Ensemble methods

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata" a.a. 2021-2022

Giorgio Gambosi

Ensemble methods

Improve performance by combining multiple models, in some way, instead of using a single model.

- train a *committee* of *L* different models and make predictions by averaging the predictions made by each model on dataset samplings (*bagging*)
- train different models in sequence: the error function used to train a model depend on the performance of previous models (boosting)

Bagging

- Classifiers (especially some of them, such as decision trees) may have low performances due to their high variance: their behavior may largely differ in presence of slightly different training sets (or even of the same training set).
- For example, in trees, the separations made by splits are enforced at all lower levels: hence, if the data is perturbed slightly, the new tree can have a considerably different sequence of splits, leading to a different classification rule

Bootstrap

- The bootstrap is a fundamental resampling tool in statistics. The basic underlying idea is to estimate the true distribution of data \mathcal{F} by the so-called empirical distribution $\hat{\mathcal{F}}$
- Given the training data (\mathbf{x}_i, t_i) , $i = 1, \dots, n$, the empirical distribution function $\hat{\mathcal{F}}$ is defined as

$$\hat{p}(\mathbf{x},t) = egin{cases} rac{1}{n} & ext{if } \exists i: (\mathbf{x},t) = (\mathbf{x}_i,t_i) \\ 0 & ext{otherwise} \end{cases}$$

• This is just a discrete probability distribution, putting equal weight $\frac{1}{n}$ on each of the observed training points

Bootstrap

ullet A bootstrap sample of size m from the training data is

$$(\mathbf{x}_i^*, t_i^*)$$
 $i = 1, \dots, m$

where each (\mathbf{x}_i^*, t_i^*) is drawn uniformly at random from $(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)$, with replacement

• This corresponds exactly to m independent draws from $\hat{\mathcal{F}}$: it approximates what we would see if we could sample more data from the true \mathcal{F} . We often consider m=n, which is like sampling an entirely new training set

Bagging

- Given a training set (\mathbf{x}_i, y_i) , $i = 1, \dots, n$, bagging averages the predictions done by classifiers of the same type (such as decision trees) over a collection of boostrap samples. For $b = 1, \dots, B$ (e.g., B = 100), n bootstrap items (\mathbf{x}_i^b, y_i^b) , $i = 1, \dots, n$ are sampled and a classifier is fit on this set.
- ullet At the end, to classify an input x, we simply take the most commonly predicted class, among all B classifiers
- This is just choosing the class with the most votes
- In the case of regression, the predicted value is derived as the average among the predictions returned by the B regressors

Bagging variant

If the used classifier returns class probabilities $\hat{p}_k^b(\mathbf{x})$, the final bagged probabilities can be computed by averaging

$$p_k^b(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B \hat{p}_k^b(\mathbf{x})$$

the predicted class is, again, the one with highest probability

Bagging classification

- Why is bagging working?
- Let us consider, for simplicity, a binary classification problem. Suppose that for a given input \mathbf{x} , we have B independent classifiers, each with a given misclassification rate e (for example, e=0.4). Assume w.l.o.g. that the true class at \mathbf{x} is 1: so the probability that the b-th classifier predicts class 0 is e=0.4
- Let $B_0 \le B$ be the number of classifiers returning class 0 on input **x**: the probability of B_0 is clearly distributed according to a binomial (if classifiers are independent)

$$B_0 \sim \mathsf{Binomial}(B, e)$$

the misclassification rate of the bagged classifier is then

$$p\left(B_0 > \frac{B}{2}\right) = \sum_{k=\frac{B}{2}+1}^{B} {B \choose k} e^k (1-e)^{B-k}$$

which tends to 0 as B increases.

Bagging regression

• Expected error of one model $y_i(\mathbf{x})$ wrt the true function $h(\mathbf{x})$:

$$E_{\mathbf{x}}[(y_i(\mathbf{x}) - h(\mathbf{x}))^2] = E_{\mathbf{x}}[\varepsilon_i(\mathbf{x})^2]$$

• Average expected error of the models

$$E_{av} = \frac{1}{m} \sum_{i=1}^{m} E_{\mathbf{x}} [\varepsilon_i(\mathbf{x})^2]$$

• Committee expected error

$$E_c = E_{\mathbf{x}} \left[\left(\frac{1}{m} \sum_{i=1}^m y_i(\mathbf{x}) - h(\mathbf{x}) \right)^2 \right] = E_{\mathbf{x}} \left[\left(\frac{1}{m} \sum_{i=1}^m \varepsilon_i(\mathbf{x}) \right)^2 \right]$$

If $E_{\mathbf{x}}[\varepsilon_i(\mathbf{x})\varepsilon_j(\mathbf{x})]=0$ if $i\neq j$ (errors are uncorrelated) then $E_c=\frac{1}{m}E_{av}.$

• This is usually not verified: errors from different models are highly correlated.

