

Licenciatura em Engenharia Informática FISIAP – 2023/2024

Relatório

Sprint 3 FSIAP: Estrutura Elaborada e os seus Materiais Com as suas Resistências e Fluxo Térmico

Autores:

1190378 André Ferreira 1220741 Bernardo Barbosa 1221071 Diogo Cunha 1221948 Tomás Peixoto

Turma: 2DJ Grupo: 02

Data: 15/12/2023

Docente: João Ângelo de Abreu Lima Lopes

Índice

Glossário	3
Introdução:	
USF05	
Cálculo das Resistências em cada Parede:	
Cálculo das Resistências em cada Divisão	
Cálculo da Restante Estrutura e Telhados	7
USF06	8
USF07	<u>c</u>
Descrição da US	g
Resolução	<u>c</u>
Conclusão:	10
Comentários ou observações	11
Bibliografia	12

Glossário

Condutividade Térmica: Indicador da capacidade dos materiais de conduzir energia térmica.

Croqui: Esboço/Rascunho da estrutura pretendida.

Drywall: Tipo de placa de gesso utilizada para formar uma ou mais paredes.

Fluxo Térmico: Quantidade de energia (calor) que circula entre cada divisão ou espaço da estrutura.

Resistência Térmica: Capacidade dos materiais em reter/ aguentaram o calor. Tem dependência da condutividade Térmica.

Zona: Certo espaço da estrutura definido pelo grupo que deve conter uma certa temperatura e área.

Introdução:

No seguinte relatório será explicado o trabalho da componente **FSIAP** (**Física Aplicada**) desenvolvido no projeto integrador.

Efetivamente serão mostradas as descrições e resoluções de cada *User stories* (USFA05-USFA07) onde será calculada a <u>resistência térmica</u>, o <u>fluxo térmico</u> e a potência energética de toda a estrutura desenvolvida indidualmente em cada divisão e como para um todo (nova estrutura desenvolvida e estrutura já existente).

USF05

Descrição da US

Pretende-se saber qual a resistência térmica das paredes, para cada zona ou espaço definido e para cada temperatura de funcionamento. Sendo que cada parede deve conter três materiais nas suas paredes. Um para o material exterior, outro para o material intermédio e outro para o material interior.

- Para a divisão ou zona B, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.
- Para a divisão ou zona C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão
- Para a divisão ou zona D, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão
- Para a restante estrutura, e que possa envolver as restantes divisões, determinar a resistência térmica de cada parede e telhado, com a inclusão das portas de acesso à receção e de armazenamento e janelas consideradas, de acordo com a escolha dos materiais realizada. Para resolver o problema da US utilizei a fórmula do fluxo energético:

Resolução

Para resolver o problema da US foi utilizada a fórmula geral da resistência Térmica:

$$Rt = \frac{\Delta x}{k A}$$

Sendo:

X – A espessura da parede, porta ou janela

K – A condutividade térmica do material

A – Área da parede, porta ou janela

Figura 1, formula essencial da Resistência Térmica

Consideramos a condutividade térmica é uma constante que indicia a facilidade de quantidade de calor que entra ou sai da estrutura, isto é, quanto maior a condutividade térmica um material tiver, mais facilmente passara calor por ele,

Tendo em conta os materiais escolhidos para a construção da estrutura anteriormente Temos os valores da condutividade:

Figura 2, Condutividade térmica dos materiais utilizados

Cada divisão contém quatro paredes e/ou alguma porta(s) e/ou janela. Cada parede contém três ou mais materiais, a resistência de cada parede é calculada pela

Nota: Não existe uma tabela para a espessura de cada um material uma vez que o mesmo material pode e tem espessuras diferentes em diferentes paredes, desta forma, a espessura é definida no cálculo de cada material.

Cálculo das Resistências em cada Parede:

Para cada parede é calculada individualmente a resistência térmica de cada material dividindo apenas a espessura do material pela sua condutividade:

$$RMaterialParede = \frac{\Delta x}{k}$$

e, por fim somando cada valor de cada material e dividindo o agregado pela área da parede.

