A. Bayesian deconvolution method

Algorithm 1 Detailed algorithm

Compute Cauchy-Schwartz bounds $M(\omega)$

choose amplitude v_f and width w of $V_f(\omega)$ envelope

Compute
$$\Delta \mathbf{W}_{S,n}^{(e)} = \left(\mathbf{H}^{\top} \mathbf{V}_e^{-1} \mathbf{H} + \mathbf{V}_f^{-1}\right)^{-1} \mathbf{H}^{\top} \mathbf{V}_e^{-1} \widetilde{\Delta \mathbf{W}}_{S,n}^{(e)}$$

project under Cauchy-Schwartz bounds $\Delta W^{(e)}_{S,n}(\omega) := \min(\Delta W^{(e)}_{S,n}(\omega), M(\omega))$ and $\Delta W^{(e)}_{S,n}(\omega) := \max(\Delta W^{(e)}_{S,n}(\omega), -M(\omega))$

repeat

Compute gradient
$$\nabla \left(\boldsymbol{\Delta} \mathbf{W}_{S,n}^{(e)} \right) = -\mathbf{H}^{\top} \mathbf{V}_{e}^{-1} \left(\widetilde{\boldsymbol{\Delta}} \widetilde{\mathbf{W}}_{S,n}^{(e)} - \mathbf{H} \boldsymbol{\Delta} \mathbf{W}_{S,n}^{(e)} \right) + \mathbf{V}_{f}^{-1} \boldsymbol{\Delta} \mathbf{W}_{S,n}^{(e)}$$
 Project gradient $\mathbf{P} \nabla \left(\boldsymbol{\Delta} \mathbf{W}_{S,n}^{(e)} \right)$ if $|\Delta W_{S,n}^{(e)}(\omega)| \geq M(\omega)$ and $\Delta W_{S,n}^{(e)}(\omega) * \nabla \left(\Delta W_{S,n}^{(e)} \right) (\omega) \leq 0$ then $\mathbf{P} \nabla \left(\Delta W_{S,n}^{(e)} \right) (\omega) = 0$

else

$$P\nabla\left(\Delta W_{S,n}^{(e)}\right)(\omega) = \nabla\left(\Delta W_{S,n}^{(e)}\right)(\omega)$$

end if

Compute furthest accessible displacement d_{∞} along $\mathbf{P}\nabla\left(\mathbf{\Delta W}_{S,n}^{(e)}\right)$ direction

for all
$$\mathrm{P}\nabla\left(\Delta W_{S,n}^{(e)}\right)(\omega) \neq 0$$
 do

$$d_{\infty} \leftarrow \min \left(\frac{M(\omega) - \Delta W_{S,n}^{(e)}(\omega)}{P\nabla \left(\Delta W_{S,n}^{(e)}\right)(\omega)}, d_{\infty} \right)$$

end for

Compute the optimum displacement d_0 along $\mathbf{P}\nabla\left(\mathbf{\Delta W}_{S,n}^{(e)}\right)$ direction

$$d_0 = \left| \left| \mathbf{P} \nabla \left(\mathbf{\Delta} \mathbf{W}_{S,n}^{(e)} \right) \right| \right|^{-2} \left(\left| \left| \mathbf{H} \mathbf{P} \nabla \left(\mathbf{\Delta} \mathbf{W}_{S,n}^{(e)} \right) \right| \right|_{\mathbf{V}_e}^2 + \left| \left| \mathbf{P} \nabla \left(\mathbf{\Delta} \mathbf{W}_{S,n}^{(e)} \right) \right| \right|_{\mathbf{V}_f}^2 \right)$$

Compute the descent gradient $\Delta \mathbf{W}_{S,n}^{(e)} \leftarrow \Delta \mathbf{W}_{S,n}^{(e)} + \min(d_0, d_\infty) \mathbf{P} \nabla \left(\Delta \mathbf{W}_{S,n}^{(e)} \right)$

$$\mathbf{until} - \ln \left(p \left(\mathbf{\Delta W}_{S,n}^{(e)} \left| \widetilde{\mathbf{\Delta W}}_{S,n}^{(e)}, \mathbf{V}_e \right. \right) \right) \text{ is minimized}$$