Mestrado em Estatística Inferência Bayesiana 1º semestre de 2020

## Distribuições a Priori

(Versão em preparação) Gustavo L. Gilardoni 2 de Abril de 2022

Conteúdo: prioris conjugadas, "prioris" impróprias, prioris informativas e não informativas.

Referências: Capítulo 3 do texto *The Bayesian Choice* de C. Robert, entre outros.

# 0 Introdução

#### Comentários gerais

- Os termos "a priori" e "a posteriori" não são conceitos absolutos. Eles dependem do contexto (o momento no tempo, ou mais precisamente o que a gente sabe que ocorreu)
- Suponha uma observação (x, y) com verossimilhança  $p(x, y \mid \theta) = p(x \mid \theta) p(y \mid x, \theta)$ .
  - $p(\theta \mid x) \propto p(\theta) p(x \mid \theta)$
  - $p(\theta \mid x, y) \propto p(\theta) p(x, y \mid \theta) \propto \{p(\theta) p(x \mid \theta)\} p(y \mid x, \theta)$
- A nota anterior sugere que pode-se (recomenda-se!) que as distribuições a priori sejam baseadas em informação proporcionada por experimentos anteriores, caso seja possível.
- Da mesma forma, a conveniência ou não de usar uma certa priori depende fortemente do problema sob estudo (veja a questão 12 da Lista 2!)
- Visto que  $p(\theta \mid x) \propto p(\theta) p(x \mid \theta)$ , devemos concentrar o esforço para especificar *elucidar* / *elicitate* a priori na região onde (esperamos que) a verossimilhança vai ser significativamente maior do que zero.

# 1 Familias Conjugadas

- Exponential family:  $p(x \mid \theta) \propto c(\theta) \exp\{\sum_{j=1}^{p} T_j(x) \eta_j(\theta)\};$
- Uma priori da forma  $p(\theta) \propto b(\theta) \exp\{\sum_{j=1}^{p} \alpha_j \eta_j(\theta)\}$  vai ser conjugada;
- Usualmente chamada a familia conjugada natural.
- Beta-Binomial, Multinomial-Dirichlet, Poisson-Gama, Exponencial-Gama (mais geral: Gama com  $\alpha$  fixo-Gama); Normal-Normal (variância conhecida), Normal-Normal-Gama (precisão desconhecida) etc.
- Priori conjugada fora de famílias exponenciais: Uniforme $(0,\theta)$ -Pareto

## 1.1 Inferência para a média de uma distribuição Normal: Variância conhecida

$$p(x_1, ..., x_n \mid \mu) \propto \exp\{-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2\}$$

$$p(\bar{x} \mid \mu) \propto \exp\left\{\frac{-n}{2\sigma^2}(\bar{x} - \mu)^2\right\}$$

Considere  $X_1, \ldots, X_n \mid \mu \stackrel{iid}{\sim} N(\mu, \sigma^2)$  com  $\sigma^2$  conhecida e suponha que a priori  $\mu \sim N(\mu_0, \tau^2)$ . Para calcular a distribuição a posteriori o seguinte Lema será muito útil.

**Lema 1.** Seja Y uma variável aleatória que toma valores em toda a reta real tal que a sua densidade é  $f(y) = k e^{-Q(y)}$ , onde k é uma constante que não depende de y e  $Q(y) = ay^2 + by + c$  (a > 0) é uma forma quadrática em y. Logo, Y segue uma distribuição Normal com média e variância

$$\mathbb{E}(Y) = -\frac{b}{2a} = -\frac{Q'(0)}{Q''(0)} \ e \ \operatorname{Var}(Y) = \frac{1}{2a} = \frac{1}{Q''(0)}.$$

Demonstração. Primeiro completamos quadrados,

$$ay^{2} + by + c = a \left(y + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a},$$

de forma que é possível escrever

$$f(y) = k' \exp \left\{ -a \left( y + \frac{b}{2a} \right)^2 \right\},$$

onde  $k' = k \exp\{c - b^2/(4a)\}$  continua sendo uma constante que não depende de y. Dessa forma, a densidade de y é proporcional a uma densidade Normal com média  $\mu = -\frac{b}{2a}$  e variância  $\sigma^2 = \frac{1}{2a}$  e, como é uma densidade, a constante de proporcionalidade tem que ser igual a um.

Retornando ao problema do início desta Seção, para achar a distribuição a posteriori note que (i)  $p(\mu) \propto \exp\{-\frac{1}{2\tau^2}(\mu-\mu_0)^2\}$  e (ii) como  $\bar{x} = \sum_{i=1}^n x_i$  é um estatístico suficiente e  $\bar{x} \mid \mu \sim \mathrm{N}(\mu, \sigma^2/n), \ p(x_1, \ldots, x_n \mid \mu) \propto p(\bar{x} \mid \mu) \propto \exp\{-\frac{n}{2\sigma^2}(\bar{x}-\mu)^2\}$  (aqui e em todo o exemplo " $\propto$ " significa "proporcional a menos de uma constante que não depende de  $\mu$ "). Logo,

$$p(\mu \mid x_1, \dots x_n) = \frac{p(\mu) p(x_1, \dots, x_n \mid \mu)}{\int_0^1 p(\mu) p(x_1, \dots, x_n \mid \mu) d\mu} \propto p(\mu) p(x_1, \dots, x_n \mid \mu) \propto p(\mu) p(\bar{x} \mid \mu)$$

$$\propto \exp\left\{-\frac{1}{2\tau^2} (\mu - \mu_0)^2\right\} \exp\left\{-\frac{n}{2\sigma^2} (\bar{x} - \mu)^2\right\}$$

$$\propto \exp\left\{-\left[\frac{1}{2\tau^2} (\mu - \mu_0)^2 + \frac{n}{2\sigma^2} (\bar{x} - \mu)^2\right]\right\}. (1)$$

Definindo  $Q(\mu) = \frac{1}{2\tau^2} (\mu - \mu_0)^2 + \frac{n}{2\sigma^2} (\bar{x} - \mu)^2$  e usando o Lema 1, segue que a distribuição a posteriori é Normal com média e variâncias dadas por

$$\mu^* = \mathbb{E}(\mu \mid x_1, \dots, x_n) = -\frac{Q'(0)}{Q''(0)} = \frac{\frac{1}{\tau^2} \mu_0 + \frac{n}{\sigma^2} \bar{x}}{\frac{1}{\sigma^2} + \frac{n}{\sigma^2}}$$
(2)

e

$$\tau^{*2} = \operatorname{Var}(\mu \mid x_1, \dots, x_n) = \frac{1}{Q''(0)} = \frac{1}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}.$$
 (3)

Algumas vezes na literatura Bayesiana a variância da distribución a priori é parametrizada pelo recíproco  $\phi = \tau^{-2}$ , denominada de precisão. De forma semelhante, a precisão da distribução amostral de  $\bar{x}$  é  $[Var(\bar{x} \mid \mu)]^{-1} = n/\sigma^2$ . Com essa nova terminologia, a equação (3) diz simplesmente que "a precisão a posteriori  $[Var(\mu \mid x_1, \dots, x_n)]^{-1}$  é igual a precisão a priori  $\tau^{-2}$  mais a precisão a mostral  $n/\sigma^2$ ". De forma semelhante, a equação (2) diz que "a média a posteriori é uma média ponderada da média a priori  $\mu_0$  e da média a mostral  $\bar{x}$  com pesos proporcionais as <math>respectivas precisões". Por exemplo, quanto maior for o tamanho amostral n, se  $\tau^2$  e  $\sigma^2$ , mais perto de  $\bar{x}$  vai estar a média a posteriori.

