Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Многомерный анализ

Конспект основан на лекциях Романа Викторовича Бессонова

17 сентября 2020 г.

Конспект основан на лекциях по многомерному анализу, прочитанных Романом Викторовичем Бессоновым студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в весеннем семестре 2019–2020 учебного года.

Материал конспекта соответствует части курса математического анализа, читаемой во 2-ом семестре бакалавриата.

Автор:

Михаил Опанасенко

Редактор:

Михаил Антоненко

© 2020 г.

Pаспространяется под лицензией Creative Commons Attribution 4.0 International License, см. https://creativecommons.org/licenses/by/4.0/.

Последняя версия и исходный код:

https://www.overleaf.com/read/dtbndhrbgmsd

Оглавление

1	Введение		1
2	Норм	иы	3
	2.1	Норма отображения	5
	2.2	Топология на пространстве линейных отображений	6
3	Дифференцируемость		8
	3.1	Базовые свойства	9
4	Дифференцируемые скалярные функции		12
	4.1	Производная по направлению	12
	4.2	Экстремумы и градиент	16
	4.3	Аналоги формулы Лагранжа	17
	4.4	Перестановочность частных производных	20
	4.5	Формула Тейлора	21
	4.6	Экстремумы и гессиан	24
5	Гладко параметризованные многообразия		27
	5.1	Локальная билипшицевость	27
	5.2 Открытость отображения с невырожденным дифференциалом		29
	5.3	Теорема об обратной функции	30
	5.4	Теорема о неявной функции	31
	5.5	Гладко параметризованные многообразия в \mathbb{R}^n	36
	5.6	Касательное пространство	41
	5.7	ГПМ как множество уровня	45
	5.8	ГПМ и графики	49
6	Множители Лагранжа		49
	6.1	Необходимое условие	50
	6.2	Достаточное условие	52
7	Выпу	уклые функции	55

Многомерный анализ

1 Введение

Определение. Множество X называется *линейным пространством* над полем \mathbb{R} , если заданы операции сложения $+: X \times X \to X$ и умножения на скаляр $\cdot: \mathbb{R} \times X \to X$ такие, что выполняются условия:

- (1) (x + y) + z = x + (y + z);
- (2) x + y = y + x;
- (3) $\exists 0 \in X : x + 0 = x$;
- (4) $\forall x \in X, \exists ! y = -x : x + y = 0;$
- (5) $(\alpha + \beta)x = \alpha x + \beta x$;
- (6) $(\alpha\beta)x = \alpha(\beta x)$;
- (7) $\alpha(x + y) = \alpha x + \beta y$;
- (8) $1 \cdot x = x$.

для всех $x, y, z \in X$ и $\alpha, \beta \in \mathbb{R}$.

Определение. *Базис* линейного пространства X — такой набор векторов

$$e_1, e_2, \ldots, e_n,$$

что любой вектор $x \in X$ представляется единственным образом в виде линейной комбинации

$$x = c_1 e_1 + \cdots + c_n e_n,$$

где $c_i \in \mathbb{R}$ для всех i.

Определение. Пространство X называется *конечномерным*, если у него есть базис из конечного числа элементов.

Определение. *Размерность* конечномерного линейного пространства X — это число элементов его базиса.

Из курса алгебры известно, что размерность линейного пространства не зависит от выбора базиса.

Евклидовы пространства

Большую часть времени мы будем изучать над n-кратное декартово произведение $\mathbb R$:

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$$
.

В каком-то смысле \mathbb{R}^n — это пара из вещественного векторного пространства и его базиса. Векторы здесь отождествлены со столбцами:

$$\mathbb{R}^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \middle| a_i \in \mathbb{R} \right\}.$$

Стандартный базис — это столбцы с единицей на одной позиции и нулями на остальных. Часто векторы стандартного базиса обозначаются через e_1, \ldots, e_n . Операции в \mathbb{R}^n задаются покоординатно:

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}, \quad \alpha \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \alpha a_1 \\ \alpha a_2 \\ \vdots \\ \alpha a_n \end{pmatrix}.$$

Линейные отображения

Определение. Отображение $T: \mathbb{R}^m \to \mathbb{R}^n$ называется линейным, если для всех $x,y \in X$ и $\alpha,\beta \in \mathbb{R}$ выполнено

$$T(\alpha x + \beta v) = \alpha T(x) + \beta T(v)$$
.

Пространство линейных отображений из \mathbb{R}^m в \mathbb{R}^n будем обозначать через

$$\operatorname{Hom}(\mathbb{R}^m,\mathbb{R}^n)$$
.

Определение. Линейное отображение векторного пространства в себя называется *оператором*. Множество операторов на пространстве \mathbb{R}^m будем обозначать через

$$\operatorname{End}(\mathbb{R}^m)$$
.

Операции векторного пространства на $\operatorname{Hom}(\mathbb{R}^m,\mathbb{R}^n)$ задаются поточечно:

$$T_1 + T_2 := x \mapsto T_1 x + T_2 x, \qquad \alpha T := x \mapsto \alpha T x.$$

Поскольку мы уже выбрали базис, будем отождествлять линейные отображения из \mathbb{R}^m в \mathbb{R}^n с их матрицами размера $n \times m$.

2 Нормы

Определение. *Нормой* на векторном пространстве X над $\mathbb R$ или $\mathbb C$ называется отображение

$$\| \ \| : X \to \mathbb{R},$$

удовлетворяющее следующим свойствам для любых векторов x и y и скаляра α :

- (1) $x \neq 0 \implies ||x|| > 0$;
- (2) $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- (3) $||x + y|| \le ||x|| + ||y||$.

Определение. Пусть X — векторное пространство над \mathbb{R} или \mathbb{C} , а f — норма на X. Тогда пара (X, f) называется *нормированным* векторным пространством.

Как показывает следующее упражнение, нормированные векторные пространства являются топологическими пространствами.

Упражнение. Если f — норма на векторном пространстве X, то

$$d(x, y) := f(x - y)$$

- метрика на X.

В терминах упражнения выше, будем называть d метрикой, $u + \partial y u u p o s a + h o p m o i <math>f$.

Некоторые из вещей, которые мы докажем для евклидовых пространств \mathbb{R}^n , будут верными и для произвольных нормированных пространств. Например, почти без изменений останется определение дифференцируемости.

Для любого вектора $x \in \mathbb{R}^n$, определим

$$||x|| := \sqrt{\sum_{k=1}^{n} x_k^2}.$$
 (2.1)

Утверждение 2.1. Функция $\| \ \|$, определённая в (2.1) — это норма на \mathbb{R}^n .

Доказательство. Убедитесь, что первые два свойства действительно выполняются. Для третьего имеем неравенство

$$\sqrt{\sum_{k} (c_{1,k} + c_{2,k})^2} \leq \sqrt{\sum_{k} c_{1,k}^2} + \sqrt{\sum_{k} c_{2,k}^2}$$

из предыдущего семестра.

Определение. Будем называть норму $\| \|$ на \mathbb{R}^n стандартной.

На самом деле, в некотором смысле достаточно ограничить себя рассмотрением этой нормы.

Определение. Две нормы f и g называются эквивалентными, если индуцированные ими метрики липшицево эквивалентны. Иначе говоря, существуют такие положительные константы c_1 и c_2 , что для любого вектора x

$$c_1 f(x) \leq g(x) \leq c_2 f(x)$$
.

Упражнение. Докажите, что это отношение эквивалентности.

Лемма 2.2. Пусть f — норма на \mathbb{R}^n . Тогда f — липшицева функция.

Доказательство. Пусть $\{e_i\}$ — стандартный базис. Тогда для любого вектора $x\in\mathbb{R}^n$ верно

$$f(x) = \sum_{i=1}^{n} |x_i| \cdot f(e_i).$$

Это скалярное произведение двух векторов, которое можно оценить по неравенству КБШ:

$$f(x) \le \|(|x_1|, \dots, |x_n|)\| \cdot \|(f(e_1), \dots, f(e_n))\|.$$

Первый из этих множителей — это стандартная норма ||x|| вектора x; второй — какая-то константа c. Тогда для любых векторов $x, y \in \mathbb{R}^n$ выполняется требуемое неравенство:

$$|f(x) - f(y)| \le |f(x - y)| \le ||x - y|| \cdot c.$$
 (2.2)

Здесь первое неравенство верно по неравенству треугольника для нормы f, второе — из оценки выше.

Следствие 2.3. Пусть f — норма на \mathbb{R}^n . Тогда f непрерывна.

Доказательство. Ясно, что если расстояние между векторами x и y стремится у нулю, то по (2.2) и число |f(x) - f(y)| стремится к нулю.

Теорема 2.4. Пусть f и g — нормы на \mathbb{R}^n . Тогда f и g эквивалентны.

Доказательство. Достаточно доказать, что произвольная норма f на \mathbb{R}^n эквивалентна стандартной. Заметим, что всякий вектор $x \in \mathbb{R}^n$ представляется в виде произведения некоторого положительного скаляра на вектор из S^{n-1} :

$$f(x) = f\left(\frac{x}{\|x\|} \cdot \|x\|\right) = \|x\| \cdot f\left(\frac{x}{\|x\|}\right). \tag{2.3}$$

Сфера S^{n-1} компактна, а норма f непрерывна по следствию 2.3. Поэтому по теореме Вейерштрасса f достигает на ней минимума m и максимума M. Таким образом, для любого вектора $x \in \mathbb{R}^n$ будет верно

$$m \leqslant f\left(\frac{x}{\|x\|}\right) \leqslant M.$$

Подставляя в это неравенство (2.3), получаем

$$||x|| \cdot m \le f(x) \le ||x|| \cdot M$$
,

что и требовалось.

2.1 Норма отображения

Отметим, что линейные отображения не могут растягивать вектора слишком сильно. Пусть T — линейное отображение на \mathbb{R}^m , $x \in \mathbb{R}^m$. Тогда верны следующие оценки:

$$||Tx|| = ||x_1Te_1 + \dots + x_nTe_n||$$

$$\leq |x_1| \cdot ||Te_1|| + \dots + |x_n| \cdot ||Te_n||$$

$$\leq ||x|| \cdot ||(||Te_1||, \dots, ||Te_n||)||.$$

Иначе говоря,

$$||Tx|| \le c||x||$$

для некоторой константы c, которая зависит только от отображения T. Посчитанное нами значение

$$c = \|(\|Te_1\|, \dots, \|Te_n\|)\|$$

на самом деле не оптимально. Но изучение нижней грани таких оценок приводит к полезным результатам.

Определение. Пусть T — линейное отображение. Его *норма* — это величина

$$||T|| := \sup \left\{ \frac{||Tx||}{||x||} \mid x \in \mathbb{R}^m \setminus 0 \right\}.$$

Как мы показали выше, этот супремум всегда конечен.

Заметим, что из-за линейности отображения T нам важно направление вектора x, но не его норма. То есть, супремум можно брать по точкам в проективизации \mathbb{R}^m или, например, по векторам на сфере S^{m-1} :

$$||T|| = \sup_{|x|=1} ||Tx||.$$

Упражнение. Функция $T\mapsto \|T\|$ — норма на пространстве $\mathrm{Hom}(\mathbb{R}^m,\mathbb{R}^n)$ линейных отображений из \mathbb{R}^m в \mathbb{R}^n .

Утверждение 2.5. Линейные отображения липшицевы.

Доказательство. Действительно,

$$||Tx - Ty|| = ||T(x - y)||$$

 $\leq ||T|| \cdot ||x - y||$

для любых $x, y \in \mathbb{R}^n$.

Утверждение 2.6. Норма композиции отображений A и B не превосходит произведения их норм:

$$||AB|| \leq ||A|| \cdot ||B||$$

Доказательство. Последовательно оценим норму образа через нормы отображений:

$$||ABx|| = ||A(Bx)||$$

$$\leq ||A|| \cdot ||Bx||$$

$$\leq ||A|| \cdot ||B|| \cdot ||x||.$$

Значит, и супремум не превосходит произведения норм.

2.2 Топология на пространстве линейных отображений

Определение. Ядром отображения A называется полный прообраз нуля:

$$Ker A := \{x \mid Ax = 0\}.$$

Лемма 2.7. Пусть $A \colon U \to V$ — линейное отображение. Тогда следующие утверждения эквивалентны:

- (1) $\dim U = \dim V$ и $\ker A = \{0\}$;
- (2) A биективно.

$$\dim U = \dim \operatorname{Im} A + \dim \operatorname{Ker} A$$

= $\dim \operatorname{Im} A$.

Поскольку A сюръективно, размерность его образа совпадает с размерностью V. Поэтому $\dim U = \dim V$, что и требовалось.

Пусть размерности U и V совпадают, и A имеет нулевое ядро. Сразу получаем, что A инъективно. Аналогично предыдущему абзацу,

$$\dim U = \dim \operatorname{Im} A$$
.

