

Name:	Aditya Suhane (24212188)
Module Code:	FIN41660
Module Title:	Financial Econometrics
Assessment Title:	Individual Practical Assignment in python

Declaration of Authorship: I declare that all materials included in this assessment is the end result of our own work and that due acknowledgement has been given in the bibliography and references to ALL sources, be they printed, electronic or personal.

Signed:

Aditya Suhane	Job ty a Schane

Does the stock market predict real activity? Time series evidence from the G-7 countries

Introduction

Project Overview

The objective of this project was to replicate the research paper "Does the Stock Market Predict Real Activity? Time Series Evidence from the G-7 Countries." In this study, we explored the relationship between industrial production (IP) and stock returns for G-7 countries. We implemented our analysis across three different time frames: monthly, quarterly, and annual data. The project involved the application of three types of models: a standard linear regression model, a lagged ECM (Error Correction Model), and ARIMA and GARCH models to predict industrial production growth.

This replication study provided valuable insights into the interplay between stock market performance and real economic activity, as outlined in the original research.

Paper Selection

The reason for selecting this research paper was to study the relationship between various factors that contribute to predicting industrial production. Additionally, it aimed to explore how industrial production is influenced by these factors, given its significance as a key indicator for forecasting the growth patterns of any nation.

We chose this paper to leverage data and predictions for the G-7 countries, as this group represents some of the world's largest economies. Analyzing patterns across these nations provides valuable insights that can be applied to a significant portion of the global economy. This paper also employs various time series models for prediction, offering a diverse perspective and enriching our understanding of industrial production.

The original paper analyzed data from 1950 to 1990; however, due to data constraints, we adjusted the timeframe for our predictions to 2005–2021. Beyond this, a significant reason for this change was to examine how these predictive models perform with modern data, thereby testing the applicability of older models in a contemporary context.

We used three different datasets for our predictions: Industrial Production, Stock Price Index, and Consumer Price Index for the respective G-7 countries, including Japan, Canada, the USA, the UK, Germany, France, and Italy.

Data Collection

The dataset consists of monthly observations of the Stock Index, Industrial Production Index, and Consumer Price Index for all G-7 countries. The stock index data, which varies by country, was collected from Refinitiv and TradingView. The abbreviations for the respective indices are:

Canada: S&P/TSX
USA: NASDAQ
UK: FTSE 100
Japan: Nikkei 225
Italy: Italian FTSE
France: CAC 40
Germany: DAX

The Industrial Production Index and Consumer Price Index were sourced from the International Financial Statistics provided by the International Monetary Fund (IMF).

The time period for all data samples is one month, and the data was converted into yearly and quarterly observations as required for different calculations and analyses.

Data Description

In our analysis, we primarily focus on two main variables: the Industrial Production Index and the Nominal Stock Index. The Real Stock Index is calculated by dividing the Nominal Stock Index by the Consumer Price Index. This step is a critical aspect of our predictive model, as it adjusts the stock index for inflation, ensuring that our predictions are based on real, inflation-adjusted values rather than nominal figures.

Image1: Industrial production index

In the above plot, we can observe the trend of the Industrial Production Index for all G-7 countries over the time frame from 2005 to 2020. The countries are represented using the following color scheme: France in blue, Germany in orange, Italy in green, Japan in red, the UK in purple, the USA in brown, and Canada also in purple.

Image 2: Consumer Price Index

The above graph shows the trend lines of consumer price index over a time frame of 2005 to 2020.

Image 3: Stock Index

In the above graph, we can observe the actual price index for all the major G-7 economies. This index is calculated by dividing the real stock index by the consumer price index. Most countries follow a relatively stable trend with minimal volatility. However, the Italian and Japanese stock indices stand out, exhibiting distinct behavior compared to others after the conversion to the actual price index. This divergence might play a critical role in the prediction of the Industrial Production Index.

In every model we use, we have applied the log growth rate for both industrial production and the real stock index. Additionally, we have handled missing data by dropping all null values in our predictive analysis. One of the key challenges faced was the conversion of the date-time format, which we successfully addressed. We also combined all the datasets into one unified dataframe. To handle different time frames, we converted the monthly data into yearly and quarterly data using the mean method.

Data Consistency

First, we performed the Augmented Dickey-Fuller (ADF) test for each of the G-7 countries. The ADF test was conducted to determine whether the data is stationary or non-stationary, which is a crucial step for ensuring the stationarity of the data. In the ADF test, the null hypothesis is that the data is non-stationary, while the alternative hypothesis is that the data is stationary. A stationary data series is one where the mean, variance, and autocorrelation remain constant over time. We conducted the ADF test on the differences in log returns of industrial production and stock indices for each of the countries.

Ho: Data points are non – Stationary

H1: Data points are Stationary

```
Performing Augmented Dickey-Fuller Test for Differenced Log Canadian Stock Index:
ADF Statistic: -9.07690205359602
p-value: 4.155610679335628e-15
Critical Values:
   1%: -3.467004502498507
   5%: -2.8776444997243558
   10%: -2.575355189707274
The series Differenced Log Canadian Stock Index is stationary (reject null hypothesis).
Performing Augmented Dickey-Fuller Test for Differenced Log Industrial Production:
ADF Statistic: -11.350799045332003
p-value: 1.0006645755130169e-20
Critical Values:
   1%: -3.4648754262570978
   5%: -2.876714157488788
   10%: -2.574858699001736
The series Differenced Log Industrial Production is stationary (reject null hypothesis).
```

Image 4: ADF For Canada

In the above Augmented Dickey-Fuller (ADF) test, we conducted the test on the monthly data for the Canadian Stock Index and the Industrial Production Index. The p-value obtained from the test was very low, indicating that we can reject the null hypothesis, which suggests that the data is non-stationary. Therefore, we accept the

alternative hypothesis, which states that the data is stationary. This is a crucial step, as stationarity is required for the validity of subsequent time series models.

```
Performing Augmented Dickey-Fuller Test for differenced US Stock Index:
ADF Statistic: -11.288165347123375
p-value: 1.401160214043319e-20
Critical Values:
   1%: -3.468952197801766
   5%: -2.878495056473015
   10%: -2.57580913601947
The differenced series US Stock Index is stationary (reject null hypothesis).
Performing Augmented Dickey-Fuller Test for differenced US Industrial Production:
ADF Statistic: -10.816370964837661
p-value: 1.852773619673187e-19
Critical Values:
   1%: -3.4652439354133255
   5%: -2.8768752281673717
   10%: -2.574944653739612
The differenced series US Industrial Production is stationary (reject null hypothesis).
```

Image 5: ADF For USA

In the above ADF test, we conducted the test on the US Stock Index (Nasdaq) and the Industrial Production Index. The results show that both the US Stock Index and the Industrial Production Index are stationary, as we were able to reject the null hypothesis that suggests the data is non-stationary. This indicates that the data is suitable for further analysis, and we can proceed with time series modeling for prediction purposes.

```
Performing Augmented Dickey-Fuller Test for differenced French Stock Index:
ADF Statistic: -11.492810776847932
n-value: 4.691442415482325e-21
Critical Values:
  1%: -3.4682803641749267
  5%: -2.8782017240816327
  10%: -2.5756525795918366
The differenced series French Stock Index is stationary (reject null hypothesis).
Performing Augmented Dickey-Fuller Test for differenced French Industrial Production:
ADF Statistic: -12.320492053793304
p-value: 6.768384122287175e-23
Critical Values:
  1%: -3.4682803641749267
  5%: -2.8782017240816327
  10%: -2.5756525795918366
The differenced series French Industrial Production is stationary (reject null hypothesis).
```

Image 6: ADF For France

Same goes with the French index, which is the **CAC-40**. The Augmented Dickey-Fuller (ADF) test conducted on the French Stock Index (CAC-40) and the Industrial Production Index shows that both are stationary.


```
erforming Augmented Dickey-Fuller Test for Differenced German Industrial Production (Monthly):
ADF Statistic: -11.081773269535569
p-value: 4.293485345073923e-20
Critical Values:
  1%: -3.4682803641749267
   5%: -2.8782017240816327
   10%: -2.5756525795918366
The differenced series Differenced German Industrial Production (Monthly) is stationary (reject null hypothesis).
Performing Augmented Dickey-Fuller Test for Differenced German Stock Index (Monthly):
ADF Statistic: -17.6761303608289
n-value: 3.625972323004401e-30
.
Critical Values:
  1%: -3.4680615871598537
   5%: -2.8781061899535128
   10%: -2.5756015922004134
The differenced series Differenced German Stock Index (Monthly) is stationary (reject null hypothesis).
```

Image 7: ADF For Germany

Same goes for the German index, which is the **DAX**. The Augmented Dickey-Fuller (ADF) test conducted on the German Stock Index (DAX) and the Industrial Production Index shows that both are stationary

```
ADF Test for Log_Diff_Japanese_Stock_Index:
ADF Statistic: -11.240467129233062
p-value: 1.812446323132547e-20
Critical Values: {'1%': -3.49181775886872, '5%': -2.8884437992971588, '10%': -2.5811201893779985}
The series is stationary.

ADF Test for Log_Diff_Japanese_Industrial_Production:
ADF Statistic: -7.086965567292661
p-value: 4.5122719269876515e-10
Critical Values: {'1%': -3.492995948509562, '5%': -2.888954648057252, '10%': -2.58139291903223}
The series is stationary.
```

Image 8: ADF For Japan

Same goes for the Japanese index, which is the **Nikkei 225**. The Augmented Dickey-Fuller (ADF) test conducted on the Nikkei 225 Stock Index and the Industrial Production Index shows that both are stationary.

```
ADF Test for Log_Diff_UK_Stock_Index:
ADF Statistic: -6.714480798598389
p-value: 3.6109688710471e-09
Critical Values: {'1%': -3.465620397124192, '5%': -2.8770397560752436, '10%': -2.5750324547306476}
The series is stationary.

ADF Test for Log_Diff_UK_Industrial_Production:
ADF Statistic: -7.910401386948031
p-value: 3.96217930210933e-12
Critical Values: {'1%': -3.4662005731940853, '5%': -2.8772932777920364, '10%': -2.575167750182615}
The series is stationary.
```

Image 9: ADF For UK

The same applies to the UK **FTSE 100** index as well. The Augmented Dickey-Fuller (ADF) test conducted on the FTSE 100 Stock Index and the Industrial Production Index shows that both are stationary.


```
ADF Test for Log_Diff_Italy_Stock_Index:
ADF Statistic: -11.969810934923128
p-value: 3.9223787817278283e-22
Critical Values: {'1%': -3.470616369591229, '5%': -2.8792214018977655, '10%': -2.57619681359045}
The series is stationary.

ADF Test for Log_Diff_Italy_Industrial_Production:
ADF Statistic: -3.2495117880321986
p-value: 0.017291762091788867
Critical Values: {'1%': -3.471118535474365, '5%': -2.8794405060097024, '10%': -2.576313761526591}
The series is stationary.
```

Image 10: ADF For Italy

The same goes for the **Italian FTSE** index as well. The Augmented Dickey-Fuller (ADF) test conducted on the Italian FTSE Stock Index and the Industrial Production Index shows that both are stationary.

After performing the Augmented Dickey-Fuller (ADF) test and confirming the stationarity of the data, we proceeded to run an **OLS regression** using the **Error Correction Model (ECM)**, which incorporates lagged values of the variables. The ECM is a model designed to capture both the short-term and long-term relationships between the variables—in this case, the log-transformed stock index and the industrial production index.

$$y_{t} = \sum_{j=1}^{m} a_{t-j} \cdot S_{t-j} + \sum_{i=1}^{m} b_{j} y_{t-j} + \phi_{t}$$

For the lagged values, we used:

Monthly data: Lag length of 24
Quarterly data: Lag length of 8
Yearly data: Lag length of 2

We applied this model for each of the G-7 countries and estimated the coefficients to understand the dynamic relationships between stock prices and industrial production over the specified time frames.

	0	LS Regressi	on Resu.	lts		
Dep. Variable: Indus	======= trial Produc	tion Log Ch	====== ange f	========= R-squared:		 0.1
Model:				Adj. R-square	ed:	-0.6
Method:		Least Squ		-statistic:		0.86
Date:	Т	ue, 17 Dec		rob (F-stati	stic):	0.7
Time:		23:1		_og-Likelihoo		482
No. Observations:				AIC:		-915
Df Residuals:			136 E	BIC:		-838
Df Model:			24			
Covariance Type:		nonro	bust			
=======================================	coef	std err	======	t P> t	[0.025	0.97 <u>5</u>
const	0.0005	0.001	0.51	L8 0.606	-0.002	0.00
Stock_Log_Return_lag_1	0.0009	0.003	0.30	0.758	-0.005	0.00
Stock_Log_Return_lag_2	0.0020	0.003	0.65	50 0.517	-0.004	0.0
Stock_Log_Return_lag_3	0.0006	0.003	0.19	97 0.844	-0.006	0.00
Stock_Log_Return_lag_4	0.0025	0.003	0.75	57 0. 456	-0.004	0.00
Stock_Log_Return_lag_5	0.0040	0.003	1.2	33 0.226	-0.002	0.0
Stock_Log_Return_lag_6	0.0037	0.003	1.07	79 0.283	-0.003	0.0
Stock_Log_Return_lag_7	0.0052	0.003	1.5	34 0.127	-0.002	0.0
Stock_Log_Return_lag_8	0.0041	0.004	1.17			0.0
Stock_Log_Return_lag_9	0.0040	0.004	1.12			0.0
Stock_Log_Return_lag_10	0.0077	0.004	2.1			0.0
Stock_Log_Return_lag_11	0.0019	0.004	0.52			0.0
Stock_Log_Return_lag_12	0.0046	0.004	1.28			0.0
Stock_Log_Return_lag_13	0.0008	0.004	0.21			0.00
Stock_Log_Return_lag_14	0.0014	0.004	0.38			0.00
Stock_Log_Return_log_15	0.0073	0.004	2.0			0.0
Stock_Log_Return_lag_16	-0.0021	0.004	-0.58			0.00
Stock_Log_Return_lag_17 Stock Log Return lag 18	0.0056 0.0036	0.004 0.004	1.56 1.01			0.01 0.01
Stock_Log_Return_lag_19	0.0030	0.004	1.10			0.0
ge 11: Canadian Monthl	y OLS Regr	ression				
ock_Log_Return_lag_20	0.0016	0.004	0.470	0.639	-0.005	0.6
ock_Log_Return_lag_21	0.0032	0.003	0.906	0.366	-0.004	0.0
ock_Log_Return_lag_22	0.0069	0.003	2.009	0.046	0.000	0.6
ock_Log_Return_lag_23	0.0040	0.003	1.236	0.221	-0.002	0.6
ock_Log_Return_lag_24	0.0046	0.003	1.395	0.165	-0.002	0.6
======================================	48.609	====== Durbin-Wa	tson:		======= 2.014	
ob(Omnibus):	0.000	Jarque-Be		:	368.191	
ew:	-0.813	Prob(JB):			1.12e-80	
rtosis:	10.228	Cond. No.			6.77	

Image 12: Canadian Monthly OLS Regression

In the first two figures, we observe the monthly OLS regression over the Canadian Stock Index and Industrial Production log. The "coefficient estimates" are mostly positive, indicating a positive correlation with the dependent variable. The "standard error" across all 24 lags is relatively low, suggesting that the independent variable has low variability. However, the "confidence intervals" for the majority of the lags include 0 in their range, indicating that the relationship between the independent and dependent variables is not as strong as it should be.

