

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Конспект лекций

«Преобразования Лапласа и Фурье»

Лектор к.ф.-м.н., доцент И.В. Рублёв

Содержание

1	Как заполнять документ	3
	1.1 doc.tex	3
	1.2 bib.tex	
	1.3 set.tex	5
	1.4 Заключение	5
2	Преобразование Лапласа-Фурье	6
	2.1 Некоторые сведения из ТФКП	
	2.2 Применение вычетов для вычисления интеграла вида $\int_{-\infty}^{+\infty} e^{i\lambda x} R(x)$	
	2.3 Ряды и преобразование Фурье	9
3	Свойства преобразования Фурье	12
4	Теоремы о предельных значениях	16
5	Приложения преобразования Лапласа к исследованию процессов в электрических цепях	16
6	Электромеханические аналогии	20
7	Управляемые и наблюдаемые системы	21

1 Как заполнять документ

Сейчас я расскажу, как максимально быстро собрать лекцию, чтобы никому ничего не сломать. Предлагаю также ориентироваться на этот пример (папка ch0). Итак, порядок действий:

- 1. Скачать себе этот архив. Он собирается командой make или pdflatex doc, если вы используете Windows.
- 2. Создать в корне вашу папку сh
НОМЕРГЛАВЫ. В примере папка ${\it ch0}.$
- 3. Заполнить в этой папке три документа: doc.tex, bib.tex, set.tex, положить туда все ваши картинки и все, что вам нужно.
- 4. Проверить, что все собралось правильно.
- 5. Отослать мне на почту kireku@gmail.com с темой "ВКР" или, если вы умеете, сделать pull request.

1.1 doc.tex

Это файл с вашим текстом. Туда вы пишите лекцию.

Я добавил уже ряд математических операторов. Если вы хотите добавить свои смотри раздел про set.tex.

Код	Результат	
\sgn	sgn	
\const	const	
\T	Т	
\SetN	N	
\SetZ	\mathbb{Z}	
\SetQ	Q	
\SetR	\mathbb{R}	
\SetC	\mathbb{C}	
\Prb	\mathbb{P}	
\Ind	I	
\Exp	\mathbb{E}	
\Var	Var	
\SetX	\mathcal{X}	
\SetP	\mathcal{P}	

Также встроены окружения. Они как в книжке Арама, то есть красивые, не используйте другие.

Код	Результат
\begin{theorem} Это теорема. \end{theorem}	Теорема 1.1. Это теорема.
\begin{definition} Это определение \textit{сходимости}. \end{definition}	Определение 1.1. Это определение <i>cxo-</i> димости.
\begin{lemma} Это лемма. \end{lemma}	Лемма 1.1. Это лемма.
\begin{assertion} Это утверждение. \end{assertion}	Утверждение 1.1. Это утверждение.
\begin{example} Это пример. \end{example}	Пример 1.1. Это пример.
\begin{proof} Это доказательство чего-либо. \end{proof}	Доказательство чего-либо.

Чтобы добавить картинку, положите ее в вашу папку и укажите полный путь:

Используя метки, обязательно ставьте префикс-название папки:

Код	Результат
<pre>\begin{equation} \label{ch0.square}</pre>	$x^2 = 0.$ (1.1)

1.2 bib.tex

Если вам нужна библиография — сюда можно написать библиографию, она автоматом окажется внизу. Все ссылки, по-прежнему с префиксом.

1.3 set.tex

Если вам жизненно не хватает какой-нибудь суперштуки, которую обычно объявляют в начале файла: новую команду, окружение или что-то в этом духе, то напишите сюда. Но все это пишите с каким-нибудь префиксом.

Например, я очень захотел писать прикольные дроби, типа $^{3}/_{4}$ и новый оператор Kirill $_{x\in\mathcal{X}}$, тогда я должен туда написать:

Содержимое ch0/bib.tex	
\usepackage{nicefrac} \DeclareMathOperator{\zeroKir}{Kirill}	

Но вообще, если вы не уверены, что все не перестанет компилиться, то не стоит подключать пакеты. Пакеты будут действовать на весь документ в целом.

1.4 Заключение

Вообще, было бы круто, чтобы все получилось примерно одинаково и красиво. В библиографии есть книжка хорошая по Латеху, если кому нужна.

1.5 Список приславших

- 1. Абрамова
- 2. Авалиани
- 3. Егоров

2 Преобразование Лапласа-Фурье

2.1 Некоторые сведения из ТФКП

Перед тем, как приступить непосредственно к преобразованиям Фурье, вспомним, для начала, курс $T\Phi K\Pi$.

Вспомним как задается функция комплексной переменной:

$$f(z) = u(x, y) + iv(x, y), \quad z = x + iy$$

Производная в точке z_0 :

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},$$
 где $\Delta z = \Delta x + i \Delta y$

1. $\Delta z = \Delta x$:

$$\lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{\Delta x} \Rightarrow \exists u_x, v_x : \lim_{\Delta x \to 0} \{\ldots\} = u'_x + iv'_x = 0$$

2. $\Delta z = i\Delta y$:

$$\lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y_0) + iv(x_0, y_0 + \Delta y_0) - u(x_0, y_0) - iv(x_0, y_0)}{i\Delta y} \Rightarrow \exists u_y, v_y : \lim_{\Delta y \to 0} \{\dots\} = -iu'_y + v'_y$$

Условия Коши-Римана:

$$\begin{cases} u_x' = v_y' \\ u_y' = -v_x' \end{cases}$$

Напомним, что интеграл от функции комплексного переменного вводится (так же, как и в действительной области) как предел последовательности интегральных сумм; функция при этом определена на некоторой кривой Γ , кривая предполагается гладкой или кусочноглалкой:

$$\sum_{j=1}^{N} f(\xi_j) \Delta z_j \longrightarrow \int_{\Gamma} f(z) dz; \quad \Delta z_j = z_j - z_{j-1}, \ \Gamma : z = z(t), \ dz = z'(t) dt, \ t \in [t_0, t_1]$$

Тогда

$$\int_{\Gamma} f(z)dz = \int_{t_0}^{t_1} f(z(t))z'(t)dt = \int_{t_0}^{t_1} \left[(u'_x - v'_y) + i(v'_x + u'_y) \right] dt = \int_{\Gamma} u dx - v dy + i \int_{\Gamma} v dx + u dy$$

Среди интегралов в комплексном анализе важное место в теории и практике интегрирования и приложениях занимает интеграл вида $\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$, зависящий от ζ .

