





# 19日本国特許庁(JP)

① 特許出願公開

# ⑫公開特許公報(A)

平3-218134

識別記号

**庁内**理番号

@公開 平成3年(1991)9月25日

8523-5K H 04 B 9/00

Q

審査請求 有 請求項の数 60 (全19頁)

会発明の名称

光フアイバ・リンク・カード

20特 類 平2-313007

願 平2(1990)11月20日 20出

優先権主張

図1990年1月9日図米国(US) ③462681

四発 明 者

テイマシイ・ロイ・ブ

アメリカ合衆国ミネソタ州ロチエスター、フォース

ニユー・ノース・ウエスト2910番地

個発

**他出** 

マーシア・バーグ・エ

アメリカ合衆園ミネソタ州ロチエスター、フィフティ・ナ

ブラー

ロツク

インス・ストリート・ノース・ウエスト 2402番地

インターナショナル・ ビジネス・マシーン

アメリカ合衆国10504、ニューヨーク州 アーモンク (番

地なし)

ズ・コーポレーション 弁理士 頓宮 孝一

外1名

四代 理 人 最終頁に続く

願 人

- 1. 発明の名称 光ファイバ・リンク・カード
- 2. 特許請求の範囲
- (1) 並列電気信号と直列光学信号との間で変換す るための、電気コンポーネント及び光学コンポー ネントが取り付けられた光ファイバ・リンク・カー ドであって、前記光学信号は送信され、そして少 \*\* なくとも1つの完全2重光通信リンクを通じてカー ドによって受信され、
- (a) 並列電気信号を、直列光学信号に変換す<sup>\*</sup> るために前記カードに入力するための手段と、
- (b) 入力並列電気信号を直列電気信号に変換 し、前記直列電気信号に応答して光送信機手段を ドライブするための、並列電気信号を入力するた めの前記手段に結合された、統合された並直列変 換回路/光送信機ドライバ手段と、
- (c) 少なくとも1つの完全2重光通信リンク を通じて、前記並列電気信号に対応する直列光学 信号を送信するための、前記の統合された並直列

変換回路/光送信機ドライバ手段に結合された光 送信機手段

を含む、前記の光ファイバ・リンク・カード。

- (2) 前記光送信機手段が少なくとも1つのレーザ を含む、請求項1に記載の装置。
- (3) 前記光送信機手段が軸方向のリードをつけら れ、リードは前記カードの表面に取り付けられて、 リード・キャパシタンスと前記光送信機手段から 前記カードに取り付けられた電気コンポーネント へのインダクタンスを最少にする、譲求項1に記 殺の禁毒。
- (4) 前記の統合された並直列変換回路/光送信機 ドライバ手段がさらに、
- (a) 直列送信速度クロック信号を発生させる· ための、並列電気信号入力の周波数にロックされ た第1位相ロック・ループ手段と、
- (b) 入力並列電気信号を直列電気信号に変換 し、並列電気信号を入力する手段と第1位相ロッ ク・ループ手段とに結合された、前記直列電気信 号を前記直列送信速度で出力するための、第1シ



- (c) 前記直列電気信号に応答して前記光送信機手段を変調するための、前記第1シフト・レジスタ手段に結合されたACドライブ手段と、
- (d) 前記光送信機手段の電源レベルを制御等で るための、前記光送信機手段に結合されたDCド ライブ手段

を含む、請求項1に記載の装置。

- (5) 前記DCドライブ手段が、カード上に支障がある場合に前記光送信機手段への電源を遮断することのできる安全回路を含む、請求項 4 に記載の装置。
- (6) 前記カードさらに、
- (a) 前記の少なくとも1つの完全2重光通信リンクからの直列光学信号を検出し、それに応答して直列電気信号を生成するための光受信機手段と、
- (b) 前記光受信機手段に結合された、前記光 受信機手段によって生成された直列電気信号を増 幅するための増幅手段と、
- (b) 前記増幅器及び直列送信速度クロック信号を生成するための前記手段に結合された、前記クロック信号を前記の増幅された直列電気信号によって搬送されたデータにロックするため、及び前記データとクロック信号を直列に出力するための、第2位相ロック・ループ手段と、
- (c) 前記第2位相ロック・ループ手段に結合された、前記第2位相ロック・ループ手段によって出力されたデータ信号とクロック信号に応答して、前記の増幅された直列電気信号を前記の対応する並列電気信号に変換するための、変換器手段を含む、請求項6に記載の装置。
- (11) 前記直並列変換回路がさらに、複数フェーズ 並列速度送信クロックを生成し出力するためのクロック・ゼネレータ手段を含む、請求項10に記載の装置。
- (12) 前記変換器手段がさらに、TTLドライバ手段を含めて第2シフト・レジスタ手段を含む、請求項10に記載の装置。
- (13) 前記第2シフト・レジスタ手段がさらに、分

- (c) 前記増幅器手段に結合された、前記増幅器手段によって増幅された直列電気信号を対応する並列電気信号に変換する直並列変換回路と、
- (d) 前記の対応する並列電気信号を出力する ための手段

を含む、請求項1に記載の装置。

- (7) 前記光受信機手段が少なくとも1つの光検出機構ダイオードを含む、譲求項 8 に記載の装置。
- (8) 前記光受信機手段が軸方向にリードがつけられ、リードは前記カードに取り付けられており、前記光受信機手段から前記カード上に取り付けられた電気コンポーネントへのリードのキャバシタンス及びインダクタンスを最小にするための、請求項6に記載の装置。
- (9) 前記増幅器手段がさらに、少なくとも1つのおトランスインピーデンス増幅器を含む、請求項6に記載の装置。
- (10)前記直並列変換回路がさらに、
- (a) 直列送信速度クロック信号を生成するための手段と、

割することなく完全なパイトを前記第2シフト・ レジスタ手段からアンロードされるようにするバ イト同期検出器を含む、請求項12に記載の装置。 (14)前記第2シフト・レジスタ手段がパイト同期 信号を生成し出力する、請求項13に記載の装置。 (15)前記のカードがさらに、所定のリンクがオー ブンの場合に、前記の少なくとも1つの完全2重 光通信リンクにおいて安全な光力を保証する働き をする安全手段を含む、請求項8に記載の装置。 (16) 前記の安全手段がさらに、前記の光送信機が 少なくとも1つのレーザを含む場合にはいつでも 動作して、前記の所定のリンクがオープンすると 前記の少なくとも1つのレーザを低反復サイクル で展動させ、前記の所定のリンクが再接続された 場合には前記の少なくとも1つのレーザを連続的 なパワーに戻す、請求項15に記載の装置。

(17) 前記のカードがさらに変換検出器手段とDC 検出器手段を含み、これらの手段は、それぞれ前記増幅器手段と光受信機手段に結合されており、 それぞれ前記光受信機手段に入る最低AC光レベ ル及び最低DC光レベルを検出するためである、 鎖求項15に記載の装置。

(18) 割記の安全手段が、前記変換検出器手段とDC検出器手段に結合されており、前記2つの検出器手段のいずれかによる支障に応答して動作し、動記の最低AC光レベル及び最低DC光レベルを検出する、調求項17に記載の装置。

(19) 前記の安全手段が、カード以外で生成された 安全手段制御信号にも応答して動作する、請求項 18に記載の装置。

(20) 前記の安全手段がさらに、少なくとも1つの 非活動リンクを表す信号を出力するように動作す る、額求項19に記載の装置。

(21) 再記のカードがさらに、参断ラップ・モードでカードを動作させるための、前記の統合並直列変換回路/光送信機ドライブ手段の出力を前記直並列変換回路に結合するマルチプレクサ手段を含む、請求項10に記載の装置。

- (22) 軒足のカードがさらに、
  - (a) カードの第1要面に位置する第1信号面

号面に取り付けられた他のコンポーネントから電 気的に絶縁する、欝束項 2 3 に記載の装置。

(25) 前足の複数の電力及び接地面の第1面が、前記TTLドライブ手段に使用される前記の複数の電力面及び地面の第2面の一部分を覆うアパーチャを含むように製造され、これによって前記の複数の電力及び接地面の第2面から第1面へノイズが結合しないように防ぐ、請求項24に記載の設置。(26) 前記カードが、少なくとも2つの同一であるが電気的に絶縁された光送信機手段/光受信機手段の対を含み、少なくとも2倍の完全2重光通信能力を提供する、請求項25に記載の装置。

