МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Учебно-исследовательская работа №2

Обработка результатов измерений: статистический анализ

числовой последовательности

по дисциплине «Моделирование»

Вариант № 78/3/33

Выполнил:

Хасаншин Марат Айратович Р3333 Шикунов Максим Евгеньевич Р3333

Преподаватель:

Тропченко А.А.

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

Исходные данные

Сист	ема 1	Сист	Критерий	
П	EH	П	EH	эффективности
3	0/1/1	$2(E_3)$	1/1	(B)

Интенсивность потока	Ср. длительность обслуж.	Вероят	гности занятия пј	рибора
λ, 1/c	b, c	П1	П2	П3
0.8	4	0.3	0.6	0.1

Система 1: 3 прибора. Вероятность попадания заявки в 1 прибор равна 0.3, во второй -0.6 и в третий -0.1. Очереди перед первым объемом нет, а перед вторым и третьим очереди каждая объемом 1. Интенсивности: в 1 прибор =0.24, во 2 прибор =0.48, в 3 прибор =0.08

Система 2: 2 прибора, длительность обслуживания в одном из них распределена по закону Эрланга 3 порядка. Вероятности попадания заявки в 1 прибор -0.3, а во второй -0.7.

Очередь есть перед первым и вторым объемом 1 в каждом. Интенсивности в 1 прибор = 0.24, во 2 прибор = 0.56

Критерий эффективности: максимальная загрузка системы

Интенсивность входного потока: 0.8 с.

Средняя длительность обслуживания: 4 с.

Выполнение

Интенсивность обслуживания прибора $\mu = \frac{1}{4} = 0.25 \text{ c}^{-1}$.

Интенсивность потока $\lambda = 0.8 \ c^{-1}$

Система 1

Обозначения состояний: P1/P2/P3/R2/R3

Р1 – число заявок в П1

Р2 – число заявок в П2

Р3 – число заявок в П3

R2 – число заявок в очереди к прибору П2

R3 – число заявок в очереди к прибору П3

Перечень состояний

Номер	Обозначение	Описание
состояния	P1/P2/P3/R2/R3	
S0	0/0/0/0/0	В системе нет заявок
S 1	1/0/0/0/0	В системе 1 заявка. Одна обрабатывается 1 прибором
S2	0/1/0/0/0	В системе 1 заявка. Одна обрабатывается 2 прибором
S3	0/0/1/0/0	В системе 1 заявка. Одна обрабатывается 3 прибором
S4	1/1/0/0/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна обрабатывается 2 прибором
S5	1/0/1/0/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна обрабатывается 3 прибором

S6	0/1/1/0/0	В системе 2 заявки. Одна обрабатывается 2 прибором,
		одна обрабатывается 3 прибором
S7	1/1/1/0/0	В системе 3 заявка. Одна обрабатывается 1 прибором,
S8	0/1/0/1/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна стоит в очереди ко 2 прибору
S 9	0/1/1/1/0	В системе 3 заявка. Одна обрабатывается 2 прибором,
		одна 3 прибором, одна стоит в очереди ко 2 прибору
S10	1/1/0/1/0	В системе 3 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором, одна стоит в очереди ко 2 прибору
S11	1/1/1/1/0	В системе 4 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором, одна 3 прибором, одна стоит в очереди
		ко 2 прибору
S12	0/0/1/0/1	В системе 2 заявка. Одна обрабатывается 3 прибором,
		одна стоит в очереди к 3 прибору
S13	0/1/1/0/1	В системе 3 заявка. Одна обрабатывается 2 прибором,
		одна 3 прибором, одна стоит в очереди к 3 прибору
S14	1/0/1/0/1	В системе 3 заявка. Одна обрабатывается 1 прибором,
		одна 3 прибором, одна стоит в очереди к 3 прибору
S15	1/1/1/0/1	В системе 4 заявка. Одна обрабатывается 1 прибором,
		одна, одна 3 прибором, одна стоит в очереди к 3 прибору
S16	0/1/1/1/1	В системе 4 заявка. Одна обрабатывается 2 прибором,
		одна 3 прибором, одна стоит в очереди к 2 прибору, одна
		стоит в очереди к 3 прибору
S17	1/1/1/1	В системе 5 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором, одна 3 прибором, одна стоит в очереди
		к 2 прибору, одна стоит в очереди к 3 прибору

