1단계(3차년도) 기술문서

(과제명) 대규모 분산 에너지 저장장치 인프라의 안전한 자율운영 및 성능 평가를 위한 지능형 SW 프레임워크 개발 (과제번호) 2021-0-00077

• 결과물명 : 배터리 저장 인프라 건강도 평가 기법 기술

• 작성일자 : 2023년 11월 01일

과학기술정보통신부 SW컴퓨팅산업원천기술개발사업 "1단계(3차년도) 기술문서"로 제출합니다.

수행기관	성명/직위	확인
㈜퀀텀솔루션	정선규/수석연구원	AN.

정보통신기획평가원장 귀하

(안전분석AI엔진) 배터리 저장 인프라 건강도 평가 기법 기술 문서

[과제명: 대규모 분산 에너지 저장장치 인프라의 안전한 자율운영 및 성능 평가를 위한 지능형 SW 프레임워크 개발]

> (주)퀀텀솔루션 연구소

November 01, 2023

본 문서에 대한 저작권은 ㈜ 퀀텀솔루션에 있으며, 이 문서의 전체 또는 일부에 대하여 상업적 이익을 목적으로 하는 무단 복제 및 배포를 금합니다.

Copyright© Quantum Solution(2015). All Rights Reserved.

사 용 권 한

본 문서에 대한 서명은 ㈜퀀텀솔루션 내부에서 본 문서에 대하여 수행 및 유지관리의 책임이 있음을 인정하는 것임.

본 문서는 작성, 검토, 승인하여 승인된 원본을 보관한다.

작성자:	최영근	일자:	2023.11.01
 검토자:	 장태욱	일자:	2023.11.01

문서 이력

버전	변경일자	제.개정 내용	작성자
1.0	23.11.01	Draft 작성 완료	최영근

<목차>

1.	배터리 저장 인프라 건강도 평가 시스템	3
	가. 저장 인프라 배터리 데이터 수집	3
	나. 저장 인프라 배터리 건강도 평가	·······7

1. 배터리 저장 인프라 건강도 평가 시스템

가. 저장 인프라 배터리 데이터 수집

1) 배터리 저장 인프라(1)ESS) 개요

○ 설치 위치 : 제주 테크노파크 내

○ 설치 일시 : 2023년 7월

< 제주 테크노파크 내 ESS >

2) ESS내 배터리 구성

 \bigcirc

- 셀 : (98개 셀 직렬 연결) * 3 set 병렬 연결

- 랙 전압 : 356V - 전류 용량 : 180Ah

- 전력 : 64 kW

- 3) ESS의 배터리 충전 데이터 수집
 - 제주테크노파크에서 수전되는 전기를 저압 분전반을 통하여 전기 인입
 - 수전되는 전기를 통해 충전하고 충전시 생산되는 랙, 모듈, 셀단위의 전 압, 전류, SoC데이터등을 데이터베이스에 저장
- 4) ESS내 배터리 랙 2)BMS를 이용한 데이터 수집 항목

²⁾ BMS(Battery Management System) :배터리)의 전압, 전류 및 온도를 모니터링 하는 시스템

¹⁾ ESS(Energy Storage System) : 에너지를 저장하였다가 필요할 때 사용할 수 있는 체계

- 배터리 랙
 - SoC
 - 배터리 랙 전압
 - 배터리 랙 전류
- 배터리 모듈
 - 배터리 모듈 전압
 - 배터리 모듈 전류
- 배터리 셀
 - 배터리 셀 전압
 - 배터리 셀 전류
- IEC 62619 표준 관련 건강도 관련 데이터 항목
 - 배터리 랙의 BMS에서 배터리의 안전성을 위하여 IEC 62619기반 배터리 단위별 검사 항목
 - 아래의 항목를 검사하여 기본적인 배터리의 안전한 운용 도모

구분	설명		
rack_voltage_under_warning	랙 저전압 경고		
rack_voltage_over_warning	랙 고전압 경고		
rack_temperature_under_warning	랙 저온도 경고		
rack_temperature_over_warning	랙 고온도 경고		
rack_current_over_warning	랙 고 전류 경고		
rack_voltage_under_fault1	랙 저전압 위험		
rack_voltage_over_fault1	랙 고전압 위험		
rack_temperature_under_fault1	랙 저온도 위험		
rack_temperature_over_fault1	랙 고온도 위험		
rack_current_over_fault1	랙 고전류 위험		
module_bms_communication_fault1	BMS 통신오류		
rack_inner_adc_fault1	랙 ADC 위험		
component_func_fault1	내부 함수 장애		
stl_check_error_fault1 STL 체크 위험			
rack_voltage_cell_voltage_total_mismatch_fault1	랙 전압 셀전압 불일치 위험		

