CS2020 Data Structures and Algorithms

Welcome!

Administrative

- Today:
 - Recitations as usual.

- Next week:
 - Mid-semester recess

- Week after:
 - Coding quiz

Problem Sets

- Problem Set 4:
 - Due Wednesday
 - Sorry about deadline confusion!

- Problem Set 5:
 - Due after the break
 - Only one (required) problem: extend BST
 - One optional problem: analyzed weight-balanced BST
 - Bonus problem!
 - Example of amortized analysis.

Quiz 1: Results Update

Overall:	Score	Percent
Average:	132 / 180	73

Problem	Max	Average
1. Recurrences	15	12
2. Multiple Choice	40	35
3. Java	40	27
4. Data Structure Basics	40	34
5. Polygonal Search	45	27

Quiz 1: Results Update

Interpretation:

> 85%: Excellent!

> 65%: Good.

< 65%: Time to catch up.

Today: New Topic

Hash Tables

- Dictionaries in Java
- Dictionaries are Useful
- Hash functions
- Chaining
- Simple Uniform Hashing
- Good Hash Functions

Abstract data type (ADT) that maintains a set of items, each with a key, subject to:

- insert(key, data)
 - Adds (*key*, *data*) pair to the dictionary.
- delete(key)
 - Removes every (*key*, *) from the dictionary.
- search(key)
 - Returns item (*key*, *data*) if it exists in the dictionary.

Details:

- What happens with duplicate keys?
 - 1. Assume no duplicate keys.
 - 2. Assume new insert overwrites old insert.

- What happens if you delete a non-existent key?
 - 1. Exception.
 - 2. Return.

If you implement a dictionary with a Linked List, then: $(C_I = cost insert, C_S = cost search)$

1.
$$C_{I} = O(1)$$
, $C_{S} = O(1)$
2. $C_{I} = O(1)$, $C_{S} = O(\log n)$
3. $C_{I} = O(1)$, $C_{S} = O(n)$
4. $C_{I} = O(\log n)$, $C_{S} = O(\log n)$
5. $C_{I} = O(n)$, $C_{S} = O(\log n)$
6. $C_{I} = O(n)$, $C_{S} = O(n)$

If you implement a dictionary with an AVL tree, then: $(C_I = cost insert, C_S = cost search)$

1.
$$C_{I} = O(1)$$
, $C_{S} = O(1)$
2. $C_{I} = O(1)$, $C_{S} = O(\log n)$
3. $C_{I} = O(1)$, $C_{S} = O(n)$
4. $C_{I} = O(\log n)$, $C_{S} = O(\log n)$
5. $C_{I} = O(n)$, $C_{S} = O(\log n)$
6. $C_{I} = O(n)$, $C_{S} = O(n)$

Implement a dictionary with:

$$- C_1 = O(1)$$

$$- C_S = O(1)$$

Fast, fast, fast....

Isn't O(1) search/insert impossible?

- Sorting takes $\Omega(n \log n)$.
 - How do you sort with a dictionary?
 - Only search/insert/delete.

Isn't O(1) search/insert impossible?

- Sorting takes $\Omega(n \log n)$.
 - How do you sort with a dictionary?
 - Only search/insert/delete.

- Binary search takes $\Omega(\log n)$.
 - Impossible to search in fewer than log(n) steps.
 - But a dictionary finds an item in O(1) steps!!
 - Conclusion: dictionary is not comparison-based.

Dictionaries in Java

Dictionaries in Java

```
public interface IDictionary<TKey, TData> {
    void insert(TKey key, TData data);
    boolean search(TKey key);
    TData getData(TKey key);
    void delete(TKey key);
}
```

Dictionary Interface in Java

java.util.Map<ktype, vtype>

- Parameterized by two types:
 - ktype (key)
 - vtype (value)
- No duplicate keys allowed.
- No mutable keys
 - If you use an *object* as a key, then you can't modify that object later.

Dictionary Interface in Java

java.util.Map<ktype, vtype>
void clear()

• Removes all from map.

boolean containsKey(Object key)

• Is the key in the map?

Object get (Object key)

• Returns the objects associated with the specified key.

```
Object put (Object key, Object value)
```

• Adds the key/value pair to the map

Dictionary Interface in Java

java.util.Map<ktype, vtype>

```
Set entrySet()
```

• Returns all entries in the map.

```
Set keySet()
```

• Returns all keys in the map.

```
Collection values()
```

• Returns all values in the map.

