讲堂 > Linux性能优化实战 > 文章详情

08 | 案例篇:系统中出现大量不可中断进程和僵尸进程怎么办? (下)

2018-12-07 倪朋飞

08 | 案例篇: 系统中出现大量不可中断进程和僵尸进程怎么办? (下)

朗读人: 冯永吉 10'53" | 9.98M

你好,我是倪朋飞。

上一节,我给你讲了 Linux 进程状态的含义,以及不可中断进程和僵尸进程产生的原因,我们 先来简单复习下。

使用 ps 或者 top 可以查看进程的状态,这些状态包括运行、空闲、不可中断睡眠、可中断睡眠、僵尸以及暂停等。其中,我们重点学习了不可中断状态和僵尸进程:

- 不可中断状态,一般表示进程正在跟硬件交互,为了保护进程数据与硬件一致,系统不允许 其他进程或中断打断该进程。
- 僵尸进程表示进程已经退出,但它的父进程没有回收该进程所占用的资源。

上一节的最后,我用一个案例展示了处于这两种状态的进程。通过分析 top 命令的输出,我们发现了两个问题:

- 第一, iowait 太高了, 导致系统平均负载升高, 并且已经达到了系统 CPU 的个数。
- 第二, 僵尸进程在不断增多, 看起来是应用程序没有正确清理子进程的资源。

相信你一定认真思考过这两个问题,那么,真相到底是什么呢?接下来,我们一起顺着这两个问题继续分析,找出根源。

首先,请你打开一个终端,登录到上次的机器中。然后执行下面的命令,重新运行这个案例:

```
1 # 先删除上次启动的案例
2 $ docker rm -f app
3 # 重新运行案例
4 $ docker run --privileged --name=app -itd feisky/app:iowait
```

iowait 分析

我们先来看一下 iowait 升高的问题。

我相信,一提到 iowait 升高,你首先会想要查询系统的 I/O 情况。我一般也是这种思路,那么什么工具可以查询系统的 I/O 情况呢?

这里,我推荐的正是上节课要求安装的 dstat ,它的好处是,可以同时查看 CPU 和 I/O 这两种资源的使用情况,便于对比分析。

那么,我们在终端中运行 dstat 命令,观察 CPU 和 I/O 的使用情况:

```
■ 复制代码
1 # 间隔 1 秒输出 10 组数据
2 $ dstat 1 10
3 You did not select any stats, using -cdngy by default.
4 --total-cpu-usage-- -dsk/total- -net/total- ---paging-- ---system--
5 usr sys idl wai stl| read writ| recv send|
                                              in
                                                    out | int
                                                                CSW
         0
           96
                4
                    0 | 1219k | 408k |
                                                      0 | 42
                                     0
                                          0
                                                                885
            2 98
                        34M
                               0 | 198B
                                        790B
                                                      0 |
                                                          42
                                                               138
8
        0
            0 100
                    0
                        34M
                               0 |
                                    66B
                                        342B
                                                      0 |
                                                          42
                                                               135
9
        0 84 16
                    0 | 5633k
                               0 |
                                                      0 |
                                                           52
                                    66B
                                        342B
                                                0
                                                                177
        3 39 58
                        22M
                               0 |
                                                      0 | 43
                    0
                                    66B
                                        342B
11
        0
            0 100
                    0| 34M
                               0 | 200B
                                        450B
                                                0
                                                      0 | 46
                                                                147
12
        0
            2 98
                        34M
                               0 |
                                                      0 | 45
                    0
                                    66B
                                        342B
                                                0
                                                                134
13
            0 100
                    0
                        34M
                               0 |
                                    66B
                                        342B
                                                      0 | 39
                                                                131
                               0 |
14
        0 83 17
                    0 | 5633k
                                    66B
                                        342B
                                                0
                                                      0 | 46
                                                                168
15
         3 39 59
                        22M
                               0 |
                                    66B
                                        342B
                                                0
                                                      0 | 37
                    0
                                                                134
```

从 dstat 的输出,我们可以看到,每当 iowait 升高(wai)时,磁盘的读请求(read)都会很大。这说明 iowait 的升高跟磁盘的读请求有关,很可能就是磁盘读导致的。

