An Observation About Subsection 6.6: On Average Training MSE Underestimates Validation MSE

The expected value of the validating mean squared error, taken over the distribution of training data y and validating data y_v is shown in equation (6.65) on page 285:

$$E_{y,y_v}(MSE_v) = \sigma^2 + \frac{1}{N} \sum_{i} Var(\hat{y}_{v,i}) + bias^2.$$
(6.65)

The expected value of the training mean squared error, taken over the distribution of training data y is shown in equation (6.66):

$$E_y(MSE_t) = \sigma^2 + \frac{1}{N} \sum_i Var(\hat{y}_i) + bias^2 - \frac{2}{N} \sum_i Cov(y_i, \hat{y}_i).$$
 (6.66)

The predicted values in training and validating data are $\hat{y}_i = \hat{f}(x_i)$ and $\hat{y}_{v,i} = \hat{f}(x_{v,i})$, a function of known covariates x_i and $x_{v,i}$, respectively. These covariates are not necessarily the same. However if the the covariates in the training and validating data take the same values, $\operatorname{Var}(\hat{y}_{v,i}) = \operatorname{Var}(\hat{y}_i)$ for all i. This is not made explicit in the book. In addition, if the number of records in training and validating data is the same, (N), then it follows that

$$E_y(MSE_t) = E_{y,y_v}(MSE_v) - \frac{2}{N} \sum_i Cov(y_i, \hat{y}_i).$$
(6.67)

References