0.1 Egenskaper hos Fouriertransformen

"Det är naturligtvis lite mer delikat än så."

- Pokèmon #109

$$\operatorname{Om} \int\limits_{-\infty}^{\infty} |f(t)| \mathrm{d}t < \infty \text{ är alltid } F(i\omega) \text{ kontinuerlig och } \lim_{|\omega| \to \infty} F(i\omega) = 0.$$

Exempel 1. Om $f = \delta$ saknar $\int |f| dt$ mening. Trots det är $F(i\omega) = 1$ kontinuerlig, men $\lim_{|\omega| \to \infty} = 1 \neq 0$.

Exempel 2.
$$f(t) = e^{-|a|t}$$
 bildar transformpar med $F(i\omega) = \frac{2a}{a^2 + \omega^2}$. $f(t) = e^{-at}u(t)$ bildar transformpar med $F(i\omega) = \frac{1}{a+i\omega}$.

0.2 Räkneregler för Fouriertransformen

Sats 1 (Linearitet av Fouriertransformen). Om $Af_1(t) + Bf_2(t)$ är dess Fouriertransform $AF_1(i\omega) + BF_2(i\omega)$.

Sats 2 (Tidsskalning Fourier transform). Om f(at) när $a \neq 0$ är dess Fourier transform $\frac{1}{|a|}F(\frac{i\omega}{a})$.

Bevis.
$$\int_{-\infty}^{\infty} f(at)e^{-i\omega t} dt = \{u = at \implies du = adt\} = \frac{1}{|a|} \int_{-\infty}^{\infty} f(u)e^{-j\frac{\omega}{a}u} du.$$

Sats 3 (Tidsskifte Fouriertransform). Om f(t+a) är dess Fouriertransform $e^{i\omega a}F(i\omega)$.

Bevis.
$$\int_{-\infty}^{\infty} f(t+a)e^{-i\omega t} dt = \{u = t+a\} = \int_{-\infty}^{\infty} f(u)e^{i\omega a}e^{-i\omega u} du = e^{i\omega a}F(i\omega).$$

Exempel 3. Låt
$$f_1(t) = \begin{cases} \frac{1}{2a}, |t| \leq a \\ 0, \text{ annars} \end{cases}$$

Då är
$$F_1(i\omega) = \int_{-\infty}^{\infty} f_1(t)e^{-i\omega t} dt = \frac{1}{2a} \int_{-a}^{a} e^{-i\omega t} dt = \frac{1}{2a} = \left[\frac{e^{-i\omega t}}{-i\omega}\right]_{t=-a}^{a} = \frac{e^{i\omega a} - e^{-i\omega a}}{2i} \frac{1}{\omega a} = \frac{\sin(\omega a)}{\omega a}.$$

Låt x vara en signal. Då är $f_1 * x = \int_{-\infty}^{\infty} f_1(s) x(t-s) ds = \frac{1}{2a} \int_{-a}^{a} x(t-s) ds$

vilket är medelvärdet av x(t) i punkten t när man går a steg till både höger och vänster. Inses rätt lätt om man ritar upp det.

 $f_1 * x$ bildat transformpar med $\frac{\sin(\omega a)}{\omega a} X(i\omega)$.

Sats 4 (Derivata och Fouriertransform). Om f(t) är en signal bildar $\frac{\mathrm{d}}{\mathrm{d}t}f(t)$ ett transformpar med $i\omega F(i\omega)$.

Bevis. $\int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} f(t) e^{-i\omega t} \mathrm{d}t = \text{(med partiell integration och antagandet att } f$

går mot 0 i o
ändligheten) = $-\int\limits_{-\infty}^{\infty}f(t)\left(\frac{\mathrm{d}}{\mathrm{d}t}e^{-i\omega t}\right)\mathrm{d}t=i\omega\int\limits_{-\infty}^{\infty}f(t)e^{-i\omega t}\mathrm{d}t$

Exempel 4. Tillbaka till förra exemplet, vad är f_1 ?

