الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: العلوم الفيزيائية

المدة: 03 سا و30د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

عند اللحظة t=0 نمزج حجماً $V_1=50~{\rm mL}$ من محلول برمنغنات البوتاسيوم t=0 عند اللحظة $V_1=50~{\rm mL}$ نمزج حجماً $V_2=50~{\rm mL}$ وحجماً $V_2=50~{\rm mL}$ من محلول لحمض المحمض تركيزه المولى $V_2=0.6~{\rm mol/L}$ تركيزه المولى $V_2=0.6~{\rm mol/L}$ تركيزه المولى $V_2=0.6~{\rm mol/L}$

 $(MnO_{4(aq)}^{-}/Mn^{2+}_{(aq)})$ و $(CO_{2(aq)}/H_{2}C_{2}O_{4(aq)})$: الداخلة في التفاعل (Ox/Red) الداخلة في التفاعل التفاعل (Ox/Red) و $(-1)_{4(aq)}/Mn^{2+}_{(aq)}$

1-أعط تعريف كل من المؤكسد والمرجع.

2-اكتب المعادلتين النصفيتين للأكسدة والإرجاع واستنتج معادلة تفاعل الأكسدة الإرجاعية.

3- أنشئ جدول تقدم التفاعل.

4- هل المزيج الابتدائي في الشروط الستوكيومترية للتفاعل؟

-5 المتابعة تطور النفاعل نسجل خلال كل دقيقة التركيز المولي للمزيج بشوارد البرمنغنات -5 الجدول التالى:

t (min)	0	1	2	3	4	5	6	7
$MnO_4^ \times 10^{-3}$ mol. L^{-1}	100	98	92	60	30	12	5	3

أ- احسب التركيز المولي الابتدائي لـ MnO_4^- و $H_2C_2O_4^-$ في المزيج.

 $[Mn^{2+}](t) = \frac{C_1}{2} - [MnO_4^-](t)$ يعطى بالعلاقة: (t) يعطى اللحظة عند اللحظة اللحظة اللحظة المولي $[Mn^{2+}]$

ج - ارسم منحنى تغيرات [MnO] بدلالة الزمن على ورقة ميليمترية ترفق مع ورقة الإجابة.

 $t=2 \, min$ ثم احسب قيمتها في اللحظة $\left[MnO_{4}^{-}\right](t)$ ثم احسب قيمتها في اللحظة الحجمية للتفاعل بدلالة

المرين الثاني: (04 نقاط)

من نظائر الهيدروجين: الدوتريوم D (نواته: H^{2}) والتريتيوم T (نواته: H^{3}).

[-أعط تركيب نواة كل نظير.

2-عرّف نظائر العنصر.

3-ماذا يمثل منحنى أستون

الموضح بالشكل-1؟

- ماذا تمثل المنطقة المظللة من البيان؟

- اذكر آلية استقرار باقى الأنوية.

النواة. E_t عرّف طاقة الربط E_t

5-يتطلع علماء الذرة حالياً إلى أن يكون المزيج $(H^+_1H^+_1)$ هو الوقود المستقبلي للمفاعلات النووية. يحدث لهذا المزيج، تفاعل اندماج يؤدي إلى تشكل النواة 4_2 ومنمذج بالتحول (I) على المخطط (الشكل – 1).

أ- اكتب المعادلة المنمذجة لتفاعل الاندماج الحادث.

ب- أعط عبارة الطاقة المحررة عن هذا التفاعل بطريقتين مختلفتين ثم احسب قيمتها العددية عالى MeV.

 $\frac{E_{\ell}}{A}(^{\frac{1}{2}}He) = 7,1 \text{MeV/nucl\'eon}$ و $\frac{E_{\ell}}{A}(^{\frac{3}{1}}He) = 7,1 \text{MeV/nucl\'eon}$ و $\frac{E_{\ell}}{A}(^{\frac{3}{1}}He) = 1,1 \text{MeV/nucl\'e$

 $m\binom{2}{1}H = 2,01355u$

النمرين الثالث: (04 نقاط)

د. قق التركيبة الكهربائية الموضحة بالشكل -2 حيث السولد ثابت التوتر قوته المحركة الكهربائية E .

يسمح جهاز إعلام آلي مزود ببرمجية مناسبة بمتابعة

التطور الزمني للتوتر الكهربائي المطبق بين طرفي المكثفة.

المكثفة فارغة في البداية. عند اللحظة t=0 نغلق القاطعة K ونباشر عملية المتابعة، فيعطى المنحنى البياني $u_c=f(t)$ المبين في الشكل $u_c=1$

- 1- في غياب جهاز الحاسوب، ما هو الجهاز البديل الممكن استخدامه للقيام بعملية المتابعة؟
 - 2- أعد رسم مخطط الدارة وبيّن عليه طريقة توصيل هذا الجهاز بالدارة لمتابعة تطور التوتر $\cdot \mathbf{u}_{\mathrm{C}}(t)$ الكهربائى
- $u_c(t)$ بتطبيق قانون جمع التوترات، أوجد المعادلة التفاضلية التي يحققها التوتر الكهربائي -3
 - سابقة. $u_{\rm c}(t)$ المعادلة التفاضلية السابقة. $u_{\rm c}(t)=E(1-e^{-i\tau})$

RC هو ثابت الزمن للدارة $\tau = R.C$ حيث

- $u_{c}\left(au
 ight) =0,63$ من $u_{c}\left(au
 ight) =0,63$ من $u_{c}\left(au
 ight) =0,63$ و σ
 - 6- استنتج قيمة السعة) للمكتفة.

التمرين الرابع: (04 نقاط)

للتبسيط نعتبر مسارات حركة الكواكب السيارة حول الشمس في المرجع الهليومركزي بدوائر مركزها O وأنصاف أقطارها r حيث نرمز لكتلة الشمس بالرمز ، М

- \overline{u} و \overline{u} و r، $m_{_P}$ ، $M_{_S}$ (ثابت التجاذب الكوني)، و \overline{r} بدلالة كل من \overline{r} وثابت التجاذب الكوني)، و \overline{u} و \overline{u} (شعاع الوحدة). F_{sp} وبتطبيق القانون الثاني لنيوتن، أوجد عبارة تسارع F_{sp} وبتطبيق القانون الثاني لنيوتن، أوجد عبارة تسارع M_S ، G بدلالة M_S ، M_S ، و M_S ، و M_S
 - 4- استنتج طبيعة حركته حول الشمس.

