

US012392833B2

(12) United States Patent

Kolamkar et al.

(10) Patent No.: US 12,392,833 B2

(45) **Date of Patent:** Aug. 19, 2025

(54) ELECTRONIC BATTERY TESTER

(71) Applicant: Midtronics, Inc., Willowbrook, IL (US)

(72) Inventors: Maithili Dinanath Kolamkar, Glen

Ellyn, IL (US); Lance Losinski, Crown Point, IN (US); Paul George Lacroix, IV, Chicago, IL (US); Anh Hoang Duy

Pham, Chicago, IL (US)

(73) Assignee: Midtronics, Inc., Willowbrook, IL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 162 days.

(21) Appl. No.: 18/314,266

(22) Filed: May 9, 2023

(65) Prior Publication Data

US 2023/0358818 A1

Nov. 9, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/339,618, filed on May 9, 2022.
- (51) Int. Cl. G01R 31/3835 (2019.01)

(52) U.S. Cl.

CPC *G01R 31/3835* (2019.01)

(56) References Cited

U.S. PATENT DOCUMENTS

85,553	A	1/1869	Adams 33/472
2,000,665	A	5/1935	Neal 439/440

2,254,846	A	9/1941	Heyer	324/437
2,417,940	A	3/1947	Lehman	200/61.25
2,437,772	A	3/1948	Wal1	324/523
		(Cont	tinued)	

FOREIGN PATENT DOCUMENTS

CN 2470964 Y 1/2002 CN 201063352 Y 5/2008 (Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 18/616,458, filed Mar. 26, 2024. (Continued)

Primary Examiner — Minh Q Phan (74) Attorney, Agent, or Firm — Westman, Champlin & Koehler, P.A.

(57) ABSTRACT

An electronic battery tester for testing a storage battery in an automotive vehicle includes first test circuitry configured to couple to the storage battery, apply a forcing function to the storage battery, measure a response of the storage battery to the applied forcing function and provide a battery test output related to a condition of the battery based upon the response of the battery to the applied forcing function. Starter voltage measurement circuitry electrically couples to a starter motor of the automotive vehicle and collects starter voltage profile information comprising a plurality of starter voltage measurements obtained at different times while operating the starter motor. Second test circuitry receives the battery test output from the first test circuitry and the starter voltage profile information and provides an enhanced battery test output related to the condition of the battery based upon the battery test output and the starter voltage profile informa-

22 Claims, 8 Drawing Sheets

(56)	Referen	ces Cited	4,316,185 A 4,322,685 A		Watrous et al 340/636.11 Frailing et al 324/429
U.S	S. PATENT	DOCUMENTS	4,351,405 A	9/1982	Fields et al 180/65.2
	_,,,,		4,352,067 A 4,360,780 A	9/1982 11/1982	Ottone
2,514,745 A 2,689,939 A		Dalzell 324/115 Godshalk	4,361,809 A		Bil et al
2,727,221 A	12/1955		4,363,407 A	12/1982	Buckler et al 209/3.3
3,025,455 A	3/1962	Jonsson 323/369	4,369,407 A	1/1983	Korbell
3,178,686 A	4/1965	Mills	4,379,989 A 4,379,990 A	4/1983 4/1983	Kurz et al
3,215,194 A 3,223,969 A	11/1965	Sununu et al	4,385,269 A	5/1983	Aspinwall et al 320/129
3,267,452 A	8/1966	Wolf	4,390,828 A	6/1983	Converse et al
3,356,936 A	12/1967	Smith	4,392,101 A 4,396,880 A	7/1983 8/1983	Saar et al
3,562,634 A 3,593,099 A	2/1971 7/1971	Latner	4,408,157 A	10/1983	
3,607,673 A	9/1971	Seyl	4,412,169 A	10/1983	Dell'Orto 320/123
3,652,341 A		Halsall et al 29/623.2	4,423,378 A 4,423,379 A	12/1983 12/1983	Marino et al
3,676,770 A 3,699,433 A	7/1972 10/1972	Sharaf et al	4,424,491 A	1/1984	Bobbett et al 324/433
3,704,439 A	11/1972		4,425,791 A	1/1984	Kling 73/116.02
3,729,989 A	5/1973		4,441,359 A	4/1984	Ezoe
3,745,441 A	7/1973 7/1973	Soffer	4,459,548 A 4,484,140 A	11/1984	Lentz et al 324/472 Dieu
3,750,011 A 3,753,094 A	8/1973	Kreps	4,502,000 A	2/1985	Mashikian
3,776,177 A	12/1973	Bryant et al 116/311	4,514,694 A	4/1985	Finger
3,796,124 A	3/1974	Crosa 411/521	4,520,353 A 4,521,498 A	5/1985 6/1985	McAuliffe
3,808,401 A 3,808,522 A	4/1974 4/1974	Wright et al. Sharaf 324/430	4,544,312 A	10/1985	Stencel
3,808,573 A	4/1974	Cappell	4,560,230 A	12/1985	Inglis
3,811,089 A	5/1974	Strezelewicz 324/170	4,564,798 A 4,620,767 A	1/1986	Young
3,816,805 A 3,850,490 A	6/1974 11/1974	Terry 320/123 Zehr 439/822	4,626,765 A	12/1986	Tanaka
3,857,082 A	12/1974	Van Opijnen 320/143	4,633,418 A		Bishop 702/63
3,873,911 A	3/1975	Champlin 324/430	4,637,359 A	1/1987 2/1987	Cook
3,876,931 A 3,879,654 A	4/1975 4/1975	Godshalk	4,643,511 A 4,659,977 A	4/1987	Gawlik
3,886,426 A	5/1975	Daggett	4,663,580 A		Wortman 320/153
3,886,443 A	5/1975	Miyakawa et al 324/426	4,665,370 A	5/1987	Holland
3,889,248 A	6/1975	Ritter 340/636.11	4,667,143 A 4,667,279 A	5/1987 5/1987	Cooper et al
3,906,329 A 3,909,708 A	9/1975 9/1975	Bader	4,678,998 A	7/1987	Muramatsu
3,920,284 A	11/1975		4,679,000 A		Clark
3,936,744 A	2/1976	Perlmutter 324/772	4,680,528 A 4,686,442 A	7/1987 8/1987	Mikami et al
3,939,400 A 3,946,299 A	2/1976 3/1976	Steele	4,697,134 A	9/1987	Burkum et al 320/134
3,947,757 A	3/1976	Grube et al 324/416	4,707,795 A	11/1987	Alber et al 702/63
3,969,667 A	7/1976	McWilliams 324/427	4,709,202 A	11/1987 12/1987	Koenck et al
3,979,664 A 3,984,762 A	9/1976 10/1976	Harris	4,710,861 A 4,719,428 A		Liebermann
3,984,768 A	10/1976	Staples	4,723,656 A		Kiernan et al 206/705
3,989,544 A	11/1976	Santo 429/65	4,743,855 A	5/1988 5/1988	Randin et al
3,997,830 A 4.008.619 A	12/1976	Newell et al	4,745,349 A 4,773,011 A		Palanisamy et al 320/125 VanHoose
4,023,882 A		Pettersson	4,781,629 A		Mize 439/822
4,024,953 A		Nailor, III 206/344	D299,909 S		Casey
4,045,718 A	8/1977 9/1977		4,816,768 A 4,820,966 A	3/1989 4/1989	Champlin
4,047,091 A 4,053,824 A	10/1977	Hutchines et al	4,825,170 A	4/1989	Champlin 324/436
4,056,764 A	11/1977	Endo et al 320/101	4,826,457 A	5/1989	Varatta
4,057,313 A	11/1977	Polizzano 439/219	4,847,547 A 4,849,700 A	7/1989 7/1989	Eng, Jr. et al
4,070,624 A 4,086,531 A	1/1978 4/1978	Taylor	4,874,679 A	10/1989	Miyagawa 429/91
4,106,025 A	8/1978	Katz	4,876,495 A	10/1989	Palanisamy et al 320/106
4,112,351 A	9/1978	Back et al	4,881,038 A 4,885,523 A	11/1989 12/1989	Champlin
4,114,083 A 4,126,874 A	9/1978 11/1978	Benham et al	4,888,716 A		Ueno
4,160,916 A	7/1979	Papasideris	4,901,007 A	2/1990	Sworm 324/110
4,176,315 A	11/1979	Sunnarborg 324/133	4,907,176 A 4,912,416 A	3/1990	Bahnick et al 364/551.01 Champlin
4,178,546 A 4,193,025 A	12/1979 3/1980	Hulls et al	4,913,116 A	3/1990 4/1990	
4,207,610 A	6/1980	Gordon 701/33.9	4,926,330 A	5/1990	Abe et al 701/33
4,207,611 A	6/1980	Gordon 701/33	4,929,931 A	5/1990	McCuen
4,217,645 A	8/1980	Barry et al	4,931,738 A	6/1990	MacIntyre et al
4,218,745 A 4,280,457 A	8/1980 7/1981	Perkins	4,932,905 A 4,933,845 A	6/1990 6/1990	Hayes 710/104
4,295,468 A	10/1981	Bartelt	4,934,957 A	6/1990	Bellusci
4,297,639 A	10/1981	Branham 324/429	4,937,528 A	6/1990	Palanisamy 324/430
4,307,342 A		Peterson	4,947,124 A		Hauser
4,315,204 A	2/1982	Sievers et al 322/28	4,949,046 A	8/1990	Seyfang 324/427

(56)			Referen	ces Cited	5,394,093			Cervas	
		211	PATENT	DOCUMENTS	5,402,007 5,410,754		3/1995 4/1995	Center et al Klotzbach et al	
		0.5.	IAILINI	DOCUMENTS	5,412,308			Brown	
4.950	6,597	Α	9/1990	Heavey et al 320/129	£ 412 222		5/1995	Kato et al	324/429
	5,738			Bauer et al 320/136	5,425,041		6/1995	Seko et al	
	8,941		11/1990	Rogers 324/428			6/1995	Salley et al	
,	8,942		11/1990	Palanisamy 324/430			6/1995 7/1995	Jefferies et al Keller	
	9,834			Johnson	5 422 025		7/1995		
	3,086 4,979		4/1991	Hatrock	E 422 426		7/1995	Yoshida	
	0.916			Bokitch	5 422 420		7/1995	Armstrong, II et al.	
	2,825			Kuznicki 340/636.15	5,434,495		7/1995	Toko	
5,034	4,893	A		Fisher 701/99	E 440 074		7/1995	Eagan	
	7,335			Campbell 439/217			8/1995 8/1995	Tamai Eagan	
	7,778 7,722			Stark et al	£ 440,00¢		9/1995	Matsumoto et al	
	1,565			Nabha et al	£ 440.007		9/1995	Gilmore et al	
	3,076			Scott	5,451,881		9/1995	Finger	
5,08	7,881	A	2/1992	Peacock 324/378	5,453,027		9/1995	Buell et al	
5,09:	5,223	A		Thomas			10/1995 10/1995	Jonsson Berra	
	8,320			Kimber	£ 460 420			Keith	
	9,213 6,675			Williams	5 460 042		11/1995	Cherng et al	
	0,658			Bohmer 324/435	5,485,090		1/1996	Stephens	
	0,269			Champlin 324/433	5,486,123			Miyazaki	
	4,218			Bosscha 320/139				Jamieson	
	4,248			Alexandres et al 324/428				Chen et al Koenck	
	0,338 9,272			Wang	5 5 10 292			De La Rosa	
	0,881			Schramm et al 322/7	5 530 140		6/1996	Rogers	320/137
	4,653		11/1992	Reem	5,537,967		7/1996	Tashiro et al	
	7,529			Verge	5 5 4 6 2 1 7			Dunstan	
	8,208			Schultz et al	5 5 40 272			Nicol et al	
	0,124 9,335			Blair et al	E E E O 40E			Falk	
	7,382			Kondo 307/10.1		A	9/1996		
	4,799		3/1993	Tomantschger 320/103	5,561,380			Sway-Tin et al	
	2,617		4/1993		5,562,501 5,563,406			Kinoshita et al McClure	
	4,611			Nor et al				Champlin	
	4,370 4,385			Harm et al	5 572 611			Koch et al.	
	3,747		6/1993	Tschulena 257/713	5,574,355			McShane et al	
5,24	1,275	A	8/1993	Fang 324/430				Crouch, Jr. et al	
	4,952		10/1993	Salley et al			12/1996	Klang Audett et al	
	6,880 8,759			Newland	5 505 730			Champlin	
	1,919		1/1994	Palanisamy	£ £90, 202		12/1996		
	1,920			Wurst 324/430	5,589,757			Klang	
	5,078		3/1994					Klingbiel	
	6,823		3/1994	Dietrich	5 500 200		1/1997	Ichikawa	
	8,797 0,874			Redl	5,500,201			Suyama	
	2,902			Groehl	5 509 009	A	1/1997	Champlin	324/430
	9,052			Kim 174/350	5,602,462			Stich et al	
	3,152		5/1994	Wozniak et al 320/118			3/1997	Hull et al	
	5,287		5/1994 6/1994	Sol	5,621,298		4/1997	Harvey	
	1,231 1,626			Palladino 702/63	5 (21 526		5/1997	Tseng	
	1,627			Reher 702/63	5,631,831		5/1997	Bird et al	
5,32	3,337	A		Wilson et al 702/73	5,633,985		5/1997	Severson et al	
	5,041		6/1994	Briggs			6/1997 6/1997	Kellett et al Brotto	
	1,268 2,927		7/1994 7/1994	Patino et al	5 (44 212		7/1997	Takahashi	
	6,993		8/1994	Thomas et al 324/158.1	E 6E0 027	A	7/1997	Bounaga	
	8,515		8/1994	Dalla Betta et al 422/95	5,652,501		7/1997	McClure et al	
	9,018			Brokaw 320/147			8/1997 8/1997	Kunibe et alShiga et al	
	3,380 5 384			Champlin	5 (5(020		8/1997		
	5,384 7,163			Yoshimura	5 ((1 2(0		8/1997	Deol et al	
	9,535			Gupta 320/106		A	9/1997	Bourbeau	320/118
5,352	2,968	A	10/1994	Reni et al 320/136	5,675,234		10/1997	Greene	
	7,519			Martin et al				Faulk	
	5,160 5 453			Leppo et al			11/1997	Barrett Kutz	
	5,453 9,364		11/1994 11/1994	Startup et al			11/1997	Phuoc et al	
	1,096			Hirzel			12/1997	Kanazawa	
	4,540		1/1995	Dessel 324/539	5,701,089		12/1997	Perkins	324/772
5,38	7,871	A	2/1995	Tsai 324/429	5,705,929	A	1/1998	Caravello et al	324/430

(56)			Referen	ces Cited	6,005,759 A 6,008,652 A		Hart et al
		U.S.	PATENT	DOCUMENTS	6,009,369 A		Boisvert et al 701/99
					6,009,742 A	1/2000	
	5,707,015			Guthrie	6,016,047 A 6,031,354 A		Notten et al
	5,710,503 5,711,648			Hammerslag	6,031,368 A		Klippel et al 324/133
	5,712,795			Layman et al 700/297	6,037,745 A		Koike et al
	5,717,336			Basell et al	6,037,749 A 6,037,751 A		Parsonage
	5,717,937 5,721,688			Fritz	6,037,777 A	3/2000	
	5,732,074		3/1998	Spaur et al 370/313	6,037,778 A	3/2000	
	5,739,667			Matsuda et al	6,046,514 A 6,051,976 A		Rouillard et al
	5,744,962 5,745,044			Alber et al	6,055,468 A		Kaman et al 701/29
	5,747,189			Perkins	6,061,638 A	5/2000	Joyce 702/63
	5,747,909			Syverson et al 310/156.56	6,064,372 A 6,072,299 A	5/2000 6/2000	Kahkoska
	5,747,967 5,754,417			Muljadi et al	6,072,300 A	6/2000	
	5,757,192			McShane et al 324/427	6,075,339 A	6/2000	Reipur et al 320/110
	5,760,587			Harvey 324/434	6,076,018 A		Sturman et al. Bertness et al 320/134
	5,772,468 5,773,962			Kowalski et al	6,081,098 A 6,081,109 A	6/2000	
	5,773,902			Becker	6,081,154 A	6/2000	Ezell et al 327/540
	5,778,326	A		Moroto et al 701/22	6,087,815 A		Pfeifer et al
	5,780,974			Pabla et al	6,091,238 A 6,091,245 A		McDermott
	5,780,980 5,789,899			Naito	6,094,030 A	7/2000	Gimthorpe et al.
	5,793,359		8/1998	Ushikubo 345/169	6,094,033 A		Ding et al
	5,796,239			van Phuoc et al 320/107	6,097,193 A 6,100,670 A		Bramwell
	5,808,469 5,811,979			Kopera	6,100,815 A		Pailthorp 324/754.07
	5,818,201			Stockstad et al 320/119	6,104,167 A		Bertness et al 320/132
	5,818,234			McKinnon	6,113,262 A 6,114,834 A		Purola et al
	5,820,407 5,821,756			Morse et al	6,118,252 A		Richter
	5,821,757			Alvarez et al 324/434	6,121,880 A		Scott et al 340/572.5
	5,825,174			Parker	6,130,519 A 6,136,914 A		Whiting et al. Hergenrother et al 524/495
	5,826,467 5,831,435		10/1998 11/1998	Troy 324/426	6,137,261 A		Kurle et al.
	5,832,396			Moroto et al 701/22	6,137,269 A		Champlin 320/150
	5,850,113			Weimer et al 307/125	6,140,797 A 6,141,608 A		Dunn
	5,862,515 5,865,638		1/1999 2/1999	Kobayashi et al	6,144,185 A		Dougherty et al 320/132
	5,869,951		2/1999	Takahashi	6,147,598 A	11/2000	Murphy et al 340/426.19
	5,870,018		2/1999	Person	6,149,653 A 6,150,793 A		Deslauriers
	5,871,858 5,872,443		2/1999 2/1999	Thomsen et al	6,158,000 A		Collins
	5,872,453		2/1999	Shimoyama et al 324/431	6,161,640 A		Yamaguchi 180/65.8
	5,883,306		3/1999	Hwang 73/146.8	6,163,156 A 6,164,063 A		Bertness
	5,884,202 5,894,222		3/1999 4/1999	Arjomand 701/31.4 Hibino	6,167,349 A		Alvarez 702/63
	5,895,440			Proctor et al 702/63	6,172,483 B1		Champlin 320/134
	5,903,154			Zhang et al 324/437	6,172,505 B1 6,177,737 B1		Bertness
	5,903,716 5,912,534		5/1999 6/1999	Kimber et al	6,177,878 B1		Tamura
	5,914,605		6/1999	Bertness 324/430	6,181,545 B1		Amatucci et al 361/502
	5,916,287		6/1999	Arjomand et al 701/33.2	6,184,655 B1 6,184,656 B1		Malackowski
	5,927,938 5,929,609		7/1999 7/1999	Hammerslag	6,191,557 B1		Gray et al 320/132
	5,935,180		8/1999	Fieramosca et al 701/29.6	6,202,739 B1	3/2001	Pal et al 165/104.33
	5,939,855	A	8/1999	Proctor et al	6,211,651 B1 6,211,653 B1	4/2001 4/2001	Nemoto
	5,939,861 5,945,829		8/1999 8/1999	Joko et al	6,215,275 B1		Bean
	5,946,605		8/1999	Takahisa et al	6,218,805 B1		Melcher 320/105
	5,950,144		9/1999	Hall et al 702/108	6,218,936 B1 6,222,342 B1		Imao
	5,951,229 5,953,322		9/1999 9/1999	Hammerslag	6,222,369 B1		Champlin
	5,955,951		9/1999	Wischerop et al 340/572.8	D442,503 S	5/2001	Lundbeck et al D10/77
	5,961,561	A	10/1999	Wakefield, II 701/29	6,225,808 B1		Varghese et al
	5,961,604 5,963,012		10/1999 10/1999	Anderson et al	6,225,898 B1 6,236,186 B1		Kamiya et al
	5,969,625		10/1999	Russo 340/636.19	6,236,332 B1		Conkright et al 340/3.1
	5,973,598	A	10/1999	Beigel 340/572.1	6,236,949 B1	5/2001	Hart 702/64
	5,978,805			Carson	6,238,253 B1		Qualls
	5,982,138 5,990,664		11/1999 11/1999	Krieger	6,242,887 B1 6,242,921 B1	6/2001 6/2001	Burke
	6,002,238		12/1999	Champlin	6,249,124 B1		Bertness
	6,005,489	A	12/1999	Siegle et al 340/825.69	6,250,973 B1	6/2001	Lowery et al 439/763

