

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΙΤΗΣΗΣ

ΕΦΑΡΜΟΓΗ: ΑΥΤΟΜΑΤΟΣ ΠΙΛΟΤΟΣ ΔΙΑΤΗΡΗΣΗΣ ΠΡΟΝΕΥΣΗΣ

Διαδικασία Ανάλυσης

Εξισώσεις κίνησης μικρών διαταραχών του αεροσκάφους

Αποσύζευξη σε διαμήμεις μαι εγμάρσιες-διεύθυνσης

Ξεχωριστή μελέτη των δύο αυτών μερών της δυναμικής του αεροσκάφους

Απόνοιση σε εντολές ελέγχου

Επαύξηση ευστάθειας - Αυτόματοι πιλότοι

Αποσυζευγμένες διαμήκεις εξισώσεις κίνησης

Διαμήκεις εξισώσεις κίνησης:

$$\begin{split} m\dot{u} - \widetilde{X}_{u}u - \widetilde{X}_{w}w - (\widetilde{X}_{q} - mW_{e})q - \widetilde{X}_{\dot{w}}\dot{w} + mg\theta\cos\Theta_{e} &= \widetilde{X}_{\delta_{e}}\delta_{e} + \widetilde{X}_{\delta_{p}}\delta_{p} \\ - \widetilde{Z}_{u}u - \widetilde{Z}_{w}w - \big(\widetilde{Z}_{q} + mU_{e}\big)q + \big(m - \widetilde{Z}_{\dot{w}}\big)\dot{w} + mg\theta\sin\Theta_{e} &= \widetilde{Z}_{\delta_{e}}\delta_{e} + \widetilde{Z}_{\delta_{p}}\delta_{p} \\ I_{y}\dot{q} - \widetilde{M}_{u}u - \widetilde{M}_{w}w - \widetilde{M}_{q}q - \widetilde{M}_{\dot{w}}\dot{w} &= \widetilde{M}_{\delta_{e}}\delta_{e} + \widetilde{M}_{\delta_{p}}\delta_{p} \end{split}$$

Στην μορφή του χώρου κατάστασης:

Σε σχέση με τις αποκλίσεις του πηδαλίου ανόδου-καθόδου, γύρω από μια θέση ισορροπίας, καθώς η ώση διατηρείται σταθερή:

$$\delta_p = 0 \ \ \vdots \ \begin{cases} \dot{u} \\ \dot{w} \\ \dot{q} \\ \dot{\theta} \end{cases} = \begin{bmatrix} x_u & x_w & x_q & x_\theta \\ z_u & z_w & z_q & z_\theta \\ m_u & m_w & m_q & m_\theta \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{cases} u \\ w \\ q \\ \theta \end{cases} + \begin{cases} x_{\delta_e} \\ z_{\delta_e} \\ m_{\delta_e} \\ 0 \end{cases} \delta_e$$

Εξίσωση κίνησης (ή εξίσωση κατάστασης) γραμμικού, χρονικά αμετάβλητου συστήματος (ΓΧΑΣ):

$$\dot{\mathbf{x}}(t) = \mathbf{A}\,\mathbf{x}(t) + \mathbf{B}\,\mathbf{u}(t)$$

- Μητοωϊκή μορφή συστήματος η γραμμικών διαφορικών εξισώσεων 1^{ης} τάξης.
- Στοιχεία πινάμων A, B είναι σταθερές,
 χρονικά ανεξάρτητες συναρτήσεις.

 $\mathbf{x}_{(n \times 1)}(t)$: διάνυσμα ματάστασης (state vector),

 $\mathbf{u}_{(m \times 1)}(t)$: διάνυσμα εισόδου (input vector),

 $A_{(n \times n)}$: μήτρα κατάστασης (state matrix),

B_(n x m): μήτρα εισόδου (input matrix),

η : αριθμός μεταβλητών κατάστασης,

m : αριθμός μεταβλητών εισόδου.

Εξίσωση εξόδου - γενική μορφή:

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

r: αριθμός μεταβλητών εξόδου,

 $\mathbf{y}_{(\mathbf{r} \times \mathbf{1})}(\mathbf{t})$: διάνυσμα εξόδου (output vector),

C_(r x n): μήτρα εξόδου (output matrix),

D_(r x m): ἀμεση μήτρα (direct matrix).

