Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Vídeo: https://youtu.be/zxsQ5SfSafY

1. Resumen

El algoritmo de exponenciación modular trata de resolver el problema de calcular a^e (mód m) cuando e es un exponente muy grande. El procedimiento se basa en reducir el problema a exponentes más pequeños agrupando cuadrados. Dicho de otra forma, tenemos dos casos para e, que sea par o impar:

- 1. Si e es impar, es decir, e=2f+1 entonces pondremos $a^e=a^{1+2f}=a\cdot (a^2)^f$. Calculando $a^2\pmod m$ reducimos el tamaño del exponente a la mitad.
- 2. Si e es par, es decir e=2f entonces pondremos $a^e=a^{2f}=(a^2)^f$. De nuevo, calculando $a^2\pmod m$ reduciremos el tamaño del exponente a la mitad.

En unos pocos pasos, el exponente llegará a 1 y podremos multiplicar los factores que hayamos sacado por los exponentes impares para completar la operación.

Lo mejor para entender el proceso es seguirlo mendiante los ejemplos.

2. Erratas

(No detectadas)

3. Ejercicios

Aquí tienes 50 exponenciales modulares. En aquellas en las que es posible reducir el exponente mediante la Fórmula de Euler se ha hecho, pero eso sólo es posible cuando a es una unidad módulo m. En los casos en los que no es una unidad, se procederá directamente a realizar el cálculo. Eso también se podría hacer en el otro caso, obteniendo el mismo resultado, pero con algunas operaciones más.

Ejercicio 1. Calcula 10⁶⁰ (mód 42) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 10^{60} (mód 42) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$10^{60} \equiv 10^{60} \equiv (10^2)^{30} \equiv 16^{30} \qquad (Porque 10^2 \equiv 16 \pmod{42})$$

$$\equiv 16^{30} \equiv (16^2)^{15} \equiv 4^{15} \qquad (Porque 16^2 \equiv 4 \pmod{42})$$

$$\equiv 4 \cdot 4^{14} \equiv 4 \cdot (4^2)^7 \equiv 4 \cdot 16^7 \qquad (Porque 4^2 \equiv 16 \pmod{42})$$

$$\equiv 4 \cdot 16 \cdot 16^6 \equiv 4 \cdot 16 \cdot (16^2)^3 \equiv 4 \cdot 16 \cdot 4^3 \qquad (Porque 16^2 \equiv 4 \pmod{42})$$

$$\equiv 4 \cdot 16 \cdot 4 \cdot 4^2 \equiv 4 \cdot 16 \cdot 4 \cdot (4^2)^1 \equiv 4 \cdot 16 \cdot 4 \cdot 16^1 \qquad (Porque 4^2 \equiv 16 \pmod{42})$$

$$\equiv 22 \cdot 4 \cdot 16 \qquad (Porque 4 \cdot 16 \equiv 22 \pmod{42})$$

$$\equiv 4 \cdot 16 \qquad (Porque 22 \cdot 4 \equiv 4 \pmod{42})$$

$$\equiv 22 \qquad (Porque 4 \cdot 16 \equiv 22 \pmod{42})$$

$$\equiv 22 \qquad (Porque 4 \cdot 16 \equiv 22 \pmod{42})$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $35 = 5 \cdot 7$, entonces aplicamos la fórmula y tenemos que $\varphi(35) = \varphi(5 \cdot 7) = \varphi(5^1) \cdot \varphi(7^1) = (5^1 - 5^0) \cdot (7^1 - 7^0) = 24$. Esto nos deja $23^{84} = 23^{12+24 \cdot 3} = 23^{12} \cdot (23^{24})^3 \equiv 23^{12} \pmod{35}$ porque $23^{24} \equiv 1 \pmod{35}$ por la Fórmula de Euler.

Para calcular 23^{12} (mód 35) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$23^{12} \equiv 23^{12} \equiv (23^2)^6 \equiv 4^6$$
 (Porque $23^2 \equiv 4 \pmod{35}$)

$$\equiv 4^6 \equiv (4^2)^3 \equiv 16^3$$
 (Porque $4^2 \equiv 16 \pmod{35}$)

$$\equiv 16 \cdot 16^2 \equiv 16 \cdot (16^2)^1 \equiv 16 \cdot 11^1$$
 (Porque $16^2 \equiv 11 \pmod{35}$)

$$\equiv 1$$
 (Porque $16 \cdot 11 \equiv 1 \pmod{35}$)

Ejercicio 3. Calcula 25⁸⁶ (mód 35) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 25^{86} (mód 35) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$25^{86} \equiv 25^{86} \equiv \left(25^2\right)^{43} \equiv 30^{43} \qquad \qquad (\text{Porque } 25^2 \equiv 30 \pmod{35})$$

$$\equiv 30 \cdot 30^{42} \equiv 30 \cdot \left(30^2\right)^{21} \equiv 30 \cdot 25^{21} \qquad (\text{Porque } 30^2 \equiv 25 \pmod{35})$$

$$\equiv 30 \cdot 25 \cdot 25^{20} \equiv 30 \cdot 25 \cdot \left(25^2\right)^{10} \equiv 30 \cdot 25 \cdot 30^{10} \qquad (\text{Porque } 25^2 \equiv 30 \pmod{35})$$

$$\equiv 30 \cdot 25 \cdot 30^{10} \equiv 30 \cdot 25 \cdot \left(30^2\right)^5 \equiv 30 \cdot 25 \cdot 25^5 \qquad (\text{Porque } 30^2 \equiv 25 \pmod{35})$$

$$\equiv 30 \cdot 25 \cdot 25 \cdot 25^4 \equiv 30 \cdot 25 \cdot 25 \cdot \left(25^2\right)^2 \equiv 30 \cdot 25 \cdot 25 \cdot 30^2 \qquad (\text{Porque } 30^2 \equiv 25 \pmod{35})$$

$$\equiv 30 \cdot 25 \cdot 25 \cdot 30^2 \equiv 30 \cdot 25 \cdot 25 \cdot \left(30^2\right)^1 \equiv 30 \cdot 25 \cdot 25 \cdot 25^1 \qquad (\text{Porque } 30^2 \equiv 25 \pmod{35})$$

$$\equiv 15 \cdot 25 \cdot 25 \qquad (\text{Porque } 30 \cdot 25 \equiv 15 \pmod{35})$$

$$\equiv 15 \cdot 25 \cdot 25 \qquad (\text{Porque } 30 \cdot 25 \equiv 15 \pmod{35})$$

$$\equiv 25 \cdot 25 \qquad (\text{Porque } 15 \cdot 25 \equiv 25 \pmod{35})$$

$$\equiv 25 \cdot 25 \qquad (\text{Porque } 25 \cdot 25 \equiv 30 \pmod{35})$$

$$\equiv 25 \cdot 25 \qquad (\text{Porque } 25 \cdot 25 \equiv 30 \pmod{35})$$

$$\equiv 25 \cdot 25 \qquad (\text{Porque } 25 \cdot 25 \equiv 30 \pmod{35})$$

Ejercicio 4. Calcula 34³³ (mód 38) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 34^{33} (mód 38) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

paso a paso:

$$\begin{array}{lll} 34^{33} \equiv 34 \cdot 34^{32} \equiv 34 \cdot \left(34^2\right)^{16} \equiv 34 \cdot 16^{16} & (\text{Porque } 34^2 \equiv 16 \pmod{38}) \\ \equiv 34 \cdot 16^{16} \equiv 34 \cdot \left(16^2\right)^8 \equiv 34 \cdot 28^8 & (\text{Porque } 16^2 \equiv 28 \pmod{38}) \\ \equiv 34 \cdot 28^8 \equiv 34 \cdot \left(28^2\right)^4 \equiv 34 \cdot 24^4 & (\text{Porque } 28^2 \equiv 24 \pmod{38}) \\ \equiv 34 \cdot 24^4 \equiv 34 \cdot \left(24^2\right)^2 \equiv 34 \cdot 6^2 & (\text{Porque } 24^2 \equiv 6 \pmod{38}) \\ \equiv 34 \cdot 6^2 \equiv 34 \cdot \left(6^2\right)^1 \equiv 34 \cdot 36^1 & (\text{Porque } 34 \cdot 36 \equiv 8 \pmod{38}) \\ \equiv 8 & (\text{Porque } 34 \cdot 36 \equiv 8 \pmod{38}) \end{array}$$

Ejercicio 5. Calcula 22²⁴⁷ (mód 47) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 47 es primo, tendremos que $\varphi(47)=47-1=46$. Esto nos deja $22^{247}=22^{17+46\cdot 5}=22^{17}\cdot \left(22^{46}\right)^5\equiv 22^{17}\pmod{47}$ porque $22^{46}\equiv 1\pmod{47}$ por la Fórmula de Euler.