**Exemplo 1.** Um objeto foi pesado n=10 vezes numa balança retornando média  $\bar{x}=3.53$ g. Segundo o fabricante da balança, para esse tipo de objetos a balança é muito precisa e o desvio padrão das pesadas deve ser da ordem de  $\sigma=0.2$ g.

Uma outra balança, menos precisa, também estava disponível e nela o objeto foi pesado m=50 vezes retornando média e desvio padrão iguais a  $\bar{y}=3.25$  e  $s_y=0.5$ g.

Construa um modelo para analisar esses dados e com base nele obtenha um intervalo que contem  $\mu$  com probabilidade a posteriori igual a 95%.

Podemos usar a informação da balança menos precisa para justificar uma distribuição a priori  $\mu \sim \text{Normal}(3.25,0.5^2)$  (formalmente, a distribuição a posteriori resultante de usar uma priori não informativa com os dados da balança menos precisa seria t de Student com 49 graus de liberdade—veja as Seções 1.2.1 e 1.2.2 abaixo, mas como n é grande, a distribuição Normal é uma boa aproximação). Logo, podemos tomar  $\mu_0 = \bar{y} = 3.25$  e  $\tau^2 = s_y^2 = 0.5^2$ . Usando o valor de  $\bar{x} = 3.53$  usamos as equações (2) e (3) para calcular

$$\mu^* = \frac{\frac{1}{0.5^2} \left(3.25\right) + \frac{10}{0.2^2} 3.53}{\frac{1}{0.5^2} + \frac{10}{0.2^2}} \doteq 3.5256$$

e

$$\tau^{*2} = \frac{1}{\frac{1}{0.5^2} + \frac{10}{0.2^2}} \doteq (0.0627)^2.$$

Assim a posteriori,  $\mu \mid x_1, \dots x_n \sim \text{Normal}(3.5256, 0.0627^2)$ . O intervalo desejado é então

$$\mu^* \pm z_{\alpha/2} \tau^* \doteq 3.5256 \pm (1.96) (0.0627) \doteq (3.4026; 3.6486)$$
.



Figura 1: Versossimilhança e densidades a priori e a posteriori para o Exemplo 1.

A Figura 1 mostra a densidade a priori, a verossimilhança e a densidade a posteriori. Note que a distribuição a priori contem muita menos informação que a priori, por isso a moda da densidade a posteriori fica perto da moda da verossimilhança (em outras palavras,  $n/\sigma^2 = 250$  é grande cpm respeito a  $1/\tau^2 = 4$ , veja a equação (2)). Ainda assim, a distribuição a posteriori é mais precisa tanto que a verossimilhança quanto que a priori (esse é uma consequência do modelo Normal-Normal, veja a equação (3); não ocorre necessariamente para outros modelos).

#### 1.1.1 Distribuição a priori não informativa

Na situação descrita nesta Seção tem duas formas de pensar numa distribuição a priori pouco informativa. Uma, é fazer a variância  $\tau^2$  da distribuição a priori muito grande. Em particular, quando  $\tau^2 \to \infty$ , tomando limites nas equações (2) e (3), vemos que a distribuição a posteriori tende a uma Normal com média  $\bar{x}$  e variância  $\sigma^2/n$ , que depende somente da verossimilhança (veja que o valor de  $\mu_0$  também some uma vez que fazemos  $\tau^2 \to \infty$ ). Outra forma de proceder é pensar numa "distribuição uniforme" para  $\mu$ , algo assim como especificar em (1)  $p(\mu)$  igual a uma constante c > 0 (como a constante c no numerador cancela com a do denominador, usualmente escreve-se  $p(\mu) \propto 1$ ). Porém, a distribuição uniforme não está definida num intervalo infinito como a reta real ou, em outras palavras, não é possível normalizar a densidade para que integre um pois  $\int_{-\infty}^{\infty} c \, d\mu = \infty$  (lembre da discussão sobre  $w(\theta)$  e  $w^*(\theta) = w(\theta)/\int w(\theta) \, d\theta$  na Seção ??), de forma que essa possibilidade está, ao menos formalmente, fora do paradigma Bayesiano. Ainda, é possível pôr  $p(\mu) \propto 1$  na equação (1) e, formalmente, fazer as mesmas contas que faríamos com uma distribuição a priori "verdadeira". Se o fizermos,

chegaríamos a que

$$p(\mu \mid x_1, \dots, x_n) \propto p(x_1, \dots, x_n \mid \theta) \propto p(\bar{x} \mid \theta) \propto \exp\{-\frac{n}{2\sigma^2}(\mu - \bar{x})^2\},$$

o que implica que  $\mu \mid x_1, \dots, x_n \sim \text{Normal}(\bar{x}, \sigma^2/n)$ , que é o mesmo resultado ao qual chegamos fazendo  $\tau^2 \to \infty$ .

Na literatura, quando se usa uma "distribuição a priori" que, como no caso anterior, tem integral infinita, fala-se de uma "distribuição a priori imprópria". As aspas foram usadas acima pois, pelo menos na opinião do autor destas notas, distribuições a priori impróprias não são distribuições a priori. De qualquer forma, distribuições impróprias ou com variância infinita podem ser apropriadas em situações nas quais deseja-se usar uma distribuição a priori relativamente "achatada" (flat) na região onde a verossimilhança é significativamente diferente de zero. No caso particular desta seção, a verossimilhança  $p(x_1, \ldots, x_n | \mu) \propto \exp\{-n(\mu - \bar{x})^2\}$  comporta-se semelhante a uma densidade Normal e decresce muito rapidamente a zero quando  $\mu$  se afasta de  $\bar{x}$ . Na maioria das situações práticas, o valor da densidade a priori  $p(\mu)$  para valores de  $\mu$  que distam de  $\bar{x}$  (digamos) mais do que 3 ou 4 vezes o desvio padrão  $\sigma/\sqrt{n}$  é irrelevante. Nessas situações uma distribuição a priori imprópria  $p(\mu) \propto 1$  pode ser uma aproximação conveniente e mais fácil de especificar que uma distribuição própria.

