Задание 1

В соответствии с заданным законом распределения сгенерировать выборку размером 10^4 , оценить плотность вероятности с помощью непараметрических методов: гистограммы и ядерной оценки плотности. Для сравнения на один график нанести аналитическую зависимость и получившиеся оценки.

Вариант №1.

Бета-распределение: $f_X(x;\alpha,\beta)=\frac{1}{\mathrm{B}(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, где $\mathrm{B}(\alpha,\beta)=\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}\,dx$ с параметрами $\alpha=2,\beta=5$.

Вариант №2.

Хи-квадрат распределение: $f_{\chi^2}(x;\,k)=rac{(1/2)^{k/2}}{\Gamma(k/2)}x^{k/2-1}e^{-x/2}$, где $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}\,dt$ с числом степеней свободы k=3.

Вариант №3.

Экспоненциальное распределение: $f_X(x; \lambda) = \lambda e^{-\lambda x}$ для $x \ge 0$ с параметром $\lambda = 0.5$.

Вариант №4.

Гамма-распределение: $f_X(x; k, \theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}$, где $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ с параметрами k = 7.5 и $\theta = 1.0$.

Вариант №5.

Распределение Гумбеля: $f_X(x; \mu, \beta) = \frac{\exp(-(x-\mu)/\beta)}{\beta} \exp\left(-e^{-(x-\mu)/\beta}\right)$ с параметрами $\mu=0$ и $\beta=1$.

Вариант №6.

Распределение Лапласа: $f_X(x; \alpha, \beta) = \frac{\alpha}{2} e^{-\alpha|x-\beta|}$ с параметрами $\alpha = 0.5$ и $\beta = 0$.

Вариант №7.

Логистическое распределение: $f_X(x;\;\mu,s)=rac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}$ с параметрами $\mu=1$ и s=1.

Вариант №8.

Логнормальное распределение: $f_X(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-(\ln x - \mu)^2/2\sigma^2}$ с параметрами $\mu = 0$ и $\sigma = 0.25$.

Вариант №9.

Нормальное распределение: $f_X(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$ с параметрами $\mu=1$ и $\sigma=0.2$.

Вариант №10.

Распределение Парето: $f_X(x;\;x_m,k)=rac{kx_m^k}{x^{k+1}}, x\geq x_m$ с параметрами $x_m=1$ и k=1.2.

Вариант №11.

Распределение Рэлея: $f_X(x; \sigma) = \frac{x}{\sigma^2} e^{\frac{-x^2}{2\sigma^2}}, x \ge 0$ с параметром $\sigma^2 = 0.2$.

Вариант №12.

Распределение Коши: $f_X(x;\;x_0,\gamma)=rac{1}{\pi\gamma\left(1+rac{(x-x_0)^2}{\gamma^2}
ight)}$ с параметрами $x_0=0$ и $\gamma=1$.

Вариант №13.

Распределение Стьюдента: $f_X(x;\ df)=rac{\Gamma\left(rac{df+1}{2}
ight)}{\sqrt{\pi d}\Gamma\left(rac{df}{2}
ight)}\Big(1+rac{x^2}{df}\Big)^{-(df+1)/2}$, где $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}\ dt$ с числом степеней свободы df=3.

Вариант №14.

Равномерное распределение: $f_X(x;\ a,b)=rac{1}{b-a}$ с параметрами $a=-2,\,b=2.$

Вариант №15.

Распределение фон Мизеса: $f_X(x; \mu, \kappa) = \frac{\exp(\kappa \cos(x-\mu))}{2\pi I_0(\kappa)}$, где $I_0(\kappa) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\kappa \sin(x)} dx$ и $-\pi \le x \le \pi$ с параметрами $\mu = \pi/6$, $\kappa = 3$.

Вариант №16.

Распределение Вейбулла: $f_X(x; c) = cx^{c-1} \exp(-x^c)$ с параметром c = 1.5.