PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 99/6461
C12P 19/00, 17/04, C12N 1/12, 1/20, 5/00, 5/04	A1	(43) International Publication Date: 16 December 1999 (16.12.99
(21) International Application Number: PCT/US	599/115	76 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BC, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G
(22) International Filing Date: 26 May 1999	(26.05.9	

60/088,549 8 June 1998 (08.06.98) US 60/125,073 17 March 1999 (17.03.99) US 60/125,054 18 March 1999 (18.03.99) US

(71) Applicant: DCV, INC., doing business as BIO-TECHNICAL RESOURCES [US/US]; 1035 South Seventh Street, Manitowoc, WI 54220 (US).

(72) Inventors: BERRY, Alan; 126 Beverly Road, Bloomfield, NJ 07003 (US). RUNNING, Jeffrey, A.; 612 St. Clair Street, Manitowoc, WI 54220 (US). SEVERSON, David, K.; 1816 26th Street, Two Rivers, WI 54241 (US). BURLINGAME, Richard, P.; 808 North 9th Street, Manitowoc, WI 54220 (US).

(74) Agents: CONNELL, Gary, J. et al.; Sheridan Ross P.C., Suite 3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

(57) Abstract

(30) Priority Data:

A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	I Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Сапада	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	· zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cu	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

FIELD OF THE INVENTION

The present invention relates to vitamin C (L-ascorbic acid) production using genetically modified microorganisms and plants. In particular, the present invention relates to the use of nucleotide sugar epimerase enzymes for the biological production of ascorbic acid in plants and microorganisms.

BACKGROUND OF THE INVENTION

Nearly all forms of life, both plant and animal, either synthesize ascorbic acid (vitamin C) or require it as a nutrient. Ascorbic acid was first identified to be useful as a dietary supplement for humans and animals for the prevention of scurvy. Ascorbic acid, however, also affects human physiological functions such as the adsorption of iron, cold tolerance, the maintenance of the adrenal cortex, wound healing, the synthesis of polysaccharides and collagen, the formation of cartilage, dentine, bone and teeth, the maintenance of capillaries, and is useful as an antioxidant.

For use as a dietary supplement, ascorbic acid can be isolated from natural sources, such as rosehips, synthesized chemically through the oxidation of L-sorbose, or produced by the oxidative fermentation of calcium D-gluconate by Acetobacter suboxidans. Considine, "Ascorbic Acid," Van Nostrand's Scientific Encyclopedia, Vol. 1, pp. 237-238, (1989). Ascorbic acid (predominantly intracellular) has also been obtained through the fermentation of strains of the microalga, Chlorella pyrenoidosa. See U.S. Patent No. 5,001,059 by Skatrud, which is assigned to the assignee of the present application. It is believed that ascorbic acid is produced inside the chloroplasts of photosynthetic microorganisms and functions to neutralize energetic electrons produced during photosynthesis. Accordingly, ascorbic acid production is known in photosynthetic organisms as a protective mechanism.

Therefore, products and processes which improve the ability to biosynthetically produce ascorbic acid are desirable and beneficial for the improvement of human health.

SUMMARY OF THE INVENTION

One embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism. The method includes the steps of: (a)

5

10

15

20

25

30

10

15

20

25

30

culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase; and (b) recovering the ascorbic acid or esters produced by the microorganism. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In one embodiment of the method of the present invention, the microorganism further includes a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase. Such a genetic modification can include, for example, a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.

In one embodiment, the genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, which can include GDP-D-mannose:GDP-L-galactose epimerase. In one embodiment, the epimerase binds NADPH. In one embodiment of this method, the genetic modification includes transformation of the microorganism with a recombinant nucleic acid molecule that expresses the epimerase. Such an epimerase can have a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the epimerase has a structure having an average root mean square deviation of less than about 2.5 Å, and more preferably less than about 1 Å, over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, the epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by

10

15

atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a substrate binding site preferably has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In another embodiment, the epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a catalytic site preferably has a tertiary structure with an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The catalytic site preferably includes the amino acid residues serine, tyrosine and lysine and in one embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.

20

25

30

In yet another embodiment of this method, the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50%, and in another embodiment with at least about 75%, and in yet another embodiment with at least about 90% of non-Xaa residues in SEQ ID NO:11. In another embodiment, the epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12

10

15

20

25

30

contiguous nucleotides of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.

In yet another embodiment of this method of the present invention, the epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical, and in another embodiment, at least about 20% identical, and in another embodiment, at least about 25% identical, to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

In yet another embodiment of this method of the present invention, the recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The nucleic acid sequence encoding the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes nucleic acid sequences selected from the group of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, and the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can include an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.

In one embodiment of the method of the present invention, the microorganism is selected from the group of bacteria, fungi and microalgae. In one embodiment, the microorganism is acid-tolerant. Preferred bacteria include, but are not limited to Azotobacter and Pseudomonas. Preferred fungi include, but are not limited to, yeast, including, but not limited to Saccharomyces yeast. Preferred microalgae include, but are not limited to, microalgae of the genera Prototheca and Chlorella, with microalgae of the genus Prototheca being particularly preferred.

In yet another embodiment of the method of the present invention, the microorganism is acid-tolerant and the step of culturing is conducted at a pH of less than about 6.0, and more preferably, at a pH of less than about 5.5, and even more preferably, at a pH of less than about 5.0. The step of culturing can be conducted in a fermentation medium that comprises a carbon source other than D-mannose in one embodiment, and

in another embodiment, the step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.

In yet another embodiment of the present method, the step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited. Preferably, the step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase. In one embodiment, the fermentation medium includes less than about 0.5 g/L of Mg during a cell growth phase, and more preferably, less than about 0.2 g/L of Mg during a cell growth phase, and even more preferably, less than about 0.1 g/L of Mg during a cell growth phase.

Another embodiment of the present invention relates to a microorganism for producing ascorbic acid or esters thereof. The microorganism has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and even more preferably, to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a

5

10

15

20

25

30

5

10

15

20

25

30

6

CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11. Preferred microorganisms are disclosed as for the method discussed above.

Yet another embodiment of the present invention relates to a plant for producing ascorbic acid or esters thereof. Such a plant has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and in a more preferred embodiment, the genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-Dmannose:GDP-L-galactose epimerase. Such a genetic modification includes a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase. Such a plant also includes a plant that has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, such a plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-Dmannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

In one embodiment, a plant for producing ascorbic acid or esters thereof according to the present invention is a microalga. Preferred microalgae include, but are not limited to microalgae of the genera *Prototheca* and *Chlorella*, with microalga of the genus *Prototheca* being particularly preferred. In another embodiment, the plant is a higher plant, with consumable higher plants being more preferred.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1A is a schematic drawing of the pathway from glucose to GDP-D-mannose in plants.

Fig. 1B is a schematic drawing of the pathway from GDP-D-mannose to L-galactose-1-phosphate in plants.

Fig. 1C is a schematic drawing of the pathway from L-galactose to L-ascorbic acid in plants.

Fig. 2A is a schematic drawing of selected carbon flow from glucose in *Prototheca*.

Fig. 2B is a schematic drawing of selected carbon flow from glucose in *Prototheca*.

Fig. 3 is a schematic drawing that shows the lineage of mutants derived from *Prototheca moriformis* ATCC 75669, and their ability to produce L-ascorbic acid.

Fig. 4 is a bar graph illustrating the conversion of substrates by resting cells of strain NA45-3 following growth in media containing various magnesium concentrations and resuspension in media containing various magnesium concentrations.

Fig. 5 is a line graph showing the relationship between specific ascorbic acid formation in cultures of *Prototheca* strains and the specific activity of GDP-D-mannose:GDP-L-galactose epimerase in extracts prepared from cells harvested from the same cultures.

Fig. 6 is a line graph showing the relationship between specific epimerase activity and the degree of magnesium limitation in two strains, ATCC 75669 and EMS13-4.

Fig. 7 depicts the overall catalytic mechanism of GDP-D-mannose: GDP-L-galactose epimerase proposed by Barber (1979, *J. Biol. Chem.* 254:7600-7603).

5

10

15

20

25

10

15

20

25

30

Fig. 8A depicts the catalytic mechanism of GDP-D-mannose-4,6-dehydratase (converts GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose).

Fig. 8B depicts the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (converts GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose) (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a biosynthetic method and production microorganisms and plants for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA). Such a method includes fermentation of a genetically modified microorganism to produce L-ascorbic acid. In particular, the present invention relates to the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, as well as epimerases having structural homology (e.g., by nucleotide/amino acid sequence and/or tertiary structure of the encoded protein) to GDP-4-keto-6-deoxy-D-mannose epimerase/reductases, or UDP-galactose 4-epimerases, for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

One embodiment of the present invention relates to a method to produce L-ascorbic acid by fermentation of a genetically modified microorganism. This method includes the steps of (a) culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono- γ -lactone dehydrogenase; and (b) recovering L-ascorbic acid or esters thereof. The various enzymes in this list represent the enzymes involved in the vitamin C biosynthetic pathway in plants. It is uncertain at this time

10

15

20

25

30

whether the enzyme represented by GDP-L-galactose phosphorylase is actually a phosphorylase or a pyrophosphorylase (i.e., GDP-L-galactose pyrophosphorylase). Therefore, use of the term "GDP-L-galactose phosphorylase" herein refers to either GDP-L-galactose phosphorylase or GDP-L-galactose pyrophosphorylase. In one aspect of the invention, this method includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. This aspect of the present invention is discussed in detail below.

Another embodiment of the present invention relates to a genetically modified microorganism for producing L-ascorbic acid or esters thereof. Another embodiment of the present invention relates to a genetically modified plant for producing L-ascorbic acid or esters thereof. Both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes the transformation of the microorganism or plant with the epimerase as described above.

To produce significantly high yields of L-ascorbic acid by the method of the present invention, a plant and/or microorganism is genetically modified to enhance production of L-ascorbic acid. As used herein, a genetically modified plant (such as a higher plant or microalgae) or microorganism, such as a microalga (*Prototheca*, *Chlorella*), *Escherichia coli*, or a yeast, is modified (i.e., mutated or changed) within its genome and/or by recombinant technology (i.e., genetic engineering) from its normal (i.e., wild-type or naturally occurring) form. In a preferred embodiment, a genetically modified plant or microorganism according to the present invention has been modified by

5

10

15

20

25

30

recombinant technology. Genetic modification of a plant or microorganism can be accomplished using classical strain development and/or molecular genetic techniques, include genetic engineering techniques. Such techniques are generally disclosed herein and are additionally disclosed, for example, in Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press; Roessler, 1995, *Plant Lipid Metabolism*, pp. 46-48; and Roessler et al., 1994, in Bioconversion for Fuels, Himmel et al. eds., American Chemical Society, Washington D.C., pp 255-70). These references are incorporated by reference herein in their entirety.

In some embodiments, a genetically modified plant or microorganism can include a natural genetic variant as well as a plant or microorganism in which nucleic acid molecules have been inserted, deleted or modified, including by mutation of endogenous genes (e.g., by insertion, deletion, substitution, and/or inversion of nucleotides), in such a manner that the modifications provide the desired effect within the plant or microorganism. As discussed above, a genetically modified plant or microorganism includes a plant or microorganism that has been modified using recombinant technology.

As used herein, genetic modifications which result in a decrease in gene expression, an increase in inhibition of gene expression or inhibition of a gene product (i.e., the protein encoded by the gene), a decrease in the function of the gene, or a decrease in the function of the gene product can be referred to as inactivation (complete or partial), deletion, interruption, blockage, down-regulation, or decreased action of a gene. For example, a genetic modification in a gene which results in a decrease in the function of the protein encoded by such gene can be the result of a complete deletion of the gene encoding the protein (i.e., the gene does not exist, and therefore the protein does not exist), a mutation in the gene encoding the protein which results in incomplete or no translation of the protein (e.g., the protein is not expressed), or a mutation in the gene which decreases or abolishes the natural function of the protein (e.g., a protein is expressed which has decreased or no enzymatic activity).

Genetic modifications which result in an increase in gene expression or function can be referred to as amplification, overproduction, overexpression, activation, enhancement, addition, up-regulation or increased action of a gene. Additionally, a genetic modification to a gene which modifies the expression, function, or activity of the gene can

10

15

20

25

30

have an impact on the action of other genes and their expression products within a given metabolic pathway (e.g., by inhibition or competition). In this embodiment, the action (e.g., activity) of a particular gene and/or its product can be affected (i.e., upregulated or downregulated) by a genetic modification to another gene within the same metabolic pathway, or to a gene within a different metabolic pathway which impacts the pathway of interest by competition, inhibition, substrate formation, etc.

In general, a plant or microorganism having a genetic modification that affects L-ascorbic acid production has at least one genetic modification, as discussed above, which results in a change in the L-ascorbic acid production pathway as compared to a wild-type plant or microorganism grown or cultured under the same conditions. Such a modification in an L-ascorbic acid production pathway changes the ability of the plant or microorganism to produce L-ascorbic acid. According to the present invention, a genetically modified plant or microorganism preferably has an enhanced ability to produce L-ascorbic acid compared to a wild-type plant or microorganism cultured under the same conditions.

The present invention is based on the present inventors' discovery of the biosynthetic pathway for L-ascorbic acid (vitamin C) in plants and microorganisms. Prior to the present invention, the metabolic pathway by which plants produce L-ascorbic acid, was not completely elucidated. The present inventors have demonstrated that L-ascorbic acid production in plants, including L-ascorbic acid-producing microorganisms (e.g., microalgae), is a pathway which uses GDP-D-mannose and involves sugar phosphates and NDP-sugars. In addition, the present inventors have made the surprising discovery that both L-galactose and L-galactono-y-lactone can be rapidly converted into L-ascorbic acid in L-ascorbic acid-producing microalgae, including Prototheca and Chlorella pyrenoidosa. The entire pathway for L-ascorbic acid production in plants is set forth in Figs. 1A-1C. More particularly, Fig. 1A shows that the production of L-ascorbic acid in plants proceeds through the production of mannose intermediates to GDP-D-mannose, followed by the conversion of GDP-D-mannose to GDP-L-galactose by GDP-Dmannose: GDP-L-galactose epimerase (also known as GDP-D-mannose-3,5-epimerase) (Fig. 1B), and then by the subsequent progression to L-galactose-1-P, L-galactose, Lgalactonic acid (optional), L-galactono-y-lactone, and L-ascorbic acid (Fig. 1C). Fig. 1B

10

15

20

25

30

also illustrates alternate pathways for the use of various intermediates, such as GDP-D-mannose. Certain aspects of this pathway have been independently described in a publication (Wheeler, et al., 1998, *Nature* 393:365-369), incorporated herein by reference in its entirety.

Points within the L-ascorbic acid production pathway which can be targeted by genetic modification to affect the production of L-ascorbic acid can generally be catagorized into at least one of the following pathways: (a) pathways affecting the production of GDP-D-mannose (e.g., pathways for converting a carbon source into GDP-D-mannose); (b) pathways for converting GDP-D-mannose into other compounds, (c) pathways associated with or downstream of the action of GDP-D-mannose:GDP-L-galactose epimerase, (d) pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

A genetically modified plant or microorganism useful in a method of the present invention typically has at least one genetic modification in the L-ascorbic acid production pathway which results in an enhanced production of L-ascorbic acid. In one embodiment, a genetically modified plant or microorganism has at least one genetic modification that results in: (a) an enhanced production of GDP-D-mannose; (b) an inhibition of pathways which convert GDP-D-mannose into compounds other than GDP-L-galactose; (c) an enhancement of action of the GDP-D-mannose:GDP-L-galactose epimerase; (d) an enhancement of the action of enzymes downstream of the GDP-D-mannose:GDP-L-galactose epimerase; (e) an inhibition of pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) an inhibition of pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway.

10

15

20

25

30

galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

An enhanced production of GDP-D-mannose by genetic modification of the plant or microorganism can be achieved by, for example, overexpression of enzymes such as hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase (PMM) and/or GDP-D-mannose pyrophosphorylase (GMP). Inhibition of pathways which convert GDP-D-mannose to compounds other than GDP-Lgalactose can be achieved, for example, by modifications which inhibit polysaccharide synthesis, GDP-D-rhamnose synthesis, GDP-L-fucose synthesis and/or GDP-Dmannuronic acid synthesis. An increase in the action of the GDP-D-mannose:GDP-Lgalactose epimerase and of enzymes downstream of the epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to: overexpression of the epimerase gene (i.e, by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof (discussed in detail below), and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene) and/or overexpression of genes downstream of the epimerase which encode subsequent enzymes in the L-ascorbic acid pathway. Finally, metabolic pathways which compete with or inhibit the L-ascorbic acid production pathway can be inhibited by deleting or mutating enzymes, substrates or products which either inhibit or compete for an enzyme, substrate or product in the L-ascorbic acid pathway.

As discussed above, a genetically modified plant or microorganism useful in the method of the present invention can have at least one genetic modification (e.g., mutation in the endogenous gene or addition of a recombinant gene) in a gene encoding an enzyme involved in the L-ascorbic acid production pathway. Such genetic modifications preferably increase (i.e., enhance) the action of such enzymes such that L-ascorbic acid is preferentially produced as compared to other possible end products in related metabolic pathways. Such genetic modifications include, but are not limited to, overexpression of the gene encoding such enzyme, and deletion, mutation, or downregulation of genes encoding competitors or inhibitors of such enzyme. Preferred enzymes for which the action of the gene encoding such enzyme can be genetically modified include: hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase

5

10

15

20

25

30

(PMM), GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. More preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Even more preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of GDP-D-mannose:GDP-L-galactose epimerase. These enzymes and the reactions catalyzed by such enzymes are illustrated in Figs. 1A-1C.

Prior to the present invention, without knowing the L-ascorbic acid biosynthetic (i.e., production) pathway, previous mutagenesis and screening efforts were limited in that only non-lethal mutations could be detected. One embodiment of the present invention relates to elimination of a key competing enzyme that diverts carbon flow from L-ascorbic acid synthesis. If such enzyme is absolutely required for growth on glucose, then mutants lacking the enzyme (and, therefore, having increased carbon flow to L-ascorbic acid) would have been nonviable and not have been detected during prior screening efforts. One such enzyme is phosphofructokinase (PFK) (See Fig. 2A). PFK is required for growth on glucose, and is the major step drawing carbon away from L-ascorbic acid biosynthesis (Fig. 2A). Elimination of PFK would render the cells nonviable on glucosebased media. Selection of a conditional mutant where PFK was inactivated by temperature shift, for example, may allow development of a L-ascorbic acid process where cell growth is achieved under permissive fermentation conditions, and L-ascorbic acid production (from glucose) is initiated by a shift to non-permissive condition. In this example, the temperature shift would eliminate carbon flow from glucose to glycolysis via PFK, thereby shunting carbon into the L-ascorbic acid branch of metabolism. This approach has application not only in natural L-ascorbic acid producing organisms, but also in L-ascorbic acid recombinant systems (genetically engineered plant or microorganisms) as discussed herein.

Knowing the identity and mechanism of the rate-limiting pathway enzymes in the L-ascorbic acid production pathway allows for design of specific inhibitors of the enzymes that are also growth inhibitory. Selection of mutants resistant to the inhibitors allows for the isolation of strains that contain L-ascorbic acid-pathway enzymes with more favorable kinetic properties. Therefore, one embodiment of the present invention is to identify inhibitors of the enzymes that are also growth inhibitory. These inhibitors are then used to select genetic mutants that overcome this inhibition and produce L-ascorbic acid at high levels. In this embodiment, the resultant plant or microorganism is a non-recombinant strain which can then be further modified by recombinant technology, if desired. In recombinant L-ascorbic acid producing strains, random mutagenesis and screening can be used as a final step to increase L-ascorbic acid production.

In yet another embodiment genetic modifications are made to an L-ascorbic acid producing organism directly. This allows one to build upon a base of data acquired during prior classical strain improvement efforts, and perhaps more importantly, allows one to take advantage of undefined beneficial mutations that occurred during classical strain improvement. Furthermore, fewer problems are encountered when expressing native, rather than heterologous, genes. The most advanced system for development of genetic systems for microalgae has been developed for Chlamydomonas reinhardtii. Preferably, development of such a genetically modified production organism would include: isolation of mutant(s) with a specific nutritional requirement for use with a cloned selectable marker gene (similar to the ura3 mutants used in yeast and fungal systems); a cloned selectable marker such as URA3 or alternatively, identification and cloning of a gene that specifies resistance to a toxic compound (this would be analogous to the use of antibiotic resistance genes in bacterial systems, and, as is the case in yeast and other fungi, a means of inserting/removing the marker gene repeatedly would be required, unless several different selectable markers were developed); a transformation system for introducing DNA into the production organism and achieving stable transformation and expression; and, a promoter system (preferably several) for high-level expression of cloned genes in the organism.

Another embodiment of the present invention, discussed in detail below, is to place key genes or allelic variants and homologues thereof from L-ascorbic acid producing

5

10

15

20

25

30

5

10

15

20

25

30

organisms (i.e., higher plants and microalgae) into a plant or microorganism that is more amenable to molecular genetic manipulation, including endogenous L-ascorbic acid producing microorganisms and suitable plants. For example, it is possible to identify a suitable non-pathogenic organism based on the requirement of growth (on glucose) at low pH (i.e., acid-tolerant organisms, discussed in detail below).

One suitable candidate for recombinant production in any suitable host organism is the gene (nucleic acid molecule) encoding GDP-D-mannose:GDP-L-galactose epimerase and homologues of the GDP-D-mannose:GDP-L-galactose epimerase, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Many microorganisms produce GDP-D-mannose as a precursor to exopolysaccharide and glycoprotein production, even though such organisms may not make L-ascorbic acid. This aspect of the present invention is discussed in detail below.

Referring to Figs. 1A-1C, at least some of the enzymes from glucose-6-phosphate to GDP-D-mannose are present in many organisms. In fact, the entire sequence is present in bacteria such as Azotobacter vinelandii and Pseudomonas aeruginosa, and make up the early steps in the biosynthesis of the exopolysaccharide alginate. In this regard, it is possible that the only thing preventing these organisms from producing L-ascorbic acid could be the lack of GDP-D-mannose:GDP-L-galactose epimerase. The presence of PMI, PMM and GMP (see Fig. 1A) in so many organisms is important for two reasons. First, these organisms themselves could serve as alternate hosts for L-ascorbic acid production, by building on the existing early pathway enzymes and adding the required cloned genes (the epimerase and possibly others). Second, the genes encoding PMI, PMM and GMP can be cloned into a new organism where, together with the cloned epimerase, they would encode the overall pathway from glucose-6-phosphate to GDP-L- galactose.

In order to screen genomic DNA or cDNA libraries from different organisms and to isolate nucleic acid molecules encoding these enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase, one can use any of a variety of standard molecular and biochemical techniques. For example, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino

acid sequence can be determined (including, if necessary, the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism's DNA. This fragment would then be used to probe the library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively,

yeast are also a suitable candidate for developing a heterologous system for L-ascorbic

It is to be understood that the present invention discloses a method comprising the use of a microorganism with an ability to produce commercially useful amounts of Lascorbic acid in a fermentation process (i.e., preferably an enhanced ability to produce Lascorbic acid compared to a wild-type microorganism cultured under the same conditions). This method is achieved by the genetic modification of one or more genes encoding a protein involved in an L-ascorbic acid pathway which results in the production (expression) of a protein having an altered (e.g., increased or decreased) function as compared to the corresponding wild-type protein. Preferably, such genetic modification is achieved by recombinant technology. It will be appreciated by those of skill in the art that production of genetically modified plants or microorganisms having a particular altered function as described elsewhere herein (e.g., an enhanced ability to produce GDP-D-mannose:GDP-L-galactose epimerase), such as by transformation of the plant or microorganism with a nucleic acid molecule which encodes a particular enzyme, can produce many organisms meeting the given functional requirement, albeit by virtue of a variety of different genetic modifications. For example, different random nucleotide deletions and/or substitutions in a given nucleic acid sequence may all give rise to the same phenotypic result (e.g., decreased enzymatic activity of the protein encoded by the sequence). The present invention contemplates any such genetic modification which results in the production of a plant or microorganism having the characteristics set forth herein.

A microorganism to be used in the fermentation method of the present invention is preferably a bacterium, a fungus, or a microalga which has been genetically modified according to the disclosure above. More preferably, a microorganism useful in the present

5

10

15

20

25

30

acid production.

10

15

invention is a microalga which is capable of producing L-ascorbic acid, although the present invention includes microorganisms which are genetically engineered to produce L-ascorbic acid using the knowledge of the key components of the pathway and the guidance provided herein. Even more preferably, a microorganism useful in the present invention is an acid-tolerant microorganism, such as microalgae of the genera Prototheca and Chlorella. Acid-tolerant yeast and bacteria are also known in the art. Acid-tolerant microorganisms are discussed in detail below. Particularly preferred microalgae include microalgae of the genera, Prototheca and Chlorella, with Prototheca being most preferred. All known species of Prototheca produce L-ascorbic acid. Production of ascorbic acid by microalgae of the genera Prototheca and Chlorella is described in detail in U.S. Patent No. 5,792,631, issued August 11, 1998, and in U.S. Patent No. 5,900,370. issued May 4, 1999, both of which are incorporated herein by reference in their entirety. Preferred bacteria for use in the present invention include, but are not limited to, Azotobacter, Pseudomonas, and Escherichia, although acid-tolerant bacteria are more preferred. Preferred fungi for use in the present invention include yeast, and more preferably, yeast of the genus, Saccharomyces. A microorganism for use in the fermentation method of the present invention can also be referred to as a production organism. According to the present invention, microalgae can be referred to herein either as microorganisms or as plants.

20

A preferred plant to genetically modify according to the present invention is preferably a plant suitable for consumption by animals, including humans. More preferably, such a plant is a plant that naturally produces L-ascorbic acid, although other plants can be genetically modified to produce L-ascorbic acid using the guidance provided herein.

25

30

The L-ascorbic acid production pathways of the microalgae *Prototheca* and *Chlorella pyrenoidosa* will be addressed as specific embodiments of the present invention are described below. It will be appreciated that other plants and, in particular, other microorganisms, have similar L-ascorbic acid pathways and genes and proteins having similar structure and function within such pathways. It will also be appreciated that plants and microorganisms which do not naturally produce L-ascorbic acid can be modified according to the present invention to produce L-ascorbic acid. As such, the principles

10

15

20

25

30

discussed below with regard to *Prototheca* and *Chlorella pyrenoidosa* are applicable to other plants and microorganisms, including genetically modified plants and microorganisms.

In one embodiment of the present invention, the action of an enzyme in the Lascorbic acid production pathway is increased by amplification of the expression (i.e., overexpression) of an enzyme in the pathway, and particularly, the GDP-Dmannose:GDP-L-galactose epimerase, homologues of the epimerase, and/or enzymes downstream of the epimerase. Overexpression of an enzyme can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the enzyme. It is preferred that the gene encoding an enzyme in the L-ascorbic acid production pathway be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of enzyme expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding a gene in the L-ascorbic acid production pathway is integrated into the chromosomes of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more enzymes in the L-ascorbic acid production pathway with improved affinity for its substrates. An enzyme with improved affinity for its substrates can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

Recombinant nucleic acid molecules encoding proteins in the L-ascorbic acid production pathway can be modified to enhance or reduce the function (i.e., activity) of the protein, as desired to increase L-ascorbic acid production, by any suitable method of genetic modification. For example, a recombinant nucleic acid molecule encoding an

enzyme can be modified by any method for inserting, deleting, and/or substituting nucleotides, such as by error-prone PCR. In this method, the gene is amplified under conditions that lead to a high frequency of misincorporation errors by the DNA polymerase used for the amplification. As a result, a high frequency of mutations are obtained in the PCR products. The resulting gene mutants can then be screened for enhanced substrate affinity, enhanced enzymatic activity, or reduced/increased inhibitory ability by testing the mutant genes for the ability to confer increased L-ascorbic acid production onto a test microorganism, as compared to a microorganism carrying the non-mutated recombinant nucleic acid molecule.

Another embodiment of the present invention includes a microorganism in which competitive side reactions are blocked, including all reactions for which GDP-D-mannose is a substrate other than the production of L-ascorbic acid. In a preferred embodiment, a microorganism having complete or partial inactivation (decrease in the action of) of genes encoding enzymes which compete with the GDP-D-mannose:GDP-L-galactose epimerase for the GDP-D-mannose substrate is provided. Such enzymes include GDP-D-mannase and/or GDP-D-mannose-dehydrogenase. As used herein, inactivation of a gene can refer to any modification of a gene which results in a decrease in the activity (i.e., expression or function) of such a gene, including attenuation of activity or complete deletion of activity.

As discussed above, a particularly preferred aspect of the method to produce L-ascorbic acid by fermentation of a genetically modified microorganism of the present invention includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. According to the present invention, such an epimerase can include the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, described above, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Such structural homology is discussed in detail below. Preferably, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes transformation of the

10

15

20

25

30

microorganism with a recombinant nucleic acid molecule that expresses such an epimerase.

Therefore, the epimerase encompassed in the method and organisms of the present invention includes the endogenous epimerase which operates in the naturally occurring ascorbic acid biosynthetic pathway (referred to herein as GDP-Dmannose: GDP-L-galactose epimerase), GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases, and any other epimerase which is capable of catalyzing the conversion of GDP-D mannose to GDP-L-galactose and which is structurally homologous to a GDP-4keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase. epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose according the present invention can be identified by biochemical and functional characteristics as well as structural characteristics. For example, an epimerase according to the present invention is capable of acting on GDP-D-mannose as a substrate, and more particularly, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-Lgalactose. It is to be understood that such capabilities need not necessarily be the normal or natural function of the epimerase as it acts in its endogenous (i.e., natural) environment. For example, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase in its natural environment under normal conditions, catalyzes the conversion of GDP-D-mannose to GDP-L-fucose and does not act directly on GDP-D-mannose (See Fig. 8A, B), however, such an epimerase is encompassed by the present invention for use in catalyzing the conversion of GDP-D-mannose to GDP-L-galactose for production of ascorbic acid, to the extent that it is capable of, or can be modified to be capable of, catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. Therefore, the present invention includes epimerases which have the desired enzyme activity for use in production of ascorbic acid, are capable of having such desired enzyme activity, and/or are capable of being modified or induced to have such desired enzyme activity.

In one embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the reaction depicted in Fig. 7. In another embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the first of the reactions depicted in Fig. 8B. In one embodiment, an epimerase according to the

10

15

20

25

30

present invention binds to NADPH. In another embodiment, an epimerase according to the present invention is NADPH-dependent for enzyme activity.

As discussed above, the present inventors have discovered that a key enzyme in L-ascorbic acid biosynthesis in plants and microorganisms is GDP-D-mannose: GDP-Lgalactose epimerase (refer to Figs. 1A-1C). One embodiment of the invention described herein is directed to the manipulation of this enzyme and structural homologues of this enzyme to increase L-ascorbic acid production in genetically engineered plants and/or microorganisms. More particularly, the GDP-D-mannose: GDP-L-galactose epimerase of the L-ascorbic acid pathway and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases are believed to be structurally homologous at both the sequence and tertiary structure level; a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is believed to be capable of functioning in the L-ascorbic acid biosynthetic pathway; and a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase or homologue thereof may be superior to a GDP-Dmannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, the present inventors disclose the use of a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase as a probe to identify the gene encoding GDP-Dmannose: GDP-L-galactose epimerase. Similarly, the present inventors disclose the use of a nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/reductase to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose: GDP-L-galactose epimerase.

Without being bound by theory, the present inventors believe that the following evidence supports the novel concept that the GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases have significant structural homology at the level of sequence and/or tertiary structure, and that the GDP-4-keto-6-deoxy-D-mannose epimerase/reductases and/or homologues thereof would be useful for production of ascorbic acid and/or for isolating the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Although prior to the present invention, it was not known that the GDP-D-mannose:GDP-L-galactose epimerase enzyme (also known as GDP-D-mannose-3,5-epimerase) plays a critical role in L-ascorbic acid biosynthesis, this enzyme was previously

10

15

20

25

30

described to catalyze the overall reversible reaction between GDP-D-mannose and GDP-L-galactose (Barber, 1971, Arch. Biochem. Biophys. 147:619-623; Barber, 1975, Arch. Biochem. Biophys. 167:718-722; Barber, 1979, J. Biol. Chem. 254:7600-7603; Hebda, et al., 1979, Arch. Biochem. Biophys. 194:496-502; Barber and Hebda, 1982, Meth. Enzymol., 83:522-525). Despite these studies, GDP-D-mannose:GDP-L-galactose epimerase has never been well characterized nor has the gene encoding this enzyme been cloned and sequenced. Since the original work by Barber, GDP-D-mannose:GDP-L-galactose epimerase activity has been detected in the colorless microalga Prototheca moriformis by the assignee of the present application, and in Arabidopsis thaliana and pea embryonic axes (Wheeler, et al., 1998, ibid.).

Barber (1979, J. Biol. Chem. 254:7600-7603) proposed a mechanism for GDP-D-mannose:GDP-L-galactose epimerase partially purified from the green microalga Chlorella pyrenoidosa. The overall conversion of GDP-D-mannose to GDP-L-galactose was proposed to proceed by oxidation of the hexosyl moiety at C-4 to a keto intermediate, ene-diol formation, and inversion of the configurations at C-3 and C-5 upon rehydration of the double bonds and stereospecific reduction of the keto group. The proposed mechanism is depicted in Fig. 7.

Based on Barber's work, Feingold and Avigad (1980, In The Biochemistry of Plants, Vol. 3: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, eds., Academic Press, NY) elaborated further on the proposed mechanism for GDP-D-mannose: GDP-L-galactose epimerase. This mechanism is based on the assumption that the epimerase contains tightly bound NAD⁺, and transfer of a hydride ion from C-4 of the substrate (GDP-D-mannose) to enzyme-associated NAD⁺ converts the enzyme to the reduced (NADH) form, generating enzyme-bound GDP-4-keto-D-mannose. The latter would then undergo epimerization by an ene-diol mechanism. The final product (GDP-L-galactose) would be released from the enzyme after stereospecific transfer of the hydride ion originally removed from C-4, simultaneously regenerating the oxidized form of the enzyme.

L-fucose (6-deoxy-L-galactose) is a component of bacterial lipopolysaccharides, mammalian and plant glycoproteins and polysaccharides of plant cell walls. L-fucose is synthesized *de novo* from GDP-D-mannose by the sequential action of GDP-D-mannose-

10

15

20

25

30

4,6-dehydratase (an NAD(P)-dependent enzyme), and a bifunctional GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (NADPH-dependent), also referred to in scientific literature as GDP-fucose synthetase (Rizzi, et al., 1998, Structure 6:1453-1465; Somers, et al., 1998, Structure 6:1601-1612). This pathway for L-fucose biosynthesis appears to be ubiquitous (Rizzi, et al., 1998, Structure 6:1453-1465). The mechanisms for GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are shown in Fig. 8A, B (Chang, et al., 1988, J. Biol. Chem. 263:1693-1697; Barber, 1980, Plant Physiol. 66:326-329).

Comparison of Figs. 7 and 8A, B reveals that Barber's proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase is analogous to the reaction mechanism for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The same mechanism has also been demonstrated for the epimerization reaction that occurs in the biosynthesis of two TDP-6-deoxy hexoses, TDP-L-rhamnose and TDP-6-deoxy-L-talose, from TDP-D-glucose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256). In the latter cases, however, the final reduction at C-4 is catalyzed by NADPH-dependent reductases that are separate from the epimerase enzyme. These reductases have opposite stereospecificity, providing either TDP-L-rhamnose or TDP-6-deoxy-L-talose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256).

In all of the mechanisms described above, NAD(P)H is required for the final reduction at C-4 (refer to Fig. 8B). In the work of Hebda, et al. (1979, Arch. Biochem. Biophys. 194:496-502), it was reported that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa did not require NAD, NADP or NADH for activity. Strangely, NADPH was not tested. Based on the analogous mechanisms shown in Figs. 7 and 8A, B, the present inventors believe that it is likely that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa requires NADPH for the final reduction step. Why activity was detected in vitro without NADPH addition is not known, but tight *binding of NADPH to the enzyme could explain this observation. On the other hand, if the proposed mechanism of Feingold and Avigad (1980, in The Biochemistry of Plants, Vol. 3, p. 101-170: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, ed., Academic Press, NY) is correct, the reduced enzyme-bound cofactor generated in the first oxidation step of the epimerase reaction would serve as the source of electrons for

10

15

20

25

30

the final reduction of the keto group at C-4 back to the alcohol. Thus no addition of exogenous reduced cofactor would be required for activity in vitro.

Recently, a human gene encoding the bifunctional GDP-4-keto-6-deoxy-Dmannose epimerase/reductase was cloned and sequenced (Tonetti, et al., 1996, J. Biol. Chem. 271-27274-27279). This amino acid sequence of the human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase shows significant homology (29% identity) to the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (Tonetti, et al., 1998, Acta Cryst. D54:684-686; Somers, et al., 1998, Structure 6:1601-1612, both of which are incorporated herein by reference in their entireties). Tonetti et al. and Somers et al. additionally disclosed the tertiary (three dimensional) structure of the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (also known as GDP-fucose synthetase), and noted significant structural homology with another epimerase, UDP-galactose 4-epimerase (GalE). These epimerases also share significant homology at the sequence level. Since no gene encoding a GDP-D-mannose:GDP-L-galactose epimerase has been cloned and sequenced, homology with genes encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases or with genes encoding a UDP-galactose 4-epimerase has not been demonstrated. However, based on the similarity of the reaction products for GDP-Dmannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase (i.e., GDP-L-galactose and GDP-6-deoxy-L-galactose [i.e., GDP-L-fucose], respectively) and the common catalytic mechanisms (Figs. 7 and 8A, B) the present inventors believe that the genes encoding the enzymes will have a high degree of sequence homology, as well as tertiary structural homology.

Significant structural homology between GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases may allow a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or a homologue thereof, to function in the L-ascorbic acid biosynthetic pathway, and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase could potentially be even better than a GDP-D-mannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be used as a probe to identify the gene encoding GDP-D-mannose:GDP-L-galactose epimerase. Likewise, the

10

15

20

25

30

nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase can be used to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose:GDP-L-galactose epimerase.

The ability to substitute GDP-4-keto-6-D-mannose epimerase/reductase for GDP-D-mannose:GDP-L-galactose epimerase to enhance L-ascorbic acid biosynthesis in plants or microorganisms depends on the ability of GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase to act directly on GDP-D-mannose to form GDP-L-galactose. Evidence supporting this possibility already exists. Arabidopsis thaliana murl mutants are defective in GDP-D-mannose-4,6-dehydratase activity (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). These mutants are thus blocked in GDP-L-fucose biosynthesis, and consequently have less than 2% of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant (Zablackis, et al., 1996, Science 272:1808-1810). The murl mutants are more brittle than wild-type plants, are slightly dwarfed and have an apparently normal life cycle (Zablackis, et al., 272:1808-1810). When murl mutants are grown in the presence of exogenous L-fucose, the L-fucose content in the plant is restored to the wild-type state (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). It was discovered (Zablackis, et al., 1996, Science 272:1808-1810) that murl mutants contain, in the hemicellulose xyloglucan component of the primary cell wall, L-galactose in place of the normal L-fucose. L-galactose is not normally found in the xyloglucan component, but in murl mutants L-galactose partly replaces the terminal L-fucosyl residue. Bonin, et al. (1997, Proc. Natl. Acad. Sci. 94:2085-2090) hypothesized that in the absence of a functional GDP-D-mannose-4,6-dehydratase in the murl mutants, the GDP-4-keto-6deoxy-D-mannose epimerase/reductase normally involved in L-fucose synthesis may be able to use GDP-D-mannose directly, forming GDP-L-galactose. Another possibility, however, is that the enzymes involved in L-ascorbic acid biosynthesis in A. thaliana are responsible for forming GDP-L-galactose in the murl mutant. If this were true, it would suggest that in the wild-type plant, some mechanism exists that prevents GDP-L-galactose formed in the L-ascorbic acid pathway from entering cell wall biosynthesis and substituting for (competing with) GDP-L-fucose for incorporation into the xyloglucan component (since L-galactose is not present in the primary cell wall of the wild-type plant).

Because of the similar reaction mechanisms of GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, and because of the evidence that GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can act directly on GDP-D-mannose to form GDP-L-galactose, the present inventors believe that genes encoding all epimerases and epimerase/reductases that act on GDP-D-mannose have high homology. As such, one aspect of the present invention relates to the use of any epimerase (and nucleic acid sequences encoding such epimerase) having significant homology (at the primary, secondary and/or tertiary structure level) to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or to a UDP-galactose 4-epimerase for the purpose of improving the biosynthetic production of L-ascorbic acid.

Therefore, as described above, one embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism, which includes culturing a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Also included in the present invention are genetically modified microorganisms and plants in which the genetic modification increases the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.

According to the present invention, an increase in the action of the GDP-D-mannose:GDP-L-galactose epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to overexpression of the GDP-D-mannose:GDP-L-galactose epimerase gene, a homologue of such gene, or of any recombinant nucleic acid sequence encoding an epimerase that is homologous in primary (nucleic acid or amino acid sequence) or tertiary (three dimensional protein) structure to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, such as by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof, and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene.

According to the present invention, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/

5

10

15

20

25

30

10

15

20

25

30

reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws (Table 12). In another embodiment, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS. As used herein, a "tertiary structure" or "three dimensional structure" of a protein, such terms being interchangeable, refers to the components and the manner of arrangement of the components in three dimensional space to constitute the protein. The use of the term "substantially conforms" refers to at least a portion of a tertiary structure of an epimerase which is sufficiently spatially similar to at least a portion of a specified three dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Brookhaven Protein Data Bank Accession Code 1bws) to allow the tertiary structure of at least said portion of the epimerase to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates as a basis for estimating the atomic coordinates defining the three dimensional configuration of the epimerase.

More particularly, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein such structure has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the

10

15

20

25

30

recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Methods to calculate RMSD values are well known in the art. Various software programs for determining the tertiary structural homology between one or more proteins are known in the art and are publicly available, such as QUANTA (Molecular Simulations Inc.).

A preferred epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose according to the method and genetically modified organisms of the present invention includes an epimerase that comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the substrate binding site of the epimerase has an average root-meansquare deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Ca positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions

10

15

20

25

30

as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

Another preferred epimerase according to the present invention includes an epimerase that comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the catalytic site of the epimerase has an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited

10

15

20

25

30

average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over 100% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. In a preferred embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to the tertiary structure position of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

In an even more preferred embodiment, the above definition of "substantially conforms" can be further defined to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structures which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å over at least about 25% of the common amino acid side chains as

10

15

20

25

30

compared to the tertiary structure represented by the given set of atomic coordinates. In another embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure having the recited average root-mean-square deviation (RMSD) value over at least about 50% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such a structure has the recited average root-mean-square deviation (RMSD) value over 100% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates.

A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (A. Sali and T.L. Blundell, J. Mol. Biol., vol. 234:779-815, 1993 as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the epimerase; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. Alternatively, a tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled using data generated from analysis of a crystallized structure of the epimerase. A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement. Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, XPLOR (Brunger, et al., Science, vol. 235, p. 458, 1987). In addition, a structure can be modeled using techniques generally described by,

for example, Sali, Current Opinions in Biotechnology, vol. 6, pp. 437-451, 1995, and algorithms can be implemented in program packages such as Homology 95.0 (in the program Insight II, available from Biosym/MSI, San Diego, CA). Use of Homology 95.0 requires an alignment of an amino acid sequence of a known structure having a known three dimensional structure with an amino acid sequence of a target structure to be modeled. The alignment can be a pairwise alignment or a multiple sequence alignment including other related sequences (for example, using the method generally described by Rost, Meth. Enzymol., vol. 266, pp. 525-539, 1996) to improve accuracy. Structurally conserved regions can be identified by comparing related structural features, or by examining the degree of sequence homology between the known structure and the target structure. Certain coordinates for the target structure are assigned using known structures from the known structure. Coordinates for other regions of the target structure can be generated from fragments obtained from known structures such as those found in the Protein Data Bank maintained by Brookhaven National Laboratory, Upton, NY. Conformation of side chains of the target structure can be assigned with reference to what is sterically allowable and using a library of rotamers and their frequency of occurrence (as generally described in Ponder and Richards, J. Mol. Biol., vol. 193, pp. 775-791, 1987). The resulting model of the target structure, can be refined by molecular mechanics (such as embodied in the program Discover, available from Biosym/MSI) to ensure that the model is chemically and conformationally reasonable.

According to the present invention, an epimerase that has a nucleic acid sequence that is homologous at the primary structure level (i.e., is a homologue of) to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase includes any epimerase encoded by a nucleic acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. Similarly, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-

5

10

15

20

25

30

10

15

20

25

30

galactose 4-epimerase includes any epimerase having an amino acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10.

According to one embodiment of the present invention, homology or percent identity between two or more nucleic acid or amino acid sequences is performed using methods known in the art for aligning and/or calculating percentage identity. To compare the homology/percent identity between two or more sequences as set forth above, for example, a module contained within DNASTAR (DNASTAR, Inc., Madison, Wisconsin) can be used. In particular, to calculate the percent identity between two nucleic acid or amino acid sequences, the Lipman-Pearson method, provided by the MegAlign module within the DNASTAR program, is preferably used, with the following parameters, also referred to herein as the Lipman-Pearson standard default parameters:

- (1) Ktuple = 2;
- (2) Gap penalty = 4;
- (3) Gap length penalty = 12.

Using the Lipman-Pearson method with these parameters, for example, the percent identity between the amino acid sequence for *E. coli* GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (SEQ ID NO:4) and human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (FX) (SEQ ID NO:6) is 27.7%, which is comparable to the 27% identity described for these enzymes in Tonetti et al., 1998, *Acta Cryst.* D54:684-686.

According to another embodiment of the present invention, to align two or more nucleic acid or amino acid sequences, for example to generate a consensus sequence or evaluate the similarity at various positions between such sequences, a CLUSTAL alignment program (e.g., CLUSTAL, CLUSTAL V, CLUSTAL W), also available as a module within the DNASTAR program, can be used using the following parameters, also referred to herein as the CLUSTAL standard default parameters:

Multiple Alignment Parameters (i.e., for more than 2 sequences):

(1) Gap penalty = 10;

. 1.

10

15

20

25

30

(2) Gap length penalty = 10;

Pairwise Alignment Parameters (i.e., for two sequences):

- (1) Ktuple = 1;
- (2) Gap penalty = 3;
- 5 (3) Window = 5;
 - (4) Diagonals saved = 5.

According to the present invention, a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from any organism, including Arabidopsis thaliana, Escherichia coli, and human. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Arabidopsis thaliana is represented herein by SEQ ID NO:1. SEQ ID NO:1 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:2. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli is represented herein by SEQ ID NO:3. SEQ ID NO:3 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:4. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:6.

According to the present invention, a UDP-galactose 4-epimerase can be a UDP-galactose 4-epimerase from any organism, including *Escherichia coli* and human. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *Escherichia coli* is represented herein by SEQ ID NO:7. SEQ ID NO:7 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:8. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *homo sapiens* is represented herein by SEQ ID NO:9. SEQ ID NO:9 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:10.

In a preferred embodiment, an epimerase encompassed by the present invention has an amino acid sequence that aligns with the amino acid sequence of SEQ ID NO:11, for example using a CLUSTAL alignment program, wherein amino acid residues in the

10

15

20

25

30

amino acid sequence of the epimerase align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11, and preferably at least about 75% of non-Xaa residues in SEQ ID NO:11, and more preferably, at least about 90% of non-Xaa residues in SEQ ID NO:11, and even more preferably 100% of non-Xaa residues in SEQ ID NO:11. The percent identity of residues aligning with 100% identity with non-Xaa residues can be simply calculated by dividing the number of 100% identical matches at non-Xaa residues in SEQ ID NO:11 by the total number of non-Xaa residues in SEQ ID NO:11. A preferred nucleic acid sequence encoding an epimerase encompassed by the present invention include a nucleic acid sequence encoding an epimerase having an amino acid sequence with the above described identity to SEQ ID NO:11. Such an alignment using a CLUSTAL alignment program is based on the same parameters as previously disclosed herein. SEQ ID NO:11 represents a consensus amino acid sequence of an epimerase which was derived by aligning at least portions of amino acid sequences SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8, as described in Somers et al., 1998, Structure 6:1601-1612, and can be approximately duplicated using CLUSTAL.

In another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. Preferably, such serine, tyrosine and lysine residues are located at positions in the epimerase amino acid sequence which align using a CLUSTAL alignment program with positions Ser105, Tyr134 and Lys138 of consensus sequence SEQ ID NO:11, with positions Ser109, Tyr138 and Lys142 of sequence SEQ ID NO:2, with positions Ser107, Tyr136 and Lys140 of SEQ ID NO:4, with positions Ser114, Tyr143 and Lys147 of sequence SEQ ID NO:6, with positions Ser124, Tyr149 and Lys153 of sequence SEQ ID NO:8 or with positions Ser132, Tyr157 and Lys161 of sequence SEQ ID NO:10.

In another embodiment, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes any epimerase that has an amino acid motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly, which is found, for example in positions 8 through 14 of the consensus sequence SEQ ID NO:11, in positions 12 through 18 of SEQ ID NO:2, in positions 10 through 16 of SEQ ID NO:4, in positions 14 through 20 of SEQ ID NO:6, in positions

10

15

20

25

30

7 through 13 of SEQ ID NO:8, and in positions 9 through 15 of SEQ ID NO:10. Such a motif can be identified by its alignment with the same motif in the above-identified amino acid sequences using a CLUSTAL alignment program. Preferably, such motif is located within the first 25 N-terminal amino acids of the amino acid sequence of the epimerase.

In yet another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a substrate binding site which includes amino acid residues that align using a CLUSTAL alignment program with at least 50% of amino acid positions Asn177, Ser178, Arg187, Arg209, Lys283, Asn165, Ser107, Ser108, Cys109, Asn133, Tyr136 and His179 of SEQ ID NO:4. Alignment with positions Ser107, Tyr136,

Asn165, Arg209, is preferably with 100% identity (i.e., exact match of residue, under parameters for alignment).

In another embodiment of the present invention, an epimerase encompassed by the present invention comprises at least 4 contiguous amino acid residues having 100% identity with at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters. According to the present invention, the term "contiguous" means to be connected in an unbroken sequence. For a first sequence to have "100% identity" with a second sequence means that the first sequence exactly matches the second sequence with no gaps between nucleotides or amino acids.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises at least 12 contiguous nucleic acid residues having 100% identity with at least 12 contiguous nucleic acid residues of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that hybridizes under stringent

10

15

20

25

30

hybridization conditions to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989. Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety (see specifically, pages 9.31-9.62). In addition, formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting varying degrees of mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

More particularly, stringent hybridization and washing conditions, as referred to herein, refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA:DNA hybrids are 10°C less than for DNA:RNA hybrids. In particular embodiments, stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45°C. In particular embodiments, stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C. These values are based on calculations of a melting temperature for molecules larger than about 100 nucleotides, 0% formamide and a G+ C content of about 40%. Alternatively, T_m can be calculated empirically as set forth in Sambrook et al., supra, pages 9.31 to 9.62.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises a nucleic acid

10

15

20

25

30

sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9 or a fragment thereof, wherein the fragment encodes a protein that is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, such as under physiological conditions. In another embodiment, an epimerase encompassed by the present invention comprises an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or a fragment thereof, wherein the fragment is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. It is to be understood that the nucleic acid sequence encoding the amino acid sequences identified herein can vary due to degeneracies. As used herein, nucleotide degeneracies refers to the phenomenon that one amino acid can be encoded by different nucleotide codons.

One embodiment of the present invention relates to a method to identify an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Preferably, such a method is useful for identifying the GDP-D-mannose: GDP-L-galactose epimerase which catalyzes the conversion of GDP-D-mannose to GDP-L-galactose in the endogenous (i.e., naturally occurring L-ascorbic acid biosynthetic pathway of microorganisms and/or plants). Such a method can include the steps of: (a) contacting a source of nucleic acid molecules with an oligonucleotide at least about 12 nucleotides in length under stringent hybridization conditions, wherein the oligonucleotide is identified by its ability to hybridize under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5; and, (b) identifying nucleic acid molecules from the source of nucleic acid molecules which hybridize under stringent hybridization conditions to the oligonucleotide. Nucleic acid molecules identified by this method can then be isolated from the source using standard molecular biology techniques. Preferably, the source of nucleic acid molecules is obtained from a microorganism or plant that has an ascorbic acid production pathway. Such a source of nucleic acid molecules can be any source of nucleic acid molecules which can be isolated from an organism and/or which can be screened by hybridization with an oligonucleotide such as a probe or a PCR primer. Such sources include genomic and cDNA libraries and isolated RNA.

10

15

20

25

30

In order to screen cDNA libraries from different organisms and to isolate nucleic acid molecules encoding enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase and related epimerases, one can use any of a variety of standard molecular and biochemical techniques. For example, oligonucleotide primers, preferably degenerate primers, can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence, and such primers can be used in a polymerase chain reaction (PCR) protocol to amplify the same or related epimerases, including the GDP-D-mannose:GDP-L-galactose epimerase from the ascorbic acid pathway, from nucleic acids (e.g., genomic or cDNA libraries) isolated from a desired organism (e.g., a microorganism or plant having an L-ascorbic acid pathway). Similarly, oligonucleotide probes can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence and such probe can be used to identify and isolate nucleic acid molecules, such as from a genomic or cDNA library, that hybridize under conditions of low, moderate, or high stringency with the probe.

Alternatively, the GDP-D-mannose: GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino acid sequence can be determined (including the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism cDNA. This fragment would then be used to probe the cDNA library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

As discussed above in general for increasing the action of an enzyme in the L-ascorbic acid pathway according to the present invention, in one embodiment of the present invention, the action of an epimerase that catalyzes the conversion of GDP-D-mannose to GDP-L-galactose is increased by amplification of the expression (i.e., overexpression) of such an epimerase. Overexpression of an epimerase can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the epimerase. It is preferred that the gene encoding an epimerase according to

10

15

20

25

30

the present invention be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of epimerase expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding an epimerase according to the present invention is integrated into the chromosome of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more epimerases according to the present invention with improved affinity for its substrate. An epimerase with improved affinity for its substrate can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

As noted above, in the method for production of L-ascorbic acid of the present invention, a microorganism having a genetically modified L-ascorbic acid production pathway is cultured in a fermentation medium for production of L-ascorbic acid. An appropriate, or effective, fermentation medium refers to any medium in which a genetically modified microorganism of the present invention, when cultured, is capable of producing L-ascorbic acid. Such a medium is typically an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. One advantage of genetically modifying a microorganism as described herein is that although such genetic modifications can significantly alter the production of L-ascorbic acid, they can be designed such that they do not create any nutritional requirements for the production organism. Thus, a minimal-salts medium containing glucose as the sole carbon source can be used as the fermentation medium. The use of a minimal-salts-glucose medium for the L-ascorbic acid fermentation will also facilitate recovery and purification of the L-ascorbic acid product.

10

15

20

25

30

In one mode of operation of the present invention, the carbon source concentration, such as the glucose concentration, of the fermentation medium is monitored during fermentation. Glucose concentration of the fermentation medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, e.g., a cell-free component of the fermentation medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial. Accordingly, when glucose is used as a carbon source the glucose concentration in the fermentation medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is preferred to maintain the carbon source concentration of the fermentation medium by addition of aliquots of the original fermentation medium. The use of aliquots of the original fermentation medium are desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the fermentation medium by addition of aliquots of the trace metals solution.

In an embodiment of the fermentation process of the present invention, a fermentation medium is prepared as described above. This fermentation medium is inoculated with

an actively growing culture of genetically modified microorganisms of the present invention in an amount sufficient to produce, after a reasonable growth period, a high cell density. Typical inoculation cell densities are within the range of from about 0.1 g/L to about 15 g/L, preferably from about 0.5 g/L to about 10 g/L and more preferably from about 1 g/L to about 5 g/L, based on the dry weight of the cells. The cells are then grown to a cell density in the range of from about 10 g/L to about 100 g/L preferably from about

20 g/L to about 80 g/L, and more preferably from about 50 g/L to about 70 g/L. The residence times for the microorganisms to reach the desired cell densities during fermentation are typically less than about 200 hours, preferably less than about 120 hours, and more preferably less than about 96 hours.

5

10

15

20

25

30

The microorganisms useful in the method of the present invention can be cultured in conventional fermentation modes, which include, but are not limited to, batch, fedbatch, and continuous. It is preferred, however, that the fermentation be carried out in fed-batch mode. In such a case, during fermentation some of the components of the medium are depleted. It is possible to initiate fermentation with relatively high concentrations of such components so that growth is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the fermentation by making additions as levels are depleted by fermentation. Levels of components in the fermentation medium can be monitored by, for example, sampling the fermentation medium periodically and assaying for concentrations. Alternatively, once a standard fermentation procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the fermentation. As will be recognized by those in the art, the rate of consumption of nutrient increases during fermentation as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the fermentation medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the fermentation.

The present inventors have determined that high levels of magnesium in the fermentation medium inhibits the production of L-ascorbic acid due to repression of enzymes early in the production pathway, although enzymes late in the pathway (i.e., from L-galactose to L-ascorbic acid) are not negatively affected (See Examples). Therefore, in a preferred embodiment of the method of the present invention, the step of culturing is carried out in a fermentation medium that is magnesium (Mg²⁺) limited. Even more preferably, the fermentation is magnesium limited during the cell growth phase. Preferably, the fermentation medium comprises less than about 0.5 g/L of Mg²⁺ during the cell growth phase of fermentation, and even more preferably, less than about 0.2 g/L of Mg²⁺, and even more preferably, less than about 0.1 g/L of Mg²⁺.

10

15

20

25

30

The temperature of the fermentation medium can be any temperature suitable for growth and ascorbic acid production, and may be modified according to the growth requirements of the production microorganism used. For example, prior to inoculation of the fermentation medium with an inoculum, the fermentation medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 30°C to about 38°C.

It is a further embodiment of the present invention to supplement and/or control other components and parameters of the fermentation medium, as necessary to maintain and/or enhance the production of L-ascorbic acid by a production organism. For example, in one embodiment, the pH of the fermentation medium is monitored for fluctuations in pH. In the fermentation method of the present invention, the pH is preferably maintained at a pH of from about pH 6.0 to about pH 8.0, and more preferably, at about pH 7.0. In the method of the present invention, if the starting pH of the fermentation medium is pH 7.0, the pH of the fermentation medium is monitored for significant variations from pH 7.0, and is adjusted accordingly, for example, by the addition of sodium hydroxide. In a preferred embodiment of the present invention, genetically modified microorganisms useful for production of L-ascorbic acid include acid-tolerant microorganisms. Such microorganisms include, for example, microalgae of the genera *Prototheca* and *Chlorella* (See U.S. Patent No. 5,792,631, *ibid.* and U.S. Patent No. 5,900,370, *ibid.*).

The production of ascorbic acid by culturing acid-tolerant microorganisms provides significant advantages over known ascorbic acid production methods. One such advantage is that such organisms are acidophilic, allowing fermentation to be carried out under low pH conditions, with the fermentation medium pH typically less than about 6. Below this pH, extracellular ascorbic acid produced by the microorganism during fermentation is relatively stable because the rate of oxidation of ascorbic acid in the fermentation medium by oxygen is reduced. Accordingly, high productivity levels can be obtained for producing L-ascorbic acid with acid-tolerant microorganisms according to the methods of the present invention. In addition, control of the dissolved oxygen content to very low levels to avoid oxidation of ascorbic acid is unnecessary. Moreover, this

10

15

20

25

30

advantage allows for the use of continuous recovery methods because extracellular medium can be treated to recover the ascorbic acid product.

Thus, the present method can be conducted at low pH when acid-tolerant microorganisms are used as production organisms. The benefit of this process is that at low pH, extracellular ascorbic acid produced by the organism is degraded at a reduced rate than if the fermentation medium was at higher pH. For example, prior to inoculation of the fermentation medium with an inoculum, the pH of the fermentation medium can be adjusted, and further monitored during fermentation. Typically, the pH of the fermentation medium is brought to and maintained below about 6, preferably below 5.5, and more preferably below about 5. The pH of the fermentation medium can be controlled by the addition of ammonia to the fermentation medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the fermentation medium.

The fermentation medium can also be maintained to have a dissolved oxygen content during the course of fermentation to maintain cell growth and to maintain cell metabolism for L-ascorbic acid formation. The oxygen concentration of the fermentation medium can be monitored using known methods, such as through the use of an oxygen probe electrode. Oxygen can be added to the fermentation medium using methods known in the art, for example, through agitation and aeration of the medium by stirring or shaking. Preferably, the oxygen concentration in the fermentation medium is in the range of from about 20% to about 100% of the saturation value of oxygen in the medium based upon the solubility of oxygen in the fermentation medium at atmospheric pressure and at a temperature in the range of from about 30°C to about 40°C. Periodic drops in the oxygen concentration below this range may occur during fermentation, however, without adversely affecting the fermentation.

The genetically modified microorganisms of the present invention are engineered to produce significant quantities of extracellular L-ascorbic acid. Extracellular L-ascorbic acid can be recovered from the fermentation medium using conventional separation and purification techniques. For example, the fermentation medium can be filtered or centrifuged to remove microorganisms, cell debris and other particulate matter, and L-ascorbic acid can be recovered from the cell-free supernate by conventional methods, such

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

46

as, for example, ion exchange, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

One such example of L-ascorbic acid recovery is provided in U.S. Patent No. 4,595,659 by Cayle, incorporated herein in its entirety be reference, which discloses the isolation of L-ascorbic acid from an aqueous fermentation medium by ion exchange resin adsorption and elution, which is followed by decoloration, evaporation and crystallization. Further, isolation of the structurally similar isoascorbic acid from fermentation medium by a continuous multi-bed extraction system of anion-exchange resins is described by K. Shimizu, Agr. Biol. Chem. 31:346-353 (1967), which is incorporated herein in its entirety by reference.

Intracellular L-ascorbic acid produced in accordance with the present invention can also be recovered and used in a variety of applications. For example, cells from the microorganisms can be lysed and the ascorbic acid which is released can be recovered by a variety of known techniques. Alternatively, intracellular ascorbic acid can be recovered by washing the cells to extract the ascorbic acid, such as through diafiltration.

Development of a microorganism with enhanced ability to produce L-ascorbic acid by genetic modification can be accomplished using both classical strain development and molecular genetic techniques, and particularly, recombinant technology (genetic engineering). In general, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to (1) inactivate or delete at least one, and preferably more than one of the competing or inhibitory pathways in which production of L-ascorbic acid is negatively affected (e.g., inhibited), and more significantly to (2) amplify the L-ascorbic acid production pathway by increasing the action of a gene(s) encoding an enzyme(s) involved in the pathway.

In one embodiment, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to amplify the L-ascorbic acid production pathway by increasing the action of GDP-D-mannose:GDP-L-galactose epimerase, as discussed above. Such strategy includes genetically modifying the endogenous GDP-D-mannose:GDP-L-galactose epimerase such that L-ascorbic acid production is increased, and/or expressing/overexpressing a recombinant epimerase that catalyzes the conversion

10

15

20

25

30

of GDP-D-mannose to GDP-L-galactose, which includes expression of recombinant GDP-D-mannose:GDP-L-galactose epimerase and/or homologues thereof, and of other recombinant epimerases such as GDP-4-keto-6-deoxy-D-mannose epimerase reductase and epimerases that share structural homology with such epimerase as discussed in detail above.

It is to be understood that a production organism can be genetically modified by recombinant technology in which a nucleic acid molecule encoding a protein involved in the L-ascorbic acid production pathway disclosed herein is transformed into a suitable host which is a different member of the plant kingdom from which the nucleic acid molecule was derived. For example, it is an embodiment of the present invention that a recombinant nucleic acid molecule encoding a GDP-D-mannose:GDP-L-galactose epimerase from a higher plant can be transformed into a microalgal host in order to overexpress the epimerase and enhance production of L-ascorbic acid in the microalgal production organism.