Para calcular 22^{17} (mód 47) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 22^{17} \equiv 22 \cdot 22^{16} \equiv 22 \cdot \left(22^2\right)^8 \equiv 22 \cdot 14^8 & (\text{Porque } 22^2 \equiv 14 \pmod{47}) \\ \equiv 22 \cdot 14^8 \equiv 22 \cdot \left(14^2\right)^4 \equiv 22 \cdot 8^4 & (\text{Porque } 14^2 \equiv 8 \pmod{47}) \\ \equiv 22 \cdot 8^4 \equiv 22 \cdot \left(8^2\right)^2 \equiv 22 \cdot 17^2 & (\text{Porque } 8^2 \equiv 17 \pmod{47}) \\ \equiv 22 \cdot 17^2 \equiv 22 \cdot \left(17^2\right)^1 \equiv 22 \cdot 7^1 & (\text{Porque } 17^2 \equiv 7 \pmod{47}) \\ \equiv 13 & (\text{Porque } 22 \cdot 7 \equiv 13 \pmod{47}) \end{array}$$

Ejercicio 6. Calcula 33⁵² (mód 38) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $38=2\cdot 19$, entonces aplicamos la fórmula y tenemos que $\varphi(38)=\varphi(2\cdot 19)=\varphi(2^1)\cdot \varphi(19^1)=(2^1-2^0)\cdot (19^1-19^0)=18$. Esto nos deja $33^{52}=33^{16+18\cdot 2}=33^{16}\cdot \left(33^{18}\right)^2\equiv 33^{16}\pmod{38}$ porque $33^{18}\equiv 1\pmod{38}$ por la Fórmula de Euler.

Para calcular 33^{16} (mód 38) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$33^{16} \equiv 33^{16} \equiv (33^2)^8 \equiv 25^8$$
 (Porque $33^2 \equiv 25 \pmod{38}$)
 $\equiv 25^8 \equiv (25^2)^4 \equiv 17^4$ (Porque $25^2 \equiv 17 \pmod{38}$)
 $\equiv 17^4 \equiv (17^2)^2 \equiv 23^2$ (Porque $17^2 \equiv 23 \pmod{38}$)
 $\equiv 23^2 \equiv (23^2)^1 \equiv 35^1$ (Porque $23^2 \equiv 35 \pmod{38}$)
 $\equiv 35 \pmod{38}$.

 \Diamond

 \Diamond

Ejercicio 7. Calcula 12²¹⁰ (mód 41) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 41 es primo, tendremos que $\varphi(41) = 41 - 1 = 40$. Esto nos deja $12^{210} = 12^{10+40\cdot 5} = 12^{10} \cdot \left(12^{40}\right)^5 \equiv 12^{10} \pmod{41}$ porque $12^{40} \equiv 1 \pmod{41}$ por la Fórmula de Euler.

Para calcular 12¹⁰ (mód 41) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$12^{10} \equiv 12^{10} \equiv (12^2)^5 \equiv 21^5$$
 (Porque $12^2 \equiv 21 \pmod{41}$)

$$\equiv 21 \cdot 21^4 \equiv 21 \cdot (21^2)^2 \equiv 21 \cdot 31^2$$
 (Porque $21^2 \equiv 31 \pmod{41}$)

$$\equiv 21 \cdot 31^2 \equiv 21 \cdot (31^2)^1 \equiv 21 \cdot 18^1$$
 (Porque $31^2 \equiv 18 \pmod{41}$)

$$\equiv 9$$
 (Porque $21 \cdot 18 \equiv 9 \pmod{41}$)

Ejercicio 8. Calcula 39¹³⁰ (mód 41) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 41 es primo, tendremos que $\varphi(41) = 41 - 1 = 40$. Esto nos deja $39^{130} = 39^{10+40\cdot3} = 39^{10} \cdot \left(39^{40}\right)^3 \equiv 39^{10} \pmod{41}$ porque $39^{40} \equiv 1 \pmod{41}$ por la Fórmula de Euler.

Para calcular 39¹⁰ (mód 41) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$39^{10} \equiv 39^{10} \equiv (39^2)^5 \equiv 4^5$$
 (Porque $39^2 \equiv 4 \pmod{41}$)
 $\equiv 4 \cdot 4^4 \equiv 4 \cdot (4^2)^2 \equiv 4 \cdot 16^2$ (Porque $4^2 \equiv 16 \pmod{41}$)
 $\equiv 4 \cdot 16^2 \equiv 4 \cdot (16^2)^1 \equiv 4 \cdot 10^1$ (Porque $16^2 \equiv 10 \pmod{41}$)
 $\equiv 40$ (Porque $4 \cdot 10 \equiv 40 \pmod{41}$)

 \Diamond

 \Diamond

Ejercicio 9. Calcula 20⁸² (mód 46) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 20^{82} (mód 46) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$20^{82} \equiv 20^{82} \equiv (20^2)^{41} \equiv 32^{41} \qquad (Porque \ 20^2 \equiv 32 \pmod{46})$$

$$\equiv 32 \cdot 32^{40} \equiv 32 \cdot (32^2)^{20} \equiv 32 \cdot 12^{20} \qquad (Porque \ 32^2 \equiv 12 \pmod{46})$$

$$\equiv 32 \cdot 12^{20} \equiv 32 \cdot (12^2)^{10} \equiv 32 \cdot 6^{10} \qquad (Porque \ 12^2 \equiv 6 \pmod{46})$$

$$\equiv 32 \cdot 6^{10} \equiv 32 \cdot (6^2)^5 \equiv 32 \cdot 36^5 \qquad (Porque \ 6^2 \equiv 36 \pmod{46})$$

$$\equiv 32 \cdot 36 \cdot 36^4 \equiv 32 \cdot 36 \cdot (36^2)^2 \equiv 32 \cdot 36 \cdot 8^2 \qquad (Porque \ 36^2 \equiv 8 \pmod{46})$$

$$\equiv 32 \cdot 36 \cdot 8^2 \equiv 32 \cdot 36 \cdot (8^2)^1 \equiv 32 \cdot 36 \cdot 18^1 \qquad (Porque \ 8^2 \equiv 18 \pmod{46})$$

$$\equiv 2 \cdot 18 \qquad (Porque \ 32 \cdot 36 \equiv 2 \pmod{46})$$

$$\equiv 2 \cdot 18 \qquad (Porque \ 32 \cdot 36 \equiv 2 \pmod{46})$$

$$\equiv 36 \qquad (Porque \ 32 \cdot 36 \equiv 2 \pmod{46})$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

 \Diamond

Ejercicio 10. Calcula 29⁶¹ (mód 36) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $36=2^2\cdot 3^2$, entonces aplicamos la fórmula y tenemos que $\varphi(36)=\varphi(2^2\cdot 3^2)=\varphi(2^2)\cdot \varphi(3^2)=(2^2-2^1)\cdot (3^2-3^1)=12$. Esto nos deja $29^{61}=29^{1+12\cdot 5}=29^1\cdot \left(29^{12}\right)^5\equiv 29^1\pmod{36}$ porque $29^{12}\equiv 1\pmod{36}$ por la Fórmula de Euler.

Para calcular 29¹ (mód 36) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$29^1 \equiv 29 \pmod{36}$$
.

 \Diamond

Ejercicio 11. Calcula 20⁹⁹ (mód 43) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 43 es primo, tendremos que $\varphi(43)=43-1=42$. Esto nos deja $20^{99}=20^{15+42\cdot 2}=20^{15}\cdot \left(20^{42}\right)^2\equiv 20^{15}\pmod{43}$ por que $20^{42}\equiv 1\pmod{43}$ por la Fórmula de Euler.

Para calcular 20^{15} (mód 43) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

 \Diamond

Ejercicio 12. Calcula 16⁴⁷ (mód 36) utilizando el algoritmo de exponenciación modular.

Solución: Para calcular 16^{47} (mód 36) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

paso a paso:

Ejercicio 13. Calcula 32^{162} (mód 45) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $45 = 3^2 \cdot 5$, entonces aplicamos la fórmula y tenemos que $\varphi(45) = \varphi(3^2 \cdot 5) = \varphi(3^2) \cdot \varphi(5^1) = (3^2 - 3^1) \cdot (5^1 - 5^0) = 24$. Esto nos deja $32^{162} = 32^{18+24 \cdot 6} = 32^{18} \cdot (32^{24})^6 \equiv 32^{18} \pmod{45}$ porque $32^{24} \equiv 1 \pmod{45}$ por la Fórmula de Euler.

Para calcular 32^{18} (mód 45) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$32^{18} \equiv 32^{18} \equiv (32^2)^9 \equiv 34^9$$
 (Porque $32^2 \equiv 34$ (mód 45))
 $\equiv 34 \cdot 34^8 \equiv 34 \cdot (34^2)^4 \equiv 34 \cdot 31^4$ (Porque $34^2 \equiv 31$ (mód 45))
 $\equiv 34 \cdot 31^4 \equiv 34 \cdot (31^2)^2 \equiv 34 \cdot 16^2$ (Porque $31^2 \equiv 16$ (mód 45))
 $\equiv 34 \cdot 16^2 \equiv 34 \cdot (16^2)^1 \equiv 34 \cdot 31^1$ (Porque $16^2 \equiv 31$ (mód 45))
 $\equiv 19$ (Porque $34 \cdot 31 \equiv 19$ (mód 45))

Ejercicio 14. Calcula 11¹⁹⁹ (mód 47) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 47 es primo, tendremos que $\varphi(47) = 47 - 1 = 46$. Esto nos deja $11^{199} = 11^{15+46\cdot 4} = 11^{15} \cdot \left(11^{46}\right)^4 \equiv 11^{15} \pmod{47}$ porque $11^{46} \equiv 1 \pmod{47}$ por la Fórmula de Euler.

