

Exercise 14A

Q8

Answer:

Given: AB | CD

 $\angle ABO = 50^{\circ}$ $\angle CDO = 40^{\circ}$

Construction: Through O, draw EOF | AB.

 $\angle ABO = \angle BOF = 50^{\circ}$ (alternate angles, when $AB \parallel EF$ and OB is a

transversal)

 $\angle {\rm FOD} \, = \angle {\rm ODC} \, = \, 40^\circ$ (alternate angles, when CD $\parallel {\rm EF}$ and OD is a

transversal)

$$\angle BOD = \angle BOF + \angle FOD$$

 $\angle BOD = 50^{\circ} + 40^{\circ} = 90^{\circ}$

Q9

Answer:

Given: AB | CD

GL and HM are angle bisectors of \angle AGH and \angle GHD, respectively.

$$\angle AGH = \angle GHD$$
 (alternate angles)

or
$$\frac{1}{2} \angle AGH = \frac{1}{2} \angle GHD$$

or
$$\angle$$
LGH = \angle GHM (given)

Therefore, GL \parallel HM as we know that if the angles of any pair of alternate interior angles are equal, then the lines are parallel.

Answer:

Given: AB
$$\parallel$$
 CD \angle ABE = 120° \angle ECD = 100° \angle BEC = x° Construction: FEG \parallel AB Now, sin ce $AB \parallel FEG$ and $AB \parallel CD$, $FEG \parallel CD$ \therefore $EFG \parallel AB \parallel CD$ \angle ABE = \angle BEG = 120° (alternate angles) or $x^\circ + y^\circ = 120^\circ \dots$ (i) \angle DCE = \angle CEF = 100° (alternate angles) or $x^\circ + z^\circ = 100^\circ \dots$ (ii) Also, $x^\circ + y^\circ + z^\circ = 180^\circ$ (FEG is a s traight line) \dots (iii) Adding (i) and (ii): $2x^\circ + y^\circ + z^\circ = 220^\circ$ or, $x^\circ + 180^\circ = 220^\circ$ (substituting (iii)) $x^\circ = 40^\circ$ \therefore $x = 40^\circ$

Q11

Answer:

********* FND *******