Analise de vendas para ativar ou inativar produto para importação.

Dataset utilizado contem os dados de vendas dos produtos da empresa X de 2016 a 2019. O produto A, B e C são importados e levam 3 meses para serem entregues pelo fornecedor na china.

Objetivo

1 - Verificar o hisorico de vendas e estoque disponivel de um produto e analisar se deve ser descontinuado ou adiquirido, tendo em vista as necesidades e estrategias comerciais da empresa.

O Dicionário de Dados

Num. Pedido: Numero do documento de vendas

DT Emissao, Mes, Ano e Mes-ano: Data em que a venda foi efetuada

Nome Cliente: Nome generico do cliente

Produto: Codigo do Produto

Descrição do Produto

Quantidade: Quantidade vendida do produto

Estoque: Estoque atual do produto no ato da venda

Compra: Indica se deve ser emitido ordem de compra do produto.

adicionar valor unitário, custo unitário, margem e o hanking de cliente (A, B, C)

prcunit: Preço unitário do produto

custounit: Custo unitário do produto no dia da venda levando em consideração cambio de dolar, frete, estoque, despesas operacionais e impostos.

margem: Lucro bruto sobre o item vendido

Importando as bibliotecas

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   import warnings
   warnings.filterwarnings('ignore')
```

Acessando os dados

```
In [2]: # Acessando banco de dados Mysql
# Obs: Antes será necessário instalar o mysql.connector via commando no cmd (pip install mysql-connect

In [3]: from datetime import date import mysql.connector

db_connection = mysql.connector.connect(host="108.167.132.74", user="vetro057_dcroot", passwd="@dc202 data = pd.read_sql('SELECT * FROM fat19', con=db_connection)

db_connection.commit()
db_connection.close()
```

Out[4]:

	cod	numpedido	dataemissao	mes	ano	nomecliente	produto	qtde	prcunit	total	custounit	margem	estoque	
0	1	1371.0	03/01/2019	1	2019	CLI3460	5140	240	23.64	5673.60	10.232	13.408	530	С
1	2	1378.0	03/01/2019	1	2019	CLI3433	5140	48	23.64	1134.72	10.232	13.408	563	С
2	3	1388.0	03/01/2019	1	2019	CLI3455	5140	16	23.64	378.24	10.232	13.408	229	С
3	4	1391.0	03/01/2019	1	2019	CLI3587	5140	8	23.64	189.12	10.232	13.408	269	С
4	5	NaN	03/01/2019	1	2019	CLI3472	5140	8	23.64	189.12	9.050	14.590	119	С
4														>

In [5]: data.corr()

Out[5]:

	cod	numpedido	qtde	prcunit	total	custounit	margem	estoque
cod	1.000000	-0.020464	0.049127	-0.429190	-0.037243	-0.488228	-0.249581	-0.010331
numpedido	-0.020464	1.000000	0.150196	-0.188926	0.023942	0.002257	-0.240841	-0.016446
qtde	0.049127	0.150196	1.000000	-0.174324	0.835629	-0.074672	-0.179145	-0.018724
prcunit	-0.429190	-0.188926	-0.174324	1.000000	0.099779	0.660707	0.881489	0.026942
total	-0.037243	0.023942	0.835629	0.099779	1.000000	0.075882	0.081691	-0.012511
custounit	-0.488228	0.002257	-0.074672	0.660707	0.075882	1.000000	0.227947	0.008715
margem	-0.249581	-0.240841	-0.179145	0.881489	0.081691	0.227947	1.000000	0.029465
estoque	-0.010331	-0.016446	-0.018724	0.026942	-0.012511	0.008715	0.029465	1.000000

```
In [6]: #convertendo alguns tipos de dados:
    data['mes'] = data['mes'].astype(int)
```

Exploração dos dados

