WE CLAIM:

1		1.	An apparatus for producing a Bragg grating in an optical fiber, the
2	apparatus comprising:		
3		mean	s for controlling a Ti:sapphire laser to produce an output laser beam
4	having a way	elength	in the range of approximately 230 to 250 nanometers; and
5		mean	s for using the output laser beam to produce the Bragg grating in the
6	optical fiber.		
1		2.	The apparatus of claim 1, wherein the controlling means comprises
2	means for pu	mping	the Ti:sapphire laser with a second harmonic pump beam.
1		3.	The apparatus of claim 2, wherein the controlling means further
2	comprises me	eans for	producing a third harmonic of a laser beam emitted by the
3	Ti:sapphire la	aser.	
1		4.	The apparatus of claim 2, wherein the pumping means comprises:
2		active	e laser means;
3		secon	d pumping means for pumping the active laser means; and
4		doubl	ing means for doubling a fundamental frequency emitted by the
5	active laser n	neans.	
1		5.	The apparatus of claim 2, wherein the controlling means further
2	comprises:		
3		triplin	ng means for generating a third harmonic beam from the second
4	harmonic pump beam; and		
5		mean	s for mixing the third harmonic beam with a beam emitted by the
6	Ti:sapphire la	aser.	
1		6.	The apparatus of claim 2, wherein the pumping means comprises a
2	diode laser.		
1		7.	The apparatus of claim 3, further comprising:
2		first r	esonator means; and

8

pump beam.

3	second resonator means, wherein the Ti:sapphire laser is disposed within		
4	the first resonator means and at least a portion of the third harmonic means is disposed		
5	within the second resonator means.		
1	8. The apparatus of claim 4, wherein the controlling means further		
2	comprises resonator means, and wherein the active laser means and the doubling means		
3	are disposed within the resonator means.		
1	9. The apparatus of claim 5, wherein the controlling means further		
2	comprises first resonator means and second resonator means, and wherein the Ti:sapphire		
3	laser is disposed within the first resonator means and the tripling means is disposed within		
4	the second resonator means.		
1	10. The apparatus of claim 6, wherein the controlling means further		
2	comprises third resonator means, wherein the third harmonic means further comprises		
3	frequency doubling means and frequency tripling means, and wherein the frequency		
4	doubling means is disposed within the second resonator means and the frequency tripling		
5	means is disposed within the third resonator means.		
1	11. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	a solid state laser comprising a Ti:sapphire crystal for producing an output		
4	laser beam having a wavelength in the range of approximately 230 to 250 nanometers;		
5	and		
6	a Bragg writer for using the output laser beam to produce the Bragg		
7	grating in the optical waveguide.		
1	12. The apparatus of claim 11, wherein the solid state laser further		
2	comprises:		
3	an active laser medium;		
4	a pump for pumping the active laser medium to produce a fundamental		
5	beam; and		
6	a first nonlinear crystal for producing a second harmonic pump beam from		
7	the fundamental beam, wherein the Ti:sapphire crystal is pumped by the second harmonic		

1		13.	The apparatus of claim 12, wherein the solid state laser further
2	comprises:		
3		a sec	ond nonlinear crystal for producing a second harmonic beam from a
4	fundamental	beam e	emitted by the Ti:sapphire crystal; and
5		a thir	rd nonlinear crystal for producing a third harmonic beam by mixing
6	the fundamen	ntal bea	am and the second harmonic beam.
1		14.	The apparatus of claim 12, wherein the solid state laser further
2	comprises:		
3		a trip	ler crystal for generating a third harmonic beam from the second
4	harmonic pur	mp bear	m and the fundamental beam; and
5		a mix	xing crystal for mixing the third harmonic beam with a beam emitted
6	by the Ti:sapphire crystal.		
1		15.	The apparatus of claim 12, wherein the pump comprises a diode
2	laser.		
1		16.	The apparatus of claim 12, wherein the solid state laser further
2	comprises a r	esonati	ng cavity, and wherein the active laser medium and the first nonlinear
3	crystal are dis	sposed	within the resonating cavity.
1		17.	The apparatus of claim 13, wherein the solid state laser further
2	comprises:		
3		a firs	t resonator; and
4		a seco	ond resonator, wherein the Ti:sapphire crystal is disposed within the
5	first resonato	r and w	therein the second nonlinear crystal is disposed within the second
6	resonator.		
1		18.	The apparatus of claim 17, wherein the solid state laser further
2	comprises a t	hird res	sonating cavity, and third nonlinear crystal is disposed within the third
3	resonating ca	vity.	
1		19.	A method for producing a Bragg grating in an optical waveguide,
2	the method co	omprisi	ng:
3		pumn	ing an active laser medium to generate a fundamental nump beam:

