

## Analysis of 272 genetic variants in the upgraded interactive FXI web database reveals new insights on FXI deficiency

| raft riginal Article: Coagulation and Fibrinolysis sic Science a arris, Victoria; University College London, Structural and Molecular ology n, Weining; University College London, Structural and Molecular ology erkins, Stephen; University College London, Structural and Molecular ology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| riginal Article: Coagulation and Fibrinolysis asic Science  a  arris, Victoria; University College London, Structural and Molecular ology n, Weining; University College London, Structural and Molecular ology erkins, Stephen; University College London, Structural and Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| asic Science  arris, Victoria; University College London, Structural and Molecular ology  n, Weining; University College London, Structural and Molecular ology  erkins, Stephen; University College London, Structural and Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| arris, Victoria; University College London, Structural and Molecular ology n, Weining; University College London, Structural and Molecular ology erkins, Stephen; University College London, Structural and Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| arris, Victoria; University College London, Structural and Molecular<br>ology<br>n, Weining; University College London, Structural and Molecular<br>ology<br>erkins, Stephen; University College London, Structural and Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ology<br>n, Weining; University College London, Structural and Molecular<br>ology<br>orkins, Stephen; University College London, Structural and Molecular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pagulation factors, Haemostasis, Protein structure / folding, Inherited agulation disorders, Gene mutations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| agulation Factor XI (FXI) is a plasma glycoprotein composed of four ople (Ap) domains and a serine protease (SP) domain. FXI circulates as dimer and activates Factor IX (FIX), promoting thrombin production and preventing excess blood loss. Genetic variants that degrade FXI ructure and function often lead to bleeding diatheses, commonly remed FXI deficiency. The first interactive FXI variant database and derwent initial development in 2003 at https://www.factorxi.org. Pare, based on a much improved FXI crystal structure, the upgraded FXI stabase contains information regarding 272 FXI variants (including 154 dissense variants) found in 657 patients, this being a significant crease from the 183 variants identified in the 2009 update. Type I pariants involve the simultaneous reduction of FXI coagulant activity XI:C) and FXI antigen levels (FXI:Ag), whereas Type II variants result decreased FXI:C yet normal FXI:Ag. The database updates now ghlight the predominance of Type I variants in FXI. Analysis in terms of consensus Ap domain revealed the near-uniform distribution of 81 issense variants across the Ap domains. A further 66 missense variants are identified in the SP domain, showing that all regions of the FXI otein were important for function. The variants clarified the critical aportance of changes in surface solvent accessibility, as well as those of steine residues and the dimer interface. The updated database ovides an easy-to-use web resource on FXI deficiency for clinicians at facilitates future diagnoses and treatments. |
| X c g c is e o if s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## SCHOLARONE™ Manuscripts

REGULAR ARTICLE (Category - Coagulation and Fibrinolysis)

# Analysis of 272 genetic variants in the upgraded interactive FXI web database reveals new insights into FXI deficiency

Victoria A. Harris<sup>†</sup>, Weining Lin<sup>†</sup> and Stephen J. Perkins<sup>†</sup>

† Research Department of Structural and Molecular Biology, University College London, London, United Kingdom.

Running title: Analysis of variants in FXI deficiency

### Research grants and financial support:

The authors were supported by grants from the Lister Institute for Preventive Medicine for this work.

**Correspondence:** Professor Stephen J. Perkins, Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, U.K. Tel.: +44 20 7679 7048; fax: +44 20 7679 7193; e-mail: <a href="mailto:s.perkins@ucl.ac.uk">s.perkins@ucl.ac.uk</a> This manuscript contains 25 pages, including 8 Figures.

#### **ABSTRACT**

Coagulation Factor XI (FXI) is a plasma glycoprotein composed of four apple (Ap) domains and a serine protease (SP) domain. FXI circulates as a dimer and activates Factor IX (FIX), promoting thrombin production and preventing excess blood loss. Genetic variants that degrade FXI structure and function often lead to bleeding diatheses, commonly termed FXI deficiency. The first interactive FXI variant database underwent initial development in 2003 at https://www.factorxi.org. Here, based on a much improved FXI crystal structure, the upgraded FXI database contains information regarding 272 FXI variants (including 154 missense variants) found in 657 patients, this being a significant increase from the 183 variants identified in the 2009 update. Type I variants involve the simultaneous reduction of FXI coagulant activity (FXI:C) and FXI antigen levels (FXI:Ag), whereas Type II variants result in decreased FXI:C yet normal FXI:Ag. The database updates now highlight the

predominance of Type I variants in FXI. Analysis in terms of a consensus Ap domain revealed the near-uniform distribution of 81 missense variants across the Ap domains. A further 66 missense variants were identified in the SP domain, showing that all regions of the FXI protein were important for function. The variants clarified the critical importance of changes in surface solvent accessibility, as well as those of cysteine residues and the dimer interface. The updated database provides an easy-to-use web resource on FXI deficiency for clinicians that facilitates future diagnoses and treatments.

**Key words:** Coagulation factors, haemostasis, protein structure/folding, inherited coagulation disorders, gene mutations



#### **SUMMARY TABLE**

#### What is known on this topic:

- (1) Many more FXI variants have been published in the literature since we last updated our interactive web database at https://www.factorxi.org in 2005 and 2009.
- (2) The crystal structure of the FXI zymogen dimer enables an assessment of the damaging effects of FXI missense variants, and these need updating in the light of the significantly improved FXI crystal structure from 2019.

#### What this paper adds:

- (1) Of the 272 unique variants from 657 case reports that are now in our interactive database from literature searches, 227 are disease-causing, the majority of which are phenotypically classified as Type I, and 45 are non-disease-associated.
- (2) We explain the molecular basis of many Type I variants in FXI in terms of the altered surface accessibility of the affected residues, the importance of affected Cys residues in disulphide bridges, and perturbations of the Ap4-Ap4 contacts that form the FXI dimer.
- (3) Our interactive FXI website was upgraded for improved clarity and ease of use in order to enable the better utility of sequences and structural modelling to analyse FXI genetic variants and predict their effects.

## Introduction

Factor XI (FXI), a coagulation serine protease, is encoded by the F11 gene located on the long arm of human chromosome 4 (4q35). The 23 kb gene comprises 15 exons that translate into a signal peptide, four apple (Ap) domains (Ap1-Ap4) and the catalytic serine protease (SP) domain (Figure 1).<sup>1-2</sup> The Ap domains in FXI are structurally homologous to each other and to those in human prekallikrein (PK), a zymogen protease involved in the kallikrein-kinin-system (KKS). Together such Ap domains form part of the plasminogenapple-nematode (PAN) domain superfamily.<sup>3</sup> Specifically, FXI appeared to arise from the duplication of the PK gene, Klkb1, making FXI and PK paralogs of each other. The four Ap domains in each of FXI and PK form disk-like structures that are comprised of an antiparallel β-sheet attached to an α-helix through disulphide bridges.<sup>4-5</sup> FXI is synthesized as a 607 amino acid zymogen, which circulates in plasma in a dimeric form prior to activation. The dimer comprises two identical 80 kDa subunits, which are held together through non-covalent interactions between the two single Ap4 domains. The dimer is further stabilised by a Cvs339-Cvs339 interchain disulphide bridge between the Ap4 domains. The non-covalent interactions that stabilise dimer formation include hydrophobic ones as well as two Glu305-Lys349 and Asp307-Arg363 salt bridges. The activation of each FXI subunit involves the cleavage of the Arg387-Ile388 bond and can be driven by Factor XII (FXIIa), thrombin or by FXIa itself in a process known as autoactivation. 1,5-6 Once activated, FXIa cleaves zymogenic Factor IX (FIX) into FIXa. Subsequently, FIXa feeds into the coagulation cascade to promote thrombin production, aiding fibrin assembly and preventing excess blood loss. 1,7

Owing to the importance of FXI in coagulation, genetic variants that disrupt the native FXI structure and function lead to bleeding diatheses. Such disorders are most commonly referred to as FXI deficiency, but have been termed Haemophilia C, Rosenthal syndrome or Plasma Thromboplastin Antecedent deficiency in the past.<sup>8-9</sup> FXI deficiency occurs at a frequency of one in a million in the general population with higher incidence amongst the Ashkenazi Jewish population (one in 450 individuals).<sup>10-12</sup> Specifically, the heterozygous and homozygous frequencies within the Ashkenazi population are believed to be 9% and 0.22% respectively. In 1953, Rosenthal identified the first case of FXI deficiency in a Jewish family in the USA.<sup>8</sup> Many subsequent cases were identified in individuals of similar descent, with the nonsense mutation Glu135\* and the missense variant Phe301Leu emerging as the

founding causative variants. The most prominent mutations associated with FXI deficiency in Jewish populations are classified as being one of Type I-IV. The above point mutations are classified as Type II (Glu135\*) and Type III (Phe301Leu) and remain as some of the most common FXI variants found today. Type I and IV mutations occur more sporadically and interfere with standard pre-mRNA splicing. Type I is a substitution and Type IV a deletion, both within intron N. 10-11,13-14 Despite the prevalence of FXI deficiency amongst the Jewish population, founding FXI variants have also been identified in other populations. Gln106\* is a founding variant in French Nantes families, Cys56Arg in French Basques families, and Cys146\* in English families. 14-16 The original nomenclature refers to FXI variants as having a cross-reacting material negative (CRM<sup>-</sup>) or cross-reacting material positive (CRM<sup>+</sup>) phenotype. CRM<sup>-</sup> (presently known as Type I) variants result in the simultaneous reduction of FXI coagulant activity (FXI:C) and FXI antigen (FXI:Ag) levels, most likely a result of the degradation of mutant FXI protein within cells. CRM<sup>+</sup> (presently known as Type II) variants result in a reduction of the FXI:C level but do not impact the FXI:Ag level. Such variants are most likely to be dysfunctional variants that go undetected by normal cellular quality control systems. FXI:C levels typically range from 70–150 IU/dL in unaffected individuals, while moderately deficient individuals have FXI:C levels ranging between 15-70 IU/dL and severely deficient individuals have levels <15 IU/dL.<sup>2</sup>

What has been unclear is the lack of correlation between FXI activity, FXI deficiency and disease severity. To understand this relationship better, we created the first interactive web database for the coagulation proteins (https://www.factorxi.org/) in 2003 as an easy-to-use facility for users, which was published in 2005, and updated in 2009 to report all 183 FXI variants identified at the time. 17,18 To date, over 18,000 visits have been recorded on this website. We have extended this interactive database and upgraded it to other coagulation proteins such as FIX and others. 19 These interactive variant databases bring key advantages of easy-to-use search and genetic and structural analysis tools for clinicians and scientists. In the present study, we now update and upgrade our FXI database for which we summarise information for a total of 272 variants in the *F11* gene (Figure 1) and include the improved crystal structure from 2019. The increased number of known and novel FXI variants clarifies the molecular basis of FXI deficiency. In particular, by comparisons with other coagulation proteases, we correlate the predominance of Type I (CRM-) mutations within FXI with changes in surface solvent accessibilities of the affected residues, and with the occurrence of variants in cysteine residues. The amino acid accessibilities in the closely-

packed domain structure of the FXI dimer with the extended ones in other coagulation proteases now explain the notable imbalance between Type I and Type II variants in FXI. The availability of the upgraded website for users significantly clarifies the molecular basis of FXI deficiency.

## **Methods**

#### Source of the FXI database

The interactive FXI web database at https://www.factorxi.org currently holds 272 genetic alterations in F11 that are associated with FXI deficiency. The database was created at University College London, the website copyright is retained by S. J. Perkins and University College London, and database copying is not permitted without explicit permission from the author. The FXI database was initially populated in 2003 starting from a non-interactive website of the F11 gene with 65 variants, together with literature searches of PubMed at https://pubmed.ncbi.nlm.nih.gov/.<sup>17</sup> Further F11 genetic variants were obtained from 32 patient records at the Haemophilia Centre and Thrombosis Unit at the Royal Free Hospital in London, as well as additional literature searches, making a total of 183 variants in 2009. 18 For the current database, the literature cut-off date was April 2021, giving an overall total of 272 unique variants found in 657 patients. These data were compiled into a spreadsheet and used to update the existing FXI MySQL database, using phpMyAdmin software (https://www.phpmyadmin.net/) as an intermediary platform to the MySQL database. As a quality control, the original literature sources used for the 2005 and 2009 projects were re-consulted in order to re-validate and correct the entries if required. If required for personal or private research use, a list of the variants and their associated fields can be downloaded from the Variants menu on our website.

#### **Analysis of FXI variants**

The interactive database records DNA changes in HGVS format, where +1 refers to the A of the ATG initiation codon, at the start of the 18-residue signal peptide. Protein changes are recorded in HGVS format, with codon +1 referring to the ATG initiation codon (Figures 1 and 2). To enable comparison with older FXI publications, legacy numbering was included for protein changes on the web database, with codon +1 referring to the first codon of the mature FXI protein.

The original full-length FXI zymogen crystal structure at 0.287 nm structural resolution (PDB ID: 2F83) representing Cys-20 to Thr-622 (HGVS numbering) was recently superseded by an improved FXI zymogen crystal structure at 0.260 nm resolution (PDB ID: 6I58).<sup>20,21</sup> The latter was used here as the three-dimensional protein structural model on which the FXI variant analyses were based. The FXI dimer was created from the 6I58 structure using the Proteins, Interfaces, Structures and Assemblies (PDBePISA) server (https://www.ebi.ac.uk/pdbe/pisa/).<sup>22</sup> Whilst all structural analyses were carried out using the 6I58 model, 95 additional FXI structures have become available in the protein database (PDB) since 2009 and are listed in our updated database. Of these, 92 crystal structures correspond to truncated FXI structures with only the serine protease domain present, and three are full-length FXI proteins in complexes with ligands. These structures do not show the full FXI zymogen in its native conformation and thus were not used.

The 6158 crystal structure of unliganded FXI was analysed using the Definition of Secondary Structure of Proteins (DSSP) tool at <a href="https://www3.cmbi.umcn.nl/xssp/">https://www3.cmbi.umcn.nl/xssp/</a> to determine the secondary structure of each FXI residue (Figure 2).<sup>23-24</sup> DSSP was applied both to the intact 6158 structure as well as to the separated 6158 domains. Residues were individually assigned secondary structures to be one of H (α-helix), B (β-bridge), E (extended β-strand), G (3<sub>10</sub> helix), I (π-helix), T (hydrogen-bonded turn), S (bend) or C (undefined coil region). In addition, DSSP was used to determine the relative surface accessibility of each residue in the FXI crystal structure in Ų (Figure 2). The accessibilities were converted into % accessibility by dividing the DSSP output by the theoretical solvent accessible surface area of the amino acid sidechain in question.<sup>23-25</sup> The results were simplified as follows. Percentage accessibilities of 0-9% were given the value 0, 10-19% the value 1, 20-29% the value 2, and so on. Residues with accessibilities of 0 or 1 were classified as buried and those with accessibilities of 2-9 were classified as solvent-exposed.

The Ap domain secondary structure was comprised of a five-stranded antiparallel  $\beta$ -sheet with the  $\beta$ -strand topology C-E-D-G-A, a two-stranded B-F  $\beta$ -sheet and a centrally located  $\alpha$ -helix (A1). The seven  $\beta$ -strands were labelled alphabetically (A-G) in the order in which they occurred in the sequence. The  $\alpha$ -helix A1 and 3<sub>10</sub>-helices G1-G3 were similarly labelled in sequential order.<sup>17</sup> The six conserved cysteine residues of the Ap domains were numbered from C1 to C6 in the order they occurred in each Ap sequence. The three disulphide bridges between the  $\alpha$ -helix and  $\beta$ -strands were denoted C1-C6, C2-C5 and C3-C4

and stabilised the folded Ap structure.<sup>26</sup> The SP domain was comprised of β-strands A-O, α-helices A1-A2 and 3<sub>10</sub>-helices G1-G5. As detailed previously, the Ap2 structure was used to represent the consensus Ap domain, owing to its low average root mean square deviation relative to the other three Ap domains after superimposition using the online secondary structure alignment program SSAP at <a href="http://www.cathdb.info/cgi-bin/cath/SsapServer.pl">http://www.cathdb.info/cgi-bin/cath/SsapServer.pl</a>. <sup>18,27</sup> The interactions at the FXI dimer interface and between the Ap1-Ap4 and SP domains also utilised the PDBePISA tool.<sup>22</sup>

## **Results**

# Classification of FXI variants and polymorphisms in the updated interactive web database

The interactive FXI web database (https://www.factorxi.org) currently presents information regarding 272 genetic variants (Figure 1) from 657 patient records, this being an almost 50% increase of 89 variants compared to the 2009 update, and an increase of 207 variants from the initial 2005 publication. 17-18 The 89 newer variants were sourced from 34 new research articles, increasing the literature pool by 30% from that in 2009. As well as the increased number of rare variants, the database has also been updated in terms of its interactive features, to follow our FIX website (https://www.factorix.org), where a site map facilitates user navigation.<sup>19</sup> The home page features two movies of the dimeric FXI and monomeric FXI structures with its variants, facilitating a three-dimensional visualisation of the variant distribution. Allelic frequencies (AF) are also provided for variants when possible using the data supplied by the genome aggregation database (gnomAD) version 2.1.1 at https://gnomad.broadinstitute.org/.28 The gnomAD v2.1.1 data set spanned 125,748 exome sequences and 15,708 whole-genome sequences and 117 (43%) of the 272 identified FXI variants were found in this. The AF was used as an indication of the relative frequency of a given variant at a specific genetic locus. The AF cut-off was taken as 0.01, thus an AF > 0.01indicated a commonly-occurring variant. Of the 117 variants available in the gnomAD dataset, only 9 had AF > 0.01, all of which corresponded to known polymorphisms. The remaining 108 variants had AF < 0.01, highlighting that most FXI variants are rare. Using a more stringent AF cut-off of 0.001, only four additional variants occurred more frequently, leaving 104 rare FXI variants within the gnomAD data set. Additional database features include a multiple sequence alignment of human FXI with other FXI species, to help users understand the phylogenetic history of the F11 gene and the extent of residue conservation in

related sequences. An interactive FXI structure is presented onto which missense variants can be mapped and analysed for clearer structural and functional analysis of their consequence. Lastly, additional FXI structures and literature references provide a more up to date knowledge of FXI research.

Of the 272 variants identified, 227 are disease-causing and 45 are non-disease associated polymorphisms. The 272 variants can be classified by genetic event, of which point variants make up 73.53%, polymorphisms 16.54%, deletions 6.99%, duplications 1.47% and insertions 1.47% (Figure 3(a)). The point variants can be further subdivided into missense (77.00%), nonsense (13.50%) and silent (1.00%) variants, with the remaining 8.50% of point variants being undefined (Figure 3(b)). The variants are uniformly distributed throughout the FXI sequence, with variants found in all five domains and linker regions (Figure 3(c)). Of the disease-causing variants, 96 (42.3%) are phenotypically classified as Type I, 12 (5.3%) as Type II and 119 (52.4 %) as unknown. Here, Type II variants are characterised by a FXI:C to FXI:Ag ratio < 0.7. The Type I variants are scattered evenly across all domains whereas the Type II variants predominantly cluster in the SP domain (66.7%) (Figure 2). The two most common variants are Glu135\* and Cys56Arg, both of which are phenotypically classified as Type I. A total of 61 Glu135\* and 36 Cys56Arg cases have been recorded in the web database. These are increases of five Glu135\* and 24 Cys56Arg variants compared to the 2009 update. Other commonly occurring variants include Phe301Leu, Cys146\* and Gln281\* of which there are 22 cases of each.

#### Crystal structure analysis of secondary structures and accessibilities

The FXI protein structure rationalises the three-dimensional distribution of the variants. The previously used FXI zymogen crystal structure (PDB ID: 2F83) has now been superseded by a much improved one (PDB ID: 6I58). The 6I58 structure showed an improved structural resolution of 0.260 nm compared to that of 0.287 nm for 2F83 and this enabled better visualisation and analysis of the distribution of variants in FXI.<sup>20-21</sup> When subjected to Ramachandran plot quality analysis (<a href="http://www.ebi.ac.uk/pdbsum">http://www.ebi.ac.uk/pdbsum</a>), the 6I58 model gave an observed goodness-of-fit R-value of 0.216 when compared to the experimental X-ray data, compared to a larger R-value of 0.235 in the 2F83 crystal structure. In the 6I58 structure, 87% of amino acids were categorised in the "most favoured" conformational regions, 13% were in the "additional allowed" regions, and there were no conformational outliers. This outcome was improved compared to the 2F83 structure for

which the corresponding figures were 74%, 20% and nine Ramachandran outliers respectively. <sup>20-21,29</sup> In Figure 2, 96 out of the 625 residues showed a different secondary structure assignment in the improved 6I58 structure compared to that in the 2F83 structure, even though the overall secondary structure was unaffected, and the changes affected mostly the loop conformations at the surface of the protein. From Figure 2 likewise, 209 out of the 625 residues showed changes in surface accessibilities of at least 10% when comparing the 6I58 structure to 2F83, and 49 residues showed changes of more than 20%. The improved quality of the newer protein structure thus had clear effects on the analyses of the variants below.

The 6I58 structure was used to display 142 missense variants and 14 polymorphisms found in the FXI zymogen (Figure 4(a)). The four Ap domains in each monomer were each composed of seven  $\beta$ -strands and an  $\alpha$ -helix, which came together to form a five-stranded antiparallel β-sheet C-E-D-G-A, a two stranded B-F β-sheet and a central α-helix. This is most clearly seen for the Ap2 domain of Monomer 2 in Figure 4(a). Ap2, Ap3 and Ap4 also contained short C-terminal 3<sub>10</sub>-helices (Figure 2). The SP domain contained 15 β-strands, two  $\alpha$ -helices and five short  $3_{10}$ -helices, all arranged as two subdomains, each of which flanked a substrate binding cleft between them (Figure 2). The catalytic triad of His431-Asp480-Ser575 is shown for Monomer 2 in Figure 4(a). In the full 6I58 structure, 322 residues out of 625 had percentage surface accessibilities of 0 or 1 (assigned as buried), 263 residues had accessibilities over 2 (assigned as surface exposed), and 40 residues were absent from the crystal structure and therefore not classified. The 6I58 structure revealed 98 variants with percentage surface accessibilities of 0 or 1, indicating sidechain burial, and 50 variants with accessibilities of 2 or more, indicating surface exposure (Figure 2). Note that the accessibilities of three variants in the SP domain were undeterminable due to structural limitations. Variant changes in buried positions are likely to interfere with intradomain interactions and overall protein conformation, accounting for the predominance of Type I variants in FXI, due to the high proportion of affected buried residues and the compact domain structure (Figure 4). In contrast, variants found at surface exposed locations are more likely to interfere with protein function without disturbing the overall structure. The low number of Type II variants in the Ap domains highlights their importance in maintaining the compact FXI structure, whereas the clustering of Type II variants in the catalytic SP domain indicates its significance in protein function rather than structure.

A consensus Ap domain represents an average of the four Ap domains in FXI. The consensus enables all the Ap1-Ap4 variants to be shown in one view in order to determine features common to all four domains (Figure 5(a)). The predominance of Type I variants (red) in the Ap domains is highlighted in Figure 5(b), where Type II variants (green) are almost absent. In this representation, Thr33 (in a buried location at the end of the Ap  $\alpha$ -helix) and Gly80 (in a buried location at the end of the Ap  $\beta$ -sheet G) represent hotspots that disrupt the Ap domains.

#### Analysis of disulphide bridges and Cys variants in FXI

Further analyses focussed on specific details of the FXI structure. The covalent links formed by 17 disulphide bridges in a FXI monomer are key to the structure and function of FXI. Each Ap domain possesses three intrachain disulphide bridges C1-C6, C2-C5 and C3-C4 (black highlights in Figure 5(a)), the first of which stabilises the link between the Nterminus and C-terminus of each Ap domain. These occur at Ap1 (Cys20-Cys103, Cys46-Cys76, Cys50-Cys56), Ap2 (Cys110-Cys193, Cys136-Cys165, Cys140-Cys146), Ap3 (Cys200-Cys283, Cys226-Cys255, Cys230-Cys236) and Ap4 (Cys291-Cys374, Cys317-Cys346, Cys321-Cys327). There is a free Cys29 residue in Ap1. The SP domain has five bridges (Cys380-Cys500, Cys416-Cys432, Cys514-Cys,581, Cys545-Cys560, Cys571-Cys599). The Ap4 domains form an additional interchain disulphide bridge at Cys339-Cys339 to stabilise dimer formation. 1,26,30-31 Type I Cys variants disrupt disulphide bridge formation, destabilising the protein structure and leading to a FXI deficient state. A total of 28 distinct Cys variants have been identified within FXI, 20 of which are in the Ap domains and eight are in the SP domain. Of the 28 variants, 12 have Type I phenotypes (Cys46Phe, Cys56Arg/Trp, Cys76Tyr, Cys110Gly, Cys136\*, Cys140Tyr, Cys146\*, Cys255Tyr, Cys327\*, Cys416Tyr, Cys545Tyr), one has a Type II phenotype (Cys599\*) and one is a nondisease associated polymorphism (Cys339Phe). The remaining 14 variants do not have defined phenotypes (Cys56\*, Cys76Arg/Phe, Cys136Arg, Cys200Ser/Tyr, Cys230Arg/Ser, Cys374Arg, Cys500Arg/Trp, Cys581Arg/Phe, Cys599Tyr) (Figure 2). The 13 substitution variants that introduce new Cys residues into FXI predominantly possess Type I phenotypes (Trp246Cys, Arg326Cys, Trp425Cys, Arg443Cys, Tyr445Cys, Trp515Cys, Trp519Cys, Gly596Cys), with only one possessing a Type II phenotype (Arg396Cys in the SP domain) and four with unknown phenotypes (Tyr151Cys, Arg162Cys, Arg268Cys, Tyr521Cys). All individuals with such variants in a homozygous or compound heterozygous form exhibit a severe FXI deficiency. In addition to the Cys residues being Type I mutational hotspots,

variants that neighbour Cys residues are also able to perturb the disulphide bridge packing within the protein fold (Figure 5(c)).

