Course	Title of the Course	Credits	Course Structure	Pre-		
Ni.				Requisite		
FC****	Fundamentals of Electrical Engineering	4	3L-0T-2P	None		
Course O	Course Outcomes:					
CO 1: To Learn the standards of fundamental circuit's elements						
CO 2: To understand the basics of AC and DC circuit						
CO 3: To analyze the transformer circuit theory						
CO 4: To discuss DC and AC machine and its applications						
CO 5: To get familiarize with electric power system structures						
Unit	Topics					
No.		•				
Unit-I	Basics of Measurements: Accuracy, Precision, resolution, reliability,					
	repeatability, validity, Errors and their analysis. Classification and principles of			l principles of		
	measuring instruments, Introdu	action to	PMMC and Movir	ng Iron type		
	measuring instruments.					
Unit-II	D. C. Circuits: Mesh and nodal analysis, Maximum Power Transfer Theorem.					
	Thevenin Theorem, Norton theorem for independent sources.					
	A.C circuits:					
	Single Phase: Phasor representa	tion of a	lternating quantities;	Analysis with		
	phasor diagrams of RLC circuits:					
	Three Phase: balanced supply as			connections;		
	Measurement of power by two w	attmeter 1	method.			
Unit-III	Transformers: Introduction to sel	f-inducta	nce and mutual inducta	nce. Principle		
	of operation and construction of		phase transformers. E	MF equation,		
	losses, efficiency, and voltage reg					
Unit-IV	DC Machines: working principle	• •		king principle		
	and its types, Introduction to step	per and E	BLDC motors			
Unit-V	Introduction to Power Systems: I	Block dias	gram of electric power	system, Load		
	demand, load duration curve a	•		•		
	Introduction to Conventional an					
	and solar.		•	· •		
Suggested	Suggested Reading:					

Suggested Reading:

- 1. Electrical Measurements and Measuring Instruments, E.W Golding, F.C Widdis
- 2. Sawhney A.K, "A course in Electrical and electronic Measurement and Instrumentation", Dhanpat Rai & Sons, New Delhi.
- 3. Alexander, Charles K. Fundamentals of electric circuits. McGraw-Hill,, 2013.
- 4. Nagrath I.J. and D. P. Kothari (2001), Basic Electrical Engineering, Tata McGraw Hill.
- 5. Hayt and Kimberly, Engineering Circuit Analysis, Tata McGraw Hill.
- 6. Kulshreshtha D.C. (2009), Basic Electrical Engineering, Tata McGraw Hill.
- 7. D.P. Kothari, I.J. Nagrath, Electric Machines, Tata McGraw Hill.
- 8. M. V. Deshpande, "Elements of Electric Power Station Design", Wheeler Publishing Co.

2. LESSON PLAN for THEORY LECTURE

Lecture No.	Topic to be covered			
1	Course Introduction			
2	Basics of Measurements: Accuracy, Precision, resolution			
3	Basics of Measurements: Reliability, repeatability, validity, Errors and their analysis			
4	Classification of measuring instruments			
5	Working principles of measuring instruments			
6	Introduction to PMMC measuring instruments			
7	Introduction to Moving Iron type measuring instruments			
8	D. C. Circuits: Mesh and nodal analysis			
9	Maximum Power Transfer Theorem They are independent sources			
10 11	Thevenin Theorem for independent sources Norten theorem for independent sources			
11	Norton theorem for independent sources Phasor representation of alternating quantities; Analysis with phasor			
12	diagrams of RLC circuits			
13	Complex power and power factor, resonance	2		
14	Three Phase: balanced supply and balanced load			
15	Three Phase star and delta connections			
16	Measurement of power by two wattmeter method			
17	Transformers: Introduction to self-inductance			
18	Introduction to mutual inductance	3		
19	Transformer: Principle of operation			
20				
	MID SEMESTER EVALUATION	•		
21	Transformer EMF equation			
22	Transformer losses 3			
23	Transformer efficiency			
24	Voltage regulation			
25	DC Machines: working principle			
26	Types of DC Machines			
27 28	Types of DC Machines			
28	AC Machines: working principle Types of AC Machines	4		
29	Types of AC Machines			
30	Brief about special motors			
31	Introduction to stepper motor			
32	Introduction to BLDC motor			
33	Introduction to Power Systems: Block diagram of electric power system			
34	Load demand, load duration curve and relevant definitions			
35	Plant load factor			
36	Introduction to Conventional and Renewable Sources	5		
37	Introduction to thermal energy source			
38	Introduction to hydro energy source			
39	Introduction to solar energy source			
40	Introduction to wind energy source			

3. LESSON PLAN for LAB

Lab Class No.	Name of the Experiment	
1	Study of errors in measuring instruments	
2	Verification of Nodal voltage analysis.	
3	Verification of Thevenin's theorem	
4	Verification of Norton's theorem	
5	Verification of maximum power transfer theorem	
MID SEMESTER EVALUATION		
6	Study of Series RL and RC circuits	
7	Study of single-phase transformer.	
8	Implementation of Star –Star connection of Three Phase Transformation with Inductive/lamp load.	
9	Study of DC machine	
10	Study of three phase induction motors.	
END SEMESTER EVALUATION		