Para calcular 11¹⁵ (mód 47) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

$$\begin{array}{lll} 11^{15} \equiv 11 \cdot 11^{14} \equiv 11 \cdot \left(11^2\right)^7 \equiv 11 \cdot 27^7 & (\text{Porque } 11^2 \equiv 27 \pmod{47}) \\ \equiv 11 \cdot 27 \cdot 27^6 \equiv 11 \cdot 27 \cdot \left(27^2\right)^3 \equiv 11 \cdot 27 \cdot 24^3 & (\text{Porque } 27^2 \equiv 24 \pmod{47}) \\ \equiv 11 \cdot 27 \cdot 24 \cdot 24^2 \equiv 11 \cdot 27 \cdot 24 \cdot \left(24^2\right)^1 \equiv 11 \cdot 27 \cdot 24 \cdot 12^1 & (\text{Porque } 24^2 \equiv 12 \pmod{47}) \\ \equiv 15 \cdot 24 \cdot 12 & (\text{Porque } 11 \cdot 27 \equiv 15 \pmod{47}) \\ \equiv 31 \cdot 12 & (\text{Porque } 15 \cdot 24 \equiv 31 \pmod{47}) \\ \equiv 43 & (\text{Porque } 31 \cdot 12 \equiv 43 \pmod{47}) \end{array}$$

Ejercicio 15. Calcula 11¹⁵⁹ (mód 35) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $35=5\cdot 7$, entonces aplicamos la fórmula y tenemos que $\varphi(35)=\varphi(5\cdot 7)=\varphi(5^1)\cdot \varphi(7^1)=(5^1-5^0)\cdot (7^1-7^0)=24$. Esto nos deja $11^{159}=11^{15+24\cdot 6}=11^{15}\cdot \left(11^{24}\right)^6\equiv 11^{15}\pmod{35}$ porque $11^{24}\equiv 1\pmod{35}$ por la Fórmula de Euler. Para calcular $11^{15}\pmod{35}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

Para calcular 11¹⁵ (mód 35) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 11^{15} \equiv 11 \cdot 11^{14} \equiv 11 \cdot \left(11^2\right)^7 \equiv 11 \cdot 16^7 & (\text{Porque } 11^2 \equiv 16 \pmod{35}) \\ \equiv 11 \cdot 16 \cdot 16^6 \equiv 11 \cdot 16 \cdot \left(16^2\right)^3 \equiv 11 \cdot 16 \cdot 11^3 & (\text{Porque } 16^2 \equiv 11 \pmod{35}) \\ \equiv 11 \cdot 16 \cdot 11 \cdot 11^2 \equiv 11 \cdot 16 \cdot 11 \cdot \left(11^2\right)^1 \equiv 11 \cdot 16 \cdot 11 \cdot 16^1 & (\text{Porque } 11^2 \equiv 16 \pmod{35}) \\ \equiv 1 \cdot 11 \cdot 16 & (\text{Porque } 11 \cdot 16 \equiv 1 \pmod{35}) \\ \equiv 11 \cdot 16 & (\text{Porque } 1 \cdot 11 \equiv 11 \pmod{35}) \\ \equiv 1 & (\text{Porque } 11 \cdot 16 \equiv 1 \pmod{35}) \\ \end{array}$$

Ejercicio 16. Calcula 40^{262} (mód 49) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $49=7^2$, entonces aplicamos la fórmula y tenemos que $\varphi(49)=\varphi(7^2)=(7^2-7^1)=42$. Esto nos deja $40^{262}=40^{10+42\cdot 6}=40^{10}\cdot \left(40^{42}\right)^6\equiv 40^{10}\pmod{49}$ porque $40^{42}\equiv 1\pmod{49}$ por la Fórmula de Euler.

Para calcular 40^{10} (mód 49) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$40^{10} \equiv 40^{10} \equiv (40^2)^5 \equiv 32^5$$
 (Porque $40^2 \equiv 32 \pmod{49}$)
 $\equiv 32 \cdot 32^4 \equiv 32 \cdot (32^2)^2 \equiv 32 \cdot 44^2$ (Porque $32^2 \equiv 44 \pmod{49}$)
 $\equiv 32 \cdot 44^2 \equiv 32 \cdot (44^2)^1 \equiv 32 \cdot 25^1$ (Porque $44^2 \equiv 25 \pmod{49}$)
 $\equiv 16$ (Porque $32 \cdot 25 \equiv 16 \pmod{49}$)

 \Diamond

 \Diamond

Ejercicio 17. Calcula 28⁵³ (mód 43) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 43 es primo, tendremos que $\varphi(43)=43-1=42$. Esto nos deja $28^{53}=28^{11+42\cdot 1}=28^{11}\cdot \left(28^{42}\right)^1\equiv 28^{11}\pmod{43}$ porque $28^{42}\equiv 1\pmod{43}$ por la Fórmula de Euler.

Para calcular 28¹¹ (mód 43) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$28^{11} \equiv 28 \cdot 28^{10} \equiv 28 \cdot \left(28^{2}\right)^{5} \equiv 28 \cdot 10^{5}$$
 (Porque $28^{2} \equiv 10 \pmod{43}$)
$$\equiv 28 \cdot 10 \cdot 10^{4} \equiv 28 \cdot 10 \cdot \left(10^{2}\right)^{2} \equiv 28 \cdot 10 \cdot 14^{2}$$
 (Porque $10^{2} \equiv 14 \pmod{43}$)
$$\equiv 28 \cdot 10 \cdot 14^{2} \equiv 28 \cdot 10 \cdot \left(14^{2}\right)^{1} \equiv 28 \cdot 10 \cdot 24^{1}$$
 (Porque $14^{2} \equiv 24 \pmod{43}$)
$$\equiv 22 \cdot 24$$
 (Porque $28 \cdot 10 \equiv 22 \pmod{43}$)
$$\equiv 12$$
 (Porque $22 \cdot 24 \equiv 12 \pmod{43}$)

Ejercicio 18. Calcula 19¹³⁷ (mód 44) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $44 = 2^2 \cdot 11$, entonces aplicamos la fórmula y tenemos que $\varphi(44) = \varphi(2^2 \cdot 11) = \varphi(2^2) \cdot \varphi(11^1) = (2^2 - 2^1) \cdot (11^1 - 11^0) = 20$. Esto nos deja $19^{137} = 19^{17+20\cdot6} = 19^{17} \cdot (19^{20})^6 \equiv 19^{17} \pmod{44}$ porque $19^{20} \equiv 1 \pmod{44}$ por la Fórmula de Euler.

Para calcular 19¹⁷ (mód 44) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$19^{17} \equiv 19 \cdot 19^{16} \equiv 19 \cdot \left(19^{2}\right)^{8} \equiv 19 \cdot 9^{8}$$
 (Porque $19^{2} \equiv 9 \pmod{44}$)
$$\equiv 19 \cdot 9^{8} \equiv 19 \cdot \left(9^{2}\right)^{4} \equiv 19 \cdot 37^{4}$$
 (Porque $9^{2} \equiv 37 \pmod{44}$)
$$\equiv 19 \cdot 37^{4} \equiv 19 \cdot \left(37^{2}\right)^{2} \equiv 19 \cdot 5^{2}$$
 (Porque $37^{2} \equiv 5 \pmod{44}$)
$$\equiv 19 \cdot 5^{2} \equiv 19 \cdot \left(5^{2}\right)^{1} \equiv 19 \cdot 25^{1}$$
 (Porque $5^{2} \equiv 25 \pmod{44}$)
$$\equiv 35$$
 (Porque $19 \cdot 25 \equiv 35 \pmod{44}$)

Ejercicio 19. Calcula 30⁹⁴ (mód 33) utilizando el algoritmo de exponenciación modular.

