

DEPARTMENT OF THE ARMY

WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS P.O. BOX 631 VICKSBURG, MISSISSIPPI 39180-0631

REPLY TO ATTENTION OF

CEWES-EV-I

18 August 1989

Environmental Effects of Dredging Technical Note EEDP-01-15 (May 1989)

BIOACCUMULATION OF CHLORINATED CONTAMINANTS AND CONCOMITANT SUBLETHAL EFFECTS IN MARINE ANIMALS: AN ASSESSMENT OF THE CURRENT LITERATURE

Technical Note EEDP-01-15 (May 1989) was published without the complete References listing. It has been reprinted to correct this error; please discard your other copy.

Approved for private research
Distribution Universed

19950327 124

Environmental Effects of Dredging Technical Notes

BIOACCUMULATION OF CHLORINATED CONTAMINANTS AND CONCOMITANT SUBLETHAL EFFECTS IN MARINE ANIMALS: AN ASSESSMENT OF THE CURRENT LITERATURE

<u>PURPOSE</u>: This note focuses on studies evaluating the sublethal effects of chlorinated organic contaminants on marine and estuarine organisms. Its objective is twofold: (1) to survey the literature for papers reporting both the sublethal effects of organohalogens and the corresponding body burdens in marine fish and invertebrates and (2) to provide a source of information for Corps field elements who have site-specific concerns (e.g., reproductive effects in a particular organism exposed to a specific organohalogen).

BACKGROUND: The US Army Corps of Engineers has the responsibility to ensure that contaminated sediments are dredged and disposed of in a manner that will not have an unacceptable adverse impact on the environment. The aquatic disposal of dredged material is regulated under two Federal statutes: Section 404(b)(1) of the Federal Water Pollution Control Act, as amended (PL 92-500) and Section 103 of the Marine Protection, Research, and Sanctuaries Act, as amended (PL 92-532). The regulations implementing these laws often require an evaluation of sediment toxicity and bioaccumulation potential prior to dredging and aquatic disposal.

Approximately 370 million cu m of sediments are dredged every year in the United States (Engler 1980). Approximately half of that volume is placed in open water. In most instances, dredged material is not acutely toxic to aquatic organisms. Therefore, decision-makers have had to rely less on toxicity data and more heavily on the results of bioaccumulation tests to evaluate potential impacts on the environment. There is very little interpretive guidance to assist in this evaluation (Peddicord and Hansen 1983). This report, produced under Work Unit 31773, Environmental Interpretation of Consequences from Bioaccumulation, of the Long-term Effects of Dredging Operations (LEDO) Program was designed, in part, to help provide that interpretive guidance.

ADDITIONAL INFORMATION: Contact one of the authors, Ms. Alfreda B. Gibson, (601) 634-4027, or Dr. Thomas M. Dillon (601) 634-3922, or the manager of the Environmental Effects of Dredging Programs, Dr. Robert M. Engler, (601) 634-3624.

Approach

A literature search was performed for information on the sublethal effects of organohalogenated contaminants on marine and estuarine animals. Only those investigations which examined organismic endpoints (growth, reproduction, behavior, morphology, osmoregulation, and metabolism) were considered. The reasons for evaluating organismic sublethal endpoints are discussed in Dillon (1984). The scope of this literature review was large. More than 50 technical journals were individually reviewed (Table 1). Ten data base literature search services were also used to identify any additional papers (Table 1).

For every paper included in this review, the following information was recorded: contaminant, test animal, exposure time, contaminant exposure concentration, reported tissue concentration, and any observed biological effects. The test animal was identified by common name and/or phylogenetic group. Tissue concentrations were expressed on a wet-weight basis. Exposure concentrations were all reported as micrograms per litre (parts per billion) unless noted otherwise.

<u>Analysis</u>

Approximately 1,200 published papers reporting the sublethal effects of chlorinated contaminants on marine and estuarine animals were identified in the literature. Of these, only 37 papers (3 percent) contained both sublethal effects data and contaminant tissue concentrations (Table 2).