#### Analysis of variants at the FXI dimer interface

The PDBePISA tool was used to identify the 17 Ap4 contact residues involved in FXI dimerization with buried surface area changes of over 5 Ų (Leu302 to Val309, Thr333, Cys339, Asn340, Lys345, Tyr347, Lys349, Thr357, Leu360, Arg363) (green in Figure 5(a)).²² Specifically, Cys339 forms an interchain disulphide bond, which is important for stabilisation but is not essential for dimer formation or functionality.³⁰ There are 36 Ap4 variants in total, yet only three are found at the dimer interface (Ile308Phe/Thr, Cys339Phe), highlighting the importance of the conservation of residues at the dimer interface (Figures 5(a) and 5(d)). Ile308Phe/Thr and Cys339Phe are non-disease associated polymorphisms. Given that Ile, Phe, Thr, and Cys have neutral side chains, the Ile308Phe/Thr and Cys339Phe substitutions are unlikely to have a large impact on the non-covalent dimerization interactions.

#### Comparison of variant phenotypes with residue accessibilities

The high proportion of Type I variants was investigated further by calculating the surface accessibilities of 142 FXI missense variants and 14 polymorphisms using the PDBePISA tool for (a) the intact FXI protein and (b) the individually separated FXI domains (Figure 6). Notably a high 67% of Type I variants (42 of 63) showed accessibilities of 0 or 1, highlighting their predisposition to be buried within the FXI protein structure (Figure 6(a)). In contrast, Type II variants and polymorphisms appeared at both exposed and buried regions of the FXI structure, with no clear preference for either location. Many variant residues were of unknown phenotype, however interestingly the majority of these showed low accessibilities. Following domain separation, the resulting changes in accessibility compared to the intact protein enabled identification of residues that made interdomain contacts. An even higher proportion of 91% of Type I variants (57 of 63) were located to residues that showed small accessibility changes after domain separation (Figure 6(b)). The same outcome was also seen for Type II variants, polymorphisms and unassigned phenotypes. The predominance of Type I variants (and others) at such sites illustrates that small perturbations in the FXI structure, through the introduction of variants that lead to slight changes in surface accessibility, are sufficient to inactivate the protein and lead to disease states.

For further insight into the above outcome, four individual variant residues were visually highlighted. The FXI Ap domains were tightly packed together to form a compact structure with intricate interdomain interactions. Four distinct residues associated with Type I variants were identified, namely (a) Val38Ala, (b) Pro41Leu, (c) Cys110Gly and (d) Arg326Cys (Figure 7). Following domain separation, the accessibilities of these four residues increased significantly, corresponding to a transition from burial to exposure. These accessibility changes indicated the extent to which the residues interact with and are packed together against surrounding domains. Missense variants at such locations will perturb these interdomain interactions, disrupting the native FXI structure and resulting in premature protein degradation. Thus, we have provided a molecular explanation for the relative abundance of Type I variants in FXI in terms of small but significant disruptions to the tightly packed domain structure.

## **Discussion**

The new data sets for FXI in this study have significantly improved the quality of the analyses of variants compared to our previous study, <sup>18</sup> and lead to further insights into the occurrence of FXI disease states. Most notably, we show that these variants are found across the FXI protein structure, and that accessibility changes in the packing arrangement of amino acid residues in the folded FXI structure by residue substitution is a major cause of FXI deficiency. Accessibility changes may be a good predictor for the changes associated with a variant. This upgraded analysis of the FXI variants has resulted from three main advances: (a) the availability of an additional 50% of reported rare variants from literature sources to make a total of 272 variants (Figure 1); (b) the significantly improved crystal structure for the FXI zymogen; <sup>20</sup> (c) upgrade of the previous UCL FXI website user interface into that similar to the UCL coagulation Factor IX website. <sup>19</sup>

In the coagulation proteases, FXI presents unique features by virtue of its compact protein domain structure. There are other proteins that likewise possess compact domain structures, such as the serine protease Factor I of the complement cascade of immune defence that contains five domains in contact with each other (complement proteins are evolutionarily related to coagulation proteins). Like FXI, Factor I shows that variants are distributed throughout the protein structures, implying that any of these will perturb the correctly folded protein structure. However, Factor I is monomeric and not dimeric as is FXI.<sup>32</sup> In contrast,

three-dimensional structures for Factors VII, IX and X (FVII, FIX and FX) present extended domain arrangements based on the four domains termed Gla-EGF1-EGF2-SP. Where the phenotypes are known, FVII, FIX and FX variants show a higher proportion of Type II phenotypes and are associated with functional defects, rather than Type I.<sup>33-34</sup> This outcome is as expected given that these three proteins have extended domain arrangements. For proteins that are dominantly affected by functional defects, such as Factor H and C3 of complement, these show tendencies to reveal "hot-spots" where genetic variants accumulate in small but functionally important regions of the protein structure. Certain types of variants do not exist in FXI. There are no variants reported that affect the catalytic residues His431-Asp480-Ser575 that make up the peptide cleavage site in FXI; presumably these would be incompatible with life. Likewise, there are no variants reported that prevent FXI from forming dimers and these too would appear to be incompatible with life. Very few of the contact residues at the dimer interface are associated with variants, and those that do only show minor perturbations to the protein structure. In support of this outcome, FXI-deficient mice exhibit increased bleeding, akin to the bleeding in FXI-deficient patients that is reported as the result of traumatic or surgical injuries.<sup>35</sup>

Specific residue types are becoming more abundant as the number of observed genetic variants increase. In this study, Cys residues were flagged up as being a frequent source of disease-causing variants in FXI (Figure 5(c)). Cys residues are important for the stability and functionality of FXI, and there are 18 disulphide bridges in a FXI monomer. Unsurprisingly the breakage of a Cys-Cys disulphide bridge is expected to impact severely on the FXI protein. The higher frequency of variants at Cys32 and Cys58 was already evident in the consensus Ap domain in 2009 where all six Cys residues were associated with variants. In the present study, the involvement of all six Cys residues in variants in the consensus Ap domain was verified (Figure 5(a)). A similar outcome was also recently noted with the consensus short complement regulator domain in the complement proteins, which possesses two conserved disulphide bridges. Initially the Cys residues were not prominent as variant hotspots, but the most recent update of the web database showed that these were prominent with 5-13 occurrences. 36-37

Our interactive FXI database serves as a useful resource for clinicians and scientists to diagnose FXI deficiency and provide insight into suitable therapeutic approaches. Database technology becomes required given the large increases in the known genetic variants in FXI,

when a simple flat list is no longer adequate to monitor these. The website layout is designed to present genetic and structural information on FXI as two distinct but parallel themes, similar to that for our original FXI database<sup>17,18</sup> and the FIX database.<sup>19</sup> This is illustrated using genetic and structural outputs for the established Phe301Leu variant (the Jewish Type III variant with legacy numbering Phe283Leu), for which 22 patient records exist (Figure 8). On the left, further insight on the conservation of Phe301 is obtained from the AA Alignments tab which shows Phe301 aligned with six other mammalian species to show that this residue is fully conserved and therefore essential for FXI function. On the right, the structural analysis shows that Phe301 is a buried residue on a β-strand, and the JMol viewer shows that this is located inside the Apple 4 domain. Further research into FXI will be key to understanding the relationship between FXI deficiency and disease severity, including experimental studies. While the improved 2019 crystal structure for the FXI zymogen has greatly facilitated variant analysis, a crystal structure for activated FXIa will further help explain the molecular basis of FXI deficiency. There may be a large conformational difference in FXIa compared to FXI, by analogy with the structure of activated plasma kallikrein compared to the FXI zymogen; kallikrein is homologous to FXI.<sup>20</sup>

#### **REFERENCES**

- 1. Mohammed BM, Matafonov A, Ivanov I, et al. An Update on Factor XI Structure and Function. Throm Res. 2018;161:94–105
- 2. Berber E. Molecular Characterization of FXI Deficiency. Clin Appl Thromb Hemost. 2011;17:27-32
- 3. Tordai H, Bányai L, Patthy L. The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett. 1999;461:63-67
- 4. Gailani D, Smith SB. Structural and functional features of factor XI. J Thromb Haemost. 2009;7 (Suppl. 1):75-78
- 5. Ponczek MB, Shamanaev A, LaPlace A, et al. The evolution of factor XI and the kallikrein-kinin system. Blood Adv. 2020;4:6135-6147
- 6. Geng Y, Verhamme IM, Smith SB, et al. The dimeric structure of factor XI and zymogen activation. Blood. 2013;121:3962-3969
- 7. Bar Barroeta A, van Galen J, Stroo I, Marquart JA, Meijer AB, Meijers JCM. Hydrogendeuterium exchange mass spectrometry highlights conformational changes induced by factor XI activation and binding of factor IX to factor XIa. J Thromb Haemost. 2019;17:2047-2055

- 8. Rosenthal RO, Dreskin OH, Rosenthal N. New hemophilia-like disease caused by deficiency of a third plasma thromboplastin factor. Proc Soc Exp Biol Med. 1953;82:171-174
- 9. Wheeler AP, Gailani D. Why Factor XI Deficiency is a Clinical Concern. Expert Rev Hematol. 2016;9:629-637
- Martín-Salces M, Jimenez-Yuste V, Alvarez MT, Quintana M, Hernández-Navarro F. Review: Factor XI deficiency: review and management in pregnant women. Clin Appl Thromb Hemost. 2010;16:209-213
- 11. Mitchell M, Mountford R, Butler R, et al. Spectrum of Factor XI (F11) Mutations in the UK population 116 Index Cases and 140 Mutations. Hum Mutat. 2006;27:829
- 12. Shpilberg O, Peretz H, Zivelin A, et al. One of the two common mutations causing factor XI deficiency in Ashkenazi Jews (type II) is also prevalent in Iraqi Jews, who represent the ancient gene pool of Jews. Blood. 1995;85:429-432
- 13. Asakai R, Chung DW, Ratnoff OD, Davie EW. Factor XI (plasma thromboplastin antecedent) deficiency in Ashkenazi Jews is a bleeding disorder that can result from three types of point mutations. Proc Natl Acad Sci U S A. 1989;86:7667-7671
- 14. Quélin F, Trossaërt M, Sigaud M, Mazancourt PD, Fressinaud E. Molecular basis of severe factor XI deficiency in seven families from the west of France. Seven novel mutations, including an ancient Q88X mutation. J Thromb Haemost. 2004;2:71-76
- 15. Zivelin A, Bauduer F, Ducout L, et al. Factor XI deficiency in French Basques is caused predominantly by an ancestral Cys38Arg mutation in the factor XI gene. Blood. 2002;99:2448-2454
- 16. Bolton-Maggs PH, Peretz H, Butler R, et al. A common ancestral mutation (C128X) occurring in 11 non-Jewish families from the UK with factor XI deficiency. J Thromb Haemost. 2004;2:918-924
- 17. Saunders RE, O'Connell NM, Lee CA, Perry DJ, Perkins SJ. Factor XI deficiency database: an interactive web database of mutations, phenotypes, and structural analysis tools. Hum Mutat. 2005;26:192-198
- 18. Saunders RE, Shiltagh N, Gomez K, et al. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency. Thromb Haemost. 2009;102:287-301
- 19. Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost. 2013;11:1329-1340
- 20. Li C, Voos KM, Pathak M, et al. Plasma kallikrein structure reveals apple domain disc rotated conformation compared to factor XI. J Thromb Haemost. 2019;17:759-770
- 21. Papagrigoriou E, McEwan PA, Walsh PN, Emsley J. Crystal structure of the factor XI zymogen reveals a pathway for transactivation. Nat Struct Mol Biol. 2006;13:557-558
- 22. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774-797

- 23. Touw WG, Baakman C, Black J, et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43 (Database issue):D364-D368
- 24. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577-2637
- 25. Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. Maximum allowed solvent accessibilites of residues in proteins. PLoS One. 2013;8:e80635
- 26. Emsley J, McEwan PA, Gailani D. Structure and function of factor XI. Blood. 2010;115:2569-2577
- 27. Orengo CA, Taylor WR. SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol. 1996;266:617-35
- 28. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434-443
- 29. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018;27:129-134
- 30. McMullen BA, Fujikawa K, Davie EW. Location of the disulfide bonds in human coagulation factor XI: the presence of tandem apple domains. Biochemistry. 1991;30:2056-2060
- 31. Meijers JC, Mulvihill ER, Davie EW, Chung DW. Apple four in human blood coagulation factor XI mediates dimer formation. Biochemistry. 1992;31:4680-4684
- 32. Osborne AJ, Breno M, Borsa NG, et al. Statistical Validation of Rare Complement Variants Provides Insights into the Molecular Basis of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. J Immunol. 2018;200:2464-2478
- 33. Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost. 2013;11:1329-1340
- 34. Giansily-Blaizot M, Rallapalli PM, Perkins SJ, et al. The EAHAD blood coagulation factor VII variant database. Hum Mutat. 2020;41:1209-1219
- 35. Ay C, Hisada Y, Cooley BC, Mackman N. Factor XI-deficient mice exhibit increased bleeding after injury to the saphenous vein. J Thromb Haemost. 2017;15:1829-1833
- 36. Saunders RE, Abarrategui-Garrido C, Frémeaux-Bacchi V, et al. The interactive Factor Hatypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Hum Mutat. 2007;28:222-234
- 37. Perkins SJ. Genetic and Protein Structural Evaluation of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. Adv Chronic Kidney Dis. 2020;27:120-127

#### **Figure Legends**

#### Figure 1: Distribution of the 272 variants identified within the F11 gene.

The Ap1-Ap4 and serine protease domains are drawn to scale. The number of variants in each of the respective domains and UTR regions is shown in large font above or below the variant lists. Intronic variants are included in their respective domains according to sequence numbering. The residue numbering in HGVS format (starting with 1 at the signal peptide) denotes the amino acids that start and end each domain. N and C represent the N- and C-termini of FXI respectively. Note that the two variants in the 3'UTR do not follow HGVS numbering.

# Figure 2: Secondary structure and accessibility analysis of variants in the FXI crystal structure.

The FXI sequence is shown with the secondary structure assignments highlighted in grey boxes. Residues are denoted either H ( $\alpha$ -helix), B ( $\beta$ -bridge), E (extended  $\beta$ -strand), G ( $3_{10}$  helix), I ( $\pi$ -helix), T (hydrogen-bonded turn), S (bend) or C (undefined coil region).  $\beta$ -strands are labelled alphabetically in the order in which they occur. The  $\beta$ -strands in the Ap and SP domains are denoted A-G and A-O respectively.  $3_{10}$ -helices are denoted G1-G5 and  $\alpha$ -helices are denoted A1-A2. The SP catalytic triad His431-Asp480-Ser575 residues are highlighted in black. The 24 conserved cysteine residues within the four Ap domains are shown in yellow text. Putative N-glycosylated residues are highlighted in yellow boxes. The positions of 198 point variants found in the *F11* gene are highlighted, where 75 red highlights denote Type I mutations, 11 green highlights denote Type II mutations, and 56 orange highlights denote mutations with unknown phenotype. The 13 purple highlights denote non-disease associated polymorphisms and the blue highlight denotes a residue (G368) associated with both Type I and Type II phenotypes. Note that several highlights correspond to multiple variants at one residue position. All numbering is in HGVS format.

#### Figure 3: Distribution of the 272 variants found in the F11 gene.

The panels (a-c) indicate breakdowns of the 272 FXI variants into variant type, effect and location within the *F11* gene sequence. The charts illustrated here distinguish the non-disease associated polymorphisms from the disease-causing genetic variants.

- (a) The relative frequency of five different types of unique variants in the F11 gene.
- (b) Effect of the 200 point variants found in the F11 gene sequence.

(c) Distribution of the 272 FXI variants across the *F11* gene sequence and FXI protein domains. Note, the variant in the undefined category is a 31.5 kb deletion that cannot be assigned to a single domain/region.

#### Figure 4: Structural and schematic view of variants within FXI

The dimer was created using its crystallographic symmetry, with the two Ap4 domains in contact with each other about an axis depicted as a dashed vertical line.

- (a) Distribution of 142 missense variants and 14 polymorphisms within dimeric FXI. The crystal structure of the FXI dimer is shown in ribbon format, with the Cα positions of variants and polymorphisms highlighted as spheres. Variant locations are illustrated in Monomer 1 and are coloured according to phenotype. Type I (CRM-) variants are in red, Type II (CRM+) variants in green, and those with unknown phenotype in yellow. The non-disease associated polymorphisms are depicted in purple. The catalytic triad His431-Asp480-Ser575 is shown in the SP domain of Monomer 2 as black spheres. The ribbon colours correspond to those used on our website <a href="https://www.factorxi.org">https://www.factorxi.org</a>.
- (b) Schematic representation of the five domains in monomeric FXI. The five domains are aligned and depicted in the same orientation and colours as in the ribbons in (a) above. The four variants highlighted, Val38Ala, Pro41Leu, Cys110Gly and Arg326Cys are Type I variants found at interdomain contact points (see below).

#### Figure 5: Mutational residue frequency in terms of a consensus Ap domain.

A consensus Ap domain of length 87 residues shows the distribution of 90 Ap variants (missense and polymorphisms) in the four Ap1-Ap4 domains merged together.

(a) The four Ap domain sequences are aligned to form a consensus, with the averaged secondary structure (Sec) and accessibility (Acc) of each residue listed directly below. The 'Tot' row illustrates the total number of variants found at each residue in the consensus. The six conserved Cys residues in each domain are highlighted in black and numbered 1-6 underneath the alignment. Type I variants are circled in red, Type II in green and those of unknown phenotype in orange. Non-disease associated polymorphisms are circled in purple. The green residues in Ap4 mark those present at the FXI dimer interface. The 'Sec' rows highlight the  $\alpha$ -helix region (H) and the five  $\beta$ -strand regions (E) in the consensus Ap domain. The  $\beta$ -strand regions are denoted AB, C, D, E and FG. The 'Acc' row denotes the

relative accessibility of each consensus residue, where accessibilities of 0 or 1 indicate buried sidechains and accessibilities > 1 indicate sidechain exposure to solvent.

- (b) Variants are coloured according to phenotype. Type I variants are coloured in red, Type II in green and those of unknown phenotype in yellow. Polymorphisms are shown in purple. The sphere colour represents the most commonly occurring phenotype at that position according to the sequence alignment in (a). The size of the spheres indicates the number of variants found at that position, and ranges from one to five. N and C refer to the N- and C-termini respectively.
- (c) Cys variants and their neighbouring residues are shown as dark and light pink spheres respectively. All other variants are depicted in blue. The size of the spheres is again indicative of the number of variants found at that position. The six Cys residues are labelled C1-C6.
- (d) The FXI dimer interface is highlighted in green and the  $\beta$ -strands present at the interface are labelled. Variants found within Ap4 are shown as spheres, coloured according to their phenotype as in (b)

# Figure 6: Graphical illustration of 142 missense variants and 14 polymorphisms in the *F11* gene.

- (a) FXI variants are grouped by phenotypic classification (CLASS). The variants are further subdivided according to the native residue accessibility (ACC) of the intact protein. Accessibility was determined using DSSP and is explained in detail in the methods section. Accessibilities of 0 or 1 indicate sidechain burial and values >1 indicate exposure.
- (b) FXI variants are again grouped by phenotypic classification (CLASS) and accessibility (ACC). Here, accessibility refers to the change in residue accessibility when the intact FXI protein is chopped into five distinct domains, Apple1, Apple2, Apple3, Apple4 and the SP domain.

# Figure 7: Molecular graphic representation of residues within the FXI protein structure.

The left-hand panel highlights the residue of interest and its calculated solvent accessibility in the native FXI protein. The right-hand side panel shows the same residue in its respective isolated domain, with its corresponding accessibility. Panels (a), (b), (c) and (d) highlight the residues Val38, Pro41, Cys110 and Arg326 respectively. Accessibility calculations are

detailed in the Methods section. The domain colouring corresponds to that in Figure 3. All residue numbering is given in HGVS format.

# Figure 8: Screenshots of the upgraded FXI web site to illustrate the analysis made for the Phe301Leu variant.

The upper panel displays the output when residue 301 is inputted on the home page. By clicking "Show" on the patient information, the lower left panel lists genetic information for the 22 patients reported with Phe301Leu variant, of which the first five records are visible, together with the source of the patient record. The sequence alignment is shown underneath with Phe301 highlighted. Clicking "HERE" on the structural interpretation gives the image shown on the bottom right panel. This assesses the buried or exposed accessibility of the variant and its location in the FXI protein structure. A JMol view of the FXI structure is displayed that can be rotated and zoomed into as desired.





Figure 1. Variants.

289x292mm (200 x 200 DPI)

Ap1

Ap2

Ap3

Ap4

SP



Figure 2. Sequence.

201x185mm (200 x 200 DPI)



Figure 3. Dimer 204x189mm (200 x 200 DPI)



Figure 4. Pie chart.

233x141mm (200 x 200 DPI)



Figure 5. Consensus

355x175mm (300 x 300 DPI)





Figure 6. Accessibility

508x208mm (300 x 300 DPI)



Figure 7. Views

134x281mm (200 x 200 DPI)



Figure 8. Website

570x579mm (200 x 200 DPI)

| 1        |            |     |        |             |            |     |           |            |      |      |                   |
|----------|------------|-----|--------|-------------|------------|-----|-----------|------------|------|------|-------------------|
| 2        | Patient ID | Age | Gender | Race        | Variant ID | ) . | Туре      | Effect     | cDNA | ſ    | Mutation(c        |
| 3        | 212        |     |        | UK populat  | 13         | 0   | Point     |            |      | -54  | c54G>A            |
| 4        | 438        |     |        |             | 13         | 0   | Point     |            |      | -54  | c54G>A            |
| 5<br>6   | 505        |     | M      | Tunisian    | 18         | 4   | Deletion  |            |      | 0 E  | xons 11-1!        |
| 7        | 154        |     |        |             | 10         | 9   | Deletion  |            |      | 0 3  | 31.5KbDele        |
| 8        | 215        |     |        | UK populat  | 13         | 2   | Point     | Missense   |      | 3 (  | c.3G>T            |
| 9        | 373        |     |        |             | 13         | 2   | Point     | Missense   |      | 3 (  | c.3G>T            |
| 10       | 190        | 36  | F      | Morrocan    | 12         | 0   | Point     | Missense   |      | 44 ( | c.44C>T           |
| 11       | 401        | 26  | F      | Czech       | 22         | 7   | Insertion | Frameshift |      | 55 d | :.55+6T>G+        |
| 12<br>13 | 213        |     |        | Uk Populati | 13         | 1   | Point     | Nonsense   |      | 55 ( | c.55G>T           |
| 14       | 290        | 2   | F      | Non-Ashkei  |            | 0   | Deletion  | Frameshift |      | 73 ( | c.73_86del        |
| 15       | 510        |     |        | Italian     | 25         | 8   | Deletion  | Inframe    |      |      | 78_80del          |
| 16       | 280        | 34  | F      | French      | 15         | 2   | Point     | Missense   |      |      | _<br>c.113T>C     |
| 17       | 216        |     |        | UK Populat  |            |     |           | Missense   |      |      | c.122C>A          |
| 18<br>19 | 199        | 34  | F      | French      |            |     |           | Missense   |      |      | c.122C>T          |
| 20       | 402        |     |        |             |            |     |           | Missense   |      |      | c.126C>G          |
| 21       | 616        | 44  | F      | Chinese     |            |     |           | Missense   |      |      | c.126C>G          |
| 22       | 165        | 15  |        |             |            |     |           | Missense   |      |      | c.137G>T          |
| 23       | 166        | 10  |        |             |            |     |           | Missense   |      |      | c.137G>T          |
| 24       | 167        | 45  |        |             |            |     |           | Missense   |      |      | c.137 <b>G</b> >T |
| 25<br>26 | 617        | 32  |        | Chinese     |            |     |           | Missense   |      |      | c.137 <b>G</b> >T |
| 27       | 217        | 32  | '      | UK Populat  |            |     |           | Missense   |      |      | c.141G>C          |
| 28       | 518        | 7   | М      | Turkish     |            |     |           | Missense   |      |      | c.151A>C          |
| 29       | 524        | 10  |        | Turkish     |            |     |           | Missense   |      |      | c.151A>C          |
| 30       | 563        | 52  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 31<br>32 | 564        |     |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 33       | 1          | 50  |        | French Base |            |     |           | Missense   |      |      | c.166T>C          |
| 34       | 571        | 51  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 35       | 572        | 40  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 36       | 573        | 57  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 37<br>38 |            | 53  |        | •           |            |     |           |            |      |      | c.166T>C          |
| 39       | 574        |     |        | Spanish     |            |     |           | Missense   |      |      |                   |
| 40       | 575<br>576 | 44  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 41       | 576        | 47  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 42       | 577        | 32  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 43       | 578        | 79  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 44<br>45 | 579        | 58  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 46       | 580        |     |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 47       | 581        | 68  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 48       | 582        | 49  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 49       | 583        | 52  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 50<br>51 | 584        |     |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 52       | 585        | 49  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 53       | 565        | 53  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 54       | 566        | 41  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 55       | 567        | 52  |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 56<br>57 | 568        |     |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 58       | 569        | 43  |        | Spanish     |            |     |           | Missense   |      |      | c.166T>C          |
| 59       | 570        |     |        | Spanish     |            |     | Point     | Missense   |      |      | c.166T>C          |
| 60       | 7          | 34  |        | French Base |            |     |           | Missense   |      |      | c.166T>C          |
|          | 3          | 35  | F      | French Base | 6          | 8   | Point     | Missense   |      | 166  | c.166T>C          |