Solución: Para calcular 30^{94} (mód 33) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

paso a paso:

$$30^{94} \equiv 30^{94} \equiv \left(30^{2}\right)^{47} \equiv 9^{47} \qquad \qquad (Porque \ 30^{2} \equiv 9 \pmod 33))$$

$$\equiv 9 \cdot 9^{46} \equiv 9 \cdot \left(9^{2}\right)^{23} \equiv 9 \cdot 15^{23} \qquad (Porque \ 9^{2} \equiv 15 \pmod 33))$$

$$\equiv 9 \cdot 15 \cdot 15^{22} \equiv 9 \cdot 15 \cdot \left(15^{2}\right)^{11} \equiv 9 \cdot 15 \cdot 27^{11} \qquad (Porque \ 15^{2} \equiv 27 \pmod 33))$$

$$\equiv 9 \cdot 15 \cdot 27 \cdot 27^{10} \equiv 9 \cdot 15 \cdot 27 \cdot \left(27^{2}\right)^{5} \equiv 9 \cdot 15 \cdot 27 \cdot 3^{5} \qquad (Porque \ 27^{2} \equiv 3 \pmod 33))$$

$$\equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot 3^{4} \equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot \left(3^{2}\right)^{2} \equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot 9^{2} \qquad (Porque \ 3^{2} \equiv 9 \pmod 33)$$

$$\equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot 9^{2} \equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot \left(9^{2}\right)^{1} \equiv 9 \cdot 15 \cdot 27 \cdot 3 \cdot 15^{1} \qquad (Porque \ 9^{2} \equiv 15 \pmod 33)$$

$$\equiv 3 \cdot 27 \cdot 3 \cdot 15 \qquad (Porque \ 3 \cdot 27 \equiv 15 \pmod 33)$$

$$\equiv 15 \cdot 3 \cdot 15 \qquad (Porque \ 3 \cdot 27 \equiv 15 \pmod 33)$$

$$\equiv 12 \cdot 15 \qquad (Porque \ 15 \cdot 3 \equiv 12 \pmod 33)$$

$$\equiv 15 \cdot 3 \cdot 15 \qquad (Porque \ 15 \cdot 3 \equiv 12 \pmod 33)$$

$$\equiv 15 \cdot 3 \cdot 15 \qquad (Porque \ 15 \cdot 3 \equiv 12 \pmod 33)$$

$$\equiv 15 \cdot 3 \cdot 15 \qquad (Porque \ 15 \cdot 3 \equiv 12 \pmod 33)$$

Ejercicio 20. Calcula 30¹³¹ (mód 39) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 30^{131} (mód 39) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$30^{131} \equiv 30 \cdot 30^{130} \equiv 30 \cdot \left(30^2\right)^{65} \equiv 30 \cdot 3^{65} \qquad \qquad (Porque \ 30^2 \equiv 3 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 3^{64} \equiv 30 \cdot 3 \cdot \left(3^2\right)^{32} \equiv 30 \cdot 3 \cdot 9^{32} \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 9^{32} \equiv 30 \cdot 3 \cdot \left(9^2\right)^{16} \equiv 30 \cdot 3 \cdot 3^{16} \qquad (Porque \ 9^2 \equiv 3 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 3^{16} \equiv 30 \cdot 3 \cdot \left(3^2\right)^8 \equiv 30 \cdot 3 \cdot 9^8 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 9^8 \equiv 30 \cdot 3 \cdot \left(9^2\right)^4 \equiv 30 \cdot 3 \cdot 3^4 \qquad (Porque \ 9^2 \equiv 3 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 9^2 \equiv 30 \cdot 3 \cdot \left(9^2\right)^1 \equiv 30 \cdot 3 \cdot 3^1 \qquad (Porque \ 9^2 \equiv 3 \pmod{39})$$

$$\equiv 30 \cdot 3 \cdot 9^2 \equiv 30 \cdot 3 \cdot \left(9^2\right)^1 \equiv 30 \cdot 3 \cdot 3^1 \qquad (Porque \ 9^2 \equiv 3 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

$$\equiv 12 \cdot 3 \qquad (Porque \ 3^2 \equiv 9 \pmod{39})$$

Ejercicio 21. Calcula 16¹⁵⁹ (mód 45) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $45 = 3^2 \cdot 5$, entonces aplicamos la fórmula y tenemos que $\varphi(45) = \varphi(3^2 \cdot 5) = \varphi(3^2) \cdot \varphi(5^1) = (3^2 - 3^1) \cdot (5^1 - 5^0) = 24$. Esto nos deja $16^{159} = 16^{15+24 \cdot 6} = 16^{15} \cdot \left(16^{24}\right)^6 \equiv 16^{15} \pmod{45}$ porque $16^{24} \equiv 1 \pmod{45}$ por la Fórmula de Euler. Para calcular $16^{15} \pmod{45}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Ejercicio 22. Calcula 16⁷³ (mód 38) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 16^{73} (mód 38) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 16^{73} \equiv 16 \cdot 16^{72} \equiv 16 \cdot \left(16^2\right)^{36} \equiv 16 \cdot 28^{36} & (\text{Porque } 16^2 \equiv 28 \pmod{38}) \\ \equiv 16 \cdot 28^{36} \equiv 16 \cdot \left(28^2\right)^{18} \equiv 16 \cdot 24^{18} & (\text{Porque } 28^2 \equiv 24 \pmod{38}) \\ \equiv 16 \cdot 24^{18} \equiv 16 \cdot \left(24^2\right)^9 \equiv 16 \cdot 6^9 & (\text{Porque } 24^2 \equiv 6 \pmod{38}) \\ \equiv 16 \cdot 6 \cdot 6^8 \equiv 16 \cdot 6 \cdot \left(6^2\right)^4 \equiv 16 \cdot 6 \cdot 36^4 & (\text{Porque } 6^2 \equiv 36 \pmod{38}) \\ \equiv 16 \cdot 6 \cdot 36^4 \equiv 16 \cdot 6 \cdot \left(36^2\right)^2 \equiv 16 \cdot 6 \cdot 4^2 & (\text{Porque } 36^2 \equiv 4 \pmod{38}) \\ \equiv 16 \cdot 6 \cdot 4^2 \equiv 16 \cdot 6 \cdot \left(4^2\right)^1 \equiv 16 \cdot 6 \cdot 16^1 & (\text{Porque } 4^2 \equiv 16 \pmod{38}) \\ \equiv 20 \cdot 16 & (\text{Porque } 16 \cdot 6 \equiv 20 \pmod{38}) \\ \equiv 16 & (\text{Porque } 20 \cdot 16 \equiv 16 \pmod{38}) \end{array}$$

 \Diamond

 \Diamond

 \Diamond

Ejercicio 23. Calcula 23²⁹² (mód 47) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 47 es primo, tendremos que $\varphi(47)=47-1=46$. Esto nos deja $23^{292}=23^{16+46\cdot 6}=23^{16}\cdot \left(23^{46}\right)^6\equiv 23^{16}\pmod{47}$ porque $23^{46}\equiv 1\pmod{47}$ por la Fórmula de Euler.

Para calcular 23^{16} (mód 47) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$23^{16} \equiv 23^{16} \equiv (23^2)^8 \equiv 12^8$$
 (Porque $23^2 \equiv 12 \pmod{47}$)
 $\equiv 12^8 \equiv (12^2)^4 \equiv 3^4$ (Porque $12^2 \equiv 3 \pmod{47}$)
 $\equiv 3^4 \equiv (3^2)^2 \equiv 9^2$ (Porque $3^2 \equiv 9 \pmod{47}$)
 $\equiv 9^2 \equiv (9^2)^1 \equiv 34^1$ (Porque $9^2 \equiv 34 \pmod{47}$)
 $\equiv 34 \pmod{47}$.

Eiercicio 24. Calcula 39³⁶ (mód 46) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $46 = 2 \cdot 23$, entonces aplicamos la fórmula y tenemos que $\varphi(46) = \varphi(2 \cdot 23) = \varphi(2^1) \cdot \varphi(23^1) = (2^1 - 2^0) \cdot (23^1 - 23^0) = 22$. Esto nos deja $39^{36} = 39^{14+22\cdot 1} = 39^{14} \cdot (39^{22})^1 \equiv 39^{14}$ (mód 46) porque $39^{22} \equiv 1$ (mód 46) por la Fórmula de Euler.

Para calcular 39^{14} (mód 46) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$39^{14} \equiv 39^{14} \equiv (39^2)^7 \equiv 3^7$$
 (Porque $39^2 \equiv 3 \pmod{46}$)
 $\equiv 3 \cdot 3^6 \equiv 3 \cdot (3^2)^3 \equiv 3 \cdot 9^3$ (Porque $3^2 \equiv 9 \pmod{46}$)
 $\equiv 3 \cdot 9 \cdot 9^2 \equiv 3 \cdot 9 \cdot (9^2)^1 \equiv 3 \cdot 9 \cdot 35^1$ (Porque $9^2 \equiv 35 \pmod{46}$)
 $\equiv 27 \cdot 35$ (Porque $3 \cdot 9 \equiv 27 \pmod{46}$)
 $\equiv 25$ (Porque $3 \cdot 9 \equiv 27 \pmod{46}$)

Ejercicio 25. Calcula 40¹⁷⁸ (mód 43) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 43 es primo, tendremos que $\varphi(43) = 43 - 1 = 42$. Esto nos deja $40^{178} = 40^{10+42\cdot4} = 40^{10} \cdot \left(40^{42}\right)^4 \equiv 40^{10} \pmod{43}$ porque $40^{42} \equiv 1 \pmod{43}$ por la Fórmula de Euler.

