US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Bate of Patent

Inventor(s)

12387163

Bate of Patent

August 12, 2025

Bulcao; Nick et al.

Logistical management system

Abstract

Systems and methods of performing logistical management are provided. The logistical management system may receive a request to ship a package from an electronic device associated with a user. The request can include an initial location and information relating to one or more characteristics of the package. In response to receiving the request, electronic data store may be queried to determine a set of possible itineraries for the package. The set of possible itineraries can then be validated against a set of pre-determined rules to produce a subset of itineraries. One of the subset of itineraries can then be chosen.

Inventors: Bulcao; Nick (Encinitas, CA), Rusnak; Ryan (Encinitas, AZ), Nyhan; Rick

(Scottsdale, AZ), Frazin; Adam (Poolesville, MD), Fitzgibbons; Peter (Vista, CA)

Applicant: Airspace Technologies, Inc. (Carlsbad, CA)

Family ID: 61904556

Assignee: AIRSPACE TECHNOLOGIES, INC. (Carlsbad, CA)

Appl. No.: 18/239257

Filed: August 29, 2023

Prior Publication Data

Document IdentifierUS 20240242164 A1

Publication Date
Jul. 18, 2024

Related U.S. Application Data

continuation parent-doc US 17739661 20220509 US 11829925 child-doc US 18239257 continuation parent-doc US 16381486 20190411 US 11328243 20220510 child-doc US 17739661 division parent-doc US 15295112 20161017 US 11315067 20220426 child-doc US 16381486

Publication Classification

Int. Cl.: G06Q10/083 (20240101); G01C21/34 (20060101); G01C21/36 (20060101); G06Q10/08 (20240101); G06Q30/04 (20120101)

U.S. Cl.:

CPC **G06Q10/083** (20130101); **G01C21/3407** (20130101); **G06Q10/08** (20130101);

G06Q30/04 (20130101); G01C21/3667 (20130101)

Field of Classification Search

USPC: 705/40

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
7340405	12/2007	Günther et al.	N/A	N/A
7620583	12/2008	Sundel	N/A	N/A
7739202	12/2009	Kadaba	N/A	N/A
7751929	12/2009	Prater et al.	N/A	N/A
7792762	12/2009	Podgurny et al.	N/A	N/A
8131651	12/2011	Bennett et al.	N/A	N/A
9082144	12/2014	Jones et al.	N/A	N/A
9127945	12/2014	Telange et al.	N/A	N/A
10956855	12/2020	Coughran	N/A	G06N 20/10
11315067	12/2021	Bulcao et al.	N/A	N/A
11328243	12/2021	Bulcao et al.	N/A	N/A
2005/0289018	12/2004	Sullivan et al.	N/A	N/A
2006/0145837	12/2005	Horton	340/539.13	G08G 1/202
2006/0282277	12/2005	Ng	N/A	N/A
2009/0125355	12/2008	Handel et al.	N/A	N/A
2010/0280748	12/2009	Mundinger	701/532	G01C
				21/3423
2013/0091069	12/2012	Loebertmann et	N/A	N/A
		al.		
2013/0297549	12/2012	Yano	N/A	N/A
2014/0278635	12/2013	Fulton	705/7.14	G06Q
				10/083
2014/0304188	12/2013	Lavoie et al.	N/A	N/A
2014/0358703	12/2013	Stuntebeck et al.	N/A	N/A
2015/0096266	12/2014	Divine et al.	N/A	N/A
2015/0186869	12/2014	Winters	705/26.81	G06Q
				20/322
2015/0278758	12/2014	Kim	705/338	G06Q
2015/0204220	10/0014	D 1	TN T / A	10/0835
2015/0294238	12/2014	Benque et al.	N/A	N/A
2016/0117618	12/2015	Wang et al.	N/A	N/A

2016/0140632	12/2015	Kandala et al.	N/A	N/A
2016/0180274	12/2015	Zwakhals	705/7.25	G06Q 10/06315
2016/0189102	12/2015	Schreiber	N/A	N/A
2016/0350711	12/2015	Tsao	N/A	N/A
2017/0147976	12/2016	Koch et al.	N/A	N/A
2018/0096414	12/2017	Iacono et al.	N/A	N/A
2018/0107967	12/2017	Bulcao et al.	N/A	N/A
2019/0236523	12/2018	Bulcao et al.	N/A	N/A
2022/0284378	12/2021	Bulcao et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
WO 01/13261	12/2000	WO	N/A
WO 2016/012741	12/2015	WO	N/A
WO 2016/113308	12/2015	WO	N/A

OTHER PUBLICATIONS

Harris, Irina, et. al.; "ICT in multimodal transport and technological trends: Unleashing potential for the future"; Int. J. Production Economics 159 (2015) 88-103; Sep. 16, 2014. (Year: 2014). cited by examiner

International Search Report and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US17/56753, mailed Feb. 2, 2018; 13 pages. cited by applicant

International Preliminary Report on Patentability directed to related International Patent Application No. PCT/US17/56753, issued Apr. 23, 2019; 10 pages. cited by applicant Search Report & Written Opinion of the Intellectual Property Office of Singapore directed to related Singapore Patent Application No. 11201902781S, mailed Apr. 21, 2020; 10 pages. cited by applicant

Supplementary European Search Report of the European Patent Office directed to related European Patent Application No. 17861277.6, mailed Apr. 16, 2020; 9 pages. cited by applicant Jedermann, R., et al., "Reducing food losses by intelligent food logistics," Philos Trans A Math Phys Eng Sci., 372(2017): Mar. 2, 2013 (Jun. 2014). cited by applicant

Harris et al., "ICT in multimodal transport and technological trends: Unleashing potential for the future"; Sep. 16, 2014. cited by applicant

U.S. Appl. No. 16/381,486, "Logistical Management System," to Bulcao et al, filed Apr. 11, 2019. cited by applicant

Primary Examiner: Simpson; Dione N.