As previously discussed herein, in one embodiment, a genetically modified microorganism can be a microorganism in which nucleic acid molecules have been deleted. inserted or modified, such as by insertion, deletion, substitution, and/or inversion of nucleotides, in such a manner that such modifications provide the desired effect within the A genetically modified microorganism is preferably modified by recombinant technology, such as by introduction of an isolated nucleic acid molecule into a microorganism. For example, a genetically modified microorganism can be transfected with a recombinant nucleic acid molecule encoding a protein of interest, such as a protein for which increased expression is desired. The transfected nucleic acid molecule can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transfected (i.e., recombinant) host cell in such a manner that its ability to be expressed is retained. Preferably, once a host cell of the present invention is transfected with a nucleic acid molecule, the nucleic acid molecule is integrated into the host cell genome. A significant advantage of integration is that the nucleic acid molecule is stably maintained in the cell. In a preferred embodiment, the integrated nucleic acid molecule is operatively linked to a transcription control sequence (described below) which can be induced to control expression of the nucleic acid molecule.

WO 99/64618

5

10

15

20

25

30

A nucleic acid molecule can be integrated into the genome of the host cell either by random or targeted integration. Such methods of integration are known in the art. For example, an E coli strain ATCC 47002 contains mutations that confer upon it an inability to maintain plasmids which contain a ColE1 origin of replication. When such plasmids are transferred to this strain, selection for genetic markers contained on the plasmid results in integration of the plasmid into the chromosome. This strain can be transformed, for example, with plasmids containing the gene of interest and a selectable marker flanked by the 5'- and 3'-termini of the E coli lacZ gene. The lacZ sequences target the incoming DNA to the lacZ gene contained in the chromosome. Integration at the lacZ locus replaces the intact lacZ gene, which encodes the enzyme β -galactosidase, with a partial lacZ gene interrupted by the gene of interest. Successful integrants can be selected for β -galactosidase negativity.

48

PCT/US99/11576

A genetically modified microorganism can also be produced by introducing nucleic acid molecules into a recipient cell genome by a method such as by using a transducing bacteriophage. The use of recombinant technology and transducing bacteriophage technology to produce several different genetically modified microorganism of the present invention is known in the art.

According to the present invention, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, includes all nucleic acid sequences related to a natural epimerase gene such as regulatory regions that control production of the epimerase protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In another embodiment, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, can be an allelic variant that includes a similar but not identical sequence to the nucleic acid sequence encoding a given GDP-D-mannose:GDP-L-galactose epimerase gene. An allelic variant of a GDP-D-mannose:GDP-L-galactose epimerase gene which has a given nucleic acid sequence is a gene that occurs at essentially the same locus (or loci) in the genome as the gene having the given nucleic acid sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being

10

15

20

25

30

SUCCIO SWO GOSASTRAT I S

compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given microorganism or plant and/or among a group of two or more microorganisms or plants.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation). As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule can include DNA, RNA, or derivatives of either DNA or RNA. There is no limit, other than a practical limit, on the maximal size of a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, or multiple genes, or portions thereof.

An isolated nucleic acid molecule of the present invention can be obtained from its natural source either as an entire (i.e., complete) gene or a portion thereof capable of forming a stable hybrid with that gene. An isolated nucleic acid molecule can also be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated nucleic acid molecules include natural nucleic acid molecules and homologues thereof, including, but not limited to, natural allelic variants and modified nucleic acid molecules in which nucleotides have been inserted, deleted, substituted, and/or inverted in such a manner that such modifications provide the desired effect within the microorganism. A structural homologue of a nucleic acid sequence has been described in detail above. Preferably, a homologue of a nucleic acid sequence encodes a protein which has an amino acid sequence that is sufficiently similar to the natural protein amino acid sequence that a nucleic acid sequence encoding the homologue is capable of hybridizing under stringent conditions to (i.e., with) a nucleic acid molecule encoding the natural protein (i.e., to the complement of the nucleic acid strand encoding the natural protein amino acid sequence). A nucleic acid molecule homologue encodes a protein homologue. As used herein, a homologue protein includes proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation,

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

50

amidation and/or addition of glycosylphosphatidyl inositol) in such a manner that such modifications provide the desired effect on the protein and/or within the microorganism (e.g., increased or decreased action of the protein).

A nucleic acid molecule homologue can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid.*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologues can be selected from a mixture of modified nucleic acids by screening for the function of the protein encoded by the nucleic acid and/or by hybridization with a wild-type gene.

Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, or a nucleic acid sequence, being capable of encoding a gene involved in an L-ascorbic acid production pathway.

Knowing the nucleic acid sequences of certain nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules and/or (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions). Such nucleic acid molecules can be obtained in a variety of ways including traditional cloning techniques using oligonucleotide probes to screen appropriate libraries or DNA and PCR amplification of appropriate libraries or DNA using oligonucleotide primers. Preferred libraries to screen or from which to amplify nucleic acid molecule include bacterial and yeast genomic DNA libraries, and in particular, microalgal genomic DNA libraries. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., ibid.

10

15

20

25

30

The present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host microorganism of the present invention. Such a vector can contain nucleic acid sequences that are not naturally found adjacent to the isolated nucleic acid molecules to be inserted into the vector. The vector can be either RNA or DNA and typically is a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulating of nucleic acid molecules. One type of recombinant vector, referred to herein as a recombinant molecule and described in more detail below, can be used in the expression of nucleic acid molecules. Preferred recombinant vectors are capable of replicating in a transformed bacterial cells, yeast cells, and in particular, in microalgal cells.

Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection and biolistics.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules operatively linked to an expression vector containing one or more transcription control sequences. The phrase, operatively linked, refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. In the present invention, expression vectors are typically plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in a yeast host cell, a bacterial host cell, and preferably a microalgal host cell.

Nucleic acid molecules of the present invention can be operatively linked to expression vectors containing regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression

10

15

20

25

of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in yeast or bacterial cells or preferably, in microalgal cells. A variety of such transcription control sequences are known to those skilled in the art.

It may be appreciated by one skilled in the art that use of recombinant DNA technologies can improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of posttranslational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to. operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into the host cell chromosome, addition of vector stability sequences to plasmids, substitutions or modifications of transcription control signals (e.g., promoters, operators, enhancers), substitutions or modifications of translational control signals, modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

The following experimental results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

10

15

20

25

30

EXAMPLES

Example 1

The present example describes the elucidation of the pathway from glucose to L-ascorbic acid through GDP-D-mannose in plants.

Since the present inventors have previously shown that *Prototheca* makes L-ascorbic acid (AA) from glucose, it was worthwhile to examine cultures for some of the early conversion products of glucose. In the past, the present inventors had concentrated on pathways from glucose to organic acids, based on the published pathway of L-ascorbic acid synthesis in animals and proposed pathways in plants. The present inventors demonstrate herein that the pathway from glucose to L-ascorbic acid involves not organic acids, but rather sugar phosphates and nucleotide diphosphate sugars (NDP-sugars).

Prior to the present invention, it was known that all cells synthesize polysaccharides by first forming NDP-sugars. The sugar moiety is then incorporated into polymer, while the cleaved NDP is recycled. A variety of polysaccharides are known, and are usually named based on the relative proportions of the sugar residues in the polymers. For example, a "galactomannan" contains mostly galactose, and to a lesser degree, mannose residues. The "biopolymer" from *Prototheca* strains isolated by the present inventors was analyzed and found to be 80% D-galactose, 18% rhamnose (D- or L-configuration not determined), and 2% L-arabinose. The present inventors provide evidence herein of how the respective NDP-sugars that make up the *Prototheca* biopolymer are formed, and what correlations exist between L-ascorbic acid synthesis and the formation of the NDP-sugar forms of the sugar residues found in the biopolymer.

The common NDP-sugar UDP-glucose is shown in Fig. 2B. This is formed in plants from glucose-I-P by the action of UDP-D-glucose pyrophosphorylase. UDP-glucose can be epimerized in plants to form UDP-D-galactose, using UDP-D-glucose-4-epimerase. UDP-D-galactose can also be formed by phosphorylation of D-galactose by galactokinase to form D-galactose-I-P, which can be converted to UDP-D-galactose by UDP-D-galactose pyrophosphorylase. These known routes were believed to account for the D-galactose in the *Prototheca* biopolymer. The UDP-L-arabinose can be formed by known reactions beginning with the oxidation of UDP-D-glucose to UDP-D-glucuronic acid (by UDP-D-glucose dehydrogenase), decarboxylation to UDP-D-xylose, and epimerization to UDP-L-arabinose. This accounts for the arabinose residues in the

10

15

20

25

30

biopolymer. UDP-L-rhamnose is known to be formed from UDP-D-glucose, thus all three of the sugar moieties in the *Prototheca* biopolymer can be accounted for by a pathway through glucose-1-P and UDP-glucose. Alternatively, if the rhamnose in the biopolymer is D-rhamnose, it is not formed via UDP-D-glucose, but by oxidation of GDP-D-mannose (See Fig. 1).

GDP-D-rhamnose is formed by converting glucose, in turn, to D-glucose-6-P, Dfructose-6-P, D-mannose-6-P, D-mannose, and GDP-D-rhamnose. It was of interest to the present inventors that this route passes through GDP-D-mannose. Exogenous mannose is known to be converted to D-mannose-6-P in plants, and can enter the path above. D-mannose is converted to L-ascorbic acid by Prototheca cells cultured by the present inventors as well or better than glucose (see Example 4). The mechanism of conversion, in Chlorella pyrenoidosa, of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose:GDP-L-galactose epimerase, has been known for years (See, Barber, 1971, Arch. Biochem. Biophys. 147:619-623, incorporated herein by reference in its entirety). The present inventors have discovered herein that L-galactose and L-galactonoγ-lactone are rapidly converted to L-ascorbic acid by strains of Prototheca and Chlorella pyrenoidosa. Prior to the present invention, it was known that L-galactono-y-lactone is converted to L-ascorbic acid in several plant systems, but the synthesis steps prior to this step were unknown. Based on the published literature and the present experimental evidence, the present inventors have determined that the L-ascorbic acid biosynthetic pathway in plants passes through GDP-D-mannose and involves sugar phosphates and NDP-sugars. The proposed pathway is shown in Fig. 1. Salient points relevant to the design and production of genetically modified microorganisms useful in the present method include:

- 1. The enzymes leading from D-glucose to D-fructose-6-P are well known enzymes in the first, uncommitted steps of glycolysis.
 - 2. The enzymes involved in the conversion of D-fructose-6-P to GDP-D-mannose have been well characterized in plants, yeast, and bacteria, particularly Azotobacter vinelandii and Pseudomonas aeruginosa, which convert GDP-D-mannose to GDP-D-mannuronic acid, which is the precursor for alginate (See for example, Sa-Correia et al., 1987, J. Bacteriol. 169:3224-3231; Koplin et al., 1992, J. Bacteriol. 174:191-199; Oesterhelt et al., 1996, Plant Science 121:19-27; Feingold et al., 1980, The

10

15

20

25

30

Biochemistry of Plants: Vol 3: Carbohydrates, structure and function, P.K. Stampf & E.E. Conn, eds., Academic Press, New York, pp. 101-170; Smith et al., 1992, *Mol. Cell Biol.* 12:2924-2930; Boles et al., 1994, *Eur. J. Med.* 220:83-96; Hashimoto et al., 1997, *J. Biol. Chem.* 272:16308-16314, all of which are incorporated herein by reference in their entirety).

- 3. Barber (1971, supra, and 1975) identified in Chlorella pyrenoidosa the enzyme activities for the conversion of GDP-D-mannose to GDP-L-galactose and L-galactose-l-P.
- 4. The present inventors have shown herein the rapid conversion of L-galactose and L-galactono-γ-lactone to L-ascorbic acid by *Prototheca* cells.
 - 5. L-galactono-γ-lactone and L-galactonic acid can be interconverted in solution by changing the pH of the solution; addition of base shifts the equilibrium to L-galactonic acid, while addition of acid shifts the equilibrium to the lactone. Cells may have an enzymatic means for this conversion in addition to this non-enzymatic route.
 - 6. In plants, GDP-L-fucose is also formed from GDP-D-mannose, presumably for incorporation into polysaccharide. Roberts (1971) fed labeled D-mannose to corn root tips and found the label in polysaccharide, specifically in the residues of D-mannose, L-galactose, and L-fucose. No label was detected in D-glucose, D-galactose, L-arabinose, or D-xylose. *Prototheca and C. pyrenoidosa* cells have the ability to convert L-fucose (6-deoxy-L-galactose) to a dipyridyl-positive product that was shown by HPLC not to be L-ascorbic acid. The present inventors believe that it is was the 6-deoxy analog of L-ascorbic acid.

Example 2

This example shows that in *Prototheca*, like other plants (Loewus, F.A. 1988. In: J. Priess (ed.), The Biochemistry of Plants, 14:85-107. New York, Academic Press) and the green microalga *Chlorella pyrenoidosa* (Renstrom, *et al.*, 1983. Plant Sci. Lett. 28:299-305), ascorbic acid (AA) production from glucose proceeds by a biosynthetic pathway that allows retention of the configuration of the carbon skeleton of glucose.

Cultures of the strain UV77-247 were grown to moderate cell density in shake flasks with 1-13C-labeled glucose as 10% of the total glucose (40 g/L). Incubation was

10

15

20

25

as per the standard Mg-limited screen (see Example 3). The culture supernates were clarified, deionized to remove salts, lyophilized, and subjected to nuclear magnetic resonance (nmr) analysis to determine where in the AA molecule the ¹³C was located. In each case, approximately 85% of the label was found at the C-1 position of AA, with most of the remaining label at the C-6 position. This strongly indicated that AA is synthesized from glucose by a pathway that retains the carbon chain configuration, i. e., C-1 of glucose becomes C-1 of AA. This has typically been observed in plants (Loewus, F.A. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, ed. J. Priess, 14:85-107. New York, Academic Press). Animals (Mapson, L.W. and F.A. Isherwood 1956. Biochem. J. 64:151-157; Loewus, F.A. 1960. J. Biol. Chem. 235(4):937-939) and protists such as Euglena (Shigeoka, S., et al., 1979. J. Nutr. Sci. Vitaminol. 25:299-307), on the other hand, synthesize AA by a pathway that involves the inversion of configuration, i. e., C-1 of glucose becomes C-6 of AA. Demonstration of the inversion/non-inversion nature of the pathway was an important step in determining the pathway of AA biosynthesis since the two types of pathways require different types of enzymatic reactions. The label found at C-6 of AA is thought to be due to metabolism of glucose and subsequent gluconeogenesis. The metabolism of glucose in glycolysis proceeds through triose-phosphate intermediates. After this, the C-1 and C-6 carbons of glucose become biochemically equivalent. Hexose phosphates can be regenerated from the triose phosphates by gluconeogenesis, which is essentially a reversal of the degradative pathway. Consequently, metabolism of C-1-labeled glucose to triose phosphates with subsequent gluconeogenesis would result in the formation of hexose phosphate molecules labeled at either or both C-1 and C-6. If those hexose phosphates were precursors to AA, one would expect the AA to be similarly labeled. Consistent with this type of "isotopic mixing" is the observation that sucrose obtained from 1-13C-labeled glucose was labeled at positions 1, 6, 1' and 6'.

Glucose can also be metabolized by the pentose phosphate pathway, the overall balanced equation for which is:

3 Glucose-6-phosphat → 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate + 3 CO₂

Based on the known biochemistry, it would then be expected that the label at each of the carbons in glucose (Table 1 left column) would appear at the positions for the other molecules shown, and that these patterns would be reflected in the AA formed from C-2-and C-3-labeled glucose.

TABLE 1
Predicted Carbon Labeling of Metabolites of Glucose in the Pentose Phosphate Pathway

Labeled Glucose	Position of Labeled Carbon in:			
Carbon	CO ₂	F6P(1)	F6P(2)	G3P
1	+	-	•	•
2		1,3	1	•
3		2	2,3	•
4	-	4	4	1
5	- 10	5	5	2
6	-	6	6	3

AA recovered from cultures fed glucose labeled at C-2 or C-3 was also analyzed for its labeling patterns (Table 2).

TABLE 2

Labeling Pattern in AA after Cells were Fed 2-13C and 3-13C-glucose

Labeling Pattern	in AA after Cells were Fed 2-13C and 3-13C-glucose					
Carbon	Isotopic enhancement after growth on:					
Position in AA	C-2 labeled glucose	C-3 labeled glucose				
1	1.0	0.4				
2	10.0	0.9				
3	- , 0.5	9.9				
4	` 0	2.8				
5	2.2	0.2				
6	0	0				

The data above again suggest a pathway from glucose to AA that proceeds by retention of configuration. As in the experiments with C-1 labeled glucose, approximately one-fifth of the label is present in "mirror image" position to the glucose label (C-5 for C-2 labeled glucose and C-4 for C-3 labeled glucose), indicating levels of gluconeogenesis consistent with those previously observed.

The small, but significant amount of enhancement observed in other positions is consistent with flux through the pentose phosphate pathway. As predicted above, carbon

10

15

5

20

25

10

15

flux through this pathway would result in isotopic enhancement at positions 1 and 3 when cells were grown on 2-13C glucose and enhancement at position 2 when cells were grown on 3-13C glucose. This is indeed observed. That there is twice as much enhancement at C-1 as there is at C-3 after growth on 2-13C glucose is also predicted. These data indicate a small but measurable amount of carbon flux through the pentose phosphate pathway.

Example 3

This example shows the methods for generating, screening and isolating mutants of *Prototheca* with altered AA productivities compared to the starting strain ATCC 75669.

ATCC No. 75669, identified as *Prototheca moriformis* RSP1385 (unicellular green microalga), was deposited on February 8, 1994, with the American Type Culture Collection (ATCC), Rockville, Maryland, 20852, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Initial screening of *Prototheca* species and strains was reported in U.S. Patent No. 5,900,370, *ibid*. Table 3 lists the formulations of the media for growth and maintenance of the strains. Glucose for fermentors was supplied as glucose monohydrate and calculated on an anhydrous basis. The recipe for the trace metals solution is given in Table 4. The standard growth temperature was 35°C. All organisms were cultured axenically.

20

TABLE 3

Media for Growth and Maintenance of *Prototheca* Strains
All quantities are in g/L unless otherwise specified

	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates
Potassium phosphate monobasic	1.3	1.3	2.0	0.27	2.0
Potassium phosphate dibasic	3.8	3.8	2.0	1.4	2.0
Trisodium citrate dihydrate	7.7	7.7	2.6	1.3	2.6
Magnesium sulfate h ptahydrat	0.40	0.02	0.4	0.01	0.4
Ammonium sulfate	3.7	3.7	1.0	1.0	1.0
Trace Metals S lution	2 mL	2 mL	2 mL	2 mL	2 mL
Ferrous sulfate heptahydrate	1.5 mg	4.5 mg	1.5 mg	-	1.5 mg
Calcium chloride dihydrate	•	0.25	-	-	-

25

	Li	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates	
Manganous sulfate monohydrate	-	0.08	-	-	-	
Yeast extract	-	-	2.5	-	-	
Agar	-	-	15	15 (Noble)	15	
pH before autoclaving	7.2	7.2	7.2	7.2	7.2	

_		Autocl	ave, then add			
	Copper sulfate, pentahydrate, 100 g/L	-	-	-	2 mL	-
	40 g/L Ferrozine in 5 mM phosphate (pH 7.5 final)	-	-	•	8.8 mL	-
	Ferric ammonium sulfate dodecahydrate, 40 g/L	-		-	3.8 mL	-
	50% glucose with 25 mg/L thiamine HCI	40 mL	60 mL	10 mL	10 mL	10 mL

TABLE 4
Trace Metals Solution

		Conc. of Individ.	mL Indiv. Stock per
Compound	Molecular Weight	Solutions, g/L	liter of Working Stock
Distilled Water		-	823
Hydrochloric Acid		Conc.	20
Cobalt Chloride hexahydrate	237.9	24.0	6.5
Boric acid	61.8	38.1	24
Zinc sulfate heptahydrate	287.5	35.3	50
Manganous sulfate	169.0	24.6	50
monohydrate			
Sodium molybdate dihydrate	242.0	23.8	2.0
Calcium chloride dihydrate	147.0		11.4 g
Vanadyl sulfate dihydrate	199.0	10.0	8.0
Nickel nitrate hexahydrate	290.8	5.0	8.0
Sodium selenite	173.0	5,0	8.0

Mutant isolates were generated by treatment with one or more of the following agents: nitrous acid (NA); ethyl methane sulfonate (EMS); or ultraviolet light (UV). Typically, glucose-depleted cells grown in standard liquid medium were washed and resuspended in 25 mM phosphate buffer, pH 7.2, diluted to approximately 10⁷ colony-forming units per mL (cfu/mL), exposed to the mutagen to achieve about 99% kill, incubated 4-8 hours in the dark, and spread onto standard agar medium, or agar media containing differential agents.

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

Some mutant colonies on standard agar medium were picked randomly and subcultured to master plates. Other isolation plates were inverted over chloroform to lyse cells on the surface of the colonies and allow them to release AA. Released AA was detected by spraying the treated plates with a solution of 2,6-dichrorophenol-indophenol (1.25 g/L in 70% EtOH). The ability of AA to reduce this blue redox dye to its colorless form is the basis for a standard assay of AA (Omaye, et al., 1979. Meth. Enzymol, 62:3-11.). Colonies derived from mutagenized cells were saved to master plates for further evaluation if their clear halos were significantly larger than the halos typical of the other mutants in that group. Other mutagenized cells were spread onto plates containing an AA detection system incorporated directly into the agar. This system is based on the ability of AA to reduce ferric iron to ferrous iron. The compound ferrozine (3-(2-pyridyl)-5,6- bis(4-phenylsulfonic acid)-1,2,4-triazine) was present in the agar to complex with the ferrous iron and give a violet color reaction. The ferrozine agar formulation is shown in Table 3. Colonies giving the darkest color reactions were master-plated. When screening for non-AA-producing strains (blocked mutants), white colonies were chosen against a background of relatively dark colonies.

For primary screening of tube cultures, cells were inoculated from master plates into 4 mL of Mg-limiting medium in 16 x 125 mm test tubes, and tubes were shaken in a slanted position on a rotary shaker at 300 rpm for four days. After both three and four days of incubation aliquots were removed for AA assay and cell density determination. Those for AA assay were centrifuged at 1500 x g for 5 min and the resulting supernates were removed for either colorimetric assay or high pressure liquid chromatography (HPLC). Promising isolates were retested in tube culture. Those passing the tube screen were tested in shake flasks.

For secondary screening of flask cultures, cells were inoculated into 50 mL of standard flask medium in 250 mL baffled shake flasks, and incubated on a rotary shaker at 180 rpm until glucose depletion (24-48 hours). A second series of flasks of Mg-sufficient standard medium was inoculated from the first set to a cell density of 0.15 A₆₂₀, and incubated for 24 hours. A third series of Mg-limiting flask medium was inoculated from the second set by a 1/50 dilution and incubated for 96 hours. Flasks were sampled for AA analysis and cell density measurements during this time as required.

Aliquots for supernatant AA analysis were centrifuged at 5000 x g for 5 min. Aliquots for total whole broth AA analysis were first extracted for 15 min with an equal volume of 5% trichloroacetic acid (TCA) before centrifugation. Aliquots of the resulting supernates were removed for either colorimetric assay or HPLC analysis.

For colorimetric assay of AA, a modification of the method of Omaye, et al. (1979. Meth. Enzymol. 62:3-11) was used. Twenty-five µL aliquots of culture supernates were added to wells of 96-well microplates, and 125 µL of color reagent was added. The color reagent consisted of four parts 0.5% aqueous 2,2'-dipyridyl and one part 8.3 mM ferric ammonium sulfate in 27 % (v/v) o-phosphoric acid, the two components being mixed immediately before use. After one hour, the absorbance at 520 nm was read. AA concentration was calculated by comparison of the absorbances of AA standards.

HPLC analysis was based on that of Running, et al., (1994). Supernates were chromatographed on a Bio-Rad HPX-87H organic acid column (Bio-Rad Laboratories, Richmond, CA) with 13 mM nitric acid as solvent, at a flow rate of 0.7 mL/min at room temperature. Detection was at either 254 nm using a Waters 441 detector (Millipore Corp., Milford, MA), or at 245 nm using a Waters 481 detector. This system can distinguish between the L- and D- isomers of AA.

For dry weight determinations of cell density, 5 mL whole broth samples were centrifuged at 5000 x g for 5 min, washed once with distilled water, and the pellet was washed into a tared aluminum weighing pan. Cells were dried for 8-24 h at 105°C. Cell weight was calculated by difference.

Table 5 shows the abilities of various mutants of *Prototheca* to synthesize AA.

TABLE 5

AA Synthesizing Ability of Various *Prototheca* Mutants in Flask Screen

Strain	Specific AA Formation, mg AA per L/Culture A _{ca} during Mg-limited Incubation 2 Days Incubation 4 Days Incubation			
ATCC 75669	22	35		
EMS13-4	79	166		
UV213-1	0	0		
UV218-1	0	0		
UV244-1	0	0		

25

30

5

10

15

Strain	Specific AA Formation, mg AA per L/Culture A				
	during Mg-limited Incubation				
	2 Days Incubation	4 Days Incubation			
UV244-15	58	68			
UV77-247	56	83			
UV140-1	67	100			
UV164-6	91	131			
NA21-14	27	78			
UV82-21	0	0			
UV127-10	50	95			
SP2-3	3	4			

15

20

30

5

The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3. ATCC No. ______, identified as *Prototheca moriformis* EMS13-4 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as *Prototheca moriformis* UV127-10 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as *Prototheca moriformis* SP2-3 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

25 Example 4

The following example shows that both growing and resting cells of *Prototheca* can rapidly convert L-galactose and L-galactono-γ-lactone to AA, and that conversion of D-mannose to AA by *Prototheca* is more rapid than conversion of D-glucose.

Shake flask cultures of the mutant strain UV77-247 were grown to glucose depletion in standard liquid medium (Table 3). Cells were washed twice and resuspended in complete medium with the glucose substituted by one of the compounds listed below.

15

20

25

30

35

Cell suspensions were incubated for 24 hours at 35° C with shaking, and the entire suspension was extracted with TCA as above and assayed for AA.

Tables 6-8 show that both growing and resting cells of strain UV77-247 can rapidly convert L-galactose and L-galactono-γ-lactone to AA. In these experiments, D-fructose and D-galactose were converted to AA at the same rate as D-glucose, suggesting that they are metabolized to AA through the same route as D-glucose. None of the organic acids suggested in the literature to be intermediates in the biosynthesis of AA were converted to AA, including sorbosone, which has been proposed as an intermediate by Saito et al. (1990 Plant Physiol. 94:1496-1500).

10 TABLE 6
Conversion of Compounds by Resting Cells of Strain UV77-247

		AA Relative to No
Substrate (50 mM)	Total AA, mg/L	Substrate Control
L-galactose	965	623
L-galactono-γ-lactone	818	476
D-fructose	590	248
D-glucosone	589	247
D-glucose	584	242
D-galactose	542	200
D-glucose (10 mM)	388	46
D-gluconolactone	382	40
D-gulono-γ-lactone	366	24
D-glucuronate	364	22
L-sorbosone	342	0
None	342	0
2-keto-D-gluconic acid	341	-1
D-isoascorbic acid (10 mM)	330	-12
D-glucuronolactone	329	-13
D-gluconic acid	309	-33
D-galacturonic acid	297	-45
L-idonate	296	-46

Since strain UV77-247 converted L-galactose and L-galactono-γ-lactone to AA much more rapidly than it did glucose, it suggests that these compounds are intermediates in the AA biosynthetic pathway and that they are "downstream" from glucose.

The data in Tables 7 and 8 also show that growing and resting cells of UV77-247 consistently convert D-mannose to AA at a rate greater than that of glucose.

TABLE 7

Conversion of Compounds t AA by Resting Cells f Strain UV77-247

	Ascorbic Acid, mg/L			
Compound	25.5 h	30 h	47 h	
L-galactose	667	718	620	
L-galactono-y-lactone	644	681	749	
D-glucosone	465	462	354	
D-mannose	448	462	399	
D-fructose	402	408	367	
d-glucose	395	404	351	
D-galactose	352	361	337	
none	287	288	258	

TABLE 8

Conversion of Compounds to AA by Growing Cells of Strain UV77-247

	Ascorbic A	Acid, mg/L	A ₆₂₀	AA/A ₆₂₀	
Compound	25.5 h		44 h		
L-galactose	249	506	4.5	112	
D-mannose	228	488	5.6	87	
L-galactono-y-lactone	214	342	5.0	68	
D-glucose	178	398	5.9	67	
D-fructose	181	383	5.9	65	
D-glucosone	176	362	5.7	64	
D-galactose	185	380	5.9	64	
none	182	249	4.4	57	
D-gluconic acid (K)	178	262	5.0	52	
L-idonate (Na)	182	232	4.7	49	
2-keto-D-gluconic acid	182	255	5.3	48	
2-deoxy-D-glucose	181	227	4.8	47	
D-glucuronic acid lactone	165	218	5.0	44	
D-glucuronic acid (Na)	173	241	5.6	43	
L-gulono-γ-lactone	152	195	5.0	39	
L-sorbosone	178	160	4.7	34	
D-glucono-ŏ-lactone	130	190	5.7	33	
D-galacturonic acid	130	180	6.0	30	

These cells converted L-galactose, L-galactono- γ -lactone and D-mannose to AA more rapidly than they did glucose, suggesting that mannose exerts its effect in the biosynthetic pathway "downstream" from glucose.

Example 5

Using the methods described above, a collection of mutants was assembled. The specific AA formation for representative mutants are shown in Table 5. The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3.

These isolates were tested for their ability to convert compounds which could be converted to AA by strain UV77-247. Testing was done as in Example 4. Results are shown in Table 9.

TABLE 9

Conversion of Compounds to AA by Resting Cells

of Mutant Strains of *Prototheca* of Varying Abilities to Synthesize AA

Strain	Absolute AA, mg/L							
	Buffer	Glucose	L-galactose	L-gal-γ-lact.	Mannose	Fructose		
EMS13-4	53	97	191	173	139	ND		
UV127-10	45	140	213	140	128	143		
SP2-3	19	19	204	146	24	27		
NA21-14	61	80	147	158	118	115		
UV82-21	15	16	183	175	18	17		
UV213-1	16	15	170	135	17	16		
UV218-1	16	18	136	176	19	21		
UV244-1	16	16	164	162	16	16		
UV244-15	26	77	30	21	94	89		
UV244-16	28	64	53	53	53	66		

ND = Not Determined

These data suggest that the mutational blocks in those strains which convert fructose and mannose to AA poorly are before ("upstream" from) L-galactose and L-galactono-γ-lactone in the pathway.

Example 6

The following example shows that magnesium inhibits early steps in the production of AA.

To address the question of whether magnesium actually inhibits AA synthesis, strain NA45-3 (ATCC 209681) was grown in magnesium (Mg)-limited and Mg-sufficient medium. ATCC No. 209681, identified as *Prototheca moriformis* NA45-3 (Source:

5

repeated mutagenesis of ATCC No. 75669; Eucaryotic alga. Division Chlorophyta, Class Chlorophyceae, Order Chlorococcales), was deposited on March 13, 1998, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Cells from both cultures were harvested and resuspended in the cell-free supernate from the Mg-limited culture, and to half of each cell suspension additional magnesium was added in order to bring the level in the suspension to the Mg-sufficient level. The four conditions under which assays were run were as follows.

10 TABLE 10

Conditions Used to Test the Effect of Magnesium on AA Production

Condition	Magnesium concentration, g/L, during:	
	Growth	Assay
1Mg>1Mg	0.02	0.02
1Mg>10Mg	0.02	0.2
10Mg>1 Mg	0.2	0.02
10Mg>10Mg	0.2	0.2

15

20

25

30

5

Substrates previously shown to lead to the formation of AA, namely D-glucose, D-glucosone, D-fructose. D-galactose, D-mannose, and L-galactono-γ-lactone, were added at 20 g/L to the four cell suspensions. Accumulation of AA after 24 hours was measured and compared to a control in which no substrate was added. The results of this study are shown graphically in Fig. 4.

When cells growing under magnesium-limited conditions were incubated with substrates in low-magnesium broth (1Mg>1Mg condition), all showed significant and similar accumulation of AA over the control condition. When the same cells were incubated in high magnesium broth (1Mg>10Mg condition), the accumulation of AA was reduced about 40% for all substrates except D-mannose and L-galactono-γ-lactone, suggesting that 1) the rate-limiting step in the conversion of D-glucose, D-glucosone, D-fructose, and D-galactose to AA is inhibited by magnesium or 2) magnesium stimulates an enzyme which results in the conversion of these compounds to some other compound(s), reducing the amount of substrate available for AA synthesis. On the other

10

15

20

25

hand, conversion of D-mannose and L-galactono- γ -lactone appeared to be unaffected by the presence of magnesium in the resuspension buffer, indicating that either 1) magnesium-inhibited enzymes are not involved in the conversion of these substrates to AA or 2) D-mannose and L-galactono- γ -lactone enter the pathway far enough downstream from the point where they can be siphoned off by side reactions involving Mg-requiring enzymes.

When cells were grown under magnesium-sufficient conditions, very little AA accumulation from any of the D-sugars was observed, regardless of the level of magnesium in the resuspension broth. Accumulation of AA from L-galactono-γ-lactone, however, was enhanced over that observed when cells are grown in Mg-limited conditions. This suggests that enzymes early in the pathway are repressed under Mg-sufficient conditions. Thus, the D-substrates all behaved similarly, with the exception of the apparent lack of magnesium inhibition of D-mannose conversion to AA. This would suggest that D-mannose enters the AA biosynthetic pathway at a point other than the other D-sugars.

Figs. 2A and 2B represent some of the fates of glucose in plants. The first enzymatic step in this scheme which commits carbon to glycolysis is the conversion of fructose-6-P to fructose-1,6-diP by phosphofructokinase (PFK). This reaction is essentially irreversible, and leads to the well known TCA cycle and oxidative phosphorylation, with concomitant ATP and NADH/NADPH generation. PFK has an absolute requirement for magnesium. If magnesium is limiting, this reaction could slow and eventually stop, blocking the flow of carbon through glycolysis and beyond, and would result in cessation of cell division even in the presence of excess glucose. One would expect fructose-6-P to accumulate under these conditions, fueling AA synthesis by the pathway shown in Figs. 1 and 2.

Example 7

The following example shows the correlation in *Prototheca* between AA production and the activity levels of the enzymes in the AA pathway.

10

15

25

Phosphomannose isomerase (PMI) Assay

PMI activity was first assayed (See Fig. 1). Ten strains representing a range of AA productivities were grown according to the standard protocol to measure AA-synthesizing ability. Cells were harvested 96 hours into magnesium-limited incubation, washed and resuspended in buffer containing 50 mM Tris/10 mM MgCl₂, pH 7.5. The suspended cells were broken in a French press, spun at 30,000 x g for 30 minutes, and desalted through Sephadex G-25 (Pharmacia PD-10 columns). Reactions were carried out in the reverse direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 0.15 U phosphoglucose isomerase (EC 5.3.1.9), 0.5 U glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 1.0 mM NADP. Reactions were initiated by addition of 3 mM (final) mannose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities was subtracted the activities measured in identical reaction mixtures lacking the M-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reactions. Protein in the original extracts was determined by the method of Bradford, using a kit from Bio-Rad Laboratories (Hercules, CA). All enzymes and nucleotides were purchased from Sigma Chemical Co. (St. Louis, MO).

Phosphomannomutase (PMM) Assay

Phosphomannomutase was measured in a similar manner in the same strains, but these assay reaction mixtures also contained 0.25 mM glucose-1,6-diphosphate, 0.5 U commercially available PMI, and the reactions were started with the addition of 3.0 mM (final) mannose-1-phosphate rather than mannose-6-phosphate.

Phosphofructokinase (PFK) Assay

To shed light on the possibility that the enhancement of AA concentration in cultures which were limited for magnesium was due to a diversion of carbon from normal metabolism by a reduced activity of the first committed step in glycolysis (PFK) the strains were also assayed to confirm the presence of this enzyme activity. Cells were cultured, washed and broken as above. Extracts were centrifuged at 100,000 x g for 90 min before

10

15

20

25

30

desalting. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 1.5 mM dithiothreitol, 0.86 U aldolase (EC 4.1.2.13), 1.4 U α-glycerophosphate dehydrogenase (EC 1.1.1.8), 14 U triosephosphate isomerase (EC 5.3.1.1), 0.11 mM NADH, and 1.0 mM ATP. Reactions were initiated by addition of 5 mM (final) fructose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities were subtracted the activities measured in identical reaction mixtures lacking the F-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reaction. Protein in the original extracts was determined as above.

GDP-D-mannose pyrophosphorylase (GMP) Assay

These same mutant strains were assayed for the next enzyme in the proposed pathway, GMP. Strains were grown both according to the standard Mg-limiting protocol (harvested 43-48 hours into magnesium-limited incubation) and in standard Mg-sufficient medium (harvesting all cells before glucose depletion). Washed cell pellets were resuspended in 50 mM phosphate buffer, pH 7.0, containing 20% (v/v) glycerol and 0.1 M sodium chloride (3 mL buffer/g wet cells), and broken in a French press. Crude extracts were spun at 15,000 x g for 15 minutes. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of 50 mM phosphate/4 mM MgCl₂ buffer, pH 7.0, containing 1 mM GTP. Reactions were initiated by addition of 1 mM (final) mannose-1-phosphate. Final reaction volume was 0.1 mL. Reaction mixtures were incubated at 30 C for 10 min, filtered through a 0.45 µm PVDF syringe filter, and analyzed for GDP-mannose by HPLC. A Supelcosil SAX1 column (4.6 x 250 mm) was used with a solvent gradient (1 mL/min) of: A - 6 mM potassium phosphate, pH 3.6; B - 500 mM potassium phosphate, pH 4.5. The gradient was: 0-3 min, 100% A; 3-10 min, 79% A; 10-15 min, 29% A. Column temperature was 30 C. Two assays that showed enzyme activity proportional to the amount of protein were averaged. Control no-substrate and no-extract reactions were also run. Specific activity was calculated by normalizing the activity for protein concentration in the reaction. Protein in the original extracts was determined as above.

10

15

20

25

GDP-D-mannose:GDP-L-galactose Epimerase Assay

Further tests measured the activities of the next enzyme in the proposed pathway, GDP-D-mannose:GDP-L-galactose epimerase. Strains were grown according to the standard protocol, harvested 43-48 hours into magnesium-limited incubation, washed, and resuspended in buffer containing 50 mM MOPS/5 mM EDTA, pH 7.2. Washed pellets were broken in a French press, and spun at 20,000 x g for 20 min. Protein determinations were made as above and a dilution series of each was made, ranging from 0.4 to 2.2 mg protein/mL. 50 µL aliquots of these dilutions were added to 10 µL aliquots of 6.3 mM GDP-D-mannose in which a portion of this substrate was universally labeled with 14C in the mannose moiety. This substrate had an activity of 16 µCi/mL before dilution into the reaction mixture. Reactions were stopped after 10 min by transferring 20 µL of the mixture into microfuge tubes containing 20 µL of 250 mM trifluoroacetic acid (TFA) containing 1.0 g/L each D-mannose and L-galactose. These tubes were sealed and boiled for 10 min, cooled, spun for 60 sec in a Beckman Microfuge E, and 5 µL of each hydrolysate was spotted on 20 x 20 cm plastic-backed EM Science Silica gel 60 thin-layer chromatography plates (#5748/7), with 1 cm lanes created by scoring with a blunt stylus. After drying, plates were twice chromatographed for 2.5 hours in ethyl acetate:isopropanol:water, 65:22.3:12.7 (plates were dried between runs). Spots of free sugars were visualized by spraying dried plates with 0.5% p-anisaldehyde in a 62% ethanolic solution of 0.89 M sulfuric acid and 0.17 mM glacial acetic acid, and heating at 105 C for about 15 min. Spots of L-galactose and D-mannose were cut from the plates and counted in a scintillation counter (Beckman model 2800). For time-zero control counts, 16.7 µL of each extract dilution was added to 23.3 µL of the labeled substrate above, which had been diluted 1:7 with the TFA/mannose/galactose solution.

Table 11 summarizes the results of the five enzyme assays for the strains tested, along with their specific AA formations.

5

10

15

20

25

30

35

71

TABLE 11
Specific Enzyme Activities (mU)* of Selected Mutant *Prototheca* Strains

					G	MP	
Strain	AA Specific Form, mg/g	PMI	PMM	PFK	Mg- limited	Mg- sufficient	Epimerase
UV164-6	78.4						0.79
EMS13-4	73.7	10.8	69.6	13.5	2.6	6.8	0.78
UV140-1	69.9	1					0.78
NA45-3	61.4						0.58
UV77-247	44.4	1					0.52
UV127-10	40.1	11.1	45.8	24.4	4.3	5.9	0.39
UV244-15	24.5	14.3	41.5		3.1	5.3	0.42
NA21-14	23.6	12.1	60.3	47.4	2.4	7.6	0.27
ATCC 75669	21.9						0.28
UV244-16	5.0	16.5	85.6		4.3	5.2	
SP2-3	2.0	17.7	47.0	64.5	2.0	7.5	0.03
UV218-1	0.4	15.9	72.1		2.7	7.0	0.83
UV213-1	0.1	19.7	47.7	32.6	3.2	6.7	0.60
UV82-21	0.0	14.6	70.6	30.4	4.1	7.5	0.15
UV244-1	0.0	18.2	51.1		5.5	12	0.15

Units: PMI and PMM, nmoles NADP reduced per min/mg protein; PFK, nmoles NADH oxidized per min/mg protein; GMP, nmoles GDP-D-mannose formed per min/mg protein; epimerase, nmoles GDP-L-galactose formed per min/mg protein.

The only enzyme which showed a strong correlation between activity and the ability to synthesize AA was the GDP-D-mannose:GDP-L-galactose epimerase. This correlation is depicted in Fig. 5. All of the strains which produced measurable amounts of AA had measurable amounts of epimerase activity. The converse was not true: four of the strains which synthesize little or no AA had significant epimerase activities. These strains are candidates for having mutations which affect enzymatic steps downstream from the epimerase. Since all of the strains tested can synthesize AA from L-galactose and L-galactono-γ-lactone (see Examples 4 and 5), the genetic lesion(s) in these four mutants must lie between GDP-L-galactose and free L-galactose.

Example 8

The next example shows the relationship between GDP-D-mannose:GDP-L-galactose epimerase activity and the degree of magnesium limitation in two strains, the original unmutagenized parent strain ATCC 75669, and one of the best AA producers, EMS13-4 (ATCC _____).

Four flasks of each strain were grown according to the standard protocol. One culture of each was harvested 24 hours into magnesium-limited incubation, and every 24 hours thereafter for a total of four days. One flask of each strain was also harvested 24 hours into magnesium sufficient incubation. All cultures had glucose remaining when harvested. Fig. 6 shows graphically the AA productivity and epimerase activity in EMS13-4 and ATCC 75669 as the cultures became Mg-limited. Epimerase activity in EMS13-4 was significantly greater than that in ATCC 75669 at all time points. There was also a concurrent rapid rise in both AA productivity and epimerase activity in EMS13-4 as the cultures became increasingly Mg-limited. While there was a moderate increase in AA productivity in ATCC 75669 as Mg became more limiting, there was no effect on epimerase activity.

Example 9

5

10

15

20

25

30

The following example shows the results of epimerase assays performed with extracts of two *E. coli* strains into which were cloned the *E. coli* gene for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The E. coli K12 wca gene cluster is responsible for cholanic acid production; wcaG encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The *E. coli wcaG* sequence (nucleotides 4 through 966 of SEQ ID NO:3) was amplified by PCR from *E. coli* W3110 genomic DNA using primers WG EcoRI 5 (5' TAGAATTCAGTAAACAACGAGTTTTTATTGCTGG 3'; SEQ ID NO:12) and WG Xhol 3 (5' AACTCGAGTTACCCCCAAAGCGGTCTTGATTC 3'; SEQ ID NO:13). The 973-bp PCR product was ligated into the vector pPCR-Script SK(+) (Stratagene, LaJolla, CA). The 973-bp ExoRII/XhoI fragment was moved from this plasmid into the ExoRII/XhoI sites of pGEX-5X-1 (Amersham Pharmacia Biotech, Piscataway, NJ), creating plasmid pSW67-1. Plasmid pGEX-5X-1 is a GST gene fusion vector which adds a 26-kDa GST moiety onto the N-terminal end of the protein of interest. *E. coli* BL21(DE3) was transformed with pSW67-1 and pGEX-5X-1, resulting in strains BL21(DE3)/pSW67-1 and BL21(DE3)/pGEX-5X-1.

The E. coli wcaG sequence (nucleotides 1 through 966 of SEQ ID NO:3) was also amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5-2 (5' CTGGAGTCGAATTCATGAGTAAACAACGAG 3'; SEQ ID NO:14) and WG PstI 3

(5' AACTGCAGTTACCCCCGAAAGCGGTCTTGATTC 3'; SEQ ID NO:15). The 976-bp PCR product was ligated into a pPCR-Script (Stratagene). The 976-bp ExoRII/PstI fragment was moved from this plasmid into the ExoRII/PstI sites of expression vector pKK223-3 (Amersham Pharmacia Biotech), creating plasmid pSW75-2. *E. coli* JM105 was transformed with pKK223-3 and pSW75-2, resulting in strains JM105/pKK223-3 and JM105/pSW75-2.

All six strains were grown in duplicate at 37°C with shaking in 2X YTA medium until an optical density of 0.8-1.0 at 600 nm was reached (about three hours). 2X YTA contains 16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride and 100 mg/L ampicillin. One of each culture was induced by adding isopropyl β-D-thiogalactopyranoside (IPTG) to 1 mM final concentration. All 12 cultures were incubated for an additional four hours, washed in 0.9% NaCl, and the cells were frozen at -80°C. Prior to pelleting the cells for preparation of extracts, a portion of each culture was used for a plasmid DNA miniprep to confirm the presence of the appropriate plasmids in these strains. A protein preparation of each culture was also run on SDS gels to confirm expression of a protein of the appropriate size where expected. Frozen pellets were thawed, resuspended in 2.5 mL MOPS/EDTA buffer, pH 7.2, broken in a French Press (10,000 psi), spun for 20 min at 20,000 x g, assayed for protein as above and diluted to 0.01, 0.1, 1.0 and 3 mg/mL protein.

Induction of the strain BL21(DE3)/pGEX-5X-1 resulted in high-level expression of a 26-kDa protein indicating the synthesis of the native GST protein. Induction of strain BL21(DE3)/pSW67-1 resulted in high-level expression of a 62-kDa protein, indicating the synthesis of the native GST protein (26K) fused to the wcaG gene product (36K). An aliquot of the fusion protein was treated with the protease Factor Xa (New England Biolabs, Beverly, MA), which cleaves near the GST/wcaG junction. Induction of the strain JM105/pSW75-2 resulted in high level expression of a 36-kDa protein, indicating the synthesis of the wcaG gene product. No such protein was detected in JM105/pKK223-3 (vector only).

Next, it was of interest to test extracts in the standard epimerase assay described in Example 7 to determine if any of the extracts containing the wcaG product could bring

5

10

15

20

25

30

about the conversion of GDP-D-mannose to GDP-L-galactose. The extracts to be assayed are:

BL21(DE3) Group

- 1. BL21(DE3) uninduced
- 5 2. BL21(DE3) induced with 1mM IPTG
 - 3. BL21(DE3)/pGEX-5X-1 uninduced
 - 4. BL21(DE3)/pGEX-5X-1 induced with 1mM IPTG
 - 5. BL21(DE3)/pSW67-1 uninduced
 - 6. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; fusion protein intact
- 10 7. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; GST moiety cleaved

JM105 Group

20

25

30

35

- 1. JM105 uninduced
- 2. JM105 induced with 1mM IPTG
- 3. JM105/pKK223-3 uninduced
- 15 4. JM105/pKK223-3 induced with 1 mM IPTG
 - 5. JM105/pSW75-2 uninduced
 - 6. JM105/pSW75-2 induced with 1 mM IPTG

Extracts 1 and 7 from the BL21(DE3) group and extracts 1 and 6 from the JM105 group were tested for GDP-D-mannose: GDP-L-galactose epimerase-like activity in a pilot experiment. In this initial experiment, no epimerase activity was detected in any of the extracts. At this time, such a result can be attributed to a number of possibilities. First, it is possible that the wcaG gene product is incapable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, although this conclusion can not be reached until several other parameters are tested. Second, it is possible that under the assay conditions which are satisfactory to measure activity for the endogenous GDP-D-mannose: GDP-Lgalactose epimerase, the wcaG gene product does not have GDP-D-mannose:GDP-Lgalactose epimerase-like activity. Therefore, alternate conditions should be tested. Additionally, confirmation experiments should be performed to confirm the accuracy of the pilot conditions. Third, although the BL21(DE3) and the JM105 clones produce proteins of the expected size, the constructs have not been sequenced to confirm the proper coding sequence for the wcaG gene product and thereby rule out PCR or cloning errors which may render the wcaG gene product inactive. Fourth, the protein formed from the cloned sequence is full-length, but inactive, for example, due to incorrect tertiary structure (folding). Fifth, the gene is overexpressed, resulting in accumulation of insoluble and inactive protein products (inclusion bodies). Future experiments will attempt to

determine whether the constructs have or can be induced to have the ability to catalyze the conversion of GDP-D-mannose to GDP-L-galactose, and to use the sequences to isolate the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Table 12 provides the atomic coordinates for Brookhaven Protein Data Bank

5 Accession Code 1bws:

TABLE 12

	HEADER EPIMERASE/REDUCTASE 27-SEP-98 1BWS	
	TITLE CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE	
	TITLE 2 EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN	
10	TITLE 3 THE BIOSYNTHESIS OF GDP-L-FUCOSE	
	COMPND MOL ID: 1:	
•	COMPND 2 MOLECULE: GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE:	
	COMPND 3 CHAIN: A;	
	COMPND 4 ENGINEERED: YES;	
15	COMPND 5 BIOLOGICAL UNIT: HOMODIMER	
	SOURCE MOL ID: 1;	
	SOURCE 2 ORGANISM SCIENTIFIC: ESCHERICHIA COLI:	
	SOURCE 3 EXPRESSION SYSTEM: ESCHERICHIA COLI	
	KEYWDS EPIMERASE/REDUCTASE, GDP-L-FUCOSE BIOSYNTHESIS	
20	EXPDTA X-RAY DIFFRACTION	
	AUTHOR DE M.RIZZITONETTIFLORA	
	REVDAT 1 13-JAN-99 1BWS 0	· · · · · · · · · · · · · · · · · · ·
	JRNL AUTH DE D.RIZZITONETTIVIGEVANISTURLABISSOFLORA	
	JRNL TITL GDP-4-KETO-6-DEOXYD-MANNOSE EPIMERASE/REDUCTASE	
25	JRNL TITL 2 FROM ESCHERICHIA COLI, A KEY ENZYME IN THE	
	JRNL TITL 3 BIOSYNTHESIS OF GDP-L-FUCOSE, DISPLAYS THE	
	JRNL TITL 4 STRUCTURAL CHARACTERISTICS OF THE RED PROTEIN	
	JRNL TITL 5 HOMOLOGY SUPERFAMILY	
	JRNL REF STRUCTURE (LONDON) 1998	
30	JRNL REFN 9999	<u></u>
	REMARK 1	
	REMARK 2	
	REMARK 2 RESOLUTION. 2.2 ANGSTROMS.	
	REMARK 3	
35	REMARK 3 REFINEMENT.	
	REMARK 3 PROGRAM ; TNT	
	REMARK 3 AUTHORS : TRONRUD. TEN EYCK. MATTHEWS	
	REMARK 3	
	REMARK 3 DATA USED IN REFINEMENT.	
40	REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2	
	REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS) : 15.0	

	REMARK 3	DATA CUTOFF (SIGMA(F)); 0,0
	REMARK 3	COMPLETENESS FOR RANGE (%): 99.7
	REMARK 3	NUMBER OF REFLECTIONS : 24481
		NOCEDEA OF REFERENTIONS . 29401
5	***************************************	USING DATA ABOVE SIGMA CUTOFF.
J		
	REMARK 3	CROSS-VALIDATION METHOD : NONE
	REMARK 3	FREE R VALUE TEST SET SELECTION : NULL R VALUE (WORKING + TEST SET) : NULL
	REMARK 3	R VALUE (WORKING + TEST SET) : NULL R VALUE (WORKING SET) : NONE
10	REMARK 3	FREE R VALUE : NULL
10	REMARK 3	FREE R VALUE TEST SET SIZE (%): NONE
	REMARK 3	FREE R VALUE TEST SET COUNT : NULL
	REMARK 3	A VINCE AND DE COVER I HAVE
	REMARK 3	USING ALL DATA, NO SIGMA CUTOFF.
15	REMARK 3	R VALUE (WORKING + TEST SET, NO CUTOFF) : NULL
	REMARK 3	R VALUE (WORKING SET, NO CUTOFF) : 0.202
	REMARK 3	FREE R VALUE - (NO CUTOFF) ; 0.287
	REMARK 3	FREE R VALUE TEST SET SIZE (%, NO CUTOFF) : NULL
	REMARK 3	FREE R VALUE TEST SET COUNT (NO CUTOFF) : NULL
20	REMARK 3	TOTAL NUMBER OF REFLECTIONS (NO CUTOFF) : NULL
	REMARK 3	
	REMARK 3	NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
	REMARK 3	PROTEIN ATOMS : 2527
	REMARK 3	NUCLEIC ACID ATOMS : NULL
25	REMARK 3	OTHER ATOMS : 109
	REMARK 3	
	REMARK 3	WILSON B VALUE (FROM FCALC, A**2) : NULL
	REMARK 3	
	REMARK 3	RMS DEVIATIONS FROM IDEAL VALUES, RMS WEIGHT COUNT
30	REMARK 3	BOND LENGTHS (A): 0.016; NULL; NULL
	REMARK 3	BOND ANGLES (DEGREES): 1.65; NULL; NULL
	REMARK 3	TORSION ANGLES (DEGREES) : NULL : NULL : NULL
	REMARK 3	
25	REMARK 3	
35	REMARK 3	
	REMARK 3	
	REMARK 3	
	REMARK 3	
40	REMARK 3	
40	REMARK 3	
	REMARK 3	
	REMARK 3	
	REMARK 3	
45	REMARK 3	
43	REMARK 3	

	·
	REMARK 3 RESTRAINT LIBRARIES.
	REMARK 3 STEREOCHEMISTRY: NULL
	REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS : NULL
	REMARK 3
5	REMARK 3 OTHER REFINEMENT REMARKS: NULL
	REMARK 4
	REMARK 4 1BWS COMPLIES WITH FORMAT V. 2.2. 16-DEC-1996
	REMARK 5
	REMARK 5 WARNING
10	REMARK 5 1BWS: THIS IS LAYER 1 RELEASE.
	REMARK 5
	REMARK 5 PLEASE NOTE THAT THIS ENTRY WAS RELEASED AFTER DEPOSITOR
	REMARK 5 CHECKING AND APPROVAL BUT WITHOUT PDB STAFF INTERVENTION.
	REMARK 5 AN AUXILIARY FILE, AUXIBWS.RPT, IS AVAILABLE FROM THE
15	REMARK 5 PDB FTP SERVER AND IS ACCESSIBLE THROUGH THE 3DB BROWSER.
	REMARK 5 THE FILE CONTAINS THE OUTPUT OF THE PROGRAM WHAT CHECK AND
	REMARK 5 OTHER DIAGNOSTICS.
	REMARK 5
	REMARK 5 NOMENCLATURE IN THIS ENTRY, INCLUDING HET RESIDUE NAMES
20	REMARK 5 AND HET ATOM NAMES, HAS NOT BEEN STANDARDIZED BY THE PDB
	REMARK 5 PROCESSING STAFF. A LAYER 2 ENTRY WILL BE RELEASED SHORTLY
	REMARK 5 AFTER THIS STANDARDIZATION IS COMPLETED AND APPROVED BY THE
	REMARK 5 DEPOSITOR. THE LAYER 2 ENTRY WILL BE TREATED AS A
	REMARK 5 CORRECTION TO THIS ONE, WITH THE APPROPRIATE REVDAT RECORD.
25	REMARK 5
	REMARK 5 FURTHER INFORMATION INCLUDING VALIDATION CRITERIA USED IN
	REMARK 5 CHECKING THIS ENTRY AND A LIST OF MANDATORY DATA FIELDS
	REMARK 5 ARE AVAILABLE FROM THE PDB WEB SITE AT
	REMARK 5 HTTP://www.pdb.BNL.GOV/.
30	REMARK 200
	REMARK 200 EXPERIMENTAL DETAILS
	REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
	REMARK 200 DATE OF DATA COLLECTION : AUG-1997
	REMARK 200 TEMPERATURE (KELVIN) : 120
35	REMARK 200 PH : 6.5
	REMARK 200 NUMBER OF CRYSTALS USED : 1
	REMARK 200
	REMARK 200 SYNCHROTRON (Y/N) : N
	REMARK 200 RADIATION SOURCE : NONE
40	REMARK 200 BEAMLINE : NULL
	REMARK 200 X-RAY GENERATOR MODEL : RIGAKU RU200
	REMARK 200 MONOCHROMATIC OR LAUE (M/L) : M
	REMARK 200 WAVELENGTH OR RANGE (A): 1.5418
	REMARK 200 MONOCHROMATOR : NULL
45	REMARK 200 OPTICS : NULL

	REMARK 200
	REMARK 200 DETECTOR TYPE ; IMAGE PLATE
	REMARK 200 DETECTOR MANUFACTURER : RAXIS
	REMARK 200 INTENSITY-INTEGRATION SOFTWARE : MOSFIM
5	REMARK 200 DATA SCALING SOFTWARE : SCALA
	REMARK 200
	REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 24481
	REMARK 200 RESOLUTION RANGE HIGH (A): 2.2
	REMARK 200 RESOLUTION RANGE LOW (A): 15.0
10	REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NONE
	REMARK 200
	REMARK 200 OVERALL.
	REMARK 200 COMPLETENESS FOR RANGE (%): 99.7
	REMARK 200 DATA REDUNDANCY : 4.3
15	REMARK 200 R MERGE (I): 0.057
	REMARK 200 R SYM (I) : NONE
	REMARK 200 <1/SIGMA(I)> FOR THE DATA SET : 13.6
	REMARK 200
	REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
20	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL
	REMARK 200 COMPLETENESS FOR SHELL (%) : NULL
	REMARK 200 DATA REDUNDANCY IN SHELL : NULL
	REMARK 200 R MERGE FOR SHELL (I) : NULL
25	REMARK 200 R SYM FOR SHELL (I) : NULL
	REMARK 200 <i sigma(i)=""> FOR SHELL : NULL</i>
	REMARK 200
	REMARK 200 DIFFRACTION PROTOCOL: NULL
	REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR
30	REMARK 200 SOFTWARE USED: NULL
	REMARK 200 STARTING MODEL: NULL
	REMARK 200
	REMARK 200 REMARK: NULL
25	REMARK 280
35	REMARK 280 CRYSTAL
	REMARK 280 SOLVENT CONTENT, VS (%): NULL
	REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL
	REMARK 280
40	REMARK 280 CRYSTALLIZATION CONDITIONS; NULL
40	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
	REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1
	REMARK 290
45	REMARK 290 SYMOP SYMMETRY
U	REMARK 290 NNNMM OPERATOR

	REMARK 290	1555	X. Y. Z
	REMARK 290	2555	-Y,X-Y,Z+2/3
	REMARK 290	3555	Y-X,-X,2+1/3
	REMARK 290	4555	Y, X, - Z
5	REMARK 290	5555	X-Y,-Y,1/3-Z
	REMARK 290	6555	-x,y-x,2/3-z
	REMARK 290		
	REMARK 290	WHERE N	NN -> OPERATOR NUMBER
	REMARK 290		MM -> TRANSLATION VECTOR
10	REMARK 290		
	REMARK 290	CRYSTALLOGRA	APHIC SYMMETRY TRANSFORMATIONS
	REMARK 290	THE FOLLOWIN	NG TRANSFORMATIONS OPERATE ON THE ATOM/HETATM
	REMARK 290	RECORDS IN 3	THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY
	REMARK 290	RELATED MOLE	ecules.
15	REMARK 290	SMTRY1	1 1.000000 0.000000 0.000000 0.00000
	REMARK 290	SMTRY2	1 0.000000 1.000000 0.000000 0.00000
	REMARK 290	SMTRY3	1 0.000000 0.000000 1.000000 0.00000
	REMARK 290	SMTRY1	2 -0.500045 -0.865974 0.000000 0.00000
	REMARK 290	SMTRY2	2 0.866077 -0.499955 0.000000 0.00000
20	REMARK 290	SMTRY3	2 0.000000 0.000000 1.000000 50.58553
	REMARK 290	SMTRY1	3 -0.499955 0.865974 0.000000 0.00000
	REMARK 290	SMTRY2	3 -0.866077 -0.500045 0.000000 0.00000
	REMARK 290	SMTRY3	3 0.000000 0.000000 1.000000 25.29276
	REMARK 290	SMTRY1 4	4 -0.500045 0.865922 0.000000 0.00000
25	REMARK 290	SMTRY2 4	4 0.866077 0.500045 0.000000 0.00000
	REMARK 290		4 0.000000 0.000000 -1.000000 0.00000
	REMARK 290		5 1,000000 0.000104 0.000000 0.00000
	REMARK 290		5 0.000000 -1.000000 0.000000 0.00000
20	REMARK 290		5 0.000000 0.000000 -1.000000 25.29276
30	REMARK 290		6 -0,499955 -0.866026 0,000000 0.00000
	REMARK 290		6 -0.866077
	REMARK 290	SMTRY3 (6 0.000000 0.000000 -1.000000 50.58553
	REMARK 290		
35		REMARK: NULI	
33	REMARK 465	MISSING RESI	T NITE O
			NG RESIDUES WERE NOT LOCATED IN THE
			(M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN
			SSSEO=SEQUENCE NUMBER; I=INSERTION CODE):
40	REMARK 465	#BDRIAL TERM	SSSEC-SECURICE NORSER, I-INSERTION COPE).
	REMARK 465	M RES C SS	SSPOT
	REMARK 465		1
	REMARK 465		
	REMARK 465	ASP A	
45	REMARK 465	ARG A	

