Sztuczna inteligencja

Zestaw 5 - rozwiązanie zadania 1 część (i) oraz część (ii) Dominik Lewczyński 155099

Zadanie 1 (i)

Zaprojektuj perceptron z dwoma wejściami reprezentujący funkcję boolowską $x_1 \wedge \neg x_2$.

<i>x</i> ₁	x_2	$\neg x_2$	$x_1 \land \neg x_2$
1	1	0	0
1	0	1	1
0	1	0	0
0	0	1	0

$$w_0 \le 0$$

$$w_0 + w_2 \le 0$$

$$w_0 + w_1 > 0$$

$$w_0 + w_1 + w_2 \le 0$$

$$w_0 = -2$$

$$w_1 = 3$$

$$w_2 = -1.5$$

Zadanie 1 (ii)

Zaprojektuj dwuwarstwowa sieć perceptronów implementująca $x_1 XOR x_2$

Zapis x_1 XOR x_2 można zapisać za pomocą spójników AND (\land) OR(\lor) oraz NOT (\neg) w następujący sposób: x_1 XOR $x_2 = (x_1 \lor x_2) \land (\neg(x_1 \land x_2))$.

x_1	x_2	$x_1 \vee x_2$	$\neg(x_1 \land x_2)$	$(x_1 \lor x_2) \land (\neg(x_1 \land x_2))$
1	1	1	0	0
1	0	1	1	1
0	1	1	1	1
0	0	0	1	0

$w_{1,0} \le 0$	$w_{2,0} > 0$	
$w_{1,0} + w_{1,2} > 0$	$w_{2,0} + w_{2,2} \le 0$	$w_{3,0} + w_{3,2} \le 0$
$w_{1,0} + w_{1,1} > 0$	$w_{2,0} + w_{2,1} > 0$	$w_{3,0} + w_{3,1} + w_{3,2} > 0$
$w_{1,0} + w_{1,1} + w_2 > 0$	$w_{2.0} + w_{2.1} + w_{2.2} \le 0$	$w_{3.0} + w_{3.1} \le 0$

$$w_{1,0} = -1$$
 $w_{2,0} = 3$ $w_{3,0} = -3$ $w_{1,1} = 2$ $w_{2,1} = -2$ $w_{3,1} = 2$ $w_{1,2} = 2$ $w_{2,2} = -2$ $w_{3,2} = 2$