Growth and behavior were the most frequently examined sublethal endpoints, while metabolism and osmoregulation were the least examined. Effects on reproduction and morphology appeared to be intermediate choices. The test organisms used by most investigators were fish and arthropods. They appeared in 51 percent and 36 percent of the papers, respectively. The environmental contaminants most frequently tested were kepone (30 percent) and polychlorinated biphenyls (PCBs) (24 percent). Exposure to contaminants was mainly via aqueous solutions (73 percent) or food (27 percent). None of the residue-effects papers involved contaminated sediment.

Because only 3 percent of the sublethal effects investigations considered published concomitant tissue residue information, the data base for

establishing quantitative residue-effects relationships is very limited. Variations due to interspecific differences, exposure regimes, and analytical capabilities diminish the ability to generate quantitative contaminantspecific guidance. However, a very broad generalization can be made based on data contained in Table 2. For marine and estuarine organisms with whole body tissue residues of chlorinated organic contaminants at or near steady-state. the level of concern associated with potential adverse sublethal effects is:

LOW for tissue concentrations <0.1 $\mu g/g$ wet weight MEDIUM for tissue concentrations 0.1-1.0 μg/g wet weight HIGH for tissue concentrations >1.0 μ g/g wet weight

Accesion For NTIS CRASH DTIC TAB Unannounced stification

Dist

Ter Form 30

Avail and Joi

Special

These are not discrete thresholds, pass-fail values, or numerical criteria. Rather they are heuristic and are the only general guidance the data will Armidelity Coc allow.

Discussion

This review and assessment of the literature has shown that few laboratory investigations (3 percent) report both sublethal effects of chlorinated organic contaminants and tissue residue data. In an earlier review which included biochemical and cellular endpoints as well as organismic responses (Dillon 1984), a similar frequency of residue-effects in the published literature was noted (6 percent). This paucity of residue-effects information hampers the ability to generate contaminant-specific guidance for interpreting results of bioaccumulation tests. This does not mean, however, that evaluative techniques are nonexistent. There are several.

It is often desirable to make relative comparisons among bioaccumulation data rather than to infer specific effects from absolute tissue concentra-For example, bioassay data from a specific project sediment can be compared to a reference value. This reference value may be generated in the laboratory by exposing bioassay organisms to sediment collected at or near the aquatic disposal site. The resultant tissue concentration is then the comparative standard. Exposure to reference sediment is carried out concurrently with project sediment bioassays. A reference value may also emerge from a consensus process in which tissue concentrations, representing indigenous

organisms in a spatially discrete area, are identified (e.g., New York District matrix values). In both instances, bioassay results are interpreted from the standpoint of "no further degradation." It is important to note that although statistically significant differences may be observed in the laboratory, they do not necessarily imply that unacceptable adverse impacts in the environment are imminent or even inevitable.

In addition to ecological effects, tissue residue data may be interpreted in terms of human health issues. This can be done directly when the bioassay organism (or appropriate surrogate) is one commonly ingested by man. Numerical guidance for assessing contaminated seafood has been developed by agencies such as the US Food and Drug Administration and the Australian National Health and Medical Research Council. A summary of these data can be found in Peddicord et al. (1986). Local guidance in the form of action levels for seafood may also be available from state officials and US Environmental Protection Agency (USEPA) Regional Offices. If the bioassay does not involve an organism normally consumed by man, human health impacts can still be evaluated, albeit This is done by examining the potential for in a more circuitous manner. trophic transfer in the marine food web. Transfer may include the phenomenon of biomagnification, but this process is not common for many contaminants when trophic levels are strictly aquatic (Kay 1984). Biomagnification can become very important quantitatively when the trophic transfer process exits the aquatic environment. An in-depth technical discussion of this subject can be found in Biddinger and Gloss (1984).

