	/ A-> ==		0 D.									
Norma	(Approxi	mation o	t bn	vonnou.								
Theorem	Y~ B	Theorem	P), th	en <u>Y</u>	- mp		→ Z~	Λ <i>1</i> (ο)	m dest	ribution		
(DeMoin	je – Loplace	Theovem)		ΝN	נק־ייץ	ກ⊸∞		70(0)1)	<i>y</i> ,			
		Central 1		heovem								
Ref :	Y= X, +	X ₂ +···+	Xn.	X7, 1.7.4	d B	erua.U	(D)	X= {	w/ prob	P		
, ,	ry = n	₽Xı = n'	D ,				7	10	w/ Prob	' r		
	lm Y = r	$1/2\alpha X_1 = \gamma$	r 1P(1-P)									
	LT SOMS	Y-IEY VorY	' ' -> =	2~ ^1.0			V	.2	.3 1516	170.4	,,	.
0.	1 0	N Ubrry		-17010	, ()	Vow	λι = 10±2/	(ÆX) = VEX1	-(1 2 X,)	= P- P2	= P(J-
		standardiz	al									
		ξο, (, , ,										
2n take	es value s	10- MP , V	(-N)	,	, <u>v</u>	1- mP	1 21+1	possible	values.			
≥ ~ ∧.	/(05 () -fa/	kes any	יקיין דיי	el.o	NA be tes	P(1-p)	Man hou					
, ,	, ,	-cs arra	wwe n	1 The	×1 9	ren	7000M DOV	-				
1												
			conver	зепсе т	n distr	ribution	means					
AND) _{2n} (t) →				2 dt				
		te-					NAT C	(AL				
02	N+1 \lalan	n	C	DF con	nverges							
O-np	T WOWE	_										
			Yn -np	- ≈ Λ) (0, 1)							
				× Yubi								
			γ'n	≈np+	MAPIT-	P) · N (0)) =N	linp, mpl	1-P1)			
			Figurt):	= \(\big \big \big \big \big	P*(1-1	²) ^{n-k} ≈	Je 1/20	np (i-p)	-(t-np)' ->\rup(1-p)			
								1 '				
		را ا	nke away	- Pi	(4 9)	L., . 10	D 24D1	(-D)) £	or lenge	n n ≥	3.	
			SPI VAN V	ZVINOM	נ אָנוֹט	by /01	mp, mp.	1 700 7		/ N 2		
						1 1						

```
10/31/2022
       Confidence Interval for percentiles lotistribution free)
                                     m(X) = man ft = Fx (t) = = = 1
       X is continuous RV
                                     median
                                     TIP (X) = min ft: Fx(t) = P4
                                     pth quantile / 100p% parcountile.
                                     P= = 2 = 0.5 10% Percentile = me otion
                                    P= = = 0.3 25%, percentale = 1st quantile
                                    P=====0.75 /2% preentile = 2nd quantile.
     X_1, X_2, \dots, X_s Y_1 < Y_2 < \dots < X_s estimate m(X) (p = \frac{1}{2})
                                                     estimate Tip (XI)
     (N+1)\cdot \frac{1}{2} = (5+1)\cdot \frac{1}{2} = 3
           Y3 = sample mectican.
     sample percentile \widehat{\pi}_p = y_k + 8(y_{k+1} - y_k) if (n+1)p = k+8 integer To, 1).
     Given CI for m(X), Ttp(X)
      Simple Idea: just use (Y1, Y5)
        \mathbb{P}(m|X)\in(Y_1,\ Y_2|)=?=1-X
Given: P(Y_1 < m \text{ and } Y_2 > m) = 1 - P(Y_1 > m) - P(Y_2 > m) X_1, X_2, X_4, X_5
                                                                                    Y = 2000 (X1, ..., X5)
                                 -Y_1 < m means at least one of X_1's < m
    W=0 W=1 W=2 W=3 W=4 W=5
     Is >m means at least one of Xi's > m
                                                                                     /5 = mox (X1, ..., X5)
                                 -W = number of Xi's that are < m
                                      = \frac{1}{\sqrt{2}} \frac{1}{3} \chi_i \leq m_i = \text{Binom}(n, \frac{1}{2})
            X1, . . . , X5
                                                  7. T. d. Sum of Bemaulti (=)
           / m
     , "success": X2 < m P(X2 cm) = = > W= K < > Yu < m < Yu+1
    - 皇 P(w= K)
                                                                    =P(1=W=4)
                                                                    =1-P(W-1)-P(W-4)=1-1-25-25
   Generalize: X1, X2, ..., Xn Y1 < Y2 < ... < Yn
            want to fand CI for Top
          If use (Y_i, Y_j) as my (2, P(\pi p e(Y_i, Y_j)) = 1 - \alpha = ?