В частности, полагая f(z) аналитической в замкнутой области γ , получаем, что для любой точки аналитичности функция может быть записана в виде интеграла

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Аналитическая функция имеет производные любого порядка, для которых справедлива формула

 $f^{(k)}(z) = \frac{k!}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} d\zeta.$

Теперь дадим определение ряда Лорана необходимого для последующего повествования

Определение 2.1. Ряд

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n \tag{2.1}$$

называется рядом Лорана функции f(z), если его коэффициенты вычисляются по формуле

 $c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz, \quad n = 0, \pm 1, \pm 2, \dots$

Замечание 2.1. $\sum_{n=0}^{\infty} c_n(z-a)^n$ – правильная часть ряда Лорана и $\sum_{n=-\infty}^{-1} c_n(z-a)^n$ – главная часть ряда Лорана. При этом, ряд Лорана считается сходящимся тогда и только тогда, когда сходятся его правильная и главная части.

Важное место в изучении и применении теории функций комплексного переменного занимает исследование их поведения в особых точках, где нарушается аналитичность функции. В частности, это точки, где функция не определена.

Одной из таких особых точек является полюс.

Определение 2.2. Говорят, что изолированная точка $z_0 \in \overline{C}$ функции f(z) называется полюсом, если $\lim_{z \to z_0} f(z) = \infty$.

Замечание 2.2. Номер старшего члена главной части ряда Лорана функции в ее разложении в окрестности полюса называется порядком полюса. Главная часть ряда Лорана в случае полюса порядка и записывается следующим образом:

а) в случае $z_0 \in \mathbb{C}$ в виде $\sum_{k=-n}^{-1} c_k (z-z_0)^n$, или $\sum_{k=1}^n \frac{c_{-k}}{(z-z_0)^k}$, подробнее:

$$c_n \cdot z^n + c_{n-1} \cdot z^{n-1} + \ldots + c_1 \cdot z, \quad c_n \neq 0.$$

б) в случае $z_0 = \infty$ в виде:

$$c_n \cdot z^n + c_{n-1} \cdot z^{n-1} + \ldots + c_1 \cdot z, \quad c_n \neq 0.$$

Определение 2.3. Вычетом функции f(z) в изолированной особой точке z_0 ($z_0 \in \overline{\mathbb{C}}$) называется интеграл $\frac{1}{2\pi i} \oint_{\gamma} f(z) \, dz$, где γ — контур, принадлежащий окрестности точки z_0 и охватывающий ее.

Теорема 2.1 (Основная теорема о вычетах). Если функция f(z) – аналитическая в \overline{D} за исключением конечного числа особых точек $z_k \in D$, то справедливо равенство (где C — граница области D):

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{res}_{z_k} f(z), \quad z_k \in D.$$
(2.2)

Утверждение 2.1. Вычет функции в изолированной особой точке равен коэффициенту c_{-1} при первой отрицательной степени в разложении функции в ряд Лорана в окрестности этой точки, т.е. при $\frac{1}{z-z_0}$ для $z_0 \in \mathbb{C}$, и этому коэффициенту, взятому с противоположным знаком, для $z_0 = \infty$:

$$\operatorname{res}_{z_0} f(z) = c_{-1}, \quad z_0 \in \mathbb{C},$$

$$\operatorname{res}_{\infty} f(z) = -c_{-1}, \quad z_0 = \infty.$$

Утверждение 2.2. Если z_0 полюс порядка п функции $f(z), z_0 \in \mathbb{C}$, то

$$\operatorname{res}_{z_0} f(z) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [f(z) \cdot (z - z_0)^n], \quad z_0 - \Pi(n);$$

$$\operatorname{res}_{z_0} f(z) = \lim_{z \to z_0} [f(z) \cdot (z - z_0)], \quad z_0 - \Pi(1).$$

2.2 Применение вычетов для вычисления интеграла вида $\int\limits_{-\infty}^{+\infty}e^{i\lambda\,x}R(x)$

Большой интерес представляет возможность применения вычетов для вычисления несобственных интегралов вида $\int\limits_{-\infty}^{+\infty} f(x)dx$, где интеграл понимается в смысле главного значения, т.е. $\int\limits_{-\infty}^{+\infty} f(x)dx = \lim_{R \to \infty} \int\limits_{-R}^{R} f(x)dx$ (здесь отрезок [a,b] = [-R,R]).

