

Dušan Fedorčák 11/2019

Time series – example data

Time series – example tasks

Time Series – classical analysis

- Decomposition
 - Inflation, trend, seasonality, differencing
- ARIMA models
 - http://people.duke.edu/~rnau/411home.htm

Hidden Markov Model

Neural networks

Neural networks - Backpropagation

Neural networks - Backpropagation

Machine

Learning College

$$y = s(\Sigma w_i x_i - \theta) = s(w_1 x_1 + w_2 x_2 - \theta)$$

$$ax + by + c = 0$$

$$y = s(\Sigma w_i x_i - \theta) = s(w_1 x_1 + w_2 x_2 - \theta)$$

Time Series with Neural Networks

- Simple regression example (random input ⇒ cumulative sum)
- Neural Networks
 - Our How to create the model?
 - How to **generate training data**?
 - o How to express time domain?
 - Output Description
 Output Description
 How to train the network?

Recurrent Neural Networks

RNN – Vanishing gradients

Long short-term memory – LSTM

Rainfall-runoff example

- Long delay between rainfall on input and runoff on output
- Highly nonlinear dependency between input and output
- Neural networks
 - embedded nonlinearity
 - o can handle a lot of inputs

Trampoline jumping example

- Data preparation
 - Dataset normalization
 - Sequence padding
- Binary classification task
 - Target values & dimensions
 - Loss functions
- Training & evaluation
 - Inference visualization
 - Evaluation metrics

RNN and sequence data

Weather forecast example

- Data preparation
 - Features selection & smoothing
 - Training set generation
- Multivariate regression task
 - Categorical vs. continuous variables
 - Multiple loss functions
- Model variants
 - "many-to-one" vs. "many-to-many"
 - Off-sample forecasting

additional input data

! testing set!

! testing set!

! testing set!

! testing set!

! testing set!

Video clip classification

Short-time Fourier Transform

Speech recognition

Time series prediction from textual data

Time series prediction from textual data

Pre-training with additional data

Transfering model & exposing feature layer

Fine-tuning with time series target data

Fine-tuning with time series target data

