Stochastické procesy a stacionarita

Zadání semestrální práce č. 2

Příklad č. 1

Uvažujte Gauss-Markovův diskrétní proces generovaný vztahem

$$X_{k+1} = e^{-bT}X_k + W_k, \ k = 0, 1, 2, \dots,$$

kde W_k je bílý šum, $p(W_k) = \mathcal{N}\{W_k; 0, Q(1-e^{-2bT})\}$, počáteční podmínka je $p(X_0) = \mathcal{N}\{X_0; 0, Q\}$, Q = 3, b = 0.5 a T = 1. Vygenerujte $M = 10^4$ realizací Gauss-Markova procesu pro N=100 časových okamžiků. Vypočítejte odhad autokovarinanční funkce $\widehat{\text{COV}[X_k, X_{k+\tau}]}$ pro $\tau \in \{0, 1, 2, 3, 4, 5\}$ a $k \in \{0, 1, 2, \dots, 94\}$. Vykreslete a porovnejte tyto odhady s teoreticky vypočítanou autokovarianční funkcí $\widehat{\text{COV}[X_k, X_{k+\tau}]}$. Určete, zda je proces stacionární v širším smyslu.

Příklad č. 2

Hodnotu Wienerova procesu v diskrétních časových okamžicích lze generovat pomocí vztahu

$$X_{k+1} = X_k + W_k, \ k = 0, 1, 2, \dots,$$

kde počáteční podmínka je $X_0=0$, interval mezi časovými okamžiky je roven jedné a W_k je bílý šum a $p(W_k)=\mathcal{N}\{W_k;0,1\}$. Vygenerujte $M=10^4$ realizací Wienerova procesu pro N=100 časových okamžiků. Vykreslete 8 realizací a všimněte si nestacionarity procesu. Vypočítejte teoretickou hodnotu autokovarianční funkce procesu $\mathrm{COV}[X_{k+\tau},X_k]$ a její odhad $\mathrm{COV}[X_{k+\tau},X_k]$ pro $\tau\in\{0,1,2,3,4,5\}$ a $k\in\{0,1,2,\ldots,94\}$ vypočítaný z realizací. Obojí vykreslete s porovnejte.

Příklad č. 3

Uvažujte následující Gauss-Markovův model systému

$$X_{k+1} = 0.95X_k + 0.5W_k$$
$$Z_k = 5X_k + V_k,$$

kde $p(W_k) = \mathcal{N}\{W_k; 0, 3\}$ a $p(V_k) = \mathcal{N}\{V_k; 0, 2\}$ jsou bílé šumy vzájemně nezávislé a nezávislé na počáteční podmínce $p(X_0) = \mathcal{N}\{X_0; 1, 5\}$. Vygenerujte $M = 10^4$ realizací modelu pro N=100 časových okamžiků. Vypočítejte teoretickou střední hodnotu procesů $\mathsf{E}[X_k]$, $\mathsf{E}[Z_k]$, jejich odhadů $\widehat{\mathsf{E}[X_k]}$, $\widehat{\mathsf{E}[Z_k]}$ pro $k \in \{0, 1, 2, \dots, 99\}$ a ustálené hodnotu variance procesů $\mathsf{VAR}[X_k]$, $\mathsf{VAR}[Z_k]$, jejich odhadů $\widehat{\mathsf{VAR}[X_k]}$, $\widehat{\mathsf{VAR}[Z_k]}$ pro $k \in \{0, 1, 2, \dots, 99\}$ a ustálené hodnoty $\mathsf{VAR}[X_k]$, $\mathsf{VAR}[Z_k]$ pro $k \to \infty$. Výsledky opět vykreslete s porovnejte.