	700 GeV, 10 cm, region 2017			
Cut	$\epsilon_i^{ m CMS}$	$ \epsilon_i^{\text{sim}}, \text{HEPMC} $	$\mid \epsilon_i^{\text{sim}}, \text{HEPMC}, \text{ no pileup} \mid$	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.8^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$ $1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$ $1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{ m T}^{ m miss} > 120{ m GeV}$	$1.7^{+0.02}_{-0.02} \times 10^{-1}$ $1.7^{+0.02}_{-0.02} \times 10^{-1}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$ $1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\rm T}$ > 120 GeV \geq 1 jet with $p_{\rm T}$ > 110 GeV and $ \eta $ < 2.4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$ $1.3^{+0.01}_{-0.01} \times 10^{-1}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$ $1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta\phi({ m leading jet},ar{p}_{ m T}^{ m miss}) >0.5$	$\begin{vmatrix} 1.1 - 0.02 \\ 1.1 + 0.02 \\ 1.1 \end{vmatrix} \times 10^{-1}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$ $1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta \phi(\text{reading jet}, p_{\text{T}}^{-}) > 0.5$ $\geq 1 \text{ track with } \eta < 2.1$	$\begin{array}{ c c c c }\hline 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$ $1.1^{+0.01}_{-0.02} \times 10^{-1}$	
$\geq 1 \text{ track with } \eta < 2.1$ > 1 track with $p_T > 55 \text{ GeV}$	$4.8^{+0.10}_{-0.10} \times 10^{-2}$	$\begin{array}{ c c c c }\hline 1.1_{-0.01} & \times & 10 \\ 4.7_{-0.06}^{+0.06} & \times & 10^{-2} \\ \hline \end{array}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	
	$\begin{vmatrix} 4.8^{+0.10}_{-0.10} \times 10^{-2} \\ 3.2^{+0.09}_{-0.09} \times 10^{-2} \\ 1.7^{+0.05}_{-0.09} \times 10^{-2} \end{vmatrix}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track passing fiducial selections > 1 track with > 4 pixel hits	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 3.0_{-0.05} \times 10 \\ 2.6_{-0.05}^{+0.05} \times 10^{-2} \end{array}$	$2.6^{+0.05}_{-0.05} \times 10^{-2}$ $2.6^{+0.05}_{-0.05} \times 10^{-2}$	
> 1 track with 2 4 pixel hits	$\begin{array}{ c c c c c }\hline 1.7_{-0.05}^{+0.05} \times 10 \\ 1.7_{-0.06}^{+0.06} \times 10^{-2} \end{array}$	$2.0^{+0.05}_{-0.04} \times 10^{-2}$	$2.0_{-0.05}^{+0.05} \times 10$ $2.0_{-0.04}^{+0.04} \times 10^{-2}$	
_ ~	$\begin{array}{ c c c c c c }\hline 1.7_{-0.06} \times 10 \\ 1.6_{-0.06}^{+0.06} \times 10^{-2} \end{array}$		$\begin{array}{c} 2.0^{+0.04}_{-0.04} \times 10^{-2} \\ 2.0^{+0.04}_{-0.04} \times 10^{-2} \end{array}$	
≥ 1 track with no missing middle hits > 1 track with relative track isolation < 5%	$\begin{array}{ c c c c c c }\hline 1.0_{-0.06} \times 10\\ 5.3_{-0.33}^{+0.33} \times 10^{-3}\\ \hline \end{array}$	$\begin{array}{ c c c } 2.0^{+0.04}_{-0.04} \times 10^{-2} \\ 6.2^{+0.23}_{-0.23} \times 10^{-3} \end{array}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$	
_	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.2_{-0.23} \times 10 \\ 6.2_{-0.23}^{+0.23} \times 10^{-3} \end{array}$	$5.9_{-0.22}^{+0.22} \times 10$ $5.9_{-0.22}^{+0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{ cm}$		$\begin{array}{c c} 0.2_{-0.23} \times 10 \\ 6.2^{+0.23} \times 10^{-3} \end{array}$	$5.9_{-0.22}^{+0.22} \times 10^{-3}$	
