Teoremes de FVC

Francesc Pedret

February 8, 2021

Continguts

L	Teo	ria loca	al de Cauchy	1
	1.1	Definio	cions	1
		1.1.1	Integral de línia sobre Γ	1
		1.1.2	Conjunts discrets	1
		1.1.3	Funció analítica	1
	1.2	Teoren	nes	1
		1.2.1	Teorema de Darboux	1
		1.2.2	Teorema del gradient (complex)	1
		1.2.3	Teorema de Green-Stokes complex	2
		1.2.4	Teorema de Cauchy-Gousart	2
		1.2.5	Teorema d'existència local de primitives	2
		1.2.6	Fórmula de Cauchy en un disc	2
		1.2.7	Existència de sèries de potències de funcions holomorfes	2
		1.2.8	Equivalències de les funcions holomorfes	3
		1.2.9	Teorema de Morera	3
		1.2.10	Principi de continuació o prolongació analítica	3
		1.2.11	Numerabilitat dels conjunts discrets	3
		1.2.12	Ordre de zero en un punt	4
		1.2.13	Les sèries de potències són analítiques	4

		1.2.14	Designaltat de Cauchy	4
		1.2.15	Teorema de Liouville	4
		1.2.16	Teorema fonamental de l'àlgebra	4
		1.2.17	Caràcter assimptòtic dels polinomis	4
		1.2.18	Exhaustivitat dels polinomis	5
		1.2.19	Exhaustivitat de les funcions enteres	5
		1.2.20	Propietat del valor mig	5
		1.2.21	Principi del màxim fort i del màxim feble	5
		1.2.22	Principi del mínim fort	5
		1.2.23	Teorema de l'aplicació oberta	5
		1.2.24	Teorema de la funció inversa	5
		1.2.25	Existència local del logaritme	6
		1.2.26	Teorema $f(z) = f(z_0) + (\psi(z))^m \dots \dots \dots \dots \dots$	6
2	Teo	ria Glo	obal de Cauchy	6
	2.1	Definio	ions	6
		2.1.1	Índex de Γ respecte de a	6
		2.1.2	Cadena	7
		2.1.3	Integral de f sobre una cadena	7
		2.1.4	Índex d'un cicle	7
		2.1.5	Noció d'homòleg	7
		2.1.6	Camins homòtops	7
		2.1.7	Singularitats aïllades	8
		2.1.8	Residu d'una singularitat aïllada d'una funció holomorfa	8
		2.1.9	Funcions meromorfes	8
		2.1.10	Conjunts simplement connexos	8
	2.2	Teoren	nes	9
		2.2.1	Sobre l'índex de Γ respecte de a	9
		2.2.2	Determinació contínua de $\gamma(t)-a$	9
		2.2.3	Els camins homòtops són homòlegs	9

2.2.4	Teorema de Cauchy global	9
2.2.5	Conseqüències de les singularitats aïllades	9
2.2.6	Teorema de les sèries de Laurent	10
2.2.7	Teorema dels residus	10
2.2.8	Càlcul efectiu de residus	10
2.2.9	Principi de l'argument	10
2.2.10	Teorema de Rouché	11
2.2.11	Caracteritzacions conjunts simplement connexos	11

1 Teoria local de Cauchy

1.1 Definitions

1.1.1 Integral de línia sobre Γ

Definició 1. Sigui 1) $f: \Omega \subset \mathbb{C} \to \mathbb{C}$, 2) Γ un arc de corba en Ω que 3) admet una parametrització $\gamma: [a,b] \to \mathbb{C}$ 4) C^1 a trossos (orientada). Es defineix la integral de línia sobre f com:

$$\int_{\Gamma} f := \int_{a}^{b} (f \circ \gamma)(x) \gamma'(x) dx$$

1.1.2 Conjunts discrets

Definició 2. Un conjunt E és discret si $E' = \emptyset$, és a dir, si tots els seus punts són aillats.