Note: not sorted, and not necessarily efficient to work with these sets/collections.

Dictionary Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", 84);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice");
System.out.println("Alice's age is: " + age + ".");
```

- Key-type: String
- Value-type: Integer

Dictionary Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", null);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Bob");
if (age==null){
    System.out.println("Bob's age is unknown.");
}
```

- Returns "null" when key is not in map.
- Returns "null" when value is null.

Examples:

- 1. Spelling correction (key=misspelled word, data=word)
- 2. Scheme interpreter (key=variable, data=value)
- 3. Web server
 - Lots of simultaneous network connections.
 - When a packet arrives, give it to the right process to handle the connection.
 - key=ip address, data = connection handler

In this cases, O(log n) often isn't fast enough!

Example 1: Pilot Scheduling

- 1. Check to see if feasible to schedule at time t.
- 2. Find schedule of pilot *p*.

Which can be solved with a dictionary?

- 1. Both: scheduling and pilots info.
- 2. Only scheduling.
- ✓3. Only pilot info.
 - 4. Neither.

Example 1: Pilot Scheduling

- 1. Check to see if feasible to schedule at time t.
 - Hard with a dictionary!
 - Need to find out if there are any planes scheduled in the interval $[t, t \pm \text{safe distance}]$

any scheduled planes?

Example 1: Pilot Scheduling

- 1. Check to see if feasible to schedule at time t.
- 2. Find schedule of pilot *p*.
 - Perfect for a dictionary!
 - Can insert new pilots.
 - Can search for (and update) existing pilots.
 - Listing all pilots?

- Given two documents A and B, how similar are they?
 - Two documents are *similar* if they have similar words in similar frequencies.
 - Formally, define each text as a vector with one entry per word.
 - The distance between the two texts is the angle between the two vectors.

- Step 1: Read in each document
 - Read the file as a string.
 - Parse the file into words.
 - Sort the list of words.
 - Count the frequency of each word.
- Step 2: Compare the two documents
 - Calculate the norm |A| and |B| of each vector
 - Calculate the dot product *AB*.
 - Calculate the angle between A and B.

- Step 1: Read in each document
- O(n) Read the file as a string.
- O(n) Parse the file into words.
- $O(n \log n)$ Sort the list of words.
- O(n) Count the frequency of each word.
 - Step 2: Compare the two documents
- O(n) Calculate the norm |A| and |B| of each vector
- O(n) Calculate the dot product AB.
- O(n) Calculate the angle between A and B.

Performance Profiling (Sorting)

(Dracula vs. Lewis & Clark)

Step	Function	Running Time
Create vectors:	Read each file	1.03s
	Parse each file	1.23s
	Sort words in each file	2.04s
	Count word frequencies	0.41s
Dot product:		6.10s
Norm:		0.01s
Angle:		0.02s
Total:		12.75 s

Performance Profiling (Dictionary)

(Dracula vs. Lewis & Clark)

Step	Function	Running Time
Create vectors:	Read each file	1.19s
	Parse each file	1.37s
	Sort words in each file	0
	Count word frequencies	0
Dot product:		0.03s
Norm:		0.01s
Angle:		0.02s
Total:		2.43s

Example 2: Document Distance

- Step 1: Read in each document
 - Read and parse the file.
 - Put each (word, count) in a dictionary / HashMap.

Dictionary:

- key (String) = word
- value (Integer) = count (# times in doc)

- Step 1: Read in each document
 - Read and parse the file.
 - Put each (word, count) in a map.

```
if (word != "")
{
    if (m_WordList.containsKey(word))
    {
        int count = m_WordList.get(word)+1;
        m_WordList.put(word, count);
    }
    else
    {
        m_WordList.put(word, 1);
    }
    word = "";
}
```

Step 2: Compare documents (dot-product)

```
// Get an iterator for all the keys stored in A
Set<String> ASet = A.m WordList.keySet();
Iterator<String> Alterator = ASet.iterator();
// Iterate through all the keys in A
while (AIterator.hasNext())
    String Key = AIterator.next();
    // If the key from A is also in B
    if (B.m WordList.containsKey(Key))
        // Add the product of the counts to the sum.
        int AValue = A.m WordList.get(Key);
        int BValue = B.m WordList.get(Key);
        sum += AValue*BValue;
```

Document Distance

(Dracula vs. Lewis & Clark)

Version	Change	Running Time
Version 1		4,311.00s
Version 2	Better file handling	676.50s
Version 3	Faster sorting	6.59s
Version 4	No sorting!	2.35s

Example 3: DNA Analysis

How similar is Chimpanzee DNA to Human DNA?

