第八章: 离散傅里叶变换

- ◆8.1 周期序列的表示: 离散傅里叶级数
- ◆8.2 离散傅里叶级数的性质
- ◆8.3 周期信号的傅里叶变换
- ◆8.4 傅里叶变换采样
- ◆8.5 有限长序列的傅里叶表示: 离散傅里叶变换
- ◆8.6 离散傅里叶变换的性质
- ◆8.7 用离散傅里叶变换实现线性卷积
- ◆8.8 离散余弦变换 (DCT)

离散序列的傅里叶变换/反变换定义为

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j(2\pi/N)kn}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad \longleftrightarrow \quad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

尽管上式将 ω 的变化范围选定为 $-\pi$ 与 π 之间,但任何 2π 间隔都适用于该定义式。

对于周期为 N 的周期序列 $\tilde{x}[n]$,利用其DFS系数序列为 $\tilde{X}[k]$,则周期序列 $\tilde{x}[n]$ 的傅里叶变换可表示为(2.7节、2.125)

$$\tilde{X}\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \, \tilde{X}\left[k\right] \delta\left(\omega - \frac{2\pi k}{N}\right)$$

其中 $\tilde{X}(e^{j\omega})$ 是周期为 2π 的周期函数, $\tilde{X}[k]$ 是周期为 N 的周期序列, 并且冲击串的间隔为 $2\pi/N$ 。

周期序列的FT为以其DFS系数加权间隔为 $2\pi/N$ 的周期冲击串函数。

可以证明: $\tilde{X}(e^{j\omega})$ 的傅里叶反变换为周期序列 $\tilde{x}[n]$ 。

 \bullet 证明: $\tilde{X}(e^{j\omega})$ 的傅里叶反变换为 $\tilde{X}[n]$

$$\tilde{X}\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \tilde{X}\left[k\right] \delta\left(\omega - \frac{2\pi k}{N}\right)$$

由傅里叶反变换定义,并变更 ω 积分范围为 $0-\varepsilon$ 与 $2\pi-\varepsilon$ 之 间($0 < \varepsilon < 2\pi/N$),可得 $\tilde{X}(e^{j\omega})$ 的傅里叶反变换为

$$\frac{1}{2\pi} \int_{0-\varepsilon}^{2\pi-\varepsilon} \tilde{X}\left(e^{j\omega}\right) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{0-\varepsilon}^{2\pi-\varepsilon} \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \tilde{X}\left[k\right] \delta\left(\omega - \frac{2\pi k}{N}\right) e^{j\omega n} d\omega$$

$$= \frac{1}{N} \sum_{k=-\infty}^{\infty} \tilde{X} [k] \int_{0-\varepsilon}^{2\pi-\varepsilon} \delta \left(\omega - \frac{2\pi k}{N} \right) e^{j\omega n} d\omega$$

$$= \frac{1}{N} \sum_{k=-\infty}^{\infty} \widetilde{X} \left[k \right] e^{j(2\pi/N)kn} \int_{0-\varepsilon}^{2\pi-\varepsilon} \delta \left(\omega - \frac{2\pi k}{N} \right) d\omega$$

叶级数综合式

由傅里叶变换对可知: $\tilde{x}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \tilde{X}(e^{j\omega}) = \sum_{k=1}^{\infty} \frac{2\pi}{N} \tilde{X}[k] \delta\left(\omega - \frac{2\pi k}{N}\right)$

◆ 示例8.5: 周期脉冲串的傅里叶变换

设一个周期为N的周期脉冲串表示为

$$\tilde{p}[n] = \sum_{r=-\infty}^{\infty} \delta[n - rN]$$

$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{j(2\pi/N)kn}$$

$$\tilde{X}\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \tilde{X}\left[k\right] \delta\left(\omega - \frac{2\pi k}{N}\right)$$

由例8.1可知,该周期脉冲串的DFS系数为

$$\tilde{P}[k]=1$$
, 对所有的 k

因此由周期序列傅里叶变换特性, $\tilde{p}[n]$ 的傅里叶变换为

$$\tilde{X}\left(e^{j\omega}\right) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} \delta\left(\omega - \frac{2\pi k}{N}\right)$$

