Quantitative Risk Management Assignment 3 Solutions

October 15, 2019

Question 1: The values of $VaR_{0.95}$ and $VaR_{0.99}$ are plotted in Figure 1 along with the losses that were realized on those particular days. The days on which VaR_{α} was breached are indicated with a marker.

Figure 1: Daily VaR_{α} estimates and losses from March 11, 2013 to March 10, 2016.

The total number of days on which VaR_{α} is computed and then corresponding losses observed is 751. Of those days, $VaR_{0.95}$ was breached 48 times and $VaR_{0.99}$ was breached 18 times. If the methods are accurate, the probabilities of observing this many or more breaches in each case are given by:

$$1 - Bino^{-1}(47,751,0.05) = 0.05185$$
$$= 5.185\%$$
$$1 - Bino^{-1}(17,751,0.01) = 7.5 \cdot 10^{-4}$$
$$= 0.075\%$$

The probability corresponding to $\alpha=0.95$ is not completely unreasonable, but the result for $\alpha=0.99$ shows that we saw an extremely unlikely large number of breaches. It is likely that this method of computing VaR should be supplemented with other methods. A simple visual analysis of the stock prices over the five year period of consideration shows much more volatility in the last two years than in the time leading up to it.

Question 2: Part 1) The geometric distribution with 0 included in the support has probability mass function $\mathbb{P}(L=k)=(1-p)^kp$. For p=0.5, a table of values of the cumulative distribution function is given by:

$\mathbb{P}(L \le 0)$	0.5
$\mathbb{P}(L \leq 1)$	0.75
$\mathbb{P}(L \leq 2)$	0.875
$\mathbb{P}(L \leq 3)$	0.935
$\boxed{\mathbb{P}(L \le 4)}$	0.96875

We see that the CDF changes from less than $\alpha = 0.95$ to greater than $\alpha = 0.95$ as the index k changes from 3 to 4. This means that $VaR_{0.95} = 4$ as can be checked from the definition of VaR_{α} :

$$VaR_{0.95} = \inf\{x \in \mathbb{R} : F_L(x) \ge 0.95\} = 4$$

Figure 2 plots VaR_{α} as a function of α for this particular distribution. Note that it has discontinuities due to the discreet nature of the random variable L.

Figure 2: VaR_{α} as a function of α for the geometric distribution, p = 0.5.

Part 2) If X and Y are independent Poisson with parameters λ_X and λ_Y , then L = X + Y is Poisson with parameter $\lambda_Z = \lambda_X + \lambda_Y$. Values of VaR_{α} for each random variable can be found via the CDF as in the previous part of this question. The resulting values are shown in Figure 3.

Figure 3: VaR_{α} as a function of α for the Poisson distributed random variables.

Question 3: There are of course an infinite number of counterexamples to the subadditivity of VaR_{α} . The one given here is one of the most simplistic. Let L_1 and L_2 be independent Bernoulli random variables with success parameter $1 - \alpha - \epsilon$ where $0 < \epsilon < 1 - \alpha$. Then

$$\mathbb{P}(L_i = 0) = \alpha + \epsilon$$

$$\mathbb{P}(L_i = 1) = 1 - \alpha - \epsilon$$

Clearly, $VaR_{\alpha}(L_i) = 0$. The distribution of $L = L_1 + L_2$ is Binomial with parameters n = 2 and $p = 1 - \alpha - \epsilon$. This random variable takes on three possible values with the following probabilities:

$$\mathbb{P}(L=0) = (\alpha + \epsilon)^2$$

$$\mathbb{P}(L=1) = 2(\alpha + \epsilon)(1 - \alpha - \epsilon)$$

$$\mathbb{P}(L=2) = (1 - \alpha - \epsilon)^2$$

If ϵ is chosen such that $(\alpha + \epsilon)^2 < \alpha$, then $VaR_{\alpha}(L) > 0 = VaR_{\alpha}(L_1) + VaR_{\alpha}(L_2)$, showing that VaR_{α} is not subadditive.

Question 4: Part 1) The current value bond i is 1000CHF, meaning $V_{i,0} = 1000$ CHF. If company i does not default after one year, then the value of the bond will be $V_{i,1} = 1050$ CHF. If company i does default, then the bond will have a value of $V_{i,1} = 0$ CHF. The loss L_i as a function of I_i is then:

$$L_i = -(V_{i,1} - V_{i,0})$$

= -(1050(1 - I_i) - 1000)
= 1050 I_i - 50

Part 2) The probability distribution is given by the following:

$$P(L_i = -50) = 0.98$$
$$P(L_i = 1000) = 0.02$$

Part 3) The value of portfolio V_a is a multiple of a single bond so that $L_a = 100(1050I_i - 50)$. Thus, the probability distribution of L_a is:

$$\mathbb{P}(L_a = -5000) = 0.98$$

$$\mathbb{P}(L_a = 100000) = 0.02$$

The portfolio V_b is the sum of 100 independent copies of a single bond, so the losses are given by:

$$L_b = \sum_{i=1}^{100} 1050I_i - 100 \cdot 50$$
$$= 1050 \sum_{i=1}^{100} I_i - 100 \cdot 50$$
$$= 1050N - 100 \cdot 50$$

where N counts the number of defaults. Since each I_i is Bernoulli and they are independent, N has Binomial distribution with parameters n = 100 and p = 0.02. For portfolio V_a , VaR_{α} takes the values:

$$VaR_{0.95}(L_a) = -5000$$

 $VaR_{0.99}(L_a) = 100000$

For portfolio V_b , we can first compute quantiles of N:

$$Bino^{-1}(0.95, 100, 0.02) = 5$$

 $Bino^{-1}(0.99, 100, 0.02) = 6$

Since L_b is a monotone function with respect to N, these quantiles of N give us the corresponding quantiles of L_b :

$$VaR_{0.95}(L_b) = 1050 \cdot 5 - 100 \cdot 50 = 250$$

 $VaR_{0.99}(L_b) = 1050 \cdot 6 - 100 \cdot 50 = 1300$