```
In [7]: # Informaçõe gerais.
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 14 columns):
              2823 non-null int64
cod
numpedido
              2609 non-null float64
dataemissao
              2823 non-null object
              2823 non-null int32
mes
ano
              2823 non-null object
nomecliente
              2823 non-null object
              2823 non-null object
produto
qtde
              2823 non-null int64
prcunit
              2823 non-null float64
total
              2823 non-null float64
              2823 non-null float64
custounit
              2823 non-null float64
margem
estoque
              2823 non-null int64
              2823 non-null object
compra
dtypes: float64(5), int32(1), int64(3), object(5)
memory usage: 297.8+ KB
```

In [8]: # Analisando se existe alguma coluna com dados NULL utilizando grafico de temperatura.

In [9]: sns.heatmap(data.isnull(), yticklabels=False,cbar=False,cmap='viridis')

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x176a83f4e80>

In [10]: #Removendo a coluna numpedido por conter alguns valores nulos e n\u00e4o ser um feature importante para a
data.drop(['numpedido'],axis=1, inplace=True)
data.head(5)

Out[10]:

	cod	dataemissao	mes	ano	nomecliente	produto	qtde	prcunit	total	custounit	margem	estoque	compra
0	1	03/01/2019	1	2019	CLI3460	5140	240	23.64	5673.60	10.232	13.408	530	COMPRA
1	2	03/01/2019	1	2019	CLI3433	5140	48	23.64	1134.72	10.232	13.408	563	COMPRA
2	3	03/01/2019	1	2019	CLI3455	5140	16	23.64	378.24	10.232	13.408	229	COMPRA
3	4	03/01/2019	1	2019	CLI3587	5140	8	23.64	189.12	10.232	13.408	269	COMPRA
4	5	03/01/2019	1	2019	CLI3472	5140	8	23.64	189.12	9.050	14.590	119	COMPRA

In [11]: # Vendas por Produto

In [12]: sns.countplot(x='ano',hue='produto',data=data)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x176a81b7be0>

In [13]: # Clintes que compraram no perído ordenado por quantidade comprada, idenficando os 10 princiais.

```
In [14]: by_cliente_produto = data[['nomecliente','produto','qtde']].groupby(["nomecliente"]).sum()
topcliente = by_cliente_produto.sort_values(by=["qtde"],ascending=False)
topcliente.head(10)
```

Out[14]:

qtde

nomecliente	
CLI1889	65343
CLI3562	30997
CLI2259	11361
CLI3436	9814
CLI3460	9256
CLI3433	9111
CLI761	9086
CLI3454	7903
CLI3226	7526
CLI3060	6924

In [15]: # Calculando a media de venda por mes dos produtos

In [16]: by_produto_ano = data[['produto','mes','qtde']].groupby(["produto","mes"]).mean()
by_produto_ano.sort_values(by='produto',ascending=True)

Out[16]:

~	٠,	4	_

		qtde
produto	mes	
4373	1	59.468750
	12	134.000000
	11	140.466667
	10	98.700000
	8	89.565217
	7	176.371429
	9	87.588235
	5	80.516129
	4	71.222222
	3	95.562500
	2	138.973684
	6	66.611111
4374	8	95.764706
	12	173.111111
	11	93.888889
	10	91.333333
	9	312.833333
	7	56.750000
	3	67.100000
	5	109.931034
	4	60.790698
	2	110.370370
	1	58.300000
	6	71.041667
4375	8	321.171875
	12	211.574468
	11	106.960000
	10	194.716418
	9	158.052632
	7	154.938776
4461	8	41.333333
	2	71.159091
	5	1.000000
	4	34.785714
	3	28.230769
	1	71.238095
	7	50.129032
5140	12	127.351351
	11	70.800000
	10	119.666667
	8	4.000000
	7	1.000000
	9	91.071429
	5	62.000000

qtde

produto	mes	
	4	4.285714
	3	62.909091
	2	54.925926
	1	56.195122
	6	68.509091
7	9	252.000000
	8	50.000000
	7	54.074074
	6	48.750000
	3	20.800000
	4	229.900000
	2	14.916667
	1	235.066667
	10	56.272727
	5	22.368421
	11	238.600000

118 rows × 1 columns

```
In [17]: # Grafico de vendas por mes(todos os anos)
```

In [18]: sns.lineplot(x="mes", y="qtde", data=data, estimator=np.sum)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x176a8134f60>

In [19]: # Vendas mensal(todos os anos) e Produto

```
In [20]: sns.countplot(x='mes',hue='produto',data=data)
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x176a8250c18>

Tratando o dataset para treino

In [21]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # biblioteca de visualização utilizada pelo pandas e pelo seaborn
import seaborn as sns # biblioteca de visualização com mais opções de gráficos
#comando necessário para que as imagens sejam exibidas aqui mesmo no notebook
%matplotlib inline

In [22]: df = data
 df.head(5)

Out[22]:

	cod	dataemissao	mes	ano	nomecliente	produto	qtde	prcunit	total	custounit	margem	estoque	compra
0	1	03/01/2019	1	2019	CLI3460	5140	240	23.64	5673.60	10.232	13.408	530	COMPRA
1	2	03/01/2019	1	2019	CLI3433	5140	48	23.64	1134.72	10.232	13.408	563	COMPRA
2	3	03/01/2019	1	2019	CLI3455	5140	16	23.64	378.24	10.232	13.408	229	COMPRA
3	4	03/01/2019	1	2019	CLI3587	5140	8	23.64	189.12	10.232	13.408	269	COMPRA
4	5	03/01/2019	1	2019	CLI3472	5140	8	23.64	189.12	9.050	14.590	119	COMPRA

