

# Einführung in die Programmierung mit C++ Übungsblatt 8

Permutationen von Matrixen und Graphen

Sebastian Christodoulou, Alexander Fleming und Uwe Naumann

Informatik 12:

Software and Tools for Computational Engineering (STCE)

RWTH Aachen

#### Graphen

#### Kanten mit std::pair<int, int> Beschreiben





In dieser Übung kodieren wir eine Graph in zwei Variablen:

- $\qquad \qquad \textbf{Eine std::} \textbf{vector} \\ < \textbf{int} \\ > \textbf{kn für die Knoten-Beschriftungen}.$
- $\qquad \qquad \textbf{Eine std::vector} < \textbf{std::pair} < \textbf{int}, \ \textbf{int} >> \ \textbf{ka für die Kanten}.$





### Permutationen von Matritzen und Graphen Permuatationen I





Eine Permutation ist eine Operator, die die Reihenfolge der Elemente einer Struktur (z.B. eines Vektors) umordnet. Wir schreiben sie wie folgt auf

$$\pi_{(2,0,1)} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \tag{1}$$

Beide Zeilen beschreiben Indizes einer Struktur. Auf den Indizes der oberen Zeile werden die Werte der Indizes in der unteren Zeile agebildet. Haben wir z.B. einen Vektor v=(10,25,26) vor uns, so bewirkt die Permutation folgendes:

$$\pi_{(2,0,1)}(v) = (26,10,25)$$

Wobei v[2] auf index 0 abgebildet, v[0] auf index 1 und v[2] auf index 1. Die obere Zeile der n-Permutation  $\pi$  ist stets die Folge  $[0,\ldots,n]$  (bei obiger 3-permutation [0,1,2]). Also beschreibt die untere Zeile die Permutation allein komplett.

Permutationen können Elemente auch an ihrem Platz lassen, z.B. in

$$\pi_{(2,1,0)}(v) = (25,10,26)$$

bleibt v[1] an ursprünglicher Stelle.





Wir weiten das Konzept der Permutation außerdem auf *quadratische* Matritzen aus. Auf Matritzen wird die Reihenfolge der Zeilen *und* der Spalten umgeordnet.

$$\pi_{(2,0,1)}\left(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\right) = \begin{pmatrix} 9 & 7 & 8 \\ 3 & 1 & 2 \\ 6 & 4 & 5 \end{pmatrix}$$

Hier wurde Zeile  $0 \to 2$ , Zeile  $1 \to 0$ , und Zeile  $2 \to 1$  abgebildet. Danach wurde Spalte  $0 \to 2$ , Spalte  $1 \to 0$ , und Spalte  $2 \to 1$  abgebildet. Visuell:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{Zeilen} \begin{pmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \xrightarrow{Spalten} \begin{pmatrix} 9 & 7 & 8 \\ 3 & 1 & 2 \\ 6 & 4 & 5 \end{pmatrix}$$

Als "Sanity Check" kann man merken, dass Elemente, die auf der Diagonal der ursprünglichen Matrix liegen, liegen auch auf der Diagonal der umgeordneten Matrix.

Zwei Graphen  $G_1$  und  $G_2$  sind isomorph wenn eine Permutation  $\pi_{(k)}$  verwendet auf die Adjazenzmatrix von  $G_1$  ergibt die Adjazenzmatrix von  $G_2$ .

### Permutationen von Matritzen und Graphen Aufgaben I





- Implementiere kanten\_zu\_adjazenzmatrix. Diese Funktion erhält als erstes argument einen std::vector<std::pair<int, int>> const& und ergibt einen std::vector<std::vector<int>>>, der die Adjazenzmatrix entspricht.
  - ► Siehe Übung 5.
- 2. implementiere permute\_vector. Diese Funktion erhält als erstes Argument einen std::vector, der permutiert zurückgegeben werden soll. Das zweite Arguent beschreibt die Permutation  $\pi$ .
- implementiere permute\_matrix. Diese erhält als erstes Argument eine Matrix, und als zweites die Permutation, π. Diese soll auf die Zeilenreihenfolge, dann auf die Spaltenreihenfolge der Matrix angewandt werden.

Bei allen Eingaben nehmen wir natürlich an, dass eine n-Permutation durch einen std::vector der Länge n beschrieben wird. Dessen Einträge sind die untere Zeile in 1.

- 4. Die Menge aller möglichen 3-Permutationen erhält man dadurch, dass man im Tupel (0,1,2) alle verschiedenen Reihenfolgen bildet, also  $\{(0,1,2),(0,2,1),(1,0,2),\ldots\}$ .
  - ► Wie viele 3-Permutationen gibt es?
  - ► Wie viele 4-Permutationen gibt es?

STCE, Globalübung C++

### Permutationen von Matritzen und Graphen Aufgaben II





- Ergänze die Funktionen all\_permutations(std::vector<T> a) und recursive\_permutation\_helper(std::vector<T> &a\_active, int active\_length, std::vector< std::vector<T>> &permutation\_list).
  - all\_permutations initializiert permutation\_list und active\_length, dann ruft recursive\_permutation\_helper(a, active\_length, permutation\_list) auf.
  - ▶ Base Case: permutation\_length <= 1 und eine Kopie von a\_active wird zum permutation\_list hinzugefügt.
  - ► Recursive Case: recursive\_permutation\_helper(a, active\_length—1, permutation\_list) wird aufgerufen. Dann, für jeder i = 0 bis active\_length—1:
    - $\blacktriangleright \ \ \, \mathsf{Wenn} \,\, \mathsf{active\_length} \,\, \mathit{gerade} \,\, \mathsf{ist,} \,\, \mathsf{wird} \,\, \mathsf{a[active\_length-1]} \,\, \mathsf{mit} \,\, \mathsf{a[i]} \,\, \mathsf{getauscht.}$
    - ► Wenn active\_length *ungerade* ist, wird a[active\_length—1] mit a[0] getauscht.
    - ▶ recursive\_permutation\_helper(a, active\_length-1, permutation\_list) aufgerufen.
  - ▶ Dieser Algorithmus heißt *Heap's Algorithm*.
- 6. Lesen Sie die Graphen  $G_1$ ,  $G_2$ ,  $G_3$  aus den Dateien graph\_1.txt, graph\_2.txt, und graph\_3.txt aus. Welche Paaren von Graphen sind isomorph? Unter welcher Permutation  $\pi_{(k)}$ ? Die Funktionen vector\_gleichheit und matrix\_gleichheit werden hilfreich sein.

STCE, Globalübung C++

## Permutationen von Matritzen und Graphen Aufgaben III





#### Abgabe:

▶ 8.cpp