Announcements

No class on Monday 20th January

• ECON 270 Pre-req issue.

Lecture 2 Statistics Review I

How to get credible casual effects?

- Randomization: The Gold Standard?
 - -Example: Randomly give people (who are similar in characteristics) health insurance, and then compare health status of those insured with the uninsured.
 - -How can it go wrong? What are some criticisms of randomization?
 - -Think about it and we will discuss it in later classes
- Non-experimental methods:
 - Regression with control variables/matching
 - Differences-in-differences
 - Instrumental variables
 - Regression discontinuity designs

Non-experimental methods

Selection on the observables

- -We assume treatment status is determined by observable variables.
- e.g. The decision to buy health insurance is determined by family income, education, race (observed)
- -Then we can "control" for these variables in some way and estimate a causal effect.
- -E.g. Regressions with control variables/matching

Selection on the unobservables

- -Here we acknowledge that treatment status is determined by factors that we can't measure.
- e.g. The decision to go to Harvard is determined by one's innate ability (unobserved)
- -Then we can still find good counterfactuals to "control" for the unobservables
- -E.g. Instrumental variable, regression discontinuity designs, differences-in-differences

Outline

Statistics review

- Sampling distribution of the sample mean
- Central limit theorem
- Statistical inference (P-values)

Statistics Review I

Basic concepts: population vs. sample

- Populations contain all of the items or individuals we are interested in
- Samples are subsets of population
- Parameters are measures describing populations
- Statistics are measures describing samples
- Sampling is the selection of samples from a population
- **Statistical inference** is the process of drawing conclusions about population from samples. This is the core part of statistics

Population vs. Sample

Mean, variance and standard deviation

- For all three measures, they can either describe a population or sample. For population, they are called parameters; for sample, they are called statistics.
- Population mean: $E(X) = \frac{\sum_{i=1}^{N} X_i}{N}$ (Read: The expectation of X)
- Sample mean: $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ (Σ means sum)
- Population variance: $var(X) = \frac{\sum_{i=1}^{N} [X_i E(X)]^2}{N}$; S. D. $= \sqrt{Var(X)}$
- Sample variance: $S^2 = \frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}$; $S = \sqrt{S^2}$

Covariance

- Measures how much two numerical variables change together
- Measures the direction and strength of linear relationship of two numerical variables
- Population covariance : $cov(X,Y) = \frac{\sum_{i=1}^{N} [X_i E(X)][Y_i E(Y)]}{N}$
- Sample covariance: $S_{XY} = \frac{\sum_{i=1}^{n} (X_i \bar{X}) (Y_i \bar{Y})}{n-1}$

Example: training performance

Mary and Emily like to keep fit. Mary lift weights and Emily runs. The
following table shows their hours of training and results for 5 days. What is
the covariance between training hours and exercise performance for Mary?

	Training hours	Mary-max weight lifted (lb)	Emily-fastest 400m race time (sec)
Day1	2	70	50
Day2	1	60	54
Day3	1.5	65	52
Day4	2.4	80	48
Day5	1.8	60	50

Answer:
$$Sxy = \frac{\sum_{i}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{n-1}$$

Mary:

Exercise: Find the covariance for Emily

Find covariance between training hour and max weight lifted

• Step1: find the mean of training hour (\overline{X}) and max weight (\overline{Y})

• Step2:

	X- X	Y- <u>Y</u>	(X- \overline{X})*(Y- \overline{Y})
Day1	2-1.74	70-67	0.26*3
Day2	1-1.74	60-67	-0.74*(-7)
Day3	1.5-1.74	65-67	-0.24*(-2)
Day4	2.4-1.74	80-67	0.66*13
Day5	1.8-1.74	60-67	0.06*(-7)
	X=1.74	Y =67	$\Sigma(X-\overline{X})*(Y-\overline{Y})=14.6$

• Step3:

$$Sxy = \frac{\sum_{i}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y})}{n - 1} = \frac{14.6}{5 - 1} = 3.65$$

Random variable and probability distribution

- Random variable is a variable whose value is a numerical outcome of a random phenomenon
- What is the difference between a random variable and a regular variable?
 - Random variable always has a probability distribution associated with it
- e.g. Toss the coin twice
 - Define the random variable X= # of heads
 - Now X can be 0, 1 or 2
 - P(X=0)=1/4
 - P(X=1)=1/2
 - P(X=2)=1/4

Population distribution vs. sampling distribution

- **Population distribution** of a random variable (X) is the distribution of its values for all members of the population.
 - Example: Height of individuals in the entire country.
- Sampling distribution is the probability distribution of a statistic (e.g. mean (X)).
 - The average height of a class follows normal distribution-sampling distribution

Sampling distribution of the sample mean

• A graphical comparison between population distribution and sampling distribution:

• To determine whether sample mean is a good measure of population mean, we need to know its distribution-sampling distribution

Central Limit Theorem

- A video of CLT https://vimeo.com/75089338
- If the population distribution is normal, i.e. $X \sim N(\mu, \sigma^2)$. Sampling distribution is normal too, i.e. $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$.
 - What does it mean?

$$\mu_{\bar{X}} = \mu$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- As sample size n increases, the standard deviation of sample mean (known as **standard error**) decreases.
 - It is used to determine how far away the mean of each sample is from the true population mean.