Attorney, Agent or Firm: Sterne, Kessler, Goldstein & Fox P.L.L.C.

Background/Summary

CROSS REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. patent application Ser. No. 17/739,661, filed May 9, 2022, which a continuation of U.S. patent application Ser. No. 16/381,486, filed Apr. 11, 2019, now U.S. Pat. No. 11,328,243, which is a

division of U.S. patent application Ser. No. 15/295,112, filed Oct. 17, 2016, now U.S. Pat. No. 11,315,067 both of which are incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

- (1) Transporting goods between two points often involves tradeoffs. As an example, the cost of transport and the speed with which an item is transported are frequently inversely proportional—faster transportation costs more and less expensive transportation can be slower. In some applications, it is very important that one of these aspects is optimized. For instance, an organ for transplant might need to reach its destination as fast as possible no matter the cost. Conversely, for other items, minimization of the transportation cost might be the most important criterion.
- (2) Historically, such optimizations were accomplished largely on an ad hoc basis requiring significant user input and time to accomplish. Additionally, the historical methods were often based on incomplete information, so sub-optimal solutions were reached. In view of the increasing demand for logistical optimization, better solutions are needed.

BRIEF SUMMARY OF THE INVENTION

- (3) Systems and methods of performing logistical management are provided. According to embodiments, a management system may include an interface coupled to an electronic data store and one or more processors coupled to the interface. The one or more processors can be configured to receive a request to ship a package from an electronic device associated with a user. The request can include an initial location and information relating to one or more characteristics of the package. In response to receiving the request, the one or more processors may query the electronic data store to determine a set of possible itineraries for the package. The set of possible itineraries can then be validated against a set of pre-determined rules to produce a subset of itineraries. One of the subset of itineraries can then be chosen.
- (4) According to embodiments, the one or more processors may select the itinerary by first sorting the subset of possible itineraries according to a criterion, and then selecting the itinerary that is the highest ranking according to the criterion. The criterion my include one or more of a cost, a distance, a duration of the itinerary, a total number of segments, and a risk associated with the itinerary. Additionally, in some embodiments, the one or more processors may select the itinerary by presenting a subset of itineraries to a user device and receiving a response indicating a selection from among the subset of itineraries.
- (5) In some embodiments, the one or more processors are further configured to consider one or more characteristics of the package. For instance, the characteristics of the package may comprise a weight, a volume, a hazard level, a content, a durability, a shape, dimension measurements, a fragility of the package, and a density. In some embodiments, itineraries that are incompatible with one of the characteristics can be also be eliminated from the set of itineraries. Additionally, itineraries that are temporally infeasible can be eliminated.
- (6) In some embodiments, each of the itineraries comprises a plurality of itinerary segments. In such embodiments, the one or more processors may be configured to receive a plurality of itinerary segments from the electronic data store and to construct the set of possible itineraries from the plurality of itinerary segments. Additionally, the one or more processors can be configured to eliminate itinerary segments from the plurality of itinerary segments based on a compatibility of that segment with a characteristic of the package. Additionally the various segments may rely on different modes of transportation (e.g., ground, air, rail, etc.)
- (7) Additional systems and methods relating to logistical computer systems are provided. According to one such embodiment, a logistical computer system may comprise a network interface coupled to an electronic network and one or more processors coupled to the network interface. The one or more processors may be configured to initiate a trip for a package between a first location and a second location. The user associated with a mobile device may be selected to transport the package between the first location and the second location. Scan information relating

to the package at the first location may be received from the mobile device via the electronic network. Additionally, scan information relating to the package the second location may be received from the mobile device via the electronic network.

- (8) According to some embodiments, the user associated with the electronic device may be selected based on a certification associated with the user. Furthermore, the one or more processors can be configured to select the user by transmitting a notification indicating that the trip is available to a plurality of electronic devices that are each associated with a user and receiving an acceptance from one of the plurality of electronic devices.
- (9) In some embodiments, the one or more processors may generate a transit document based on information associated with the package and transmit an electronic representation of the transit document to the electronic device associated with the user. Additionally and/or alternatively, the one or more processors may optionally transmit the transit document to a transit provider (e.g., a cargo air carrier). According to some embodiments, the representation of the transit document may comprise a graphical representation of, for instance, an airway bill for a particular transit provider (e.g., an airline company).
- (10) According to some embodiments, the one or more processors may be configured to detect an error in the first scan information. If or when this occurs, the one or more processors may be configured to assign new scan information to the package.
- (11) According to various embodiments, the one or more processors may be configured to generate route information for a trip associated with transporting the package. This route information may be transmitted to the electronic device via the electronic network. Additionally, if a change in the itinerary is received, the one or more processors are optionally further configured to receive, generate, and transmit updated route information to the electronic device based on the received change in the itinerary. Additionally, a graphical representation of the trip progress (e.g., a map) can be generated and transmitted to one or more electronic devices associated with a customer.

Description

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

- (1) Embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts. Further, the accompanying drawings, which are incorporated herein, form part of the specification and illustrate embodiments of the present disclosure.
- (2) FIG. **1** is a functional block diagram depicting a logistical system according to embodiments of the disclosure.
- (3) FIG. **2** is a sequence diagram depicting communication between various components of a logistical system according to embodiments of the disclosure.
- (4) FIG. **3** is a diagram depicting various routes and route segments according to embodiments of the disclosure.
- (5) FIG. **4** is a representation of a display of an electronic device that may be used in conjunction with embodiments of the disclosure.
- (6) FIG. **5** is a flowchart depicting a method of selecting an itinerary according to some embodiments.
- (7) FIG. **6** is a flowchart depicting a method of selecting an itinerary according to some embodiments.
- (8) FIG. 7 is a flowchart depicting a method of managing an itinerary according to some embodiments.
- (9) FIG. **8** is a flowchart depicting a method of managing the transport of a package according to some embodiments.

