Universidad del Bío-Bío Facultad de Ciencias Empresariales Departamento de Sistemas de Información

PRACTICA 3 INTELIGENCIA ARTIFICIAL

- 1.- Supongamos que tenemos d heurísticas distintas, $\{h_i\}_{i=1}^d$ todas admisibles. Para las siguientes heurísticas se pide determinar, fundadamente, si las siguientes heurísticas son admisibles
 - a) max $\{h_i(n)/i=1,2,...,d\}$
 - b) $\frac{1}{d} \sum_{i=1}^{d} h_i(n)$
 - c) $\sum_{i=1}^d h_i(n)$
- 2.- Consideremos el problema de búsqueda con estados A, B, C, D y E. En el siguiente grafo se indica el costo de pasar de un estado a otro, siendo A el estado inicial y E el estado final.

Considere las heurísticas h₁ y h₂ que se indican

Universidad del Bío-Bío Facultad de Ciencias Empresariales Departamento de Sistemas de Información

nodo	h ₁ (nodo)	h ₂ (nodo) 7 8		
A	8			
В	6			
С	6	5		
D	4	7		
E	0	0		

Se pide determinar, fundadamente, si el algoritmo A* es óptimo con las heurísticas indicadas anteriormente.

3.- Para el siguiente grafo, donde el estado inicial es S y los estados metas son C y G, se pide determinar si A* garantiza encontrar una solución óptima. En caso de no ser posible introduzca algunas modificaciones de manera que A* garantice encontrar la solución óptima. Considere la siguiente función heurística

n	S	D	Α	E	В	F	G	С
h(n)	13	8	10	6	5	3	0	0

