Univariate Data Analysis
Of
Stock Prices
using Facebook Prophet
Model

By Foo ZheShen

Introduction

What is Univariate?

Univariate is a term commonly used in statistics to describe a type of data which consists of observations on only a single characteristic or attribute such as a time series data.

We can use stock prices as an example since the Closing price of tomorrow is independent and cannot be predicted using other attributes like on the day's high and low, since those attributes hasn't occur yet or are still unknown. That is why many of the prediction models of stock prices that can be found online are misleading since they require other independent attributes to make predictions.

What is Prophet?

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.

Hence, we will be using univariate analysis and Facebook's Prophet model to understand the characteristics of the stock's price movements over a certain period of time.

Data Exploration

For this analysis we are going to split the data into 3 parts.

Training, Validation, and Testing sets.

- 1. Training to fit the model
- 2. Validation to fine tune model parameters
- 3. Testing for our forecast analysis

Fit and Training First Model

Default model without adjustments:

```
model = Prophet()
df_train_fcst = model.fit(df_train).predict(df_train)
```


Validation

Create new dataframe for prediction
note: 'include_history' only includes the dates of the training set and not the 'y'.
val_future = model.make_future_dataframe(periods=365, freq='d', include_history=True)

val_future

ds
0 2020-01-02
1 2020-01-03
2 2020-01-06
3 2020-01-07
4 2020-01-08
...
...
1053 2023-09-26
1054 2023-09-27
1055 2023-09-28
1056 2023-09-29
1057 2023-09-30

Changepoints

In real time series, we often find them frequently having abrupt changes in their trajectories.

If the trend changes are being overfit (too much flexibility) or underfit (not enough flexibility), we can adjust the strength of the sparse prior using the input argument changepoint_prior_scale.

Prophet will automatically detect these changepoints and will allow the trend to adapt appropriately. By default, this parameter is set to 0.05. Increasing it will make the trend more flexible and vise versa.

Changepoints Scales

We can visualize how different changepoint scales affect the model.

Other Parameters

Seasonality:

Seasonalities are estimated using a partial Fourier sum.

Just like changepoints, there is a parameter, seasonality_prior_scale, which can similarly adjusts the extent to which the seasonality model will fit the data.

By default this parameter is 10, which provides very little regularization. Reducing this parameter dampens the effects.

Additive & Multiplicative:

The additive model is useful when the seasonal variation is relatively constant over time.

The multiplicative model is useful when the seasonal variation increases over time.

Extra regressors are put in the cross validation of the model, so that we can find if the model for this time series depends on the extra regressor as either an additive or multiplicative factor.

Cross Validation

For this project, cross validation is performed using 366 days initial training with 90 day horizons on 45 day intervals.

	changepoint_prior_scale	seasonality_mode	seasonality_prior_scale	rmse
0	0.001	additive	0.01	40.045498
1	0.001	additive	10.00	41.443656
2	0.001	multiplicative	0.01	44.155612
3	0.001	multiplicative	10.00	46.140107
4	0.010	additive	0.01	21.962496
5	0.010	additive	10.00	23.020008
6	0.010	multiplicative	0.01	23.388525
7	0.010	multiplicative	10.00	24.891139
8	0.100	additive	0.01	20.429959
9	0.100	additive	10.00	25.558461
10	0.100	multiplicative	0.01	20.453592
11	0.100	multiplicative	10.00	42.868482
12	0.200	additive	0.01	22.963002
13	0.200	additive	10.00	36.822566
14	0.200	multiplicative	0.01	21.224739
15	0.200	multiplicative	10.00	42.879440
16	0.300	additive	0.01	22.560061
17	0.300	additive	10.00	41.659364
18	0.300	multiplicative	0.01	20.754619
19	0.300	multiplicative	10.00	45.016095
20	0.400	additive	0.01	22.197270
21	0.400	additive	10.00	43.823786
22	0.400	multiplicative	0.01	20.575399
23	0.400	multiplicative	10.00	47.916999
24	0.500	additive	0.01	21.237539
25	0.500	additive	10.00	44.738847
26	0.500	multiplicative	0.01	20.301402
27	0.500	multiplicative	10.00	50.407937

After performing cross validation checks for the parameters, we can start building our final model.

```
best_params = all_params[np.argmin(rmses)]
print(best_params)
{'changepoint_prior_scale': 0.5, 'seasonality_mode': 'multiplicative', 'seasonality_prior_scale': 0.01}
```

Building the Best Model

```
best_model = Prophet(changepoint_prior_scale = 0.5, seasonality_mode = 'multiplicative', seasonality_prior_scale = 0.01)

best_forcast = best_model.fit(df_train).predict(val_future)

Cha

fig, ax = plt.subplots(figsize=(10,5))

ax.scatter(df_val['ds'], df_val['y'], color='r')

fig = best_model.plot(best_forcast, ax)

plt.legend(loc = 2, prop={'size': 8})

plt.title('Change Point Scale: 0.5')
```


Re-Training Best Model

Final Prediction

Final Thoughts

From the charts, the model seems to be able to be able to detect the trend movement of the stock price well within the confidence interval.

The forecast for the final prediction and actual stock price has a mean error of 7.60 USD.

Depending on the kind of trading strategy, this could be a very impressive forecast for long-term holding strategy. However, for short-term trading, the accuracy error of predicted price, although small in number, could still pose a huge risk on investment.

Further model adjustments can be made to include global and local market news and earning reports.