Théorie des Langages CM3 - LR(k) Grammars

Elana Courtines

2022-09-21

Hugues Casse: hcasse@irit.fr

1 Bottom-up Approach

Application:

Parse the word: "if (id == int) id = id; \$" (see the Grammar page 5/69):

stack	word	action
λ	if ($id == int$) $id = id$;	shift
if	(id == int) id = id;	shift
if (id == int) id = id ; \$	shift
if (id	== int) id = id ; \$	reduce(8)
if (F	== int) id = id ; \$	reduce(6)
if (T	== int) id = id ; \$	reduce(4)
if (E	== int) id = id ; \$	shift
if ($E ==$	int) $\operatorname{id} = \operatorname{id}$; \$	shift
if ($E == int$) $id = id$; \$	reduce(9)
if ($E == F$) $id = id$; \$	reduce(6)
if ($E == T$) $id = id$; \$	reduce(4)
if ($E == E$) $id = id$; \$	reduce(11)
if (B) $id = id$; \$	shift
if (B)	id = id; \$	shift
if (B) id	= id; \$	shift
if (B) id =	id;\$	shift
if (B) id = id	; \$	reduce(8)
if (B) id = F	; \$	reduce(6)
if (B) id = T	; \$	reduce(4)
if (B) id = E	; \$	shift
if (B) id $= E$;	\$	reduce(1)
if (B) S	\$	reduce(2)
S	\$	shift
S \$	λ	reduce(0)
S'	λ	accept

2 LR Approach

Application:

Parse the word: "abaac" (see the Grammar/Closures page 19+):

pile	word	next action
$\overline{I_0}$	abaac	shift $a(I_2)$
$I_0 \ a \ I_2$	baac	shift $b(I_6)$
$I_0 \ a \ I_2 \ b \ I_6$	aac	shift $a(I_8)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8$	ac	shift $a(I_8)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8$	c	shift $c(I_7)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c\ I_7$	λ	reduce(4)
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ a \ I_8 \ A \ I_{12}$	λ	reduce(5)
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ A\ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ A \ I_{11}$	λ	reduce(3)
$I_0 S I_1$	λ	reduce(0)
$I_0 S'$	λ	accept

More detailed version with extra steps for $goto\mbox{\rm `s}$:

pile	word	next action
I_0	abaac	shift a
$I_0 a$	baac	goto I_2
$I_0 \ a \ I_2$	baac	shift b
$I_0 \ a \ I_2 \ b$	aac	goto I_6
$I_0 \ a \ I_2 \ b \ I_6$	aac	shift a
$I_0\ a\ I_2\ b\ I_6\ a$	ac	goto I_8
$I_0\ a\ I_2\ b\ I_6\ a\ I_8$	ac	shift a
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a$	c	goto I_8
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8$	c	shift c
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c$	λ	goto I_7
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c\ I_7$	λ	reduce(4)
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ A$	λ	goto I_{12}
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ A\ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ A$	λ	goto I_{12}
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ A\ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ A$	λ	goto I_{11}
$I_0 \ a \ I_2 \ b \ I_6 \ A \ I_{11}$	λ	reduce(3)
$I_0 S$	λ	goto I_1
$I_0 S I_1$	λ	reduce(0)
$I_0 S'$	λ	accept

Exercice (WIP):

Let the Grammar G be :

- $(0) S' \rightarrow S$ \$
- (1) $S \rightarrow abSc$
- $(2) S \rightarrow A$
- (3) $a \rightarrow dA$
- (4) $A \rightarrow a$

Closures:

- $I_0(\lambda)$:
 - $S' \to \bullet S$
 - $S \rightarrow \cdot abSc$
 - $S \to {}^{\scriptscriptstyle ullet} A$
 - $a \rightarrow \cdot dA$
 - $A \rightarrow \bullet a$
- $I_1(S) : goto(I_0, S)$ $S' \to S$ (accept)
- $I_2(a) : goto(I_0, a)$ $S \to a \cdot bSc$

 - $A \rightarrow a \cdot \{c,\$\}$