◆ 周期序列的DFS系数序列与有限长序列的傅里叶变换之间的关系

考虑一个有限长信号 x[n] (x[n]=0, $n \notin [0 N-1]$) ,与周期脉冲 串 $\tilde{p}[n]$ (周期为N) 进行卷积,可得一个周期序列为

$$\tilde{x}[n] = x[n] * \tilde{p}[n] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n-rN] = \sum_{r=-\infty}^{\infty} x[n-rN]$$

若有限长序列 x[n]的FT为 $X(e^{j\omega})$,则周期序列 $\tilde{x}[n]$ 的傅里叶变换为

$$\tilde{X}\left(e^{j\omega}\right) = X\left(e^{j\omega}\right)\tilde{P}\left(e^{j\omega}\right)$$

$$=X\left(e^{j\omega}\right)\sum_{k=-\infty}^{\infty}\frac{2\pi}{N}\mathcal{S}\left(\omega-\frac{2\pi k}{N}\right)$$

$$= \sum_{k=-\infty}^{\infty} \frac{2\pi}{N} X \left(e^{j(2\pi/N)k} \right) \mathcal{S} \left(\omega - \frac{2\pi k}{N} \right)$$

周期序列为有限长序列

按脉冲串周期延拓

由周期序列的傅里叶变换表达式构质

$$\tilde{X}[k] = X(e^{j(2\pi/N)k}) = X(e^{j\omega})|_{\omega=(2\pi/N)k}$$

周期序列(周期为N)的DFS系数序列为有限长(长度N)序列的傅里叶变换按间隔 $2\pi/N$ 等间隔采样值

◆ 示例8.6: 傅里叶级数系数与一个周期的傅里叶变换之间的关系

周期序列 $\tilde{x}[n]$ 的一个周期为

$$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & 5 \le n \le 9 \end{cases}$$

$\tilde{x}[n]$ 一个周期的傅里叶变换为

$$X(e^{j\omega}) = \sum_{n=0}^{4} e^{-j\omega n} = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

将 $\omega = 2\pi k/10$ (N=10) 代入上式可得周期序列 $\tilde{x}[n]$ 的DFS系数

$$\widetilde{X}[k] = e^{-j4\pi k/10} \frac{\sin(\pi k/2)}{\sin(\pi k/10)}$$

◆ 周期序列(N=10)的傅里叶变换的采样

◆ 周期矩形脉冲串的DFS系数

$$\tilde{X}[k] = e^{-j4\pi k/10} \frac{\sin(\pi k/2)}{\sin(\pi k/10)}$$

 $X\left(e^{j\omega}\right) = e^{-j2\omega} \frac{\sin(3\omega/2)}{\sin(\omega/2)}$

数字信号

第八章: 离散傅里叶变换

- ◆8.1 周期序列的表示: 离散傅里叶级数
- ◆8.2 离散傅里叶级数的性质
- ◆8.3 周期信号的傅里叶变换
- ◆8.4 傅里叶变换采样
- ◆8.5 有限长序列的傅里叶表示: 离散傅里叶变换
- ◆8.6 离散傅里叶变换的性质
- ◆8.7 用离散傅里叶变换实现线性卷积
- ◆8.8 离散余弦变换 (DCT)

8.4 对傅里叶变换采样

◆ 非周期序列的傅里叶变换采样与z变换采样之间的关系

设一个非周期序列 x[n] 的傅里叶变换为 $X(e^{j\omega})$,且假设序列 $\tilde{X}[k]$ 是通过对 $X(e^{j\omega})$ 在 $\omega_k = 2\pi k/N$ 频率处采样得到

$$\tilde{X}[k] = X(e^{j\omega})\Big|_{\omega=(2\pi/N)k} = X(e^{j(2\pi/N)k})$$

由于<mark>傅里叶变换为</mark>z变换在单位圆 上的值,即

$$X\left(e^{j\omega}\right) = X\left(z\right)\Big|_{z=e^{j\omega}}$$

所以 $\tilde{X}[k]$ 也可通过对 X(z) 在单位 圆上等间隔采样N个值获得,即

$$\widetilde{X}[k] = X(z)\Big|_{z=e^{j(2\pi/N)k}} = X(e^{j(2\pi/N)k})$$

8.4 对傅里叶变换采样

◆ 周期拓展的影响

周期序列可由有限长序列 x[n] (x[n]=0, $n \notin [0 N-1]$) 与周期脉冲串 $\tilde{p}[n]$ 卷积获得,即周期拓展为

$$\tilde{x}[n] = x[n] * \tilde{p}[n] = x[n] * \sum_{n=1}^{\infty} \delta[n-rN] = \sum_{n=1}^{\infty} x[n-rN]$$

