Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Also, specific user environment and usage history can make it difficult to reproduce the problem. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. It is usually easier to code in "high-level" languages than in "low-level" ones. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Scripting and breakpointing is also part of this process. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Scripting and breakpointing is also part of this process. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. It is very difficult to determine what are the most popular modern programming languages. However, readability is more than just programming style. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'.