UE Artificial Intelligence

344.021, 344.022, 344.023 WS 2015

Filip Korzeniowski, Rainer Kelz

Department of Computational Perception
Johannes Kepler University
Linz, Austria

November 9, 2015

Contents

- brief discussion of the last exercise sheet
- (very) brief discussion of the new exercise sheet
- Competition(s)
- Adversarial Search and Heuristics
- Monte Carlo Tree Search

Single Linked Lists and Array Backed Lists

SLL Single Linked List

SLL,TP Single Linked List with Tail Pointer

ABL Array Backed List

ABL,¬S Array Backed List, when the space runs out

Average/Worst Case Runtimes:

Operation	SLL	SLL,TP	ABL	ABL,¬S
Insert (end)	<i>O</i> (<i>n</i>)	0(1)	0(1)	O(n)
Contains	<i>O</i> (<i>n</i>)	O(n)	O(n)	O(n)

Hash Tables (and Hash Sets)

HT Hash Table

Average/Worst Case Runtimes:

Operation	HT (average case)	HT (worst)
Insert	O(1)	<i>O</i> (<i>n</i>)
Contains	O(1)	O(n)

Question 2 Uninformed Search

- ▶ to keep track of **visited** nodes we use a HashSet / HashTable
- what would happen otherwise?

Uninformed Search - effects when using a Linked List / Array

- ▶ the number of leaves in a tree with branching factor b and depth d is O(b^d)
- ▶ at search depth d we expand $O(b^{d+1})$ nodes in the worst case
- every time we visit a node, we put it into "visited", an operation which runs in O(1) (if we have a tail pointer)
- ▶ at search depth d there are O(b^d) nodes in this list!
- every time we expand a node, we call "contains", which will run in O(b^d) on average!

The average asymptotic runtime of BFS with a **naive** closed-list

- ▶ in (1), the $O(b^d)$ stems from the "contains"
- in (1), the $O(b^{d+1})$ is the number of nodes we expand

$$O(\sum_{d=1}^{D} O(b^d) \cdot b^{d+1}) \tag{1}$$

$$= O(\sum_{d=1}^{D} b^d \cdot b^{d+1}) \tag{2}$$

$$= O(\sum_{d=1}^{D} b^{d+d+1}) \tag{3}$$

$$= O(\sum_{d=1}^{D} b^{2d+1})$$
 (4)

$$= O(\frac{b^3(b^{2D}-1)}{b^2-1}) \tag{5}$$

$$\sim O(b^{2D}) \tag{6}$$

The search-space is **given**!

- ▶ the search space is **given** to you by "adjacent"!
- changing this list changes the search space!
- a search algorithm is not universal, if you choose to ignore whole branches of the space that you are given!
- don't change the space!

Question 3 Theoretical part

3C: Which of the heuristics guarantees that Greedy Best-First Search will lead to an optimal solution? Which of them guarantees obtaining an optimal solution using A* Search?

- Greedy Best-First Search never guarantees to find the optimal solution, no matter which heuristic.
- ► A* finds an optimal solution if the heuristic is **admissible**.
- admissible means always underestimating the true cost
- holds for both Euclidean and Manhattan distance in our case
- hence, A* will find an optimal solution with both heuristics.

3D: Which of the heuristics is better?

- ▶ a heuristic h_2 **dominates** h_1 if, for any node n, $h_2(n) \ge h_1(n)$
- ightharpoonup if h_1, h_2 are admissible, and h_2 dominates h_1 , A* with h_2 will never expand more nodes than with h_1
- for our problem, Manhattan and Euclidean distance are admissible
- $\forall \mathbf{x}, \mathbf{y} : d_{MH}(\mathbf{x}, \mathbf{y}) \geq d_{FC}(\mathbf{x}, \mathbf{y})$
- hence, Manhattan distance is better (for our problem)

Assignment 2

- ▶ implement MinMax and AlphaBeta
- reasoning via resolution, forward or backward chaining

General

How hard is it to make a **ZIP** file according to **detailed** specs?

... please hand in files according to specs?

Competition(s)

- ▶ the first round of (our) competition will start on 20.11.2015
- please upload your bot to MOODLE before 14:00!

Competition(s)

- at the JKU LAN Party there will be a coding contest
 - http://informatik.jku.at/students/lan/2015ws/
 - https://github.com/coduno
- it'll involve writing an (intelligent) agent that plays a game
- as far as I know:
 - you'll not have access to the game-engine itself to do planning (as you have for this exercise)
 - it's going to be N bots in 1 arena
 - the branching factor will likely be enormous
- what you could do:
 - optimal path planning with A* (to walk around)
 - adversarial search to search through close encounters

50 Stunden non-stop ab Freitag 13.11. 13:00 Uhr JKU Managementzentrum EG

Coding Contest

Das weltweit erste Coduno Battle
Start: 13.11. ab 10:00 Uhr

Reservieren und Anmelden forms.jku.at/oeh/lan2015

Adversarial Search Problems

- the MinMax algorithm needs to generate the whole game tree
- this is intractable for any interesting game
- with AlphaBeta pruning we still have to progress all the way to the leaves of the game tree
- real games have time limits

Adversarial Search

Limiting the search depth

- cut off the search at a "reasonable" depth
- what is "reasonable", depends on the nature of the game

Evaluation Heuristics

How do we get a score for an unfinished game?

- say we cut off the search at a "reasonable" depth
- how do we know what the value of the nodes are?
- we need to assign a value to all the nodes at this depth
- we need a function that judges how favorable the situation is for us, at this particular point in the game
- the quality of this function determines playing performance!

Evaluation Heuristics

Quality considerations - what should a heuristic look like?

A good heuristic should ...

- order the terminal states exactly as the true utility function
- be quickly evaluated
- be correlated with the actual chances of winning

Horizon effect

One can only plan for as far as one can see...

- say we search until a maximum depth of D ply
- we select our next move, m_D based upon the evaluation of all nodes at depth D
- ▶ if we would have continued to a search depth of D + d, we may have found a move m_{D+d} with $score(m_{D+d}) > score(m_D)$
- we couldn't look over the horizon, due to our limited computational budget

Quiescence Search

Continue searching in certain situations...

- we may have a soft and a hard depth limit
- in an "unstable" or "dangerous" situation we might choose to continue searching
- the idea is that our evaluation heuristic is only applied to nodes that are somehow "quiet"
- "quiet" nodes are those that are unlikely to change in value in the near future
- we need an additional function that judges the current game dynamic

Monte Carlo Tree Search

Rolling the dice, repeatedly

- the basic idea is very simple: play a bunch of random games, from start to finish, to obtain outcomes
- we are randomly sampling paths through the state space
- choose the next move that resulted in a win most often

Monte Carlo Tree Search (taken from [1]) In four easy steps!

Monte Carlo Tree Search

A few random tidbits

- trivially parallelizable
- converges to minimax decision (with infinitely many samples)
- you can stop MCTS at any time and return the best move so far
- MCTS does not need domain specific knowledge
- plain MCTS may work for your problem domain "out of the box"

[1] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree Search Methods. *IEEE Transactions* on Computational Intelligence and AI in Games, 4(1):1–43, March 2012.