

planetmath.org

Math for the people, by the people.

measurability of analytic sets

Canonical name MeasurabilityOfAnalyticSets

Date of creation 2013-03-22 18:47:24 Last modified on 2013-03-22 18:47:24

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Theorem Classification msc 28A05 http://planetmath.org/AnalyticSet2Analytic subsets of a measurable space (X, \mathcal{F}) do not, in general, have to be measurable. See, for example, http://planetmath.org/ALebesgueMeasurableButNonBorelSeta Lebesgue measurable but non-Borel set. However, the following result is true.

Theorem. All analytic subsets of a measurable space are universally measurable.

Therefore for a universally complete measurable space (X, \mathcal{F}) all \mathcal{F} -analytic sets are themselves in \mathcal{F} and, in particular, this applies to any complete http://planetmath.org/SigmaFinite σ -finite measure space (X, \mathcal{F}, μ) . For example, analytic subsets of the real numbers \mathbb{R} are Lebesgue measurable.

The proof of the theorem follows as a consequence of the capacitability theorem. Suppose that A is an \mathcal{F} -analytic set. Then, for any finite measure μ on (X, \mathcal{F}) , let μ^* be the outer measure generated by μ . This is an \mathcal{F} -capacity and, by the capacitability theorem, A is (\mathcal{F}, μ^*) -capacitable, hence is in the completion of \mathcal{F} with respect to μ (see http://planetmath.org/CapacityGeneratedByAMeasurece generated by a measure). As this is true for all such finite measures, A is universally measurable.