Contents

1

	Basi	С																	1
	1.1	$vimrc \ldots \ldots \ldots \ldots$																	1
	1.2	Increase Stack																	1
	1.3 1.4	Pragma Optimization . IO Optimization																	1
		To optimization	•	 •	•	 •	•	•	 •		 •	•		 •	•	•	•	•	•
		Structure																	2
	2.1 2.2	Bigint																	2
	2.3	Disjoint Set																	3
	2.4	Link-Cut Tree																	3
	2.5	LiChao Segment Tree .																	3
	2.6	Sparse Table																	4
	2.7	Linear Basis	•	 ٠	•	 ٠	٠	•	 ٠		 ٠	•	•	 ٠	٠	٠	٠		4
,	Grap	oh																	4
	3.1	Euler Circuit																	4
	3.2	BCC Edge																	4
	3.3 3.4	BCC Vertex																	5 5
	3.5	Lowbit Decomposition .																	5
	3.6	MaxClique																	6
	3.7	MaxCliqueDyn																	6
	3.8	Virtural Tree																	7
	3.9 3.10	Virtural Tree Tree Hashing																	7 7
	3.11	Minimum Mean Cycle .																	7
	3.12	Mo's Algorithm on Tree																	8
	3.13	Minimum Steiner Tree .																	8
	3.14	Directed Minimum Spani																	9
	5.15	Dominator Tree	•	 •	•	 •	•	•	 •	•	 ٠	•	•	 •	•	٠	•	•	9
ŀ	Mate	ching & Flow																	9
	4.1	Kuhn Munkres																	9
	4.2	Bipartite Matching																	10
	4.3 4.4	General Graph Matching Minimum Weight Matchi																	10 10
	4.5	Minimum Cost Circulation																	11
	4.6	Flow Models																	11
	4.7	Dinic																	11
	4.8	Minimum Cost Maximum																	12
	4.9	Global Min-Cut	•	 •	•	 •	•	•	 •	•	 ٠	•	•	 •	•	٠	•	•	12
,	Math	'n																	12
	5.1	Prime Table																	12
	5.2	$\lfloor \frac{n}{i} \rfloor$ Enumeration																	13
	5.3 5.4	ax+by=gcd Pollard Rho																	13 13
	5.5	Pi Count (Linear Sieve) .																	13
	5.6	Range Siève																	13
	5.7	Miller Rabin																	13
	5.8 5.9	Inverse Element Euler Phi Function																	13 13
		Euler Phi Function Gauss Elimination													•	•	•	•	14
	5.11	Fast Fourier Transform																	14
		Chinese Remainder																	14
		Berlekamp Massey																	14
		NTT																	14 15
		FWT																	16
		DiscreteLog																	16
		Quadratic residue																	16
		De-Bruijn																	16
		Simplex Construction . Simplex																	16 16
	5.21	Simplex	•	 •	•	 •	•	•	 •	•	 •	•	•	 •	•	•	•	•	10
•		metry																	17
	6.1	Circle Class																	17
	6.2 6.3	Segment Class Line Class																	17 17
	6.4	Triangle Circumcentre .																	18
	6.5	2D Convex Hull																	18
	6.6	3D Convex Hull																	18
	6.7 6.8	2D Farthest Pair																	18 19
	6.9	2D Closest Pair kD Closest Pair (3D ver.)																	19
	6.10																		19
	6.11	Half Plane Intersection																	19
		Ternary Search on Integ																	19
		Minimum Covering Circle KDTree (Nearest Point)																	20 20
	J.14	No nec (Necrest Follit)	•		•	 •	•	•		•		•	•	 •		•	•		20
,		ngology																	20
	7.1	Hash																	20
	7.2 7.3	Suffix Array																	20 21
	7.5 7.4	Suffix Automaton																	21
	7.5	KMP																	21
	7.6	Z value																	22
	7.7 7.8	Manacher				 •	٠												22 22
	7.K	TEXICO SIDUILESE ROTOTION																	//

```
8 Misc
       22
22
8.3.1 totally monotone (concave/convex) . . . . . . . . . . . . . . . . .
8.3.2 monge condition (concave/convex) . . . . . . . . . . . . . . .
1
Basic
```

1.1 vimrc

```
se is nu rnu bs=2 ru mouse=a encoding=utf-8
se cin et ts=4 sw=4 sts=4 t_Co=256
syn on
colorscheme ron
filetype indent on
map <F8> <ESC>:w<CR>:!clear && g++ "%" -o "%<" -
    fsanitize=address -fsanitize=undefined -g && echo
    success<CR>
map <F9> <ESC>:w<CR>:!clear && g++ "%" -o "%<" -02 &&
    echo success<CR>
map <F10> <ESC>:!./"%<"<CR>
```

1.2 Increase Stack

```
const int size = 256 << 20;</pre>
register long rsp asm("rsp");
char *p = (char*)malloc(size)+size, *bak = (char*)rsp;
__asm__("movq %0, %%rsp\n"::"r"(p));
// main
__asm__("movq %0, %%rsp\n"::"r"(bak));
```

1.3 Pragma Optimization

```
#pragma GCC optimize("Ofast, no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,sse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,tune=native")
```

1.4 IO Optimization

```
static inline int gc() {
 static char buf[ 1 << 20 ], *p = buf, *end = buf;
 if ( p == end ) {
  end = buf + fread( buf, 1, 1 << 20, stdin );
  if ( end == buf ) return EOF;
  p = buf;
 return *p++;
template < typename T >
static inline bool gn( T &_ ) {
 register int c = gc(); register T __ = 1; _ = 0;
while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
if(c == '-') { __ = -1; c = gc(); }
 if(c == EOF) return false;
 while('0' <= c\&c <= '9') _ = _ * 10 + c - '0', c = gc();
 _ *= __;
 return true;
template < typename T, typename ...Args >
static inline bool gn( T &x, Args &...args )
{ return gn(x) && gn(args...); }
```

2 Data Structure

```
2.1 Bigint
class BigInt{
private
using lld = int_fast64_t;
#define PRINTF_ARG PRIdFAST64
#define LOG_BASE_STR "9"
static constexpr lld BASE = 10000000000;
static constexpr int LOG_BASE = 9;
vector<lld> dig; bool neg;
inline int len() const { return (int) dig.size(); }
inline int cmp_minus(const BigInt& a) const {
 if(len() == 0 && a.len() == 0) return 0;
 if(neg ^ a.neg)return a.neg ^ 1;
 if(len()!=a.len())
   return neg?a.len()-len():len()-a.len();
 for(int i=len()-1;i>=0;i--) if(dig[i]!=a.dig[i])
  return neg?a.dig[i]-dig[i]:dig[i]-a.dig[i];
 return 0;
inline void trim(){
 while(!dig.empty()&&!dig.back())dig.pop_back();
 if(dig.empty()) neg = false;
public:
BigInt(): dig(vector<lld>()), neg(false){}
BigInt(lld a): dig(vector<lld>()){
 neg = a<0; dig.push_back(abs(a));</pre>
 trim();
BigInt(const string& a): dig(vector<lld>()){
 assert(!a.empty()); neg = (a[0]=='-');
 for(int i=((int)a.size())-1;i>=neg;i-=LOG_BASE){
  11d cur = 0;
   for(int j=min(LOG_BASE-1,i-neg);j>=0;j--)
   cur = cur*10+a[i-j]-'0';
  dig.push_back(cur);
 } trim();
inline bool operator<(const BigInt& a)const
 {return cmp_minus(a)<0;}
inline bool operator<=(const BigInt& a)const</pre>
 {return cmp_minus(a)<=0;}
inline bool operator==(const BigInt& a)const
  {return cmp_minus(a)==0;}
 inline bool operator!=(const BigInt& a)const
  {return cmp_minus(a)!=0;}
inline bool operator>(const BigInt& a)const
 {return cmp_minus(a)>0;}
inline bool operator>=(const BigInt& a)const
  {return cmp_minus(a)>=0;}
BigInt operator-() const {
 BigInt ret = *this;
 ret.neg ^= 1; return ret;
BigInt operator+(const BigInt& a) const {
 if(neg) return -(-(*this)+(-a));
  if(a.neg) return (*this)-(-a);
  int n = max(a.len(), len());
 BigInt ret; ret.dig.resize(n);
 11d pro = 0;
 for(int i=0;i<n;i++) {</pre>
  ret.dig[i] = pro;
  if(i < a.len()) ret.dig[i] += a.dig[i];</pre>
  if(i < len()) ret.dig[i] += dig[i];</pre>
  pro = 0
   if(ret.dig[i] >= BASE) pro = ret.dig[i]/BASE;
  ret.dig[i] -= BASE*pro;
 if(pro != 0) ret.dig.push_back(pro);
 return ret;
BigInt operator-(const BigInt& a) const {
 if(neg) return -(-(*this) - (-a));
  if(a.neg) return (*this) + (-a);
  int diff = cmp_minus(a);
  if(diff < 0) return -(a - (*this));</pre>
  if(diff == 0) return 0;
 BigInt ret; ret.dig.resize(len(), 0);
  for(int i=0;i<len();i++) {</pre>
  ret.dig[i] += dig[i];
```

```
if(i < a.len())    ret.dig[i] -= a.dig[i];
   if(ret.dig[i] < 0)</pre>
    ret.dig[i] += BASE;
    ret.dig[i+1]--;
  }
  ret.trim(); return ret;
 BigInt operator*(const BigInt& a) const {
  if(!len()||!a.len()) return 0;
  BigInt ret; ret.dig.resize(len()+a.len()+1);
  ret.neg = neg ^ a.neg;
  for(int i=0;i<len();i++)</pre>
   for(int j=0;j<a.len();j++){</pre>
    ret.dig[i+j] += dig[i] * a.dig[j];
    if(ret.dig[i+j] >= BASE) {
     lld x = ret.dig[i+j] / BASE;
     ret.dig[i+j+1] += x;
     ret.dig[i+j] -= x * BASE;
  ret.trim(); return ret;
 BigInt operator/(const BigInt& a) const {
  assert(a.len());
  if(len() < a.len()) return 0;</pre>
  BigInt ret; ret.dig.resize(len()-a.len()+1);
  ret.neg = a.neg;
  for(int i=len()-a.len();i>=0;i--){
   11d 1 = 0, r = BASE;
   while(r-1 > 1){
    11d \ mid = (1+r)>>1;
    ret.dig[i] = mid;
    if(ret*a<=(neg?-(*this):(*this))) 1 = mid;</pre>
    else r = mid;
   ret.dig[i] = 1;
  ret.neg ^= neg; ret.trim();
  return ret;
 BigInt operator%(const BigInt& a) const {
  return (*this) - (*this) / a * a;
 friend BigInt abs(BigInt a) { a.neg = 0; return a; }
friend void swap(BigInt& a, BigInt& b){
  swap(a.dig, b.dig); swap(a.neg, b.neg);
 friend istream& operator>>(istream& ss, BigInt& a){
  string s; ss >> s; a = s; return ss;
 friend ostream&operator<<(ostream&o, const BigInt&a){</pre>
  if(a.len() == 0) return o << '0';
if(a.neg) o << '-':
  if(a.neg) o <<</pre>
  o << a.dig.back();
  for(int i=a.len()-2;i>=0;i--)
   o<<setw(LOG_BASE)<<setfill('0')<<a.dig[i];
  return o;
 inline void print() const {
  if(len() == 0){putchar('0');return;}
  if(neg) putchar('-');
printf("%" PRINTF_ARG, dig.back());
  for(int i=len()-2;i>=0;i--)
printf("%0" LOG_BASE_STR PRINTF_ARG, dig[i]);
 #undef PRINTF_ARG
 #undef LOG_BASE_STR
}:
2.2 Dark Magic
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using __gnu_pbds::pairing_heap_tag;
using __gnu_pbds::binary_heap_tag;
using __gnu_pbds::binomial_heap_tag;
using __gnu_pbds::rc_binomial_heap_tag;
       __gnu_pbds::thin_heap_tag;
using
template<typename T>
using pbds_heap=__gnu_pbds::prioity_queue<T,less<T>,\
                     pairing_heap_tag>;
```

// a.join(b), pq.modify(pq.push(10), 87)

```
using __gnu_pbds::rb_tree_tag;
                                                             void to_child(Node* p,Node* c,bool dir){
using __gnu_pbds::ov_tree_tag;
                                                              p->ch[dir]=c;
using __gnu_pbds::splay_tree_tag;
                                                              p->up();
template<typename T>
using ordered_set = __gnu_pbds::tree<T,\</pre>
                                                             inline void rotate(Node* node){
__gnu_pbds::null_type,less<T>,rb_tree_tag,\
                                                              Node* par=node->par;
                                                              Node* par_par=par->par;
__gnu_pbds::tree_order_statistics_node_update>;
                                                              bool dir=node->is_rch();
// find_by_order, order_of_key
template<typename A, typename B>
                                                              bool par_dir=par->is_rch();
using hTable1=__gnu_pbds::cc_hash_table<A,B>;
                                                              to_child(par, node->ch[!dir], dir);
template<typename A, typename B>
                                                              to_child(node,par,!dir);
using hTable2=__gnu_pbds::gp_hash_table<A,B>;
                                                              if(par_par!=nullptr && par_par->ch[par_dir]==par)
                                                               to_child(par_par,node,par_dir);
2.3 Disjoint Set
                                                              else node->par=par_par;
class DJS {
                                                             inline void splay(Node* node){
private:
                                                              Node* tmp=node;
vector< int > fa, sz, sv;
vector< pair< int*, int > > opt;
                                                              stk[top++]=node;
void assign( int *k, int v ) {
                                                              while(!tmp->is_root()){
 opt.emplace_back( k, *k );
                                                               tmp=tmp->par;
                                                               stk[top++]=tmp;
  *k = v;
public:
                                                              while(top) stk[--top]->down();
                                                              for(Node *fa=node->par)
void init( int n ) {
  fa.resize( n ); iota( fa.begin(), fa.end(), 0 );
                                                               !node->is_root();
 sz.resize( n ); fill( sz.begin(), sz.end(), 1 );
                                                               rotate(node), fa=node->par)
                                                               if(!fa->is_root())
  opt.clear();
                                                                rotate(fa->is_rch()==node->is_rch()?fa:node);
int query(int x) {return fa[x] == x?x:query(fa[x]);}
void merge( int a, int b ) {
                                                             inline void access(Node* node){
 int af = query( a ), bf = query( b );
                                                              Node* last=nullptr;
  if( af == bf ) return;
                                                              while(node!=nullptr){
  if( sz[ af ] < sz[ bf ] ) swap( af, bf );</pre>
                                                               splay(node)
 assign( &fa[ bf ], fa[ af ] );
                                                               to_child(node, last, true);
 assign( &sz[ af ], sz[ af ] + sz[ bf ] );
                                                               last=node;
                                                               node=node->par;
void save() { sv.push_back( (int) opt.size() ); }
void undo() {
  int ls = sv.back(); sv.pop_back();
                                                             inline void change_root(Node* node){
 while ( ( int ) opt.size() > ls )
                                                              access(node);splay(node);node->set_rev();
  pair< int*, int > cur = opt.back();
   *cur.first = cur.second;
                                                             inline void link(Node* x, Node* y){
   opt.pop_back();
                                                              change_root(x);splay(x);x->par=y;
 }
}
                                                             inline void split(Node* x, Node* y) {
                                                              {\tt change\_root(x);access(y);splay(x)}
};
                                                              to_child(x,nullptr,true);y->par=nullptr;
     Link-Cut Tree
struct Node{
                                                             inline void change_val(Node* node,int v){
Node *par, *ch[2];
                                                              access(node);splay(node);node->v=v;node->up();
 int xor_sum, v;
 bool is_rev;
                                                             inline int query(Node* x,Node* y){
                                                              change\_root(x); access(y); splay(y);
Node(int _v){
  v=xor_sum=_v;is_rev=false;
                                                              return y->xor_sum;
 par=ch[0]=ch[1]=nullptr;
                                                             inline Node* find_root(Node* node){
inline void set_rev(){is_rev^=1;swap(ch[0],ch[1]);}
                                                              access(node);splay(node);
inline void down(){
                                                              Node* last=nullptr;
 if(is_rev){
                                                              while(node!=nullptr){
   if(ch[0]!=nullptr) ch[0]->set_rev();
                                                               node->down();last=node;node=node->ch[0];
   if(ch[1]!=nullptr) ch[1]->set_rev();
   is_rev=false;
                                                              return last;
 }
                                                             set<pii> dic;
 inline void up(){
                                                             inline void add_edge(int u,int v){
 xor_sum=v;
                                                              if(u>v) swap(u,v)
                                                              if(find_root(node[u])==find_root(node[v])) return;
  if(ch[0]!=nullptr){
  xor_sum^=ch[0]->xor_sum;
                                                              dic.insert(pii(u,v))
  ch[0]->par=this;
                                                              link(node[u],node[v]);
                                                             inline void del_edge(int u,int v){
  if(ch[1]!=nullptr){
                                                              if(u>v) swap(u,v);
  xor_sum^=ch[1]->xor_sum;
   ch[1]->par=this;
                                                              if(dic.find(pii(u,v))==dic.end()) return;
  }
                                                              dic.erase(pii(u,v))
                                                              split(node[u],node[v]);
inline bool is_root(){
  {\color{red} \textbf{return}} \  \, {\color{blue} \textbf{par} = = \textbf{nullptr}} \  \, |\,|\,\backslash \\
                                                             2.5 LiChao Segment Tree
   (par->ch[0]!=this && par->ch[1]!=this);
                                                             struct Line{
bool is_rch(){return !is_root() && par->ch[1]==this;}
                                                              int m, k, id;
} *node[maxn], *stk[maxn];
                                                              Line() : id( -1 ) {}
int top;
                                                              Line( int a, int b, int c )
```

