Primitivas Inmediatas

Inmediatas	Versión general
$\int x^m dx = \frac{x^{m+1}}{m+1} + C \ (m \neq -1)$	$\int g(x)^m g'(x) dx = \frac{g(x)^{m+1}}{m+1} + C \ (m \neq -1)$
$\int \frac{dx}{x} = \log x + C$	$\int \frac{g'(x)}{g(x)} dx = \log g(x) + C$
$\int e^x dx = e^x + C$	$\int e^{g(x)} g'(x) dx = e^{g(x)} + C$
$\int a^x dx = \frac{a^x}{\log a} + C \ (a > 0, a \neq 1)$	$\int a^{g(x)} g'(x) dx = \frac{a^{g(x)}}{\log a} + C \ (a > 0, a \neq 1)$
$\int \operatorname{sen} x dx = -\cos x + C$	$\int \operatorname{sen}(g(x)) g'(x) dx = -\cos(g(x)) + C$
$\int \cos x dx = \sin x + C$	$\int \cos(g(x)) g'(x) = \operatorname{sen}(g(x)) + C$
$\int \tan x dx = -\log \cos x + C$	$\int \tan(g(x)) g'(x) dx = -\log \cos(g(x)) + C$
$\int \cot x dx = \log \sin x + C$	$\int \cot(g(x)) g'(x) dx = \log \sin(g(x)) + C$
$\int \sec^2 x dx = \tan x + C$	$\int \sec^2(g(x)) g'(x) dx = \tan(g(x)) + C$
$\int \csc^2 x dx = -\cot x + C$	$\int \csc^2(g(x)) g'(x) dx = -\cot(g(x)) + C$
$\int \frac{dx}{\sqrt{1-x^2}} = arcsen x + C$	$\int \frac{g'(x)}{\sqrt{1 - g(x)^2}} = \arcsin(g(x)) + C$
$\int \frac{dx}{1+x^2} = \arctan x + C$	$\int \frac{g'(x)}{1 + g(x)^2} = \arctan(g(x)) + C$
$\int \operatorname{senh} x dx = \cosh x + C$	$\int \operatorname{senh}(g(x)) g'(x) dx = \cosh(g(x)) + C$
$\int \cosh x dx = \sinh x + C$	$\int \cosh(g(x)) g'(x) dx = \sinh(g(x)) + C$

Ejercicios:

Calcular las primitivas siguientes:

$$\int \frac{x^2}{\sqrt[4]{x^3 + 2}} dx \,, \, \int \sqrt{\cos x} \sin x dx \,, \, \int \frac{x^2}{1 - 2x^3} dx \,, \, \int \frac{dx}{x \log x} \,,$$

$$\int x e^{ax^2 + b} dx \, (a, b \in \mathbb{R}) \,, \, \int a^{2x} dx \, (a \in \mathbb{R}^+) \,, \, \int \frac{dx}{1 + e^x}$$

$$\int \frac{1 + \sin x}{\cos^2 x} dx \,, \, \int \frac{dx}{\sin^2 x} \,, \, \int e^x \cos(e^x) dx$$

$$\int \frac{x^2}{\sqrt{1 - x^6}} dx \,, \, \int \frac{x}{x^4 + 3} dx \,, \, \int \frac{dx}{\sqrt{20 + 8x - x^2}} \,.$$