Граф переходов

Матрица интенсивности

	S0	S 1	S2	S 3	S4	S5	S6	S 7	S 8	S 9	S10	S11	S12	S13	S14	S15	S16	S17
S0	0	λ_1	λ_2	λ_3														
S1	μ	1			λ_2	λ3												
S2	μ		2		λ_1		λ3		λ_2									
S3	μ			3		λ_1	λ_2						λ3					
S4		μ	μ		4			λ3			λ_2							
S5		μ		μ		5		λ_2							λ_3			
S6			μ	μ			6	λ_1		λ_2				λ3				
S7					μ	μ	μ	7				λ_2				λ3		
S8			μ						8	λ_3	λ_1							
S 9							μ		μ	9		λ_1					λ3	
S10					μ				μ		10	λ3						
S11								μ		μ	μ	11						λ_3
S12				μ									12	λ_2	λ_1			
S13							μ						μ	13		λ_1	λ3	
S14						μ							μ		14	λ_2		
S15								μ				_		μ	μ	15	_	λ_2
S16										μ				μ			16	λ_1
S17												μ				μ	μ	17

Стационарные вероятности системы

Обоз	значение	Вероятность
S0	0/0/0/0/0	0.0547
S1	1/0/0/0/0	0.0524
S2	0/1/0/0/0	0.1045
S3	0/0/1/0/0	0.0180
S4	1/1/0/0/0	0.1002
S5	1/0/1/0/0	0.0171
S6	0/1/1/0/0	0.0343
S7	1/1/1/0/0	0.0324
S8	0/1/0/1/0	0.1995
S 9	0/1/1/1/0	0.0625
S10	1/1/0/1/0	0.1917
S11	1/1/1/10	0.0608
S12	0/0/1/0/1	0.0069
S13	0/1/1/0/1	0.0152
S14	1/0/1/0/1	0.0059
S15	1/1/1/0/1	0.0111
S16	0/1/1/1/1	0.0146
S17	1/1/1/1	0.0182

Характеристики системы

Характеристика	Прибор	Формула	Система1
	П1	$y_1 = \lambda_1 * b$	0.96
Нагрузка	П2	$y_2 = \lambda_2 * b$	1.92
	П3	$y_3 = \lambda_3 * b$	0.32
	Сумм	$Y = y_1 + y_2 + y_3$	3.2
Загрузка	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_6 + p_8 + p_9 + p_{12} + p_{13} + p_{16})$	0.4898
17	П2	$\rho_2 = 1 - (p_0 + p_1 + p_3 + p_5 + p_{12} + p_{14})$	0.8449
	П3	$\rho_3 = 1 - (p_0 + p_1 + p_2 + p_4 + p_8 + p_{10})$	0.297
	Сумм	$\rho = 1 - p_0$	0.9453
Вероятность	П1	$\pi_1 = (p_1 + p_4 + p_5 + p_7 + p_{10} + p_{11} + p_{14} + p_{15} + p_{17}) * \lambda_1$	0.1176
потери	П2	$\pi_2 = (p_8 + p_9 + p_{10} + p_{11} + p_{16} + p_{17}) * \lambda_2$	0.2627
1	П3	$\pi_3 = (p_{12} + p_{13} + p_{14} + p_{15} + p_{16} + p_{17}) $ $* \lambda_3$	0.0058
	Сумм	~	0.386
	П1	$\pi = \pi_1 + \pi_2 + \pi_3$ $I_1 = 0$	0.300
Длина очереди	П2	$I_2 = p_8 + p_9 + p_{10} + p_{11} + p_{16} + p_{17}$	0.5472
Amma a repodu	П3	$I_3 = p_{12} + p_{13} + p_{14} + p_{15} + p_{16} + p_{17}$	0.072
	Сумм		0.6192
	П1	$L = I_2 + I_3$ $m_1 = p_1 + 2 * (p_4 + p_5) + 3$	1.3556
Число заявок,	111	$*(p_7 + p_{10} + p_{14}) + 4$	1.5550
находящихся в		$*(p_{11} + p_{15}) + 5 * p_{17}$	
системе	П2	$m_2 = p_2 + 2 * (p_4 + p_6 + p_8) + 3$	2.1147
		$*(p_7 + p_9 + p_{10} + p_{13}) + 4$	
		$*(p_{11} + p_{15} + p_{16}) + 5 * p_{17}$	
	П3	$m_3 = p_3 + 2 * (p_5 + p_6 + p_{12}) + 3$	0.9194
		$*(p_7 + p_9 + p_{13} + p_{14}) + 4$	
		$*(p_{11} + p_{15} + p_{16}) + 5 * p_{17}$	
	Сумм	$M = (p_1 + p_2 + p_3) + 2$	2.2509
		$*(p_4 + p_5 + p_6 + p_8 + p_{12})$	
		+3	
		$*(p_7 + p_9 + p_{10} + p_{13} + p_{14})$	
		$+4*(p_{11}+p_{15}+p_{16})+5$	
		* p ₁₇	
Производительность	П1	$\lambda_1' = \frac{1 - \pi_1}{\lambda_1}$	0.2118
_	П2	$\lambda_1' = \frac{1 - \pi_1}{\lambda_1}$ $\lambda_2' = \frac{1 - \pi_2}{\lambda_1}$	0.3539
		$\lambda_2 - \frac{\lambda_2}{\lambda_2}$	
	П3	$\lambda_3' = \frac{1 - \pi_3}{\lambda_3}$	0.0795
	Сумм	$\lambda' = \lambda'_1 + \lambda'_2 + \lambda'_3$	0.6452
	П1	$\lambda_1^{\prime\prime}=\pi_1*\lambda_1$	0.0282
Интенсивность	П2	$\lambda_2^{\prime\prime} = \pi_2 * \lambda_2$	0.1261
потока потерянных	П3	$\lambda_3'' = \pi_3 * \lambda_3$	0.0005
заявок	Сумм	$\lambda'' = \lambda_1'' + \lambda_2'' + \lambda_3''$	0.1548
Коэффициент	П1	$n_1 = 1 - \rho_1$	0.5102
простоя системы	П2	$n_2 = 1 - \rho_2$	0.1551
_	П3	$n_3 = 1 - \rho_3$	0.703
	Сумм	n=1-p	0.0547