- (10) FIG. **9** is a flowchart depicting a method of managing the transport of a package according to some embodiments.
- (11) FIG. **10** is a functional block diagram depicting an example computer system that can be used to implement various aspects of embodiments of this disclosure.
- (12) The features and advantages of embodiments of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

- (13) This specification discloses one or more embodiments that incorporate the features of this disclosure. The disclosed embodiment(s) merely exemplify the present disclosure. The scope of the present disclosure is not limited to the disclosed embodiment(s). The present disclosure is defined by the claims appended hereto.
- (14) The embodiment(s) described, and references in the specification to "one embodiment," "an embodiment," "an example embodiment," etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is understood that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
- (15) It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present disclosure as contemplated by the inventor(s), and thus, are not intended to limit the present disclosure and the appended claims in any way.
- (16) The present disclosure has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
- (17) Overview
- (18) This section will give a brief overview of the various functionality of a logistical management system with reference to FIGS. **1-3**. Subsequent sections will describe various aspects of the logistical management systems in greater detail.
- (19) FIG. **1** is a functional block diagram depicting a logistical management system **100** according to various embodiments. The logistical management system **100** may include a plurality of customer devices **102**.sub.1, **102**.sub.2, . . . , and **102**.sub.N (collectively and generically referred to as "customer device **102**"). According to embodiments, the customer devices **102** may comprise mobile electronic devices (e.g., cell phones, tablet computers, laptop computers), personal computers, or the like and may be configured to connect to a communication network **110**. (20) The logistical management system **100** may also include a plurality of user devices **104**.sub.1, **104**.sub.2, . . . and **104**.sub.N (collectively and generically referred to as "user device **104**"). According to embodiments, the user devices may comprise mobile electronic devices (e.g., cell
- configured to connect to the communication network **110**. (21) The logistical management system **100** may also include a control system **106** connected to communication network **110**. The control system may comprise one or more computer systems (e.g., a computer system such as the one described with reference to FIG. **10**, below), and may also be communicatively coupled to a data store element **108**. The data store element may comprise a

phones, tablet computers, laptop computers), personal computers, or the like and may also be

- conventional database system according to some embodiments. Alternatively, the data store element **108** may comprise a portion of the control system **106** and be integral to it.
- (22) In some embodiments, the data store element **108** may contain segment information to be used to generate itineraries or routes between a first location and a second location. For instance, data store **108** may contain flight data segments for a plurality of air transportation providers, train schedules, shipping schedules, and the like.
- (23) The communication network **110** may comprise any suitable communication network. For instance, according to some embodiments, the communication network may comprise an Internet, WiFi, LAN, WLAN, WAN, PAN, etc.
- (24) Using the various components of the logistical management system 100, logistics for the physical transport of various items can be arranged. FIG. 2 is a sequence diagram 200 illustrating one way the various components of logistical management system 100 can work together to affect the transport of an item. For clarity, the sequence diagram of FIG. 2 will be described with reference to FIG. 1, but it should be understood that this is for explanatory purposes only and that the principles outlined in FIG. 2 are not so limited to the specific embodiment of FIG. 1. (25) As shown in the sequence diagram 200, a customer device 102 may send a request 202 to the control system 106 via communication network 110. The request 202 may include information relating to a particular item or package that needs to be transported as well as a GPS location of the current location of the package. Optionally, the control system 106 may return to the customer device 102 a quote 204 relating to a feasibility, timeline, or cost of transporting the item or package from the request. If the quote 204 is acceptable to user device 102, then it can transmit a confirmation 206 to control system 106 via communication network 110. Alternatively, communications 204 and 206 may be omitted in some embodiments and sequence can proceed directly to message 208 upon receipt of request 202.
- (26) After receiving the confirmation **206**, the control system **106** may send a request message **208** to a number of user devices **104**. The request message **208** may contain information relating to the specifics of the package to be transported as well as a location of the package and a destination. When a user device **104** determines to accept the request, it sends a confirmation message **210** to the control system **106**. At this point, the sequence may optionally end. However, some embodiments of the sequence **200** allow for real-time changes to the transportation request **202**. (27) When such a change is desired, a customer device **102** can transmit a change request message **212** to control system **106**. The control system **106** may then generate and transmit a change request message **214** formatted for the user device **104**. Upon receipt of the change request message **214**, the user device **104** may send a confirmation message **216** to control system **106** and the control system **106** may then transmit a confirmation message **218** to the customer device **102**. (28) Routing
- (29) One important aspect of transporting items or packages from one location to another is creating an itinerary or route for a user to take from the first location to the destination. FIG. 3 illustrates a simple example of this kind of routing according to some embodiments.
- (30) FIG. **3** depicts a routing diagram **300** according to embodiments. The diagram **300** depicts locations A **302**, B **304**, C **306**, and D **308**. Additionally, trip segments **310**, **312**, **314**, and **316** are depicted. Each of the trip segments **310**, **312**, **314**, and **316** is a path between discrete locations (e.g., A **302**, B **304**, C **306**, and D **308**). An itinerary may comprise one or more segments. For instance, to transport a package between location A **302** and location B **304**, only segment **310** is needed. Thus a complete itinerary for this trip would consist of just segment **310**. However, to transport a package from point location A **302** to location C **306**, the itinerary must comprise multiple segments—in this case, segments **310** and **312**.
- (31) Each of the trip segments may be performed by different means of transportation. For instance, some may comprise ground transport and some may comprise air transport. Consider, for example, two trips between location A **302** and location C **306** that could be represented by routing

