## S1. Linear, Orthogonal, and Orthogonal Polynomial Contrasts (Oh My!)

Readings: Kleinbaum, Kupper, Nizam, and Rosenberg (KKNR): Ch. 15

SAS: PROC REG, PROC LOESS

Supplement to Lectures 23-25 (Tests of General Linear Hypotheses and Polynomial Regression)

#### Overview

- A) Motivation
- B) Linear Contrasts and Orthogonal Contrasts
- C) Equivalence of Orthogonal Contrasts for Reference Cell and Cell Means Models
- D) Orthogonal Polynomial Contrasts
- E) Equivalence of Orthogonal Polynomial Contrasts for Reference Cell and Cell Means Models
- F) Orthogonal Polynomial Contrasts for Polynomial Regression Models

#### A. Motivation

In regression modeling and the analysis of variance, we often wish to combine various coefficients or model terms to estimate a combined effect. For example, an example with the following categories:

- 1. Non-smoker
- 2. Former smoker
- 3. Light smoker
- 4. Heavy smoker

may wish to combine the effects for *current* non-smokers versus *current* smokers (i.e., combining non-smoker and former smoker versus combining light smoker and heavy smoker).

Alternatively, we may wish to combine different variables to estimate an effect or evaluate a model for potential polynomial terms.

There are many approaches to doing this, some of which have special properties. In our lecture slides discussing general linear hypotheses, we saw how we could specify specific tests within the PROC REG statement directly using a TEST statement. The methods described in this supplemental set of slides further discusses special cases of contrasts that may be of benefit in certain circumstances.

#### **B. Linear Contrasts**

A linear contrast (L) is any linear combination of the parameters such that the linear coefficients add up to 0. Specifically,

$$L = \sum_{i=1}^{k} c_i \mu_i$$
 where  $\sum_{i=1}^{k} c_i = 0$ 

Our contrast is estimated from our sample means and we can estimate its variability:

$$\hat{L} = \sum_{i=1}^k c_i \bar{y}_i$$
 and  $Var(\hat{L}) = \hat{\sigma}_{Y|X}^2 \sum_{i=1}^k c_i^2 / n_i$ 

Different coding schemes can be used:

- Reference Cell (Dummy codes)
- Cell Means (No Intercept)
- Effect Coding (Design coding)
- Orthogonal Polynomial Coding (Section D in these slides)

Linear contrasts are most often used to test linear combinations of group means in a <u>Cell Means Model</u> (a model which includes a dummy code for each category/group and specifies no intercept in the model).

A t-statistic can be used to test a single linear contrast, and an F-statistic can be used for testing several linear contrasts simultaneously:  $t = \frac{\hat{L}}{SE(\hat{L})}$ 

 $=\hat{\sigma}_{V|X}^{2}\sum_{i=1}^{k}(c_{i}^{2}/n_{i})$ 

We can show Var(L) from the previous slide applying the various properties we have learned throughout the semester:

$$\begin{split} & Var(\hat{L}) = Var\big(\sum_{i=1}^k c_i \bar{y}_i\big) \\ & = c_1^2 \, var(\bar{y}_1) + c_2^2 \, var(\bar{y}_2) + \ldots + c_k^2 \, var(\bar{y}_k) + 2c_1 c_2 \, cov(\bar{y}_1, \bar{y}_2) + \ldots + 2c_{k-1} c_k \, cov(\bar{y}_{k-1}, \bar{y}_k) \\ & = c_1^2 \, var(\bar{y}_1) + c_2^2 \, var(\bar{y}_2) + \ldots + c_k^2 \, var(\bar{y}_k) \\ & = \frac{c_1^2}{n_1} \, var(y_1) + \frac{c_2^2}{n_2} \, var(y_2) + \ldots + \frac{c_k^2}{n_k} \, var(y_k) \\ & = \frac{c_1^2}{n_1} \, var(y|x=1) + \frac{c_2^2}{n_2} \, var(y|x=2) + \ldots + \frac{c_k^2}{n_k} \, var(y|x=3) \end{split} \quad \text{Assume all variances are equal} \\ & = var(y|x) \sum_{i=1}^k \left( c_i^2 / n_i \right) \end{split}$$

## **Linear Contrasts (cont.)**

**Orthogonal contrasts**: Two contrasts,  $L_A$  and  $L_B$ , are orthogonal to one another if:

$$\sum_{i=1}^k \frac{c_{Ai}c_{Bi}}{n_i} = 0$$
 or  $\sum_{i=1}^k c_{Ai}c_{Bi} = 0$  (when the n<sub>i</sub>'s are equal.)

Orthogonality is a desirable property because the Model sums of squares can then be partitioned into statistically independent sums of squares, where the sums of squares for a given contrast, *L*, is given by:

$$SS(\hat{L}) = \frac{(\hat{L})^2}{\sum_{i=1}^k c_i^2 / n_i}$$

$$\frac{SS(\hat{L})}{MSE} \sim F_{1,n-k}$$

For a cell means model, the number of orthogonal contrasts cannot exceed the group degrees of freedom (i.e., the number of groups minus 1).

## **Benefits of Orthogonal Contrasts**

A priori (pre-planned) orthogonal contrasts are extremely powerful, because they do not need correction for multiple comparisons like post-hoc tests do.

This benefit for orthogonal contrasts is because we can partition our model sum of squares into the meaningful components associated with specific comparisons of interest (note, these are subjectively defined by the researchers and may be different for each person).

Assume we have defined t pairwise orthogonal contrasts, then our partition of the  $SS_{Model}$  is:

$$SS_{Model} = SS(\hat{L}_1) + \cdots SS(\hat{L}_t) + SS_{Remainder}$$

For our categorical variable context, if t is equal to the number of groups minus 1, then  $SS_{Remainder}$  equals 0. Otherwise, if t is less than the number of groups minus 1 (perhaps we don't have more comparisons of interest), then

$$SS_{Remainder} = SS_{Model} - [SS(\hat{L}_1) + \cdots SS(\hat{L}_t)]$$

However, if the contrasts are not orthogonal, we cannot partition our  $SS_{Model}$  correctly and the results will be built on incorrect assumptions and, consequently, incorrect interpretations.

## **Orthogonal Contrasts: Examples**

For each set of three linear contrasts, what hypotheses are being tested? Are the contrasts orthogonal?

$$1. \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \beta_{never} - \beta_{former} \\ \beta_{never} - \beta_{light} \\ \beta_{never} - \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Not Orthogonal  $[1 \times 1 + (-1) \times 0 + 0 \times (-1) + 0 \times 0 = 1 \text{ (row 1 and row2)}]$ 

$$2. \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \beta_{never} - \beta_{former} \\ \beta_{light} - \beta_{heavy} \\ \beta_{never} + \beta_{former} - \beta_{light} - \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Orthogonal

$$2b.\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0.5 & 0.5 & -0.5 & -0.5 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \beta_{never} - \beta_{former} \\ \beta_{light} - \beta_{heavy} \\ \frac{\beta_{never} + \beta_{former}}{2} - \frac{\beta_{light} + \beta_{heavy}}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Orthogonal

## **Orthogonal Contrasts: Examples**

$$3. \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \beta_{former} - \beta_{never} \\ \beta_{light} - \beta_{former} \\ \beta_{heavy} - \beta_{light} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Not Orthogonal

$$4. \begin{pmatrix} -3 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3\beta_{never} + \beta_{former} + \beta_{light} + \beta_{heavy} \\ -2\beta_{former} + \beta_{light} + \beta_{heavy} \\ -\beta_{light} + \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Orthogonal

$$5. \begin{pmatrix} -3 & -1 & 1 & 3 \\ 1 & -1 & -1 & 1 \\ -1 & 3 & -3 & 1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3\beta_{never} - 1\beta_{former} + 1\beta_{light} + 3\beta_{heavy} \\ 1\beta_{never} - 1\beta_{former} - 1\beta_{light} + 1\beta_{heavy} \\ -1\beta_{never} + 3\beta_{former} - 3\beta_{light} + 1\beta_{heavy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Orthogonal {Orthogonal Polynomials}

**NOTE:** These three contrasts are providing the same information as the reference cell model, comparing each smoking group to the never smokers (which we will see again in two slides).

