# L14: Factorization Techniques

The goal of this lecture is to factor (or check for factors) of polynomials

### Proposition 14.1: Linear factors are roots

Let F be a field and  $p(X) \in F[X]$  a polynomial. p(X) has a factor of degree one in F[X] iff p(X) has a root in F, i.e  $\exists \alpha \in F$ ,  $p(\alpha) = 0$ .

#### Proof.

 $\Longrightarrow$ 

If p(X) has a factor of degree one in F[X] i.e  $p(X) = (\alpha X - \beta) \cdot q(X)$ ,  $\alpha, \beta \in F$  with  $\alpha \neq 0$ . Then, since we are in a field, we have an inverse for  $\alpha$  and so

$$p\left(\frac{\beta}{\alpha}\right) = \left(\alpha \cdot \left(\frac{\beta}{\alpha}\right) - \beta\right) \cdot q\left(\frac{\beta}{\alpha}\right) = 0 \cdot q\left(\frac{\beta}{\alpha}\right) = 0$$

 $\Leftarrow$ 

Conversely, if p(X) has a root  $\alpha \in F$ , then we can write (the division algorithm)

$$p(X) = q(X) \cdot (X - \alpha) + r(X)$$

where r(X) = 0 or  $\deg r(X) < \deg(X - \alpha) = 1$  (i.e  $r(X) \equiv r$  is a constant). Then, by substituting  $\alpha$  we see

$$p(\alpha) = q(\alpha) \cdot (\alpha - \alpha) + r \implies 0 = 0 + r \implies r = 0$$

and therefore  $p(X) = q(X) \cdot (X - \alpha)$  where  $(X - \alpha)$  is degree one factor we are looking for.

# Corollary 14.2: Multiple roots form product of linear factors as factor

If  $p(X) \in F[X]$  has (not necessarily distinct) roots  $\alpha_1, \alpha_2, \dots, \alpha_k$ , then p(X) has  $(X - \alpha_1) \cdot (X - \alpha_2) \cdot \dots \cdot (X - \alpha_2)$ 

as a factor.

## Definition 14.3: Multiplicity

If  $p(X) \in F[X]$  is divisible by  $(X - \alpha)^k$ , then we say that the root  $\alpha$  has **multiplicity** k.

# Corollary 14.4: p(X) has at most n roots

If deg(p(X)) = n, then it has at most n roots in F (even counting with multiplicity).

# Corollary 14.5: Quadratics and cubics reducible iff they have roots in F

If  $p(X) \in F[X]$  and deg p = 2 or 3, then p(X) is reducible iff p(X) has a root in F.

#### Proposition 14.6: Rational Root Theorem

Let

$$p(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n \in \mathbb{Z}[X]$$

If  $\frac{r}{s} \in \mathbb{Q}$  is in lowest terms (i.e  $\gcd(r,s)=1$ ) and  $p\left(\frac{r}{s}\right)=0$ , then  $r\mid a_0$  and  $s\mid a_1$ . In particular, if  $a_n=1$  (i.e p is monic) and  $p(d)\neq 0$  for all  $d\in \mathbb{Z}$  such that  $d\mid a_0$ , then p(X) has no roots in  $\mathbb{Q}$ .

**Example 14.1.** Let  $p(X) = X^7 - 7X^2 - 2X + 1$ . Then check if  $X = \pm 1$  are roots of p(X):

$$p(1) = 1^7 - 7 \cdot 1^2 - 2 \cdot 1 + 1 = -7 \neq 0$$
  
$$p(-1) = (-1)^7 - 7 \cdot (-1)^2 - 2 \cdot (-1) + 1 = -5 \neq 0$$

Since neither are equal to 0, then if p(X) has any real roots, they are irrational.