public:

void init(int n_) {

```
: m( a ), k( b ), id( c ) {}
                                                                 n = n_{;} B.clear(); B.resize(n); sz = 0;
 int at( int x ) { return m * x + k; }
                                                                void insert( llu x ) {
class LiChao {
                                                                 // add x into B
                                                                 for ( int i = n-1; i >= 0 ; --i ) if( two(i) & x ){
private:
 int n; vector< Line > nodes;
                                                                   if ( B[ i ] ) x ^= B[ i ];
  inline int lc( int x ) { return 2 * x + 1; }
  inline int rc( int x ) { return 2 * x + 2; }
                                                                   B[i] = x; sz++;
 void insert( int 1, int r, int id, Line ln ) {
  int m = (1 + r) >> 1;
                                                                   for ( int j = i - 1 ; j >= 0 ; -- j )
if( B[ j ] && ( two( j ) & B[ i ] ) )
B[ i ] ^= B[ j ];
   if ( nodes[ id ].id == -1 ) {
                                                                    for (int j = i + 1 ; j < n ; ++ j )
   nodes[ id ] = ln;
                                                                    if ( two( i ) & B[ j ] )
B[ j ] ^= B[ i ];
    return:
   bool atLeft = nodes[ id ].at( 1 ) < ln.at( 1 );</pre>
                                                                    break:
   if ( nodes[ id ].at( m ) < ln.at( m ) ) {</pre>
                                                                  }
   atLeft ^= 1; swap( nodes[ id ], ln );
   if ( r - 1 == 1 ) return;
                                                                inline int size() { return sz; }
   if ( atLeft ) insert( 1, m, lc( id ), ln );
                                                                bool check( llu x )
   else insert( m, r, rc( id ), ln );
                                                                 // is x in span(B) ?
                                                                 for ( int i = n-1 ; i >= 0 ; --i ) if( two(i) & x )
                                                                  if( B[ i ] ) x ^= B[ i ];
  int query( int 1, int r, int id, int x ) {
  int ret = 0;
                                                                  else return false;
   if ( nodes[ id ].id != -1 )
                                                                 return true;
    ret = nodes[ id ].at( x );
   int m = (1 + r) >> 1;
                                                                llu kth_small(llu k) {
   if ( r - 1 == 1 ) return ret;
                                                                 /** 1-base would always > 0 **/
   else if ( x < m )</pre>
                                                                 /** should check it **/
                                                                 /* if we choose at least one element
    return max( ret, query( 1, m, lc( id ), x ) );
                                                                   but size(B)(vectors in B)==N(original elements)
                                                                    then we can't get 0 */
    return max( ret, query( m, r, rc( id ), x ) );
                                                                 llu ret = 0;
                                                                 for ( int i = 0 ; i < n ; ++ i ) if( B[ i ] ) {
public:
                                                                  if( k & 1 ) ret ^= B[ i ];
 void build( int n_ ) {
  n = n_; nodes.clear();
  nodes.resize( n << 2, Line() );</pre>
                                                                 }
                                                                 return ret;
  void insert( Line ln ) { insert( 0, n, 0, ln ); }
 int query( int x ) { return query( 0, n, 0, x ); }
                                                               } base;
} lichao;
                                                                    Graph
2.6 Sparse Table
template < typename T, typename Cmp_ = less< T > >
                                                               3.1 Euler Circuit
class SparseTable {
                                                               bool vis[ N ]; size_t la[ K ];
private:
                                                               void dfs( int u, vector< int >& vec ) {
 while ( la[ u ] < G[ u ].size() ) {</pre>
vector< vector< T > > tbl;
vector< int > lg;
                                                                 if( vis[ G[ u ][ la[ u ] ].second ] ) {
T cv( T a, T b ) {
                                                                  ++ la[ u ];
 return Cmp_()( a, b ) ? a : b;
                                                                  continue;
public:
                                                                 int v = G[ u ][ la[ u ] ].first;
void init( T arr[], int n ) {
                                                                 vis[ G[ u ][ la[ u ] ].second ] = true;
  // 0-base
                                                                 ++ la[ u ]; dfs( v, vec );
  lg.resize(n + 1);
                                                                 vec.push_back( v );
 lg[0] = -1;
  for( int i=1 ; i<=n ; ++i ) lg[i] = lg[i>>1] + 1;
                                                               }
  tbl.resize(lg[n] + 1);
 tb1[ 0 ].resize( n );
                                                               3.2 BCC Edge
  copy( arr, arr + n, tbl[ 0 ].begin() );
 for ( int i = 1 ; i <= lg[ n ] ; ++ i ) {
  int len = 1 << ( i - 1 ), sz = 1 << i;</pre>
                                                               class BCC_Bridge {
                                                                private:
   tbl[ i ].resize( n - sz + 1 );
                                                                 int n. ecnt:
  for ( int j = 0 ; j <= n - sz ; ++ j )
                                                                 vector<vector<pair<int,int>>> G;
    tbl[i][j] = cv(tbl[i-1][j], tbl[i-1][j+len]);
                                                                 vector<int> dfn, low;
                                                                 vector<bool> bridge;
                                                                 void dfs(int u, int f)
T query( int 1, int r ) {
                                                                   dfn[u] = low[u] = dfn[f] + 1;
 // 0-base [1, r)
                                                                  for (auto [v, t]: G[u]) {
 int wh = lg[r - 1], len = 1 << wh;
return cv( tbl[ wh ][ 1], tbl[ wh ][ r - len ] );</pre>
                                                                   if (v == f) continue;
                                                                    if (dfn[v]) {
                                                                    low[u] = min(low[u], dfn[v]);
                                                                     continue;
2.7 Linear Basis
                                                                   dfs(v, u);
low[u] = min(low[u], low[v]);
struct LinearBasis {
                                                                   if (low[v] > dfn[u]) bridge[t] = true;
private:
int n, sz;
vector< llu > B;
                                                                public:
inline llu two( int x ){ return ( ( llu ) 1 ) << x; }</pre>
```

void init(int n_) {

G.clear(); G.resize(n = n_);

```
low.assign(n, ecnt = 0);
                                                                  vis[u]=false;idx[u]=sccs.size()-1;
   dfn.assign(n, 0);
                                                                  sccs.back().push_back(u);
                                                                  for(int v:rG[u])
  void add_edge(int u, int v) {
                                                                   if(vis[v])rdfs(v);
   G[u].emplace_back(v, ecnt);
   G[v].emplace_back(u, ecnt++);
                                                                public:
                                                                 void init(int n_){
                                                                  n=n_;G.clear();G.resize(n);
  void solve() {
   bridge.assign(ecnt, false);
                                                                  rG.clear();rG.resize(n)
   for (int i = 0; i < n; ++i)
                                                                  sccs.clear();ord.clear()
    if (not dfn[i]) dfs(i, i);
                                                                  idx.resize(n);result.resize(n);
  bool is_bridge(int x) { return bridge[x]; }
                                                                 void add_edge(int u,int v){
} bcc_bridge;
                                                                  G[u].push_back(v);rG[v].push_back(u);
3.3 BCC Vertex
                                                                 void orr(int x,int y){
class BCC_AP {
                                                                  if ((x^y)==1)return
 private:
                                                                  add_edge(x^1,y); add_edge(y^1,x);
  int n, ecnt;
  vector<vector<pair<int,int>>> G;
                                                                 bool solve(){
  vector<int> bcc, dfn, low, st;
                                                                  vis.clear();vis.resize(n);
  vector<bool> ap, ins;
void dfs(int u, int f) {
  dfn[u] = low[u] = dfn[f] + 1;
                                                                  for(int i=0;i<n;++i)</pre>
                                                                   if(not vis[i])dfs(i);
                                                                  reverse(ord.begin(),ord.end());
   int ch = 0;
                                                                  for (int u:ord){
   for (auto [v, t]: G[u]) if (v != f) {
  if (not ins[t]) {
                                                                   if(!vis[u])continue;
                                                                   sccs.push_back(vector<int>());
     st.push_back(t);
                                                                   rdfs(u);
     ins[t] = true;
                                                                  for(int i=0;i<n;i+=2)</pre>
                                                                   if(idx[i]==idx[i+1])
    if (dfn[v]) {
     low[u] = min(low[u], dfn[v]);
                                                                    return false
                                                                  vector<<mark>bool</mark>> c(sccs.size());
                                                                  for(size_t i=0;i<sccs.size();++i){</pre>
    } ++ch; dfs(v, u);
    low[u] = min(low[u], low[v]);
                                                                   for(size_t j=0;j<sccs[i].size();++j){</pre>
    if (low[v] >= dfn[u]) {
                                                                    result[sccs[i][j]]=c[i];
     ap[u] = true;
                                                                    c[idx[sccs[i][j]^1]]=!c[i];
     while (true) {
                                                                   }
      int eid = st.back(); st.pop_back();
      bcc[eid] = ecnt;
                                                                  return true;
      if (eid == t) break;
                                                                 bool get(int x){return result[x];}
     }
                                                                 inline int get_id(int x){return idx[x];}
     ecnt++;
    }
                                                                 inline int count(){return sccs.size();}
                                                              } sat2;
   if (ch == 1 and u == f) ap[u] = false;
                                                               3.5 Lowbit Decomposition
 public:
                                                              class LowbitDecomp{
  void init(int n_) {
   G.clear(); G.resize(n = n_);
                                                                int time_, chain_, LOG_N;
   ecnt = 0; ap.assign(n, false);
                                                                vector< vector< int > > G, fa;
                                                                vector< int > tl, tr, chain, chain_st;
// chain_ : number of chain
   low.assign(n, 0); dfn.assign(n, 0);
  void add_edge(int u, int v) {
                                                                // tl, tr[ u ] : subtree interval in the seq. of u
   G[u].emplace_back(v, ecnt);
G[v].emplace_back(u, ecnt++);
                                                                // chain_st[ u ] : head of the chain contains u // chian[ u ] : chain id of the chain u is on
                                                                inline int lowbit( int x ) {
                                                                 return x & ( -x );
  void solve() {
   ins.assign(ecnt, false);
   bcc.resize(ecnt); ecnt = 0;
                                                                void predfs( int u, int f ) {
   for (int i = 0; i < n; ++i)
                                                                 chain[u] = 0;
                                                                 for ( int v : G[ u ] ) {
    if (not dfn[i]) dfs(i, i);
                                                                  if ( v == f ) continue;
  int get_id(int x) { return bcc[x]; }
                                                                  predfs( v, u );
  int count() { return ecnt; }
                                                                  if( lowbit( chain[ u ] ) < lowbit( chain[ v ] ) )</pre>
  bool is_ap(int x) { return ap[x]; }
                                                                   chain[ u ] = chain[ v ];
} bcc_ap;
                                                                 if ( not chain[ u ] )
3.4 2-SAT (SCC)
                                                                  chain[ u ] = chain_ ++;
class TwoSat{
 private:
                                                                void dfschain( int u, int f ) {
                                                                 fa[ u ][ 0 ] = f;
for ( int i = 1 ; i < LOG_N ; ++ i )
  int n;
  vector<vector<int>> rG,G,sccs;
  vector<int> ord,idx;
                                                                  fa[u][i] = fa[fa[u][i-1]][i-1];
  vector<bool> vis,result;
                                                                 tl[ u ] = time_++
  void dfs(int u){
                                                                 if ( not chain_st[ chain[ u ] ] )
                                                                  chain_st[ chain[ u ] ] = u;
   vis[u]=true
                                                                 for ( int v : G[ u ]
   for(int v:G[u])
    if(!vis[v]) dfs(v);
                                                                  if ( v != f and chain[ v ] == chain[ u ] )
                                                                   dfschain( v, u );
   ord.push_back(u);
                                                                 for ( int v : G[ u ] )
                                                                  if ( v != f and chain[ v ] != chain[ u ] )
  void rdfs(int u){
```

mi = deg[id = j];

```
dfschain( v, u );
                                                                        popped[ deo[ i ] = id ] = 1;
                                                                        for( size_t u = G[ i ]._Find_first() ;
  tr[ u ] = time_;
                                                                         u < n ; u = G[ i ]._Find_next( u ) )</pre>
 inline bool anc( int u, int v ) {
                                                                          -- deg[ u ];
  return tl[ u ] \ <= tl[ v ] \</pre>
   and tr[ v ] <= tr[ u ];
                                                                    void BK( bits R, bits P, bits X ) {
public:
                                                                     if (R.count()+P.count() <= ans.count()) return;</pre>
 inline int lca( int u, int v ) {
                                                                     if ( not P.count() and not X.count() )
  if ( anc( u, v ) ) return u;
for ( int i = LOG_N - 1 ; i >= 0 ; -- i )
                                                                       if ( R.count() > ans.count() ) ans = R;
                                                                       return:
   if ( not anc( fa[ u ][ i ], v ) )
    u = fa[ u ][ i ];
                                                                     /* greedily chosse max degree as pivot
  return fa[ u ][ 0 ];
                                                                     bits cur = P | X; size_t pivot = 0, sz = 0;
                                                                     for ( size_t u = cur._Find_first() ;
 void init( int n ) {
                                                                       u < n ; u = cur._Find_next( u )</pre>
                                                                        if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
  for (LOG_N = 0 ; (1 << LOG_N) < n ; ++ LOG_N);
                                                                     cur = P & ( ~G[ pivot ] );
                                                                      */ // or simply choose first
  fa.clear();
  fa.resize( n, vector< int >( LOG_N ) );
                                                                     bits cur = P & (~G[ ( P | X )._Find_first() ]);
  G.clear(); G.resize( n );
                                                                     for ( size_t u = cur._Find_first()
  tl.clear(); tl.resize( n );
tr.clear(); tr.resize( n );
                                                                       u < n ; u = cur._Find_next( u ) ) {
                                                                       if ( R[ u ] ) continue;
                                                                      R[ u ] = 1;
  chain.clear(); chain.resize( n );
                                                                       BK( R, P & G[ u ], X & G[ u ] );
  chain_st.clear(); chain_st.resize( n );
                                                                       R[u] = P[u] = 0, X[u] = 1;
 void add_edge( int u , int v ) {
  // 1-base
  G[ u ].push_back( v );
                                                                   public:
  G[ v ].push_back( u );
                                                                    void init( size_t n_ ) {
                                                                     n = n_{-};
                                                                     for ( size_t i = 0 ; i < n ; ++ i )
G[ i ].reset();</pre>
 void decompose(){
  chain_ = 1;
  predfs( 1, 1 );
                                                                     ans.reset();
  time_{-} = 0;
                                                                    void add_edges( int u, bits S ) { G[ u ] = S; }
void add_edge( int u, int v ) {
  G[ u ][ v ] = G[ v ][ u ] = 1;
  dfschain(1, 1);
 PII get_inter( int u ) { return {tl[ u ], tr[ u ]}; }
 vector< PII > get_path( int u , int v ){
  vector< PII > res;
                                                                    int solve() {
 int g = lca( u, v );
while ( chain[ u ] != chain[ g ] ) {
  int s = chain_st[ chain[ u ] ];
                                                                     sort_by_degree(); // or simply iota( deo... )
                                                                     for ( size_t i = 0 ; i < n ; ++ i )
deg[ i ] = G[ i ].count();</pre>
   res.emplace_back( tl[ s ], tl[ u ] + 1 );
                                                                     bits pob, nob = 0; pob.set();
                                                                     for (size_t i=n; i<MAXN; ++i) pob[i] = 0;
for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
   u = fa[ s ][ 0 ];
  res.emplace_back( tl[ g ], tl[ u ] + 1 );
                                                                       size_t v = deo[ i ];
  while ( chain[ v ] != chain[ g ] ) {
  int s = chain_st[ chain[ v ] ];
                                                                      bits tmp; tmp[ v ] = 1;
BK( tmp, pob & G[ v ], nob & G[ v ] );
pob[ v ] = 0, nob[ v ] = 1;
   res.emplace_back( tl[ s ], tl[ v ] + 1 );
   v = fa[ s ][ 0 ];
                                                                     return static_cast< int >( ans.count() );
  res.emplace_back( tl[ g ] + 1, tl[ v ] + 1 );
  return res;
  /* res : list of intervals from u to v
                                                                   3.7
                                                                         MaxCliqueDyn
   * ( note only nodes work, not edge )
                                                                   constexpr int kN = 150;
   * vector< PII >& path = tree.get_path( u , v )
                                                                   struct MaxClique { // Maximum Clique
                                                                    bitset<kN> a[kN], cs[kN];
   * for( auto [ 1, r ] : path ) {
   * 0-base [ 1, r )
                                                                    int ans, sol[kN], q, cur[kN], d[kN], n;
   * }
                                                                    void init(int _n)
   */
                                                                     n = _n; for (int i = 0; i < n; i++) a[i].reset();</pre>
} tree;
                                                                    void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
void csort(vector<int> &r, vector<int> &c) {
3.6 MaxClique
                                                                     int mx = 1, km = max(ans - q + 1, 1), t = 0,
// contain a self loop u to u, than u won't in clique
                                                                        m = int(r.size())
                                                                     cs[1].reset(); cs[2].reset();
template < size_t MAXN >
                                                                     for (int i = 0; i < m; i++) {
class MaxClique{
                                                                       int p = r[i], k = 1;
private:
                                                                       while ((cs[k] & a[p]).count()) k++;
 using bits = bitset< MAXN >;
 bits popped, G[ MAXN ], ans
                                                                       if (k > mx) cs[++mx + 1].reset();
 size_t deg[ MAXN ], deo[ MAXN ], n;
                                                                       cs[k][p] = 1;
 void sort_by_degree() {
                                                                      if (k < km) r[t++] = p;
  popped.reset();
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
                                                                     c.resize(m);
  deg[ i ] = G[ i ].count();
for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
                                                                     if (t) c[t - 1] = 0;
                                                                     for (int k = km; k <= mx; k++) {</pre>
    size_t mi = MAXN, id = 0;
                                                                      for (int p = int(cs[k]._Find_first());
    for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )</pre>
                                                                          p < kN; p = int(cs[k]._Find_next(p))) {
                                                                        r[t] = p; c[t++] = k;
```