(27) 並列電気信号と並列光学信号との間で変換するための、電気コンポーネントと光学コンポーネントの両方が上に取り付けられた光ファイバ・リンク・カードであって、前記光学信号は少なくとも1つの完全2重光通信リンクによって送信及び受信され、

(a) 前記並列光学信号への変換のために、並 列電気信号を前記カードに入力するための手段と、 ٤,

- (b) カードの第2要面に位置する第2信号面と、
- (c) 第1信号面に接続されて、前記第1信号 面差前記第2信号面から電気的に絶縁する複数の 内部電力及び接地面

を含む、請求項12に記載の装置。

(23) 前記の並列電気信号を入力するための手段と前記の統合並直列変換回路/光送信機ドライブ手段が、すべて前記第1信号面に面で取り付けられ、そしてさらに前記増幅器手段と前記の対応するための前記手段が、すべて前記第2信号面に取り付けられており、これによってカードは、前記第1信号面と前記第2信号面との間の電気的絶縁を実質的に行なう、環求項22に記載の装置。

(24) 前記の複数の電力面と接地面の第1面が、前記の複数の電力及び接地面の第2の面に接続され、さらに前記の複数の電力及び接地面の第2面が分離されて、前記TTLドライブ手段を前記第2信

- (b) 入力された並列電気信号を直列電気信号 に変換するための、並列電気信号を入力するため の前記手段に結合された少なくとも1つの変換器 手段と、
- (c) 前記直列電気信号に応答して光送信機手段をドライブするための、前記第1変換器手段に 結合された送信機ドライバ手段と、
- (e) 前記の少なくとも1つの完全2重光通信リンクから入力された直列光学信号を検出するため、及びこれに応答して直列電気信号を生成する



ための光受信機手段であって、前記光受信機手段 が軸方向にリードがつけられ、リードは前記カー ドの表面に取り付けられており、前記光受信機手 段から前記カード上に取り付けられた電気コンポー ネントへのリードのキャパシタンス及びインダクstダt;■ (a) カードの第1表面に位置する第1信号面 タンスを最小にする、前記の光受信機手段と、

- (f) 前記の光受信機手段によって生成された 直列電気信号を増幅するための、前記光受信機手 段に結合された増幅器手段と、
- (g) 前記の増幅器手段によって増幅された直 列電気信号を対応する並列電気信号に変換するた めの、前記増幅器手段に結合された直並列変換回 路と、
  - (h) 前記の並列電気信号を出力するための手

を含む、前記の光ファイバ・リンク・カード。 (28) 前記の変換器手段が前記送信機ドライバ手段 によって統合された、額求項27に記載の装置。 (29) 前記のカードがさらに、所定の通信リンクが オープンの場合に、少なくとも1つの完全2重光

項30に記載の装置。

₽₽

(32) 複数の変換器手段と複数の光学コンポーネン トが上に取り付けられている、並列電気信号と直 列光学信号との間で変換するための、単一多層両 倒表面取付け光ファイバ・リンク・カードであっ て、前記直列光学信号は、少なくとも1つの完全 2 重光通信リンクを通じて、光送信機手段及び光 受信機手段によってそれぞれ送信及び受信され、

- (a) 並列電気信号を前記複数の変換器手段の 少なくとも第1変換器手段に入力するための手段 ٤,
- (b) 少なくとも、光送信機ドライバ手段に統 合された並直列変換回路を含み、直列電気信号を 入力するための前記手段に結合され、入力された 並列電気信号を直列電気信号に変換して、前記直 列電気信号に応答して前記光送信機手段をドライ ブするための、前記複数の変換器手段の第1変換 器手段と、
- (c) 前記リンク上の直列光学信号に応答して、 前記の光受信機手段が生成した直列電気信号を増

選信リンクにおいて、安全な光力レベルを保証す るように動作する安全手段を含む、請求項27に

- (30) 前期のカードがさらに、
- (b) カードの第2表面に位置する第2信号面 ٤,
- (c) 第1信号面に接続されて、前記第1信号 面を前記第2信号面から電気的に絶縁する複数の 内部電力及び接地面

を合む、請求項27に記載の装置。

(31) 前記の並列電気信号を入力するための手段と 前記の統合並直列変換回路/光送信機ドライブ手 段が、すべて前記第1個号面に面で取り付けられ、 そしてさらに前記増幅器手段と前記の対応する並 列電気信号を出力するための前記手段が、すべて 前記第2信号面に面で取り付けられており、これ によってカードは、前記第1信号面と前記第2信 号面との間の電気的絶縁を実質的に行なう、請求

框するための、前記光受信機手段に結合された堆 越去手段と、

- . (d) 少なくとも、直並列変換回路手段を含み、 前記増幅器手段に結合され、前記増幅器手段によっ て増幅された直列電気信号を対応する並列電気信 号に変換するための、複数の前記変換器手段の第 2 増変換手段と、
- (e) 前記の対応する並列電気信号を出力する ための手段

を含む、前記の単一多層両側表面取付け光ファ イバ・リンク・カード。

(33) 入力するための前記の手段と前記の少なくと も第1変換器手段が、第1信号面への接続を介し て前記の両側カードの第1側に取り付けられてお り、前記増幅器手段、入力するための前記の手段、 及び少なくとも第2変換器手段が、第2信号面へ の接続を介して前記の両側カードの第2側に取り 、付けられており、さらに、カードが前記第1信号 面と前記第2信号面との間で電気信号絶縁を実質 的に行なう、讃求項32に記載の装置。

(34) 前記のカードがさらに、前記第1億号面に接 徒されて前記第1信号面を前記第2信号面から延 気的に絶録する複数の内部電力及び接地面を含み、 前記の複数の電力面及び接地面の少なくとも1つ コンポーネントを電気的に絶縁し、そしてさらに、 前記の複数の電力及び接地面の少なくとも他の 1 つは、前記の選択されたコンポーネントに使用さ れる電力及び接地面の分割部分を覆うアパーチャ を含むように製造された、請求項33に記載の装 貫.

- (35)(a) カードの第1表面に位置する第1信号面
- (b) カードの第2表面に位置する第2信号面 ٤,
- (c) 第1信号面に接続されて、前記第1信号 面を前記第2信号面から電気的に絶縁する複数の 内部電力及び接地面

を含む、単一多層両側表面取付け光ファイバ・ リンク・カード。

リンク・カード。

- (38)複数の変換器手段と複数の光学コンポーネン トが上に取り付けられている、並列電気信号と直 列光学信号との間で変換するための、単一多層両 側表面取付け光ファイバ・リンク・カードであっ て、前記直列光学信号は、少なくとも1つの完全 2 重光通信リンクを通じて、光送信機手段及び光 受信機手段によってそれぞれ送信及び受信され、 少なくとも2つの同一であるが電気的に絶縁され た光送信機手段/光受信機手段の対を含み、少な くとも2倍の完全2重光通信能力を提供し、電気 的絶縁はカードの内部電力及び接地面の構造によっ て提供される、前記の単一多層両側表面取付け光 ファイバ・リンク・カード。
- (39) 複数の変換器手段と複数の光学コンポーネン トが上に取り付けられている、並列電気信号と直 列光学信号との間で変換するための、単一多層両 側表面取付け光ファイバ・リンク・カードを含む、 光通信モジュールであって、前記の光学信号は、 少なくとも1つの完全2重光通信リンクを通じて

(36)前記の複数の電力及び接地面の少なくとも 1 つは分割され、それに取り付けられた選択された コンポーネントを電気的に絶縁し、さらに前記の 複数の電力及び接地面の少なくとも他の1つは、 は分割されて、それに取り付けられた選択された 📂:1 節記の選択されたコンポーネントに使用される電 力及び接地面の分割部分を覆うアパーチャを含む ように製造された、請求項35に記載の装置。 (37)複数の変換器手段と複数の光学コンポーネン トが上に取り付けられている、並列電気信号と直 列光学信号との間で変換するための、単一多層両 側表面取付け光ファイバ・リンク・カードであっ て、前記直列光学信号は、少なくとも1つの完全 2重光通信リンクを通じて、光送信機手段及び光 受信機手段によってそれぞれ送信及び受信され、