那到底是哪个进程在读磁盘呢?不知道你还记不记得,上节在 top 里看到的不可中断状态进程,我觉得它就很可疑,我们试着来分析下。

我们继续在刚才的终端中, 运行 top 命令, 观察 D 状态的进程:

```
■ 复制代码
1 # 观察一会儿按 Ctrl+C 结束
2 $ top
3 ...
  PID USER
                                 SHR S %CPU %MEM
              PR NI VIRT
                            RES
                                                  TIME+ COMMAND
              20 0 44676 4048 3432 R 0.3 0.0 0:00.05 top
5 4340 root
6 4345 root
             20 0 37280 33624 860 D 0.3 0.0 0:00.01 app
7 4344 root
              20 0 37280 33624
                                860 D 0.3 0.4 0:00.01 app
8 ...
9
```

我们从 top 的输出找到 D 状态进程的 PID, 你可以发现,这个界面里有两个 D 状态的进程, PID 分别是 4344 和 4345。

接着,我们查看这些进程的磁盘读写情况。对了,别忘了工具是什么。一般要查看某一个进程的资源使用情况,都可以用我们的老朋友 pidstat,不过这次记得加上 -d 参数,以便输出 I/O 使用情况。

比如,以 4344 为例,我们在终端里运行下面的 pidstat 命令,并用 -p 4344 参数指定进程号:

```
■ 复制代码
1 # -d 展示 I/O 统计数据, -p 指定进程号, 间隔 1 秒输出 3 组数据
2 $ pidstat -d -p 4344 1 3
             UID
3 06:38:50
                      PID
                             kB rd/s kB wr/s kB ccwr/s iodelay Command
4 06:38:51
               a
                      4344
                               0.00
                                        0.00
                                                 0.00
                                                           0 app
5 06:38:52
                               0.00
                0
                      4344
                                        0.00
                                                 0.00
                                                           0 app
6 06:38:53
                      4344
                               0.00
                                        0.00
                                                 0.00
                                                           0 app
```

在这个输出中, kB_rd 表示每秒读的 KB 数, kB_wr 表示每秒写的 KB 数,iodelay 表示 I/O 的延迟(单位是时钟周期)。它们都是 0,那就表示此时没有任何的读写,说明问题不是 4344 进程导致的。

可是,用同样的方法分析进程4345,你会发现,它也没有任何磁盘读写。

那要怎么知道,到底是哪个进程在进行磁盘读写呢?我们继续使用 pidstat,但这次去掉进程号,干脆就来观察所有进程的 I/O 使用情况。

在终端中运行下面的 pidstat 命令:

```
■ 复制代码
2 $ pidstat -d 1 20
4 06:48:46
                UID
                          PID
                                kB rd/s
                                          kB wr/s kB ccwr/s iodelay Command
   06:48:47
                   0
                                                       0.00
                          4615
                                   0.00
                                             0.00
                                                                     kworker/u4:1
6 06:48:47
                   0
                          6080
                               32768.00
                                             0.00
                                                       0.00
                                                                170
                                                                     app
   06:48:47
                          6081
                                32768.00
                                             0.00
                                                       0.00
                                                                184
                                                                     app
9 06:48:47
                UID
                          PID
                                 kB rd/s
                                          kB_wr/s kB_ccwr/s iodelay
                                                                     Command
10 06:48:48
                   0
                          6080
                                   0.00
                                              0.00
                                                       0.00
                                                                110
                                                                     app
11
12 06:48:48
                 UTD
                          PID
                                kB rd/s
                                          kB_wr/s kB_ccwr/s iodelay
                                                                     Command
13 06:48:49
                   0
                          6081
                                   0.00
                                              0.00
                                                       0.00
                                                                191
14
15 06:48:49
                UID
                          PID
                                kB_rd/s
                                          kB_wr/s kB_ccwr/s iodelay Command
16
17 06:48:50
                 UID
                          PID
                                kB rd/s
                                          kB wr/s kB ccwr/s iodelay
                                                                     Command
                   0
                                                       0.00
18 06:48:51
                          6082 32768.00
                                             0.00
                                                                     app
19 06:48:51
                          6083
                                32768.00
                                              0.00
                                                       0.00
                                                                     app
                UID
                          PID
21 06:48:51
                                kB_rd/s
                                          kB_wr/s kB_ccwr/s iodelay
                                                                     Command
22 06:48:52
                   0
                          6082
                               32768.00
                                              0.00
                                                       0.00
                                                                     app
23 06:48:52
                   0
                          6083
                               32768.00
                                              0.00
                                                       0.00
                                                                175
                                                                     app
24
25 06:48:52
                UID
                          PID
                                          kB wr/s kB ccwr/s iodelay
                                kB rd/s
26 06:48:53
                   0
                          6083
                                   0.00
                                             0.00
                                                       0.00
                                                                105
                                                                     app
27 ...
```