Среднее время	П1	$w_1 = \frac{I_1}{\lambda_1'}$	0
ожидания заявок	П2	$w_2 = \frac{I_2}{\lambda_2'}$	1.5462
	П3	$w_3 = \frac{I_3}{\lambda_3'}$	0.9051
	Сумм	$W = \frac{1}{\lambda'}$	1.5498
	П1	$u_1 = w_1 + b$	4
Среднее время	П2	$u_2 = w_2 + b$	5.5462
пребывания	П3	$u_3 = w_3 + b$	4.9051
	Сумм	U = W + b	5.5498

Система 2

Обозначения состояний: M/N1/N2/N3/R1/R2

Р1 – число заявок в П1

Р2 – состояние, которое проходит заявка в П2

R1 – число заявок в очереди к прибору $\Pi1$

R2 – число заявок в очереди к прибору П2

Перечень состояний

Номер	Обозначение	Описание
состояния	P1/P2/R1/R2	
S0	0/0/0/0	В системе нет заявок
S 1	1/0/0/0	В системе 1 заявка. Одна обрабатывается 1 прибором
S2	0/1/0/0	В системе 1 заявка. Одна обрабатывается 2 прибором на 1
		состоянии
S3	0/2/0/0	В системе 1 заявка. Одна обрабатывается 2 прибором на 2
		состоянии
S4	0/3/0/0	В системе 1 заявка. Одна обрабатывается 2 прибором на 3
		состоянии
S5	1/1/0/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 1 состоянии
S6	1/0/1/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна в очереди к 1 прибору
S7	1/2/0/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 2 состоянии
S8	1/3/0/0	В системе 2 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 3 состоянии
S 9	0/1/0/1	В системе 2 заявка. Одна обрабатывается 2 прибором на 1
		состоянии, одна в очереди ко 2 прибору
S10	0/2/0/1	В системе 2 заявка. Одна обрабатывается 2 прибором на 2
		состоянии, одна в очереди ко 2 прибору

