relation Test Your Understanding:

Test yourself by filling in the blanks.

1. A binary relation R from A to B is
2. If R is a binary relation, the notation xRy means that
3. If R is a binary relation, the notation $x \not R y$ means that
4. For a binary relation R on a set A to be reflexive means that $_{}$.
5. For a binary relation R on a set A to be symmetric means that $_{}$.
6. For a binary relation R on a set A to be transitive means that $_{}$.
 To show that a binary relation R on an infinite set A is reflexive, you suppose that and you show that
8. To show that a binary relation R on an infinite set A is symmetric, you suppose that $__$ and you show that $__$.
9. To show that a binary relation R on an infinite set A is transitive, you suppose that $___$ and you show that $___$.
10. To show that a binary relation R on a set A is not reflexive, you
11. To show that a binary relation R on a set A is not symmetric, you
12. To show that a binary relation R on a set A is not transitive, you
13. Given a binary relation R on a set A , the transitive closure of R is the binary relation R^t on A that satisfies the following three properties:, and
14. For a binary relation on a set to be an equivalence relation, it must be
15. The notation $m \equiv n \pmod{d}$ is read and means that
Answers

- 1. a subset of $A \times B$
- 2. x is related to y by R
- 3. x is not related to y by R
- 4. for all x in A; x R x
- 5. for all x and y in A, if x R y then y R x
- 6. for all x, y, and z in A, if x R y and y R z then x R z
- 7. x is any element of A; x R x
- 8. x and y are any elements of A such that x R y; y R x
- 9. x, y, and z are any elements of A such that x R y and y R z; x R z
- 10. show the existence of an element x in A such that $x \not R x$
- 11. show the existence of elements x and y in A such that x R y but $y \not R x$
- 12. show the existence of elements x, y, and z in A such that x R y and y R z but x R z
- 13. R^t is transitive; $R \subseteq R^t$; If S is any other transitive relation that contains R, then $R^t \subseteq S$
- 14. reflexive, symmetric, and transitive
- 15. m is congruent to n modulo d; d divides m-n