Lecture notes: Introduction to Lyapunov Stability and position regulation for robot

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2018

Outline

This lecture note is based on

• Chapter 8 in M. Spong Robot modeling and control.

Robot manipulator dynamics

Given the model of n-link robot manipulator:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$

Equilibrium states of a robot

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$
 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$

thus

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \star_2 \\ M^{\dagger}(1) \begin{bmatrix} \tau - C(1, \dot{x}) \dot{x} - M(1) \end{bmatrix} \\
= f(x) + g(x_1)u \quad \text{control} - \text{other} \\
= \begin{bmatrix} \times_2 \\ M^{\dagger}(1) - C(x_1, x_2)x - M(x_1) \end{bmatrix} + \begin{bmatrix} O \\ M^{-1}(x_1) \end{bmatrix} u$$

•
$$x_e$$
 unforced:

$$\chi_z^e = 0$$

$$\Lambda_2 = 0$$

$$= \Lambda \Lambda^{-1}(X_1)$$

$$- M^{-1}(X_1) \left[C(X_1, X_2) X_2 + N(X_1) \right] = 0$$

$$N(X_2^0) = 0$$

• X_e forced:

$$-M^{+}(x_{1}) \left[C(x_{1}, x_{2}) \right] \times_{2} + N(x_{1}) \left[+ M^{+}(x_{1}) \right] + M^{-}(x_{1}) \left[-M^{+}(x_{1}) \right] + M^{-}(x_{1}) = 0$$

Recall the notion of stability

- $x_0 \neq x_0$ and $x(t, x_0)$ be the solution of the ODE with x_0 as the initial state.
- $x'_0 \neq x_0$ and $x(t, x'_0)$ be the solution of the ODE with x'_0 as the initial state.

Stability of x_0 :

$$\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0, \|x'_0 - x_0\| \leq \delta_{\varepsilon}, \Longrightarrow \|x(t, x'_0) - x(t, x_0)\| \leq \varepsilon, \forall t \geq t_0.$$

Asymptotic stability of x_0 :

$$\exists \delta > 0, \|x_0' - x_0\| \leq \delta, \implies \|x(t, x_0') - x(t, x_0)\| \to 0 \text{ as } t \to \infty$$

Global A.S.: $\forall \delta > 0$,

Stability

exponential stability:

$$\exists \delta, c, \lambda > 0: \quad \|x_0' - x_0\| < \delta \to \|x(t, x_0') - x(t, x_0)\| \le c \exp^{-\lambda t} \|x_0' - x_0\|.$$

for nonlinear system, this may hold up to a maximum finite δ — called the region of attraction, which is hard to estimate.

"practical" stability of a set S

$$\exists T(x(t_0), S) \in \mathbb{R} : x(t, x_0) \in S, \forall t \geq t_0 + \underline{T(x(t_0), S)}$$

also known as u.u.b. stability ("ultimately uniformly bounded.")

also known as alaist stability (alimatory almorring sounded.)

The direct method of Lyapunov

Problem: How to determine the stability of a system?

$$\dot{x} = f(x)$$

Previously, we learned about the stability verification method of LTI system

$$\dot{x} = Ax$$

negative eigenvalues ... A stable

For unforced, time invariant system $\dot{x} = f(x)$, we can analyze the local stability around the equilibrium x_e : $f(x_e) = 0$ by local linearization and $\dot{X} \approx f(xe) + \frac{of}{dX}|_{xe} (x-xe)$ omites the stability of the linear system.

What about global stability?

The direct method of Lyapunov

Problem: How to determine the stability of a system without explicitly integrating the ODE?

$$\dot{x} = f(x)$$

- Lyapunov formalized the idea: If the total energy is dissipated, then the system must be stable.
- Lyapunov function: "a measure of energy".

The direct method of Lyapunov

Problem How to determine the stability of a system without explicitly integrating the ODE?

$$\dot{x} = f(t, x)$$

The energy is dissipated along the state trajectory of the system.

insight: To verify stability,

Show that as the system evolves, the energy dissipated.