The "F-statistic" is quite high at 0.721, which leads us to accept the null hypothesis, again suggesting that the model is not statistically significant. Additionally, the "R-squared" value is 0.125, which means only 12.5% of the data is being explained by the model, a rather poor result.

When comparing with the paper, the original R-squared value was 0.24, which was also not a good sign for acceptance. However, the original model was statistically significant due to its p-value of 0. Regarding "time instability," we applied the Augmented Dickey-Fuller test, which shows that the variables are stationary in nature. The Durbin-Watson test also returns a value near 2, indicating no autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.14, suggesting that the model does not suffer from multicollinearity.

OLS Regression Results										
Dep. Variable: Indus	trial Drodu	uction Log Ch	ange	R-sa	 uared:		0.267			
Model:	7 CT 1 CT _ T T CT .	2001_208_61	OLS		R-squared:		0.139			
Method:		Least Squ			atistic:		2.091			
Date:		Tue, 17 Dec			(F-statist	ic):	0.0562			
Time:			L7:12		Likelihood:	,-	198.03			
No. Observations:		2313	55	AIC:	LINCIII		-378.1			
Df Residuals:			46	BIC:			-360.0			
Df Model:			8							
Covariance Type:		nonro	bust							
=======================================	:======			=====	=======	=======	-=====			
	coef	std err		t	P> t	[0.025	0.975]			
const	-0.0009	0.001	-0.8	356	0.397	-0.003	0.001			
Stock_Log_Return_lag_1	0.0032	0.004	0.7	738	0.464	-0.005	0.012			
Stock_Log_Return_lag_2	0.0128	0.005	2.7	780	0.008	0.004	0.022			
Stock_Log_Return_lag_3	0.0132	0.005	2.6	666	0.011	0.003	0.023			
Stock_Log_Return_lag_4	0.0077	0.005	1.4	186	0.144	-0.003	0.018			
Stock_Log_Return_lag_5	0.0083	0.005	1.6	516	0.113	-0.002	0.019			
Stock_Log_Return_lag_6	0.0073	0.005	1.4	140	0.157	-0.003	0.018			
Stock_Log_Return_lag_7	0.0076	0.005	1.5	503	0.140	-0.003	0.018			
Stock_Log_Return_lag_8	0.0119	0.005	2.6	529	0.012	0.003	0.021			
=======================================						======				
Omnibus:	4.7	766 Durbin-	-Watsor	ı:		1.529				
Prob(Omnibus):	0.0	992 Jarque-	-Bera ((JB):		3.708				
Skew:	-0.5	535 Prob(JE	3):			0.157				
Kurtosis:	3.0	589 Cond. N	lo.			8.54				
=======================================		-======	=====		========	======				

Image 13: Canadian Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log Canadian Stock Index return and log Industrial Production return. The "coefficient estimates" are mostly positive, indicating a positive correlation with the dependent variable. The "standard error" across all 8 lags is relatively low, suggesting that the independent variable has low variability. However, the "confidence intervals" for 5 of the lags include 0, showing that they don't have a strong correlation with the model. On the other hand, 3 of the lags do not include 0 within their range, indicating a strong correlation with the model.

The "F-statistic" is quite low at 0.0562, which leads us to reject the null hypothesis, suggesting that the model is statistically significant at the 1% and 5% significance levels. Additionally, the "R-squared" value is 0.267, meaning only 26.7% of the data is being explained by the model, which is acceptable.

When comparing with the paper, the original R-squared value was 0.30, which was also not very high. However, the original model was statistically significant at all levels due to its p-value of 0.

Regarding "time instability," we applied the Augmented Dickey-Fuller test, which shows that the variables are stationary in nature. The Durbin-Watson test also returns a value near 1.5, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.36, suggesting that the model does not suffer from multicollinearity.

		OLS Regressi	ion Res	ults			
Dep. Variable: Ind	ustrial_Prod	 luction_Log_Cl	 nange	R-sq	uared:		0.267
Model:			OLS	Adj.	R-squared:		0.133
Method:		Least Sq	ıares	F-st	atistic:		1.999
Date:		Tue, 17 Dec	2024	Prob	(F-statist	ic):	0.182
Time:		23:1	17:12	Log-	Likelihood:		61.748
No. Observations:			14	AIC:			-117.5
Df Residuals:			11	BIC:			-115.6
Df Model:			2				
Covariance Type:		nonro	obust				
	coef	std err		t	P> t	======= [0.025	0.975]
const	2.674e-05	0.001	0.6	930	0.977	-0.002	0.002
Stock_Log_Return_lag_1	0.0243	0.030	0.8	303	0.439	-0.042	0.091
Stock_Log_Return_lag_2	0.0601	0.030	1.9	988	0.072	-0.006	0.127
Omnibus:	 0.	======== 629	===== -Watsor	===== 1:	=======	1.110	
Prob(Omnibus):	0.730 Jarque-Bera			(JB):		0.340	
Skew:	-0.354 Prob(JB):					0.844	
Kurtosis:	2.	716 Cond. I	No.			38.9	

Image 14: Canadian Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log Canadian Stock Index return and log Industrial Production return. The "coefficient estimates" are all positive, indicating a positive correlation with the dependent variable. The "standard error" across all 2 lags is relatively low, suggesting that the independent variable has low variability. However, the "confidence intervals" for all the lags include 0, which shows that the variables do not have a strong correlation within their range, indicating a weak relationship.

The "F-statistic" is quite low at 0.18, leading us to accept the null hypothesis, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.267, meaning only 26.7% of the data is being explained by the model, which is acceptable but not ideal. When comparing with the paper, the original R-squared value was 0.86, which is much higher. However, the original model was statistically significant at all levels, with a p-value of 0.022. Regarding "time instability," we applied the Augmented Dickey-Fuller test, which shows that the variables are stationary in nature. The Durbin-Watson test also returns a value near 1.10, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.36, suggesting that the model does not suffer from multicollinearity.

	OLS Regression Results									
Dep. Variable: Indus	======== trial Productio	====== on Log Ch	====== ange	===== R-sal	======================================	=======	0.264			
Model:		_ 0_	OLS		R-squared:		0.122			
Method:	ı	_east_Squ	ares		tistic:		1.853			
Date:		17 Dec		Prob	(F-statistic):	0.0157			
Time:		23:1		Log-L	ikelihood:		399.79			
No. Observations:			149	AIC:			-749.6			
Df Residuals:			124	BIC:			-674.5			
Df Model:			24							
Covariance Type:		nonro	bust							
	========		======	=====			======			
	coef s	std err		t	P> t	[0.025 	0 . 975]			
const	0.0008	0.002	0.5	520	0.604	-0.002	0.004			
Stock_Log_Return_lag_1	0.0218	0.004	5.4	166	0.000	0.014	0.030			
Stock_Log_Return_lag_2	-0.0057	0.004	-1.3	371	0.173	-0.014	0.003			
Stock_Log_Return_lag_3	-0.0003	0.004	-0.6	963	0.950	-0.009	0.008			
Stock_Log_Return_lag_4	0.0031	0.004	0.7	706	0.481	-0.006	0.012			
Stock_Log_Return_lag_5	-0.0062	0.004	-1.4	117	0.159	-0.015	0.002			
_ 0 0_	-1 . 907e-06	0.004	-0.6	900	1.000	-0.009	0.009			
Stock_Log_Return_lag_7	-0.0031	0.005	-0.6	662	0.509	-0.012	0.006			
Stock_Log_Return_lag_8	0.0011	0.005	0.2		0.820	-0.009	0.011			
Stock_Log_Return_lag_9	-0.0047	0.005	-0.9		0.349	-0.015	0.005			
Stock_Log_Return_lag_10	-0.0025	0.005	-0.5		0.615	-0.012	0.007			
Stock_Log_Return_lag_11	0.0001	0.005	0.6		0.981	-0.010	0.010			
Stock_Log_Return_lag_12	-0.0025	0.005	-0.5		0.618	-0.012	0.007			
Stock_Log_Return_lag_13	0.0005	0.005	0.1		0.920	-0.009	0.010			
Stock_Log_Return_lag_14	-0.0018	0.005	-0.3		0.724	-0.012	0.008			
Stock_Log_Return_lag_15	0.0030	0.005	0.5		0.552	-0.007	0.013			
Stock_Log_Return_lag_16	-0.0039	0.005	-0.7		0.442	-0.014	0.006			
Stock_Log_Return_lag_17	0.0008	0.005	0.1		0.877	-0.009	0.011			
Stock_Log_Return_lag_18	0.0044	0.005	0.8		0.375	-0.005	0.014			
Stock_Log_Return_lag_19	-0.0075	0.005	-1.5	903	0.135	-0.017	0.002			
Image 15: USA Monthly (OLS Regressio	n								
Stock_Log_Return_lag_20	0.0070	0.005	1.	402	0.163	-0.003	0.017			
Stock_Log_Return_lag_21	0.0027	0.005	0.	552	0.582	-0.007	0.013			
Stock_Log_Return_lag_22	-0.0043	0.005	-0.	865	0.389	-0.014	0.005			
Stock_Log_Return_lag_23	-0.0010	0.005	-0.	213	0.832	-0.010	0.008			
Stock_Log_Return_lag_24	-0.0023	0.005	-0.	506	0.614	-0.011	0.007			
Omnibus:	 142.913	 -Durbin	 Watson	:	========	1.840				
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	4	1364.284				
Skew:	-3.155	Prob(JB				0.00				
Kurtosis:	28.752	Cond. N				4.91				
=======================================	=========	======	:=====	=====		======				

Image 16: USA Monthly OLS Regression

In the above figures, we observe the monthly OLS regression over the log American Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating varying relationships with the dependent variable — some having a positive correlation and others having a negative correlation. The "standard error" across all 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all lags include 0, which indicates that the variables do not exhibit a strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is quite low at 0.015, leading us to reject the null hypothesis, which suggests that the model is statistically significant at any level. Additionally, the "R-squared" value is 0.264, meaning that only 26.4% of the variability in the data is explained by the model. While this is acceptable, it is not ideal.

When comparing with the paper, the original R-squared value was 0.36, which is slightly higher. However, the original model was statistically significant at all levels, with a p-value of 0.000. Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.80, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.35, suggesting that the model does not suffer from multicollinearity.

		OLS Regressi	on Res	ults 			
Dep. Variable: Indu	strial_Prod	uction_Log_Ch	nange	R-sc	uared:		0.20
Model:			OLS	Adj.	R-squared:		0.05
Method:		Least Squ	ıares	F-st	atistic:		1.379
Date:		Tue, 17 Dec	2024	Prob	(F-statist	ic):	0.23
Time:		23:1	L 8:0 3	Log-	Likelihood:		188.9
No. Observations:			53	AIC:			-359.
Df Residuals:			44	BIC:			-342.
Df Model:			8				
Covariance Type:		nonro	bust				
	coef	std err	:=====	t	P> t	[0.025	0.975]
const	8.005e-05	0.001	 0.0	 975	0.941	 -0.002	0.002
Stock Log Return lag 1	0.0083	0.003	2.8		0.006	0.002	0.014
Stock Log Return lag 2	0.0050	0.003	1.5		0.128	-0.001	0.012
Stock Log Return lag 3	0.0028	0.003	0.8		0.410	-0.004	0.010
Stock Log Return lag 4	0.0015	0.004	0.4	126	0.672	-0.006	0.009
Stock Log Return lag 5	0.0043	0.004	1.1	198	0.237	-0.003	0.012
Stock Log Return lag 6	0.0005	0.004	0.1	151	0.881	-0.007	0.008
Stock Log Return lag 7	-0.0010	0.003	-0.2	292	0.771	-0.008	0.006
Stock Log Return lag 8	0.0024	0.003	0.8	307	0.424	-0.004	0.008
	=======	========	-====	-====	:=======	=======	
Omnibus:	4.:	166 Durbin-	-Watsor	1:		1.513	
Prob(Omnibus):	0.	125 Jarque-	Bera ((ЈВ):		3.151	
Skew:	-0.	448 Prob(JE	3):			0.207	
Kurtosis:	3.	791 Cond. N	lo.			5.83	
	=======	========		=====		=======	

Image 17: USA Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log American Stock Index return and log Industrial Production return. The "coefficient estimates" predominantly include positive and one negative value, indicating positive relationships with the dependent variable. The "standard error" across all 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for 7 lags include 0, which indicates that the variables do not show a strong correlation within their range, reflecting a weak relationship. The p-value of the "F-statistic" is quite high at 0.232, leading us to accept the null hypothesis, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.200, meaning that only 20% of the variability in the data is explained by the model. While this is acceptable, it is far from ideal.

