

COURSE TITLE: ADDITIVE MANUFACTURING AND PRODUCTION SYSTEMS

GUIDED BY - Prof. ALBERTO BOSCHETTO

EXERCISE-2

COMPUTER AIDED MANUFACTURING

GROUP NAME: VALLURI

GROUP NUMBER: 10

VARUN YASHWANT RASALKAR 1921452

COMPUTER AIDED MANUFACTURING

Part A

Exercise 2: Computer Aided Manufacturing

Part A

The components shown in Figg. 1 and 2 must be fabricated via 3 axix milling. Select an adequate maching center, tools, raw material and fixturing system. Use the CAM environment you can download at the link: https://mecsoft.com

Other CAM software are admitted.

Remember that the suggested CAM is in demo mode an then you cannot save your work. The files are given in STEP and STL formats. The object scales, the surface and tolerance requirements are reported in the appendix A.

Figure 2

Report rules

- Motivate each choice and avoid
- theoretical digressions. Describe the ma Describe the macro-cycles (fixturing, zeroes, machining operations) and the micro-cycles.
- Develop the toolpath in VisualCADCAM and put in the report some representative screenshots (stock and zero, toolpaths in roughing and finishing and congretions operations, finishing simulations).
- Report the production time and add indication of process design time and machine setup time.

Machine setup:

As per instructions we are using 3 axis milling machine which includes horizontal roughing and parallel finishing procedure in the suggested interface Mecsoft VisualCAM 2022. Both machining solid parts are ABS.

Figure:1

Scale:

We uniformly Scaled the given parts as given in chart for part 1 and part 2 are 110% (1.1) and 90% (0.9) respectively.

Stock setup:

We are Setting up box stock

Work Zero:

Setting work zero as given in below

After work zero selecting perfect tool for roughing and finishing operations for both part 1&2

Tool selection:

Carbide Tool 1 flat mill with 4mm diameter and 3 flutes

Carbide Tool 2 flat mill with 4mm diameter and 4 flutes

Carbide Tool 3 ball mill with 2mm diameter and 4 flutes

Horizontal roughing:

In horizontal roughing first we select the drive region to make sure that our tool doesn't move out of the stock this is done basically to make sure the tool doesn't hit the fixture, even though in the operation we aren't using any fixtures but me make sure the drive region is limited to stock. As shown in figure 1.

Feed and speed:

After the tool selection we tried with default values due to unsatisfactory outcome we customized the values to get optimal outcome.

Cut levels and advanced parameters for roughness and tolerances of ABS material for better surface finishing.

After horizontal roughing selecting parallel finishing for better finishing as shown in below figure

After parallel finishing considering radial machining

Total time taken for the machining process is given below

for part 1

Operations	Time
	(Hours)
Process design	0.10
Machine setup	0.20
Micro cycle	0.15
Macro cycle	0.40
Stock setting	0.10
Zero setting	0.10
Total machining time (production)	0.28

So total time taken for one part (1) is 2.21

Raw material for one part = 127 grams

Cost of experienced CAM operator per hour = 15 euros

Total cost of time = $2.21 \times 15 = 33.25$ euros

Cost of raw material (ABS) for 1 part = 0.19 euros (1kg = 1.5 euros)

Total cost per part = 33.44 euros

Total time taken for machining part 2

Machining Operations Information

pps Information							
Name	Status	Tool	Tool#	Cut Feed	Spindle Speed	# of GOTOs	Machining Time
Setup 1							
Horizontal Roughing	Clean	FlatMill1	1	3657.60 mm/	12000 RPM	11066	10.10 min
Parallel Finishing	Clean	BallMill1	2	3657.60 mm/	12000 RPM	8514	3.78 min
Radial Machining	Clean	BallMill1	2	4572.00 mm/	15000 RPM	21412	3.73 min
						Setup-total	17.62 min

Operations	Time
	(Hours)
Process design	0.10
Machine setup	0.20
Micro cycle	0.10
Macro cycle	0.40
Stock setting	0.10
Zero setting	0.10
Total machining	0.17

So total time taken for only one part (2) is 2.1 hours

Raw material for one part = 34 grams

Cost of experienced CAM operator per hour = 15 euros

Total cost of time = $2.1 \times 15 = 31.5$ euros

Cost of raw material (ABS) for 1 part = 0.051 euros (1kg = 1.5 euros)

Total cost per part = 31.5 euros

Total time and cost for machining 10 parts (both part1&2):

PART 1	CAM(TIME)	CAM COST (EUROS)
P1	2.21	33.44
P2	4.42	66.88
Р3	6.63	100.32
P4	8.84	133.76
P5	11.05	167.2
P6	13.26	200.64
P7	15.47	234.08
P8	17.68	267.52
P9	19.89	300.96
P10	22.1	334.4

PART 2	CAM(TIME)	CAM COST(EUROS)
P1	2.1	31.5
P2	4.2	63
P3	6.3	94.5
P4	8.4	126
P5	10.5	157.5
P6	12.6	189
P7	14.7	220.5
P8	16.8	252
P9	18.9	283.5
P10	21	315

Exercise 2: Computer Aided Manufacturing

Part B

Both the previous components must be fabricated via Fused Deposition Modeling. Select an adequate machine.