When interpreting bioassay results, one must assess not only individual contaminants but also the impacts of multiple contaminants within the same tissue matrix. The first step in this analysis is, "How many and how much?" This approach can be quite useful in initial evaluations. For example, one would be very concerned if 10 out of 12 compounds were taken up in substantial amounts. The concern would lessen if only a few contaminants were accumulated and/or the magnitude of uptake was small. If only 1 out of 12 was accumulated to levels just above control or reference concentrations, the level of concern would be lower still.

Once a significant potential for bioaccumulation is established, the toxicological importance of the different contaminants must be considered. The potential for unacceptable adverse effects is elevated when toxic contaminants such as mercury, cadmium, and PCBs are accumulated. In contrast, concern

lessens if less toxic compounds such as phthalates are found in the tissues of biota. How does one gauge relative toxicity? One of the better sources of information is the numerous toxicity tests conducted by the USEPA as part of their program to develop Water Quality Criteria (USEPA 1980). Additional guidance for determining the toxicological importance of various environmental contaminants can be found in Peddicord et al. (1986).

One question often asked when reviewing tissue residue data is, "How do interactions among the contaminants (e.g., synergism or antagonism) affect the organism?" All interactions that may (or may not) be occurring are expressed in the acute toxicity data. Therefore, this question is somewhat irrelevant for sediment bioassays. To determine the interactive effects among specific contaminants of concern for a particular marine organism, additional laboratory experiments would have to be conducted.

<u>Summary</u>

A review of the literature has shown that about 3 percent of studies investigating the sublethal effects of chlorinated organic contaminants on marine organisms contain both effects and concomitant tissue residue data.

The residue-effects information that is available (Table 2) can be very useful for interpreting the results of project-specific bioassays. It is believed that they also represent heuristic guidance, not to be confused with pass-fail or threshold criteria. For marine and estuarine organisms with whole body tissue residues of chlorinated organic contaminants at or near steady-state, the level of concern associated with adverse sublethal effects is generally:

LOW for tissue concentrations <0.1 μ g/g wet weight MEDIUM for tissue concentrations 0.1-1.0 μ g/g wet weight HIGH for tissue concentrations >1.0 μ g/g wet weight

Although the paucity of residue-effects information hampers contaminant-specific guidance, other evaluative techniques are available for interpreting the biological importance of bioaccumulation. For evaluating potential ecological effects, comparisons to reference values derived either in the laboratory or by consensus agreements can be carried out. To assess the potential

for human health impacts, bioaccumulation results can be compared directly to previously developed numerical guidance for contaminated seafood. Human health effects can also be evaluated indirectly by examining trophic transfer potential of contaminants in the marine food web. Finally, tissue residue information can be evaluated by determining the number of contaminants showing mobility, the magnitude of uptake relative to control and/or reference values, and the toxicological importance of contaminants that are bioaccumulated.

References

Armstrong, D. A., Buchanan, D. V., Mallon, M. H., Caldwell, R. S., and Millemann, R. E. 1976. "Toxicity of the Insecticide Methoxychlor to the Dungeness Crab Cancer magister," Marine Biology, Vol 38, pp 239-252.

Biddinger, G. R., and Gloss, S. P. 1984. "The Importance of Trophic Transfer in the Bioaccumulation of Chemical Contaminants in Aquatic Ecosystems," *Residues Reviews*, Vol 91, pp 104-130.

Bookhout, C. G., Costlow, J. D., Jr., and Monroe, R. 1976. "Effects of Methoxychlor on Larval Development of Mud-Crab and Blue Crab," Water, Air, and Soil Pollution, Vol 5, pp 349-365.

Caldwell, R. S. 1974. "Osmotic and Ionic Regulation in Decapod Crustacean Exposed to Methoxychlor," In: *Pollution and Physiology of Marine Organisms*, F. J. Vernberg and W. B. Vernberg (eds.), Academic Press, New York, pp 197-223.

Couch, J. A., and Courtney, L. 1977. "Interaction of Chemical Pollutants and Virus in a Crustacean: A Novel Bioassay System," *Annals, New York Academy of Science*, Vol 298, pp 497-504.

