Drink Dataset

Data Resource: https://github.com/fivethirtyeight/data/blob/master/alcohol-consumption/drinks.csv (https://github.com/fivethirtyeight/data/blob/master/alcohol-consumption/drinks.csv)

Story Behind: https://fivethirtyeight.com/features/dear-mona-followup-where-do-people-drink-the-most-beer-wine-and-spirits/)

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: from sklearn.linear model import LinearRegression
         from sklearn.model_selection import train_test_split
         from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import StandardScaler,PolynomialFeatures
         from sklearn.linear model import Ridge
         from sklearn.preprocessing import PolynomialFeatures
         df= pd.read csv('drinks.csv')
In [3]:
In [4]:
         df.head()
Out[4]:
                       beer_servings
                                   spirit servings
                                                wine servings total litres of pure alcohol continent
          O Afghanistan
                                0
                                             0
                                                          0
                                                                               0.0
                                                                                       Asia
               Albania
                                89
                                            132
                                                         54
                                                                               4.9
                                                                                     Europe
          1
          2
                Algeria
                                25
                                             0
                                                         14
                                                                               0.7
                                                                                      Africa
          3
               Andorra
                               245
                                            138
                                                        312
                                                                               12.4
                                                                                      Europe
                               217
                                            57
                                                         45
                                                                                      Africa
                Angola
                                                                               5.9
          4
In [5]:
         df.dtypes
Out[5]: country
                                              object
         beer servings
                                               int64
         spirit servings
                                               int64
```

int64

float64

object

total litres of pure alcohol

wine servings

dtype: object

continent

Exploratory Data Analysis

```
In [6]: df[['wine_servings','continent']].groupby('continent').sum()
Out[6]:
```

wine_servings

continent	
Africa	862
Asia	399
Europe	6400
North America	564
Oceania	570
South America	749

In [7]: df[["beer_servings","continent"]].groupby(["continent"]).describe()

Out[7]:

beer_servings

	count	mean	std	min	25%	50%	75%	max
continent								
Africa	53.0	61.471698	80.557816	0.0	15.00	32.0	76.00	376.0
Asia	44.0	37.045455	49.469725	0.0	4.25	17.5	60.50	247.0
Europe	45.0	193.777778	99.631569	0.0	127.00	219.0	270.00	361.0
North America	23.0	145.434783	79.621163	1.0	80.00	143.0	198.00	285.0
Oceania	16.0	89.687500	96.641412	0.0	21.00	52.5	125.75	306.0
South America	12.0	175.083333	65.242845	93.0	129.50	162.5	198.00	333.0

```
In [8]: fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(10,24))

column = ['beer_servings','spirit_servings','wine_servings','total_litre
s_of_pure_alcohol']
category = [df[i].value_counts() for i in column]
r = 0
for j in range(4):

axes = ax[j]

sns.boxplot(x=column[r],y="continent",data=df,ax=axes)
axes.set_xlabel('')
axes.set_title(column[r])
r+=1

plt.show()
```



```
In [9]: fig, ax = plt.subplots(nrows=3, ncols=2, figsize=(20,24))
    column = ['beer_servings', 'spirit_servings', 'wine_servings', 'total_litre
    s_of_pure_alcohol']
    category = [df[i].value_counts() for i in column]
    axe = [ax[i][j] for i in range(3) for j in range(2)]
    r = 0

    for i in range(3):
        for j in range(i+1,4):
            axes = axe[r]
            sns.regplot(x=column[i],y=column[j],data=df,ax=axes)
            axes.set_title(f'{column[i]} & {column[j]}')
            r+=1