Jo, f_1' kan definieras av att $\int_{-\infty}^{\infty} f'(t)x(t)dt = -\int_{-\infty}^{\infty} f_1(t)x'(t)dt = -\frac{1}{2a}\int_{-a}^{a} x'(t)dt =$

$$\frac{1}{2a}(x(-a) - x(a)) = \int_{-\infty}^{\infty} \frac{1}{2a}(\delta(t+a) - \delta(t-a))x(t)dt. \text{ Alltså \"{a}r } f_1' = \frac{1}{2a}(\delta(t+a) - \delta(t-a)).$$

Om man tittar på grafen för f_1 kan man, om man tänker på vad derivatan måste vara i varje punkt, se att detta är rimligt.

Vi vill kolla att detta stämmer. $f_1'=\frac{1}{2a}(\delta(t+a)-\delta(t-a))$ bildar transformpar med $\frac{1}{2a}(e^{i\omega a}-e^{-i\omega a})=i\omega\frac{1}{2ia\omega}(e^{i\omega a}-e^{-i\omega a})=i\omega\frac{1}{a\omega}\sin(a\omega)=i\omega F_1(i\omega)$, vilket är rimligt med tanke på tidigare räkneregler.

Sats 5 (Fouriertransform för $t \cdot f(t)$). Om vi har en signal $t \cdot f(t)$ bildar det ett transformpar med $i \frac{\mathrm{d}}{\mathrm{d}\omega} F(i\omega)$.

Bevis.
$$\int_{-\infty}^{\infty} t \cdot f(t) e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t) t e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t) i \frac{d}{d\omega} e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) \frac{d}{d\omega} e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = i \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

"Låt oss vara lite casual"

– Pokémon #109 om räkneregler

VARNING: I boken skrivs $F(\omega)$ för Fouriertransformen i kapitel < 6 men $F(i\omega)$ i kapitel \geq 6.

Exempel 5. Låt $f_2(t) = e^{-at^2}, a > 0$. Vad är Fouriertransformen F_2 ?

Vi ska ta en systemapproach istället för att göra jobbiga integraler.

$$\frac{\mathrm{d}}{\mathrm{d}t}f_2(t) = -2te^{-at^2} = -2atf_2(t), \text{ d.v.s. } \left(\frac{\mathrm{d}}{\mathrm{d}t} + 2at\right)f_2(t) = 0 \iff (i\omega + 2ai\frac{\mathrm{d}}{\mathrm{d}\omega})F_2 = 0 \iff \left(\frac{\mathrm{d}}{\mathrm{d}\omega} + \frac{1}{2a}\omega\right)F_2 = 0 \iff F_2(\omega) = Ce^{-\frac{\omega^2}{4a}} \implies C = F_2(\omega = 0) \cdot e^{\frac{0^2}{4a}} = F_2(0) = \int_{-\infty}^{\infty} e^{-at^2} \mathrm{d}t = \sqrt{\frac{\pi}{a}}. \text{ Alltså bildar } e^{-at^2}$$

transform par med $\sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}$.

Anmärkning 1. f_2 avtar superexponentiellt när $t \to \pm \infty$, d.v.s. f_2 inte en lösning till en stabil LTI.

"Den går snabbare än örnen mot noll."

- Pokèmon #109

Vad betyder egentligen $\frac{d}{dt}$?

Jo, $\frac{\mathrm{d}}{\mathrm{d}t}(h*x) = \frac{\mathrm{d}h}{\mathrm{d}t}*x = h*\frac{\mathrm{d}x}{\mathrm{d}t}$. $\frac{\mathrm{d}}{\mathrm{d}t}$ är också tidsinvariant, vilket betyder att det måste ges av någon faltning. Vad för h uppfyller att $h*x?\frac{\mathrm{d}}{\mathrm{d}t}x$?