Dillon, T. M. 1984. "Biological Consequences of Bioaccumulation in Aquatic Animals: An Assessment of the Current Literature," Technical Report D-84-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Emanuelsen, M., Lincer, J. L., and Rifkin, E. 1978. "The Residue Uptake and Histology of American Oysters (Crassostrea virginica Gmelin) Exposed to Dieldrin," Bulletin of Environmental Contamination and Toxicology, Vol 19, pp 121-129.

Engler, R. M. 1980. "Prediction of Pollution Potential through Geochemical and Biological Procedure: Development of Regulation Guidelines and Criteria for the Discharge of Dredged and Fill Material," In: Contaminants and Sediments, Vol 1, Fate and Transport, Case Studies, Modeling Toxicity, R. A. Balner (ed.), Ann Arbor Science Publishers, Ann Arbor, MI, pp 143-169.

Fisher, D. J., Bender, M. E., and Roberts, M. H. 1983. "Effects of Ingestion of Kepone Contaminated Food by Juvenile Blue Crabs (Callinectes sapidus Rathbun)," Aquatic Toxicology, Vol 4, pp 219-234.

Freeman, H. C., Sangalang, G., and Flemming, B. 1982. "The Sublethal Effects of a Polychlorinated Biphenyl (Aroclor 1254) Diet on the Atlantic Cod (Gadus morhua)," Science Total Environment, Vol 24, pp 1-11.

Goodman, L. R., Hansen, D. J., Manning, C. S., and Faas, L. F. 1982. "Effects of Kepone on the Sheepshead Minnow in an Entire Life-Cycle Toxicity Test," *Archives of Environmental Contamination and Toxicology*, Vol 11, pp 335-342.

Hansen, D. J., Goodman, L. R., and Wilson, A. J., Jr. 1977. Kepone: "Chronic Effects on Embryo, Fry, Juvenile, and Adult Sheepshead Minnows (Cyprinodon variegatus)," Chesapeake Science, Vol 18, pp 227-232.

Hansen, D. J., Schimmel, S. C., and Forester, J. 1973. "Aroclor 1254 in Eggs of Sheepshead Minnows: Effect on Fertilization Success and Survival of Embryos and Fry," In: *Proceedings of the Twenty-Seventh Annual Conference Southeastern Association of Game and Fish Commissioners*, October 14-17, 1973, Hot Springs, AR.

Hansen, D. J., Schimmel, S. C., and Forester, J. 1975. "Effects of Aroclor 1016 on Embryos, Fry, Juveniles, and Adults of Sheepshead Minnows (*Cyprinodon variegatus*)," *Transactions, American Fisheries Society*, Vol 104, pp 584-588.

Hansen, D. J., Schimmel, S. C., and Forester, J. 1977. "Endrin: Effects on the Entire Life Cycle of a Saltwater Fish, Cyprinodon variegatus," Journal of Toxicology and Environmental Health, Vol 3, pp 721-733.

Hansen, P.-D., von Westernhagen, H., and Rosenthal, H. 1985. "Chlorinated Hydrocarbons and Hatching Success in Baltic Herring Spring Spawners," *Marine Environmental Research*, Vol 15, pp 59-76.

Kay, S. H. 1984. "Potential for Biomagnification of Contaminants within Marine and Freshwater Food Webs," Technical Report D-84-7, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Neff, J. M., and Giam, C. S. 1977. "Effects of Aroclor 1016 and Halowax 1099 on Juvenile Horseshoe Crabs Limulus polyphemus," In: Physiological Responses of Marine Biota to Pollutants", E. J. Vernberg, A. Calabrese, F. P. Thurberg, and W. B. Vernberg (eds.), Academic Press, New York, pp 21-35.

Neufeld, G. J., and Pritchard, J. B. 1979. "Osmoregulation and Gill Na, K-ATPase in the Rock Crab, Cancer irroratus: Response to DDT," Comparative Biochemistry and Physiology, Vol 62C, pp 165-172.

