零死角玩转STM32—M4系列

模拟数字转换器

淘宝: firestm32.taobao.com

论坛: www.chuxue123.com

扫描进入淘宝店铺

主讲内容

01

ADC简介

02

ADC功能框图讲解

参考资料:《零死角玩转STM32》

"ADC—电压采集"章节

DMA简介

ADC: Analog to Digital,模拟数字转换器

- 1-三个独立的ADC 1 / 2 / 3
- 2-分辨率有12/10/8/6 位可选
- 3-每个ADC具有19个通道,其中外部通道16个

ADC功能框图讲解

1-电压输入范围

- 2-输入通道
- 3-转换顺序
- 4-触发源
- 5-转换时间
- 7-中断
- 8-电压转换

输入电压: VREF- ≤ VIN ≤ VREF+

决定输入电压的引脚:VREF-、VREF+、VDDA、VSSA

VSSA 和 VREF-接地,把 VREF+和 VDDA 接 3V3,

得到ADC 的输入电压范围为: 0~3.3V。

超出0~3.3V的电压怎么测?

ADC可以测量:-10V~10V

根据基尔霍夫定律(KCL),节点流入的电流等于流出的电流

(Vint - Vout)/R2 + (3V3-Vout)/R1 = Vout / R3

Vout = (Vint + 10) / 6

R1 / R2 / R3 的值怎么确定?

输入通道

每个ADC具有19个通道,其中外部通道16个

	STM32F429I	GT6 ADC	10 分配		
ADC1	10	ADC2	10	ADC3	10
通道0	PA0	通道0	PA0	通道0	PA0
通道1	PA1	通道1	PA1	通道1	PA1
通道2	PA2	通道2	PA2	通道2	PA2
通道3	PA3	通道3	PA3	通道3	PA3
通道4	PA4	通道4	PA4	通道4	PF6
通道5	PA5	通道5	PA5	通道5	PF7
通道6	PA6	通道6	PA6	通道6	PF8
通道7	PA7	通道7	PA7	通道7	PF9
通道8	PB0	通道8	PB0	通道8	PF10
通道9	PB1	通道9	PB1	通道9	PF3
通道10	PC0	通道10	PC0	通道10	PC0
通道11	PC1	通道11	PC1	通道11	PC1
通道12	PC2	通道12	PC2	通道12	PC2
通道13	PC3	通道13	PC3	通道13	PC3
通道14	PC4	通道14	PC4	通道14	PF4
通道15	PC5	通道15	PC5	通道15	PF5
通道16	连接内部VSS	通道16	连接内部VSS	通道16	连接内部VSS
通道17	连接内部Vrefint	通道17	连接内部VSS	通道17	连接内部VSS
通道18	连接内部温度传感器/内部V _{BAT}	通道18	连接内部VSS	通道18	连接内部VSS

图 30-2 STM32F429IGT6 ADC 通道

输入通道分类

外部的 16 个通道在转换的时候又分为规则通道和注入通道,其中规则通道最多有 16路,注入通道最多有 4 路。那这两个通道有什么区别?在什么时候使用?

输入通道分类

规则通道: 顾名思意, 规则通道就是很规矩的意思, 我们平时

一般使用的就是这个通道。

注入通道:注入,可以理解为插入,插队的意思,是一种不安分的通道。它是一种在规则通道转换的时候强行插入要转换的一种。这点跟中断程序很像,都是不安分的主。所以,注入通道只有在规则通道存在时才会出现。

注入又分为触发注入和自动注入,具体有什么区别?

通道转换顺序

	规则序)
寄存器	寄存器位	功能	取值
	SQ1[4:0]	设置第1个转换的通道	<u>通</u> 道1~16
	SQ2[4:0]	设置第2个转换的通道	通道1~16
CUBS	SQ3[4:0]	设置第3个转换的通道	通道1~16
SQR3	SQ4[4:0]	设置第4个转换的通道	<u>通</u> 道1~16
	SQ5[4:0]	设置第5个转换的通道	通道1~16
	SQ6[4:0]	设置第6个转换的通道	<u>通</u> 道1~16
	SQ7[4:0]	设置第7个转换的通道	<u>通</u> 道1~16
	SQ8[4:0]	设置第8个转换的通道	<u>通</u> 道1~16
SQR2	SQ9[4:0]	设置第9个转换的通道	通道1~16
26177	SQ10[4:0]	设置第10个转换的通道	<u>通</u> 道1~16
	SQ11[4:0]	设置第11个转换的通道	<u>通</u> 道1~16
	SQ12[4:0]	设置第12个转换的通道	<u>通</u> 道1~16
	SQ13[4:0]	设置第13个转换的通道	<u>通</u> 道1~16
	SQ14[4:0]	设置第14个转换的通道	<u>通</u> 道1~16
SQR1	SQ15[4:0]	设置第15个转换的通道	<u>通</u> 道1~16
	SQ16[4:0]	设置第16个转换的通道	<u>通</u> 道1~16
	SQL[3:0]	需要转换多少个通道	1~16

