Recitation Notes for PSTAT 120B

Haosheng Zhou

Jan, 2023

Week 1

This week we will review some of the important properties taught in 120A as a preparation for homework 0. The first concept to review is the **continuous and discrete random variables**. Generally, a random variable

$$X(\omega): \Omega \to \mathbb{R} \tag{1}$$

is a mapping from the sample space to the real numbers, i.e. it assigns a value to each possible outcome of random experiment. Discrete random variables can take countably many values while continuous random variables can take uncountably many values. For example, if we want to consider the random variable X as the outcome after rolling one dice, then we have to first specify the **sample space**, i.e. the set of all possible outcomes rolling one dice, which should be $\Omega = \{1, 2, ..., 6\}$. As a result, such random variable X is defined as

$$X(\omega) = \omega \tag{2}$$

an identity map. Since X can only take values in $\{1, 2, ..., 6\}$, a finite set, it's a discrete random variable.

To describe a single random variable, we have the **cumulative distribution function (CDF)** defined for any random variable X as

$$F(x) = \mathbb{P}\left(X \le x\right) \tag{3}$$

Such F is always right-continuous, increasing and $F(-\infty) = 0$, $F(+\infty) = 1$ (try to explain the meaning of those properties). In particular, for continuous random variable such F is continuous and for discrete random variable such F is a step function. For continuous random variables, assume that F is nice enough to be differentiable so F' = f gives the **density** that characterizes the distribution of the continuous random variable (for random vectors, those concepts can be generalized).

To describe the relationship between two random variables, the most important property is **independence**. We call X, Y independent if

$$\forall x, y \in \mathbb{R}, \mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x) \mathbb{P}(Y \le y) \tag{4}$$

which can also be explained in the sense of conditional probability (try to write the equality in the conditional form). For discrete r.v. X, Y, they are independent if and only if $\forall x, y \in \mathbb{R}, \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \mathbb{P}(Y = y)$ and for continuous r.v. X, Y, they are independent if and only if $f_X(x)f_Y(y) = f_{X,Y}(x,y)$ a.e. (think about why the criterion for discrete r.v. does not hold for continuous r.v.).

The important concept to mention is the **expectation** of continuous or discrete random variables. For discrete random variable X, assume that its distribution is given by

$$p_k = \mathbb{P}(X = a_k) \ (k = 0, 1, ...)$$
 (5)

so the expectation is formed as

$$\mathbb{E}X = \sum_{k=0}^{\infty} a_k \cdot \mathbb{P}(X = a_k) = \sum_{k=0}^{\infty} a_k \cdot p_k \tag{6}$$

i.e., the **sum** of the product of the possible value a_k taken by X and the probability of X taking value a_k . For discrete random variable X, assume that its density is f(x), so the expectation is formed as

$$\mathbb{E}X = \int_{\mathbb{R}} x f(x) \, dx \tag{7}$$

i.e., the **integral** of the product of the possible value x taken by X and f(x), the likelihood of X taking value x. In the homework, we will be asked to prove the **linearity of expectation** by using those definitions.

Another important concept is the variance, defined as

$$Var(X) = \mathbb{E}(X - \mathbb{E}X)^2 \tag{8}$$

the connection between variance and expectation can be given by the useful formula that

$$Var(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2 \tag{9}$$

for two random variables, we can define the covariance to describe their relationship

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] \tag{10}$$

and a similar identity holds that

$$cov(X) = \mathbb{E}XY - (\mathbb{E}X)(\mathbb{E}Y) \tag{11}$$

note that cov(X, X) = Var(X) and that cov(X, Y) is **bilinear**, i.e. $cov(aX + bY, Z) = a \cdot cov(X, Z) + b \cdot cov(Y, Z)$, $cov(Z, aX + bY) = a \cdot cov(Z, X) + b \cdot cov(Z, Y)$ and **symmetric**, i.e. cov(X, Y) = cov(Y, X). This is especially useful when computing the variance of a linear combination. For example, if we want to write Var(2X + 3Y) in terms of Var(X), Var(Y),

$$Var(2X + 3Y) = cov(2X + 3Y, 2X + 3Y)$$
(12)

$$=2cov(X, 2X + 3Y) + 3cov(Y, 2X + 3Y)$$
(13)

$$= 2[2cov(X,X) + 3cov(X,Y)] + 3[2cov(Y,X) + 3cov(Y,Y)]$$
(14)

$$= 4Var(X) + 12cov(X,Y) + 9cov(Y,Y)$$
(15)

you are asked to prove a more general version of this property in the homework.