- (a) 前記の光送信機手段をドライブするため の制御手段と、
- (b) 前記の通信リンクがオープンの場合には いつでも、前記の光送信機手段を遮断するための、 前記の制御手段に結合された安全遮断手段

を含む、単一多層両側表面取付け光ファイバ・

モジュールによって送信及び受信され、

- (a) 前記の通信リンクに光学的に結合された. 少なくとも1つの軸方向にリードがつけられた光 送信機を含む、前記複数の変換器の少なくとも 1 つに電気的に結合された第1光学アセンブリ手段 ٤,
- (b) 前記の少なくとも1つの光送信機を前記 カードの端部に整列させ、前記の少なくとも1つ の光送信機のリードを前記カードの表面に取り付 け曷くするように、前足の第1光学アセンブリを 前記カードの端部の近くに保持するための、リテー ナ手段・

を含む、前記の光通信モジュール。 (40) 前記のモジュールがさらに第2光学アセンブ リ手段を含み、少なくとも 1 つの完全 2 重光通信 リンクから入力された直列光学信号を検出するた め、及びそれに応答して直列電気信号を生成する ための、少なくとも1つの軸方向にリードがつけ られた光受信機を含み、前記のリテーナ手段も、 前記の少なくとも1つの光受信機を前記カードの 端部に整列させ、前記の少なくとも1つの光受信機のリードを前記カードの表面に取り付け易くするように、前記の第2光学アセンブリを前記カードの端部の近くに保持する機能がある、額求項3 9に記載の装置。

(41) 前記のリテーナ手段が、互いにスナップする 2 つの部分、すなわち、組み立てられると、前記 の第 1 及び第 2 光学アセンブリ手段を保持するた めのスロット付きクレードルとなる、リテーナ/ ホルダからなる、顕求項 4 0 に記載の装置。

(42) 前記のリテーナ手段がプラスチックから成形され、さらに挿入ピンとレールを有し、前記の第 1及び第2光学アセンブリを前記のカードに機械 的に保持する、請求項41に記載の装置。

(43) 前記のリテーナ手段がさらに、フレキシブルな「J」クリップとスタンド・オフ手段を含む、 額求項42に記載の装置。

(44) 前記のリテーナ手段が、前記変換器手段を前記光送信機から遮熱する、請求項42に記載の装置。

(f) 前記の光学信号を前記の少なくとも1つ の完全2重光通信リンクに結合させるステップ

を含む、前記の方法。

- (46)(a) 検出される直列光学信号に応答して直列 電気信号を生成する光受信機手段を利用して、少なくとも1つの完全2重光通信リンクから入力された直列光学信号を検出するステップと、
- (b) 前記の光受信機手段によって生成された 直列電気信号を増幅するステップと、
- (c) 直並列変換回路手段を利用して、増幅された直列電気信号を対応する並列電気信号に変換するステップと、
- (d) 前記の対応する並列電気信号を出力する ステップ

を含む、請求項45に記載の装置。

(47) 前記の出力ステップがさらに、バイト同期化を実施するステップを含む、請求項46に記載の方法。

(48) 所定の通信リンクがオーブンの場合に、前記 の送信ステップを阻止するステップをさらに含む、

信 (45) 電気コンポーネントと光学コンポーネントが
ナ 上に取り付けられている光ファイバ・リンク・カー
ト を用いて、並列電気信号と並列光学信号との間
3 で変換する方法であって、前記の光学信号は少な
でが、 ★ とも 1 つの完全 2 重光通信リンクを通じて送信
及び受信され、

- (a) 並列電気信号を直列光学信号に変換する ために前記のカードに入力するステップと、
- (b) 前記の並列電気信号を統合された並直列 変換回路/光送信機ドライバ手段に結合させるステップと、
- (c) 前記の並列電気信号を、前記の統合された手段を通じて、入力直列電気信号に変換するステップと、
- (d) 光送信機手段を、前記の直列電気信号に 応答して、前記の統合された手段を通じてドライ ブするステップと、
- (e) 前記の並列電気信号に対応する直列光学信号を、前記の統合された手段に結合された光送信機手段を介して、送信するステップと、

請求項46に記載の方法。

(49) 所定のリンクがオープンの場合にはいつでも、 都記の光送信機手段を低衝撃周波で繋動させるこ とによって、前記の所定のリンクが再接続された 場合には、光受信機手段を常時電力に戻すことに よって、前記の阻止ステップを実施する、請求項 48に記載の方法。

(50) 並列電気信号と面列光学信号との間で変換するための光ファイバ・リンク・カードを製造するプロセスであって、前記のカードは、少なくとも1つの光送信機、少なくとも1つの光受信機、1組の送信機関連電子コンポーネント、及び1組の受信機関連電子コンポーネントを含み、

- (a) 前記カードの第1側の表面の上に第1信 号面を製造するステップと、
- (b) 前記カードの反対側の表面の上に第2億 号面を製造するステップと、
- (c) 送信機関連電子コンポーネントのすべて を前記の第1信号面に面取付けするステップと、
  - (d) 受信機関連電子コンポーネントのすべて

を前記の第2信号面に面取付けするステップと、

(e) 前記カード内に複数の内部電力及び接地面を製造して、前記の送信機関連電子コンポーネント及び前記の受信機関連電子コンポーネントに役立て、これによって前記の複数の内部電力及び接地面が、前記の送信機関連電子コンポーネントから独自に絶縁する、というステップ

を含む、前記の製造プロセス。

(51) 前記カード内に複数の電力及び接地面を製造するステップがさらに、前記の複数の内部電力及び接地面の少なくとも 1 つを分割して、それに取り付けられた選択された電子コンポーネントを電気的に絶縁するステップを含む、譲求項 5 0 に記載のプロセス。

(52) 前記カード内に複数の電力及び接地面を製造するステップがさらに、前記の複数の内部電力及び接地面の少なくとも他の1つを製造して、前記の選択された電子コンポーネントのために使用される前記の電力及び接地面の分割部分を覆うアパー

チャを有する、というステップを含む、請求項 5 ! に記載のプロセス。

(55) 複数の変換器が上に取り付けられている単一多層両側表面取付け光ファイバ・リンク・カードを含む、並列電気信号と直列光学信号との間で変換するための、光通信モジュールを製造するプロセスであって、前記の光学信号が、少なくとも1つの完全2重光通信リンクを通じて送信及び受信

され、

- (a) 前型通信リンクに光学的に結合された、 少なくとも1つの軸方向のリードをつけた光送信 機を含めて、前記複数の変換器の少なくとも1つ に電気的に結合された、第1光学アセンブリ、を 製造するステップと、
- (b) 前記の第1光学アセンブリを前記カードの選部の近くに保持して、これによって前記の少なくとも1つの光送信機を前記の選部に整列させ、 前記の少なくとも1つの光送信機のリードを前記カードの表面に取り付け易くするためのリテーナ 手段、を製造するステップ

を含む、前記の光通信モジュールを製造する プロセス。

(56) 前記の少なくとも 1 つの完全 2 重光通信リンクから入力された直列光学信号を検出するため、及びこれに応答して直列電気信号を生成するための、少なくとも 1 つの軸方向のリードをつけた光受信機を含めて、第 2 光学アセンブリを製造するステップをさらに含み、ステップ(b) で製造され

た前記リテーナ手段も、前記の第2光学アセンブリを前記カードの端部の近くに保持して、これによって前記の少なくとも1つの光受信機を前記の端部に整列させ、前記の少なくとも1つの光受信機のリードを前記カードの表面に取り付け易くするように機能する、請求項55に記載のブロセス。(57)前記の少なくとも1つの光受信機のリード、及び前記の少なくとも1つの光受信機のリードとを、前記カードの表面に取り付けるステップをさらに含む、請求項56に記載のブロセス。

(58) リテーナ手段を製造する前記のステップがさらに、2部分リテーナ/ホルダ・アセンブリを互いにスナップするステップを含み、このアセンブリは、互いにスナップされると、前記の第1及び第2光学アセンブリ手段を保持するためのスロット付きクレードルを提供する、請求項57に記載のプロセス。