По условию $\dim U = \dim V$, а потому

$$\dim \operatorname{Im} A = \dim V$$
.

Любое подпространство V размерности $\dim V$ совпадает с самим V: иначе можно было бы дополнить до базиса и получить базис размером больше чем $\dim V$, что невозможно по теореме о равномощности базисов. Значит, A сюръективно.

Теорема 2.8 (близкий к обратимому оператор обратим). Пусть $A, B \colon \mathbb{R}^n \to \mathbb{R}^n$ — линейные операторы, причём

$$||B|| < \frac{1}{||A^{-1}||}.$$

Тогда оператор A - B обратим.

Доказательство. Вынесем за скобку обратимый A:

$$A - B = A(I - A^{-1}B).$$

Получается, достаточно доказать, что оператор

$$I - A^{-1}B$$

обратим. Обозначим

$$C := A^{-1}B$$

и посмотрим, может ли у оператора I-C быть нетривиальное ядро. Вычислим его на некотором векторе x и оценим норму результата:

$$||(I - C)x|| \ge ||x|| - ||Cx||$$

 $\ge ||x|| - ||C|| ||x||$
 $= (1 - ||C||) ||x||$.

При этом по условию

$$1 - ||C|| = 1 - ||A^{-1}B||$$

$$\geqslant 1 - ||A^{-1}|| ||B||$$

$$> 1 - 1 = 0.$$

Таким образом, $\|(I-C)x\| > 0$ при $x \neq 0$, а это значит, что у оператора I-C нулевое ядро, то есть он обратим.

Следствие 2.9. Множество обратимых операторов открыто в топологии, индуцированной метрикой

$$(A,B) \mapsto ||A-B||.$$

Доказательство. В теореме 2.8 мы как раз нашли окрестность около обратимого оператора. ■

Утверждение 2.10 (билипшицевость обратимых операторов). Линейное отображение $A: \mathbb{R}^m \to \mathbb{R}^n$ обратимо тогда и только тогда, когда существует такая положительная константа c, что для всякого вектора $x \in \mathbb{R}^m$ верно

$$||Ax|| \ge c||x||$$
.

$$||x|| = ||A^{-1}Ax||$$

 $\leq ||A^{-1}|| \cdot ||Ax||.$

Обратное утверждение следует из того, что у билипшицева отображения по определению не может быть нетривиального ядра.

Помимо этого, нам впоследствии пригодится следующее утверждение.

Утверждение 2.11 (непрерывность обращения оператора). Пусть последовательность $\{A_k\}$ обратимых операторов на \mathbb{R}^m сходится по стандартной норме к оператору A. Тогда последовательность из их обратных $\{A_k^{-1}\}$ сходится к A^{-1} .

Доказательство. Заметим, что

$$A^{-1} - A_k^{-1} = A_k^{-1} (A_k - A)A^{-1}.$$

Поскольку A_k^{-1} удлиняет векторы максимум во столько раз, во сколько их укорачивает A,

$$||A_k^{-1}|| \leqslant 1/c,$$

где c — константа, которая существует по билипшицевости обратимого A_k (утверждение 2.10). Нормы остальных множителей очевидно ограничены.

3 Дифференцируемость

Определение (дифференцируемость и дифференциал в точке). Пусть X — подмножество \mathbb{R}^m , $f: X \to \mathbb{R}^n$ — функция, $x \in \operatorname{Int} X$ — внутренняя точка области определения f. Будем говорить, что функция f дифференцируема в точке x, если существует линейное отображение $A \in \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ такое, что

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0,$$

причём отображение A будем называть $\partial u \phi \phi$ еренциалом функции f в точке x и писать в этом случае

$$d_x f = A$$
.

Иначе говоря,

$$f(x+h) - f(x) = [\mathsf{d}_x f]h + r(h)$$

для некоторой векторнозначной функции $r \colon \mathbb{R}^m \to \mathbb{R}^n$ такой, что

$$\lim_{h \to 0} \frac{r(h)}{\|h\|} = 0.^{1}$$

Отметим, что функция r зависит от точки x. В следующем параграфе мы докажем, что дифференциал в точке единственен, в связи с чем корректно следующее определение.

Определение (дифференциал). Отображение

$$x \mapsto d_x f$$
.

действующее из \mathbb{R}^m в $\mathrm{Hom}(\mathbb{R}^m,\mathbb{R}^n)$, называется $\partial u \phi \phi$ еренциалом функции f.

¹То есть r(h) = o(||h||).

Определение. Матрица линейного отображения $d_x f$ в стандартном базисе называется *матрицей Якоби*.

Интуиция при работе с дифференцируемыми функциями заключается в том, что вблизи любой точки функция будет вести себя очень похоже на свой дифференциал. Например (и мы докажем это), обратимость матрицы Якоби влечёт локальную инъективность непрерывно-дифференцируемой функции.

Связь с одномерным случаем

Покажем, что в случае, когда f — вещественнозначная функция из подмножества \mathbb{R} , многомерное определение дифференцируемости соответствует одномерному. Запишем эти определения:

$$\exists f'(x_0) \iff \exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \\ \iff \exists \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \\ \iff \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + o(1), \ h \to 0, \\ \iff f(x_0 + h) = f(x_0) + f'(x_0)h + o(h), \ h \to 0.$$

Последнее условие равносильно многомерному определению, так как отображение

$$h \mapsto f'(x_0)h$$

задает линейный оператор на \mathbb{R} .

3.1 Базовые свойства

Единственность

Лемма 3.1. Если $A \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ и

$$\lim_{h \to 0} \frac{\|Ah\|}{\|h\|} = 0,$$

то A = 0.

Доказательство. Заметим, что значение под пределом не зависит от нормы вектора h. Зафиксируем направляющий вектор $h \neq 0$ и будем менять его норму. По условию

$$\frac{\|A(th)\|}{\|th\|} \to 0$$
 при $t \to 0$.

Но

$$\frac{\|A(th)\|}{\|th\|} = \frac{\|Ah\|}{\|h\|}$$

— константа. Значит.

$$\frac{\|Ah\|}{\|h\|}=0,$$

откуда Ah = 0. Поскольку вектор h был произвольным, отсюда следует, что A = 0.

Утверждение 3.2 (единственность дифференциала). Пусть A_1 и A_2 — дифференциалы функции f в точке x. Тогда $A_1 = A_2$.

Доказательство. По определению,

$$f(x+h) = f(x) + A_1h + r_1(h),$$

$$f(x+h) = f(x) + A_2h + r_2(h)$$
.

Тогда, вычитая из первого уравнения второе, получаем

$$(A_1 - A_2)h = r_1(h) - r_2(h) = o(h)$$
 при $h \to 0$,

по определению дифференциала. Значит, по лемме, $A_1 = A_2$.

Тривиально дифференцируемые отображения

Утверждение 3.3 (дифференцирование аффинных отображений). Пусть $A \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n), b \in \mathbb{R}^n$,

$$f(x) = Ax + b$$
.

Тогда функция f всюду дифференцируема с дифференциалом A:

$$d_x f = A$$
.

Доказательство. Проверим, что нужная разность вблизи x мала:

$$f(x_0 + h) - f(x_0) = b + A(x_0 + h) - b - Ax_0 = Ah.$$

Отображение A, таким образом, отвечает определению дифференциала в точке. По единственности дифференциала

$$A = d_x f$$
.

Утверждение 3.4 (линейность дифференциала). Пусть функции f, g дифференцируемы в x_0 . Тогда для любых $\alpha, \beta \in \mathbb{R}$ имеет место равенство

$$d_{x_0}(\alpha f + \beta g) = \alpha d_{x_0} f + \beta d_{x_0} g.$$

Доказательство. По определению дифференциала.

Дифференциал композиции

Теорема 3.5 (дифференцирование композиции). Пусть функция f дифференцируема в x_0 , g дифференцируема в $f(x_0)$. Тогда функция $g \circ f$ дифференцируема в

 x_0 , причём

$$d_{x_0}(g \circ f) = (d_{f(x_0)}g) \cdot (d_{x_0}f).$$

Доказательство. Напишем формулы для значения композиции $g \circ f$ в точке x_0 через известные дифференциалы:

$$\begin{split} g\big(f(x_0+h)\big) &= g\big(f(x_0) + [\mathrm{d}_{x_0}f]h + r(h)\big) \\ &= \big[v := [\mathrm{d}_{x_0}f]h + r(h)\big] \\ &= g\big(f(x_0) + v\big) \\ &= g\big(f(x_0)\big) + \big[\mathrm{d}_{f(x_0)}g\big]v + \widetilde{r}(v) \\ &= g\big(f(x_0)\big) + \big[\mathrm{d}_{f(x_0)}g\big] \big[\mathrm{d}_{x_0}f\big]h + \big[\mathrm{d}_{f(x_0)}g\big]r(h) + \widetilde{r}(v) \\ &= \Big[R(h) := \big[\mathrm{d}_{f(x_0)}g\big]r(h) + \widetilde{r}(v)\Big] \\ &= g\big(f(x_0)\big) + \big[\mathrm{d}_{f(x_0)}g\big] \big[\mathrm{d}_{x_0}f\big]h + R(h). \end{split}$$

Покажем, что

$$||R(h)|| = o(||h||).$$

Для этого устремим h к нулю и покажем, что частное

$$\left[\mathrm{d}_{f(x_0)}g\right]\frac{r(h)}{\|h\|} + \frac{\widetilde{r}(v)}{\|h\|}$$

стремится к нулю. Во-первых,

$$\frac{\|r(h)\|}{\|h\|} \to 0$$

по определению r. Во-вторых,

$$\widetilde{r}(v) = \widetilde{p}(v) \cdot ||v||$$

для некоторой стремящейся при $v \to 0$ к нулю функции \widetilde{p} . Тогда

$$\frac{\widetilde{r}(h)}{\|h\|} = \frac{\widetilde{p}(h) \cdot \|v\|}{\|h\|}$$

$$\leq p(h) \cdot \left(d_{x_0} f + \frac{r(h)}{\|h\|} \right).$$

Последнее выражение тоже стремится к нулю по определению функций p и r.

Похожее доказательство того же факта можно получить, если использовать определение дифференцируемости через предел.

Дифференцирование координатных функций

Многие утверждения про векторнозначные функции можно сводить к скалярным.

Определение. Пусть $f: X \to \mathbb{R}^n$ — функция, $\{e_i\}$ — стандартный базис \mathbb{R}^n . Тогда

$$f = \sum_{i=1}^{n} e_i f_i$$

для некоторых функций

$$f_i: X \to \mathbb{R},$$

которые называются координатными функциями f.

Утверждение 3.6. Функция $f: X \to \mathbb{R}^n$ дифференцируема в точке x_0 только и только тогда, когда все координатные функции дифференцируемы в x_0 .

Доказательство. Пусть координатные функции $\{f_k\}$ дифференцируемы, $\{e_i\}$ — стандартный базис \mathbb{R}^n . Тогда

$$f = \sum_{i} e_i f_i$$
.

Векторы базиса можно отождествить с линейными функциями из \mathbb{R} в \mathbb{R}^n . Значит, функция f — линейная комбинация композиций дифференцируемых функций.

Пусть теперь f дифференцируема в x_0 . Координатная функция f_i записывается в виде композиции дифференцируемых функций:

$$f_i = e_i^{\mathrm{T}} f$$
.

4 Дифференцируемые скалярные функции

4.1 Производная по направлению

Теперь мы можем сфокусироваться на изучении скалярных функций на векторных пространствах.

Определение. Пусть $f: X \to \mathbb{R}$ — вещественнозначная функция, $x_0 \in \operatorname{Int} X$ — внутренняя точка её области определения. Производной f по направлению u в точке x_0 называется предел

$$\partial_u f(x_0) = D_u f(x_0) = \lim_{\substack{t \to 0 \\ x_0 + tu \in X}} \frac{f(x_0 + tu) - f(x_0)}{t},$$

если он существует.

Утверждение 4.1. Пусть функция $f: X \to \mathbb{R}^n$ дифференцируема в x_0 . Тогда по любому направлению $u \in \mathbb{R}^m$ существует производная, равная произведению дифференциала на это направление:

$$\partial_u f(x_0) = [\mathrm{d}_{x_0} f] u.$$

Доказательство. Посчитаем по определению. Для всех скаляров $t \in \mathbb{R}$ таких, что $x_0 + tu \in X$, имеем

$$\frac{f(x_0 + tu) - f(x_0)}{t} = \frac{[d_{x_0}f](tu) + r(tu)}{t} = [d_{x_0}f]u + \frac{r(tu)}{t}.$$

Если t стремится к нулю, то по определению r

$$\frac{\|r(tu)\|}{t} = \frac{\|\alpha(tu)\| \cdot \|tu\|}{t} = \|\alpha(tu)\| \cdot \|u\|$$

где $\alpha: X \to \mathbb{R}^n$, $\|\alpha(tu)\| \to 0$ при $t \to 0$.

