Camilo Campaz Jimenez Daniel Esteban Jaraba Gabiria Johan Stiven Ricardo Sibaja

DISEÑOS DE PRUEBAS UNITARIAS

Clase de gráfico:

Nombre	Clase	Etapa
configuraci ón1	Gráfico	Un grafo no dirigido sin vértices

Nombre	Clase	Etapa
configurac	Gráfico	Grafo grafo
ión2		vertices del grafo
		={1,2,3,4}
		Grafo dirigido = falso

Nombre	Clase	Etapa
configurac ión3	Gráfico	5 6 10 3

Nombre	Clase	Etapa
--------	-------	-------

configurac	Gráfico	Gráfico gráfico			
ión4		Vértices del grafico = {1,2,3} gráfico. Dirigido=verdadero			

Objetivo de la prueba: Verificar si el método addVertice() es capaz de establecer nuevos vértices en el grafo en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	addVert ice ()	configuració n1	clave = 1	Verdadero, lo que significa que el vértice se agregó al gráfico. Esto se verifica buscando el valor del nuevo vértice en el gráfico

Objetivo de la prueba: Verificar si el método existVertice() es capaz de establecer nuevos vértices en el grafo en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	existVer tice ()	configuració n1	clave = 8	Cierto, lo que significa que el valor de no pertenece al conjunto de vértices del gráfico

Objetivo de la prueba : Comprobar Sí el método addEdge() es capaz de establecer nuevas aristas en el gráfico en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	addEdg y()	configuración2	sourceKey =1 endkey =2 peso = 5	Cierto, lo que significa que si consultamos los nuevos valores de la arista en la gráfica podremos encontrarlos

Objetivo de la prueba: Verificar si el método addEdge() es capaz de establecer nuevas aristas en el gráfico en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	addEdg y()	configuració n4	sourceKey =1 endkey =2 peso = 5	Cierto, lo que significa que si consultamos los nuevos valores de la arista en la gráfica podremos encontrarlos

Objetivo de la prueba: Verificar si el método edit() es capaz de establecer nuevos valores para cualquier vértice o peso en el gráfico en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	editar()	configuració n3	clave = 1 newValue = 0	Falso, lo que significa que si buscamos el valor antiguo para el vértice no existirá ya que ese valor se actualizó

Objetivo de la prueba: Verificar si el método edit() es capaz de establecer nuevos valores para cualquier vértice o peso en el gráfico en un contexto específico

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	editar()	configuración 3	clave = 1 Nuevo valor = 20 valor antiguo = 10	Verdadero, lo que significa que se ha actualizado el valor seleccionado

Objetivo de la prueba: Verificar si el método prim() es capaz de encontrar la ruta más corta

Clase	Método	Etapa	Valores de	Result
			entrada	ado

Gráfico	prime()	configuració n5	clave = 1	Verdadero, lo que significa que la comparación de la ruta esperada es la misma que la ruta dada por el código

Objetivo de la prueba: Verificar si el método floyWarshall() es capaz de encontrar el entre cada par de vértices

Clase	Método	Etapa	Valores de entrada	Result ado
Gráfico	floyWa rshall()	configuració n3	V = 4 s = 1 v = 3	Verdadero, lo que significa que la comparación de la ruta esperada es la misma que la ruta dada por el código

Administrador de clase:

Nombre	Clase	Etapa		
configurac ión1	Director	Esta clase tiene un grafo conectado con 56 vértices que representan todas las estaciones MIO con su respectivo peso. Toda esta información es dada por un archivo csv		

Objetivo de la prueba: Verificar si el método bestRoutel() es capaz de encontrar la mejor ruta de una estación a otra

Clase	Método	Etapa	Valores de entrada	Result ado
Gestió	bestRo	configuració	valor1 = 26	Verdadero, lo que significa que la comparación de la ruta esperada es la misma que la ruta dada por el código
n	utel()	n1	valor2 = 43	