Συνήθως στα υπό μελέτη προβλήματα, βολική η επιλογή των μεταβλητών κατάστασης ως μεταβλητές εξόδου:

$$y(t) = x(t), r = n$$

Σε αυτή την περίπτωση:

 $\mathbf{C} = \mathbf{I}_{\text{(n x m)}}$ μοναδιαία μήτρα,

 $\mathbf{D} = \mathbf{0}_{\text{(n x m)}}$ μηδενική μήτρα.

Τελική μορφή ΓΧΑΣ:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\,\mathbf{x}(t) + \mathbf{B}\,\mathbf{u}(t)$$

$$\mathbf{y}(\mathsf{t}) = \mathbf{I} \, \mathbf{x}(\mathsf{t}) = \mathbf{x}(\mathsf{t})$$

• Μετασχηματίζοντας κατά Laplace την **εξίσωση κατάστασης**, λαμβάνεται το σύστημα αλγεβοικών εξισώσεων:

$$\mathbf{S} \mathbf{X}(t) = \mathbf{A} \mathbf{X}(\mathbf{S}) + \mathbf{B} \mathbf{U}(\mathbf{S}) \Rightarrow (\mathbf{S}\mathbf{I} - \mathbf{A}) \mathbf{X}(\mathbf{S}) = \mathbf{B} \mathbf{U}(\mathbf{S})$$

$$\Rightarrow \mathbf{X}(\mathbf{S}) = (\mathbf{S}\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} \mathbf{U}(\mathbf{S})$$

• Από την εξίσωση εξόδου:

$$Y(s) = C X(s) \Rightarrow Y(s) = C (sI - A)^{-1}B U(s)$$

• Μήτοα μεταφοράς (διάνυσμα εξόδου προς διάνυσμα εισόδου):

$$\mathbf{G}_{r \times m}(s) = \frac{\mathbf{Y}(s)}{\mathbf{U}(s)} = \mathbf{C} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$$

Περιέχει τις ΣΜ των r μεταβλητών εξόδου προς τις m μεταβλητές εισόδου.

• Χαρακτηριστική εξίσωση συστήματος:

$$\det(s\mathbf{I} - \mathbf{A}) = (s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_n) = 0$$

- $\lambda_1, \lambda_2, ..., \lambda_n$: **Ρίζες** χαρακτηριστικής εξίσωσης που ονομάζονται ιδιοτιμές του πίνακα **A** ή πόλοι του συστήματος.
- Οι ιδιοτιμές καθορίζουν την ευστάθεια και τη δυναμική απόκριση του συστήματος.
- Συζυγείς μιγαδικές οίζες

$$p_{1,2} = x \pm jy = -\zeta_s \omega_s \pm j\omega_s \sqrt{1 - \zeta^2}$$

ομαδοποιούνται ως πολυώνυμο 2ης τάξης

$$s^2 + 2ζω s + ω^2$$
 όπου $0 < ζ < 1$

Διαμήκης χαρακτηριστική εξίσωση

- Το διάμημες χαρακτηριστικό πολυώνυμο για ένα κλασσικό αεροσκάφος είναι 4^{ου} βαθμού.
- Αποτελεί τον κοινό παρονομαστή των συναρτήσεων μεταφοράς.
- Εξισώνοντας με το μηδέν αποτελεί τη χαρακτηριστική εξίσωση:

$$\Delta(s) = As^4 + Bs^3 + Cs^2 + Ds + E = 0$$

• Παραγοντοποιείται σε δύο ζεύγη ριζών:

$$\Delta(s) = (s^2 + 2\zeta_p \omega_p s + \omega_p^2)(s^2 + 2\zeta_s \omega_s s + \omega_s^2) = 0$$

- ⇒ Διαμήκης απόκριση = ταλάντωση φυγοειδούς + ταλάντωση μικρής περιόδου
- Οι δύο ταλαντωτικές **μορφές ευστάθειας** της διαμήκους δυναμικής ισοδυναμούν με κλασσικά δυναμικά συστήματα 2^{ης} τάξης (μάζα-ελατήριο-αποσβεστήρας).
- Οι αντίστοιχες φυσικές συχνότητες (ω_p, ω_s) και λόγοι απόσβεσης (ζ_p, ζ_s) αποτελούν τα δυναμικά χαρακτηριστικά (ή χαρακτηριστικά ευστάθειας) αυτών των μορφών.