5- يمثل بيان الشكل- 5، تطور مربع الدور الزمني لكل من كوكب الأرض والمريخ و زحل بدلالة مكعب نصف قطر مدار كل كوكب.

أ- هل يتوافق البيان مع القانون الثالث لكبلر؟ ب- باستعمال البيان بيّن أن:

تم استنتج قیمة
$$\frac{T^2}{r^3} = 3.0 \times 10^{-19} (S.I)$$

كتلة الشمس ، M.

يعطى: (S.I) G=6,67×10⁻¹¹ (S.I)

6- علما أن البعد المتوسط بين مركزي الأرض والشمس هو 1,50.10¹¹m ، أوجد قيمة دور حركة الأرض حول الشمس.

التمرين التجريبي: (04 نقاط)

 C_a نعاير حجما $V_a = 20~\mathrm{mL}$ تركيزه المولى مائي لحمض البنزويك $V_a = 20~\mathrm{mL}$ تركيزه المولى $.C_{b}^{-}=10^{-1} \text{ mol.L}^{-1}$ تركيزه المولي $\left(Na_{(aq)}^{+}+HO_{(aq)}^{-}
ight)$ تركيزه المولي مائي لهيدروكسيد الصوديوم النتائج المتحصل عليها مكنت من رسم البيان $pH=f(V_b)$ (الشكل عليها مكنت من رسم البيان وسلم البيان $pH=f(V_b)$ المسكوب:

1-اكتب معادلة تفاعل المعايرة الحادث.

2-حدّد بيانيا إحداثيي نقطة التكافؤ E.

. للحمض C_a للحمض التركيز المولى

4-عيّن بيانيا قيمة pK للثنائية:

 $\cdot (C_6H_5CO_2H/C_6H_5CO_7)$

5-احسب تراكيز الأفراد الكيميائية المتواجدة في المحلول عند سكب 14mL من المحلول au_r الأساسي ثمّ أوجد قيمة نسبة التقدم النهائي للتفاعل. ما ذا تستنتج؟

علما أن المعايرة تمت عند الدرجة 25°C.

الموضوع الثاني

التمرين الأول: (04 نقاط)

 $C=10^{-2}\ mol/L$ حجمه V وتركيزه المولى HCOOH حجم الميثانويك -Iو له pH = 2,9 عند الدرجة pH = 25°C.

1- اكتب معادلة انحلال حمض الميثانويك في الماء واذكر الثنائيتين (أساس/حمض) الداخلتين في التفاعل.

2- أنشئ جدول تقدم التفاعل.

التقدم النهائي au_{r} للتفاعل. ماذا تستنتج? -3

-4 الثنائية pK_a الثنائية -4

نحضّر عدّة محاليل من حمض البنزويك C_6H_5COOH مختلفة التراكيز C ونحسب في كل مرة -II.1–النسبة $\frac{\left[C_6H_5COO^{-}\right]}{\left[C_6H_5COOH\right]}$ المبين بالشكل pH = f ($\log \frac{\left[C_6H_5COO^{-}\right]}{\left[C_6H_5COOH\right]}$ المبين بالشكل pH = f ($\log \frac{\left[C_6H_5COO^{-}\right]}{\left[C_6H_5COOH\right]}$

 $\cdot (C_6H_5COOH/C_6H_5COO^-)$

الشائية pK_a المحلول بدلالة pK_a الشائية

.
$$\frac{\left[C_6H_5COO^{-1}\right]}{\left[C_6H_5COOH\right]}$$
 والنسبة $\left(C_6H_5COOH/C_6H_5COO^{-1}\right)$

 pK_a اعتمادا على البيان، استنتج قيمة الثابت -3

 $.C_6H_5COOH/C_6H_5COO^-$ للثنائية:

نركب الدارة المبيّنة بالشكل-2. يسمح جهان M برسم المنحنيين (الشكل-3) و (الشكل-4) للتوتر الكهربائي بين طرفي المكثفة

في حالتي الشحن والتفريغ. $u_{AB}(t)$

عندما تكون البادلة في الوضع 1 يتم شحن المكثفة الفارغة بواسطة مولد للتوتر الثابت قوته المحركة الكهربائية E.

الشكل- 1

بعد شحن المكثفة تماماً يتم نقل البادلة إلى الوضيع 2 في اللحظة t=0 حيث يتم تفريغ المكثفة عبر R'=500 ناقل أومى مقاومته $\Omega'=500$

-1 ألحق بكل منحنى الظاهرة الموافقة (شحن أم تفريغ) وما اسم الجهاز -1

- 2- بتطبيق قانون جمع التوترات، اكتب المعادلة التفاضلية للدارة بدلالة (u_{AB}(t خلال مرحلة التفريغ.
 - 3- تحقق من أن حل المعادلة التفاضلية من الشكل:
 - يطلب $u_{AR}(t) = A \cdot e^{-\frac{t}{R'C}}$ تحديد عبارته من الشروط الابتدائية.
 - 4- اكتب عبارة شدة التيار الكهربائي i(t) أثناء التفريغ.
 - حدد بیانیا قیمتی τ و τ' ثابتا الزمن لدارة الشحن -5والتفريغ على الترتيب.
 - استنتج قيمة C سعة المكثفة و R قيمة مقاومة -6الناقل الأومى.

التمرين الثالث: (04 نقاط)

M = 131 g/mol : 131 M المعطيات: الكتلة المولية الذرية لليود 131: M = 131 g/mol وثابت أفوغادرو: يعطى الجدول التالي لبعض العناصر الكيميائية:

الاسم	أنتموان	تيلير	يود	كزينون	سيزيوم
الرمز	Sb	Те	I	Xe	Cs
العدد الشحني (Z)	51	52	53	54	55

يستعمل عادة اليود 131 المشع في المجال الطبي و الذي يصدر بتفككه جسيمات (β^-) وبزمن نصف عمر $t_{1/2}$

يحقن مريض بالغدة الدرقية بكمية من اليود 131 المشع في الجسم.

