Approximation Algorithms for the k-center Problem: An Experimental Evaluation

Approximation algorithms for the k-center problem: an experimental evaluation

Jurij Mihelič¹ and Borut Robič¹

Faculty of Computer and Information Science University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia {jurij.mihelic, borut.robic}@fri.uni-lj.si

Abstract. In this paper we deal with the vertex k-center problem, a problem which is a part of the discrete location theory. Informally, given a set of cities, with intercity distances specified, one has to pick k cities and build warehouses in them so as to minimize the maximum distance of any city from its closest warehouse. We examine several approximation algorithms that achieve approximation factor of 2 as well as other heuristic algorithms. In particular, we focus on the clustering algorithm by Gonzalez, the parametric pruning algorithm by Hochbaum-Shmoys, and Shmoys' algorithm. We discuss several variants of the pure greedy approach. We also describe a new heuristic algorithm for solving the dominating set problem to which the k-center problem is often reduced. We have implemented all the algorithms, experimentally evaluated their quality on 40 standard test graphs in the OR-Lib library, and compared their results with the results found in the recent literature.

1 Introduction

Problems of finding the best location of facilities in networks or graphs abound in practical situations. One of the well known facility location problems is the *vertex k-center* problem, where given n cities and distances between all pairs of cities, the aim is to choose k cities (called centers) so that the largest distance of a city to its nearest center is minimal. More formally, the vertex k-center can be defined as follows. Let G = (V, E) be a complete undirected graph with edge costs satisfying the triangle inequality, and k be a positive integer not greater than |V|. For any set $S \subseteq V$, and vertex $v \in V$, we define d(v, S) to be the length of a shortest edge from v to any vertex in S. The problem is to find such a set $S \subseteq V$, where $|S| \le k$, which minimizes $\max_{v \in V} d(v, S)$. The vertex k-center problem is NP-hard [5].

A popular way to solve the k-center problem consists of solving a series of set cover problems [2,4,9,10]. At each step, a threshold for the cover distance is chosen and it is checked whether all vertices can be covered within this distance using at most k centers; if so, the threshold is decreased, otherwise it is increased. (One can also use the dominating set problem instead of the set cover problem [7].) For example, Minieka [10] solved the k-center problem as a series of set cover problems. More elaborate versions of this approach were described by Daskin [2,3], where also the maximum cover problem was

used, and Ellumni et al. [4] and Ilhan et al. [9], which applied more efficient definition of the problem. Usually, these set cover problems were solved with integer programming. Another way to solve the k-center problem was recently given by Mladenović et al. [11], where the tabu search, variable neighborhood search and various greedy methods were used. The greedy method was also applied by Gonzalez [6], Hochbaum and Shmoys [8], and Shmoys [12]. The last three describe 2-approximation algorithms which are the best possible in the sense that no r-approximation algorithm exists with r < 2, unless P = NP [7]. (No approximation algorithm exists in case the triangular inequality does not hold, unless P = NP.)

In the following we briefly describe various heuristics for the k-center problem that are not based on the integer programming (Section 2). We then describe a new heuristic, which combines the greedy approach with solving the dominating set problem, and returns surprisingly good results (Section 3). We have experimentally evaluated all these heuristics as well as the new one. The experimental results are given in Section 4.

2 Heuristics

By using greedy heuristics we often locate centers one by one until there are k centers. For the selection of the first center there may be several possibilities. For example, the center can be located at random, it can be the result of the 1-center problem, or we can apply a heuristic n-times, n = |V|, each time with different starting vertex, and then choose the best of the solutions. These approaches will be called random, 1-center, and plus version, respectively.

A very simple heuristic is the *pure greedy method*, where centers are located one by one so that the objective function is each time reduced as much as possible. For the selection of the first center we have implemented random, 1-center and plus version. It is easy to see that the time complexity of this pure greedy method is $O(kn^2)$.

Another greedy heuristic for the k-center problem was described by Gonzalez [6], who was able to prove the approximation factor of 2. The algorithm builds final solution in k steps so that, given a partial solution C_{i-1} , it forms a new partial solution C_i by extending C_{i-1} with the vertex v which is the farthest from the C_{i-1} , i.e. the vertex v which maximizes $d(v, C_{i-1})$ at step i. We have implemented random, 1-center, and plus version of this algorithm. The time complexity of Gonzalez's algorithm is O(kn).