(59) リテーナ手段を製造する前記のステップがさらに、前記のリテーナ/ホルダ・アセンブリをブラスチックから成形する前記のステップを含む、

鎖求項58に記載のプロセス。

(60) 前記のリテーナ/ホルダ・アセンブリをブラスチックから成形する前記のステップが、挿入ピンとレールを作り、前記の第1及び第2光学アシンブリ手段を、前記のカード、多重カード・アセンブリを作り易くするフレキシブルな「J」クリップ及びスタンド・オフ手段、及び前記の複数の変換器を前記の少なくとも1つの光送信機から断熱するための手段に機械的に保持する、請求項59に記載のプロセス。

3. 発明の詳細な説明

A. 産業上の利用分野

本発明は、一般には電気信号を光学信号へ、及び光学信号を電気信号へ変換するための方法及び装置に関する。より詳しくは、本発明は、並列電気信号と直列光学信号との間の変換、及びモジュールの製造のための、通信モジュール(密閉型またはカプセル封じ型の装置は必要としない)の部分として役立つ、光ファイバ・リンク・カードに関する。

である。フローレスの装置は、ハイブリッド・システム中に光学コンポーネントと電気コンポーネ ントの両方を相互接続する方法の 1 例である。

直列光学から直列電気への(及びこの逆)変換を実施するための、市販のコネクタ化された電気光学変換器は、ジーメンス社やその他のメーカーから入手可能である。これらの装置は、FDDI 懐単品やIBMの装置などと互換性を有し、約200Mビット/砂のデータ速度を達成できる。

市販の直列・直列変換器の他の1例は、AT&T ODL-200である。この装置も、約200Mビット/砂のデータ速度を達成できる。AT&T をTODL-200は、IEEE1986年カスタム集積回路会議の講演集に発表されている「200Mビット/砂の送受信機集積回路

(Transmitter and Receiver Integrated Circuits for a 200 Mbits/sec. Optical Data Link)」と題した報文に記載されている。

上に述べた市販の装置は、ファイバを通じて単一の受信機に結合された単一の光学送信機を利用

B. 従来の技術及び課題

(60) 前記のリテーナ/ホルダ・アセンブリをプラ 多くの型式の電気光学変換器及びコネクタが、スチックから成形する前記のステップが、挿入ビ 発表された特許や技術文献に記載されている。こ ンとレールを作り、前記の第1及び第2光学アラジェ、 れらの機能を実施するために、現在は市販の装置 ンプリ手段を、前記のカード、名面カード・アセ も利用できる。

電気光学変換器及びコネクタを記載する特許明細書の例には、電気光学変換器によって光学的多重データ・バスに機能的に接続された電気的多重データ・バスを数示する、ドラバラ(Drapala)他による米国特許第4545077号、及び受動的電気光学コネクタを数示する、フローレス(Flores)他による米国特許第459763:1号がある。

ドラバラ他の発明は、直列電気・直列光学変換器の1例である。ドラバラ他の発明は、3 状態中継器として動作し、3 状態データ・バスを効果的に拡張する。フローレスの発明は、それ自体電気光学変換を取り扱わないが、コネクタ化されたポートを介して送信機/受信機アセンブリへのユーザ・アクセスを提供する、多くのコネクタ装置の1つ

する。 ジーメンス社及びAT&Tの装置は両方と、も、 直列入出力による完全な 2 重通信ができるようにする。 使用される受信機と送信機は、 2 種インライン・バッケージのハイブリッド・セラミック 基板である。 これらのバッケージは密封されたものか、またはプラスチック・カブセル封入されたものである。

トランシーバ・バッケージも市販されている。 たとえば三菱電機は、約170Mピット/秒のライン・ピット速度を有するトランシーバ・バッケージを市販可能にしたが、これは、カードの1つの面上に統合されたレーザ・ダイオード・ドライバと光学受信機を使用する。上に述べたジーメン同様のストランシーバも入力と出力を直列に処理する。

レーザ送信機と受信機とをカードの同じ面の上に置くことによって、三菱の装置は、これらのコ ンポーネントを電気的に絶縁する方法を必要とす る。典型的には金属遮蔽が使用される。これまで、 この絶縁を準備することは、複数の送信機と受信機の対を上に取り付けることができるコンパクト・カードを製造する能力を制限してきた。

改良された電気光学変換器及びコネクタの需要 は、急速に増加している。その理由は、今日の写 ンピュータ相互接続アプリケーションに関連する、 性能とパッケージングの問題の解決策をもたらす ために、ファイバ・オプティック技術が適合され ているからである。さらに詳しくは、広い並列デー タ・パスの使用によるI/Oピンの制約、電気パ スの長さについての性能の制限、及び電磁妨害に よって、コンピュータ・コンポーネントがしばし ば相互接続される並列電気バス間で、データを高 速で搬送するために直列光通信が使用されること が示唆される。広い並列データ・バスに役立てる ために必要な速いデータ速度、コネクタ化された 光送信機/受信機アセンブリのパッケージの融通 性、及びこれらのコネクタ化されたポートへのユー ザ・アクセスの必要性が、コンピュータ・エレメ ントを相互接続するための小型機能設計をもたら

ドの同じ側に取り付けられた送信機コンポーネントと受信機コンポーネントに必要な絶縁物を供給することに貢献できる寸法)、及び、少なくとも2倍の完全2重動作を提供するために単一のコンパクト・カードを使用することができないこと、である。

したがって、並列データ・バスなどの並列ューザ・インタフェースを支える光ファイバ・リンク・カードを準備できること、すなわち、高速直列への変式リンクに役立つために並列から直列への変更を受けることが望ましく、この光学式送信機は、200Mビット/砂以上の速度で、LED類のための電力を必要となく、データを動かすことができる。とり小さなスペースで、少なくとも2倍の完全2重接疑器を支えることができる。

さらに、このようなカード上に送信機装置及び 受信機装置がカード自体とともに配置され、過剰 の遮蔽や従来の技術で必要な装置分離法を必要と した。

このようなカードは、市販のPCO-2001 シリーズの並列光被インタフェース・モジュール の中に含まれている。このモジュールは、並列電 気信号の直列光学信号への(及びその反対の)変 換を実施し、そして約100Mビット/砂までの 直列信号速度を特徴とする。長波しEDが光源の ために使用される。専用の送信機と受信機のIC がカードの片側に取り付けられ、完全2重動作を 提供する。

PCO-2001カードによって、次のレベル・アプリケーション・パッケージが、次のレベル・パッケージをたは性能の用件の設計複雑性を追加することなく、高速直列ファイバ・オプティック・リンクとインタフェースすることができる。しかし、200Mビット/砂の範囲(PCO-2001装置の発表されたデータ速度の範囲の2倍)でデータを動かすためにLED源に必要な電気信号のせいで、PCO-2001カードは問題がある。すなわち、PCO-2001カードの寸法(カー

することなく、送信機と受信機の電気コンポーネ ントを絶縁する手段が単備されていることが望ま しい。

さらにまた、光データ・リンク・カードの両側を利用して表面を増やし、この表面上にコンポーネントを取り付けてカードの寸法を小さくすることが望ましい。その上に、光学コンポーネント(及びこれらのコンポーネントへのリード)を、ユーザによる容易なアクセスを単純化し、リードのキャバシタンスとインダクタンスを最少にし、これによってカード性能をさらに向上させるように、カードの上に取り付けることが望ましい。

望ましい通信モジュールを達成するためには、多くの構造的、電気的、及びパッケージ的な問題点を解決する必要がある。たとえば、レーザ送信機はLEDが要求とする電気信号電力を必要とすることなしに、所望のデータ速度を達成する能力があるが、レーザに基づくシステムは、厳しい安全要件に適合しなければならない。

安全性の観点から、「フェイル・セーフ」であ

る、すなわち全システム・レベル以外で安全が保 証される(この場合、システムはハードウェアと ソフトウェアの両方を含む)レーザ・ベース光ファ イバ・リンクが関発されることが望ましい。ユーザ・システムのインタフェース・ハードウェア 皮 びソフトウェアと完全に独立した、保証されたパッケージの中に自蔵送信帳/受信機機能を作る能力 は、レーザ・ベース・カードのシステム・レベル の使用についての制約を軽減する。

÷ . . .

