跟我学人工智能

刘森

2018年1月16日

你好,世界hello, world

1 机器学习算法

- **1** 不同的算法,本身没有好坏之分,有的只是,根据不同的场景选择合适的算法。
- 2 线性回归和Logistic回归,虽然听起来都叫作"回归",但其实两者却是做不一样的事情:一个是做连续数据的预测,一个是做离散数据的预测;一个是真正做回归的,一个是做分类的,它们两个【用途】是完全不一样的。【如何推导出来?】线性回归是用高斯分布的方式推导出来,Logistic回归既然是做分类,就用Bnody分布,两点分布来推导出来。两者大的工具都是【最大似然估计】。在线性回归里面,要讨论一个东西:【最小二乘法的本质是什么】。或者说,为什么有最小二乘法呢?有没有最小三乘法呢?有没有最小四乘法呢?在【线性回归】和【Logistic回归】中强调两个工具:【梯度下降算法】和【极大似然估计】。

1.1 线性回归

高斯分布 极大似然估计MLE 最小二乘法的本质 1 机器学习算法

2

1.1.1 什么是线性回归

线性回归y = ax + b

考虑多个变量情形,例如两个变量, $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$,可以写成如下形式:

$$h_{\theta}(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

其中, θ 展开后,呈现如下形式:

$$\left(\begin{array}{c}\theta_0\\\theta_1\\\theta_2\end{array}\right)$$

其中, x展开后, 呈现如下形式:

$$\left(\begin{array}{c}1\\x_1\\x_2\end{array}\right)$$

上式中的1就表示 x_0 ,而相应的 θ_0 表示截距,是比较难以直接解释的。 再把上面的式子拿过来,

$$h_{\theta}(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

第05课《回归》00:10:30

目前讲的问题是【what】,即什么是线性回归。过一会儿,会讲 【how】,用什么样的工具去求,如何去求的问题。

1.1.2 使用极大似然估计解释最小二乘

第05课《回归》00:20:00 使用极大似然估计解释最小二乘 1 机器学习算法

$$y^{(i)} = \theta^T x Y(i) + \epsilon^{(i)}$$

the $\epsilon^{(i)}$ are distributed IID (independently and identically distributed) according to a Gaussian distribution (also called a Normal distribution) with mean zero and some variance σ^2 .

误差 $\epsilon^{(i)}(1 \le i \le m)$ 是独立同分布的,服从均值为0,方差为某定值 σ^2 的【高斯分布】。原因:【中心极限定理】,可以查阅一下"中心极限定理的意义"。

似然函数第05课《回归》00:21:21

首先,两边是相等的:

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

其中, $x^{(i)}$ 表示第i个【样本】, $\theta^T x^{(i)}$ 表示第i个样本的【预测值】, $y^{(i)}$ 表示第i个样本的【真实值】,而 $\epsilon^{(i)}$ 表示第i个样本的误差。

根据【中心极限定理】, $\epsilon^{(i)}$ 应该是呈现一个高斯分布的形态。

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\epsilon^{(i)})^2}{2\sigma^2})$$

另外, $\epsilon^{(i)} = y^{(i)} - \theta^T x^{(i)}$,此时将 $\epsilon^{(i)}$ 代入上式:

$$p(y^{i}|x^{i};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}})$$

如此一来,上式当中就没有误差 ϵ 了,因此只要指定了x和 θ ,就可以认为是一个y的分布。换句话讲,y其实服从的是【均值是 $\theta^T x$,方差是某一个 σ 的高斯分布(正态分布)】。

那么,用什么可以估计这个 θ 呢?答:【最大似然估计】。

在上面的公式中,i只是表示第i个样本,假设一共有m个样本,那么, \mathbb{Z}_m 个样本的似然估计】就可以表示为:

$$L(\theta) = \prod_{i=1}^{m} p(y^{i}|x^{i};\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}})$$

如此一来,怎么求 θ 呢?直接对【似然函数】取对数,然后再想办法。 高斯的对数似然与最小二乘 2 TENSORFLOW

4

$$l(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}})$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}})$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}$$
(1)

现在,其实是通过【最大似然估计】加上【高斯分布】来得到了【最小二乘法】目标函数。换句话说,这就是解释的"为什么会有最小二乘法"这个概念。

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
 (2)

1.1.3 θ 的解析式的求解过程

θ的解析式的求解过程第05课《回归》00:29:52

1.2 逻辑回归:分类问题的首选算法

1.3 工具

梯度下降算法 极大似然估计

1.4 Softmax

2 Tensorflow

2.1 安装Tensorflow

conda install tensorflow pip install tensorflow 3 数学知识 5

3 数学知识

1.LATEX控制序列的概念(类似于函数) 控制序列可以是作为命令:以"\"开头,参数:必须参数和可选参数。