

Tasks

Какие виды задач можно решать?

One to one: стандартные задачи для MLP

One to many: image description generation by image

Many to one: text classification

Many to many: machine translation, POS-tagging

Seq2Seq

Задача машинного перевода: в чем здесь недостаток?

Seq2Seq

- Нужно сжать весь текст в один вектор
- Теряется информация о первых словах
- Декодер тоже может терять информацию по мере генерации последовательности
- Можно использовать BiLSTM, но тогда будет теряться информация о словах в середине
- И непонятно, как им декодировать

Возможное решение

Во время генерации каждого следующего слова будем смотреть на *всю* входную последовательность

А как это сделать?

Возможное решение

Во время генерации каждого следующего слова будем смотреть на всю входную последовательность

Усредним все скрытые состояния

Возможное решение

Во время генерации каждого следующего слова будем смотреть на всю входную последовательность

Усредним все скрытые состояния?

Недостаток: все слова будут влиять на каждое слово перевода одинаково

- Нам нужна взвешенная сумма всех скрытых состояний!
- А значит, там нарисовывается какая-то линейная модель
- На каждом шаге эти веса должны будут пересчитываться

- Вектор с функция скрытых состояний энкодера: $c = f(h_1^e, ... h_n^e)$.
- Еще жутких формул: $h_i^d = g(\widehat{y}_{i-1}, h_{i-1}^d, c_i)$

• Как же вычислить c_i ?

- Надо сперва вычислить, насколько релевантно каждое h_i^e текущему h_i^d
- Самое простое косинусное расстояние
- $score(h_{i-1}^d, h_i^e) = h_{i-1}^d \cdot h_i^e$
- Для текущего скрытого состояния декодера можем посчитать вектор косинусных расстояний со всеми скрытыми состояниями энкодера

И потом от этого взять softmax, чтобы превратить в вероятности:
$$\alpha_{ij} = softmax \big(score \big(h_{i-1}^d, h_j^e \big) \forall j \in e \big) = \frac{exp(score \big(h_{i-1}^d, h_j^e \big)}{\sum_k exp \left(score \big(h_{i-1}^d, h_k^e \big) \right)}$$

Так мы получим веса: теперь можно их перемножить с исходными скрытыми состояниями $c_i = \sum_i lpha_{ii} h_i^e$

- dot product это самый простой способ вычислить внимание (без обучаемых параметров!)
- но можно сделать похитрее и вместо косинусного расстояния добавить свою линейную функцию с обучаемыми весами:

$$score(h_{i-1}^d, h_j^e) = h_{t-1}^d W_s h_j^e$$

• этот способ позволяет декодеру и энкодеру иметь вектора различающейся размерности

Языковая модель на RNN

Мы с вами уже знаем:

- Модели на n-грамах (с использованием Марковских цепей)
- BoW и skip-gram: они лежат в основе word2vec

Статические эмбеддинги: word2vec, <u>fasttext</u>, <u>GloVE</u>

Есть еще контекстные эмбеддинги. А почему, кстати, все вышеназванные – не контекстные?

ELMo и контекстуальные эмбеддинги

- word2vec учим решать задачи BoW & skip-gram на больших датасетах
- а если взять LSTM? А лучше Bi-LSTM
- и обучить сетку решать те же самые задачи...
- ELMo (Embeddings from Language Models) фреймворк, созданный AllenNLP.
- ELMo Bi-LSTM, которую учили предсказывать следующее слово в предложении

ELMo и контекстуальные эмбеддинги

- ELMo модель, которая учитывает контекст слова
- Поэтому и эмбеддинги называются contextualized
- elmo подмодуль allennip

ELMo и контекстуальные эмбеддинги

- Как работает?
- Подробнее

Основная идея

- А что, если механизм внимания применить к самому же энкодеру?..
- Возьмем предложение, рассчитаем взаимоотношения его слов и получим новые эмбеддинги для них

Основная идея

Что нам это даст?