Будем рассматривать функцию f(x), непрерывную на $(-\infty, +\infty)$. Возможность использования вычетов при решении такой задачи основана на том, что отрезок [-R, R] действительной оси рассматривается как часть замкнутого контура C, состоящего из этого отрезка и дуги окружности, а интеграл по контуру записывается в виде суммы:

$$\oint\limits_C f(z)\,dz = \int\limits_{-R}^R f(x)\,dx + \int\limits_{C_R} f(z)\,dz,$$
где C_R – дуга окружности $|z|=R,\ \mathrm{Im}\,z\geqslant 0.$

Несобственный интеграл $\int\limits_{-\infty}^{+\infty}f(x)dx$ определяется как предел:

$$\int_{-\infty}^{+\infty} f(x) dx = \oint_C f(z) dz - \lim_{R \to \infty} \int_{C_R} f(z) dz.$$

Интерес, с точки зрения применения вычетов, представляют интегралы $\int\limits_{-\infty}^{+\infty} f(x)dx$, где функция f(x) такова, что $\lim\limits_{R\to\infty}\int\limits_{C_R} f(z)dz=0$. Классы таких функций выделяются, и для всех функций рассматриваемого класса устанавливается формуа $\int\limits_{-\infty}^{+\infty} f(x)\,dx=\oint\limits_{C} f(z)dz$.

Мы же, далее, рассмотрим $\int_{-\infty}^{+\infty} f(x) dx$, где $f(x) = R(x)e^{i\lambda x}$ и $R(x) = \frac{P_n(x)}{Q_m(x)}$, $m-n \geqslant 1$ и $Q_m(x) \neq 0$, $x \in R$, а R(x) принимает действительные значения. Такой интеграл сходится, так как он может быть записан в виде суммы двух сходящихся интегралов:

$$\int_{-\infty}^{+\infty} R(x)e^{i\lambda x} dx = \int_{-\infty}^{+\infty} R(x)\cos \lambda x dx + i \int_{-\infty}^{+\infty} R(x)\sin \lambda x dx.$$

Доказательство возможности применения вычетов к вычислению интеграла $\int\limits_{-\infty}^{+\infty} R(x)e^{i\lambda x}\,dx$ основано на следующем утверждении.

Утверждение 2.3 (Лемма Жордана). Пусть функция f(z) непрерывна в области $D: |z| \geqslant R_0$, $\operatorname{Im} z \geqslant -a$ и $\lim_{R \to \infty} \max_{C_R} |f(z)| = 0$, где C_R – дуга окружености |z| = R, $\operatorname{Im} z \geqslant -a$. Тогда для любого $\lambda > 0$ справедливо равенство

$$\lim_{R \to \infty} \int_{C_R} e^{i\lambda z} f(z) \, dz = 0.$$

Для рассматриваемых в данном пункте интегралов $\int_{-\infty}^{+\infty} R(x)e^{i\lambda x} dx$ функция f(z) = R(z) удовлетворяет лемме Жордана. Подводя итог приведенным рассуждениям, запишем следующее утверждение.

Утверждение 2.4. Пусть R(x) – рациональная функция, не имеющая особых точек на действительной оси (т.е. $Q(x) \neq 0$ для $x \in \mathbb{R}$), для которой точка $z = \infty$ – нуль порядка не ниже первого (т.е. $m - n \geqslant 1$). Тогда справедливы формулы:

1. $npu \lambda > 0$

$$\int_{-\infty}^{+\infty} R(x)e^{i\lambda x} dx = 2i\pi \sum_{k=1}^{n} \operatorname{res}_{z=z_k} [R(z)e^{i\lambda z}], \quad \operatorname{Im} z_k > 0;$$

 $2. npu \lambda < 0$

$$\int_{-\infty}^{+\infty} R(x)e^{i\lambda x} dx = -2i\pi \sum_{k=1}^{n} \operatorname{res}_{z=z_k} \left[R(z)e^{i\lambda z} \right], \quad \operatorname{Im} z_k < 0;$$

2.3 Ряды и преобразование Фурье

Пусть f(t) – периодическая с периодом $T=2\pi, t \in [-\pi,\pi]$.

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} [a_k \cos kt + b_k \sin kt],$$

где

$$a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt, k = 0, 1, \dots,$$

$$b_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt, k = 1, 2, \dots.$$

Запишем ряд в наних обозначениях

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}, \quad c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt, \ c_0 = a_0, \ c_k = a_k + ib_k,$$

 $c_k e^{ikt} + c_{-k} e^{-ikt} = [a_k - ib_k][\cos kt + i\sin kt] + [a_k + ib_k][\cos kt - i\sin kt] = 2a_k\cos kt + 2b_k\sin kt.$ Далее, сделаем небольшую замену

$$f(t) \longrightarrow f(s), \ s \in [-T/2, T/2], \ t = \frac{2\pi s}{T} \Rightarrow f\left(\frac{Tt}{2\pi}\right) = \sum_{k=-\infty}^{+\infty} c_k e^{ikt}.$$

Тогда

$$f(s) = \sum_{k=-\infty}^{+\infty} c_k e^{\frac{2\pi i s}{T}}, \quad c_k = \frac{1}{T} \int_{-T/2}^{T/2} f(s) e^{\frac{-2\pi i s k}{T}} ds.$$

Пусть теперь

 $f_T(t) = f(t)$, но продолженное по периоду $t \in [-T/2, T/2]$, $f(t) \in (\infty, +\infty)$.

$$f_T(t) = \sum_{i=-\infty}^{+\infty} c_{k,T} e^{\frac{2\pi i t}{T}}, \quad c_{k,T} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{\frac{-2\pi i t k}{T}} ds.$$

Пусть $\exists \lambda \in \mathbb{R}, \ \Delta \lambda > 0$ и $k: \lambda \leqslant \frac{2\pi k}{T} < \lambda + \Delta \lambda \ \Rightarrow \ \frac{T\lambda}{2\pi} \leq k < \frac{T\lambda}{2\pi} + \frac{T\Delta \lambda}{2\pi},$ значит

$$k \approx \frac{T\Delta\lambda}{2\pi}, \quad c_{k,T} \approx c_{\lambda,T} = \frac{1}{T} \int_{-T/2}^{T/2} f(t)e^{-i\lambda t}$$