Частные производные

Часто достаточно рассматривать производные по направлениям базисных векторов.

Определение. Пусть $f: \Omega \to \mathbb{R}^n$ — функция, e_1, \dots, e_n — стандартный базис пространства \mathbb{R}^n . Тогда *частной производной* функции f в точке x по k-ой переменной называется производная по направлению e_k :

$$\partial_k f(x) := \partial_{e_k} f(x)$$
.

В случае, когда переменные нумеровать неудобно, будем также использовать обозначение

$$\frac{\partial f}{\partial x_k}(x) = \partial_k f(x).$$

Если расписать это определение более явно, получится

$$\partial_k f(x) = \lim_{\varepsilon \to 0} \frac{f(x_1, \dots, x_{k-1}, x_k + \varepsilon, x_{k+1}, \dots, x_m) - f(x_1, \dots, x_m)}{\varepsilon}.$$

Следствие 4.2. Если f дифференцируема в точке x, в этой точке у f существуют все частные производные.

Доказательство. Если функция дифференцируема в точке, она дифференцируема в ней по любому направлению (утверждение 4.1). ■

Примеры.

1. Пусть $f = (t_1, t_2) \mapsto t_1^3 \cdot t_2^2 + 3$. Тогда у неё будут такие частные производные:

$$\partial_1 f = 3t_1^2 t_2^2, \quad \partial_2 f = 2t_1^3 t_2.$$

2. Пусть

$$F(x,y) = \begin{cases} 0, & (x-1)^2 + y^2 \le 1, \\ 0, & x = 0, \\ 0, & (x+1)^2 + y^2 \le 1, \\ 1, & \text{иначе.} \end{cases}$$

Можно понять, что в точке ноль F имеет производные по любому направлению, причём они равны нулю. Однако F не непрерывна в нуле, а потому не дифференцируема в нем.

Дифференцируемость и частные производные

В прошлом разделе мы поняли, что дифференцируемости функции достаточно для существования всех частных производных. Однако чтобы это работало в обратную сторону, на частные производные необходимо накладывать дополнительные условия.

Теорема 4.3. Пусть X — подмножество \mathbb{R}^m , $f: X \to \mathbb{R}^n$ — функция. Предположим, все частные производные f в некоторой окрестности внутренней точки $x \in \operatorname{Int} X$ существуют и непрерывны. Тогда f дифференцируема в точке x.

Доказательство. Можно считать, что f — скалярная функция, поскольку дифференцируемость в точке эквивалентна дифференцируемости всех координатных функций. Пусть l — строка из частных производных функции f в точке x. Мы хотим показать, что l = $d_x f$, то есть найти такую функцию r, что

$$f(x+h) - f(x) = lh + r(h),$$

где

$$\frac{\|r(h)\|}{\|h\|} o 0$$
 при $h o 0$.

Пусть вектор

$$h_1 := \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m$$

стремится к нулю. Определим последовательность векторов в пространстве области определения \mathbb{R}^m , каждый из которых несколько ближе к нулю, чем h_1 :

$$h_2 := \begin{pmatrix} 0 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}, \quad \dots, \quad h_m := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ y_m \end{pmatrix}.$$

Теперь

$$f(x+h_1) - f(x) = f(x+h_1) - f(x+h_2) + f(x+h_2) - f(x+h_3) + \dots + - f(x+h_m) + f(x+h_m) - f(x).$$

Все значения функции f здесь определены для правильно подобранного h_1 , поскольку x — внутренняя точка области определения f.

Параметризуем отрезок $[x+h_1,x+h_2]$, чтобы воспользоваться теоремой Лагранжа. Определим вещественнозначную функцию

$$F_1(t) := f((x+h_1)t + (x+h_2)(1-t))$$

на отрезке [0,1]. По определению x — внутренняя точка области определения f, поэтому можно считать, что F_1 действительно корректно определена для всех значений аргумента.

Итак, по теореме Лагранжа хочется найти значение $t=\xi$ такое, что

$$F_1'(\xi) = f(x+h_1) - f(x+h_2).$$

Можно видеть, что из-за устройства векторов $\{h_i\}$ здесь требуется только существование частной производной f по первой переменной. Она действительно существует по условию.

Вычислим производную F_1' другим способом. Пусть

$$v_1 := (x + h_1)\xi + (x + h_2)(1 - \xi).$$

Тогда

$$F'_{1}(\xi) = (d_{v_{1}}f) \cdot (x + h_{1} - x - h_{2})$$

$$= (d_{v_{1}}f) \cdot (h_{1} - h_{2})$$

$$= (d_{v_{1}}f) \cdot e_{1} \cdot y_{1}$$

$$= (\partial_{1}f)(v_{1}) \cdot y_{1}.$$

Таким образом,

$$f(x + h_1) - f(x + h_2) = (\partial_1 f)(v_1) \cdot y_1.$$

Расписав аналогичным образом остальные разности, получаем

$$f(x+h_1)-f(x)=(\partial_1 f)(v_1)\cdot y_1+\cdots+(\partial_m f)(v_m)\cdot y_m.$$

Справа стоит почти нужное выражение. Теперь мы можем использовать непрерывность частных производных в точке x и разложить каждую из них в сумму

$$(\partial_i f)(v_i) =: (\partial_i f)(x) + \alpha_i (v_i - x),$$

где α_i — некоторая функция, которая стремится к нулю при стремящемся к нулю аргументе. Таким образом,

$$f(x+h_1) - f(x) = lh_1 + \left[\alpha_1(v_1 - x)y_1 + \dots + \alpha_m(v_m - x)y_m\right] = lh_1 + r(h_1).$$

Осталось показать, что

$$\alpha_1(v_1-x)y_1+\cdots+\alpha_m(v_m-x)y_m=o(||h_1||).$$

По КБШ имеем

$$|\alpha_1(v_1-x)y_1+\cdots+\alpha_m(v_m-x)y_m| \leq ||h_1|| \cdot ||(\alpha_1(v_1-x),\ldots,\alpha_m(v_m-x))||.$$

В то же время функций $\{\alpha_i\}$ конечное число, и они все стремятся к нулю. Значит, выражение справа стремится к нулю при $h_1 \to 0$.

4.2 Экстремумы и градиент

Определение. Пусть вещественнозначная функция f дифференцируема в точке $x \in \Omega$. Тогда её *градиентом* в точке x называется вектор из её частных производных в этой точке:

$$\operatorname{grad}_{x} f = \sum_{i=1}^{m} \partial_{i} f(x) e_{i} = \begin{pmatrix} \partial_{1} f(x) \\ \vdots \\ \partial_{m} f(x) \end{pmatrix}.$$

Иначе говоря, градиент — просто транспонированная матрица Якоби скалярной функции.

Упражнение. Пусть f дифференцируема в x, v — любой вектор. Тогда

$$\partial_{v} f(x) = (\operatorname{grad}_{x} f)^{\mathrm{T}} v.$$

Производная по направлению максимальна в направлении градиента и минимальна в противоположном направлении:

Утверждение 4.4. Пусть f — скалярная функция, дифференцируемая в некоторой точке $x \in \mathbb{R}^n$, причём её градиент там не равен нулю. Определим

$$v(x) := \frac{\operatorname{grad}_x f}{\|\operatorname{grad}_x f\|}.$$

Тогда для любого единичного вектора $u \in S^{m-1}$ верно

$$\partial_u f(x) \leq \partial_{v(x)} f(x)$$
.

Доказательство. Оценим левую часть по КБШ:

$$\partial_u f(x) = (\operatorname{grad}_x f)^{\mathrm{T}} u$$

 $\leq \|\operatorname{grad}_x f\| \|u\|$
 $= \|\operatorname{grad}_x f\|.$

Но это ровно правая часть:

$$(\operatorname{grad}_x f)^{\mathrm{T}} v(x) = \|\operatorname{grad}_x f\|.$$

Определение. Говорят, что функция f имеет в x локальный минимум, если существует такое $\delta > 0$, что из условия $\|\widetilde{x} - x\| < \delta$ следует $f(\widetilde{x}) \geqslant f(x)$ для всех $\widetilde{x} \in \mathbb{R}^n$.

Аналогично определяется локальный максимум.

Утверждение 4.5. Пусть скалярная функция f дифференцируема в x и имеет там локальный экстремум. Тогда её градиент в точке x равен нулю.

Доказательство. Пусть f имеет в x локальный максимум. Предположим, $\operatorname{grad}_x f \neq 0$. Рассмотрим производную по направлению градиента, которая, по предыдущей оценке, максимальна среди всех производных по направлению. Определим, как раньше,

$$v(x) := \frac{\operatorname{grad}_x f}{\|\operatorname{grad}_x f\|}.$$

Тогда

$$\|\operatorname{grad}_{x} f\| > 0 \implies \lim_{t \to 0} \frac{f(x + tv(x)) - f(x)}{t} > 0$$

$$\implies \exists t_{0} > 0 \ \forall t \in (0, t_{0}) : \frac{f(x + tv(x)) - f(x)}{t} > 0$$

$$\implies \exists t_{0} > 0 \ \forall t \in (0, t_{0}) : f(x + tv(x)) > f(x).$$

Значит f(x) — не локальный максимум. Противоречие.

В доказательстве для случая минимума нужно рассматривать производную npo- mus направления градиента. В остальном оно аналогично.

4.3 Аналоги формулы Лагранжа

Пример 4.1. Формула Лагранжа

$$f(x) - f(y) = (d_v f)(x - y), \quad v \in [x, y],$$

вообще говоря, неверна для функций $f: \mathbb{R}^m \to \mathbb{R}^n$, если $n \neq 1$. Возьмем, например, стандартную намотку прямой на окружность

$$f \coloneqq t \mapsto \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Разность:

$$f(\pi) - f(0) = \begin{pmatrix} -1\\0 \end{pmatrix} - \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -2\\0 \end{pmatrix}$$

Дифференциал:

$$d_{\theta}f = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}.$$

В частности,

$$(d_{\theta}f)(\pi - 0) = \begin{pmatrix} -\sin\theta\\\cos\theta \end{pmatrix} \pi.$$

Если бы формула была верна, то получилось бы, что

$$\begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \pi.$$

Считая квадраты норм, получаем

$$4 = \pi^2$$

что неверно (например, потому что π — это длина верхней полуокружности, а 2 — это длина вписанной в нее ломаной из двух звеньев с концами 0, i, -1, отсюда легко видеть, что $\pi > 2$).

Тем не менее, ничего не мешает нам при желании параметризовать отрезок в пространстве области определения и применить одномерную теорему Лагранжа на нём. Мы уже делали так в доказательстве достаточного условия дифференцируемости функции в терминах её частных производных; повторим это рассуждение и здесь.

Формула Лагранжа на отрезках

Теорема 4.6 (обобщение теоремы Лагранжа). Пусть скалярная функция $f: X \to \mathbb{R}$, где $X \subset \mathbb{R}^m$, дифференцируема в каждой точке отрезка [x, y]. Тогда существует вектор $v \in [x, y]$ такой, что

$$f(x) - f(y) = [d_v f](x - y).$$

Доказательство. Рассмотрим композицию f с линейной параметризацией отрезка [x,y]:

$$\varphi(t) = f(tx + (1-t)y).$$

Функция φ корректно определена и дифференцируема как композиция дифференцируемых отображений. По теореме Лагранжа выберем такое значение параметра $t_0 \in [0,1]$, что

$$\varphi(1) - \varphi(0) = \varphi'(t_0).$$

С другой стороны, если

$$v := t_0 x + (1 - t_0) y$$
,

то, по правилу дифференцирования композиции,

$$\varphi'(t_0) = [d_v, f](x - y),$$

что и требовалось.

Неравенство Лагранжа

Но формула Лагранжа позволяет получать оценки и для векторнозначных функций.

