Chapter 5: Synchronous Sequential Logic

> Chapter 6: Registers and Counters

CSE 231: Digital Logic Design

Section 4 Summer 2020 TnF

Synchronous Sequential Logic

A synchronous sequential circuit is a system whose behavior can be defined from the knowledge of its signals
at discrete instants of time.

A synchronous sequential circuit employs signals that affect the storage elements at only discrete instants of

time.

• The storage elements (memory) used in clocked sequential circuits are called flipflops. A flip-flop is a binary storage device capable of storing one bit of information. In a stable state, the output of a flip-flop is either 0 or 1.

STORAGE ELEMENTS: LATCHES

- A storage element in a digital circuit can maintain a binary state indefinitely.
- Storage elements that operate with signal levels are referred to as latches; those controlled by a clock transition are flip-flops.
- SR Latch

STORAGE ELEMENTS: Flipflop

- The state of a latch or flip-flop is switched by a change in the control input. This momentary change is called a trigger, and the transition it causes is said to trigger the flip-flop.
- SR Flipflop

D flipflop from SR flipflop

• The input is connected to S input and inverted to R input.

J-K flipflop

- This circuit has two inputs J & K and two outputs Q(t) & Q(t)'. The operation of JK flip-flop is similar to SR flip-flop. Here, we considered the inputs of SR flip-flop as S = J Q(t)' and R = KQ(t) in order to utilize the modified SR flip-flop for 4 combinations of inputs.
- The following table shows the Logic diagram & state table of JK flip-flop.

J	К	\mathbf{Q} $t+1$
0	0	Q t
0	1	0
1	0	1
1	1	Q t '

T flipflop (Toggle flipflop)

- T flip-flop is the simplified version of JK flip-flop. It is obtained by connecting the same input 'T' to both inputs of JK flip-flop. It operates with only positive clock transitions or negative clock transitions. The circuit diagram of T flip-flop is shown in the following figure.
- This circuit has single input T and two outputs Qt & Qt'. The operation of T flip-flop is same as that of JK flip-flop last (11) combination.

Inputs	Present State	Next State
T	Qt	Qt+1
0	0	0
0	1	1
1	0	1
1	1	0

Master-slave D Flip-Flop

- The behavior of the master—slave flip-flop just described dictates that (1) the output may change only once, (2) a change in the output is triggered by the negative edge of the clock, and (3) the change may occur only during the clock's negative level.
- The value that is produced at the output of the flip-flop is the value that was stored in the master stage immediately before the negative edge occurred.
- A change in the output of the flip-flop can be triggered only by and during the transition of the clock from 1 to 0.

Flip-flop conversion: D to T

From the above table, we can directly write the Boolean function of D as below.

$$D=T\oplus Q(t)$$

• So, we require a two input Exclusive-OR gate along with D flip-flop. The circuit diagram of T flip-flop is shown in the following figure.

T flip-flop input	Present State	Next State	D flip-flop input
Т	Qt()	Q(t+1)	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Flip-flop conversion: T to D

• Here, the given flip-flop is T flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the characteristic table of D flip-flop and write down the excitation values of T flip-flop. From the bellow table, we can directly write the Boolean function of T as below.

$$T=D \oplus Q(t)$$

D flip-flop input	Present State	Next State	T flip- flop input
D	Qtt	Q t+1t+1	Т
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Flip-flop conversion: D to JK

• The JK flip-flop is a D flip-flop with gates as shown:

Flip-flops characteristic equations

• Characteristic equations can be derived from characteristic table:

D flip-flop:
$$Q(t + 1) = D$$

Which states that the next state of the output is simply equal to the input D in the present state

JK flip-flop:
$$Q(t + 1) = JQ' + K'Q$$

Where Q is the value of the flip-flop prior to the application of the clock edge.

T flip-flop:
$$Q(t + 1) = T \oplus Q = TQ' + T'Q$$

Flip-flop excitation tables

 During Sequential Circuit design, we need tables that lists the required input combinations for a given change in state. such table is called fliplflop Excitation table.