Shmoys [12] briefly describes 2-approximation algorithm for the decision version of k-center problem, i.e. where radius r is also given and the aim is to decide if there exist k vertices so that the coverage distance from these vertices is at most r. The algorithm repeatedly chooses one of the remaining vertices v, adds it to the partial solution, and deletes all vertices whose distance to v is at most 2r. At the end, if the size of the solution exceeds k, the algorithm outputs "no", otherwise "yes". We implemented two versions where either

random vertex or vertex with maximum degree can be chosen on each step. The algorithm for the optimization version of problem runs the algorithm for the decision version several times with increasing value of r. Time complexity of this algorithm is $O(kn^3)$.

Hochbaum and Shmoys [8] introduced the algorithmic technique called parametric pruning for solving k-center problem. Initially, edge costs are sorted in nondecreasing order. For each edge cost t the graph is pruned by removing edges with cost greater than t. The aim is to find a minimum dominating set in the pruned graph, i.e. the smallest set S of vertices such that every vertex not in S is adjacent to one of the vertices in S. If the cardinality of the minimum dominating set of the pruned graph is at most k, then such a dominating set is also the optimal solution for k-center problem.

Unfortunately, to compute the minimum dominating set is NP-hard optimization problem [5]. Consequently, instead of searching for the minimum dominating set we rather search for the maximal independent set^1 , i.e the subset S of V such that no two vertices of S are connected in G and no vertex can be added to S while S retaining this property.

Define the square of the graph G to be the graph G^2 containing an edge (u, v) whenever G has a path of at most two edges between u and $v, u \neq v$. It is well known that every maximal independent set is also dominating set. The fact that the cardinality of the maximal independent set of G^2 is at most the cardinality of the minimum dominating set of G can be used to construct a 2-approximation algorithm for solving the k-center problem. More specifically, instead of searching for the minimum dominating set of G the algorithm constructs the maximal independent set of G^2 . The overall time complexity of the algorithm is estimated to be $O(kn^5)$.

3 Elimination heurustic

We designed a new algorithm for the k-center problem. The algorithm is based on the standard approach that solves a series of dominating set problems. First, edge costs are sorted in a nondecreasing list which is used for getting the threshold values r and for solving the series of dominating set problems. When the cardinality of the dominating set S becomes at most K, the set S is returned as the result of the K-center problem and the algorithm is completed.

For solving the dominating set problem we developed a new heuristic algorithm. Informally, a pair of numbers (c(v), s(v)) is initially assigned to each vertex $v \in V$, where c(v) (cover count) is the number of vertices that can cover v within distance r, while s(v) (vertex score) is used in the following selection process (s(v)) is initially set to c(v)). At each step of the selection process the vertex v with the smallest s(v) is chosen. If there is a vertex $v \in V$ such that $d(v,v) < r \land c(v) = 1$, then v is added to the set S of centers;

 $^{^{1}}$ Maximum independent set is NP-hard problem, while maximal independent set is one of the suboptimal solutions.

otherwise, s(u) is incremented for all $u \in V$ for which $d(u, v) \leq r$. Next, the cover count c(u) is decremented for all vertices $u \in V$ with $d(u, v) \leq r$. These steps are repeated until all the vertices of the graph have been processed.

Notice, that we use c(v) to ensure that every vertex is covered at least once. In addition, the way c(v) is used makes it possible to easily adapt the algorithm for solving the (fault-tolerant) α -neighbor k-center problem where every node must be covered by at least α centers. Moreover, one can adapt the algorithm to solve the minimum set cover problem instead of the minimum dominating set problem. This is useful when solving the so-called k-supplier problem, where k centers must be chosen from a predefined set of vertices.

4 Experimental Results

We tested the described algorithms on 40 OR-Lib test problems, which were originally designed for testing p-median problems [1]. The number of vertices ranges from 100 to 900 while k ranges from 5 to 90. The preprocessing phase runs the all shortest paths algorithm (time complexity $O(n^3)$).

