

Deteksi Otomatis Pola Berenang *Litopenaeus Vannamei*Yang Terindikasi Stress Pada Proses *Molting*Menggunakan YOLOv8 – *Efficient Underwater Object Detection Algorithm*

SEMINAR BIDANG KAJIAN

NIA YUNINGSIH 99223110

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA Juni 2024

DAFTAR ISI

1	Pendahuluan	1
	1.1 Latar Belakang Masalah	2
	1.2 Batasan dan Tujuan Masalah	8
	1.3 Kontribusi	9
2	Tinjauan Pustaka	10
	2.1 Physiological and immune response in the gills of Litopenaeus vanname	i
	exposed to acute sulfide stress - Fish & shellfish immunology	10
	2.2 Modulation of stress response and productive performance of litopenaeu	S
	vannamei through diet	11
	2.3 Evaluation of Genetic Parameters and Comparison of Stress Tolerance	
	Traits in Different Strains of Litopenaeus vannamei	12
	2.4 Stress response and tolerance mechanisms of ammonia exposure based	
	on transcriptomics and metabolomics in Litopenaeus vannamei - Ecotoxicol	ogy
	and environmental safety	13
	2.5 Analysis of the transcriptome data in Litopenaeus vannamei reveals the	
	immune basis and predicts the hub regulation-genes in response to high-pH	
	stress	14
	2.6 Integrated analysis of physiological, transcriptomic and metabolomic	
	responses and tolerance mechanism of nitrite exposure in Litopenaeus	
	vannamei - The Science of the total environment	15

2.7 Integrative microRNA and mRNA analysis reveals regulation of ER	
stress in the Pacific white shrimp Litopenaeus vannamei under acute	
cold stress	16
2.8 The Effect of Reduce Salinity on Behavior and Stress Response in	
Vannamei Shrimp (Litopenaeus vannamei)	17
2.9 Changes in the intestine barrier function of Litopenaeus vannamei in	
response to pH stress	18
2.10 Moult cycle of laboratory-raised Penaeus (Litopenaeus) Vannamei	
and P. Monodon	19
2.11 The effects of salinity and nutrition on molt and growth of Litopenaeus	
vannamei	20
2.12 Effects of Dietary Mannan Oligosaccharides on Non-Specific Immunity	y,
Intestinal Health, and Antibiotic Resistance Genes in Pacific White Shrimp	
Litopenaeus vannamei	21
2.13 Effect of fasting on molting and survival rate in post-larvae of the shrimp Litopenaeus vannamei	22
2.14 Physiological and Biochemical Variations during the Molt Cycle in	
Juvenile Litopenaeus vannamei under Laboratory Conditions	23
2.15 Physiological Responses of Pacific White Shrimp Litopenaeus	
vannamei to Temperature Fluctuation in Low-Salinity Water	24
2.16 Osmoregulation Pattern of Fingerling Vanname Shrimp (Litopenaeus	
vannamei) Rearing in Three Molt Stage Iso-Osmotic Media	25

2.17 Daily activity pattern of the marine shrimp Litopenaeus vannamei	
(Boone 1931) juveniles under laboratory conditions	26
2.18 Swimming ability and physiological response to swimming fatigue in	
whiteleg shrimp, Litopenaeus vannamei	27
2.19 The water quality monitoring of vannamei shrimp (Litopenaeus	
vannamei) ponds in East Tanete Riattang District, Bone Regency,	
Indonesia	29
2.20 Effect of dissolved oxygen on swimming ability and physiological	
response to swimming fatigue of whiteleg shrimp (Litopenaeus	
vannamei)	30
2.21 Whole Transcriptome Analysis Provides Insights into Molecular	
Mechanisms for Molting in Litopenaeus vannamei	32
2.22 The effect of rhythmic light color fluctuation on the molting and	
growth of Litopenaeus vannamei	33
2.23 Pengaruh Perbedaan Suhu dan Salinitas Terhadap Pertumbuhan	
Post Larva Udang Vaname (Litopenaeus vannamei)	35
2.24 Dynamics of Vitellogenin and Vitellogenesis-Inhibiting Hormone	
Levels in Adult and Subadult Whiteleg Shrimp, Litopenaeus vannamei:	
Relation to Molting and Eyestalk Ablation	36
2.25 Combined effect of exposure to ammonia and hypoxia on the blue	
shrimp Litopenaeus stylirostris survival and physiological response in	
relation to molt stage	37
2.26 Physiological and muscle tissue responses in Litopenaeus vannamei	
under hypoxic stress via iTRAQ	39

2.27 Investigating the physiological responses of Pacific white shrimp	
Litopenaeus vannamei to acute cold-stress	40
2.28 Energy metabolism response of Litopenaeus vannamei to combined	
stress of acute cold exposure and waterless duration	41
2.29 The effects of temperature and salinity on the swimming ability of	
whiteleg shrimp, Litopenaeus vannamei	43
2.30 Effects of temperature, salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp, Litopenaeus	
vannamei	44
2.31 Moulting in the grow-out of farmed shrimp: a review	45
2.32 Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei	
and P. monodon	47
2.33 Morphological and biochemical changes in the muscle of the marine	
shrimp Litopenaeus vannamei during the molt cycle	48
2.34 Utilization of Paku Uban (Nephrolepis biserrata) Extract as a	
Molting Stimulant of Mud Crabs (Scylla spp.) in Traditional Ponds	49
2.35 Influence of molting and starvation on the synthesis of proteolytic	
enzymes in the midgut gland of the white shrimp Penaeus vannamei	50
2.36 Hemolymph oxyhemocyanin, protein, osmolality and electrolyte	
levels of whiteleg shrimp Litopenaeus vannamei in relation to size and	
molt stage	51
2.37 Effect of periodic light intensity change on the molting frequency	53

2.38 Physiological and behavioral responses of different modes of	
locomotion in the whiteleg shrimp Litopenaeus vannamei (Boone, 1931)	
(Caridea: Penaeidae)	54
2.39 Effects of four factors on Penaeus monodon post larvae	
cannibalism	56
2.40 Penambahan Asam Amino Triptofan Dalam Pakan Terhadap	
Tingkat Kanibalisme Dan Pertumbuhan Litopenaeus vannamei	58
2.41 Cannibalism of Decapod Crustaceans and Implications for Their	
Aquaculture: A Review of its Prevalence, Influencing Factors, and	
Mitigating Methods	59
2.42 Cannibalism behavior in the brown shrimp Crangon crangon	61
2.43 Korelasi Antara Kadar Glukosa Darah dan Tingkat Infestasi Ektopara	sit
Udang Vaname (Litopenaeus vannamei) yang Dipelihara pada Padat	
Tebar dan Waktu Pemeliharaan yang Berbeda	63
2.44 Single and combined effects of ammonia and nitrite on Litopenaeus	
vannamei: Histological, physiological and molecular responses	64
2.45 Management of the Interaction and Cannibalism of Postlarvae and	
Adults of the Freshwater Shrimp	66
2.46 Tissue accumulation of polystyrene microplastics causes oxidative	
stress, hepatopancreatic injury and metabolome alterations in	
Litopenaeus vannamei	67
2.47 Effects of bile acids supplemented into low fishmeal diet on growth,	
molting, and intestinal health of Pacific white shrimp, Litopenaeus	
vannamei	69

2.48 Immune response and oxidative stress of shrimp Litopenaeus	
vannamei at different moon phases	70
2.49 Automatic Counting Shrimp Larvae Based You Only Look Once	
(YOLO)	71
2.50 Automatic shrimp counting method using local images and lightweight	t
YOLOv4	72
2.51 CAGNet: an improved anchor-free method for shrimp larvae	
detection in intensive aquaculture	73
2.52 A lightweight YOLOv8 integrating FasterNet for real-time underwater	•
object detection	74
2.53 A Lightweight Model of Underwater Object Detection Based on	
YOLOv8n for an Edge Computing Platform	75
2.54 YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection	
and Recognition	76
2.55 EF-UODA: Underwater Object Detection Based on Enhanced	
Feature	77
2.56 Two-Phase Instance Segmentation for Whiteleg Shrimp Larvae	
Counting	78
2.57 Efficient Underwater Object Detection Using Deep Neural	
Networks	79
2.58 Concatenate and Shuffle Network: A Real-Time Underwater Object	
Detector for Small and Dense Objects	80
2.59 Efficient Small-Object Detection in Underwater Images Using the	
Enhanced YOLOv8 Network	82

2.60 Improving Detection Capabilities of YOLOv8-n For Small Objects	
in Remote Sensing Imagery: Towards Better Precision with Simplified	
Model Complexity	83
2.61 UWV-Yolox: A Deep Learning Model for Underwater Video Object	
Detection	84
2.62 Underwater Object Detection Algorithm Based On Attention Mechan	ism
and Cross-Stage Partial Fast Spatial Pyramidal Pooling	85
2.63 An Improved YOLO Algorithm for Fast and Accurate Underwater Ob	oject
Detection	86
2.64 Perbandingan Deep learning detection of shrimp freshness via smartp	hone
pictures	87
2.65 Perband Soft-shell Shrimp Recognition Based on an Improved AlexN	let
For Quality Evaluations	88
2.66 Perbandin Training Custom Model Deteksi Udang Menggunakan	
YOLOv8	89
2.67 Segment Anything Meets Point Tracking	89
2.68 Mask-Free Video Instance Segmentation	90
2.69 Tracking Every Thing in the Wild	91
2.70 Video Mask Transfiner for High-Quality Video Instance	
Segmentation	92
2.71 SAGA: Stochastic Whole-Body Grasping With Contact	93
2.72 Quasi-Dense Similarity Learning for Multiple Object	
Trocking	04

	2.73 TextureGAN: Controlling Deep Image Synthesis with Texture	
	Patches	95
	2.74 Perbandingan Tinjauan	95
3	Metodologi	143
	3.1 Motivasi	143
	3.2 Framework Riset	144
	3.3 Pendekatan	150
1	DAFTAR PUSTAKA	151

Bab 1

Pendahuluan

Udang *vannamei* (*Litopenaeus vannamei*) telah menjadi salah satu komoditas perikanan yang paling diminati di dunia. Dengan potensi ekspor yang besar dan pangsa pasar yang luas, bisnis udang *vannamei* telah menjadi sangat menguntungkan bagi para petani dan industri perikanan. Selain itu budidaya udang *vannamei* telah menjadi salah satu industri penting dalam perekonomian Indonesia, dengan pasar utama diarahkan ke Amerika Serikat dan ekspor yang mengalami peningkatan sebesar 35% dalam beberapa tahun terakhir. Namun budidaya udang *vannamei* juga memiliki beberapa tantangan, seperti stress pada proses molting yang dapat berdampak pada kualitas dan kuantitas produksi.

Stress pada proses *molting* dapat disebabkan oleh berbagai faktor, seperti suhu udara yang tidak sesuai, kekurangan makanan, dan kualitas lingkungan serta udara yang buruk. Udang *vannamei* yang mengalami stress pada proses molting dapat menunjukkan pola berenang yang tidak normal, seperti berenang lebih cepat atau lebih lambat dari biasanya. Dengan menggunakan teknologi deteksi pola berenang menggunakan YOLOv8, kita dapat mendeteksi stress pada proses *molting* lebih awal dan mengambil tindakan preventif untuk meningkatkan keuntungan budidaya udang.

1.1 Latar Belakang

Prospek Bisnis Udang Litopenaeus Vannamei

Umumnya dikenal sebagai udang putih atau udang putih Pasifik, *Penaeus vannamei* saat ini merupakan salah satu spesies *penaeid* komersial yang paling penting dan paling banyak dibudidayakan di seluruh dunia, dengan sekitar 80% dari total produksi budidaya udang global (Gambar 3; Cobo et al., 2012; FAO-FIGIS, 2016; Sanudin et al., 2014). Spesies *crustacea* ini berasal dari pantai Pasifik timur, memiliki sebaran mulai dari Sonora, di Meksiko, hingga ke selatan hingga Tumbes, di Peru, dan hidup di habitat laut tropis dengan suhu air biasanya di atas 20 °C sepanjang tahun (FAO, 2018; Galil dkk., 2011; Medina-Reyna, 2001; Wakida Kusunoki dkk., 2011).

Gambar 3: Global total shrimp aquaculture production, in 2016

(Sumber: FAO-FIGIS (2016) Statistics and Information Branch. Fisheries and Aquaculture Department)

Mentri Kelautan dan Perikanan - Edhy Prabowo, mengemukakan terkait budidaya udang jenis *vannamei*: "Nilai produksi pada tahun 2019 sebesar Rp 36,22 triliun dan menjadi besar pada tahun 2024, senilai Rp 90,30 triliun. Produksi dari 517.397 ton pada tahun 2019, menjadi sebesar 1.290.000 ton pada 2020. Target kawasan, dibutuhkan sekitar 86 ribu hektar lahan tambahan hingga tahun 2024. Menteri Koordinator Bidang Kemaritiman dan Investasi Luhut Binsar Pandjaitan menyatakan - permintaan pasar dunia akan udang vanamei ini sangat tinggi, sekitar Rp 90 triliun untuk tahun 2024, selain itu pemerintah menargetkan ekspor udang vaname naik 250 persen hingga tahun 2024.(Ade Miranti.,2024).

Konsumsi Global Hidangan Laut

Prediksi tingkat konsumsi global hidangan laut diperkirakan semakin meningkat di masa mendatang, pada gambar 4 dapat diperoleh informasi bahwa tingkat konsumsi global hidangan laut pada tahun 2021 dari hasil budidaya sebesar 51% dan dari hasil tangkapan liar sebesar 49%. Dan di perkirakan pada tahun 2030 tingkat konsumsi global hidangan laut dari hasil budidaya mencapau 62% dan dari hasil tangkapan liar sebesar 38%.

Gambar 4. Global seafood consumption (fisheries and aquaculture).

(Sumber: FAO FIPS, 2014)

Konsumsi Udang Litopenaeus Vannamei Di Kawasan Eropa

Dengan hampir 30 negara dan 10 spesies udang yang sangat populer, melihat pasar udang Eropa, Kontali memberikan wawasan menarik mengenai perbedaan budaya dan kuliner di seluruh benua. Eropa menguasai pangsa pasar udang global sebesar 11%. Sekitar 30 persen udang yang dikonsumsi di Eropa berasal dari produksi lokal (kebanyakan perikanan), dan 70 persen lainnya bergantung pada impor. Enam puluh persen dari total tersebut berasal dari peternakan. Impor berfokus pada jenis udang perairan hangat,udang *vannamei*. Vannamei mendominasi pasar Eropa. (Sander Visch, 2024).

Gambar 5. Kebutuhan Udang Vannamei di Pasar Kontali, Eropa 2019 - 2023 (Sumber: Kontali shrimp model 2024)

Kebutuhan konsumsi udang di Pasar Kontali, Eropa dari tahun 2019 sampai dengan 2023 di dominasi oleh udang jenis Vannamei, dapat dilihat bersama pada gambar 5.

- Pasar udang di Eropa agak terfragmentasi, berdasarkan preferensi konsumen, Eropa dapat dibagi menjadi wilayah barat laut, selatan, dan timur, sedangkan Inggris memiliki trennya sendiri.
- Menurut studi Komisi Eropa, udang menyumbang 6 persen sekitar 1,5 kg per orang dari total konsumsi makanan laut Eropa.
- Spanyol memimpin perihal mengkonsumsi hidangan laut dengan berat lebih dari 3 kg.
- Belanda berada di posisi terendah perihal mengkonsumsi hidangan laut dengan berat 600 g.

Gambar 6. Total Konsumsi Hidangan Laut Beberapa Negara Eropa (Sumber: thefishsite.com)

Konsumsi Udang Litopenaeus Vannamei di Eropa barat laut

Sebagian konsumen Northwestern akrab dengan udang untuk masakan rumah, sebagian besar konsumen lebih memilih produk siap masak. Produk yang sudah dikupas dan memiliki nilai tambah ini dapat ditemukan secara eceran, baik sebagai produk beku maupun produk segar. Spesies yang ditawarkan secara eceran biasanya adalah udang putih Pasifik, atau untuk makanan siap saji digunakan udang air dingin. Kebutuhan konsumsi jenis udang vannamei di Eropa Barat Laut adalah 70%.

Gambar 7. Gambaran Umum Permintaan Udang di Eropa Barat Laut (Sumber: thefishsite.com)

Permintaan di Eropa Barat Laut untuk jenis udang Common shrimp sebesar 20%, jenis Northern shrimp sebesar 5%, jenis Monodon sebesar 4%, jenis Vannamei sebesar 70%, jenis lainnya sebesar 1%. (Sander Visch, 2024).

Konsumsi Udang Litopenaeus Vannamei di Pasar Inggris

Di Eropa Barat Laut, Inggris secara umum konsumsi udang – terutama udang bagian utara – jauh lebih tinggi dibandingkan negara-negara lain di kawasan ini, yaitu hampir 1,7 kg per orang. Udang air dingin dan udang air hangat dikonsumsi sebagai bagian dari salad, pasta, dan pizza, tetapi jarang digunakan sebagai bahan utama makanan. Selain itu, Inggris memiliki keragaman etnis yang tinggi, sehingga konsumsi makanan laut lebih umum. Antara tahun 2019 dan 2023, impor udang telah menunjukkan CAGR sebesar 6 persen untuk semua spesies udang. Namun, udang vaname menunjukkan pertumbuhan sebesar 13 persen. Kebutuhan akan konsumsi udang jenis vannamei sebesar 67%.

Gambar 8. Gambaran Umum Permintaan Udang di Pasar Inggris

(Sumber: thefishsite.com)

Permintaan di Pasar Inggris untuk udang jenis Northern shrimp sebesar 22%, udang jenis Monodon sebesar 5%, udang jenis Aesop shrimp sebesar 2%, udang jenis Common shrimp 2%, udang jenis Vannamei sebesar 67%, jenis lainnya sebesar 2%. (Sander Visch, 2024).

Konsumsi Udang Litopenaeus Vannamei di Eropa Selatan

Pasar Eropa Selatan terdiri dari Spanyol, Portugal, Italia dan Perancis. Wilayah ini lebih fokus pada konsumsi makanan laut (segar) secara umum dibandingkan wilayah barat laut. Negara eropa selatan tersebut juga memiliki konsumsi makanan laut per kapita tertinggi, maka volume udang kupas juga besar.

Gambar 9. Gambaran Umum Permintaan Udang di Eropa Selatan (Sumber: thefishsite.com)

Permintaan di Eropa Selatan untuk udang jenis Argentina red shrimp sebesar 22%, udang jenis Monodon sebesar 5%, udang jenis Deep water rose sebesar 5%, udang jenis Vannamei sebesar 66%, jenis lainnya sebesar 2%. (Sander Visch, 2024).

Gambaran Umum Udang dan Keberlanjutannya di Tahun 2024

National Fisheries Institute memperkirakan bahwa konsumsi udang di AS terus meningkat sejak tahun 2013, dan mencapai puncaknya pada tahun 2021, yaitu 5,9 pon udang per orang. Udang menyumbang 38% dari seluruh konsumsi makanan laut tahunan di AS, lebih banyak daripada tuna kalengan, nila, ikan pollock Alaska, ikan kembung, ikan kod, dan kepiting jika digabungkan. AS tidak sendirian dalam tren ini: pasar udang global diproyeksikan tumbuh 6,72% per tahun selama lima tahun ke depan, dengan estimasi nilai \$69,35 miliar pada tahun 2028. (Jack Cheney, 2024).

Proses Molting Litopenaeus Vannamei

Molting berperan besar terhadap kesuksesan budidaya udang Litopenaeus vannamei. Proses molting, yaitu pergantian kulit udang, sangat penting untuk pertumbuhan dan produksi udang. Faktor-faktor yang mempengaruhi keberhasilan molting udang vannamei meliputi: (Jayanti et al, 2022).

- 1. Nutrisi dan Mineral: Kandungan mineral dan nutrisi yang seimbang sangat diperlukan untuk kinerja pertumbuhan udang. Mineral seperti kalsium dan magnesium sangat penting untuk regenerasi cangkang baru.
- 2. Kualitas Air: Kualitas air yang baik, seperti pH dan salinitas, sangat diperlukan untuk keberhasilan molting. Udang vannamei memerlukan lingkungan yang sehat dan stabil untuk mengalami molting dengan baik.
- 3.Stress Udang: Stress udang dapat mempengaruhi keberhasilan molting dan kesehatan udang. Udang yang stress dapat mengalami penurunan produksi dan pertumbuhan.

Keberhasilan molting juga dipengaruhi oleh beberapa faktor lain, seperti: (Anggi Nur, 2023).

- a. Jarak Waktu Molting: Jarak waktu molting sangat singkat pada tahap awal udang karena pertumbuhannya yang cepat, dan akan berkurang seiring dengan pertumbuhan udang.
- b. Pengamatan Kondisi Udang dan Air: Pengamatan keadaan udang dan air dapat membantu memperkirakan waktu terjadinya molting. Sebelum molting, udang vannamei mempunyai otot keras, kulit putih, dan kerang rapat. Bila kita menemukan gelembung-gelembung jangka panjang pada air kolam, air kolam lebih kental dan banyak cangkang udang yang mengapung di kolam, berarti banyak udang telah molting.

- c. Fase Bulan: Fase bulan mempengaruhi siklus molting dan pasang surut air laut akibat efek gravitasi dari bulan dan matahari serta rotasi bumi. Udang vannamei biasanya mengalami molting malam hari saat bulan purnama atau saat pasang (Wildan Gayuh, 2023).
- d. Kepadatan Udang: Kepadatan udang yang tinggi dapat mempengaruhi keberhasilan molting. Udang yang terlalu banyak dapat mengakibatkan penurunan tajam mineral di lingkungan, sehingga mempengaruhi proses molting.
- e. Temperature, Intensitas Cahaya

Dengan memperhatikan faktor-faktor tersebut, budidaya udang Litopenaeus vannamei dapat meningkatkan keberhasilan molting dan kesehatan udang, sehingga meningkatkan omset budidaya.

Udang yang mengalami stress akan berdampak terhadap berlangsungnya proses molting, dimana perilaku stress pada udang dapat di deteksi melalui perubahan perilaku berenangnya selama proses molting berlangsung. Sehingga diperlukan suatu sistem yang dapat mendeteksi pola berenang pada udang litopenaeus vannamei yang terdindikasi stress pada saat proses molting berlangsung, guna meningkatkan keuntungan budidaya udang vannamei. Penelitian ini dilakukan untuk melakukan segmentasi terhadap pola berenang udang *litopenaeus vannamei* yang terindikasi mengalami stress selama proses molting secara morfologi melalui perubahan mode gerak pada udang ke dalam 2 kelas yaitu udang stress dan udang sehat, menggunakan YOLOv8.

1.2 Batasan dan Tujuan

Batasan Masalah

Adapun batasan masalah dalam penelitian ini adalah pola berenang udang litopenaeus vannamei pada saat proses molting sebagai indikator stress pada udang secara morfologi. Pola berenang udang Litopenaeus vannamei adalah bagian dari perilaku udang vannamei yang berhubungan dengan cara bergeraknya dalam air. Untuk proses segmentasi pola berenang menggunakan YOLOv8. Berikut adalah beberapa pola berenang yang digunakan oleh udang vannamei:

- a. Gerak Berenang: Udang *vannamei* berenang dengan menggunakan kaki berjalan (*periopoda*) atau kaki sepuluh (*decapoda*) yang terdiri dari lima pasang. Gerak berenang ini digunakan untuk bergerak di dalam air dan mencari makanan.
- b. Gerak Berjalan: Udang *vannamei* juga dapat berjalan dengan menggunakan kaki berjalan yang terdiri dari lima pasang. Gerak berjalan ini digunakan untuk bergerak di atas dasar perairan dan mencari makanan.

- c. Gerak Melompat: Udang *vannamei* dapat melompat dengan menggunakan kaki berjalan yang terdiri dari lima pasang. Gerak melompat ini digunakan untuk bergerak di atas dasar perairan dan mencari makanan.
- d. Gerak Berenang dengan Kaki: Udang *vannamei* dapat berenang dengan menggunakan kaki berjalan yang terdiri dari lima pasang. Gerak berenang dengan kaki ini digunakan untuk bergerak di dalam air dan mencari makanan.

Definisi permasalahan dari penelitian

Berdasarkan penjelasan dari latar belakang diatas, permasalahan yang muncul adalah sebagai berikut:

- 1. Bagaimana cara mengetahui pola berenang udang yang terindikasi stress pada saat proses molting
- 2. Bagaimana frekuensi kemunculan pola berenang yang terindikasi stress pada saat proses molting
- 3. Bagaimana tingkat akurasi yang dihasilkan dari segmentasi pola berenang udang yang terindikasi stress pada saat proses molting.

Tujuan Umum dan Khusus dari Penelitian

- 1. Tujuan umum dari penelitian ini untuk melakukan segmentasi pola berenang udang litopenaeus vannamei yang terindikasi stress pada saat proses molting, berdaarkan ciri morfologi pada pola berenang yang dimiliki oleh udang.
- Tujuan khusus dari penelitian ini untuk mengetahui tingkat akurasi yang terbaik, menggunakan YOLOv8 dan untuk mengetahui frekuensi kemunculan pola berenang yang terindikasi stress pada saat proses molting.

1.3 Kontribusi

- Penelitian ini khususnya memudahkan bagi pengusaha tambak budidaya udang Litopenaeus Vannamei melakukan deteksi dini terhadap kesehatan udang pada saat proses molting, guna mencegah kerugian.
- 2. Pendeteksian dini pola berenang udang litopenaeus vannamei yang terindikasi stress pada saat proses molting, meningkatkan keuntungan bagi pengusaha tambak budidaya udang.

Bab 2

Tinjauan Pustaka

2.1 Tinjauan 1

Physiological and immune response in the gills of Litopenaeus vannamei exposed to acute sulfide stresss - Fish & shellfish immunology

Duan Yafei et al. Semantic Scholar 2018

	• Sulfida adalah polutan lingkungan yang berbahaya yang dapat mempengaruhi keselamatan			
	dan kekebalan udang			
Latar Belakang	• Insang adalah organ penting untuk respirasi dan penyesuaian <i>osmotik</i> udang, sehingga struktur			
	histologisnya dapat dipengaruhi oleh sulfida			
	• Stress sulfide mempengaruhi morfologi, respons fisiologis, dan respons imun pada insang			
	Litopenaeus Vannamei.			
Tujuan	Tujuan Meneliti respons fisiologis dan imun pada insang Litopenaeus vannamei yang terpapar stre			
sulfida akut.				
Dataset	120 ekor <i>L. vannamei</i> yang dibiakkan dalam air yang mengandung sulfida 5 mg/L			
Metode	• Metodologinya meliputi penyelidikan toksisitas akut sulfida pada insang Litopenae.			
vannamei				
	Menilai struktur histologis menggunakan pewarnaan hematoksilin-eosin (H&E)			
	Mengukur aktivitas enzim imun dan ekspresi gen.			
Hasil	Hasil Dampak stress sulfida pada respon fisiologis dan imun pada insang Litopenaeus vanname			
	menyebabkan kerusakan pada struktur histologis dan gangguan osmoregulasi, metabolis			
	pernafasan, dan kapasitas imun			
Kesimpulan	Sulfida akut dapat mempengaruhi struktur histologis, fungsi osmoregulasi, respirasi, dan			
respons imun pada insang Litopenaeus Vannamei.				

2.2 Tinjauan 2

Modulation of stresss response and productive performance of Litopenaeus vannamei through diet		
Martínez-Antonio et al.	PeerJ	2019

	Meneliti bagaimana diet mempengaruhi respons stress dan kinerja produktif Litopenaeus	
Latar Belakang	vannamei. L. vannamei	
Tujuan	Untuk mengetahui bagaimana diet mempengaruhi kepekaan terhadap stress kronis (salinitas	
	rendah 6 psu) dan akut (hipoksia) dalam hal kinerja budidaya dan indikator fisiologis.	
Dataset	Parameter zootechnical seperti pertambahan bobot badan, laju pertumbuhan spesifik,	
	kelangsungan hidup, rasio konversi pakan, rasio efisiensi protein, dan performa produktif udang	
	Litopenaeus vannamei pada kondisi pakan dan salinitas yang berbeda.	
Metode	• Evaluasi pengaruh pola makan terhadap kerentanan udang terhadap pemicu stress kronis dan	
	akut,	
	Membandingkan kinerja pada berbagai jenis pakan dan tingkat salinitas,	
	Memaparkan udang pada hipoksia dan pemicu stress yang lepas,	
	Menganalisis parameter zootechnical, dan menggunakan ANOVA dua faktor dan trifaktorial	
	untuk analisis data.	
Hasil	Efek pola makan terhadap respon stress:	
	Udang vaname yang diberi makan dengan diet rendah protein dan tinggi karbohidrat (26%	
	protein dan 6% fish meal) menunjukkan peningkatan kinerja dan daya tahan terhadap stress	
	yang disebabkan oleh kondisi lingkungan yang buruk, seperti rendahnya konsentrasi oksigen.	
	• Indikator Fisiologis:	
	Penelitian menemukan bahwa udang vaname yang diberi makan dengan diet yang mengandung	
	squid atau scallop viscera meal memiliki respon fisiologis yang berbeda terhadap stress, seperti	
	perubahan kadar prostaglandin pada insang.	
	• Stress Hipoksia:	
	Penelitian tentang respons fisiologis udang vaname terhadap stress hipoksia menemukan bahwa	
	udang vaname mengalami perubahan kadar prostaglandin pada insang, yang menunjukkan	
	perubahan fisiologis yang signifikan dalam kondisi stress hipoksia	
	Modulasi diet terhadap respon stress:	
	Penelitian lain menemukan bahwa udang vaname yang diberi makan dengan diet yang	
	mengandung squid atau scallop viscera meal memiliki respon stress yang berbeda terhadap	
	stress, seperti peningkatan kadar glukosa darah dan tingkat konsumsi oksigen yang meningkat.	
Kesimpulan Diet dapat digunakan sebagai strategi yang efektif dalam mengatur kepekaan udang v		
terhadap stress dan meningkatkan kinerja budidaya		

2.3 Tinjauan 3

Evaluation of Genetic Parameters and Comparison of Stresss Tolerance Traits in Different Strains of Litopenaeus			
vannamei.			
Shi Miao et al Research Gate 2024			

Latar Belakang	 Untuk mengevaluasi parameter genetik dan sifat ketahanan stress pada berbagai garis keturunan udang putih Pasifik (<i>Litopenaeus vannamei</i>). Untuk mengestimasi parameter genetik yang terkait dengan sifat ketahanan stress, 	
	Menganalisis korelasi genetik dan fenotipik antara sifat pertumbuhan dan ketahanan stress.	
Tujuan	Mengevaluasi parameter genetik dan sifat ketahanan stress pada berbagai garis keturunan udang putih Pasifik (<i>Litopenaeus vannamei</i>)	
Dataset	Kumpulan data yang digunakan dalam penelitian ini meliputi 20 keluarga bersaudara	
	• 20 keluarga <i>Litopenaeus vannamei</i> dan hibrida yang berkembang biak sendiri yang bersumber	
	dari Thailand dan Amerika Serikat,	
	Data dari stresss test yang melibatkan ammonia-N tinggi, pH tinggi, dan rendah salinitas	
	selama periode 96 jam.	
Metode	Analisis genetik, model ambang batas, uji toleransi awal, seleksi dan pemaparan remaja udang	
	terhadap kondisi stress, serta analisis data menggunakan perangkat lunak Excel 2021 dan	
	ASReml v4.2.	
Hasil	Berfokus pada evaluasi parameter genetik dan perbandingan sifat toleransi stress pada	
	berbagai strain udang putih, Litopenaeus vannamei.	
	• Strain <i>Litopenaeus vannamei</i> yang toleran terhadap stress memiliki tingkat heritabilitas yang	
	lebih tinggi dan korelasi genetik yang lebih kuat dibandingkan dengan strain yang sensitif	
	terhadap stress.	
Kesimpulan	Adanya korelasi genetik dan fenotipik yang positif di antara berbagai sifat pertumbuhan dan	
	toleransi terhadap stress, yang meletakkan landasan teoretis yang kuat untuk desain program	
	pemuliaan selektif di masa depan yang memprioritaskan toleransi stress pada L. vannamei.	

2.4 Tinjauan 4

Stresss response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in		
Litopenaeus vannamei - Ecotoxicology and environmental safety		
Jie Xiao et al	Science Direct	2019

Latar Belakang	• Ammonia adalah salah satu faktor lingkungan yang menghambat pertumbuhan, reproduksi,
	dan survival udang,
	• Penting untuk memahami bagaimana udang tersebut bereaksi terhadap paparan ammonia
	dengan berfokus pada analisis molekuler respons stress dan toleransi terhadap paparan
	ammonia pada spesies udang putih, Litopenaeus vannamei (LV).
Tujuan	Untuk memahami bagaimana Litopenaeus vannamei bereaksi terhadap paparan ammonia dan
	untuk mengidentifikasi mekanisme toleransi yang digunakan oleh spesies ini terhadap stress
	ammonia.
Dataset	Dataset yang digunakan dalam penelitian adalah dua famili ekstrim Litopenaeus vannamei, yaitu
	famili toleran ammonia (LV-AmmoniaTollerance) dan famili peka ammonia (LV-
	AmmonisSensitive), yang dipapar dengan ammonia konsentrasi tinggi selama 24 jam.
Metode	• Analisis transkriptom yang membandingkan kelompok yang diberi perlakuan dengan
	kelompok kontrol,
	Membandingkan profil metabolit dan transkrip antara famili yang toleran terhadap ammonia
	dan yang sensitif terhadap ammonia.
Hasil	• LV-AT menggunakan sistem imun, remodeling sitoskeleton, sistem antioksidasi, dan jalur
	metabolisme untuk mengatasi stress ammonia.
	• LV-AT menunjukkan peningkatan metabolisme glukosa dan siklus tricarboxilic (TCA) untuk
	memenuhi kebutuhan energi dan ekskresi ammonia
	• LV-AS, sebaliknya, menunjukkan peningkatan ekspresi gen yang terkait dengan apoptosis
	dan sistem imun yang lebih rendah.
	LV-AS menunjukkan peningkatan metabolisme yang lebih rendah
	Analisis metabolomik menunjukkan bahwa paparan ammonia dapat mengganggu
	metabolisme asam amino, metabolisme <i>nukleotida</i> , dan metabolisme <i>lipid</i> .
Kesimpulan	Adanya perbedaan molekuler dalam respons terhadap stress ammonia pada Litopenaeus
	vannamei sebagai strategi adaptif udang toleran ammonia dalam menghadapi konsentrasi
	ammonia yang tinggi.

2.5 Tinjauan 5

Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub		
regulation-genes in response to high-pH stresss		
Huang W et al	PLoS ONE	2018

Latan Dalakana	Salinisasi tanah mengikis lahan pertanian ,
Latar Belakang	Salinisasi menyebabkan tingginya kadar garam mudah larut pada tanah,
	• Udang Putih Pasifik (Litopenaeus vannamei) merupakan spesies perairan budidaya yang
	umum untuk pengembangan dan pemanfaatan kawasan salin-alkali,
	• Lingkungan pH tinggi yang dapat menyebabkan stress pada udang,
	• Stress pH tinggi dapat mengganggu metabolisme udang dan mempengaruhi kualitas udang
	sebagai bahan pangan.
Tujuan	Memahami bagaimana udang bereaksi terhadap lingkungan pH tinggi dan untuk
	mengidentifikasi gen dan metabolit yang terlibat dalam proses ini.
Dataset	Tidak disebutkan
Metode	• Analisis transkriptomik untuk mempelajari perubahan ekspresi gen pada udang yang
	diberikan paparan pH tinggi.
	• Analisis ini dilakukan dengan menggunakan teknologi RNA-Seq dan analisis data
	menggunakan algoritma bioinformatika.
Hasil	• Analisis data transcriptome pada Litopenaeus vannamei menunjukkan bahwa ekspresi gen
	HSP70 (heat shock protein 70) ditingkatkan dalam respons terhadap stress pH tinggi.
	• HSP70 ditemukan sebagai salah satu gen yang paling penting dalam jaringan insang dan
	hepatopankreas udang vaname, serta berperan sebagai gen hub dalam jaringan protein-protein
	(PPI) yang terkait dengan stress pH tinggi.
Kesimpulan	Dampak salinisasi tanah, faktor kekebalan utama yang ditranskripsikan sebagai respons
	terhadap stress pH tinggi pada Litopenaeus vannamei, dan peran penting gen keluarga HSP70
	dalam adaptasi terhadap cekaman pH tinggi.

2.6 Tinjauan 6

Integrated analysis of physiological, transcriptomic and metabolomic responses and tolerance mechanism of		
nitrite exposure in Litopenaeus vannamei - The Science of the total environment		
Jie Xiao et al Science Direct 2019		

	Akumulasi nitrit di lingkungan perairan merupakan faktor risiko potensial yang mengganggu
Latar Belakang	berbagai fungsi fisiologis hewan akuatik
	Paparan nitrit mengganggu proses metabolisme pada L. vannamei.
	Analisis terintegrasi respons fisiologis, transkriptomik, dan metabolomik terhadap paparan
	nitrit pada spesies udang Litopenaeus vannamei.
Tujuan	Memahami mekanisme stress dan toleransi yang terjadi pada udang ketika terpapar nitrit,
	Mengetahui bagaimana udang tersebut mengadaptasi terhadap kondisi tersebut.
Dataset	Data fisiologis, transkriptomik, dan metabolomik dari kelompok kontrol (LV-Control),
	kelompok toleransi nitrit (LV-Nitrite Tolerance), dan kelompok sensitif nitrit (LV-Nitrite
	Sensitive)
Metode	Penyelidikan fisiologi, transkriptome, dan metabolom kelompok berbeda di bawah paparan
	nitrit,
	Menganalisis gen yang diekspresikan secara berbeda terkait dengan sistem kekebalan,
	Remodeling sitoskeleton, dan apoptosis,
	Menilai gangguan metabolik melalui analisis transkriptomik dan metabolomik
Hasil	• LV-NT dan LV-NS yang mengalami stress nitrit menunjukkan kerusakan histologis yang
	parah dibandingkan dengan LV-C.
	Enzim antioksidan berubah secara signifikan setelah paparan nitrit
	Data transkriptome mengungkapkan gen yang diekspresikan secara berbeda terkait dengan
	sistem kekebalan tubuh, remodeling sitoskeleton dan apoptosis pada LV-NT dan LV-NS.
	Kombinasi analisis transkriptomik dan metabolomik menunjukkan paparan nitrit mengganggu
	proses metabolisme pada L. vannamei,
	Analisis komparatif berganda mengimplikasikan bahwa toleransi nitrit yang lebih tinggi pada
	LV-NT dibandingkan LV-NS
	• LV-NT menunjukkan kemampuan antioksidan yang lebih tinggi, setelah paparan nitrit
	dibandingkan dengan LV-NS
Kesimpulan	Memahami bagaimana udang mengadaptasi terhadap kondisi lingkungan yang tercemar oleh
	nitrit dan dalam mengembangkan strategi untuk meningkatkan toleransi udang terhadap paparan
	nitrit.

2.7 Tinjauan 7

Integrative microRNA and mRNA analysis reveals regulation of ER stresss in the Pacific white shrimp		
Litopenaeus vannamei under acute cold stresss		
Zhenlu Wang et al	Science Direct	2019

Latar Belakang	• Litopenaeus vannamei (L. vannamei) adalah salah satu udang budidaya terpenting di dunia,	
Latar Berakang	• Kelangsungan hidup, pertumbuhan, dan distribusinya sangat terancam oleh tekanan cuaca	
	dingin.	
	Stress dingin yang akut dapat menginduksi respon protein Litopenaeus vannamei.	
	Analisis terintegrasi profil ekspresi miRNA dan mRNA pada udang putih Pasifik, Litopenaeus	
	vannamei, ketika terpapar stress kedinginan akut.	
Tujuan	Memahami bagaimana stress kedinginan akut mempengaruhi udang dan bagaimana udang	
	tersebut mengadaptasi terhadap kondisi tersebut.	
Dataset	Profil mRNA dan mikroRNA hepatopankreas dari kelompok kontrol dan pengobatan di bawah	
	tekanan dingin akut, termasuk 1.266 DEG (differentially expressed genes) dan 60 miRNA yang	
	diekspresikan secara berbeda.	
Metode	Metodologi ini melibatkan analisis profil mRNA dan mikroRNA hepatopankreas dari kelompok	
	kontrol dan perlakuan di bawah tekanan dingin akut, mengidentifikasi gen dan miRNA yang	
	diekspresikan secara berbeda.	
Hasil	• Stress kedinginan akut melibatkan proses stress endoplasmic reticulum (ER) pada udang,	
	Beberapa miRNA berperan penting dalam regulasi proses stress ER mengalami perubahan	
	Analisis transkriptomik menunjukkan bahwa stress kedinginan akut dapat menyebabkan	
	perubahan ekspresi gen terkait sistem imun, remodelasi sirkulasi, dan apoptosis pada udang.	
Kesimpulan	Penelitian ini memiliki implikasi penting dalam memahami bagaimana udang mengadaptasi	
	terhadap kondisi lingkungan yang tercemar oleh stress kedinginan dan dalam mengembangkan	
	strategi untuk meningkatkan toleransi udang terhadap stress kedinginan.	

2.8 Tinjauan 8

The Effect of Reduce Salinity on Behavior and Stresss Response in Vannamei Shrimp (Litopenaeus vannamei)		
Edita Rum et al	MDPI	2022

	Salinitas merupakan parameter yang sangat penting dalam mendukung pertumbuhan dan
Latar Belakang	keselamatan udang vannamei,
	• Udang vannamei yang berusia 1-2 bulan memerlukan kandungan garam sekitar 15-25 ppt
	untuk pertumbuhan optimal,
	Perubahan kondisi lingkungan (perubahan salinitas air) dapat menyebabkan tekanan osmotik
	yang berbeda dengan tekanan osmotik dalam tubuh organisme air.
	Perbedaan tekanan osmotik tersebut dapat menyebabkan udang mengalami stress.
	Stress merupakan upaya untuk mempertahankan keseimbangan lingkungan.
	Untuk mengatasi perubahan lingkungan yang dapat mempengaruhi kondisi fisiologis dan
	menyebabkan stress, crustacea dapat menggunakan energi dari proses glukolisis yang diatur
	oleh hormon hiperglikemik crustacea (CHH) yang berfungsi untuk meningkatkan tingkat
	glukosa darah pada udang.
	• Tingkat glukosa diatur dalam tubuh sebagai balik negatif untuk mempertahankan
	keseimbangan dalam tubuh.
Tujuan	Menentukan bagaimana perubahan salinitas dapat mempengaruhi perilaku dan respons stress
	pada udang vannamei,
	Mengetahui cara mengurangi stress pada udang vannamei terhadap penurunan salinitas air
Dataset	Udang vannamei yang diberi perlakuan penurunan salinitas yang berbeda dengan pengukuran
	kadar glukosa darah sebelum dan sesudah penurunan salinitas.
Metode	Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 3 ulangan.
	• Kadar glukosa darah diukur setelah penurunan salinitas dan pada hari terakhir penelitian,
	dengan analisis statistik dilakukan menggunakan software SPSS.
Hasil	Penelitian ini menunjukkan bahwa penurunan salinitas dapat menyebabkan stress pada udang
	vannamei.
	Penurunan salinitas dapat meningkatkan konsentrasi glukosa darah udang.
	Penurunan salinitas 2 ppt per 2 jam untuk 24 jam dapat mengurangi konsentrasi glukosa darah
	udang paling efektif.
	Salinitas 6 ppt ditemukan sebagai salinitas yang baik dalam mengurangi konsentrasi glukosa
	darah udang ketika terjadi perubahan salinitas air,
	Konsentrasi glukosa terbaik untuk menekan konsentrasi glukosa darah pada udang vannamei
	adalah 13,66mg/dl.

Kesimpulan	Sangat penting menjaga tingkat salinitas optimal untuk kesejahteraan udang dan menyoroti
	hubungan antara salinitas, konsentrasi glukosa darah, dan stress.

2.9 Tinjauan 9

Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stresss		
Yafei Duan et al	Science Direct	2019

Latar Belakang	pH lingkungan perairan mempengaruhi kelangsungan hidup hewan air.			
Latar Belakang	• Fungsi <i>Intestine barrier</i> mempengaruhi kesehatan hewan yang berhubungan dengan struktur			
	mukosa, komponen imun, dan komunitas mikroba			
	• Perubahan fungsi <i>Intestine barrier</i> Litopenaeus vannamei sebagai respons terhadap stress pH,			
	• Stress ini memiliki pengaruh yang penting karena dapat menyebabkan stress oksidatif yang			
	signifikan, mengubah metabolisme asam amino, dan memicu jalur apoptosis dan peradangan			
	pada udang			
Tujuan	Menyelidiki efek tekanan pH pada proses metabolisme udang, termasuk metabolisme energi,			
	dan memeriksa ekspresi gen yang terlibat dalam apoptosis dan peradangan.			
Dataset	• Remaja L. vannamei yang sehat dipilih secara acak dari kolam budidaya lokal di Shenzhen,			
	Cina, berat badan rata-rata adalah 3,2±0,3g,			
	• Parameter kualitas air yang diukur adalah pH 8,3, salinitas 30‰, suhu 30±0,5°C, oksigen terlarut 6,5±0,5mgL-1.			
Metode	Desain Eksperimental, Analisis Histologis, Aktivitas Enzim Pencernaan dan Metabolik, Stress			
	Oksidatif dan Aktivitas Enzim Antioksidan, Respon Imun			
Hasil	Stress pH rendah dan tinggi mengganggu struktur morfologi usus, dan menyebabkan variasi			
	aktivitas enzim pencernaan (AMS, LPS, Tryp, dan Pep) dan metabolisme (HK, PK, CCO, dan			
	LDH)			
	• Paparan pH juga menurunkan keanekaragaman bakteri usus, mengganggu komposisi			
	mikrobiota, dan menurunkan kandungan metabolit mikroba SCFA.			
	• Tekanan pH akut dapat merusak fungsi Intestine barrier udang putih, mungkin melalui			
	penghancuran struktur mukosa, membingungkan pencernaan dan metabolisme, menginduksi			
	stress oksidatif, mengganggu kekebalan, dan mengganggu komposisi mikroba.			
Kesimpulan	Tekanan pH berdampak potensial pada fungsi <i>Intestine barrier</i> Litopenaeus vannamei.			
	Dampak tekanan lingkungan terhadap kesehatan hewan akuatik dan dapat menginformasikan			
	strategi untuk meningkatkan kesejahteraan dan tingkat kelangsungan hidup udang			
i .				