Lyapunov and level sets

How to interpret stability using Lyapunov function?

- $V(x) \ge 0$ energy is always nonnegative.
- $V(x_e) = 0$ lowest energy at the stable equilibrium.

$$\frac{dV}{dt} \leq 0 - \lim_{t \to 0} \frac{V(t+st) - V(t)}{st} \leq 0$$

$$\frac{dV}{dt} < 0 - \lim_{a \to 0} \frac{V(t+st) - V(t)}{st} \leq 0$$

energy is nonincreasing energy is strictly decreasing.

 $\frac{dV}{dt} = \frac{dV}{dx} \cdot \frac{dx}{dt}$ $= \nabla V \cdot X$ $= ||\nabla V|| ||\dot{X}|| \cos \theta$ \dot{Y}

Level sets, contour plot of Lyapunov function

$$V(x) = x_1^2 + x_2^2.$$

level set; S is a level set of V for a given c;

$$S = S(c) = \{x \in \mathbb{R}^n : V(x) \le c_0\}$$

Change of coordinates

Often we change the coordinate to make $x_e = 0$. That is, we introduce a new variable $\tilde{x} = x - x_e$.

Preliminaries: Positive definite functions

A function $V: \mathbb{R}^n \to \mathbb{R}$ is **positive definite** (PD) if

- V(x) > 0 $\forall x$ V(x) = 0 iff x = 0
- · all levelsets of V(x) have to be bounded.

$$V(x) = x^T P x$$
 with $P = P^T$, is PD if and only if $P > 0$.

A function V is negative definite if and only if -V is PD.

An example of unbounded level sets

Lyapunov Stability

Lyapunov candidate: $V(x): \mathbb{R}^n \to \mathbb{R}$ such that

$$V(0)=0, \quad V(x)>0, \forall x\neq 0$$

a positive definite function.

sufficient condition of stability

 $\exists V$ candidate : $\dot{V}(x) \leq 0$ along the trajectory of $\dot{x} = f(x)$

negative semi-definite V

sufficient condition of asymptotic stability

 $\exists V$ candidate : $\dot{V}(x) < 0$ along the trajectory of $\dot{x} = f(x)$

negative definite \dot{V}

A Lyapunov exponential stability theorem

suppose a function V that is

- · V is lyapunou candidate.
- · VX ≤ dVx for all X. d>0

then, there exists an M such that every trajectory of $\dot{x} = f(x)$ satisfies $||x(t)|| \le Me^{-\alpha t/2}||x(0)||$. (globally exponential stable.)

interpretation

$$V(x)$$
 large \rightarrow - $dV(x)$ $\angle c$ 0
 $V(x)$ small \rightarrow - $dV(x)$ $\angle 0$

A Lyapunov instability theorem

suppose a function V that is

•
$$\dot{V}(x) \leq 0$$
 $\forall x$

•
$$\exists w \neq 0$$
, such that $V(w) < V(0)$

then,the trajectory of $\dot{x} = f(x)$ with x(0) = w does not converge to zero.

$$V(at) \leq V(t_0) = V(\omega) \leq V(0)$$

interpretation

U.U.B. Stability

$\exists V$ candidate such that

- S is a level set of V for a given c_0 .
- \dot{V} < 0, along the trajectories of $\dot{x} = f(x)$, $x \notin S$.

$$V = x_1^2 + x_2^2$$

$$x_1^2 + x_2^2 \le 5$$

Challenges

Lyapunov theory is only sufficient but not necessary.

- ③If we find a Lyapunov function, the system is stable.
- ©But if we cannot find a Lyapunov function, it does not mean the system is unstable.