| 6   | 40 M | French Baso | 68  | Point   | Missense         | 166   | c.166T>C   |
|-----|------|-------------|-----|---------|------------------|-------|------------|
| 98  | 22 M | French Basc | 68  | Point   | Missense         | 166   | c.166T>C   |
| 99  | 28 M |             | 68  | Point   | Missense         | 166   | c.166T>C   |
| 100 | 53 F |             | 68  | Point   | Missense         | 166   | c.166T>C   |
| 101 | 61 M | French Basc | 68  | Point   | Missense         | 166   | c.166T>C   |
| 102 | 51 F | French Basc | 68  | Point   | Missense         | 166   | c.166T>C   |
| 586 | 71 F | Spanish     | 68  | Point   | Missense         | 166   | c.166T>C   |
| 209 | 58 M | French      | 68  | Point   | Missense         | 166   | c.166T>C   |
| 511 |      | Italian     | 219 | Point   | Missense         | 168   | c.168T>G   |
| 512 | F    | Czech       | 259 | Point   | Missense         | 215   | c.215G>C   |
| 631 | 66 F | Indian      | 352 | Point   |                  | 218 ( | c.218+4A>( |
| 632 | 8 M  | Indian      | 352 | Point   |                  | 218 ( | c.218+4A>( |
| 633 | 63 M | Indian      | 352 | Point   |                  | 218 ( | c.218+4A>( |
| 219 |      | UK Populat  | 134 | Point   | Missense         | 227   | c.227G>T   |
| 147 |      | Jewish      | 102 | Point   | Missense         | 227   | c.227G>A   |
| 403 |      |             | 230 | Point   | Missense         | 296   | c.296C>A   |
| 439 |      |             | 230 | Point   | Missense         | 296   | c.296C>A   |
| 56  |      | Portuguese  | 36  | Duplica | ation Frameshift | 301   | c.301_307d |
| 57  |      | Portuguese  | 36  | Duplica | ation Frameshift | 301   | c.301_307d |
| 168 | 38 M |             | 114 | Point   | Missense         | 302   | c.302A>G   |
| 24  | 41 M | Nantes      | 8   | Point   | Nonsense         | 316   | c.316C>T   |
| 26  | 46 F | Nantes      | 8   | Point   | Nonsense         | 316   | c.316C>T   |
| 23  | 64 F | Nantes      | 8   | Point   | Nonsense         | 316   | c.316C>T   |
| 25  | 36 F | Nantes      | 8   | Point   | Nonsense         | 316   | c.316C>T   |
| 28  | 9 M  | Nantes      | 8   | Point   | Nonsense         | 316   | c.316C>T   |
| 522 | 4 M  | Turkish     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 523 | 42 M | Turkish     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 604 | 60 M | Spanish     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 284 | F    | Italian     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 221 |      | UK Populat  | 135 | Point   | Missense         | 325   | c.325G>A   |
| 529 | 37 M | Italian     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 530 | 31 F | Italian     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 528 | 12 F | Italian     | 135 | Point   | Missense         | 325   | c.325G>A   |
| 650 | 32 F | Taiwanese   | 341 | Point   |                  | 326   | :.326-1G>A |
| 200 | 43 M | French      | 126 | Point   | Missense         | 328   | c.328T>G   |
| 201 | 14 M | French      | 126 | Point   | Missense         | 328   | c.328T>G   |
| 405 |      |             | 231 | Point   | Missense         | 359   | c.359T>C   |
| 406 |      |             | 231 | Point   | Missense         | 359   | c.359T>C   |
| 12  |      |             | 60  | Point   | Missense         | 365   | c.365G>A   |
| 8   |      |             | 60  | Point   | Missense         | 365   | c.365G>A   |
| 117 |      |             | 60  | Point   | Missense         | 365   | c.365G>A   |
| 224 |      | UK Populat  | 60  | Point   | Missense         | 365   | c.365G>A   |
| 225 |      | UK Populat  | 60  | Point   | Missense         | 365   | c.365G>A   |
| 440 |      |             | 60  | Point   | Missense         | 365   | c.365G>A   |
| 404 | 42 M |             | 60  | Point   | Missense         | 365   | c.365G>A   |
| 186 |      | Austrian    | 104 | Point   | Nonsense         | 400   | c.400C>T   |
| 407 | 61 M | Italian     | 104 | Point   | Nonsense         | 400   | c.400C>T   |
| 149 |      | Austrian    | 104 | Point   | Nonsense         | 400   | c.400C>T   |
| 466 | 24 M | Iranian     | 58  | Point   | Nonsense         | 403   | c.403G>T   |
| 634 | 54 M | Indian      | 58  | Point   | Nonsense         | 403   | c.403G>T   |
|     |      |             |     |         |                  |       |            |

| 1<br>2   | 441 |      |             | 58 Point | Nonsense | 403 c.403G>T |
|----------|-----|------|-------------|----------|----------|--------------|
| 3        | 442 |      |             | 58 Point | Nonsense | 403 c.403G>T |
| 4        | 443 |      |             | 58 Point | Nonsense | 403 c.403G>T |
| 5        | 51  | М    | Portuguese  | 58 Point | Nonsense | 403 c.403G>T |
| 6        | 52  | M    | Portuguese  | 58 Point | Nonsense | 403 c.403G>T |
| 7        | 53  | F    | -           | 58 Point |          | 403 c.403G>T |
| 8<br>9   | 92  | F    | Portuguese  |          | Nonsense |              |
| 10       |     |      | Portuguese  | 58 Point | Nonsense | 403 c.403G>T |
| 11       | 93  | M    | Portuguese  | 58 Point | Nonsense | 403 c.403G>T |
| 12       | 526 | 6 M  | Turkish     | 58 Point | Nonsense | 403 c.403G>T |
| 13       | 527 | 60 M | Turkish     | 58 Point | Nonsense | 403 c.403G>T |
| 14       | 189 | 41 F | Jewish      | 58 Point | Nonsense | 403 c.403G>T |
| 15<br>16 | 445 |      |             | 58 Point | Nonsense | 403 c.403G>T |
| 16<br>17 | 446 |      |             | 58 Point | Nonsense | 403 c.403G>T |
| 18       | 183 | 12 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 19       | 184 | 34 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 20       | 531 | 30 F | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 21       | 532 | 80 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 22       | 533 | 40 F | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 23<br>24 | 94  | F    | Portuguese  | 58 Point | Nonsense | 403 c.403G>T |
| 25       | 76  | 36 M | Ashkenazi J | 58 Point | Nonsense | 403 c.403G>T |
| 26       | 77  | 50 F | Ashkenazi J | 58 Point | Nonsense | 403 c.403G>T |
| 27       | 80  | 48 F | Ashkenazi J | 58 Point | Nonsense | 403 c.403G>T |
| 28       | 81  | 64 F | Ashkenazi J | 58 Point | Nonsense | 403 c.403G>T |
| 29       | 335 |      | Non-Jewish  | 58 Point | Nonsense | 403 c.403G>T |
| 30<br>31 | 336 |      | Czech       | 58 Point | Nonsense | 403 c.403G>T |
| 32       | 457 | 61 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 33       | 17  | 67 M | Jewish      | 58 Point | Nonsense | 403 c.403G>T |
| 34       | 235 |      | UK Populat  | 58 Point | Nonsense | 403 c.403G>T |
| 35       | 400 |      | on operat   | 58 Point | Nonsense | 403 c.403G>T |
| 36<br>37 | 351 | 18 F | Jewish      | 58 Point | Nonsense | 403 c.403G>T |
| 38       | 383 | F    | 30111311    | 58 Point | Nonsense | 403 c.403G>T |
| 39       | 384 | F    |             | 58 Point | Nonsense | 403 c.403G>T |
| 40       | 388 | М    |             | 58 Point | Nonsense | 403 c.403G>T |
| 41       | 419 | F    | French      | 58 Point | Nonsense | 403 c.403G>T |
| 42       | 420 | F    | TTCTICT     | 58 Point | Nonsense | 403 c.403G>T |
| 43<br>44 | 461 | M    |             | 58 Point | Nonsense | 403 c.403G>T |
| 45       | 447 | IVI  |             | 58 Point | Nonsense | 403 c.403G>T |
| 46       | 444 |      |             | 58 Point | Nonsense | 403 c.403G>T |
| 47       | 534 | 58 F | Italian     | 58 Point |          |              |
| 48       |     |      |             |          | Nonsense | 403 c.403G>T |
| 49<br>50 | 163 | 32 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 50<br>51 | 398 | 32 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 52       | 418 | 32 M | Italian     | 58 Point | Nonsense | 403 c.403G>T |
| 53       | 272 |      | French Bası | 58 Point | Nonsense | 403 c.403G>T |
| 54       | 148 |      | Jewish      | 58 Point | Nonsense | 403 c.403G>T |
| 55       | 483 | 44 F | Ashkenazi J | 58 Point | Nonsense | 403 c.403G>T |
| 56<br>57 | 279 | 2 F  | Non-Ashkeı  | 58 Point | Nonsense | 403 c.403G>T |
| 58       | 67  | 22 F | Bedouin     | 58 Point | Nonsense | 403 c.403G>T |
| 59       | 105 | 48 F | Bedouin     | 58 Point | Nonsense | 403 c.403G>T |
| 60       | 106 | 11 M | Bedouin     | 58 Point | Nonsense | 403 c.403G>T |
|          | 107 | 9 M  | Bedouin     | 58 Point | Nonsense | 403 c.403G>T |
|          |     |      |             |          |          |              |

| 108 | 13 | F | Bedouin       | 58  | Point | Nonsense | 403 | c.403G>T |
|-----|----|---|---------------|-----|-------|----------|-----|----------|
| 109 | 16 | F | Bedouin       | 58  | Point | Nonsense | 403 | c.403G>T |
| 110 | 18 | F | Bedouin       | 58  | Point | Nonsense | 403 | c.403G>T |
| 158 | 56 | F | Italian       | 58  | Point | Nonsense | 403 | c.403G>T |
| 159 | 61 | М | Italian       | 58  | Point | Nonsense | 403 | c.403G>T |
| 160 | 29 | М | Italian       | 58  | Point | Nonsense | 403 | c.403G>T |
| 151 |    |   | European      | 105 | Point | Nonsense | 408 | c.408C>A |
| 226 |    |   | UK Populat    | 105 | Point | Nonsense | 408 | c.408C>A |
| 161 | 36 | M | Italian       | 105 | Point | Nonsense | 408 | c.408C>A |
| 162 | 15 | F | Italian       | 105 | Point | Nonsense | 408 | c.408C>A |
| 513 |    | M | Italian       | 121 | Point | Missense | 419 | c.419G>A |
| 191 | 68 | M |               | 121 | Point | Missense | 419 | c.419G>A |
| 192 | 42 | M |               | 121 | Point | Missense | 419 | c.419G>A |
| 193 | 31 | M |               | 121 | Point | Missense | 419 | c.419G>A |
| 295 |    |   | Non-Jewish    | 121 | Point | Missense | 419 | c.419G>A |
| 289 | 61 | M | Italian       | 161 | Point | Missense | 422 | c.422C>T |
| 637 |    | F | Croatian      | 353 | Point | Missense | 428 | c.428A>C |
| 638 |    | F | Croatian      | 353 | Point | Missense | 428 | c.428A>C |
| 639 |    | M | Croatian      | 353 | Point | Missense | 428 | c.428A>C |
| 611 | 45 | F | Indonesian    | 232 | Point | Missense | 434 | c.434A>G |
| 612 | 14 | M | Indonesian    | 232 | Point | Missense | 434 | c.434A>G |
| 613 | 12 | M | Indonesian    | 232 | Point | Missense | 434 | c.434A>G |
| 655 | 13 | M | Taiwanese     | 232 | Point | Missense | 434 | c.434A>G |
| 75  | 63 | F |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 70  | 59 | F | English/Irisl | 20  | Point | Nonsense | 438 | c.438C>A |
| 72  | 35 | M | Scottish      | 20  | Point | Nonsense | 438 | c.438C>A |
| 74  | 18 | M | Irish         | 20  | Point | Nonsense | 438 | c.438C>A |
| 88  | 63 | M |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 89  | 32 | F | Scottish/En   | 20  | Point | Nonsense | 438 | c.438C>A |
| 90  | 54 | F | English       | 20  | Point | Nonsense | 438 | c.438C>A |
| 91  | 50 | F | English       | 20  | Point | Nonsense | 438 | c.438C>A |
| 39  | 50 | M | Non-Jewish    | 20  | Point | Nonsense | 438 | c.438C>A |
| 448 |    |   |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 71  | 86 | M | English       | 20  | Point | Nonsense | 438 | c.438C>A |
| 73  | 50 | M | English       | 20  | Point | Nonsense | 438 | c.438C>A |
| 60  |    |   | North Euro    | 20  | Point | Nonsense | 438 | c.438C>A |
| 504 | 65 | M | Australian    | 20  | Point | Nonsense | 438 | c.438C>A |
| 240 |    |   | UK Populat    | 20  | Point | Nonsense | 438 | c.438C>A |
| 214 |    |   | UK Populat    | 20  | Point | Nonsense | 438 | c.438C>A |
| 222 |    |   | UK Populat    | 20  | Point | Nonsense | 438 | c.438C>A |
| 227 |    |   | UK Populat    | 20  | Point | Nonsense | 438 | c.438C>A |
| 374 |    | F |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 169 | 29 | F |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 170 | 33 | F |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 171 | 55 | F |               | 20  | Point | Nonsense | 438 | c.438C>A |
| 409 |    |   |               | 138 | Point | Missense | 449 | c.449C>T |
| 535 | 27 | M | Italian       | 138 | Point | Missense | 449 | c.449C>T |
| 536 | 49 | M | Italian       | 138 | Point | Missense | 449 | c.449C>T |
| 537 | 12 | М | Italian       | 138 | Point | Missense | 449 | c.449C>T |
| 538 | 43 | M | Italian       | 138 | Point | Missense | 449 | c.449C>T |
|     |    |   |               |     |       |          |     |          |

| 1               |       |      |                         |     |           |             |                |
|-----------------|-------|------|-------------------------|-----|-----------|-------------|----------------|
|                 | 228   |      | UK Populat              | 139 | Point     | Missense    | 452 c.452A>G   |
| 3               | 43    | F    | •                       | 29  | Point     | Missense    | 452 c.452A>C   |
| 4               | 229   |      | UK Populati             | 29  | Point     | Missense    | 452 c.452A>C   |
| 5               | 410   |      | •                       | 29  | Point     | Missense    | 452 c.452A>C   |
| 6<br>7          | 172 2 | 28 F |                         | 29  | Point     | Missense    | 452 c.452A>C   |
| 8               | 40    |      |                         | 21  | Point     | Missense    | 454 c.454G>C   |
|                 | 230   |      | UK Populat              |     | Point     | Missense    | 454 c.454G>C   |
|                 | 131   |      | Austrian                |     | Point     | Missense    | 484 c.484C>T   |
| 11 ,            | 118   |      |                         |     | Point     |             | 486 c.486-2A>G |
| 12              | 231   |      | UK Populat              | 71  | Point     |             | 486 c.486-2A>G |
| 13              |       |      | Italian                 |     | Point     |             | 486 c.486-2A>G |
|                 | 451   |      |                         |     | Point     | Missense    | 518 c.518G>A   |
| 1.0             | 450   |      |                         |     | Point     | Missense    | 518 c.518G>A   |
| 17              | 452   |      |                         |     | Point     | Missense    | 518 c.518G>A   |
| 18              | 135   |      | Chinese                 |     | Point     | Missense    | 569 c.569T>C   |
| 17              | 188   |      | Austrian                |     | Point     | 11110001100 | 595 c.595+3A>C |
|                 | 232   |      | UK Populat              |     | Point     |             | 595 c.595+3A>C |
| 22              |       |      | Italian                 |     | Point     |             | 595 c.595+3A>C |
| 23 ,            | 104   |      | French Basc             |     | Point     |             | 595 c.595+3A>C |
| 24              |       |      | Italian                 |     | Point     |             | 595 c.595+3A>C |
| 23              |       |      | Chinese                 |     | Point     |             | 596 c.596-8T>A |
|                 |       |      | French                  |     | Point     | Missense    | 596 c.596C>T   |
| റ               |       | 29 F | Trench                  |     | Point     | Missense    | 599 c.599G>A   |
| 29 <sup>*</sup> | 233   |      | LIK Dopulat             |     | Point     | Missense    | 599 c.599G>A   |
| 30              |       |      | UK Populat<br>Taiwanese |     |           |             |                |
| <b>J</b> 1      |       |      |                         |     | Point     | Missense    | 599 c.599G>C   |
|                 | 416   |      | Italian                 |     | Point     | Missense    | 604 c.604A>G   |
| 24              |       |      |                         |     | Point     | Missense    | 616 c.616T>C   |
| 35              | 187   |      | Austrian                |     | Deletion  | Inframe     | 644 c.644_649d |
| 36              |       | 28 M | Lebanese                |     | Point     | Nonsense    | 682 c.682C>T   |
| 57              | 421   |      | French                  |     | Point     | Missense    | 688 c.688T>A   |
|                 | 422   | F    | French                  |     | Point     | Missense    | 688 c.688T>A   |
| 40              | 234   |      | UK Populat              |     | Point     | Missense    | 688 c.688T>C   |
| 41              | 41    |      | Japanese                |     | Point     | Missense    | 688 c.688T>C   |
| 42              |       |      | Italian                 |     | Point     | Missense    | 688 c.688T>C   |
|                 |       |      | Italian<br>             |     | Point     | Missense    | 688 c.688T>C   |
|                 | 627   |      | Indian                  |     | Point     | Missense    | 695 c.695A>C   |
| 16              |       |      | Japanese                |     | Point     | Missense    | 716 c.716T>C   |
| 47              | 424   |      | Japanese                |     | Point     | Missense    | 716 c.716T>C   |
| 48              | 47    |      | Japanese                |     | Point     | Missense    | 716 c.716T>C   |
|                 | 425   |      | Australian              |     | Insertion | Frameshift  | 717 c.717insT  |
|                 |       | 34 M |                         |     | Point     | Missense    | 728 c.728C>T   |
| 52              | 145   |      |                         |     | Point     | Missense    | 728 c.728C>T   |
| 53              |       |      | Japanese                |     | Point     | Nonsense    | 730 c.730C>T   |
| J <del>-1</del> | 642   |      | Chinese                 |     | Point     | Nonsense    | 738 c.738G>A   |
|                 | 644   |      | Chinese                 |     | Point     | Nonsense    | 738 c.738G>A   |
|                 | 645   |      | Chinese                 |     | Point     | Nonsense    | 738 c.738G>A   |
| 58              | 133   |      | Chinese                 |     | Point     | Nonsense    | 738 c.738G>A   |
| 59              |       |      | Taiwanese               |     | Point     | Nonsense    | 738 c.738G>A   |
| 60              | 624   |      | Chinese                 |     | Point     | Nonsense    | 738 c.738G>A   |
| -               | 132   | F    | Chinese                 | 95  | Point     | Nonsense    | 738 c.738G>A   |
|                 |       |      |                         |     |           |             |                |

| 61  | 68 F | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
|-----|------|-------------------|--------------|------------|---------------|
| 128 | F    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 129 | F    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 124 | M    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 125 | M    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 126 | F    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 127 | F    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 130 | F    | Italian           | 41 Point     | Missense   | 738 c.738G>C  |
| 428 | 26 F |                   | 235 Point    | Missense   | 755 c.755G>A  |
| 236 |      | <b>UK Populat</b> | 141 Point    | Missense   | 756 c.756A>T  |
| 237 |      | <b>UK Populat</b> | 141 Point    | Missense   | 756 c.756A>T  |
| 4   | 13 M | French Basc       | 52 Point     | Missense   | 764 c.764G>A  |
| 103 | 10 M |                   | 52 Point     | Missense   | 764 c.764G>A  |
| 506 | 53 M |                   | 253 Deletion | Frameshift | 769 c.769delC |
| 204 | 20 M | French            | 128 Point    | Missense   | 783 c.783G>C  |
| 173 | 27 F |                   | 115 Point    | Missense   | 788 c.788G>A  |
| 174 | 52 F |                   | 115 Point    | Missense   | 788 c.788G>A  |
| 16  | F    | African Am        | 63 Point     | Missense   | 797 c.797G>A  |
| 15  | 9 M  | African Am        | 63 Point     | Missense   | 797 c.797G>A  |
| 45  |      |                   | 30 Point     | Missense   | 802 c.802C>T  |
| 238 |      | UK Populat        | 30 Point     | Missense   | 802 c.802C>T  |
| 44  |      |                   | 30 Point     | Missense   | 802 c.802C>T  |
| 603 | 69 F | Spanish           | 30 Point     | Missense   | 802 c.802C>T  |
| 239 |      | UK Populat        | 30 Point     | Missense   | 802 c.802C>T  |
| 356 | 9 F  |                   | 210 Point    | Missense   | 803 c.803G>A  |
| 435 | 46 F | Czech             | 40 Point     | Missense   | 809 c.809A>T  |
| 507 |      |                   | 255 Point    | Missense   | 829 c.829G>A  |
| 651 | 43 F | Taiwanese         | 42 Point     | Nonsense   | 841 c.841C>T  |
| 656 | 38 F | Taiwanese         | 42 Point     | Nonsense   | 841 c.841C>T  |
| 615 | 30 F |                   | 42 Point     | Nonsense   | 841 c.841C>T  |
| 65  | 42 F | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 122 | M    | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 62  | 17 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 115 | 20 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 119 | F    | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 120 | M    | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 121 | F    | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 123 | M    | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 64  | 56 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 150 | 29 M | Japanese          | 42 Point     | Nonsense   | 841 c.841C>T  |
| 618 | 26 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 619 | 41 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 625 | 22 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 626 | 33 M | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 399 | 25 F | Chinese           | 42 Point     | Nonsense   | 841 c.841C>T  |
| 79  | 55 F | Ashkenazi J       | 65 Point     | Missense   | 901 c.901T>C  |
| 454 |      |                   | 65 Point     | Missense   | 901 c.901T>C  |
| 112 | F    | Caucasian         | 65 Point     | Missense   | 901 c.901T>C  |
| 113 | M    | Caucasian         | 65 Point     | Missense   | 901 c.901T>C  |
| 453 |      |                   | 65 Point     | Missense   | 901 c.901T>C  |
|     |      |                   |              |            |               |

| 1        |            |           |              |                            |                 |
|----------|------------|-----------|--------------|----------------------------|-----------------|
| 2        | 455        |           |              | 65 Point Missense          | 901 c.901T>C    |
| 3        | 545        | 54 M      | Italian      | 65 Point Missense          | 901 c.901T>C    |
| 4        | 549        | 36 F      | Italian      | 65 Point Missense          | 901 c.901T>C    |
| 5        | 283        | 53 F      | Italian      | 65 Point Missense          | 901 c.901T>C    |
| 6<br>7   | 477        | 40 F      | Czech        | 65 Point Missense          | 901 c.901T>C    |
| 8        | 18         | 42 F      | Caucasian    | 65 Point Missense          | 901 c.901T>C    |
| 9        | 490        | F         |              | 65 Point Missense          | 901 c.901T>C    |
| 10       | 544        | 19 F      | Italian      | 65 Point Missense          | 901 c.901T>C    |
| 11       | 547        | 12 F      | Italian      | 65 Point Missense          | 901 c.901T>C    |
| 12<br>13 | 5          | 17 M      | French Basc  | 59 Deletion Frameshift     | 907 c.907delG   |
| 14       | 175        | 57 F      |              | 116 Deletion Frameshift    | 918 c.918delG   |
| 15       | 429        |           |              | 166 Duplication Frameshift | 933 c.933_951d  |
| 16       | 641        | M         | Chinese      | 354 Point Missense         | 938 c.938G>T    |
| 17       | 643        | F         | Chinese      | 354 Point Missense         | 938 c.938G>T    |
| 18<br>19 | 646        | М         | Chinese      | 354 Point Missense         | 938 c.938G>T    |
| 20       | 640        | 32 F      | Chinese      | 354 Point Missense         | 938 c.938G>T    |
| 21       | 152        | 0         |              | 122 Point Missense         | 943 c.943G>A    |
| 22       | 210        | 31 M      | French       | 122 Point Missense         | 943 c.943G>A    |
| 23       | 194        | 57 M      | French       | 122 Point Missense         | 943 c.943G>A    |
| 24       | 195        | 25 F      | French       | 122 Point Missense         | 943 c.943G>A    |
| 25<br>26 | 553        | 53 F      | Italian      | 122 Point Missense         | 943 c.943G>A    |
| 27       | 554        | 29 F      | Italian      | 122 Point Missense         | 943 c.943G>A    |
| 28       | 430        | 23 1      | Trailer      | 122 Point Missense         | 943 c.943G>A    |
| 29       | 551        | 31 F      | Italian      | 122 Point Missense         | 943 c.943G>A    |
| 30       | 561        | 3 F       | Italian      | 122 Point Missense         | 943 c.943G>A    |
| 31<br>32 | 562        | 30 F      | Italian      | 122 Point Missense         | 943 c.943G>A    |
| 33       | 495        | 24 F      | Belgic       | 122 Point Missense         | 943 c.943G>A    |
| 34       | 431        | 47 M      | French       | 142 Deletion Frameshift    | 961 c.961_962d  |
| 35       | 241        | 47 IVI    | UK Populati  | 142 Deletion Frameshift    | 961 c.961 962d  |
| 36       | 211        | 36 F      | French       | 3 Point Missense           | 965 c.965C>T    |
| 37<br>38 | 602        | 42 M      | Spanish      | 3 Point Missense           | 965 c.965C>T    |
| 39       | 242        | 42 101    | UK Populati  | 3 Point Missense           | 965 c.965C>T    |
| 40       | 434        |           | OK i opulat  | 194 Point Missense         | 973 c.973G>T    |
| 41       | 432        |           |              | 194 Point Missense         | 973 c.973G>T    |
| 42       | 433        |           |              | 194 Point Missense         | 973 c.973G>T    |
| 43<br>44 | 19         |           |              | 5 Point Missense           | 976 c.976C>T    |
| 45       | 243        |           | UK Populati  | 5 Point Missense           | 976 c.976C>T    |
| 46       | 437        |           | OK i opulat  | 5 Point Missense           | 976 c.976C>T    |
| 47       | 436        | 85 F      | Australian   | 5 Point Missense           | 976 c.976C>T    |
| 48       | 458        | 45 M      | Iranian      | 169 Point Missense         | 992 c.992C>T    |
| 49<br>50 | 134        | 45 101    | Chinese      | 4 Point Missense           | 1021 c.1021G>A  |
| 51       | 220        |           | UK Populati  | 4 Point Missense           | 1021 c.1021G>A  |
| 52       | 459        | 33 F      | Ashkenazi J  | 4 Point Missense           | 1021 c.1021G>A  |
| 53       | 111        | М         | Caucasian    | 67 Duplication Frameshift  | 1026 c.1026dup( |
| 54<br>55 | 54         | F         | Portuguese   | 34 Point Silent            | 1026 c.1026G>T  |
| 55<br>56 | 55         | F         | Portuguese   | 34 Point Silent            | 1026 c.1026G>T  |
| 57       | 470        | г<br>50 F | Portuguese   | 34 Point Silent            | 1026 c.1026G>T  |
| 58       | 470<br>456 | JU 1      | rugese       | 239 Point                  | 1028 c.1028+5G  |
| 59       | 456<br>658 | 64 M      |              | 361 Point Nonsense         | 1033 c.1033A>T  |
| 60       | 381        | OT IVI    | Non-Jewish   | 12 Point Missense          | 1060 c.1060G>A  |
|          | 201        |           | INOTE JEWISH | 12 1 01110 19113351135     | 1000 C.1000Q/A  |

