■■ série livros didáticos informática ufrgs ■■

Linguagens Formais e Autômatos

Paulo Blauth Menezes

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes de Linguagens e Conclusões

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem formal
- 2.4 Gramática

2 Linguagens e Gramáticas

Linguagem: Dicionário Aurélio

o uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas

Não é suficientemente precisa para

• desenvolvimento matemático de uma teoria baseada em linguagens

Linguagem

• conceito fundamental em computação e informática

Para definir linguagem

- alfabeto
- palavra ou cadeia de caracteres

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem formal
- 2.4 Gramática

2.1 Alfabeto

Símbolo ou caractere

- entidade abstrata básica, não definida formalmente
- base para definições
- exemplos: letras e dígitos

Def: Alfabeto

Conjunto finito de símbolos ou caracteres

Portanto

- conjunto infinito não é alfabeto
- Ø é um alfabeto

Exp: Alfabeto

São alfabetos

- {a,b,c}
- ∅ (conjunto vazio)

Não são alfabetos (por quê?)

- N (conjunto dos números naturais)
- { a, b, aa, ab, ba, bb, aaa,... }

Exp: Alfabeto: linguagem de programação

Alfabeto de uma linguagem de programação como Pascal

- o conjunto de todos os símbolos usados nos programas
 - * letras
 - * dígitos
 - * caracteres especiais como ">", "/", etc
 - * espaço ou "branco"

Alfabeto binário {a,b}

- domínio de valores de um bit
- analogia com a representação interna dos computadores reais
- poucos símbolos: simplifica as diversas abordagens desenvolvidas

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem Formal
- 2.4 Gramática

2.2 Palavra

Def: Palavra, cadeia de caracteres, sentença

Sobre um alfabeto

• sequência finita de símbolos justapostos

Cadeia sem símbolos

ε - cadeia vazia ou palavra vazia

Def: Prefixo, sufixo, subpalavra

Prefixo (Sufixo)

• qualquer sequência inicial (final) de símbolos da palavra

Subpalavra

• qualquer sequência de símbolos contíguos da palavra

Exp: Palavra, prefixo, sufixo, subpalavra

abcb palavra sobre o alfabeto { a, b, c }

- ε, a, ab, abc, abcb são todos os prefixos
- ε, b, cb, bcb, abcb são todos os sufixos
- qualquer prefixo ou sufixo é uma subpalavra

Exp: Palavra: linguagem de programação

Em uma linguagem de programação como Pascal

uma palavra é um programa

Def: Concatenação de palavras

Concatenação de palavras ou simplesmente concatenação

- operação binária sobre um conjunto de palavras
- associa a cada par de palavras
 - * palavra formada pela justaposição da primeira com a segunda

Notação

 justaposição dos símbolos que representam as palavras componentes

Propriedades

- Elemento neutro: $\varepsilon w = w = w \varepsilon$
- Associativa: v(w t) = (v w)t

Associatividade – parênteses podem ser omitidos: v w t

Exp: Concatenação de palavras

 $\Sigma = \{a, b\}$ um alfabeto. Para v = baaaa e w = bb

- v w = baaaabb
- vε=v=baaaa

Def: Concatenação sucessiva de uma palavra

Concatenação sucessiva de uma palavra (com ela mesma) ou simplesmente concatenação sucessiva

wⁿ onde n é o número de concatenações sucessivas

indutivamente a partir da operação de concatenação

- $\mathbf{3} = \mathbf{0} \mathbf{W} \bullet$
- $w^n = w w^{n-1}$, para n > 0

Exp: Concatenação sucessiva

w palavra e a símbolo

- $w^3 = w w w$
- $w^1 = w$
- $a^5 = aaaaa$
- aⁿ = aaa...a (o símbolo a repetido n vezes)

Se Σ é um alfabeto

- Σ* conjunto de todas as palavras possíveis sobre Σ
- $\Sigma^+ = \Sigma^* \{\varepsilon\}$