Finally, let's talk about **normal distribution**. We say $X \sim N(\mu, \sigma^2)$ if it has density

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (x \in \mathbb{R})$$

$$\tag{16}$$

for the two parameters μ , σ^2 of normal distribution, a direct interpretation is that $\mathbb{E}X = \mu$, $Var(X) = \sigma^2$. You can try to prove those properties on your own by applying the definitions of expectation and variance to calculate the integrals. A trick will be that when calculating the integral

$$\mathbb{E}X = \int_{\mathbb{R}} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \tag{17}$$

use the change of variables $u = \frac{x-\mu}{\sigma}$ to make the life easier

$$\mathbb{E}X = \int_{\mathbb{R}} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \tag{18}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \sigma \int_{\mathbb{R}} (\sigma u + \mu) e^{-\frac{u^2}{2}} du \tag{19}$$

$$=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}(\sigma u+\mu)e^{-\frac{u^2}{2}}du\tag{20}$$

$$=\frac{\mu}{\sqrt{2\pi}}\int_{\mathbb{D}}e^{-\frac{u^2}{2}}du\tag{21}$$

$$=\mu\tag{22}$$

here we use the property that $ue^{-\frac{u^2}{2}}$ is an odd function and that $\int_{\mathbb{R}} e^{-\frac{u^2}{2}} du = \sqrt{2\pi}$ (this property can be deduced from the standard normal density, en easy way to remember). The calculation of variance is left to the reader.

The standard normal CDF is one of the most frequently used notations in statistics. The definition is

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \mathbb{P}\left(G \le x\right) \ \left(G \sim N(0, 1)\right)$$
 (23)

a property of Φ is that

$$\forall x \in \mathbb{R}, \Phi(x) + \Phi(-x) = 1 \tag{24}$$

to see this, notice that $\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$ is an even function in t, so

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{-x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \ (u = -t)$$
 (25)

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du - \int_{-\infty}^{-x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$
 (26)

$$=1-\Phi(-x)\tag{27}$$

Week 2

HW₀

For the problems in HW 0, let's look at problem 6 and 7 briefly. The important fact used in problem 6 is that for independent r.v. X, Y, it's true that $\mathbb{E}XY = \mathbb{E}X \cdot \mathbb{E}Y$. Let's prove this property for continuous random variables. If X, Y are independent with density f, g, the joint density is h(x, y) = f(x)g(y)

$$\mathbb{E}XY = \int_{\mathbb{R}^2} xyh(x,y) \, dx \, dy \tag{28}$$

$$= \int_{\mathbb{R}^2} xy f(x)g(y) \, dx \, dy \tag{29}$$

$$= \int_{\mathbb{R}} x f(x) \, dx \cdot \int_{\mathbb{R}} y g(y) \, dy \tag{30}$$

$$= \mathbb{E}X \cdot \mathbb{E}Y \tag{31}$$

one can also try to prove the property in the discrete case.

For problem 7, the main idea is to tell you that often it's the case that you can greatly simplify the calculations by applying the properties of expectation or variance. For $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$ independent, by independence, the joint density is

$$f(x,y) = f_X(x)f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}} \frac{1}{\sqrt{2\pi}\sigma_y} e^{-\frac{(y-\mu_y)^2}{2\sigma_y^2}}$$
(32)

the expectation can be calculated by linearity

$$\mathbb{E}(aX + bY + c) = a\mathbb{E}X + b\mathbb{E}Y + c = a\mu_x + b\mu_y + c \tag{33}$$

the second moment computed with the variance identity

$$\mathbb{E}X^{2} = Var(X) + (\mathbb{E}X)^{2} = \sigma_{x}^{2} + \mu_{x}^{2}$$
(34)

and the variance of linear combination is

$$Var(aX + bY + c) = Var(aX) + Var(bY) = a^2\sigma_x^2 + b^2\sigma_y^2$$
(35)

note that generally the variance of sum does not equal the sum of variance, here it holds because of independence (actually this property holds if and only if X, Y are uncorrelated by the conclusion of problem 5).