S11	0/3/0/1	В системе 2 заявка. Одна обрабатывается 2 прибором на 3
511	0/3/0/1	состоянии, одна в очереди ко 2 прибору
S12	1/1/1/0	В системе 3 заявка. Одна обрабатывается 1 прибором,
512	1/1/1/0	одна 2 прибором на 1 состоянии, одна в очереди к 1
		прибору
S13	1/2/1/0	В системе 3 заявка. Одна обрабатывается 1 прибором,
513	1/2/1/0	одна 2 прибором на 2 состоянии, одна в очереди к 1
		прибору
S14	1/3/1/0	В системе 3 заявка. Одна обрабатывается 1 прибором,
517	1/3/1/0	одна 2 прибором на 3 состоянии, одна в очереди к 1
		прибору
S15	1/1/0/1	В системе 3 заявка. Одна обрабатывается 1 прибором,
513	1/1/0/1	одна 2 прибором на 1 состоянии, одна в очереди ко 2
		прибору
S16	1/2/0/1	В системе 3 заявка. Одна обрабатывается 1 прибором,
510	1/2/0/1	одна 2 прибором на 2 состоянии, одна в очереди ко 2
		прибору
S17	1/3/0/1	В системе 3 заявка. Одна обрабатывается 1 прибором,
	_, _, _, _	одна 2 прибором на 3 состоянии, одна в очереди ко 2
		прибору
S18	1/1/1/1	В системе 4 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 1 состоянии, одна в очереди к 1
		прибору, одна в очереди ко 2 прибору
S19	1/2/1/1	В системе 4 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 2 состоянии, одна в очереди к 1
		прибору, одна в очереди ко 2 прибору
S20	1/3/1/1	В системе 4 заявка. Одна обрабатывается 1 прибором,
		одна 2 прибором на 3 состоянии, одна в очереди к 1
		прибору, одна в очереди ко 2 прибору

Граф переходов

Матрица интенсивности

	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20
S0	0	λ_1	λ_2																		
S1	μ	1				λ_2	λ_1														
S2			2	2μ		λ_1				λ_2											
S3				3	2μ			λ_1			λ_2										
S4	2μ				4				λ_1			λ_2									
S5			μ			5		2μ					λ_1			λ_2					
S6		μ					6						λ_2								
S7				μ				7	2μ					λ_1			λ_2				
S8		2μ			μ				8						λ_1			λ_2			
S9										9	2μ					λ_1					
S10											10	2μ					λ_1				
S11			2μ									11						λ_1			
S12						μ							12	2μ					λ_2		
S13								μ						13	2μ					λ_2	
S14							2μ		μ						14						λ_2
S15						μ										15	2μ		λ_1		
S16								μ									16	2μ		λ_1	
S17						2μ			μ									17			λ_1
S18													μ						18	2μ	
S19														μ						19	2μ
S20													2μ		μ						20

Стационарные вероятности системы

Обоз	вначение	Вероятность
S0	0/0/0/0	0.0170
S1	1/0/0/0	0.0308
S2	0/1/0/0	0.0256
S3	0/2/0/0	0.0163
S4	0/3/0/0	0.0118
S5	1/1/0/0	0.0431
S6	1/0/1/0	0.0559
S7	1/2/0/0	0.0335
S8	1/3/0/0	0.0285
S9	0/1/0/1	0.0194
S10	0/2/0/1	0.0254
S11	0/3/0/1	0.0261
S12	1/1/1/0	0.0987
S13	1/2/1/0	0.0662
S14	1/3/1/0	0.0560
S15	1/1/0/1	0.0291
S16	1/2/0/1	0.0398
S17	1/3/0/1	0.0426
S18	1/1/1/1	0.0830
S19	1/2/1/1	0.1175
S20	1/3/1/1	0.1338

Характеристика	Прибор	Формула	Система1
-	П1	$y_1 = \lambda_1 * b$	0.96
Нагрузка	П2	$y_2 = \lambda_2 * b$	2.24
	Сумм	$Y = y_1 + y_2$	3.2
	П1	$\rho_1 = 1 - (p_0 + p_2 + p_3 + p_6 + p_8 + p_9)$	0.8584
Загрузка		$+ p_{12} + p_{13} + p_{16}$	
	П2	$\rho_2 = 1 - (p_0 + p_1 + p_3 + p_5 + p_{12} + p_{14})$	0.8964
	Сумм	$\rho_R = 1 - p_0$	0.983
	П1	$\pi_1 = (p_1 + p_4 + p_5 + p_7 + p_{10} + p_{11} + p_{14})$	0.1467
Вероятность		$+ p_{15} + p_{17}) * \lambda_1$	
потери	П2	$\pi_2 = (p_8 + p_9 + p_{10} + p_{11} + p_{16} + p_{17}) * \lambda_2$	0.2893
	Сумм	$\pi = \pi_1 + \pi_2 + \pi_3$	0.4360
	П1		0.6111
Длина очереди	П2	$I_2 = p_8 + p_9 + p_{10} + p_{11} + p_{16} + p_{17}$	0.5166
	Сумм	$L = I_2 + I_3$	1.1278
	П1	$m_1 = p_1 + 2 * (p_4 + p_5) + 3$	2.6871
Число заявок,		$*(p_7 + p_{10} + p_{14}) + 4$	
находящихся в	ходящихся в $*(p_{11} + p_{15}) + 5 * p_{17}$		
системе	П2	$m_2 = p_2 + 2 * (p_4 + p_6 + p_8) + 3$	2.5335
		$*(p_7 + p_9 + p_{10} + p_{13}) + 4$	
		$*(p_{11} + p_{15} + p_{16}) + 5 * p_{17}$	