All the algorithms were implemented in Borland Delphi 6.0, and were tested on a computer with Intel processor running at 1.7 GHz with 512MB of system memory. Designations and names of algorithms appear in Table 1. Although our primary aim was to compare the quality of the solutions, let us mention that Gonzalez algorithms were the fastest (running below 1 second). The average time of HS was about 100 seconds. The pure greedy methods were quite fast (about 2 seconds on average), but their execution time was very variable and dependent on the parameter k, Shmoys' variants were also fast as well as our Scr. (Notice that plus variants run much slower due to the algorithm which tries all vertices for the first center.)

Recall that approximation factor is the ratio between approximated and the optimal objective value. Since sometimes we do not know the optimal solution, we take the best known so far. We call such a ratio an *approximation degree*. Nevertheless, in our case most of the best known objective values were proved to be optimal (see for example [4,9]). Approximation degrees for each algorithm are given in Table 1 below, where we also included the results for Daskin's and tabu search approach.

Objective values for all of the 40 problems are in Table 2. The pure greedy method is the worst, while only slightly better results were with the plus variant. The solution quality strongly depends on the parameter k, and is much better for low values of k. Gonzalez algorithms are very fast and solutions are about 50% worse than best known. The algorithms HS, ShR, ShD exploit very similar problem properties, and consequently return very similar results. Our algorithm Scr proved to be quite competitive since it achieved better results than any of the implemented algorithms, with the exception of the integer programming approaches [3,4,9] and tabu search and variable neighborhood search [11].

Algorithm	Level	Deviation	Description
GrR	1,697	0,559	Pure greedy first random
Gr1	1,675	0,570	Pure greedy first 1-center
Gr+	1,512	0,550	Pure greedy plus
GonR	1,495	0,130	Gonzalez first random
Gon1	1,398	0,128	Gonzalez first 1-center
Gon+	1,317	0,139	Gonzalez plus
ShR	1,432	0,112	Shmoys random
ShD	1,343	0,105	Shmoys degree
HS	1,462	0,177	Hochbaum-Shmoys
Scr	1,058	0,043	Elimination heuristic
Das	1,002	0,007	Daskin
TS	1,025	0,045	Tabu search

Table 1. Approximation degrees

References

- J. E. Beasley. A note on solving large p-median problems. European J. Oper. Res., 21:270–273, 1985.
- Mark S. Daskin. Network and Discrete Location: Models Algorithms and Applications. Wiley, New York, 1995.
- 3. Mark S. Daskin. A new approach to solving the vertex p-center problem to optimality: Algorithm and computational results. *Communications of the Operations Research Society of Japan*, 45:9:428–436, 2000.
- 4. Sourour Elloumi, Martine Labbe, and Yves Pochet. New formulation and resolution method for the p-center problem. 2001.
- M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.
- 6. T. Gonzalez. Clustering to minimize the maximum intercluster distance. *Theoretical Computer Science.*, 38:293–306, 1985.
- Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS publishing company, Boston, 1995.
- 8. Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem. *Mathematics of Operations Research*, 10:180–184, 1985.
- 9. Taylan Ilhan and Mustafa Pinar. An efficient exact algorithm for the vertex p-center problem. 2001.
- 10. E. Minieka. The m-center problem. $SIAM\ Rev.,\ 12:138-139,\ 1970.$
- 11. N. Mladenović, M. Labbe, and P. Hansen. Solving the p-center problem with tabu search and variable neighborhood search. 2000. http://smg.ulb.ac.be/Preprints/Labbe00_20.html.
- David B. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. Technical report, Ithaca, NY 14853, 1995. http://citeseer.nj.nec.com/shmoys95computing.html.