Out-of-bag error

- Model evaluation can be performed by evaluating, for each item x_i in the data set, the prediction done
 by the set of models trained on bootstrap samples not including x_i.
- If bootstrap samples have the same size of the dataset (i.e. m=n), there is a probability .63 that an item is included in a bootstrap sample: in fact, for each sample, the probability that item \mathbf{x}_i is not selected is $1-\frac{1}{n}$. Hence there is a probability $\left(1-\frac{1}{n}\right)^n$ that it is never sampled. For large enough values of n, the probability is about $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \frac{1}{e} \approx .37$
- In out-of-bag evaluation, the prediction of an item is done by using approximately a fraction .37 of all the trees. For those trees the item can be considered as a test set member.

Random forest

Application of bagging to a set of (random) decision trees: classification performed by voting.

- 1. For b = 1 to B:
 - (a) Bootstrap sample from training set
 - (b) Grow a decision tree T_b on such data by performing the following operations for each node:
 - i. select m variables at random
 - ii. pick the best variable among them
 - iii. split the node into two children
- 2. output the collection of trees T_1, \ldots, T_B

Overall prediction is performed as majority (for classification) or average (for regression) among trees predictions.

Boosting

- Boosting is a procedure to combine the output of many weak classifiers to produce a powerful committee.
- A weak classifier is one whose error rate is only slightly better than random guessing.
- Boosting produces a sequence of weak classifiers $y_m(x)$ for $m=1,\ldots,m$ whose predictions are then combined through a weighted majority to produce the final prediction

$$y(\mathbf{x}) = \operatorname{sgn}\left(\sum_{j=1}^{m} \alpha_j y_j(\mathbf{x})\right)$$

• Each $\alpha_j > 0$ is computed by the boosting algorithm and reflects how accurately y_m classified the data.

Boosting

Adaboost (adaptive boosting)

- Models are trained in sequence: each model is trained using a weighted form of the dataset
- Element weights depend on the performances of the previous models (misclassified points receive larger weights)
- Predictions are performed through a weighted majority voting scheme on all models

Boosting

Adaboost

Binary classification, dataset (\mathbf{X},\mathbf{t}) of size n, with $t_i \in \{-1,1\}$. The algorithm maintains a set of weights $w(\mathbf{x}) = (w_1, \dots, w_n)$ associated to the dataset elements.

- $\bullet \:$ Initialize weights as $w_i^{(0)} = \frac{1}{n} \: \text{for} \: i = 1, \dots, n$
- For j = 1, ..., m:
 - Train a weak learner $y_j(\mathbf{x})$ on \mathbf{X} in such a way to minimize the weighted misclassification wrt to $w^{(j)}(\mathbf{x})$.
 - Let

$$e^{(j)} = \frac{\sum_{\mathbf{x}_i \in \mathcal{E}^{(j)}} w_i^{(j)}}{\sum_i w_i^{(j)}}$$

where $\mathcal{E}^{(j)}$ is the set of dataset elements misclassified by $y_j(\mathbf{x})$.

- * If $e^{(j)} > \frac{1}{2}$, consider the reverse learner, which returns opposite predictions for all elements.
- * $e^{(j)}$ can be interpreted as the probability that a random item from the training set is misclassified, assuming that item \mathbf{x}_i can be sampled with probability $\frac{w_i^{(j)}}{\sum_i w_i^{(j)}}$

Adaboost

• Compute the learner confidence as log odds of a random item being well classified $(1-e^{(j)})$ vs being misclassified $e^{(j)}$

$$\alpha_j = \frac{1}{2}\log\frac{1 - e^{(j)}}{e^{(j)}} > 0$$

• For each \mathbf{x}_i , update the corresponding weight as follows

$$w_i^{(j+1)} = w_i^{(j)} e^{-\alpha_j t_i y_j(\mathbf{x}_i)}$$

which results into

$$w_i^{(j+1)} = \begin{cases} w_i^{(j)} e^{\alpha_j} > w_i^{(j)} & \text{if } \mathbf{x}_i \in \mathcal{E}^{(j)} \\ w_i^{(j)} e^{-\alpha_j} < w_i^{(j)} & \text{otherwise} \end{cases}$$

• Normalize the set of $w_i^{(j+1)}$ by dividing each of them by $\sum_{i=1}^n w_i^{(j+1)}$, in order to get a distribution

Adaboost

The overall prediction is

$$y(\mathbf{x}) = \operatorname{sgn}\left(\sum_{j=1}^m lpha_j y_j(\mathbf{x})
ight)$$

since $y_j(\mathbf{x}) \in \{-1, 1\}$, this corresponds to a voting procedure, where each learner vote (class prediction) is weighted by the learner confidence.

