[ED101] O Mundo da Tartaruga

O problema

A linguagem Logo, criada em 1967, tem como objetivo principal o auxílio na aprendizagem de noções geométricas, exploração espacial e princípios básicos de programação. Uma das funcionalidades proporcionadas por essa linguagem é a tartaruga (derivada de um robot com esse nome) que representa um cursor no écrã ao qual são dadas instruções de movimento e desenho.

A tartaruga tem incorporada uma caneta que, quando está para baixo, deixa um rasto (que é desenhado no écrã). Sempre que a caneta está para cima, o seu movimento não deixa rasto (e nada é desenhado no écrã).

A sua primeira tarefa consiste em começar por definir um mundo para a tartaruga; criar uma tartaruga nesse mundo e movimentá-la segundo um conjunto de instruções de modo a criar uma imagem.

Assuma que o mundo da tartaruga é definido por uma grelha, com uma determinada altura e uma determinada largura, por onde a tartaruga se poderá movimentar de acordo com o seguinte conjunto de instruções:

- U (up): levanta a caneta, não deixando rasto;
- **D** (down): baixa a caneta, deixando rasto;
- F x (forward): move-se x passos para a frente;
- L (left): roda para a esquerda;
- R (right): roda para a direita.

A tartaruga tem associado a si uma grelha, uma posição (x,y), uma direção (Norte, Sul, Este e Oeste) e a posição da caneta (para cima ou para baixo).

Quando criada, a tartaruga posiciona-se na localização (0,0), tendo como referencial o canto superior esquerdo da grelha, está virada para Este e tem a caneta para cima.

No caso de serem dadas instruções que impliquem a movimentação da tartaruga para fora dos limites da grelha, esta movimenta-se o máximo que puder até à fronteira e permanece aí.

Uma vez executado o conjunto de instruções dado à tartaruga e criada uma imagem, a segunda e terceira parte da sua tarefa consiste na análise da imagem e no reconhecimento de um padrão ness mesma imagem.

Input

A primeira linha do input contém o valor de uma flag que pode tomar os valores 0, 1 ou 2.

A linha seguinte contém dois inteiros LINS e COLS indicando, respectivamente, o número de linhas e colunas que definem a grelha da imagem. Nas linhas subsequentes estão as instruções a passar à tartaruga, uma instrução por linha. O conjunto de instruções termina com a palavra end.

A partir deste ponto do input, é definido o padrão a procurar na imagem. Numa primeira linha, dois inteiros N e M indicam, respectivamente, o número de linhas e colunas do padrão. As N linha seguintes definem o padrão. Cada uma dessas linhas possui M caracteres ('.' ou '*'), alinhados à esquerda e com o espaçamento de 1 carater.

Output

No caso do valor da **flag ser igual a 0**, deverá apresentar no écrã o resultado da execução das instruções fornecidas à tartaruga. Para tal, assuma que todas as posições da grelha estão incialment preenchidas com '.' e que a tartaruga, quando tem a caneta para baixo, marca as posições por onde passa com '*'. As posições da grelha devem ser apresentadas alinhadas à esquerda com um espaçament de 1 carater entre posições.

No caso do valor da **flag ser igual a 1**, deverá indicar, separado por um espaço, a percentagem das posições da grelha marcadas pela tartaruga (truncada às unidades) e, o número de linhas e colunas qu não possuem qualquer marca.

No caso da flag ser igual a 2, deverá ler do input o padrão a procurar e responder Sim, no caso deste se encontrar na imagem criada pela tartaruga, e Nao caso contrário.

Exemplos:

Input	Output
0	* * * * *
0 5 5	*
D F 4	* * *
	*
U	* * * * *
R	
R F 4	
D	
L F 2	
F 2	
L	
F 2	
L	
L	
U	
F 2	
D .	
L F 2	
L F 4	
end	
3 3	
* * *	
*	
• •	

Input	Output
1 5 5	60 0 0
5 5	
D F 4	
F	
R	
R	
F 4	
D	
L F 2	
.	
F 2	
L	
L	
U F 2	
D	
L	
F 2	
L F	
end	
3 3	
*	
* * *	
T • •	

Input	Output
2	Sim
2 5 5	
D	
D F 4	
U	
R	
R R F 4	
F 4	
D	
L	
F 2	
L	
F 2	
L	
L	
U F 2	
F 2 D	
L F 2	
F 4	
end	
3 3	
*	
* * *	
*	
	,

