

Ayudantía 3

Calculo II - MAT1620

Francisco Salinas (fvsalinas@uc.cl)

Prueba de la Integral: Si f es continua, positiva y decreciente y $a_n = f(n)$: Si $\int_{n}^{\infty} f(x)dx$ es convergente, $\sum_{i=1}^{\infty} a_{i}$ es convergente. (Lo mismo si es divergente)

Prueba por Comparación: Si $\sum a_n$ y $\sum b_n$ son series con términos positivos:

Si $\sum a_n \le \sum b_n$ y $\sum_{i=1}^{\infty} b_n$ es convergente, entonces $\sum_{i=1}^{\infty} a_n$ es convergente. Si $\sum a_n \ge \sum b_n$ y $\sum_{i=1}^{\infty} b_n$ es divergente, entonces $\sum_{i=1}^{\infty} a_n$ es divergente.

Prueba por Comparación al límite: Si $\sum a_n$ y $\sum b_n$ son series con términos positivos: Si $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, siendo c un numero finito y c > 0, ambas series divergen o convergen.

Prueba de la serie Alternante: Si la serie alternante $\sum_{i=1}^{\infty} (-1)^n a_n$ cumple con:

- i) $a_{n+1} < a_n$
- ii) $\lim_{n\to\infty} a_n = 0$

La serie converge.

Teorema: Si una serie es absolutamente convergente, entonces es convergente

Prueba de la razón: Consideremos la prueba $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$:

Si L < 1 entonces, $\sum_{i=1}^{\infty} a_i$ es absolutamente convergente

Si L > 1 o $L = \infty$ entonces, $\sum_{i=1}^{\infty} a_i$ es divergente.

Si L = 1 no se puede concluir nada.

Prueba de la raíz: Consideremos la prueba $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$:

Si L < 1 entonces, $\sum_{i=1}^{\infty} a_i$ es absolutamente convergente.

Si L > 1 o $L = \infty$ entonces, $\sum_{i=1}^{\infty} a_i$ es divergente.

Si L = 1 no se puede concluir nada.

1. Estudie la convergencia de la siguiente serie:

$$a)\sum_{n=1}^{\infty}\frac{(lnn)^2}{n^2}$$

a)
$$\sum_{n=1}^{\infty} \frac{(lnn)^2}{n^2}$$
 b) $\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^3 + 4n^2 - 1}$, c) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$

$$c)\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

2. Estudie la convergencia o divergencia de las siguientes series:

$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n+1)}$$

3. Dada la serie:

$$\sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)}$$

- a) Demuestre que la serie es convergente.
- b) Con un error menor a 4^{-3} , calcule el valor aproximado de:

$$3 + \sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{2k(2k+1)(2k+2)}$$

4. Determine si la serie alternante converge. ¿Es absolutamente convergente?

$$\sum_{n=1}^{\infty} \frac{(-1)^n lnn}{n}$$

5. Determine si la serie es convergente.

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

6. Encuentre todos los $x \in \mathbb{R}$ tales que la serie converge.

$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!} x^n$$