          W = \# X_i's that are \langle \pi_p \rangle = \beta i n \sigma m \langle n, p \rangle \approx \mathcal{N}(np, np (1-p))
         "success" = X_{\overline{c}} < \pi_{\overline{p}}  \mathbb{P}(X_{\overline{c}} < \pi_{\overline{p}}) > \overline{p}
         "failuve" = Xi > Tp | P(Xi > Tp) = 1-P
       W=0 W=1 W=K W=N-1 W=N

Y, Y2 ... Yk / Yk+1 ... Yh-1 Yu Top
```

```
=> W = K <=> YK < TTP < YK+1
      P(\pi_{P} \in \{Y_{2}, Y_{3}\}) = 1- \alpha
= \sum_{k=1}^{J-1} P(\pi_{P} \in \{Y_{k}, Y_{k+1}\})
       = 5-1 P(w=k) = P(i < W < j-1)
         = \mathbb{P}(\bar{c} - \alpha z \leq w \leq \bar{j} - \alpha z) \approx \mathbb{P}(\bar{c} - \alpha z \leq N | np, np (1-p) \leq \bar{j} - \alpha z)
         = \mathbb{P}\left(\frac{z - as - np}{Nnp(1-p)} \le \mathcal{N}(0, 1) \le \frac{\overline{z} - as - np}{Nnp(1-p)}\right)
Example: n = 27 samples want C2 for TTax

Let's compute \hat{\pi}_{ab} = y_7

(n+1)p = 28 \times 0.21 = 28 \times 4 = 7
                                                                                                                                 np = 27 \times 4 = 6.75
\sqrt{np(1-p)} = \sqrt{2} \times 4 \times \frac{2}{4} = \sqrt{\frac{21}{16}} = \frac{9}{4} = 2.25
                        one reasonable choice for C2 7s (y, y,)
                         P(Tax 6( /4, /10) = P(4 = W = 9) = P(4-01 = W = 10-015))

\begin{array}{c}
\nearrow \mathbb{P}\left(\frac{6-0.5-675}{2.\cancel{1}} \leq \cancel{2} \land N(0,1) \leq \frac{10-0.5-6.75}{2.\cancel{1}}\right)
\end{array}
```

Suppose we're interested in an QU $\times \sim N(\mu, 3h)$. Bressed on oriented information. When chase the competing \cdot Null importance happointers $\cdot M \cdot \mu = xx$. Alternative happointers $\cdot M \cdot \mu = xx$. The up of $\cdot N \cdot \mu = xx$ $\cdot N \cdot \mu = xx$. The set of open $\cdot N \cdot \mu = xx$ $\cdot N \cdot \mu = xx$. The set of outcomes $\cdot N \cdot \mu = xx$ $\cdot N \cdot \mu = xx$. It is specified by the east system $\cdot N \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east contact $\cdot X \cdot \mu = xx$. It is specified by the east $\cdot x \cdot $	
*Alternative hypothesis H. μ is the connect? How can we set which one is some listly to be correct? How μ is or H. μ is χ is in a N/ μ , χ is a N/ μ , χ is a N/ μ , χ is an invariant of the set of the set of the set of actions the short of χ is an example of a test street χ is a specified by the test street χ is a specified by the example of χ is a sum of χ in a sum of χ in a sum of χ is a sum of χ in a sum of χ in a sum of χ is a sum of χ in a sum of χ in a sum of χ in a sum of χ is a sum of χ in a sum of χ in a sum of χ in a sum of χ is a sum of χ in a sum of	ypothesis.
