Information Retrieval and Text Mining

Modelling

Nuno Escudeiro (<u>nfe@isep.ipp.pt</u>)
Ricardo Almeida (<u>ral@isep.ipp.pt</u>)

Session outline

- 1. Information Retrieval modeling
- 2. Boolean Retrieval Model
 - Boolean algebra in IR
 - Disjunctive Normal Form (DNF) queries
 - Extensions of the Boolean Model

Learning outcomes

At the end of this session we will be able to:

- Explain what is an Information Retrieval (IR) model and describe its components
- Explain the Boolean Model for IR and describe its pros and cons
- Use Boolean Algebra in the context of IR
- Synthesize IR queries to Disjunctive Normal Form
- Discuss the applicability of Boolean IR for a given problem

1. IR Modeling

A general overview of document models for IR

Modeling in IR is a complex process aimed at producing a ranking of documents based on their relevance to a given query.

An IR model involves two core elements:

- The conception of a logical framework for representing documents and queries
- The definition of a ranking function that computes a rank for each document regarding a given query

- Modeling and Ranking
 - IR systems usually adopt index terms to index and retrieve documents
 - An index term is any word or expression that appears in the text of a document in the collection
 - Strengths
 - it can be implemented efficiently and it is simple to refer in a query. Simplicity reduces the
 effort of query formulation on the part of the user
 - Weaknesses
 - restricts the semantic of what can be expressed
 - abstracts document structure which can be of relevance
 - users have no training in properly forming their query

- Modeling and Ranking
 - Central problem of an IR system: predicting which documents the user will find relevant and which ones are irrelevant
 - Solution: IR systems implement a predictive algorithm.

- Characterization of an IR Model
 - Definition: An information retrieval model is a quadruple [D, Q, F, R(q_i,d_j)]
 where:
 - **D** is a set composed of logical views (or representations) of the documents in the corpus
 - **Q** is a set composed of logical views (or representations) of the users needs
 - **F** is a framework for modeling/representing documents, queries, and their relationships, such as:
 - sets and boolean relations
 - vectors and linear algebra operations
 - sample spaces and probability distributions
 - **—** ...
 - R(q_i,d_j) is a ranking function that associates a real number with a query representation q_i
 ∈ Q and a document representation d_i ∈ D.

- Characterization of an IR Model
 - Definition: An information retrieval model is a quadruple [D, Q, F, R(q_i,d_j)]
 where:
 - **D** is a set composed of logical views (or representations) of the documents in the corpus
 - **Q** is a set composed of logical views (or representations) of the users needs
 - **F** is a framework for modeling/representing documents, queries, and their relationships, such as:
 - —sets and boolean relations
 - vectors and linear algebra operations
 - sample spaces and probability distributions
 - **—** ...
 - R(q_i,d_j) is a ranking function that associates a real number with a query representation q_i
 ∈ Q and a document representation d_i ∈ D.

2. Boolean Model in IR

A general overview of the Boolean Retrieval Model: boolean algebra and basic operators

Boolean retrieval process

Boolean Retrieval Model

- The Boolean Retrieval Model is one of the earliest and simplest models used in information retrieval
- It is based on the Set Theory and Boolean Algebra (George Boole in the mid-19ths)
- Considers that index terms are present or absent in a document
- A query is essentially a conventional Boolean expression on index terms.

- In the context of IR, the Boolean Model:
 - represents documents and queries as sets of terms or keywords, and
 - retrieval is performed using logical operations: AND, OR, and NOT.

Boolean Operators

• AND operator (Λ):

Α	В	АлВ
1	1	1
1	0	0
0	1	0
0	0	0

Boolean Operators

• OR operator (v):

Α	В	AVB
1	1	1
1	0	1
0	1	1
0	0	0

Boolean Operators

• NOT operator (¬):

A	¬ A
1	0
0	1

- Key characteristics and components of the Boolean model:
 - Documents: Each document in the collection is represented as a set of terms or keywords
 - Queries: rely on sets of terms or keywords
 - Boolean Operators:
 - AND Operator (Λ): Retrieves documents that contain all the specified terms.
 - OR Operator (V): Retrieves documents that contain at least one of the specified terms
 - NOT Operator (¬): Negates a term and retrieves documents not containing the specified term
 - Boolean Expressions: Queries are constructed by combining terms and operators into Boolean expressions
 - Retrieval Process: When a user submits a Boolean query, the retrieval system matches the query against the document collection using Boolean logic.