- 1. 20-50%
- 2. 70-79%
- 3.80-90%
- **✓**4. 80-95%
 - 5. 96-99%
 - 6. Who are you calling a chimp, chump?

Example 3: DNA Analysis

- How similar is chimp DNA to human DNA?
- Problem:
 - Given human DNA string: ACAAGCGGTAA
 - Given chimp DNA string: CCAAGGGGTAA
 - How similar are they?

- Similarity = longest common substring
 - Implies a gene that is shared by both.
 - Count genes that are shared by both.

Example 3: DNA Analysis

Long common substring (text):

Naïve Algorithm: strings *A* and *B*

```
L = length(A);

for (L = n down to 1)

for every substring X1 of A of length L:

for every substring X2 of B of length L:

if (X1==X2) then return X1;
```

Example: ALGORITHM ARITHMETIC

- L=3: X1= ALG \rightarrow compare to ARI, ART, ARH, ...

What is the running time?

- 1. O(log n)
- 2. O(n)
- 3. O(n log n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(n^4)$

Naïve Algorithm: strings *A* and *B*

```
L = length(A);

for (L = n down to 1) \leftarrow Loop n times.

for every substring X1 of A of length L:

for every substring X2 of B of length L:

if (X1==X2) then return X1;

comparison costs: O(n)
```

Total cost: $O(n^4)$

Example 3: DNA Analysis

Long common substring (text):

- Another idea:
 - Binary search!
 - Don't search every length L.
 - Start with L = length(A) / 2.
 - Search until you find a match for some length L.

```
Binary Search Algorithm: strings A and B
  repeat until done...
    L = length(A) / 2;
     for every substring X1 of A of length L:
           for every substring X2 of B of length L:
                 if (X1==X2) then found=true;
     if (found) then increase L
     else decrease L
```

What is the running time?

- 1. O(n)
- 2. O(n log n)
- 3. $O(n^2)$
- 4. $O(n^2 \log n)$
- 5. $O(n^3)$
- 6. $O(n^3 \log n)$
- 7. $O(n^4)$


```
Binary Search Algorithm: strings A and B
  repeat until done...
     L = length(A) / 2;
     for every substring X1 of A of length L:
           for every substring X2 of B of length L:
                 if (X1==X2) then found=true;
     if (found) then increase L
     else decrease L
```

Cost: $O(n^3 \log n)$

Example 3: DNA Analysis

Long common substring (text):

ALGORITHM vs. ARITHMETIC

– Another idea:

- Put every substring from first string into a dictionary.
- Lookup every substring from second string in a dictionary.

Example 3: DNA Analysis

Long common substring (text):

- Add to dictionary:
 - A, AL, ALG, ALGO, ALGOR, ALGORI, ALGORIT, ALGORITH, ...
 - L, LG, LGO, LGOR, LGORI, LGORIT, LGORITH, LGORITHM
 - G, GO, GOR, GORI, GORITH, GORITHM
 - •

Example 3: DNA Analysis

Long common substring (text):

- Search in dictionary:
 - A, AR, ARI, ARITH, ARITHM, ARITHME, ARITHMET, ...
 - R, RI, RIT, RITH, RITHM, RITHME, RITHMET, RITHMETI, ...
 - I, IT, ITH, ITHM, ITHME, ITHMET, ITHMETI, ITHMETIC
 - •

Example 3: DNA Analysis

Long common substring (text):

- Search in dictionary:
 - A, AR, ARI, ARIT, ARITH, ARITHM, ARITHME, ARITHMET, ...
 - R, RI, RITH, RITHM, RITHME, RITHMET, RITHMETI, ...
 - I, IT, ITH, ITHM, ITHME, ITHMET, ITHMETI, ITHMETIC
 - •

Assume insert/search are O(1). What is the running time of this algorithm?

- 1. O(1)
- 2. $O(\log n)$
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(n^2 \log n)$
- 6. $O(n^3)$
- 7. $O(n^3 \log n)$

Example 3: DNA Analysis

Long common substring (text):

- There are $O(n^2)$ substrings.
- To add a substring of length k takes time O(k):
 - To add the substring to the dictionary, you have to at least read the whole string!
- Total running time: $O(n^3)$

Example 3: DNA Analysis

Long common substring (text):

- Now, binary search again:
 - For log *n* values of length L:
 - Add all O(n) substrings of length L from A.
 - Search all O(n) substrings of length L from B.
 - Adjust *L* and continue.
 - Running time: $O(n^2 \log n)$.
 - Next lecture: do better!