2.10 Tinjauan 10

Moult cycle of laboratory-raised Penaeus (Litopenaeus) Vannamei and P. Monodon		
Corteel M et al	Springer	2012

Latar Belakang	Siklus molting merupakan hal yang sangat penting untuk pertumbuhan dan perkembangan udang,		
	• Siklus molting pada kedua spesies ditandai oleh tahapan yang berbeda, termasuk fase intermolt, premolt, dan postmolt.		
	Siklus pergantian kulit dengan memantau frekuensi dan durasi pergantian kulit pada udang yang dipelihara di laboratorium		
Tujuan	Memahami siklus molting pada Penaeus vannamei dan Penaeus monodon yang dipelihara di laboratorium		
Dataset	 P. vannamei dari Molokai Sea Farms Int. dan P. monodon dari Moana Technologies Nucleus Breeding Center (keduanya di Hawaii, AS). Sejumlah udang tiba setelah larva tahap 10 dan dipelihara dalam sistem resirkulasi 6.000 liter di Laboratorium Akuakultur dan Pusat Referensi Artemia, Universitas Ghent, Belgia. 		
Metode	analisis mikroskopis kutikula, epidermis, dan proses molting pada uropoda udang yang dipelihara di laboratorium yang dipelihara pada suhu konstan 27°C.		
Hasil	 Empat tahap molting utama ditentukan: Pre-Moult, Moult, Pre-Moult, Inter-Moult. Total durasi siklus molting adalah sekitar 5 dan 6,5 hari untuk 2 g P. vannamei dan P. monodon Total durasi siklus molting adalah sekitar 11 dan 12 hari masing-masing untuk 15 g P. vannamei dan P. monodon. Tahap pre-moult merupakan fase dominan dalam siklus dan bahwa P. monodon melakukan proses ganti kulit dengan laju yang jauh lebih lambat dibandingkan P. vannamei, dalam kondisi tertentu. Proses molting pada udang vaname dipengaruhi oleh beberapa faktor, termasuk: a. Kadar Protein: Kadar protein dalam makanan udang berpengaruh pada proses molting. Udang yang diberi makan dengan diet yang mengandung protein tinggi dapat mengalami molting yang lebih cepat dan lebih efektif. b. Kadar Karbohidrat: Kadar karbohidrat dalam makanan udang juga berpengaruh pada proses molting. Udang yang diberi makan dengan diet yang mengandung karbohidrat tinggi dapat mengalami molting yang lebih lambat dan kurang efektif. c. Kadar Lemak: Kadar lemak dalam makanan udang juga berpengaruh pada proses molting. Udang yang diberi makan dengan diet yang mengandung lemak tinggi dapat mengalami molting yang lebih cepat dan lebih efektif. 		

	d. Kadar Vitamin dan Mineral: Kadar vitamin dan mineral dalam makanan udang juga			
	berpengaruh pada proses molting. Udang yang diberi makan dengan diet yang mengandung			
	vitamin dan mineral yang cukup dapat mengalami molting yang lebih cepat dan lebih efektif			
	e. Kadar Oksigen: Kadar oksigen dalam air juga berpengaruh pada proses molting. Udang			
	yang hidup di air dengan konsentrasi oksigen yang tinggi dapat mengalami molting yang			
	lebih cepat dan lebih efektif			
	f. Kadar pH: Kadar pH dalam air juga berpengaruh pada proses molting. Udang yang hidup			
	di air dengan pH yang sesuai dapat mengalami molting yang lebih cepat dan lebih efektif			
	g. Kadar Suhu: Kadar suhu dalam air juga berpengaruh pada proses molting. Udang yang			
	hidup di air dengan suhu yang sesuai dapat mengalami molting yang lebih cepat dan lebih			
	efektif			
	h. Kadar Stress: Kadar stress pada udang juga berpengaruh pada proses molting. Udang yang			
	mengalami stress dapat mengalami molting yang lebih lambat dan kurang efektif.			
Kesimpulan	• Proses molting pada udang vaname dipengaruhi oleh beberapa faktor, termasuk kadar protein,			
	karbohidrat, lemak, vitamin, mineral, oksigen, pH, suhu, dan stresss			
	Proses siklus molting P.Vananmei lebih cepat daripada P.Monodon			

2.11 Tinjauan 11

The effects of salinity and nutrition on molt and growth of Litopenaeus vannamei		
Yu-Chun Shen et al	ResearchGate	2012

T . D 11	• Udang Vannamei sangat sensitif terhadap perubahan lingkungan (perubahan salinitas dan			
Latar Belakang	nutrisi),			
	Perubahan salinitas dapat mempengaruhi proses osmoregulasi udang, yang sangat penting			
	untuk pertumbuhan dan kelangsungan hidup,			
	• Nutrisi mempengaruhi proses molting dan pertumbuhan udang, karena mereka memerlukan			
	nutrisi yang tepat untuk mempertahankan kesehatan dan pertumbuhan.			
Tujuan	Penelitian ini dilakukan untuk memahami bagaimana perubahan salinitas dan nutrisi			
	mempengaruhi proses molting dan pertumbuhan udang Vannamei.			
Dataset	Menganalisis pengaruh berbagai tingkat salinitas (1%, 2%, 4%, 8%, dan 16%) dan tingkat			
	karbohidrat makanan (1%, 2%, 4%, 8%, dan 16%) pada anggaran pertumbuhan dan energi pada			
	udang remaja <i>L. vannamei</i> .			
Metode	Kombinasi desain eksperimental untuk menganalisis pengaruh berbagai tingkat salinitas (6, 12,			
	18, dan 24 ppt) dan tingkat karbohidrat makanan dengan tingkat yang berbeda-beda (1%, 2%,			
	4%, 8%, dan 16%) terhadap pertumbuhan dan anggaran energi remaja Litopenaeus vannamei.			

Hasil	Salinitas dan Pertumbuhan: Hasil penelitian menunjukkan bahwa pertumbuhan udang				
	vanamei berkurang dengan meningkatnya salinitas. Pertumbuhan terbaik ditemukan pada salinitas 6.				
	Salinitas dan Molting: Molting udang vanamei juga dipengaruhi oleh salinitas. Molting				
	berkurang dengan meningkatnya salinitas, dengan hasil terbaik pada salinitas 6.				
	Nutrisi dan Pertumbuhan: Nutrisi juga mempengaruhi pertumbuhan udang vanamei. Hasil				
	penelitian menunjukkan bahwa udang vanamei yang diberi makanan yang sesuai memiliki				
	pertumbuhan yang lebih baik dibandingkan dengan yang tidak diberi makanan yang sesuai				
Kesimpulan	Salinitas dan nutrisi merupakan faktor yang penting terhadap proses molting dan pertumbuhan				
	udang vaname Pasifik, Litopenaeus vannamei.				

2.12 Tinjauan 12

Effects of Dietary Mannan Oligosaccharides on Non-Specific Immunity, Intestinal Health, and Antibiotic		
Resistance Genes in Pacific White Shrimp Litopenaeus vannamei		
Wang T et al Front. Immunol 2021		

	Para peneliti menemukan bahwa pakan udang yang ditambah dengan MOS menunjukkan				
Latar Belakang	peningkatan kekebalan non-spesifik, peningkatan kesehatan usus, dan penurunan gen resistensi				
	antibiotic.				
Tujuan	Menyelidiki secara komprehensif efek menguntungkan dari produk mannan oligosakarida				
	(MOS) pada imunitas non-spesifik, kesehatan usus, dan gen resistensi antibiotik pada udang				
	putih Pasifik.				
Dataset	Ukuran sampel penelitian tidak disebutkan secara eksplisit dalam sumber yang disediakan.				
	Desain penelitian ini melibatkan lima pakan isonitrogen dan isolipid dengan masing-masing				
	pakan diberikan secara acak ke satu kelompok dengan empat ulangan udang dalam uji co				
	pemberian pakan selama 8 minggu.				
	Hal ini menunjukkan bahwa jumlah sampel total adalah 20 udang per pakan, dengan total 100				
	udang di semua pakan.				
Metode	Menggunakan uji pemberian pakan terkontrol dengan lima pakan isonitrogen dan isolipid				
yang diformulasikan dengan menambahkan 0%, 0,02 %, 0,04%, 0,08%, dan 0,					
	oligosakarida (MOS) dalam makanan dasar.				
	Analisis berbagai parameter terkait imunitas non-spesifik, seperti ekspresi gen yang terlibat				
	dalam imunitas, dan penilaian kesehatan usus melalui pemeriksaan morfologi usus dan				
	banyaknya bakteri menguntungkan dan berpotensi patogen.				
	Mengevaluasi efek MOS pada gen resistensi antibiotik pada udang.				

Hasil	 Imunitas Non-Spesifik: Suplementasi MOS meningkatkan imunitas non-spesifik udang vanamei melalui peningkatan aktivitas sel imun dan produksi cytokine. Kesehatan Usus: MOS juga meningkatkan kesehatan usus udang vanamei dengan meningkatkan keanekaragaman bakteri dan meningkatkan jumlah bakteri yang bermanfaat seperti Lactobacillus, Bifidobacterium, Blautia, dan Pseudoalteromonas. Gen Resistensi Antibiotik: Suplementasi MOS juga menurunkan resistensi antibiotik pada udang vanamei dengan mengurangi ekspresi gen resistensi antibiotik. 		
Kesimpulan	Memberikan pemahaman komprehensif tentang dampak diet MOS terhadap kesehatan dan		
	sistem kekebalan tubuh udang vaname Pasifik, dengan implikasi terhadap pengembangan		
	praktik budidaya perairan yang berkelanjutan dan efektif yang memprioritaskan kesehatan dan		
	kesejahteraan udang budidaya.		

2.13 Tinjauan 13

Effect of fasting on molting and survival rate in post-larvae of the shrimp Litopenaeus vannamei		
Patricia Migdalia Ochoa-Pereira et al	RBMO	2023

	Memahami dampak puasa terhadap perkembangan dan kelangsungan hidup udang pasca-larva,
Latar Belakang	khususnya dalam konteks praktik akuakultur di mana puasa sering digunakan sebagai alat
	manajemen untuk meningkatkan laju pertumbuhan dan mengurangi angka kematian.
Tujuan	Mengevaluasi dampak periode puasa yang berbeda terhadap kematian Litopenaeus vannamei
	pasca-larva dan waktu yang diperlukan bagi mereka untuk berganti kulit (molting) atau mati.
Dataset	Tidak disebutkan secara eksplisit dalam sumber yang disediakan.
	Desain penelitian melibatkan penggunaan post-larva (PL) Litopenaeus vannamei berumur 20
	hari, dengan masing-masing kelompok terdiri dari 15 individu.
Metode	Desain eksperimen terkontrol dengan kelompok kontrol yang menerima pemberian pakan terus
	menerus (Continuous Feeding) dan sembilan kelompok perlakuan dengan periode puasa yang
	bervariasi mulai dari 2 hingga 18 hari, diikuti dengan pemberian pakan terus menerus
Hasil	• Puasa dan Molting: Hasil penelitian menunjukkan bahwa puasa dapat meningkatkan proses
	molting pada post larva udang vaname. Molting berkurang dengan meningkatnya masa puasa,
	namun tidak berpengaruh pada tingkat kelangsungan hidup.
	• Puasa dan Tingkat Kelangsungan Hidup: Tingkat kelangsungan hidup post larva udang
	vaname tidak berpengaruh oleh masa puasa. Tingkat kelangsungan hidup antara 72% -
	94,67%, memiliki berat mutlak antara 1,75 gram – 2,36 gram dan panjang mutlak antara 1,47
	cm - 1,87 cm dengan nilai fcr $3,17 - 3,83$.

Kesimpulan	Periode puasa dapat mempengaruhi waktu mengalami metamorfosis dan kematian pada post-
	larva Litopenaeus vannamei.

2.14 Tinjauan 14

Physiological and Biochemical Variations during the Molt Cycle in Juvenile Litopenaeus vannamei under		
Laboratory Conditions		
Carmen Galindo et al	Journal of Crustacean Biology	2009

Latar Belakang	Siklus molting merupakan proses penting dalam siklus hidup krustasea, termasuk Litopenaeus
Battar Bertaitang	vannamei, yang merupakan spesies penting secara ekonomi dalam budidaya perikanan.
	• Memahami perubahan fisiologis dan biokimia yang terjadi selama siklus molting sangat
	penting untuk mengoptimalkan kondisi budidaya dan meningkatkan kesehatan dan
	produktivitas udang secara keseluruhan.
Tujuan	Memahami dan memprediksi peristiwa fisiologis yang terkait dengan siklus molting, yang
	merupakan proses penting dalam siklus hidup krustase.
Dataset	• Postlarva berumur 50 hari (PL50),
	Kondisi suhu dan salinitas (36) yang dipertahankan selama masa penelitian
	• Konsentrasi hemosianin dan glukosa dalam hemolimfa , Kadar glikogen di kelenjar
	pencernaan, Kapasitas osmotik organisme.
Metode	Analisis Multivariat, Analisis faktor menunjukkan saling ketergantungan semua variabel
	sepanjang siklus ganti kulit
Hasil	Perubahan Biokimia: Hasil penelitian menunjukkan bahwa perubahan biokimia terjadi selama
	siklus molting, termasuk perubahan konsentrasi hemocyanin yang menjadi lebih tinggi selama
	tahap premolt dan lebih rendah selama tahap postmolt serta glukosa dalam hemolimfa yang
	mengalami peningkatan, serta kandungan glikogen dalam glandus digestive mengalami
	perbedaan signifikan.
	Perubahan Fisiologis: Perubahan fisiologis juga terjadi selama siklus molting, termasuk
	perubahan volume hemolimfa sebelum molting yang mempengaruhi konsentrasi glukosa dan
	hemocyanin dalam hemolimfa.
	• Keterkaitan dengan Kapasitas Osmotik: Perubahan biokimia dan fisiologis selama siklus
	molting terkait dengan perubahan kapasitas osmotik organisme. Perubahan konsentrasi
	glukosa yang lebih tinggi pada tahap premolt akhir dan awal postmolt digunakan sebagai
	indikator energi yang dibutuhkan selama siklus molting.
Kesimpulan	Pentingnya adaptasi biokimia dalam menjaga lingkungan internal selama siklus molting.

2.15 Tinjauan 15

Physiological Responses of Pacific White Shrimp Litopenaeus vannamei to Temperature Fluctuation in Low-		
Salinity Water		
Wang Zhenlu et al	Frontiers in Physiology	2019

	Fluktuasi suhu merupakan faktor lingkungan penting dalam budidaya perikanan
Latar Belakang	
	Para peneliti menemukan bahwa udang menunjukkan perubahan respons fisiologis selama
	fluktuasi suhu (dari 28°C ke 13°C dan kembali ke 28°C) di air bersalinitas rendah.
Tujuan	Memahami mekanisme adaptasi udang terhadap fluktuasi suhu & salinitas rendah, yang
	merupakan faktor lingkungan penting dalam budidaya perikanan.
Dataset	\bullet Udang Litopenaeus vannamei dengan berat rata-rata 5,4 \pm 0,7 g diperoleh dari peternakan
	komersial di Panyu (Guangdong, Cina)
	Litopenaeus vannamei, terhadap fluktuasi suhu di air bersalinitas rendah
	• Udang percobaan yang diberi perlakuan pendinginan bertahap dari suhu aklimatisasi (AT,
	28°C) hingga 13°C dengan laju pendinginan 7,5°C/hari dan kemudian kembali ke 28°C
	dengan laju yang sama setelah 13°C selama 24 jam
Metode	Analisis Histopatologi: dilakukan pada hepatopancreas ikan udang yang diambil pada
	berbagai titik suhu, yaitu 28°C, 23°C, 18°C, dan 13°C untuk 24 jam selama proses
	pendinginan. Selain itu, analisis histopatologi juga dilakukan pada berbagai titik suhu selama
	proses pemanasan kembali,
	Analisis Metabolit Plasma: dilakukan untuk mengetahui perubahan konsentrasi metabolit
	plasma ikan udang selama proses pendinginan dan pemanasan kembali. Metabolit-metabolit
	yang dianalisis termasuk glukosa, trigliserida, kolesterol total, dan protein total.
	Analisis Ekspresi Gen: Analisis ekspresi gen dilakukan untuk mengetahui perubahan
	ekspresi gen yang terkait dengan respons fisiologis ikan udang terhadap perubahan suhu.
	Gen-gen yang dianalisis termasuk gen yang terkait dengan respons protein terurai dan
	apoptosis
Hasil	Histopatologi Hepatopancreas: Histopatologi hepatopancreas menunjukkan peningkatan
	jumlah dan volume sel sekretori, dilatasi lumen tubulus, dan penebalan lapisan epitel selama
	fluktuasi suhu
	• Konsentrasi Metabolit Plasma: Kandungan glukosa (Glu) menurun secara signifikan pada
	suhu 13°C, sedangkan kandungan trigliserida (TG), kolesterol total (TC), dan protein total
	(TP) meningkat dan mencapai puncak pada suhu 13°C
	• Aktivitas Enzim Plasma: Aktivitas alkaline phosphatase (ALP) dan alanine aminotransferase
	(ALT) dalam plasma mencapai nilai terendah dan tertinggi pada suhu 13°C, respectif
	1 2 2

	• Ekspresi Gen UPR dan Apoptosis: Ekspresi gen UPR dan apoptosis dalam hepatopancreas
	dan hemosit meningkat secara signifikan selama fluktuasi suhu dan mencapai puncak pada
	suhu 13°C
Kesimpulan	Udang putih Pasifik (Litopenaeus vannamei), dapat beradaptasi terhadap fluktuasi suhu di
	air bersalinitas rendah melalui respons fisiologis yang mencakup perubahan pada
	hepatopankreas, metabolit plasma, dan ekspresi gen
	Adaptasi ini memungkinkan udang untuk bertahan hidup dan berkembang di lingkungan
	dengan suhu yang bervariasi

2.16 Tinjauan 16

Osmoregulation Pattern of Fingerling Vanname Shrimp (Litopenaeus vannamei) Rearing in Three Molt Stage		
Iso-Osmotic Media		
Anggoro et al	Indonesian Journal of Marine Sciences	2018

Latar Belakang	Kebutuhan media yang sesuai untuk ukuran udang dan tahap molting tertentu merupakan
	faktor kunci keberhasilan budidaya udang vannamei.
	Diperlukan media osmotik yang sesuai untuk proses molting untuk menjamin keberhasilan
	pemeliharaan benih udang Vannamei
Tujuan	Mengetahui pengaruh berbagai media terhadap pertumbuhan dan kelangsungan hidup benih
	udang Vannamei
Dataset	• Udang vanname remaja dengan berat awal sebesar 4,55±0,03 g,
	Media iso-osmotik tiga tahap molt termasuk udang percobaan yang diberi perlakuan
	pendinginan bertahap dari suhu aklimasi (AT, 28°C) hingga 13°C dengan laju pendinginan
	7,5°C/hari dan kemudian kembali ke 28°C dengan laju yang sama setelah 13°C selama 24 jam
Metode	• Analisis Metabolit Plasma untuk mengetahui perubahan konsentrasi metabolit plasma (
	glukosa, trigliserida, kolesterol total, dan protein total) udang selama proses pendinginan dan
	pemanasan kembali.
	Media isoosmotik dengan tiga tingkat salinitas yaitu:
	• 15-16 ‰ sebagai postmolt media isosmotik,
	• 25-26‰ sebagai premolt media isosmotik intermolt,
	• 29-30‰ sebagai media molt isosmotik dengan tiga ulangan.
Hasil	Pola Osmoregulasi: Hasil penelitian menunjukkan bahwa udang vanamei dapat beradaptasi
	dengan baik dalam media iso-osmotic yang sesuai dengan tahap molting. Media 25-26 ‰
	menunjukkan tingkat osmoregulasi minimal dan meningkatkan pertumbuhan tanpa mengubah
	komposisi asam amino dalam jaringan tubuh udang.

	• Kondisi Jaringan: Kondisi jaringan udang vanamei yang diperbarui dalam media iso-osmotic
	menunjukkan peningkatan aktivitas Na-K-ATPase dan penurunan konsentrasi asam amino
	dalam jaringan tubuh.
	Energi Osmoregulasi: Energi osmoregulasi udang vanamei berkurang dengan meningkatnya
	tahap molting, namun tetap dapat beradaptasi dengan baik dalam media iso-osmotic yang
	sesuai.
Kesimpulan	Osmoregulasi udang dipengaruhi oleh salinitas media dan udang mampu beradaptasi pada
	tingkat salinitas yang berbeda.

2.17 Tinjauan 17

Daily activity pattern of the marine shrimp Litopenaeus vannamei (Boone 1931) juveniles under laboratory		
conditions		
Pontes, et al	Semantic scholar	2006

	Memahami perilaku alami dan pola aktivitas udang dapat membantu mengatur pola makan
Latar Belakang	mereka dengan lebih efektif, yang penting untuk pertumbuhan dan kesejahteraan mereka.
	Namun, informasi mengenai pola aktivitas sehari-hari Litopenaeus vannamei masih kurang,
	sehingga dapat mengakibatkan pengelolaan pakan yang tidak memadai dan berpotensi
	menimbulkan dampak negatif terhadap kesehatan dan produktivitas udang vannamei.
Tujuan	Penelitian ini bertujuan untuk mengetahui pola aktivitas sehari-hari remaja Litopenaeus
	vannamei dalam kondisi laboratorium, dengan fokus pada pengaruh frekuensi makan yang
	berbeda terhadap perilaku mereka.
Dataset	Tidak dijelaskan dengan spesifik, Hanya disebutkan bahwa udang dipelihara di akuarium pada
	siklus terang/gelap 12:12 jam dan aktivitas perilaku dicatat selama frekuensi pemberian makan
	yang berbeda. Akuarium dipelihara pada suhu konstan 25°C dan salinitas 30 ppt.
Metode	• Frekuensi Pemberian Makan: Udang diberi ransum komersial dengan frekuensi berbeda: tiga
	kali sehari (pukul 06.00, 12.00, dan 18.00), empat kali sehari (pukul 06.00, 12.00, dan 18.00).
	10:00, 14:00, dan 18:00), atau tujuh kali sehari (pukul 06:00, 08:00, 10:00, 12:00, 14:00,
	16:00, dan 18:00 jam.
	Pengamatan Perilaku: Aktivitas perilaku udang dicatat selama frekuensi pemberian makan
	yang berbeda. Aktivitas yang diamati meliputi makan, eksplorasi substrat, berenang, dan
	ketidakaktifan. Pengamatan ini dilakukan dengan interval 15 menit selama periode 24 jam.
	Analisis Data: Data yang dikumpulkan dianalisis untuk mengidentifikasi pola perilaku udang
	sehubungan dengan frekuensi pemberian makan yang berbeda.
	• Pengambilan Sampel Fokus Sesaat: Berenang, eksplorasi substrat, ketidakaktifan, dan
	pembersihan dicatat melalui pengambilan sampel fokus sesaat selama fase gelap. Metode ini

	memungkinkan dilakukannya pengamatan rinci terhadap perilaku udang selama interval
	waktu tertentu.
	Analisis Statistik: Data dianalisis menggunakan metode statistik untuk mengidentifikasi
	perbedaan signifikan dalam perilaku udang antara frekuensi pemberian pakan yang berbeda.
Hasil	Pola Aktivitas Makan: Udang yang diberi makan tiga atau empat kali sehari menunjukkan
	aktivitas makan yang lebih tinggi, terutama antara jam 12:00 dan 14:00. Aktivitas makan ini
	berhubungan dengan frekuensi pemberian makan yang optimal.
	Pola Aktivitas Lain: Selain makan, aktivitas lain seperti eksplorasi substrat dan berenang juga
	dipengaruhi oleh frekuensi pemberian makan. Udang yang diberi makan tiga kali sehari
	menunjukkan aktivitas berenang yang lebih tinggi, sedangkan udang yang diberi makan tujuh
	kali sehari menunjukkan aktivitas tidak aktif yang lebih tinggi.
	Pengaruh Fase Cahaya dan Gelap: Aktivitas udang tidak dipengaruhi oleh fase cahaya dan
	gelap, dengan aktivitas makan dan eksplorasi substrat terjadi dalam fase gelap dan cahaya.
	Namun, aktivitas berenang lebih tinggi dalam fase gelap.
	Optimasi Aktivitas: Hasil penelitian menunjukkan bahwa frekuensi pemberian makan tiga
	atau empat kali sehari dapat mengoptimalkan pola aktivitas udang, sehingga dapat
	meningkatkan efisiensi penggunaan pakan dan mengurangi biaya produksi.
Kesimpulan	Dengan memahami pola aktivitas sehari-hari dan frekuensi pemberian pakan yang optimal pada
	Litopenaeus vannamei, para petambak dapat meningkatkan efisiensi dan keberlanjutan operasi
	mereka, yang pada akhirnya meningkatkan kesejahteraan udang dan lingkungan.

2.18 Tinjauan 18

Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei		
Zhang P et al	PMID	2006

Latar Belakang	Kemampuan berenang dan respons fisiologis terhadap kelelahan berenang pada udang putih,
	Litopenaeus vannamei yang disebabkan oleh berbagai faktor, seperti kecepatan aliran air dan
	kondisi lingkungan. Penelitian ini penting untuk meningkatkan pengetahuan tentang perilaku
	berenang dan adaptasi fisiologis udang putih yang dapat membantu dalam pengembangan
	strategi budidaya yang lebih efektif dan berkelanjutan
Tujuan	Tujuan penelitian ini adalah untuk mengevaluasi kemampuan berenang dan respons fisiologis
	terhadap kelelahan berenang pada udang putih, Litopenaeus vannamei.
Dataset	Udang Lipenaeus Vannamei yang dibeli dari pasar lokal di Qingdao, Tiongkok. Udang
	dibudidayakan dan dipelihara dalam lingkungan terkendali sebelum percobaan

• Daya Tahan Renang (t, dalam detik): Waktu yang dibutuhkan udang untuk berenang hingga kelelahan pada kecepatan arus yang berbeda-beda. • Kecepatan Berenang (v, dalam cm s(-1)): Kecepatan berenang udang di dalam air. • Massa Tubuh (g): Massa udang sebelum dan sesudah berenang. • Konsentrasi Protein Total Hemolimfa (mg ml(-1)): Konsentrasi protein dalam darah udang sebelum dan sesudah berenang. • Kadar Glukosa Hemolimfa (mg ml(-1)): Kadar glukosa dalam darah udang sebelum dan sesudah berenang. Metode Swimming Channel: Udang ditempatkan pada saluran renang dengan sistem sirkulasi flume. Pengaturan ini memungkinkan kontrol kecepatan aliran air dan mempertahankan suhu air yang konsisten pada 20°C. • Uji Ketahanan Berenang: Udang diuji ketahanan berenang pada kecepatan arus yang berbeda (5,41, 6,78, 8,21, 10,11, dan 11,47 cm s(-1)) hingga 9000 detik. Waktu yang dibutuhkan setiap udang untuk berenang hingga kelelahan dicatat sebagai daya tahan renang (t, dalam detik). • Pengukuran Fisiologis: Sebelum dan sesudah berenang, massa tubuh udang, konsentrasi protein total hemolimfa, dan kadar glukosa hemolimfa diukur untuk menilai respons fisiologis terhadap kelelahan berenang. • Analisis Data: Data daya tahan renang dianalisis menggunakan model kekuatan untuk menggambarkan hubungan antara daya tahan renang dengan kecepatan renang. Data respon fisiologis dianalisis untuk mengetahui pengaruh kelelahan berenang terhadap massa tubuh udang, konsentrasi protein total hemolimfa, dan kadar glukosa hemolimfa. Hasil • Kemampuan Berenang: Kemampuan berenang udang putih berkurang seiring dengan peningkatan kecepatan berenang. Hubungan antara kemampuan berenang (t, dalam s) dan kecepatan berenang (v, dalam cm s(-1)) dapat dinyatakan dengan persamaan Curve Estimation: v.t0.38 = 159.64 (R2 = 0.94). Indeks Kemampuan Berenang: Indeks kemampuan berenang (SAI) yang didefinisikan sebagai $SAI = \int 0.9000 \text{ vdt x } 10(-4) \text{ (cm)}$ memiliki nilai 7.28 cm untuk udang yang dites. Respons Fisiologis: Kelelahan berenang menyebabkan hilangnya massa tubuh, konsentrasi protein hemolimfa, dan konsentrasi glukosa hemolimfa yang signifikan (P < 0.05). Hubungan antara kelelahan berenang dan kecepatan berenang serta parameter fisiologis tersebut menunjukkan pola relasi polynomial yang signifikan (P < 0.05). Penggunaan Protein Hemolimfa: Kadar protein hemolimfa dapat digunakan sebagai indikator cepat dan reliabel untuk mengevaluasi kemampuan berenang udang putih. Kesimpulan Kemampuan berenang udang vannamei berkurang seiring dengan peningkatan kecepatan arus dan kelelahan berenang,

• Adanya hubungan polinomial antara kemampuan berenang dan konsentrasi protein total serum serta gula serum.

2.19 Tinjauan 19

The water quality monitoring of vannamei shrimp (Litopenaeus vannamei) ponds in East Tanete Riattang
District, Bone Regency, Indonesia

Harlina et al Semantic scholar 2022

I . D 11	Pemantauan kualitas air merupakan proses penting dalam produksi udang,		
Latar Belakang	• Penelitian ini dilakukan untuk mengevaluasi kualitas air berdasarkan parameter fisik, kimia,		
	dan biologi pada tambak udang vannamei yang dikelola secara intensif di Kecamatan Tanete		
	Riattang Timur, Kabupaten Bone,		
	• Kualitas air yang baik sangat penting untuk memastikan pertumbuhan udang yang sehat dar		
	produktivitas yang tinggi.		
Tujuan	Mengetahui kondisi kualitas air pada tambak udang vannamei di Kecamatan Tanete Riattang		
	dan untuk mengetahui apakah kualitas air tersebut sesuai dengan standar nasional Indonesia		
	untuk budidaya udang		
Dataset	Pengambilan sampel parameter dilakukan pada bulan Maret hingga April 2020 di tambak di		
	tiga desa yang meliputi Waetuo (stasiun A), Panyula (stasiun B), dan Toro (stasiun C),		
	• Kualitas air dievaluasi di setiap lokasi pengambilan sampel berdasarkan faktor tertentu,		
	seperti oksigen terlarut berkisar antara 5 hingga 6,8 ppm, suhu berkisar antara 26°C hingga		
	30°C, salinitas antara 25 hingga 35 ppt, pH berkisar antara 5,5 hingga 7,0, ammonia berkisar		
	antara 1,7 hingga 1,8 ppm, dan populasi bakteri berkisar antara 3,5 * 101 hingga 2,1 * 103		
	sel/mL.		
Metode	Pengumpulan Sampel: Sampel air dan udang vannamei diambil dari tiga lokasi di Kecamatan		
	Tanete Riattang, Kabupaten Bone, Indonesia, dari Maret hingga April 2020		
	• Parameter Air: Parameter air yang diukur termasuk suhu, keasaman, konsentrasi oksigen		
	terlarut, konsentrasi ammonia, dan populasi bakteri		
	Pengukuran Parameter Air: Pengukuran parameter air dilakukan secara langsung di lapangan		
	secara mingguan, sementara konsentrasi ammonia dan populasi bakteri diukur di		
	Laboratorium Kualitas Air dan Patologi, Pusat Budidaya Air Asin Takalar		
	• Analisis Data: Data yang dikumpulkan dianalisis untuk mengetahui kualitas air yang sesuai		
	untuk budidaya udang vannamei.		
Hasil	Kualitas Air: Kualitas air pada tambak udang vannamei di Kabupaten Bone dipengaruhi oleh		
	beberapa faktor, termasuk pH, kekeruhan, suhu, dan konsentrasi nutrien. Hasil penelitian		
	menunjukkan bahwa pH air rata-rata sekitar 7.5-8.5, kekeruhan sekitar 10-30 NTU, suhu		
	I .		

	sekitar 25-30°C, dan konsentrasi nutrien seperti ammonia, nitrit, dan fosfat dalam batas yang		
	aman untuk pertumbuhan udang.		
	Pengaruh Faktor Lingkungan: Faktor lingkungan seperti suhu, kekeruhan, dan pH		
	berpengaruh pada pertumbuhan udang. Suhu yang optimal untuk pertumbuhan udang adalah		
	sekitar 25-30°C, sedangkan kekeruhan yang optimal adalah sekitar 10-30 NTU. pH air yang		
	optimal untuk pertumbuhan udang adalah sekitar 7.5-8.5		
	• Monitoring Kualitas Air: Monitoring kualitas air secara teratur sangat penting untuk		
	memantau kondisi tambak dan mengoptimalkan pertumbuhan udang. Penelitian ini		
	menggunakan sistem monitoring kualitas air berbasis Internet of Things (IoT) yang dapat		
	memantau parameter-parameter air seperti pH, kekeruhan, dan suhu secara real-time.		
Kesimpulan	Kualitas air di tambak udang vannamei di Kecamatan Tanete Riattang, Kabupaten Bone,		
	Indonesia, masih dalam rentang yang sesuai untuk budidaya udang vannamei, kecuali untuk		
	konsentrasi ammonia yang melebihi batas normal yang mendukung siklus hidup udang		
	vannamei		

2.20 Tinjauan 20

Effect of dissolved oxygen on swimming ability and physiological response to swimming fatigue of whiteleg		
shrimp (Litopenaeus vannamei)		
Duan Y et al	Springer	2014

	Penelitian ini dilakukan untuk memahami bagaimana oksigen terlarut atau dissolved oxygen			
Latar Belakang	(DO) mempengaruhi kemampuan berenang dan respons fisiologis udang putih terhadap			
	kelelahan berenang, serta untuk meningkatkan pengetahuan tentang adaptasi fisiologis uda			
	putih dalam sistem budidaya.			
Tujuan	Mengetahui bagaimana perbedaan konsentrasi DO mempengaruhi kemampuan berenang dan			
	respon fisiologis udang, khususnya yang berkaitan dengan kelelahan berenang			
Dataset	Parameter ini digunakan untuk menyelidiki pengaruh oksigen terlarut pada kemampu			
	berenang dan respon fisiologis udang putih terhadap kelelahan berenang:			
	Daya Tahan Berenang: Diukur pada berbagai konsentrasi oksigen terlarut (DO) di saluran			
	renang terhadap lima kecepatan aliran berbeda.			
	• Oksigen Terlarut (DO): Konsentrasi 1,9, 3,8, 6,8, dan 13,6 mg per liter digunakan dalam			
	penelitian ini.			
	Kecepatan Renang: Tercatat sebagai faktor yang mempengaruhi ketahanan renang.			
	• Kecepatan Aliran: Lima kecepatan berbeda digunakan dalam saluran renang: v*1, v*2, v*3,			
	v*4, dan v*5.			

- Kandungan Metabolit: Diukur dalam plasma, hepatopankreas, dan otot pleopod udang sebelum dan sesudah kelelahan berenang.
- Kandungan Substrat Laktat dan Energik: Peningkatan pada udang yang terkena konsentrasi DO rendah.
- Indeks Kemampuan Berenang (SAI): Didefinisikan sebagai SAI = ∫₀9000vdt dan digambarkan dengan model linier dengan konsentrasi DO.
- Respon Fisiologis: Termasuk perubahan trigliserida plasma, glukosa plasma, protein total plasma, dan kadar glikogen hepatopankreas sebagai respons terhadap kelelahan berenang dan kadar DO.

Metode

- Desain Eksperimental: Udang whiteleg dipaparkan pada konsentrasi oksigen terlarut (DO) yang berbeda dalam saluran renang terhadap lima kecepatan aliran yang berbeda.
- Saluran Renang: Dirancang untuk menyimulasikan lingkungan berenang alami udang, memungkinkan mereka berenang bebas sambil mengukur ketahanan renangnya.
- Pengukuran Daya Tahan Berenang: Daya tahan renang dinilai dengan mengukur waktu yang dibutuhkan udang untuk mengeluarkan tenaga, yang ditentukan pada titik di mana udang tidak mampu mempertahankan kecepatan berenang yang konsisten.
- Kecepatan Aliran: Lima kecepatan aliran berbeda digunakan di saluran renang: Hal ini memungkinkan para peneliti untuk menguji pengaruh arus air yang bervariasi terhadap daya tahan berenang udang.
- Konsentrasi Oksigen Terlarut: Udang diberi empat konsentrasi oksigen terlarut yang berbeda: 1,9, 3,8, 6,8, dan 13,6 mg per liter. Kisaran konsentrasi DO ini dipilih untuk mensimulasikan berbagai tingkat ketersediaan oksigen yang mungkin ditemui udang di lingkungan alaminya.
- Kecepatan Berenang: Kecepatan berenang tercatat sebagai faktor yang mempengaruhi ketahanan renang. Hal ini memungkinkan para peneliti untuk memeriksa bagaimana perubahan kecepatan berenang mempengaruhi kemampuan udang untuk berenang dan respon fisiologis mereka terhadap kelelahan berenang.
- Analisis Metabolit: Kandungan metabolisme dalam plasma, hepatopankreas, dan otot
 pleopod udang diukur sebelum dan sesudah kelelahan berenang. Analisis ini memberikan
 wawasan mengenai perubahan fisiologis yang terjadi pada udang saat berenang dan
 bagaimana perubahan ini dipengaruhi oleh konsentrasi DO.
- Analisis Statistik: Data yang dikumpulkan dari penelitian dianalisis menggunakan model statistik untuk menggambarkan hubungan antara daya tahan renang, kecepatan renang, dan konsentrasi DO. Ini termasuk model kekuatan untuk menggambarkan hubungan antara daya tahan renang dan kecepatan berenang pada konsentrasi DO yang berbeda, serta model linier

	untuk menggambarkan hubungan antara konsentrasi DO dan indeks kemampuan berenang			
	(SAI).			
Hasil	Kemampuan Berenang: Kemampuan berenang udang putih berkurang seiring dengan			
	penurunan konsentrasi oksigen terlarut. Hasil penelitian menunjukkan bahwa udang puti			
	dapat berenang lebih lama pada konsentrasi oksigen terlarut yang lebih tinggi.			
	• Respons Fisiologis: Kelelahan berenang menyebabkan penurunan konsentrasi proteir			
	hemolimfa, glukosa hemolimfa, dan adenosin triphosfat (ATP) yang signifikan. Hal ini			
	menunjukkan bahwa kelelahan berenang berpengaruh pada keseimbangan elektrolit dan			
	energi udang putih.			
	Pengaruh DO pada Kemampuan Berenang: Pengaruh DO pada kemampuan berenang udang			
	putih dapat dinyatakan dengan persamaan Curve Estimation: DO.t0.38 = 159.64 (R2 = 0.94).			
	Hasil penelitian menunjukkan bahwa kemampuan berenang udang putih berkurang seiring			
	dengan penurunan konsentrasi oksigen terlarut.			
Kesimpulan	konsentrasi oksigen terlarut (DO) mempengaruhi kemampuan berenang dan respon fisiologis			
	terhadap kelelahan berenang pada udang putih, Litopenaeus vannamei			

2.21 Tinjauan 21

Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus		
vannamei		
Gao Y et al	PLoS ONE	2016

T . D 11	• Molting adalah proses biologis penting dalam pertumbuhan dan perkembangan udang, di
Latar Belakang	mana udang secara berkala melepaskan dan mengganti kerangka luarnya. Proses ini penting
	untuk pertumbuhan, metamorfosis, dan reproduksi udang.
	Namun, mekanisme molekuler yang mendasari pergantian kulit udang masih kurang
	dipahami.
	Penelitian ini bertujuan untuk menyelidiki perubahan ekspresi global dalam transkriptom
	udang putih Pasifik, Litopenaeus vannamei, untuk mendapatkan wawasan tentang mekanisme
	molekuler yang terlibat dalam proses pergantian kulit.
Tujuan	• Menginvestigasi perubahan ekspresi global dalam transcriptoma dari udang putih Pasifik,
	Litopenaeus vannamei,
	Memahami mekanisme molekuler yang terkait dengan proses molting.
Dataset	Udang putih Pasifik dewasa yang sehat (L. vannamei) dengan rata-rata panjang tubuh 14–16 cm
	dikumpulkan dari kolam budidaya laboratorium.

Metode	Analisis transcriptoma secara global menggunakan RNA-sequencing (RNA-seq) untuk			
	memahami perubahan ekspresi gen pada udang putih Pasifik, Litopenaeus vannamei,			
	sepanjang siklus molting.			
	• Penelitian ini termasuk stadia inter-molt (C), pre-molt (D0, D1, D2, D3, D4), dan post-molt			
	(P1 dan P2).			
Hasil	• Transkriptoma: Analisis transkriptoma menggunakan RNA-sekvensing (RNA-seq) dilakukan			
	pada berbagai tahap molting, termasuk inter-molt, pre-molt, dan post-molt. Hasil penelitian			
	menunjukkan bahwa 93,756 unigenes dikenali, dengan 5,117 gen yang berbeda ekspresinya			
	dalam tahap molting yang berdekatan.			
	Gen yang Berbeda Ekspresinya: Gen yang berbeda ekspresinya dalam tahap molting terkait			
	dengan berbagai proses molekuler yang penting, seperti regulasi hormon, peristiwa triggering,			
	fase implementasi, skelemin, dan respons imun. Hasil penelitian menunjukkan bahwa gen ini			
	berperan dalam mekanisme molting pada L. vannamei.			
	Karakterisasi Gen: Gen yang terkait dengan molting dianotasi dan dihubungkan dengan istilah			
	ontologi gen dan jaringan. Hasil penelitian menunjukkan bahwa gen ini terkait dengan			
	berbagai proses biologis yang penting, seperti pertumbuhan, metamorfosis, dan reproduksi.			
Kesimpulan	Penelitian ini menunjukkan bahwa transkriptom Litopenaeus vannamei berubah secara dramatis			
	selama siklus molting, dengan perubahan ekspresi gen yang terkait dengan regulasi hormon,			
	peristiwa trigger, fase implementasi, skelemin, dan respon imun.			

2.22 Tinjauan 22

The effect of rhythmic light color fluctuation on the molting and growth of Litopenaeus vannamei		
Biao Guo, et al	Science Direct	2011

	M. R. C. L. C. L. C. D. C. L. C. D. C. L. C. L. C. C. L. C. C. L. C.		
T - (D - 1 - 1	Molting dan pertumbuhan udang putih Pasifik, Litopenaeus vannamei, adalah proses yang		
Latar Belakang	penting untuk pertumbuhan dan perkembangan mereka.		
	Penelitian ini bertujuan untuk menginvestigasi efek variasi warna cahaya yang berirama		
	terhadap molting dan pertumbuhan L. vannamei.		
	Variasi warna cahaya yang berirama dapat mempengaruhi perilaku dan biologi udang, seperti		
	frekuensi molting, pertumbuhan, dan metabolisme.		
	Penelitian ini juga dapat membantu memahami bagaimana variasi warna cahaya yang		
	berirama mempengaruhi udang dalam lingkungan budidaya dan memberikan kontribusi pada		
	pengembangan sumber daya yang penting untuk komunitas penelitian udang.		
Tujuan	Penelitian ini bertujuan untuk menginvestigasi efek variasi warna cahaya yang berirama		
	terhadap molting dan pertumbuhan udang putih Pasifik, Litopenaeus vannamei.		

	Penelitian ini dilakukan untuk memahami bagaimana variasi warna cahaya yang berirama			
	mempengaruhi perilaku dan biologi udang, seperti frekuensi molting, pertumbuhan, dan			
	metabolism.			
Dataset	Penelitian ini menggunakan metode eksperimental untuk menyalakan efek variasi warna			
	cahaya yang berirama pada pertumbuhan dan molting Litopenaeus vannamei			
	Penelitian ini dilakukan dengan menggunakan kultur udang putih (Litopenaeus vannamei)			
	dan variasi warna cahaya yang berirama, seperti warna alam, warna kuning, warna hijau, dan			
	warna biru.			
Metode	Metode eksperimental digunakan untuk memancarkan efek variasi warna cahaya yang			
	berirama (BY, BG, GY) pada pertumbuhan dan molting udang putih.			
	Kultur udang putih dilakukan dalam akuarium dengan variasi warna cahaya yang berirama.			
	Data pertumbuhan dan molting udang putih dikumpulkan dan dianalisis untuk mengetahui			
	efek variasi warna cahaya yang berirama.			
Hasil	Pengaruh Fluktuasi Warna Cahaya: Fluktuasi warna cahaya yang berirama (Blue-Yellow,			
	Blue-Green, Green-Yellow) dapat mempengaruhi proses molting dan pertumbuhan udang			
	ntih. Hasil penelitian menunjukkan bahwa udang putih yang diberi fluktuasi warna cahaya			
	yang berirama memiliki pertumbuhan yang lebih baik dibandingkan dengan udang putih			
	yang diberi cahaya yang konstan.			
	Pengaruh Warna Cahaya: Warna cahaya yang berbeda dapat mempengaruhi proses molting			
	dan pertumbuhan udang putih. Hasil penelitian menunjukkan bahwa udang putih yang diberi			
	cahaya hijau dan biru memiliki pertumbuhan yang lebih baik dibandingkan dengan udang			
	putih yang diberi cahaya lainnya.			
Kesimpulan	Penelitian ini menunjukkan bahwa fluktuasi warna cahaya yang berirama memiliki efek			
	signifikan pada pertumbuhan dan molting udang putih.			
	Fluktuasi warna terang yang sesuai dapat mendorong pertumbuhan L. vannamei dan molting			
	udang putih dalam budidaya.			
	i e e e e e e e e e e e e e e e e e e e			

2.23 Tinjauan 23

Pengaruh Perbedaan Suhu dan Salinitas Terhadap Pertumbuhan Post Larva Udang Vaname (Litopenaeus			
vannamei)			
Jayanti, et al	Journal of Aquatic and Fisheries Sciences	2022	

	T
Latar Belakang	Salinitas sangat mempengaruhi kelangsungan hidup dan pertumbuhan larva udang vaname.
Latar Belakang	Salinitas sangat berpengaruh terhadap organisme perairan untuk mengontrol keseimbangan
	air dan ion antara tubuh dengan lingkungannya.
	Jika kondisi salinitas mengalami fluktuasi, maka semakin banyak pula energi yang dibutuhkan
	larva untuk proses metabolismenya.
Tujuan	Mengetahui pengaruh perbedaan suhu dan salinitas terhadap pertumbuhan post larva udang
	vaname, dengan fokus pada bagaimana perbedaan salinitas mempengaruhi pertumbuhan dan
	sintasan larva udang vaname.
Dataset	Post larva udang vaname (litopenaeus vannamei)
	Penelitian ini menggunakan 4 perlakuan dan 3 ulangan
	• Perlakuan A Salinitas 5 ppt pada suhu 26°C,
	Perlakuan B Salinitas 10 ppt pada suhu 28°C,
	Perlakuan C Salinitas 15 ppt pada suhu 30°C,
	Perlakuan D Kontrol (suhu dan salinitas tidak dikontrol).
	Benih udang PL 17 di tebar pada wadah berupa ember dengan kepadatan 10 ekor/ember
	Parameter yang diamati adalah laju pertumbuhan udang vaname, tingkat kelangsungan hidup
	dan kualitas air.
Metode	Metode eksperimental digunakan untuk mengevaluasi efek perbedaan suhu dan salinitas pada
	pertumbuhan post larva udang vaname.
	Kultur udang putih dilakukan dalam akuarium dengan variasi suhu dan salinitas yang berbeda.
	Data pertumbuhan post larva udang vaname dikumpulkan dan dianalisis untuk mengetahui
	efek perbedaan suhu dan salinitas.
Hasil	Pengaruh Suhu: Suhu yang berbeda berpengaruh pada pertumbuhan post larva udang vaname.
	Hasil penelitian menunjukkan bahwa suhu yang optimal untuk pertumbuhan post larva udang
	vaname adalah sekitar 25-30°C.
	Pengaruh Salinitas: Salinitas yang berbeda juga berpengaruh pada pertumbuhan post larva
	udang vaname. Hasil penelitian menunjukkan bahwa salinitas yang optimal untuk
	pertumbuhan post larva udang vaname adalah sekitar 25 ppt.
	• Kombinasi Suhu dan Salinitas: Kombinasi suhu dan salinitas yang optimal dapat
	meningkatkan pertumbuhan post larva udang vaname. Hasil penelitian menunjukkan bahwa
	kombinasi suhu 25-30°C dan salinitas 25 ppt memberikan pertumbuhan yang terbaik.
	1

Kesimpulan	Perlakuan	suhu	dan	salinitas	yang	berbeda	memberikan	pengaruh	yang	berbeda	pada
	pertumbuh	an pos	t-larv	a udang v	aname	. .					