Adaboost

Adaboost

Why does it work?

- It minimizes a loss function related to classification error
- Suppose we have a classifier $y(\mathbf{x}) = \operatorname{sgn} f(\mathbf{x})$
- We know that 0/1 loss

$$l(y(\mathbf{x}),t) = \begin{cases} 0 & \text{if } tf(\mathbf{x}) > 0 \\ 1 & \text{otherwise} \end{cases}$$

has drawbacks (non convex, gradient 0 almost everywhere). We need a surrogate loss.

• Exponential loss

$$l(y(\mathbf{x}), t) = e^{-tf(\mathbf{x})}$$

Additive models

• Additive models are defined as the additive composition of simpler "base" predictors

$$y(\mathbf{x}) = \sum_{j=1}^{m} c_j \overline{y}(\mathbf{x})$$

where c_j 's are weights and $\overline{y}_j(\mathbf{x}) = \overline{y}(\mathbf{x}; \mathbf{w}) \in \mathbf{R}$ is a simple functions of the input \mathbf{x} parameterized by \mathbf{w}

• in this case, the predictors are binary classifiers; that is, $\overline{y}_i(\mathbf{x}) = \overline{y}(\mathbf{x}; \mathbf{w}) \in \{-1, 1\}$

Fitting additive models

• As usual, an additive model is fit by minimizing a loss function averaged over the training data:

$$\min_{c_j, \mathbf{w}_j} \sum_{i=1}^n L(t_i, \sum_{k=1}^m c_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k))$$

 $\bullet\,$ For many loss functions L and/or predictors \overline{y} this is too hard

Forward stagewise additive modeling

More simply, one can greedily add one predictor at a time in the following fashion.

- Set $y_0(\mathbf{x}) = 0$
- For k = 1, ..., m:
 - Compute

$$(\hat{c}_k, \hat{\mathbf{w}}_k) = \underset{c_k, \mathbf{w}_k}{\operatorname{argmin}} \ \sum_{i=1}^n L(t_i, y_{k-1}(\mathbf{x}_i) + c_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k))$$

- Set
$$y_k(\mathbf{x}) = y_{k-1}(\mathbf{x}) + \hat{c}_k \overline{y}(\mathbf{x}; \hat{\mathbf{w}}_k)$$

That is, fitting is performed not modifying previously added terms (greedy paradigm)

Adaboost as additive model

Adaboost can be interpreted as fitting an additive model with exponential loss

$$L(y, f(\mathbf{x})) = e^{-tf(\mathbf{x})}$$

that is, minimizing

$$\sum_{i=1}^{n} e^{-t_i \sum_{k=1}^{m} \alpha_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k)}$$

with respect to $\mathbf{w}_1, \dots, \mathbf{w}_m$ and $\alpha_1, \dots, \alpha_m$

Adaboost as additive model

Applying forward stagewise additive modeling, at each step k we compute

$$\begin{split} (\hat{\alpha}_k, \hat{\mathbf{w}}_k) &= \underset{\alpha_k, \mathbf{w}_k}{\operatorname{argmin}} \sum_{i=1}^n e^{-t_i y(\mathbf{x}_i)} \\ &= \underset{\alpha_k, \mathbf{w}_k}{\operatorname{argmin}} \sum_{i=1}^n e^{-t_i (y_{k-1}(\mathbf{x}_i) + \alpha_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k))} \\ &= \underset{\alpha_k, \mathbf{w}_k}{\operatorname{argmin}} \sum_{i=1}^n w_i^{(k)} e^{-\alpha_k t_i \overline{y}(\mathbf{x}_i; \mathbf{w}_k)} \end{split}$$

where $w_i^{(k)}=e^{-t_iy_{k-1}(\mathbf{x}_i)}=e^{-\frac{1}{2}t_i\sum_{r=1}^{k-1}\alpha_r\overline{y}_r(\mathbf{x}_i)}$ is a constant wrt α_k and \mathbf{w}_k

