Bases de données Introduction et Objectifs

1. Introduction

- Les entreprises gèrent des volumes de données très grands
 - Giga, Terra, Péta -octets
 - Numériques, Textuelles, Multi-média (images, films,...)
- Il faut pouvoir facilement
 - Archiver les données sur mémoires secondaires permanente
 - Retrouver les données pertinentes à un traitement
 - Mettre à jour les données variant dans le temps
- Les données sont structurées et identifiées
 - Données élémentaires ex: Votre salaire, Votre note en BD
 - Données composées ex: Votre CV, vos résultats de l'année
 - Identifiant humain ex: NSS ou machine: P26215
- Qu'est-ce qu'une BD ?
 - Collection de données structurées reliées par des relations
 - Interrogeable et modifiable par des langages de haut niveau

La hiérarchie des mémoires

 Un accès disque est environ 100,000 fois plus lent qu'un accès mémoire!

- ⇒
 - Eviter les accès disques
 - grande mémoire principale
 - Amortir les accès disques
 - placement des données
 - Minimiser le nombre d'accès disques
 - méthodes d'accès

Un peu d'histoire

- Années 60:
 - Récipients logique de données fichiers sur dique
 - Accès séquentiel puis sur clé
 - Lire (Nomf, Article), Ecrire (Nomf, Article)
 - Lire (Nomf, Article, Clé), Ecrire (Nomf, article, Clé)
- Années 70:
 - Avènement des Bases de Données Réseaux (BD)
 - Ensemble de fichiers reliés par des pointeurs
 - Langage d'interrogation par navigation
- Années 80:
 - Avènement des Bases de Données Relationnelles (BDR)
 - Relations entre ensemble de données
 - Langage d'interrogation par assertion logique

Systèmes de fichiers

Caractéristiq ues

Problèmes

Consultations

Psychiatrie

Format des fichiers

Caractéristiq ues

Plusieurs applications

- → plusieurs formats
- → plusieurs langages

Problèmes

Difficultés de gestion

Redondance (données) Caractéristiq

Caractéristiques ues

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données

- Difficultés de gestion
- **→** Incohérence des données

Interrogations

Caractéristiq ues

Plusieurs applications

- → plusieurs formats
- → plusieurs langages

Redondance de données

- Pas de facilité d'interrogation
- **→** Question ⇒développement

- **→** Difficultés de gestion
- **→** Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile

Pannes ???

Caractéristiqu es

Plusieurs applications

- plusieurs formats
- → plusieurs langages

Redondance de données

- Pas de facilité d'interrogation
- **→** Question ⇒développement

Redondance de code

- Difficultés de gestion
- **→** Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???

Partage de données

Caractéristiqu es

Plusieurs applications

- plusieurs formats
- → plusieurs langages

Redondance de données

- Pas de facilité d'interrogation
- **→** Question ⇒développement

Redondance de code

- Difficultés de gestion
- **→** Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???
- → Partage des données ???

Confidentialité

Caractéristiqu es

Plusieurs applications

- plusieurs formats
- → plusieurs langages

Redondance de données

Pas de facilité d'interrogation

→ Question ⇒développement

Redondance de code

Problèmes

- **→** Difficultés de gestion
- Incohérence des données
- **→** Coûts élevés
- **→** Maintenance difficile
- **→** Gestion de pannes ???
- → Partage des données ???
- **→** Confidentialité ???

1.

L'approche 'Bases de données'

- Modélisation des données
 - → Eliminer la redondance de données
 - → Centraliser et organiser correctement les données
 - → Plusieurs niveaux de modélisation
 - → Outils de conception
- Logiciel «Système de Gestion de Bases de Données»
 - → Factorisation des modules de contrôle des applications
 - Interrogation, cohérence, partage, gestion de pannes, etc...
 - → Administration facilitées des données

Modélisation du réel

Modélisation Relationnelle (1)

Relation ou table

Champs, attributs, colonnes

Id-D	Nom	Prénom
1	Talla	Pierre
2	Bouba	Paul
3	Kamga	Jean

Tuples, lignes ou n-uplets

Modélisation Relationnelle (2)

Docteurs

Id-D	Nom	Prénom
1	Talla	Pierre
2	Bouba	Paul
3	Kamga	Jean
		••••

Visites

Id-D	Id-P	Id-V	Date	Prix
1	2	1	15 juin	250
1	1	2	12 août	180
2	2	3	13 juillet	350
2	3	4	1 mars	250

Prescriptions

Id-V	Ligne	Id-M	Posologie
1	1	12	1 par jour
1	2	5	10 gouttes
2	1	8	2 par jour
2	2	12	1 par jour
2	3	3	2 gouttes

Patients

Id-P	Nom	Prénom	Ville
1	Abena	Jacques	Paris
2	Niba	Zoe	Evry
3	Kana	John	Paris
4	Haman	Paule	Valenton

Médicaments

Id-M	Nom	Description
1	Aspegic 1000	
2	Fluisédal	
3	Mucomyst	
	•••••	

2. Objectifs des SGBD

I - Indépendance Physique

- Indépendance des programmes d'applications vis à vis du modèle physique :
 - -Possibilité de modifier les structures de stockage (fichiers, index, chemins d'accès, ...) sans modifier les programmes;
 - -Ecriture des applications par des non-spécialistes des fichiers et des structures de stockage;
 - -Meilleure portabilité des applications et indépendance vis à vis du matériel.

