Probability Theory

Exercise Sheet 7

Exercise 7.1 Let X and Y be two independent Bernoulli distributed random variables with parameter p. Define $Z = 1_{\{X+Y=0\}}$ and $\mathcal{G} = \sigma(Z)$. Find $E[X|\mathcal{G}]$ and $E[Y|\mathcal{G}]$. Are these random variables also independent?

Exercise 7.2 Let X and Y be random variables whose joint distribution is the uniform distribution on the triangle $\{(x,y) \in \mathbb{R}^2 : 0 \le y \le x \le 1\}$.

- (a) Compute the distribution of Y/X.
- (b) Show that Y/X and X are independent.
- (c) Compute the conditional expectation E[Y|X].

Exercise 7.3 Let S be a random variable with $P[S > t] = e^{-t}$, for all t > 0. Calculate the following conditional expectations for arbitrary t > 0:

- (a) $E[S \mid S \land t]$, where $S \land t := \min(S, t)$;
- (b) $E[S \mid S \lor t]$, where $S \lor t := \max(S, t)$.

Exercise 7.4 (Optional.) In this exercise we prove that in Theorem 1.37 (Kolmogorov's Three Series Theorem) $(1.4.16) \Rightarrow (1.4.17)$.

Consider X_k , $k \ge 1$ independent random variables and A > 0. Set $Y_k := X_k 1_{|X_k| \le A}$, $k \ge 1$. Assume that $\sum_k X_k$ converges P-a.s.

- (a) Show that $P[\liminf_{k} \{X_k = Y_k\}] = 1$.
- (b) Deduce from (a) that $\sum_k P[|X_k| > A] < \infty$ and $\sum_k Y_k$ converges P-a.s.
- (c) Show that $\sum_{k} \operatorname{Var}(Y_k) < \infty$. (**Hint:** use Exercise 6.4.)
- (d) Show that $\sum_k E[Y_k]$ converges. (**Hint:** use Theorem 1.34, moreover (c) and (b).)

Submission: until 14:15, Nov 12., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint

Solution 7.1 Since Z is constant on each the sets $A_0 = \{X + Y = 0\}$ and $A_1 = \{X + Y \ge 1\}$, we know that \mathcal{G} is generated by this partition. Thus,

$$E[X|\mathcal{G}](\omega) = \alpha_i = \frac{E[X1_{A_i}]}{P(A_i)}, \text{ for } \omega \in A_i.$$

On A_0 , X is identically 0, so $E[X1_{A_0}] = 0$ and $\alpha_0 = 0$. On the other hand, $X1_{A_1} = 1_{\{X=1\}} 1_{\{X+Y \ge 1\}} = 1_{\{X=1\}}$, so it follows that

$$\alpha_1 = \frac{p}{P(A_1)} = \frac{p}{1 - (1 - p)^2} = \frac{1}{2 - p}.$$

Hence, the conditional expectation can be expressed as

$$E[X|\mathcal{G}] = \frac{1}{2-p} 1_{\{X+Y \ge 1\}}.$$

By symmetry, $E[Y|\mathcal{G}]$ is given by the same expression, whence we conclude that $E[X|\mathcal{G}] = E[Y|\mathcal{G}]$. Since a non-constant random variable cannot be independent from itself, the two random variables $E[X|\mathcal{G}]$ and $E[Y|\mathcal{G}]$ are not independent.

Solution 7.2

(a) The joint density of X and Y is the function that is constant and equals 2 on the given triangle, and zero outside. Clearly, we have $0 \le Y/X \le 1$, P-almost surely. Furthermore, for $t \in [0,1]$, we have

$$P[Y/X \le t] = P[Y \le tX] = \int_0^1 \int_0^{tx} 2 \, dy \, dx = \int_0^1 2tx \, dx = t.$$

Thus Y/X has the uniform distribution on the interval [0,1].

(b) Let $t_1, t_2 \in (0,1)$. Then we have

$$P[Y/X \le t_1, X \le t_2] = P[Y \le t_1 X, X \le t_2] = \int_0^{t_2} \int_0^{t_1 x} 2 \, \mathrm{d}y \, \mathrm{d}x$$
$$= \int_0^{t_2} 2t_1 x \, \mathrm{d}x = t_1 t_2^2 = P[Y/X \le t_1] P[X \le t_2].$$

This equality holds also trivially for $t_1 \notin (0,1)$ or $t_2 \notin (0,1)$. Thus Y/X and X are independent, since by (1.3.11) of the lecture notes, the distribution of (Y/X, X) equals the product of the distributions of Y/X and X.

