Learning Objectives

- ightharpoonup Distribution of $X_{(1)}$
- \triangleright Distribution of $X_{(n)}$
- ▶ Distribution of $(X_{(1)}, ..., X_{(n)})$
- ▶ Distribution of $X_{(r)}$
- ▶ Joint Distribution of $X_{(r)}$ and $X_{(s)}$
- ▶ Distribution of sample range $R = X_{(n)} X_{(1)}$

Order Statistics (O.S.)

- \triangleright X_1, X_2, \dots, X_n : random sample of size n
- $ightharpoonup F_X$: cdf (continuous) of the population
- \triangleright $X_{(1)}, X_{(2)}, \dots, X_{(n)}$: corresponding order statistics such that

$$X_{(1)} < X_{(2)} < \ldots < X_{(n)}$$

▶ $X_{(r)}$: r^{th} order statistic, $1 \le r \le n$.

Distribution of $X_{(1)} = \min\{X_1, \dots, X_n\}$

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$. Then, the distribution of $X_{(1)}$ is

$$f_{X_{(1)}}(y_1) = n[1 - F(y_1)]^{n-1}f(y_1).$$

Proof:

$$P(X_{(1)} > y_1) = P(X_1 > y_1, \dots, X_n > y_n) = \prod_{i=1}^n P(X_i > y_i)$$
$$= [1 - F(y_1)]^n$$

So,
$$F_{X_{(1)}}(y_1) = 1 - [1 - F(y_1)]^n$$
.

Since F' is absolutely continuous, we have the pdf of $X_{(1)}$ as

$$f_{X_{(1)}}(y_1) = n[1 - F(y_1)]^{n-1} f(y_1)$$

Distribution of $X_{(n)} = \max\{X_1, \dots, X_n\}$

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} F$. Then, the distribution of $X_{(n)}$ is

$$f_{X_{(n)}}(y_n) = n[F(y_n)]^{n-1}f(y_n).$$

Proof:

$$P(X_{(n)} \le y_n) = P(X_1 \le y_1, \dots, X_n \le y_n) = \prod_{i=1}^n P(X_i \le y_i)$$
$$= [F(y_n)]^n$$

So,
$$F_{X_{(n)}}(y_n) = [F(y_n)]^n$$
.

Since F is absolutely continuous, we have the pdf of $X_{(n)}$ as

$$f_{X_{(n)}}(y_n) = n[F(y_n)]^{n-1}f(y_n)$$

Examples

▶ Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} Exp(\lambda)$. Then, $X_{(1)} \sim Exp(n\lambda)$.

▶ Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} U[0, \theta]$. Then, the distribution of $X_{(n)}$ is

$$f_{X_{(n)}}(y_n) = \frac{ny_n^n}{\theta^n}, \ 0 \le y_n \le 1.$$

Joint distribution of $X_{(1)}, \ldots, X_{(n)}$

Let X_1, \ldots, X_n is a random sample from continuous distribution F with pdf f. Define

$$Y_i = X_{(i)}, i = 1, ..., n.$$

Then, the joint distribution of (Y_1, \ldots, Y_n) is

$$f_{\mathbf{Y}}(\mathbf{y}) = n! \prod_{i=1}^{n} f(y_i), -\infty < y_1 < \ldots < y_n < \infty.$$

Proof: We know that the joint pdf of $X = (X_1, ..., X_n)$ is

$$f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} f(x_i)$$

Joint distribution of $X_{(1)}, \ldots, X_{(n)}$ contd.

There are n! inverse images of the above transformation, such as,

$$A_{1} = \{ \mathbf{x} : x_{1} < x_{2} < x_{3} < \dots < x_{n} \}$$

$$A_{2} = \{ \mathbf{x} : x_{2} < x_{1} < x_{3} < \dots < x_{n} \}$$

$$\vdots$$

$$\vdots$$

$$A_{n} = \{ \mathbf{x} : x_{n} < x_{n-1} < \dots < x_{1} \}$$

In the first region A_1 , the inverse image is

$$x_1 = y_1$$

$$x_2 = y_2$$

$$\vdots \quad \vdots$$

$$x_n = y_n$$

and the corresponding Jacobian J=1.

Joint distribution of $X_{(1)}, \ldots, X_{(n)}$ contd.

In the second region A_2 , the inverse image is

$$x_1 = y_2$$

$$x_2 = y_1$$

$$\vdots$$

$$x_n = y_n$$

and the corresponding Jacobian J = -1.

Similarly, in the last region A_n , the inverse image is

$$x_1 = y_n$$

$$x_2 = y_{n-1}$$

$$\vdots \quad \vdots$$

$$x_n = y_1$$

and the corresponding Jacobian $J=(-1)^n$

Joint distribution of $X_{(1)}, \ldots, X_{(n)}$ contd.

Thus, in all the cases, |J| = 1.

Further, the density in every region is $\prod_{i=1}^{n} f(y_i)$.

Since there are n! region, the pdf of (Y_1, \ldots, Y_n) is

$$f_{\mathbf{Y}}(\mathbf{y}) = n! \prod_{i=1}^{n} f(y_i), -\infty < y_1 < \ldots < y_n < \infty.$$

Distribution of $X_{(r)}$, $1 \le r \le n$

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$. Then, the distribution of $Y_r = X_{(r)}$ is

$$f_{Y_r}(y_r) = \frac{n!}{(r-1)!(n-r)!} [F(y_r)]^{r-1} [1 - F(y_r)]^{n-r} f(y_r),$$

where $-\infty < y_r < \infty$.