В итоге получим

$$f_T(t) = \sum_{i=-\infty}^{+\infty} \frac{F_T(\lambda)}{T} e^{\frac{2\pi i k t}{T}} \approx \sum_{i=-\infty}^{+\infty} \frac{F_T(\lambda)}{T} e^{-\lambda t} \frac{T}{2\pi} \Delta \lambda \xrightarrow{\Delta \lambda \to 0}$$

$$\xrightarrow{\frac{\Delta \lambda \to 0}{T}} \boxed{\frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} F(\lambda) e^{i\lambda t} d\lambda = f(t)} - \text{ обратное преобразование } \Phi \text{урье}$$

$$F_T(\lambda) \xrightarrow{T o \infty} F(\lambda) = \int\limits_{-\infty}^{+\infty} f(t) e^{-i\lambda \, t} dt$$
 — прямое преобразование Фурье

Другие формы преобразования Фурье, встречающиеся в литературе

$$F(\lambda) = \frac{1}{g} \int_{-\infty}^{+\infty} f(t)e^{-i\omega\lambda t}dt, \quad f(t) = \frac{1}{h} \int_{-\infty}^{+\infty} F(\lambda)e^{i\omega\lambda t}d\lambda, \quad gh = \frac{2\pi}{|\omega|}$$

- 1. $\omega = \pm 1$; g = 1, $h = 2\pi$.
- 2. $\omega = \pm 2\pi$; g = h = 1.
- 3. $\omega = \pm 1; \quad g = h = \sqrt{2\pi}.$

3 Свойства преобразования Фурье

В этом разделе мы опишем основные свойства преобразования Фурье и докажем наиболее интересные из них. Прежде всего, напомним внешний вид преобразования:

$$F[f](\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt,$$

где $f \in L_1(-\infty, +\infty)$, то есть функция f интегрируема по Риману (Лебегу) на всей числовой прямой и выполнено условие

$$\int_{-\infty}^{+\infty} |f(t)| \, dt < +\infty.$$

Замечание 3.1. Принадлежность функции f классу L_1 гарантирует существование ее преобразования Фурье F[f].

Для начала выпишим свойства, которые напрямую следуют из определения: линейность, масштабируемость и сдвиг. Мы не будем долго на них останавливаться.

1. Линейность.

$$F[\alpha f_1 + \beta f_2] = \alpha F[f_1] + \beta F[f_2], \quad \forall f_1, f_2 \in L_1, \forall \alpha, \beta \in \mathbb{R}.$$

2. Сдвиг.

$$F[f(t - t_0)] = e^{-\lambda t_0} \cdot F[f],$$

$$F[e^{i\lambda_0 t} \cdot f(t)] = F[f] \cdot (\lambda - \lambda_0).$$

3. Масштабируемость.

$$F[f(\alpha t)](\lambda) = \frac{1}{|\alpha|} F[f(t)] \left(\frac{\lambda}{\alpha}\right), \quad \forall \alpha \in \mathbb{R}, \ \alpha \neq 0.$$

- 4. **О четности.** Если функция f является четной, то ее образ F[f] будет действительной функцией.
- 5. **О нечетности.** Если же f нечетная, то образ F[f] будет чисто мнимой функцией.

Теперь перейдем к более интересным свойствам. Далее каждая теорема, следствие или замечание будут являться свойствами преобразования Фурье. Большая часть из них будет доказана. Для удобства навигации наиболее важные формулы пронумерованы.

Теорема 3.1. Рассмотрим последовательность функций из класса L_1 , стремящююся по норме L_1 к некоторой функции f из того же класса, то есть

$$\{f_n\}_{n=1}^{\infty}, f_n \in L_1(-\infty, +\infty) : f_n \xrightarrow[n \to \infty]{L_1} f \in L_1.$$

Tог ∂a

$$F[f_n] \rightrightarrows F[f].$$

Доказательство. Приведем несложные выкладки:

$$\sup_{\lambda} |F[f_m](\lambda) - F[f_n](\lambda)| =$$

$$= \sup_{\lambda} \left| \int_{-\infty}^{+\infty} (f_m(t) - f_n(t))e^{-i\lambda t} dt \right| \leq$$

$$\leq \int_{-\infty}^{+\infty} |f_m(t) - f_n(t)| dt < \varepsilon.$$

Теорема 3.2. Преобразование Фурье F[f] есть непрерывная ограниченная функция.

Доказательство. На самом деле ограниченность мы нечаянно вывели в предыдущей теореме. Действительно,

$$|F[f](\lambda)| = \left| \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt \right| \le \int_{-\infty}^{+\infty} |f(t)| dt = \text{const.}$$

С непрерывностью дела обстоят куда сложнее. Здесь нам придется записать наше преобразование в виде

$$F[f](\lambda) = \int_{-\infty}^{+\infty} f(t)\cos(\lambda t) dt - i \int_{-\infty}^{+\infty} f(t)\sin(\lambda t) dt$$

и сослаться на книгу А. М. Тер-Крикорова, М. И. Шабунина «Курс математического анализа,» где на 645 странице доказана непрерывность каждого из кусочков.

Замечание 3.2. Из последней теоремы следует, например, что

$$F[f](\lambda) \xrightarrow[|\lambda| \to \infty]{} 0.$$

Теперь рассмотрим специальный вид функций, который часто встречается на практике: непрерывные и дифференцируемые функции.

