Ch.7 해시 테이블(hashing)

저장/검색의 복잡도

- 배열
 - *O*(*n*)
- 이진 검색 트리
 - 최악의 경우 *Θ*(*n*)
 - 평균 $\Theta(\log n)$
- 균형 잡힌 이진 검색 트리(예: 레드 블랙 트리)
 - 최악의 경우 Θ(log n)
- B-트리
 - 최악의 경우 $\Theta(\log n)$
 - 균형 잡힌 이진 검색 트리보다 상수 인자가 작다
- ′ 해시 테이블
 - 평균 *Θ*(1)

해시 테이블

그림 7-2 해시 테이블의 고안 배경

해시 테이블

- 원소가 저장될 자리가 원소의 값에 의해 결정되는 자료구조
- 평균 상수 시간에 삽입, 삭제, 검색
- 매우 빠른 응답을 요하는 응용에 유용
 - •예) 119 긴급구조 호출과 호출번호 관련 정보 검색
 - •예) 주민등록 시스템
- 해시 테이블은 최소 원소를 찾는 것과 같은 작업은 지원하지 않는다

주소 계산

해시 테이블 예

■ 크기 13인 해시 테이블에 5 개의 원소가 저장된 예

입력: 25, 13, 16, 15, 7

0	13
1	
2	15
3	16
4	
5	
6	
7	7
8	
9	
10	
11	
12	25

그림 7-1 크기가 13인 해시 테이블에 5개의 원소가 들어간 예

해시 함수

- 입력 원소가 해시 테이블에 고루 저장되어야 한다
- 계산이 간단해야 한다
- 여러 가지 방법이 있으나 가장 대표적인 것은 나누기 방법과 곱하기 방법이다

해시 함수

■ 나누기 방법(Division Method)

- 해시 테이블 크기보다 큰 수를 해시 테이블 크기 범위에 들어오도록 수축
- $h(x) = x \mod m$
 - m: 해시 테이블의 크기

■ 곱하기 방법(Multiplication Method)

- 입력값을 0과 1 사이의 소수로 대응시킨 다음 해시 테이블 크기 m을 곱하여 0부터 m-1 사이로 팽창
- $h(x) = (xA \mod 1) * m$
 - A: 0 < A < 1인 상수
 - m은 굳이 소수일 필요 없어 보통 $m=2^p$ 로 잡음

곱하기 방법의 작동 과정

- x에 A를 곱한 다음 소수부만 취한다.
- ▶ 방금 취한 소수부에 m을 곱하여 그 정수부를 취한다.

$$h(x) = \lfloor m(xA \mod 1) \rfloor$$

그림 7-3 곱하기 방법의 작동 과정을 보여주는 예

충돌

■ 충돌

• 해시 테이블의 한 주소를 놓고 두 개 이상의 원소가 자리를 다투는 것

■ 충돌 해결 방법

- 체이닝(Chaining)
 - 같은 주소로 해싱되는 원소를 모두 하나의 연결 리스트에 매달아 관리
- 개방 주소 방법(Open Addressing)
 - 빈자리가 생길 때까지 해시값을 계속 만들어 주어진 테이블 공간에서 해결
 - $h_0(x)(=h(x)), h_1(x), h_2(x), h_3(x), \dots$

충돌의 예

체이닝을 이용한 충돌 해결 예

그림 7-4 체이닝을 이용한 충돌 해결을 보여주는 예

체이닝을 이용한 해시 테이블 알고리즘

알고리즘 7-1 체이닝을 사용하는 해시 테이블에서의 작업 chainedHashInsert(T[], x): ▷ T: 해시 테이블, x: 삽입 원소 리스트 T[h(x)]의 맨 앞에 x를 삽입 chainedHashSearch(T[], x): ▷ T: 해시 테이블, x: 검색 원소 리스트 T[h(x)]에서 x값을 가지는 원소를 검색 chainedHashDelete (T[], x): ▷ T: 해시 테이블, x: 삭제 원소 리스트 T[h(x)]에서 x의 노드를 삭제

개방 주소 방법의 중요한 세 가지 방법

■ 선형 조사

- 충돌이 일어난 바로 뒷자리를 봄
- $h_i(x) = (h(x) + i) \% m$

$$i = 0, 1, 2...$$

■ 이차원 조사

- 충돌이 일어난 바로 뒷자리를 보는 대신 보폭을 이차 함수로 넓혀가면서 봄
- $h_i(x) = (h(x) + c_1 i^2 + c_2 i) \% m$ i = 0, 1, 2...

$$i = 0, 1, 2...$$

■ 더블 해싱

- 2개의 함수 사용
- $h_i(x) = (h(x) + i \cdot f(x)) \% m$

$$i = 0, 1, 2...$$

선형 조사

- 충돌이 일어난 바로 뒷자리를 봄 (충돌이 일어난 자리에서 *i*에 관한 일차 함수의 보폭으로 점프)
- $h_i(x) = (h(x) + i) \% m$

i = 0, 1, 2...

입력: 25, 13, 16, 15, 7, 28, 31, 20, 1, 38

0	13	
1		
2	15	\
3	16	K
4	28	V
5		
6		
7	7	
8		
9		
10		
11		
12	25	

0	13	
1		
2	15	
3	16	
4	28	
5	31	
6		
7	7	,
8	20	*
9		
10		
11		
12	25	

		1
0	13	K
1	1	K
2	15	K
3	16	K
4	28	K
5	31	K
6	38	V
7	7	
8	20	
9		
10		
11		
12	25	\rfloor

그림 7-5 선형 조사의 예

선형 조사

■ 특정 영역에 원소가 몰리면 치명적으로 성능이 떨어지는 1차 군집(Primary Clustering) 현상 발생

0	
1	
2	15
3	16
4	28
5	31
6	44
7	
8	
9	
10	
11	37
12	

그림 7-6 1차 군집의 예

이차원 조사

■ 충돌이 일어난 바로 뒷자리를 보는 대신 보폭을 이차 함수로 넓혀가면서 봄

$$h_i(x) = (h(x) + c_1 i^2 + c_2 i) \% m$$

$$i = 0, 1, 2...$$

0		
1		
2	15	
3	16	
4	28	K
5	31	$ \ $
6	44	
7	29	1
8		
9		
10		
11	37	
12		

그림 7-7 1차 군집을 빨리 벗어나는 예

0	
1	
2	15
3	28
4	
5	54
6	41
7	
8	21
9	
10	
11	67
12	

그림 7-8 2차 군집의 예

더블 해싱

- 2개의 함수 사용
- $h_i(x) = (h(x) + i \cdot f(x)) \% m$

$$h(x) = x \mod 13$$

 $f(x) = 1 + (x \mod 11)$
 $h_1(x) = (h(x) + i \cdot f(x)) \mod 13$

0	
1	
2	15
3	
4	67
5	
6	19
7	
8	
9	28
10	
11	41
12	

$$i = 0, 1, 2...$$

$$h_0(15)=h_0(28)=h_0(41)=h_0(67)=2$$

$$h_1(67)=4$$

$$h_1(28)=9$$

$$h_1(41)=11$$

그림 7-9 2차 군집에서 해방된 예

개방 주소 방법 알고리즘

```
알고리즘 7-2
                 개방 주소 방법
hashInsert (T[], x):
    i \leftarrow 0
    repeat
        j \leftarrow h_i(x)
        if (T[j] = NIL \text{ or } T[j] = DELETED)
             T[j] \leftarrow x; return j
         else i++
    until (i = m)
    error "테이블 오버플로우"
hashSearch (T[], x):
    i \leftarrow 0
    repeat
        j \leftarrow h_i(x)
        if (T[j] = x) return j
         else i++
    until (T[j] = NIL \text{ or } i = m)
    return NIL
```