1) 当周期脉冲串间隔 > 序列长度时,无时域混叠,且 x[n] 可由 $\tilde{x}[n]$ 无失真恢复出来,即

$$x[n] = \begin{cases} \tilde{x}[n], & 0 \le n \le N - 1 \\ 0, & \text{#}\dot{\Xi} \end{cases}$$

此时, $\tilde{x}[n]$ 的傅里叶级数 $\tilde{X}[k]$ 可由一个周期内的序列x[n]的傅里叶变换 $X(e^{j\omega})$ 的按间隔 $2\pi/N$ 采样获得。

2) 当周期脉冲串间隔<序列长度时,将产生时域混叠,因此无法由 $\tilde{x}[n]$ 和 $\tilde{X}[k]$ 恢复 x[n]和 $X(e^{j\omega})$

第八章: 离散傅里叶变换

- ◆8.1 周期序列的表示: 离散傅里叶级数
- ◆8.2 离散傅里叶级数的性质
- ◆8.3 周期信号的傅里叶变换
- ◆8.4 傅里叶变换采样
- ◆8.5 有限长序列的傅里叶表示: 离散傅里叶变换
- ◆8.6 离散傅里叶变换的性质
- ◆8.7 用离散傅里叶变换实现线性卷积
- ◆8.8 离散余弦变换 (DCT)

对应每一个长度为N的有限长序列 x[n],总可与一个周期序列 $\tilde{x}[n]$ 关联,并且

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n-rN]$$

即,周期序列为有限长序列的周期拓展,当拓展周期N≥序列长度

时,周期序列 $\tilde{x}[n]$ 可表示为

 $\tilde{x}[n] = x[(n)]_N$ 当序列长度小于拓展周期,则可对序列补零

由于周期序列 $\tilde{x}[n]$ 的DFS系数 $\tilde{X}[k]$ 也是一个周期为N的周期序列, 则,选取 $\tilde{X}[k]$ 的一个周期对应的序列 X[k],可得

$$X[k] = \begin{cases} \tilde{X}[k], & 0 \le k \le N - 1 \\ 0, & \text{#} \dot{\Xi} \end{cases}$$

或周期系数序列 $\tilde{X}[k]$ 可表示为有限长序列 X[k] 的周期拓展

$$\tilde{X}[k] = X \left[(k) \right]_{N}$$

该有限长序列X[k]即为有限长序列x[n]的离散傅里叶变换(DFT)

由周期序列的离散傅里叶级数(DFS)表达式

分析式:
$$\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]W_N^{kn}$$

综合式:
$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] W_N^{-kn}$$

再根据 x[n] 和 X[k] 的有限长定义区间和DFS求和区间,可得

$$X[k] = \begin{cases} \sum_{n=0}^{N-1} x[n] W_N^{kn}, & 0 \le k \le N-1 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$$
$$x[n] = \begin{cases} (1/N) \sum_{k=0}^{N-1} X[k] W_N^{-kn}, & 0 \le n \le N-1 \\ 0, & \text{#$\dot{\Xi}$} \end{cases}$$

通常DFT的分析/综合对可表示为

分析式:
$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}$$

综合式:
$$x[n] = (1/N) \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

$$x[n]$$
和 $X[k]$ 的DFT关系可表示为

$$x[n] \longleftrightarrow X[k]$$

◆ 示例8.7: 矩形脉冲的DFT

设x[n]为长度N=5的矩形脉冲,其周期N拓展序列 $\tilde{x}[n]$ 的DFS系数

 $\tilde{X}[k]$ 与x[n]的DFT对应,即

$$\tilde{X}[k] = \sum_{n=0}^{4} e^{-j(2\pi/5)kn} = \frac{1 - e^{-j2\pi k}}{1 - e^{-j(2\pi/5)k}}$$

$$=\begin{cases} 5, & k=0,\pm 5,\pm 10,\cdots \\ 0, & \not\exists \dot{\Xi} \end{cases}$$

