Amendments to the claims

• This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims

Claims 1-58 (cancelled).

Claim 59 (original): A process for the preparation of a 4,5-dihydro-5,7-lactone steroid compound, said lactone steroid being substituted with keto or dialkoxy at the 3-carbon, and comprising the moiety:

where C(5) represents the 5-carbon and C(7) represents the 7-carbon of the steroid structure of the lactone compound,

the process comprising:

converting a cyano substituted steroid to the 7-carboxylic acid, and thereafter converting the 7-carboxylic acid to the 5,7-lactone.

Claim 60 (original): A process as set forth in claim 59 wherein the substrate comprises a $3-\text{keto}-\Delta-4$, 5-7-carboxy steroid, and a ketal intermediate comprising a 3-dialkoxy-5, 7-lactone is formed, said 3-dialkoxy-5, 7-lactone being hydrolyzed under the acidic conditions to form the 3-keto-5, 7-lactone.

Claims 61-62 (cancelled).

Claim 63 (currently amended): A process for the preparation of a

compound corresponding to Formula E:

Ε

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl and cyano and aryloxy;

the process comprising:

thermally decomposing a compound corresponding to Formula DE2 in the presence of an alkali metal halide, said compound of Formula DE2 having the structure:

DE2

wherein R^{12} is C_1 to C_4 alkyl, and -A-A-, -B-B-, R^3 and R^{17} are as defined above.

Claim 64 (currently amended): A process for the preparation of a compound corresponding to Formula DE2:

$$R^{17}O$$
 $R^{17}O$
 R^{1

DE2

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 \mbox{R}^{12} and \mbox{R}^{17} are independently selected from among \mbox{C}_1 to \mbox{C}_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl,

alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

condensing a compound of Formula DE1 with a dialkyl malonate in the presence of a base, said compound of Formula DE1 having the structure:

DE1

wherein -A-A-, -B-B-, R^3 and R^{17} are as defined above.

Claim 65 (currently amended): A process for the preparation of a compound corresponding to Formula DE1:

DE1

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

reacting a compound of Formula D with a sulfonium ylide in the presence of a base, said compound of Formula D having the structure:

wherein -A-A-, -B-B-, R³ are as defined above.

Claim 66 (currently amended): A process for the preparation of a compound corresponding to Formula D:

D

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

the process comprising:

hydrolysis of a compound of Formula C to the 7α -carboxylic acid and reaction under acidic conditions with a trialkyl orthoformate, the compound of Formula C having the structure:

wherein -A-A-, -B-B- and R³ are as defined above.

Claims 67-68 (cancelled).

Claim 69 (currently amended): A process for the preparation of a compound corresponding to Formula 211:

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and

aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively or $\rm R^{80}$ and $\rm R^{90}$ together form keto;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising:

oxidizing a compound of Formula 210, said compound of Formula 210 having the structure

[A210] 210

where -A-A-, -B-B-, R^3 , R^{80} and R^{90} are as defined above.

Claim 70 (original): A process as set forth in claim 69 wherein ${\bf R}^8$ and ${\bf R}^9$ comprise

where X represents two hydrogen atoms, oxo or =S;

Y¹ and Y² together represent the oxygen bridge -O-, or

Y¹ represents hydroxy, and

 Y^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 71 (original): A process as set forth in claim 70 wherein ${\bf R}^8$ and ${\bf R}^9$ comprise

Claim 72 (currently amended): A process for the preparation of a compound corresponding to the Formula:

[A211] A211

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising:

reacting a 3-keto-5,7-hemiacetal intermediate of Formula A209 with a peroxide oxidizing reagent, said compound of Formula A209C corresponding to the formula:

[A209C] A209C

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined above.