Seja fazendo  $\tau^2 \to \infty$  ou usando  $p(\mu) \propto 1$ , a seguinte observação merece ser feita. Uma vez que chegamos no resultado  $\mu \mid x_1, \ldots, x_n \sim \text{Normal}(\bar{x}, \sigma^2/n)$ , se denotarmos por  $z_{\alpha/2}$  o quantil  $(1 - \alpha/2)$  da distribuição Normal Padrão, podemos escrever que

$$\mathbb{P}\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \mid x_1, \dots, x_n\right) = 1 - \alpha. \tag{4}$$

Em comparação, na estatística clássica, quando calcula-se o intervalo de confiança usual nesta situação, tem-se que

$$\mathbb{P}_{\mu}\left(\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha. \tag{5}$$

Note a diferença na interpretação dessas duas afirmações. Em (4), a variável aleatória é  $\mu$ , enquanto  $\bar{x}$  está fixa no valor que foi efetivamente observado. Em (5), a variável aleatória é  $\bar{X}$ , enquanto  $\mu$  está fixa num valor desconhecido.

#### 1.1.2 Distribuições preditivas

O problema do cálculo de distribuições preditivas no caso desta Seção pode tomar a seguinte forma, semelhante à que foi discutida na Seção anterior. Considere

 $X_1,\ldots,X_n,X_{n+1},\ldots,X_{n+m}\,|\,\mu\stackrel{iid}{\sim} \operatorname{Normal}(\mu,\sigma^2)$  com a distribuição a priori  $\mu\sim \operatorname{Normal}(\mu_0,\tau^2)$ . Com base na observação de  $\bar{x}_{1:n}=n^{-1}\sum_{i=1}^n x_i$  desejamos prever  $\bar{X}_{(n+1):(n+m)}=m^{-1}\sum_{i=n+1}^{m+n} X_i$  ou, em outras palavras, procuramos a distribuição condicional de  $\bar{X}_{(n+1):(n+m)}$  dado  $\bar{x}_{1:n}$ . (se for desejado somente a distribuição preditiva de uma única observação futura  $X_{n+1}$ , tome m=1 nos resultados a seguir).

Essa distribuição pode ser achada diretamente da distribuição conjunta de  $(\theta, \bar{X}_{1:n}, \bar{X}_{(n+1):(n+m)})$  integrando primeiro com respeito a  $\theta$  e depois usando a definição de densidade condicional. Neste caso, porém, é mais fácil proceder da seguinte forma. Primeiro, veja que a distribuição conjunta do vetor  $(X_1, \ldots, X_{n+m}, \theta)$  é Normal (n+m+1)-variada. Logo, todas as distribuições marginais e condicionais também serão Normais multivariadas. Em particular,  $X_{n+1}, \ldots, X_{n+m} \mid \bar{x}_{1:n}$  segue uma distribuição Normal m-variada e, sendo  $\bar{X}_{(n+1):(n+m)}$  uma combinação linear de  $X_{n+1}, \ldots, X_{n+m}$ , concluimos que a distribuição preditiva de  $\bar{X}_{(n+1):(n+m)}$  dado  $\bar{x}_{1:n}$  deve ser Normal univariada. Assim, é suficiente achar os dois primeiros momentos da distribuição preditiva, o que pode ser feito facilmente com as propriedades (??)–(??). Isto é, lembrando que os dois primeiros momentos da distribuição a posteriori de  $\mu \mid \bar{x}_{1:n}$  são dados pelas equações (2)–(3),

$$\mathbb{E}(\bar{X}_{(n+1):(n+m)} | \bar{x}_{1:n}) = \mathbb{E}_{\mu | \bar{x}_{1:n}} \mathbb{E}(\bar{X}_{(n+1):(n+m)} | \bar{x}_{1:n}, \mu)$$

$$= \mathbb{E}_{\mu | \bar{x}_{1:n}} \mathbb{E}(\bar{X}_{(n+1):(n+m)} | \mu) = \mathbb{E}_{\mu | \bar{x}_{1:n}}(\mu) = \frac{\frac{1}{\tau^2} \mu_0 + \frac{n}{\sigma^2} \bar{x}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}} = \mu^*,$$

enquanto

$$\operatorname{Var}(\bar{X}_{(n+1):(n+m)} | \bar{x}_{1:n}) = \mathbb{E}_{\mu | \bar{x}_{1:n}} \operatorname{Var}(\bar{X}_{(n+1):(n+m)} | \bar{x}_{1:n}, \mu) + \operatorname{Var}_{\mu | \bar{x}_{1:n}} \mathbb{E}(\bar{X}_{(n+1):(n+m)} | \bar{x}_{1:n}, \mu) 
= \mathbb{E}_{\mu | \bar{x}_{1:n}} \operatorname{Var}(\bar{X}_{(n+1):(n+m)} | \mu) + \operatorname{Var}_{\mu | \bar{x}_{1:n}} \mathbb{E}(\bar{X}_{(n+1):(n+m)} | \mu) 
= \mathbb{E}_{\mu | \bar{x}_{1:n}} \left(\frac{\sigma^2}{m}\right) + \operatorname{Var}_{\mu | \bar{x}_{1:n}}(\mu) = \frac{\sigma^2}{m} + \frac{1}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}} = \frac{\sigma^2}{m} + \tau^{*2}.$$

Veja que está última variância reflete duas fontes de incerteza com respeito a  $\bar{X}_{(n+1):(n+m)}$ : o primeiro termo  $\sigma^2/m$  tem a ver com a variabilidade inerente de  $\bar{X}_{(n+1):(n+m)}$ , enquanto o segundo termo  $\tau^{*2}$  reflete a incerteza com respeito à média  $\mu$ .

# 1.2 Inferência para a média de uma distribuição Normal com variância desconhecida: O modelo Normal-Normal-Gama

Nesta seção seguimos essencialmente a apresentação no texto?.

Considere como antes  $X_1, \ldots, X_n \mid \mu, \sigma^2 \stackrel{iid}{\sim} \mathrm{N}(\mu, \sigma^2)$ , mas agora tanto a média  $\mu$  quanto a variância  $\sigma^2$  são desconhecidas, i.é. o parâmetro  $\theta = (\mu, \sigma^2)$  tem dimensão 2. Usualmente o foco da inferência é o parâmetro  $\mu$  e  $\sigma^2$  é chamado um parâmetro nuissance ou de estorvo.

