EPIDEMIC CONTROL WITH LEARNING & OPTIMIZATION

Cristina Bazgan[†], Paul Beaujean^{†*}, Éric Gourdin^{*} [†]LAMSADE, Université Paris-Dauphine, *Orange Labs

Context

- Software-defined networking enables full automated control over network topology.
- Networked systems face propagation of malware, cascading hardware failures, DDoS.

Fig. 1: SDN Controller supervising a software-defined network

Model

- Epidemics spreading on undirected graphs.
- Markov process with transition rates depending on neighbour state.
- o Epidemics spreading on undirected graphs.

Fig. 2: $SIS(\beta, \delta)$ of a node v

General framework

Fig. 3: Control loop

Turning a theorem into a control system

Theorem (Ganesh et al., 2005)

For any propagation model of threshold θ on a graph G, the epidemic dies out in logarithmic time if

$$\lambda_{\max}(G) < \theta.$$

Instead of applying local security measures, we leverage the control on the software-defined network topology to extinguish a propagating threat.

Learning the epidemic threshold

Fig. 4: One Class SVM for Anomaly Detection

SDN Controller running a parameter estimation algorithm

Fig. 5: Closed walks of size $\log n$

Optimizing the spectral radius

$$\max \sum_{e \in E} x_e$$

$$A(x) \leq tI$$

$$x \in \{0, 1\}^m$$
(1)

Combinatorics: subgraphs and closed walks

Random Matrix Theory: randomized algorithms relying on concentration of measure

Polynomials: real-stable polynomials and interlacing families