Applied Bayesian Modeling module 11: Model checking - Part 1 (in-sample)

Leontine Alkema, lalkema@umass.edu Fall 2022

Lecture material (slides, notes, videos) are licensed under CC-BY-NC 4.0. Code is licensed under BSD-3

Model checking

- ▶ We can now fit a whole range of Bayesian models (using Stan).
- Important question: how well does a model fit the data?
- George Box: "All models are wrong some are useful".
- T. Tarpey (http://andrewgelman.com/wp-content/uploads/2012/03/tarpey.pdf)
 - "This quote is useful ... but wrong"; "All models are right but most are useless".
 - All models are approximations to the truth, some are useful approximations to the truth.

Model checking: how?

- What "goodness of fit" outcomes you need to check depends on your outcome of interest.
- Example
 - For radon data set, if a model is to be used for risk assessment, users may want to make sure that the model does not underpredict radon outcomes.
 - For educational testing, with interest in identifying students who perform below average, users want to make sure that the model does not *overpredict*.
- Checking a Bayesian model: checking appropriateness of the probability distribution for the data, imposed by prior and likelihood function
- ► To discuss:
 - General diagnostic plots, e.g. using residuals
 - Posterior predictive checks
 - ▶ Measures of predictive accuracy based on out-of-sample validation
- ► All of these are based on generating data from a fitted model, and comparing the "new" data to what's observed

Generating replicated data sets

- Approach to generate replicated data sets from a fitted model:
 - For each posterior sample $s=1,2,\ldots,S$, generate a new replicated data set $\tilde{\boldsymbol{y}}^{(s)}=(\tilde{y}_1^{(s)},\tilde{y}_2^{(s)},\ldots,\tilde{y}_n^{(s)})\sim p(\tilde{\boldsymbol{y}}|\boldsymbol{y}).$
 - ► This results in *S* replicated data sets.
- ► Can we do that? Yes, for any model, we can generate new data points $\tilde{\pmb{y}} \sim p(\tilde{\pmb{y}}|\pmb{y})$
- Minor note on notation:
 - ▶ BDA prefers y^{rep} over \tilde{y} to indicate that it is a replicate for a specific y, as opposed to any model-based prediction.
 - Here (as in Gabry et al) we stick to \tilde{y} to avoid too many subscripts and are explicit what it refers to

Generating replicated data sets

Example for the radon data (module 8): Suppose

$$y_i | \alpha_{j[i]}, \sigma_y^2 \sim N(\alpha_{j[i]}, \sigma_y^2), \text{ (independent)}$$

then we can sample each $\tilde{y}_i \sim p(\tilde{y}_i|\boldsymbol{y})$ in two steps:

- (1) Sample $(\alpha_{j[i]}^{(s)}, \sigma_y^{(s)}) \sim p(\alpha_{j[i]}, \sigma_y|, \boldsymbol{y})$, (we already have these)
- (2) Sample $\tilde{y}_i^{(s)} \sim p(\tilde{y}_i | \alpha_{j[i]}^{(s)}, \sigma_y^{(s)})$, here $\tilde{y}_i | \alpha_{j[i]}, \sigma_y^2 \sim N(\alpha_{j[i]}, \sigma_y^2)$.
- ▶ Details: this produces a sample $\tilde{y}_i \sim p(\tilde{y}_i|\boldsymbol{y})$ because $p(\tilde{y}_i|\boldsymbol{y}) = \int \int p(\tilde{y}_i|\alpha_{j[i]}, \sigma_{\boldsymbol{y}}) p(\alpha_{j[i]}, \sigma_{\boldsymbol{y}}|, \boldsymbol{y}) d\alpha_{j[i]} d\sigma_{\boldsymbol{y}}$
- ▶ You can generate data sets in R or let brm/rstan do the work for you.

Creating replicated data sets $\tilde{m{y}}^{(s)}$ in brm and with rstan

brm function posterior_predict

```
ynew_si <- posterior_predict(fit) # adding si to indicate the dimension used
dim(ynew_si)
## [1] 2000 927</pre>
```

▶ When using rstan, add y_new to generated quantities block

Back to big picture: In-sample checks using replicated data sets (ctd)

- Approach:
 - For each posterior sample $s=1,2,\ldots,S$, generate a new data set $\tilde{\pmb{y}}=(\tilde{y}_1^{(s)},\tilde{y}_2^{(s)},\ldots,\tilde{y}_n^{(s)})\sim p(\tilde{\pmb{y}}|\pmb{y}).$ This results in S replicated data sets.
 - ▶ Use these data sets in checks (compare to the observed data)
- ► To discuss: residuals, posterior predictive checks
- We illustrate functionality of the bayesplot package.