يعطى المنحنى $\ln(A) = f(t)$ في الشكل -5 حيث A بمثل النشاط الإشعاعي (وحدته $\ln(A) = f(t)$ للعينة المحقونة في لحظة (t). ln(A)

- 1- أعط تركيب نواة اليود 131.
- 2- أ- ما هو الجسيم المنبعث خلال تفكك اليود 131 ؟
 - ب- اكتب معادلة تفكك اليود 131 مع ذكر قوانين الإنحفاظ المستعملة.
 - . $\ln(A_0)$ و $t_{1/2}$ ، t بدلالة ا $\ln(A)$ و -3

 A_0 العيارة البيانية (معادلة المستقيم) ثم استنج قيمة النشاط الإشعاعي الابتدائي A_0 للعينة عند اللحظة t=0 وقيمة زمن نصف العمر $t_{1/2}$ لليود $t_{1/2}$.

-5 المستعملة في الحقنة. m_0 المستعملة في الحقنة.

التمرين الرابع: (04 نقاط)

-1 الشكل -6). ABCD على المسار (S) ، الذي نعتبره نقطيا، كتلته $m=100~\mathrm{g}$ معلى المسار

ينطلق الجسم (S) من الموضع A دون سرعة ابتدائية

، $v_B = 2 \text{ m.s}^{-1}$ ليصل إلى الموضع B بسرعة

 $\overrightarrow{v_c}$ بسرعة أبي الموضع $\overrightarrow{v_c}$

يخضع الجسم (S) لقوة احتكاك f

ثابتة الشدة ومعاكسة لجهة الحركة

على المسار AB. تهمل قوى الاحتكاك على بقية المسار.

أ- بتطبيق القانون الثاني لنيوتن، أوجد عبارة تسارع الحركة على المسار AB.

ب- أوجد قيمة هذا التسارع ثم استنتج شدة قوة الاحتكاك f.

ج- ما طبيعة الحركة على المسار BC ؟ علّل إجابتك.

-2 يغادر الجسم (S) الموضع C الذي يقع على ارتفاع h=0.8~m عن المستوي الأفقي الذي يشمل النقطتين O و D، ليسقط في الهواء ويصل إلى النقطة D بسرعة \overrightarrow{V}_D .

باعتبار اللحظة التي يصل فيها الجسم (S) إلى الموضع C مبدأ للأزمنة (t=0)، وبإهمال دافعة أرخميدس ومقاومة الهواء.

 $(O; \vec{i}, \vec{k})$ في المعلم (S) في المعلم مركز عطالة الجسم (S) في المعلم أ

$$z = -\frac{g}{2 v_c^2} x^2 + h$$

ب- حدّد بُعد النقطة D عن النقطة O (المسافة OD).

ج- احسب قيمة السرعة VD.

التمرين التجريبي: (04 نقاط)

في حصة للأعمال المخبرية قام فوج من التلاميذ بدراسة تحول الأسترة بين حمض الإيثانويك C_2H_5OH و الإيثانول C_3H_5OH .

أخذ التلاميذ 8 أنابيب إختبار ووضعوا في كل أنبوب مزيجاً يتكون من 1,40mol من حمض الإيثانويك و 1,40mol من الإيثانول، وبضع قطرات من حمض الكبريت المركز، ثم وضعت الأنابيب في حمام مائي درجة حرارته $\theta_1 = 190^{\circ}$ 0, بعد سدها بإحكام في اللحظة t = 0

في اللحظة t = 60 min ، قام التلاميذ بإخراج أحد الأنابيب ووضعه في الماء المبرد ومعايرة كمية الحمض المتبقي بواسطة محلول هيدروكسيد الصوديوم. ثم تكررت نفس العملية مع باقي الأنابيب في لحظات زمنية مختلفة، فكانت النتائج المدونة في الجدول التالي:

t (min)	0	60	120	180	240	300	360	420
$n_{acide}(mol)$	1,40	0,80	0,59	0,52	0,48	0,47	0,46	0,46
$n_{ester}(mol)$								

1- أ- اكتب معادلة التفاعل المنمذج لتحول الأسترة الحادث، وسَمِّ الإستر المتشكل.

ب- ما دور حمض الكبريت في هذه التجربة ؟

 $n_{ester} = f(t)$ الجدول وارسم البيان الذي يمثل تطور كمية مادة الإستر المتشكل بدلالة الزمن: -2 على ورقة ميليمترية ترفق مع ورقة الإجابة.

3- أنشئ جدولا لتقدم التفاعل، ثم بين أن تحول الأسترة غير تام.

4- عين بيانياً زمن نصف التفاعل.

 $\theta_2 = 100^{\circ}C$ مثل كيفيا المنحنى $n_{ester} = g(t)$ مثل كيفيا المنحنى $n_{ester} = g(t)$

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: جوان2015 المادة : علوم فيزيانية

العلامة			7		***		
المجمو	مجزأة		(4	عابة (الموضوع الأول	عناصر الإم		
- SOUTH CONTRACT					ط)	لأول : (04نا	مرین ا
	0,25		ئىميائى.	اً أو أكثر خلال تفاعل ا			
	0,25			ون او اکثر خلال تفاعل			
	0,25			$Q_4(aq) = 2CO_2(aq)$			
	0,25			$+8H^{+}(aq) + 5e^{-} =$	$Mn^{2+}(aq) + 4$	ع: H ₂ O(<i>l</i>)	ن للإرجا
	0,25	5 H	$I_2C_2O_{4(aq)} + 2M$	$nO_{4}^{-}(aq) + 6H_{(aq)}^{+} =$			
		المعادلة	5 H ₂ C ₂ O ₄ (aq) +	2MnO ₄ (aq) + 6H ⁺ (a	aq) = 10CO ₂ (aq) +		
- 1	0,50	ح.ابتدائية	C ₂ V ₂	C ₁ V ₁	0	0	T
	0,50	ح.انتقالية	C ₂ V ₂ -5x	C ₁ V ₁ -2x	- 10x	2x	بزيادة
	- 0.00	ح.نهائية	C ₂ V ₂ -5x _f	C ₁ V ₁ -2x _f	10x _f	2x _f	
	0,25	[H ₂ C ₂ C		mol , $\frac{C_1V_1}{2} = 5$ $3 \text{ mol.L}^{-1} \text{[Mr]}$	<u>C</u>	$\frac{V_1}{2} \neq \frac{C_2V_2}{5}$. منه:
		[H₂C₂O	$0_4]_0 = \frac{C_2 V_2}{V_1 + V_2} = 0,$	mol $\int \frac{S_1^2 A}{2} = 5$ $3 \text{ mol.L}^{-1} \int Mr$ $\int \frac{2x}{V_T} \int Mr$ $[Mn^{2+}](t) = \frac{C_1}{2}$	$\frac{C_1}{2}$ $100_4]_0 = \frac{C_1 V_1}{V_1 + V_2}$ $100_4] = \frac{C_1 V_1}{V_1 + V_2}$	$\frac{V_1}{2} \neq \frac{C_2 V_2}{5}$ $= 0,1 \text{ mol.L}$ $\frac{V_1}{2} = \frac{C_1 V_2}{5}$ $\frac{V_1}{2} = \frac{C_1 V_2}{V_1}$	ر منه: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