When comparing with the paper, the original R-squared value was 0.53, which is notably higher. Moreover, the original model was statistically significant at all levels, with a p-value of 0.000. Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.80, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.25, suggesting that the model does not suffer from multicollinearity.

OLS Regression Results										
Dep. Variable: Indu	 strial_Produ	 uction_Log_Ch	 nange	R-sq	uared:		0.455			
Model:			OLS	Adj.	R-squared:		0.356			
Method:		Least Squ	uares	F-st	atistic:		4.590			
Date:		Tue, 17 Dec	2024	Prob	(F-statist	ic):	0.0355			
Time:		23:1	18:03	Log-	Likelihood:		63.825			
No. Observations:			14	AIC:			-121.7			
Df Residuals:			11	BIC:			-119.7			
Df Model:			2							
Covariance Type:		nonro	bust							
=======================================				=====	========	=======	=======			
	coef	std err		t	P> t	[0.025	0.975]			
const	-0.0005	0.001	-0.5	 569	0.581	-0.002	0.001			
Stock_Log_Return_lag_1	0.0091	0.003	3.6	930	0.011	0.002	0.016			
Stock_Log_Return_lag_2	0.0038	0.003	1.2	265	0.232	-0.003	0.010			
Omnibus:	1.0	======== 015	===== -Watsor	===== 1:	========	 1.458				
Prob(Omnibus):	0.6	502 Jarque-	-Bera ((JB):		0.558				
Skew:	0.471 Prob(JB):					0.756				
Kurtosis:	2.7	738 Cond. N				4.73				
=======================================				=====		=======				

Image 18: American Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log American Stock Index return and log Industrial Production return. The "coefficient estimates" are all positive, indicating a positive relationship with the dependent variable. The "standard error" across the 2 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for 1 lag include 0, indicating that the variables do not show a strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.0355, leading us to reject the null hypothesis at the 5% and 10% significance levels, suggesting that the model is statistically significant at some level. Additionally, the "R-squared" value is 0.455, meaning that 45.5% of the variability in the data is explained by the model. While this is acceptable, it is not ideal.

When compared with the paper, the original R-squared value was 0.84, which is notably higher. Furthermore, the original model was statistically significant at the 1% level, with a p-value of 0.052. Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.458, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.83, suggesting that the model does not suffer from multicollinearity.

	OLS	Regressio	n Results				
	:	======== 	======================================	======== 		2.252	
•	rial_Productio			uared:		0.262	
Model:				R-squared:		-0.079 0.7689	
Method:		Least Squares F-statistic:					
Date: 	wed,	18 Dec 2		(F-statisti	.c):	0.756	
Time:		22:39		Likelihood:		197.18	
No. Observations:			77 AIC:			-344.4	
Df Residuals:			52 BIC:			-285.8	
Df Model:			24				
Covariance Type:		nonrob =======	ust ======	========	========	======	
	coef s	td err	t	P> t	[0.025	0.975]	
const	-0.0024	0.003	-0 . 922	0.361	-0.008	0.003	
Stock_Log_Return_lag_1	0.0003	0.006	0.047	0.963	-0.011	0.011	
Stock_Log_Return_lag_2	0.0087	0.006	1.580	0.120	-0.002	0.020	
Stock_Log_Return_lag_3	-0.0024	0.005	-0.451	0.654	-0.013	0.008	
Stock_Log_Return_lag_4	-0.0026	0.006	-0.477	0.636	-0.014	0.009	
Stock_Log_Return_lag_5	0.0015	0.006	0.261	0.795	-0.010	0.013	
Stock_Log_Return_lag_6	-0.0017	0.006	-0.296	0.768	-0.013	0.010	
Stock_Log_Return_lag_7	0.0015	0.006	0.265	0.792	-0.010	0.013	
Stock_Log_Return_lag_8	-0.0031	0.006	-0.567	0.573	-0.014	0.008	
Stock Log Return lag 9	-0.0036	0.006	-0.618	0.539	-0.015	0.008	
Stock Log Return lag 10	-0.0018	0.006	-0.320	0.750	-0.013	0.010	
Stock Log Return lag 11	-0.0013	0.006	-0.224	0.824	-0.013	0.010	
Stock Log Return lag 12	0.0106	0.006	1.864	0.068	-0.001	0.022	
Stock Log Return lag 13	0.0048	0.006	0.846	0.401	-0.007	0.016	
Stock Log Return lag 14	0.0047	0.006	0.825	0.413	-0.007	0.016	
Stock Log Return lag 15	-0.0101	0.006	-1.769	0.083	-0.022	0.001	
Stock Log Return lag 16	-0.0040	0.006	-0.706	0.484	-0.015	0.007	
Stock Log Return lag 17	-0.0050	0.006	-0.897	0.374	-0.016	0.006	
Stock Log Return lag 18	-0.0028	0.006	-0.483	0.631	-0.014	0.009	
Stock_Log_Return_lag_19	0.0077	0.006	1.354	0.182	-0.004	0.019	
Image 18: Japan Monthly		ion					
Stock Log Return lag 20	0.0014	0.006	0.253	0.801	-0.010	0.013	
Stock_Log_Return_lag_21	-0.0026	0.006	-0.464	0.645	-0.014	0.009	
Stock Log Return lag 22	0.0046	0.006	0.798	0.428	-0.007	0.016	
Stock Log Return lag 23	0.0038	0.005	0.702	0.486	-0.007	0.015	
Stock_Log_Return_lag_24	-0.0007	0.005	-0.132	0.895	-0.012	0.010	
Omnibus:	 25.809	Durhin-	======= Watson:	========	1.986		
Prob(Omnibus):	0.000		Bera (JB):		53.258		
Skew:	-1.161	Prob(JB			2.72e-12		
Kurtosis:	6.348	Cond. N			2.726-12		
=======================================		N	=======		Z.30		

Image 19: Japan Monthly OLS Regression

In the above figures, we observe the montly OLS regression over the log Japanese Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a mixed relationship with the dependent variable. The "standard error" across the 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 24 lags include 0, indicating that the variables do not show a strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.756, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.262, meaning that 26.2% of the variability in the data is explained by the model. While this is somewhat acceptable, it is far from ideal.

When compared with the paper, the original R-squared value was 0.44, which is notably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.027. Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.986, indicating no significant autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.35, suggesting that the model does not suffer from multicollinearity.

		OLS Regressi	ion Resu	ılts		=======	
Dep. Variable: Indus	trial_Produ	 uction_Log_Ch	 hange	R-squ	ared:		0.331
Model:			0LS	Adj.	R-squared:		0.076
Method:		Least Sqı	uares	F-sta	tistic:		1.298
Date:		Wed, 18 Dec	2024	Prob	(F-statist	ic):	0.297
Time:		22:	39:44	Log-L	ikelihood:		86.73
No. Observations:			30	AIC:			-155.5
Df Residuals:			21	BIC:			-142.9
Df Model:			8				
Covariance Type:		nonro	obust				
	coef	std err	======	t	P> t	======== [0.025	0.975]
const	-0.0025	0.003	-0.83	31	0.415	-0.009	0.004
Stock_Log_Return_lag_1	0.0071	0.010	0.73	3	0.472	-0.013	0.027
Stock_Log_Return_lag_2	0.0020	0.010	0.20)4	0.840	-0.019	0.023
Stock_Log_Return_lag_3	0.0008	0.009	0.08	37	0.931	-0.019	0.020
Stock_Log_Return_lag_4	-0.0004	0.010	-0.03	37	0.971	-0.021	0.020
Stock_Log_Return_lag_5	0.0066	0.010	0.66	52	0.515	-0.014	0.027
Stock_Log_Return_lag_6	-0.0023	0.010	-0.23	35	0.817	-0.023	0.018
Stock_Log_Return_lag_7	0.0199	0.007	2.73	86	0.012	0.005	0.035
Stock_Log_Return_lag_8	-0.0070	0.008	-0.92	22	0.367	-0.023	0.009
======================================	 12.6	======= 30	====== -Watson:			====== 2.185	
Prob(Omnibus):	0.0	902 Jarque	-Bera (J	B):		12.837	
Skew:	-1.6	960 Prob(JI	в):	0.00163			
Kurtosis:	5.4					4.09	

Image 20: Japan Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log Japanese Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a mixed relationship with the dependent variable. The "standard error" across the 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for 7 lags include 0, indicating that the variables do not show a strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.297, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.331, meaning that 33.1% of the variability in the data is explained by the model. While this is somewhat acceptable, it is not ideal.

When compared with the paper, the original R-squared value was 0.56, which is significantly higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.003. Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 2.185, indicating slightly negative autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.49, suggesting that the model does not suffer from multicollinearity.

Best Lag for Yearly Data		squared: 0.1 DLS Regressi			1233		
Dep. Variable: Indus	Industrial Production Log Change R-squared:						
Model:	ci iai_i i oduc	cion_cog_cn	OLS		R-squared:		0.164 -0.022
Method:		Least Squ		•	atistic:		0.8806
Date:	V	led, 18 Dec			(F-statist	ic):	0.447
Time:			9:44		.ikelihood:		45.840
No. Observations:			12	AIC:			-85.68
Df Residuals:			9	BIC:			-84.22
Df Model:			2				
Covariance Type:		nonro	bust				
_======================================	coef	std err	=====	t	P> t	[0.025	0.975]
const	-0.0002	0.002	-0.6	 972	0.944	-0 . 005	0.005
Stock_Log_Return_lag_1	0.0102	0.008	1.2	248	0.244	-0.008	0.029
Stock_Log_Return_lag_2	0.0064	0.008	0.7	792	0.449	-0.012	0.025
Omnibus:	 4.42	======= 29	===== Watsor	-==== n:	========	2.395	
Prob(Omnibus):	0.16	99 Jarque-	Bera ((JB):		1.980	
Skew:	-0.97	77 Prob(JB):			0.372	
Kurtosis:	3.37	76 Cond. N	ο.			5.33	

Image 21: Japanese Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log Japanese Stock Index return and log Industrial Production return. The "coefficient estimates" are all positive, indicating a consistent positive relationship with the dependent variable. The "standard error" across the 2 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for both lags include 0, indicating that the variables do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.447, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.164, meaning that only 16.4% of the variability in the data is explained by the model. While this is somewhat acceptable, it falls short of providing robust explanatory power. When compared with the paper, the original R-squared value was 0.69, which is significantly higher. Moreover, the original model was statistically significant at all levels, with a p-value of 0.002, showcasing better model performance and significance.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 2.395, indicating slightly negative autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.19, suggesting that the model does not suffer from multicollinearity.

Best Lag for Monthly Data		R-squared: 0 OLS Regression			7273449		
=======================================	:=======	======================================	======	=====	========	:======	=======
Dep. Variable: Indust	rial_Produ	ction_Log_Ch	ange	R-sq	uared:		0.101
Model:			OLS	Adj.	R-squared:		-0.074
Method:		Least Squ	ares	F-st	atistic:		0.5757
Date:		Tue, 17 Dec	2024	Prob	(F-statistic	:):	0.941
Time:		23:1	8:50	Log-	Likelihood:		328.49
No. Observations:			148	AIC:			-607.0
Df Residuals:			123	BIC:			-532.0
Df Model:			24				
Covariance Type:		nonro	bust				
	:=======	========	=====	-===	======== 	-======	=======
	coef	std err		t	P> t	[0.025	0.975]
const	-0.0013	0.002	 !.0-	 552	0.582	-0 . 006	0.003
Stock Log Return lag 1	0.0152	0.002		965	0.041	0.001	0.030
Stock Log Return lag 2	0.0058	0.007		752	0.454	-0.001	0.030
Stock Log Return lag 3	-0.0053	0.008	-0.0		0.522	-0.022	0.011
Stock Log Return lag 4	0.0005	0.008		960	0.952	-0.016	0.017
Stock Log Return lag 5	-0.0072	0.008	-0.8		0.384	-0.024	0.009
Stock Log Return lag 6	0.0086	0.008		043	0.299	-0.008	0.025
Stock Log Return lag 7	0.0045	0.008		544	0.587	-0.012	0.021
Stock Log Return lag 8	0.0022	0.008		258	0.797	-0.014	0.019
Stock Log Return lag 9	0.0030	0.008	0.	352	0.726	-0.014	0.020
Stock Log Return lag 10	-0.0035	0.008	-0.4	416	0.678	-0.020	0.013
Stock Log Return lag 11	0.0024	0.009	0.2	284	0.777	-0.014	0.019
Stock_Log_Return_lag_12	-0.0023	0.009	-0.2	268	0.790	-0.019	0.015
Stock Log Return lag 13	-0.0084	0.009	-0.9	987	0.326	-0.025	0.008
Stock Log Return lag 14	0.0005	0.009	0.0	261	0.951	-0.016	0.017
Stock_Log_Return_lag_15	-0.0017	0.008	-0.2	201	0.841	-0.018	0.015
Stock_Log_Return_lag_16	0.0034	0.008	0.4	100	0.690	-0.013	0.020
Stock_Log_Return_lag_17	-0.0040	0.008	-0.4	472	0.638	-0.021	0.013
Stock Log Return lag 18	-0.0072	0.008	-0.8	861	0.391	-0.024	0.009

Image 22: Germany Monthly OLS Regression

Stock_Log_Return_lag_19	-0.0107	0.008	-1.280	0.203	-0.027
Stock_Log_Return_lag_20	-0.0031	0.008	-0.377	0.707	-0.020
Stock_Log_Return_lag_21	0.0058	0.008	0.700	0.485	-0.011
Stock_Log_Return_lag_22	-0.0040	0.008	-0.487	0.627	-0.020
Stock_Log_Return_lag_23	-0.0048	0.008	-0.590	0.557	-0.021
Stock_Log_Return_lag_24	-0.0107	0.008	-1.389	0.167	-0.026
	========	======		=======	======
mnibus:	152.598	Durbin-I	Watson:		1.959
rob(Omnibus):	0.000	Jarque-I	Bera (JB):		5514.579
kew:	-3.466	Prob(JB):		0.00
urtosis:	32.090	Cond. No	0.		5.72

Image 22: Germany Monthly OLS Regression

In the above figures, we observe the monthly OLS regression over the log German Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a varied relationship with the dependent variable. The "standard error" across the 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for 23 out of the 24 lags include 0, with one exception, indicating that the

variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.941, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.101, meaning that only 10.1% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.38, which is notably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.00, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.959, indicating slightly positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.12, suggesting that the model does not suffer from multicollinearity.

