Perry Hart K-theory reading seminar UPenn November 14, 2018

Abstract

We continue looking at higher Waldhausen K-theory by presenting several of its key theorems. At the end, we see an encoding of Waldhausen K-theory as the infinite loop space of a sort of spectrum. The main sources for this talk are the following.

- nLab
- Charles Weibel's The K-book: an introduction to algebraic K-theory, Sect. V.2
- John Rognes's Lecture Notes on Algebraic K-Theory, Ch. 8

1 Extension and additivity

Let \mathscr{B} and \mathscr{C} be Waldhausen categories. We say that $F' \rightarrowtail F \twoheadrightarrow F''$ is a short exact sequence or cofiber sequence of exact functors $\mathscr{B} \to \mathscr{C}$ if

- (i) the sequence $F'(B) \rightarrow F(B) \twoheadrightarrow F''(B)$ is a cofiber sequence for every $B \in \text{ob } \mathscr{B}$ and
- (ii) the map $F(A) \cup_{F'(A)} F'(B) \rightarrow F(B)$ is a cofibration in \mathscr{C} for every $A \rightarrow B$ in \mathscr{B} .

Let $\eta: A \rightarrow B \twoheadrightarrow C$ be an object in $S_2\mathscr{C}$. Define the source s, target t, and quotient q functors $S_2\mathscr{C} \rightarrow \mathscr{C}$ by $s(\eta) = A$, $t(\eta) = B$, and $q(\eta) = C$, respectively. Then $s \rightarrow t \twoheadrightarrow q$ is a cofiber sequence of functors.

Since defining a cofiber sequence of exact functors $\mathscr{B} \to \mathscr{C}$ is equivalent to defining an exact functor $\mathscr{B} \to S_2\mathscr{C}$, we may restrict our attention to $s \mapsto t \twoheadrightarrow q$ when proving assertions about a given cofiber sequence of exact functors $\mathscr{B} \to \mathscr{C}$. (We say that $S_2\mathscr{C}$ is *universal* in this sense.)

Theorem 1.1 (Extension). The exact functor $(s,q): S_2\mathscr{C} \to \mathscr{C} \times \mathscr{C}$ induces a homotopy equivalence $K(S_2\mathscr{C}) \simeq K(\mathscr{C}) \times K(\mathscr{C})$. The functor $\coprod : (A,B) \to (A \rightarrowtail A \coprod B \twoheadrightarrow B)$ is a homotopy inverse.

Proof sketch. Let \mathscr{C}_m^w denote the category of m-length sequences of weak equivalences. For each n, define $s_n\mathscr{C}_m^w$ as the commutative diagram

This is naturally isomorphic to an (m,n)-bisimplex in $N_{\bullet}wS_{\bullet}\mathscr{C}$, which is thus isomorphic to the bisimplicial set $s_{\bullet}\mathscr{C}^w_{(-)}$. One can show that the source s and quotient q functors $S_2\mathscr{C} \to \mathscr{C}$ induce a homotopy equivalence $s \times q : s_{\bullet}S_2(\mathscr{C}^w_m) \to s_{\bullet}\mathscr{C}^w_m \times s_{\bullet}\mathscr{C}^w_m$ for each m. Thus, we get a homotopy equivalence

$$s_{\bullet}S_2(\mathscr{C}^w_{(-)}) \simeq s_{\bullet}\mathscr{C}^w_{(-)} \times s_{\bullet}\mathscr{C}^w_{(-)}$$

between bisimplicial sets. But we already have that $s_{\bullet}\mathscr{C}^{w}_{(-)} \cong N_{\bullet}wS_{\bullet}\mathscr{C}$, thereby completing our proof.

Recall that $|wS_{\bullet}\mathscr{C}|$ is an H-space via the map

$$\prod : |wS_{\bullet}\mathscr{C}| \times |wS_{\bullet}\mathscr{C}| \cong |wS_{\bullet}\mathscr{C} \times wS_{\bullet}\mathscr{C}| \to |wS_{\bullet}\mathscr{C}|. \tag{*}$$

This produces an *H*-space structure $(K(\mathscr{C}), +)$.