Como vimos na Seção anterior, a notação fica mais simples quando o problema é parametrizado em termos da precisão  $\phi = \sigma^{-2}$ , de forma que pensamos numa amostra  $X_1, \ldots, X_n \mid \mu, \phi \stackrel{iid}{\sim} N(\mu, \phi^{-1})$ .

É natural que especificar uma distribuição a priori bivariada  $p(\mu,\phi)$  é mais difícil que especificar uma univariada, como foi o caso de  $p(\theta)$  na Seção ?? ou de  $p(\mu)$  na Seção 1.1. Uma opção conveniente é partir o problema em "pedazos" univariados, especificando sucessivamente  $p(\mu \mid \phi)$  e  $p(\phi)$  (essa ideia de "dividir para conquistar" é muito útil em modelagem e, de fato, vamos usar ela extensivamente para abordar o problema de modelos hierárquicos nas próximas unidades).

Começamos assim pela distribuição a priori condicional de  $\mu \mid \phi$ . Quando condicionamos no valor de  $\phi$  (ou, equivalentemente, no valor de  $\sigma^2 = \phi^{-1}$ ), o problema passa a ser o que estudamos na Seção anterior. Dessa forma, sabemos que a distribuição conjugada  $p(\mu, \phi)$  deve satisfazer que a condicional de  $\mu \mid \phi$  deve ser Normal e também que a distribuição a posteriori condicional de  $\mu \mid x_1, \dots, x_n; \phi$  é Normal com média e variância dadas pelas equações (2) e (3).

Suponha que parametrizamos a distribuição a priori condicional de forma que  $\mu \mid \phi \sim \text{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$ . Substituindo  $\sigma^2$  por  $\phi^{-1}$  e  $\tau^2$  por  $(\lambda_0 \phi)^{-1}$  nas equações (2) e (3), o comentário anterior implica que, a posteriori,  $\mu \mid \phi, x_1, \dots, x_n \sim \text{Normal}(\mu^*, (\lambda^* \phi)^{-1})$ , onde

$$\mu^* = \frac{\lambda_0 \,\mu_0 + n\,\bar{x}}{\lambda_0 + n}\,,\tag{6}$$

$$\lambda^* = \lambda_0 + n \,. \tag{7}$$

Dessa forma, resolvemos o problema da distribuição a priori condicional de  $\mu \mid \phi$  e também o de calcular a posteriori condicional de  $\mu \mid \phi, x_1, \dots, x_n$ .

Resta especificar a distribuição a priori marginal de  $\phi$  e calcular a distribuição a posteriori também marginal de  $\phi \mid x_1, \dots, x_n$ . Por enquanto, considere o caso com uma priori  $p(\phi)$  geral.

Lembre primeiro que  $[\bar{X} = \sum_{i=1}^n X_i, S^2 = \sum_{i=1}^n (X_i - \bar{X})^2]$  é um estatístico suficiente e que, dado o par  $(\mu, \phi)$ ,  $\bar{X}$  e  $S^2$  são independentes com  $\bar{X} \mid \mu, \phi \sim$ 

Normal $[\mu,(n\,\phi)^{-1}]$  e  $\phi$   $S^2$  |  $\mu,\phi\sim\chi^2_{n-1}\equiv {\rm Gama}(\frac{n-1}{2},\frac{1}{2})$ . Logo. a verossimilhança é

$$p(x_1, ..., x_n | \mu, \phi) \propto p(\bar{x}, S^2 | \mu, \phi) \propto p(\bar{x} | \mu, \phi) p(S^2 | \mu, \phi)$$

$$\propto \phi^{1/2} \exp\left\{-\frac{n \phi}{2} (\bar{x} - \mu)^2\right\} \times \phi^{(n-1)/2} \exp\left\{-\frac{\phi}{2} s^2\right\}$$

$$\propto \phi^{n/2} \exp\left\{-\frac{\phi}{2} [s^2 + (\mu - \bar{x})^2]\right\}. (8)$$

Por outra parte, como especificamos que  $\mu \mid \phi \sim \text{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$ , segue que a densidade a priori conjunta é

$$p(\mu, \phi) = p(\phi) p(\mu \mid \phi) \propto p(\phi) \phi^{1/2} \exp\left\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2\right\}.$$
 (9)

Multiplicando (8) e (9) temos então que

$$p(\mu, \phi \mid x_1, \dots, x_n) \propto p(\mu, \phi) \, p(x_1, \dots, x_n \mid \mu, \phi)$$

$$\propto p(\phi) \, \phi^{(n+1)/2} \, \exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 \, (\mu - \mu_0)^2\right]\right\} \, . \tag{10}$$

Finalmente, usando o fato que  $\mu \mid \phi, x_1, \dots, x_n \sim \text{Normal}(\mu^*, (\lambda^* \phi)^{-1}),$ 

$$p(\phi \mid x_1, \dots, x_n) = \frac{p(\mu, \phi \mid x_1, \dots, x_n)}{p(\mu \mid \phi, x_1, \dots, x_n)}$$

$$\propto p(\phi) \frac{\phi^{(n+1)/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 (\mu - \mu_0)^2\right]\right\}}{\phi^{1/2} \exp\left\{-\frac{\phi}{2} \lambda^* (\mu - \mu^*)^2\right\}}$$

$$\propto p(\phi) \phi^{n/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + (\mu - \bar{x})^2 + \lambda_0 (\mu - \mu_0)^2 - \lambda^* (\mu - \mu^*)^2\right]\right\}$$

$$\propto p(\phi) \left[\phi^{n/2} \exp\left\{-\frac{\phi}{2} \left[s^2 + \frac{n \lambda_0}{\lambda_0 + n} (\bar{x} - \mu_0)^2\right]\right\}\right] (11)$$

(para o cálculo acima, da equação é útil observar que o termo da esquerda depende somente de  $\phi$ , enquanto o da direita depende também de  $\mu$ . A equação 11 é portanto uma identidade que vale para todo  $\mu$ . Em termos práticos, na direita é possível substituir  $\mu$  por qualquer valor e o resultado final deveria ser o mesmo. Fazer a substituição  $\mu = \bar{x}$  ou  $\mu = \mu_0$  facilita o cálculo).

Veja que, quando considerado como função somente de  $\phi$ , o termo entre colchetes no último termo à direita da equação 11 é o núcleo de uma distribuição Gama, o que sugere então especificar  $p(\phi)$  também como uma densidade Gama.

