Relational Data Model

Relational Model Concepts

Relation (informally): A table of values. Each column in the table has a column header called an attribute. Each row is called a tuple.

Formal Relational Concepts

- -Domain: A set of atomic (indivisible) values.
- -Attribute: A name to suggest the meaning that a domain plays in a particular relation. Each attribute A_i has a domain dom(A_i).
- -Relational Schema: A relation name R and a set of attributes A_i that define the relation.

Denoted by: R(A₁, A₂, ..., A_n)

Example: STUDENT(Name, Student-id, Age, GPA)

Relational Model Concepts(cont.)

```
Degree of a relation: Its number of attributes n. Tuple t (of R(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>)): A (ordered) set of values \langle v_1, v_2, ..., v_n \rangle where each v_i is an element of dom(A<sub>i</sub>). Also called an n-tuple. Relation instance r(R): A set of tuples. r(R) = \{t_1, t_2, ..., t_m\}, or alternatively r(R) \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n)
```

Example: Student Relation

Relational Model Concepts

Characteristics of Relations

Ordering of tuples in a relation r(R): The tuples are not considered to be ordered, even though they appear to be in the tabular form

Ordering of attributes in a relation schema R (and of values within each tuple): We will consider the attributes in $R(A_1, A_2, ..., A_n)$ and the values in $t = \langle v_1, v_2, ..., v_n \rangle$ to be ordered.

Values in a tuple: All values are considered atomic. A special null value is used to represent values that are unknown or inapplicable to certain tuples.

Integrity Constraints

Constraints are conditions that must hold on all valid relation instances. These constraints are Domain constraints, Key constraints, Entity integrity constraints, and Referential integrity constraints

Domain Constraints

Each attribute A must be an atomic value from the domain dom(A) for that attribute. The standard types of domain include integers, real numbers, characters, fixed length strings.

Key Constraints

Superkey of R: A set of attributes SK of R such that no two tuples in any valid relational instance r(R) will have same value for SK, i.e., for any distinct tuples t_1 and t_2 in r(R), $t_1[SK] \neq t_2[SK]$.

Key of R: A minimal superkey; that is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey

Example: STUDENT relation has key {Student-id}, and superkey {Student-id,Name}.

If a relation has several candidate keys, one is chosen arbitrarily to be the primary key. Primary key attributes are <u>underlined</u>.

Entity Integrity

Relational database schema: A set S of relation schemas that belong to the same database. S is the name of the database.

$$S = \{R_1, R_2, ..., R_n\}$$

Entity Integrity: The primary key attributes PK of each relation schema $R_i \in S$ cannot have null values any tuple of $r(R_i)$. This is because primary key values are used to identify the individual tuples. $t[PK] \neq null$ for any tuple t in $r(R_i)$

Note: Other attributes of R may be similarly constrained to disallow null values, even though they are not members of the primary key.

Referential Integrity

A constraint involving two relations (the previous constraints involve a single relation).

Used to specify a relationship among tuples in two relations: the referencing relation and the referenced relation.

Tuples in the referencing relation R_1 have attributes FK (called foreign key attributes) that reference the \underline{PK} (called primary key attributes) of the referenced relation R_2 .

A tuple t₁ in R1 is said to reference a tuple t₂ in R₂

<u>if $t_1[FK] = t_2[PK]$ </u>; Or it can be NULL, i.e., $t_1[FK] = NULL$

If the above condition is violated, then it implies that referential integrity constraint is violated.