(56)			Referen	ces Cited		6,533,316			Breed et al	
		TTO	DATENT	DOCLD (ENTER		6,534,992			Meissner et al	
		U.S.	. PATENT	DOCUMENTS		6,534,993			Bertness	
		ъ.	6/2001		250/10	6,536,536 6,544,078			Gass et al Palmisano et al	
	6,252,942			Zoiss		6,545,599			Derbyshire et al	
	6,254,438			Gaunt 4		6,556,019			Bertness	
	6,255,826			Ohsawa		6,566,883			Vonderhaar et al	
	6,259,170			Limoge et al 30		6,570,385			Roberts et al	
	6,259,254 6,262,563			Klang 3 Champlin 3		6,573,685			Nakanishi et al.	0
	6,262,692			Babb 3		6,577,107			Kechmire	320/139
	6,263,268			Nathanson		6,586,941	B2		Bertness et al	
	6,263,322			Kirkevold et al 7		6,597,150	В1	7/2003	Bertness et al	320/104
	6,271,643			Becker et al 3		6,599,243	B2		Woltermann et al	
	6,271,748			Derbyshire et al 3		6,600,815			Walding	
	6,272,387	В1	8/2001	Yoon	700/83	6,611,740			Lowrey et al	
	6,275,008	В1	8/2001	Arai et al 3	20/132	6,614,349			Proctor et al	
	6,285,191			Gollomp et al 3		6,618,644			Bean	
	6,294,896			Champlin 3		6,621,272 6,623,314			Champlin Cox et al	
	6,294,897			Champlin 3		6,624,635			Lui	
	6,304,087			Bertness		6,628,011			Droppo et al	
	6,307,349			Koenck et al 3		6,629,054			Makhija et al	
	6,310,481 6,313,607			Bertness 3 Champlin 3		6,633,165			Bertness	
	6,313,608			Varghese et al		6,635,974			Karuppana et al	
	6,316,914			Bertness 3		6,636,790	B1		Lightner et al	
	6,320,385			Ng et al		6,667,624	В1	12/2003	Raichle et al	324/522
	6.323.650			Bertness et al 3		6,679,212	B2	1/2004	Kelling	123/179.28
	6,324,042			Andrews 30		6,686,542			Zhang	
	6,329,793	B1		Bertness et al 3		6,696,819			Bertness	
	6,331,762	В1	12/2001	Bertness 3	20/134	6,707,303			Bertness et al	
	6,332,113	В1	12/2001	Bertness	702/63	6,732,031			Lightner et al	
	6,346,795			Haraguchi et al 3		6,736,941			Oku et al	
	6,347,958			Tsai 4		6,737,831 6,738,697			Champlin Breed	
	6,351,102			Troy 3		6,740,990			Tozuka et al	
	6,356,042			Kahlon et al 3		6,744,149			Karuppana et al	
	6,356,083			Ying 3		6,745,153			White et al	
	6,359,441 6,359,442			Bertness		6,759,849			Bertness	
	6,363,303			Bertness		6,771,073			Henningson et al	
	RE37,677			Irie		6,777,945			Roberts et al	
	6,377,031			Karuppana et al 3		6,781,344	В1		Hedegor et al	
	6,384,608			Namaky 3		6,781,382	B2		Johnson	
	6,388,448			Cervas 3		6,784,635			Larson	
	6,389,337			Kolls 70		6,784,637			Raichle et al	
	6,392,414	B2	5/2002	Bertness 3	24/429	6,788,025			Bertness et al	
	6,396,278	B1	5/2002	Makhija 3	24/402	6,795,782			Bertness et al	
	6,407,554			Godau et al 3		6,796,841			Cheng et al	
	6,411,098			Laletin 3		6,805,090 6,806,716			Bertness et al	
	6,417,669			Champlin 3		6,825,669			Raichle et al	
	6,420,852			Sato		6,832,141			Skeen et al	
	6,424,157			Gollomp et al		6,842,707			Raichle et al	
	6,424,158 6,426,606			Purkey	124/433	6,845,279			Gilmore et al	
	6,433,512			Birkler et al 3	20/132	6,850,037			Bertness	
	6,437,957			Karuppana et al		6,856,162	В1	2/2005	Greatorex et al	324/764.01
	6,441,585			Bertness 3		6,856,972	В1	2/2005	Yun et al	705/36 R
	6,445,158			Bertness et al 3		6,871,151			Bertness	
	6,448,778			Rankin 3		6,885,195			Bertness	
	6,449,726	В1	9/2002	Smith 7	13/340	6,888,468			Bertness	
	6,456,036	B1	9/2002	Thandiwe 3	20/106	6,891,378			Bertness et al	
	6,456,045			Troy et al 3		6,895,809			Raichle	
	6,465,908			Karuppana et al		6,904,796 6,906,522			Pacsai et al Bertness et al	
	6,466,025			Klang 3		6,906,523			Bertness et al	
	6,466,026			Champlin 3		6,906,624			McClelland et al	
	6,469,511			Vonderhaar et al 3		6,909,287			Bertness	
	6,473,659 6,477,478			Shah et al		6,909,356		6/2005	Brown et al	340/3.2
	6,495,990			Champlin 3		6,911,825		6/2005	Namaky	324/426
	6,497,209			Karuppana et al 12.		6,913,483			Restaino et al	
	6,500,025			Moenkhaus et al 4		6,914,413			Bertness et al	
	6,501,243			Kaneko 3		6,919,725			Bertness et al	
	6,505,507			Imao 73		6,930,485		8/2005	Bertness et al	324/426
	6,507,196	B2	1/2003	Thomsen et al 3	24/436	6,933,727	B2	8/2005	Bertness et al	324/426
	6,526,361	В1	2/2003			6,941,234	B2	9/2005	Bertness et al	702/63
	6,529,723		3/2003	Bentley 4	55/405	6,957,133	В1	10/2005	Hunt et al	701/32.4
	6,531,847		3/2003	Tsukamoto et al.		6,961,445		11/2005	Jensen et al.	
	6,531,848		3/2003	Chitsazan et al 3		6,967,484			Bertness	
	6,532,425	В1	3/2003	Boost et al	702/63	6,972,662	В1	12/2005	Ohkawa et al	340/10.1

(56)			Referen	ces Cited	7,642,786			Philbrook	
		110	DATENIT	DOCUMENTS	7,642,787 7,656,162			Bertness et al Vonderhaar et al	
		U.S.	PATENT	DOCUMENTS	7,657,386			Thibedeau et al	
6,983	3.212	B2	1/2006	Burns 702/6	7,667,437	B2		Johnson et al	
6,988				Namaky 320/10	7,679,325			Seo	
6,993				Pillar et al 701/29				Ogilvie et al	
6,998	/			Bertness et al	7 (00 572			Cox et al	
7,003				Bertness et al 702/6	7 (00 750			Raichle et al	
7,003 7,012			3/2006	Bertness	7 609 170			Leung et al.	
7,012			3/2006	VonderHaar	7.705.602			Bertness	
7,029	/			Orange et al	7,706,991			Bertness et al	. 702/63
7,034			4/2006	Bertness et al 324/42	26 7,706,992			Ricci et al.	224/426
7,039				Bertness et al 702/6				Bertness Klang	
7,042				Paulsen 340/43	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		6/2010	Yano et al.	
7,049 7,058				Kung	7,720,507			Bertness	
7,069			7/2006	Tobias 165/104.3	7 730 000		6/2010	Mashburn	702/151
7,081			7/2006	Klang et al 324/42	26 7,743,788			Schmitt	
7,089			8/2006	Thibedeau et al 702/6				Namaky	
7,098				Patino			8/2010 8/2010	Bertness	
7,102 7,106			9/2006 9/2006	White	7 774 151			Bertness	
7,116				Klang		B2	8/2010	Sampson et al 34	40/426.1
7,119			10/2006	Bertness et al 340/572	.1 7,791,348			Brown et al	324/426
7,120	,488	B2	10/2006	Nova et al 600				Schaefer	2.40/455
7,126			10/2006	Bertness et al				Bertness et al	
7,129			10/2006	Kalley	7,002,002			Jin et al	
7,154 7,170			1/2006	Bertness	7,002,000			Delmonico et al 34	
7,173			2/2007	Katsuyama 174/3	7,914,350			Bozich	
7,177			2/2007	Carcido et al 709/22	7,924,015			Bertness	324/427
7,182				Cutler et al 173	7.040.053			Vonderhaar Brown et al	224/426
7,184			2/2007	Squires 340/426.1	7,050,476			Smith et al.	324/420
7,184 7,198			2/2007 4/2007	Stefan	7 077 014			Bertness	
7,190			4/2007	Tischer et al 455/56	DC42.750		8/2011	Bertness	
7,202			4/2007	Reynolds et al 320/16	56 7,990,155			Henningson	
7,208			4/2007	Klang 320/13				Bertness	
7,209			4/2007 4/2007	Brott et al	9.047.969			Korcynski	
7,209 7,212			5/2007	Trsar et al	0 164 242			Bertness	
7,212			5/2007	Raichle et al 701/11	14 8,198,900			Bertness et al.	
7,219			5/2007	Banke et al 702/5	0 222 060		6/2012 7/2012	Bertness Buckner	220/126
7,233			6/2007 6/2007	Brost et al 320/13 Koran et al 324/42				Raichle et al 23:	
7,235 7,246			7/2007	Bertness et al	0 227 440		8/2012	Bertness	
7,251				Mitsueda 700	/2 8,306,690			Bertness	
7,272				Lesesky et al 702/6	53 8,310,271			Raichle et al 324	4/765.01
7,287				Falls et al 705/2	0.426.610			Bertness et al. Bertness et al.	
7,295				Bertness et al 702/6	0.440.055			Bertness et al.	
7,301	,303			Hulden	9 440 560		5/2013	Roth 22	27/175.1
7,319				Puzio et al	0.402.022			Bertness	
7,363				Bertness et al 702/6	53 D687,727			Kehoe et al.	
7,376			5/2008	Chen 701/31	.6 8,509,212			Sanjeev	
7,398				Bertness 702/12				Bertness Gauthier	324/548
7,408 7,425				Knopf	0.674.654			Bertness	321/310
7,423 7,446				Bertness	0.674.711			Bertness	
7,453			11/2008	Melichar 320/13	8,704,483			Bertness et al.	
7,479			1/2009	Bertness 320/13				Bertness	
7,498			3/2009	Brown et al 320/10			8/2014	Volderhaar et al.	
7,501			3/2009 3/2009	Bertness et al 320/13	8,825,272			Chinnadurai	
7,504 7,505			3/2009	Restaino et al 702/6	0.007.700			Gunreben	439/188
7,538				Raichle et al	72 8,872,516			Bertness	
7,545			6/2009	Klang et al 324/42	26 8,872,517			Philbrook et al.	
7,557			7/2009	Vonderhaar et al 324/43	8,901,888			Beckman	
7,571			8/2009	Raichle	8,958,998 .6 8,963,550			Bertness Bertness et al.	
7,590 7,592			9/2009 9/2009	Shumate				Bertness et al.	
7,595			9/2009	Klang				Fernandes	701/400
7,596			9/2009	Hunt et al.	9,052,366		6/2015	Bertness	
7,598	3,699	B2	10/2009	Restaino et al 320/10				Hyde et al.	
7,598			10/2009	Bertness			10/2015		
7,598			10/2009	Bertness et al			1/2015	Stukenburg	
7,619	,41/	DΖ	11/2009	Klang 324/42	9,229,062	DΖ	1/2010	Stukenberg	