دمة	COTTON				جابة النموذجية المادة : عاصر الإجابة (الموضوع	<i>r</i> G-		
المجموع	مجزاة			0317	عناصر الإجابة والموصور			
					04 نقاط)	مرين الثاني: (4		
		i a	$\frac{3}{1}H$	² <i>H</i>	النواة	- التركيب:		
	0,50		1	1				
	0,50		-		عدد البروتونات: 2			
			2	1	N = A - Z عدد النيترونات:			
	0,50		30		ها العدد Z نفسه و A مختلف .	- نظائر العنصر ل		
	0,25	الة عدد نوياتها A	ئرية X _Z بدلا	في نواة ا	ون تغيرات عكس طاقة الربط لكل نوية	:- يمثل منحنى أسد		
					$-\left(\frac{E}{E}\right)$	$\left \frac{f}{g}\right = f(A)$:		
	0,25	.40≤ ∠	زب 190≥ا	لتی تتمی	 السان " غالبية الأنوية المستقرة " وا 	1/		
	0,25	تمثل المنطقة المظللة من البيان " غالبية الأنوية المستقرة " والتي تتميز بـ 190 $\geq A \leq 40$. • الأنوية الخفيفة $A < 40$: تستقر بآلية " الاندماج النووي ".						
04.0	0,25				لأنوية الثقيلة 190<1/: تستقر بآلية "			
	0,50	وناتها المنعزلة	صلعا الم نكا	il ā: </td <td>ة ٤٠ هي: الطاقة الواجب توفيرها لنواة</td> <td>Latt to see a second</td>	ة ٤٠ هي: الطاقة الواجب توفيرها لنواة	Latt to see a second		
	- 9		G, 4-			4- طاقة الربط للنوا والعناكنة . (تقيل ال		
	0,50		31	$H + {}^{2}H$	$\longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$:4	وساعه . ر <u>سم</u> 5- أ- معاملة التفكا		
		$ \Delta E $ =	$2\frac{E_{\ell}}{4}({}_{1}^{2}H)$	+3E	$\frac{E_{\ell}(^{3}H)-4\frac{E_{\ell}}{A}(^{4}He)}{4}$			
	0,50				$(4 \times 7,1) = 17,8 \text{ MeV}$	ب-		
			K - 3-7	(,	-) (1×1,1) -11,0 MeV			
1	0,50	AE = (m(4He) + m(1	-\	$\binom{3}{1}H$ - $m\binom{2}{1}H$)× ε^2	او		
					$3,01550-2,01355)\times 931,5 = 1$	7 6 14 17		
		5	•		2,01330/231,3 =1	7,02010		
			8%					

لامة			61	الموضوع الأو	1 1 N		
المجموع	مجزاة		٠,	الموصوع ادق	عصر البجاب ا		
						(40نقاط)	تمرين الثالث:
	0,25	ىتھا عمليا ہو	ر المناسب لمتابع	سيرة جدا، فالجهاز	ن مدة الظاهرة قم	$u_C = f$	 من البيان (1)
						ذاكرة».	راسم اهتزازات ذو
	L 10	↑ . *I	к т		:0	راسم الاهتزازان	- طريقة توصيل
	الشكل 0,25	ьЩ	Ų	R = 100 Ω	ني	جمع التوترات	- بتطبيق قانون
	125	7	c_t	X = 100 Ω - uc - uc			لدارة RC ، نجد
	0,25						$E = u_C + u_R$
	0,25				***	***	$u_R = Ri$ مع:
	0,50				$=\frac{E}{RC}$ le E		***
04.0	0,25			$\frac{du_C}{dt} = \frac{E}{\tau} \times e^{-\frac{t}{2}}$			
	0,50	$\frac{E}{\tau} = \frac{E}{\tau}$	E ومنه:	$e^{\tau} + \frac{E}{\tau}(1-$	$-\frac{f}{\tau}) = \frac{E}{\tau}$:	َّت السابقة نجد	التعويض في م.
	0,50	$u_C(\tau) = E(1$	$-e^{-\tau/\tau}$)=E	(1-0,37)=0	,63 <i>E</i> ومنه u_{C} ($t) = E(1 - e^{-t})$	- البرهان : (ً
	0,25					E	=2V :بيانيا
	0,50	τ ∈ [6		على البيان نجد:	harasanan marka		
	0,50		C	$=\frac{\tau}{R}=\frac{6\times10^{-3}}{100}$	$-=60 \ \mu F$	$\Leftarrow \tau = R.C$	– قيمة السعة: ﴿
		*					
		*					
					9		

الشعبة:علوم تجريبية	المادة : علوم فيزيائية	تابع الإجابة النموذجية
---------------------	------------------------	------------------------