- diagram **300**. The first trip may comprise segments **310** and **312**. In this example a driver with, e.g., a user device **104** could start a location A **302** and proceed to location B **302** to pick up a package based on a received request **208**. From location B **302** to location C **306**, the package could proceed along segment **312**, another ground route.
- (32) However, FIG. **3** also depicts an alternative path to location C **306** from location A **302**. In this path, the package can proceed along segment **314** to location D **308** and then to location C **306** via segment **316**. There are a number of reasons this alternative might be favored. For instance, if segment **312** is ground route, and **314** and **316** are air routes, it might be faster to take the route with segments **314** and **316** even though there are more individual segments.
- (33) A challenging aspect to transporting a package between two locations is determining an optimal path for that package. For instance, a package weighing 5,000 lbs. may have many fewer options than a package weighing 5 lbs. In the case of the 5,000 lb. package, freight transportation must be arranged, heavier trucks used, and lifts must be arranged at the pickup and destination. On the other hand, the 5 lb. package can easily fit in a common deliver van and placed on virtually any commercial flight or other means of transportation. Accordingly, an important aspect to determining the routing for a package involves considering the characteristics of a package. For instance, if a package requires heavy trucks, it could be that segment 312 is unavailable because that segment is a residential street that prohibits heavy trucks. Accordingly, in that case, to get to the heavy package to location C 306, routing might have to occur via segments 314 and 316, which may allow the passage of heavy trucks.
- (34) Thus, an important first step in routing a package from a first location to a second location will be to consider the various physical characteristics of the package. Consider a sample order that is to be flown from a pickup location to a destination. In this case, as part of the request **202**, the control system **106** may receive a total volume of the package and an associated weight of that package from the customer device **102**. The control system **106** can then determine the correct vehicles and/or trip segments that are available for transportation of the package.
- (35) After determining, for instance, the correct vehicle types for transporting the package, the control system **106** can calculate an optimum path for those vehicles. This can begin by verifying the addresses contained in the request message **202** for the pickup and destination locations and geocoding them according to some embodiments. If the package is to travel via air, the control system can also determine the closest airports and query a database (e.g., data store **108**) of flight segments connecting the two airports. The search may be constrained by, for instance the correct vehicle type that was determined previously. For instance if the package is big and/or heavy, the query may be constrained to return only freight lights. If the package is small and/or light, on the other hand, the search might not be so constrained.
- (36) The control system **106** may calculate a drive distance between the pickup location and the pickup airport and the destination airport and the ultimate destination. After calculating the drive distance, the control system **106** may further exclude flights that will be temporally unavailable because of the required drive times. Additionally, the control system **106** may consider factors such as congestion at an airport and traffic when making this determination.
- (37) FIG. **5** is a flowchart depicting an exemplary method **500** of routing or generating an itinerary according to various embodiments. As shown in FIG. **5**, the method **500** begins by receiving a shipping request (e.g., request **202**) at, for instance, the control system **106** from, for instance, customer device **102**. The shipping request may contain, among other things, a pickup location and a destination location for a package or item to be transported. Since different items need to handled differently during transport-fresh flowers are handled differently than a bundle of bricks, which are both handled differently than hazardous chemicals—the request may also specify a number of different characteristics about the package. The characteristics may include volume, weight, a hazard level, a content, a durability, a shape, dimension measurements, a fragility of the item, a density of the package, and/or any other characteristic of the package that could be relevant to

shipping.

- (38) At step **504**, the control system **106** can query a data store **108** to retrieve a number of itineraries each comprising, for instance, a number of trip segments. The control system **106** can eliminate impossible or impractical itineraries and generate a set of possible itineraries at step **506**. This set of possible itineraries can be validated against a set of pre-determined rules at step **508** to determine a subset of valid itineraries. From the subset, an itinerary can be selected at step **510**. According to some embodiments, the itinerary may be selected by sorting the subset according to various criteria (e.g., cost, speed, etc.) and choosing the highest ranked itinerary. Alternatively, the subset could be presented to a customer and the customer allowed to select the itinerary. (39) FIG. **6** is a flowchart depicting a method **600** of determining a set of possible itineraries according to various embodiments. For instance, method **600** could be used to perform step **506** from FIG. **5**.
- (40) As shown in FIG. **6**, method **600** begins by receiving a plurality of possible segments **602** from, for instance, the data store **108**. For instance, if determining an itinerary for a package that is to travel via air, the control system **106** may query all possible flight segments between a pickup airport and a destination airport. At step **604**, the method **600** eliminates incompatible segments from the set of segments received from the data store **108** at step **602**. Individual segments may be incompatible for a number of reasons. For instance, segments may be incompatible because of a temporal conflict (e.g., there is simply not enough time to get the package to the airport before the flight time). Additionally, segments may be incompatible due to conflicts with characteristics of the package. For instance, if the package includes hazardous materials, it may be prohibited from traveling on regular commercial airlines or if the package is particularly heavy, it may require a freight airline.
- (41) After the incompatible segments are eliminated at step **604**, the control system **106** may construct a set of possible itineraries or routes using the compatible segments at step **606**. (42) Dispatch
- (43) After transportation for a package has been routed, a user **104** needs to be dispatched to pick up the package. In some embodiments, the control system **106** can offer the route to the closest driver **104** and, if they do not respond in time, offer the job to the next driver. This can greatly reduce the time to dispatch a driver. Alternatively, the control system **106** can offer the route by sending a request **208** to a plurality of user devices **104** at the same time and give the job to the first user device **104** that sends a confirmation message **210** to the control device **106**.
- (44) When a user/driver accepts a route via a mobile device **104**, the control system **106** can automatically send route information to the mobile device **104** to the pickup location. When the driver arrives at the pickup location, a package label is scanned and a client signature may be captured. The scan information and the captured signature may then be uploaded to the control system **106**. At this point the control system **106** may verify that the scan information is valid. Additionally, each time the package label is scanned, the scan information may be geotagged. (45) In order to confirm that the package is correct, the control system **106** must verify the scan information against order information stored by the control system **106** and/or a unique global identifier associated with the package. If there is a problem with the scan information, then the control system **106** may prompt the driver **104** to replace the package label with a new one and the package can be associated with a new identifier at the control system **106**.
- (46) Upon arrival at the destination, the driver can again scan the package label and the scan information can be geotagged and sent to control system **106** where it can be verified. If the destination is the starting point of a subsequent trip segment the control system **106** can provide additional information to the user device **104**. For instance certain air carriers require an airway bill to accept a package for transport. These airway bills contain information relating to the package (e.g., names of the sender and recipient, destination address, etc.). Frequently each carrier requires the airway bill in a different format with slightly different information. Accordingly, based on the

carrier, the control system **106** can generate a representation of the appropriate airway bill and send that data to the user device **104**.

