Ahsanullah University of Science and Technology Department of Computer Science and Engineering

CSE 210: Digital Electronics and Pulse Techniques Sessional

Experiment #1

Name of the experiment: Study of DL and DTL gates.

CKT diagram:

1. 450 ohms 450 ohms V₂

2.

450 ohms

450 ohms

Vo

3. $V_{cc} = 5v$ $V_{cc} = 5v$ V

Procedure:

- 1. For ckt1 and ckt2 measure the output voltage V_{o} for all possible input combinations.
- 2. For ckt3 and ckt4 measure V_D , V_{D1} , V_{D2} , V_P , V_{CE} and V_o for all possible inputs. Calculate the $h_{FE(min)}$, NM(0) and NM(1).

Questions:

- 1. Analyze the ckt1 and ckt2 with the help of truth table for both positive and negative logic. [ck1, ck2]
- 2. What happens in V_R is more positive than V(1)? [ck1]
- 3. What happens if not all inputs have the same upper level? [ck1, ck2]
- 4. Why diode D_2 is used? [ck3, ck4]
- 5. Can emitter and collector be interchanged? [ck3, ck4]
- 6. What is the significant of h_{FE(min)}? [ck3, ck4]

- 1. Objective.
- 2. Circuit diagram.
- 3. Answer to the questions.
- 4. Experimental data.
- 5. Calculations.
- 6. Discuss the findings.

Experiment #2

Name of the experiment: Study of a transistorized NOT gate.

CKT diagram:

Procedure:

- Fix the value of R₁, R₂, V and vary R₃; measure V₀ and V_B.
 Fix the value of R₁, R₃, V and vary R₂; measure V₀ and V_B.
 Fix the value of R₂, R₃, V and vary R₁; measure V₀ and V_B.
 Fix the value of R₁, R₂, R₃ and vary V; measure V₀ and V_B.

Questions:

- 1. Which factor affect the switching speed of a transistor and how?
- 2. What is the effect of R_1 ? Can it be very large?
- 3. Are there any effects of temperature on the circuit?

- 1. Objective.
- 2. Circuit diagram.
- 3. Answer to the questions.
- 4. Experimental data.
- 5. Calculations.
- 6. Discuss the findings.

Name of the experiment: Study of a TTL NAND gate with totem-pole output.

Circuit Diagram:

Procedure:

- 1. Measure the V_0 , V_1 , V_2 , V_3 , V_4 , V_5 & V_6 for all possible input combinations.
- 2. Calculate noise margins.

Questions:

- 1. Analyze the operation of TTL NAND gate with the experimental data.
- 2. What are the differences of transistors T_1 & T_2 with that of a multi-emitter transistor? [Hint: Millman Sec 4-7,5-11]
- 3. What is totem-pole stage? Why it is used in place of passive pull-up resistor? [Hint: Millman Sec 5-12]
- 4. What is the function of T₃? [Hint: Millman Sec 5-12]
- 5. Why resistor R₄ is used? [Hint: Millman Sec 5-12]
 6. Why diode D0 is used in the circuit? Can it be placed elsewhere? [Hint: Millman Sec 5-121
- 7. Why two totem pole gates cannot be wire ANDed? [Hint: Millman pg. 151]
- 8. What are the features and advantages of TTL gates? [Hint: Millman Sec 5-15]

- 1. Objective.
- 2. Circuit diagram.
- 3. Answer to the questions.
- 4. Experimental data.
- 5. Calculations.
- 6. Discuss the findings.

Experiment # 4

Name of the experiment: Study of a RTL NOR gate.

Procedure:

- 1. Measure the output voltage (V_0) for all possible input combinations.
- 2. Connect the V_{i1} input to ground, vary V_{i2} and measure V_0 .
- 3. Connect the V_{i2} input to ground, vary V_{i1} and measure V_0 .

Questions:

- 1. Analyze the operation of RTL NOR gate with the experimental data.
- 2. What is the importance of studying the RTL gate? [Hint: Millman pg. 162]
- 3. Draw the V_0 vs. V_{i1} and V_{i2} curves.

- 1. Objective.
- 2. Circuit diagram
- 3. Answer to the questions.4. Experimental data.
- 5. Calculations.
- 6. Discuss the findings.

Experiment # 5

Name of the Experiment: Implementation of clocked SR Flip Flop using RTL NOR gates.

Circuit Diagram:

Procedure:

1. Measure the output voltages at Q & \overline{Q} and voltages V_1 , V_2 for all possible input (S,R) combinations.

Questions:

- 1. Analyze the operation of SR FF with the experimental data.
- 2. What is the race around condition in SR FF? Discuss with respect to the internal circuit.

- 1. Objective.
- 2. Circuit diagram.
- 3. Answer to the questions.
- 4. Experimental data.
- 5. Calculations.
- 6. Discuss the findings.