Best Lag for Quarterly Dat		-squared: S Regressi				
Dep. Variable: Industr Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	====== ial_Product	ion_Log_Ch Least Squ	====== ange OLS ares 2024 8:50 52	======================================	stic):	0.073 -0.100 0.4231 0.901 173.37 -328.7 -311.2
Covariance Type:		nonro	_			
	coef	std err	======	t P> t	[0.025	0.975]
Stock_Log_Return_lag_1 Stock_Log_Return_lag_2 Stock_Log_Return_lag_3 Stock_Log_Return_lag_4 Stock_Log_Return_lag_5 Stock_Log_Return_lag_6	-0.0010 0.0066 0.0034 0.0024 0.0013 -0.0001 -0.0057 0.0007 	Jarque- Prob(JB	Bera (J	9 0.685 0 0.827 2 0.983 7 0.441 0 0.328 1 0.897	-0.004 -0.008 -0.009 -0.011 -0.012 -0.016 -0.017 -0.010 0.893 122.573 2.42e-27 7.34	0.002 0.017 0.015 0.014 0.013 0.012 0.007 0.006 0.012

Image 23: Germany Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log German Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a varied relationship with the dependent variable. The "standard error" across the 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 8 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.901, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.073, meaning that only 7.3% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.35, which is notably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.001, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 0.893, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.07, suggesting that the model does not suffer from multicollinearity.

Dep. Variable: Indu	strial Prod	luction Log Cl	hange	R-sai	ared:		0.03
Model:	3 C. 141 34		OLS		R-squared:		-0.14
Method:		Least Sq	uares	• .			0.199
Date:		Tue, 17 Dec			ic):	0.82	
Time:		23::	18:50	Log-L	ikelihood:		55.05
No. Observations:			14	AIC:			-104.
Df Residuals:			11	BIC:			-102.
Df Model:			2				
Covariance Type: 		nonro	obust 				
	coef	std err		t	P> t	[0.025	0.975]
const	6.593e-06	0.001	0.0	 005	0.996	-0 . 003	0.003
Stock_Log_Return_lag_1	0.0117	0.019	0.	630	0.542	-0.029	0.053
Stock_Log_Return_lag_2	0.0017	0.019	0.0	090	0.930	-0.039	0.043
======================================	 2.	055 Durbin	 -Watso	 n:		2.258	
Prob(Omnibus):	0.	358 Jarque	-Bera	(JB):		0.361	
Skew:	-0.	133 Prob(JI	B):			0.835	
Kurtosis:	3.	741 Cond. I	No.			13.4	

Image 24: German Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log German Stock Index return and log Industrial Production return. The "coefficient estimates" are all positive values, indicating a positive relationship with the dependent variable. The "standard error" across the 2 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 2 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.822, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.035, meaning that only 3.5% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.71, which is notably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.005, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 2.258, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.03, suggesting that the model does not suffer from multicollinearity.

UK

UK							
Monthly Data - OLS Model				.14			
	0 	LS Regressio	on Resi 	ılts 			
Dep. Variable: Indust	rial Produc	 tion Log Cha	ange	R-sai	 uared:		0.110
Model:		_ 0_	OLS		R-squared:		-0.042
Method:		Least Squa	ares		atistic:		0.7240
Date:	W	ed, 18 Dec 2			(F-statisti	c):	0.826
Time:		22:49			Likelihood:		417.16
No. Observations:			166	AIC:			-784.2
Df Residuals:			141	BIC:			-706.4
Df Model:			24				
Covariance Type:		nonrob	oust				
=======================================	coef	======= std err	=====	t	 P> t	======= [0.025	0.975]
const	-0.0001	0.002	-0.6	980	0.937	-0.003	0.003
Stock_Log_Return_lag_1	0.0142	0.009	1.5	537	0.127	-0.004	0.032
Stock_Log_Return_lag_2	-0.0166	0.009	-1.7	776	0.078	-0.035	0.002
Stock_Log_Return_lag_3	-0.0206	0.009	-2.1	192	0.030	-0.039	-0.002
Stock_Log_Return_lag_4	-0.0178	0.010	-1.8	328	0.070	-0.037	0.001
Stock_Log_Return_lag_5	0.0050	0.010	0.4	176	0.634	-0.016	0.026
Stock_Log_Return_lag_6	0.0152	0.011	1.4	130	0.155	-0.006	0.036
Stock_Log_Return_lag_7	-0.0094	0.011	-0.8	368	0.387	-0.031	0.012
Stock_Log_Return_lag_8	-0.0045	0.011	-0.4	117	0.677	-0.026	0.017
Stock_Log_Return_lag_9	0.0044	0.011	0.3	381	0.703	-0.018	0.027
Stock_Log_Return_lag_10	0.0031	0.011	0.2	270	0.787	-0.020	0.026
Stock_Log_Return_lag_11	-0.0061	0.012	-0.5	532	0.595	-0.029	0.017
Stock_Log_Return_lag_12	0.0017	0.011	0.1	L50	0.881	-0.021	0.024
Stock_Log_Return_lag_13	0.0043	0.011	0.3	376	0.707	-0.018	0.027
Stock_Log_Return_lag_14	-0.0056	0.011	-0.4	198	0.620	-0.028	0.017
Stock_Log_Return_lag_15	-0.0056	0.011	-0.4	193	0.623	-0.028	0.017
Stock_Log_Return_lag_16	-0.0069	0.011	-0.6	507	0.545	-0.029	0.015
Stock_Log_Return_lag_17	0.0075	0.011	0.6	556	0.513	-0.015	0.030
Stock_Log_Return_lag_18	-0.0017	0.011	-0.1	L45	0.885	-0.024	0.021
Stock_Log_Return_lag_19	0.0028	0.011	0.2	243	0.808	-0.020	0.025

Image 24: UK Monthly OLS Regression

Stock_Log_Return_lag_20	0.0048	0.011	0.424	0.672	-0.018	0.027	
Stock_Log_Return_lag_21	0.0038	0.011	0.330	0.742	-0.019	0.026	
Stock_Log_Return_lag_22	-0.0027	0.011	-0.240	0.811	-0.025	0.020	
Stock_Log_Return_lag_23	0.0016	0.011	0.145	0.885	-0.021	0.024	
Stock_Log_Return_lag_24	-0.0006	0.011	-0.057	0.955	-0.023	0.022	
=======================================		=======			======		
Omnibus:	132.421	Durbin-	Watson:		1.831		
Prob(Omnibus):	0.000	Jarque-	Bera (JB):		3910.025		
Skew:	-2.450	Prob(JE	3):		0.00		
Kurtosis:	26.266	Cond. N	lo.		9.98		
=============	=========	=======	:========	:======:	=======		

Image 25: UK Monthly OLS Regression

In the above figures, we observe the monthly OLS regression over the log UK Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a mixed relationship with the dependent variable. The "standard error" across the 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 24 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.820, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.110, meaning that only 11% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.18, which is slightly higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.016, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.83, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.12, suggesting that the model does not suffer from multicollinearity.

Quarterly Data - OLS Mo		ith 8 Lags: LS Regressi		ults			
Dep. Variable: Indu	======= strial_Product	tion_Log_Ch	ange	R-sq	uared:		0.110
Model:			OLS	Adj.	R-squared:		-0.041
Method:		Least Squ	ıares	F-st	atistic:		0.7280
Date:	We	ed, 18 Dec	2024	Prob	(F-statisti	ic):	0.666
Time:		22:4	9:17	Log-	Likelihood:		206.15
No. Observations:			56	AIC:			-394.3
Df Residuals:			47	BIC:			-376.1
Df Model:			8				
Covariance Type:		nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
const	-2.019e-05	0.001	-0.6	23	0.982	-0.002	0.002
Stock_Log_Return_lag_1	-0.0059	0.009	-0.6	99	0.488	-0.023	0.011
Stock_Log_Return_lag_2	-0.0123	0.009	-1.4	139	0.157	-0.029	0.005
Stock_Log_Return_lag_3	0.0025	0.009	0.2	285	0.777	-0.015	0.020
Stock_Log_Return_lag_4	-0.0012	0.009	-0.1	.37	0.892	-0.019	0.016
Stock_Log_Return_lag_5	-0.0083	0.009	-0.9	43	0.350	-0.026	0.009
Stock_Log_Return_lag_6	0.0103	0.009	1.1	.75	0.246	-0.007	0.028
Stock_Log_Return_lag_7	0.0025	0.009	0.2	94	0.770	-0.015	0.020
Stock_Log_Return_lag_8	-0.0011	0.009	-0.1	.28	0.899	-0.019	0.016
Omnibus:	========== 8.051	======= L Durbin-	 Watsor):		1.927	
Prob(Omnibus):	0.018	3 Jarque-	Bera ([JВ):		11.179	
Skew:	0.429	9 Prob(JB	3):			0.00374	
Kurtosis:	5.014	4 Cond. N	lo.			12.2	
=======================================	===========		=====	=====	========	=======	

Image 26: UK Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log UK Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a mixed relationship with the dependent variable. The "standard error" across the 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 8 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.666, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.110, meaning that only 11% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.28, which is slightly higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.002, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.927, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.12, suggesting that the model does not suffer from multicollinearity.

Yearly Data - OLS Model	Summary wit	th 2 Lags: OLS Regressi	on Res	ults			
Dep. Variable: Indu	strial Produ	uction Log Ch	===== ange	R-squ	======= ared:	=======	0.104
Model:			OLS	Adj.	R-squared:		-0.059
Method:		Least Squ	ares	F-statistic:			0.6350
Date:		Wed, 18 Dec	2024	Prob	0.548		
Time:		22:4	9:17	Log-L	ikelihood:		62.583
No. Observations:			14	AIC:			-119.2
Df Residuals:			11	BIC:			-117.2
Df Model:			2				
Covariance Type:		nonro	bust				
=======================================	:======:: -		=====				
	coef	std err		t	P> t	[0.025	0.975]
const	9.888e-07	0.001	0.6	001	0.999	-0.002	0.002
Stock_Log_Return_lag_1	-0.0164	0.020	-0.8	807	0.437	-0.061	0.028
Stock_Log_Return_lag_2	-0.0145	0.020	-0.7	15	0.490	-0.059	0.030
Omnibus:	 1.9	======== 919	===== Watsor	=====):	=======	 1.158	
Prob(Omnibus):	0.3	383 Jarque-	Bera (ΊΒ):		0.482	
Skew:	0.4	104 Prob(JE				0.786	
Kurtosis:	3.4					25.3	

Image 27: UK Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log UK Stock Index return and log Industrial Production return. The "coefficient estimates" are all positive values, indicating a positive relationship with the dependent variable. The "standard error" across the 2 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for both 2 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.548, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.104, meaning that only 10.4% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.83, which is considerably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.000, highlighting stronger model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.158, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.11, suggesting that the model does not suffer from multicollinearity.