| 58  |    |   | Portuguese  | 27  | Deletion | Frameshift  | 10 | 72 c.1072delA                  |
|-----|----|---|-------------|-----|----------|-------------|----|--------------------------------|
| 471 | 58 | _ | Portgugese  |     | Deletion | Frameshift  |    | 72 c.1072delA<br>72 c.1072delA |
| 244 | 30 | • | UK Populat  |     | Point    | Missense    |    | 77 c.1077A>G                   |
| 460 | 17 | M | Iranian     |     | Point    | Missense    |    | 79 c.1079T>C                   |
| 246 | 1, |   | UK Populat  |     | Point    | Missense    |    | 84 c.1084G>A                   |
| 620 | 6  | F | Chinese     |     | Point    | Missense    |    | 03 c.1103G>A                   |
| 143 | 6  |   | Indian      |     | Point    | Missense    |    | 06 c.1106A>C                   |
| 653 | 69 |   | Taiwanese   |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 63  | 10 |   | Chinese     |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 116 | 18 |   | Chinese     |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 649 | 29 |   | Taiwanese   |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 657 | 61 |   | ranvanesc   |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 659 |    | M |             |     | Point    | Nonsense    |    | 07 c.1107C>A                   |
| 247 | ,  |   | UK Populat  |     | Point    | Missense    |    | 18 c.1118T>C                   |
| 248 |    |   | UK Populat  |     | Point    | Missense    |    | 20 c.1120T>C                   |
| 153 |    |   | OK i opulat |     | Point    | TVIISSCIISC |    | 35 c.1135+1G>                  |
| 463 | 29 | F | Japanese    |     | Point    |             |    | 35 c.1135+1G>                  |
| 249 | 23 | • | UK Populat  |     | Point    | Missense    |    | 35 c.1135+5G>                  |
| 155 |    | F | Chinese     |     | Deletion | Frameshift  |    | 36 c.1136-4de                  |
| 156 |    | М | Chinese     |     | Deletion | Frameshift  |    | 36 c.1136-4de                  |
| 268 |    | F | Chinese     |     | Deletion | Frameshift  |    | 36 c.1136-4de                  |
| 622 | 12 |   | Chinese     |     | Deletion | Frameshift  |    | 36 c.1136-4de                  |
| 464 | 26 |   | Italian     |     | Point    | Missense    |    | 65 c.1165G>A                   |
| 467 |    |   | realian     |     | Point    | Missense    |    | 78 c.1178C>T                   |
| 245 |    |   | UK Populat  |     | Point    | Missense    |    | 86 c.1186C>T                   |
| 468 |    | F |             |     | Point    | Missense    |    | 86 c.1186C>T                   |
| 389 |    | F |             |     | Point    | Missense    |    | 96 C.1196G>T                   |
| 32  | 8  |   | Arab        |     | Point    | Missense    |    | 11 c.1211C>A                   |
| 33  |    | М | Arab        |     | Point    | Missense    |    | 11 c.1211C>A                   |
| 34  |    | F | Arab        |     | Point    | Missense    |    | 11 c.1211C>A                   |
| 469 | 32 | F | French      |     | Point    | Missense    |    | 17 c.1217A>C                   |
| 250 |    |   | UK Populat  | 26  | Point    | Missense    | 12 | 19 c.1219A>C                   |
| 508 |    |   | •           | 256 | Point    | Missense    | 12 | 22 c.1222A>C                   |
| 628 | 14 | М | Indian      |     | Point    | Nonsense    |    | 34 c.1234C>T                   |
| 84  |    | F | English     |     | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 251 |    |   | UK Populat  |     | Point    | Missense    |    | 47 c.1247G>A                   |
| 525 | 28 | F | Turkish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 587 | 25 | М | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 588 | 50 | F | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 589 | 43 | М | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 590 | 32 | F | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 591 | 80 | F | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 592 | 38 | Μ | Spanish     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 85  |    |   | English     | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 114 |    |   | Hispanic    | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 146 | 38 | F |             | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 252 |    |   | UK Populat  | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 472 |    |   |             | 51  | Point    | Missense    | 12 | 47 c.1247G>A                   |
| 36  |    | F | Chinese     | 16  | Point    | Missense    | 12 | 53 c.1253G>T                   |
| 516 | 8  | F | Turkish     | 16  | Point    | Missense    | 12 | 53 c.1253G>T                   |
|     |    |   |             |     |          |             |    |                                |

| 1        |            |              |             |     |          |            |                 |
|----------|------------|--------------|-------------|-----|----------|------------|-----------------|
| 1<br>2   | 86         |              | US          | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 3        | 35         | 53 M         | Italian and | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 4        | 557        | 53 F         | Italian     | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 5        | 305        | 19 F         | Italian     | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 6<br>7   | 427        | 62 M         | Japanese    | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 8        | 623        | 50 M         | Chinese     | 16  | Point    | Missense   | 1253 c.1253G>T  |
| 9        | 473        |              |             |     | Point    | Missense   | 1255 c.1255T>G  |
| 10       | 614        | 49 F         | Chinese     | 148 | Point    | Nonsense   | 1270 c.1270C>T  |
| 11       | 253        |              | UK Populat  |     | Point    | Nonsense   | 1270 c.1270C>T  |
| 12<br>13 | 474        | 7            | African     |     | Point    | Missense   | 1275 c.1275G>C  |
| 14       | 605        | 25 M         | Spanish     |     | Point    | Missense   | 1277 c.1277T>C  |
| 15       | 636        | 28 F         | Indian      |     | Point    | Missense   | 1283 c.1283C>T  |
| 16       | 475        |              |             |     | Point    | Missense   | 1283 c.1283C>T  |
| 17       | 479        |              |             |     | Point    | Missense   | 1288 c.1288G>T  |
| 18       | 20         | F            |             |     | Point    | Missense   | 1289 c.1289C>T  |
| 19<br>20 | 478        | 31 F         |             |     | Point    | Missense   | 1289 c.1289C>T  |
| 21       | 480        | 31 1         |             |     | Point    | Wilderige  | 1304 c.1304+120 |
| 22       | 59         |              | Portuguese  |     | Point    |            | 1305 c.1305-10T |
| 23       | 654        | 52 M         | Taiwanese   |     | Deletion | Frameshift | 1322 c.1322delT |
| 24       | 647        | 54 F         | Taiwanese   |     | Deletion | Frameshift | 1322 c.1322delT |
| 25<br>26 | 481        | 341          | raiwanese   |     | Point    | Missense   | 1327 c.1327C>T  |
| 27       | 482        |              |             |     | Point    | Missense   | 1327 c.1327C>T  |
| 28       | 38         | 37 F         | Non-Jewish  |     | Point    | Missense   | 1378 c.1378T>G  |
| 29       | 69         | 25 M         | Japanese    |     | Point    | Nonsense   | 1393 c.1393G>T  |
| 30       | 486        | 6 F          | Japanese    |     | Point    | Missense   | 1394 c.1394C>G  |
| 31<br>32 | 487        | M            | Japanese    |     | Point    | Missense   | 1394 c.1394C>G  |
| 33       | 42         | IVI          | Japanese    |     | Point    | Missense   | 1432 c.1432G>A  |
| 34       | 142        | 11 M         | Indian      |     | Point    | Missense   | 1432 c.1432G>A  |
| 35       | 635        | 11 M<br>14 M | Indian      |     | Point    | Missense   | 1432 c.1432G>A  |
| 36       | 254        | 14 101       | UK Populat  |     | Point    | Missense   | 1432 c.1432G>A  |
| 37<br>38 | 206        | 40 F         | French      |     | Point    | Missense   | 1432 c.1432G>A  |
| 39       | 13         | 40 1         | Hench       |     | Point    | Missense   | 1432 c.1432G>A  |
| 40       | 10         |              |             |     | Point    | Missense   | 1432 c.1432G>A  |
| 41       | 207        | 4 M          | French      |     | Point    | Missense   | 1432 c.1432G>A  |
| 42       | 141        | 9 M          | Indian      |     | Point    | Missense   | 1432 c.1432G>A  |
| 43<br>44 | 208        | 2 M          | French      |     | Point    | Missense   | 1432 c.1432G>A  |
| 45       | 408        | 2 101        | riencii     |     | Point    | Missense   | 1432 c.1432G>A  |
| 46       | 630        | 42 M         | Indian      |     | Point    | Missense   | 1448 c.1448T>C  |
| 47       | 46         | 42 IVI       | IIIulali    |     | Point    | Missense   | 1478 c.1478C>T  |
| 48       |            | N.4          | Non Jowish  |     |          |            |                 |
| 49<br>50 | 164        | M            | Non-Jewish  |     | Point    | Missense   | 1478 c.1478C>T  |
| 51       | 255        | 29 F         | UK Populat  |     | Point    | Missense   | 1478 c.1478C>T  |
| 52       | 489        | 29 F         | Ashkenazi J |     | Point    | Missense   | 1480 c.1480+2T> |
| 53       | 258<br>491 |              | UK Populat  |     | Point    | Nonsense   | 1489 c.1489C>T  |
| 54       |            |              | LIV Donulat |     | Point    | Missense   | 1498 c.1498T>C  |
| 55<br>56 | 259        | 12.84        | UK Populat  |     | Point    | Missense   | 1500 c.1500C>G  |
| 57       | 492        | 12 M         | Iranian     |     | Point    | Missense   | 1507 c.1507T>C  |
| 58       | 2          | 22 F         | French Base |     | Point    | Missense   | 1531 c.1531T>C  |
| 59       | 97         | 22 F         | French Base |     | Point    | Missense   | 1531 c.1531T>C  |
| 60       | 202        | 29 F         | French      |     | Point    | Missense   | 1545 c.1545G>T  |
|          | 558        | 25 F         | Italian     | 12/ | Point    | Missense   | 1545 c.1545G>T  |
|          |            |              |             |     |          |            |                 |

| 559    | 52 |   | Italian     |     | Point     | Missense   | 1545 c.1545G>T  |
|--------|----|---|-------------|-----|-----------|------------|-----------------|
| 560    | 49 | F | Italian     | 127 | Point     | Missense   | 1545 c.1545G>T  |
| 493    |    |   |             |     | Point     | Missense   | 1546 c.1546G>A  |
| 303    |    | F | Iranian     | 47  | Insertion | Frameshift | 1556 c.1556insG |
| 488    |    | F | Japanese    | 47  | Insertion | Frameshift | 1556 c.1556insG |
| 484    | 2  | M | Japanese    | 47  | Insertion | Frameshift | 1556 c.1556insG |
| 485    |    | M | Japanese    | 47  | Insertion | Frameshift | 1556 c.1556insG |
| 66     | 65 |   | Japanese    |     | Point     | Nonsense   | 1556 c.1556G>A  |
| 517    | 11 | F | Turkish     | 44  | Point     | Nonsense   | 1556 c.1556G>A  |
| 521    | 45 | F | Turkish     | 44  | Point     | Nonsense   | 1556 c.1556G>A  |
| 548    | 45 | M | Italian     | 44  | Point     | Nonsense   | 1556 c.1556G>A  |
| 550    | 7  | M | Italian     | 44  | Point     | Nonsense   | 1556 c.1556G>A  |
| 552    | 54 | M | Italian     | 44  | Point     | Nonsense   | 1556 c.1556G>A  |
| 48     | 38 | F | Lebanese    | 33  | Point     | Missense   | 1557 c.1557G>C  |
| 49     |    | F | Lebanese    | 33  | Point     | Missense   | 1557 c.1557G>C  |
| 50     |    | M | Lebanese    | 33  | Point     | Missense   | 1557 c.1557G>C  |
| 509    |    |   |             | 33  | Point     | Missense   | 1557 c.1557G>C  |
| 607    | 64 | F | Chinese     | 331 | Point     | Missense   | 1562 c.1562A>G  |
| 608    |    | F | Chinese     | 331 | Point     | Missense   | 1562 c.1562A>G  |
| 609    |    | F | Chinese     | 331 | Point     | Missense   | 1562 c.1562A>G  |
| 610    |    | M | Chinese     | 331 | Point     | Missense   | 1562 c.1562A>G  |
| 95     |    | M | Portuguese  | 35  | Point     | Missense   | 1608 c.1608G>C  |
| 601    | 47 | F | Spanish     | 35  | Point     | Missense   | 1608 c.1608G>C  |
| 599    | 71 | M | Spanish     | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 600    | 88 | F | Spanish     | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 83 8on |    | M |             | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 179    | 65 | F |             | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 180    | 47 | F |             | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 256    |    |   | UK Populat  | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 257    |    |   | UK Populat  | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 494    |    | F |             | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 205    |    | M | French      | 50  | Point     | Missense   | 1613 c.1613C>T  |
| 515    | 26 | F | Turkish     | 262 | Point     | Missense   | 1619 c.1619T>G  |
| 496    |    |   |             | 247 | Point     | Missense   | 1684 c.1684G>A  |
| 497    |    |   |             | 247 | Point     | Missense   | 1684 c.1684G>A  |
| 593    | 26 | F | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 594    | 44 | F | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 595    | 49 | F | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 596    | 32 | М | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 597    | 55 | F | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 598    | 72 | F | Spanish     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 177    | 54 | F |             | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 178    | 32 | F |             | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 203    | 33 | F | French      | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 465    | 9  | F | Iranian     | 117 | Point     | Missense   | 1693 c.1693G>A  |
| 68     | 30 | М | Jewish      | 45  | Deletion  |            | 1714 c.1714_171 |
| 555    | 7  | F | Italian     | 326 | Point     |            | 1716 c.1716+248 |
| 556    | 48 | F | Italian     | 326 | Point     |            | 1716 c.1716+248 |
| 260    |    |   | UK Populat  | 48  | Point     |            | 1716 c.1716+1G> |
| 78     | 44 | М | Ashkenazi J | 48  | Point     |            | 1716 c.1716+1G> |
|        |    |   |             |     |           |            |                 |

| 1                                      |
|----------------------------------------|
| 1                                      |
| 2                                      |
| 3                                      |
| 4                                      |
| 5                                      |
| 6                                      |
| 7                                      |
| 8<br>9                                 |
| 9                                      |
| 10                                     |
| 11                                     |
| 12                                     |
| 13                                     |
| 14                                     |
| 15                                     |
| 16                                     |
| 17                                     |
| 18                                     |
| 19                                     |
| 20                                     |
| 21                                     |
| $\gamma\gamma$                         |
| 23                                     |
| 24                                     |
| 25                                     |
| 26                                     |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 |
| 28                                     |
| 29                                     |
| 30                                     |
| 31                                     |
| 32                                     |
| 33                                     |
| 34                                     |
| 35                                     |
| 36                                     |
| 37                                     |
| 38                                     |
| 39                                     |
| 40                                     |
| 41                                     |
| 42                                     |
| 43                                     |
| 44                                     |
| 45                                     |
| 46                                     |
| 47                                     |
| 48                                     |
| 49                                     |
| 50                                     |
| 51                                     |
| 52                                     |
| 52                                     |
|                                        |
| 54                                     |
| 55                                     |
| 56                                     |
| 57                                     |
| 58                                     |
| 59<br>60                               |
| 60                                     |

| 82  |       | Bucharian-J | 49 Point  | Missense | 1718 c.1718G>A |
|-----|-------|-------------|-----------|----------|----------------|
| 261 |       | UK Populat  | 49 Point  | Missense | 1718 c.1718G>A |
| 629 | 15 F  | Indian      | 350 Point | Missense | 1721 c.1721A>C |
| 519 | 3.5 M | Turkish     | 263 Point | Missense | 1741 c.1741T>C |
| 520 | 32 F  | Turkish     | 263 Point | Missense | 1741 c.1741T>C |
| 263 |       | UK Populat  | 151 Point | Missense | 1742 c.1742G>T |
| 87  |       | US          | 17 Point  | Missense | 1760 c.1760G>C |
| 37  | 49 M  | German      | 17 Point  | Missense | 1760 c.1760G>C |
| 606 | 53 M  | Spanish     | 301 Point | Missense | 1775 c.1775T>C |
| 136 | 22 F  | Lebanese    | 9 Point   | Missense | 1778 c.1778C>T |
| 137 | F     | Lebanese    | 9 Point   | Missense | 1778 c.1778C>T |
| 138 | M     | Lebanese    | 9 Point   | Missense | 1778 c.1778C>T |
| 139 | F     | Lebanese    | 9 Point   | Missense | 1778 c.1778C>T |
| 140 | F     | Lebanese    | 9 Point   | Missense | 1778 c.1778C>T |
| 262 |       | UK Populat  | 9 Point   | Missense | 1778 c.1778C>T |
| 498 | F     |             | 9 Point   | Missense | 1778 c.1778C>T |
| 499 | F     |             | 249 Point | Missense | 1782 c.1782C>A |
| 501 |       |             | 249 Point | Missense | 1782 c.1782C>A |
| 500 |       |             | 249 Point | Missense | 1782 c.1782C>A |
| 502 | 28 F  |             | 181 Point | Missense | 1789 c.1789G>A |
| 31  | 85 F  | Nantes      | 13 Point  | Nonsense | 1797 c.1797T>A |
| 30  | 71 M  | Nantes      | 13 Point  | Nonsense | 1797 c.1797T>A |
| 503 | 44 M  | Iranian     | 250 Point | Missense | 1822 c.1822T>C |
| 265 |       | UK Populati | 27 Point  | Nonsense | 1824 c.1824C>A |
| 181 | 32 F  |             | 27 Point  | Nonsense | 1824 c.1824C>A |
| 157 | 72 F  | Japanese    | 111 Point | Missense | 1849 c.1849T>G |
| 266 |       | UK Populat  | 28 Point  | Missense | 1853 c.1853T>C |
| 182 | 62 F  |             | 28 Point  | Missense | 1853 c.1853T>C |
| 267 |       | UK Populat  | 28 Point  | Missense | 1853 c.1853T>C |
| 514 | F     | Italian     | 260 Point | Missense | 1856 c.1856T>C |
|     |       |             |           |          |                |

| HGVS AminLegac | cy Ami Protein | Cha Domain Othe | er Varia FXI:C% |    | FXI:Ag% | InheritanceClinical Sev |
|----------------|----------------|-----------------|-----------------|----|---------|-------------------------|
| 0              | 0              | Promoter R      | 0               | 67 |         | Heterozygo Not Report   |
| 0              | 0              | Promoter R      | 0               | 29 |         | Heterozygo Not Report   |
| 0              | 0              | Serine Prot     | 0 <1            |    |         | Homozygot Severe        |
| 0              | 0              |                 | 0               | 32 |         | Heterozygo Mild         |
| 1              | -18 p.Met1I    | le Signal Pepti | 0               |    |         | Heterozygo Not Report   |
| 1              | -18 p.Met1I    | le Signal Pepti | 0               | 43 |         | Heterozygo Not Report   |
| 15             | -4 p.Ser15     | LeuSignal Pepti | 0               | 3  | 3       | Homozygot Not Report    |
| 0              | 0              | Linker          | 0               | 1  | 3       | HomozygotNot Report     |
| 19             | 1 p.Glu19      | * Linker        | 0               | 43 |         | Heterozygo Not Report   |
| 0              | 0              | Apple 1         | 0 <1            |    | <1      | Compound Severe         |
| 0              | 0              | Apple 1         | 0               | 20 | 32      | HeterozygoNot Report    |
| 38             | 20 p.Val38     | Ala Apple 1     | 0               |    | 32      | HeterozygoNot Report    |
| 41             | 23 p.Pro41     | Gln Apple 1     | 0               | 56 |         | Heterozygo Not Report   |
| 41             | 23 p.Pro41     | Leu Apple 1     | 0               | 30 | 39      | Heterozygo Not Report   |
| 42             | 24 p.Ser42     | Arg Apple 1     | 0               | 29 |         | Heterozygo Not Report   |
| 42             | 24 p.Ser42     | Arg Apple 1     | 1               | 2  |         | Compound Not Report     |
| 46             | 28 p.Cys46     | Phe Apple 1     | 0               | 24 | 35      | Heterozygo Mild         |
| 46             | 28 p.Cys46     | Phe Apple 1     | 0               | 31 | 41      | . Heterozygo Mild       |
| 46             | 28 p.Cys46     | Phe Apple 1     | 0               | 26 |         | Heterozygo Mild         |
| 46             | 28 p.Cys46     | Phe Apple 1     | 1               | 1  |         | Compound Not Report     |
| 47             | 29 p.Gln47     | His Apple 1     | 0               |    |         | Heterozygo Not Report   |
| 51             | 33 p.Thr51     | Pro Apple 1     | 0               |    |         | HeterozygoNot Report    |
| 51             | 33 p.Thr51     | Pro Apple 1     | 0               |    |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 1  |         | HomozygotNot Report     |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 3  |         | HomozygotNot Report     |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0 <1            |    |         | Homozygot Severe        |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 40 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 44 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 44 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 41 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 37 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 37 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 34 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 28 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 42 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 49 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 40 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 68 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 58 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 42 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 25 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 41 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 36 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 30 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 38 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 41 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 42 |         | HeterozygoNot Report    |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 18 |         | Heterozygo Mild         |
| 56             | 38 p.Cys56     | Arg Apple 1     | 0               | 30 |         | Heterozygo Mild         |
|                |                |                 |                 |    |         |                         |

| 1        |            |                        |      |          |                          |
|----------|------------|------------------------|------|----------|--------------------------|
| 2        | 56         | 38 p.Cys56Arg Apple 1  | 0    | 36       | Heterozygo Mild          |
| 3        | 56         | 38 p.Cys56Arg Apple 1  | 0    | 40       | Heterozygo Mild          |
| 4        | 56         | 38 p.Cys56Arg Apple 1  | 0    | 40       | Heterozygo Mild          |
| 5        | 56         | 38 p.Cys56Arg Apple 1  | 0    | 45       | Heterozygo Mild          |
| 6<br>7   | 56         | 38 p.Cys56Arg Apple 1  | 0    | 34       | Heterozygo Mild          |
| 8        | 56         | 38 p.Cys56Arg Apple 1  | 0    | 40       | Heterozygo Mild          |
| 9        | 56         | 38 p.Cys56Arg Apple 1  | 1    | 2        | Compound Not Report      |
| 10       | 56         | 38 p.Cys56Arg Apple 1  | 1 <1 | <1       | Compound Severe          |
| 11       | 56         | 38 p.Cys56Trp Apple 1  | 0    | 20       | 46 HeterozygoNot Report  |
| 12<br>13 | 72         | 54 p.Arg72Pro Apple 1  | 0    | 63       | 77 HeterozygoNot Report  |
| 14       | 0          | 0 Intronic             | 0 <1 |          | HomozygotNot Report      |
| 15       | 0          | 0 Intronic             | 0 <1 |          | Homozygot Not Report     |
| 16       | 0          | 0 Intronic             | 0 <1 |          | HeterozygoNot Report     |
| 17       | 76         | 58 p.Cys76Phe Apple 1  | 0 <1 |          | Homozygot Severe         |
| 18       | 76         | 58 p.Cys76Tyr Apple 1  | 0    | 26       | HeterozygoNot Report     |
| 19<br>20 | 99         | 81 p.Ser99Tyr Apple 1  | 0    | 57       | Heterozygo Not Report    |
| 21       | 99         | 81 p.Ser99Tyr Apple 1  | 0    | 57       | Heterozygo Not Report    |
| 22       | 0          | 0 Apple 1              | 0    | 15       | Heterozygo Severe        |
| 23       | 0          | 0 Apple 1              | 0    | 4        | 48 Heterozygo Severe     |
| 24       | 101        | 83 p.Lys101Ar Apple 1  | 0    | 38       | Heterozygo Mild          |
| 25<br>26 | 106        | 88 p.Gln106* Linker    | 0 <1 | 30       | 0 Homozygot Severe       |
| 27       | 106        | 88 p.Gln106* Linker    | 0 <1 |          | 0 Homozygot Severe       |
| 28       | 106        | 88 p.Gln106* Linker    | 0 1  | 60       | 51 Heterozygo Mild       |
| 29       | 106        | 88 p.Gln106* Linker    | 0    | 46       | 41 Heterozygo Mild       |
| 30       | 106        | 88 p.Gln106* Linker    | 1 <1 | 40       | 1 Compound Severe        |
| 31<br>32 | 100        | 91 p.Ala109Th Linker   |      |          | •                        |
| 33       | 109        | 91 p.Ala109Th Linker   | 0    |          | HeterozygoNot Report     |
| 34       |            | ·                      |      | 27       | HeterozygoNot Report     |
| 35       | 109<br>109 | 91 p.Ala109Th Linker   | 0    | 37<br>26 | HeterozygoNot Report     |
| 36       |            | 91 p.Ala109Th Linker   |      | 45       | 39 HeterozygoNot Report  |
| 37       | 109        | 91 p.Ala109Th Linker   | 0    |          | Heterozygo Not Report    |
| 38<br>39 | 109        | 91 p.Ala109Th Linker   | 0    | 32       | HeterozygoNot Report     |
| 40       | 109        | 91 p.Ala109Th Linker   | 0    | 35       | HeterozygoNot Report     |
| 41       | 109        | 91 p.Ala109Th Linker   | 0 <1 |          | Compound Not Report      |
| 42       | 0          | 0 Intronic             | 1 <1 | 47       | Compound Not Report      |
| 43       | 110        | 92 p.Cys110Gl Apple 2  | 0    | 47       | 40 Heterozygo Not Report |
| 44<br>45 | 110        | 92 p.Cys110Gl Apple 2  | 0    | 21       | 44 HeterozygoNot Report  |
| 46       | 120        | 102 p.Met120T Apple 2  | 0    |          | Heterozygo Not Report    |
| 47       | 120        | 102 p.Met120T Apple 2  | 0    | 40       | HeterozygoNot Report     |
| 48       | 122        | 104 p.Gly122As Apple 2 | 0    | 42       | HeterozygoNot Report     |
| 49       | 122        | 104 p.Gly122As Apple 2 | 0    | 35       | Heterozygo Mild          |
| 50<br>51 | 122        | 104 p.Gly122As Apple 2 | 0    | 33       | Heterozygo Mild          |
| 52       | 122        | 104 p.Gly122As Apple 2 | 0    | 58       | 61 Heterozygo Not Report |
| 53       | 122        | 104 p.Gly122As Apple 2 | 0    | 44       | Heterozygo Not Report    |
| 54       | 122        | 104 p.Gly122As Apple 2 | 0    | 45       | Heterozygo Not Report    |
| 55       | 122        | 104 p.Gly122As Apple 2 | 1    | 2        | Compound Not Report      |
| 56<br>57 | 134        | 116 p.Gln134* Apple 2  | 0    | 52       | 43 Heterozygo Not Report |
| 57<br>58 | 134        | 116 p.Gln134* Apple 2  | 1    | 1        | 4 Compound Severe        |
| 59       | 134        | 116 p.Gln134* Apple 2  | 0    | 10       | Not Report               |
| 60       | 135        | 117 p.Glu135* Apple 2  | 0    | 16       | HomozygotNot Report      |
|          | 135        | 117 p.Glu135* Apple 2  | 0 <1 |          | HomozygotNot Report      |
|          |            |                        |      |          |                          |