HW 1

Let's talk about calculating the distribution of the transformation of a random variable. The most important idea comes from the CDF method that focuses on deriving the CDF of the transformed r.v.

To see how this method works, let's first look at some examples and then build up the theory for this method. Now $X \sim N(0,1)$, and we want to derive the PDF of Y = |X| and to calculate $\mathbb{E}|X|$. The first step is to set up the CDF of Y, denoted $F_Y(y) = \mathbb{P}(Y \leq y)$, it's obvious that when y < 0 the CDF always has value 0 so we only have to consider the non-trivial case where $y \geq 0$. Denote $f_X(x)$ as the density of X so $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

$$F_Y(y) = \mathbb{P}(|X| \le y) = \mathbb{P}(-y \le X \le y) = \int_{-y}^{y} f_X(x) \, dx = 2 \int_{0}^{y} f_X(x) \, dx \tag{36}$$

since $f_X(x)$ is an even function. Actually one does not have to calculate this integral, but to notice that PDF is the derivative of CDF, so taking derivative w.r.t. y on both sides gives

$$f_Y(y) = \frac{d}{dy} F_Y(y) = 2\frac{d}{dy} \int_0^y f_X(x) \, dx = 2f_X(y) = \sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{2}} \, (y \ge 0)$$
 (37)

the calculation of expectation follows

$$\mathbb{E}Y = \int_0^\infty y f_Y(y) \, dy \tag{38}$$

$$= \sqrt{\frac{2}{\pi}} \int_0^\infty y e^{-\frac{y^2}{2}} \, dy \tag{39}$$

$$=\sqrt{\frac{2}{\pi}}\int_0^\infty e^{-\frac{y^2}{2}}\,d\frac{y^2}{2}\tag{40}$$

$$=\sqrt{\frac{2}{\pi}}\int_0^\infty e^{-u}\,du\tag{41}$$

$$=\sqrt{\frac{2}{\pi}}\tag{42}$$

Remark. Do not forget that the density for Y only works on $[0,\infty)$ so it's necessary to label out $y \ge 0$.

Remark. One might have to take the derivative of an integral with variables in the integration region a lot when calculating the distribution of the transformation of r.v. As a result, one might find the following property from calculus useful:

$$\frac{d}{dx} \int_{f(x)}^{g(x)} h(t) dt = \frac{d}{dx} \int_{0}^{g(x)} h(t) dt - \frac{d}{dx} \int_{0}^{f(x)} h(t) dt$$
(43)

$$= h(g(x))g'(x) - h(f(x))f'(x)$$
(44)

to see this, one can consider $p(x) = \int_0^x h(t) dt$ and $\int_0^{g(x)} h(t) dt = p(g(x))$, so

$$\frac{d}{dx} \int_{0}^{g(x)} h(t) dt = \frac{d}{dx} p(g(x)) \tag{45}$$

$$=p'(g(x))g'(x) \tag{46}$$

$$=h(g(x))g'(x) \tag{47}$$

since p'(x) = h(x) by Newton-Lebniz formula. So this is actually just an application of the chain rule.

The example above tells us the way to apply the CDF method, now let's build up the method in theory. Let's assume that we already know the PDF of X and want to get the PDF of Y = h(X) with h to be strictly monotone increasing (this assumption is made to simplify the proof but not necessary).

$$F_Y(y) = \mathbb{P}\left(Y \le y\right) = \mathbb{P}\left(h(X) \le y\right) \tag{48}$$

$$= \mathbb{P}\left(X \le h^{-1}(y)\right) \tag{49}$$

$$= \int_{-\infty}^{h^{-1}(y)} f_X(x) \, dx \tag{50}$$

take derivative w.r.t. y on both sides to get

$$f_Y(y) = \frac{d}{dy} F_Y(y) \tag{51}$$

$$= \frac{d}{dy} \int_{-\infty}^{h^{-1}(y)} f_X(x) \, dx \tag{52}$$

$$= f_X(h^{-1}(y)) \cdot \frac{d}{dy} h^{-1}(y)$$
 (53)

by the calculations we have already made in the remark above. (This is part of the homework problem 8, please try to prove the other half when h is strictly decreasing on your own) Notice that the density has to be non-negative and here since h is increasing, $\frac{d}{dy}h^{-1}(y)$ has to be non-negative, making the density f_Y non-negative. For the case where h is decreasing, there is a slight difference in the sign that you have to notice. In all, the general formula is given by

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{d}{dy} h^{-1}(y) \right|$$
 (54)

for any strictly monotone h and is called the transformation method.

