Exercice 1. Given f and g in $L_2(\mathbb{R})$, show that

- (i) $f * g(t) = \overline{\mathcal{F}}(\hat{f} \cdot \hat{g})(t)$ for all t in \mathbb{R} .
- (ii) $\widehat{f \cdot g} = \widehat{f} * \widehat{g}$ for all t in \mathbb{R} .
- (iii) Compute f * f when $f(t) = \sin(2\pi\lambda t)/\pi t$.
- (iv) Compute g * g when $g(x) = e^{-\pi x^2}$.

We establish the result using the density of $\mathcal{S}(\mathbb{R})$ in $L_2(\mathbb{R})$. Thus let f_n and g_n be two sequences in $\mathcal{S}(\mathbb{R})$ such that

$$\lim_{n \to \infty} ||f - f_n||_2 = 0$$
 and $\lim_{n \to \infty} ||g - g_n||_2 = 0$.

We see that $f_n * g_n = \overline{\mathcal{F}}(\hat{f}_n \cdot \hat{g}_n)$ by taking the inverse Fourier transform of both sides. On the other hand,

$$\|\hat{f} \cdot \hat{g} - \hat{f}_n \cdot \hat{g}_n\|_1 \le \|\hat{f} - \hat{f}_n\|_2 \|\hat{g}\|_2 + \|\hat{f}_n\|_2 \|\hat{g} - \hat{g}_n\|_2$$
$$= \|f - h\|_2 \|g\|_2 + \|f_n\|_2 \|g - g_n\|_2$$

and hence $\lim_{n\to\infty} \|\hat{f}\cdot\hat{g} - \hat{f}_n\cdot\hat{g}_n\|_1 = 0$. By applying the Riemann-Lebesgue theorem to the inverse Fourier transform, we see that $\overline{\mathcal{F}}\left(\hat{f}_n\cdot\hat{g}_n\right)$ tends to $\overline{\mathcal{F}}\left(\hat{f}\cdot\hat{g}\right)$ uniformly on \mathbb{R} . The last step is to determine the limit of f_n*g_n . We have

$$||f * g - f_n * g_n||_{\infty} \le ||f - f_n||_2 ||g||_2 + ||f_n||_2 ||g - g_n||_2;$$

thus $f_n * g_n$ converges uniformly to f * g, which is continuous.

Exercice 2. Consider the generalized filter determined by

$$q'' + 2aq' + bq = f$$

given $a, b \in \mathbb{R}$.

- (a) Determine the regions of the (a, b)-plane where the poles of Q are not on the imaginary axis.
- (b) Determine the regions corresponding to a causal filter.
- (c) Show that the filter is unstable if b = 0.