| 40= | 44- 01 40-4 4 1 0     |         | 4    |                         |
|-----|-----------------------|---------|------|-------------------------|
| 135 | 117 p.Glu135* Apple 2 | 0 <1    | <1   | Homozygot Severe        |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    |      | 4 Homozygot Severe      |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    |      | Homozygot Severe        |
| 135 | 117 p.Glu135* Apple 2 | 0       | 1    | 7 Homozygot Severe      |
| 135 | 117 p.Glu135* Apple 2 | 0       | 1    | 14 Homozygot Severe     |
| 135 | 117 p.Glu135* Apple 2 | 0       | 4    | Homozygot Severe        |
| 135 | 117 p.Glu135* Apple 2 | 0       | 1    | Homozygot Severe        |
| 135 | 117 p.Glu135* Apple 2 | 0       | 2    | Homozygot Severe        |
| 135 | 117 p.Glu135* Apple 2 | 0       |      | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       |      | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 18   | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 44   | heterozygo Not Report   |
| 135 | 117 p.Glu135* Apple 2 | 0       | 62   | Heterozygo Not Report   |
| 135 | 117 p.Glu135* Apple 2 | 0       | 35   |                         |
|     |                       |         |      | 33 HeterozygoNot Report |
| 135 | 117 p.Glu135* Apple 2 | 0       | 32   | 39 HeterozygoNot Report |
| 135 | 117 p.Glu135* Apple 2 | 0       | 38   | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 42   | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 34   | HeterozygoNot Report    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 47   | 88 Heterozygo Mild      |
| 135 | 117 p.Glu135* Apple 2 | 1 <10   | <10  | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <10   | <10  | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <10   | <10  | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <10   | <10  | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0       |      | Compound Not Report     |
| 135 | 117 p.Glu135* Apple 2 | 1       | 1    | 3 Compound Not Report   |
| 135 | 117 p.Glu135* Apple 2 | 1 < 0.5 |      | 4 Compound Severe       |
| 135 | 117 p.Glu135* Apple 2 | 1 <3    | <5   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    | <3   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1       | 0.02 | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0       | 0.02 | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    |      | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    |      | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    | <1   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    |      | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    |      | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    | <1   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 1       | 11   | 3 Compound Not Report   |
| 135 | 117 p.Glu135* Apple 2 | 1       | 6    | Compound Not Report     |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    | O    | Compound Not Report     |
| 135 |                       |         |      | 5 Compound Severe       |
|     | 117 p.Glu135* Apple 2 | 0 <1    |      | •                       |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    |      | 5 Compound Severe       |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    |      | 5 Compound Severe       |
| 135 | 117 p.Glu135* Apple 2 | 0       | •    | Compound Not Report     |
| 135 | 117 p.Glu135* Apple 2 | 1       | 2    | Compound Not Report     |
| 135 | 117 p.Glu135* Apple 2 | 1 <1    | <1   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0 <1    | <1   | Compound Severe         |
| 135 | 117 p.Glu135* Apple 2 | 0       | 0    | Severe                  |
| 135 | 117 p.Glu135* Apple 2 | 0       | 42   | Mild                    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 30   | Mild                    |
| 135 | 117 p.Glu135* Apple 2 | 0       | 1    | Severe                  |
|     |                       |         |      |                         |

| 1        | 40= |                                     |      |    |               |              |
|----------|-----|-------------------------------------|------|----|---------------|--------------|
| 2        | 135 | 117 p.Glu135* Apple 2               | 0    | 59 |               | Mild         |
| 3        | 135 | 117 p.Glu135* Apple 2               | 0    | 22 |               | Mild         |
| 4<br>5   | 135 | 117 p.Glu135* Apple 2               | 0    | 43 |               | Mild         |
| 6        | 135 | 117 p.Glu135* Apple 2               | 0 <1 |    | 0             | Mild         |
| 7        | 135 | 117 p.Glu135* Apple 2               | 0 <1 |    | 0             | Severe       |
| 8        | 135 | 117 p.Glu135* Apple 2               | 0 <1 |    | 1             | Severe       |
| 9        | 136 | 118 p.Cys136* Apple 2               | 1 <1 |    | Compound      | d Severe     |
| 10       | 136 | 118 p.Cys136* Apple 2               | 1 <1 |    | Compound      | d Severe     |
| 11<br>12 | 136 | 118 p.Cys136* Apple 2               | 0 <1 |    | 0             | Mild         |
| 13       | 136 | 118 p.Cys136* Apple 2               | 0 <1 |    | 0             | Mild         |
| 14       | 140 | 122 p.Cys140Ty Apple 2              | 0    | 4  | 3 Homozygo    | tNot Report  |
| 15       | 140 | 122 p.Cys140Ty Apple 2              | 0    | 25 | Heterozyg     | oNot Report  |
| 16       | 140 | 122 p.Cys140Ty Apple 2              | 0    | 24 | Heterozyg     | oNot Report  |
| 17       | 140 | 122 p.Cys140Ty Apple 2              | 0    | 31 | Heterozyg     | oNot Report  |
| 18<br>19 | 140 | 122 p.Cys140Ty Apple 2              | 0    |    |               | d Not Report |
| 20       | 141 | 123 p.Thr141M Apple 2               | 0    | 1  | 4 Compound    | •            |
| 21       | 143 | 125 p.Asp143Al Apple 2              | 0    | 49 | •             | oNot Report  |
| 22       | 143 | 125 p.Asp143Al Apple 2              | 0    | 47 |               | oNot Report  |
| 23       | 143 | 125 p.Asp143Al Apple 2              | 0    |    |               | oNot Report  |
| 24       | 145 | 127 p.His145Ar <sub>l</sub> Apple 2 | 0    | 27 | 125 Heterozyg | · ·          |
| 25<br>26 | 145 | 127 p.His145Ar <sub>1</sub> Apple 2 | 0    | 52 | 118 Heterozyg |              |
| 27       | 145 | 127 p.His145Ar <sub>1</sub> Apple 2 | 0    | 56 | 157 Heterozyg | •            |
| 28       | 145 | 127 p.His145Ar <sub>1</sub> Apple 2 | 1    | 7  |               | d Not Report |
| 29       | 146 | 128 p.Cys146* Apple 2               | 0 <1 | ,  | Homozygo      | •            |
| 30       | 146 | 128 p.Cys146* Apple 2               | 0 <1 |    | Homozygo      |              |
| 31<br>32 | 146 | 128 p.Cys146* Apple 2               | 0    | 65 | 64 Heterozyg  |              |
| 33       | 146 | 128 p.Cys146* Apple 2               | 0    | 34 | 27 Heterozyg  |              |
| 34       |     |                                     |      | 38 |               |              |
| 35       | 146 | 128 p.Cys146* Apple 2               | 0    |    |               | oNot Report  |
| 36       | 146 | 128 p.Cys146* Apple 2               |      | 45 |               | oNot Report  |
| 37       | 146 | 128 p.Cys146* Apple 2               | 0    | 46 |               | oNot Report  |
| 38<br>39 | 146 | 128 p.Cys146* Apple 2               | 0    | 16 |               | oNot Report  |
| 40       | 146 | 128 p.Cys146* Apple 2               | 0    | 49 | 41 Heterozyg  |              |
| 41       | 146 | 128 p.Cys146* Apple 2               | 0    | 61 |               | o Not Report |
| 42       | 146 | 128 p.Cys146* Apple 2               | 0 <2 |    | Compound      |              |
| 43       | 146 | 128 p.Cys146* Apple 2               | 0 <1 | <1 | Compound      |              |
| 44       | 146 | 128 p.Cys146* Apple 2               | 1    | 4  | Compound      |              |
| 45<br>46 | 146 | 128 p.Cys146* Apple 2               | 1 <2 |    | Compound      |              |
| 47       | 146 | 128 p.Cys146* Apple 2               | 1    | 4  | •             | d Not Report |
| 48       | 146 | 128 p.Cys146* Apple 2               | 1 <1 | <3 | Compound      |              |
| 49       | 146 | 128 p.Cys146* Apple 2               | 1    | 2  | Compound      | d Not Report |
| 50       | 146 | 128 p.Cys146* Apple 2               | 1 <1 |    | Compound      | d Severe     |
| 51       | 146 | 128 p.Cys146* Apple 2               | 0 <1 |    | Compound      | d Severe     |
| 52<br>53 | 146 | 128 p.Cys146* Apple 2               | 0    | 29 | 29            | Not Report   |
| 54       | 146 | 128 p.Cys146* Apple 2               | 0    | 44 | 38            | Not Report   |
| 55       | 146 | 128 p.Cys146* Apple 2               | 0    | 41 |               | Not Report   |
| 56       | 150 | 132 p.Thr150M Apple 2               | 0    | 23 | Heterozyg     | o Not Report |
| 57       | 150 | 132 p.Thr150M Apple 2               | 0    | 34 | Heterozyg     | oNot Report  |
| 58       | 150 | 132 p.Thr150M Apple 2               | 0    | 52 | Heterozyg     | oNot Report  |
| 59<br>60 | 150 | 132 p.Thr150M Apple 2               | 0    | 37 |               | oNot Report  |
| 00       | 150 | 132 p.Thr150M Apple 2               | 0    | 43 |               | oNot Report  |
|          |     | • • •                               |      |    | ,,            | •            |

| 151 | 133 p.Ty  | r151Cy Apple 2 | 0   | 47   |      | Heterozygo Not Report |
|-----|-----------|----------------|-----|------|------|-----------------------|
| 151 | 133 p.Ty  | r151Se Apple 2 | 0   | 38   |      | Homozygot Mild        |
| 151 | 133 p.Ty  | r151Se Apple 2 | 0   | 50   |      | Heterozygo Not Report |
| 151 | 133 p.Ty  | r151Se Apple 2 | 0   | 36   |      | HeterozygoNot Report  |
| 151 | 133 p.Ty  | r151Se Apple 2 | 0   | 38   |      | Not Report            |
| 152 | 134 p.Ala | a152Pr(Apple 2 | 0   |      |      | Homozygot Not Report  |
| 152 | 134 p.Ala | a152Pr(Apple 2 | 0   | <1   |      | Homozygot Severe      |
| 162 | 144 p.Ar  | g162Cy Apple 2 | 0   | 35   |      | HeterozygoNot Report  |
| 0   | 0         | Intronic       | 0   | 3    |      | Homozygot Severe      |
| 0   | 0         | Intronic       | 0   | 56   |      | Heterozygo Not Report |
| 0   | 0         | Intronic       | 0   | 36   | 25   | Heterozygo Not Report |
| 173 | 155 p.Gly | y173Gl Apple 2 | 0   | 41   |      | Heterozygo Not Report |
| 173 | 155 p.Gly | y173Gl Apple 2 | 0   | 43   | 64   | Heterozygo Not Report |
| 173 | 155 p.Gly | y173Gl Apple 2 | 0   | 30   |      | Heterozygo Not Report |
| 190 | 172 p.Le  | u190Pr Apple 2 | 0   |      |      | Heterozygo Not Report |
| 0   | 0         | Intronic       | 0   | 33   |      | HeterozygoNot Report  |
| 0   | 0         | Intronic       | 0   | 51   |      | Heterozygo Not Report |
| 0   | 0         | Intronic       | 0   | 85   |      | HeterozygoNot Report  |
| 0   | 0         | Intronic       | 0   | 35   |      | Heterozygo Mild       |
| 0   | 0         | Intronic       | 1   | 46   | 10   | Compound Not Report   |
| 0   | 0         | Apple 3        | 1   | 5    |      | Compound Not Report   |
| 199 | 181 p.Ala | a199Va Apple 3 | 1   | 0.07 | 0.07 | Compound Severe       |
| 200 | 182 p.Cy  | s200Ty Apple 3 | 0   | 47   |      | HeterozygoNot Report  |
| 200 | 182 p.Cy  | s200Ty Apple 3 | 0   | 34   |      | Heterozygo Not Report |
| 200 | 182 p.Cy  | s200Se Apple 3 | 0   | 34   |      | HeterozygoNot Report  |
| 202 | 184 p.Ar  | g202Gl Apple 3 | 0   | 69   | 121  | HeterozygoNot Report  |
| 206 | 188 p.Pro | o206Se Apple 3 | 0   | 30   |      | Heterozygo Not Report |
| 0   | 0 p.lle   | 215_As Apple 3 | 0   | 39   | 34   | Heterozygo Not Report |
| 228 | 210 p.Ar  | g228* Apple 3  | 1 - | <1   | 3    | Compound Severe       |
| 230 | 212 p.Cy  | s230Se Apple 3 | 0   | 38   |      | HeterozygoNot Report  |
| 230 |           | s230Se Apple 3 | 0   | 35   |      | HeterozygoNot Report  |
| 230 | 212 p.Cy  | s230Ar Apple 3 | 0   | 1    |      | Homozygot Not Report  |
| 230 |           | s230Ar Apple 3 | 0   |      |      | Homozygot Severe      |
| 230 | 212 p.Cy  | s230Ar Apple 3 | 0   | 34   |      | HeterozygoNot Report  |
| 230 | 212 p.Cy  | s230Ar Apple 3 | 0   | 34   |      | HeterozygoNot Report  |
| 232 | 214 p.His | s232PrcApple 3 | 0   | <1   |      | HomozygotNot Report   |
| 239 | •         | e239S∈Apple 3  | 0   | <3   | 7    | Homozygot Severe      |
| 239 | •         | e239S∈Apple 3  | 1   |      |      | Compound Not Report   |
| 239 | 221 p.Ph  | e239S€Apple 3  | 1   |      |      | Compound Severe       |
| 0   | 0         | Apple 3        | 1   | 24   |      | Compound Not Report   |
| 243 | •         | r243Ph Apple 3 | 0   | 22   |      | HeterozygoNot Report  |
| 243 | •         | r243Ph Apple 3 | 0   | 25   | 25   | Heterozygo Not Report |
| 244 | •         | n244* Apple 3  | 0   |      |      | Heterozygo Severe     |
| 246 | •         | p246* Apple 3  | 0   | 62   |      | HeterozygoNot Report  |
| 246 | •         | p246* Apple 3  | 0   | 40   |      | HeterozygoNot Report  |
| 246 | •         | p246* Apple 3  | 0   | 38   | 44.8 | HeterozygoNot Report  |
| 246 | •         | p246* Apple 3  | 0   |      |      | Heterozygo Not Report |
| 246 | •         | p246* Apple 3  | 1   |      |      | Compound Not Report   |
| 246 | •         | p246* Apple 3  | 0   | <1   |      | Compound Not Report   |
| 246 | 228 p.Tr  | p246* Apple 3  | 1   |      |      | Compound Not Report   |
|     |           |                |     |      |      |                       |

| 2        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 2 Undet         | ectal:Homozygot Severe                |
|----------|-----|-------------------------|-------|-----------------|---------------------------------------|
| 3        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 3               | Homozygot Severe                      |
| 4        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 6               | Homozygot Severe                      |
| 5        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 40              | Heterozygo Mild                       |
| 6        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 36              | Heterozygo Mild                       |
| 7<br>8   | 246 | 228 p.Trp246Cy Apple 3  | 0     | 50              | Heterozygo Mild                       |
| 9        | 246 | 228 p.Trp246Cy Apple 3  | 0     | 31              | Heterozygo Mild                       |
| 10       | 246 | 228 p.Trp246Cy Apple 3  | 0     | 53              | Heterozygo Mild                       |
| 11       | 252 | 234 p.Arg252Ly Apple 3  | 0     | 41              | HeterozygoNot Report                  |
| 12       | 252 | 234 p.Arg252Se Apple 3  | 0     | 42              | Heterozygo Not Report                 |
| 13<br>14 | 252 | 234 p.Arg252Se Apple 3  | 0     | 38              | Heterozygo Not Report                 |
| 15       | 255 | 237 p.Cys255Ty Apple 3  | 0 <1  | 30              | Compound Severe                       |
| 16       | 255 | 237 p.Cys255Ty Apple 3  | 1 <1  |                 | Severe                                |
| 17       | 0   |                         | 0     | 3               | Compound Not Report                   |
| 18       |     | • •                     |       |                 | · · · · · · · · · · · · · · · · · · · |
| 19       | 261 | 243 p.Glu261As Apple 3  | 0     | 30              | 28 HeterozygoNot Report               |
| 20       | 263 | 245 p.Gly263Gl Apple 3  | 0     | 31              | 26 Heterozygo Mild                    |
| 21<br>22 | 263 | 245 p.Gly263Gl Apple 3  | 0     | 61              | Heterozygo Mild                       |
| 23       | 266 | 248 p.Ser266As Apple 3  | 0     | 67              | 80 HeterozygoNot Report               |
| 24       | 266 | 248 p.Ser266As Apple 3  | 0     | 42              | 70 Compound Mild                      |
| 25       | 268 | 250 p.Arg268Cy Apple 3  | 0     |                 | Homozygot Severe                      |
| 26       | 268 | 250 p.Arg268Cy Apple 3  | 0     | 8               | Homozygot Not Report                  |
| 27       | 268 | 250 p.Arg268Cy Apple 3  | 0     |                 | Heterozygo Not Report                 |
| 28<br>29 | 268 | 250 p.Arg268Cy Apple 3  | 0     | 35              | HeterozygoNot Report                  |
| 30       | 268 | 250 p.Arg268Cy Apple 3  | 0     | 53              | Heterozygo Not Report                 |
| 31       | 268 | 250 p.Arg268Hi Apple 3  | 0     | 24              | Compound Not Report                   |
| 32       | 270 | 252 p.Lys270lle Apple 3 | 1     | 4               | 2 Compound Not Report                 |
| 33       | 277 | 259 p.Gly277Se Apple 3  | 0     | 44              | 34 Heterozygo Not Report              |
| 34       | 281 | 263 p.Gln281* Apple 3   | 0     | 1               | HomozygotNot Report                   |
| 35<br>36 | 281 | 263 p.Gln281* Apple 3   | 0 <1  |                 | HomozygotNot Report                   |
| 37       | 281 | 263 p.Gln281* Apple 3   | 0     | 1 <1            | HomozygotNot Report                   |
| 38       | 281 | 263 p.Gln281* Apple 3   | 0 <1  | Undet           | ectal:Homozygot Severe                |
| 39       | 281 | 263 p.Gln281* Apple 3   | 0 <1  |                 | Homozygot Severe                      |
| 40       | 281 | 263 p.Gln281* Apple 3   | 0     | 45              | Heterozygo Mild                       |
| 41<br>42 | 281 | 263 p.Gln281* Apple 3   | 0     | 49              | Heterozygo Mild                       |
| 43       | 281 | 263 p.Gln281* Apple 3   | 0     | 55              | Heterozygo Mild                       |
| 44       | 281 | 263 p.Gln281* Apple 3   | 0     | 40              | Heterozygo Mild                       |
| 45       | 281 | 263 p.Gln281* Apple 3   | 0     | 61              | Heterozygo Mild                       |
| 46       | 281 | 263 p.Gln281* Apple 3   | 0     | 40              | Heterozygo Mild                       |
| 47       | 281 | 263 p.Gln281* Apple 3   | 1     | 1               | Compound Severe                       |
| 48<br>49 | 281 | 263 p.Gln281* Apple 3   | 0 <1  | -<br><1         | Compound Severe                       |
| 50       | 281 | 263 p.Gln281* Apple 3   | 1     | 3               | Compound Not Report                   |
| 51       | 281 | 263 p.Gln281* Apple 3   | 1     | 4               | Compound Not Report                   |
| 52       | 281 | 263 p.Gln281* Apple 3   | 1 <1  | 7               | Compound Not Report                   |
| 53       | 281 | 263 p.Gln281* Apple 3   | 1     | 2               | Compound Not Report                   |
| 54       | 281 |                         | 0     | 260             |                                       |
| 55<br>56 |     | 263 p.Gln281* Apple 3   |       |                 | 3 Compound Not Report                 |
| 57       | 301 | 283 p.Phe301Le Apple 4  | 0 <10 | <10             | Homozygot Net Benert                  |
| 58       | 301 | 283 p.Phe301LeApple 4   | 0     | 7<br><b>7</b> 6 | Homozygot Not Report                  |
| 59       | 301 | 283 p.Phe301Lε Apple 4  | 0     | 76              | Heterozygo Mild                       |
| 60       | 301 | 283 p.Phe301Lε Apple 4  | 0     | 87              | Heterozygo Mild                       |
|          | 301 | 283 p.Phe301L€ Apple 4  | 0     | 35              | Heterozygo Not Report                 |

| 301 | 283 p.Phe301Le Apple 4  | 0    | 48   | Heterozygo Not Report     |
|-----|-------------------------|------|------|---------------------------|
| 301 | 283 p.Phe301Le Apple 4  | 0    | 51   | HeterozygoNot Report      |
| 301 | 283 p.Phe301Le Apple 4  | 0    | 85   | HeterozygoNot Report      |
| 301 | 283 p.Phe301Le Apple 4  | 0    | 2    | 6 Compound Not Report     |
| 301 | 283 p.Phe301Le Apple 4  | 1    | 2    | 2 Compound Not Report     |
| 301 | 283 p.Phe301Le Apple 4  | 1    | 4    | Compound Severe           |
| 301 | 283 p.Phe301LeApple 4   | 1    | 1 <1 | Compound Not Report       |
| 301 | 283 p.Phe301Le Apple 4  | 1    | 4    | Compound Not Report       |
| 301 | 283 p.Phe301LeApple 4   | 1    | 6    | Compound Not Report       |
| 0   | 0 Apple 4               | 0    | 48   | Heterozygo Mild           |
| 0   | 0 Apple 4               | 0    | 36   | Not Report                |
| 0   | 0 Apple 4               | 0    | 66   | Heterozygo Not Report     |
| 313 | 295 p.Ser313Ile Apple 4 | 0    | 41   | 47.4 HeterozygoNot Report |
| 313 | 295 p.Ser313Ile Apple 4 | 0    | 58   | 63.1 HeterozygoNot Report |
| 313 | 295 p.Ser313Ile Apple 4 | 0    | 57   | 59.8 HeterozygoNot Report |
| 313 | 295 p.Ser313Ile Apple 4 | 1    | 2    | 5.4 Compound Not Report   |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 40   | HeterozygoNot Report      |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 40   | 52 Heterozygo Not Report  |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 38   | 39 HeterozygoNot Report   |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 40   | Heterozygo Not Report     |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 39   | HeterozygoNot Report      |
| 315 | 297 p.Glu315Ly Apple 4  | 0    | 29   | HeterozygoNot Report      |
| 315 | 297 p.Glu315Ly Apple 4  | 1    | 4    | Compound Not Report       |
| 315 | 297 p.Glu315Ly Apple 4  | 1    | 7    | Compound Not Report       |
| 315 | 297 p.Glu315Ly Apple 4  | 1    | 34   | Compound Not Report       |
| 315 | 297 p.Glu315Ly Apple 4  | 1    | 36   | Compound Not Report       |
| 315 | 297 p.Glu315Ly Apple 4  | 1 <2 | <5   | Compound Severe           |
| 0   | 0 p.Cys321Hi Apple 4    | 0 <1 | <1   | Homozygot Severe          |
| 0   | 0 p.Cys321Hi Apple 4    | 0    | 57   | Heterozygo Not Report     |
| 322 | 304 p.Thr322Ile Apple 4 | 0    | 11   | 26 Homozygot Not Report   |
| 322 | 304 p.Thr322Ile Apple 4 | 0    | 47   | HeterozygoNot Report      |
| 322 | 304 p.Thr322Ile Apple 4 | 0    | 51   | Heterozygo Not Report     |
| 325 | 307 p.Val325Ph Apple 4  | 0    | 50   | Heterozygo Not Report     |
| 325 | 307 p.Val325Ph Apple 4  | 0    | 55   | Heterozygo Not Report     |
| 325 | 307 p.Val325Ph Apple 4  | 0    | 52   | Heterozygo Not Report     |
| 326 | 308 p.Arg326Cy Apple 4  | 0    | 41   | 33 Heterozygo Mild        |
| 326 | 308 p.Arg326Cy Apple 4  | 0    | 43   | 33 Heterozygo Not Report  |
| 326 | 308 p.Arg326Cy Apple 4  | 0    | 36   | Heterozygo Not Report     |
| 326 | 308 p.Arg326Cy Apple 4  | 1    | 52   | Compound Not Report       |
| 331 | 313 p.Thr331lle Apple 4 | 0 <1 |      | Homozygot Severe          |
| 341 | 323 p.Glu341Ly Apple 4  | 0    |      | Heterozygo Not Report     |
| 341 | 323 p.Glu341Ly Apple 4  | 1    | 9    | Compound Not Report       |
| 341 | 323 p.Glu341Ly Apple 4  | 1    | 9    | 9 Compound Not Report     |
| 0   | 0 Apple 4               | 0    | 56   | Heterozygo Mild           |
| 342 | 324 p.Gly342= Apple 4   | 1    | 1    | 5 Compound Severe         |
| 342 | 324 p.Gly342= Apple 4   | 1    | 1    | 12 Compound Severe        |
| 342 | 324 p.Gly342= Apple 4   | 1    | 2    | Compound Not Report       |
| 0   | 0 Apple 4               | 0    | 45   | Heterozygo Not Report     |
| 345 | 327 p.Lys345* Apple 4   | 0    | 1 <1 | Compound Not Report       |
| 354 | 336 p.Gly354Ar Apple 4  | 0    |      | Compound Not Report       |
|     |                         |      |      |                           |