显然, $\tilde{X}[k]$ 为 $X(e^{j\omega})$ 在 $\omega_k = 2\pi k/5$ 处的采样值。

并且,X[k]为 $\tilde{X}[k]$ 的一个周期的有限长序列。

此例中,由于频域采样率(分辨率)低,采样值(DFT)没有体现信号频谱的包络特征

 $\hat{x}[n]$

◆ 示例8.7: 矩形脉冲的DFT (续)

N=10

第八章: 离散傅里叶变换

- ◆8.1 周期序列的表示: 离散傅里叶级数
- ◆8.2 离散傅里叶级数的性质
- ◆8.3 周期信号的傅里叶变换
- ◆8.4 傅里叶变换采样
- ◆8.5 有限长序列的傅里叶表示: 离散傅里叶变换
- ◆8.6 离散傅里叶变换的性质
- ◆8.7 用离散傅里叶变换实现线性卷积
- ◆8.8 离散余弦变换 (DCT)

8.6.1 线性

◆ DFT的线性性

若有限长序列 $x_1[n]$ 和 $x_2[n]$ 的DFT表示为

$$x_{1}[n] \xleftarrow{\mathcal{DFT}} X_{1}[k]$$

$$x_{2}[n] \xleftarrow{\mathcal{DFT}} X_{2}[k]$$

则由DFT定义式易得

$$ax_1[n] + bx_2[n] \xleftarrow{\mathcal{DFT}} aX_1[k] + bX_2[k]$$

式中序列 $x_1[n]$ 与 $x_2[n]$ 的DFT长度(点数)相同

当序列 $x_1[n]$ 与 $x_2[n]$ 的长度不相同(如 $N_1 \neq N_2$)时:

- \triangleright DFT长度取两个序列长度中的最大值(如 N_2);
- $> x_1[n]$ 尾部添加 (N_2 - N_1) 个零值使其长度与DFT长度相同。

8.6.2 序列的循环移位

◆ DFT的循环移位特性

若有限长序列 x[n] 的DFT表示为

$$x[n] \longleftrightarrow X[k]$$

则 x[n] 的循环移位序列的DFT表示为

$$x \left[\left(\left(n - m \right) \right)_{N} \right], \quad 0 \le n \le N - 1 \stackrel{\mathcal{DFT}}{\longleftrightarrow} e^{-j(2\pi k/N)m} X \left[k \right], \quad 0 \le k \le N - 1$$

8.6.2 序列的循环移位

由周期序列的DFS定义可得

$$x\Big[\big(\big(n\big)\big)_{N}\Big] = \tilde{x}\Big[n\Big] \longleftrightarrow \tilde{X}\Big[k\Big] = X\Big[\big(\big(k\big)\big)_{N}\Big]$$

由周期序列的DFS的时移性可得

$$x \left[\left(\left(n - m \right) \right)_{N} \right] = \tilde{x} \left[n - m \right] \longleftrightarrow e^{-j(2\pi k/N)m} \tilde{X} \left[k \right]$$

由于, $\tilde{X}[k]$ 和 $e^{-j(2\pi k/N)m}$ 均是周期为 N 的序列(变量k)

$$e^{-j(2\pi k/N)m}\tilde{X}[k] = X_1[(k)]_N; X_1[k] = e^{-j(2\pi k/N)m}X[k], 0 \le k \le N-1$$

因此有

$$x \Big[\big(\big(n - m \big) \big)_{N} \Big] \stackrel{\mathcal{DFS}}{\longleftrightarrow} X_{1} \Big[\big(\big(k \big) \big)_{N} \Big] = e^{-j \big(2\pi \big((k) \big)_{N} / N \big) m} X \Big[\big(\big(k \big) \big)_{N} \Big]$$

由有限长序列DFT与周期序列的DFS系数之间的关系值,可得

$$x \Big[((n-m))_N \Big], \quad 0 \le n \le N-1 \stackrel{\mathcal{DFT}}{\longleftrightarrow} X_1 [k] = e^{-j(2\pi k/N)m} X[k], \quad 0 \le k \le N-1$$

8.6.2 序列的循环移位

8.6.3 对惩胜

◆ DFT的对偶性

若有限长序列 x[n] 的DFT表示为

$$x[n] \longleftrightarrow X[k]$$

则 X[n] 的DFT表示为

$$X[n] \xleftarrow{\mathcal{DFT}} Nx[((-k))_N], \quad 0 \le n \le N-1$$

证明(略):