**Proposição 1.** Suponha que  $X_1, \ldots, X_n \mid \mu, \phi \stackrel{iid}{\sim} \text{Normal}(\mu, \phi^{-1})$  e, a priori,  $\mu \mid \phi \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$  e  $\phi \sim \text{Gama } (\alpha_0, \beta_0)$ . Então, a posteriori,  $\mu \mid \phi, x_1, \ldots, x_n \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$ 

Normal $(\mu^*, (\lambda^* \phi)^{-1})$   $e \phi \mid x_1, \dots, x_n \sim \text{Gama}(\alpha^*, \beta^*)$ , onde  $\mu^*$   $e \lambda^*$  são dados nas equações (6) e (7) e

$$\alpha^* = \alpha_0 + \frac{n}{2} \,, \tag{12}$$

$$\beta^* = \beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0}{2 (\lambda_0 + n)} (\bar{x} - \mu_0)^2.$$
 (13)

Demonstração. Como foi explicado acima das equações (6) e (7), a parte referente à  $p(\mu \mid \phi, x_1, \dots, x_n)$  é consequência da Seção 1.1. Para achar a distribuição a posteriori marginal de  $\phi$ , substitua  $p(\phi) \propto \phi^{\alpha-1} e^{-\beta_0 \phi}$  na equação (11) para obter que

$$p(\phi \mid x_1, \dots, x_n) \propto \phi^{\alpha_0 + n/2 - 1} \exp \left\{ -\phi \left[ \beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0 (\bar{x} - \mu_0)^2}{2(\lambda_0 + n)} \right] \right\},$$
 (14)

o que implica que 
$$\phi \mid x_1, \dots, x_n \sim \text{Gamma}(\alpha^*, \beta^*)$$

#### 1.2.1 A distribuição a posteriori marginal de $\mu$

Como mencionamos no inicio desta Seção, usualmente o interesse é no parâmetro  $\mu$ . Nesse caso, precisamos da distribuição a posteriori marginal  $p(\mu \mid x_1, \dots, x_n)$ .

Segue da proposição 1 que, dado  $x_1, \ldots, x_n, Z = (\lambda^* \phi)^{1/2} (\mu - \mu^*)$  segue uma distribuição Normal Padrão. Considere então a distribuição a posteriori conjunta de  $(Z, \phi)$ . O Jacobiano da transformação de  $(Z, \phi) \mapsto (\mu = \mu^* + (\lambda^* \phi)^{-1/2} Z; \phi)$  é  $(\lambda^* \phi)^{-1/2} \propto \phi^{-1/2}$ . Logo, a densidade a posteriori de  $(Z, \phi)$  é

$$p(Z, \phi \mid x_1, \dots, x_n) \propto p(\mu, \phi \mid x_1, \dots, x_n) \left| \frac{\partial (\mu, \phi)}{\partial (Z, \phi)} \right|$$

$$\propto p(\mu \mid \phi, x_1, \dots, x_n) p(\phi, x_1, \dots, x_n) \phi^{-1/2}$$

$$\propto \phi^{1/2} \exp \left\{ -\frac{\lambda^* \phi}{2} (\mu - \mu^*)^2 \right\} \times \phi^{\alpha^* - 1} \exp \left\{ -\beta^* \phi \right\} \times \phi^{-1/2}$$

$$\propto \exp \left\{ -\frac{1}{2} z^2 \right\} \times \phi^{\alpha^* - 1} \exp \left\{ -\beta^* \phi \right\}.$$

Logo, a posteriori, Z e  $\phi$  são independentes com  $Z \mid x_1, \ldots, x_n \sim \mathrm{N}(0,1)$  e, como já sabíamos,  $\phi \mid x_1, \ldots, x_n \sim \mathrm{Gama}(\alpha^*, \beta^*)$ . Das propriedades da distribuição Gama sabemos que isso implica que  $2\beta^*\phi \mid x_1, \ldots, x_n \sim \mathrm{Gama}(\alpha^*, 1/2)$ , também denominada de distribuição  $\chi^2$  com  $(2\alpha^*)$  graus de liberdade. Da definição da distribuição t de Student como a razão entre duas variáveis aleatórias independentes, uma com distribuição Normal(0,1) e a outra sendo a raiz quadrada de uma  $\chi^2_m$  dividida pelos

graus de liberdade m, segue que

$$\sqrt{\frac{\lambda^* \alpha^*}{\beta^*}} (\mu - \mu^*) = \frac{Z}{\sqrt{2 \beta^* \phi/(2 \alpha^*)}} | x_1, \dots, x_n \sim t_{2 \alpha^*}.$$
 (15)

Note que, como a distribuição a priori a a posteriori pertencem a mesma família Normal-Gama, um resultado semelhante deve valer também para a distribuição a priori marginal de  $\mu$ . É conveniente escrever o resultado para uso futuro (veja, por exemplo, a subseção 1.2.3).

**Lema 2.** Suponha que  $\mu \mid \phi \sim Normal(\mu_0, (\lambda_0 \phi)^{-1})$  e  $\phi \sim Gama(\alpha_0, \beta_0)$ , onde  $\alpha$ ,  $\beta$ ,  $\lambda_0$  e  $\phi$  são parâmetros positivos. Então

$$\sqrt{\frac{\lambda_0 \alpha}{\beta}} \left( \mu - \mu_0 \right) \sim t_{2\alpha} \,. \tag{16}$$

#### 1.2.2 Distribuição a priori não informativa

O intervalo de intervalo de confiança clássico para  $\mu$  é

$$\bar{x} \pm t_{n-1;a/2} \frac{s}{\sqrt{n(n-1)}}, \tag{17}$$

onde  $t_{n-1;a/2}$  é o percentil 100(1-a)% da distribuição t de Student com (n-1) graus de liberdade [note que, por consistência da notação, continuamos definindo  $s^2 = \sum_{i=1}^n (x_i - \bar{x})^2$ , sem dividir por (n-1)].

Com base na distribuição (15), o equivalente bayesiano desse intervalo de confiança seria

$$\mu^* \pm t_{2\alpha^*;a/2} \sqrt{\frac{\beta^*}{\lambda^* \alpha^*}}, \tag{18}$$

no sentido que segue de (15) que

$$\mathbb{P}\left(\mu^* - t_{2\,\alpha^*;a/2}\,\sqrt{\frac{\beta^*}{\lambda^*\,\alpha^*}} < \mu < \mu^* + t_{2\,\alpha^*;a/2}\,\sqrt{\frac{\beta^*}{\lambda^*\,\alpha^*}} \,|\, x_1,\ldots,x_n\right) = 1 - a\,.$$

Cabe então perguntar se existem valores dos hiperparâmetros  $(\mu_0, \lambda_0, \alpha_0, \beta_0)$  para os quais os dois intervalos (17) e (18) coincidem. Dos graus de liberdade obtemos que  $2\alpha^* = 2\alpha_0 + n$  tería que ser igual a (n-1), isto é  $\alpha_0 = -(1/2)$ . Por outro lado, como os dois intervalos teriam que estar centrados em  $\bar{x}$ , deveríamos ter que  $\mu^* = \bar{x}$ , e da equação (2) obtemos então  $\lambda_0 = 0$  (observe que o valor de  $\mu_0$  resulta irrelevante aqui após fazermos  $\lambda_0 = 0$ ). Finalmente, precisaríamos ter que

$$\frac{s}{\sqrt{n(n-1)}} = \sqrt{\frac{\beta^*}{\lambda^* \alpha^*}} = \sqrt{\frac{\beta_0 + \frac{1}{2} s^2 + \frac{n \lambda_0}{2(\lambda_0 + n)} (\bar{x} - \mu_0)^2}{(\lambda_0 + n) (\alpha_0 + n/2)}},$$

que uma vez que substituímos  $\alpha_0 = -(1/2)$  e  $\lambda_0 = 0$  dá  $\beta_0 = 0$ .