| 2        | 0          | 0         | Apple 4           | 0   | 1          | 15 Homozygot Severe        |
|----------|------------|-----------|-------------------|-----|------------|----------------------------|
| 3        | 0          | 0         | Apple 4           | 1   | 2          | Compound Not Report        |
| 4        | 359        |           | 359Me Apple 4     | 0   |            | Heterozygo Not Report      |
| 5        | 360        | •         | ı360Pr Apple 4    | 0 < | ·1         | Homozygot Severe           |
| 6        | 362        | •         | 362Ar Apple 4     | 0   | 38         | Heterozygo Not Report      |
| 7        | 368        |           | 368Gl Apple 4     | 1   | 1          | Compound Not Report        |
| 8<br>9   | 369        |           | 369Se Apple 4     | 0 < |            | Homozygot Severe           |
| 10       | 369        |           | 369* Apple 4      | 0 < |            | Homozygot Not Report       |
| 11       | 369        |           | 369* Apple 4      | 0   | 53         | Heterozygo Mild            |
| 12       | 369        |           | 369* Apple 4      | 0   | 59         |                            |
| 13       |            |           | • •               |     |            | Heterozygo Mild            |
| 14<br>15 | 369<br>360 |           | 369* Apple 4      | 1 < |            | Compound Not Report        |
| 16       | 369        |           | 369* Apple 4      | 1   |            | <1 Compound Not Report     |
| 17       | 369        |           | 369* Apple 4      | 1   |            | <1 Compound Not Report     |
| 18       | 373        | •         | 1373Se Apple 4    | 0   | 67         | Heterozygo Not Report      |
| 19       | 374        |           | 374Ar Apple 4     | 0   | 40         | Heterozygo Not Report      |
| 20       | 0          | 0         | Intronic          | 0 < |            | Heterozygo Severe          |
| 21<br>22 | 0          | 0         | Intronic          | 0   | 50         | Heterozygo Not Report      |
| 23       | 378        | 360       | Intronic          | 0   | 73         | Heterozygo Not Report      |
| 24       | 0          | 0         | Intronic          | 0 < |            | <50 Homozygot Severe       |
| 25       | 0          | 0         | Intronic          | 0 < |            | <50 Homozygot Severe       |
| 26       | 0          | 0         | Intronic          | 0 < | :10        | <50 Homozygot Severe       |
| 27       | 0          | 0         | Intronic          | 0   | 3          | Compound Not Report        |
| 28<br>29 | 389        | 371 p.Va  | 389IleSerine Prot | 0   | 34         | 102 HeterozygoNot Report   |
| 30       | 393        | 375 p.Ala | 393VaSerine Prot  | 0   | 35         | 69 Heterozygo Not Report   |
| 31       | 396        | 378 p.Arg | 396CySerine Prot  | 0   | 61         | 83 Heterozygo Not Report   |
| 32       | 396        | 378 p.Arg | 396CySerine Prot  | 0   | 44         | HeterozygoNot Report       |
| 33       | 399        | 381 p.Trp | 399Le Serine Prot | 0   | 35         | 40 HeterozygoNot Report    |
| 34       | 404        | 386 p.Thr | 404AsSerine Prot  | 0   | 2          | Decreased Homozygot Severe |
| 35<br>36 | 404        | 386 p.Thr | 404AsSerine Prot  | 0   | 2          | Decreased Homozygot Severe |
| 37       | 404        | 386 p.Thr | 404AsSerine Prot  | 0   | 108        | Normal Heterozygo Mild     |
| 38       | 406        | 388 p.His | 406Pr(Serine Prot | 0   | 0.36       | 0.37 Heterozygo Severe     |
| 39       | 407        | 389 p.Thr | 407Pr Serine Prot | 0   | 35         | Heterozygo Not Report      |
| 40       | 408        | 390 p.Thr | 408Pr Serine Prot | 0   |            | Heterozygo Not Report      |
| 41<br>42 | 412        | 394 p.Glr | 1412* Serine Prot | 0 < | 1          | Homozygot Not Report       |
| 42       | 416        | •         | 416TySerine Prot  | 0 < |            | Homozygot Severe           |
| 44       | 416        |           | 416TySerine Prot  | 0 < |            | Homozygot Severe           |
| 45       | 416        |           | 416TySerine Prot  | 0   |            | HeterozygoNot Report       |
| 46       | 416        |           | 416TySerine Prot  | 0   | 28         | HeterozygoNot Report       |
| 47       | 416        |           | 416TySerine Prot  | 0   | 22         | HeterozygoNot Report       |
| 48<br>49 | 416        |           | 416TySerine Prot  | 0   | 34         | HeterozygoNot Report       |
| 50       | 416        |           | 416TySerine Prot  | 0   | 26         | HeterozygoNot Report       |
| 51       | 416        |           | 416TySerine Prot  | 0   | 37         | HeterozygoNot Report       |
| 52       | 416        |           | 416TySerine Prot  | 0   | 33         | HeterozygoNot Report       |
| 53       | 416        |           | 416TySerine Prot  | 0   | 40         | Heterozygo Mild            |
| 54       | 416        |           | 416TySerine Prot  | 0   | 40         | Heterozygo Mild            |
| 55<br>56 |            |           |                   |     |            | , <del>, ,</del>           |
| 57       | 416<br>416 |           | 416TySerine Prot  | 0   | 25<br>50   | 25 HeterozygoNot Report    |
| 58       | 416        |           | 416TySerine Prot  | 0   | 58         | Heterozygo Not Report      |
| 59       | 416        |           | 416TySerine Prot  | 0   | 43         | Heterozygo Not Report      |
| 60       | 418        |           | 418VaSerine Prot  | 0 < | · <b>L</b> | Homozygot Severe           |
|          | 418        | 400 p.Gly | 418VaSerine Prot  | 0   |            | HeterozygoNot Report       |
|          |            |           |                   |     |            |                            |

| 418 | 400 p.Gly418VaSerine Prot  | 0 | 15         | 70 1                           |
|-----|----------------------------|---|------------|--------------------------------|
| 418 | 400 p.Gly418VaSerine Prot  | 0 |            | Decreased HeterozygoNot Report |
| 418 | 400 p.Gly418VaSerine Prot  | 0 | 45         | , , ,                          |
| 418 | 400 p.Gly418VaSerine Prot  |   | <3         | 10 Compound Severe             |
| 418 | 400 p.Gly418VaSerine Prot  |   | <3         | Compound Severe                |
| 418 | 400 p.Gly418VaSerine Prot  | 1 | 3          | ·                              |
| 419 | 401 p.Ser419AliSerine Prot | 0 | 30         | •                              |
| 424 | 406 p.Gln424* Serine Prot  |   | <1         | HomozygotNot Report            |
| 424 | 406 p.Gln424* Serine Prot  | 0 | 46         | 70                             |
| 425 | 407 p.Trp425CySerine Prot  | 0 | 0.22       | 70                             |
| 426 | 408 p.lle426ThrSerine Prot | 0 | 28         | 70 1                           |
| 428 | 410 p.Thr428IleSerine Prot | 0 | 25         | 70 1                           |
| 428 | 410 p.Thr428IleSerine Prot | 0 | 38         | 70 1                           |
| 430 | 412 p.Ala430Se Serine Prot | 0 | 35         | ,                              |
| 430 | 412 p.Ala430VaSerine Prot  | 0 | 45         | , 0                            |
| 430 | 412 p.Ala430VaSerine Prot  |   | <1         | 1 Compound Severe              |
| 0   | 0 Intronic                 | 0 | 50         | 70 1                           |
| 0   | 0 Intronic                 | 0 | 1          | 70                             |
| 0   | 0 Serine Prot              | 0 | <1         | HomozygotNot Report            |
| 0   | 0 Serine Prot              | 1 | 1          | 4.1 Compound Not Report        |
| 443 | 425 p.Arg443CySerine Prot  | 0 | 46         | 70 1                           |
| 443 | 425 p.Arg443CySerine Prot  | 0 | 31         | 39 Heterozygo Not Report       |
| 460 | 442 p.Phe460V¿Serine Prot  | 0 | 47         | 50 Heterozygo Mild             |
| 465 | 447 p.Glu465* Serine Prot  | 1 | Undetectak | :UndetectakCompound Severe     |
| 451 | 433 p.Gln451Gl Serine Prot | 0 | 64         | Heterozygo Not Report          |
| 451 | 433 p.Gln451Gl Serine Prot | 0 | 58         | HeterozygoNot Report           |
| 478 | 460 p.Gly478Ar Serine Prot | 0 |            | Homozygot Severe               |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | <1         | Homozygot Severe               |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | <1         | Homozygot Not Report           |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | <1         | Homozygot Severe               |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | 5          | Homozygot Not Report           |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | 51         | HeterozygoNot Report           |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | 42         | Heterozygo Mild                |
| 478 | 460 p.Gly478Ar Serine Prot | 0 | 32         | Heterozygo Not Report          |
| 478 | 460 p.Gly478Ar Serine Prot | 1 | 2          | Compound Not Report            |
| 478 | 460 p.Gly478Ar Serine Prot | 1 | 18         | 13 Compound Not Report         |
| 478 | 460 p.Gly478Ar Serine Prot | 1 | 2          | 2 Compound Not Report          |
| 483 | 465 p.Leu483SeSerine Prot  | 0 | 34         | HeterozygoNot Report           |
| 493 | 475 p.Thr493lleSerine Prot | 0 |            | Heterozygo Mild                |
| 493 | 475 p.Thr493lleSerine Prot | 0 | 39         | 27 Heterozygo Mild             |
| 493 | 475 p.Thr493IleSerine Prot | 0 | 46         | Heterozygo Not Report          |
| 494 | 476 Serine Prot            | 0 | 38         | 20 HeterozygoNot Report        |
| 497 | 479 p.Arg497* Serine Prot  | 0 | 55         | Heterozygo Not Report          |
| 500 | 482 p.Cys500ArSerine Prot  | 0 | 9          | Heterozygo Not Report          |
| 500 | 482 p.Cys500Tr Serine Prot | 0 | 37         | Heterozygo Not Report          |
| 503 | 485 p.Ser503Pr(Serine Prot | 0 | <1         | Homozygot Severe               |
| 511 | 493 p.Tyr511Hi:Serine Prot | 1 | 2          | Compound Severe                |
| 511 | 493 p.Tyr511Hi:Serine Prot | 1 | 1          | Compound Severe                |
| 515 | 497 p.Trp515CySerine Prot  | 0 | 22         | 25 Heterozygo Not Report       |
| 515 | 497 p.Trp515CySerine Prot  | 0 | 36         | HeterozygoNot Report           |
|     |                            |   |            | •                              |

| 2        | 515 | 497 p.Trp515C                   | ySerine Prot  | 0 | 36         |     | HeterozygoNot Report  |
|----------|-----|---------------------------------|---------------|---|------------|-----|-----------------------|
| 3        | 515 | 497 p.Trp515C                   | ySerine Prot  | 0 | 40         |     | HeterozygoNot Report  |
| 4        | 516 | 498 p.Val516M                   | 1(Serine Prot | 1 | 1          |     | Compound Not Report   |
| 5        | 0   | 0                               | Serine Prot   | 0 | 35         |     | HeterozygoNot Report  |
| 6        | 0   | 0                               | Serine Prot   | 0 | 54         |     | HeterozygoNot Report  |
| 7<br>8   | 0   | 0                               | Serine Prot   |   | <1         |     | Compound Severe       |
| 9        | 0   | 0                               | Serine Prot   | 1 | 4          |     | Compound Not Report   |
| 10       | 519 | 501 p.Trp519*                   |               |   | <5         |     | Homozygot Severe      |
| 11       | 519 | 501 p.11p519*                   |               | 0 | <b>\</b> J |     |                       |
| 12       |     |                                 |               |   |            |     | HeterozygoNot Report  |
| 13       | 519 | 501 p.Trp519*                   |               | 0 | 111        |     | HeterozygoNot Report  |
| 14       | 519 | 501 p.Trp519*                   |               | 0 | 114        |     | HeterozygoNot Report  |
| 15<br>16 | 519 | 501 p.Trp519*                   |               | 0 | 47         |     | HeterozygoNot Report  |
| 17       | 519 | 501 p.Trp519*                   |               | 0 | 36         |     | HeterozygoNot Report  |
| 18       | 519 | 501 p.Trp519C                   |               | 0 |            |     | Homozygot Severe      |
| 19       | 519 | 501 p.Trp519C                   |               | 0 | 36         |     | Heterozygo Mild       |
| 20       | 519 | 501 p.Trp519C                   |               | 0 | 40         |     | Heterozygo Mild       |
| 21       | 519 | 501 p.Trp519C                   | ySerine Prot  | 1 | 2          | <1  | Compound Not Report   |
| 22<br>23 | 521 | 503 p.Tyr521C                   | y Serine Prot | 0 | 13         | 76  | HomozygotNot Report   |
| 24       | 521 | 503 p.Tyr521C                   | y Serine Prot | 0 | 38         | 93  | HeterozygoNot Report  |
| 25       | 521 | 503 p.Tyr521C                   | y Serine Prot | 0 | 42         | 102 | HeterozygoNot Report  |
| 26       | 521 | 503 p.Tyr521C                   | y Serine Prot | 0 | 37         | 98  | HeterozygoNot Report  |
| 27       | 536 | 518 p.Lys536A                   | s Serine Prot | 0 |            |     | Heterozygo Mild       |
| 28       | 536 | 518 p.Lys536A                   | s Serine Prot | 1 | 3          |     | Compound Not Report   |
| 29<br>30 | 538 | 520 p.Pro538L                   |               | 0 | 20         |     | Homozygot Not Report  |
| 31       | 538 | 520 p.Pro538L                   | eSerine Prot  | 0 | 59         |     | HeterozygoNot Report  |
| 32       | 538 | 520 p.Pro538L                   |               | 0 | 34         |     | HeterozygoNot Report  |
| 33       | 538 | 520 p.Pro538L                   |               | 0 | 43         |     | HeterozygoNot Report  |
| 34       | 538 | 520 p.Pro538L                   |               | 0 | 48         |     | HeterozygoNot Report  |
| 35       | 538 | 520 p.Pro538L                   |               | 0 | 48         |     | Heterozygo Not Report |
| 36       | 538 | 520 p.Pro538L                   |               | 0 | 53         |     | Heterozygo Not Report |
| 37<br>38 | 538 | 520 p.Pro538L                   |               | 0 | 50         |     | HeterozygoNot Report  |
| 39       | 538 | 520 p.Pro538L                   |               | 1 | 30         |     | Compound Not Report   |
| 40       | 540 | 520 p.1 10550E<br>522 p.Val540G |               | 0 | 30         |     | HeterozygoNot Report  |
| 41       | 562 | 544 p.Gly562S                   | '             | 0 | 62         |     | Heterozygo Not Report |
| 42       |     |                                 |               |   |            |     |                       |
| 43       | 562 | 544 p.Gly562S                   |               | 0 | 105        |     | HeterozygoNot Report  |
| 44<br>45 | 565 | 547 p.Glu565L                   | •             | 0 | 30         |     | HeterozygoNot Report  |
| 46       | 565 | 547 p.Glu565L                   | •             | 0 | 41         |     | HeterozygoNot Report  |
| 47       | 565 | 547 p.Glu565L                   | •             | 0 | 36         |     | HeterozygoNot Report  |
| 48       | 565 | 547 p.Glu565L                   | •             | 0 | 45         |     | HeterozygoNot Report  |
| 49       | 565 | 547 p.Glu565L                   | •             | 0 | 32         |     | HeterozygoNot Report  |
| 50       | 565 | 547 p.Glu565L                   | •             | 0 | 63         |     | HeterozygoNot Report  |
| 51<br>52 | 565 | 547 p.Glu565L                   | •             | 0 | 49         |     | Heterozygo Mild       |
| 53       | 565 | 547 p.Glu565L                   | •             | 0 | 25         | 18  | Heterozygo Mild       |
| 54       | 565 | 547 p.Glu565L                   | y Serine Prot | 0 | 23         | 32  | HeterozygoNot Report  |
| 55       | 565 | 547 p.Glu565L                   | y Serine Prot | 1 | 35         |     | Compound Not Report   |
| 56       | 0   | 0                               | Serine Prot   | 1 | <1         | <10 | Compound Severe       |
| 57       | 0   | 0                               | Intronic      | 0 | 37         |     | HeterozygoNot Report  |
| 58<br>59 | 0   | 0                               | Intronic      | 0 | 60         |     | HeterozygoNot Report  |
| 60       | 0   | 0                               | Serine Prot   | 0 | 71         |     | Heterozygo Not Report |
| - •      | 0   | 0                               | Serine Prot   | 1 | <10        |     | Compound Severe       |
|          |     |                                 |               |   |            |     |                       |

| 573 | 555 p.Gly573Gl/Serine Prot              | 0 <1 |    | 100 Homozygot Severe      |
|-----|-----------------------------------------|------|----|---------------------------|
| 573 | 555 p.Gly573Gl <sub>3</sub> Serine Prot | 0    | 51 | Heterozygo Not Report     |
| 574 | 556 p.Asp574AlSerine Prot               | 0 <1 |    | HomozygotNot Report       |
| 581 | 563 p.Cys581ArSerine Prot               | 0    |    | HomozygotNot Report       |
| 581 | 563 p.Cys581ArSerine Prot               | 0    |    | HeterozygoNot Report      |
| 581 | 563 p.Cys581PhSerine Prot               | 0    | 45 | Heterozygo Not Report     |
| 587 | 569 p.Trp587SeSerine Prot               | 0    | 15 | HeterozygoNot Report      |
| 587 | 569 p.Trp587SeSerine Prot               | 0    |    | HeterozygoNot Report      |
| 592 | 574 p.lle592ThrSerine Prot              | 0    | 43 | HeterozygoNot Report      |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 2  | 105 HomozygotNot Report   |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 38 | 83 Heterozygo Not Report  |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 67 | 25 Heterozygo Not Report  |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 43 | 106 Heterozygo Not Report |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 43 | 112 Heterozygo Not Report |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 51 | 85 Heterozygo Not Report  |
| 593 | 575 p.Thr593M Serine Prot               | 0    | 39 | HeterozygoNot Report      |
| 594 | 576 p.Ser594Ar Serine Prot              | 0    | 27 | 23 Heterozygo Mild        |
| 594 | 576 p.Ser594Ar Serine Prot              | 0    | 27 | 23 Heterozygo Not Report  |
| 594 | 576 p.Ser594Ar Serine Prot              | 0    | 46 | 71 Heterozygo Not Report  |
| 597 | 579 p.Glu597LySerine Prot               | 0    | 15 | HeterozygoNot Report      |
| 599 | 581 p.Cys599* Serine Prot               | 1    | 1  | 20 Homozygot Severe       |
| 599 | 581 p.Cys599* Serine Prot               | 0    | 1  | 44 Compound Severe        |
| 608 | 590 p.Tyr608Hi:Serine Prot              | 0 <1 |    | Homozygot Severe          |
| 608 | 590 p.Tyr608* Serine Prot               | 0    | 41 | Heterozygo Not Report     |
| 608 | 590 p.Tyr608* Serine Prot               | 0    | 30 | Not Report                |
| 617 | 599 p.Trp617ArSerine Prot               | 0 <1 | <1 | Homozygot Severe          |
| 618 | 600 p.lle618SerSerine Prot              | 0 <2 |    | Homozygot Severe          |
| 618 | 600 p.lle618SerSerine Prot              | 0    | 42 | 35 HeterozygoNot Report   |
| 618 | 600 p.lle618SerSerine Prot              | 0    | 23 | Heterozygo Not Report     |
| 619 | 601 p.Leu619PrSerine Prot               | 0 <1 | <1 | Homozygot Severe          |
|     |                                         |      |    |                           |

|                            | , |  |
|----------------------------|---|--|
| 1                          |   |  |
| 2                          |   |  |
| 3<br>4                     |   |  |
| 5                          |   |  |
| 3<br>4<br>5<br>6<br>7<br>8 |   |  |
| 8                          |   |  |
| 9<br>10                    | 1 |  |
| 11                         |   |  |
| 12<br>13                   |   |  |
| 13<br>14<br>15             |   |  |
| 16<br>17                   |   |  |
| 17<br>18                   |   |  |
| 19                         | 1 |  |
| 20<br>21                   | 1 |  |
| 22                         |   |  |
| 23<br>24                   |   |  |
| 24<br>25<br>26             |   |  |
| 27                         |   |  |
| 28<br>29                   |   |  |
| 30                         | 1 |  |
| 31<br>32                   |   |  |
| 33                         |   |  |
| 32<br>33<br>34<br>35       |   |  |
| 36<br>37                   |   |  |
| 38                         |   |  |
| 39<br>40                   |   |  |
| 41                         |   |  |
| 42<br>43                   |   |  |
| 44                         |   |  |
| 45<br>46                   |   |  |
| 47<br>48                   |   |  |
| 49                         | 1 |  |
| 50<br>51                   | 1 |  |
| 52                         |   |  |
| 53<br>54                   |   |  |
| 55<br>56                   |   |  |
| 57                         |   |  |
| 58<br>59                   |   |  |
| 60                         |   |  |
|                            |   |  |

**Comments Reference** ed Mitchell et al 2006 Saunders et al 2009 ed Patient's bl-Zucker et al 2007 Mild bleedi Mitchell et al 2004 Mitchell et al 2006 ed ed Mitchell et al 2007 ed Quelin et al 2006 No bleeding Castaman et al 2008 ed Mitchell et al 2006 Gingival Zucker et al 2007 FXI:C/FXI:A¡Spena et al 2009 Asymptom: Zucker et al 2007 ed Mitchell et al 2006 ed Quelin et al 2005 ed Saunders et al 2009 Bleeding fo Shao et al 2016 Menorrhag Hill et al 2005 Easy bruisir Hill et al 2005 Bleeding pc Hill et al 2005 Easy bruisir Shao et al 2016 ed Mitchell et al 2006 **Epistaxis** Colakoglu et al 2018 **Epistaxis** Colakoglu et al 2018 Esteban et al 2017 Esteban et al 2017 No bleeding Zivelin et al 2002 Esteban et al 2017 Esteban et al 2017

Esteban et al 2017

Zivelin et al 2002

Mild bleedi Zivelin et al 2002

Hematoma Zivelin et al 2002 No bleeding Zivelin et al 2002 Esteban et al 2017 Quelin et al 2005 FXI:C/FXI:A|Spena et al 2009 FXI:C/FXI:A|Spena et al 2009 Excessive b Kawankar et al 2016 No bleeding Kawankar et al 2016 Spontaneoi Kawankar et al 2016 Mitchell et al 2006 No bleeding Zivelin et al 1999 (Abstract) ed Saunders et al 2009 ed Saunders et al 2009 Non-bleed EVentura et al 2000 Non-bleed EVentura et al 2000 Asymptom; Hill et al 2005 No excessiv Quelin et al 2004 Patient trea Quelin et al 2004 No excessiv Quelin et al 2004 No excessiv Quelin et al 2004 Quelin et al 2004 Asymptom: Colakoglu et al 2018 Asymptom: Colakoglu et al 2018 Esteban et al 2017 Haemorrha Guella et al 2008 Mitchell et al 2006 ed **Epistaxis** Tiscia et al 2017 Asymptoma Tiscia et al 2017

Esteban et al 2017
Haemorrha Guella et al 2008
ed Mitchell et al 2006
Epistaxis Tiscia et al 2017
Asymptoma Tiscia et al 2017
Asymptoma Tiscia et al 2017
Bleeding af Lin et al 2020
ed Quelin et al 2005
Epistaxis Quelin et al 2005
ed Mitchell et al 2006
bleeding pc Mitchell et al 2007

Mitchell et al 2003
Mitchell et al 2003
ed Mitchell et al 2006
ed Mitchell et al 2006
ed Saunders et al 2009
APTT: 106 s Duncan et al 2008

Suffered frc Alhag et al 2000

ed Dossenbach-Glaninger & Hopmeier 2006

Bleeding af Castaman et al 2008

Bleeding at Dossenbach-Glaninger et al 2002

Bleeding af Karimi et al 2009 Bleeding dt Kawankar et al 2016

Saunders et al 2009 Saunders et al 2009 Saunders et al 2009 Excessive b Ventura et al 2000 Moderate EVentura et al 2000 Non-bleed∈ Ventura et al 2000 Non-bleed (Ventura et al 2000 Non-bleed Ventura et al 2000 Epistaxis Colakoglu et al 2018 Asymptom: Colakoglu et al 2018 Bleeding af Quelin et al 2006 ed Saunders et al 2009 ed Saunders et al 2009 Recurrent ∈ Solda et al 2005 Recurrent 

Solda et al 2005 Asymptoma Tiscia et al 2017 Superficial Tiscia et al 2017 Asymptoma Tiscia et al 2017 Ventura et al 2000 Trivial - few Asakai et al 1989 Asakai et al 1989 Moderate - Asakai et al 1989 Moderate - Asakai et al 1989 Castaman et al 2007 (ISTH Abstract) ed ed Castaman et al 2008 Castaman et al 2008 History of p Martincic et al 1998 Mitchell et al 2006 Neerman-Arbez et al 2007 Gastroente Neerman-Arbez M et al 2007 transfusion Quelin et al 2009 Post-operal Quelin et al 2009 Post traum: Quelin et al 2009 Transfusion Quelin et al 2009 Patient suff Quelin et al 2009 Post traum: Quelin et al 2009 ed Saunders et al 2009 ed Saunders et al 2009 Asymptoma Tiscia et al 2017 Ecchymose Zadra et al 2004 Ecchymose Zadra et al 2004 Ecchymose Zadra et al 2004 ed Zivelin et al 1999 (Abstract 2) ed Zivelin et al 1999 (Abstract) Menorrhag Zucker et al 2007 Gingival ble Zucker et al 2007 Patient was Hatskelzon et al 1996 Hatskelzon et al 1996

Hatskelzon et al 1996

Hatskelzon et al 1996

Hatskelzon et al 1996

Hatskelzon et al 1996

Hatskelzon et al 1996

Patient had Zadra et al 2004

Frequently Zadra et al 2004

Patient has Zadra et al 2004

Bolton-Maggs et al 1999 Abstract

Mitchell et al 2006

At the age (Zadra et al 2004

Prolonged I Zadra et al 2004

FXI:C/FXI:A|Spena et al 2009

No bleeding Quelin et al 2006

Bleeding af Quelin et al 2006

Easy bruisir Quelin et al 2006

red Castaman et al 2007 (ISTH Abstract)