Διαμήκεις συναρτήσεις μεταφοράς

• Οι προκύπτουσες από το σύστημα συναρτήσεις μεταφοράς, μπορούν να γραφούν στην μορφή:

$$\begin{split} &\frac{u(s)}{\delta_{e}(s)} = \frac{N_{\delta_{e}}^{u}(s)}{\Delta(s)} = \frac{k_{u}(s+1/T_{u})(s^{2}+2\zeta_{u}\omega_{u}s+\omega_{u}^{2})}{(s^{2}+2\zeta_{ph}\omega_{ph}s+\omega_{ph}^{2})(s^{2}+2\zeta_{s}\omega_{s}s+\omega_{s}^{2})} \\ &\frac{w(s)}{\delta_{e}(s)} = \frac{N_{\delta_{e}}^{w}(s)}{\Delta(s)} = \frac{k_{w}(s+1/T_{\alpha})(s^{2}+2\zeta_{\alpha}\omega_{\alpha}s+\omega_{\alpha}^{2})}{(s^{2}+2\zeta_{ph}\omega_{ph}s+\omega_{ph}^{2})(s^{2}+2\zeta_{s}\omega_{s}s+\omega_{s}^{2})} \\ &\frac{q(s)}{\delta_{e}(s)} = \frac{N_{\delta_{e}}^{q}(s)}{\Delta(s)} = \frac{k_{q}s(s+1/T_{\theta_{1}})(s+1/T_{\theta_{2}})}{(s^{2}+2\zeta_{ph}\omega_{ph}s+\omega_{ph}^{2})(s^{2}+2\zeta_{s}\omega_{s}s+\omega_{s}^{2})} \\ &\frac{\theta(s)}{\delta_{e}(s)} = \frac{N_{\delta_{e}}^{\theta}(s)}{\Delta(s)} = \frac{k_{\theta}(s+1/T_{\theta_{1}})(s+1/T_{\theta_{2}})}{(s^{2}+2\zeta_{ph}\omega_{ph}s+\omega_{ph}^{2})(s^{2}+2\zeta_{s}\omega_{s}s+\omega_{s}^{2})} \end{split}$$

Τ : χρονική σταθερά,
ω : φυσική συχνότητα χωρίς
απόσβεση [rad/sec],
ζ : συντελεστής απόσβεσης,
ph (phugoid) : δείκτης
φυγοειδούς,
s (short period) : δείκτης
μικρής περιόδου.

Προσέγγιση μικρής περιόδου

- Τα βραχυπρόθεσμα χαρακτηριστικά απόκρισης ενός αεροσκάφους, έχουν εξαιρετική σημασία στον καθορισμό των χαρακτηριστικών πτήσης και ευκολίας χειρισμού.
- Η βραχυπρόθεσμη απόκριση του αεροσκάφους σε μια διαταραχή, κυριαρχείται από τη μορφή της μικρής περιόδου.
- ⇒ Βολική προσέγγιση μειωμένης τάξης, παραλείποντας μεταβλητές κατάστασης με κύρια την επίδραση του φυγοειδούς.

Προσέγγιση μικρής περιόδου

• Με άξονες αναφοράς τους **άξονες ανέμου (wind axes)** και υπόθεση αρχικών συνθηκών σταθερή και οριζόντιας πτήσης ($\gamma_e = 0 \quad U_e = V_{T_e}$):

• Με κάποιες περαιτέρω απλοποιήσεις, προκύπτουν οι δύο προσεγγιστικές συναρτήσεις μεταφοράς που περιγράφουν την βραχυπρόθεσμη απόκριση ως προς το πηδάλιο ανόδου-καθόδου:

$$\frac{w(s)}{\delta_{e}(s)} = \frac{z_{\delta_{e}}(s + U_{e} \, m_{\delta_{e}}/z_{\delta_{e}})}{s^{2} - (m_{q} + z_{w})s + (m_{q}z_{w} - m_{w}U_{e})} = \frac{k_{w}(s + 1/T_{a})}{s^{2} + 2\zeta_{s}\omega_{s}s + \omega_{s}^{2}}$$

$$\frac{q(s)}{\delta_{e}(s)} = \frac{m_{\delta_{e}}(s - z_{w})}{s^{2} - (m_{q} + z_{w})s + (m_{q}z_{w} - m_{w}U_{e})} \equiv \frac{k_{q}(s + 1/T_{\theta_{2}})}{s^{2} + 2\zeta_{s}\omega_{s}s + \omega_{s}^{2}}$$