$$1.\begin{pmatrix}1&-1&0&0\\1&0&-1&0\\1&0&0&-1\end{pmatrix}\begin{pmatrix}\beta_{never}\\\beta_{former}\\\beta_{light}\\\beta_{heavy}\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}\quad \text{Not orthogonal}$$

```
PROC REG DATA=bwt5;
    MODEL birthwt=never former light heavy/noint;
    TEST never-former; * row 1;
    TEST never-light; * row 2;
    TEST never-heavy; * row 3;
    TEST never-former, never-light, never-heavy;
RUN;
```

| Analysis of Variance     |    |                   |           |        |        |  |  |  |
|--------------------------|----|-------------------|-----------|--------|--------|--|--|--|
| Source                   | DF | Sum of<br>Squares |           |        | Pr > F |  |  |  |
| Model                    | 4  | 907.42600         | 226.85650 | 211.23 | <.0001 |  |  |  |
| Error                    | 16 | 17.18400          | 1.07400   |        |        |  |  |  |
| <u>Uncorrected</u> Total | 20 | 924.61000         |           |        |        |  |  |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |

ANOVA 
$$H_0$$
:  $\beta_{heavy} = \beta_{former} = \beta_{light} = \beta_{never} = 0$ 

$$E[\text{birthweight}] = \beta_{never} I_{never} + \beta_{former} I_{former} + \beta_{light} I_{light} + \beta_{heavy} I_{heavy}$$

Test 1. never-former,  $H_0: \mu_{never} = \mu_{former}$ 

| Test 1 Results for Dependent Variable birthwt |    |             |            |        |  |  |
|-----------------------------------------------|----|-------------|------------|--------|--|--|
| Source                                        | DF | Mean Square | F<br>Value | Pr > F |  |  |
| Numerator                                     | 1  | 0.10000     | 0.09       | 0.7642 |  |  |
| Denominator                                   | 16 | 1.07400     |            |        |  |  |

Test 2. never-light,  $H_0: \mu_{never} = \mu_{light}$ 

| Test 2 Results for Dependent Variable birthwt |                          |         |      |        |  |  |  |
|-----------------------------------------------|--------------------------|---------|------|--------|--|--|--|
| Source                                        | DF Mean Square F Value F |         |      |        |  |  |  |
| Numerator                                     | 1                        | 3.96900 | 3.70 | 0.0725 |  |  |  |
| Denominator                                   | 16                       | 1.07400 |      |        |  |  |  |

Test 3. never-heavy,  $H_0: \mu_{never} = \mu_{heavy}$ 

Test 4. never-former, never-light, never-heavy

| Test 3 Results for Dependent Variable birthwt |                             |         |      |        |  |  |
|-----------------------------------------------|-----------------------------|---------|------|--------|--|--|
| Source                                        | DF Mean Square F Value Pr > |         |      |        |  |  |
| Numerator                                     | 1                           | 5.47600 | 5.10 | 0.0383 |  |  |
| Denominator                                   | 16                          | 1.07400 |      |        |  |  |

## SS(contrast)

- = MS(contrast)\*df
- = MS(contrast)\*1
- = MS(contrast)

| $\sum SS(cont$ | rast)                                              |
|----------------|----------------------------------------------------|
| ;              | $= 0.1 \times 1 + 3.969 \times 1 + 5.476 \times 1$ |
| :              | $= 9.545 \neq 8.2855$                              |

Compare to t tests of betas on next page

 $\underline{H_0: \beta_{never} - \beta_{former} = \beta_{never} - \beta_{light} = \beta_{never} - \beta_{heavy} = 0} \Rightarrow H_0: \mu_{never} = \mu_{former} = \mu_{light} = \mu_{heavy}$ 

| Test 4 Results for Dependent Variable birthwt |                             |         |      |        |  |  |
|-----------------------------------------------|-----------------------------|---------|------|--------|--|--|
| Source                                        | DF Mean Square F Value Pr > |         |      |        |  |  |
| Numerator                                     | 3                           | 2.76183 | 2.57 | 0.0904 |  |  |
| Denominator                                   | 16                          | 1.07400 |      |        |  |  |

$$\sum SS(contrast) = 2.76183 \times 3 = 8.2855$$

8.2855 is the SS explained by smoking status.

### Reference Cell Model Comparison with Cell Means Model for Orthogonal Contrast Example 1

PROC REG DATA=bwt5;
MODEL weight = former light heavy;
RUN;

# $E[birthweight] = \beta_0 + \beta_{former}I_{former} + \beta_{light}I_{light} + \beta_{heavy}I_{heavy}$

| Analysis of Variance   |    |                |         |            |        |  |  |
|------------------------|----|----------------|---------|------------|--------|--|--|
| Source                 | DF | Sum of Squares |         | F<br>Value | Pr > F |  |  |
| Model                  | 3  | 8.28550        | 2.76183 | 2.57       | 0.0904 |  |  |
| Error                  | 16 | 17.18400       | 1.07400 |            |        |  |  |
| <u>Corrected</u> Total | 19 | 25.46950       |         |            |        |  |  |

SS explained by smoking status. Compare to previous page.

| H <sub>0</sub> : | $\beta_{former} = \beta_{lig}$ | $_{ght}=\beta_{heavy}=0$ |
|------------------|--------------------------------|--------------------------|
|------------------|--------------------------------|--------------------------|

or

 $H_0$ :  $\mu_{former} = \mu_{light} = \mu_{heavy} = \mu_{never}$ 

| Parameter Estimates |    |          |         |       |        |  |  |  |
|---------------------|----|----------|---------|-------|--------|--|--|--|
| Variable            | DF | t Value  | Pr >  t |       |        |  |  |  |
| Intercept           | 1  | 7.44000  | 0.46347 | 16.05 | <.0001 |  |  |  |
| Former              | 1  | -0.20000 | 0.65544 | -0.31 | 0.7642 |  |  |  |
| Light               | 1  | -1.26000 | 0.65544 | -1.92 | 0.0725 |  |  |  |
| Heavy               | 1  | -1.48000 | 0.65544 | -2.26 | 0.0383 |  |  |  |

Compare to F tests on previous page.

$$2.\begin{pmatrix}1&-1&0&0\\0&0&1&-1\\1&1&-1&-1\end{pmatrix}\begin{pmatrix}\beta_{never}\\\beta_{former}\\\beta_{light}\\\beta_{heavy}\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}\quad \textbf{Orthogonal}$$

```
PROC REG DATA=bwt5;
    MODEL birthwt=never former light heavy/noint;
    TEST never-former; * row 1;
    TEST light-heavy; * row 2;
    TEST never+former-light-heavy; * row 3;
    TEST never-former, light-heavy, never+former-light-heavy;
RUN;
```

| Analysis of Variance     |    |                |                |            |        |  |  |  |
|--------------------------|----|----------------|----------------|------------|--------|--|--|--|
| Source                   | DF | Sum of Squares | Mean<br>Square | F<br>Value | Pr > F |  |  |  |
| Model                    | 4  | 907.42600      | 226.85650      | 211.23     | <.0001 |  |  |  |
| Error                    | 16 | 17.18400       | 1.07400        |            |        |  |  |  |
| <b>Uncorrected Total</b> | 20 | 924.61000      |                |            |        |  |  |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |

 $E[birthweight] = \beta_{never}I_{never} + \beta_{former}I_{former} + \beta_{light}I_{light} + \beta_{heavy}I_{heavy}$ 

SS(contrast)

= MS(contrast)\*df= MS(contrast)\*1= MS(contrast)

Test 1. never-former,  $H_0: \mu_{never} = \mu_{former}$ 

| Test 1 Results for Dependent Variable birthwt |                                   |         |      |        |  |  |  |
|-----------------------------------------------|-----------------------------------|---------|------|--------|--|--|--|
| Source                                        | ource DF Mean Square F Value Pr > |         |      |        |  |  |  |
| Numerator                                     | 1                                 | 0.10000 | 0.09 | 0.7642 |  |  |  |
| Denominator                                   | 16                                | 1.07400 |      |        |  |  |  |