Description	(56)	Referen	nces Cited	2003/0060953 A1 2003/0078743 A1		Chen
2,244,100 B2 1/2016 Coleman et al. 2,003,009,0077 Al. 2,000 Stemess 3,244,50 2,003,011,400 Al. 2,000 Stemess 4,299,00 Al. 2,003,000,000,000 Al. 2,000 Al. 2,00	U.S.	PATENT	DOCUMENTS			
9.2754.97 B. 2 2016 letraes a. 324/503 2003/124/17 Al 7/2003 Bertness et al. 4.2990 9.2754.97 B. 2 2016 letraes and 2003/125/16 Bertness et al. 234/426 9.313.62 Bertness et al. 230/426 9.313.62 Bertness et al. 230/426 9.313.62 Bertness et al. 230/436 9.313.62 Bert						
9.274,157 B2 3/2016 Bertness	9,244,100 B2	1/2016	Coleman et al.			
9.312,575 B2 4/2016 Sukenberg	/ /					
9.433,362 B2 \$2016 Bertness						
9.413,417 B2 82016 Bortness						
9.425,487 B2 82016 Bertness						
9.388, 185 32 32017 Champelin 2003.0169019 Al 9.2003 Osaki 320118 9.045,		8/2016	Bertness			
9,003,899 B1 \$7,001 Gereife 2003,017,111 A1 9,2003 Clark 455,041,11 9,905,278 B2 \$7,018 Ferriess 2003,017,117 A1 9,2003 Malborn et al. 714,42 9,066,676 B2 \$7,018 Sertiess 2003,017,117 A1 9,2003 Malborn et al. 714,42 9,001 A1,014,066 B2 \$7,018 Sertiess 2003,018,126 A1 10,2003 Malborn et al. 714,014,010 A1,014,010 A1,014,014,010 A1,014,014,010 A1,014,014,014,014,014,014,014,014,014,01						
9.933.289 B2 3.2018 Bermess	, ,					
9.966.676 B2 \$2/918 Salo, III et al. 2003.017417 Al. 9.2003 Makhiga 3.2015 6 10,222,397 B2 32/919 Salo et al. 2003.018426 Al. 10.2003 Makhiga 3.2015 6 10,327.488 B2 62/919 Bertness 2003.018426 Al. 10.2003 Makhiga 3.2015 6 10,327.488 B2 62/919 Bertness 2003.018426 Al. 10.2003 Makhiga 3.2015 6 10,327.498 B2 62/919 Bertness 2003.018426 Al. 10.2003 Makhiga 3.2015 6 10,325.484 B2 12/920 Zhou et al. 2003.019712 Al. 10.2003 Suznika 701.220						
10.222.907 10.2 3.2010 Salo et al. 2003/0184264 Al. 10.2003 Bertness et al. 3.24426 10.249.449 182 10.2019 Arnoldus 2003/0187556 Al. 10.2003 Bertness et al. 3.24426 10.473.555 12.172019 Bertness 2003/0187556 Al. 10.2003 Roberts et al. 3.21426 10.473.555 12.172019 Bertness 2003/018756 Al. 10.2003 Roberts et al. 3.21426 10.608.353 12.2002 Lipkin et al. 2003/0187512 Al. 10.2003 Roberts et al. 3.21426 10.608.353 12.2002 Lipkin et al. 2003/0187512 Al. 10.2003 Roberts et al. 3.21426						
10.437.468 12 6.2019 Bertness 2003/0184306 Al 10.2003 Starkis 701.129 10.473.555 12 11.2019 Bertness 2003/0194672 Al 10.2003 Starkis 701.129 10.473.555 12 10.2012 Zhou et al. 2003/0197512 Al 10.2003 Miller et al. 34.1196 10.658.353 12 32.2020 Lipkin et al. 2003/0197512 Al 10.2003 Miller et al. 34.1196						
10.473.55 82 12.12019 Bertness 2003.019475 A						
10,473,555 B2 11/2019 Bertness 2003/0194072 A1 10/2003 Roberts et al. 431/196 10,658,353 B2 3/2020 Lipkin et al. 2003/021/2311 A1 11/2003 Nova et al. 600/300 10,843,574 B2 11/2020 Palmismo et al. 2003/021/2311 A1 11/2003 Nova et al. 600/300 11/3025 Bertness 2003/022/241 A1 12/2003 Nova et al. 42/9/23 11/354,470 B2 7/2021 Bertness 2003/02/24/241 A1 12/2003 Nova et al. 42/9/23 11/324,470 B2 7/2022 Bertness 2004/09/2894 A1 12/2004 Raichie et al. 32/9/27 11/345,470 B2 11/2022 Salo, III et al. 2004/09/2899 A1 12/2004 Raichie et al. 32/9/17 32/9/27 11/345,470 B2 11/2023 Salo, III et al. 2004/09/2899 A1 12/2004 Raichie et al. 32/9/17 32/9/27 11/345,470 B2 12/2023 Sampson et al. 2004/09/2891 A1 12/2004 Raichie et al. 32/9/17 32/9/27 11/345,470 B2 12/2023 Sampson et al. 2004/09/2891 A1 12/2004 Raichie et al. 32/9/17 32/9/27 11/345,593 B2 5/2023 Bertness 2004/09/2824 A1 12/2004 Raichie et al. 32/9/27 11/345,593 B1 9/2023 Sertness 2004/09/2824 A1 12/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/2824 A1 12/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/2825 A1 12/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/2825 A1 12/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/284 A1 2/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/2844 A1 2/2004 Raichie et al. 702/63 11/365,993 B1 9/2023 Sertness 2004/09/284 A1 2/2004 Sertness 2/2004/09/284 A1						
10,525,841 B2 1/2020 Zhou et al. 2003/0197512 A1 10/2003 Miller et al. 324/426 10,680,835 B2 3/2020 Lipkin et al. 2003/0214315 A1 11/2003 Nova et al. 600/300 10,843,574 B2 11/2020 Palmisano et al. 2003/0214395 A1 11/2003 Flowerday et al. 340/445 11/2045 11/2025 Bertness 2003/0236656 A1 12/2003 Takada et al. 429/52 11/254,778 B2 10/2022 Salo, III et al. 2004/000893 A1 12/2004 Raichie et al. 225/462.01 14/465/30 B2 11/2022 Salo, III et al. 2004/000893 A1 12/2004 Raichie et al. 235/462.01 11/454,839 B2 11/2022 Salo, III et al. 2004/000893 A1 12/2004 Raichie et al. 324/426 11/454,839 B2 11/2022 Salo, III et al. 2004/000913 A1 12/2004 Raichie et al. 324/426 11/465,839 B2 12/2023 Sampson et al. 2004/000915 A1 12/2004 Raichie et al. 324/426 11/465,025 B2 22/2023 Bertness 2004/0002825 A1 12/2004 Raichie et al. 324/522 11/466,025 B2 22/2023 Bertness 2004/0002825 A1 12/2004 Raichie et al. 702/68 11/465,025 B2 22/2023 Bertness 2004/0002825 A1 12/2004 Raichie et al. 702/68 11/456,025 B1 22/2023 Awad Alla 2004/0032264 A1 22/2004 Sertness 2004/0004454 A1 32/2004 Sertness 2004/0044454 A1 32/2004 Sertness 2004/004454 A1 32/2004 Sertness 2004/0044454 A1 32/2004 Sertness 2004/				2003/0194672 A1	10/2003	Roberts et al 431/196
10.843.574 B2 11/2020 Palmisano et al. 2003/02/434/1 A1 12/003 Flowerday et al. 340/445 11/2041 11/2041 12/2031 12						
11,054,489 132 7,7202 Bertness 2003/0224244 11 12/2003 Takada et al. 42,975 703/14 11,474,153 18 10/2022 Salo, III et al. 2004/0000599 Al. 12/2004 Raichle et al. 235/462.01 11,486,93 18 11/2022 Salo, III et al. 2004/0000891 Al. 12/2004 Raichle et al. 235/462.01 11,486,93 18 12/2023 Sampson et al. 2004/0000891 Al. 12/2004 Raichle et al. 320/135 11,545,83 12/2023 Sampson et al. 2004/0000915 Al. 12/2004 Raichle et al. 324/426 11,548,404 18 12/2023 Sampson et al. 2004/0000915 Al. 12/2004 Raichle et al. 324/426 11,548,404 18 12/2023 Sampson et al. 2004/0000915 Al. 12/2004 Raichle et al. 324/426 11,548,404 18 12/2023 Sampson et al. 2004/0000915 Al. 12/2004 Raichle et al. 702/63 11,688,779 18 62/2023 Bertness 2004/0002825 Al. 12/2004 Raichle et al. 702/63 11,689,779 18 20223 Bertness 2004/002825 Al. 12/2004 Raichle et al. 702/63 11,745,293 18 92/2023 Bertness 2004/003264 Al. 22/2004 Schoch 324/426 Al. 12/2004 Schoch 324/426 Al. 12/2004 Schoch 324/426 Al. 12/2004 Al. 12						
11,325,479 B2 5,2022 Seltmess 2003/0236656 Al 12,2003 Dougherty 703/14 11,474,153 B2 10,2022 Salo, III et al. 2004/0000593 Al 1,2004 Raichle et al. 325/462.01 11,486,930 B2 11/2022 Salo, III et al. 2004/0000893 Al 1,2004 Raichle et al. 325/462.01 11,518,168 B2 11/2022 Salo, III et al. 2004/0000931 Al 1,2004 Raichle et al. 320/135 11,545,839 B2 1/2023 Bertness 2004/0000931 Al 1,2004 Raichle et al. 324/426 11,548,404 B2 1/2023 Bertness 2004/00003234 Al 1,2004 Raichle et al. 324/426 11,666,972 B2 1/2023 Bertness 2004/0003234 Al 1,2004 Raichle et al. 702/63 11,668,779 B2 S2023 Bertness 2004/0003236 Al 1,2004 Raichle et al. 702/63 11,670,294 B2 R2023 Bertness 2004/0003236 Al 1,2004 Raichle et al. 702/63 11,973,202 B2 4/2024 Bertness 2004/0003445 Al 2,2004 Seltness 2004/003445 Al 2,2004 Seltness 2004/0044454 Al 3,2004 Bauer et al. 703/33 11,973,202 B2 4/2024 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 703/33 12,106,813 B2 1/2025 Bertness 2004/0044454 Al 3,2004 Raichle et al. 2004/004454						
11,474,153 B2 10/2022 Salo, III et al. 2004/0000891 A1 1/2004 Raichle et al. 320/107						
11,486,930 B 11/2022 Salo, III et al. 2004/0000893 A 1 2004 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/000081 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/0008281 2004/008281 2004/008281 2004/0						
11,548,859 1,2023 1,2023 2,2023						
11.548.40 E. 1.0203 Bertiness 2.004/000915 Al 1.2004 Raichle et al. 3.24/522 11.566.972 Bz 1/2023 Bertiness 2.004/0002825 Al 1.2004 Raichle et al. 702/53 11.668.779 Bz 6/2023 Bertiness 2.004/0002836 Al 1.2004 Raichle et al. 702/53 11.668.779 Bz 6/2023 Bertiness 2.004/0002836 Al 1.2004 Raichle et al. 702/53 11.745.593 Bz 2.2023 Bertiness 2.004/0003446 Al 2.2004 Schoch 3.24/426 11.745.593 Bz 2.2023 Bertiness 2.004/0044452 Al 3.2004 Bertiness 3.20.109 Bertiness 2.004/004444 Al 3.2004 Bertiness 3.20.109 Bertiness 2.004/004444 Al 3.2004 Bertiness 3.20.109 Bertiness 2.004/004444 Al 3.2004 Schoch 3.24/426 British	, ,		· · · · · · · · · · · · · · · · · · ·			
11.566.972 B2						
11.650.259 B2						
11,668,779 B2						
11,745,593 B1 9,2023 Awad Alla 2004/0036443 A1 2,2004 Bertness 3,201/109 11,926,224 B2 3,2024 Bertness 2004/0044454 A1 3,2004 Bauer et al. 703/131 11,973,202 B2 4,2024 Bertness 2004/0044454 A1 3,2004 Ross et al. 701/133 12,196,813 B2 1,2025 Bertness 2004/0046564 A1 3,2004 Hamdan et al. 702/115 2001/003169 A1 1,2001 Singh 3,24426 2004/0051533 A1 3,2004 Hamdan et al. 702/115 2001/0035737 A1 11,2001 Nakanishi et al. 3,201/122 2004/0051533 A1 3,2004 Amaky 3,24426 2001/0048126 A1 1,2001 Breed et al. 2,807/281 2,004/0051534 A1 3,2004 Amaky 702/185 2002/00044215 A1 1,2001 Rode et al. 2,807/281 2,004/0054534 A1 3,2004 Amaky 702/185 2002/0004321 A1 1,2002 Bertness et al. 3,24426 2,004/0054688 A1 4,2004 Abrel B,00654 2002/0004594 A1 1,2002 Bertness et al. 3,24426 2,004/006488 A1 4,2004 Abrel B,00654 2002/0007237 A1 1,2002 Bertness et al. 701/29 2,004/00988087 A1 5,2004 Elukushima et al. 701/32 2002/00018927 A1 2,0002 Bertness et al. 3,24/677 2,0004/003493 A1 3,0004 Almerich Almerich 2002/00027346 A1 3,2002 Ered et al. 2,807/381 2,004/4113494 Al 6,2004 Bertness et al. 3,24/426 2002/0003495 A1 3,0002 Ered et al. 3,24/430 2,004/413342 Al 7,2004 Bertness et al. 3,24/426 2002/0004711 A1 4,2002 Bertness 7,02/63 2,004/4113494 Al 6,2004 Bertness 3,24/426 2002/0004793 A1 4,2002 Ered et al. 3,24/430 2,004/413342 Al 7,2004 Bertness 3,24/426 2002/0007346 A1 3,2002 Ered et al. 3,24/430 2,004/413342 Al 7,2004 Bertness 4,004/418 Al 6,2004 Bertness 3,24/426 2002/0007346 A1 3,2002 Ered et al. 3,24/430 2,004/418836 Al 6,2004 Bertness 3,24/426 2002/0007346 A1 3,2002 Ered et al. 3,24/430 2,004/418836 Al 6,2004 Bertness 3,24/426 2002/0007346 A1 3,2002 Ered et al. 3,24/430 2,004/41		6/2023	Bertness			
11,926,224 Bz 3/2024 Bertness 2004/0044452 Al 3/2004 Rose et al 70/33 11,973,202 Bz 4/2024 Bertness 2004/0044545 Al 3/2004 Rose et al 70/133 12,196,813 Bz 1/2025 Bertness 2004/004936 Al 3/2004 Rose et al 70/215 12,237,482 Bz 2/2025 Bertness 2004/004936 Al 3/2004 Hamdan et al 70/2/115 2001/0013738 Al 8/2010 Duprret 439/835 2004/0051532 Al 3/2004 Hamdan et al 70/2/115 2001/0033169 Al 10/2010 Singh 324/426 2004/0051533 Al 3/2004 Smith et al 324/426 2001/0048215 Al 12/2010 Roda 290/40 2004/0054503 Al 3/2004 Kobayashi et al 324/426 2001/0048215 Al 12/2010 Roda 290/40 2004/0054503 Al 3/2004 Kobayashi et al 3/24/25 2001/0048226 Al 12/2010 Roda 290/40 2004/0066488 Al 4/2004 Aberle 8180/651 2002/0003423 Al 1/2002 McLeed 701/29 2004/0088808 Al 5/2004 Aberle 8180/651 2002/000494 Al 1/2002 McLeed 701/29 2004/008808 Al 5/2004 Aberle 8180/651 2002/0016958 Al 1/2002 Bertness et al 70/2/63 2004/0108855 Al 6/2004 Bertness et al 3/24/25 2002/0018927 Al 2/2002 Thomsen et al 280/735 2004/011885 Al 6/2004 Bertness et al 3/24/26 2002/0030495 Al 3/2002 Breed et al 280/735 2004/011849 Al 6/2004 Mikuriya et al 3/24/26 2002/0030405 Al 3/2002 Breed et al 3/24/26 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/00047711 Al 4/2002 Bertness et al 3/24/426 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/0004793 Al 6/2002 Breed et al 3/24/426 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/0004793 Al 6/2002 Breed et al 3/24/426 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/001806 Al 3/2002 Breed et al 3/24/426 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/001806 Al 3/2002 Breed et al 3/24/426 2004/015138 Al 6/2004 Mikuriya et al 3/24/26 2002/001806 Al 3/2002 Breed et al 3/24/4						
11,973,202 B2						
12,196,813 B2						
2001/0012738 Al 8/2001 Duperret 439/835 2004/0051533 Al 3/2004 Smith et al 324/426 2001/0033169 Al 10/2001 Singh 324/426 2004/0051534 Al 3/2004 Smith et al 324/429 2001/0048215 Al 12/2001 Breed et al 280/728.1 2004/0054503 Al 3/2004 Kobayashi et al 324/429 2001/0048226 Al 12/2001 Sada 290/40 2004/0064225 Al 4/2004 Sammus et al 701/29 2002/0003423 Al 1/2002 Bertness et al 324/426 2004/006425 Al 4/2004 Aberle 180/65.1 2002/0006404 Al 1/2002 McLeod 701/29 2004/0088087 Al 4/2004 Aberle 180/65.1 2002/0006404 Al 1/2002 McLeod 701/29 2004/0090208 Al 5/2004 Missima et al 701/32 2002/0010558 Al 1/2002 Bertness et al 324/467 2002/001558 Al 1/2002 Bertness et al 324/467 2002/001346 Al 3/2004 Almerich 2002/001346 Al 3/2004 Almerich 2002/003495 Al 3/2002 Erical 324/467 2004/0108855 Al 6/2004 Almerich 3/2002/003495 Al 3/2002 Erical 3/24/470 2004/0113588 Al 6/2004 Karuppana et al 2002/00040564 Al 4/2002 Erical 3/24/470 2004/0113588 Al 6/2004 Karuppana et al 2002/00040564 Al 4/2002 Erical 3/24/470 2004/0113588 Al 6/2004 Karuppana et al 2002/00040564 Al 4/2002 Erical 3/24/470 2004/0113588 Al 6/2004 Karuppana et al 2002/00040564 Al 4/2002 Erical 3/24/470 2004/0113588 Al 6/2004 Karuppana et al 3/24/426 2002/004/471 Al 4/2002 Erical 3/24/476 2004/0114534 Al 7/2004 Erical 3/24/426 2002/004/471 Al 4/2002 Erical 3/24/426 2004/011571 Al 8/2004 Voshida 3/23/426 2002/0056169 Al 5/2002 Makhija et al 3/24/426 2004/015717 Al 8/2004 Voshida 3/24/426 2002/0056169 Al 5/2002 Ericas 3/24/426 2004/015717 Al 8/2004 Voshida 3/24/426 2002/011878 Al 9/2002 Ericas 3/24/426 2004/0178185 Al 9/2004 Ericas 3/24/426 2002/018785 Al 1/2005 Ericas 3/24/426 2002/0118785 Al 1/2005 Ericas 3/24/426 2002/015791 Al 1/2002 Ericas						
2001/0033169 A1 102001 Singh 324/426 2004/0051533 A1 3/2004 Namaky 324/426 2001/003573 A1 11/2001 Nakanishi et al. 320/122 2004/0051534 A1 3/2004 Kobayashi et al. 324/429 2001/0048215 A1 12/2001 Naka 290/40 2004/0054503 A1 3/2004 Namaky 702/182 2001/0048215 A1 12/2001 Naka 290/40 2004/0054503 A1 3/2004 Namaky 702/182 2002/0004233 A1 12/2002 Naka 290/40 2004/0054503 A1 4/2004 Aberle 18/0651 2002/00040343 A1 12/2002 McLeod 701/29 2004/0058489 A1 4/2004 Aberle 18/0651 2002/0007237 A1 1/2002 McLeod 701/29 2004/0088087 A1 5/2004 Flumerich 2002/001/00588 A1 1/2002 McLeod 701/29 2004/0088087 A1 5/2004 Flumerich 2002/001/00588 A1 1/2002 Entress et al. 702/63 2004/0108875 A1 6/2004 Richiel 324/429 2002/001/135 A1 2/2002 Thomsen et al. 324/677 2004/0118885 A1 6/2004 Richiel 324/426 2002/0034094 A1 3/2002 Breed et al. 324/427 2004/0118885 A1 6/2004 Kobayashie et al. 324/426 2002/0034094 A1 3/2002 Breed et al. 324/677 2004/0108875 A1 6/2004 Richiel 3/24/426 2004/010494 A1 6/2004 Richiel 3/24/426 2002/0034094 A1 3/2002 Troy et al. 324/430 2004/011388 A1 6/2004 Kobayashiel A1 4/2002 Bertness et al. 3/24/25 2004/011885 A1 6/2004 Kobayashiel A1 4/2002 Bertness et al. 3/24/26 2004/011885 A1 6/2004 Kobayashiel A1 4/2002 Bertness et al. 3/24/26 2004/0118855 A1 6/2004 Kobayashiel A1 4/2002 A1 4/2002 A1 4/2004						
2001/0035737 A1 11/2001 Nakanishi et al. 320/122 2004/0051534 A1 3/2004 Namaky 702/182 2001/0048215 A1 12/2001 Breed et al. 280/728.1 2004/0064225 A1 4/2004 Namaky 702/182 2002/0004226 A1 12/2001 Nada 290/40 2004/0065489 A1 4/2004 Ammu et al. 701/29 2002/0004694 A1 1/2002 McLeed 701/29 2004/0068887 A1 4/2004 Aberle 180/65.1 2002/0004694 A1 1/2002 McLeed 701/29 2004/0098887 A1 5/2004 McLeed 701/29 2004/0098887 A1 2/2004 Aberle 180/65.1 2002/0004694 A1 1/2002 Plung et al. 701/33 2004/0090208 A1 5/2004 McLeed 701/29 2004/0098887 A1 2/2004 Almerich 2002/0010558 A1 1/2002 Bertness et al. 702/63 2/2004/00104728 A1 6/2004 Raichie 324/378 2002/0019374 A1 2/2002 Li et al. 324/677 2004/0108855 A1 6/2004 Raichie 324/378 2002/0037346 A1 3/2002 Recet al. 280/735 2004/0113494 A1 6/2004 Aruppana et al. 2002/0037346 A1 3/2002 Recet al. 280/735 2004/0113494 A1 6/2004 Aruppana et al. 2002/0036504 A1 3/2002 Troy et al. 3/24/27 2004/01145384 A1 7/2004 Bertness et al. 3/2002/004/01571 A1 4/2002 2002/004/01571 A1 4/2002 2002/004/01571 A1 4/2002 2002/004/01571 A1 4/2002 2002/004/0145342 A1 7/2004 Bertness et al. 3/20/2002/004/01571 A1 4/2002 2002/004/01571 A1 4/2002 2002/015/016 A1 5/2002 Richess et al. 3/24/26 2004/015/18 A1 9/2004 2004/016/016 A1 2/2004 2002/015/016 A1 1/2002 2002/						
2001/0048215 A1 12/2001 Breed et al. 280/728.1 2004/0054503 A1 3/2004 Namáky 702/182 2001/0048226 A1 12/2001 Nada 2901/40 2004/0065489 A1 4/2004 Jammu et al. 701/32 2002/00044034 A1 1/2002 McLeod 701/29 2004/0088087 A1 5/2004 Aberle 180/65.1 2002/0007237 A1 1/2002 McLeod 701/32 2004/00980887 A1 5/2004 Almerich 701/32 2002/0007237 A1 1/2002 Bertness et al. 702/63 2004/0108858 A1 5/2004 Almerich 2002/0010558 A1 1/2002 Bertness et al. 702/63 2004/0108855 A1 6/2004 Bertness et al. 324/429 2002/0018927 A1 2/2002 Thomsen et al. 280/735 2004/0108855 A1 6/2004 Bertness et al. 324/378 2002/002/3346 A1 3/2002 Breed et al. 280/735 2004/0113494 A1 6/2004 Mikuriya et al. 320/128 2002/0034095 A1 3/2002 Troy et al. 324/427 2004/0113488 A1 6/2004 Mikuriya et al. 320/128 2002/0044050 A1 4/2002 Lauper et al. 320/166 2004/0145342 A1 7/2004 Bertness 324/426 2002/0044050 A1 4/2002 Derbyshire et al. 340/442 2004/015713 A1 8/2004 Sertness 324/426 2002/0036504 A1 3/2002 Bertness et al. 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/004398 A1 6/2004 Sertness 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/004398 A1 6/2002 Bertness 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/004398 A1 6/2002 Bertness 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/013488 A1 6/2002 Bertness 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/013888 A1 6/2002 Bertness 324/426 2004/015713 A1 8/2004 Sertness 324/426 2002/013893 A1 6/2002 Sertness 324/426 2004/0158736 A1 10/2004 Sertness 324/426 2004/02						,
2001/0048226 Al 12/2001 Nada 290/40 2004/0064225 Al 4/2004 Jammu et al. 701/29 2002/0003423 Al 1/2002 Bertness et al. 324/426 2004/0058488 Al 4/2004 Aberle 180/65.1 2002/0006494 Al 1/2002 Bertness et al. 324/426 2004/0058087 Al 5/2004 Fukushima et al. 701/32 2002/0001558 Al 1/2002 Phung et al. 701/33 2004/00104728 Al 6/2004 Almerich 2002/0010558 Al 1/2002 Phung et al. 702/63 2004/0104728 Al 6/2004 Bertness et al. 324/429 2004/0108855 Al 6/2004 Almerich 324/439 2004/0018855 Al 6/2004 Almerich 324/439 2004/0018855 Al 6/2004 Almerich 324/439 2004/0018856 Al 6/2004 Almerich 324/439 2004/0018365 Al 6/2004 Almerich 324/439 2004/0018348 Al 6/2004 Almerich 324/439 2004/0018348 Al 6/2004 Almerich 324/439 2004/0018348 Al 6/2004 Almerich 324/439 2004/0118388 Al 6/2004 Almerich 324/430 2002/0044015 Al 4/2002 Lauper et al. 320/106 2004/0145371 Al 7/2004 Bertness 324/426 2002/0044071 Al 4/2002 Bertness et al. 324/426 2004/015494 Al 8/2004 Voshida 333/243 2002/0047711 Al 4/2002 Bertness et al. 324/426 2004/015713 Al 8/2004 Klang 429/50 2002/0074398 Al 6/2002 Makhija et al. 73/116 2004/0164706 Al 8/2004 Klang 4/29/50 2002/0074398 Al 6/2002 Rider 702/63 2004/0178185 Al 9/2004 Voshida 320/148 2002/0121877 Al 9/2002 Rider 702/63 2004/0178185 Al 9/2004 Bertness et al. 324/426 2004/0178185 Al 9/2004 Bertness et al. 32						
2002/00040694 Al 1/2002 McLeod 701/29 2004/00088087 Al 5/2004 Fukushima et al 701/32 2002/00010558 Al 1/2002 Phung et al 701/33 2004/0004728 Al 6/2004 Almerich 2002/0010558 Al 1/2002 Phung et al 701/33 2004/0104728 Al 6/2004 Almerich 2002/0010558 Al 1/2002 Thomsen et al 2004/0108855 Al 6/2004 Raichle 324/378 2002/002135 Al 2/2002 Li et al 324/677 2004/0108855 Al 6/2004 Johnson 324/426 2002/0027346 Al 3/2002 Reced et al 280/735 2004/0113494 Al 6/2004 Johnson 324/426 2002/0036504 Al 3/2002 Reced et al 324/437 2004/0113494 Al 6/2004 Mikuriya et al 320/128 2002/0036504 Al 3/2002 Evroy et al 320/166 2004/0143371 Al 7/2004 Evrness et al 324/430 2002/0044050 Al 4/2002 Perbyshire et al 324/426 2004/0154371 Al 8/2004 Voshida 333/243 2002/0044771 Al 4/2002 Bertness et al 324/426 2004/0154049 Al 8/2004 Voshida 333/243 2002/0047711 Al 4/2002 Bertness et al 324/426 2004/0157113 Al 8/2004 Voshida 333/243 2002/0056169 Al 5/2002 Evrness 702/63 2004/017717 Al 9/2004 Nagai et al 701/29 2002/0074398 Al 6/2002 Rider 702/63 2004/0178185 Al 9/2004 Bertness et al 324/426 2004/0189343 Al 10/2004 Bertness et al 324/426 2004/0189343 Al 10/2004 Bertness et al 324/426 2004/0189343 Al 10/2004 Bertness et al 324/426 2002/0118111 Al 8/2002 Rider 702/63 2004/0129343 Al 10/2004 Bertness et al 324/426 2004/0129332 Al 10/2004 Bertness et al 324/426 2004/01293332 Al 10/2004 Bertness et al 324/426 2004/02193332						
2002/0007237 Al 1/2002 Phung et al. 701/33 2004/0090208 Al 5/2004 Almerich 2002/0010588 Al 1/2002 Bertness et al. 702/63 2004/0104728 Al 6/2004 Bertness et al. 324/478 2004/0108855 Al 6/2004 Bertness et al. 324/478 2004/0108855 Al 6/2004 Converge et al. 324/478 2004/0108855 Al 6/2004 Converge et al. 324/478 2004/013849 Al 6/2004 Converge et al. 324/426 2002/00303495 Al 3/2002 Bred et al. 324/437 2004/0113494 Al 6/2004 Converge et al. 324/430 2004/0113588 Al 6/2004 Converge et al. 324/430 2004/0143342 Al 7/2004 Converge et al. 324/430 2004/0145342 Al 7/2004 Bertness et al. 320/108 2002/0044050 Al 4/2002 Derbyshire et al. 320/106 2004/0145371 Al 7/2004 Bertness 324/426 2002/0044050 Al 4/2002 Derbyshire et al. 324/426 2004/0150494 Al 8/2004 Sobrine 320/116 2002/0065619 Al 5/2002 Bertness et al. 324/426 2004/0172177 Al 9/2004 Sobrine 320/116 2002/0074398 Al 6/2002 Lancos et al. 235/382 2004/0172177 Al 9/2004 Sobrine 320/140 2002/0118111 Al 8/2002 Bertness 324/426 2004/018399 Al 9/2004 Sobrikawa et al. 324/26 2002/0121807 Al 9/2002 Smith et al. 2004/0203332 Al 10/2004 Taniguchi et al. 320/109 2002/0121807 Al 9/2002 Bertness 320/132 2004/0273332 Al 10/2004 Taniguchi et al. 320/109 2002/0153864 Al 10/2002 Bertness 320/132 2004/0273332 Al 12/2004 Taniguchi et al. 320/130 2002/0175306 Al 11/2002 Bertness 320/132 2004/0273032 Al 12/2004 Taniguchi et al. 320/130 2002/0175306 Al 11/2002 Bertness 320/132 2004/0273032 Al 12/2004 Bertness Al 320/130 2002/0175306 Al 11/2002 Bertness 320/132 2004/0273032 Al 12/2004 Bertness Al 320/130 2002/0175306 Al 12/2002 Bertness 320/132 2004/0273032 Al 12/2004 Bertness Al 320/130 32003/0003955 Al 12/2003 Bertness 320/132 2004/0275084						
2002/00101558 Al 1/2002 Bertness et al. 702/63 2004/0104728 Al 6/2004 Bertness et al. 324/429 2002/0018927 Al 2/2002 Thomsen et al. 2004/0108855 Al 6/2004 Raichle 324/426 2002/0027346 Al 3/2002 Breed et al. 280/735 2004/0118885 Al 6/2004 Johnson 324/426 2002/0036504 Al 3/2002 Rechmire 324/427 2004/0113588 Al 6/2004 Karuppana et al. 2002/0036504 Al 3/2002 Toy et al. 324/427 2004/0145342 Al 7/2004 Lyon 320/108 2002/00404050 Al 4/2002 Derbyshire et al. 320/106 2004/0145371 Al 7/2004 Lyon 324/426 2002/004711 Al 4/2002 Derbyshire et al. 324/426 2004/0150494 Al 8/2004 Yoshida 333/243 2002/0050163 Al 5/2002 Makhija et al. 73/116 2004/0164706						
2002/0018927 A1 2/2002 Li et al. 324/378 2002/0021135 A1 2/2002 Li et al. 324/675 2004/0108856 A1 6/2004 G000 Bolhnson 324/426 2002/0027346 A1 3/2002 Reed et al. 280/735 2004/0113494 A1 6/2004 G000 Karuppana et al. 2002/0036504 A1 3/2002 Troy et al. 324/427 2004/0145342 A1 7/2004 Mikuriya et al. 320/108 2002/004175 A1 4/2002 Derbyshire et al. 320/106 2004/0145371 A1 7/2004 Bertness 324/426 2002/0044050 A1 4/2002 Derbyshire et al. 320/406 2004/015049 A1 8/2004 Voshida 333/243 2002/0050163 A1 5/2002 Bertness et al. 324/426 2004/0164706 A1 8/2004 Voshida 332/416 2002/00740398 A1 6/2002 Bertness 702/63 2004/0178185 A1 9/2004 Voshikawa et al. 279/20 2002/0118111 A1 8/2002 Brown et al. 340/573.1 2004/0199343 A1 10/2004 Bertness et al. 324/426 2002/0121877 A1 9/2002 Woshikawa et al. 219/270 2004/0129350 A1 10/2004 Bertness et al. 320/406 2002						
2002/0027346						
2002/030495 A1 3/2002 Kechmire 324/427 2004/0113588 A1 6/2004 Mikuriya et al. 320/128 2002/036504 A1 3/2002 Troy et al. 324/430 2004/0145342 A1 7/2004 Lyon 320/108 2002/0044050 A1 4/2002 Lauper et al. 320/106 2004/0145371 A1 7/2004 Bertness 324/426 2002/0044050 A1 4/2002 Derbyshire et al. 320/106 2004/0145371 A1 7/2004 Bertness 324/426 2002/0047711 A1 4/2002 Bertness et al. 324/426 2004/0157113 A1 8/2004 Klang 429/50 2002/0056163 A1 5/2002 Makhija et al. 73/116 2004/0164706 A1 8/2004 Osborne 320/116 2002/0056519 A1 5/2002 Bertness 702/63 2004/0178185 A1 9/2004 Derbyshire et al. 320/106 2002/0056519 A1 8/2002 Bertness 702/63 2004/0178185 A1 9/2004 Voshikawa et al. 219/270 2002/0074398 A1 6/2002 Lancos et al. 235/382 2004/0178185 A1 9/2004 Voshikawa et al. 219/270 2002/0118111 A1 8/2002 Brown et al. 340/573.1 2004/0199343 A1 10/2004 Cardinal et al. 702/63 2002/0121877 A1 9/2002 Smith et al. 2004/0207367 A1 10/2004 Patrino et al. 2002/0128985 A1 9/2002 Greenwald 705/400 2004/02215350 A1 10/2004 Moritsugu 73/23.31 2002/0152791 A1 10/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Moritsugu 73/23.31 2002/0152791 A1 10/2002 Bertness 320/132 2004/0257884 A1 11/2004 Bertness et al. 324/426 2004/025753 A1 11/2004 Moritsugu 73/23.31 2002/0153864 A1 10/2002 Bertness 702/63 2004/0257876 A1 12/2004 Bertness et al. 324/426 2002/0176010 A1 11/2002 Bertness 702/63 2004/025784 A1 12/2004 Mackel et al. 324/426 2002/0176010 A1 11/2002 Bertness 702/63 2004/025784 A1 12/2004 Bertness et al. 324/426 2004/025784 A1 12/2004 Kestaino 324/430 2002/01793955 A1 12/2002 Bertness 702/63 2005/0007068 A1 12/2004 Kestaino 324/430 2003/0006779 A1 1/2003 Bertness 324/426 2005/0017726 A1 12/2004 Kestaino 324/430 2003/0006779 A1 12/2004 Bertness 324/426 2005/0017726 A1 12/2004 Kestaino 324/430 2003/0006779 A1 1/2003 Bertness 324/426 2005/0017726 A1 12/2004 Kestaino 324/430 2003/0006779 A1 1/2003 Bertness 324/426 2005/0017726 A1 12/2005 Koran et al. 3324/436 2003/0006779 A1 1/2003 Breed 701/29 2005/0017726 A1 12/2005 Koran et al. 324/436 2003/						
2002/0336504 A1 3/2002 Troy et al. 324/430 2004/0145342 A1 7/2004 Lyon 320/108 2002/0404175 A1 4/2002 Lauper et al. 320/106 2004/0150494 A1 8/2004 Voshida 333/243 2002/0044711 A1 4/2002 Bertness et al. 340/442 2004/0150494 A1 8/2004 Voshida 333/243 2002/0047711 A1 4/2002 Bertness et al. 324/426 2004/0157113 A1 8/2004 Klang 429/50 2002/005619 A1 5/2002 Makhija et al. 73/116 2004/0178185 A1 9/2004 Osborne 320/116 2002/0074398 A1 6/2002 Lancos et al. 235/382 2004/0178185 A1 9/2004 Nagai et al. 701/29 2002/0118111 A1 8/2002 Rider 702/63 2004/0189309 A1 9/2004 Bertness et al. 324/426 2002/0121877 A1 9/2002 Smith et al. 2004/0227367 A1 10/2004 Bertness et al. 324/426 2002/0128985 A1 9/2002 Greenwald 705/400 2004/0227537 A1						
2002/0041175 Al 4/2002 Lauper et al.						
2002/0044050 A1 4/2002 Derbyshire et al. 340/442 2004/0157113 Al. 8/2004 Yoshida 333/243 2002/0050163 A1 5/2002 Bertness et al. 324/426 2004/0164706 Al. 8/2004 Klang 429/50 2002/0050163 A1 5/2002 Makhija et al. 73/116 2004/0164706 Al. 8/2004 Osborne 320/116 2002/074398 A1 6/2002 Lancos et al. 235/382 2004/0178185 Al. 9/2004 Voshikawa et al. 219/270 2002/0116110 A1 8/2002 Rider 702/63 2004/0178185 Al. 9/2004 Voshikawa et al. 219/270 2002/0121877 A1 9/2002 Brown et al. 340/573.1 2004/0199343 Al. 10/2004 Cardinal et al. 702/63 2002/0128985 A1 9/2002 Smith et al. 2004/0207367 Al. 10/2004 Vanique et al. 320/149 2002/0153864 A1 10/2002 Greenwald 705/400 2004/0221830 Al. 11/2004 Mackel et al. 324/426 2002/017428 A1 11/2002 Bertness 320/13					7/2004	Bertness 324/426
2002/0050163 A1 5/2002 Makhija et al. 73/116 2004/0164706 A1 8/2004 Osborne 320/116 2002/0065619 A1 5/2002 Bertness 702/63 2004/0172177 A1 9/2004 Nagai et al. 701/29 2002/0074398 A1 6/2002 Lancos et al. 235/382 2004/0189309 A1 9/2004 Poshikawa et al. 219/270 2002/0116140 A1 8/2002 Rider 702/63 2004/0189309 A1 9/2004 Bertness et al. 324/426 2002/0121877 A1 9/2002 Smith et al. 2004/0199343 A1 10/2004 Cardinal et al. 702/63 2004/0121877 A1 9/2002 Smith et al. 2004/0207367 A1 10/2004 Patino et al. 320/149 2002/01218985 A1 9/2002 Bertness et al. 324/426 2004/0221641 A1 11/2004 Moritsugu 73/23.31 2002/0152791 A1 10/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Marmaky 324/537 2002/0153864 A1 10/2002 Bertness 320/132 2004/0257984 A1 12/2004 Bertness et al. 320/136 2002/0170428 A1 11/2002 Bertness 702/63 2004/0257084 A1 12/2004 Restaino 324/400 2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 12/2004 Restaino 324/400 2003/0006779 A1 12/2003 Bertness 702/63 2005/0007068 A1 12/2005 Marmaky 324/433 2003/0009270 A1 12/2003 Bertness 324/426 2005/0007068 A1 12/2005 Marmaky 324/433 2003/0030442 A1 2/2003 Bertness 324/427 2005/0017756 A1 1/2005 Koran et al. 324/433 2003/0030442 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0030442 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0030442 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0036699 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0036699 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0036699 A1 2/2003 Bertness 324/427 2005/0021294 A1 1/2005 Bertness 702/63 2003/0036699 A1 2/2003 Bertness						
2002/0065619						
2002/0074398 A1 6/2002 Lancos et al. 235/382 2004/0178185 A1 9/2004 Yoshikawa et al. 219/270 2002/0116140 A1 8/2002 Rider 702/63 2004/0189309 A1 9/2004 Bertness et al. 324/426 2002/0118111 A1 8/2002 Brown et al. 340/573.1 2004/0199343 A1 10/2004 Cardinal et al. 702/63 2002/0121877 A1 9/2002 Smith et al. 2004/0212350 A1 10/2004 Patino et al. 320/149 2002/0121901 A1 9/2002 Hoffman 324/426 2004/0212350 A1 10/2004 Patino et al. 2002/0128985 A1 9/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Moritsugu 73/23.31 2002/0153864 A1 10/2002 Bertness 320/132 2004/0251876 A1 12/2004 Mackel et al. 324/426 2004/0251876 A1 12/2004 Mackel et al. 324/426 2004/0251876 A1 12/2004 Bertness et al. 324/426 2004/0251876 A1 12/2004 Mackel et al. 324/426 2004/0251876 A1 12/2004 Mackel et al. 320/136 2002/017428 A1 11/2002 Bertness 702/63 2004/0251876 A1 12/2004 Bertness et al. 324/400 2002/0193955 A1 12/2002 Bertness 702/63 2004/0257084 A1 12/2004 Restaino 324/400 2003/0006779 A1 12/2003 Breed 701/29 2005/0007068 A1 1/2005 Koran et al. 320/110 2003/0009270 A1 1/2003 Breed 701/29 2005/0017752 A1 1/2005 Koran et al. 324/433 2003/0030442 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Trsar et al. 702/183 2003/0030442 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Bertness 705/63 2003/0036909 A1 2/2003 Bertness 324/427 2005/0021475 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness A1 2/2003 Bertness 324/427 2005/0021475 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness						
2002/0116140						e e
2002/0121877 A1 9/2002 Smith et al. 2004/0207367 A1 10/2004 Patino et al. 2002/0121901 A1 9/2002 Hoffman 324/426 2004/0212350 A1 10/2004 Patino et al. 2002/0128985 A1 9/2002 Greenwald 705/400 2004/0221641 A1 11/2004 Moritsugu 73/23.31 2002/0130665 A1 9/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Mackel et al. 324/426 2002/0153864 A1 10/2002 Cardinale 2004/0239332 A1 12/2004 Mackel et al. 324/426 2002/0153864 A1 11/2002 Bertness 320/132 2004/0251876 A1 12/2004 Bertness et al. 320/136 2002/0171428 A1 11/2002 Bertness 702/63 2004/0251907 A1 12/2004 Bertness et al. 320/136 2002/0193955 A1 12/2002 Bertness 702/63 2004/0257084 A1 12/2004 Restaino 324/400 2003/0006779 A1 1/2003 Bretness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0009270 A1 1/2003 Breed 701/29 2005/0017752 A1 1/2005 Koran et al. 435/7.32 2003/0017753 A1 1/2003 Bertness 324/427 2005/0017752 A1 1/2005 His 345/169 2003/0030442 A1 2/2003 Bertness 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0036909 A1 2/2003 Bertness 41 2/2003 Bertness 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0038637 A1 2/2003 Bertness 41 2/2003 Bertness 705/63 2005/0025299 A1 2/2005 Tischer et al. 379/199 2005/0035299 A1 2/2005 Tischer et al. 379/199 2005/0036837 A1 2/2003 Tischer e						
2002/0121901 A1 9/2002 Hoffman 324/426 2004/0212350 A1 10/2004 Patino et al.						
2002/0128985 A1 9/2002 Greenwald 705/400 2004/0221641 A1 11/2004 Moritsugu 73/23.31 2002/0130665 A1 9/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Namaky 324/537 2002/0152791 A1 10/2002 Cardinale 2004/0239332 A1 12/2004 Mackel et al. 324/426 2002/0153864 A1 10/2002 Bertness 320/132 2004/0251876 A1 12/2004 Bertness et al. 320/136 2002/0171428 A1 11/2002 Bertness 702/63 2004/0251876 A1 12/2004 Bertness et al. 320/136 2002/0176010 A1 11/2002 Bertness 702/63 2005/007084 A1 12/2004 Restaino 324/400 2003/00060779 A1 1/2003 H. Youval 324/503 2005/0007068 A1 1/2005 Whelan et al. 435/7.32 2003/00307753 A1 1/2003 Breed 701/29						
2002/0130665 A1 9/2002 Bertness et al. 324/426 2004/0227523 A1 11/2004 Mankey 324/537 2002/0152791 A1 10/2002 Cardinale 2004/0239332 A1 12/2004 Mackel et al. 324/426 2002/0153864 A1 10/2002 Bertness 320/132 2004/0251876 A1 12/2004 Bertness et al. 320/136 2002/0176101 A1 11/2002 Bertness 702/63 2004/0251907 A1 12/2004 Kalley 2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0006779 A1 1/2003 H. Youval 324/503 2005/0007068 A1 1/2005 Whelan et al. 435/7.32 2003/009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/0030425481 A1 1/2003 Bertness 324/427 2005/0021197 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2002/0152791 A1 10/2002 Cardinale 2004/0239332 A1 12/2004 Macket et al. 324/426 2002/0153864 A1 10/2002 Bertness 320/136 2004/0251876 A1 12/2004 Bertness et al. 320/136 2002/01716010 A1 11/2002 Bertness 702/63 2004/0257084 A1 12/2004 Restaino 324/400 2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0006779 A1 1/2003 H. Youval 324/503 2005/0001726 A1 1/2005 Whelan et al. 435/7.32 2003/009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/003/0025481 A1 1/2003 Bertness 324/427 2005/0021197 A1 1/2005 His 345/169 2003/00300424 A1 2/2003 Sugimoto 324/429 2005/0021						
2002/0171428 A1 11/2002 Bertness 702/63 2004/0251907 A1 12/2004 Kalley 2002/0176010 A1 11/2002 Wallach et al. 2004/0257084 A1 12/2004 Restaino 324/400 2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0006779 A1 1/2003 H. Youval 324/503 2005/0009122 A1 1/2005 Whelan et al. 435/7.32 2003/0017753 A1 1/2003 Breed 701/29 2005/0017752 A1 1/2005 Koran et al. 324/433 2003/0017753 A1 1/2003 Bertness 324/427 2005/0017952 A1 1/2005 His 345/169 2003/0030424 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 His 345/169 2003/00306909 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/20						
2002/0176010 A1 11/2002 Wallach et al. 2004/0257084 A1 12/2004 Restaino 324/400 2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0006779 A1 1/2003 H. Youval 324/503 2005/0009122 A1 1/2005 Whelan et al. 435/7.32 2003/0009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/0017753 A1 1/2003 Palmisano et al. 439/762 2005/0017952 A1 1/2005 His 345/169 2003/003/0025481 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Timmerman 701/31.4 2003/0030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/00306909 A1 2/2003 Kato 704/275 2005/0021						
2002/0193955 A1 12/2002 Bertness 702/63 2005/0007068 A1 1/2005 Johnson et al. 320/110 2003/0006779 A1 1/2003 H. Youval 324/503 2005/0009122 A1 1/2005 Whelan et al. 435/7.32 2003/0009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/003/07753 A1 1/2003 Palmisano et al. 439/762 2005/0017952 A1 1/2005 His 345/169 2003/003/0035481 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Zimmerman 701/31.4 2003/0030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/00308637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0006779 A1 1/2003 H. Youval 324/503 2005/0009122 A1 1/2005 Whelan et al. 435/7.32 2003/0009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/0017753 A1 1/2003 Palmisano et al. 439/762 2005/0017952 A1 1/2005 His 345/169 2003/0025481 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Zimmerman 701/31.4 2003/0030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0036909 A1 2/2003 Kato 704/275 2005/0021294 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0009270 A1 1/2003 Breed 701/29 2005/0017726 A1 1/2005 Koran et al. 324/433 2003/0017753 A1 1/2003 Palmisano et al. 439/762 2005/0017952 A1 1/2005 His 345/169 2003/0025481 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Zimmerman 701/31.4 2003/0030030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0036909 A1 2/2003 Kato 704/275 2005/0021294 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0025481 A1 2/2003 Bertness 324/427 2005/0021197 A1 1/2005 Zimmerman 701/31.4 2003/0030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0036909 A1 2/2003 Kato 704/275 2005/0021475 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0030442 A1 2/2003 Sugimoto 324/429 2005/0021294 A1 1/2005 Trsar et al. 702/183 2003/0036909 A1 2/2003 Kato 704/275 2005/0021475 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0036909 A1 2/2003 Kato 704/275 2005/0021475 A1 1/2005 Bertness 705/63 2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al. 379/199						
2003/0038637 A1 2/2003 Bertness et al. 2005/0025299 A1 2/2005 Tischer et al						