Para calcular 40^{10} (mód 43) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$40^{10} \equiv 40^{10} \equiv (40^2)^5 \equiv 9^5$$
 (Porque $40^2 \equiv 9 \pmod{43}$)
 $\equiv 9 \cdot 9^4 \equiv 9 \cdot (9^2)^2 \equiv 9 \cdot 38^2$ (Porque $9^2 \equiv 38 \pmod{43}$)
 $\equiv 9 \cdot 38^2 \equiv 9 \cdot (38^2)^1 \equiv 9 \cdot 25^1$ (Porque $38^2 \equiv 25 \pmod{43}$)
 $\equiv 10$ (Porque $9 \cdot 25 \equiv 10 \pmod{43}$)

 \Diamond

 \Diamond

Ejercicio 26. Calcula 34²³¹ (mód 37) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 37 es primo, tendremos que $\varphi(37)=37-1=36$. Esto nos deja $34^{231}=34^{15+36\cdot6}=34^{15}\cdot\left(34^{36}\right)^6\equiv34^{15}\pmod{37}$ por que $34^{36}\equiv1\pmod{37}$ por la Fórmula de Euler.

Para calcular $34^{15} \pmod{37}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Eiercicio 27. Calcula 28¹⁷⁸ (mód 41) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 41 es primo, tendremos que $\varphi(41) = 41 - 1 = 40$. Esto nos deja $28^{178} = 28^{18+40\cdot4} = 28^{18} \cdot \left(28^{40}\right)^4 \equiv 28^{18} \pmod{41}$ porque $28^{40} \equiv 1 \pmod{41}$ por la Fórmula de Euler.

Para calcular 28¹⁸ (mód 41) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$28^{18} \equiv 28^{18} \equiv (28^2)^9 \equiv 5^9$$
 (Porque $28^2 \equiv 5 \pmod{41}$)

$$\equiv 5 \cdot 5^8 \equiv 5 \cdot (5^2)^4 \equiv 5 \cdot 25^4$$
 (Porque $5^2 \equiv 25 \pmod{41}$)

$$\equiv 5 \cdot 25^4 \equiv 5 \cdot (25^2)^2 \equiv 5 \cdot 10^2$$
 (Porque $25^2 \equiv 10 \pmod{41}$)

$$\equiv 5 \cdot 10^2 \equiv 5 \cdot (10^2)^1 \equiv 5 \cdot 18^1$$
 (Porque $10^2 \equiv 18 \pmod{41}$)

$$\equiv 8$$
 (Porque $5 \cdot 18 \equiv 8 \pmod{41}$)

Ejercicio 28. Calcula 22¹⁴⁵ (mód 49) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $49=7^2$, entonces aplicamos la fórmula y tenemos que $\varphi(49)=\varphi(7^2)=(7^2-7^1)=42$. Esto nos deja $22^{145}=22^{19+42\cdot 3}=22^{19}\cdot \left(22^{42}\right)^3\equiv 22^{19}\pmod{49}$ porque $22^{42}\equiv 1\pmod{49}$ por la Fórmula de Euler.

Para calcular 22^{19} (mód 49) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$22^{19} \equiv 22 \cdot 22^{18} \equiv 22 \cdot \left(22^2\right)^9 \equiv 22 \cdot 43^9 \qquad \qquad (Porque \ 22^2 \equiv 43 \pmod{49})$$

$$\equiv 22 \cdot 43 \cdot 43^8 \equiv 22 \cdot 43 \cdot \left(43^2\right)^4 \equiv 22 \cdot 43 \cdot 36^4 \qquad (Porque \ 43^2 \equiv 36 \pmod{49})$$

$$\equiv 22 \cdot 43 \cdot 36^4 \equiv 22 \cdot 43 \cdot \left(36^2\right)^2 \equiv 22 \cdot 43 \cdot 22^2 \qquad (Porque \ 36^2 \equiv 22 \pmod{49})$$

$$\equiv 22 \cdot 43 \cdot 22^2 \equiv 22 \cdot 43 \cdot \left(22^2\right)^1 \equiv 22 \cdot 43 \cdot 43^1 \qquad (Porque \ 22^2 \equiv 43 \pmod{49})$$

$$\equiv 15 \cdot 43 \qquad (Porque \ 22 \cdot 43 \equiv 15 \pmod{49})$$

$$\equiv 8 \qquad (Porque \ 21 \cdot 43 \equiv 8 \pmod{49})$$

$$\equiv 8 \qquad (Porque \ 15 \cdot 43 \equiv 8 \pmod{49})$$

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Ejercicio 29. Calcula 42³² (mód 46) utilizando el algoritmo de exponenciación modular.

Soluci'on: Para calcular 42^{32} (mód 46) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$42^{32} \equiv 42^{32} \equiv (42^2)^{16} \equiv 16^{16}$$
 (Porque $42^2 \equiv 16$ (mód 46))

$$\equiv 16^{16} \equiv (16^2)^8 \equiv 26^8$$
 (Porque $16^2 \equiv 26$ (mód 46))

$$\equiv 26^8 \equiv (26^2)^4 \equiv 32^4$$
 (Porque $26^2 \equiv 32$ (mód 46))

$$\equiv 32^4 \equiv (32^2)^2 \equiv 12^2$$
 (Porque $32^2 \equiv 12$ (mód 46))

$$\equiv 12^2 \equiv (12^2)^1 \equiv 6^1$$
 (Porque $12^2 \equiv 6$ (mód 46))

$$\equiv 6 \pmod{46}.$$

Ejercicio 30. Calcula 16⁵⁷ (mód 49) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $49=7^2$, entonces aplicamos la fórmula y tenemos que $\varphi(49)=\varphi(7^2)=(7^2-7^1)=42$. Esto nos deja $16^{57}=16^{15+42\cdot 1}=16^{15}\cdot \left(16^{42}\right)^1\equiv 16^{15}\pmod{49}$ porque $16^{42}\equiv 1\pmod{49}$ por la Fórmula de Euler.

Para calcular 16^{15} (mód 49) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

Ejercicio 31. Calcula 38¹¹¹ (mód 45) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $45 = 3^2 \cdot 5$, entonces aplicamos la fórmula y tenemos que $\varphi(45) = \varphi(3^2 \cdot 5) = \varphi(3^2) \cdot \varphi(5^1) = (3^2 - 3^1) \cdot (5^1 - 5^0) = 24$. Esto nos deja $38^{111} = 38^{15+24 \cdot 4} = 38^{15} \cdot \left(38^{24}\right)^4 \equiv 38^{15} \pmod{45}$ porque $38^{24} \equiv 1 \pmod{45}$ por la Fórmula de Euler.

Para calcular 38^{15} (mód 45) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

$$38^{15} \equiv 38 \cdot 38^{14} \equiv 38 \cdot \left(38^2\right)^7 \equiv 38 \cdot 4^7 \qquad \qquad (Porque \ 38^2 \equiv 4 \pmod{45})$$

$$\equiv 38 \cdot 4 \cdot 4^6 \equiv 38 \cdot 4 \cdot \left(4^2\right)^3 \equiv 38 \cdot 4 \cdot 16^3 \qquad (Porque \ 4^2 \equiv 16 \pmod{45})$$

$$\equiv 38 \cdot 4 \cdot 16 \cdot 16^2 \equiv 38 \cdot 4 \cdot 16 \cdot \left(16^2\right)^1 \equiv 38 \cdot 4 \cdot 16 \cdot 31^1 \qquad (Porque \ 16^2 \equiv 31 \pmod{45})$$

$$\equiv 17 \cdot 16 \cdot 31 \qquad (Porque \ 38 \cdot 4 \equiv 17 \pmod{45})$$

$$\equiv 2 \cdot 31 \qquad (Porque \ 38 \cdot 4 \equiv 17 \pmod{45})$$

$$\equiv 2 \cdot 31 \qquad (Porque \ 2 \cdot 31 \equiv 17 \pmod{45})$$

$$\equiv 17 \qquad (Porque \ 38^2 \equiv 4 \pmod{45})$$

Ejercicio 32. Calcula 24²⁴⁵ (mód 47) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 47 es primo, tendremos que $\varphi(47)=47-1=46$. Esto nos deja $24^{245}=24^{15+46\cdot 5}=24^{15}\cdot \left(24^{46}\right)^5\equiv 24^{15}\pmod{47}$ porque $24^{46}\equiv 1\pmod{47}$ por la Fórmula de Euler.

Para calcular $24^{15} \pmod{47}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 24^{15} \equiv 24 \cdot 24^{14} \equiv 24 \cdot \left(24^2\right)^7 \equiv 24 \cdot 12^7 & (\text{Porque } 24^2 \equiv 12 \pmod{47}) \\ \equiv 24 \cdot 12 \cdot 12^6 \equiv 24 \cdot 12 \cdot \left(12^2\right)^3 \equiv 24 \cdot 12 \cdot 3^3 & (\text{Porque } 12^2 \equiv 3 \pmod{47}) \\ \equiv 24 \cdot 12 \cdot 3 \cdot 3^2 \equiv 24 \cdot 12 \cdot 3 \cdot \left(3^2\right)^1 \equiv 24 \cdot 12 \cdot 3 \cdot 9^1 & (\text{Porque } 3^2 \equiv 9 \pmod{47}) \\ \equiv 6 \cdot 3 \cdot 9 & (\text{Porque } 24 \cdot 12 \equiv 6 \pmod{47}) \\ \equiv 18 \cdot 9 & (\text{Porque } 6 \cdot 3 \equiv 18 \pmod{47}) \\ \equiv 21 & (\text{Porque } 18 \cdot 9 \equiv 21 \pmod{47}) \end{array}$$

Ejercicio 33. Calcula 33¹¹⁰ (mód 35) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $35=5\cdot 7$, entonces aplicamos la fórmula y tenemos que $\varphi(35)=\varphi(5\cdot 7)=\varphi(5^1)\cdot \varphi(7^1)=(5^1-5^0)\cdot (7^1-7^0)=24$. Esto nos deja $33^{110}=33^{14+24\cdot 4}=33^{14}\cdot \left(33^{24}\right)^4\equiv 33^{14}\pmod{35}$ porque $33^{24}\equiv 1\pmod{35}$ por la Fórmula de Euler.