# Test 2. light-heavy, $H_0: \mu_{light} = \mu_{heavy}$

| Test 2 Results for Dependent Variable birthwt |                               |         |      |        |  |  |
|-----------------------------------------------|-------------------------------|---------|------|--------|--|--|
| Source                                        | e DF Mean Square F Value Pr > |         |      |        |  |  |
| Numerator                                     | 1                             | 0.12100 | 0.11 | 0.7415 |  |  |
| Denominator                                   | 16                            | 1.07400 |      |        |  |  |

Test 3. never+former-light-heavy,  $H_0: \mu_{never} + \mu_{former} = \mu_{light} + \mu_{heavy}$ 

| Test 3 Results for Dependent Variable birthwt |    |         |      |        |  |  |
|-----------------------------------------------|----|---------|------|--------|--|--|
| Source DF Mean Square F Value Pr >            |    |         |      |        |  |  |
| Numerator                                     | 1  | 8.06450 | 7.51 | 0.0145 |  |  |
| Denominator                                   | 16 | 1.07400 |      |        |  |  |

$$\sum SS(contrast) = 0.1 \times 1 + 0.121 \times 1 + 8.0645 \times 1 = 8.2855$$

Test 4. never-former, light-heavy, never+former-light-heavy

 $\underline{H_0: \mu_{never} - \mu_{former} = \mu_{light} - \mu_{heavy} = \mu_{never} + \mu_{former} - \mu_{light} - \mu_{heavy}}$ 

| Test 4 Results for Dependent Variable birthwt |                                  |         |      |        |  |  |  |
|-----------------------------------------------|----------------------------------|---------|------|--------|--|--|--|
| Source                                        | ce DF Mean Square F Value Pr > I |         |      |        |  |  |  |
| Numerator                                     | 3                                | 2.76183 | 2.57 | 0.0904 |  |  |  |
| Denominator                                   | 16                               | 1.07400 |      |        |  |  |  |

$$\sum SS(contrast) = 2.76183 \times 3 = 8.2855$$

**Brief Interlude:** Why Test 4 is identical for the Non-Orthogonal Example Contrast 1 (page 10) and the Orthogonal Example Contrast 2 (page 13).

From page 12, note we can calculate the F-statistic from the matrices directly:

$$F = (c\widehat{\beta} - d)'(c\Sigma c')^{-1}(c\widehat{\beta} - d)/r \sim F_{r,n-1-p}$$

Here we define 
$$\hat{\beta} = \begin{pmatrix} 7.44 \\ 7.24 \\ 6.18 \\ 5.96 \end{pmatrix}$$
,  $c_1 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$ ,  $c_2 \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{pmatrix}$ ,  $d = \mathbf{0}$ , and 
$$\mathbf{\Sigma} = \begin{pmatrix} 0.2148 & 0 & 0 & 0 \\ 0 & 0.2148 & 0 & 0 \\ 0 & 0 & 0.2148 & 0 \\ 0 & 0 & 0 & 0.2148 \end{pmatrix}$$
 [from COVB specified for cell means model]

For contrast 1: 
$$F = (0.47 \quad 0.51 \quad 2.96) \begin{pmatrix} 0.20 \\ 0.22 \\ 2.54 \end{pmatrix} / 3 = 2.57$$

For contrast 2: 
$$F = (0.47 -2.44 5.91) \begin{pmatrix} 0.20 \\ 0.22 \\ 1.38 \end{pmatrix} / 3 = 2.57$$

Why does this happen? Because if we define the maximum number of independent contrasts (in our case this is the number of groups minus 1), any new contrast can be determined as some linear combination of the existing contrasts.

## Calculate the value of a contrast by hand

$$3^{\text{rd}} \text{ contrast from example 2:} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix}$$

$$L = (1) \times 7.44 + (1) \times 7.24 + (-1) \times 6.18 + (-1) \times 5.96 = 2.540$$

$$Var(L) = \hat{\sigma}_{Y|X}^2 \sum_{i=1}^k c_i^2 / n_i$$
 (from slide 25)

$$Var(L) = 1.074 \times [(1)^2/5 + (1)^2/5 + (-1)^2/5 + (-1)^2/5] = 0.8592$$

$$t = 2.540 / \sqrt{(0.8592)} = 2.540/0.92693 = 2.7402 \sim t_{16}$$

$$F = 2.7402^2 = 7.509; p = 0.0145$$

Alternatively, we can directly calculate the F statistic from our formula on slide 27:

$$SS(\hat{L}) = \frac{(\hat{L})^2}{\sum_{i=1}^k c_i^2 / n_i} = \frac{2.54^2}{[(1)^2 / 5 + (1)^2 / 5 + (-1)^2 / 5 + (-1)^2 / 5]} = \frac{2.54^2}{0.8} = 8.0645$$

$$\frac{SS(\hat{L})}{MSE} = \frac{8.0645}{1.074} = 7.509 \sim F_{1,16}$$

## What is the null hypothesis being tested by the third contrast:

$$(1 \quad 1 \quad -1 \quad -1) \begin{pmatrix} \beta_{never} \\ \beta_{former} \\ \beta_{light} \\ \beta_{heavy} \end{pmatrix}$$

1. In terms of the βs?

$$\begin{split} \beta_{never} + \beta_{former} - \beta_{light} - \beta_{heavy} &= 0 \\ \beta_{never} + \beta_{former} &= \beta_{light} + \beta_{heavy} \\ \frac{1}{2} (\beta_{never} + \beta_{former}) &= \frac{1}{2} (\beta_{light} + \beta_{heavy}) \end{split}$$

2. In terms of the 4 population means?

$$\mu_{\text{never}} + \mu_{\text{former}} - \mu_{\text{light}} - \mu_{\text{heavy}} = 0$$

$$\frac{1}{2}(\mu_{\text{never}} + \mu_{\text{former}}) = \frac{1}{2}(\mu_{\text{light}} + \mu_{\text{heavy}})$$

TEST: 
$$\frac{1}{2}(\beta_{\text{never}} + \beta_{\text{former}}) = \frac{1}{2}(\beta_{\text{light}} + \beta_{\text{heavy}})$$

$$L = (0.5) \times 7.44 + (0.5) \times 7.24 + (-0.5) \times 6.18 + (-0.5) \times 5.96 = 1.27$$
 lbs

$$Var(L) = 1.074 \times [(0.5)^2/5 + (0.5)^2/5 + (-0.5)^2/5 + (-0.5)^2/5] = 0.2148$$

$$t = 1.27 / \sqrt{(0.2148)} = 2.7402 \sim t_{16}$$

p = 0.0145 (equivalent to previous results)

3. Can the null hypothesis for this contrast be written in terms of 2 population means (non-smokers and current smokers)? What assumptions are being made?

$$\mu_{non} = \mu_{smoker}$$

We are assuming that the sample of non-smokers (never plus former) is representative of the population of non-smokers.

But since we the investigator didn't randomly select non-smokers (the investigator chose 5 never and 5 former smokers or 50% of each in our contrast) the observed average ( $\bar{y}_{non}$ ) for the non-smokers probably isn't equal to the population mean.

Now test the linear contrast, assuming 25% of non-smokers in the <u>population</u> are former smokers and 50% of current smokers in the <u>population</u> are heavy smokers:

$$L = (0.75) \times 7.44 + (0.25) \times 7.24 + (-0.5) \times 6.18 + (-0.5) \times 5.96 = 1.32 \text{ lbs}$$

$$Var(L) = 1.074 \times [(-0.75)^2/5 + (-0.25)^2/5 + (0.5)^2/5 + (0.5)^2/5] = 1.074 \times 0.225$$

$$t = 1.32 / \sqrt{(0.24165)} = 2.6852 \sim t_{16}$$

$$F = 2.6852^2 = 7.2104 \text{ and } p = 0.0163$$

```
PROC REG DATA=bwt5;
    MODEL birthwt=never former light heavy/noint;
    TEST .75*never + .25*former - .5*light - .5*heavy;
RUN;
```

| Analysis of Variance           |    |           |           |        |        |  |  |  |
|--------------------------------|----|-----------|-----------|--------|--------|--|--|--|
| Source Squares Square Value Pr |    |           |           |        |        |  |  |  |
| Model                          | 4  | 907.42600 | 226.85650 | 211.23 | <.0001 |  |  |  |
| Error                          | 16 | 17.18400  | 1.07400   |        |        |  |  |  |
| Uncorrected Total              | 20 | 924.61000 |           |        |        |  |  |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |  |

| Test 1 Results for Dependent Variable birthwt |                              |         |      |        |  |  |  |
|-----------------------------------------------|------------------------------|---------|------|--------|--|--|--|
| Source                                        | Mean F<br>DF Square Value Pr |         |      |        |  |  |  |
| Numerator                                     | 1                            | 7.74400 | 7.21 | 0.0163 |  |  |  |
| Denominator                                   | 16                           | 1.07400 |      |        |  |  |  |