Theorem 1.2 (Additivity). Let $F' \rightarrow F \twoheadrightarrow F''$ be a short exact sequence of exact functors $\mathscr{B} \rightarrow \mathscr{C}$. Then $F_* \simeq F'_* + F''_*$ as maps $K(\mathscr{B}) \rightarrow K(\mathscr{C})$, so that

$$F_* = F'_* + F''_*$$

as maps $K_i(\mathscr{B}) \to K_i(\mathscr{C})$.

Proof. As $S_2\mathscr{C}$ is universal, it suffices to prove that $t_* \simeq s_* + q_*$. Notice that the two composites

$$\mathscr{C} \times \mathscr{C} \xrightarrow{\coprod} S_2 \mathscr{C} \xrightarrow{s \coprod q} \mathscr{C}$$

are the same. Theorem 1.1 implies that $K(\coprod): K(\mathscr{C}) \times K(\mathscr{C}) \to K(S_2\mathscr{C})$ is a homotopy equivalence. Since the H-space structure on $K(\mathscr{C})$ is induced by \coprod , we conclude that $t_* \simeq s_* + q_*$.

Definition 1.3. We say that a sequence

$$* \to A_n \to \cdots \to A_0 \to *$$

is admissibly exact if each morphism in the sequences can be written as a cofiber sequence

$$A_{i+1} \twoheadrightarrow B_i \rightarrowtail A_i$$
.

Corollary 1.4. Suppose that

$$* \to F^0 \to F^1 \to \cdots \to F^n \to *$$

is an admissibly exact sequence of exact functors $\mathscr{B} \to \mathscr{C}$. Then we have an equality

$$\sum_{i} (-1)^{i} F_{*}^{i} = 0$$

of maps $K_i(\mathscr{B}) \to K_i(\mathscr{C})$.

Corollary 1.5. Let $F' \rightarrow F \twoheadrightarrow F''$ be a short exact sequence of exact functors $\mathscr{B} \rightarrow \mathscr{C}$. Then

$$F''_* \simeq F_* - F_* \simeq 0.$$

This implies that the homotopy fiber of $F''_*: K(\mathscr{B}) \to K(\mathscr{C})$ is homotopy equivalent to $K(\mathscr{B}) \vee \Omega K(\mathscr{C})$.

Let $\mathscr C$ be a Waldhausen category. Recall the arrow category $\operatorname{Ar}(\mathscr C)$ of $\mathscr C$ consisting of morphisms in $\mathscr C$ as objects and commutative squares as morphisms. Let s and t denote the source and target functors $\operatorname{Ar}(\mathscr C) \to \mathscr C$, respectively.

Definition 1.6. A functor $T: Ar(\mathscr{C}) \to \mathscr{C}$ is a *(mapping) cylinder functor* on \mathscr{C} if it comes equipped with natrual transformations $j_1: s \Rightarrow T$, $j_2: t \Rightarrow T$, and $p: T \Rightarrow t$ such that for any $f: A \to B$, we have a commutative diagram

$$A \xrightarrow{j_1} T(f) \xleftarrow{j_2} B$$

$$\downarrow^p =$$

$$B$$

Moreover, T must satisfy the following axioms.

- (1) T sends every initial morphism $* \to A$ to A for any $A \in \text{ob } \mathscr{C}$.
- (2) The map $j_1 \coprod j_2 : A \coprod B \rightarrowtail T(f)$ is a cofibration for any $f : A \to B$.
- (3) Given a morphism $(a,b): f \to f'$ in $Ar(\mathscr{C})$, if both a and b are weak equivalences in \mathscr{C} , then so is $T(f) \to T(f')$.
- (4) Given a morphism $(a, b): f \to f'$ in $Ar(\mathscr{C})$, if both a and b are cofibrations in \mathscr{C} , then so is $T(f) \to T(f')$. Also, the map

$$A'\coprod_A T(f)\coprod_B B'\to T(f')$$

induced by axiom (2) is a cofibration in \mathscr{C} .

(5) (Cylinder axiom) The map $p: T(f) \to B$ is a weak equivalence in \mathscr{C} .

Terminology. Let T be a cylinder functor on \mathscr{C} .

- 1. We call $T(A \to *)$ the *cone* of A, denoted by cone(A).
- 2. We call cone(A)/A the suspension of A, denoted by ΣA .

Corollary 1.7. The induced suspension map $\Sigma: K(\mathscr{C}) \to K(\mathscr{C})$ is a homotopy inverse for the H-space structure (\star) .