	REMARK 465 PHE A 319
	REMARK 465 ARG A 320
	REMARK 465 GLY A 321
	REMARK 800
5	REMARK 800 SITE
	REMARK 800 SITE IDENTIFIER: CAT
	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
10	REMARK 800 SITE IDENTIFIER: CAT
	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
	REMARK 800 SITE IDENTIFIER: CAT
15	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
	DBREF 1BWS A 3 316 SWS P32055 FCL ECOLI
	SEORES 1 A 321 MET SER LYS GLN ARG VAL PHE ILE ALA GLY HIS ARG GLY
20	SEQRES 2 A 321 MET VAL GLY SER ALA ILE ARG ARG GLN LEU GLU GLN ARG
	SEORES 3 A 321 GLY ASP VAL GLU LEU VAL LEU ARG THR ARG ASP GLU LEU
	SEORES 4 A 321 ASN LEU LEU ASP SER ARG ALA VAL HIS ASP PHE PHE ALA
	SEORES 5 A 321 SER GLU ARG ILE ASP GLN VAL TYR LEU ALA ALA ALA LYS
	SECRES 6 A 321 VAL GLY GLY ILE VAL ALA ASN ASN THR TYR PRO ALA ASP
25	SECRES 7 A 321 PHE ILE TYR GLN ASN MET MET ILE GLU SER ASN ILE ILE
	SECRES 8 A 321 HIS ALA ALA HIS GLN ASN ASP VAL ASN LYS LEU LEU PHE
	SECRES 9 A 321 LEU GLY SER SER CYS ILE TYR PRO LYS LEU ALA LYS GLN
	SECRES 10 A 321 PRO MET ALA GLU SER GLU LEU LEU GLN GLY THR LEU GLU
	SECRES 11 A 321 PRO THR ASN GLU PRO TYR ALA ILE ALA LYS ILE ALA GLY
30	SEORES 12 A 321 ILE LYS LEU CYS GLU SER TYR ASN ARG GLN TYR GLY ARG
	SECRES 13 A 321 ASP TYR ARG SER VAL MET PRO THR ASN LEU TYR GLY PRO
	SECRES 14 A 321 HIS ASP ASN PHE HIS PRO SER ASN SER HIS VAL ILE PRO
	SECRES 15 A 321 ALA LEU LEU ARG ARG PHE HIS GLU ALA THR ALA GLN ASN
	SECRES 16 A 321 ALA PRO ASP VAL VAL TRP GLY SER GLY THR PRO MET
35	SEORES 17 A 321 ARG GLU PHE LEU HIS VAL ASP ASP MET ALA ALA ALA SER
	SECRES 18 A 321 ILE HIS VAL MET GLU LEU ALA HIS GLU VAL TRP LEU GLU
	SECRES 19 A 321 ASN THR GLN PRO MET LEU SER HIS ILE ASN VAL GLY THR
	SECRES 20 A 321 GLY VAL ASP CYS THR ILE ARG ASP VAL ALA GLN THR ILE
	SEORES 21 A 321 ALA LYS VAL VAL GLY TYR LYS GLY ARG VAL VAL PHE ASP
40	SEORES 22 A 321 ALA SER LYS PRO ASP GLY THR PRO ARG LYS LEU LEU ASP
	SEORES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TYR HIS GLU ILE
	SEORES 24 A 321 SER LEU GLU ALA GLY LEU ALA SER THR TYR GLN TRP PHE
	SEORES 25 A 321 LEU GLU ASN GLN ASP ARG PHE ARG GLY
	HET NDP 1 0
45	HETNAM NDP NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE

	HETSYN NDP NADP	
	FORMUL 2 NDP C21 H23 N7 017 P3 3-	
	FORMUL 3 HOR *109(H2 01)	
	HELIX 1 1 MET A 14 GLN A 25 1	12_
5	HELIX 2 2 SER A 44 GLU A 54 1	11
	HELIX 3 3 ILE A 69 THR A 74 1	6
	HELIX 4 4 PRO A 76 ASN A 97 1	22
	HELIX 5 5 SER A 108 ILE A 110 5	3
	HELIX 6 6 GLU A 121 GLU A 123 5	3_
10	HELIX 7 7 GLU A 134 TYR A 154 1	21
	HELIX 8 8 VAL A 180 ALA A 193 1	14
	HELIX 9 9 VAL A 214 GLU A 226 1	13
	HELIX 10 10 HIS A 229 GLU A 234 1	6
	HELIX 11 11 ILE A 253 VAL A 264 1	12
15	HELIX 12 12 THR A 288 GLN A 292 1	5
	HELIX 13 13 LEU A 301 GLU A 314 1	14
	SHEET 1 A 6 VAL A 29 VAL A 32 0	
	SHEET 2 A 6 GLN A 4 ALA A 9 1 N GLN A 4 O GLU A 30	
	SHEET 3 A 6 GLN A 58 LEU A 61 1 N GLN A 58 O PHE A 7	
20	SHEET 4 A 6 LYS A 101 LEU A 105 1 N LYS A 101 O VAL A 59	
	SHEET 5 A 6 ASP A 157 PRO A 163 1 N ASP A 157 O LEU A 102	
	SHEET 6 A 6 ILE A 243 VAL A 245 1 N ILE A 243 O MET A 162	
	SHEET 1 B 2 ASN A 165 TYR A 167 0	
	SHEET 2 B 2 PHE A 211 HIS A 213 1 N LEU A 212 O ASN A 165	
25	SHEET 1 C 2 ASP A 198 TRP A 202 0	
	SHEET 2 C 2 ARG A 269 ASP A 273 1 N ARG A 269 O VAL A 199	
	SITE 1 CAT 1 TYR 136	
	SITE 2 CAT 1 LYS 140	
	SITE 3 CAT 1 SER 107	
30	CRYST1 104.200 104.200 75.880 90.00 90.00 120.00 P 32 2 1 6	
	ORIGX1 1.000000 0.000000 0.000000 0.00000	
	ORIGX2 0.000000 1.000000 0.000000 0.00000	
	ORIGX3 0.000000 0.000000 1.000000 0.00000	
	SCALE1 0.009597 0.005541 0.000000 0.00000	
35	SCALE2 0.000000 0.011081 0.000000 0.00000	
	SCALE3 0.000000 0.000000 0.013179 0.00000	
	HETATM 1 0 HOH 1 55.652 -16.806 22.535 1.00 8.73	_0
	HETATM 2 0 HOH 3 58.494 -10.639 18.740 1.00 13.17	0
	HETATM 3 O HOH 4 58.230 -11.715 27.770 1.00 19.07	0
40	HETATM 4 0 HOH 5 57.252 -3.759 30.107 1.00 11.21	0
	HETATM 5 0 HOH 6 58.298 -10.011 25.527 1.00 15.74	0
	HETATM 6 0 HOH 7 49.321 6.583 38.815 1.00 19.33	0
	HETATM 7 0 HOH 8 53.785 -4.262 22.464 1.00 10.94	0
	HETATM 8 O HOH 10 74,652 2.888 9.141 1.00 17.80	0
45	HETATM 9 0 HOH 11 49.761 0.826 32.896 1.00 22.02	0

HETATM 11 0 HOH 13 75.027 7.034 27.353 1.00 16.330 0 HETATM 12 0 HOR 14 49.994 -2.314 11.032 1.00 21.33 0 HETATM 13 0 HOR 15 61.323 -8.959 29.657 1.00 22.284 0 5 HETATM 14 0 HOR 16 61.029 -11.560 29.131 1.00 21.24 0 HETATM 15 0 HOR 17 50.684 5.881 10.130 1.00 15.88 0 HETATM 15 0 HOR 17 50.684 5.881 10.130 1.00 15.88 0 HETATM 17 0 HOR 19 54.506 -6.302 32.989 1.00 21.05 0 HETATM 18 0 HOR 20 38.979 26.536 19.070 1.00 21.09 0 HETATM 19 0 HOR 21 38.042 33.487 21.909 1.00 19.01 0 HETATM 20 0 HOR 21 38.042 33.487 21.909 1.00 19.01 0 HETATM 20 0 HOR 23 70.916 -11.128 15.244 1.00 31.37 0 HETATM 21 0 HOR 25 70.916 -11.128 15.244 1.00 31.37 0 HETATM 22 0 HOR 26 54.205 19.360 28.396 1.00 25.76 0 HETATM 22 0 HOR 26 54.205 19.360 28.396 1.00 25.76 0 HETATM 23 0 HOR 27 50.432 1.058 1.00 12.255 0 HETATM 24 0 HOR 29 56.432 -8.877 19.303 1.00 12.25 0 HETATM 25 0 HOR 29 56.432 -8.877 19.303 1.00 12.25 0 HETATM 26 0 ROR 30 60.832 3.415 42.349 1.00 17.39 0 HETATM 27 0 HOR 31 53.889 -12.706 29.764 1.00 22.40 0 HETATM 29 0 HOR 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 29 0 HOR 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 30 0 HOR 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 30 0 HOR 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 30 0 HOR 33 49.201 11.173 26.867 1.00 22.40 0 HETATM 30 0 HOR 34 46.762 -0.278 31.394 1.00 27.39 0 HETATM 30 0 HOR 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 31 0 HOR 35 41.331 27.568 43.302 1.00 27.39 0 HETATM 32 0 HOR 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 33 0 HOR 36 66.827 1.202 28.929 1.00 13.23 0 HETATM 30 0 HOR 36 66.827 1.004 43.868 1.00 26.68 0 HETATM 30 0 HOR 45 42.685 34.461 33.955 1.00 13.23 0 HETATM 31 0 HOR 35 66.827 1.004 43.868 1.00 26.68 0 HETATM 30 0 HOR 45 7.275 -9.089 33.407 1.00 22.11 0 HETATM 41 0 HOR 49 40.458 36.700 34.312 1.00 34.55 0 HETATM 42 0 HOR 50 75.440 70.597 16.422 37.837 1.00 19.45 0 HETATM 42 0 HOR 50 75.440 70.597 16.422 37.837 1.00 34.16 0 HETATM 40 0 HOR 55 75.450 10.33 34.93 1.00 35.55 0 HETATM 40 0 HOR 57 45.912 35.710 36.133 1.00 35.55 0 HETATM 40 0 HOR 57 45.912								
HETATM 12 0 NOR 14 49.994 -2.314 11.032 1.00 21.33 0 O HETATM 13 0 NOR 15 61.323 -8.959 29.657 1.00 22.84 0 O S HETATM 14 0 NOR 15 61.323 -8.959 29.657 1.00 22.84 0 O S HETATM 15 0 NOR 15 61.323 -8.959 29.657 1.00 22.84 0 O S HETATM 15 0 NOR 17 50.664 5.881 10.130 1.00 21.05 0 O HETATM 15 0 NOR 18 64.506 -6.302 32.989 1.00 21.05 0 O HETATM 17 0 NOR 19 57.856 -16.338 25.085 1.00 22.86 0 O HETATM 19 0 NOR 20 38.979 26.536 19.070 1.00 21.09 0 O S NOR 20 38.979 26.536 19.070 1.00 21.09 0 O HETATM 29 0 NOR 21 38.042 33.487 21.909 1.00 19.01 0 O HETATM 21 0 NOR 23 70.916 -11.128 15.244 1.00 31.37 0 O HETATM 22 0 NOR 25 70.916 -11.128 15.244 1.00 31.37 0 O HETATM 22 0 NOR 27 50.435 2.654 16.783 1.00 12.25 0 O HETATM 22 0 NOR 26 54.205 19.360 28.396 1.00 35.76 0 O HETATM 22 0 NOR 27 50.435 2.654 16.783 1.00 12.25 0 O HETATM 22 0 NOR 26 54.205 19.360 28.396 1.00 49.77 0 O HETATM 22 0 NOR 27 50.435 2.654 16.783 1.00 12.25 0 O HETATM 22 0 NOR 27 50.435 2.654 16.783 1.00 12.25 0 O HETATM 22 0 NOR 27 50.435 2.654 16.783 1.00 12.25 0 O HETATM 25 0 NOR 27 56.432 -8.877 19.303 1.00 22.52 0 O HETATM 26 0 NOR 33 50.032 3.415 42.349 1.00 17.39 0 O HETATM 27 0 NOR 33 50.032 3.415 42.349 1.00 17.39 0 O HETATM 29 0 NOR 33 49.201 11.173 26.967 1.00 23.95 0 O HETATM 29 0 NOR 33 49.201 11.173 26.967 1.00 23.95 0 O HETATM 30 0 NOR 34 46.762 -0.278 31.394 1.00 20.63 0 O HETATM 31 0 NOR 35 41.731 27.568 43.302 1.00 27.39 0 O HETATM 32 0 NOR 34 46.762 -0.278 31.394 1.00 20.63 0 O HETATM 33 0 NOR 37 46.834 14.396 40.819 1.00 46.02 0 O HETATM 33 0 NOR 37 46.834 14.396 40.819 1.00 46.02 0 O HETATM 37 0 NOR 48 35.41731 27.568 43.302 1.00 27.39 0 O HETATM 33 0 NOR 37 46.834 14.396 40.819 1.00 46.02 0 O HETATM 37 0 NOR 48 35.41731 27.568 43.302 1.00 27.39 0 O HETATM 39 0 NOR 35 41.731 27.568 43.302 1.00 27.39 0 O HETATM 39 0 NOR 35 41.731 27.568 43.302 1.00 33.55 0 O HETATM 39 0 NOR 48 35.741 32.691 33.557 1.00 19.26 0 O HETATM 40 NOR 48 35.741 32.991 33.507 1.00 19.26 0 O HETATM 40 NOR 48 35.741 32.991 33.507 1.00 19.25 0 O HETATM 40 NOR 48 35.		HETATM	10	0	нон	12	55.530 -11.162 28.526 1.00	11.39 0
HETATM 13 O HOR 15 61.323 -8.959 29.657 1.00 22.84 O HETATM 14 O HOR 16 61.029 -11.560 29.131 1.00 21.24 O HETATM 15 O HOR 17 50.684 5.881 10.130 1.00 15.88 O HETATM 16 O HOR 18 64.506 -6.302 32.989 1.00 21.05 O HETATM 17 O HOR 19 57.856 -16.398 25.085 1.00 22.86 O HETATM 18 O HOR 20 38.979 26.536 19.070 1.00 21.08 O HETATM 19 O HOR 21 38.042 33.487 21.999 1.00 19.01 O HETATM 20 O HOR 24 38.172 35.775 0.827 1.00 33.46 O HETATM 21 O HOR 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOR 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOR 25 54.205 19.360 28.395 1.00 35.76 O HETATM 23 O HOR 27 50.436 2.654 16.783 1.00 12.25 O HETATM 24 O HOR 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O HOR 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 26 O HOR 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOR 31 33.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOR 32 37.887 26.371 31.394 1.00 27.39 O HETATM 29 O HOR 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOR 34 46.762 -0.278 31.394 1.00 27.39 O HETATM 31 O HOR 35 41.731 27.568 43.902 1.00 27.39 O HETATM 33 O HOR 34 46.762 -0.278 31.394 1.00 26.68 O HETATM 34 O HOR 35 41.731 27.568 43.902 1.00 27.39 O HETATM 35 O HOR 45 42.685 34.461 33.955 1.00 17.32 O HETATM 37 O HOR 48 35.741 32.99 33.407 1.00 26.68 O HETATM 39 O HOR 45 42.685 34.461 33.955 1.00 34.55 O HETATM 40 O HOR 49 40.458 36.700 34.131 1.00 34.53 O HETATM 47 O HOR 59 56.085 21.7		HETATM	_11_	0	нон	13	75.027 7.034 27.353 1.00	16.30 0
S HETATM 14 O HOR 16 61.029 - 11.560 29.131 1.00 21.24 O HETATM 15 O HOR 17 50.684 5.881 10.130 1.00 15.88 O HETATM 16 O HOR 18 64.506 -6.302 32.989 1.00 21.05 O HETATM 17 O HOR 18 64.506 -6.302 32.989 1.00 21.05 O HETATM 18 O HOR 20 38.979 26.536 19.070 1.00 21.08 O HETATM 19 O HOR 21 38.042 33.487 21.909 1.00 19.01 O HETATM 20 O HOR 24 38.172 35.775 20.827 1.00 33.45 O HETATM 21 O HOR 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOR 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 23 O HOR 25 50.436 2.654 16.783 1.00 35.76 O HETATM 23 O HOR 27 50.436 2.654 16.783 1.00 35.76 O HETATM 23 O HOR 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O HOR 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 27 O HOR 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOR 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOR 32 37.887 26.373 28.058 1.00 18.09 O 20 HETATM 29 O HOR 31 49.201 11.173 26.867 1.00 33.95 O HETATM 31 O HOR 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 32 O HOR 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 33 O HOR 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 35 O HOR 36 66.827 11.202 28.929 1.00 13.23 O HETATM 35 O HOR 36 66.827 11.202 28.929 1.00 33.95 O HETATM 35 O HOR 45 42.685 34.461 33.955 1.00 17.32 O HETATM 36 O HOR 47 2.275 -9.089 34.407 1.00 26.68 O HETATM 37 O HOR 48 35.741 32.691 33.94 38.364 1.00 20.11 O HETATM 37 O HOR 49 40.458 36.700 34.312 1.00 34.53 O HETATM 41 O HOR 49		HETATM	12	0	нон	14	49.994 -2.314 11.032 1.00	21.33 0
HETATM 15 O NGH 17 50.684 5.881 10.130 1.00 15.88 O HETATM 16 O NGH 18 64.506 -6.302 32.989 1.00 21.05 O HETATM 17 O NGH 19 57.855 16.398 25.085 1.00 21.05 O HETATM 18 O NGH 20 38.979 26.536 19.070 1.00 21.08 O HETATM 19 O NGH 21 38.972 26.536 19.070 1.00 21.08 O HETATM 20 O NGH 21 38.172 35.775 20.827 1.00 33.46 O HETATM 21 O NGH 25 70.916 11.128 15.244 1.00 31.37 O HETATM 22 O NGH 25 70.916 11.128 15.244 1.00 31.37 O HETATM 22 O NGH 25 70.916 11.128 15.244 1.00 31.37 O HETATM 23 O NGH 27 50.435 2.658 16.783 1.00 12.25 O HETATM 25 O NGH 27 50.435 2.658 16.783 1.00 12.25 O HETATM 25 O NGH 29 56.432 -8.877 19.303 1.00 22.55 O HETATM 26 O NGH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O NGH 31 53.889 12.706 29.764 1.00 22.40 O HETATM 29 O NGH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O NGH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O NGH 35 41.731 27.558 43.302 1.00 27.39 O HETATM 31 O NGH 35 41.731 27.558 43.302 1.00 27.39 O HETATM 31 O NGH 35 41.731 27.558 43.302 1.00 27.39 O HETATM 32 O NGH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O NGH 35 41.731 27.558 43.302 1.00 27.39 O HETATM 34 O NGH 38 61.342 1.00 28.395 1.00 27.39 O HETATM 37 O NGH 38 61.342 1.00 28.395 1.00 27.39 O HETATM 37 O NGH 38 61.342 1.00 28.395 1.00 32.30 O HETATM 38 O NGH 37 46.834 14.396 40.818 1.00 26.68 O HETATM 37 O NGH 38 61.342 1.00 28.395 1.00 32.33 O HETATM 37 O NGH 42 70.557 16.422 37.837 1.00 19.26 O HETATM 38 O NGH 47 75.60.85 21.757 44.744 1.00 33.55 O HETATM 39 O NGH 47 75.60.85 21.757 44.744 1.00 33.55 O HETATM 40 NGH 48 35.741 32.691 23.517 1.00 19.26 O HETATM 40 NGH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 41 O NGH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 40 NGH 55 5.840 7.888 41.938 1.00 35.72 O HETATM 40 NGH 65 60.277 1.267 29.948 1.00 20.19 O HETATM 40 NGH 65 60.277 1.267 29.948 1.00 33.55 O HETATM 41 O NGH 65 60.277 1.267 29.948 1.00 35.55 O HETATM 40 NGH 60 NGH 57 4.898 41.898 41.90 35.72 O HETATM 40 NGH 60 NGH 57 4.898 41.90 35.72 O HETATM 40 NGH 60 NGH 57 4.898 41.90 35.72 O HETATM 50 NGH 66 5.58.		HETATM	13	0	нон	15	61.323 -8.959 29.657 1.00	22.84 0
HETATM 16 O HOR 18 64.506 -6.302 32.989 1.00.21.05 O HETATM 17 O HOH 19 57.856 -16.398 25.085 1.00 22.86 O HETATM 18 O HOH 20 38.979 26.536 19.070 1.00 21.08 O HETATM 39 O HOH 21 38.042 33.487 21.999 1.00 19.01 O HETATM 20 O HOH 24 38.172 35.775 20.827 1.00 33.46 O HETATM 22 O HOH 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOH 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 23 O HOH 26 54.205 19.360 28.396 1.00 12.25 O HETATM 23 O HOH 27 50.436 2.654 16.783 1.00 12.25 O HETATM 23 O HOH 27 50.436 2.654 16.783 1.00 12.25 O HETATM 24 O HOH 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 27 O HOH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOH 31 53.889 12.706 29.764 1.00 22.40 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOH 33 446.762 -0.278 31.394 1.00 20.63 O HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O 25 HETATM 34 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 35 O HOH 47 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 47 70.597 16.422 37.837 1.00 19.26 O HETATM 37 O HOH 45 70.597 16.422 37.837 1.00 19.26 O HETATM 39 O HOH 47 70.597 16.422 37.837 1.00 19.26 O HETATM 39 O HOH 47 756.085 21.757 44.744 1.00 33.50 O HETATM 37 O HOH 48 35.741 32.691 23.517 1.00 34.53 O HETATM 40 O HOH 48 35.741 32.891 23.517 1.00 34.53 O HETATM 41 O HOH 45 70.597 16.422 37.837 1.00 19.26 O HETATM 42 O HOH 55 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 57 45.912 35.775 44.744 1.00 33.50 O HETATM 46 O HOH 58 60.247 -2.880 41.919 1.00 45.85 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 48 O HOH 67 48.35.741 32.691 23.517 1.00 34.15 O HETATM 48 O HOH 69 64.974 6.086 24.501 1.00 35.72 O HETATM 48 O HOH 69 64.974 6.086 24.501 1.00 35.72 O HETATM 50 O HOH 65 50.888 40.183 1.00 35.72 O HETATM 50 O HOH 65 50.888 40.183 1.00 35.72 O HETATM 51 O HOH 65 50.888 40.00 20.77 O HETATM 50 O HOH 65 50.888 40.00 20.77 O HETATM 50 O	5	HETATM	14	0	нон	16	61.029 -11.560 29.131 1.00	21.24 0
HETATM 17 O HOH 19 57.856 -16.398 25.085 1.00 22.86 O HETATM 18 O HOH 20 3B.979 26.536 19.070 1.00 21.08 O HETATM 19 O HOH 21 39.042 33.487 21.909 1.00 19.01 O HETATM 20 O HOH 24 3B.172 35.775 20.827 1.00 33.46 O HETATM 21 O HOH 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOH 26 54.205 19.360 28.396 1.00 35.76 O HETATM 23 O HOH 26 54.205 19.360 28.396 1.00 35.76 O HETATM 23 O HOH 28 69.692 19.108 38.979 1.00 49.77 O HETATM 24 O HOH 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O HOH 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 27 O HOH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.27 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 36 O HOH 47 75.597 16.422 37.837 1.00 19.26 O HETATM 37 O HOH 48 31.342 1.064 43.868 1.00 22.11 O HETATM 38 O HOH 47 75.608 31.394 38.364 1.00 22.11 O HETATM 39 O HOH 47 75.095 31.461 33.995 1.00 19.26 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 40 O HOH 53 52.880 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 46.07 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 35.57 O HETATM 40 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 40 O HOH 60 55 50.888 40.154 36.463 1.00 38.35 O HETATM 40 O HOH 60 55 50.888 40.154 36.463 1.00 35.55 O HETATM 40 O HOH 61 52.003 40.313 37.336 1.00 35.57 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 35.57 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 35.57 O HETATM 50 O HOH 65 50.888 4		HETATM	15	0	нон	17	50.684 5.881 10.130 1.00	15.88 0
NETAIN 18		HETATM	16	0	нон	18	64.506 -6.302 32.989 1.00	21.05 0
10 HETATM 19 O HOR 21 38.042 33.487 21.909 1.00 19.01 O HETATM 20 O HOR 24 38.172 35.775 20.827 1.00 33.46 O HETATM 21 O HOR 25 70.916 -11.128 15.244 1.00 31.37 O HETATM 22 O HOR 26 54.205 19.360 28.996 1.00 35.76 O HETATM 22 O HOR 26 54.205 19.360 28.996 1.00 35.76 O HETATM 23 O HOR 27 50.436 2.654 16.783 1.00 12.25 O HETATM 24 O HOR 28 69.692 13.108 38.979 1.00 49.77 O HETATM 25 O HOR 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 26 O HOR 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOR 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOR 32 37.887 26.373 28.058 1.00 18.09 O 20 HETATM 29 O HOR 33 49.201 11.173 26.867 1.00 33.95 O HETATM 31 O HOR 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOR 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOR 37 46.834 14.396 40.819 1.00 46.02 O HETATM 33 O HOR 36 66.827 11.202 28.929 1.00 13.23 O HETATM 35 O HOR 42 70.597 16.422 37.837 1.00 26.668 O HETATM 36 O HOR 47 56.085 31.403 38.355 1.00 17.32 O HETATM 39 O HOR 46 53.480 13.394 38.364 1.00 20.19 O 30 HETATM 39 O HOR 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOR 48 35.741 32.691 23.517 1.00 19.26 O HETATM 40 O HOR 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOR 53 52.837 1.00 33.955 1.00 17.32 O HETATM 40 O HOR 48 35.741 32.691 23.517 1.00 33.50 O HETATM 40 O HOR 55 52.837 1.03 49.51 1.00 34.15 O HETATM 41 O HOR 53 52.837 1.00 34.15 O HETATM 41 O HOR 55 52.837 1.6344 19.587 1.00 33.50 O HETATM 41 O HOR 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 42 O HOR 55 52.837 -16.344 19.587 1.00 34.15 O HETATM 45 O HOR 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 49 O HOR 60 64.974 60.986 24.501 1.00 37.16 O HETATM 49 O HOR 61 52.103 4.683 4.938 1.00 38.35 O HETATM 49 O HOR 66 55.58.409 23.769 45.517 1.00 58.42 O HETATM 51 O HOR 63 44.373 31.233 37.336 1.00 35.72 O HETATM 51 O HOR 63 54.373 37.755 42.551 1.00 34.16 O HETATM 51 O HOR 65 50.889 40.154 36.463 1.00 38.35		HETATM	17	0	НОН	19	57.856 -16.398 25.085 1.00	22.86 0
HETATM 20 0 HOH 24 38.172 35.775 20.827 1.00 33.46 0 HETATM 21 0 HOH 25 70.916 -11.128 15.244 1.00 31.37 0 HETATM 22 0 HOR 26 54.205 19.360 28.396 1.00 35.76 0 HETATM 23 0 HOH 27 50.435 2.654 16.783 1.00 12.25 0 HETATM 24 0 HOH 28 69.692 19.108 38.979 1.00 49.77 0 HETATM 25 0 HOH 29 56.432 -8.877 19.303 1.00 22.52 0 HETATM 26 0 HOH 30 60.832 3.415 42.349 1.00 17.39 0 HETATM 27 0 HOH 31 53.889 -12.706 29.764 1.00 22.40 0 HETATM 28 0 HOH 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 30 0 HOH 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 31 0 HOH 34 46.762 -0.278 31.394 1.00 12.39 0 HETATM 31 0 HOH 35 41.731 27.568 43.302 1.00 27.39 0 HETATM 33 0 HOH 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 33 0 HOH 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 36 0 HOH 38 61.342 1.064 43.868 1.00 26.68 0 HETATM 37 0 HOH 44 72.275 -9.089 33.407 1.00 22.11 0 HETATM 38 0 HOH 45 42.685 34.461 33.955 1.00 17.32 0 HETATM 39 0 HOH 45 42.685 34.461 33.955 1.00 17.32 0 HETATM 39 0 HOH 47 56.085 21.757 44.744 1.00 33.50 0 HETATM 40 0 HOH 48 35.741 32.691 23.517 1.00 33.50 0 HETATM 41 0 HOH 48 35.741 32.691 23.517 1.00 33.50 0 HETATM 41 0 HOH 48 35.741 32.691 23.517 1.00 34.16 0 HETATM 43 0 HOH 55 42.685 34.461 33.955 1.00 17.32 0 HETATM 41 0 HOH 48 35.741 32.691 23.517 1.00 33.50 0 HETATM 41 0 HOH 48 35.741 32.691 23.517 1.00 33.55 0 HETATM 41 0 HOH 59 40.458 35.700 34.312 1.00 34.15 0 HETATM 42 0 HOH 55 42.685 34.461 13.955 1.00 31.55 0 HETATM 45 0 HOH 57 45.912 35.170 34.132 1.00 34.15 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 25.92 0 HETATM 48 0 HOH 57 45.912 35.170 34.131 1.00 33.55 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 0 HOH 50 75.440 7.267 29.948 1.00 31.55 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 0 HOH 60 64.974 6.086 24.501 1.00 33.55 0 HETATM 50 0 HOH 65 54.974 6.086 24.501 1.00 35.72 0 HETATM 50 0 HOH 65 55.6409 23.769 45.517 1.00 38.35 0 HETATM 50 0 HOH 65 59.888 40.154 36.463 1.00 38.35 0 HETATM 50 0 HOH 65 59.888 40.154 36.463 1.00 38.35 0		HETATM	18	0	нон	20	38.979 26.536 19.070 1.00	21.08 0
HETATM 21 0 HOH 25 70.916 -11.128 15.244 1.00 31.37 0 HETATM 22 0 HOH 26 54.205 19.360 28.396 1.00 35.76 0 HETATM 23 0 HOH 27 50.436 2.654 16.783 1.00 12.25 0 HETATM 24 0 HOH 28 69.692 19.108 38.979 1.00 49.77 0 HETATM 25 0 HOH 29 56.432 -8.877 19.303 1.00 22.52 0 HETATM 27 0 HOH 30 50.832 3.415 42.349 1.00 17.39 0 HETATM 27 0 HOH 31 53.889 -12.706 29.764 1.00 22.40 0 HETATM 28 0 HOH 32 37.887 26.373 28.058 1.00 18.09 0 HETATM 29 0 HOH 33 49.201 11.173 26.867 1.00 33.95 0 HETATM 30 0 HOH 34 46.762 -0.278 31.394 1.00 27.39 0 HETATM 31 0 HOH 35 41.731 27.568 43.302 1.00 27.39 0 HETATM 32 0 HOH 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 33 0 HOH 36 66.827 11.202 28.929 1.00 13.23 0 HETATM 35 0 HOH 38 61.342 1.064 43.868 1.00 26.68 0 HETATM 37 0 HOH 44 72.275 -9.089 33.407 1.00 27.11 0 HETATM 37 0 HOH 45 42.685 34.461 33.955 1.00 17.32 0 HETATM 39 0 HOH 46 53.480 13.394 38.364 1.00 20.19 0 HETATM 40 0 HOH 48 35.741 32.691 23.517 1.00 19.49 0 HETATM 41 0 HOH 45 42.885 34.461 33.955 1.00 17.32 0 HETATM 40 0 HOH 48 35.741 32.691 23.517 1.00 19.49 0 HETATM 41 0 HOH 53 52.837 16.422 37.837 1.00 19.49 0 HETATM 41 0 HOH 45 42.885 34.461 33.955 1.00 17.32 0 HETATM 41 0 HOH 45 42.885 34.461 33.955 1.00 17.32 0 HETATM 41 0 HOH 45 42.885 34.461 33.955 1.00 17.32 0 HETATM 41 0 HOH 45 42.885 34.461 33.955 1.00 17.32 0 HETATM 41 0 HOH 45 40.485 36.700 34.312 1.00 34.53 0 HETATM 42 0 HOH 53 52.837 -16.344 19.587 1.00 34.53 0 HETATM 43 0 HOH 51 47.476 18.347 20.851 1.00 34.15 0 HETATM 46 0 HOH 57 45.912 35.170 36.133 1.00 35.55 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 0 HOH 57 45.912 35.170 36.133 1.00 35.55 0 HETATM 48 0 HOH 61 52.103 4.683 4.978 1.00 35.72 0 HETATM 50 0 HOH 61 52.0888 40.154 1.00 31.91 0 HETATM 50 0 HOH 61 52.103 4.688 40.958 1.00 37.72 0 HETATM 50 0 HOH 62 54.974 6.086 24.501 1.00 37.16 0 HETATM 50 0 HOH 62 50.888 40.554 40.5551 1.00 37.16 0 HETATM 50 0 HOH 65 50.888 40.554 45.557 1.00 38.35 0 HETATM 50 0 HOH 65 50.888 40.554 45.557 1.00 58.42 0	10	HETATM	19	٥	нон	21	38.042 33.487 21.909 1.00	19.01 0
HETATM 22 O HOH 26 54.205 19.360 28.396 1.00 35.76 O HETATM 23 O HOH 27 50.436 2.654 16.783 1.00 12.25 O HETATM 24 O HOH 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O HOH 30 60.832 3.415 42.349 1.00 27.52 O HETATM 26 O HOH 30 60.832 3.415 42.349 1.00 27.39 O HETATM 27 O HOH 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 27.39 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 33 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 36 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 19.26 O HETATM 37 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 46 33.57.41 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 41 O HOH 53 47.685 34.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 55 46.415 9.073 20.914 1.00 33.95 O HETATM 41 O HOH 55 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 51 47.76 18.347 20.851 1.00 34.53 O HETATM 43 O HOH 55 46.415 9.073 20.108 1.00 34.55 O HETATM 46 O HOH 57 45.912 35.710 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 57 45.912 35.770 36.133 1.00 35.55 O HETATM 49 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 61 52.103 4.688 40.151 1.00 33.150 O HETATM 49 O HOH 61 52.103 4.688 40.151 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.643 1.00 25.72 O HETATM 50 O HOH 62 50.888 40.154 36.643 1.00 25.72 O HETATM 50 O HOH 63 54.333 37.369 45.517 1.00 35.72 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 35.72 O HETATM 50 O HOH 65 55.8409 23.769 45.517 1.00 58.42 O		HETATM	20	0	нон	24	38.172 35.775 20.827 1.00	33.46 0
HETATM 23 O HOH 27 50.436 2.654 16.783 1.00 12.25 O HETATM 24 O HOH 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O HOH 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 26 O HOH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOH 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 30 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 31 O HOH 38 61.342 1.054 43.868 1.00 26.68 O HETATM 36 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 41 O HOH 49 40.458 36.700 34.315 1.00 19.49 O HETATM 42 O HOH 55 75.440 7.267 29.948 1.00 19.45 HETATM 43 O HOH 57 45.6085 21.757 44.744 1.00 33.50 O HETATM 44 O HOH 59 40.458 36.700 34.312 1.00 24.16 O HETATM 47 O HOH 59 40.458 36.700 34.312 1.00 34.16 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 34.16 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 56 50.75.440 7.267 29.948 1.00 34.16 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 48 O HOH 56 50.75.440 7.267 29.948 1.00 35.75 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 60 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 67 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 67 57 45.912 35.170 36.133 1.00 35.55 O HETATM 50 O HOH 66 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O HOH 66 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O HOH 66 55 58.409 23.769 45.517 1.00 58.42 O		HETATM	21	٥	нон	25	70.916 -11.128 15.244 1.00	31.37 0
15 HETATM 24 O ROH 28 69.692 19.108 38.979 1.00 49.77 O HETATM 25 O ROH 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 26 O ROH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O ROH 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O ROH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O ROH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O ROH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O ROH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O ROH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O ROH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O ROH 36 61.342 1.064 43.868 1.00 26.68 O HETATM 36 O ROH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 37 O ROH 42 70.597 16.422 37.837 1.00 19.26 HETATM 38 O ROH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 39 O ROH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O ROH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O ROH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 41 O ROH 55 5.440 7.267 29.948 1.00 34.16 O HETATM 45 O ROH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O ROH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O ROH 58 60.247 -2.880 41.919 1.00 25.92 O HETATM 48 O ROH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 25.92 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 50 O ROH 66 57.888 40.154 36.463 1.00 38.155 O HETATM 49 O ROH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 50 O ROH 66 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O ROH 67 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O ROH 68 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O ROH 66 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O ROH 66 57.280 27.757 42.451 1.00 20.07 O HETATM 50 O ROH 66 57.280 27.757 42.451 1.00 20.07 O		HETATM	22	0	нон	26	54.205 19.360 28.396 1.00	35.76 0
HETATM 25 O HOH 29 56.432 -8.877 19.303 1.00 22.52 O HETATM 26 O HOH 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOH 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 31 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O 25 HETATM 34 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 38 O HOH 45 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.53 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 34.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 52 40.458 36.700 34.312 1.00 34.53 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 49 O HOH 59 75.440 7.267 29.948 1.00 18.07 O HETATM 49 O HOH 51 47.476 18.347 20.851 1.00 34.53 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 54.373 31.233 37.336 1.00 35.72 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 34.74 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 65 50.888 40.154		HETATM	23	0	нон	27	50.436 2.654 16.783 1.00	12.25 0
HETATM 25 O HOR 30 60.832 3.415 42.349 1.00 17.39 O HETATM 27 O HOH 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOR 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 33 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOR 45 42.685 34.461 33.955 1.00 17.32 O HETATM 39 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 34.53 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.55 O HETATM 45 O HOH 57 45.912 23.717 30.019.19 C HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 55 46.415 9.073 20.108 1.00 34.55 O HETATM 49 O HOH 52 50.888 40.154 3.512 1.00 34.55 O HETATM 49 O HOH 52 60.924 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 59 60.447 -2.880 41.919 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.55 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 54.373 31.233 37.336 1.00 35.72 O HETATM 50 O HOH 65 55.880 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07	15	HETATM	24	0	нон	28	69.692 19.108 38.979 1.00	49.77 0
HETATM 27 O HOM 31 53.889 -12.706 29.764 1.00 22.40 O HETATM 28 O HOM 32 37.887 26.373 28.058 1.00 18.09 O HETATM 29 O HOM 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOM 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOM 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOM 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOM 37 46.834 14.396 40.819 1.00 46.02 O HETATM 35 O HOM 38 61.342 1.064 43.868 1.00 26.68 O HETATM 36 O HOM 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOM 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 38 O HOM 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOM 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOM 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOM 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOM 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOM 51 47.476 18.347 20.851 1.00 34.16 O HETATM 45 O HOM 55 46.415 30.973 20.108 1.00 32.16 O HETATM 48 O HOM 55 46.415 30.973 20.108 1.00 32.16 O HETATM 48 O HOM 57 45.912 35.170 36.133 1.00 32.16 O HETATM 48 O HOM 66 54.474 6.086 24.501 1.00 33.72 O HETATM 48 O HOM 57 45.912 35.170 36.133 1.00 35.72 O HETATM 51 O HOM 62 50.888 40.154 36.463 1.00 38.35		HETATM	25	٥	HOH	29	56,432 -8.877 19.303 1.00	22.52 O
#ETATM 28 O HOH 32 37.887 26.373 28.058 1.00 18.09 O HETATH 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATH 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 34 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 48 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07 O HETATM 50 O HOH 65 57.280 27.757 42.451 1.00 21.74 O HETATM 50 O HOH 65 50.888 40.154 36.463 1.00 20.07 O HETATM 50 O HOH 65 50.888 40.154 36.40		HETATM	26	0	нон	30	60.832 3.415 42.349 1.00	17.39 0
20 HETATM 29 O HOH 33 49.201 11.173 26.867 1.00 33.95 O HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 35 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 37 O HOH 45 42.695 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 45 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.72 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 38.35 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 25.92 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 36.55 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 33.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 30.372 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 O		HETATM	27	0	нон	31	53.889 -12.706 29.764 1.00	22.40 O
HETATM 30 O HOH 34 46.762 -0.278 31.394 1.00 20.63 O HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 45 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 57 45.912 35.170 36.133 1.00 35.72 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 69 40.458 36.700 36.133 1.00 35.55 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 35.72 O HETATM 48 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 63 57.280 27.757 42.451 1.00 21.74 O HETATM 52 O HOH 63 58.409 23.769 45.517 1.00 58.42 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	28	٥	HOH	32	37.887 26.373 28.058 1.00	18.09 0
HETATM 31 O HOH 35 41.731 27.568 43.302 1.00 27.39 O HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O EXAMPLE 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 45 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 49 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 48 O HOH 67 50 60.86 24.501 1.00 32.16 O HETATM 48 O HOH 67 50 60.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 38.35 O HETATM 51 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 O	20	HETATM	29	0	нон	33	49.201 11.173 26.867 1.00	33.95 o
HETATM 32 O HOH 36 66.827 11.202 28.929 1.00 13.23 O HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O 25 HETATM 34 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 35.75 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 O		HETATM	30	0	нон	34	46.762 -0.278 31.394 1.00	20.63 O
HETATM 33 O HOH 37 46.834 14.396 40.819 1.00 46.02 O HETATM 34 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 50 O HOH 64 57.280 27.757 42.451 1.00 20.07		HETATM	31.	0	нон	35	41.731 27.568 43.302 1.00	27.39 0
25 HETATM 34 O HOH 38 61.342 1.064 43.868 1.00 26.68 O HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 O		HETATM	32	0	нон	36	66.827 11.202 28.929 1.00	13.23 0
HETATM 35 O HOH 42 70.597 16.422 37.837 1.00 19.26 O HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 O HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 O HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 48 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 32.16 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 O		HETATM	33	0	НОН	3.7	46.834 14.396 40.819 1.00	46.02 O
HETATM 36 O HOH 44 72.275 -9.089 33.407 1.00 22.11 0 HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 0 HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 0 30 HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 0 HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 0 HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 0 HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 0 HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 0 35 HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 0 HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 0 HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 0 HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 0 HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 0 HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 0 HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 0 HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 0	25	HETATM	34	0	нон	38	61,342 1.064 43.868 1.00	26.68 Q
HETATM 37 O HOH 45 42.685 34.461 33.955 1.00 17.32 CO HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 CO HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 CO HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 CO HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 CO HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 CO HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 CO HETATM 45 O HOH 53 52.837 -16.344 19.587 1.00 25.92 CO HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 CO HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 CO HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 CO HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 CO HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 CO HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 CO HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 CO HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 CO		HETATM	35	٥	HOH	42	70,597 16,422 37,837 1.00	19.26 0
HETATM 38 O HOH 46 53.480 13.394 38.364 1.00 20.19 O HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O STANDARD 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 49 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 50 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	36	0	HOH	44	72,275 -9.089 33,407 1.00	22.11 0
30 HETATM 39 O HOH 47 56.085 21.757 44.744 1.00 33.50 O HETATM 40 O HOH 48 35.741 32.691 23.517 1.00 19.49 O HETATM 41 O HOH 49 40.458 36.700 34.312 1.00 34.53 O HETATM 42 O HOH 50 75.440 7.267 29.948 1.00 18.07 O HETATM 43 O HOH 51 47.476 18.347 20.851 1.00 34.16 O HETATM 45 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	37	0	НОН	45	42.685 34.461 33.955 1.00	17.32 0
HETATM 40 0 HOH 48 35.741 32.691 23.517 1.00 19.49 HETATM 41 0 HOH 49 40.458 36.700 34.312 1.00 34.53 HETATM 42 0 HOH 50 75.440 7.267 29.948 1.00 18.07 HETATM 43 0 HOH 51 47.476 18.347 20.851 1.00 34.16 35 HETATM 44 0 HOH 53 52.837 -16.344 19.587 1.00 25.92 HETATM 45 0 HOH 55 46.415 9.073 20.108 1.00 31.91 HETATM 46 0 HOH 57 45.912 35.170 36.133 1.00 35.55 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 HETATM 48 0 HOH 60 64.974 6.086 24.501 1.00 32.16 40 HETATM 49 0 HOH 61 52.103 4.683 4.978 1.00 35.72 HETATM 50 0 HOH 62 50.888 40.154 36.463 1.00 38.35 HETATM 51 0 HOH 63 44.373 31.233 37.336 1.00 20.07 HETATM 52 0 HOH 64 57.280 27.757 42.451 1.00 21.74 HETATM 53 0 HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	38	0	нон	46	53,480 13,394 38,364 1.00	20.19 0
HETATM 41 0 HOH 49 40.458 36.700 34.312 1.00 34.53 0 HETATM 42 0 HOH 50 75.440 7.267 29.948 1.00 18.07 0 HETATM 43 0 HOH 51 47.476 18.347 20.851 1.00 34.16 0 35 HETATM 44 0 HOH 53 52.837 -16.344 19.587 1.00 25.92 0 HETATM 45 0 HOH 55 46.415 9.073 20.108 1.00 31.91 0 HETATM 46 0 HOH 57 45.912 35.170 36.133 1.00 35.55 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 0 HOH 60 64.974 6.086 24.501 1.00 32.16 0 HETATM 49 0 HOH 61 52.103 4.683 4.978 1.00 35.72 0 HETATM 50 0 HOH 62 50.888 40.154 36.463 1.00 38.35 0 HETATM 51 0 HOH 63 44.373 31.233 37.336 1.00 20.07 0 HETATM 52 0 HOH 64 57.280 27.757 42.451 1.00 21.74 0 HETATM 53 0 HOH 65 58.409 23.769 45.517 1.00 58.42	30	HETATM	39	0	нон	47	56.085 21.757 44.744 1.00	33.50 0
HETATM 42 0 HOH 50 75.440 7.267 29.948 1.00 18.07 0 HETATM 43 0 HOH 51 47.476 18.347 20.851 1.00 34.16 0 35 HETATM 44 0 HOH 53 52.837 -16.344 19.587 1.00 25.92 0 HETATM 45 0 HOH 55 46.415 9.073 20.108 1.00 31.91 0 HETATM 46 0 HOH 57 45.912 35.170 36.133 1.00 35.55 0 HETATM 47 0 HOH 58 60.247 -2.880 41.919 1.00 16.85 0 HETATM 48 0 HOH 60 64.974 6.086 24.501 1.00 32.16 0 HETATM 49 0 HOH 61 52.103 4.683 4.978 1.00 35.72 0 HETATM 50 0 HOH 62 50.888 40.154 36.463 1.00 38.35 0 HETATM 51 0 HOH 63 44.373 31.233 37.336 1.00 20.07 0 HETATM 52 0 HOH 64 57.280 27.757 42.451 1.00 21.74 0 HETATM 53 0 HOH 65 58.409 23.769 45.517 1.00 58.42 0		HETATM	40	0	нон	48	35.741 32.691 23.517 1.00	19.49 0
HETATM 43 O HOH 51 47,476 18.347 20.851 1.00 34.16 O HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 O HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	41	0	НОН	49	40.458 36.700 34.312 1.00	34.53 O
35 HETATM 44 O HOH 53 52.837 -16.344 19.587 1.00 25.92 CHETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 CHETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 CHETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 CHETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 CHETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 CHETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 CHETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 CHETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 CHETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	42	0	HOH	50	75.440 7.267 29.948 1.00	18.07 0
HETATM 45 O HOH 55 46.415 9.073 20.108 1.00 31.91 O HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 O HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 O HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 O HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 O HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 O HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 O HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 O HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42		HETATM	43	<u> </u>	HOH	51	47,476 18.347 20.851 1.00	34.16 0
HETATM 46 O HOH 57 45.912 35.170 36.133 1.00 35.55 C HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 C HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 C HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 C HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 C HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 C HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 C HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 C	35	HETATM	44	0	нон	53	52.837 -16.344 19.587 1.00	25.92 o
HETATM 47 O HOH 58 60.247 -2.880 41.919 1.00 16.85 C HETATM 48 O HOH 60 64.974 6.086 24.501 1.00 32.16 C 40 HETATM 49 O HOH 61 52.103 4.683 4.978 1.00 35.72 C HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 C HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 C HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 C HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 C		HETATM	45	Q	нон	55	46.415 9.073 20.108 1.00	31.91 0
HETATM 48 0 HOH 60 64.974 6.086 24.501 1.00 32.16 CONTROL 100 100 100 100 100 100 100 100 100 10		HETATM	46	0	нон	57		35.55 0
40 HETATM 49 0 HOH 61 52.103 4.683 4.978 1.00 35.72 C HETATM 50 0 HOH 62 50.888 40.154 36.463 1.00 38.35 C HETATM 51 0 HOH 63 44.373 31.233 37.336 1.00 20.07 C HETATM 52 0 HOH 64 57.280 27.757 42.451 1.00 21.74 C HETATM 53 0 HOH 65 58.409 23.769 45.517 1.00 58.42 C		HETATM	47	0	нон	58	60.247 -2.880 41.919 1.00	16.85 O
HETATM 50 O HOH 62 50.888 40.154 36.463 1.00 38.35 C HETATM 51 O HOH 63 44.373 31.233 37.336 1.00 20.07 C HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 C HETATM 53 O HOH 65 58.409 23.769 45.517 1.00 58.42 C		HETATM	48	0	нон	60	64.974 6.086 24.501 1.00	32.16 0
HETATM 51 0 HOH 63 44.373 31.233 37.336 1.00 20.07 C HETATM 52 0 HOH 64 57.280 27.757 42.451 1.00 21.74 C HETATM 53 0 HOH 65 58.409 23.769 45.517 1.00 58.42 C	40	HETATM	49	ڡ	нон	61	52.103 4.683 4.978 1.00	35.72 o
HETATM 52 O HOH 64 57.280 27.757 42.451 1.00 21.74 C		HETATM	50	0	нон	62	50.888 40.154 36.463 1.00	38.35 0
HETATM 53 O HOH 65 58,409 23,769 45,517 1,00 58,42 C		HETATM	51	0	нон	63	44.373 31.233 37.336 1.00	20.07 0
		HETATM	52	0	нон	64	57.280 27.757 42.451 1.00	21.74 0
45 HETATM 54 O HOH 66 68.690 -11.764 35.335 1.00 57.07 C		HETATM	53	0	нон	65	58,409 23,769 45,517 1,00	58.42 0
	45	HETATM	54	0	нон	66	68.690 -11.764 35.335 1.00	57.07 0

WO 99/64618

	HETATM 55	0	нон	67	42.746 25.153	23.465 1.00 27.05	0
	HETATM 56	0_	нон	68	53.638 -16.457	32.292 1.00 31.71	0
	HETATM 57	0_	нон	69	33.390 41.716	31.408 1.00 29.92	0
	HETATM 58	0	нон	70	57.768 17.897	42.434 1.00 25.75	0
5	нетатм 59	0	нон	71	75.647 9.164	11.766 1.00 35.13	0
	нетатм 60	0	нон	72	62.032 33.292	44.749 1.00 46.18	0
	нетатм 61	0	нон	73	47.310 14.312	34.285 1.00 31.18	0
	нетатм 62	0	нон	74	79,660 -3.947	15.913 1.00 34.63	0
	HETATM 63	0_	нон	75	46.929 5.343	4.550 1.00 23.14	0
10	HETATM 64	0	нон	76	73.475 12.039	28.412 1.00 27.26	0
	HETATM 65	0_	нон	77	46.297 -6.982	30.032 1.00 43.41	0
	HETATM 66	0	нон	78	68.528 -3.422	40.869 1.00 38.47	<u> </u>
	HETATM 67	0	нон	79	62.080 -1.448	42.803 1.00 24.60	0
	HETATM 68	0	нон	80	65.330 18.150	40.726 1.00 41.00	0
15	HETATM 69	0	нон	81	51.775 16.128	37,607 1.00 25.11	0
	HETATM 70	0	нон	83	54.266 28.682	43.313 1.00 27.61	0
	HETATM 71	0	нон	85	73.291 -15.479	20.603 1.00 37.54	0
	HETATM 72	0	нон	86	34.760 21.479	28.544 1.00 43.87	o
	HETATM 73	0_	нон	87	37.326 24.131	29.677 1.00 24.47	0
20	HETATM 74	0	нон	88	65.168 20.148	6.735 1.00 26.10	0
	HETATM 75	0	НОН	89	59.196 12.089	13.630 1.00 25.24	0
	HETATM 76	0	нон	91	66,576 -6.235	40.279 1.00 43.11	0
	HETATM 77		нон	93	37.339 29.394	25.515 1.00 27.56	o
	HETATM 78	0	нон	94	52.339 -17.014	42.271 1.00 48.96	0
25	HETATM 79	0_	нон	95	40.511 32.927	31.717 1.00 22.46	0
	HETATM 80	0	нон	96	78.580 13.121	34.138 1.00 27.98	
	HETATM 81		HOH	97	65.090 15.704	34.876 1.00 18.96	0
	HETATM 82	0	нон	99	84.562 2.951	27.181 1.00 35.92	<u>Q</u>
20	HETATM 83		нон	100	50.386 9.761	9.646 1.00 23.18	0
30	HETATM 84	<u> </u>	нон	101	67.649 -0.851	38,764 1.00 24.99	<u>Q</u>
	HETATM 85		HOH	102	44.001 4.293	34,315 1.00 31.13	0
	HETATM 86	<u> </u>	HOH	103	59.386 -5.071	26.211 1.00 29.10	0
	HETATM 87	<u> </u>	нон	104	77,364 4,745	41.506 1.00 35.32	
35	HETATM 88		нон	105	59.034 21.201	32.414 1.00 23.43	
33	HETATM 89	0_	HOH	106	42,463 34,698	14.327 1.00 38.86 20.864 1.00 42.39	0
	HETATM 90		HOH	107			
	HETATM 91		HOH	108	76.999 8.130		
	HETATM 92	<u> </u>	HOH	109	49.766 29.937	22.173	0
40	HETATM 93	0	HOH	110	72.473 13.536		
70	HETATM 94		HOH	111	64.328 -12.084		0
	HETATM 95	0	HOH	112	60.161 16.382 47.602 13.639	42.682 1.00 35.68 27.016 1.00 26.01	0
	HETATM 96	0	HOH	113		40.107 1.00 30.33	0
	HETATM 97		HOH	115	61 221 -15 137	27.255 1.00 38.76	0
45	HETATM 98		HOH	116	61.231 -15.137	35.098 1.00 30.45	0
J	HETATM 99	Ų	нон	117	65,324 -11,223	33.030 1.00 30.45	

84

		84	
	HETATM 100 O HOH 119	56.602 17.219 44.932 1.00 36.53	0
	HETATM 101 O HOH 120	37.564 19.860 23.135 1.00 31.27	0
	HETATM 102 O HOH 121	64.845 5.057 21.132 1.00 45.57	0
	HETATM 103 O HOH 123	63.391 16.801 26.898 1.00 38.46	0
5	HETATM 104 O HOH 124	42.567 6.134 32.635 1.00 31.56	0
	HETATM 105 O HOH 125	72.485 13.236 35.059 1.00 29.61	0
	HETATM 106 O HOH 126	65.229 3.650 44.032 1.00 36.86	0
	HETATM 107 O HOH 127	37.089 7.148 31.083 1.00 39.58	0
	HETATM 108 O HOH 128	73.327 10.546 12.123 1.00 34.97	0
10	HETATM 109 O HOH 129	74.450 10.299 26.598 1.00 30.80	0
	HETATM 110 AO5* NDP A 1	67.524 13.055 26.692 1.00 36.42	0
	HETATM 111 AC5* NDP A 1	68.089 12.297 25.614 1.00 9.30	с
	HETATM 112 AC4* NDP A 1	69.601 12.124 25.858 1.00 27.73	<u>C</u>
	HETATM 113 A04* NDP A 1	70.193 11.258 24.848 1.00 22.87	0
15	HETATM 114 AC3* NDP A 1	70.484 13.390 25.873 1.00 17.83	С
	HETATM 115 A03* NDP A 1	71.192 13.436 27.066 1.00 16.11	0
	HETATM 116 AC2* NDP A 1	71.373 13.220 24.626 1.00 11.46	
	HETATM 117 A02* NDP A 1	72.623 13.886 24.655 1.00 31.96	0
	HETATM 118 AC1* NDP A 1	71.510 11.702 24.656 1.00 19.02	c
20	HETATM 119 03 NDP A 1	65.336 13.590 26.129 1.00 20.59	o
	HETATM 120 NO5* NDP A 1	63.536 11.943 26.448 1.00 28.99	0
	HETATM 121 NC5* NDP A 1	64.328 10.843 25.957 1.00 24.89	С
	HETATM 122 NC4* NDP A 1	63.467 9.646 25.686 1.00 31.79	c
	HETATM 123 NO4* NDP A 1	62.837 9.337 26.908 1.00 28.82	0
25	HETATM 124 NC3* NDP A 1	62.340 9.837 24.665 1.00 11.50	с
	HETATM 125 NO3* NDP A 1	62.891 9.402 23.461 1.00 28.60	0
	HETATM 126 NC2* NDP A 1	61.152 8.996 25.138 1.00 28.11	С
	HETATM 127 NO2* NDP A 1	60.881 7.662 24.715 1.00 24.30	0
	HETATM 128 NC1* NDP A 1	61.547 8.875 26.580 1.00 35.35	С
30	HETATM 129 AP2* NDP A 1	73.104 15.069 23.823 1.00 32.96	P
	HETATM 130 AOP1 NDP A 1	74,500 15,308 24,308 1,00 37,84	
	HETATM 131 AOP2 NDP A 1	72.797 14.925 22.348 1.00 36.66	0
	HETATM 132 AOP3 NDP A 1	72,163 16,217 23,958 1,00 31,97	0
	HETATM 133 AP NDP A 1	66,660 14,257 26,393 1.00 26,17	XX
35	HETATM 134 AO1 NDP A 1	66.886 14.795 25.047 1.00 15.31	XX
	HETATM 135 AO2 NDP A 1	66.439 15.207 27.521 1.00 34.39	XX
	HETATM 136 AN9 NDP A 1	71.820 11.224 23.353 1.00 13.63	XX
	HETATM 137 ACS NDP A 1	71.104 11.316 22.200 1.00 12.41	XX
	HETATM 138 ANT NDP A 1	71.758 10.835 21.161 1.00 15.71	XX
40	HETATM 139 AC5 NDP A 1	72.933 10.313 21.710 1.00 16.17	XX
	HETATM 140 AC6 NDP A 1	74.053 9.657 21.140 1.00 31.35	XX
	HETATM 141 ANG NDP A 1	74.165 9.464 19.819 1.00 12.59	XX
		75.078 9.280 21.942 1.00 17.56	
			XX
45-	HETATM 143 AC2 NDP A 1	74.971 9.578 23.251 1.00 15.44	XX
43.	HETATM 144 ANS NDP A 1	74.027 10.302 23.889 1.00 24.82	XX

	HETATM 145 AC4 NDP A	_1_	73.036 10.653 23.047 1.00 17.48	xx
	HETATM 146 NP NDP A	_1_	64.183 13.106 27.191 1.00 25.47	_N
	HETATM 147 NO1 NDP A	_1	63.142 14.169 27.253 1.00 28.69	N
	HETATM 148 NO2 NDP A	_1_	64.837 12.643 28.492 1.00 24.32	N
5	HETATM 149 NN1 NDP A	1	60.598 9.775 27.109 1.00 23.63	N
	HETATM 150 NC2 NDP A	1	60.143 10.905 26.442-99.00 78.36	N
	HETATM 151 NC3 NDP A	1	59.070 11.648 27.007-99.00100.00	N
	HETATM 152 NC7 NDP A	_1_	58.497 13.017 26.528-99.00100.00	N
	HETATM 153 NO7 NDP A	_1_	59.358 13.703 25.972-99.00100.00	N
10	HETATM 154 NN7 NDP A	_1_	57.207 13,400 26,912-99,00 84,38	N
	HETATM 155 NC4 NDP A	_1	58.442 11.146 28.137-99.00100.00	N
	HETATM 156 NC5 NDP A	_1_	58.912 9.963 28.754-99.00100.00	N
	HETATM 157 NC6 NDP A	1	59.951 9.266 28.147-99.00100.00	N
	ATOM 158 N LYS A	3	76.227 -5.632 44.315 1.00 61.49	N
15	ATOM 159 CA LYS A	_ 3	76.152 -4.302 43.684 1.00 58.00	С
	ATOM 160 C LYS A	3	75.985 -4.421 42.171 1.00 52.79	С
	ATOM 161 O LYS A	3	76.921 -4.737 41.419 1.00 44.76	0
	ATOM 162 CB LYS A	3	77.359 -3.417 44.030 1.00 59.74	
	ATOM 163 CG LYS A	3	77.011 -1.944 44.314 1.00 50.87	С
20	ATOM 164 CD LYS A	3	78.208 -1.161 44.894 1.00 61.21	С
	ATOM 165 CE LYS A	3	77.855 -0.377 46.186 1.00100.00	С
	ATOM 166 NZ LYS A	3	78.857 ~0.401 47.343 1.00 70.61	N
	ATOM 167 N GLN A	_4_	74.746 -4.242 41.747 1.00 45.15	N
	ATOM 168 CA GLN A	4	74.408 -4.326 40.347 1.00 37.18	С
25	ATOM 169 C GLN A	4_	74.983 -3.166 39.561 1.00 34.93	С
	ATOM 170 O GLN A	4	75.127 -2.050 40.087 1.00 28.48	0
	ATOM 171 CB GLN A	4	72.915 -4.445 40.221 1.00 34.65	<u>C</u>
	ATOM 172 CG GLN A	4	72.456 -5.854 40.584 1.00 31.82	С
	ATOM 173 CD GLN A	4	72.570 -6.788 39.405 1.00 79.25	С
30	ATOM 174 OE1 GLN A	4	72.165 -6.452 38.286 1.00100.00	0
	ATOM 175 NE2 GLN A	4	73.206 -7.925 39.623 1.00 80.24	N
	ATOM 176 N ARG A	5	75.475 -3.495 38.375 1.00 27.16	N
	ATOM 177 CA ARG A	5	76.146 -2.546 37.483 1.00 39.16	c
	ATOM 178 C ARG A	5	75,191 -2,018 36,433 1.00 38,22	c
35	ATOM 179 O ARG A	_5_	74.938 -2.698 35.438 1.00 32.44	0
	ATOM 180 CB ARG A	5	77.398 -3.163 36.826 1.00 41.76	
	ATOM 181 CG ARG A	5	78.692 -2.954 37.663 1.00 37.34	Ç
	ATOM 182 CD ARG A	5	80.015 -3.236 36.876 1.00 32.99	c
	ATOM 183 NE ARG A	5	81.036 -2.203 37.125 1.00 25.71	N
40	ATOM 184 CZ ARG A	5	81.617 -1.488 36.169 1.00 32.53	
	ATOM 185 NH1 ARG A	5	81,293 -1.704 34.904 1.00 40.07	N
	ATOM 186 NH2 ARG A	5	82.516 -0.551 36.474 1.00100.00	N
	ATOM 187 N VAL A	_6_	74.743 -0.773 36.659 1.00 32.08	N
	ATOM 188 CA VAL A	6	73.715 -0.082 35.881 1.00 28.89	С
45	ATOM 189 C VAL A	6	74.161 1.021 34.897 1.00 29.37	С

	MOTA	190	0	VAL A	6	74.745	2.041	35.274	1.00 22.50	0
	ATOM	191	СВ	VAL A	6_	72.577	0.378	36.813	1.00 23.52	C
	MOTA	192	CG1	VAL A	6	71.366	0.960	36.006	1.00 20.29	C
	MOTA	193	CG2	VAL A	6	72.108	-0.852	37.644	1.00 18.45	c
5	MOTA	194	N_	PHE A	7	73.948	0.749	33.615	1.00 22.92	N
	MOTA	195	CA	PHE A	_ 7_	74.267	1.710	32.573	1.00 27.15	c
	ATOM	196	c	PHE A	7	72,975	2.423	32,192	1.00 20.24	C
	MOTA	197	0	PHE A	7	71.994	1,788	31.815	1.00 20.71	0
	MOTA	198	СВ	PHE A	7	74.864	1.004	31.374	1.00 18.98	с
10	ATOM	199	CG	PHE A		74.916	1.836	30.115	1.00 21.83	c
	MOTA	200	CD1	PHE A	7	75.521	3.087	30.108	1.00 19.36	c
	MOTA	201	CD2	PHE A	7	74.483	1.284	28.886	1.00 23.50	c
	MOTA	202	CE1	PHE A		75.614	3.828	28.902	1.00 27.52	<u>C</u>
	MOTA	203	CE2	PHE A	7	74.548	1.996	27.685	1.00 19.33	с
15	ATOM	204	CZ	PHE A		75.128	3.255	27.673	1.00 18.59	c
	MOTA	205	N	ILE A	8	72.959	3.727	32.454	1.00 18.75	N
	ATOM	206	CA	ILE A	8	71.844	4.588	32.112	1.00 14.25	<u>c</u>
	MOTA	207	_C	ILE A	8	72.337	5,351	30.909	1.00 11.22	с
	ATOM	208	0	ILE A	8	73,259	6.165	30.998	1.00 17.76	0
20	ATOM	209	СВ	ILE A	8	71.507	5.605	33.212	1.00 14.15	<u>c</u>
	MOTA	210	CG1	ILE A	8	71.356	4.949	34,582	1.00 8.24	<u>c</u>
	ATOM	211	CG2	ILE A	8	70.183	6.342	32.874	1.00 16.85	
	ATOM	212	CD1	ILE A	8	71.091	5.961	35,707	1.00 10.32	c
	MOTA	213	N_	ALA A	9_	71.896	4.906	29.752	1.00 16.42	и
25	ATOM	214	CA	ALA A	9	72.256	5,559	28.513	1.00 18.74	<u>C</u>
	ATOM	215	<u></u>	ALA A	9	71.530	6.913	28.511	1.00 28.45	<u>c</u>
	ATOM	216	0_	ALA A	9	70.411	7.032	29.045	1.00 22.39	0
	ATOM	217	СВ	ALA A	9	71.808	4.731	27.311	1.00 14.43	<u>c</u>
	ATOM	218	N	GLY A	10	72.199	7.922	27.940	1.00 20.06	<u>N</u>
30	ATOM	219	CA	GLY A	10	71.706	9.284	27.911	1.00 18.62	c
	ATOM	220	<u></u>	GLY A	10	71.407	9.819	29.305	1.00 16.40	<u>c</u>
	ATOM	221	0	GLY A	10	70,379	10.448	29.481	1.00 17.36	0
	ATOM	222	N	HIS A		72.295	9.581		1.00 10.32	N
25	MOTA	223	CA	HIS A	-	72.068			1.00 13.90	с
35	MOTA	224	<u> </u>	HIS A	11	72.008	11.504		1.00 21.52	с
	MOTA	225	0	HIS A			11.994		1.00 13.22	0
	MOTA	226	CB	HIS A	11	73.153	9.350		1.00 14.88	с
	ATOM	227	CG	HIS A		74.502	9.948		1.00 23.73	с
4.0	ATOM	228	ND1	HIS A	_11	75.239	9.648		1.00 24.90	N
40	MOTA	229		HIS A	_11_	-			1.00 16.35	c
	MOTA	230		HIS A					1.00 22.54	с
	MOTA	231	NE2	HIS A	_11_		11.240		1.00 17.56	N
	ATOM	232	N	ARG A			12.288	30.908	1.00 22.31	<u>N</u>
	MOTA	233	CA	ARG A					1.00 18.90	с
45	ATOM	234	С	ARG A	12	70.851	14.244	30.495	1.00 26.34	<u>c</u>