Теорема 4.7 (неравенство Лагранжа). Пусть векторнозначная функция $f: X \to \mathbb{R}^n$, где $X \subset \mathbb{R}^m$, дифференцируема в каждой точке отрезка [x, y]. Тогда

$$||f(x) - f(y)|| \le \sup_{v \in [x,y]} ||d_v f|| \cdot ||x - y||$$

В случае со стандартной намоткой эта теорема говорит, что длина хорды не больше длины дуги.

$$k \coloneqq f(x) - f(y).$$

Рассмотрим скалярный квадрат k:

$$||k||^2 = ||f(x) - f(y)||^2 = \langle f(x), k \rangle - \langle f(y), k \rangle.$$

Продифференцируем возникшее скалярное отображение:

$$d(k^{\mathrm{T}}f(t)) = (dk^{\mathrm{T}}) \cdot (df(t)) = k^{\mathrm{T}}df(t).$$

Теперь можно сказать, что найдётся точка z на отрезке [x, y] такая, что

$$\langle f(x), k \rangle - \langle f(y), k \rangle = \langle d_z f, k \rangle (x - y).$$

Используя КБШ, получаем оценку на модуль этого выражения:

$$\|\langle d_z f, k \rangle (x - y)\| \le \|d_z f\| \cdot \|k\| \cdot \|x - y\|.$$

В итоге,

$$||k||^2 \le ||\mathbf{d}_z f|| \cdot ||k|| \cdot ||x - y||.$$

При k=0 утверждение верно. Иначе, сокращая на $\|k\|$, как раз получаем, что для найденной точки z выполняется требуемая оценка.

Определение. Открытое связное подмножество любого топологического пространства называется *областью*.

Следствие 4.8 (функция с нулевым дифференциалом постоянна). Пусть дана функция $f: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^m$ — область. Предположим, дифференциал f везде существует и равен нулю. Тогда f постоянна на области определения.

Доказательство. Возьмём любую точку $x_0 \in \Omega$ и положим $c \coloneqq f(x_0)$. Рассмотрим множество уровня

$$U := \{ x \in \Omega \mid f(x) = c \}.$$

Отметим, что U непусто, поскольку $x_0 \in U$. Покажем, что, кроме того, множество U открыто и замкнуто; тогда равенство $U = \Omega$ будет следовать из связности области Ω .

Начнём с открытости. Пусть $x \in U$. Поскольку область Ω открыта, точка x лежит в некотором шаре N в Ω . Пусть $x' \in N$ — другая точка той же окрестности. По неравенству Лагранжа,

$$||f(x') - f(x)|| \le \sup_{x'' \in [x,x']} ||d_{x''}f|| \cdot ||x' - x|| = 0,$$

так как $\|\mathbf{d}_{x''}f\| = 0$. Значит, $x' \in U$, что и требовалось.

С замкнутостью проще: поскольку f дифференцируема, она непрерывна, и в любой предельной точке U значение f тоже будет равно c.

4.4 Перестановочность частных производных

Определение. Пусть $f: X \to \mathbb{R}^n$, где $X \subset \mathbb{R}^m$; $i_1, \dots i_k \in \{1, 2, \dots, m\}$. Определим частные производные высших порядков по индукции:

$$\partial_{i_1 i_2 \dots i_k} f = \partial_{i_1 i_2 \dots i_{k-1}} (\partial_{i_k} f).$$

Пример 4.2. Пусть

$$f(x,y) := \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq 0\\ 0, & (x,y) = 0 \end{cases}$$

тогда можно проверить, что $\partial_{12} f(0) \neq \partial_{21} f(0)$.

Найдем достаточные условия для того, чтобы можно было менять порядок дифференцирования:

Теорема 4.9 (изменение порядка дифференцирования). Пусть дана функция $f: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^m$ — область. Предположим, что f везде имеет непрерывные частные производные $\partial_{kl} f$ и $\partial_{lk} f$. Тогда для любого $x \in \Omega$ выполнено

$$\partial_{kl} f(x) = \partial_{lk} f(x)$$
.

Доказательства. Пусть k=1 и l=2. Из доказательства будет видно, что можно считать, что m=2. Так как задача сводится к координатным функциям, можно также считать, что n=1. Зафиксируем точку $(x_1,x_2)\in\Omega$ и при малых $h_1,h_2\in\mathbb{R}$ рассмотрим выражение

$$F(h_1, h_2) := f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - f(x_1, x_2 + h_2) + f(x_1, x_2).$$

Докажем, что оно будет стремиться одновременно к каждой из двух частных производных второго порядка. Для начала заметим, что

$$F(h_1, h_2) = \varphi(1) - \varphi(0) = \widetilde{\varphi}(1) - \widetilde{\varphi}(0),$$

где

$$\varphi(t) := f(x_1 + th_1, x_2 + h_2) - f(x_1 + th_1, x_2),$$

$$\widetilde{\varphi}(t) := f(x_1 + h_1, x_2 + th_2) - f(x_1, x_2 + th_2)$$

— гладкие функции на отрезке [0,1]. Применяя к каждой из них теорему Лагранжа, получаем для некоторых $t_0, \widetilde{t}_0 \in [0,1]$

$$F(h_1, h_2) = \varphi'(t_0) = \partial_1 f(x_1 + t_0 h_1, x_2 + h_2) \cdot h_1 - \partial_1 f(x_1 + t_0 h_1, x_2) \cdot h_1,$$

$$F(h_1, h_2) = \widetilde{\varphi}'(\widetilde{t_0}) = \partial_2 f(x_1 + h_1, x_2 + \widetilde{t_0} h_2) \cdot h_2 - \partial_2 f(x_1, x_2 + \widetilde{t_0} h_1) \cdot h_2.$$

Применяя теорему Лагранжа еще раз к функциям

$$s \mapsto \partial_1 f(x_1 + t_0 h_1, x_2 + s h_2)$$
 $u \quad s \mapsto \partial_2 f(x_1 + s h_1, x_2 + \widetilde{t_0} h_1),$

найдем точки $s_0, \widetilde{s}_0 \in [0, 1]$ такие, что

$$F(h_1, h_2) = \partial_{21} f(x_1 + t_0 h_1, x_2 + s_0 h_2) h_1 h_2,$$

$$F(h_1, h_2) = \partial_{12} f(x_1 + \tilde{s}_0 h_1, x_2 + \tilde{t}_0 h_2) h_2 h_1.$$

Осталось устремить h_1, h_2 к нулю и воспользоваться непрерывностью частных производных.

Утверждение 4.10. Пусть функция $f: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^m$ — область, имеет непрерывные частные производные $\partial_{\sigma(i_1)...\sigma(i_k)} f$ для любой перестановки σ некоторого набора индексов i_1, \ldots, i_k . Тогда все производные $\partial_{\sigma(i_1)...\sigma(i_k)} f$ совпадают.

Доказательство. По предыдущему утверждению любые два индекса при дифференцировании можно переставлять. Тогда утверждение следует из того, что группа перестановок порождается транспозициями. ■

4.5 Формула Тейлора

Определение. Будем говорить, что функция $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ принадлежит:

- классу гладкости $C^0(Y)$, если она непрерывна на множестве Y;
- классу гладкости $C^k(Y)$, где $k \ge 1$, если она дифференцируема в любой точке множества Y, а её дифференциал $x \mapsto \mathrm{d}_x f$ принадлежит классу гладкости $C^{k-1}(Y)$.

Если Y = X, то $C^k(Y)$ обычно сокращается до C^k . Отдельно выделяется C^{∞} , который называется классом бесконечно гладких или просто гладких функций.

Утверждение 4.11. Пусть $f: X \subset \mathbb{R}^m \to \mathbb{R}^n$ — функция класса C^k . Тогда все частные производные f существуют и непрерывны.

Доказательство. Любая частная производная функции f — это координатная функция дифференциала $x \mapsto d_x f$. Дифференциал непрерывен в топологии нормы линейного отображения, а поскольку любые две нормы на конечномерном векторном пространстве эквивалентны (теорема 2.4), он непрерывен в топологии метрики, которая сопоставляет матрице сумму абсолютных значений её коэффициентов. Можно видеть, что из этого следует непрерывность любой частной производной.

Обозначение. Пусть

$$\alpha := (\alpha_1, \ldots, \alpha_m)$$

— набор неотрицательных целых чисел. Обозначим

$$|\alpha| := \alpha_1 + \cdots + \alpha_m$$

 $^{^2}$ При k=1 имеется в виду непрерывность в стандартной топологии. Поскольку любые две нормы на конечномерном вещественном пространстве задают одинаковые топологии (страница 4), нам не важно, измеряется непрерывность дифференциала стандартной нормой линейного отображения или какой-то ещё.

И

$$\partial_{\alpha} := \partial_1^{\alpha_1} \dots \partial_n^{\alpha_m}.$$

В этом смысле множество α называется мультииндексом.

Определение. Пусть $x_1, x_2 \in \mathbb{R}^m$. *Отрезком* между x_1 и x_2 называется множество

$$[x_1, x_2] := \{(1-t)x_1 + tx_2 \mid t \in [0, 1]\}.$$

Теорема 4.12 (формула Тейлора для функций нескольких переменных). Пусть скалярная функция $f: X \subset \mathbb{R}^m \to \mathbb{R}$ принадлежит классу гладкости $C^{k+1}[x_0, x_1]$ для некоторого отрезка $[x_0, x_1]$, где $x_0, x_1 \in \mathbb{R}^m$. Тогда существует функция $r: \mathbb{R}^m \to \mathbb{R}$ такая, что для любого $x \in [x_0, x_1]$

$$f(x) = \sum_{|\alpha| \leqslant k} \frac{h_1^{\alpha_1} \dots h_m^{\alpha_m}}{|\alpha|!} \partial_{\alpha} f(x_0) + r(x - x_0),$$

где

$$h = (h_1, \ldots, h_m)^{\mathrm{T}} := x - x_0,$$

И

$$\lim_{\substack{x \to x_0 \\ x \in [x_0, x_1]}} \frac{r(x - x_0)}{\|x - x_0\|^k} = 0.$$

Из доказательства будет видно, что для функции r можно получить несколько формул.

 ${\it Доказательство}.$ Про точку x_1 можно забыть. Параметризуем аргумент функции f, определив

$$\varphi(t) := f(x_0 + (x - x_0)t).$$

Функция φ принадлежит классу $C^{k+1}[0,1]$. Разложим φ по одномерной формуле Тейлора в нуле: для некоторой остаточной функции \widetilde{r} верно

$$\varphi(1) = \varphi(0) + \frac{1}{1!}\varphi^{(1)}(0) + \dots + \frac{1}{k!}\varphi^{(k)}(0) + \widetilde{r}(1).$$

Найдём для произвольного l производную $\varphi^{(l)}(0)$. Если l=1, то

$$\varphi^{(1)}(t) = (\mathbf{d}_{x_0 + (x - x_0)t} f) \cdot (x - x_0).$$

Хочется теперь продифференцировать эту композицию ещё раз:

$$\varphi^{(2)}(t) = (d_t(d_{x_0 + (x - x_0)t}f)) \cdot (x - x_0).$$

Если рассуждать в этом направлении, для дифференциалов старших порядков придётся научиться умножать гиперкубы из производных на столбцы координат. Но мы сделаем эквивалентное по смыслу действие: распишем скалярное произведение в

производной $oldsymbol{arphi}^{(1)}$ как

$$\varphi^{(1)}(t) = \sum_{i_1=1}^m \partial_{i_1} f(x_0 + (x - x_0)t) \cdot h_{i_1}.$$

Теперь видно, что

$$\varphi^{(2)}(t) = \sum_{i_1=1}^m \sum_{i_2=1}^m \partial_{i_2} \partial_{i_1} f(x_0 + (x - x_0)t) \cdot h_{i_1} h_{i_2},$$

и так далее вплоть до $\varphi^{(k)}$. Пользуясь коммутативностью операции взятия частных производных и суммируя по мультииндексам, получаем такую сумму:

$$\varphi(1) = \sum_{|\alpha| \leqslant k} \frac{h_1^{\alpha_1} \dots h_m^{\alpha_m}}{|\alpha|!} \partial_{\alpha} f(x_0) + \widetilde{r}(1).$$

Это почти равенство из условия, ведь $\varphi(1) = f(x)$. При фиксированных концах отрезка $[x_0, x_1]$ и остальных обозначениях, величина $\widetilde{r}(1)$ зависит только от x, поэтому можно считать, что

$$\widetilde{r}(1) = r(x - x_0)$$

для некоторой скалярной функции r. Таким образом,

$$f(x) = \sum_{|\alpha| \le k} \frac{h_1^{\alpha_1} \dots h_m^{\alpha_m}}{|\alpha|!} \partial_{\alpha} f(x_0) + r(x - x_0).$$

Докажем теперь асимптотику остаточной функции r. Выведенные нами формулы для f(x) верны, в частности, для $f(x_1)$, поэтому положим теперь для удобства

$$\varphi(t) := f(x_0 + (x_1 - x_0)t)$$

и устремим x к x_0 . По оценкам для одномерной формулы Лагранжа,

$$\lim_{t \to 0} \frac{\widetilde{r}(t)}{t^k} = 0.$$

Но, при сделанных нами переобозначениях,

$$\widetilde{r}(t) = r((x_1 - x_0)t)$$

И

$$t = \frac{x - x_0}{x_1 - x_0} = (x - x_0) \cdot \text{const},$$

а потому

$$\lim_{t \to 0} \frac{r(x - x_0)}{\|x - x_0\|^k} = 0,$$

что завершает доказательство.