Dist.resize(N);

```
}
                                                                Parent.resize(N);
}
                                                                Depth.resize(N)
void dfs(vector<int> &r, vector<int> &c, int 1,
                                                                auto DfsSz = [&](auto dfs, int x) -> void {
                                                                 Vis[x] = true; sz[x] = 1; mx[x] = 0;
 bitset<kN> mask) {
 while (!r.empty()) {
                                                                 for (auto [u, w] : g[x]) {
                                                                  if (Vis[u]) continue;
  int p = r.back(); r.pop_back();
   mask[p] = 0;
                                                                  dfs(dfs, u)
                                                                  sz[x] += sz[u];
   if (q + c.back() <= ans) return;</pre>
   cur[q++] = p;
                                                                  mx[x] = max(mx[x], sz[u]);
   vector<int> nr, nc;
   bitset<kN> nmask = mask & a[p];
                                                                 Path.push_back(x);
   for (int i : r)
    if (a[p][i]) nr.push_back(i);
                                                                auto DfsDist = [&](auto dfs, int x, int64_t D = 0)
   if (!nr.empty()) {
                                                                 -> void {
   if (1 < 4) {
                                                                 Dist[x].push_back(D);Vis[x] = true;
     for (int i : nr)
d[i] = int((a[i] & nmask).count());
                                                                for (auto [u, w] : g[x]) {
  if (Vis[u]) continue;
                                                                  dfs(dfs, u, D + w);
     sort(nr.begin(), nr.end(),
                                                                 }
      [&](int x, int y)
       return d[x] > d[y];
                                                                }:
                                                                auto Dfs = [&]
      });
                                                                 (auto dfs, int x, int D = 0, int p = -1)->void {
  csort(nr, nc); dfs(nr, nc, 1 + 1, nmask);
} else if (q > ans) {
                                                                 Path.clear(); DfsSz(DfsSz, x);
                                                                 int M = Path.size();
   ans = q; copy(cur, cur + q, sol);
                                                                 int C = -1;
                                                                 for (int u : Path) {
  if (max(M - sz[u], mx[u]) * 2 <= M) C = u;</pre>
   c.pop_back(); q--;
                                                                  Vis[u] = false;
                                                                 DfsDist(DfsDist, C);
int solve(bitset<kN> mask) { // vertex mask
                                                                 for (int u : Path) Vis[u] = false;
 vector<int> r, c;
 for (int i = 0; i < n; i++)
  if (mask[i]) r.push_back(i);</pre>
                                                                 Parent[C] = p; Vis[C] = true;
                                                                 Depth[C] = D;
 for (int i = 0; i < n; i++)
                                                                 for (auto [u, w] : g[C]) {
                                                                 if (Vis[u]) continue
  d[i] = int((a[i] & mask).count());
 sort(r.begin(), r.end(),
  [&](int i, int j) { return d[i] > d[j]; });
                                                                  dfs(dfs, u, D + 1, C);
  csort(r, c);
 dfs(r, c, 1, mask);
                                                                Dfs(Dfs, 0); Sub.resize(N); Sub2.resize(N);
 return ans; // sol[0 ~ ans-1]
                                                               Sz.resize(N); Sz2.resize(N);
                                                               void Mark(int v) {
} graph;
                                                                int x = v, z = -1;
3.8 Virtural Tree
                                                                for (int i = Depth[v]; i >= 0; --i) {
inline bool cmp(const int &i, const int &j) {
                                                                 Sub[x] += Dist[v][i]; Sz[x]++;
                                                                 if (z != -1)
return dfn[i] < dfn[j];</pre>
                                                                  Sub2[z] += Dist[v][i];
                                                                  Sz2[z]++;
void build(int vectrices[], int k) {
static int stk[MAX_N];
sort(vectrices, vectrices + k, cmp);
                                                                 z = x; x = Parent[x];
                                                               }
 stk[sz++] = 0;
for (int i = 0; i < k; ++i) {
 int u = vectrices[i], lca = LCA(u, stk[sz - 1]);
                                                               int64_t Query(int v) {
  if (lca == stk[sz - 1]) stk[sz++] = u;
                                                                int64_t res = 0;
  else {
                                                                int x = v, z = -1
  while (sz >= 2 && dep[stk[sz - 2]] >= dep[lca]) {
                                                                for (int i = Depth[v]; i >= 0; --i) {
                                                                 res += Sub[x] + 1LL * Sz[x] * Dist[v][i];
    addEdge(stk[sz - 2], stk[sz - 1]);
                                                                 if (z != -1) res-=Sub2[z]+1LL*Sz2[z]*Dist[v][i];
    sz--:
                                                                z = x; x = Parent[x];
  if (stk[sz - 1] != lca) {
                                                                }
   addEdge(lca, stk[--sz]);
                                                                return res:
    stk[sz++] = lca, vectrices[cnt++] = lca;
                                                               }
                                                             };
  stk[sz++] = u;
                                                              3.10
                                                                    Tree Hashing
                                                             uint64_t hsah(int u, int f) {
for (int i = 0; i < sz - 1; ++i)
                                                              uint64_t r = 127;
                                                               for (int v : G[ u ]) if (v != f) {
 addEdge(stk[i], stk[i + 1]);
                                                               uint64_t hh = hsah(v, u);
                                                               r=(r+(hh*hh)%1010101333)%1011820613;
3.9 Virtural Tree
struct Centroid {
                                                               return r;
vector<vector<int64_t>> Dist;
vector<int> Parent, Depth;
                                                             3.11 Minimum Mean Cycle
vector<int64_t> Sub, Sub2;
vector<int> Sz, Sz2;
                                                             /* minimum mean cycle O(VE) */
Centroid(vector<vector<pair<int, int>>> g) {
                                                             struct MMC{
 int N = g.size();
                                                             #define FZ(n) memset((n),0,sizeof(n))
 vector<bool> Vis(N);
                                                             #define E 101010
 vector<int> sz(N), mx(N);
                                                             #define V 1021
 vector<int> Path;
                                                             #define inf 1e9
```

struct Edge { int v,u; double c; };

```
int n, m, prv[V][V], prve[V][V], vst[V];
                                                                   void solve() {
 Edge e[E];
                                                                    dfs( 1, 1 );
while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
 vector<int> edgeID, cycle, rho;
 double d[V][V];
void init( int _n ) { n = _n; m = 0; }
                                                                    sort( que, que + q, [](const Que& x, const Que& y) {
 // WARNING: TYPE matters
                                                                     return tie( block_id[ x.u ], dfn[ x.v ] )
 void add_edge( int vi , int ui , double ci )
                                                                          < tie( block_id[ y.u ], dfn[ y.v ] );
 { e[ m ++ ] = { vi , ui , ci }; }
                                                                    } );
                                                                    int U = 1, V = 1;
 void bellman_ford() {
                                                                    for ( int i = 0 ; i < q ; ++ i ) {
  pass( U, que[ i ].u );</pre>
  for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
   fill(d[i+1], d[i+1]+n, inf);
                                                                     pass( V, que[ i ].v );
   for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;</pre>
                                                                     // we could get our answer of que[ i ].id
    if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
                                                                   }
     d[i+1][u] = d[i][v]+e[j].c;
     prv[i+1][u] = v;
                                                                   Method 2:
     prve[i+1][u] = j;
                                                                   dfs u:
                                                                    push u
                                                                    iterate subtree
  }
                                                                    push u
                                                                   Let P = LCA(u, v), and St(u) \le St(v)
                                                                   if (P == u) query[St(u), St(v)]
else query[Ed(u), St(v)], query[St(P), St(P)]
 double solve(){
  // returns inf if no cycle, mmc otherwise
  double mmc=inf;
  int st = -1;
                                                                   3.13 Minimum Steiner Tree
  bellman_ford();
  for(int i=0; i<n; i++) {</pre>
                                                                   // Minimum Steiner Tree
   double avg=-inf;
                                                                   // 0(V 3^T + V^2 2^T)
   for(int k=0; k<n; k++) {</pre>
                                                                   struct SteinerTree{
    if(d[n][i]<inf-eps)</pre>
                                                                   #define V 33
     avg=max(avg,(d[n][i]-d[k][i])/(n-k));
                                                                   #define T 8
    else avg=max(avg,inf);
                                                                   #define INF 1023456789
                                                                    int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
                                                                    void init( int _n ){
                                                                     n = _n;
for( int i = 0 ; i < n ; i ++ ){
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
                                                                      for( int j = 0 ; j < n ; j ++ )</pre>
  for (int i=n; !vst[st]; st=prv[i--][st]) {
                                                                      dst[ i ][ j ] = INF;
dst[ i ][ i ] = 0;
   vst[st]++;
   edgeID.PB(prve[i][st]);
   rho.PB(st);
                                                                    void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  while (vst[st] != 2) {
   int v = rho.back(); rho.pop_back();
   cycle.PB(v);
                                                                     dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
   vst[v]++;
                                                                    void shortest_path(){
                                                                     for( int k = 0 ; k < n ; k ++ )
for( int i = 0 ; i < n ; i ++</pre>
  reverse(ALL(edgeID));
  edgeID.resize(SZ(cycle));
  return mmc;
                                                                       for( int j = 0 ; j < n ; j ++ )</pre>
                                                                        dst[ i ][ j ] = min( dst[ i ][ j ],
    dst[ i ][ k ] + dst[ k ][ j ] );
 }
} mmc;
3.12 Mo's Algorithm on Tree
                                                                    int solve( const vector<int>& ter ){
int q; vector< int > G[N];
struct Que{
                                                                     int t = (int)ter.size();
for( int i = 0 ; i < ( 1 << t ) ; i ++ )</pre>
int u, v, id;
} que[ N ];
                                                                      for( int j = 0 ; j < n ; j ++ )</pre>
                                                                       dp[ i ][ j ] = INF;
int dfn[N], dfn_, block_id[N], block_, stk[N], stk_;
                                                                     for( int i = 0 ; i < n ; i ++ )</pre>
void_dfs( int u, int f ) {
                                                                      dp[0][i] = 0;
dfn[ u ] = dfn_++; int saved_rbp = stk_;
for ( int v : G[ u ] ) {
                                                                     for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
                                                                      if( msk == ( msk & (-msk) ) ){
  if ( v == f ) continue;
                                                                       int who = __lg( msk );
                                                                       for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
  dfs( v, u );
  if ( stk_
               saved_rbp < SQRT_N ) continue;
  for ( ++ block_ ; stk_ != saved_rbp ; )
                                                                       continue;
    block_id[ stk[ -- stk_ ] ] = block_;
                                                                      for( int i = 0 ; i < n ; i ++ )
for( int submsk = ( msk - 1 ) & msk ; submsk ;</pre>
stk[ stk_ ++ ] = u;
                                                                             submsk = ( submsk - 1 ) & msk )
                                                                          bool inPath[ N ];
void Diff( int u ) {
 if ( inPath[ u ] ^= 1 ) { /*remove this edge*/ }
                                                                                   dp[ msk ^ submsk ][ i ] );
                                                                      for( int i = 0 ; i < n ; i ++ ){
  tdst[ i ] = INF;</pre>
else { /*add this edge*/ }
                                                                       void traverse( int& origin_u, int u ) {
 for ( int g = lca( origin_u, u )
  origin_u != g ; origin_u = parent_of[ origin_u ] )
   Diff( origin_u );
 for (int v = u; v != origin_u; v = parent_of[v])
                                                                      for( int i = 0; i < n; i ++ )</pre>
  Diff( v );
                                                                       dp[ msk ][ i ] = tdst[ i ];
 origin_u = u;
```