Para calcular 33^{14} (mód 35) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$33^{14} \equiv 33^{14} \equiv (33^2)^7 \equiv 4^7$$
 (Porque $33^2 \equiv 4 \pmod{35}$)
 $\equiv 4 \cdot 4^6 \equiv 4 \cdot (4^2)^3 \equiv 4 \cdot 16^3$ (Porque $4^2 \equiv 16 \pmod{35}$)
 $\equiv 4 \cdot 16 \cdot 16^2 \equiv 4 \cdot 16 \cdot (16^2)^1 \equiv 4 \cdot 16 \cdot 11^1$ (Porque $16^2 \equiv 11 \pmod{35}$)
 $\equiv 29 \cdot 11$ (Porque $4 \cdot 16 \equiv 29 \pmod{35}$)
 $\equiv 4$ (Porque $29 \cdot 11 \equiv 4 \pmod{35}$)

 \Diamond

 \Diamond

Ejercicio 34. Calcula 22⁴⁹ (mód 31) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 31 es primo, tendremos que $\varphi(31)=31-1=30$. Esto nos deja $22^{49}=22^{19+30\cdot 1}=22^{19}\cdot \left(22^{30}\right)^1\equiv 22^{19}\pmod{31}$ porque $22^{30}\equiv 1\pmod{31}$ por la Fórmula de Euler.

Para calcular 22¹⁹ (mód 31) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$22^{19} \equiv 22 \cdot 22^{18} \equiv 22 \cdot \left(22^2\right)^9 \equiv 22 \cdot 19^9 \qquad \qquad \text{(Porque } 22^2 \equiv 19 \pmod{31))}$$

$$\equiv 22 \cdot 19 \cdot 19^8 \equiv 22 \cdot 19 \cdot \left(19^2\right)^4 \equiv 22 \cdot 19 \cdot 20^4 \qquad \qquad \text{(Porque } 19^2 \equiv 20 \pmod{31))}$$

$$\equiv 22 \cdot 19 \cdot 20^4 \equiv 22 \cdot 19 \cdot \left(20^2\right)^2 \equiv 22 \cdot 19 \cdot 28^2 \qquad \qquad \text{(Porque } 20^2 \equiv 28 \pmod{31))}$$

$$\equiv 22 \cdot 19 \cdot 28^2 \equiv 22 \cdot 19 \cdot \left(28^2\right)^1 \equiv 22 \cdot 19 \cdot 9^1 \qquad \qquad \text{(Porque } 28^2 \equiv 9 \pmod{31))}$$

$$\equiv 15 \cdot 9 \qquad \qquad \text{(Porque } 22 \cdot 19 \equiv 15 \pmod{31)}$$

$$\equiv 11 \qquad \qquad \text{(Porque } 15 \cdot 9 \equiv 11 \pmod{31)}$$

Ejercicio 35. Calcula 43⁹⁰ (mód 45) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $45=3^2\cdot 5$, entonces aplicamos la fórmula y tenemos que $\varphi(45)=\varphi(3^2\cdot 5)=\varphi(3^2)\cdot \varphi(5^1)=(3^2-3^1)\cdot (5^1-5^0)=24$. Esto nos deja $43^{90}=43^{18+24\cdot 3}=43^{18}\cdot \left(43^{24}\right)^3\equiv 43^{18}\pmod{45}$ porque $43^{24}\equiv 1\pmod{45}$ por la Fórmula de Euler.

Para calcular 43¹⁸ (mód 45) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$43^{18} \equiv 43^{18} \equiv (43^2)^9 \equiv 4^9$$
 (Porque $43^2 \equiv 4 \pmod{45}$)
$$\equiv 4 \cdot 4^8 \equiv 4 \cdot (4^2)^4 \equiv 4 \cdot 16^4$$
 (Porque $4^2 \equiv 16 \pmod{45}$)
$$\equiv 4 \cdot 16^4 \equiv 4 \cdot (16^2)^2 \equiv 4 \cdot 31^2$$
 (Porque $16^2 \equiv 31 \pmod{45}$)
$$\equiv 4 \cdot 31^2 \equiv 4 \cdot (31^2)^1 \equiv 4 \cdot 16^1$$
 (Porque $31^2 \equiv 16 \pmod{45}$)
$$\equiv 19$$
 (Porque $4 \cdot 16 \equiv 19 \pmod{45}$)

Ejercicio 36. Calcula 13²⁵ (mód 36) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $36=2^2\cdot 3^2$, entonces aplicamos la fórmula y tenemos que $\varphi(36)=\varphi(2^2\cdot 3^2)=\varphi(2^2)\cdot \varphi(3^2)=(2^2-2^1)\cdot (3^2-3^1)=12$. Esto nos deja $13^{25}=13^{1+12\cdot 2}=13^1\cdot \left(13^{12}\right)^2\equiv 13^1\pmod{36}$ porque $13^{12}\equiv 1\pmod{36}$ por la Fórmula de Euler.

Para calcular 13¹ (mód 36) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$13^1 \equiv 13 \pmod{36}$$
.

 \Diamond

 \Diamond

 \Diamond

Ejercicio 37. Calcula 25⁸⁵ (mód 37) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 37 es primo, tendremos que $\varphi(37)=37-1=36$. Esto nos deja $25^{85}=25^{13+36\cdot 2}=25^{13}\cdot \left(25^{36}\right)^2\equiv 25^{13}\pmod{37}$ por que $25^{36}\equiv 1\pmod{37}$ por la Fórmula de Euler.

Para calcular 25^{13} (mód 37) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$25^{13} \equiv 25 \cdot 25^{12} \equiv 25 \cdot \left(25^{2}\right)^{6} \equiv 25 \cdot 33^{6} \qquad (Porque \ 25^{2} \equiv 33 \pmod{37})$$

$$\equiv 25 \cdot 33^{6} \equiv 25 \cdot \left(33^{2}\right)^{3} \equiv 25 \cdot 16^{3} \qquad (Porque \ 33^{2} \equiv 16 \pmod{37})$$

$$\equiv 25 \cdot 16 \cdot 16^{2} \equiv 25 \cdot 16 \cdot \left(16^{2}\right)^{1} \equiv 25 \cdot 16 \cdot 34^{1} \qquad (Porque \ 16^{2} \equiv 34 \pmod{37})$$

$$\equiv 30 \cdot 34 \qquad (Porque \ 25 \cdot 16 \equiv 30 \pmod{37})$$

$$\equiv 21 \qquad (Porque \ 30 \cdot 34 \equiv 21 \pmod{37})$$

Ejercicio 38. Calcula 10²³² (mód 37) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 37 es primo, tendremos que $\varphi(37)=37-1=36$. Esto nos deja $10^{232}=10^{16+36\cdot6}=10^{16}\cdot\left(10^{36}\right)^6\equiv10^{16}\pmod{37}$ porque $10^{36}\equiv1\pmod{37}$ por la Fórmula de Euler.

Para calcular 10^{16} (mód 37) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$10^{16} \equiv 10^{16} \equiv (10^{2})^{8} \equiv 26^{8}$$
 (Porque $10^{2} \equiv 26 \pmod{37}$)
$$\equiv 26^{8} \equiv (26^{2})^{4} \equiv 10^{4}$$
 (Porque $26^{2} \equiv 10 \pmod{37}$)
$$\equiv 10^{4} \equiv (10^{2})^{2} \equiv 26^{2}$$
 (Porque $10^{2} \equiv 26 \pmod{37}$)
$$\equiv 26^{2} \equiv (26^{2})^{1} \equiv 10^{1}$$
 (Porque $26^{2} \equiv 10 \pmod{37}$)
$$\equiv 10 \pmod{37}.$$

Ejercicio 39. Calcula 10⁸⁰ (mód 46) utilizando el algoritmo de exponenciación modular.

