# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

# Адаптивная нейро-нечеткая система оценки рисков информационной безопасности организации

Выполнил:

Студент группы 3540901/02001

Бараев Д.Р.

Руководитель:

Доцент К.Т.Н.

Бендерская Е.Н.



#### Постановка задачи

В статье обосновывается важность применения оценки рисков при реализации системы обеспечения информационной безопасности. Рассматриваются наиболее распространенные методики оценки риска и предлагается использовать для этих целей теорию нечеткой логики. Рассматриваются наиболее распространенные методы оптимизации параметров нечетких моделей и обосновываются преимущества применения методов, основанных на использовании нейро-нечетких сетей (ННС). Описывается процесс преобразования элементов нечеткой модели, таких как блок фаззификации, блок базы правил и блок дефаззификации во фрагменты нейронной сети. Результатом данного процесса является нейро-нечеткая сеть, соответствующая нечеткой модели.



#### Постановка задачи

Обозна-

чение

Наименование

лингвистической переменной

| бозначение            | Наименование лингвистической переменной               | Вид терм-множества и интерпретация уровней факторов                                                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>X</i> <sub>1</sub> | Программно-аппаратный уровень защиты                  | ТЗ. Н — удовлетворительная, для обеспечения начального уровня защиты;<br>С — достаточная, для базовой информационной защиты;<br>В — полностью соответствует уровню конфиденциальности информации                                                          |
| <i>x</i> <sub>2</sub> | Уровень организационной защиты                        | Т3. Н — слабое планирование и отсутствие мониторинга уязвимостей;<br>С — планирование и мониторинг уязвимостей проводятся нерегулярно;<br>В — своевременное планирование и мониторинг уязвимостей                                                         |
| <i>X</i> <sub>3</sub> | Уровень правовой защиты                               | Т3. Н — обрывочная и неполная документация;<br>С — документация имеется, но недостаточно детальная;<br>В — документация полная и синхронизированная                                                                                                       |
| $X_4$                 | Мотивация источника угроз (ИУ)                        | Т5. ОчН — отсутствует;<br>Н — редкое проявление заинтересованности;<br>С — вполне может заинтересовать;<br>В — скорее всего, заинтересуется;<br>ОчВ — обязательно заинтересуется                                                                          |
| <i>x</i> <sub>5</sub> | Возможности источника угроз (ИУ)                      | Т5. ОчН — не обладает;<br>Н — незначительный уровень оснащенности ИУ;<br>С — средний уровень оснащенности;<br>В — достаточно высокий уровень оснащенности;<br>ОчВ — ИУ обладает значительными возможностями                                               |
| $X_6$                 | Рыночная ценность информационного ресурса (ИР)        | Т5. ОчН — открытая информация;<br>Н — ИР обладает незначительной ценностью;<br>С — ИР представляет коммерческую тайну;<br>В — высококонфиденциальные данные;<br>ОчВ — катастрофическая ценность для организации<br>(уровень стратегического планирования) |
| <i>x</i> <sub>7</sub> | Объем данных информационного ресурса (ИР) организации | Т5. ОчН — крайне малая часть;<br>Н — меньшая часть;<br>С — половина ИР;<br>В — большая часть;<br>ОчВ — полный объем ИР                                                                                                                                    |

Факторы риска информационной безопасности организации

| $y_1$                 | Риск снижения эффективности защиты     | Характеризует потенциальную возможность снижения / увеличения эффективности<br>защиты по отношению к требуемой эффективности для конкретного предприятия |
|-----------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $y_2$                 | Риск возникновения потенциальных угроз | Характеризует возможность возникновения потенциальных угроз для предприятия                                                                              |
| $y_3$                 | Риск материального ущерба              | Характеризует возможность возникновения материального ущерба для предприятия при нарушениях параметров информационной безопасности предприятия           |
| <i>y</i> <sub>4</sub> | Риск ИБ организации                    | Интегральный риск, характеризующий обеспечение информационной безопасности предприятия                                                                   |

Примечание



## Базовая архитектура нечеткой логической системы





#### Модель ANFIS

- ANFIS считается универсальным оценщиком
- Вывод такой системы соответствует набору нечетких правил «если-то» (if-then)

- 1. Нейроны 1-го слоя вычисляют функции принадлежности нечётких термов:
- 2. Каждый нейрон слоя 2 вычисляет произведение входов. Выход нейрона представляет уровень активации правила.
- 3. Слой 3 вычисляет нормированные уровни активации правил.
- 4. Слой 4 вычисляет заключения правил.
- 5. Слой 5 представлен единственным узлом, вычисляющим сумму своих аргументов. Вычисляется результат нечёткого вывода.





### Построение ANFIS в MatLab







#### Проверка результатов

#### Входные данные из обучающей выборки



#### Экспериментальные данные





#### Выводы

В ходе работы была рассмотрена и протестирована нейронная сеть на основе системы нечеткого вывода. Модель нейронной сети является не сложной и может построится с помощью стандартных инструментов MatLab. Так же она легко настраиваемая и результаты её работы достаточно точны.

Я выделил несколько плюсов после изучения и использования ANFIS:

- Прост в реализации.
- Полезна при огромных входных данных.
- Универсальный оценщик.
- Более быстрая сходимость, чем у обычных нейронных сетей.
- Компактная модель.