مجزاة الرسم 0,25	عناصر الإجابة (الموضوع الأول) لتمرين الرابع:(04نقاط)
	لتمرين الرابع:(04نقاط)
0,25	
0,50	$\vec{F}_{s/p}$ $\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{u}$ الرسم $\vec{F}_{s/p} = -G \frac{m_p M_s}{\vec{v}} \cdot \vec{u}$ القوة: -2
0,50	$\sum \vec{F}_{ext} = m \cdot \vec{a}_G$: يَطْبِيقَ القَانُونِ الثَّانِي لَنِيوتِن $\vec{F}_{ext} = m \cdot \vec{a}_G$
	يمنه $\overline{F}_{SIP} = m \cdot \overline{a}$ يمنه الناظم الموجه نحو مركز الشمس:
0,50	$a_N = G \cdot \frac{M_S}{r^2} \Leftarrow G \cdot \frac{m_p \cdot M_S}{r^2} = m_p \cdot a_N$
0,50	ما الحركة دائرية منتظمة $a_T=0$ الحركة دائرية منتظمة $a_T=0$
	أو: شعاع تمارع الحركة ناظميا و مركزيا و ثابت القيمة و منه الحركة دائرية منتظمة.
0,50	r^3 عبارة عن " خط مستقيم مار من المبدأ " أي $T^2 = f(r^3)$ متناسب طردا مع $T^3 = f(r^3)$ البيان $T^2 = f(r^3)$ عبارة عن " خط مستقيم مار من المبدأ " $T^2 = f(r^3)$ مناسب طردا مع القانون الثالث لكبلر المعبر عنه بالعلاقة:
0,25	r^3 $\frac{T^2}{r^3} = k = \frac{1,2 \times 10^{17}}{4,0 \times 10^{35}} = 3,0 \times 10^{-19} \text{ s}^2 \cdot m^{-3}$ بيانيا: r^3
0,25	$M_S = \frac{4\pi^2}{G \cdot k} \Leftarrow \frac{T^2}{r^3} = k = \frac{4\pi^2}{G \cdot M_S}$: كثلة الشمس: حسب القانون الثالث لكبار:
0,25	$M_S = 2 \times 10^{30} \ kg$
0,50	$rac{T^2}{r^3} = 3,0 imes 10^{-19} \ s^2.m^{-3}$ دور حركة الأرض: $3,0 imes 10^{-19} \ s^2.m^{-3}$ دور حركة الأرض: $T = 3,18 imes 10^7 s = 368 j \Leftarrow rac{T^2}{(1,50 imes 10^{11})^3} = 3,0 imes 10^{-19}$ بالتعويض
	(1,50×10 ¹¹) ³
	0,50 0,50 0,50 0,50 0,25 0,25

الشعبة:علوم تجريبية	المادة · علوم فيز بائية	تابع الاحابة النمو ذحية
است. سرم بروبو	المادة . علوم فيز يانيه	الع الإحالة اللمو تحله

- "	العا					To 1714 • 600	
المجموع	مجزأة			ع الاول)	الإجابة (الموضو	عناصر	
						04 نقاط)	رين التجريبي:(
							معادلة تفاعل الم
	0,50			$C_6H_5CO_2$	H (aq)+HO^(aq	$= C_6 H_5 CO_2^-$	$(aq) + H_2O($
							· نقطة التكافر:
	0,50			$E(V_{bE})$	=20mL; pH	$I_E \simeq 8,4$) :	ريقة المماسات ن
	0,50		$C_a V_a = C_b V_{bE} : 3$				
	0,50				$C_a = 10^{-1} \ mol.L$	$C_a = C_a$	$C_b.\frac{V_{bE}}{V_a}$:43
	0,25			p.	$H = pK_o = 4,2 :$	ب التكافئ $E_{_{14}}$ نجد	· عند نقطة نصف
	0,25			pl	البيان نجد: 4,5 = 4	و من $V_b = 14cr$	التراكيز: n³
		ادلة	المعا	$C_6H_5CO_2H$	$(aq)+HO^{-}(aq)$	$=C_6H_5CO_2^-(\alpha)$	$(I) + H_2O(\ell)$
		22	التقدم		بوحدة (mol)	كمية المادة	
	0,25	15	0	C _a V _a	C _b V _b	0	
4,0	,,,,,,	15	· X	C _a V _a -x	C _b V _b -x	x	بوفرة
		ح ن	x,	C _a V _a -x _f	C _b V _b -x _f	xf	
	0,25			[HO	$\begin{bmatrix} 10^{pH-14} = 10 \end{bmatrix}$	_	10^{-10} mol.L
	0,25 0,25 0,25			$[C_6 I$	$\begin{bmatrix} HO^{-1} \\ I_{5}COO^{-} \end{bmatrix} = \frac{\lambda}{V_{a}}$ $DOH = \frac{C_{a}V_{a}}{V_{a}+V_{a}}$	$x_f = 1.43$ $x_f = 1.43$ $\frac{x_f}{+V_b} = 4.1173$ $\frac{-x_f}{V_b} = 1.765 \times 10^{-1}$	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$
	0,25			$[C_6 I$	$\begin{bmatrix} HO^{-1} \\ I_{5}COO^{-} \end{bmatrix} = \frac{\lambda}{V_{a}}$ $DOH = \frac{C_{a}V_{a}}{V_{a}+V_{a}}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{V_b} = 4.117$ $\frac{c_f}{V_b} = 1.765 \times \frac{c_b V_b}{V_a + V_b} = 4.11$ $\frac{c_b V_b}{V_a + V_b} = 4.11$	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$ $(10^{-2} mol.L)$
	0,25 0,25 0,25		x =	[C ₆ H ₃ Cc	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{\lambda}{V_a}$ $[OOH] = \frac{C_b V_a}{V_a + 1}$ $[Na^+] = \frac{C_b V_a}{V_b}$	$x_f = 1.4$: $x_f = 1.4$: $\frac{f_f}{+V_b} = 4.117$: $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{V_a + V_b} = 4.11$: $\frac{C_b V_b}{V_a + V_b} = 4.11$:	$(10^{-10} mol.L)$ $(10^{-10} mol.L)$ $(10^{-3} mol.L)$ $(10^{-2} mol.L)$
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{\lambda}{V_a}$ $[OOH] = \frac{C_b V_a}{V_a + 1}$ $[Na^+] = \frac{C_b V_a}{V_b}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$^{3} = C_{b}V_{b} - x$ $\times 10^{-3} mol$ $\times 10^{-2} mol.L$
	0,25 0,25 0,25		$x_{\max} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$
	0,25 0,25 0,25		$x_{\text{max}} =$	$\begin{bmatrix} C_6 H \\ C_6 H \\ C_6 \end{bmatrix}$	$\begin{bmatrix} HO^{-1} \\ I_5COO^{-1} \end{bmatrix} = \frac{x}{V_a}$ $\begin{bmatrix} OOH \end{bmatrix} = \frac{C_aV_a - V_a + V_a}{V_a + V_a}$ $\begin{bmatrix} Na^+ \end{bmatrix} = \frac{C_aV_a - V_a}{V_a}$ $\begin{bmatrix} 14 \cdot 10^{-3} = 14 \cdot 10 \end{bmatrix}$	$x_f = 1.4$ $x_f = 1.4$ $x_f = 1.4$ $\frac{c_f}{+V_b} = 4.117$ $\frac{-x_f}{V_b} = 1.765 \times \frac{C_b V_b}{c_a + V_b} = 4.11$ \vdots	$10^{-10} mol.L$ $3 = C_b V_b - x$ $10^{-3} mol$ $10^{-2} mol.L$