○ 배터리 건강도 평가

- 배터리 랙 단위의 충전데이터를 이용하여 일정 3)SoC구간의 충전시간 변화량을 분석하여 건강도 평가
- 배터리 모듈 단위의 충전데이터를 이용하여 일정 SoC구간의 충전시간 변화량을 분석하여 건강도 평가
- 배터리 셀 단위의 충전데이터를 이용하여 일정 SoC구간의 충전시간 변화량을 분석하여 건강도 평가
- 배터리 각 셀단위의 충전데이터를 비교하여 셀간 전압 밸런스(4)SoB)를 분석

○ 건강도 평가를 위한 배터리 랙 데이터 구성

id_number	Туре
rack_soc	decimal(5,1)
rack_soh	decimal(5,1)
rack_dc_voltage	decimal(5,1)
rack_current	decimal(5,1)
max_cell_voltage	decimal(5,3)
min_cell_voltage	decimal(5,3)
avg_cell_voltage	decimal(5,3)
max_cell_voltage_location	tinyint(4) unsigned
min_cell_voltage_location	tinyint(4) unsigned
rack_dc_charge_current_limit	decimal(5,1)
rack_dc_discharge_current_limit	decimal(5,1)
rack_dc_charge_power_limit	decimal(5,1)
rack_dc_discharge_power_limit	decimal(5,1)
max_rack_temperature	decimal(5,1)
min_rack_temperature	decimal(5,1)
avg_rack_temperature	decimal(5,1)

³⁾ SoC(State Of Charge) : 배터리의 현재 충전상태를 표시하는 지표(%)

⁴⁾ SoB(State Of Balance) : 셀간의 전압 불평형을 판단하는 지표

○ 건강도 평가를 위한 배터리 모듈 데이터 구성

id_number	Туре
module_soc	decimal(5,1)
module_soh	decimal(5,1)
module_dc_voltage	decimal(5,3)
module_current	decimal(5,1)
max_cell_voltage	decimal(5,3)
min_cell_voltage	decimal(5,3)
avg_cell_voltage	decimal(5,3)
max_cell_voltage_location	tinyint(4) unsigned
min_cell_voltage_location	tinyint(4) unsigned
module_dc_charge_current_limit	decimal(5,1)
module_dc_discharge_current_limit	decimal(5,1)
avg_module_temperature	decimal(5,1)
module_temperature_1	decimal(5,1)
module_temperature_2	decimal(5,1)
max_module_temperature_location	tinyint(4) unsigned
min_module_temperature_location	tinyint(4) unsigned

○ 건강도 평가를 위한 배터리 셀 데이터 구성

id_number	Туре
id_number	bigint(20)
rack_device_id	tinyint(3) unsigned
module_id	tinyint(4) unsigned
cell_id	tinyint(4) unsigned
voltage	decimal(5,3)
balancing_status	tinyint(4) unsigned
created_at	timestamp

나. 저장 인프라 배터리 건강도 평가

- 1) 배터리 랙 단위 건강도 평가
 - ESS 충전데이터 기반 배터리 랙 단위의 건강도 평가
 - 배터리 충전시 랙 단위로 일정구간의 SoC의 변화량을 분석하여 초기상 태의 SoC 변화량과 비교하여 배터리의 건강도를 평가
 - 배터리 랙 충전데이터

rack_soc	rack_soh	rack_dc_voltage	rack_current	max_cell_voltage	min_cell_voltage	avg_cell_voltage
53.3	75.4	359.5	0.0	3.667	3,66	3.663
53.3	75.4	358.6	0.0	3.677	3,626	3,663
53.3	75.4	359.5	0.0	3.667	3.66	3.663
53.3	75.4	358.6	0.0	3.677	3,626	3.663
53.3	75.4	359.5	0.0	3.667	3,66	3.663
53.3	75.4	358.7	0.0	3.677	3,626	3.663
53.3	75.4	359.5	0.0	3.667	3,66	3.663
53.3	75.4	358.6	0.0	3.677	3,626	3.663
53.3	75.4	359.5	0.0	3.667	3.66	3.663