	SR Flip	-flop			D Flip-flop)
Q(t)	Q(t+1)	S	R	Q(t)	Q(t+1)	DR
0	0	0	X	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	1	X	0	1	1	1

	JK flip	-flop			T flip-flop	
Q(t)	Q(t+1)	J	K	Q(t)	Q(t+1)	DR
0	0	0	X	0	0	0
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	x	0	1	1	0

- Analysis of Clocked Sequential Circuits consists of obtaining a table or diagram for the time sequence of inputs, outputs, and internal states.
- It is also possible to write a Boolean expression that describes the behavior of the sequential circuit.
- A logic diagram is recognized as a clocked sequential circuit if it contains flip-flops (of any type) with clock inputs. Example is given bellow:

Example of Sequential Circuit 1

- The behavior of a clocked sequential circuit can be described algebraically by means of state equations.
- A state equation (also called a transition equation) specifies the next state as a function of the present state and inputs. The state equations/input equation for the example on the left are:

$$D_A = A(t)x + B(t)x$$

 $D_B = A'(t)x$

 The present-state equation of the output can be expressed as:

$$A(t + 1) = A(t)x + B(t)x$$
 [= D_A]
 $B(t + 1) = A'(t)x$ [= D_B]
 $Y(t) = A(t) + B(t) + x'$

The (t+1) represent next state, and (t) represents present state.

 As the example circuit used "D" flipflop, and the characteristic of it is:

$$D=A(t+1)$$

Thus state input and output equations are the same:

$$A(t + 1) = D_A$$
$$B(t + 1) = D_B$$

For other flipflops the input and output equations may differ.

Example of Sequential Circuit 1

- The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes called a transition table).
- The table consists of four sections labeled present state, input, next state, and output.
- The state table of the example is shown bellow:

State Table/Characteristic Table

	sent ate	Input		ext ate	Output
A	В	x	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Example of Sequential Circuit 1

• The information available in a state table can be represented graphically in the form of a state diagram. In this type of diagram, a state is represented by a circle, and the (clock-triggered) transitions between states are indicated by directed lines connecting the circles.

State Table/Characteristic Table

Present State		Input		ext ate	Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

0/1

0/0

State diagram

For a given Sequential circuit the analysis steps will include:

Circuit diagram

Equations

State table

State diagram

• For a given state diagram, the steps will be other way around. As example of analysis of sequential circuit from state diagram is shown bellow:

Present	N	lext	Stat	te	Out	tput
State	ar s	=0	X :	=1	x=0	x = 1
A B	A	B	A	B	*	2
0 0	0	0	0	1	0	0
0 1	0	0	1	1	1	0
1 0	0	0	1	0	1	0
1 1	0	0	1	0	1	0

Input
$D_A = A(t)x + B(t)x$
$D_B = A'(t)x$

Output equation: y(t) = A(t) + B(t) + x'

Analysis of a Clocked Sequential Circuit (cont.): Example 2

For a given state table with JK flip-flop.

	sent ate	Input	Next State				Flop uts	
A	В	X	A	В	JA	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

state diagram from the given Characteristic table

Analysis of a Clocked Sequential Circuit (cont.): Example 2

State Table fo	r Seauential	Circuit with	IK Flin-Flons
State Tuble It	ıı Jeyuelilidi	Circuit with	בעטו ז-עוו ז זון

Present State		Input	Next Input State			Flip-Flop Inputs		
A	В	x	A	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Clock

	B'x'	B'x	Вх	Bx'
A'	0	0	1	1
Α	0	0	1	1

J۸	=	В
A		_

	B'x'	B'x	Вх	Bx'
A'	1	0	0	1
Α	1	0	0	1

$$J_B=x'$$

	B'x'	B'x	Вх	Bx'
A'	0	0	0	1
Α	0	0	0	1

$$k_A = Bx'$$

	B'x'	B'x	Вх	Bx'
A′	0	1	1	0
Α	1	0	0	1

$$k_B = A'x + Ax'$$

= $A \oplus x$

Mealy and Moore Models of Finite State Machines

- The most general model of a sequential circuit has inputs, outputs, and internal states.
- It is customary to distinguish between two models of sequential circuits: the Mealy model and the Moore model.