Bleeding af Castaman et al 2008

Menorrhag JerÄ ić et al 2020 🧳

Menorrhag JerÄ ić et al 2020

Asymptom; JerÄ ić et al 2020

Asymptoma Cataman et al 2013

Asymptoma Cataman et al 2013

Asymptom: Cataman et al 2013

Easy bruisir Lin et al 2020

Long APTT Bolton-Maggs et al 2004

Fall resultin Zacharski & French 1978

Bleed after Bolton-Maggs et al 2004

Bled after c Bolton-Maggs et al 2004

Cerebal her Bolton-Maggs et al 2004

Easy bruisir Bolton-Maggs et al 2004

Extensive b Bolton-Maggs et al 2004

Menorrhag Bolton-Maggs et al 2004

History of e Imanaka et al 1995

ed Saunders et al 2009

Patient alsc Bolton-Maggs et al 2004

Misdiagnos Bolton-Maggs et al 2004

No active b Dai et al 2004

Patient has Duncan et al 2008

ed Mitchell et al 2006

Mitchell et al 2006

ed Mitchell et al 2006

Mitchell et al 2006

Menorrhag Mitchell et al 2007

Post-Partur Hill et al 2005

Asymtomat Hill et al 2005

Post Partun Hill et al 2005

ed Mitchell et al 2006

Epistaxis Tiscia et al 2017

Asymptoma Tiscia et al 2017

Asymptoma Tiscia et al 2017

Asymptoma Tiscia et al 2017

| 1        |           | 140 L. H. J. 1000                                                                              |
|----------|-----------|------------------------------------------------------------------------------------------------|
| 2        | ed        | Mitchell et al 2006                                                                            |
| 3<br>4   |           | Bolton-Maggs et al 2003 Abstract                                                               |
| 5        | ed        | Mitchell et al 2006                                                                            |
| 6        |           | ant Mitchell et al 2007                                                                        |
| 7        |           | ag Hill et al 2005                                                                             |
| 8        | ed        | Bolton-Maggs et al 2003 Abstract                                                               |
| 9        |           | Mitchell et al 2006                                                                            |
| 10<br>11 | Patient a | tte Dossenbach-Glaninger and Hopmeier 2                                                        |
| 12       |           | Mitchell et al 2003                                                                            |
| 13       | ed        | Mitchell et al 2006                                                                            |
| 14       | ed        | Quelin et al 2006                                                                              |
| 15<br>16 | ed        | Alhaq et al 2000                                                                               |
| 17       | ed        | O'Connell et al 2005                                                                           |
| 18       | ed        | Saunders et al 2009                                                                            |
| 19       | ed        | Wu et al 2004 (Abstract)                                                                       |
| 20       | None      | Dossenbach-Glaninger & Hopmeier 2006                                                           |
| 21<br>22 | ed        | Mitchell et al 2006                                                                            |
| 23       |           | ma Tiscia et al 2017                                                                           |
| 24       |           | inį Zivelin et al 2002                                                                         |
| 25       |           | bl Guella et al 2008                                                                           |
| 26       | •         | sin Shao et al 2016                                                                            |
| 27<br>28 |           | ag de Raucourt et al 2008                                                                      |
| 29       |           | as Duncan et al 2008                                                                           |
| 30       | ed        | Mitchell et al 2006                                                                            |
| 31       |           | Lin et al 2020                                                                                 |
| 32       |           | m: Guella et al 2008                                                                           |
| 33<br>34 | ed        | Quelin et al 2006                                                                              |
| 35       | ed        | Dossenbach-Glaninger & Hopmeier 2006                                                           |
| 36       |           | siv Quelin et al 2004                                                                          |
| 37       | •         | fo Quelin et al 2009                                                                           |
| 38<br>39 | •         | sir Quelin et al 2009 Mitchell et al 2006 Morishita et al 2003 (Abstract) m: Tiscia et al 2017 |
| 40       | ed        | Mitchell et al 2006                                                                            |
| 41       |           | Morishita et al 2003 (Abstract)                                                                |
| 42       |           | The Fisch Ct at 2017                                                                           |
| 43       |           | ma Tiscia et al 2017                                                                           |
| 44<br>45 | No bleed  | inį Kawankar et al 2016                                                                        |
| 46       | •         | Okumura et al 2006                                                                             |
| 47       | ed        | Kuroda et al 2005 (Abstract)                                                                   |
| 48       | 5         | Morishita et al 2003 (Abstract)                                                                |
| 49       |           | as Duncan et al 2008                                                                           |
| 50<br>51 | •         | f k Kravtsov et al 2005                                                                        |
| 52       | ed        | Kravtsov et al 2005                                                                            |
| 53       |           | Okumura et al 2006                                                                             |
| 54       |           | inį Wang et al 2019                                                                            |
| 55<br>56 |           | inį Wang et al 2019                                                                            |
| 56<br>57 |           | inį Wang et al 2019                                                                            |
| 58       | ed        | Wu et al 2004 (Abstract)                                                                       |
| 59       |           | tes Lin et al 2020                                                                             |
| 60       | •         | - a Shao et al 2016                                                                            |
|          | ed        | Wu et al 2003 (Abstract)                                                                       |
|          |           |                                                                                                |

ed

Presented \ Alhag et al 1999 No history (Alhag et al 1999 No history (Alhaq et al 1999 No history (Alhag et al 1999 No history (Alhag et al 1999 No history (Alhaq et al 1999 No history (Alhag et al 1999 No history (Alhag et al 1999 aPTT media Papagrigoriou et al 2006 ed Mitchell et al 2006 ed Mitchell et al 2006 No bleeding Zivelin et al 2002 No bleeding Zivelin et al 2002 Second mu Vasileiadis et al 2009 Easy Bruisir Quelin et al 2005 Easy bruisir Hill et al 2005 Asymptom; Hill et al 2005 History of a Martincic et al 1998 History of e Martincic et al 1998 Bolton-Maggs et al 2003 Abstract ed Mitchell et al 2006 ed Bolton-Maggs et al 2003 Abstract Esteban et al 2017 TO POLICY Mitchell et al 2006 ed Patient has Duncan et al 2008 ed Castaman et al 2008 ed **Unpublished Data** Easy bruisir Lin et al 2020 Bleeding af Lin et al 2020 Peptic ulcerLin et al 2020 No history (Sato et al 2000 Sato et al 2000 No history (Au et al 2003 Au et al 2003 Sato et al 2000 Sato et al 2000 Sato et al 2000 Sato et al 2000 Patient initi Au et al 2003 Spontaneoi Kawaguchi et al 2000 Bleeding ur Shao et al 2016 Bleeding fo Shao et al 2016 Epistaxis an Shao et al 2016 Bleeding fo Shao et al 2016 ed Wang et al 2009 Mild - few (Asakai et al 1989 Saunders et al 2009 Mild bleedi Dossenbach-Glaninger et al 2001 No evidenc Dossenbach-Glaninger et al 2001

Saunders et al 2009

```
1
         ed
                     Saunders et al 2009
2
3
         Asymptoma Tiscia et al 2017
4
         Asymptoma Tiscia et al 2017
5
         Menorrhag Castaman et al 2008
6
         Epistaxis, p Castaman et al 2008
7
         Mild bleedi Dossenbach-Glaninger et al 2001
8
9
         No bleeding Quelin et al 2009
10
         Asymptoma Tiscia et al 2017
11
         Surgery-rela Tiscia et al 2017
12
         No bleeding Zivelin et al 2002
13
         Menorrhag Hill et al 2005
14
15
         ed
                     Saunders et al 2009
16
         No bleeding Wang et al 2019
17
         No bleeding Wang et al 2019
18
         No bleeding Wang et al 2019
19
         Heavy men Wang et al 2019
20
21
         No bleeding Mathonet et al 1999 (Abstract)
22
                     Quelin et al 2005
         ed
23
         Epistaxis
                     Quelin et al 2006
24
         ed
                     Quelin et al 2006
25
         Asymptoma Tiscia et al 2017
26
27
         Asymptoma Tiscia et al 2017
28
         No bleeding Hopmeier et al 2004
29
         Vaginal ble Tiscia et al 2017
30
         Asymptoma Tiscia et al 2017
31
32
         Asymptoma Tiscia et al 2017
33
         Bleeding af Zucker et al 2007
34
                     Quelin et al 2006
35
         ed
                     Mitchell et al 2006
36
         Epistaxis, N Quelin et al 2005
37
38
                     Esteban et al 2017
39
         ed
                     Mitchell et al 2006
40
         ed
                     Saunders et al 2009
41
         ed
                     Saunders et al 2009
42
         ed
                     Saunders et al 2009
43
44
         History of e Mitchell et al 1999
45
         ed
                     Mitchell et al 2006
46
         ed
                     Saunders et al 2009
47
         Median aPl Duncan et al 2008
48
         Moderate | Fard-Esfahani et al 2008
49
50
                     Wu et al 2004 (Abstract)
         ed
51
         ed
                     Mitchell et al 2006
52
         Epistaxis Zucker et al 2007
53
         No evidenc Dossenbach-Glaninger et al 2001
54
         Excessive b Ventura et al 2000
55
56
         Non-bleed∈ Ventura et al 2000
57
         No bleeding Zucker et al 2007
58
         ed
                     Saunders et al 2009
59
         No bleeding Lin et al 2020
60
         ed
                     Castaman et al 2005
```

Non-bleed EVentura et al 2000

No Bleedin EZucker et al 2007

ed Mitchell et al 2006

Moderate EF Fard-Esfahani et al 2008

ed Mitchell et al 2006

Epistaxis Shao et al 2016

None Jayandharan et al 2005

Asymptom; Lin et al 2020 No history (Au et al 2003

Au et al 2003

Bleeding af Lin et al 2020

No bleeding Lin et al 2020

Epistaxis Lin et al 2020

ed Mitchell et al 2006

ed Mitchell et al 2006

Bleeding at Hayashi et al 1997 Abstract

ed Okumura et al 2006
ed Mitchell et al 2006
Xie et al 2005
Xie et al 2005
Xie et al 2005

Asymptom; Bozzao et al 2007
ed Saunders et al 2009
ed Mitchell et al 2006
Patient ble; Mitchell et al 2007
Pt presente Quelin et al 2009

No history (Wistinghausen et al 1997 Minor blee Wistinghausen et al 1997

Wistinghausen et al 1997

No persona de Raucourt et al 2008 ed Mitchell et al 2006 ed Unpublished Data No bleedin (Kawankar et al 2016

Menorrhag Gailani et al 2001 Abstract B

Mitchell et al 2006

Asymptom: Colakoglu et al 2018

Esteban et al 2017 Esteban et al 2017

No bleeding Gailani et al 2001 Abstract B

No bleedinį Gailani et al 2001 Abstract B

Heavy post Kravtsov et al 2005
ed Mitchell et al 2006
ed Saunders et al 2009
Frequent gi Kravtsov et al 2004
Asymptom: Colakoglu et al 2018

Bleeding af Gailani et al 2001 Abstract B History of e Kravtsov et al 2004 Easy bruisir Tiscia et al 2017 Bleeding af Castaman et al 2008 Okumura et al 2006 Easy bruisir Shao et al 2016 No bleeding Hopmeier et al 2004 Easy bruisir Shao et al 2016 Mitchell et al 2006 No personade Raucourt et al 2008 Esteban et al 2017 No bleeding Kawankar et al 2016 ed Saunders et al 2009 Saunders et al 2009 ed Dental wor Mitchell et al 1999 Patient alsc Hill et al 2005 ed Saunders et al 2009 Excessive b Ventura et al 2000 Asymptom; Lin et al 2020 Easy bruisir Lin et al 2020 ed Mitchell et al 2006

ed Saunders et al 2009 History of elmanaka et al 1995 Asymptoma Tsukahara et al 2003 ed Ishikawa et al 2007 Father of palshikawa et al 2007

Bolton-Maggs et al 2003 Abstract

Severe blee Jayandharan et al 2005 **Epistaxis** Kawankar et al 2016 Mitchell et al 2006 Quelin et al 2005

ed Long histor Alhag et al 2000 Mitchell et al 2003

ed

Quelin et al 2005

Post op ble Jayandharan et al 2005

ed Quelin et al 2005 Saunders et al 2009 ed Post traum: Kawankar et al 2016

Bolton-Maggs et al 2003 Abstract

Asymptom: McVey et al 2005 Mitchell et al 2006 ed Patient has no bleeding Hx. ed Mitchell et al 2006 ed Saunders et al 2009 ed Mitchell et al 2006 Off-spring c Fard-Esfahani et al 2008

No bleedinį Zivelin et al 2002 No bleeding Zivelin et al 2002 Quelin et al 2005 ed Asymptoma Tiscia et al 2017

Asymptoma Tiscia et al 2017 Asymptoma Tiscia et al 2017 Clinically, tł Kwon et al 2008 Prolonged I Fard-Esfahani et al 2008 Patient's hulshikawa et al 2007 No history (Ishikawa et al 2007 Frequent ellshikawa et al 2007 No apparer lijima et al 2000 Bruising, bl Colakoglu et al 2018 Asymptom: Colakoglu et al 2018 Asymptoma Tiscia et al 2017 Asymptoma Tiscia et al 2017 Asymptoma Tiscia et al 2017 Patient exp de Moerloose et al 2004 de Moerloose et al 2004 de Moerloose et al 2004 ed **Unpublished Data** Su et al 2018 Su et al 2018 Su et al 2018 Su et al 2018 Ventura et al 2000 Esteban et al 2017 Esteban et al 2017 Esteban et al 2017 Prolonged I Gailani et al 2001 Abstract B Patient alsc Hill et al 2005 Easy bruisir Hill et al 2005 ed Mitchell et al 2006 ed Mitchell et al 2006 No bleedin Quelin et al 2009 ed Quelin et al 2005 Asymptom: Colakoglu et al 2018 Saunders et al 2009 Mother of Saunders et al 2009 Esteban et al 2017 Post Partun Hill et al 2005 2 Post-part Hill et al 2005 Epistaxis Quelin et al 2005 Haematuria Karimi et al 2009 Peretz et al 1996 Asymptoma Tiscia et al 2017 Asymptoma Tiscia et al 2017 Mitchell et al 2006 ed

Mild - few & Asakai et al 1989

Injury-relat Zivelin et al 2001 (Abstract)

ed Mitchell et al 2006
Epistaxis Kawankar et al 2016
Bruising an Colakoglu et al 2018
Asymptom: Colakoglu et al 2018
ed Mitchell et al 2006

Bleeding af Gailani et al 2001 Abstract B

History of n Kravtsov et al 2004

Esteban et al 2017

No persona Germanos-Haddad et al 2005 ed Germanos-Haddad et al 2005

ed Mitchell et al 2006 Menorrhag Mitchell et al 2007

Patient suff Mitchell et al 1999

ned Mitchell et al 2006 ned O'Connell et al 2005

No spontan Quelin et al 2006 Patient suff Quelin et al 2004 Patient rec Quelin et al 2004

Moderate | Fard-Esfahani et al 2008

ed Mitchell et al 2006

Menorrhag Hill et al 2005

Asymptoma Takamiya et al 2005

Mitchell et al 2006

Mild bleedi Hill et al 2005

ed Mitchell et al 2006

Menorrhag Spena et al 2009

| Variant ID No. o | f Case Type  | Effect       | cDNA Mutation (cA | mino AcidAmi | no AcidProtein Cha |
|------------------|--------------|--------------|-------------------|--------------|--------------------|
| 313              | 0 Point      |              | -446 c446G>T      | 0            | 0                  |
| 312              | 0 Point      |              | -316 c316C>G      | 0            | 0                  |
| 130              | 2 Point      |              | -54 c54G>A        | 0            | 0                  |
| 314              | 0 Point      |              | -2 c2+120G>       | 0            | 0                  |
| 74               | 0 Point      |              | -1 c1-231T>(      | 0            | 0                  |
| 75               | 0 Point      |              | -1 c1-198T>(      | 0            | 0                  |
| 76               | 0 Point      |              | -1 c1-138C>/      | 0            | 0                  |
| 92               | 0 Point      |              | -1 c1-403G>       | 0            | 0                  |
| 315              | 0 Point      |              | -1 c1-229T>(      | 0            | 0                  |
| 93               | 0 Point      |              | -1 c1-273C>(      | 0            | 0                  |
| 109              | 3 Deletion   |              | 0 31.5KbDele      | 0            | 0                  |
| 184              | 1 Deletion   |              | 0 Exons 11-1!     | 0            | 0                  |
| 284              | 1 Point      | Missense     | 0 Unspecifiec     | 136          | 118 p.Cys136Ar     |
| 337              | 0 Point      | Missense     | 0 Unspecifiec     | 326          | 308 p.Arg326Hi     |
| 273              | 0 Point      | Missense     | 0 Unspecified     | 403          | 385 p.Val403Me     |
| 338              | 0 Point      | Missense     | 0 Unspecifiec     | 425          | 407 p.Trp425Le     |
| 339              | 0 Point      | Missense     | 0 Unspecified     | 519          | 501 p.Trp519Se     |
| 132              | 3 Point      | Missense     | 3 c.3G>T          | 1            | -18 p.Met1lle      |
| 226              | 1 Point      | Nonsense     | 15 c.15T>A        | 5            | -14 p.Tyr5*        |
| 120              | 1 Point      | Missense     | 44 c.44C>T        | 15           | -4 p.Ser15Leu      |
| 225              | 0 Point      | Missense     | 52 c.52G>C        | 18           | -1 p.Gly18Arg      |
| 340              | 0 Point      |              | 55 c.55+2T>C      | 0            | 0                  |
| 227              | 1 Insertion  | Frameshift   | 55 c.55+6T>G+     | 0            | 0                  |
| 131              | 1 Point      | Nonsense     | 55 c.55G>T        | 19           | 1 p.Glu19*         |
| 77               | 0 Duplicatio | n Frameshift | 56 c.56-1209d     | 0            | 0                  |
| 185              | 0 Point      | Nonsense     | 67 c.67C>T        | 23           | 5 p.Gln23*         |
| 160              | 1 Deletion   | Frameshift   | 73 c.73_86del     | 0            | 0                  |
| 258              | 1 Deletion   | Inframe      | 78 c.78_80del     | 0            | 0                  |
| 1                | 0 Point      | Missense     | 100 c.100G>C      | 34           | 16 p.Asp34His      |
| 152              | 1 Point      | Missense     | 113 c.113T>C      | 38           | 20 p.Val38Ala      |
| 125              | 1 Point      | Missense     | 122 c.122C>T      | 41           | 23 p.Pro41Leu      |
| 133              | 1 Point      | Missense     | 122 c.122C>A      | 41           | 23 p.Pro41Gln      |
| 228              | 2 Point      | Missense     | 126 c.126C>G      | 42           | 24 p.Ser42Arg      |
| 271              | 0 Point      | Missense     | 127 c.127G>A      | 43           | 25 p.Ala43Thr      |
| 113              | 4 Point      | Missense     | 137 c.137G>T      | 46           | 28 p.Cys46Phe      |
| 24               | 1 Point      | Missense     | 141 c.141G>C      | 47           | 29 p.Gln47His      |
| 159              | 2 Point      | Missense     | 151 c.151A>C      | 51           | 33 p.Thr51Pro      |
| 158              | 0 Point      | Missense     | 152 c.152C>T      | 51           | 33 p.Thr51lle      |
| 68               | 36 Point     | Missense     | 166 c.166T>C      | 56           | 38 p.Cys56Arg      |
| 153              | 0 Point      | Nonsense     | 168 c.168T>A      | 56           | 38 p.Cys56*        |
| 219              | 1 Point      | Missense     | 168 c.168T>G      | 56           | 38 p.Cys56Trp      |
| 10               | 1 Insertion  | Frameshift   | 192 c.192_193iı   | 0            | 0                  |
| 78               | 0 Point      | Missense     | 197 c.197C>T      | 66           | 48 p.Pro66Leu      |
| 229              | 0 Point      | Missense     | 209 c.209C>T      | 70           | 52 p.Pro70Leu      |
| 218              | 0 Point      | Nonsense     | 214 c.214C>T      | 72           | 54 p.Arg72*        |
| 259              | 1 Point      | Missense     | 215 c.215G>C      | 72           | 54 p.Arg72Pro      |
| 352              | 3 Point      |              | 218 c.218+4A>(    | 0            | 0                  |
| 79               | 0 Point      |              | 218 c.218+126A    | 0            | 0                  |
| 205              | 1 Point      |              | 218 c.218+2T>A    | 0            | 0                  |
|                  |              |              |                   |              |                    |

| 1        |                  |            |               |                 |     |                |
|----------|------------------|------------|---------------|-----------------|-----|----------------|
| 2        | 221              | 0 Point    | Missense      | 224 c.224C>T    | 75  | 57 p.Thr75lle  |
| 3        | 154              | 0 Point    | Missense      | 226 c.226G>C    | 76  | 58 p.Cys76Arg  |
| 4        | 102              | 1 Point    | Missense      | 227 c.227G>A    | 76  | 58 p.Cys76Tyr  |
| 5        | 134              | 1 Point    | Missense      | 227 c.227G>T    | 76  | 58 p.Cys76Phe  |
| 6<br>7   | 327              | 0 Point    |               | 250 c.1716+250  | 0   | 0              |
| 8        | 328              | 0 Point    |               | 252 c.1716+252  | 0   | 0              |
| 9        | 129              | 1 Point    | Missense      | 259 c.259C>A    | 87  | 69 p.Pro87Thr  |
| 10       | 329              | 0 Point    |               | 265 c.*265A>G   | 0   | 0              |
| 11       | 187              | 1 Point    | Missense      | 290 c.290G>C    | 97  | 79 p.Gly97Ala  |
| 12       | 330              | 0 Point    |               | 296 c.*296G>C   | 0   | 0              |
| 13<br>14 | 230              | 2 Point    | Missense      | 296 c.296C>A    | 99  | 81 p.Ser99Tyr  |
| 15       | 36               |            | n Frameshift  | 301 c.301_307d  | 0   | 0              |
| 16       | 114              | 1 Point    | Missense      | 302 c.302A>G    | 101 | 83 p.Lys101Ar  |
| 17       | 8                | 5 Point    | Nonsense      | 316 c.316C>T    | 101 | 88 p.Gln106*   |
| 18       | 364              | 1 Deletion | Nonsense      | 325 c.325+2del: | 0   | 0              |
| 19       | 135              | 11 Point   | Missense      | 325 c.325G>A    | 109 | 91 p.Ala109Th  |
| 20<br>21 | 341              |            | Missense      |                 |     | •              |
| 22       |                  | 4 Point    | Fuere coloift | 326 c.326-1G>A  | 0   | 0              |
| 23       | 346              | 0 Deletion | Frameshift    | 327 c.327delT   | 0   | 0              |
| 24       | 126              | 2 Point    | Missense      | 328 c.328T>G    | 110 | 92 p.Cys110Gl  |
| 25       | 231              | 2 Point    | Missense      | 359 c.359T>C    | 120 | 102 p.Met120T  |
| 26<br>27 | 60               | 7 Point    | Missense      | 365 c.365G>A    | 122 | 104 p.Gly122As |
| 27<br>28 | 104              | 3 Point    | Nonsense      | 400 c.400C>T    | 134 | 116 p.Gln134*  |
| 29       | 58               | 61 Point   | Nonsense      | 403 c.403G>T    | 135 | 117 p.Glu135*  |
| 30       | 105              | 4 Point    | Nonsense      | 408 c.408C>A    | 136 | 118 p.Cys136*  |
| 31       | 121              | 5 Point    | Missense      | 419 c.419G>A    | 140 | 122 p.Cys140Ty |
| 32       | 161              | 2 Point    | Missense      | 422 c.422C>T    | 141 | 123 p.Thr141M  |
| 33       | 304              | 0 Point    | Silent        | 423 c.423G>A    | 141 | 123 p.Thr141=  |
| 34<br>35 | 353              | 3 Point    | Missense      | 428 c.428A>C    | 143 | 125 p.Asp143Al |
| 36       | 39               | 0 Point    | Silent        | 429 c.429C>T    | 143 | 125 p.Asp143=  |
| 37       | 232              | 4 Point    | Missense      | 434 c.434A>G    | 145 | 127 p.His145Ar |
| 38       | 20               | 22 Point   | Nonsense      | 438 c.438C>A    | 146 | 128 p.Cys146*  |
| 39       | 138              | 6 Point    | Missense      | 449 c.449C>T    | 150 | 132 p.Thr150M  |
| 40       | 29               | 4 Point    | Missense      | 452 c.452A>C    | 151 | 133 p.Tyr151Se |
| 41<br>42 | 139              | 2 Point    | Missense      | 452 c.452A>G    | 151 | 133 p.Tyr151Cy |
| 43       | 21               | 2 Point    | Missense      | 454 c.454G>C    | 152 | 134 p.Ala152Pr |
| 44       | 94               | 1 Point    | Missense      | 484 c.484C>T    | 162 | 144 p.Arg162Cy |
| 45       | 86               | 0 Point    |               | 485 c.485+23G>  | 0   | 0              |
| 46       | 342              | 0 Point    |               | 485 c.485+1G>/  | 0   | 0              |
| 47<br>48 | 70               | 0 Point    |               | 485 c.485+5G>(  | 0   | 0              |
| 49       | 317              | 0 Point    |               | 485 c.485+122T  | 0   | 0              |
| 50       | 318              | 0 Point    |               | 485 c.485+181T  | 0   | 0              |
| 51       | 80               | 0 Point    |               | 486 c.486-431G  | 0   | 0              |
| 52       | 319              | 0 Point    |               | 486 c.486-88T>  | 0   | 0              |
| 53       | 320              | 0 Point    |               | 486 c.486-181C  | 0   | 0              |
| 54<br>55 | 87               | 0 Point    |               | 486 c.486-361C  | 0   | 0              |
| 56       | 71               | 3 Point    |               | 486 c.486-2A>G  | 0   | 0              |
| 57       | 238              | 3 Point    | Missense      | 518 c.518G>A    | 173 | 155 p.Gly173Gl |
| 58       | 238<br>97        | 1 Point    | Missense      | 569 c.569T>C    | 190 | 172 p.Leu190Pr |
| 59       | 69               | 6 Point    | 14113351135   | 595 c.595+3A>(  | 0   | 0              |
| 60       | 343              | 1 Point    |               | 596 c.596-8T>A  | 0   | 0              |
|          | J <del>-</del> J | I I OIIIL  |               | 330 C.330 017A  | J   | J              |

