

数学分析

学习笔记

作者: absinthe

时间: October 3, 2024

版本: 0.0 邮件:: ??

目录

第一章 序列极限	1	1.1.2 确界存在定理	1
1.1 实数系连续性的基本定理	1	1.1.3 闭区间套定理	1
111 戴德金分割定理	1		

第一章 序列极限

1.1 实数系连续性的基本定理

1.1.1 戴德金分割定理

定理 1.1 (戴德金分割定理)

对 \mathbb{R} 的任一分划 (A|B), B 中必有最小数.

 \sim

1.1.2 确界存在定理

定理 1.2 (确界存在定理)

非空有上界的实数集必有上确界; 非空有下界的实数集必有下确界.

 $^{\circ}$

1.1.3 闭区间套定理

定理 1.3 (闭区间套定理)

设 $\{[a_n,b_n]\}$ 是一列闭区间, 并满足:

- (1) $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}], n = 1, 2, \cdots;$
- (2) $\lim_{n \to \infty} (b_n a_n) = 0$,

则存在唯一的一点 $c \in \mathbb{R}$, 使得 $c \in [a_n, b_n]$, $n = 1, 2, \dots$, 即

$$\{c\} = \bigcap_{n=1}^{\infty} [a_n, b_n].$$

 \Diamond

索 引

A

戴德金分割定理,1

E

闭区间套定理,1

 \mathbf{C}

确界存在定理,1