تابع الإجابة النموذجية المادة: علوم فيزيانية الشعبة: علوم تجريبية

المجموع	مجزأة			ع الثاني)	الإجابة (الموضو	عناصر	H 1 1-11		
	0,50 0,25	. 1	нсоон ₍	$H_{(q)} + H_2 O_{(\ell)} = I$	<i>НСОО</i> [−] _(аў) + <i>Н</i> ₃ <i>О</i> • НСООН/НС	: (04 نقاط) الانحلال _(مه) *(مرين الأول - 1- معادلة ا - الثنائيات		
		715	المعا	HCOC	W . W O		- جدول التقدم		
			التقدم	ncoc		$HCOO^{(aq)} + H_3C$)* _(aq)		
	0,50	<u>ح ح</u>	0	C.V	بوحدة (mol)				
		15	x	-	0	0			
		عن ح	-	C.V -x	بوفزة	x	х		
		00	x,	C.V -Xf		X _f	Xf		
	0.50		Γ	.7		نهاني:	رً- نسبة التقدم ال		
	0,50					$= C \cdot V \Leftarrow C \cdot V$			
50	0,50	ر تام	التفاعل غير	$\leftarrow \tau_{i} = \frac{x_{i}}{x_{i}}$	$r = \frac{10^{-pH}}{10^{-pH}} = \frac{10^{-pH}}{10^{-pH}}$	$\frac{10^{-2.9}}{10^{-2}} = 0.126$	5 - 1 · hth.		
				, x _m	ax C	10-2 - 0,120	بسي. ۱ > ٥		
					issa Annaas shikkaan a		قيمة الـ Ka		
	0,50	$pKa = 3.8 \Leftarrow pH = pKa + log \frac{[HCOO^{-}]}{[HCOOH]} = pKa + log \frac{[H_3O^{+}]}{C-[H_3O^{+}]}$							
4,0									
***	0,25			K	$a = \frac{[H_3O] \cdot [C]}{[C,H_3O]}$	соон] с ^е н'соо.]	1 - II- العبا		
	0,50	log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{O^{+}] \cdot [C_{6}H_{5}COO]}{C_{6}H_{5}COOH]}$ $\frac{C_{6}}{O^{+}]} = \log \frac{[C_{6}H_{5}COO]}{[C_{6}H_{5}COO]}$ $= \log \frac{[C_{6}H_{5}COO]}{[C_{6}H_{5}COO]}$	ومنه: COO <u>`]</u> (OOH]		
	0,50	log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3}$ $-\log[\text{H}_3\text{O'}] = -\log$ $pH = 4, 2 \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{G}{O^{+}} = \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= g Ka + \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= \frac{[C_6 H_5 COO^{+}]}{[C_6 H_5 COOH]} = \frac{1}{2}$	رمنه: (COO) (OOH) (OOH) (OOOH)		
		log Ka-l	og[H ₃ O*	$] = \log \frac{[C_6 H_5 C_6]}{[C_6 H_5 C_6]}$	$\frac{\text{COO'}}{\text{OOH}} \leftarrow \log \frac{K}{[\text{H}_3}$ $-\log[\text{H}_3\text{O'}] = -\log$ $pH = 4, 2 \leftarrow \log \frac{K}{[\text{H}_3]}$	$\frac{\text{Ca}}{\text{O}^{+}} = \log \frac{[\text{C}_{6}\text{H}_{5}\text{C}]}{[\text{C}_{6}\text{H}_{5}\text{C}]}$ $\text{g Ka} + \log \frac{[\text{C}_{6}\text{H}_{5}\text{C}]}{[\text{C}_{6}\text{H}_{5}\text{C}]}$	ومنه: (COO) (OOH) (OOH) (OOOH)		
		log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G}{O^{+}} = \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= g Ka + \log \frac{[C_6 H_5]}{[C_6 H_5 C]}$ $= \frac{[C_6 H_5 COO^{+}]}{[C_6 H_5 COOH]} = \frac{1}{2}$	رمنه: (COO) (COO) (منه: (COO) (منه: (COO) (coo)		
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)		
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)		
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]}$ $g Ka + \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{5} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)		
	0,25	log Ka-l	og[H₃O⁺ a+log <u>[C</u> [C _é	$= \log \frac{[C_6H_5C_6]}{[C_6H_5COOH]} \leftarrow$ $[C_6H_5COOH]$	$\frac{\text{COO'}}{\text{OOH}} \Leftarrow \log \frac{K}{[\text{H}_3} + \log \frac{K}{[\text{H}_3]} + \log \frac{K}{[$	$\frac{G_{a}}{O^{+}} = \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]}$ $g Ka + \log \frac{[C_{6}H_{5}G_{6}]}{[C_{6}H_{5}G_{6}]} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{5} = \frac{[C_{6}H_{5}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}]}{[C_{6}H_{5}G_{6}G_{6}G_{6}]} = 0$ $G_{7} = \frac{[C_{6}H_{5}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6}G_{6$	ومنه: (COO) (OOH) (OOH) (OOH) (OOH) (OOH)		