观察一会儿可以发现,的确是 app 进程在进行磁盘读,并且每秒读的数据有 32 MB,看来就是 app 的问题。不过,app 进程到底在执行啥 I/O 操作呢?

这里,我们需要回顾一下进程用户态和内核态的区别。进程想要访问磁盘,就必须使用系统调用,所以接下来,重点就是找出 app 进程的系统调用了。

strace 正是最常用的跟踪进程系统调用的工具。所以,我们从 pidstat 的输出中拿到进程的 PID号,比如 6082,然后在终端中运行 strace 命令,并用 -p 参数指定 PID 号:

```
1 $ strace -p 6082
2 strace: attach: ptrace(PTRACE_SEIZE, 6082): Operation not permitted
```

这儿出现了一个奇怪的错误,strace 命令居然失败了,并且命令报出的错误是没有权限。按理来说,我们所有操作都已经是以 root 用户运行了,为什么还会没有权限呢?你也可以先想一下,碰到这种情况,你会怎么处理呢?

没有权限,一般遇到这种问题,先检查一下进程的状态是否正常

一般遇到这种问题时,我会先检查一下进程的状态是否正常。比如,继续在终端中运行 ps 命令,并使用 grep 找出刚才的 6082 号进程:

```
■ 复制代码
1 $ ps aux | grep 6082
          6082 0.0 0.0
                           0 0 pts/0
2 root
                                          Z+ 13:43 0:00 [app] <defunct>
```

果然, 进程 6082 已经变成了 Z 状态, 也就是僵尸进程。 僵尸进程都是已经退出的进程, 所以 就没法儿继续分析它的系统调用。关于僵尸进程的处理方法,我们一会儿再说,现在还是继续分 析 iowait 的问题。

到这一步,你应该注意到了,系统 iowait 的问题还在继续,但是 top、pidstat 这类工具已经不 能给出更多的信息了。这时,我们就应该求助那些基于事件记录的动态追踪工具了。

你可以用 perf top 看看有没有新发现。再或者,可以像我一样,在终端中运行 perf record, 持续一会儿(例如 15 秒),然后按 Ctrl+C 退出,再运行 perf report 查看报告:

```
■ 复制代码
1 $ perf record -g
2 $ perf report
```

接着,找到我们关注的 app 进程,按回车键展开调用栈,你就会得到下面这张调用关系图:

```
Samples: 143K of event 'cpu-clock', Event count (approx.): 35954750000
 Children
               Self Command
                                      Shared Object
                                                                  Symbol
                                                                  [k] 0x00000000002000d5
                                      [kernel.vmlinux]
                                                                  [k] cpu_startup_entry
              0.00% swapper
             0.00% swapper
             0.00% swapper
                                      [kernel.vmlinux]
                                      [kernel.vmlinux]
                                      [kernel.vmlinux]
                                      [kernel.vmlinux].init.text [k] x86_64_start_kernel
              0.00%
                                      [kernel.vmlinux].init.text [k] x86_64_start_reservations
              0.00%
                     swapper
              0.00%
                     swapper
                                      [kernel.vmlinux]
              0.00%
                                      [kernel.vmlinux]
    do_syscall_64
        - blkdev_direct_I0
           - 0.57% bio_iov_iter_get_pages
              iov_iter_get_pages
              + get_user_pages_fast
                                                                  [k] do_syscall_64
      - 0.64% sys_read
          new_sync_read
        blkdev_direct_I0
           + 0.57% bio_iov_iter_get_pages
                                                                  [k] 0x10be258d4c544155
```

这个图里的 swapper 是内核中的调度进程, 你可以先忽略掉。

我们来看其他信息,你可以发现, app 的确在通过系统调用 sys_read() 读取数据。并且从 new_sync_read 和 blkdev_direct_IO 能看出,进程正在对磁盘进行**直接读**,也就是绕过了系统 缓存,每个读请求都会从磁盘直接读,这就可以解释我们观察到的 iowait 升高了。

看来,罪魁祸首是 app 内部进行了磁盘的直接 I/O 啊!

