4. Matematické kyvadlo

Autor pôvodného textu: Jozef Lasz

Úloha: Zistiť závislosť doby kmitu matematického kyvadla od veľkosti začiatočnej výchylky a extrapoláciou k nulovej výchylke určiť veľkosť tiažového zrýchlenia v laboratóriu. Určiť koeficient tlmenia kyvadla.

Teoretický úvod

Matematické kyvadlo je idealizovaný mechanický oscilátor, ktorý si predstavujeme ako malé, prakticky bodové teliesko s hmotnosťou m, zavesené na niti s dĺžkou ℓ , ktorej hmotnosť považujeme za nulovú (obr. 4.1). Na teliesko pôsobia dve sily – sila \boldsymbol{F}_{ℓ} , ktorou ho pridržiava lanko a tiažová sila $\boldsymbol{F}_{g} = m\boldsymbol{g}$. Pohyb matematického kyvadla je opísaný rovnakou pohybovou rovnicou, ako pohyb akéhokoľvek iného kyvadla, teda ako pohyb telesa otáčajúceho sa okolo horizontálnej osi, ktorá neprechádza jeho ťažiskom:

$$\mathbf{M} = J\boldsymbol{\alpha} \,. \tag{4.1}$$

V tomto vzťahu M je súčet momentov síl pôsobiacich na teleso, J jeho moment zotrvačnosti vzhľadom na os otáčania a α vektor uhlového zrýchlenia telesa. Vodorovná os otáčania prechádza bodom závesu a vzhľadom na túto os je moment sily F_ℓ nulový, lebo táto sila zviera s polohovým vektorom r, ktorý má dĺžku ℓ , uhol 180°. Preto sa pri pohybe kyvadla uplatňuje iba moment tiažovej sily $M_{\rm mg}$. Vychádzajúc z obrázku, na ktorom je znázornený jednotkový vektor η , kolmý na rovinu obrázku a smerujúci za obrázok, môžeme napísať nasledujúce vzťahy:

$$M_{\text{mg}} = r \times m g = -\eta mg \, \ell \sin \varphi, \quad \alpha = \eta \frac{d^2 \varphi}{dt^2}.$$

Po ich dosadení do (4.1) dostaneme upravenú pohybovú rovnicu:

$$J\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2}\boldsymbol{\eta} = -\boldsymbol{\eta}\,mg\,\,\ell\,\sin\varphi\quad. \tag{4.2}$$

Kyvadlo predstavuje harmonický oscilátor iba pri malých výchylkách φ z rovnovážnej polohy, keď moment sily, udržiavajúci kyvadlo v pohybe, môžeme považovať za lineárnu funkciu uhlovej výchylky φ . To znamená, že iba vtedy, keď funkciu $\sin \varphi$ môžeme nahradiť uhlovou výchylkou φ . Ak nahradíme $\sin \varphi$ výchylkou φ , rovnicu vynásobíme skalárne jednotkovým vektorom η a člen z pravej strany premiestnime na ľavú stranu, pohybová rovnica získa tvar

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}t^2} + \frac{mg \,\ell}{J} \varphi = 0 \quad , \tag{4.3}$$

čo je pohybová rovnica harmonického oscilátora. Jej všeobecným riešením je funkcia

$$\varphi(t) = A \sin(\omega_0 t) + B \cos(\omega_0 t), \qquad (4.4)$$

kde v našom prípade

$$\omega_{\rm o}^2 = \frac{mg \, \ell}{J} = \frac{mg \, \ell}{m \, \ell^2} = \frac{g}{\ell}$$
.

Ak začiatok merania času zvolíme v okamihu maximálnej výchylky φ_0 , pohyb kyvadla bude opísaný funkciou

$$\varphi(t) = \varphi_0 \cos(\omega_0 t)$$
.

Pre dobu kmitu pri malých amplitúdach φ_0 (nezávisle od ich veľkosti), platí vzťah

$$T_{\rm o} = \frac{2\pi}{\omega_{\rm o}} = 2\pi \sqrt{\frac{\ell}{g}} \ . \tag{4.5}$$

Ak je amplitúda φ_0 väčšia ako niekoľko stupňov, z hľadiska presnosti riešenia sa treba vrátiť k rovnici (4.2). Z jej riešenia vyplýva, že doba kmitu ako funkcia amplitúdy sa dá vyjadriť približným vzťahom (amplitúdu φ_0 treba dosadzovať v radiánoch!):

$$T(\varphi_{0}) \approx T_{0} \left(1 + \frac{1}{16} \varphi_{0}^{2}\right),$$
 (4.6)

kde T_0 je doba kmitu pri malých amplitúdach, teda pri $\varphi_0 \rightarrow 0$.