图 30-3 规则序列寄存器

通道转换顺序

注入序列寄存器 JSQR 只有一个,最多支持 4个通道,具体多少个由 JSQR 的 JL[2:0] 决定。如果 JL 的 值小于 4 的话,则 JSQR 跟 SQR 决定转换顺序的设置不一样,第一次转换的不是 JSQR1[4:0],而是 JCQRx[4:0],x = (4-JL),跟 SQR 刚好相反。如果 JL=00(1个转换),那么转换的顺序是从 JSQR4[4:0]开始,而不是从 JSQR1[4:0]开始,这个要注意,编程的时候不要搞错。当 JL等于 4 时,跟 SQR 一样。

注入序列寄存器 JSQR										
寄存器	寄存器位	功能	取值							
	JSQ1[4:0]	设置第1个转换的通道	通道1 [~] 4							
	JSQ2[4:0]	设置第2个转换的通道	通道1 [~] 4							
JSQR	JSQ3[4:0]	设置第3个转换的通道	通道1 [~] 4							
	JSQ4[4:0]	设置第4个转换的通道	通道1 [~] 4							
	JL[1:0]	需要转换多少个通道	1~4							

图 30-4 注入序列寄存器

触发源

1、软件触发:ADC_CR2:ADON/SWST

ART/JSWSTART

2、**外部事件触发**:内部定时器/外部IO

选择:ADC_CR2:EXTSEL[2:0]和 JEXTSEL[2:0]

激活:ADC_CR2:EXTEN 和 JEXTEN

转换时间: Tconv = 采样时间 + 12 个周期

ADC_CLK: ADC模拟电路时钟, 最大值为36M,由

PCLK2提供,还可分频,2/4/6/8,ADC_CCR的

ADCPRE[1:0]设置。PCLK2=90M。

有关ADC_CLK时钟的具体描述参考datasheet:6.3.21

数字时钟:RCC_APB2ENR,用于访问寄存器

快速转换模式

11.7 快速转换模式

可通过降低 ADC 分辨率来执行快速转换。RES 位用于选择数据寄存器中可用的位数。每种分辨率的最小转换时间如下:

- 12 位: 3 + 12 = 15 ADCCLK 周期
- 10 位: 3 + 10 = 13 ADCCLK 周期
- 8位: 3+8=11 ADCCLK 周期
- 6位: 3+6=9ADCCLK 周期

采样时间:ADC 需要若干个 ADC CLK 周期完成对输入的 模拟量进行采样,采样的周期数可通过ADC 采样时间寄存器 ADC SMPR1 和 ADC SMPR2 中的 SMP[2:0]位设置, ADC_SMPR2控制的是通道 0~9, ADC SMPR1 控制的是通 道 10~17。每个通道可以分别用不同的时间采样。其中采样 周期最小是3个,即如果我们要达到最快的采样,那么应该 设置采样周期为 3 个周期,这里说的周期就是 1/ADC CLK。

采样率,决定了ADC能采集多大频率的信号

		12-bit resolution Single ADC	-	-	2	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
	.5 27.12 2 3/0.00/	12-bit resolution Interleave Triple ADC mode	-	-	6	Msps

ADC具体的性能参数参考datasheet:6.3.21章节

最短的转换时间: Tconv = 采样时间 + 12 个周期

PCLK2 = 90M, $ADC_CLK = 90/4 = 22.5M$

Tconv = 3+12 = 15周期 = 15/22.5us = 0.67us

转换方式

单次转换

11.3.4 单次转换模式

在单次转换模式下, ADC 执行一次转换。CONT 位为 0 时, 可通过以下方式启动此模式:

- 将 ADC_CR2 寄存器中的 SWSTART 位置 1 (仅适用于规则通道)
- 将 JSWSTART 位置 1 (适用于注入通道)
- 外部触发(适用于规则通道或注入通道)

完成所选通道的转换之后:

- 如果转换了规则通道:
 - 转换数据存储在 16 位 ADC_DR 寄存器中
 - EOC (转换结束) 标志置 1
 - EOCIE 位置 1 时将产生中断
- 如果转换了注入通道:
 - 转换数据存储在 16 位 ADC_JDR1 寄存器中
 - JEOC (注入转换结束) 标志置 1
 - JEOCIE 位置 1 时将产生中断