1.1.3 Funció analítica

Definició 3. Sigui 1) $f: \Omega \subset \mathbb{C} \to \mathbb{C}$. Direm que f és analítica en Ω si $\forall z_0 \in \Omega$ existeix $r \in \mathbb{R}^+$ i una successió $a_n(z_0)$ tal que:

$$f(z) = \sum_{n \ge 0} a_n (z - z_0)^n \ \forall z \in D(z_0, r)$$

1.2 Teoremes

1.2.1 Teorema de Darboux

Teorema 1. $\left| \int_{\Gamma} f \right| \leq \sup_{z \in \Gamma} \left\{ |f(z)| \right\} \cdot long(\Gamma)$

1.2.2 Teorema del gradient (complex)

Teorema 2. Sigui 1) $\Omega \in \mathbb{C}$ obert i 2) $F \in H(\Omega)$. Sigui 3) Γ un arc 4) regular en Ω 5) d'extrems z_0, z_1 . Aleshores,

$$\int_{\Gamma} F' = F(z_1) - F(z_0)$$

1.2.3 Teorema de Green-Stokes complex

Teorema 3. Sigui 1) Ω obert, 2) $f \in C^1$, 3) R un rectangle i 4) ∂R^+ la seva frontera orientada positivament. Aleshores,

$$\int \int_{R} \frac{\partial f}{\partial \bar{z}} dx dy = \frac{1}{2i} \int_{\partial R^{+}} f(z) dz$$

1.2.4 Teorema de Cauchy-Gousart

Teorema 4. Sigui 1) Ω obert, 2) $\omega \in \Omega$, 3) $f \in \mathcal{C}(\Omega) \cap H(\Omega \setminus \omega)$. Sigui 4) R un rectangle totalment contingut en Ω . Aleshores,

$$\int_{\partial R^+} f = 0$$

1.2.5 Teorema d'existència local de primitives

Teorema 5. Sigui 1) Ω obert i 2) $z_0 \in \Omega$. Sigui 3) r > 0 tal que $D := B_r(z_0) \subset \Omega$. Sigui 4) $\omega \in D$ i 5) $f \in \mathcal{C}(D) \cap H(D \setminus \omega)$. Aleshores, existeix $F \in H(D)$ tal que F' = f; en particular, per a tot camí tancat $\Gamma \subset D$

$$\int_{\Gamma} f = 0$$

1.2.6 Fórmula de Cauchy en un disc

Teorema 6. Sigui 1) $D \in \Omega$ un disc i 2) $f \in H(D) \cap C(\bar{D})$. Aleshores, $\forall \omega \in D$, tenim:

$$f(\omega) = \frac{1}{2\pi i} \int_{\partial D^+} \frac{f(z)}{z - \omega} dz$$

1.2.7 Existència de sèries de potències de funcions holomorfes

Teorema 7. Sigui 1) $\Omega \in \mathbb{C}$ obert, 2) D un disc de centre z_0 tal que $\bar{D} \in \Omega$ i 3) $f: \Omega \to \mathbb{C}$ tal que 4) $f \in H(\Omega)$. Aleshores, f admet una representació en sèrie de potències de la forma $f(z) = \sum_{n\geq 0} c_n(z-z_0)^n \ \forall z \in D$. En particular, $f \in C^{\infty}(\Omega)$ i les seves derivades compleixen $f^{(n)} \in H(\Omega)$. A més,

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\partial D^+} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Corol·lari 7.1. Si $f \in H(\Omega)$, aleshores $f \in C^{\infty}(\Omega)$ i $f^{(k)} \in H(\Omega)$ i, per a tot disc $D(z_0, r)$, f admet una representació en sèrie de potències:

$$f(z) = \sum_{n \ge 0} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

1.2.8 Equivalències de les funcions holomorfes

Proposició 1. Siqui 1) Ω obert i 2) $f \in C(\Omega)$. Són equivalents:

- $f \in H(\Omega)$
- f admet representació en sèrie de potències en tot disc contingut en Ω
- f té primitiva F_D en tot disc $D \subset \Omega$
- Per a tot rectangle tancat $R \subset \Omega$ es té $\int_{\partial R^+} f = 0$
- $f \in C^1(\Omega)$ i $df(z_0)$ és \mathbb{C} -lineal per a tot $z_0 \in \Omega$. f compleix Cauchy-Riemann.
- $f \in C^1(\Omega)$ i f és una aplicació conforme (si f no és constant).
- En tot disc $D \subset \Omega$ es té la següent fórmula de representació:

$$f(\omega) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{z - \omega} dz \ \forall \omega \in D$$

1.2.9 Teorema de Morera

Teorema 8. Sigui 1) $\Omega \subset \mathbb{C}$ obert i 2) $f : \Omega \to \mathbb{C}$ 3) contínua. Aleshores, $f \in H(\Omega) \Leftrightarrow \forall \Delta \subset \Omega$ triangle tancat es compleix $\int_{\Delta} f = 0$.

1.2.10 Principi de continuació o prolongació analítica

Teorema 9. Sigui 1) $\Omega \subset \mathbb{C}$ un domini i 2) $f \in H(\Omega)$. Sigui 3) U un obert no buit tal que 4) $f|_U \equiv 0$. Aleshores $f \equiv 0$ en Ω .

1.2.11 Numerabilitat dels conjunts discrets

Proposició 2. Tot conjunt discret en \mathbb{C} és numerable.

1.2.12 Ordre de zero en un punt

Teorema 10. Sigui 1) Ω domini, 2) $f \in H(\Omega)$, 3) $f \not\equiv 0$. Sigui 4) $E = \{z \in \Omega | f(z) = 0\}$ el conjunt de zeros en Ω . Aleshores, E és un conjunt discret (en concret, numerable) $i \forall a \in E \exists ! m \in N \ tal \ que \ f(z) = (z-a)^m g(z), \ on \ g \in H(\Omega) \ i \ g(a) \not= 0. \ m \ s'anomena l'ordre del zero en <math>a$.

Corol·lari 10.1. Sigui 1) Ω un domini, 2) $f, g \in H(\Omega)$. Si $\{z \in \Omega | f(z) = g(z)\}$ té algun punt d'acumulació, aleshores $g \equiv f$ en Ω .

1.2.13 Les sèries de potències són analítiques

Proposició 3. Sigui 1) $f(z) = \sum_{n\geq 0} a_n(z-z_0)^n$ amb 2) radi de convergència R. Aleshores, f és analítica en $D(z_0, R)$.

1.2.14 Designaltat de Cauchy

Teorema 11. Sigui 1) $f \in H(B(z_0, R))$. 2) Per a tot 0 < r < R, definim $M(r) = \sup_{|z-z_0|=0} |f(z)|$. Aleshores, per a tot $n \in \mathbb{N}$ tenim:

$$|f^{(n)}(z_0)| \le n! M(r) r^{-n}$$

1.2.15 Teorema de Liouville

Teorema 12. Si 1) $f \in H(\mathbb{C})$ i 2) f fitada, aleshores $f \equiv 0$ en \mathbb{C} .

1.2.16 Teorema fonamental de l'àlgebra

Teorema 13. Sigui 1) $p(z) = a_0 + a_1 z + \cdots + a_n z^n$, $a_n \neq 0$, $a_j \in \mathbb{C}$ un polinomi de grau $n \geq 1$. Aleshores, p té un 0 en \mathbb{C} .

1.2.17 Caràcter assimptòtic dels polinomis

Proposició 4. Sigui 1) $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ un polinomi de grau n amb 2) coeficients complexos. Aleshores, existeix $R \in \mathbb{R}$ tal que $\frac{1}{2} |a_n| |z|^n \le p(z) \le \frac{3}{2} |a_n| |z|^n$.