- 2) 배터리 모듈 단위 건강도 평가
 - ESS 충전데이터 기반 배터리 모듈 단위의 건강도 평가
 - 배터리 충전시 모듈 단위로 일정구간의 SoC의 변화량을 분석하여 초기 상태의 SoC 변화량과 비교하여 배터리의 건강도를 평가

module_soc	module_soh	module_dc_voltage	module_current	max_cell_voltage	min_cell_voltage	avg_cell_voltage
53.5	0.0	36.6	0.0	3.667	3,663	3.664
53.1	0.0	36.6	0.0	3,664	3.66	3,662
53.1	0.0	36.6	0.0	3.664	3,661	3.662
53.3	0.0	36.6	0.0	3,665	3.662	3,663
53.1	0.0	36.6	0.0	3.665	3,661	3.662
53.5	0.0	36.6	0.0	3,667	3,663	3,665
53.4	0.0	36.6	0.0	3.666	3,663	3.664
53.2	0.0	36.6	0.0	3,665	3.662	3,663
53.2	0.0	33.0	0.0	3.664	3,661	3.296
53.5	0.0	33.0	0.0	3,667	3,663	3,298
46.0	0.0	36,3	0.0	3.628	3,626	3.627
45.9	0.0	36.3	0.0	3,629	3,626	3,627
55.0	0.0	36.7	0.0	3.677	3,672	3.673
55.0	0.0	36.7	0.0	3,676	3.672	3,674

- 3) 배터리 랙 및 모듈 단위 건강도 평가식
 - ESS 충전시 배터리 모듈 또는 랙의 SoC의 변화량과 배터리의 정격 상 태의 SoC변화량을 비교하여 건강도 평가

배터리 건강도(%) =
$$\frac{36 / Chargingefficiency}{Average of Charge \Delta SoC} \times 100$$

- 4) 배터리 셀 단위 건강도 평가
 - ESS 충전데이터 기반 셀 밸런싱 상태(SoB)를 분석하여 건강도 평가
 - 배터리 각 셀의 충전전압을 비교하여 셀 간 밸런싱 상태를 평가하여 건 강도를 평가
 - 배터리는 장기간 사용 후 배터리의 각 셀의 충전시 최고전압과 최저전 압은 서로 상이하게 차이가 발생하며 이 차이를 분석하여 셀 간 밸런싱 상태를 평가
 - 셀 간 밸런싱 상태가 비정상으로 평가되는 경우 배터리 모듈단위로 교 체가 필요한 것으로 판단

cell_1_voltage	cell_2_voltage	cell_3_voltage	cell_4_voltage	cell_5_voltage	cell_6_voltage	cell_7_voltage	cell_8_voltage
3.664	3,663	3,664	3.664	3.664	3,665	3.665	3.665
3.662	3.66	3.661	3.661	3.662	3,662	3,662	3.663
3.662	3.661	3,661	3.661	3.662	3.662	3.662	3.663
3.663	3,662	3.662	3.662	3,662	3,663	3,663	3.664
3.662	3.661	3,661	3.661	3.662	3.662	3.663	3.663
3.664	3,663	3.664	3.664	3.664	3,665	3,665	3,665
3.664	3.663	3,663	3.663	3.663	3.664	3.664	3.664
3.662	3.662	3.662	3.662	3.662	3.663	3,663	3.664
3,663	3.662	3,661	3.662	3.662	3.662	3.663	3.664
3.664	3,664	3.663	3.664	3.664	3,665	3,665	3.666
3.628	3.628	3,626	3.627	3.627	3.627	3.626	3.628
3.628	3,627	3.626	3.626	3,626	3.627	3,626	3.62
3.673	3.673	3.673	3.672	3,673	3.673	3.674	3.673

5) 배터리 셀 단위 밸런싱 지수 평가 방법

- 향후 지속적으로 저장되는 ESS 충전데이터를 분석하여 계산된 SoB를 관리하여 건강한 밸런싱 지수와 불평형이 심한 SoB값에 대한 통계 데이 터를 도출하고 이를 배터리 충전데이터에 적용