## **Unequal Sample Sizes**

Finally, note that if we had unequal sample sizes in our groups, then we would also get a different SS(L) and a different mean difference by testing:

$$H_0: \frac{1}{2}\mu_{never} + \frac{1}{2}\mu_{former} - \frac{1}{2}\mu_{light} - \frac{1}{2}\mu_{heavy} = 0$$

#### versus

$$H_0: \frac{7}{12} \mu_{never} + \frac{5}{12} \mu_{former} - \frac{7}{15} \mu_{light} - \frac{8}{15} \mu_{heavy} = 0$$

| i             | Never | Former | Light | Heavy |
|---------------|-------|--------|-------|-------|
| 1             | 7.50  | 5.80   | 5.90  | 6.20  |
| 2             | 6.20  | 7.30   | 6.20  | 6.80  |
| 3             | 6.90  | 8.20   | 5.80  | 5.70  |
| 4             | 7.40  | 7.10   | 4.70  | 4.90  |
| 5             | 9.20  | 7.80   | 8.30  | 6.20  |
| 6             | 8.30  |        | 7.20  | 7.10  |
| 7             | 7.60  |        | 6.20  | 5.80  |
| 8             |       |        |       | 5.40  |
| $\bar{Y}_j$ = | 7.586 | 7.240  | 6.329 | 6.013 |

## C. Equivalence of Orthogonal Contrasts for Reference Cell and Cell Means Models

PROC REG DATA=birthsmk2;/\* Reference Cell Coding Model\*/

MODEL weight = former light heavy;

/\*Algel

REFort

Interce

Interc

Interc

REFor

heavy

REFor

REForth2: TEST light-heavy=0;

REForth3: TEST former-light-heavy=0; /\* Never+Former - (Light+Heavy) \*/

RUN:

| ebraic Translation of Orthogonal Contrast Matrix*/ |
|----------------------------------------------------|
| rtha: TEST Intercept- Intercept-former = 0,        |
| cept+light - Intercept-heavy = <b>0</b> ,          |
| cept + Intercept+former - Intercept-light –        |
| cept-heavy = <b>0</b> ;                            |
| rths: TEST -former=0, light-heavy=0, former-light- |
| y=0; /*Simplified Algebraic*/                      |
|                                                    |
| rth1: TEST -former=0; /* Never vs. Former */       |
|                                                    |

| Analysis of Variance                           |    |          |         |      |        |  |  |  |
|------------------------------------------------|----|----------|---------|------|--------|--|--|--|
| Source Sum of Mean Squares Square F Value Pr > |    |          |         |      |        |  |  |  |
| Model                                          | 3  | 8.28550  | 2.76183 | 2.57 | 0.0904 |  |  |  |
| Error                                          | 16 | 17.18400 | 1.07400 |      |        |  |  |  |
| <b>Corrected Total</b>                         | 19 | 25.46950 |         |      |        |  |  |  |

| Root MSE              | 1.03634  | R-Square | 0.3253 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 6.70500  | Adj R-Sq | 0.1988 |
| Coeff Var             | 15.45622 |          |        |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |
| Intercept           | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |
| Former              | 1  | -0.20000              | 0.65544           | -0.31   | 0.7642  |  |  |  |
| Light               | 1  | -1.26000              | 0.65544           | -1.92   | 0.0725  |  |  |  |
| Heavy               | 1  | -1.48000              | 0.65544           | -2.26   | 0.0383  |  |  |  |

PROC REG DATA= birthsmk2; /\* Cell Means Coding Model \*

MODEL weight = never former light heavy / noint;

/\* Orthogonal Contrast Matrix, 3 rows \*/

CMortha: TEST never-former=0, light-heavy=0, never+former-light-heavy=0;

CMorth1: TEST never-former=0; CMorth2: TEST light-heavy=0;

CMorth3: TEST never+former-light-heavy=0;

RUN:

NOTE: No intercept in model. R-Square is redefined.

| Analysis of Variance |    |                |           |        |        |  |  |  |  |
|----------------------|----|----------------|-----------|--------|--------|--|--|--|--|
| Source               | DF | Sum of Squares | F Value   | Pr > F |        |  |  |  |  |
| Model                | 4  | 907.42600      | 226.85650 | 211.23 | <.0001 |  |  |  |  |
| Error                | 16 | 17.18400       | 1.07400   |        |        |  |  |  |  |
| Uncorrected Total    | 20 | 924.61000      |           |        |        |  |  |  |  |

| Root MSE              | 1.03634  | R-Square | 0.9814 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 6.70500  | Adj R-Sq | 0.9768 |
| Coeff Var             | 15.45622 |          |        |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |

Test REFortha Results for Dependent Variable weight

| Test REFortha Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                               | 3  | 2.76183        | 2.57    | 0.0904 |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |

Test REForths Results for Dependent Variable weight

| Test REForths Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                               | 3  | 2.76183        | 2.57    | 0.0904 |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |

Test REForth1 Results for Dependent Variable weight

| Test REForth1 Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                               | 1  | 0.10000        | 0.09    | 0.7642 |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |

Test CMortha Results for Dependent Variable weight

| Test CMortha Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|--------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                 | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                              | 3  | 2.76183        | 2.57    | 0.0904 |  |
| Denominator                                            | 16 | 1.07400        |         |        |  |

Test CMorth1 Results for Dependent Variable weight

| Test CMorth1 Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|--------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                 | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                              | 1  | 0.10000        | 0.09    | 0.7642 |  |
| Denominator                                            | 16 | 1.07400        |         |        |  |

Test REForth2 Results for Dependent Variable weight

| Test REForth2 Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                               | 1  | 0.12100        | 0.11    | 0.7415 |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |

Test REForth3 Results for Dependent Variable weight

| Test REForth3 Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                               | 1  | 8.06450        | 7.51    | 0.0145 |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |

Test CMorth2 Results for Dependent Variable weight

| Test CMorth2 Results for Dependent Variable birthwt |    |                |         |        |  |
|-----------------------------------------------------|----|----------------|---------|--------|--|
| Source                                              | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                           | 1  | 0.12100        | 0.11    | 0.7415 |  |
| Denominator                                         | 16 | 1.07400        |         |        |  |

Test CMorth3 Results for Dependent Variable weight

| Test CMorth3 Results for Dependent<br>Variable birthwt |    |                |         |        |  |
|--------------------------------------------------------|----|----------------|---------|--------|--|
| Source                                                 | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                              | 1  | 8.06450        | 7.51    | 0.0145 |  |
| Denominator                                            | 16 | 1.07400        |         |        |  |

## **D. Orthogonal Polynomials**

Orthogonal polynomials are a new set of independent variables that are defined in terms of the simple polynomials (e.g., X,  $X^2$ ,  $X^3$ ; natural polynomials will be discussed in a future lecture) but have more complicated structures.

The orthogonal polynomial variables contain exactly the same information as the simple polynomial variables, but unlike the simple polynomial variables, the <u>orthogonal polynomial</u> <u>variables are uncorrelated with each other</u>. Therefore, they avoid the serious collinearity inherent in using natural polynomials.

As the order increases, computational accuracy may decease with the simple polynomial variables due to collinearity. However, the orthogonal polynomial variables are not impacted because they are uncorrelated. *One of the main motivations for using orthogonal polynomial variables is to avoid the serious collinearity of simple polynomial variables in determining what higher order, if any, is needed.* 

Because orthogonal polynomial variables contain the same information as the simple polynomial variables, the overall regression F-test and multiple  $R^2$  values will be identical, even though the  $\beta$ 's will be different and have different interpretations.

Because these special contrasts are still orthogonal, we can still partition the Model Sums of Squares into statistically independent sums of squares for each polynomial contrast (linear, quadratic, etc.) and take advantage of more powerful *a priori* tests.