Solución: Para calcular 10^{80} (mód 46) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$10^{80} \equiv 10^{80} \equiv (10^2)^{40} \equiv 8^{40}$$
 (Porque $10^2 \equiv 8 \pmod{46}$)
$$\equiv 8^{40} \equiv (8^2)^{20} \equiv 18^{20}$$
 (Porque $8^2 \equiv 18 \pmod{46}$)
$$\equiv 18^{20} \equiv (18^2)^{10} \equiv 2^{10}$$
 (Porque $18^2 \equiv 2 \pmod{46}$)
$$\equiv 2^{10} \equiv (2^2)^5 \equiv 4^5$$
 (Porque $18^2 \equiv 2 \pmod{46}$)
$$\equiv 4 \cdot 4^4 \equiv 4 \cdot (4^2)^2 \equiv 4 \cdot 16^2$$
 (Porque $16^2 \equiv 26 \pmod{46}$)
$$\equiv 4 \cdot 16^2 \equiv 4 \cdot (16^2)^1 \equiv 4 \cdot 26^1$$
 (Porque $16^2 \equiv 26 \pmod{46}$)
$$\equiv 12$$
 (Porque $16^2 \equiv 26 \pmod{46}$)

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

 \Diamond

Ejercicio 40. Calcula 13⁵⁰ (mód 33) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como 33 = $3 \cdot 11$, entonces aplicamos la fórmula y tenemos que $\varphi(33) = \varphi(3 \cdot 11) = \varphi(3^1) \cdot \varphi(11^1) = (3^1 - 3^0) \cdot (11^1 - 11^0) = 20$. Esto nos deja $13^{50} = 13^{10+20 \cdot 2} = 13^{10} \cdot (13^{20})^2 \equiv 13^{10} \pmod{33}$ porque $13^{20} \equiv 1 \pmod{33}$ por la Fórmula de Euler.

Para calcular 13¹⁰ (mód 33) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$13^{10} \equiv 13^{10} \equiv (13^2)^5 \equiv 4^5$$
 (Porque $13^2 \equiv 4 \pmod{33}$)

$$\equiv 4 \cdot 4^4 \equiv 4 \cdot (4^2)^2 \equiv 4 \cdot 16^2$$
 (Porque $4^2 \equiv 16 \pmod{33}$)

$$\equiv 4 \cdot 16^2 \equiv 4 \cdot (16^2)^1 \equiv 4 \cdot 25^1$$
 (Porque $16^2 \equiv 25 \pmod{33}$)

$$\equiv 1$$
 (Porque $4 \cdot 25 \equiv 1 \pmod{33}$)

 \Diamond

Eiercicio 41. Calcula 29¹⁹⁰ (mód 31) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 31 es primo, tendremos que $\varphi(31)=31-1=30$. Esto nos deja $29^{190}=29^{10+30\cdot 6}=29^{10}\cdot \left(29^{30}\right)^6\equiv 29^{10}\pmod{31}$ porque $29^{30}\equiv 1$ (mód 31) por la Fórmula de Euler.

Para calcular 29¹⁰ (mód 31) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$29^{10} \equiv 29^{10} \equiv (29^2)^5 \equiv 4^5$$
 (Porque $29^2 \equiv 4 \pmod{31}$)

$$\equiv 4 \cdot 4^4 \equiv 4 \cdot (4^2)^2 \equiv 4 \cdot 16^2$$
 (Porque $4^2 \equiv 16 \pmod{31}$)

$$\equiv 4 \cdot 16^2 \equiv 4 \cdot (16^2)^1 \equiv 4 \cdot 8^1$$
 (Porque $16^2 \equiv 8 \pmod{31}$)

$$\equiv 1$$
 (Porque $4 \cdot 8 \equiv 1 \pmod{31}$)

 \Diamond

Ejercicio 42. Calcula 22¹⁰⁷ (mód 45) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $45 = 3^2 \cdot 5$, entonces aplicamos la fórmula y tenemos que $\varphi(45) = \varphi(3^2 \cdot 5) = \varphi(3^2) \cdot \varphi(5^1) = (3^2 - 3^1) \cdot (5^1 - 5^0) = 24$. Esto nos deja $22^{107} = 22^{11 + 24 \cdot 4} = 22^{11 + 24 \cdot 4}$ $22^{11} \cdot \left(22^{24}\right)^4 \equiv 22^{11} \pmod{45}$ porque $22^{24} \equiv 1 \pmod{45}$ por la Fórmula de Euler. Para calcular $22^{11} \pmod{45}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

$$22^{11} \equiv 22 \cdot 22^{10} \equiv 22 \cdot \left(22^2\right)^5 \equiv 22 \cdot 34^5 \qquad \qquad (Porque \ 22^2 \equiv 34 \pmod{45})$$

$$\equiv 22 \cdot 34 \cdot 34^4 \equiv 22 \cdot 34 \cdot \left(34^2\right)^2 \equiv 22 \cdot 34 \cdot 31^2 \qquad (Porque \ 34^2 \equiv 31 \pmod{45})$$

$$\equiv 22 \cdot 34 \cdot 31^2 \equiv 22 \cdot 34 \cdot \left(31^2\right)^1 \equiv 22 \cdot 34 \cdot 16^1 \qquad (Porque \ 31^2 \equiv 16 \pmod{45})$$

$$\equiv 28 \cdot 16 \qquad (Porque \ 22 \cdot 34 \equiv 28 \pmod{45})$$

$$\equiv 43 \qquad (Porque \ 28 \cdot 16 \equiv 43 \pmod{45})$$

 \Diamond

Ejercicio 43. Calcula 27²⁶⁹ (mód 43) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 43 es primo, tendremos que $\varphi(43) = 43 - 1 = 42$. Esto nos deja $27^{269} = 27^{17+42\cdot6} = 27^{17} \cdot \left(27^{42}\right)^6 \equiv 27^{17} \pmod{43}$ porque $27^{42} \equiv 1 \pmod{43}$ por la Fórmula de Euler.

Para calcular 27^{17} (mód 43) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 27^{17} \equiv 27 \cdot 27^{16} \equiv 27 \cdot \left(27^2\right)^8 \equiv 27 \cdot 41^8 & \text{(Porque } 27^2 \equiv 41 \pmod{43}) \\ & \equiv 27 \cdot 41^8 \equiv 27 \cdot \left(41^2\right)^4 \equiv 27 \cdot 4^4 & \text{(Porque } 41^2 \equiv 4 \pmod{43}) \\ & \equiv 27 \cdot 4^4 \equiv 27 \cdot \left(4^2\right)^2 \equiv 27 \cdot 16^2 & \text{(Porque } 4^2 \equiv 16 \pmod{43}) \\ & \equiv 27 \cdot 16^2 \equiv 27 \cdot \left(16^2\right)^1 \equiv 27 \cdot 41^1 & \text{(Porque } 16^2 \equiv 41 \pmod{43}) \\ & \equiv 32 & \text{(Porque } 27 \cdot 41 \equiv 32 \pmod{43}) \end{array}$$

 \Diamond

Ejercicio 44. Calcula 25⁸⁸ (mód 38) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $38=2\cdot 19$, entonces aplicamos la fórmula y tenemos que $\varphi(38)=\varphi(2\cdot 19)=\varphi(2^1)\cdot \varphi(19^1)=(2^1-2^0)\cdot (19^1-19^0)=18$. Esto nos deja $25^{88}=25^{16+18\cdot 4}=25^{16}\cdot \left(25^{18}\right)^4\equiv 25^{16}\pmod{38}$ porque $25^{18}\equiv 1\pmod{38}$ por la Fórmula de Euler.

Para calcular 25^{16} (mód 38) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$25^{16} \equiv 25^{16} \equiv (25^2)^8 \equiv 17^8 \qquad (Porque 25^2 \equiv 17 \pmod{38})$$

$$\equiv 17^8 \equiv (17^2)^4 \equiv 23^4 \qquad (Porque 17^2 \equiv 23 \pmod{38})$$

$$\equiv 23^4 \equiv (23^2)^2 \equiv 35^2 \qquad (Porque 23^2 \equiv 35 \pmod{38})$$

$$\equiv 35^2 \equiv (35^2)^1 \equiv 9^1 \qquad (Porque 35^2 \equiv 9 \pmod{38})$$

$$\equiv 9 \pmod{38}.$$

Ejercicio 45. Calcula 20⁴¹ (mód 39) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como 39 = 3 · 13, entonces aplicamos la fórmula y tenemos que $\varphi(39) = \varphi(3 \cdot 13) = \varphi(3^1) \cdot \varphi(13^1) = (3^1 - 3^0) \cdot (13^1 - 13^0) = 24$. Esto nos deja 20^{41} $20^{17+24\cdot 1} = 20^{17} \cdot (20^{24})^1 \equiv 20^{17} \pmod{39}$ porque $20^{24} \equiv 1 \pmod{39}$ por la Fórmula de Euler.