1.2.18 Exhaustivitat dels polinomis

Proposició 5. Sigui 1) $p(z) = a_0 + \cdots + a_n z^n$ un polinomi de grau n amb 2) coeficients complexos. Sigui 3) $\alpha \in \mathbb{C}$. Aleshores, existeix $z_1 \in \mathbb{C}$ tal que $p(z_1) = \alpha$.

1.2.19 Exhaustivitat de les funcions enteres

Teorema 14. Sigui 1) $f \in H(\mathbb{C})$, 2) $f \neq cte$. Aleshores, f prèn qualsevol valor $\alpha \in \mathbb{C}$ almenys un cop excepte, com a màxim, un valor $\alpha_0 \in \mathbb{C}$.

1.2.20 Propietat del valor mig

Teorema 15. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $f \in H(\Omega)$, 3) $\overline{B_r(z_0)} \subset \Omega$. Aleshores,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

1.2.21 Principi del màxim fort i del màxim feble

Teorema 16. Sigui 1) $\Omega \subset \mathbb{C}$ domini, 2) $f \in H(\Omega)$ i 3) $z_0 \in \Omega$ tal que 4) $|f(z_0)| = \sup\{|f(z)| | z \in \Omega\}$. Aleshores, $f \equiv cte$.

Corol·lari 16.1. Sigui 1) $\Omega \subset \mathbb{C}$ obert i fitat, 2) $f \in H(\Omega) \cap C(\overline{\Omega})$. Aleshores, $\sup\{|f(z)| : z \in \Omega\} = \sup\{|f(z)| : z \in \partial\Omega\}$.

1.2.22 Principi del mínim fort

Teorema 17. Sigui 1) $\Omega \subset \mathbb{C}$ domini, 2) $f \in H(\Omega)$, 3) $f(z) \neq 0 \ \forall z \in \Omega$. Suposem que 4) $\exists z_0 \ tal \ que \ |f(z_0)| = \min_{z \in \Omega} |f(z)|$. Aleshores, $f \equiv cte \ en \ \Omega$.

1.2.23 Teorema de l'aplicació oberta

Teorema 18. Sigui 1) $\Omega \subset \mathbb{C}$ domini, 2) $f \neq cte$. Aleshores, f és una aplicació oberta.

1.2.24 Teorema de la funció inversa

Teorema 19. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $f \in H(\Omega)$. Si 3) $z_0 \in \Omega$ és tal que $f'(z_0) \neq 0$, aleshores existeix r > 0 tal que:

• $f(B_r(z_0))$ és obert, $f|_{B_r(z_0)}$ és injectiva.

•
$$\exists f^{-1} \in H(f(B_r(z_0))) \ i, \ si \ w \in f(B_r(z_0)), \ aleshores \ (f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}.$$

1.2.25 Existència local del logaritme

Lemma 1. Sigui 1) $D \subset \Omega \subset \mathbb{C}$ un disc obert i 2) $f \in H(D)$ amb $f(z_0) \neq 0 \ \forall z \in D$. Aleshores existeix $h \in H(D)$ (no única) tal que $e^h = f$ i $h' = \frac{f'}{f}$.

Corol·lari 19.1. Sota les mateixes hipòtesis, $\forall \alpha \in \mathbb{C} \setminus \{0\}$, existeix $g \in H(D)$ tal que $g^{\alpha} = f$.

1.2.26 Teorema $f(z) = f(z_0) + (\psi(z))^m$

Teorema 20. Sigui 1) $\Omega \subset \mathbb{C}$ un domini, 2) $f \in H(\Omega)$, 3) $f \neq cte$, 4) $z_0 \in \Omega$. Sigui 5) m l'ordre de 0 de $f(z) - f(z_0)$ en $z = z_0$. Aleshores, existeixen $U \subset \Omega$ un entorn de z_0 , $\psi \in H(U)$ i r > 0 tals que:

- $f(z) = f(z_0) + (\psi(z))^m, \forall z \in U, \psi(z_0) = 0.$
- $\psi'(z) \neq 0 \ \forall z \in U \ i \ \psi : U \to B_r(0) \ bijectiva.$