Best Lag for Monthly Data		µuared: 0. Regressio				
Dep. Variable: Indust	======== rial_Productio	====== on_Log_Cha	====== ange R-	======= squared:	========	 0.073
Model:			OLS Ad	j. R-squared:		-0.107
Method:	ı	east Squa.	ares F-	statistic:		0.4057
Date:	Tue,	17 Dec 2		ob (F-statist		0.994
Time:		23:19	9:44 Lo	g-Likelihood:		299.12
No. Observations:			149 AI			-548.2
Df Residuals:			124 BI	C:		-473.1
Df Model:			24			
Covariance Type:	========	nonrob =======	oust =======	========	========	=======
	coef s	td err	t	P> t	[0.025	0.975]
const	-0.0017	0.003	-0.569	0.570	-0.008	0.004
Stock_Log_Return_lag_1	0.0121	0.008	1.559	0.121	-0.003	0.027
Stock_Log_Return_lag_2	-0.0065	0.008	-0.841		-0.022	0.009
Stock_Log_Return_lag_3	-0.0089	0.008	-1.090		-0.025	0.007
Stock_Log_Return_lag_4	-0.0056	0.009	-0.650		-0.022	0.011
Stock_Log_Return_lag_5	-0.0112	0.009	-1.267		-0.029	0.006
Stock_Log_Return_lag_6	-0.0035	0.009	-0.393		-0.021	0.014
Stock_Log_Return_lag_7	0.0050	0.009	0.565		-0.013	0.023
Stock_Log_Return_lag_8 Stock Log Return lag 9	0.0040 -0.0028	0.009 0.009	0.441 -0.307		-0.014 -0.021	0.022 0.015
Stock Log Return lag 10	-0.0028 -0.0003	0.009	-0.035		-0.021 -0.019	0.013
Stock Log Return lag 11	-0.0004	0.009	-0.043		-0.019	0.018
Stock Log Return lag 12	-0.0011	0.009	-0.116		-0.019	0.017
Stock Log Return lag 13	0.0016	0.009	0.178		-0.017	0.020
Stock Log Return lag 14	-0.0003	0.009	-0.038		-0.019	0.018
Stock Log Return lag 15	-0.0082	0.009	-0.886	0.377	-0.027	0.010
Stock_Log_Return_lag_16	0.0010	0.009	0.105	0.917	-0.017	0.019
Stock_Log_Return_lag_17	-0.0044	0.009	-0.480	0.632	-0.023	0.014
Stock_Log_Return_lag_18	0.0007	0.009	0.077	0.938	-0.017	0.019
Stock_Log_Return_lag_19	-0.0087	0.009	-0.954	0.342	-0.027	0.009
mage 28: France Monthly	v OLS Regres.	sion				
Stock_Log_Return_lag_20	0.0015	0.009	0.15	9 0.874	-0.017	0.02
Stock_Log_Return_lag_21	-0.0098	0.009	-1.06		-0.028	0.00
Stock_Log_Return_lag_22	0.0050	0.009	0.54		-0.013	0.02
Stock_Log_Return_lag_23	-0.0022	0.009	-0.24		-0.020	0.01
Stock_Log_Return_lag_24	0.0027 	0.009 ======	0.29 	3 0.770 =======	-0.016 	0.02
Omnibus:	110 . 595	Durbin-	Watson:		1.773	
Prob(Omnibus):	0.000		Bera (JB):	3370.860	
Skew:	-2.074	Prob(JB	:):		0.00	
Kurtosis:	25.929	Cond. N	lo.		4.38	

Image 29: France Monthly OLS Regression

In the above figures, we observe the monthly OLS regression over the log French Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a mixed relationship with the dependent variable. The "standard error" across the 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 24 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.994, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.073, meaning that only 7.3% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.26, which is notably higher. Furthermore, the original model was also not statistically significant at all levels, with a p-value of 0.365, highlighting weak model performance and significance in the paper as well.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.773, indicating a positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.078, suggesting that the model does not suffer from multicollinearity.

		OLS Regressi	ion Res	ults			
Dep. Variable: Indu	strial_Produ	 uction_Log_Ch	 hange	 R-sq	uared:		0.049
Model:			OLS	Adj.	R-squared:		-0.128
Method:		Least Sqı	uares	F-st	atistic:		0.275
Date:		Tue, 17 Dec 2024			(F-statist	ic):	0.97
Time:		23:1	19:44	Log-	Likelihood:		163.3
No. Observations:			52	AIC:			-308.7
Df Residuals:			43	BIC:			-291.1
Df Model:			8				
Covariance Type:		nonro	obust				
			=====	:=====		========	=======
	coef	std err		t	P> t	[0.025	0.975]
const	-0.0016	0.002	-0.9	 980	0.332	-0.005	0.002
Stock Log Return lag 1	-0.0020	0.006	-0.3	319	0.752	-0.015	0.011
Stock Log Return lag 2	-0.0046	0.007	-0.6	545	0.522	-0.019	0.010
Stock Log Return lag 3	0.0007	0.007	0.6	993	0.926	-0.014	0.015
Stock Log Return lag 4	0.0011	0.007	0.1	L46	0.884	-0.014	0.016
Stock Log Return lag 5	-0.0044	0.007	-0.6	505	0.548	-0.019	0.010
Stock Log Return lag 6	-0.0081	0.007	-1.1	L 2 5	0.267	-0.023	0.006
Stock Log Return lag 7	-0.0053	0.007	-0.7	733	0.468	-0.020	0.009
Stock_Log_Return_lag_8	8.849e-05	0.007	0.6	912	0.990	-0.015	0.015
=======================================	=======		======	=====	=======	======	
Omnibus:	57.7	722 Durbin	-Watsor	n:		1.847	
Prob(Omnibus):	0.0	000 Jarque	-Bera ((JB):		425.393	
Skew:	-2.8	309 Prob(Ji	B):			4.24e-93	
Kurtosis:	15.8	336 Cond. I	No.			5.65	

Image 30: France Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log French Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of positive and negative values, indicating a varied relationship with the dependent variable. The "standard error" across the 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 8 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.971, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-

squared" value is 0.049, meaning that only 4.9% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.26, which is notably higher. Furthermore, the original model was statistically significant at all levels, with a p-value of 0.015, highlighting a strong model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.847, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.051, suggesting that the model does not suffer from multicollinearity.

Best Lag for Yearly Data		squared: 0.0 OLS Regress:			000884		
Dep. Variable: Indus	====== trial Produ	ction Log Cl	===== hange	 R-sq	======= uared:	========	0.002
Model:			oLS	Adj.	R-squared:		-0.180
Method:		Least Sq	uares	F-statistic:			0.01054
Date:		Tue, 17 Dec	2024	Prob (F-statistic):			0.990
Time:		23:3	19:44	Log-	Likelihood:		60.183
No. Observations:			14	AIC:			-114.4
Df Residuals:			11	BIC:			-112.4
Df Model:			2				
Covariance Type:		nonro	obust				
	coef	std err	======	t	P> t	[0.025	0.975]
const	-0 . 0009	0.001	-0.8		0.404	-0.003	0.001
Stock_Log_Return_lag_1	-0.0011	0.009	-0.1	122	0.905	-0.020	0.018
Stock_Log_Return_lag_2	-0.0006	0.009	-0.6	970	0.946	-0.020	0.019
Omnibus:	======== 5.8	======== 24	====== -Watsor	===== 1:	=======	 1.756	
Prob(Omnibus):	0.0	54 Jarque	-Bera ((JB):		2.637	
Skew:	-0.7	71 Prob(JI	B):	. ,		0.268	
Kurtosis:	4.4	.64 Cond. I	No.			9.11	
=======================================	=======	=======	======			======	

Image 31: French Yearly OLS Regression

Doct Log for Monthly Datas	24 with B co	wanada a	17507604767	4E0303		
Best Lag for Monthly Data:		Regressio		450393		
	OL3 	regi essto	======================================		.======	.======
Dep. Variable: Industr	ial Productio	n Log Cha	nge R-squ	ared:		0.175
Model:			•	R-squared:		-0.003
Method:	L	east Squa	res F-sta	tistic:		0.9816
Date:	Tue,	17 Dec 2	024 Prob	(F-statistic	:):	0.496
Time:		23:20	:08 Log-L	ikelihood:		369.58
No. Observations:			136 AIC:			-689.2
Df Residuals:			111 BIC:			-616.3
Df Model:			24			
Covariance Type:		nonrob	ust			
			=======			
	coef s	td err	t	P> t	[0.025	0.975]
	0.0047	0.000	4 043		0.005	0.004
const	-0.0017	0.002	-1.043	0.299	-0.005	0.001
Stock_Log_Return_lag_1	0.0071	0.006	1.292	0.199	-0.004	0.018
Stock_Log_Return_lag_2 Stock Log Return lag 3	-0.0052	0.006	-0.866	0.388	-0.017	0.007
Stock_Log_Return_lag_3 Stock_Log_Return_lag_4	0.0049 -0.0048	0.006 0.006	0.822 -0.794	0.413 0.429	-0.007 -0.017	0.017 0.007
Stock Log Return lag 5	0.0065	0.006	1.098	0.423	-0.017 -0.005	0.007
Stock_Log_Return_lag_6	-0.0035	0.006	-0.593	0.554	-0.005 -0.015	0.018
Stock_Log_Return_lag_7	-0.0003	0.006	-0.047	0.962	-0.013 -0.013	0.012
Stock Log Return lag 8	0.0012	0.006	0.192	0.848	-0.012	0.014
Stock_Log_Return_lag_9	0.0025	0.007	0.390	0.697	-0.010	0.015
Stock Log Return lag 10	-0.0091	0.007	-1.403	0.163	-0.022	0.004
Stock Log Return lag 11	0.0020	0.006	0.303	0.762	-0.011	0.015
Stock_Log_Return_lag_12	-0.0006	0.006	-0.089	0.929	-0.013	0.012
Stock Log Return lag 13	-0.0038	0.006	-0.596	0.553	-0.016	0.009
Stock Log Return lag 14	0.0028	0.006	0.430	0.668	-0.010	0.016
Stock Log Return lag 15	0.0011	0.007	0.165	0.869	-0.012	0.014
Stock_Log_Return_lag_16	-0.0185	0.007	-2.774	0.007	-0.032	-0.005
Stock_Log_Return_lag_17	0.0184	0.007	2.754	0.007	0.005	0.032
Stock_Log_Return_lag_18	-0.0054	0.006	-0.849	0.398	-0.018	0.007
Stock_Log_Return_lag_19	-0.0104	0.006	-1.707	0.091	-0.022	0.002
Image 32: Italian Monthly	OLS Regress	sion				
Stock_Log_Return_lag_20	0.0074	0.006	1.182	0.240	-0.005	0.020
Stock Log Return lag 21	0.0082	0.006	1.268	0.207	-0.005	0.021
Stock Log Return lag 22	-0.0185	0.006	-2.856	0.005	-0.031	-0.006
Stock Log Return lag 23	0.0123	0.007	1.843	0.068	-0.001	0.026
Stock Log Return lag 24	-0.0049	0.006	-0.798	0.427	-0.017	0.007
=======================================			=======		======	
Omnibus:	1.863	Durbin-	Watson:		2.202	
Prob(Omnibus):	0.394	Jarque-	Bera (JB):		1.699	
Skew:	-0.274	Prob(JB):		0.428	
Kurtosis:	2.979	Cond. N	0.		7.95	
=======================================	========	======	=======	========	=======	

Image 33: Italian Monthly OLS Regression

In the above figures, we observe the monthly OLS regression over the log Italian Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of negative and positive values, indicating a mixed relationship with the dependent variable. The "standard error" across the 24 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 24 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.496, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.175, meaning that only 17.5% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.29, which is notably higher. Furthermore, the original model was not statistically significant at all levels, with a p-value of 0.411, highlighting a weak model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 2.202, indicating negative autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.21, suggesting that the model does not suffer from multicollinearity.

Best Lag for Quarterly [OLS Regress:					
Dep. Variable: Indus	strial_Produ	ction_Log_Cl	 hange	R-squ	 ared:		0.104
Model:			OLS	Adj.	R-squared:		-0.079
Method:		Least Sq	uares	F-sta	tistic:		0.5685
Date:		Tue, 17 Dec	2024	Prob	(F-statist	ic):	0.797
Time:		23:20:08			ikelihood:		128.32
No. Observations:		48					-238.6
Df Residuals:			39	BIC:			-221.8
Df Model:			8				
Covariance Type:		nonre	obust				
_======================================	coef	std err	======	t	P> t	[0.025	0.975]
const	-0.0044	0.003	-1.5	36	0.133	-0.010	0.001
Stock_Log_Return_lag_1	-0.0047	0.010	-0.46	59	0.642	-0.025	0.016
Stock_Log_Return_lag_2	0.0066	0.010	0.65	50	0.520	-0.014	0.027
Stock_Log_Return_lag_3	0.0102	0.010	0.98	39	0.329	-0.011	0.031
Stock_Log_Return_lag_4	0.0056	0.010	0.54	16	0.588	-0.015	0.026
Stock_Log_Return_lag_5	-0.0025	0.010	-0.24	1 3	0.810	-0.023	0.018
Stock_Log_Return_lag_6	-0.0013	0.011	-0.11	19	0.906	-0.023	0.020
Stock_Log_Return_lag_7	-0.0101	0.011	-0.95	54	0.346	-0.032	0.011
Stock_Log_Return_lag_8	0.0133	0.011	1.24	1 5	0.221	-0.008	0.035
======================================	61.8	======= 45	 -Watson:	===== :	=======	1.027	
Prob(Omnibus):	0.0		-Bera (477.460	
Skew:	-3.2			,-		2.09e-104	
Kurtosis:	16.9	`	,			4.95	

Image 34: Italian Quarterly OLS Regression

In the above figures, we observe the quarterly OLS regression over the log Italian Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of negative and positive values, indicating a mixed relationship with the dependent variable. The "standard error" across the 8 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 8 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.797, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-

squared" value is 0.104, meaning that only 10.4% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.24, which is notably higher. Furthermore, the original model was not statistically significant at all levels, with a p-value of 0.164, highlighting a weak model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.027, indicating positive autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.11, suggesting that the model does not suffer from multicollinearity.

Best Lag for Yearly Data: 2 with R-squared: 0.14736585350086984 OLS Regression Results							
Dep. Variable:				======================================			 0.147
Model:	OLS				Adj. R-squared:		
Method:	Least Squares F-statistic:						0.9506
Date:	Tue, 17 Dec 2024 Prob (F-statistic):						0.416
Time:	23:20:08 Log-Likelihood:						55.804
No. Observations:			14	AIC:			-105.6
Df Residuals:			11	BIC:			-103.7
Df Model:			2				
Covariance Type:	ance Type: nonrobust						
	coef	std err		t	P> t	[0.025	0.975]
const	-0.0017	0.001	-1.:	 181	0.263	-0.005	0.001
Stock_Log_Return_lag_1	0.0053	0.004	1.	237	0.242	-0.004	0.015
Stock_Log_Return_lag_2	-0.0028	0.004	-0.	647	0.531	-0.012	0.007
Omnibus:	 7.4	======== 436	===== -Watso	===== n:	=======	 1.836	
Prob(Omnibus):	0.024 Jarque-Bera			(JB):		3.803	
Skew:	-1.029 Prob(JB):					0.149	
Kurtosis:	4.	512 Cond. I	No.			3.25	
			=====	=====			

Image 35: Italian Yearly OLS Regression

In the above figures, we observe the yearly OLS regression over the log Italian Stock Index return and log Industrial Production return. The "coefficient estimates" are a mix of negative and positive values, indicating a mixed relationship with the dependent variable. The "standard error" across the 2 lags is relatively low, suggesting that the independent variable exhibits low variability. However, the "confidence intervals" for all 2 lags include 0, indicating that the variables generally do not show a statistically strong correlation within their range, reflecting a weak relationship.