Теорема 3.3. Пусть функция f непрерывно дифференцируема, абсолютно интегрируема, u ее производная так же абсолютно интегрируема, то есть 1

$$f \in C^1(-\infty, +\infty) \cap L_1(-\infty, +\infty), f' \in L_1(-\infty, +\infty)$$

Tог ∂a

$$F[f'](\lambda) = i\lambda \cdot F[f](\lambda).$$

 $^{^1}$ Теорема ходит в интернете в нескольких вариантах условий: совершенно не понятно, f или f' должна быть непрерывной или интегрируемой. Причем доказательства везде примерно одинаковые. Здесь приведен вариант к.ф.-м.н. доцента И. В. Рублева.

Доказательство. Предствавим функцию в виде

$$f(t) = f(0) + \int_{0}^{t} f'(t) dt.$$

Из сходимости интеграла $\int_0^{+\infty} f'(t) dt$ следует существование пределов $\lim_{t\to +\infty} f(t)$ и $\lim_{t\to -\infty} f(t)$. Они не могут быть отличными от нуля в силу сходимости интеграла $\int_{-\infty}^{+\infty} |f(t)| dt$. С помощью интегрирования по частям получаем

$$F[f'](\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f'(t)e^{-i\lambda t} dt =$$

$$= \frac{1}{\sqrt{2\pi}} f(t)e^{-i\lambda t} \Big|_{-\infty}^{+\infty} + \frac{i\lambda}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(t)e^{-i\lambda t} dt = i\lambda \cdot F[f](\lambda).$$

Замечание 3.3. Как следствие, получаем более занятную формулу:

Пусть
$$f \in \mathbf{C}^{k-1}(-\infty, +\infty)$$
, $\exists f^{(k)} : f^{(k)} \in \mathbf{L}_1(-\infty, +\infty)$, тогда
$$F[f^{(k)}](\lambda) = (i\lambda)^k \cdot F[f]. \tag{3.1}$$

Теорема 3.4. Пусть функция f непрерывно дифференцируема, абсолютно интегрируема, и ее производная так же абсолютно интегрируема, то есть

$$f \in C^1(-\infty, +\infty) \cap L_1(-\infty, +\infty), f' \in L_1(-\infty, +\infty)$$

Tог ∂a

$$|F[f](\lambda)| \leqslant \frac{C}{|\lambda|}.$$

Доказательство.

$$\left| \int_{-T}^{+T} f(t)e^{-i\lambda t} dt \right| = \left. \frac{f(t)e^{-i\lambda t}}{-i\lambda} \right|_{-T}^{+T} + \frac{1}{\lambda} \int_{-T}^{+T} f(t)e^{-i\lambda t} dt.$$

Замечание 3.4. Как следствие, получаем более занятную формулу:

Пусть
$$f \in \mathbb{C}^{k-1}(-\infty, +\infty)$$
, $\exists f^{(k)} : f^{(k)} \in \mathcal{L}_1(-\infty, +\infty)$, тогда
$$F[f](\lambda) \leqslant \frac{C_m}{|\lambda|^m}, \quad \text{где } C_m = \int_{-\infty}^{+\infty} |f^{(m)}(t)| \, dt. \tag{3.2}$$

Теорема 3.5. Пусть задана функция f такая, что $\int_{-\infty}^t f(s) \, ds \in L_1(-\infty, +\infty)$, тогода

$$F\left[\int_{-\infty}^{t} f(s) \, ds\right](\lambda) = \frac{1}{i\lambda} F[f](\lambda).$$

Теорема 3.6. Пусть задана функция f такая, что $t \cdot f(t) \in L_1(-\infty, +\infty)$, тогда

$$F[f]'(\lambda) = F[-it \cdot f(t)](\lambda).$$

Доказательство.

$$\left(\int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt\right)'_{\lambda} = \int_{-\infty}^{+\infty} (-it)f(t)e^{-i\lambda t} dt.$$

Замечание 3.5. Как следствие:

Пусть
$$f: t^p f(t) \in L_1(-\infty, +\infty), \ p = \overline{1, k}, \$$
тогда
$$F[f]^{(k)}(\lambda) = F[(-it)^k \cdot f(t)]. \tag{3.3}$$

Теорема 3.7. Пусть $t^p f(t) \in L_1(-\infty, +\infty) \ \forall p, morda$

$$F\left[-\frac{1}{it}f(t)\right](\lambda) = \int_{-\infty}^{\lambda} F[f](\xi) d\xi.$$
 (3.4)

Теперь поговорим о свойствах преобразования Фурье, связанных с операцией свертки. Напомним, как выглядит эта операция:

$$(f_1 * f_2)(t) = \int_{-\infty}^{+\infty} f_1(s) f_2(t-s) ds.$$

Эта операция является билинейной, коммутативной и ассоциативной.

Теорема 3.8. Пусть $f_1, f_2 \in L_1$, тогда

$$F[f_1 * f_2](\lambda) = F[f_1](\lambda) \cdot F[f_2](\lambda). \tag{3.5}$$

Доказательство.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(s) f_2(t-s) e^{-\lambda t} ds dt =$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_1(s) e^{-i\lambda s} \left(f_2(t-s) e^{-i\lambda(t-s)} \right) ds dt =$$

$$= \int_{-\infty}^{+\infty} f_1(s) e^{-i\lambda s} ds \cdot F[f_2](\lambda) = F[f_1](\lambda) \cdot F[f_2](\lambda).$$

Замечание 3.6. Аналогично доказывается и такой факт:

Если
$$F[f_1], F[f_2] \in L_1(-\infty, +\infty)$$
, то
$$F[f_1 \cdot f_2](\lambda) = 2\pi \cdot (F[f_1] * F[f_2])(\lambda). \tag{3.6}$$

4 Теоремы о предельных значениях

Теорема 4.1. Пусть f – непрерывно дифференцируема; $f(t) \supset F(p)$. Если существует предел $f(+\infty)$, тогда

$$f(+\infty) = \lim_{p \to 0} pF(p).$$

Доказательство.

$$f'(t) \supset pF(p) - f(+0)$$

$$\int_{0}^{+\infty} f'(t)e^{-pt}dt = pF(p) - f(+0)$$

что при p стремящемся к нулю стремится к $f(+\infty) - f(+0)$.

