Lin Chen

Email: Lin.Chen@ttu.edu

- Regular expressions are string generators
- Finite Automata (DFA, NFA) are string acceptors of REG
- CFGs are string generators
- What is the string acceptor of CFG?
 - Pushdown automata

Finite automata:

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

- Finite automata cannot accept $\{ww^R : w \in \{a, b\}^*\}$ because it requires some memory
- We can use a stack as memory

Writing a symbol on stack: Push Removing a symbol from stack: pop

- How a stack is used?
- We continue pushing symbols into stack, and then let it pop out at a suitable time.

- How a stack is used?
- We continue pushing symbols into stack, and then let it pop out at a suitable time.
 - $A \rightarrow aB$ can be easily simulated by a DFA

- How a stack is used?
- $A \rightarrow aB$ can be easily simulated by a DFA

- What about $A \rightarrow aBb$
- After we reach the final state from B, we need to "remember" to append an α
 - We push b to the stack, and eventually b will pop up

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
 - **5.** $q_0 \in Q$ is the start state, and
 - **6.** $F \subseteq Q$ is the set of accept states.

Equivalent definition through transition relation Δ

- How PDA (Pushdown automata) works?
- If $(p, a, \beta), (q, \gamma) \in \Delta$, then the PDA M, once it is in state p with β at the top of the stack, may read a from he input tape, replace β by γ on top of the stack, and enter state q.
 - $((p, a, e), (q, \gamma))$ reads a and pushes γ
 - $((p, a, \gamma), (q, e))$ reads a and pops γ

Configuration

- $-(q, w, \lambda) \in K \times \Sigma^* \times \Gamma^*$
- current state q
- the remainder of the string w
- strings consisting of the stack symbol in the stack, top-down

- Yields (in one step)
 - $(p, x, \alpha) \vdash_M (q, y, \zeta)$ if exists transition $((p, \alpha, \beta), (q, \gamma)) \in \Delta$
 - -x = ay
 - $\alpha = \beta \eta$ and $\zeta = \gamma \eta$ for some $\eta \in \Gamma^*$
 - \vdash_{M}^{*} indicates a sequence of \vdash_{M} (reflexive and transitive closure)

Acceptance

- PDA M accepts a string $w \in \Sigma^*$ if and only if $(s, w, e) \vdash_M^* (f, e, e)$ for some final state $f \in F$

State diagram for the PDA M_1 that recognizes $\{0^n 1^n | n \ge 0\}$

State diagram for the PDA M_1 that recognizes $\{0^n 1^n | n \ge 0\}$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$ $\Gamma = \{0,\$\},$

$$F = \{q_1, q_4\}, \text{ and }$$

 δ is given by the following table, wherein blank entries signify \emptyset .

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3, oldsymbol{arepsilon})\}$				$\{(q_4, oldsymbol{arepsilon})\}$	
q_4									

State diagram for the PDA M_1 that recognizes $\{0^n 1^n | n \ge 0\}$

Equivalent description:

$$\Delta = \{ ((q_1, \epsilon, \epsilon), (q_2, \$)) \dots \}$$

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$ $\Gamma = \{0,\$\},$

$$F = \{q_1, q_4\}$$
, and

 δ is given by the following table, wherein blank entries signify \emptyset .

Input:	0			1			arepsilon		
Stack:	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3, \boldsymbol{arepsilon})\}$				$\{(q_4, \boldsymbol{arepsilon})\}$	
q_4									

State diagram for PDA M_2 that recognizes $\{a^ib^jc^k|i,j,k\geq 0 \text{ and } i=j \text{ or } i=k\}$

State diagram for the PDA M_3 that recognizes $\{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$

• PDA serves as a checker for context free language

Theorem: A language is context free if and only if some pushdown automaton recognizes it.

• PDA serves as a checker for context free language

Theorem: A language is context free if and only if some pushdown automaton recognizes it.

Prove two directions:

If a language is context free, then some pushdown automaton recognizes it.

If a pushdown automaton recognizes some language, then it is context free.

If a language is context free, then some pushdown automaton recognizes it.

We need a more generalized, but essentially equivalent PDA definition.

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

If a language is context free, then some pushdown automaton recognizes it.

We need a more generalized, but essentially equivalent PDA definition.