해시 테이블에서 자료가 삭제될 경우의 처리 방법

(a)	0	13	(b)	0	13	₹ (c)	0	13] <u>k</u>
	1	1		1			1	DELETED	K
	2	15		2	15		2	15	K
	3	16		3	16		3	16] K
	4	28		4	28		4	28	K
	5	31		5	31		5	31	<u> </u>
	6	38		6	38		6	38	¥
	7	7		7	7		7	7	
	8	20		8	20		8	20	
	9			9			9		
	10			10			10		
	11			11			11		
	12	25		12	25	<u> </u>	12	25]

그림 7-10 해시 테이블에서 자료가 삭제될 경우의 처리 방법

정리 7-1

체이닝 방법을 이용하는 해싱에서 적재율이 α 일 때, 실패하는 검색에서 조사 횟수의 기대치는 α 이다.

정리 7-2

체이닝을 이용하는 해싱에서 적재율이 α 일 때, 성공하는 검색에서 조사 횟수의 기대치는 $\frac{1+\alpha}{2} + \frac{\alpha}{2n}$ 이다.

$$\frac{1}{n} \sum_{i=1}^{n} (1 + \sum_{j=i+1}^{n} \frac{1}{m}) = 1 + \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=i+1}^{n} 1$$

$$= 1 + \frac{1}{mn} \sum_{i=1}^{n} (n-i)$$

$$= 1 + \frac{1}{mn} (\sum_{i=1}^{n} n - \sum_{i=1}^{n} i)$$

$$= 1 + \frac{1}{mn} (n^2 - \frac{n(n+1)}{2})$$

$$= 1 + \frac{n-1}{2m}$$

$$= 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$$

정리 7-3

해시 함수가 앞에서 가정한 특성을 만족한다고 할 때, 적재율 $\alpha = \frac{n}{m} < 1$ 인 개방 주소 해싱의 실패하는 검색에서 조사 횟수의 기대치는 최대 $\frac{1}{1-\alpha}$ 이다.

- p_i : 빈자리를 찾기 전에 정확히 i번 이미 점유된 주소를 조사할 확률
- q_i : 빈자리를 찾기 전에 적어도 i번 이미 점유된 주소를 조사할 확률

$$q_{1} = \frac{n}{m} \qquad p_{i} = q_{i} - q_{i+1}$$

$$q_{2} = \frac{n}{m} \frac{n-1}{m-1} \qquad q_{i} = \frac{n}{m} \frac{n-1}{m-1} \frac{n-2}{m-2} \dots \frac{n-i+1}{m-i+1} \le \left(\frac{n}{m}\right)^{i} = \alpha^{i}$$
...
$$n \quad n-1 \quad n-2 \quad n-i+1$$

$$q_i = \frac{n}{m} \frac{n-1}{m-1} \frac{n-2}{m-2} \dots \frac{n-i+1}{m-i+1}$$

$$\begin{aligned} 1 + \sum_{i \ge 0} i p_i &= 1 + \sum_{i \ge 1} i \left(q_i - q_{i+1} \right) \\ &= 1 + \sum_{i \ge 1} q_i \\ &\le 1 + \sum_{i \ge 1} \alpha^i \\ &= \frac{1}{1 - \alpha} \end{aligned}$$

정리 7-4

해시 함수가 앞에서 가정한 특성을 만족한다고 할 때, 적재율 $\alpha=\frac{n}{m}<1$ 인 개방 주소 해싱의 성공하는 검색에서 조사 횟수의 기대치는 최대 $\frac{1}{\alpha}\log\frac{1}{1-\alpha}$ 이다.

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i}$$

$$\leq \frac{1}{\alpha} \int_0^n \frac{1}{m-x} dx$$

$$= \frac{1}{\alpha} \log \frac{1}{1-\alpha}$$

[참고] 적재율이 우려스럽게 높아지면

- 적재율이 높아지면 일반적으로 해시 테이블의 효율이 떨어진다
- 일반적으로, 임계값을 미리 설정해 놓고 적재율이 이에 이르면
 - 해시 테이블의 크기를 두 배로 늘인 다음 해시 테이블에 저장되어 있는 모든 원소를 다시 해 싱하여 저장한다