Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

3150.000 - Figur B

3050.000 - 2950.000 - 2900.000 - 2000 2500

Tidspunkt for observasjon (timer)

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

400

600

Tidspunkt for observasjon (timer)

800

1000

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 3.20e+09.

ó

200

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) radiusen er 1000 ganger solas radius.

STJERNE B) stjerna fusjonerer helium i kjernen

STJERNE C) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE D) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.767e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne B har massetet
thet 5.279e+06 kg/m3̂ og temperatur 30 millioner K.

Kjernen i stjerne C har massetet
thet 7.725e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 3.730e+06 kg/m3̂ og temperatur 25 millioner K.

Kjernen i stjerne E har massetet
thet 6.439e+06 kg/m3 og temperatur 33 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: denne stjerna er lengst vekk

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.500\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 23.64 millioner K.

Kjernen i stjerne B har massetet
thet $2.454\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 35.27 millioner K.

Kjernen i stjerne C har massetet
thet 2.396e+05 kg/m3 og temperatur 29.31

millioner K.

Kjernen i stjerne D har massetet
thet 2.748e+05 kg/m3̂ og temperatur 27.41 millioner K.

Kjernen i stjerne E har massetet
thet $3.048\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 19.25 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

16.04

10.69

5.35

0.00

5.35

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 4.04 buesekunder i løpet av et millisekund. 48.12 42.78 y-posisjon (10⁻⁶ buesekunder) 37.43 32.08 26.74 21.39

10.69 16.04 21.39 26.74 32.08 37.43

x-posisjon (10^{-6} buesekunder)

42.78 48.12

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.21930 km/t.

Filen 3E.txt

Tog1 veier 32600.00000 kg og tog2 veier 61700.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 463 km/s.

Filen 4E.txt

Massen til gassklumpene er 10200000.00 kg.

Hastigheten til G1 i x-retning er 4200.00 km/s.

Hastigheten til G2 i x-retning er 8700.00 km/s.

Filen 4G.txt

Massen til stjerna er 41.50 solmasser og radien er 2.98 solradier.