- (47) An example of the generated airway bill is shown in FIG. **4**. FIG. **4** depicts an exemplary user device **402** with a display **404**. The display can be configured to display the airway bill in the exact format used by the respective shipping company with all of the required fields **406** shown filled as should be filled in by the driver. The driver can then copy the required information directly into the carrier's airway bill at the airport. Alternatively and/or additionally, the control system **106** may be configured to send the airway bill information **406** directly to the carrier in electronic form. (48) FIG. **7** depicts is a flowchart depicting a method **700** of dispatching according to various embodiments. The method **700** begins at step **702** when a trip initiated when, for instance, the control system **106** receives a request **202** from a customer **102**. The control system **106** can then select one of a plurality of users associated with a plurality of user devices **104** at step **704**. According to some embodiments, the control system **106** may select the user device **104** based on a proximity of the user device **104** to a pickup location associated with the request **202**. However, the control system **106** may also select a user device **104** by sending a request **208** to a plurality of user devices 104 and selecting whichever of the plurality of user deices 104 responds first. (49) At step **706**, the control system **106** may transmit route information to the selected user device **104**. The route information may include information detailing a route that the user should take from a first location to a second location. When the user **104** reaches the pickup location and scans the package information, the package information can be transmitted to and received by the control system **106**. The package scan information can then be processed to verify that the scan information is valid against saved information associated with the package such as a unique global identification number, at step **710**. At step **712** the control system **106** can receive second scan information from the selected user device **104** when it reaches its destination location. (50) FIG. **8** is a flowchart depicting a method **800** of a user device **104** being dispatched by a control system **106** according to various embodiments. The method begins at step **802** when a user device 104 receives a request (e.g., request 208) from control system 106. At step 804, the user device **104** may transmit an indication to the control system **106** indicating that the request **208** is accepted. In response to accepting the request, the user device **104** may receive route information **806** from the control system **106**.
- (51) When the user device **104** reaches the pickup location, package label information can be scanned. The scanned package information can then be transmitted to the control system **106** at step **808**. The scanned package information may also include an image of a signature from the sender. When the user device **104** reaches its destination, the package label can be scanned a second time and the second scan information can be transmitted to control system **106**. In response to receiving the transmitted second scan information, the control system can send transit document information to user device **104**. The transit document information may comprise a graphical representation **406** of a transit document associated with a carrier according to some embodiments. (52) FIG. **9** depicts a method **900** of routing and dispatching a package according to various embodiments. The method **900** begins at step **902**, when a control system **106** determines an itinerary. According to some embodiments, step **902** can be performed consistently with method **500** depicted in FIG. **5**. At step **904**, route information for a user **104** can be generated for the determined itinerary. At step **906**, a graphical representation of the route information (e.g., a map) can be generated by the control system **106**. The graphical representation of the route information can then be transmitted to a customer device **102** at step **908**. Optionally, if or when the control system **106** receives an updated itinerary, updated route information can be generated at step **910**. An updated graphical representation based on the updated itinerary can then be transmitted to the customer device **102**.
- (53) Example
- (54) The following example describes a possible use case according to embodiments of the

disclosure. For convenience, this example will be described with reference to FIGS. **1-9**, but the description should not be construed as being limited to these particular embodiments.

- (55) Consider a situation where a user, Client A, wants to ship two packages containing ocular tissue from an eye bank to a hospital. Because the ocular tissue can expire in a matter of just a few hours, Client A is unable to ship with any next day provider. Instead, Client A needs the shipments to be completed on time and as fast as possible because the recipient is likely scheduled for a major surgery upon arrival of the shipment.
- (56) To initiate a shipment, Client A enters relevant origin information (e.g., pickup address, pickup time, etc.) into device **102**. The device may then display information validating the origin information entered into device **102** by Client A. According to some embodiments, this validation information can take the form of a graphical map representation of the pickup information. Client A may also enter a second address (e.g., a destination address) into device **102**. This second address may be validated in a similar fashion to the origin information entered by client A into device **102**. (57) The device **102**, according to some embodiments, may also be configured to prompt Client A to enter relevant characteristic information about the package or packages to be delivered (e.g., the dimensions, weights, etc.) In this example, let us assume that one of the two packages to be shipped happens to be light and oddly shaped while the other is quite heavy due to the required refrigeration. Device **102** may be configured to then prompt Client A to enter relevant billing and/or reference number and finally the recipient surgeon's email address for notification of the status of the shipment.
- (58) After any relevant information is entered into device **102**, a request **202** is generated and sent to a remote server **106** via an appropriate network **110**. The server **106** may then determine the closest airports to the origin address and destination address and then searches a database (e.g., memory store **108**) containing available flights. Based on the available flights, the server **106** may determine the possible routes. However, the soonest flight is not always valid. A driver needs time to pickup the package and drive to the airport. Airlines have different cut off times and airports have different levels of congestion. Server **106** may maintain a database of every airport, airline cut off times, average time to tender a package to the airline as well as cargo hours. This ensures that the final route takes in all possible temporal variables associated with tendering a package. For instance, in this example, assume that Client A anticipates a route from San Diego Airport to JFK. However, the San Diego cargo areas open later so, although the flight leaves sooner, server 106 may be configured to choose the longer drive to LAX because the cargo at LAX does not close. It also chooses Airline #1 instead of Airline #2 based on a cut off time for delivery for Airline #1 is only 60 minutes instead of 90. This gives the driver time to get to LAX in time to tender the package to get it on the optimal flight. The sever **106** may also be configured to add the drive time, airline cut off time, airport delay time and drive to destination time to the airline departure to calculate the fastest possible route that is achievable for that shipment.
- (59) An additional factor that server **106** may be configured to consider when determining the appropriate route is the certifications of the available drivers. For instance, in this example, it is possible that not every driver is certified to carry human tissue. Accordingly, the server **106** can be configured to only select drivers that have the appropriate certifications to carry that commodity type. For instance, only drivers that have dangerous goods training are dispatched for dangerous goods shipments. In some embodiments, each driver's profile when he or she logs in with device **104** is linked a corresponding driver profile maintained by the server **106**. According to some embodiments, the driver profile maintained by server may contain additional data including certifications, vehicle information, vehicle capacity, driver history, etc.
- (60) In this example, the delivery requires a driver that is certified to carry human tissue. If there happen to be four drivers in the area near the pickup location, the server **106** can chose among them. If, of the four drivers in the area, three have the certifications needed to carry human tissue, then the server **106** can be configured to choose among them based on additional criteria. For