Resumindo, para os intervalos (17) e (18) coincidir, precisamos tomar na distribuição a priori  $\lambda_0=0,\ \alpha_0=-(1/2)$  e  $\beta_0=0$  (e qualquer  $\mu_0$ ). Esse tipo de distribuições a priori que fazem os intervalos clássicos coincidir com os Bayesianos são chamadas na literatura de distribuições a priori matching. Elas estão associadas usualmente com distribuições a priori não informativas, o que é o caso desta. Um problema, porém, é que nem a distribuição Normal está bem definida para variância infinita (i.é. precisão  $\lambda_0 \phi = 0$ ), nem a distribuição Gama está definida quando  $\alpha_0 = -(1/2) \le 0$  e/ou  $\beta_0 = 0 \le 0$ . Nesse sentido, veja que da equação (9) temos que

$$p(\mu, \phi) \propto \phi^{\alpha_0 - 1} \exp\{-\beta_0 \phi\} \times \phi^{1/2} \exp\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2\}$$
  
  $\propto \phi^{\alpha_0 - 1/2} \exp\{-\frac{\phi}{2} \lambda_0 (\mu - \mu_0)^2 - \beta_0 \phi\},$ 

de forma que substituindo (formalmente) pelos valores achados acima teríamos que

$$p(\mu, \phi) \propto \frac{1}{\phi}$$
,

que é uma distribuição a priori imprópria, no sentido que  $\int_0^\infty \int_{-\infty}^\infty \phi^{-1} \, d\mu d\phi = \infty$ . Independentemente disso, ela é considerada a distribuição a priori não informativa para o problema desta Seção. Veja que pode ser pensada como  $p(\mu, \phi) \propto p(\mu) \times p(\phi) \propto 1 \times \phi^{-1}$ , isto é, a priori  $\mu$  e  $\phi$  seriam independentes com  $p(\mu) \propto 1$ , que já vimos na Seção 1.1, e  $p(\phi) \propto \phi^{-1}$ .

Exemplo 2. (Os experimentos de Newcomb-Michelson sobre a velocidade da luz, adaptado de Gelman, Carlin, Stern e Rubin). Por volta de 1880 os físicos Simon Newcomb e Albert Michelson idealizaram e posteriormente realizaram o que é considerado o primeiro experimento que mediu com bastante precisão a velocidade da luz. Sucintamente, eles emitiram luz desde uma fonte situada na margem de Virginia do Rio Potomac até um espelho situado a 3721.21 metros ao pé do Monumento a Washington em Washington, D.C. Dessa forma, o experimento tentava medir o tempo que a luz demoraria em viajar 7442.42 = 2(3721.21)m (Veja a Figura 2) Após emitida, a luz era refletida em um espelho menor que estava girando muito rapidamente, de forma que ao retornar, era deslocada por duas vezes o ângulo que o espelho menor rotou durante o tempo que a luz demorou para ir e voltar até o espelho maior. Dessa forma, conhecendo (i) a velocidade de rotação do espelho menor, (ii) o deslocamento da imagem e (iii) a distância entre o espelho menor e o maior, era possível determinar o tempo que a luz demorou para fazer o percurso. As 66 medições realizadas por Newcomb em 1882 são mostradas no boxplot da Figura 3. Os dados coletados por Newcomb foram registrados como desvios de 24800 nanosegundos (=  $24800 \times 10^{-9}$  segundos). No **R**, esses dados estão disponíveis sob o nome light no pacote BayesDA (veja o script que acompanha estas notas). O boxplot mostra duas medições discordantes no sentido de serem muito pequenas. Considerando essas medições, não parece razoável assumir que os dados seguem uma distribuição Normal e portanto para o resto do exemplo foram removidos da análise, ficando assim com uma amostra de tamanho n=64 (seria certamente mais correto usar um modelo capaz de explicar as duas observações discordantes, usando por exemplo distribuições com caudas mais pesadas que a Normal, tais como a distribuição de Cauchy ou t de Student, mas fazer isso foge da matéria desta unidade). A média e o desvio padrão das 64 observações consideradas foram  $\bar{x}=27.75$  e  $\sqrt{s^2/(n-1)}=5.08$ . Usando uma distribuição a priori não informativa e 100(1-a)=95%, o intervalo (18) ou (17) para  $\mu$  é

$$27.75 \pm t_{63,0.025} \frac{5.08}{64^{1/2}} \doteq (26.48; 29.02).$$

Com base nesse tempo, considerando que  $\mu$  é a média do tempo que a luz demora para viajar 7442.42m, o tempo médio que a luz viajaria em 1s seria  $10^9(7442.42)/(\mu+24800)$ , de forma que o correspondente intervalo para a velocidade da luz seria

$$\left(\frac{10^9 \left(7442.42\right)}{26.48 + 24800}; \frac{10^9 \left(7442.42\right)}{29.02 + 24800}\right) \doteq (299, 729, 915; 299, 760, 576) m/s \,.$$

[O valor aceito atualmente para a velocidade da luz no vacuo é 299, 792, 458m/s, fora do intervalo que calculamos acima; a análise de Newcomb dos dados foi diferente da mostrada aquí, ele chegou a um valor de 299, 860km/s. Simon Newcomb (1835–1909) foi um físico canadense que viveu e trabalhou a maior parte da sua vida nos Estados Unidos. Albert Michaelson (1852–1931) era um físico americano que colaborou com Newcomb na construção do instrumento experimental. Recebeu o Prêmio Nobel em Física em 1907.]