Pohybové rovnice (4.2) a (4.3), a teda ani vzťahy (4.5) a (4.6), neberú do úvahy tlmenie pohybu kyvadla prostredím. Pri tlmenom harmonickom pohybe sa amplitúda exponenciálne zmenšuje, takže uhlová výchylka φ ako funkcia času sa vyjadruje vzťahom

$$\varphi(t) = \varphi_0 e^{-\gamma t} \cos(\omega t), \qquad (4.7)$$

kde

$$\omega = \sqrt{\omega_o^2 - \gamma^2} \implies \frac{2\pi}{T} = \sqrt{\frac{4\pi^2}{T_o^2} - \gamma^2}$$
(4.8)

je uhlová frekvencia tlmeného harmonického pohybu, T jeho doba kmitu a γ koeficient tlmenia. Vychádzajúc z rovnice (4.7), môžeme získať vzťah:

$$\gamma T = \ln \frac{\varphi(t)}{\varphi(t+T)} , \qquad (4.9)$$

ktorý poslúži na výpočet tohto koeficientu. Koeficient tlmenia určíme, ak zistíme veľkosti

dvoch maximálnych výchyliek (amplitúd)
$$\varphi_1$$
 a φ_2 a príslušné časové okamihy t_1 a t_2 :
$$\gamma = \frac{\ln \varphi(t_1) - \ln \varphi(t_2)}{t_2 - t_1} \ . \tag{4.10}$$

Treba poznamenať, že uvedené vzťahy, vrátane hodnôt ω , T a γ , platia iba pri malých výchylkách (amplitúdach).

Závislosť (4.6) bola získaná za predpokladu, že ide o netlmený pohyb. Pri tlmenom pohybe, čo je prípad reálneho merania v laboratóriu, túto závislosť vyjadríme v tvare

$$T(\varphi_{o}) = A + B\varphi_{o}^{2} . \tag{4.11}$$

Po vynesení závislosti $T = f(\varphi_0^2)$ sa pomocou lineárnej regresie dá získať veličina A, t.j. extrapolovaná doba kmitu T_{ex} tlmeného pohybu, zodpovedajúca malým výchylkám..

Koeficient tlmenia γ využijeme na výpočet doby kmitu T_0 netlmeného pohybu. Všetky v laboratóriu namerané doby kmitu, aj pri malých amplitúdach, sú dobami kmitu tlmeného harmonického pohybu, ktorý má väčšiu dobu kmitu ako netlmený pohyb $(T > T_0)$. Za nameranú dobu kmitu tlmeného pohybu môžeme považovať dva údaje – dobu $T_{\rm m}$, ktorú získame meraním pri malých výchylkách, ako aj údaj $T_{\rm ex}$, ktorý získame extrapoláciou merania závislosti doby kmitu od začiatočnej výchylky (údaje by sa mali zhodovať). Pomocou vzťahu (4.8), do ktorého namiesto T dosadíme jednu z uvedených hodnôt, vypočítame dobu kmitu $T_{\rm o}$ netlmeného pohybu. Túto môžeme porovnať s dobou $T_{\rm g}$, ktorú získame, keď do vzťahu (4.5) za tiažové zrýchlenie dosadíme $g = 9,806 \text{ m/s}^2$.

Opis aparatúry a postup pri meraní

Matematické kyvadlo je realizované guľkou zavesenou na dvoch vláknach, čím sa zabezpečí, aby kyvadlo kmitalo v jednej rovine, rovnobežnej s rovinou uhlomera. Laboratórna zostava má aj elektronické stopky, snímačom spojené so okamihu prechodu kyvadla najnižšou polohou. Na meranie dĺžky závesu kyvadla je k dispozícii dĺžkové meradlo.

