Homework 3: Unconstrained optimization involving multiple variables **DUE DATE:** 10/2/18

This homework uses the following objective function and the starting location $\vec{x}^0 = \begin{cases} 3 \\ 4 \\ 1 \end{cases}$.

$$F = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3$$

For each update of the current design point, please report:

- The current design point, \vec{x}
- The search direction, \vec{S} , being used for your move
- A plot of F as a function of alpha associated with the 1-D search for this move
- The value of α^* for this move
- The updated design point (from the update relationship)

In solving these problems, you can either create a code in Matlab for each algorithm, or you can use the Excel solver to find α^* , as shown in class.

- 1. Complete **two cycles** of the Powell's Method of Conjugate Directions.
- 2. Update the design point three times using the Steepest Descent method.
- 3. Update the design point three times using Fletcher-Reeves Conjugate Gradient Method.
- **4.** Update the design point <u>three times</u> using BFGS. For this problem please report the value of \vec{D} , \vec{E} , and \vec{H} for each iteration.