STATE REDUCTION AND ASSIGNMENT

• The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping the external input—output requirements unchanged. We will illustrate the state-reduction procedure with an example.

STATE REDUCTION AND ASSIGNMENT

• The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the number of states in a state table, while keeping the external input—output requirements unchanged. We will illustrate the state-reduction procedure with an example.

STATE REDUCTION AND ASSIGNMENT

- Reduced state table & state diagram
- As we have 5 states after reduction we need minimum 5 binary combinations to represent them.

	Next	State	Output			
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	c	d	0	0		
c	a	d	0	0		
d	e	d	0	1		
e	a	d	0	1		

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

DESIGN PROCEDURE

- The design of a clocked sequential circuit starts from a set of specifications and culminates in a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.
- The procedure for designing synchronous sequential circuits can be summarized by a list of recommended steps:
 - 1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
 - 2. Reduce the number of states if necessary.
 - 3. Assign binary values to the states.
 - 4. Obtain the binary-coded state table.
 - 5. Choose the type of flip-flops to be used.
 - 6. Derive the simplified flip-flop input equations and output equations.
 - 7. Draw the logic diagram.

Design a sequence detector

 Suppose we wish to design a circuit that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line.

- The state diagram for this type of circuit is shown on the right.
- It is derived by starting with state S0, the reset state. If the input is 0,
- the circuit stays in S0, but if the input is 1, it goes to state S1 to
- indicate that a 1 was detected. If the next input is 1, the change is to
- state S2 to indicate the arrival of two consecutive 1's, but if the input
- is 0, the state goes back to S0. The third consecutive 1 sends the circuit to
- state S3. If more 1's are detected, the circuit stays in S3. Any 0 input sends
- the circuit back to S0. In this way, the circuit stays in S3 as long as there
- are three or more consecutive 1's received. This is a Moore model sequential
- circuit, since the output is 1 when the circuit is in state S3 and is 0 otherwise.

Design a sequence detector

Once the state diagram has been derived, the rest of the design follows a straight forward.

Design a sequence detector

• Once the state diagram has been derived, the rest of the design follows a straight forward. We decided to make the circuit using "D" flipflop.

Present State		Input	Ne Sta	xt ate	Output
A	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Analysis of a Clocked Sequential Circuit: Example 3

• A state table is given and the sequential circuit has to be build with JK flipflop.

Pre	sent		Ne	ext	-	State	Table o	and JK Flip-F	lop Inp	uts						
State		Input	State						sent ate	Input		ext	Fli	p-Flo _l	o Inp	uts
A	В	X	Α	В	Using excitation table of	A	В	<u> </u>	A	В		K _A	J _B	K _B		
0	0	0	0	0	JK flipflop to get the						JA					
0	0	1		1	input equations	0	0	0	0	0	0	X	0	X		
0	0	1	0	1		0	0	1	0	1	0	X	1	X		
0	1	0	1	0		0	1	0	1	0	1	X	X	1		
0	1	1	0	1		0	1	1	0	1	0	X	X	0		
1	0	0	1	0		1	0	0	1	0	X	0	0	X		
1	0	1	1	1		1	0	1	1	1	X	0	1	X		
1	1	0	1	1		1	1	0	1	1	X	0	X	0		
1	1	1	0	0		1	1	1	0	0	X	1	X	1		
1	1	1	U	U		_										

Analysis of a Clocked Sequential Circuit: Example 3

Analysis of a Clocked Sequential Circuit: Example 4

 T_{A1}

 T_{A0}

- Designing a binary counter using T flip-flops.
- An n-bit binary counter consists of n flip-flops that can count in binary from 0 to 2n - 1. The state diagram of a three-bit counter is shown