レーザ光放射に関する。「製品」の保証はよる。で必要とされている。で、ながで、で、の光学されてブリンクをはないで、アイアンスを存している。レーザが安全にない。となったは、いいないで、は、のよいでは、保証される必要のある「製品はない、ないで、のよいでは、ないで、のよいでは、ないでは、ないでは、ないでは、いいのは、、も全には、いいのは、、も全には、いいのは、、も全には、いいのは、、も全には、いいのは、、も全には、リンク・カードは、単一のコンポースを表している。

ケージド・サブアセンブリ(詳しくは、光学的ドライバ及び受信機のため)ではなく、標準の表面取付け技法を使用すること、及び(8)コンパクトであること、すなわち周知のシステムと比較してサイズも高さも小さいことである。

# C、発明が解決しようとする課題

本発明の1つの目的は、データを約200Mピット/秒で、ファイバ・オプティック媒体を通じて直列に送信(または受信)することができ、ユーザに並列の電気的インタフェースを提供する、高速光ファイバ・リンク・カード通信モジュールを提供することである。

本発明のさらに1つの目的は、直列リンク及び 並直列変換回路/直並列変換回路から出る(また はそこへ行く)高周波信号をリンク・カード自体 に含めることである。

本発明のさらに1つの目的は、少なくとも1つの2倍の完全2重を供給できる光ファイバ・リンク・カード通信モジュールを提供することで、この場合、カードはコンバクトであり、従来の技術

の故障でも、第 1 級の動作のための周知の世界的な標準を維持するように、考察されることが望ま

上に述べたすべてに加えて、前記の機能を有す 3.光ブァイパ・リンク・カード通信モジュールは、 次のことも行なうことが望ましい。すなわち、 (1)多くの光学式リンク・サブアセンブリが断 片化された並列データを送るので、ユーザにバイ ト同期信号を供給すること、(2)ユーザが障害 ラインを供給して、光学式リンクのどの端が障害 を受けているかを判定する助けをする、(3)は 断を目的として電気的ラップ能力を供給すること、 (4)カードを単一電圧論理ファミリと互換性の あるものにする、単一+5ポルトの給電を必要と すること、(5)エレクトロニクスとレーザとの 間の良好な断熱を維持すること、(6)多重の次 のレベル・パッケージングに適合したパッケージ を提供すること、(7)高いデータ速度を達成す るために従来の技術によって使用される、広範な セラミック・ハイブリッド・ハーメティック・パッ

による装置と比較して小さな形状因子(高密度パッケージング用)を維持し、一方では、次のレベル のパッケージに対して高さのプロファイルを低く 維持する。

さらにまた、本発明の1つの目的は、レーザ・名は彼を利用し、安全性を保証してフトウェアを投稿を共立してアウェアを投稿を供給する。具体的には、本発明の1つのは、単年のは、本発明の1つののはは、本発明の1つののはは、単年のでも安全な第1級のレーザ動に出るのないが、でもないが、できるには、という、手段を提供することである。

本発明の他の目的には、ユーザへのバイト同期 信号と分断されない並列データを出力するモジュールを提供すること、及び利用されるエレクトロニクスと光学式装置(具体的にはレーザ)との間の、 良好な断熱を維持するモジュールを提供すること、 が含まれる。

本発明によって、両面実装光ファイバ・リンク・ カードが、ユーザに並列電気的インタフェースを 供給し、光学式データ・リンクを通じて高速直列 データを送受信する、通信モジュールの部分とし て使用される。このカードは、少なくとも1つる nピット広幅並列電気的データ、パスによるイン タフェースのための手段、少なくとも11つの高速 光学式データ・リンクによるインタフェースのた めの手段、及び電気データ信号と光学式データ信 号との間の変換を実施するための手段を含む。こ れらの変換器の内の少なくとも1つは、送信用に 並列データ入力を直列化して、カード上に取り付 けられた半導体レーザの上に直列化されたデータ を変調するための、並直列変換回路手段を含む。 少なくとも他の1つの変換器は、光学式受信機 (たとえばPINフォトダイオード) 、増幅器手 段、及び直並列変換回路手段を含み、後者の2つ は、nピット広幅受信データを並列バスにドライ ブするためのクロックをそれぞれ増幅、及び回復 するものである.

所望のモジュールを製造する方法も以下に説明する。この方法は、本発明の目的を違成するためにモジュールのいろいろなコンポーネント(カード、リテーナ手段、光学式レセブタクル他)をどこにどのようにして取り付け組み立てるかを含めて、カード自体を製造するためのステップを指定する。

本発明は、前述の両側カード設計(すなわちカードの1面に1つまたは複数の送信機、カードの他の面に1つまたは複数の受信機を有する)を特徴とし、またカードの両側間の電気的絶縁を維持するための(カード自体の中にある)内部接地及び電力板の使用を特徴とする。本発明はまた、カード・サイズの小型化に貢献するために並直列変換回路をレーザ・ドライバと統合することを特徴とする。

本発明の好ましい実施例によるその他の特徴は、 診断を目的とする電気的ラップの能力、単一の+ 5 ポルトのみの電力供給しか必要としないこと、 及び光学コンポーネント及びそれらのリードの要 本発明の1つの実施例によって、光学コンポーネントは端に取り付けられ、そのリードはカードの表面に取り付けられ(標準ピン・イン・ホール型リード)、リードのキャパシタンスとインダクタンスを小さくする。さらに、変換器用の制御手段、及び安全遮断手段が、電気コンポーネント及び光学コンポーネントと同じカードに位置している。

面蜩に取り付けることである。

本発明の上述とその他の目的及び特徴、及びこれらを得る方法は、当業者には明白になり、そして本発明自体は、下記の詳しい説明を添付図面と共に参照することによって、非常に良く理解されよう。

### D. 実施例

第1図は、本発明によって企画される光学式リンク・カード通信モジュールの分解図である。

詳しくは第1図は、ユーザのシステム・カード 101に取り付けられる両側表面実装カードを表す。データは、nビット幅並列データ・パス上を システム・カードへ、またシステム・カードから 転送される。

単に図示のために、第1図に示すカードは、10ビット幅並列データ・バス、すなわち n が10に設定された並列データ・バスに使用されるように設計されている。当業者は、第1図に示したコンポーネントがより大きな、またはより小さな並列バスを準備するように変更できることは、容易

に理解できるであろう。

図示されたカードは、並列データ・バスとインタフェースするための手段(コネクタ102及び103)、直列ファイバ・オブティック伝送媒体グリ104-107、さらに、それ自体の内部にそれぞれ位置するレーザ120、121のための中部にそれぞれ位置すると、111、及びそれ自体の内部にそれぞれ位置する光電検出器ダイオード12、123のためのレセプタクル112、113を含む、そして、電気信号と光学信号との間で変換を実施するための複数の変換器を含む。

単に図示のために、レセブタクル110-11 3をFC型光ファイバ・コネクタとして第1図に示す。当業者は、第1図に示したコンポーネントが他の型式のファイバ・コネクタを含むことができることは、容易に理解しよう。

これらの変換器を第4図に参照して次に詳述する。しかし第1図では、第1型式の(電気信号を 光学信号に変換するための)2つの変換器の部分

ように複能する。図示されたカードは2つの変換を有し、それらの各々は、光電検出器が生塩を気信号を増幅するための手段、光電検出のの変換となる最低DC光レベルを検出するための変換するための変換するための変換するための手段を立めて表に入り、及び最低AC光レベルを検出するための手段、及び最低AC光レベルを検出するための手段をさらに含む。

直並列変換回路コンポーネントの詳細説明とそれらが共働する方法は、第4図を参照して述べることにする。

第1図は、2つのオーブン・ファイバ制御(OFC)手段150、151も示す。光電検出器ダイオード122が光を受け入れない場合には、OFC手段151はレーザ121をオフにする。光電検出器ダイオード123が光を受け入れない場合には、OFC手段151はレーザ121をオフにする。

は、回路カード101の頂部に取り付けられているように見ることができる。詳しくは、並直列変換回路手段130、131は、伝送のために(それぞれコネクタ102、103を通じて)並列電気データ入力を取り、並列電気データを直列を取り、立つの表別である。それからがである。それからがである。とのでは、では、な道列変換回路手段130、131の名々もでれたライブする。本発明の1つの実施例によって、並直列変換回路手段130、131の名々も後に详述するレーザ安全機能を実施する。

本発明の好ましい実施例によって、並直列変換回路機能とレーザ・ドライブ機能は、新型のカードの小型化を助けるために並直列変換回路130、131に統合される。並直列変換回路手段の統合された機能も、後で第4図を参照して詳述することにする。