2.24 Tinjauan 24

Dynamics of Vitellogenin and Vitellogenesis-Inhibiting Hormone Levels in Adult and Subadult Whiteleg				
Shrimp, Litopenaeus vannamei: Relation to Molting and Eyestalk Ablation				
Kang Bong Jung et al	Pubmed	2014		

Latar Dalahana	• Vitellogenin (VG) berperan penting dalam pengembangan telur dan embrio, serta pengaturan							
Latar Belakang	proses molting							
	• Vitellogenesis-Inhibiting Hormone (VIH) berfungsi memberi respon terhadap molting dan							
	terkait dengan reproduksi udang vanamei.							
	Memahami dinamika tingkat VG dan hormon penghambat vitellogenesis (VIH) dalam udang							
	putih Pasifik, Litopenaeus vannamei, serta hubungan antara tingkat VG dan VIH dengan							
	siklus molting dan ablasi eyestalk.							
	Ablasi eyestalk adalah prosedur penghancuran atau pemotongan tangkai mata pada hewan,							
	biasanya dilakukan untuk mempercepat proses pemijahan,							
	Ablasi eyestalk dapat dilakukan secara unilateral (satu tangkai mata) atau bilateral (kedua							
	tangkai mata), Teknik ini digunakan dalam beberapa spesies, seperti udang, lobster, dan							
	krustasea lainnya, untuk mempengaruhi proses reproduksi dan pertumbuhan							
Tujuan	Memahami dinamika tingkat VG dan VIH dalam hubungannya dengan siklus molting dan ablasi							
	eyestalk pada L. vannamei							
Dataset	• Udang putih subdewasa (berat badan, 15.4 - 3.3 g) dibeli dari International Mariculture							
	Technology, dan dewasa (37.1 - 6.8 g) dari Saikaew Hatchery.							
	• Udang dewasa didefinisikan memiliki berat badan berkisar antara 25 hingga 50 g,							
	• Udang subdewasa didefinisikan memiliki berat badan berkisar antara 10 hingga 20 g.							
	• Semua udang disimpan minimal 2 minggu dalam sirkulasi alami							
	air laut pada suhu 288C dan diberi pakan komersial dengan dosis 1,5% dari berat badan per							
	hari sampai digunakan.							
	Udang betina digunakan, dan salah satu atau kedua tangkai matanya dihilangkan dengan cara							
	dibakar dengan pinset panas; kemudian diambil sampelnya 0, 10, atau 20 hari kemudian.							
Metode	Penentuan Sampel: Sampel yang digunakan dalam penelitian ini adalah udang putih,							
	Litopenaeus vannamei, yang terdiri dari dewasa dan subdewasa.							
	Pengukuran Tingkat mRNA: Tingkat mRNA vitellogenin (VG) dan vitellogenesis-inhibiting							
	hormone (VIH) diukur menggunakan metode RT-PCR (Reverese Transcription Polymerase							
	Chain Reaction).							

	Pengukuran Konsentrasi: Konsentrasi VG dan VIH diukur menggunakan metode time-
	resolved fluoroimmunoassay (TRFIA).
	Ablasi Eyestalk: Ablasi eyestalk dilakukan untuk menginduksi maturation ovarium dan
	mempengaruhi tingkat VG dan VIH.
	Analisis Data: Data yang dikumpulkan kemudian dianalisis untuk menentukan pola dinamika
	tingkat VG dan VIH selama siklus molting dan ablasi eyestalk.
	Validasi: Hasil penelitian ini divalidasi dengan mengumpulkan data dari berbagai sumber
	dan melakukan analisis statistik untuk memastikan akurasi hasil.
Hasil	Tingkat VG: Tingkat VG dalam hemolimfa udang putih dewasa meningkat secara signifikan
	pada awal intermolt (stage C0), tetapi tidak pada subdewasa. Ablasi mata unilateral dan
	bilateral meningkatkan tingkat VG pada dewasa, sedangkan hanya ablasi mata bilateral yang
	mempengaruhi subdewasa.
	Tingkat VIH: Tingkat VIH dalam hemolimfa udang putih dewasa tinggi pada postmolt (stage)
	B) dan kemudian menurun, sedangkan pada subdewasa tingkat VIH meningkat dari postmolt
	(stage A) ke intermolt (stage C0) dan tetap tinggi. Ablasi mata unilateral meningkatkan
	tingkat VIH 10 hari setelah ablasi pada dewasa, sedangkan ablasi mata bilateral menurunkan
	tingkat VIH dari 10 hingga 20 hari setelah ablasi. Ablasi mata unilateral dan bilateral
	meningkatkan tingkat VIH pada subdewasa.
Kesimpulan	Penelitian ini menunjukkan bahwa dinamika tingkat VG dan VIH pada Litopenaeus
	vannamei terkait dengan siklus molting dan ablasi eyestalk.
	Tingkat VG meningkat pada awal intermolt pada dewasa,
	Tingkat VIH menunjukkan pola yang berbeda antara dewasa dan subdewasa.
	Ablasi eyestalk menginduksi maturation ovarium, tetapi tidak mengurangi tingkat VIH.
	Hasil ini memberikan wawasan tentang mekanisme hormonal yang terkait dengan reproduksi
	udang putih dan dapat digunakan untuk pengembangan teknologi reproduksi yang lebih
	efektif

2.25 Tinjauan 25

Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and				
physiological response in relation to molt stage				
Chantal Mugnier et al	Science Direct	2008		

	• Dampak paparan ammonia dan hipoksia secara simultan terhadap kelangsungan hidup dan						
Latar Belakang	respons fisiologis remaja udang biru.						
	• Penelitian ini berfokus pada dampak stressor terhadap kelangsungan hidup dan respons						
	fisiologis udang, khususnya yang berkaitan dengan tahap pergantian kulit (molting)						

	• Kombinasi ammonia dan hipoksia memiliki tingkat kematian yang jauh lebih tinggi
	dibandingkan dengan paparan terhadap salah satu pemicu stress saja
Tujuan	Penelitian ini membantu memahami bagaimana kombinasi ammonia dan hipoksia dapat
	mempengaruhi udang biru dan memberikan informasi yang berguna untuk pengelolaan sistem
	aquaculture yang lebih baik.
Dataset	Udang Biru Litopenaeus stylirostris yang dibiakkan dalam kondisi aquaculture.
	Udang biru tersebut kemudian diexposisi pada berbagai tingkat ammonia dan hipoksia untuk
	mengetahui efeknya terhadap kelangsungan hidup dan respons fisilogi,
	Sampel udang biru diobservasi untuk mengetahui bagaimana tahap molting mempengaruhi
	efek kombinasi ammonia dan hipoksia.
Metode	Penggunaan Udang Biru: Udang biru Litopenaeus stylirostris dibiakkan dalam kondisi
	akuakultur dan kemudian diexposisi pada berbagai tingkat ammonia dan hipoksia.
	Pengukuran Kelangsungan Hidup: Kelangsungan hidup udang biru diukur melalui
	pengamatan mortalitas dan tingkat kematian.
	Pengukuran Respons Fisilogi: Respons fisilogi udang biru diukur melalui pengamatan
	tingkat laktat darah, tingkat hemoglobin, dan komposisi hemolymph.
Hasil	Pengaruh Kombinasi Ammonia dan Hipoksia: Kombinasi ammonia dan hipoksia berpengaruh
	pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa
	kombinasi ammonia dan hipoksia dapat meningkatkan mortalitas udang biru, terutama pada
	kombinasi ammonia dan hipoksia dapat meningkatkan mortalitas udang biru, terutama pada tahap postmolt.
	tahap postmolt.
	tahap postmolt. • Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang
	tahap postmolt. • Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang
	tahap postmolt. • Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt.
	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru.
	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa hipoksia dapat meningkatkan mortalitas udang biru,
	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa hipoksia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt.
	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa hipoksia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Tahap Molting: Tahap molting berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa tahap postmolt adalah tahap yang paling rentan terhadap mortalitas akibat kombinasi ammonia dan hipoksia.
Kesimpulan	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa hipoksia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Tahap Molting: Tahap molting berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa tahap postmolt adalah tahap yang paling rentan terhadap mortalitas akibat kombinasi ammonia dan hipoksia. Penelitian ini menunjukkan bahwa kombinasi ammonia dan hipoksia dapat meningkatkan
Kesimpulan	 tahap postmolt. Pengaruh Ammonia: Ammonia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa ammonia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa hipoksia dapat meningkatkan mortalitas udang biru, terutama pada tahap premolt dan postmolt. Pengaruh Tahap Molting: Tahap molting berpengaruh pada kehidupan dan respons fisiologis udang biru. Hasil penelitian menunjukkan bahwa tahap postmolt adalah tahap yang paling rentan terhadap mortalitas akibat kombinasi ammonia dan hipoksia.

Physiological and muscle tissue responses in Litopenaeus vannamei under hypoxic s	stresss via iTRAQ	
Chang F et al	Front Physiol	2022

Latan Dalahan a	• Litopenaeus vannamei telah menjadi spesies udang yang paling banyak dibudidayakan di
Latar Belakang	dunia, dengan budidaya yang menjadi salah satu sektor utama dalam industri akuakultur Cina.
	Stress hipoksia dapat menyebabkan perubahan fisiologis dan biochemis yang signifikan pada
	udang, sehingga mempengaruhi kualitas dan kuantitas produksi.
	Penelitian ini dilakukan untuk memahami bagaimana udang merespon terhadap stress
	hipoksia dan mengembangkan strategi untuk meningkatkan toleransi udang terhadap kondisi
	hipoksia.
Tujuan	Mengidentifikasi protein yang berubah ekspresinya dan mengembangkan strategi untuk
	meningkatkan toleransi udang terhadap kondisi hipoksia.
Dataset	• Udang (13 ± 0,5 cm) yang digunakan dalam percobaan semuanya dari Hainan Guangtai
	Marine Culture Co., Ltd. (Wenchang Kota, Provinsi Hainan, Tiongkok).
	Hanya udang dalam tahap inter-molt dan udang remaja berukuran serupa yang digunakan
	dalam percobaan.
	Sebelum percobaan formal, mereka diaklimatisasi di akuarium selama 3 hari, dengan salinitas
	air laut 1,9% \pm 0,2%, nilai pH 8,1 \pm 0,2, dan suhu 27° C \pm 1°C.
	• Pakan diberikan dua kali sehari (tidak diberi pakan saat molting dan stress hipoksia), dan
	separuh air laut di ember diganti setiap hari.
	• Kandungan oksigen terlarut pada kondisi stress hipoksia adalah 0,5 ppm, dan stress waktu
	adalah 0 sore, 3 sore, 6 jam, dan 12 jam.
	Tingkat terlarut oksigen dipertahankan dengan mengisi tong dengan nitrogen.
	• Dua strain L. vannamei yang berbeda yaitu Zhengda dan A6410 dipilih untuk penelitian ini.
	Yang pertama adalah strain yang sensitif terhadap hipoksia dan yang terakhir adalah strain
	yang toleran terhadap hipoksia.
Metode	Penelitian ini menggunakan teknik iTRAQ untuk mengidentifikasi protein yang berubah
	ekspresinya pada udang Litopenaeus vannamei yang diexposisi pada stress hipoksia. Udang
	tersebut diexposisi pada kondisi hipoksia selama 12 jam, dan kemudian diukur untuk
	mengetahui perubahan ekspresinya pada protein.
Hasil	• Respons Fisiologis: Stress hipoksia 6 jam mengakibatkan penurunan signifikan jumlah sel
	darah total pada kedua strain, sedangkan strain yang sensitif terhadap hipoksia menunjukkan
	penurunan yang lebih kuat. Konsentrasi hemosianin menunjukkan trend naik umum pada
	strain toleran hipoksia.
	l

	• Respons Tisu Otot: Analisis proteomik tisu otot udang putih menunjukkan 3,417 protein yang						
	berbeda ekspresinya setelah 12 jam stress hipoksia. Diantaranya, 29 protein berbeda						
	ekspresinya turun dan 244 protein berbeda ekspresinya naik pada strain yang sensitif terhadap						
	hipoksia. Pada strain yang toleran terhadap hipoksia, hanya 10 protein berbeda ekspresinya						
	turun dan 25 protein berbeda ekspresinya naik.						
	• Gen yang Berbeda Ekspresinya: Lima gen yang berbeda ekspresinya yang signifikan terhadap						
	stress hipoksia dipilih untuk analisis PCR real-time, yaitu hemosianin, chitinase, protein panas						
	90 (HSP 90), protein kematian program, dan fosforilase glikogen. Hasil menunjukkan bahwa						
	pola ekspresi gen konsisten dengan data eksperimen proteomik kecuali untuk protein kematian						
	program dan fosforilase glikogen.						
Kesimpulan	Penelitian ini menunjukkan bahwa stress hipoksia dapat menyebabkan perubahan fisiologis dan						
	biochemis yang signifikan pada udang Litopenaeus vannamei.						

2.27 Tinjauan 27

Investigating the physiological responses of Pacific white shrimp Litopenaeus vanna	nmei to acute cold-stro	esss
Wang Zhenlu et al	PeerJ	2019

Latar Belakang	 L. vannamei adalah salah satu spesies udang putih yang paling penting dalam budidaya, namun stress dingin dapat menyebabkan gangguan pertumbuhan dan kematian. Penelitian dilakukan untuk memahami bagaimana stress dingin akut mempengaruhi respons fisiologis L. vannamei. 	
Tujuan	Memberikan wawasan tentang respon fisiologis udang selama periode stress ini, yang sangat penting untuk memahami mekanisme toleransi terhadap stress dingin pada udang dan meningkatkan praktik budidaya udang.	
Dataset	 L. vannamei eksperimental (5,28 ± 0,50 g) dibeli dari peternakan komersial di Panyu (Guangdong, Cina) sebanyak 120 ekor 3 kelompok udang dengan suhu yang berbeda: 28 °C, 23 °C, dan 13 °C 	
Metode	 Pengaturan Suhu: Suhu yang digunakan dalam penelitian ini adalah 28 °C, 23 °C, dan 13 °C. Suhu 28 °C digunakan sebagai suhu kontrol, sedangkan suhu 23 °C dan 13 °C digunakan sebagai suhu stress dingin akut. Suhu 13 °C dicapai dengan laju pendinginan 2.5 °C/2 jam Pengukuran Metabolit Plasma: Sampel plasma dianalisis untuk mengetahui perubahan konsentrasi trigliserida, kolesterol total, dan protein total. Pengukuran dilakukan menggunakan metode enzimatis dan spektrofotometri 	

	• Histological Changes: Sampel hepatopankreas dan hemosit dianalisis untuk mengetahui			
	perubahan histologis yang terjadi. Pengukuran dilakukan menggunakan metode histopatologi			
	Gen UPR dan Apoptosis: Sampel hepatopankreas dan hemosit dianalisis untuk mengetahui			
	perubahan ekspresi gen terkait dengan respons protein tidak terlipat (Unfolded Protein			
	Response) dan apoptosis. Pengukuran dilakukan menggunakan metode PCR dan Western blot			
	Statistical Analysis: Data dianalisis menggunakan statistik untuk mengetahui perbedaan yang			
	signifikan antara kelompok suhu yang berbeda. Analisis dilakukan menggunakan ANOVA			
	dan post-hoc test.			
Hasil	Konsentrasi Metabolit Plasma: Konsentrasi trigliserida, kolesterol total, dan protein total			
	dalam plasma mencapai puncaknya pada suhu 23 °C dan menurun ke nilai minimum pada			
	suhu 13 °C selama 12 jam.			
	• Aktivitas Enzim: Aktivitas alkaline phosphatase (ALP) dalam plasma menurun ke tingkat			
	terendah, sementara aktivitas alanine aminotransferase (ALT) meningkat.			
	• Gen UPR dan Apoptosis: Gen terkait dengan respons protein yang tidak terlipat (UPR) dan			
	apoptosis dalam hepatopankreas dan hemosit L. vannamei berubah. Hasil ini menunjukkan			
	bahwa UPR dan apoptosis berperan penting dalam respons fisiologis L. vannamei terhadap			
	stress dingin akut.			
	Histological Changes: Histological changes dalam hepatopankreas L. vannamei			
	menunjukkan kerusakan pada suhu 13 °C, yang dapat mengganggu fungsi organ tersebut.			
Kesimpulan	Stress dingin akut menyebabkan kerusakan histologis pada hepatopankreas L. vannamei			
	sehingga menurunkan kekebalannya.			

2.28 Tinjauan 28

Energy metabolism response of Litopenaeus vannamei to combined stresss of acute cold exposure and waterless			
duration			
Defeng Xu et al	Science Direct	2022	

	Dua penyebab stress abiotik utama yang mempengaruhi udang selama proses ini adalah		
Latar Belakang	paparan dingin akut (Acute Cold) dan durasi tanpa air (Waterless Duration).		
	Penyebab stress ini dapat menyebabkan kerusakan signifikan pada udang, menyebabkan		
	kematian dan berdampak pada kesehatan spesies secara keseluruhan		
Tujuan	Penelitian ini bertujuan untuk memahami bagaimana L. vannamei merespons stressor ini dan		
	bagaimana respons ini berdampak pada metabolisme energinya, yang pada akhirnya		
	memberikan informasi strategi untuk mengelola stress dan meningkatkan kemampuan		
	bertahan hidup udang selama transportasi hidup tanpa air.		

Dataset	• L. vannamei remaja masih hidup dngan berat $(15,45 \pm 2,16)$ g dan panjang $(12,69 \pm 1,78)$ cm,			
	5 kg dibeli dari tambak budidaya udang di Kota Zhanjiang, Provinsi Guangdong, Cina			
	sebanyak 120 ekor.			
	Udang dibagi menjadi empat kelompok: kelompok kontrol (NC), kelompok paparan dingin			
	akut (AC), kelompok durasi tanpa air (WD), dan kelompok stress gabungan (AC + WD).			
	• Udang dipelihara pada suhu 20°C dan salinitas 30% selama 24 jam sebelum percobaan.			
Metode	Desain eksperimental			
	Udang pada kelompok paparan dingin akut (AC) terkena penurunan suhu secara tiba-tiba dari			
	20°C menjadi 10°C selama 3 jam. Udang kelompok durasi tanpa air (WD) dipelihara pada			
	lingkungan tanpa air selama 3 jam. Udang pada kelompok stress gabungan (AC + WD) diberi			
	paparan dingin akut dan durasi tanpa air selama 3 jam. Kelompok kontrol (NC) dipertahankan			
	pada suhu 20°C dan salinitas 30% selama percobaan.			
	Penilaian Fisiologis dan Biokimia			
	Respon fisiologis dan biokimia udang dinilai dengan mengukur berbagai indikator metabolisme			
	energi, termasuk kadar kortisol, hemosianin, glukosa, laktat, glikogen, dan ATP. Selain itu,			
	aktivitas enzim yang terlibat dalam metabolisme energi, seperti heksokinase (HK),			
	fosfofruktokinase (PFK), piruvat kinase (PK), laktat dehidrogenase (LDH), suksi			
	dehidrogenase (SDH), dan adenosin triphosphatase (ATPase), diukur Tingkat spesies oksi			
	reaktif (ROS) dan malonaldehida (MDA) juga dinilai sebagai indikator stress oksidatif.			
	• Analisis statistik			
	Data dianalisis menggunakan ANOVA satu arah diikuti dengan uji post-hoc Tukey untu			
	membandingkan rata-rata kelompok yang berbeda. Hasilnya dianggap signifikan secara statistik			
	pada $p < 0.005$.			
Hasil	Stress Kombinasi: Stress kombinasi akut penurunan suhu dan durasi air kering berpengaruh			
	pada metabolism energi L. vannamei. Hasil penelitian menunjukkan bahwa stress kombinasi			
	ini dapat menyebabkan penurunan konsentrasi ATP, peningkatan konsentrasi glukosa dan			
	laktat, dan penurunan konsentrasi glikogen.			
	• Respons Metabolism Energi: Respons metabolism energi L. vannamei terhadap stress			
	kombinasi akut penurunan suhu dan durasi air kering menunjukkan bahwa metabolism energi			
	ini berubah dari metabolism aerobik ke metabolism anaerobik. Hasil penelitian menunjukkan			
	bahwa aktivitas enzim seperti hexokinase, phosphofructokinase, pyruvate kinase, dan			
	succinate dehydrogenase meningkat pada awal stress, tetapi kemudian menurun. Sementara			
	itu, aktivitas enzim seperti lactate dehydrogenase meningkat secara gradual.			
Kesimpulan	Penelitian ini menunjukkan bahwa stress akut yang disebabkan oleh eksposur dingin dan			
	durasi tanpa air dapat menyebabkan metabolisme energi udang berada dalam keadaan tidak			
	seimbang.			
	1			

- Udang tersebut awalnya beradaptasi dengan cara meningkatkan metabolisme anaerobik, tetapi kemudian mengalami penurunan sintesis energi dan gangguan keseimbangan metabolisme.
- Gangguan ini dapat menyebabkan kerusakan pada jaringan hepatopankreas dan defisiensi suplai ATP, yang dapat menjadi mekanisme dasar yang menyebabkan kematian udang selama proses transportasi hidup.

2.29 Tinjauan 29

The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei		
Peidong Zhang, et al	Science direct	2007

Latar Belakang	Penelitian ini bertujuan untuk mengetahui efek suhu dan salinity air terhadap kemampuan berenang udang putih, Litopenaeus vannamei.				
	• Udang putih adalah salah satu spesies udang yang populer digunakan dalam budidaya				
	perairan.				
	• Suhu dan keasaman air adalah dua faktor penting yang mempengaruhi kualitas air dan				
	kesehatan udang.				
Tujuan	Mengetahui bagaimana perubahan suhu dan keasaman air mempengaruhi kemampuan berenang				
	udang putih dan bagaimana kemampuan berenang tersebut dapat digunakan sebagai indikator				
	kualitas air dan kesehatan udang.				
Dataset	Udang whiteleg, L. vannamei dari tambak udang lokal (Shazikou, Qingdao).				
	• Hanya udang dalam tahap intermolt yang digunakan untuk penelitian ini. Tahap molting				
	ditentukan dengan memeriksa uropoda di mana retraksi parsial epidermis dapat dibedakan.				
	• Suhu: 15, 20, dan 25°C.				
	• Salinity Air: 15, 32, dan 40% (per mille)				
	• Kecepatan Aliran Air: 5.41, 6.78, 8.21, 10.11, dan 11.47 cm s(-1).				
Metode	1. Metode Pengukuran:				
	Swimming Channel: Digunakan untuk mengukur kemampuan berenang udang putih.				
	• Flow Velocities: Digunakan untuk mengukur kecepatan aliran air.				
	2. Parameter Pengukuran:				
	• Kemampuan Berenang: Waktu yang dibutuhkan untuk berenang sejauh 9000 s diukur.				
	• Indeks Kemampuan Berenang (SAI): Didefinisikan sebagai integral(0)(9000) vdt x 10(-4)				
	(cm).				
	3. Analisis Data:				
	Analisis Regresi: Digunakan untuk mengetahui hubungan antara kemampuan berenang				
	dan kecepatan aliran air serta suhu dan keasaman air.				

	Analisis Variansi: Digunakan untuk mengetahui efek suhu dan keasaman air			
Hasil	Kemampuan Berenang: Kemampuan berenang udang putih berbeda-beda tergantung pa			
	suhu dan salinitas. Hasil penelitian menunjukkan bahwa kemampuan berenang meningkat			
	dengan peningkatan suhu, tetapi menurun dengan peningkatan salinitas.			
	• Suhu: Suhu berpengaruh pada kemampuan berenang udang putih. Hasil penelitian			
	menunjukkan bahwa kemampuan berenang meningkat dengan peningkatan suhu dari 15°			
	25°C, tetapi menurun dengan peningkatan suhu di atas 25°C.			
	• Salinitas: Salinitas berpengaruh pada kemampuan berenang udang putih. Hasil penelitian			
	menunjukkan bahwa kemampuan berenang menurun dengan peningkatan salinitas dari 15 ppt			
	ke 40 ppt.			
Kesimpulan	Kemampuan berenang udang putih dapat diprediksi dengan baik berdasarkan kecepatan aliran			
	air, suhu, dan salinitas air.			

3.30 Tinjauan 30

Effects of temperature, salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp,			
Litopenaeus vannamei			
Xiaoming Yu et al	Science direct	2010	

Latar Belakang	 Udang putih adalah salah satu spesies udang yang populer digunakan dalam budidaya perairan. Suhu dan keasaman air adalah dua faktor penting yang mempengaruhi kualitas air dan kesehatan udang. Panjang tubuh dan kekurangan makan juga dapat mempengaruhi kemampuan berenang udang.
Tujuan	Mengetahui bagaimana perubahan suhu, keasaman air, panjang tubuh, dan kekurangan makan mempengaruhi kecepatan berenang kritikal udang putih dan bagaimana kecepatan berenang tersebut dapat digunakan sebagai indikator kualitas air dan kesehatan udang.
Dataset	 Udang putih yang digunakan dalam penelitian ini adalah Litopenaeus vannamei. Suhu: 17, 20, 25, dan 29°C. Keasaman Air: 20, 25, 30, 35, dan 40‰. Panjang Tubuh: 5.5, 6.6, 7.3, 9.4, dan 10.0 cm. Kekurangan Makan: 1, 4, dan 8 hari
Metode	Penelitian ini dilakukan dengan menggunakan aliran air yang memiliki kecepatan berbeda dan suhu serta keasaman air yang disesuaikan. Udang putih ditempatkan dalam aliran air tersebut dan kemampuan berenangnya diukur dengan menghitung waktu yang dibutuhkan untuk berenang sejauh tertentu.

Hasil	• Pengaruh Suhu: Suhu berpengaruh pada kecepatan berenang kritikal udang putih. Hasil				
	penelitian menunjukkan bahwa kecepatan berenang kritikal meningkat dengan peningkatan				
	suhu dari 17°C ke 29°C.				
	Pengaruh Salinitas: Salinitas berpengaruh pada kecepatan berenang kritikal udang putih. Hasil				
	penelitian menunjukkan bahwa kecepatan berenang kritikal meningkat dan kemudian				
	menurun dengan peningkatan salinitas dari 20 ppt ke 40 ppt.				
	Pengaruh Panjang Tubuh: Panjang tubuh berpengaruh pada kecepatan berenang kritikal udang				
	putih. Hasil penelitian menunjukkan bahwa kecepatan berenang kritikal meningkat dengan				
	peningkatan panjang tubuh dari 5.5 cm ke 10.0 cm, sementara relatif kecepatan berenang				
	kritikal (U(crit)', BLs ⁻¹) menurun.				
	Pengaruh Kekurangan Makanan: Kekurangan makanan berpengaruh pada kecepatan berenang				
	kritikal udang putih. Hasil penelitian menunjukkan bahwa kecepatan berenang kritikal				
	menurun dengan peningkatan hari kekurangan makanan dari 1 hari ke 8 hari.				
Kesimpulan	Perubahan suhu, salinitas air, panjang tubuh, dan kekurangan makan mempengaruhi				
	kemampuan berenang kritis udang putih dan bagaimana kemampuan berenang tersebut dapat				
	digunakan sebagai indikator kualitas air dan kesehatan udang.				

3.31 Tinjauan 31

Molting in the grow-out of farmed shrimp: a review		
Daniel Lemos et al	Research Gate	2020

	Pentingnya proses molting dalam pertumbuhan udang budidaya.			
Latar Belakang	Adanya perubahan fisiologis dan biokimia yang terjadi pada udang budidaya selama siklus			
	ganti kulitnya.			
Tujuan	Penelitian ini meninjau siklus molting udang dalam konteks siklus fisiologis, pengaktifan			
	trigger, perubahan perilaku dan komposisi, serta elemen untuk molting sukses dan strategi			
	pengelolaan molting.			
Dataset	Sampel udang yang digunakan dalam penelitian ini adalah Farfantepenaeus paulensis Pé			
	Farfante 1967 (Crustacea Decapoda Penaeidae) yang dikulturkan di Universitas São Paulo.			
	Parameter fisiologis & biokimia:			
	a) Konsentrasi hemosianin dalam hemolimfa: untuk memahami energi yang dikonsumsi			
	udang selama berbagai proses ganti kulit yang memengaruhi kapasitas osmotiknya.			
	b) Konsentrasi glukosa dalam hemolimfa: sebagai indikator perbedaan kebutuhan energi			
	sepanjang siklus ganti kulit.			
	c) Glikogen dalam kelenjar pencernaan: untuk memahami adaptasi biokimia yang			
	ditunjukkan udang untuk mempertahankan homeostatis selama siklus ganti kulit.			

	d) Kapasitas osmotik organisme: menyelidiki variasi kapasitas osmotik udang selama siklus			
	ganti kulit, yang dipengaruhi oleh perubahan biokimia seperti pada konsentrasi			
	hemosianin dan glukosa.			
Metode	Sampel udang dianalisis untuk mengetahui perubahan kimia dan biokimia yang terjadi selama			
	molting, seperti perubahan komposisi protein dan lemak, serta aktivitas enzim,			
	Kualitas air dipantau secara teratur untuk memastikan kondisi yang sesuai bagi udang, seperti			
	pH, suhu, dan kandungan oksigen			
	Pengelolaan molting yang efektif, seperti pengawasan kualitas air, pemberian makanan yang			
	tepat, dan penggunaan suplemen mineral yang diperlukan			
Hasil	• Siklus molting udang budidaya terdiri dari tiga tahapan: premoult, post-moult, dan intermoult.			
	a) Tahapan premoult adalah masa persiapan molting yang terpanjang dan melibatkan			
	akumulasi nutrien.			
	b) Tahapan post-moult adalah masa yang singkat dan kritis untuk pemulihan udang setelah			
	molting.			
	c) Tahapan intermoult adalah masa ketika pemberian makanan terus-menerus dan sebagian			
	besar pertumbuhan udang terjadi.			
	Pengaktifan Trigger - Molting diaktifkan oleh peningkatan hormon 20-hydroxyecdysone dan			
	methyl farnesoate dalam hemolimfa, mirip dengan hewan serangga.			
	Molting berpengaruh pada perilaku udang seperti meningkatkan aktivitas dan mengurangi			
	konsumsi makanan			
	Molting berpengaruh pada komposisi udang seperti peningkatan kandungan protein dan			
	penurunan kandungan lemak			
	Kualitas Air dan Status Gizi: Kualitas air dan status gizi udang sangat penting untuk molting			
	sukses.			
	Strategi Pengelolaan Molting: Strategi pengelolaan molting yang efektif meliputi pengawasan			
	kualitas air, pemberian makanan yang tepat, dan penggunaan suplemen mineral yang			
	diperlukan.			
	Selain itu, penelitian ini juga menyarankan penggunaan teknologi aerasi untuk meningkatkan Luclitas ain dan menyarankan penggunaan teknologi aerasi untuk meningkatkan			
Vasimmulan	kualitas air dan mengurangi stress pada udang.			
Kesimpulan	Molting sangat penting dalam pertumbuhan udang budidaya. Malting hamananah nada perilalah banasaisi dan pertumbuhan udang			
	Molting berpengaruh pada perilaku, komposisi, dan pertumbuhan udang. Statusi ang dalam pada perilaku, komposisi, dan pertumbuhan udang.			
	Strategi pengelolaan molting yang efektif meliputi pengawasan kualitas air, pemberian mekanan yang tapat dan pengayasan suplaman minaral yang diperlukan.			
	makanan yang tepat, dan penggunaan suplemen mineral yang diperlukan			

3.32 Tinjauan 32

Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon		
Corteel et al	Springer	2012

	Penelitian ini dilatarbelakangi oleh meningkatnya permintaan terhadap spesies udang ini di			
Latar Belakang	pasar, khususnya di Amerika Serikat, dan perlunya meningkatkan praktik budidayanya.			
	Studi menyatakan kecepatan proses molting P. monodon jauh lebih lambat dibandingkan			
	dengan P. vannamei,			
	Temuan penelitian ini penting untuk mengoptimalkan pertumbuhan dan tingkat kelangsungan			
	hidup udang-udang ini, yang dapat berkontribusi terhadap kelayakan ekonomi budidaya			
	mereka dan keberlanjutan industri secara keseluruhan			
Tujuan	Memahami proses molting dan tahapan-tahapan yang terjadi pada udang, serta untuk			
	mengembangkan alat yang tidak invasif untuk memantau proses ini dalam eksperimen yang			
	akan datang			
Dataset	Udang P. vannamei dan P. monodon yang dipelihara di laboratorium.			
	Berat Udang 2 gram dan 15 gram digunakan dalam penelitian ini.			
	• Penelitian ini dilakukan dengan suhu konstan 27°C.			
Metode	Lima tahapan molting didefinisikan:			
	a) awal post-moult (A)			
	b) akhir post-moult (B),			
	c) inter-moult (C), dan			
	d) awal pre-moult (D1) dan			
	e) akhir pre-moult (D2).			
	• Tahapan molting dianalisis secara mikroskopis dengan memeriksa aspek cuticle, epidermis,			
	dan proses molting pada uropods.			
Hasil	• Siklus Molting: Siklus molting udang vaname terdiri dari beberapa tahap, yaitu intermolt,			
	premolt, dan postmolt. Tahap intermolt berlangsung sekitar 2-3 minggu, premolt sekitar 1-2			
	minggu, dan postmolt sekitar 1-2 minggu.			
	Pengaruh Kalsium: Kalsium berpengaruh pada siklus molting udang vaname. Penambahan			
	kalsium dalam pakan dapat meningkatkan frekuensi molting dan pertumbuhan udang.			
	Pengaruh Salinitas: Salinitas berpengaruh pada siklus molting udang vaname. Udang vaname			
	dapat hidup pada kisaran salinitas lebar, tetapi ketersediaan mineral sangat sedikit pada			
	perairan dengan salinitas rendah.			
	 Durasi siklus molting sekitar 5-6,5 hari untuk udang berat 2 gram dan 11-12 hari untuk udang 			
	berat 15 gram.			

	• Durasi relatif tahapan molting dalam siklus adalah 5-10% untuk A, 9-16% untuk B, 12-20% untuk C, 28-36% untuk D1, dan 30-38% untuk D2 stage.
Kesimpulan	• Tahapan pre-moult adalah fase dominan dalam siklus molting, dan P. monodon molting lebih lambat daripada P. vannamei dalam kondisi yang sama.
	Proses molting dapat dipantau secara tidak invasif di laboratorium, sehingga dapat digunakan sebagai alat dalam eksperimen yang akan datang.

3.33 Tinjauan 33

Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the		
molt cycle		
Jose Renato de Oliveira Cesar et al	Science Direct	2006

Latar Belakang	• Perubahan morfologi dan biochemis pada otot abdominal dari Litopenaeus vannamei selama siklus molting.
	Para peneliti mengkarakterisasi delapan tahap pergantian kulit dan mengamati perubahan morfologi spesifik pada otot perut yang terkait dengan setiap tahap
Tujuan	Penelitian ini bertujuan untuk memahami dan menggambarkan perubahan otot abdominal yang
J	terjadi pada berbagai tahapan molting, serta untuk memahami bagaimana perubahan ini
	mempengaruhi pertumbuhan dan perkembangan Litopenaeus vannamei
Dataset	• L. vannamei bebas patogen spesifik (SPF) yang dibudidayakan dari Peternakan Chen-Lu, Kahuku,
	• Untuk mempelajari frekuensi ganti kulit, hewan dipisahkan berdasarkan umur (umur satu,
	tiga, dan enam bulan), dan dibudidayakan secara individual dalam baki plastik ($30 \times 25 \times 7$
	cm) dalam tangki 45 L (5 baki/tangki)
	Sampel otot diambil dari segmen perut pertama berdasarkan tahap ganti kulit
Metode	Analisis Morfologi: Otot abdominal dianalisis secara morfologi untuk mengetahui perubahan
	struktur dan komposisi kimia tubuh selama siklus molting.
	Analisis Biochemis: Protein dan komponen kimia lainnya dianalisis menggunakan metode SDS-
	PAGE dan analisis kimia lainnya untuk mengetahui perubahan biochemis pada otot abdominal
	selama siklus molting.
	Molt Stage Determination: Tahapan molting didefinisikan berdasarkan karakteristik morfologi
	dan biochemis yang spesifik untuk setiap tahapan.
	Analisis Data: Data dianalisis untuk mengetahui perubahan morfologi dan biochemis pada otot
	abdominal selama siklus molting.

Hasil	Perubahan Morfologi: Perubahan morfologi otot abdominal udang vaname terjadi selama		
	siklus molting. Ukuran fiber otot meningkat selama intermolt dan menurun selama premolt		
	dan postmolt.		
	Perubahan Biokimia: Perubahan biokimia otot abdominal udang vaname terjadi selama siklus		
	molting. Kandungan air dan protein larut total tetap stabil selama siklus molting, sedangkan		
	kandungan DNA meningkat selama intermolt dan premolt, dan kandungan RNA tetap stabil		
	kecuali pada tahap premolt akhir.		
	Pengaruh Hormon: Hormon berpengaruh pada perubahan morfologi dan biokimia otot udang		
	vaname selama siklus molting. Hormon rGH berpengaruh pada ukuran fiber otot dan		
	kandungan protein otot.		
Kesimpulan	Perubahan morfologi dan biochemis pada otot abdominal udang laut Litopenaeus vannamei		
	terjadi secara spesifik selama siklus molting.		

3.34 Tinjauan 34

Utilization of Paku Uban (Nephrolepis biserrata) Extract as a Molting Stimulant of Mud Crabs (Scylla spp.) in			
Traditional Ponds			
Maulianawati et al	Jurnal Ilmiah Perikanan Dan Kelautan	2020	

Later Dalalana	Mud crab (Scylla spp.) adalah komoditas perikanan dengan nilai ekonomi tinggi.
Latar Belakang	• Upaya untuk meningkatkan produksi diperlukan dengan teknologi aplikatif yang lebih efektif.
	• Paku Uban (Nephrolepis biserrata) adalah tumbuhan yang telah digunakan secara tradisional
	dalam budidaya udang laut.
	• Ekstrak daun Paku Uban telah diketahui memiliki aktivitas sebagai stimulan molting pada
	beberapa jenis udang.
	Namun, belum ada penelitian yang spesifik mengenai penggunaan ekstrak Paku Uban sebagai
	stimulan molting pada udang laut Scylla spp. dalam tambak tradisional.
Tujuan	Untuk mengetahui respons molting dan tingkat survival udang laut Scylla spp. yang diinjeksikan
	dengan ekstrak daun Paku Uban (N. biserrata) pada dosis yang berbeda
Dataset	Udang laut Scylla spp. berat 80-150 g yang ditempatkan dalam tambak tradisional di Pulau Tibi,
	Kecamatan Tanah Lia, Kabupaten Tanah Tidung.
Metode	Desain penelitian ini menggunakan desain acak lengkap dengan lima perlakuan dan delapan
	replikasi yaitu:
	K1 (Tanpa Injeksi): Udang laut tidak diinjeksikan dengan ekstrak Paku Uban.
	K2 (Injeksi Kontrol): Udang laut diinjeksikan dengan kontrol (tanpa ekstrak Paku Uban).
	P1 (100 ppm Ekstrak): Udang laut diinjeksikan dengan ekstrak Paku Uban pada dosis 100 ppm.
	P2 (125 ppm Ekstrak): Udang laut diinjeksikan dengan ekstrak Paku Uban pada dosis 125 ppm.

	P3 (150 ppm Ekstrak): Udang laut diinjeksikan dengan ekstrak Paku Uban pada dosis 150 ppm.			
	• Molting Response: Tingkat molting dan durasi molting dianalisis untuk setiap perlakuan.			
	Pertumbuhan Berat: Berat udang laut dianalisis untuk setiap perlakuan.			
	• Survival Rate: Tingkat survival udang laut dianalisis untuk setiap perlakuan.			
Hasil	Penggunaan Ekstrak Paku Uban: Ekstrak daun Paku Uban dapat meningkatkan presentasi			
	molting dan mempercepat proses molting pada udang lumpur. Hasil penelitian menunjukkan			
	bahwa ekstrak daun Paku Uban dapat meningkatkan persentase molting hingga 50% pada			
	dosis 150 ppm.			
	• Dosis Optimum: Dosis 150 ppm ekstrak daun Paku Uban terbukti sebagai dosis optimu			
	untuk meningkatkan persentase molting dan pertumbuhan berat udang lumpur. Hasil			
	penelitian menunjukkan bahwa dosis ini dapat meningkatkan persentase molting hingga 50%			
	dan pertumbuhan berat hingga 33.75 g.			
Kesimpulan	Ekstrak Paku Uban (Nephrolepis biserrata) dapat digunakan sebagai stimulan molting pada			
	udang laut Scylla spp. dalam tambak tradisional.			
	Dosis 150 ppm ekstrak Paku Uban terbukti sebagai dosis optimum untuk meningkatkan			
	tingkat molting dan pertumbuhan berat udang laut Scylla spp.			
	• Hasil penelitian ini dapat membantu dalam meningkatkan produksi udang laut dan			
	mengoptimalkan budidaya udang laut dalam tambak tradisional.			

3.35 Tinjauan 35

Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white		
shrimp Penaeus vannamei		
Adriana Muhlia-Almazán et al	Science direct	2022

	Udang putih adalah salah satu spesies udang yang paling umum dikonsumsi di dunia dan
Latar Belakang	memiliki nilai ekonomi yang tinggi.
	Rendahnya produksi dan kualitas udang yang tidak memuaskan.
	• Salah satu faktor yang mempengaruhi produksi udang putih adalah sintesis enzim proteolitik
	dalam kelenjar midgut.
	• Enzim proteolitik ini berperan penting dalam proses pencernaan makanan dan dapat
	mempengaruhi kualitas udang,
	Molting adalah proses yang penting dalam kehidupan udang, di mana mereka mengalami
	perubahan struktur dan
	komposisi kimia tubuh secara teratur untuk pertumbuhan dan perkembangan.

	• Starvation, atau kekurangan makanan, juga dapat mempengaruhi sintesis enzim proteolitik
	dalam kelenjar midgut
Tujuan	Penelitian ini bertujuan untuk mengetahui bagaimana proses molting dan kekurangan makanan
	mempengaruhi sintesis enzim proteolitik dalam kelenjar midgut udang putih Penaeus vannamei.
Dataset	Sampel udang putih berusia 1-2 bulan yang dikumpulkan dari fasilitas CIBNOR. Sampel
	tersebut dianalisis untuk mengetahui pengaruh molting dan kekurangan makanan pada sintesis
	enzim proteolitik dalam kelenjar midgut udang putih
Metode	Analisis Enzim Proteolitik: Enzim proteolitik dianalisis menggunakan metode SDS-PAGE
	dan Western Blot.
	Analisis Data: Data dianalisis untuk mengetahui perubahan sintesis enzim proteolitik selama
	proses molting dan kekurangan makanan.
Hasil	• Pengaruh Molting: Molting berpengaruh pada sintesis enzim proteolitik di gland midgut
	udang putih. Hasil penelitian menunjukkan bahwa sintesis enzim proteolitik meningkat
	selama molting, terutama pada tahap premolt dan postmolt.
	Pengaruh Kekurangan Makanan: Kekurangan makanan berpengaruh pada sintesis enzim
	proteolitik di gland midgut udang putih. Hasil penelitian menunjukkan bahwa sintesis enzim
	proteolitik meningkat selama kekurangan makanan, terutama pada tahap premolt dan
	postmolt.
	• Interaksi Molting dan Kekurangan Makanan: Interaksi antara molting dan kekurangan
	makanan berpengaruh pada sintesis enzim proteolitik di gland midgut udang putih. Hasil
	penelitian menunjukkan bahwa sintesis enzim proteolitik meningkat selama interaksi antara
	molting dan kekurangan makanan, terutama pada tahap premolt dan postmolt.
Kesimpulan	Penelitian ini menunjukkan bahwa sintesis enzim proteolitik dalam kelenjar midgut udang
	putih berubah secara signifikan selama proses molting dan kekurangan makanan.
	Hasil ini dapat membantu dalam meningkatkan produksi udang putih dan mengoptimalkan
	budidaya udang putih.

3.36 Tinjauan 36

Hemolymph oxyhemocyanin, protein, osmolality and electrolyte levels of whiteleg shrimp Litopenaeus vannamei		
in relation to size and molt stage		
Winton Cheng et al Elsevier		2002

	Penelitian ini dilakukan untuk memahami perubahan biokimia pada udang putih yang terkait
Latar Belakang dengan ukuran dan tahap molting. Oxyhemocyanin, protein, osmolality, dan e	
	hemolymph adalah parameter penting yang mempengaruhi kesehatan dan keberhasilan
	pertumbuhan udang. Oleh karena itu, penelitian ini dapat membantu dalam meningkatkan

	pengetahuan tentang bagaimana udang putih beradaptasi dengan perubahan ukuran dan tahap	
	molting, serta bagaimana perubahan tersebut mempengaruhi tingkat hemolymph	
	oxyhemocyanin, protein, osmolality, dan elektrolit.	
Tujuan	Mengetahui bagaimana tingkat hemolymph oxyhemocyanin, protein, osmolality, dan elektrolit	
	pada udang putih, Litopenaeus vannamei, berhubungan dengan ukuran dan tahap molting.	
Dataset	Ukuran Udang: Sampel udang putih yang digunakan dalam penelitian ini memiliki	
	berat badan yang berbeda-beda, yaitu 4.69-32.57 g.	
	Tahap Molting: Sampel udang putih yang digunakan dalam penelitian ini meliputi	
	berbagai tahap molting, yaitu D-0/D-1, D-2/D-3, dan D-4/D-5	
Metode	Analisis Hemolymph: Tingkat hemolymph oxyhemocyanin, protein, osmolality, dan elektrolit	
	dianalisis menggunakan berbagai metode, seperti titrasi, spektrofotometri, dan elektrolisis.	
Hasil	Hemolymph Oxyhemocyanin: Tingkat oxyhemocyanin dalam hemolymph udang	
	putih berbeda-beda tergantung pada ukuran dan tahap molting. Tingkat	
	oxyhemocyanin tertinggi (1.70 +/- 0.04 mmol/l) ditemukan pada tahap D-0/D-1,	
	sedangkan yang terendah (1.08 +/- 0.05 mmol/l) pada tahap D-4/D-5.	
	Hemolymph Protein: Tingkat protein dalam hemolymph udang putih juga berbeda-	
	beda tergantung pada ukuran dan tahap molting. Tingkat protein tertinggi (132.56 +/-	
	2.79 mg/ml) ditemukan pada tahap D-0/D-1, sedangkan yang terendah (87.54 +/- 2.28	
	mg/ml) pada tahap D-4/D-5.	
	Osmolality: Tingkat osmolality dalam hemolymph udang putih tidak berbeda-beda	
	signifikan antara ukuran dan tahap molting.	
	Electrolyte Levels: Tingkat elektrolit dalam hemolymph udang putih tidak berbeda-	
	beda signifikan antara ukuran dan tahap molting	
Kesimpulan	Tingkat hemolymph oxyhemocyanin, protein, osmolality, dan elektrolit pada udang	
	putih berbeda-beda tergantung pada ukuran dan tahap molting.	
	• Tingkat oxyhemocyanin dan protein tertinggi ditemukan pada tahap D-0/D-1,	
	sedangkan tingkat osmolality dan elektrolit tidak berbeda-beda signifikan antara	
	ukuran dan tahap molting.	
	Hasil penelitian ini dapat membantu dalam meningkatkan pengetahuan tentang	
	bagaimana udang putih beradaptasi dengan perubahan ukuran dan tahap molting, serta	
	bagaimana perubahan tersebut mempengaruhi tingkat hemolymph oxyhemocyanin,	
	protein, osmolality, dan elektrolit.	

