Examination Machines

https://pos/2029.com

Add WeChat powcoder April 23, 2021

Topics

- Why are metrics important?
- Binary classifiers

 Rank view, Thresholding Project Exam Help
- Metrics
 - https://powcoder.com **Confusion Matrix**
 - Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity, F-score
 - Summary metrics: AU-ROC AU-PRC Log-Joss.
 Osing Metrics Add WeChat powcoder
- **Choosing Metrics**
- Class Imbalance
 - Failure scenarios for each metric
- Multi-class

Why are metrics important?

- Training objective (cost function) is only a proxy for real world objectives.
- Metrics help capture a business goal into a quantitative target (not all errors are equal) Assignment Project Exam Help are equal).
- Helps organize ML team effort towards that target.

 Generally in the form Proving Pr
- Useful to quantify the "gap" between:
 - Desired performance And pas Weest nate protwice of er
 - Desired performance and current performance.
 - Measure progress over time.
- Useful for lower level tasks and debugging (e.g. diagnosing bias vs variance).
- Ideally training objective should be the metric, but not always possible. Still, metrics are useful and important for evaluation.

Binary Classification

- x is input
- y is binary output (0/1) Model is $\hat{y} = h(x)$ Signment Project Exam Help
- - Two types of models

 o Models that output a categorical powers of the graph of the control of th
 - Models that output a real valued score (SVM, Logistic Regression)
 - Score could be margin (We Cripbability of Wedder Need to pick a threshold

 - We focus on this type (the other type can be interpreted as an instance)

Score based models

Score = 0

Threshold -> Classifier -> Point Metrics

Point metrics: Confusion Matrix

Point metrics: True Positives

Point metrics: True Negatives

Point metrics: False Positives

Point metrics: False Negatives

FP and FN also called Type-1 and Type-2 errors

Point metrics: Accuracy

Point metrics: Precision

Point metrics: Positive Recall (Sensitivity)

Striving for good precision with 100% recall = pulling up the lowest green as high as possible in the ranking. Striving for good recall with 100% precision = pushing down the top gray as low as possible in the ranking.

Point metrics: Negative Recall (Specificity)

Point metrics: F1-score

Point metrics: Changing threshold

Threshold Scanning Score = 1		Threshold	TP	TN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
		1.00	0	10	0	10	0.50	1	0	1	0
Threshold = 1.00	±	0.95	1	10	0	9	0.55	1	0.1	1	0.182
		0.90	2	10	0	8	0.60	1	0.2	1	0.333
		0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
		0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
	•	0.75	4	9	_ 1	6	0.65		0.4	0.9	0.533
	Assignment	t Pro	 e 6	tt	ZX	an	1 H®	0.833	0.5	0.9	0.625
	<u> </u>	0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
	1	0.60	6	1	2	4	0.70	0.750	0.6	0.8	0.667
	https://	DOWE	OC	ler	·.C	011	0.75	0.778	0.7	0.8	0.737
		0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
	, , , , , , , , , , , , , , , , , , ,	0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
	Add W	eCh ₈	lt 9	\mathbf{O}^{T}	WE	COC	er ^{0.80}	0.750	0.9	0.7	0.818
(0.35	9	- 6	4	1	0.75	0.692	0.9	0.6	0.783
		0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
(0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
(5	0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
	Ŷ	0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
	<u></u>	0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
(2	0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
		0.00	10	0	10	0	0.50	0.500	1	0	0.667

Threshold = 0.00

Score = 0

Summary metrics: Rotated ROC (Sen vs. Spec)

Sensitivity = True Pos / Pos

Summary metrics: PRC (Recall vs. Precision)

Summary metrics:

Two models scoring the same data set. Is one of them better than the other?

Summary metrics: Log-Loss vs Brier Score

• Same ranking, and therefore the same AUROC,

AUPRC, accuracysignment Project Exam Help

$$Log Loss = \frac{1}{N} \sum_{i=1}^{N} - y_i \log \hat{y}_i / \overline{powcoder.com} \hat{y}_i).$$

- Rewards confident correct answers, heavily penalizes confident want award award powcoder
- One perfectly confident wrong prediction is fatal.
- -> Well-calibrated model
- **Proper** scoring rule: Minimized at $\hat{y} = y$

Brier Score =
$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Calibration vs Discriminative Power

Logistic (th=0.5): Precision: 0.872 Recall: 0.851 F1: 0.862 Brier: 0.099

SVC (th=0.5): Precision: 0.872 Recall: 0.852

F1: 0.862 Brier: 0.163

Unsupervised Learning

- Log P(x) is a measure of fit in Probabilistic models (GMM, Factor Analysis)
 - High log P(x) Arssignmento Project texam Help of overfitting
 - Raw value of log P(x) hard to interpret in isolation https://powcoder.com
- K-means is trickier (because of fixed covariance assumption)

Class Imbalance

Symptom: Prevalence < 5% (no strict definition)

Metrics: May not be may ignment Project Exam Help

Learning: May not focus on minority class examples at all

https://powcoder.com

(majority class can overwhelm logistic regression, to a lesser extent SVM)

Add WeChat powcoder

What happen to the metrics under class imbalance?

Accuracy: Blindly predicts majority class -> prevalence is the baseline.

Log-Loss: Majority Assignmenta Projects Exam Help

AUROC: Easy to keep Aurophigh by scoring mest regatives very low.

AUPRC: Somewhat more robust than AUROC. But other challenges. Add WeChat powcoder

In general: Accuracy < AUROC < AUPRC

Sensitivity = True Pos / Pos

Multi-class

- Confusion matrix will be N * N (still want heavy diagonals, light off-diagonals)
- Most metrics (except accuracy) generally analyzed as multiple 1-vs-many Multiclass variants of AUROC and AUROC (micro vs macro averaging)

- Class imbalance is common (both in absolute and relative sense)

 Cost sensitive learning techniques (also helps in binary Imbalance)
 - Assign weights for each block in the confusion matrix.
 - Incorporate weights in the contract powcoder

Choosing Metrics

Some common patterns:

- High precision is hard constraint, do best recall (search engine results, grammar corrections ignoment of Project Exam Help
- Metric: Recall at Precision = XX %
 High recall is hard constraint, dpostcoderocommunical diagnosis): Intolerant to FN

Add WeChat powcoder Metric: Precision at Recall = 100 %

- Capacity constrained (by K)
 - Metric: Precision in top-K.

Assignment Project Exam Help

https://pawkoder!com

Add WeChat powcoder