instance, if only two of the certified drivers have a van large enough to accommodate the shipment, then the server 106 can be configured to choose one of those drivers either randomly or according to some other criteria (e.g., seniority, performance, etc.). According to some embodiments, the server 106 may sends a push notification (e.g., request 208) to the closest driver's device 104 via network 110. If that first driver is unable to take the shipment at this time do he can reject the order by providing an appropriate input to device 104. The rejection is then transmitted to the server 106 via network 110. Server 106 may then be configured to automatically sends a push request (e.g., request 208) to the next closest driver's device 104 that meets the criteria. When the second driver accepts (e.g., confirmation 210) she can automatically be routed to the pickup location by device 104.

- (61) While the driver is en route to the pickup location, server **106** may provide client device **102** information confirming that the driver is en route. In some embodiments, client device **102** may be configured to display information indicating a specific location along the route (e.g., segment **310**) at which the driver is currently located.
- (62) In some embodiments, the client device **102** may be configured to receive labels for each package to be printed (by, e.g., Client A) and placed on each of the packages to be shipped. When the driver arrives to receive the packages, she can use device **104** to scan the label on each piece of the order to ensure that every piece and only the pieces associated with that order are collected. If it device **104** determines that there is an error associated with one of the labels (e.g., Client A put a wrong label on a piece), then device **104** can be configured to associate a new label with the order. Additionally, if no label is present on a package, device **104** can be configured to associate a new or blank label with the order and to communicate that information to server **106**
- (63) After scanning each piece with device **104**, the driver may be prompted to collect a signature on, for instance, a graphical user interface associated with device **104**. Client A inputs a signature into device **104** and can also be prompted to enter additional information (e.g., a name, company, department, etc.) In some embodiments this information is transmitted to server **106** where it can be subsequently transmitted to client device **102** for viewing or, additionally and/or alternatively, for viewing on a client web interface.
- (64) Once the driver has successfully received the packages, device **104** can be configured to automatically route the driver to the destination, which in this example is LAX. When the driver arrives at LAX, the driver input a confirmation to that effect into device **104** and be, again, prompted to scan each package. After scanning, the scan information is transmitted to server **106** and, in some embodiments, an indication of the driver's successful arrival can be transmitted to a client device **102**. In some embodiments, each scan may also be geotagged on a map, which can be viewed by clients using device **102**.
- (65) Depositing the packages with the airline may require an air way bill (AWB). In some embodiments, the server **106** may be configured to transmit an electronic version (e.g., **404**) of an AWB to the driver's device **104** with relevant fields filled in. The driver may then use the electronic version of the AWB **404** to fill out a paper AWB for the airline by simply copying the information from the received electronic version. The driver can then be prompted by device **104** to photograph the completed paper AWB and the photograph can be transmitted to server **106**, where it can be associated with the order. Alternatively, in some embodiments, the electronic AWB can be transmitted directly to the airline by either sever **106** or by the driver's device **104**.
- (66) If, in this example, a problem were to arise such that the chosen flight could not depart that day, then server **106** can be configured to make adjustments. In some embodiments, information indicating problems (e.g., an "unable do deliver" message) can be input to device **104** and transmitted to sever **106**. The sever **106** can be configured to determine an alternative flight for the package and this change can be transmitted to the driver's device and, if necessary, a new electronic AWB **404** generated. Upon successful delivery of the packages, the driver can input information to device **102** indicating that the packages have been successfully delivered to the airline and this