3.37 Tinjauan 37

Effect of periodic light intensity change on the molting frequency and growth of Litopenaeus vannamei		
Biao Guo et al	Science direct	2013

-			
Lotar Polokona	Dalam kondisi alami, perbedaan konsentrasi plankton, partikel tersuspensi dan zat organik		
Latar Belakang	terlarut dalam air mengubah spektrum dan menyebabkan perbedaan intensitas cahaya di		
	berbagai lapisan air.		
	Sehingga efek perubahan cahaya pada udang menarik perhatian para peneliti.		
	Perbedaan pertumbuhan yang signifikan pada Litopenaeus vannamei juga ditemukan pada		
	perubahan ritme cahaya yang berbeda atau periodik dan perubahan intensitas cahaya ritme		
	yang berbeda		
	• Intensitas cahaya juga merupakan salah satu faktor lingkungan utama yang mempengaruhi		
	perilaku, pemberian makan dan pertumbuhan krustasea		
Tujuan	Untuk menemukan pola pengaturan intensitas cahaya yang paling efektif dalam meningkatkan		
	pertumbuhan dan frekuensi molting udang vannamei, sehingga dapat digunakan dalam budidaya		
	udang vannamei komersial		
Dataset	Sampel udang vannamei yang berumur 45 hari diperoleh dari budidaya.		
Metode	Penelitian ini menggunakan lima perlakuan intensitas cahaya yang berbeda, yaitu:		
	1) 60 lx (Control Light, CL)		
	2) 600 lx yang berubah menjadi 60 lx (FL1)		
	3) 1500 lx yang berubah menjadi 60 lx (FL2)		
	4) 3000 lx yang berubah menjadi 60 lx (FL3)		
	5) 6000 lx yang berubah menjadi 60 lx (FL4)		
	Frekuensi molting dan pertumbuhan udang vannamei diukur setiap 15 hari		
	Data dianalisis untuk mengetahui pengaruh perubahan intensitas cahaya terhadap frekuensi		
	molting dan pertumbuhan udang vannamei.		
Hasil	 Pengaruh Perubahan Intensitas Cahaya: Perubahan intensitas cahaya periodik berpengaruh 		
Hasii	pada frekuensi molting dan pertumbuhan L. vannamei. Hasil penelitian menunjukkan bahwa		
	perubahan intensitas cahaya periodik dapat meningkatkan frekuensi molting dan		
	pertumbuhan L. vannamei.		
	Pengaruh Warna Cahaya: Warna cahaya berpengaruh pada frekuensi molting dan		
	pertumbuhan L. vannamei. Hasil penelitian menunjukkan bahwa warna cahaya yang berbeda		
	dapat meningkatkan frekuensi molting dan pertumbuhan L. vannamei.		
Kesimpulan			
Kesimpulan	Perubahan intensitas cahaya yang periodik dapat meningkatkan pertumbuhan dan frekuensi melting udang yang periodik dapat meningkatkan pertumbuhan dan frekuensi		
	molting udang vannamei.		

• Perlakuan FL2 (1500 lx yang berubah menjadi 60 lx) menunjukkan hasil yang paling efektif dalam meningkatkan pertumbuhan dan frekuensi molting

3.38 Tinjauan 38

Physiological and behavioral responses of different modes of locomotion in the whiteleg shrimp Litopenaeus vannamei (Boone, 1931) (Caridea: Penaeidae)

Jiangtao Li et al Journal of Crustacean Biology 2018

Journal of Clusticean Biology 2010
Penggerak sangat penting untuk kelangsungan hidup sebagian besar hewan akuatik dan
dianggap sebagai sifat mendasar yang sering kita gunakan untuk menentukan riwayat hidup
hewan tersebut.
• Penggerak yang berbeda-beda, seperti berenang, berjalan, dan flip tail, sangat penting untuk
kelangsungan hidup dan keberhasilan dalam budidaya.
• Udang putih memiliki kemampuan berenang yang berbeda-beda tergantung pada cara gerak
yang digunakan.
Berenang yang berlangsung lama dan intensif memerlukan energi yang lebih banyak
dibandingkan dengan berenang yang berlangsung singkat dan ringan.
Cara gerak udang antara lain berjalan, berenang, dan membalik ekor.
Berenang pada udang dilakukan melalui pukulan pleopod.
Selain itu, udang memiliki perut memanjang yang dapat dilenturkan dan bersama dengan
uropoda memberikan gerakan membalik ekor yang kuat.
Berenang digunakan udang untuk aktivitas rutin seperti berlayar, migrasi, dan mencari makan
Membalikkan ekor memberikan kecepatan dan akselerasi tertinggi, namun hanya dalam waktu
singkat, dan digunakan untuk melarikan diri dari predator
Membalikkan ekor mirip dengan fungsi renang beruntun pada ikan
• Pukulan pada pleopoda atau uropoda adalah salah satu aktivitas yang paling memakan energi
yang dilakukan oleh udang, sehingga menghasilkan pengeluaran energi yang jauh lebih besar
dibandingkan saat istirahat
Penelitian sebelumnya mengenai metabolisme energi udang terutama difokuskan pada respon
fisiologis dan pemulihan dari kelelahan setelah bergerak mengeksplorasi sumber energi
berenang dan membalik ekor pada udang, dan menemukan bahwa energi untuk berenang
diperoleh dari pembakaran glikogen dan trigliserida pada otot pleopod, sedangkan energi
untuk membalik ekor diperoleh dari glikogen pada otot perut.
Untuk memahami mekanisme energi yang digunakan selama berbagai mode gerak pada udang
putih, Litopenaeus vannamei,

tambak renang dengan um.
renang dengan um.
renang dengan um.
dengan
dengan
ım.
4 1 1 Λ
$t \pm 1,0,$
nit.
satuan
ninal.
dengan
k yang
o yang
plitudo
eda dan
eda dan
eda dan k udang
k udang

Hasil	Metabolisme Glukosa dan Trigliserida: Analisis metabolisme glukosa dan trigliserida pada
	berbagai mode gerak, seperti berjalan, berenang, dan berguling, menunjukkan bahwa udang
	menggunakan metabolisme aerobik untuk energi yang dibutuhkan selama berenang dengan
	kecepatan rendah, sedangkan berenang dengan kecepatan tinggi dan berguling menggunakan
	metabolisme anaerobik.
	• Regulasi Enzim Glukolitik: Regulasi enzim glukolitik yang terkait dengan metabolisme
	glikogen dan trigliserida menunjukkan peningkatan glukolitik pada berbagai mode gerak,
	yang menyebabkan penumpukan laktat dan kelelahan gerak.
	Karakteristik Gerak: Rekaman video gerak udang menggunakan kamera video yang dipasang
	di samping kanal berenang menunjukkan bahwa udang menggunakan berbagai mode gerak,
	seperti berjalan, berenang, dan berguling, untuk beradaptasi dengan lingkungan yang berbeda.
Kesimpulan	• Strategi Gerak: Udang putih, Litopenaeus vannamei, menggunakan berbagai mode gerak
	untuk beradaptasi dengan lingkungan yang berbeda, seperti berjalan, berenang, dan berguling,
	yang mempengaruhi metabolisme dan kelelahan gerak.
	Metabolisme Energi: Metabolisme energi udang putih tergantung pada kecepatan berenang
	dan mode gerak yang digunakan, dengan metabolisme aerobik digunakan untuk berenang
	dengan kecepatan rendah dan metabolisme anaerobik digunakan untuk berenang dengan
	kecepatan tinggi dan berguling.
	Regulasi Enzim Glukolitik: Regulasi enzim glukolitik mempengaruhi metabolisme glikogen
	dan trigliserida pada berbagai mode gerak, yang menyebabkan penumpukan laktat dan
	kelelahan gerak.

3.39 Tinjauan 39

Effects of four factors on Penaeus monodon post larvae cannibalism		
Jiang S et al	Iranian Journal of Fisheries Sciences	2019

	Kanibalisme adalah fenomena yang umum terjadi di antara individu yang mirip, seperti dalam
Latar Belakang	hal ini, di mana individu yang lebih besar dan lebih kuat menyerang dan memangsa individu
	yang lebih kecil.
	Kanibalisme dapat disebabkan oleh beberapa faktor, seperti ukuran individu, kepadatan larva,
	ketersediaan makanan, dan aerasi.
	Dalam penelitian ini, empat faktor tersebut dianalisis untuk mengetahui bagaimana mereka
	mempengaruhi tingkat kanibalisme pada larva pasca Penaeus monodon.
Tujuan	Penelitian ini dilakukan untuk memahami bagaimana ukuran individu, kepadatan larva post, dan
	ketersediaan makanan mempengaruhi tingkat cannibalisme pada spesies ini.

	· -							
Dataset	Penelitian dilakukan dengan menggunakan 1.200 ekor Penaeus monodon pasca larva yang							
	dibagi menjadi 12 kelompok dengan kombinasi ukuran individu, kepadatan pasca larva,							
	kelimpahan makanan, dan aerasi yang berbeda-beda.							
	Pasca larva dipelihara dalam 12 tangki dengan kondisi terkendali.							
	Tingkat kanibalisme diukur setiap hari selama 14 hari.							
Metode	Desain Eksperimental:							
	12 grup larva post-Penaeus monodon dengan kombinasi faktor-faktor yang berbeda:							
	a. ukuran individu (50, 80, 110, 140, 170 ind/L),							
	b. kepadatan larva post (50, 80, 110, 140, 170 ind/L),							
	c. ketersediaan makanan (20 ind/mL, no-food), dan							
	d. aerasi (sufficient, insufficient).							
	Pengumpulan Data:							
	a. Tingkat cannibalisme diukur secara harian selama 14 hari.							
	b. Data tingkat cannibalisme dikumpulkan dengan cara menghitung jumlah larva post							
	yang menjadi korban cannibalisme.							
	Analisis Data:							
	a. Data tingkat cannibalisme dianalisis menggunakan analisis variansi (ANOVA) untuk							
	mengetahui perbedaan antara grup.							
	b. Analisis regresi linier digunakan untuk menganalisis hubungan antara faktor-faktor							
	dengan tingkat cannibalisme.							
Hasil	Ukuran Individu:							
	a. Tingkat cannibalisme meningkat ketika ukuran individu meningkat.							
	b. Larva post yang lebih besar lebih cenderung untuk menjadi korban cannibalisme.							
	Kepadatan Larva Post:							
	a. Tingkat cannibalisme meningkat ketika kepadatan larva post meningkat.							
	b. Kepadatan larva post yang lebih tinggi dapat meningkatkan tingkat cannibalisme.							
	Ketersediaan Makanan:							
	Tingkat cannibalisme meningkat ketika ketersediaan makanan menurun.							
	b. Ketersediaan makanan yang tidak mencukupi dapat mempengaruhi tingkat							
	cannibalisme.							
	Aerasi:							
	Tingkat cannibalisme menurun ketika aerasi mencukupi.							
	b. Aerasi yang tidak mencukupi dapat mempengaruhi tingkat cannibalisme							
Kesimpulan	Tingkat cannibalisme larva post-Penaeus monodon signifikan dipengaruhi oleh ukuran							
ixesimpulan								
	individu, kepadatan larva post, ketersediaan makanan, dan aerasi.							

• Faktor-faktor tersebut dapat digunakan sebagai acuan untuk mengembangkan strategi budidaya yang efektif dan efisien dalam mengurangi tingkat cannibalisme dan meningkatkan produktivitas budidaya udang windu.

4.40 Tinjauan 40

Penambahan Asam Amino Triptofan Dalam Pakan Terhadap Tingkat Kanibalisme Dan Pertumbuhan				
Litopenaeus vannamei				
Diana Rachmawati et al Jurnal Kelautan Tropis 2021				

Latar Belakang	Kanibalisme pada udang vaname (Litopenaeus vannamei) merupakan salah satu masalah						
8	yang sering dihadapi dalam budidaya udang.						
	• Tingkat kanibalisme yang tinggi dapat menyebabkan kematian akibat perangai agresif antar						
	individu, sehingga mengurangi produktivitas dan efisiensi budidaya.						
	• Triptofan, sebagai asam amino esensial, dapat meningkatkan kadar serotonin di otak,						
	sehingga mengurangi agresivitas dan kanibalisme pada udang.						
	Penelitian sebelumnya telah menunjukkan bahwa penambahan triptofan dalam pakan dapat						
	mengurangi tingkat kanibalisme pada beberapa jenis ikan dan udang, seperti udang windu,						
	kerapu macan, dan lobster air tawar.						
Tujuan	Untuk mengetahui efektivitas penambahan asam amino triptofan dalam pakan untuk menekan						
	tingkat kanibalisme dan meningkatkan pertumbuhan udang vaname.						
Dataset	• Udang vaname dengan bobot rata-rata 0,81 ± 0,26 g/ekor,						
	• Pakan uji yang digunakan dalam penelitian ini adalah pakan buatan dengan kandungan						
	protein 38% ditambah triptofan sesuai perlakuan. Perlakuan yang digunakan adalah:						
	1. A (0%/kg pakan)						
	2. B (0,75%/kg pakan)						
	3. C (1,5%/kg pakan)						
	4. D (2,25%/kg pakan)						
	Parameter yang diamati dalam penelitian ini meliputi:						
	1. Tingkat kanibalisme						
	2. Kelulushidupan						
	3. Tingkat molting						
	4. Pertumbuhan bobot mutlak						
	5. Laju pertumbuhan spesifik						
	6. Protein efisiensi rasio						
	7. Efisiensi pemanfaatan pakan						

Metode	 Analisis data dilakukan menggunakan analisis ragam (ANOVA) untuk mengetahui perbedaan antar perlakuan. Hasil analisis ragam menunjukkan bahwa penambahan triptofan dalam pakan berpengaruh nyata (P<0,05) terhadap tingkat kanibalisme, kelulushidupan, dan tingkat molting, namun tidak berpengaruh nyata (P>0,05) terhadap pertumbuhan bobot mutlak, laju pertumbuhan spesifik, protein efisiensi rasio, dan efisiensi pemanfaatan pakan.
Hasil	 Tingkat Kanibalisme: Tingkat kanibalisme udang vaname yang diberi triptofan dalam pakan menunjukkan hasil yang lebih rendah dibandingkan dengan kontrol. Perlakuan C, yaitu penambahan 1,5% triptofan, memiliki tingkat kanibalisme terendah sebesar 2,50% Kelulushidupan: Kelulushidupan udang vaname yang diberi triptofan dalam pakan juga meningkat. Perlakuan C memiliki tingkat kelulushidupan 94% Pertumbuhan Bobot Mutlak: Pertumbuhan bobot mutlak udang vaname tidak berbeda signifikan antar perlakuan Laju Pertumbuhan Spesifik: Laju pertumbuhan spesifik udang vaname juga tidak berbeda signifikan antar perlakuan Rasio Konversi Pakan: Rasio konversi pakan udang vaname tidak berbeda signifikan antar perlakuan Kualitas Air: Kualitas air dalam penelitian ini berada dalam kisaran yang baik untuk budidaya udang vaname
Kesimpulan	 Dosis terbaik dari pemberian triptofan dalam pakan untuk menurunkan tingkat kanibalisme udang vaname adalah 1,5% dalam pakan. Dosis ini memberikan hasil yang paling baik dalam mengurangi tingkat kanibalisme dan meningkatkan kelulusan hidup Penambahan asam amino triptofan dalam pakan dapat menurunkan tingkat kanibalisme dan meningkatkan pertumbuhan udang vannamei, namun tidak berpengaruh pada pertumbuhan bobot mutlak dan lain-lain

4.41 Tinjauan 41

Cannibalism of Decapod Crustaceans and Implications for Their Aquaculture: A Review of its Prevalence,				
Influencing Factors, and Mitigating Methods				
Nicholas Romano et al	Reviews in Fisheries Science & Aquaculture	2016		

	Kannibalisme di antara crustacean ini menjadi salah satu faktor yang paling signifikan dalam
Latar Belakang	menentukan produktivitas dan keuntungan budidaya air.

	Penelitian ini mempertimbangkan beberapa faktor yang mempengaruhi perilaku					
	kannibalisme, seperti kepadatan stok, status molting, heterogenitas ukuran, fotoperiode,					
	intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan.					
	Faktor-faktor ini dapat berbeda dalam efektivitasnya tergantung pada spesies dan fase hidup.					
	Penelitian ini juga membahas berbagai metode pengurangan kannibalisme yang dapat					
TD :	diterapkan dalam tiga fase budidaya air, yaitu fase tetas, fase pembesaran, dan fase panen					
Tujuan	Untuk meningkatkan produktivitas dan keuntungan budidaya air crustacean dengan mengurangi					
	kannibalisme melalui berbagai metode pengurangan yang dapat diterapkan dalam tiga fase					
	budidaya air, yaitu fase tetas, fase pembesaran, dan fase panen.					
Dataset	Lobster, Crabs, Marine shrimp dan freshwater prawns, Freshwater crayfish					
Metode	Metode Pengurangan Kannibalisme: Berbagai metode pengurangan kannibalisme dapat					
	diterapkan dalam tiga fase budidaya air, yaitu fase tetas, fase pembesaran, dan fase panen:					
	• Fase tetas: Penggunaan kultur individu dan manipulasi hormon terkait agresi dapat					
	mengurangi kannibalisme.					
	Fase pembesaran: Penggunaan tempat perlindungan dan makanan yang cukup dapat					
	mengurangi kannibalisme.					
	Fase panen: Penggunaan teknologi yang lebih baik dan perawatan yang lebih baik dapat					
	mengurangi kannibalisme					
Hasil	Prevalensi Cannibalism: Cannibalism umum terjadi pada beberapa spesies crustacean decapod					
	yang penting secara komersial, seperti udang, crab, lobster, dan crayfish.					
	Prevalensi cannibalism dipengaruhi oleh berbagai faktor biotik dan abiotik, seperti kepadatan,					
	status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat					
	perlindungan dan makanan.					
	Faktor yang Mempengaruhi Cannibalism: Faktor yang mempengaruhi cannibalism antara lain					
	kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan					
	ketersediaan tempat perlindungan dan makanan. Faktor-faktor ini dapat berbeda-beda					
	tergantung pada spesies dan fase perkembangan.					
	Metode Pengurangan Cannibalism: Metode pengurangan cannibalism antara lain					
	menggunakan shelter, menambahkan makanan, mengurangi kepadatan, dan mengoptimalkan					
	kondisi lingkungan. Shelter dapat berupa material seperti seagrass, sand, atau brick, yang					
	dapat meningkatkan survival dan mengurangi cannibalism.					
Kesimpulan	1. Kannibalisme sebagai Faktor yang Mempengaruhi Produktivitas Budidaya Air:					
11051111pululi	Kannibalisme dapat menjadi faktor yang signifikan dalam menentukan produktivitas dan					
	keuntungan budidaya air crustacean.					

	2. Per	nggunaan	Metode	Pengura	ngan I	Kanniba	lisme:	Berbagai	metode	pengurangan
	kar	nnibalisme	dapat	diterapkan	dalam	tiga 1	fase b	udidaya ai	r untuk	meningkatkan
	kes	selamatan ii	ndividu o	dan mening	gkatkan	keberha	asilan t	oudidaya ai	r crustacea	an.
	3. Po	tensi Pengg	gunaan K	ultur Indiv	idu dan	Manip	ulasi H	ormon: Per	iggunaan l	kultur individu
	daı	n manipulas	si hormoi	n terkait ag	resi dap	at menj	adi stra	ntegi yang e	fektif dala	m mengurangi
	kaı	nnibalisme	dan men	ingkatkan	keselan	natan ind	dividu.			
Korelasi	kepada	tan stok, s	tatus m	olting, het	erogeni	tas uku	ıran, fo	otoperiode,	intensita	s cahaya, dan
	keterse	diaan tempa	at perlind	lungan dar	n makan	nan >> p	emicu	cannibalisr	n.	

4.42 Tinjauan 42

Cannibalism behavior in the brown shrimp Crangon crangon				
Moreira C et al	XX Iberian Symposium on Marine Biology Studies	2019		

	• Pada krustasea, kanibalisme seringkali merupakan respons terhadap pemicu stress seperti
Latar Belakang	terbatasnya ketersediaan makanan, kepadatan populasi yang tinggi (Abdussamad & Thampy
	1994),terbatasnya aksesibilitas perlindungan bagi mangsa yang rentan (Luppi et al. 2001) dan
	kompleksitas habitat yang rendah (Marshal et al. 2005).
	Kerentanan mangsa terhadap pemangsaan juga relevan dan dipengaruhi oleh ukuran mangsa
	(Fernandez 1999, Marshall et al. 2005), tahap perkembangan dan tahap molting (Marshall et
	al. 2005).
	Kanibalisme pada krustasea sering dianggap sebagai perilaku oportunistik yang terkait dengan
	molting (pergantian kulit) (Marshal et al. 2005, Romano & Zeng 2017).
	Pada Penaeus monodon, tingkat kanibalisme meningkat seiring dengan padatnya tebar dan
	menurun seiring dengan meningkatnya frekuensi makan (Abdussamad & Thampy 1994),
	sedangkan pada Litopenaeus vannamei, angka kematian yang lebih tinggi dikaitkan dengan
	kanibalisme saat udang berganti kulit (molting) (Romano & Zeng 2017).
	Udang cokelat, Crangon crangon, adalah spesies crustacean decapod yang umum ditemukan
	di estuaria Eropa dan memiliki nilai ekonomis yang penting di Laut Utara.
	• Spesies ini memiliki diet yang beragam dan terdiri dari tiga kategori utama: infauna, epifauna,
	dan demersal. Mereka menggunakan strategi ambang untuk menangkap mangsanya dan
	jarang aktif mencari atau mengejar mangsa.
	• Kannibalisme adalah perilaku alami pada beberapa jenis udang, termasuk Crangon crangon.
	Kannibalisme dapat terjadi karena beberapa faktor, seperti kekurangan pakan, ukuran mangsa
	yang tidak seimbang, dan kondisi lingkungan yang tidak stabil
	<u>I</u>

Tujuan	Untuk mengetahui bagaimana ukuran dan densitas stok mempengaruhi perilaku kannibalisme					
	pada udang cokelat, serta bagaimana kannibalisme dapat diatasi dengan mengoptimalkan pakan					
	dan kondisi lingkungan.					
Dataset	Crangon crangon yang diperoleh dari perairan Eropa.					
	• Ukuran udang yang digunakan dalam penelitian ini adalah 6-30 mm, dan densitas stok yang					
	digunakan adalah 10-50 ind/m²					
Metode	Penggunaan Prey					
	a. Prey yang digunakan dalam penelitian ini adalah udang cokelat yang berbeda dalam					
	ukuran dan densitas stok.					
	b. Prey yang digunakan untuk mengetahui perilaku kannibalisme adalah udang cokelat					
	yang sedang mengalami molting dan udang cokelat yang sehat					
	Penggunaan Stimulus Visual					
	Stimulus visual yang digunakan dalam penelitian ini adalah penggunaan protein tryptophan					
	dalam pakan untuk mengurangi agresivitas udang					
	Penggunaan Sampling					
	Sampling yang digunakan dalam penelitian ini adalah penggunaan Anco check untuk					
	mengetahui kebutuhan pakan udang dan penggunaan siphoning untuk mendeteksi adanya					
	udang yang sakit.					
	Penggunaan Kondisi Lingkungan					
	Kondisi lingkungan yang digunakan dalam penelitian ini adalah pH air yang berbeda, yaitu					
	pH 7.6, 7, dan 6.5, untuk mengetahui bagaimana perilaku udang berubah terhadap perubahan					
	pH					
	Penggunaan Analisis					
	Analisis yang digunakan dalam penelitian ini adalah analisis frekuensi perilaku kannibalisme					
	dan analisis ukuran udang yang berbeda dalam ukuran dan densitas stok					
Hasil	Perilaku Cannibalisme: Cannibalisme adalah perilaku alami pada Crangon crangon, di mana					
	udang yang lebih besar memangsa udang yang lebih kecil. Perilaku ini dapat terjadi karena					
	kekurangan makanan, kepadatan yang tinggi, dan keterbatasan tempat perlindungan.					
	• Faktor yang Mempengaruhi Cannibalisme: Faktor yang mempengaruhi cannibalisme antara					
	lain kepadatan, status molting, ukuran heterogenitas (Kannibalisme terjadi pada berbagai					
	ukuran udang, mulai dari 19 mm hingga 51 mm), fotoperiod, intensitas cahaya, dan					
	ketersediaan tempat perlindungan dan makanan. Faktor-faktor ini dapat berbeda-beda					
	tergantung pada spesies dan fase perkembangan.					
	Metode Pengurangan Cannibalisme: Metode pengurangan cannibalisme antara lain					
	menggunakan shelter, menambahkan makanan, mengurangi kepadatan, dan mengoptimalkan					

	kondisi lingkungan. Shelter dapat berupa material seperti seagrass, sand, atau brick, yang				
	dapat meningkatkan survival dan mengurangi cannibalisme.				
	• Frekuensi Kannibalisme: Kannibalisme terjadi pada hampir semua individu, yaitu 97.5%				
	perempuan dan 95.5% laki-laki.				
	Kondisi Lingkungan: Kannibalisme lebih tinggi pada udang yang sedang mengalami molting.				
Kesimpulan	Kannibalisme adalah perilaku alami pada udang cokelat: Kannibalisme adalah perilaku alami				
	yang terjadi pada udang cokelat, Crangon crangon, dan dapat terjadi pada berbagai ukuran				
	udang.				
	• Kannibalisme dapat diatasi dengan mengoptimalkan pakan dan kondisi lingkungan:				
	Kannibalisme dapat diatasi dengan mengoptimalkan pakan, seperti menggunakan protein				
	tryptophan, dan mengatur kondisi lingkungan yang tepat.				
	Kepadatan stok yang tidak tepat dapat meningkatkan perilaku kannibalisme: Kepadatan stok				
	yang tidak tepat dapat meningkatkan perilaku kannibalisme pada udang cokelat.				
	Kannibalisme dapat berpengaruh pada kualitas air: Kannibalisme dapat berpengaruh				
	kualitas air, seperti meningkatkan konsentrasi ammonia dan nitrit.				
	Pada krustasea, kanibalisme seringkali merupakan respons terhadap pemicu stresss.				
	Kanibalisme pada krustasea sering dianggap sebagai perilaku oportunistik yang terkait dengan				
	molting (pergantian kulit).				
	• pada Litopenaeus vannamei, angka kematian yang lebih tinggi dikaitkan dengan kanibalisme				
	saat udang berganti kulit (molting)				

4.43 Tinjauan 43

Korelasi Antara Kadar Glukosa Darah dan Tingkat Infestasi Ektoparasit Udang Vaname (Litopenaeus vannamei) yang Dipelihara pada Padat Tebar dan Waktu Pemeliharaan yang Berbeda
Siti Hamidah Skripsi - UNAIR 2022

Y . D 11	• Ektoparasit adalah parasit yang hidup di luar tubuh inangnya, tepatnya pada permukaan tubuh
Latar Belakang	inang atau bagian-bagian lain yang mudah dijangkau.
	Penelitian tentang korelasi antara kadar glukosa darah dan tingkat infestasi ektoparasit pada
	udang vaname masih terbatas.
	Ektoparasit dapat berdampak negatif pada pertumbuhan udang dan kualitas air, sehingga perlu
	dilakukan penelitian untuk mengetahui hubungan antara kadar glukosa darah dan tingkat
	infestasi ektoparasit pada udang vaname yang dipelihara dengan padat tebar dan waktu
	pemeliharaan yang berbeda.
Tujuan	• Untuk mengetahui kadar glukosa darah udang vaname yang dipelihara dengan dasar tambak
	beton dan plastik.

	• Untuk mengetahui jumlah ektoparasit yang menginfestasi udang vaname pada tiap ekor udang			
	yang dipelihara dengan dasar tambak beton dan plastik.			
	• Untuk mengetahui perbedaan antara kadar glukosa darah dan infestasi ektoparasit pada udang			
	vaname yang dipelihara dengan padat tebar dan waktu pemeliharaan yang berbeda.			
	• Untuk mengetahui korelasi antara kadar glukosa darah dengan infestasi ektoparasit pada			
	udang vaname yang dipelihara dengan padat tebar dan waktu pemeliharaan yang berbeda.			
Dataset	Kadar Glukosa Darah: Nilai kadar glukosa darah udang vaname yang dipelihara dengan dasar			
	tambak beton dan plastik.			
	Tingkat Infestasi Ektoparasit: Jumlah ektoparasit yang menginfestasi udang vaname pada tiap			
	ekor udang yang dipelihara dengan dasar tambak beton dan plastik.			
	Padat Tebar: Tingkat padat tebar udang vaname yang dipelihara.			
	Waktu Pemeliharaan: Lama waktu pemeliharaan udang vaname yang dipelihara.			
Metode	Data dianalisis menggunakan statistik deskriptif dan statistik inferensial untuk mengetahui			
	korelasi antara kadar glukosa darah dan tingkat infestasi ektoparasit pada udang vaname yang			
	dipelihara dengan padat tebar dan waktu pemeliharaan yang berbeda.			
Hasil	Kadar Glukosa Darah: Hasil penelitian menunjukkan bahwa kadar glukosa darah udang			
	vaname yang dipelihara dengan dasar tambak beton dan plastik berbeda-beda tergantung pada			
	padat tebar dan waktu pemeliharaan.			
	• Tingkat Infestasi Ektoparasit: Hasil penelitian menunjukkan bahwa jumlah ektoparasit yang			
	menginfestasi udang vaname pada tiap ekor udang yang dipelihara dengan dasar tambak beton			
	dan plastik berbeda-beda tergantung pada padat tebar dan waktu pemeliharaan.			
Kesimpulan	Salah satu indicator udang yang mengalami stress ditandai dengan adanya peningkatan kadar			
	glukosa darah atau hiperglikemia. Stress pada udang akan menyebabkan terjadinya penurunan			
	daya tahan tubuh, sehingga udang akan mudah terserang parasit			

4.44 Tinjauan 44

Single and combined effects of ammonia and nitrite on Litopenaeus vannamei: Histological, physiological and molecular responses

Lanting Lin et al Aquaculture Reports 2024

Latar Belakang	Penelitian ini bertujuan untuk mengetahui efek tunggal dan gabungan ammonia dan nitrite
	terhadap Litopenaeus vannamei, yaitu udang putih Pasifik.
	• Udang ini adalah salah satu spesies yang paling umum dikultur dan diproduksi secara
	komersial di seluruh dunia.
	• Namun, udang ini sangat rentan terhadap stress kimia, termasuk ammonia dan nitrite, yang
	dapat menyebabkan kerusakan histologis, fisilogis, dan molekuler pada organ-organ udang.

Tujuan	Mempelajari dan memahami bagaimana ammonia dan nitrite berpengaruh pada Litopenaeus			
	vannamei, yaitu udang putih Pasifik, secara histologis, fisilogis, dan molekuler			
Dataset	Postlarvae L. vannamei berusia 25-45 hari,			
	Bahan: ammonia, nitrite, dan air laut dengan konsentrasi 3 g/L.			
	Alat: akuarium, pipet, dan alat pengukur pH dan salinitas			
Metode	• Single Stresss:			
	- Ammonia: 29.0 mg/L (96 h-LC50).			
	- Nitrite: 10.6 mg/L (96 h-LC50).			
	- Nitrat: 900 mg/L (96 h-LC50).			
	• Combined Stresss:			
	- Mixture of ammonia, nitrite, and nitrate.			
	- Dosis yang digunakan adalah 0.48, 0.08, dan 14.6 mg/L untuk ammonia, nitrite, dan nitrat,			
	masing-masing.			
	• Eksposur:			
	- Subjek penelitian ditempatkan dalam akuarium yang berisi bahan yang diberikan.			
	- Eksposur dilakukan selama 96 jam.			
	Pengukuran:			
	- Pengukuran dilakukan terhadap histopatologi, respons fisiologis, dan respons molekuler.			
	- Histopatologi dilakukan dengan menggunakan mikroskop.			
	- Respons fisiologis dilakukan dengan mengukur parameter seperti pH, salinitas,			
	komposisi hemolimf.			
	- Respons molekuler dilakukan dengan menggunakan analisis transcriptome.			
Hasil	Histopatologi: Eksposur tunggal ammonia dan nitrite menyebabkan kerusakan histopatologi			
	pada organ-organ udang, seperti hepatopancreas dan gills. Eksposur gabungan ammonia dan			
	nitrite menyebabkan kerusakan histopatologi yang lebih ekstensif dan lebih serius.			
	• Respons Fisiologis: Eksposur tunggal ammonia dan nitrite menyebabkan penurunan aktivitas			
	enzim oksidatif dan peningkatan stress oksidatif. Eksposur gabungan ammonia dan nitrite			
	menyebabkan penurunan aktivitas enzim oksidatif yang lebih signifikan dan peningkatan			
	stress oksidatif yang lebih ekstensif.			
	Respons Molekuler: Eksposur tunggal ammonia dan nitrite menyebabkan perubahan ekspresi			
	gen yang terkait dengan stress oksidatif dan respons imun. Eksposur gabungan ammonia dan			
	nitrite menyebabkan perubahan ekspresi gen yang lebih signifikan dan lebih kompleks.			
Kesimpulan	Eksposur gabungan ammonia dan nitrite dapat menyebabkan efek yang lebih ekstensif dan lebih			
	serius daripada efek tunggal.			

4.45 Tinjauan 45

Management of the Interaction and Cannibalism of Postlarvae and Adults of the Freshwater Shrimp		
Reyes A et al	Crustacea. Intech Open	2020

Latar Belakang Cryphiops caementarius. Udang jantan _C. caementarius_ agresif seh				
Crypinops caementarius. Odang jantan _C. caementarius_ agresii sen	ingga meningkatkan			
interaksi dan kannibalisme dalam sistem budidaya				
Tujuan Mengurangi interaksi dan kannibalisme dengan menggunakan dua sis	stem budidaya yang			
berbeda	berbeda			
Dataset Udang air tawar Cryphiops caementarius	Udang air tawar Cryphiops caementarius			
Metode • Pengumpulan data: observasi langsung pada populasi udang air	tawar _Cryphiops			
caementarius				
Analisis data: mengetahui pola interaksi dan kannibalisme pada udang a	air tawar			
Desain sistem budidaya: Sistem pertama menggunakan air payau	& Sistem kedua			
menggunakan budidaya individu dalam wadah				
Pengujian sistem budidaya: mengetahui efektivitasnya dalam mengetahui efektivitasnya efektiv	urangi interaksi dan			
kannibalisme				
Penggunaan protein tryptophan: penambahan tryptophan pada pakan dapat menangkan dapat				
agresivitas udang dengan mengurangi keinginan mereka untuk memakan udang lain				
Pengawasan kualitas air: air yang jernih dan memiliki tingkat oksige	en yang cukup dapat			
mengurangi keinginan udang untuk memakan udang lain.				
Pengawasan ukuran udang: Bahwa udang yang memiliki ukuran yang le	Pengawasan ukuran udang: Bahwa udang yang memiliki ukuran yang lebih besar cenderung			
untuk memakan udang yang lebih kecil	untuk memakan udang yang lebih kecil			
Pengawasan molting: Kannibalisme lebih tinggi selama periode molting atau molting.				
yang sedang mengalami molting akan lebih lemah dan rentan terhadap udang lain ya				
besar.				
• Pengawasan sifat agresivitas: Udang jantan _C. caementarius_ agresif , me				
interaksi dan kannibalisme dalam sistem budidaya				
Pengawasan kondisi lingkungan untuk dengan memantau ketersediaan p	akan dan kualitas air			
yang baik.				
Hasil • Survival Rate: Menggunakan air payau (12‰) dapat mempertahankan t	tingkat survival yang			
tinggi (>85%) hanya dalam budidaya awal yang berlangsung selama 50 l	nari untuk postlarvae.			
Yield: Budidaya individu dalam wadah yang disiapkan pada ber	bagai tingkat dapat			
meningkatkan survival (87-100%) dan hasil (1.0 kg m-2) serta mem	ungkinkan budidaya			
bersama dengan tilapia.				

	Kannibalisme: Kannibalisme pada udang air tawar _Cryphiops caementarius_ dapat diurangi		
	dengan menggunakan protein tryptophan dalam pakan dan budidaya individu dalam wadah		
	yang disiapkan pada berbagai tingkat.		
	• Pengawasan Ukuran Udang, Pengawasan Molting, Pengawasan Kualitas Air		
Kesimpulan	Kannibalisme pada udang air tawar dapat diurangi dengan menggunakan beberapa strategi,		
	termasuk penggunaan protein tryptophan dalam pakan, budidaya individu dalam wadah yang		
	disiapkan pada berbagai tingkat, pengawasan ukuran udang, pengawasan molting, dan		
	pengawasan kualitas air.		

4.46 Tinjauan 46

Tissue accumulation of polystyrene microplastics causes oxidative stresss, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei

Ingxu Zeng et al Ecotoxicology and Environmental Safety 2023

	Akumulasi tissue polystyrene microplastics (MPs) yang menyebabkan stress oksidatif, lukaan
Latar Belakang	hepatopankreas, dan perubahan metaboloma pada Litopenaeus vannamei
Tujuan	• Akumulasi MPs: Mengetahui bagaimana MPs tersebar dan terkumpul dalam berbagai organ
	L. vannamei, serta konsentrasi MPs yang paling tinggi dalam hepatopancreas.
	• Efek pada perilaku: Mengetahui bagaimana MPs mempengaruhi perilaku L. vannamei,
	termasuk inhibisi pertumbuhan, perilaku berenang abnormal, dan penurunan kemampuan
	berenang.
	• Stress oksidatif dan lukaan hepatopankreas: Mengetahui bagaimana MPs menyebabkan stress
	oksidatif dan lukaan hepatopankreas pada L. vannamei, serta hubungan antara stress oksidatif
	dan aktivitas berenang.
	Perubahan metaboloma: Mengetahui bagaimana MPs mempengaruhi profil metabolik dan
	jalur metabolisme glycolysis, lipolysis, dan amino acid metabolism dalam hepatopancreas L.
	vannamei.
Dataset	Litopenaeus vannamei
Metode	• Eksposur: Sampel L. vannamei diperlakukan dengan berbagai konsentrasi PS MPs (0.02, 0.1,
	0.5, dan 1 mg L-1) untuk mengetahui efeknya pada organisme.
	Analisis Histopatologi: Sampel hepatopancreas dianalisis menggunakan metode histopatologi
	untuk mengetahui perubahan struktur dan fungsi organ yang terpengaruh oleh PS MPs.
	Analisis Biochemis:
	a. Oxidative Stresss:Sampel dianalisis untuk mengetahui stress oksidatif yang terjadi akibat
	PS MPs

	b.Lipid Peroxidation:Sampel dianalisis untuk mengetahui peroksidasi lipid yang terjadi			
	akibat PS MPs.			
	Metabolomics: Sampel dianalisis menggunakan teknologi metabolomics untuk mengetahui			
	perubahan profil metabolik dan jalur metabolisme glycolysis, lipolysis, dan amino acid			
	metabolism yang terpengaruh oleh PS MPs.			
Hasil	• Akumulasi PS MPs: Hasil penelitian menunjukkan bahwa PS MPs terkumpul dalam berbagai			
	organ L. vannamei, dengan konsentrasi terbesar dalam hepatopancreas.			
	Efek pada Organisme:			
	a. Growth Inhibition: PS MPs menyebabkan inhibisi pertumbuhan L. vannamei.			
	b. Abnormal Swimming Behavior: PS MPs menyebabkan perilaku berenang abnormal pada			
	L. vannamei.			
	c. Reduced Swimming Performance: PS MPs menyebabkan penurunan kemampuan			
	berenang pada L. vannamei.			
	• Stress Oksidatif:			
	a. Oxidative Stresss: PS MPs menyebabkan stress oksidatif pada L. vannamei, yang terkait			
	dengan aktivitas berenang yang berkurang.			
	b. Lipid Peroxidation: PS MPs menyebabkan peroksidasi lipid pada L. vannamei.			
	• Lukaan Hepatopankreas: PS MPs menyebabkan lukaan hepatopankreas pada L. vannamei,			
	yang diperburuk dengan peningkatan konsentrasi PS MPs.			
	Perubahan Metaboloma: PS MPs mempengaruhi profil metabolik dan jalur metabolisme			
	glycolysis, lipolysis, dan amino acid metabolism dalam hepatopancreas L. vannamei.			
Kesimpulan	Akumulasi polystyrene microplastics pada Litopenaeus vannamei menyebabkan stress			
	oksidatif, lukaan hepatopankreas, dan perubahan metaboloma. Hasil ini memberikan kontribusi			
	pada pengetahuan tentang dampak subletal dan mekanisme toksik PS MPs pada L. vannamei,			
	serta pentingnya memantau dan mengurangi polusi PS MPs untuk melindungi ekosistem laut.			

4.47 Tinjauan 47

Effects of bile acids supplemented into low fishmeal diet on growth, molting, and intestinal health of Pacific white shrimp, Litopenaeus vannamei

Xiaoyue Li et al	Aquaculture Reports	2023
------------------	---------------------	------

	Mengevaluasi penggunaan asam empedu sebagai pengganti protein ikan dalam pakan udang			
Latar Belakang	putih Pasifik, Litopenaeus vannamei terhadap pertumbuhan, molting, dan kesehatan usus			
	udang tersebut			
	Penggunaan protein ikan sebagai bahan baku pakan udang putih Pasifik memiliki beberapa			
	kelemahan, seperti ketergantungan pada sumber daya alam yang terbatas dan biaya yang			
	tinggi.			
Tujuan	Mengevaluasi penggunaan asam empedu sebagai pengganti protein ikan dalam pakan udang			
	putih Pasifik dan mengetahui efeknya terhadap pertumbuhan, molting, dan kesehatan us			
	udang tersebut.			
Dataset	Udang Litopenaeus Vannamei,			
	Pakan: Enam jenis pakan yang berbeda dibuat, yaitu pakan tinggi protein ikan (HFM, 25%)			
	protein ikan), pakan rendah protein ikan (LFM, 10% protein ikan), dan empat jenis pakan			
	yang mengandung asam empedu dalam konsentrasi yang berbeda-beda (LBA1, LBA2, LBA3,			
	dan LBA4).			
Metode	Pertumbuhan: Berat badan akhir shrimp diukur dan dibandingkan dengan berat badan awal.			
	Molting: Ekspresi gen molting, seperti e75 dan ecr, diukur menggunakan metode PCR.			
	• Kesehatan Usus: Tinggi, lebar, dan ketebalan lapisan otot usus diukur menggunakan			
	mikroskop.			
	• Diversity Intestinal Flora: Komposisi flora usus diukur menggunakan metode Illumina			
	amplicon sequencing.			
Hasil	Pertumbuhan: Udang yang diberi pakan yang mengandung asam empedu (LBA4) memiliki			
	berat badan akhir yang lebih tinggi dibandingkan dengan shrimp yang diberi pakan rendah			
	protein ikan (LFM)			
	Molting: Asam empedu dapat meningkatkan ekspresi gen molting, seperti e75 dan ecr, di usus			
	dan hepatopancreas udang.			
	Kesehatan Usus: Asam empedu dapat mengurangi kerusakan usus yang disebabkan oleh			
	pakan rendah protein ikan. Pakan yang mengandung asam empedu dapat meningkatkan			
	kesehatan usus udang.			
	• Diversity Intestinal Flora: Asam empedu dapat meningkatkan diversitas flora usus udang,			
	seperti Planctomycetes dan Verrucomicrobia, serta mengurangi relative abundance			
	Pseudoalteromonas dan Haloferula.			

Kesimpulan	Pakan yang mengandung asam empedu dapat meningkatkan pertumbuhan udang putih Pasif	
	serta meningkatkan ekspresi gen imun dan molting.	

4.48 Tinjauan 48

Immune response and oxidative stresss of shrimp Litopenaeus vannamei at different moon phases			
Juan Carlos Bautista-Covarrubias et al	Fish & Shellfish Immunology	2020	

Latar Belakang	Fase bulan dikenal mempengaruhi proses molting pada udang, yang mempengaruhi proses				
Latar Belakang	fisiologi lainnya, termasuk respon imun.				
Tujuan	Untuk menganalisis beberapa parameter respon imun dan stress oksidatif pada udang				
	Litopenaeus vannamei pada fase bulan yang berbeda.				
Dataset	Sampel udang Litopenaeus vannamei yang digunakan dalam penelitian ini diambil dari perairan				
	yang berbeda-beda tergantung pada fase bulan. Sampel diambil secara acak dan dijumlahkan				
	sebanyak 30 ekor per fase bulan.				
Metode	Total Hemocytes Counts (THC): THC dihitung dengan cara menghitung jumlah sel darah				
Wictode					
	pada hemolimfa.				
	Hemolymph Clotting Time: Waktu pembekuan hemolimfa diukur dengan cara mengukur				
	waktu yang dibutuhkan untuk pembekuan hemolimfa.				
	• Produksi Superoxide Anion (O2-): Produksi O2- diukur dengan cara mengukur jumlah O2-				
	yang dihasilkan oleh hepatopancreas.				
	• Kadar Protein Total: Kadar protein total diukur dengan cara mengukur jumlah protein pada				
	hemolimfa.				
	• Aktivitas Superoxide Dismutase (SOD): Aktivitas SOD diukur dengan cara mengukur				
	kemampuan SOD untuk menghambat reaksi oksidasi.				
	Kehadiran Vibrio spp.: Kehadiran Vibrio spp. diukur dengan cara menghitung jumlah bakteri				
	Vibrio spp. pada hemolimfa.				
Hasil	• Fase Bulan Baru: THC tertinggi dan produksi O2- tertinggi ditemukan pada fase bulan baru.				
	Fase Bulan Ketiga: THC terendah ditemukan pada fase bulan ketiga.				
	• Fase Intermolt: Kehadiran Vibrio spp. tidak menunjukkan perbedaan yang signifikan antara				
	fase bulan yang berbeda.				
Kesimpulan	Fase bulan mempengaruhi beberapa parameter respon imun dan stress oksidatif pada udang				
	Litopenaeus vannamei.				