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,

Replacing Γ_{ϵ} with Γ^*

- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

If a language is context free, then some pushdown automaton recognizes it.

We need a more generalized, but essentially equivalent PDA definition.

What is the difference between $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$ and $\delta: Q \times \Sigma_{\epsilon} \times \Gamma^{*} \to P(Q \times \Gamma^{*})$?

If a language is context free, then some pushdown automaton recognizes it.

We need a more generalized, but essentially equivalent PDA definition.

What is the difference between $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$ and $\delta: Q \times \Sigma_{\epsilon} \times \Gamma^{*} \to P(Q \times \Gamma^{*})$?

We are now allowed to simultaneously replace a bunch of top symbols on the stack with another bunch.

For example, $((p, a, \alpha\beta), (q, \gamma\zeta))$ is now allowed

```
M = (\{p,q\}, \Sigma, V, \Delta, p, \{q\})
```

- Two states, $\{p, q\}$
- Stack alphabet = terminals + nonterminals
- Transitions:
 - (1) ((p, e, e), (q, S))
 - (2) ((q, e, A), (q, x)) for each rule $A \to x$ in R.
 - (3) ((q, a, a), (q, e)) for each $a \in \Sigma$.

Example 3.4.1: Consider the grammar $G = (V, \Sigma, R, S)$ with $V = \{S, a, b, c\}$, $\Sigma = \{a, b, c\}$, and $R = \{S \to aSa, S \to bSb, S \to c\}$, which generates the language $\{wcw^R : w \in \{a, b\}^*\}$. The corresponding pushdown automaton, according to the construction above, is $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\})$, with

$$\Delta = \{((p, e, e), (q, S)), (T1) \\ ((q, e, S), (q, aSa)), (T2) \\ ((q, e, S), (q, bSb)), (T3) \\ ((q, e, S), (q, c)), (T4) \\ ((q, a, a), (q, e)), (T5) \\ ((q, b, b), (q, e)), (T6) \\ ((q, c, c), (q, e))\}$$

If a language is context free, then some pushdown automaton recognizes it.

We need a more generalized, but essentially equivalent PDA definition.

What is the difference between $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$ and $\delta: Q \times \Sigma_{\epsilon} \times \Gamma^{*} \to P(Q \times \Gamma^{*})$?

We are now allowed to simultaneously replace a bunch of top symbols on the stack with another bunch.

For example, $((p, a, \alpha\beta), (q, \gamma\zeta))$ is now allowed

We can simulate this with a normal PDA.

If a language is context free, then some pushdown automaton recognizes it.

Example: $S \to \mathbf{a}T\mathbf{b} \mid \mathbf{b}$ $T \to T\mathbf{a} \mid \boldsymbol{\varepsilon}$

If a pushdown automaton recognizes some language, then it is context free.

Given a PDA, modify it such that:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

If a pushdown automaton recognizes some language, then it is context free.

Given a PDA, modify it such that:

It has a single accept state, q_{accept} .

Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

If $((p, a, \beta), (q, \gamma)) \in \Delta$, replace it with $((p, a, \beta), (p', e))$ and $((p', e, e), (q, \gamma))$

If a pushdown automaton recognizes some language, then it is context free.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

If a pushdown automaton recognizes some language, then it is context free.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.

If a pushdown automaton recognizes some language, then it is context free.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.
- If the first push and last pop is the same symbol, add $A_{pq}
 ightarrow aA_{rs}b$

If a pushdown automaton recognizes some language, then it is context free.

We design a CFG such that A_{pq} generates all strings that take M from state p to state q, starting and ending with empty stack.

- When M reads any string of A_{pq} , the first move is push, the last move is pop.
- If the first push and last pop is the same symbol, add $A_{pq}
 ightarrow aA_{rs}b$
- If the first push and last pop is different, add $A_{pq} \rightarrow A_{pr} A_{rq}$

If a pushdown automaton recognizes some language, then it is context free.

Formal construction:

- If $((p, a, e), (r, \beta))$, $((s, b, \beta), (q, e)) \in \Delta$, add rule $A_{pq} \to aA_{rs}b$
- For all states p, r, q, add $A_{pq} \rightarrow A_{pr} A_{rq}$
- For all state p, add $A_{pp} \rightarrow e$

CFG and REG

Corollary: Every regular language is context free.

Why it is a corollary?