int ans = INF;

```
for( int i = 0 ; i < n ; i ++ )</pre>
   ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
} solver;
      Directed Minimum Spanning Tree
3.14
template <typename T> struct DMST {
 T g[maxn][maxn], fw[maxn];
 int n, fr[maxn];
 bool vis[maxn], inc[maxn];
 void clear() -
  for(int i = 0; i < maxn; ++i) {</pre>
   for(int j = 0; j < maxn; ++j) g[i][j] = inf;
   vis[i] = inc[i] = false;
 void addEdge(int u,int v,T w){g[u][v]=min(g[u][v],w);}
 T operator()(int root, int _n) {
  n = n; T ans = 0;
  if (dfs(root) != n) return -1;
  for (int i = 1; i <= n; ++i) if (!inc[i]) {
    for (int j = 1; j <= n; ++j) {
  if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
      fw[i] = g[j][i]; fr[i] = j;
   int x = -1;
   for(int i = 1;i <= n;++i)if(i != root && !inc[i]){</pre>
    int i = i, c = 0;
    while(j!=root && fr[j]!=i && c<=n) ++c, j=fr[j];</pre>
    if (j == root || c > n) continue;
    else { x = i; break; }
   if (!~x) {
    for (int i = 1; i <= n; ++i)</pre>
     if (i != root && !inc[i]) ans += fw[i];
    return ans;
   int y = x;
   for (int i = 1; i <= n; ++i) vis[i] = false;
    ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
   } while (y != x);
   inc[x] = false;
   for (int k = 1; k <= n; ++k) if (vis[k]) {</pre>
    for (int j = 1; j <= n; ++j) if (!vis[j]) {
     if (g[x][j] > g[k][j]) g[x][j] = g[k][j];
if (g[j][k] < inf && g[j][k]-fw[k] < g[j][x])</pre>
      g[j][x] = g[j][k] - fw[k];
  return ans;
 int dfs(int now) {
  int r = 1; vis[now] = true;
  for (int i = 1; i <= n; ++i)
   if (g[now][i] < inf && !vis[i]) r += dfs(i);</pre>
  return r;
};
      Dominator Tree
namespace dominator {
vector<int> g[maxn], r[maxn], rdom[maxn];
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
void init(int n) {
 // vertices are numbered from 0 to n - 1
 fill(dfn, dfn + n, -1);fill(rev, rev + n, -1);
 fill(fa, fa + n, -1); fill(val, val + n, -1);
fill(sdom, sdom + n, -1); fill(rp, rp + n, -1); fill(dom, dom + n, -1); tk = \theta;
for (int i = 0; i < n; ++i) {
  g[i].clear(); r[i].clear(); rdom[i].clear();
```

```
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x)
 rev[dfn[x] = tk] = x;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
 for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
  r[dfn[u]].push_back(dfn[x]);
void merge(int x, int y) { fa[x] = y; }
int find(int x, int c = 0) {
if (fa[x] == x) return c ? -1 : x;
 int p = find(fa[x], 1);
if (p == -1) return c ? fa[x] : val[x];
 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
 fa[x] = p;
 return c ? p : val[x];
vector<int> build(int s, int n) {
// return the father of each node in the dominator tree
// p[i] = -2 if i is unreachable from s
 dfs(s);
 for (int i = tk - 1; i >= 0; --i) {
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
  if (i) rdom[sdom[i]].push_back(i);
  for (int &u : rdom[i]) {
   int p = find(u);
   if (sdom[p] == i) dom[u] = i;
   else dom[u] = p;
  if (i) merge(i, rp[i]);
 vector<int> p(n, -2); p[s] = -1;
 for (int i = 1; i < tk; ++i)
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
 for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
 return p;
}}
     Matching & Flow
    Kuhn Munkres
```

```
class KM {
private:
 static constexpr lld INF = 1LL << 60;</pre>
 vector<lld> hl,hr,slk;
 vector<int> fl,fr,pre,qu;
 vector<vector<lld>> w;
 vector<bool> v1,vr;
 int n, ql, qr;
 bool check(int x) {
  if (v1[x] = true, f1[x] != -1)
   return vr[qu[qr++] = f1[x]] = true;
  while (x != -1) swap(x, fr[fl[x] = pre[x]]);
  return false;
 void bfs(int s) {
  fill(slk.begin(), slk.end(), INF);
  fill(v1.begin(), v1.end(), false)
  fill(vr.begin(), vr.end(), false);
  ql = qr = 0;
  qu[qr++] = s;
  vr[s] = true;
  while (true) {
   11d d;
   while (ql < qr) {</pre>
    for (int x = 0, y = qu[ql++]; x < n; ++x) {
     if(!vl[x]&&slk[x]>=(d=hl[x]+hr[y]-w[x][y])){
      if (pre[x] = y, d) slk[x] = d;
      else if (!check(x)) return;
     }
    }
   d = INF;
   for (int x = 0; x < n; ++x)
    if (!v1[x] \&\& d > s1k[x]) d = s1k[x];
   for (int x = 0; x < n; ++x) {
  if (v1[x]) h1[x] += d;
    else slk[x] -= d;
    if (vr[x]) hr[x] -= d;
   for (int x = 0; x < n; ++x)
```

```
if(!lnk[v]){
                                                                lnk[x]=v, lnk[v]=x;
                                                                return true
public:
                                                               }else if(vis[lnk[v]]<stp){</pre>
void init( int n_ ) {
                                                                int w=lnk[v]
 n = n_; qu.resize(n);
                                                                lnk[x]=v, lnk[v]=x, lnk[w]=0;
 fl.clear(); fl.resize(n, -1);
fr.clear(); fr.resize(n, -1);
                                                                if(dfs(w)) return true
                                                                lnk[w]=v, lnk[v]=w, lnk[x]=0;
 hr.clear(); hr.resize(n); hl.resize(n);
 w.clear(); w.resize(n, vector<lld>(n));
                                                              return false;
 slk.resize(n); pre.resize(n);
 vl.resize(n); vr.resize(n);
}
                                                             int solve(){
 void set_edge( int u, int v, 1ld x ) {w[u][v] = x;}
                                                              int ans = 0;
                                                              for(int i=1;i<=n;i++)</pre>
11d solve() {
 for (int i = 0; i < n; ++i)</pre>
                                                               if(not lnk[i]){
  hl[i] = *max_element(w[i].begin(), w[i].end());
                                                                stp++; ans += dfs(i);
  for (int i = 0; i < n; ++i) bfs(i);</pre>
 11d res = 0;
                                                              return ans;
 for (int i = 0; i < n; ++i) res += w[i][f1[i]];</pre>
                                                           } graph;
 return res:
}
                                                            4.4 Minimum Weight Matching (Clique version)
} km;
                                                            struct Graph {
     Bipartite Matching
                                                             // 0-base (Perfect Match)
class BipartiteMatching{
                                                             int n, edge[MXN][MXN];
private:
                                                             int match[MXN], dis[MXN], onstk[MXN];
vector<int> X[N], Y[N];
                                                             vector<int> stk;
int fX[N], fY[N], n;
                                                             void init(int _n) {
bitset<N> walked;
                                                              n = _n;
bool dfs(int x){
                                                              for (int i=0; i<n; i++)</pre>
 for(auto i:X[x]){
                                                               for (int j=0; j<n; j++)</pre>
  if(walked[i])continue;
                                                                edge[i][j] = 0;
  walked[i]=1;
  if(fY[i]==-1||dfs(fY[i])){
                                                             void set_edge(int u, int v, int w) {
    fY[i]=x;fX[x]=i;
                                                             edge[u][v] = edge[v][u] = w;
    return 1:
  }
                                                             bool SPFA(int u){
                                                              if (onstk[u]) return true;
 return 0;
                                                              stk.PB(u);
                                                              onstk[u] = 1;
public:
                                                              for (int v=0; v<n; v++){
void init(int _n){
                                                               if (u != v && match[u] != v && !onstk[v]){
 n=_n; walked.reset();
                                                                int m = match[v];
                                                                for(int i=0;i<n;i++){</pre>
  X[i].clear();Y[i].clear();
                                                                 dis[m] = dis[u] - edge[v][m] + edge[u][v];
   fX[i]=fY[i]=-1;
                                                                 onstk[v] = 1;
                                                                 stk.PB(v)
 }
                                                                 if (SPFA(m)) return true;
void add_edge(int x, int y){
  X[x].push_back(y); Y[y].push_back(y);
                                                                 stk.pop_back();
                                                                 onstk[v] = 0;
int solve(){
 int cnt = 0;
 for(int i=0;i<n;i++){</pre>
                                                              onstk[u] = 0
  walked.reset();
                                                              stk.pop_back();
  if(dfs(i)) cnt++;
                                                              return false;
 // return how many pair matched
 return cnt;
                                                             int solve() {
                                                              // find a match
                                                              for (int i=0; i<n; i+=2){
                                                              match[i] = i+1;
     General Graph Matching
                                                               match[i+1] = i;
const int N = 514, E = (2e5) * 2;
struct Graph{
                                                              while (true){
int to[E],bro[E],head[N],e;
                                                               int found = 0;
                                                               for (int i=0; i<n; i++)</pre>
int lnk[N], vis[N], stp, n;
void init( int _n ){
                                                                dis[i] = onstk[i] = 0;
 stp = 0; e = 1; n = _n;
                                                               for (int i=0; i<n; i++){</pre>
 for( int i = 0 ; i <= n ;</pre>
                            i ++ )
                                                                stk.clear()
                                                                if (!onstk[i] && SPFA(i)){
  head[i] = lnk[i] = vis[i] = 0;
                                                                 found = 1;
void add_edge(int u,int v){
                                                                 while (SZ(stk)>=2){
                                                                  int u = stk.back(); stk.pop_back();
 to[e]=v,bro[e]=head[u],head[u]=e++;
                                                                  int v = stk.back(); stk.pop_back();
                                                                  match[u] = v;
 to[e]=u,bro[e]=head[v],head[v]=e++;
                                                                  match[v] = u;
bool dfs(int x){
 vis[x]=stp;
  for(int i=head[x];i;i=bro[i]){
  int v=to[i];
                                                               if (!found) break;
```

```
int ret = 0;
 for (int i=0; i<n; i++)</pre>
   ret += edge[i][match[i]];
 return ret>>1;
} graph;
4.5 Minimum Cost Circulation
```

```
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
  memset(mark, false, sizeof(mark));
  memset(dist, 0, sizeof(dist));
  int upd = -1;
  for (int i = 0; i <= n; ++i) {
    for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
        if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
          dist[e.to] = dist[j] + e.cost;
          pv[e.to] = j, ed[e.to] = idx;
           if (i == n) {
             upd = j;
             while(!mark[upd])mark[upd]=1,upd=pv[upd];
             return upd;
          }
        idx++;
   }
  return -1;
int Solve(int n) {
  int rt = -1, ans = 0;
  while ((rt = NegativeCycle(n)) >= 0) {
    memset(mark, false, sizeof(mark));
vector<pair<int, int>> cyc;
    while (!mark[rt]) {
      cyc.emplace_back(pv[rt], ed[rt]);
      mark[rt] = true;
      rt = pv[rt];
    }
    reverse(cyc.begin(), cyc.end());
    int cap = kInf;
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      cap = min(cap, e.cap);
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      e.cap -= cap;
      g[e.to][e.rev].cap += cap;
      ans += e.cost * cap:
    }
```

Flow Models

return ans;

- · Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.

 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect t o s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f
 eq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite $\mathsf{graph}\;(X,Y)$
 - 1. Redirect every edge: $y \to x$ if $(x, y) \in M$, $x \to y$ otherwise.

- 2. DFS from unmatched vertices in X.
- 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Construct super source S and sink T
 - 2. For each edge (x, y, c), connect $x \to y$ with (cost, cap) = (c, 1) if c>0, otherwise connect $y\to x$ with (cost, cap)=(-c,1)
 - 3. For each edge with $c < \mathbf{0}$, sum these cost as K, then increase d(y)by 1, decrease $d(\boldsymbol{x})$ by 1
 - 4. For each vertex v with d(v)>0, connect S
 ightarrow v with (cost, cap)=0(0, d(v))
 - 5. For each vertex v with d(v) < 0, connect $v \to T$ with (cost, cap) =(0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum densitu induced subgraph
 - 1. Bingru search on answer, suppose we're checking answer T
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \rightarrow v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with capacity
 - 5. For $v \in {\it G}$, connect it with sink $v \to t$ with capacity K + 2T - $(\sum_{e \in E(v)} w(e)) - 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight w(u,v)
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge
 - (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing \boldsymbol{u} without choosing $\boldsymbol{v}.$
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with ca-
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

4.7 Dinic

```
class Dinic{
private:
 using CapT = int64_t;
 struct Edge{
  int to, rev;
  CapT cap;
 int n, st, ed;
 vector<vector<Edge>> G;
 vector<int> lv, idx;
 bool BFS(){
  fill(lv.begin(), lv.end(), -1);
  queue<int> bfs;
  bfs.push(st);
  lv[st] = 0;
  while(!bfs.empty()){
   int u = bfs.front(); bfs.pop();
   for(auto e: G[u]){
    if(e.cap <= 0 or lv[e.to]!=-1) continue;
lv[e.to] = lv[u] + 1;</pre>
    bfs.push(e.to);
   }
  return (lv[ed]!=-1);
 CapT DFS(int u, CapT f){
  if(u == ed) return f;
  CapT ret = 0;
  for(int& i = idx[u]; i < (int)G[u].size(); ++i){</pre>
   auto& e = G[u][i];
   if(e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
   CapT nf = DFS(e.to, min(f, e.cap));
ret += nf; e.cap -= nf; f -= nf;
   G[e.to][e.rev].cap += nf;
   if(f == 0) return ret;
  if(ret == 0) lv[u] = -1;
```

```
National Taiwan University - kiseki
  return ret;
public:
 void init(int n_, int st_, int ed_){
  n = n_, st = st_, ed = ed_;
  G.resize(n); lv.resize(n);
  fill(G.begin(), G.end(), vector<Edge>());
 void add_edge(int u, int v, CapT c){
  G[u].push_back({v, (int)G[v].size(), c});
  G[v].push_back({u, ((int)G[u].size())-1, 0});
 CapT max_flow(){
  CapT ret = 0
  while(BFS()){
   idx.assign(n, 0);
   CapT f = DFS(st, numeric_limits<CapT>::max());
   ret += f;
   if(f == 0) break;
  return ret;
 }
} flow;
      Minimum Cost Maximum Flow
class MiniCostMaxiFlow{
 using CapT = int
 using WeiT = int64_t;
 using PCW = pair<CapT,WeiT>
 static constexpr CapT INF_CAP = 1 << 30;</pre>
 static constexpr WeiT INF_WEI = 1LL<<60;</pre>
private:
 struct Edge{
  int to, back;
  WeiT wei;
  CapT cap;
  Edge() {}
  Edge(int a,int b,WeiT c,CapT d):
   to(a),back(b),wei(c),cap(d)
```

{} };

int ori, edd;

PCW SPFA(){

dis[ori]=0;

inq[u] = 0;

int v=e.to;

qq.push(v); inq[v]=1;

return {-1,-1}:

CapT mw=INF_CAP;

eq.cap-=mw;

ori=a,edd=b;

}

}

public:

WeiT d=e.wei;

vector<vector<Edge>> G;

while(!qq.empty()){

Edge e=G[u][i];

dis[v]=dis[u]+d; fa[v]=u,wh[v]=i;

if(dis[edd]==INF_WEI)

return {mw,dis[edd]};

for(int i=edd;i!=ori;i=fa[i])

auto &eg=G[fa[i]][wh[i]];

G[eg.to][eg.back].cap+=mw;

void init(int a,int b,int n){

mw=min(mw,G[fa[i]][wh[i]].cap);

for (int i=edd;i!=ori;i=fa[i]){

if(ing[v]) continue;

fill(inq.begin(),inq.end(),false);
fill(dis.begin(),dis.end(),INF_WEI);

queue<int> qq; qq.push(ori);

int u=qq.front();qq.pop();

for(int i=0;i<SZ(G[u]);++i){</pre>

if(e.cap <= 0 | |dis[v] <= dis[u] + d)

vector<int> fa, wh;

vector<bool> inq;

vector<WeiT> dis;

```
*/
  while(true){
   PCW ret=SPFA();
   cc+=ret.first;
   ww+=ret.second;
  return {cc,ww};
} mcmf;
 while (true) {
  int c = -1;
  for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
   if (c == -1 \mid | g[i] > g[c]) c = i;
  if (c == -1) break;
  v[s = t, t = c] = true;
  for (int i = 0; i < n; ++i) {
   if (del[i] || v[i]) continue;
   g[i] += w[c][i];
  }
 return make_pair(s, t);
int mincut(int n) {
 int cut = 1e9;
 memset(del, false, sizeof(del));
 for (int i = 0; i < n - 1; ++i) {
  int`s, t; tie(s, t) = phase(n);
  del[t] = true; cut = min(cut, g[t]);
  for (int j = 0; j < n; ++j) {
   w[s][j] += w[t][j]; w[j][s] += w[j][t];
 return cut;
5
     Math
    Prime Table
```

```
G.clear();G.resize(n);
  fa.resize(n);wh.resize(n);
  inq.resize(n); dis.resize(n);
 void add_edge(int st,int ed,WeiT w,CapT c){
  G[st].emplace_back(ed,SZ(G[ed]),w,c);
  G[ed].emplace_back(st,SZ(G[st])-1,-w,0);
 PCW solve(){
  /* might modify to
  cc += ret.first * ret.second
  ww += ret.first * ret.second
  CapT cc=0; WeiT ww=0;
   if(ret.first==-1) break;
4.9 Global Min-Cut
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
 memset(g, 0, sizeof(g));
 int s = -1, t = -1;
```

```
1002939109, 1020288887, 1028798297, 1038684299,
1041211027, 1051762951, 1058585963, 1063020809,
1147930723, 1172520109, 1183835981, 1187659051,
1241251303, 1247184097, 1255940849, 1272759031,\\
1287027493, 1288511629, 1294632499, 1312650799,\\
\begin{array}{c} 126027433, 128031723, 1280342393, 1312030732\\ 1868732623, 1884198443, 1884616807, 1885059541,\\ 1909942399, 1914471137, 1923951707, 1925453197,\\ 1979612177, 1980446837, 1989761941, 2007826547,\\ 2008033571, 2011186739, 2039465081, 2039728567,\\ \end{array}
2093735719, 2116097521, 2123852629, 2140170259,\\
3148478261, 3153064147, 3176351071, 3187523093,\\
3196772239, 3201312913, 3203063977, 3204840059,\\
3210224309, 3213032591, 3217689851, 3218469083, 3219857533, 3231880427, 3235951699, 3273767923,
3276188869, 3277183181, 3282463507, 3285553889,
3319309027, 3327005333, 3327574903, 3341387953,
3373293941, 3380077549, 3380892997, 3381118801
```

```
\lfloor rac{n}{i} \rfloor Enumeration
5.2
                                                                return phi(m, n) + n - 1 - P2(m, n);
T_0 = 1, T_{i+1} = \lfloor \frac{n}{\lfloor \frac{n}{T_i + 1} \rfloor} \rfloor
5.3 ax+by=gcd
                                                              5.6 Range Sieve
// ax+ny = 1, ax+ny == ax == 1 \pmod{n}
                                                              const int MAX_SQRT_B = 50000;
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
                                                              const int MAX_L = 200000 + 5;
if (y == 0) g=x,a=1,b=0;
 else exgcd(y, x\%y, g, b, a), b=(x/y)*a;
                                                              bool is_prime_small[MAX_SQRT_B];
                                                              bool is_prime[MAX_L];
5.4 Pollard Rho
                                                              void sieve(lld 1, lld r){
                                                                // [1, r)
// does not work when n is prime
                                                                for(lld i=2;i*i<r;i++) is_prime_small[i] = true;</pre>
// return any non-trivial factor
                                                                for(lld i=1;i<r;i++) is_prime[i-1] = true;</pre>
llu pollard_rho(llu n){
                                                                if(l==1) is_prime[0] = false;
 static auto f=[](llu x,llu k,llu m){
                                                                for(lld i=2;i*i<r;i++){</pre>
  return add(k,mul(x,x,m),m);
                                                                 if(!is_prime_small[i]) continue;
                                                                for(lld j=i*i;j*j<r;j+=i) is_prime_small[j]=false;
for(lld j=std::max(2LL, (l+i-1)/i)*i;j<r;j+=i)</pre>
 if (!(n&1)) return 2;
 mt19937 rnd(120821011);
                                                                   is_prime[j-1]=false;
 while(true){
                                                               }
  llu y=2,yy=y,x=rnd()%n,t=1;
                                                              }
  for(llu sz=2;t==1;sz<<=1) {</pre>
   for(llu i=0;i<sz;++i){</pre>
                                                              5.7 Miller Rabin
    if(t!=1)break;
                                                              bool isprime(llu x){
    yy=f(yy,x,n);
                                                               static 1lu magic[]={2,325,9375,28178,\
    t=gcd(yy>y?yy-y:y-yy,n);
                                                                         450775,9780504,1795265022};
                                                                static auto witn=[](llu a,llu u,llu n,int t)
   y=yy;
                                                                ->bool{
                                                                if (!(a = mpow(a,u,n)))return 0;
  if(t!=1&&t!=n) return t;
                                                                 while(t--){
                                                                  11u a2=mul(a,a,n);
                                                                  if(a2==1 && a!=1 && a!=n-1)
      Pi Count (Linear Sieve)
                                                                   return 1;
                                                                 a = a2:
static constexpr int N = 1000000 + 5;
                                                                }
11d pi[N];
                                                                 return a!=1;
vector<int> primes;
                                                                }:
bool sieved[N]
                                                                if(x<2)return 0;</pre>
11d cube_root(11d x){
                                                                if(!(x&1))return x==2;
 lld s=cbrt(x-static_cast<long double>(0.1));
                                                               llu x1=x-1; int t=0;
 while(s*s*s <= x) ++s;
                                                                while(!(x1&1))x1>>=1,t++;
 return s-1;
                                                                for(llu m:magic)if(witn(m,x1,x,t))return 0;
                                                                return 1;
1ld square_root(1ld x){
 lld s=sqrt(x-static_cast<long double>(0.1));
 while(s*s \ll x) ++s;
                                                              5.8 Inverse Element
 return s-1;
                                                              // x's inverse mod k
                                                              long long GetInv(long long x, long long k){
void init(){
                                                                // k is prime: euler_(k)=k-1
 primes.reserve(N);
                                                                return qPow(x, euler_phi(k)-1);
 primes.push_back(1);
 for(int i=2;i<N;i++) {</pre>
                                                              // if you need [1, x] (most use: [1, k-1]
  if(!sieved[i]) primes.push_back(i);
                                                              void solve(int x, long long k){
  pi[i] = !sieved[i] + pi[i-1];
                                                               inv[1] = 1;
  for(int p: primes) if(p > 1) {
                                                                for(int i=2;i<x;i++)</pre>
   if(p * i >= N) break;
                                                                inv[i] = ((long long)(k - k/i) * inv[k % i]) % k;
   sieved[p * i] = true;
   if(p % i == 0) break;
                                                               5.9 Euler Phi Function
11d phi(11d m, 11d n) {
                                                                extended euler:
 static constexpr int MM = 80000, NN = 500;
                                                                 a^b mod p
 static lld val[MM][NN];
                                                                 if gcd(a, p)==1: a^(b\%phi(p))
 if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
                                                                elif b < phi(p): a^b mod p
 if(n == 0) return m;
                                                                else a^(b%phi(p) + phi(p))
 if(primes[n] >= m) return 1;
 1ld ret = phi(m,n-1)-phi(m/primes[n],n-1);
                                                              lld euler_phi(int x){
 if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
                                                               11d r=1;
                                                                for(int i=2;i*i<=x;++i){</pre>
 return ret;
                                                                if(x%i==0){
11d pi_count(11d);
                                                                  x/=i; r*=(i-1);
11d P2(11d m, 11d n) {
                                                                  while(x%i==0){
 11d sm = square_root(m), ret = 0;
                                                                   x/=i; r*=i;
 for(lld i = n+1;primes[i]<=sm;i++)</pre>
 ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
                                                                }
 return ret;
                                                               if(x>1) r*=x-1;
11d pi_count(11d m) 
                                                                return r;
 if(m < N) return pi[m];</pre>
 11d n = pi_count(cube_root(m));
                                                              vector<int> primes;
```