	Сумм	$M = (p_1 + p_2 + p_3) + 2$	2.8826
	J	$*(p_4 + p_5 + p_6 + p_8 + p_{12})$	
		+3	
		$*(p_7 + p_9 + p_{10} + p_{13} + p_{14})$	
		$+4*(p_{11}+p_{15}+p_{16})+5$	
		* p ₁₇	
	П1	$1-\pi_1$	0.2048
Производительность		$\lambda_1 = \frac{\lambda_1}{\lambda_1}$	
	П2	$1-\pi_2$	0.398
		$\lambda_1' = \frac{1 - \pi_1}{\lambda_1}$ $\lambda_2' = \frac{1 - \pi_2}{\lambda_2}$	
	Сумм	$\lambda' = \lambda_1' + \lambda_2' + \lambda_2'$	0.6028
	П1	$\lambda_1'' = \pi_1 * \lambda_1$ $\lambda_2'' = \pi_2 * \lambda_2$ $\lambda'' = \lambda_1'' + \lambda_2'' + \lambda_3''$	0.0352
Интенсивность	П2	$\lambda_2^{\prime\prime} = \pi_2 * \lambda_2$	0.162
потока потерянных	Сумм	$\lambda'' = \lambda_1'' + \lambda_2'' + \lambda_3''$	0.1972
заявок		1 2 3	
Коэффициент	П1	$\mathbf{n_1} = 1 - \rho_1$	0.1416
простоя системы	П2	$n_2 = 1 - \rho_2$	0.1036
	Сумм	$n = 1 - \rho$	0.017
	П1	$W = I_1$	2.984
Среднее время		$n_{2} = 1 - \rho_{2}$ $n = 1 - \rho$ $w_{1} = \frac{I_{1}}{\lambda_{1}'}$ $w_{2} = \frac{I_{2}}{\lambda_{2}'}$	
ожидания заявок	П2	I_2	1.2982
		$w_2 = \frac{1}{\lambda_2'}$	
	Сумм	1 1	1.659
	-	$W = \frac{1}{\lambda'}$	
	П1	$u_1 = w_1 + b$	6.984
Среднее время	П2	$u_2 = w_2 + b$	5.2982
пребывания	Сумм	U = W + b	5.659

Сравнительный анализ

Характеристика	C1	C2	%
Нагрузка	3,2	3,2	0
Загрузка	0,9453	0,983	3,84
Вероятность потери	0,386	0,435	11,26
Длина очереди	0,6192	1,1278	45,10
Число заявок	2,2509	2,8826	21,91
Производительность	0,6452	0,6028	6,57
Интенс. потока потерь	0,1548	0,1972	21,50
Кф простоя системы	0,0547	0,017	68,92
Ср. время ожидания заявок	1,5498	1,659	6,58
Ср. время пребывания	5,5498	5,659	1,93

По критерию эффективности — максимальная загрузка системы. У нас по нашему критерию Система 2 является лучше, чем Система 1. По данным и графику можно понять, что Система 2 имеет большую загрузку и меньший коэффициент простоя системы. Но по всем остальным характеристикам Система 1 будет лучше, чем вторая.

Вывод

В ходе выполнения данной работы мы подробно изучили применение марковских процессов для моделирования случайных процессов, а также разработали и рассчитали модели систем массового обслуживания (СМО) с однородными потокам заявок. Проведенный анализ включал сравнение эффективности и характеристик обеих моделей.

В результате исследования было выявлено, что вторая система более нам подходит по данному нам по варианту критерию эффективности. Но в целом, почти во всех характеристиках Система 2 проигрывает Системе 1.