然后, ADC 停止。

转换方式

连续转换

11.3.5 连续转换模式

在连续转换模式下,ADC 结束一个转换后立即启动一个新的转换。CONT 位为 1 时,可通过外部触发或将 ADC_CR2 寄存器中的 SWSTRT 位置 1 来启动此模式(仅适用于规则通道)。

每次转换之后:

- 如果转换了规则通道组:
 - 上次转换的数据存储在 16 位 ADC_DR 寄存器中
 - EOC (转换结束) 标志置 1
 - EOCIE 位置 1 时将产生中断

注意: 无法连续转换注入通道。连续模式下唯一的例外情况是,注入通道配置为在规则通道之后自动转换(使用 JAUTO 位),请参见自动注入一节。

连续转换中还要注意一个不连续采样模式[11.3.10章节]

ADC_CR1:DISCEN/DISCNUM[2:0]

转换方式

扫描模式

11.3.8 扫描模式

此模式用于扫描一组模拟通道。

通过将 ADC_CR1 寄存器中的 SCAN 位置 1 来选择扫描模式。将此位置 1 后,ADC 会扫描在 ADC_SQRx 寄存器(对于规则通道)或 ADC_JSQR 寄存器(对于注入通道)中选择的所有通道。为组中的每个通道都执行一次转换。每次转换结束后,会自动转换该组中的下一个通道。如果将 CONT 位置 1,规则通道转换不会在组中最后一个所选通道处停止,而是再次从第一个所选通道继续转换。

如果将 DMA 位置 1,则在每次规则通道转换之后,均使用直接存储器访问 (DMA) 控制器将转换自规则通道组的数据(存储在 ADC DR 寄存器中)传输到 SRAM。

在以下情况下, ADC_SR 寄存器中的 EOC 位置 1:

- 如果 EOCS 位清零,在每个规则组序列转换结束时
- 如果 EOCS 位置 1,在每个规则通道转换结束时

从注入通道转换的数据始终存储在 ADC_JDRx 寄存器中。

一切准备就绪后, ADC 转换后的数据根据转换组的

不同,规则组的数据放在ADC_DR寄存器,注入组的

数据放在JDRx。如果是使用双重或者三重模式那规

矩组的数据是存放在通用规则寄存器 ADC_CDR 内的。

11.13.14 ADC 规则数据寄存器 (ADC_DR)

ADC regular data register

偏移地址: 0x4C

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DATA[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

1-16位有效,用于存放独立模式转换完成数据

2- ADC_CR2: ALIGN

3-只有一个,多通道采集的是最好使用DMA

11.13.13 ADC 注入数据寄存器 x (ADC_JDRx) (x= 1..4)

ADC injected data register x

偏移地址: 0x3C - 0x48

复位值: 0x0000 0000

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved															
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JDATA[15:0]															
r		r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

- 1-16位有效,用于存放注入通道转换完成数据
- 2- ADC_CR2: ALIGN
- 3-有4个这样的寄存器

11.13.17 适用于双重和三重模式的 ADC 通用规则数据寄存器 (ADC_CDR)

ADC common regular data register for dual and triple modes

偏移地址: 0x08 (该偏移地址与 ADC1 基地址 + 0x300 相关)

复位值: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DATA2[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DATA1[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

- 1-32位有效,双重或者三重ADC使用
- 2-必须配合DMA使用

中断

- 1-ADC_SR, ADC_CR1
- 2- ADC_HTR , ADC_LTR

模拟看门狗

模拟看门狗如何保护多个通道?

表 49. 模拟看门狗通道选择

推划毛门为伊拉的语法	ADC_CI	ADC_CR1 寄存器控制位(x = 无关)							
模拟看门狗保护的通道	AWDSGL 位	AWDEN 位	JAWDEN 位						
无	x	0	0						
所有注入通道	0	0	1						
所有规则通道	0	1	0						
所有规则通道和注入通道	0	1	1						
单个(1)注入通道	1	0	1						
单个(1)规则通道	1	1	0						
单个(1)规则通道或注入通道	1	1	1						

电压转换

怎么根据数据量算出模拟量

1-电压输入范围为:0~3.3V

2-分辨率为12位

3-最小精度为:3.3/2^12

4-设数字量为X,则有模拟量Y=(3.3/2^12)*X

零死角玩转STM32—M4系列

论坛: www.chuxue123.com

淘宝: firestm32.taobao.com

扫描进入淘宝店铺