for(int i=0;i<n;i++) M *= pri[i];</pre>

```
bool notprime[N];
                                                               for(int i=0;i<n;i++){</pre>
                                                                lld iv = (gcd(M/pri[i],pri[i]).FF+pri[i])%pri[i];
11d phi[N];
                                                                 ret += (ans[i]*(M/pri[i])%M * iv)%M;
void euler_sieve(int n){
 for(int i=2;i<n;i++){</pre>
  if(!notprime[i]){
   primes.push_back(i); phi[i] = i-1;
                                                               return ret;
                                                              }
                                                              /*
  for(auto j: primes){
   if(i*j >= n) break;
                                                              Another:
   notprime[i*j] = true;
                                                              x = a1 \% m1
                                                              x = a2 \% m2
   phi[i*j] = phi[i] * phi[j];
   if(i \% j == 0){
                                                              g = gcd(m1, m2)
    phi[i*j] = phi[i] * j;
                                                              assert((a1-a2)%g==0)
    break;
                                                              [p, q] = exgcd(m2/g, m1/g)
                                                              return a2+m2*(p*(a1-a2)/g)
                                                              0 <= x < lcm(m1, m2)
                                                              */
                                                              5.13 Berlekamp Massey
5.10
       Gauss Elimination
                                                              // x: 1-base, p[]: 0-base
                                                              template<size_t N>
void gauss(vector<vector<double>> &d) {
                                                              vector<llf> BM(llf x[N], size_t n){
  int n = d.size(), m = d[0].size();
                                                                 size_t f[N]={0},t=0;11f d[N];
  for (int i = 0; i < m; ++i) {
                                                                 vector<llf> p[N];
    int p = -1;
                                                                 for(size_t i=1,b=0;i<=n;++i) {</pre>
    for (int j = i; j < n; ++j) {
  if (fabs(d[j][i]) < eps) continue;</pre>
                                                                   for(size_t j=0;j<p[t].size();++j)
d[i]+=x[i-j-1]*p[t][j];</pre>
      if (p == -1 || fabs(d[j][i])>fabs(d[p][i])) p=j;
                                                                   if(abs(d[i]-=x[i])<=EPS)continue;</pre>
                                                                   f[t]=i;if(!t){p[++t].resize(i);continue;}
    if (p == -1) continue;
                                                                   vector<llf> cur(i-f[b]-1);
    for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);
                                                                   11f k=-d[i]/d[f[b]];cur.PB(-k);
    for (int j = 0; j < n; ++j) {
  if (i == j) continue;</pre>
                                                                   for(size_t j=0;j<p[b].size();j++)</pre>
                                                                     cur.PB(p[b][j]*k);
      double z = d[j][i] / d[i][i];
                                                                   if(cur.size()<p[t].size())cur.resize(p[t].size());</pre>
      for (int k = 0; k < m; ++k) d[j][k] -= z*d[i][k];
                                                                   for(size_t j=0;j<p[t].size();j++)cur[j]+=p[t][j];</pre>
                                                                   if(i-f[b]+p[b].size()>=p[t].size()) b=t;
  }
                                                                   p[++t]=cur;
}
                                                                 return p[t];
5.11
      Fast Fourier Transform
                                                              }
  polynomial multiply:
                                                              5.14 NTT
  DFT(a, len); DFT(b, len);
                                                              // Remember coefficient are mod P
  for(int i=0;i<len;i++) c[i] = a[i]*b[i];
                                                              /* p=a*2^n+1
  iDFT(c, len);
                                                                     2^n
                                                                n
                                                                                              а
                                                                                                   root
  (len must be 2^k and = 2^k(max(a, b)))
                                                                                  65537
                                                                 16 65536
                                                                                              1
  Hand written Cplx would be 2x faster
                                                                20 1048576
                                                                                  7340033
                                                                                                   3 */
                                                              // (must be 2<sup>k</sup>)
Cplx omega[2][N];
                                                              template<LL P, LL root, int MAXN>
void init_omega(int n) {
                                                              struct NTT{
 static constexpr llf PI=acos(-1);
                                                               static LL bigmod(LL a, LL b) {
 const llf arg=(PI+PI)/n;
                                                                LL res = 1;
 for(int i=0;i<n;++i)</pre>
                                                                for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
  omega[0][i]={cos(arg*i),sin(arg*i)};
                                                                  if(b&1) res=(res*bs)%P;
 for(int i=0;i<n;++i)</pre>
                                                                 return res;
  omega[1][i]=conj(omega[0][i]);
                                                               static LL inv(LL a, LL b) {
void tran(Cplx arr[],int n,Cplx omg[]) {
                                                                if(a==1)return 1;
 for(int i=0, j=0;i<n;++i){</pre>
                                                                 return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
  if(i>j)swap(arr[i],arr[j])
  for(int l=n>>1;(j^=1)<1;l>>=1);
                                                               LL omega[MAXN+1];
                                                               NTT()
 for (int l=2;l<=n;l<<=1){</pre>
                                                                omega[0] = 1;
  int m=1>>1:
                                                                LL r = bigmod(root, (P-1)/MAXN);
  for(auto p=arr;p!=arr+n;p+=1){
                                                                 for (int i=1; i<=MAXN; i++)</pre>
   for(int i=0;i<m;++i){</pre>
                                                                 omega[i] = (omega[i-1]*r)%P;
    Cplx t=omg[n/l*i]*p[m+i];
    p[m+i]=p[i]-t; p[i]+=t;
                                                               // n must be 2<sup>k</sup>
   }
                                                               void tran(int n, LL a[], bool inv_ntt=false){
                                                                 int basic = MAXN / n , theta = basic;
                                                                 for (int m = n; m >= 2; m >>= 1) {
                                                                  int mh = m >> 1;
void DFT(Cplx arr[],int n){tran(arr,n,omega[0]);}
                                                                  for (int i = 0; i < mh; i++) {
void iDFT(Cplx arr[], int n){
                                                                   LL w = omega[i*theta%MAXN];
 tran(arr,n,omega[1]);
                                                                   for (int j = i; j < n; j += m) {</pre>
 for(int i=0;i<n;++i) arr[i]/=n;</pre>
                                                                    int k = j + mh;
                                                                    LL x = a[j] - a[k];
                                                                    if (x < 0) x += P;
5.12 Chinese Remainder
                                                                    a[j] += a[k];
1ld crt(lld ans[], lld pri[], int n){
                                                                    if (a[j] > P) a[j] -= P;
 11d M = 1, ret = 0;
                                                                    a[k] = (w * x) % P;
```

```
const int _n = n() - rhs.n() + 1;
                                                                      Poly X(rhs); X.irev().isz(_n);
   theta = (theta * 2) % MAXN;
                                                                      Poly Y(*this); Y.irev().isz(_n);
                                                                      Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
                                                                     X = rhs.Mul(Q), Y = *this;
fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
return {Q, Y.isz(max(1, rhs.n() - 1))};
  for (int j = 1; j < n - 1; j++) {
   for (int k = n >> 1; k > (i ^= k); k >>= 1);
   if (j < i) swap(a[i], a[j]);</pre>
  if (inv_ntt) {
                                                                     Poly Dx() const {
   LL ni = inv(n, P);
                                                                      Poly ret(n() - 1);
   reverse( a+1 , a+n );
                                                                      fi(0, ret.n()) ret[i] = (i + 1) * coef[i + 1] % P;
   for (i = 0; i < n; i++)
                                                                      return ret.isz(max(1, ret.n()));
    a[i] = (a[i] * ni) % P;
                                                                     Poly Sx() const {
                                                                     Poly ret(n() + 1);
                                                                      fi(0, n()) ret[i + 1]=ntt.minv(i + 1)*coef[i] % P;
const LL P=2013265921, root=31;
                                                                      return ret;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
                                                                     Poly _tmul(int nn, const Poly &rhs) const {
                                                                     Poly Y = Mul(rhs).isz(n() + nn - 1);
5.15
      Polynomial Operations
                                                                      return Poly(Y.data() + n() - 1, nn);
using VL = vector<LL>;
#define fi(s, n) for (int i=int(s); i<int(n); ++i)
#define Fi(s, n) for (int i=int(n); i>int(s); --i)
                                                                     VL _eval(const VL &x, const auto up)const{
                                                                      const int _n = (int)x.size();
                                                                      if (!_n) return {};
int n2k(int n) {
int sz = 1; while (sz < n) sz <<= 1;</pre>
                                                                      vector<Poly> down(_n * 2);
                                                                      down[1] = DivMod(up[1]).second;
 return sz;
                                                                      fi(2,_n*2) down[i]=down[i/2].DivMod(up[i]).second;
template<int MAXN, LL P, LL RT> // MAXN = 2^k
                                                                      /* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev()
                                                                      ._tmul(_n, *this);
fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
struct Poly { // coefficients in [0, P)
 static NTT<MAXN, P, RT> ntt;
                                                                        1, down[i / 2]); */
 VL coef;
 int n() const { return coef.size(); } // n()>=1
                                                                      VL y(_n);
 LL *data() { return coef.data(); `}
                                                                      fi(0, _n) y[i] = down[_n + i][0];
 const LL *data() const { return coef.data(); }
LL &operator[](size_t i) { return coef[i]; }
                                                                      return y;
 const LL &operator[](size_t i)const{return coef[i];}
                                                                     static vector<Poly> _tree1(const VL &x) {
                                                                      const int _n = (int)x.size();
 Poly(initializer_list<LL> a) : coef(a) { }
 explicit Poly(int _n = 1) : coef(_n) { }
                                                                      vector<Poly> up(_n * 2);
 Poly(const LL *arr, int _n) : coef(arr, arr + _n) {}
                                                                      fi(0, _n) up[_n + i] = \{(x[i] ? P - x[i] : 0), 1\};
 Poly(const Poly &p, int _n) : coef(_n) {
                                                                      Fi(0, _n-1) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
  copy_n(p.data(), min(p.n(), _n), data());
                                                                      return up;
                                                                     VL Eval(const VL&x)const{return _eval(x,_tree1(x));} static Poly Interpolate(const VL &x, const VL &y) {
 Poly& irev(){return reverse(data(),data()+n()),*this;}
 Poly& isz(int _n) { return coef.resize(_n), *this; }
 Poly& iadd(const Poly &rhs) { // n() == rhs.n()
                                                                      const int _n = (int)x.size();
  fi(0, n()) if ((coef[i]+=rhs[i]) >= P)coef[i]-=P;
                                                                      vector<Poly> up = _{tree1(x), down(_n * 2);}
                                                                      VL z = up[1].Dx()._eval(x, up);
fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
  return *this;
                                                                      fi(0, _n) down[_n + i] = \{z[i]\};

Fi(0, _n-1) down[i] = down[i * 2].Mul(up[i * 2 + 1])
 Poly& imul(LL k) {
  fi(0, n()) coef[i] = coef[i] * k % P;
                                                                       .iadd(down[i * 2 + 1].Mul(up[i * 2]));
  return *this;
                                                                      return down[1];
 Poly Mul(const Poly &rhs) const {
  const int _n = n2k(n() + rhs.n() - 1);
Poly X(*this, _n), Y(rhs, _n);
                                                                     Poly Ln() const { // coef[0] == 1
                                                                      return Dx().Mul(Inv()).Sx().isz(n());
  ntt(X.data(), _n), ntt(Y.data(), _n);
fi(0, _n) X[i] = X[i] * Y[i] % P;
                                                                     Poly Exp() const \{ // coef[0] == 0 \}
                                                                      if (n() == 1) return {1};
  ntt(X.data(), _n, true);
return X.isz(n() + rhs.n() - 1);
                                                                     Poly X = Poly(*this, (n() + 1)/2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
fi(0, n()) if((Y[i] = coef[i] - Y[i]) < 0)Y[i]+=P;
 Poly Inv() const { // coef[0] != 0
  if (n() == 1) return {ntt.minv(coef[0])};
                                                                      return X.Mul(Y).isz(n());
  const int _n = n2k(n() * 2);
  Poly Xi = Poly(*this, (n() + 1)/2).Inv().isz(_n);
                                                                     Poly Pow(const string &K) const {
  Poly Y(*this, _n);
                                                                      int nz = 0;
                                                                      while (nz < n() && !coef[nz]) ++nz;</pre>
  ntt(Xi.data(), _n), ntt(Y.data(), _n);
  fi(0, _n) {
Xi[i] *= (2 - Xi[i] * Y[i]) % P
                                                                      LL nk = 0, nk2 = 0;
                                                                      for (char c : K) {
   if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
                                                                       nk = (nk * 10 + c - '0') % P;
                                                                       nk2 = nk2 * 10 + c - '0';
                                                                       if (nk2 * nz >= n()) return Poly(n());
  ntt(Xi.data(), _n, true);
                                                                       nk2 %= P - 1;
  return Xi.isz(n());
                                                                      if (!nk && !nk2) return Poly({1}, n());
 Poly Sqrt() const { // Jacobi(coef[0], P) = 1
 if (n()==1) return {QuadraticResidue(coef[0], P)};
Poly X = Poly(*this, (n()+1) / 2).Sqrt().isz(n());
return X.iadd(Mul(X.Inv()).isz(n())).imul(P/2+1);
                                                                      Poly X(data() + nz, n() - nz * nk2);
                                                                      LL \times 0 = X[0];
                                                                      return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
                                                                       .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
 pair<Poly, Poly> DivMod(const Poly &rhs) const {
  // (rhs.)back() != 0
                                                                     static LL LinearRecursion(const VL&a,const VL&c,LL n){
  if (n() < rhs.n()) return {{0}, *this};</pre>
                                                                     // a_n = \sum c_j a_(n-j)
```