II - Indépendance Logique

Les applications peuvent définir des vues logiques de la BD

Avantages de l'indépendance logique • Possibilité pour chaque application

- Possibilité pour chaque application d'ignorer les besoins des autres (bien que partageant la même BD).
- Possibilité d'évolution de la base de données sans réécriture des applications :
 - ajout de champs, ajout de relation, renommage de champs.
- Possibilité d'intégrer des applications existantes sans modifier les autres.
- Possibilité de limiter les conséquences du partage : Données confidentielles.

III - Manipulation aisée

- La manipulation se fait via un langage déclaratif
 - La question déclare l'objectif sans décrire la méthode
 - Le langage suit une norme commune à tous les SGBD
 - SQL: Structured Query Langage
- Sémantique
 - Logique du 1er ordre ++
- Syntaxe (aperçu!)
 - SELECT <structure des résultats>
 - FROM < relations >
 - WHERE <conditions>

IV – Des vues multiples des données

- Les vues permettent d'implémenter l'indépendance logique en permettant de créer des relations virtuelles
- Vue = Question stockée
- Le SGBD stocke la définition et non le résultat
- Exemple :
 - la vue des patients parisiens
 - la vue des docteurs avec leurs patients
 - La vue des services statistiques

_ ...

V - Exécution et Optimisation

- Traduction automatique des questions déclaratives en programmes procéduraux :
 - → Utilisation de l'algèbre relationnelle
- Optimisation automatique des questions
 - → Utilisation de l'aspect déclaratif de SQL
 - Gestion centralisée des chemins d'accès (index, hachages, ...)
 - → Techniques d'optimisation poussées
- Economie de l'astuce des programmeurs
 - milliers d'heures d'écriture et de maintenance de logiciels.

VI - Intégrité Logique

- Objectif : Détecter les mises à jour erronées
- Contrôle sur les données élémentaires
 - Contrôle de types: ex: Nom alphabétique
 - Contrôle de valeurs: ex: Salaire mensuel entre 5 et 50kf
- Contrôle sur les relations entre les données
 - Relations entre données élémentaires:
 - Prix de vente > Prix d'achat
 - Relations entre objets:
 - Un électeur doit être inscrit sur une seule liste électorale

Contraintes d'intégrité

Avantages :

- simplification du code des applications
- sécurité renforcée par l'automatisation
- mise en commun des contraintes

Nécessite :

- un langage de définition de contraintes d'intégrité
- la vérification automatique de ces contraintes

VII - Intégrité Physique · Motivations : Tolérance aux fautes

- - Transaction Failure : Contraintes d'intégrité, **Annulation**
 - System Failure : Panne de courant, Crash serveur ...
 - Media Failure : Perte du disque
 - Communication Failure : Défaillance du réseau

Objectifs:

- Assurer l'atomicité des transactions
- Garantir la durabilité des effets des transactions commises

Moyens:

- Journalisation : Mémorisation des états successifs des données
- Mécanismes de reprise

Transaction

Begin CEpargne = CEpargne - 3000 CCourant = CCourant + 3000 Commit T1

Atomicité et Durabilité

ATOMICITE

```
Begin
CEpargne = CEpargne -

3000
CCourant = CCourant +

3000
Commit T1
```

→ Annuler le débit !!

DURABILITE

```
Begin
CEpargne = CEpargne -
3000
CCourant = CCourant +
3000
Crash disque
Commit T1
```

→ S'assurer que le virement a été fait !

VIII - Partage des données

- Accès concurrent aux mêmes données
- → Conflits d'accès !!

Isolation et Cohérence

- Le SGBD gère les accès concurrents
- → Chacun à l'impression d'être seul (Isolation)
- → Cohérence conservée (Pas de maj conflictuelles)

IX - Confidentialité

- Objectif : Protéger les données de la BD contre des accès non autorisés
- Deux niveaux :
 - Connexion restreinte aux usagers répertoriés (mot de passe)
 - Privilèges d'accès aux objets de la base
- Usagers: Usager ou groupe d'usagers
- Objets : Relation, Vue, autres objets (procédures, etc.)

X - Standardisation

- L'approche bases de données est basée sur plusieurs standards
 - Langage SQL (SQL1, SQL2, SQL3)
 - Communication SQL CLI (ODBC / JDBC)
 - Transactions (X/Open DTP, OSI-TP)
- Force des standards
 - Portabilité
 - Interopérabilté
 - Applications multisources...

3. Architecture des

- Les architectures physiques de SGBD sont très liées au mode de répartition.
 - BD centralisée
 - BD client/serveur
 - BD client/multi-serveurs
 - BD répartie
 - BD hétérogène
 - BD mobile
- Le challenge se déplace des Péta-bases aux Pico-bases.
 - Péta-bases => parallélisme et grandes mémoires
 - Pico-bases => faible empreinte et forte sécurité

Architecture centralisée

Architecture

Architecture Client-Multiserveurs

Architecture répartie Appli 1 Appli 2 Appli n SGBD 1 SGBD 2 données données code code

Architecture

Clients intelligents mobiles

Données répliquées et/ou personnelles

Réseau sans fil

4. Applications traditionnelles des SGBD

- OLTP (On Line Transaction Processing)
 - Cible des SGBD depuis leur existence
 - Banques, réservation en ligne ...
 - Très grand nombre de transactions en parallèle
 - Transactions simples
- OLAP (On Line Analytical Processing)
 - Entrepôts de données, DataCube, Data Mining ...
 - Faible nombre de transactions
 - Transactions très complexes

Evolution des BD

	BD d'entreprise	BD personnelles	BD 'light' (PDA / Tél.)	PicoDBMS carte à puce
Capacité				
Prix				
Nombre				