2 Teoria Global de Cauchy

2.1 Definitions

2.1.1 Índex de Γ respecte de a

Definició 4. Sigui 1) $\Gamma \in \mathbb{C}$ un camí 2) tancat i orientat i 3) sigui $a \in \mathbb{C} \setminus \Gamma$. S'anomena índex de Γ respecte del punt a (o número de rotació de Γ respecte de a) a la següent quantitat:

$$n(\Gamma, a) := \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z - a}$$

2.1.2 Cadena

Definició 5. Siguin 1) $\Gamma_1, \ldots, \Gamma_n$ corbes 2) C^1 a trossos i 3) $m_1, \ldots, m_n \in \mathbb{Z}$. S'anomena cadena a la suma formal $\Gamma := m_1\Gamma_1 + \cdots + m_n\Gamma_n$. Si $\Gamma_1, \ldots, \Gamma_n$ són tancades, aleshores Γ s'anomena cicle.

2.1.3 Integral de f sobre una cadena

Definició 6. Sigui 1) $\Gamma \subset \mathbb{C}$ una cadena i $f : \Gamma \to \mathbb{C}$ una funció (definida a $\Gamma_1, \ldots, \Gamma_n$), definim:

$$\int_{\Gamma} f = m_1 \int_{\Gamma_1} f + \dots + m_n \int_{\Gamma_n} f$$

2.1.4 Índex d'un cicle

Definició 7. Sigui 1) $\Gamma \subset \mathbb{C}$ un cicle i 2) $a \in \mathbb{C} \setminus \Gamma$. S'anomena índex de Gamma respecte de a a:

$$n(\Gamma, a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - a} dz$$

2.1.5 Noció d'homòleg

Definició 8. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $\Gamma \subset \Omega$ un cicle. Direm que Γ és homòleg a 0 en Ω si $\forall a \in \mathbb{C} \setminus \Omega$ es té $n(\Gamma, a) = 0$. Escriurem $\Gamma \sim 0$ en Ω . Si Γ_1, Γ_2 són cicles amb les mateixes hipòtesis que Γ , direm $\Gamma_1 \sim \Gamma_2$ en Ω si $\Gamma_1 - \Gamma_2 \sim 0$ en Ω .

2.1.6 Camins homòtops

Definició 9. Siguin 1) Γ_0 , Γ_1 camins tancats a 2) $\Omega \subset \mathbb{C}$. Siguin 3) γ_0 , $\gamma_1 : [0,1] \to \Omega$ parametritzacions contínues de Γ_0 i Γ_1 . Aleshores, diem que Γ_0 i Γ_1 són homòtops en $\Omega \subset \mathbb{C}$ si es poden deformar l'un en l'altre de forma contínua a Ω , és a dir, si existeix $F : [0,1] \times [0,1] \to \Omega$ tal que:

- $F \in \mathcal{C}^0$
- $F(0,t) = \gamma_0(t) \ \forall t \in [0,1]$
- $F(1,t) = \gamma_1(t) \ \forall t \in [0,1]$

• $F(s,1) = F(s,0) \ \forall s \in [0,1]$

2.1.7 Singularitats aïllades

Definició 10. Sigui 1) $\Omega \subset \mathbb{C}$ un domini, 2) $f \in H(\Omega \setminus \{a_1, a_2, ...\})$ on $\{a_1, a_2, ...\}$ és una successió (finita o infinita) de punts. Si aquesta successió compleix que 3) són punts aïllats en Ω i 4) no hi ha cap punt d'acumulació en Ω i les classificarem de la següent manera:

- Direm que a és una singularitat evitable si $\exists \lim_{z\to a} f(z)$.
- Direm que a és un pol si $\lim_{z\to a} f(z) = \infty$ ($\Leftrightarrow \lim_{z\to a} |f(z)| = +\infty$).
- Direm que a és una singularitat essencial si $\not\exists \lim_{z\to a} f(z)$.

