

Electromagnetismo Aplicado (EL3103-1) Eiercicio 1

Prof. Benjamin Jacard H. Prof. Aux. Erik Saez A.

- 1. Una gran plancha de bronce de espesor δ y conductividad σ , tiene una corriente continua en la dirección x que produce un potencial $\Phi = -E_0x$. Considere ahora que se perfora un orificio de radio a a través de la plancha en el punto x = 0, y = 0.
 - a) Determine el potencial $\Phi(r,\theta)$ en cualquier punto de los medios 1 y 2.
 - b) ¿Cuál es la densidad de corriente \vec{J} resultante en cualquier punto del bronce? ¿Dónde ocurre y qué valor tiene la densidad de corriente máxima?

Nota: En coordenadas cilíndricas (r, θ, z) , una solución general de la ecuación $\nabla^2 \Phi = 0$, independiente de z y dependiente de $\cos \theta$, está dada por:

$$\Phi(r,\theta) = (Ar + \frac{B}{r})\cos\theta \tag{1}$$

- 2. Considere una línea coaxial infinitamente larga, en cuyo conductor de radio a la corriente total es I_0 y en el conductor exterior de radio b es $-I_0$.
 - i) Determinar el campo magnético $\vec{H}(r,\theta)$ en el dieléctrico (a < r < b).
 - ii) Determinar la inductancia L de la línea por unidad de longitud según z, en base a la energía almacenada en el campo magnético en el dieléctrico.
 - iii) Determinar la inductancia L en base al flujo magnético en el dieléctrico.
- 3. Para el dispositivo magnético de la figura 1.4 con dos material de permeabilidad μ_1 y μ_2 , con espesores d_1 y d_2 y sección transversal circular de radio a, determinar:
 - 1. Potencial magnético escalar $\phi_m(z)$ en los medios 1 y 2, y campos H_1 y H_2
 - 2. Inductancia L del enrollado
 - 3. Energía magnética acumulada W_m en los medios 1 y 2