No caso de uma parede conter uma janela ou uma porta, essas resistências são calculadas separadamente pela fórmula completa.

$$RJanela = \frac{\Delta x}{k \times AreaJanela}$$

No entanto, a área em uso da parede será a área da parede total menos a área que as respetivas portas(s) ou janela(s) ocupam:

$$ATotalParede = Aparede - Ajanela$$

Como conseguimos ver no cálculo da seguinte parede,

Zona B					
P	Parede Exterior até contacto com E	Δχ	K	Area	Resistência Termica
	Fora	0,3	0,27		1,11
	Intermedia poliuterani	0,06	0,03		2,00
	Intermedia Lã de Rocha	0,04	0,04		1,00
	Interior (drywall)	0,2	0,35		0,57
				36,00	0,13

Figura 3 Cálculo de Resistência de uma Parede

Cálculo das Resistências em cada Divisão

Após obtermos o valor para cada parede, como estas se encontram em paralelo, o inverso da resistência equivalente destas será a soma do inverso de todas elas (com as portas ou janelas caso a divisão as contenha)

Da seguinte forma:

$$Re = \frac{1}{\frac{1}{Rp1} + \frac{1}{Rp2} + \frac{1}{Rp3} + \frac{1}{Rporta1}}$$

Figura 3 Cálculo de Resistência total de uma divisão

Todas as divisões (B-D), seguem a seguinte lógica, apenas com diferentes valores de condutividade, área e espessura.

Cálculo da Restante Estrutura e Telhados

A restante estrutura tem a lógica de cálculo idêntico para as paredes e divisões. Já os telhados, embora sejam independes do resto da estrutura são calculados individualmente pela forma geral da resistência térmica acima apresentada.

Dependência com a USFA02 e USFA03

Esta US apresenta uma dependência bastante óbvia com ambas as *User Stories* em que o material é escolhido uma vez que a espessura e a condutividade dependerão dos materiais escolhidos.

USF06

Descrição da US

Pretende-se saber qual a energia necessária para manter os espaços ou zonas com as temperaturas interiores solicitadas, por cada hora de funcionamento, com uma temperatura exterior, na ordem dos 20°C.

- Determinar a energia total a fornecer, à zona B com temperatura interior de funcionamento de -5ºC.
- Determinar a energia total a fornecer, à zona C com temperatura interior de funcionamento de 0°C.
- Determinar a energia total a fornecer, à zona D com temperatura interior de funcionamento de 7ºC.

Resolução

Para resolver o problema da US foi utilizada a fórmula do fluxo energético:

$$Q = \frac{\Delta T}{R}$$

Sendo que o delta T representa a diferença da temperatura final e a temperatura inicial de cada zona, isto é, a diferença entre a temperatura interior e exterior.

Calculei, portanto, o fluxo energético para cada parede de cada zona, mantendo o mesmo valor de delta T e alterando o valor da resistência para o correspondente dessa parede. Depois calculei o fluxo total de cada zona somando os respetivos fluxos individuais de cada parede.

Uma vez que o fluxo energético vem em Watts (J/s) e a US pede a energia a fornecer por hora, para obter este resultado simplesmente multipliquei o valor do fluxo por 3600 segundos (1h):

$$E = Q \cdot t$$

O resultado virá, portanto, em Joules por hora.

Dependência com a USFA05

Esta US apresenta uma dependência bastante óbvia com a anterior. Tal acontece porque foi necessário usar as resistências das paredes calculadas na USFA05 na própria fórmula do fluxo energético.

USF07

Descrição da US

Pretende-se saber qual a energia total a fornecer, a toda a estrutura, com todas as suas zonas, A, B C, D e E, mantidas as temperaturas indicadas anteriormente.

- Determinar a energia total a fornecer, a toda a estrutura, com as divisões internas às suas temperaturas de trabalho, admitindo uma temperatura exterior de 20 °C e por hora de funcionamento.
- Determinar a potência (energética) necessária para manter cada uma das zonas, ou divisões, e toda a estrutura, às temperaturas indicadas e por hora de funcionamento.

Resolução

Para resolver a primeira parte do problema da US foi utilizada, mais uma vez, a fórmula do fluxo energético com cada constante explicada anteriormente, cada zona contendo a sua diferença de temperatura e a sua resistência:

$$Q = \frac{\Delta T}{R}$$

Neste caso, tendo os **valores de temperatura** de cada divisão e a temperatura exterior juntamente com a resistência térmica de cada divisão calculada anteriormente na <u>USFAO5</u>, foi calculada a <u>quantidade de energia que necessita de passar por hora</u> para que a estrutura consiga manter a diferença de temperatura, individualmente para cada zona, e depois a total sendo esta a soma de todas as individuais:

Área	Secção	Temperatura Exterior (ºC)	Temperatura Interior (ºC)	ΔT (ºC)	Resistência	Energia (Watt)	Energia (Joule/Hora)	Energia total para a área (Joule/Hora)
	A-B	-5	15	-20	0.1382275	-144.6890		
	A-B (porta)	-5	15	-20	0.0005000	-40000		
	A-C	0	15	-15	0.1035452	-144.8642		
	A-C (porta)	0	15	-15	0.1470588	-102.0000		
Α	A-D	7	15	-8	0.1089800	-73.4080	147558.8794	531211965.9394
	A-D (porta)	7	15	-8	0.0005000	-16000.0000		
	A-Exterior (portão)	20	15	5	0.0000245	204000.0000		
	A-Exterior (parede)	20	15	5	0.3224293	15.5073		
	A-Exterior (janela)	20	15	5	0.6000000	8.3333		

Figura 1. Cálculo de Fluxo Em uma divisão (zona A)

Como vemos no excerto de Excel em cima, contemos todas as variáveis, e a energia é calculada pela divisão da diferença de temperatura, que por si só é a subtração da coluna da temperatura Exterior com a interior, pela resistência da secção específica.

A energia calculada da divisão A tem várias paredes, portas e janelas diferentes, para tais <u>a</u> energia obtida da secção A é a soma de todas as energias que constituem a secção A:

O processo repete-se para as outras divisões, com outros valores:

Área	Secção	Temperatura Exterior (°C)	Temperatura Interior (°C)	ΔT (°C)	Resistência	Energia (Watt)	Energia (Watts)	Energia total para a área (Joule/Hora)	
	A-B	-5	15	-20	0,1382275	-144,6890			
	A-B (porta)	-5	15	-20	0,0005000	-40000			
	A-C	0	15	-15	0,1035452	-144,8642			
	A-C (porta)	0	15	-15	0,1470588	-102,0000			
A	A-D	7	15	-8	0,1089800	-73,4080	147558,8794	21508843619336,2000	
	A-D (porta)	7	15	-8	0,0005000	-16000,0000			
	A-Exterior (portão)	20	15	5	0,0000245	204000,0000			
	A-Exterior (parede)	20	15	5	0,3224293	15,5073			
	A-Exterior (janela)	20	15	5	0,6000000	8,3333			
	B-D	7	-5	12	0,148082011	81,0362			
1	B-Exterior	20	-5	25	0,130070547	192,2034		145764481,9666	
В	B-E	15	-5	20	0,39021164	51,2542	40490,1339		
В	B-C	0	-5	5	0,238651177	20,9511	40490,1339		
	B-A	15	-5	20	0,138227513	144,6890			
	B-A (porta)	15	-5	20	0,0005	40000,0000			
	C-B	-5	0	-5	0,238651177	-20,9511			
	C-E	15	0	15	0,379342075	39,5421			
С	C-Exterior	20	0	20	0,227605245	87,8714	353,3267	1271976,245	
	C-A	15	0	15	0,103545229	144,8642			
	C-A (porta)	15	0	15	0,147058824	102,0000			
	D-Exterior	20	7	-13	0,073164683	-177,6814			
D	D-B	-5	7	12	0,15	81,0362	-16170,0531	-58212191,29	
U	D-A	15	7	-8	0,108980012	-73,4080	-16170,0531	-58212191,29	
	D-A (porta)	15	7	-8	0,0005	-16000,0000			
E	E-Exterior	20	15	-5	0,030209699	-165,5098			
	E-Exterior (porta)	20	15	-5	0,00025	-20000,0000			
	E-Exterior (janela)	20	15	-5	0,242440324	-20,6236	-20095,3370	-72343213,23	
	E-B	-5	15	20	0,39	51,2542			
	E-C	0	15	15	0,379342075	39,5421			

Figura 2. Cálculo de Fluxo para todas as Divisões

Até que conseguimos obter então o resultado fina de energia total a fornecer:

Conclusão:

A variedade de materiais e isolantes utilizados nas Zonas **A** a **E** contribui para diferentes propriedades térmicas em cada zona. A escolha entre as opções oferece flexibilidade de acordo com as necessidades específicas de isolamento e resistência.

Comentários ou observações

Como referido no relatório do sprint passado, não foram fornecidos quaisquer dados sobre o tipo estrutura a desenvolver.

No entanto, considerando o âmbito do projeto o grupo considerou a estrutura como um **Celeiro.**

Não foram feitos quaisquer cálculos para a escolha do material que construirá a estrutura, apenas foi feita uma pesquisa da sua capacidade térmica e dos materiais <u>apropriados para cada situação.</u>

Bibliografia

Para Obtenção de Condutividade Térmica:

1. "TABELA DE CONDUTIVIDADE TÉRMICA DE MATERIAIS DE CONSTRUÇÃO" Protolab: http://www.protolab.com.br/Tabela-Condutividade-Material-Construcao.htm