Контрпримеры:

$$\cos t \supset \frac{p}{p^2 + 1} \Rightarrow pF(p) = \frac{p^2}{p^2 + 1} \stackrel{p \to 0}{\longrightarrow} 0$$

$$\sin t \supset \frac{1}{p^2 + 1} \Rightarrow pF(p) = \frac{p}{p^2 + 1} \stackrel{p \to 0}{\longrightarrow} 0$$

Однако, мы знаем, что у синуса и косинуса пределов на бесконечности не существует.

Теорема 4.2. Пусть f – непрерывно дифференцируема; $f(t) \supset F(p)$. Если существует предел f(+0), то

$$f(+0) = \lim_{p \to \infty} pF(p).$$

Доказательство.

$$\int_{0}^{+\infty} f'(t)e^{-pt}dt = pF(p) - f(+0),$$

здесь левая часть равенства при p стремящемся к бесконечности сходится к нулю.
Обратимся к предыдущему примеру:

$$\frac{p^2}{p^2+1} \stackrel{p \to \infty}{\longrightarrow} 1 = \cos(0),$$

$$\frac{p}{p^2+1} \stackrel{p \to \infty}{\longrightarrow} 0 = \sin(0).$$

5 Приложения преобразования Лапласа к исследованию процессов в электрических цепях

Рассмотрим электрическую цепь, включающую в себя индуктивную катушку, сопротивление и конденсатор, рис. 5.1. Обозначим I – ток, E – и $i \supset I, e \supset E$. Переходя к комплексному току i(t), и полагая i(0) = 0, можно описать систему следующим образом:

$$U_L = L\frac{di}{dt}, U_R = Ri(t), U_C = \frac{1}{C} \int_0^t i(t)dt$$

$$L\frac{di}{dt} + Ri(t) + \frac{1}{C} \int_{0}^{t} i(t)dt = e(t)$$
$$pLI + RI + \frac{I}{Cp} = E$$
$$(pL + R + \frac{1}{Cp})I = ZI = E$$

Здесь Z – *импеданс* (операторное сопротивление), а $Y = \frac{1}{Z}$ – *адмитанс*.

Рис. 5.1: Электрическая цепь, включающая в себя индуктивную катушку, конденсатор и резистор

Теперь рассмотрим цепь с параллельным соединением, рис. 5.2a. Для цепей с параллельным соединением при импедансах Z_1, Z_2, \ldots, Z_k верно:

$$Y_{1} = \frac{1}{Z_{1}}, Y_{2} = \frac{1}{Z_{2}}, \dots, \frac{1}{Z_{k}}, \quad Y = Y_{1} + Y_{2} + \dots Y_{k}.$$

$$Z = Z_{1} + Z_{2}$$

$$\frac{1}{R} + \frac{1}{\frac{1}{Cp}} = \frac{1}{Z_{2}} = Cp + \frac{1}{R} = \frac{CRp + 1}{R}$$

$$Z_{2} = \frac{R}{CRp + 1}, Z = pL + \frac{R}{CRp + 1}$$

Можно эту же цепь рассмотреть как двухконтурную, рис. 5.2b, и, опираясь на законы Кирхгофа, получить

$$\begin{cases} pLI_1 + R(I_1 - I_2) = E \\ R(I_2 - I_1) + \frac{1}{Cp}I_2 = 0 \end{cases}$$
$$I_2(R + \frac{1}{Cp}) - RI_1 = 0$$
$$I_2 = \frac{R}{R + \frac{1}{Cp}}I_1$$

- (а) Рассматриваем как цепь с параллельным соединением
- (b) Рассматриваем как двухконтурную цепь

Рис. 5.2: Цепь с параллельным соединением

$$I_1 - I_2 = \left(1 - \frac{R}{R + \frac{1}{Cp}}\right)I_1 = \frac{1}{CRp + 1}I_1$$

$$I_1(pL + \frac{R}{CRp + 1}) = E = I_1Z$$

В задачах часто рассматривают случаи

• Постоянного тока

$$e = e_0, E = \frac{e_0}{p}$$

• Переменного тока

$$e = e_0 \sin(wt), E = \frac{e_0 w}{p^2 + w^2}$$

Решим конкретную задачу, рис. 5.3:

$$(Lp+R+\frac{1}{Cp})I=\frac{e_0}{p}$$

$$I=\frac{e_0}{p}\Big(\frac{1}{Lp+R+1/Cp}\Big)=\frac{e_0C}{CLp^2+RCp+1}=\frac{e_0}{L(p+\frac{R}{2L})^2-\frac{R^2}{4L}+\frac{1}{C}}=$$

$$=\Big\{\text{пусть }D=C^2r^2-4CL<0,\text{ тогда корни будут комплексными}\Big\}=$$

$$=\frac{e_0/L}{(p+\frac{R}{2L})^2+(\frac{1}{CL}-\frac{R^2}{4L^2})}\subset e^{-\frac{R}{2L}t}\frac{e_0}{L}\frac{\sin\Big(\sqrt{(\frac{1}{CL}-\frac{R^2}{4L^2})}t\Big)}{\sqrt{\frac{1}{CL}-\frac{R^2}{4L^2}}}$$