下面的问题就容易解决了。我们接下来应该从代码层面分析,究竟是哪里出现了直接读请求。查看源码文件 app.c, 你会发现它果然使用了 O_DIRECT 选项打开磁盘,于是绕过了系统缓存,直接对磁盘进行读写。

```
1 open(disk, O_RDONLY|O_DIRECT|O_LARGEFILE, 0755)
```

直接读写磁盘,对 I/O 敏感型应用(比如数据库系统)是很友好的,因为你可以在应用中,直接控制磁盘的读写。但在大部分情况下,我们最好还是通过系统缓存来优化磁盘 I/O,换句话说,删除 O DIRECT 这个选项就是了。

app-fix1.c 就是修改后的文件,我也打包成了一个镜像文件,运行下面的命令,你就可以启动它了:

```
1 # 首先删除原来的应用
2 $ docker rm -f app
3 # 运行新的应用
4 $ docker run --privileged --name=app -itd feisky/app:iowait-fix1
```

最后, 再用 top 检查一下:

```
■ 复制代码
2 top - 14:59:32 up 19 min, 1 user, load average: 0.15, 0.07, 0.05
3 Tasks: 137 total, 1 running, 72 sleeping, 0 stopped, 12 zombie
4 %Cpu0 : 0.0 us, 1.7 sy, 0.0 ni, 98.0 id, 0.3 wa, 0.0 hi, 0.0 si, 0.0 st
5 %Cpu1 : 0.0 us, 1.3 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
6 ...
8
   PID USER
                 PR NI
                          VIRT
                                 RES
                                        SHR S %CPU %MEM
                                                          TIME+ COMMAND
                                   0
   3084 root
                 20
                    a
                                          0 Z
                                              1.3 0.0 0:00.04 app
10
   3085 root
                 20 0
                                          0 Z
                                               1.3 0.0
                                                         0:00.04 app
11
     1 root
                 20 0 159848
                                9120
                                      6724 S
                                               0.0 0.1
                                                         0:09.03 systemd
      2 root
                 20 0
                                   a
                                          0 S
                                               0.0 0.0 0:00.00 kthreadd
12
      3 root
                 20
                                          0 I
                                               0.0 0.0 0:00.40 kworker/0:0
14 ...
```

你会发现,iowait 已经非常低了,只有 0.3%,说明刚才的改动已经成功修复了 iowait 高的问题,大功告成!不过,别忘了,僵尸进程还在等着你。仔细观察僵尸进程的数量,你会郁闷地发现,僵尸进程还在不断的增长中。

僵尸进程

接下来,我们就来处理僵尸进程的问题。既然僵尸进程是因为父进程没有回收子进程的资源而出现的,那么,要解决掉它们,就要找到它们的根儿,**也就是找出父进程,然后在父进程里解决。**

父进程的找法我们前面讲过,最简单的就是运行 pstree 命令:

运行完, 你会发现 3084 号进程的父进程是 4009, 也就是 app 应用。

所以,我们接着查看 app 应用程序的代码,看看子进程结束的处理是否正确,比如有没有调用wait() 或 waitpid() , 抑或是,有没有注册 SIGCHLD 信号的处理函数。

现在我们查看修复 iowait 后的源码文件 app-fix1.c , 找到子进程的创建和清理的地方:

```
■ 复制代码
1 int status = 0;
    for (;;) {
       for (int i = 0; i < 2; i++) {
         if(fork()== 0) {
5
           sub_process();
         }
6
7
       }
8
     sleep(5);
9
11
     while(wait(&status)>0);
```

循环语句本来就容易出错,你能找到这里的问题吗?这段代码虽然看起来调用了 wait() 函数等待子进程结束,但却错误地把 wait() 放到了 for 死循环的外面,也就是说,wait() 函数实际上并没被调用到,我们把它挪到 for 循环的里面就可以了。

