Chapitre 19

Calcul différentiel

Définition 19.1 - application différentiable

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction.

On dit que f est différentiable en un point a de U lorsqu'il existe $L_a \in \mathcal{L}(E,F)$ telle que :

$$f(x+a) \underset{x\to 0}{=} f(a) + L_a(x) + o(x)$$

L'application L_a est alors appelée différentielle $\mathrm{d}f_a$ de f en a.

Proposition 19.7 - différentielle d'une fonction d'une seule variable réelle

Soit F un espace vectoriel normé de dimension finie, U un ouvert de $\mathbb{R}, f: U \to F$ une fonction.

f est différentiable en a si seulement si f est dérivable en a. Le cas échéant :

$$df_a: \mathbb{R} \longrightarrow F$$

 $x \longmapsto xf'(a)$

et en particulier, $df_a(1) = f'(a)$.

Définition 19.8 - dérivée selon un vecteur

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction. Soit $u\in E, a\in U$. Il existe $V\in \mathcal{V}_{\mathbb{R}}(0)$ tel que pour tout $t\in V, a+tu\in U$

On dit que f admet une dérivée selon le vecteur u au point a lorsque la fonction $t \mapsto f(a+tu)$, définie de V à valeurs dans F, est dérivable en $0_{\mathbb{R}}$.

Le vecteur dérivé correspondant est appelé la dérivée de f suivant le vecteur u, et noté :

$$D_u f(a) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

Théorème 19.9 - différentiabilité \implies existence de dérivée selon tout vecteur

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction.

Si f est différentiable en a, alors pour tout vecteur $u \in E$, f admet une dérivée selon u en a et :

$$D_u f(a) = df_a(u)$$