4.49 Tinjauan 49

Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO)		
S. Armalivia et al	ieeexplore.ieee.org	2021

Latar Belakang	 Penelitian tentang penghitungan larva udang secara otomatis menggunakan metode YOLO (You Only Look Once) dilakukan untuk mengatasi beberapa masalah yang terkait dengan penghitungan larva udang secara manual. Penghitungan larva udang secara manual menggunakan metode sampling, yaitu mengambil satu cangkir penuh larva udang dan dihitung secara manual, memakan waktu dan sering kali menimbulkan kesalahan manusia. Oleh karena itu, diperlukan pengembangan teknologi yang lebih efektif dan efisien untuk
	menghitung larva udang secara otomatis.
Tujuan	Menghitung jumlah larva udang secara otomatis menggunakan metode You Only Look Once (YOLO) generasi ke-3.
Dataset	 Data Latih (Training Data): Sebanyak 325 gambar yang dikumpulkan di Pusat Budidaya Air Asin Takalar, Kabupaten Takalar. Data Uji (Test Data): Sebanyak 99 gambar yang dikumpulkan di Pusat Budidaya Air Asin Takalar, Kabupaten Takalar.
	Data dikumpulkan menggunakan kamera yang disimpan dalam wadah putih berisi 2 cm air dan larva udang dengan sistem backlight sehingga tidak ada cahaya yang dipantulkan dari air.
Metode	 Data Kumpulan: Data dikumpulkan di Pusat Budidaya Air Asin Takalar, Kabupaten Takalar. Sebanyak 325 gambar digunakan sebagai data latih dan 99 gambar sebagai data uji. Pengambilan Gambar: Gambar diambil menggunakan kamera yang disimpan dalam wadah putih berisi 2 cm air dan larva udang dengan sistem backlight sehingga tidak ada cahaya yang dipantulkan dari air. Metode YOLOv3: Metode YOLOv3 digunakan karena dapat memprediksi suatu objek dengan lebih cepat dan memiliki tingkat keakuratan yang tinggi.
Hasil	Sistem dapat mengidentifikasi jumlah larva udang dengan rata-rata akurasi penghitungan sebesar 96.10%.
Kesimpulan	Metode YOLOv3 digunakan karena dapat memprediksi suatu objek dengan lebih cepat dan memiliki tingkat keakuratan yang tinggi.

2.50 Tinjauan 50

Automatic shrimp counting method using local images and lightweight YOLOv4		
Lu Zhang et al	Science direct	2022

Latar Belakang	Penelitian ini dilakukan untuk mengembangkan metode penghitungan larva udang secara
Latar Belakalig	otomatis menggunakan gambar lokal dan YOLOv4 yang ringan.
	Penghitungan larva udang secara manual memakan waktu dan sering kali menimbulkan
	kesalahan manusia. Oleh karena itu, diperlukan pengembangan teknologi yang lebih efektif
	dan efisien untuk menghitung larva udang secara otomatis.
	Penghitungan larva udang secara manual menggunakan metode sampling, yaitu mengambil
	satu cangkir penuh larva udang dan dihitung secara manual. Namun, metode ini memakan
	waktu dan sering kali menimbulkan kesalahan manusia.
	Selain itu, penghitungan larva udang secara manual juga dapat menimbulkan biaya yang tinggi
	dan mempengaruhi kualitas produksi.
Tujuan	Mengembangkan metode penghitungan larva udang secara otomatis menggunakan gambar lokal
	dan YOLOv4 yang ringan.
Dataset	• Data Latih (Training Data): Sebanyak 325 gambar yang dikumpulkan di Pusat Budidaya Air
	Asin Takalar, Kabupaten Takalar.
	Data Uji (Test Data): Sebanyak 99 gambar yang dikumpulkan di Pusat Budidaya Air Asin
	Takalar, Kabupaten Takalar.
	• Data dikumpulkan menggunakan kamera yang disimpan dalam wadah putih berisi 2 cm air
	dan larva udang dengan sistem backlight sehingga tidak ada cahaya yang dipantulkan dari air.
Metode	Pengambilan Gambar: Gambar diambil menggunakan kamera yang disimpan dalam wadah
	putih berisi 2 cm air dan larva udang dengan sistem backlight sehingga tidak ada cahaya yang
	dipantulkan dari air.
	Pengolahan Data: Multiple local shrimp images diambil secara acak dari gambar asli
	menggunakan teknologi pengolahan gambar untuk membangun dataset penghitungan.
	Model Pembelajaran: Model penghitungan larva udang berbasis Light-YOLOv4 dibangun dan
	dilatih menggunakan transfer learning.
	Penghitungan: Bilangan larva udang dalam gambar lokal diprediksi menggunakan model yang
	telah dilatih. Bilangan larva udang dalam gambar asli diperoleh melalui proses penggabungan,
	dan bilangan larva udang dalam area budidaya ditentukan menggunakan metode rata-rata
	frame
Hasil	Metode diuji pada dataset larva udang yang nyata dan model Light-YOLOv4 larva udang
	mencapai akurasi penghitungan sebesar 92.12%, recall sebesar 94.21%, F1 value sebesar
	93.15%, dan mean average precision sebesar 93.16%.
	, , , , , , , , , , , , , , , , , , , ,

Kesimpulan	Metode YOLOv4 digunakan karena dapat memprediksi suatu objek dengan lebih cepat dan
	memiliki tingkat keakuratan yang tinggi.

2.51 Tinjauan 51

CAGNet: an improved anchor-free method for shrimp larvae detection in intensive aquaculture.				
Zhang G et al				

Latar Belakang	Latar belakang penelitian ini menyoroti pentingnya deteksi larva udang yang akurat dalam
Latar Berakang	budidaya perikanan.
	• Larva udang sensitif terhadap kondisi lingkungan dan memerlukan pemantauan yang tepat
	untuk memastikan pertumbuhan dan tingkat kelangsungan hidup yang optimal.
	Metode penghitungan manual tradisional memakan waktu, padat karya, dan rentan terhadap
	kesalahan.
	• Oleh karena itu, diperlukan metode yang otomatis dan akurat untuk mendeteksi larva udang,
	yang dapat meningkatkan efisiensi dan produktivitas operasi budidaya perikanan secara
	keseluruhan.
Tujuan	Untuk meningkatkan deteksi larva udang dengan menggunakan metode anchor-free yang lebih
	efektif dan efisien. Metode ini diharapkan dapat meningkatkan efisiensi dan produktivitas sistem
	aquakultur intensif.
Dataset	• Pengumpulan data gambar larva udang sebanyak 325 gambar untuk data pelatihan dan 99
	gambar untuk data uji.
	Penggunaan kamera digital untuk mengambil gambar larva udang di dalam wadah berisi air
	dan udang.
Metode	• Penggunaan metode anchor-free yang disebut CAGNet, yang terdiri dari tiga struktur utama:
	backbone, neck, dan head.
	Penggunaan modul attention koordinat untuk memperbaiki backbone dan memperoleh
	informasi lokasi dan semantik yang lebih baik.
	Penggunaan modul fusi fitur spasial adaptif untuk memperbaiki neck dan mengintegrasikan
	fitur larva udang yang efektif dari berbagai tingkat.
	Penggunaan modul GIoU untuk memperbaiki head dan menghasilkan bounding box yang
	lebih akurat.
Hasil	Hasil penelitian CAGNet menunjukkan bahwa metode anchor-free ini dapat meningkatkan
	akurasi deteksi larva udang hingga 95%.
Kesimpulan	• Penelitian CAGNet menunjukkan bahwa metode anchor-free dapat meningkatkan akurasi
	deteksi larva udang dalam sistem aquakultur intensif.
	I.

Hasil penelitian ini dapat membantu meningkatkan efisiensi dan produktivitas sistem aquakultur intensif

2.52 Tinjauan 52

A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection		
An Guo et al	Springer	2024

	Penelitian tentang deteksi objek di bawah air memiliki potensi besar dalam meningkatkan		
Latar Belakang	efisiensi dan akurasi dalam berbagai aplikasi laut, seperti eksplorasi laut, monitoring		
	lingkungan, dan pengawasan biologi.		
	Namun, deteksi objek di bawah air memiliki beberapa tantangan, seperti ekstraksi fitur yang		
	tidak akurat, kecepatan deteksi yang lambat, dan ketidakrobustannya dalam lingkungan laut		
	yang kompleks.		
Tujuan	Mengembangkan Model Deteksi Objek Bawah Air yang Ringkas,		
	Meningkatkan Akurasi Deteksi Objek Bawah Air,		
	Mengatasi Masalah Deteksi Objek Kecil,		
	Meningkatkan Kemampuan Deteksi dalam Lingkungan Bawah Air		
Dataset	1. UTDAC2020 Underwater Dataset: dataset gambar bawah air yang diambil dari Underwater		
	Target Detection Algorithm Competition 2020. Dataset ini berisi 5168 gambar pelatihan dan		
	digunakan untuk mendeteksi objek di bawah air.		
	2. Pascal VOC Dataset: Dataset ini terdiri dari dua versi, yaitu VOC2007 dan VOC2012, yang		
	masing-masing memiliki 20 kelas objek yang berbeda.		
	3. Brackish Dataset: Dataset ini berisi gambar-gambar yang diambil di Limfjorden, Denmark,		
	dan berisi objek seperti ikan, krustasea, dan organisme laut lainnya. Dataset ini digunakan		
	untuk menguji dan mengevaluasi model deteksi objek dan tracking multi-objek di lingkungan		
	bawah air yang kompleks dan berbeda visibilitas.		
	4. URPC Dataset: Dataset ini berisi 4707 gambar yang diambil di lingkungan bawah air dan		
	berisi objek seperti ikan, krustasea, dan organisme laut lainnya.		
	5. Aquarium Dataset: dataset gambar bawah air yang diannotasi dengan bounding box. Dataset		
	ini berisi 1054 gambar yang diambil dari dua aquarium di Amerika Serikat, yaitu Henry		
	Doorly Zoo di Omaha dan National Aquarium di Baltimore.		
Metode	• Model YOLOv8 asli digunakan sebagai jaringan backbone, yang dikenal karena akurasi dan		
	ketahanannya dalam tugas deteksi objek.		
	• FasterNet diintegrasikan ke dalam model untuk meningkatkan kinerja dan efisiensinya.		
	FasterNet adalah jaringan ringan yang menggunakan konvolusi yang dapat dipisahkan secara		
	mendalam untuk mengurangi jumlah parameter dan biaya komputasi.		

	Multi-Scale Attentional Feature Fusion : Modul ini dirancang untuk menggabungkan fitur dari			
	skala yang berbeda, memungkinkan model menangkap objek besar dan kecil secara efektif.			
	Ini menggunakan mekanisme perhatian saluran multi-skala untuk fokus selektif pada fitur-			
	fitur yang relevan.			
Hasil	Akurasi Tinggi: Model ini mencapai akurasi deteksi objek bawah air yang tinggi, dengan			
	mAP@0.5 sebesar 78.4% pada dataset URPC2019, 80.9% pada dataset URPC2020, dan			
	75.5% pada dataset Aquarium.			
	Kecepatan Real-Time: Model ini dapat beroperasi secara real-time, membuatnya cocok untul			
	aplikasi yang memerlukan deteksi objek bawah air secara cepat dan efektif.			
	• Ringkas dan Efisien: Model ini menggunakan teknik depth-wise separable convolution dan			
	multi-scale channel attention module untuk mengurangi jumlah parameter dan biaya			
	komputasi, membuatnya lebih ringkas dan efisien.			
Kesimpulan	Penelitian ini menunjukkan bahwa model deteksi objek bawah air yang ringkas dan efektif dapat			
	dibuat dengan menggunakan YOLOv8 dan FasterNet, dan hasilnya dapat diterapkan pada			
	berbagai aplikasi, termasuk surveilans laut dan pengawasan lingkungan.			

2.53 Tinjauan 53

A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform			
Yibing Fan et al	MDPI	2024	

Latar Belakang	Pengembangan teknologi deteksi objek bawah air yang efektif dan efisien untuk penggunaan
	di platform komputasi edge.
	Penelitian ini berfokus pada penggunaan model YOLOv8n sebagai basis, yang kemudian di-
	optimalkan melalui algoritma pencarian struktur jaringan saraf dan distilasi pengetahuan
	untuk mengurangi kompleksitas komputasi dan meningkatkan akurasi.
Tujuan	Untuk mengembangkan model yang ringan dan efektif untuk deteksi objek bawah air di platform
	komputasi edge, sehingga dapat digunakan dalam aplikasi yang memerlukan proses waktu nyata
	dan sumber daya komputasi terbatas
Dataset	Dataset RUIE dan Dataset URPC2019
Metode	Deteksi Objek Bawah Air:
	Model YOLOv8n: Merupakan versi ringan dari model YOLOv8 yang popular, dioptimalkan
	untuk platform komputasi edge dan menyediakan kemampuan deteksi objek secara real-time.
	Backbone FasterNet: Merupakan jaringan neural ringan yang dirancang untuk komputasi
	edge, terintegrasi dengan YOLOv8n untuk meningkatkan kinerja model.

	Ekstraksi Fitur: Mengoptimalkan model untuk platform komputasi edge. Hal ini melibatkan		
	pengurangan jumlah parameter dan kompleksitas komputasi dengan tetap menjaga akurasi		
	model.		
	OFA Large Model Training: Model dilatih menggunakan algoritme penelusuran arsitektur		
	saraf One-For-All (Satu-Untuk-Semua), yang melibatkan pencarian arsitektur saraf optimal		
	untuk tugas tertentu		
	Edge Computing: Model yang diusulkan dirancang untuk platform komputasi edge, yang		
	sangat penting untuk pemrosesan data video bawah air di kapal penangkap ikan secara real-		
	time.		
	Deteksi Objek Real-Time: Model ini menyediakan kemampuan deteksi objek real-time, yang		
	penting untuk aplikasi seperti penghitungan ikan dan identifikasi spesies.		
Hasil	• Kompleksitas Komputasi: Model yang dihasilkan mengurangi kompleksitas komputasi		
	sebanyak 1.3 Gflops dan MACs sebanyak 32% dibandingkan dengan model YOLOv8n asli.		
	Akurasi: Model yang dihasilkan meningkatkan akurasi deteksi objek bawah air sebanyak		
	2.0%, 3.0%, dan 1.9% untuk AP50, AP75, dan mAP masing-masing.		
	• Ukuran Model: Model yang dihasilkan memiliki ukuran yang lebih kecil, sehingga lebih		
	sesuai untuk penggunaan di platform edge dengan sumber daya komputasi terbatas.		
Kesimpulan	Model ringan deteksi objek bawah air yang diusulkan berdasarkan YOLOv8n untuk platform		
	komputasi tepi menawarkan peningkatan kinerja dan mengurangi kompleksitas komputasi,		
	sehingga cocok untuk aplikasi deteksi objek waktu nyata pada perangkat komputasi tepi.		

2.54 Tinjauan 54

YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition		
Tianyong Wu et al	MDPI	2023

Latar Belakang	• Citra penginderaan jauh menghadirkan tantangan tersendiri karena ketinggiannya, termasuk
	berbagai skala, area target terbatas, dan latar belakang yang rumit.
	• Tantangan-tantangan ini menyebabkan distribusi target yang padat, variasi skala target yang
	jelas, dan latar belakang yang rumit, sehingga menyulitkan jaringan konvensional untuk
	secara langsung menangani deteksi gambar penginderaan jauh.
	Kehadiran target yang sangat kecil pada gambar yang jauh menimbulkan kesulitan dalam
	pendeteksian, sehingga meningkatkan kemungkinan deteksi yang terlewat dan hasil positif
	palsu.
	• Model YOLOv8, meskipun efektif untuk mendeteksi objek, memiliki keterbatasan ketika
	diterapkan pada citra penginderaan jauh.Ia dapat kesulitan dengan akurasi deteksi rata-rata

	yang rendah, alarm palsu, dan deteksi yang terlewat karena keragaman skala, area target yang			
	kecil, dan latar belakang yang kompleks.			
Tujuan	Untuk meningkatkan akurasi deteksi dan pengenalan objek dalam citra remote sensing dengan			
	menggunakan model YOLOv8 yang ditingkatkan.			
Dataset	Basis dari penelitian ini adalah model YOLOv8 yang telah dikembangkan sebelumnya:			
	• SIMD dataset: car, truck, van, long vehicle, bus, airliner, propeller, trainer, chartered,			
	fighter, other stair truck, pushback truck, helicopter, boat			
	• NWPU VHR-10 dataset: airplane , ship , storage tank , baseball diamond , tennis court ,			
	basketball court, ground track field, harbor, bridge, vehicle			
Metode	• SEF (Spatial Embedding Fusion): menggabungkan informasi fitur dari skala yang berbeda			
	untuk meningkatkan kemampuan deteksi objek.			
	• SPPFE (Spatial Pyramid Pooling Fusion Embedding): menggabungkan informasi fitur dari			
	skala yang berbeda dan spatial pyramid pooling untuk meningkatkan kemampuan deteksi			
	objek.			
	• TPH (Transformer Prediction Head): menggunakan transformer untuk memprediksi loka			
	dan ukuran objek			
	• Wise-IoU Loss: menggunakan loss function yang lebih baik untuk mengoptimalkan			
	performansi deteksi objek.			
Hasil	YOLO-SE menunjukkan peningkatan signifikan dalam performansi deteksi objek, termasuk			
	peningkatan 2.3% dalam precision, 3.2% dalam recall, dan 2.5% dalam mAP@0.5 dibandingkan			
	dengan YOLOv8.			
Kesimpulan	YOLO-SE menunjukkan bahwa dengan menggunakan fitur tambahan dan loss function yang			
	lebih baik, performansi deteksi objek dalam citra remote sensing dapat ditingkatkan.			

2.55 Tinjauan 55

EF-UODA: Underwater Object Detection Based on Enhanced Feature		
Yunqin Zu et al	MDPI	2024

	Untuk mengatasi masalah deteksi objek bawah air di lingkungan bawah air yang kompleks.
Latar Belakang	Penelitian ini mengembangkan sebuah modul konvolusi yang disebut efficient multi-scale
	pointwise convolution (EMPC) yang lebih efektif dan efisien daripada modul konvolusi
	tradisional. EMPC digunakan untuk merancang modul C3-EMPC yang memiliki kemampuan
	ekstraksi fitur yang lebih baik daripada modul asli.
Tujuan	1. Mengembangkan sebuah algoritma deteksi objek bawah air yang lebih efektif dan efisien.
	2. Meningkatkan kemampuan ekstraksi fitur dan deteksi objek di lingkungan bawah air yang
	kompleks.

bjek rian,		
rian,		
ebut		
pada		
nida		
yang		
ntuk		
dan		
eksi		
nean		
average precision (mAP) sebesar 2.9% dan 2.1% secara bersamaan.		
pada		
S.		
time		
pada		
ktur		
ıggi,		
oada		
ill strain ill en ill e		

2.56 Tinjauan 56

Two-Phase Instance Segmentation for Whiteleg Shrimp Larvae Counting		
Khai-Thinh Nguyen et al	IEEE	2022

Latar Belakang	Mengembangkan sebuah sistem monitoring yang efektif dan efisien untuk menghitung jumlah
	larva udang putih. Sistem ini menggunakan teknologi deep learning berbasis Mask R-CNN dua
	fase untuk memisahkan dan menghitung larva udang putih dalam gambar.
Tujuan	Mengembangkan sistem monitoring yang efektif dan efisien untuk menghitung jumlah larva
	udang putih.

	Mengatasi masalah overlapping larva yang mengurangi akurasi penghitungan	
Dataset	Gambar larva udang putih yang diambil menggunakan kamera. Dataset ini digunakan untuk	
	melatih model deep learning berbasis Mask R-CNN dua fase untuk memisahkan dan	
	menghitung larva udang putih dalam gambar. Dataset ini juga digunakan untuk menguji akurasi	
	model dalam menghitung larva udang putih yang berhimpitan	
Metode	• Two-Phase Mask R-CNN: Algoritma ini digunakan untuk segmentasi instance larva udang	
	putih.	
	• Fase Pertama: Fase pertama menggunakan Mask R-CNN untuk mendeteksi bounding box	
	larva udang putih.	
	• Fase Kedua: Fase kedua menggunakan Mask R-CNN untuk segmentasi instance larva udang	
	putih yang telah dideteksi dalam fase pertama.	
Hasil	Sistem ini memiliki akurasi penghitungan larva udang putih yang tinggi, dengan rentang 92.2%	
	hingga 95.4% untuk gambar dengan overlapping moderat. Sistem ini dapat meningkatkan	
	akurasi penghitungan larva udang putih dibandingkan dengan sistem yang menggunakan Mask	
	R-CNN satu fase, dengan peningkatan akurasi maksimum 16.1%.	
Kesimpulan	Sistem ini dapat membantu meningkatkan efisiensi dan akurasi dalam proses penghitungan larva	
	udang putih, serta mengurangi kesalahan yang disebabkan oleh overlapping larva. Sistem ini	
	dapat digunakan dalam industri perikanan untuk meningkatkan kualitas dan efisiensi produksi	
	udang putih	

2.57 Tinjauan 57

Efficient Underwater Object Detection Using Deep Neural Networks		
S. A. Rasool et al	IEEE	2024

	Deteksi objek bawah air memiliki beberapa tantangan yang spesifik, seperti:
Latar Belakang	• Keterbatasan visibilitas: Air laut dapat menyebabkan keterbatasan visibilitas, membuat
	deteksi objek menjadi lebih sulit.
	• Keterbatasan kontras: Air laut dapat menyebabkan keterbatasan kontras, membuat objek
	menjadi sulit dikenali.
	• Keterbatasan cahaya: Air laut dapat menyebabkan keterbatasan cahaya, membuat objek
	menjadi sulit dikenali.
	• Keterbatasan tekstur: Air laut dapat menyebabkan keterbatasan tekstur, membuat objek
	menjadi sulit dikenali.
	Keterbatasan warna: Air laut dapat menyebabkan keterbatasan warna, membuat objek menjadi
	sulit dikenali.

Tujuan	untuk mengembangkan dan menguji sistem deteksi objek bawah air yang efektif menggu			
	jaringan saraf tiruan (deep neural networks).			
Dataset	Dataset gambar bawah air yang digunakan dalam penelitian ini diperoleh dari berbagai sumber,			
	termasuk gambar bawah air yang diambil menggunakan kamera bawah air dan video ba			
	yang diambil menggunakan drone bawah air, dataset underwater object detection yang terdiri			
	dari 1.000 gambar			
Metode	• Jaringan Backbone: FasterNet-T0 digunakan untuk menggantikan backbone YOLOv8,			
	mengurangi ukuran model dan kecepatan pelatihan sambil sedikit mengurangi akurasi.			
	• Head YOLOv8 untuk meningkatkan deteksi objek kecil. Head ini dihasilkan dari peta fitur			
	beresolusi tinggi, sehingga lebih sensitif terhadap objek kecil.			
	• Optimizations for Channel Numbers: Jumlah saluran dalam peta fitur resolusi berbeda			
	dioptimalkan untuk meningkatkan kinerja mendeteksi objek kecil dan menangani oklusi pada			
	gambar bawah air yang padat.			
	Deformable ConvNets v2 digunakan untuk meningkatkan kinerja mendeteksi objek kecil dan			
	menangani oklusi.			
	Coordinate Attention membantu jaringan menemukan wilayah yang diminati dalam gambar			
	tanpa menimbulkan overhead komputasi yang signifikan.			
Hasil	Hasil penelitian menunjukkan bahwa metode EfficientDet dapat mencapai akurasi deteksi			
	sebesar 95,1% dengan menggunakan dataset underwater object detection yang terdiri dari 1.000			
	gambar			
Kesimpulan	Metode EfficientDet memiliki beberapa kelebihan, seperti kemampuan mendeteksi objek			
	dengan akurasi yang tinggi, efisiensi operasional yang tinggi, dan kemampuan beroperasi dalam			
	kondisi underwater yang kompleks			

2.58 Tinjauan 58

Concatenate and Shuffle Network: A Real-Time Underwater Object Detector for Small and Dense Objects			
Jiang X et al	Springer	2022	

	Latar belakang penelitian Concatenate and Shuffle Network (CSNet) adalah untuk mengatasi
Latar Belakang	beberapa masalah yang terkait dengan deteksi objek bawah air, seperti:
	1.Kualitas Gambar: Gambar bawah air biasanya terdistorsi dan memiliki kualitas yang buruk
	karena adanya partikel suspended dan penyebaran cahaya oleh air. Hal ini membuat deteksi
	objek menjadi sulit.
	2.Objek Kecil dan Berjajar: Objek bawah air biasanya kecil dan berjajar, sehingga deteksi objek
	menjadi lebih sulit.

	3.Keterbatasan Sumber Daya: Deteksi objek bawah air harus dilakukan dalam waktu yang			
	singkat dan menggunakan sumber daya yang terbatas, seperti bandwidth komunikasi yang			
	rendah.			
	4. Keterbatasan Algoritma: Algoritma deteksi objek bawah air yang saat ini tersedia memiliki			
	beberapa kelemahan, seperti keterbatasan dalam mendeteksi objek kecil dan berjajar.			
Tujuan	Untuk mengembangkan sebuah detektor objek bawah air yang dapat mendeteksi objek kecil dan			
	berjajar secara real-time.			
Dataset	Dataset: RUOD (Real-time Underwater Object Detection) dan DUO (Dense Underwater Object)			
	datasets.			
Metode	• Concatenation: Jaringan menggabungkan fitur dari berbagai skala menggunakan modul			
	penggabungan, yang membantu menangkap informasi multiskala dari objek kecil dan padat.			
	• Shuffling: Modul pengacakan saluran digunakan untuk berinteraksi dan memadukan fitur-			
	fitur dari skala yang berbeda, sehingga memungkinkan jaringan menangkap hubungan spasial			
	antar-fitur secara efektif.			
	• Center Point : Deteksi didasarkan pada titik pusat, yang lebih tahan terhadap noise dan distorsi			
	yang ada pada gambar bawah air.			
	• Real-Time Detection: CSNet dirancang untuk menjadi pendeteksi waktu nyata, sehingga			
	cocok untuk aplikasi yang mengutamakan kecepatan dan efisiensi.			
Hasil	Akurasi Tinggi: CSNet telah menunjukkan akurasi tinggi dalam deteksi objek bawah air yang			
	kecil dan padat, dengan hasil yang lebih baik daripada metode deteksi objek lainnya.			
	Kecepatan Real-Time: CSNet dirancang untuk menjadi detektor real-time, sehingga dapat			
	digunakan dalam aplikasi yang memerlukan kecepatan dan efisiensi.			
	Robust terhadap Noise: CSNet telah ditunjukkan sebagai robust terhadap noise dan distorsi			
	yang umum ditemui dalam gambar bawah air, dengan menggunakan center points sebagai			
	dasar deteksi.			
	• Interaksi Fitur: Modul concatenation dan channel shuffle membantu CSNet dalam			
	menginteraksi dan menggabungkan fitur dari skala yang berbeda, sehingga meningkatkan			
	akurasi deteksi objek.			
Kesimpulan	CSNet menawarkan solusi yang efektif untuk deteksi objek bawah air yang kecil dan padat,			
	dengan akurasi yang tinggi dan kecepatan real-time.			
	l			

Efficient Small-Object Detection in Underwater Images Using the Enhanced YOLOv8 Network			
Minghua Zhang et al	MDPI	2024	

Latar Belakang	Keterbatasan teknologi deteksi objek bawah air: Teknologi deteksi objek bawah air masih			
Latar Belakang	memiliki beberapa keterbatasan. Salah satu keterbatasan utama adalah deteksi objek kecil			
	yang sulit dilakukan karena objek kecil memiliki fitur yang terbatas dan fitur yang tersedia			
	dapat hilang ketika jaringan menjadi lebih dalam. Selain itu, deteksi objek kecil juga dapat			
	terganggu oleh pengaruh noise dan overlapping pada gambar bawah air.			
	• Keterbatasan dataset bawah air: Dataset gambar bawah air yang tersedia masih terbatas,			
	sehingga membatasi kemampuan model untuk belajar dan meningkatkan akurasi deteksi			
	objek.			
	Keterbatasan model yang efektif: Model yang efektif untuk deteksi objek kecil di atas air tidak			
	selalu efektif di bawah air karena perbedaan lingkungan dan keterbatasan teknologi deteksi			
	objek bawah air.			
Tujuan	• Mengembangkan model yang lebih ringkas dan cepat: Menggunakan FasterNet-T0 sebagai			
	backbone untuk mengurangi kompleksitas model dan meningkatkan kecepatan pelatihan.			
	Meningkatkan akurasi deteksi objek kecil: Menambahkan head prediksi untuk objek kecil dan			
	melakukan optimasi pada jumlah kanal fitur pada berbagai resolusi untuk meningkatkan			
	sensitivitas terhadap objek kecil.			
	Meningkatkan kemampuan deteksi objek kecil dan pengelolaan overlapping: Menggunakan			
	Deformable ConvNets v2 dan Coordinate Attention untuk mengintegrasikan informasi posisi			
	ke dalam perhatian kanal, sehingga model dapat menemukan wilayah minat pada gambar			
	bawah air.			
Dataset	UTDAC2020 underwater dataset dan Pascal VOC dataset			
Metode	• FasterNet-T0: Digunakan sebagai backbone untuk mengurangi kompleksitas model dan			
	meningkatkan kecepatan pelatihan.			
	• Prediction Head for Small Objects: Ditambahkan untuk meningkatkan sensitivitas terhadap			
	objek kecil.			
	• Coordinate Attention: Digunakan untuk mengintegrasikan informasi posisi ke dalam perhatian			
	kanal, sehingga model dapat menemukan wilayah minat pada gambar bawah air.			
	• Deformable ConvNets v2: Digunakan untuk meningkatkan kemampuan deteksi objek kecil			
	dan pengelolaan overlapping pada gambar bawah air.			
Hasil	Model ini mencapai akurasi deteksi objek kecil yang lebih tinggi dibandingkan dengan model			
	sebelumnya, dengan mAP 52.12% pada dataset UTDAC2020 dan 53.18% pada dataset Pascal			
	VOC dengan resolusi tinggi.			
L	1			

2.60 Tinjauan 60

Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simplified Model Complexity			
Ruihan Bai et al	Researchgate	2023	

Latar Belakang	Peningkatan kemampuan deteksi objek kecil dalam citra remote sensing menggunakan			
	algoritma YOLOv8-n.			
Tujuan	Meningkatkan kinerja deteksi objek kecil dalam citra remote sensing, yang memiliki aplikasi			
	yang luas dalam berbagai bidang seperti keamanan nasional, transportasi cerdas, dan otomatisasi			
	industri			
Dataset	Penelitian ini tidak menggunakan dataset yang spesifik, namun menggunakan citra remote			
	sensing yang berisi objek kecil.			
Metode	Wasserstein Distance Loss: Strategi ini digunakan untuk meningkatkan akurasi deteksi objek			
	kecil dengan mengurangi perbedaan antara fitur-fitur yang diekstrak dari backbone dengan			
	fitur-fitur yang diperoleh dari layer lain.			
	• FasterNext: Strategi ini digunakan untuk meningkatkan kemampuan deteksi objek kecil			
	dengan mengintegrasikan fitur-fitur yang diekstrak dari backbone dengan fitur-fitur lain yang			
	diperoleh dari layer lain.			
	Context Aggravation: Strategi ini digunakan untuk meningkatkan kemampuan deteksi objek			
	kecil dengan mengintegrasikan fitur-fitur yang diekstrak dari backbone dengan fitur-fitur lain			
	yang diperoleh dari layer lain, serta menggunakan informasi konteks untuk meningkatkan			
	akurasi deteksi objek kecil.			
	• Grad-CAM : Alat visualisasi yang digunakan untuk memahami proses pengambilan			
	keputusan model.			
Hasil	• Strategi Wasserstein Distance Loss, FasterNext, dan Context Aggravation dapat			
	meningkatkan akurasi deteksi objek kecil dengan menggunakan Grad-CAM untuk memahami			
	proses keputusan model.			
	Model yang diperbaiki memiliki keseimbangan yang lebih baik antara akurasi deteksi dan			
	kompleksitas model, mengungguli model lain dalam hal akurasi model, kompleksitas model,			
	dan kecepatan inferensi model.			
	Model yang diperbaiki memiliki kecepatan inferensi yang lebih cepat, dengan rata-rata waktu			
	komputasi sebesar 17ms.			
Kesimpulan	• Integrasi strategi Wasserstein Distance Loss, FasterNext, dan Context Aggravation dapat			
1xesimpaidii	meningkatkan kemampuan deteksi objek kecil dalam citra remote sensing			
	meningkaakan kemampaan acteksi oojek keen aalam etta temote sensing			

2.61 Tinjauan 61

UWV-Yolox: A Deep Learning Model for Underwater Video Object Detection		
Pan Haixia et al	Sensors	2023

Latar Dalalaana	Keterbatasan dalam deteksi objek bawah air: Penelitian ini berfokus pada deteksi objek bawah		
Latar Belakang	air yang sangat sulit karena kualitas video bawah air yang buruk, termasuk keburaman dan		
	kontras rendah. Kondisi ini membuat model deteksi objek tradisional tidak efektif dalam		
	aplikasi bawah air.		
	Keterbatasan model deteksi objek Yolo: Model Yolo series yang umum digunakan dalam		
	deteksi objek bawah air memiliki performa yang buruk dalam menghadapi video bawah air		
	yang blur dan memiliki kontras rendah. Selain itu, model Yolo tidak dapat mengintegrasikan		
	informasi kontekstual antara hasil frame-level.		
Tujuan	Untuk mengembangkan sebuah model deteksi objek bawah air yang lebih efektif dan stabil		
Dataset	Penelitian ini menggunakan dataset UVODD dan mAP@0.5 sebagai metrik evaluasi		
Metode	• Contrast Limited Adaptive Histogram Equalization (CLAHE): Metode ini digunakan un		
	meningkatkan kontras video bawah air yang buruk.		
CSP_CA Module: Modul ini menambahkan koordinat attention untuk mer			
	representasi objek yang dipertanyakan.		
	• Loss Function: Loss function yang digunakan terdiri dari loss klasifikasi, loss regresi, loss		
	kepercayaan, dan loss jitter untuk meningkatkan performa model dalam deteksi objek video.		
	• Frame-Level Optimization Module: Modul ini menggunakan linking tubelet, re-scoring, dan		
	re-coordinating untuk meningkatkan hasil deteksi objek video dengan mempertimbangkan		
	relasi antar frame.		
Hasil	Model ini mencapai rata-rata Presisi Rata-rata (mAP) yang tinggi sebesar 89,0%, 3,2% lebih		
	baik dibandingkan model Yolox asli.		
Kesimpulan	Model UWV-Yolox memiliki prediksi yang lebih stabil terhadap objek dan peningkatan tersebut		
	dapat diterapkan secara fleksibel pada model lainnya.		

2.62 Tinjauan 62

Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal			
pooling			
Yan Jinghui et al	Frontiers in Marine Science	2022	

	Deteksi objek bawah air memiliki beberapa tantangan, seperti distorsi warna dan kualitas
Latar Belakang	gambar yang tidak rata, yang dapat menyebabkan kesalahan deteksi dan pengabaian. Oleh
	karena itu, penelitian ini berfokus pada pengembangan algoritma deteksi objek bawah air yang
	menggunakan mekanisme perhatian dan pooling spatial yang cepat dan parsial.
Tujuan	Meningkatkan akurasi deteksi objek, Meningkatkan kemampuan deteksi objek dalam
	lingkungan bawah air yang kompleks, Mengurangi kesalahan deteksi dan pengabaian.
Dataset	Kumpulan data yang tersedia untuk umum dianalisis dalam penelitian ini, disediakan oleh
	profesional robot bawah air China 2022 kontes. Data ini dapat ditemukan di sini:
	http://www.urpc.org.cn/ indeks.html. Beberapa percobaan menggunakan sampah bawah air
	kumpulan data, yang dapat ditemukan di sini: https://www.godac.jamstec.
	go.jp/dsdebris/e/index.html
Metode	Convolutional Block Attention Module (CBAM) digunakan untuk memperbaiki kemampuan
	algoritma dalam mengekstrak fitur yang valid.
	Pooling spatial yang cepat dan parsial digunakan untuk memperluas lapangan pandang dan
	meningkatkan kemampuan deteksi objek.
	Algoritma YOLOv7 diperbaiki dengan mengintegrasikan CBAM untuk meningkatkan
	kemampuan deteksi objek.
	Algoritma Faster R-CNN diperbaiki dengan mengintegrasikan CBAM untuk meningkatkan
	kemampuan deteksi objek.
	• Algoritma Single Shot Detector diperbaiki dengan mengintegrasikan CBAM untuk
	meningkatkan kemampuan deteksi objek.
Hasil	Algoritma yang diusulkan mengungguli metode yang ada dalam hal akurasi dan kecepatan.
	Algoritma ini mencapai akurasi 95,6% dan kecepatan 30 FPS.
Kesimpulan	Algoritma yang diusulkan merupakan peningkatan yang signifikan dibandingkan metode yang
	ada dalam hal akurasi dan kecepatan.
	Kemampuan algoritme untuk fokus pada fitur paling relevan dalam gambar dan mengurangi
	dimensi spasial membuatnya cocok untuk tugas pendeteksian objek bawah air.

2.63 Tinjauan 63

An Improved YOLO Algorithm for Fast and Accurate Underwater Object Detection		
Zhao et al	Symmetry	2020

	Keterbatasan Deteksi Benda di Bawah Air, Keterbatasan Deteksi Benda dengan Ukuran Kecil,
Latar Belakang	Keterbatasan Efisiensi Komputasi, Keterbatasan Performa Deteksi.
Tujuan	Mengembangkan algoritma YOLO yang ditingkatkan untuk mendeteksi benda di bawah air
	dengan cepat dan akurat.
Dataset	Brackish underwater dataset berisi 10.995 gambar asli objek bawah air beserta file anotasi yang
	menyertainya, dengan total enam jenis objek seperti terlihat pada Gambar 7 yaitu ikan besar,
	ikan kecil, bintang laut, udang, kepiting, dan ubur-ubur.
Metode	• Algoritma YOLO-UOD dikembangkan dengan mengintegrasikan struktur bottleneck simetri,
	modul FPN-Attention simetri, dan strategi label smoothing.
	• Struktur bottleneck simetri digunakan untuk meningkatkan kemampuan deteksi benda di
	bawah air dengan menggunakan dilated convolution dan 1×1 convolution.
	Modul FPN-Attention simetri digunakan untuk menggabungkan fitur-fitur yang diekstrak
	oleh jaringan dasar, sehingga meningkatkan performa deteksi.
	• Strategi label smoothing digunakan untuk meningkatkan akurasi deteksi dengan
	menggunakan label yang lebih akurat dalam proses pelatihan.
Hasil	Hasil pengujian menunjukkan bahwa algoritma YOLO-UOD dapat mendeteksi benda di
	bawah air dengan akurasi yang lebih tinggi dan efisiensi komputasi yang lebih baik
	dibandingkan dengan algoritma YOLOv4-tiny.
	Algoritma YOLO-UOD dapat diimplementasikan pada sistem embedded Jetson Nano 2 GB
	dengan kecepatan deteksi 9.24 FPS.
Kesimpulan	Modul ini membantu meningkatkan akurasi deteksi dan efisiensi komputasi algoritma YOLO-
	UOD.

2.64 Tinjauan 64

Deep learning detection of shrimp freshness via smartphone pictures		
Yuehan Zhang et al	Researchgate	2022

Latar Belakang	 Udang merupakan salah satu jenis produk perairan yang mudah rusak dan kesegarannya mempunyai pengaruh penting terhadap rasa dan nilai gizinya. Para ilmuwan telah mengembangkan berbagai pendekatan untuk mengukur kesegaran udang; namun, metode yang ada biasanya bersifat destruktif, rumit dan mahal. Untuk mengembangkan alternatif yang cepat, tidak merusak, dan berbiaya rendah, kami menggunakan model pembelajaran mendalam untuk mengidentifikasi kesegaran udang berdasarkan foto yang diambil melalui ponsel pintar.
Tujuan	Untuk mengembangkan metode deteksi keawetan udang menggunakan deep learning dan
	gambar yang diambil melalui <i>smartphone</i> .
Dataset	Gambar udang sekitar 400 ekor yang diambil menggunakan smartphone. Keawetan udang
	diukur menggunakan nilai TVB-N (Total Volatile Base Nitrogen), suatu metode yang mengukur
	keberadaan amonia dan senyawa nitrogen seperti dimetil dan trimetil amina pada ikan yang
	berasal dari laut atau sungai dan mengungkapkan tingkat kesegarannya.
Metode	Convolutional Neural Network (CNN) yang dikombinasikan dengan Support Vector
	Machine (SVM).
	Grad-CAM (Gradient-weighted Class Activation Mapping) adalah algoritma yang digunakan
	untuk mengidentifikasi region penting dalam sebuah gambar.
Hasil	Model CNN-SVM dapat mendeteksi keawetan udang dengan akurasi tinggi, yaitu sekitar 96.2%.
Kesimpulan	Deep learning dapat digunakan untuk mendeteksi keawetan udang menggunakan gambar yang
	diambil melalui smartphone dengan akurasi tinggi, sehingga memiliki potensi besar dalam
	meningkatkan keamanan pangan dan efisiensi dalam proses pengawetan udang.

2.65 Tinjauan 65

Soft-shell Shrimp Recognition Based on an Improved AlexNet for Quality Evaluations		
Zihao Liu	Elsevier	2020

Latar Belakang	• Evaluasi kualitas udang memainkan peran penting dalam menghasilkan produk udang yang bernilai tinggi.
	Kehadiran udang cangkang lunak menurunkan kualitas produk udang.
	• Tantangan terbesar dalam mencegah hal ini adalah kesamaan dalam penampilan soft-shell (s-
	shrimp) dan sound (o-shrimp) shrimp dari sudut pandang pencitraan.
Tujuan	Untuk meningkatkan akurasi pengenalan udang dengan kulit lunak yang dapat menurunkan
	kualitas produk udang, sehingga dapat memastikan kualitas produk udang yang dihasilkan.
Dataset	Sampel udang dibeli dari Supermarket Wumart di Distrik Xiasha dan pabrik pengolahan produk
	udang (Ekonomi Zona Pengembangan Hangzhou, Cina). Sebanyak 6104 o-shrimp dan 3896
	s-shrimp.
Metode	Deep-ShrimpNet adalah AlexNet yang diperbaiki.
	• AlexNet adalah struktur CNN yang telah dikembangkan sebelumnya dan telah menunjukkan
	hasil yang baik dalam berbagai aplikasi pengenalan gambar.
Hasil	Model Deep-ShrimpNet mencapai akurasi pengenalan udang dengan kulit lunak sebesar
	96.84% dalam waktu rata-rata 0.47 jam.
	Waktu pengenalan udang dengan kulit lunak dapat dipercepat hingga 0.54 jam.
	Model ini dapat mengurangi kesalahan pengenalan udang dengan kulit lunak hingga 0.972
	dalam data uji.
Kesimpulan	• Metode pengenalan udang dengan kulit lunak berbasis AlexNet yang diperbaiki dapat
	meningkatkan akurasi pengenalan udang dengan kulit lunak dan mengurangi waktu
	pengenalan, serta dapat digunakan dalam industri perikanan untuk meningkatkan kualitas
	produk udang.

2.66 Tinjauan 66

Training Custom Model Deteksi Udang Menggunakan YOLOv8		
Muhamad Irfan Maulana, Rina Noviana	Jikstik	2024

Latar Belakang	Deteksi udang secara akurat dan cepat sangat diperlukan dalam berbagai aplikasi, seperti
	pengawasan kualitas udara, pengawasan populasi udang, dan pengawasan perikanan.
	Saat ini, model deteksi udang yang tersedia masih memiliki beberapa kelemahan, seperti
	tingkat akurasi yang rendah dan kecepatan yang lambat.
Tujuan	Meningkatkan akurasi dan kecepatan deteksi udang dalam gambar dan video,
	Membantu para petambak udang dalam mendeteksi jumlah udang yang terdeteksi dengan
	lebih efektif.
Dataset	Jumlah data citra sebanyak 6630 data.
Metode	YOLOv8
Hasil	• Nilai rata-rata presisi sebesar 92,57%.
	• Nilai recall sebesar 88,2%.
	Akurasi model diperoleh nilai 93.2%.
Kesimpulan	Model relatif stabil dalam mengklasifikasikan objek dengan tepat,
	Membantu para petambak udang dalam mendeteksi udang dan menentukan jumlah udang
	yang terdeteksi dengan lebih efektif.

2.67 Tinjauan 67

Segment Anything Meets Point Tracking		
Frano Rajic et al	arXiv	2023

Latar Belakang	Menyajikan sebuah metode baru untuk segmentasi video interaktif yang berpusat pada titik, diberdayakan oleh SAM (The Segment Anything Model) dan pelacakan titik jangka panjang.	
Tujuan	Untuk mengembangkan metode pengenalan objek video yang lebih efisien dan akurat dengan	
	menggunakan titik-titik sebagai referensi.	
Dataset	DAVIS (Dataset for Video Object Segmentation) terdiri dari 30 video yang berbeda dan	
	memiliki 3,000 frame.	
	• YouTube-VOS (YouTube Video Object Segmentation) terdiri dari 6.000 frame dan memiliki	
	2.000 objek yang berbeda.	
	BDD100K (Berkeley Deep Drive 100K) terdiri dari 100,000 frame dan memiliki 10,000	
	objek yang berbeda.	
	• Unidentified Video Objects (UVO) terdiri dari 1.000 frame dan memiliki 100 objek yang	
	berbeda. Dalam sintesis, dataset penelitian SAM-PT meliputi DAVIS, YouTube-VOS,	
	BDD100K, dan UVO.	

Metode	Point Selection: Annotator memberikan beberapa titik untuk menandai objek target pada
	frame pertama video.
	• Point Tracking: Titik tersebut diikuti menggunakan algoritma pelacakan titik yang canggih,
	seperti CoTracker, untuk menentukan lokasi titik pada frame berikutnya.
	Mask Generation: Titik yang diikuti digunakan untuk menghasilkan mask objek
	menggunakan SAM.
	Mask Refining: Mask yang dihasilkan diperbaiki menggunakan decoding mask yang
	berulang dan strategi reinisialisasi titik untuk meningkatkan akurasi tracking.
Hasil	Akurasi dan efisiensi tinggi serta menawarkan perspektif baru dalam menyelesaikan masalah
	pengenalan objek video dengan menggunakan titik-titik sebagai referensi.
Kesimpulan	SAM-PT menggunakan model Segment Anything Model (SAM) yang telah terbukti efektif
	dalam pengenalan gambar dan mengintegrasikan teknologi tracking titik untuk mengenali objek
	dalam video.

2.68 Tinjauan 68

Mask-Free Video Instance Segmentation			
Lei Ke et al	arXiv	2023	

Latar Belakang	Mask annotation adalah proses yang melelahkan dan mahal, sehingga membatasi skala dan keragaman kumpulan data Video Instance Segmentation (VIS) yang ada. Oleh karena itu, penelitian ini berupaya menghilangkan kebutuhan akan mask annotation dengan mengembangkan metode yang dapat menggunakan batasan kotak anotasi untuk objek status saja.			
Tujuan	Menghilangkan kebutuhan annotation mask dalam proses pelatihan model Video Instance			
	Segmentation (VIS).			
Dataset	• YouTube-VIS 2019/2021: Kumpulan data yang digunakan untuk pelatihan dan pengujian			
	model MaskFreeVIS. Ini mencakup berbagai video dengan anotasi segmentasi contoh.			
	OVIS: Kumpulan data lain yang digunakan untuk menguji model MaskFreeVIS, yang			
	menyediakan anotasi segmentasi instance objek.			
	BDD100K MOTS: Kumpulan data yang digunakan untuk menguji model MaskFreeVIS, yang			
	mencakup anotasi segmentasi instance objek dan sangat berguna untuk mengevaluasi			
	performa model pada skenario yang lebih beragam.			
Metode	MaskFreeVIS : metode VIS yang tidak memerlukan mask anotasi.			
	• Temporal KNN Patch -Loss adalah loss yang digunakan untuk menemukan match one-to-			
	many antara frame dengan menggunakan langkah patch-matching yang efisien dan seleksi			
	K-nearest neighbour. Langkah ini memungkinkan penggunaan batasan konsistensi mask			
	temporal dalam video tanpa memerlukan label mask.			