Olofsson, S., and Lindahl, P. E. 1979. "Decreased Fitness of Cod (Gadus morhua L.) from Polluted Waters," Marine Environmental Research, Vol 2, pp 33-45.

Peddicord, R. K., and Hansen, J. C. 1983. "Technical Implementation of the Regulations Governing Ocean Disposal of Dredged Material," In: Wastes in the Ocean, Vol II, Dredged Material Disposal in the Ocean, D. R. Kester, B. H. Ketchum, I. W. Duedall, and P. K. Parks (eds.), John Wiley and Sons, New York, pp 71-88.

Peddicord, R. K., Lee, C. R., Palermo, M. R., and Francingues, N. R. 1986. "General Decisionmaking Framework for Management of Dredged Material: Example Application to Commencement Bay, Washington," Miscellaneous Paper, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sangalang, G. B., Freeman, H. C., and Crowell, R. 1981. "Testicular Abnormalities in Cod (Gadus morhua) Fed Aroclor 1254," Archives Environmental Contamination and Toxicology, Vol 10, pp 617-626.

Schimmel, S. C., Patrick, J. M., Jr., Faas, L. F., Oglesby, J. L., and Wilson, A. J., Jr. 1979. "Kepone: Toxicity and Bioaccumulation in Blue Crabs," *Estuaries*, Vol 2, No. 1, pp 9-15.

Schimmel, S. C., Patrick, J. M., Jr., and Forester, J. 1977. "Uptake and Toxicity of Toxaphene in Several Estuarine Organisms." Archives Environmental Contamination and Toxicology, Vol 5, pp 353-367.

Tagatz, M. E. 1976. "Effect of Mirex on Predator-prey Interaction in an Experimental Estuarine Ecosystem," *Transactions, American Fisheries Society*, Vol 105, pp 546-549.

Tagatz, M. E., Borthwick, P. W., Ivey, J. M., and Knight, J. 1976. "Effects of Leached Mirex on Experimental Communities of Estuarine Animals," *Archives Environmental Contamination and Toxicology*, Vol 4, pp 435-442.

Thomas, P., Carr, R. S., and Neff, J. M. 1981. "Biochemical Stress Responses of Mullet *Mugil cephalus* and Polychaete Worms *Neanthes virens* to Pentachlorophenol," In: *Biological Monitoring of Marine Pollutants*, A. Calabrese, F. P. Thurberg, F. J. Vernberg, and W. B. Vernberg (eds.), Academic Press, New York, pp 73-104.

US Environmental Protection Agency. 1980. "Water Quality Criteria Documents," Office of Water Regulations and Standards, Criteria and Standards Division, (WH-585), Washington, DC.

Von Westernhagen, H., Rosenthal, H., Dethlefsen, V., Ernst, W., Harms, U., and Hansen, P.-D. 1981. "Bioaccumulating Substances and Reproductive Success in Baltic Flounder *Platichthys flesus*," *Aquatic Toxicology*, Vol 1, pp 85-99.

Table 1

List of Scientific Journals and Data Base Search Services Used To Identify Published Papers

Journals

Aquatic Toxicology Archiv fur Hydrobiologie Archives of Environmental Contamination and Toxicology Australian Journal of Biological Science Australian Journal of Marine and Freshwater Research Australian Journal of Zoology Biological Bulletin Bulletin of Environmental Contamination and Toxicology California Fish and Game Canadian Journal of Fisheries and Aquatic Sciences Canadian Journal of Zoology Chemosphere Comparative Biochemistry and Physiology Critical Reviews in Environmental Control Crustaceana Developmental Biology Ecotoxicology and Environmental Safety Environmental Biology of Fish Environmental Pollution Series A, B, and C Environmental Research Environmental Science and Technology Environmental Toxicology and Chemistry Estuaries Fisheries Fisheries Bulletin, U.S. Hvdrobiologia International Review of Invertebrate Reproduction and Development International Revue der Gesamten Hydrobiologia Journal Applied Ecology Journal of Crustacean Biology Journal of Experimental Biology Journal of Experimental Zoology Journal of Fish Biology Journal of Invertebrate Pathology Journal of Pesticide Science Journal of Plankton Research Journal of Toxicological and Environmental Research Journal of Water Pollution Control Federation Journal of Zoology Limnology and Oceanography Marine Environmental Research New York Fish and Game New Zealand Journal of Marine and Freshwater Research Oecologia 0ikos