≥ 1 track with $ d_z < 0.5$ cm	$5.3^{+0.33}_{-0.33} \times 10^{-3}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3} 5.8^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$\begin{array}{ c c c c c }\hline 5.1^{+0.33}_{-0.33} \times 10^{-3} \\ 5.0^{+0.31}_{-0.31} \times 10^{-3} \\ \hline \end{array}$	$ \begin{vmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{vmatrix} $	$0.0_{-0.22}^{-0.22} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track, electron}) > 0.15$		$\begin{bmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{bmatrix}$	$5.8_{-0.22}^{+0.22} \times 10^{-3} 5.8_{-0.22}^{+0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track, muon}) > 0.15$	$5.0^{+0.31}_{-0.31} \times 10^{-3}$	$\begin{bmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{bmatrix}$	$5.8_{-0.22}^{+0.22} \times 10^{-3}$ $5.8_{-0.22}^{+0.22} \times 10^{-3}$ $5.8_{-0.22}^{+0.22} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track}, \tau_h) > 0.15$	$5.0^{+0.31}_{-0.31} \times 10^{-3}$	$\begin{bmatrix} 0.1_{-0.23} \times 10 \\ 6.1_{-0.23} \times 10^{-3} \end{bmatrix}$	$\begin{bmatrix} 3.5_{-0.22} \times 10^{-3} \\ 5.6_{-0.22} \times 10^{-3} \end{bmatrix}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$\begin{array}{c} 3.0_{-0.31} \times 10 \\ 4.9_{-0.31}^{+0.31} \times 10^{-3} \\ 4.9_{-0.31}^{+0.31} \times 10^{-3} \\ 2.0_{-0.31}^{+0.34} \times 10^{-3} \end{array}$	$\begin{array}{c} 0.1_{-0.23} \times 10 \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{array}$	$\begin{array}{c} 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \end{array}$	
≥ 1 track with ≥ 3 missing outer hits	$\begin{vmatrix} 4.9 \\ 2.0 + 0.24 \\ 10 - 3 \end{vmatrix} \times 10^{-3}$	$\begin{bmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 3.4_{-0.17}^{+0.17} \times 10^{-3} \\ 1.8_{-0.11}^{+0.11} & 10^{-3} \end{bmatrix}$	$\begin{array}{c} 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 3.2_{-0.16}^{+0.16} \times 10^{-3} \\ 1.2_{-0.10}^{+0.10} \times 10^{-3} \end{array}$	
≥ 1 track 4 layers	$3.0^{+0.24}_{-0.24} \times 10^{-3}$	$\begin{bmatrix} 3.4_{-0.17} \times 10^{-6} \\ 1.2_{-0.11} \times 10^{-3} \end{bmatrix}$	$\begin{bmatrix} 3.2_{-0.16}^{-0.16} \times 10^{-3} \\ 1.9_{-0.10}^{+0.10} \times 10^{-3} \end{bmatrix}$	
≥ 1 track 5 layers	$1.1^{+0.16}_{-0.16} \times 10^{-3}$	$1.3^{+0.11}_{-0.11} \times 10^{-3}$	$1.2_{-0.10} \times 10^{-3}$	
$\geq 1 \text{ track} \geq 6 \text{ layers}$	$8.1^{+1.21}_{-1.21} \times 10^{-4}$	$1.2^{+0.10}_{-0.10} \times 10^{-3}$	$1.3^{+0.10}_{-0.10} \times 10^{-3}$	

Table 1: Cutflow comparison for 700 GeV, $10~\mathrm{cm}$, region 2017

	700 GeV, 10 cm, region 2018A			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{\rm sim}$, HEPMC	$\mid \epsilon_i^{\mathrm{sim}}, \mathrm{HEPMC}, \mathrm{no} \mathrm{pileup} \mid$	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{\mathrm{T}} > 110\mathrm{GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, \ jet} > 2.5$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta\phi({ m leading\ jet}, \vec{p}_{ m T}^{ m miss}) > 0.5$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$\geq 1 \text{ track with } \eta < 2.1$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$4.7^{+0.10}_{-0.10} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$3.1^{+0.08}_{-0.08} \times 