Hasil	Penelitian ini menunjukkan bahwa MaskFreeVIS dapat mencapai performa VIS yang tinggi			
	tanpa menggunakan annotation mask.			
Kesimpulan	MaskFreeVIS dapat menjadi metode VIS yang efektif dan efisien tanpa menggunakan			
	annotation mask.			

2.69 Tinjauan 69

Tracking Every Tl	hing in the Wild	
Siyuan Li et al	arXiv	2023

Lotor Dolokono	Metrik MOT biasanya menggunakan label kelas untuk mengelompokkan hasil tracking per
Latar Belakang	kelas dan hanya mengaitkan objek dengan prediksi kelas yang sama
	Adanya masalah penandaan yang tidak lengkap dalam dataset tracking skala besar
	• Klasifikasi yang tidak akurat menyebabkan tracking yang tidak optimal dan penilaian tracker
	yang tidak adekuat
Tujuan	Memisahkan klasifikasi dari tracking dan memperkenalkan metrik baru, Track Every Thing
	Accuracy (TETA), yang membagi ukuran tracking menjadi tiga faktor: lokalisasi, asosiasi, dan
	klasifikasi
Dataset	• BDD100K dataset : video pengemudi yang terdiri dari 100,000 video dengan durasi rata-rata
	40 detik dan resolusi 720p. Dataset ini dikumpulkan dari lebih dari 50,000 perjalanan dan
	memiliki berbagai kondisi cuaca, waktu, dan lokasi yang berbeda.
	• TAO (Tracking Any Object) dataset : yang digunakan untuk menguji performansi algoritma
	tracking objek. Dataset ini terdiri dari 2,907 video dengan resolusi tinggi, yang diambil dalam
	berbagai lingkungan dan memiliki durasi rata-rata sekitar 30 detik. TAO juga memiliki 833
	kategori objek, yang lebih banyak daripada dataset tracking lainnya.
Metode	• Track Every Thing Accuracy (TETA): membagi ukuran tracking menjadi tiga faktor:
	lokalisasi, asosiasi, dan klasifikasi. TETA dapat mengatasi masalah penandaan yang tidak
	lengkap dalam dataset tracking skala besar dan menilai tracker lebih komprehensif.
	Menggunakan Class Exemplar Matching (CEM) untuk asosiasi objek.
Hasil	Eksperimen menunjukkan bahwa TETA mengevaluasi pelacak secara lebih komprehensif dan
	TETer mencapai peningkatan yang signifikan pada kumpulan data skala besar BDD100K dan
	TAO.
Kesimpulan	Metode yang diusulkan memberikan evaluasi kinerja pelacakan yang lebih komprehensif dan
	dapat diterapkan pada berbagai tugas pelacakan.
	1

2.70 Tinjauan 70

Video Mask Transfiner for High-Quality Video Instance Segmentation			
Lei Ke et al		arXiv	2022

Latar Belakang	Untuk mengatasi beberapa masalah dalam pengsegmentasi video instan yang masih memerlukan perbaikan: Prediksi masker yang kurang akurat, Fluktuasi prediksi di waktu, Keterbatasan dataset.
Tujuan	Untuk mengembangkan metode pengsegmentasi instan video yang dapat memprediksi mask dengan detail batas objek yang akurat dan konsisten di waktu.
Dataset	 YouTubeVideoInstanceSegmentation (YTVIS) berisi 2.883 video dengan 131 ribu contoh objek beranotasi yang termasuk dalam 40 kategori. Untuk HighQuality-YTVIS, peneliti membagi set pelatihan YTVIS asli (2238 video) menjadi set new training (1678 video, 75%), val (280 video 12,5%) dan testing (280 video 12,5%) mengikuti rasio di YTVIS.
Metode	 Video Mask Transfiner (VMT), sebuah metode pengsegmentasi instan video yang efektif dan efisien. VMT menggunakan struktur transformer video yang sangat efisien untuk memprediksi mask dengan detail batas objek yang akurat dan konsisten di waktu. VMT juga dilengkapi dengan paradigma pelatihan iteratif yang dapat memperbaiki annotasi yang kurang akurat secara otomatis. VMT dapat menghasilkan prediksi mask yang lebih akurat dan stabil di waktu, serta dapat digunakan untuk pengembangan metode pengsegmentasi instan video yang lebih baik di masa depan.
Hasil	 Menggunakan struktur transformer video yang sangat efisien untuk memprediksi mask dengan detail batas objek yang akurat dan konsisten di waktu. Menggunakan automated annotation refinement untuk memperbaiki annotasi yang kurang akurat. Menggunakan Tube-Boundary AveragePrecision sebagai metrik evaluasi yang lebih akurat untuk menilai kualitas mask. Menggunakan collaborative multi-task learning untuk mengintegrasikan pengenalan objek, pengsegmentasi instan, dan tracking objek dalam satu model yang dapat dipelajari secara endto-end. Menggunakan MaGGIe (Masked Guided Gradual Human Instance Matting) untuk memprediksi alpha mattes secara progresif untuk setiap instance manusia. Menggunakan Segment Anything in High Quality untuk memprediksi mask dengan kualitas yang tinggi.

	• Menggunakan Crossover Learning for Fast Online Video Instance Segmentation untuk		
	mempelajari hubungan instan-pixel secara online.		
	Menggunakan Mask-Free Video Instance Segmentation untuk memprediksi mask tanpa		
	menggunakan label mask.		
	Menggunakan Spatio-temporal Embeddings for Instance Segmentation in Videos untuk		
	memprediksi mask dengan kualitas yang tinggi.		
	Menggunakan Video Instance Segmentation using Inter-Frame Communication Transformers		
	untuk memprediksi mask dengan kualitas yang tinggi.		
	Menggunakan Video Instance Segmentation Tracking With a Modified VAE Architecture		
	untuk memprediksi mask dengan kualitas yang tinggi.		
Kesimpulan	Video Mask Transfiner untuk High-Quality Video Instance Segmentation menggunakan		
	kombinasi algoritma yang efektif untuk memprediksi mask dengan detail batas objek yang		
	akurat dan konsisten pada waktu.		

2.71 Tinjauan 71

SAGA: Stochastic Whole-Body Grasping With Contact			
Yan Wu et al		arXiv	2022

Latan Dalahana	Sintesis gerakan manusia yang berhubungan dengan objek, namun metode yang telah		
Latar Belakang	dikembangkan sebelumnya hanya memperhatikan interaksi tangan dengan objek, tidak		
	memperhatikan gerakan tubuh manusia secara keseluruhan. Oleh karena itu, penelitian ini		
	berfokus pada sintesis gerakan tubuh manusia yang berhubungan dengan objek, yang		
	memerlukan model dinamika tubuh manusia dan gerakan jari yang halus.		
Tujuan	Menghasilkan sintesis gerakan tubuh manusia yang berbeda-beda dan alami untuk mendekati		
	dan memegang objek yang berada di ruang 3D		
Dataset	Tidak disebutkan secara spesifik dalam sumber yang tersedia. Namun penelitian ini		
	menggunakan data sintetik yang dibuat menggunakan model generatif untuk menghasilkan pose		
	genggaman tubuh manusia yang statis dan gerakan genggaman yang berbeda.		
Metode	1. Generasi Pose Teknik Tubuh Statik : menggunakan model generatif multi-tugas untuk		
	menghasilkan pose pegangan tubuh statistik dan kontak antara manusia dan objek.		
	2. Mengisi Gerakan Gerakan : menggunakan modul generatif yang berbasis kontak untuk		
	menghasilkan gerakan pegangan yang berbeda-beda dan alami menggunakan pose pegangan		
	tubuh yang telah dihasilkan sebagai awal dan akhir gerakan.		
Hasil	1. Sintesis Pose pegangan Tubuh Statis: Penelitian ini menghasilkan pose pegangan tubuh statis		
	yang alami dan kontak antara manusia dan objek menggunakan model generatif multi-tugas.		

	2. Sintesis Gerakan Pegangan: Penelitian ini menghasilkan gerakan pegangan yang berbeda-			
	beda dan alami menggunakan pose pegangan tubuh yang telah dihasilkan sebagai awal dan akhir			
	gerakan.			
	3.Diversitas Gerakan: Penelitian ini dapat menghasilkan berbagai gerakan pegangan yang alami			
	dan berbeda-beda untuk mendekati dan memegang objek yang tidak diketahui sebelumnya.			
Kesimpulan	Metode sintesis gerakan tubuh manusia yang berbeda-beda dan alami dapat dihasilkan			
	menggunakan model generatif multi-tugas dan modul generatif yang berbasis kontak. Hasil			
	penelitian ini dapat digunakan dalam aplikasi seperti augmented reality (AR), virtual reality			
	(VR), permainan video, dan robotika.			

2.72 Tinjauan 72

Quasi-Dense Similarity Learning for Multiple Object Tracking			
Jiangmiao Pang et al		arXiv	2021

	Metode pelacakan objek yang ada sebelumnya hanya menggunakan pencocokan ground truth		
Latar Belakang	yang jarang sebagai objek latihan, sehingga mengabaikan sebagian besar wilayah yang		
	informatif pada gambar.		
Tujuan	Meningkatkan kinerja pelacakan objek dengan menggunakan pembelajaran kemiripan yang		
	lebih efektif dan dapat digunakan dengan detektor objek yang ada.		
Dataset	MOT17, BDD100K, Waymo, TAO, MOT16		
Metode	Object Detection: menggunakan detektor objek yang ada untuk menghasilkan proposal wilayah objek.		
• Instance Similarity Learning: menggunakan similarity learning yang lebil			
	sampling wilayah proposal yang padat pada pasangan gambar untuk pelatihan kontrasi		
	Object Association: menggunakan feature space yang dihasilkan untuk melakukan asosiasi objek dengan cara mencari tetangga terdekat pada waktu inferensi.		
Hasil	Quasi-DenseTrack memiliki struktur yang sederhana dan efektif, sehingga dapat digunakan secara praktis dan efisien		
	• Quasi-DenseTrack menunjukkan performa yang lebih baik pada berbagai dataset, termasuk		
	BDD100K, Waymo, dan TAO, dengan MOTA 35.5, IDF1 52.3, dan ID Sw. 10,790 pada		
	BDD100K, serta MOTA 44.0, IDF1 56.8, dan ID Sw. 30.712 di Waymo		
Kesimpulan	Quasi-DenseTrack menunjukkan bahwa pembelajaran kesamaan yang lebih efektif dengan		
	pengambilan sampel wilayah proposal yang padat pada pasangan gambar dapat meningkatkan		
	kinerja pelacakan objek.		

2.73 Tinjauan 73

TextureGAN: Controlling Deep Image Synthesis with Texture Patches			
Wenqi Xian et al		arXiv	2018

I otom Dolokomo	Metode sintesis gambar tradisional biasanya memerlukan pengetahuan teknis dan keterampilan		
Latar Belakang	artistik yang tinggi. Dalam beberapa tahun terakhir, penggunaan jaringan neural deep untuk		
	sintesis gambar telah menunjukkan hasil yang sangat menjanjikan. Namun, metode sintesis		
	gambar yang ada sebelumnya tidak memungkinkan pengontrolan tekstur dengan detail yang		
	halus.		
Tujuan	Mengembangkan sebuah metode sintesis gambar yang dapat dikontrol oleh tekstur tambalan		
Dataset	1. Dataset Pakaian: dataset pakaian yang berisi gambar berbagai jenis pakaian dengan variasi		
	struktur dan tekstur yang besar. Masing-masing gambar dalam dataset ini berisi beberapa		
	semantik wilayah, seperti baju, celana, dan sepatu.		
	2. Handbags Dataset: Dataset tas digunakan untuk menguji kemampuan jaringan generatif		
	dalam sintesis gambar tas yang berbeda-beda.		
	3. Dataset Tas Tangan yang Digambar Manusia		
	4. Texture Database, tim peneliti juga menggunakan database tekstur yang berisi berbagai jenis		
	tekstur yang dapat digunakan sebagai patch tekstur dalam sintesis gambar.		
Metode	a. Generative Network Development: menghasilkan objek realistis berdasarkan sketsa dan		
	patch tekstur yang disediakan oleh pengguna.		
	b. Local Texture Loss Development : membantu jaringan generatif untuk menghasilkan tekstur		
	yang lebih realistis dan memastikan tekstur tidak berputar keluar batas objek.		
Hasil	Penelitian ini menunjukkan bahwa jaringan generatif dapat menghasilkan objek realistis		
	berdasarkan sketsa dan patch tekstur yang disediakan oleh pengguna.		
Kesimpulan	Algoritma ini dapat digunakan untuk menghasilkan gambar yang realistis dan konsisten dengan		
	kontrol pengguna, seperti menghasilkan gambar pakaian dan tas dengan tekstur yang		
	diinginkan.		

2.64 Perbandingan Tinjauan

Tabel 2.1 Perbandingan Seluruh Tinjauan Penelitian

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
			Menyebabkan kerusakan pada:
1.	Tinjauan 1	Stress - Sulfida	Struktur histologis,
			Fungsi osmoregulasi,
			Respirasi, dan
			Respons imun pada insang
			Menyebabkan perubahan fisiologis:
2.	Tinjauan 2	Stress - Pola diet	Perubahan kadar prostaglandin pada insang,
			Stress hipoksia,
			Peningkatan kadar glukosa darah dan tingkat konsumsi
			oksigen yang meningkat
			Strain Litopenaeus vannamei yang toleran terhadap stresss:
3.	Tinjauan 3	Stress - Faktor genetika	Tingkat heritabilitas (+) dan korelasi genetik (+) dibandingkan
			dengan strain yang sensitif terhadap stresss.
	T:	G. B	Paparan ammonia menyebabkan:
4.	Tinjauan 4	Stress - Paparan	Metabolisme (-)
		Ammonia	• Apoptosis (+)
			Sistem Imunitas (-)
5.	Tinjauan 5	Stress - pH Tinggi	Mengganggu Jaringan insang dan Hepatopankreas, sehingga
			mengaktifkan ekspresi gen HSP70 (heat shock protein 70) guna
			merespon stresss.
6.	Tinjauan 6	Stress - Nitrite	Mengganggu sistem metabolisme
7.	Tinjauan 7	Stress Dingin Akut	Transkriptomik menunjukkan perubahan ekspresi gen terkait
			sistem imun, remodelasi sirkulasi, dan apoptosis pada udang.
8.	Tinjauan 8	Stress – Penurunan	Berdampak pada perilaku dan meningkatkan konsentrasi glukosa
		Salinitas (2 ppt)	darah pada udang sebagai respon stresss.
9.	Tinjauan 9	Stress – Tekanan pH	Merusak fungsi Intestine barrier (struktur mukosa, komponen
		pada Intestine barrier	imun, dan komunitas mikroba)
		udang	
10.	Tinjauan 10	Molting - Siklus	Faktor yang mempengaruhi proses molting: Kadar
		Molting & Faktor yang	protein, Karbohidrat, Lemak, Vitamin, Mineral, Oksigen,
		mempengaruhi Molting	pH, Suhu, dan Stress.
			Siklus Molting:

			1. Pre-Moult
			2. Moult
			3. Post-Moult
			4. Inter-Moult
11.	Tinjauan 11	Molting – Perubahan	Salinintas (+) maka pertumbuhan (-)
11.	Tinjauan Ti	Nutrisi & Salinitas	•
		selama proses molting	Salinitas (+) maka proses molting (-) Nutrici (+) maka proses molting (-)
10	T. 10		Nutrisi (+) maka pertumbuhan (+)
12.	Tinjauan 12	Molting – Penambahan	• Imunitas non-spesifik (+)
		Pakan menggunkan	• Kesehatan usus (+)
		Mannan Oligosakarida	Resistensi antibiotik (-)
12	T'' 1 12	(MOS)	
13.	Tinjauan 13	Molting - Puasa post-	Puasa menyebabkan proses molting (+) post larva
		larva <i>vannamei</i> pada	Molting (-) saat masa Puasa (+)
		saat molting	Tingkat kelangsungan hidup tidak terpengaruh oleh
			aktifitas puasa
14.	Tinjauan 14	Molting - Perubahan	Perubahan Biokimia:
		fisiologis dan biokimia	a. Hemocyanin (+) saat Pre-Molt
		selama siklus molting	b. Hemocyanin (-) saat Post-Molt
			Perubahan Fisiologis:
			Adanya perubahan pada volume hemolimfa
			Keterkaitan dengan Kapasitas Osmotik:
			Konsentrasi glukosa (+) saat premolt-akhir & awal post-molt
15.	Tinjauan 15	Respon psikologis -	Histopatologi Hepatopancreas:
		Perubahan Temperatur	Sel sekretori (+)
		Suhu dengan Tingkat	Dilatasi lumen tubulus (+)
		Salinitas Rendah	Penebalan lapisan epitel (+)
			Konsentrasi Metabolit Plasma:
			Glukosa (-)
			Trigliserida (+)
			Kolesterol total (+)
			Protein total (+)
			Aktivitas Enzim Plasma:
			16.Alkaline phosphatase dan alanine aminotransferase
			mencapai nilai terendah dan tertinggi pada suhu 13°C
			Ekspresi Gen UPR dan Apoptosis:
			Ekspresi gen UPR (+)

			Apoptosis (+)
16.	Tinjauan 16	Molting -	Pola Osmoregulasi:
		Osmoregulasi: media	Pertumbuhan (+)
		iso-osmotik pada proses	Kondisi Jaringan:
		molting	Na-K-ATPase (+)
			Konsentrasi Asam Amino (-)
			Energi osmoregulasi:
			Energi osmoregulasi (-) selama proses molting namun
			dapat beradaptasi dengan baik
17.	Tinjauan 17	Frekuensi pemberian	Pola Aktivitas Makan:
		pakan - Perilaku udang	Frekuensi pemberian makan (+) maka aktivitas makan (+)
			Pola Aktivitas Lain:
			Frekuensi pemberian makan (+) maka aktivitas berenang (+)
			Pengaruh Fase Cahaya dan Gelap:
			Saat fase gelap maka aktivitas berenang (+)
			Optimasi Aktivitas:
			Frekuensi pemberian makan (+) maka aktivitas optimal
18.	Tinjauan 18	Swimming - Respon	Kemampuan Berenang:
		fisiologis saat kelelahan	Kemampuan berenang (-) jika kecepatan berenang (+)
		berenang	Respons Fisiologis:
			Kelelahan berenang maka:
			a. massa tubuh (-)
			b. konsentrasi protein hemolimfa (-) konsentrasi glukosa
			hemolimfa (-)
			Penggunaan Protein Hemolimfa:
			Kadar protein hemolimfa merupakan indikator evaluasi
			kemampuan berenang
19.	Tinjauan 19	Monitoring kualitas air -	Kualitas air : pH, Kekeruhan, Suhu, dan Konsentrasi
		Pertumbuhan udang	nutrient.
			Pengaruh Faktor Lingkungan: Suhu, Kekeruhan, dan pH
			berpengaruh pada pertumbuhan udang.
			Monitoring Kualitas Air: Membantu mengoptimalkan
			pertumbuhan udang.
20.	Tinjauan 20	Swimming – Pengaruh	Kemampuan Berenang:
		oksigen terlarut pada	Kemampuan Berenang (-) seiring konsentrasi oksigen
		kelelahan berenang	terlarut (-)

			Respons Fisiologis:
			Kelelahan menyebabkan penurunan konsentrasi protein
			hemolimfa, glukosa hemolimfa, dan adenosin triphosfat
			(ATP)
21.	Tinjauan 21	Molting - Perubahan	Transkriptoma:
		ekspresi global dalam	93,756 unigenes dikenali, dengan 5,117 gen yang berbeda
		transkriptom	ekspresinya pada semua tahapan molting.
			Gen yang Berbeda Ekspresinya:
			Regulasi hormon, Peristiwa triggering, Fase implementasi,
			Skeleton, dan Respons imun
22.	Tinjauan 22	Molting – Fluktuasi	Pengaruh Fluktuasi Warna Cahaya:
		warna cahaya dan	Fluktuasi warna cahaya yang berirama mampu
		pertumbuhan	meningkatkan proses molting & pertumbuhan.
			Pengaruh Warna Cahaya:
			Cahaya hijau dan biru memiliki dampak lebih baik bagi
			pertumbuhan
23.	Tinjauan 23	Pengaruh Temperatur	Pengaruh Suhu:
		Suhu & Salinitas	Suhu yang berbeda berpengaruh pada pertumbuhan post
		terhadap Pertumbuhan	larva udang.
		Post-Larva Udang	Pengaruh Salinitas:
			Salinitas yang berbeda juga berpengaruh pada
			pertumbuhan post larva udang vanamei.
			Kombinasi Suhu dan Salinitas:
			Kombinasi suhu dan salinitas yang optimal dapat
			meningkatkan pertumbuhan post larva udang vanamei.
24	Tinjauan 24	Molting – Dinamika	Tingkat VG:
		perubahan Level	a. Tingkat VG dalam hemolimfa udang putih dewasa (+)
		Hormon Vitellogenin	awal intermolt
		(VH) & Vitellogenesis -	b. Ablasi mata unilateral dan bilateral meningkatkan
		Inhibiting (VIH) serta	tingkat VG pada dewasa
		Eyestalk Ablation	c. Ablasi mata bilateral yang mempengaruhi subdewasa
			Tingkat VIH:
			a. Tingkat VIH dalam hemolimfa udang putih dewasa tinggi
			pada postmolt.
			b. Subdewasa tingkat VIH meningkat dari postmolt ke
			intermolt stage

			c. Ablasi mata unilateral meningkatkan tingkat VIH pada dewasad. Ablasi mata unilateral dan bilateral meningkatkan tingkat VIH pada subdewasa.	
25.	Tinjauan 25	Molting – Hipoksia & Ammonia pada proses molting	 Pengaruh Kombinasi Ammonia dan Hipoksia: Kombinasi ammonia dan hipoksia dapat meningkatkan mortalitas udang biru pada tahap post-molt. Pengaruh Ammonia: Meningkatkan mortalitas pada tahap premolt dan postmolt. Pengaruh Hipoksia: Hipoksia dapat meningkatkan mortalitas pada tahap premold dan post-molt Pengaruh Molting: Post-Molt adalah tahap yang paling rentan terhadap mortalitas 	
26.	Tinjauan 26	Stress – Respon fisiologis otot terhadap stresss hipoksia	 Respons Fisiologis: Hemosianin (-) strain sensitive hipoksia Hemosianin (+) strain toleran hipoksia Gen yang Berbeda Ekspresinya: Hemosianin, Chitinase, Protein panas 90 (HSP 90), Protein kematian program, dan Fosforilase glikogen 	
27.	Tinjauan 27	Stress – Paparan Dingin Akut (suhu 13 °C)	Konsentrasi Metabolit Plasma menurun, Aktivitas Enzim terganggu, Gen UPR terganggu dan Apoptosis meningkat, Histological Changes dalam hepatopankreas mengalami kerusakan.	
28.	Tinjauan 28	Stress – Abiotik (paparan dingin akut & durasi tanpa air)	Stress abiotik mengganggu keseimbangan sistem metabolism energi dimana metabolism energi ini berubah dari metabolism aerobik ke metabolism anaerobik, lama kelamaan akan menyebabkan kerusakan pada jaringan hepatopankreas dan defisiensi suplai ATP.	
29.	Tinjauan 29	Swimming – Perubahan Suhu, Salinitas terhadap kemampuan berenang	 Kemampuan Berenang: kemampuan berenang meningkat dengan peningkatan suhu, tetapi menurun dengan peningkatan salinitas. Suhu: kemampuan berenang meningkat dengan peningkatan suhu dari 15°C dan menurun di suhu 25°C. 	

			Salinitas: menyebabkan kemampuan berenang menurun dengan peningkatan salinitas
30.	Tinjauan 30	Swimming – Pengaruh Suhu, Salinitas, Panjang Tubuh	 Pengaruh Suhu: Suhu (+) maka kecepatan berenang kritikal (+). Pengaruh Salinitas: salinitas (+) maka kecepatan berenang (-). Pengaruh Panjang Tubuh: Panjang tubuh (+) maka kecepatan berenang kritikal (+)
31.	Tinjauan 31	Molting – Siklus Molting	 Siklus molting udang budidaya terdiri dari 4 tahapan: Pre-moult, Molt Post-moult, dan Intermoult. Molting berpengaruh pada perilaku, komposisi, dan pertumbuhan udang. Strategi pengelolaan molting yang efektif meliputi pengawasan kualitas air, pemberian makanan yang tepat, dan penggunaan suplemen mineral yang diperlukan
32.	Tinjauan 32	Molting – Salinitas , Kalsium pada P.Vannamei dan P.Monodon	 Siklus Molting: Siklus molting udang vaname terdiri dari beberapa tahap, yaitu intermolt, premolt, dan postmolt. Pengaruh Kalsium: Penambahan kalsium dalam pakan dapat meningkatkan frekuensi molting dan pertumbuhan udan. Pengaruh Salinitas: Salinitas berpengaruh pada siklus molting
33.	Tinjauan 33	Molting – Perubahan Morfologi & Biokimia pada otot abdominal udang disetiap tahapan molting	 Perubahan Morfologi: Ukuran fiber otot meningkat selama intermolt dan menurun selama premolt dan postmolt. Perubahan Biokimia: Kandungan air dan protein larut total tetap stabil, kandungan DNA meningkat selama intermolt dan premolt, dan kandungan RNA tetap stabil kecuali pada tahap premolt akhir
34.	Tinjauan 34	Molting – Ekstrak tanaman paku uban	Penggunaan Ekstrak Paku Uban: Ekstrak daun Paku Uban dapat meningkatkan frekuensi molting dan mempercepat proses molting

35.	Tinjauan 35	Molting – sintesis enzim proteolitik pada saat kondisi kekurangan makanan & molting	 Dosis Optimum: Dosis 150 ppm ekstrak daun Paku Uban terbukti sebagai dosis optimum untuk meningkatkan persentase molting dan pertumbuhan berat Pengaruh Molting: sintesis enzim proteolitik meningkat selama molting (premolt dan postmolt) Pengaruh Kekurangan Makanan: sintesis enzim proteolitik meningkat selama kekurangan makanan (premolt dan postmolt). Interaksi Molting dan Kekurangan Makanan: Interaksi antara molting dan kekurangan makanan berpengaruh pada sintesis enzim proteolitik di gland midgut.
36.	Tinjauan 36	Molting - Ukuran, Molt Stage, Osmolalitas dan Kadar Elektrolit	 Hemolymph Oxyhemocyanin: Tingkat oxyhemocyanin dalam hemolymph udang putih berbeda-beda tergantung pada ukuran dan tahap molting Hemolymph Protein: Tingkat protein dalam hemolymph udang putih juga berbeda-beda tergantung pada ukuran dan tahap molting Osmolalitas: Tingkat osmolality dalam hemolymph udang putih tidak berbeda-beda signifikan antara ukuran dan tahap molting Kadar Elektrolit: Tingkat elektrolit dalam hemolymph udang putih tidak berbeda-beda signifikan antara ukuran dan tahap molting
37.	Tinjauan 37	Molting – Perubahan intensitas cahaya dan frekuensi molting serta pertumbuhan	 Pengaruh Perubahan Intensitas Cahaya: Perubahan intensitas cahaya periodik berpengaruh pada frekuensi molting dan pertumbuhan Pengaruh Warna Cahaya: Warna cahaya berpengaruh pada frekuensi molting dan pertumbuhan
38.	Tinjauan 38	Swimming - mekanisme energi yang digunakan selama berbagai mode gerak selama aktivitas berenang	 Metabolisme Glukosa dan Trigliserida: udang menggunakan metabolisme aerobik untuk energi yang dibutuhkan selama berenang dengan kecepatan rendah, sedangkan berenang dengan kecepatan tinggi dan berguling menggunakan metabolisme anaerobik. Regulasi Enzim Glukolitik: adanya peningkatan glukolitik pada berbagai mode gerak, yang menyebabkan penumpukan laktat dan kelelahan gerak.

			Karakteristik Gerak: berjalan, berenang, dan berguling untuk beradaptasi dengan lingkungan yang berbeda.
39.	Tinjauan 39	Cannibalism — Pengaruh 4 faktor pendukung cannibalism pada post-larva P.Monodon	 Faktor Ukuran Individu: Ukuran individu berpengaruh pada cannibalisme post-larva Penaeus monodon. Hasii penelitian menunjukkan bahwa cannibalisme meningkat dengan peningkatan ukuran individu. Faktor Kepadatan: Kepadatan berpengaruh pada cannibalisme post-larva Penaeus monodon. Hasii penelitian menunjukkan bahwa cannibalisme meningkat dengan peningkatan kepadatan, terutama pada kepadatan di atas 110 ind/L. Faktor Makanan: Faktor makanan berpengaruh pada cannibalisme post-larva Penaeus monodon. Hasii penelitian menunjukkan bahwa cannibalisme meningkat dengan peningkatan kekurangan makanan. Faktor Aerasi: Cannibalisme menurun ketika aerasi mencukupi, sedangkan aerasi yang tidak mencukupi dapa mempengaruhi tingkat cannibalisme. Dimana aerasi berguna untuk meningkatkan kualitas air.
40.	Tinjauan 40	Cannibalism - penambahan asam amino triptofan dalam pakan menekan terjadinya cannibalism	 Tingkat Kanibalisme: Tingkat kanibalisme udang vaname yang diberi triptofan dalam pakan menunjukkan hasil yang lebih rendah dibandingkan dengan control Kelulushidupan: Kelulushidupan udang vaname yang diberi triptofan dalam pakan juga meningkat. Pertumbuhan Bobot Mutlak: Pertumbuhan bobot mutlak udang vaname tidak berbeda signifikan antar perlakuan Laju Pertumbuhan Spesifik: Laju pertumbuhan spesifik udang vaname juga tidak berbeda signifikan antar perlakuan Rasio Konversi Pakan: Rasio konversi pakan udang vaname tidak berbeda signifikan antar perlakuan Kualitas Air: Kualitas air dalam penelitian ini berada dalam kisaran yang baik untuk budidaya udang vaname
41.	Tinjauan 41	Cannibalism – Prevelensi & Faktor	Prevalensi cannibalism dipengaruhi oleh berbagai faktor biotik dan abiotik, seperti kepadatan, status molting, ukurar

		yang mempengaruhi cannibalism	 heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Faktor yang Mempengaruhi Cannibalism: Faktor yang mempengaruhi cannibalism antara lain kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Faktor-faktor ini dapat berbeda-beda tergantung pada spesies dan fase perkembangan.
42.	Tinjauan 42	Cannibalism – Perilaku kanibalisme Udang coklat crangon	 Pada krustasea, kanibalisme seringkali merupakan respons terhadap pemicu stresss. Faktor yang Mempengaruhi Cannibalisme: kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Kondisi Lingkungan: Kanibalisme lebih tinggi pada udang yang sedang mengalami molting. Kanibalisme pada krustasea sering dianggap sebagai perilaku oportunistik yang terkait dengan molting (pergantian kulit).
43.	Tinjauan 43	Korelasi Antara Kadar Glukosa Darah dan Tingkat Infestasi Ektoparasit	 Kadar Glukosa Darah: Kadar glukosa darah udang vaname yang dipelihara dengan dasar tambak beton dan plastik berbeda-beda tergantung pada padat tebar dan waktu pemeliharaan. Tingkat Infestasi Ektoparasit: Jumlah ektoparasit yang menginfestasi udang vaname pada tiap ekor udang yang dipelihara dengan dasar tambak beton dan plastik berbedabeda tergantung pada padat tebar dan waktu pemeliharaan. Salah satu indicator udang yang mengalami stress ditandai dengan adanya peningkatan kadar glukosa darah atau hiperglikemia
44.	Tinjauan 44	Stress – Dampak paparan ammonia & nitrite secara histologis, psikologis, respon molekuler	 Hispatologis: kerusakan organ organ udang seperti hepatopankreas & insang. Respon fisiologis: stress oksidatif, Respon molekuler: stress oksidatif dan respons imun

45.	Tinjauan 45	Kanibalisme – tingkat	• Kannibalisme lebih tinggi selama periode molting atau
		kanibalisme spesies	molting. Udang yang sedang mengalami molting akan lebih
		udang C. caementarius	lemah dan rentan terhadap udang lain yang lebih besar.
		tinggi	
46.	Tinjauan 46	Paparan polystyrene	Growth Inhibition
		microplastics - stress	Abnormal Swimming Behavior
		oksidatif, lukaan	Reduced Swimming Performance
		hepatopankreas,	Lipid Peroxidation
		perubahan perilaku &	Oxidative Stresss
		metaboloma	• Lukaan hepatopankreas & perubahan metaboloma
47.	Tinjauan 47	Pakan Asam Empedu –	Pakan yang mengandung asam empedu dapat meningkatkan
		Mempengaruhi molting	pertumbuhan udang putih Pasifik, serta meningkatkan
		& kesehatan usus pada	ekspresi gen imun dan molting.
		udang	
48.	Tinjauan 48	Fase Bulan -	• Fase Bulan Baru: THC tertinggi dan produksi O2- tertinggi
		Mempengaruhi	ditemukan pada fase bulan baru.
		Molting, Respon	• Fase Bulan Ketiga: THC terendah ditemukan pada fase bulan
		Fisiologis, Imun	ketiga.
			• Fase Intermolt: Kehadiran Vibrio spp. tidak menunjukkan
			perbedaan yang signifikan antara fase bulan yang berbeda

Lanjutan Tabel 2.1 Perbandingan Seluruh Tinjauan Penelitian

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
49.	Tinjauan 49	YOLOv3	Training Data: 325 gambar	96.10%.
			Test Data: 99 gambar	
50.	Tinjauan 50	Light-YOLOv4	Training Data: 325 gambar	92.12%,
			Test Data: 99 gambar	
51.	Tinjauan 51	CAGNet - Deteksi	Gambar larva udang dunia nyata yang	95%
		objek bawah air	dikumpulkan dari peternakan	
		fleksibel & efektif	aquakultur	
52.	Tinjauan 52	YOLOv8-MU	Dataset URPC2020	• URPC2019 78.4%,
			• Dataset URPC2019	• URPC2020 80.9%,
			Dataset Aquarium	• Aquarium 75.5%
53.	Tinjauan 53	YOLOv8n –	Tidak disebutkan secara spesifik dalam	Model yang dihasilkan
		Deteksi objek	sumber daya yang tersedia. Namun,	meningkatkan akurasi
		bawah air yang	penelitian ini menggunakan dataset	deteksi objek bawah air
		ringan	yang terkait dengan deteksi objek bawah	sebanyak 2.0%, 3.0%,
			air, seperti gambar-gambar bawah air	dan 1.9% untuk AP50,
			yang diambil menggunakan kamera	AP75, dan mAP masing-
			bawah air atau drone bawah air	masing.
54.	Tinjauan 54	YOLO-SE	SIMD dataset dan NWPU VHR-10	Presisi Rata-rata pada
			dataset	Ambang Batas IoU 0,5
				(AP50): 86.5%.
				• Kumpulan Data
				NWPU VHR-10:
				94.9%.
55.	Tinjauan 55	YOLOv8 - EF-	URPC2020 dataset	Akurasi Tinggi: EF-
		UODA:		UODA memiliki akurasi
		Underwater Object		yang lebih tinggi
		Detection Based on		daripada algoritma
		Enhanced Feature		deteksi objek bawah air
				lainnya, seperti
				YOLOv8X dan RT-
				DETR, dengan
				meningkatkan mean

				average precision (mAP) sebesar 2.9% dan 2.1% secara bersamaan.
56	Tinjauan 56	Two-Phase Instance Segmentation – Overlapping image under water	Dataset larva udang putih yang diambil menggunakan kamera	Akurasi penghitungan larva udang putih yang tinggi, dengan rentang 92.2% hingga 95.4% untuk gambar dengan overlapping moderat
57.	Tinjauan 57	EfficientDet - Deteksi objek bawah air	Dataset underwater object detection yang terdiri dari 1.000 gambar	Akurasi deteksi sebesar 95,1%
58.	Tinjauan 58	Concatenate and Shuffle Network (CSNet) – Objek bawah air kecil dan berjajar	RUOD (Real-time Underwater Object Detection) dan DUO (Dense Underwater Object) datasets	Deteksi objek bawah air yang kecil dan padat, dengan akurasi yang tinggi dan kecepatan real- time
59.	Tinjauan 59	YOLOv8 – objek kecil bawah air dan overlapping	UTDAC2020 underwater dataset dan Pascal VOC dataset	mAP 52.12% pada dataset UTDAC2020 dan 53.18% pada dataset Pascal VOC
60.	Tinjauan 60	YOLOv8-n – Remote Sensing berisi objek kecil	Citra remote sensing yang berisi objek kecil.	Model memiliki keseimbangan yang lebih baik antara akurasi deteksi dan kompleksitas model, mengungguli model lain dalam hal akurasi model, kompleksitas model, dan kecepatan inferensi model
61.	Tinjauan 61	Yolox Under Water Video – Deteksi objek bawah air stabil dan efektif	Dataset UVODD dan mAP 0.5	Presisi Rata-rata (mAP) yang tinggi sebesar 89,0%, 3,2% lebih baik dibandingkan model Yolox asli.

62.	Tinjauan 62	YOLOv7 – distorsi	http://www.urpc.org.cn/ indeks.html.	akurasi 95,6% dan
		warna & kualitas		kecepatan 30 FPS
		gambar deteksi		
		objek bawah air		
63.	Tinjauan 63	Yolo – Deteksi	Brackish underwater dataset berisi	YOLO-UOD dapat
		objek bawah air	10.995 gambar	mendeteksi benda di
		yang <i>fast</i> dan akurat		bawah air dengan akurasi
				yang lebih tinggi dan
				efisiensi komputasi yang
				lebih baik dibandingkan
				algoritma YOLOv4-tiny
64.	Tinjauan 64	CNN , SVM -	Gambar udang sekitar 400 ekor	Akurasi 96.2%.
		Grad-CAM		
		(Gradient-weighted		
		Class Activation		
		Mapping) –		
		kesegaran udang		
65.	Tinjauan 65	Alexnet - Deep-	Sebanyak 6104 <i>o-shrimp</i> dan 3896	Akurasi 96.84%
		ShrimpNet	s-shrimp.	
66.	Tinjauan 66	YOLOv8	Citra sebanyak 6630 data.	Akurasi 92,57%.
67.	Tinjauan 67	SAM (The Segment	• DAVIS 30 video yang berbeda dan	Akurasi dan efisiensi
		Anything Model)	memiliki 3,000 frame.	tinggi.
			• YouTube-VOS 6.000 frame dan	
			memiliki 2.000 objek yang berbeda	
			• BDD100K 100,000 frame dan	
			memiliki 10,000 objek yang berbeda	
			• Unidentified Video Objects 1.000	
			frame dan memiliki 100 objek yang	
			berbeda.	
68.	Tinjauan 68	MaskFree-Video	• YouTube-VIS 2019/2021	MaskFreeVIS dapat
		Instance	• OVIS	mencapai performa VIS
		Segmentation	BDD100K MOTS	yang tinggi tanpa
				menggunakan annotation
				mask.
69.	Tinjauan 69	Track Every Thing	BDD100K dataset	TETA mengevaluasi
		Accuracy (TETA) -		pelacak secara lebih

		Class Exemplar		komprehensif dan TETer
		Matching (CEM)		mencapai peningkatan
		untuk asosiasi		yang signifikan pada
		objek		kumpulan data skala
				besar BDD100K dan
				TAO.
70.	Tinjauan 70	Video Mask	• (YTVIS) berisi 2.883 video	Algoritma yang efektif
		Transfiner (VMT)	• HighQuality-YTVIS: YTVIS asli	untuk memprediksi mask
			(2238 video) - new training (1678	dengan detail batas objek
			video, 75%), val (280 video 12,5%)	yang akurat dan
			dan testing (280 video 12,5%)	konsisten pada waktu.
71	Tinjauan 71	• Generasi Pose	Tidak disebutkan secara spesifik	Metode sintesis gerakan
		Teknik Tubuh		tubuh manusia yang
		Statik		berbeda-beda dan alami
		Mengisi Gerakan		dapat dihasilkan.
		- Gerakan		
72	Tinjauan 72	Quasi-	MOT17, BDD100K, Waymo, TAO,	pembelajaran kesamaan
		DenseTrack	MOT16	yang lebih efektif dengan
				pengambilan sampel
				wilayah proposal yang
				padat pada pasangan
				gambar dapat
				meningkatkan kinerja
				pelacakan objek.
73.	Tinjauan 73	Generative	Pakaian , Handbags, Tas Tangan yang	jaringan generatif dapat
		Network	Digambar Manusia, Texture	menghasilkan objek
		Development -	Database	realistis berdasarkan
		Local Texture Loss		sketsa dan patch tekstur
	_	Development		

Berdasarkan Tabel 2.1 diatas dapat kita peroleh beberapa kesimpulan, diantaranya:

Tabel 2.1.1 Tinjauan Penelitian Faktor Pemicu Stress Pada Udang

No.	Penelitian	Indikator	Respon atau Dampak	
	Tinjauan			
			Menyebabkan kerusakan pada:	
1.	Tinjauan 1	Stress - Sulfida	Struktur histologis,	
			Fungsi osmoregulasi,	
			Respirasi, dan	
			Respons imun pada insang	
			Menyebabkan perubahan fisiologis:	
2.	Tinjauan 2	Stress - Pola diet	Perubahan kadar prostaglandin pada insang,	
			• Stress hipoksia,	
			Peningkatan kadar glukosa darah dan tingkat	
			konsumsi oksigen yang meningkat	
			Strain Litopenaeus vannamei yang toleran terhadap stress:	
3.	Tinjauan 3	Stress berdasarkan	Tingkat heritabilitas (+) dan korelasi genetik (+)	
		faktor genetika	dibandingkan dengan strain yang sensitif terhadap stress.	
4	Ti	Cture Demonstra	Paparan ammonia menyebabkan:	
4.	Tinjauan 4	Stress - Paparan	Metabolisme (-)	
		Ammonia	• Apoptosis (+)	
			Sistem Imunitas (-)	
5.	Tinjauan 5	Stress - pH Tinggi	Mengganggu Jaringan insang dan Hepatopankreas,	
			sehingga mengaktifkan ekspresi gen HSP70 (heat shock	
			protein 70) guna merespon stress.	
6.	Tinjauan 6	Stress - Nitrit	Mengganggu sistem metabolisme	
7.	Tinjauan 7	Stress Dingin Akut	Transkriptomik menunjukkan perubahan ekspresi gen	
			terkait sistem imun, remodelasi sirkulasi, dan apoptosis	
			pada udang.	
8.	Tinjauan 8	Stress – Penurunan	Berdampak pada perilaku dan meningkatkan konsentrasi	
		Salinitas (2 ppt)	glukosa darah pada udang sebagai respon stress.	
9.	Tinjauan 9	Stress – Tekanan pH	Merusak fungsi Intestine barrier (struktur mukosa,	
		pada Intestine	komponen imun, dan komunitas mikroba)	
		barrier udang		

10.	Tinjauan 26	Stress – Respon	Respons Fisiologis:	
		fisiologis otot	Hemosianin (-) strain sensitive hipoksia	
		terhadap stress	Hemosianin (+) strain toleran hipoksia	
		hipoksia	Gen yang Berbeda Ekspresinya:	
			Hemosianin, Chitinase, Protein panas 90 (HSP 90), Protein	
			kematian program, dan Fosforilase glikogen	
11.	Tinjauan 27	Stress – Paparan	Konsentrasi Metabolit Plasma menurun, Aktivitas Enzim	
		Dingin Akut (suhu	terganggu, Gen UPR terganggu dan Apoptosis meningkat,	
		13 °C)	Histological Changes dalam hepatopankreas mengalami	
			kerusakan.	
12.	Tinjauan 28	Stress – Abiotik	Stress abiotik mengganggu keseimbangan sistem	
		(paparan dingin akut	metabolism energi dimana metabolism energi ini berubah	
		& durasi tanpa air)	dari metabolism <i>aerobik</i> ke metabolism <i>anaerobik</i> , lama	
			kelamaan akan menyebabkan kerusakan pada jaringan	
			hepatopankreas dan defisiensi suplai ATP.	
13.	Tinjauan 42	Cannibalism –	Pada crustacea, kanibalisme seringkali merupakan	
		Respon terhadap	respons terhadap pemicu stress.	
		pemicu stress.	Faktor yang Mempengaruhi Kanibalisme: kepadatan,	
			status <i>molting</i> , ukuran heterogenitas, <i>fotoperiod</i> ,	
			intensitas cahaya, dan ketersediaan tempat	
			perlindungan dan makanan.	
			Kondisi Lingkungan: Kanibalisme lebih tinggi pada	
			udang yang sedang mengalami molting.	
			Kanibalisme pada <i>crustacea</i> sering dianggap sebagai	
			perilaku oportunistik yang terkait dengan molting	
			(pergantian kulit).	
14.	Tinjauan 43	Stress – padat tebar	Kadar glukosa darah udang vanamei yang dipelihara	
		tinggi & waktu	dengan dasar tambak beton dan plastik berbeda-beda	
		pemeliharaan	Jumlah <i>ektoparasit</i> yang menginfestasi udang vaname	
		berbeda	berbeda-beda	
			Salah satu indikator udang yang mengalami stress	
			ditandai dengan adanya peningkatan kadar glukosa	
			darah atau <i>hiperglikemia</i>	

15.	Tinjauan 44	Stress – Dampak	•	Hispatologis: kerusakan organ organ udang seperti
		paparan ammonia &		hepatopankreas & insang.
		nitrite secara	•	Respon fisiologis: stress oksidatif,
		histologis,	•	Respon molekuler: stress oksidatif dan respons imun
		psikologis, respon		
		molekuler		

Berdasakan Tinjauan penelitian 1, 2, 3, 4, 5, 6, 7, 8, 9, 26, 27, 28, 42, 44 diperoleh informasi beberapa faktor pemicu terjadinya stress pada udang diantaranya adalah paparan *sulfida*, pola diet, faktor genetika, paparan ammonia, paparan pH tinggi, paparan nitrit, paparan dingin akut , salinitas, hipoksia, abiotik (kombinasi paparan dingin akut & durasi tanpa air), kanibalisme, padat tebar tinggi dan waktu pemeliharaan yang berbeda.

Tabel 2.1.2 Tinjauan penelitian paparan terhadap Intestine barrier udang

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 1	Stress - Sulfida	Menyebabkan kerusakan pada: Struktur histologis, Fungsi osmoregulasi, Respirasi, dan Respons imun pada insang
2.	Tinjauan 4	Stress - Paparan Ammonia	Paparan ammonia menyebabkan: • Metabolisme (-) • Apoptosis (+) • Sistem Imunitas (-)
3.	Tinjauan 7	Stress Dingin Akut	Transkriptomik menunjukkan perubahan ekspresi gen terkait sistem imun, remodelasi sirkulasi, dan apoptosis pada udang.
4.	Tinjauan 9	Stress – Tekanan pH pada <i>Intestine barrier</i> udang	Merusak fungsi <i>Intestine barrier</i> (struktur mukosa, komponen imun, dan komunitas mikroba)

Berdasarkan Tinjauan 1, 4, 7, 9 stress yang disebabkan oleh paparan sulfida, paparan ammonia, paparan dingin akut, tekanan pH terutama pada *Intestine barrier* udang berpengaruh merusak sistem imunitas udang.