*Alternative hypothesis: M. μ -SSS How likely to be correct? How can we set which one is now likely to be correct? How μ -SO or μ -West value on the state of μ -SSS How μ -SSSS How μ -SSSSS How μ -SSSSS How μ -SSSSSS How μ -SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	
How can we test which one is more librally to be connect? Mo. μ =50 or H : μ =55	
He μ = 50 or H: μ = 50 χ H: χ = 50 χ = 50 χ H: χ = 50 χ	
Interestically larger \overline{X} form H our H_0 Set up a "rejection threshold" $M = 13$. This is Reject to (in four of H_1) if $\overline{X} \ge M_0 = 53$ produce we "accept" (do not reject) H_0 . This an example of a test for the sample real improbation $H_0 : M \in \mathbb{C}^0$ against the simple alternative improfuncts $H_1 : M \in \mathbb{C}^0$. The sect of outcomes $C := \int [N_1, N_2,, N_m] : \overline{X} \ge M_0 = 13\overline{1}$ is the critical assign for the feet. It's specified by the test estroctate \overline{X} . $X := P(\text{type I error}) = P(N_1,, N_m) \notin C : H_1) = P(\overline{X} = 53, M = 53)$ $X := P(\text{type I error}) = P(N_1,, N_m) \notin C : H_1) = P(\overline{X} = 53, M = 53)$ or is the "significance lead" of this test. To compute those potablishings $O(\beta)$, we need to know the distribution of the test specific \overline{X} under the $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1, \frac{1}{M})$ $\overline{X} = \frac{1}{M} [X + + X_m] \sim M(M_1,$	
Set up a "rejection threshold" $M = 13$. Fest: Deject M in four of M) if $\overline{X} \ge M = 53$ or otherwise we "accept" (do not reject) M . This an example of a test for the sample null importants M is specified by the test statistic \overline{X} . It's specified by the test statistic \overline{X} . $X := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P \text{tope 1 error} = P(X_1,, X_m) \in C; M = P(\overline{X} \le X), \mu = \Sigma 1$ At $\overline{X} := P(\overline{X} := P$	
Set up a "rejection threshold" $\mu = 13$. Fest: Paject the Institute of $\mu = 13$. Fest: Paject the Institute of $\mu = 13$. Fest: Paject the Institute of $\mu = 13$. Fest: Paject the Institute of $\mu = 13$. The sect of outcomes $C := \{1 \times 1 $	
The set of outcomes $C := \begin{cases} (N_1 \cdot N_2 \cdot N_3) : N_1 \cdot N_2 \cdot N_3 = 23 \end{cases} \text{The critical region for this text.}$ $H'' = \begin{cases} (N_1 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3) : N_2 \cdot N_3 = 23 \end{cases} \text{The critical region for this text.}$ $(N_1 \cdot N_2 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3 = 23 \end{cases} \text{The critical region for this text.}$ $(N_2 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3 \cdot N_3 = 23 \end{cases} \text{The critical region for this text.}$ $(N_3 \cdot N_3 \cdot N_3$	
The set of outcomes $C := \int (N_1, N_2, \dots, N_n) : \overline{X} \geqslant J_{N_0} = \Sigma \geqslant \frac{1}{3} \text{ is the critical section for this text.}$ $Ho \text{ is graphed by the text statistic } \overline{X}.$ $X := P \text{ type I error} := P(N_1, \dots, N_n) \in C: H_1) = P(\overline{X} \geqslant J_2, \mu = \Sigma)$ $P := P \text{ type I error} := P(N_1, \dots, N_n) \in C: H_1) = P(\overline{X} \geqslant J_2, \mu = \Sigma)$ $X := P \text{ type I error} := P(N_1, \dots, N_n) \in C: H_1) = P(\overline{X} \geqslant J_2, \mu = \Sigma)$ $X := P \text{ type I error} := P(N_1, \dots, N_n) \in C: H_1) = P(\overline{X} \geqslant J_2, \mu = \Sigma)$ $X := P \text{ type I error} := P(N_1, \dots, N_n) \in C: H_1) = P(\overline{X} \geqslant J_2, \mu = \Sigma)$ $X := P \text{ the "significance level" of this text.}$ $P the "significanc$	