Remark. Although this method directly comes from the CDF method, one will see that in multi-dimensional case this method is much easier to generalize and to apply.

Now let me raise an example to show you how to apply this method. Consider $X \sim N(\mu, \sigma^2)$ and we want to find the PDF of $Y = \frac{X - \mu}{\sigma}$. It's immediate that $h(x) = \frac{x - \mu}{\sigma}$ is a linear function so it's strictly monotone, $h^{-1}(y) = \sigma y + \mu$

and $\frac{d}{dy}h^{-1}(y) = \frac{1}{\frac{dh(y)}{dy}} = \sigma$. Now it's clear that $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, plug in the formula to see

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{d}{dy} h^{-1}(y) \right|$$
 (55)

$$= \sigma \cdot f_X(\sigma y + \mu) \tag{56}$$

$$=\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}\tag{57}$$

as a result, we see that $Y \sim N(0,1)$ is standard Gaussian. So we proved a very important scaling property of Gaussian random variable that $X \sim N(\mu, \sigma^2)$ if and only if $\frac{X - \mu}{\sigma} \sim N(0,1)$.

The last method to talk about is **the method of moment generating function (MGF)**. This method is based on two properties of MGF defined as $M_X(t) = \mathbb{E}e^{tX}$. The first one is that MGF characterizes the distribution, so two random variables have the same MGF if and only if they have the same distribution. The second one is that for independent $X, Y, M_{X+Y}(t) = M_X(t)M_Y(t)$ the MGF of the sum is the product of respective MGF. **The MGF method is especially effective for dealing with Gaussian random variables.**

An example is that for $Y_1, Y_2, ..., Y_n \sim N(0, 1)$ i.i.d., let's calculate the distribution of $Z = a_1 Y_1 + a_2 Y_2 + ... + a_n Y_n$. One has to know that the MGF for $N(\mu, \sigma^2)$ Gaussian r.v. is $M(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}$ (refer to the remark is you are not familiar with this conclusion).

$$M_Z(t) = M_{a_1 Y_1}(t) M_{a_2 Y_2}(t) \dots M_{a_n Y_n}(t)$$
(58)

$$= \mathbb{E}e^{ta_1Y_1}\mathbb{E}e^{ta_2Y_2}...\mathbb{E}e^{ta_nY_n} \tag{59}$$

$$= M_{Y_1}(ta_1)...M_{Y_n}(ta_n) (60)$$

$$=e^{\frac{a_1^2}{2}t^2}...e^{\frac{a_n^2}{2}t^2} \tag{61}$$

$$=e^{\frac{\sum_{i=1}^{n}a_{i}^{2}}{2}t^{2}}\tag{62}$$

comparing with the MGF for $N(\mu, \sigma^2)$, one immediately find that $Z \sim N(0, \sum_{i=1}^n a_i^2)$. This is telling us that **the linear combination of independent Gaussian r.v. must still be Gaussian**. (Try to do the same problem for $Y_i \sim N(\mu_i, \sigma_i^2)$ independent but not *i.i.d.* to see the conclusion that the linear combination is still Gaussian)

Remark. Let's calculate the MGF for $X \sim N(\mu, \sigma^2)$

$$M_X(t) = \mathbb{E}e^{tX} \tag{63}$$

$$= \int_{\mathbb{R}} e^{tx} f_X(x) \, dx \tag{64}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} e^{tx - \frac{(x-\mu)^2}{2\sigma^2}} dx \left(u = \frac{x-\mu}{\sigma} \right)$$
 (65)

$$=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}e^{t(\sigma u+\mu)-\frac{u^2}{2}}du\tag{66}$$

extract the constant term $e^{t\mu}$ to continue

$$M_X(t) = \frac{1}{\sqrt{2\pi}} e^{t\mu} \int_{\mathbb{R}} e^{t\sigma u - \frac{u^2}{2}} du$$
 (67)

$$= \frac{1}{\sqrt{2\pi}} e^{t\mu} \int_{\mathbb{R}} e^{-\frac{1}{2}(u^2 - 2t\sigma u + t^2\sigma^2) + \frac{\sigma^2}{2}t^2} du$$
 (68)