| 163 | 1  | Point       | Missense   | 596   | c.596C>T      | 199 | 181 | p.Ala199Va  |
|-----|----|-------------|------------|-------|---------------|-----|-----|-------------|
| 22  | 2  | Point       | Missense   | 599 ( | c.599G>A      | 200 | 182 | p.Cys200Ty  |
| 336 | 1  | Point       | Missense   | 599 ( | c.599G>C      | 200 | 182 | p.Cys200Se  |
| 165 | 2  | Point       | Missense   | 604   | c.604A>G      | 202 | 184 | p.Arg202Gl  |
| 123 | 1  | Point       | Missense   | 616   | c.616T>C      | 206 | 188 | p.Pro206Se  |
| 119 | 2  | Deletion    | Inframe    | 644 ( | c.644_649d    | 0   | 0   | p.lle215_As |
| 234 | 0  | Point       | Missense   | 646   | c.646G>A      | 216 | 198 | p.Asp216As  |
| 11  | 1  | Point       | Nonsense   | 682 ( | c.682C>T      | 228 | 210 | p.Arg228*   |
| 23  | 4  | Point       | Missense   | 688   | c.688T>C      | 230 | 212 | p.Cys230Ar  |
| 222 | 4  | Point       | Missense   | 688   | c.688T>A      | 230 | 212 | p.Cys230Se  |
| 349 | 1  | Point       | Missense   | 695 ( | c.695A>C      | 232 | 214 | p.His232Pro |
| 32  | 3  | Point       | Missense   | 716   | c.716T>C      | 239 | 221 | p.Phe239S€  |
| 209 | 1  | Insertion   | Frameshift | 717   | c.717insT     | 0   | 0   |             |
| 275 | 0  | Point       | Missense   | 723 ( | c.723C>G      | 241 | 223 | p.Phe241Le  |
| 101 | 2  | Point       | Missense   | 728 ( | c.728C>T      | 243 | 225 | p.Ser243Ph  |
| 155 | 3  | Point       | Nonsense   | 730 ( | c.730C>T      | 244 | 226 | p.Gln244*   |
| 64  | 0  | Point       | Missense   | 731 ( | c.731A>G      | 244 | 226 | p.Gln244Ar  |
| 41  | 8  | Point       | Missense   | 738 ( | c.738G>C      | 246 | 228 | p.Trp246Cy  |
| 95  | 9  | Point       | Nonsense   | 738 ( | c.738G>A      | 246 | 228 | p.Trp246*   |
| 140 | 1  | Point       | Nonsense   | 751   | c.751C>T      | 251 | 233 | p.Gln251*   |
| 25  | 0  | Point       | Missense   | 755 ( | c.755G>T      | 252 | 234 | p.Arg252lle |
| 235 | 1  | Point       | Missense   | 755 ( | c.755G>A      | 252 | 234 | p.Arg252Ly  |
| 141 | 2  | Point       | Missense   | 756   | c.756A>T      | 252 | 234 | p.Arg252Se  |
| 52  | 2  | Point       | Missense   | 764   | c.764G>A      | 255 | 237 | p.Cys255Ty  |
| 253 | 1  | Deletion    | Frameshift | 769   | c.769delC     | 0   | 0   |             |
| 128 | 2  | Point       | Missense   | 783   | c.783G>C      | 261 | 243 | p.Glu261As  |
| 115 | 2  | Point       | Missense   | 788   | c.788G>A      | 263 | 245 | p.Gly263Gl  |
| 63  | 2  | Point       | Missense   | 797   | c.797G>A      | 266 | 248 | p.Ser266As  |
| 55  | 0  | Point       | Silent     | 801   | c.801A>G      | 267 | 249 | p.Thr267=   |
| 30  | 5  | Point       | Missense   | 802 ( | c.802C>T      | 268 | 250 | p.Arg268Cy  |
| 210 | 2  | Point       | Missense   | 803 ( | c.803G>A      | 268 | 250 | p.Arg268Hi  |
| 40  | 4  | Point       | Missense   | 809   | c.809A>T      | 270 | 252 | p.Lys270lle |
| 255 | 1  | Point       | Missense   | 829   | c.829G>A      | 277 | 259 | p.Gly277Se  |
| 42  | 20 | Point       | Nonsense   | 841 ( | c.841C>T      | 281 | 263 | p.Gln281*   |
| 81  | 0  | Point       | Silent     | 861   | c.861C>T      | 287 | 269 | p.lle287=   |
| 220 | 0  | Deletion    | Frameshift | 865 d | c.865+2del    | 0   | 0   |             |
| 99  | 1  | Point       | Missense   | 865 ( | c.865G>C      | 289 | 271 | p.Val289Le  |
| 65  | 22 | Point       | Missense   | 901   | c.901T>C      | 301 | 283 | p.Phe301L€  |
| 59  | 1  | Deletion    | Frameshift | 907   | c.907delG     | 0   | 0   |             |
| 116 | 1  | Deletion    | Frameshift | 918   | c.918delG     | 0   | 0   |             |
| 82  | 0  | Point       | Missense   | 922 ( | c.922A>T      | 308 | 290 | p.lle308Ph€ |
| 118 | 0  | Point       | Missense   | 923 ( | c.923T>C      | 308 | 290 | p.lle308Thr |
| 166 | 1  | Duplication | rrameshift | 933 ( | c.933_951d    | 0   | 0   |             |
| 354 | 4  | Point       | Missense   | 938 ( | c.938G>T      | 313 | 295 | p.Ser313lle |
| 236 | 1  | Point       | Nonsense   | 943 ( | c.943G>T      | 315 | 297 | p.Glu315*   |
| 122 |    | Point       | Missense   |       | c.943G>A      | 315 |     | p.Glu315Ly  |
| 2   | 0  | Point       | Missense   |       | c.959T>C      | 320 |     | p.Leu320Pr  |
| 142 |    | Deletion    | Frameshift |       | c.961_962d    | 0   |     | p.Cys321Hi  |
| 3   |    | Point       | Missense   |       | _<br>c.965C>T | 322 |     | p.Thr322lle |
| 194 |    | Point       | Missense   |       | c.973G>T      | 325 |     | p.Val325Ph  |
|     | _  |             |            | - '   |               |     |     |             |

| 2        | 5          | 4 Point         | Missense             | 976 c.976C>T                     | 326                                                                        | 308 p.Arg326Cy  |
|----------|------------|-----------------|----------------------|----------------------------------|----------------------------------------------------------------------------|-----------------|
| 3        | 240        | 1 Point         | Nonsense             | 981 c.981C>A                     | 327                                                                        | 309 p.Cys327*   |
| 4        | 169        | 1 Point         | Missense             | 992 c.992C>T                     | 331                                                                        | 313 p.Thr331lle |
| 5        | 54         | 0 Point         | Missense             | 1016 c.1016G>T                   | 339                                                                        | 321 p.Cys339Ph  |
| 6<br>7   | 4          | 4 Point         | Missense             | 1021 c.1021G>A                   | 341                                                                        | 323 p.Glu341Ly  |
| 8        | 67         | 2 Duplicatio    | n Frameshift         | 1026 c.1026dup(                  | 0                                                                          | 0               |
| 9        | 34         | 3 Point         | Silent               | 1026 c.1026G>T                   | 342                                                                        | 324 p.Gly342=   |
| 10       | 239        | 1 Point         |                      | 1028 c.1028+5G>                  | 0                                                                          | 0               |
| 11       | 72         | 0 Point         |                      | 1029 c.1029-2A>                  | 0                                                                          | 0               |
| 12<br>13 | 361        | 1 Point         | Nonsense             | 1033 c.1033A>T                   | 345                                                                        | 327 p.Lys345*   |
| 14       | 12         | 2 Point         | Missense             | 1060 c.1060G>A                   | 354                                                                        | 336 p.Gly354Ar  |
| 15       | 37         | 2 Deletion      | Frameshift           | 1072 c.1072delA                  | 0                                                                          | 0               |
| 16       | 143        | 1 Point         | Missense             | 1077 c.1077A>G                   | 359                                                                        | 341 p.lle359Me  |
| 17       | 170        | 1 Point         | Missense             | 1079 c.1079T>C                   | 360                                                                        | 342 p.Leu360Pr  |
| 18<br>19 | 144        | 1 Point         | Missense             | 1084 c.1084G>A                   | 362                                                                        | 344 p.Gly362Ar  |
| 20       | 223        | 1 Point         | Missense             | 1102 c.1102G>A                   | 368                                                                        | 350 p.Gly368Ar  |
| 21       | 14         | 1 Point         | Missense             | 1103 c.1103G>C                   | 368                                                                        | 350 p.Gly368Ala |
| 22       | 18         | 1 Point         | Missense             | 1103 c.1103G>A                   | 368                                                                        | 350 p.Gly368Gl  |
| 23       | 100        | 1 Point         | Missense             | 1106 c.1106A>C                   | 369                                                                        | 351 p.Tyr369Se  |
| 24<br>25 | 360        | 3 Point         | Silent               | 1107 c.1107C>T                   | 369                                                                        | 351 p.Tyr369=   |
| 25<br>26 | 43         | 8 Point         | Nonsense             | 1107 c.1107C>A                   | 369                                                                        | 351 p.Tyr369*   |
| 27       | 145        | 1 Point         | Missense             | 1118 c.1118T>C                   | 373                                                                        | 355 p.Leu373Se  |
| 28       | 146        | 1 Point         | Missense             | 1120 c.1120T>C                   | 374                                                                        | 356 p.Cys374Ar  |
| 29       | 108        | 2 Point         | 14113361136          | 1135 c.1135+1G>                  | 0                                                                          | 0               |
| 30       | 147        | 1 Point         | Missense             | 1135 c.1135+5G>                  | 378                                                                        | 360             |
| 31<br>32 | 110        | 6 Deletion      | Frameshift           | 1136 c.1136-4de                  | 0                                                                          | 0               |
| 33       | 171        | 1 Point         | Missense             | 1165 c.1165G>A                   | 389                                                                        | 371 p.Val389lle |
| 34       | 196        | 1 Point         | Missense             | 1169 c.1169G>C                   | 390                                                                        | 372 p.Gly390Ala |
| 35       | 241        | 1 Point         | Missense             | 1178 c.1178C>T                   | 393                                                                        | 375 p.Ala393Va  |
| 36<br>37 | 98         | 2 Point         | Missense             | 1186 c.1186C>T                   | 396                                                                        | 378 p.Arg396Cy  |
| 37<br>38 | 66         | 0 Point         | Silent               | 1191 c.1191T>C                   | 397                                                                        | 379 p.Gly397=   |
| 39       | 252        | 0 Point         | Missense             | 1191 c.11917>C                   | <b>399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399</b> | 381 p.Trp399Ar  |
| 40       | 224        | 1 Point         | Missense             | 1196 C.1196G>T                   | 399                                                                        | 381 p.Trp399Le  |
| 41       | 106        | 3 Point         | Missense             | 1199 c.1199C>T                   | 400                                                                        | 382 p.Pro400Le  |
| 42       | 96         | 1 Point         | Nonsense             | 1202 c.1202G>A                   | 401                                                                        | 383 p.Trp401*   |
| 43<br>44 | 15         | 3 Point         | Missense             | 1211 c.1211C>A                   | 404                                                                        | 386 p.Thr404As  |
| 45       | 173        | 1 Point         | Missense             | 1217 c.1217C>A                   | 404                                                                        | 388 p.His406Pr  |
| 46       | 26         | 1 Point         | Missense             | 1217 c.1217A>C                   | 407                                                                        | 389 p.Thr407Pr  |
| 47       | 256        | 1 Point 1 Point | Missense             | 1219 C.1219A>C<br>1222 C.1222A>C | 407                                                                        | 390 p.Thr408Pr  |
| 48       | 363        | 1 Point         | Nonsense             | 1234 c.1234C>T                   | 412                                                                        | 394 p.Gln412*   |
| 49<br>50 | 51         | 17 Point        |                      | 1247 c.1247G>A                   | 416                                                                        | 398 p.Cys416Ty  |
| 51       | 242        | 0 Point         | Missense<br>Missense | 1247 C.1247G>A<br>1252 C.1252G>A | 418                                                                        | 400 p.Gly418Se  |
| 52       | 16         |                 |                      |                                  |                                                                            |                 |
| 53       | 243        | 8 Point         | Missense<br>Missense | 1253 c.1253G>T                   | 418<br>419                                                                 | 400 p.Gly418Va  |
| 54       |            | 1 Point         |                      | 1255 c.1255T>G                   |                                                                            | 401 p.Ser419Ala |
| 55<br>56 | 148        | 2 Point         | Nonsense             | 1270 c.1270C>T                   | 424<br>425                                                                 | 406 p.Gln424*   |
| 57       | 174        | 1 Point         | Missense             | 1275 c.1275G>C                   | 425<br>426                                                                 | 407 p.Trp425Cy  |
| 58       | 300<br>175 | 1 Point         | Missense             | 1277 c.1277T>C                   | 426<br>428                                                                 | 408 p.lle426Thr |
| 59       | 175<br>164 | 2 Point         | Missense             | 1283 c.1283C>T                   | 428                                                                        | 410 p.Thr428lle |
| 60       | 164        | 3 Point         | Missense             | 1288 c.1288G>A                   | 430                                                                        | 412 p.Ala430Th  |
|          | 244        | 1 Point         | Missense             | 1288 c.1288G>T                   | 430                                                                        | 412 p.Ala430Se  |

| _   | _  |           |              |      |                          |            |                  |
|-----|----|-----------|--------------|------|--------------------------|------------|------------------|
| 6   |    | Point     | Missense     |      | c.1289C>T                | 430        | •                |
| 176 |    | Point     |              |      | c.1304+120               | 0          |                  |
| 38  |    | Point     |              |      | c.1305-10T               | 0          |                  |
| 357 |    | Deletion  | Frameshift   |      | c.1322delT               | 0          | -                |
| 347 |    | Deletion  | Frameshift   |      | c.1325delT               | 0          | ' '              |
| 156 |    | Point     | Missense     |      | c.1327C>T                | 443        | ,                |
| 103 |    | Point     | Missense     |      | c.1334A>G                | 445        |                  |
| 217 |    | Point     | Missense     |      | c.1336A>G                | 446        | •                |
| 19  | 1  | Point     | Missense     | 1378 | c.1378T>G                | 460        | •                |
| 46  | 1  | Point     | Nonsense     | 1393 | c.1393G>T                | 465        | 447 p.Glu465*    |
| 177 | 4  | Point     | Missense     | 1394 | c.1394C>G                | 451        | 433 p.Gln451Gl   |
| 62  | 11 | Point     | Missense     | 1432 | c.1432G>A                | 478        | 460 p.Gly478Ar   |
| 348 | 0  | Deletion  | Frameshift   | 1448 | c.1448delT               | 0          | 0                |
| 351 | 1  | Point     | Missense     | 1448 | c.1448T>C                | 483        | 465 p.Leu483Se   |
| 31  | 3  | Point     | Missense     | 1478 | c.1478C>T                | 493        | 475 p.Thr493Ile  |
| 344 | 0  | Point     | Missense     | 1480 | c.1480+3A>               | 0          | 0                |
| 178 | 1  | Point     | Missense     | 1480 | c.1480+2T>               | 494        | 476              |
| 322 | 0  | Point     |              | 1481 | c.1481-215               | 0          | 0                |
| 324 | 0  | Point     |              | 1481 | c.1481-34G               | 0          | 0                |
| 303 | 0  | Point     |              | 1481 | c.1481-188               | 0          | 0                |
| 149 | 2  | Point     | Nonsense     | 1489 | c.1489C>T                | 497        | 479 p.Arg497*    |
| 246 | 1  | Point     | Missense     | 1498 | c.1498T>C                | 500        | ·                |
| 150 | 1  | Point     | Missense     | 1500 | c.1500C>G                | 500        | 482 p.Cys500Tr   |
| 180 | 1  | Point     | Missense     | 1507 | c.1507T>C                | 503        |                  |
| 53  | 2  | Point     | Missense     | 1531 | c.1531T>C                | 511        | 493 p.Tyr511His  |
| 127 | 4  | Point     | Missense     |      | c.1545G>T                | 515        | • •              |
| 214 |    | Point     | Missense     |      | c.1546G>A                | 516        |                  |
| 47  |    | Insertion | Frameshift   |      | c.1556insG               | 0          | •                |
| 44  |    | Point     | Nonsense     |      | c.1556G>A                | 519        |                  |
| 33  |    | Point     | Missense     |      | c.1557G>C                | 519        | • •              |
| 215 |    |           | n Frameshift |      | c.1560dup(               | 0          |                  |
| 331 |    | Point     | Missense     |      | c.1562A>G                | 521        |                  |
| 84  |    |           | n Frameshift |      | c.1574-93d               | 0          |                  |
| 325 |    | Point     |              |      | c.1576+510               | 0          | _                |
| 35  |    | Point     | Missense     |      | c.1608G>C                | 536        |                  |
| 50  |    | Point     | Missense     |      | c.1613C>T                | 538        | • •              |
| 262 |    | Point     | Missense     |      | c.1619T>G                | 540        | •                |
| 167 |    | Point     | Missense     |      | c.1634G>A                | 545        | · ·              |
| 280 |    | Point     | Missense     |      | c.1682G>A                | 561        |                  |
| 247 |    | Point     | Missense     |      | c.1684G>A                | 562        | •                |
| 117 |    | Point     | Missense     |      | c.1693G>A                | 565        | • •              |
| 332 |    | Point     | Missense     |      | c.1694T>A                | 454        | ·                |
| 85  |    | Point     | Silent       |      | c.1707C>T                | 569        |                  |
| 45  |    | Deletion  | Sheric       |      | c.1714_171               | 0          | • •              |
| 48  |    | Point     |              |      | c.1714_171<br>c.1716+1G> | 0          |                  |
| 326 |    | Point     |              |      | c.1716+248               | 0          | -                |
| 83  |    | Point     |              |      | c.1710+248               | 0          |                  |
| 206 |    | Point     |              |      | c.1717-48A               | 573        |                  |
| 49  |    | Point     | Missense     |      | c.1717-2A>               | 573<br>573 |                  |
| 350 |    | Point     | Missense     |      | c.1718G>A                | 574        |                  |
| 220 | 1  | r OIIIL   | ואווסטבווטב  | 1/21 | C.1/21A/C                | 5/4        | - 330 μ.Αδμ3/4AI |

|                                 |                   | _ |
|---------------------------------|-------------------|---|
|                                 |                   |   |
|                                 |                   |   |
| 1                               |                   |   |
| 2                               |                   |   |
| 3<br>4<br>5<br>6<br>7<br>8<br>9 |                   |   |
| 3                               |                   |   |
| 4                               |                   |   |
| 5                               |                   |   |
| 6                               |                   |   |
| _                               |                   |   |
| 7                               |                   |   |
| 8                               |                   |   |
| a                               |                   |   |
| 2                               | _                 |   |
|                                 |                   |   |
| 1                               | 1                 |   |
| 1                               | 2                 |   |
| 1                               | 2<br>3            |   |
| ı                               | 3                 |   |
| 1                               | 4                 |   |
| 1                               | 5                 |   |
| 1                               | 6                 |   |
|                                 | <u> </u>          |   |
| 1                               | 7                 |   |
| 1                               | 8                 |   |
| 1                               | a                 |   |
| '                               | フ<br>ヘ            |   |
| 2                               | U                 |   |
| 2                               | 1                 |   |
| 2                               | 2                 |   |
| 2                               | 2                 |   |
| 2                               | 3                 |   |
| 2                               | 4                 |   |
| 2                               | 5                 |   |
| <u>-</u>                        | ۷                 |   |
| _                               | 0                 |   |
| 2                               | 7                 |   |
| 2                               | 8                 |   |
| 2                               | 56789012345678901 |   |
| _                               | 9                 |   |
| 3                               | 0                 |   |
| 3                               | 1                 |   |
| 3                               | ว                 |   |
| 2                               | _                 |   |
| 3                               | 3                 |   |
| 3                               | 1<br>2<br>3<br>4  |   |
| 3                               | 5                 |   |
|                                 |                   |   |
|                                 | 6                 |   |
| 3                               | 7                 |   |
| 3                               | 8                 |   |
|                                 | 9                 |   |
|                                 |                   |   |
| 4                               | 0                 |   |
| 4                               | 1                 |   |
| 4                               |                   |   |
| 4                               |                   |   |
|                                 |                   |   |
| 4                               | 4                 |   |
| 4                               | 5                 |   |
| 4                               |                   |   |
|                                 |                   |   |
| 4                               | 7                 |   |
| 4                               | 8                 |   |
|                                 | 9                 |   |
|                                 |                   |   |
|                                 | 0                 |   |
| 5                               | 1                 |   |
| 5                               |                   |   |
|                                 |                   |   |
| J                               |                   |   |
|                                 | 4                 |   |
| 5                               | 5                 |   |
|                                 | 6                 |   |
|                                 |                   |   |
| 5                               |                   |   |
| 5                               | 8                 |   |
| _                               | -                 |   |

| 248 | 0 Point | Missense | 1721 c.1721A>G | 574 | 556 p.Asp574Gl  |
|-----|---------|----------|----------------|-----|-----------------|
| 263 | 2 Point | Missense | 1741 c.1741T>C | 581 | 563 p.Cys581Ar  |
| 151 | 1 Point | Missense | 1742 c.1742G>T | 581 | 563 p.Cys581Ph  |
| 17  | 2 Point | Missense | 1760 c.1760G>C | 587 | 569 p.Trp587Se  |
| 301 | 1 Point | Missense | 1775 c.1775T>C | 592 | 574 p.lle592Thr |
| 9   | 8 Point | Missense | 1778 c.1778C>T | 593 | 575 p.Thr593M   |
| 249 | 3 Point | Missense | 1782 c.1782C>A | 594 | 576 p.Ser594Ar  |
| 168 | 1 Point | Missense | 1786 c.1786G>A | 596 | 578 p.Gly596Cy  |
| 181 | 1 Point | Missense | 1789 c.1789G>A | 597 | 579 p.Glu597Ly  |
| 299 | 1 Point | Missense | 1796 c.1796G>A | 599 | 581 p.Cys599Ty  |
| 13  | 2 Point | Nonsense | 1797 c.1797T>A | 599 | 581 p.Cys599*   |
| 56  | 0 Point | Silent   | 1812 c.1812G>T | 604 | 586 p.Arg604=   |
| 250 | 1 Point | Missense | 1822 c.1822T>C | 608 | 590 p.Tyr608His |
| 27  | 2 Point | Nonsense | 1824 c.1824C>A | 608 | 590 p.Tyr608*   |
| 257 | 1 Point | Missense | 1832 c.1832T>G | 611 | 593 p.Val611Gly |
| 57  | 0 Point | Silent   | 1839 c.1839G>A | 613 | 595 p.Glu613=   |
| 311 | 0 Point | Missense | 1843 c.1843G>A | 615 | 597 p.Val615Me  |
| 111 | 1 Point | Missense | 1849 c.1849T>G | 617 | 599 p.Trp617Ar  |
| 28  | 3 Point | Missense | 1853 c.1853T>C | 618 | 600 p.lle618Ser |
| 260 | 1 Point | Missense | 1856 c.1856T>C | 619 | 601 p.Leu619Pr  |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |
|     |         |          |                |     |                 |

1 Domain 2 3 UTR 5 4 UTR 5 5 **Promoter Region** 6 Intronic 7 8 **Promoter Region** 9 **Promoter Region** 10 **Promoter Region** 11 **Promoter Region** 12 Intronic 13 **Promoter Region** 14 15 16 Serine Protease 17 Apple 2 18 Apple 4 19 Serine Protease 20 21 Serine Protease 22 Serine Protease 23 Signal Peptide 24 Signal Peptide 25 Signal Peptide 26 27 Signal Peptide 28 Linker 29 Linker 30 Linker 31 32 Linker 33 Apple 1 34 Apple 1 35 Apple 1 36 Apple 1 37 Apple 1 38 39 Apple 1 40 Apple 1 41 Apple 1 42 Apple 1 43 44 Apple 1 45 Apple 1 46 Apple 1 47 Apple 1 48 Apple 1 49 50 Apple 1 51 Apple 1 52 Apple 1 53 Apple 1 54 Apple 1 55 56 Apple 1 57 Apple 1 58 Intronic 59 Intronic 60 Intronic

TO RECEIVE AND A STATE OF THE PROPERTY OF THE

TO RECEIVE WAY

Apple 3

Apple 4

TO RECEIVE

| 1        | Apple 4         |
|----------|-----------------|
| 2 3      | Apple 4 Apple 4 |
| 4        | Apple 4         |
| 5        | Apple 4         |
| 6        | Apple 4         |
| 7        | • •             |
| 8<br>9   | Apple 4         |
| 10       | Apple 4         |
| 11       | Apple 4         |
| 12       | Apple 4         |
| 13       | Apple 4         |
| 14<br>15 | Apple 4         |
| 16       | Apple 4         |
| 17       | Apple 4         |
| 18       | Apple 4         |
| 19       | Apple 4         |
| 20       | Apple 4         |
| 21<br>22 | Apple 4         |
| 23       | Apple 4         |
| 24       | Apple 4         |
| 25       | Apple 4         |
| 26       | Apple 4         |
| 27       | Apple 4         |
| 28<br>29 | Apple 4         |
| 30       | Intronic        |
| 31       | Intronic        |
| 32       | Intronic        |
| 33       | Serine Protease |
| 34       | Serine Protease |
| 35<br>36 | Serine Protease |
| 37       | Serine Protease |
| 38       | Serine Protease |
| 39       | Serine Protease |
| 40       | Serine Protease |
| 41<br>42 | Serine Protease |
| 43       | Serine Protease |
| 44       | Serine Protease |
| 45       | Serine Protease |
| 46       | Serine Protease |
| 47       | Serine Protease |
| 48<br>49 | Serine Protease |
| 50       | Serine Protease |
| 51       | Serine Protease |
| 52       | Serine Protease |
| 53       | Serine Protease |
| 54       |                 |
| 55<br>56 | Serine Protease |
| 57       | Serine Protease |
| 58       | Serine Protease |
| 59       | Serine Protease |
| 60       | Serine Protease |
|          | Serine Protease |

1 Serine Protease 2 3 Intronic 4 Intronic 5 Serine Protease 6 Serine Protease 7 Serine Protease 8 9 Serine Protease 10 Serine Protease 11 Serine Protease 12 Serine Protease 13 Serine Protease 14 15 Serine Protease 16 Serine Protease 17 Serine Protease 18 Serine Protease 19 Serine Protease 20 21 Serine Protease 22 Intronic 23 Intronic 24 Intronic 25 Serine Protease 26 27 Serine Protease 28 Serine Protease 29 Serine Protease 30 Serine Protease 31 32 Serine Protease 33 Serine Protease 34 Serine Protease 35 Serine Protease 36 Serine Protease 37 38 Serine Protease 39 Serine Protease 40 Intronic 41 Intronic 42 Serine Protease 43 44 Serine Protease 45 Serine Protease 46 Serine Protease 47 Serine Protease 48 Serine Protease 49 50 Serine Protease 51 Serine Protease 52 Serine Protease 53 Serine Protease 54 Serine Protease 55 56 Intronic 57 Intronic 58 Serine Protease 59 Serine Protease 60 Serine Protease

Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease Serine Protease