(c) Using the properties of the conditional expectation from the lecture, we have

$$E[Y|X] = E[(Y/X)X|X] \stackrel{(*)}{=} XE[Y/X|X] \stackrel{(**)}{=} XE[Y/X] \stackrel{(***)}{=} X/2.$$

- (*) X is $\sigma(X)$ -measurable.
- (**) Y/X is independent from $\sigma(X)$ by part (b).
- (***) By (a) Y/X is uniformly distributed on [0,1] and the expectation of the uniform distribution on [0,1] is 1/2.

Solution 7.3

(a) One has that

$$E[S | S \wedge t] = E[S1_{\{S < t\}} | S \wedge t] + E[S1_{\{S \ge t\}} | S \wedge t]$$

$$= E[(S \wedge t)1_{\{S \wedge t < t\}} | S \wedge t] + E[S1_{\{S \ge t\}} | S \wedge t]$$

$$= (S \wedge t)1_{\{S \wedge t < t\}} + E[S1_{\{S \ge t\}} | S \wedge t]. \tag{1}$$

We now compute the second term. Take arbitrary $A \in \mathcal{B}(\mathbb{R})$. Then one has that:

$$\begin{split} E\Big[S1_{\{S\geq t\}}1_{\{S\wedge t\in A\}}\Big] &= E\Big[S1_{\{S\geq t\}}1_{\{t\in A\}}\Big] = 1_{\{t\in A\}} \int_{t}^{\infty} xe^{-x}dx \\ &= 1_{\{t\in A\}}\Big[(-xe^{-x})\Big|_{t}^{\infty} + \int_{t}^{\infty} e^{-x}dx\Big] = 1_{\{t\in A\}}(t+1)e^{-t} \\ &= 1_{\{t\in A\}}(t+1)E\Big[1_{\{S\geq t\}}\Big] = E\Big[(t+1)1_{\{S\geq t\}}1_{\{S\wedge t\in A\}}\Big]. \end{split}$$

Because $\{S \geq t\} = \{S \wedge t = t\}$ is $\sigma(S \wedge t)$ -measurable, we have that

$$E\left[S1_{\{S\geq t\}} \mid S \wedge t\right] = (t+1)1_{\{S \wedge t = t\}}.$$

Then it follows from (1) that

$$E\left[S \mid S \land t\right] = (S \land t)1_{\{S \land t < t\}} + (t+1)1_{\{S \land t = t\}}.$$

(b) The solution is similar to part a). We know that

$$\begin{split} E\Big[S \ \Big| S \lor t\Big] &= E\Big[S1_{\{S \le t\}} \ \Big| S \lor t\Big] + E\Big[S1_{\{S > t\}} \ \Big| S \lor t\Big] \\ &= E\Big[S1_{\{S \le t\}} \ \Big| S \lor t\Big] + E\Big[(S \lor t)1_{\{S \lor t > t\}} \ \Big| S \lor t\Big] \\ &= E\Big[S1_{\{S \le t\}} \ \Big| S \lor t\Big] + (S \lor t)1_{\{S \lor t > t\}}. \end{split}$$

Take $A \in \mathcal{B}(\mathbb{R})$. For the first term we have:

$$\begin{split} E\Big[S1_{\{S\leq t\}}1_{\{S\vee t\in A\}}\Big] &= E\Big[S1_{\{S\leq t\}}1_{\{t\in A\}}\Big] = 1_{\{t\in A\}}\int_0^t xe^{-x}dx \\ &= 1_{\{t\in A\}}\Big(1-(t+1)e^{-t}\Big) = 1_{\{t\in A\}}\Big(1-(t+1)e^{-t}\Big)\frac{E\Big[1_{\{S\leq t\}}\Big]}{1-e^{-t}} \\ &= E\Big[\frac{1-(t+1)e^{-t}}{1-e^{-t}}1_{\{S\leq t\}}1_{\{S\vee t\in A\}}\Big]. \end{split}$$