In [23]: # Elimar os atributos que nao influencia na analise

In [24]: df.drop(['cod','dataemissao','nomecliente'],axis=1, inplace=True)
 df.head(5)

Out[24]:

	mes	ano	produto	qtde	prcunit	total	custounit	margem	estoque	compra
0	1	2019	5140	240	23.64	5673.60	10.232	13.408	530	COMPRA
1	1	2019	5140	48	23.64	1134.72	10.232	13.408	563	COMPRA
2	1	2019	5140	16	23.64	378.24	10.232	13.408	229	COMPRA
3	1	2019	5140	8	23.64	189.12	10.232	13.408	269	COMPRA
4	1	2019	5140	8	23.64	189.12	9.050	14.590	119	COMPRA

```
In [25]: # One Hot Encode - Subtistuir valor da coluna Compra( Compra = 1 e NaoCompra = 0)
```

```
In [26]: df["compra"] = df["compra"].replace("COMPRA", "1")
    df["compra"] = df["compra"].replace("NAOCOMPRA", "0")
```

```
In [27]: df.head(5)
```

Out[27]:

	mes	ano	produto	qtde	prcunit	total	custounit	margem	estoque	compra
0	1	2019	5140	240	23.64	5673.60	10.232	13.408	530	1
1	1	2019	5140	48	23.64	1134.72	10.232	13.408	563	1
2	1	2019	5140	16	23.64	378.24	10.232	13.408	229	1
3	1	2019	5140	8	23.64	189.12	10.232	13.408	269	1
4	1	2019	5140	8	23.64	189.12	9.050	14.590	119	1

```
In [28]: sns.countplot(x='ano',hue='compra',data=df)
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x176a89b43c8>

2. Treinar o Classificador

```
In [29]: import itertools
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import classification_report, confusion_matrix
In [30]: train = df # Transferindo o dataset DF para train, para efetuar os treinos
In [31]: X_train, X_test, y_train, y_test = train_test_split(train.drop(['compra'],axis=1),
                                                              train['compra'], test_size=0.30,
                                                              random_state=101)
         # Criar um objeto do classificador DecisionTreeClassifier()
         dtc = DecisionTreeClassifier(max_depth=3)
In [33]: # Treinar o modelo dtc chamando a função fit
         dtc.fit(X_train, y_train)
Out[33]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best')
```

In [34]: # Fazer as predições passanto o X_TEST
predictions = dtc.predict(X_test)

```
In [35]:
         # Matrix de confusão
         cnf_matrix = confusion_matrix(y_test, predictions)
         cnf_matrix
Out[35]: array([[200, 48],
                [ 14, 585]], dtype=int64)
In [36]: #Plotar matriz de confusão
         def plot_confusion_matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
              .....
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
              if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
             else:
                 print('Confusion matrix, without normalization')
             print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                           horizontalalignment="center"
                           color="white" if cm[i, j] > thresh else "black")
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
             plt.tight layout()
```

Confusion matrix, without normalization [[200 48] [14 585]]


```
print(classification_report(y_test,predictions))
                        precision
                                      recall f1-score
                                                          support
                     0
                             0.93
                                        0.81
                                                  0.87
                                                              248
                     1
                             0.92
                                        0.98
                                                  0.95
                                                              599
                                                  0.93
                             0.93
                                        0.93
                                                              847
             micro avg
                                                  0.91
             macro avg
                             0.93
                                        0.89
                                                              847
          weighted avg
                             0.93
                                        0.93
                                                  0.93
                                                              847
In [ ]:
         # validação cruzada para verificar se o modelo está em overfit
In [39]:
          #ordenando os dados de proposito para dificultar o trabalho do modelo
In [40]: train2 = df.sort_values("compra", ascending=True) # Transferindo o dataset DF para train, para efetu
          train2.head(5)
Out[40]:
                     ano produto gtde
                                       prcunit
                                                  total custounit margem estoque compra
                mes
          2822
                 11 2019
                                  1000
                                         15.58
                                              15580.00
                                                        9.06231
                                                                6.51769
                                                                                     0
                               7
                                                                            367
           796
                  4 2019
                             4414
                                    77
                                          9.31
                                                716.87
                                                        4.38227
                                                                4.92773
                                                                            219
                                                                                     0
          2265
                  6 2019
                            4374
                                   121
                                         10.58
                                               1280.18
                                                        5.05669
                                                                5.52331
                                                                             37
                                                                                     0
           800
                    2019
                             4414
                                                        4.54727 -1.24727
                                                                            510
                                                                                     0
                                          3.30
                                                  1.65
           803
                  4 2019
                            4414
                                    33
                                          3 30
                                                108 90
                                                        4 54727 -1 24727
                                                                            564
                                                                                     0
In [41]: X_train, X_test, y_train, y_test = train_test_split(train2.drop(['compra'],axis=1),
                                                                train2['compra'], test_size=0.30,
                                                                random_state=101)
In [42]: from sklearn.model_selection import cross_validate
          modelo = DecisionTreeClassifier(max_depth=3)
          results = cross_validate(modelo, X_train, y_train, cv = 10, return_train_score=False)
          media = results['test_score'].mean()
          desvio_padrao = results['test_score'].std()
          print("Accuracy com cross validation, 10 = [%.2f, %.2f]" % ((media - 2 * desvio_padrao)*100,
                                                                         (media + 2 * desvio_padrao) * 100))
          Accuracy com cross validation, 10 = [89.08, 96.95]
 In []: #Variando de 89% a 96%, o cross validation confirmou a eficiência do modelo.
          #imprimir arvore de decisao
In [43]:
         from sklearn.tree import export_graphviz
          import graphviz
          #treina o modelo final
          modelo.fit(X_train, y_train)
          features = X train.columns
          dot data = export graphviz(modelo, out file=None, filled=True, rounded=True,
                          class_names=["não", "sim"],
                          feature_names = features)
          graph = graphviz.Source(dot_data)
```