**Proof.** Let  $\alpha = \frac{r}{s}$  be a root of a polynomial  $p(X) \in \mathbb{Z}[X]$ . Then one writes

$$p\left(\frac{r}{s}\right) = a_0 + a_1 \cdot \left(\frac{r}{s}\right) + a_2 \cdot \left(\frac{r}{s}\right)^2 + \dots + a_n \left(\frac{r}{s}\right)^n$$
  

$$\implies 0 = a_0 \cdot s^n + a_1 \cdot r \cdot s^{n-1} + a_2 \cdot r^2 \cdot s^{n-2} + \dots + a_n \cdot r^n$$

First isolating  $r^n$ , we get that the terms on the right hand side all have a factor of s

$$a_n \cdot r^n = -a_0 \cdot s^n - a_1 \cdot r \cdot s^{n-1} - \dots - a_{n-1} \cdot r^{n-1} \cdot s$$
$$= -s \cdot (a_0 \cdot s^{n-1} + a_1 \cdot r \cdot s^{n-2} + \dots + a_{n-1} \cdot r^{n-1})$$

Since gcd(r, s) = 1 then it can only be that  $s \mid a_n$ .

Similarly, isolating  $s^n$ , we get

$$a_{0} \cdot s^{n} = -a_{1} \cdot r \cdot s^{n-1} - a_{2} \cdot r^{2} \cdot s^{n-2} - \dots - a_{n} \cdot r^{n}$$
  
=  $-r \cdot (a_{1} \cdot s^{n-1} + a_{2} \cdot r \cdot s^{n-2} + \dots + a_{n} \cdot r^{n-1})$ 

Since gcd(r, s) = 1 then it can only be that  $r \mid a_0$ .

**Example 14.2.** Consider  $p(X) = X^3 + 9X^2 - 2X + 1$  with possible roots  $X = \pm 1$ . We check

$$p(1) = 1^{3} + 9 \cdot 1^{2} - 2 \cdot 1 + 1 = 9 \neq 0$$
  
$$p(-1) = (-1)^{3} + 9 \cdot (-1)^{2} - 2 \cdot (-1) + 1 = 11 \neq 0$$

Hence, p(X) has no roots in  $\mathbb{Q}$  and by Corollary 14.5, is thus **irreducible** over  $\mathbb{Q}$ .

<u>Claim:</u> The polynomials  $X^2 - p, X^3 - p \in \mathbb{Z}[X]$  where  $p \in \mathbb{Z}$  is prime are irreducible over  $\mathbb{Q}[X]$ .

**Proof.** The only candidates for solutions are  $X = \pm 1, \pm p$ .

We check for  $q(X) = X^2 - p$  (The proof for  $X^3 - p$  is similar):

$$q(\pm 1) = (\pm 1)^2 - p = 1 - p \neq 0$$
  

$$q(\pm p) = (\pm p)^2 - p = p \cdot (p - 1) \neq 0$$

A difference of squares/cubes involving a prime will factor into irrational roots.

**Example 14.3.** Consider  $p(X) = X^2 + 1$ . This is irreducible over  $\mathbb{R}[X]$  as one can check

$$1^2 + 1 = 2 \neq 0$$

$$(-1)^2 + 1 = 2 \neq 0$$

On the other hand, it is reducible over  $\mathbb{Z}/2\mathbb{Z}[X]$ 

$$1^2 + 1 \equiv 0 \pmod{2}$$

Furthermore,  $X^2 + X + 1$  is irreducible over  $\mathbb{Z}/2\mathbb{Z}[X]$  as

$$0^2 + 0 + 1 = 1 \neq 0$$

$$1^2 + 1 + 1 = 1 \neq 0$$

It is important to see that reducibility largely depends on the coefficient ring.

### Proposition 14.7: If irreducible in (R/I)[X] then irreducible in R[X]

Let R be an integral domain and  $I \subsetneq R$  a proper ideal. Let  $p(X) \in R[X]$  be a non-constant, monic polynomial.