修改后的文件我放到了 <u>app-fix2.c</u> 中,也打包成了一个 Docker 镜像,运行下面的命令,你就可以启动它:

```
1 # 先停止产生僵尸进程的 app
2 $ docker rm -f app
3 # 然后启动新的 app
4 $ docker run --privileged --name=app -itd feisky/app:iowait-fix2
```

启动后,再用 top 最后来检查一遍:

```
■ 复制代码
1 $ top
2 top - 15:00:44 up 20 min, 1 user, load average: 0.05, 0.05, 0.04
                                        0 stopped,
3 Tasks: 125 total, 1 running, 72 sleeping,
4 %Cpu0 : 0.0 us, 1.7 sy, 0.0 ni, 98.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
5 %Cpu1 : 0.0 us, 1.3 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
7
   PID USER
8
              PR NI VIRT
                               RES
                                  SHR S %CPU %MEM
                                                     TIME+ COMMAND
  3198 root
                20 0
                        4376
                               840
                                    780 S 0.3 0.0 0:00.01 app
                        0
                                      0 S 0.0 0.0 0:00.00 kthreadd
    2 root
                               0
10
              20 0
                                      0 I 0.0 0.0 0:00.41 kworker/0:0
11
    3 root
              20 0
                         0
                               0
12 ...
```

好了, 僵尸进程(Z状态)没有了, iowait 也是 0, 问题终于全部解决了。

小结

今天我用一个多进程的案例,带你分析系统等待 I/O 的 CPU 使用率 (也就是 iowait%) 升高的情况。

虽然这个案例是磁盘 I/O 导致了 iowait 升高,不过, iowait 高不一定代表 I/O 有性能瓶颈。 当系统中只有 I/O 类型的进程在运行时,iowait 也会很高,但实际上,磁盘的读写远没有达到 性能瓶颈的程度。

因此,碰到 iowait 升高时,需要先用 dstat、pidstat 等工具,确认是不是磁盘 I/O 的问题,然后再找是哪些进程导致了 I/O。

等待1/0的进程一般是不可中断状态

等待 I/O 的进程一般是不可中断状态,所以用 ps 命令找到的 D 状态 (即不可中断状态) 的进程,多为可疑进程。但这个案例中,在 I/O 操作后,进程又变成了僵尸进程,所以不能用 strace 直接分析这个进程的系统调用。

这种情况下,我们用了 perf 工具,<mark>来分析系统的 CPU 时钟事件</mark>,最终发现是直接 I/O 导致的问题。这时,再检查源码中对应位置的问题,就很轻松了。

而僵尸进程的问题相对容易排查,使用 pstree 找出父进程后,去查看父进程的代码,检查 wait() / waitpid() 的调用,或是 SIGCHLD 信号处理函数的注册就行了。

僵尸进程一般可以通过pstree查看父进程的代码,检查wait()/waitpid()的调用,或是SIGCHLD信号处理函数的注册就行了。

思考

最后,我想邀请你一起来聊聊,你碰到过的不可中断状态进程和僵尸进程问题。你是怎么分析它们的根源?又是怎么解决的?在今天的案例操作中,你又有什么新的发现吗?你可以结合我的讲述,总结自己的思路。

欢迎在留言区和我讨论,也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中讲步。

©版权归极客邦科技所有,未经许可不得转载

上一篇 07 | 案例篇:系统中出现大量不可中断进程和僵尸进程怎么办? (上)

写留言

精选留言

zecho

ර 11

提一个建议,案例的讲解过于简单,与预期有些差距,很多时候我们实际遇到的要比这个复杂,这会带来不是简单的几个命令就可以,特别需要更深入的工具,比如brendan中火焰图,perf-tools,或者systemtab等等;希望能找些实际的案例,谢谢。

2018-12-07

王涛

凸 10

d8打卡。看完这部分,作为一名运维人员就尴尬了,当开发跟你说机器性能有问题时,这个问题就变成了甩锅问题。开发说代码没问题,你又看不懂开发的代码。。。。

2018-12-07

柯锦玲(侠客行)

凸 3

dock镜像等资料在哪里下载?