The p-value of the "F-statistic" is 0.416, leading us to accept the null hypothesis at all significance levels, suggesting that the model is not statistically significant at any level. Additionally, the "R-squared" value is 0.147, meaning that only 14.7% of the variability in the data is explained by the model. This indicates that the model's explanatory power is quite limited.

When compared with the paper, the original R-squared value was 0.60, which is notably higher. Furthermore, the original model was not statistically significant at all levels, with a p-value of 0.276, highlighting a weak model performance and significance in the paper.

Regarding "time instability," the Augmented Dickey-Fuller test confirms that the variables are stationary in nature. The Durbin-Watson test returns a value near 1.836, indicating positive

autocorrelation. Lastly, for multicollinearity, the Variance Inflation Factor (VIF) is 1.17, suggesting that the model does not suffer from multicollinearity.

Residual Diagonstic and correction

Below are the results of the statistical tests applied to each of the G7 countries. We conducted tests for normality, serial correlation, and heteroskedasticity, as well as the Ramsey RESET test. For normality, the Jarque-Bera test was used. For serial correlation, we applied the Ljung-Box test, and for heteroskedasticity, the Breusch-Pagan test was implemented.

These tests were conducted across three categories: monthly, quarterly, and yearly data for each country. At the end, we compared all the results to provide a comprehensive analysis.

```
Manually Implemented Ramsey RESET Test:
F-statistic: 3.3741, p-value: 0.0000

Serial Correlation Test (Ljung-Box):
    lb_stat    lb_pvalue
10 734.188299 2.862070e-151

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 20.7828, p-value: 0.6515

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 1.1330, p-value: 0.5675
```

Image 36: Monthly Report for Canada


```
Manually Implemented Ramsey RESET Test:
F-statistic: 3.1249, p-value: 0.0057

Serial Correlation Test (Ljung-Box):
    lb_stat    lb_pvalue
10 77.545456 1.517222e-12

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 5.8207, p-value: 0.6673

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 0.1530, p-value: 0.9264
```

Image 37: Quarterly Report for Canada

```
Manually Implemented Ramsey RESET Test:
F-statistic: 1.7593, p-value: 0.2210

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 32.908389 0.000282

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 0.7114, p-value: 0.7007

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 0.4629, p-value: 0.7934
```

Image 38: Yearly Report for Canada

Image 39: Monthly Report for USA


```
Manually Implemented Ramsey RESET Test:
F-statistic: 0.8256, p-value: 0.6082

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 16.967782 0.07508

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 5.9542, p-value: 0.6524

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 43.4761, p-value: 0.00000
```

Image 40: Quarterly Report for USA

```
Manually Implemented Ramsey RESET Test:
F-statistic: 0.4527, p-value: 0.7686

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 11.276863 0.336359

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 0.6385, p-value: 0.7267

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 2.8646, p-value: 0.2388
```

Image 41: Yearly Report for USA


```
Normality Test (Shapiro-Wilk):
Statistic: 0.9764, p-value: 0.6554

Normality Test (Jarque-Bera):
Statistic: 0.8680, p-value: 0.6479

Serial Correlation Test (Ljung-Box):
Final Ljung-Box p-value: 0.0003

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 22.4375, p-value: 0.3173
```

Image 42: Monthly Report for Japan

```
Normality Test (Shapiro-Wilk):
Statistic: 0.9501, p-value: 0.6383

Normality Test (Jarque-Bera):
Statistic: 0.7444, p-value: 0.6892

Serial Correlation Test (Ljung-Box):
Final Ljung-Box p-value: 0.2977

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 5.4211, p-value: 0.7118
```

Image 43: Quarterly Report for Japan


```
Normality Test (Shapiro-Wilk):
Statistic: 0.9720, p-value: 0.9130

Normality Test (Jarque-Bera):
Statistic: 0.1144, p-value: 0.9444

Serial Correlation Test (Ljung-Box):
Final Ljung-Box p-value: 0.9701

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 5.2166, p-value: 0.1566
```

Image 44: Yearly Report for Japan

```
Manually Implemented Ramsey RESET Test:
F-statistic: 3.2600, p-value: 0.0001

Serial Correlation Test (Ljung-Box):
    lb_stat    lb_pvalue
10 70.696996 3.251765e-11

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 19.6141, p-value: 0.7185

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 222.4726, p-value: 0.0000
```

Image 45: Monthly Report for Germany


```
Manually Implemented Ramsey RESET Test:
F-statistic: 1.1415, p-value: 0.3621

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 20.105489 0.028271

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 1.4811, p-value: 0.9930

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 110.9962, p-value: 0.0000
```

Image 46: Quarterly Report for Germany

```
Manually Implemented Ramsey RESET Test:
F-statistic: 1.2639, p-value: 0.3522

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 4.061094 0.944549

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 1.5235, p-value: 0.4669

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 7.8656, p-value: 0.0196
```

Image 47: Yearly Report for Germany

Image 48: Monthly Report for UK

```
Manually Implemented Ramsey RESET Test:
F-statistic: 1.1602, p-value: 0.3419

Serial Correlation Test (Ljung-Box):
    lb_stat    lb_pvalue
10 157.330523 1.151843e-28

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 7.7779, p-value: 0.4555

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 4.4907, p-value: 0.1059
```

Image 49: Quarterly Report for UK

Image 50: Yearly Report for UK

Image 51: Monthly Report for France


```
Manually Implemented Ramsey RESET Test:
F-statistic: 0.3255, p-value: 0.9668

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 20.53502    0.02458

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 7.2162, p-value: 0.5135

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 36.5945, p-value: 0.0000
Image 52: Quartely Report for France
```

```
Manually Implemented Ramsey RESET Test:
F-statistic: 0.0915, p-value: 0.9828

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 2.471183 0.991289

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 1.3879, p-value: 0.4996

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 0.9595, p-value: 0.6189
```

Image 53: Yearly Report for France


```
Manually Implemented Ramsey RESET Test:
F-statistic: 3.7859, p-value: 0.0000

Serial Correlation Test (Ljung-Box):
    lb_stat    lb_pvalue
10 75.479739 3.837059e-12

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 10.4567, p-value: 0.9924

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 3.5923, p-value: 0.1659
```

Image 54: Monthly Report for Italy

Image 55: Quartely Report for Canada


```
Manually Implemented Ramsey RESET Test:
F-statistic: 0.2519, p-value: 0.9014

Serial Correlation Test (Ljung-Box):
    lb_stat lb_pvalue
10 3.788772 0.956373

Heteroskedasticity Test (Breusch-Pagan):
LM Statistic: 1.3868, p-value: 0.4999

Normality Test (Jarque-Bera):
Jarque-Bera Statistic: 4.4087, p-value: 0.1103
```

Image 56: Yearly Report for Italy

Based on the results above, we have created a table summarizing the entire analysis. Different tests have been marked as follows:

- 1 stands for the Ramsey RESET test
- 2 stands for the Ljung-Box test
- 3 stands for the Breusch-Pagan test
- 4 stands for the Jarque-Bera test

The table highlights where the alternative hypothesis is accepted for each test. This provides a clear and structured overview of the outcomes across the tests.

Country	Monthly	Quarterly	Yearly	
Canada	1,2	1,2	2	
USA	1,2,3,4	2,4		
UK	2,4	2	2	
Germany	1,2,4	2,4	4	
Japan	3			
France	2,4	2,4		
Italy	1,2	2,4		

Table1:Outcomes of Summarize analysis

Based on the table results, we can see that the Canadian model faces issues with heteroskedasticity and normality in the monthly and quarterly time frames. In the yearly time frame, it experiences serial correlation, heteroskedasticity, and normality problems as well. The US results show that the OLS model is perfectly fine and does not violate any assumptions in the monthly time frame. However, it suffers from heteroskedasticity at the quarterly intervals, and in the yearly time frame, the model performs poorly, failing all tests and accepting the null hypothesis. The UK model suffers from heteroskedasticity at all time frames and also faces normality issues at the quarterly and yearly intervals. The German model experiences heteroskedasticity at all time frames, and in the yearly time

frame, it also struggles with serial correlation. The Japanese model is affected by serial correlation and normality issues across all time frames, with heteroskedasticity being an exception in the monthly time frame. The French model suffers from heteroskedasticity, with the yearly model accepting all null hypotheses in the tests. The Italian model shows lagging in the monthly time frame and suffers from both heteroskedasticity and normality. The quarterly model experiences heteroskedasticity, while the yearly model accepts the null hypothesis for all tests.

so the possible correction we can implement is using the ARIMA model as it's a time series forecasting so using ARIMA models over a multiple regression model gives us more accurate results better fit over the residuals, we have implemented the ARIMA and GARCH model in the next part.

Residuals Analysis By Using ARIMA and GARCH Models:

In the ARIMA and GARCH models, we applied both models to the monthly data for all G-7 countries. Now, we will walk through the different outcomes that each model presents.

Image 57: ACF And PACF Graph

Best ARIMA model order for Monthly data: (2, 0, 0) Best AIC for Monthly data: -1019.2442424566116 SARIMAX Results								
Dep. Variable:		Log_Reti	ırn No. (Observations:		192		
Model:		ARIMA(2, 0,	0) Log	Likelihood		513.622		
Date:	T	hu, 19 Dec 20	024 AIC			-1019.244		
Time:		12:59	47 BIC			-1006.214		
Sample:								
	- 01-31-2021							
Covariance Type: opg								
	coef	std err	Z	P> z	[0.025	0.975]		
const 0	.0002	0.002	0.113	0.910	-0.003	0.004		
ar.L1 0	.2387	0.042	5.690	0.000	0.156	0.321		
ar.L2 -0	.2524	0.108	-2.339	0.019	-0.464	-0.041		
sigma2 0	.0003	1.51e-05	18.355	0.000	0.000	0.000		
Ljung-Box (L1) (===== Q):	========	0.00	======== Jarque-Bera	(JB):		==== 3.76	
Prob(Q):			0.97	Prob(JB):			0.00	
Heteroskedastici		:	5.21	Skew:			3.52	
Prob(H) (two-sid	ed): =====	========	0.00 	Kurtosis: ======	=======================================	3(6 . 22	

Image 58: ARIMA Model Output

Image 59: Residuals of ARIMA Model

Image 60: Histogram

Image 61: ACF Residuals

As we can see in the ACF and PACF graph in Figure No. "57", the spikes at the first two lags are above the confidence bands, indicating significant autocorrelation at these lags. Overall, in the long prediction, the ACF and PACF decay quickly, but some autocorrelation remains at certain lags, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(2,0,0), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "60" that the histogram appears normally distributed, and the ACF of the residuals is very low compared to the original data.

Image 62: ACF And PACF Graph

Best ARIMA model order for Monthly data: (2, 0, 0) Best AIC for Monthly data: -1116.1052939945384 SARIMAX Results								
Dep. Variable:		Log_Re	turn	No.	Observations:		192	
Model:		ARIMA(2, 0	, 0)	Log	Likelihood		562.053	
Date:	Т	hu ,1 9 Dec:	2024	AIC			-1116.105	
Time:	13:0						-1103.075	
Sample:	Sample: 02-28-2005 HQIC -1110.					-1110.828		
- 01-31-2021								
Covariance Type:	:		opg					
	====== coef 	std err		===== Z 	P> z	[0.025	0.975]	
const (0.0001	0.002	0	.075	0.940	-0.003	0.004	
ar.L1 0	a.3212	0.025	12	.810	0.000	0.272	0.370	
ar.L2 -0	0.2558	0.048	-5	.359	0.000	-0.349	-0.162	
sigma2 6	0.0002	5.39e-06	31	.082	0.000	0.000	0.000	
Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 20778.80 Prob(Q): 0.90 Prob(JB): 0.00 Heteroskedasticity (H): 3.48 Skew: -5.12 Prob(H) (two-sided): 0.00 Kurtosis: 52.90						0.00 5.11		
=============			====		=========		========	====

Image 63: ARIMA Model Output

Image 64: Residuals of ARIMA Model

Image 65: Histogram

Image 66: ACF Residuals

The results for the US ARIMA model. As we can see in the ACF and PACF graph in Figure No. "62", the spikes at the first three lags are quite significant, and some are above the confidence bands, indicating significant autocorrelation at these lags. Overall, in the long prediction, the ACF and PACF decay quickly, but some autocorrelation remains at certain lags, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(2,0,0), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "65" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals.

