

Multi Agent Reinforcement Learning

Yseult Héjja-Brichard

TA: Yen-Ling Kuo

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., & Mordatch, I. (2020). Emergent Tool Use From Multi-Agent Autocurricula (arXiv:1909.07528). arXiv.

(Evolutionary) Game Theory

© 2010 Encyclopædia Britannica, Inc.

Evolutionary Game Theory

© 2010 Encyclopædia Britannica, Inc.

Practical motivations

Learning how to implement RL in a multi-agent configuration

Interest in how to model different types of social interactions

Reinforcement Learning

Markov Decision Process (MDP)

Reinforcement Learning with multiple agents

(Partially Observable) Markov Decision Process (POMDP)

Interacting with other agents

Strategies: ToM-based models for goal inference, Bayesian

inverse planning, learning the reward functions of other agents, imitation

LeCTR (Dec-POMDP) *Omidshafiei et al., 2019 -* Learning to teach in coop MARL MA-POMDP *Ndousse et al., 2021 -* Emergent social learning via MARL

Social MDP *Tejwani, Kuo et al., 2022 -* Extended social MDP

How it started: Cute env but hard to decipher

Wang, R. et al. (2020) Too many cooks: Bayesian inference for coordinating multi-agent collaboration

Bayesian Delegation: inverse planning and inference on subtasks

Where the project landed

Environment: MarlGrid (Kamal Ndousse), a multi-agent variant of MiniGrid (Gym)

Grid size: 6x6 with a wall

Objects: Open door, closed door (toggle but no key needed)

Where the project landed

Environment: MarlGrid (Kamal Ndousse), a multi-agent variant of MiniGrid (Gym)

Grid size: 6x6 with a wall

Objects: Open door, closed door (toggle but no key needed)

State = agent[1] * 6 * 4 * 2 + agent[0] * 4 * 2 + agent_dir * 2 + door_state

Agents

- 2 agents: a teacher and a student
- Learning algorithm: Q-learning > Teacher is greedy (optimal)
- Student: behavioral cloning

Raymond's rule:

```
if action_student != action_teacher:
    reward = -1
else:
    reward = 1
```

Teacher's Q-Learning

 s_1

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

0

0

0

Simulations

Level 1a: Open door and no key

Level 1b: Open door at a new position

Level 2a: Closed door and no key

Level 2b: Sparse learning

Level 3: Locked door + key

Environment complexity: Level 1 (open door)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 9.3

Env complexity: Level 1a (open door)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 9.3

Env complexity: Level 1b (open door, diff loc)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 10.0

Env complexity: Level 1b (open door, diff loc)

Results after 100 episodes:

Average time steps per episode: 10.0

Average reward per episode: 1.0

Results after 100 episodes:

Average time steps per episode: 250.0

Env complexity: Level 2 (closed door)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 10.0

Env complexity: Level 2 (closed door)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 10.0

Env complexity: Level 2 (closed door & sparse learning)

Training: 200 episodes

Test: 100 episodes

Results after 100 episodes:

Average time steps per episode: 200.43

Environment complexity: Level 3

Harder for the agents, but also for the computer...

Final thought

It was fun to play around ...

... but the road for me to apply MARL to my research questions is still long!

Thank you!

Q-learning for the Teacher