(Continued)

Table 1 (Concluded)

Journals (Concluded)

Pesticide Biochemistry and Physiology
Pesticides Science
Physiological Zoology
The Progressive Fish Culturist
Quarterly Review of Biology
Science
Science of the Total Environment
Transactions, American Fisheries Society
US Environmental Protection Agency's Ecological Research Series
Water, Air and Soil Pollution
Water Pollution, Research and Control
Water Quality International
Water Research
Water Resources Research

Computerized Data Base Searches Services

Biosis
Water Resources Abstract
Aquatic Sciences and Fisheries Abstract
Chemical Abstracts
Life Sciences Collection
Zoological Record
NTIS (National Technical Information Service)
Dissertation Abstracts
Conference Papers Index
Pollution Abstracts

Summary of Published Papers on the Biological Effects of Chlorinated Environmental Contaminants on Marine Organisms and Associated Tissue Residues Table 2

			Ē	Exposure	Tissue		
Parameter	Contaminant	Organism	Time	Concentration*	Concentration**	Biological Effect	Reference
Growth	Kepone	Sheepshead minnow	36 days	0.08-6.60	1-22	Growth inversely related to concentration	Hansen, Goodman, and Wilson 1977
Growth	Kepone	Sheepshead minnow	160 days	0-0.12 0.39-0.78	0-0.86 1.1-5.0	No effect on growth Reduction in growth	Goodman et al. 1982
Growth	Kepone	Blue crab	28 days	0.15 µg/g food	690*0	Reduction in growth	Schimmel et al. 1979
Growth	Kepone	Blue crab	65 days	0.36-2.5 ug/g food	0.38-4.16	No effect on growth, ratio of carapace thickness to width inversely proportional to concentration	Fisher, Bender, and Roberts 1983
Growth	Methoxychlor	Crab	10 days	0.7	0,51	Reduction in growth	Bookout, Costlow, and Monroe 1976
Growth	Endrin	Sheepshead minnows	22 weeks	0-1.31	0.94	No effect on growth	Hansen, Schimmel, and Forester 1977
Behavior	Toxaphene	Killifish (embryo)	28 days	ND+-0.6	No data	Reduction in survival at all concentrations	Schimmel, Patrick, and Forester 1977
				1.3-6.5	No data	Erratic swimming, loss of equilibrium	
		Killifish (fry)	28 days	ND-0.6	ND-8.0	Reduction in survival at all concentrations	
				1.3-6.5	34-no data	Reduction in survival at all behavior, loss of equilibrium	
		Killifish (juvenile)	28 days	ND-0.8	ND-24.7	Reduction in survival at all concentrations	
				1.7-3.4	102-no data	Erratic swimming, loss of equilibrium	

(Continued)

* Exposure concentrations are expressed in units of micrograms per litre (ug/k) unless noted otherwise. ** Tissue concentrations are expressed in units of micrograms per gram (ug/g) wet weight whole animals unless noted otherwise. † ND - Nondetectable, <0.2 ug/k in water, <0.2 ug/g in tissue.

Table 2 (Continued)