第2型式の変換器は、(カード101の下側に 取り付けられているので)第1図では見えない。 これらの変換器は光学信号を電気信号に変換する

本発明の好ましい実施例によって、ファイバ・リンクがオープンの場合に、OFC手段150、151は安全(第1級)光学式パワー・レベルを維持する。

第1図は、レーザ・ドライブ調整電位差計170、171も示す。これらの電位差計は、AC及びDCのレーザ・ドライブ回路の調整に使用される。示された電位差計(170、171)は第1図のレーザ121に関連する。レーザ120に関連するレーザ・ドライブ回路のAC及びDCドライブ部分の各々については、対応する電位差計は図示しない。

前述の各増幅器のための金属遮蔽も、(カード 101の下側にあって)図示されていない。本発 明の好ましい実施例によって、これらの遮蔽は、 増幅器を漂遊電磁界から保護するのに役立つ。

上述のカード、光学式アセンブリ、及びエレクトロニクスの他に、第1図にリテーナ保持クリップ(クリップ182)、光学式アセンブリ・スロット(スロット183)、カード整列ピン(ピン1

8 4 )、カード・ガイド・レール 1 8 5 、及び カード止め 9 ブ ( 9 ブ 1 8 8 ) を含むリテーナ頂 配 1 8 0 とリテーナ底配 1 8 1 とを示すが、これ らは第 1 図で示される方法で組み立てられると、 本発明によって企画される光ファイバ・リンク・ カード通信の実施例となる。

本発明の好ましい実施例によれば、リテーナ頂部180とリテーナ底部181はプラスチックであり、新型のモジュールに貢献し、エレクトロニクスとレーザとの間を良好に断熱する。これは、エレクトロニクスが典型的には高い許容可能な助作復度、それからわずかな電力を散逸させるレーザを育するので、本発明の重要な特色である。従来の技術による混成型メタルクラッド送信機では、エレクトロニクスからの熱は送信機の動作の信頼性を低下させる可能性がある。

さらに本発明の好ましい実施例によれば、上述のツーピース・リテーナ/ホルダ(第1図に示す 部品180、181)は、組み立てられると、光 学アセンブリを適切な平面の中に整列させ保持し

第3図は、風立スペーサ183(カード101の表面から次のアセンブリまでの間隔を矢線301で示す)、及び「J」クリップ192についての、好ましい配列の拡大図である。示されたクリップ182はスペーサ193から離れて伸びている。機能的にはクリップ182は、主要制御装置またはインタフェース・カード内の、前記クリップがはインタフェース・カード内の、前記クリップがれたプラスチック部分であるため、このクリップは、取替えを必要としたり、または望む場合に、新型の通信モジュールを破壊することなく取り外すことができるようにする融通性を持つ。

第4図には、カード101上の電気コンポーネント及び光学コンポーネントの機能ブロック図を示す。

詳しくは第4図は、並直列変換回路手段430 とレーザ・ダイボード431の組合せを示し、これは並列電気信号を直列光学信号に効果的に変換する。並列信号は、たとえば第1図に示すコネクタ102などの電気コネクタを通じて、並列バス て、リードのはめあい回路への表面アタッチメントができるようにするクレードルを形成する。先に指摘したように、この特質を利用するとキャバシタンスとインダクタンスが減少する。

第2図は、本発明の上述の好ましい実施例で企画されるように、回路カードの平面に接して取り付けられたリードを有する、エッジ・マウントの光学式アセンブリの拡大図を示す。詳しくは第2図は、カード101に(ピン・イン・ホール・アタッチメントを使用せずに)表面実装されているように、リード201-203を図示する。示されている光学アセンブリ205は、カード101の端に取り付けられている。

第1回をもう1度参照すると、「J」クリップ、 クリップ192が孤立スペーサ193から伸びた リテーナ181底部の成形された部分として示さ れていることが分る。クリップ192とスペーサ 193の組合せは、カード/リテーナ・アセンブ リを次のレベルのアセンブリに取り付け、整列さ せ、難問させるために使用できる。

から入力される。 直列光学信号は、第4図に示すファイバ495などのファイバ・オブティック媒体を通じて伝送のためにレーザ431から出力される。レーザ光をファイバに導くために、(レセプタクル110、111などの)第1図に示したレーザ・レセプタクル内で周知の複合レンズを使用することもできる。

並直列変換回路430がレーザ431と共にどのように動作するかの詳細は、並直列変換回路手段430内に含めて示した(第4図に示す)コンポーネントを引用して後述する。これらの詳細を1例を挙げて後述するが、そこでは10ビットの並列電気アータが並直列変換回路430に入力され、直列電気フォーマットに変換され、並直列変換回路430の制御の下でレーザ431を介して直列光学アータとして出力される。

第4図は、光検出器ダイオード425、DC検出器428、増幅器427、及び直並列変換回路手段428の組合せも示しており、これは光検出器ダイオード425が受信した直列光学信号を並

列電気信号に効果的に変換する。並列信号は、直並列変換回路 4 2 8 によって並列電気バスにドライブされる。直列に受信された光学データ信号が並列電気データにいかに変換されるかを、第 4 図に示すコンポーネントを参照して後述する。

さらに第4図は、前記のOFCモジュール42 9を示しているが、これがカード自体の上に第1 級安全機構を提供することが好ましい。さらに、 OFCモジュール429が第4図に示したシステムに関連してどのように動作するかを詳述する、 本明細書に組み込んだ同時保属中の特許出願を引用する。

並直列変換回路430とレーザ431の組合せが動作する方法を理解するために、10ピット・列送信データが並列電気データ・バスからシフト・レジスタ440に入力される、第1図におけるのか便利である。これは図示されたリード470~478を通じて行なわれる。前述のように、このリードは、たとえば、第1図に示すコネクタ102などの電気コネクタの上にあるユー

8 を介してレーザ 4 3 1 に結合された形で示す。 さらに、 D C ドライブ 4 4 3 をオープン・ファイ バ制御 ( O F C ) 手段 4 2 9 からの入力を受信す る形で示しているが、 後述するように、 O F C 手 段 4 2 8 は、 D C ドライブ 4 4 3 が ( リンク 4 0 9 を介して) レーザ 4 3 1 を効果的に遮断できる ようにさせる。

本発明の好ましい実施例によって、 D C ドライブ 4 4 3 はレーザ故障 (たとえば O F C 命令の遮断) 発生時にはいつでも、レーザ故障信号をリンク 4 1 0 を介してユーザに出す。

最後に、DCドライブ443に関して、第1図は(点線のリンク489を介して)レーザ431からDCドライブ443へのフィードバック・バスを示す。従来の自動電源制御フィードバック・アスをです。は、レーザ431のバック・ファム・アントからの光を密知する。本発明の図示された実施例によって、光学出力電源は、フィードバックに保持したように、第1図に示

ザが選択したピンに対応する。

シフト・レジスタ440に入る10ビット並列送信データは、位相ロック・ループ(PLL)441の制御の下でシフト・レジスタ440から正列にクロック・アウトされる。PLLクロックは、リンク405を選じて低周放(オフ・カード)入力送信クロックに位相ロックされる。リンク406上のクロック出は直列送信速度を決定する。

シフト・レジスタ 4 4 0 からシフトされた直列 データは、リンク 4 0 7 を介して A C ドライブ 4 4 2 に送られる。 A C ドライブ 4 4 2 は直列デー タでレーザ 4 3 1 を変調する。

第4図に、並直列変換回路430に含まれたDCドライブ443も示す。DCドライブ443はレーザ431を現在の電力レベルに維持する。さらにDCドライブ443は、本発明の好ましい実施例によって、危険な電力レベルを生成することのあるカード故障が発生した場合にレーザ431を遮断することのできる安全回路を含む。

第4回に、DCドライブ443を、リンク40

す調整電位差計の1つがDCドライブ443を間接的に制御する。この制御は、前述のフィードバック回路を介して実施される。

並直列変換回路430に含まれるコンポーネント、すなわちシフト・レジスタ440、 PLL441、ACドライブ442、及びDCドライブ443の機能を実施するための装置と技法は、 当業者の範囲内にある。したがって、これらのコンポーネントをさらに説明する必要はない。

