SOLUTIONS TO ATTENDANCE QUIZ (WEEK 9)

COLTON GRAINGER (MATH 1300)

This was an **ungraded** quiz given on 2019-03-07. I didn't collect statistics, but here's my impression (on a 0 to 4 scale with 4/4 high).

problem number	actual class performance	problem difficulty
1	1/4	1/4
2	0/4	4/4
3	1/4	2/4
4	1/4	3/4

1. Definitions

Let f be a function and A a set of numbers contained in the domain of f. (If you like, you may assume A is an interval of real numbers, like (a,b) or $(-\infty,\infty)$ or [a,b]. However, these definitions hold for any set of numbers A in the domain of f.)

1. A point x_{max} in A is a **maximum point** for f on A if

$$f(x_{\text{max}}) \ge f(x)$$
 for every x in A .

- i. The number $f(x_{\text{max}})$ is called the **maximum value** of f on A.
- ii. We also say that f "has its maximum value on A at x_{max} ".
- 2. A particular number y_{above} is a **bound** for f on A if

$$y_{\text{above}} \ge |f(x)|$$
 for every x in A .

3. A point x_{local} in A is a **local maximum point** for f on A if:

There is a positive number $\delta > 0$ such that x_{local} is a maximum point for f on the set

{points in A whose distance to x_{local} is less than δ }.

2. Short answer

1. What part(s) of which definition(s) above should be modified to instead define a **minimum point** and the **minimum value** for a function f on A?

Correct answer. In definition 1, amend "max" to "min", "maximum" to "minimum", and "\geq" to "\leq".

Other answers. Please actually write " \leq ". It is not sufficient to say that the inequalities "flip". For example, is the "flip" of the inequality

$$\rho \geq 0$$

the inequality

$$\rho \leq 0$$
 or $\rho < 0$?

 $Date:\ 2019\mbox{-}03\mbox{-}14.$

I empathize with the casual attitude, but it is worth knowing why a strict inequality differs from a general inequality.

2. List five numbers, in decreasing order, that bound the function $\operatorname{arctan}: \mathbf{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}).$

Example answer. Let's convince ourselves that the absolute value $|\arctan x|$ is strictly less than $\pi/2$ for all real numbers x.

- Well, consider some angle $-\pi/2 < \theta < \pi/2$ and suppose that we let this angle θ gradually increase and decrease.
- Then $\tan \theta$ will gradually range between $-\infty$ and ∞ , because tangent measures the slope of a ray that makes an angle of θ with the x-axis.
- Because arctan is the inverse function to tan, if we let the point $-\infty < x < \infty$ gradually increase and decrease, then $\arctan x$ should gradually increase and decrease from just above $-\pi/2$ to just below $\pi/2$.

Taking absolute values, we know $|\arctan x| < \pi/2$. Then any number greater than or equal to $\pi/2$ is a bound for the arctan function. Here's a list of such numbers in decreasing order.

- $\frac{\pi}{2} + 5$ $\frac{\pi}{2} + 4$

- ...
 $\frac{\pi}{2} + 1$ $\frac{\pi}{2}$.
- 3. Suppose the function

$$f(x) := \begin{cases} -x^2 & \text{if } -1 < x < 1\\ 0 & \text{if } x \le -1 \text{ or } x \ge 1 \end{cases}$$

represents force (N) in the positive x-direction on the head of a pendulum when the pendulum is displaced by x (cm) from equilibrium. If there is a local maximum point for f on \mathbf{R} , find it; else, find a local minimum point for f on \mathbf{R} .

Correct answer. x=0 gives a local maximum point, and in fact any point $x\leq -1$ or $1\leq x$ is a local maximum point.

This problem was rendered trivial by a typo. The restoring force on a pendulum for small displacements is $not -x^2$, but actually (where k > 0)

$$g(x) := \begin{cases} -kx & \text{if } -1 < x < 1\\ 0 & \text{if } x \le -1 \text{ or } 1 \le x \end{cases}$$

The function q(x) has neither a local minimum point nor a local maximum point.

- 4. Suppose f and g are increasing functions from \mathbf{R} to \mathbf{R} . (Recall that a function g is **increasing** on an interval if q(a) < q(b) whenever a and b are two numbers in the interval with a < b.) Which of the following functions is *not* guaranteed to be an increasing function from \mathbf{R} to \mathbf{R} ?
 - (A) f+g
 - (B) $f \cdot g$
 - (C) $f \circ g$
 - (D) All of the above, i.e., none of them is guaranteed to be increasing.
 - (E) None of the above, i.e., they are all guaranteed to be increasing.

¹"Modern man, writes Foucault, was born in a welter of regulations: meticulous rules and subrules, fussy inspections, 'the supervision of the smallest fragment of life [...] in the context of the school, the barracks, the hospital or the workshop." [1, Ch. 91

Correct answer. (B)

Explanation.² The problem with option (B) arises when one or both functions take negative values. For instance, consider the case f(x) := x and g(x) := x. Both are increasing functions on all of **R**. However, the pointwise product is the function $x \mapsto x^2$, which is a decreasing function for negative x. Formally, the issue is that we cannot multiply inequalities of the form A < B and C < D unless we are guaranteed to be working with positive numbers.

3. References

As usual, question 4 is from Naik [2] and the definitions are from Spivak [3].

- [1] J. G. Merquior, Foucault. University of California Press, 1987.
- [2] V. Naik, "Math 152 Course Notes," 2012.
- [3] M. Spivak, Calculus, 3rd ed. Publish or Perish, Inc., 1994.

²From Vipul Naik's Math 152 quiz solutions.