REACH THE TOP - STOP THE F

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC

http://bit.ly/gochoctapSAMI

ĐỀ THI THỬ CUỐI KỲ ĐAI SỐ 20191

15/12/2019

Thời gian làm bài: 90 phút

Câu 1 (1 điểm) Gọi z_1 , z_2 , z_3 , z_4 là 4 nghiệm phức của phương trình $z^4 - (\sqrt{3} + 1)z^3 + (\sqrt{3} + 2)z^2 - (\sqrt{3} + 1)z + 1 = 0$

Tính $|z_1|^4 + |z_2|^3 + |z_3|^2 + |z_4|$

Câu 2 (1 điểm) Giải phương trình $\begin{pmatrix} 1 & 2 & 5 \\ 2 & 4 & 7 \\ 5 & 4 & 2 \end{pmatrix} X \end{pmatrix}^{-1} = \begin{pmatrix} 4 & 1 & 3 \\ 3 & 2 & 4 \\ 5 & 6 & 7 \end{pmatrix}$

Câu 3 (1 điểm) Giải hệ phương trình sau với a = 1

$$\begin{cases} x_1 + x_2 + ax_3 + a^2x_4 = 0\\ 2x_1 + ax_2 + x_3 + ax_4 = 0\\ x_1 + a^2x_2 + (2 - a)x_3 + (a + 2)x_4 = 0\\ ax_1 + ax_2 + (a - 3)x_3 + (a + 1)x_4 = 0 \end{cases}$$

Câu 4 (3 điểm) Cho ánh xạ tuyến tính $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ biết $f(1+x)=2x+2x^2, \, f(x+x^2)=2+2x^2, \, f(1+x^2)=2+4x+6x^2$

- a) Tìm một cơ sở và số chiều của ${\rm Im}\, f$
- b) Tìm ma trận A của $f^2 = f \circ f$ đối với cơ sở $\mathcal{B} = (u_1 = 1, u_2 = 1 + x, u_3 = 1 + x + x^2)$ trong $\mathbb{R}_2[x]$
- c) Ma trận A chéo hóa được không? Tìm ma trận chéo hóa A (nếu có)

Câu 5 (1 điểm) Trong không gian \mathbb{R}^4 trang bị tích vô hướng chính tắc. Xác định góc hợp bởi u=(2,-1,3,-2) với không gian con W của \mathbb{R}^4

 $W = \operatorname{span}\{v_1 = (1, 0, 2, 1), v_2 = (2, 1, 2, 3), v_3 = (0, 1, -2, 3), v_4 = (0, 1, -2, 1)\}$

Câu 6 (1 điểm) Tìm điểm $M(x_1,x_2,x_3)$ trên mặt cầu $x_1^2+x_2^2+x_3^2=16$ để Q đạt giá trị nhỏ nhất biết $Q=9x_1^2+7x_2^2+11x_3^2-8x_1x_2+8x_1x_3$

Câu 7 (1 điểm) Với mỗi vecto $v=(x_1,x_2,\ldots,x_{2019})\in\mathbb{R}^{2019}$ và mỗi hoán vị σ của $1,2,\ldots,2019$ ta định nghĩa $\sigma(v)=(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(2019)})$. Tìm số chiều của $V=\operatorname{span}\{\sigma(v)\mid \sigma$ là một hoán vị của $1,2,\ldots,2019\}$

Câu 8 (1 điểm) Cho n là số nguyên dương lẻ và $A, B \in M_n(\mathbb{R})$ thỏa mãn $2AB = (BA)^2 + I_n$ với I_n là ma trận đơn vị cấp n. Tính $\det(I_n - AB)$

Chú ý: Thí sinh không được phép sử dụng tài liệu Chúc các ban thi tốt!