Шаблон отчёта по лабораторной работе №5

Дисциплина: архитектура компьютера

Пронякова Ольга Максимовна

Содержание

1 Цель работы		работы	5
2	2 Задание		6
3	Теор	етическое введение	7
4	Выпо	олнение лабораторной работы	9
	4.1	Создание программы Hello world!	9
	4.2	Работа с транслятором NASM	10
	4.3	Работа с расширенным синтаксисом командной строки NASM	11
	4.4	Работа с компоновщиком LD	11
	4.5	Запуск исполняемого файла	12
5	Зада	ние для самостоятельной работы	13
6	5 Выводы		15
Сп	Список литературы		

Список иллюстраций

4.1	Создание пустого файла	9
	Открытие файла в текстовом редакторе	9
4.3	Заполнение файла	10
4.4	Комптляция текста программы	10
4.5	Комптляция текста программы	11
4.6	Передачв объектного файла на обработку компоновщику	11
4.7	Передача объектного файла на обработку компоновщику	12
4.8	Запуск исполняемого файла	12
5.1	Создание копии файла	13
5.2	Компиляция текста программы	13
5.3	Передача объектного файла на обработку компоновщику	13
5.4	Запуск исполняемого файла	14

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Основными функциональными элементами любой электронно-вычислительной машины (ЭВМ) являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество про-водников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской (системной) плате. Основной задачей процессора является обработка информации, а также орга- низация координации всех узлов компьютера. В состав центрального процес- сора (ЦП) входят следующие устройства: • арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; • устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; • регистры — сверхбыстрая оперативная память небольшого объёма, вхо- дящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в качестве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначе- ния (именно эти регистры чаще всего используются при написании программ): • RAX, RCX, RDX, RBX, RSI, RDI — 64-битные • EAX, ECX, EDX, EBX, ESI, EDI — 32-битные • AX, CX, DX, BX, SI, DI — 16-битные • AH, AL, CH, CL, DH, DL, BH, BL — 8-битные (половинки 16-битных реги- стров). Например, АН (high AX) — старшие 8 бит регистра AX, AL (low AX) — младшие 8 бит регистра AX.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

С помощью cd перемещаюсь в каталог, в котором буду работать. Создаю в текущем каталоге текстовый файл hello.asm c помощью touch (рис. 4.1).

```
olga@olga-VirtualBox:~$ cd ~/work/study/2022-2023/"Архитектура компьютера"/arch-
pc/labs/lab05
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ touch hello.asm
```

Рис. 4.1: Создание пустого файла

Открываю созданный файл в текстовом редакторе gedit (рис. 4.2).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ gedit hello.asm
```

Рис. 4.2: Открытие файла в текстовом редакторе

Заполняю файл, вставляя в него программу для вывода "Hello world!" (рис. 4.3).

```
*hello.asm
  Открыть 🗸
                                                                         Сохранить
                                                                                      \equiv
                                                                                           _ _
                       ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05
1; hello.asm
 2 SECTION .data ; Начало секции данных
          hello: DB 'Hello world!',10 ; 'Hello world!' плюс
4 ; символ перевода строки
          helloLen: EQU $-hello ; Длина строки hello
 6 SECTION .text ; Начало секции кода
          GLOBAL _start
8 _start: ; Точка входа в программу
9
        mov eax,4 ; Системный вызов для записи (sys_write)
         mov ebx,1 ; Описатель файла '1' - стандартный вывод
         mov ecx,hello ; Адрес строки hello в есх
11
        mov edx,helloLen ; Размер строки hello
int 80h ; Вызов ядра
13
         mov eax,1 ; Системный вызов для выхода (sys_exit)
16
          mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
17 int 80h ; Вызов ядра
```

Рис. 4.3: Заполнение файла

4.2 Работа с транслятором NASM

Превращаю текст программы в объектный код. Для компиляции текста программы «Hello World» использую команду nasm -f elf hello.asm. Далее проверяю правильность выполнения команды с помощью ls (рис. 4.4).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ nasm -f elf hello.asm olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ls hello.asm hello.o presentation report olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$
```

Рис. 4.4: Комптляция текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM

Ввожу команду, которая скомпилирует файл hello.asm в файл obj.o, такжу с помощью -l будет создан файл list.lst. Проверяю правильность выполнения команды с помощью ls (рис. 4.5).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ nasm -o obj.o -f elf -g -l list.lst hello.asm olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ls hello.asm hello.o list.lst obj.o presentation report olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$
```

Рис. 4.5: Комптляция текста программы

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello. Проверяю правильность выполнения команды с помощью ls (рис. 4.6).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ld -m elf_i386 hello.o -o hello olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ls hello hello.asm hello.o list.lst obj.o presentation report olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$
```

Рис. 4.6: Передачв объектного файла на обработку компоновщику

Выполняю следующую команду. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o. Проверяю правильность выполнения команды с помощью ls (рис. 4.7).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ld -m elf_i386 obj.o -o main olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ls hello hello.asm hello.o list.lst main obj.o presentation report olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$
```

Рис. 4.7: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю на выполнение исполняемый файл hello (рис. 4.8).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ ./hello
Hello world!
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$
```

Рис. 4.8: Запуск исполняемого файла

5 Задание для самостоятельной работы

Создаю с помощью ср копию файла hello.asm с именем lab5.asm и открываю его в текстовом редакторе gedit (рис. 5.1).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ cp hello.asm lab5.asm
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ gedit lab5.asm
```

Рис. 5.1: Создание копии файла

Вношу в программу изменения, чтобы она выводила мои имя и фамилию. Далее компилирую текст программы в объектный файл. Проверяю правильность выполнения команды с помощью ls (рис. 5.2).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ nasm -f elf lab5.asm
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ ls
hello hello.o lab5.o main presentation
hello.asm lab5.asm list.lst obj.o report
```

Рис. 5.2: Компиляция текста программы

Передаю объектный файл lab5.o на обработку компоновщику LD, чтобы получить исполняемый файл lab5 (рис. 5.3).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ld -m elf_i386 lab5.o -o lab5 olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab05$ ls hello hello.o lab5.asm list.lst obj.o report hello.asm lab5 lab5.o main presentation
```

Рис. 5.3: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл (рис. 5.4).

```
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$ ./lab5
Pronyakova Olga
olga@olga-VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/
lab05$
```

Рис. 5.4: Запуск исполняемого файла

Добавляем файлы на Github.

6 Выводы

Освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.

Список литературы

1. Архитектура ЭВМ