Итак, теперь видно, что остаток \widetilde{r} можно записать, например, в интегральной форме:

$$\widetilde{r}(1) = \frac{1}{k!} \int_{0}^{1} \varphi^{(k+1)}(y) (1-y)^{k} dy.$$

Раскладывая $\varphi^{(k+1)}$, как мы уже это делали, получаем одну из возможных формул для r:

$$r(x-x_0) = \frac{1}{k!} \int_0^1 \sum_{|\alpha|=k+1} h_1^{\alpha_1} \dots h_m^{\alpha_m} \partial_{\alpha} f(x_0 + (x-x_0)y) \cdot (1-y)^k \, \mathrm{d}y.$$

Остаток в форме Пеано

Неудобство выведенной нами формулы Тейлора в том, что функция r не стремится к нулю равномерно по направлению $x-x_0$. Но это можно исправить, если записать остаток в форме Лагранжа и оценить результат.

Утверждение 4.13 (остаточный член в форме Пеано). В условиях теоремы 4.12, функцию $r \colon \mathbb{R}^m \to \mathbb{R}$ можно взять такой, что

$$\lim_{v \to x_0} \frac{r(v - x_0)}{\|v - x_0\|^k} = 0.$$

Доказательство. Запишем остаток в форме Лагранжа: существует скаляр $\theta \in [0,1]$ такой, что

$$r(x-x_0) = \frac{1}{(k+1)!} \sum_{|\alpha|=k+1} h_1^{\alpha_1} \dots h_m^{\alpha_m} \partial_{\alpha} f(x_0 + (x-x_0)\theta).$$

Пусть

$$h_* := \max_j |h_j|,$$

тогда модуль суммы $r(x-x_0)$ можно оценить сверху как

$$|r(x-x_0)| \le \frac{h_*^{k+1}}{(k+1)!} \sum_{|\alpha|=k+1} \partial_{\alpha} f(x_0 + (x-x_0)\theta).$$

По непрерывности каждой частной производной порядка k+1,

$$|r(x-x_0)| = o(h_*^{k+1}) = o(||x-x_0||^{k+1}),$$

что и требовалось доказать.

4.6 Экстремумы и гессиан

Определение. Оператор $A \in \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ называется симметричным, если

$$\forall x, y \in \mathbb{R}^n : \langle Ax, y \rangle = \langle x, Ay \rangle.$$

Замечание. Симметричный оператор A однозначно восстанавливается по своей квадратичной форме, так как

$$\langle Ax, y \rangle = \frac{1}{2} \Big(\langle A(x+y), (x+y) \rangle - \langle Ax, x \rangle - \langle Ay, y \rangle \Big).$$

Из этого равенства следует, что квадратичная форма определяет элементы матрицы

$$a_{ij} = \langle Ae_j, e_i \rangle$$

оператора A, а значит, сам оператор.

Упражнение. Следующие условия равносильны:

- (1) оператор A симметричен;
- (2) $a_{ij} = a_{ji}$ для всех i, j;
- (3) $A^{T} = A$.

Определение. Будем писать:

- $A \ge 0$ (A неотрицателен), если A симметричен и $\langle Ax, x \rangle \ge 0$ для всех $x \in \mathbb{R}^n$.
- A > 0 (A положителен), если A симметричен и $\langle Ax, x \rangle > 0$ для всех $x \in \mathbb{R}^n \setminus \{0\}$.

Определение. Отображение

$$x \mapsto \langle Ax, x \rangle$$

из \mathbb{R}^n в \mathbb{R} называется *квадратичной формой* оператора A.

Нам несколько раз понадобится следующая лемма.

Лемма 4.14. Пусть $A \in \text{End}(\mathbb{R}^m)$ — положительный оператор. Тогда

$$\exists \delta > 0 \ \forall x \in \mathbb{R}^m : \langle Ax, x \rangle \geq \delta \|x\|^2.$$

Доказательство. Пусть $x \in \mathbb{R}^m$ — произвольный вектор. Спроецируем его на сферу S^{m-1} и воспользуемся однородностью квадратичной формы:

$$\langle Ax, x \rangle = ||x||^2 \left(\frac{Ax}{||x||}, \frac{x}{||x||} \right).$$

Значит, достаточно доказать, что для некоторого $\delta>0$ и любого $x\in S^{m-1}$ выполняется

$$\langle Ax, x \rangle \geqslant \delta$$
.

И действительно: сфера компактна; значит, непрерывная функция

$$x \mapsto \langle Ax, x \rangle$$

достигает на ней минимума. Если бы этот минимум был равен нулю, оператор A не мог бы быть положительным.

Определение. Пусть функция f имеет все производные второго порядка в точке x. Тогда матрица

$$(\partial_{ij}f(x))_{ij}$$

из частных производных второго порядка в точке x называется $\mathit{reccuahom}$ функции f в точке x.

То есть, гессиан — это матрица дифференциала градиента.

Теорема 4.15 (условия экстремума в терминах гессиана). Пусть

$$f: \Omega \subset \mathbb{R}^m \to \mathbb{R}$$

(где Ω — область) — скалярная функция класса C^2 , H — гессиан f в точке a. Тогда:

- (1) если *a* локальный минимум, то grad_a f = 0 и H ≥ 0;
- (2) если a локальный максимум, то grad f = 0 и $H \le 0$.

В обратную сторону:

- (3) если $\operatorname{grad}_a f = 0$ и H > 0, то a строгий локальный минимум;
- (4) если grad_a f = 0 и H < 0, то a строгий локальный максимум.

Доказательство. По формуле Тейлора для функций нескольких переменных,

$$f(a+h) = f(a) + \left\langle \operatorname{grad}_a f, h \right\rangle + \frac{1}{2} \langle Hh, h \rangle + r(h),$$

где

$$\lim_{h \to 0} \frac{r(h)}{\|h\|^2} = 0.$$

Предположим, что a — точка локального экстремума. По утверждению 4.5,

$$\operatorname{grad}_{a} f = 0.$$

Пусть a — это точка локального минимума. Предположим, от противного, что $H \not \geqslant 0$. Тогда найдётся вектор $v \in \mathbb{R}^m$ такой, что

$$\langle Hv, v \rangle < 0.$$

Введём скалярный параметр t и устремим его к нулю. Подставляя vt в формулу Тейлора, получаем, с учётом равенства градиента нулю,

$$f(a+vt) - f(a) = \frac{1}{2} \langle Hv, v \rangle t^2 + r(vt).$$

Поделив обе части на t^2 , получаем

$$\frac{f(a+vt)-f(a)}{t^2}\xrightarrow[t\to 0]{}\frac{1}{2}\langle Hv,v\rangle<0,$$

поскольку

$$\frac{r(vt)}{\|t\|^2} \xrightarrow[t \to 0]{} 0.$$

Это приводит к противоречию с тем, что a — точка локального минимума. Доказательство для локального максимума аналогично.

Пусть теперь

$$\operatorname{grad}_{a} f = 0 \quad \text{и} \quad H > 0.$$

Для положительной квадратичной формы существует такая константа c>0, что для любого вектора $v\in\mathbb{R}^m$

$$\langle Hv, v \rangle \ge c ||v||^2$$

(лемма 4.14). Пусть $v \in \mathbb{R}^m \setminus 0$. Подставим v в формулу Тейлора:

$$f(a+v) - f(a) = \frac{1}{2} \langle Hv, v \rangle + r(v).$$

Поделим обе части на квадрат нормы v и устремим v к нулю:

$$\frac{f(a+v)-f(a)}{\|v\|^2} \xrightarrow[v\to 0]{} \frac{1}{2} \cdot \frac{\langle Hv,v\rangle}{\|v\|^2} \geqslant \frac{c}{2} > 0.$$

Значит, найдётся окрестность точки a такая, что для любого вектора $v \neq 0$ из этой окрестности выполняется

$$f(a+v) > f(a),$$

что и требовалось.

5 Гладко параметризованные многообразия

График дифференцируемой скалярной функции — это гладкая линия. А что такое график дифференцируемой функции в \mathbb{R}^n ?

В этом разделе мы сфокусируемся на изучении основных свойств дифференцируемых отображений между евклидовыми пространствами. Нашей конечной целью станет теорема о множителях Лагранжа, позволяющая оптимизировать хорошо ведущие себя функции при дополнительных условиях; но по пути мы докажем несколько других результатов, имеющих самостоятельное значение. В частности, мы до сих пор не выяснили, при каких условиях можно дифференцировать обратные отображения.

5.1 Локальная билипшицевость

Теорема 5.1 (о локальной билипшицевости отображения с невырожденным дифференциалом). Предположим, что у функции

$$f:\Omega\subset\mathbb{R}^m\to\mathbb{R}^m$$

где Ω — область, существуют непрерывные производные по каждой переменной, причём её матрица Якоби в некоторой точке a невырождена. Тогда существуют положительные константы $c, \tilde{c} > 0$ и окрестность U точки a такие, что для любых векторов $x_1, x_2 \in U$ выполняется

$$c||x_1 - x_2|| \le ||f(x_1) - f(x_2)|| \le \tilde{c}||x_1 - x_2||.$$

Доказательство. Разложим функцию f по формуле Тейлора в окрестности точки a:

$$f(x) = f(a) + (d_a f)(x - a) + r(x).$$

Обозначим $A \coloneqq \mathsf{d}_a f$ и запишем

$$f(x_1) - f(x_2) = A(x_1 - x_2) + r(x_1) - r(x_2).$$

Применим к обеим частям обратный оператор A^{-1} :

$$A^{-1}(f(x_1) - f(x_2)) = x_1 - x_2 + A^{-1}(r(x_1) - r(x_2)).$$

С одной стороны,

$$||A^{-1}(f(x_1) - f(x_2))|| \le ||A^{-1}|| \cdot ||(f(x_1) - f(x_2))||.$$

С другой,

$$||A^{-1}(f(x_1) - f(x_2))|| = ||x_1 - x_2 + A^{-1}(r(x_1) - r(x_2))||$$

$$\geqslant ||x_1 - x_2|| - ||A^{-1}(r(x_1) - r(x_2))||$$

$$\geqslant ||x_1 - x_2|| - ||A^{-1}|| \cdot ||(r(x_1) - r(x_2))||.$$

По определению функции r, разность $r(x_1) - r(x_2)$ при стремящихся к точке a точках x_1 и x_2 стремится к нулю быстрее, чем $x_1 - x_2$. Поэтому для произвольного положительного ε найдётся окрестность точки a такая, что для любых x_1 и x_2 в ней будет выполнено

$$||A^{-1}|| \cdot ||f(x_1) - f(x_2)|| \ge (1 - ||A^{-1}||\varepsilon) \cdot ||x_1 - x_2||.$$

Так мы получили нижнюю оценку. Почти аналогично получим теперь верхнюю:

$$||f(x_1) - f(x_2)|| = ||A(x_1 - x_2) + r(x_1) - r(x_2)||$$

$$\leq ||A(x_1 - x_2)|| + ||r(x_1) - r(x_2)||$$

$$\leq (||A|| + \varepsilon) \cdot ||x_1 - x_2||.$$

28

5.2 Открытость отображения с невырожденным дифференциалом

Теорема 5.2 (об открытости отображения с невырожденным дифференциа- лом). Пусть функция

$$f: \Omega \subset \mathbb{R}^m \to \mathbb{R}^m$$
,

где Ω — область, принадлежит классу C^1 , причём дифференциал f в любой точке обратим. Тогда f — открытое отображение.

Доказательство. Пусть $U \subset \Omega$ — шар с центром в точке $x_0 \in \Omega$ и радиусом r_U . Предположим, y — произвольная точка в шаре V радиуса r_V около точки $y_0 := f(x_0)$. Покажем, что радиус r_V можно взять достаточно маленьким, чтобы у любой такой точки y был прообраз внутри шара U.

Минимизируем функцию

$$\varphi(t) \coloneqq \|f(t) - y\|^2.$$

По теореме Вейерштрасса функция φ достигает минимума на замыкании \overline{U} .

Покажем, что можно выбрать радиус r_V таким, что минимум достигается во внутренней точке. Пусть минимум достигается на границе шара \overline{U} в некоторой точке x:

$$||x-x_0||=r_U.$$

По теореме о локальной билипшицевости функции с обратимым дифференциалом (теорема 5.1), f билипшицева во всём шаре \overline{U} ; поэтому для некоторой положительной константы c верны следующие оценки:

$$\sqrt{\varphi(x)} = ||f(x) - y||
= ||f(x) - f(x_0) + y_0 - y||
\ge ||f(x) - f(x_0)|| - ||y - y_0||
\ge c||x - x_0|| - ||y - y_0||
= cr_U - ||y - y_0||
\ge cr_U - r_V.$$

Отметим, что

$$\varphi(x_0) \leqslant r_V^2$$

поэтому минимум заведомо не больше r_V^2 . Значит, если выбрать r_V таким, что

$$cr_U - r_V > r_V$$
,

минимум будет достигаться во внутренней точке: $x \in U$.