Proof. Note that axiom (3) gives us a cofiber sequence $A \mapsto \operatorname{cone}(A) \twoheadrightarrow \Sigma A$. Therefore, $1 \mapsto \operatorname{cone} \twoheadrightarrow \Sigma$ is an exact sequence of functors. By the cylinder axiom, we know that cone is null-homotopic. It follows by Theorem 1.2 that $\Sigma_* + 1 = \operatorname{cone}_* = *$.

2 Localization

Let \mathscr{C} be a category with cofibrations. Equip it with two Waldhausen subcategories $v(\mathscr{C})$ and $w(\mathscr{C})$ of weak equivalences such that $v(\mathscr{C}) \subset w(\mathscr{C})$. Assume that (\mathscr{C}, w) admits a cylinder functor. Suppose that $w(\mathscr{C})$ is saturated and closed under extensions.

Let \mathscr{C}^w denote the Waldhausen subcategory of (\mathscr{C}, v) consisting of all A such that $* \to A$ belongs to $w(\mathscr{C})$.

Are the initial morphisms the only weak equivalences?

Theorem 2.1 (Waldhausen localization). The sequence

$$K(\mathscr{C}^w) \to K(\mathscr{C}, v) \to K(\mathscr{C}, w)$$

is a homotopy fibration sequence.

Proof sketch. Recall that a small bicategory is a bisimplicial set such that each row/column is the nerve of a category. Note that $v_{(-)}w_{(-)}\mathscr{C}$ is a bicategory whose bimorphisms are commutative squares of the form

$$(-) \xrightarrow{w'} (-)$$

$$v \downarrow \qquad \qquad \downarrow_{v'}.$$

$$(-) \xrightarrow{w} (-)$$

$$(\star)$$

Treating $w\mathscr{C}$ as a bicategory with a single vertical morphism reveals that

$$w\mathscr{C} \simeq v_{(-)}w_{(-)}\mathscr{C}.$$

This yields $wS_n\mathscr{C} \simeq v_{(-)}w_{(-)}S_n\mathscr{C}$ for each n.

Now, let $v_{(-)} \operatorname{co} w_{(-)} \mathscr{C}$ denote the subcategory of all squares like (\star) where the horizontal maps are also cofibrations. One can show that the inclusion $v_{(-)} \operatorname{co} w_{(-)} \mathscr{C} \subset v_{(-)} w_{(-)} \mathscr{C}$ is a homotopy equivalence. Since each $S_n\mathscr{C}$ inherits a cylinder functor from \mathscr{C} , we obtain a simplicial bi-subcategory $v_{(-)} \operatorname{co} w_{(-)} S_{\bullet} \mathscr{C}$ such that the inclusion into $v_{(-)} w_{(-)} S_{\bullet} \mathscr{C}$ is a homotopy equivalence. This yields a commutative diagram

$$vS_{\bullet}C^{w} \longrightarrow vS_{\bullet}C \longrightarrow v_{(-)}\cos w_{(-)}S_{\bullet}C$$

$$\downarrow \qquad \qquad \downarrow \simeq$$

$$wS_{\bullet}C \xrightarrow{\simeq} v_{(-)}w_{(-)}S_{\bullet}C$$

What about the left vertical morphism?

It therefore suffices to show that the top row is a fibration. One can do this by using the relative K-theory space construction. See IV.8.5.3 and V.2.1 (Weibel).

Now, let \mathscr{A} be an exact category embedded in an abelian category \mathscr{B} and let $\mathbf{Ch}^{\mathrm{b}}(\mathscr{A})$ denote the category of bounded chain complexes in \mathscr{A} . One can verify that $\mathbf{Ch}^{\mathrm{b}}(\mathscr{A})$ is Waldhausen where the cofibrations $A_{\bullet} \to B_{\bullet}$ are precisely the degree-wise admissible monomorphisms (i.e., those admitting a short exact sequence $A_n \to B_n \to B_n/A_n$ in \mathscr{A} for each n) and the weak equivalences are precisely the chain maps which are quasi-isomorphisms of complexes in $\mathbf{Ch}(\mathscr{B})$.

Our next result is a consequence of Theorem 2.1 and can be found in V.2.2 (Weibel).