4

4	doubling a frequency of the fundamental pump beam to generate a second		
5	harmonic pump beam;		
6	pumping a Ti:sapphire crystal with the second harmonic pump beam;		
7	generating a third harmonic beam from the second harmonic pump beam,		
8	the third harmonic beam having a wavelength in the range of approximately 230 to 250		
9	nanometers; and		
10	using the third harmonic beam to produce the Bragg grating in the optical		
11	waveguide.		
1	20. A method for producing a Bragg grating in an optical waveguide,		
2	the method comprising:		
3	pumping an active laser medium to generate a fundamental pump beam;		
4	doubling a frequency of the fundamental pump beam to generate a second		
5	harmonic pump beam;		
6	pumping a Ti:sapphire crystal with the second harmonic pump beam;		
7	generating a third harmonic beam from the second harmonic pump beam;		
8	mixing the third harmonic beam with a beam emitted by the Ti:sapphire		
9	crystal to produce an output beam having a wavelength in the range of approximately 230		
10	to 250 nanometers; and		
11	using the output beam to produce the Bragg grating in the optical		
12	waveguide.		
1	21. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	diode laser means for producing a third harmonic laser beam having a		
4	wavelength in the range of approximately 230 to 250 nanometers; and		
5	means for using the third harmonic laser beam to produce the Bragg		
6	grating in the optical waveguide.		
1	22. The apparatus of claim 21, wherein the diode laser means		
2	comprises a VCSEL.		
1	23. The apparatus of claim 21, wherein the diode laser means emits a		
2	fundamental beam at approximately 720 nanometers.		

1		4. The apparatus of claim 21, wherein the diode laser means	
2	comprises a dio	de laser bar.	
1	2	25. An apparatus for producing a diffraction pattern in an optical fiber,	
2	the apparatus co	•	
3	æ	diode laser for producing a third harmonic laser beam having a	
4	wavelength in the	ne range of approximately 230 to 250 nanometers; and	
5	a	Bragg writer for using the third harmonic laser beam to produce the	
6	diffraction pattern on the optical fiber.		
1	2	6. The apparatus of claim 25, wherein the diode laser comprises a	
2	VCSEL.		
1	2	7. The apparatus of claim 25, wherein the diode laser emits a	
2	fundamental bea	m at approximately 720 nanometers.	
1	2	8. The apparatus of claim 25, wherein the diode laser comprises a	
2	diode laser bar.		
1	2	9. An apparatus for producing a Bragg grating in an optical	
2	waveguide, the	apparatus comprising:	
3	a	solid state laser comprising a Ti:sapphire laser medium, wherein the	
4	solid state laser	emits an output beam having a wavelength in the range of approximately	
5	230 to 250 nano	meters; and	
6	a	phase mask interferometer for using the output beam to produce the	
7	Bragg grating in	the optical waveguide.	
1	3	O. The apparatus of claim 29, wherein the phase mask interferometer	
2	comprises:		
3	a	phase mask for diffracting rays from the output beam;	
4	a	first mirror; and	
5	a	second mirror, wherein the first mirror and the second mirror reflect a	
6	first ray and a se	cond ray diffracted by the phase mask and cause the first and second rays	
7	to interfere with	one another.	