(56) Re	eferen	ces Cited	2007/0205983			Naimo	
U.S. PA	TENT	DOCUMENTS	2007/0210801 2007/0244660	A1	10/2007	Krampitz Bertness	
			2007/0259256			Le Canut et al	
		Mitcham 701/29	2007/0279066			Chism	
		Bertness 324/426	2008/0023547 2008/0036421			Seo et al.	
	3/2005	Kapolka et al 701/29	2008/0053716		3/2008		
	4/2005 1/2005	Bertness et al	2008/0059014			Nasr et al	
		Bertness	2008/0064559			Cawthorne	
	5/2005		2008/0086246	$\mathbf{A}1$	4/2008	Bolt et al	701/29
	5/2005		2008/0087479				
2005/0102073 A1 5	5/2005	Ingram 701/29	2008/0094068		4/2008	Scott	
		Chen 701/33.5	2008/0103656		5/2008	Lipscomb	
		Puzio et al 340/572.1	2008/0106267 2008/0169818		5/2008	Bertness Lesesky et al	
		Tsai	2008/0109818		7/2008	Sugawara	
	5/2005	Katsuyama 174/74 R Averbuch	2008/0194984			Keefe	
		Umezawa 701/29	2008/0238357			Bourilkov et al.	
		Shah et al 700/276	2008/0256815	A1	10/2008	Schafer	
			2008/0303528			Kim	
2005/0168226 A1 8	3/2005	Quint et al 324/426	2008/0303529		12/2008	Nakamura et al	
		Cutler et al 173/181	2008/0315830			Bertness	
	3/2005	Doyle et al 701/29	2009/0006476 2009/0011327		1/2009 1/2009	Andreasen et al Okumura et al	
		Restaino 324/426	2009/0011327		1/2009	Okumura et al	
		Lowles	2009/0013321		1/2009	Bertness	
	9/2005	Smith et al. Bertness et al 324/426	2009/0024419		1/2009	McClellan	
			2009/0085571		4/2009	Bertness	
		Yoshida	2009/0146610	A1	6/2009	Trigiani	
		Restaino et al	2009/0146800		6/2009	Grimlund et al	
2005/0231205 A1 10	0/2005	Bertness et al 324/426	2009/0160395		6/2009	Chen	320/101
		Silverbrook et al 358/539	2009/0184165		7/2009	Bertness et al.	700/226
		Cawthorne et al 701/22	2009/0198372 2009/0203247		8/2009 8/2009	Hammerslag Fifelski	
		McNutt et al	2009/0203247		9/2009	Andelfinger	
		Philbrook	2009/0237029		9/2009	Andelfinger	
		Breed	2009/0247020		10/2009	Gathman et al	
		Okumura et al 320/103	2009/0251151	A1	10/2009	Miyashita	
		Bertness 324/538	2009/0259432		10/2009	Liberty	
		Walkder 701/31.4	2009/0265121		10/2009	Rocci	702/57
			2009/0273451		11/2009	Soppera et al.	701/22
		Philbrook	2009/0276115 2009/0311919		11/2009 12/2009	Chen	
		Gervais	2010/0023198		1/2010	Hamilton	
	3/2006 4/2006	Jaeger 340/539.13	2010/0039065		2/2010	Kinkade	
		Eaves	2010/0052193		3/2010	Sylvester	
		Sowa	2010/0066283	A1	3/2010	Kitanaka	
		Krampitz	2010/0088050		4/2010	Keuss	702/63
2006/0090555 A1 5	5/2006	Krampitz	2010/0094496			Hershkovitz et al.	220/162
	5/2006		2010/0117603		5/2010	Makhija	
		Raichle	2010/0145780 2010/0214055		6/2010	Nishikawa et al Fuji	
		Grier et al 702/183	2010/0214033			Fabius	
		Buck	2010/0203131			Rutkowski et al	
		Klang Raichle	2011/0004427			Gorbold et al	
	5/2006		2011/0015815	A1		Bertness	
		Kim et al 324/430	2011/0106280			Zeier	700/90
		Slawinski 701/33.4	2011/0127960		6/2011		702/62
		Rogers et al 701/1	2011/0161025			Tomura	
		Namaky et al 702/183	2011/0215767 2011/0218747			Johnson et al Bertness	
		Bertness 702/113	2011/0239445		10/2011		702/03
		Henningson et al 324/426	2011/0258112			Eder et al.	
		Bertness	2011/0265025			Bertness	
		Walker et al 705/14	2011/0267067	A1		Bertness et al.	
		Chenn 701/31.5	2011/0273181			Park et al	
2007/0024460 A1 2	2/2007	Clark 340/663	2011/0294367			Moon	439/878
		Juds et al 463/1	2011/0300416			Bertness	702/62
		Porebski 320/132	2012/0041697		2/2012		
		Bertness	2012/0046807 2012/0046824			Ruther	
		Hartigan Ganzhorn et al 701/33	2012/0046824 2012/0062237			Ruther et al	
		Johnson et al	2012/0002237			Rutkowski et al	
		Bertness et al	2012/0086399		4/2012		520/112
		Proska et al	2012/0091962			DeFrank et al.	
			2012/0116391			Houser	606/41
2007/0194793 A1 8	3/2007	Bertness 324/503	2012/0182132		7/2012	McShane	
2007/0205752 A1 9	9/2007	Leigh 324/500	2012/0249069	A1	10/2012	Ohtomo	320/109