Рассмотрим цепь с нагрузкой, рис. 5.4а

$$RI + pL(I - I') + RI + \frac{1}{Cp}I = E$$

Рис. 5.3: Конкретный пример

(а) Цепь с нагрузкой

(b) Можно рассматривать и так

Рис. 5.4: Пример 2

$$\begin{split} pL(I'-I) &= -E' \\ RI + \frac{1}{Cp}I = E - E' \\ \begin{cases} E' &= E - RI + \frac{1}{Cp}I \\ I' &= I - \frac{E - (R + \frac{1}{Cp})I}{pL} \end{cases} \\ \begin{cases} E' &= A(p)E + B(p)I \\ I' &= C(p)E + D(p)I \end{cases} \Rightarrow \begin{cases} E &= \tilde{A}(p)E' + \tilde{B}(p)I' \\ I' &= \tilde{C}(p)E' + \tilde{D}(p)I' \end{cases} \\ \begin{bmatrix} \tilde{A}(p) & \tilde{B}(p) \\ \tilde{C}(p) & \tilde{D}(p) \end{bmatrix} &= \tilde{U}. \end{split}$$

Положим

$$\begin{bmatrix} E \\ I \end{bmatrix} = \begin{bmatrix} E_0 \\ I_0 \end{bmatrix} = \tilde{U}_1 \begin{bmatrix} E_1 \\ I_1 \end{bmatrix} = \{ E_2 = 0 \} = \tilde{U}_2 \begin{bmatrix} 0 \\ I_2 \end{bmatrix}$$

6 Электромеханические аналогии

Рассмотрим Гамильтонову систему, с переменными $q = (q_1, q_2, \dots, q_n)^T$, на которую действуют внешние силы Q. Внешние силы могут быть следующих типов:

1. Диссипативные

$$Q = n - B\dot{q}, \quad B = B^T > 0$$
$$\langle \dot{q}, Q \rangle = -\langle \dot{q}, B\dot{q} \rangle < 0$$

К ним относится сила трения. Можно также ввести функцию Релея $R=\frac{1}{2}\left\langle \dot{q},B\dot{q}\right\rangle$ и тогда $Q=-\frac{\partial R}{\partial \dot{q}}$.

2. Гироскопические

$$\begin{split} Q &= \Gamma \dot{q}, \quad \Gamma^T = -\Gamma \\ \langle \dot{q}, Q \rangle &= \langle \dot{q}, \Gamma \dot{q} \rangle = \langle \Gamma^T \dot{q}, \dot{q} \rangle = \langle \dot{q}, \Gamma \dot{q} \rangle = -\langle \dot{q}, \Gamma \rangle = 0 \end{split}$$

Далее обозначим K – кинетическую энергию системы, Π – потенциальную энергию, $E=K+\Pi$ – полную энергию системы,

$$\dot{q} = K - \Pi, \quad K = \frac{1}{2} \langle \dot{q}, M \dot{q} \rangle, \Pi = \Pi(q),$$

$$\frac{dE}{dt} = \sum_{j} \langle \dot{q}_{j}, Q_{j} \rangle$$

Положим $M=M^T$ и $\frac{\partial \mathbf{K}}{\dot{q}}=M\dot{q}$. Запишем уравнение Лагранжа:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = \sum_{j} Q_{j}$$

$$\frac{d}{dt} \left(\frac{\partial \mathbf{K}}{\partial \dot{q}} \right) - \frac{\partial \mathbf{K}}{\partial q} = -\frac{\partial \mathbf{\Pi}}{\partial q} + \sum_{j} Q_{j}$$

Воспользуемся соотношением $\frac{d}{dt} \left(\frac{\partial \mathbf{K}}{\partial \dot{q}} \right) = M \ddot{q}$, и пусть Π имеет вид $\Pi = \Pi(q) = Cq$. Следовательно, получим $M \ddot{q} + B \dot{q} + Cq = Q_{\text{внешние}}$ или в одномерном случае

$$m\ddot{q} + b\dot{q} + cq = Q_{\text{внешние}}. (6.1)$$

Проведем аналогию с уравнением

$$L\frac{di}{dt} + Ri + \frac{1}{C} \int_{0}^{t} i(\tau)d\tau = e.$$

Если мы вспомним, что $i = \frac{dq}{dt}$, то получим представление аналогичное (6.1):

$$L\frac{d^2q}{dt^2} + R + \frac{dq}{dt} + \frac{1}{C} = e.$$

q	b	m	c	Q	$K = 1/2m\dot{q}^2$	$R = 1/2b\dot{q}^2$	$\Pi = 1/2cq^2$
q	L	R	1/	l	$L/2\dot{q}^2$	$R/2\dot{q}^2$	$1/2Ctq^2$
U	C	1/R	1/L	di/dt	_	_	_

Таблица 1: Электромеханические аналогии

Кратко выводы можно описать таблицей 1.

Для цепи, иллюстрирующей сложение токов, изображенной на рисунке 6.1, можно выписать следующие соотношения

$$U = L\frac{di}{dt}$$
, $U = Ri$, $i = \frac{U}{R}$, $C\frac{dU}{dt} = i$, $i = \frac{1}{L}\int_{0}^{t_0} U(\tau)d\tau$.