Theorem 2.2 (Gillet-Waldhausen). Let \mathscr{A} be an exact category closed under kernels of surjections. Then the exact inclusion $\mathscr{A} \to \mathbf{Ch}^{\mathrm{b}}(\mathscr{A})$ induces a homotopy equivalence $K(\mathscr{A}) \simeq K \mathbf{Ch}^{\mathrm{b}}(\mathscr{A})$. Hence

$$K_i(\mathscr{A}) = K_i \operatorname{\mathbf{Ch}}^{\mathrm{b}}(\mathscr{A})$$

for every i.

Definition 2.3. Let $F: \mathscr{A} \to \mathscr{B}$ be an exact functor between Waldhausen categories. We say that F satisfies the approximate lifting property if for any map $b: F(A) \to B$ in \mathscr{B} , there exists a map $a: A \to A'$ in \mathscr{A} along with a weak equivalence $b': F(A') \simeq B$ in \mathscr{B} such that

$$F(A') \xrightarrow{---} B$$

$$F(a) \uparrow \qquad b$$

$$F(A)$$

commutes.

This means that F has the approximate lifting property just in case we can always lift it to a weak equivalence.

Proposition 2.4. Let $F: \mathscr{A} \to \mathscr{B}$ be an exact functor between Waldhausen categories with the following properties.

- 1. F satisfies the approximate lifting property.
- 2. A admits a cylinder functor.
- 3. A morphism f in \mathscr{A} is a weak equivalence iff F(f) is a weak equivalence in \mathscr{B} .

Then $wF: w\mathscr{A} \to w\mathscr{B}$ is a homotopy equivalence.

Corollary 2.5 (Waldhausen approximation). With the same hypotheses as in Proposition 2.4, we have

$$K(\mathscr{A}) \simeq K(\mathscr{B}).$$

Proof sketch. One can show that each functor $S_n \mathscr{A} \to S_n \mathscr{B}$ is exact and also has the approximate lifting property. Proposition 2.4 thus implies that the bisimplicial map $wS_{\bullet}\mathscr{A} \to wS_{\bullet}\mathscr{B}$ is a degreewise homotopy equivalence, which is enough.

Definition 2.6. Let \mathscr{A} be an abelian category $\mathbf{Ch}(\mathscr{A})$ denote the category of chain complexes over \mathscr{A} . We say that a complex C_{\bullet} is homologically bounded if only finitely many $H_i(C_j)$ are nonzero.

Notation. Let $\mathbf{Ch}_{\pm}^{\mathrm{hb}}$ denote the subcategory of bounded below (respectively, bounded above) complexes.

Example 2.7. Let \mathscr{A} be an abelian category. One can show that the inclusions $\mathbf{Ch}^{\mathrm{b}}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}_{-}(\mathscr{A})$ and $\mathbf{Ch}^{\mathrm{hb}}_{+}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}(\mathscr{A})$ have the approximate lifting property. Also, the inclusions $\mathbf{Ch}^{\mathrm{b}}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}(\mathscr{A}) \subset \mathbf{Ch}^{\mathrm{hb}}(\mathscr{A})$ satisfy the dual of the approximate lifting property. Thus, we can apply Corollary 2.5 along with Theorem 2.2 to find that

$$K(\mathscr{A}) \simeq K\operatorname{\mathbf{Ch}}^{\operatorname{b}}(\mathscr{A}) \simeq K\operatorname{\mathbf{Ch}}^{\operatorname{hb}}_{-} \simeq K\operatorname{\mathbf{Ch}}^{\operatorname{hb}}_{+}(\mathscr{A}) \simeq K\operatorname{\mathbf{Ch}}^{\operatorname{hb}}(\mathscr{A}).$$

3 K-theory spectrum

Definition 3.1. A symmetric spectrum **X** in topological spaces is a sequence of based Σ_n -spaces (X_n) endowed with structure maps $\sigma: X_n \wedge S^1 \to X_{n+1}$ such that $\sigma^k: X_n \wedge S^k \to X_{n+k}$ is $(\Sigma_n \times \Sigma_k)$ -equivariant for any $n, k \geq 0$, where $S^k \equiv \underbrace{S^1 \wedge \cdots \wedge S^1}_{k+1}$.