The orthogonal polynomials can also be used to perform linear contrasts in a cell means model by defining the TEST statement using the contrast matrix values.

Table A7 of KKNR provides the orthogonal polynomial coefficients for equally spaced predictor values with the same number of replicates at each value.

#### Example:

| k=4       | Х  |    |    |   |                              |
|-----------|----|----|----|---|------------------------------|
|           | 1  | 2  | 3  | 4 | Σp <sub>i</sub> <sup>2</sup> |
| Linear    | -3 | -1 | 1  | 3 | 20                           |
| Quadratic | 1  | -1 | -1 | 1 | 4                            |
| Cubic     | -1 | 3  | -3 | 1 | 20                           |

The assumption of equally spaced predictor values may not make intuitive sense in cases with nominal or ordinal groups (e.g., assuming the "space" between smoking statuses is equal). However, in contexts where groups are based on interval values (e.g., different dose levels being study in a trial) this assumption is more straightforward.

## **Example (Orthogonal Polynomial Contrasts, EQUAL N):**

|                  | Never   | Former  | Light   | Heavy   |
|------------------|---------|---------|---------|---------|
|                  | Smokers | Smokers | Smokers | Smokers |
|                  | (X=0)   | (X=1)   | (X=2)   | (X=3)   |
|                  | 7.50    | 5.80    | 5.90    | 6.20    |
|                  | 6.20    | 7.30    | 6.20    | 6.80    |
|                  | 6.90    | 8.20    | 5.80    | 5.70    |
|                  | 7.40    | 7.10    | 4.70    | 4.90    |
|                  | 9.20    | 7.80    | 8.30    | 6.20    |
| $\overline{Y} X$ | 7.44    | 7.24    | 6.18    | 5.96    |

```
PROC REG DATA=bwt5;
    MODEL birthwt=never former light heavy/noint;
    Overall:    TEST never=former=light=heavy;
    Linear:    TEST -3*never -1*former +1*light +3*heavy=0;
    Quadratic: TEST 1*never -1*former -1*light +1*heavy=0;
    Cubic:    TEST -1*never +3*former -3*light +1*heavy=0;
RUN;
```

| Analysis of Variance                           |    |           |           |        |        |  |
|------------------------------------------------|----|-----------|-----------|--------|--------|--|
| Source Sum of Mean F Squares Square Value Pr > |    |           |           |        |        |  |
| Model                                          | 4  | 907.42600 | 226.85650 | 211.23 | <.0001 |  |
| Error                                          | 16 | 17.18400  | 1.07400   |        |        |  |
| Uncorrected Total                              | 20 | 924.61000 |           |        |        |  |

| Root MSE       | 1.03634  | R-Square | 0.9814 |
|----------------|----------|----------|--------|
| Dependent Mean | 6.70500  | Adj R-Sq | 0.9768 |
| Coeff Var      | 15.45622 |          |        |

| $H_0$ : $\beta_{former} = \beta_{light} = \beta_{heavy} = \beta_{never} = 0$ |
|------------------------------------------------------------------------------|
| or                                                                           |
| $H_0$ : $\mu_{former} = \mu_{light} = \mu_{heavy} = \mu_{never} = 0$         |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |  |  |

| Test Overall Results for Dependent Variable birthwt |                             |         |      |        |  |  |
|-----------------------------------------------------|-----------------------------|---------|------|--------|--|--|
| Source                                              | DF Mean Square F Value Pr > |         |      |        |  |  |
| Numerator                                           | 3                           | 2.76183 | 2.57 | 0.0904 |  |  |
| Denominator                                         | 16                          | 1.07400 |      |        |  |  |

| 3 x 2.76183 = 8.285 |
|---------------------|
| Sums of Squares     |

8.28550

| Test Linear Results for Dependent Variable birthwt |    |             |         |        |  |  |
|----------------------------------------------------|----|-------------|---------|--------|--|--|
| Source                                             | DF | Mean Square | F Value | Pr > F |  |  |
| Numerator                                          | 1  | 7.56250     | 7.04    | 0.0173 |  |  |
| Denominator                                        | 16 | 1.07400     |         |        |  |  |

| $H_0$ : $\mu_{never} = \mu_{former} =$ | $=\mu_{\text{light}}=\mu_{\text{heavy}}$ |
|----------------------------------------|------------------------------------------|
|----------------------------------------|------------------------------------------|

| Test Quadratic Results for Dependent Variable birthwt |                               |            |      |        |  |  |
|-------------------------------------------------------|-------------------------------|------------|------|--------|--|--|
| Source                                                | DF Mean Square F Value Pr > F |            |      |        |  |  |
| Numerator                                             | 1                             | 0.00050000 | 0.00 | 0.9831 |  |  |
| Denominator                                           | 16                            | 1.07400    |      |        |  |  |

| Test Cubic Results for Dependent Variable birthwt |    |             |         |        |  |  |
|---------------------------------------------------|----|-------------|---------|--------|--|--|
| Source                                            | DF | Mean Square | F Value | Pr > F |  |  |
| Numerator                                         | 1  | 0.72250     | 0.67    | 0.4242 |  |  |
| Denominator                                       | 16 | 1.07400     |         |        |  |  |

Sum the linear, quadratic, and cubic contrast SS:

Due to Smoking

7.56250

+0.00050

+0.72250

 $\Sigma$ =8.28550

## **Example (Orthogonal Polynomial Contrasts Using Data Step):**

```
data bwt5;
   set bwt5;
   IF group = 0 THEN DO;
      linear = -3;
       quad = 1;
      cubic = -1;
   END:
   IF group = 1 THEN DO;
      linear = -1;
    quad = -1;
       cubic = 3;
   END:
   IF group = 2 THEN DO;
      linear = 1;
     quad = -1;
      cubic = -3;
   END;
   IF group = 3 THEN DO;
      linear = 3;
       quad = 1;
      cubic = 1;
   END:
RUN;
PROC REG data=bwt5;
   MODEL birthwt = linear quad cubic;
RUN;
```

| Group    | Variable Coding   |    |    |  |  |  |
|----------|-------------------|----|----|--|--|--|
|          | linear quad cubic |    |    |  |  |  |
| 0=Non    | -3                | 1  | -1 |  |  |  |
| 1=Former | -1                | -1 | 3  |  |  |  |
| 2=Light  | 1                 | -1 | -3 |  |  |  |
| 3=Heavy  | 3                 | 1  | 1  |  |  |  |

## **PROC REG OUTPUT:**

| Analysis of Variance   |                                   |          |         |      |        |  |  |
|------------------------|-----------------------------------|----------|---------|------|--------|--|--|
| Source                 | Sum of Mean DF Squares Square Val |          |         |      |        |  |  |
| Model                  | 3                                 | 8.28550  | 2.76183 | 2.57 | 0.0904 |  |  |
| Error                  | 16                                | 17.18400 | 1.07400 |      |        |  |  |
| <b>Corrected Total</b> | 19                                | 25.46950 |         |      |        |  |  |

| Parameter Estimates |    |                       |         |         |        |  |  |  |  |
|---------------------|----|-----------------------|---------|---------|--------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | t Value | Pr >  t |        |  |  |  |  |
| Intercept           | 1  | 6.70500               | 0.23173 | 28.93   | <.0001 |  |  |  |  |
| linear              | 1  | -0.27500              | 0.10363 | -2.65   | 0.0173 |  |  |  |  |
| quad                | 1  | -0.00500              | 0.23173 | -0.02   | 0.9831 |  |  |  |  |
| cubic               | 1  | 0.08500               | 0.10363 | 0.82    | 0.4242 |  |  |  |  |