όπου τα T_{α} k_{w} , k_{q} , T_{α} , $T_{\theta 2}$, ζ_{s} και ω_{s} αντιπροσωπεύουν προσεγγιστικά μεγέθη.

Προσέγγιση μικρής περιόδου

• Χαρακτηριστική εξίσωση μειωμένης τάξης:

$$\Delta(s) = s^2 - (m_q + z_w)s + (m_q z_w - m_w U_e)$$

• Αντικαθιστώντας τις εκφράσεις των συντετμημένων παραγώγων ευστάθειας χονδρικά η απόσβεση και η φυσική συχνότητα της μικρής περιόδου:

$$2\zeta_s \omega_s = -\frac{\widetilde{M}_q}{I_{yy}} , \omega_s = \sqrt{-\frac{\widetilde{M}_w U_e}{I_{yy}}}$$

- $\widetilde{M}_{\mathbf{q}}$: εξαρτάται κυρίως από τις ιδιότητες απόσβεσης του ουραίου πτερώματος, συνήθως αρνητική.
- $\widetilde{M}_{\mathbf{w}}$: είναι ένα μέτρο της **αεροδυναμικής δυσκαμψίας** πρόνευσης, επίσης κυριαρχείται από την αεροδυναμική του ουραίου πτερώματος.

Το πρόσημο της $\widetilde{\mathbf{M}}_{\mathbf{W}}$ εξαρτάται από τη θέση του κέντρου βάρους του αεροσκάφους. Όσο αυτό κινείται προς τα εμπρός στην άτρακτο, τόσο μεγαλύτερες αρνητικές τιμές παίρνει αυτή η παράγωγος.

• Από Κεφ. 2, περί διαμήμους στατιμής ευστάθειας:

$$C_{m_{\alpha}} = \frac{dC_{m}}{d\alpha} = C_{L_{a_{w}}} \left(\frac{x_{cg}}{\overline{c}} - \frac{x_{ac}}{\overline{c}} \right) - \eta V_{H} C_{L_{\alpha_{t}}} \left(1 - \frac{d\epsilon}{d\alpha} \right) < 0$$

 Η μικρή περίοδος θα είναι ευσταθής εφόσον το κέντρο βάρους βρίσκεται μπροστά από το ουδέτερο σημείο με τα χειριστήρια σταθεροποιημένα, όπου η παράγωγος M_w αλλάζει πρόσημο:

$$\frac{x_{\text{NP}}}{\overline{c}} = \frac{x_{\text{ac}}}{\overline{c}} + \eta V_{\text{H}} \frac{C_{L_{\alpha_{\text{t}}}}}{C_{L_{\alpha_{\text{tw}}}}} \left(1 - \frac{d\varepsilon}{d\alpha} \right)$$

• $^{\prime}$ Αρα, η $^{\prime}$ Μ $_{\rm w}$, αποτελεί επίσης ένα μέτρο του περιθωρίου ευστάθειας με τα χειριστήρια σταθεροποιημένα:

$$\frac{x_{NP}}{\overline{c}} - \frac{x_{cg}}{\overline{c}}$$

• Η θέση του κέντρου βάρους, όπου η έκφραση $(m_q z_w - m_w U_e)$ αλλάζει πρόσημο, ονομάζεται σημείο ελιγμού με τα χειριστήρια σταθεροποιημένα (controls fixed manoeuvre point) και αποτελεί αντίστοιχα ένα μέτρο του περιθωρίου ελιγμών με τα χειριστήρια σταθεροποιημένα (controls fixed manoeuvre margin).

Εφαρμογή: Pitch Damper (Mc Donnell F-4)

Σύστημα επαύξησης της διαμήκους ευστάθειας και απόσβεσης της μικρής περιόδου με ανάδραση του ρυθμού πρόνευσης q.

