Week 5 Phylogenomics

Friday, 18 February 2022 8:02 AM

Aprican anishing (American SW)

To x coverage Let j the 4988255 SNP

To be g (Ny); Fol. A (alternate)

To conveyate generally histoloroda.

Defends is the word histog generally at this lows?

TRUTH GROSTYPE LIKELHOOD

GG
$$C_k \in (1-\epsilon)^k = P(D|AA)$$

AA $C_{k-k} \in (1-\epsilon)^k = P(D|AA)$
 $C_k \left(\frac{1}{2}n\right) = P(D|AA)$
 $P(D|AA) = P(D|AA)$

2-216 = 0.0090774

p (AGID) & P (DIAG) x P(AG)

	ſ	1	2	3	4	
	7	0	2	3	3	_
	2		0	2	2	
	<u> </u>			0	١	
4					6	

FITCH 6 MARGOLIASIN

- (1) MOLÉCULAR CLOCK > mutations accumulate of a constant nate along a branch
- (2) INFINITE SITES MODEL -> a mutation occurs just once at a site)

ı	ΔΙ	B	С
A	_	22	39
B		_	41
$\overline{\mathcal{C}}$			_

A UNROTED }

NEIGHBOR - JOINING

1) Always start tree with "STAR" TOPOLOGY with 3 branches

Subtract 2 from \bigcirc b-c=-17

add 3 and 4 b+c+b-c=41-17 2b=24

$$6 = 12$$
 7 put this in 3
 $12 + C = 41$
 $\Rightarrow C = 29$

put $6 = 12$ in 1
 $\Rightarrow 0 + 12 = 82$
 $\Rightarrow 0 = 10$

A $0 = 29$

吕

A 2
$$\frac{BC+BD}{2} = \frac{2+2}{2} = 2$$

(C,D) $\frac{BC+BD}{2} = \frac{2+2}{2} = 2$
 $\frac{C+BD}{2} = \frac{2+2}{2} = 2$

A
$$\begin{array}{c}
\alpha = 1.5 \\
y = 1.5 \\
0.5 \\
0.5
\end{array}$$

atx = C

ULTRAMETRIC TREES

,]	12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· ン		ULIKA	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_		
	A	A	B 2	2	5					
•	В			2	2					
	C				(νς \\ 0.	5	C+d =1	
	9						C D	(C = A	
		CID) _/ A	B			,		⇒ c=d=0	.2
$\mathcal{C}^{\mathcal{C}}$	(a,		ACHAD 2 3	BC.	+ BD = 2/1	6.33		t		
	Δ			2	_			b = !	3 = 1.5	
	3				×	0.3		1.33		
				ţ	c	D D	3	A	UPGMA =	
		1 A	X+ }]	0.5 =	D).	AB+	AC+ AI)		
		1				-		_		

2+3+3

$$=\frac{8}{3}=\frac{2.66}{2}$$

$$H_1 = TOPOLOGYI$$
 $H_2 = TOPOLOGY 2$
 $D = P(D|H_1) \times P(H_1)$
 $P(D)$
 $P(D)$

$$\frac{2}{P(D)} = \frac{P(D|H_2) \times P(H_2)}{P(D)}$$

$$\frac{1}{P(H_1|D)} = \frac{P(D|H_1) \times P(H_1)}{P(D|H_2) \times P(H_2)} \times \frac{P(D|H_2) \times P(H_2)}{P(D|H_2)} \times \frac{P(H_2|D)}{P(D|H_2)} \times \frac{P(H_2|$$

$$Bias = P(H) = P \Rightarrow P(T) = 1-P$$

$$L = P(D|P) = P \times P \times (1-P) \times (1-P)^{3}$$

natural log on both sides ln L = 5 ln p + 6 ln (1-p) $\frac{5}{p} - \frac{6}{1-p} = 0$ $\Rightarrow P = 5/1$

ASSUME :

1 evolution om different sites are independent of each other

evention on different lineages of each other.]

$$T = true (topology)$$
; $D = genetic data$
 $T = true (topology)$; $D = genetic data$
 $T = true (topology)$; $D = genetic data$
 $T = true (topology)$; $T =$

$$x, y, z, w = \{A, C, G, T\}$$

$$= p(x) \times p(y|x, t_6) \times A(A|y, t_1)$$

$$\times p(c|y, t_2) \times p(z|x, t_8)$$

$$\times p(c|z, t_3) \times p(w|z, t_7)$$

$$\times p(c|z, t_3) \times p(G|w, t_8)$$

$$\times p(C|w, t_4) \times p(G|w, t_8)$$