Para calcular 20^{17} (mód 39) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$20^{17} \equiv 20 \cdot 20^{16} \equiv 20 \cdot \left(20^{2}\right)^{8} \equiv 20 \cdot 10^{8}$$
 (Porque $20^{2} \equiv 10 \pmod{39}$)
$$\equiv 20 \cdot 10^{8} \equiv 20 \cdot \left(10^{2}\right)^{4} \equiv 20 \cdot 22^{4}$$
 (Porque $10^{2} \equiv 22 \pmod{39}$)
$$\equiv 20 \cdot 22^{4} \equiv 20 \cdot \left(22^{2}\right)^{2} \equiv 20 \cdot 16^{2}$$
 (Porque $22^{2} \equiv 16 \pmod{39}$)
$$\equiv 20 \cdot 16^{2} \equiv 20 \cdot \left(16^{2}\right)^{1} \equiv 20 \cdot 22^{1}$$
 (Porque $16^{2} \equiv 22 \pmod{39}$)
$$\equiv 11$$
 (Porque $20 \cdot 22 \equiv 11 \pmod{39}$)

Ejercicio 46. Calcula 41⁵⁶ (mód 44) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. Como $44 = 2^2 \cdot 11$, entonces aplicamos la fórmula y tenemos que $\varphi(44) = \varphi(2^2 \cdot 11) = \varphi(2^2) \cdot \varphi(11^1) = (2^2 - 2^1) \cdot (11^1 - 11^0) = 20$. Esto nos deja $41^{56} = 41^{16+20\cdot 2} = 41^{16} \cdot \left(41^{20}\right)^2 \equiv 41^{16} \pmod{44}$ porque $41^{20} \equiv 1 \pmod{44}$ por la Fórmula de Euler. Para calcular $41^{16} \pmod{44}$ iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$41^{16} \equiv 41^{16} \equiv (41^2)^8 \equiv 9^8$$
 (Porque $41^2 \equiv 9 \pmod{44}$)
$$\equiv 9^8 \equiv (9^2)^4 \equiv 37^4$$
 (Porque $9^2 \equiv 37 \pmod{44}$)
$$\equiv 37^4 \equiv (37^2)^2 \equiv 5^2$$
 (Porque $37^2 \equiv 5 \pmod{44}$)
$$\equiv 5^2 \equiv (5^2)^1 \equiv 25^1$$
 (Porque $5^2 \equiv 25 \pmod{44}$)
$$\equiv 25 \pmod{44}.$$

Ejercicio 47. Calcula 13¹⁰⁹ (mód 31) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 31 es primo, tendremos que $\varphi(31)=31-1=30$. Esto nos deja $13^{109}=13^{19+30\cdot 3}=13^{19}\cdot \left(13^{30}\right)^3\equiv 13^{19}\pmod{31}$ porque $13^{30}\equiv 1$ (mód 31) por la Fórmula de Euler.

Para calcular 13¹⁹ (mód 31) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

$$\begin{array}{lll} 13^{19} \equiv 13 \cdot 13^{18} \equiv 13 \cdot \left(13^2\right)^9 \equiv 13 \cdot 14^9 & (\text{Porque } 13^2 \equiv 14 \pmod{31}) \\ \equiv 13 \cdot 14 \cdot 14^8 \equiv 13 \cdot 14 \cdot \left(14^2\right)^4 \equiv 13 \cdot 14 \cdot 10^4 & (\text{Porque } 14^2 \equiv 10 \pmod{31}) \\ \equiv 13 \cdot 14 \cdot 10^4 \equiv 13 \cdot 14 \cdot \left(10^2\right)^2 \equiv 13 \cdot 14 \cdot 7^2 & (\text{Porque } 10^2 \equiv 7 \pmod{31}) \\ \equiv 13 \cdot 14 \cdot 7^2 \equiv 13 \cdot 14 \cdot \left(7^2\right)^1 \equiv 13 \cdot 14 \cdot 18^1 & (\text{Porque } 7^2 \equiv 18 \pmod{31}) \\ \equiv 27 \cdot 18 & (\text{Porque } 13 \cdot 14 \equiv 27 \pmod{31}) \\ \equiv 21 & (\text{Porque } 27 \cdot 18 \equiv 21 \pmod{31}) \end{array}$$

Ejercicio 48. Calcula 40²⁹ (mód 42) utilizando el algoritmo de exponenciación modular.

Solución: Para calcular 40^{29} (mód 42) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$40^{29} \equiv 40 \cdot 40^{28} \equiv 40 \cdot \left(40^{2}\right)^{14} \equiv 40 \cdot 4^{14} \qquad (Porque \ 40^{2} \equiv 4 \pmod{42})$$

$$\equiv 40 \cdot 4^{14} \equiv 40 \cdot \left(4^{2}\right)^{7} \equiv 40 \cdot 16^{7} \qquad (Porque \ 4^{2} \equiv 16 \pmod{42})$$

$$\equiv 40 \cdot 16 \cdot 16^{6} \equiv 40 \cdot 16 \cdot \left(16^{2}\right)^{3} \equiv 40 \cdot 16 \cdot 4^{3} \qquad (Porque \ 16^{2} \equiv 4 \pmod{42})$$

$$\equiv 40 \cdot 16 \cdot 4 \cdot 4^{2} \equiv 40 \cdot 16 \cdot 4 \cdot \left(4^{2}\right)^{1} \equiv 40 \cdot 16 \cdot 4 \cdot 16^{1} \qquad (Porque \ 4^{2} \equiv 16 \pmod{42})$$

$$\equiv 10 \cdot 4 \cdot 16 \qquad (Porque \ 4^{0} \cdot 16 \equiv 10 \pmod{42})$$

$$\equiv 40 \cdot 16 \qquad (Porque \ 4^{0} \cdot 16 \equiv 10 \pmod{42})$$

$$\equiv 10 \qquad (Porque \ 4^{0} \cdot 16 \equiv 10 \pmod{42})$$

$$\equiv 10 \qquad (Porque \ 4^{0} \cdot 16 \equiv 10 \pmod{42})$$

$$\equiv 10 \qquad (Porque \ 4^{0} \cdot 16 \equiv 10 \pmod{42})$$

Ejercicio 49. Calcula 29¹³⁷ (mód 41) utilizando el algoritmo de exponenciación modular.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 41 es primo, tendremos que $\varphi(41) = 41 - 1 = 40$. Esto nos deja $29^{137} = 29^{17+40\cdot 3} = 29^{17} \cdot \left(29^{40}\right)^3 \equiv 29^{17} \pmod{41}$ porque $29^{40} \equiv 1 \pmod{41}$ por la Fórmula de Euler.

Para calcular 29^{17} (mód 41) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$29^{17} \equiv 29 \cdot 29^{16} \equiv 29 \cdot \left(29^{2}\right)^{8} \equiv 29 \cdot 21^{8} \qquad (Porque 29^{2} \equiv 21 \pmod{41})$$

$$\equiv 29 \cdot 21^{8} \equiv 29 \cdot \left(21^{2}\right)^{4} \equiv 29 \cdot 31^{4} \qquad (Porque 21^{2} \equiv 31 \pmod{41})$$

$$\equiv 29 \cdot 31^{4} \equiv 29 \cdot \left(31^{2}\right)^{2} \equiv 29 \cdot 18^{2} \qquad (Porque 31^{2} \equiv 18 \pmod{41})$$

$$\equiv 29 \cdot 18^{2} \equiv 29 \cdot \left(18^{2}\right)^{1} \equiv 29 \cdot 37^{1} \qquad (Porque 18^{2} \equiv 37 \pmod{41})$$

$$\equiv 7 \qquad (Porque 29 \cdot 37 \equiv 7 \pmod{41})$$

 \Diamond

 \Diamond

 \Diamond

Ejercicio 50. Calcula 18⁹⁹ (mód 43) utilizando el algoritmo de exponenciación modular.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Exponencial Modular	Clase: 30 min.

Solución: Lo primero que vamos a hacer es reducir el exponente haciendo uso de la Fórmula de Euler. Para ello calcularemos la función φ de Euler del módulo. En este caso, como 43 es primo, tendremos que $\varphi(43)=43-1=42$. Esto nos deja $18^{99}=18^{15+42\cdot 2}=18^{15}\cdot \left(18^{42}\right)^2\equiv 18^{15}\pmod{43}$ porque $18^{42}\equiv 1\pmod{43}$ por la Fórmula de Euler.

Para calcular 18¹⁵ (mód 43) iremos agrupando factores 2 del exponente cuando sea par y sacando un factor cuando sea impar para dejar el exponente par y poder sacar un factor 2. Lo vamos a ir haciendo paso a paso:

$$\begin{array}{lll} 18^{15} \equiv 18 \cdot 18^{14} \equiv 18 \cdot \left(18^2\right)^7 \equiv 18 \cdot 23^7 & (\text{Porque } 18^2 \equiv 23 \pmod{43}) \\ \equiv 18 \cdot 23 \cdot 23^6 \equiv 18 \cdot 23 \cdot \left(23^2\right)^3 \equiv 18 \cdot 23 \cdot 13^3 & (\text{Porque } 23^2 \equiv 13 \pmod{43}) \\ \equiv 18 \cdot 23 \cdot 13 \cdot 13^2 \equiv 18 \cdot 23 \cdot 13 \cdot \left(13^2\right)^1 \equiv 18 \cdot 23 \cdot 13 \cdot 40^1 & (\text{Porque } 13^2 \equiv 40 \pmod{43}) \\ \equiv 27 \cdot 13 \cdot 40 & (\text{Porque } 18 \cdot 23 \equiv 27 \pmod{43}) \\ \equiv 7 \cdot 40 & (\text{Porque } 27 \cdot 13 \equiv 7 \pmod{43}) \\ \equiv 22 & (\text{Porque } 7 \cdot 40 \equiv 22 \pmod{43}) \end{array}$$