- мы можем обойтись без RNN и одновременно смотреть на все слова в инпуте
- (а это можно вычислительно распараллелить)
- можно будет установить связи между словами исходного предложения

Self-attention

- Энкодеры можем настакать
- Отлично, получим:

• А что это там внутри?

Self-attention

Будем для каждого слова x_i обучать три вектора:

- Запрос (query) текущий фокус внимания $q_j = W_Q x_j$
- Ключ (key) предыдущий инпут в сравнении с запросом $k_j = W_k x_j$
- Значение (value) для вычисления аутпута текущего фокуса $v_j = W_V x_j$

«Важность» слова x_i для слова x_j : $\langle q_j, k_i angle$

The power of embedding (transfer/project into another tensor space)

The same input sentence (sequence of word+positional embeddings) is projected to **2 different vector tensor spaces Q, K.** Each W (WQ, WK) is a trained model that generates a contextual embedding in a different space.

Self-attention

Вычисляем новый эмбеддинг слова:

$$SelfAttention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Input

Embedding

Queries

Keys

Values

Score

Softmax

Softmax

Χ

Value

Sum

То же в картинках

Multi-headed attention

Механизм работает очень хорошо Давайте настакаем?

Multi-headed attention

- Рассчитаем новые эмбеддинги для слов в энкодере, например, 8 раз
- А потом их сконкатенируем

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Multi-headed attention

• Все махинации на одной картинке:

Transformers vs RNN

Чего-то еще не учли?

Как насчет порядка слов?

Positions

Давайте добавим закодированное положение слова в тексте. Это будут тоже вектора

Positional Encoding Matrix for the sequence 'I am a robot'

Positions

Вычислять их будем с помощью тригонометрии

Positional Encoding Matrix for the sequence 'I am a robot'

подробное объяснение

Positional encodings

Будем их просто добавлять на старте:

Энкодер в трансформере

Энкодер в трансформере

- Исходные эмбеддинги конкатенируем с позиционными
- Вычисляем новые эмбеддинги z (SelfAttention)
- Делаем skip-connections, чтобы градиенты лучше текли
- Layer Norm ??
- Просто разновидность BatchNorm (статья)
- FF изменяет размерность как нам нужно

Трансформер

Для некоторых задач достаточно энкодера, но у трансформера есть и декодер

Encoder-Decoder attention

- Энкодер обрабатывает инпут, получает эмбеддинги
- Их использует каждый из декодеров в своем слое encoder-decoder attention:
- Векторы k_j и v_j получаются домножением матриц K_{encdec} и V_{encdec} на выходы последнего энкодера
- Векторы q_j получаются стандартным образом из предыдущего слоя декодера

Encoder-Decoder attention

Итог:

- Input embeddings
- Positional encoding
- Multi-head attention (attention?)
- Residual & LayerNorm
- Positionwise Feed Forward
- Key, Query, Value
- Формула Attention(Q, K, V)

Autoregression

Masked self-attention

- В некоторых задачах нам нельзя смотреть на слова справа (для генерации текста)
- Декодер на них не должен смотреть
- Занулим их:

$$egin{array}{cccc} a_1 & -\infty & -\infty \ b_1 & b_2 & -\infty \ c_1 & c_2 & c_3 \end{array}$$

• Софтмакс наши $-\infty$ превратит в нули, а остальное в сумме будет давать единицу

Задачи генерации и машинного перевода

• Авторегрессионное применение:

- Сначала декодировщик выдаёт одно слово
- Затем два (первое подаётся как вход)
- Затем три (первые два подаются ему как вход)
- И т.д.

Teacher forcing:

- каждый новый аутпут зависит от предыдущего
- если сетка один раз облажалась, то все поедет...
- альтернативы: Scheduled Sampling, Parallel Scheduled Sampling, Professor forcing, Beam Search

Greedy decoding:

• детерминированный аутпут (тупо выбираем самое вероятное слово)

Важные ссылки

Attention is All You Need

Martin, Jurafsky

Блог Аламмара

Seq2Seq and Attention