Use the software Grabcad (Figure 3) you can download at the link: https://grabcad.com/it/print

As before, pay attention to the specifications in accordance with the Table I in the appendix A. Find best orientation and strategies to obtain a fast fabrication.

Report rules

- Motivate each choice and avoid theoretical digressions.
- Orient the part and motivate this decision.
- Choice adequate values for processing parameters for reasonable processing time
- Report the production time and add indication about setup and postprocessing times.

3D Printer Machine Selection:

We are selecting Stratasys F900 due to its widely usage in FDM market and accuracy.

Model Material:

The considered printing material is ABS also known as acrylonitrile butadiene styrene; ABS is one of the most versatile materials available for 3D printing today. ABS comes in the form of a long filament wound around a spool. The 3D Printing process used with ABS is the FDM (Fusion Deposition modelling) process where material is heated and squeezed through a fine nozzle to build your design in 250-micron layers.

3D printing Process Includes,

Tray Setting:

According to the printer we are considering Slice height as 0.254 mm for better surface finish

Model settings:

The body of both part 1 and part 2 both require better structural integrity, so we selected solid model

Part 1 & part 2 slicing preview of all 20 parts of part 1 &2:

Support settings:

As we set support style in basic also base style is both model and support and self-supporting angle is 45 degrees, industrially it may vary for better surface finish and time consumption.

Orientation:

Orientation of model is default 90 degrees, but it can be changed for better outcome.

Post Processing:

The support layer present under both part 1 and part 2 can be removed by chipping and the printed part does not support the required roughness to compensate that the part is subjected to ABS acetone Vapor smoothing. The part is subjected to acetone fumes, the surface layer of the part gets melted due to acetone and the gap between the overlapped layers is filled with the melted material of the subsequent layers.

Therefore, the required surface roughness is achieved. The part should not be subjected for more time in acetone fumes else the dimensional deformation occurs; it must be given the required dwell time.

Total cost and time taken for printing part 1 & 2

Operations	Time
	(Hours)
Process design	0.10
Printer setup	0.10
Micro cycle	0.15
Macro cycle	0.30
Stock setting	0.10
Zero setting	0.10
Production time	26.39

PART 1	3D PRINTING(TIME)
P1	4.2
P2	8.4
P3	12.6
P4	16.8
P5	21
P6	25.2
P7	29.4
P8	33.6
P9	37.8
P10	42

Total time taken to produce per part 1 = 3.8

Cost of raw material per part 1 (0.127 kg) = 0.254 euros (1 kg = 2 euros)

Cost of 3D printing operator per hour = 10 euros (Don't need to be experienced)

Total time = $10x \ 3.8 = 38$

Total cost = 38.254 euros

PART 2	3D PRINTING(TIME)
P1	2.8
P2	4.8
Р3	6.8
P4	8.8
P5	10.8
P6	12.8
P7	14.8
P8	16.8
P9	18.8
P10	20.8

Total time taken to produce per part 2 = 2 hours

Cost of raw material per part 2(0.038 kg) = 0.076 euros (1 kg = 2 euros)

Cost of 3D printing operator per hour = 10 euros (Don't need to be experienced)

Total time = 10x 2 = 20

Total cost = 20 euros

Total Time for printing all 20 parts (part 1&2) is about 55.7hours

Total time and cost for machining 10 parts (both part 1&2):

PART 1	3D PRINTING(TIME)	3D PRINTING COST (EUROS)
P1	4.2	38.25
P2	8.4	76.5
P3	12.6	114.75
P4	16.8	153
P5	21	191.25
P6	25.2	229.5
P7	29.4	267.75
P8	33.6	306
P9	37.8	344.25
P10	42	382.5

PART 2	CAM COST(EUROS)	3D PRINTING COST (EUROS)
P1	31.5	20
P2	63	40
P3	94.5	60
P4	126	80
P5	157.5	100
P6	189	120
P7	220.5	140
P8	252	160
P9	283.5	180
P10	315	200

Technology comparison

Part C

Technology comparison:

According to the below given data in table and graph, we did not find breakeven point, both technologies have their own advantages and disadvantages, there are some sensitive parameters taken consider in both preprocessing and postprocessing.

PART 1&2	CAM COST(EUROS)	3D PRINTING COST (EUROS)
P1	64.94	58.25
P2	129.88	116.5
P3	194.82	174.75
P4	259.76	233
P5	324.7	291.25
P6	389.64	349.5
P7	454.58	407.75
P8	519.52	466
P9	584.46	524.25
P10	649.4	582.5