Residuals

Example: radon model

$$y_i | \alpha_{j[i]}, \sigma_y^2 \sim N(\alpha_{j[i]}, \sigma_y^2), \text{ (independent)}$$

- For each sample s, we can calculate a residual for ith observation as $e_i^{(s)}=y_i-\tilde{y}_i^{(s)}$
- ▶ We can report a summary, e.g. $e_i = y_i 1/S \sum_s \tilde{y}_i^{(s)}$ (MC approximation to y_i $E(\tilde{y}_i|\boldsymbol{y})$), and use these in standard diagnostics plots
 - Check for deviations away from zero in the residuals wrt covariates

Residuals for subset model: old-school coding and plot

Residuals

Obtain point estimates from the replicated data

```
ytildehat_i <- apply(ynew_si, 2, mean)
res <- dat$y - ytildehat_i</pre>
```

and make some old-school plots (that I am sure you can improve upon :))

```
plot(res - dat$log_ur)
abline(h=0)
```


9/22

Residuals for full model: using bayesplot

Posterior predictive checks

- ▶ Main idea: a comparison of (summaries of) replicated data sets to an observed dataset can reveal problems with model fit/assumptions.
- Approach:
 - Simulate data from the fitted model.
 - Compare simulated data to the observed data.
 - Check whether those outcomes which you are most interested in are replicated well.

Comparing simulated data sets to an observed data set

- Example: "Coin tosses and fake coin tosses" (from Alex Cook, NUS)
- Suppose two people obtain a sequence of heads and tails:
 - Leontine the statistician simulates the series in R using independent Bernouilli draws (or actually tosses a coin 200 times).
 - ► Her 6-yo daughter writes down a sequence.

How can we check which series was generated by Leontine?

ТТНТННТННН	нннтттнтнн
THTTHTTHTH	ТНИННИННТ
TTHHTHHTHT	THTTTTHTTH
нтнтттннтн	THHTTHHHTT
THHHHTTHTH	ТТННТНННН
ннтннтннтт	TTTTTHTHTH
THHHTHTHTT	TTTHHHTTTT
HHTHTHHTTT	HTTTTTHTHH
ннтннтннтн	THTTHHTTTH
THHTHHTHTT	THTTHHHTTH

Summary statistics

- We may be able to figure out which series was not simulated based on two data summary statistics:
 - ► *T*₁, the number of switches from H to T or T to H;
 - $ightharpoonup T_2$, the maximum run of consecutive Hs or Ts.
- We can calculate these statistics for the two data series.
- We can also calculate these statistics for simulated data series, where each simulation is given by a series of 200 random draws from a Bernouilli distribution with p=0.5.

Comparing the observed values to the distribution of expected values suggests which series is likely to be made up.

Introducing some notation

- lackbox Let $m{y}$ the real data; here we have data $m{y}^{(A)}$ and $m{y}^{(B)}$
- $m{\tilde{y}}^{(s)}$ denote simulated data from a model $(y_i \sim Bern(0.5),$ independent draws)
- ▶ We define summary statistics $T_1(y) = \text{number of switches}, T_2(y) = \text{maximum run}$

If the model generated the observed data, then we do NOT expect the observed summary statistic to be extreme, relative to the simulated summary statistics $T(\tilde{y})$.

Back to using posterior predictive checks for model checking

- If model assumptions are reasonable then we should be able to use the fitted model to generate data that resemble the data we observed.
 - Basis: 'Simulate data from the fitted model'; Simulate replicated data sets from the posterior predictive distribution.
 - ► With the replicated data sets:
 - graphical checks: compare (some summary or subset of) replicated data sets to real data
 - define summary statistic(s) and compare the observed summary statistic in your data to the posterior sample of replicated summary statistics

Posterior predictive checks for radon data I

Simple comparison of observed density and examples of replicated data sets

Posterior predictive checks for radon data II

- ► Summary outcome = county-specific median
- ▶ Does this look ok for model w/o county intercepts?

Posterior predictive checks for radon data II

- ► Summary outcome = county-specific median
- ▶ What about for the model with county intercepts?

Test quantities/discrepancy measures

- ▶ Check outcomes that you're interested in using test quantity or discrepancy measure T(y) or $T(y, \theta)$, e.g. median in a group
 - Calculate these statistics for the real data, T(y), and the replicated data, $T(\tilde{y})$
 - Display and/or calculate posterior predictive p-value: probability that replicated data is more extreme than the observed data.

Posterior predictive checks for radon data

- ▶ Test quantity = T(y) = median outcome in a county
- ▶ Posterior predictive p-value close to 0 for Anoka

Posterior predictive checks for radon data: maximum

- ► Test quantity = $T(y) = \max_i \{y_1, \dots, y_n\}$ (minimum shown too)
- ► See code for calculation of probability

Summary posterior predictive checks

- ► All models are approximations to the truth, some are useful approximations to the truth.
- Posterior predictive checks can be very useful to check if model assumptions are reasonable and to inform model improvements.
 - Basis: 'Simulate data from the fitted model'; Simulate replicated data sets from the posterior predictive distribution.
 - With the replicated data sets:
 - compare some replicated data sets to real data
 - define summary statistic(s) and compare the observed summary statistic in your data to the posterior sample of replicated summary statistics.
- ▶ Part 2: model checking based on (approximate) cross-validation