Correction TD1 sur les Réseaux de Pétri

Propriétés structurelles - algèbre linaire

Exercice 1:

- Les réseaux ci-dessous sont-ils des Réseaux de Petri ? Pourquoi ?

- Pour ceux qui sont des RdP, indiquer : les transitions franchissables, les marquages après franchissement ainsi que les transitions encore franchissables après franchissement.

F : Non RdP 1 Arc non relié	G : Non RdP 1 Arc non relié	H : Non RdP 1 Arc non relié	I : Non RdP 1 Arc non relié	J et K : Non RdP- II Manque 1 Transition (J) ou 1 Place (K)
A : RdP T Validée (1,1,0) → (0,2,1)	B : RdP T Validée (1,1,1,0) → (0,0,0,1)	C : RdP T Validée (1,1,0) → (0,1,1)	D : RdP T Validée (0) → (1) T encore validée	E : RdP T Validée (2) → (1) T validée encore 1 fois

Exercice 2:

Les RdP de la figure suivante sont-ils :

des graphes d'états ? des graphes d'événements ? sans conflit ? à choix libre ? pur ? sans boucle ? Justifier par un exemple ou un contre-exemple.

- 1) Non graphe d'état (T1 a 2 places de sorties)
- 2) Non graphe d'évènement (P2 n'a pas de transition de sortie)
- 3) Sans conflit
- 4) (A choix libre)
- 5) Non Pur (T1 a P1 à la fois comme place de sortie et d'entrée)
- Avec boucle (T1 impure n'a pas d'autre place d'entrée que P1)

Exercice 3:

Pour le RdP généralisé de la figure suivante, avec le marquage $M_0 = [2, 0, 0, 1]^T$, établir les matrices d'incidence (Pré, Post et C). Indiquer les transitions validées par M_0 et les marquages atteints après le franchissement de chacune de ces transitions.

1) Matrices Pré, Post et C Règles de grammaire :

T1: $P1^2 \rightarrow P2^3P4$ T2: $P2 \rightarrow P3$ T3: $P2^2 \rightarrow P4$ T4: $P3 \rightarrow P1$ T5: $P4 \rightarrow P1^2$

M₀=P1²P4

Pré	_				
Pie				T.	T-
l	11	T2	Т3	T4	T5_
P1	2	0	0	0	0]
P2	0	1	2	0	0
P3	0	0	0	1	0
P4_	0	0_	0	0	<u>(1</u>)
1					

	Post:					
		T1	T2	T3	T4	T5
	P1	ГО	0	0	1	2
	P2	3	0	0	0	0
ļ	Р3	0	1	0	0	0
	P4_	1	0	_1	0	<u>o</u>]

C:	$\overline{\wedge}$				
	[11]	T2	T3	T4	T5 \
P1	-2	0	0	1	2
P2	3	-1	-2	0	0
P3	0	1	0	-1	0
P4	1	0	1_	0	<u>\-1</u> /
V					

- 2) Le marquage initial P1²P4 valide les transitions T1 et T5
- 3) A partir de M_0 le franchissement de T1 donne M_1 =(0,3,0,2) A partir de M_0 le franchissement de T5 donne M_2 =(4,0,0,0)

$$M_1 = M_0 + C_7 V_{14} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + C_7 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

$$M_2 = M_0 + C_1 V_5 = \begin{pmatrix} 2 \\ 9 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$C = Post - Pre' = P_2 0 - 1 0 1$$

$$P_3 1 0 1 0 - 1$$

$$P_4 0 1 0 - 1$$

$$P_5 1 0 - 1 0$$

$$P_5 1 0 - 1 0$$

$$P_{5}|1 = 0 - 1 = 0$$

$$P_{5}|1 = 0 = 0$$

$$P_{5}|1$$

$$M_{2b} = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \\ +1 \\ +1 \end{pmatrix}$$

$$V_{3u} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

$$M_{2} = M_{0} + C = V_{30} = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & -1 & 1 & 1 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 \end{pmatrix}$$

$$M_{a} = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \Rightarrow \text{sa non franchissable}.$$

$$C_{*}V_{sol} = \begin{pmatrix} -4\\ -2\\ -2\\ 2\\ 2 \end{pmatrix} = N_{omin} = \begin{pmatrix} 4\\ 2\\ 2\\ 0\\ 0 \end{pmatrix}$$

Exs TOLRUP hell à capacité: On ajoute une place P'à complémentaire à 1/2 telle que: M(P3) = cop(P3)-M(P3) (M(P3)+M(P3)= cop(P3)) P3 a pour transition de sorties les transitions L'entrée, la transition de dortie de 13 (soit T4)