للمة		/ athresis and Table atte
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
3		لتمرين الثاني: (04 نقاط)
	0,50	
	0,25	1 - الشكل-3: تفريغ الشكل-4: شحن
	0,25	الجهاز M المستعمل: راسم الاهتزاز ذي ذاكرة أو جهاز الـ EXAO
	0,50	$\mathbf{u}_{AB}\left(\mathbf{t}\right)+u_{R}=0$ حيث: $\mathbf{u}_{AB}\left(\mathbf{t}\right)$ حيث:
	0,25	$u_{R'} = R' \cdot i = R' \cdot \frac{dq}{dt} = R' \cdot C \frac{du_{AB}(t)}{dt}$
	0,23	ut ut
	0,25	$u_{AB}(t)$ وهي معادلة تفاضلية من الرتبة الأولى بالنسبة لـ $\frac{du_{AB}(t)}{dt} + \frac{1}{R'C}u_{AB}(t) = 0$.
		ut KC
	0,25	$\frac{\mathrm{d}u_{AB}(t)}{\mathrm{d}t} = -\frac{A}{R'C} \cdot e^{\frac{t}{R'C}} \Leftarrow u_{AB}(t) = A \cdot e^{\frac{t}{R'C}} : 1$
	0,25	التعويض نجد: $\frac{A}{R'C} \cdot e^{\frac{t}{R'C}} + \frac{1}{R'C} \cdot A \cdot e^{\frac{t}{R'C}} = 0$ (المعادلة محققة).
4,0		K C K C
4,0	0,25	$A = E \leftarrow \mathbf{u}_{AB}(0) = \mathbf{A} \cdot \mathbf{e}^{\frac{0}{R'C}} = A = E$ کنن $\mathbf{t} = 0$ لنا $\mathbf{t} = 0$
	0,23	4 – عبارة شدة التيار :
	0,50	$i(t) = \frac{dq}{dt} = C \cdot \frac{du_{AB}(t)}{dt} = -C \cdot \frac{E}{R'C} \cdot e^{-\frac{t}{R'C}} = -\frac{E}{R'} \cdot e^{-\frac{t}{R'C}}$
		ملاحظة: يمكن استنتاج (i(t من قانون جمع التوترات.
	0,25	$u_{AB} = 0,63 \cdot E = 7,56 \text{ V}$ من الشكل -4 : من الشكل -5 -5
	0,23	$\tau = 0.2s$ وبالإسقاط نجد:
	100 200 0	u AB = 0,37 ⋅ E = 4,44 V من الشكل-3: من الشكل
	0,25	وبالإسقاط نجد: 0,09s ≃ ′ ت ملاحظة: تقبل القيم القريبة من قيم τ و ′ τ
	On the second	그는 그들은 그는 그 그는 경우에서 한다면서 그러워 그렇게 그렇게 그렇게 그는 그는 그는 그는 그를 보고 그를 보는 것이다.
	0, 25	$C = \tau'/R' = 0,09/500 = 180.10^{-6}F = 180 \ \mu F \iff \tau' = R'C$
	0,25	$R = \tau/C = 0,2/(180 \cdot 10^{-6}) = 1,1 \cdot 10^{3} \Omega \leftarrow \tau = R \cdot C$ - قيمة المقاومة:
	111	

العلامة		عناصر الإجابة (الموضوع الثاني)								
المجموع	مجزأة	عناصر الإجابة (الموضوع الناني)								
		نتمرين الثالث: (04 نقاط)								
	0,25	N = A - Z = 78: عدد البروتونات: $Z = 53$ وعدد النيترونات: $Z = 78$								
	0,25	2- أ- الجسيم المنبعث هو:								
		$^{131}_{53}I \rightarrow ^{A}_{z}X + ^{0}_{-1}e$ ب- المعادلة:								
	3×0,25	تطبيق قانون انحفاظ العدد الكتلي نجد: 131 = A								
		تطبيق قانون انحفاظ العدد الشحني نجد: 24 = Z								
		منه النواة الابن هي: $Xe + {0 \atop 53}$ والمعادلة تصبح: $Xe + {0 \atop 16}$ والمعادلة تصبح:								
		3- العبارة:								
	0,50	$\ell n A(t) = -\lambda \cdot t + \ell n A_0 \Leftarrow A(t) = A_0 \cdot e^{-\lambda \cdot t}$								
	0,25	- العبارة البيانية: nA = a · t + b العبارة البيانية: -4								
	0,25	$a = \frac{\Delta(\ln A)}{\Delta t} = \frac{(28,8-36)}{80-0} = -0.09 \text{ jours}^{-1}$: ميث معامل التوجيه								
4,0	0,25	منه 4nA = -0,09⋅t + 36 منه								
		ع t بالوحدة jours .								
	0,25	$A_0 = e^{36} = 4.3 \times 10^{15} \; \mathrm{Bq} \Leftarrow \ell \mathrm{nA}_0 = 36$ ينتج: (2) مع (1) مع								
	0,50	$t_{1/2} = \frac{\ell n 2}{0,09} \approx 8 \text{ jours} \iff \lambda = \frac{\ell n 2}{t_{1/2}} = 0,09$								
		ملاحظة: تقبل القيم القريبة من هذه القيمة.								
		5– الكتلة الإبتدائية (m _o)								
	0,50	$\mathbf{m_0} = \frac{\mathbf{t_{1/2} \cdot A_0 \cdot M}}{\ell \mathbf{n2 \cdot N_A}} \Leftarrow \mathbf{A_0} = \lambda \cdot \mathbf{N_0} = \frac{\ell \mathbf{n2}}{\mathbf{t_{1/2}}} \cdot \frac{\mathbf{m_0}}{\mathbf{M}} \cdot \mathbf{N_A}$								
	0,25	$m_0 = \frac{8 \cdot (24 \cdot 3600) \cdot 4,3 \times 10^{15} \cdot 131}{\ell n 2 \cdot 6,02 \cdot 10^{23}} \approx 0.9g$								
	0,23	$\ln_0 = \frac{\ln_0 - 6,02.10^{23}}{\ln 2.6,02.10^{23}}$								
	1	250								
	15/16-1									