Покажем, что этот минимум будет равен нулю. Для этого продифференцируем функцию φ (проверьте следующее равенство самостоятельно):

$$d_t \varphi = 2(f(t) - y)^{\mathrm{T}}(d_t f).$$

По определению, в любой точке $t \in \Omega$ оператор дифференциала $\mathrm{d}_t f$ обратим. При этом в точке минимума x имеем $\mathrm{d}_x \varphi = 0$ (утверждение 4.5), что влечёт

$$f(x) = y$$
.

Таким образом, мы нашли прообраз точки y внутри шара U.

5.3 Теорема об обратной функции

Определение. Пусть M_1 и M_2 — многообразия. Дифференцируемая биекция

$$f: M_1 \to M_2$$

называется диффеоморфизмом, если её обратная тоже дифференцируема.

Иначе говоря, диффеоморфизм — это дифференцируемый гомеоморфизм с дифференцируемой обратной.

Теорема 5.3 (об обратной функции). Пусть функция

$$f: \Omega \subset \mathbb{R}^m \to \mathbb{R}^m$$

(где Ω — область) класса C^1 имеет обратимый оператор дифференциала в любой точке области определения. Пусть $x_0 \in \Omega$. Тогда существует окрестность U точки x_0 такая, что сужение функции f на U — диффеоморфизм между U и её образом f(U), причём дифференциал обратного отображения тоже имеет класс C^1 .

То есть, нам нужно доказать, что в некоторой окрестности U у функции f существует дифференцируемое обратное отображение. Если это установлено, то, дифференцируя композицию функции f с её обратной, получаем необходимое условие на дифференциал обратной функции:

$$(\mathsf{d}_{f(x)}f^{-1})(\mathsf{d}_x f) = I,$$

что эквивалентно

$$d_{f(x)}f^{-1} = (d_x f)^{-1}.$$

Этим мы и будем пользоваться при доказательстве теоремы. Убедитесь, что эта формула соответствует одномерному случаю.

Доказательство. Инъективность дифференциала $\mathrm{d}_{x_0}f$ влечёт билипшицевость функции f в некоторой окрестности U точки x_0 (теорема 5.1). Для любых точек $x_1, x_2 \in U$, равенство $f(x_1) = f(x_2)$ влечёт

$$||x_1 - x_2|| \le \operatorname{const} \cdot ||f(x_1) - f(x_2)|| = 0,$$

³Это не очень сильное требование из-за открытости множества обратимых операторов и непрерывности отображения $x \mapsto d_x f$.

поэтому сужение f на U инъективно. Это верно для любого x_0 , поэтому функция f инъективна на области определения. Обозначим обратную функцию через

$$g \coloneqq f^{-1}.$$

По теореме об открытости отображения с невырожденным дифференциалом (теорема 5.2), f — гомеоморфизм между U и f(U).

Проверим, что функция g дифференцируема в точке $y_0 := f(x_0)$. Для этого покажем, что дифференциалом $d_{y_0}g$ будет матрица $(d_{x_0}f)^{-1}$.

Рассмотрим разность

$$g(y_0+k)-g(y_0),$$

где вектор $k \in \mathbb{R}^m$ таков, что $y_0 + k \in f(U)$. Здесь для некоторого вектора $h \in \mathbb{R}^m$ верно

$$g(y_0 + k) - g(y_0) = x_0 + h - x_0 = h.$$

Кроме того, имеет место равенство

$$f(x_0 + h) - f(x_0) = (d_{x_0}f)h + r(h)$$

для некоторой функции $r(h) = o(\|h\|)$. Тогда

$$g(y_0 + k) - g(y_0) = (d_{x_0}f)^{-1}(f(x_0 + h) - f(x_0) - r(h))$$
$$= (d_{x_0}f)^{-1}(k - r(h)).$$

Покажем, что

$$r(h) = o(||k||).$$

Это так из-за липшицевости f:

$$||h|| \ge ||k|| \cdot \text{const.}$$

Докажем, что отображение

$$y \mapsto d_v g$$

непрерывно. Оно, в сущности, равно

$$y \mapsto (d_{f^{-1}(y)}f)^{-1}.$$

Это композиция трёх непрерывных отображений по определению функции f и поскольку обращение оператора непрерывно (страница 8).

5.4 Теорема о неявной функции

Пример 5.1. Рассмотрим уравнение окружности

$$x^2 + y^2 - 1 = 0.$$

Само по себе оно не задаёт функцию, но во всех точках решения уравнения можно локально, непрерывно-дифференцируемо параметризовать одной из переменных x или y:

$$y = \pm \sqrt{1 - x^2}.$$

Не получится выразить y через x ни в одной окрестности точек $\{(\pm 1,0)\}$, но и там можно выразить x через y.

Пример 5.2 (лемниската Бернулли). Рассмотрим уравнение

$$(x^2 + y^2)^2 = 2(x^2 - y^2).$$

Введём полярные координаты:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$.

После преобразований получим уравнение

$$r^2 = 2\cos 2\varphi.$$

Можно видеть, что это восьмёрка на боку. Здесь никакой функцией не получится параметризовать решения в окрестности центра симметрии.

Теорема о неявной функции даёт достаточные условия для того, чтобы часть переменных можно было функционально (и непрерывно-дифференцируемо) выразить через другие в окрестности некоторой точки графика.

Обозначение. Для пары столбцов х и у будем обозначать через

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

столбец, получающийся приписыванием у к х снизу.

Обозначение. Пусть $m \ge n$ и

$$A: \mathbb{R}^m \to \mathbb{R}^n$$

— линейное отображение. Обозначим через

$$A_n$$
 и A_{m-n}

отображения, образованные, соответственно, первыми n и последними m-n столбцами матрицы A.

Важно, что в таких обозначениях для любых $x \in \mathbb{R}^n$ и $y \in \mathbb{R}^{m-n}$ выполняется

$$A \binom{x}{y} = A_n x + A_{m-n} y. \tag{5.1}$$

Теорема 5.4 (о неявной функции). Пусть $m \ge n$ и функция $f: \Omega \subset \mathbb{R}^m \to \mathbb{R}^n$ (где Ω — область) имеет класс C^1 ; для некоторой точки $\binom{a}{b}$ выполнено $f\binom{a}{b} = 0$.

Обозначим $A:=f'\binom{a}{b}$. Пусть, в наших обозначениях, оператор A_n инъективен. Тогда существует окрестность $U=U_a\times U_b$ (где $U_a\subset\mathbb{R}^n$ и $U_b\subset\mathbb{R}^{m-n}$) точки $\binom{a}{b}$ и функция $g\colon U_b\to U_a$ такие, что

$$U \cap \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| f \begin{pmatrix} x \\ y \end{pmatrix} = 0 \right\} = \left\{ \begin{pmatrix} g(y) \\ y \end{pmatrix} \middle| y \in U_b \right\}.$$

Кроме того, g принадлежит классу C^1 и её дифференциал в точке $\binom{a}{b}$ считается по формуле

$$g'(b) = -A_n^{-1}A_{m-n}.$$

Пример 5.3. В случае с окружностью

$$f\begin{pmatrix} x \\ y \end{pmatrix} := x^2 + y^2 - 1 = 0,$$

получаем

$$f'\binom{x}{y} = (2x, 2y).$$

Можно видеть, что эта матрица на окружности всегда имеет ранг 1. Это соответствует нашим наблюдением о том, что график всегда получается параметризовать.

Пример 5.4. Если

$$f\binom{x}{y} := (x^2 + y^2)^2 - 2(x^2 - y^2),$$

то

$$f'\binom{x}{y} = (2(x^2 + y^2) \cdot 2x - 4x, \ 2(x^2 + y^2) \cdot 2y + 4y).$$

Поймём, когда левая половина этой матрицы равна нулю, и переменную x не удастся выразить через y. Если x=0, то $y^3+y=0$, откуда y=0. Интуитивно очевидно, что в нуле действительно не получится функционально параметризовать график. Если же $x\neq 0$, то имеем $x^2+y^2=1$. Вкупе с уравнением собственно лемнискаты, получаем систему:

$$\begin{cases} x_0^2 + y_0^2 = 1 \\ \left(x_0^2 + y_0^2\right)^2 - 2\left(x_0^2 - y_0^2\right) = 0 \end{cases} \iff \begin{cases} x_0^2 + y_0^2 = 1 \\ x_0^2 - y_0^2 = \frac{1}{2} \end{cases} \iff \begin{cases} x_0 = \pm \sqrt{\frac{1 + \frac{1}{2}}{2}} = \pm \frac{\sqrt{3}}{2} \\ y_0 = \pm 1. \end{cases}$$

Это те точки, в которых касательная графику параллельна оси абсцисс.

Пример 5.5 (поведение простых корней многочлена при малых возмущениях коэффициентов). Пусть дан многочлен $p(x) = a_0 + a_1 x + \dots + a_n x^n$. Предположим, что λ — его вещественный корень кратности 1. Тогда существуют ε , $\delta > 0$ такие, что если

$$q := b_0 + b_1 x + \ldots + b_n x^n$$

И

$$\max_{0\leqslant k\leqslant n}|a_k-b_k|<\varepsilon,$$

то существует ровно один корень μ многочлена q такой, что

$$|\mu - \lambda| < \delta$$
.

Для доказательства достаточно рассмотреть функцию $F(t, y_0, \dots, y_m) : \mathbb{R} \times \mathbb{R}^{n+1} \to \mathbb{R}$, заданную соотношением

$$F(t, y_0, \dots, y_n) := y_0 + y_1 t + \dots + y_n t^n$$

и применить к ней теорему о неявном отображении. Тот факт, что матрица F_t' размера 1×1 будет невырожденна в некоторой окрестности точки $(\lambda, a_0, \ldots, a_n)$ следует из того, что $p'(\lambda) \neq 0$.

Доказательство теоремы о неявной функции. Сведем доказательство к теореме об обратной функции. Определим

$$\widetilde{f} := \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} f \begin{pmatrix} x \\ y \end{pmatrix} \\ y \end{pmatrix}.$$

Покажем, что дифференциал \widetilde{f} в точке $\binom{a}{b}$ обратим. Разложим f по формуле Тейлора в точке $\binom{a}{b}$: поскольку $f\binom{a}{b}=0$,

$$f\binom{a+h_a}{b+h_b} = A\binom{h_a}{h_b} + r(h),$$

где

$$h = \begin{pmatrix} h_a \\ h_b \end{pmatrix}.$$

Посчитаем аналогичную разность для \widetilde{f} :

$$\widetilde{f} \begin{pmatrix} a + h_a \\ b + h_b \end{pmatrix} - \widetilde{f} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} f \begin{pmatrix} a + h_a \\ b + h_b \end{pmatrix} \\ h \end{pmatrix} \\
= \begin{pmatrix} A \begin{pmatrix} h_a \\ h_b \end{pmatrix} \\ h \end{pmatrix} + \begin{pmatrix} r(h) \\ 0 \end{pmatrix}.$$

Значит, линейное отображение

$$t \mapsto \begin{pmatrix} At \\ t \end{pmatrix}$$

соответствует определению дифференциала $\widetilde{f'}(^a_b)$. Из-за единственности дифференциала им оно и является. Оно инъективно, поскольку

$$\begin{pmatrix} At_1 \\ t_1 \end{pmatrix} = \begin{pmatrix} At_2 \\ t_2 \end{pmatrix} \implies t_1 = t_2.$$

Теперь мы можем применить теорему об обратной функции к \widetilde{f} , чтобы получить окрестность $U=U_a\times U_b$ точки $\binom{a}{b}$ такую, что функция \widetilde{f} в ней инъективна. То есть, для любых $\binom{x_1}{y_1}$ и $\binom{x_2}{y_2}$ из окрестности U из равенства

$$\begin{pmatrix} f \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \\ y_1 \end{pmatrix} = \begin{pmatrix} f \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \\ y_2 \end{pmatrix}$$

следует

$$x_1 = x_2$$
.

Покажем, что для любого y существует единственный $x \in U_a$ такой, что

$$f\begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Предположим, $y \in U_b$, и для $x_1, x_2 \in U_a$ выполняется

$$f\binom{x_1}{y} = f\binom{x_2}{y} = 0.$$

Тогда, в частности,

$$\begin{pmatrix} f\binom{x_1}{y} \\ y \end{pmatrix} = \begin{pmatrix} f\binom{x_2}{y} \\ y \end{pmatrix},$$

а из этого по определению следует, что

$$x_1 = x_2$$
.