A map $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ of symmetric spectra is a sequence $(f_n: X_n \to Y_n)$ of based Σ_n -equivariant maps such that for each $n \geq 0$, the square

$$\begin{array}{ccc} X_n \wedge S^1 & \xrightarrow{f_n \wedge \mathrm{Id}} & Y_n \wedge S^1 \\ \downarrow^{\sigma} & & \downarrow^{\sigma} \\ X_{n+1} & \xrightarrow{f_{n+1}} & Y_{n+1} \end{array}$$

commutes. Let Sp^Σ denote the category of symmetric spectra in topological spaces.

Definition 3.2. Let $(\mathscr{C}, w\mathscr{C})$ be a Waldhausen category. The external n-fold S_{\bullet} -construction on \mathscr{C} is the n-multisimplicial Waldhausen category

$$(S_{\bullet}\cdots S_{\bullet}\mathscr{C}, wS_{\bullet}\cdots S_{\bullet}\mathscr{C})$$
.

In multidegree (q_1, \ldots, q_n) , it has as objects the diagrams $X : Ar[q_1] \times \cdots \times Ar[q_n] \to \mathscr{C}$ such that

- (i) $X((i_1, j_1), \dots, (i_n, j_n)) = *$ when $i_k = j_k$ for some $1 \le k \le n$ and
- (ii) $X(\ldots,(i_t,j_t),\ldots) \rightarrow X(\ldots,(i_t,k_t),\ldots) \twoheadrightarrow X(\ldots,(j_t,k_t),\ldots)$ is a cofiber sequence in the (n-1)fold iterated S_{\bullet} -construction for any $i_t \leq j_t \leq k_t$ in $[q_t]$.

Definition 3.3. Let $(\mathscr{C}, w\mathscr{C})$ be a Waldhausen category. The internal n-fold S_{\bullet} -construction on \mathscr{C} is the simplicial Waldhausen category

$$\left(S^{(n)}_{\bullet}\mathscr{C}, wS^{(n)}_{\bullet}\mathscr{C}\right).$$

It has as q-simplices the functor categories $(S_q \cdots S_q \mathscr{C}, wS_q \cdots S_q \mathscr{C})$ whose objects are precisely the $(Ar[q])^n$ -shaped diagrams $X: (Ar[q])^n \to \mathscr{C}$ such that

- (i) $X((i_1, j_1), ..., (i_n, j_n)) = *$ when $i_k = j_k$ for some $1 \le k \le n$.
- (ii) $X(\ldots,(i_t,j_t),\ldots) \rightarrow X(\ldots,(i_t,k_t),\ldots) \twoheadrightarrow X(\ldots,(j_t,k_t),\ldots)$ is a cofiber sequence in the (n-1)fold iterated S_{\bullet} -construction for any $i_t \leq j_t \leq k_t$ in [q].

Note that Σ_n acts on $S^{(n)}_{\bullet}\mathscr{C}$ by the relation $(\pi \cdot X)(\ldots,(i_t,j_t),\ldots)=X(\ldots,(i_{\pi^{-1}(t)},j_{\pi^{-1}(t)}),\ldots)$.

The (symmetric) algebraic K-theory spectrum $\mathbf{K}(\mathscr{C},w)$ of a small Waldhausen category $(\mathscr{C},w\mathscr{C})$ has n-th space

$$K(\mathscr{C}, w)_n \equiv \left| wS^{(n)}_{\bullet}\mathscr{C} \right|$$

based at *. There is a Σ_n -action on $K(\mathscr{C}, w)_n$ induced by permuting the order of the internal S_{\bullet} -constructions. Moreover, we have that

$$\left| wS_{\bullet}^{(n)}\mathscr{C} \right| \wedge S^{1} \cong \left| wS_{\bullet}^{(n)}S_{\bullet}\mathscr{C} \right|^{(1)} \subset \left| wS_{\bullet}^{(n)}S_{\bullet}\mathscr{C} \right| \cong \left| wS_{\bullet}^{(n+1)}\mathscr{C} \right|$$

where $-^{(1)}$ denotes the 1-skeleton with respect to the last simplicial direction. This determines the structure map σ .

Note 3.4. σ^k is $(\Sigma_n \times \Sigma_k)$ -invariant.

Theorem 3.5. For any $i \geq 0$, we have that $K_i(\mathscr{C}, w) = \pi_{i+1}K(\mathscr{C}, w)_1 \cong \pi_i \mathbf{K}(\mathscr{C}, w)$.

This enables us to encode our algebraic K-theory in an infinite loop space.

¹Lemma 8.7.4 (Rognes).