Def: Conjunto de todas as palavras

 Σ alfabeto. Σ^* é indutivamente definido

Base de indução

- $\varepsilon \in \Sigma^*$
- para qualquer $x \in \Sigma$, vale $x \in \Sigma^*$

Passo de indução

Se u e v são palavras de Σ*,

então a concatenação u v é uma palavra de Σ*

Definição alternativa para palavra sobre um alfabeto Σ

qualquer elemento w de Σ*

$$W \in \Sigma^*$$

Exp: Conjunto de todas as palavras

Se $\Sigma = \{a, b\}$, então:

- $\Sigma^+ = \{ a, b, aa, ab, ba, bb, aaa, ... \}$
- $\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, \dots \}$

Def: Comprimento, tamanho de uma palavra

De uma palavra w, representado por w

- número de símbolos que compõem a palavra
- função com domínio em Σ* e codomínio em N

Exp: Palavra, prefixo, sufixo, comprimento

$$\begin{vmatrix} abcb \end{vmatrix} = 4$$

 $\begin{vmatrix} \epsilon \end{vmatrix} = 0$

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem formal
- 2.4 Gramática

2.3 Linguagem formal

Def: Linguagem formal

Linguagem formal ou simplesmente linguagem L sobre um alfabeto ∑

$$L\subseteq \Sigma^*$$

Exp: Linguagem formal

Ø e {ε} são linguagens sobre qualquer alfabeto

$$\emptyset \neq \{\varepsilon\}$$

 Σ^* e Σ^+ são linguagens sobre um Σ qualquer

$$\Sigma^* \neq \Sigma^+$$

Conjunto de palíndromos sobre $\Sigma = \{a, b\}$

ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,...

Exp: Conjunto de todas as linguagens sobre um alfabeto

Conjunto das partes de Σ^*

 2^{Σ^*}

Exp: Linguagem formal: linguagem de programação

Linguagem de programação como Pascal

conjunto de todos os programas (palavras) da linguagem

2 – Linguagens e Gramáticas

- 2.1 Alfabeto
- 2.2 Palavra
- 2.3 Linguagem formal
- 2.4 Gramática

2.4 Gramática

Linguagem de programação

definida pelo conjunto de todos os programas (palavras)

Linguagem de propósitos gerais como Pascal

- conjunto de todos os programas é *infinito*
- não é definição adequada para implementação em computador

Formalismo gramática

 uma maneira de especificar de forma finita linguagens (eventualmente) infinitas

Gramática é, basicamente

- conjunto finito de regras
- quando aplicadas sucessivamente, geram palavras
- conjunto de todas as palavras geradas por uma gramática
 - * define a linguagem

Gramáticas para linguagens naturais como Português

as mesmas que as usadas para linguagens artificiais como Pascal

Gramáticas também são usadas para definir semântica

entretanto, em geral, são usados outros formalismos

Def: Gramática

Gramática de Chomsky, Gramática irrestrita ou gramática

$$G = (V, T, P, S)$$

- V, conjunto finito de símbolos variáveis ou não terminais
- T, conjunto finito de símbolos terminais disjunto de V
- P:(V∪T)⁺→(V∪T)*, relação finita: produções
 - * par da relação: regra de produção ou produção
- S, elemento distinguido de V: símbolo inicial ou variável inicial

Representação de uma regra de produção (α, β)

$$\alpha \rightarrow \beta$$

Representação abreviada para $\alpha \rightarrow \beta_1$, $\alpha \rightarrow \beta_2$, ..., $\alpha \rightarrow \beta_n$

$$\alpha \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Derivação

- aplicação de uma regra de produção é denominada derivação
- aplicação sucessiva de regras de produção
 - * fecho transitivo da relação de derivação
 - * permite derivar palavras da linguagem