6 Jurij Mihelič, Borut Robič

1 100	#	n	k	Best	Das	TS	GrR	$\operatorname{Gr}1$	GrP	Gon	Gon1	Gon+	HS	ShR	ShD	Scr
3 100 10 93 93 93 126 116 106 154 133 124 160 140 120 99 4 100 20 74 74 74 74 127 127 92 114 99 92 124 109 84 83 5 100 33 48 48 48 87 87 78 71 64 62 77 62 59 48 6 200 55	1	100	5	127	127	127	143	133	133	186	162	155	184	188	171	133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	100	10	98	98	98	117	117	110	131	124	117	160	128	135	109
5 100 33 48 48 48 87 87 78 71 64 62 77 62 59 48 6 200 5 84 84 84 98 94 89 138 99 98 126 138 106 90 8 200 20 55 55 55 72 72 72 82 72 71 84 74 68 60 9 200 40 37 37 37 37 363 57 51 49 62 50 252 28 20 11 300 67 20 20 20 44 44 38 31 29 29 32 28 28 28 12 300 10 51 51 51 62 72 56 71 70 66 78 74 70 53	3	100	10	93	93	93	126	116	106	154	133	124	160	140	120	99
6 200 5 84 84 84 98 94 89 138 99 98 126 138 106 90 7 200 10 64 64 64 78 79 77 96 87 85 90 88 90 70 8 200 20 55 55 55 55 55 50 52 38 10 200 67 20 20 20 44 44 38 31 29 29 32 28 28 20 11 300 50 51 51 51 62 72 56 71 70 66 78 74 70 53 13 300 10 51 51 51 62 72 56 71 70 66 78 74 70 53 13 30 10 18 18<	4	100	20	74	74	74	127	127	92	114	99		124	109	84	83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	100	33	48	48	48	87	87	78		64			62	59	48
8 200 20 55 55 55 55 72 72 72 82 72 71 84 74 68 60 9 200 40 37 37 37 73 63 57 51 49 62 50 52 38 10 200 66 72 56 71 73 68 68 82 73 74 60 11 300 50 59 59 68 67 61 77 66 78 74 70 53 12 300 10 51 51 62 72 56 71 70 66 78 74 70 53 14 300 60 26 26 26 60 60 40 36 36 44 36 34 27 15 300 100 18 18 18 49<	6	200	5	84	84	84	98	94	89	138			126	138	106	90
9 200 40 37 37 37 73 73 73 63 57 51 49 62 50 52 38 10 200 67 20 20 20 44 44 38 31 29 29 32 28 28 20 11 300 5 59 59 59 68 67 61 73 68 68 82 73 74 60 12 300 10 51 51 51 62 27 56 71 70 66 78 74 70 53 13 300 60 26 26 60 60 46 40 36 36 44 36 34 27 15 300 100 18 18 42 42 40 25 25 23 30 22 <t></t> 20 18 18 </td <td>7</td> <td>200</td> <td>10</td> <td>64</td> <td>64</td> <td>64</td> <td>1</td> <td></td> <td></td> <td>96</td> <td>87</td> <td></td> <td>90</td> <td>88</td> <td>90</td> <td>70</td>	7	200	10	64	64	64	1			96	87		90	88	90	70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	200	20		1		1									
11 300 5 59 59 59 68 67 61 73 68 68 82 73 74 60 12 300 10 51 51 51 62 72 56 71 70 66 78 74 70 53 13 300 30 35 36 36 64 64 52 59 51 49 60 54 52 38 14 300 60 26 26 26 60 60 46 40 36 36 44 36 34 27 15 300 100 18 18 18 18 42 42 40 25 25 23 30 22 20 18 16 400 40 39 39 39 50 50 43 56 51 48 56 52 41	_				1		73	73								
12 300 10 51 51 51 62 72 56 71 70 66 78 74 70 53 13 300 30 35 36 36 64 64 52 59 51 49 60 54 52 38 14 300 60 26 26 60 60 46 40 36 36 44 36 34 27 15 300 100 18 18 18 42 42 40 25 25 23 30 22 20 18 16 400 5 47 47 47 52 51 47 84 55 52 64 83 58 48 17 400 10 38 38 18 19 40 40 31 28 28 27 30 26 24 20	10				1										28	
13 300 30 35 36 36 64 64 52 59 51 49 60 54 52 38 14 300 60 26 26 60 60 46 40 36 36 44 36 34 27 15 300 100 18 18 18 42 42 40 25 25 23 30 22 20 18 16 400 5 47 47 47 52 51 47 84 55 52 64 83 58 48 17 400 10 39 39 39 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20<					1											
14 300 60 26 26 60 60 46 40 36 36 44 36 34 27 15 300 100 18 18 18 42 42 40 25 25 23 30 22 20 18 16 400 5 47 47 47 52 51 47 84 55 52 64 83 58 48 17 400 10 39 39 39 50 50 43 56 51 48 56 56 52 41 18 400 40 28 28 28 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17<					1		1									
15 300 100 18 18 18 42 42 40 25 25 23 30 22 20 18 16 400 5 47 47 47 52 51 47 84 55 52 64 83 58 48 17 400 10 39 39 39 50 50 43 56 51 48 56 56 52 41 18 400 40 28 28 28 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21			30		1		1	64								
16 400 5 47 47 47 52 51 47 84 55 52 64 83 58 48 17 400 10 39 39 39 50 50 43 56 51 48 56 56 52 41 18 400 40 28 28 28 28 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21 500 5 40 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1											
17 400 10 39 39 39 50 50 43 56 51 48 56 56 52 41 18 400 40 28 28 28 28 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21 500 5 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 </td <td></td>																
