

Approximation du nombre π

Algo & Prog avec R

A. Malapert, B. Martin, M. Pelleau, et J.-P. Roy 5 novembre 2021

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

Le nombre π

- $ightharpoonup \pi$ est défini comme le rapport constant entre la circonférence d'un cercle et son diamètre dans le plan euclidien.
- ightharpoonup De nos jours, les mathématiciens définissent π par l'analyse réelle à l'aide des fonctions trigonométriques elles-mêmes introduites sans référence à la géométrie.
- Le nombre π est irrationnel, ce qui signifie qu'on ne peut pas l'écrire comme une fraction.
- Le nombre π est transcendant ce qui signifie qu'il n'existe pas de polynôme à coefficients rationnels dont π soit une racine.

Calcul de π par la formule de Leibniz

On utilisera la formule de Leibniz issue du développement en série de Taylor en 0 de arctan(x) évalué au point 1 :

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots = \frac{\pi}{4}$$

Elle a été découverte en Occident au XVIIe, mais apparaît déjà chez Madhava, mathématicien indien de la province du Kerala, vers 1400.

c.f. Wikipedia

Nous allons développer un algorithme d'approximation de π .

ITÉRATION Comment améliorer l'approximation courante?

TERMINAISON Mon approximation courante est-elle assez bonne?

Est-ce que le calcul prend trop de temps?

INITIALISATION Comment initialiser la première approximation?

Algorithme d'approximation de π

ITÉRATION

Pour améliorer l'approximation, étant en possession de la somme acc des i premiers termes, on voudra obtenir la somme des i+1 premiers. Il suffira donc d'incrémenter i, puis d'ajouter $\frac{(-1)^i}{2i+1}$ à acc.

```
i <- i + 1
term <- (-1)**i / (2*i + 1)
acc <- acc + term
```

TERMINAISON

Mon approximation courante a est-elle assez bonne? Elle est assez bonne lorsque je n'arrive plus à l'améliorer. Notons h la précision.

Est-ce que le calcul prend trop de temps? Notons n le nombre maximum de termes à calculer

```
4*abs(term) < h || i >= n
```

INITIALISATION

```
i <- 0
acc <- 1
```

Programme d'approximation de π

```
LeibnizPi <- function(n = 10**4, h = 2**(-20)) {
   i <- 0
   term <- 1
   acc <- 1
   while((i < n) && 4*abs(term) > h) {
      i <- i + 1
      term <- (-1)**i / (2*i + 1)
      acc <- acc + term
   }
   return(4*acc)
}</pre>
```

```
> LeibnizPi(n = 100, h = 0)

[1] 3.151493

> LeibnizPi(n = 100000, h = 0)

[1] 3.141603

> pi

[1] 3.141593
```

Analyse de la convergence vers π

```
ErreurRelativePi <- function(v) return(1 - v/pi)
ErreurRelativeLeibnizPi <- function(n) {
  approxPi <- LeibnizPi(n = n, h = 0)
  return(ErreurRelativePi(approxPi))
}</pre>
```

Formule de Leibniz

n	Erreur
101	-0.003152
1001	-0.000318
10001	-0.000032
100001	-0.000003

Approximation rationnelle

Fraction	Erreur	
<u>22</u> 7	-0.000402499435	
355 113	-0.000000084914	
$\frac{103993}{33102}$	0.00000000184	
104348 33215	-0.000000000106	

Observation

La formule de Leibniz converge lentement.

Analyse des performances du programme

Calculons le temps nécessaire pour atteindre une précision donnée sans limiter le nombre d'itérations.

```
> system.time(LeibnizPi(n = Inf, h = 10**(-4)))
utilisateur système écoulé
0.006 0.000 0.006
```

- ► Le temps d'exécution et le nombre d'itérations augmentent linéairement avec la précision.
- La recherche d'une estimation très précise de π demande un temps de calcul important.
- ► En extrapolant ces résultats, il faudrait 5×10^8 secondes (≥ 15 ans) pour obtenir une estimation de π à la précision machine (approximativement 15 décimales).
- Certaines formules convergent beaucoup plus rapidement.

Précision	Temps (s)
10^{-4}	0.006
10^{-5}	0.147
10^{-6}	0.599
10^{-7}	5.347
10^{-8}	52.860

Optimisation du programme

Exploitons la récurrence pour accélérer les calculs.

Les multiplications, divisions, et puissances sont plus coûteuse en temps de calcul que les additions et soustractions.

```
LeibnizPi2 <- function (n = 10**4, h = 2**(-20)) {
 i <- 0
 term <- 1
 acc <- 1
 h <- h / 4 ## éviter la multiplication du test
  signe <- 1 ## mémoriser le signe du terme
 denom <- 1 ## mémoriser le dénominateur du terme
  while ( (i < n) && abs(term) > h) {
   i < -i + 1
    signe <- -1 * signe # éviter une puissance
    denom <- denom + 2 # éviter une multiplication
   term <- signe / denom
    acc <- acc + term
 return (4*acc)
}
```

Comparaison de programmes

Précision	Temps (s)
LeibnizPi	5.347
LeibnizPi2	4.157
En langage C	0.007

- Les optimisations du programme offrent un gain supérieur à 20%.
- ► R est donc un langage interprété de haut niveau ce qui se paie au niveau des performances.
- ► Le langage C, entre autres, est beaucoup plus rapide.
- ► Le langage C est un langage impératif, généraliste et de bas niveau où chaque instruction du langage est compilée.

Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R

La formule d'Euler-Wallis converge vers $\frac{\pi}{2}$

Ce produit peut s'écrire sous la forme :

$$P(n) = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} \cdots \frac{2n}{2n-1} \times \frac{2n}{2n+1} = \prod_{k=1}^{n} \frac{4k^{2}}{4k^{2}-1}$$

Récurrence

```
P <- function(n) {
  if(n <=1) {
    return(ifelse(n == 1, 4/3, 0))
  } else {
    t <- 4*(n**2)
    return((t/(t-1)) * P(n-1))}
}</pre>
```

Vectorisation (plus tard)

```
P <- function(n) {
  if(n <=0) return(0)
  terms <- 4*(1:n)**2
  return(prod(terms/(terms-1)))</pre>
```

Itération

```
P <- function(n) {
    if(n <=0) return(0)
    acc <- 1
    i <- 0
    while(i < n) {
        i <- i + 1
        t <- 4*(i**2)
        acc <- acc * t/(t-1)
    }
    return(acc)
}
```

Elle converge lentement ...

```
> 2*P(100)
[1] 3.133787
> 2*P(10000)
[1] 3.141514
> 2*P(100000)
[1] 3.141585
> 2*P(100000)
[1] 3.141585
> 2*P(1000000)
[1] 3.141585
> pi
[1] 3.141593
```