(56)	Referer	nces Cited		0161630 A1	5/2020		
II C	DATENIT	DOCUMENTS		0174078 A1 0274370 A1	6/2020 8/2020	Salo, III et al.	
0.5	. PALENT	DOCUMENTS		0048374 A1		Sampson et al.	
2012/0256494 A1	10/2012	Kesler 307/104		0049480 A1	2/2021	Kale et al.	
2012/0256568 A1		Lee 318/139		0135462 A1		Sampson et al.	
2012/0274331 A1		Liu		0141021 A1 0141043 A1		Salo, III et al. Bertness	
2012/0293372 A1 2013/0049678 A1	2/2013	Amendolare 342/451		0203016 A1		Bertness	
2013/0099747 A1		Baba 310/118		0231737 A1		Salo, III et al.	
2013/0106362 A1		Mackintosh et al.		0325471 A1		Bertness	
2013/0106596 A1		Mouchet		0050142 A1 0258619 A1		Bertness Bertness	
2013/0115821 A1 2013/0134926 A1		Golko 439/638 Yoshida		0384858 A1		Bertness	
2013/0154920 A1 2013/0158782 A1		Bertness et al 701/34.4		0063349 A1		Bertness et al.	
2013/0172019 A1		Youssef 455/456.6		0155400 A1	5/2023		
2013/0200855 A1		Christensen et al.		0256829 A1 0318321 A1*		Bertness	H0217/0047
2013/0218781 A1		Simon Yu 455/456.1	2023/	0316321 A1	10/2023	Liu	320/105
2013/0288706 A1 2013/0297247 A1		Jardine 435/430.1	2023/	0333171 A1	10/2023	Bertness	320/103
2013/0237247 A1		Van Bremen 702/104	2023/	0339359 A1		Numata	
2013/0314041 A1	11/2013	Proebstle 320/109		0358818 A1		Kolamkar et al.	
2013/0325405 A1	12/2013			/0387707 A1		Bertness	
2014/0002021 A1 2014/0002094 A1		Bertness Champlin 324/426		/0391179 A1 /0429653 A1	12/2023	Sampson et al. Dos Santos	
2014/0029308 A1		Cojocaru	202-1/	0429033 711	12/2027	Dos Santos	
2014/0081527 A1		Miller		FOREIG	N PATE	NT DOCUMENT	TS .
2014/0091762 A1		Kondo					
2014/0099830 A1 2014/0117997 A1		Byrne	CN	103091		5/2013	
2014/0117997 A1 2014/0132223 A1		Kerfoot, Jr	CN	206658		11/2017	
2014/0145670 A1		van Zwam et al.	CN DE	109683 29-26	716 B1	1/2019 1/1981	
2014/0162497 A1	6/2014		DE	40 07		9/1991	
2014/0194084 A1		Noonan	DE	196 38		9/1996	
2014/0225622 A1 2014/0239964 A1		Gach	DE		502 T2	6/2006	
2014/0260577 A1		Chinnadurai	DE DE	10 2009 013 10 2008 036		10/2009 2/2010	
2014/0266061 A1		Wachal	DE	10 2018 001		9/2018	
2014/0278159 A1		Chinnadurai	DE	10 2020 216		7/2021	
2014/0333313 A1 2014/0354237 A1	12/2014	Surampudi Cotton	EP		450 A1	1/1981	
2014/0368156 A1	12/2014		EP EP		694 A2 405 A1	4/1990 9/1991	
2014/0374475 A1		Kallfelz et al.	EP		754 A1	2/1995	
2015/0093922 A1		Bosscher	EP		056 A1	5/1997	
2015/0115720 A1 2015/0166518 A1		Hysell 307/65 Boral et al.	EP		159 A2	3/2000	
2015/0168499 A1	6/2015	Palmisano	EP EP	1 810 1 786	869 A1	11/2004 5/2007	
2015/0221135 A1		Hill 345/633	EP		710 B1	7/2007	
2015/0239365 A1		Hyde et al.	EP	1 807		1/2010	
2015/0353192 A1 2016/0011271 A1		Morrison Bertness	EP	2 302		3/2011	
2016/0013523 A1		Anzicek	FR GB	2 749 154	016	12/1997 11/1920	
2016/0091571 A1		Salo, III	GB	2 029		3/1980	
2016/0154044 A1 2016/0171799 A1		Bertness	GB		159 A	6/1982	
2016/01/1/99 A1 2016/0216335 A1		Bertness Bertness	GB		916 A	10/1990	
2016/0226280 A1		Noor et al.	GB GB	2 266 2 275	783 A	10/1993 7/1994	
2016/0232736 A1		Holtappels	GB	2 353		2/2001	
2016/0238667 A1		Palmisano et al.	GB		235 A	10/2003	
2016/0253852 A1 2016/0266212 A1	9/2016	Bertness et al.	JР	59-17		1/1984	
2016/0285284 A1		Matlapudi et al.	JP JP	59-17 59017		1/1984 1/1984	
2016/0321897 A1	11/2016		JР	59215		12/1984	
2016/0336623 A1	11/2016		JP	60225		11/1985	
2016/0381542 A1 2017/0093056 A1	12/2016 3/2017	Salo, III et al.	JP	62-180		8/1987	
2017/0146602 A1	5/2017		JP JP	63027 03274		2/1988 12/1991	
2017/0158058 A1		Lee et al.	JР	03282		12/1991	
2017/0373410 A1		Lipkin et al.	JP	4-8	3636	1/1992	
2018/0009328 A1 2018/0113171 A1		Hinterberger et al. Bertness	JP	04095		3/1992	
2018/0301913 A1		Irish et al.	JP JP	04131 04372		5/1992 12/1992	
2018/0306867 A1	10/2018	Bertness	JP JP		2330 1724 A	8/1993	
2019/0105998 A1		Bertness	JP	5216		8/1993	
2019/0152332 A1		Bertness	JP	7-128		5/1995	
2019/0154763 A1 2019/0204392 A1		Bertness Bertness	JP JP	09061 10056		3/1997 2/1998	
2019/0204392 A1 2020/0076129 A1		Kitahara	JP	10030		9/1998	
2020/0086757 A1		Vain et al.	JP		3503 A	4/1999	

(56)	References Cited					
	FOREIGN PATE	ENT DOCUMENTS				
JP	11-150809	6/1999				
JP	11-271409	10/1999				
JP	2001-023037	1/2001				
JР	2001057711 A	2/2001				
JР	2003-346909	12/2003				
JР	2005-238969	9/2005				
JР	2006/242674	9/2006				
JP	2006331976 A	12/2006				
ЛР	2009-244166	10/2009				
JP	2009-261174	11/2009				
JР	2010-172122	5/2010				
JР	2010-172142	8/2010				
JР	2011-216328	10/2011				
JР	2013-110069	6/2013				
RU	2089015 C1	8/1997				
WO	WO 93/22666	11/1993				
WO	WO 94/05069	3/1994				
WO	WO 96/01456	1/1996				
WO	WO 96/06747	3/1996				
WO	WO 96/28846	9/1996				
WO	WO 97/01103	1/1997				
WO	WO 97/44652	11/1997				
WO	WO 98/04910	2/1998				
WO	WO 98/21132	5/1998				
WO WO	WO 98/58270	12/1998				
WO	WO 99/23738 WO 99/56121	5/1999 11/1999				
WO	WO 99/36121 WO 00/16083	3/2000				
WO	WO 00/10083 WO 00/62049	10/2000				
WO	WO 00/02049 WO 00/67359	11/2000				
WO	WO 00/07533 WO 01/59443	2/2001				
WO	WO 01/35443 WO 01/16614	3/2001				
WO	WO 01/16615	3/2001				
WO	WO 01/51947	7/2001				
WO	WO 03/047064 A3	6/2003				
WO	WO 03/076960 A1	9/2003				
WO	WO 2004/047215 A1	6/2004				
WO	WO 2007/059935	5/2007				
WO	WO 2007/075403	7/2007				
WO	WO 2009/004001	1/2009				
WO	WO 2010/007681	1/2010				
WO	WO 2010/035605	4/2010				
WO	WO 2010/042517	4/2010				
WO	WO 2011/153419	12/2011				
WO	WO 2012/078921	6/2012				
WO	WO 2013/070850	5/2013				

References Cited

(56)

OTHER PUBLICATIONS

11/2016

11/2022

U.S. Appl. No. 18/609,344, filed Mar. 19, 2024.

2016/176405

2022/241800

WO

WO

"Electrochemical Impedance Spectroscopy in Battery Development and Testing", *Batteries International*, Apr. 1997, pp. 59 and 62-63. "Battery Impedance", by E. Willihnganz et al., *Electrical Engineering*, Sep. 1959, pp. 922-925.

"Determining The End of Battery Life", by S. DeBardelaben, *IEEE*, 1986, pp. 365-368.

"A Look at the Impedance of a Cell", by S. Debardelaben, *IEEE*, 1988, pp. 394-397.

"The Impedance of Electrical Storage Cells", by N.A. Hampson et al., *Journal of Applied Electrochemistry*, 1980, pp. 3-11.

"A Package for Impedance/Admittance Data Analysis", by B. Boukamp, *Solid State Ionics*, 1986, pp. 136-140.

"Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters", by J. Macdonald et al., *J. Electroanal, Chem.*, 1991, pp. 1-11.

Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., *AT&T Bell Laboratories*, 1987 IEEE, Ch. 2477. pp. 128,131.

IEEE Recommended Practice For Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and

Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.

"Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies", by D. Feder et al., *IEEE*, Aug. 1992, pp. 218-233.

"JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles", *Japanese Standards Association UDC*, 621.355.2:629.113. 006. Nov. 1995.

"Performance of Dry Cells", by C. Hambuechen, Preprint of *Am. Electrochem. Soc.*, Apr. 18-20, 1912, paper No. 19, pp. 1-5.

"A Bridge for Measuring Storage Battery Resistance", by E. Willihncanz, *The Electrochemical Society*, preprint 79-20, Apr. 1941, pp. 253-258.

National Semiconductor Corporation, "High Q Notch Filter", Mar. 1969, Linear Brief 5, Mar. 1969.

Burr-Brown Corporation, "Design A 60 Hz Notch Filter with the UAF42", Jan. 1994, AB-071, 1994.

National Semiconductor Corporation, "LMF90-4th-Order Elliptic Notch Filter", Dec. 1994, RRD-B30M115, Dec. 1994.

"Alligator Clips with Wire Penetrators" J. S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.

"#12: LM78S40 Simple Switcher DC to DC Converter", *ITM* e-Catalog, downloaded from http://www.pcbcafe,com, prior to Oct. 1, 2002.

"Simple DC-DC Converts Allows Use of Single Battery", *Electronix Express*, downloaded from http://www.elexp.com/t_dc-dc.htm, prior to Oct. 1, 2002.

"DC-DC Converter Basics", *Power Designers*, downloaded from http://www.powerdesigners.com/InforWeb.design_center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US02/29461, filed Sep. 17, 2002 and mailed Jan. 3, 2003.

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/07546, filed Mar. 13, 2003 and mailed Jul. 4, 2001.

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/06577, filed Mar. 5, 2003 and mailed Jul. 24, 2003.

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/07837, filed Mar. 14, 2003 and mailed Jul. 4, 2003.

"Improved Impedance Spectroscopy Technique For Status Determination of Production ${\rm Li/SO_2}$ Batteries" Terrill Atwater et al., pp. 10-113, (1992).

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/41561; Search Report completed Apr. 13, 2004, mailed May 6, 2004.

"Notification of Transmittal of The International Search Report or the Declaration", PCT/US03/27696, filed Sep. 4, 2003 and mailed Apr. 15, 2004.

"Programming Training Course, 62-000 Series Smart Engine Analyzer", Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984)

"Operators Manual, Modular Computer Analyzer Model MCA 3000", Sun Electric Corporation, Crystal Lake, Illinois, pp. 1-1-14-13, (1991).

Supplementary European Search Report Communication for Appl. No. 99917402.2; Sep. 7, 2004.

"Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification", Journal of Power Sources, pp. 69-84, (1997).

Notification of Transmittal of the International Search Report for PCT/US03/30707, filed Sep. 30, 2003 and mailed Nov. 24, 2004. "A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries", Journal of Power Sources, pp. 59-69, (1998).

"Search Report Under Section 17" for Great Britain Application No. GB0421447. 4, date of search Jan. 27, 2005, date of document Jan. 28, 2005.

(56) References Cited

OTHER PUBLICATIONS

"Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries", by K.S. Champlin et al., *Proceedings of 23rd International Teleco Conference (INTELEC)*, published Oct. 2001, IEE, pp. 433-440.

"Examination Report" from the UK Patent Office for App. No. 0417678. 0; Jan. 24, 2005.

Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.

"Professional BCS System Analyzer Battery-Charger-Starting", pp. 2-8, (2001).

Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.

"DSP Applications in Hybrid Electric Vehicle Powertrain", Miller et al., Proceedings of the American Control Conference, San Diego, CA, Jun. 1999; 2 ppg.

"Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration" for PCT/US2008/008702 filed Jul. 2008; 15 pages.

"A Microprocessor-Based Control System for a Near-Term Electric Vehicle", Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626\$00.75 © 1981 IEEE, 6 pages.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/038279 filed May 27, 2011, date of mailing Sep. 16, 2011, 12 pages.

U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Pat. No. 7,089,127.

"Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health", by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).

"Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I—Conductance/Capacity Correlation Studies", by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).

"Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications", by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).

"Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health", by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.). "Condutance Monitoring of Recombination Lead Acid Batteries", by B. Jones, May 1993, pp. 1-6; (11 total pgs.).

"Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods", by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).

"Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries", by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).

"Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II—Further Conductance/Capacity Correlation Studies", by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.). "Field Experience of Testing VRLA Batteries by Measuring Conductance", by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.). "Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications", by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).

"Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques", by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).

"Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology", by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).

"VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention", by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).

"VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments", by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.). "Midpoint Conductance Technology Used In Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications", by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.). "Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies", M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).

"A Fundamentally New Approach to Battery Performance Analysis Using DFRATMM/DTISTM Technology", by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).

"Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis", by D. Cox et al., Mar. 2000, 6 pgs; (10 total pgs.).

Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.

Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages. Communication from GB1216105.5, dated Sep. 21, 2012.

Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012. Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012. "Field Evaluation of Honda's EV Plus Battery Packs", by A. Paryani, *IEEE AES Systems Magazine*, Nov. 2000, pp. 21-24.

Search Report from PCT/US2011/047354, dated Nov. 11, 2011. Written Opinion from PCT/US2011/047354, dated Nov. 11, 2011. First Office Action (Notification of Reasons for Rejections) dated Dec. 3, 2013 in related Japanese patent application No. 2013-513370, 9 pgs. Including English Translation.

Official Action dated Jan. 22, 2014 in Korean patent application No. 10-2012-7033020, 2 pgs including English Translation.

Official Action dated Feb. 20, 2014 in Korean patent application No. 10-2013-7004814, 6 pgs including English Translation.

First Office Action for Chinese Patent Application No. 201180011597. 4, dated May 6, 2014, 20 pages.

Office Action from Korean Application No. 10/2012-7033020, dated Jul. 29, 2014.

Office Action for Chinese Patent Application No. 201180038844.X, dated Jul. 1, 2014.

Office Action for Chinese Patent Application No. 201180030045.8, dated Jul. 21, 2014.

Office Action for German Patent Application No. 1120111020643 dated Aug. 28, 2014.

Office Action from Japanese Patent Application No. 2013-513370, dated Aug. 5, 2014.

Office Action from Japanese Patent Application No. 2013-531839, dated Jul. 8, 2014.

Office Action for German Patent Application No. 103 32 625.1, dated Nov. 7, 2014, 14 pages.

Office Action from Chinese Patent Application No. 201180038844. X, dated Dec. 8, 2014.

Office Action from CN Application No. 201180011597.4, dated Jan.

Office Action for Chinese Patent Application No. 201180030045.8, dated Mar. 24, 2015.

Office Action for Japanese Patent Application No. 2013-531839, dated Mar. 31, 2015.

Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2014/069661, dated Mar. 26, 2015. Office Action for Chinese Patent Application No. 201180038844.X, dated Jun. 8, 2015.

Office Action from Chinese Patent Application No. 201180011597.4 dated Jun. 3, 2015.

European Search Report from European Application No. EP 15151426. 2, dated Jun. 1, 2015.

(56) References Cited

OTHER PUBLICATIONS

Notification of Transmittal of the International Search Report and the Written Opinion from PCT/US2016/014867, dated Jun. 3, 2016. Office Action from Japanese Patent Application No. 2015-014002, dated Jul. 19, 2016.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from PCT/US2016/029696, dated Aug. 24, 2016.

Office Action from German Patent Application No. 10393251.8, dated Nov. 4, 2016, including English translation.

Office Action from European Patent Application No. 15 151 426. 2-1801, dated Aug. 28, 2017, 2 pages.

Office Action from German Patent Application No. 112011101892. 4, dated Sep. 7, 2017.

Office Action from Japanese Patent Application No. 2017-026740, dated Jan. 9, 2018.

Office Action from Chinese Patent Application No. 201480066251. 8, dated May 29, 2018.

Brochure: "Sensors Intelligent Battery Sensors, Measuring Battery Capacity and Ageing", by Hella, 6 pgs.

Office Action from Japanese Patent Application No. 2017-026740, dated May 8, 2018.

U.S. Appl. No. 12/697,485, filed Feb. 1, 2010, 36 pgs.

Office Action from Chinese Patent Application No. 201480066251. 8, dated Dec. 13, 2018.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2019/014487, dated Apr. 11, 2019.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2019/014494, dated Apr. 24, 2019.

Office Action from German Patent Application No. 11 2011 101 892.4, dated Oct. 1, 2020, and translation using Google Translate. Wikipedia Online Encyclopedia, https://de.wikipedia.org/w/index.php?title= four-wire measurement & oldid=67143514-4 (Retrieved Sep. 15, 2020) along with Google Translation.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2020/059015, dated Jan. 22, 2021.

U.S. Appl. No. 17/504,897, filed Oct. 19, 2021.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2021/040313 dated Oct. 25, 2021; 14

U.S. Appl. No. 17/893,412, filed Aug. 23, 2022.

U.S. Appl. No. 18/166,702, filed Feb. 9, 2023.

U.S. Appl. No. 18/314,266, filed May 9, 2023.

U.S. Appl. No. 18/324,382, filed May 26, 2023.

U.S. Appl. No. 18/328,827, filed Jun. 5, 2023.

International Search Report for the Corresponding International Patent Application No. PCT/US2024/033558, dated Sep. 3, 2024, dated Jun. 12, 2024, 5 pages.

Written Opinion for the Corresponding International Patent Application No. PCT/US2024/033558, dated Sep. 3, 2024, dated Jun. 12, 2024, 8 pages.

International Search Report and Written Opinion for corresponding International Application No. PCT/US2024/053504, dated Jan. 21, 2025, 15 pages.

George Coulouris et al. "Distributed Systems: Concepts and Design (5th edition)", Addison-Wesley, May 7, 2011.

Gehrmann Christian et al: "Bluetooth Security" Artech House Publishers, Jul. 5, 2004.

Owen C. Duffey et al. "Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems," Jones & Bartlett Learning, Jul. 27, 2015.

Wikipedia: "List of Bluetooth profiles," Internet Article, Oct. 6, 2023

Nick Hunn et al. "Essentials of Short-Range Wireless," Cambridge University Press, Aug. 23, 2010.

International Search Report and Written Opinion for corresponding International Application No. PCT/US2024/051765, dated Jan. 16, 2025, 15 pages.

* cited by examiner

FIG. 4

FIG. 5

FIG. 7

FIG. 8

Aug. 19, 2025

FIG. 9

ELECTRONIC BATTERY TESTER

CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 63/339,618, filed May 9, 2022, the content of which is hereby incorporated by reference in its entirety.

BACKGROUND

The present invention relates to battery testers of the type used to test storage batteries. More specifically, the present invention relates to a battery maintenance system with 15 improved battery test accuracy.

Electrical systems, such as those that are used in automotive vehicles, consist of a number of discrete components or systems which are interconnected. As used herein, the term "automotive vehicle" includes both vehicles which 20 utilize an internal combustion engine, vehicles which utilize electric motors, as well as hybrid vehicles which include both types of systems. Techniques for measuring and utilizing parameters of electrical systems of automotive vehicles are known. Examples of various types of battery testers, 25 monitors and other related equipment are set forth in U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin; U.S. 30 Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996; U.S. Pat. No. 5,574,355, 35 issued Nov. 12, 1996; U.S. Pat. No. 5,583,416, issued Dec. 10, 1996; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997; U.S. Pat. No. 5,656,920, issued Aug. 40 12, 1997; U.S. Pat. No. 5,757,192, issued May 26, 1998; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998; U.S. Pat. No. 5,871,858, issued Feb. 16, 1999; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999; 45 U.S. Pat. No. 6,002,238, issued Dec. 14, 1999; U.S. Pat. No. 6.037.751, issued Mar. 14, 2000; U.S. Pat. No. 6.037.777, issued Mar. 14, 2000; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000; U.S. Pat. No. 50 6,104,167, issued Aug. 15, 2000; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001; U.S. Pat. No. 6,225,808, 55 issued May 1, 2001; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001; U.S. Pat. No. 6,304,087, issued Oct. 60 16, 2001; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001; 65 U.S. Pat. No. 6,331,762, issued Dec. 18, 2001; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001; U.S. Pat. No. 6,351,102,

2

issued Feb. 26, 2002; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002; U.S. Pat. No. 6,377,031, issued Apr. 23, 2002; U.S. Pat. No. 6,392,414, issued May 21, 2002; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002; U.S. Pat. No. 6,437,957, issued Aug. 20, 2002; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002; U.S. Pat. Nos. 6,456,045; 6,466,025, issued Oct. 15, 2002; U.S. Pat. No. 6,465,908, 10 issued Oct. 15, 2002; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002; U.S. Pat. No. 6,469,511, issued Nov. 22, 2002; U.S. Pat. No. 6,495,990, issued Dec. 17, 2002; U.S. Pat. No. 6,497,209, issued Dec. 24, 2002; U.S. Pat. No. 6,507,196, issued Jan. 14, 2003; U.S. Pat. No. 6,534,993; issued Mar. 18, 2003; U.S. Pat. No. 6,544,078, issued Apr. 8, 2003; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003; U.S. Pat. No. 6,566,883, issued May 20, 2003; U.S. Pat. No. 6,586,941, issued Jul. 1, 2003; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003; U.S. Pat. No. 6,621,272, issued Sep. 16, 2003; U.S. Pat. No. 6.623,314, issued Sep. 23, 2003; U.S. Pat. No. 6,633,165, issued Oct. 14, 2003; U.S. Pat. No. 6,635,974, issued Oct. 21, 2003; U.S. Pat. No. 6,696,819, issued Feb. 24, 20144; U.S. Pat. No. 6,707,303, issued Mar. 16, 2004; U.S. Pat. No. 6,737,831, issued May 18, 2004; U.S. Pat. No. 6,744,149, issued Jun. 1, 2004; U.S. Pat. No. 6,759,849, issued Jul. 6, 2004; U.S. Pat. No. 6,781,382, issued Aug. 24, 2004; U.S. Pat. No. 6,788,025, filed Sep. 7, 2004; U.S. Pat. No. 6,795,782, issued Sep. 21, 2004; U.S. Pat. No. 6,805, 090, filed Oct. 19, 2004; U.S. Pat. No. 6,806,716, filed Oct. 19, 2004; U.S. Pat. No. 6,850,037, filed Feb. 1, 2005; U.S. Pat. No. 6,850,037, issued Feb. 1, 2005; U.S. Pat. No. 6,871,151, issued Mar. 22, 2005; U.S. Pat. No. 6,885,195, issued Apr. 26, 2005; U.S. Pat. No. 6,888,468, issued May 3, 2005; U.S. Pat. No. 6,891,378, issued May 10, 2005; U.S. Pat. No. 6,906,522, issued Jun. 14, 2005; U.S. Pat. No. 6,906,523, issued Jun. 14, 2005; U.S. Pat. No. 6,909,287, issued Jun. 21, 2005; U.S. Pat. No. 6,914,413, issued Jul. 5, 2005; U.S. Pat. No. 6,913,483, issued Jul. 5, 2005; U.S. Pat. No. 6,930,485, issued Aug. 16, 2005; U.S. Pat. No. 6,933, 727, issued Aug. 23, 200; U.S. Pat. No. 6,941,234, filed Sep. 6, 2005; U.S. Pat. No. 6,967,484, issued Nov. 22, 2005; U.S. Pat. No. 6,998,847, issued Feb. 14, 2006; U.S. Pat. No. 7,003,410, issued Feb. 21, 2006; U.S. Pat. No. 7,003,411, issued Feb. 21, 2006; U.S. Pat. No. 7,012,433, issued Mar. 14, 2006; U.S. Pat. No. 7,015,674, issued Mar. 21, 2006; U.S. Pat. No. 7,034,541, issued Apr. 25, 2006; U.S. Pat. No. 7,039,533, issued May 2, 2006; U.S. Pat. No. 7,058,525, issued Jun. 6, 2006; U.S. Pat. No. 7,081,755, issued Jul. 25, 2006; U.S. Pat. No. 7,106,070, issued Sep. 12, 2006; U.S. Pat. No. 7,116,109, issued Oct. 3, 2006; U.S. Pat. No. 7,119,686, issued Oct. 10, 2006; and U.S. Pat. No. 7,126, 341, issued Oct. 24, 2006; U.S. Pat. No. 7,154,276, issued Dec. 26, 2006; U.S. Pat. No. 7,198,510, issued Apr. 3, 2007; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,208,914, issued Apr. 24, 2007; U.S. Pat. No. 7,246,015, issued Jul. 17, 2007; U.S. Pat. No. 7,295,936, issued Nov. 13, 2007; U.S. Pat. No. 7,319,304, issued Jan. 15, 2008; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,398,176, issued Jul. 8, 2008; U.S. Pat. No. 7,408,358, issued Aug. 5, 2008; U.S. Pat. No. 7,425,833, issued Sep. 16, 2008; U.S. Pat. No. 7,446,536, issued Nov. 4, 2008; U.S. Pat. No. 7,479,763, issued Jan. 20, 2009; U.S. Pat. No. 7,498,767, issued Mar. 3, 2009; U.S. Pat. No. 7,501,795, issued Mar. 10, 2009; U.S. Pat. No. 7,505,856, issued Mar. 17, 2009; U.S. Pat. No. 7,545,146, issued Jun. 9, 2009; U.S. Pat. No. 7,557,586, issued Jul. 7, 2009; U.S. Pat. No. 7,595,643, issued Sep. 29, 2009; U.S. Pat. No. 7,598,699,

