COMPUNEREA OSCILAȚIILOR ARMONICE PERPENDICULARE - DETERMINAREA FRECVENȚEI UNEI SURSE DE SEMNAL NECUNOSCUTE

1. Objective

Obiectivul principal al lucrării este de studiere a compunerii oscilațiilor armonice perpendiculare.

Înțelegerea rezultatelor compunerii acestor oscilații și interpretarea lor.

Utilizarea rezultatelor în determinarea frecvenței semnalului AC de la rețeaua de alimentare.

Înțelegerea noțiunilor de frecvență și fază a unui semnal.

2. Noțiuni teoretice

Fenomenul fizic în care o marime fizică variază periodic sau pseudo-periodic se numește oscilație.

Soluția ecuației de mișcare pentru o oscilație armonică este dată de relația:

$$x(t) = A\sin(\omega t + \varphi) \tag{1}$$

unde A este amplitudinea oscilației, t este timpul, φ reprezintă faza, iar $\omega = 2\pi v$ reprezintă pulsația, v este frecvența.

Pentru determinarea frecvenței necunoscute se poate utiliza metoda Lissajous. Aceasta metoda folosește compunerea oscilațiilor perpendiculare și determinarea frecvenței necunoscute prin comparație.

Vom considera două oscilații a caror direcții sunt perpendiculare, vezi figura 1 și au ecuațiile:

$$x(t) = A\sin(\omega_1 t + \varphi_1) \tag{2}$$

$$y(t) = B\sin(\omega_2 t + \varphi_2) \tag{3}$$

Fig. 1. Compunerea oscilațiilor perpendiculare

Forma figurilor rezultante prin compunerea oscilațiilor perpendiculare depinde de raportul frecvențelor celor două oscilații și de defazajul dintre ele. Pentru a se închide curbele raportul frecvențelor trebuie să fie o fracție rațională.

Pentru exemplificare se consideră cazul în care frecvențele sunt egale și defazajul este nul. Făcând raportul x/y se obține:

$$\frac{x}{y} = \frac{A}{B} \Rightarrow y = \frac{B}{A}x\tag{4}$$

ceea ce înseamnă ecuația primei bisectoare, vezi Tabel 1.

În cazul unui defazaj de $\pi/2$ raportul devine:

$$\begin{cases} x = A \sin \omega t \\ y = B \sin(\omega t + \pi/2) \Rightarrow \begin{cases} x = A \sin \omega t \\ y = B \cos \omega t \end{cases} \Rightarrow \frac{x^2}{A^2} + \frac{y^2}{B^2} = \sin^2 \omega t + \cos^2 \omega t = 1$$
 (5)

În acest caz se obține ecuația unei elipse. Dacă amplitudinile celor două oscilații sunt egale elipsa devine cerc, vezi Tabel 1.

Pentru un defazaj de π figura obținută prin compunerea oscilațiilor perpendiculare este a doua bisectoare, vezi Tabel 1.

Dacă frecvențele celor două oscilații diferă, figurile obținute devin mult mai complexe, vezi Tabel 1. În acest caz prin calcule matematice se obține:

$$\frac{n_x}{n_y} = \frac{\omega_x}{\omega_y} = \frac{\upsilon_x}{\upsilon_y} \tag{6}$$

unde n_x și n_y reprezintă numărul punctelor de intersecție dintre figură și axele de coordonate Ox si Oy.

Folosind relația (7) se poate determina o frecvență necunoscută utilizând metoda lui Lissajous prin comparație:

$$\upsilon_{y} = \frac{n_{x}}{n_{y}}\upsilon_{x} \tag{7}$$

3. Dispozitivul experimental

Cele doua oscilații pe direcții perpendiculare se obțin utilizand un transformator si generatorul de funcții oferit de platforma educaționala NI ELVIS, vezi Fig. 2.

4. Modul de lucru

Lucrarea se poate realiza prin cele trei metode: hands on (fața în fața), remote (prin control la distanță), dar și prin simularea fenomenului.

Se verifică conexiunea platformei NI ELVIS la PC și alimentarea acestora;

Se verifică conexiunile pe placa de prototipaj a platformei NI ELVIS astfel încât:

 ieşirea de la potenţiometrul P conectat la secundarul transformatorului sa fie conectate la ACH0+ şi ACH0- (se verifică existenţa rezistorilor către masa); o ieșirea de la Function Generator să fie conectată la intrarea ACH1+, iar ACH1- sa fie conectat la GND:

Se pornește PC-ul și alimentarea platformei NI ELVIS;

Fig. 2. Schema sistemului experimental

Se conectează transformatorul la rețea;

Se pornește aplicația Lissajoux.vi;

Se porneste alimentarea plăcii de prototipare a platformei NI ELVIS;

Utilizând controlul "Frecventa" se va varia frecvența de la 49 Hz pana la 201 Hz, pentru a obține figurile Lissajous din tabelul 1. Studenții vor nota frecvențele pentru care găsesc cele șase seturi de figuri (pentru fiecare raport n_x/n_y). Figurile Lissajous din fiecare set vor aparea pe grafic datorita defazajului dintre cele două oscilații compuse. Oscilațiile care se compun se văd pe graficele Y=Y(t) și X=X(t). După determinarea celor șase frecvențe se va determina frecvența necunoscută cu ajutorul ecuației 7. Se caculează media aritmetică a frecvențelor găsite. Erorile se calculează utilizând următoarele ecuații:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{6} \left(\upsilon_{i} - \overline{\upsilon}\right)^{2}}{30}} \tag{8}$$

$$\varepsilon = \frac{\sigma}{\overline{\upsilon}} \cdot 100 \tag{9}$$

Tabelul 2

Raportul n_x/n_y	υ_{x}	n_{x}	n_{y}	v_{y}	$\overline{\nu}_{\mathrm{y}}$
	Hz			Hz	Hz