Exercise

- You draw random samples of size n=36 from a population with mean 240 and standard deviation 18. Find the mean and standard error of the sampling distribution
- Repeat the calculation for a sample size of 144. Explain the effect of sample size on standard error

Central limit theorem

- Why is it important?
- Allows us to use the normal distribution for statistical inference in situations where the underlying distribution is **not** normal.

• How big is "sufficiently large?" Typically we think n about 30 is sufficient.

Population and sampling distribution

	POPULATION	SAMPLING DISTRIBUTION
Mean	μ	$\mu_{\overline{x}} = \mu$
Standard Deviation	σ	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$
Shape	Normal	Normal
	Undetermined (skewed, etc.)	If n is "small" shape is similar to shape of original graph OR If n is "large" (rule of thumb: n ≥ 30) shape is approximately normal (central limit theorem)

Statistical inference (borrowed from @allison_horst)

LET'S START if random samples are drawn from populations
HERE: w/ the same mean ...

Then it is more likely that the 2 sample means (i.e. will be close together... por

...and it is less likely (but always possible!) that the sample means will be far apart.

@allison hors

Statistical inference

Meet p-values

So for our 2 random samples, we ask:

WHAT IS THE PROBABILITY OF GETTING 2 SAMPLE
MEANS THAT ARE AT LEAST THIS DIFFERENT,*

if they were actually drawn from populations w/ the same mean?

P-values continued

That's our p-value!

WHAT IS THE PROBABILITY OF GETTING 2 SAMPLE
MEANS THAT ARE AT LEAST THIS DIFFERENT,
if they were actually drawn from populations w/ the same mean?

P-VALUES, SCHEMATICALLY:

Higher D-values

HIGHER PROBABILITY OF 2
SAMPLE MEANS BEING AT
LEAST THIS DIFFERENT, IF
DRAWN FROM POPULATIONS
WITH THE SAME MEAN

LESS EVIDENCE OF DIFFERENCES BETWEEN POPULATION MEANS

Lower p-values

LOWER PROBABILITY OF 2
SAMPLE MEANS BEING AT
LEAST THIS DIFFERENT, IF
DRAWN FROM POPULATIONS
WITH THE SAME MEAN

MORE EVIDENCE

OF DIFFERENCES

BETWEEN

POPULATION MEANS

Question:

WHEN DO WE HAVE ENOUGH EVIDENCE TO SAY THERE IS A SIGNIFICANT DIFFERENCE?

answer:

WHEN OUR P-VALUE IS BELOW OUR SELECTED SIGNIFICANCE LEVEL (X), USUALLY (BUT NOT ALWAYS) = 0.05.

Which means:

IF THE PROBABILITY (p-value) OF FINDING AT LEAST OUR DIFFERENCE IN SAMPLE MEANS (IF THEY WERE DRAWN FROM POPULATIONS WITH THE SAME MEANS) IS LESS THAN 5%, THAT'S ENOUGH EVIDENCE FOR US TO DECIDE THEY ARE LIKELY FROM POPULATIONS WITH UNEQUAL MEANS.

Statistical inference

- Statistical inference: draw conclusions about population from sample.
- Example
 - Parameter: average height of adults in the US
 - Statistic: average height of 50 randomly selected people from the population
- Suppose scores on an IQ test are normally distributed. 10 people are randomly selected and tested. The mean and standard deviation in the sample group is 95 and 15. Construct a 95% confidence interval for the true population mean.
- Extract information:
- n=10,degree of freedom=n-1=9; $\bar{X}=95$;S=15; confidence level (C)=0.95

Steps to construct Confidence Interval(CI)

- Each confidence level C corresponds to a tail probability $\alpha=1-\mathcal{C}$
- Given lpha and the degree of freedom (n-1), find $t_{lpha/2}$ using the t-table
- Construct margin of error m= $t_{\alpha/2}$ *s/ \sqrt{n}
- CI= $\bar{X} \pm m$ = $\bar{X} \pm t_{\alpha/2}$ *s/ \sqrt{n}
- Where s is the standard deviation of the sample, and \overline{X} is the mean. n is sample size.

Answer

- Step 1: Convert C=0.95 to t-score using t table.
- C=0.95, $\alpha = 1 C$ =0.05, $\frac{\alpha}{2} = 0.025$
- look it up in t-table, $t_{\alpha/2}$ =2.262
- Step 2: Construct margin of error.
- m= $t_{\alpha/2}$ *s/ \sqrt{n} =2.262*15/ $\sqrt{10}$ =10.73
- Step 3: Construct Cl
- $\bar{X} \pm m=95 \pm 10.73$
- Translate the CI into real world meaning
- You are 95 percent confident that the true mean is within 84.27-105.73

T-Table

Exercise

• The Nielsen company conducted a survey of 64 mobile phone subscribers and find on average they spend 4 hours watching videos on their phone. The sample standard deviation is 3. Let's determine a 99% confidence interval for the average time phone subscribers spend watching videos over phone. Explain what the CI means

Review for quizzes

- Be able to calculate mean, variance, S.D, and covariance
- Understand basic concepts about sample and population
- Sampling distribution and standard error: Why sample mean is not representative of population mean
- What CLT is and why it is important
- What are p-values?