	MOTA	235	0	ARG A	12	70.572	15.426	30.604	1.00 25.37	o
	MOTA	236	СВ	ARG A	12	73.352	14.418	30.587	1.00 25.93	C
	MOTA	237	CG	ARG A	12	74.582	13.943	31.279	1.00 53.87	C
	MOTA	238	CD	ARG A	12	75.757	14.619	30.699	1.00 32.53	C
5	ATOM	239	NE	ARG A	12	76.359	15.576	31.605	1.00 69.90	N
	ATOM	240	CZ	ARG A	12	76.971	16.675	31.178	1.00100.00	c
	MOTA	241	NH1	ARG A	12	77.001	16.948	29.867	1,00100.00	N
	MOTA	242	NH2	ARG A	12	77.526	17.508	32.056	1.00100.00	N N
	MOTA	243	N	GLY A	13	70.078	13.420	29.800	1.00 18.25	N
10	MOTA	244	CA	GLY A	13	68.802	13.904	29.258	1.00 16.50	C
	ATOM	245	С	GLY A	13	67,849	14.144	30.428	1.00 18.88	С
	MOTA	246	0	GLY A	13	68.202	13.902	31.624	1.00 14.04	
	MOTA	247	N	MET A	14	66.653	14.632	30.103	1.00 16.00	N
	MOTA	248	CA	MET A	14	65.688	14.981	31.128	1.00 13.49	Ç
15	MOTA	249	С	MET A	14	65.293	13.760	31.901	1.00 14.02	C
	ATOM	250	0	MET A	14	65.408	13.713	33.145	1.00 17.06	0
	ATOM	251	СВ	MET A	14	64,442	15.605	30.524	1.00 11.57	C
	ATOM	252	CG	MET A	14	63.320	15.628	31,559	1.00 20.77	C
	ATOM	253	SD	MET A	14	61.926	16.766	31.110	1.00 29.16	S
20	MOTA	254	CE	MET A	14	62.527	17.108	29.574	1.00 30.68	C
	ATOM	255	N	VAL A	15	64.798	12.769	31.158	1.00 25.23	N
	ATOM	256	CA	VAL A	15	64.439	11.468	31.738	1.00 20.90	c
	ATOM	257	С	VAL A	15	65,654	10.713	32.378	1.00 17.26	C
	ATOM	258	0	VAL A	_15_	65.590	10.239	33.524	1.00 18.41	0
25	ATOM	259	СВ	VAL A	15	63.752	10.550	30.680	1.00 23.25	С
	MOTA	260	CG1	VAL A	15	63.330	9.253	31.310	1.00 15.71	c
	MOTA	261	CG2	VAL A	15	62,528	11.193	30.183	1.00 13.40	с
	MOTA	262	N_	GLY A	16	66.784	10.642	31,665	1.00 20.39	N
	MOTA	263	CA	GLY A	16	67.941	9.904	32.186	1.00 19.54	c
30	ATOM	264	С	GLY A	16	68.522	10.432	33.492	1.00 29.29	<u> </u>
	MOTA	265	0	GLY A	16	68.896	9.659	34.434	1.00 16.91	0
	MOTA	266	N	SER A	17	68,642	11.755	33.499	1.00 12.53	N
	MOTA	267	CA	SER A	17_	69,154	12.460	34.650	1.00 21.93	c
	MOTA	268	<u>C</u>	SER A	17	68,209	12.214	35.818	1.00 13.35	· <u>c</u>
35	MOTA	269	0	SER A	17	68.677	11.957	36.915	1.00 24.19	0
	MOTA	270	CB	SER A	17	69.378	13.942	34.333	1.00 15.52	c
	ATOM	271	OG	SER A	17_	68.153	14.619	34,372	1.00 22.95	0
	MOTA	272	N	ALA A	18	66,896	12.143	35.590	1.00 17.52	N
	MOTA	273	CA	ALA A	18	65.991	11.828	36.729	1.00 13.14	c
40	MOTA	274	С	ALA A	18	66,220	10.393	37.307	1.00 19.29	C
	MOTA	275	0	ALA A	18	66,149	10.150	38,522	1.00 16.94	0
	MOTA	276	СВ	ALA A	18	64,460	12.046	36.334	1.00 14.33	<u>c</u>
	MOTA	277	N	ILE A	19	66.484	9.432	36.430	1.00 20.80	N
	MOTA	278	CA	ILE A	19	66.705	8,078	36.900	1.00 18.08	с
45	MOTA	279	<u> </u>	ILE A	19	67.975	8.090	37.730	1.00 16.09	<u>c</u>

WO 99/64618

	MOTA	280	0	ILE A	19	68.018	7,530	38.820	1.00 20.73	0
	MOTA	281	СВ	ILE A	19	66.804	7.079	35.710	1.00 17.58	<u>c</u>
	MOTA	282	CG1	ILE A	19	65.444	6.812	35,162	1.00 10.09	c
	MOTA	283	CG2	ILE A	19	67.309	5.666	36.133	1.00 21.60	C
5	MOTA	284	CD1	ILE A	19	65.528	6.361	33.741	1.00 19.05	c
	MOTA	285	N	ARG A	20	68.984	8.771	37.198	1.00 18.13	N
	ATOM	286	CA	ARG A	20	70.286	8.897	37.836	1.00 20.25	<u>c</u>
	ATOM	287	С	ARG A	20	70.231	9.491	39.242	1.00 30.62	C
	ATOM	288	0	ARG A	20	70.957	9.091	40.129	1.00 33.00	0
10	ATOM	289	СВ	ARG A	20	71.201	9.743	36.957	1.00 11.71	c
	ATOM	290	CG	ARG A	20	72.610	9.781	37,449	1.00 23.79	C
	ATOM	291	CD	ARG A	20	72.881	11.107	38.060	1.00 36.76	c
	MOTA	292	NE	ARG A	20	74.297	11.443	38.062	1.00 48.34	N
	MOTA	293	CZ	ARG A	20	74.990	11.841	36.988	1.00100.00	c
15	ATOM	294	NH1	ARG A	20	74.393	11.931	35.808	1.00100.00	N
	MOTA	295	NH2	ARG A	20	76.289	12.139	37.076	1.00100.00	N
	MOTA	296	N_	ARG A	21	69.368	10.461	39,439	1.00 22.10	
	ATOM	297	CA	ARG A	21	69.216	11.052	40,750	1.00 17.45	c
	ATOM	298	С	ARG A	21	68.721	10.007	41.730	1.00 26.71	С
20	ATOM	299	0	ARG A	21	69.147	10.001	42.885	1.00 30.27	0
	ATOM	300	СВ	ARG A	21	68.142	12.144	40.708	1.00 17.93	с
	MOTA	301	CG	ARG A	21	68,682	13,522	40.321	1.00 27.57	с
	ATOM	302	CD	ARG A	21	67.586	14.599	40.130	1.00 23.02	с
	MOTA	303	NE_	ARG A	21	67.619	15.000	38.743	1.00 55.12	N
25	ATOM	304	CZ	ARG A	21	66.538	15.103	37.995	1.00 10.55	с
	MOTA	305	NH1	ARG A	21	65.343	14.974	38.552	1.00 29.80	N
	ATOM	306	NH2	ARG A	21	66.665	15.435	36.715	1.00 61.45	N
	ATOM	307	N_	GLN A	22	67.713	9.223	41.345	1.00 27.48	N
	ATOM	308	CA	GLN A	22	67.167	8.257	42.313	1.00 24.79	<u>C</u>
30	MOTA	309	<u> </u>	GLN A	22	68.137	7.127	42.547	1.00 31.37	<u>C</u>
	MOTA	310	0_	GLN A	22	68.394	6.724	43.685	1.00 27.47	0
	MOTA	311	СВ	GLN A	22_	65.818	7.706	41.894	1.00 17.11	с
	ATOM	312	CG	GLN A	22	64.921	8.745	41 .243	1.00 66.14	c
	ATOM	313	CD	GLN A	_22_	63.425	8,456	41.397	1.00 41.27	<u>c</u>
35	ATOM	314	OE1	GLN A	22	63.002			1.00 29.34	0
	MOTA	315	NE2	GLN A	22	62.610	9.464	41.046	1.00 20.12	N
	MOTA	316	_N	LEU A	23	68.697	6.652	41.448	1.00 27.99	N
	MOTA	317	CA	LEU A	23	69.649	5.575	41.500	1.00 24.48	<u>C</u>
	MOTA	318		LEU A	23	70.828	5.971	42.334	1.00 28.87	c
40	MOTA	319	0	LEU A	23	71.288	5.218	43.165	1.00 30.79	<u>0</u>
	MOTA	320	СВ	LEU A	23	70,036	5.107	40.089	1.00 22.72	с
	ATOM	321	CG	LEU A	23	68.966	4.072	39.658	1.00 26.16	<u>c</u>
	MOTA	322	CD1	LEU A	23	69.271	3.083	38.481	1.00 24.80	<u>C</u>
	ATOM	323	CD2	LEU A	23	68,427	3,284	40.835	1.00 22.91	c
45	MOTA	324	N_	GLU A	24	71.279	7.192	42.153	1.00 28.77	N

	ATOM	325	CA	GLU A	24	72,419	7.675	42.909	1.00 33.79	С С
	ATOM	326	_с	GLU A	24	72.363	7.388	44.412	1.00 35.94	c
	ATOM_	327	0	GLU A	_24_	73.381	7.140	45.031	1.00 39.07	0
	MOTA	328	СВ	GLU A	24	72.647	9.165	42.653	1.00 36.21	с
5	ATOM	329	CG	GLU A	24	74,068	9.482	42,243	1.00 42.54	с
	ATOM	330	CD	GLU A	24	74.158	10.689	41.333	1.00 89.51	с
	ATOM	331	OE:	GLU A	24	73.386	11.663	41.549	1.00 43.21	0
	ATOM	332	OE2	GLU A	24	74.994	10.646	40.398	1.00 66.28	0
	ATOM	333	N	GLN A	25	71.182	7.422	45.000	1.00 45.70	N
10	ATOM	334	_CA	GLN A	25	71.039	7.152	46.432	1.00 47.57	C
	ATOM	335	С	GLN A	25	70.887	5.669	46.740	1.00 67.34	с
	MOTA	336	0	GLN A	25	70.285	5.286	47.726	1.00 74.06	0
	ATOM	337	СВ	GLN A	25	69.783	7.842	46.905	1.00 51.85	C
	MOTA	338	CG	GLN A	25	69.500	9.084	46.109	1.00 44.91	C
15	MOTA	339	CD	GLN A	25	68.419	9.913	46.742	1.00100.00	с
	ATOM	340	OE1	GLN A	25	68.271	9.947	47.972	1.00100.00	
	MOTA	341	NE2	GLN A	25	67.624	10.602	45.911	1.00100.00	N
	MOTA	342	N	ARG A	26	71.322	4.831	45.825	1.00 75.37	N
	MOTA	343	CA	ARG A	26	71.182	3.407	46.026	1.00 74.87	C
20	MOTA	344	С	ARG A	26	72,568	2.791	46.147	1.00 74.08	C
	MOTA	345	0	ARG A	26	73.440	2.997	45.289	1.00 77.00	0
	MOTA	346	СВ	ARG A	26	70.390	2.790	44.885	1.00 52.44	C
	MOTA	347	CG	ARG A	26	68.916	2.927	45,070	1.00 43.51	С
	MOTA	348	CD	ARG A	26	68.428	1.752	45.864	1.00 40.70	С
25	ATOM	349	NE	ARG A	26	67.200	1.176	45.338	1.00 42.33	. N
	ATOM	350	CZ	ARG A	26	67.126	0.508	44.196	1.00 32.07	C
	MOTA	351	NH1	ARG A	26	68.215	0.324	43.486	1.00 44.02	N N
	ATOM	352	NH2	ARG A	26	65.968	0.017	43.771	1.00 77.32	N .
	ATOM	353	N	GLY A	27	72.778	2.114	47.266	1.00 46.30	N N
30	ATOM	354	CA	GLY A	27	74,060	1.531	47.549	1.00 46.82	C
	ATOM	355	С	GLY A	27	74.140	0.165	46,923	1.00 55.45	С
	MOTA	356	0	GLY A	27	75,204	-0.453	46.877	1.00 64.43	0
	ATOM	357	N	ASP A	28	73.017	-0.315	46.428	1.00 40.98	N
	ATOM	358	CA	ASP A	28	73.016	-1.647		1.00 40.35	
35	ATOM	359	С	ASP A	28		-1.536		1.00 39.55	Ç
	ATOM	360	0	ASP A	28				1.00 48.80	0
	ATOM	361	СВ	ASP A	28	71,680	-2.335		1.00 47.80	
	ATOM	362	CG	ASP A	28	70.503	-1.373		1.00 35.34	С
	ATOM	363	OD1	ASP A	28	70,705	-0.140		1.00 39.23	0
40	MOTA	364	OD2	ASP A	28	69.383	-1.870	45.872	1.00 69.86	0
	MOTA	365	N	VAL A		73.651	-0.329	43.996	1.00 31.03	N
	ATOM	366	CA	VAL A		73.881	-0.050		1.00 28.44	C
	ATOM	367	С	VAL A		75.166	0.676	42.281	1.00 28.00	c
	ATOM	368	0	VAL A		75.505	1.699	42.892	1.00 34.83	0
45	ATOM	369	СВ	VAL A	29	72.696			1.00 30.68	<u> </u>
										<u> </u>

	MOTA	370	CG	1 VAL A	_29	72.935	1.088	40.549	1.00 23.65	с
	ATOM	371	_CG	VAL A	29	71.416	-0.028	42.156	1.00 27.95	с
	MOTA	372	_N_	GLU A	30	75.824	0.219	41.230	1.00 30.76	N
	ATOM	373	CA.	GLU A	30	76.995	0.924	40.736	1.00 28.38	C
5	MOTA	374	С	GLU A	30	76.678	1.471	39.332	1.00 31.03	c
	MOTA	375	_ 0_	GLU A	30	76.368	0.720	38.397	1.00 26.64	
	MOTA	376	СВ	GLU A	30	78,199	0.006	40.722	1.00 31.84	c
	MOTA	377	CG	GLU A	30	79.355	0.539	41.533	1.00 89.26	C
	MOTA	378	CD	GLU A	30	80.667	0.264	40.858	1.00100.00	C
10	MOTA	379	OE:	GLU A	30	81.082	-0.922	40.872	1.00 88.94	
	MOTA	380	OE2	GLU A	30	81.202	1.206	40.219	1.00100.00	0
	ATOM	381	N.	LEU A	31	76.665	2.789	39.207	1.00 22.24	N
	ATOM	382	CA	LEU A	31	76.269	3.391	37.945	1.00 29.37	c
	MOTA	383	С	LEU A	31	77.404	3.507	36.941	1.00 25.79	c
15	ATOM	384	0	LEU A	31	78.485	3.969	37.256	1.00 29.41	0
	MOTA	385	СВ	LEU A	31	75.632	4.760	38.191	1.00 30.20	C
	ATOM	386	CG	LEU A	31	74.329	4.763	38.994	1.00 29.37	C
	ATOM	387	CD1	LEU A	31	73.841	6.143	39.240	1.00 23.43	C
	ATOM	388	CD2	LEU A	31	73.275	3.962	38,281	1.00 23.04	C
20	ATOM	389	N	VAL A	32	77.146	3.100	35.711	1.00 21.94	N
	MOTA	390	CA	VAL A	32	78.143	3.265	34.685	1.00 25.48	C
	ATOM	391	<u>c</u>	VAL A	32	77.535	4.242	33.669	1.00 38.76	c
	MOTA	392	0_	VAL A	32	76,429	3.999	33.180	1.00 29.70	0
	MOTA	393	СВ	VAL A	32	78.517	1.902	34.055	1.00 34.25	C
25	MOTA	394	CG1	VAL A	32	79.587	2.079	32.970	1.00 30.56	c
	MOTA	395	CG2	VAL A	32	79.003	0.950	35.139	1.00 25.27	c
	MOTA	396	N	LEU A	33	78.219	5.375	33.457	1.00 30.19	N
	ATOM	397	CA	LEU A	33	77.732	6,463	32.621	1.00 22.71	C
	ATOM	398	С	LEU A	33	78.727	6,979	31.645	1.00 29.55	C
30	ATOM	399	0	LEU A	33	79.896	7.152	31.988	1.00 30.09	0
	ATOM	400	СВ	LEU A	33	77.423	7.635	33.514	1.00 19.75	c
	ATOM	401	CG	LEU A	33	76.729	7.200	34.779	1.00 19.38	с
	ATOM	402	CD1	LEU A	33	76.814	8.344	35.762	1.00 27.24	с
	ATOM	403	CD2	LEU A	33	75.271	6.913	34.444	1.00 22.07	C
35	ATOM	404	N	ARG A	34	78.239	7.421	30,496	1.00 15.09	N
	MOTA	405	CA	ARG A	34	79.154	8.008	29.541	1.00 26.04	C
	MOTA	406	С	ARG A	34	78.469	9.173	28,916	1.00 36.57	c
	MOTA	407	0	ARG A	34	77.288	9.130	28.651	1.00 38.59	0
	MOTA	408	СВ	ARG A	34	79.486	7.048	28.398	1.00 22.89	ç
40	MOTA	409	CG	ARG A	34	80.579	6.081	28.706	1.00 23.29	C
	MOTA	410	CD	ARG A	34	81.370			1.00 52.06	C
	MOTA	411	NE	ARG A	34	81.783	5.458		1.00 80.25	N
	MOTA	412	CZ	ARG A	34	82.646	4.530		1.00 41.94	C
	MOTA	413	NH1	ARG A	34	83.173			1.00 53.02	N
45	ATOM	414	NH2	ARG A	34	82.983			1.00 25.56	N N

	MOTA	415	N	THR A	35	79.248	10.156	28.539	1.00	31.58	N
	MOTA	416	CA_	THR A	35	78.703	11.282	27.833	1.00	29.33	С
	MOTA	417	_c	THR A	35	78.719	10.951	26.340	1.00	32.53	С
	MOTA	418	0_	THR A	35	79.350	9.944	25.962	1.00	28.08	0
5	MOTA	419	СВ	THR A	35	79.527	12.527	28.145	1.00	37.49	с
	MOTA	420	0G1	THR A	35	80.844	12.429	27.560	1.00	31.91	0
	MOTA	421	CG2	THR A	35	79.627	12.642	29.651	1.00	19.38	c
	MOTA	422	N_	ARG A	36	78.032	11.780	25.529	1.00	30.02	N
	ATOM	423	CA	ARG A	36	78.002	11.639	24.056	1.00	29.37	C
10	MOTA	424	С	ARG A	36	79.406	11.765	23,503	1.00	31.46	c
	MOTA	425	0_	ARG A	36	.79.772	11.012	22,591	1.00	36.56	o
	ATOM	426	СВ	ARG A	36	77.054	12,650	23.354	1.00	37.34	c
	MOTA	427	CG	ARG A	36	76.937	12,465	21.846-	99.00	49.47	с
	MOTA	428	CD	ARG A	36	76.020	13.515	21.232-	99.00	63.09	С
15	MOTA	429	NE	ARG A	36	75.528	13.124	19.915-	99.00	75.23	N
	MOTA	430	CZ	ARG A	36	74.381	13.549	19.391-	99.00	91.44	С
	MOTA	431	NH1	ARG A	36	73.605	14.375	20.079-	99.00	79.32	N
	MOTA	432	NH2	ARG A	36	74.009	13.144	18.185-	99.00	78.73	N
	MOTA	433	N	ASP A	37	80.217	12.677	24.063	1.00	41.30	N
20	MOTA	434	CA	ASP A	37	81,606	12.710	23.601	1.00	44.91	<u>C</u>
	MOTA	435	С	ASP A	37	82.410	11.481	24.043	1.00	24.99	С
	ATOM	436	0	ASP A	37	83,211	10.978	23,261	1.00	42.22	
	ATOM	437	СВ	ASP A	37	82.347	14.048	23.718-	99.00	47.07	c
	MOTA	438	CG	ASP A	. 37	81.881	14.887	24.876-	99.00	62.99	<u>C</u>
25	ATOM	439	OD1	ASP A	37	80.679	14.839	25.204-	99.00	64.45	0
	MOTA	440	OD2	ASP A	37	82.711	15.638	25.429-	99.00	69.84	0
	ATOM	441	N_	GLU A	38	82.129	10.950	25.235	1.00	19.39	N
	ATOM	442	CA	GLU A	3.8	82.790	9.717	25.682	1.00	27.84	<u>c</u>
	MOTA	443	<u> </u>	GLU A	38	82,203	8.527	24.901	1.00	37.14	<u>c</u>
30	MOTA	444	0_	GLU A	38	82.873	7.511	24.699	1.00	35.04	0
	MOTA	445	СВ	GLU A	38	82.691	9.435	27,207	1.00	25.18	c
	MOTA	446	ÇĢ	GLU A	38	83.116	10.549	28.183	1.00	37.45	с
	MOTA	447	CD	GLU A	38	82.807	10.212	29.655	1.00	21.13	c
	MOTA	448	OE1	GLU A	38	81.623	9,997	30.014	1.00	55.97	0
35	ATOM	449	OE2	GLU A	38	83.757	9.978	30.419	1.00	98.78	0
	ATOM	450	N.	LEU A	39	80.948	8,610	24.478	1.00	25.52	N
	ATOM	451	CA	LEU A	39	80.440	7.483	23.739	1.00	18.17	c
	ATOM	452	С	LEU A	39	79,291	7.764	22.825	1.00	20.34	<u>C</u>
	MOTA	453	0	LEU A	39	78.152	7.810	23.259	1.00	26.35	0
40	MOTA	454	СВ	LEU A	39	80,123	6.313	24.657	1.00	14.56	c
	MOTA	455	CG	LEU A	39	79.410	5.075	24.058	1.00	19.52	Ç
	MOTA	<u>456</u>	CD1	LEU A	39	80.205	4.392	22.994	1.00	18.84	<u>C</u>
	MOTA	457	CD2	LEU A	39	78.890	4,051	25,084	1.00	17.41	с
	MOTA	458	N	ASN A	40	79,598	7.880	21.543	1.00	16.73	N
45	MOTA	459	CA	ASN A	40	78.548	7.971	20.540	1.00	21.55	с

	MOTA	460	_C	ASN A	40	77.798	6.649	20.308	1.00 24.53	С
	MOTA	461	0	ASN A	40	78.328	5.720	19.688	1.00 19.96	0
	MOTA	462	СВ	ASN A	40	79.130	8,367	19.216	1.00 18.45	c
	MOTA	463	CG	ASN A	40	78.054	8.727	18.225	1.00 42.19	с
5	MOTA	464	OD1	ASN A	40	78.327	9.093	17.080	1.00 38.89	0
	MOTA	465	ND2	ASN A	40	76.827	8.730	18.697	1.00 23.71	N
	MOTA	466	N	LEU A	41	76.543	6.622	20.754	1.00 21.08	N
	ATOM	467	CA	LEU A	41	75.649	5.465	20.650	1.00 15.03	C
	MOTA	468	_c	LEU A	41	75.225	5.068	19.213	1.00 18.22	<u>c</u>
10	ATOM	469	۰	LEU A	41	74.681	3,971	18.980	1.00 15.72	0
	MOTA	470	СВ	LEU A	41	74.426	5.705	21.532	1.00 15.85	c
	MOTA	471	CG	LEU A	41	74.822	6.029	22,974	1.00 21.90	2
	ATOM	472	CD1	LEU A	41	73.604	6.413	23.749	1.00 20.59	<u>c</u>
	MOTA	473	CD2	LEU A	41	75.481	4.796	23.609	1.00 17.97	C
15	ATOM	474	N	LEU A	42	75.542	5.916	18.238	1.00 12.45	N
	MOTA	475	CA	LEU A	42	75.256	5.607	16.831	1.00 15.99	c
	MOTA	476	С	LEU A	42	76.290	4.680	16.280	1.00 26.18	c
	MOTA	477	0_	LEU A	42	76.066	4.039	15.257	1.00 22.41	0
	ATOM	478	СВ	LEU A	42	75.282	6.873	15.984	1.00 17.85	c
20	MOTA	479	CG	LEU A	42	74.180	7.854	16.399	1.00 30.70	с
	MOTA	480	CD1	LEU A	42	74.318	9.184	15.704	1.00 24.31	<u>C</u>
	MOTA	481	CD2	LEU A	42	72.764	7.241	16.208	1.00 31.13	С
	MOTA	482	N	ASP A	43	77.462	4.705	16.911	1.00 26.87	N
	MOTA	483	CA	ASP A	43	78,579	3.875	16.486	1.00 19.29	c
25	MOTA	484	С	ASP A	43	78.583	2.519	17.163	1.00 13.33	C
	ATOM	485	0	ASP A	43	79.051	2.348	18.297	1.00 18.75	0
	MOTA	486	СВ	ASP A	43	79.870	4.580	16.776	1.00 31.06	c
	MOTA	487	CG	ASP A	43	81.083	3.758	16.380	1.00 30.68	c
	ATOM	488	OD1	ASP A	43	80.971	2.551	16.082	1.00 32.36	0
30	MOTA	489	OD2	ASP A	43	82.187	4.308	16,499	1.00 37.83	0
	ATOM	490	N	SER A	44	78. 139	1.544	16.377	1.00 16.89	N
	ATOM	491	CA	SER A	44	77.978	0.173	16.789	1.00 17.67	с
	MOTA	492	<u>c</u>	SER A	44	79.237	-0.463	17.392	1.00 20.40	c
	MOTA	493	0	SER A	44	79.206	-1.126	18.444	1.00 26.27	0
35	ATOM	494	СВ	SER A	44	77.504	-0.617	15.581	1.00 13.85	<u>c</u>
	MOTA	495	OG	SER A	44	76.800	-1.740	16.063	1.00 43.83	0
	ATOM	496	N	ARG A	45	80.335	-0.301	16.682	1.00 15.63	N
	MOTA	497	CA	ARG A	45	81.616	-0.788	17.154	1.00 19.94	с
	ATOM	498	С	ARG A	45	81.910	-0.225	18.521	1.00 29.48	c
40	ATOM	499	0	ARG A	45	82.244	-0.937	19.457	1.00 27.65	0
	ATOM	500	СВ	ARG A	45	82.684	-0.261	16.203	1.00 27.46	c
	ATOM	501	CG	ARG A	45	83.463	-1.338	15,495	1.00 92.03	c
	MOTA	502	CD	ARG A	45	84.854	-1.418	16.077	1.00100.00	<u> </u>
	MOTA	503	NE	ARG A	45	85,636	-2.533	15.527	1.00100.00	N
45	ATOM	504	cz	ARG A	45	86.092	-3.570	16.236	1,00100.00	c

	MOTA	505	NH1	ARG A	45	85.791	-3.695	17.547	1.00100.00	N
	MOTA	506	NH2	ARG A	45	86.773	-4.544	15.642	1.00100.00	N
	ATOM	507	N	ALA A	46	81.772	1.090	18.629	1.00 31.04	N
	ATOM	508	CA	ALA A	46	82.045	1.743	19.881	1.00 24.72	C
5	MOTA	509	c :	ALA_A	46	81.111	1.176	20.899	1.00 17.73	<u> </u>
	ATOM	510	0	ALA_A	46	81.512	0.825	22.027	1.00 22.73	0
	ATOM	511	СВ	ALA_A	46	81.839	3,221	19.751	1.00 27.16	C
	ATOM	512	N Y	VAL A	47	79.835	1.119	20.531	1.00 17.54	N
	MOTA	513	CA '	VAL A	47	78.878	0.608	21.508	1.00 21.41	<u>C</u>
10	MOTA	514	С,	VAL A	47	79.262	-0.812	21,914	1.00 30.25	C
	ATOM	515	0	VAL A	47	79.192	-1.202	23.097	1.00 15.85	0
	MOTA	516	CB '	VAL A	47	77.470	0.668	20.989	1.00 18.59	<u>c</u>
	MOTA	517	CG1	VAL A	47	76.503	0.042	22.012	1.00 16.88	<u>C</u>
	MOTA	518	CG2	VAL A	47	77,115	2,096	20.756	1.00 16.28	c
15	MOTA	519	N .	HIS A	48	79.692	-1.585	20.920	1.00 21.00	N
	MOTA	520	CA	HIS A	48	80,028	-2.969	21.192	1.00 20.17	с
	MOTA	521	С	HIS A	48	81.268	-3.079	22.117	1.00 32.98	С
	MOTA	522	0	HIS A	48	81.289	-3.850	23.102	1.00 28.20	0
	ATOM	523	СВ	HIS A	48	80.063	-3.801	19.855	1.00 14.93	С
20	MOTA	524	CG	HIS A	48	78.686	-4.172	19,338	1.00 26.67	С
	ATOM	525	ND1	HIS A	48	78.085	-5.394	19.600	1.00 28.83	N
	MOTA	526	CD2	HIS A	48	77.758	-3.448	18.659	1.00 25.56	<u>C</u>
	MOTA	527	CE1	HIS A	48	76.887	-5.430	19.043	1.00 20.08	С
	MOTA	528	NE2	HIS A	48	76.660	-4.260	18.475	1.00 25.22	и
25	MOTA	529		ASP A	49	82.217	-2.170	21.902	1.00 22.62	N
	MOTA	530		ASP A	49	83.455	-2.169	22.674	1.00 24.23	c
	MOTA	531		ASP A	49	83.171	-1.899	24.122	1.00 38.72	C
	MOTA	532		ASP A	49	83.708	-2.551	25.027	1.00 35.44	0
•	MOTA	533		ASP A	49_	84.396		22.127	1.00 30.29	<u>c</u>
30	MOTA	534		ASP A	49	84,991	-1.503	20.775	1.00 52.45	<u>c</u>
	ATOM	535		ASP A	49	85.007	-2.726	20.449	1.00 42.67	
	ATOM	536		ASP A	49	85,416		20.029	1.00 73.76	0
	MOTA	537		PHE A	50	82.294			1.00 32.19	N
25	MOTA	538		PHE A	50	81.902			1.00 29.76	<u>C</u>
35	MOTA	539		PHE A		81.299				<u>c</u>
	MOTA	540		PHE A	50	81.715			1.00 29.22	0
	ATOM	541		PHE A		80,892			1.00 23.82	c
	MOTA	542		PHE A	50	80.137		26.859	1.00 19.13	c
40	MOTA	543		PHE A	50	80.740			1.00 20.14	
40	ATOM	544_		PHE A	50	78.835			1.00 13.99	c
	ATOM	545		PHE A	_ <u>50</u> _	80.034		29.129		<u>c</u>
	ATOM	546		PHE A	50	78.114		-	1.00 22.84	<u>c</u>
	MOTA	547		PHE A		78.698			1.00 23.40	<u>C</u>
A E	MOTA	548		PHE A	51_	80.280		25.768		
45	MOTA	549	CA	PHE A	51	79.655	-3,451	40.43/	1.00 22.61	<u>c</u>

·	ATOM	550		PHE A	51_	80.646 -4.603 26.612 1.00 34.01	С
	ATOM	551	0	PHE A	51_	80.550 -5.401 27.590 1.00 25.28	
	ATOM	552	СВ	PHE A	51	78.389 -3.898 25.751 1.00 22.63	c
	ATOM	553	CG	PHE A	51	77.158 -3.140 26.170 1.00 27.58	c
5	ATOM	554	CD	PHE A	51	76.426 -3.525 27.280 1.00 21.78	
	ATOM	555	CD2	PHE A	51	76.663 -2.100 25.380 1.00 19.55	c
	ATOM	556	CE:	PHE A	51	75.267 -2.796 27.662 1.00 28.34	С
	MOTA	557	CE2	PHE A	51	75.492 -1.403 25.734 1.00 14.47	С
	ATOM	558	CZ	PHE A	51	74.797 -1.744 26.878 1.00 14.55	C
10	MOTA	559	N	ALA A	52	81.576 -4.706 25.659 1.00 26.43	N
	MOTA	560	CA	ALA A	52	82.587 -5.793 25.714 1.00 29.44	C
	MOTA	561	С	ALA A	52	83.687 -5.560 26.768 1.00 43.76	C
	MOTA	562	0	ALA A	52	84.502 -6.446 27.022 1.00 40.33	
	MOTA	563	СВ	ALA A	52	83.228 -6.049 24.344 1.00 24.25	C
15	MOTA	564	_N_	SER A	53	83.702 -4.382 27.385 1.00 31.96	N
	ATOM	565	CA	SER A	53	84.705 -4.090 28.377 1.00 21.06	<u>C</u>
	ATOM	566	С	SER A	53	84.196 -3.625 29.709 1.00 26.41	C
	ATOM	567	0	SER A	53	84.985 -3.492 30.611 1.00 36.12	
	ATOM	568	СВ	SER A	53	85.709 -3.088 27.843 1.00 14.22	 c
20	ATOM	569	OG	SER A	53	85.140 -1.807 27,790 1.00 56,90	
	MOTA	570	N	GLU A	54	82.892 -3.431 29.874 1.00 22.38	N
	ATOM	571	CA	GLU A	54	82.380 -2.893 31.139 1.00 17.27	<u>_</u> C
	ATOM	572	С	GLU A	54	81.584 -3.735 32.118 1.00 26.32	<u>c</u>
	MOTA	5 73	0	GLU A	54	81.229 -3.281 33.191 1.00 37.43	
25	MOTA	574	СВ	GLU A	54	81.677 -1.563 30.906 1.00 27.30	
	MOTA	575	CG	GLU A	54	82.573 -0.543 30.262 1.00 44.77	<u></u>
	MOTA	576	CD	GLU A	54	83.669 -0.142 31,194 1.00 86.31	C
	MOTA	577	OE1	GLU A	54	83.392 -0.232 32.428 1.00 50.11	0
	MOTA	578	OE2	GLU A	54	84.785 0.198 30.692 1.00 50.99	0
30	MOTA	579	N	ARG A	55	81.268 -4.971 31.804 1.00 29.63	N
	ATOM	580	CA	ARG A	55	80,636 -5,748 32.854 1.00 33,32	<u>C</u>
	ATOM	581	С	ARG A	55	79.347 -5.149 33.378 1.00 38.45	C
	ATOM	582	0	ARG A	55	79.214 -4.897 34.576 1.00 40.18	
	ATOM	583	СВ	ARG A		81.621 -5.875 34.045 1.00 57.61	c
35	ATOM	584	CG	ARG A		82.666 -7.028 33.960 1.00100.00	<u>c</u>
	ATOM	585	CD	ARG A	55	82.805 -7.805 35.305 1.00100.00	
	ATOM	586	NE	ARG A		82.838 -9.270 35.146 1.00100.00	<u>C</u>
	ATOM	587	C2	ARG A		83,206 -10,129 36,102 1,00100.00	N
	ATOM	588	NH1	ARG A	55	83.583 -9.681 37.301 1.00100.00	<u>_</u>
40	ATOM	589		ARG A		83,208 -11,440 35,855 1,00100.00	<u>N</u>
	MOTA	590	N	ILE A		78.367 -5.029 32.491 1.00 42.25	N
	ATOM	591	CA	ILE A		77.064 -4.434 32.794 1.00 25.49	_ <u>N</u>
	ATOM	592	С	ILE A		75.982 -5.474 33.244 1.00 20.18	_ <u>c</u>
	ATOM	593	0	ILE A		75.897 -6.579 32.704 1.00 24.74	
45	ATOM	594		ILE A		76.672 -3.512 31.531 1.00 26.89	0
					, , ,	10.012 -3.312 31.331 1.00 26.89	_ <u>c</u>

		•						
	ATOM	595 CG1 ILE A	56	77.643	-2.301	31,442	1.00 18.30	c
	MOTA	596 CG2 ILE P	56	75.214	-3.016	31.549	1.00 19.84	с
	MOTA	597 CD1 ILE 2	56	77.998	-1.936	30.026	1.00 60.42	c
	MOTA	598 N ASP 7	57	75.166	-5.133	34.237	1.00 16.84	N
5	MOTA	599 CA ASP A	57	74.040	-5.999	34.630	1.00 16.33	C
	MOTA	600 C ASP A	57	72.676	-5.451	34.123	1.00 28.40	с
	MOTA	601 O ASP A	57	71.836	-6.198	33.657	1.00 25.50	0
	MOTA	602 CB ASP A	57	74.009	-6.194	36.164	1.00 16.94	Ç
	MOTA	603 CG ASP A	57	75.369	-6.720	36.703	1.00 34.27	C
10	ATOM	604 OD1 ASP A	57	75.875	-7.729	36.141	1.00 31.76	0
	ATOM	605 OD2 ASP A	57	76.040	-6.007	37.499	1.00 28.36	0
	MOTA	606 N GLN A	58	72.443	~4.152	34.220	1.00 28.91	N
	MOTA	607 CA GLN A	58	71.183	-3.590	33.755	1.00 25.68	c
	MOTA	608 C GLN A	58	71.425	-2.364	32.881	1.00 23.21	c
15	MOTA	609 O GLN A	58	72.403	-1,620	33.067	1.00 18.16	0
	ATOM	610 CB GLN A	58	70.342	-3.151	34.946	1.00 33.14	C
	ATOM	611 CG GLN A	58	69,798	-4.241	35.807	1.00 30.00	C
	ATOM	612 CD GLN A	58	69.226	-3.712	37.105	1.00 27.18	С
	ATOM	613 OE1 GLN A	58	68,722	-2.601	37.161	1.00 31.20	0
20	ATOM	614 NE2 GLN A		69.455	-4.436	38.186	1.00 16.89	N
	MOTA	615 N VAL A		70.496	-2.138	31.961	1.00 18.35	N
	ATOM	616 CA VAL A	59	70.562	-0.998	31.045	1.00 15.59	C
	MOTA	617 C VAL A	59	69.238	-0.240	31.039	1.00 26.28	С
	ATOM	618 O VAL A	59	68.178	-0.820	30.762	1.00 19.51	0
25	MOTA	619 CB VAL A	59	70.707	-1.456	29.601	1.00 15.32	C
	MOTA	620 CG1 VAL A	59	70.477	-0.274	28.649	1.00 11.93	с
	MOTA	621 CG2 VAL A	59	72.080	-2.111	29.364	1.00 15.83	c
	MOTA	622 N TYR A	60	69.306	1.064	31.293	1.00 21.71	N
	MOTA	623 CA TYR A	60	68.113	1.927	31.197	1.00 21.40	c
30	MOTA	624 C TYR A	60	68.289	2.756	29.928	1.00 18.69	c
	MOTA	625 O TYR A	60	69.250	3,532	29.796	1.00 15.51	0
	ATOM	626 CB TYR A	60	68.021	2,817	32,413	1.00 17.24	
	MOTA	627 CG TYR A	60	67.493	2.131	33.658	1.00 19.71	C
	MOTA	628 CD1 TYR A		68,345	1.583	34.586	1.00 21.14	c
35	MOTA	629 CD2 TYR A	60	66,154	2.223	33.991	1.00 20.16	Ç
	MOTA	630 CE1 TYR A		67.835	1.080	35.794	1.00 19.11	c
	ATOM	631 CE2 TYR A		65.648	1,698		1.00 10.77	c
	MOTA	632 CZ TYR A		66.476	1.094	36.054	1.00 20.07	c
	MOTA	633 OH TYR A		65.921	0.585	37.248	1.00 16.04	0
40	ATOM	634 N LEU A		67.491	2.452		1.00 17.46	N
	ATOM	635 CA LEU A		67.685	3.053		1.00 20.17	<u>c</u>
	ATOM	636 C LEU A		67.003	4.412		1.00 23.36	c
	ATOM	637 O LEU A		65.925			1.00 14.86	0
	ATOM	638 CB LEU A		67.267	2.060		1.00 14.78	c
45	ATOM	639 CG LEU A		68.117	2.142		1.00 14.78	
	***************************************	TATE AND DE		V0 - 11/	2.172	64.600	1.00 13.32	c

	ATOM 640 CD1 LEU A 61	67.815 1.010 24.109 1.00 7.75	~
	ATOM 641 CD2 LEU A 61	68.087 3.541 24.580 1.00 15.20	<u>c</u>
	ATOM 642 N ALA A 62	67,656 5,434 27,956 1.00 20.35	<u>c</u>
	ATOM 643 CA ALA A 62	67.120 6.784 27.963 1.00 18.55	<u>и</u>
5	ATOM 644 C ALA A 62	67.779 7.739 26.949 1.00 18.57	C
	ATOM 645 O ALA A 62	67.455 8.924 26.920 1.00 24.31	
	ATOM 646 CB ALA A 62	67.071 7.377 29.439 1.00 11.69	C
	ATOM 647 N ALA A 63	68.681 7.231 26.101 1.00 14.09	N
	ATOM 648 CA ALA A 63	69.249 8.095 25.052 1.00 12.84	X
10	ATOM 649 C ALA A 63	68.310 8.005 23.877 1.00 27.00	c
	ATOM 650 O ALA A 63	67.845 6.916 23.511 1.00 24.51	0
	ATOM 651 CB ALA A 63	70.665 7.660 24.634 1.00 4.89	C
	ATOM 652 N ALA A 64	68.076 9.148 23.262 1.00 21.05	N
	ATOM 653 CA ALA A 64	67.202 9.286 22.086 1.00 13.50	
15	ATOM 654 C ALA A 64	67,435 10.664 21,416 1.00 28.08	C
	ATOM 655 O ALA A 64	67.987 11.600 22.021 1.00 26.63	0
	ATOM 656 CB ALA A 64	65.642 9.171 22.518 1.00 7.63	c
	ATOM 657 N LYS A 65	66.953 10.781 20.182 1.00 23.98	N
	ATOM 658 CA LYS A 65	66.966 12.012 19.409 1.00 20.47	<u>c</u>
20	ATOM 659 C LYS A 65	65.488 12.443 19.551 1.00 24.37	<u>c</u>
	ATOM 660 O LYS A 65	64.594 11.807 18.976 1.00 20.29	0
	ATOM 661 CB LYS A 65	67.317 11.658 17.951 1.00 25.59	C
	ATOM 662 CG LYS A 65	66,808 12,630 16,923 1.00 27,54	C
	ATOM 663 CD LYS A 65	67.518 13.926 17.169 1.00 21.08	c
25	ATOM 664 CE LYS A 65	67.316 14.905 16.029 1.00 55.15	c
	ATOM 665 NZ LYS A 65	67.876 16.263 16.392 1.00 81.63	N
	ATOM 666 N VAL A 66	65.228 13.362 20.485 1.00 22.47	N
	ATOM 667 CA VAL A 66	63.873 13.850 20.755 1.00 18.99	c
	ATOM 668 C VAL A 66	63.711 15.343 20.394 1.00 31.44	C
30	ATOM 669 O VAL A 66	64.665 16.107 20.460 1.00 34.61	0
	ATOM 670 CB VAL A 66	63.440 13.623 22.204 1.00 16.66	С
	ATOM 671 CG1 VAL A 66	64.269 12.623 22.869 1.00 15.01	С
	ATOM 672 CG2 VAL A 66	63.379 14.904 22.950 1.00 19.21	C
	ATOM 673 N GLY A 67	62.514 15.755 19.994 1.00 18.03	N
35	ATOM 674 CA GLY A 67	62.298 17.149 19.614 1.00 14.90	<u>c</u>
	ATOM 675 C GLY A 67	60.792 17.518 19.585 1.00 32.35	c
	ATOM 676 O GLY A 67	59.922 16.666 19.888 1.00 18.88	0
	ATOM 677 N GLY A 68	60.503 18.787 19.256 1.00 23.21	N
	ATOM 678 CA GLY A 68	59.132 19.288 19.183 1.00 23.83	<u>c</u>
40	ATOM 679 C GLY A 68	58,540 19.137 17.771 1.00 19.31	С
	ATOM 680 O GLY A 68	59.165 18.550 16.870 1.00 30.64	0
	ATOM 681 N ILE A 69	57.343 19.684 17.588 1.00 15.20	N
	ATOM 682 CA ILE A 69	56.595 19.632 16.317 1.00 16.80	
4-	ATOM 683 C ILE A 69	57.387 20.153 15.112 1.00 19.33	c
45	ATOM 684 O ILE A 69	57.425 19.519 14.061 1.00 14.66	0
		•	

PCT/US99/11576

	ATOM	685	СВ	ILE A	69	55.257	20.432	16.480	1.00 30.1	1 <u> </u>
	MOTA	686	CG1	ILE A	69	54.271	19.683	17.385	1.00 24.2	7c
	MOTA	687	CG2	ILE A	69	54.610	20.749	15.181	1.00 47.5	3 <u> </u>
	MOTA	688	CD1	ILE A	69	53.259	20.608	18.056	1.00 85.7	1C
5	MOTA	689	N	VAL A	70	58.010	21.327	15.269	1.00 23.0	3 N
	MOTA	690	CA	VAL A	70	58.797	21.913	14.183	1.00 19.3	4 <u>C</u>
	MOTA	691	С	VAL A	70	59,983	21.011	13.840	1.00 24.4	2 <u>C</u>
	MOTA	692	0	VAL A	70	60.335	20.829	12.662	1.00 24.1	40
	MOTA	693	СВ	VAL A	70	59.304	23.404	14.467	1.00 21.3	7 <u> </u>
10	MOTA	694	CG1	VAL A	70	60.137	23.907	13.281	1.00 17.7	9 <u>C</u>
	MOTA	695	CG2	VAL A	70	58.136	24.410	14.678	1.00 15.7	4 <u>C</u>
	MOTA	696	N	ALA A	71	60.621	20.450	14.861	1,00 19.6	<u> </u>
	MOTA	697	CA_	ALA A	71	61.782	19.617	14.572	1.00 16.5	7 <u> </u>
	MOTA	698	С	ALA A	71	61.427	18.289	13.910	1.00 23.3	6 <u>C</u>
15	MOTA	699	0	ALA A	71	61.980	17.923	12.849	1.00 21.8	40
	MOTA	700	СВ	ALA A	71	62.685	19.439	15.805	1.00 9.3	6 <u>C</u>
	MOTA	701	N	ASN A	72	60.463	17.598	14.511	1.00 16.8	0 N
	MOTA	702	CA	ASN A	72	59.998	16.357	13.923	1.00 18.8	4 <u>C</u>
	MOTA	703	С	ASN A	72	59.608	16.539	12.440	1.00 23.8	7 <u>C</u>
20	MOTA	704	0	ASN A	72	59.919	15.696	11.593	1.00 21.5	2 0
	MOTA	705	СВ	ASN A	72	58.835	15.806	14.738	1.00 8.6	0 <u> </u>
	MOTA	706	CG	ASN A	72	59,309	15.013	15.911	1.00 23.7	5 C
	MOTA	707	OD1	ASN A	72_	59,558	13.809	15.810	1.00 23.9	8 0
	MOTA	708	ND2	ASN A	72	59.572	15.701	16.996	1.00 9.9	6 N
25	MOTA	709	N	ASN A	73	58.931	17.647	12.138	1.00 23.0	7N
	MOTA	710	_CA	ASN A	73	58.521	17.971	10.761	1.00 26.0	5 <u>C</u>
	MOTA	711	С	ASN A	73	59.665	18.454	9.817	1.00 26.9	5 C
	ATOM	712	0	ASN A	73	59.613	18.276	8.569	1.00 22.1	3 0
	MOTA	713	СВ	ASN A	73	57.383	19.001	10.800	1.00 14.8	6 <u>C</u>
30	MOTA	714	CG	ASN A	73	56.015	18.349	10.987	1.00 19.8	в с
	ATOM	715	OD1	ASN A	73	55.620	17.468	10.217	1.00 27.0	2 0
	ATOM	716	ND2	ASN A	73	55.322	18.732	12.051	1.00 20.7	8 N
	MOTA	717	_N_	THR A	74	60.710	19.029	10.419	1.00 18.6	9 N
	MOTA	718	CA	THR A	74	61.845	19.540	9.657	1.00 10.0	7 C
35	MOTA	719	С	THR A	74	62.968	18.548	9,375	1.00 21.0	0 <u>C</u>
	MOTA	720	0	THR A	74	63.537	18.561	8,289	1.00 11.7	'5 Q
	MOTA	721	СВ	THR A	74	62,411	20,746	10.306	1.00 29.1	<u>о</u> с
	MOTA	722	0G1	THR A	74	61.370	21.714	10.457	1.00 23.2	4 0
	MOTA	723	CG2	THR A	74	63.541	21.299	9.452	1.00 21.6	3 C
40	MOTA	724	N	TYR A	75	63.230	17.636	10.310	1.00 17.1	.0
	MOTA	725	CA	TYR A	75	64.267	16.620	10.112	1.00 9.0	07 C
	MOTA	726	С	TYR A	75	63.733	15.203	10.318	1.00 6.1	7 <u>c</u>
	MOTA	727	0	TYR A	75	64.143	14.542	11,267	1.00 15.5	i8 O
	MOTA	728	СВ	TYR A	75	65.302	16.825	11.188	1.00 11.6	9 C
45	MOTA	729	CG	TYR A	75	65.779	18.234	11.252	1.00 27.1	.2 C

	MOTA	730	CD1	TYR A	75	66.712	18.696	10.321	1.00	28.46	с
	MOTA	731	CD2	TYR A	75	65.234	19.151	12.173	1.00	24.83	с
	ATOM	732	CE1	TYR A	75	67.117	20.045	10.305	1.00	28.34	c
	MOTA	733	CE2	TYR A	75	65.652	20.523	12.180	1.00	21.00	<u>c</u>
5	ATOM	734	CZ	TYR A	75	66.593	20.940	11.234	1.00	45.42	c
	ATOM	735	ОН	TYR A	75	67.066	22.230	11.215	1.00	35.37	
	ATOM	736	N_	PRO A	76	62.759	14.775	9.532	1.00	13.30	N
	ATOM	737	CA	PRO A	76	62.185	13.438	9.742	1.00	14.64	с
	ATOM	738	С	PRO A	76	63.209	12.264	9.618	1.00	14.40	c
10	ATOM	739	0	PRO A	76	63.157	11.335	10.409	1.00	20.54	0
	MOTA	740	CB	PRO A	76	61.055	13.366	8.709	1.00	7.83	<u>c</u>
	ATOM	741	ÇG	PRO A	76	61.447	14.388	7.617	1.00	12.61	с
	ATOM	742	CD	PRO A	76	62.068	15.504	8.455	1.00	11.18	с
	ATOM	743	N	ALA A	77	64.163	12.339	8.681	1.00	15.25	N
15	MOTA	744	CA	ALA A	77	65.206	11.312	8.538	1.00	6.79	<u>c</u>
	MOTA	745	_c	ALA A	77	66.053	11.166	9.820	1.00	17.22	C
	MOTA	746	0	ALA A	77	66.306	10.069	10.292	1.00	18.74	0
	MOTA	747	CB	ALA A	77	66.097	11.601	7.330	1.00	9.04	с
	MOTA	748	N	ASP A	78	66.466	12.267	10.424	1.00	10.92	N
20	ATOM	749	CA	ASP A	78	67.256	12.191	11,659	1.00	11.87	<u>c</u>
	ATOM	750	<u>C</u>	ASP A	78	66.572	11.486	12.827	1.00	16.09	с
	ATOM	751	<u> </u>	ASP A	78	67.212	10.741	13.601	1.00	18,07	0
	ATOM	752	СВ	ASP A	78	67.578	13.609	12.088	1.00	19.16	<u>c</u>
	ATOM	753	CG	ASP A	78	68.424	14.325	11.068	1.00	26.82	с
25	MOTA	754	OD1	ASP A	78	68.836	13.694	10.044	1.00	33.93	0
	MOTA	755	OD2	ASP A	78	68.673	15.514	11.316	1.00	32.06	0
	MOTA	756	N	PHE A	79	65.279	11.771	12.975	1.00	14.70	N
	MOTA	757	CA	PHE A	79	64.471	11.192	14.044	1.00	20.69	с
	MOTA	758	С	PHE A	79	64:224	9.707	13.876	1.00	20.22	c
30	MOTA	759	_0	PHE A	79	64.269	8.987	14.862	1.00	22.37	
	MOTA	760	СВ	PHE A	79	63:144	11.933	14.219	1.00	27.38	c
	MOTA	761	CG	PHE A	79	63.264	13.218	14.990		28.59	C
	MOTA	762	CD1	PHE A	79	63.137	13,230	15.386	1.00	27.49	c
	MOTA	763	CD2	PHE A	79	63.509	14.415	14.325	1.00	28.20	с
35	MOTA	764	CE1	PHE A	79	63.281	14.413	17.109	1.00	21.76	<u>c</u>
	MOTA	765	CE2	PHE A	79	63.625	15.593	15.037	1.00	31.48	c
	ATOM	766	CZ	PHE A	79	63.509	15.582	16.439	1.00	26.31	<u>C</u>
	MOTA	767	N_	ILE A	80	63.942	9.249	12.650	1.00	10.79	N
	MOTA	768	CA	ILE A	80	63.828	7.795	12.410	1.00	18.12	<u>c</u>
40	MOTA	769	<u> </u>	ILE A	80	65.197	7.052	12.432	1.00	10.97	c
	MOTA	770	0	ILE A	80	65.406	6.090	13.195	1.00	8.92	0
	MOTA	771	СВ	ILE A	80	62.944	7.408	11.148	1.00	17.41	<u>c</u>
	MOTA	772	CG1	ILE A	80	62.651	5.886	11.105	1.00	10.16	c
	MOTA	773	CG2	ILE A	80	63.583	7.888	9.901	1.00	17.46	c
45	MOTA	774	CD1	ILE A	80	61.722	5.410	9.980	1.00	7.30	с

	MOTA	775		TYR A		66.151	7.539	11.658	1.00 11.18	N
	ATOM	776	<u>CA</u>	TYR A	81	67.488	6.902	11.630	1.00 15.06	<u>C</u>
	ATOM	777	_	TYR A	81	68.237	6.782	12.959	1.00 16.83	C
_	MOTA	778	o	TYR A	81	68.714	5.702	13.383	1.00 16.74	0
5	MOTA	779	CB	TYR A	81	68.384	7.599	10.616	1.00 9.43	c
	MOTA	780	CG	TYR A	81	69.749	6.966	10.541	1.00 22.54	C
	MOTA	781	CD:	L_TYR_A	81	69.963	5.824	9.747	1.00 22.37	с
	MOTA	782	CD	TYR A	81	70.818	7.466	11.299	1.00 18.07	c
	ATOM	783	CE:	TYR A	81	71.202	5.163	9,746	1.00 15.02	с
10	MOTA	784	CE2	TYR A	81	72.080	6.893	11.201	1.00 17.37	c
	MOTA	785	CZ	TYR A	81	72.255	5.698	10.472	1.00 24.27	c
	ATOM	786	OH	TYR A	81	73.491	5.063	10.409	1.00 19.57	0
	ATOM	787	N	GLN A	82	68.385	7.918	13.612	1.00 11.39	N
	MOTA	788	CA	GLN A	82	69.193	7.930	14.810	1.00 12.23	с
15	ATOM	789	С	GLN A	82	68.544	7.089	15.834	1.00 14.18	с
	MOTA	790	0	GLN A	82	69.180	6.415	16.631	1.00 11.35	o
	MOTA	791	СВ	GLN A	82	69.280	9.354	15.291	1.00 18.73	<u>C</u>
	MOTA	792	CG	GLN A	82	69.986	10.209	14.250	1.00 13.54	C
	MOTA	793	CD	GLN A	82	70.285	11.617	14.736	1.00 26.00	с
20	MOTA	794	OE]	GLN A	82	70.410	11.850	15.927	1.00 22.99	0
	ATOM	795	NE2	GLN A	82	70.404	12.561	13,808	1.00 16.59	N
	ATOM	796	N	ASN A	83	67.235	7.181	15.869	1.00 11.35	N
	ATOM	797	CA	ASN A	83	66.549	6.408	16.860	1.00 13.71	с
	ATOM	798	С	ASN A	83	66.623	4.902	16.557	1.00 21.43	c
25	MOTA	799	0	ASN A	83	66.831	4.101	17.463	1.00 12.10	o
	ATOM	800	СВ	ASN A	83	65.132	6.945	17.074	1.00 13.51	С
	MOTA	801	CG	ASN A	83	65.131	8,245	17.871	1.00 28.91	с
	MOTA	802	OD1	ASN A	83	65.628	8.263	18.990	1.00 22.28	o
	MOTA	803	ND2	ASN A	83	64.756	9.354	17.237	1.00 20.17	N
30	MOTA	804	N	MET A	84	66.592	4,517	15.290	1.00 15.63	N
	MOTA	805	CA	MET A	84	66.704	3.101	15,007	1.00 15.66	c
	MOTA	806	c	MET A	84	68.054	2.588	15.348	1.00 14.66	C
	ATOM	807	0	MET A	84	68.148	1.514	15.902	1.00 11.45	
	MOTA	808	СВ	MET A	84	66.418	2.815	13.563	1.00 17.59	C
35	MOTA	809	CG	MET A	84	64.911	2.894	13.220	1.00 14.40	C
	MOTA	810	SD	MET A	84	64.638	2.811		1.00 15.99	s
	ATOM	811	CE	MET A	84	65.164			1.00 8.90	C
	ATOM	812	N	MET A	85	69,098			1.00 11.20	N
	ATOM	813	CA	MET A	85	70.468			1.00 11.67	
40	ATOM	814	С	MET A	85	70.779	2.831		1.00 13.04	c
	ATOM	815	0	MET A	85	71.359			1.00 15.26	0
	ATOM	816	СВ	MET A	85	71,525			1.00 15.07	C
	ATOM	817	CG	MET A	85	71.530			1.00 32.01	c
	ATOM	818	SD	MET A	85	71,918			1.00 37.79	
45	ATOM	819	CE	MET A	85	73,379	1.801		1.00 15.94	<u>s</u>
					V.4	19,313	1 · U.V.1	43.36V	1.00 13.34	<u>c</u>

	MOTA	820	N	ILE A	86	70.471	3.892	17.481	1.00 13.92	N
	MOTA	821	_CA	ILE A	86	70.760	3.893	18.912	1.00 12.58	c
	MOTA	822	C	ILE A	86	70.159	2,662	19.591	1.00 21.61	<u>c</u>
	MOTA	823	0	ILE A	86	70.813	1.981	20.362	1.00 18.68	0
5	ATOM	824	СВ	ILE A	86	70.225	5.189	19.606	1.00 11.84	с
	MOTA	825	CG1	ILE A	86	70.978	6.429	19.119	1.00 19.78	c
	ATOM	826	CG2	ILE A	86	70,435	5.132	21.112	1.00 6.59	<u>C</u>
	MOTA	827	CD1	ILE A	86	70.505	7.694	19.772	1.00 20.37	с
	MOTA	828	N	GLU A	87	68.893	2.383	19.316	1.00 18.78	N
10	ATOM	829	CA	GLU A	87	68.263	1.237	19.930	1.00 14.00	с
	ATOM	830	С	GLU A	87	68,797	-0.116	19.454	1.00 15.93	c
	ATOM	831	0	GLU A	87	69.017	-0.991	20.268	1.00 11.04	
	ATOM	832	СВ	GLU A	87	66.734	1.324	19.900	1.00 14.89	Ç
	ATOM	833	CG	GLU A	87	66.085	1.327	18.538	1.00 28.96	C
15	MOTA	834	CD	GLU A	87	64.635	1.922	18.544	1.00 11.12	C
	ATOM	835	OE1	GLU A	87	64.307	2.801	19.376	1.00 25.46	. 0
	ATOM	836	OE2	GLU A	87	63.845	1.547	17.663	1.00 29.87	0
	ATOM	837	N	SER A	88	69.054	-0.259	18.155	1.00 16.18	N N
	MOTA	838	CA	SER A	88	69.650	-1.482	17.569	1.00 19.52	C
20	ATOM	839	С	SER A	88	71.029	-1.792	18.160	1.00 22.54	C
	ATOM	840	0	SER A	88	71.313	-2,929	18.592	1.00 13.80	<u> </u>
	MOTA	841	СВ	SER A	88	69.815	-1.326	16.023	1.00 14.61	C
	MOTA	842	OG.	SER A	88	68.551	-1.201	15.355	1.00 15.41	0
	MOTA	843	N	ASN A	89	71.884	-0.773	18.143	1.00 22.63	N N
25	MOTA	844	CA	ASN A	89	73.227	-0.869	18.693	1.00 27.23	c
	MOTA	845	Ç	ASN A	89	73.195	-1.363	20.134	1.00 21.34	C
	MOTA	846	0	ASN A	89	73,795	-2.384	20.476	1.00 23.68	0
	MOTA	847	СВ	ASN A	89	73.980	0.487	18.597	1.00 13.71	C
	MOTA	848	CG	ASN A	89	74.440	0.825	17.168	1.00 20.40	ç
30	ATOM	849	OD1	ASN A	89	74.305	-0.006	16.255	1.00 14.93	0
	MOTA	850	ND2	ASN A	89	74.937	2.067	16.960	1.00 13.32	N
	ATOM	851	N	ILE A	90	72,488	-0.646	20,979	1.00 16.55	N
	ATOM	852	CA	ILE A	90	72,437	-1.014	22.398	1.00 21.51	C
	ATOM	853	С	ILE A	90	71.876	-2.421		1.00 26.50	C
35	ATOM	854	0	ILE A	90	72.384	-3.159		1.00 19.71	
	ATOM	855	СВ	ILE A	90	71.670	0.070		1.00 13.32	C
	ATOM	856	CG1	ILE A	90	72,539	1.299		1.00 11.05	c
	ATOM	857	CG2	ILE A	90	71.371	-0.445		1.00 7.54	C
	ATOM	858	CD1	ILE A	90	71,749	2.597		1.00 20.71	c
40	ATOM	859	N	ILE A	91	70.755	-2.733		1.00 14.98	N
	MOTA	860	CA	ILE A	91	70.047	-3.953		1.00 21.33	C
	ATOM	861	С		91	70.927	-5.098		1.00 26.27	<u>c</u>
	ATOM	862	0	ILE A	91	71.211	-6.011		1.00 26.56	0
	ATOM	863	CB	ILE A		68.556	-3.930		1.00 20.39	<u>c</u>
45	ATOM	864		ILE A	91	67.692			1.00 20.53	c
			W P			<u> </u>	2.000		1,00 13,31	

