Reading: (i) Simon (S) chapters5 - 7, 12 (ii) Alloul (A) 2.1, (iii) "Impossible Crystals," by H. C. von Bayer, Discover (1990) (iv) A.I. Goldman et al. "Quasicrystalline Materials," American Scientist (1996) (v) P.J. Steinhardt, "Icosahedral Solids: A New Phase of Matter?" Science (1987) (vi) P.J. Lu and P.J Steinnardt, "Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture," Science (2007). (please find these readings on the course website)

Problems:

- 1. Simon Problem 4.5 Chemical Potential of 2D Electrons
- 2. Simon Problem 5.1 Madelung's Rule.
- 3. Simon Problem 6.1 Chemical Bonding
- 4. Cohesive Energy of Free Electron Fermi Gas
 - . Cohesive energy of free electron Fermi gas. We define the dimensionless length r_s as r_0/a_H , where r_0 is the radius of a sphere that contains one electron, and a_H is the Bohr radius \hbar^2/e^2m . (a) Show that the average kinetic energy per electron in a free electron Fermi gas at 0 K is $2.21/r_s^2$, where the energy is expressed in rydbergs, with 1 Ry = $me^4/2\hbar^2$. (b) Show that the coulomb energy of a point positive charge e interacting with the uniform electron distribution of one electron in the volume of radius r_0 is $-3e^2/2r_0$, or $-3/r_s$ in rydbergs. (c) Show that the coulomb self-energy of the electron distribution in the sphere is $3e^2/5r_0$, or $6/5r_s$ in rydbergs. (d) The sum of (b) and (c) gives $-1.80/r_s$ for the total coulomb energy per electron. Show that the equilibrium value of r_s is 2.45. Will such a metal be stable with respect to separated H atoms?

5. Hcp structure

Hcp structure. Show that the c/a ratio for an ideal hexagonal close-packed structure is $(\frac{8}{3})^{\frac{1}{2}} = 1.633$. If c/a is significantly larger than this value, the crystal structure may be thought of as composed of planes of closely packed atoms, the planes being loosely stacked.

6. Please sketch a rectangular lattice with $a_2/a_1 = 2$. On this sketch please indicate a pair of neighboring planes of each type: (0,1), (1,2), (2,3), (1,2).

Questions:

- 7. What are quasicrystals? Please use a minimum of three sentences in your response.
- 8. Please explain why the initial discovery of quasicrystalline materials was met by disbelief Among many in the soild state and crystallographic communities. Please use a minimum of three sentences in your response.
- 9. Please describe ways in which the diffraction pattern of a quasicrystsal is similar and different to that of a conventional crystal.
- 10. Please describe two physical properties of quasicrystals that differ from those of their crystalline counterparts.
- 11. Please describe two possible applications of quasicrystals.
- 12. Please explain the challenges of distinguishing a quasicrystal from an icosahedral glass.