issued Oct. 6, 2009; U.S. Pat. No. 7,598,744, issued Oct. 6, 2009; U.S. Pat. No. 7,598,743, issued Oct. 6, 2009; U.S. Pat. No. 7,619,417, issued Nov. 17, 2009; U.S. Pat. No. 7,642, 786, issued Jan. 5, 2010; U.S. Pat. No. 7,642,787, issued Jan. 5, 2010; U.S. Pat. No. 7,656,162, issued Feb. 2, 2010; U.S. 5 Pat. No. 7,688,074, issued Mar. 30, 2010; U.S. Pat. No. 7,705,602, issued Apr. 27, 2010; U.S. Pat. No. 7,706,992, issued Apr. 27, 2010; U.S. Pat. No. 7,710,119, issued May 4, 2010; U.S. Pat. No. 7,723,993, issued May 25, 2010; U.S. Pat. No. 7,728,597, issued Jun. 1, 2010; U.S. Pat. No. 10 7,772,850, issued Aug. 10, 2010; U.S. Pat. No. 7,774,151, issued Aug. 10, 2010; U.S. Pat. No. 7,777,612, issued Aug. 17, 2010; U.S. Pat. No. 7,791,348, issued Sep. 7, 2010; U.S. Pat. No. 7,808,375, issued Oct. 5, 2010; U.S. Pat. No. 7,924,015, issued Apr. 12, 2011; U.S. Pat. No. 7,940,053, 15 issued May 10, 2011; U.S. Pat. No. 7,940,052, issued May 10, 2011; U.S. Pat. No. 7,959,476, issued Jun. 14, 2011; U.S. Pat. No. 7,977,914, issued Jul. 12, 2011; U.S. Pat. No. 7,999,505, issued Aug. 16, 2011; U.S. Pat. No. D643,759, issued Aug. 23, 2011; U.S. Pat. No. 8,164,343, issued Apr. 20 24, 2012; U.S. Pat. No. 8,198,900, issued Jun. 12, 2012; U.S. Pat. No. 8,203,345, issued Jun. 19, 2012; U.S. Pat. No. 8,237,448, issued Aug. 7, 2012; U.S. Pat. No. 8,306,690, issued Nov. 6, 2012; U.S. Pat. No. 8,344,685, issued Jan. 1, 2013; U.S. Pat. No. 8,436,619, issued May 7, 2013; U.S. Pat. 25 No. 8,442,877, issued May 14, 2013; U.S. Pat. No. 8,493, 022, issued Jul. 23, 2013; U.S. Pat. No. D687,727, issued Aug. 13, 2013; U.S. Pat. No. 8,513,949, issued Aug. 20, 2013; U.S. Pat. No. 8,674,654, issued Mar. 18, 2014; U.S. Pat. No. 8,674,711, issued Mar. 18, 2014; U.S. Pat. No. 30 8,704,483, issued Apr. 22, 2014; U.S. Pat. No. 8,738,309, issued May 27, 2014; U.S. Pat. No. 8,754,653, issued Jun. 17, 2014; U.S. Pat. No. 8,872,516, issued Oct. 28, 2014; U.S. Pat. No. 8,872,517, issued Oct. 28, 2014; U.S. Pat. No. 8,958,998, issued Feb. 17, 2015; U.S. Pat. No. 8,963,550, 35 issued Feb. 24, 2015; U.S. Pat. No. 9,018,958, issued Apr. 28, 2015; U.S. Pat. No. 9,052,366, issued Jun. 9, 2015; U.S. Pat. No. 9,201,120, issued Dec. 1, 2015; U.S. Pat. No. 9,229,062, issued Jan. 5, 20126; U.S. Pat. No. 9,244,100, issued Jan. 26, 2016; U.S. Pat. No. 9,255,955, issued Feb. 9, 40 2016; U.S. Pat. No. 9,274,157, issued Mar. 1, 2016; U.S. Pat. No. 9,312,575, issued Apr. 12, 2016; U.S. Pat. No. 9,335, 362, issued May 10, 2016; U.S. Pat. No. 9,425,487, issued Aug. 23, 2016; U.S. Pat. No. 9,419,311, issued Aug. 16, 2016; U.S. Pat. No. 9,496,720, issued Nov. 15, 2016; U.S. 45 Pat. No. 9,588,185, issued Mar. 7, 2017; U.S. Pat. No. 9,923,289, issued Mar. 20, 2018; U.S. Pat. No. 9,966,676, issued May 8, 2018; U.S. Pat. No. 10,046,649, issued Aug. 14, 2018; U.S. Pat. No. 10,222,397, issued Mar. 5, 2019; U.S. Pat. No. 10,317,468, issued Jun. 11, 2019; U.S. Pat. No. 50 10,429,449, issued Oct. 1, 2019; U.S. Pat. No. 10,473,555, issued Nov. 12, 2019; U.S. Pat. No. 10,608,353, issued Mar. 31, 2020; U.S. Pat. No. 10,843,574, issued Nov. 24, 2020; U.S. Pat. No. 11,054,480, issued Jul. 6, 2021; U.S. Pat. No. 11,325,479, issued May 10, 2022; U.S. Pat. No. 11,474,153, 55 issued Oct. 18, 2022; U.S. Pat. No. 11,486,930, issued Nov. 1, 2022; U.S. Pat. No. 11,513,160, issued Nov. 29, 2022; U.S. Pat. No. 11,545,839, issued Jan. 3, 2023; U.S. Pat. No. 11,548,404, issued Jan. 10, 2023; U.S. Pat. No. 11,566,972, issued Jan. 31, 2023; U.S. Ser. No. 09/780,146, filed Feb. 9, 60 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETER-MINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, 65 filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED

IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/880, 473, filed Jun. 13, 2001; entitled BATTERY TEST MOD-ULE; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT: U.S. Ser. No. 09/653,963, filed Sep. 1, 2000, entitled SYS-TEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Ser. No. 10/174, 110, filed Jun. 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Ser. No. 10/258,441, filed Apr. 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Ser. No. 10/681,666, filed Oct. 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Ser. No. 11/207,419, filed Aug. 19, 2005, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTER/CHARGING, U.S. Ser. No. 11/356,443, filed Feb. 16, 2006, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICA-TION; U.S. Ser. No. 12/697,485, filed Feb. 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/769, 911, filed Apr. 29, 2010, entitled STATIONARY BATTERY TESTER; U.S. Ser. No. 13/152,711, filed Jun. 3, 2011, entitled BATTERY PACK MAINTENANCE FOR ELEC-TRIC VEHICLE; U.S. Ser. No. 14/039,746, filed Sep. 27, 2013, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Ser. No. 14/565,589, filed Dec. 10, 2014, entitled BATTERY TESTER AND BATTERY REGISTRATION TOOL; U.S. Ser. No. 15/017,887, filed Feb. 8, 2016, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELEC-TRICAL SYSTEM; U.S. Ser. No. 15/049,483, filed Feb. 22, 2016, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 15/077,975, filed Mar. 23, 2016, entitled BATTERY MAINTENANCE SYSTEM; U.S. Ser. No. 15/149,579, filed May 9, 2016, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 16/021,538, filed Jun. 28, 2018, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Ser. No. 16/253,526, filed Jan. 22, 2019, entitled HIGH CAPAC-ITY BATTERY BALANCER; U.S. Ser. No. 16/297,975, filed Mar. 11, 2019, entitled HIGH USE BATTERY PACK MAINTENANCE: U.S. Ser. No. 17/086,629, filed Nov. 2, 2020, entitled HYBRID AND ELECTRIC VEHICLE BAT-TERY PACK MAINTENANCE DEVICE; U.S. Ser. No. 17/136,600, filed Dec. 29, 2020, entitled INTELLIGENT MODULE INTERFACE FOR BATTERY MAINTE-NANCE DEVICE; U.S. Ser. No. 17/364,953, filed Jul. 1, 2021, entitled ELECTRICAL LOAD FOR ELECTRONIC BATTERY TESTER AND ELECTRONIC BATTERY TES-TER INCLUDING SUCH ELECTRICAL LOAD; U.S. Ser. No. 17/504,897, filed Oct. 19, 2021, entitled HIGH CAPAC-ITY BATTERY BALANCER; U.S. Ser. No. 17/739,393, filed May 9, 2022, entitled HYBRID AND ELECTRIC VEHICLE BATTERY PACK MAINTENANCE DEVICE; U.S. Ser. No. 17/750,719, filed May 23, 2022, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 17/893,412, filed Aug. 23, 2022, entitled POWER ADAPTER FOR AUTOMOTIVE VEHICLE MAINTE-NANCE DEVICE; U.S. Ser. No. 18/166,702, filed Feb. 9, 2023, entitled BATTERY MAINTENANCE DEVICE WITH HIGH VOLTAGE CONNECTOR; all of which are incorporated herein by reference in their entireties.

There is an ongoing need for improved battery testing and diagnostic equipment.

SUMMARY

An electronic battery tester for testing a storage battery in an automotive vehicle includes first test circuitry configured to couple to the storage battery, apply a forcing function to the storage battery, measure a response of the storage battery to the applied forcing function and provide a battery test 10 output related to a condition of the battery based upon the response of the battery to the applied forcing function Starter voltage measurement circuitry electrically couples to a starter motor of the automotive vehicle and collects starter voltage profile information comprising a plurality of starter 15 voltage measurements obtained at different times while operating the starter motor. Second test circuitry receives the battery test output from the first test circuitry and the starter voltage profile information and provides an enhanced battery test output related to the condition of the battery based 20 upon the battery test output and the starter voltage profile information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified schematic diagram showing a battery maintenance system coupled to a battery of an automotive vehicle.

FIG. 2 is a simplified block diagram of the battery maintenance system of FIG. 1.

FIG. 3 is a graph of voltage versus time showing a starter voltage profile.

FIG. 4 illustrates a starter voltage profile data set stored with a battery condition data set.

FIG. **5** is a perspective view of the automotive battery ³⁵ diagnostic or maintenance system of FIG. **1** in accordance with one example embodiment.

FIG. 6 is a simplified block diagram of a system of FIG. 1.

FIG. 7 is a simplified block diagram of an amp clamp/ 40 current sensor.

FIG. 8 is a simplified block diagram of an OBDII communicator of FIG. 1.

FIG. 9 is a diagram showing Kelvin connectors of FIG. 1.

FIG. 10 is a simplified block diagram of a base station 45 shown in FIG. 1.

FIG. 11 is a simplified schematic diagram including measurement circuitry of the system of FIG. 1.

FIG. 12 is a simplified block diagram of a machine learning model training and a machine learning model 50 prediction in accordance with a further embodiment of the invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Battery testers are known in the art and used for performing tests on batteries of automotive vehicles. There are various testing technique that are known including physical chemical measurements as well as electronic battery testers. 60 Electronic battery testers generally use two primary techniques for measuring battery state of health and battery condition. One technique is to apply a load or a charge to the battery and observe how energy is removed from the battery, or added to the battery, to make a determination of battery 65 condition. Another technique is to apply a signal to the battery and watch a response of the battery to the applied

6

signal. As discussed in the Background section, Midtronics, Inc. along with Dr. Keith S. Champlin have pioneered the field of electronic battery testing. One technique employed is the application of a forcing function and the observation of the resultant change in a battery electrical dynamic parameter.

However, there is an ongoing need for improved accuracy of battery tests. The battery tests should preferably be able to be performed in a short period of time and deliver accurate results. With the present invention, data is collected from an automotive vehicle while a starter motor of the vehicle is engaged to start an engine of the vehicle. This additional data is used to provide a battery test result. The battery test result can be based solely upon the data collected during the starting sequence or may also include additional data such as additional battery test data, batter charging data, or battery discharging data. The data collected during starting of the vehicle provides a starting voltage profile, which includes voltage information along with time information. This starter voltage profile is then correlated with battery condition. In a more specific configuration, first test circuitry is used to couple to a storage battery of the vehicle, apply a forcing function to the storage battery of the vehicle and measure a response of the storage battery to the applied forcing function. This is used to provide a battery test output related to a condition of the battery. A starter voltage measurement circuit is electrically coupled to the starter motor of the automotive vehicle and collects starter voltage profile information comprising a plurality of starter voltage measurements obtained at different times during operation of the starter motor. Second test circuitry is then configured to receive the battery test output and the starter voltage profile information. The second test circuitry provides an enhanced battery test output related to the condition of the battery which has improved accuracy over the battery test output provided by the first test circuitry.

FIG. 1 is a simplified block diagram showing a battery maintenance system 100 coupled to an automotive vehicle 8. The automotive vehicle 8 is illustrated as a battery 10, a starter motor 14, an engine 16 and a starter relay switch 18. The vehicle 8 also includes an internal data bus illustrated as an OBDII data bus 20. The battery maintenance system 100 also includes an OBDII connector 12. As discussed more herein, battery maintenance system 100 performs electrical measurements on battery 10 using an electrical connection to the battery 10. To collect starter profile information, the starter relay 18 is closed, which provides an electrical connection to the starter motor 14. The starter motor 14 is caused to rotate thereby rotating the engine 16 allowing the engine 16 to start. During the starting sequence, data is collected by battery maintenance system 100 using the connection to battery 10. The profile information includes a plurality of measurements taken over a time period. This time period can include time both before the starter relay switch 18 is closed and after the starter relay switch 18 is opened. Example data measurements include voltage measurements. Another example data measurement is a current measurement, for example, obtained using an amp clamp (not shown in FIG. 1).

FIG. 2 is a simplified block diagram of battery maintenance system 100 including measurement circuitry 50 connected to storage battery 10. Measurement circuitry 50 provides outputs to first test circuitry 52 and starter voltage measurement circuitry 54. As discussed herein, the first test circuitry 52 can perform a battery test on the battery 10 using measurement circuitry 50 by applying a forcing function to the battery 10 and observing a resultant dynamic electrical

parameter of the battery 50. Starter voltage measurement circuitry also couples to measurement circuitry 50 and measures a voltage across the battery 10 while the starter motor 14 shown in FIG. 1 is operated. In one configuration, the device 100 determines that the starter motor is being 5 operated by observing a voltage drop in the measured voltage across the battery 10. In another example configuration, starting information is collected using the data bus 20 of the vehicle. Further, an operator can be prompted, for example using display 220 illustrated in FIG. 6, to engage 10 the starter motor. The collected profile data can comprise, for example, a series of data points collected over a period of time at variable or fixed time intervals. Second test circuitry 56 is configured to receive a battery test result from first test circuitry 52 along with the starter profile information provided by the starter voltage measurement circuitry 54. The second test circuitry provides an enhanced battery test output based upon the battery test result provided by the first test circuitry along with the starter voltage profile information provided by starter voltage measurement circuitry 54. 20 The second test circuitry 56 couples to a memory 60 which contains data which relates starter voltage profile information to a condition of battery 10. This data correlates voltages along with profile information such as rate of change of measured voltage, minimum and maximum volt- 25 age levels, the shape of the profile, etc., to the condition of battery 10. The second test circuitry can use this to verify the battery test determination provided by first test circuitry 52 or can use this information to improve the accuracy of the battery test information provided by first test circuitry 52. In 30 another example configuration, if the battery test result provided by first test circuitry 52 differs significantly from the battery condition determine obtained using the starter voltage profile information, second test circuitry can provide a battery test output based solely on the starter voltage 35 profile information.

FIG. 3 is a graph of voltage versus time and is an illustration of one example starter voltage profile. FIG. 3 shows a series of dots which represent individual samples of voltage at particular times. In this configuration, the time 40 between samples is evenly spaced. However, the data points need not be linearly spaced in time and can vary as desired. Additional data points can be used when the profile is changing rapidly to provide for greater accuracy. The voltage profile provides a number of different types of data. As 45 shown, the profile provides voltages both before the starter motor engages at time T1 as well as information after power is removed from the starter motor 14 by relay 18 at time T2. This allows information to be collected related to the rate at which the voltage drops when the starter motor is engaged 50 illustrated as a slope S1 along with information related to the rate of voltage recovery illustrated as slopes S2 and S3. Voltage minimums and/or maximums can also be collected. Further, operation of the starter motor 14 introduces noise on the voltage measurements which can be seen during time 55 period T3.

FIG. 4 shows an example of datasets stored in array 63 which can be kept in memory 60. The datasets include a series of starter motor voltage profile measurements indicated as profile 1, profile 2, profile 3, . . . profile N. These 60 profiles are a series of data points such as those discuss in connection with FIG. 3. If the data points are collected at fixed or known intervals, time information does not need to be stored. Also stored in array 63 is a dataset of battery condition information. This is indicated as battery condition 1, battery condition 2, battery condition 3, . . . battery condition N. The battery condition information is preferably

8

obtained from the same battery from which the starter voltage profile information was obtained. The battery condition information can be obtained using any battery testing technique and can comprise, for example, battery state of charge, battery state of health, a pass/fail determination, or other battery condition. This can be determined, for example, using a measurement of a dynamic parameter in response to an applied forcing function, a load test, a charge acceptance test, a chemical test, a test of a physical property such as specific gravity, or other testing techniques. In one specific configuration, measurement circuitry 50 shown in FIG. 2 is used to apply a load test to battery 10 in which a load is applied across the battery and battery voltage and current flow is monitored as the battery is discharged. This can be used to make an accurate assessment of the amount of charge stored in the battery 10 and also used to determine battery health information. In a similar test, measurement circuitry 50 is used to apply a charge to the battery 10 and charge acceptance is monitored in order to determine battery state of health and battery condition. The starter voltage profile information for the associated battery is also stored in the memory. The array 63 can include other parameters obtained during battery testing such as battery voltage, current draws, temperature, battery type, battery rating, etc. Thus, in one example configuration, a starter voltage profile is obtained as discussed above and compared with the various profiles stored in array 63. To determine the enhanced battery test output, a starter voltage profile is collected for a battery under test and a stored profile is selected which most closely matches the measured profile. The battery condition of the selected profile is identified and used to provide an enhanced battery test output indicative of the condition of the battery 10. The particular matching technique can be selected as desired and can be a technique which matches the voltages at various time sequences and identifies the profile which most closely matches. Other techniques include matching slopes or rates of change such as S1, S2 and S3 illustrated in FIG. 3. The amount of noise during the time period T3 and voltage minimums or maximums can also be used in the matching period.

The enhanced battery test output can be determined using any number of techniques, including machine learning. One example technique is a series of steps used to provide the output. For example, if the first battery test provides a battery dynamic conductance which indicates a good battery, but the starter voltage profile shows an unusually large voltage drop, a determination can be made that the battery is actually bad. The data set used to make these determinations can also include battery voltage, battery rating, temperature, current measurements, etc.

FIG. 5 is an exploded view of a battery maintenance system 100 in accordance with one example embodiment. Battery maintenance system 100 includes an electronic battery tester 102 and a base station 104. Base station 104 includes a base 106 and a cover or lid 108. In the configuration shown in FIG. 5, base station 104 is configured for portable operation, however, a fixed or less mobile base station configuration may also be employed.

The base station 104 includes a number of receiving areas 110A-D for receiving various components (or accessories) of the battery maintenance system 100. For example, battery tester 102 is received in receiving area 110A. FIG. 5 also illustrates an amp clamp (current sensor) 120 which is received in receiving area 110C, a OBDII communicator 122 which is received in receiving area 110B and Kelvin connectors 124 which are received in receiving area 110D.

Any number of battery maintenance tools or accessories may be contained in receptacles of the base station 104 and the invention is not limited to those specifically discussed herein. Additionally, the Kelvin connectors 124 are illustrated as being connected to a plug connector 111A. This 5 plug connector may be used for coupling the cabling to the battery tester 102. Additionally, the plug 111A may be plugged into a socket 111B carried in the base station 104. The socket 111B may be used in a configuration in which a battery carried within the base station 104 is used for jump 10 starting the vehicle. In another example configuration, battery testing circuitry, or other testing circuitry is carried in base station 104 and electrically coupled to Kelvin connectors 124 through plug 111A and socket 111B.

FIG. 6 is a simplified block diagram showing components 15 and circuitry of the electronic battery tester 102. Battery tester 102 includes a microprocessor 200 coupled to battery test circuitry 202. Battery test circuitry 202 may operate in accordance with any battery testing procedure and one example procedure is discussed below in more detail. Bat- 20 tery test circuitry 202 is shown as coupled to Kelvin connector circuitry 204 and amp clamp circuitry 206. Microprocessor also couples to a display 220 and user input/output 222. An additional input/output circuitry 224 is illustrated along with wireless input/output circuitry 226. Micropro- 25 cessor 200 operates in accordance with instructions stored in memory 230. A power supply 232 is illustrated and coupled to an optional battery 234. Power supply 232 may obtain power through the connection to a battery under test, may obtain power through internal battery 234, may obtain 30 power through the base station 104, or from some other source. In one configuration, battery 234 is charged when the battery tester 102 is coupled to a battery under test or when the battery tester 102 is coupled to base station 104.