- information can be subsequently transmitted to server **106**. The driver can then receive an indication on device **104** releasing the driver from the order and indicating availability to be selected for additional orders.
- (67) In some embodiments, the sever system **106** may monitor the information from the airline to "listen" for the takeoff of the flight on which the packages are scheduled. In some embodiments, when the plane takes off, the server **106** may receive information notifying it of the takeoff and may update a workflow. Additional background tasks may also be initiated at this point to "listen" for the arrival of the plane at its destination. When the plan arrives, the server **106** system may receive information to that effect and may, subsequently, being the process (e.g., process **700**) of selecting qualified drivers near the destination airport. And the process for transporting the packages from the destination airport to the final destination can be repeated essentially as discussed above.
- (68) Various embodiments can be implemented, for example, using one or more well-known computer systems, such as computer system **1000** shown in FIG. **10**. For instance, each of the components **102**, **104**, **106**, and **108** described with reference to FIGS. **1** and **2** could be implemented using a computer system such as computer system **1000**. Computer system **1000** can be any well-known computer capable of performing the functions described herein.
- (69) Computer system **1000** includes one or more processors (also called central processing units, or CPUs), such as a processor **1004**. Processor **1004** is connected to a communication infrastructure or bus **1006**.
- (70) One or more processors **1004** may each be a graphics processing unit (GPU). In some embodiments, a GPU is a processor that is a specialized electronic circuit designed to process mathematically intensive applications. The GPU may have a parallel structure that is efficient for parallel processing of large blocks of data, such as mathematically intensive data common to computer graphics applications, images, videos, etc.
- (71) Computer system **1000** also includes user input/output device(s) **1003**, such as monitors, keyboards, pointing devices, etc., that communicate with communication infrastructure **1006** through user input/output interface(s) **1002**.
- (72) Computer system **1000** also includes a main or primary memory **1008**, such as random access memory (RAM). Main memory **1008** may include one or more levels of cache. Main memory **1008** has stored therein control logic (i.e., computer software) and/or data.
- (73) Computer system **1000** may also include one or more secondary storage devices or memory **1010**. Secondary memory **1010** may include, for example, a hard disk drive **1012** and/or a removable storage device or drive **1014**. Removable storage drive **1014** may be a floppy disk drive, a magnetic tape drive, a compact disk drive, an optical storage device, tape backup device, and/or any other storage device/drive.
- (74) Removable storage drive **1014** may interact with a removable storage unit **1018**. Removable storage unit **1018** includes a computer usable or readable storage device having stored thereon computer software (control logic) and/or data. Removable storage unit **1018** may be a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, and/any other computer data storage device. Removable storage drive **1014** reads from and/or writes to removable storage unit **1018**. (75) According to some embodiments, secondary memory **1010** may include other means, instrumentalities or other approaches for allowing computer programs and/or other instructions and/or data to be accessed by computer system **1000**. Such means, instrumentalities or other approaches may include, for example, a removable storage unit **1022** and an interface **1020**. Examples of the removable storage unit **1022** and the interface **1020** may include a program cartridge and cartridge interface (such as that found in video game devices), a removable memory chip (such as an EPROM or PROM) and associated socket, a memory stick and USB port, a memory card and associated memory card slot, and/or any other removable storage unit and associated interface.

- (76) Computer system **1000** may further include a communication or network interface **1024**. Communication interface **1024** enables computer system **1000** to communicate and interact with any combination of remote devices, remote networks, remote entities, etc. (individually and collectively referenced by reference number **1028**). For example, communication interface **1024** may allow computer system **1000** to communicate with remote devices **1028** over communications path **1026**, which may be wired and/or wireless, and which may include any combination of LANs, WANs, the Internet, etc. Control logic and/or data may be transmitted to and from computer system **1000** via communication path **1026**.
- (77) In some embodiments, a tangible apparatus or article of manufacture including a tangible computer useable or readable medium having control logic (software) stored thereon is also referred to herein as a "computer program product" or "program storage device." This includes, but is not limited to, computer system **1000**, main memory **1008**, secondary memory **1010**, and removable storage units **1018** and **1022**, as well as tangible articles of manufacture embodying any combination of the foregoing. Such control logic, when executed by one or more data processing devices (such as computer system **1000**), causes such data processing devices to operate as described herein.
- (78) Based on the teachings contained in this disclosure, it will be apparent to persons skilled in the relevant art(s) how to make and use embodiments of the disclosure using data processing devices, computer systems and/or computer architectures other than that shown in FIG. **10**. In particular, embodiments may operate with software, hardware, and/or operating system implementations other than those described herein.
- (79) The foregoing description of the specific embodiments will so fully reveal the general nature of the disclosure that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present disclosure. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
- (80) The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims

1. A method, comprising: receiving a request from a customer device to transport a package having one or more characteristics from a first location to a second location, wherein the request comprises a current GPS location of the package; generating order information for the package, the order information comprising a unique global identifier; determining a plurality of driver devices associated with a plurality of drivers by comparing the one or more characteristics to stored driver certifications; transmitting a push notification to a first driver device in the plurality of driver devices, wherein the first driver device is a closest driver device among the plurality of driver devices to the current GPS location of the package; receiving a rejection from the first driver device; transmitting, by one or more processors, a second push notification to a second driver device in the plurality of driver devices, wherein the second driver device is a second-closest driver device among the plurality of driver devices to the current GPS location of the package; receiving an acceptance from the second driver device; generating a set of possible itineraries, each itinerary comprising one or more segments; eliminating itinerary segments from the set of possible itineraries based on an incompatibility in an eliminated segment with a characteristic in the one or

more characteristics to create an updated set of possible itineraries; sorting the updated set of possible itineraries based on distance and speed to create a sorted set of possible itineraries; selecting a highest ranked itinerary from the sorted set of possible itineraries; generating and transmitting route information associated with the highest ranked itinerary to the second driver device; causing the customer device to generate a graphical representation of the route information and a location of the second driver device; receiving scan information comprising a first geotag and a scanned identifier from the second driver device, the scan information generated at the first location in response to a scan of a package label on the package; verifying the scanned identifier against the unique global identifier associated with the package and verifying that the first geotag matches the first location; receiving second scan information comprising a second geotag, the second scan information generated at the second location in response to a second scan of the package label on the package; determining that the second location is a starting point of a subsequent trip with a carrier; generating an electronic representation of a transit document for transport of the package on the subsequent trip with the carrier, wherein a format of the transit document matches a format required by the carrier; and transmitting the electronic representation of the transit document to the carrier.