The approach can be extended to the case of different loss functions

Find the next learner and related weight

We may decompose the weighted loss function as follows

$$\sum_{i=1}^n w_i^{(k)} e^{-\alpha_k t_i \overline{y}_k(\mathbf{x}_i)} = \sum_{i=1}^n w_i^{(k)} e^{-\alpha_k t_i \overline{y}(\mathbf{x}_i; \mathbf{w}_k)} = \sum_{\mathbf{x}_i \in \mathcal{E}^{(k)}} w_i^{(k)} e^{\alpha_k} + \sum_{\mathbf{x}_i \not\in \mathcal{E}^{(k)}} w_i^{(k)} e^{-\alpha_k t_i \overline{y}_{k-1}} e^{-\alpha_k t_i$$

where $\mathcal{E}^{(k)}$ is the set of elements misclassified by \overline{y}_k

By adding and subtracting $\sum_{\mathbf{x}_i \in \mathcal{E}^{(k)}} w_i^{(k)} e^{-\alpha_k}$ we obtain the weighted loss function

$$\sum_{\mathbf{x}_{i} \in \mathcal{E}^{(k)}} w_{i}^{(k)} (e^{\alpha_{k}} - e^{-\alpha_{k}}) + e^{-\alpha_{k}} \sum_{\mathbf{x}_{i}} w_{i}^{(k)}$$

to be minimized wrt $\mathbf{w}^{(k)}$ and α_k

Find the next learner

To derive the best learner coefficients $\mathbf{w}^{(k)}$, we observe that they affect, through $\mathcal{E}^{(k)}$, only the first term

$$\sum_{\mathbf{x}_i \in \mathcal{E}^{(k)}} w_i^{(k)} \big(e^{\alpha_k} - e^{-\alpha_k} \big)$$

has to be considered, since the other one is constant.

Since α_k is considered as a constant here, we have to minimize the sum of the current weights of misclassified items

$$\sum_{\mathbf{x}_i \in \mathcal{E}^{(k)}} w_i^{(k)}$$

wrt $\mathbf{w}^{(k)}$, which is what is done in Adaboost

Find the next learner weight

To derive the best learner weight α_k , we need to take into account the whole loss function.

By setting to 0 the derivative of the loss function wrt α_k , we get

$$\alpha_k = \frac{1}{2}\log\frac{1-e^{(k)}}{e^{(k)}}$$

which again corresponds to what is done in Adaboost

Updating the element weights

By introducing the new learner \overline{y}_k with weight α_k , the overall predictor turn out to be

$$y_k(\mathbf{x}) = y_{k-1}(\mathbf{x}) + \alpha_k \overline{y}_k(\mathbf{x}) = y_{k-1}(\mathbf{x}) + \alpha_k \overline{y}(\mathbf{x}; \mathbf{w}_k)$$

Since by definition $w_i^{(k)} = e^{-t_i y_{k-1}(\mathbf{x}_i)}$ we have for the new weights $w_i^{(k+1)}$

$$w_i^{(k+1)} = e^{-t_i y_k(\mathbf{x}_i)} = e^{-t_i (y_{k-1}(\mathbf{x}_i) + \alpha_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k))} = w_i^{(k)} e^{-t_i \alpha_k \overline{y}(\mathbf{x}_i; \mathbf{w}_k)}$$

again, as in Adaboost

Gradient boosting

General idea:

- Fit an additive model $\sum_{j=1}^m \alpha_j y_j(\mathbf{x})$ in a forward stage-wise manner.
- At each stage, introduce a weak learner to compensate the shortcomings of existing ones.
- Shortcomings are identified by high-weight data points.

Gradient boosting

- You are given (\mathbf{x}_i, t_i) , $i = 1, \dots, n$, and the task is to fit a model $y(\mathbf{x})$ to minimize square loss.
- Assume a model $y^{(1)}(\mathbf{x})$ is available, with residuals $t_i y^{(1)}(\mathbf{x}_i) = t_i y_i^{(1)}$
- A new dataset $(\mathbf{x}_i, t_i y_i^{(1)})$, $i = 1, \dots, n$ can be defined, and a model $\overline{y}^{(1)}(\mathbf{x})$ can be fit to minimize square loss wrt such dataset
- Clearly, $y_2(\mathbf{x}) = y_1(\mathbf{x}) + \overline{y}_1(\mathbf{x})$ is a model which improves $y_1(\mathbf{x})$
- The role of $\overline{y}_1(\mathbf{x})$ is to compensate the shortcoming of $y(\mathbf{x})$
- If $y_2(\mathbf{x})$ is unsatisfactory, we may define new models $\overline{y}_2(\mathbf{x})$ and $y_3(\mathbf{x}) = y_2(\mathbf{x}) + \overline{y}_2(\mathbf{x})$

Gradient boosting

How is this related to gradient descent?