			FYD	Exposure	Tissile		
Parameter	Contaminant	Organism	Time	Concentration	Concentration	Biological Effect	Reference
		Killifish	28 days	0.0-UN	ND-6.1	Reduction in survival	
		(adults)		1.7-3.8	No data	Erratic swimming, loss of equilibrium	
Behavior	Kepone	Sheepshead minnow	28 days	0-1.9	0.26-11	Erratic swimming behavior and a reduction in feeding rate both increased as concentra- tions increased	Hansen, Goodman, and Wilson 1977
Behavior	Kepone	Blue crab	65 days	0.36-1.64 μg/g food	0.38-1.73	No effect on behavior	Fisher, Bender, and Roberts 1983
				2.26-2.50 µg/g food	2.54-4.61	Excitable behavior during feed- ing, reduced ability to locate and consume food	
Behavior	Methoxychlor	Crab	15 days	1.8-32	0.11-1.59	Hyperactivity, inability to maintain an upright position, difficulty in locating and coinsuming food	Armstrong et al. 1976
Behavior	Mirex	Grass shrimp	14-16 days	0.011-0.130	0.02-0.20	Diminished ability to avoid predation	Tagatz 1976
Behavior	Mirex	Oyster	10 weeks	0.038	1,3-28	Diminished ability to withstand predation	Tagatz et al. 1976
		Mussel	10 weeks	0.038	1.6-2.0	Diminished ability to withstand predation	
Behavior	PCB DDT	Fish	Field collected	No data	110 7	Decreased ability to maintain position while swimming in a current	Olofsson and Lindahl 1979
Reproduction	Kepone	Sheepshead minnow	90-133 days	0.041-0.074	0.15-0.56	Increased number of eggs/ female/day; fertility unaffected	Goodman et al. 1982
				0.12-0.39	0.86-3.0	Number of eggs/female/day unaffected; fertility unaffected	
				0.78	5.0-6.8	Decreased number of eggs/ female/day, reduced fertility	
Reproduction	Kepone	Sheepshead minnow	28 days	0.05-0.80 0.2 1.9 (Continued)	0.26-4.7 11 ued)	Production of normal embryos Production of abnormal embryos	Hansen, Goodman, and Wilson 1977 (Sheet 2 of 5)

Table 2 (Continued)

			1 1	Exposure.	Tissue		
Parameter	Contaminant	Organism	Time	Concentration	Concentration	Biological Effect	Reference
Reproduction	PCB (Aroclor 1254)	Cod	5-1/2 months	1-50 µg/g wet food	0.06-5.3 (testes)	Disruption in production of sex steroids from testes	Freeman, Sangalang, and Flemming 1982
Reproduction	PCB (Aroclor 1254)	Sheepshead minnow	4 weeks	0-10.0	0.52-170	No effect on number of eggs fertilized	Hansen, Schimmel, and Forester 1973
Reproduction	PCB (Aroclor 1016)	Sheepshead minnow	29 days	1-10	5.4-110 (adults) 4.2-66 (eggs)	No effect on egg fertility, hatching, or subsequent survival of progeny	Hansen, Schimmel, and Forester 1975
				32	200-1,100 (adults)	100 percent mortality in adults	
Reproduction	Endrin	Sheepshead minnow	23 weeks, 1 genera-	0.027-0.12	0.20-1.0 (adults) 0.09-0.87 (eggs)	No effect on reproduction	Hansen, Schimmel, and Forester 1977
			tion	0.31	0.94 (adults) 1.80 (eggs)	Reducted fertilization and early hatching, high mortalities	
				0.72	No data		
Reproduction	PCB	Flounder	Field collected	No data	5.0-317 ng/g (ovaries)	Reduced viable hatch at PCB tissue concentrations above 120 ng/g	Von Westernhagen et al. 1981
	000				3.0-30.3 ng/g	Hatch viability not correlated	
	DOE				(ovaries) 0.1-62.0 (ovaries)	with tissue concentration or any other contaminant	
	Hexachlorobenzene				0.06-2.0		
	Dieldrin				(ovaries) 0.1-49.0		
	Heptachlorepoxide				(ovaries) 0.08-3.0 (ovaries)		
Reproduction	PCB	Fish	Field collected	No data	19-241 ng/g (ovaries)	Reduced viable hatch at PCB tissue concentrations above	Hansen, Von Westernhagen, and
	000				<1-16.0 (ovaries)	Hatch viability not correlated with tissue concentration of	KOSentnal 1965
	DDE				<1-34.0	any otner contaminant	
	Dieldrin				(ovaries) <1-8.1 (minis)		
	Hexachlorobenzene				(0varies) <1-8.6 (ovaries)		
	Heptachlorepoxide				<1-8.9 (ovaries)		
				(Continued)	ued)		(Sheet 3 of 5)