Referential Integrity - Example

STUDENT			
Name	Student Class		Major
	<u>Number</u>		_
Smith	17	1	COSC
Brown	8	2	COSC

GRADE REPORT				
Student	Section-	Grade		
<u>Number</u>	<u>Identifier</u>			

-	U			
GRADE REPORT				
Student	Section-	Grade		
<u>Number</u>	<u>Identifier</u>			
17	85	Α		
18	102	B+		

STUDENT			
Name	Student	Class	Major
	<u>Number</u>		

SECTION				
Section-	Course	Semester	Year	Instructor
<u>Identifier</u>	Number			

SECTION				
Section-	Course	Semester	Year	Instructor
<u>Identifier</u>	Number			
85	MATH2410	Fall	91	King
92	COSC1310	Fall	91	Anderson
102	COSC3320	Spring	92	Knuth
135	COSC3380	Fall	92	Stone

A referential integrity constraint can be displayed in a relational database schema as a directed arc from R1.FK to R2.PK

COMPANY DATABASE

ESSN, DEPENDENT_NAME, SEC, BDATE, RELATIONSHIP

Update Operations on Relations

- Insert a tuple; Delete a tuple; Modify a tuple Integrity constraints should not be violated by the update operations
- Several update operations may have to be grouped together.
- Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints.
- In case of integrity violation, several actions can be taken:
 - cancel the operation
 - perform the operation, but inform the user
 - trigger additional updates so the violation is corrected
 - execute a user-specified error-correction routine

ER-to-Relational Mapping

- 1 For each regular entity in the ER schema, create a relation R that includes all the simple attributes of E. Choose one of the key attributes of E as primary key for R.
- 2 For each binary relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
 - ♦ For 1:1 relationship b/w S and T:: choose one of the relations
 - -- S say, and include as foreign key in S the primary key of T.
 - ◆ For 1:N relationship b/w S and T:: let S be entity participating at the N-side of the relationship type. Include as foreign key in S the primary key of the relation T.
 - ◆ For M:N relationship b/w S and T:: create a new relation P to represent R, and include as foreign key attributes in P the primary keys of the relations (i.e. of S and T) that represent the participating entity types.

ER-to-Relational Mapping

- 3 For each weak entity type W in the ER schema with owner entity type E, create a relation R, and include all simple attributes of W as attributes of R, plus the primary key of E.
- 4 For each multivalued attribute A, create a new relation R that includes an attribute corresponding to A plus the primary key attribute K (as a foreign key in R) of the relation that represents the entity type or relationship type that has A as an attribute.
- 5 For each n-ary relationship type n >1, create a new relation S to represent R. Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types. Also include any simple attributes of the n-ary relationship type as attributes of S.

EMPLOYEE (SSN, FNAME, MI, LNAME, SALARY, Bdate)

EMP-ADD (SSN,ADDRESS)

DEPARTMENT(NAME, NUMBER)

DEPT_LOCNS(NUMBER,LOCATION)

EMPLOYEE (SSN, FNAME, MI, LNAME, SUPSSN, SALARY, Bdate)

DEPARTMENT(NAME, NUMBER, MGRSSN)

WORKS_ON(ESSN, PNO)

Handling Weak Entity Types

EMPLOYEE (SSN, FNAME, MI, LNAME, SUPSSN, SALARY, Bdate)

DEPARTMENT(NAME, NUMBER, MGRSSN)

WORKS_ON(SSN, PNO)

DEPENDENTS(SSN,Name,Sex,Relationship,Bdate)

Handling Relationships with higher Degree

SUPPLY(Sname, ProjName, PartNo, Quantity)

- A) Employee(SSN,Name,Salary,JobType);Secretary(SSN,Education); Technician(SSN,Tgrade);Engineer(SSN,EngrType)
- B) Secretary(SSN, Name, Salary, Education); Technician(SSN, Name, Salary, Tgrade); Engineer(SSN, Name, Salary, EngrType)
- C) Employee(SSN,Name,Salary,JobType, Education,Tgrade,EngrType)
- D) Employee(SSN,Name,Salary,Sflag, Education,Tflag,Tgrade, Eflag,EngrType)

Handling Generalization

Multi-purpose vehicles that can be used both as truck or car.

Vehicle(Vid, Price, Number, Cflag, Speed, Passengers, Tflag, Axles, Tonnage)

ER Diagram for Company Database

