Exercices

Exercice 1

1) Quel est la décision à la racine

Décision à la racine : Sommet B, car il a le plus grand poids des trois.

- 2) Donnez les valeurs des 3 sommets successeurs de la racine qui justifie cette décision.
 - $S_1:1$
 - S₂:5
 - S₃:1
- 3) Donnez l'ordre de visite des sommets de l'arbre, l'ordre est obtenu par le premier accès au cours du parcours en profondeur d'abord.

$$S_{1} \rightarrow S_{4} \rightarrow S_{10} \rightarrow S_{19} \rightarrow S_{20} \rightarrow S_{11} \rightarrow S_{21} \rightarrow S_{5} \rightarrow S_{12} \rightarrow S_{22} \rightarrow S_{23} \rightarrow S_{13} \rightarrow S_{6} \\ \rightarrow S_{2} \rightarrow S_{7} \rightarrow S_{14} \rightarrow S_{24} \rightarrow S_{25} \rightarrow S_{15} \rightarrow S_{26} \\ \rightarrow S_{3} \rightarrow S_{32} \rightarrow S_{8} \rightarrow S_{16} \rightarrow S_{27} \rightarrow S_{28} \rightarrow S_{29} \rightarrow S_{9} \rightarrow S_{17} \rightarrow S_{30} \rightarrow S_{31} \rightarrow S_{18}$$

4) Y-a-t-il des sommets non visités par l'algorithme du MinMax?

Tous les sommets pouvant être atteint, en partant de la racine par un chemin de longueur inférieur ou égale à 4 (l'arbre visible sur le sujet), sont visités. Tous les sommets nécessitant un chemin de longueur strictement supérieure à 4 (la profondeur) ne sont pas visités.

5) Donnez la valeur finale renvoyée par les sommets de l'arbre sauf celles des feuilles et celle des 4 premiers sommets de l'arbre S 0 , S 1 , S 2 , S 3 .

1) Quelle est la décision à la racine?

AlphaBeta renvoie la même chose que MinMax, la décision à la racine est S_2 .

2) Donnez l'ordre de visite des sommets de l'arbre, l'ordre est obtenu par le premier accès au cours du parcours en profondeur d'abord.

Voici l'évolution d'AlphaBeta dans l'arbre:

$$S_1
ightarrow S_4
ightarrow S_{10}
ightarrow S_{19}
ightarrow S_{20}
ightarrow S_{11}
ightarrow S_{21}
ightarrow S_5
ightarrow S_{12}
ightarrow S_{22}
ightarrow S_{23}
ightarrow S_{13}
ightarrow S_6 \
ightarrow S_2
ightarrow S_7
ightarrow S_{14}
ightarrow S_{24}
ightarrow S_{25}
ightarrow S_{15}
ightarrow S_{26} \
ightarrow S_3
ightarrow S_{32}$$

3) Quels sont les sommets qui peuvent modifier la valeur de α ?

Tous les sommets de profondeur paire qui ne sont pas ignorés

4) Quels sont les sommets qui peuvent modifier la valeur de β ?

Tous les sommets de profondeur impaire qui ne sont pas ignorés

5) Y-a-t-il des sommets non visités par l'algorithme de l'alpha-beta?

On s'attend a avoir $2\sqrt{n}-1=2\sqrt{32}-1=10$ sommets non visités. En l'occurrence on a tous les sommets en dessous des nœuds S_8 et S_9 (exclus eux aussi) qui ne sont pas visités, c'est à dire précisément les sommets

 $S_8 o S_{16} o S_{27} o S_{28} o S_{29} o S_9 o S_{17} o S_{30} o S_{31} o S_{18}$, c'est à dire 10 sommets en tout, ce qui correspond bien à ce qui est attendu.

6) Donnez la valeur finale renvoyée par les sommets visités de l'arbre sauf celles des feuilles, ainsi que les valeurs de α et β lorsqu'on accède pour la première fois au sommet et lorsqu'on quitte le sommet.

