Apprentissage à partir des exemples et des modèles du domaine Cas des objets connectés

hamidi@lipn.univ-paris13.fr

hamidimassiniss

28 Novembre 2018

Contexte & motivation

- ► Nous somme de plus en plus entourés d'objets possédant des capacités de perception;
- ► Véhicules autonomes, industrie 4.0, maisons connectées, villes intelligentes;
- ▶ Monitoring d'ouvrage d'art: plus de 1.2 trillion d'observations générées chaque année [XHC+14];
- ▶ Voiture autonome: 40 Téraoctets de données générées toutes les 8 heures de conduite.
- ► Monitoring de la pollution au travers du parc automobile d'une région [LKZ⁺18];

Systèmes d'objets connectés

- ▶ Diversité des modalités: température, pression, son, etc.;
- ▶ Diversité des capteurs: précision, délai de réactivité, conditions de fonctionnement, etc.;
- ▶ **Diversité des topologies**: capteurs placés à différentes positions de l'espace, de la scène d'intérêt;
- ► Nature des déploiements qui sont dynamiques (non-figés) que ce soit en terme de composants ou de topologies;

Figure: Pipeline d'apprentissage [BBS14, LSN+18]

Problématiques

- 1 La première s'agit de la robustesse des modèles de reconnaissance. Pourquoi ne parvient-on pas à obtenir des modèles plus robustes en dépit de la disponibilité et de l'abondance des données.
- 2 Les approches actuelles parviendront-elles à passer à l'échelle? Peut-on réduire la quantité de données nécessaire pour apprendre tout en maintenant les performances de reconnaissance ou même mieux, les améliorer.
- 3 Comment les modèles actuels, qui se basent sur l'hypothèse d'une configuration de générateurs de données figée, peuvent-ils s'adapter à la nature des déploiements qui, comme on a pu le voir précédemment, sont dynamiques et évolutifs? l'objectif étant de mettre en oeuvre des pipelines d'apprentissage pouvant exploiter des déploiement existant qui ne sont pas forcément dédiés à un objectif particulier (déploiement objectif-indépendant et pipeline d'apprentissage objectif-dépendante).

Démarche

l'approche que nous proposons consiste à, non pas considérer toute la masse des données générées, mais toutes les sources de données, et cela de manière intelligente.

Figure: Pipeline d'apprentissage traditionnelle [BBS14, LSN+18]

Cela passe par une démarche d'**inclusion** de l'ensemble des étapes qui constituent la pipeline typique d'apprentissage ainsi que des processus de génération de données.

Situations d'inconfort chez les nourrissons

Détection au travers d'un système d'objets connectés

Figure: Architecture globale du smart baby monitor [OHC17b]

Reconnaissance des pleurs

Pipeline de traitement de la modalité son

Figure: Chaîne de traitement de la modalité son [OHC17a]

Problématiques liées à l'expertise du domaine

- ► Expertise du domaine implique introduction de bias;
- ► Framing (découpage du signal en fenêtres de 16, 32ms) overlap (25, 50, 70%);
- ► Windowing (fenêtres de hamming, hann, etc.);
- ► L'étape de sélection des épisodes (du pleur) d'intérêt (>100, 200, 300ms);
- ► Les hypothèses liées au calcul des caractéristiques (stationarité/non-stationarité);
- ► Corrélations entre les frames et neighborhood bias;

Reconnaissance d'activité humaines

Au travers des wearables

Apprentissage de représentations — Sparse Coding

Utilisation des réseaux de neurones pour l'automatisation de la partie extraction de caractéristiques.

8.4	11. /	,	,
Moda	lites	sep	arees

i QQQQQQqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
Completed layer
* * * * * * * * * * * * * * * * * * *
<u> </u>

Canaux séparés

Param.	low	high	prior
I_r	0.001	0.1	log
ks _{1, mod}	9	15	-
ks2, mod	9	15	-
ks3, mod	9	12	-
$n_{f,mod}$	16	28	-
s _{mod}	0.5	0.6	log
p_d	0.1	0.5	log
n_U	64	2048	-

Tableau récapitulatif des différents hyper-paramètres adjustés au travers de la procédure d'optimisation Bayésienne.

Reconnaissance d'activités humaines

Quelques résultats [OH18]

► Analyse de plus de 500 différents modèles;

Figure: Distributions cumulatives des performances des modèles selon les différents modes de convolution, (a) avec des architectures hybrides (ConvLSTMs) et (b) avec des architectures convolutionelles (CNN).

Topologie des générateurs

Applications aux données Sussex-Huawei Locomotion (SHL) dataset [GCW+18]

► Expérimentation à large échelle (plus de 5k modèles);

Figure: (a) Disposition des smartphones (générateurs de données) sur les participants aux sessions de collecte de données. (b) Distribution cumulative des performances des modèles selon le générateur de données.

Résultats préliminaires

Figure: Performances de reconnaissance de chacune des classes selon le générateur considéré.

En résumé

- ► Repenser les pipelines d'apprentissage d'une manière globale pour le cas des objets connectés;
- ► Perspectives liées aux techniques d'apprentissage de représentations et de recherche d'architectures neuronales;
- À terme, confronter notre approche sur des applications à plus large échelle;

Q&A

Slides disponibles à partir de:

http://lipn.univ-paris13.fr/~hamidi/prez-renault.pdf

Creative Commons Attribution-ShareAlike 4.0 International License.

References I

- Andreas Bulling, Ulf Blanke, and Bernt Schiele, *A tutorial on human activity recognition using body-worn inertial sensors*, ACM Computing Surveys (CSUR) (2014).
 - Hristijan Gjoreski, Mathias Ciliberto, Li Wang, Francisco Javier Ordonez Morales, Sami Mekki, Stefan Valentin, and Daniel Roggen, The university of sussex-huawei locomotion and transportation dataset for multimodal analytics with mobile devices, IEEE Access (2018).
- Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng, Geoman: Multi-level attention networks for geo-sensory time series prediction., IJCAI, 2018, pp. 3428–3434.
- Frédéric Li, Kimiaki Shirahama, Muhammad Adeel Nisar, Lukas Köping, and Marcin Grzegorzek, *Comparison of feature learning methods for human activity recognition using wearable sensors*, Sensors **18** (2018), no. 2, 679.

References II

- Aomar Osmani and Massinissa Hamidi, *Hybrid and convolutional* neural networks for locomotion recognition, Proceedings of the 2018 ACM UbiComp/ISWC 2018 Adjunct, Singapore, October 08-12, 2018, ACM, 2018, pp. 1531–1540.
- Aomar Osmani, Massinissa Hamidi, and Abdelghani Chibani, *Machine learning approach for infant cry interpretation*, Tools with Artificial Intelligence (ICTAI), 2017 IEEE 29th International Conference on, IEEE, 2017, pp. 182–186.
- Aomar Osmani, Massinissa Hamidi, and Abdelghani Chibani, *Platform for assessment and monitoring of infant comfort*, 2017 AAAI Fall Symposia, Arlington, Virginia, USA, November 9-11, 2017, 2017, pp. 36–44.

References III

Xiaomin Xu, Sheng Huang, Yaoliang Chen, Kevin Browny, Inge Halilovicy, and Wei Lu, *Tsaaas: Time series analytics as a service on iot*, 2014 IEEE International Conference On Web Services (ICWS), IEEE, 2014, pp. 249–256.