	ATOM	865	CG2 ILE A	91	67.841 -5.316 21.845 1.00 11.31	
	ATOM	866	CD1 ILE A	91	66.320 -2.648 21.907 1.00 16.23	c
	ATOM	867	N HIS A	92	71,446 -4.983 20.785 1.00 24.12	N
	ATOM	868	CA HIS A	92	72.293 -6.015 20.243 1.00 26.71	c
5	ATOM	869	C HIS A	92	73.609 -6.251 21.071 1.00 29.30	с
	ATOM	870	O HIS A	92	73.983 -7.366 21.443 1.00 18.58	0
	ATOM	871	CB HIS A	92	72.561 -5.682 18.775 1.00 22.23	С
	ATOM	872	CG HIS A	92	73.366 -6.720 18.077 1.00 26.32	C
	ATOM	873	ND1 HIS A	92	72,798 -7.711 17.307 1.00 27.19	N
10	MOTA	874	CD2 HIS A	92	74.699 -6.978 18.106 1.00 21.95	c
	ATOM	875	CE1 HIS A	92	73.755 -8.487 16.826 1.00 23.66	<u>C</u>
	ATOM	876	NE2 HIS A	92	74.918 -8.062 17.296 1.00 17.36	N
	ATOM	877	N ALA A	93	74.328 -5.187 21.333 1.00 15.66	N
	ATOM	878	CA ALA A	93	75,530 -5.301 22.110 1.00 11.88	С
15	ATOM	879	C ALA A	93	75.222 -5.900 23.512 1.00 28.78	c
	ATOM	880	O ALA A	93	75.912 -6.790 24.037 1.00 25.23	0
	ATOM	881	CB ALA A	93	76.139 -3.959 22.221 1.00 6.30	c
	ATOM	882	N ALA N	94	74.142 -5.442 24.113 1.00 18.82	N
	ATOM	883	CA ALA A	94	73.777 -5.971 25.399 1.00 15.61	c
20	ATOM	884	C ALA A	94	73.593 -7.503 25.301 1.00 28.39	c
	ATOM	885	O ALA A	94	74.133 -8.263 26.099 1.00 21.67	0
	MOTA	886	CB ALA A	94	72,449 -5.279 25.911 1.00 18.46	<u> </u>
	ATOM	887	N HIS A	95	72.814 -7.966 24.329 1.00 26.35	N
	MOTA	888	CA HIS A	95	72.551 -9.396 24.271 1.00 24.89	<u>C</u>
25	MOTA	889	C HIS A	95	73.845 -10.176 24.140 1.00 22.81	
	MOTA	890	O HIS A	95	74.077 -11.136 24.865 1.00 21.44	0
	MOTA	891	CB HIS A	95	71.571 -9.778 23.129 1.00 22.39	<u>c</u>
	MOTA	892	CG HIS A	95	71.554 -11.250 22.831 1.00 28.73	Ç
	MOTA	893	ND1 HIS A	95	70.979 -12.182 23.682 1.00 22.83	N
30	MOTA	894	CD2 HIS A	95	72.159 -11.964 21.845 1.00 25.22	c
	MOTA	895	CE1 HIS A	95	71.171 -13.397 23.196 1.00 22.72	
	MOTA	896	NE2 HIS A	95	71.911 -13.296 22.101 1.00 24.80	N
	MOTA	897	n glna	96	74.709 -9.658 23.281 1.00 19.97	N
•	MOTA	898	CA GLN A	96	75.960 -10.299 22.917 1.00 22.27	С
35	MOTA	899	C GLN A	96	76.877 -10.353 24.086 1.00 26.58	С
	MOTA	900	O GLN A	96	77.836 -11.093 24.088 1.00 24.17	0
	MOTA	901	CB GLN A	96	76.642 -9.492 21.818 1.00 23.38	C
	MOTA	902	CG GLN A	96	77.043 -10.299 20.596 1.00 61.06	С
	MOTA	903	CD GLN A	96	78.033 -9.557 19.675 1.00 75.83	c
40	MOTA	904	OE1 GLN A	96	78.999 -8.941 20.131 1.00 56.89	0
	MOTA	905	NE2 GLN A	96	77.815 -9.668 18.366 1.00100.00	N
	MOTA	906	n asna	97	76.652 -9.500 25.060 1.00 22.15	N
	MOTA	907	CA ASN A	97	77.537 -9.536 26.208 1.00 14.74	C
	MOTA	908	C ASN A	97	76,732 -10.022 27.387 1.00 29.78	<u>c</u>
45	ATOM	909	O ASN A	97	77.049 -9.762 28.564 1.00 27.09	0

	ATOM	910	СВ	ASN A	97	78.241	-8.201	26.462	1.00	12.93	c
	MOTA	911	CG	ASN A	97	79.260	-7.897	25.407	1.00	24.91	с
	MOTA	912	OD1	ASN A	97	80.331	-8.518	25.375	1.00	57.17	0
	MOTA	913	ND2	ASN A	97	78.839	-7.135	24.392	1.00	34.88	N
5	ATOM	914	N	ASP A	98	75.666	-10.732	27.055	1.00	27.98	N
	ATOM	915	_CA_	ASP A	98	74.907	-11.361	28.089	1.00	29.25	С
	ATOM	916	С	ASP A	98	74.400	-10.379	29.164	1.00	37.53	C
	MOTA	917	0	ASP A	98	74.505	-10.634	30.367	1.00	36.42	0
	ATOM	918	СВ	ASP A	98	75.791	-12.450	28.700	1.00	36.37	С
10	ATOM	919	CG	ASP A	98	75.016	-13.712	29.053	1.00	88.62	с
	ATOM	920	OD1	ASP A	98	73,775	-13.749	28.877	1.00	82.53	0
	MOTA	921	OD2	ASP A	98	75.656	-14.670	29.542	1.001	00.00	o
	ATOM	922	N_	VAL A	99	73.879	-9.235	28.730	1.00	27.13	N
	ATOM	923	CA	VAL A	99	73.157	-8.351	29.635	1.00	21.57	С
15	ATOM	924	c	VAL A	99	71,706	-8.868	29.530	1.00	16.15	С
	MOTA	925	0	VAL A	99	71.159	-9.088	28.422	1.00	19.47	0
	MOTA	926	СВ	VAL A	99	73.264	-6.900	29.206	1.00	24.18	c
	MOTA	927	CG1	VAL A	99	72.517	-6.015	30,198	1.00	14.58	с
	MOTA	928	CG2	VAL A	99	74.720	-6.515	29.225	1.00	30.10	с
20	ATOM	929	N	ASN A	100	71.149	-9.262	30.662	1.00	17.39	N
	MOTA	930	CA	ASN A	100	69.852	-9.925	30.613	1.00	25.77	с
	MOTA	931	С	ASN A	100	68.648	-9.034	30.910	1.00	24.95	с
	ATOM	932	0	ASN A	100	67.498	-9.377	30.582	1.00	20.88	o
	ATOM	933	СВ	ASN A	100	69.846	-11.157	31.527	1.00	14.98	c
25	MOTA	934	CG	ASN A	100	68.724	-12.112	31.180	1.00	20.38	c
	MOTA	935	OD1	ASN A	100	68.737	-12.709	30,100	1.00	29.59	0
	MOTA	936	ND2	ASN A	100	67.716	-12.240	32.076	1.00	16.35	N
	MOTA	937	N_	LYS A	101	68.941	-7.923	31.584	1.00	17.91	N
	MOTA	938	CA	LYS A	101	67.970	-6.916	31.994	1.00	25.43	С
30	MOTA	939	С	LYS A	101	68.107	-5.510	31.323	1.00	25.29	С С
	MOTA	940	0	LYS A	101	69.151	-4.850	31,377	1.00	19.88	Q
	MOTA	941	СВ	LYS A	101	67.996	-6.807	33.521	1.00	29.28	c
	MOTA	942	CG	LYS A	101	67.464	-8.054	34.205	1.00	9,31	с
	MOTA	943	CD	LYS A	101	67.218	-7.719	35.668	1.00	38.93	c
35	MOTA	944	CE	LYS A	101	66.206	-6.569	35.885	1.00	13.38	С
	MOTA	945	NZ	LYS A	101	64.750	-7.006	35.825	1.00	15.26	N
	ATOM	946	_N_	LEU A	102	67.013	-5.043	30.732	1.00	22.22	N
	MOTA	947	CA	LEU A	102	67.003	-3.744	30.092	1.00	15.40	c
	MOTA	948	С	LEU A	102	65.612	-3.115	30.156	1.00	18.55	С
40	ATOM	949	0	LEU A	102	64.590	-3.811	30.102	1.00	18.92	
	MOTA	950	СВ	LEU A	102	67.465	-3.898	28.636	1.00	11.23	C
	ATOM	951	CG	LEU A	102	67.553	-2.711	27.651	1.00	15.51	С
	ATOM	952		LEU A		68.628		26.559			C
	ATOM	953	CD2	LEU A	102	66.162	-2.407	26.995			С
45	ATOM	954	N	LEU A	103	65.595		30.318			N

	ATOM	955	CA	LEU A 103	64.356	-1.036	30.265	1.00 16.23	с
	ATOM	956	С	LEU A 103	64.346	-0.072	29.046	1.00 19.65	c
	ATOM	957	۰.	LEU A 103	65,215	0.789	28.875	1.00 19.68	
	ATOM	958	СВ	LEU A 103	64.099	-0.289	31.562	1.00 12.28	с
5	ATOM	959	CG	LEU A 103	62.686	0.259	31,594	1.00 14.13	c
	MOTA	960	CD1	LEU A 103	61.645	-0.822	31.902	1.00 10.31	с
	ATOM	961	CD2	LEU A 103	62,646	1.360	32.601	1.00 12.30	с
	ATOM	962	N	PHE A 104	63.417	-0.333	28.140	1.00 16.41	N.
	ATOM	963	CA	PHE A 104	63.215	0.486	26.956	1.00 18.32	<u>C</u>
10	ATOM	964	c.	PHE A 104	62.126	1.546	27.249	1.00 21.85	c
	MOTA	965	0	PHE A 104	61.168	1.271	27.992	1.00 18.36	o
	ATOM	966	СВ	PHE A 104	62,796	-0.386	25.793	1.00 9.86	C
	ATOM	967	CG	PHE A 104	62.732	0.348	24.508	1.00 16.81	c
	ATOM	968	CD1	PHE A 104	63.894	0.714	23.840	1.00 25.04	
15	ATOM	969	CD2	PHE A 104	61.511	0.795	24.005	1.00 22.59	C
	MOTA	970	CE1	PHE A 104	63.836	1,448	22.619	1.00 31.26	C
	ATOM	971	CE2	PHE A 104	61.449	1.535	22.814	1.00 15.59	C
	ATOM	972	CZ	PHE A 104	62.625	1.895	22.139	1.00 11.67	с
	MOTA	973	N	LEU A 105	62.341	2.762	26.734	1.00 20.33	N
20	ATOM	974	CA	LEU A 105	61.416	3.897	26.904	1.00 18.10	с
	ATOM	975	С	LEU A 105	60.711	4.237	25.634	1.00 17.04	C
	MOTA	976	0	LEU A 105	61.315	4.680	24.665	1.00 18.83	0
	MOTA	977	СВ	LEU A 105	62.178	5.146	27.214	1.00 17.49	C
	MOTA	978	CG	LEU A 105	62,434	5.544	28.644	1.00 27.17	С
25	MOTA	979	CD1	LEU A 105	62.630	4.349	29.574	1.00 19.16	c
	MOTA	980	CD2	LEU A 105	63,688	6.347	28.529	1.00 23.59	C
	MOTA	981	N	GLY A 106	59,407	4.153	25.652	1.00 20.66	N
	ATOM	982	CA	GLY A 106	58.679	4.536	24,455	1.00 21.03	<u>c</u>
	ATOM	983	С	GLY A 106	58.080	5.935	24.597	1.00 17.32	C
30	ATOM	984	0_	GLY A 106	58.690	6.858	25.113	1.00 26.89	0
	ATOM	985	N	SER A 107	56.831	6.047	24.219	1.00 22.05	и
	ATOM	986	CA	SER A 107	56,177	7.317	24.288	1.00 22.12	C
	ATOM	987	С	SER A 107	54.686	7.212	23.923	1.00 19.06	<u>C</u>
	MOTA	988	0	SER A 107	54.314	6.545	22.963	1.00 27.42	0
35	ATOM	989	СВ	SER A 107	56.882	8.232	23.300	1.00 20.99	C
	MOTA	990	OG	SER A 107	55.947	9.133	22.776	1.00 42.85	0
	MOTA	991	N	SER A 108	53,826	7.890	24.671	1.00 27.42	N
	ATOM	992	CA	SER A 108	52,382	7.947	24.339	1.00 26.43	c
	MOTA	993	C	SER A 108	52.144	8.259	22.842	1.00 30.97	C
40	MOTA	994	0	SER A 108	51.242	7.709	22.217	1.00 33.46	0
	ATOM	995	СВ	SER A 108	51.710	9.072	25.144	1.00 19.87	с
	MOTA	996	OG	SER A 108	52,495	10.266	25.071	1.00 70.88	0
	MOTA	997	N	CYS A 109	52.927	9.180	22.278	1.00 24.73	N
	MOTA	998	CA	CYS A 109	52.728	9.549	20.880	1.00 25.61	c
45	MOTA	999		CYS A 109	52,970	8.482	19.815	1.00 21.29	с

	MOTA	1000	0	CYS A 1	09	52.96	7 8.7	37	18.623	1.00	31.31	•	٥
	MOTA	1001	СВ	CYS A 1	09	53.36	9 10.8	99	20.544	1.00	39.55		C
	MOTA	1002	SG	CYS A 1	09	55.15	3 11.0	77	20.847	1.00	49.24		S
	MOTA	1003	N	ILE A 1	10	53.10	7.2	64	20.258	1.00	18.31		N
5	MOTA	1004	CA	ILE A 1	10	53.32	9 6.1	50	19.379	1.00	28.10		c
	MOTA	1005	<u>c</u>	ILE A 1	10	51.97	7 5.4	89	19.082	1.00	15.38		C
	MOTA	1006	0	ILE A 1	10	51.89	5 4.5	92	18.268	1.00	16.52		Q
	MOTA	1007	СВ	ILE A 1	10	54.15	4 5.1	53_	20.206	1.00	40.45		Ç
	MOTA	1008	CG1	ILE A 1	10	55.60	4 5.5	10	20.136	1.00	39.02		c
10	MOTA	1009	CG2	ILE A 1	10	53.87	9 3.7	15	19.875	1.00	61.33		c
	MOTA	1010	CD1	ILE A 1	10	56.42	9 4.3	38	20.549	1.00	82.74		c
	ATOM	1011	N	TYR A 1	11	50.95	1 5.8	42	19.854	1.00	14.91		N
	ATOM	1012	CA	TYR A 1	11	49.63	5.2	27	19.678	1.00	13.96		C
		1013	С	TYR A 1		48.95		31	18.459		20.40		c
15	ATOM	1014	0	TYR A 1	11	49.30	2 6.9	33	18.056	1.00	11.71		Q
•		1015	СВ	TYR A 1	11	48.76		68	20.921		9.63		c
	ATOM	1016	CG	TYR A 1		49.11			22.065	1.00	14.94		c
		1017		TYR A 1		48.98			21.938	1.00	9.73		c
		1018		TYR A 1		49.75			23.216		14.96		c
20		1019		TYR A 1		49.34			23.014		6.53		c
		1020		TYR A 1		50.14			24.272		13.66		c
		1021	CZ	TYR A 1		49.87		,	24.171		17.86		c
		1022	ОН	TYR A 1		50,26			25.157		11.37		0
		1023	N	PRO A 1		47.97			17.872		22.56		N
25		1024	CA	PRO A 1		47.27			16.721		23.44		c
		1025	C	PRO A 1		46.58			16.988		17.82		c
		1026	0	PRO A 1		46,19			18.115		19.72		0
		1027	СВ	PRO A 1		46.29			16.252		15.69		c
		1028	CG	PRO A 1		46,89			16.769		22.83		Ç
30		1029	CD	PRO A 1		47.59			18.086		16.10		c
		1030	N	LYS A 1		46, 41			15.915		19.48		N
		1031	CA	LYS A 1		45.79			15.994		23.50		c
		1032	С	LYS A 1		44.39			16.655		34.28		c
		1033	0	LYS A 1		44.04			17.524		46.14		0
35		1034	CB	LYS A 1		45.67			14.593		30.04		c
		1035		LYS A 1			9 11.1				43.78		
		1036		LYS A 1		45.38			13.515				عـ
		1037		LYS A 1		44.36					100.00		ع
		1038		LYS A 1		43.48			13.304				N.
40		1039	N	LEU A		43.59			16.250				
-10		1040	CA	LEU A 1		42.26			16.833		20.65		N C
		1041	<u></u>	LEU A		42.08			17.760		18.44 24.04		2
		1042 1043	<u> </u>	LEU A		41.00			17.918				٥
45		1043		LEU A 1		41.19			15.780				<u>_</u>
43	ATOM	1044	ÇG	LEU A	14	41.58	1 9.1	22_	14.830	1.00	40,86		c

	ATOM	1045	CD1	LEU A 114	40.991	8.797	13.504	1.00 49.29	c
	MOTA	1046	CD2	LEU A 114	41,139	10.512	15.300	1.00 26.85	c
	MOTA	1047	N	ALA A 115	43.103	6.473	18.527	1.00 29.00	N
	MOTA	1048	CA	ALA A 115	42,920	5,446	19.528	1.00 25.66	с
5	MOTA	1049	С	ALA A 115	41.722	5.727	20.454	1.00 28.76	с
	MOTA	1050	0	ALA A 115	41,364	6.855	20.682	1.00 24.12	<u> </u>
	MOTA	1051	СВ	ALA A 115	44.177	5.272	20.326	1.00 16.86	с
	MOTA	1052	N_	LYS A 116	41.137	4.675	20.998	1.00 30.21	N
	MOTA	1053	CA	LYS A 116	40.036	4.792	21.928	1.00 25.85	<u>c</u>
10	MOTA	1054	С	LYS A 116	40.668	5,248	23.195	1.00 14.18	с
	MOTA	1055	0	LYS A 116	41.750	4.781	23.535	1.00 23.51	0
	MOTA	1056	СВ	LYS A 116	39.369	3.415	22.116	1.00 22.05	с
	MOTA	1057	CG	LYS A 116	39.053	3.032	23.524	1.00 55.38	c
	MOTA	1058	CD	LYS A 116	37,963	1.955	23.549	1.00100.00	c
15	MOTA	1059	CE	LYS A 116	37,120	1.953	24.835	1.00100.00	с
	MOTA	1060	NZ	LYS A 116	35.767	1.310	24.630	1,00100.00	N
	MOTA	1061	N	GLN A 117	40.021	6.208	23.856	1.00 18.23	N
	MOTA	1062	CA	GLN A 117	40.456	6.757	25.180	1.00 21.01	c
	MOTA	1063	С	GLN A 117	39.695	6.178	26.383	1.00 30.96	c
20	MOTA	1064	0	GLN A 117	38.483	6.009	26.345	1.00 27.66	0
	MOTA	1065	СВ	GLN A 117	40.215	8.263	25.179	1.00 11.32	<u>c</u>
	MOTA	1066	CG	GLN A 117	40.849	8.912	23.948	1.00 12.12	с
	MOTA	1067	CD	GLN A 117	42.404	8.823	23.954	1.00 24.10	с
	MOTA	1068	OE1	GLN A 117	43.041	8,628	22.896	1.00 47.88	0
25	MOTA	1069	NE2	GLN A 117	43.001	8.953	25.131	1.00 14.24	N
	MOTA	1070	N	PRO A 118	40.374	5.992	27.499	1.00 30.02	N
	ATOM	1071	CA	PRO A 118	41.826	6.194	27.655	1.00 26.44	c
	MOTA	1072	C_	PRO A 118	42.450	5.050	26.899	1.00 24.37	c
	MOTA	1073	0	PRO A 118	41.792	4.027	26.726	1.00 25.34	0
30	MOTA	1074	СВ	PRO A 118	42.055	5.994	29.167	1.00 23.89	c
	MOTA	1075	CG	PRO A 118	40.847	5.240	29.654	1.00 23.20	<u>c</u>
	MOTA	1076	CD	PRO A 118	39.695	5.519	28.709	1.00 15.79	С
	MOTA	1077	N_	MET A 119	43.684	5.228	26.432	1.00 16.00	N
	MOTA	1078	CA	MET A 119	44.372	4.215	25.644	1.00 10.80	c
35	MOTA	1079	С	MET A 119	45.062	3.083	26.444	1.00 23.61	с
	ATOM	1080	0	MET A 119	46.013	3.281	27.209	1.00 18.02	0
	MOTA	1081	СВ	MET A 119	45.384	4.894	24.791	1.00 13.52	<u>c</u>
	MOTA	1082	CG	MET A 119	44.801	6.014	23.989	1.00 18.52	c
	MOTA	1083	SD	MET A 119	46,157	7.054	23.271	1.00 26.27	<u>s</u>
40	ATOM	1084	CE	MET A 119	46.264	6.524	21.845	1.00 33.79	с
	MOTA	1085	N	ALA A 120	44.559	1.875	26.271	1.00 26.64	<u> </u>
	MOTA	1086	CA	ALA A 120	45.177	0.712	26,884	1.00 29.17	<u>c</u>
	MOTA	1087	С	ALA A 120	46,356	0.308	25.984	1.00 23.21	<u>C</u>
	MOTA	1088	0	ALA A 120	46.439	0.759	24.833	1.00 20.19	0
45	MOTA	1089	СВ	ALA A 120	44.169	-0.419	26.944	1.00 26.02	<u>C</u>

	ATOM 1090 N GLU A 121	47.238 -0.553 26.507 1.00 12.30	N
	ATOM 1091 CA GLU A 121	48.427 -1.009 25.788 1.00 9.45	с
	ATOM 1092 C GLU A 121	48.070 -1.697 24.450 1.00 11.68	c
	ATOM 1093 O GLU A 121	48.828 -1.670 23.450 1.00 14.84	0
5	ATOM 1094 CB GLU A 121	49.321 -1.883 26.715 1.00 16.74	С
	ATOM 1095 CG GLU A 121	50.132 -1.122 27.763 1.00 18.14	С
	ATOM 1096 CD GLU A 121	49.458 -1.000 29.137 1.00 13.00	c
	ATOM 1097 OE1 GLU A 121	48.252 -1.294 29.276 1.00 20.79	0
	ATOM 1098 OE2 GLU A 121	50.123 -0.521 30.080 1.00 17.86	0
10	ATOM 1099 N SER A 122	46.887 -2.273 24.409 1.00 11.79	N
	ATOM 1100 CA SER A 122	46.427 -2.977 23.218 1.00 12.16	c
	ATOM 1101 C SER A 122	46.030 -2.058 22.100 1.00 11.70	<u>c</u>
	ATOM 1102 O SER A 122	45.717 -2.529 21.010 1.00 13.91	0
	ATOM 1103 CB SER A 122	45.186 -3.781 23.568 1.00 21.50	c
15	ATOM 1104 OG SER A 122	44.143 -2.908 23.976 1.00 28.52	0
	ATOM 1105 N GLU A 123	46.041 -0.754 22.341 1.00 14.65	N
	ATOM 1106 CA GLU A 123	45,783 0.202 21.243 1.00 17.15	С
	ATOM 1107 C GLU A 123	46.959 0.313 20.240 1.00 11.48	С
	ATOM 1108 O GLU A 123	46.821 0.844 19.141 1.00 11.19	0
20	ATOM 1109 CB GLU A 123	45.481 1.600 21.805 1.00 21.66	С
	ATOM 1110 CG GLU A 123	44.127 1.694 22.523 1.00 24.68	c
	ATOM 1111 CD GLU A 123	42.984 1.374 21.585 1.00 35.56	С
	ATOM 1112 OE1 GLU A 123	43.019 1.865 20.426 1.00 41.73	0
	ATOM 1113 OE2 GLU A 123	42.158 0.497 21.940 1.00100.00	0
25	ATOM 1114 N LEU A 124	48.134 -0.185 20.618 1.00 14.02	N
	ATOM 1115 CA LEU A 124	49.296 -0.082 19.740 1.00 15.32	С
	ATOM 1116 C LEU A 124	49.082 -0.754 18.458 1.00 17.76	c
	ATOM 1117 O LEU A 124	48.752 -1.917 18.445 1.00 18.91	0
	ATOM 1118 CB LEU A 124	50.564 -0.680 20.362 1.00 18.07	c
30	ATOM 1119 CG LEU A 124	51.922 -0.222 19.803 1.00 21.52	c
	ATOM 1120 CD1 LEU A 124	52.080 1.258 20.117 1.00 20.35	c
	ATOM 1121 CD2 LEU A 124	53.042 -0.919 20.550 1.00 14.07	С
	ATOM 1122 N LEU A 125	49.514 -0.071 17.409 1.00 18.44	N
	ATOM 1123 CA LEU A 125	49.445 -0.564 16.052 1.00 19.92	c
35	ATOM 1124 C LEU A 125	48.034 -0.754 15.509 1.00 25.56	С
	ATOM 1125 O LEU A 125	47.854 -1.188 14.364 1.00 18.26	0
	ATOM 1126 CB LEU A 125	50.355 -1.800 15.840 1.00 20.79	С
	ATOM 1127 CG LEU A 125	51.890 -1.511 15.778 1.00 17.21	C
	ATOM 1128 CD1 LEU A 125	52.744 -2.649 16.316 1.00 19.95	c
40	ATOM 1129 CD2 LEU A 125	52.334 -1.219 14.338 1.00 5.81	С
	ATOM 1130 N GLN A 126	47.027 -0.327 16.276 1.00 21.97	N
	ATOM 1131 CA GLN A 126	45.652 -0.504 15.790 1.00 19.97	<u> </u>
	ATOM 1132 C GLN A 126	45.213 0.447 14.724 1.00 28.31	
	ATOM 1133 O GLN A 126	44.076 0.391 14.293 1.00 47.49	
45	ATOM 1134 CB GLN A 126	44.652 -0.404 16.911 1.00 19.87	c

	ATOM 1135 CG GLN A 126	44.949 -1.312 18.048 1.00 18.39	С
	ATOM 1136 CD GLN A 126	44.319 -2.626 17.835 1.00 66.80	c
	ATOM 1137 OE1 GLN A 126	44.064 -3.376 18.792 1.00 40.75	0
	ATOM 1138 NE2 GLN A 126	44.015 -2.952 16.565 1.00 71.74	N
5	ATOM 1139 N GLY A 127	46,080 1.330 14.270 1.00 28.29	N
	ATOM 1140 CA GLY A 127	45,627 2,260 13.252 1.00 23.31	c
	ATOM 1141 C GLY A 127	46.662 3.315 12.953 1.00 22.90	С
	ATOM 1142 O GLY A 127	47.755 3.254 13.474 1.00 25.30	0
	ATOM 1143 N THR A 128	46.311 4.219 12.046 1.00 19.51	N
10	ATOM 1144 CA THR A 128	47.149 5.314 11.588 1.00 22.12	<u>C</u>
	ATOM 1145 C THR A 128	47.705 6.219 12.695 1.00 22.60	c
	ATOM 1146 O THR A 128	47.061 6.461 13.731 1.00 18.58	0
	ATOM 1147 CB THR A 128	46.392 6.182 10.544 1.00 35.98	<u> </u>
	ATOM 1148 OG1 THR A 128	46.533 5.594 9.239 1.00 58.05	0
15	ATOM 1149 CG2 THR A 128	46.942 7.639 10.542 1.00 43.41	c
	ATOM 1150 N LEU A 129	48.907 6.715 12.425 1.00 18.32	N
	ATOM 1151 CA LEU A 129	49.674 7.534 13.356 1.00 16.76	<u>C</u>
	ATOM 1152 C LEU A 129	49.504 8.959 12.967 1.00 4.89	<u>c</u>
	ATOM 1153 O LEU A 129	49.232 9.260 11.814 1.00 16.14	0
20	ATOM 1154 CB LEU A 129	51.205 7.191 13.261 1.00 17.91	c
	ATOM 1155 CG LEU A 129	51.769 5.804 13.752 1.00 18.21	<u>C</u>
	ATOM 1156 CD1 LEU A 129	53.132 5.379 13.193 1.00 12.12	<u>C</u>
	ATOM 1157 CD2 LEU A 129	51.683 5.532 15.251 1.00 3.89	<u>C</u>
	ATOM 1158 N GLU A 130	49.816 9.827 13.917 1.00 10.23	N
25	ATOM 1159 CA GLU A 130	49.912 11.268 13.691 1.00 13.22	c
	ATOM 1160 C GLU A 130	51.128 11.544 12.775 1.00 23.44	c
	ATOM 1161 O GLU A 130	52.249 11.162 13.090 1.00 21.23	0
	ATOM 1162 CB GLU A 130	50,150 11,979 15,035 1,00 18.48	C
	ATOM 1163 CG GLU A 130	50.754 13.376 14.886 1.00 77.44	с
30	ATOM 1164 CD GLU A 130	49.833 14.328 14.121 1.00100.00	C
	ATOM 1165 OE1 GLU A 130	48.588 14.205 14.340 1.00 36.19	<u> </u>
	ATOM 1166 OE2 GLU A 130	50,347 15.161 13.295 1.00 21.03	0
	ATOM 1167 N PRO A 131	50,920 12,219 11,648 1,00 21.35	N
	ATOM 1168 CA PRO A 131	52,023 12,409 10,731 1.00 14,78	<u>C</u>
35	ATOM 1169 C PRO A 131	53,201 13,132 11,265 1,00 14,98	C
	ATOM 1170 O PRO A 131	54.325 12.847 10.853 1.00 20.99	0
	ATOM 1171 CB PRO A 131	51,413 13,154 9,552 1,00 14,76	<u>C</u>
	ATOM 1172 CG PRO A 131	50.071 13.485 9.949 1.00 20.99	<u>c</u>
	ATOM 1173 CD PRO A 131	49.641 12.626 11.047 1.00 17.25	с
40	ATOM 1174 N THR A 132	52.986 14.095 12.159 1.00 18.77	N
	ATOM 1175 CA THR A 132	54.131 14.838 12.689 1.00 16.44	c
	ATOM 1176 C THR A 132	55,102 13,951 13,408 1,00 21,91	<u>C</u>
	ATOM 1177 O THR A 132	56,317 14,088 13.234 1.00 24.17	0
	ATOM 1178 CB THR A 132	53.716 15.907 13.606 1.00 23.45	<u>e</u>
45	ATOM 1179 OG1 THR A 132	52.976 16.883 12.850 1.00 31.15	0

WO 99/64618

	ATOM 1	80 CG2	THR A 132	54.969	16.519	14.341	1.00 9.28	c
	ATOM 1	81 N	ASN A 133	54.551	12.970	14.122	1.00 28.59	N
	ATOM 1	182 CA	ASN A 133	55,359	12.007	14.875	1.00 26.38	<u>c</u>
	ATOM 1	83 C	ASN A 133	55.666	10.682	14.207	1.00 14.85	<u>c</u>
5	ATOM 1	84 0	ASN A 133	56.446	9.884	14.755	1.00 18.67	0
	ATOM 1	185 CB	ASN A 133	54.661	11.699	16.168	1.00 23.70	c
	ATOM 1	186 CG	ASN A 133	54.480	12.894	16.968	1.00 50.55	<u>c</u>
	ATOM 1	87 OD1	ASN A 133	53.354	13.272	17.252	1.00 40.07	0
	ATOM 1	88 ND2	ASN A 133	55.568	13.638	17.163	1.00 40.36	N
10	ATOM 1	189 N	GLU A 134	55.100	10.469	13.022	1.00 9.98	N
	ATOM 1	90 CA	GLU A 134	55.237	9.210	12.365	1.00 9.66	<u>_</u>
	ATOM 1	91 C	GLU A 134	56.648	8.530	12.274	1.00 13.86	c
	ATOM 1	192 0	GLU A 134	56.814	7.388	12.706	1.00 22.89	0
	ATOM 1	93 CB	GLU A 134	54.448	9.200	11.070	1.00 17.55	c
15	ATOM 1	94 CG	GLU A 134	54.750	7.930	10.227	1.00 20.89	с
	ATOM 1	95 CD	GLU A 134	53.926	7.868	8.970	1.00 13.59	c
	ATOM 1	96 OE1	GLU A 134	52.678	7.738	9.085	1.00 35.28	0
	ATOM 1	97 OE2	GLU A 134	54.497	8.048	7.869	1.00 13.44	0
	ATOM 1	98 N	PRO A 135	57.680	9.222	11.789	1.00 15.72	N
20	ATOM 1	199 CA	PRO A 135	59.014	8.600	11.699	1.00 18.91	c
	ATOM 12	00 C	PRO A 135	59.544	8.174	13.073	1.00 18.68	C
	ATOM 12	01 0	PRO A 135	60.072	7.069	13.271	1.00 15.69	0
	ATOM 12	02 CB	PRO A 135	59.896	9.755	11.169	1.00 13.84	<u>c</u>
	ATOM 12	03 CG	PRO A 135	59.036	10.514	10.350	1.00 9.78	<u>c</u>
25	ATOM 12	04 CD	PRO A 135	57.594	10.395	10.908	1.00 14.43	с
	ATOM 12	05 N	TYR A 136	59.449	9.117	13.994	1.00 8.64	N
	ATOM 12	06 CA	TYR A 136	59.873	8.915	15.324	1.00 13.27	<u>c</u>
	ATOM 12	207 C	TYR A 136	59.056	7.728	15.907	1.00 16.84	<u>c</u>
	ATOM 12	08 0	TYR A 136	59.578	6.903	16.658	1.00 12.90	0
30	ATOM 12	09 CB	TYR A 136	59.604	10.234	16.100	1.00 15.51	
	ATOM 12	10 CG	TYR A 136	59.912	10.168	17.614	1.00 18.26	c
	ATOM 12	11 CD1	TYR A 136	61.200	10.062	18.072	1.00 20.53	с
			TYR A 136	58.904	10.150	18.568	1.00 17.38	c
	ATOM 12	13 CE1	TYR A 136	61.484	9.959	19.440	1.00 30.44	<u>c</u>
35	ATOM 12	14 CE2	TYR A 136	59.184	10.084	19.953	1.00 9.85	
	ATOM 12	15 CZ	TYR A 136	60.476	9.949	20.377	1.00 20.65	c
	ATOM 12	16 OH	TYR A 136	60.792	9.873	21.734	1.00 24.41	0
	ATOM 12	217 N	ALA A 137	57.760	7.687	15.638	1.00 7.19	N
	ATOM 12	18 CA	ALA A 137	56.923	6.633	16.227	1.00 12.68	ç
40	ATOM 12	19 C	ALA A 137	57.345	5.265	15.737	1.00 15.21	c
	ATOM 12	20 0	ALA A 137	57.425	4.272	16,488	1.00 14.58	0
	ATOM 12	21 CB	ALA A 137	55.517	6.849	15.871	1.00 11.40	<u>c</u>
	ATOM 12	22 N	ILE A 138	57.567	5.213	14.447	1.00 8.93	N
	ATOM 12	23 CA	ILE A 138	57.954	3,971	13.831	1.00 11.77	с
45	ATOM 1	24 C	ILE A 138	59.246	3.494	14.492	1.00 16.20	c

	MOTA	1225 0	ILE A 138	59.307	2.377	14.970	1.00 13.79	0
	MOTA	1226 CB	ILE A 138	58.064	4.172	12.316	1.00 17.85	c
	MOTA	1227 CG	1 ILE A 138	56.680	4.473	11.757	1.00 28.21	<u>c</u>
	ATOM	1228 CG	2 ILE A 138	58.674	2.986	11.602	1.00 9.81	c
5	MOTA	1229 CD	1 ILE A 138	55.695	3.376	11.970	1.00 18.17	с
	ATOM	1230 N	ALA A 139	60.243	4.361	14.625	1.00 11.54	N
	ATOM	1231 CA	ALA A 139	61.494	3.937	15.288	1.00 13.22	<u>c</u>
	ATOM	1232 C	ALA A 139	61.256	3.364	16.675	1.00 18.73	<u> </u>
	ATOM	1233 O	ALA A 139	61.791	2.318	17.031	1.00 20.44	0
10	MOTA	1234 CB	ALA A 139	62.434	5.073	15.390	1.00 13.62	С
	ATOM	1235 N	LYS A 140	60.397	4.033	17.448	1.00 16.36	N
	ATOM	1236 CA	LYS A 140	60.083	3.600	18.815	1.00 15.14	C
	MOTA	1237 C	LYS A 140	59.392	2,262	18.824	1.00 15.18	C
	ATOM	1238 O	LYS A 140	59.824	1.346	19.475	1.00 21.42	0
15	ATOM	1239 CE	LYS A 140	59.193	4.606	19.525	1.00 17.86	c
	ATOM	1240 CG	LYS A 140	59.925	5.806	20.152	1.00 21.11	с
	ATOM	1241 CD	LYS A 140	61.208	5.478	20.958	1.00 16.75	c
	ATOM	1242 CF	LYS A 140	61.664	6.735	21.835	1.00 10.06	С
	ATOM	1243 NZ	LYS A 140	62.688	6.496	22.921	1.00 14.40	N
20	ATOM	1244 N	ILE A 141	58.356	2.116	18.027	1.00 11.49	N
	ATOM	1245 CA	ILE A 141	57.703	0.828	17.977	1.00 17.92	c
	ATOM	1246 C	ILE A 141	58.729	-0.282	17,577	1.00 13.46	<u></u>
	ATOM	1247 0	ILE A 141	58,730	-1.374	18.148	1.00 13.92	0
	ATOM	1248 CB	ILE A 141	56.497	0.925	17.019	1.00 22.59	Ç
25	ATOM	1249 CG	1 ILE A 141	55.466	1.906	17.557	1.00 17.61	c
	ATOM	1250 CG	2 ILE A 141	55.863	-0.411	16.700	1.00 10.49	<u>C</u>
	ATOM	1251 CD	1 ILE A 141	54.530	2.327	16.449	1.00 13.43	c
	ATOM	1252 N	ALA A 142	59.637	0.028	16.650	1.00 10.29	N
	ATOM	1253 CA	ALA A 142	60.657	-0.931	16.228	1.00 7.15	c
30	ATOM	1254 C	ALA A 142	61.456	-1.301	17.456	1.00 16.58	с
	MOTA	1255 0	ALA A 142	61.839	-2.454	17.621	1.00 13.04	0
	MOTA	1256 CE	ALA A 142	61.604	-0.288	15.130	1.00 4.44	<u>C</u>
	ATOM	1257 N	GLY A 143	61.703	-0.307	18.316	1.00 9.56	N
	MOTA	1258 CA	GLY A 143	62.448	-0.525	19.527	1.00 5.15	<u>C</u>
35	MOTA	1259 C	GLY A 143	61.770	-1.555	20.430	1.00 16.36	<u>c</u>
	ATOM	1260 O	GLY A 143	62.392	-2.482	20.967	1.00 14.11	0
	ATOM	1261 N	ILE A 144	60.476	-1.418	20.564	1.00 20.33	<u>N</u>
	MOTA	1262 CA	ILE A 144	59.725	-2.314	21,407	1.00 15.35	<u>C</u>
	MOTA	1263 C	ILE A 144	59.706	-3.732	20.859	1.00 19.84	<u>c</u>
40	MOTA	1264 0	ILE A 144	59.836	-4.700	21.608	1.00 17.93	0
	MOTA	_1265 CE	ILE A 144	58,317	-1.819	21.559	1.00 10.60	c
	MOTA	1266 CG	1 ILE A 144	58.311	-0.610	22.516	1.00 9.80	<u>c</u>
	MOTA	1267 CG	2 ILE A 144	57.410	-2.928	22.122	1.00 9.60	<u>c</u>
	MOTA	1268 CT	1 ILE A 144	57.022	0.076	22.517	1.00 18.32	<u>c</u>
45	ATOM	1269 N	LYS A 145	59.520	-3.841	19.556	1.00 7.20	N

	ATOM 1270	CA LYS A 145	59.459 -5.139	18.926 1.00 7.64	_ <u>c</u>
	ATOM 1271	C LYS A 145	60.840 -5.788	18.931 1.00 15.32	_ <u>c</u>
	ATOM 1272	O LYS A 145	60.923 -6.989	18.981 1.00 14.76	_0
	ATOM 1273	CB LYS A 145	58.891 -5.001	17.516 1.00 11.25	
5	ATOM 1274	CG LYS A 145	57.414 -4.581	17.489 1.00 12.13	_ <u>c</u>
	ATOM 1275	CD LYS A 145	56.642 -5.434	18.495 1.00 25.23	
	ATOM 1276	CE LYS A 145	55.189 -4.995	18,692 1.00 13.64	
	ATOM 1277	NZ LYS A 145	54.441 -6.111	19.392 1.00 11.94	N
	ATOM 1278	N LEU A 146	61.934 -5.011	18.986 1.00 26.98	_N
10	ATOM 1279	CA LEU A 146	63.261 -5.642	19.167 1.00 19.72	
	ATOM 1280	C LEU A 146	63.262 -6.316	20.542 1.00 18.20	_ <u>c</u>
	ATOM 1281	O LEU A 146	63.590 -7.511	20.703 1.00 19.86	_0
	ATOM 1282	CB LEU A 146	64.398 -4.618	19.150 1.00 13.56	_ <u>c</u>
	ATOM 1283	CG LEU A 146	64.895 -4.258	17.759 1.00 21.84	
15	ATOM 1284	CD1 LEU A 146	65.672 -2.945	17.817 1.00 17.94	
	ATOM 1285	CD2 LEU A 146	65.745 -5.397	17.102 1.00 16.10	
	ATOM 1286	N CYS A 147	62.931 -5.523	21.548 1.00 7.91	N
	ATOM 1287	CA CYS A 147	62.875 -6.064	22.893 1.00 9.14	
	ATOM 1288	C CYS A 147	62.072 -7.378	22.945 1.00 22.72	<u>_</u> C
20	ATOM 1289	O CYS A 147	62.568 -8.401	23.383 1.00 16.90	_0
	ATOM 1290	CB CYS A 147	62.232 -5.058	23.809 1.00 12.63	C
	ATOM 1291	SG CYS A 147	63.411 -3.823	24.316 1.00 15.02	S
	ATOM 1292	N GLU A 148	60.823 -7.352	22.508 1.00 20.03	<u>N</u>
	ATOM 1293	CA GLU A 148	60.016 -8.555	22.567 1.00 16.09	
25	ATOM 1294	C GLU A 148	60.685 -9.715	21.802 1.00 22.61	
	ATOM 1295	O GLU A 148	60.651 -10.888	22.226 1.00 12.05	0
	ATOM 1296	CB GLU A 148	58.597 -8.268	22.046 1.00 14.66	
	ATOM 1297	CG GLU A 148	57.864 -7.189	22.840 1.00 11.45	عــ
	ATOM 1298	CD GLU A 148	56.471 -6.821	22.277 1.00 11.75	_ <u>c</u>
30	ATOM 1299	OE1 GLU A 148	56.117 -7.055	21.080 1.00 11.65	0
	ATOM 1300	OE2 GLU A 148	55.728 -6.231	23.081 1.00 22.56	_0
	ATOM 1301	N SER A 149	61.368 -9.377	20.715 1.00 15.57	<u>N</u>
	ATOM 1302	CA SER A 149	61.938 -10.428	19.887 1.00 10.21	<u>C</u>
	ATOM 1303	C SER A 149	63.040 -11.245	20.502 1.00 15.83	
35	ATOM 1304	O SER A 149	63.102 -12.458	20.291 1.00 12.72	0
	ATOM 1305	CB SER A 149	62.270 -9.936	18.488 1.00 9.44	
	ATOM 1306	OG SER A 149	61.053 -9.650	17.782 1.00 15.91	_0
	ATOM 1307	N TYR A 150	63.910 -10.546	21.224 1.00 18.44	<u>N</u>
	ATOM 1308	CA TYR A 150	65.065 -11.100	21.948 1.00 20.50	2
40	ATOM 1309	C TYR A 150	64.514 -11.848	23.158 1.00 21.87	c
	ATOM 1310	O TYR A 150	64.939 -12.949	23.486 1.00 31.39	0
	ATOM 1311	CB TYR A 150	66.005 -9.950	22.425 1.00 13.71	
	ATOM 1312	CG TYR A 150	66.994 -9.509	21.365 1.00 14.13	<u> </u>
	ATOM 1313	CD1 TYR A 150	66.611 -8.673	20.317 1.00 14.64	
45	ATOM 1314	CD2 TYR A 150	68.288 -10.000	21.360 1.00 18.32	

	ATOM 1315	CE1 TYR A 150	67.487 -8.390 19.278 1.00 11.91	c
	ATOM 1316	CE2 TYR A 150	69,198 -9.682 20.345 1.00 11.10	<u>c</u>
	ATOM 1317	CZ TYR A 150	68.804 -8.900 19.326 1.00 20.95	<u>c</u>
	ATOM 1318	OH TYR A 150	69,739 -8,685 18,333 1.00 27,73	0
5	ATOM 1319	n asn a 151	63.536 -11.249 23.801 1.00 14.83	N
	ATOM 1320	CA ASN A 151	62.903 -11.889 24.937 1.00 23.62	<u>c</u>
	ATOM 1321	C ASN A 151	62.417 ~13.244 24.410 1.00 28.53	c
	ATOM 1322	O ASN A 151	62.630 -14.248 25.072 1.00 25.89	0
	ATOM 1323	CB ASN A 151	61,655 -11,113 25,439 1.00 20,95	<u>c</u>
10	ATOM 1324	CG ASN A 151	61.988 -9.867 26.284 1.00 15.07	<u>c</u>
	ATOM 1325	OD1 ASN A 151	61.126 -9.020 26.466 1.00 26.72	0
	ATOM 1326	ND2 ASN A 151	63.231 -9.709 26.700 1.00 6.31	N
	ATOM 1327	N ARG A 152	61.731 -13.249 23.259 1.00 19.91	N
	ATOM 1328	CA ARG A 152	61.129 -14.465 22.687 1.00 17.62	c
15	ATOM 1329	C ARG A 152	62.090 -15.523 22.188 1.00 21.34	С
	ATOM 1330	O ARG A 152	61.959 -16.687 22.542 1.00 15.44	0
	ATOM 1331	CB ARG A 152	60.086 -14.148 21.610 1.00 15.30	С
	ATOM 1332	CG ARG A 152	58.672 -13.754 22.157 1.00 17.22	<u>c</u>
	ATOM 1333	CD ARG A 152	57.652 -13.297 21.049 1.00 9.11	c
20	ATOM 1334	NE ARG A 152	57.161 -14.419 20.241 1.00 21.05	N
	ATOM 1335	CZ ARG A 152	57.159 -14.447 18.912 1.00 28.61	c
	ATOM 1336	NH1 ARG A 152	57.590 -13.387 18.221 1.00 21.98	N
	ATOM 1337	NH2 ARG A 152	56,717 -15.528 18.262 1.00 26.11	N
	ATOM 1338	N GLN A 153	63.098 -15.104 21.434 1.00 16.54	N
25	ATOM 1339	CA GLN A 153	64.044 -16.036 20.842 1.00 9.74	<u>C</u>
	ATOM 1340	C GLN A 153	65.082 -16.443 21.807 1.00 16.70	<u>c</u>
	ATOM 1341	0 GLN A 153	65.529 -17.545 21.763 1.00 24.35	0
	ATOM 1342	CB GLN A 153	64.789 -15.372 19.714 1.00 8.99	с
	ATOM 1343	CG GLN A 153	65.935 -16.225 19.116 1.00 4.63	c
30	ATOM 1344	CD GLN A 153	66.315 -15.637 17.762 1.00 14.17	<u>C</u>
	ATOM 1345	OE1 GLN A 153	65.611 -14.763 17.254 1.00 12.53	0
	ATOM 1346	NE2 GLN A 153	67.466 -16.024 17.228 1.00 13.38	N
	ATOM 1347	N TYR A 154	65.566 -15.518 22.608 1.00 14.35	N
	ATOM 1348	CA TYR A 154	66,677 -15,839 23,483 1.00 12,16	<u>C</u>
35	ATOM 1349	C TYR A 154	66.323 -15.930 24.954 1.00 19.06	<u>c</u>
	ATOM 1350	O TYR A 154	67.185 -16.207 25.777 1.00 25.59	0
	ATOM 1351	CB TYR A 154	67.829 -14.816 23.326 1.00 16.89	C
	ATOM 1352	CG TYR A 154	68.418 -14.733 21.943 1.00 17.53	<u>c</u>
	ATOM 1353	CD1 TYR A 154	69,259 -15,726 21,467 1,00 18,91	<u>c</u>
40	ATOM 1354	CD2 TYR A 154	68.080 -13.712 21.091 1.00 13.97	c
	ATOM 1355	CE1 TYR A 154	69.782 -15.686 20.190 1.00 10.98	С
	ATOM 1356	CE2 TYR A 154	68,621 -13,639 19,806 1,00 23,81	<u>C</u>
	ATOM 1357	CZ TYR A 154	69.488 -14.634 19.380 1.00 23.08	<u>c</u>
	ATOM 1358	OH TYR A 154	70.002 -14.619 18.118 1.00 23.87	0
45	ATOM 1359	N GLY A 155	65,080 -15,686 25,313 1,00 12,08	N

	ATOM 1360 CA GLY A 155	64.747 -15.702 26.731 1.00 15.80	c
	ATOM 1361 C GLY A 155	65.323 -14.498 27.580 1.00 33.97	C
	ATOM 1362 O GLY A 155	65,491 -14,640 28,789 1,00 25,76	0
	ATOM 1363 N ARG A 156	65.564 -13.318 26.981 1.00 25.91	N
5	ATOM 1364 CA ARG A 156	66.066 -12.146 27.734 1.00 14.13	
_	ATOM 1365 C ARG A 156	64.971 -11.486 28.581 1.00 16.23	C
	ATOM 1366 O ARG A 156	63.802 -11.919 28.583 1.00 22.61	0
	ATOM 1367 CB ARG A 156	66.601 -11.124 26.750 1.00 13.16	c
	ATOM 1368 CG ARG A 156	67.875 -11.570 26.099 1.00 15.18	c
10	ATOM 1369 CD ARG A 156	68.930 -11.418 27.121 1.00 26.42	c
	ATOM 1370 NE ARG A 156	70.200 -11.912 26.633 1.00 21.25	v
	ATOM 1371 CZ ARG A 156	71.092 -12.555 27.386 1.00 42.25	^C
	ATOM 1372 NH1 ARG A 156	70.870 -12.795 28.679 1.00 20.02	
	ATOM 1373 NH2 ARG A 156	72.221 -12.966 26.843 1.00 20.88	N
15	ATOM 1374 N ASP A 157	65.343 -10.446 29.321 1.00 16.00	N N
	ATOM 1375 CA ASP A 157		N
	ATOM 1376 C ASP A 157		<u>c</u>
	ATOM 1377 O ASP A 157		<u>c</u>
	ATOM 1378 CB ASP A 157		0
20	ATOM 1379 CG ASP A 157		<u>c</u>
	ATOM 1380 OD1 ASP A 157		<u>c</u>
	ATOM 1381 OD2 ASP A 157		
	ATOM 1382 N TYR A 158		0
	ATOM 1383 CA TYR A 158	64.038 -7.921 28.620 1.00 19.41 64.099 -6.564 28.083 1.00 18.96	N
25	ATOM 1384 C TYR A 158		c
	ATOM 1385 O TYR A 158		<u>c</u>
	ATOM 1386 CB TYR A 158		
	ATOM 1387 CG TYR A 158		<u>c</u>
	ATOM 1388 CD1 TYR A 158		<u>C</u>
30	ATOM 1389 CD2 TYR A 158	66.789 -7.415 27.621 1.00 13.76	<u>c</u>
	ATOM 1390 CE1 TYR A 158	66.544 -7.349 25.218 1.00 16.35 68.135 -7.786 27.482 1.00 8.18	<u>c</u>
	ATOM 1391 CE2 TYR A 158		<u>c</u>
	ATOM 1392 CZ TYR A 158		<u>c</u>
		68.676 -7.942 26.186 1.00 24.45	<u>c</u>
35		69.993 -8.338 25.997 1.00 14.36	
33		62,423 -5,200 29,175 1.00 23,53	N
	ATOM 1395 CA ARG A 159 ATOM 1396 C ARG A 159	61.105 -4.603 29.483 1.00 21.15	c
		60.930 -3.172 28.878 1.00 23.55	с
	ATOM 1397 O ARG A 159	61,911 -2.566 28.424 1.00 18.12	
40	ATOM 1398 CB ARG A 159	60.891 -4.608 31.034 1.00 21.68	c
70	ATOM 1399 CG ARG A 159	60.986 -6.029 31.722 1.00 16.41	c
	ATOM 1400 CD ARG A 159	61.135 -6.052 33.233 1.00 18.10	c
	ATOM 1401 NE ARG A 159	61.305 -7.402 33.772 1.00 19.25	<u>N</u>
	ATOM 1402 CZ ARG A 159	61.164 -7.720 35.058 1.00 36.67	<u>C</u>
15	ATOM 1403 NH1 ARG A 159	60.886 -6.776 35.962 1.00 15.32	и
45	ATCM 1404 NH2 ARG A 159	61.309 -8.986 35.448 1.00 11.79	<u>N</u>