Поэтому определим искомое отображение $g\colon U_b \to U_a$ формулой

$$g\coloneqq y\mapsto$$
 единственный $x\in U_a$ такой, что $finom{x}{y}=0.$

Проверим, что $g \in C^1$. По теореме об обратной функции, обратная функция к сужению \widetilde{f} на U принадлежит классу C^1 . Функцию g можно дифференцируемо выразить через неё:

$$\binom{g(y)}{y} = (\widetilde{f}|_{U})^{-1} \binom{0}{y}.$$

Поэтому $g \in C^1$.

Нам осталось явно найти её дифференциал в $\binom{a}{b}$. Определим

$$\widetilde{g} := y \mapsto \begin{pmatrix} g(y) \\ y \end{pmatrix}.$$

Тогда, как мы поняли это для функции \widetilde{f} , дифференциал \widetilde{g} будет прямой суммой дифференциалов $y\mapsto g(y)$ и $y\mapsto y$:

$$\widetilde{g}'(y) = \binom{g'(y)}{I}.$$

В то же время, для любого $y \in U_b$ по определению верно

$$f(\widetilde{g}(y)) = 0,$$

что, в частности, подразумевает

$$f'(\widetilde{g}(y))\widetilde{g}'(y) = 0.$$

В случае, когда y = b, первый из этих множителей по определению равен A:

$$A\widetilde{q}'(y) = 0.$$

В то же время A распадается в сумму A_n и A_{n-m} (по определению со страницы 32):

$$0 = A\widetilde{g}'(y) = A_n g'(y) + A_{n-m},$$

откуда, из обратимости A_n ,

$$g'(y) = -A_n^{-1}A_{m-n},$$

как и хотели.

5.5 Гладко параметризованные многообразия в \mathbb{R}^n

Гладкие многообразия

Напомним,

Определение. *Многообразие размерности* $n \in \mathbb{N}$ — хаусдорфово топологическое пространство со счётной базой, в котором у каждой точки существует окрестность, гомеоморфная \mathbb{R}^n .

Пример 5.6. Сфера $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ — многообразие размерности 2.

Заведём на многообразиях аналитическую структуру.

Определение (карты и атласы). Пусть M — многообразие размерности $n; m \in M$ — его точка. У m есть окрестность U_m такая, что для некоторого открытого подмножества $U'_m \subset \mathbb{R}^n$ существует гомеоморфизм

$$\varphi\colon U_m'\to U_m.$$

 U'_m называется *картой* окрестности U_m , а гомеоморфизм φ — *локальной параметри- зацией*, соответствующей карте U'_m . Набор карт A такой, что их образы при соответствующих параметризациях покрывают всё многообразие M, называется *атласом*.

Определение. Если в атласе всего одна карта, то многообразие называется *простым*, а параметризация, соответствующая этой карте, — *глобальной*.

Определение. n-мерное многообразие M с атласом $A = \{U_{\alpha}\}_{{\alpha} \in I}$ называется гладким класса C^k , если для любых двух карт U_{α} и U_{β} пересекающихся окрестностей $\varphi_{\alpha}(U_{\alpha})$ и $\varphi_{\beta}(U_{\beta})$ отображение перехода

$$\varphi_{\beta}^{-1} \circ \varphi_{\alpha} \colon \{ x \in U_{\alpha} \mid \varphi_{\alpha}(x) \in \varphi_{\beta}(U_{\beta}) \} \to \mathbb{R}^{n}$$

лежит в классе C^k .

Примеры

Пример 5.7. Сфера $S_1 = \{(x,y) \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$ — гладкое многообразие. Рассмотрим атлас из двух карт

$$U_1 = (0, 2\pi)$$
 и $U_2 = (-\pi, \pi)$,

которым соответствуют параметризации

$$\varphi_1 = t \rightarrow (\cos t, \sin t)$$
 u $\varphi_2 = r \mapsto (\cos t, \sin t)$.

Отображения

$$\varphi_1^{-1}\circ\varphi_2$$
 и $\varphi_2^{-1}\circ\varphi_1$

тождественны всюду, где определены, а потому окружность — C^{∞} -гладкое многообразие.

Пример 5.8. Рассмотрим множество

$$Q := \{(x, y) : |x| = 1$$
 или $|y| = 1$ и $|x| \le 1, |y| \le 1\}$

(граница квадрата). Впишем окружность в квадрат и запараметризуем границу квадрата точками окружности:

$$\psi(\cos t, \sin t) := \frac{(\cos t, \sin t)}{\max(|\cos t|, |\sin t|)}.$$

Тогда отображение ψ — гомеоморфизм, поскольку оно непрерывно и у него есть непрерывное обратное отображение (из квадрата в окружность):

$$\psi^{-1} = (x, y) \mapsto \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

Пусть U_1, U_2 — как в предыдущем примере, тогда для $i \in \{1, 2\}$ выполнено

$$\varphi_i = \psi(\varphi_i).$$

Как мы уже заметили, отображения перехода $\varphi_1^{-1}\circ\varphi_2,\,\varphi_2^{-1}\circ\varphi_1$ тождественны на области свего задания, а потому Q — топологически гладкое многообразие класса C^∞ .

Пример 5.9. Лемниската Бернулли — не многообразие (неформально — рассмотрим малую окрестность нуля в \mathbb{R}^2 . Её пересечение с лемнискатой должно быть простым размерности 1; в частности, должно параметризоваться с помощью гомеоморфизма, заданного на открытом интервале. Но при выкидывании центральной точки лемнискаты ее пересечение с малой окрестностью нуля распадается на четыре части, а интервал — только на две).

Собственно ГПМ

Образ гладкой функции $\mathbb{R}^m \to \mathbb{R}^n$, в сущности, задаёт некоторую *гладкую поверхность* в \mathbb{R}^n . Мы вводим два уточнения этого понятия и будем пользоваться ими вперемежку.

Определение (первое определение ГПМ). Множество $M \subset \mathbb{R}^n$ называется *гладко параметризованным многообразием* размерности k, если для всякой точки $p \in M$ существует непрерывно дифференцируемый гомеоморфизм

$$\varphi \colon U \to M \cap V \subset \mathbb{R}^n$$

(где $U \subset \mathbb{R}^n$; V — окрестность точки p) такой, что для любой точки $x \in U$

$$\operatorname{rank} \varphi'(x) = k.$$

Определение (второе определение ГПМ). Множество $M \subset \mathbb{R}^n$ называется *гладко параметризованным многообразием* размерности k, если для всякой точки $p \in M$ существует диффеоморфизм

$$\Phi: S \to W \subset \mathbb{R}^n$$

(где $S \subset \mathbb{R}^n$; W — окрестность точки p) такой, что, для

$$\widetilde{S} := \{x \in S \mid \text{нижние } n - k \text{ элементов } x - \text{нулевые}\},$$

верно

$$\Phi(\widetilde{S})=M\cap W.$$

В первом определении вы рисуете вокруг точки шар, пересекаете его с многообразием и говорите, что получился диск (с точностью до непрерывно дифференцируемого гомеоморфизма). Во втором вы рисуете вокруг точки шар и сначала говорите, что это шар (с точностью до диффеоморфизма), а затем отмечаете, что многообразие пересекает этот шар по диску.

Эквивалентность определений

Теорема 5.5. Определения 1 и 2 гладко параметризованного многообразия эквивалентны.

Нужно проверить, что C^1 -гомеоморфизм из первого определения можно продолжить до диффеоморфизма из второго определения и, наоборот, что диффеоморфизм можно сузить до C^1 -гомеоморфизма.

Доказательство. (1) \Longrightarrow (2). Пусть $p \in M$ — любая точка, $\varphi \colon U \to V \subset M$ — соответствующий C^1 -гомеоморфизм, ранг дифференциала которого равен k на области определения. Определим отображение $\Phi \colon U \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ формулой

$$\Phi\begin{pmatrix} x_1 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n \end{pmatrix} = \varphi\begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ x_{k+1} \\ \vdots \\ x_n \end{pmatrix}.$$

Матрица Якоби Φ в некоторой точке a имеет следующий вид:

$$\Phi'(a) = \left[\varphi'(a) \mid 0\right] + \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}.$$

Здесь $\varphi'(a)$ — высокая матрица $n \times k$, а I — единичная матрица $(n-k) \times (n-k)$. Ранг матрицы $\varphi'(a)$ по определению равен k. Без ограничения общности можно считать, что k независимых строк идут подряд сверху. Тогда матрица $\Phi'(a)$ обратима.

Применяя теорему об обратном отображении к Φ -прообразу точки p, получаем область

$$S' \subset U \times \mathbb{R}^{n-k}$$
,

такую, что сужение $\Phi|_{S'}$ — диффеоморфизм из S' на свой образ

$$W' := \Phi(S')$$
.

По определению, эта W' — область в \mathbb{R}^n , содержащая точку p. Пусть

$$\widetilde{S}' := \{x \in S' \mid \text{последние } n - k \text{ координат } x \text{ равны нулю} \}.$$

Тогда, из-за определения Ф,

$$\Phi(\widetilde{S}') = \varphi(U \cap \widetilde{S}').$$

Это открытое множество, поскольку пересечение $U\cap\widetilde{S}'$ открытых множеств открыто, а φ — открытое отображение. При этом множество $\Phi(\widetilde{S}')$ полностью лежит в M, поскольку $U\cap\widetilde{S}'\subset U$. Обозначим его за

$$W := \Phi(\widetilde{S}').$$

Пусть

$$S := \Phi^{-1}(W).$$

Отметим, что, поскольку $\widetilde{S}' \subset S'$ по определению,

$$\Phi(S) = W = \Phi(\widetilde{S}') \subset \Phi(S').$$

Покажем, что

$$S \subset S'$$
.

Если $s \in S \setminus S'$, то $\Phi(s) \in \Phi(S')$. Значит, у $\Phi(s)$ есть прообраз $s' \in S'$. Очевидно, $s \neq s'$, поэтому у $\Phi(s)$ два прообраза. Этого не может быть, поскольку $\Phi(S) = W - \Phi$ -образ $\widetilde{S'}, \widetilde{S'} \subset S'$, а сужение $\Phi|_{S'}$ — биекция по определению.

Поэтому, если мы по аналогии определяем

 $\widetilde{S} := \{x \in S \mid \text{последние } n - k \text{ координат } x \text{ равны нулю}\},$

то

$$\widetilde{S} \subset \widetilde{S}'$$
.

Далее,

$$\begin{split} \Phi(\widetilde{S}') &= W \cap M \subset W \leadsto \widetilde{S}' \subset S \\ &\leadsto \widetilde{S}' \subset \widetilde{S} \\ &\leadsto \widetilde{S}' = \widetilde{S} \\ &\leadsto \Phi(\widetilde{S}') = \Phi(\widetilde{S}) \\ &\leadsto W \cap M = \Phi(\widetilde{S}). \end{split}$$

Что и требовалось доказать.

(2) \implies (1). Пусть дан диффеоморфизм $\Phi \colon S \to W$ как во втором определении. Определим

$$\varphi \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} := \Phi \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Это гомеоморфизм как сужение гомеоморфизма. Положим, в первом определении ГПМ, $V:=M\cap W$ и U:=S. Тогда матрица $\varphi'(u)$ везде совпадает с подматрицей $n\times k$ матрицы дифференциала отображения Φ , а последняя имеет полный ранг. Значит, $\operatorname{rank} \varphi'(u) = k$.

Локальная билипшицевость карт

Следствие 5.6. Пусть M — гладко параметризованное многообразие размерности k, $p \in M$ — точка оттуда, гомеоморфизм $\varphi \colon U \to V$ как в определении. Тогда φ локально билипшицево: существуют окрестность U_* точки $\varphi^{-1}(p)$ и $\widetilde{c}, c \in \mathbb{R}$ такие, что для любых $u_1, u_2 \in U_* \subset U$ верно

$$\widetilde{c}||u_1-u_2|| \leq ||\varphi(u_1)-\varphi(u_2)|| \leq c||u_1-u_2||.$$

Доказательство. Достаточно применить теорему о локальной билипшицевости к отображению Φ из доказательства переформулировки. Заметим, что выполнено

$$\varphi(u_1) - \varphi(u_2) = \Phi(u_1') - \Phi(u_2'),$$

где

$$u'_{1} = \begin{pmatrix} u_{1,1} \\ \vdots \\ u_{1,k} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad u'_{2} = \begin{pmatrix} u_{2,1} \\ \vdots \\ u_{2,k} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Кроме того, здесь

$$||u_1'-u_2'||_{\mathbb{R}^n} = ||u_1-u_2||_{\mathbb{R}^k}.$$

Гладкие многообразия и ГПМ

Следствие 5.7. Гладко параметризованное многообразие M размерности k — гладкое многообразие размерности k.