Proof: We know that the joint distribution of (Y_1, \ldots, Y_n) is

$$f_{\mathbf{Y}}(\mathbf{y}) = n! \prod_{i=1}^{n} f(y_i), -\infty < y_1 < \ldots < y_n < \infty.$$

In order to find the marginal pdf of Y_r , $f_Y(y)$ has to be integrated w.r.t. $(y_1, \ldots, y_{r-1}, y_{r+1}, \ldots, y_n)$, i.e.,

Distribution of $X_{(r)}$ contd.

$$f_{Y_r}(y_r) = \int_{y_r}^{\infty} \cdots \int_{y_{n-2}}^{\infty} \int_{y_{n-1}-\infty}^{\infty} \cdots \int_{-\infty}^{y_2} n! \prod_{i=1}^n f(y_i) dy_1 \dots dy_{r-1} dy_n dy_{n-1} \dots dy_{r+1}$$

Now, integrating

$$f(y_{1}) w.r.t. y_{1} \longrightarrow F(y_{2})$$

$$F(y_{2})f(y_{2}) w.r.t. y_{2} \longrightarrow \frac{1}{2}[F(y_{3})]^{2}$$

$$\frac{1}{2}F^{2}(y_{3})f(y_{3}) w.r.t. y_{3} \longrightarrow \frac{1}{3!}[F(y_{4})]^{3}$$

$$\vdots$$

$$??? w.r.t. y_{r-1} \longrightarrow \frac{1}{(r-1)!}[F(y_{r})]^{r-1}.$$

Distribution of $X_{(r)}$ contd.

Further, integrating

$$f(y_n) \ w.r.t. \ y_n \longrightarrow [1 - F(y_{n-1})]$$

$$[1 - F(y_{n-1})]f(y_{n-1}) \ w.r.t. \ y_{n-1} \longrightarrow \frac{1}{2}[1 - F(y_{n-2})]^2$$

$$\frac{1}{2}[1 - F(y_{n-1})]^2 f(y_{n-2}) \ w.r.t. \ y_{n-2} \longrightarrow \frac{1}{3!}[1 - F(y_{n-3})]^3$$

$$\vdots$$

Thus combining the above terms, we get:

$$f_{Y_r}(y_r) = \frac{n!}{(r-1)!(n-r)!} [F(y_r)]^{r-1} [1 - F(y_r)]^{n-r} f(y_r),$$

$$-\infty < y_r < \infty$$
.

??? w.r.t. $y_{r+1} \longrightarrow \frac{1}{(n-r)!} [1-F(y_r)]^{n-r}$.

Remark

► Note that

$$f_{Y_r}(y_r) = \frac{n!}{(r-1)!(n-r)!} [F(y_r)]^{r-1} [1 - F(y_r)]^{n-r} f(y_r)$$

$$= \frac{1}{Be(r, n-r+1)} [F(y_r)]^{r-1} [1 - F(y_r)]^{n-r} f(y_r), -\infty < y_r < \infty.$$

▶ Special case: $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} U[0,1]$.

$$f_{Y_r}(y_r) = \frac{1}{Be(r, n-r+1)} y_r^{r-1} (1-y_r)^{n-r}, \ 0 < y_r < 1.$$

Thus, $Y_r \sim Be(r, n-r+1)$.

Joint distribution of $X_{(r)}$ and $X_{(s)}$

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} F$. Then, the distribution of

$$(Y_r, Y_s) = (X_{(r)}, X_{(s)}), \quad r < s,$$

is

$$f_{Y_r,Y_s}(y_r,y_s) = \frac{n!}{(r-1)!(n-s)!(s-r-1)!} [F(y_r)]^{r-1} [1-F(y_s)]^{n-r} [F(y_s)-F(y_r)]^{s-r-1} f(y_r) f(y_s),$$

where $-\infty < y_r < y_s < \infty$.

Distribution of sample range $R = X_{(n)} - X_{(1)}$

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} F$. Then, the desired pdf of $R = X_{(n)} - X_{(1)}$ is

$$f_R(r) = n(n-1) \int_{r}^{\infty} [F(s) - F(s-r)]^{n-2} f(s-r) f(s) ds.$$

Proof: With r = 1 and s = n, the joint pdf of $Y_1 = X_{(1)}$ and $Y_n = X_{(n)}$ is

$$f_{Y_1,Y_n}(y_1,y_n) = n(n-1)[F(y_n) - F(y_1)]^{n-2}f(y_1)f(y_n), \ -\infty < y_1 < y_n < \infty$$

Distribution of sample range R contd.

Now, define the transformation $R = Y_n - Y_1$ and $S = Y_n$. The inverse transformation is $Y_1 = S - R$ and $Y_n = S$, and the corresponding Jacobian is |J| = 1.

Thus, the joint pdf of R and S is

$$f_{R,S}(r,s) = n(n-1)[F(s) - F(s-r)]^{n-2}f(s-r)f(s), \ 0 < r < s$$

The desired pdf of R is

$$f_R(r) = n(n-1) \int_{r}^{\infty} [F(s) - F(s-r)]^{n-2} f(s-r) f(s) ds$$

Distribution of sample range *R* contd.

▶ Special case: $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} U[0,1]$.

The pdf of R is

$$f_R(r) = n(n-1) \int_{r}^{1} r^{n-2} ds = n(n-1)r^{n-2}(1-r), \ 0 < r < 1$$

Thus, $R \sim Be(n-1,2)$.