装置440~443の組合せを含む前記の並直 列変換回路430は、所望の並直列変換回路機能 とレーザ・ドライブ機能とを前記の方法で効果的 に統合し、カード寸法全体の小型化に役立つ。さ らに、並直列変換回路430がカード上の複数の 電気光学変換器の1つとして機能することは、前 記の参照によって見ることができる。この変換を 実施するための制御手段(たとえばPLL441) は、同じくカードの上に位置する。

本発明によって企画される光学的リンク・カー ドは、カード自体を試験するための搭載回路も含 む。特に第4回は、(便宜上、直並列変換回路4 28として示されている)マルチブ・モードの 区列変換回路430コンポーネントから他別変換回路428コンポーネントに、本発明の化で が実施例によって、MUX44に結合されて でったりンク411を介できる。で、アードで をユーザ指定することが、直ができる。 を入力するための信号が、直が列変換回路428 で処理すべき多重化されたアータを引き起こ

第4回の上部に、光検出機構ダイオード425 に直列光学信号を送るファイバ496を示す。ファイバ496は、光検出機構ダイオード425に (並置して保持された)「結合されたバット」で もよく、光検出機構ダイオード425によって、 伝送された光を電気エネルギーに変換できるよう になる。

本発明の好ましい実施例では、(光検出機構ダイオード425からの)発生電流は、第4図に示

実際に出力する) TTLドライバと、リンク41 3を介してパイト 同類信号をユーザに出力する手 段を含む。

第4図はクロック・ゼネレータ447も示すが、これは本発明の好ましい実施例では4相並列受信クロックである。4相クロックは、典型的には外部システムによって使用される、(または必要とされることのある)非オーバラップ・クロックを引き出すために有用である。

クロック・ゼネレータ447を、リンク414を介してPLL445に結ばれた形で示す。 さらに、クロック・ゼネレータ447からの4相クロック出力を第4図のリンク415~418に出力した形で示す。

最後に直並列変換回路428を示すが、変換検出器448も含める。変換検出器448はDC検出器426(本発明の図示実施例では直並列変換回路中に含まず)と共に、光検出機構ダイオード425に入る最低AC及びDC光レベルを検出する。これらの冗長信号は、リンク460~461

サNE-5210増幅器などのトランスインピー ダンス増幅器427によって増幅される。

直並列変換回路428に含めて示したPLL4 45は、増幅番427によって増幅されるデータ に対して直列受信クロックを位相ロックし、デー タとクロックの両方をシフト・レジスタ448に 送り、そこでデータが並列化される。

本発明の好ましい実施例では、第4図に示すように、PLL445はリンク412を介してカード上結晶に対してロックして示されている。 PPしは、斯待入力データ速度に近似させるために、結晶にロックされる。 そしてPLLはロックを「散同類」して、受信データに対して実際の受信データ速度でロックする。

ッフト・レジスタ446は、独特の受信文字を 識別するために使用されるパイト同類検出器を含 むので、パイト全体を、分断することなくシフト・ レジスタ448からアンロードすることができる。 またシフト・レジスタ448は、(リード480~ 489を介して並列データを並列データ・パスに

を介してOFCモジュール429に送られ、安全 保護装置としてのOFCモジュール429によっ て使用され、両ファイバ・バス495、496が ファクアップされない場合に遮断される。

参照した特許出願に記載されたOFCモジュールは、ファイバ・リンクが開いている間に、任衝撃周波でレーザ431を放動される。これはファイバ内に安全な光学電源を生成する。参照したOFCモジュールは、ファイバ・リンクが再接続されると、レーザ431を連続電源に戻す。

第4図に示すOFCモジュール429は、DCドライブ443へのリンク409を介してレーザ431を制御する。さらに、図示した好ましいOFCモジュールは、レーザの遮断及び電力オン・リセット機能実施を、それぞれリンク463、464を介して行なうためにユーザ入力を受け取る。図示したリンク465は、ファイバ・リンクが不活動状態になるとユーザに信号を送る。最後に図示したリンク488は、ユーザがリンク411を介してラップ・モードを指定するといっても、

FCモジュール428に指示を与える。

直並列変換回路428に含めて示したコンポー **ォント、すなわちPLL445、シフト・レジス** 換検出器448の機能を実施するための装置と技 **法は、当業者の範囲内にある。同じことが、レー** ザ 4 3 1 、 光 ダ イ オ ー ド 4 2 5 、 増 幅 器 4 2 7 、 D C 検出器 4 2 8 、 及び M U X 4 4 4 についても 当てはまり、これらはすべて市販の装置である。 したがって、これらのコンポーネントをさらに設 明する必要はない。

第4回で説明したものは、単一の完全2重動作 を形成するためのコンポーネント及びこれらのコ ンポーネントの相互作用の方法である。 本発明の 好ましい 実施例に従って構成された第1図のカー ド101は、第4図に示すコンポーネントを複写 して、2倍の完全2重動作を提供する。

本発明の好ましい実施例では、並直列変換回路 430、直並列変換回路428、及び(直並列変 換回路428の部分であるが)シフト・レジスタ

ドの他の側(たとえば表面502上に取り付けら れたコンポーネント)に役立つ。

平面のどのような組合せも可能である。本発明 で必要なことは、カードの頂面と底面に取り付け たコンポーネント間の電気的絶縁を本質的に提供 する、複数の内部電力及び接地面を準備すること である。また送信根能を実施するコンポーネント と送信機能を実施するコンポーネントは、それぞ れカードの反対側に位置しなければならない。

本発明の好ましい実施例によって、少なくとも 1 つの直並列変換回路を含むカードの側面に役立 つ内部電力及び接地面は分けられているので、シ フト・レジスタ446(及びカードのこの側にあ る他のいずれかのシフト・レジスタ)は、特定の 直並列変換回路の残りに役立つ内部電力及び接地 面の部分からは、電気的に絶縁されている。TT Lドライバに必要な電流量から見て、このことは 望ましい。

さらに、本発明の好ましい実施例によって、送 信機能を行なう電力及び接地面は、TTLドライ

4.4.6内のTTLドライバが、第1回で企画され たこれらの装置の複写セットと共に、カード10 1 内の電力(+ 5 ポルト)及び接地面に接続され タ446、クロック・ゼネレータ447、及び繁々→●ね。これらの面、及びカード101の両側(頂面 と底面)の本発明の数示による使用方法を、第5 図を引用して後述する。

> 第5回は、記録ランド・パターン501、50 2がそれぞれカード101の反対側(頂側と底側) に位置しているように示す。これらのパターンを 使用して、パターンの各個に取り付けたコンポー ネントを電気的に相互接続する。

> カード101の側面は、カードを通して「A」 面を見たもので、本発明の数示によって製造され たカードが複数の内部電力及び接地面を含むこと を示している。例示では、これらの内部面を第5 図に平面510~513として示す。平面510、 511はそれぞれ接地及び電力面を表し、カード の1つの側(たとえば表面501上に取り付けら れたコンポーネント)に役立つ。平面512、5 13はそれぞれ他の接地及び電力面を表し、カー

> パに役立つ前記の分離された電力及び接地面を覆 わないように製造される(すなわち、関口を上に 持つように製造される)。この方式で送信機能電 力及び接地面を製造する目的は、TTL電力接地 面からのノイズを送信電力接地面への結合を押え ることである。

> 第6図には、本発明が企画する光学式リンク・ カードの好ましいレイアウトが示されている。こ のレイアウトは2倍完全2重チャネルを提供する。 この好ましいカードを、さらに通信ボートを準備 するために拡大したり、または単一完全2重カー ドを準備するために(第6図のA-A線に沿って 半割りすることができる。

> 第6図に示す2倍完全2重チャネルは、2つの 同じであるが隔離された送信/受信の対を含み、 この対は、レーザ605と光検出機構ダイオード 606(1対)、及びレーザ807と光検出機構 ダイオード608(他の1対)からなり、両側面 マゥント・カードの上に取り付けられている。第 8 図には、A-A線で形成される境界に沿って表

面または内部に電気的接続はない。

第5図を参照して指摘したように、カードは頂部信号面、底部信号面、及び4つの電力面(第6図に図示せず)を有し、これらを利用して送信機を受信機から隔離する。図示の都合上、第6図 で イッナカードの頂部は601と標され、一方カードの底部は602と揺されている。

