MEL201	COMPUTER AIDED MACHINE DRAWING	CATEGORY	L	Т	Р	Credits	Year of Introduction
		PCC	0	0	3	2	2019

Preamble: To introduce students to the basics and standards of engineering drawing related to machines and components.

To make studentsfamiliarize with different types of riveted and welded joints, surface roughness symbols; limits, fits and tolerances.

To convey the principles and requirements of machine and production drawings.

To introduce the preparation ofdrawings of assembled and disassembled view of important valves and machine components used in mechanical engineering applications.

To introduce standard CAD packages for drafting andmodelingof engineering components.

Prere	quisite: EST 110 - Engineering Graphics							
Course	Course Outcomes - At the end of the course students will be able to							
CO1	Apply the knowledge of engineering drawings and standards to prepare standard							
	dimensioned drawings of machine parts and other engineering components.							
CO2	Preparestandard assembly drawings of machine components and valvesusing part drawings							
	and bill of materials.							
CO3	Apply limits and tolerances to components and choose appropriate fits for given assemblies							
CO 4	Interpret the symbols of welded, machining and surface roughness on the component							
	drawings.							
CO 5	Prepare part and assembly drawings and Bill of Materials of machine components and							
	valves using CAD software.							

Mapping of course outcomes with program outcomes (Minimum requirements)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					014	1		7	3		
CO2	3		2		H					3		
CO3	3	2		7								
CO4	3				7		/					
CO5	3				3					3		1

Assessment Pattern

Bloom's	Continuous A	ssessment Tests
taxonomy	Test 1	Test 2
==	<u>PART A</u>	<u>PART B</u>
1000	Sketching and Manual	CAD Drawing
A 1	<u>Drawing</u>	LAATANA
Remember	25	20
Understand	15	15
Apply	30	20
Analyse	10	10
Evaluate	10	15
Create	10	20

Mark Distribution

Total Marks	CIE Marks	ESE marks	ESE duration
150	75	75	2.5 hours

Continuous Internal Evaluation (CIE) Pattern:

Attendance	15 marks
Regular class work/Drawing/Workshop	30 marks
Record/Lab Record and Class Performance	
Continuous Assessment Test (minimum two tests)	30 marks

End semester examination pattern

End semester examination shall be conducted on Sketching and CAD drawing on based complete syllabus

The following general guidelines should be maintained for the award of marks

Part A Sketching - 15 marks
Part B CAD drawing - 50marks
Viva Voce - 10 marks.

Conduct of University Practical Examinations

The Principals of the concerned Engineering Colleges with the help of the Chairmen/Chairperson will conduct the practical examination with the approval from the University and bonafide work / laboratory record, hall ticket, identity card issued by college are mandatory for appearing practical University examinations. No practical examination should be conducted without the presence of an external examiner appointed by the University.

END SEMSTER EXAMINATION

MODEL QUESTION PAPER

MEL 201: COMPUTER AIDED MACHINE DRAWING

Duration: 2.5 hours Marks: 75

Note:

1. All dimensions in mm

2. Assume missing dimensions appropriately

3. A4 size answer booklet shall be supplied

4. Viva Voce shall be conducted for 10 marks

PART A (SKETCHING) (Answer any TWO questions).

15 marks

- 1. Sketch two views of a single riveted single strap butt joint. Take dimensions of the plate as 10mm. Mark the proportions in the drawing.
- 2. Show by means of neat sketches, any three methods employed for preventing nuts from getting loose on account of vibrations
- 3. Compute the limit dimensions of the shaft and the hole for a clearance fit based on shaft basis system if:

Basic size= $\phi 30$ mm Minimum clearance = 0.007 mm Tolerance on hole = 0.021 mm Tolerance on shaft= 0.021 mm

Check the calculated dimensions. Represent the limit dimensions schematically.

PART B (CAD DRAWING)

50 marks

4. Draw any two assembled views of the Rams Bottom Safety Valve as per the details given in the figure using any suitable CAD software. Also prepare bill of materials and tolerance data sheet.

Item	Description	Qty	Material	Item	Description	Qty	Material
1	Body	1	C.I.	8	Split Pin	3	M.S.
2	Valve Seat	2	G.M.	9	Pin for Link	2	M.S.
3	Spring	1	Steel	10	Pin for Pivot	1	M.S.
4	Valve	2	G.M.	11	Shackle	1	M.S.
5	Lever	1	M.S.	12	Washer	1	M.S.
6	Pivot	1	M.S.	13	Nut	1	M.S.
7	Link	2	M.S.	14	Lock Nut	1	M.S.

SYLLABUS

Introduction to machine drawing, drawing standards, fits, tolerances, surface roughness, assembly and part drawings of simple assemblies and subassemblies of machine parts viz., couplings, clutches, bearings, I.C. engine components, valves, machine tools, etc; introduction to CAD etc.

Text Books:

- 1. N. D. Bhatt and V.M. Panchal, Machine Drawing, Charotar Publishing House.
- 2. P I Varghese and K C John, Machine Drawing, VIP Publishers.

Reference Books

- 1. Ajeet Singh, Machine Drawing Includes AutoCAD, Tata McGraw-hill.
- 2. P S Gill, Machine Drawing, Kataria& Sons.

Course content and drawing schedules.

No:	List of Exercises	Course	No. of
		outcomes	hours
	DADTE A (Mr. 111)		
	PART –A (Manual drawing)		
	(Minimum 6 drawings compulsory)		
	Temporary Joint: Principles of drawing, free hand sketching, Importance of		
	machine Drawing. BIScode of practice for Engineering		
	Drawing, lines, types of lines, dimensioning, scales of	CO 1	2
1	drawing, sectional views, Riveted joints.	COT	3
	Graving, seed onar views, 11 vector Johnson		
			_
	Fasteners:	CO 1	3
2	Sketching of conventional representation of welded		
	joints, Bolts and Nuts or Keys and Foundation Bolts.		
	F24 1 (F-1	19	
	Fits and Tolerances:	7	
	Limits, Fits – Tolerances of individual dimensions –	<u>, 6</u>	
3	Specification of Fits – basic principles of geometric &	G 0 •	
	dimensional tolerances.	CO 2	3
	Surface Roughness:		
	Preparation of production drawings and reading of part and		
	assembly drawings, surface roughness, indication of		
	surface roughness, etc.		
4	Detailed drawing of Cotter joints, Knuckle joint and Pipe	CO 2	2
4	joints	CO 2	3
	Jones		
5	Assembly drawings(2D):	CO 1	
	Stuffing box and Screw jack	CO3	3
	<i>5</i>	CO4	
		~ .	

	PART –B (CAD drawing) (Minimum 6 drawings compulsory)		
6	Introduction to drafting software like Auto CAD, basic commands, keyboard shortcuts. Coordinate and unit setting, Drawing, Editing, Measuring, Dimensioning, Plotting Commands, Layering Concepts, Matching, Detailing, Detailed drawings.	CO 1 CO 2 CO 3 CO5	3
7	Drawing of Shaft couplings and Oldham's coupling	CO 1 CO 2 CO 3 CO5	3
8	Assembly drawings(2D)with Bill of materials: Lathe Tailstock and Universal joint	CO 1 CO3 CO5	3
9	Assembly drawings(2D)with Bill of materials: Connecting rod and Plummer block	CO 1 CO3 CO5	3
10	Assembly drawings(2D)with Bill of materials: Rams Bottom Safety Valve OR steam stop valve	CO 1 CO3 CO5	3

