Updates on AlMer

KpqC 9th Workshop

Seongkwang Kim¹ Jincheol Ha² Mincheol Son² Byeonghak Lee¹ Dukjae Moon¹ Joohee Lee³ Sangyub Lee¹ Jihoon Kwon¹ Jihoon Cho¹ Hyojin Yoon¹ Jooyoung Lee²

¹Samsung SDS

²KAIST

³Sungshin Women's University

Summary of AlMer

Balanced Performance

Active Research

History: AlMer vo.9 (Oct. 2022)

History: AlMer vo.9 (Oct. 2022)

Algorithm		Implementation	Security	
Symmetric	Protocol	-		
AIM	BN++	C standalone	Birthday-bound	

History: AlMer v1.0 (Jun. 2023)

Algorithm Symmetric Protocol		Implementation	Security
AIM	BN++ Merge hash Domain sep.	C standalone AVX2	Birthday-bound

History: AlMer v1.0 (Sep. 2023)

Algorithm		Implementation	Security	
Symmetric	Protocol	implementation	Security	
AIM	BN++	C standalone	Birthday-bound	
Attack	Merge hash	AVX2		
AIM2	Domain sep.			

History: AlMer v2.0 (Feb. 2024)

Algorithm		Implementation	Security	
Symmetric	Protocol			
AIM	BN++	C standalone	Birthday-bound	
Attack	Merge hash	AVX2	Full-bound	
AIM2	Domain sep. Half salt Prehashing	ARM64		

History: AlMer v2.1 (Aug. 2024)

Algorithm Symmetric Protocol		Implementation	Security
Symmetric			D: 11 1 1
AIM	BN++	C standalone	Birthday-bound
Attack	Merge hash	AVX2	Full-bound
AIM2	Domain sep.	ARM64 + SHA3	
	Half salt	ARM Cortex-M4	
	Prehashing	PQClean	
	, and the second	Constrained mem.	
		TIMECOP	

History: AlMer v?.? (Future work)

Algorithm		Implementation	Security	
Symmetric	Protocol	Implementation	Security	
AIM	BN++	C standalone	Birthday-bound	
Attack	Merge hash	AVX2	Full-bound	
AIM2	Domain sep.	ARM64 + SHA3	SUF-CMA	
	Half salt	ARM Cortex-M4	QROM	
	Prehashing	PQClean		
	Hypercube method	Constrained mem.		
	GGM tree opt.	TIMECOP		
	Semi-commitment	OpenSSH		
		OpenSSL		

Merit 1: Novelty

Merit 1: Novelty

Merit 2: Multi-Scenario Implementation

Merit 2: Multi-Scenario Implementation

Done:

- C standalone
- AVX2
- ARM64
- ARM64 + SHA3 instr.
- Memory-reduced impl.
- ARM Cortex-M4

Merit 2: Multi-Scenario Implementation

Done:

- C standalone
- AVX2
- ARM64
- ARM64 + SHA3 instr.
- Memory-reduced impl.
- ARM Cortex-M4

To-do:

- liboqs
- OpenSSL
- OpenSSH

Company atuits

Symmetric	Lattice
MQ	Code

Symmetric	Lattice
SPHINCS+	Dilithium
	! ! !
	Falcon
MQ	Code
IIIQ	Code
	i

Symmetric	Lattice
SPHINCS+ FAEST	Dilithium Raccoon
	Falcon
MQ	Code
MAYO	SDitH LESS
UOV	CROSS

Symmetr	ic	Lattice		
SPHINCS+ FAEST AlMer		Dilithium Raccoon NCC-Sign HAETAE Falcon		
MQ		C	ode	
MAYO		LESS	SDitH	
UOV	MQ-Sign		CROSS	

Symmetric	Lattice	
SPHINCS+	Dilithium Raccoon	
FAEST	NCC-Sign	
AlMer	HAETAE Falcon	
MQ	Code	
MAYO	SDitH LESS	
UOV MQ-Sign	CROSS	

The security of AIMer only depends on symmetric primitives!