本発明の図示例で使用される10ビット並列バスを用意するために、100ミル・ピン・センタを有する2つの48ピン・コネクタ(第1図のコネクタ102、103)が、カードの頂側に取り付けられ、これによってピンはカード本体を通って圧倒に貫通し、そこでピンはユーザのシステム・カードに適合する。これが、カードとカードの最少の間隔、及び低い側面の要件に合うカード全高を可能にする。コネクタのピン側は、第6図のレイアウトにコネクタ650、651として示す。

4 つの光学コネクタ 6 0 9 ~ 6 1 2 を、カード 端のレーザ及び光検出機構に並べて取り付けた形 で示す。コネクタ 6 0 9 ~ 6 1 2 は、カードが典

12mmにすることができる。

これまで、前記のすべての対象物すべてに合った方法、装置、及び製造技法を説明してきた。当業者には、前記の説明が単に図示と説明を目的としたものである、と思識されよう。これは本発明を排他的にしたり制限したりする意図はなく、明らかに多くの改訂や変更が可能である。

たとえば、MUX444などの直並列変換回路に含めて示したコンポーネントはどこにでも置くことができ、所望のカードのパージョンは、電気的ラップ能力なしに、または本発明の好ましい実施例に組み込んだ搭載型安全機構なしに製造することができる。

## E. 発明の効果

### 4. 図面の簡単な説明

第1図は、本発明が企画する光学式リンク・カー

型的にシステム・カード上に典型的に取り付けられると、顧客に利用可能なアクセス区域に突出す

また第8図は、(光検出機構ダイオード606 に関連する)直並列変換回路880と増幅器68 1、及び(光検出機構ダイオード608に関連する)直並列変換回路682と増幅器683を、好ましくカードの底面602に取り付けた形で示す。

(レーザ 6 0 5 に関連する) 並直列変換回路 6 3 0 とオープン・ファイバ制御モジュール 6 3 1 を、(レーザ 8 0 7 に関連する) 並直列変換回路 6 3 2 とオープン・ファイバ制御モジュール 6 3 3 と共に、好ましくカードの頂面 6 0 1 に取り付けた位置で示す。

第8図に示した寸法は図示を目的としたものに過ぎないが、望まれるコンパクトな 2 倍の 2 重通信モジュールを作り出すのに適切なカード寸法と適切な光間隔を示す。上述のコネクタ・ピンを取り付ける方法によって、第8図に示すカードを使用して、カード間隔を7 mmに、カード全高を約

ド通信モジュール(カード及びリテーナの両方) の分解図である。

・ 第2図は、本発明の好ましい実施例による、回路カードの面の近くに置かれたリードを有する、 端部に取り付けられた光学アセンブリの拡大図である。

第3図は、本発明の数示によって製造されたモジュールのためのカード・カード間隔を制御するために適当なスタンドオフ・スペーサ、及び最新のモジュールを次レベルのアセンブリに加えるためのフレキシブルな保持機構として働くスペーサから伸びた、「J」クリップの、拡大図である。

第4図は、種々の電気コンポーネント及び光学コンポーネントとの相互接続、及びこれらのコンポーネントの他との共働の方法を示す、本発明の機能プロック図である。

第5回は、本発明の数示によって製造された両側カードのための、電力及び接地面の例を示す図である。

第8図は、本発明が企画する光学式リンク・カー

ドについての、好ましいレイアウトを示す図である。

812、850、851……コネクタ、104~ 107……光学式アセンブリ、110~113 🛩 🦠 ··レセプタクル、120、121、431···レー ザ、122、123……光検出器ダイオード、1 30、131、430……並直列変換回路、15 .0、151……オープン・ファイバ制御手段(0 FC)、170、171……レーザ・ドライブ料 整電位差計、180・・・リテーナ頂部、181・・ ・・リテーナ底部、182、192・・・クリップ、 183 … スロット、184 … ピン、185 … ・・カード・ガイド・レール、193・・・スペーサ、 196 ... 47, 201~203 ... 1 - 1, 2 05…・光学アセンブリ、405、406、40 9,412,414,415~418,463, 464 ... リンク、425、806、808 ... 光検出器ダイオード、426……DC検出器、4 27...增幅器、428、680、681、68

2 ···· 直並列変換回路、 4 2 8 ···· OF C モジュール、 4 3 1、 6 0 5、 6 0 7 ···· レーザ・ダイオード、 4 4 0、 4 4 6 ···· シフト・レジスタ、 4 4 1、 4 4 5 ···· P L L、 4 4 2 ···· A C ドライブ、 4 4 3 ···· D C ドライブ、 4 4 4 ···· M U X、 4 4 7、 ···· クロック・ゼネレータ、 4 4 8 ···· 変換検出器、 4 8 5、 4 9 6 ···· ファイバ、 5 1 0 ~ 5 1 3 ···· 平面、 6 0 9 ~ 6 1 2 ···· 光学コネクタ、 6 3 3 ···· オープン・ファイバ 制御モジュール。

出願人 インターナショナル・ピジネス・マシーンズ・コーポレーション 代理人 弁理士 頓 宮 孝 一 (外1名)



第1図





第 4 図

第6四

|         | 第1頁の続き |   | 走き |            |                             |
|---------|--------|---|----|------------|-----------------------------|
| <u></u> | 個発     | 明 | 者  | ラド・ウイリアム・フ | アメリカ合衆国ミネソタ州ロチエスター、ハンテイングト  |
|         |        |   |    | レイタブ       | ン・レーン・ノース・ウエスト 3867番地       |
|         | ⑦発     | 明 | 耆  | ジエラルド・マイケ  | アメリカ合衆国ミネソタ州パイン・アイランド、アール・  |
|         |        |   |    | ル・ヘイリング    | アール2番地                      |
|         | ⑦発     | 明 | 者  | スペンサー・クリント | アメリカ合衆国ミネソタ州ロチエスター、フイフス・スト  |
|         | •      |   |    | ン・ホルター     | リート・ノース・ウエスト 4065番地         |
|         | ②発     | 明 | 耆  | デニス・レオン・カー | アメリカ合衆国ミネソタ州ロチエスター、トウエンテイ・  |
|         |        |   |    | スト         | エイツス・ストリート・ノース・ウエスト 1824番地  |
|         | ⑰発     | 明 | 者  | デーピット・ワレン・ | アメリカ合衆国ミネソタ州バイロン、フアースト・アベニ  |
|         |        |   |    | シルジエンパーグ   | ユー・ノース・イースト906番地            |
|         | ⑫発     | 明 | 耆  | ロナルド・リー・サダ | アメリカ合衆国ミネソタ州ロチエスター、ポツクス・107 |
|         |        |   |    | ストローム      | エー、アール・アール 1 番地             |
|         | ⑦発     | 明 | 者  | ジョン・トーマス・タ | アメリカ合衆国ミネソタ州ロチエスター、フアースト・プ  |
|         |        |   |    | ンカ         | レイス・ノース・ウエスト3708番地          |
|         |        |   |    |            |                             |



IN THE UN

PATENT AND TRADEMARK OFFICE

Group Art Unit:

In re Patent Application of

Shin ISHIBASHI et al. Applicants

08/372,078 Application No.:

Filed January 12, 1995

FIBER OPTIC MODULE For

GROUP CON ASAMU 0323 Attorney Docket:

April 27, 1995

INFORMATION

DISCLOSURE

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

This is an Information Disclosure Statement submitted under 37 C.F.R. 1.97 ff within the time specified in 37 C.F.R. 1.97(b).

Attached are copies of six publications cited in an enclosed British Search Report completed February 17, 1995, where the relevance of the publications is shown.

A Form PTO 1449 listing the publications is attached.

In view of the above, the requirements set forth in Section A(3) of the Commissioner's Notice of April 20th, 1992, 1138 OG 37 ff (May 19th, 1992), have been complied with.

As all requirements of 37 C.F.R. 1.97 ff, and all official quidelines pertaining to Information Disclosure Statements, have

been complied with, it is respectfully requested that the Examiner consider the references and make them of record.

Respectfully submitted,

Robert J. Frank

(Registration No. 19,112) SPENCER, FRANK & SCHNEIDER

Suite 300 East

1100 New York Avenue, N.W. Washington, D.C. 20005-3955

Telephone (202) 414-4000 Telefax (202) 414-4040

RJF:dcw

•