ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

PEARSON

Chapter 15
Power Supplies
(Voltage Regulators)

Power Supply Diagram

Filter Circuits

- The output from the rectifier section is a pulsating DC.
- The filter circuit reduces the peak-to-peak pulses to a small ripple voltage.

Ripple Factor

After the filter circuit a small amount of AC is still remaining. The amount of ripple voltage can be rated in terms of ripple factor (r).

%r =
$$\frac{ripple \ voltage \ (rms)}{dc \ voltage}$$
 = $\frac{V_{r(rms)}}{V_{dc}} \times 100$

Rectifier Ripple Factor

Half-Wave

Full-Wave

DC output:

$$V_{dc} = 0.318V_{m}$$

AC ripple output:

$$V_{r(rms)} = 0.385V_{m}$$

Ripple factor:

$$\%r = \frac{V_{r(rms)}}{V_{dc}} \times 100$$
$$= \frac{0.385V_{m}}{0.318V_{m}} \times 100 = 121\%$$

DC output:

$$V_{dc} = 0.636V_m$$

AC ripple output:

$$V_{r(rms)} = 0.308V_{m}$$

Ripple factor:

$$\%r = \frac{V_{r(rms)}}{V_{dc}} \times 100$$
$$= \frac{0.308_{Vm}}{0.636_{Vm}} \times 100 = 48\%$$

Types of Filter Circuits

Capacitor Filter RC Filter

Capacitor Filter

Ripple voltage

$$V_{r(rms)} = \frac{I_{dc}}{4\sqrt{3}fC} = \frac{2.4I_{dc}}{C} = \frac{2.4V_{dc}}{RLC}$$

The larger the capacitor the smaller the ripple voltage.

DC output

$$V_{dc} = V_m - \frac{I_{dc}}{4fC} = V_m - \frac{4.17I_{dc}}{C}$$

Ripple factor

$$\text{\%r} = \frac{V_{r(rms)}}{V_{dc}} \times 100 = \frac{2.4I_{dc}}{CV_{dc}} \times 100 = \frac{2.4}{RLC} \times 100$$

Diode Ratings with Capacitor Filter

The size of the capacitor increases the current drawn through the diodes the larger the capacitance, the greater the amount of current.

Peak Current vs. Capacitance:

$$I = \frac{CV}{t}$$

where

C = capacitance

V = change in capacitor voltage during charge/discharge

t = the charge/discharge time

Copyright ©2009 by Pearson Education, Inc.

RC Filter Circuit

Adding an RC section further reduces the ripple voltage and decrease the surge current through the diodes.

$$V'_{r(rms)} \approx \frac{X_C}{R} V_{r(rms)}$$

$$\begin{split} &V'_{r(rms)} = ripple \ voltage \ after \ the \ RC \ filter \\ &V_{r(rms)} = ripple \ voltage \ before \ the \ RC \ filter \\ &R = resistor \ in \ the \ added \ RC \ filter \\ &X_C = reactance \ of \ the \ capacitor \ in \ the \ added \ RC \ filter \end{split}$$

$$V_{R} = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%$$

 V_{NL} = no-load voltage V_{FL} = full-load voltage

Voltage Regulation Circuits

There are two common types of circuitry for voltage regulation:

- Discrete Transistors
- **IC's**

Discrete-Transistor Regulators

Series voltage regulator Current-limiting circuit Shunt voltage regulator

Series Voltage Regulator Circuit

The series element controls the amount of the input voltage that gets to the output.

If the output voltage increases (or decreases), the comparator circuit provides a control signal to cause the series control element to decrease (or increase) the amount of the output voltage.

Series Voltage Regulator Circuit

- R_1 and R_2 act as the sampling circuit
- Zener provides the reference voltage
- Q₂ controls the base current to Q₁
- Q₁ maintains the constant output voltage

When the output increases:

- 1. The voltage at V₂ and V_{BE} of Q₂ increases
- 2. The conduction of Q_2 increases
- 3. The conduction of Q_1 decreases
- 4. The output voltage decreases

When the output decreases:

- 1. The voltage at V₂ and V_{BE} of Q₂ decreases
- 2. The conduction of Q_2 decreases
- 3. The conduction of Q_1 increases
- 4. The output voltage increases

Series Voltage Regulator Circuit

The op-amp compares the Zener diode voltage with the output voltage (at R_1 and R_2) and controls the conduction of Q_1 .

Current-Limiting Circuit

When I_L increases:

- The voltage across R_{SC} increases
- The increasing voltage across R_{SC} drives Q_2 on
- Conduction of Q_2 reduces current for Q_1 and the load

Shunt Voltage Regulator Circuit

The shunt voltage regulator shunts current away from the load.

The load voltage is sampled and fed back to a comparator circuit. If the load voltage is too high, control circuitry shunts more current away from the load.

Shunt Voltage Regulator Circuit

When the output voltage increases:

- The Zener current increases
- The conduction of Q_2 increases
- The voltage drop at R_s increases
- The output voltage decreases

When the output voltage decreases:

- The Zener current decreases
- The conduction of Q_2 decreases
- The voltage drop at R_s decreases
- The output voltage increases

Shunt Voltage Regulator Circuit

IC Voltage Regulators

Regulator ICs contain:

- Comparator circuit
- Reference voltage
- Control circuitry
- Overload protection

Types of three-terminal IC voltage regulators

- Fixed positive voltage regulator
- Fixed negative voltage regulator
- Adjustable voltage regulator

Three-Terminal Voltage Regulators

The specifications for this IC indicate:

- The range of input voltages that can be regulated for a specific range of output voltage and load current
- Load regulation—variation in output voltage with variations in load current
- Line regulation—variation in output voltage with variations in input voltage

Fixed Positive Voltage Regulator

These ICs provide a fixed positive output voltage.

Fixed Negative Voltage Regulator

These ICs output a fixed negative output voltage.

Adjustable Voltage Regulator

These regulators have adjustable output voltages.

The output voltage is commonly selected using a potentiometer.

Practical Power Supplies

DC supply (linear power supplies)
Chopper supply (switching power supplies)
TV horizontal high voltage supply
Battery chargers