    plt.show()
```


Modeling

```
In [10]: print('LinearRegression - Wine and Total')
         print()
         lm = LinearRegression()
         x=df[['wine_servings']]
         y=df[['total_litres_of_pure_alcohol']]
         lm.fit(x,y)
         lm.score(x,y)
         print(f'Total = ({str(lm.coef_[0][0])[:6]} * Wine) + {str(lm.intercept_
         [0])[:6]}')
         print('R^2 = ',lm.score(x,y))
         LinearRegression - Wine and Total
         Total = (0.0316 * Wine) + 3.1540
         R^2 = 0.4456875459787605
In [11]: print('LinearRegression - Beer and Total')
         print()
         lm = LinearRegression()
         x=df[['beer servings']]
         y=df[['total_litres_of_pure_alcohol']]
         lm.fit(x,y)
         lm.score(x,y)
         print(f'Total = ({str(lm.coef_[0][0])[:6]} * Beer) + {str(lm.intercept_
         [01)[:6]}')
         print('R^2 = ', lm.score(x,y))
         LinearRegression - Beer and Total
         Total = (0.0311 * Beer) + 1.4067
         R^2 = 0.6986262119487155
In [12]: print('LinearRegression - Spirit and Total')
         print()
         lm = LinearRegression()
         x=df[['spirit servings']]
         y=df[['total litres of pure alcohol']]
         lm.fit(x,y)
         lm.score(x,y)
         print(f'Total = ({str(lm.coef_[0][0])[:6]} * Spirit) + {str(lm.intercept
         [0])[:6]}')
         print('R^2 = ',lm.score(x,y))
         LinearRegression - Spirit and Total
         Total = (0.0279 * Spirit) + 2.4497
         R^2 = 0.4289833103726812
```

```
In [13]: print('LinearRegression - Wine + Beer + Spirit and Total')
         print()
         Z=df[['wine_servings',"beer_servings", "spirit_servings"]]
         y=df[['total litres of pure alcohol']]
         Z_train , Z_test , y_train, y_test = train test_split(Z , y , test_size=
         0.3, random state=0)
         lm1 = LinearRegression()
         lm1.fit(Z_train , y_train)
         print(f'Total = ({str(lm1.coef_[0][0])[:6]} * Wine) + ({str(lm1.coef_[0]
         [1])[:6]} * Beer) + ({str(lm1.coef_[0][2])[:6]} * Spirit) + {str(lm1.int
         ercept_[0])[:6]}')
         print("R^2 = ",lm1.score(Z_test , y_test))
         lm1.predict(Z_test)
         plt.scatter(y_test,lm1.predict(Z_test))
         plt.title('predict and actual')
         plt.show()
```

LinearRegression - Wine + Beer + Spirit and Total

Total = (0.0165 * Wine) + (0.0181 * Beer) + (0.0169 * Spirit) + 0.4779R^2 = 0.7549608066333018


```
In [14]: print('PipeLine - Standard , Polynomial(degree=3) , LinearRegression')
    print()
    Input = [('scale',StandardScaler()), ('polynomial', PolynomialFeatures(degree=3, include_bias=False)), ('model',LinearRegression())]
    pipe = Pipeline(Input)

pipe.fit(Z_train,y_train)
    print("R^2 = ",pipe.score(Z_test,y_test))
    plt.scatter(pipe.predict(Z_test),y_test)
    plt.title('predict and actual')
    plt.show()
```

PipeLine - Standard , Polynomial(degree=3) , LinearRegression

$R^2 = 0.7746820927843575$


```
In [15]: print('RidgeModel - alpha(0.1)')
    print()
    RidgeModel=Ridge(alpha=0.1)
    RidgeModel.fit(Z_train,y_train)
    print("R^2 = ",RidgeModel.score(Z_test,y_test))
    print(f'Total = ({str(RidgeModel.coef_[0][0])[:6]} * Wine) + ({str(Ridge Model.coef_[0][1])[:6]} * S
    pirit) + {str(RidgeModel.intercept_[0])[:6]}')
    plt.scatter(RidgeModel.predict(Z_test),y_test)
    plt.title('predict and actual')
    plt.show()
#Ridge(alpha=X) alpha越大懲罰越大
```

```
RidgeModel - alpha(0.1)
```

```
R^2 = 0.7549608184502712
Total = (0.0165 * Wine) + (0.0181 * Beer) + (0.0169 * Spirit) + 0.4779
```



```
In [16]: print('Polynomial(degree=3) + RidgeModel - alpha(0.1) ')
    print()
    pr=PolynomialFeatures(degree=3)
    Z_train_pr=pr.fit_transform(Z_train)
    Z_test_pr=pr.fit_transform(Z_test)

RidgeModel=Ridge(alpha=0.2)
    RidgeModel.fit(Z_train_pr,y_train)
    print("R^2 = ",RidgeModel.score(Z_test_pr,y_test))

plt.scatter(RidgeModel.predict(Z_test_pr),y_test)
    plt.title('predict and actual')
    plt.show()
```

Polynomial(degree=3) + RidgeModel - alpha(0.1)

$R^2 = 0.7746824248087052$

/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/sklearn/linear_model/_ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=6.84e-18): result may not be accurate.

return linalg.solve(A, Xy, sym_pos=True,