return res;

```
const int k = (int)a.size();
  assert((int)c.size() == k + 1);
                                                                    inline Status qpow(Status _base, 11 _pow, 11 _mod) {
  Poly C(k + 1), W(\{1\}, k), M = \{0, 1\};
                                                                      Status res = \{1, 0\};
  fi(1, k + 1) C[k - i] = c[i] ? P - c[i] : 0;
                                                                      while(_pow>0){
  C[k] = 1;
                                                                        if(_pow&1) res=mult(res,_base,_mod);
  while (n)
                                                                        _base=mult(_base,_base,_mod);
   if (n % 2) W = W.Mul(M).DivMod(C).second;
                                                                        _pow>>=1;
   n /= 2, M = M.Mul(M).DivMod(C).second;
                                                                      }
                                                                      return res;
  LL ret = 0;
  fi(0, k) ret = (ret + W[i] * a[i]) % P;
                                                                   inline 11 check(11 x,11 p){
  return ret:
                                                                      return qpow_mod(x,(p-1)>>1,p);
                                                                   inline 11 get_root(11 n,11 p){
#undef fi
                                                                      if(p==2) return 1;
#undef Fi
                                                                      if(check(n,p)==p-1) return -1;
using Poly_t = Poly<131072 * 2, 998244353, 3>;
                                                                      11 a;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
                                                                      while(true){
                                                                        a=rand()%p;
5.16 FWT
                                                                        w=((a*a-n)%p+p)%p;
                                                                        if(check(w,p)==p-1) break;
/* xor convolution:
* x = (x0, x1) , y = (y0, y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
                                                                      Status res = \{a, 1\}
                                                                      res=qpow(res,(p+1)>>1,p);
                                                                      return res.x;
* x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
 *z = (1/2) *z''
                                                                    5.19 De-Bruijn
 * or convolution:
                                                                   int res[maxn], aux[maxn], sz;
 * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
 * and convolution:
                                                                    void db(int t, int p, int n, int k) {
* x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */const LL MOD = 1e9+7;
                                                                     if (t > n) {
                                                                      if (n % p == 0)
                                                                       for (int i = 1; i <= p; ++i)</pre>
inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
for( int d = 1 ; d < N ; d <<= 1 ) {
  int d2 = d<<1;</pre>
                                                                        res[sz++] = aux[i];
                                                                     } else {
  for( int s = 0 ; s < N ; s += d2 )</pre>
                                                                      aux[t] = aux[t - p];
   for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
LL ta = x[ i ] , tb = x[ j ];</pre>
                                                                      db(t + 1, p, n, k);
                                                                      for (int i = aux[t - p] + 1; i < k; ++i) {
                                                                       aux[t] = i;
    x[i] = ta+tb;
                                                                       db(t + 1, t, n, k);
    x[ j ] = ta-tb;
    if( x[ i ] >= MOD ) x[ i ] -= MOD;
if( x[ j ] < 0 ) x[ j ] += MOD;</pre>
   }
                                                                    int de_bruijn(int k, int n) {
 if( inv )
                                                                     // return cyclic string of len k^n s.t. every string
  for( int i = 0 ; i < N ; i++ ) {
  x[ i ] *= inv( N, MOD );</pre>
                                                                     // of len n using k char appears as a substring.
                                                                     if (k == 1) {
   x[ i ] %= MOD;
                                                                     res[0] = 0;
                                                                      return 1:
}
                                                                     for (int i = 0; i < k * n; i++) aux[i] = 0;
5.17
       DiscreteLog
                                                                     sz = 0;
                                                                     db(1, 1, n, k);
11d BSGS(11d P, 11d B, 11d N) {
                                                                     return sz;
 // find B^L = N mod P
 unordered_map<lld, int> R;
 1ld sq = (lld)sqrt(P);
                                                                    5.20 Simplex Construction
 11d t = 1;
                                                                   Standard form: maximize \sum_{1 \leq i \leq n} c_i x_i such that for all 1 \leq j \leq m,
 for (int i = 0; i < sq; i++) {</pre>
                                                                   \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j and x_i \geq 0 for all 1 \leq i \leq n.
  if (t == N) return i
  if (!R.count(t)) R[t] = i;
                                                                      1. In case of minimization, let c_i' = -c_i
 t = (t * B) % P;
                                                                      2. \sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j
 11d f = inverse(t, P);
 for(int i=0;i<=sq+1;i++) {</pre>
                                                                      3. \sum_{1 < i < n} A_{ji} x_i = b_j
 if (R.count(N))
   return i * sq + R[N];
                                                                            • \sum_{1 \le i \le n} A_{ji} x_i \le b_j
 N = (N * f) % P;
                                                                            • \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j
 return -1;
                                                                      4. If x_i has no lower bound, replace x_i with x_i - x_i'
5.18 Quadratic residue
                                                                    5.21 Simplex
struct Status{
                                                                   namespace simplex {
                                                                    // maximize c^Tx under Ax <= B
  11 x,y;
                                                                    // return VD(n, -inf) if the solution doesn't exist
11 w:
                                                                    // return VD(n, +inf) if the solution is unbounded
Status mult(const Status& a,const Status& b,ll mod){
                                                                    using VD = vector<double>;
 Status res;
                                                                    using VVD = vector<vector<double>>;
                                                                    const double eps = 1e-9;
  res.x=(a.x*b.x+a.y*b.y%mod*w)%mod;
  res.y=(a.x*b.y+a.y*b.x)%mod;
                                                                    const double inf = 1e+9;
```

int n, m;

```
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
 double inv = 1.0 / d[r][s];
 for (int i = 0; i < m + 2; ++i)
  for (int j = 0; j < n + 2; ++j)
if (i != r && j != s)
    d[i][j] -= d[r][j] * d[i][s] * inv;
 for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
 d[r][s] = inv; swap(p[r], q[s]);
bool phase(int z) {
 int x = m + z;
 while (true) {
  int s = -1;
  for (int i = 0; i <= n; ++i) {</pre>
   if (!z && q[i] == -1) continue;
   if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
  if (d[x][s] > -eps) return true;
  int r = -1;
  for (int i = 0; i < m; ++i) {
  if (d[i][s] < eps) continue;</pre>
   if (r == -1 || \
    d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
  if (r == -1) return false;
  pivot(r, s);
VD solve(const VVD &a, const VD &b, const VD &c) {
 m = b.size(), n = c.size();
 d = VVD(m + 2, VD(n + 2));
 for (int i = 0; i < m; ++i)
  for (int j = 0; j < n; ++j) d[i][j] = a[i][j];</pre>
 p.resize(m), q.resize(n + 1);
 for (int i = 0; i < m; ++i)
 p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
 for (int i = 0; i < n; ++i) q[i] = i,d[m][i] = -c[i];
 q[n] = -1, d[m + 1][n] = 1;
 int r = 0;
 for (int i = 1; i < m; ++i)
  if (d[i][n + 1] < d[r][n + 1]) r = i;</pre>
 if (d[r][n + 1] < -eps) {</pre>
  pivot(r, n);
  if (!phase(1) || d[m + 1][n + 1] < -eps)
   return VD(n, -inf);
  for (int i = 0; i < m; ++i) if (p[i] == -1) {
   int s = min_element(d[i].begin(), d[i].end() - 1)
       - d[i].begin();
   pivot(i, s);
  }
 if (!phase(0)) return VD(n, inf);
 VD x(n);
 for (int i = 0; i < m; ++i)
 if (p[i] < n) x[p[i]] = d[i][n + 1];
 return x;
}}
```

Geometry

Circle Class

```
template<typename T>
struct Circle{
 static constexpr llf EPS = 1e-8;
 Point<T> o; T r;
 vector<Point<llf>> operator&(const Circle& aa)const{
  11f d=o.dis(aa.o);
  if(d>r+aa.r+EPS || d<fabs(r-aa.r)-EPS) return {};</pre>
  11f dt = (r*r - aa.r*aa.r)/d, d1 = (d+dt)/2;
  Point<llf> dir = (aa.o-o); dir /= d;
  Point<llf> pcrs = dir*d1 + o;
  dt=sqrt(max(0.0L, r*r - d1*d1)), dir=dir.rot90();
  return {pcrs + dir*dt, pcrs - dir*dt};
 }
};
```

6.2 Segment Class

```
const long double EPS = 1e-8;
```

```
template<typename T>
struct Segment{
 // p1.x < p2.x
 Line<T> base;
 Point<T> p1, p2;
 Segment(): base(Line<T>()), p1(Point<T>()), p2(Point<T</pre>
    >()){
  assert(on_line(p1, base) and on_line(p2, base));
 Segment(Line<T> _, Point<T> __, Point<T> __): base(_)
, p1(__), p2(___){
  assert(on_line(p1, base) and on_line(p2, base));
 template<typename T2>
 Segment(const Segment<T2>& _): base(_.base), p1(_.p1)
    , p2(_.p2) {}
 typedef Point<long double> Pt;
 friend bool on_segment(const Point<T>& p, const
    Segment& 1){
  if(on_line(p, 1.base))
   return (1.p1.x-p.x)*(p.x-1.p2.x)>=0 and (1.p1.y-p.y)
    *(p.y-1.p2.y)>=0;
  return false:
 friend bool have_inter(const Segment& a, const Segment
    & b){
  if(is_parallel(a.base, b.base)){
   return on_segment(a.p1, b) or on_segment(a.p2, b) or
     on_segment(b.p1, a) or on_segment(b.p2, a);
  Pt inter = get_inter(a.base, b.base);
  return on_segment(inter, a) and on_segment(inter, b);
 friend inline Pt get_inter(const Segment& a, const
    Segment& b) {
  if(!have_inter(a, b)){
   return NOT_EXIST
  }else if(is_parallel(a.base, b.base)){
   if(a.p1 == b.p1){
    if(on_segment(a.p2, b) or on_segment(b.p2, a))
    return INF_P;
    else return a.p1;
   else if(a.p1 == b.p2){
    if(on_segment(a.p2, b) or on_segment(b.p1, a))
    return INF P:
    else return a.p1;
   }else if(a.p2 == b.p1){
    if(on_segment(a.p1, b) or on_segment(b.p2, a))
    return INF_P
    else return a.p2;
   else if(a.p2 == b.p2){
    if(on_segment(a.p1, b) or on_segment(b.p1, a))
    return INF_P;
    else return a.p2;
   return INF_P;
 return get_inter(a.base, b.base);
 friend ostream& operator<<(ostream& ss, const Segment&
     0){
  ss<<o.base<<", "<<o.p1<<" ~ "<<o.p2:
  return ss:
 }
template<typename T>
inline Segment<T> get_segment(const Point<T>& a, const
    Point<T>& b){
 return Segment<T>(get_line(a, b), a, b);
6.3 Line Class
const Point<long double> INF_P(-1e20, 1e20);
```

const Point<long double> NOT_EXIST(1e20, 1e-20);

Line(T _=0, T __=1, T ___=0): a(_), b(__), c(___){
 assert(fabs(a)>EPS or fabs(b)>EPS);}

static constexpr long double EPS = 1e-8;

template<typename T>

template<typename T2>

struct Line{

T a, b, c;

// ax+by+c = 0

uint64_t xx=0, yy=0;

memcpy(&xx, &a.x, sizeof(a.x));

```
Line(const Line<T2>& x): a(x.a), b(x.b), c(x.c){}
                                                                memcpy(&yy, &a.y, sizeof(a.y));
                                                                uint64_t ret = xx*17+yy*31;
 typedef Point<long double> Pt;
bool equal(const Line& o, true_type) const {
                                                                ret = (ret ^ (ret >> 16))*0x9E3779B1;
                                                                ret = (ret ^ (ret >> 13))*0xC2B2AE35;
  return fabs(a-o.a)<EPS &&
 fabs(b-o.b) < EPS && fabs(c-o.b) < EPS;}</pre>
                                                                ret = ret ^ xx;
bool equal(const Line& o, false_type) const {
                                                                return (ret ^ (ret << 3)) * yy;</pre>
  return a==o.a and b==o.b and c==o.c;}
bool operator==(const Line& o) const {
  return equal(o, is_floating_point<T>());}
                                                              unordered_set<PT, myhash> in_hull;
bool operator!=(const Line& o) const {
                                                             public:
 return !(*this == o);}
                                                              void init(){in_hull.clear();d.clear();}
friend inline bool on_line__(const Point<T>& p, const
                                                              void insert(const PT& x){d.PB(x);}
                                                              void solve(){
   Line& 1, true_type){
                                                               sort(ALL(d), [](const PT& a, const PT& b){
  return fabs(1.a*p.x + 1.b*p.y + 1.c) < EPS;
                                                                return tie(a.x, a.y) < tie(b.x, b.y);});</pre>
                                                               vector<PT> s(SZ(d)<<1); int o=0;
friend inline bool on_line__(const Point<T>& p, const
    Line& 1, false_type){
                                                               for(auto p: d) {
  return 1.a*p.x + 1.b*p.y + 1.c == 0;
                                                                while(o \ge 2 \& cross(p-s[o-2], s[o-1]-s[o-2]) <= 0)
                                                                 0--
friend inline bool on_line(const Point<T>&p, const
                                                                s[o++] = p;
   Line& 1){
  return on_line__(p, l, is_floating_point<T>());
                                                               for(int i=SZ(d)-2, t = o+1;i>=0;i--){
                                                                while(o = t\&cross(d[i] - s[o-2], s[o-1] - s[o-2]) <= 0)
friend inline bool is_parallel__(const Line& x, const
                                                                 0--
   Line& y, true_type){
                                                                s[o++] = d[i];
 return fabs(x.a*y.b - x.b*y.a) < EPS;</pre>
                                                               s.resize(o-1); swap(s, d);
                                                               for(auto i: s) in_hull.insert(i);
friend inline bool is_parallel__(const Line& x, const
   Line& y, false_type){
                                                              vector<PT> get(){return d;}
  return x.a*y.b == x.b*y.a;
                                                              bool in_it(const PT& x){
friend inline bool is_parallel(const Line& x, const
                                                               return in_hull.find(x)!=in_hull.end();}
    Line& y){
  return is_parallel__(x, y, is_floating_point<T>());
                                                             6.6 3D Convex Hull
friend inline Pt get_inter(const Line& x, const Line&
                                                            // return the faces with pt indexes
                                                             int flag[MXN][MXN];
  typedef long double llf;
                                                            struct Point{
  if(x==y) return INF_P;
                                                              ld x, y, z;
  if(is_parallel(x, y)) return NOT_EXIST;
                                                              Point operator * (const ld &b) const {
 llf delta = x.a*y.b - x.b*y.a;
                                                               return (Point) {x*b, y*b, z*b};}
 llf delta_x = x.b*y.c - x.c*y.b;
                                                              Point operator * (const Point &b) const {
 llf delta_y = x.c*y.a - x.a*y.c;
                                                               return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
 return Pt(delta_x / delta, delta_y / delta);
friend ostream&operator<<(ostream&ss, const Line&o){</pre>
                                                            Point ver(Point a, Point b, Point c) {
  return (b - a) * (c - a);}
 ss<<o.a<<"x+"<<o.b<<"y+"<<o.c<<"=0";
 return ss:
                                                             vector<Face> convex_hull_3D(const vector<Point> pt) {
                                                              int n = SZ(pt), ftop = 0;
                                                              REP(i,n) REP(j,n) flag[i][j] = 0;
template<typename T>
                                                              vector<Face> now
inline Line<T> get_line(const Point<T>& a, const Point<</pre>
                                                              now.emplace_back(0,1,2);
    T>& b){
                                                              now.emplace_back(2,1,0);
return Line<T>(a.y-b.y, b.x-a.x, (b.y-a.y)*a.x-(b.x-a.
                                                              for (int i=3; i<n; i++){</pre>
    x)*a.y);
                                                              ftop++; vector<Face> next;
REP(j, SZ(now)) {
  Face& f=now[j]; int ff = 0;
6.4 Triangle Circumcentre
                                                                ld d=(pt[i]-pt[f.a]).dot(
template<typename T>
                                                                  ver(pt[f.a], pt[f.b], pt[f.c]));
Circle<llf> get_circum(const Point<T>& a, const Point<T
                                                                if (d <= 0) next.push_back(f);</pre>
    >& b, const Point<T>& c){
                                                                if (d > 0) ff=ftop;
11f a1 = a.x-b.x, b1 = a.y-b.y;
                                                                else if (d < 0) ff=-ftop;</pre>
11f c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
                                                                flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;
11f a2 = a.x-c.x, b2 = a.y-c.y;
11f c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
                                                               REP(j, SZ(now)) {
Circle<llf> cc;
                                                               Face& f=now[j]
cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
                                                                if (flag[f.a][f.b] > 0 &&
cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2);
                                                                  flag[f.a][f.b] != flag[f.b][f.a])
cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
                                                                 next.emplace_back(f.a,f.b,i);
return cc;
                                                                if (flag[f.b][f.c] > 0 &&
                                                                  flag[f.b][f.c] != flag[f.c][f.b])
                                                                 next.emplace_back(f.b,f.c,i);
6.5 2D Convex Hull
                                                                if (flag[f.c][f.a] > 0 &&
template<typename T>
                                                                  flag[f.c][f.a] != flag[f.a][f.c])
class ConvexHull_2D{
                                                                 next.emplace_back(f.c,f.a,i);
private:
typedef Point<T> PT;
                                                              now=next;
vector<PT> d;
struct myhash{
                                                              return now;
 uint64_t operator()(const PT& a) const {
```