The set of outcomes $C:=\int (x_1,x_2,,x_n): \overline{X}\geqslant \mu_n=\Sigma^{\frac{n}{2}} \text{is the critical segion for this feet.}$ $H's specified by the test stockize \overline{X}.$ $X:=\Pr type \ 1 \text{ ornor})=\Pr (x_1,,x_n)\in C; H_0)=\Pr (\overline{X}>\Sigma^{\frac{n}{2}},\mu=\Sigma^{\frac{n}{2}})$ $X:=\Pr type \ 1 \text{ ornor})=\Pr (x_1,,x_n)\in C; H_0)=\Pr (\overline{X}<\Sigma^{\frac{n}{2}},\mu=\Sigma^{\frac{n}{2}})$ $X:=\Pr type \ 1 \text{ ornor})=\Pr (x_1,,x_n)\in C; H_0)=\Pr (\overline{X}<\Sigma^{\frac{n}{2}},\mu=\Sigma^{\frac{n}{2}})$ $X:=\Pr (x_1,x_2,,x_n)\in C; H_0)=\Pr (\overline{X}<\Sigma^{\frac{n}{2}},\mu=\Sigma^{\frac{n}{2}})$ $X:=\Pr (x_1,x_2,,x_n)\in C; H_0)=\Pr (x_1,x_2,,x_n)\in C; H_0)=\Pr (x_1,x_2,,x_n)$ $X:=\Pr (x_1,x_2,,x_n)\in C; H_0:=\Pr (x_1,x_2,,x_n)$ $X:=\Pr (x_1,x_2,,x$	
$C:=\frac{\sqrt{(x_1,x_2,\dots,x_n)}}{\sqrt{x_1}} \xrightarrow{x_1} \xrightarrow{x_1} \xrightarrow{x_2} \xrightarrow{x_3} \xrightarrow{x_4} \text{ or fical region for this text.}} \qquad \qquad Ho is forced unrectly region for this specified by the itest statistic \overline{x}. X:=\frac{\sqrt{(x_1,x_2,\dots,x_n)}}{\sqrt{x_2}} = \frac{\sqrt{(x_1,\dots,x_n)}}{\sqrt{x_2}} + \frac$	
$C:=\frac{\sqrt{(x_1,x_2,\dots,x_n)}}{\sqrt{x_1}} \xrightarrow{x_1} \xrightarrow{x_1} \xrightarrow{x_2} \xrightarrow{x_3} \xrightarrow{x_4} \text{ or fical region for this text.}} \qquad \qquad Ho is forced unrectly region for this specified by the itest statistic \overline{x}. X:=\frac{\sqrt{(x_1,x_2,\dots,x_n)}}{\sqrt{x_2}} = \frac{\sqrt{(x_1,\dots,x_n)}}{\sqrt{x_2}} + \frac$	
H's specified by the test statistic \bar{x} . $x := P(type \ 1 \text{ error}) = P(x_1,, x_n) \in C; H_1) = P(\bar{x} > 5, \mu = 50)$ $\bar{x} > 5 \Rightarrow 10$ $\bar{x} = P(type \ 1 \text{ error}) = P(x_1,, x_n) \in C; H_1) = P(\bar{x} < 5, \mu = 55)$ $\bar{x} > 5 \Rightarrow 10$ $\bar{x} = P(type \ 1 \text{ error}) = P(x_1,, x_n) \in C; H_1) = P(\bar{x} < 5, \mu = 55)$ $\bar{x} < 5 \Rightarrow 10$ $\bar{x} = P(type \ 1 \text{ error}) = P(x_1,, x_n) \in C; H_1) = P(\bar{x} < 5, \mu = 55)$ $\bar{x} < 5 \Rightarrow 10$ x	
$X := \text{Ptope I error} \} = \text{P(x_1, \dots, x_n)} \in C; \text{ (h)} = \text{P(x} \Rightarrow \text{x}), \mu = \text{x})$ $\Rightarrow := \text{Ptope I error} \} = \text{P(x_1, \dots, x_n)} \notin C; \text{ (h)} = \text{P(x} \Rightarrow \text{x}), \mu = \text{x})$ $\Rightarrow := \text{Ptope I error} \} = \text{P(x_1, \dots, x_n)} \notin C; \text{ (h)} = \text{P(x_1, \dots, x_n)} \notin C; (h)$	we
$\beta:=\text{Pttype I arim'})=\text{Ptx},,x_n\} \notin C; \text{Mi})=\text{Ptx} < 23, \text{M}=22}$ $0 \times \text{Ts. the "significance level of this test.}$ $0 \times Ts. the "significance level of this this this this this the "significance level of this this this this this this this this$	
The injection of this test. The injection of this test. To compute these probabilities (x,β) , we need to know the distribution of the test stactic \overline{x} under the injection \overline{x} and \overline{x} and \overline{x} in $(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_n) \sim \mathcal{N}(\mu, \frac{1}{2n})$ $\overline{x} = \frac{1}{n}(x_1 + \cdots + x_$	0