$A_{2}^{A_{1}A_{0}}_{00}$	01	11	10	A_2	$A_0 = 00$	01	11	4 ₁	A_2	A_1A_0	00	01		$\underbrace{\overset{4_1}{10}}$
0 m_0	m_1	m_3	m_2	, \	m_0	m_1 1	m_3 1	m_2]	m_0		m_1 1	m_3	$\begin{bmatrix} m_2 \\ 1 \end{bmatrix}$
$A_2 \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right.$	m_5	m_7 1	m_6	A_2 $\begin{cases} 1 \end{cases}$	m_4	m_5 1	m_7 1	m_6	A_2	m_4	1	m_5 1	m_7 1	m_6 1
[L		$\stackrel{{\overbrace{A_0}}}{{\overbrace{A_0}}}$					$\stackrel{\longleftarrow}{A_0}$	<u> </u>	l				x x	<u>ــــــــــ</u>
7	$T_{A2} = A$	$_{1}A_{0}$				$T_{A1} = A$	4_{0}					$T_{A0} = 1$	l	

Practice

A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations (HDL—see Problem 5.35):

$$A(t + 1) = xy' + xB$$

$$B(t + 1) = xA + xB'$$

$$z = A$$

- (a) Draw the logic diagram of the circuit.
- (b) List the state table for the sequential circuit.
- (c) Draw the corresponding state diagram.
- **5.9** A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

$$J_A = x$$
 $K_A = B$
 $J_B = x$ $K_B = A'$

- (a) Derive the state equations A(t + 1) and B(t + 1) by substituting the input equations for the J and K variables.
- (b) Draw the state diagram of the circuit.
- **5.10** A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and circuit output equation are

$$J_A = Bx + B'y'$$
 $K_A = B'xy'$
 $J_B = A'x$ $K_B = A + xy'$
 $z = Ax'y' + Bx'y'$

- (a) Draw the logic diagram of the circuit.
- (b) Tabulate the state table.
- (c) Derive the state equations for A and B.

Practice

5.8* Derive the state table and the state diagram of the sequential circuit shown in Fig Explain the function that the circuit performs. (HDL—see Problem 5.36.)

5.12 For the following state table

	Next	State	Output			
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1		
а	f	b	0	0		
b	d	С	0	0		
c	f	e	0	0		
d	g	a	1	0		
e	d	c	0	0		
f	f	b	1	1		
g	g	h	0	1		
h	g	а	1	0		

- (a) Draw the corresponding state diagram.
- (b)* Tabulate the reduced state table.
- (c) Draw the state diagram corresponding to the reduced state table.

Registers

 A register is a group of flip-flops, each one of which shares a common clock and is capable of storing one bit of information. An n-bit register consists of a group of n flip-flops capable of storing n bits of binary information.

Register with Parallel Load

 Registers with parallel load are a fundamental building block in digital systems.

Four-bit universal shift register

Function Table for the Register of Fig. 6.7						
Mode	Control					
s ₁	s ₀	Register Operation				
0	0	No change				
0	1	Shift right				
1	0	Shift left				
1	1	Parallel load				

Serial/Shift Register

Serial Addition

Counters

- A register that goes through a prescribed sequence of states upon the application of input pulses is called a counter.
- The input pulses may be clock pulses, or they may originate from some external source and may occur at a fixed interval of time or at random.
- Counters are available in two categories:
 - ripple counters
 - synchronous counters.

Counter: Ripple

• In a ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops.

A ₃	A ₂	A ₁	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

Counter: BCD Ripple Counter

• The logic diagram of a BCD ripple counter using JK flip-flops is shown:

Counter: synchronous counters

- In a synchronous counter, the C inputs of all flip-flops receive the common clock.
- Synchronous counters are presented in the next two sections.

Counter: synchronous up-down counters

Counter: Ring Counter

Ring Counter:

Johnson Counter:

Sequence number	4	n			AND gate required
		В	С	E	for output
1	0		0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	q	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	0	1	1	R'C
8	0	0	0	1	CE
	1 2 3 4 5 6 7 8	7 0	3 1 1 4 1 1 5 1 1 6 0 1 7 0 0	2 1 0 0 3 1 1 0 4 1 1 1 5 1 1 1 6 0 1 1 7 0 0 1	2 1 0 0 0 3 1 1 0 0 4 1 1 1 0 5 1 1 1 1 6 0 1 1 1 7 0 0 1 1