#### 1.2.3 Distribuição preditiva para uma observação futura

O problema do cálculo de distribuições preditivas no caso desta Seção pode tomar a seguinte forma, semelhante à que foi discutida na Seção 1.1. Considere  $X_1, \ldots, X_n, X_{n+1}, \ldots, X_{n+m} \mid \mu, \phi \stackrel{iid}{\sim} \operatorname{Normal}(\mu, (\lambda_0 \phi)^{-1})$  com a distribuição a priori  $\mu \mid \phi \sim \operatorname{Normal}(\mu_0, (\lambda_0 \phi)^{-1})$  e  $\phi \sim \operatorname{Gama}(\alpha_0, \beta_0)$ . Com base na observação de  $x_1, \ldots, x_n$  desejamos prever  $\bar{X}_{(n+1):(n+m)} = m^{-1} \sum_{i=n+1}^{m+n} X_i$  ou, em outras palavras, procuramos a distribuição condicional de  $\bar{X}_{(n+1):(n+m)}$  dado  $x_1, \ldots, x_n$ .

Da subseção 1.1.2 sabemos que  $\bar{X}_{(n+1):(n+m)} \mid x_1, \dots, x_n; \phi \sim \text{Normal}[\mu^*, (\lambda^* \phi)^{-1}]$ . Por outro lado, da subseção ??, sabemos também que  $\phi \mid x_1, \dots, x_n \sim \text{Gama}(\alpha^*, \beta^*)$ .



Figura 2: Esboço do experimento de Newcomb-Michelson. S é uma fonte de luz, G é divisor de feixe, R é um espelho rotando muito rapidamente, L é uma lente objetiva, M é um espelho esférico fixo e E o ocular do observador. A imagem que retorna do espelho fixo M é deslocada duas vezes o ângulo que R rotou durante o tempo que a luz demorou para viajar de R até M. Portanto, sabendo a velocidade de rotação de R, o desvio angular da luz que retorna de M e a distância RM, é possível calcular a velocidade da luz.

Portanto, se olharmos o par  $(\bar{X}_{(n+1):(n+m)}, \phi)$  condicionado a  $x_1, \ldots, x_n$ , temos uma distribuição Normal-Gama e o Lema 2 implica que

$$\sqrt{\frac{\left(\frac{1}{m} + \frac{1}{\lambda^*}\right) \alpha^*}{\beta^*}} \left(\bar{X}_{(n+1):(n+m)} - \mu^*\right) | x_1, \dots, x_n \sim t_{2\alpha^*}.$$

Exemplo 2 (Continuação). Como a distribuição a posteriori de  $\mu$  [equação (15)] é simétrica com respeito a  $\mu^*$ , segue que a estimativa bayesiana com respeito a PQ, PA ou perda zero-um é  $\mu^* = 27.75$ .

## 2 Prioris impróprias e não informativas

## 2.1 Prioris impróprias

No paradigma bayesiano temos que

$$p(\theta \mid x) = \frac{p(\theta) p(x \mid \theta)}{\int p(\theta) p(x \mid \theta) d\theta} \propto p(\theta) p(x \mid \theta).$$
 (19)



Figura 3: Boxplot das 66 medições realizadas por Newcomb em 1882. Os dados foram registrados como desvios de 24,800 nanosegundos. Observe as duas medições discordantes (outliers) com valores  $x_6 = -44$  e  $x_{10} = -2$ . Elas foram descartadas para a análise mostrada no Exemplo 2.

Quando tanto  $p(\theta)$  quanto  $p(x \mid \theta)$  são densidades, resultados do cálculo de probabilidades mostram que a distribuição a posteriori está bem definida, no sentido que a integral no denominador acima é finita. Veja que nada muda se usarmos acima uma "priori" cuja integral é finita mas não necessariamente igual a um, pois se  $\int p(\theta) d\theta = I \neq 1$ , podemos definir a priori  $p^*(\theta) = p(\theta)/I$  e a constante I cancelará no numerador e no denominador (19).

A situação é diferente se, formalmente, usarmos em (19) uma "densidade" (dita imprópria na literatura) cuja integral é infinita, pois nesse caso não é garantido que  $\int p(\theta) p(x \mid \theta) d\theta < \infty$ . Esse tipo de "prioris" podem ser pensadas como aproximações para prioris próprias, mas o argumento anterior implica que a propriedade da distribuição a posteriori deve ser analisada caso a caso.

**Exemplo 3.** Vimos na seção 1.1 o uso da priori "não informativa"  $p(\mu) \propto 1$ , que é imprópria. A partir da equação (19) temos que,, nesse caso,  $p(\mu \mid x_1, \dots, x_n) \propto \exp\{\frac{-n}{2\sigma^2}(\bar{x}-\mu)^2\}$ . Como  $\int_{-\infty}^{\infty} \exp\{\frac{-n}{2\sigma^2}(\bar{x}-\mu)^2\} d\mu < \infty$ , a posteriori resultante será própria qualquer seja a amostra  $(x_1, \dots, x_n)$  observada. Pode-se verificar que o mesmo vale na seção 1.2 para a priori imprópria  $p(\mu, \phi) \propto \phi^{-1}$ .

**Exemplo 4.** Suponha que o modelo especifica  $x_1, \ldots, x_n \mid \theta \sim \text{Poisson}(\theta)$  e queremos usar uma distribuição a priori com média  $\theta_0$  e variância tão grande quanto possível. Usando a priori conjugada  $\text{Gama}(\alpha,\beta)$  para esse problema, devemos fazer  $\alpha = \beta \theta_0$  para a restrição da média, em cujo caso a variância será  $\theta_0/\beta$ , que é maximizada quando  $\beta \downarrow 0$ . Na prática, isso significa que a priori deveria ser

uma "Gama(0,0)" com densidade proporcional a  $\theta^{-1}$ . Substituindo em (19) obtemos  $p(\theta \mid x_1, \ldots, x_n) \propto e^{-n\theta} \theta^{s-1}$ . Logo, quando  $s = \sum_{i=1}^n x_i \geq 1$ , a posteriori será uma Gama(s,n), que é própria. Porém, se observarmos s = 0, temos que  $\int_0^\infty \theta^{-1} e^{-n\theta} d\theta = \infty$  e a posteriori não vai estar bem definida.

### 2.2 Os problemas de locação e de escala

Um modelo de locação específica a observação de uma quantidade X tal que  $p(x \mid \theta) = f(x - \theta)$ , onde f é uma densidade (própria!) definida em toda a reta real. Esse modelo tem uma simetria fundamental no sentido que é invariante a translações. Mais precisamente, se a é um real fixo e definirmos Y = X - a e  $\lambda = \theta - a$ , segue do fato que  $p_Y(y \mid \theta) = p_X(x = y + a \mid \theta) |dx/dy| = f(y + a - \theta) = f(y - \lambda)$  que o modelo  $Y \mid \lambda$  também é um modelo de locação. Portanto, se existe nesse caso uma "distribuição a priori não informativa", ela deveria tomar a mesma forma para os modelos  $X \mid \theta$  e  $Y \mid \lambda$ . Em outras palavras, deveríamos ter que  $p_{\lambda}(\lambda) = p_{\theta}(\lambda)$ . Por outro lado, sabemos do cálculo de probabilidades e o fato que  $\lambda = \theta - a$  que  $p_{\lambda}(\lambda) = p_{\theta}(\lambda + a) |d\theta/d\lambda| = p_{\theta}(\lambda + a)$ . Juntando os dois resultados, segue que  $p_{\theta}(\lambda) = p_{\theta}(\lambda + a)$  deveria valer para todo  $\lambda$  e todo a, o que somente é possível se a densidade  $p_{\theta}$  for constante (usualmente denotamos  $p(\theta) \propto 1$ ).