10^{-2}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$2.6^{+0.05}_{-0.05} \times 10^{-2}$	$2.6^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$1.5^{+0.05}_{-0.05} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$5.3^{+0.34}_{-0.34} \times 10^{-3}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 ext{ track with } d_{ ext{xy}} < 0.02 ext{ cm}$	$5.1^{+0.34}_{-0.34} \times 10^{-3}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$5.1^{+0.31}_{-0.31} \times 10^{-3}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$4.9^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.\overline{22}}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{electron}) > 0.15$	$4.7^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$4.7^{+0.31}_{-0.31} \times 10^{-3}$	$\begin{array}{c} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{array}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$4.7^{+0.31}_{-0.31} \times 10^{-3}$	$\begin{bmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 1.0_{-0.23}^{+0.23} \times 10^{-3} \end{bmatrix}$	$\begin{array}{c} 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ \end{array}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$4.7^{+0.31}_{-0.31} \times 10^{-3}$	$1.61^{+0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$	
≥ 1 track with ≥ 3 missing outer hits	$\begin{array}{ c c c c c c }\hline 4.6^{+0.31}_{-0.31} \times 10^{-3} \\ 4.6^{+0.31}_{-0.31} \times 10^{-3} \\ \end{array}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-6}$	
≥ 1 track 4 layers	$2.8^{+0.24}_{-0.24} \times 10^{-3}$	$\begin{array}{c} 0.1_{-0.23} \times 10 \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 3.4_{-0.17}^{+0.17} \times 10^{-3} \end{array}$	$3.2^{+0.\overline{16}}_{-0.\overline{16}} \times 10^{-3}$	
≥ 1 track 5 layers	$9.2^{+1.36}_{-1.36} \times 10^{-4}$	$1.3^{+0.11}_{-0.11} \times 10^{-3}$	$1.2^{+0.10}_{-0.10} \times 10^{-3}$	
$\geq 1 \text{ track} \geq 6 \text{ layers}$	$9.5^{+1.36}_{-1.36} \times 10^{-4}$	$1.2^{+0.10}_{-0.10} \times 10^{-3}$	$1.2^{+0.10}_{-0.10} \times 10^{-3}$	

Table 2: Cutflow comparison for 700 GeV, $10~\mathrm{cm}$, region $2018\mathrm{A}$

	700 GeV, 10 cm, region 2018B		
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{\rm sim}$, HEPMC	$\epsilon_i^{\mathrm{sim}}$, HEPMC, no pileup
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$
trigger	$ \begin{array}{c c} 1.0_{-0.00} \\ 1.5_{-0.02}^{+0.02} \times 10^{-1} \\ 1.4_{-0.02}^{+0.02} \times 10^{-1} \end{array} $	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$
$p_{\mathrm{T}}^{\mathrm{miss}} > 120 \mathrm{GeV}$	$1.4^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$
≥ 1 jet with $p_{\mathrm{T}} > 110\mathrm{GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$
$ \Delta\phi({ m leading\ jet}, ec{p}_{ m T}^{ m miss}) > 0.5$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$4.7^{+0.09}_{-0.09} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$
≥ 1 track passing fiducial selections	$3.1^{+0.07}_{-0.07} \times 10^{-2}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$	$3.6^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with ≥ 4 pixel hits	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$2.6^{+0.05}_{-0.05} \times 10^{-2}$	$2.6^{+0.05}_{-0.05} \times 10^{-2}$