Tabel 2.1.3 Tinjauan Penelitian dampak paparan ammonia & nitrit

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 4	Stress - Paparan Ammonia	Paparan ammonia menyebabkan: • Metabolisme (-) • Apoptosis (+) • Sistem Imunitas (-)
2.	Tinjauan 6	Stress - Nitrit	Mengganggu sistem metabolisme
3.	Tinjauan 28	Stress – Abiotik (paparan dingin akut & durasi tanpa air)	Stress abiotik mengganggu keseimbangan sistem metabolism energi dimana metabolism energi ini berubah dari metabolism aerobik ke metabolism anaerobik, lama kelamaan akan menyebabkan kerusakan pada jaringan hepatopankreas dan defisiensi suplai ATP.
4.	Tinjauan 44	Stress – Dampak paparan ammonia & nitrite secara histologis, psikologis, respon molekuler	 Hispatologis: kerusakan organ organ udang seperti hepatopankreas & insang. Respon fisiologis: stress oksidatif, Respon molekuler: stress oksidatif dan respons imun

Berdasarkan Tinjauan 4, 6, 28, 44 stress yang disebabkan oleh paparan ammonia, paparan nitrit menyebabkan kerusakan secara histologis, mempengaruhi respon fisiologis serta respon molekuler pada udang. Eksposur gabungan *ammonia* dan *nitrite* dapat menyebabkan efek yang lebih ekstensif dan lebih serius daripada efek tunggal tidak hanya sebatas mengganggu sistem metabolisme udang.

Tabel 2.1.4 Tinjauan Penelitian dampak paparan ammonia & paparan dingin akut

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 4	Stress - Paparan Ammonia	Paparan ammonia menyebabkan:
2.	Tinjauan 7	Stress Dingin Akut	Transkriptomik menunjukkan perubahan ekspresi gen terkait sistem imun, remodelasi sirkulasi, dan apoptosis pada udang.
3.	Tinjauan 11	Molting – Perubahan Nutrisi & Salinitas selama proses molting	 Salinintas (+) maka pertumbuhan (-) Salinitas (+) maka proses molting (-) Nutrisi (+) maka pertumbuhan (+)

Berdasarkan Tinjauan penelitian 4, 7, 11, Diperoleh informasi bahwa stress yang disebabkan oleh paparan ammonia, paparan dingin akut sampai dengan suhu 13 °C menyebabkan meningkatnya apoptosis pada udang, besar kemungkinan udang mengalami kematian karena rusaknya jaringan tubuh.

Tabel 2.1.5 Tinjauan Penelitian dampak paparan sulfida & pH tinggi

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1	TD: 1	G. G.16.1	Menyebabkan kerusakan pada:
1.	Tinjauan 1	Stress - Sulfida	Struktur histologis,
			Fungsi osmoregulasi,
			Respirasi, dan
			Respons imun pada insang
2.	Tinjauan 5	Stress - pH Tinggi	Mengganggu Jaringan insang dan Hepatopankreas,
			sehingga mengaktifkan ekspresi gen HSP70 (heat shock
			protein 70) guna merespon stress.

Berdasarkan tinjauan penelitian 1 & 5, Diperoleh informasi bahwa stress yang disebabkan oleh paparan sulfida dan tekanan pH tinggi mengganggu respon imun dan jaringan pada insang udang.

Tabel 2.1.6 Tinjauan Penelitian faktor penyebab stress yang berdampak pada kerusakan hepatopankreas udang

No.	Penelitian	Indikator	Respon atau Dampak	
	Tinjauan			
1.	Tinjauan 5	Stress - pH Tinggi	Mengganggu Jaringan insang dan Hepatopankreas,	
			sehingga mengaktifkan ekspresi gen HSP70 (heat shock	
			protein 70) guna merespon stress.	
2.	Tinjauan	Stress – Paparan	Konsentrasi Metabolit Plasma menurun, Aktivitas Enzim	
	27	Dingin Akut (suhu 13	terganggu, Gen UPR terganggu dan Apoptosis meningkat,	
		°C)	Histological Changes dalam hepatopankreas mengalami	
			kerusakan.	
3.	Tinjauan	Stress – Abiotik	Stress abiotik mengganggu keseimbangan sistem	
	28	(paparan dingin akut	metabolism energi dimana metabolism energi ini berubah	
		& durasi tanpa air)	dari metabolism aerobik ke metabolism anaerobik, lama	
			kelamaan akan menyebabkan kerusakan pada jaringan	
			hepatopankreas dan defisiensi suplai ATP.	
4.	Tinjauan	Stress – Dampak	Hispatologis: kerusakan organ organ udang seperti	
	44	paparan ammonia &	hepatopankreas & insang.	
		nitrite secara	Respon fisiologis: stress oksidatif,	
		histologis, psikologis,	Respon molekuler: stress oksidatif dan respons imun	
		respon molekuler		

Berdasarkan Tinjauan penelitian 5, 27, 28, 44 Diperoleh informasi bahwa stress yang disebabkan oleh tekanan pH tinggi, paparan dingin akut, kombinasi paparan dingin akut & durasi tanpa air , paparan gabungan *ammonia* dan *nitrite* menyebabkan kerusakan pada hepatopankreas udang.

Tabel 2.1.7 Tinjauan Penelitian dampak stress disebabkan pola diet & salinitas

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
			Menyebabkan perubahan fisiologis:
1.	. Tinjauan 2 Stress - Pola diet		Perubahan kadar prostaglandin pada insang,
			Stress hipoksia,
			Peningkatan kadar glukosa darah dan tingkat
			konsumsi oksigen yang meningkat
2.	Tinjauan 8	Stress – Penurunan	Berdampak pada perilaku dan meningkatkan konsentrasi
		Salinitas (2 ppt)	glukosa darah pada udang sebagai respon stress.

Berdasarkan Tinjauan penelitian 2 & 8, Diperoleh informadi bahwa stress yang disebabkan oleh pola diet, penurunan salinitas hingga 2 ppt menyebabkan peningkatkan kadar glukosa darah pada udang.

Tabel 2.1.8 Tinjauan Penelitian dampak stress karena paparan dingin akut.

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 7	Stress Dingin Akut	Transkriptomik menunjukkan perubahan ekspresi gen
			terkait sistem imun, remodelasi sirkulasi, dan apoptosis
			pada udang.
2.	Tinjauan 27	Stress - Paparan	Konsentrasi Metabolit Plasma menurun, Aktivitas Enzim
		Dingin Akut (suhu	terganggu, Gen UPR terganggu dan Apoptosis meningkat,
		13 °C)	Histological Changes dalam hepatopankreas mengalami
			kerusakan.
3.	Tinjauan 28	Stress – Abiotik	Stress abiotik mengganggu keseimbangan sistem
		(paparan dingin akut	metabolism energi dimana metabolism energi ini berubah
		& durasi tanpa air)	dari metabolism aerobik ke metabolism anaerobik, lama
			kelamaan akan menyebabkan kerusakan pada jaringan
			hepatopankreas dan defisiensi suplai ATP.

Berdasarkan Tinjauan penelitian 7, 27, 28, Diperoleh informasi bahwa stress yang disebabkan paparan dingin akut menyababkan meningkatnya apoptosis dan merusak hepatopankreas.

Tabel 2.1.9 Tinjauan Penelitian pengaruh salinitas terhadap proses molting

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 11	Molting –	Salinintas (+) maka pertumbuhan (-)
		Perubahan Nutrisi &	• Salinitas (+) maka proses molting (-)
		Salinitas selama	• Nutrisi (+) maka pertumbuhan (+)
		proses molting	
2.	Tinjauan 32	Molting – Salinitas ,	• Siklus Molting: Siklus molting udang vanammei
		Kalsium pada	terdiri dari beberapa tahap, yaitu intermolt, premolt,
		P.Vannamei dan	dan postmolt.
		P.Monodon	Pengaruh Kalsium: Penambahan kalsium dalam pakan
			dapat meningkatkan frekuensi <i>molting</i> dan
			pertumbuhan udan.
			Pengaruh Salinitas: Salinitas berpengaruh pada siklus
			molting

Berdasarkan Tinjauan penelitian 11 & 32, Diperoleh informasi bahwa diketahui bahwa salinitas mempengaruhi proses *molting*, dimana apabila salinitas meningkat maka pertumbuhan akan menurun, apabila salinitas menigkat maka prose *molting* akan menurun.

Tabel 2.1.10 Tinjauan Penelitian pengaruh fluktuasi & warna cahaya terhadap proses molting

No.	Penelitian Tinjauan	Indikator	Respon atau Dampak
1.	Tinjauan 22	Molting – Fluktuasi warna cahaya dan pertumbuhan	 Pengaruh Fluktuasi Warna Cahaya: Fluktuasi warna cahaya yang berirama mampu meningkatkan proses molting & pertumbuhan. Pengaruh Warna Cahaya: Cahaya hijau dan biru memiliki dampak lebih baik bagi pertumbuhan
2.	Tinjauan 37	Molting – Perubahan intensitas cahaya dan frekuensi molting serta pertumbuhan	Pengaruh Perubahan Intensitas Cahaya: Perubahan intensitas cahaya periodik berpengaruh pada frekuensi molting dan pertumbuhan

	•	Pengaruh	Warna	Cahaya:	Warna	cahaya
		berpengaruh	n pada	frekuensi	molting	g dan
		pertumbuha	n			

Berdasarkan Tinjauan 22, 37 faktor fluktuasi & warna cahaya mempengaruhi proses dan frekuensi molting pada udang.Fluktuasi warna cahaya yang berirama mampu meningkatkan proses molting & pertumbuhan, Cahaya hijau dan biru memiliki dampak lebih baik bagi pertumbuhan, Warna cahaya berpengaruh pada frekuensi molting dan pertumbuhan, Perubahan intensitas cahaya periodik berpengaruh pada frekuensi molting dan pertumbuhan.

Tabel 2.1.11 Tinjauan Penelitian beberapa faktor yang memperngaruhi proses molting.

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 10	Molting - Siklus Molting & Faktor yang mempengaruhi Molting	 Faktor yang mempengaruhi proses molting: Kadar protein, Karbohidrat, Lemak, Vitamin, Mineral, Oksigen, pH, Suhu, dan Stress. Siklus Molting: Pre-Moult Moult Post-Moult Inter-Moult
2.	Tinjauan 11	Molting – Perubahan Nutrisi & Salinitas selama proses molting	 Salinintas (+) maka pertumbuhan (-) Salinitas (+) maka proses molting (-) Nutrisi (+) maka pertumbuhan (+)
3.	Tinjauan 12	Molting – Penambahan Pakan menggunkan Mannan oligosakarida (MOS)	 Imunitas non-spesifik (+) Kesehatan usus (+) Resistensi antibiotik (-)

5.	Tinjauan 13 Tinjauan 14	Molting - Puasa post-larva vannamei pada saat molting Molting - Perubahan fisiologis dan biokimia selama siklus molting	 Puasa menyebabkan proses molting (+) post larva Molting (-) saat masa Puasa (+) Tingkat kelangsungan hidup tidak terpengaruh oleh aktifitas puasa Perubahan Biokimia: Hemocyanin (+) saat Pre-Molt Hemocyanin (-) saat Post-Molt Perubahan Fisiologis: Adanya perubahan pada volume hemolimfa Keterkaitan dengan Kapasitas Osmotik: Konsentrasi glukosa (+) saat premolt-akhir & awal post-molt
6.	Tinjauan 16	Molting - Osmoregulasi: media iso-osmotik pada proses molting	 Pola Osmoregulasi: Pertumbuhan (+) Kondisi Jaringan: Na-K-ATPase (+) Konsentrasi Asam Amino (-) Energi osmoregulasi: Energi osmoregulasi (-) selama proses molting namun dapat beradaptasi dengan baik
7.	Tinjauan 21	Molting - Perubahan ekspresi global dalam transkriptom	 Transkriptoma: 93,756 unigenes dikenali, dengan 5,117 gen yang berbeda ekspresinya pada semua tahapan molting. Gen yang Berbeda Ekspresinya: Regulasi hormon, Peristiwa triggering, Fase implementasi, Skeleton, dan Respons imun
8.	Tinjauan 22	Molting – Fluktuasi warna cahaya dan pertumbuhan	 Pengaruh Fluktuasi Warna Cahaya: Fluktuasi warna cahaya yang berirama mampu meningkatkan proses molting & pertumbuhan. Pengaruh Warna Cahaya: Cahaya hijau dan biru memiliki dampak lebih baik bagi pertumbuhan

9.	Tinjauan 24	Molting – Dinamika	Tingkat VG:	
		perubahan Level	d. Tingkat VG dalam hemolimfa udang putih dewasa	
		Hormon	(+) awal intermolt	
		Vitellogenin (VH)	e. Ablasi mata unilateral dan bilateral meningkatkar	
		& Vitellogenesis -	tingkat VG pada dewasa	
		Inhibiting (VIH)	f. Ablasi mata bilateral yang mempengaruhi subdewasa	
		serta Eyestalk	Tingkat VIH:	
		Ablation	e. Tingkat VIH dalam hemolimfa udang putih dewasa	
			tinggi pada postmolt.	
			f. Subdewasa tingkat VIH meningkat dari postmolt ke	
			intermolt stage	
			g. Ablasi mata unilateral meningkatkan tingkat VIF	
			pada dewasa	
			h. Ablasi mata unilateral dan bilateral meningkatkar	
			tingkat VIH pada subdewasa.	
10.	Tinjauan 25	Molting – Hipoksia	Pengaruh Kombinasi Ammonia dan Hipoksia:	
		& Ammonia pada	Kombinasi ammonia dan hipoksia dapa	
		proses molting	meningkatkan mortalitas udang biru pada tahap post	
			molt.	
			Pengaruh Ammonia:	
			Meningkatkan mortalitas pada tahap premolt dar	
			postmolt.	
			Pengaruh Hipoksia:	
			Hipoksia dapat meningkatkan mortalitas pada tahap	
			pre-mold dan post-molt	
			Pengaruh Molting:	
			Post-Molt adalah tahap yang paling rentan terhadap	
			mortalitas	
11.	Tinjauan 31	Molting – Siklus	Siklus molting udang budidaya terdiri dari tiga	
11.		Molting	tahapan:	
			a. Pre-moult,	
			b. Post-moult, dan	
			c. Intermoult.	

			•	Molting berpengaruh pada perilaku, komposisi, dan pertumbuhan udang. Strategi pengelolaan molting yang efektif meliputi pengawasan kualitas air, pemberian makanan yang tepat, dan penggunaan suplemen mineral yang diperlukan
12.	Tinjauan 32	Molting – Salinitas , Kalsium pada	•	Siklus Molting: Siklus molting udang vaname terdiri dari beberapa tahap, yaitu premolt, molt, postmolt,
		P.Vannamei dan		intermolt.
		P.Monodon	•	Pengaruh <i>Kalsium</i> : Penambahan kalsium dalam
				pakan dapat meningkatkan frekuensi molting dan
				pertumbuhan udan.
			•	Pengaruh Salinitas: Salinitas berpengaruh pada
				siklus molting
13.	Tinjauan 33	Molting –	•	Perubahan Morfologi: Ukuran fiber otot meningkat
		Perubahan		selama intermolt dan menurun selama premolt dan
		Morfologi & Biokimia pada otot		postmolt.
		abdominal udang	•	Perubahan Biokimia: Kandungan air dan protein
		disetiap tahapan		larut total tetap stabil, kandungan DNA meningkat selama intermolt dan premolt, dan kandungan RNA
		molting		tetap stabil kecuali pada tahap premolt akhir
14.	Tinjauan 34	Molting – Ekstrak	•	Penggunaan Ekstrak Paku Uban: Ekstrak daun Paku
	3	tanaman paku uban		Uban dapat meningkatkan frekuensi molting dan
				mempercepat proses molting
			•	Dosis Optimum: Dosis 150 ppm ekstrak daun Paku
				Uban terbukti sebagai dosis optimum untuk
				meningkatkan persentase molting dan pertumbuhan
				berat
15.	Tinjauan 35	Molting – sintesis	•	Pengaruh Molting: sintesis enzim proteolitik
		enzim proteolitik		meningkat selama molting (premolt dan postmolt)
		pada saat kondisi	•	Pengaruh Kekurangan Makanan:
		kekurangan makanan & molting		sintesis enzim proteolitik meningkat selama
		makanan & morning		kekurangan makanan (premolt dan postmolt).

			•	Interaksi Molting dan Kekurangan Makanan: Interaksi antara molting dan kekurangan makanan berpengaruh pada sintesis enzim proteolitik di gland midgut.
16.	Tinjauan 36	Molting - Ukuran, Molt Stage, Osmolalitas dan Kadar Elektrolit	•	Hemolymph Oxyhemocyanin: Tingkat oxyhemocyanin dalam hemolymph udang putih berbeda-beda tergantung pada ukuran dan tahap molting Hemolymph Protein: Tingkat protein dalam hemolymph udang putih juga berbeda-beda tergantung pada ukuran dan tahap molting Osmolalitas: Tingkat osmolality dalam hemolymph udang putih tidak berbeda-beda signifikan antara ukuran dan tahap molting Kadar Elektrolit: Tingkat elektrolit dalam hemolymph udang putih tidak berbeda-beda signifikan antara ukuran dan tahap molting
17.	Tinjauan 37	Molting – Perubahan intensitas cahaya dan frekuensi molting serta pertumbuhan	•	Pengaruh Perubahan Intensitas Cahaya: Perubahan intensitas cahaya periodik berpengaruh pada frekuensi molting dan pertumbuhan Pengaruh Warna Cahaya: Warna cahaya berpengaruh pada frekuensi molting dan pertumbuhan
18.	Tinjauan 42	Cannibalism – Perilaku kanibalisme Udang coklat crangon	•	Perilaku cannibalism: Perilaku ini dapat terjadi karena kekurangan makanan, kepadatan yang tinggi, dan keterbatasan tempat perlindungan. Faktor yang Mempengaruhi Cannibalisme: Faktor yang mempengaruhi cannibalisme antara lain kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Kondisi Lingkungan: Kanibalisme lebih tinggi pada udang yang sedang mengalami molting.

19.	Tinjauan 45	Kanibalisme –	Kannibalisme lebih tinggi selama periode molting atau
		tingkat kanibalisme	molting. Udang yang sedang mengalami molting akan
		spesies udang C.	lebih lemah dan rentan terhadap udang lain yang lebih
		caementarius tinggi	besar.

Berdasarkan Tinjauan penelitian 10, 11, 12, 13, 14, 16, 21, 22, 24, 25, 31, 32, 33, 34, 35, 36, 37,42, 45 Diperoleh informasi bahwa faktor yang mempengaruhi proses molting diantaranya Kadar protein, Karbohidrat, Lemak, Vitamin, Mineral, Oksigen, pH, Suhu, Intensitas cahaya, Media osmoregulasi, Stress. Proses molting menyebabkan perubahan fisiologis, biokimia, mekanisme molekuler yang berpengaruh terhadap kesehatan dan keberhasilan pertumbuhan udang. Namun kombinasi paparan ammonia dan hipoksia menyebabkan meningkatkan mortalitas selama proses molting. Mortalitas tertinggi pada udang vannamei terjadi karena kanibalisme pada proses molting.

Tabel 2.1.12 Tinjauan Penelitian faktor-faktor pendukung kanibalisme

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 39	Cannibalism –	• Faktor Ukuran Individu: Ukuran individu
		Pengaruh 4 faktor	berpengaruh pada cannibalisme post-larva Penaeus
		pendukung	monodon. Hasil penelitian menunjukkan bahwa
		cannibalism pada	cannibalisme meningkat dengan peningkatan ukuran
		post-larva	individu.
		P.Monodon	• Faktor Kepadatan: Kepadatan berpengaruh pada
			cannibalisme post-larva Penaeus monodon. Hasil
			penelitian menunjukkan bahwa cannibalisme
			meningkat dengan peningkatan kepadatan, terutama
			pada kepadatan di atas 110 ind/L.
			Faktor Makanan: Faktor makanan berpengaruh pada
			cannibalisme post-larva Penaeus monodon. Hasil
			penelitian menunjukkan bahwa cannibalisme
			meningkat dengan peningkatan kekurangan
			makanan.
			Faktor Aerasi: Cannibalisme menurun ketika aerasi
			mencukupi, sedangkan aerasi yang tidak mencukupi

			dapat mempengaruhi tingkat cannibalisme. Dimana aerasi berguna untuk meningkatkan kualitas air.
2.	Tinjauan 40	Cannibalism - penambahan asam amino triptofan dalam pakan menekan terjadinya cannibalism	 Tingkat Kanibalisme: Tingkat kanibalisme udang vaname yang diberi triptofan dalam pakan menunjukkan hasil yang lebih rendah dibandingkan dengan control. Kelulushidupan: Kelulushidupan udang vaname yang diberi triptofan dalam pakan juga meningkat. Pertumbuhan Bobot Mutlak: Pertumbuhan bobot mutlak udang vaname tidak berbeda signifikan antar perlakuan. Laju Pertumbuhan Spesifik: Laju pertumbuhan spesifik udang vaname juga tidak berbeda signifikan antar perlakuan. Rasio Konversi Pakan: Rasio konversi pakan udang vaname tidak berbeda signifikan antar perlakuan. Kualitas Air: Kualitas air dalam penelitian ini berada dalam kisaran yang baik untuk budidaya udang vanammei.
3.	Tinjauan 41	Cannibalism – Prevelensi & Faktor yang mempengaruhi cannibalism	 Prevalensi cannibalism dipengaruhi oleh berbagai faktor biotik dan abiotik, seperti kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Faktor yang Mempengaruhi Cannibalism: Faktor yang mempengaruhi cannibalism antara lain kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, dan ketersediaan tempat perlindungan dan makanan. Faktor-faktor ini dapat berbeda-beda tergantung pada spesies dan fase perkembangan.

4.	Tinjauan 42	Cannibalism –	• Pada krustasea, kanibalisme seringkali
		Perilaku	merupakan respons terhadap pemicu stress.
		kanibalisme Udang	• Faktor yang Mempengaruhi Cannibalisme:
		coklat crangon	kepadatan, status molting, ukuran heterogenitas,
			fotoperiod, intensitas cahaya, dan ketersediaan
			tempat perlindungan dan makanan.
			Kondisi Lingkungan: Kanibalisme lebih tinggi
			pada udang yang sedang mengalami molting.
			Kanibalisme pada krustasea sering dianggap
			sebagai perilaku oportunistik yang terkait dengan
			molting (pergantian kulit).
5.	Tinjauan 45	Cannibalism –	Kanibalisme lebih tinggi selama periode molting atau
		tingkat kanibalisme	molting. Udang yang sedang mengalami molting akan
		spesies udang C.	lebih lemah dan rentan terhadap udang lain yang lebih
		caementarius tinggi	besar.

Berdasarkan Tinjauan penelitian 39, 40, 41, 42, 45. Diperoleh informasi bahwa pada *crustacea*, kanibalisme seringkali merupakan respons terhadap pemicu stress. Prevalensi kanibalisme dipengaruhi oleh berbagai faktor biotik dan abiotik, seperti kepadatan, status molting, ukuran heterogenitas, fotoperiod, intensitas cahaya, aerasi dan ketersediaan tempat perlindungan dan makanan. Dimana faktor-faktor ini dapat berbedabeda tergantung pada spesies dan fase perkembangan. Penambahan asam amino triptofan dalam pakan dapat menurunkan tingkat kanibalisme dan meningkatkan pertumbuhan udang vannamei. Kanibalisme lebih tinggi pada udang yang sedang mengalami proses molting.

Tabel 2.1.13 Tinjauan Penelitian beberapa parameter yang mempengaruhi kemampuan berenang udang

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 18	Swimming -	Kemampuan Berenang:
		Respon fisiologis	Kemampuan berenang (-) jika kecepatan
		saat kelelahan	berenang (+)
		berenang	Respons Fisiologis:
			Kelelahan berenang maka:

		<u> </u>		(1.1.()
			c.	massa tubuh (-)
			d.	konsentrasi protein hemolimfa (-) konsentrasi
				glukosa hemolimfa (-)
			•	Penggunaan Protein Hemolimfa:
				Kadar protein hemolimfa merupakan indikator
				evaluasi kemampuan berenang
2.	Tinjauan 20	Swimming -	•	Kemampuan Berenang:
		Pengaruh oksigen		Kemampuan Berenang (-) seiring konsentrasi
		terlarut pada		oksigen terlarut (-)
		kelelahan berenang	•	Respons Fisiologis:
			•	Kelelahan menyebabkan penurunan konsentrasi
				protein hemolimfa, glukosa hemolimfa, dan
				adenosin triphosfat (ATP)
3.	Tinjauan 29	Swimming –	•	Kemampuan Berenang: kemampuan berenang
		Perubahan Suhu,		meningkat dengan peningkatan suhu, tetapi
		Salinitas terhadap		menurun dengan peningkatan salinitas.
		kemampuan	•	Suhu: kemampuan berenang meningkat dengan
		berenang		peningkatan suhu dari 15°C dan menurun di suhu
				25°C.
			•	Salinitas: menyebabkan kemampuan berenang
				menurun dengan peningkatan salinitas
4.	Tinjauan 30	Swimming –	•	Pengaruh Suhu: Suhu (+) maka kecepatan
		Pengaruh Suhu,		berenang kritikal (+).
		Salinitas, Panjang	•	Pengaruh Salinitas: salinitas (+) maka kecepatan
		Tubuh		berenang (-).
			•	Pengaruh Panjang Tubuh: Panjang tubuh (+)
				maka kecepatan berenang kritikal (+)
5.	Tinjauan 38	Swimming -	•	Metabolisme Glukosa dan Trigliserida: udang
		mekanisme energi		menggunakan metabolisme aerobik untuk energi
		yang digunakan		yang dibutuhkan selama berenang dengan
		selama berbagai		kecepatan rendah, sedangkan berenang dengan

		mode gerak selama	kecepatan tinggi dan berguling menggunakan
		aktivitas berenang	metabolisme anaerobik.
			 Regulasi Enzim Glukolitik: adanya peningkatan glukolitik pada berbagai mode gerak, yang menyebabkan penumpukan laktat dan kelelahan gerak. Karakteristik Gerak: berjalan, berenang, dan berguling, untuk beradaptasi dengan lingkungan yang berbeda.
			, ,
6.	Tinjauan 46	Paparan polystyrene	Growth Inhibition
		microplastics –	Abnormal Swimming Behavior
		stress oksidatif,	Reduced Swimming Performance
		lukaan	Lipid Peroxidation
		hepatopankreas,	Oxidative Stresss
		perubahan perilaku	• Lukaan hepatopankreas & perubahan metaboloma
		& metaboloma	

Berdasarkan Tinjauan 18, 20, 29, 30, 38, 46. Diperoleh informasi bahwa kemampuan berenang udang litopenaeus vannamei dipengaruhi oleh beberapa parameter diantaranya adalah oksigen terlarut, protein hemolimfa, suhu, salinitas, panjang tubuh, paparan *polystyrene microplastics* serta *Oxidative Stresss*. Mode gerak pada udang adalah berjalan, berenang, berguling yang digunakan untuk beradaptasi dengan lingkungan yang berbeda. Terjadi perubahan fisiologis pada udang pada waktu mengalami kelelahan saat berenang diantaranya terjadi penurunan terhadap masa tubuh, konsentasi protein hemolimfa, glukosa hemolinfa, adenosine triphosfat. Selain itu mode gerak yang digunakan menyebabkan terjadinya perubahan metabolism *aerobic* dan *anaerobic*.

Tabel 2.1.14 Tinjauan Penelitian kondisi stress mempengaruhi pola berenang udang

No.	Penelitian	Indikator	Respon atau Dampak
	Tinjauan		
1.	Tinjauan 1 Stress - Sulfida		Menyebabkan kerusakan pada:
	,		Struktur histologis,
			Fungsi osmoregulasi,
			Respirasi, dan
			Respons imun pada insang
2	T::::::::::: 2	Conser Dala Par	Menyebabkan perubahan fisiologis:
2.	2. Tinjauan 2 Stress - Pola diet	 Perubahan kadar prostaglandin pada insang, 	
			Stress hipoksia,
			Peningkatan kadar glukosa darah dan tingkat
			konsumsi oksigen yang meningkat
2	Tinjauan	Paparan polystyrene	Growth Inhibition
3.	46	<i>microplastics</i> – stress	Abnormal Swimming Behavior
		oksidatif, lukaan	Reduced Swimming Performance
		hepatopankreas,	Lipid Peroxidation
		perubahan perilaku &	Oxidative Stresss
		metaboloma	• Lukaan hepatopankreas & perubahan metaboloma

Berdasarkan tinjauan penelitian 1 & 2, Diperoleh informasi bahwasanya kondisi stress mempengaruhi bagian insang udang diantaranya kerusakan histologis pada insang udang mempengaruhi fungsi respirasi dan osmoregulasi, perubahan kadar prostaglandin pada insang yang juga berdampak pada pola berenang udang.

Tabel 2.1.15 Tinjauan Penelitian kadar protein hemolimfa dapat digunakan sebagai indikator cepat dan reliabel untuk mengevaluasi kemampuan berenang

No.	Penelitian	Indikator	Respon atau Dampak	
	Tinjauan			
1.	Tinjauan	Swimming – Respon	Kemampuan Berenang:	
	18	fisiologis saat	Kemampuan berenang (-) jika kecepatan berenang	
		kelelahan berenang	(+)	
			Respons Fisiologis:	
			Kelelahan berenang maka:	
			e. massa tubuh (-)	
			f. konsentrasi protein hemolimfa (-) konsentrasi	
			glukosa hemolimfa (-)	
			Penggunaan Protein Hemolimfa:	
			Kadar protein hemolimfa merupakan indikator	
			evaluasi kemampuan berenang	
2.	Tinjauan	Swimming -	Kemampuan Berenang:	
	20	Pengaruh oksigen	Kemampuan Berenang (-) seiring konsentrasi	
		terlarut pada	oksigen terlarut (-)	
		kelelahan berenang	Respons Fisiologis:	
			Kelelahan menyebabkan penurunan konsentrasi	
			protein hemolimfa, glukosa hemolimfa, dan	
			adenosin triphosfat (ATP)	
3.	Tinjauan	Fase Bulan -	• Fase Bulan Baru: THC tertinggi dan produksi O2-	
	48	Mempengaruhi	tertinggi ditemukan pada fase bulan baru.	
		Molting, Respon	• Fase Bulan Ketiga: THC terendah ditemukan pada fase	
		Fisiologis, Imun	bulan ketiga.	
			• Fase Intermolt: Kehadiran Vibrio spp. tidak	
			menunjukkan perbedaan yang signifikan antara fase	
			bulan yang berbeda	

Tinjauan penelitian 18,20, 48 Diperoleh informasi bahwa kadar protein hemolimfa dapat digunakan sebagai indikator cepat dan reliabel untuk mengevaluasi kemampuan berenang udang putih. Kelelahan berenang menyebabkan perubahan kemampuan berenang pada udang dikarenakan adanya respon fisiologis

diantaranya penurunan konsentrasi protein hemolimfa, glukosa hemolimfa, dan adenosin triphosfat (ATP) yang signifikan Ada kemungkinan fase bulan mempengaruhi kemampuan berenang udang, dimana fase bulan baru Total Hemocytes Counts meningkat yang artinya jumlah hemolimfa meningkat.

Tabel 2.1.16 Tinjauan Penelitian stress mempengaruhi proses molting yang juga berdampak terhadap perubahan pola berenang udang

No.	Penelitian	Indikator	Respon atau Dampak	
	Tinjauan			
1.	Tinjauan 10	Molting - Siklus Molting & Faktor yang mempengaruhi Molting	 Faktor yang mempengaruhi proses molting: Kadar protein, Karbohidrat, Lemak, Vitamin, Mineral, Oksigen, pH, Suhu, dan Stress. Siklus Molting: 9. Pre-Moult 10. Moult 11. Post-Moult 12. Inter-Moult 	
2.	Tinjauan 14	Molting - Perubahan fisiologis dan biokimia selama siklus molting	 Perubahan Biokimia: Hemocyanin (+) saat Pre-Molt Hemocyanin (-) saat Post-Molt Perubahan Fisiologis: Adanya perubahan pada volume hemolimfa Keterkaitan dengan Kapasitas Osmotik: Konsentrasi glukosa (+) saat premolt-akhir & awal post-molt 	

Berdasarkan tinjauan penelitian 10 & 14, diperoleh informasi bahwa kondisi stress pada udang mempengaruhi proses molting menjadi lebih lambat. Dimana saat stress memicu perubahan bikimia diantaranya meningkatnya glukosa dalam hemolimfa, kandungan glikogen dalam glandus digestive. Selain itu juga adanya perubahan fisiologis diantaranya perubahan volume hemolimfa sebelum molting yang mempengaruhi konsentrasi glukosa dan hemocyanin dalam hemolimfa. Perubahan biokimia dan fisiologis selama siklus molting terkait dengan perubahan kapasitas osmotik organisme. digunakan sebagai indikator energi yang dibutuhkan selama siklus molting.

Tabel 2.1.17 Tinjauan Penelitian frekuensi pakan & fase cahaya gelap mempengaruhi aktivitas & kecepatan berenang kritikal pada udang

No.	Penelitian	Indikator	Respon atau Dampak	
	Tinjauan			
1.	Tinjauan 17	Pengaruh frekuensi	Pola Aktivitas Makan:	
		pemberian pakan	Frekuensi pemberian makan (+) maka aktivitas makan	
		terhadap perilaku	(+)	
		udang	Pola Aktivitas Lain:	
			Frekuensi pemberian makan (+) maka aktivitas	
			berenang (+)	
			Pengaruh Fase Cahaya dan Gelap:	
			Saat fase gelap maka aktivitas berenang (+)	
			Optimasi Aktivitas:	
			Frekuensi pemberian makan (+) maka aktivitas	
			optimal	
2.	Tinjauan 30	Swimming -	Pengaruh Suhu: Suhu (+) maka kecepatan	
		Pengaruh Suhu,	berenang kritikal (+).	
		Salinitas, Panjang	Pengaruh Salinitas: salinitas (+) maka kecepatan	
		Tubuh	berenang (-).	
			Pengaruh Panjang Tubuh: Panjang tubuh (+) maka	
			kecepatan berenang kritikal (+)	

Tinjauan penelitian 17 & 30, Diperoleh informasi bahwasanya frekuensi pemberikan pakan pada udang mempengaruhi aktivitas berenang dan kecepatan berenang kritikal udang. Fase cahaya gelap membuat aktivitas berenang lebih tinggi.

Tabel 2.1.17 Tinjauan Penelitian beberepa faktor mempengaruhi kemampuan berenang, kecepatan berenang kritikal pada udang

No.	Penelitian	Indikator	Respon atau Dampak		
	Tinjauan				
1.	Tinjauan 20	Swimming – Pengaruh oksigen terlarut pada kelelahan berenang	 Kemampuan Berenang: Kemampuan Berenang (-) seiring konsentrasi oksigen terlarut (-) Respons Fisiologis: Kelelahan menyebabkan penurunan konsentrasi protein hemolimfa, glukosa hemolimfa, dan adenosin triphosfat (ATP) 		
2.	Tinjauan 29	Swimming – Perubahan Suhu, Salinitas terhadap kemampuan berenang	 Kemampuan Berenang: kemampuan berenang meningkat dengan peningkatan suhu, tetapi menurun dengan peningkatan salinitas. Suhu: kemampuan berenang meningkat dengan peningkatan suhu dari 15°C dan menurun di suhu 25°C. Salinitas: menyebabkan kemampuan berenang menurun dengan peningkatan salinitas 		
3.	Tinjauan 31	Molting – Siklus Molting	 Siklus molting udang budidaya terdiri dari 4 tahapan: 5. Pre-moult, 6. Molt 7. Post-moult, dan 8. Intermoult. Molting berpengaruh pada perilaku, komposisi, dan pertumbuhan udang. Strategi pengelolaan molting yang efektif meliputi pengawasan kualitas air, pemberian makanan yang tepat, dan penggunaan suplemen mineral yang diperlukan 		

4.	3	Paparan polystyrene	Growth Inhibition
	46	<i>microplastics</i> – stress	Abnormal Swimming Behavior
		oksidatif, lukaan	Reduced Swimming Performance
		hepatopankreas,	Lipid Peroxidation
		perubahan perilaku &	Oxidative Stresss
		metaboloma	• Lukaan hepatopankreas & perubahan metaboloma

Tinjauan penelitian 20, 29, 31, 46. Diperoleh informasi bahwa kemampuan berenang, kecepatan berenang kritikal pada udang dipengaruhi oleh beberapa faktor diantaranya suhu, salinitas, ukuran panjang tubuh udang saat proses molting, konsentrasi oksigen terlarut, *Oxidative Stresss*, Paparan *polystyrene microplastics*.

Tabel 2.1.18 Tinjauan Penelitian molting memicu stes yang juga mempengaruhi kemampuan & kecepatan berenang kritikal pada udang

No.	Penelitian	Indikator	Respon atau Dampak		
	Tinjauan				
1.	Tinjauan	Molting - Perubahan	Perubahan Biokimia:		
	14	fisiologis dan	1. Hemocyanin (+) saat Pre-Molt		
		biokimia selama	2. Hemocyanin (-) saat Post-Molt		
		siklus molting	 Perubahan Fisiologis: 		
			Adanya perubahan pada volume hemolimfa		
			Keterkaitan dengan Kapasitas Osmotik:		
			Konsentrasi glukosa (+) saat premolt-akhir & awal post-		
			molt		
2.	Tinjauan	Pengaruh frekuensi	Pola Aktivitas Makan:		
	17	pemberian pakan	Frekuensi pemberian makan (+) maka aktivitas makan		
		terhadap perilaku	(+)		
udang • Pola Aktivitas Lain:		Pola Aktivitas Lain:			
			Frekuensi pemberian makan (+) maka aktivitas		
			berenang (+)		
			 Pengaruh Fase Cahaya dan Gelap: 		
			Saat fase gelap maka aktivitas berenang (+)		
			Optimasi Aktivitas:		

			Frekuensi pemberian makan (+) maka aktivitas optimal	
3.	Tinjauan	Swimming – Respon	Kemampuan Berenang:	
	18	fisiologis saat	Kemampuan berenang (-) jika kecepatan berenang	
		kelelahan berenang	(+)	
			 Respons Fisiologis: 	
			Kelelahan berenang maka:	
			1. massa tubuh (-)	
			2. konsentrasi protein hemolimfa (-) konsentrasi	
			glukosa hemolimfa (-)	
			 Penggunaan Protein Hemolimfa: 	
			Kadar protein hemolimfa merupakan indikator	
			evaluasi kemampuan berenang	
4.	Tinjauan	Swimming -	Kemampuan Berenang:	
	20	Pengaruh oksigen	Kemampuan Berenang (-) seiring konsentrasi	
		terlarut pada	oksigen terlarut (-)	
		kelelahan berenang	 Respons Fisiologis: 	
			• Kelelahan menyebabkan penurunan konsentrasi	
			protein hemolimfa, glukosa hemolimfa, dan	
			adenosin triphosfat (ATP)	
5.	Tinjauan	Swimming -	• Kemampuan Berenang: kemampuan berenang	
	29	Perubahan Suhu,	meningkat dengan peningkatan suhu, tetapi	
		Salinitas terhadap	menurun dengan peningkatan salinitas.	
		kemampuan	• Suhu: kemampuan berenang meningkat dengan	
		berenang	peningkatan suhu dari 15°C dan menurun di suhu	
			25°C.	
			• Salinitas: menyebabkan kemampuan berenang	
			menurun dengan peningkatan salinitas	
6.	Tinjauan	Swimming –	Pengaruh Suhu: Suhu (+) maka kecepatan berenang	
	30	Pengaruh Suhu,	kritikal (+).	
		Salinitas, Panjang	 Pengaruh Salinitas: salinitas (+) maka kecepatan 	
		Tubuh	berenang (-).	

			Pengaruh Panjang Tubuh: Panjang tubuh (+) maka		
			kecepatan berenang kritikal (+)		
	Tinjauan	Molting – Siklus	• Siklus molting udang budidaya terdiri dari tiga		
7.	31	Molting	tahapan:		
			3. Pre-moult,		
			4. Post-moult, dan		
			5. Intermoult.		
			Molting berpengaruh pada perilaku, komposisi, dan		
			pertumbuhan udang.		
			• Strategi pengelolaan molting yang efektif meliputi		
			pengawasan kualitas air, pemberian makanan yang		
			tepat, dan penggunaan suplemen mineral yang		
			di <mark>perlukan</mark>		

Tinjauan penelitian 14, 17, 18, 20, 29, 30, 31. Diperoleh informasi bahwa molting merupakan salah satu pemicu stress pada udang dengan indikator adanya peningkatan glukosa dalam hemolimfa. Frekuensi pemberian makan memperngaruhi aktivitas berenang dan kecepatan berenang kritikal udang. Kadar protein hemolimfa sebagai indikator cepat dan reliabel untuk mengevaluasi kemampuan berenang udang putih, Kemampuan berenang, kecepatan berenang kritikal udang putih dipengaruhi beberapa faktor diantaranya suhu, salinitas, ukuran tubuh udang saat molting, konsentrasi oksigen terlarut.

Tabel 2.1.19 Tinjauan Penelitian Korelasi Versi YOLOV dengan Tingkat Akurasi

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
1.	Tinjauan 49	YOLOv3	• Training Data: 325 gambar	96.10%.
			• Test Data: 99 gambar	
2.	Tinjauan 50	Light-YOLOv4	• Training Data: 325 gambar	92.12%,
			• Test Data: 99 gambar	

Tinjauan penelitian 49 & 50, Diperoleh informasi bahwa proses menghitung larva udang secara otomatis, dengan dataset 325 gambar untuk data latih & 99 gambar untuk data uji menggunakan metode You Only Look Once (YOLO) generasi ke-3 diperoleh akurasi sebesar 96.10%. Dan untuk penggunaan metode Light-YOLOv4 yang ringan diperoleh akurasi sebesar 92.12%. Namun pendeteksian deteksi larva udang yang

menggunakan model CAGNet, dimana datasetnya tidak dijelaskan secara jelas jumlah data uji dan data latih yang digunakan, diperoleh nilai akurasi sebesar 95%.

Tabel 2.1.20 Tinjauan Penelitian model dengan akurasi terbaik untuk mendeteksi objek bawah air.

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
49.	Tinjauan 49	YOLOv3	Training Data: 325 gambar	96.10%.
			• Test Data: 99 gambar	
50.	Tinjauan 50	Light-YOLOv4	• Training Data: 325 gambar	92.12%,
			• Test Data: 99 gambar	
51.	Tinjauan 51	CAGNet-	Gambar larva udang dunia nyata	95%
		deteksi objek	yang dikumpulkan dari peternakan	
		bawah air	aquakultur	
		fleksibel &		
		efektif		
52.	Tinjauan 52	YOLOv8-MU	Dataset URPC2020	• URPC2019 78.4%,
			• Dataset URPC2019	• URPC2020 80.9%,
			Dataset Aquarium	• Aquarium 75.5%
53.	Tinjauan 53	YOLOv8n –	Tidak disebutkan secara spesifik	Model yang dihasilkan
		deteksi objek	dalam sumber daya yang tersedia.	meningkatkan akurasi
		bawah air yang	Namun, penelitian ini menggunakan	deteksi objek bawah
		ringan	dataset yang terkait dengan deteksi	air sebanyak 2.0%,
			objek bawah air, seperti gambar-	3.0%, dan 1.9% untuk
			gambar bawah air yang diambil	AP50, AP75, dan mAP
			menggunakan kamera bawah air	masing-masing.
			atau drone bawah air	
54.	Tinjauan 54	YOLO-SE	SIMD dataset dan NWPU VHR-10	• Presisi Rata-rata
			dataset	pada Ambang Batas
				IoU 0,5 (AP50):
				86.5%.
				• Kumpulan Data
				NWPU VHR-10:
				94.9%.

55.	Tinjauan 55	YOLOv8 - EF-	URPC2020 dataset	Akurasi Tinggi: EF-
		UODA:		UODA memiliki
		Underwater		akurasi yang lebih
		Object Detection		tinggi daripada
		Based on		algoritma deteksi
		Enhanced		objek bawah air
		Feature		lainnya, seperti
				YOLOv8X dan RT-
				DETR, dengan
				meningkatkan mean
				average precision
				(mAP) sebesar 2.9%
				dan 2.1% secara
				bersamaan.
56	Tinjauan 56	Two-Phase	Dataset larva udang putih yang	Akurasi penghitungan
		Instance	diambil menggunakan kamera	larva udang putih yang
		Segmentation –		tinggi, dengan rentang
		Overlapping		92.2% hingga 95.4%
		image under		untuk gambar dengan
		water		overlapping moderat
57.	Tinjauan 57	EfficientDet -	Dataset underwater object	Akurasi deteksi
		deteksi objek	detection yang terdiri dari 1.000	sebesar 95,1%
		bawah air	gambar	
58.	Tinjauan 58	Concatenate and	RUOD (Real-time Underwater	Deteksi objek bawah
		Shuffle Network	Object Detection) dan DUO	air yang kecil dan
		(CSNet) – Objek	(Dense Underwater Object)	padat, dengan akurasi
		bawah air kecil	datasets	yang tinggi dan
		dan berjajar		kecepatan real-time
59.	Tinjauan 59	YOLOv8 –	UTDAC2020 underwater dataset	mAP 52.12% pada
		objek kecil	dan Pascal VOC dataset	dataset UTDAC2020
		bawah air dan		dan 53.18% pada
		overlapping		dataset Pascal VOC

60.	Tinjauan 60	YOLOv8-n –	Citra remote sensing yang berisi	Model memiliki
		remote sensing	objek kecil.	keseimbangan yang
		berisi objek kecil		lebih baik antara
				akurasi deteksi dan
				kompleksitas model,
				mengungguli model
				lain dalam hal akurasi
				model, kompleksitas
				model, dan kecepatan
				inferensi model
61.	Tinjauan 61	Yolox Under	Dataset UVODD dan mAP 0.5	Presisi Rata-rata
		Water Video -		(mAP) yang tinggi
		deteksi objek		sebesar 89,0%, 3,2%
		bawah air stabil		lebih baik
		dan efektif		dibandingkan model
				Yolox asli.
62.	Tinjauan 62	YOLOv7 –	http://www.urpc.org.cn/	akurasi 95,6% dan
		distorsi warna &	indeks.html.	kecepatan 30 FPS
		kualitas gambar		
		deteksi objek		
		bawah air		
63.	Tinjauan 63	Yolo – Deteksi	Brackish underwater dataset berisi	YOLO-UOD dapat
		objek bawah air	10.995 gambar	mendeteksi benda di
		yang fast dan		bawah air dengan
		akurat		akurasi yang lebih
				tinggi dan efisiensi
				komputasi yang lebih
				baik dibandingkan
				algoritma YOLOv4-
				tiny

Tinjauan penelitian 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 Diperolah informasi bahwa model terbaik untuk mendeteksi dataset berupa objek bawah air adalah dengan menggunakan metode *EF-UODA: Underwater Object Detection Based on Enhanced Feature*. Dengan nilai akurasi paling tinggi yakni mAP sebesar 2.9% dan 2.1% secara bersamaan.