Image 67: ACF And PACF Graph

Best ARIMA model order for Monthly data: (3, 0, 2) Best AIC for Monthly data: -873.8613907906481 SARIMAX Results								
Dep. Variab	======== le:	Log Retı	:====== Jrn No.	======= Observations:	:======= :	192		
Model:		ARIMA(3, 0,		Likelihood		443.931		
Date:	Τł	Thu, 19 Dec 2024				-873.861		
Time:		13:00:				-851.059		
Sample:		02-28-20	905 HQIC			-864.626		
		- 01-31-20	921					
Covariance	Туре:	(opg					
========	coef	std err	z	P> z	[0.025	0.975]		
const	-0 . 0006	0.001	-1 . 237	0.216	-0 . 002	0.000		
ar.L1	0.2711	0.182	1.487	0.137	-0.086	0.628		
ar.L2	0.8377	0.187	4.486	0.000	0.472	1.204		
ar.L3	-0.2621	0.074	-3.565	0.000	-0.406	-0.118		
ma.L1	-0.1254	0.174	-0.722	0.471	-0.466	0.215		
ma.L2	-0.8601	0.168	-5.112	0.000	-1.190	-0.530		
sigma2	0.0006	3.35e-05	17.353	0.000	0.001	0.001		
Ljung-Box (L1) (Q):			0.04	======== Jarque-Bera	(JB):	2401.	.79	
Prob(Q):		0.84	Prob(JB):		0.	.00		
Heteroskeda	sticity (H):		1.08	Skew:		-2.	91	
Prob(H) (two-sided): 0.76 Kurtosis: 19.3							32	
========	========		=======	=========		=========	==	

Image 68: ARIMA Model Output

Image 69: Residuals of ARIMA Model

Image 70: Histogram

Image 71: ACF Residuals

The results for the Japanese ARIMA model are as follows. As we can see in the ACF and PACF graph in Figure No. "67", the spikes at the first two lags are quite significant and are above the confidence interval, indicating significant autocorrelation at these lags. Overall, in the long prediction, the ACF and PACF decay quickly, but some autocorrelation remains at certain lags, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(3,0,2), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows homoskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "70" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals. Additionally, there are some spikes in the middle that are near the confidence interval, but overall, the autocorrelation appears low.

Image 72: ACF And PACF Graph

Best ARIMA model order for Monthly data: (2, 0, 0) Best AIC for Monthly data: -848.1997100268466 SARIMAX Results								
Dep. Variabl	.e:	Log Re	turn No.	Observations:	:	192		
Model:		ARIMA(2, 0	, 0) Log	Likelihood		428.100		
Date:	Τŀ	nu, 19 Dec	2024 AIC			-848.200		
Time:		13:0	1:02 BIC			-835.170		
Sample: 02-28-2005 HQIC -842.922								
		- 01-31-	2021					
Covariance T	ype:		opg					
	coef	std err	z	P> z	[0.025	0.975]		
const	0.0007	0.002	0.267	0.789	-0.004	0.005		
ar.L1	0.1070	0.030	3.581	0.000	0.048	0.166		
ar.L2	-0.2453	0.055	-4.431	0.000	-0.354	-0.137		
sigma2	0.0007	2.68e-05	25.249	0.000	0.001	0.001		
Ljung-Box (L	1) (Q):		 0.00	 Jarque-Bera	(JB):	======== 8386	.87	
Prob(Q):			1.00	Prob(JB):		0	.00	
Heteroskedas			3.32	Skew:		-3	.60	
Prob(H) (two	-sided):		0.00	Kurtosis:		34	.57	
========	========		=======	========		========	===	

Image 73: ARIMA Model Output

Image 74: Residuals of ARIMA Model

Image 75: Histogram

Image 76: ACF Residuals

The results for the German ARIMA model are as follows. As we can see in the ACF and PACF graph in Figure No. "72", the spikes at the first three lags are quite significant, with two of them above the confidence interval, indicating significant autocorrelation at these lags. Overall, in the long prediction, the ACF and PACF decay quickly, but some autocorrelation remains at certain lags, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(2,0,0), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "75" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals. Overall, the autocorrelation appears to be low.

Image 77: ACF And PACF Graph

Best ARIMA model order for Monthly data: (2, 0, 1) Best AIC for Monthly data: -973.5942383354711 SARIMAX Results								
Dep. Variab	======== le:	Log Ret	====== urn No.	======= Observations	======= :	192		
Model:		ARIMA(2, 0,		Likelihood		491.797		
Date:	Tİ	nu, 19 Dec 20	024 AIC			-973.594		
Time:		13:01	:27 BIC			-957.307		
Sample:		02-28-2	005 HQIC			-966.998		
		- 01-31-2	021					
Covariance	Type:		opg					
========	coef	std err	z	P> z	[0.025	0.975]		
const	0.0002	0.001	0.199	0.842	-0.002	0.002		
ar.L1	0.7448	0.095	7.859	0.000	0.559	0.931		
ar.L2	-0.3254	0.042	-7.717	0.000	-0.408	-0.243		
ma.L1	-0.6920	0.112	-6.176	0.000	-0.912	-0.472		
sigma2	0.0003	1.75e-05	19.944	0.000	0.000	0.000		
======= Ljung-Box (L1) (Q):		 0.02	======== Jarque-Bera	======== (JB):	417	==== 3.39	
Prob(Q):			0.89	Prob(JB):		(0.00	
	sticity (H)	:	3.25	Skew:			2.82	
Prob(H) (tw	Prob(H) (two-sided): 0.00 Kurtosis: 25.13							
========	========						====	

Image 78: ARIMA Model Output

Image 79: Residuals of ARIMA Model

Image 80: Histogram

Image 81: ACF Residuals

The results for the German ARIMA model are as follows. As we can see in the ACF and PACF graph in Figure No. "77", the spikes at the first four lags are quite significant, with two of them above the confidence interval, and some in the middle also surpassing the significance level, indicating not a good significant autocorrelation at these lags. Overall, in the long prediction, the ACF and PACF decay quickly, but they do not remain very low, as some autocorrelation remains at certain lags, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(2,0,1), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "80" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals. Overall, the autocorrelation appears to be low and better fitted than the initial result.

Image 82: ACF And PACF Graph

Best ARIMA model orde Best AIC for Monthly								
	S <i>l</i>	ARIMAX Resul	lts 		=======			
Dep. Variable:	Log_Re	eturn No.	Observations	:	192			
Model:	ARIMA(3, 0), 1) Log	Likelihood		409.764			
Date:	Thu, 19 Dec	2024 AIC			-807.529			
Time:	13:6	01:54 BIC			-787.984			
Sample:	02-28-2005 HQIC -799.613							
	- 01-31-2021							
Covariance Type:		opg						
coef	std err	Z	P> z	[0.025	0.975]			
const -0.0007	0.002	-0.450	0.653	-0.004	0.002			
ar.L1 0.9763	0.187	5.227	0.000	0.610	1.342			
ar.L2 -0.3737	0.072	-5.216	0.000	-0.514	-0.233			
ar.L3 0.2002	0.089	2.240	0.025	0.025	0.375			
ma.L1 -0.9182	0.184	-4.988	0.000	-1.279	-0.557			
sigma2 0.0008	3 4.78e-05	17.289	0.000	0.001	0.001			
Ljung-Box (L1) (Q):		0.01	Jarque-Bera	(ЈВ):	 624	4.89		
Prob(Q):		0.92	Prob(JB):			0.00		
Heteroskedasticity (F	I):	4.30	Skew:			3.34		
Prob(H) (two-sided):		0.00 	Kurtosis:	=======	========	0.13 ====		

Image 83: ARIMA Model Output

Image 84: Residuals of ARIMA Model

Image 85: Histogram

Image 86: ACF Residuals

The results for the French ARIMA model are as follows. As we can see in the ACF and PACF graph in Figure No. "82", the spikes at the first three lags are quite significant, with two of them above the confidence interval. Overall, in the long prediction, the ACF and PACF decay quickly, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(3,0,1), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure- "85" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals. Overall, the autocorrelation appears to be low and better fitted than the initial result.

Image 87: ACF And PACF Graph

	model order or Monthly d	ata: -672.73	6441354966	7			
		SAR: 	IMAX Resul	ts 			
Dep. Varial	 ble:	Log Ret	 urn No.	 Observations:	:	192	
Model:		ARIMA(1, 0,		Likelihood		342.368	
Date:	T	hu , 1 9 Dec 2	024 AIC			-672.736	
Time:		13:02	:23 BIC			-653.191	
Sample:		02-28-2	005 HQIC			-664.821	
		- 01-31-2	021				
Covariance	Type:		opg				
	coef	std err	======= Z 	======= P> z 	[0.025	0.975]	
const	-0.0012	0.001	-0.779	0.436	-0.004	0.002	
ar.L1	0.8916	0.097	9.177	0.000	0.701	1.082	
ma.L1	-0.8337	0.114	-7.295	0.000	-1.058	-0.610	
ma.L2	-0.4339	0.069	-6.299	0.000	-0.569	-0.299	
ma.L3	0.2914	0.049	5.892	0.000	0.194	0.388	
sigma2	0.0016	0.000	14.311	0.000	0.001	0.002	
Ljung-Box	======================================	========	 0.00	======== Jarque-Bera	 (ЈВ):	7676	88.6
Prob(Q):			0.96	Prob(JB):		é	00.6
Heteroskeda	asticity (H)	:	8.14	Skew:		-1	1.53
Prob(H) (to	wo-sided):		0.00	Kurtosis:		33	3.81
========			=======	========			====

Image 88: ARIMA Model Output

Image 89: Residuals of ARIMA Model

Image 90: Histogram

Image 91: ACF Residuals

The results for the Italian ARIMA model are as follows. As we can see in the ACF and PACF graph in Figure No. "87", the spikes at the first four lags are quite significant, with two of them above the confidence interval. Overall, in the long prediction, the ACF and PACF decay quickly, both in the positive and negative directions. We ran our ARIMA model with different parameters, and out of these, we selected the best one, ARIMA(1,0,3), which had the best log-likelihood and other comparative parameters such as AIC and BIC. The model also shows heteroskedasticity, as depicted by the Breusch-Pagan test. After fitting the model, you can see in Figure-"90" that the histogram appears normally distributed and is negatively skewed, and the ACF of the residuals is very low compared to the original data, with some exceptions at the initial lags, where spikes are above the confidence intervals. Overall, the autocorrelation appears to be very low and better fitted than the initial result.

GARCH Models

Best GARCH	Best GARCH model order for Monthly data: (4, 2)								
Best AIC f	or Monthly d								
	C	onstant Mea	n - GARC	H Mod	lel Result	S			
Dep. Varia	hla: Can	======= ada Log Ret	======= urne P	===== -squa	:======= :rod:	========	0.000		
Mean Model		Constant			:-squared:		0.000		
Vol Model:				•	kelihood:		579.472		
Distributi	.on:	No		IC:			-1142.94		
Method:	Max	imum Likeli	hood B	IC:			-1116.88		
					servation	s:	192		
Date:	T	2024 D				191			
Time:		13:0	2:52 D		lel:		1		
Mean Model									
=======	coef	std err		t	P> t	======== 95.0% Co	nf. Int.		
mu	-2 . 5987e-04		-0. latility			[-2.531e-03,2.	011e-03]		
	coef	std err		t	P> t	======== 95.0% Con 	====== f. Int.		
omega	7.8320e-05	4.191e-05	1.8	69 6	.165e-02	[-3.820e-06,1.6	05e-04]		
alpha[1]	0.5370	5.028e-02	10.6	80 1	.266e-26	[0.438,	0.635]		
alpha[2]	0.1189	0.924	0.1	29	0.898	[-1.692,	1.930]		
	1.1254e-17	0.272	4.137e-	17	1.000	. ,	-		
	1.5790e-17		7.126e-		1.000	. ,	-		
	1.3526e-18		1.061e-		1.000	[-2.497,	-		
beta[2]	7.9076e-18	0.691 	1.145e-:	17 	1.000	[-1.354, 	1.354]		

Image 92: ARCH Model Output for Canada

Image 93: Conditional Volatility Curve for Canada

The GARCH model below is based on the Canadian industrial index, specifically a GARCH(4,2) model. This means the model includes 4 lags of the squared error term and 2 lags of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(4,2) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. We ran our estimation for a total of 24*24 values, comparing each of them, and concluded that this was the best-fitted GARCH model. The conditional volatility, while not highly volatile overall, shows some notable spikes, particularly between 2008 to 2010 and 2016 to 2018, with a major spike observed after 2020, likely due to the aftermath of COVID-19.

Best GARCH	H model order	for Monthl	y data: (1	, 2)	
Best AIC f	or Monthly d	ata: -1312.	2913657314	637	
	C	onstant Mea	n - GARCH I	Model Result	ts
=======		=======	=======	=======	
Dep. Varia	able: Can	ada_Log_Ret	urns R-se	quared:	0.000
Mean Model	l:	Constant	Mean Adj	. R-squared:	9.000
Vol Model:	:	G	ARCH Log	-Likelihood:	661.146
Distributi	Distribution: Norma			:	-1312.29
Method:	Max	imum Likeli	hood BIC	:	-1296.00
		ns: 192			
Date:	Т	hu, Dec 19	2024 Df I	Residuals:	191
Time:		13:0	Model:	1	
			Mean Mode	l	
=======	-=======	=======	=======		
	coef	std err	t	P> t	95.0% Conf. Int.
mu	4.8762e-04				[-1.231e-03,2.206e-03]
		Vo	latility M	odel	
	coef	std err	t	P> t	95.0% Conf. Int.
omega	3.3376e-05	5.559e-06	6.003	1.932e-09	[2.248e-05,4.427e-05]
alpha[1]	0.9947	0.411	2.422	1.542e-02	[0.190, 1.799]
beta[1]	5.3333e-03	9.085e-03	0.587	0.557	[-1.247e-02,2.314e-02]
beta[2]	4.9716e-07	2.838e-02	1.752e-05	1.000	[-5.563e-02,5.563e-02]
=======		=======	=======		

Image 94: ARCH Model Output for USA

Image 95: Conditional Volatility Curve for USA

The GARCH model below is based on the American industrial index, specifically a GARCH(1,2) model. This means the model includes 1 lag of the squared error term and 2 lags of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(1,2) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. We ran our estimation for a total of 24*24 values of pp and qq, comparing each of them, and concluded that this was the best-fitted GARCH model. The conditional volatility, while not highly volatile overall, shows some notable spikes, particularly between 2008 and 2010, with a major spike observed after 2020, likely due to the aftermath of COVID-19, which may exhibit similar patterns across all economies.