Def: Relação de Derivação

G = (V, T, P, S) gramática

Derivação é um par da relação de derivação denotada por ⇒

- domínio em (V∪T)⁺ e codomínio em (V∪T)*
- (α, β) é representado de forma infixada

$$\alpha \Rightarrow \beta$$

- ⇒ é indutivamente definida como segue:
 - para toda produção da forma S→β (S é o símbolo inicial de G)

$$S \Rightarrow \beta$$

para todo par η⇒ρασ da relação de derivação

* se
$$\alpha \rightarrow \beta$$
 é regra de P, então

Portanto, derivação

- substituição de uma subpalavra
- de acordo com uma regra de produção

Sucessivos passos de derivação

- →* fecho transitivo e reflexivo da relação ⇒
 * zero ou mais passos de derivações sucessivos
- → † fecho transitivo da relação ⇒
 * um ou mais passos de derivações sucessivos
- **>**|
 - * exatos i passos de derivações sucessivos (i natural)

Gramática é um formalismo

- aximático
- de geração
 - * permite derivar ("gerar") todas as palavras da linguagem

Def: Linguagem gerada

G = (V, T, P, S) gramática

Linguagem gerada por G: L(G) ou GERA(G)

palavras de símbolos terminais deriváveis a partir de S

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Exp: Gramática, derivação, linguagem gerada: números naturais

$$G = (V, T, P, N)$$

- V = { N, D }
- $T = \{0, 1, 2, ..., 9\}$
- $P = \{ N \to D, N \to DN, D \to 0 \mid 1 \mid ... \mid 9 \}$

Gera, sintaticamente, o conjunto dos números naturais

- se distinguem os zeros à esquerda
- exemplo: 123 de 0123

Exp: Gramática, derivação, linguagem gerada: números naturais

$$G = (V, T, P, N)$$

- V = { N, D }
- $T = \{0, 1, 2, ..., 9\}$
- $P = \{ N \to D, N \to DN, D \to 0 \mid 1 \mid ... \mid 9 \}$

Uma derivação do número 243

- N ⇒
- DN ⇒
- 2N ⇒
- 2DN ⇒
- 24N ⇒
- 24D ⇒
- 243

$$N \rightarrow DN$$

$$D\rightarrow 2$$

$$N \rightarrow DN$$

$$D\rightarrow 4$$

$$N \rightarrow D$$

$$D\rightarrow 3$$

Portanto

- S ⇒* 243
- $S \Rightarrow^+ 243$
- $S \Rightarrow 6243$

Interpretação indutiva da gramática

- Base de indução: todo dígito é natural
- Passo de indução: se n é natural, então a concatenação com qualquer dígito também é natural

Exp: Gramática, derivação, linguagem gerada: palavra duplicada

$$G = (\{S, X, Y, A, B, F\}, \{a, b\}, P, S)$$

na qual:

- $P = \{ S \rightarrow XY,$
- $X \rightarrow XaA \mid XbB \mid F$
- $Aa \rightarrow aA$, $Ab \rightarrow bA$, $AY \rightarrow Ya$,
- Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb,
- Fa \rightarrow aF, Fb \rightarrow bF, FY $\rightarrow \varepsilon$ }

gera a linguagem

{ ww | w é palavra de { a, b }* }

Derivação de baba

- S ⇒
- XY ⇒
- XaAY ⇒
- XaYa ⇒
- XbBaYa ⇒
- XbaBYa ⇒
- XbaYba ⇒
- FbaYba ⇒
- bFaYba ⇒
- baFYba ⇒
- baba

Existe mais alguma derivação de baba?

$$S \rightarrow XY$$

 $X \rightarrow XaA$
 $AY \rightarrow Ya$
 $X \rightarrow XbB$
 $Ba \rightarrow aB$
 $BY \rightarrow Yb$
 $X \rightarrow F$
 $Fb \rightarrow bF$
 $Fa \rightarrow aF$

 $FY \rightarrow \varepsilon$

Def: Gramáticas equivalentes

G₁ e G₂ são gramáticas equivalentes se e somente se

$$GERA(G_1) = GERA(G_2)$$

Convenções

- A, B, C,..., S, T para símbolos variáveis
- a, b, c,..., s, t para símbolos terminais
- u, v, w, x, y, z para palavras de símbolos terminais
- α, β,... para palavras de símbolos variáveis ou terminais

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6 Linguagens Livres do Contexto**
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes de Linguagens e Conclusões