 How does an IR system grounded on the Boolean framework ranks retrieved documents?

It does not!

- In the Boolean Model of information retrieval, document ranking is not inherently performed. Instead, documents are retrieved in a binary manner – they are either relevant (match the query) or not relevant (do not match the query)
- Some extensions of the Boolean Model introduce ranking mechanisms.

- Basic Boolean Model (No Ranking)
- Query Representation: The query is represented using Boolean operators (AND, OR, NOT)
- Document Matching: Documents are retrieved based on exact matches to the query conditions
- Binary Relevance: A document is either retrieved (1) or not (0); there is no ranking
- Query: "machine AND learning"
 - Document 1: "Introduction to Machine Learning" →

 (retrieved)
 - Document 2: "Machine Vision and Deep Learning" → <a> ✓ (retrieved)
 - Document 3: "Artificial Intelligence and Neural Networks" → X (not retrieved)
- Retrieved documents are not ranked; they are just returned as a set.

 How does an IR system grounded on the Boolean framework ranks retrieved documents?

Ranking Extensions of the Boolean Model

• To introduce ranking in a Boolean retrieval system, heuristic methods can be applied.

Term Frequency-Based Ranking

- Count the number of query terms present in each document.
- Documents containing more of the query terms are ranked higher.

For the query "machine AND learning", if:

- Document 1 contains "machine" (5 times) and "learning" (3 times) → Score: 8
- Document 2 contains "machine" (2 times) and "learning" (1 time) → Score:
 3
- Ranking:
- Document 1 (score 8) appears before Document 2 (score 3).

Weighted Boolean Model (Term Importance)

- Assign different weights to query terms based on their importance (e.g., **TF-IDF** weighting).
- A document gets a higher score if it contains more important query terms.

- "AI" (is a common term, give it a low weight)
- "Quantum Computing" (is a rare term, give it a high weight).

Proximity-Based Ranking

• If the query terms appear closer together in a document, it is ranked higher.

For the query "machine AND learning"

- Document A: "Machine learning is a subset of AI."
- Document B: "Machine tools are useful, and learning is a continuous process."
- Since "machine" and "learning" appear closer in Document A, it gets a higher rank.

Document Length Normalization

 Shorter documents with exact query matches may be given higher relevance than long documents containing scattered matches

For the query "machine AND learning"

- Document A: "Machine learning is a subset of AI."
- Document B: "Machine tools are useful, and learning is a continuous process."
- Document A gets a higher rank.

The **pure Boolean Model does not rank documents**, ranking can be introduced using several heuristics, such as:

- Term Frequency-Based Ranking
- Weighted Boolean Model
- Proximity-Based Ranking
- Document Length Normalization

•

Disjunctive Normal Form (DNF) is a sum of products, an OR of AND terms.

- All elements of the term-document matrix are either 1 (one), to indicate presence of the term in the document, or 0 (zero), to indicate absence of the term in the document
- A query q is a Boolean expression on the index terms such as, for instance, $[q=ka \land (kb \lor \neg kc)]$
- Given a query q, a term conjunctive component that satisfies its conditions is called a query conjunctive component c(q)
- By compiling all query conjunctive components, we can rewrite the query as a disjunction of those components. This is called the query **Disjunctive Normal Form**, which we refer to as q_{DNF}

- In the Boolean model, a query is a conventional Boolean expression on index terms
 - Definition: Let c(q) be any of the query conjunctive components. Given a document d_j, let c(d_j) be the corresponding document conjunctive component. Then, the similarity of the document d_j to the query q is defined as
 - $sim(d_j,q) = \begin{cases} 1 & if \exists c(q) \mid c(dj) \\ 0 & otherwise \end{cases}$

