Relaciones y sus propiedades

Clase 09

IIC 1253

Prof. Cristian Riveros

Recordatorio: Pares ordenados

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{ \{a\}, \{a,b\} \}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si, $a = c$ y $b = d$

Recordatorio: Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a,b) \mid a \in A \land b \in B \}$$

■ Para conjuntos $A_1, ..., A_n$ se define el producto cartesiano generalizado:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Recordatorio: Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

Ejemplos

- A ⊆ B
- = n = m
- n < m
- $a \mid b$ (a divide b ssi $\exists k \in \mathbb{N}$. $a \cdot k = b$)

Outline

Representación

Operaciones

Tipos de relaciones

Caracterizaciones

Outline

Representación

Operaciones

Tipos de relaciones

Caracterizaciones

Representación de relaciones

- $1. \; \mathsf{Grafos} \; \mathsf{dirigidos}.$
- 2. Matrices sobre bits.

Grafos dirigidos

Definición

Un grafo dirigido G es un par (V, E) donde:

- V es un conjunto (vertices),
- $E \subseteq V \times V$ es una relación binaria sobre V (aristas).

Ejemplo

- $V = \{1, 2, 3, 4\}$
- $E = \{(1,4),(2,1),(2,3),(3,3),(3,4)\}$

Grafos dirigidos

Propiedad

Toda relación binaria R sobre A se puede ver como un grafo dirigido $G_R = (A, R)$.

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Representación matricial

Definición

Sea $A = \{a_1, a_2, \dots, a_n\}$ un conjunto ordenado arbitrariamente y R una relación binaria sobre A. Definimos la matriz M_R de tamaño $n \times n$ como:

$$M_R[i,j] = \begin{cases} 1 & \text{si } a_i \ R \ a_j \\ 0 & \text{si } a_i \ R \ a_j \end{cases}$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Representación matricial

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Entonces la matriz M_R que representa a R es:

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

¿qué ventaja tiene la representación matricial de una relación?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n, definimos las matrices:

$$(M \lor N)[i,j] = M[i,j] \lor N[i,j]$$

$$(M \land N)[i,j] = M[i,j] \land N[i,j]$$

$$(\neg M)[i,j] = \neg M[i,j]$$

Para dos relacions $R \vee S$, ¿qué representa $M_R \vee M_S$? ¿ $M_R \wedge M_S$? ¿ $M_R \wedge M_S$?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n definimos el orden $M \le N$:

$$M[i,j] \leq N[i,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$ suponiendo que $0 \le 1$.

Para dos relacions R y S, ¿qué representa $M_R \le M_S$?

Outline

Representación

Operaciones

Tipos de relaciones

Caracterizaciones

Sea A un conjunto y R una relación sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Proyección 1: $\pi_1(R)$ son todos los elementos que estan en la primera componente de R.

$$x \in \pi_1(R)$$
 ssi existe un $y \in A$ tal que $(x, y) \in R$

■ Proyección 2: $\pi_2(R)$ son todos los elementos que estan en la segunda componente de R.

$$y \in \pi_2(R)$$
 ssi existe un $x \in A$ tal que $(x, y) \in R$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

- ¿cuál es el conjunto $\pi_1(R)$?
- ¿cuál es el conjunto $\pi_2(R)$?

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

- \blacksquare ¿cuál es la relación R^{-1} ?
- ¿cuál es la relación R ∘ R?

Caminos en grafos dirigidos

Sea G = (V, E) un grafo dirigido.

Definición

- Un camino en G es una secuencia v_0, v_1, \ldots, v_n tal que:
 - $v_i \in V$ para todo $0 \le i \le n$.
 - $(v_i, v_{i+1}) \in E$ para todo $0 \le i < n$.
- Un camino simple en *G* es un camino donde todos los nodos son distintos en la secuencia.
- El largo de un camino v_0, v_1, \ldots, v_n es igual a n, esto es, el al largo de la secuencia menos uno.

Caminos en grafos dirigidos

Ejemplo

- ¿cuál es un camino de largo 2? ¿y de largo 3?
- ¿cuál es un camino simple de largo 4? ¿y de largo 5?

¿qué significa el grafo de $R \circ R$? ¿y de $R \circ R \circ R$?

Multiplicación de matrices de bits

Definición

Dado dos matrices de bits M y N de tamaño $n \times n$, se define la multiplicación $M \cdot N$ tal que:

$$(M \cdot N)[i,j] = \bigvee_{k=1}^{n} M[i,k] \wedge N[k,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Ejemplo

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dada una relación R, ¿qué representa $M_R \cdot M_R$?