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)		Time (cycle)			
Scheme	sk	pk	sig	KeyGen	Sign	Verify
Dilithium						
Falcon						
SPHINCS+-f						
HAETAE						
NCC-Sign-tri						
MQ-Sign-LR						
AlMer-f						

SUPERCOP result (Zen 4), Category 1 or 2, median speed

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)		
	sk	pk	sig	KeyGen	Sign	Verify
Dilithium	2,528	1,312	2,420			
Falcon	1,281	897	666			
SPHINCS+-f	64	32	17.1 <mark>K</mark>			
HAETAE	1,408	992	1,474			
NCC-Sign-tri	2,400	1,760	2,912			
MQ-Sign-LR	161K	328 <mark>K</mark>	134			
ĀĪMer-f	48	32	¯ 5 ,888 ¯			

SUPERCOP result (Zen 4), Category 1 or 2, median speed

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)		
	sk	pk	sig	KeyGen	Sign	Verify
Dilithium	2,528	1,312	2,420	62K	149K	70K
Falcon	1,281	897	666	15.6M*	331K*	63K*
SPHINCS+-f	64	32	17.1 <mark>K</mark>	1.23M*	5.65 M *	6.26M*
HAETAE	1,408	992	1,474	437K	1.13M	100K
NCC-Sign-tri	2,400	1,760	2,912	197K	295K	196K
MQ-Sign-LR	161K	328 <mark>K</mark>	134	5.60 M *	67K*	35K*
AlMer-f	48	32	5,888	40K	889K	898K

^{*} Not intend to be constant-time SUPERCOP result (Zen 4), Category 1 or 2, median speed

AlMer enjoys balanced performance (all-rounder).

Scheme	Size (B)			Time (cycle)		
	sk	pk	sig	KeyGen	Sign	Verify
Dilithium	2,528	1,312	2,420	62K	149K	70K
Falcon	1,281	897	666	15.6M*	331K*	63K*
SPHINCS+-f	64	32	17.1 <mark>K</mark>	1.23M*	5.65 M *	6.26M*
HAETAE	1,408	992	1,474	437K	1.13M	100K
NCC-Sign-tri	2,400	1,760	2,912	197K	295K	196K
MQ-Sign-LR	161K	328 <mark>K</mark>	134	101M	548K	693K
AlMer-f	48	32	5,888	40K	_889K	898K

^{*} Not intend to be constant-time SUPERCOP result (Zen 4), Category 1 or 2, median speed

Merit 5: Active Research

Merit 5: Active Research

1. Evolving AlMer

- Security reinforcement
- Further optimization of implementation
- Usability updates
- Algorithmic improvement (sig. size 4.6KB/3.4KB)

Merit 5: Active Research

- 1. Evolving AlMer
 - Security reinforcement
 - Further optimization of implementation
 - Usability updates
 - Algorithmic improvement (sig. size 4.6KB/3.4KB)
- 2. Evolving MPCitH-based signatures
 - Hypercube method
 - SUF-CMA in the QROM
 - GGM tree optimization

Merit 6: Active Communication

Merit 6: Active Communication

- Communications with third-party
 - NIST submission
 - Talks (except KpqC events)
 - 2023 Ewha-KMS IWC
 - 2nd Oxford PQC Summit
 - ACM CCS 2023
 - The 5th NIST PQC Standardization Conference

Merit 6: Active Communication

- Communications with third-party
 - NIST submission
 - Talks (except KpqC events)
 - 2023 Ewha-KMS IWC
 - 2nd Oxford PQC Summit
 - ACM CCS 2023
 - The 5th NIST PQC Standardization Conference
- Cooperative attitude
 - Contribution to mupq (we also PRed to pqm4)
 - Resolving TIMECOP complaints
 - PQClean-friendly implementation
 - Response to the side-channel attack

Acknowledgement

- We appreciate:
 - Fukang Liu, Mohammad Mahzoun, Morten Øygarden, Willi Meier, Kaiyi Zhang, Qingju Wang, Yu Yu, Chun Guo, Hongrui Cui, and Markku-Juhani O. Saarinen for the symmetric cryptanalysis;
 - CryptoCraft lab in Hansung University (Prof. Hwajeong Seo) for the classical/quantum/M4 implementations;
 - SICADA lab in Kookmin University (Prof. Dong-Guk Han) for the side-channel analysis;
 - TU/e team for the valuable report;
 - Prof. Daniel Bernstein for helping incorporation to SUPERCOP;
 - pqm4 team for the initial ARM Cortex-M4 implementation;
 - KpqBench team for the performance and implementation security analysis.

Thank you!

Check out our website!

Attribution

- Illustrations at the very beginning was created using fontawesome5 (https://fontawesome.com/) free version latex package.
- The picture of me at ACM CCS 2023 was taken by Mincheol Son.
- SUPERCOP result can be found in https://bench.cr. yp.to/results-sign/amd64-hertz.html.