1	31.	the apparatus of claim 29, wherein the phase mask interferometer		
2	comprises:			
3	a phase	mask for diffracting rays from the output beam; and		
4	a block	for refracting rays diffracted by the phase mask.		
1	32.	The apparatus of claim 29, wherein the phase mask interferometer		
2	comprises means for ro	tating the optical waveguide.		
1	33.	The apparatus of claim 30, further comprising means for translating		
2	at least one of the first	mirror and the second mirror.		
1	34.	The apparatus of claim 30, further comprising means for rotating at		
2	least one of the first mi	rror and the second mirror.		
1	35. A	An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparate	us comprising:		
3	a solid s	tate laser comprising a Ti:sapphire laser medium, wherein the		
4	solid state laser emits a	n output beam having a wavelength in the range of approximately		
5	230 to 250 nanometers;	and		
6	a phase i	mask interferometer for using the output beam to produce the		
7	Bragg grating in the opt	tical waveguide, the phase mask interferometer comprising:		
8	a phase i	mask for diffracting rays from the output beam;		
9	a first m	irror;		
0	a second	mirror; and		
1	an actua	tor for translating at least one of the first mirror and the second		
2	mirror, wherein the firs	t mirror and the second mirror reflect a first ray and a second ray		
3	diffracted by the phase	diffracted by the phase mask and cause the first and second rays to interfere with one		
4	another, thereby produc	ing a portion of the Bragg grating.		
1	36. A	An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatu	us comprising:		
3	a solid st	tate laser comprising a Ti:sapphire laser medium, wherein the		
4	solid state laser emits an	n output beam having a wavelength in the range of approximately		
5	230 to 250 nanometers:	and		

6	a proximity mask for using the output beam to produce the Bragg grating		
7	in the optical waveguide.		
1	37. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	a solid state laser comprising a Ti:sapphire laser medium, wherein the		
4	solid state laser emits an output beam having a wavelength in the range of approximatel		
5	230 to 250 nanometers; and		
6	a Lloyd mirror for using the output beam to produce the Bragg grating in		
7	the optical waveguide.		
1	38. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	a solid state laser comprising a Ti:sapphire laser medium, wherein the		
4	solid state laser emits an output beam having a wavelength in the range of approximatel		
5	230 to 250 nanometers; and		
6	a prism interferometer for using the output beam to produce the Bragg		
7	grating in the optical waveguide.		
1	39. The apparatus of claim I, wherein the prism interferometer		
2	comprises:		
3	a prism; and		
4	means for rotating the prism to control a Bragg wavelength of the Bragg		
5	grating.		
1	40. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	a solid state laser comprising a Ti:sapphire laser medium, wherein the		
4	solid state laser emits an output beam having a wavelength in the range of approximately		
5	230 to 250 nanometers; and		
6	phase mask projection means for using the output beam to produce the		
7	Bragg grating in the optical waveguide.		
1	41. An apparatus for producing a Bragg grating in an optical		
2	waveguide, the apparatus comprising:		
3	a laser medium:		

4	a pump for stimulating the laser medium to emit a fundamental pump
5	beam;
6	a doubler crystal for doubling the frequency of the fundamental beam to
7	produce a second harmonic pump beam;
8	a solid state laser comprising a Ti:sapphire laser medium which is pumped
9	by the second harmonic pump beam to emit a fundamental beam;
10	at least one nonlinear crystal for producing a harmonic beam from the
11	fundamental beam, the harmonic beam having a wavelength in the range of
12	approximately 230 to 250 nanometers;
13	a processor;
14	means for actuating wavelength control elements according to control
15	signals from the processor;
16	means for measuring a wavelength of the harmonic beam and for sending a
17	measurement signal to the processor;
18	a control for sending a wavelength signal to the processor, the wavelength
19	signal indicating a desired wavelength of the harmonic beam; and
20	Bragg writing means for using the harmonic beam to produce the Bragg
21	grating in the optical waveguide, wherein the processor controls the rotation means and
22	the temperature control means such that an actual wavelength of the harmonic beam is
23	within a predetermined number of nanometers of the desired wavelength.
1	42. The apparatus of claim 41, wherein the wavelength control
2	elements are selected from the group consisting of gratings, prisms, etalons and
3	birefringent filters.