ATCM 1406 CA SER A 160 59,312 -1.393 28,200 1.00 21,59 C ATCM 1407 C SER A 160 58,242 -0.517 28,850 1.00 25,07 C SATCM 1408 O SER A 160 59,271 -1.127 29,454 1.00 17,02 C SATCM 1408 O SER A 160 59,2719 -1.147 26,797 1.00 17,02 C SATCM 1409 CB SER A 160 59,2719 -1.747 26,797 1.00 17,02 C SATCM 1410 CG SER A 160 59,782 -1.897 25,885 1.00 37,57 C SATCM 1411 N VALA 161 58,378 0.742 28,927 1.00 21,01 N ATCM 1411 N VALA 161 57,369 1.644 29,509 1.00 9,70 C SATCM 1413 C VALA 161 57,369 1.644 29,509 1.00 9,70 C SATCM 1413 C VALA 161 57,369 1.644 29,509 1.00 16,77 C SATCM 1413 C VALA 161 57,369 1.644 29,509 1.00 16,77 C SATCM 1413 C VALA 161 57,369 1.644 29,509 1.00 16,77 C SATCM 1414 O VALA 161 57,369 1.248 30,862 1.00 17,94 C SATCM 1415 CB VALA 161 57,370 20,224 30,862 1.00 17,94 C SATCM 1417 CG2 VALA 161 57,876 2.248 30,862 1.00 17,94 C SATCM 1417 CG2 VALA 161 57,876 2.248 30,862 1.00 17,94 C SATCM 1417 CG2 VALA 161 59,137 2.992 30,750 1.00 21,10 C SATCM 1418 N META 162 55,794 2.185 31,984 1.00 16,16 C SATCM 1418 N META 162 55,794 2.185 31,984 1.00 16,16 N ATCM 1412 CA META 162 55,295 4.185 27,513 1.00 19,23 C SATCM 1420 C META 162 53,788 5,269 28,961 1.00 18,35 O ATCM 1422 CB META 162 53,788 5,269 28,961 1.00 18,35 O ATCM 1422 CB META 162 53,788 5,269 28,961 1.00 18,35 O ATCM 1424 SD META 162 54,880 5,312 28,397 1.00 25,19 C SATCM 1424 SD META 162 54,354 3,100 24,235 1.00 52,07 S SATCM 1426 N FRO A 163 55,730 6,313 28,521 1.00 18,33 N ATCM 1426 N FRO A 163 55,730 6,313 28,521 1.00 18,33 N ATCM 1426 N FRO A 163 55,730 6,313 28,521 1.00 18,33 N ATCM 1426 N FRO A 163 55,730 6,313 28,521 1.00 18,33 N ATCM 1426 N FRO A 163 55,730 6,313 28,521 1.00 19,67 C SATCM 1428 C FRO A 163 55,730 6,313 28,521 1.00 19,67 C SATCM 1430 CB FRO A 163 55,730 6,313 28,521 1.00 19,67 C SATCM 1430 CB FRO A 163 55,730 6,313 29,931 1.00 25,82 C SATCM 1433 N THEA 164 53,4718 9,060 29,478 1.00 11,95 C SATCM 1433 C FRO A 163 57,352 7,874 28,031 1.00 13,99 C SATCM 1433 C FRO A 163 57,352 7,874 28,031 1.00 13,99 C SATCM 1433 C THEA 164 53,4718 9,060				
ATOM 1407 C SER A 160 58.242 -0.577 28.250 1.00 25.07 C ATOM 1408 O SER A 160 57.257 -1.127 29.454 1.00 17.02 O ATOM 1409 CB SER A 160 58.719 -1.747 26.797 1.00 11.05 C ATOM 1410 CG SER A 160 59.782 -1.897 25.895 1.00 37.57 O ATOM 1411 N VAL A 161 58.378 0.742 28.927 1.00 21.01 N ATOM 1411 N VAL A 161 57.369 1.644 29.509 1.00 9.70 C ATOM 1412 CA VAL A 161 57.369 1.644 29.509 1.00 9.70 C ATOM 1413 C VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1414 O VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1415 CB VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1416 CG VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1416 CG VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1416 CG VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1416 CG VAL A 161 59.137 1.185 31.984 1.00 16.16 C ATOM 1419 CA MET A 162 55.794 3.147 28.493 1.00 22.46 N ATOM 1419 CA MET A 162 55.794 3.147 28.493 1.00 22.46 N ATOM 1419 CA MET A 162 55.296 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 55.788 5.295 4.185 27.513 1.00 29.10 C ATOM 1420 C MET A 162 53.788 5.269 28.961 1.00 18.35 O ATOM 1422 CB MET A 162 53.788 5.269 28.961 1.00 18.35 O ATOM 1422 CB MET A 162 54.880 5.312 28.397 1.00 25.19 C ATOM 1422 CB MET A 162 54.880 7.372 28.991 1.00 37.79 C ATOM 1422 CB MET A 162 54.939 3.795 26.850 1.00 15.55 C ATOM 1422 CB MET A 162 54.939 3.795 26.850 1.00 15.55 C ATOM 1422 CB MET A 162 54.939 3.134 24.410 1.00 36.30 C ATOM 1427 CA FRO A 163 55.199 7.472 29.337 1.00 17.76 C ATOM 1427 CA FRO A 163 55.199 7.472 29.337 1.00 17.76 C ATOM 1428 CF MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1427 CA FRO A 163 55.09 9.448 27.433 1.00 11.43 C ATOM 1428 CF MET A 162 54.334 3.100 24.235 1.00 11.33 C ATOM 1428 CF MET A 162 54.334 3.100 24.235 1.00 11.43 C ATOM 1428 CF MET A 162 54.334 3.100 24.235 1.00 11.33 C ATOM 1438 CF MET A 163 54.208 8.448 27.433 1.00 11.39 C ATOM 1438 CF MET A 163 54.309 8.448 27.433 1.00 11.39 C ATOM 1439 CF MET A 163 54.309 8.448 27.433 1.00 11.39 C ATOM 1430 CB FRO A 163 57.056 5.400 29.478 1.00 11.97 C C ATOM 1430 CB FRO A 163 57.056		ATOM 1405 N SER A 160	59.689 -2.661 28.859 1.00 24.44	N
ATOM 1409 O SER A 160 57.257 -1.127 29.454 1.00 17.02 O ATOM 1409 CB SER A 160 58.719 -1.747 26.797 1.00 13.05 C ATOM 1410 CG SER A 160 59.782 -1.897 25.885 1.00 37.57 O ATOM 1411 N. VAL A 161 58.378 0.742 28.927 1.00 21.01 N ATOM 1412 CA VAL A 161 57.369 1.644 29.509 1.00 9.70 C ATOM 1413 C VAL A 161 57.068 2.747 28.904 1.00 16.77 C ATOM 1414 O VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1414 C VAL A 161 57.058 2.747 28.504 1.00 16.77 C ATOM 1414 C VAL A 161 57.873 1.185 31.994 1.00 16.16 C ATOM 1415 CB VAL A 161 57.873 1.185 31.994 1.00 16.16 C ATOM 1416 CG VAL A 161 57.873 1.185 31.994 1.00 16.16 C ATOM 1417 CG VAL A 161 59.137 2.992 30.750 1.00 21.40 C ATOM 1418 N MET A 162 55.295 4.185 27.513 1.00 19.23 C ATOM 1419 C MET A 162 55.295 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 55.295 4.185 27.513 1.00 19.23 C ATOM 1421 O MET A 162 53.788 5.269 28.961 1.00 18.35 O ATOM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1422 CB MET A 162 54.033 2.630 25.949 1.00 37.79 C ATOM 1424 SD MET A 162 54.033 2.630 25.949 1.00 37.79 C ATOM 1425 CR MET A 162 54.033 3.134 24.410 1.00 16.35 O ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 19.33 N ATOM 1427 CA PRO A 163 55.730 6.313 28.521 1.00 19.23 C ATOM 1428 C PRO A 163 55.730 6.313 28.521 1.00 19.35 D ATOM 1428 C PRO A 163 55.730 6.313 28.521 1.00 19.35 C ATOM 1428 C PRO A 163 55.730 6.313 28.521 1.00 19.35 N ATOM 1427 CA PRO A 163 55.730 6.313 28.921 1.00 17.76 C ATOM 1430 CB PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATOM 1430 CB PRO A 163 55.730 6.313 28.921 1.00 17.76 C ATOM 1431 CG PRO A 163 55.730 6.313 28.925 1.00 17.76 C ATOM 1432 CD PRO A 163 55.730 6.313 28.925 1.00 11.43 N ATOM 1437 CR PRO A 163 55.730 6.313 28.925 1.00 11.43 C ATOM 1438 C PRO A 163 55.730 6.313 28.925 1.00 11.43 C ATOM 1439 C PRO A 163 55.730 6.313 28.925 1.00 11.43 C ATOM 1430 C PRO A 163 55.730 6.313 28.925 1.00 11.43 C ATOM 1430 C PRO A 163 55.730 6.313 28.925 1.00 11.43 C ATOM 1431 CA PRO A 163 55.730 6.313 29.903 1.00 25.55 C ATOM 1436 C PRO A 163 55.730 6.313 1.393 29.9		ATOM 1406 CA SER A 160	59.312 -1.393 28.200 1.00 21.59	c
ATOM 1419 CR SER A 160 58,719 -1,747 26,797 1,00 13,05 C ATOM 1410 OG SER A 160 59,782 -1,897 25,885 1,00 37,57 O ATOM 1411 N. VAL A 161 58,378 0,742 28,927 1,00 21,01 N ATOM 1412 CA VAL A 161 57,068 2,747 28,504 1,00 16,77 C ATOM 1413 C VAL A 161 57,068 2,747 28,504 1,00 16,77 C ATOM 1414 O VAL A 161 57,855 3,149 27,729 1,00 16,33 O ATOM 1415 CB VAL A 161 57,806 2,248 30,862 1,00 17,94 C ATOM 1415 CG VAL A 161 57,803 1,185 31,984 1,00 16,16 C ATOM 1418 N HET A 162 55,793 1,185 31,984 1,00 21,10 C ATOM 1418 N HET A 162 55,794 3,147 28,443 1,00 22,46 N ATOM 1419 CA MET A 162 55,794 3,147 28,443 1,00 22,46 N ATOM 1419 CA MET A 162 55,296 4,185 27,513 1,00 19,23 C ATOM 1420 C MET A 162 53,488 5,312 28,397 1,00 25,19 C ATOM 1422 CR MET A 162 53,479 3,796 26,850 1,00 18,35 O ATOM 1423 CG MET A 162 54,013 2,630 25,949 1,00 37,79 C ATOM 1423 CG MET A 162 54,013 2,630 25,949 1,00 37,79 C ATOM 1425 CR MET A 162 54,013 2,630 25,949 1,00 37,79 C ATOM 1426 N PRO A 163 55,130 6,313 28,521 1,00 12,43 N ATOM 1427 CA PRO A 163 55,130 6,313 28,521 1,00 12,43 N ATOM 1428 C PRO A 163 55,130 8,384 28,667 1,00 17,76 C ATOM 1430 CR PRO A 163 55,130 8,384 28,667 1,00 13,95 N ATOM 1431 CG PRO A 163 55,130 8,384 28,667 1,00 13,95 N ATOM 1433 C PRO A 163 55,130 8,384 28,667 1,00 13,95 N ATOM 1433 C PRO A 163 57,085 6,401 27,949 1,00 37,95 N ATOM 1433 C PRO A 163 57,085 6,401 27,949 1,00 13,95 N ATOM 1433 C PRO A 163 57,085 6,401 27,94		ATOM 1407 C SER A 160	58.242 -0.577 28.950 1.00 25.07	c
ATOM 1410 CG SER A 160 59.782 -1.897 25.885 1.00 37.57 0 ATOM 1411 N. VAL A 161 58.378 0.742 28.927 1.00 21.01 N ATOM 1412 CA VAL A 161 57.369 1.644 29.509 1.00 9.70 C ATOM 1413 C VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1413 C VAL A 161 57.068 2.747 28.504 1.00 16.73 C ATOM 1414 O VAL A 161 57.806 2.747 28.504 1.00 16.33 Q ATOM 1415 CB VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1416 CG1 VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATOM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATOM 1419 CA MET A 162 55.794 3.147 28.443 1.00 22.46 N ATOM 1420 C MET A 162 55.396 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 53.979 3.750 1.00 21.10 C ATOM 1422 CB MET A 162 53.979 3.750 1.00 25.19 C ATOM 1422 CB MET A 162 53.979 3.796 28.850 1.00 18.35 Q ATOM 1422 CB MET A 162 54.880 5.312 28.397 1.00 25.19 C ATOM 1422 CB MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.35 Q ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.35 Q ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.35 Q ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.35 Q ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.35 Q ATOM 1422 CB MET A 162 54.354 3.100 24.235 1.00 18.43 N ATOM 1422 CB MET A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1422 C PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1422 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1422 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1423 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATOM 1431 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1432 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1432 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1433 C PRO A 163 55.730 6.313 28.521 1.00 17.76 G ATOM 1434 C A TRA A 164 54.633 11.393 28.868 1.00 13.99 G ATOM 1433 C PRO A 163 55.730 6.313 28.586 1.00 14.99 N ATOM 1434 C A TRA A 164 59.484 1.00 18.99 N ATOM 1435 C PRO A 163 55.755 1.00 12.29 29.77 1.00 17.76 G ATOM 1436 C A TRA A 164 59.484 1.00 18.99 N ATOM 1436 C A TRA A		ATOM 1408 O SER A 160	57.257 -1.127 29.454 1.00 17.02	
ATCH 1411 N VAL A 161 58,378 0,742 28,927 1,00 21.01 N ATCH 1412 CA VAL A 161 57,369 1,644 29,509 1,00 9,70 C ATCH 1413 C VAL A 161 57,068 2,747 28,504 1,00 16,77 C ATCH 1414 O VAL A 161 57,068 2,747 28,504 1,00 16,77 C ATCH 1415 CB VAL A 161 57,806 2,248 30,862 1,00 17,94 C ATCH 1415 CB VAL A 161 57,806 2,248 30,862 1,00 17,94 C ATCH 1415 CB VAL A 161 57,873 1,185 31,984 1,00 16,16 C ATCH 1416 CG1 VAL A 161 57,873 1,185 31,984 1,00 16,16 C ATCH 1417 CG2 VAL A 161 59,137 2,992 30,750 1,00 21,10 C ATCH 1418 N MET A 162 55,794 3,147 28,443 1,00 22,46 N ATCH 1419 CA MET A 162 55,794 3,147 28,443 1,00 22,46 N ATCH 1420 C MET A 162 55,794 3,147 28,493 1,00 25,19 C ATCH 1421 O MET A 162 53,788 5,269 28,961 1,00 18,35 O ATCH 1422 CB MET A 162 53,979 3,796 25,850 1,00 15,55 C ATCH 1423 CG MET A 162 54,013 2,630 25,949 1,00 37,79 C ATCH 1425 CE MET A 162 54,013 2,630 25,949 1,00 37,79 C ATCH 1425 CB MET A 162 54,013 2,630 25,949 1,00 37,79 C ATCH 1425 CR MET A 162 54,013 2,630 25,949 1,00 37,79 C ATCH 1425 CR MET A 163 55,730 6,313 28,521 1,00 16,33 N ATCH 1425 CR FRO A 163 55,730 6,313 28,521 1,00 16,33 N ATCH 1427 CA FRO A 163 55,730 6,313 28,521 1,00 18,43 N ATCH 1429 O FRO A 163 54,000 8,384 28,667 1,00 21,23 C ATCH 1429 O FRO A 163 54,000 8,384 28,667 1,00 21,23 C ATCH 1433 N THR A 164 53,478 9,060 29,478 1,00 11,43 C ATCH 1433 CG FRO A 163 57,086 6,401 27,949 1,00 12,24 C ATCH 1433 CG FRO A 163 57,086 6,401 27,949 1,00 12,24 C ATCH 1433 CG FRO A 163 57,086 6,401 27,949 1,00 19,67 C ATCH 1433 CG THR A 164 53,478 9,060 29,478 1,00 13,95 N ATCH 1433 CG FRO A 163 57,086 6,401 27,949 1,00 12,24 C ATCH 1433 CG THR A 164 53,478 9,060 29,478 1,00 13,95 N ATCH 1433 CG FRO A 163 57,086 6,401 27,949 1,00 19,67 C ATCH 1436 CG THR A 164 53,478 9,060 29,478 1,00 13,95 N ATCH 1437 CB THR A 164 53,478 9,060 29,478 1,00 13,95 N ATCH 1439 CG THR A 164 53,478 9,060 29,478 1,00 14,99 N ATCH 1439 CG THR A 164 51,373 10,391 29,903 1,00 25,55 C ATCH 1438 CG THR A 165 55,148 1,091 29,267 1,00 14,49 N ATCH 1446 CD ASN A 165 59,548 11,941	5	ATOM 1409 CB SER A 160	58,719 -1,747 26,797 1.00 13.05	c
ATCH 1412 CA VAL A 161 57.369 1.644 29.509 1.00 9.70 C ATCM 1413 C VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATCM 1414 O VAL A 161 57.955 3.149 27.729 1.00 16.33 O ATCM 1415 CB VAL A 161 57.956 2.248 30.862 1.00 17.94 C ATCM 1415 CG VAL A 161 57.873 1.185 31.984 1.00 16.16 C ATCM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATCM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATCM 1419 CA MET A 162 55.794 3.147 28.443 1.00 22.46 N ATCM 1419 CA MET A 162 55.794 3.147 28.493 1.00 19.23 C ATCM 1420 C MET A 162 55.895 4.185 27.513 1.00 19.23 C ATCM 1421 O MET A 162 53.88 5.269 28.961 1.00 18.35 O ATCM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 C ATCM 1422 CB MET A 162 54.880 5.312 28.397 1.00 25.19 C ATCM 1422 CB MET A 162 54.934 3.100 24.235 1.00 15.55 C ATCM 1422 CB MET A 162 54.934 3.100 24.235 1.00 52.07 S ATCM 1422 CB MET A 162 54.934 3.100 24.235 1.00 52.07 S ATCM 1425 CE MET A 162 54.394 3.100 24.235 1.00 52.07 S ATCM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATCM 1427 CA PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATCM 1428 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATCM 1428 C PRO A 163 55.300 8.384 28.667 1.00 21.23 C ATCM 1423 CG PRO A 163 55.300 8.384 28.667 1.00 12.20 C ATCM 1423 CG PRO A 163 55.300 8.384 28.667 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.300 8.384 28.667 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1433 CG PRO A 163 55.735 6.401 27.949 1.00 11.43 C ATCM 1434 CA THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1435 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1436 CO THR A 164 59.3478 9.060 29.478 1.00 13.95 N ATCM 1437 CB THR A 164 59.3478 1.00 10.25.77 C ATCM 1448 C A SN A 165 59.478 1.991 29.903 1.00		ATOM 1410 OG SER A 160	59.782 -1.897 25.885 1.00 37.57	0
ATOM 1413 C VAL A 161 57.068 2.747 28.504 1.00 16.77 C ATOM 1414 O VAL A 161 57.955 3.149 27.729 1.00 16.33 O ATOM 1415 CB VAL A 161 57.866 2.248 30.462 1.00 17.94 C ATOM 1415 CB VAL A 161 57.873 1.185 31.984 1.00 16.16 C ATOM 1415 CG VAL A 161 57.873 1.185 31.984 1.00 17.94 C ATOM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATOM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATOM 1419 CA MET A 162 55.794 3.147 28.443 1.00 22.46 N ATOM 1420 C MET A 162 55.296 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 53.878 5.269 28.961 1.00 18.35 O ATOM 1421 O MET A 162 53.979 3.796 28.985 1.00 15.15 C ATOM 1422 CB MET A 162 53.979 3.796 28.985 1.00 15.55 C ATOM 1422 CB MET A 162 54.850 3.30 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 55.939 3.134 24.410 1.00 36.30 C ATOM 1425 CE MET A 163 55.730 6.313 28.521 1.00 12.07 S ATOM 1426 N PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1429 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1429 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1429 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1430 CB PRO A 163 55.730 6.313 28.521 1.00 12.23 C ATOM 1430 CB PRO A 163 55.730 6.313 28.521 1.00 13.99 C ATOM 1431 CG PRO A 163 55.735 7.85 1.912 29.937 1.00 17.76 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.752 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.752 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.752 7.874 28.031 1.00 13.99 C ATOM 1433 CB PRO A 163 57.752 7.874 28.031 1.00 13.99 C ATOM 1433 CB THR A 164 53.406 11.414 28.781 1.00 19.67 C ATOM 1434 CA THR A 164 53.406 11.414 28.781 1.00 19.67 C ATOM 1435 CB THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1436 CB THR A 164 51.818 10.		ATOM 1411 N VAL A 161	58.378 0.742 28.927 1.00 21.01	N
10 ATCH 1414 0 VAL A 161 57.955 3.149 27.729 1.00 16.33 0 ATCM 1415 CB VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATCM 1416 CGI VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATCM 1417 CG2 VAL A 161 57.873 1.185 31.984 1.00 16.16 C ATCM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATCM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATCM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATCM 1419 CA MET A 162 55.795 4.185 27.513 1.00 19.23 C ATCM 1420 C MET A 162 54.880 5.312 28.397 1.00 25.19 C ATCM 1421 O MET A 162 53.788 5.269 28.961 1.00 18.35 O ATCM 1422 CB MET A 162 53.979 3.796 25.850 1.00 15.55 C ATCM 1422 CB MET A 162 54.033 2.630 25.949 1.00 37.79 C ATCM 1425 CE MET A 162 54.033 2.630 25.949 1.00 37.79 C ATCM 1426 N PRO A 163 55.730 6.313 28.521 1.00 52.07 S ATCM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATCM 1426 N PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATCM 1429 O PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATCM 1429 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATCM 1430 CB PRO A 163 54.208 8.448 27.433 1.00 11.43 C ATCM 1430 CB PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATCM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.99 C ATCM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.99 C ATCM 1435 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1435 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1435 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1436 O THR A 164 51.373 10.391 28.968 1.00 13.97 O ATCM 1437 CB THR A 164 51.373 10.391 28.968 1.00 13.97 N ATCM 1438 OGI THR A 164 51.433 11.393 28.868 1.00 13.97 N ATCM 1439 CG THR A 164 51.433 11.391 28.984 1.00 14.77 O ATCM 1439 CG THR A 165 55.480 11.491 28.781 1.00 14.77 O ATCM 1439 CG THR A 165 55.481 1.490 29.277 1.00 17.66 O ATCM 1443 C A SN A 165 53.481 1.00 28.23 N ATCM 1445 CB ASN A 165 53.492 1.4941 27.262 1.00 23.70 C ATCM 1446 CD ASN A 165 53.493 1.992 29.03.894 1.00 17.66 O ATCM 1446 CD ASN A 165 53.495 1.490 29.777 1.00 8.23 N		ATOM 1412 CA VAL A 161	57,369 1.644 29.509 1.00 9.70	с
ATOM 1415 CB VAL A 161 57.806 2.248 30.862 1.00 17.94 C ATOM 1416 CG1 VAL A 161 57.873 1.185 31.984 1.00 16.16 CG ATOM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATOM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATOM 1419 CA MET A 162 55.296 4.185 27.513 1.00 19.23 CG ATOM 1420 C MET A 162 55.296 4.185 27.513 1.00 19.23 CG ATOM 1421 0 MET A 162 53.788 5.269 28.961 1.00 18.35 Q ATOM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 CG ATOM 1423 CG MET A 162 54.380 5.312 28.397 1.00 25.19 CG ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 37.79 CG ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 37.79 CG ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 CG ATOM 1429 Q PRO A 163 54.300 8.384 28.667 1.00 21.23 CG ATOM 1429 O PRO A 163 54.300 8.384 28.667 1.00 21.23 CG ATOM 1431 CG PRO A 163 55.730 6.313 28.521 1.00 17.76 CG ATOM 1429 Q PRO A 163 54.300 8.384 28.667 1.00 21.23 CG ATOM 1431 CG PRO A 163 55.730 6.401 27.949 1.00 13.99 CG ATOM 1432 CD PRO A 163 54.300 8.384 28.667 1.00 21.23 CG ATOM 1433 N THE A 164 53.406 11.41 28.781 1.00 13.99 CG ATOM 1433 CG PRO A 163 55.732 6.401 27.949 1.00 13.99 CG ATOM 1433 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 CG ATOM 1433 CG PRO A 163 55.735 7.086 6.401 27.949 1.00 13.95 N ATOM 1431 CG PRO A 163 57.086 6.401 27.949 1.00 13.95 N ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 13.95 N ATOM 1433 CG THE A 164 53.406 11.441 28.781 1.00 13.95 N ATOM 1434 CA THE A 164 53.406 11.441 28.781 1.00 13.97 Q ATOM 1435 C THE A 164 59.453 11.393 28.868 1.00 13.97 Q ATOM 1436 O THE A 164 59.453 11.393 28.868 1.00 13.97 Q ATOM 1437 CB THE A 164 59.453 11.393 28.868 1.00 13.97 Q ATOM 1438 CG1 THE A 164 59.453 11.393 28.868 1.00 13.97 Q ATOM 1439 CG2 THE A 164 59.453 11.393 28.868 1.00 13.97 Q ATOM 1446 N ASN A 165 59.458 13.993 28.868 1.00 14.99 N ATOM 1446 CD ASN A 165 59.458 13.993 28.868 1.00 14.48 C		ATOM 1413 C VAL A 161	57.068 2.747 28.504 1.00 16.77	с
ATOM 1416 CG1 VAL A 161 57.873 1.185 31.984 1.00 16.16 C ATOM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATOM 1418 N MET A 162 55.794 3.147 28.443 1.00 12.45 N ATOM 1418 N MET A 162 55.794 3.147 28.443 1.00 12.245 N ATOM 1419 CA MET A 162 55.296 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 54.880 5.312 28.397 1.00 25.19 C ATOM 1421 O MET A 162 53.788 5.269 28.397 1.00 25.19 C ATOM 1422 CB MET A 162 53.798 5.269 28.991 1.00 37.79 C ATOM 1423 CG MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 52.07 S ATOM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1428 C PRO A 163 55.300 8.384 28.667 1.00 12.23 C ATOM 1429 O PRO A 163 54.200 8.384 28.667 1.00 12.23 C ATOM 1430 CB PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1431 CG PRO A 163 57.086 5.401 27.949 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 5.401 27.949 1.00 13.95 N ATOM 1433 CD PRO A 163 57.086 5.401 27.949 1.00 13.95 N ATOM 1434 CA THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1435 C THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1436 O THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1437 CB TER A 164 53.478 9.060 29.478 1.00 13.99 N ATOM 1438 CG1 THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1439 CG2 THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1430 CB THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1431 CB THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1432 CD THE A 164 53.478 9.060 29.478 1.00 13.99 N ATOM 1434 CA THE A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1436 O THE A 164 53.478 10.122 28.963 1.00 25.51 C ATOM 1436 CB THE A 164 51.818 10.886 31.298 1.00 29.67 C ATOM 1437 CB THE A 164 51.818 10.886 31.298 1.00 25.51 C ATOM 1442 C ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 C ASN A 165 53.458 13.991 28.481 1.00 7.83 C ATOM 1444 CB ASN A 165 53.494 13.901 28.481 1.00 14.48 C	10	ATOM 1414 O VAL A 161	57,955 3,149 27,729 1,00 16,33	0
ATCM 1417 CG2 VAL A 161 59.137 2.992 30.750 1.00 21.10 C ATCM 1418 N MET A 162 55.794 3.147 28.443 1.00 22.46 N ATCM 1419 CA MET A 162 55.794 3.147 28.443 1.00 19.23 C ATCM 1420 C MET A 162 55.286 4.185 27.513 1.00 19.23 C ATCM 1421 O MET A 162 54.880 5.312 28.397 1.00 25.19 C ATCM 1422 CB MET A 162 53.788 5.269 28.961 1.00 18.35 O ATCM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 C ATCM 1423 CG MET A 162 53.979 3.796 26.850 1.00 15.55 C ATCM 1424 SD MET A 162 54.013 2.630 25.949 1.00 37.79 C ATCM 1425 CE MET A 162 54.933 3.130 24.235 1.00 52.07 S ATCM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATCM 1427 CA PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATCM 1426 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATCM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATCM 1430 CB PRO A 163 55.730 8.348 28.667 1.00 21.23 C ATCM 1431 CG PRO A 163 55.730 8.488 27.433 1.00 15.20 O ATCM 1431 CG PRO A 163 55.735 6.401 27.949 1.00 12.24 C ATCM 1432 CD PRO A 163 55.735 6.401 27.949 1.00 12.24 C ATCM 1432 CD PRO A 163 57.085 6.401 27.949 1.00 12.24 C ATCM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.99 C ATCM 1435 C TER A 164 52.581 10.121 28.963 1.00 25.82 C ATCM 1436 O THR A 164 53.478 9.060 29.478 1.00 13.95 N ATCM 1437 CB TER A 164 52.581 10.121 28.963 1.00 25.82 C ATCM 1436 O THR A 164 53.478 9.060 29.478 1.00 13.97 O ATCM 1437 CB TER A 164 55.873 10.391 29.903 1.00 25.51 C ATCM 1438 OGI TER A 164 51.373 10.391 29.903 1.00 25.51 C ATCM 1439 CG TER A 164 51.818 10.886 31.298 1.00 25.82 C ATCM 1443 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATCM 1443 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATCM 1443 CA ASN A 165 53.458 13.99 30.894 1.00 17.66 O ATCM 1443 CA ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATCM 1446 ODI ASN A 165 53.458 14.490 29.777 1.00 8.23 N		ATOM 1415 CB VAL A 161	57.806 2.248 30.862 1.00 17.94	Ç
ATOM 1418 N MET A 162 55,794 3,147 28,443 1,00 22,466 N ATOM 1419 CA MET A 162 55,296 4,185 27,513 1,00 19,23 C ATOM 1420 C MET A 162 54,880 5,312 28,397 1,00 25,19 C ATOM 1421 O MET A 162 53,788 5,269 28,961 1,00 18,35 O ATOM 1422 CB MET A 162 53,979 3,796 26,850 1,00 15,55 C ATOM 1423 CG MET A 162 54,013 2,630 25,949 1,00 37,79 C ATOM 1424 SD MET A 162 54,354 3,100 24,235 1,00 52,07 S ATOM 1425 CE MET A 162 54,354 3,100 24,235 1,00 36,30 C ATOM 1426 N PRO A 163 55,730 6,313 28,521 1,00 18,43 N ATOM 1427 CA PRO A 163 55,390 7,472 29,337 1,00 17,76 C ATOM 1428 C PRO A 163 55,390 7,472 29,337 1,00 17,76 C ATOM 1429 O PRO A 163 54,300 8,384 28,667 1,00 21,23 C ATOM 1430 CB PRO A 163 54,300 8,384 28,667 1,00 21,23 C ATOM 1431 CG PRO A 163 57,252 7,874 28,031 1,00 13,99 C ATOM 1433 N THR A 164 53,478 9,060 29,478 1,00 13,99 C ATOM 1434 CA THR A 164 53,478 9,060 29,478 1,00 13,95 N ATOM 1435 C THR A 164 53,478 9,060 29,478 1,00 13,97 O ATOM 1436 O THR A 164 51,373 10,391 29,903 1,00 25,51 C ATOM 1439 CG THR A 164 51,373 10,391 29,903 1,00 25,51 C ATOM 1439 CG THR A 164 51,373 10,391 29,903 1,00 25,51 C ATOM 1430 CB THR A 164 51,618 10,886 31,298 1,00 11,477 O ATOM 1430 CB THR A 164 51,618 10,886 31,298 1,00 11,49 N ATOM 1431 CG THR A 164 51,618 10,886 31,298 1,00 11,99 N ATOM 1432 CG THR A 164 51,618 10,886 31,298 1,00 11,99 N ATOM 1434 CG THR A 164 51,618 10,886 31,298 1,00 9,06 C ATOM 1434 CG THR A 164 51,618 10,886 31,298 1,00 11,161 CC ATOM 1440 N ASN A 165 53,448 13,901 28,481 1,00 7,83 CC ATOM 1441 CG ASN A 165 53,448 13,901 28,481 1,00 11,161 CC ATOM 1444 CG ASN A 165 53,448 13,901 28,481 1,00 11,166 CC ATOM 1444 CG ASN A 165 53,554 13,929 30,894 1,00 11,166 CC ATOM 1446 ODI ASN A 165 53,554 13,929 30,894 1,00 11,261 CC ATOM 1448 N LEU A 166 55,0173 14,925 27,539 1,00 27,22 N		ATOM 1416 CG1 VAL A 161	57.873 1.185 31.984 1.00 16.16	с
15 ATOM 1419 CA MET A 162 55.296 4.185 27.513 1.00 19.23 C ATOM 1420 C MET A 162 54.880 5.312 28.397 1.00 25.19 C ATOM 1421 0 MET A 162 53.788 5.269 28.961 1.00 18.35 0 ATOM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1423 CG MET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1424 SD MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1425 CE MET A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 13.95 N ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.82 C ATOM 1439 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1439 CG THR A 164 51.433 10.986 31.298 1.00 14.77 O ATOM 1439 CG THR A 164 51.918 10.886 31.298 1.00 13.97 O ATOM 1439 CG THR A 164 51.431 10.986 31.298 1.00 14.77 O ATOM 1439 CG THR A 164 51.918 10.886 31.298 1.00 10.121 C ATOM 1439 CG THR A 164 51.918 10.886 31.298 1.00 14.77 O ATOM 1441 CA ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 CG ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1444 CB ASN A 165 53.458 13.929 30.894 1.00 11.21 C ATOM 1445 CG ASN A 165 53.458 13.929 30.894 1.00 11.66 C ATOM 1446 CD ASN A 165 53.458 14.940 29.777 1.00 8.23 N		ATOM 1417 CG2 VAL A 161	59.137 2.992 30.750 1.00 21.10	c
ATOM 1420 C MET A 162 54.880 5.312 28.397 1.00 25.19 C ATOM 1421 O MET A 162 53.788 5.269 28.961 1.00 18.35 O ATOM 1422 CB MET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1423 CG MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 52.07 S ATOM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1426 N FRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA FRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C FRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1429 O FRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB FRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG FRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD FRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.99 C ATOM 1433 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1435 C THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1436 O THR A 164 55.433 11.393 28.868 1.00 25.51 C ATOM 1438 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1430 CB THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1431 CB THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CB ASN A 165 53.456 53.456 28.461 1.00 14.99 N ATOM 1444 CB ASN A 165 53.456 53.456 28.461 1.00 14.49 N ATOM 1444 CB ASN A 165 53.456 53.456 28.461 1.00 14.49 N ATOM 1444 CB ASN A 165 53.456 53.456 28.461 1.00 14.49 N ATOM 1445 CG ASN A 165 53.554 13.929 30.894 1.00 7.83 C ATOM 1445 CG ASN A 165 53.554 13.929 30.894 1.00 17.66 C ATOM 1445 CG ASN A 165 53.554 13.929 30.894 1.00 27.22 N ATOM 1446 CD1 ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 CD1 ASN A 165 51.492 14.991 27.262 1.00 23.70 C ATOM 1448 N LEU A 165 55.418 14.490 29.777 1.00 8.23 N		ATOM 1418 N MET A 162	55,794 3.147 28.443 1.00 22.46	N
ATOM 1421 O MET A 162 53.788 5.269 28.961 1.00 18.35 O ATOM 1422 CR MET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1423 CG MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 52.07 S ATOM 1425 CR MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1426 N FRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA FRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1429 O FRO A 163 54.300 8.384 28.667 1.00 21.23 C ATOM 1429 O FRO A 163 54.300 8.384 28.667 1.00 15.20 O ATOM 1430 CB FRO A 163 56.727 8.195 29.423 1.00 11.43 C ATOM 1431 CG FRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1436 O THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1437 CB THR A 164 53.478 9.060 29.478 1.00 13.97 O ATOM 1438 CG1 THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 CG1 THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1443 C A SN A 165 52.751 12.589 28.556 1.00 14.77 O ATOM 1443 C A SN A 165 53.448 13.901 28.861 1.00 13.99 N ATOM 1444 C ASN A 165 53.448 13.902 28.861 1.00 14.99 N ATOM 1444 C ASN A 165 53.554 13.929 30.894 1.00 7.83 C ATOM 1444 C ASN A 165 53.554 13.929 30.894 1.00 7.83 C ATOM 1445 CG ASN A 165 53.554 13.929 30.894 1.00 17.66 C ATOM 1445 CG ASN A 165 53.554 13.929 30.894 1.00 27.22 N ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 CDL ASN A 165 51.492 14.900 26.729 1.00 27.22 N ATOM 1448 N LEU A 165 55.418 14.490 29.777 1.00 8.23 N	15	ATOM 1419 CA MET A 162	55.296 4.185 27.513 1.00 19.23	с
ATOM 1422 CB NET A 162 53.979 3.796 26.850 1.00 15.55 C ATOM 1423 CG MET A 162 54.013 2.630 25.949 1.00 37.79 C ATOM 1424 SD MET A 162 54.354 3.100 24.235 1.00 52.07 S ATOM 1425 CE MET A 162 56.193 3.134 24.410 1.00 36.30 C ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C 25 ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1436 C THR A 164 53.478 9.060 29.478 1.00 13.97 O ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 CG THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1430 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1431 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1432 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1433 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1434 CA THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1430 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1430 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1431 CB SHR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1430 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1431 CG THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1443 CA SNA 165 52.751 12.589 28.556 1.00 14.77 O 35 ATOM 1443 CA SNA 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1444 CB ASNA 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 CA SNA 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1444 CB ASNA 165 53.448 13.901 28.481 1.00 17.66 O ATOM 1446 CD1 ASNA 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1420 C MET A 162	54.880 5.312 28.397 1.00 25.19	c
ATOM 1423 CG MET A 162 54,013 2,630 25,949 1,00 37,79 C ATOM 1424 SD MET A 162 54,354 3,100 24,235 1,00 52,07 S ATOM 1425 CE MET A 162 56,193 3,134 24,410 1,00 36,30 C ATOM 1426 N PRO A 163 55,730 6,313 28,521 1,00 18,43 N ATOM 1427 CA PRO A 163 55,390 7,472 29,337 1,00 17,76 C ATOM 1428 C PRO A 163 54,300 8,384 28,667 1,00 21,23 C ATOM 1429 O PRO A 163 54,208 8,448 27,433 1,00 15,20 O ATOM 1430 CB PRO A 163 56,727 8,195 29,423 1,00 11,43 C ATOM 1431 CG PRO A 163 57,352 7,874 28,031 1,00 13,99 C ATOM 1432 CD PRO A 163 57,086 6,401 27,949 1,00 12,24 C ATOM 1433 N THR A 164 53,478 9,060 29,478 1,00 13,95 N ATOM 1435 C THR A 164 53,406 11,441 28,781 1,00 13,97 O ATOM 1437 CB THR A 164 51,373 10,391 29,903 1,00 25,52 C ATOM 1438 OG1 THR A 164 51,373 10,391 29,903 1,00 25,51 C ATOM 1439 CG2 THR A 164 51,373 10,391 29,903 1,00 25,51 C ATOM 1440 N ASN A 165 52,751 12,589 28,556 1,00 14,99 N ATOM 1441 CA ASN A 165 53,448 13,901 28,481 1,00 11,69 N ATOM 1441 CA ASN A 165 53,448 13,901 28,481 1,00 11,66 O ATOM 1443 CG ASN A 165 53,448 13,901 28,481 1,00 7,83 C ATOM 1443 CG ASN A 165 53,448 13,901 28,481 1,00 17,66 O ATOM 1443 CG ASN A 165 53,448 13,901 28,481 1,00 17,66 O ATOM 1443 CG ASN A 165 53,448 13,901 28,481 1,00 17,66 O ATOM 1443 CG ASN A 165 51,492 14,941 27,262 1,00 23,70 C ATOM 1446 OD1 ASN A 165 51,492 14,941 27,262 1,00 23,70 C ATOM 1448 N LEU A 166 55,418 14,490 29,777 1,00 8,23 N		ATOM 1421 O MET A 162	53.788 5.269 28.961 1.00 18.35	0
20		ATOM 1422 CB MET A 162	53.979 3.796 26.850 1.00 15.55	с
ATOM 1425 CE MET A 152 56.193 3.134 24.410 1.00 36.30 C ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C 25 ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 CG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1431 CA ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.468 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 53.458 13.929 30.894 1.00 17.66 O ATOM 1443 CA ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1423 CG MET A 162	54,013 2,630 25,949 1,00 37,79	c
ATOM 1426 N PRO A 163 55.730 6.313 28.521 1.00 18.43 N ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C 25 ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1437 CB THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1438 OGI THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1441 CA ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 ODI ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1448 N LEU A 165 55.418 14.490 29.777 1.00 8.23 N	20	ATOM 1424 SD MET A 162	54.354 3.100 24.235 1.00 52.07	<u>s</u>
ATOM 1427 CA PRO A 163 55.390 7.472 29.337 1.00 17.76 C ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C 25 ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OGI THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 O ASN A 165 53.458 13.929 30.894 1.00 11.21 C ATOM 1444 CB ASN A 165 51.416 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 ODI ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1425 CE MET A 162	56.193 3.134 24.410 1.00 36.30	c
ATOM 1428 C PRO A 163 54.300 8.384 28.667 1.00 21.23 C ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OGI THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 O ASN A 165 53.458 13.991 28.481 1.00 17.66 O ATOM 1444 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 ODI ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1447 ND2 ASN A 165 55.418 14.490 29.777 1.00 8.23 N		ATOM 1426 N PRO A 163	55.730 6.313 28.521 1.00 18.43	N
25 ATOM 1429 O PRO A 163 54.208 8.448 27.433 1.00 15.20 O ATOM 1430 CB PRO A 163 56.727 8.195 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O ATOM 1439 CG2 THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 53.544 13.929 30.894 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1446 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1427 CA PRO A 163	55.390 7.472 29.337 1.00 17.76	c
ATOM 1430 CB PRO A 163 56.727 8.196 29.423 1.00 11.43 C ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 11.21 C ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1428 C PRO A 163	54.300 8.384 28.667 1.00 21.23	с
ATOM 1431 CG PRO A 163 57.352 7.874 28.031 1.00 13.99 C ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1446 OD1 ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N	25	ATOM 1429 O PRO A 163	54.208 8.448 27.433 1.00 15.20	o
ATOM 1432 CD PRO A 163 57.086 6.401 27.949 1.00 12.24 C ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N 30 ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 53.554 13.929 30.894 1.00 17.66 O 40 ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.939 14.800 26.129 1.00 23.70 C ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1430 CB PRO A 163	56.727 8.196 29.423 1.00 11.43	с
ATOM 1433 N THR A 164 53.478 9.060 29.478 1.00 13.95 N ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O 40 ATOM 1444 CB ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 27.22 N ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N		ATOM 1431 CG PRO A 163	57.352 7.874 28.031 1.00 13.99	<u>c</u>
ATOM 1434 CA THR A 164 52.581 10.121 28.963 1.00 25.82 C ATOM 1435 C THR A 164 53.406 11.441 28.781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1432 CD PRO A 163	57.086 6.401 27.949 1.00 12.24	c
ATOM 1435 C THR A 164 53,406 11,441 28,781 1.00 19.67 C ATOM 1436 O THR A 164 54.633 11,393 28,868 1.00 13.97 O ATOM 1437 CB THR A 164 51,373 10,391 29,903 1.00 25,51 C ATOM 1438 OG1 THR A 164 50,470 11,321 29,267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51,818 10,886 31,298 1.00 9,06 C ATOM 1440 N ASN A 165 52,751 12,589 28,556 1.00 14.99 N ATOM 1441 CA ASN A 165 53,448 13,901 28,481 1.00 7,83 C ATOM 1442 C ASN A 165 54,167 14,064 29,824 1.00 11,21 C ATOM 1443 O ASN A 165 53,554 13,929 30,894 1.00 17,66 O 40 ATOM 1444 CB ASN A 165 52,434 15,061 28,416 1.00 14,48 C ATOM 1445 CG ASN A 165 51,492 14,941 27,262 1.00 23,70 C ATOM 1446 OD1 ASN A 165 51,939 14,800 26,129 1.00 22,37 O ATOM 1447 ND2 ASN A 165 50,173 14,925 27,539 1.00 27,22 N ATOM 1448 N LEU A 166 55,418 14,490 29,777 1.00 8,23 N		ATOM 1433 N THR A 164	53,478 9,060 29,478 1.00 13.95	N
ATOM 1436 O THR A 164 54.633 11.393 28.868 1.00 13.97 O ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N	30	ATOM 1434 CA THR A 164	52.581 10.121 28.963 1.00 25.82	c
ATOM 1437 CB THR A 164 51.373 10.391 29.903 1.00 25.51 C ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O 35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O 40 ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1435 C THR A 164	53,406 11,441 28,781 1.00 19,67	c
ATOM 1438 OG1 THR A 164 50.470 11.321 29.267 1.00 14.77 O ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1436 O THR A 164	54.633 11.393 28.868 1.00 13.97	0
35 ATOM 1439 CG2 THR A 164 51.818 10.886 31.298 1.00 9.06 C ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1437 CB THR A 164	51.373 10.391 29.903 1.00 25.51	c
ATOM 1440 N ASN A 165 52.751 12.589 28.556 1.00 14.99 N ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1438 OG1 THR A 164	50.470 11.321 29.267 1.00 14.77	0
ATOM 1441 CA ASN A 165 53.448 13.901 28.481 1.00 7.83 C ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N	35	ATOM 1439 CG2 THR A 164	51.818 10.886 31.298 1.00 9.06	с
ATOM 1442 C ASN A 165 54.167 14.064 29.824 1.00 11.21 C ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O 40 ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1440 N ASN A 165	52.751 12.589 28.556 1.00 14.99	N
ATOM 1443 O ASN A 165 53.554 13.929 30.894 1.00 17.66 O ATOM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1441 CA ASN A 165	53.448 13.901 28.481 1.00 7.83	с
40 ATCM 1444 CB ASN A 165 52.434 15.061 28.416 1.00 14.48 C ATCM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATCM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATCM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATCM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1442 C ASN A 165	54.167 14.064 29.824 1.00 11.21	<u>c</u>
ATOM 1445 CG ASN A 165 51.492 14.941 27.262 1.00 23.70 C ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1443 O ASN A 165	53.554 13.929 30.894 1.00 17.66	0
ATOM 1446 OD1 ASN A 165 51.939 14.800 26.129 1.00 22.37 O ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N	40	ATOM 1444 CB ASN A 165	52.434 15.061 28.416 1.00 14.48	<u>c</u>
ATOM 1447 ND2 ASN A 165 50.173 14.925 27.539 1.00 27.22 N ATOM 1448 N LEU A 166 55.418 14.490 29.777 1.00 8.23 N		ATOM 1445 CG ASN A 165	51.492 14.941 27.262 1.00 23.70	c
ATOM 1448 N LEU A 166 55,418 14.490 29.777 1.00 8.23 N		ATOM 1446 OD1 ASN A 165		0
4.0		ATOM 1447 ND2 ASN A 165	50.173 14.925 27.539 1.00 27.22	N
45 ATOM 1449 CA LEU A 166 56.187 14.604 30.994 1.00 14.40 C		ATOM 1448 N LEU A 166	55.418 14.490 29.777 1.00 8.23	
	45	ATOM 1449 CA LEU A 166	56.187 14.604 30.994 1.00 14.40	<u>C</u>

	ATOM 1450 C LEU A 166	56.629 16.017 31.120 1.00 25.05	c
	ATOM 1451 O LEU A 166	56.624 16.718 30.125 1.00 25.09	0
	ATOM 1452 CB LEU A 166	57,460 13,743 30,870 1.00 17,48	С
_	ATOM 1453 CG LEU A 166	57.423 12.218 30.652 1.00 16.63	c
5	ATOM 1454 CD1 LEU A 166	58.837 11.639 31.000 1.00 22.52	c
	ATOM 1455 CD2 LEU A 166	56.336 11.539 31.514 1.00 7.46	c
	ATOM 1456 N TYR A 167	57.146 16.391 32.300 1.00 19.78	N
	ATCM 1457 CA TYR A 167	57.678 17.760 32.511 1.00 18.58	C
	ATOM 1458 C TYR A 167	58.534 17.763 33.767 1.00 15.53	с
10	ATOM 1459 O TYR A 167	58.474 16.852 34.575 1.00 16.71	0
	ATOM 1460 CB TYR A 167	56,509 18,778 32,665 1.00 18.33	c
	ATOM 1461 CG TYR A 167	55,671 18,561 33,931 1.00 14.23	c
	ATOM 1462 CD1 TYR A 167	54.624 17.618 33.977 1.00 13.35	С
	ATOM 1463 CD2 TYR A 167	55.984 19.258 35.106 1.00 16.52	c
15	ATOM 1464 CE1 TYR A 167	53.889 17.446 35.146 1.00 21.17	с
	ATOM 1465 CE2 TYR A 167	55.302 19.084 36.264 1.00 8.26	С
	ATOM 1466 CZ TYR A 167	54.228 18.203 36.296 1.00 23.56	С
	ATOM 1467 OH TYR A 167	53.526 18.078 37.504 1.00 22.81	0
	ATOM 1468 N GLY A 168	59.334 18.797 33.952 1.00 16.59	N
20	ATOM 1469 CA GLY A 168	60.158 18.817 35.152 1.00 18.21	c
	ATOM 1470 C GLY A 168	61.534 19.428 34.880 1.00 13.69	С
	ATOM 1471 O GLY A 168	61.746 20.028 33.837 1.00 16.52	
	ATOM 1472 N PRO A 169	62.473 19.263 35.817 1.00 20.33	N
	ATOM 1473 CA PRO A 169	63.801 19.822 35.656 1.00 16.07	С
25	ATOM 1474 C PRO A 169	64.430 19.353 34.387 1.00 27.18	с
	ATOM 1475 O PRO A 169	64.305 18.186 33.981 1.00 21.23	0
	ATOM 1476 CB PRO A 169	64.595 19.206 36.805 1.00 17.28	C
	ATOM 1477 CG PRO A 169	63.649 18.919 37.830 1.00 19.89	c
	ATOM 1478 CD PRO A 169	62.263 18,772 37.189 1.00 22.47	С
30	ATOM 1479 N HIS A 170	65,226 20.235 33.829 1.00 19.48	N
	ATCM 1480 CA HIS A 170	65,952 19.877 32.638 1.00 25.56	С
	ATOM 1481 C HIS A 170	65.096 19.707 31.428 1.00 29.15	С
	ATOM 1482 O HIS A 170	65.553 19.091 30.479 1.00 29.71	0
	ATOM 1483 CB HIS A 170	66.783 18.600 32.845 1.00 28.94	C
35	ATOM 1484 CG HIS A 170	67.703 18.671 34.034 1.00 33.88	С
	ATOM 1485 ND1 HIS A 170	68.975 19.203 33.969 1.00 25.46	N
	ATOM 1486 CD2 HIS A 170	67.518 18.298 35.326 1.00 34.77	С
	ATOM 1487 CE1 HIS A 170	69.531 19.151 35.166 1.00 25.63	c
	ATOM 1488 NE2 HIS A 170	68.673 18.603 36.008 1.00 31.72	N
40	ATOM 1489 N ASP A 171	63.881 20.245 31.440 1.00 21.52	N
	ATOM 1490 CA ASP A 171	63.041 20.267 30.218 1.00 28.63	C
	ATOM 1491 C ASP A 171	63.630 21.459 29.359 1.00 41.94	c
	ATOM 1492 O ASP A 171	64.534 22.171 29.835 1.00 29.69	0
	ATOM 1493 CB ASP A 171	61.552 20.558 30.602 1.00 26.40	С
45	ATOM 1494 CG ASP A 171	60.552 20.097 29.540 1.00 22.32	c

	ATOM 1495	OD1	ASP A 171	60.890	20.067	28.325	1.00 32.03	0
	ATOM 1496	OD2	ASP A 171	59.427	19.719	29,916	1.00 42.13	
	ATOM 1497	N	ASN A 172	63.141	21.712	28.137	1.00 42.08	N
	ATOM 1498	CA	ASN A 172	63.616	22.893	27.388	1.00 35.95	C
5	ATOM 1499	С	ASN A 172	62.665	24.056	27.674	1.00 33.71	<u>c</u>
	ATOM 1500	_0	ASN A 172	61.586	24.102	27.104	1.00 32.69	o
	ATOM 1501	СВ	ASN A 172	63.632	22.667	25.869	1.00 41.60	c
	ATOM 1502	CG	ASN A 172	63.807	23.987	25.086	1.00 39.09	C
	ATOM 1503	OD1	ASN A 172	62.973	24.347	24.259	1.00 83.94	0
10	ATOM 1504	ND2	ASN A 172	64.855	24.740	25.418	1.00 65.07	N
	ATOM 1505	N	PHE A 173	63.021	24.953	28.583	1.00 31.93	N
	ATOM 1506	CA	PHE A 173	62.082	26.030	28.944	1.00 48.24	C
	ATOM 1507	С	PHE A 173	61.989	27.260	28.045	1.00 69.01	С
	ATOM 1508	0	PHE A 173	62.278	28.395	28.465	1.00 58.79	o
15	ATOM 1509	СВ	PHE A 173	62,225	26.459	30.390	1.00 43.43	с
	ATOM 1510	CG	PHE A 173	61.867	25.399	31.356	1.00 34.19	С
	ATOM 1511	CD1	PHE A 173	62.810	24.488	31.751	1.00 24.68	C
	ATOM 1512	CD2	PHE A 173	60.621	25.354	31.925	1.00 24.84	с
	ATOM 1513	CE1	PHE A 173	62.524	23.548	32.682	1.00 23.64	с
20	ATOM 1514	CE2	PHE A 173	60.305	24.366	32.804	1.00 31.32	C
	ATOM 1515	CZ	PHE A 173	61.263	23.457	33.192	1.00 24.30	c
	ATOM 1516	N	HIS A 174	61.510	27,036	26.831	1.00 68.16	N
	ATOM 1517	CA_	HIS A 174	61.401	28.109	25.871	1.00 64.53	с
	ATOM 1518	C	HIS A 174	59.973	28.221	25.400	1.00 71.58	c
25	ATOM 1519	0	HIS A 174	59.309	27,186	25.249	1.00 73.20	0
	ATOM 1520	СВ	HIS A 174	62.418	27.870	24.736	1.00 71.71	С
	ATOM 1521	CG	HIS A 174	63.835	27.868	25.229	1.00 92.29	Ç
	ATOM 1522	ND1	HIS A 174	64.921	27.539	24.440	1.00100.00	N.
	ATOM 1523	CD2	HIS A 174	64.338	28.133	26.463	1.00100.00	c
30	ATOM 1524	CE1	HIS A 174	66.032	27.628	25.160	1.00100.00	с
	ATOM 1525	NE2	HIS A 174	65.705	27.981	26.393	1.00100.00	N
	ATOM 1526	_N	PRO A 175	59.469	29.461	25.262	1.00 65.71	N
	ATOM 1527	CA	PRO A 175	58.109	29.658	24.770	1.00 55.72	C
	ATOM 1528	С	PRO A 175	58.233	29.297	23.267	1.00 75.83	c
35	ATOM 1529	0	PRO A 175	57.224	29.226	22.554	1.00 69.59	. 0
	ATOM 1530	СВ	PRO A 175	57,866	31.142	25.026	1.00 49.14	c
	ATOM 1531	CG	PRO A 175	59.258	31.790	24.901	1.00 42.23	C
	ATOM 1532	CD	PRO A 175	60.286	30.695	25.109	1.00 49.59	c
	ATOM 1533	N	SER A 176	59,480	28.954	22.879	1.00 85.09	N
40	ATOM 1534	CA	SER A 176	59.954	28,474	21.548	1.00 81.18	c
	ATOM 1535	С	SER A 176	59.660	26.965	21.343	1.00 73.90	c
	ATOM 1536	0	SER A 176	59.617	26.458	20.213	1.00 57.03	0
	ATOM 1537	СВ	SER A 176	61.493	28.666	21.447	1.00 71.32	c
	ATOM 1538	OG	SER A 176	62.048	29.349	22.578	1.00 51.93	0
45	ATOM 1539	N	ASN A 177	59.520	26.276	22.480	1.00 66.23	N

	ATOM	1540	CA ASN A 177	59.274 24.847 22.619 1.00 56.41	<u>C</u>
	MOTA	1541	C ASN A 177	57.810 24.497 22.353 1.00 60.91	c
	ATOM	1542	O ASN A 177	56.914 25.215 22.811 1.00 55.58	0
	MOTA	1543	CB ASN A 177	59.619 24.469 24.065 1.00 50.45	<u>C</u>
5	MOTA	1544	CG ASN A 177	59.562 22.970 24.319 1.00 66.57	c
	ATOM	1545	OD1 ASN A 177	59.095 22.216 23.476 1.00100.00	0
	MOTA	1546	ND2 ASN A 177	60.099 22.546 25.464 1.00 35.61	N
	MOTA	1547	N SER A 178	57.583 23.387 21.627 1.00 57.10	N
	MOTA	1548	CA SER A 178	56.234 22.853 21.279 1.00 50.50	с
10	MOTA	1549	C SER A 178	55.557 22.159 22.491 1.00 76.24	c
	MOTA	1550	O SER A 178	54.575 21.400 22.304 1.00 99.63	0
	MOTA	1551	CB SER A 178	56.316 21.800 20.118 1.00 10.17	c
	MOTA	1552	OG SER A 178	57.397 22.112 19.217 1.00 71.69	0
	MOTA	1553	N HIS A 179	56.134 22.284 23.694 1.00 37.39	N
15	MOTA	1554	CA HIS A 179	55.569 21.587 24.855 1.00 30.96	С
	MOTA	1555	C HIS A 179	54.961 22.616 25.767 1.00 21.93	<u>C</u>
	MOTA	1556	O HIS A 179	55.641 23.598 26.138 1.00 25.17	0
	MOTA	1557	CB HIS A 179	56.634 20.683 25.575 1.00 36.20	<u>C</u>
	ATOM	1558	CG HIS A 179	56.973 19.419 24.835 1.00 42.90	<u>C</u>
20	ATOM	1559	ND1 HIS A 179	56.973 19.335 23.457 1.00 49.52	N
	MOTA	1560	CD2 HIS A 179	57.323 18.190 25.278 1.00 52.42	<u>c</u>
	ATOM	1561	CE1 HIS A 179	57,283 18,109 23,084 1.00 44,78	C
	MOTA	1562	NE2 HIS A 179	57.500 17.393 24.168 1.00 50.49	N
	ATOM	1563	N VAL A 180	53.661 22.454 26.038 1.00 19.14	N
25	MOTA	1564	CA VAL A 180	52,886 23,449 26,789 1.00 29.03	C
	MOTA	1565	C VAL A 180	53.373 23.890 28.142 1.00 31.29	с
	MOTA	1566	O VAL A 180	53.348 25.075 28.447 1.00 19.55	0
	ATOM	1567	CB VAL A 180	51.403 23.115 26.914 1.00 35.47	<u>C</u>
	MOTA	1568	CG1 VAL A 180	50.630 24.399 27.217 1.00 35.84	<u>c</u>
30	ATOM	1569	CG2 VAL A 180	50.923 22.550 25.663 1.00 36.11	c
	ATOM	1570	N ILE A 181	53.684 22.935 29.005 1.00 26.57	N
	ATOM	1571	CA ILE A 181	54.138 23.285 30.360 1.00 24.49	<u>C</u>
	MOTA	1572	C ILE A 181	55.371 24.213 30.361 1.00 16.51	с
	MOTA	1573	O ILE A 181	55.326 25.315 30.909 1.00 24.42	0
35	ATOM	1574	CB ILE A 181	54.285 22.018 31.264 1.00 20.20	С
	MOTA	1575	CG1 ILE A 181	52.878 21.428 31.528 1.00 18.22	с
	MOTA	1576	CG2 ILE A 181	55.014 22.315 32.581 1.00 13.37	<u>C</u>
	MOTA	1577	CD1 ILE A 181	52.867 20.086 32.286 1.00 8.03	c
	MOTA	1578	N PRO A 182	56,452 23.779 29,718 1.00 22,21	N
40	MOTA	1579	CA PRO A 182	57.664 24.605 29.640 1.00 22.07	<u>c</u>
	MOTA	1580	C PRO A 182	57.379 25.852 28.828 1.00 24.18	<u>C</u>
	MOTA	1581	O PRO A 182	57.811 26.949 29.210 1.00 18.35	0
	MOTA	1582	CB PRO A 182	58.682 23.725 28.890 1.00 24.97	<u>c</u>
	MOTA	1583	CG PRO A 182	57.925 22.473 28.471 1.00 25.77	c
45	MOTA	1584	CD PRO A 182	56.727 22.359 29.401 1.00 18.23	<u>c</u>

	ATOM 1585	N ALA A 183	56,628 25,707 27,729 1.00 21,45	N
	ATOM 1586	CA ALA A 183	56.261 26.896 26.943 1.00 21.66	c
	ATOM 1587	C ALA A 183	55.464 27.900 27.811 1.00 26.10	C
	ATOM 1588	O ALA A 183	55.773 29.091 27.856 1.00 19.50	0
5	ATOM 1589	CB ALA A 183	55.473 26.513 25.703 1.00 13.26	c
	ATOM 1590	N LEU A 184	54.472 27.389 28.543 1.00 23.34	N
	ATOM 1591	CA LEU A 184	53.642 28.215 29.401 1.00 19.05	с
	ATOM 1592	C LEU A 184	54.312 28.693 30.655 1.00 21.91	c
	ATOM 1593	O LEU A 184	54.017 29.771 31.158 1.00 19.71	0
10	ATOM 1594	CB LEU A 184	52.309 27.553 29.715 1.00 14.41	c
	ATOM 1595	CG LEU A 184	51.342 27.595 28.525 1.00 23.42	<u>c</u>
	ATOM 1596	CD1 LEU A 184	49.918 27.244 28.928 1.00 31.06	c
	ATOM 1597	CD2 LEU A 184	51.380 28.896 27.690 1.00 21.73	<u>c</u>
	ATOM 1598	N LEU A 185	55.178 27.879 31.213 1.00 18.39	N
15	ATOM 1599	CA LEU A 185	55.833 28.332 32.417 1.00 16.39	c
	ATOM 1600	C LEU A 185	56.669 29.528 31.985 1.00 23.67	c
	ATOM 1601	O LEU A 185	56,681 30,590 32,644 1.00 29,38	0
	ATOM 1602	CB LEU A 185	56.723 27.233 33.015 1.00 15.05	c
	ATOM 1603	CG LEU A 185	56.021 26.348 34.041 1.00 15.56	c
20	ATOM 1604	CD1 LEU A 185	56.819 25.022 34.301 1.00 21.06	c
	ATOM 1605	CD2 LEU A 185	55.722 27.113 35.321 1.00 11.02	с
	ATOM 1606	N ARG A 186	57.337 29.397 30.852 1.00 17.09	N
	ATOM 1607	CA ARG A 186	58.137 30.523 30.429 1.00 18.62	<u> </u>
	ATOM 1608	C ARG A 186	57.308 31.752 30.069 1.00 29.00	с
25	ATOM 1609	O ARG A 186	57.629 32.880 30.476 1.00 23.91	0
	ATOM 1610	CB ARG A 186	59.026 30.146 29.281 1.00 22.06	с
	ATOM 1611	CG ARG A 186	59.653 31.365 28.652 1.00 38.46	<u>.</u>
	ATOM 1612	CD ARG A 186	60.825 31.804 29.462 1.00 83.66	<u>c</u>
••	ATOM 1613	NE ARG A 186	62.012 31.861 28.631 1.00 70.77	N
30	ATOM 1614	CZ ARG A 186	63.058 32.622 28.904 1.00 91.68	<u>c</u>
	ATOM 1615	NH1 ARG A 186	63.053 33.386 29.995 1.00 56.56	N
	ATOM 1616	NH2 ARG A 186	64.098 32.639 28.082 1.00100.00	N
	ATOM 1617	N ARG A 187	56.234 31.544 29.310 1.00 20.96	N
	ATOM 1618		55.361 32.662 28.941 1.00 19.32	c
35	ATOM 1619		54.765 33.453 30.142 1.00 28.41	<u>c</u>
	ATOM 1620		54.823 34.700 30.193 1.00 17.23	0
	ATOM 1621	CB ARG A 187	54.270 32.223 27.957 1.00 17.05	<u>C</u>
	ATOM 1622		54.813 31.546 26.720 1.00 61.42	<u>C</u>
	ATOM 1623		53.696 31.244 25.757 1.00 44.57	C
40	ATOM 1624	NE ARG A 187	53.033 32.472 25.354 1.00 29.47	N
		CZ ARG A 187	51.831 32.534 24.790 1.00 17.82	<u>C</u>
	ATOM 1626		51.136 31.427 24.544 1.00 24.95	N
		NH2 ARG A 187	51.341 33.716 24,447 1.00 37.77	<u>N</u>
	ATOM 1628	N PHE A 188	54.192 32.734 31.101 1.00 23.48	N
45	ATOM 1629	CA PHE A 188	53.604 33.399 32.259 1.00 21.24	<u>c</u>

	ATOM 1630 C PHE A 188	54.638 34.080 33.095 1.00 21.39	c
	ATOM 1631 O PHE A 188	54.394 35.126 33.626 1.00 23.90	0
	ATOM 1632 CB PHE A 188	52.723 32.466 33.077 1.00 19.95	C
	ATOM 1633 CG PHE A 188	51.389 32.215 32.435 1.00 22.28	c
5	ATOM 1634 CD1 PHE A 188	50.440 33.229 32.375 1.00 19.42	<u>c</u>
	ATOM 1635 CD2 PHE A 188	51.144 31.038 31.734 1.00 23.82	. с
	ATOM 1636 CE1 PHE A 188	49.191 33.026 31.742 1.00 24.77	C
	ATOM 1637 CE2 PHE A 188	49.936 30.826 31.057 1.00 20.17	c
	ATOM 1638 CZ PHE A 188	48.945 31.815 31.068 1.00 23.14	С
10	ATOM 1639 N HIS A 189	55.831 33.513 33.118 1.00 24.15	N
	ATOM 1640 CA HIS A 189	56.933 34.122 33.837 1.00 28.79	С
	ATOM 1641 C HIS A 189	57.303 35.506 33.315 1.00 28.58	c
	ATOM 1642 O HIS A 189	57.480 36.463 34.083 1.00 20.07	0
	ATOM 1643 CB HIS A 189	58.148 33.268 33.641 1.00 31.38	c
15	ATOM 1644 CG HIS A 189	59.364 33.844 34.290 1.00 29.98	С
	ATOM 1645 ND1 HIS A 189	59.548 33.833 35,658 1.00 31.00	N
	ATOM 1646 CD2 HIS A 189	60.449 34.464 33.766 1.00 21.79	С
	ATOM 1647 CE1 HIS A 189	60.722 34.371 35.945 1.00 24.04	с
	ATOM 1648 NE2 HIS A 189	61.257 34.815 34.821 1.00 19.53	N
20	ATOM 1649 N GLU A 190	57.539 35.561 32.006 1.00 28.43	N
	ATCM 1650 CA GLU A 190	57.876 36.816 31.324 1.00 27.72	C
	ATCM 1651 C GLU A 190	56.725 37.829 31.437 1.00 32.56	С
	ATOM 1652 O GLU A 190	56,949 38,995 31,717 1.00 27.06	0
	ATOM 1653 CB GLU A 190	58.122 36.529 29.849 1.00 28.55	С
25	ATCM 1654 CG GLU A 190	59.150 35.461 29.614 1.00 35.29	C
	ATOM 1655 CD GLU A 190	60.553 35.941 29.892 1.00 99.81	c
	ATOM 1656 OE1 GLU A 190	60.913 36.037 31.085 1.00 86.56	0
	ATOM 1657 OE2 GLU A 190	61.293 36.167 28.910 1.00100.00	0
	ATOM 1658 N ALA A 191	55.493 37.391 31.196 1.00 32.67	N
30	ATOM 1659 CA ALA A 191	54.349 38.286 31.311 1.00 25.30	c
	ATOM 1660 C ALA A 191	54.287 38.795 32.742 1.00 36.20	c
	ATOM 1661 O ALA A 191	53.920 39.924 33.014 1.00 27.52	0
	ATOM 1662 CB ALA A 191	53.055 37.563 31.000 1.00 16.48	с
	ATOM 1663 N THR A 192	54.549 37.927 33.693 1.00 29.39	N
35	ATOM 1664 CA THR A 192	54.395 38.386 35.041 1.00 19.08	С
	ATOM 1665 C THR A 192	55.420 39.494 35.298 1.00 44.78	С
	ATOM 1666 O THR A 192	55.094 40.550 35.839 1.00 40.58	0
	ATOM 1667 CB THR A 192	54.515 37.235 35.983 1.00 18.99	С
	ATOM 1668 OG1 THR A 192	53,410 36,348 35,755 1.00 34,36	0
40	ATOM 1669 CG2 THR A 192	54.461 37.738 37.425 1.00 21.15	C
	ATOM 1670 N ALA A 193	56,617 39.312 34.757 1.00 48.58	N
	ATOM 1671 CA ALA A 193	57.705 40.286 34.905 1.00 50.59	c
	ATOM 1672 C ALA A 193	57.496 41.613 34.145 1.00 54.42	c
•	ATOM 1673 O ALA A 193	57.952 42.698 34.553 1.00 48.28	
45	ATOM 1674 CB ALA A 193	59.047 39.640 34.496 1.00 51.78	c

	MOTA	1675	N	GLN A 19	4 56.810	41.530	33.022	1.00 43.16	N
	MOTA	1676	CA	GLN A 19	4 56,586	42.722	32.242	1.00 38.03	С
	MOTA	1677	С	GLN A 19	4 55.264	43.389	32.576	1.00 40.85	c
	ATOM	1678	0	GLN A 19	4 54.830	44.284	31.845	1.00 51.20	o
5	MOTA	1679	СВ	GLN A 19	4 56.599	42.358	30.750	1.00 35.96	c
	ATOM_	1680	CG	GLN A 19	4 57.910	41.692	30.290	1.00100.00	c
	MOTA	1681	CD	GLN A 19	4 57.715	40.661	29.158	1.00100.00	с
	MOTA	1682	OE1	GLN A 19	4 56.619	40.546	28.579	1.00100.00	0
	MOTA	1683	NE2	GLN A 19	4 58.782	39.904	28.848	1.00100.00	N
10	ATOM	1684	N_	GLY A 19	5 54.583	42.949	33.630	1.00 32.29	N
	ATOM	1685	CA	GLY A 19	5 53.236	43.464	33.864	1.00 36.26	с
	MOTA	1686	C	GLY A 19	5 52.299	43.332	32.593	1.00 45.33	c
	ATOM	1687	0	GLY A 19	5 51.515	44.242	32.346	1.00 45.16	0
	ATOM	1688	N	GLY A 19	6 52.405	42.245	31.788	1.00 36.33	N
15	MOTA	1689	CA	GLY A 19	6 51.515	41.965	30.608	1.00 19.06	C
	MOTA	1690	С	GLY A 19	6 50,037	41.958	31.117	1.00 22.49	<u>c</u>
	MOTA	1691	0	GLY A 19	6 49.724	41.479	32.223	1.00 33.09	o
	MOTA	1692	N	PRO A 19	7 49.144	42.657	30.431	1.00 29.22	N
	MOTA	1693	CA	PRO A 19	7 47.790	42.732	30.953	1.00 25.29	c
20	MOTA	1694	С	PRO A 19	7 47.091	41,413	30.674	1.00 24.64	с
	MOTA	1695	0	PRO A 19	7 46.192	40.991	31.411	1.00 24.75	0
	MOTA	1696	СВ	PRO A 19	7 47.162	43.911	30.176	1.00 26.31	<u>c</u>
	MOTA	1697	CG	PRO A 19	7 48.188	44.407	29.252	1.00 26.56	<u>c</u>
	MOTA	1698	CD	PRO A 19	7 49.307	43.454	29.203	1.00 30.25	c
25	MOTA	1699	N	ASP A 19	8 47.572	40.723	29.658	1.00 16.88	
	MOTA	1700	CA	ASP A 19	8 47.067	39.418	29.405	1.00 21.65	<u>c</u>
	MOTA	1701	С	ASP A 19	8 48.046	38.522	28.677	1.00 31.28	C
	MOTA	1702	0_	ASP A 19	8 49.062	38.978	28.172	1.00 34.57	<u> </u>
	MOTA	1703	СВ	ASP A 19	8 45.739	39.507	28,669	1.00 32.80	<u>c</u>
30	MOTA	1704	CG	ASP A 19	8 45.868	40.055	27.256	1.00 46.13	c
	MOTA	1705	OD1	ASP A 19	8 46.982	40.230	26.725	1.00 57,45	0
	MOTA	1706	OD2	ASP A 19	8 44.817	40.271	26.640	1.00 67.61	0
	MOTA	1707	N	VAL A 19	9 47.713	37.234	28.614	1.00 38.67	N
	MOTA	1708	CA	VAL A 19		36.226	27.901	1.00 27.79	c
35	MOTA	1709	С	VAL A 19	9 47.462	35.469	27.065	1.00 25.88	<u>.c</u>
	MOTA	1710	0	VAL A 19	9 46.460	35.023	27.598	1.00 24.22	0
	ATOM	1711	CB	VAL A 19	9 49,163	35.229	28.905	1.00 24.37	c
	MOTA	1712	CG1	VAL A 19	9 49.874	34.047	28.160	1.00 20.28	с
	MOTA	1713	CG2	VAL A 19	9 50.121	35.942	29.835	1.00 22.25	c
40	ATOM	1714	N_	VAL A 20	0 47.661	35.386	25.757	1.00 23.72	N
	MOTA	1715	CA	VAL A 20	0 46.701	34.694	24.903	1.00 23.99	с
	MOTA	1716	С	VAL A 20	0 47.167	33.286	24.499	1.00 22.85	C
	MOTA	1717	0	VAL A 20	0 48.321	33.108	24.188	1.00 29.77	0
	MOTA	1718	СВ	VAL A 20	0 46.358	35.548	23.680	1.00 23.11	<u>c</u>
45	MOTA	1719	CG1	VAL A 20	0 45.561	34.737	22.598	1.00 16.25	c