Εγκατάσταση - Δυναμική αεροσκάφους

• Συνάρτηση μεταφοράς του ρυθμού πρόνευσης ως προς το πηδάλιο ανόδου-καθόδου (προσέγγιση μικρής περιόδου):

$$G_{\text{plant}} = \frac{q(s)}{\delta_{e}(s)} = \frac{-4.8884(s + 0.266)}{s^2 + 0.7264 \cdot s + 2.003} = K_{\text{plant}} \frac{N_{\text{plant}}}{D_{\text{plant}}}$$

• Πόλοι χαρακτηριστικής εξίσωσης $\Delta(s) \equiv s^2 + 2\zeta_s \omega_s s + \omega_s^2$:

$$\omega_{s} = 1.415 \frac{\text{rad}}{\text{sec}}, \zeta_{s} = 0.257$$

$$p_{1,2} = -\zeta_{s}\omega_{s} \pm j\omega_{s}\sqrt{1-\zeta^{2}} = -0.363 \pm j1.368$$

Pitch Damper (Mc Donnell F-4)

• Επενεργητής (actuator): ΣΜ επενεργητή πηδαλίου ανόδου-καθόδου:

$$G_{act}(s) = \frac{K_{act}\lambda}{s+\lambda} = K_{act}\frac{N_{act}}{D_{act}}$$

• Ανάδοαση: Ο ουθμός ποόνευσης q μετοάται με γυροσκόπιο ουθμού - θεωρείται ως ένα απλό κέρδος:

$$G_{rg}(s) = K_q > 0$$

Υποθέτοντας δεδομένο κέρδος γυροσκοπίου, θετικό και σταθερό, η τοποθέτηση των επιθυμητών πόλων γίνεται επιλέγοντας τον κατάλληλο τύπο και κέρδος του κατευθυντή.

Υπενθύμιση: Η πρόνευση θ και ο ρυθμός πρόνευσης q, ορίστηκαν εξαρχής ως θετικά για αρνητική εκτροπή (γωνία) του πηδαλίου ανόδου-καθόδου.

Επιθυμητά χαρακτηριστικά μικρής περιόδου

• Ζεύγος τιμών χαρακτηριστικών μικρής περιόδου, από κριτήριο αποτυπώματος του αντίχειρα (Κεφ.7), για ικανοποιητικά χαρακτηριστικά πτήσης και ευκολίας χειρισμού:

$$\omega_{\rm s} \approx 3 \frac{\rm rad}{\rm sec}$$
 $\zeta_{\rm s} \approx 0.6$

⇒ Αντιστοιχούν στους μυρίαρχους, συζυγείς, μιγαδικούς πόλους:

$$p'_{1.2} \approx -1.8 \pm 2.4i$$

• Επιθυμητή χαρακτηριστική εξίσωση με πόλους $p_{1,2}'$:

$$(s^2 + 3.6s + 9) = 0$$

Χαρακτηριστικά απόδοσης – Σύστημα 2ης τάξης

ΑΠΟΚΡΙΣΗ ΣΕ ΒΗΜΑΤΙΚΗ ΕΙΣΟΔΟ

- **Overshoot** (%): Υπερακόντιση
- Peak time (t_p) : Χρόνος μέχρι την μέγιστη τιμή.
- Rise time (*t_r*): Χρόνος από το 10% στο 90% της τελικής τιμής.
- Settling time (t_s) : Χρόνος μέχρι η απόμριση να περιοριστεί $\pm x\%$ από την τελική τιμή.
- Steady-state error (e_{ss}) : Σφάλμα μόνιμης κατάστασης σε σχέση με την τιμή εισόδου.