لامة	الع	/ man								
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)								
	الرسم	تمرين الرابع: (04 نقاط)								
	0,25	ا – ا عبارة التسارع على المسار AB								
	0,25	$\sum \vec{F}_{ext} = \vec{P} + \vec{R} + \vec{f} = m \cdot \vec{a}$ مطبيق القانون الثاني لنيوتن:								
		P m.g.sin α - f = m.a الإسقاط على محور الحركة:								
	0,25	$a = g \cdot \sin \alpha - \frac{f}{m} : \alpha$								
		»- قيمة التسارع: الحركة مستقيمة متسارعة بانتظام ومنه:								
	0,25									
	0,23	$a = \frac{v_B^2}{2 \cdot AB} = \frac{2^2}{2 \cdot 2} = 1 \text{m} / \text{s}^2 \iff v_B^2 - v_A^2 = 2a \cdot AB$								
		شدة قوة الاحتكاك:								
	0,25	$f = (g \cdot \sin \alpha - a) \cdot m = (10 \cdot 0, 5 \cdot 1) \cdot 0, 1 = 0, 4N \iff a = g \cdot \sin \alpha - \frac{f}{m}$								
		الله المتخدام مبدأ إنحفاظ الطاقة. R ♣ المتخدام مبدأ إنحفاظ الطاقة.								
	الرسم 0,25	طبيعة الحركة على المسار BC :								
4,0	0,25	$\vec{P} + \vec{R} = m\vec{a}$: $\vec{D} = \vec{D} + \vec{D} = \vec{D}$								
		B C $a = 0 \Rightarrow 0 \Rightarrow m \cdot a$ $A = 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$ $A = 0 \Rightarrow 0 \Rightarrow 0$								
	0,25	لحركة مستثنيمة منتظمة.								
	الرسم	المعظة : يقبل استخدام مبدأ انحفاظ الطاقة.								
	0,25	- أ- البرهان على معادلة المسار: - أ- البرهان على معادلة المسار:								
		$\sum \vec{F}_{ext} = \vec{P} = m\vec{a}$: نطبیق القانون الثانی لنیوتن								
	0,25	لإسقاط على Ox نجد :								
	0,25	$x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$ $x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$ $x(t) = v_C \cdot t \leftarrow v_x = v_C \leftarrow a_x = 0$								
		$v_z = -gt + c \iff \frac{dv_z}{dt} = -g \iff a_z = -g$								
	0,25	$z = -\frac{1}{2}gt^2 + c' \Leftarrow v_z = \frac{dz}{dt} = -gt$ $c = 0 \leftarrow t = 0$								
	0,23	2 ";								
		$z = -\frac{1}{2}gt^2 + h$ ومنه: c' = h \leftarrow t =								
	0,25	$z = -\frac{g}{2v^2}x^2 + h = -1,25 \cdot x^2 + 0,8$ $\leftarrow t = \frac{x}{v}$								
	0,25									
	0,23	$x_D = \sqrt{0,8/1,25} = 0,8m \Leftarrow z_D = -1,25 \cdot x_D^2 + 0,8 = 0$: OD المسافة V _D : • قيمة السرعة : V _D : • والمسافة عند السرعة : • • والمسافة عند السرعة : • • والمسافة عند السرعة : • • • والمسافة : • • • • • • • • • • • • • • • • • •								
	0.25	$t_D = x_D / v_C = 0.8/2 = 0.4s \leftarrow x_D = v_C \cdot t$ ومنه:								
	0,25	$v_D = \sqrt{v_{xD}^2 + v_{zD}^2} = \sqrt{v_C^2 + (-gt)^2} = \sqrt{2^2 + (-10 \times 0, 4)^2} = 4,47 \text{ m}/$								
	0,23	$V_D = \sqrt{V_{xD} + V_{zD}} = \sqrt{V_C + (-gt)} = \sqrt{2} + (-10 \times 0, 4) = 4,47 \text{ m/s}$ $\frac{2cdb}{2cdb} : v_D = \sqrt{V_{xD} + V_{zD}} = \sqrt{V_C + (-gt)} = \sqrt{2} + (-10 \times 0, 4) = 4,47 \text{ m/s}$								
		. يعبل استخدام سد رتحاط الطاقة.								

تابع الإجابة النموذجية المادة: علوم فيزيائية الشعبة: علوم تجريبية

المجموع	0,50 0,25 0,25	CH ₃ C	ООН (с)				لإجابة (ا			100	-	
	0, 25	CH ₃ C	оон (с)									
	0, 25	:	OOH (t)	CII	OII.	CII C		(200	(04 نة	يريبي:	رين التـ	
		5.	$CH_3COOH_{(t)} + C_2H_5OH_{(t)} = CH_3COOC_2H_5_{(t)} + H_2O_{(t)}$ معادلة التفاعل: (1)									
	0,25								ت الإيثيل			
		تسريع التفاعل (وسيط)										
			(m:-)	Т.	-						الجدول:	
	0,25		(min)	0	60	120	180	240	300	360	420	
- 1		$n_{ocide}(mol)$ $n_{ester}(mol)$		1,40	0,80	0,59	0,52	0,48	0,47	0,46	0,46	
	- 1	"este	,(1101)	0	0,60	0,81	0,88	0,92	0,93	0,94	0,94	
		17090	SEPTEMBER SERVICE	diamoner	BOR INTO AN	**************************************			nester	= f(t)	لبيان: (
		n	ester(mol)								
							1					
										(91)	
	0,50							(θ_2)			HE	
4,0	0,50											
,,,		x _{6/2}	1									
									0,1			
									30			
100	-	0 40	t _½	民國國際語						t(n		
-							18	4				
	-	جدول التقدم: $ CH_{3}COOH_{(\ell)} + C_{2}H_{5}OH_{(\ell)} = CH_{3}COOC_{2}H_{5} \ _{(\ell)} + H_{2}O \ _{(\ell)} $ المعادلة										
0	,50	2.2	التقدم				مية المادة بوحدة (nol)					
	- 4	12	0	$n_0 = 1,40$		$n_0 = 1,40$			0		0	
		15	x	$n_0 - x$		n_0-x			x		x	
		عن	x,	$n_0 - x_f$		$n_0 - x_f$			x_f		x,	
0	,50		=1,40-	-0,46=	0,94m		-			يول تام:		
0	,50								ل غير تا.			
0	,25										17,007	
0	,25	$x(t_{1/2})=x_f/2=0,94/2=0,47mol$: تعیین زمن نصف التفاعل: $t_{1/2}\in[38\ ;\ 42](\mathrm{min})$ یانیا : $t_{1/2}\in[38\ ;\ 42]$										
	,25	$t_{1/2} \in [38]$ انظر الشكل المسابق) $ heta_2 = 100^{\circ}C$ عنوا عند n_{ester}										
0	, 20		(0	کل انعمایو	(انظر العا	$\theta_2 = 10$	10.C 7	ا متمت ع	ester =	g(t)	تمنیل	