- Term-document matrix
 - Is a fundamental data structure used to represent the relationship between terms and documents in a document collection where:
 - rows represent terms (or words)
 - columns represent documents
 - each cell of the matrix contains a numerical value that indicates the frequency or some other measure of the presence of the corresponding term in the respective document.
 - In the case of the Boolean model the value is true (1) or false (0)

Term-document matrix:

- Let us consider transportation vehicles and the following document collection:
 - 1. Car: "A car is a common mode of transportation."
 - 2. Train: "Trains are used for long-distance travel."
 - 3. Plane: "Planes are fast and efficient for air travel."
 - 4. Boat: "Boats are essential for water transportation."
- Also consider the following terms:
 - car, train, plane, boat, transportation, travel, mode, fast, efficient, water, air, longdistance

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	1	0	0	0
Train	0	1	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	1	0	0	0
Train	0	1	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

{Doc1, Doc4}

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	<u>1</u>	0	0	0
Train	0	1	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

{**Doc1**, **Doc4**}

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	1	0	0	0
Train	0	1	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

Q1 = Car OR Boat

Q2 = (Travel AND Fast) OR (Train)

{Doc2, Doc3}

Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	1	0	0	0
Train	0	<u>1</u>	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

Q1 = Car OR Boat

Q2 = (Travel AND Fast) OR (Train)

{Doc2, Doc3}

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
Car	1	0	0	0
Train	0	1	0	0
Plane	0	0	1	0
Boat	0	0	0	1
Transportation	1	0	0	1
Travel	0	1	1	0
Mode	1	0	0	0
Fast	0	0	1	0

Q1 = Car OR Boat Q2 = (Travel AND Fast) OR (Train) **DNF**

Disjunctive Normal Form

In the **Boolean Model** of Information Retrieval, the **Disjunctive Normal Form (DNF)** of a query is obtained by rewriting the Boolean expression as a **disjunction (OR) of conjunctions (ANDs)** of terms.

Steps to Obtain Disjunctive Normal Form (DNF)

1. Expand the Query Using Boolean Laws

- Apply distribution of AND over OR to rewrite the expression.
- Use De Morgan's Laws to simplify NOT operations when necessary.

2. Express the Query as a Disjunction of Conjunctions

- Each **conjunctive clause** (AND clause) represents a set of terms that must be present together in a document.
- The OR operator combines multiple conjunctive clauses.

Disjunctive Normal Form an OR of AND terms

Disjunctive Normal Form (DNF) is a **sum of products**, an **OR of AND terms**

```
In the Boo
query is o 1st Law (Negation of AND):
conjunctic \neg(A \land B) = \neg A \lor \neg B
               •The negation of a conjunction is the disjunction of the negations.
Steps to O "Not (A and B)" is the same as "Not A or Not B."
1. Expand 2nd Law (Negation of OR):
              \neg(A \lor B) = \neg A \land \neg B
     • App •The negation of a disjunction is the conjunction of the negations.
     • "Not (A or B)" is the same as "Not A and Not B."

If A = "It is raining" and B = "It is cold"
2. Expres: Then "It is not raining and it is not cold" is the same as "It is not (raining or cold)."
```

• Each conjunctive clause (AND clause Why a together in a document.

The OR operator combines multiple

Disjunctive Normal Form (OR of AND terms)

... and not a

Conjunctive Normal Form (AND of OR terms)?

Boolean Laws

1. Identity Laws

- A \(\) 1 = A
- A V 0 = A

(AND with 1 or OR with 0 does not change A)

2. Null Laws (Dominance Laws)

- $A \wedge 0 = 0$
- A V 1 = 1

(AND with 0 results in 0, OR with 1 results in 1)

3. Idempotent Laws

- A \(\text{A} = A \)
- A V A = A

(AND or OR with itself does nothing)

4. Complement Laws

- $A \wedge \neg A = 0$
- A V ¬A = 1

(A AND NOT A is always false, A OR NOT A is always true)

5. Double Negation Law

• $\neg(\neg A) = A$

(Negation cancels out)

6. Commutative Laws

- A Λ B = B Λ A
- A V B = B V A

(Order doesn't matter for AND/OR)