≥ 1 track with no missing inner hits	$1.7^{+0.06}_{-0.06} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	$2.0^{+0.04}_{-0.04} \times 10^{-2}$
≥ 1 track with no missing middle hits	$ \begin{vmatrix} 1.7^{+0.06}_{-0.06} \times 10^{-2} \\ 1.5^{+0.06}_{-0.06} \times 10^{-2} \\ 5.3^{+0.33}_{-0.33} \times 10^{-3} \end{vmatrix} $	$2.0^{+0.04}_{-0.04} \times 10^{-2}$	$\begin{array}{c} 2.0_{-0.04}^{+0.04} \times 10^{-2} \\ 2.0_{-0.04}^{+0.04} \times 10^{-2} \\ 5.9_{-0.22}^{+0.22} \times 10^{-3} \end{array}$
≥ 1 track with relative track isolation $< 5\%$	$\begin{bmatrix} 1.3 - 0.06 \times 10 \\ 5.3 + 0.33 \times 10^{-3} \\ 5.2 + 0.33 \times 10^{-3} \\ 5.2 + 0.33 \times 10^{-3} \end{bmatrix}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$ \begin{vmatrix} 5.2^{+0.33}_{-0.33} \times 10^{-3} \\ 5.2^{+0.32}_{-0.32} \times 10^{-3} \\ 5.0^{+0.32}_{-0.32} \times 10^{-3} \end{vmatrix} $	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9_{-0.22}^{+0.22} \times 10^{-3}$ $5.9_{-0.22}^{+0.22} \times 10^{-3}$ $5.9_{-0.22}^{+0.22} \times 10^{-3}$
$\geq 1 \text{ track with } d_z < 0.5 \mathrm{cm}$	$5.2^{+0.32}_{-0.32} \times 10^{-3}$	$6.2^{+0.23}_{-0.23} \times 10^{-3}$	$5.9^{+0.22}_{-0.22} \times 10^{-3}$
≥ 1 track with $\Delta R(\text{track, jet}) > 0.5$	$5.0^{+0.32}_{-0.32} \times 10^{-3}$	$\begin{array}{c} 0.2_{-0.23} \times 10 \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{array}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$4.8^{+0.32}_{-0.32} \times 10^{-3}$	$ \begin{vmatrix} 6.1_{-0.23}^{+0.23} \times 10^{-3} \\ 6.1_{-0.23}^{+0.23} \times 10^{-3} \end{vmatrix} $	$\begin{array}{c} -0.22 \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \\ 5.8_{-0.22}^{+0.22} \times 10^{-3} \end{array}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$\begin{array}{c} -0.32 \times 10^{-3} \\ 5.0_{-0.32}^{+0.32} \times 10^{-3} \\ 4.8_{-0.32}^{+0.32} \times 10^{-3} \\ 4.8_{-0.32}^{+0.32} \times 10^{-3} \\ 4.9_{-0.32}^{+0.32} \times 10^{-3} \end{array}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$4.8^{+0.32}_{-0.32} \times 10^{-6}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$4.7^{+0.32}_{-0.32} \times 10^{-3}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$
≥ 1 track with ≥ 3 missing outer hits	$4.7^{+0.32}_{-0.32} \times 10^{-3}$	$6.1^{+0.23}_{-0.23} \times 10^{-3}$	$5.8^{+0.22}_{-0.22} \times 10^{-3}$
$\phi(p_{\rm T}^{\rm miss}) < -1.6 \text{ or } \phi(p_{\rm T}^{\rm miss}) > -0.6$	$3.8^{+0.28}_{-0.28} \times 10^{-3}$	$5.1^{+0.21}_{-0.21} \times 10^{-3}$	$5.0^{+0.21}_{-0.21} \times 10^{-3}$
≥ 1 track 4 layers	$2.3^{+0.22}_{-0.22} \times 10^{-3}$	$2.9^{+0.\overline{16}}_{-0.16} \times 10^{-3}$	$\begin{array}{c} 2.7_{-0.15}^{+0.15} \times 10^{-3} \\ 1.1_{-0.10}^{+0.10} \times 10^{-3} \end{array}$
≥ 1 track 5 layers	$ \begin{array}{ c c c c c } \hline 7.2^{-1.30}_{-1.30} \times 10^{-4} \\ 8.0^{+1.30}_{-1.30} \times 10^{-4} \end{array} $	$1.1^{+0.10}_{-0.10} \times 10^{-3}$	$1.1^{+0.10}_{-0.10} \times 10^{-3}$
$\geq 1 \text{ track} \geq 6 \text{ layers}$	$8.0^{+1.30}_{-1.30} \times 10^{-4}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.1^{+0.10}_{-0.10} \times 10^{-3}$

Table 3: Cutflow comparison for 700 GeV, 10 cm, region 2018B