If  $p(X) \in (R/I)[X]$  is irreducible into polynomials of strictly lesser degree, then p(X) is irreducible in R[X].

**Proof.** Suppose p(X), a non-constant monic polynomial, is reducible in R[X], say

$$p(X) = a(X) \cdot b(X), \quad \deg a, \deg b < \deg p$$

In particular, because p is monic then can also choose a,b to be non-constant, monic polynomials, hence

$$\overline{p(X)} = \overline{a(X)} \cdot \overline{b(X)} \in (R/I)[X]$$

The reduction of p in R[X] leads to a reduction of  $\overline{p}$  in (R/I)[X]. Hence, the contrapositive, if  $\overline{p}$  is irreducible in (R/I)[X] then p is irreducible in R[X], is also true.

#### Example 14.4.

- $p(X) = X^2 + X + 1$  is irreducible in  $(\mathbb{Z}/2\mathbb{Z})[X]$  then it is irreducible in  $\mathbb{Z}[X]$
- $p(X) = X^2 + 1$  is irreducible in  $\mathbb{Z}[X]$  but **is** reducible in  $(\mathbb{Z}/2\mathbb{Z})[X]$ .

The second example shows the proposition cannot be an "if and only if" statement (i.e its converse is not always true).

Warning: There exist polynomials which violate the converse of the proposition, e.g  $X^4 + 1$ , that are irreducible in  $\mathbb{Z}[X]$  but are reducible in every  $(\mathbb{Z}/p\mathbb{Z})[X]$  for  $p \in \mathbb{Z}$  prime.

**Example 14.5.** Let  $p(X,Y) = X^2 + XY + 1 \in \mathbb{Z}[X,Y] = (\mathbb{Z}[X])[Y]$ , then if you mod out by all the terms including a factor of Y, you get polynomials of terms only in X, i.e

$$\mathbb{Z}[X,Y]/(y \cdot \mathbb{Z}[X,Y]) \cong \mathbb{Z}[X]$$

Specifically,  $\overline{X^2 + XY + 1} \in \mathbb{Z}[X,Y]/(y \cdot \mathbb{Z}[X,Y])$ . This is precisely  $X^2 + 1$  and it is irreducible, hence by the proposition  $X^2 + XY + 1$  is irreducible in  $\mathbb{Z}[X,Y]$ .

#### Theorem 14.8: Eisenstein's Criterion

Let R be an integral domain and  $P \subset R$  a prime ideal. Let

$$q(X) = X^{n} + c_{n-1}X^{n-1} + \dots + c_{1}X + c_{0} \in R[X]$$

Suppose  $c_0, c_1, \ldots, c_{n-1} \in P$  and  $c_0 \notin P^2$ , then q(X) is irreducible in R[X].

This is stronger than the Rational Root Theorem which says how to find the rational roots, and hence you can find linear factors. But if it doesn't have rational roots, it might still be factorable into factors of degree greater than 1. Eisenstein's Criterion tells you in what situations this is possible (and more generally over arbitrary rings, not just  $\mathbb{Z}$  and  $\mathbb{Q}$ ).

<u>Claim:</u>  $p(X) = X^4 + 3X^3 - 27X^2 + 9X + 6$  is irreduicble.

**Proof.** With Rational Root Theorem, you can check that  $X = \pm 1, \pm 2, \pm 3, \pm 6$  are not roots and hence it has no linear factors. But with Eisenstein's Criterion, we can in fact show it is completely irreducible as  $3, -27, 9, 6 \in 3\mathbb{Z}$  however  $6 \notin 9\mathbb{Z}$ .

#### Proof of Eisenstein's Criterion.

Suppose  $q(X) = a(X) \cdot b(X)$  where  $a, b \notin R[X]^{\times}$ . Since q is monic, we may take a, b to be monic

$$a(X) = X^{k} + a_{k-1}X^{k-1} + \dots + a_{1}X + a_{0}$$
  
$$b(X) = X^{l} + b_{l-1}X^{l-1} + \dots + b_{1}X + b_{0}$$

where l, k > 0 (since a, b are non-units).