2D Farthest Pair

```
// stk is from convex hull
                                                                // Argument p
n = (int)(stk.size());
                                                                11f S_cur = calc( p ), S_best = S_cur;
int pos = 1, ans = 0; stk.push_back(stk[0]);
                                                                for ( 11f T = 2000 ; T > EPS ; T -= dT ) {
                                                                 // Modify p to p_prime
const llf S_prime = calc( p_prime );
for(int i=0;i<n;i++) {</pre>
 while(abs(cross(stk[i+1]-stk[i],
                                                                 const llf delta_c = S_prime - S_cur;
llf prob = min( ( llf ) 1, exp( -delta_c / T ) );
   stk[(pos+1)%n]-stk[i])) >
   abs(cross(stk[i+1]-stk[i],
   stk[pos]-stk[i]))) pos = (pos+1)%n;
                                                                 if ( rnd( rnd_engine ) <= prob )</pre>
                                                                  S_cur = S_prime, p = p_prime;
 ans = max({ans, dis(stk[i], stk[pos]),
  dis(stk[i+1], stk[pos])});
                                                                 if ( S_prime < S_best ) // find min</pre>
                                                                  S_best = S_prime, p_best = p_prime;
6.8 2D Closest Pair
                                                                return S_best;
struct cmp_y {
 bool operator()(const P& p, const P& q) const {
                                                               6.11 Half Plane Intersection
  return p.y < q.y;</pre>
                                                              inline int dcmp ( double x ) {
                                                                if( fabs( x ) < eps ) return 0;</pre>
multiset<P, cmp_y> s;
                                                                return x > 0 ? 1 : -1;
void solve(P a[], int n) {
 sort(a, a + n, [](const P& p, const P& q) {
                                                               struct Line {
  return tie(p.x, p.y) < tie(q.x, q.y);</pre>
                                                               Point st, ed;
                                                                double ang;
 11f d = INF; int pt = 0;
                                                                Line(Point _s=Point(), Point _e=Point()):
                                                                st(_s),ed(_e),ang(atan2(_e.y-_s.y,_e.x-_s.x)){}
inline bool operator< ( const Line& rhs ) const</pre>
 for (int i = 0; i < n; ++i) {
 while (pt < i and a[i].x - a[pt].x >= d)
   s.erase(s.find(a[pt++]));
                                                                 if(dcmp(ang - rhs.ang) != 0) return ang < rhs.ang;</pre>
  auto it = s.lower_bound(P(a[i].x, a[i].y - d));
                                                                 return dcmp( cross( st, ed, rhs.st ) ) < 0;</pre>
  while (it != s.end() and it->y - a[i].y < d)
   d = min(d, dis(*(it++), a[i]));
  s.insert(a[i]);
                                                               // cross(pt, line.ed-line.st)>=0 <-> pt in half plane
                                                               vector< Line > lns;
                                                               deque< Line > que;
                                                               deque< Point > pt;
6.9
     kD Closest Pair (3D ver.)
                                                               double HPI() {
                                                                sort( lns.begin(), lns.end() );
11f solve(vector<P> v) {
                                                                que.clear(); pt.clear();
 shuffle(v.begin(), v.end(), mt19937());
                                                                que.push_back( lns[ 0 ] );
for ( int i = 1 ; i < (int)lns.size() ; i ++ ) {</pre>
 unordered_map<lld, unordered_map<lld,
  unordered_map<lld, int>>> m;
                                                                 if(!dcmp(lns[i].ang - lns[i-1].ang)) continue;
 llf d = dis(v[0], v[1]);
                                                                 while ( pt.size() > 0 &&
 auto Idx = [&d] (11f x) -> 11d {
                                                                  dcmp(cross(lns[i].st,lns[i].ed,pt.back()))<0){</pre>
  return round(x * 2 / d) + 0.1; };
                                                                  pt.pop_back();que.pop_back();
 auto rebuild_m = [&m, &v, &Idx](int k) {
  m.clear();
                                                                 while ( pt.size() > 0 &&
  for (int i = 0; i < k; ++i)
                                                                  dcmp(cross(lns[i].st,lns[i].ed,pt.front()))<0){</pre>
   m[Idx(v[i].x)][Idx(v[i].y)]
                                                                  pt.pop_front(); que.pop_front();
    [Idx(v[i].z)] = i;
 }; rebuild_m(2);
 for (size_t i = 2; i < v.size(); ++i) {
  const lld kx = Idx(v[i].x), ky = Idx(v[i].y),</pre>
                                                                 pt.push_back(get_point( que.back(), lns[ i ] ));
                                                                 que.push_back( lns[ i ] );
     kz = Idx(v[i].z); bool found = false;
                                                                while ( pt.size() > 0 &&
  for (int dx = -2; dx <= 2; ++dx) {
                                                                 dcmp(cross(que[0].st, que[0].ed, pt.back()))<0){
   const 11d nx = dx + kx;
                                                                 que.pop_back();
   if (m.find(nx) == m.end()) continue;
   auto& mm = m[nx];
                                                                 pt.pop_back();
   for (int dy = -2; dy <= 2; ++dy) {
                                                                while ( pt.size() > 0 &&
    const 11d ny = dy + ky;
                                                                 dcmp(cross(que.back().st,que.back().ed,pt[0]))<0){</pre>
    if (mm.find(ny) == mm.end()) continue;
                                                                 que.pop_front();
    auto& mmm = mm[ny];
                                                                 pt.pop_front();
    for (int dz = -2; dz <= 2; ++dz) {
     const lld nz = dz + kz;
                                                                pt.push_back(get_point(que.front(), que.back()));
     if (mmm.find(nz) == mmm.end()) continue;
                                                                vector< Point > conv;
     const int p = mmm[nz];
                                                                for ( int i = 0 ; i < (int)pt.size() ; i ++ )</pre>
     if (dis(v[p], v[i]) < d) {</pre>
                                                                 conv.push_back( pt[ i ] );
      d = dis(v[p], v[i]);
                                                                double ret = 0;
      found = true;
                                                                for ( int i = 1 ; i + 1 < (int)conv.size() ; i ++ )</pre>
     }
                                                                 ret += abs(cross(conv[0], conv[i], conv[i + 1]));
                                                                return ret / 2.0;
  if (found) rebuild_m(i + 1);
                                                                     Ternary Search on Integer
  else m[kx][ky][kz] = i;
                                                               int TernarySearch(int 1, int r) {
 return d;
                                                                // max value @ (1, r]
                                                                while (r - 1 > 1){
                                                                 int m = (1 + r) >> 1;
6.10 Simulated Annealing
                                                                 if (f(m) > f(m + 1)) r = m;
11f anneal() {
                                                                 else 1 = m;
 mt19937 rnd_engine( seed );
 uniform_real_distribution< llf > rnd( 0, 1 );
                                                                return 1+1;
const llf dT = 0.001;
```

```
6.13 Minimum Covering Circle
template<typename T>
Circle<llf> MinCircleCover(const vector<PT>& pts){
 random_shuffle(ALL(pts));
 Circle<llf> c = \{pts[0], 0\};
  for(int i=0;i<SZ(pts);i++){</pre>
    if(pts[i].in(c)) continue;
    c = {pts[i], 0};
    for(int j=0;j<i;j++){</pre>
      if(pts[j].in(c)) continue;
      c.o = (pts[i] + pts[j]) / 2;
      c.r = pts[i].dis(c.o);
      for(int k=0;k<j;k++){</pre>
        if(pts[k].in(c)) continue;
        c = get_circum(pts[i], pts[j], pts[k]);
   }
 return c;
      KDTree (Nearest Point)
6.14
const int MXN = 100005;
struct KDTree {
struct Node {
 int x,y,x1,y1,x2,y2;
 int id,f;
Node *L, *R;
 } tree[MXN], *root;
```

```
LL dis2(int x1, int y1, int x2, int y2) {
LL dx = x1-x2, dy = y1-y2;
 return dx*dx+dy*dy;
static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
void init(vector<pair<int,int>> ip) {
 n = ip.size();
 for (int i=0; i<n; i++) {</pre>
  tree[i].id = i;
  tree[i].x = ip[i].first;
  tree[i].y = ip[i].second;
 root = build_tree(0, n-1, 0);
Node* build_tree(int L, int R, int d) {
 if (L>R) return nullptr
 int M = (L+R)/2; tree[M].f = d%2;
 nth_element(tree+L, tree+M, tree+R+1, d%2?cmpy:cmpx);
 tree[M].x1 = tree[M].x2 = tree[M].x;
 tree[M].y1 = tree[M].y2 = tree[M].y;
 tree[M].L = build_tree(L, M-1, d+1);
 if (tree[M].L) {
  tree[M].x1 = min(tree[M].x1, tree[M].L->x1);

tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
  tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
  tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
 tree[M].R = build_tree(M+1, R, d+1);
 if (tree[M].R) {
  tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
  tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
  tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
 }
 return tree+M;
int touch(Node* r, int x, int y, LL d2){
 LL dis = sqrt(d2)+1;
 if (x<r->x1-dis || x>r->x2+dis ||
   y<r->y1-dis || y>r->y2+dis)
  return 0;
 return 1;
void nearest(Node* r,int x,int y,int &mID,LL &md2) {
 if (!r || !touch(r, x, y, md2)) return;
LL d2 = dis2(r->x, r->y, x, y);
 if (d2 < md2 \mid | (d2 == md2 \&\& mID < r->id)) {
  mID = r->id;
  md2 = d2;
```

```
// search order depends on split dim
  if ((r->f == 0 && x < r->x) ||
     (r->f == 1 && y < r->y)) {
   nearest(r->L, x, y, mID, md2);
nearest(r->R, x, y, mID, md2);
  } else {
   nearest(r->R, x, y, mID, md2);
   nearest(r->L, x, y, mID, md2);
 int query(int x, int y) {
  int id = 1029384756;
  LL d2 = 102938475612345678LL;
  nearest(root, x, y, id, d2);
  return id;
} tree;
```

Stringology

7.1 Hash

```
class Hash {
 private:
  static constexpr int P = 127, Q = 1051762951;
  vector<int> h, p;
 public:
  void init(const string &s){
   h.assign(s.size()+1, 0); p.resize(s.size()+1);
   for (size_t i = 0; i < s.size(); ++i)
h[i + 1] = add(mul(h[i], P), s[i]);</pre>
   generate(p.begin(), p.end(),[x=1,y=1,this]()
     mutable{y=x;x=mul(x,P);return y});
  int query(int 1, int r){ // 1-base (1, r]
   return sub(h[r], mul(h[1], p[r-1]));}
```

7.2 Suffix Array

```
namespace sfxarray {
bool t[maxn * 2];
int hi[maxn], rev[maxn];
int _s[maxn * 2], sa[maxn * 2], c[maxn * 2];
int x[maxn], p[maxn], q[maxn * 2];
// sa[i]: sa[i]-th suffix is the \
// i-th lexigraphically smallest suffix.
// hi[i]: longest common prefix \
// of suffix sa[i] and suffix sa[i - 1].
void pre(int *sa, int *c, int n, int z) {
 memset(sa, 0, sizeof(int) * n);
 memcpy(x, c, sizeof(int) * z);
void induce(int *sa,int *c,int *s,bool *t,int n,int z){
 memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
if (sa[i] && !t[sa[i] - 1])
    sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
 memcpy(x, c, sizeof(int) * z);
for (int i = n - 1; i >= 0; --i)
  if (sa[i] && t[sa[i] - 1])
   sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
void sais(int *s, int *sa, int *p, int *q,
 bool *t, int *c, int n, int z) {
bool uniq = t[n - 1] = true;
 int nn=0, nmxz=-1, *nsa = sa+n, *ns=s+n, last=-1;
 memset(c, 0, sizeof(int) * z);
 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
 if (uniq) +
  for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;
  return;
 for (int i = n - 2; i \ge 0; --i)
  t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
 pre(sa, c, n, z);
for (int i = 1; i <= n - 1; ++i)
  if (t[i] && !t[i - 1])</pre>
   sa[--x[s[i]]] = p[q[i] = nn++] = i;
 induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
  if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
```

```
bool neq = last < 0 || \
  memcmp(s + sa[i], s + last,
(p[q[sa[i]] + 1] - sa[i]) * sizeof(int));
  ns[q[last = sa[i]]] = nmxz += neq;
                                                                 void match( const string& s, vector< int >& ret ) {
                                                                  node* u = rt;
}}
 sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                                   for ( auto c : s ) {
pre(sa, c, n, z);
                                                                    while ( u != rt and not u->nxt[ Idx( c ) ] )
 for (int i = nn - 1; i >= 0; --i)
                                                                    u = u->fail;
  sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
                                                                    u = u->nxt[Idx(c)];
                                                                    if ( not u ) u = rt;
 induce(sa, c, s, t, n, z);
                                                                    node* tmp = u;
                                                                    while ( tmp != rt ) {
void build(const string &s) {
                                                                     for ( auto d : tmp->data )
  ret.push_back( d );
for (int i = 0; i < (int)s.size(); ++i) _s[i] = s[i];</pre>
 _s[(int)s.size()] = 0; // s shouldn't contain 0
sais(_s, sa, p, q, t, c, (int)s.size() + 1, 256);
for(int i = 0; i < (int)s.size(); ++i) sa[i]=sa[i+1];
for(int i = 0; i < (int)s.size(); ++i) rev[sa[i]]=i;</pre>
                                                                     tmp = tmp->fail;
 int ind = 0; hi[0] = 0;
                                                                 }
for (int i = 0; i < (int)s.size(); ++i) {</pre>
                                                               } ac;
 if (!rev[i]) {
                                                               7.4 Suffix Automaton
  ind = 0:
   continue;
                                                               struct Node{
                                                                Node *green, *edge[26];
 while (i + ind < (int)s.size() && \</pre>
                                                                int max_len;
   s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
                                                                Node(const int _max_len)
 hi[rev[i]] = ind ? ind-- : 0;
                                                                 : green(NULL), max_len(_max_len){
                                                                 memset(edge, 0, sizeof(edge));
                                                               } *ROOT, *LAST;
      Aho-Corasick Algorithm
                                                               void Extend(const int c) {
                                                                Node *cursor = LAST;
class AhoCorasick{
                                                                LAST = new Node((LAST->max_len) + 1);
private:
  static constexpr int Z = 26;
                                                                for(;cursor&!cursor->edge[c]; cursor=cursor->green)
 struct node{
                                                                 cursor->edge[c] = LAST;
  node *nxt[ Z ], *fail;
                                                                if (!cursor)
                                                                 LAST->green = ROOT;
   vector< int > data;
   node(): fail( nullptr ) {
                                                                else {
    memset( nxt, 0, sizeof( nxt ) );
                                                                 Node *potential_green = cursor->edge[c];
                                                                 if((potential_green->max_len)==(cursor->max_len+1))
    data.clear():
                                                                  LAST->green = potential_green;
  } *rt;
                                                                 else {
  inline int Idx( char c ) { return c - 'a'; }
                                                               //assert(potential_green->max_len>(cursor->max_len+1));
                                                                  Node *wish = new Node((cursor->max_len) + 1);
  void init() { rt = new node(); }
                                                                   for(;cursor && cursor->edge[c]==potential_green;
  void add( const string& s, int d ) {
                                                                      cursor = cursor->green)
   node* cur = rt;
                                                                    cursor->edge[c] = wish;
   for ( auto c : s ) {
                                                                   for (int i = 0; i < 26; i++)
   if ( not cur->nxt[ Idx( c ) ] )
                                                                   wish->edge[i] = potential_green->edge[i];
     cur->nxt[ Idx( c ) ] = new node();
                                                                  wish->green = potential_green->green;
    cur = cur->nxt[ Idx( c ) ];
                                                                  potential_green->green = wish;
                                                                  LAST->green = wish;
   cur->data.push_back( d );
  }
  void compile() {
                                                               char S[10000001], A[10000001];
   vector< node* > bfs;
                                                               int N:
   size_t ptr = 0;
                                                               int main(){
   for ( int i = 0 ; i < Z ; ++ i ) {
                                                                scanf("%d%s", &N, S);
ROOT = LAST = new Node(0);
   if ( not rt->nxt[ i ] ) {
     // uncomment 2 lines to make it DFA
     // rt->nxt[i] = rt;
                                                                for (int i = 0; S[i]; i++)
                                                                 Extend(S[i] - 'a');
     continue;
                                                                while (N--){
  scanf("%s", A);
    rt->nxt[ i ]->fail = rt;
                                                                 Node *cursor = ROOT;
    bfs.push_back( rt->nxt[ i ] );
                                                                 bool ans = true;
   while ( ptr < bfs.size() ) {</pre>
                                                                 for (int i = 0; A[i]; i++){
   node* u = bfs[ ptr ++ ];
for ( int i = 0 ; i < Z ; ++ i ) {
  if ( not u->nxt[ i ] ) {
                                                                  cursor = cursor->edge[A[i] - 'a'];
                                                                  if (!cursor) {
                                                                   ans = false;
      // u->nxt[i] = u->fail->nxt[i];
                                                                    break;
      continue;
                                                                 puts(ans ? "Yes" : "No");
     node* u_f = u->fail;
     while ( u_f ) {
      if ( not u_f->nxt[ i ] ) {
                                                                return 0;
       u_f = u_f->fail; continue;
                                                               }
                                                               7.5 KMP
      u->nxt[ i ]->fail = u_f->nxt[ i ];
                                                               vector<int> kmp(const string &s) {
      break;
                                                                vector<int> f(s.size(), 0);
     if ( not u_f ) u->nxt[ i ]->fail = rt;
                                                                /* f[i] = length of the longest prefix
     bfs.push_back( u->nxt[ i ] );
                                                                   (excluding s[0:i]) such that it coincides
```

```
National Taiwan University - kiseki
   with the suffix of s[0:i] of the same length */
 /* i + 1 - f[i] is the length of the
  smallest recurring period of s[0:i] */
 int k = 0:
for (int i = 1; i < (int)s.size(); ++i) {</pre>
 while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
  if (s[i] == s[k]) ++k;
 f[i] = k;
return f:
vector<int> search(const string &s, const string &t) {
// return 0-indexed occurrence of t in s
 vector<int> f = kmp(t), r;
for (int i = 0, k = 0; i < (int)s.size(); ++i) {</pre>
 while(k > 0 && (k==(int)t.size() \mid \mid s[i]!=t[k]))
  k = f[k - 1]
  if (s[i] == t[k]) ++k;
 if (k == (int)t.size()) r.push_back(i-t.size()+1);
return res;
7.6 Z value
char s[MAXN];
int len,z[MAXN];
void Z_value() {
 int i, j, left, right;
z[left=right=0]=len;
for(i=1;i<len;i++)</pre>
  j=max(min(z[i-left], right-i),0);
  for(;i+j<len&&s[i+j]==s[j];j++);
  if(i+(z[i] = j)>right) {
   right=i+z[i];
  left=i;
  }
}
7.7
     Manacher
int z[maxn]:
int manacher(const string& s) {
  string t = ".";
for(char c:s)) t += c, t += '.';
 int 1 = 0, r = 0, ans = 0;
for (int i = 1; i < t.length(); ++i) {</pre>
 z[i] = (r > i ? min(z[2 * 1 - i], r - i) : 1);
 while (i - z[i] >= 0 \&\& i + z[i] < t.length()) {
  if(t[i - z[i]] == t[i + z[i]]) ++z[i];
   else break;
  if (i + z[i] > r) r = i + z[i], l = i;
for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);
return ans;
7.8 Lexico Smallest Rotation
string mcp(string s){
int n = s.length();
s += s;
int i=0, j=1;
while (i<n && j<n){</pre>
 int k = 0;
 while (k < n \&\& s[i+k] == s[j+k]) k++;
 if (s[i+k] <= s[j+k]) j += k+1;
 else i += k+1;
 if (i == j) j++;
```

```
void iBWT(char* ori, char* res){
  for( int i = 0 ; i < SIGMA ; i ++ )</pre>
   v[ i ].clear();
  int len = strlen( ori );
  for( int i = 0 ; i < len ; i ++ )</pre>
   v[ ori[i] - BASE ].push_back( i );
  vector<int> a:
  for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
for( auto j : v[ i ] ){
   a.push_back( j );
}</pre>
    ori[ ptr ++ ] = BASE + i;
  for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
   ptr = a[ ptr ];
  res[ len ] = 0;
 }
} bwt;
7.10
      Palindromic Tree
struct palindromic_tree{
 struct node{
  int next[26],f,len;
  int cnt,num,st,ed;
  node(int l=0):f(0),len(l),cnt(0),num(0) {
   memset(next, 0, sizeof(next)); }
 vector<node> st;
 vector<char> s;
 int last,n;
 void init(){
  st.clear();s.clear();last=1; n=0;
  st.push_back(0);st.push_back(-1);
  st[0].f=1;s.push_back(-1); }
 int getFail(int x)
  while(s[n-st[x].len-1]!=s[n])x=st[x].f;
  return x;}
 void add(int c){
  s.push_back(c-='a'); ++n;
  int cur=getFail(last);
  if(!st[cur].next[c]){
   int now=st.size();
   st.push_back(st[cur].len+2);
   st[now].f=st[getFail(st[cur].f)].next[c];
   st[cur].next[c]=now;
   st[now].num=st[st[now].f].num+1;
  last=st[cur].next[c];
  ++st[last].cnt;}
 int size(){ return st.size()-2;}
} pt;
int main() {
 string s; cin >> s; pt.init();
 for (int i=0; i<SZ(s); i++) {</pre>
  int prvsz = pt.size(); pt.add(s[i]);
  if (prvsz != pt.size())
   int r = i, l = r - pt.st[pt.last].len + 1;
```