Coming up next... Hash Tables

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
2	null
4	null
5	item3
6	null
7	null
8	item2
9	null
7 8	null item2

Universe $U=\{0..9\}$ of size m=9.

Assume keys are distinct.

Attempt #1: Use a table, indexed by keys.

		_
0	null	
1	null	Example: insert(4, Seth)
2	item1	
3	null	
4	null	
5	item3	
6	null	
7	null	
8	item2	
9	null	

Attempt #1: Use a table, indexed by keys.

Time: O(1) / insert, O(1) / search

Problems:

- Too much space
 - If keys are integers, then table-size > 4 billion

- What if keys are not integers?
 - Where do you put the word "hippopotamus"?
 - Where do you put 3.14159?

Pythagoras said, "Everything is a number."

[Source: MIT 6.006]

"The School of Athens" by Raphael

Pythagoras said, "Everything is a number."

- Everything is just a sequence of bits.
- Treat those bits as a number.

- English:
 - 26 letters => 5 bits/letter
 - Longest word = 28 letters (antidisestablishmentarianism?)
 - 28 letters * 5 bits = 140 bits
 - So we can store any English text in a direct-access array of size 2^{140} .

Problem:

- Huge universe U of possible keys.
- Smaller number *n* of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).
- Time complexity:
 - Time to compute h + Time to access array
- For now: assume hash function has cost 1.

0	null
1	null
2	null
3	null
4	null
5	null
6	null
7	null
8	null
9	null

 $insert(k_1, A)$

 $insert(k_1, A)$ $insert(k_2, B)$

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

Unavoidable!

- The table size is smaller than the universe size.
 - Some keys must collide!
 - Pigeonhole principle.

Coping with Collision

- Idea: choose a new, better hash functions
 - Hard to find.
 - Requires re-copying the table.
 - Eventually, there will be another collision.
- Idea: chaining (today)
 - Put both items in the same bucket!
- Idea: open addressing (next lecture)
 - Find another bucket for the new item.

Chaining

Each bucket contains a linked list of items.

Hashing with Chaining

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

What is the cost of inserting a (key, value)?

25

- \checkmark 1. O(1 + cost(h))
 - 2. $O(\log n + \operatorname{cost}(h))$
 - 3. O(n + cost(h))
 - 4. O(n*cost(h))
 - 5. We cannot determine it without knowing h.

Hashing with Chaining

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

What is the cost of searching a (key, value)?

1.
$$O(1 + cost(h))$$

2.
$$O(\log n + \operatorname{cost}(h))$$

- 3. O(n + cost(h))
- 4. O(n*cost(h))
- ✓5. We cannot determine it without knowing h.

27

Hashing with Chaining

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key) → time depends on length of linked list
 - Calculate h(key)
 - Search for (key, value) in the linked list.

Hashing with Chaining

Assume all keys hash to the same bucket!

- Search costs O(n)!

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Why don't we just insert each key into a random bucket (instead of using h)?

- 1. It would be slow to insert.
- 2. Computers don't have a real source of randomness.
- 3. By choosing the keys carefully, a user could force the random choices to create many collisions.
- 4. Searching would be very slow.
 - 5. None of the above.

30

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = m/n

= average #items / bucket.

- Expected search time = 1 + m/nlinked list traversal hash function + array access

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets

- Expected search time =
$$1 + m/n$$

= $O(1)$

Reality Fights Back

Simple Uniform Hashing doesn't exist.

- Keys are not random.
 - Lots of regularity.
 - Mysterious patterns.
- Patterns in keys can induce patterns in hash functions unless you are very careful.

Problem Hash Functions

Example:

- One bucket for each letter [1..z]
- Hash function: h(string) = first letter.
 - E.g., h("hippopotamus") = h.

 Bad hash function: many fewer words start with the letter x than start with the letter s.

Problem Hash Functions

Example:

- One bucket for each number from [1..26*28]
- Hash function: h(string) = sum of the letters.
 - E.g., h("hat") = 8 + 1 + 20 = 29.

 Bad hash function: lots of words collide, and you don't get a uniform distribution (since most words are short).