Outline

Representación

Operaciones

Tipos de relaciones

Caracterizaciones

Propiedades de relaciones binarias

- 1. Refleja
- 2. Irrefleja
- 3. Simétrica
- 4. Asimétrica
- 5. Antisimétrica
- 6. Transitiva
- 7. Conexa

Relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

1. R es una relación refleja si para cada $a \in A$ se tiene $(a, a) \in R$.

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada $a \in A$ se tiene $(a, a) \notin R$.

$$\forall a \in A. (a, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es refleja ni irrefleja

Relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

1. R es una relación refleja si para cada $a \in A$ se tiene $(a, a) \in R$.

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada $a \in A$ se tiene $(a, a) \notin R$.

$$\forall a \in A. (a, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (a,a), (b,b), (c,b), \\ (c,c), (c,d), (d,a), (d,d) \}$$

$$Refleja$$

Ejemplo de relaciones reflejas e irreflejas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A. (a, a) \notin R.$

¿cuáles relaciones son reflejas o irreflejas?

- A ⊆ B
- n = m
- n < m
- **a** $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ b = n \cdot k)$

Si R NO es refleja, entonces ¿es R irrefleja?

Relaciones simétricas y asimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

3. R es simétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \notin R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es simétrica ni asimétrica

Relaciones simétricas y asimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

3. R es simétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada $a, b \in A$, si $(a, b) \in R$, entonces $(b, a) \notin R$.

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

Ejemplo

$$R = \{ (a,b), (a,c), (b,a), \\ (b,b), (b,d), (c,a), (d,b) \}$$
Relación simétrica

Relaciones antisimétricas

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

5. R es antisimétrica si para cada $a, b \in A$, si $(a, b) \in R$ y $(b, a) \in R$, entonces a = b.

$$\forall a, b \in A. \ ((a, b) \in R \land (b, a) \in R) \rightarrow a = b$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

Relación antisimétrica

Ejemplo de relaciones (a, anti)simétricas

Definiciones

- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.

¿cuáles relaciones son (a, anti)simétricas?

- A ⊆ B
- n = m
- n < m
- $a \mid b$ (a divide $b \text{ ssi } \exists k \in \mathbb{N}. \ b = n \cdot k$)

Ejemplo de relaciones (a, anti)simétricas

Definiciones

- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.

Encuentre un ejemplo para cada intersección.

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a, b, c \in A$, si $(a, b) \in R$ y $(b, c) \in R$, entonces $(a, c) \in R$.

$$\forall a, b, c \in A. \ ((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es transitiva ni conexa

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a,b,c\in A$, si $(a,b)\in R$ y $(b,c)\in R$, entonces $(a,c)\in R$.

$$\forall a, b, c \in A. \ \left((a, b) \in R \ \land \ (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,a), (b,b), (c,a), (c,b) \}$$

No es conexa ni transitiva

Relaciones transitivas y conexas

Definición

6. R es transitiva si para cada $a,b,c\in A$, si $(a,b)\in R$ y $(b,c)\in R$, entonces $(a,c)\in R$.

$$\forall a, b, c \in A. \ \left((a, b) \in R \ \land \ (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada $a, b \in A$, $(a, b) \in R$ o $(b, a) \in R$.

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

Ejemplo

$$R = \{ (a,b), (b,b), (c,a), (c,b), (c,d), (d,b), (d,d) \}$$

Relación transitiva no conexa

Ejemplo de relaciones transitivas y conexas

Definiciones

- 6. Transitiva: $\forall a, b, c \in A$. $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿cuáles relaciones son transitivas o conexas?

- A ⊆ B
- n = m
- n < m
- **a** $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ b = n \cdot k)$

Outline

Representación

Operaciones

Tipos de relaciones

Caracterizaciones

Tipos de relaciones (resumen)

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja: $\forall a \in A$. $(a, a) \notin R$.
- 3. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$.
- 4. Asimétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \notin R$.
- 5. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 6. Transitiva: $\forall a, b, c \in A$. $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- 7. Conexa: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿es posible caracterizar cada propiedad en termino de operaciones entre relaciones?

Recordatorio: operaciones entre relaciones

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Unión: $R_1 \cup R_2$ son todos los pares (x, y) tal que $(x, y) \in R_1$ o $(x, y) \in R_2$.

$$R_1 \cup R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ o } (x,y) \in R_2\}$$

Intersección: $R_1 \cap R_2$ son todos los pares (x, y) tal que $(x, y) \in R_1$ y $(x, y) \in R_2$.

$$R_1 \cap R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ y } (x,y) \in R_2\}$$

Recordatorio: operaciones entre relaciones

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

Relación identidad: I_A contiene solo los pares (x,x) para todo $x \in A$.

$$I_A = \{(x,x) \mid x \in A\}$$

Caracterización de propiedades en termino de operaciones

Teorema

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

- 1. R es refleja ssi $I_A \subseteq R$.
- 2. R es irrefleja ssi $R \cap I_A = \emptyset$.
- 3. R es simétrica ssi $R = R^{-1}$.
- 4. R es asimétrica ssi $R \cap R^{-1} = \emptyset$.
- 5. R es antisimétrica ssi $R \cap R^{-1} \subseteq I_A$.
- 6. R es transitiva ssi $R \circ R \subseteq R$.
- 7. R es conexa ssi $R \cup R^{-1} = A \times A$.

Demostración: ejercicio.