In the configuration illustrated in FIG. 6, the various 35 components of the battery maintenance device 100 shown in FIG. 2 are implemented using a number of different blocks in the Figure. For example, measurement circuitry 50 can be implemented in block 202. This can include, for example, a forcing function, a voltage measurement circuit, and/or a 40 current measurement circuitry. The first test circuitry 52, starter voltage measurement circuitry 54 and second test circuitry 56 can be implemented in microprocessor 200. The memory 60 of FIG. 2 can be a wholly or partially implement in memory 230 of FIG. 6.

During operation, microprocessor 200 performs a test on a storage battery using connector circuitry 204 and optional amp clamp circuitry 206. The amp clamp circuitry 206 may also be used to test other electrical components of an automotive vehicle such as, for example, a starter motor. The 50 connection to the amp clamp 120 shown in FIG. 5 through amp clamp circuitry 206 may be a wired connection, or, for example, may be a wireless connection through wireless I/O 226. Wireless I/O circuitry 226 may also be used to communicate with the OBDII communicator 122 and/or base 55 station 104. Base station 104 may also be used to relay communications to another location, such as a centralized location.

The microprocessor 200 provides information to an operator using, for example, display 220 and may receive 60 commands or other user input through user I/O 222. I/O 224 may be used for communicating with other components or devices. For example, a remote printer may be accessed using circuitry 224. The microprocessor can communicate with the OBDII databus of the vehicle using the OBDII 65 communicator 122. For example, this information can be used to determine information about the vehicle under test,

10

information about usage of the vehicle under test, information about the storage battery of the vehicle or other information related to the vehicle. Further, the communicator 122 may be used to provide data signals onto the OBDII databus of the vehicle. This may also be used to store information or other parameters in the vehicle, or control operation of components of the vehicle.

FIG. 6 also illustrates tracking circuitry 240 which is used by circuitry in base station 104 to identify a location of the battery tester 102. For example, the tracking circuitry may include addressing information whereby base station 104 may identify a unique battery tester 102 when it is placed into the receiving area 110A of the base 106 shown in FIG. 5. Note that the receiving area 110A illustrated in FIG. 5 may also include an electrical connection for coupling to power supply 232 of the battery tester 102.

FIG. 7 is a simplified block diagram of amp clamp/current sensor 120. Sensor 120 includes a current probe 300 coupled to measurement circuitry 302. Probe 300 may operate in accordance with any appropriate technique for a particular use. Such techniques include inductive coupling, the use of a Hall Effect sensor, or some other technique including a shunt. Measurement circuitry provides an output to wireless I/O circuitry 304 related to the measured current. This information is transmitted wirelessly to the battery tester 102 shown in FIG. 6. The current sensor 120 includes a power supply circuit 310 for providing power to the device. An internal battery 312 may be used for storing power. The battery 312 may be charged, for example, through a connection through power supply 310 to the receiving area 110C of base station 104. Tracking circuitry 326 is also provided.

FIG. 7 also illustrates an optional optical sensor 320 carried by current sensor 120. Optical sensor 320 may be used to receive optical information such as, for example, information provided by a barcode. The optical sensor 320 can be used to read information from the vehicle, for example, a VIN identification number of the vehicle, as well as information related to various components of the vehicle including serial numbers carried on storage batteries or other components of the vehicle. In another example configuration, optical sensor 320 comprises an infrared sensor for use in sensing temperature of various components of the vehicle or other components. For example, battery temperature can be used as part of a battery test.

In another example configuration, the system 100 can be used for providing a jumpstart to a battery of a vehicle. In one such example configuration, the internal battery 234 of tester 102 is coupled to Kelvin connector circuitry 204 to apply a voltage to the battery for starting the vehicle using Kelvin connectors 124. In such a configuration, the battery 234 should be able to deliver sufficient current at a high enough voltage to activate the starter motor of the vehicle. For example, a rechargeable lithium battery may be employed. In another related configuration, a "memory saver" function is provided by system 100. This can be used if the battery of a vehicle is disconnected or removed from the vehicle in order to maintain the memory and other stored information within the vehicle. For example, the vehicle may be powered using battery 234 through the Kelvin connectors 124. Other connection mechanisms may also be employed such as, for example, a connection to the OBDII databus, a connection through a "cigarette lighter" of the vehicle, etc.

The tracking function discussed herein may also be used as a component of the testing function. For example, in order to ensure that all accessories are returned to their proper

location, the system 100 can be configured to only provide a test result once all of the accessories are returned to their proper location within the base station 104. Batteries or storage systems within the various components can store power during the testing process in which power is received 5 from the battery or the vehicle under test. Other charging techniques may also be employed such as, for example, through an electrical connection to the base station 104. The amp clamp 120 may also include additional electronic circuitry and input/output circuitry to perform tests of its own. For example, such circuitry can be used to provide an operator with information related to the amount of current being sensed during a particular operation of the vehicle. Other diagnostic functionality may also be implemented.

FIG. 8 is a simplified block diagram of the OBDII 15 communicator 122 shown in FIG. 5. Communicator 122 includes an OBDII interface 400 for connection to an OBDII data port of an automotive vehicle. This allows a two-way communication with the databus of the vehicle. Although an OBDII interface is illustrated, interface 400 may communi- 20 cate with any type of vehicle databus or the like. Communicator 122 includes a power supply 410 for use in providing power to the device. An internal battery 412 is used for powering the communicator 122. The battery of 412 may be charged, for example, when the communicator 122 is placed 25 in the receiving area 110B shown in FIG. 5. Wireless communication circuitry 420 is provided for use in wirelessly communicating with the battery tester 102. The wireless communication circuitry 420 may also be used to communicate with base station 104. Using this communi- 30 cation circuitry 420, the devices can communicate with the onboard databus of a vehicle using the OBDII interface 400. Tracking circuitry 430 is also provided and may include a unique address at which identifies the communicator 122. Further, the tracking circuitry 430 may be used by base 35 station 104 to identify positioning of the communicator 122 within the receiving area 110B.

FIG. 9 is a simplified diagram of Kelvin connectors 124 used to connect to battery 10. Kelvin connectors 124 include a pair of Kelvin connections 500, 502 each containing two 40 electrical connections. Kelvin connections 500, 502 may be configured in alligator clamps 504, 506, respectively, or the like. Cabling 510, 512 is used to provide a physical electrical connection to the battery tester 102 shown in FIG. 5. Tracking circuitry 520 may include a unique address for use 45 in identifying the Kelvin connector 124. This may also be used for determining placement of the Kelvin connector 124 into the receiving area 110D of the base station 104.

FIG. 10 is a simplified block diagram of base station 104. Base station 104 includes a microprocessor 600 optionally 50 connected to receptacles 110A-D. Using this optional connection, microprocessor 600 may use a physical connection to the tester 102, amp clamp 120, OBDII communicator 122 and Kelvin connectors 124 for communication. This may be for downloading parameters, programming the device, or for 55 other usage. Microprocessor 600 also couples to a communication hub 604. Communication hub 604 provides both wireless and wired communication. For example, information can be communicated to a remote location including a data "cloud", using wireless or wired communication tech- 60 niques including WiFi, cellular data transmission, hard wired Ethernet, Bluetooth®, etc. Communication hub 604 may also be used for wirelessly communicating with the various components of the system 100 including the battery tester 102, amp clamp 120, OBDII communicator 122 and 65 Kelvin connectors 124. Optional user input/output may also be provided for the communication hub, for example, for

displaying information or receiving a user input. Communication hub 604 may be used for communicating with a local device such as a printer as well as a portable user interface, for example, provided by a tablet computer, cellular phone, or other device including an application specific device. Microprocessor 600 is coupled to a memory 608 which is used to store programming instructions as well as store calibration parameters, etc. Further, test measurements or the like may be stored into the memory **608**. Base station 104 includes a power supply 610 used for powering components of the base station 104. Power supply 610 may also be used for recharging batteries carried by the battery tester 102, amp clamp 120, OBDII communicator 122 and Kelvin connectors 124. An optional battery 612 is provided for powering the base station 104 when an external power source is not available.

Base station 104 includes tracking circuitry 620. Tracking circuitry 620 is used to communicate with the tracking circuits carried within the various accessories of the system 100. In a specific example, the tracking circuitry 620 communicates with the tracking circuit 240 of battery tester 102, the tracking circuit 430 of OBDII 122, the tracking circuit 520 of Kelvin connectors 124 for determining when they are placed within their receiving areas 110A-110D of base station 104. Further, the various components may wirelessly communicate with tester 102 and/or base station 104.

FIG. 11 is a more detailed block diagram of battery tester 102 which includes a forcing function 740 and an amplifier 742 coupled to connectors 500. In the illustration of FIG. 7, connectors 500 are shown as Kelvin connections. The forcing function 740 can be any type of signal which has a time varying component including a transient signal. The forcing function can be through application of a load or by applying an active signal to a battery. A response signal is sensed by amplifier 742 and provided to analog to digital converter 744 which couples to microprocessor 200. Microprocessor 200 operates in accordance with instructions stored in memory 230. Microprocessor 200 can store data into memory 230.

Of course, the illustration of FIG. 11 is simply one simplified embodiment and other embodiments are in accordance with the invention. In the illustrated embodiment microprocessor 200 is configured to measure a dynamic parameter based upon the forcing function 740. This dynamic parameter can be correlated with battery condition as set forth in the above-mentioned Champlin and Midtronics, Inc. patents. However, other types of battery tests circuitry can be used in the present invention and certain aspects of the invention should not be limited to the specific embodiment illustrated herein. FIG. 11 also illustrates an input/output circuitry 222 which can be any other type of input and/or output coupled to microprocessor 46. For example, this can be used to couple to external devices or to facilitate user input and/or output. Although a microprocessor 200 is shown, other types of computational or other circuitry can be used to collect and place data into memory 230. Further, in one configuration, the forcing function 740 can be configured as a large electrical load for performing a load test. In another example configuration, the forcing function 740 provides a battery charging function is which charge is applied to the storage battery and monitored to determine battery condition.

Further, using the system set forth herein, a battery maintenance system which includes machine learning is provided. FIG. 12 is a simplified block diagram of a machine learning model training 700 and a machine learning model prediction 702 in accordance with a further embodiment of the invention. In such a configuration, the test equipment

100 set forth herein is configured to gather data such starter voltage profile information and battery condition information as shown in FIG. 4. The data then is analyzed and acted upon using machine learning techniques performed either locally, remotely, or in a hybrid fashion. As set forth in FIG. 5 12, the machine learning training mode includes gathering test data followed by exploratory data analysis. The collected data is cleaned if necessary to remove undesired data points. This cleaning function includes removing outlier data, data with excessive noise, etc. A feature engineer step is provided followed by a train and test machine learning model. The feature engineering step can be used to discard bad data. For example, an unusually cold temperature measurement obtained in a warm climate can be identified and discarded. Any appropriate feature engineering technique 15 can be used. The machine learning can be through known neural network or other machine learning techniques. The model is then evaluated but collecting additional starter voltage profile and battery condition information and comparing the results from the model with actual measured 20 battery conditions. Parameters are fine-tuned as desired. A model can then be deployed in service either locally at a test location, remotely at a cloud-based location for example, or in a hybrid combination of such locations.

Similarly, the system includes a machine learning model 25 prediction phase **702** once the model is sufficiently trained and put into service. In this phase, data is gathered and cleaned along with processed through a feature engineer. The data is then used to predict a battery test result or other test result including an alternator test result. This prediction 30 is then output as desired, for example this prediction can be output locally and/or transmitted to a remote location. The steps in accordance with the machine learning model training mode are set forth below in more detail:

Connect tester clamps to battery and perform a battery test 35 and starter test on a vehicle.

Send the battery test and starter test measurement and result data to a test database.

Record corresponding DCA (Dynamic Charge Acceptance) test if battery test result is charge and retest and 40 technician charges the battery on a charger.

Clean the data for bad data, missing data and outliers. Perform stratified sampling to ensure a good representation of all the decisions in the dataset are present.

Simplify from multiple decision types to a binary decision 45 type (Good battery, Bad battery).

Transform information into a format that can be interpreted by the machine learning model:

Convert starter data from a single cell colon separated data to an array format with multiple readings per 50 second

Feature engineer data to obtain information about battery health, for example, using the array format above to calculate the average voltage of the starter test

Transform additional data columns such as temperature to ensure they are in the consistent measurement unit.

Divide this simplified and transformed data into two sets of training data and test data.

Supply this training data to multiple Machine Learning algorithms for building the model.

Apply the ML model to the test data to measure the accuracy and cross validation score.

Evaluate the models for accuracy, sensitivity, specificity, 65 cross validation and log loss.

Fine tune model parameters.

14

Deploy the model to production for real-time battery decision prediction.

Retrain and redeploy the model with new data if the data distribution deviates significantly from the initial training set.

Similarly, once the machine learning model is deployed into service, a prediction model is implemented as follows:

Connect tester clamps to battery and perform battery and starter test.

Clean the measurement data for bad data, missing data and outliers. e.g., voltages above "x" volts or Temperatures above "y" Fahrenheit.

Transform the data in a format that can be interpreted by the machine learning model.

Convert starter data from a single cell colon separated data to an array format with multiple readings per second

Feature engineer the data e.g. using the array format above to calculate the average voltage of the starter test

Additional data columns such as temperature are transformed to ensure they are in the same measurement unit.

Supply transformed data to the machine learning model in production.

Return the predicted battery result to the tester/charger and data cloud.

The particular machine learning can be implemented using standard computer programming techniques which are known in the art such as neural networking techniques. The techniques can be used to test automotive vehicle batteries (including electric and hybrid vehicles), backup power supply batteries, etc., as well as components of automotive vehicles such as starter motors.

In one specific configuration, voltage is measured at a rate of 1000 samples per second. Any number of data points can be collected. In one embodiment, 513 data points are collected. If a training dataset is imbalanced, for example, having disproportionately high number of "good" battery tests compared to "bad" battery tests, the data can be balanced using known techniques. For example, stratified sampling can be used, SMOTE (Synthetic Minority Oversampling Technique) can be used, or others. Further, outlying data in standard deviations, mean and median voltage value, or other parameters can be discarded from the training model. Once a model is trained for example, using the XGBoost method, the model parameters such as Tree depth, minimum child weight, learning rate, etc., can be fine tuned.

Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. The devices described herein, in some embodiments, may be capable of wireless communication. The 55 particular wireless communication technique may be implemented as desired. Examples include Bluetooth® communication techniques, near field communication techniques, WiFi communication techniques, cellular communication techniques or others. The test performed by the battery tester 102 may be a function of information input by a user, or information received from other sources, such as the VIN of the vehicle. The VIN information may be obtained using a barcode scanner or through the connection to the OBDII databus. Based upon a particular vehicle, the battery test can be adjusted accordingly. The amp clamp 120 may be used in conjunction with the battery test, or may be used for performing other tests on the vehicle. Such tests include

measuring starter current, phantom current draws, charging current, etc. The testing and measurements circuits and components, along with memory and logic functionality, discussed herein can be implements in shared components and need not be discrete components. For example, the same 5 voltage sensor used to measure a dynamic parameter can be used to collect starter voltage profile information. The memories and logic functionalities illustrated and discussed herein can be implemented locally, remotely, or a combination of local and remote implementations. Although the starter voltage profile is described herein as voltage data, current data may also be used as the two parameters are related. For example, current flowing from the battery while the starter motor is engaged is related to a voltage drop across a series resistance, a voltage output from an amp clamp, etc. In one aspect, the machine learning model eliminates the need to charge the battery and retest the battery, thus reducing the required to complete a battery test.

What is claimed is:

1. An electronic battery tester for testing a storage battery ²⁰ in an automotive vehicle, comprising:

first test circuitry configured to couple to the storage battery, apply a forcing function to the storage battery, measure a response of the storage battery to the applied forcing function and provide a battery test output 25 related to a condition of the battery based upon the response of the battery to the applied forcing function; starter voltage measurement circuitry configured to electrically couple to a starter motor of the automotive vehicle and collect starter voltage profile information comprising a plurality of starter voltage measurements obtained at different times while operating the starter motor; and

second test circuitry configured to receive the battery test output from the first test circuitry and the starter voltage profile information and provide an enhanced battery test output related to the condition of the battery based upon the battery test output and the starter voltage profile information.

- 2. The electronic battery tester of claim 1 wherein the 40 starter voltage measurements comprise a voltage across a storage battery of the automotive vehicle.
- 3. The electronic battery tester of claim 1 including a connection to a databus of the vehicle.
- **4**. The electronic battery tester of claim **3** wherein the ⁴⁵ starter voltage measurements are obtained through the databus of the vehicle.
- **5**. The electronic battery tester of claim **1** including an output to prompt an operator to engage the starter motor of the vehicle.
- **6**. The electronic battery tester of claim **1** wherein the voltage measurements are obtained at fixed time intervals.
- 7. The electronic battery tester of claim 1 wherein the voltage measurements are obtained at variable time intervals.

16

- **8**. The electronic battery tester of claim **1** including a memory configured to store the starter voltage measurements.
- **9**. The electronic battery tester of claim **1** wherein the starter voltage measurements are used to determine a condition of the storage battery.
- 10. The electronic battery tester of claim 9 wherein the condition of the storage battery determines using the first test circuitry and the condition of the storage battery using the starter voltage measurement circuitry are compared for verification.
- 11. The electronic battery tester of claim 1 wherein the starter voltage measurements include a measurement obtained before the starter motor is engaged and a measurement obtained while the starter motor is engaged.
- 12. The electronic battery tester of claim 1 wherein the starter voltage profile information is compared with stored starter voltage profile information to determine a condition of the storage battery.
- 13. The electronic battery tester of claim 1 including a memory configured to store a plurality of starter voltage profile measurements.
- 14. The electronic battery tester of claim 13 wherein the plurality of stored starter voltage profile measurements are associated with a condition of the storage battery.
- 15. The electronic battery tester of claim 1 wherein the condition of the battery is further determined based upon a temperature.
- 16. The electronic battery tester of claim 1 wherein the condition of the battery is determined using the starter voltage profile information and machine learning implanted by the second test circuitry.
- 17. The electronic battery tester of claim 1 wherein the enhanced battery test output is a function of a slope in the starter voltage profile information.
- **18**. The electronic battery tester of claim **1** wherein the second test circuitry monitors noise present in the starter voltage profile information.
- 19. The electronic battery tester of claim 1 wherein if the battery test output from the first test circuitry indicates a good condition of the storage battery and the starter voltage profile information shows an unusually large voltage drop, the enhanced battery test output comprises a bad battery determination.
- 20. The electronic battery tester of claim 1 wherein the enhanced battery test output is further a function of current measurements.
- 21. The electronic battery tester of claim 1 wherein the second test circuitry discards starter voltage measurements which are determined to be bad data.
- 22. The electronic battery tester of claim 1 including communication circuitry to communicate the starter voltage profile information to a remote location for training of machine learning.

* * * * *