

# 三极管的电流分配与放大作用

余舱市职成教中心学核 陈雅萍

#### -以NPN型三极管为例



工作电压:9V

基极偏置电阻: $R_{\mathbf{b}}$ 和 $R_{\mathbf{p}}$ 

调节 $R_{\mathrm{p}}$  , 以改变基极电流  $I_{\mathrm{B}}$ 

条件:实验过程中,使三极管始终处于放大状态



# -实验电路



#### -连接电路





#### 调节电位器





#### -数据测量1



| 电流                   | 第1次  | 第2次 | 第3次 | 第4次 |
|----------------------|------|-----|-----|-----|
| $I_{ m B}$ / $\mu$ A | 10   |     |     |     |
| $I_{ m C}$ /mA       | 2.82 |     |     |     |
| $I_{ m E}$ /mA       | 2.84 |     |     |     |



#### 数据测量2



| 电流                   | 第1次  | 第2次  | 第3次 | 第4次 |
|----------------------|------|------|-----|-----|
| $I_{ m B}$ / $\mu$ A | 10   | 15   |     |     |
| $I_{ m C}$ /mA       | 2.82 | 4.31 |     |     |
| $I_{ m E}$ /mA       | 2.84 | 4.33 |     |     |



#### -数据测量3



| 电流                   | 第1次  | 第2次  | 第3次  | 第4次 |
|----------------------|------|------|------|-----|
| $I_{ m B}$ / $\mu$ A | 10   | 15   | 20   |     |
| $I_{ m C}$ /mA       | 2.82 | 4.31 | 5.74 |     |
| $I_{ m E}$ /mA       | 2.84 | 4.33 | 5.77 |     |



#### -数据测量4



| 电流                   | 第1次  | 第2次  | 第3次  | 第4次  |
|----------------------|------|------|------|------|
| $I_{ m B}$ / $\mu$ A | 10   | 15   | 20   | 25   |
| $I_{ m C}$ /mA       | 2.82 | 4.31 | 5.74 | 7.10 |
| $I_{ m E}$ /mA       | 2.84 | 4.33 | 5.77 | 7.14 |



#### 数据分析

| 电流                   | 第1次  | 第2次   | 第3次   | 第4次   |
|----------------------|------|-------|-------|-------|
| $I_{ m B}$ / $\mu$ A | /10  | /15   | /20   | /25   |
| $I_{ m C}$ /mA       | 2.82 | 4.31  | 5.74  | 7.10  |
| $I_{ m E}$ /mA       | 2.84 | 4.33, | 5.77, | 7.14  |
|                      |      | ~ ~ / | `_/   | ~ _ / |

#### 1.三极管各极电流分配关系

$$I_{\mathbf{E}} = I_{\mathbf{B}} + I_{\mathbf{C}}$$



#### 2.三极管各极电流数量关系

$$I_{\mathrm{E}} \approx I_{\mathrm{C}} >> I_{\mathrm{B}}$$



#### 数据分析

| 电流                   | 第1次  | 第2次   | 第3次   | 第4次  |
|----------------------|------|-------|-------|------|
| $I_{ m B}$ / $\mu$ A | 10   | 15    | 20    | 25   |
| $I_{ m C}$ /mA       | 2.82 | 4.31, | 5.74, | 7.10 |
| $I_{ m E}$ /mA       | 2.84 | 4.33  | 5.77  | 7.14 |

#### 3.基极电流与集电极电流之比 一为常量

$$\frac{I_{C2}}{I_{B2}} = \frac{4.31}{0.015} \approx 287.3$$
  $\frac{I_{C3}}{I_{B3}} = \frac{5.74}{0.020} \approx 287.0$ 

**直流放大倍数**  $\overline{\beta}$  : 也可用 $h_{\text{FF}}$ 表示

4.基极电流有微小变化量,集电极电流有较大变化量, 且其比值也基本为常量。

$$I_{\rm C} = \bar{\beta} I_{\rm I}$$

$$\frac{\Delta i_{\rm C}}{\Delta i_{\rm R}} = \frac{I_{\rm C3} - I_{\rm C2}}{I_{\rm R3} - I_{\rm R2}} = \frac{5.74 - 4.31}{0.020 - 0.015} \approx 286.0$$

$$\beta = \frac{\Delta i_{\rm C}}{\Delta i_{\rm B}}$$

交流放大倍数
$$\beta$$
: 也可用 $h_{\mathrm{fe}}$ 表示 
$$\beta = \frac{\Delta i_{\mathrm{C}}}{\Delta i_{\mathrm{B}}} \Rightarrow \Delta i_{\mathrm{C}} = \beta \Delta i_{\mathrm{B}}$$

一般情况下, $\beta$ 与 $\beta$ 比较接近,在电路分析与计算中可以相互替代。

$$I_{\rm C} = \beta I_{\rm B}$$

#### —结论

- 1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现 "以小控大"的作用。
- 2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结正偏,集电结反偏。

#### 三极管的电流分配与放大作用

#### 1.三极管的电流分配

$$I_{\mathbf{E}} = I_{\mathbf{B}} + I_{\mathbf{C}}$$

$$I_{\mathrm{E}} = I_{\mathrm{B}} + I_{\mathrm{C}}$$
  $I_{\mathrm{E}} \approx I_{\mathrm{C}} >> I_{\mathrm{B}}$ 

#### 2.三极管的电流放大作用

$$\overline{\beta} = \frac{I_{\mathbf{C}}}{I_{\mathbf{B}}}$$

$$\beta = \frac{\Delta i_{\rm C}}{\Delta i_{\rm B}}$$

$$\beta = \frac{\Delta i_{\mathbf{C}}}{\Delta i_{\mathbf{B}}} \qquad I_{\mathbf{C}} = \bar{\beta} I_{\mathbf{B}}$$
$$\Delta i_{\mathbf{C}} = \beta \Delta i_{\mathbf{B}}$$

一般情况下, $\beta$ 与 $\beta$ 可以相互替代。 $I_{\rm C}=\beta I_{\rm B}$ 

$$I_{\rm C} = \beta I_{\rm B}$$