** To compute these probabilities (x, β) , we need to know the distribution of the test static \overline{x} under the probabilities (x, β) , we need to know the distribution of the test static \overline{x} under the probabilities (x, β) , we need to know the distribution of the test static \overline{x} under the probabilities (x, β) , we need to know the distribution of the test static \overline{x} under the probabilities (x, β) , we need to know the distribution of the distribut	omor"
Mo, M, respectively. $ \begin{array}{ll} \overline{X} = \frac{1}{N} \left[X_{1} + \cdots + X_{N} \right] \sim \mathcal{N} \left[M_{1}, \frac{\lambda h}{2h} \right] \\ \overline{X} = \frac{1}{N^{2} \sqrt{N}} \sim \mathcal{N} \left[(0, 1) \right] = 2 \end{array} $ $ \begin{array}{ll} \overline{X} = P(\overline{X} > \Sigma_{2}), M = \Sigma_{0} \\ \overline{X} = P(\overline{X} > \Sigma_{3}), M = \Sigma_{0} \end{array} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M), M = \Sigma_{0} $ $ = P(\overline{X} > M) $	
$ \begin{array}{lll} $	J
$ \frac{\overline{X} - \mu}{\overline{M36/n}} \sim N(0,1) = 2 $ $ X - \mu = 0 $	
$ \begin{array}{lll} $	
$ \begin{array}{lll} $	
$= P(\frac{x-\mu}{A \ni b/n} \Rightarrow \frac{x \ni -\mu}{A \ni b/n}; \mu = x_0)$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n}; \mu = x_0)$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$	
$= P(\frac{x-\mu}{A \ni b/n} \Rightarrow \frac{x \ni -\mu}{A \ni b/n}; \mu = x_0)$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n}; \mu = x_0)$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$ $= P(\frac{x-\mu}{A \ni b/n} < \frac{x \ni -\mu}{A \ni b/n})$	
$= \mathbb{P}\left(2 > \frac{52 - 50}{\sqrt{30/m}}\right) = \mathbb{P}\left(\frac{\sqrt{3-10}}{\sqrt{30/m}} < \frac{-2 - 55}{\sqrt{30/m}}\right) = \mathbb{P}\left(2 > \frac{1}{\sqrt{30/m}}\right) = \mathbb{P}\left(2 > \frac{1}{\sqrt{30/m}}\right) = \mathbb{P}\left(2 > \frac{1}{\sqrt{30/m}}\right) = \mathbb{P}\left(2 > \frac{1}{\sqrt{30/m}}\right)$	
$= \mathbb{P}(2 \ge \frac{53 \cdot 50}{\sqrt{30/m}}) = \mathbb{P}(\frac{\sqrt{N-M}}{\sqrt{30/m}} < \frac{52 \cdot 55}{\sqrt{30/m}}) = \mathbb{P}(\frac{\sqrt{N-M}}{\sqrt{30/m}} < \frac{1}{\sqrt{30/m}}) = \mathbb{P}(2 \ge \frac{1}{\sqrt{N}} \sqrt{m}) = \mathbb{P}(2 \ge \frac{1}{\sqrt{N}} \sqrt{m}) = \mathbb{P}(2 \ge \frac{1}{\sqrt{N}} \sqrt{m})$	
$= \mathbb{P}(\mathbb{Z} \Rightarrow \frac{1}{\sqrt{N}})$ $= \mathbb{P}(\mathbb{Z} \Rightarrow \frac{1}{\sqrt{N}})$ $= \mathbb{P}(\mathbb{Z} \Rightarrow \frac{1}{\sqrt{N}})$ $= \mathbb{P}(\frac{\mathbb{Z} - \mu}{\sqrt{N} + \sqrt{N}})$	
$= \mathbb{P}\left(2 \ge \frac{1}{2}\sqrt{n}\right) = \mathbb{P}\left(\frac{\overline{x} \cdot \mu}{\sqrt{35/m}} < -\frac{1}{2}\sqrt{n}\right)$	
$= \mathbb{P}\left(\mathbb{Z} \geqslant \frac{1}{2}\sqrt{n}\right) \qquad = \mathbb{P}\left(\frac{\sqrt{N}}{N} - \frac{1}{2}\sqrt{n}\right)$	
$H_0: \overline{X} \sim \mathcal{N}(\Sigma_0, \frac{3b}{N})$ $H_1: \overline{X} \sim \mathcal{N}(\Sigma_0, \frac{3b}{N})$	
No: X ~ N(20, \frac{\pi}{\pi})	
22=U	
. Fixed sample size n. if we move up up. then decrease x or the cost of increasing β.	
o Fixed $M_{\rm th}$, if we movesse sample size $m_{\rm t}$ -than $M_{\rm t}$ β both decrease . In fact, $M_{\rm th}$ β \to 0 exponentially fast.	