$$x(t) = \int x(u)\delta(t-u)\mathrm{d}u = x * \delta(t) = \delta * x(t). \text{ Då är } \frac{\mathrm{d}}{\mathrm{d}t}x = \frac{\mathrm{d}}{\mathrm{d}t}(\delta * x) = (\frac{\mathrm{d}}{\mathrm{d}t}\delta) * x. \delta \text{ definieras av att} \int\limits_{-\infty}^{\infty} \delta(t)x(t)\mathrm{d}t = x(0), \text{ alltså måste} \int\limits_{-\infty}^{\infty} \delta'(t)x(t)\mathrm{d}t = x(0)$$

$$-\int\limits_{-\infty}^{\infty}\delta(t)x'(t)\mathrm{d}t$$
 så att δ' definieras av $\int\limits_{-\infty}^{\infty}\delta'(t)x(t)\mathrm{d}t=-x'(0).$ Då är $\frac{\mathrm{d}}{\mathrm{d}t}x=\delta'*x.$

Sats 6 (Sambandet mellan $\frac{d}{dt}$ och δ'). $\frac{d}{dt}x = \delta' * x$

Bevis. Se ovan.

Exempel 6. Vad är Fouriertransformen av δ' ?

$$\int_{-\infty}^{\infty} \delta'(t)e^{-i\omega t} dt = \{e^{-i\omega t} = x(t)\} = -x'(0) = -i\omega$$

Exempel 7. Skriv $\left(-\frac{d^2}{dt^2} + a^2\right)y = x$ som en LTI på formen y = h * x.

 $(-\frac{\mathrm{d}^2}{\mathrm{d}t^2}+a^2)y$ bildar transformpar med $(-(i\omega)^2+a^2)Y=(\omega^2+a^2)Y.$

$$(-\frac{\mathrm{d}^2}{\mathrm{d}t^2} + a^2)y = x \iff (\omega^2 + a^2)Y = X \iff Y = \frac{1}{\omega^2 + a^2}X \iff y = h*x$$
 för ett h s.a. $H(i\omega) = \frac{1}{\omega^2 + a^2}$.

 e^{-at} har en Fouriertransform $\frac{2a}{a^2+\omega^2},$ då har $h(t)=\frac{1}{2a}e^{-at}$ överföringsfunktion $H(i\omega)=\frac{1}{a^2+\omega^2}.$

Då får vi från ursprungliga problemet $h*x(t) = y(t) = \frac{1}{2a} \int_{-\infty}^{\infty} e^{-a|t-u|} x(u) du$.

"En pil säger mer än två ord i det här fallet"

- Pokèmon #109

Sats 7. Låt f vara en signal. Då har $\int_{-\infty}^t f(\tau) d\tau$ Fouriertransform $\frac{F(i\omega)}{i\omega} + \pi F(0)\delta(\omega)$.

Bevis. Idén bakom beviset är att $\int_{-\infty}^t f(\tau) d\tau = \int_{-\infty}^\infty f(\tau) u(t-\tau) d\tau = f * u.$

Eftersom f*u bildar transformpar med FU vill vi visa att det är lika med $F(i\omega)\left(\frac{1}{i\omega}+\pi\delta(\omega)\right)$. Vi vill alltså att $U(i\omega)=\frac{1}{i\omega}+\pi\delta(\omega)$.

Eftersom $u'=\delta$ får vi att det bildar transformpar med $i\omega U(i\omega)=1 \implies U(i\omega)=\frac{1}{i\omega}$.

Man får i någon mån halva bidraget från den konstanta funktionen 1, vilket är $2\pi\delta(\omega)$, alltså får vi en faktor $\pi\delta(\omega)$ i lösningen.

$$\operatorname{Om} \int_{-\infty}^{\infty} f(\tau) d\tau = 0 \text{ måste } F(0) = 0.$$

0.3 Plancherels sats

Sats 8. Låt $L^2(-\infty,\infty)=\{$ signaler f med ändlig energi $\}$ Kom ihåg att energin $E=\int\limits_{-\infty}^{\infty}|f(t)|^2\mathrm{d}t$. Kom också ihåg $\langle f_1,f_2\rangle=\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t$. Då är, för $f_1,f_2\in L^2(-\infty,\infty)$, både F_1 och $F_2\in L^2(-\infty,\infty)$. Vidare är $\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t.$