Lesson 7: Systems Analysis & Design

1. Foundation: System Concepts

System Fundamentals

- **Definition:** Interrelated components working together according to a plan to achieve a specific objective.
- Classifications:
 - Open vs. Closed: Interacts with environment vs. isolated.
 - Natural vs. Man-made: Made by nature vs. made by humans.
- Living vs. Physical: Composed of living vs. non-living things.

Types of Information Systems

- TPS (Transaction Processing): For Operational Level (daily routine transactions).
- OAS (Office Automation): Increases productivity of office workers (e.g., email).
- MIS (Management Info. System): For Management Level (routine summary reports).
- DSS (Decision Support): For Management Level (semi-structured decisions).
- ESS (Executive Support): For Strategic Level (unstructured decisions).
- KMS (Knowledge Management): Manages organizational knowledge & experience.
- ERP (Enterprise Resource Planning): Integrates all core business functions.
- Expert System: Al-based system that mimics a human expert.

2. The SDLC: Models & Methods

SDLC Process Models

- Waterfall: Sequential, linear model. Best for stable, clear requirements.
- Spiral: Combines iteration with risk analysis. Best for large, high-risk projects.
- Agile: Iterative, with rapid delivery of small features. Best for changing requirements.
- Prototyping: Building a working model to get user feedback early.
- RAD (Rapid Application Dev.): Develops functional modules in parallel for fast delivery.

Development Methodologies

- Structured: Traditional, top-down approach (e.g., SSADM).
- Object-Oriented: Models the system as a collection of interacting objects.

3. Planning & Analysis

Preliminary Investigation

- Problem Identification: A preliminary survey to understand and define the problem and scope of the system.
- Feasibility Study (Is it possible?)
 - Technical: Do we have the tech/skills?
 - Economic: Do benefits justify cost? (Cost-Benefit Analysis).
 - Operational: Will people use it? Is there resistance?
 - Organizational: Does it support company goals?

Requirement Analysis (What should it do?)

- Functional: The activities the system must perform.
- Non-functional: The qualities or constraints (e.g., speed, security, reliability).
- IEEE Standard: Essential needs use "Shall"; desirable ones use "Should".

SSADM & Modeling Tools

SSADM (Structured Systems A&D Methodology)

A structured approach covering the SDLC from feasibility to design.

- Stages: Feasibility Study \to Requirements Analysis \to Requirements Specification \to Logical System Specification \to Physical Design.
- DFD (Data Flow Diagram): Shows data movement.
- Components: External Entity, Process, Data Flow, Data Store.
- Levels: Context Diagram (Level 0), Level 1 DFD, Document Flow Diagram.
- LDM (Logical Data Modeling): Shows data structure.
- Components: Entity, Attribute, Relationship.
- Tools: Cardinality (1-1, 1-M) & Entity Matrix.

4. Design, Testing & Deployment

System Design

- Logical vs. Physical Design: What the system must do (techindependent) vs. how it will be implemented (with specific tech).
- Database Mapping: Entity \rightarrow Table, Attribute \rightarrow Field.
- Data Dictionary: A repository of metadata (data about data).

System Testing

Testing Techniques & Levels

Techniques: White-box (tests internal code) vs. **Black-box** (tests functionality).

Levels (Bottom-up):

- 1. **Unit Testing** (by programmers).
- 2. Integration Testing (testing combined units).
- 3. **System Testing** (testing the whole system).
- 4. Acceptance Testing (by users).

Deployment & Alternatives

- Deployment Methods: Parallel, Direct (Big Bang), Phased, Pilot.
- COTS vs. Custom Software:
 - COTS: Buying a ready-made package. Pros: Cheaper, faster. Cons: May not fit perfectly.
 - Custom: Building from scratch. Pros: Perfect fit, competitive advantage. Cons: Expensive, time-consuming.
 - Key Concepts: Gap Analysis, Business Process Reengineering, Business Process Mapping.