Because of the $\sigma(S \wedge t)$ -measurability of $1_{\{S \leq t\}} = 1_{\{S \vee t = t\}}$ it follows that

$$E\Big[S1_{\{S \le t\}} \ \Big| S \lor t \Big] = \frac{1 - (t+1)e^{-t}}{1 - e^{-t}} 1_{\{S \lor t = t\}},$$

and hence

$$E[S \mid S \lor t] = \frac{1 - (t+1)e^{-t}}{1 - e^{-t}} 1_{\{S \lor t = t\}} + (S \lor t) 1_{\{S \lor t > t\}}.$$

Solution 7.4

- (a) We are going to argue by contraposition. Assume that $P[\liminf_k \{X_k = Y_k\}] < 1$, i.e. $P(A := \Omega \setminus \inf_k \{X_k = Y_k\}) > 0$. Then by the definition of $\lim \inf_k \{X_k = Y_k\}\} > 0$. Then by the definition of $\lim \inf_k \{X_k = Y_k\}\} > 0$ and $n \in \mathbb{N}$ there exists a k > n such that $X_k(\omega) \neq Y_k(\omega)$. By the definition of Y this means that $|X_k(\omega)| > A$ for such a k. This implies by Cauchy's convergence test that $\sum_k X_k(\omega)$ does not converge. Since this is true for each $\omega \in A$ and P(A) > 0, it follows that $\sum_k X_k$ does not converge P-a.s.
- (b) First, note that $\{|X_k| > A\} = \{X_k \neq Y_k\}$. Second, by de Morgan's law we have $\limsup_k \{X_k = Y_k\}^c = (\liminf_k \{X_k = Y_k\})^c$. Putting these together, we obtain due to (a) the following:

$$P(\limsup_{k} \{|X_{k}| > A\}) = P(\limsup_{k} \{X_{k} \neq Y_{k}\}) = P(\limsup_{k} \{X_{k} = Y_{k}\}^{c})$$
$$= P((\liminf_{k} \{X_{k} = Y_{k}\})^{c}) = 1 - P(\liminf_{k} \{X_{k} = Y_{k}\}) = 0. \quad (2)$$

Now since X_k are independent, so are the events $\{|X_k| > A\}$, and hence the contraposition of the second lemma of Borel-Cantelli (Lemma 1.26 in lecture notes) implies that $\sum_k P[|X_k| > A] < \infty$.

For the second statement, observe that $\sum_k Y_k = \sum_k X_k - \sum_k X_k 1_{|X_k| > A}$. Due to (2) we have $P(\limsup_k \{|X_k| > A\}) = 0$. This means that there is a set $A \in \mathcal{F}$ with P(A) = 1 such that for each $\omega \in A$ there exists a N such that for all k > N, $\omega \notin \{|X_k(\omega)| > A\}$, i.e. $1_{|X_k| > A}(\omega) = 0$. This in particular implies that $\sum_k X_k(\omega) 1_{|X_k| > A}(\omega)$ converges as the sum has only finitely many non-zero summands. Sine this is true for all $\omega \in A$ and P(A) = 1, it follows that $\sum_k X_k 1_{|X_k| > A}$ converges P-a.s. Therefore $\sum_k Y_k$ is a sum of two P-a.s convergent series and hence it converges P-a.s. itself.

- (c) This is a direct consequence of Exercise 6.4. Indeed, Y_k are independent as X_k are, and uniformly bounded by A by construction. Now since in (b) we have shown that $\sum_k Y_k$ converges P-a.s., Exercise 6.4 implies that $\sum_k \operatorname{Var}(Y_k) < \infty$ and hence we are done.
- (d) Define $Z_k := Y_k E[Y_k]$. Then Z_k are independent as X_k and hence Y_k are, $\sum_k \operatorname{Var}(Z_k) = \sum_k \operatorname{Var}(Y_k) < \infty$ due to (c) and $E[Z_k] = 0$ for each k by construction. Hence the conditions of Theorem 1.34 in the lecture notes are satisfied and it follows that $\sum_k Z_k$ converges P-a.s. But since $\sum_k E[Y_k] = \sum_k Y_k \sum_k Z_k$ and $\sum_k Y_k$ converges P-a.s. by (b), it follows that $\sum_k E[Y_k]$ also converges P-a.s. Since of course $E[Y_k]$ is deterministic for each k, it follows that $\sum_k E[Y_k]$ converges (for each $k \in \Omega$).