	ATOM 1720	CG2 VAL A 200	45.652 36.823 24.130 1.00 27.86	<u>C</u>
	ATOM 1721	N VAL A 201	46.296 32.278 24.632 1.00 27.39	N
	ATOM 1722	CA VAL A 201	46.588 30.893 24.265 1.00 9.63	c
	ATOM 1723	C VAL A 201	45.653 30.529 23.165 1.00 19.63	с
5	ATOM 1724	O VAL A 201	44.452 30.755 23.312 1.00 17.61	0
	ATOM 1725	CB VAL A 201	46.306 29.952 25.426 1.00 19.95	с
	ATOM 1726	CG1 VAL A 201	46,703 28,519 25,054 1.00 20.85	c
	ATOM 1727	CG2 VAL A 201	47.086 30.439 26.661 1.00 16.73	c
	ATOM 1728	N TRP A 202	46.210 30.080 22.030 1.00 14.36	N
10	ATOM 1729	CA TRP A 202	45.422 29.693 20.865 1.00 18.97	C
	ATOM 1730	C TRP A 202	44.495 28.572 21.313 1.00 36.22	c
	ATOM 1731	O TRP A 202	44.934 27.694 22.057 1.00 31.46	0
	ATOM 1732	CB TRP A 202	46.292 29.055 19.823 1.00 19.14	<u>C</u>
	ATOM 1733	CG TRP A 202	47.243 29.894 19.066 1.00 33.65	c
15	ATOM 1734	CD1 TRP A 202	48.391 29.463 18.429 1.00 35.28	С
	ATOM 1735	CD2 TRP A 202	47,126 31.282 18.772 1.00 39.90	C
	ATOM 1736	NEI TRP A 202	48.941 30.481 17.693 1.00 37.86	N
	ATOM 1737	CE2 TRP A 202	48.228 31.624 17.922 1.00 38.35	c
	ATOM 1738	CE3 TRP A 202	46.206 32.281 19.138 1.00 39.39	
20 ⁻	ATOM 1739	CZ2 TRP A 202	48.380 32.884 17.367 1.00 36.15	С
	ATOM 1740	CZ3 TRP A 202	46.356 33.542 18.578 1.00 39.60	c
	ATOM 1741	CH2 TRP A 202	47.428 33.828 17.684 1.00 40.99	C
	ATOM 1742	N GLY A 203	43.245 28.564 20.842 1.00 25.59	N
	ATOM 1743	CA GLY A 203	42.332 27.483 21.169 1.00 13.09	C
25	ATOM 1744	C GLY A 203	41,260 27.813 22.193 1.00 21.12	C
	ATOM 1745	O GLY A 203	41.340 28.815 22.886 1.00 22.86	0
	ATOM 1746	N SER A 204	40.270 26.919 22.262 1.00 16.88	N
	ATOM 1747	CA SER A 204	39.163 26.979 23.192 1.00 18.36	c
	ATOM 1748	C SER A 204	39.561 26.664 24.659 1.00 22.07	c
30	ATOM 1749	O SER A 204	38.888 27.096 25.604 1.00 34.39	0
	ATOM 1750	CB SER A 204	38.053 25.998 22.740 1.00 9.99	C
	ATOM 1751	OG SER A 204	38.237 24.695 23.291 1.00 16.37	Q
	ATOM 1752	N GLY A 205	40.562 25.813 24.854 1.00 12.42	N
	ATOM 1753	CA GLY A 205	40.963 25.411 26.208 1.00 11.64	С
35	ATOM 1754	C GLY A 205	40.208 24.178 26.711 1.00 19.49	c
	ATOM 1755		40.422 23.723 27.838 1.00 13.59	
	ATOM 1756		39.292 23.683 25.881 1.00 15.38	N
	ATOM 1757		38.432 22.594 26.281 1.00 10.80	С
	ATOM 1758		39.056 21.221 26.154 1.00 26.39	C
40	ATOM 1759		38.564 20.267 26.737 1.00 23.28	0
	ATOM 1760		37.124 22.562 25.460 1.00 12.86	c
	ATOM 1761	OG1 THR A 206	37.438 22.395 24.082 1.00 13.12	0
		CG2 THR A 206	36.348 23.840 25.620 1.00 10.62	c
	ATOM 1763		40.101 21.083 25.354 1.00 21.10	и
45	ATOM 1764	-	40.658 19.743 25.175 1.00 18.15	<u>C</u>
	44.707			

	MOTA	1765	c_	PRO A	207	41,316	19.181	26.423	1.00 2	1.75	<u>c</u>
	MOTA	1766	0	PRO A	207	41.951	19,925	27.215	1.00 2	0.65	0
	MOTA	1767	СВ	PRO A	207	41.638	19.909	24.013	1.00 1	7.51	c
	MOTA	1768	CG	PRO A	207	41.146	21.213	23.307	1.00 2	1.45	с
5	MOTA	1769	CD	PRO A	207	40.698	22.062	24.431	1.00 2	3.44	с
	MOTA	1770	N	MET A	208	41.112	17.876	26.624	1.00 1	5.60	N
	MOTA	1771	CA	MET A	208	41.694	17.167	27.775	1.00 2	2.94	<u>c</u>
	ATOM	1772	С	MET A	208	43.058	16.427	27.579	1.00 2	1.90	с
	ATOM	1773	0_	MET A	208	43.248	15.677	26.633	1.00 2	3.16	0
10	MOTA	1774	СВ	MET A	208	40.645	16.273	28.386	1.00 3	2.86	с
	MOTA	1775	CG	MET A	208	39.630	17.057	29.223	1.00 4	16.17	C
	MOTA	1776	SD	MET A	208	38.301	15.990	29.826	1.00 5	7.85	<u>s</u>
	MOTA	1777	CE	MET A	208	37.999	15.028	28.343	1.00 5	8.23	c
	MOTA	1778	N_	ARG A	209	44.022	16.681	28.456	1.00 1	7.75	N
15	MOTA	1779	CA	ARG A	209	45.318	16.042	28.324	1.00 1	9.88	с
	ATOM	1780	С	ARG A	209	45.871	15.534	29.639	1.00 1	16.92	<u>C</u>
	MOTA	1781	0	ARG A	209	45,433	15.946	30.697	1.00 1	16.58	0
	ATOM	1782	CB	ARG A	209	46.340	16.963	27.658	1.00 2	21.07	<u>c</u>
	ATOM	1783	CG	ARG A	209	45.980	17.478	26.275	1.00 2	22.57	<u>C</u>
20	MOTA	1784	CD	ARG A	209	45.833	16.357	25.282	1.00	28.26	<u>c</u>
	ATOM	1785	NE	ARG A	209	45.586	16.819	23.906	1.00	23.15	N
	MOTA	1786	CZ	ARG A	209	44.420	16.742	23.267	1.00	34.52	<u>c</u>
	MOTA	1787	NH1	ARG A	209	43.336	16.267	23.890	1.00	18.03	N
	MOTA	1788	NH2	ARG A	209	44.339	17.175	22.012	1.00	29.78	N
25	MOTA	1789	N	GLU A	210	46.878	14.675	29.547	1.00	20.87	N
	ATOM	1790	CA	GLU A	210	47.530	14.079	30.720	1.00	17.37	с
	MOTA	1791		GLU A	210	49.031	14.490	30.851	1.00	20.96	<u>C</u>
	ATOM	1792	0	GLU A	210	49.748	14.622	29.841	1.00	22.44	<u>o</u>
	MOTA	1793	СВ	GLU A	210	47.400	12.562	30.571	1.00	16.26	с
30	MOTA	1794	ÇĢ	GLU A	210	47.807	11.785	31.809	1.00	19.91	<u>C</u>
	ATOM	1795	CD	GLU A	210	48.057	10.304	31.531	1.00	27.81	с
	MOTA	1796	OE 1	GLU A	210	48.111	9,919	30.343	1.00	17.29	o
	MOTA	1797	OE2	GLU A	210	48.268	9.540	32,494	1.00	21.63	o
	ATOM	1798	N.	PHE A	211	49.504	14.712	32.084	1.00	14.02	N
35	MOTA	1799	CA	PHE A	211	50.887	15.159	32.353	1.00	17.48	c
	MOTA	1800	С	PHE A	211	51.458	14.414	33.531	1.00	33.62	c
	ATOM	1801	0	PHE A	211	50.716	14.031	34.443	1.00	27.96	0
	ATOM	1802	СВ	PHE A	211	50,933	16,677	32.644	1.00	17.78	c
	MOTA	1803	CG	PHE A	211	50.303	17.490	31.541	1.00	21.49	c
40	MOTA	1804	CD1	PHE A	211	51.009	17.676	30.320	1.00	17.36	c
	MOTA	1805	CD2	PHE A	211	48.933	17.844	31.618	1.00	15.09	c
	MOTA	1806	CE1	PHE A	211	50.399	18.334	29.237	1.00	16.37	с
	ATOM	1807	CE2	PHE A	211	48.288	18.491	30.533	1.00	9.61	с
	MOTA	1808	CZ	PHE A	211	49.053	18.756	29.344	1.00	12.71	c
45	MOTA	1809	N	LEU A	212	52.761	14.161	33.495	1.00	23,76	N

	ATOM 1810 CA LEU A 212	53.405 13.448 34.603 1.00 21.24	c
	ATOM 1811 C LEU A 212	54.772 14.053 34.898 1.00 14.00	. с
	ATOM 1812 O LEU A 212	55.519 14.398 33.985 1.00 13.99	0
	ATOM 1813 CB LEU A 212	53.548 11.954 34.294 1.00 21.52	С
5	ATOM 1814 CG LEU A 212	54.033 11.039 35.406 1.00 21.09	С
	ATOM 1815 CD1 LEU A 212	52.866 10.634 36.280 1.00 20.84	С
	ATOM 1816 CD2 LEU A 212	54.768 9.829 34.832 1.00 13.18	<u>C</u>
	ATOM 1817 N HIS A 213	55.023 14.302 36.175 1.00 9.60	N
	ATOM 1818 CA HIS A 213	56,290 14.864 36,555 1.00 13.66	С
10	ATOM 1819 C HIS A 213	57,380 13.828 36,293 1.00 20.37	С
	ATOM 1820 O HIS A 213	57.238 12.614 36.542 1.00 16.08	0
	ATOM 1821 CB HIS A 213	56,280 15,250 38,002 1.00 18,72	С
	ATOM 1822 CG HIS A 213	57.491 16.017 38.408 1.00 21.22	С
	ATOM 1823 ND1 HIS A 213	58.703 15.406 38.656 1.00 24.29	N
15	ATOM 1824 CD2 HIS A 213	57.716 17.353 38.499 1.00 23.67	C
	ATOM 1825 CE1 HIS A 213	59.615 16.331 38.917 1.00 19.13	С
	ATOM 1826 NE2 HIS A 213	59.041 17.523 38.847 1.00 21.99	N
	ATOM 1827 N VAL A 214	58.459 14.295 35.698 1.00 21.07	N
	ATOM 1828 CA VAL A 214	59.532 13.383 35.361 1.00 19.23	C
20	ATOM 1829 C VAL A 214	60,067 12.523 36.551 1.00 27.20	C
20	ATOM 1830 O VAL A 214	60,604 11.444 36,359 1.00 22.23	0
	ATOM 1831 CB VAL A 214	60,625 14.125 34.566 1.00 11.84	C
	ATOM 1832 CG1 VAL A 214	61,390 15.199 35.485 1.00 8.52	С
	ATOM 1833 CG2 VAL A 214	61,560 13.097 33.902 1.00 12.39	C
25	ATOM 1834 N ASP A 215	59.893 12.984 37.790 1.00 25.29	N
2.7	ATOM 1835 CA ASP A 215	60,406 12.228 38.936 1.00 18.19	С
	ATOM 1836 C ASP A 215	59.530 11.023 39.230 1.00 13.85	C
	ATOM 1837 O ASP A 215	59,988 9,981 39,666 1,00 17,44	0
	ATOM 1838 CB ASP A 215	60.575 13.129 40.155 1.00 16.27	c
30	ATOM 1839 CG ASP A 215	61,859 13,979 40,068 1,00 30,73	C
30	ATOM 1840 OD1 ASP A 215	62,782 13.614 39.308 1.00 23.02	. 0
	ATOM 1841 OD2 ASP A 215	61,957 15.029 40.730 1.00 26.00	0
		58.276 11.136 38.863 1.00 20.08	N
		57,378 10,017 39,016 1.00 18.78	
35			c
33	ATOM 1844 C ASP A 216		0
	ATOM 1845 O ASP A 216	57,715 7,880 38,026 1,00 20,79 55,912 10,457 38,821 1,00 17,18	e
	ATOM 1846 CB ASP A 216		
	ATOM 1847 CG ASP A 216	55.193 10.757 40.162 1.00 38.03	<u>c</u>
40	ATOM 1848 OD1 ASP A 216	55.503 10.119 41.223 1.00 26.02	
40	ATOM 1849 OD2 ASP A 216	54.249 11.587 40.124 1.00 25.41	O
	ATOM 1850 N MET A 217	58.092 9.653 36.755 1.00 18.11	и
	ATOM 1851 CA MET A 217	58.394 8.785 35.636 1.00 22.41	<u>c</u>
	ATOM 1852 C MET A 217	59.572 7.942 35.992 1.00 27.54	<u>c</u>
	ATOM 1853 O MET A 217	59.579 6.752 35.710 1.00 20.86	
45	ATOM 1854 CB MET A 217	58.637 9.592 34.345 1.00 21.24	<u>C</u>

	ATOM 1855	CG MET A 217	59.478	8.918	33.287	1.00 16.37	c
	ATOM 1856	SD MET A 217	58.962	7.412	32.473	1.00 30.51	s
	ATOM 1857	CE MET A 217	57.465	7.608	32.391	1.00 19.57	с
	ATOM 1858	N ALA A 218	60.561	8.562	36.623	1.00 19.09	N
5	ATOM 1859	CA ALA A 218	61.774	7.841	37,002	1.00 13.65	с
	ATOM 1860	C ALA A 218	61.436	6.778	38.028	1.00 22.61	C
	ATOM 1861	O ALA A 218	61,934	5.670	37.967	1.00 19.36	0
	ATOM 1862	CB ALA A 218	62.809	8.780	37.579	1.00 12.23	<u>C</u>
	ATOM 1863	N ALA A 219	60.605	7.109	39.000	1.00 19.34	N
10	ATOM 1864	CA ALA A 219	60.310	6.105	40.023	1.00 18.01	с
	ATOM 1865	C ALA A 219	59.630	4.901	39.413	1.00 23.57	с
	ATOM 1866	O ALA A 219	59.781	3.777	39.898	1.00 22.71	0
	ATOM 1867	CB ALA A 219	59.387	6.678	41.083	1.00 10.11	C
	ATOM 1868	N ALA A 220	58.753	5.174	38.454	1.00 18.99	N
15	ATOM 1869	CA ALA A 220	57.905	4.158	37.855	1.00 14.12	С
	ATOM 1870	C ALA A 220	58.753	3.213	37.034	1.00 25.33	c
	ATOM 1871	O ALA A 220	58,584	2.006	37.114	1.00 20.63	
	ATOM 1872	CB ALA A 220	₹56.796	4.798	37.023	1.00 8.53	C
	ATOM 1873	N SER A 221	59.770	3,772	36.379	1.00 23.92	N
20	ATOM 1874	CA SER A 221	60.702	3.011	35.556	1.00 18.38	<u>C</u>
	ATOM 1875	C SER A 221	61.537	1.989	36.353	1.00 20.90	c
	ATOM 1876	O SER A 221	61.683	0.799	35.983	1.00 19.84	0
	ATOM 1877	CB SER A 221	61.604	3.985	34.804	1.00 10.67	с
	ATOM 1878	OG SER A 221	60.847	4.744	33.867	1.00 15.61	0
25	ATOM 1879	N ILE A 222	62.083	2.476	37.463	1.00 18.12	N
	ATOM 1880	CA ILE A 222	62.866	1.644	38,381	1.00 21.56	c
	ATOM 1881	C ILE A 222	62.020	0.554	39.068	1.00 29.10	c
	ATOM 1882	O ILE A 222	62.504	-0.566	39.307	1.00 19.03	0
	ATOM 1883	CB ILE A 222	63.467	2.516	39.432	1.00 24.56	c
30	ATOM 1884	CG1 ILE A 222	64.465	3.473	38.765	1.00 32.13	<u>C</u>
	ATOM 1885	CG2 ILE A 222	64.129	1.671	40.500	1.00 28.26	<u>C</u>
	ATOM 1886	CD1 ILE A 222	64.973	4.585	39.649	1.00 15.61	<u>C</u>
	ATOM 1887	N HIS A 223	60.772	0.907	39.384	1.00 19.34	N
	ATOM 1888	CA HIS A 223	59.829	-0.031	39.996	1.00 20.46	C
35	ATOM 1889	C HIS A 223	59.599	-1.097	38.964	1.00 24.82	<u>C</u>
	ATOM 1890	O HIS A 223	59.723	-2.283	39.270	1.00 24.66	<u> </u>
	ATOM 1891	CB HIS A 223	58.465	0.637	40.359	1.00 19.53	C
	ATOM 1892	CG HIS A 223	57.373	-0.333	40.759	1.00 28.64	<u>c</u>
	ATOM 1893	ND1 HIS A 223	57.021	-0.564	42.082	1.00 24.16	N
40	ATOM 1894	CD2 HIS A 223	56,497	-1.062	40.004	1.00 30.39	с
	ATOM 1895	CE1 HIS A 223	55,983	-1.399	42.112	1.00 30.39	c
	ATOM 1896		55.652	-1.727	40.869	1.00 28.13	N
	ATOM 1897	N VAL A 224	59.354	-0.684	37.725	1.00 22.06	N
	ATOM 1898	CA VAL A 224	59.111	-1.657	36.652	1.00 19.15	<u>C</u>
45	ATOM 1899	C VAL A 224	60,350	-2.490	36.333	1.00 25.89	с

	ATOM 1900 O VAL A 224	60,282 -3.709 36.250 1.00 22.37	0
	ATOM 1901 CB VAL A 224	58.559 -1.022 35.377 1.00 22.59	с
	ATOM 1902 CG1 VAL A 224	58.512 -2.050 34.231 1.00 22.61	c
	ATOM 1903 CG2 VAL A 224	57.161 -0.491 35.650 1.00 23.44	С
5	ATOM 1904 N MET A 225	61.499 -1.838 36.255 1.00 27.83	N
	ATOM 1905 CA MET A 225	62.710 -2.577 36.004 1.00 23.69	c
	ATOM 1906 C MET A 225	62.896 -3.678 37.071 1.00 31.95	с
	ATOM 1907 O MET A 225	63.290 -4.805 36.785 1.00 24.33	0
	ATOM 1908 CB MET A 225	63.902 -1.604 36.056 1.00 21.34	С
10	ATOM 1909 CG MET A 225	65.295 -2.296 35.999 1.00 17.83	С
	ATOM 1910 SD MET A 225	65.750 -2.958 34.306 1.00 23.33	s
	ATOM 1911 CE MET A 225	67.080 -1.896 33.785 1.00 16.46	С
	ATOM 1912 N GLU A 226	62.644 -3.319 38.316 1,00 19.54	N
	ATOM 1913 CA GLU A 226	62.988 -4.161 39.428 1.00 21.58	С
15	ATOM 1914 C GLU A 226	61.999 -5.200 39.918 1.00 30.77	C
	ATOM 1915 O GLU A 226	62,308 -6.012 40.780 1.00 29.39	0
	ATOM 1916 CB GLU A 226	63,613 -3,323 40,547 1,00 20,47	C
	ATOM 1917 CG GLU A 226	64.937 -2.673 40.122 1.00 23.03	С
	ATOM 1918 CD GLU A 226	65.504 -1.809 41.208 1.00 32.62	С
20	ATOM 1919 OE1 GLU A 226	64.721 -1.455 42.122 1.00 26.12	0
	ATOM 1920 OE2 GLU A 226	66,711 -1,479 41,152 1,00 17,67	0
	ATOM 1921 N LEU A 227	60.837 -5.248 39.295 1.00 34.11	N
	ATOM 1922 CA LEU A 227	59.883 -6.296 39.642 1.00 35.26	C
	ATOM 1923 C LEU A 227	60.537 -7.644 39.320 1.00 27.91	c
25	ATOM 1924 O LEU A 227	61.291 -7.766 38.340 1.00 19.89	0
	ATOM 1925 CB LEU A 227	58.693 -6.236 38.678 1.00 36.48	С
	ATOM 1926 CG LEU A 227	57.381 -5.569 38.955 1.00 40.30	c
	ATOM 1927 CD1 LEU A 227	57.697 -4.194 39.382 1.00 42.04	c
	ATOM 1928 CD2 LEU A 227	56.610 -5.577 37.647 1.00 46.21	c
30	ATOM 1929 N ALA A 228	60.026 -8.688 39.955 1.00 27.15	N
	ATOM 1930 CA ALA A 228	60.425 -10.051 39.616 1.00 25.26	c
	ATOM 1931 C ALA A 228	59.801 -10.435 38.279 1.00 27.93	С
	ATOM 1932 O ALA A 228	58.624 ~10.093 37.934 1.00 31.26	
	ATOM 1933 CB ALA A 228	60.003 -11.052 40.703 1.00 22.05	С
35	ATOM 1934 N HIS A 229	60.624 -11.160 37.539 1.00 27.05	N
	ATOM 1935 CA HIS A 229	60.275 -11.605 36.222 1.00 24.42	C
	ATOM 1936 C HIS A 229	58.905 -12.260 36.184 1.00 21.74	<u>C</u>
	ATOM 1937 O HIS A 229	58.015 -11.851 35.398 1.00 22.22	0
	ATOM 1938 CB HIS A 229	61.351 -12.520 35.698 1.00 17.71	C
40	ATOM 1939 CG HIS A 229	61.284 -12.701 34.220 1.00 27.24	c
	ATOM 1940 ND1 HIS A 229	61.060 -11.650 33.350 1.00 34.38	N
	ATOM 1941 CD2 HIS A 229	61.292 -13.821 33.465 1.00 31.45	c
	ATOM 1942 CE1 HIS A 229	60.992 -12.113 32.115 1.00 30.50	С
	ATOM 1943 NE2 HIS A 229	61.124 -13.427 32.159 1.00 35.23	N
45	ATOM 1944 N GLU A 230	58,681 -13,161 37,140 1.00 20,24	N

	•		
	ATOM 1945 CA GLU A 230	57.425 -13.895 37.209 1.00 29.41	· с
	ATOM 1946 C GLU A 230	56.181 -13.051 37.341 1.00 22.20	c
	ATOM 1947 O GLU A 230	55.159 -13.359 36.679 1.00 17.78	0
	ATOM 1948 CB GLU A 230	57.464 -14.997 38.274 1.00 38.51	
5	ATOM 1949 CG GLU A 230	58.085 -14.582 39.567 1.00 63.09	С
	ATOM 1950 CD GLU A 230	57.036 -14.473 40.661 1.00100.00	<u>C</u>
	ATOM 1951 OE1 GLU A 230	55.859 -14.872 40.400 1.00100.00	0
	ATOM 1952 OE2 GLU A 230	57.409 -14.003 41.768 1.00 81.48	0
	ATOM 1953 N VAL A 231	56.272 -12.004 38.182 1.00 16.53	N
10	ATOM 1954 CA VAL A 231	55.202 -11.029 38.356 1.00 20.23	<u>c</u>
	ATOM 1955 C VAL A 231	55.009 -10.164 37.102 1.00 24.45	c
	ATOM 1956 O VAL A 231	53.864 -9.834 36.705 1.00 21.00	0
	ATOM 1957 CB VAL A 231	55.541 -10.057 39.426 1.00 28.61	С
	ATOM 1958 CG1 VAL A 231	54.362 -9.098 39.610 1.00 29.78	С
15	ATOM 1959 CG2 VAL A 231	55.881 -10.757 40.677 1.00 28:96	С
	ATOM 1960 N TRP A 232	56.133 -9.798 36.486 1.00 17.17	N
	ATOM 1961 CA TRP A 232	56.052 -9.044 35.262 1.00 21.52	<u>c</u>
	ATOM 1962 C TRP A 232	55.388 -9.844 34.156 1.00 20.53	<u>c</u>
	ATOM 1963 O TRP A 232	54.588 -9.306 33.380 1.00 24.31	0
20	ATOM 1964 CB TRP A 232	57.438 -8.644 34.801 1.00 29.88	С
	ATOM 1965 CG TRP A 232	57.430 -7.843 33.500 1.00 27.65	<u>c</u>
	ATOM 1966 CD1 TRP A 232	57.184 -6.464 33.356 1.00 25.42	С
	ATOM 1967 CD2 TRP A 232	57.714 -8.336 32.169 1.00 27.75	<u>C</u>
	ATOM 1968 NEI TRP A 232	57.325 -6.095 32.033 1.00 22.53	N
25	ATOM 1969 CE2 TRP A 232	57.655 -7.203 31.279 1.00 25.11	<u>c</u>
	ATOM 1970 CE3 TRP A 232	58.037 -9.603 31.640 1.00 22.72	c
	ATOM 1971 CZ2 TRP A 232	57.917 -7.316 29.879 1.00 17.23	c
	ATOM 1972 CZ3 TRP A 232	58.238 -9.720 30.223 1.00 25.97	c
	ATOM 1973 CH2 TRP A 232	58.154 -8.581 29.368 1.00 22.07	<u>C</u>
30	ATOM 1974 N LEU A 233	55.749 -11.121 34.018 1.00 23.80	N
	ATOM 1975 CA LEU A 233	55.141 -11.949 32.937 1.00 24.78	c
	ATOM 1976 C LEU A 233	53.652 -12.118 33.122 1.00 24.51	<u>c</u>
	ATOM 1977 O LEU A 233	52.865 -12.075 32.163 1.00 28.50	0
	ATOM 1978 CB LEU A 233	55.765 -13.348 32.820 1.00 26.20	С
35	ATOM 1979 CG LEU A 233	57.250 -13.505 32.503 1.00 19.39	<u>C</u>
	ATOM 1980 CD1 LEU A 233	57.745 -14.850 33.023 1.00 19.90	с
	ATOM 1981 CD2 LEU A 233	57.561 -13.287 31.017 1.00 16.01	<u>c</u>
	ATOM 1982 N GLU A 234	53.298 -12.343 34.372 1.00 25.45	N
.0	ATOM 1983 CA GLU A 234	51.929 -12.523 34.822 1.00 30.04	<u>C</u>
40	ATOM 1984 C GLU A 234	51.128 -11.319 34.367 1.00 35.69	<u>c</u>
	ATOM 1985 O GLU A 234	49.926 -11.390 34.052 1.00 28.25	0
	ATOM 1986 CB GLU A 234	52,007 -12,468 36,344 1,00 37,30	c
	ATOM 1987 CG GLU A 234	50,908 -13,133 37,118 1,00 45,39	c
4.5	ATOM 1988 CD GLU A 234	51.112 -12.881 38.601 1.00100.00	<u>c</u>
45	ATOM 1989 OE1 GLU A 234	52.240 -13.137 39.104 1.00 99.09	0

•	ATOM	1990	OE2	GLU A	234	50.211	-12,257	39.211	1.00	100.00		2
	MOTA	1991	N	ASN A	235	51.802	-10.184	34.364	1.00	25.04		K
	MOTA	1992	CA	ASN A	235	51.109	-8.986	33.992	1.00	26.17		2
	MOTA	1993	С	ASN A	235	51,280	-8.494	32.571	1.00	30.46		2
5	MOTA	1994	0	ASN A	235	50.824	-7.393	32.259	1.00	22.90		2
	ATOM	1995	СВ	ASN A	235	51,427	-7.895	34.981	1.00	29.23		2
	ATOM	1996	CG	ASN A	235	50.878	-8.197	36.342	1.00	39.27		-
	MOTA	1997	OD1	ASN A	235	49.722	-7.882	36.628	1.00	29.06		2
	MOTA	1998	ND2	ASN A	235	51.653	-8.934	37.140	1.00	40.22		E
10	ATOM	1999	N	THR A	236	51.935	-9.268	31.708	1.00	20.97		I
	ATOM	2000	CA	THR A	236	52.108	-8.795	30.344	1.00	22.30		2
	MOTA	2001	С	THR A	236	51.867	-9,943	29.419	1.00	29.74		2
	MOTA	2002	0	THR A	236	51.551	-11.033	29.895	1.00	21.23		2
	MOTA	2003	СВ	THR A	236	53.545	-8.306	30.161	1.00	22.73		2
15	MOTA	2004	0G1	THR A	236	54.422	-9.325	30.636	1.00	21.23		2
	MOTA	2005	CG2	THR A	236	53.801	-7.048	31.041	1.00	19.69		:
	ATOM	2006	N	GLN A	237	52.003	-9.699	28.109	1.00	22.23		ī
	MOTA	2007	CA	GLN A	237	52.097	-10.783	27.122	1.00	16.69		2
	MOTA	2008	c	GLN A	237	53.335	-10.507	26.331	1.00	21.02		-
20	MOTA	2009	0	GLN A	237	53.729	-9.362	26.204	1.00	22.19		2
	MOTA	2010	СВ	GLN A	237	50.913	-10.999	26.189	1.00	8.23		2
	MOTA	2011	CG	GLN A	237	49.639	-11.096	26.904	1.00	21.04		:
	MOTA	2012	CD	GLN A	237	48,907	-9.862	26.606	1.00	62.07		į
	MOTA	2013	OE1	GLN A	237	48.437	-9.712	25.460	1.00	59.32		2
25	MOTA	2014	NE2	GLN A	237	49.220	-8.847	27.388	1.00	37.82	1	I
	MOTA	2015	N_	PRO A	238	54.002	-11.579	25.917	1.00	28.76		I
	ATOM	2016	CA	PRO A	238	55.275	-11.438	25.246	1.00	30.28		Ž
	MOTA	2017	С	PRO A	238	55.194	-10.643	23.958	1.00	29.08		2
	ATOM	2018	0	PRO A	238	56.181	-10.029	23.600	1.00	15.95		2
30	MOTA	2019	СВ	PRO A	238	55.733	-12.879	25.011	1.00	22.54		è
	MOTA	2020	CG	PRO A	238	54.898	-13.710	25.886	1.00	18.92		ċ
	MOTA	2021	CD	PRO A	238	53,626	-12.998	26.068	1.00	11.75		
	ATOM	2022	N	MET A	239	54.041	-10.635	23.286	1.00	17.26		I
	MOTA	2023	CA	MET A	239	53.924	-9.807	22.104	1.00	17.85		
35	ATOM	2024	С	MET A	239	53.109	-8.509	22.362	1.00	18.63		:
	MOTA	2025	0	MET A	239	52.792	-7.741	21,419	1.00	16.82		2
	MOTA	2026	СВ	MET A	239	53.460	-10.588	20.881	1.00	15.22		-
	MOTA	2027	CG	MET A	239	54.536	-11.534	20.261	1.00	12.90		
	MOTA	2028	SD	MET A	239	53.994	-12.534	18.808	1.00	17.49		<u>:</u>
40	MOTA	2029	CE	MET A	239	54.350	-11.357	17.422	1.00	13.12		è
	ATOM	2030	N	LEU A	240	52.847	-8.252	23.646	1.00	18.55	N	I
	ATOM	2031	CA	LEU A	240	52.159	-7.037					2
	MOTA	2032	С	LEU A	240			25.493				
	MOTA	2033	0	LEU A	240	52.124	-6.803	26,549			C	
45	MOTA	2034	СВ	LEU A	240	50.645	-7.249	24.240	1.00	16.91		:

	MOTA	2035	CG	LEU A 240	49.646	-6.120	23.852	1.00 22.29	с
	MOTA	2036	CD1	LEU A 240	48,968	-5.488	25.033	1.00 25.51	с
	MOTA	2037	CD2	LEU A 240	50.070	-5.059	22.815	1.00 28.07	C
	MOTA	2038	N	SER A 241	54.076	-6.467	25.456	1.00 13.09	N
5	MOTA	2039	CA	SER A 241	54.842	-6.315	26.682	1.00 24.20	с
	MOTA	2040	С	SER A 241	54.947	-4.938	27.377	1.00 30.52	<u>C</u>
	MOTA	2041	0	SER A 241	55.363	-4.854	28.547	1.00 17.02	0
	MOTA	2042	СВ	SER A 241	56.247	-6.900	26.495	1.00 14.04	с
	MOTA	2043	OG	SER A 241	57.062	-6.144	25.598	1.00 13.95	0
10	MOTA	2044	N	HIS A 242	54.661	-3.861	26.659	1.00 17.87	N
	MOTA	2045	CA	HIS A 242	54.894	-2.548	27.221	1.00 13.55	Ç
	MOTA	2046	С	HIS A 242	53,990	-2.254	28.373	1.00 13.70	C
	MOTA	2047	0	HIS A 242	52.974	-2.885	28.539	1.00 13.29	
	MOTA	2048	СВ	HIS A 242	54.826	-1.430	26.130	1.00 16.05	C
15	ATOM	2049	CG	HIS A 242	53.595	-1.504	25.272	1.00 18.88	c
	MOTA	2050	ND1	HIS A 242	52.591	-0.553	25.326	1.00 23.24	. N
	MOTA	2051	CD2	HIS A 242	53,165	-2.461	24.413	1.00 13.19	C
	MOTA	2052	CE1	HIS A 242	51.629	-0.887	24.483	1.00 17.44	С
	MOTA	2053	NE2	HIS A 242	51.962	-2.031	23.901	1.00 19.54	N
20	MOTA	2054	N	ILE A 243	54.310	-1.203	29.095	1.00 15.84	N
	MOTA	2055	CA	ILE A 243	53.492	-0.809	30.192	1.00 19.10	С
	MOTA	2056	<u> </u>	ILE A 243	53.336	0.714	30.191	1.00 23.23	c
	MOTA	2057	0_	ILE A 243	54.312	1.406	30.385	1.00 12.10	
	MOTA	2058	СВ	ILE A 243	54.166	-1.273	31.482	1.00 24.62	c
25	MOTA	2059	CG1	ILE A 243	54.014	-2.783	31.576	1.00 25.60	C
	MOTA	2060	CG2	ILE A 243	53.497	-0.665	32.735	1.00 17.37	C
	MOTA	2061	CD1	ILE A 243	54.725	-3.365	32.714	1.00 14.82	<u>C</u>
	MOTA	2062	N	ASN A 244	52.112	1.217	30.013	1.00 16.43	N
	MOTA	2063	CA	ASN A 244	51.824	2.689	30.038	1.00 18.99	<u>c</u>
30	MOTA	2064	С	ASN A 244	52.252	3,292	31.348	1.00 18.83	с
•	MOTA	2065	0	ASN A 244	51,965	2.727	32.405	1.00 19.58	0
	MOTA	2066	СВ	ASN A 244	50.304	2.987	29.910	1.00 15.67	c
	MOTA	2067	CG	ASN A 244	49.768	2.702	28.517	1.00 14.57	<u>c</u>
	MOTA	2068	OD1	ASN A 244	50.546	2.583	27.580	1.00 13.64	0
35	MOTA	2069	ND2	ASN A 244	48.443	2.491	28.393	1.00 10.16	N
	MOTA	2070	N	VAL A 245	52,800	4.499	31.326	1.00 13.50	N
	MOTA	2071	CA	VAL A 245	53,159	5.134	32,602	1.00 13.49	c
	MOTA	2072	C_	VAL A 245	52.528	6.566	32.644	1.00 16.25	<u>C</u>
	MOTA	2073	0	VAL A 245	52.786	7,405	31.770	1.00 15.20	0
40	MOTA	2074	СВ	VAL A 245	54.754	5.163	32.810	1.00 21.07	c
	MOTA	2075	CG1	VAL A 245	55.154	6.085	33.937	1.00 15.08	C
	MOTA	2076	CG2	VAL A 245	55.280	3.817	33.143	1.00 15.82	с
	MOTA	2077	N	GLY A 246	51.696	6.843	33.649	1.00 14.03	N
	ATOM	2078	CA	GLY A 246	51.027	8.136	33.707	1.00 16.87	<u>C</u>
45	ATOM	2079	C	GLY A 246	50.146	8.203	34.939	1.00 26.95	С

	ATOM 208	10 0	GLY A 246	50.323	7.401	35.850	1.00 23.04	0
	ATOM 208	1 N	THR A 247	49.207	9.161	34.963	1.00 21.44	
	ATOM 208	2 CA	THR A 247	48.232	9,276	36.063	1.00 21.39	
	ATOM 208	3 C	THR A 247	46.868	8.677	35.673	1.00 24.08	
5	ATOM 208	4 0	THR A 247	46.069	8.306	36.508	1.00 21.03	
	ATOM 208	5 CB	THR A 247	47.988	10.730	36.404	1.00 22.24	c
	ATOM 208	6 OG	THR A 247	47.409	11.389	35.265	1.00 18.62	
	ATOM 208	7 CG2	THR A 247	49.275	11.378	36.724	1.00 18.99	
	ATOM 208	8 N	GLY A 248	46.583	8.651	34.384	1.00 24.95	N
10	ATOM 208	9 CA	GLY A 248	45.319	8.143	33.924	1.00 22.61	с
	ATOM 209	0 C	GLY A 248	44,223	9.160	34.226	1.00 21.42	c
	ATOM 209	1 0	GLY A 248	43.059	8.866	34.137	1.00 25.70	0
	ATOM 209	2 N	VAL A 249	44.615	10.386	34.521	1.00 30.72	N
	ATOM 209	3 CA	VAL A 249	43.673	11.464	34.827	1.00 26.09	C
15	ATOM 209	4 C	VAL A 249	43.747	12.596	33.786	1.00 32.70	C
	ATOM 209	5 0	VAL A 249	44,853	13.006	33,387	1.00 26.92	
	ATOM 209	6 CB	VAL A 249	44.020	12.085	36.214	1.00 38.59	C
	ATOM 209	7 CG1	VAL A 249	43.225	13.324	36.470	1.00 36.11	C
	ATOM 209	8 CG2	VAL A 249	43.782	11.083	37.306	1.00 41.30	
20	ATOM 209	9 N	ASP A 250	42,581	13.125	33.397	1.00 27.95	N
	ATOM 210	O CA	ASP A 250	42.488	14.232	32.439	1.00 20.64	с
	ATOM 210	1 C	ASP A 250	42.611	15.581	33.155	1.00 27.63	c
	ATOM 210	2 0	ASP A 250	42.188	15.783	34.308	1.00 26.23	0
	ATOM 210	3 CB	ASP A 250	41.075	14.302	31.827	1.00 23.89	Ç
25	ATOM 210	4 CG	ASP A 250	40.768	13.180	30.850	1.00 39.52	C
	ATOM 210	5 OD1	ASP A 250	41.283	13.184	29.688	1.00 39.96	0
	ATOM 210	6 OD2	ASP A 250	39.767	12.501	31.153	1.00 45.34	0
	ATOM 210	7 <u>N</u>	CYS A 251	43.029	16.566	32.388	1.00 20.12	N
	ATOM 210	B CA	CYS A 251	42,962	17.906	32.851	1.00 27.20	C
30	ATOM 210	9 C	CYS A 251	42.918	18.779	31.577	1.00 26.47	С
	ATOM 211	0 0	CYS A 251	43.699	18.560	30.633	1.00 19.45	0
	ATOM 211	L CB	CYS A 251	44.148	18.157	33.778	1.00 34.86	C
	ATOM 211	2 SG	CYS A 251	45.129	19.619	33.453	1.00 29.47	
	ATOM 211;	N	THR A 252		19.673		1.00 14.85	
35	ATOM 2114	CA_	THR A 252	41.834	20.588	30.335	1.00 21.21	C
	ATOM 211	5 C	THR A 252	42.999	21.592		1.00 20.53	с
	ATOM 2110	5 0	THR A 252	43.657	21.926		1.00 15.24	0
	ATOM 211	7 CB	THR A 252	40.506	21.407		1.00 32.08	
	ATOM 2118	0G1	THR A 252		22.304		1.00 19.26	
40	ATOM 2119	CG2	THR A 252	39,309	20.495		1.00 13.91	c
	ATOM 2120	N	ILE A 253	43.228			1.00 14.81	N
	ATOM 2121	CA	ILE A 253	44.264	23.118		1.00 16.90	C
	ATOM 2122	С	ILE A 253	43.934	24.383		1.00 23.41	C
	ATOM 2123	0	ILE A 253				1.00 15.27	
45	ATOM 2124	СВ	ILE A 253				1.00 24.05	

ATOM 2125 CG1 ILE A 253	2 C 5 C 5 N 1 C 0 C 9 O 8 C 9 C 9 C 2 N 5 C
ATOM 2127 CD1 ILE A 253	5 C 5 N 1 C 0 C 9 Q 8 C 6 C 9 C 2 N 5 C
ATOM 2128 N ARG A 254 42.637 24.709 29.707 1.00 19.51 ATOM 2129 CA ARG A 254 42.228 25.865 30.522 1.00 19.41 ATOM 2130 C ARG A 254 42.712 25.713 31.970 1.00 18.11 ATOM 2131 O ARG A 254 43.311 26.616 32.515 1.00 13.81 ATOM 2132 CB ARG A 254 40.704 26.101 30.480 1.00 15.91 ATOM 2133 CG ARG A 254 40.282 27.378 31.255 1.00 9.91 ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.71 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.71 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.81 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.51 ATOM 2138 NH2 ARG A 254 38.877 30.245 28.620 1.00 18.41 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.22 ATOM 2140 CA ASP A 255 44.321 24.372 34.069 1.00 16.41 ATOM 2141 C ASP A 255 44.868 24.897 35.060 1.00 18.51 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2146 OD2 ASP A 255 42.478 22.686 34.157 1.00 19.1 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 42.51 ATOM 2149 C LEU A 256 45.014 23.809 33.078 1.00 42.70 ATOM 2149 C LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.9 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8	5 N 1 C 0 C 9 Q 8 C 6 C 9 C 2 N 5 C
5 ATOM 2129 CA ARG A 254 42.228 25.865 30.522 1.00 19.4: ATOM 2130 C ARG A 254 42.712 25.713 31.970 1.00 18.10 ATOM 2131 O ARG A 254 43.311 26.616 32.515 1.00 13.8: ATOM 2132 CB ARG A 254 40.704 26.101 30.480 1.00 15.91 ATOM 2133 CG ARG A 254 40.704 26.101 30.480 1.00 15.91 ATOM 2134 CD ARG A 254 40.282 27.378 31.255 1.00 9.99 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.73 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.73 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.83 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.53 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.43 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.23 ATOM 2140 CA ASP A 255 42.406 24.564 32.586 1.00 20.23 ATOM 2141 C ASP A 255 44.821 24.372 34.069 1.00 16.43 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.53 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2145 OD1 ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.6 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 45.9 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 46.655 23.844 33.069 1.00 21.7 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8	1 C 0 C 9 Q 8 C 6 C 9 C 2 N 5 C
ATOM 2130 C ARG A 254 42.712 25.713 31.970 1.00 18.10 ATOM 2131 O ARG A 254 43.311 26.616 32.515 1.00 13.83 ATOM 2132 CB ARG A 254 40.704 26.101 30.480 1.00 15.91 ATOM 2133 CG ARG A 254 40.282 27.378 31.255 1.00 9.91 10 ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.73 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.73 ATOM 2135 NE ARG A 254 38.693 29.723 29.794 1.00 59.83 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.53 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.42 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.23 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.44 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.43 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.53 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2145 OD1 ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2146 OD2 ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2146 OD2 ASP A 255 42.478 22.686 34.157 1.00 19.13 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 49.63 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.93 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.73 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.20 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.33 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.83 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.83 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	0 C 9 Q 8 C 6 C 9 C 2 N 5 C
ATOM 2131 O ARG A 254 43.311 26.616 32.515 1.00 13.8 ATOM 2132 CB ARG A 254 40.704 26.101 30.480 1.00 15.9 ATOM 2133 CG ARG A 254 40.282 27.378 31.255 1.00 9.9 ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.7 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.7 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.8 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.5 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.4 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.2 ATOM 2141 C ASP A 255 42.406 24.564 32.586 1.00 20.2 ATOM 2141 C ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.1 ATOM 2146 OD2 ASP A 255 42.478 22.686 34.157 1.00 19.1 ATOM 2146 OD2 ASP A 255 42.478 22.686 34.157 1.00 19.1 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.6 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2149 C LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2150 O LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	9 Q B C 6 C 9 C 2 N 5 C
ATOM 2132 CB ARG A 254 40.704 26.101 30.480 1.00 15.91 ATOM 2133 CG ARG A 254 40.282 27.378 31.255 1.00 9.91 10 ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.71 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.71 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.81 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.51 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.41 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.21 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.41 ATOM 2141 C ASP A 255 44.868 24.897 35.060 1.00 18.51 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.12 20 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.12 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.66 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.99 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.99 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2150 O LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2151 CB LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	8 C 6 C 9 C 2 N 5 C
ATOM 2133 CG ARG A 254 40.282 27.378 31.255 1.00 9.99 10 ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.79 ATOM 2135 NE ARG A 254 38.809 27.702 31.218 1.00 24.79 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.89 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.59 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.40 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.22 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.40 ATOM 2142 O ASP A 255 42.478 22.686 34.157 1.00 19.10 20 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.10 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2146 OD2 ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.90 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 25 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2150 O LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8	6 C 9 C 2 N 5 C
ATOM 2134 CD ARG A 254 38.809 27.702 31.218 1.00 24.77 ATOM 2135 NE ARG A 254 38.498 28.414 29.997 1.00 29.47 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.81 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.57 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.42 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.27 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.41 ATOM 2142 O ASP A 255 42.478 22.686 34.157 1.00 19.12 20 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.12 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.60 ATOM 2148 CA LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 15.9 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2150 O LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	9 <u>C</u> 2 N 5 <u>C</u>
ATOM 2135 NE ARG A 254 38.498 28.414 29.997 1.00 29.46 ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.89 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.50 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.40 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.20 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.40 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.50 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.10 20 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.10 ATOM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.60 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.90 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.70 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.70 ATOM 2150 O LEU A 256 46.967 23.056 31.859 1.00 23.30 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.30 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.10	2 N 5 C
ATOM 2136 CZ ARG A 254 38.693 29.723 29.794 1.00 59.89 ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.59 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.44 15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.23 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.49 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.43 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 49.6 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	5 <u>C</u>
ATOM 2137 NH1 ARG A 254 39.194 30.527 30.732 1.00 42.51 ATOM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.44 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.21 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.44 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.41 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.478 22.686 34.157 1.00 19.1 ATOM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2146 OD2 ASP A 255 42.144 23.809 36.429 1.00 49.6 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	
ATCM 2138 NH2 ARG A 254 38.377 30.245 28.620 1.00 18.40 ATCM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.23 ATCM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATCM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.40 ATCM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.55 ATCM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.10 20 ATCM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATCM 2145 OD1 ASP A 255 42.144 22.246 35.610 1.00 47.00 ATCM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.10 ATCM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.90 ATCM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.70 ATCM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.70 ATCM 2150 O LEU A 256 47.020 25.275 33.076 1.00 16.70 ATCM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.30 ATCM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.30 ATCM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80 ATCM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80	<u> </u>
15 ATOM 2139 N ASP A 255 42.406 24.564 32.586 1.00 20.23 ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.42 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.55 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.60 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.10 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.90 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 25 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.70 ATOM 2150 O LEU A 256 47.020 25.275 33.076 1.00 15.20 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.30 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	
ATOM 2140 CA ASP A 255 42.795 24.205 33.974 1.00 16.40 ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.40 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.50 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.10 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.60 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.10 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.90 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.70 ATOM 2149 C LEU A 256 46.465 23.844 33.069 1.00 21.70 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.20 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.30 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.80 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.10	4 N
ATOM 2141 C ASP A 255 44.321 24.372 34.069 1.00 22.40 ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.00 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 25 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	2N
ATOM 2142 O ASP A 255 44.868 24.897 35.060 1.00 18.5 ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	8 <u>C</u>
ATOM 2143 CB ASP A 255 42.478 22.686 34.157 1.00 19.1 20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	3 <u>C</u>
20 ATOM 2144 CG ASP A 255 42.144 22.246 35.610 1.00 47.0 ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	3 0
ATOM 2145 OD1 ASP A 255 41.780 23.090 36.429 1.00 49.6 ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	7 <u> </u>
ATOM 2146 OD2 ASP A 255 42.020 21.016 35.880 1.00 48.1 ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	8 <u>C</u>
ATOM 2147 N LEU A 256 45.014 23.809 33.078 1.00 15.9 ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 25 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	<u>6</u> O
ATOM 2148 CA LEU A 256 46.465 23.844 33.069 1.00 21.7 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	2 0
25 ATOM 2149 C LEU A 256 47.020 25.275 33.076 1.00 16.7 ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	8 <u>N</u>
ATOM 2150 O LEU A 256 47.825 25.697 33.946 1.00 15.2 ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	<u>6 C</u>
ATOM 2151 CB LEU A 256 46.967 23.056 31.859 1.00 23.3 ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	9 C
ATOM 2152 CG LEU A 256 48.491 23.100 31.765 1.00 26.8 ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	40
ATOM 2153 CD1 LEU A 256 49.171 22.334 32.984 1.00 17.1	3 <u>C</u>
	0 <u> </u>
30 ATOM 2154 CD2 LEU A 256 49.040 22.724 30.346 1.00 15.4	3 <u>C</u>
	2 C
ATOM 2155 N ALA A 257 746.520 26.048 32.140 1.00 13.7	7N
ATOM 2156 CA ALA A 257 46.938 27.436 32.025 1.00 12.7	0 <u>C</u>
ATOM 2157 C ALA A 257 46.656 28.237 33.267 1.00 10.7	3 <u> </u>
ATOM 2158 O ALA A 257 47.451 29.073 33,672 1.00 20.3	<u>3</u> O
35 ATOM 2159 CB ALA A 257 46.208 28.073 30.834 1.00 13.3	4 C
ATOM 2160 N GLN A 258 45.470 28.080 33.835 1.00 12.4	0 N
ATOM 2161 CA GLN A 258 45.102 28.911 34.981 1.00 8.3	9 C
ATOM 2162 C GLN A 258 45.879 28.480 36.166 1.00 13.4	8 <u>C</u>
ATOM 2163 O GLN A 258 46.178 29.281 37.029 1.00 22.9	6 O
40 ATOM 2164 CB GLN A 258 43.614 28.761 35.305 1.00 16.1	2 C
ATOM 2165 CG GLN A 258 42.674 29.096 34.130 1.00 30.1	<u>9</u> C
ATOM 2166 CD GLN A 258 42,574 30.585 33.781 1.00 37.2	9 <u>C</u>
ATOM 2167 OE1 GLN A 258 42.911 31.471 34.610 1.00 21.2	4 0
ATOM 2168 NE2 GLN A 258 42.021 30.876 32.572 1.00 15.9	94 N
45 ATOM 2169 N THR A 259 46.179 27.182 36.232 1.00 16.2	

	ATOM 2170 CA THR A 259	46,982 26,678 37,336 1,00 16.85	c
	ATOM 2171 C THR A 259	48.410 27.186 37.233 1.00 20.56	c
	ATOM 2172 O THR A 259	49.002 27.621 38.214 1.00 21.44	0
_	ATOM 2173 CB THR A 259	47.066 25.192 37.361 1.00 27.56	С
5	ATOM 2174 OG1 THR A 259	45.752 24.620 37.509 1.00 20.92	0
	ATOM 2175 CG2 THR A 259	47.936 24.796 38.545 1.00 12.85	<u>c</u>
	ATOM 2176 N ILE A 260	48.952 27.170 36.028 1.00 19.96	N
	ATOM 2177 CA ILE A 260	50.292 27.704 35.839 1.00 23.01	<u>C</u>
	ATOM 2178 C ILE A 260	50.313 29.180 36.225 1.00 31.73	<u>c</u>
10	ATOM 2179 O ILE A 260	51.211 29.627 36.993 1.00 25.90	0
	ATOM 2180 CB ILE A 260	50.835 27.456 34.390 1.00 22.46	c
	ATOM 2181 CG1 ILE A 260	51.153 25.940 34.232 1.00 24.12	C
	ATOM 2182 CG2 ILE A 260	52.099 28.361 34.106 1.00 13.47	c
	ATOM 2183 CD1 ILE A 260	51.501 25.443 32.810 1.00 12.58	c
15	ATOM 2184 N ALA A 261	49,280 29.910 35.764 1.00 15.35	N
	ATOM 2185 CA ALA A 261	49.177 31.355 36.048 1.00 16.00	С
	ATOM 2186 C ALA A 261	49.316 31.604 37.550 1.00 20.58	c
	ATOM 2187 O ALA A 261	50.104 32.443 37.987 1.00 16.09	0
	ATOM 2188 CB ALA A 261	47.832 31.958 35.487 1.00 13.65	c
20	ATOM 2189 N LYS A 262	48.551 30.843 38.323 1.00 11.50	N
	ATOM 2190 CA LYS A 262	48.578 30.905 39.770 1.00 10.13	С
	ATOM 2191 C LYS A 262	49.968 30.460 40.296 1.00 28.08	С
	ATOM 2192 O LYS A 262	50.503 31.084 41.205 1.00 29.37	0
	ATOM 2193 CB LYS A 262	47.453 30.032 40.335 1.00 12.50	С
25	ATOM 2194 CG LYS A 262	47.332 29.962 41.888 1.00 16.51	С
	ATOM 2195 CD LYS A 262	46.092 29.092 42.371 1.00 46.61	С
	ATOM 2196 CE LYS A 262	46.344 27.555 42.661 1.00 99.70	С
	ATOM 2197 NZ LYS A 262	45.157 26.703 43.200 1.00 36.59	N
	ATOM 2198 N VAL A 263	50.589 29.443 39.705 1.00 17.44	N
30	ATOM 2199 CA VAL A 263	51.915 29.039 40.171 1.00 18.72	С
	ATOM 2200 C VAL A 263	52.997 30.170 39.997 1.00 32.12	С
	ATOM 2201 O VAL A 263	53.871 30.412 40.834 1.00 21.18	
	ATOM 2202 CB VAL A 263	52.389 27.709 53.476 1.00 16.35	C
	ATOM 2203 CG1 VAL A 263	53,920 27,518 39,647 1.00 11.83	c
35	ATOM 2204 CG2 VAL A 263	51.646 26.522 40.093 1.00 14.99	C
	ATOM 2205 N VAL A 264	52.913 30.899 38.909 1.00 21.75	N
	ATOM 2206 CA VAL A 264	53.917 31.877 38.653 1.00 19.81	С
	ATOM 2207 C VAL A 264	53.719 33.208 39.377 1.00 35.79	c
	ATOM 2208 O VAL A 264	54.632 34.032 39.482 1.00 28.99	0
40	ATOM 2209 CB VAL A 264	54.059 32.014 37.175 1.00 24.27	c
	ATOM 2210 CG1 VAL A 264	54.728 33.269 36.822 1.00 33.58	С
	ATOM 2211 CG2 VAL A 264	54.840 30.808 36.674 1.00 23.01	c
	ATOM 2212 N GLY A 265	52,550 33.378 39,969 1.00 25.30	N
	ATOM 2213 CA GLY A 265	52.241 34.620 40.636 1.00 24.14	
45	ATOM 2214 C GLY A 265	51.730 35.694 39.632 1.00 35.03	<u>c</u>

				•						
	MOTA	2215	0	GLY A	265	51.773	36.911		1.00 33.7	
	MOTA	2216	N	TYR A		51.294	35.257	38.428	1.00 26.2	
	ATOM	2217	CA	TYR A	266	50,698	36.151	37,373	1.00 26.5	
	MOTA	2218	<u> </u>	TYR A	266	49.364	36.745	37.818	1.00 31.0	
5	MOTA	2219	0_	TYR A	266	48.532	36.067	38.456	1.00 27.9	_
	MOTA	2220	CB	TYR A	266	50.501	35.463	36.008	1.00 24.3	_
	MOTA	2221	CG	TYR A	266	49.994	36.381	34.884	1.00 28.6	_
	MOTA	2222	CD1	TYR A		50.670	37.582	34.542	1.00 35.0	
	MOTA	2223	CD2	TYR A	266	48.860	36.038	34.118	1.00 22.6	
10	MOTA	2224	CE1	TYR_A	266	50.212	38.434	33.472	1.00 20.7	
	MOTA	2225	CE2	TYR A	266	48.428	36.859	33.012	1.00 20.9	
	MOTA	2226	CZ	TYR A	266	49.088	38.062	32.735	1.00 23.8	
	MOTA	2227	OH	TYR A	266	48,622	38.851	31.710	1.00 33.4	
	MOTA	2228	N	LYS A	267	49.217	38.043	37.604	1.00 25.7	
15	MOTA	2229	CA	LYS A	267	47.988	38.697	38.009	1.00 30.7	
	MOTA	2230	_C	LYS A	267	47.217	39,280	36.798	1.00 28.8	5 <u>C</u>
	MOTA	2231	0_	LYS A	267	46.179	39.894	36.949	1.00 31.1	
	MOTA	2232	CB	LYS ?	267	48.279	39.741	39.092	1.00 27.1	
	MOTA	2233	CG	LYS A	267	48.728	39.128	40.403	1.00 23.1	
20	MOTA	2234	CD	LYS 2	267	48.420	40.096	41.562	1.00 30.9	
	ATOM	2235	CE	LYS A	267	47.933	39,358	42.820	1.00 48.5	2C
	MOTA	2236	NZ	LYS 7	267	47,005	38,208	42.505	1.00100.0	0 N
	MOTA	2237	N.	GLY A	268	47.716	39.054	35.594	1.00 22.6	
	ATOM	2238	<u>CA</u>	GLY /	268	47.019	39.518	34.394	1.00 21.3	
25	MOTA	2239	С	GLY /	268	45.856	38.568	34.085	1.00 31.0	
	MOTA	2240	0_	GLY I	A 268	45,455	37,728	34.911	1.00 19.7	
	MOTA	2241	И	ARG A	A 269	45.387	38.645	32.849	1.00 30.4	
	MOTA	2242	_CA	ARG I	269	44.263	37.846	32.399	1.00 26.4	
	MOTA	2243	C	ARG	A 269	44.680	36.705	31.489	1.00 22.3	15 C
30	MOTA	2244	0_	ARG	A 269	45.378	36.926	30.524	1.00 22.7	<u>'5</u> 0
	MOTA	2245	СВ	ARG	A 269	43.297	38.753	31.626	1.00 22.6	
	MOTA	2246	CG	ARG	A 269	42.201	39.390	32.463	1.00 24.2	:1 <u>C</u>
	MOTA	2247	CD	ARG	A 269	40.936	39,465	31.568	1.00 83.4	15 C
	MOTA	2248	NE	ARG	A 269	40.113	40,676	31.762	1.00100.0	
35	MOTA	2249	CZ	ARG	A 269	38.808	40.751		1,00100.0	
	ATOM	2250	NH.	ARG	A 269	38,201	39.691	30.921	1.00 99.9	93 N
	MOTA	2251	NH2	ARG	A 269	38.094	41.865	31.663	1.00100.0	<u>N</u>
	MOTA	2252	_N_	VAL	A 270	44.195	35.494	31.758	1.00 19.	
	MOTA	2253	CA	VAL	A 270	44.468	34.389	30.856	1.00 24.1	32 C
40	MOTA	2254		VAL	A 270	43.319	34.456	29.824	1.00 22.	51 <u>C</u>
	MOTA	2255	٥	VAL	A 270	42.145	34.501	30.181	1.00 25.	
	MOTA	2256	СВ	VAL	A 270	44,436	32.979	31.571	1.00 24.0	03 C
	MOTA	2257	CG:	VAL	A 270	44.576	31.861	30.533	1.00 20.	72 C
	MOTA	2258	CG	VAL	A 270	45.506	32.849	32.639	1.00 11.	27C
45	ATOM	2259	N	VAL	A 271	43.660	34,409	28.554	1.00 25.	18 N

	ATOM 2260 CA VAL A 271	42.666 34.492 27.487 1.00 28.32	С
	ATOM 2261 C VAL A 271	42.819 33.370 26.442 1.00 24.89	С
	ATOM 2262 O VAL A 271	43.923 33.115 25.980 1.00 21.98	0
	ATOM 2263 CB VAL A 271	42.901 35.813 26.736 1.00 29.25	с
5	ATOM 2264 CG1 VAL A 271	42.256 35.773 25.370 1.00 31.91	C
	ATOM 2265 CG2 VAL A 271	42.421 36.989 27.565 1.00 18.72	C
	ATOM 2266 N PHE A 272	41.716 32.758 26.019 1.00 26.14	N
	ATOM 2267 CA PHE A 272	41.752 31.747 24.963 1.00 24.34	C
	ATOM 2268 C PHE A 272	41,236 32,266 23,623 1,00 28,95	с
10	ATOM 2269 O PHE A 272	40.155 32.826 23.582 1.00 22.01	0
	ATOM 2270 CB PHE A 272	40.960 30.506 25.391 1.00 20.97	с
	ATOM 2271 CG PHE A 272	41.764 29.570 26.243 1.00 21.77	С
	ATOM 2272 CD1 PHE A 272	41.940 29.842 27.610 1.00 14.60	C
	ATOM 2273 CD2 PHE A 272	42.504 28.550 25.656 1.00 22.19	C
15	ATOM 2274 CE1 PHE A 272	42.763 29.041 28.434 1.00 17.89	с
	ATOM 2275 CE2 PHE A 272	43.336 27.726 26.454 1.00 27.64	c
	ATOM 2276 CZ PHE A 272	43.478 27.979 27.851 1.00 25.14	C
	ATOM 2277 N ASP A 273	42.012 32.114 22.542 1.00 29.45	N
	ATOM 2278 CA ASP A 273	41.557 32.536 21.214 1.00 22.33	C
20	ATOM 2279 C ASP A 273	40.896 31.365 20.493 1.00 25.67	C
	ATOM 2280 O ASP A 273	41.539 30.570 19.793 1.00 17.81	
	ATOM 2281 CB ASP A 273	42.672 33.114 20.343 1.00 21.45	c
	ATOM 2282 CG ASP A 273	42.131 33.626 18.990 1.00 26.89	C
	ATOM 2283 OD1 ASP A 273	40.975 33.249 18.598 1.00 27.76	0
25	ATOM 2284 OD2 ASP A 273	42.838 34.421 18.327 1.00 30.06	
	ATOM 2285 N ALA A 274	39.589 31.284 20.649 1.00 15.59	N
	ATOM 2286 CA ALA A 274	38.932 30.128 20.128 1.00 23.75	С
	ATOM 2287 C ALA A 274	38.853 30.168 18.653 1.00 32.30	c
	ATOM 2288 O ALA A 274	38.284 29.256 18.029 1.00 29.37	0
30	ATOM 2289 CB ALA A 274	37.567 29.905 20.777 1.00 18.87	C
	ATOM 2290 N SER A 275	39,372 31,243 18,081 1.00 21,10	N
	ATOM 2291 CA SER A 275	39.343 31.288 16.631 1.00 26.90	C
	ATOM 2292 C SER A 275	40.390 30.300 16.116 1.00 43.37	C
	ATOM 2293 O SER A 275	40.421 29.949 14.927 1.00 46.32	
35	ATOM 2294 CB SER A 275	39.547 32.683 16.074 1.00 15.19	c
	ATOM 2295 OG SER A 275	40.904 33.070 16.078 1.00 28.71	0
	ATOM 2296 N LYS A 276	41.192 29.780 17.037 1.00 22.98	N
	ATOM 2297 CA LYS A 276	42.178 28.791 16.638 1.00 23.28	c
	ATOM 2298 C LYS A 276	41.645 27.405 16.976 1.00 29.73	c
40	ATOM 2299 O LYS A 276	40.992 27.206 18.010 1.00 25.10	
	ATOM 2300 CB LYS A 276	43.544 29.051 17.275 1.00 19.19	
	ATOM 2301 CG LYS A 276	43.957 30.496 17.218 1.00 32.11	<u>c</u>
	ATOM 2302 CD LYS A 276	44.062 30.852 15.798 1.00 22.43	
	ATOM 2303 CE LYS A 276	44.930 32.067 15.570 1.00 23.18	<u>C</u>
45	ATOM 2304 NZ LYS A 276	45.454 32.117 14.152 1.00 29.42	N
		1,00 23.42	