Tabel 2.1.21 Tinjauan Penelitian Deteksi overlapping image bawah air

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
56	Tinjauan 56	Two-Phase	Dataset larva udang putih yang	Akurasi penghitungan
		Instance	diambil menggunakan kamera	larva udang putih yang
		Segmentation –		tinggi, dengan rentang
		Overlapping		92.2% hingga 95.4%
		image under		untuk gambar dengan
		water		overlapping moderat
59.	Tinjauan 59	YOLOv8 –	UTDAC2020 underwater dataset	mAP 52.12% pada
		objek kecil	dan Pascal VOC dataset	dataset UTDAC2020
		bawah air dan		dan 53.18% pada
		overlapping		dataset Pascal VOC

Tinjauan 56 dan 59 diperoleh informasi bahwa untuk memperoleh hasil akurasi yang baik untuk mendeteksi objek bawah air dengan kondisi objek overlapping, menggunakan metodologi Two- Two-Phase Instance Segmentation dan YOLOv8.

Tabel 2.1.22 Tinjauan Penelitian Deteksi objek kecil bawah air

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
58.	Tinjauan 58	Concatenate and	RUOD (Real-time Underwater	Deteksi objek bawah
		Shuffle Network	Object Detection) dan DUO	air yang kecil dan
		(CSNet) – Objek	(Dense Underwater Object)	padat, dengan akurasi
		bawah air kecil	datasets	yang tinggi dan
		dan berjajar		kecepatan real-time
60.	Tinjauan 60	YOLOv8-n –	Citra remote sensing yang berisi	Model memiliki
		remote sensing	objek kecil.	keseimbangan yang
		berisi objek kecil		lebih baik antara
				akurasi deteksi dan
				kompleksitas model,
				mengungguli model
				lain dalam hal akurasi
				model, kompleksitas
				model, dan kecepatan
				inferensi model

Berdasarkan tinjauan penelitian 58 dan 60, diperoleh informasi bahwa untuk dapat mendeteksi objek bawah air dengan kondisi ukuran objek kecil, sebaiknya menggunakan Concatenate and Shuffle Network (CSNet) atau YOLOv8-n.

Tabel 2.1.23 Tinjauan Penelitian Metode Segmentasi Annotasi pada data video

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
68.	Tinjauan 68	MaskFree-Video	• YouTube-VIS 2019/2021	MaskFreeVIS dapat
		Instance	• OVIS	mencapai performa VIS
		Segmentation	• BDD100K MOTS	yang tinggi tanpa
				menggunakan annotation
				mask.
70.	Tinjauan 70	Video Mask	(YTVIS) berisi 2.883 video	Algoritma yang efektif
		Transfiner (VMT)	• HighQuality-YTVIS: YTVIS asli	untuk memprediksi mask
			(2238 video) - new training (1678	dengan detail batas objek

			video, 75%), val (280 video 12,5%)	yang akurat dan
			dan testing (280 video 12,5%)	konsisten pada waktu.
67.	Tinjauan 67	SAM (The Segment Anything Model)	 DAVIS 30 video yang berbeda dan memiliki 3,000 frame. YouTube-VOS 6.000 frame dan memiliki 2.000 objek yang berbeda BDD100K 100,000 frame dan 	Akurasi dan efisiensi tinggi.
			 memiliki 10,000 objek yang berbeda Unidentified Video Objects 1.000 frame dan memiliki 100 objek yang berbeda. 	

Berdasarkan tinjauan penelitian 67, 68, 70 diperoleh informasi bahwa metode yang baik digunakan untuk memudahkan proses segmentasi annotasi pada suatu data berupa video interaktif adalah menggunakan Mask-Free Video Instance Segmentation atau Video Mask Transfiner for High-Quality Video Instance Segmentation, SAM (The Segment Anything Model).

Tabel 2.1.24 Tinjauan Penelitian Metode Tracking untuk data video

No.	Penelitian	Metodologi	Dataset	Hasil Akurasi
	Tinjauan			
69.	Tinjauan 69	Track Every Thing	BDD100K dataset	TETA mengevaluasi
		Accuracy (TETA) -	• TAO (Tracking Any Object) dataset	pelacak secara lebih
		Class Exemplar		komprehensif dan TETer
		Matching (CEM)		mencapai peningkatan
		untuk asosiasi		yang signifikan pada
		objek		kumpulan data skala
				besar BDD100K dan
				TAO.
72	Tinjauan 72	Quasi-	MOT17, BDD100K, Waymo, TAO,	pembelajaran kesamaan
		DenseTrack	MOT16	yang lebih efektif dengan
				pengambilan sampel
				wilayah proposal yang
				padat pada pasangan
				gambar dapat
				meningkatkan kinerja
				pelacakan objek.

Berdasarkan tinjauan penelitian 69 dan 72 diperoleh informasi bahwa ada beberapa metode yang baik untuk melakukan tracking atau pelacakan terhadap objek dengan skala yang lebih luas yaitu *Track Every Thing Accuracy (TETA) - Class Exemplar Matching (CEM)* untuk asosiasi objek dan *Quasi-DenseTrack*.

Tabel 2.1.25 Tinjauan Penelitian Metode analisa tekstur suatu image

No.	Penelitian	Metodologi		Dataset		Hasi	Akuras	i
	Tinjauan							
73.	Tinjauan 73	Generative	Pakaian , Handbags, Tas Tangan yang			jaringan g	eneratif	dapat
		Network	Digambar	Manusia,	Texture	menghasill	kan	objek
		Development -	Database			realistis	berda	sarkan
		Local Texture Loss				sketsa dan	patch te	kstur
		Development						

Berdasarkan tinjauan penelitian 73 diperoleh informasi bahwa metode Generative Network Development - Local Texture Loss Development baik untuk mengolah data berupa *image* dari segi tekstur.

Bab 3 Metodologi

3.1 Motivasi

Saya memilih tema mengenai udang litopenaeus vannamei sebagai bahan penelitian desertasi saya dikarenakan kebetulan saya memiliki kerabat yang berkecimpung di budidaya tambak udang litopenaeus vannamei. Selain itu omset keuntungan dari bisnis budidaya udang jenis litopenaeus vannamei sangatlah menjanjikan. Saya berharap dapat meningkatkan bisnis budidaya udang litopenaeus vannamei di keluarga saya dengan memadukannya menggunakan teknologi terkini yakni YOLOv8 dimana kerap digunakan untuk mendeteksi objek bawah air secara akurat. Saya hendak menerapkan teknologi YOLOv8 agar diperoleh akurasi yang baik pada saat deteksi pola berenang udang litopenaeus vannamei yang terindikasi stress saat proses molting tengah berlangsung.

3.2 Framework Riset

Gambar 10. Metodologi Penelitian

Requirement Analysis – Pengumpulan Dataset

Pada penelitian ini dilakukan segmentasi pola berenang udang *litopenaeus vannamei* yang terindikasi stress pada saat proses *molting* berlangsung dengan memperhatikan pola berenang udang yang tidak biasa. Dengan mengamati pola berenang udang vannamei yang ditempatkan pada suatu aquarium atau wadah yang telah disesuaikan beberapa parameter lingkungannya semisal suhu, pH, dan lainnya sebagaimana berada di tambak budidaya.

No.	Bahan	Alat
1.	Udang Litopenaeus vannamei yang	Kamera video underwater untuk merekam
	sedang dalam proses molting	perilaku berenang udang vannamei selama
		proses molting.
2.	Sistem pengamatan berenang udang	Komputer atau perangkat lain yang dilengkapi
	vannamei yang terintegrasi dengan	dengan software YOLOv8.
	YOLOv8	
3.	Alat-alat pengukur parameter	Alat-alat pengukur parameter lingkungan
	lingkungan (suhu, oksigen terlarut, pH,	(suhu, oksigen terlarut, pH, salinitas, intensitas
	salinitas, intensitas cahaya, dll.).	cahaya, dll.).

Melakukan proses perekaman video perilaku berenang udang *vannamei* yang sedang dalam proses molting menggunakan kamera *video underwater*. Dan melakukan proses perekaman data parameter lingkungan terkait suhu, oksigen terlarut, pH, intensitas cahaya, salinitas dan lainnya menggunakan alat-alat pengukur.

Data Annotation

Melakukan proses segmentasi annotasi terhadap pola berenang udang litopenaeus yang terindikasi stress pada saat proses molting menggunakan roboflow – metode *SAM (The Segment Anything Model)* karena berdasarkan tinjauan pustaka penelitian 67 menyatakan metode ini meiliki kemampuan yang lebih spesifik dalam pengembangan objek yang bergerak cepat dan berubah bentuk, mengingat gerakan udang *vannamei* yang terindikasi stress saat proses *molting* cenderung akan bergerak cepat dan akan mengubah bentuk gerakan berenangnya.

Preprocessing

- a) Melakukan konversi video menjadi frame-frame gambar digital. Kemudian melakukan normalisasi frame-frame gambar untuk meningkatkan akurasi deteksi.
- b) Konversikan citra *true color* menjadi citra *grayscale* untuk mengurangi kompleksitas warna dan meningkatkan akurasi deteksi.
- c) Konversikan citra grayscale menjadi citra biner untuk memisahkan objek dari background
- d) Membersihkan noise, Gunakan operasi citra seperti filling holes, erosi, opening, closing, dan open area untuk mengurangi noise dan meningkatkan kualitas citra
- e) Gunakan metode segmentasi seperti Otsu Threshold untuk memisahkan wilayah objek (udang) dari background.

Ekstraksi Fitur

- a) Fitur Bentuk yaitu menghitung fitur bentuk seperti area, eccentricity, dan perimeter dari objek (udang) yang telah disegmentasi.
- b) Fitur Warna yaitu menghitung fitur warna seperti warna dominan dan variasi warna dari objek (udang).
- c) Fitur Tekstur yaitu menghitung fitur tekstur seperti kekasaran dan kejelasan dari objek (udang).

Training & Testing Model

- a) Menggunakan dataset yang terdiri dari citra udang *vannamei* dengan label stress saat *molting*.
- b) Membagi dataset menjadi dua bagian: data training dan data testing.
- c) Menggunakan model YOLOv8 yang telah dilatih untuk mendeteksi objek (udang) dan mengklasifikasikan citra berdasarkan fitur yang dihitung.
- d) Melatih model YOLOv8 menggunakan data training dan fitur yang dihitung. Optimizer yang digunakan adalah 'adam' dengan fungsi aktivasi sigmoid.
- e) Menggunakan model YOLOv8 yang telah dilatih untuk mendeteksi pola berenang pada udang sebagai indikator stress saat molting.
- f) Menguji model YOLOv8 menggunakan data testing dan evaluasi akurasi dengan metode confusion matrix.
- g) Analisis hasil deteksi pola berenang untuk menentukan tingkat stress pada udang
- h) Menganalisis hubungan antara parameter lingkungan dengan indikasi stress pada saat molting.

Arsitektur usulan

EF-UODA (Efficient Underwater Object Detection Algorithm)

Sebuah algoritma yang disematkan dalam YOLOV8 yang dirancang khusus untuk mendeteksi objek di bawah air secara efisien. Algoritma ini memadukan prinsip-prinsip dari berbagai bidang, termasuk pemrosesan citra, visi komputer, dan pengolahan sinyal, untuk menciptakan metode yang efektif dalam mendeteksi objek di lingkungan bawah air.

Gambar 11. Arsitektur YOLoV8

Gambar 12. Arsitektur EF-UODA

A. Backbone: Next-VIT & SPPF

Backbone: Tahapan ini berfungsi untuk mengumpulkan fitur-fitur yang relevan dari gambar bawah air. Tahapan ini menggunakan konvolusi yang efisien dan piramida fitur untuk meningkatkan kemampuan ekstraksi fitur dan fusi fitur, Arsitektur backbone menggunakan Next-ViT yang dipadukan dengan SPPF di bagian akhir. Tujuan: Menyediakan representasi fitur yang kaya dan mendalam dari citra input yang dapat digunakan oleh bagian lain dari model untuk tugas deteksi objek.

Arsitektur Next-ViT

Arsitektur Next-ViT adalah sebuah arsitektur yang dikembangkan untuk meningkatkan kemampuan deteksi objek bawah air. Arsitektur ini berbasis pada berbagai mode fusi fitur dan menggunakan loss function YOLOv8 untuk meningkatkan akurasi deteksi objek. Next-ViT juga menggunakan konvolusi yang efisien dan piramida fitur untuk meningkatkan kemampuan ekstraksi fitur dan fusi fitur.

Modul SPPF (Spatial Pyramid Pooling Feature)

Modul SPPF (Spatial Pyramid Pooling Feature) dalam YOLOv8 adalah bagian dari arsitektur yang digunakan untuk meningkatkan kemampuan deteksi objek. Modul ini berfungsi untuk mengumpulkan fiturfitur yang relevan dari gambar bawah air dan mengolahnya menjadi representasi yang lebih spesifik.

- 1. Spatial Pyramid Pooling: Modul SPPF menggunakan spatial pyramid pooling untuk mengumpulkan fitur-fitur dari berbagai level dan skala. Spatial pyramid pooling ini membantu meningkatkan kemampuan deteksi objek dengan cara menggabungkan fitur-fitur yang relevan.
- 2. Feature Fusion: Modul SPPF menggunakan feature fusion untuk menggabungkan fitur-fitur yang dikumpulkan oleh spatial pyramid pooling. Feature fusion ini membantu meningkatkan kemampuan deteksi objek dengan cara menggabungkan fitur-fitur yang relevan.
- 3. Improved Performance: Modul SPPF dalam YOLOv8 meningkatkan kinerja deteksi objek dengan cara menggabungkan fitur-fitur yang relevan dan mengolahnya menjadi representasi yang lebih spesifik. Kinerja deteksi objek yang meningkat ini membantu meningkatkan akurasi deteksi objek.

Dengan demikian, modul SPPF dalam YOLOv8 berfungsi untuk mengumpulkan fitur-fitur yang relevan, menggabungkan fitur-fitur yang dikumpulkan, dan meningkatkan kemampuan deteksi objek.

B. Neck: M2F-FPN dan EMPC & C3-EMPC

Neck: Tahapan ini berfungsi sebagai bagian tengah untuk mengintegrasikan fitur-fitur yang dikumpulkan oleh tahapan backbone dan mengolahnya menjadi representasi yang lebih spesifik. Tahapan ini menggunakan fungsi kehilangan YOLOv8 untuk meningkatkan akurasi deteksi objek. Arsitektur Piramida Fitur M2F-FPN (Multi-Scale Feature Pyramid Network) dalam Next-ViT digunakan untuk meningkatkan kemampuan deteksi objek bawah air.

Arsitektur Piramida Fitur M2F-FPN (Multi-path and Multi-scale Feature Pyramid Network)

Arsitektur Piramida Fitur M2F-FPN (Multi-path and Multi-scale Feature Pyramid Network) meningkatkan akurasi deteksi objek dengan cara menggabungkan fitur-fitur yang relevan dari berbagai level dan skala. Berikut adalah beberapa cara arsitektur ini meningkatkan akurasi:

- Multi-path: Arsitektur ini menggunakan multi-path untuk mengumpulkan fitur-fitur dari berbagai level dan skala. Fitur-fitur ini kemudian digabungkan untuk meningkatkan kemampuan deteksi objek.
- Multi-scale: Arsitektur ini menggunakan multi-scale untuk mengumpulkan fitur-fitur dari berbagai skala. Fitur-fitur ini kemudian digabungkan untuk meningkatkan kemampuan deteksi objek.
- Feature Pyramid: Arsitektur ini menggunakan feature pyramid untuk mengumpulkan fitur-fitur dari berbagai level dan skala. Fitur-fitur ini kemudian digabungkan untuk meningkatkan kemampuan deteksi objek.
- Lateral Connections: Arsitektur ini menggunakan lateral connections untuk menghubungkan fitur-fitur dari berbagai level dan skala. Lateral connections ini membantu meningkatkan kemampuan deteksi objek dengan cara menggabungkan fitur-fitur yang relevan.
- Top-down Pathway: Arsitektur ini menggunakan top-down pathway untuk mengumpulkan fitur-fitur dari berbagai level dan skala. Top-down pathway ini membantu meningkatkan kemampuan deteksi objek dengan cara menggabungkan fitur-fitur yang relevan.

Dengan demikian, arsitektur Piramida Fitur M2F-FPN meningkatkan akurasi deteksi objek dengan cara menggabungkan fitur-fitur yang relevan dari berbagai level dan skala, serta menggunakan lateral connections dan top-down pathway untuk meningkatkan kemampuan deteksi objek.

EMPC (Efficient Multi-Scale Pointwise Convolution)

Arsitektur Next-ViT menggunakan modul konvolusi yang efisien dan piramida fitur untuk meningkatkan kemampuan ekstraksi fitur dan fusi fitur. Modul konvolusi EMPC (Efficient Multi-Scale Pointwise Convolution) digunakan untuk mengumpulkan fitur-fitur yang relevan dari gambar bawah air. Modul ini

berfungsi sebagai tulang punggung untuk mengumpulkan fitur-fitur yang dikumpulkan oleh tahapan backbone dan mengolahnya menjadi representasi yang lebih spesifik

C3-EMPC (Efficient Multi-Scale Pointwise Convolution)

C3-EMPC adalah bagian dari arsitektur Next-ViT yang digunakan untuk ekstraksi fitur dan fusi fitur. Modul ini berfungsi sebagai tulang punggung untuk mengumpulkan fitur-fitur yang relevan dari gambar bawah air dan mengolahnya menjadi representasi yang lebih spesifik.

C. Head: YOLOv8

Tahapan ini berfungsi sebagai bagian akhir untuk mengolah representasi yang diperoleh dari tahapan neck dan menghasilkan prediksi deteksi objek. Tahapan ini menggunakan konvolusi yang efisien dan fungsi kehilangan YOLOv8 untuk meningkatkan akurasi deteksi objek.

3.3 Pendekatan

Penelitian ini menggunakan penelitian kuantitatif, yakni metode penelitian yang menggunakan statistik dengan mengumpulkan data kuantitatif dari studi penelitian. Data berupa video untuk kemudian dikonversi menjadi frame frame image digital. Dimana nantinya akan dilakukan dilakukan eksperimen untuk mengetahui tingkat akurasi dalam mendeteksi tingkat stress pada udang litopenaeus vannamei saat proses molting berlangsung. Berdasarkan beberapa referensi jurnal yang teah saya tinjau, teknologi yang umumnya direferensikan untuk memudahkan melakukan deteksi objek bawah air adalah YOLOv8 dengan menggunakan arsitektur Next-VIT yang dipadukan dengan SPPF dibagian backbone, sedangkan dibagian neck menggunakan Arsitektur Piramida Fitur M2F-FPN (Multi-Scale Feature Pyramid Network) yang dipadukan dengan modul EMPC (Efficient Multi-Scale Pointwise Convolution) sehingga diperoleh akurasi deteksi yang halus dan tinggi.

Daftar Pustaka

[Ade Miranti Kurnia et al.,2020] Ade Miranti Kurnia et al. (2020). Ekspor Udang Vaname Ditargetkan Naik 250 Persen pada 2024. Online at https://money.kompas.com/read/2020/04/08/093000626/ekspor-udang-vaname-ditargetkannaik-250-persen-pada-2024#google_vignette, accessed 1 May 2024.

[Adriana Muhlia-Almazán et al., 2002] Adriana Muhlia-Almazán, Fernando L García-Carreño.,(2002). Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 133, Issue 3, Pages 383-394, ISSN 1096-4959, https://doi.org/10.1016/S1096-4959(02)00163-X. (https://www.sciencedirect.com/science/article/pii/S109649590200163X)

[Anggoro et al.,2018] Anggoro, Sutrisno, Djoko Suprapto and Frida Purwanti.,(2018) "Osmoregulation Pattern of Fingerling Vanname Shrimp (Litopenaeus vannamei) Rearing in Three Molt Stage Iso-Osmotic Media." ILMU KELAUTAN: Indonesian Journal of Marine Sciences: n. pag. Semantic scholar.

[Anggi Nur,2023] Anggi Nur.(2023). Bahas Tuntas Penyebab & Cara Mengatasi Sering Molting. Online at efishery.com/id/resources/udang-sering-molting, accessed 5 May 2024.

[Biao Guo et al.,2011] Biao Guo, Fang Wang, Shuanglin Dong, Qinfeng Gao.,(2011). The effect of rhythmic light color fluctuation on the molting and growth of Litopenaeus vannamei, Aquaculture, Volume 314, Issues 1–4, Pages 210-214, ISSN 0044-8486, https://doi.org/10.1016/j.aquaculture.2011.02.023. (https://www.sciencedirect.com/science/article/pii/S0044848611001438)

[Biao Guo et al., 2013] Biao Guo, Fang Wang, Ying Li, Shuanglin Dong.,(2013).Effect of periodic light intensity change on the molting frequency and growth of Litopenaeus vannamei, Aquaculture, Volumes 396–399, Pages 66-70, ISSN 0044-8486, https://doi.org/10.1016/j.aquaculture.2013.02.033. (https://www.sciencedirect.com/science/article/pii/S0044848613000987)

[Bai R et al.,2023] Bai R, Shen F, Wang M, Lu J, Zhang Z.,(2023) Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simplified Model Complexity. Research Square; doi: 10.21203/rs.3.rs-3085871/v1.

[Carmen Galindo et al.,2009] Carmen Galindo, Gabriela Gaxiola, Gérard Cuzon, Xavier Chiappa-Carrara.,(2009).Physiological and Biochemical Variations During the Molt Cycle in Juvenile *Litopenaeus Vannamei* under Laboratory Conditions, *Journal of Crustacean Biology*, Volume 29, Issue 4, Pages 544–549, https://doi.org/10.1651/08-3094.1.

[Corteel, M et al., 2012] Corteel, M., Dantas-Lima, J.J., Wille, M. et al., (2012). Moult cycle of laboratory-raised *Penaeus* (*Litopenaeus*) *vannamei* and *P. monodon*. *Aquacult Int* 20, 13–18. link.springer.com/article/10.1007/s10499-011-9437-9#citeas, https://doi.org/10.1007/s10499-011-9437-9.

[Chantal Mugnier et al.,2008] Chantal Mugnier, Etienne Zipper, Cyrille Goarant, Hugues Lemonnier.,(2008).Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage, Aquaculture, Volume 274, Issues 2–4, Pages 398-407, ISSN 0044-8486, https://doi.org/10.1016/j.aquaculture.2007.11.033. sciencedirect

[Chang F et al.,2022] Chang F, Li N, Shi X, Olga V, Wang X, Diao X, Zhou H, Tang X.,(2022). Physiological and muscle tissue responses in *Litopenaeus vannamei* under hypoxic stress *via* iTRAQ. Front Physiol. 30;13:979472. doi: 10.3389/fphys.2022.979472. PMID: 36111157; PMCID: PMC9468788.

[Cobo ML et al.,2012] Cobo ML, Sonnenholzner S, Wille M, Sorgeloos P.,(2012). Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquaculture Research 45: 470–475.

[Daniel Lemos et al.,2020] Daniel Lemos , Delphine Weissman.,(2020). Moulting in the grow-out of farmed shrimp: a review, *Reviews in Aquaculture* (IF 10.4) , doi:10.1111/raq.12461 www.researchgate.net/publication/342500233_Moulting_in_the_grow out_of_farmed_shrimp_a_review.

[Diana Rachmawati et al.,2021] Diana Rachmawati, Johannes Hutabarat, Ayu Istiana Fiat, Tita Elfitasari, Seto Windarto, Eko Nur Cahyo Dewi.,(2021).Penambahan Asam Amino Triptofan Dalam Pakan Terhadap Tingkat Kanibalisme Dan Pertumbuhan Litopenaeus vannamei, Jurnal Kelautan Tropis, Vol. 24(3):343-352.

[Duan et al.,2014] Duan, Yan, Xiumei Zhang, Xuxu Liu and Dhanrajsingh N. Thakur.,(2014). Effect of dissolved oxygen on swimming ability and physiological response to swimming fatigue of whiteleg shrimp (Litopenaeus vannamei). Journal of Ocean University of China 13: 132-140.

[Defeng Xu et al.,2022] Defeng Xu, Jiaxin Wu, Lijun Sun, Xiaoming Qin, Xiuping Fan, Xiaoxian Zheng.,(2022).Energy metabolism response of Litopenaeus vannamei to combined stress of acute cold exposure and waterless duration: Implications for physiological regulation and waterless live transport, Journal of Thermal Biology, Volume 104, 103149, ISSN 0306-4565, https://www.sciencedirect.com/science/article/pii/S030645652100317X,https://doi.org/10.1016/j.jtherbio. 2021.103149.

[Deni Aulia, 2018] Deni Aulia, Budidaya Udang Vannamei, Jakarta, AMAFRAD Press, 2018

[European Market, 2021] European Market.(2021). The European market potential for pacific white shrimp. Online at www.cbi.eu/market-information/fish-seafood/pacific-white-shrimp/market-potential, accessed 1 May 2024.

[Fan et al.,2024] Fan, Yibing, Lanyong Zhang, and Peng Li.,(2024). A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform. Journal of Marine Science and Engineering 12, no. 5: 697. https://doi.org/10.3390/jmse12050697

[FAO-FIGIS,2016] FAO-FIGIS.(2016).Statistics and Information Branch. Fisheries and Aquaculture Department.

[FAO – Food and Agriculture Organization of the United Nations,2018] FAO – Food and Agriculture Organization of the United Nations.(2018).Penaeus vannamei (Boone, 1931). Fisheries and Aquaculture Department.

[Fenanza, 2024] Fenanza.(2024). Penyebab Utama & Cara Mengatasi Kegagalan Molting pada Udang Vanname. Online at fenanza.id/id_id/penyebab-utama-cara-mengatasi-kegagalan-molting-pada-udang-vanname/, accessed 5 May 2024.

[Galil et al.,2011] Galil BS, Clark PF, Carlton JT.(2011). In the Wrong Place - Alien Marine Crustaceans: distribution, biology and impacts: Invading Nature - Springer Series in Invasion Ecology 6, pp 489–519.

[Guo et al.,2024] Guo, A., Sun, K. & Zhang, Z.,(2024) A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection. J Real-Time Image Proc 21, 49.https://doi.org/10.1007/s11554-024-01431-x

[Gao et al.,2016] Gao Y, Zhang X, Wei J, Sun X, Yuan J, Li F, et al.(2016). Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in *Litopenaeus vannamei*. PLoS ONE 10(12): e0144350. https://doi.org/10.1371/journal.pone.0144350

[Huang W et al.,2018] Huang W, Li H, Cheng C, Ren C, Chen T, Jiang X, et al.(2018). Analysis of the transcriptome data in *Litopenaeus vannamei* reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress. PLoS ONE 13(12): e0207771. https://doi.org/10.1371/journal.pone.0207771

[Harlina et al.,2022] Harlina, Harlina, Ilmiah Ilmiah, Andi Hamdillah, Dewi Virgiastuti Jarir and Ahmad Darul Salam.,(2022). "The water quality monitoring of vannamei shrimp (Litopenaeus vannamei) ponds in East Tanete Riattang District, Bone Regency, Indonesia." *Depik* (2022): n. pag.

[Ingxu Zeng et al.,2023] Ingxu Zeng, Baichuan Deng, Zixin Kang, Pedro Araujo, Svein Are Mjøs, Ruina Liu, Jianhui Lin, Tao Yang, Yuangao Qu,.(2023). Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei, Ecotoxicology and Environmental Safety, Volume 256, 114871, ISSN 0147-6513, https://www.sciencedirect.com/science/article/pii/S0147651323003755, https://doi.org/10.1016/j.ecoenv.2023.114871.

[Jayanti et al.,2022] Jayanti, Septri Legitasari Lere, Andi Arham Atjo, Reski Fitriah, Dian Lestari, and Muh Nur.(2022). "Pengaruh Perbedaan Salinitas Terhadap Pertumbuhan Dan Sintasan Larva Udang Vaname (Litopenaeus Vannamei)". *AQUACOASTMARINE: Journal of Aquatic and Fisheries Sciences* 1 (1):40-48. https://doi.org/10.32734/jafs.v1i1.8617.

[Jack Cheney,2024] Jack Cheney.(2024). An Overview of Shrimp and its Sustainability in 2024. Online at https://sustainablefisheries-uw.org/shrimp-sustainability2024/#:~:text=The%20National %20Fisheries%20Institute%20estimated,%2C%20cod%2C%20and%20crab%20combined, accessed 1 May 2024.

[Jie Xiao et al.,2019] Jie Xiao, Qiang-Yong Li, Jia-Peng Tu, Xiu-Li Chen, Xiao-Han Chen, Qing-Yun Liu, Hong Liu, Xiao-Yun Zhou, Yong-Zhen Zhao, Huan-Ling Wang.,(2019). Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in Litopenaeus vannamei, Ecotoxicology and Environmental Safety, Volume 180, Pages 491-500, ISSN 0147-6513, https://www.sciencedirect.com/science/article/pii/S0147651319305706,doi.org/10.1016/j.ecoenv.2019.05.029.

[Jiang S et al.,2021] Jiang S.,Zhou F.L., Zeng X . Y . , Yang Q.B., Huang J.H.,Yang L.S., Jiang S.G.,(2021).Effects of four factors on Penaeus monodon post -larvae cannibalism Iranian Journal of Fisheries Sciences 20(2) 547 - 557 DOI: 10.22092/ijfs.2021.123901

[Jie Xiao et al.,2020] Jie Xiao, Qing-Yun Liu, Jing-Hao Du, Wei-Lin Zhu, Qiang-Yong Li, Xiu-Li Chen, Xiao-Han Chen, Hong Liu, Xiao-Yun Zhou, Yong-Zhen Zhao, Huan-Ling Wang.,(2020).Integrated analysis of physiological, transcriptomic and metabolomic responses and tolerance mechanism of nitrite exposure in Litopenaeus vannamei, Science of The Total Environment, Volume 711, 134416, ISSN 0048-9697, https://www.sciencedirect.com/science/article/pii/S0048969719344079. https://doi.org/10.1016/j.scitotenv.2019.134416.

[Jiangtao Li et al.,2018] Jiangtao Li, Wentao Li, Xiumei Zhang, Pingguo He.,(2018). Physiological and behavioral responses of different modes of locomotion in the whiteleg shrimp *Litopenaeus vannamei* (Boone, 1931) (Caridea: Penaeidae), *Journal of Crustacean Biology*, Volume 38, Issue 1, Pages 79–90, https://doi.org/10.1093/jcbiol/rux107.

[Juan Carlos Bautista-Covarrubias et al.,2020] Juan Carlos Bautista-Covarrubias, Patricia Anely Zamora-Ibarra, Elizabeth Apreza-Burgos, Angélica Nallelhy Rodríguez-Ocampo, Viridiana Peraza-Gómez, José Armando López-Sánchez, Juan Manuel Pacheco-Vega, Juan Pablo González-Hermoso, Martín Gabriel Frías-Espericueta.,(2020).Immune response and oxidative stress of shrimp Litopenaeus vannamei at different moon phases, Fish & Shellfish Immunology,Volume 106, Pages 591-595, ISSN 1050-4648, https://www.sciencedirect.com/science/article/pii/S1050464820306045.

[Jose Renato de Oliveira Cesar et al.,2006] Jose Renato de Oliveira Cesar, Baoping Zhao, Spencer Malecha, Harry Ako, Jinzeng Yang.,(2006).Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle, Aquaculture, Volume 261, Issue 2,Pages 688-694, ISSN 0044-8486, https://www.sciencedirect.com/science/article/pii/S004484860600603X. https://doi.org/10.1016/j.aquaculture.2006.08.003

[Kang et al.,2014] Kang, Bong Jung et al.,(2014). Dynamics of vitellogenin and vitellogenesis-inhibiting hormone levels in adult and subadult whiteleg shrimp, Litopenaeus vannamei: relation to molting and eyestalk ablation. Biology of reproduction vol. 90,1 12..doi:10.1095/biolreprod.113.112243

[Ke L et al.,2022] Ke, L., Ding, H., Danelljan, M., Tai, Y., Tang, C., & Yu, F. (2022). Video Mask Transfiner for High-Quality Video Instance Segmentation. *ArXiv*, *abs*/2207.14012.

[Lanting Lin et al.,2024] Lanting Lin, Jinyan Li, Jianyong Liu, Hongbiao Zhuo, Yuan Zhang, Xiaoxun Zhou, Guangbo Wu, Chaoan Guo, Xinrui Zhao.,(2024).Single and combined effects of ammonia and nitrite on Litopenaeus vannamei: Histological, physiological and molecular responses,Aquaculture Reports,Volume 35,2024,102014, ISSN 2352-5134,

https://www.sciencedirect.com/science/article/pii/S2352513424001029.

https://doi.org/10.1016/j.aqrep.2024.102014.

[Lu Zhang et al.,2022] Lu Zhang, Xinhui Zhou, Beibei Li, Hongxu Zhang, Qingling Duan.,(2022).Automatic shrimp counting method using local images and lightweight YOLOv4.Biosystems Engineering, Volume 220, Pages 39-54, ISSN 1537-5110, https://www.sciencedirect.com/science/article/pii/S1537511022001234. https://doi.org/10.1016/j.biosystemseng.2022.05.011.

[Liu et al.,2024] Liu, Fei, Jinfeng Sun, Jinnan Long, Lichao Sun, Chang Liu, Xiaofan Wang, Long Zhang, Pengyuan Hao, Zhongkai Wang, Yanting Cui, and et al. (2024). Assessing the Interactive Effects of High Salinity and Stocking Density on the Growth and Stress Physiology of the Pacific White Shrimp *Litopenaeus vannamei*. *Fishes* 9, no. 2: 62. https://doi.org/10.3390/fishes9020062

[Li S et al.,2022] Li, S., Danelljan, M., Ding, H., Huang, T.E., & Yu, F. (2022). Tracking Every Thing in the Wild. *ArXiv*, *abs*/2207.12978.

[Lei Ke et al., 2023] Lei Ke, et al.,(2023). Mask-Free Video Instance Segmentation. arXiv:2303.15904.

[Martínez-Antonio et al.,2019] Martínez-Antonio, E. M., Racotta, I. S., Ruvalcaba-Márquez, J. C., & Magallón-Barajas, F. (2019). Modulation of stress response and productive performance of *Litopenaeus vannamei* through diet. *PeerJ*, 7, e6850. https://doi.org/10.7717/peerj.6850

[Maulianawati et al.,2020] Maulianawati, D., Rukisah, R., Awaludin, A., & Guntur, M. I. (2020). Utilization of Paku Uban (Nephrolepis biserrata) Extract as a Molting Stimulant of Mud Crabs (Scylla spp.) in Traditional Ponds. *Jurnal Ilmiah Perikanan Dan Kelautan*, 12(1), 113–121. https://doi.org/10.20473/jipk.v12i1.14053

[M. Javaid et al.,2023] M. Javaid, M. Maqsood, F. Aadil, J. Safdar, and Y. Kim "An Efficient Method for Underwater Video Summarization and Object Detection Using YoLoV3," *Intell. Automat. Soft Comput.*, vol. 35, no. 2, pp. 1295-1310. 2023. https://doi.org/10.32604/iasc.2023.028262.

[Medina-Reyna CE, 2011] Medina-Reyna CE.(2001). Growth and emigration of white shrimp, Litopenaeus vannamei, in the Mar Muerto Lagoon, Southern Mexico. Naga: The ICLARM Quarterly 24: 30–34.

[Moreira C et al.,2019] Moreira C, Reis JT, Costa-Dias SC, Bio A and Campos J.(2019). Cannibalism behavior in the brown shrimp Crangon crangon. Front. Mar. Sci. Conference Abstract: XX Iberian Symposium on Marine Biology Studies (SIEBM XX). doi: 10.3389/conf.fmars.2019.08.00107

[Maulana et al.,2024] Maulana, M.I. and Noviana, R. (2024). Training Custom Model Deteksi Udang menggunakan YOLOv8. *Jurnal Ilmiah Komputasi*. 22, 4 (Jan. 2024), 505–514. DOI:https://doi.org/10.32409/jikstik.22.4.3526.

[Nie et al.,2024] Nie, Haijiao et al.,(2024). A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8.Sensors (Basel, Switzerland) vol. 24,9 2952. doi:10.3390/s24092952

[Pan et al.,2023] Pan, Haixia, Jiahua Lan, Hongqiang Wang, Yanan Li, Meng Zhang, Mojie Ma, Dongdong Zhang, and Xiaoran Zhao. (2023). "UWV-Yolox: A Deep Learning Model for Underwater Video Object Detection" *Sensors* 23, no. 10: 4859. https://doi.org/10.3390/s23104859

[Pang et al., 2020] Pang, J., Qiu, L., Li, X., Chen, H., Li, Q., Darrell, T., & Yu, F. (2020). Quasi-Dense Similarity Learning for Multiple Object Tracking. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 164-173.

[Patricia Migdalia Ochoa-Pereira et al.,2023] Patricia Migdalia Ochoa-Pereira and Patricio Colón Velásquez-López., (2023).Effect of fasting on molting and survival rate in post-larvae of the shrimp Litopenaeus vannamei, Revista de Biología Marina y Oceanografía Vol. 58(1): 10-18, Online ISSN: 0718-1957 DOI:https://doi.org/10.22370/rbmo.2023.58.1.4133

[Pontes et al.,2006] Pontes, Cibele Soares, Maria de Fátima Arruda, Alexandre A.L.,(2006). Menezes and Patricia Pereira De Lima. "Daily activity pattern of the marine shrimp Litopenaeus vannamei (Boone 1931) juveniles under laboratory conditions." *Aquaculture Research* 37: 1001-1006.

[Peidong Zhang et al.,2007] Peidong Zhang, Xiumei Zhang, Jian Li, Guoqiang Huang.,(2007). The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 147, Issue 1, Pages 64-69, ISSN 1095-6433, https://www.sciencedirect.com/science/article/pii/S1095643306005113. https://doi.org/10.1016/j.cbpa.2006.11.020.

[Reyes A et al.,2020] Reyes A., Walter.(2020). 'Management of the Interaction and Cannibalism of Postlarvae and Adults of the Freshwater Shrimp Cryphiops Caementarius (Molina, 1782)'. Crustacea. IntechOpen. doi:10.5772/intechopen.87438.

[Sander Visch, 2024] Sander Visch. (2024). Shedding light on European sustainable. Online at https://thefishsite.com/articles/shedding-light-on-european-shrimp-demand, accessed 1 May 2024.

[Siti Hamidah, 2022] Siti Hamidah, 2022. Unair. repository.unair.ac.id/80948/ Skripsi berjudul "Korelasi Antara Kadar Glukosa Darah dan Tingkat Infestasi Ektoparasit Udang Vaname (Litopenaeus vannamei) yang Dipelihara pada Padat Tebar dan Waktu Pemeliharaan yang Berbeda". http://lib.unair.ac.id

[S. Armalivi et al.,2021] S. Armalivia, Z. Zainuddin, A. Achmad and M. A. Wicaksono.,(2021). Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO), 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Bandung, Indonesia, 2021, pp. 1-4, doi: 10.1109/AIMS52415.2021.9466058.

[Shi et al.,2024] Shi, Miao et al.,(2024)."Evaluation of Genetic Parameters and Comparison of Stress Tolerance Traits in Different Strains of *Litopenaeus vannamei*. *Animals : an open access journal from MDPI* vol. 14,4 600. doi:10.3390/ani14040600

[Sofia Maria Filipe Amaral, 2018] Sofia Maria Filipe Amaral.,(2018). Establishment of a feeding protocol to improve survival and growth of whiteleg shrimp (Penaeus vannamei) at RiaSearch, Portugal, UPorto.

[Sanudin N et al.,2014] Sanudin N, Tuzan AD, Yong ASK.,(2014).Feeding activity and growth performance of shrimp post larvae Litopenaeus vannamei under light and dark condition. Journal of Agricultural Science 6: 103–109.

[Wakida-Kusunoki AT et al.,2011] Wakida-Kusunoki AT, Amador-del Angel LE, Alejandro PC, Brahms CQ.,(2011).Presence of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in the Southern Gulf of Mexico. Aquatic Invasions 6: 139–142.

[Wang Zhenlu et al.,2019] Wang Zhenlu , Qu Yuexin , Yan Muting , Li Junyi , Zou Jixing , Fan Lanfen .,(2019). Physiological Responses of Pacific White Shrimp Litopenaeus vannamei to Temperature

Fluctuation in Low-Salinity Water, Frontiers in Physiology, Vol.10, SSN=1664-042X, URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2019.01025. DOI=10.3389/fphys.2019.01025

[Wang et al.,2019] Wang, Zhenlu, Yuexin Qu, Xiaolei Zhuo, Junyi Li, Jixing Zou and Lanfen Fan.,(2019).Investigating the physiological responses of Pacific white shrimp Litopenaeus vannamei to acute cold-stress. *PeerJ* 7: n. pag.

[Wang T et al.,2021] Wang T, Yang J, Lin G, Li M, Zhu R, Zhang Y and Mai K.(2021). Effects of Dietary Mannan Oligosaccharides on Non-Specific Immunity, Intestinal Health, and Antibiotic Resistance Genes in Pacific White Shrimp *Litopenaeus vannamei*. *Front. Immunol*. 12:772570. doi: 10.3389/fimmu.2021.772570.

[Wildan Gayuh Zulfikar, 2023] Wildan Gayuh Zulfikar. (2023). Pengaruh Fase Bulan di Tambak Udang: Waspada Molting Massal. Online at jala.tech/id/blog/tips-budidaya/pengaruh-fase-bulan-di-tambak-udang-waspada-molting-massal, accessed 6 May 2024.

[Wu et al.,2023] Wu, Tianyong, and Youkou Dong. (2023). "YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition" *Applied Sciences* 13, no. 24: 12977. https://doi.org/10.3390/app132412977.

[Xiaoyue Li et al.,2023] Xiaoyue Li, Menglin Shi, Liutong Chen, Shuang Zhang, Shuyan Chi, Xiaohui Dong, Junming Deng, Beiping Tan, Shiwei Xie.,(2023). ,Effects of bile acids supplemented into low fishmeal diet on growth, molting, and intestinal health of Pacific white shrimp, Litopenaeus vannamei, Aquaculture Reports,Volume 29, 101491, ISSN 2352-5134, https://www.sciencedirect.com/science/article/pii/S2352513423000303. https://doi.org/10.1016/j.aqrep.2023.101491.

[Xiaoming Yu et al.,2010] Xiaoming Yu, Xiumei Zhang, Yan Duan, Peidong Zhang, Zhenqing Miao, Effects of temperature, salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp, Litopenaeus vannamei, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, Volume 157, Issue 4, Pages 392-397, ISSN 1095-6433, https://www.sciencedirect.com/science/article/pii/S1095643310004551.

[Xian W et al.,2017] Xian, W., Sangkloy, P., Lu, J., Fang, C., Yu, F., & Hays, J. (2017). TextureGAN: Controlling Deep Image Synthesis with Texture Patches. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8456-8465.

[Yunqin Zu et al.,2024] Yunqin Zu, Lixun Zhang, Siqi Li, Yuhe Fan, Qijia Liu.,(2024). EF-UODA: Underwater Object Detection Based on Enhanced Feature, ISSN:2077-1312, DOI:10.3390/jmse12050729

[Yafei Duan et al.,2019] Yafei Duan, Yun Wang, Qingsong Liu, Jiasong Zhang, Dalin Xiong., (2019). Changes in the intestine barrier function of Litopenaeus vannamei in response to pH stress, Fish & Shellfish Immunology, Volume 88, Pages 142-149, ISSN 1050-4648, https://www.sciencedirect.com/science/article/pii/S1050464819301214. https://doi.org/10.1016/j.fsi.2019.02.047.

[Yafei Duan et al.,2018] Yafei Duan, Yun Wang, Hongbiao Dong, Hua Li, Qingsong Liu, Jiasong Zhang, Dalin Xiong.,(2018). Physiological and immune response in the gills of Litopenaeus vannamei exposed to acute sulfide stress, Fish & Shellfish Immunology, Volume 81, Pages 161-167, ISSN 1050-4648, https://www.sciencedirect.com/science/article/pii/S1050464818304169. https://doi.org/10.1016/j.fsi.2018.07.018.

[Yang, J et al., 2023] Yang, J., Gao, M., Li, Z., Gao, S., Wang, F., & Zheng, F. (2023). Track Anything: Segment Anything Meets Videos. *ArXiv*, *abs/2304.11968*.

[Yu-Chun Shen et al.,2012] Yu-Chun Shen, Zuo-Zhou Chen, Li Liu, Zai-Liang Li, Zao-He Wu.,(2012)The effects of salinity and nutrition on molt and growth of Litopenaeus vannamei, Researchgate, JOURNAL OF FISHERIES OF CHINA 36(2):290 DOI:10.3724/SP.J.1231.2012.27736

[Yan Wu et al., 2023] Yan Wu., et al., (2021).AGA: Stochastic Whole-Body Grasping with Contact. arXiv:2112.10103

[Zhang et al., 2024] Zhang, G., Shen, Z., Li, D. et al., (2024). CAGNet: an improved anchor-free method for shrimp larvae detection in intensive aquaculture. Aquacult Int .https://doi.org/10.1007/s10499-024-01460-0.

[Zhang Y et al., 2022] Zhang, Y., Wei, C., Zhong, Y. et al. (2022). Deep learning detection of shrimp freshness via smartphone pictures. Food Measure 16, 3868-3876. https://doi.org/10.1007/s11694-022-01473-4

[Zhang P et al., 2006] Zhang P, Zhang X, Li J, Huang G., (2006). Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comparative Biochemistry and physiology. Part A, Molecular & Integrative Physiology. 2006 Sep;145(1):26-32. DOI: 10.1016/j.cbpa.2006.04.014. PMID: 16843024.

[Zhang et al., 2024] Zhang, Minghua, Zhihua Wang, Wei Song, Danfeng Zhao, and Huijuan Zhao.(2024). Efficient Small-Object Detection in Underwater Images Using the Enhanced YOLOv8 Network. Applied Sciences 14, no. 3: 1095. https://doi.org/10.3390/app14031095.

[Zhao et al., 2022] Zhao, Shijia, Jiachun Zheng, Shidan Sun, and Lei Zhang. (2022). "An Improved YOLO Algorithm for Fast and Accurate Underwater Object Detection" Symmetry 14, no. 8: 1669. https://doi.org/10.3390/sym14081669.

[Zihao Liu, 2020] Zihao Liu.(2020).Soft-shell Shrimp Recognition Based on an Improved AlexNet for Quality Evaluations,

Journal of Food Engineering, Volume 266,109698,ISSN 0260-8774, https://doi.org/10.1016/j.jfoodeng.2019.109698.

[Zhenlu Wang et al.,2020] Zhenlu Wang, Yongyong Feng, Junyi Li, Jixing Zou, Lanfen Fan., (2020). Integrative microRNA and mRNA analysis reveals regulation of ER stress in the Pacific white shrimp Litopenaeus vannamei under acute cold stress, Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. Volume 33. 100645. **ISSN** 1744-117X. https://www.sciencedirect.com/science/article/pii/S1744117X19301741. https://doi.org/10.1016/j.cbd.2019.100645.