Table 2 (Continued)

Parameter	Contaminant	Organism	Time	Exposure Concentration	lissue Concentration	Biological Effect	Reference
	α Hexachlorocyclo- hexane γ Hexachlorocyclo- hexane				<pre><1-9.2</pre>		
Morphology	PCB (Aroclor 1254)	pog	5-1/2 months	1-50 µg/g wet food	0.04-2.1 (kidney) 0.02-0.98 (muscle) 10.1-374 (liver)	Disruption in production of adrenal hormones from kidney No effect on histopathology of kidney Degeneration of liver's fatty tissue	Freeman, Sangalang, and Flemming 1982
Morphology	PCB (Aroclor 1254)	Poo	5-1/2 months	1-50 ug/g food	0.06-5.3 (testes)	Response intensified as tissue concentration increased and progressed from testicular fibrosis to inhibition of spermatogenesis and finally to complete disintegration of the testes	Sangalang, Freeman, and Crowell 1981
Morphology	PCB (Aroclor 1254)	Cod	5-1/2 months	1-50 µg/g wet food	0.02-0.98 (muscle)	Hyperplasia of gills with dis- rupted blood spaces	Freeman, Sangalang, and Flemming 1982
Morphology	PCB (Aroclor 1254)	Shrimp	35 days	0.6-0.7	2 (muscle) 21 (hepatopancreas)	Increased occurrence of viral pathogen	Couch and Courtney 1977
Morphology	Керопе	Crab	65 days	0.36-2.50 μg/g food	0.38-4.61	Carapace thickness-to-width ratio inversely related to concentration	Fisher, Bender, and Roberts 1983
Morphology	Kepone	Killifish	28 days	0-1.9	0.26-11	Response intensified as tissue concentration increased. Response progressed from deformed vertebral column, hemorrhaging near brain, and darkened posterior to increased hemorrhaging and fin rot	Hansen, Goodman, and Wilson 1977
Morphology	Dieldrin	Oyster	43 days	1-100	25.6-2,685*	No effect on fibrous or cellular components of gills, gut, or mantle, no inflammation or infiltration of leucocytes	r Emanuelsen, Lincer, and Rifkin 1978
				(1000)	(1)		

Table 2 (Concluded)

			Exi	Exposure	Tissue		
Parameter	Contaminant	Organism	Time	Concentration	Concentration	Biological Effect	Reference
Osmoregulation	Pentachlorophenol	Fish	5 days	100	37.1	Reduction in total osmotic pressure	Thomas, Carr, and Neff 1981
Osmoregulation Methoxychlor	Methoxychlor	Crab	7 days	10	0.31 2.0 (gill)	No effect on total osmotic pressure	Caldwell 1974
		Crab	14 days	10	1.0 2.5 (gill)	No effect on total osmotic pressure, sodium or potassium regulation but magnesium reg- ulation was disrupted	
Osmoregulation DDT	100	Crab	50 hr	Single injection of 100 mg/kg	0.06 (gill) 1.5 (hepatopancreas)	Sodium and potassium regulation in the gill disrupted	Neufeld and Pritchard 1979
Metabolism	PCB (Aroclor 1016) Horseshoe crab	Horseshoe crab	96 days	0.35-71.5	0.08-92.8	No ecologically significant change in oxygen consumption	Neff and Giam 1977
Metabolism	Halowax 1099 (chlorinated naphthalene)	Horseshoe crab	96 days	22-70	0.51-5.7	Highly variable oxygen consumption	Neff and Giam 1977
Metabolism	Kepone	Blue crab	65 days	0.36-1.64 µg/g 0.38-1.73 food	0,38-1,73	No effect on oxygen consumption	Fisher, Bender, and Roberts 1983
				2.26-2.50 ug/g food	2,54	Elevated rates of oxygen consumption	