	ATOM 2305 N PRO A 277	41.892 26.476 16.055 1.00 36.04	N
	ATOM 2306 CA PRO A 277	41.446 25.087 16.170 1.00 35.93	с
	ATOM 2307 C PRO A 277	42.022 24.332 17.363 1.00 29.30	c
	ATOM .2308 O PRO A 277	43.103 24.650 17.885 1.00 30.54	0
5	ATOM 2309 CB PRO A 277	41.975 24.453 14.878 1.00 39.65	с
	ATCM 2310 CG PRO A 277	43.249 25.261 14.566 1.00 42.90	c
	ATOM 2311 CD PRO A 277	42.787 26.670 14.892 1.00 37.84	c
	ATOM 2312 N ASP A 278	41.273 23,339 17.809 1.00 22,35	N
	ATOM 2313 CA ASP A 278	41.745 22.501 18.903 1.00 22.16	С
10	ATOM 2314 C ASP A 278	42.184 21.189 18.272 1.00 19.66	C
	ATOM 2315 O ASP A 278	41,905 20.917 17.117 1.00 23.49	0
	ATOM 2316 CB ASP A 278	40.636 22.241 19.971 1.00 15.09	c
	ATOM 2317 CG ASP A 278	40,216 23,503 20,702 1.00 22,86	C
	ATOM 2318 OD1 ASP A 278	41.113 24.254 21.096 1.00 25.18	0
15	ATOM 2319 OD2 ASP A 278	38.999 23.787 20.812 1.00 39.55	
	ATOM 2320 N GLY A 279	42.846 20.355 19.044 1.00 30.65	N
	ATOM 2321 CA GLY A 279	43.229 19.034 18.546 1.00 33.78	С
	ATOM 2322 C GLY A 279	42.115 18.099 18.944 1.00 38.10	С
	ATOM 2323 O GLY A 279	40.963 18.517 19.068 1.00 47.52	
20	ATOM 2324 N THR A 280	42.419 16.839 19.177 1.00 29.44	N
	ATOM 2325 CA THR A 280	41.328 15.990 19.587 1.00 26.68	с
•	ATOM 2326 C THR A 280	40.889 16.439 20.972 1.00 23.52	С
	ATOM 2327 O THR A 280	41.670 17.067 21.713 1.00 23.62	
	ATOM 2328 CB THR A 280	41.695 14.492 19.540 1.00 40.78	с
25	ATOM 2329 OG1 THR A 280	42.889 14.272 20.296 1.00 25.56	
	ATOM 2330 CG2 THR A 280	41.893 14.054 18.095 1.00 37.71	C
	ATOM 2331 N PRO A 281	39.672 16.063 21.346 1.00 25.54	N
	ATOM 2332 CA PRO A 281	39.129 16.454 22.628 1.00 25.72	С
	ATOM 2333 C PRO A 281	39.776 15.778 23.800 1.00 26.02	c
30	ATOM 2334 O PRO A 281	39,752 16.314 24.915 1.00 22.68	0
	ATOM 2335 CB PRO A 281	37.650 15.990 22.559 1.00 28.89	C
	ATOM 2336 CG PRO A 281	37.417 15.540 21.201 1.00 29.39	c
	ATOM 2337 CD PRO A 281	38.761 15.138 20.646 1.00 26.82	С
	ATOM 2338 N ARG A 282	40.281 14.567 23.587 1.00 27.88	N
35	ATOM 2339 CA ARG A 282	40.806 13.817 24.720 1.00 34.08	
	ATOM 2340 C ARG A 282	41.977 12.918 24.384 1.00 27.62	С
	ATOM 2341 O ARG A 282	41.913 12.182 23.425 1.00 23.83	
	ATOM 2342 CB ARG A 282	39.676 13.017 25.405 1.00 20.89	c
	ATOM 2343 CG ARG A 282	40.035 12.467 26.775 1.00 22.81	C
40	ATOM 2344 CD ARG A 282	38.762 11.925 27.442 1.00 26.77	C
	ATOM 2345 NE ARG A 282	38,963 11.345 28.781 1.00 36.48	N
	ATOM 2346 CZ ARG A 282	38.518 10.139 29,164 1.00 37,74	С
	ATOM 2347 NH1 ARG A 282	37.813 9.360 28.346 1.00 28.45	N
	ATOM 2348 NH2 ARG A 282	38.754 9.700 30.384 1.00 27.25	N
45	ATOM 2349 N LYS A 283	43.016 12.963 25.223 1.00 28.91	N

	ATOM 2350 CA LYS A 283	44.217 12.171 25.051 1.00 24.32	c
	ATOM 2351 C LYS A 283	44.796 11.766 26.404 1.00 29.57	С
	ATOM 2352 O LYS A 283	45.262 12.626 27.138 1.00 33.16	0
	ATOM 2353 CB LYS A 283	45.226 13.008 24.287 1.00 21.93	С
5	ATOM 2354 CG LYS A 283	46.111 12.251 23.316 1.00 32.38	С
	ATOM 2355 CD LYS A 283	46.526 13.171 22.143 1.00 95.77	С
	ATOM 2356 CE LYS A 283	45.710 12.937 20.836 1.00100.00	С
	ATOM 2357 NZ LYS A 283	46.418 13.332 19.535 1.00100.00	N
	ATOM 2358 N LEU A 284	44.747 10.467 26.734 1.00 23.37	N
10	ATOM 2359 CA LEU A 284	45.327 9.905 27.997 1.00 16.08	С
	ATOM 2360 C LEU A 284	45.463 8.386 28.047 1.00 20.46	С
	ATOM 2361 O LEU A 284	44.679 7.655 27.446 1.00 25.45	0
	ATOM 2362 CB LEU A 284	44.641 10.387 29.284 1.00 16.30	C
	ATOM 2363 CG LEU A 284	43.334 9.700 29.714 1.00 25.97	С
15	ATOM 2364 CD1 LEU A 284	42.881 10.089 31.152 1.00 22.11	C
	ATOM 2365 CD2 LEU A 284	42.203 9.953 28.693 1.00 23.92	C
	ATOM 2366 N LEU A 285	46.453 7.939 28.820 1.00 18.51	N
	ATOM 2367 CA LEU A 285	46.792 6.527 29.003 1.00 16.77	c
	ATOM 2368 C LEU A 285	45.880 5.865 30.006 1.00 30.75	C
20	ATOM 2369 O LEU A 285	45.576 6.439 31.058 1.00 22.02	0
	ATOM 2370 CB LEU A 285	48.229 6.389 29.585 1.00 15.85	c
	ATOM 2371 CG LEU A 285	49.307 6.970 28.672 1.00 21.51	c
	ATOM 2372 CD1 LEU A 285	50.703 6.705 29.122 1.00 15.15	С
	ATOM 2373 CD2 LEU A 285	49.051 6.368 27,330 1.00 16.94	c
25	ATOM 2374 N ASP A 286	45.565 4.599 29.734 1.00 26.62	N
	ATOM 2375 CA ASP A 286	44.945 3.726 30.698 1.00 10.90	с
	ATOM 2376 C ASP A 286	46.128 3.055 31.498 1.00 20.54	С
	ATOM 2377 O ASP A 286	46.991 2.372 30.938 1.00 23.38	0
	ATOM 2378 CB ASP A 286	44.073 2.702 29.970 1.00 14.65	С
30	ATOM 2379 CG ASP A 286	43.409 1.699 30.943 1.00 24.60	С
	ATOM 2380 OD1 ASP A 286	43.932 1.437 32.083 1.00 24.60	0
	ATOM 2381 OD2 ASP A 286	42.316 1.231 30.583 1.00 26.03	0
	ATOM 2382 N VAL A 287	46.230 3.317 32.791 1.00 15.44	N
	ATOM 2383 CA VAL A 287	47.354 2.816 33.556 1.00 15.58	c
35	ATOM 2384 C VAL A 287	46.973 1.695 34.521 1.00 16.48	С
	ATOM 2385 O VAL A 287	47.613 1.473 35.572 1.00 16.63	0
	ATOM 2386 CB VAL A 287	48.101 4.006 34.260 1.00 29.84	C
	ATOM 2387 CG1 VAL A 287	48.534 5.085 33.224 1.00 18.39	c
	ATOM 2388 CG2 VAL A 287	47,173 4,670 35,258 1,00 37,79	C
40	ATOM 2389 N THR A 288	45,904 0.992 34,152 1.00 22,27	N
	ATOM 2390 CA THR A 288	45.428 -0.152 34.956 1.00 19.34	С
	ATOM 2391 C THR A 288	46.561 -1.177 35.227 1.00 27.47	C
	ATOM 2392 O THR A 288	46.778 -1.586 36.365 1.00 24.87	0
	ATOM 2393 CB THR A 288	44.288 -0.909 34.244 1.00 22.86	C
45	ATOM 2394 OG1 THR A 288	43.120 -0.096 34.106 1.00 24.84	0
			¥

WO 99/64618

	MOTA	2395	CG2	THR A 288	43.916	-2.113	35.024	1.00 25.08	c
	MOTA	2396	N	ARG A 289	47.290	-1.585	34.179	1.00 26.08	N
	ATOM	2397	CA.	ARG A 289	48.428	-2.506	34.319	1.00 16.92	с
	ATOM	2398	С	ARG A 289	49.405	-2.037	35.408	1.00 22.96	c
5	ATOM	2399	0	ARG A 289	49.847	-2.790	36.275	1.00 23.03	0
	MOTA	2400	СВ	ARG A 289	49.208	-2.607	32.976	1.00 12.43	C
	MOTA	2401	CG	ARG A 289	48.934	-3.804	32.103	1.00 29.39	C
	MOTA	2402	CD	ARG A 289	50.016	-4.102	31.037	1.00 25.88	С
	MOTA	2403	NE	ARG A 289	49,441	-4.996	30.020	1.00 17.26	N
10	MOTA	2404	CZ	ARG A 289	50.053	-5.459	28.930	1.00 38.82	С
	MOTA	2405	NH1	ARG A 289	51.306	-5.153	28.660	1.00 13.51	N
	MOTA	2406	NH2	ARG A 289	49.400	-6.262	28.096	1.00 37.68	N
	MOTA	2407	N	LEU A 290	49.815	-0.786	35.306	1.00 26.60	
	MOTA	2408	CA	LEU A 290	50.809	-0.254	36.219	1.00 25.42	C
15	MOTA	2409	С	LEU A 290	50.324	-0.376	37.656	1.00 24.17	<u>C</u>
	MOTA	2410	0	LEU A 290	51.072	-0.759	38.574	1.00 19.94	0
	MOTA	2411	СВ	LEU A 290	51.000	1.219	35.876	1.00 24.66	C
	MOTA	2412	CG	LEU A 290	52.281	2.019	36,066	1.00 24.67	C
	MOTA	2413	CD1	LEU A 290	51.992	3.479	36,504	1.00 29.25	С
20	MOTA	2414	CD2	LEU A 290	53.450	1.335	36.788	1.00 15.82	<u>C</u>
	ATOM	2415	N_	HIS A 291	49.093	0.075	37.868	1.00 30.10	N
	MOTA	2416	CA	HIS A 291	48.513	0.074	39.212	1.00 34.17	c
	MOTA	2417	С	HIS A 291	48.411	-1.367	39.730	1.00 43.41	с
	ATOM	2418	0_	HIS A 291	48.621	-1.654	40.929	1.00 38.81	0
25	MOTA	2419	CB	HIS A 291	47.113	0.674	39.143	1.00 28.01	C
	ATOM	2420	CG	HIS A 291	47.097	2.153\	38,984	1.00 29.68	СС
	MOTA	2421	ND1	HIS A 291	48.242	2.921	39.015	1.00 35.63	N
	MOTA	2422	CD2	HIS A 291	46,068	3.024	38,855	1.00 31.18	C
	MOTA	2423	CE1	HIS A 291	47.926	4.197	38.845	1.00 24.20	<u>C</u>
30	ATOM	2424	NE2	HIS A 291	46.612	4.289	38.747	1.00 21.92	N
	MOTA	2425	N	GLN A 292	48.048	-2.260	38.821	1.00 30.71	N
	MOTA	2426	CA	GLN A 292	47.950	-3.654	39,181	1.00 34.82	с
	MOTA	2427	С	GLN A 292	49.287	-4.197	39.622	1.00 36,93	<u>c</u>
	MOTA	2428	_0	GLN A 292	49.323	-5.040	40.510	1.00 27.56	0
35	MOTA	2429	СВ	GLN A 292	47.322	-4,487	38.069	1.00 28.23	<u>C</u>
	MOTA	2430	ÇĢ	GLN A 292	45.798	-4.405	38.171	1.00 81.15	с
	MOTA	2431	CD	GLN A 292	45.023	-4.954	36.963	1.00100.00	<u>c</u>
	MOTA	2432	OE1	GLN A 292	45.597	-5.410		1.00 99.65	0
	ATOM	2433	NE2	GLN A 292	43,687	-4.895	37.073	1.00 40.86	N
40	MOTA	2434	N	LEU A 293	50.375	-3,658	39.058	1.00 31.75	N
	MOTA	2435	CA	LEU A 293	51.750	-4.072	39.383	1.00 22.67	<u>c</u>
	MOTA	2436	С	LEU A 293	52,238	-3.323	40.613	1.00 28.64	c
	MOTA	2437	0	LEU A 293	53,420	-3.377		1.00 22.27	0
	MOTA	2438		LEU A 293	52,665			1.00 25.57	c
45	MOTA	2439	CG	LEU A 293	52.497	-4.703	37.016	1.00 35.11	<u>c</u>

	ATOM 24	140 CD1	LEU A 29	53.306	-4.170	35.836	1.00 28.25	c
	ATOM 24	41 CD2	LEU A 29	52.965	-6.110	37.439	1.00 47.81	C
	ATOM 24	42 N	GLY A 29	51,316	-2.510	41.111	1.00 33.08	N
	ATOM 24	143 CA	GLY_A 29	51.488	-1.793	42.347	1.00 24.90	C
5	ATOM 24	144 C	GLY A 29	52,272	-0.512	42.326	1.00 29.31	C
	ATOM 24	45 0	GLY A 29	53.070	-0.249	43,223	1.00 25.25	0
	ATOM 24	46 N	TRP A 29	5 52.000	0.347	41.368	1.00 27.83	N
	ATOM 24	47 CA	TRP A 29	52.687	1,623	41.385	1.00 19.45	C
	ATOM 24	48 C	TRP A 29	5 51.684	2.731	41.081	1.00 25.79	
10	ATOM 24	49 0	TRP A 29	5 50.765	2.527	40.297	1.00 20.43	0
	ATOM 24	50 CB	TRP A 29	5 53.961	1.614	40.524	1.00 12.85	C
	ATOM 24	51 CG	TRP A 29	5 54.750	2.911	40.618	1.00 23.04	C
	ATOM 24	52 CD1	TRP A 29	55.897	3.161	41.368	1.00 23.68	c
	ATOM 24	53 CD2	TRP A 29	54.415	4.159	39.979	1.00 20.72	C
15	ATOM 24	54 NE1	TRP A 29	56.258	4.493	41.244	1.00 18.67	N
	ATOM 24	55 CE2	TRP A 29	55.389	5.113	40.373	1.00 20.95	c
	ATOM 24	56 CE3	TRP A 29	53.406	4.550	39.102	1.00 21.47	c
	ATOM 24	57 CZ2	TRP A 29	55.338	6.439	39.958	1.00 17.58	Ç
	ATOM 24	58 CZ3	TRP A 29	53.403	5.873	38.632	1.00 21.57	C
20	ATOM 24	59 CH2	TRP A 29	54.368	6.787	39.058	1.00 19.45	C
	ATOM 24	60 N	TYR A 29	51.709	3,797	41.884	1.00 25.17	N
	ATOM 24	61 CA	TYR A 29	50.720	4.883	41.731	1.00 24.90	С
	ATOM 24	62 C	TYR A 29	51,517	6.178	41.857	1.00 30.85	
	ATOM 24	63 0	TYR A 29	52.363	6.272	42.745	1.00 21.27	0
25	ATOM 24	64 CB	TYR A 296	49.654	4.813	42.840	1.00 25.18	c
	ATOM 24	65 CG	TYR A 296	48.685	3.651	42.744	1.00 23.04	с
	ATOM 24	66 CD1	TYR A 296	49.078	2.343	43.088	1.00 31.62	С
	ATOM 24	67 CD2	TYR A 296	47.380	3.853	42.289	1.00 26.02	C
	ATOM 24	68 CE1	TYR A 296	48.203	1.268	42.935	1.00 24.42	С
30	ATOM 24	69 CE2	TYR A 296	46,493	2.770	42.127	1.00 24.81	C
	ATOM 24	70 CZ	TYR A 296	46.902	1.483	42.464	1.00 39.41	c
	ATOM 24	71 OH	TYR A 296	45.984	0.434	42.337	1.00 66.19	Q
	ATOM 24	72 N	HIS A 297	51.324	7.123	40.924	1.00 20.95	N
	ATOM 24	73 CA	HIS A 297	52.130	8.343	40.938	1.00 26.86	С
35	ATOM 24	74 C	HIS A 297	51.947	9.175	42.210	1.00 35.01	С
	ATOM 24	75 O	HIS A 297	50.885	9,132	42.874	1.00 26.92	0
	ATOM 24	76 CB	HIS A 297	51.819	9.192	39,733	1.00 25.77	C
	ATOM 24	77 CG	HIS A 297	50,489	9.842	39.803	1.00 31.16	C
	ATOM 24	78 ND1	HIS A 297	49.314	9.145	39.633	1.00 34.21	N
40	ATOM 24	79 CD2	HIS A 297	50.135	11.094		1.00 25.83	С
	ATOM 24	80 CE1	HIS A 297	48.290	9.972	39.776	1.00 24.14	С
	ATOM 241	81 NE2	HIS A 297	48.761	11.164		1.00 23.35	N N
	ATOM 241	82 N	GLU A 298	52.983	9.926		1.00 24.98	и
	ATOM 24	83 CA	GLU A 298	52.957	10.683	43.798	1.00 27.65	c
45	ATOM 248	84 C	GLU A 298	52,831	12.187		1.00 36.86	<u>C</u>

WO 99/64618

	MOTA	2485	0	GLU A	298	52.433	12.792	44.718	1.00 43.61	0
	MOTA	2486	СВ	GLU A	298	54.153	10.319	44.686	1.00 22.02	C
	MOTA	2487	CG	GLU A	298	54.004	8.943	45.285	1.00 36.42	c
	MOTA	2488	CD	GLU A	298	54.999	8.664	46.406	1.00100.00	c
5	MOTA	2489	OE1	GLU A	298	56,223	8.561	46.152	1.00 44.79	0
	MOTA	2490	OE2	GLU A	298	54.526	8.470	47.547	1,00100.00	0
	MOTA	2491	N	ILE A	299	53.232	12.800	42.639	1.00 23.49	<u> </u>
	ATOM	2492	CA	ILE A	299	53.268	14.244	42.562	1.00 13.25	c
	MOTA	2493	С	ILE A	299	52.016	14.848	41.906	1.00 27.05	<u>c</u>
10	MOTA	2494	0	ILE A	299	51.681	14.530	40.757	1.00 26.73	0
	MOTA	2495	СВ	ILE A	299	54.586	14.711	41.862	1.00 15.93	<u>c</u>
	MOTA	2496	CG1	ILE A	299	55.836	14.183	42.606	1.00 23.83	<u>c</u>
	MOTA	2497	CG2	ILE A	299	54,596	16.213	41.541	1.00 17.37	<u>c</u>
	MOTA	2498	CD1	ILE A	299	57.232	14.221	41.787	1.00 21.32	<u>c</u>
15	MOTA	2499	N	SER A	300	51.323	15.716	42.648	1.00 18.55	N
	MOTA	2500	CA	SER A	300	50.177	16.449	42.091	1.00 19.58	<u>c</u>
	ATOM	2501	<u>_C</u>	SER A	300	50.714	17.415	41.042	1.00 17.29	<u>c</u>
	ATOM	2502	0	SER A	300	51.824	17.941	41.178	1.00 21.06	0
	MOTA	2503	СВ	SER A	300	49.542	17.307	43.181	1,00 16.78	<u>c</u>
20	MOTA	2504	OG	SER A	300	50.548	17.969	43.923	1.00 75.80	0
	MOTA	2505	N	LEU A	301	49.870	17.755	40.075	1.00 16.13	N
	MOTA	2506	CA	LEU A	301	50.246	18.675	39.014	1.00 17.70	<u>c</u>
	MOTA	2507	<u> </u>	LEU A	301	50.689	19.964	39.646	1.00 20.11	с
	MOTA	2508	0	LEU A	301	51.714	20.568	39.303	1.00 20.46	0
25	MOTA	2509	СВ	LEU A	301	48.990	18.981	38.197	1.00 17.92	с
	MOTA	2510	CG	LEU A	301	49.182	20.030	37.112	1.00 25.15	C
	MOTA	2511	CD1	LEU A	301	50.233	19.552	36.086	1.00 18.82	c
	MOTA	2512		LEU A		47.854	20.177	36.436	1.00 25.88	c
20	ATOM	2513	N	GLU A		49.845	20.398	40.554	1.00 27.01	<u>N</u>
30	MOTA	2514	<u>CA</u>	GLU A	302	50.053	21.636	41.280	1.00 37.72	<u>c</u>
	MOTA	2515	<u> </u>	GLU A		51.410	21.618	41.996	1.00 29.99	<u>c</u>
	MOTA	2516	0	GLU A		52.245	22.514	41.798	1.00 27.15	0
	ATOM	2517	СВ	GLU A					1.00 43.10	<u>c</u>
	MOTA	2518	CG	GLU A		49.061	23.061		1.00 90.85	<u>C</u>
35	MOTA	2519	CD	GLU A		48.451	24.324		1.00100.00	с
	ATOM	2520		GLU A		47.566			1.00100.00	
	ATOM	2521	OE2	GLU A		48.808	25.432		1.00 64.50	0
	MOTA	2522	_N	YIY Y		51.646	20.591		1.00 8.72	N
40	MOTA	2523	_CA_	ALA A		52.937	20.455		1.00 15.03	c
40	MOTA	2524	<u> </u>	ALA A		54.102	20.355		1.00 19.85	<u>C</u>
	MOTA	2525	0	ALA A		55.104	21.090		1.00 22.24	0
	MOTA	2526	CB	ALA A		52.938	19.258		1.00 18.97	<u>C</u>
	ATOM	2527	N	GLY A		53.953			1.00 13.05	N
A.E	MOTA	2528	CA	GLY A		54.970			1.00 8.94	c
45	MOTA	2529	_C	GLY A	304	55.239	20.621	39.695	1.00 20.31	с

	ATOM 2530 O GLY A 304	56.394 20.900 39.322 1.00 14.30	0
	ATOM 2531 N LEU A 305	54.191 21.383 39.361 1.00 10.76	N
	ATOM 2532 CA LEU A 305	54.483 22.622 38.611 1.00 20.29	C
	ATOM 2533 C LEU A 305	55.281 23.669 39.456 1.00 28.92	<u>c</u>
5	ATOM 2534 O LEU A 305	56.194 24.385 38.974 1.00 17.69	o
	ATOM 2535 CB LEU A 305	53.202 23.245 38.033 1.00 24.03	c
	ATOM 2536 CG LEU A 305	52,357 22,647 36,880 1,00 27,66	<u>C</u>
	ATOM 2537 CD1 LEU A 305	50.975 23.384 36.789 1.00 13.44	c
	ATOM 2538 CD2 LEU A 305	53.079 22.724 35.543 1.00 18.39	c
10	ATOM 2539 N ALA A 306	54,904 23,757 40,724 1,00 19,94	N
	ATOM 2540 CA ALA A 306	55.544 24.660 41.655 1.00 24.79	С
	ATOM 2541 C ALA A 306	57.035 24.380 41.743 1.00 27.51	С
	ATOM 2542 O ALA A 306	57.852 25.280 41.662 1.00 29.68	0
	ATOM 2543 CB ALA A 306	54.937 24.471 43.002 1.00 17.87	С
15	ATOM 2544 N SER A 307	57.378 23.137 42.011 1.00 18.46	н
	ATOM 2545 CA SER A 307	58.793 22.756 42.162 1.00 16.31	С
	ATOM 2546 C SER A 307	59.547 22.885 40.832 1.00 22.66	С
	ATOM 2547 O SER A 307	60,742 23,212 40,786 1,00 28,47	0
	ATOM 2548 CB SER A 307	58.851 21.304 42.622 1.00 20.47	С
20	ATOM 2549 OG SER A 307	58.517 20.454 41.526 1.00 29.03	0
	ATOM 2550 N THR A 308	58.849 22.631 39.735 1.00 27.31	N
	ATOM 2551 CA THR A 308	59.458 22.738 38.413 1.00 22.89	С
	ATOM 2552 C THR A 308	59.757 24.216 38.107 1.00 26.06	<u>C</u>
	ATOM 2553 O THR A 308	60.819 24.546 37.591 1.00 29.89	0
25	ATCM 2554 CB THR A 308	58,536 22,115 37,318 1.00 18,72	c
	ATOM 2555 OG1 THR A 308	58.356 20.714 37.545 1.00 20.17	0
	ATOM 2556 CG2 THR A 308	59.094 22.330 35.923 1.00 12.37	С
	ATOM 2557 N TYR A 309	58.846 25.118 38.453 1.00 28.20	N
	ATOM 2558 CA TYR A 309	59.110 26.549 38.241 1.00 31.09	С
30	ATOM 2559 C TYR A 309	60.383 27.059 39.045 1.00 16.31	C
	ATOM 2560 O TYR A 309	61,179 27.858 38.577 1.00 16.91	0
	ATOM 2561 CB TYR A 309	57.819 27.373 38.533 1.00 31.19	С
	ATOM 2562 CG TYR A 309	57.944 28.895 00.392 1.00 14.57	С
	ATOM 2563 CD1 TYR A 309	58.397 29.457 37.224 1.00 17.51	С
35	ATOM 2564 CD2 TYR A 309	57.575 29.757 39.442 1.00 24.99	c
	ATOM 2565 CE1 TYR A 309	58.527 30.801 37.100 1.00 18.41	С
	ATOM 2566 CE2 TYR A 309	57,744 31,129 39,351 1,00 19,04	С
	ATOM 2567 CZ TYR A 309	58.212 31.641 38.164 1.00 29.13	С
	ATOM 2568 OH TYR A 309	58.300 33.004 37.966 1.00 28.22	0
40	ATOM 2569 N GLN A 310	60,560 26,579 40,260 1,00 15,41	N
	ATOM 2570 CA GLN A 310	61.705 26.964 41.087 1.00 22.35	c
	ATOM 2571 C GLN A 310	63.001 26.492 40.446 1.00 31.46	С
	ATOM 2572 O GLN A 310	64.009 27.191 40.442 1.00 33.42	0
	ATOM 2573 CB GLN A 310	61.587 26.335 42.482 1.00 17.67	С
45	ATOM 2574 CG GLN A 310	62.579 26.921 43.461 1.00 57.58	

	MOTA	2575	CD	GLN A	310	62.287	28.370	43.782	1.00	65.14	C	
	MOTA	2576	OE1	GLN A	310	61.134	28.754	44.000	1.00	41.94	0	1
	ATOM	2577	NE2	GLN A	310	63.330	29,194	43.801	1.00	99.09	N	[
	ATOM	2578	N	TRP A	311	62.957	25.321	39.830	1.00	28.76	N	[
5	MOTA	2579	CA	TRP A	311	64.146	24.822	39.163	1.00	26.29		Ĺ
	MOTA	2580	С	TRP A	311	64.474	25.769	38.040	1.00	17.91		
	ATOM	2581	0	TRP A	311	65.599	26,193	37.880	1.00	22.89		!
	ATOM	2582	СВ	TRP A	311	63.938	23.383	38.643	1.00	27.53	С	:
	ATOM	2583	ÇĢ	TRP A	311	65.176	22.784	38.119	1.00	17.82		:
10	ATOM	2584	CD1	TRP A	311	66.132	22.090	38.826	1.00	20.21		:
	MOTA	2585	CD2	TRP A	311	65.652	22.881	36.784	1.00	17.99		:
	MOTA	2586	NE1	TRP A	311	67.197	21.776	37.992	1.00	20,39	. N	ĺ
	ATOM	2587	CE2	TRP A	311	66.933	22.284	36.746	1.00	19.57	c	
	MOTA	2588	CE3	TRP A	311	65.141	23.461	35.621	1.00	20.26		
15	ATOM	2589	CZ2	TRP A	311	67.686	22.236	35.599	1.00	14.25	С.	<u>.</u>
	ATOM	2590	CZ3	TRP A	311	65.901	23.446	34.501	1.00	18.59	c	
	MOTA	2591	CH2	TRP A	311	67.169	22.831	34.494	1,00	16.86	c	
	ATOM	2592	N	PHE A	312	63.469	26.109	37.256	1.00	17.47	N	[
	ATOM	<u> 2593</u>	CA	PHE A	312	63.665	27.064	36.179	1.00	20.14	C	
20	ATOM	2594	С	PHE A	312	64.224	28.371	36.733	1.00	18.33	с	
	ATOM	2595	0	PHE A	312	65.080	29.024	36.104	1.00	24.76	0	!
	MOTA	2596	СВ	PHE A	312	62.328	27.318	35.458	1.00	29.51	с	
	MOTA	2597	CG	PHE A	312	62.328	28.544	34.603	1.00	28.52	c	,
	MOTA	2598	CD1	PHE A	312	62.883	28.508	33.338	1.00	30.53	с	,
25	MOTA	2599	CD2	PHE A	312	61.825	29.758	35.104	1.00	29.31	С	,
	ATOM	2600	CE1	PHE A	312	62.936	29.660	32.554	1.00	34.73	с	,
	MOTA	2601	CE2	PHE A	312	61.900	30.904	34.362	1.00	38,40	с	,
	ATOM	2602	CZ	PHE A	312	62.432	30.860	33.063	1.00	40.73	с	
	ATOM	2603	N	LEU A	313	63.697	28.787	37.876	1.00	22.46	N	
30	ATOM	2604	CA	LEU A	313	64.170	30.025	38.516	1.00	28.47	с	
	ATOM	2605	<u>c</u>	LEU A	313	65.627	29.827	38.898	1.00	37.53	с	
	ATOM	2606	0	LEU A	313	66.452	30.693	38.629	1.00	34.20	0	
	ATOM	2607	СВ	LEU A	313	63.375	30.410	39.783	1.00	20.44	С	
	ATOM	2608	CG	LEU A	313	61,955	30.897	39,555	1.00	16.29	С	
35	MOTA	2609	CD1	LEU A	313	61.499	31.399	40.871	1.00	15.94	с	
	MOTA	2610	CD2	LEU A	313	61.959	31.961	38,524	1.00	14.44	с	
	MOTA	2611	N	GLU A	314	65.953	28.685	39.508	1,00	30,70	N	
	MOTA	2612	CA	GLU A	314	67.353	28.432	39.875	1.00	24.15	с	,
	MOTA	2613	С	GLU A	314	68.291	28,149	38.703	1.00	36.34	С	,
40	MOTA	2614	0	GLU A	314	69.485	28.047	38.890	1.00	43.10	0	
	MOTA	2615	СВ	GLU A	314	67.459	27.366	40.947	1.00	19.90	с	
	MOTA	2616	CG	GLU A	314	66.634	27.754	42.141	1.00	27.37	СС	
	MOTA	2617	CD	GLU A	314	66,450	26.666	43.182	1.00	31,09	с	
	ATOM	2618	OE1	GLU A	314	67.157	25.648	43.085	1.00	<u>59,60</u>	0	
45	ATOM	2619	OE2	GLU A	314	65.634	26.872	44.125	1.00	46.20	0	

	3.500		201 2	215		C7 770	00 114	37.479	1 00	40 17		••
	ATOM 2620 ATOM 2621		ASN A ASN A				27.802	36.343				N
	ATOM 2622		ASN A			68.383	28.578	35.112				
			ASN A			68.591		34.047				
•							28.001		1.00			0
5	ATOM 2624		ASN A			68.425	26.360		1.00			<u>c</u>
	ATOM 2625	CG	ASN A	315		69.028	25.383		1.00			<u>C</u>
	ATOM 2626	OD1	ASN A	315		68.456	25.087	37.835	1.00	49.13		
	ATOM 2627	ND2	ASN A	315		70.239	24.926	36.479	1.00	97.72		N
	ATOM 2628	N_	GLN A	316		67.852	29.803	35.197	1.00	49.87		N
10	ATOM 2629	CA_	GLN A	316		67.627	30.550	33.957	1.00	77.90		<u>C</u>
	ATOM 2630	<u> </u>	GLN A	316		68.797	31.448	33.525	1.001	00.00		c
	ATOM 2631	_0_	GLN A	316		69.272	31.387	32,375	1.00	51.33		0
	ATOM 2632	СВ	GLN A	316		66.280	31.276	33.902	1.00	75.89		c
	ATOM 2633	CG	GLN A	316		65.683	31.589	35.231	1.00	80.97		c
15	ATOM 2634	CD	GLN A	316		65.233	33.036	35.350	1.00	54.58	773.YL-1 ₂	<u>C</u>
	ATOM 2635	OE1	GLN A	316		64.881	33.699	34.367	1.00	46.46		0
	ATOM 2636	NE2	GLN A	316		65.257	33.538	36.566	1.00	33.46		N
	TER 2637		GLN A	316								
	CONECT 110	111										
20	CONECT 111	110	112									
	CONECT 112		113	114								
	CONECT 113		118									
	CONECT 114	112	115	116								
	CONECT 115	114										
25	CONECT 116	114	117	118								
	CONECT 117		129									
	CONECT 118		116									
	CONECT 120	121										
	CONECT 121	120	122									
30	CONECT 122		123	124								
	CONECT 123	122	128	767	********							
	CONECT 124	122	125	126						······································		
				120								
	CONECT 125			100						····		
35	CONECT 126											
33	CONECT 127											
	CONECT 128											
	CONECT 129				132							
	CONECT 130											
	CONECT 131	129										
40	CONECT 132											
	MASTER	208	0	_1_	13	10	0 3	6 2636	1	22	25	
	END											

WO 99/64618 PCT/US99/11570

141

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.

NSDOCID: <WO 9964618A1 I >

5

5

10

15

20

25

30

What is claimed:

- 1. A method for producing ascorbic acid or esters thereof in a microorganism, comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase; and recovering said ascorbic acid or esters thereof.
- 2. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 3. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.
 - 4. A method, as claimed in Claim 3, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 5. The method of Claim 3, wherein said genetic modification comprises transformation of said microorganism with a recombinant nucleic acid molecule that expresses said epimerase.
 - 6. The method of Claim 5, wherein said epimerase has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
 - 7. The method of Claim 5, wherein said epimerase has a structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

20

25

- 8. The method of Claim 5, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 9. The method of Claim 5, wherein said epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 10. The method of Claim 9, wherein said substrate binding site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 11. The method of Claim 5, wherein said epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 12. The method of Claim 11, wherein said catalytic site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 13. The method of Claim 11, wherein said catalytic site comprises the amino acid residues serine, tyrosine and lysine.
- 14. The method of Claim 13, wherein tertiary structure positions of said amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.
 - 15. The method of Claim 5, wherein said epimerase binds NADPH.

10

15

20

25

- 16. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 17. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 75% of non-Xaa residues in SEQ ID NO:11.
- 18. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 90% of non-Xaa residues in SEQ ID NO:11.
- 19. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10.
- The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.
- 21. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly.
- 22. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 23. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 20% identical to a nucleic acid

10

15

20

sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

- 24. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 25% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.
- 26. The method of Claim 25, wherein said nucleic acid sequence encoding said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
- 27. The method of Claim 25, wherein said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.
- 28. A method, as claimed in Claim 1, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
 - 29. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant.
 - 30. A method, as claimed in Claim 1, wherein said microorganism is a bacterium.
- 25 31. A method, as claimed in Claim 30, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 32. A method, as claimed in Claim 1, wherein said microorganism is a fungus.
 - 33. A method, as claimed in Claim 32, wherein said microorganism is a yeast.
- 34. A method, as claimed in Claim 33, wherein said yeast is selected from the group consisting of Saccharomyces yeast.

10

15

20

- 35. A method, as claimed in Claim 1, wherein said microorganism is a microalga.
- 36. A method, as claimed in Claim 35, wherein said microalga is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 37. A method, as claimed in Claim 36, wherein said microalga is selected from the genus *Prototheca*.
- 38. A method, as claimed in Claim 1, wherein said microorganism further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase.
- 39. A method, as claimed in Claim 38, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
- 40. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 6.0.
- 41. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 5.5.
- 42. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.0.
- 43. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited.
 - 44. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase.
- 45. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.5 g/L of Mg during a cell growth phase.
 - 46. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.2 g/L of Mg during a cell growth phase.

10

15

- 47. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.1 g/L of Mg during a cell growth phase.
- 48. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises a carbon source other than D-mannose.
 - 49. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.
- 50. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 51. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 52. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 53. A microorganism, as claimed in Claim 50, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

20

25

- 54. A microorganism, as claimed in Claim 50, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
- 55. A microorganism, as claimed in Claim 50, wherein said microorganism is a bacterium.
- 5 56. A microorganism, as claimed in Claim 55, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 57. A microorganism, as claimed in Claim 50, wherein said microorganism is a fungus.
- 58. A microorganism, as claimed in Claim 57, wherein said microorganism is 10 a yeast.
 - 59. A microorganism, as claimed in Claim 58, wherein said yeast is selected from the group consisting of Saccharomyces yeast.
 - 60. A plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 61. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 62. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 63. A plant, as claimed in Claim 60, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-

10

15

20

25

30

deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

- 64. A plant, as claimed in Claim 60, wherein said plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase.
- 65. A plant, as claimed in Claim 60, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 66. A plant, as claimed in Claim 60, wherein said plant is a microalga.
- 67. A plant, as claimed in Claim 66, wherein said plant is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 68. A plant, as claimed in Claim 66, wherein said microalga is selected from the genus *Prototheca*.
 - 69. A plant, as claimed in Claim 60, wherein said plant is a higher plant.
- 70. A plant, as claimed in Claim 60, wherein said plant is a consumable higher plant.
- 71. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 72. A plant for producing ascorbic acid or esters thereof, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

Proposed Pathway from Glucose to L-Ascorbic Acid through GDP-D-Mannose

FIG. 1A

Proposed Pathway from Glucose to Ascorbic Acid through GDP-D-Mannose GDP-L-galactose-1-P to L-Ascorbic Acid

FIG. 1C

Selected Carbon Flow from Glucose in Prototheca

Selected Carbon Flow from Glucose in Prototheca, con't

FIG. 2B

Genealogy of Selected Isolates

Specific Formations in Magnesium-Limited Secondary Shake Flasks after 96 Hours Incubation

6/12

.

Fig. 4

Average Specific Epimerase Activity vs. Average Whole Broth AA Specific Formation

Average Specific AA Formation, mg AA per

Fig. 5

Specific AA Formation, mg AA per L\Culture A620

Proposed Mechanism for the Conversion of GDP-D-mannose to GDP-L-galactose in *Chlorella pyrenoidosa* (Barber)

Published Mechanism for the Conversion of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose

Fig. 8A

GDP-4-keto-6-deoxy-D-mannose

Published Mechanism for the Conversion of GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose

SEQUENCE LISTING

<110> Berry, Alan Running, Jeffrey A. Severson, David K. Burlingame, Richard P.

<120> "VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS"

<130> 3161-24-PCT

<140> not yet assigned

<141> 1999-05-25

<150> 60/125,073

<151> 1999-03-17

<150> 60/125,054

<151> 1999-03-18

<150> 60/088,549

<151> 1998-06-08

<160> 15

<170> PatentIn Ver. 2.0

<210> 1

<211> 1583

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (49)..(993)

<400> 1

tagtetttaa tttegeageg tttttataat tgtgeagagg tttegtee atg tet gae 57 Met Ser Asp

1

aaa tot goo aaa ato tto gto gog ggt cat cgt ggt ttg gtt gga tot 105 Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu Val Gly Ser 5 10 15

gcc att gtc cgc aag ctt cag gaa caa ggt ttc acc aat ctc gtt ctt 153
Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn Leu Val Leu
20 25 30 35

			gcc						-			-	_	-		201
Lys	Thr	His	Ala	Glu	Leu	Asp	Leu	Thr	Arg	Gln	Ala	Asp	Val	Glu	Ser	
				40					45					50		
			caa													249
Phe	Phe	Ser	Gln	Glu	Lys	Pro	Val	Tyr	Val	Ile	Leu	Ala	Ala	Ala	Lys	
			55					60					65			
_			att		_						_	-				297
Val	Gly		Ile	His	Ala	Asn	Asn	Thr	Tyr	Pro	Ala	Asp	Phe	Ile	Gly	
		70					75					80				
			cag													345
Val		Leu	Gln	Ile	Gln		Asn	Val	Ile	His		Ala	Tyr	Glu	His	
	85					90					95					
							- 4- 4-									
			aag													393
	val	гÃ2	Lys	reu		Pne	Leu	GIA	Ser		Cys	TTE	Tyr	Pro	_	
100					105					110					115	
+++	act	cct	cag	cca	a++	cct	424	+ < +	act	++~	++-	363	~~	+		441
			Gln													441
••••				120	110	110	GIU	261	125	Deu	Deu	1111	ΑΙα	130	Deu	
									120					130		
gaa	cca	act	aat	gag	taa	tat	act	att	act	aaσ	atc	act	aaa	att	aaσ	489
			Asn				-		-	_		-			_	
			135		•	•		140		-			145		-3-	
act	tgt	cag	gct	tat	agg	att	cag	cac	gga	tgg	gat	gca	atc	tct	ggc	537
Thr	Cys	Gln	Ala	Tyr	Arg	Ile	Gln	His	Gly	Trp	Asp	Ala	Ile	Ser	Gly	
		150					155					160				
			aat						_				-			585
Met	Pro	Thr	Asn	Leu	Tyr	Gly	Pro	Asn	Asp	Asn	Phe	His	Pro	Glu	Ser	
	165					170					175					
			cct													633
	Val	Leu	Pro	Ala		Met	Arg	Arg	Phe		Glu	Ala	Lys	Val		
180					185					190					195	
			gga													681
Trp	Ser	GTÅ	Gly		Cys	Gly	Val	Gly		Lys	Val	Val	Pro		Glu	
				200					205					210		
aa-		 -	 .				+					4.4				
			ttg													729
o∓ y	пåр	FIIC	Leu 215	1112	val	vab	Asp	ьеи 220	WIG	ASD	wrg	cys	vai 225	rne	ьeu	
								220					443			

			ata													777
Leu	Asp	Arg 230	Ile	GIN	Arg	Gly	Leu 235	GIU	Hls	Val	ASn	240	GIŸ	Ser	GIÀ	
		200					200									
caa	gaa	gtg	act	att	aga	gag	ttg	gct	gag	ttg	gtg	aaa	gag	gtt	gtt	825
Gln	Glu	Val	Thr	Ile	Arg	Glu	Leu	Ala	Glu	Leu	Val	Lys	Glu	Val	Val	
	245					250					255					
																073
			ggg Gly													873
260	FIIC	Giu	GLY	Буз	265	GLY	ırp	A P	Cys	270	БуЗ	110	тър	O _T y	275	
200					200					2.0					2.0	
ccg	agg	aaa	ctt	atg	gac	agc	tca	aag	ctc	gcg	tct	ttg	ggt	tgg	aca	921
Pro	Arg	Lys	Leu	Met	Asp	Ser	Ser	Lys	Leu	Ala	Ser	Leu	Gly	Trp	Thr	
				280					285					290		
cat	220	att	tct	ctt	ana	ast	aat	cta	200	C22	act	tat	aat	taa	+=+	969
			Ser						-							303
110	בעם	*41	295	Deu	y	ASP	Gry	300	Der	0111	****	171	305	11p	TYL	
ttg	aag	aat	gtt	tgc	aac	cga	taa	gtta	aatg	gtt 1	tctct	tct	ca t	atata	acaca	1023
Leu	Lys	Asn	Val	Cys	Asn	Arg										
		310					315									
- -				.											- -	1000
acta	ictga	igt (ctcaç	gcaa	ia to	caget	cato	c acc	cacai	ttgt	gati	Laad	acc '	LLECI	ttgag	1083
atto	gaga	at 1	tacti	tttt	t tt	tato	caaaa	a tto	ratto	catt	taga	gata	aag a	actto	gcttct	1143
			_					•	-		_	-	-	•		
ttat	cacaa	ica t	ttgtc	tgaç	gg aa	attt	aatt	tt	ggato	ctcc	gagt	atg	gtc '	tatta	attagc	1203
tcto	ttct	at a	acaaa	ttat	c aa	aaca	gtto	y taa	agaaq	gttt	caaç	gaaaa	aac a	attt	gatatc	1263
t c a c	.+	++ ,	act:	+ cc+	+ ~		+ ~ ~ -			+	a.a.	+ .		~++		1222
ccac	Laat	(ggcca		.c gc	aayı	Lyca	acç	gctae	aaac	gaca	iaato	iat (yaati	ctcgg	1323
ccca	atgo	gc t	ttaca	caac	jc ct	tgtt	aaac	ata	agcat	gaa	caaa	acq	egg (ctcad	ctagcc	1383
							•		•	_		_			_	
ctaa	cctg	jtc t	tctct	ttcg	jc tt	acct	tctt	ctt	cgto	cttc	gtt	gcto	cag 1	tcact	tgact	1443
tcac	ggcc	cg o	ctcaa	igcto	t ga	caco	jaaac	: tca	attto	caaa	ttaa	ittta	aat a	aaaa	cttaa	1503
tcar	- = = = =	ממ י	מתר:==		+ ב בי			, s++	- = + ~-	+	ctcc	·+ c.c.	art i	acca:	gagacg	1562
ccac	Jauac	.44 ;	gycad	·augl	a al	.cgcc	وعور	g act	-a - y (بالحادر	,90	geeg	Jayacy	1203
gtto	gtgad	jcc a	aacco	gtto	:g											1583

<210> 2 <211> 314

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Asp Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu
1 5 10 15

Val Gly Ser Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn 20 25 30

Leu Val Leu Lys Thr His Ala Glu Leu Asp Leu Thr Arg Gln Ala Asp
35 40 45

Val Glu Ser Phe Phe Ser Gln Glu Lys Pro Val Tyr Val Ile Leu Ala
50 55 60

Ala Ala Lys Val Gly Gly Ile His Ala Asn Asn Thr Tyr Pro Ala Asp 65 70 75 80

Phe Ile Gly Val Asn Leu Gln Ile Gln Thr Asn Val Ile His Ser Ala 85 90 95

Tyr Glu His Gly Val Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile 100 105 110

Tyr Pro Lys Phe Ala Pro Gln Pro Ile Pro Glu Ser Ala Leu Leu Thr 115 120 125

Ala Ser Leu Glu Pro Thr Asn Glu Trp Tyr Ala Ile Ala Lys Ile Ala 130 135 140

Gly Ile Lys Thr Cys Gln Ala Tyr Arg Ile Gln His Gly Trp Asp Ala 145 150 155 160

Ile Ser Gly Met Pro Thr Asn Leu Tyr Gly Pro Asn Asp Asn Phe His 165 170 175

Pro Glu Ser His Val Leu Pro Ala Leu Met Arg Arg Phe His Glu Ala 180 185 190

Lys Val Asn Trp Ser Gly Gly Ser Cys Gly Val Gly Tyr Lys Val Val 195 200 205

Pro Leu Glu Gly Lys Phe Leu His Val Asp Asp Leu Ala Asp Ala Cys 210 215 220

Val Phe Leu Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile 225 230 235 240

Gly Ser Gly Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys 245 250 255 Glu Val Val Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro 260 265 Asp Gly Thr Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu 280 Gly Trp Thr Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr 290 295 300 Asp Trp Tyr Leu Lys Asn Val Cys Asn Arg 305 310 <210> 3 <211> 966 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1).. (966) <400> 3 atg agt aaa caa cga gtt ttt att gct ggt cat cgc ggg atg gtc ggt 48 Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly 10 15 tcc gcc atc agg cgg cag ctc gaa cag cgc ggt gat gtg gaa ctg gta 96 Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 tta cgc acc cgc gac gag ctg aac ctg ctg gac agc cgc gcc gtg cat 144 Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 35 40 45 gat ttc ttt gcc agc gaa cgt att gac cag gtc tat ctg gcg gcg 192 Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala Ala 50 55 aaa gtg ggc ggc att gtt gcc aac acc tat ccg gcg gat ttc atc 240 Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile

5

tac cag aac atg atg att gag agc aac atc att cac gcc gcg cat cag

75

288

70

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 aac gac gtg aac aaa ctg ctg ttt ctc gga tcg tcc tgc atc tac ccq Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 aaa ctg gca aaa cag ccg atg gca gaa agc gag ttg ttg cag ggc acg 384 Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 ctg gag ccg act aac gag cct tat gct att gcc aaa atc gcc ggg atc 432 Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 aaa ctg tgc gaa tca tac aac cgc cag tac gga cgc gat tac cqc tca 480 Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser 150 gtc atg ccg acc aac ctg tac ggg cca cac gac aac ttc cac ccg aqt 528 Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 aat tog cat gtg ato coa gca ttg ctg cgt tcc cac gag gcg acg Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 180 185 gca cag aat gcg ccg gac gtg gtg gta tgg ggc agc ggt aca ccg atg Ala Gln Asn Ala Pro Asp Val Val Val Trp Gly Ser Gly Thr Pro Met 200 cgc gaa ttt ctg cac gtc gat gat atg gcg gcg gcg agc att cat gtc 672 Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ser Ile His Val 210 215 atg gag ctg gcg cat gaa gtc tgg ctg gag aac acc cag ccg atg ttg Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu 225 teg cac att aac gte gge acg gge gtt gae tge act ate ege gae gtg 768 Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 255 gcg caa acc atc gcc aaa gtg gtg ggt tac aaa ggc cgg gtg gtt ttt 816 Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe 260 265 gat gcc agc aaa ccg gat ggc acg ccg cgc aaa ctg ctg gat gtg acg 864

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

cgc ctg cat cag ctt ggc tgg tat cac gaa atc tca ctg gaa gcg ggg 912 Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

ctt gcc agc act tac cag tgg ttc ctt gag aat caa gac cgc ttt cgg 960 Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

ggg taa 966 Gly

<210> 4 <211> 321 <212> PRT

<213> Escherichia coli

<400> 4

Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly

1 5 10 15

Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 30

Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His
35 40 45

Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala 50 55 60

Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile
65 70 4 75 80

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 95

Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 105 110

Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 125

Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 140

Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser 145 150 155 160

Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 175

Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 180 185 190

Ala Gln Asn Ala Pro Asp Val Val Trp Gly Ser Gly Thr Pro Met 195 200 205

Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ser Ile His Val 210 215 220

Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu 225 230 235 240

Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 255

Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe
260 265 270

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

Gly

<210> 5

<211> 1340

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (75)..(1040)

<400> 5

ctagaattca gcggccgctg aattctagct agaattcagc ggccgctgaa ttctagaacc 60

cag	gtgc	aac	tgac									cgg Arg				110
			Ser									aag Lys 25				158
												gtc Val				206
												ctg Leu				254
												gtg Val				302
												aaa Lys				350
atg Met	aac Asn	gac Asp 95	aac Asn	gtc Val	ctg Leu	cac His	tcg Ser 100	gcc Ala	ttt Phe	gag Glu	gtg Val	ggg Gly 105	gcc Ala	cgc Arg	aag Lys	398
												aag Lys				446
												cac His				494
												cag Gln				542
												atc Ile				590
												ggc Gly 185				638

wo	99/6	4618													PCT/US	99/11576
				cac His												686
				ggt Gly												734
				cag Gln 225												782
				atc Ile												830
aag Lys	gag Glu	gca Ala 255	gcc Ala	gag Glu	gcg Ala	gtg Val	gtg Val 260	gag Glu	gcc Ala	atg Met	gac Asp	ttc Phe 265	cat His	Gly	gaa Glu	878
				aca Thr											gcc	926
agt Ser 285	Asn	agc Ser	aag Lys	ctg Leu	agg Arg 290	acc Thr	tac Tyr	ctg Leu	ccc	gac Asp 295	ttc Phe	cgg Arg	ttc Phe	aca Thr	ccc Pro 300	974
ttc Phe	aag Lys	cag Gln	gcg Ala	gtg Val 305	Lys	gag Glu	acc Thr	tgt Cys	gct Ala 310	Trp	ttc Phe	act Thr	gac Asp	aac Asn 315	tac Tyr	1022
	-	_		aag Lys		agc	tgga	aga	cagg	atca	gg t	gcca	gcgg	a		1070
cca	tcgg	ctg	gcag	agcc	ca g	cggc	cacc	a cc	cgtc	aacc	ctg	ccag	gag	ctga	agggcac	1130
cac	ccag	caa	cctg	ggcc	tg c	atto	cato	c gc	tctg	cago	: ccc	aago	atc	tttc	cagtgg	1190
ggc	cccc	att	cacç	ıttgg	tc c	tcaç	ıggaa	a co	aggo	tccg	ggg	gcago	lccc	ggc	gctttgc	1250
tcc	ccac	acc	agco	ccct	.gc g	cgto	tcca	ic to	tgat	cctg	, cat	ccca	ctc	cct	ggagcc	1310
aat	aaaç	ıtgc	attt	tcac	ag a	aaaa	aaaa	ıa								1340

<210> 6

<211> 321

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val Thr Gly Gly Ser 1 5 10 15

Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu 35 40 45

Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys Val Gln Pro Thr
50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile 65 70 75 80

Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Met Asn Asp Asn 85 90 95

Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys Val Val Ser Cys
100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125

Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn Phe Gly Tyr Ser 130 135 140

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 160

Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro 165 170 175

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190

His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala Leu Thr Val Trp 195 200 205

Gly Thr Gly Asn Pro Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile

225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu Val Thr Phe Asp 260 265 270

Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala Ser Asn Ser Lys 275 280 285

Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 7

<211> 1017

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1017)

<400> 7

atg aga gtt ctg gtt acc ggt ggt agc ggt tac att gga agt cat acc

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr

1 5 10 15

tgt gtg caa tta ctg caa aac ggt cat gat gtc atc att ctt gat aac 96 Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

ctc tgt aac agt aag cgc agc gta ctg cct gtt atc gag cgt tta ggc 144 Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly 35 40

ggc aaa cat cca acg ttt gtt gaa ggc gat att cgt aac gaa gcg ttg 192 Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

atg acc gag atc ctg cac gat cac gct atc gac acc gtg atc cac ttc 240 Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe

cac atc tac aac ctc ggc gct ggc gta ggc aac agc gtg ctg gac gtg
His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val

250

235

240

768

gac ggt cac gtc gtg gcg atg gaa aaa ctg gcg aac aag cca ggc gta

Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val

230

245

260 265 270

gtt aat gcc ttc agc aaa gcc tgc ggc aaa ccg gtt aat tat cat ttt 864
Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe
275 280 285

gca ccg cgt cgc gag ggc gac ctt ccg gcc tac tgg gcg gac gcc agc 912
Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser
290 295 300

aaa gcc gac cgt gaa ctg aac tgg cgc gta acg cgc aca ctc gat gaa 960 Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

atg gcg cag gac acc tgg cac tgg cag tca cgc cat cca cag gga tat 1008 Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

ccc gat taa 1017 Pro Asp

<210> 8

<211> 338

<212> PRT

<213> Escherichia coli

<400> 8

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr 1 5 10 15

Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu
50 55 60

Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe 65 70 75 80

Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr

Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 105 110

Ala	Ala	Asn	Val	Lys	Asn	Phe	Ile	Phe	Ser	Ser	Ser	Ala	Thr	Val	Tyr
		115					120					125			

- Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr . 130 135 140
- Pro Gln Ser Pro Tyr Gly Lys Ser Lys Leu Met Val Glu Gln Ile Leu 145 150 155 160
- Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg 165 170 175
- Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185 190
- Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200 205
- Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215 220
- Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala 225 230 235 240
- Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 250 255
- His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val 260 265 270
- Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe 275 280 285
- Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser 290 295 300
- Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320
- Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

Pro Asp

<210> 9 <211> 1047

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1047)

<400> 9

atg gca gag aag gtg ctg gta aca ggt ggg gct ggc tac att ggc agc 48
Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser
1 5 10 15

cac acg gtg ctg gag ctg ctg gag gct ggc tac ttg cct gtg gtc atc 96

His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile

20 25 30

gat aac ttc cat aat gcc ttc cgt gga ggg ggc tcc ctg cct gag agc 144
Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser
35 40 45

ctg cgg cgg gtc cag gag ctg aca ggc cgc tct gtg gag ttt gag gag 192 Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

atg gac att ttg gac cag gga gcc cta cag cgt ctc ttc aaa aag tac 240 Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

agc ttt atg gcg gtc atc cac ttt gcg ggg ctc aag gcc gtg ggc gag 288
Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu
85 90 95

tcg gtg cag aag cct ctg gat tat tac aga gtt aac ctg acc ggg acc 336 Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

atc cag ctt ctg gag atc atg aag gcc cac ggg gtg aag aac ctg gtg

11e Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val

115

120

125

ttc age age tca gcc act gtg tac ggg aac ccc cag tac ctg ccc ctt 432
Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu
130 135 140

gat gag gcc cac ccc acg ggt ggt tgt acc aac cct tac ggc aag tcc 480
Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser
145 150 155 160

WO 99/64618

aag ttc ttc atc gag gaa atg atc cgg gac ctg tgc cag gca gac aag 528

Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys

170

act tgg aac gta gtg ctg ctg cgc tat ttc aac ccc aca ggt gcc cat 576 Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His

185

165

180

gcc tct ggc tgc att ggt gag gat ccc cag ggc ata ccc aac aac ctc 624
Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu
195 200 205

atg cct tat gtc tcc cag gtg gcg atc ggg cga cgg gag gcc ctg aat 672
Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn
210 215 220

gtc ttt ggc aat gac tat gac aca gag gat ggc aca ggt gtc cgg gat 720
Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp
225 230 235 240

tac atc cat gtc gtg gat ctg gcc aag ggc cac att gca gcc tta agg 768

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg

245 250 255

aag ctg aaa gaa cag tgt ggc tgc cgg atc tac aac ctg ggc acg ggc 816 Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 265 270

aca ggc tat tca gtg ctg cag atg gtc cag gct atg gag aag gcc tct 864
Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser
275 280 285

ggg aag aag atc ccg tac aag gtg gtg gca cgg cgg gaa ggt gat gtg 912 Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

gca gcc tgt tac gcc aac ccc agc ctg gcc caa gag gag ctg ggg tgg 960
Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp
305 310 315 320

aca gca gcc tta ggg ctg gac agg atg tgt gag gat ctc tgg cgc tgg 1008
Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp
325 330 335

cag aag cag aat cet tea gge ttt gge aeg eaa gee tga 1047 Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 10

<211> 348

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser

1 5 10 15

His Thr Val Leu Glu Leu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile 20 25 30

Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser 35 40 45

Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr
65 70 75 80

Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr
100 105 110

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val 115 120 125

Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu 130 135 140

Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys
165 170 175

Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His
180 185 190

Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 205

Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220

Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 235 240

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 255

Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly
260 265 270

Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 . 285

Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 320

Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 11

<211> 317

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CONSENSUS

<400> 11

Xaa Xaa Arg Xaa Xaa Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa 1 5 10 15

65 70 75 80

Xaa Xaa Xaa Pro Xaa Xaa Glu Xaa Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa 115 120 125

Xaa Xaa Asn Xaa Xaa Gly Xaa His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa 195 200 205

Xaa Xaa Xaa Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220

 Xaa
 X

Xaa Thr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315

WO 99/64618	. 1	PCT/US99/11576
<210> 12		
<211> 34		
<212> DNA		
<213> Escherichia coli		
<400> 12		
tagaattcag taaacaacga gtttttattg	ctgg	34
<210> 13		
<211> 32		
<212> DNA		
<213> Escherichia coli		
<400> 13		
aactcgagtt acccccaaag cggtcttgat	tc	32
<210> 14		
<211> 30		
<212> DNA		
<213> Escherichia coli		
<400> 14		
ctggagtcga attcatgagt aaacaacgag		30
<210> 15		
<211> 33		
<212> DNA	·	
<213> Escherichia coli		
<400> 15		
aactgcagtt acccccgaaa gcggtcttga	ttc	33

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

	TO THE PROPERTY MATTER									
	SIFICATION OF SUBJECT MATTER C12P 19/00, 17/04; C12N 1/12, 1/20, 5/00, 5/04									
US CL :	International Patent Classification (IPC) or to both n	ational classification and IPC	ļ							
The same of the sa										
-		hardenification gambale)								
Minimum do	ocumentation searched (classification system followed	by classification symbols,								
U.S. : 4	135/72, 126, 252.1, 252.3, 410, 419									
Documentati	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched							
Document-										
51	ata base consulted during the international search (na	me of data have and where practicable.	search terms used)							
APS, MEI	DLINE, EMBASE, BIOSIS, SCISEARCH, BIOTECH	DS, NTIS, WPIDS, HCAPLUS								
	•									
C. DOC	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
Y	WO 85/01745 A1 (KRAFT, INC.) 25 A	April 1985 (23.04.85), see the	1-72							
	entire document specially ages 4-7.									
Y	NIKISHIMI et al. Occupance in Y	east of L-Galactonolactone	1-72							
•	Oxidase which is similar to a key									
	biosynthesis in animals, L-Gulonolacti									
	Biophys. December 1978, Vol. 191, No. 2, pages 479-486, see the entire article, specially abstract and introduction sections.									
	enuite article, specially abstract and introduction sections.									
	WO 99/33995 A1 (ASCORBX LIMITED) 08 July 1999 (08.07.99), 1-72									
A,P		(00.07.55),	1-72							
	see the entire article.									
Į.										
Furth	ner documents are listed in the continuation of Box C	. See patent family annex.								
• \$6	ecial categories of cited documents:	*T* later document published after the int								
.V. 90	cument defining the general state of the est which is not considered	date and not in conflict with the app the principle or theory underlying th								
to	be of particular relevance	"X" document of particular relevance; th								
1 -	rlier document published on or after the international filing date	considered novel or cannot be considered novel or cannot be considered when the document is taken alone								
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other		o alaimad imposition accord be							
i i i i i i	scial reason (as specified)	"Y" document of particular relevance; the	step when the document is							
1 -	cument referring to an oral disclosure, use, exhibition or other	combined with one or more other suc being obvious to a person skilled in								
•P• do	coument published prior to the internstional filing date but later than a priority date claimed	*&* document member of the same pater	at family							
	actual completion of the international search	Date of mailing of the international se	arch report							
		9 9 OCT 1000								
23 AUGU	JST 1999	2 2 OCT 1999								
Name and	mailing address of the ISA/US	Authorized officer	JOYCE BRIDGERS							
Commission Box PCT	mer of Patents and Trademarks	MARYAM MONSHIPOURI	PAPI PECIALIST							
	n, D.C. 20231		Chichycal MATRIX							
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-0196	AB FOR							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This international Preliminary Examining Authority has found 2 inventions claimed in the International application covered by the claims indicated below:

Group I, claims 1-59 and 71, drawn to a method of producing ascorbic acid or esters thereof in a microorganism comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc. as well as a microorganism genetically modified for producing ascorbic acid.

Group II, claims 60-70 and 72, drawn to a plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc.

The inventions listed as Groups I-II do not relate to a single inventive concept because they are considered to be two different categories of invention and are not drawn to combination of categories (i.e. categories 1-5), specified in 37 CFR section 1.475(b).

Form PCT/ISA/210 (extra sheet)(July 1992)*