Билет 55

Автор1, ..., АвторN

22 июня 2020 г.

Содержание

0.1 Билет 55: Критерий Коши для равномерной сходимости последовательностей. . . 1

Билет 55 СОДЕРЖАНИЕ

0.1. Билет 55: Критерий Коши для равномерной сходимости последовательностей.

Теорема 0.1. (Критерий Коши для равномерной сходимости последовательностей)

Пусть $f_n: E \mapsto \mathbb{R}$. Тогда f_n равномерно сходится на E к некоторой функции

$$\iff$$

$$\forall \varepsilon > 0 \quad \exists N \quad \forall m, n \geqslant N \quad \forall x \in E \quad |f_m(x) - f_n(x)| < \varepsilon.$$

Доказательство.

Знаем, что $f_n \to f$ на E. Тогда возьмем $\frac{\varepsilon}{2}$ вместо ε в определение равномерной сходимости и найдем по нему соотвествующее N.

$$\forall n \geqslant N \quad \forall x \in E \quad |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

$$\forall m \geqslant N \quad \forall x \in E \quad |f_m(x) - f(x)| < \frac{\varepsilon}{2}$$

Тогда по неравенству треугольника $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| =$

$$= |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

"⇐≕"

Знаем, что $\forall \varepsilon > 0 \quad \exists N \quad \forall m,n \geqslant N \quad \forall x \in E \quad |f_n(x) - f_m(x)| < \varepsilon$

Зафиксируем некоторый произвольный $x \in E$ и рассмотрим числовую последовательность $f_n(x)$.

Замечание. Воспоминание из 1 семестра : последовательность x_n называется фундаментальной, если $\forall \varepsilon>0 \quad \exists N \quad \forall m,n\geqslant N \quad \Longrightarrow |x_n-x_m|<\varepsilon$

Тогда $f_n(x)$ - фундаментальная последовательность. Тогда по критерию Коши для числовых последовательностей она имеет конечный предел : пусть $f(x) := \lim_{n \to \infty} f_n(x)$

Берем неравенство $|f_n(x) - f_m(x)| < \varepsilon$ и устремим $m \ltimes \infty$. При переходе к пределу потеряется строгость знака $|f_n(x) - f(x)| \le \varepsilon$.

Перебрав $\forall x \in E$ получаем, что $\forall \varepsilon > 0 \quad \exists N \quad \forall n > N \quad \forall x \in E \quad |f_n(x) - f(x)| \leqslant \varepsilon$. Это и есть определение равномерной сходимости $f_n \rightrightarrows f$ на E