

Same Algorithm

- The maximization algorithm for both models is the same!
- Iterate two steps
 - Compute the **expected** cluster assignments according to the current model
 - **Maximize** the model parameters according to the current cluster assignments
- Expectation Maximization Algorithm (EM)

EM Algorithm

- A general technique for maximizing likelihood when you have latent variables
 - Latent variables: a variable you do not observe
 - We never get to see examples of cluster assignments
- EM allows us to write objectives without seeing these variables
 - Maximization step is familiar
 - Find the best parameters given the observations
 - Expectation step is new!
 - Pretend we see the latent variables

EM Algorithm + Clustering

- Clustering is a great example of an EM algorithm
- We could easily maximize the objective if we only knew the hidden variables
- Compute the **expected** cluster assignments, then update
- Not just clustering!
 - EM is a very general algorithm used all over

General EM Algorithm

Pictorial View

- M-Step:
 - Maximize L(q,θ) by finding new θ for fixed q(Z)

$$\log p(X|\theta) = L(q,\theta) + KL(q||p)$$

Increases Can only increase

$$\log p(X|\theta) \ge \log p(X|\theta^{old})$$

The new parameters θ best explain the "observed" variables Z

Convergence

- When will $\log p(X|\theta) = \log p(X|\theta^{old})$?
 - When we can no longer increase the likelihood
 - Since we likelihood always increases, this must be a maximum (possibly local)

Convergence

- We now see why EM converges in general
 - We are always increasing the likelihood function
 - At some point we won't be able to increase it any more
- Very powerful result
 - For any problem with latent variables, if you can write the complete data likelihood, you can use EM
 - The algorithm will always converge!

Pictorial View

- The likelihood function (red)
- Using old parameters lower bound the likelihood using L (blue)
- Maximize L to get new parameters
- $\ln p(\mathbf{X}| heta)$ $\mathcal{L}(q, heta)$
- Next E step gives new lower bound (green)

Examining EM

The General EM Algorithm

- Goal: maximize a likelihood function $p(X|\theta)$
 - Write a joint distribution over the complete data $p(X,Z|\theta)$
- Choose an initial setting for θ ^{old}
- **E step** Compute the q(Z) as p(Z|X, θ ^{old})
- **M** step Compute θ^{new} given by $\theta^{\text{rew}} = \arg \max_{\theta} Q(\theta, \theta^{\text{old}})$

$$Q(\theta, \theta^{old}) = \sum_{n} p(Z | X, \theta^{old}) \log p(X, Z | \theta)$$

- Let $\theta^{old} = \theta^{rew}$
 - Repeat until convergence

GMMs with EM

EM is Everywhere

- Remember the similar forms of GMM and K-means?
 - K-means is an application of EM in the limit
 - Force hard cluster assignments
- See, EM really is everywhere
 - Google scholar: Dempster, et al. Maximum likelihood from incomplete data via the EM algorithm.
 - 22083 citations

General EM

- The EM form is the same, but each step can be more complicated
- E step
 - Finding the values for the hidden variables may not be easy
 - We may need to approximate the values
- M step
 - Maximization may require multiple steps, optional constraints

Next Time Graphical Models

Latent Variables

- EM is useful for latent variables
 - Variables that you do not observe
- What is the structure of these latent variables?
 - How do they influence the observed variables?
 - Can you have multiple latent variables in a complex structure?
- We need some way to talk about these variables formally