We will follow in the same fashion as Prop 14.7 by looking at the quotient by the ideal P.

If 
$$c_0, c_1, \dots, c_{n-1} \in P$$
, then
$$\overline{q(X)} = \overline{X^n + c_{n-1}X^{n-1} + \dots + c_0} = \overline{X^n} \in (R/P)[X]$$

$$= \overline{a(X)} \cdot \overline{b(X)}$$

i.e  $\overline{a(X)} \cdot \overline{b(X)} = \overline{X^n}$ . Then, in particular, since there is no constant term in this product, we can say

$$\overline{a_0} \cdot \overline{b_0} = \overline{0} \implies a_0 \in P \text{ or } b_0 \in P$$

W.l.o.g let  $a_0 \in P$ , then  $a(X) \cdot b(X)$  can be written

$$(X^{k} + a_{k-1}X^{k-1} + \dots + a_{1}X + a_{0}) \cdot (X^{l} + b_{l-1}X^{l-1} + \dots + b_{1}X + b_{0})$$
  
=  $X^{k+l} + (a_{k-1} + b_{l-1})X^{k+l-1} + \dots + (a_{1} \cdot b_{0} + a_{0} \cdot b_{1})X + a_{0} \cdot b_{0}$ 

Since P is a prime ideal, then  $a_0 \cdot b_1 \in P$  and hence  $a_1 \cdot b_0$  is in P because their sum needs to be the coefficient  $c_1 \in P$  of the term X in q(X). This implies  $a_1 \in P$  or  $b_0 \in P$ . If  $a_1 \in P$  then

$$(a_2 \cdot b_0 + \underbrace{a_1 \cdot b_1}_{\in P} + \underbrace{a_0 \cdot b_2}_{\in P}) \implies a_2 \cdot b_0 \in P \implies a_2 \in P \text{ or } b_0 \in P$$

If you choose  $b_0 \in P$  then you are done. If you choose  $a_2 \in P$  and continue up the terms you will eventually be forced to choose  $b_0 \in P$  anyways (check this yourself). Hence,  $b_0 \in P$  and therefore  $a_0 \cdot b_0 = c_0 \in P^2$  because both are in P.

Thus, we have shown the contrapositive, i.e q being irreducible implies  $c_0 \in P^2$ , which means the original statement (Eisenstein's Criterion), is also true.

**Example 14.6.**  $X^n - p$  is irreducible if p is prime because  $-p \in p\mathbb{Z}$  but  $-p \notin p^2\mathbb{Z}$ .

### Corollary 14.9: nth roots of primes are irrational

 $\sqrt[n]{p} \notin \mathbb{Q}$  for all  $n \geq 2$  when p is prime.

**Example 14.7.** Let  $p(X) = X^4 + 1$  and notice that  $1 \notin P$  for any prime ideal (otherwise its the whole ring and not a prime ideal), therefore we can't apply Eisenstein's Criterion directly.

Consider

$$q(X) = p(X+1) = (X+1)^4 + 1$$
$$= (X^4 + 4X^3 + 6X^2 + 4X + 1) + 1$$
$$= X^4 + 4X^3 + 6X^2 + 4X + 2$$

See that  $2, 4, 6 \in 2\mathbb{Z}$  but  $2 \notin 4\mathbb{Z}$ , therefore we can apply Eisenstein's Criterion to q(X) to conclude it is irreducible. Now, suppose p(X) was reducible into  $X^4 + 1 = a(X) \cdot b(X)$  then

$$q(X) = (X+1)^4 + 1 = a(X+1) \cdot b(X+1)$$

i.e if  $X^4 + 1$  is reducible then so is q(X).

But by Eisenstein's Criterion q(X) is irreducible, therefore  $X^4 + 1$  is irreducible as well.