Problem Hash Functions

But pretty good hash functions do exist...

Optimism pays off!

Moral of the story:

- Don't design your own hash functions.
- Ever.
- Unless you really, really, really need to.

Goal: find a hash function whose values *look* random.

- Similar to pseudorandom generators:
 - When you use Java random, there is no real randomness.
 - Instead, it generates a sequence of numbers that looks random.
- For every hash function, some set of keys is bad!

- If you know the keys in advance, you can choose a hash function that is always good!
 - But if you change the keys, then it might be bad again.

Division Method

- $h(k) = k \mod m$
 - For example: if m=7, then h(17) = 3
 - For example: if m=20, then h(100) = 0
 - For example: if m=20, then h(97) = 17

- Two keys k_1 and k_2 collide when:

$$k_1 = k_2 \mod m$$

Collision unlikely if keys are random.

Division Method

- Idea: choose $m = 2^x$

Very, very fast to calculate $k \mod m == k >> x$

Division Method

- Idea: choose $m = 2^x$ Very, very fast to calculate $k \mod m == k >> x$
- Problem: Regularity
 - Input keys are often regular
 - Assume input keys are even.
 - Then $h(k) = k \mod m$ is even!

$$k \mod m + i * m = k$$
even

Division Method

Assume k and m have common divisor d.

$$k \mod m + i * m = k$$
divisible by d

- Implies that h(k) is divisible by d.

If every *d* is a divisor of *m* and every *k*, then what percentage of the table is used?

- 1. 1/d
- 2. 1/k
- 3. 1/m
- 4. d/n
- 5. m/n
- 6. d/m

Division Method

Assume k and m have common divisor d.

- Implies that h(k) is divisible by d.

If all keys are divisible by d, then
 you only use 1 out of every d slots

0	A
1	null
2	null
d = 3	В
4	null
5	null
2d = 6	C
7	null
8	null
3d = 9	D

Division Method

- $h(k) = k \mod m$
- Choose m = prime number
 - Not too close to a power of 2.
 - Not too close to a power of 10.
- Division method is popular (and easy), but not always the most effective.

Multiplication Method

- Fix table size: $m = 2^r$, for some constant r.
- Fix word size: w, size of a key in bits.
- Fix (odd) constant A.

$$h(k) = (Ak) \bmod 2^w \gg (w - r)$$

Multiplication Method

- Given m, w, r, A: $h(k) = (Ak) \mod 2^w \gg (w - r)$

Multiplication Method

- Given m, w, r, A: $h(k) = (Ak) \mod 2^w \gg (w - r)$

Multiplication Method

- Faster than Division Method
 - Multiplication, shifting faster than division

- Works reasonably well when A is an odd integer $> 2^{w-1}$
 - Odd: if it is even, then lose at least one bit's worth
 - Big enough: use all the bits in A.

When is a BST better than a Hash Table?

- 1. For very large data sets.
- 2. When the number of elements is unknown in advance.
- 3. When you need to search for elements that might not be in the tree/table.
- 4. When you need find the largest element.
- 5. Never.

27

Can you easily extend a dictionary / hash table to maintain the order in which items are inserted??

- ✓1. Yes.
 - 2. No.
 - 3. Only if you are really, really clever.

Which of the following is *not* a problem with a direct access table?

- 1. It takes up too much space.
- 2. Keys must be integers.
- ✓ 3. Searching it is slow.
 - 4. Enumerating all elements is slow.
 - 5. None of the above.

Enumerating keys in a hash table is fastest when:

- 1. m >> n
- 2. n >> m
- **✓**3. n ≈ m
 - 4. It doesn't matter.

Searching in a hash table is fastest when:

- \checkmark 1. m >> n
 - 2. n >> m
 - 3. $n \approx m$
 - 4. It doesn't matter.

For the division method, which of the following is a good table size?

- 1. 102
- **✓**2. 103
 - 3. 104
 - 4. 105
 - 5. 106
 - 6. None of the above.

32 >> 3 = ?

- 1. 1
- 2. 2
- **√**3. 4
 - 4. 8
 - 5. 16
 - 6. 32

Summary

Dictionaries are pervasive

– You find them everywhere!

Hash tables are fast, efficient dictionaries.

- Under optimistic assumptions, provably so.
- In the real world, often so.
- But be careful!

Beats BSTs:

- Operate directly on keys (i.e., indexing)
- Gave up: successor/predecessor/etc.