

Low Power System Design

Dr. Sangyoung Park
Chair for Real-Time Computer Systems
Technical University of Munich
sangyoung.park@tum.de

Course Introduction

- Master-level course that covers low-power system design
- Schedule
 - Monday, 11:30 to 13:45 (with a few exceptions)
- Instructor
 - Dr. Sangyoung Park + Guest lectures
 - sangyoung.park@tum.de
 - Phone: 23565
 - Office: Room 3993
 - Office hours: Monday, 13:45 to 15:00, but feel free to reach me any time

Course Introduction

- Homepage
 - Teaching page in RCS website
 - http://www.rcs.ei.tum.de/en/courses/lectures/lpsd/
- Information
 - 5 ECTS
 - All teaching, exams, presentation will be done in English
 - Final exam (50%)
 - Student presentation (30%)
 - Term paper (20%)

Course Introduction

- Textbook
 - There is no single textbook for this course
- References
 - Proceedings of relevant ACM/IEEE conferences
- Course materials
 - PDF format slides will be uploaded one by one

About the Instructor

- Dr. Sangyoung Park
 - PhD from Seoul National University, Korea
 - Postdoc @ TUM/RCS (Advisor: Prof. Samarjit Chakraborty)
 - Has been writing & reviewing papers in low-power area since 2009
 - Research areas
 - System-level low-power techniques
 - Energy management for mobile, grid-connected systems, electric vehicles, renewable sources
 - Embedded systems design

What to cover

- Review on prerequisite courses
 - MOSFET model
 - MOS capacitances
 - CMOS circuits
- Source of power consumption
 - Dynamic power of CMOS gates
 - Static power of CMOS gates
 - Power and energy consumption

What to cover

- Power estimation
 - Circuit-level estimation
 - Architecture-level estimation
 - System-level estimation
 - Architecture level simulators
 - Power measurement techniques
- Circuit-level low-power techniques
 - Transistor sizing, path balancing, don't care optimization, technology mapping, state encoding
 - Body-biasing, multiple Vt, input vector control

What to cover

- Architecture-level low-power design
 - Low-power bus interconnect
 - Low-power memory architecture, cache
- System-level low-power techniques
 - Dynamic power management
 - Dynamic voltage and frequency scaling
 - Multicore processor power management
- Power generation and conversion for embedded systems
 - Battery characteristics
 - Power distribution network (DC-DC converters, etc.)
- Real-time systems and low-power
 - Wireless sensor networks
 - Power Management for Mobile Gaming

- Why do we want to decrease power consumption?
 - Longer battery life
 - Smaller battery size for portable devices
 - Lower power consumption decreases working temperature of the device
 - Lower electric bills (e.g. operating cost of data centers)

- Higher performance and longer battery life are conflicting demands in system design
 - Sophisticated design techniques are needed to meet both of them
- Power management is one of the most critical design issues
 - Power consumption has become the limiting factor
 - Thermal design power requirement
 - Meet the demands of the market
 - Keep the working temperature at an acceptable level

- Thermal issues
- Energy issues
- Power issues

- Power consumption has been the bottleneck over the last decade
- Thermal design power (TDP)
 - Maximum amount of heat generated by the CPU
- Dark silicon era
 - Parts of a chip should be turned off due to TDP

Source: Borkar, De Intel

- Designing within limits: power & energy
 - Thermal limits (for most parts self-heating is a substantial thermal issue)
 - Package cost (4-5W limit for cheap plastic package, 100W/ cm² air cooled limit, 7.5kW 19" rack)
 - Device reliability (junction temp > 125oC substantial reduction in reliability)
 - Performance (25°C to 105°C: loss of 30% of performance)
- Distribution limits
 - Substantial portion of wiring resource, area for power distribution
 - Higher current lower R, greater dl/dt needs more wire, decoupling capacitors
 - Package capable of low impedance distribution

- Energy capacity limits
 - Limits on volume and weight of batteries (portable applications)
 - Energy for IT equipment significant fraction of total cost of ownership

- Wearable devices
 - Limited size/weight
 - Energy harvesting
 - Use times

source: http://www.chinabbb.com/ckfinder/userfiles/images/devices.jpg

Low-Power Design & Abstraction

- Low-Power Design @ various abstraction layers
- Circuit-level
 - Low-power techniques applicable at circuit-level
 - Clock-gating, body-biasing, etc.

D. Ernst, et al., "RAZOR: CIRCUIT-LEVEL CORRECTION OF TIMING ERRORS FOR LOW-POWER OPERATION", IEEE Micro 04

Low-Power Design & Abstraction

- Architecture-level
 - Cache/memory architecture
 - Interconnects

- High-level energy reduction
 - RTL or higher level
 - Suitable for complex systems
 - Higher energy gain
 - Based on high-level energy model.
 - High-level energy characterization.
 - Abstraction progressively degrades the quality of power estimation

HW/SW Co-design
Algorithm Design
Scheduling, Blinding
Behavioral Transformations
Clock Gating
Precomputation
Logic Restructuring
Rewiring
Transistor sizing
Clock Tree Design

- Low-level energy optimization
 - Has been contributing over dozens of years
 - Enhancement of devices and components
 - General solution applicable to almost all kinds of use
 - City bus service example
 - Objective: more gas mileage
 - New buses, engine swap, aluminum bodies, new transmissions, etc.
 - In the semiconductor world
 - NMOS
 - CMOS
 - MTCMOS

Gas-efficient engine

- System-software-level energy optimization
 - City bus service example
 - Optimal speed, engine rpm, shift position scheduling w/original hardware
 - Analysis of a target route
 - Use of component characteristics

System-level approaches give us bigger chance to minimize energy consumption!

- Level of abstraction: engine idle gas consumption
 - Model 1: linear gas consumption per speed:
 g = mv
 - Model 2: counting idle gas consumption when v=0:
 g = mv + I
 - Model 3: counting engine restarting cost
 - Applicable gas saving techniques when a vehicle is temporarily parked
- Technique 1: linear gas consumption model
 - No policy when a vehicle is stopping
- Technique 2: Idle gas consumption
 - Stop engine whenever a vehicle is stopped
- Technique 3: Restarting cost
 - Stop engine when stopping time is more than 2 minutes for instance

Proper energy characterization is a primary concern of quality high-level power saving approach

Student Presentations

- Study of state-of-the-art low-power techniques and survey presentation
- Latter part of the lecture
 - End of Dec. ~ end of Jan.
 - Will be also an important part of evaluation (30%)
- List of candidate papers will be given and each student will choose based on their preference and topic coverage

Note

 Slides are modified from lecture notes of "Advanced Computer System Design" from Seoul National University (Lecturer: Prof. Naehyuck Chang)