2.1.8 Residu d'una singularitat aïllada d'una funció holomorfa

Definició 11. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $f \in H(\Omega)$ i 3) $a \in \mathbb{C}$ una singularitat aillada de f. Aleshores, es defineix el residu de f en a com:

$$Res(f, a) = \frac{1}{2\pi i} \int_{\partial D_{\sigma}(a)^{+}} f(z)dz$$

on $\epsilon > 0$ és tal que $D_{\epsilon}(a) \setminus \{a\}$ no conté cap altra singularitat aillada de f.

2.1.9 Funcions meromorfes

Definició 12. Sigui 1) $\Omega \subset \mathbb{C}$ obert i 2) $f \in H(\Omega \setminus \{a_j\}_{j \in J})$ on 3) $\{a_j\}_{j \in J}$ és una successió finita o numerable de singularitats aïllades de f. Es diu que f és una funció meromorfa en Ω si les singularitats són de tipus pol.

2.1.10 Conjunts simplement connexos

Definició 13. Sigui 1) $\mathbb{C}^{\infty} = \mathbb{C} \cup \{\infty\}$ la compactificació d'Alexandroff de \mathbb{C} per un punt. Direm que $\Omega \subset \mathbb{C}$ és simplement connex si $\mathbb{C}^{\infty} \setminus \Omega$ té una única component connexa.

2.2 Teoremes

2.2.1 Sobre l'índex de Γ respecte de a

Teorema 21. Sigui 1) Γ un camí tancat i orientat de \mathbb{C} . Aleshores, $n(\Gamma, \cdot) : \mathbb{C} \to \mathbb{Z}$ i és constant a cada component connexa de $\mathbb{C} \setminus \Gamma$. A més, val 0 a la component connexa no fitada. Si les corbes són tancades, s'anomena cicle.

2.2.2 Determinació contínua de $\gamma(t) - a$

Lemma 2. Sigui 1) $\gamma:[0,1] \to \mathbb{C}$ una parametrització contínua d'un camí $\Gamma \subset \mathbb{C}$. Sigui 2) $\alpha \in \mathbb{C} \setminus \Gamma$. Aleshores, existeix una funció $\theta:[0,1] \to \mathbb{R}$ (no única) que dóna una determinació contínua de l'argument de $\gamma(t) - a$, amb $\theta(1) - \theta(0) = 2\pi k$ per a $k \in \mathbb{Z}$. Finalment, $\log(\gamma(t) - a) = \ln(|\gamma(t) - a|) + i\theta(t)$ és una determinació contínua de $\log(\gamma(t) - a):[0,1] \to \mathbb{C}$.

2.2.3 Els camins homòtops són homòlegs

Proposició 6. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $\Gamma_0, \Gamma_1 \subset \Omega$ camins tancats. Aleshores, $\Gamma_0 \approx \Gamma_1 \Rightarrow \Gamma_0 \sim \Gamma_1$.

2.2.4 Teorema de Cauchy global

Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $f \in H(\Omega)$ i 3) un cicle $\Gamma \subset \Omega$ tal que 4) $\Gamma \sim 0$ en Ω . Aleshores,

- $\int_{\Gamma} f(z)dz = 0$ (teorema integral de Cauchy global).
- $\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-a} dz = n(\Gamma, a) \cdot f(a) \ \forall a \in \Omega \setminus \Gamma \ (\textit{fórmula integral de Cauchy global}).$
- $\frac{k!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^{k+1}} dz = n(\Gamma, a) \cdot f^{(k)}(a) \ \forall a \in \Omega \setminus \Gamma, k \ge 0.$

2.2.5 Conseqüències de les singularitats aïllades

Proposició 7. Sigui 1) $a \in \mathbb{C}$, 2) $D_r(a)$ amb r > 0 i 3) $f \in H(D_r(a) \setminus \{a\})$. Aleshores,

• Si a és una singularitat evitable, f admet una prolongació holomorfa en z = a amb $f(a) = \lim_{z \to a} f(z)$.

