MOwNiT Lab7 - Równania liniowe

Jakub Płowiec

14 Czerwca 2023

1 Cel zadania

Rozwiązywanie układów równań liniowych postaci Ax=b metodami iteracyjnymi.

2 Sprzęt

W zadaniu obliczeniowym posłużono się językiem Python 3.9.0 na systemie Windows 10 z procesorem Intel core i5-9600KF

3 Zadanie 1

3.1 Wprowadzenie

Elementy macierzy A o wymiarze $n \times n$ dla $i, j = 1, \ldots, n$ są określone wzorem:

$$\begin{cases} a_{i,i} = 8 \\ a_{ij} = \frac{1}{|i+j|+3} \text{dla } i \neq j \end{cases}$$

Jako wektor x została przyjęta permutacja postaci $[-1, 1, 1, -1, 1, 1, -1, 1, 1, \dots]$.

Następnie przyjmując wektor x jako niewiadomą będziemy chcieli zbadać dokładność obliczeń i liczbę iteracji korzystając z metody Jacobiego.

Do łatwiejszej i lepszej analizy wyników posłużymy się w poniższych przykładach normą maksimum wyliczaną w następujący sposób:

$$max|x_i-k_i|,$$

1

gdzie x_i to współrzędną zadanego wektora x, a k_i współrzędna wyliczona.

Wykorzystamy w tym zadaniu dwa następujące kryteria stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2.
$$||Ax^{(i)} - b|| < \rho$$

3.2 Wyniki

Wszystkie poniższe obliczenia będą używały jako wektor początkowy wektor zerowy. Nałożone zostało górnicze ograniczenie na liczbę wykonywanych iteracji algorytmu, które wynosi 1000. Na poniższych tabelach oznaczenie - oznacza przekroczenie liczby iteracji.

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	4.03180e-03	3.41644e-04	3.14714e-06	3.05555e-11	3.33066e-16
10	1.81733e-03	6.55870e-05	2.36044e-06	2.08587e-11	2.22044e-16
15	1.79852e-03	1.17019e-04	1.94311e-06	8.89621e-12	2.22044e-16
20	1.00155e-03	9.40587e-05	8.29401e-07	6.05582e-12	2.22044e-16
30	1.29035e-03	7.34495e-05	6.18326 e - 07	6.48270 e-12	4.44089e-16
50	6.26179 e-04	7.41651e-05	1.04032e-06	5.84687e-12	4.44089e-16
75	5.65223 e-04	6.41674 e - 05	8.26978e-07	5.25390e-12	4.44089e-16
100	5.30990e-04	5.96830e-05	4.87002e-07	5.64259e-12	6.66133e-16
120	4.58893e-04	4.86885 e - 05	5.48094e-07	5.07083e-12	8.88178e-16
150	5.13794e-04	4.63442e-05	5.09340e-07	4.10815e-12	8.88178e-16
200	4.23152e-04	4.08307e-05	3.80160e-07	3.93374e-12	1.77635e-15
500	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$

Tabela 1: Norma maksimum dla 1-szego kryterium stopu

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	2	3	5	10	15
10	3	5	7	14	21
15	4	6	9	18	26
20	5	7	11	21	30
30	6	9	14	26	38
50	9	12	18	35	51
75	12	16	24	46	69
100	15	20	31	57	84
120	18	24	36	67	104
150	22	30	45	84	127
200	32	43	65	119	190
500	-	-	-	-	-

Tabela 2: Liczba iteracji dla 1-szego kryterium stopu

Możemy zauważyć zarówno jak zarówno zwiększając wielkość macierzy, czy też dokładność - zwiększamy liczbę iteracji. Oczywistym jest, że osiągamy dokładniejsze wyniki zmniejszając ρ . Możemy dodatkowo zanotować, iż rezultaty osiągamy lepsze zwiększając wielkość macierzy - natomiast ostatecznie dla n=500 zaczynamy osiągać błędne wartości, z zbyt dużą liczbą iteracji.