## **Example (Orthogonal Polynomial Contrasts, UNEQUAL N)**

Note: KKNR orthogonal polynomial contrasts are for equal N's:

$$-3(1) + -1(1) + 1(-1) + 3(1) = 0$$
, but  $-3(1)/7 + -1(1)/5 + 1(-1)/7 + 3(1)/8 \neq 0$ 

```
PROC REG DATA=bwt;
    MODEL birthwt=never former light heavy/noint;
    Overall:    TEST never=former=light=heavy;
    Linear:    TEST -3*never -1*former +1*light +3*heavy=0;
    Quadratic: TEST    1*never -1*former -1*light +1*heavy=0;
    Cubic:    TEST -1*never +3*former -3*light +1*heavy=0;
RUN;
```

| Analysis of Variance                |    |            |           |        |        |  |  |
|-------------------------------------|----|------------|-----------|--------|--------|--|--|
| Source Sum of Mean F Square Value P |    |            |           |        |        |  |  |
| Model                               | 4  | 1234.44639 | 308.61160 | 349.60 | <.0001 |  |  |
| Error                               | 23 | 20.30361   | 0.88277   |        |        |  |  |
| Uncorrected Total                   | 27 | 1254.75000 |           |        |        |  |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Never               | 1  | 7.58571               | 0.35512           | 21.36   | <.0001  |  |  |  |  |
| Former              | 1  | 7.24000               | 0.42018           | 17.23   | <.0001  |  |  |  |  |
| Light               | 1  | 6.32857               | 0.35512           | 17.82   | <.0001  |  |  |  |  |
| Heavy               | 1  | 6.01250               | 0.33218           | 18.10   | <.0001  |  |  |  |  |

| Test Overall Results for Dependent Variable birthwt |                               |         |      |        |  |  |
|-----------------------------------------------------|-------------------------------|---------|------|--------|--|--|
| Source                                              | DF Mean Square F Value Pr > F |         |      |        |  |  |
| Numerator                                           | 3                             | 3.89090 | 4.41 | 0.0137 |  |  |
| Denominator                                         | 23                            | 0.88277 |      |        |  |  |

| Test Linear Results for Dependent Variable birthwt |                               |          |       |        |  |  |
|----------------------------------------------------|-------------------------------|----------|-------|--------|--|--|
| Source                                             | DF Mean Square F Value Pr > F |          |       |        |  |  |
| Numerator                                          | 1                             | 11.51558 | 13.04 | 0.0015 |  |  |
| Denominator                                        | 23                            | 0.88277  |       |        |  |  |

| Test Quadratic Results for Dependent Variable birthwt |    |                           |      |        |  |  |
|-------------------------------------------------------|----|---------------------------|------|--------|--|--|
| Source                                                | DF | DF Mean Square F Value Pr |      |        |  |  |
| Numerator                                             | 1  | 0.00144                   | 0.00 | 0.9681 |  |  |
| Denominator                                           | 23 | 0.88277                   |      |        |  |  |

| Test Cubic Results for Dependent Variable birthwt |                               |         |      |        |  |  |
|---------------------------------------------------|-------------------------------|---------|------|--------|--|--|
| Source                                            | DF Mean Square F Value Pr > F |         |      |        |  |  |
| Numerator                                         | 1                             | 0.40199 | 0.46 | 0.5065 |  |  |
| Denominator                                       | 23                            | 0.88277 |      |        |  |  |

3 x 3.89090 = 11.6727

Sums of Squares

Due to Smoking

Sum the linear, quadratic, and cubic contrast SS:

11.51558

+0.00144

+0.40199

Σ=11.9190

*≠* 11.6727

NOTE: The Contrast SS <u>DO NOT</u> add up to the Model SS due to unequal N's across groups.

## **Example (Orthogonal Polynomial Contrasts: Adjusting for unequal n)**

```
PROC IML;
   N = \{7, 5, 7, 8\};
   X = \{0, 1, 2, 3\};
   op = ORPOL(X, 3, N);
PRINT op;
DATA bwt;
    set bwt;
    IF group = 0 THEN DO;
       01 = -0.263541;
       02 = 0.1740137;
       03 = -0.07801;
    END:
    IF group = 1 THEN DO;
       01 = -0.098062;
       02 = -0.214473;
       03 = 0.3276404;
    END:
    IF group = 2 THEN DO;
       01 = 0.0674175;
       02 = -0.215651;
       03 = -0.234029;
    END:
    IF group = 3 THEN DO;
       01 = 0.2328967;
       02 = 0.1704784;
       03 = 0.0682584;
    END;
```

| Group    | V        | Variable Coding |          |  |  |  |
|----------|----------|-----------------|----------|--|--|--|
|          | 01       | 03              |          |  |  |  |
| 0=Non    | 263541   | 0.174013        | -0.07801 |  |  |  |
| 1=Former | 098062   | 214473          | 0.327640 |  |  |  |
| 2=Light  | 0.067418 | 215651          | 234029   |  |  |  |
| 3=Heavy  | 0.232897 | 0.170479        | 0.068259 |  |  |  |

```
PROC REG DATA=bwt;
    MODEL birthwt = o1 o2 o3;
    Linear:    TEST o1;
    Quadratic: TEST o2;
    Cubic:    TEST o3;
RUN;
```

| Analysis of Variance   |    |                |         |            |        |  |
|------------------------|----|----------------|---------|------------|--------|--|
| Source                 | DF | Sum of Squares |         | F<br>Value | Pr > F |  |
| Model                  | 3  | 11.67269       | 3.89090 | 4.41       | 0.0137 |  |
| Error                  | 23 | 20.30361       | 0.88277 |            |        |  |
| <b>Corrected Total</b> | 26 | 31.97630       |         |            |        |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Intercept           | 1  | 6.72963               | 0.18082           | 37.22   | <.0001  |  |  |  |  |
| 01                  | 1  | -3.35494              | 0.93956           | -3.57   | 0.0016  |  |  |  |  |
| o2                  | 1  | 0.12287               | 0.93956           | 0.13    | 0.8971  |  |  |  |  |
| о3                  | 1  | 0.63402               | 0.93956           | 0.67    | 0.5065  |  |  |  |  |

| Test Linear Results for Dependent Variable birthwt |    |          |       |        |  |
|----------------------------------------------------|----|----------|-------|--------|--|
| Source DF Square Value                             |    |          |       | Pr > F |  |
| Numerator                                          | 1  | 11.25561 | 12.75 | 0.0016 |  |
| Denominator                                        | 23 | 0.88277  |       |        |  |

| Test Quadratic Results for Dependent<br>Variable birthwt |    |                |            |        |  |
|----------------------------------------------------------|----|----------------|------------|--------|--|
| Source                                                   | DF | Mean<br>Square | F<br>Value | Pr > F |  |
| Numerator                                                | 1  | 0.01510        | 0.02       | 0.8971 |  |
| Denominator                                              | 23 | 0.88277        |            |        |  |

| Test Cubic Results for Dependent Variable birthwt |            |         |      |        |  |
|---------------------------------------------------|------------|---------|------|--------|--|
| Source                                            | F<br>Value | Pr > F  |      |        |  |
| Numerator                                         | 1          | 0.40198 | 0.46 | 0.5065 |  |
| Denominator                                       | 23         | 0.88277 |      |        |  |

Sum the linear, quadratic, and cubic contrast SS:

11.25561 +0.01510 +0.40198 Σ=11.67269 (matches slide 51)

## E. Equivalence of Orthogonal Polynomials for Reference Cell and Cell Means Models

PROC REG DATA= birthsmk2;/\*Reference Cell Coding Model\*/
MODEL weight = linear quad cubic;

OverOrth: TEST linear=0, quad=0, cubic=0;

RUN;

| Analysis of Variance |                                       |          |         |      |        |  |  |  |
|----------------------|---------------------------------------|----------|---------|------|--------|--|--|--|
| Source               | Sum of Mean Squares Square F Value Pr |          |         |      |        |  |  |  |
| Model                | 3                                     | 8.28550  | 2.76183 | 2.57 | 0.0904 |  |  |  |
| Error                | 16                                    | 17.18400 | 1.07400 |      |        |  |  |  |
| Corrected Total      | 19                                    | 25.46950 |         |      |        |  |  |  |

| Root MSE       | 1.03634  | R-Square | 0.3253 |
|----------------|----------|----------|--------|
| Dependent Mean | 6.70500  | Adj R-Sq | 0.1988 |
| Coeff Var      | 15.45622 |          |        |

PROC REG DATA= birthsmk2; /\* Cell Means Coding Model \*/

MODEL weight=never former light heavy/noint;

Overall: TEST never=former=light=heavy;