2018-12-07

姜小鱼

ഥ 1

老师: iowait%生高并不能得出存在io性能的结论,还要继续看io量(dstat)和io并发等情况.那么这个io量到底达到多少才能说明存在性能瓶颈?有一个量化指标吗?期待回复,谢谢 2018-12-07

机机机机机机机机机机机机机

凸 1

@jeff,数据库一般都有自己的数据缓冲池bufferpool,在合适的时间,数据库会从磁盘读入数据到bufferpool,或者从bufferpool写出数据到磁盘。在这种情况下,再使用文件系统缓存,反而不会有性能的提升,而且数据库写出数据到磁盘的时候,必须写到了磁盘才算真的完成了数据的持久化。

2018-12-07

我来也

凸 1

[D8打卡]

今天又学了两个乖, dstat可以同时看cpu和io. (上篇文章安装后只看了下效果,没想到这一层).s trace可以追踪系统调用.

虽然我之前也写过linux c程序,但是看到sys_read/new_sync_read/blkdev_direct_IO确实不知道是正在对磁盘进行直接读,即使看了代码也不知道 O_DIRECT 这个参数就是直接读.还是功力太浅,线索摆在前面也抓不住,哈哈.

有些同学问"服务出现僵尸进程时, 怎样处理".

其实我也不知道怎么处理,但是我把那个父进程杀掉, 僵尸进程就几乎没有了.

上一篇文章中,老师也提到过[通常,僵尸进程持续的时间都比较短,在父进程回收它的资源后就会消亡;或者在父进程退出后,由 init 进程回收后也会消亡]

2018-12-07

nsggj

凸 1

老师,请问一下,perf除了可以检测C++之外,其他的代码如java,php的问题可以检测吗? 2018-12-07

运维小司机

ഥ 1

后面那两个镜像,我不知道是不是我系统的问题,我运行iowait直接飚满了,系统直接卡死。

2018-12-07

gohonsen

凸 1

你好,针对主题"出现大量不可中断进程"怎能办,还希望写一下对应处理方法,比如是线上生产环境必须执行reboot?还有之前接触过一次有个测试工具,可以把运行中的一个进程设置成D状态,测试完了还能把状态还原回来,不知道是怎么实现的,你这里有没有可提供的思路比如一个系统调或者修改某个参数值能修改进程状态的?

2018-12-07

walker

凸 1

有时候直接杀死僵尸进程的时候会导致服务不可用,或是崩溃。在线上运行的服务出现僵尸进程时,怎样处理比较好呢?

2018-12-07

路过

ம் 1

用ubuntu 做实验很顺利。请问老师,曾经发生僵尸进程的父进程是1,服务器又不方便重启,如何清理这样的僵尸进程?谢谢老师!

2018-12-07

每天晒白牙

凸 1

【D8打卡】

今天主要学习的是系统中出现了大量不可中断进程和僵尸进程的处理方法现象。

- ①iowait太高,导致平均负载升高,并且达到了系统CPU的个数
- ②僵尸进程不断增多

分析过程:

- 1.先分析iowait升高的原因
- 一般iowait升高,可能的原因是i/o问题
- ①用dstat 命令同时查看cpu和i/o对比情况(如 dstat 1 10 间隔1秒输出10组数据),通过结果可以发现iowait升高时,磁盘读请求(read)升高

所以推断iowait升高是磁盘读导致

- ②定位磁盘读的进程,使用top命令查看处于不可中断状态(D)的进程PID
- ③查看对应进程的磁盘读写情况,使用pidstat命令,加上-d参数,可以看到i/o使用情况(如 pidstat -d -p <pid> pid> 1 3) ,发现处于不可中断状态的进程都没有进行磁盘读写
- ④继续使用pidstat命令,但是去掉进程号,查看所有进程的i/o情况(pidstat -d 1 20),可以定位到进行磁盘读写的进程。我们知道进程访问磁盘,需要使用系统调用,

下面的重点就是找到该进程的系统调用

⑤使用strace查看进程的系统调用 strace -p < pid>

发现报了 strace:attach:ptrace(PTRACE_SIZE, 6028): Operation not peritted,说没有权限,我是使用的root权限,所以这个时候就要查看进程的状态是否正常

- ⑥ps aux | grep <pid> 发现进程处于Z状态,已经变成了僵尸进程,所以不能进行系统调用 分析了
- ⑦既然top和pidstat都不能找出问题,使用基于事件记录的动态追踪工具如果是centos系统,可以使用下面的方法
- 在容器外面把分析记录保存, 到容器里面查看结果

操作:

