

Metodi matematici per l'Informatica *Modulo 6 – Numeri naturali*

Docente: Pietro Cenciarelli

Peano e l'extraterrestre

(1889)

- esiste un numero che si chiama zero

(1889)

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m
- se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m
- se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m
- se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

- esiste un numero che si chiama zero
- ogni numero n ha un successore che indichiamo con succ (n)
- zero non è successore di nessuno
- se succ (n) = succ (m) allora n = m
- se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

se $A \subseteq \mathcal{N}$ è tale che *zero* \in A e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

sottoinsiemi di ${\mathcal N}$

{0, 2, 4, 6, ..., 700, ...} {2, 3, 5, ..., 11, ..., 2657, ...}

predicati su ${\mathcal N}$

n è *un numero pari* n è *un numero primo*

se $A \subseteq \mathcal{N}$ è tale che *zero* \in A e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

sottoinsiemi di ${\mathcal N}$

 $\{1, 2\}$

predicati su ${\mathcal N}$

0 < 2n < 5

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

sottoinsiemi di ${\mathcal N}$

$$A = ?$$

predicati su ${\mathcal N}$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

se $A \subseteq \mathcal{N}$ è tale che **zero** \in **A** e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

sottoinsiemi di ${\mathcal N}$

$$A = ?$$

predicati su
$${\mathcal N}$$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

$$A = ?$$

$$\sum_{i=0}^{n} i = \frac{n (n + 1)}{2}$$

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

ovvero:
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

allora:

$$\sum_{i=0}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

ovvero: $n+1 \in A$

$$A = ?$$

predicati su ${\mathcal N}$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

sottoinsiemi di ${\mathcal N}$

 $A = \mathcal{N}$ per ogni n vale P(n)

predicati su ${\mathcal N}$

$$P(n) = \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

se $A \subseteq \mathcal{N}$ è tale che zero $\in A$ e inoltre $n \in A$ implica succ $(n) \in A$, allora $A = \mathcal{N}$

se P è un predicato su \mathcal{N} tale che vale P(0) e inoltre P(n) implica P(n+1), allora per ogni n vale P(n)

$$\frac{P(0) \qquad P(n) \Rightarrow P(n+1)}{\forall n. P(n)}$$