Linear: TEST -3\*never -1\*former +1\*light +3\*heavy=0; Quadratic: TEST 1\*never -1\*former -1\*light +1\*heavy=0; Cubic: TEST -1\*never +3\*former -3\*light +1\*heavy=0;

OverOrth: TEST -3\*never -1\*former +1\*light +3\*heavy=0,

1\*never -1\*former -1\*light +1\*heavy=0, -1\*never +3\*former -3\*light +1\*heavy=0;

RUN;

NOTE: No intercept in model. R-Square is redefined.

| Analysis of Variance |    |                                   |           |        |        |  |  |
|----------------------|----|-----------------------------------|-----------|--------|--------|--|--|
| Source               | DF | Sum of Square Square F Value Pr > |           |        |        |  |  |
| Model                | 4  | 907.42600                         | 226.85650 | 211.23 | <.0001 |  |  |
| Error                | 16 | 17.18400                          | 1.07400   |        |        |  |  |
| Uncorrected Total    | 20 | 924.61000                         |           |        |        |  |  |

| Root MSE              | 1.03634  | R-Square | 0.9814 |
|-----------------------|----------|----------|--------|
| <b>Dependent Mean</b> | 6.70500  | Adj R-Sq | 0.9768 |
| Coeff Var             | 15.45622 |          |        |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Never               | 1  | 7.44000               | 0.46347           | 16.05   | <.0001  |  |  |  |  |
| Former              | 1  | 7.24000               | 0.46347           | 15.62   | <.0001  |  |  |  |  |
| Light               | 1  | 6.18000               | 0.46347           | 13.33   | <.0001  |  |  |  |  |
| Heavy               | 1  | 5.96000               | 0.46347           | 12.86   | <.0001  |  |  |  |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |
| Intercept           | 1  | 6.70500               | 0.23173           | 28.93   | <.0001  |  |  |  |  |
| linear              | 1  | -0.27500              | 0.10363           | -2.65   | 0.0173  |  |  |  |  |
| quad                | 1  | -0.00500              | 0.23173           | -0.02   | 0.9831  |  |  |  |  |
| cubic               | 1  | 0.08500               | 0.10363           | 0.82    | 0.4242  |  |  |  |  |

Test Overall Results for Dependent Variable weight

| Test Overall Results for Dependent<br>Variable birthwt |         |         |      |        |  |
|--------------------------------------------------------|---------|---------|------|--------|--|
| Source                                                 | F Value | Pr > F  |      |        |  |
| Numerator                                              | 3       | 2.76183 | 2.57 | 0.0904 |  |
| Denominator                                            | 16      | 1.07400 |      |        |  |

Test Linear Results for Dependent Variable weight

| Test Linear Results for Dependent Variable birthwt |    |                |         |        |  |
|----------------------------------------------------|----|----------------|---------|--------|--|
| Source                                             | DF | Mean<br>Square | F Value | Pr > F |  |
| Numerator                                          | 1  | 7.56250        | 7.04    | 0.0173 |  |
| Denominator                                        | 16 | 1.07400        |         |        |  |

Test Quadratic Results for Dependent Variable weight

| Test Quadratic Results for Dependent<br>Variable birthwt |         |            |      |        |  |
|----------------------------------------------------------|---------|------------|------|--------|--|
| Source                                                   | F Value | Pr > F     |      |        |  |
| Numerator                                                | 1       | 0.00050000 | 0.00 | 0.9831 |  |
| Denominator                                              | 16      | 1.07400    |      |        |  |

Test Cubic Results for Dependent Variable weight

| Test Cubic Results for Dependent Variable birthwt |    |                |         |        |  |  |  |
|---------------------------------------------------|----|----------------|---------|--------|--|--|--|
| Source                                            | DF | Mean<br>Square | F Value | Pr > F |  |  |  |
| Numerator                                         | 1  | 0.72250        | 0.67    | 0.4242 |  |  |  |
| Denominator                                       | 16 | 1.07400        |         |        |  |  |  |

Test OverOrth Results for Dependent Variable weight

| Test OverOrth Results for Dependent<br>Variable birthwt |    |                |         |        |  |  |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|--|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |  |  |
| Numerator                                               | 3  | 2.76183        | 2.57    | 0.0904 |  |  |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |  |  |

Test OverOrth Results for Dependent Variable weight

| Test OverOrth Results for Dependent<br>Variable birthwt |    |                |         |        |  |  |  |
|---------------------------------------------------------|----|----------------|---------|--------|--|--|--|
| Source                                                  | DF | Mean<br>Square | F Value | Pr > F |  |  |  |
| Numerator                                               | 3  | 2.76183        | 2.57    | 0.0904 |  |  |  |
| Denominator                                             | 16 | 1.07400        |         |        |  |  |  |

## F. Orthogonal Polynomial Contrasts for Polynomial Regression Models

The orthogonal polynomial variables contain exactly the same information as the simple polynomial variables, but unlike the simple polynomial variables, the <u>orthogonal polynomial</u> <u>variables are uncorrelated with each other</u>. (See SAS code for DATA step to calculate "odose".)

Coefficients from KKNR Table A7

| k=8       | Х  |     |     |     |     |    |     |   |                              |  |
|-----------|----|-----|-----|-----|-----|----|-----|---|------------------------------|--|
|           | 1  | 2   | 3   | 4   | 5   | 6  | 7   | 8 | Σp <sub>i</sub> <sup>2</sup> |  |
| Linear    | -7 | -5  | -3  | -1  | 1   | 3  | 5   | 7 | 168                          |  |
| Quadratic | 7  | 1   | -3  | -5  | -5  | -3 | 1   | 7 | 168                          |  |
| Cubic     | -7 | 5   | 7   | 3   | -3  | -7 | -5  | 7 | 264                          |  |
| Quartic   | 7  | -13 | -3  | 9   | 9   | -3 | -13 | 7 | 616                          |  |
| Quintic   | -7 | 23  | -17 | -15 | 15  | 17 | -23 | 7 | 2184                         |  |
| Sextic    | 1  | -5  | 9   | -5  | -5  | 9  | -5  | 1 | 264                          |  |
| Septic    | -1 | 7   | -21 | 35  | -35 | 21 | -7  | 1 | 3432                         |  |



## **Orthogonal Polynomials Example**

```
PROC REG DATA=wtgain;
   MODEL wgtgain = odose1 odose2 odose3 odose4 odose5 odose6 odose7 / covb;
   LinearLOF: TEST odose2, odose3, odose4, odose5, odose6, odose7;
   QuadLOF: TEST odose3, odose4, odose5, odose6, odose7;
RUN;
```

| Analysis of Variance |    |                |          |         |        |  |  |  |
|----------------------|----|----------------|----------|---------|--------|--|--|--|
| Source               | DF | Sum of Squares |          | F Value | Pr > F |  |  |  |
| Model                | 7  | 169.77958      | 24.25423 | 1492.57 | <.0001 |  |  |  |
| Error                | 16 | 0.26000        | 0.01625  |         |        |  |  |  |
| Corrected Total      | 23 | 170.03958      |          |         |        |  |  |  |

ANOVA Table Identical to Reference Cell Model (Lecture 25, Page 13).

|           |           | Parameter Estimates |                       |                   |         |         |  |  |  |
|-----------|-----------|---------------------|-----------------------|-------------------|---------|---------|--|--|--|
|           | Variable  | DF                  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |
|           | Intercept | 1                   | 3.65417               | 0.02602           | 140.43  | <.0001  |  |  |  |
| Linear    | odose1    | 1                   | 0.55575               | 0.00568           | 97.87   | <.0001  |  |  |  |
| Quadratic | odose2    | 1                   | 0.16687               | 0.00568           | 29.39   | <.0001  |  |  |  |
| Cubic     | odose3    | 1                   | 0.00391               | 0.00453           | 0.86    | 0.4003  |  |  |  |
| Quartic   | odose4    | 1                   | -0.00525              | 0.00297           | -1.77   | 0.0958  |  |  |  |
| Quintic   | odose5    | 1                   | 0.00001526            | 0.00157           | 0.01    | 0.9924  |  |  |  |
| Sextic    | odose6    | 1                   | -0.00215              | 0.00453           | -0.47   | 0.6420  |  |  |  |
| Septic    | odose7    | 1                   | -0.00112              | 0.00126           | -0.89   | 0.3871  |  |  |  |

