I. Amendments to the Claims

Claims 1-41 (canceled)

42. (currently amended) The compound of claim 40 which is a A compound of formula II:

wherein:

Q is -O-, -S(O)_m-, or -CR⁵R⁶- wherein Q is attached to each phenyl ring in a para position relative to the oxygen atom attached to each phenyl ring;

each R¹ is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^a;

R² is a covalent bond;

each R^3 is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R^4 is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^b ; or R^3 and R^4 are joined to form a C_{1-4} alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R⁵ and R⁶ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur or nitrogen;

wherein for R¹, R³, R⁴, R⁵, and R⁶, each alkyl, alkenyl, and alkynyl is optionally substituted with R^x, or with 1, 2, 3, or 4 substituents independently selected from R^b; for R¹-R⁶, each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c, and for

R¹-R⁶, each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c;

each R^a is independently $-OR^d$, $-NO_2$, halo, $-S(O)_mR^d$, $-SR^d$, $-S(O)_2OR^d$, $-S(O)_mNR^dR^c$, $-NR^dR^c$, $-O(CR^fR^g)_nNR^dR^c$, $-C(O)R^d$, $-CO_2R^d$, $-CO_2(CR^fR^g)_nCONR^dR^e$, $-OC(O)R^d$, -CN, $-C(O)NR^dR^c$, $-NR^dC(O)R^e$, $-OC(O)NR^dR^e$, $-OC(O)NR^d$

each R^b is independently R^a, oxo or =N-OR^c;

each R^c is independently R^a, alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^h is independently halo, C₁₋₆ alkyl, C₁₋₆ alkoxy, aryl, (aryl)-C₁₋₆ alkyl, heteroaryl, (heteroaryl)-C₁₋₆ alkyl, hydroxy, amino, -NHC₁₋₆ alkyl, -N(C₁₋₆ alkyl)₂, -OC(O)C₁₋₆ alkyl, -C(O)C₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, carboxy, nitro, -CN, or -CF₃;

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b;

 $m ext{ is } 0, 1, ext{ or } 2;$

BI

08/11/2003 15:10 FAX 650 808 6078

Application No. <u>09/943,420</u> Attorney's Docket No. <u>P-097-R</u> Page 4

n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; each w is independently 0 1, 2, 3, or 4; each y is independently 0, 1, 2, or 3; and each z is independently 0, 1, 2, 3, or 4; or a pharmaceutically-acceptable salt thereof.

43. (currently amended) The compound of claim [[40]] 42 which is a compound of formula (III):

$$y = \begin{pmatrix} R^7 & Q & R^7 \\ Q & R^7 & Q \\ Q & R^$$

(III)

wherein

 $Q = O_{-} - S(O)_{m} - O_{-} - CR^{5}R^{6} - O_{-}$

each R^7 is independently hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^a ; each R^3 is independently hydrogen, C_{1-10} alkyl, or oxo;

each R^5 and R^6 is independently hydrogen or C_{1-10} alkyl; or R^5 and R^6 together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur and nitrogen;

wherein for R^3 , R^5 , R^6 , and R^7 , each alkyl, alkenyl, and alkynyl is optionally substituted with R^x , or with 1 to 4 substituents independently selected from R^b ; and each cycloalkyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c ; and

each y is independently 1, 2, or 3;

or a pharmaceutically-acceptable salt thereof.

Claims 44-45 (canceled)

- 46. (currently amended) The compound of claim [[40]] $\underline{42}$ wherein each R^1 is independently C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^a .
- 47. (currently amended) The compound of claim [[40]] $\underline{42}$ wherein each R^1 is independently C_{1-10} alkyl or halo.
- 48. (currently amended) The compound of claim [[40]] 42 wherein each R¹ is independently methyl, ethyl, propyl, chloro, bromo, fluoro, or isopropyl.
- 49. (currently amended) The compound of claim [[40]] $\underline{42}$ wherein each R^1 is independently methyl, or chloro.

Claims 50-63 (canceled)

64. (withdrawn - currently amended) The compound of claim [[41]] 42 wherein [[Y]]

is independently amino, diethylamino, dimethylamino, 1-methyl-4-piperidinyl, 1-methyl-3-piperidinyl, 1-methyl-2-piperidinyl, 4-piperidinyl, 3-piperidinyl, 2-piperidinyl, 1-isopropyl-3-pyrrolidinyl, morpholino, (2R,4R)-2-methoxycarbonyl-4-pyrrolidinyl, 1-methyl-3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 3-pyrrolidinyl, 2-pyrrolidinyl, 1-pyrrolidinyl, (2S,4R)-2-methyl-4-pyrrolidinyl, (2R,4R)-2-carboxy-4-pyrrolidinyl, (2S,4S)-2-(N,N-dimethylamino)carbonyl-4-pyrrolidinyl, (2R,4R)-2-hydroxymethyl-4-pyrrolidinyl, or (2R,4R)-2-methoxymethyl-4-pyrrolidinyl.

- 65. (currently amended) The compound of claim [[40]] $\underline{42}$ wherein each w is 0.
- 66. (withdrawn currently amended) The compound of claim [[40]] 42 wherein each w is 1.
- 67. (currently amended) The compound of claim [[40]] $\underline{42}$ wherein each w is 2.
- 68. (previously presented) The compound of claim 42 or 43 wherein each y is independently 1 or 2.
- 69. (previously presented) The compound of claim 42 wherein each z is independently 0, 1, or 2.
- 70. (canceled)
- 71. (currently amended) The compound of claim [[40]] <u>42</u>, which is any one of compounds <u>1-11</u> shown in Table 1 <u>1, 3-5, 8, 9, 11, 18-20, 22, 23, 32, 34, 39, 40-42, 44-50, 54, 58, 59, 118, and 123-126:</u>

Onto

Chang

$$H_3C$$
 CH_3
 CH_3
 CH_3
 N
 N
 N

$$H_3C$$
 CH_3
 CH_3

DI

$$H_3C$$
 CH_3
 CO_2H
 CO_2H
 CO_2H
 CO_3
 CO_3
 CO_3
 CO_3
 CO_3
 CO_3
 CO_3
 CO_3
 CO_3

Cont

and

or a pharmaceutically acceptable salt thereof.

- 72. (currently amended) A pharmaceutical composition comprising a compound as described in <u>any one of claims elaim 40 or 41; 42, 43, 46-49, 64-69 and 71</u> and a pharmaceutically acceptable carrier.
- 73. (currently amended) A method of treating a disease or condition associated with sodium channel activity in a mammal, comprising administering to the mammal, a therapeutically effective amount of a pharmaceutical composition comprising a compound as described in claim

Bout

Bloom

42 and a pharmaceutically acceptable carrier of claim 72.

74. (previously presented) The method of claim 73 wherein the disease or condition is neuropathic pain.