• Si a és un pol, aleshores $f(z) = (z - a)^{-m}h(z)$, on h és holomorfa en un entorn de a i $h(a) \neq 0$.

• Si a és una singularitat essencial, aleshores, $\forall \epsilon > 0$, $f(D_{\epsilon}(a) \setminus \{a\})$ és dens en \mathbb{C} .

2.2.6 Teorema de les sèries de Laurent

2.2.7 Teorema dels residus

Teorema 23. Sigui 1) $\Omega \subset \mathbb{C}$ obert, 2) $f \in H(\Omega \setminus \{a_j\}_{j \in J})$ on 3) $\{a_j\}_{j \in J}$ és una successió finita o numerable de singularitats aïllades en Ω . Sigui 4) $\Gamma \subset \Omega$ un cicle homòleg a 0 en Ω i tal que 5) $a_j \notin \Gamma \ \forall j \in J$. Aleshores,

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{j \in J} n(\Gamma, a_j) Res(f, a_j)$$

2.2.8 Càlcul efectiu de residus

Proposició 8. Sigui 1) $\Omega \subset \mathbb{C}$, 2) $a \in \mathbb{C}$, 3) $f \in H(\Omega \setminus \{a\})$ de manera que a és un pol de f. Aleshores,

- Si k = 1: aleshores $Res(f, a) = \lim_{z \to a} (z a) f(z)$.
- Si k > 1: aleshores $Res(f, a) = \frac{1}{(k-1)!} \lim_{z \to a} \frac{d^{k-1}}{dz^{k-1}} ((z-a)^k f(z))$

2.2.9 Principi de l'argument

Teorema 24. Sigui 1) $\Omega \subset \mathbb{C}$ i 2) f meromorfa en Ω . Siguin 3) els zeros $\{a_i\}_{i\in I}$ i 4) els pols $\{b_i\}_{j\in J}$ de f. Sigui 5) $\Gamma \subset \mathbb{C}$ un cicle homòleg a 0 en Ω i tal que 6) $a_i, b_j \notin \Gamma$.

Aleshores,

$$n(f(\Gamma), 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{i \in I} n(\Gamma, a_i) m_{a_i} - \sum_{j \in J} n(\Gamma, b_j) k_{b_j}$$

On m_{a_i} és l'ordre de 0 de a_i i k_{b_i} és l'ordre del pol b_j .

2.2.10 Teorema de Rouché

Corol·lari 24.1. Sigui 1) $\Omega \subset \mathbb{C}$ obert, $2)\Gamma \subset \Omega$ un cicle homòleg a 0 en Ω i tal que 3) $\forall z \in \Omega \setminus \Gamma$ es té $n(\Gamma, z) = 0$ o bé $n(\Gamma, z) = 1$. Siguin 4) $f, g \in H(\Omega)$ tals que $|f(z) - g(z)| \leq |f(z)| \ \forall z \in \Gamma$. Aleshores, f i g tenen el mateix nombre de zeros (comptats amb la seva multiplicitat) encerclats per Γ .

2.2.11 Caracteritzacions conjunts simplement connexos

Proposició 9. Siqui 1) $\Omega \subset \mathbb{C}$ un domini. Són equivalents:

- Ω és simplement connex.
- Per a tot cicle Γ contingut en Ω es té $\Gamma \sim 0$ en Ω .
- Per a tota $f \in H(\Omega)$ existeix $F \in H(\Omega)$ primitiva holomorfa de f en Ω .
- Per a tota funció $f \in H(\Omega)$ i per a tot cicle $\Gamma \subset \Omega$ es satisfà $\int_{\Gamma} f(z)dz = 0$.
- Per a qualsevol $f \in H(\Omega)$ tal que $f(z) \neq 0$ per a tot $z \in \Omega$ existeix $g \in H(\Omega)$ tal que $f = e^g$.