# How would we interpret the parameter estimate for ODOSE1?

This is the expected weight gain for a ½ unit increase in dose. To obtain weight gain for a 1-unit increase multiply the parameter estimate by two:

$$2 \times 0.55575 = 1.1115.$$
  
 $SE(2\beta_1) = 2SE(\beta_1)$   
 $= 2 \times 0.00568 = 0.01136$ 

## **Orthogonal Polynomials Example (Linear vs. Quadratic)**

|           | Partial      | Output of Cova | riance Matrix |              |          |
|-----------|--------------|----------------|---------------|--------------|----------|
| Variable  | Intercept    | odose1         | odose2        | odose3       |          |
| Intercept | 0.0006770833 | 0              | 0             | 0 🔻          |          |
| odose1    | 0            | 0.0000322421   | 0             | 0            |          |
| odose2    | 0            | 0              | 0.0000322421  | 0            | <b>\</b> |
| odose3    | 0            | 0              | 0             | 0.0000205177 |          |



## **Orthogonal Polynomials Example (Finding "Pure Error")**

**NOTE:** We need to fit all 7 orthogonal polynomials for the MSE to be equal to our "pure error".

However, if the higher-order polynomials are not necessary, we will approximate the "pure error" with a lower-order polynomial model while using fewer degrees of freedom.

```
PROC REG DATA=wtgain;
    MODEL wgtgain = odose1 odose2;
RUN;
```

| Analysis of Variance   |    |                   |                |         |        |  |  |  |
|------------------------|----|-------------------|----------------|---------|--------|--|--|--|
| Source                 | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |  |
| Model                  | 2  | 169.70004         | 84.85002       | 5247.78 | <.0001 |  |  |  |
| Error                  | 21 | 0.33954           | 0.01617        |         |        |  |  |  |
| <b>Corrected Total</b> | 23 | 170.03958         |                |         |        |  |  |  |

| Recall:              |  |
|----------------------|--|
| Pure Error = 0.01625 |  |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |  |
| Intercept           | 1  | 3.65417               | 0.02596           | 140.78  | <.0001  |  |  |  |  |  |
| odose1              | 1  | 0.55575               | 0.00566           | 98.12   | <.0001  |  |  |  |  |  |
| odose2              | 1  | 0.16687               | 0.00566           | 29.46   | <.0001  |  |  |  |  |  |

Same parameter estimates, slightly different SEs (page 18)

ANOVA Table identical to quadratic model using natural polynomials (p.8), but parameter estimate table is different.

## **Standardized Orthogonal Polynomials**

KKNR recommend dividing the orthogonal polynomials by the square root of the sum of squared values of the coefficients (provided in the last column of Table A7).

- The variance of each set of orthogonal polynomial scores is thus equal to 1.
- This improves numerical accuracy by avoiding scaling problems.
- The SEs for all estimated regression coefficients are thus equal, simplifying the task of comparing and interpreting such regression coefficients.

```
data wtgain;
set wtgain;

odose1_s = odose1/SQRT(168);
odose2_s = odose2/SQRT(168);
odose3_s = odose3/SQRT(264);
odose4_s = odose4/SQRT(616);
odose5_s = odose5/SQRT(2184);
odose6_s = odose6/SQRT(264);
odose7_s = odose7/SQRT(3432);
RUN;
```



## **Orthogonal Polynomials Example**

PROC REG DATA=wtgain;
 MODEL wgtgain = odose1\_s odose2\_s odose3\_s odose4\_s odose5\_s odose6\_s odose7\_s;
RUN;

| Analysis of Variance   |    |                   |                |         |        |  |  |  |
|------------------------|----|-------------------|----------------|---------|--------|--|--|--|
| Source                 | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |  |  |  |
| Model                  | 7  | 169.77958         | 24.25423       | 1492.57 | <.0001 |  |  |  |
| Error                  | 16 | 0.26000           | 0.01625        |         |        |  |  |  |
| <b>Corrected Total</b> | 23 | 170.03958         |                |         |        |  |  |  |

|           | Parameter Estimates |                       |                   |         |         |  |  |  |  |  |  |
|-----------|---------------------|-----------------------|-------------------|---------|---------|--|--|--|--|--|--|
| Variable  | DF                  | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |  |  |
| Intercept | 1                   | 3.65417               | 0.02602           | 140.43  | <.0001  |  |  |  |  |  |  |
| odose1_s  | 1                   | 7.20339               | 0.07360           | 97.87   | <.0001  |  |  |  |  |  |  |
| odose2_s  | 1                   | 2.16282               | 0.07360           | 29.39   | <.0001  |  |  |  |  |  |  |
| odose3_s  | 1                   | 0.06360               | 0.07360           | 0.86    | 0.4003  |  |  |  |  |  |  |
| odose4_s  | 1                   | -0.13027              | 0.07360           | -1.77   | 0.0958  |  |  |  |  |  |  |
| odose5_s  | 1                   | 0.00071327            | 0.07360           | 0.01    | 0.9924  |  |  |  |  |  |  |
| odose6_s  | 1                   | -0.03488              | 0.07360           | -0.47   | 0.6420  |  |  |  |  |  |  |
| odose7_s  | 1                   | -0.06543              | 0.07360           | -0.89   | 0.3871  |  |  |  |  |  |  |

No change in t-values or p-values

Parameter estimates changed (now standardized)

To test just the linear effect of dose, we could have modeled the data using a cell means model, and then test the linear contrast (or any other contrast of interest):

```
PROC REG DATA=wtgain;
    MODEL wgtgain = dose1 dose2 dose3 dose4 dose5 dose6 dose7 dose8/noint;
    LINEAR: TEST -7*dose1-5*dose2-3*dose3-1*dose4+1*dose5+3*dose6+
    5*dose7+7*dose8;
RUN;
```

## NOTE: No intercept in model. R-Square is redefined.

| Analysis of Variance     |    |                |                |         |        |  |  |  |
|--------------------------|----|----------------|----------------|---------|--------|--|--|--|
| Source                   | DF | Sum of Squares | Mean<br>Square | F Value | Pr > F |  |  |  |
| Model                    | 8  | 490.25000      | 61.28125       | 3771.15 | <.0001 |  |  |  |
| Error                    | 16 | 0.26000        | 0.01625        |         |        |  |  |  |
| <b>Uncorrected Total</b> | 24 | 490.51000      |                |         |        |  |  |  |

This is  $\Sigma y_i^2$  (uncorrected sum of squares) in the cell means model

**Pure Error** 

We are still using the pure error estimate of the MSE, but only need to estimate the contrast of interest (linear contrast).

| Parameter Estimates |    |                       |                   |         |         |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |
| dose1               | 1  | 0.86667               | 0.07360           | 11.78   | <.0001  |  |  |
| dose2               | 1  | 1.13333               | 0.07360           | 15.40   | <.0001  |  |  |
| dose3               | 1  | 1.53333               | 0.07360           | 20.83   | <.0001  |  |  |
| dose4               | 1  | 2.20000               | 0.07360           | 29.89   | <.0001  |  |  |
| dose5               | 1  | 3.36667               | 0.07360           | 45.74   | <.0001  |  |  |
| dose6               | 1  | 4.76667               | 0.07360           | 64.77   | <.0001  |  |  |
| dose7               | 1  | 6.66667               | 0.07360           | 90.58   | <.0001  |  |  |
| dose8               | 1  | 8.70000               | 0.07360           | 118.21  | <.0001  |  |  |

This is a cell means model, so each of the beta estimates is the observed mean for that dose group.

| Test LINEAR Results for Dependent Variable wgtgain |    |                |         |        |  |  |  |  |
|----------------------------------------------------|----|----------------|---------|--------|--|--|--|--|
| Source                                             | DF | Mean<br>Square | F Value | Pr > F |  |  |  |  |
| Numerator                                          | 1  | 155.66669      | 9579.49 | <.0001 |  |  |  |  |
| Denominator                                        | 16 | 0.01625        |         |        |  |  |  |  |

Equivalent to the previous *t* statistics for the linear effect on pages 11, 18, and 22:

$$F = 9579.49$$
$$t = \sqrt{9579.49} = 97.875$$