Tablica 1: Przewidywana postać CSRN dla równania liniowego niejednorodnego o stałych współczynnikach

Lp.		Prawa strona równania $(f(x))$	Równanie charakterystyczne	Przewidywana postać CSNR
1	a	$P_n(x)$ wielomian stopnia n	Liczna 0 nie jest pierwiastkiem równania	$W_n(x)$ – ogólna postać wielomianu stopnia
	b		charakterystycznego Liczba 0 jest m-krotnym	<i>n</i>
			pierwiastkiem równania charakterystycznego	$x^m W_n(x)$
2	a	$P_n(x)e^{kx}; k \in \mathbb{R}$	Liczba k nie jest pierwiastkiem równania charakterystycznego	$W_n(x)e^{kx}$
	b		Liczba k jest m-krotnym pierwiastkiem równania charakterystycznego	$x^m W_n(x) e^{kx}$
3	a	$P_n(x)\cos\beta x + Q_n(x)\sin\beta x$	Liczba $\pm \beta i$ nie jest pierwiastkiem równania charakterystycznego	$W_n(x)\cos\beta x + V_n(x)\sin\beta x$
	b		Liczba $\pm \beta i$ jest m-krotnym pierwiastekiem równania charakterystycznego	$x^{m}(W_{n}(x)\cos\beta x + V_{n}(x)\sin\beta x)$
4	a	$P_n(x)e^{lpha x}\coseta x + \ Q_n(x)e^{lpha x}\sineta x$	Liczba $\alpha \pm \beta i$ nie jest pierwiastkiem równania charakterystycznego	$W_n(x)e^{\alpha x}\cos\beta x + V_n(x)e^{\alpha x}\sin\beta x$
	b		Liczba $\alpha \pm \beta i$ jest m-krotnym pierwiastekiem równania charakterystycznego	$x^{m}(W_{n}(x)e^{\alpha x}\cos\beta x + V_{n}(x)e^{\alpha x}\sin\beta x)$