NOMBRE: Vicente Espinosa

SECCIÓN: 2

Nº LISTA: 36

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 7 – Respuesta Pregunta 1

Sabemos que los números siguen la siguiente secuencia: divisible por 3, no divisible por 3, no divisible por 3, sucesivamente.

Luego, en los numero binarios, definimos los siguientes conjuntos:

 $q_0 \rightarrow n \mod 3 = 0$

 $q_1 \rightarrow n \mod 3 = 1$

 $q_2 \rightarrow n \mod 3 = 2$

Sabemos que cada 3 números hay un q_0 .

Definimos T_{sum} como la diferencia entre la suma de los números en posición par y los números en posición impar del numero binario.

Sabemos que el ultimo numero va intercalándose entre 0 y 1 cada vez.

Por lo tanto, usando lo anterior, podemos asegurar lo siguiente:

Si tenemos un q_0 , y agregamos un 0 al final, seguirá siendo q_0 , pues la suma total no cambiará. En cambio, si agregamos un 1, pasará a ser un q_1 .

Si tenemos un q_1 y agregamos un 0, pasaremos a un q_2 , siguiendo la lógica de los números naturales.

En cambio, si agregamos un 1, significará que bajamos uno, por lo tanto, será un q_0 .

Y finalmente, el q_2 , si se le agrega un 1, se volverá a q_1 , ya que significa retroceder, y en cambio, si se le agrega un 1 seguirá siendo un q_2 , pues $T_{\mathbf{sum}} \neq mod 3$.

Conociendo todo lo anterior, se puede armar la siguiente tabla:

	0	1
q_0	q_0	q_1
q_1	q_2	q_0
q_2	q_1	q_2

Viendo esto, se puede notar la secuencia que se sigue (en zig-zag desde arriba a la izquierda). En la cual se pasa cada 3 numeros por el q_0 .

Luego, dado que en n=0, se cumple la afirmación pues 0 mod 3, n=1 se cumple pues n mod $3 \neq 0$ y n=3 cumple n mod 3. Podemos luego asegurar que para cualquier n se cumple que si T_{sum} mod 3=0 entonces es divisible por 3.

Ahora, con lo anterior, por inducción, queda demostrada la afirmación.