通过代码对源文本进行处理,可得出热力图:

	频数	频率 (%)
a	4535	8. 47
b	716	1. 34
С	1173	2. 19
d	2425	4. 53
е	5347	9. 99
f	434	0.81
g	3643	6.81
h	4347	8. 12
i	7377	13. 78
j	1886	3. 52
k	170	0.32
1	815	1. 52
m	743	1. 39
n	5742	10. 73
0	2876	5. 37
p	131	0. 24
q	358	0. 67
r	423	0. 79
s	1565	2. 92
t	620	1. 16
u	3526	6. 59
v	25	0.05
w	335	0. 63
X	685	1. 28
у	1495	2. 79
z	2123	3. 97
累计	53515	100

定义

1 均衡性:各个字母的频数标准差,即各个字母的频数越相近则输入越均衡,与频数大小无关;

2 输入效率: 输入字母数量/输入汉字数量,即输入效率越高,输入相同汉字时,输入的字母数量越少。

假设:

- 1) 使用者可以迅速掌握并使用任意合理的正确的编码方案,即任意合理正确的编码方案的 效率均是对于计算机运行速度而言的,与使用计算机的人个人习惯等原因无关。
- 2) 编码方案仅针对源文本进行,是对于源文本较为优秀的编码方案,对于其他文本可能有未编码情况出现。

结论:

据统计,源文档中有:有1203种汉字,

使用汉语拼音编码为 **53515 个字母**, **效率为 44.4846**, **均衡度为 9911**. **163661**

评价:

原汉语拼音编码方案编码总长度较长,效率较为底下。

编码方案:对传统的二叉哈夫曼树进行推广到 **26 叉哈夫曼树**,并针对原文档出现的 **1203 种**汉字的频率进行编码。

输入效率:

使用 26 叉哈夫曼树,编码长度为 **33989 个字母,效率为 28.2535。** 对比第二问源编码方案: **53515 个字母,效率为 44.4846。** 可见,新的压缩方案有较好压缩效果,更好的输入效率。 更一般的:

● 测验了 2-29 叉树的编码后的输入效率:

可以看出,在 **2-6 叉哈夫曼树**编码时,对于编码输入效率有着较好的改善,此后再逐步增加树枝数时,改善效率**不显著**。

● 每一种编码方式中最长元素编码的长度:

可以看出,在 **2-11 叉哈夫曼树**进行编码时,随着树枝的不断增加,元素最长的编码长度会对应下降,而对于 **12-26 叉树**来说,元素编码长度最长总为 **4 个字母。**

对于均衡性:

使用汉语拼音编码为 **53515 个字母**, **效率为 44.4846, 均衡度为 9911. 163661**

对于26叉哈夫曼树编码方案,由于个人代码能力限制,不足以求出具体数值。

原因:由于需要给出 26 叉哈夫曼树对于源文本 1203 种汉字的所有具体的编码方案,在定义节点时,需要定义 26 个叶子节点,并在遍历时,需要依次遍历所有节点,并对在查阅相关文献后,个人能力不足以手动写出相应代码。