- Let us consider the squared loss function $L(t,y) = \frac{1}{2}(t-y)^2$
- ullet We want to minimize the risk $R=\sum_{i=1}^n L(t_i,y_i)$ by adjusting y_i,\dots,y_n

 \bullet Consider y_i as parameters and take derivatives

$$\frac{\partial R}{\partial y_i} = y_i - t_i$$

So, we can consider residuals as negative gradients

$$t_i - y_i = -\frac{\partial R}{\partial y_i}$$

• Model $\overline{y}(\mathbf{x})$ can then be derived by considering the dataset

$$(\mathbf{x}_i, t_i - y_i) = \left(\mathbf{x}_i, -\frac{\partial R}{\partial y_i}\right)$$
 $i = 1, \dots, n$

Gradient boosting for regression

The following algorithm results

- Set $y^{(1)}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} t_i$
- For k = 1, ..., m:
 - Compute negative gradients

$$-g_i^{(k)} = -\frac{\partial R}{\partial y_i}\Big|_{y_i = y^{(k)}(\mathbf{x}_i)} = -\frac{\partial}{\partial y_i}L(t_i, y_i)\Big|_{y_i = y^{(k)}(\mathbf{x}_i)} = t_i - y^{(k)}(\mathbf{x}_i)$$

- Fit a weak learner $\overline{y}^{(k)}(\mathbf{x})$ to negative gradients, considering dataset $(\mathbf{x}_i, -g_i^{(k)})$, $i=1,\ldots,n$
- Derive the new classifier $y^{(k+1)}(\mathbf{x}) = y^{(k)}(\mathbf{x}) + \overline{y}^{(k)}(\mathbf{x})$

Gradient boosting for regression

- The benefit of formulating this algorithm using gradients is that it allows us to consider other loss functions and derive the corresponding algorithms in the same way.
- For example, square loss is easy to deal with mathematically, but not robust to outliers, i.e. pays too much attention to outliers.
- Different loss functions
 - Absolute loss

$$\star L(t,y) = |t-y|$$

$$\star -q = \operatorname{sgn}(t - y)$$

- Huber loss

*

$$L(t,y) = \begin{cases} \frac{1}{2}(t-y)^2 & |t-y| \le \delta\\ \delta(|t-y|) - \frac{\delta}{2} & |t-y| > \delta \end{cases}$$

*

$$-g = \begin{cases} y - t & |t - y| \le \delta \\ \delta \cdot \operatorname{sgn}(t - y) & |t - y| > \delta \end{cases}$$

Gradient boosting for classification

Consider a K-class framework.

Again, let $R = \sum_{i=1}^{n} L(t_i, y_1(\mathbf{x}_i), \dots, y_K(\mathbf{x}_i))$ for a given loss function

- $\bullet \ \, \operatorname{Set}\, y_j^{(1)}(\mathbf{x}) = \frac{1}{K} \text{, for } j=1,\dots,K$
- For $k = 1, \ldots, m$:
 - Compute negative gradients

$$-g_j^{(k)}(\mathbf{x}_i) = -\frac{\partial R}{\partial y_j^{(k)}(\mathbf{x}_i)} = -\frac{\partial}{\partial y_i} L(t_i, y_1(\mathbf{x}_i), \dots, y_K(\mathbf{x}_i)) \Big|_{y_i = y^{(k)}(\mathbf{x}_i)}$$

for $j = 1, \dots, K$

- Fit K weak learners $\overline{y}_k^{(j)}(\mathbf{x})$ ($j=1,\ldots,K$) to negative gradients, considering dataset $(\mathbf{x}_i,-g(\mathbf{x}_i))$, $i=1,\ldots,n$
- Derive the new classifiers $y_{k+1}^{(j)}(\mathbf{x})=y_k^{(j)}(\mathbf{x})+\overline{y}_k^{(j)}(\mathbf{x})$

Which weak learners?

- Regression trees (special case of decision trees)
- Decision stumps (trees with only one node)