Example: Lyapunov stability applies to LTI system

Petine
$$V(x) = X^T P X$$
 $P : Positive definite$

1) $V(x) > 0$ $\forall x \neq xe$

2) $V(xe) = 0$ $\Rightarrow xe = 0$; $V(0) = 0$

3) $\frac{dV}{dt} = 0$ $\frac{x^T P x}{dt} = x^T P x + x^T P^T x$ $\frac{\partial x}{\partial x} = y^T P x$

$$= x^T P A x + x^T P^T A x$$
 $\frac{\partial x}{\partial x} = y^T P x$

$$= x^T (PA + P^T A) x$$
 $\frac{\partial x}{\partial y} = x^T P^T x$

P Symmetric $\frac{\partial x}{\partial x} = x^T P x$ $\frac{\partial x}{\partial y} = x^T P^T x$

Refine $V(x) = x^T P x$ $\frac{\partial x}{\partial y} = 0$

Example

$$\dot{x} = -x + y + xy$$

$$\dot{y} = x - y - x^2 - y^3$$

$$\dot{y} = x - y - x^2 - y^3$$

Question: is $(0,0)^T$ a stable equilibrium?

Local stability:
$$f(xe) = 0$$
.
 $\dot{x} = f(x) \implies \frac{\partial f}{\partial \dot{x}} \Big|_{\dot{x}e} = \begin{bmatrix} -1 + y & 1 + x \\ 1 - 2x & -1 - 3y^2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\dot{x} = Ax \iff A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$der \begin{bmatrix} \lambda I - A \end{bmatrix} = der \begin{bmatrix} A+1 & -1 \\ -1 & \lambda +1 \end{bmatrix}$$

$$= (\lambda +1)^2 - 1 = 0$$

$$\lambda_1 = 0, \quad \lambda_2 = -2$$

$$\dot{\chi} = -\chi + y + \chi y$$

$$\dot{y} = \chi - y - \chi^2 - y^3$$

$$v = \frac{\partial v}{\partial x} \dot{x} + \frac{\partial v}{\partial y} \dot{y}$$

$$= 2\chi(-\chi + y + \chi y) + 2\chi(\chi - y - \chi^2 - y^3)$$

$$= -2\chi^2 + 2\chi y + 2\chi y + 2\chi y - 2\chi y - 2\chi y - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

$$= -2(\chi^2 - 2\chi y + y^2) - 2\chi y$$

Example

consider the system

$$\dot{x}_1 = -x_1 + g(x_2) \tag{1}$$

$$\dot{x}_2 = -x_2 + h(x_1). \tag{2}$$

where $|g(z)| \le |z|/2$ and $|h(z)| \le |z|/2$.

$$\frac{2}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1$$

G. A.S.

The linear harmonic oscillator:

ator:

$$\frac{M\ddot{x} = -F(x) - \delta \dot{x}}{2} = \frac{\ddot{x}}{-F(x)} - \frac{\dot{x}}{\delta \dot{x}}$$

$$= -F(x) - \delta \dot{x}$$

let M = 1, $x_1 = x$ and $x_2 = \dot{x}$.

The state space equation is
$$\dot{\chi}_1 = \chi_2$$

 $\dot{\chi}_2 = -\delta \chi_2 - F(\chi_1)$

consider the Lyapunov function candidate:

$$V(x) = \int_0^{x_1} F(s) ds + \frac{1}{2} x_2^2$$

Show the system is stable:

$$\begin{aligned}
\vec{V} &= F(x_1) \dot{x}_1 + x_2 \cdot \dot{x}_2 \\
&= F(x_1) x_2 + z_2 \cdot (-\delta x_2 - F(x_1)) \\
&= -\delta x_2^2 \leq 0
\end{aligned}$$

Finding Lyapunov functions

- there are many different types of Lyapunov theorems
- the key in all cases is to find a Lyapunov function and verify that it has the required properties

one common approach:

- decide form of Lyapunov function (e.g., quadratic), parametrized by some parameters (called a Lyapunov function candidate)
- try to find values of parameters so that the required hypotheses hold.