Claim 73 (original): A process as set forth in claim 72 wherein ${\ensuremath{R^8}}$ and ${\ensuremath{R^9}}$ comprise

where X represents two hydrogen atoms, oxo or =S; $Y^1 \text{ and } Y^2 \text{ together represent the oxygen bridge -O-, or} \\ Y^1 \text{ represents hydroxy, and}$

 Υ^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 74 (original): A process as set forth in claim 73 wherein ${\rm R}^8$ and ${\rm R}^9$ comprise

Claim 75 (currently amended): A process for the preparation of a compound corresponding to the Formula:

[A210] A210

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively, or $\rm R^{80}$ and $\rm R^{90}$ together form keto;

 $\ensuremath{\text{R}^{8}}$ and $\ensuremath{\text{R}^{9}}$ are independently selected from the group

consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising:

reacting a 3-keto-5,7-hemiacetal intermediate of Formula A209C with a peroxide oxidizing reagent, said compound of Formula A209C corresponding to the formula:

[A209C] A209C

wherein -A-A-, -B-B-, R^3 , R^8 and R^9 are as defined above.

Claim 76 (original): A process as set forth in claim 75 wherein $\ensuremath{R^8}$ and $\ensuremath{R^9}$ comprise

where X represents two hydrogen atoms, oxo or =S; $Y^1 \text{ and } Y^2 \text{ together represent the oxygen bridge -O-, or}$

 $\mathbf{Y}^{\mathbf{1}}$ represents hydroxy, and

 Υ^2 represents hydroxy, lower alkoxy or, if X represents H_2 , also lower alkanoyloxy.

Claim 77 (original): A process as set forth in claim 76 wherein ${\bf R}^{\bf 8}$ and ${\bf R}^{\bf 9}$ comprise

Claim 78 (currently amended): A process for the preparation of a compound corresponding to the Formula:

[A209] A209

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{80} and R^{90} are independently selected from R^8 and R^9 , respectively, or R^{80} and R^{90} together form keto;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

and -E-E- is selected from among:

and

ζ,

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

hydrolyzing a compound corresponding to the Formula A208

[A208] A208

wherein -A-A-, -B-B-, -E-E-, R^3 , R^{80} and R^{90} are as defined above; R^{19} is C_1 to C_4 alkyl or the R^{18} O- groups together form an O,O-oxyalkylene bridge; and R^{20} is C_1 - C_4 alkyl.

Claim 79 (currently amended): A process for the preparation of a compound corresponding to Formula:

[A205] A205

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge; and

 \mbox{R}^{20} is $\mbox{C}_1\mbox{-}\mbox{C}_4$ alkyl; and

wherein -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

reacting a compound corresponding to Formula A204 with a lower alcohol and an acid, said compound of Formula A204 having the structure:

wherein -A-A-, -B-B-, -E-E-, \mathbb{R}^3 , and \mathbb{R}^{19} are as defined above.

Claim 80 (currently amended): A process for the preparation of a compound corresponding to Formula:

wherein

-A-A- represents the group -CHR⁴-CHR⁵- or -CR⁴=CR⁵-; R^3 , R^4 and R^5 are independently [[is]] selected from the

group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{19} is C_1 to C_4 alkyl or the $R^{19}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

wherein -E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

hydrolyzing compound corresponding to Formula A203, said compound of Formula A203 having the structure:

[A203] A203

wherein -A-A-, -B-B-, -E-E- and R^3 are as defined above, and R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an 0,0-oxyalkylene bridge.

Claim 81 (currently amended): A process for the preparation of a compound corresponding to Formula:

[A204] A204

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl,

acyloxyalkyl, cyano and aryloxy; and

 \mbox{R}^{19} is \mbox{C}_1 to \mbox{C}_4 alkyl or the $\mbox{R}^{19}\mbox{O-}$ groups together form an O,O-oxyalkylene bridge; and

wherein -E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}O$ - groups together form an O,O-oxyalkylene bridge; R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising:

protecting the keto substituents of a compound corresponding to Formula A201 by reaction with alkanol under acid condition in the presence of orthoformate, said compound of Formula A201 having the structure:

wherein -A-A-, -B-B-, -E-E- and R^3 , are as defined above, thereby producing a 3-enol ether intermediate corresponding to Formula A202:

wherein -A-A-, -B-B-, -E-E- and R^3 are as defined above, and R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge; and

reducing said compound of Formula A202.