 $\Gamma_{\alpha} 0 < \zeta < 1$:

• Overshoot (%):
$$100 \times \exp\left\{\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right\}$$

• Peak time
$$(t_p)$$
: $t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$

KATEYΘΥΝΤΗΣ (CONTROLLER)

PID Controllers - Νόμος ελέγχου:

Μπορεί να είναι, <mark>αναλογικός-διαφορικός «PD»</mark> (Proportional-Derivative), ή αναλογικός-ολοκληρωτικός-διαφορικός «PID» (Proportional-Integral-Derivative):

$$G_{cont}(s) = K_P + K_I \frac{1}{s} + K_D s$$

$$\delta_{c}(t) = K_{P}e(t) + K_{I} \int e(t)dt + K_{D} \frac{de(t)}{dt}$$

Απλούστερη περίπτωση $(K_I = K_D = 0)$ - αναλογικός «P» (Proportional): $G_{cont}(s) = K_P = K_{cont}$

Pitch Damper – ΣM κλειστού βρόχου

Σύστημα επαύξησης της διαμήμους ευστάθειας και απόσβεσης της μικρής περιόδου με ανάδραση του ρυθμού πρόνευσης q.

• ΣΜ του κλειστού βρόχου:
$$G_{CL} = \frac{q(s)}{q_{comm}(s)} = \frac{G_{cont}(s)G_{act}(s)G_{plant}(s)}{1 + G_{cont}(s)G_{act}(s)G_{plant}(s)G_{rg}(s)}$$

• Χαρακτηριστική εξίσωση:

$$\Delta(s) = 1 + K_{cont}K_{act}\frac{N_{act}}{D_{act}}K_{plant}\frac{N_{plant}}{D_{plant}}K_{q} = 0$$

$$\Rightarrow (s + \lambda)(s^2 + 2\zeta_s\omega_s s + \omega_s^2) + K_{cont}K_qK_{act}\lambda K_{plant}(s - z_1) =$$

3ου βαθμού - Δύσκολος και αχρειαστος υπολογισμός του κερδους μεσω των ριζών

ΚΕΡΔΟΣ ΑΝΑΛΟΓΙΚΟΥ ΚΑΤΕΥΘΥΝΤΗ

Σύστημα επαύξησης της διαμήκους ευστάθειας και απόσβεσης της μικρής περιόδου με ανάδραση του ρυθμού πρόνευσης q.

• ΣΜ ανοιχτού βρόχου:

$$G_{OL} = G_{cont}(s)G_{act}(s)G_{plant}(s)G_{rg}(s)$$

• Συνθήκη μέτρου $|G_{OL}|=1$ - Κέρδος ανοιχτού βρόχου με τους επιθυμητούς πόλους:

$$K_{OL} = \frac{|s - \lambda||s - p'_1||s - p'_2|}{|s - z_1|} = |K_{cont}K_qK_{act}\lambda K_{plant}|$$

• Αρχική εκτίμηση κέρδους κατευθυντή:

Μιγαδική μεταβλητή $s=j\omega$ - Για συγκεκριμένη συχνότητα ω :

$$K_{cont}(\omega) = \pm \frac{1}{\left|K_{q}K_{act}\lambda K_{plant}\right|} \frac{|j\omega - \lambda||j\omega - p_{1}||j\omega - p_{2}|}{|j\omega - z_{1}|}$$

Τόπος οιζών Pitch Damper

- Πόλοι στο δεξί ημιεπίπεδο:
 ζ < 0 ⇒ Αστάθεια
- Για να είναι ευσταθές το σύστημα, το κέρδος του κατευθυντή πρέπει να είναι αρνητικό.
- Παρατηρώντας τις καμπύλες σταθερού ω και σταθερού ζ, προσδιορίζεται η επιθυμητή περιοχή μετακίνησης των πόλων μέσω του κέρδους.

Μόρφη τόπου ριζών για αρνητικό και θετικό κέρδος του κατευθυντή.

Τόπος οιζών Pitch Damper

$$G_{cont}(s) = K_{cont} = -0.428$$
 $G_{act}(s) = \frac{5}{s+5}$ $G_{rg}(s) = K_q = 1$

- Παρατηρείται η μετατόπιση των κυρίαρχων πόλων για το συγκεκριμένο κέρδος του κατευθυντή.
- Το K_{cont} μπορεί να ρυθμιστεί περαιτέρω μετά την αρχική εκτίμηση, αν κριθεί απαραίτητο.
- Το σύστημα έχει σημαντικά περιθώρια κέρδους.

Τόπος οιζών Pitch Damper. Σημειώνονται οι αρχικοί πόλοι και μηδενιστές της εγκατάστασης και του επενεργητή.