8 Misc

return 0;

}

8.1 Theorems

8.1.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

• The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.

// pal @ [1,r]: s.substr(1, r-l+1)

- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|.$

8.1.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

7.9 BWT

```
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
vector<int> v[ SIGMA ];
void BWT(char* ori, char* res){
  // make ori -> ori + ori
  // then build suffix array
```

int ans = i < n ? i : j;</pre>

return s.substr(ans, n);

8.1.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\dots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$

8.1.4 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \le k \le n$.

8.1.5 Havel-Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.6 Hall's marriage theorem

Let G be a finite bipartite graph with bipartite sets X and Y. For a subset W of X, let $N_G(W)$ denote the set of all vertices in Y adjacent to some element of W. Then there is an X-saturating matching iff $\forall W\subseteq X, |W|\leq |N_G(W)|$

8.1.7 Euler's planar graph formula

V - E + F = C + 1, E < 3V - 6(?)

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have A #{lattice points in the interior} + $\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Lucas's theorem

 $\binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p}, \text{ where } m=m_k p^k+m_{k-1} p^{k-1}+\cdots+m_1 p+m_0,$ and $n=n_k p^k+n_{k-1} p^{k-1}+\cdots+n_1 p+n_0.$

8.2 MaximumEmptyRect

```
int max_empty_rect(int n, int m, bool blocked[N][N]) {
 static int mxu[2][N], me=0, he=1, ans=0;
for (int i=0;i<m;i++) mxu[he][i]=0;</pre>
for (int i=0;i<n;i++) {</pre>
  stack<PII, vector<PII>> stk;
  for (int j=0;j<m;++j) {</pre>
   if (blocked[i][j]) mxu[me][j]=0;
   else mxu[me][j]=mxu[he][j]+1;
   int la = j;
   while (!stk.empty()&&stk.top().FF>mxu[me][j]) {
    int x1 = i - stk.top().FF, x2 = i;
int y1 = stk.top().SS, y2 = j;
    la = stk.top().SS; stk.pop();
    ans=max(ans,(x2-x1)*(y2-y1));
   if (stk.empty()||stk.top().FF<mxu[me][j])</pre>
    stk.push({mxu[me][j],la});
 while (!stk.empty()) {
  int x1 = i - stk.top().FF, x2 = i;
   int y1 = stk.top().SS-1, y2 = m-1;
  stk.pop(); ans=max(ans,(x2-x1)*(y2-y1));
  swap(me, he);
}
 return ans;
```

8.3 DP-opt Condition

8.3.1 totally monotone (concave/convex)

 $\begin{array}{l} \forall i < i', j < j', B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}$

8.3.2 monge condition (concave/convex)

 $\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}$

8.4 Convex 1D/1D DP

```
struct segment {
 int i, 1, r;
segment() {}
 segment(int a, int b, int c): i(a), l(b), r(c) {}
inline 1ld f(int 1, int r){return dp[1] + w(1+1, r);}
void solve() {
 dp[0] = 0;
 deque<segment> dq; dq.push_back(segment(0, 1, n));
 for (int i = 1; i <= n; ++i) {
  dp[i] = f(dq.front().i, i);
  while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
  dq.front().l = i + 1;
  segment seg = segment(i, i + 1, n);
  while (dq.size() &&
   f(i, dq.back().1)<f(dq.back().i, dq.back().1))
    dq.pop_back();
  if (dq.size())
   int d = 1 << 20, c = dq.back().1;</pre>
   while (d \gg 1) if (c + d \ll d, back().r)
    if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.1 = c + 1;
  if (seg.1 <= n) dq.push_back(seg);</pre>
```

```
ConvexHull Optimization
inline 1ld DivCeil(1ld n, 1ld d) { // ceil(n/d)
 return n / d + (((n < 0) != (d > 0)) && (n % d));
struct Line {
 static bool flag;
 11d a, b, 1, r; // y=ax+b in [1, r)
 1ld operator()(lld x) const { return a * x + b; }
 bool operator<(const Line& i) const {</pre>
  return flag ? tie(a, b) < tie(i.a, i.b) : 1 < i.1;</pre>
 11d operator&(const Line& i) const {
  return DivCeil(b - i.b, i.a - a);
bool Line::flag = true;
class ConvexHullMax {
 set<Line> L;
 public:
 ConvexHullMax() { Line::flag = true; }
 void InsertLine(lld a, lld b) { // add y = ax + b
  Line now = \{a, b, -INF, INF\};
  if (L.empty())
   L.insert(now);
   return;
  Line::flag = true;
  auto it = L.lower_bound(now);
  auto prv = it == L.begin() ? it : prev(it);
  if (it != L.end() && ((it != L.begin() &&
   (*it)(it->1) >= now(it->1) &&
   (*prv)(prv->r - 1) >= now(prv->r - 1)) ||
   (it == L.begin() && it->a == now.a))) return;
  if (it != L.begin()) {
   while (prv != L.begin() &&
    (*prv)(prv->1) <= now(prv->1))
     prv = --L.erase(prv);
   if (prv == L.begin() && now.a == prv->a)
    L.erase(prv);
  if (it != L.end())
  while (it != --L.end() &&
  (*it)(it->r) <= now(it->r))
     it = L.erase(it)
  if (it != L.begin()) {
   prv = prev(it);
   const_cast<Line*>(&*prv)->r=now.l=((*prv)&now);
  if (it != L.end())
   const_cast<Line*>(&*it)->l=now.r=((*it)&now);
  L.insert(it, now);
 11d Query(11d a) const { // query max at x=a
```

```
if (L.empty()) return -INF;
                                                                 min_dp[1][1]=1;
  Line::flag = false;
auto it = --L.upper_bound({0, 0, a, 0});
                                                                 min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f;
                                                                 for(int i=0;i<(int)g[u].size();i++){</pre>
  return (*it)(a);
                                                                  int v=g[u][i];
 }
                                                                  if(v==fa) continue;
};
                                                                  memset(tmp,0x8f,sizeof tmp);
                                                                  tmp[0][0]=max(
8.6
      Josephus Problem
                                                                   min_dp[0][0]+max(dp[v][0],dp[v][1]),
// n people kill m for each turn
                                                                   min_dp[0][1]+dp[v][0]
int f(int n, int m) {
                                                                  ):
                                                                  tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
 int s = 0:
                                                                  tmp[1][0]=max(
 for (int i = 2; i <= n; i++)
                                                                   min_dp[1][0]+max(dp[v][0],dp[v][1]),
 s = (s + m) \% i;
 return s;
                                                                   min_dp[1][1]+dp[v][0]
// died at kth
                                                                  tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
                                                                  memcpy(min_dp,tmp,sizeof tmp);
int kth(int n, int m, int k){
if (m == 1) return n-1;
 for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
                                                                 dp[u][1]=max(min_dp[0][1],min_dp[1][0]);
 return k;
                                                                 dp[u][0]=min_dp[0][0];
8.7 Cactus Matching
                                                               int main(){
                                                                int m,a,b;
vector<int> init_g[maxn],g[maxn*2];
                                                                scanf("%d%d",&n,&m);
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
                                                                for(int i=0;i<m;i++){
  scanf("%d%d",&a,&b);</pre>
void tarjan(int u){
 dfn[u]=low[u]=++dfs_idx;
                                                                 init_g[a].push_back(b);
 for(int i=0;i<(int)init_g[u].size();i++){</pre>
                                                                 init_g[b].push_back(a);
  int v=init_g[u][i];
  if(v==par[u]) continue;
  if(!dfn[v]){
                                                                par[1]=-1;
                                                                tarjan(1);
   par[v]=u;
                                                                dfs(1,-1);
   tarjan(v);
                                                                printf("%d\n", max(dp[1][0], dp[1][1]));
   low[u]=min(low[u],low[v]);
   if(dfn[u]<low[v]){</pre>
                                                                return 0;
    g[u].push_back(v);
    g[v].push_back(u);
                                                               8.8 DLX
  }else{
                                                               struct DLX {
   low[u]=min(low[u],dfn[v]);
                                                                 const static int maxn=210;
   if(dfn[v]<dfn[u]){</pre>
                                                                 const static int maxm=210;
    int temp_v=u;
                                                                 const static int maxnode=210*210;
    bcc_id++;
                                                                 int n, m, size, row[maxnode], col[maxnode];
    while(temp_v!=v){
                                                                 int U[maxnode], D[maxnode], L[maxnode], R[maxnode];
     g[bcc_id+n].push_back(temp_v);
                                                                 int H[maxn], S[maxm], ansd, ans[maxn];
     g[temp_v].push_back(bcc_id+n);
                                                                 void init(int _n, int _m) {
     temp_v=par[temp_v];
                                                                   n = _n, m = _m;
                                                                   for(int i = 0; i <= m; ++i) {
    g[bcc_id+n].push_back(v);
                                                                     S[i] = 0;
    g[v].push_back(bcc_id+n);
                                                                     U[i] = D[i] = i;
                                                                     L[i] = i-1, R[i] = i+1;
    reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
                                                                   R[L[0] = size = m] = 0;
                                                                   for(int i = 1; i <= n; ++i) H[i] = -1;
int dp[maxn][2],min_dp[2][2],tmp[2][2],tp[2];
                                                                 void Link(int r, int c) {
void dfs(int u,int fa){
                                                                   ++S[col[++size] = c];
                                                                   row[size] = r; D[size] = D[c];
U[D[c]] = size; U[size] = c; D[c] = size;
 if(u \le n){
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
                                                                   if(H[r] < 0) H[r] = L[size] = R[size] = size;
   if(v==fa) continue;
                                                                   else {
                                                                     R[size] = R[H[r]];
   dfs(v,u)
                                                                     L[R[H[r]]] = size;
   memset(tp,0x8f,sizeof tp);
                                                                     L[size] = H[r];
R[H[r]] = size;
   if(v<=n){
    tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
    tp[1]=max(
                                                                   }
     dp[u][0]+dp[v][0]+1
                                                                 void remove(int c) {
     dp[u][1]+max(dp[v][0],dp[v][1])
                                                                   L[R[c]] = L[c]; R[L[c]] = R[c];
                                                                   for(int i = D[c]; i != c; i = D[i])
   }else{
                                                                     for(int j = R[i]; j != i; j = R[j]) {
  U[D[j]] = U[j];
    tp[0]=dp[u][0]+dp[v][0]:
    tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
                                                                       D[U[j]] = D[j];
   dp[u][0]=tp[0],dp[u][1]=tp[1];
                                                                        --S[col[j]];
 }else{
                                                                 void resume(int c) {
   L[R[c]] = c; R[L[c]] = c;
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
                                                                   for(int i = U[c]; i != c; i = U[i])
                                                                     for(int j = L[i]; j != i; j = L[j]) {
  U[D[j]] = j;
   dfs(v,u);
  min_dp[0][0]=0;
                                                                       D[U[j]] = j;
```

long long Alien() {

long long c = kInf;

for (int d = 60; d >= 0; --d) {

if (r.second < k) c = ck;

return r.first - c * k;

if (c - (1LL << d) < 0) continue;

long long $ck = c - (1LL \ll d);$

pair<long long, int> r = check(c);

// cost can be negative, depending on the problem.

pair<long long, int> r = check(ck);
if (r.second == k) return r.first - ck * k;

```
++S[col[j]];
    }
  }
  void dance(int d) {
    if(d>=ansd) return;
    if(R[0] == 0) {
      ansd = d;
      return;
    int c = R[0];
    for(int i = R[0]; i; i = R[i])
      if(S[i] < S[c]) c = i;
    remove(c);
    for(int i = D[c]; i != c; i = D[i]) {
      ans[d] = row[i];
      for(int j = R[i]; j != i; j = R[j])
        remove(col[j]);
      dance(d+1);
      for(int j = L[i]; j != i; j = L[j])
        resume(col[j]);
    resume(c);
} sol;
     Tree Knapsack
int dp[N][K];PII obj[N];
vector<int> G[N];
void dfs(int u, int mx){
 for(int s: G[u]) {
  if(mx < obj[s].first) continue;</pre>
  for(int i=0;i<=mx-obj[s].FF;i++)</pre>
   dp[s][i] = dp[u][i];
  dfs(s, mx - obj[s].first);
  for(int i=obj[s].FF;i<=mx;i++)</pre>
   dp[u][i] = max(dp[u][i],
    dp[s][i - obj[s].FF] + obj[s].SS);
}
int main(){
 int n, k; cin >> n >> k;
 for(int i=1;i<=n;i++){</pre>
 int p; cin >> p;
  G[p].push_back(i);
  cin >> obj[i].FF >> obj[i].SS;
 dfs(0, k); int ans = 0;
 for(int i=0;i<=k;i++) ans = max(ans, dp[0][i]);</pre>
 cout << ans << '\n';
 return 0;
      N Queens Problem
8.10
vector< int > solve( int n ) {
 // no solution when n=2, 3
 vector< int > ret;
if ( n % 6 == 2 ) {
  for ( int i = 2 ; i <= n ; i += 2 )
    ret.push_back( i );</pre>
  ret.push_back( 3 ); ret.push_back( 1 );
  for ( int i = 7 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back( 5 );
 } else if ( n % 6 == 3 ) {
  for ( int i = 4 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back(_2 );
  for ( int i = 5 ; i <= n ; i += 2 )
  ret.push_back( i );
  ret.push_back( 1 ); ret.push_back( 3 );
 } else {
 for ( int i = 2 ; i <= n ; i += 2 )
   ret.push_back( i );
  for ( int i = 1 ; i <= n ; i += 2 )
  ret.push_back( i );
 }
 return ret;
```

```
8.11 Aliens Optimization
```