Claim 82 (currently amended): A process for the preparation of a compound corresponding to the formula:

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

wherein -E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}O$ - groups at C-17 together form an O,O-oxyalkylene bridge; R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and R^{24} is selected from among hydrogen and lower alkyl;

the process comprising: reducing a compound corresponding to Formula A202:

[A202] A202

wherein -A-A-, -B-B-, -E-E-, \mathbb{R}^3 , and \mathbb{R}^{18} are as defined above.

Claims 83-92 (cancelled).

Claim 93 (currently amended): A process as set forth in claim 91 for the formation of an epoxy compound comprising contacting a substrate compound having an olefinic double bond with a peroxide compound in the presence of a peroxide activator, wherein said peroxide activator is chlorodifluoroacetamide or corresponds to a compound having corresponds to the formula

$$X^{1}$$
 0 $X^{2} - \overset{|}{C} - R - \overset{|}{C} - NH_{2}$ X^{3}

wherein

 R^p is selected from the group consisting of [[arylene,]] alkenyl, alkynyl and [[-(CX^4X^5)_n-]] -(CX^4X^5)₂-;

 X^1 , X^2 , X^3 , X^4 and X^5 are independently selected from among halo, hydrogen, alkyl, haloalkyl and cyano and cyanoalkyl; and

[[n is 0, 1 or 2;

provided that when n is 0, then at least one of X^1 , X^2 and X^3 is halo; and]]

provided that [[when R^p is $-(CX^4X^5)_n$ - and n is 1 or 2, then]] at least one of X^4 and X^5 is halo.

Claim 94 (currently amended): A process as set forth in claim [[92]] 93 wherein [[n is 0]] and at least two of X^1 , X^2 and X^3 are

halo or perhaloalkyl.

Claim 95 (currently amended): A process as set forth in claim [[92]] $\underline{93}$ wherein all of X^1 , X^2 , X^3 , X^4 and X^5 are halo or perhaloalkyl.

Claim 96 (currently amended): A process as set forth in claim
[[91]] 93 wherein said peroxide activator is a trihaloacetamide.

Claim 97 (currently amended): A process as set forth in claim 95 wherein said peroxide activator is trichloroacetamide.

Claim 98 (currently amended): A process as set forth in claim [[91]] 93 wherein said peroxide activator is selected from the group consisting of chlorodifluoroacetamide and heptafluorobutyramide.

Claim 99 (currently amended): A process as set forth in claim [[91]] 93 wherein said substrate compound corresponds to the Formula:

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxy carbonyl, cyano and aryloxy;

 $\ensuremath{\text{R}^{1}}$ represents an alpha-oriented lower alkoxycarbonyl or

hydroxycarbonyl radical;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 100 (currently amended): A process as set forth in claim [[91]] 93 wherein said substrate compound is selected from the group consisting of:

and a product of the epoxidation reaction is selected from the group consisting of:

Claim 101 (currently amended): A process as set forth in claim [[91]] 93 wherein said substrate compound is selected from the group consisting of:

and a product of the epoxidation reaction is selected from the group consisting of:

$$\bigcirc_{\mathsf{H}}^{\mathsf{O}}$$

Claim 102-140 (cancelled).

Claim 141 (currently amended): A compound corresponding to Formula D:

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 R^{17} is C_1 to C_4 alkyl; and

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or beta-

oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy.

Claim 142 (currently amended): A compound corresponding to Formula E:

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

 \mbox{R}^{17} is \mbox{C}_1 to \mbox{C}_4 alkyl; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl,

acyloxyalkyl, cyano and aryloxy.