- 2. The method of claim 1, wherein the one or more characteristics comprise a weight, a volume, a hazard level, a content, a durability, a shape, one or more dimensional measurements, a fragility, and/or a density.
- 3. The method of claim 1, further comprising: transmitting the electronic representation of the transit document to the second driver device.
- 4. The method of claim 1, further comprising: in response to the request, generating a quote comprising a timeline and a cost of transporting the package; and transmitting the quote to the customer device.
- 5. The method of claim 1, wherein each segment in the one or more segments relies on a mode of transportation, and wherein the mode of transportation is ground, air, or rail.
- 6. The method of claim 1, further comprising: eliminating second itinerary segments from the set of possible itineraries based on a temporal conflict to create the updated set of possible itineraries.
- 7. The method of claim 1, wherein the transit document is an airway bill.
- 8. A system, comprising: a memory; and at least one processor coupled to the memory and configured to: receive a request from a customer device to transport a package having one or more characteristics from a first location to a second location, wherein the request comprises a current GPS location of the package; generate order information for the package, the order information comprising a unique global identifier; determine a plurality of driver devices associated with a plurality of drivers by comparing the one or more characteristics to stored driver certifications; transmit a push notification to a first driver device in the plurality of driver devices, wherein the first driver device is a closest driver device among the plurality of driver devices to the current GPS location of the package; receive a rejection from the first driver device; transmit a second push notification to a second driver device in the plurality of driver devices, wherein the second driver device is a second-closest driver device among the plurality of driver devices to the current GPS location of the package; receive an acceptance from the second driver device; generate a set of possible itineraries, each itinerary comprising one or more segments; eliminate itinerary segments from the set of possible itineraries based on an incompatibility in an eliminated segment with a characteristic in the one or more characteristics to create an updated set of possible itineraries; sort the updated set of possible itineraries based on distance and speed to create a sorted set of possible itineraries; select a highest ranked itinerary from the sorted set of possible itineraries; generate and transmit route information associated with the highest ranked itinerary to the second driver device; cause the customer device to generate a graphical representation of the route information and a location of the second driver device; receive scan information comprising a first geotag and a scanned identifier from the second driver device, the scan information generated at the first

location in response to a scan of a package label on the package; verify the scanned identifier against the unique global identifier associated with the package and verifying that the first geotag matches the first location; receive second scan information comprising a second geotag, the second scan information generated at the second location in response to a second scan of the package label on the package; determine that the second location is a starting point of a subsequent trip with a carrier; generate an electronic representation of a transit document for transport of the package on the subsequent trip with the carrier, wherein a format of the transit document matches a format required by the carrier; and transmit the electronic representation of the transit document to the carrier.

- 9. The system of claim 8, wherein the one or more characteristics comprise a weight, a volume, a hazard level, a content, a durability, a shape, one or more dimensional measurements, a fragility, and/or a density.
- 10. The system of claim 8, the at least one processor further configured to: transmit the electronic representation of the transit document to the second driver device.
- 11. The system of claim 8, the at least one processor further configured to: in response to the request, generate a quote comprising a timeline and a cost of transporting the package; and transmit the quote to the customer device.
- 12. The system of claim 8, wherein each segment in the one or more segments relies on a mode of transportation, and wherein the mode of transportation is ground, air, or rail.
- 13. The system of claim 8, the at least one processor further configured to: eliminate second itinerary segments from the set of possible itineraries based on a temporal conflict to create the updated set of possible itineraries.
- 14. The system of claim 8, wherein the transit document is an airway bill.
- 15. A non-transitory computer-readable device having instructions stored thereon that, when executed by at least one computing device, causes the at least one computing device to perform operations comprising: receiving a request from a customer device to transport a package having one or more characteristics from a first location to a second location, wherein the request comprises a current GPS location of the package; generating order information for the package, the order information comprising a unique global identifier; determining a plurality of driver devices associated with a plurality of drivers by comparing the one or more characteristics to stored driver certifications; transmitting a push notification to a first driver device in the plurality of driver devices, wherein the first driver device is a closest driver device among the plurality of driver devices to the current GPS location of the package; receiving a rejection from the first driver device; transmitting a second push notification to a second driver device in the plurality of driver devices, wherein the second driver device is a second-closest driver device among the plurality of driver devices to the current GPS location of the package; receiving an acceptance from the second driver device; generating a set of possible itineraries, each itinerary comprising one or more segments; eliminating itinerary segments from the set of possible itineraries based on an incompatibility in an eliminated segment with a characteristic in the one or more characteristics to create an updated set of possible itineraries; sorting the updated set of possible itineraries based on distance and speed to create a sorted set of possible itineraries; selecting a highest ranked itinerary from the sorted set of possible itineraries; generating and transmitting route information associated with the highest ranked itinerary to the second driver device; causing the customer device to generate a graphical representation of the route information and a location of the second driver device; receiving scan information comprising a first geotag and a scanned identifier from the second driver device, the scan information generated at the first location in response to a scan of a package label on the package; verifying the scanned identifier against the unique global identifier associated with the package and verifying that the first geotag matches the first location; receiving second scan information comprising a second geotag, the second scan information generated at the second location in response to a second scan of the package label on the package; determining that

the second location is a starting point of a subsequent trip with a carrier; generating an electronic representation of a transit document for transport of the package on the subsequent trip with the carrier, wherein a format of the transit document matches a format required by the carrier; and transmitting the electronic representation of the transit document to the carrier.

- 16. The non-transitory computer-readable device of claim 15, wherein the one or more characteristics comprise a weight, a volume, a hazard level, a content, a durability, a shape, one or more dimensional measurements, a fragility, and/or a density.
- 17. The non-transitory computer-readable device of claim 15, the operations further comprising: transmitting the electronic representation of the transit document to the second driver device.
- 18. The non-transitory computer-readable device of claim 15, wherein each segment in the one or more segments relies on a mode of transportation, and wherein the mode of transportation is ground, air, or rail.
- 19. The non-transitory computer-readable device of claim 15, the operations further comprising: eliminating second itinerary segments from the set of possible itineraries based on a temporal conflict to create the updated set of possible itineraries.
- 20. The non-transitory computer-readable device of claim 15, wherein the transit document is an airway bill.