Χουική Απόκοιση Pitch Damper

- Παρατηρείται σημαντικό σφάλμα μεταξύ εισόδου (q_{comm}) και εξόδου (q).
- Μπορεί να διορθωθεί αυξάνοντας το πέρδος του πατευθυντή (όμως μείωση απόσβεσης, έντονα ταλαντωτική μεταβατική απόκριση, πιθανότητα αστάθειας) ή με την χρήση ΡΙ κατευθυντή.

Στην προμειμένη περίπτωση δεν είναι απαραίτητο:

- Το Pitch Damper δεν χρησιμοποιείτ
 ως αυτόνομο κύκλωμα αλλά ως
 εσωτερικός βρόχος σε αυτόματους
 πιλότους π.χ. διατήρησης πρόνευσης.
- Εφόσον παρέχει τα επιθυμητά δυναμικά χαρακτηριστικά μικρής περιόδου είναι κατάλληλο για τον αυτόματο πιλότο.

Χρονική απόκριση Pitch Damper σε είσοδο βαθμίδας (step).

ΑΥΤΌΜΑΤΟΣ ΠΙΛΟΤΟΣ ΠΡΟΝΕΥΣΗΣ

Θεωρείται σύστημα με αρνητική ανάδραση της γωνίας πρόνευσης θ στο πηδάλιο ανόδου-καθόδου.

Προσθέτοντας ένα Pitch
 Damper ως εσωτερικό βρόχο:

 Το δομικό διάγραμμα απλοποιείται ως:

Αυτόματος Πιλότος Πρόνευσης

• Η γωνία θ λαμβάνεται ολοκληρώνοντας το σήμα που εξέρχεται από τη ΣΜ του ρυθμού πρόνευσης q, όπως προκύπτει από το μοντέλο της μικρής περιόδου.

$$\frac{\theta(s)}{\delta_{e}(s)} = \frac{1}{s} \frac{q(s)}{\delta_{e}(s)}$$

- Το γυροσμόπιο παρίσταται επίσης ως ένα απλό μέρδος: $G_{
 m gyro}(s) = K_{
 m heta} > 0$
- ΣΜ εσωτερικού βρόχου (Pitch Damper): $G_{pd} = \frac{N_{pd}(s)}{D_{pd}(s)}$
- ΣΜ του κλειστού βρόχου: $\frac{\theta(s)}{\theta_{comm}(s)} = \frac{N_{pd}}{s \cdot D_{pd}(s) + N_{pd}(s) G_{gyro}(s) G_{cont,2}(s)}$

Αυτόματος Πιλότος Πρόνευσης

• Για να αντισταθμιστεί η επίδραση του πόλου που εισάγει ο ολοκληρωτής στην αρχή των αξόνων, ο κατευθυντής 2 πρέπει να είναι αναλογικός-διαφορικός ("PD"):

$$G_{\text{cont,2}} \equiv K_P + K_D s = K_{\text{cont,2}} (1 + T_D s)$$

Δηλαδή, εισάγεται ένας μηδενιστής στον πραγματικό άξονα:

$$\sigma = -1/T_D$$

- Τα πέρδη του πατευθυντή 2 ρυθμίζονται ώστε:
 - Κυρίαρχοι πόλοι να αντιστοιχούν σε ιμανοποιητικά χαραμτηριστικά μιμρής περιόδου,
 - Η απόνριση να έχει την απαιτούμενη ταχύτητα και μεταβατικά χαρακτηριστικά.

Τόπος οιζών αυτόματου πιλότου πρόνευσης.

Απόκριση γωνίας θ σε είσοδο θ_{comm} μοναδιαίας βαθμίδας.

Αυτόματος Πιλότος Πρόνευσης - Παράδειγμα

$$K_{cont,2} = 2$$
 $K_D = 0.5$ $T_D = K_D/K_{cont,2} = 0.25$ $G_{gyro}(s) = K_{\theta} = 1$

Οι υπόλοιπες συνιστώσες όπως είχαν καθοριστεί στο Pitch Damper προηγουμένως.

Τόπος οιζών αυτόματου πιλότου ποόνευσης.

Απόμριση γωνίας θ σε είσοδο θ_{comm} μοναδιαίας βαθμίδας.