Stat 200A Fall 2018 Final Exam Reference Sheet A. Adhikari

name and parameters	values	mass fn. or pdf	cdf or survival fn.	expectation	variance	MGF M(t)
Uniform	$m \le k \le n$	1/(n-m+1)		(m+n)/2	$((n-m+1)^2-1)/12$	
Bernoulli (p)	0, 1	$p_1=p, p_0=q$		р	pq	$q + pe^t$
Binomial (n, p)	$0 \le k \le n$	$\binom{n}{k} p^k q^{n-k}$		np	npq	$(q + pe^t)^n$
Poisson (μ)	$k \ge 0$	$e^{-\mu}\mu^k/k!$		μ	μ	$\exp(\mu(e^t-1))$
Geometric (p)	$k \geq 1$	$q^{k-1}p$	$P(X > k) = q^k$	1/p	q/p^2	
"Negative binomial" (r, p)	$k \ge r$	$\binom{k-1}{r-1}p^{r-1}q^{k-r}p$		r/p	rq/p^2	
Geometric (p)	$k \ge 0$	$q^k p$	$P(X > k) = q^{k+1}$	q/p	q/p^2	
Negative binomial (r, p)	$k \ge 0$	$\binom{k+r-1}{r-1}p^{r-1}q^kp$		rq/p	rq/p^2	
Hypergeometric (N, G, n)	$0 \le g \le n$	$\binom{G}{g}\binom{B}{b}/\binom{N}{n}$		$n\frac{G}{N}$	$n\frac{G}{N}\cdot\frac{B}{N}\cdot\frac{N-n}{N-1}$	
Uniform	$x \in (a, b)$	1/(b-a)	F(x) = (x - a)/(b - a)	(a + b)/2	$(b-a)^2/12$	
Beta (r, s)	$x \in (0,1)$	$\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}$	by unif. order stats if r , s integers	r/(r+s)	$rs/((r+s)^2(r+s+1))$	
Exponential $(\lambda) = Gamma(1, \lambda)$	$x \ge 0$	$\lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	
Gamma (r, λ)	$x \ge 0$	$\frac{\lambda'}{\Gamma(r)} x^{r-1} e^{-\lambda x}$		r/λ	r/λ^2	$(\lambda/(\lambda-t))^r$ for $t<\lambda$
Chi-square (n)	$x \ge 0$	same as gamma $(n/2, 1/2)$		n	2 <i>n</i>	
Normal (0, 1)	$x \in R$	$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$	cdf: $\Phi(x)$	0	1	$\exp(t^2/2)$
Normal (μ, σ^2)	$x \in R$	$\frac{1}{\sigma}\phi((x-\mu)/\sigma)$	cdf: $\Phi((x-\mu)/\sigma)$	μ	σ^2	
Rayleigh	$x \ge 0$	$xe^{-\frac{1}{2}x^2}$	$F(x) = 1 - e^{-\frac{1}{2}x^2}$	$\sqrt{\pi/2}$	$(4-\pi)/2$	
Cauchy	$x \in R$	$1/\pi(1+x^2)$	$F(x) = \frac{1}{2} + \frac{1}{\pi} arctan(x)$			

- If X_1, X_2, \ldots, X_n are i.i.d. with variance σ^2 , then $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator of σ^2 but $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is not.
- For r > 0, the integral $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$ satisfies $\Gamma(r+1) = r\Gamma(r)$. So $\Gamma(r) = (r-1)!$ if r is an integer. Also, $\Gamma(1/2) = \sqrt{\pi}$.
- If Z_1 and Z_2 are i.i.d. standard normal then $\sqrt{Z_1^2 + Z_2^2}$ is Rayleigh.
- The kth order statistic $U_{(k)}$ is kth smallest of U_1, U_2, \ldots, U_n i.i.d. uniform (0,1), so $U_{(1)}$ is min and $U_{(n)}$ is max. Density of $U_{(k)}$ is beta (k, n-k+1).
- If S_n is the number of heads in n tosses of a coin whose probability of heads was chosen according to the beta (r,s) distribution, then the distribution of S_n is beta-binomial (r,s,n) with $P(S_n=k)=\binom{n}{k}C(r,s)/C(r+k,s+n-k)$ where $C(r,s)=\Gamma(r+s)/(\Gamma(r)\Gamma(s))$ is the constant in the beta (r,s) density.
- If X has mean vector μ and covariance matrix Σ then AX + b has mean vector $A\mu + b$ and covariance matrix $A\Sigma A^T$.
- If **X** has the multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, then **X** has density $f(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n \sqrt{\det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} \boldsymbol{\mu})\right)$
- The least squares linear predictor of Y based on the $p \times 1$ vector \mathbf{X} is $\hat{Y} = \mathbf{b}^T (\mathbf{X} \mu_{\mathbf{X}}) + \mu_Y$ where $\mathbf{b} = \Sigma_{\mathbf{X}}^{-1} \Sigma_{\mathbf{X},Y}$. Here the ith element of the $p \times 1$ vector $\Sigma_{\mathbf{X},Y}$ is $Cov(X_i,Y)$. In the case p = 1 this is the equation of the regression line, with slope Cov(X,Y)/Var(X) = rSD(Y)/SD(X) and intercept E(Y) slopeE(X).
- If $W = Y \hat{Y}$ is the error in the least squares linear prediction, then E(W) = 0 and $Var(W) = Var(Y) \sum_{Y,X} \sum_{X}^{-1} \sum_{X,Y}$. In the case p = 1, $Var(W) = (1 r^2)Var(Y)$.
- If Y and X are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given X.
- If Y and X are standard bivariate normal with correlation r, then $Y = rX + \sqrt{1 r^2}Z$ for some standard normal Z independent of X.
- Under the multiple regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, the least squares estimate of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$.
- $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ $\sum_{k=0}^n r^k = (1-r^{n+1})/(1-r)$ If |r| < 1 then $\sum_{k=0}^\infty r^k = 1/(1-r)$ $e^x = \sum_{n=0}^\infty x^n/n!$ $\log(1+x) \sim x$ for small x This implies $(1+\frac{x}{n})^n \to e^x$ as $n \to \infty$.