Um modelo de escala específica que  $p(x \mid \sigma) = \sigma^{-1} f(x/\sigma)$ , onde o parâmetro  $\sigma > 0$  e a densidade f é considerada fixa. Esse modelo também tem uma simetria fundamental, no sentido que, se definirmos Y = X/a e  $\phi = \sigma/a$  (a > 0), segue que  $p_Y(y \mid \sigma) = p_X(ay \mid \sigma) |dx/dy| = \phi^{-1} f(y/\phi)$ . Dessa forma, tanto o modelo  $X \mid \sigma$  quanto o  $Y \mid \phi$  são modelos de escala. Se repetimos o argumento que fizemos acima para o modelo de locação, chegaremos ao final que uma distribuição a priori não informativa para o problema de escala deveria satisfazer a condição  $p(\sigma) = a^{-1}p(\sigma/a)$  para todo a e  $\sigma$  positivos. É fácil ver que essa condição somente é possível se tivermos que  $p(\sigma) \propto \sigma^{-1}$ .

(Uma outra forma de obter esse resultado é a seguinte: No modelo de escala com X > 0 defina  $X^* = \log X$  e  $\mu = \log \sigma$  e verifique que o modelo resultante é de locação, de forma que pelo argumento anterior deveríamos ter que  $p(\mu) \propto 1$ , o que é equivalente a assumir  $p(\sigma) \propto \sigma^{-1}$ .)

## 2.3 Distribuições a priori de Jeffreys

Vimos na unidade anterior que um problema fundamental com o Princípio da Probabilidade Inversa de Laplace era o fato de ele não ser invariante a reparametrizações. A partir de essa idéia o físico britânico sugeriu usar como distribuição a priori não informativa uma densidade baseada informação de Fisher. No caso

uniparâmetrico, define-se

$$p_J(\theta) \propto I(\theta)^{1/2} = \sqrt{\mathbb{E}_{X \mid \theta} \left[ \frac{\partial}{\partial \theta} \log p(X \mid \theta) \right]^2} = \sqrt{\mathbb{E}_{X \mid \theta} \left[ -\frac{\partial^2}{\partial \theta^2} \log p(X \mid \theta) \right]}$$
 (20)

Mais geralmente, quando o espaço paramêtrico tem dimensão r maior do que um, a informação de Fisher é uma matriz quadrada com elementos

$$I_{i,j}(\theta) = \mathbb{E}_{X \mid \theta} \left( \frac{\partial}{\partial \theta_i} \log p(X \mid \theta) \cdot \frac{\partial}{\partial \theta_j} \log p(X \mid \theta) \right) = -\mathbb{E}_{X \mid \theta} \left( \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p(X \mid \theta) \right).$$

Nesse caso a densidade a priori de Jeffreys é

$$p_J(\theta) \propto \left[\det I(\theta)\right]^{1/2}$$
.

- Se  $x_1, \ldots, x_n \mid \theta \stackrel{iid}{\sim} p(x_1 \mid \theta)$  e  $I_n(\theta)$  é a informação de Fisher associada a essa amostra aleatória de tamanho n, como  $I_n(\theta) = n I_1(\theta)$ , não faz diferença se calcularmos a priori de Jeffreys para toda a amostra ou para uma única observação (i.é.  $p_J(\theta) \propto I_n(\theta) \propto I_1(\theta)$ ).
- Se considerarmos uma reparametrização  $\eta = \eta(\theta)$ , como  $I_{\eta}(\eta) = I_{\theta}[\theta(\eta)] (d\theta/d\eta)^2$ , segue que  $p_{J,\eta}(\eta) = p_{J,\theta}[\theta(\eta)] |d\theta/d\eta|$ , que é a regra do Jacobiano usual e portanto a priori de Jeffreys é invariante sob reparametrizações.
- Alguns autores afirmam que o uso da priori de Jeffreys pode levar a situações anómalas no caso multiparamétrico e sugerem nesse caso usar prioris de Jeffreys calculadas para cada parâmetro por separado e assumir independência. Por exemplo, se  $\theta = (\theta_1, \theta_2)$ , a sugestão é calcular  $p_{J,\theta_i}(\theta_i)$  assumindo o outro parâmetro fixo e depois usar a priori  $p_{J,\theta_1}(\theta_1) p_{J,\theta_2}(\theta_2)$ .
- No caso dos modelos de locação e de escala, a priori de Jeffreys coincide com as achadas acima (veja o exemplo 5 abaixo).
- Como o valor esperado na equação 20 é calculado com respeito à distribuição de  $x \mid \theta$ , o uso de prioris de Jeffreys viola o Principio de Verossimilhança.

**Exemplo 5.** Suponha o modelo de locação  $x \mid \theta \sim f(x - \theta)$ . A Informação de Fisher é

$$I_{1}(\theta) = \int_{-\infty}^{\infty} \left[ \frac{d}{d\theta} \log f(x - \theta) \right]^{2} f(x - \theta) dx$$
$$= \int_{-\infty}^{\infty} \left[ \frac{f'(x - \theta)}{f(x - \theta)} \right]^{2} f(x - \theta) dx = \int_{-\infty}^{\infty} \left[ \frac{f'(u)}{f(u)} \right]^{2} f(u) du \propto 1.$$

Portanto, nesse caso  $p_J(\theta) \propto 1$ . Um argumento semelhante no modelo de escala mostra que, nesse caso,  $p_J(\sigma) \propto \sigma^{-1}$  (faça como exercício).

**Exemplo 6.** Suponha que  $x_1, \ldots, x_n \mid \theta \sim \text{Binomial}(n, \theta)$ . Como nesse caso temos que  $I_1(\theta) = [\theta (1 - \theta)]^{-1}$ , segue que a priori de Jeffreys é  $p_J(\theta) \propto [\theta (1 - \theta)]^{-1/2}$ , isto é, a distribuição Beta $(\alpha = 1/2, \beta = 1/2)$ .

**Exemplo 7.** Suponha que  $x_1, \ldots, x_n \mid \mu, \phi \text{ Normal}(\mu, \phi^{-1})$ . Como nesse caso temos que  $I_1(\mu, \phi) =$ , segue que a priori de Jeffreys é  $p_J(\mu, \phi) \propto$ .