Claim 143 (currently amended): A compound corresponding to Formula F:

F

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy.

Claim 144 (currently amended): A compound corresponding to Formula 211:

[211] 211

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively or $\rm R^{80}$ and $\rm R^{90}$ together form keto; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 145 (currently amended): A compound corresponding to Formula 210:

[210] 210

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^8$ and $\rm R^9,$ respectively, or $\rm R^{80}$ and $\rm R^{90}$ together form keto; and

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring.

Claim 146 (currently amended): A compound corresponding to Formula 209:

[209] 209

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy; and

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or betaoriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 $\rm R^{80}$ and $\rm R^{90}$ are independently selected from $\rm R^{8}$ and $\rm R^{9},$ respectively, or $\rm R^{80}$ and $\rm R^{90}$ together form keto;

 R^8 and R^9 are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy, or R^8 and R^9 together comprise a carbocyclic or heterocyclic ring structure, or R^8 or R^9 together with R^6 or R^7 comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring; and

-E-E- is selected from among:

and

where R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and

 ${\ensuremath{\mathbb{R}}}^{24}$ is selected from among hydrogen and lower alkyl.

Claim 147 (currently amended): A compound corresponding to Formula 208:

[208] 208

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R^6 and R^7 are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 ${\bf R}^{21},~{\bf R}^{22}$ and ${\bf R}^{23}$ are independently selected from among hydrogen, alkyl, halo, nitro, and cyano; and

 R^{24} is selected from among hydrogen and lower alkyl.

Claim 148 (currently amended): A compound corresponding to Formula 207:

[207] 207

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

 R^3 , R^4 and R^5 are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an 0,0-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 R^{24} is selected from among hydrogen and lower alkyl; and R^{25} is C_1 to C_4 alkyl.

Claim 149 (currently amended): A compound corresponding to Formula 206:

[206] 206

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy;

 R^{20} is C_1-C_4 alkyl; and

-E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 R^{24} is selected from among hydrogen and lower alkyl.

Claim 150 (currently amended): A compound corresponding to Formula 205:

[205] 205

wherein

-A-A- represents the group -CHR4-CHR5- or -CR4=CR5-;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or betaoriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

 R^{19} and R^{20} are independently selected from $C_1\text{-}C_4$ alkyl; and -E-E- is selected from among:

and

where R^{19} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 ${\bf R}^{21},~{\bf R}^{22}$ and ${\bf R}^{23}$ are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

R²⁴ is selected from among hydrogen and lower alkyl.

Claim 151 (currently amended): A compound corresponding to Formula 204:

[204] 204

wherein

-A-A- represents the group $-CHR^4-CHR^5-$ or $-CR^4=CR^5-$;

R³, R⁴ and R⁵ are independently [[is]] selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl,

alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

-E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups together form an O,O-oxyalkylene bridge;

 R^{21} , R^{22} and R^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 R^{24} is selected from among hydrogen and lower alkyl.

Claim 152 (currently amended): A compound corresponding to Formula 203:

wherein

-A-A- represents the group -CHR⁴-CHR⁵- or -CR⁴=CR⁵-; R^3 , R^4 and R^5 are independently [[is]] selected from the

group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, cyano and aryloxy;

-B-B- represents the group $-CHR^6-CHR^7-$ or an alpha- or beta-oriented group:

where R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkyl, alkoxycarbonyl, acyloxyalkyl, cyano and aryloxy; and

-E-E- is selected from among:

and

where R^{18} is C_1 to C_4 alkyl or the $R^{18}\text{O-}$ groups at C-17 together form an O,O-oxyalkylene bridge;

 \mathbb{R}^{21} , \mathbb{R}^{22} and \mathbb{R}^{23} are independently selected from among hydrogen, alkyl, halo, nitro, and cyano;

 R^{24} is selected from among hydrogen and lower alkyl.