- (1) 在centos系统上运行 perf record -g , 执行一会儿按ctrl+c停止
- (2) 把生成的perf.data (通常文件生成在命令执行的当前目录下,当然可以通过find | grep perf.data或 find / -name perf.data查看路径) 文件拷贝到容器里面分析:

docker cp perf.data app:/tpm

docker exec -i -t app bash

cd /tmp/

apt-get update && apt-get install -y linux-perf linux-tools procps perf_4.9 report

然后观察调用栈信息,检查是否有磁盘读操作,这个案例是定位到了进行磁盘的直接读,当然也可以查看源码进行验证。因为我的centos系统用老师的 iowait镜像iowait升高不明显,所以使用的是iowait-new2镜像,可以得到想要的结果,但是这个镜像把我的系统能搞崩溃,所以我只能执行到cd /tmp/这步,下面那部就执行不下去了。但是整个分析过程还是理解了。

2.僵尸进程

僵尸进程出现的原因是父进程没有回收子进程的资源出现的。解决办法是找到父进程,在父进程中处理,使用pstree查父进程,然后查看父进程的源码检查wait()/waitpid()的调用或SIGCHLD信号处理函数的注册

2018-12-07

larkin

凸 1

打卡

2018-12-07

白华

ഥ 1

今天进行实验看来还是不会成功的,上次在你的docker hub仓库中看到了iowait镜像,试了最新的几个,在centos7虚拟机中还是不行

2018-12-07

mj4ever

ഥ ()

通过本篇知识实践, 谈谈学习感受:

- 1、在使用perf进一步排查代码时,由于对I/O深层次知识不了解,所以,无法进行分析
- 2、看到有人留言"直接读写磁盘为什么对数据库程序更友好"以及文章中提到"new_sync_read"& "blkdev_direct_IO",就去百度了下,找到了这篇文章《Linux 中直接 I/O 机制的介绍》,https://www.ibm.com/developerworks/cn/linux/l-cn-directio/
- 3、文章中讲解了 缓存I/O、自缓存应用程序、直接I/O技术、异步访问文件方式等知识,能看懂一些,还谈不上深入理解,但是可以回答上面的一些问题:
- (1) 通常情况下,缓存I/O会提高性能,但是对于数据库类型的软件,它会比操作系统更了解数据库中存放的数据,可以提供一种更有效的机制(如自缓存应用程序)来提高数据库中数据的存取性能
- (2) 要在块设备中执行直接 I/O, 进程必须在打开文件的时候设置对文件的访问模式为 O_D IRECT

2018-12-07

作者回复

4 思路很正确

2018-12-07

路讨

心 (1

听课程,还会需要有点编程的功底,否则这个问题排查起来只能粗暴简单处理了。把锅丢给 开发了。:)

2018-12-07

作者回复

嗯嗯 了解一些编程的基本功很有帮助,特别是复杂问题的最后很可能要去分析函数调用栈等,更需要一定的编程功底。

2018-12-07

破晓

心 ()

老师想问下关于cpu使用率这块的概念,sytem的cpu使用率,包不包含iowait的?他们之间是什么关系?

2018-12-07

Adam

心 (

数据库服务器,一般为了充分提高性能,可能会考虑绕过内核缓冲区,由自己在用户态空间实现并管理IO缓冲区,包括缓存机制等。即在open系统调用中增加参数选项O_DIRECT,用它打开的文件便可以绕过内核缓冲区直接访问。

2018-12-07

路讨

心 ()

老师,我使用perf record -g命令收集信息了。收集了很多次,每次都是command列为swa pper的左侧有加号,而为app或其他的,都没有加号。但可以在symbol列,看到sys_read,n ew_sync_read, blkdev_read_iter等信息。我的系统也用Ubuntu 18.04. 不知道为何不能还原您的实现场景。

2018-12-07

渡渡鸟_linux

ന ()

1. 僵尸讲程:

查看僵尸进程数量,持续时间以及僵尸进程产生速率来判断僵尸进程的危害性 查看僵尸进程的父进程,如果是业务进程则需要分析业务代码,如果是系统进程,比如cro n,可以查看是具体计划任务产生的还是cron配置问题

2. iowait高,很容易引起负载高,从而影响并发处理能力,并伴随有大量D状态进程。常见于坏盘,分布式存储性能瓶颈等……

2018-12-07