7. Associative Laws

- $(A \wedge B) \wedge C = A \wedge (B \wedge C)$
- (A V B) V C = A V (B V C)

Grouping doesn't matter for AND/OR)

8. Distributive Laws

- $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$
- $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

(AND distributes over OR, OR distributes over AND)

9. Absorption Laws

- A ∨ (A ∧ B) = A
- A ∧ (A ∨ B)=A

(Simplifies complex expressions)

10. De Morgan's Laws

- $\neg(A \land B) = \neg A \lor \neg B$
- ¬(A ∨ B)=¬A ∧ ¬B

(Negation flips AND/OR)

Disjunctive Normal Form

Why Use DNF in Information Retrieval?

- It simplifies Boolean queries for retrieval engines.
- Each conjunctive clause (AND clause) represents a minimal document retrieval condition.
- Allows efficient document filtering by breaking down queries into simpler conditions.

Disjunctive Normal Form

Example 1: Basic Boolean Query

Given query:

 $(A \wedge (B \vee C))$

Step-by-step transformation:

1. Distribute **AND** over **OR**:

 $(A \wedge B) \vee (A \wedge C)$

2. The result is now in **DNF**:

 $(A \wedge B) \vee (A \wedge C)$

• This means a document must contain (A and B) OR (A and C) to be retrieved.

Disjunctive Normal Form

Example 2: More Complex Query

Given query:

 $(A \lor B) \land (C \lor D)$

Step-by-step transformation:

1. Apply distribution:

 $(A \wedge C) \vee (A \wedge D) \vee (B \wedge C) \vee (B \wedge D)$

2. This is now in **DNF** form:

 $(A \wedge C) \vee (A \wedge D) \vee (B \wedge C) \vee (B \wedge D)$

 This means a document must contain any of the AND-combinations to be retrieved.

Scenario: Searching a Document Collection

Assume we have a **Boolean query** for retrieving documents from a collection of articles.

User Query:

(Machine V Deep) ∧ (Learning V AI)

This means the user wants documents containing either "Machine" or "Deep", and at the same time, containing either "Learning" or "Al".

Step 1: Convert to DNF

Using distribution of AND over OR:

(Machine \land Learning) \lor (Machine \land AI) \lor (Deep \land Learning) \lor (Deep \land AI)

- Now, the query consists of four conjunctive (AND) clauses:
 - Machine AND Learning
 - Machine AND AI
 - Deep AND Learning
 - Deep AND AI

Step 2: Apply to a Document Collection

- Assume we have the following documents in our system:
- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing Al applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "Al and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Step 3: Retrieve Matching Documents

Now, we check which documents satisfy **at least one** of the four DNF clauses:

- 1. (Machine AND Learning) → Matches D1, D4
- 2. (Machine AND AI) → Matches D1, D4
- 3. (Deep AND Learning) → ✓ Matches D2, D5
- 4. (Deep AND AI) → Matches D2, D5

Thus, the retrieved documents are:

D1, D2, D4, D5 (D3 is excluded since it doesn't match any clause).

Corpus

- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing AI applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "AI and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Query

Corpus

- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing AI applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "AI and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Query

Corpus

- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing Al applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "AI and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Query

Corpus

- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing AI applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "AI and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Query

Corpus

- D1 "Machine Learning is a key area of AI research."
- D2 "Deep Learning is revolutionizing AI applications."
- D3 "Machine intelligence is different from Large Language Models."
- D4 "AI and Machine Learning work together in modern computing."
- D5 "Deep Learning and AI are driving innovations."

Query

Step 4: Ranking (Optional)

Since the **Boolean Model** doesn't inherently rank results, we can use:

- Term Frequency (TF): Rank documents higher if they contain the query terms more frequently.
- Proximity Ranking: Rank documents higher if the matched words appear closer together.

For example:

D1 could be ranked higher than D4, both have "Machine" and "Learning" close by but in D1 it appears first.

Step 4: Ranking (Optional)

Final Retrieved Results (Ranked)

- 1. D5 "Deep Learning and AI are driving innovations."
- 2. D2 "Deep Learning is revolutionizing AI applications."
- 3. D1 "Machine Learning is a key area of Al research."
- 4. D4 "Al and Machine Learning work together in modern computing."

Highlights:

- DNF breaks complex queries into smaller, manageable conditions.
- Documents are retrieved based on logical AND conditions.
- Ranking can be added for better result ordering.

Boolean Retrieval helps in **efficiently filtering** documents before applying more advanced ranking techniques.

- Term-document matrix:
 - Let us consider an automobile and the following corpus:
 - 1. Doc1: "An automobile consists of various components, including wheels and a spark plug."
 - 2. Doc2: "Regular maintenance of automobiles involves checking the condition of wheels and replacing the spark plug."
 - 3. Doc3: "The invention of the spark plug revolutionized automobile engines, leading to improved performance."
 - 4. Doc4: "Wheels are an essential part of automobiles, providing mobility, while spark plugs ignite fuel in the engine."
 - Also consider the following terms / vocabulary / lexicon:
 - {automobile, wheels, spark plug}
 - And query q
 - q = (automobile Λ wheels) v spark plug

- Term-document matrix:
 - Let us consider an automobile and the following corpus:
 - 1. Doc1: "An automobile consists of various components, including wheels and a spark plug."
 - 2. Doc2: "Regular maintenance of automobiles involves checking the condition of wheels and replacing the spark plug."
 - 3. Doc3: "The invention of the spark plug revolutionized automobile engines, leading to improved performance."
 - 4. Doc4: "Wheels are an essential part of automobiles, providing mobility, while spark plugs ignite fuel in the engine."
 - Also consider the following terms / vocabulary / lexicon:
 - {automobile, wheels, spark plug}
 - And query q
 - q = (automobile Λ wheels) v spark plug)

- Term-document matrix:
 - Let us consider an automobile and the following corpus:
 - 1. Doc1: "An automobile consists of various components, including wheels and a spark plug."
 - 2. Doc2: "Regular maintenance of automobiles involves checking the condition of wheels and replacing the spark plug."
 - 3. Doc3: "The invention of the spark plug revolutionized automobile engines, leading to improved performance."
 - 4. Doc4: "Wheels are an essential part of automobiles, providing mobility, while spark plugs ignite fuel in the engine."
 - Also consider the following terms / vocabulary / lexicon:
 - {automobile, wheels, spark plug}
 - And query q
 - q = (automobile Λ wheels) v spark plug)

- Term-document matrix:
 - Let us consider an automobile and the following corpus:
 - 1. Doc1: "An automobile consists of various components, including wheels and a spark plug."
 - 2. Doc2: "Regular maintenance of automobiles involves checking the condition of wheels and replacing the spark plug."
 - 3. Doc3: "The invention of the spark plug revolutionized automobile engines, leading to improved performance."
 - 4. Doc4: "Wheels are an essential part of automobiles, providing mobility, while spark plugs ignite fuel in the engine."
 - Also consider the following terms / vocabulary / lexicon:
 - {automobile, wheels, spark plug}
 - And query q
 - q = (automobile Λ wheels) v spark plug)

Term-document matrix:

q = (automobile Λ wheels) v spark plug

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

Term-document matrix:

q = (automobile Λ wheels) v spark plug

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

D1, D2, D4, D3

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

Term-document matrix:

q = (automobile v wheels) A (wheels v spark plug)

q = (automobile Λ spark plug) v wheels

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

• Term-document matrix:

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

Term-document matrix:

q = (automobile Λ wheels) ν ¬(wheels Λ spark plug)

q = automobile V ¬wheels V ¬spark

	Doc1	Doc2	Doc3	Doc4
automobile	1	1	1	1
wheels	1	1	0	1
spark plug	1	1	1	1

• Limitations:

- Since the decision is binary, without any notion of grading scale, it limits retrieval quality
- It is not easy to translate information needs into boolean expressions

References

- https://users.dcc.uchile.cl/~rbaeza/mir2ed/
- https://machinelearningmastery.com/
- https://www.evidentlyai.com/classification-metrics/explain-roc-curve