	Best GARCH model order for Monthly data: (1, 3) Best AIC for Monthly data: -1102.4833320418954 Constant Mean - GARCH Model Results								
Mean Model				uared: R-squared: Likelihood:	557.242 -1102.48 -1082.94				
Date: Time:	Т	hu, Dec 19 20 13:07:	esiduals: odel:	192 191 1					
	 coef	std err	 t	P> t	95.0% Conf. Int.				
mu	-2.3360e-04	8.535e-04 Volat	-0.274 tility Mod		[-1.906e-03,1.439e-03]				
	coef	std err	t	P> t	95.0% Conf. Int.				
omega alpha[1] beta[1] beta[2] beta[3]	0.0000	2.297e-05 0.277 8.743e-02 0.183 5.961e-02		1.965e-02 0.549 1.000	[-0.119, 0.224]				

Image 96: ARCH Model Output for UK

Image 97: Conditional Volatility Curve for UK

The GARCH model below is based on the UK industrial index, specifically a GARCH(1,3) model. This means the model includes 1 lag of the squared error term and 3 lags of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(1,3) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. We ran our estimation for a total of 24*24 values of p and q, comparing each of them, and concluded that this was the best-fitted GARCH model. The conditional volatility, while not highly volatile overall, shows some notable spikes, particularly between 2008 and 2010, with a major spike observed after 2020, likely due to the aftermath of COVID-19.

Best GARCH model order for Monthly data: (5, 1) Best AIC for Monthly data: -929.6063959148719								
Best AIC f		ata: -929.6 onstant Mea			ults			
=======		=======	======	========	=======		======	
Dep. Varia	ble: Can	ada_Log_Ret	urns R	-squared:		0.000		
Mean Model	:	Constant		dj. R-squar			0.000	
Vol Model:		G		og-Likeliho	od:		472.803	
Distributi				IC:			-929.606	
Method:	Maximum Likelihood			IC:			-903.546	
				o. Observat			192	
Date:	Т	f Residuals	:		191			
Time:		13:1	0:14 D				1	
Mean Model								
=======	coef	std err	======	t P>	t	95.0% Con	if. Int.	
mu	2.3991e-03		1.6 latility		.06 [-5.06	51e-04,5.3	304e-03]	
	coef	std err		t P>	t	95.0% Con	f. Int.	
omega	1.5244e-04	4.406e-05	3.4	59 5 . 414e-	04 [6.66	07e-05,2.3	888e-04]	
alpha[1]	0.1927	8.082e-02	2.3	84 1.712e-	02 ⁻ [3.	.429e-02,	0.351]	
alpha[2]	0.2033	0.204	0.9	96 0.3	19	-0.197,	0.603]	
alpha[3]	1.6921e-12	1.660e-02	1.019e-	10 1.6	000 [-3.25	53e-02 , 3.2	253e-02]	
alpha[4]	3.9730e-12	0.145	2.731e-	11 1.6	000	[-0.285,	0.285]	
alpha[5]	0.6040	0.463	1.3	05 0. 1	.92	[-0.303,	1.511]	
beta[1] ======	1.1511e-12	3.901e-02	2.951e-:	11 1.6 =======	000 [-7 . 64	15e-02,7.6 	645e-02]	

Image 98: ARCH Model Output for japan

Image 99: Conditional Volatility Curve for Japan

The GARCH model below is based on the UK industrial index, specifically a GARCH(5,1) model. This means the model includes 5 lags of the squared error term and 1 lag of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(5,1) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. We ran our estimation for a total of 24×24 values of p and q, comparing each of them, and concluded that this was the best-fitted GARCH model. The conditional volatility is relatively very high compared to other G-7 nations, showing notable spikes, particularly between 2008 and 2010, as well as between 2011 and 2012, with a less major spike observed in 2020.

Best GARCH model order for Monthly data: (2, 1) Best AIC for Monthly data: -1014.0625059515214 Constant Mean - GARCH Model Results									
Dep. Variable: Can		ada_Log_Reti	ırns R-	squar	ed:	0.000			
Mean Model:		Constant M	Mean Ad	j. R−	squared:	0.000			
Vol Model:		G/	ARCH Lo	g-Lik	elihood:	512.031			
Distribution:		Normal		C:		-1014.06			
Method:	Method: Maxi		nood BI	BIC:		-997.775			
			No	. Obs	ervation	s: 192			
Date:	Т	Thu, Dec 19 2024			duals:	191			
Time:		13:13:41			1:	1			
Mean Model									
=======	coef	std err		===== t	P> t	95.0% Conf. Int.			
mu	mu 1.0948e-03 8.253e-04 1.327 0.185 [-5.227e-04,2.712e-03] Volatility Model								
	======= coef 	std err		===== t 	P> t	95.0% Conf. Int.			
omega	8.3832e-05	2.782e-05	3.01	3 2.	584e-03	[2.931e-05,1.384e-04]			
alpha[1]	0.5296	0.191			535e-03				
alpha[2]	0.3149	0.406	0.77	5	0.438	[-0.482, 1.111]			
beta[1]	0.1265 	0.238 	0.5 3	1	0.595	[-0.340, 0.593]			

Image 100: ARCH Model Output for Germany

Image 101: Conditional Volatility Curve for Germany

The GARCH model below is based on the German industrial index, specifically a GARCH(2,1) model. This means the model includes 1 lag of the squared error term and 2 lags of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(1,3) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. The conditional volatility, while not highly volatile overall, shows some notable spikes, particularly between 2008 and 2010, with a major spike observed after 2020, likely due to the aftermath of COVID-19.

Best GARCH model order for Monthly data: (10, 2) Best AIC for Monthly data: -959.294259946728 Constant Mean - GARCH Model Results									
Dep. Varia	Dep. Variable: Canada_Log_Returns R-squared: 0.								
Mean Model:		Constant	Mean Adj	. R-squared	0.000				
Vol Model:		G	ū	-Likelihood	. 493.647				
Distribution:			rmal AIC		-959.294				
Method: Max		imum Likeli			-913.689				
		hu, Dec 19		Observation					
Date: Time:				Residuals: Model:	191				
ııme:		13:1	о:06 рт Mean Mode		1				
	coef	std err	 t	P> t	95.0% Conf. Int.				
mu	1.0774e-03	1.052e-03 Vo	1.024 latility M		[-9.841e-04,3.139e-03]				
=======	coef	std err	 t	P> t	95.0% Conf. Int.				
omega	8.9124e-05	5.790e-05	1.539	0.124	[-2.435e-05,2.026e-04]				
alpha[1]	0.3157	0.196	1.614	0.106	[-6.760e-02, 0.699]				
alpha[2]	0.0000	0.275	0.000	1.000	[-0.539, 0.539]				
alpha[3]	0.0000	0.467	0.000	1.000	[-0.915, 0.915]				
alpha[4]	0.0000	0.256	0.000		[-0.501, 0.501]				
alpha[5]	0.0000	4.473e-02	0.000		[-8.766e-02,8.766e-02]				
alpha[6]	0.0519	0.215	0.241		[-0.370, 0.473]				
alpha[7]	0.0000	0.247	0.000		[-0.484, 0.484]				
alpha[8]	0.0000	0.286	0.000		[
alpha[9]	0.6324	0.489	1.294		[-0.325, 1.590]				
alpha[10]	1.8425e-09	1.798	1.025e-09		[-3.524, 3.524]				
beta[1] beta[2]	0.0000 0.0000	1.867 0.190	0.000 0.000		[-3.659, 3.659] [-0.372, 0.372]				

Image 102: ARCH Model Output for France

Image 103: Conditional Volatility Curve for France

The GARCH model below is based on the French industrial index, specifically a GARCH(10,2) model. This means the model includes 10 lags of the squared error term and 2 lags of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(10,2) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. The conditional volatility, while not highly volatile overall, shows two notable spikes, particularly between 2008 and 2010, with a major spike observed after 2020, and it appears to be increasing afterward.

	model order or Monthly da	ata: -891.4	038206	574605					
Constant Mean - GARCH Model Results									
Dep. Variable: Canada Log Returns				R-squ	======= ared:	========	====== 0.000		
Mean Model				Adj. R-squared:		0.000			
		ARCH	Log-Likelihood:		453.702				
Distribution:		Normal		AIC:		-891.404			
		imum Likelihood		BIC:		-865.344			
				No. Observations:		:	192		
Date:	Thu, Dec 19 2024		2024	Df Residuals:		191			
Time:	13:17:51		7:51	Df Model:		1			
Mean Model									
========	 coef	 std err	=====	====== t	======= P> t	 95.0% Co	nf Int		
		3tu eii				93.00 CO			
mu	-2.0621e-03	2.206e-03		0.935	0.350	[-6.386e-03,2.	262e-03]		
Volatility Model									
=======	coef	std err		t	P> t	95.0% Con	f. Int.		
omega	1.9167e-04	1.244e-04	1	.540	0.123 [·	-5 .22 3e-05 ,4. 3	56e-04]		
alpha[1]	0.1685	0.106	1	.597	0.110	[-3.830e-02,	0.375]		
alpha[2]	0.8315	0.610	1	.362	0.173	[-0.365,	2.028]		
	2.3596e-13	0.637	3.705	e-13	1.000	[-1.248,	1.248]		
	2.3512e-13	0.694	3.387	e-13	1.000	[-1.360,	1.360]		
	2.3468e-13	0.173	1.354	e-12	1.000	[-0.340,	-		
beta[1]	3.7178e-12 =======	0.806 	4.612 	e-12 =====	1.000 	[-1.580, 	1.580]		

Image 103: ARCH Model Output for Italy

Image 104: Conditional Volatility Curve for Italy

The GARCH model below is based on the Italin industrial index, specifically a GARCH(5,1) model. This means the model includes 5 lags of the squared error term and 1 lag of the conditional variance. This model was selected after comparing various GARCH models and determining that GARCH(5,1) had the best log-likelihood and the lowest AIC and BIC values, making it the best fit. The conditional volatility, while not highly volatile overall, shows no notable spikes during the observed period, except for a major spike observed after 2020.

Conclusion

The relationship between the logarithm of industrial production in G-7 countries and the ECM (Error Correction Model) isn't always straightforward. Over time, the complexity of independent variables has evolved, making predictions and dependencies in today's economic environment quite different from those in the past. The original ECM model was developed and applied to data series from 1950 to 2000, a period when the independent variables primarily consisted of lagged values of stock price indices.

However, with the expansion of global economies and the rise of more intricate economic challenges in the modern era, the limitations of the ECM model have become more apparent. In contrast, models like ARIMA and GARCH have shown better performance in capturing the nuances of contemporary data. Their ability to handle greater complexity and volatility gives them an edge over the simpler framework of ECM. This shift highlights the need for adaptive modeling approaches as we navigate the evolving dynamics of today's world economy.

Reference list

- 1. Choi, J. J., Hauser, S., & Kopecky, K. J. (1999). Does the stock market predict real activity? Time series evidence from the G-7 countries. *Journal of Banking & Finance*, 23(12), 1771-1792.
- 2. International Monetary Fund. (2024). Data. Retrieved from https://www.imf.org/en/Data.
- Ashley, R., Granger, C. W. J., & Schmalensee, R. (1980). Advertising and aggregate consumption: An analysis of causality. *Econometrica*, 48(5), 1149– 1167. https://doi.org/10.2307/1912162
- 4. Barro, R. J. (1990). The stock market and investment. *Review of Financial Studies*, *3*(1), 115–131. https://doi.org/10.1093/rfs/3.1.115
- 5. Bittlingmayer, G. (1992). Stock returns, real activity, and the trust question. *Journal of Finance, 47*(5), 1701–1730. https://doi.org/10.1111/j.1540-6261.1992.tb04679.x
- 6. Box, G. E. P., & Jenkins, P. M. (1970). Time series analysis. Holden-Day.
- Canova, F., & Nicolo, G. (1995). Stock returns and real activity: A structural approach. *European Economic Review*, 39(5), 981–1015. https://doi.org/10.1016/0014-2921(94)00083-4

- 8. Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. *Econometrica*, *49*(4), 1057–1072. https://doi.org/10.2307/1912517
- 9. Fama, E. F. (1990). Stock returns, expected returns, and real activity. *Journal of Finance*, *45*(4), 1089–1108. https://doi.org/10.1111/j.1540-6261.1990.tb02428.x
- Gallinger, G. W. (1994). Causality tests of the real stock return-real activity hypothesis. *Journal of Financial Research*, 17(3), 271–288. https://doi.org/10.1111/j.1475-6803.1994.tb00190.x
- 11. Geske, R., & Roll, R. (1983). The fiscal and monetary linkage between stock returns and inflation. *Journal of Finance*, *38*(1), 7–33. https://doi.org/10.1111/j.1540-6261.1983.tb03623.x
- 12. Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. *Journal of Economic Dynamics and Control*, 2(4), 329–352. https://doi.org/10.1016/0165-1889(80)90069-X
- 13. International Monetary Fund. (n.d.). *International financial statistics.* Washington, DC.
- 14. Kaul, G. (1987). Stock returns and inflation: The role of the monetary sector. *Journal of Financial Economics*, 18(2), 253–276. https://doi.org/10.1016/0304-405X(87)90040-2
- 15. Lee, B. S. (1992). Causal relations among stock returns, interest rates, real activity, and inflation. *Journal of Finance*, *47*(4), 1591–1603. https://doi.org/10.1111/j.1540-6261.1992.tb04667.x
- Löfvendahl, A., & Nummelin, K. (1997). On stocks, bonds, and business conditions. *Applied Financial Economics*, 7(2), 137–146. https://doi.org/10.1080/096031097333773
- 17. Park, S. (1997). Rationality of negative stock-price responses to strong economic activity. *Financial Analysts Journal*, *53*(4), 52–56. https://doi.org/10.2469/fai.v53.n4.2097
- 18. Schwert, G. W. (1990). Stock returns and real economic activity: A century of evidence. *Journal of Finance*, 45(4), 1237–1257. https://doi.org/10.1111/j.1540-6261.1990.tb02434.x