$$\sqrt{2\pi} \int_{\mathbb{R}} dt \int_{\mathbb{R}} e^{-\frac{1}{2}(u^2 - 2t\sigma u + t^2\sigma^2) + \frac{\sigma^2}{2}t^2} du$$

$$= \frac{1}{\sqrt{2\pi}} e^{\mu t + \frac{\sigma^2}{2}t^2} \int_{\mathbb{R}} e^{-\frac{(u - t\sigma)^2}{2}} du \quad (v = u - t\sigma)$$
(68)

$$= \frac{1}{\sqrt{2\pi}} e^{\mu t + \frac{\sigma^2}{2} t^2} \int_{\mathbb{R}} e^{-\frac{v^2}{2}} dv \tag{70}$$

$$=e^{\mu t + \frac{\sigma^2}{2}t^2} \tag{71}$$

Week3

It's always important that when calculating the distribution of the transformation of random variables, one choose the method that fits the best with the problem. Now we have three methods: the CDF method, the transformation method and the MGF method.

Generally, when dealing with the distribution of the sum of independent random variables, always use MGF method. The reason is that the MGF of the sum of independent r.v. is always the product of respective MGF. From the one-to-one correspondence between MGF and distribution, one would always find out the distribution of the independent sum easily.

For transformation method, it's always easy to apply when we see a transformation from $\mathbb{R}^n \to \mathbb{R}^n$, mapping a random vector of length n to another random vector of length n. The key point is that the dimension of the domain and image space of the transformation should be the same (because it depends on the determinant of the Jacobian as we will see later). As a result, transformation method won't be applied for problem like deriving the distribution of the sum of random variables, since it's actually mapping $(X_1, ..., X_n) \in \mathbb{R}^n$ to $X_1 + ... + X_n \in \mathbb{R}$. Moreover, there's some restrictions on the 'invertible' property of the transformation. For example, $Y = X^2$ has transformation $h(x) = x^2$ which is not invertible, so the transformation method will fail.

For distribution method, it's the most general method but also the method with the most calculations involved. It can be applied in all circumstances, regardless of the transformation function and the random variables one is using. Problems like $Y = |X|, Y = X^2$ can only be dealt with using the CDF method.

Let's look at some problems that consider the distribution of the average of *i.i.d.* random variables $\frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n}$ to get familiar with the MGF method.

Let's first take X_1 following the Bernoulli distribution B(1,p). Let's first calculate the MGF of X_1

$$M_{X_1}(t) = \mathbb{E}e^{tX_1} = 1 - p + pe^t \tag{72}$$

so now we see that

$$M_{\frac{S_n}{n}}(t) = \mathbb{E}e^{\frac{S_n}{n}t} = \mathbb{E}e^{\frac{t}{n}S_n} = M_{S_n}\left(\frac{t}{n}\right)$$
(73)

since S_n is i.i.d. sum, its MGF is the product of the respective MGF, so

$$M_{S_n}\left(\frac{t}{n}\right) = \left[M_{X_1}\left(\frac{t}{n}\right)\right]^n = (1 - p + pe^{\frac{t}{n}})^n \tag{74}$$

notice the trick to put the denominator n of $\frac{S_n}{n}$ into the variable in the MGF.

Similarly, we can compute the example for Poisson distribution $X_1 \sim P(\lambda)$

$$M_{X_1}(t) = \mathbb{E}e^{tX_1} = \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k}{k!} e^{-\lambda} = e^{\lambda e^t - \lambda}$$

$$\tag{75}$$

so now we see that

$$M_{\frac{S_n}{n}}(t) = \mathbb{E}e^{\frac{S_n}{n}t} = \mathbb{E}e^{\frac{t}{n}S_n} = M_{S_n}\left(\frac{t}{n}\right)$$

$$\tag{76}$$

since S_n is i.i.d. sum, its MGF is the product of the respective MGF, so

$$M_{S_n}\left(\frac{t}{n}\right) = \left[M_{X_1}\left(\frac{t}{n}\right)\right]^n = e^{n\lambda e^{\frac{t}{n}} - n\lambda} \tag{77}$$

one might try to prove the additivity of Poisson distribution as an exercise (if $\forall i=1,2,...,n,X_i\sim P(\lambda_i)$ are independent random variables, then $X_1+...+X_n\sim P(\lambda_1+...+\lambda_n)$) using MGF.