```
In [44]:
         graph
Out[44]:
                                                                                          prcunit <= 10.6
                                                                                            gini = 0.414
                                                                                          samples = 1976
                                                                                        value = [578, 1398]
                                                                                            class = sim
                                                                                    True
                                                                                                           Fal
                                                                        margem <= 1.921
                                                                                                           prc
                                                                           gini = 0.292
                                                                         samples = 615
                                                                                                           sar
                                                                        value = [506, 109]
                                                                                                          valu
                                                                           class = não
                                 margem <= 1.61
                                                                         total <= 510.675
                                                                                                          mar
                                   gini = 0.006
                                                                           gini = 0.486
                                  samples = 355
                                                                         samples = 260
                                                                                                            sa
                                 value = [354, 1]
                                                                        value = [152, 108]
                                                                                                           val
                                   class = não
                                                                           class = não
                                                         gini = 0.415
               gini = 0.0
                                   gini = 0.117
                                                                                 gini = 0.326
                                                                                                         gini =
            samples = 339
                                  samples = 16
                                                        samples = 109
                                                                               samples = 151
                                                                                                       sample
           value = [339, 0]
                                  value = [15, 1]
                                                       value = [32, 77]
                                                                              value = [120, 31]
                                                                                                       value =
              class = não
                                    class = não
                                                          class = sim
                                                                                 class = não
                                                                                                       class
In [45]:
         # Rank dos tributos mais relevantes
         df_import_features = dict(zip(train.drop(['compra'],axis=1), dtc.feature_importances_))
In [46]:
         df_import_features = pd.DataFrame.from_dict(df_import_features, orient='index', columns = ['value'])
         df_import_features = df_import_features.sort_values(['value'], ascending=False)
         df import features
Out[46]:
                     value
            prcunit 0.856599
           margem 0.093147
             total
                  0.050254
                  0.000000
              mes
                  0.000000
              ano
                  0.000000
           produto
                  0.000000
              qtde
          custounit 0.000000
           estoque 0.000000
In [47]: # Plotar atributos mais relevantes
In [48]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
```

```
In [49]: | ax = sns.scatterplot(x=train["margem"], y=train["prcunit"], hue="compra",data=train)
```


In [50]: ax = sns.scatterplot(x=train["qtde"], y=train["prcunit"], hue="compra",data=train)

In [51]: ax = sns.scatterplot(x=train["qtde"], y=train["estoque"], hue="compra",data=train)


```
In [52]: | ax = sns.scatterplot(x=train["margem"], y=train["estoque"], hue="compra",data=train)
            600
            500
            400
            300
            200
            100
                                   margem
In [53]:
         #Teste unitário do modelto.
In [54]: train.head(0)
Out[54]:
            mes ano produto qtde prcunit total custounit margem estoque compra
In [55]:
         # Criar um produto1 contendo informações do produto a ser analisado pelo modelo.
         produto1 = [1,2019,4391,11,4.11,45.21,6.4655,-2.3555,260]
         produto2 = [8,2019,7,11,4.11,45.21,8.55,4.52,160,]
In [56]:
         #Submetendo o Produto1 para o modelo analisar se comprar ou não. [\theta] = Nao compra [1] = Compra
         dtc.predict([produto1])
Out[56]: array(['0'], dtype=object)
In [57]: #Submetendo o Produto2 para o modelo analisar se comprar ou não. [0] = Nao compra [1] = Compra
         dtc.predict([produto2])
Out[57]: array(['1'], dtype=object)
In [ ]:
```