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	3.41644e-04	3.06476e-05	3.10498e-07	3.04178e-12	1.11022e-16
10	3.46599e-04	1.24440e-05	8.49334e-08	7.50621e-13	2.22044e-16
15	1.17019e-04	7.61647e-06	1.26470e-07	2.26951e-12	1.11022e-16
20	9.40587e-05	8.83249e-06	7.78836e-08	1.85584e-12	2.22044e-16
30	7.34495e-05	1.08663e-05	9.14760e-08	9.59121e-13	4.44089e-16
50	7.41651e-05	8.78384e-06	1.23211e-07	6.92668e-13	4.44089e-16
75	6.41674 e - 05	7.28458e-06	9.38822e-08	1.02762e-12	4.44089e-16
100	5.96830 e-05	6.70833e-06	8.47503e-08	6.34603e-13	6.66133e-16
120	7.07632e-05	7.50795e-06	5.81526e-08	7.82041e-13	8.88178e-16
150	6.26029 e - 05	5.64678e-06	6.20602e-08	6.76347e-13	8.88178e-16
200	5.05016e-05	4.87299e-06	5.61171e-08	4.70068e-13	1.77635e-15
500	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$	$3.63400\mathrm{e}{+12}$

Tabela 3: Norma maksimum dla 2-giego kryterium stopu

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	3	4	6	11	17
10	4	6	9	16	-
15	6	8	11	19	-
20	7	9	13	22	-
30	9	11	16	28	-
50	12	15	21	38	-
75	16	20	28	49	-
100	20	25	35	62	-
120	23	29	42	72	-
150	29	37	52	90	-
200	42	53	74	129	-
500	-	-	-	-	-

Tabela 4: Liczba iteracji dla 2-giego kryterium stopu

Ponownie zauważamy podobne zjawisko jakie występowało dla pierwszego kryterium. Liczba iteracji rośnie wraz z dokładnością oraz wielkością macierzy. Wartości, które otrzymujemy również są dokładniejsze zarówno zwiększając dokładność jak i wielkość macierzy.

Zaskoczeniem natomiast jest, że dla $\rho=1e-15$ dla małych rozmiarów macierzy liczba iteracji przekracza naszą granicę.

Niżej zostaną przedstawione czas działania algorytmu dla poszczególnych danych. Wartość 0 zastosowana w poniższych zestawieniach oznacza czas bardzo zbliżony do zera, który jest ciężki do wyliczenia.

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	0	0	0.00099683	0	0
10	0	0	0	0	0.00099778
15	0	0	0	0	0
20	0	0	0	0	0.00099778
30	0	0	0	0	0.0009973
50	0.00099754	0	0	0	0.00099754
75	0	0	0	0.0009973	0
100	0.00099754	0.00199533	0.00197053	0.0029676	0.00299168
120	0.00099707	0.00197244	0.00197077	0.00299144	0.00299287
150	0.00199604	0.00197148	0.00296497	0.00299263	0.00398922
200	0.00199461	0.00296593	0.00299168	0.0039897	0.00598383
500	0.04286003	0.0398674	0.04485416	0.03887248	0.03986907

Tabela 5: Czas algorytmu w [s] dla 1-szego kryterium stopu

$n \mid \rho$	1e-2	1e-3	1e-5	1e-10	1e-15
5	0	0	0.00100875	0	0
10	0	0	0	0	0.00594544
15	0	0	0	0.0009973	0.00598454
20	0	0	0	0.0009973	0.00600767
30	0	0	0	0.00099754	0.00598454
50	0	0	0	0.00099754	0.00797868
75	0	0	0	0.00099683	0.0079751
100	0.0009973	0.00099802	0.00199461	0.00299191	0.04787207
120	0.00099707	0.00199485	0.00199461	0.00299191	0.04986715
150	0.00199437	0.00199461	0.00398922	0.00498676	0.05086446
200	0.00199485	0.00299168	0.0039885	0.00698161	0.05984068
500	0.07081151	0.07679439	0.07138491	0.06981182	0.06881618

Tabela 6: Czas algorytmu w [s] dla 2-giego kryterium stopu

Porównując Tabele 5 i 6 widzimy, jak czas algorytmu dla drugiego kryterium stopu jest lekko dłuższy.

3.3 Porównanie

Wykres 1: przedstawiający liczbę iteracji dla $\rho=1e-5$

Wykres 2: przedstawiający liczbę iteracji dla $\rho=1e-10$

Zauważmy jak na Wykresie 1 jak i Wykresie 2 niezależnie od dokładności drugi warunek stopu zawsze posiada większą liczbę iteracji od pierwszego.

Wykres 3: przedstawiający normę maksimum dla $\rho=1e-5$

Wykres 4: przedstawiający normę maksimum dla $\rho = 1e - 10$

Zauważmy jak na Wykresie 3 jak i Wykresie 4 niezależnie od dokładności drugi warunek stopu zawsze posiada dokładniejsze wartości, ale też i jest to kwestia większej liczby iteracji.

Wykres 5: przedstawiający czas algorytmu dla $\rho = 1e - 5$

Wykres 6: przedstawiający czas algorytmu dla $\rho=1e-10$

Zgodnie jak można było się domyśleć, algorytm z większą liczbą iteracji będzie wykonywał się dłużej.

3.4 Porównanie z innym wektorem początkowym

Wszystkie powyższe przykłady były wytworzone za pomocą wektora zerowego. Spójrzmy poniżej na ewentualne różnice w wynikach dla wektora odległego. Będzie on postaci $[-100, 100, 100, -100, 100, 100, \ldots]$

Wykres przedstawiający normę maksimum dla q=1e-10, kryterium

Wykres 7: przedstawiający normę maksimum dla $\rho = 1e - 10$

Wielkość macierzy (n)

Na wykresie 7 możemy zauważyć, zaskakujący efekt jakim jest lepszy rezultat dla wektora odległego jako wektor początkowy. Czas wykonywania algorytmu jest bardzo podobny, razem z liczbą iteracji niezależnie od wektora początkowego.

4 Zadanie 2

4.1 Wprowadzenie

Promień spektralny to największa wartość bezwzględna wartości własnej macierzy. W temacie metody Jacobiego wykorzystujemy macierz iteracyjną, którą wyliczamy z macierzy A w następujący sposób:

$$M = D^{-1} * (L + U),$$

gdzie D - macierz diagonalna, L - dolna trójkatna, U - górna trojkatna.

Promień spektralny to jedno z kryteriów konwergencji metody Jacobiego tj. metoda będzie zbieżna jeżeli promień jest mniejszy od 1 .

Wszystkie wyliczenia zostały wykonane za pomocą biblioteki Numpy.

4.2 Wyniki

n	v_A
5	0.09954
10	0.18968
15	0.25512
20	0.30643
30	0.38463
50	0.4910
75	0.58046
100	0.64588
120	0.6880
150	0.74028
200	0.80850
500	1.03033

Tabela 7: Wartość promienia spektralnego dla zadanej macierzy

5 Podsumowanie

W zadanym ćwiczeniu widzimy jak ważną rolę odgrywa promień spektralny w rozwiązywaniu równań liniowych. Pozwala ono oszacować do jak wielkich równań jesteśmy w stanie uzyskać prawidłowe rozwiązywania w rozsądnym czasie wykonywania algorytmu. W tym przypadku, macierz jest rozwiązywalna do n=500, kiedy to np. inne macierze mogłyby osiągać dalej prawidłowe wartości w okolicach tysiąca.

Dodatkowo w tej macierzy jesteśmy w stanie zauważyć jak poszczególne kryterium stopu wpływa na liczbę iteracji algorytmu oraz dokładność wyniku. W moim przypadku kryterium 2 osiągało lepsze rezultaty, lecz było to spowodowane też i większą liczbą iteracji.