Рис. 6.1: Сложение токов

7 Управляемые и наблюдаемые системы

Рассматривается система

$$\begin{cases} \dot{x} = Ax + Bu + D_1 v \\ y = Cx + D_2 v. \end{cases}$$

$$(7.1)$$

Здесь x — фазовая переменная, которую мы наблюдаем, u — управление, v — помеха, причиной появления которой зачастую являются неточность линеризации или внешние условия. Второе уравнение в данной системе называется уравнением наблюдения, и соответственно y — наблюдением. Применим преобразование Лапласа, обозначив $x(0) = x^0$, $x \supset X, y \supset Y, v \supset V, u \supset U$.

$$pX - x^0 = AX + BU + D_1V$$
$$(pI - A)X = x^0 + BU + D_1V$$

$$X = (pI - A)^{-1}x^{0} + (pI - A)^{-1}BU + (pI - A)^{-1}D_{1}V$$

$$Y = CX + D_{2}V = C(pI - A)^{-1}x^{0} + C(pI - A)^{-1}BU + (C(pI - A)^{-1}D_{1} + D_{2})V =$$

$$= C(pI - A)^{-1}x^{0} + H_{yy}U + H_{yy}V$$

 $H_{yu}=C(pI-A)^{-1}B$ принято называть $nepedamoчной функцией (transfer function). Пусть наблюдение одномерно <math>y\in\mathbb{R},C\in\mathbb{R}^{1 imes n}$, и удовлетворяет системе

$$\frac{d^n y}{dt^n} + c_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + c_{n-2} \frac{d^{n-2} y}{dt^{n-2}} + \dots c_1 \frac{dy}{dt} + c_0 y = u.$$
 (7.2)

Сведем ее к системе (7.1):

$$\begin{cases}
x_1 = y \\
x_2 = \frac{dy}{dt} \\
\dots \\
x_n = \frac{d^{n-1}y}{dt^{n-1}}
\end{cases} = \begin{cases}
\dot{x}_1 = x_2, & (y = x_1) \\
\dot{x}_2 = x_3 \\
\dots \\
\dot{x}_n = -c_{n-1}x_n - c_{n-2}x_{n-1} - \dots - c_0x_1 + u.
\end{cases} (7.3)$$

Возвращаясь к многомерной системе, для y справедливо:

$$\begin{cases} y = \underline{C}^T x, & (C = C^T) \\ \frac{dy}{dt} = \underline{C}^T A x + C^T B u \\ \frac{d^2 y}{dt^2} = \underline{C}^T A^2 x + C^T A B u + C^T B \frac{du}{dt} \\ \dots \\ \frac{d^n y}{dt^n} = \underline{C}^T A^n x + C^T A^{n-1} B u + \dots C^T B \frac{d^{n-1} u}{dt^{n-1}}. \end{cases}$$

$$(7.4)$$

По теореме Гамильтона-Кэли A имеет разложение $A^n = c_0 I + c_1 A + \dots c_{n-1} A^{n-1}$. С тем, чтобы избавиться от подчеркнутых слагаемых домножим первое из уравнений системы (7.4) на $-c_0$, второе на $-c_1$, третье на $-c_2$, далее на аналогичные коэффициенты вплоть до предпоследнего уравнения, а затем сложим их все. Тогда мы сможем продолжить равенство из уравнения (7.2):

$$u = \beta_0 u + \beta_1 \frac{du}{dt} + \dots + \beta_{n-1} \frac{d^{n-1}u}{dt^{n-1}}.$$

Положив $x^0 = 0$ и исключив помеху, получим $Y = H_{yu}U$. Различные схемы управления можно увидеть на рисунках 7.1a, 7.1b.

Для передаточной функции $H=H_{yu}=C(pI-A)^{-1}$ вводят понятие *частотной характеристики*, определяемой как $H(iw), w \in \mathbb{R}$. |H(iw)| называют коэффициентом усиления.

Рассмотрим управление вида

$$u(t) = ae^{iwt}, \quad a \in \mathbb{R}^{n \times 1}, w \in \mathbb{R},$$

и будем считать A устойчивой матрицей (это верно, например, если все собственные ее значения имеют отрицательную вещественную часть). Справедлива теорема

Теорема 7.1. Пусть A устойчивая матрица, $\bar{y}(t) = H(iw)ae^{iwt}$. Тогда

$$||y(t) - \bar{y}(t)|| \stackrel{t \to \infty}{\longrightarrow} 0,$$

 $ede\ y(t)$ – выход $npu\ u(t)=ae^{iwt}\ (устойчивый\ режим).$

- (а) Различное соединение блоков
- (b) Замкнутая и разомкнутая система

Рис. 7.1: Различные управляемые системы

Доказательство.

$$\begin{split} y(t) &= Ce^{At}x^0 + C\int\limits_0^t e^{A(t-\tau)}Bae^{iwt}d\tau \Rightarrow \\ &\Rightarrow \left\{t \to \infty, Ce^{At}x^0 \overset{t \to \infty}{\longrightarrow} 0\right\} \Rightarrow \\ &\Rightarrow Ce^{At}\int\limits_0^t e^{-A\tau}Be^{iwt}ad\tau = Ce^{At}\int\limits_0^t e^{(iwI-A)\tau}d\tau Ba = \\ &= C\left[e^{iwI} - e^{-At}\right]\left[iwI - A\right]^{-1}Ba\overset{t \to \infty}{\longrightarrow} C\left[iwI - A\right]^{-1}Bae^{iwt} = H(iw)ae^{iwt} \end{split}$$

Здесь мы воспользовались следующим преобразованием:

$$\int_{0}^{t} e^{(iwI - A)\tau} d\tau = \left\{ \frac{e^{(iwI - A)\tau}}{(iwI - A)} \bigg|_{\tau = 0}^{\tau = t} \right\} = \left[e^{(iwI - A)t} - I \right] (iwI - A)^{-1},$$

справедливость этой формулы доказывается прямым дифференцированием.

Список литературы

[1] К. В. Воронцов. pm TEX6 примерах. — М.: МЦНМО, 2005.