Postup pri meraní:

- 1. Odmerajte dĺžku kyvadla ℓ .
- 2. Vypočítajte dobu kmitu T_g pomocou vzťahu (4.5) za predpokladu, že $g = 9,806 \text{ m/s}^2$.
- 3. Odmerajte dobu kmitu $T_{\rm m}$ pri malej amplitúde (približne 5°). Merajte 10 kmitov niekoľkokrát, vypočítajte aritmetický priemer (tab. 4.1) a porovnajte s $T_{\rm g}$.
- 4. Pri amplitúdach $\varphi_0 = 10^\circ$, 20° , ... až 50° odmerajte doby kmitu $T(\varphi_0)$ a porovnajte ich s teoretickými hodnotami vyjadrenými vzťahom (4.6). Do vzťahu za T_0 dosaďte údaj $T_{\rm m}$. Využite tabuľku 4.2.
- 5. Nakreslite graf závislosti $T(\varphi_0^2)$, pomocou lineárnej regresie určte extrapolovanú hodnotu $T_{\rm ex}$ pre $\varphi_0 \to 0$. Porovnajte ju s nameranou hodnotou $T_{\rm m}$ a hodnotou $T_{\rm g}$.
- 6. Zvoľte začiatočnú amplitúdu $\varphi_1 = 30^\circ$ a po 30 kmitoch zmerajte zmenšenú amplitúdu kmitania φ_2 (Tab. 4.3). Pomocou vzťahu (4.10) vypočítajte koeficient tlmenia γ . Meranie viackrát opakujte a vypočítajte aritmetický priemer.
- 7. Získaný koeficient tlmenia využite na výpočet doby kmitu T_0 netlmeného pohybu podľa vzťahu (4.8) a porovnajte s dobou $T_{\rm g}$.

Tab. 4.1

	i	1	2	3	4	5	priemer $T_{\rm m}/{\rm s}$
ı	$50 T_{\rm m} / {\rm s}$						

Tab. 4.2

					() /	2) /s					priemer	T podľa
$\varphi_{\rm o}$	1	2	3	4	5	6	7	8	9	10	T/s	(4.6)
10°												

Tab. 4.3

t_1	φ_1	t_2	φ_2	γ

Otázky

- 1. Ktorá poloha kyvadla rovnovážna, alebo krajná je výhodnejšia na presnejšie určenie doby kmitu?
- 2. Akú závislosť tlmiacej sily predpokladáme v prípade, ktorý vedie na vzťahy (4.7) a (4.8)?

Meno: Krúžok: Dátum merania:

Protokol laboratórnej úlohy 4 Matematické kyvadlo

Stručný opis metódy merania:

Vzťahy ktoré sa používajú pri meraní:

Prístroje a pomôcky:

Meranie

Dĺžka závesu matematického kyvadla: $\ell =$

Doba kmitu podľa vzťahu (4.5) $T_g =$

Tab. 4.1 Doba kmitu pri malej amplitúde

			<u> </u>				
ı	i	1	2	3	4	5	priemer $T_{\rm m}/{\rm s}$
ı	$10 T_{\rm m} / {\rm s}$						

Aritmetický priemer: $T_{\rm m} =$

Rozdiel v percentách : $p_1 = \frac{T_{\rm m} - T_{\rm g}}{T_{\rm g}} \cdot 100 =$

Tab. 4.2 Závislosť doby kmitu od amplitúdy

Tube it = = = = = = = = = = = = = = = = = =														
$\varphi_{ m os}$	$\varphi_{\rm or} \mid_{\alpha} 2$ $(T/2)/s$								T	T				
$arphi_{ m os}$	$\varphi_{ m or}$ rad	$\varphi_{\rm or}^2$	1	2	3	4	5	6	7	8	9	10	priemer	(4.6)
10°														
20°														
30°														
20° 30° 40° 50°														
50°														

Extrapolovaná hodnota z grafickej závislosti $T(\varphi_0^2)$ $T_{ex} =$

Rozdiel v percentách $p_2 = \frac{T_{\rm ex} - T_{\rm g}}{T_{\rm g}} \cdot 100 =$

Tab. 4.3 Koeficient tlmenia

	t_1	φ_1	t_2	φ_2	γ				
1									
2									
3									
4									
5									
	aritmetický priemer: γ =								

Koeficient tlmenia: $\gamma =$

Doba kmitu netlmeného pohybu $T_0 =$

$$p_3 = \frac{T_{\rm o} - T_{\rm g}}{T_{\rm g}} \cdot 100 =$$

K protokolu treba pripojiť graf závislosti doby kmitu od začiatočnej amplitúdy, podľa tabuľky 4.2

Slovné zhodnotenie výsledkov merania:

Dátum odovzdania protokolu:

Podpis študenta:

Podpis učiteľa: