	1985	2026	1708	2418	788	398	0	881	1504	1650	1530	1856	2203	3360	2950	1910
Copenhagen	950	1139	1239	984	2104	481	518	881	0	625	769	662	1036	1538	2479	2076	1030
Amsterdam	349	564	756	662	2020	917	1126	1504	625	0	173	235	629	1296	1860	1480	428
Brussels	312	533	775	758	2130	1088	1281	1650	769	173	0	194	489	1174	1710	1315	262
Bonn	503	725	956	896	2255	1048	1181	1530	662	235	194	0	422	1067	1843	1420	400
Bern	743	927	1207	1243	2617	1459	1542	1856	1036	629	489	422	0	689	1630	1156	440
Rome	1429	1600	1886	1931	3304	2011	1978	2203	1538	1296	1174	1067	689	0	1862	1365	1109
Lisbon	1587	1492	1638	1964	2949	2739	2987	3360	2479	1860	1710	1843	1630	1862	0	500	1452
Madrid	1265	1233	1449	1728	2892	2390	2593	2950	2076	1480	1315	1420	1156	1365	500	0	1054
Paris	337	492	777	872	2232	1343	1543	1910	1030	428	262	400	440	1109	1452	1054	0

Example Tour

- I wrote a program to solve TSP by enumerating every path and finding the shortest
- I checked that it worked on some problems with 10 cities
- It takes just under half a second to solve this problem
- I set the program running on a 100 city problem—How long will it take to finish?

- I wrote a program to solve TSP by enumerating every path and finding the shortest
- I checked that it worked on some problems with 10 cities
- It takes just under half a second to solve this problem
- I set the program running on a 100 city problem—How long will it take to finish?

- I wrote a program to solve TSP by enumerating every path and finding the shortest
- I checked that it worked on some problems with 10 cities
- It takes just under half a second to solve this problem
- I set the program running on a 100 city problem—How long will it take to finish?

- I wrote a program to solve TSP by enumerating every path and finding the shortest
- I checked that it worked on some problems with 10 cities
- It takes just under half a second to solve this problem
- I set the program running on a 100 city problem—How long will it take to finish?

- I wrote a program to solve TSP by enumerating every path and finding the shortest
- I checked that it worked on some problems with 10 cities
- It takes just under half a second to solve this problem
- I set the program running on a 100 city problem—How long will it take to finish?

How Many Possible Tours Are There?

• For 100 cities how many possible tours are there?

How Many Possible Tours Are There?

- For 100 cities how many possible tours are there?
- It doesn't matter where we start

How Many Possible Tours Are There?

- For 100 cities how many possible tours are there?
- It doesn't matter where we start
- Starting from Berlin there are
 99 cites we can try next

Number of tours =

Number of tours = (N-1)

Number of tours = $(N-1) \times (N-2)$

Number of tours = $(N-1) \times (N-2) \times (N-3)$

Number of tours = $(N-1) \times (N-2) \times (N-3) \times \cdots 2$

Number of tours = $(N-1) \times (N-2) \times (N-3) \times \cdots \times 2 \times 1 = (N-1)!$

• The direction we go in is irrelevant

- The direction we go in is irrelevant
- ullet Total number of tours is 99!/2

- The direction we go in is irrelevant
- Total number of tours is 99!/2
- Any more guesses how long it will take?

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

- $99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$
- Upper bound

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdot \cdot \cdot 2 \cdot 1$$
 $99! <$

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdot \cdot \cdot 2 \cdot 1$$

$$99! < 99 \cdot 99 \cdot 99 \cdot \cdot \cdot 99 \cdot 99$$

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdot \cdot \cdot 2 \cdot 1$$

$$99! < 99 \cdot 99 \cdot 99 \cdot \cdot \cdot 99 \cdot 99 = 99^{99}$$

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1$$

$$99! < 99 \cdot 99 \cdot 99 \cdots 99 \cdot 99 = 99^{99}$$

Lower bound

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1$$

$$99! < 99 \cdot 99 \cdot 99 \cdots 99 \cdot 99 = 99^{99}$$

Lower bound

$$99! = 99 \cdot 98 \cdot 97 \cdots 50 \cdot 49 \cdots 2 \cdot 1$$

 $99! >$

•
$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1 = ?$$

Upper bound

$$99! = 99 \cdot 98 \cdot 97 \cdots 2 \cdot 1$$

$$99! < 99 \cdot 99 \cdot 99 \cdots 99 \cdot 99 = 99^{99}$$

Lower bound

99! =
$$99 \cdot 98 \cdot 97 \cdots 50 \cdot 49 \cdots 2 \cdot 1$$

99! > $50 \cdot 50 \cdot 50 \cdots 50 \cdot 1 \cdots 1 \cdot 1 = 50^{50}$

• For
$$N>1$$

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

• For N>1

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

• $99!/2 = 4.666 \times 10^{155}$

• For N>1

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

- $99!/2 = 4.666 \times 10^{155}$
- How long does it take to search all possible tours?

• For N>1

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

- $99!/2 = 4.666 \times 10^{155}$
- How long does it take to search all possible tours?
 - \star We computed about $200\,000$ tours in half a second

How Long Does It Take?

• For N>1

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

- $99!/2 = 4.666 \times 10^{155}$
- How long does it take to search all possible tours?
 - \star We computed about $200\,000$ tours in half a second
 - \star 3.15 \times 10⁷sec = 1 year

How Long Does It Take?

• For N>1

$$\left(\frac{N}{2}\right)^{N/2} < N! < N^N$$

- $99!/2 = 4.666 \times 10^{155}$
- How long does it take to search all possible tours?
 - \star We computed about $200\,000$ tours in half a second
 - \star 3.15 \times 10⁷sec = 1 year
 - \star Age of Universe ≈ 15 billion years

Answer

Answer

• 2.72×10^{132} ages of the universe!

Answer

- 2.72×10^{132} ages of the universe!
- Incidental

```
99!/2 = 46663107721972076340849619428133350
24535798413219081073429648194760879
99966149578044707319880782591431268
48960413611879125592605458432000000
000000000000000000
```

Record TSP Solved— $15\,112$ and $24\,978$ Cities

• Number of tours: $15111!/2 = 7.3 \times 10^{56592}$

- Number of tours: $15111!/2 = 7.3 \times 10^{56592}$
- Current record $24\,978$ cities with 1.9×10^{98992} tours

- Number of tours: $15111!/2 = 7.3 \times 10^{56592}$
- Current record $24\,978$ cities with 1.9×10^{98992} tours
- The algorithm for finding the optimum path does not look at every possible path

- Number of tours: $15111!/2 = 7.3 \times 10^{56592}$
- Current record $24\,978$ cities with 1.9×10^{98992} tours
- The algorithm for finding the optimum path does not look at every possible path
- If your interested look for the TSP homepage on the web http://www.math.uwaterloo.ca/tsp/

 Even relatively small problems can take you an astronomical time to solve using simple algorithms

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores, one for every particle in the Universe

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores, one for every particle in the Universe
 - \star I could compute a tour distance in 3×10^{-24} seconds

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores, one for every particle in the Universe
 - \star I could compute a tour distance in 3×10^{-24} seconds, the time it takes light to cross a proton

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores, one for every particle in the Universe
 - \star I could compute a tour distance in 3×10^{-24} seconds, the time it takes light to cross a proton
 - \star It would still take $10^{39}\times$ the age of the universe

- Even relatively small problems can take you an astronomical time to solve using simple algorithms
- As a professional programmer you need to have an estimate for how long an algorithm takes—otherwise you can look silly
- For the 100 city problem, if
 - \star I had 10^{87} cores, one for every particle in the Universe
 - \star I could compute a tour distance in 3×10^{-24} seconds, the time it takes light to cross a proton
 - \star It would still take $10^{39} \times$ the age of the universe
- Smart algorithms can make a much larger difference than fast computers!

Outline

- 1. TSP
- 2. **Sorting**
- 3. Big O

- Comparison between common sort algorithms
 - ★ Insertion sort—an easy algorithm to code
 - ★ Shell sort—invented in 1959 by Donald Shell
 - ★ Quick sort—invented in 1961 by Tony Hoare

- Comparison between common sort algorithms
 - ★ Insertion sort—an easy algorithm to code
 - ★ Shell sort—invented in 1959 by Donald Shell
 - ★ Quick sort—invented in 1961 by Tony Hoare

These take an array of numbers and returns a sorted array

- Comparison between common sort algorithms
 - ★ Insertion sort—an easy algorithm to code
 - ★ Shell sort—invented in 1959 by Donald Shell
 - ★ Quick sort—invented in 1961 by Tony Hoare

- These take an array of numbers and returns a sorted array
- Sort is very commonly used algorithm

- Comparison between common sort algorithms
 - ★ Insertion sort—an easy algorithm to code
 - ★ Shell sort—invented in 1959 by Donald Shell
 - ★ Quick sort—invented in 1961 by Tony Hoare

- These take an array of numbers and returns a sorted array
- Sort is very commonly used algorithm so you care about how long it takes

Empirical Run Times

- There is a right and wrong way to do easy problems
- You only really care when you are dealing with large inputs
- Good algorithms are difficult to come up with, but they exist
- We would like to quantify the performance of an algorithm—how much better is quick sort than insertion sort?

- There is a right and wrong way to do easy problems
- You only really care when you are dealing with large inputs
- Good algorithms are difficult to come up with, but they exist
- We would like to quantify the performance of an algorithm—how much better is quick sort than insertion sort?

- There is a right and wrong way to do easy problems
- You only really care when you are dealing with large inputs
- Good algorithms are difficult to come up with, but they exist
- We would like to quantify the performance of an algorithm—how much better is quick sort than insertion sort?

- There is a right and wrong way to do easy problems
- You only really care when you are dealing with large inputs
- Good algorithms are difficult to come up with, but they exist
- We would like to quantify the performance of an algorithm—how much better is quick sort than insertion sort?

- There is a right and wrong way to do easy problems
- You only really care when you are dealing with large inputs
- Good algorithms are difficult to come up with, but they exist
- We would like to quantify the performance of an algorithm—how much better is quick sort than insertion sort?

Outline

- 1. TSP
- 2. Sorting
- 3. **Big O**

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - * many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

Estimating Run Times

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - * would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

Estimating Run Times

- We would like to estimate the run times of algorithms
- This depends on the hardware (how fast is your computer)
- We could count the number of elementary operations, but
 - * different machines have different elementary operations
 - many algorithms use complex functions such as sqrt (matrix inversion using Cholesky decomposition) or sin and cos (FFT)
 - would need to count memory accesses which you shouldn't need to think about
 - code after compiling can be very different from code before compiling

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - * **leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Compute the asymptotic leading functional behaviour
- Lets take that statement to pieces
- Suppose we have an algorithm that takes $4n^2 + 12n + 199$ operations (clock cycles)
 - \star asymptotic: what happens when n becomes very large
 - **Leading**: ignore the 12n + 199 part as it is dominated by $4n^2$ (i.e. for large enough n we have $4n^2 \gg 12n + 199$)
 - \star functional behaviour: ignore the constant 4
- ullet We call this an order n^2 , or quadratic time, algorithm
- We can write this in 'Big-Theta' notation as $\Theta(n^2)$
- This notion of 'run time' is known as time complexity

- Doesn't depend on what computer we are running
- Don't need to know how many elementary operations are required for a non-elementary operation
- Can estimate run times by measuring run time on a small problem
 - \star If I have a $\Theta(n^2)$ algorithm
 - \star It takes x seconds on an input of 100
 - k It will take about $\frac{x \times n^2}{100^2}$ seconds on a problem of size n $(T(100) \approx c \, 100^2 = x$ therefore $c = x/100^2$ thus $T(n) = c \, n^2 = x \, n^2/100^2)$

- Doesn't depend on what computer we are running
- Don't need to know how many elementary operations are required for a non-elementary operation
- Can estimate run times by measuring run time on a small problem
 - \star If I have a $\Theta(n^2)$ algorithm
 - \star It takes x seconds on an input of 100
 - k It will take about $\frac{x \times n^2}{100^2}$ seconds on a problem of size n $(T(100) \approx c \, 100^2 = x$ therefore $c = x/100^2$ thus $T(n) = c \, n^2 = x \, n^2/100^2)$

- Doesn't depend on what computer we are running
- Don't need to know how many elementary operations are required for a non-elementary operation
- Can estimate run times by measuring run time on a small problem
 - \star If I have a $\Theta(n^2)$ algorithm
 - \star It takes x seconds on an input of 100
 - * It will take about $\frac{x \times n^2}{100^2}$ seconds on a problem of size n $(T(100) \approx c \, 100^2 = x$ therefore $c = x/100^2$ thus $T(n) = c \, n^2 = x \, n^2/100^2$)

- Doesn't depend on what computer we are running
- Don't need to know how many elementary operations are required for a non-elementary operation
- Can estimate run times by measuring run time on a small problem
 - \star If I have a $\Theta(n^2)$ algorithm
 - \star It takes x seconds on an input of 100
 - \star It will take about $\frac{x\times n^2}{100^2}$ seconds on a problem of size n $(T(100)\approx c\,100^2=x \text{ therefore } c=x/100^2$ thus $T(n)=c\,n^2=x\,n^2/100^2)$

Counting Instructions

- Big-Theta run times are often easy to calculate
- a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
}
// clean up</pre>
```

• a $\Theta(n^2)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    for (int j=0; j<n; j++) {
        // do other stuff
    }
}
// clean up</pre>
```

Counting Instructions

- Big-Theta run times are often easy to calculate
- a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
}
// clean up</pre>
```

• a $\Theta(n^2)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    for (int j=0; j<n; j++) {
        // do other stuff
    }
}
// clean up</pre>
```

Counting Instructions

- Big-Theta run times are often easy to calculate
- a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
}
// clean up</pre>
```

• a $\Theta(n^2)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    for (int j=0; j<n; j++) {
        // do other stuff
    }
}
// clean up</pre>
```

- Can't compare algorithms with the same Big-Theta time complexity
- For small inputs Big-Theta time complexity can be misleading.
 E.g.
 - \star algorithm A takes $n^3 + 2n^2 + 5$ operations
 - \star algorithm B takes $20n^2 + 100$ operations
 - \star algorithm A is $\Theta(n^3)$ and algorithm B is $\Theta(n^2)$
 - \star algorithm A is faster than algorithm B for n < 18

but who cares?

- Can't compare algorithms with the same Big-Theta time complexity
- For small inputs Big-Theta time complexity can be misleading.
 E.g.
 - \star algorithm A takes $n^3 + 2n^2 + 5$ operations
 - \star algorithm B takes $20n^2 + 100$ operations
 - \star algorithm A is $\Theta(n^3)$ and algorithm B is $\Theta(n^2)$
 - \star algorithm A is faster than algorithm B for n < 18

but who cares?

- Can't compare algorithms with the same Big-Theta time complexity
- For small inputs Big-Theta time complexity can be misleading.
 E.g.
 - \star algorithm A takes $n^3 + 2n^2 + 5$ operations
 - \star algorithm B takes $20n^2+100$ operations
 - \star algorithm A is $\Theta(n^3)$ and algorithm B is $\Theta(n^2)$
 - \star algorithm A is faster than algorithm B for n < 18

but who cares?

- Can't compare algorithms with the same Big-Theta time complexity
- For small inputs Big-Theta time complexity can be misleading.
 E.g.
 - \star algorithm A takes $n^3 + 2n^2 + 5$ operations
 - \star algorithm B takes $20n^2 + 100$ operations
 - \star algorithm A is $\Theta(n^3)$ and algorithm B is $\Theta(n^2)$
 - \star algorithm A is faster than algorithm B for n < 18

but who cares?

- Can't compare algorithms with the same Big-Theta time complexity
- For small inputs Big-Theta time complexity can be misleading.
 E.g.
 - \star algorithm A takes $n^3 + 2n^2 + 5$ operations
 - \star algorithm B takes $20n^2 + 100$ operations
 - \star algorithm A is $\Theta(n^3)$ and algorithm B is $\Theta(n^2)$
 - \star algorithm A is faster than algorithm B for n < 18

but who cares?

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    if (/* some condition */) {
        for (int j=0; j<n; j++) {
            // do other stuff
        }
    }
}
// clean up</pre>
```

- Time complexity now depends on the if statement
- If the condition is often satisfied we have a $\Theta(n^2)$ algorithm
- If the condition is true only rarely then we have a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    if (/* some condition */) {
        for (int j=0; j<n; j++) {
            // do other stuff
        }
    }
}
// clean up</pre>
```

- Time complexity now depends on the if statement
- If the condition is often satisfied we have a $\Theta(n^2)$ algorithm
- If the condition is true only rarely then we have a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    if (/* some condition */) {
        for (int j=0; j<n; j++) {
            // do other stuff
        }
    }
}
// clean up</pre>
```

- Time complexity now depends on the if statement
- If the condition is often satisfied we have a $\Theta(n^2)$ algorithm
- If the condition is true only rarely then we have a $\Theta(n)$ algorithm

```
// define stuff
for(int i=0; i<n; i++) {
    // do something
    if (/* some condition */) {
        for (int j=0; j<n; j++) {
            // do other stuff
        }
    }
}
// clean up</pre>
```

- Time complexity now depends on the if statement
- If the condition is often satisfied we have a $\Theta(n^2)$ algorithm
- If the condition is true only rarely then we have a $\Theta(n)$ algorithm

Bounds

- To avoid having to think really hard we define upper and lower bounds
- The upper bound we write using big-O notation
 - \star The above algorithm is an $O(n^2)$ algorithm
 - \star I.e. it runs in no more than order n^2 operations

- The lower bound we write using big-Omega notation
 - \star The above algorithm is a $\Omega(n)$ algorithm
 - \star l.e. it runs in no less than order n operations

Bounds

- To avoid having to think really hard we define upper and lower bounds
- The upper bound we write using big-O notation
 - \star The above algorithm is an $O(n^2)$ algorithm
 - \star l.e. it runs in no more than order n^2 operations

- The lower bound we write using big-Omega notation
 - \star The above algorithm is a $\Omega(n)$ algorithm
 - \star l.e. it runs in no less than order n operations

Bounds

- To avoid having to think really hard we define upper and lower bounds
- The upper bound we write using big-O notation
 - \star The above algorithm is an $O(n^2)$ algorithm
 - \star I.e. it runs in no more than order n^2 operations

- The lower bound we write using big-Omega notation
 - \star The above algorithm is a $\Omega(n)$ algorithm
 - \star l.e. it runs in no less than order n operations

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \implies 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \implies 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is O(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^2} = 3 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n^3} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = O(n^3)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{3n^2 + 2n + 12}{n} = \infty \implies 3n^2 + 2n + 12 \neq O(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \Rightarrow 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad\text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \implies 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \Rightarrow 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad\text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \Rightarrow 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad\text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \Rightarrow 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \Rightarrow 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Omega(g(n))$ if

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=c\qquad \text{where c is a constant (could be zero)}$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^2}{3n^2 + 2n + 12} = \frac{1}{3} \implies 3n^2 + 2n + 12 = \Omega(n^2)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n^3}{3n^2 + 2n + 12} = \infty \implies 3n^2 + 2n + 12 \neq \Omega(n^3)$$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n}{3n^2 + 2n + 12} = 0 \quad \Rightarrow 3n^2 + 2n + 12 = \Omega(n)$$

ullet An algorithm that runs in f(n) operations is $\Theta(g(n))$ if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = c \qquad \text{ where } c \text{ is a non-zero constant}$$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

- I.e. the lower bound is identical to the upper bound
- Often the most straightforward way of obtaining big-Theta is to show the upper and lower bounds are the same

ullet An algorithm that runs in f(n) operations is $\Theta(g(n))$ if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = c \qquad \text{ where } c \text{ is a non-zero constant}$$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

- I.e. the lower bound is identical to the upper bound
- Often the most straightforward way of obtaining big-Theta is to show the upper and lower bounds are the same

ullet An algorithm that runs in f(n) operations is $\Theta(g(n))$ if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = c \qquad \text{ where } c \text{ is a non-zero constant}$$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

- I.e. the lower bound is identical to the upper bound
- Often the most straightforward way of obtaining big-Theta is to show the upper and lower bounds are the same

ullet An algorithm that runs in f(n) operations is $\Theta(g(n))$ if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = c \qquad \text{ where } c \text{ is a non-zero constant}$$

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

- I.e. the lower bound is identical to the upper bound
- Often the most straightforward way of obtaining big-Theta is to show the upper and lower bounds are the same

- Note: big-O notation is most commonly used
- often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \mathbf{may} \mathbf{not} be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm **will** be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Note: big-O notation is most commonly used
- ullet often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \mathbf{may} \mathbf{not} be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm **will** be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Note: big-O notation is most commonly used
- often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm (a much stronger result)
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \mathbf{may} \mathbf{not} be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm **will** be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Note: big-O notation is most commonly used
- often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm (a much stronger result)
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \mathbf{may} \mathbf{not} be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm **will** be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Note: big-O notation is most commonly used
- often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm (a much stronger result)
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \max not be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm **will** be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Note: big-O notation is most commonly used
- often people say they have a $O(n^2)$ when in fact they mean they have a $\Theta(n^2)$ algorithm (a much stronger result)
- Note that an $O(n^2)$ algorithm is also a $O(n^3)$ algorithm
- Strictly a $O(n^2)$ algorithm \mathbf{may} \mathbf{not} be faster than a $O(n^3)$ algorithm when n becomes larger
- A $\Theta(n^2)$ algorithm will be faster than a $\Theta(n^3)$ algorithm when n becomes larger

- Run times (computational time complexity) matters
- Choosing an algorithm with the best time complexity is important
- Understand the meaning of big-Theta, big-O and big-Omega
- Know how to estimate time complexity for simple algorithms (loop counting)

- Run times (computational time complexity) matters
- Choosing an algorithm with the best time complexity is important
- Understand the meaning of big-Theta, big-O and big-Omega
- Know how to estimate time complexity for simple algorithms (loop counting)

- Run times (computational time complexity) matters
- Choosing an algorithm with the best time complexity is important
- Understand the meaning of big-Theta, big-O and big-Omega
- Know how to estimate time complexity for simple algorithms (loop counting)

- Run times (computational time complexity) matters
- Choosing an algorithm with the best time complexity is important
- Understand the meaning of big-Theta, big-O and big-Omega
- Know how to estimate time complexity for simple algorithms (loop counting)