		Tipo de Prova Mini Teste	Ano lectivo 2015/2016	Data 06-06-2016
ESTGF	POLITÉCNICO DO PORTO	Curso Licenciatura em Segurança Informática em Redes de Computadores		Hora 09:00
		Unidade Curricular Sistemas Operativos		Duração 1h15

Observações

Com consulta de documentação própria.

O tempo previsto para responder a cada questão é apresentado entre parêntesis retos.

A cotação atribuída a cada pergunta é apresentada entre parêntesis curvos.

1. Para cada uma das seguintes afirmações deverá indicar se as considera verdadeiras ou falsas. Caso considere alguma afirmação como falsa deverá rescreve-la, transformando-a numa afirmação verdadeira. À simples negação não será atribuída nenhuma cotação. (4,0 valores)

Um valor baixo de quantum tem a desvantagem de produzir maior overhead, mas facilita a interatividade com o utilizador.

O algoritmo de escalonamento SJF permite obter um tempo médio de espera mais reduzido que o algoritmo SRTF.

c) [5 min]

A fragmentação interna, que resulta do uso de partições variáveis, é resolvida com paginação.

d) [5 min]

O principio de localidade de referência temporal refere-se ao acesso a zonas de memória relativamente próximas entre si.

2) [15 min] (2,5 valores)

Considere um computador com 512KB de memória que utiliza um sistema operativo que faz a gestão de memória pelo algoritmo Buddy. Apresente uma representação de como a memória ficaria dividida após a seguinte lista de acontecimentos:

- 1. Chegada de um novo processo (P1) com 250KB tamanho;
- 2. Chegada de um novo processo (P2) com 65KB tamanho;
- 3. Chegada de um novo processo (P3) com 98KB tamanho;
- 4. Saída do processo P1
- 5. Chegada de um novo processo (P4) com 125KB tamanho.

3) [15 min] (2,5 valores)

Considere o seguinte conjunto de processos, e as suas necessidades em termos de recursos alocados, máximos, e ainda necessários satisfazer. Considere ainda o número de recursos livres que o sistema dispõe:

[h|67K] - [h|18K] - [p1|128K] - [h|128K] - [p2|24K] - [h|100K]

Apresente a lista resultante da aplicação do **best-fit** para a seguinte lista de eventos:

- 1. Chegada de P3 (128K);
- Chegada de P4 (96K);
 Saída de P3;
- 4. Chegada de P5 (10K).

4) [15 min] (4,0 valores)

Considere o seguinte conjunto de processos. Assuma que os processos chegam no instante de tempo indicado na tabela seguinte:

Processo	Instante Chegada	Duração	
P1	0.2	1.5	
P2	0.5	1.1	
P3	0.5	8.0	
P4	1.2	0.6	
P5	1.6	1.0	

ESTGF-PR05-Mod013V1 Página 1 de2

		Tipo de Prova Mini Teste	Ano lectivo 2015/2016	Data 06-06-2016
ESTGF POLITÉCNICO DO PORTO		Curso Licenciatura em Segurança Informática em Redes de Computadores		Hora 09:00
		Unidade Curricular Sistemas Operativos		Duração 1h15

Desenhe o diagrama de *Gantt* da execução dos processos, considerando que o algoritmo de escalonamento é o *Round Robin*, com quantum 0.5. Calcule ainda o tempo médio de *turnaround* para os processos.

5) [15 min] (3,0 valores)

Considerando um sistema com 4K de memória RAM e o extrato da representação de 8K de memória virtual (*paging*) representada na tabela. Assuma que cada página tem 1024 bytes de tamanho. Recorrendo à técnica utilizada pela *MMU*, indique a que endereços físico correspondente ao endereço virtual **6140**, e o endereço virtual correspondente ao endereço físico **1793**.

11	1
00	0
01	1
00	0
00	0
10	1
00	1
00	0

6) [5 min] (2,0 valores)

Apresente um possível resultado da execução do programa seguinte. Assuma que o semáforo **s1** foi inicializado com 2 recursos, e que o PID do processo pai é **1000**:

7) [15 min] (2,0 valores)

Considere um disco com 200 cilindros (0-199) sendo que a cabeça de leitura/gravação está atualmente no cilindro 10 (tendo atendido anteriormente o 11). A fila de requisições é mantida em FIFO. Para a seguinte lista de requisições: **7**, **11**, **14**, **102**, **90**, **23**, **6**, **40**, **8**, apresente as listas de atendimento de pedidos ordenadas de acordo com o algoritmo **C-SCAN**.

ESTGF-PR05-Mod013V1 Página 2 de2