主要利用

- 1) DFS的对偶性
- 2) DFS与DFT之间关系

8.6.4 对称胜

◆ DFT的对称性

若有限长序列 x[n] 的DFT表示为

$$x[n] \longleftrightarrow X[k]$$

则x[n]的共轭序列和循环对称共轭序列的DFT存在关系

$$x^*[n] \longleftrightarrow X^*[((-k))_N], \quad 0 \le n \le N-1$$

和

$$x^* \left[\left(\left(-n \right) \right)_N \right] \xrightarrow{\mathcal{DFT}} X^* \left[k \right], \quad 0 \le n \le N - 1$$

与对偶性相比, 序号变化相同, 但多了共轭,且 少了幅度的变化

证明略!

8.6.5 循环卷积

◆ DFT的循环卷积特性

长度为N的序列 $x_1[n]$ 和 $x_2[n]$ 的DFT表示为

$$x_1[n] \xleftarrow{\mathcal{DFT}} X_1[k] \quad \mathbf{n} \quad x_2[n] \xleftarrow{\mathcal{DFT}} X_2[k]$$

且序列 $x_1[n]$ 和 $x_2[n]$ 的N点循环卷积表示为

$$x_{3}[n] = x_{1}[n] \otimes x_{2}[n]$$

$$= \sum_{m=0}^{N-1} x_{1}[((m))_{N}] x_{2}[((n-m))_{N}], \quad 0 \le n \le N-1$$

$$= \sum_{m=0}^{N-1} x_{1}[m] x_{2}[((n-m))_{N}], \quad 0 \le n \le N-1$$

或
$$x_3[n] = x_2[n] \widehat{v} x_1[n] = \sum_{m=0}^{N-1} x_2[m] x_1[((n-m))_N], \quad 0 \le n \le N-1$$

则序列循环卷积的DFT可表示为

$$x_1[n] \widehat{v} x_2[n] = x_2[n] \widehat{v} x_1[n] \longleftrightarrow X_1[k] X_2[k]$$

8.6.5 循环卷积

◆与延迟脉冲序列的循环卷积

序列与延迟脉冲序列的循环 卷积等效为序列的循环移位

当循环卷积点数≥两序列长度之和 减1时,循环卷积等效为线性卷积

数字信号

8.6.6 离散傅里叶变换的陛质汇总

Finite-Length Sequence (Length N)		N-point DFT (Length N)
1.	x[n]	X [k]
2.	$x_1[n], x_2[n]$	$X_{1}[k], X_{2}[k]$
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4.	X [n]	$Nx[((-k))_N]$
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$
6.	$W_N^{-\ell n}x[n]$	$X[((k-\ell))_N]$
7.	$\sum_{m=0}^{N-1} x_1[m]x_2[((n-m))_N]$	$X_1[k]X_2[k]$
	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1[\ell] X_2[((k-\ell))_N]$
9.	$x^*[n]$	$X^*[((-k))_N]$
10.	$x^*[((-n))_N]$	$X^*[k]$
11.	$Re\{x[n]\}$	$X_{\text{ep}}[k] = \frac{1}{2} \{ X [((k))_N] + X^* [((-k))_N] \}$
12.	$j\mathcal{I}m\{x[n]\}$	$X_{\text{op}}[k] = \frac{1}{2} \{ X [((k))_N] - X^* [((-k))_N] \}$
13.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x^*[((-n))_N]\}$	$Re\{X[k]\}$
	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x^*[((-n))_N]\}$	$jIm\{X[k]\}$
Pro	Properties 15–17 apply only when $x[n]$ is real.	
15.	Symmetry properties	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{I}m\{X[k]\} = -\mathcal{I}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ \angle\{X[k]\} = -\angle\{X[((-k))_N]\} \end{cases}$
16.	$x_{\text{ep}}[n] = \frac{1}{2} \{x[n] + x[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
17.	$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x[((-n))y]\}$	$i\mathcal{I}m\{X[k]\}$

DFT性质与 DFS性质形 式相同,除 了超出定义 区间范围的 序号采用取 模N运算。

17.
$$x_{\text{op}}[n] = \frac{1}{2} \{x[n] - x[((-n))_N] \}$$

$$jIm\{X[k]\}$$