|           |     |      |   |     |      | <br> |     |   |   |  |
|-----------|-----|------|---|-----|------|------|-----|---|---|--|
|           |     |      |   |     |      |      |     |   |   |  |
|           | 1 1 | <br> | 1 |     | <br> |      | 1 1 | 1 |   |  |
| Dog No    | 1   |      |   | 1 1 |      |      |     |   |   |  |
| Tres. 140 |     |      |   |     |      |      | l   |   |   |  |
| U         |     |      |   |     |      |      | _   |   | _ |  |

## B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Third Semester

## 21ASC203T - APPLIED FLUID MECHANICS

(For the candidates admitted during the academic year 2022-2023 onwards)

## Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40<sup>th</sup> minute.

ii. Part - B and Part - C should be answered in answer booklet.

| Time: 3 Hours                                     |                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Max. Marks: 75 |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|--|--|
| PART - A (20 × 1 = 20 Marks) Answer all Questions |                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | co             |  |  |
| 1.                                                | The value of the viscosity of an ideal fluid is (A) More than that of a real fluid (C) Zero                                       | is<br>(B) Unity<br>(D) Infinity                                                                                        | Para di Santa di Sant | 1 | 1              |  |  |
| 2.                                                | The value of the surface tension of an ideal (A) Zero (C) Infinity                                                                | fluid is (B) Unity (D) More than that of a real fluid                                                                  | Ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 1              |  |  |
| 3.                                                | If a uniform solid body weighs 50 N in air (A) 1.5 (C) 1.67                                                                       | and 30 N in Water, it's Specific Gravity is (B) 2.5 (D) 3.00                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 | 1              |  |  |
| 4.                                                | On a sea level standard day, a pressure g<br>Specific gravity 1.025, reads an absolute<br>instrument<br>(A) 129m<br>(C) 133m      | age moored below the surface of ocean, pressure of 1.4 MPa. How deep is this  (B) 4m  (D) 140m                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 | 1              |  |  |
| 5.                                                | Steady flow occurs when  (A) The pressure does not change along the flow  (C) Conditions do not change with time at any point     | <ul><li>(B) The velocity does not change</li><li>(D) Conditions change gradually with time</li></ul>                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 2,             |  |  |
| 6.                                                | A one dimensional flow is one which (A) Involves zero transverse component of flow                                                | (B) Is uniform flow                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2              |  |  |
|                                                   | (C) Is steady uniform flow                                                                                                        | (D) Takes place in straight lines                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                |  |  |
| 7.                                                | A flow in which each liquid particle has a each other is called (A) Uniform flow (C) Turbulent flow                               | definite path and their paths do not cross  (B) Steady flow (D) Laminar flow                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2              |  |  |
| 8.                                                | If the particles of a fluid attain such vel<br>magnitude and direction as well as from ins<br>(A) Steady flow<br>(C) Laminar flow | ocities that vary from point to point in tant to instant, the flow is said to be  (B) Turbulent flow  (D) Uniform flow | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2              |  |  |
| 9.                                                | The streamlines of the particles in a flow a remain the same even after sometime, what (A) Non-Uniform (C) Uniform                |                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 77             |  |  |

|     | Mark                                                                                                                                       | BL                                                                                                                                                                           | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 20. | In which of the following types of flow the (A) Turbulent flow (C) Critical flow                                                           | losses are maximum? (B) Laminar flow (D) Transition flow                                                                                                                     | yanad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 | 5 |
| 19. | The wake is a region of always occurs (A) Before a separation point (C) Before and after separation point                                  | <ul><li>(B) After a separation point</li><li>(D) At region of high pressure intensity</li></ul>                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 5 |
| 18. | The swirl caused due to eddies are called as (A) Vortices (C) Volume                                                                       | (B) Vertices<br>(D) Velocity                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι | 5 |
| 17. | The turbulent boundary layer is  (A) Uniform  (C) Less stable                                                                              | (B) Non-uniform with swirls (D) Smooth                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 5 |
| 16. | Flow in which compressibility of fluid deperture (A) Reynolds number (C) Mach number                                                       | ends on (B) Euler's number (D) Weber's number                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 4 |
| 15. | The shear stress velocity gradient relation of (A) Hyperbolic (C) Linear                                                                   | of the Newtonian fluids is (B) Parabolic (D) Nonlinear                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 4 |
| 14. | Velocity distribution for laminar flow throug (A) Varies linearly from zero at wall and max. at center (C) Constant over the cross section | gh a circular pipe is  (B) Varies parabolically with maximum at center  (D) Varies linearly to max at wall and zero at center                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 4 |
| 13. | The Reynolds number is the ratio of (A) Inertial forces to surface tension force (C) Inertial forces to gravity forces                     | <ul><li>(B) Elastic forces to pressure forces</li><li>(D) Inertial forces to viscous forces</li></ul>                                                                        | To the state of th | 1 | 4 |
| 12. | The flow in which fluid moves radially inwer (A) Vortex flow (C) Sink flow                                                                 | ards towards a point is called (B) Source flow (D) Source and sink pair                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 3 |
| 11. | For incompressible fluid flow, if area reduce (A) Decreases (C) Constant                                                                   | es then what is the effect on the velocity? (B) Increases (D) first increases then decreases                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 3 |
| 10. | The continuity equation  (A) Relates the mass rate of flow along a stream line  (C) Expresses the relation between work and energy         | <ul><li>(B) Expresses relationship between hydraulic parameters of flow</li><li>(D) Is a relation for the momentum per unit volume for two points on a stream line</li></ul> | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 3 |
|     |                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |

| 21. | (a) The dynamic viscosity of an oil used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4m and rotates at 190rpm. Calculate the power lost in the bearing for a sleeve length of 90mm. The thickness of the oil film is 1.5mm.  (OR)                                                                                                                                   | 8    | 3    | 1  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----|
|     | (b) (i) The surface tension of water in contact with air at 20 deg. C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm <sup>2</sup> greater than the outside pressure. Calculate the diameter of the droplet of water.                                                                                                                                                            |      |      |    |
|     | (ii) A hydraulic press has a ram of 30cm diameter and a plunger of 4.5cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 500 N.                                                                                                                                                                                                                          |      |      |    |
| 22. | (a) A fluid of specific gravity 0.8 is flowing through a horizontal venturimeter<br>having inlet diameter 20cm and throat diameter 10 cm. A U-tube manometer<br>containing mercury as the manometric fluid is connected between the inlet<br>and throat shows a reading of 25 cm. Calculate the discharge of oil through<br>the venturimeter. Take coefficient of discharge of venturimeter as 0.98. (OR) | 8    | 3    | 2  |
|     | (b) When an airplane is flying 322 kmph at 5000-ft altitude (density=1.06 kg/m <sup>3</sup> , pressure=84311 Pa) in a standard atmosphere, the air velocity at a certain point on the wing is 439 kmph relative to the airplane. What suction pressure is developed on the wing at that point? What is the pressure at the leading edge (a stagnation point) of the wing?                                 |      |      |    |
| 23. | (a) Obtain the expressions and sketch the stream function and velocity potential for (i) Source flow and (ii) free vortex.  (OR)                                                                                                                                                                                                                                                                          | 8    | 3    | 3  |
| 1   | (b) For the potential flow over a stationary cylinder, find and sketch the pressure<br>coefficient distribution over the cylinder surface.                                                                                                                                                                                                                                                                |      |      |    |
| 24. | <ul> <li>(a) For a fully developed laminar flow through a pipe, obtain the expressions and sketch the</li> <li>(i) velocity profile</li> <li>(ii) Shear Stress</li> </ul>                                                                                                                                                                                                                                 | 8    | 4    | 4  |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |    |
|     | (b) Drag force F on a high speed aircraft depends on the velocity of the flight V,<br>the characteristic geometric dimension of the aircraft l, the density ρ and<br>viscosity μ. Using Buckingham π theorem, find out the independent<br>dimensionless quantities which describe the phenomenon of drag on the<br>aircraft.                                                                              |      |      |    |
| 25. | (a) Derive the Von-Karman momentum integral equation for boundary layer over a flat plate.                                                                                                                                                                                                                                                                                                                | 8    | 4    | 5  |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |    |
|     | (b) Experiments are performed in a wind tunnel with a wind speed of 14 m/s on a flat plate of size 2m long and 1m wide. The density of air is 1.2 kg/m <sup>3</sup> . The coefficients of lift and drag are 0.75 and 0.15 respectively. Determine: (i) Lift force (ii) Drag force (iii) Resultant force and its direction and (iv) power exerted by air on the plate.                                     |      |      |    |
|     | $PART - C (1 \times 15 = 15 Marks)$                                                                                                                                                                                                                                                                                                                                                                       | Mark | s BL | CO |
|     | Answer any I Questions                                                                                                                                                                                                                                                                                                                                                                                    |      |      |    |
| 26. | Consider two potential vortices of equal strengths are kept at equal distance from the origin along the x axis on either side of the Y axis. Draw the streamline pattern (in a cartesian graph) of the flow considering at least two streamlines between the centers of the vortices and the origin of the 2D coordinate system. (Assume any values for the vortex strength and the distance from Y axis) | 15   | 4    | 3  |

27. A closed tank contains compressed air and oil (SG<sub>oil</sub>=0.9) as is shown in Fig. A
U-tube manometer using mercury is connected to the tank as shown. The column heights are h<sub>1</sub> = 90 cm and h<sub>2</sub> = 15 cm, and h<sub>3</sub> = 22.5 cm. Determine the pressure reading of the gage.



2