18 400 40 28 28 28 50 50 42 44 41 39 46 40 38 31 19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21 500 5 40 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 15 16 35 35 35 32 23<					1		1									
19 400 80 18 18 19 40 40 31 28 28 27 30 26 24 20 20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21 500 5 40 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 15 15 15 18							1									
20 400 133 13 14 32 32 32 19 19 17 22 18 16 14 21 500 5 40 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 10 32 32 32 37 39 35 43 42 55					1		1									
21 500 5 40 40 48 48 42 53 51 45 52 53 45 40 22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1											
22 500 10 38 38 38 48 49 43 56 54 47 54 54 48 41 23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28<					1		1									
23 500 50 22 22 23 41 41 35 34 33 32 36 32 30 24 24 500 100 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28 25 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22																
24 500 100 15 15 16 35 35 32 23 21 24 22 20 17 25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28 25 28 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14<					1											
25 500 167 11 11 12 27 27 27 15 15 15 18 16 14 11 26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28 25 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31<					1											
26 600 5 38 38 38 44 43 39 50 47 43 52 50 52 41 27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28 25 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1											
27 600 10 32 32 32 37 39 35 43 42 55 42 44 44 33 28 600 60 18 18 19 33 33 27 28 28 25 28 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							1									
28 600 60 18 18 19 33 33 27 28 28 25 28 28 28 20 29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 </td <td></td>																
29 600 120 13 13 13 34 36 34 19 19 18 22 18 18 13 30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1											
30 600 200 9 9 11 29 29 29 14 14 13 16 12 12 10 31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							1									
31 700 5 30 30 30 35 34 31 42 38 36 40 42 44 30 32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 36 800 10 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 42 35 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					1		1									
32 700 10 29 29 29 35 35 32 45 43 37 40 44 40 31 33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 36 800 10 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 29 42 35 31 <td></td> <td></td> <td></td> <td> </td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1		1									
33 700 70 15 15 16 32 26 24 26 25 23 26 24 22 17 34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 36 800 10 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 <					1											
34 700 140 11 11 12 30 30 27 17 17 16 18 16 16 11 35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 36 800 10 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 22 22 21 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>					1											
35 800 5 30 30 30 37 32 31 38 37 34 40 38 38 32 36 800 10 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 22 22 21 20 19 22 20 20 14					1		1									
36 800 10 27 27 27 27 34 34 30 41 41 34 38 42 38 28 37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 22 22 21 20 19 22 20 20 14							l .									
37 800 80 15 15 16 26 26 26 25 24 23 24 22 22 16 38 900 5 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 22 22 21 20 19 22 20 20 14					1		1									
38 900 5 29 29 29 42 35 31 36 38 31 38 40 38 29 39 900 10 23 23 24 27 28 25 35 35 28 32 36 34 24 40 900 90 13 13 14 25 22 22 21 20 19 22 20 20 14			-		1	1										
39 900 10 23 23 24 25 35 35 35 28 32 36 34 24 40 900 90 13 3 14 25 22 22 21 20 19 22 20 20 14					1		1									
$40 \begin{vmatrix} 900 & 90 \end{vmatrix}$ $13 \begin{vmatrix} 1 & 14 \end{vmatrix}$ $25 & 22 & 22 & 21 & 20 & 19 & 22 & 20 & 20 & 14$					1		1									
							l .									
		1		' '	1	,	1									