Доказательство. Зададим атлас многообразия M как набор множеств $U_p \subset \mathbb{R}^k$ таких, что существует $\varphi \colon U_p \to V$ — гомеоморфизм, являющийся сужением диффеоморфизма $\Phi_p \colon U_p \times \mathbb{R}^{n-k} \to W$ из второго определения г.п.м. Если $\varphi_{p_1}(U_{p_1}) \cap \varphi_{p_2}(U_{p_2}) \neq \varnothing$, то имеет место равенство $\varphi_{p_1}^{-1} \circ \varphi_{p_2} = \Phi_{p_1}^{-1} \circ \varphi_{p_2}$. По теореме об обратном отображении, $\Phi_{p_1}^{-1} \in C^1(W) \implies \varphi_{p_1}^{-1} \circ \varphi_{p_2} \in C^1$ там, где эта суперпозиция определена.

5.6 Касательное пространство

Определение. Пусть M — гладко параметризованное многообразие размерности k, $p \in M$. Вектор $\tau \in \mathbb{R}^n$ называется *касательным* к M в точке p, если существуют путь $\gamma \colon [a,b] \to M$ и точка $c \in [a,b]$ такие, что

$$\gamma(c) = p$$

И

$$\gamma'(c) = \tau$$
.

Определение. *Касательное пространство* $T_p(M)$ — это множество всех касательных векторов к M в p.

Образ дифференциала карты

Теорема 5.8 (касательное пространство — образ дифференциала карты). Пусть M — ГПМ, p — любая его точка, $\varphi \colon U \subset \mathbb{R}^k \to V \ni p$ — соответствующая карта, a —

 φ -прообраз точки p. Тогда

$$T_p(M) = \operatorname{Im} \varphi'(a).$$

В частности, размерности многообразия и касательного пространства совпадают.

Доказательство. Проверим, что $\operatorname{Im} \operatorname{d}_a \varphi \subset T_p M$. Пусть $e \in \mathbb{R}^k$, где k — размерность M. Рассмотрим путь

$$\gamma = t \mapsto \varphi(a + te),$$

где $t \in [-\varepsilon, \varepsilon]$ и число ε выбрано так, чтобы $a + te \in U \ \forall t \in [-\varepsilon, \varepsilon]$.

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} = \lim_{t \to 0} \frac{\varphi(a + te) - \varphi(a)}{t} = [d_a \varphi](e),$$

причем $\gamma(0) = \varphi(a) = p$.

Наоборот, пусть $e=\gamma'(c)$, – касательный вектор в точке p, где $\gamma: [\widetilde{a},\widetilde{b}] \to M$ — из определения, $\gamma(c)=p$. Рассмотрим $\varphi\colon U\to V\ni p$. Пусть $u_t=\varphi^{-1}(\gamma(t))$, где $t\in [\widetilde{a},\widetilde{b}]$. Тогда $u_c=a$, где $a:\varphi(a)=p$.

$$\gamma'(c) = \lim_{\varepsilon \to 0} \frac{\gamma(c+\varepsilon) - \gamma(c)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varphi(u_{c+\varepsilon}) - \varphi(a)}{\varepsilon} = [d_a \varphi]h,$$

где $u_{c+\varepsilon} \to u_c = a$ при $\varepsilon \to 0$, h — любой частичный предел отображения $\frac{u_{c+\varepsilon} - a}{\varepsilon}$. Какой-то частичный предел есть, поскольку $||u_{c+\varepsilon} - a|| \le c \cdot \varepsilon$, так как отображение φ локально билипшицево, следовательно, множество

$$\left\{\frac{u_{c+1/n}-a}{1/n},\ n\in\mathbb{N}\right\}$$

ограничено в \mathbb{R}^n и имеет предельную точку. На самом деле из дифференцируемости γ в точке c следует, что предельная точка h — единственна, но здесь этот факт не используется, так как мы уже показали, что $\gamma(c) \in \operatorname{Im} \operatorname{d}_a \varphi$, и, значит, $T_p M \subset \operatorname{Im} \operatorname{d}_a \varphi$.

Определение. *Аффинное* касательное пространство к гладко параметризуемому многообразию M в точке $p \in M$ — это аффинное подпространство $p + T_p(M)$.

Поведение многообразия вблизи точки касания

Теорема 5.9. Пусть M — гладко параметризованное многообразие размерности k в \mathbb{R}^n , $p \in M$. Тогда среди всех аффинных подпространств \mathbb{R}^n вида p + L аффинное касательное подпространство однозначно характеризуется следующими свойствами:

- 1. Если $x \in p + L$ и $x \to p$, то $\operatorname{dist}(x, M) = o(\|x p\|)$.
- 2. dim $L \ge k$.

Лемма 5.10. Пусть $A: n \times k$ — матрица, rank $A = k, k \le n$. Тогда существует константа c > 0 такая, что для любой точки $x \in \mathbb{R}^k$ выполняется неравенство $||Ax|| \ge c||x||$.

Доказательство. $\operatorname{rank} A = k \iff \dim \operatorname{Im} A = k \implies \operatorname{Ker} A = \{0\} (\operatorname{если} \exists e_1 \in \mathbb{R}^k : Ae_1 = 0, \text{ то } \exists e_2, \dots, e_k : e_1, \dots, e_k \longrightarrow \operatorname{базис} \mathbb{R}^k \text{ и}$

$$k = \dim \operatorname{Im} A = \dim(A \operatorname{span}\{e_1, \dots, e_k\}) = \dim(A \operatorname{span}\{e_2, \dots, e_k\}) \leq k - 1$$

— противоречие). Так как Ker $A = \{0\}$, то отображение $p: x \mapsto ||Ax||$ — норма на \mathbb{R}^k . $(p(x) = 0 \iff x = 0)$. Значит, $\exists c: p(x) \geqslant c||x||$ (т.к. все нормы эквивалентны).

доказательство теоремы. Сначала покажем, что если $L=T_p(M)$, то условия 1 и 2 выполнены. Рассмотрим стремящийся к нулю вектор x из $p+T_p(M)$ и оценим его расстояние до M. По определению M, найдутся окрестность V точки p в M, окрестность $U \subset \mathbb{R}^k$ и C^1 -гомеоморфизм $\varphi \colon U \to V$ с рангом дифференциала k на области определения. Пусть $a := \varphi^{-1}(p)$. Не умаляя общности, будем считать, что разность x-p достаточно мала, так что точка $a+[\mathrm{d}_a\varphi]^{-1}(x-p)$ лежит в U и величина $m_x := \varphi(a+[\mathrm{d}_a\varphi]^{-1}(x-p))$ определена. Тогда, дифференцируя φ в точке a, получаем оценку

$$\begin{aligned} \operatorname{dist}(x, M) &\leq \|x - m_x\| \\ &= \|x - \left(\varphi(a) + [\operatorname{d}_a \varphi] [\operatorname{d}_a \varphi]^{-1} (x - p) + r(a, [\operatorname{d}_a \varphi]^{-1} (x - p)\right)\|, \\ &= o(\|[\operatorname{d}_a \varphi]^{-1} (x - p)\|). \end{aligned}$$

По лемме,

$$||x - p|| = ||[d_a f][d_a f]^{-1}(x - p)|| \ge c||[d_a f]^{-1}(x - p)||,$$

значит,

$$dist(x, M) = o\left(\frac{1}{c}||x - p||\right) = o(||x - p||),$$

Итак, мы проверили пункт 1; пункт 2 следует из того, что $\dim T_p(M)=k$ по теореме на странице 41.

Пусть теперь L — какое-то подпространство \mathbb{R}^n , p+L удовлетворяет свойствам 1 и 2. Поскольку $\dim L \geqslant k$, достаточно показать, что $L \subseteq T_p(M)$ — тогда $\dim L = \dim T_p(M)$, и эти подпространства совпадают. Пусть $e \in L$; покажем, что $e \in T_p(M)$, или, что то же самое, существует вектор $v \in \mathbb{R}^k$ такой, что $e = [d_a \varphi]v$.

Рассмотрим последовательность

$$x_t = p + te, \quad t \in [0, 1]$$

векторов из пространства L. По определению L, для каждого t найдётся вектор $m_t \in M$ такой, что

$$||x_t - m_t|| = o(||x_t - p||).$$

По определению x_t , здесь $x_t - p = te$, так что

$$||x_t - m_t|| = o(t).$$

Отсюда сразу имеем, что, так как $x_t \to p$, то $m_t \to p$. После регулировки вектора $e \in L$ можно считать, что для любого $t \in [0,1]$ вектор m_t лежит в V. Тогда существуют вектора $u_t \in \mathbb{R}^k$, параметризующие прообразы m_t :

$$\varphi(a + u_t) = m_t$$
.

Ясно, что $u_t \to 0$. Продифференцируем гомеоморфизм φ по последовательности векторов u_t :

$$\varphi(a + u_t) = \varphi(a) + [d_a \varphi](u_t) + o(||u_t||), t \to 0.$$

Оценим e, используя отрезки $[m_t, x_t]$ и $[m_t, p]$, для каждого из которых некоторые оценки у нас уже есть:

$$e = \frac{x_t - p}{t}$$

$$= \frac{x_t - m_t}{t} + \frac{m_t - p}{t}$$

$$= o(1) + \frac{\varphi(a + u_t) - \varphi(a)}{t}$$

$$= [d_a \varphi] \left(\frac{u_t}{t}\right) + o\left(1 + \left\|\frac{u_t}{t}\right\|\right).$$

Напомним, мы хотим найти такой вектор v, что $e = [d_a \varphi](v)$. По равенству непосредственно выше, достаточно показать, что последовательность u_t/t имеет предельную точку $v \in \mathbb{R}^k$. Для этого можно доказать, что $||u_t/t|| \le c$ для любых t в некотором промежутке $[0, t_0]$; если это готово, то за v можно взять предел любой (существующей) сходящейся подпоследовательности.

Хотим оценить u_t сверху. Как можно вспомнить, это разность между точкой $a \in U$ и φ -прообразом вектора m_t . Ну а гомеоморфизм φ — билипшицев из U в V (по утверждению на странице 40): существует $\tilde{c} > 0$ такая, что

$$\|\varphi(a+u_t)-\varphi(a)\| \geqslant \widetilde{c}\|a+u_t-a\|.$$

Здесь, по определению,

$$\varphi(a + u_t) = m_t$$
 и $\varphi(a) = p$.

Значит, при достаточно малых t > 0, если

$$||m_t - x_t|| \leqslant ||x_t - p||,$$

то имеем:

$$|\widetilde{c}||u_t|| = ||m_t - p||$$
 $\leq ||m_t - x_t|| + ||x_t - p||$
 $\leq 2||x_t - p||$
 $= 2t \cdot ||e||.$

Отсюда следует, что

$$\left\|\frac{u_t}{t}\right\| \leqslant \frac{2\|e\|}{\widetilde{c}}.$$

5.7 ГПМ как множество уровня

Теорема 5.11 (любое ГПМ — множество уровня). Пусть $M \subset \mathbb{R}^n, \ k \in \mathbb{N}$. Следующие условия равносильны:

- 1. M гладко параметризованное многообразие размерности k.
- 2. для любой точки $p \in M$ существуют окрестность W точки p и функция

$$F: \mathbb{R}^n \to \mathbb{R}^{n-k}$$
.

непрерывно дифференцируемая на W, так что

$$\operatorname{rank} F'(p) = n - k$$

И

$$M \cap W = \{x \in \mathbb{R}^n \mid F(x) = 0\}.$$

3. для любой точки $p \in M$ существуют окрестность W точки p и функции

$$F_1,\ldots,F_{n-k}:\mathbb{R}^n\to\mathbb{R}^{n-k},$$

непрерывно дифференцируемые на W, так что вектора

$$\operatorname{grad}_p F_1, \ldots, \operatorname{grad}_p F_{n-k};$$

линейно независимы в \mathbb{R}^n и

$$M \cap W = \{x \in \mathbb{R}^n \mid F_1(x) = \dots = F_{n-k}(x) = 0\}.$$

Соглашение. Будем называть функции F и $\{F_i\}$ в контексте теоремы выше функциями условия.

Доказательство. (2) \Longrightarrow (3). Можно взять координатные функции $\{F_i\}$. Условие на ранг означает, что в матрице F'(p) найдётся n-k линейно независимых строк. Но там всего n-k строк, и это ровно $F'_1(p),\ldots,F'_{n-k}(p)$.

(3) \Longrightarrow (2). Аналогично, возьмем

$$F(x) := \begin{pmatrix} F_1(x) \\ \vdots \\ F_{n-k}(x) \end{pmatrix}.$$

 $(1)\implies (2)$. Пусть M — гладко параметризованное многообразие размерности k, p — любая точка оттуда. Воспользуемся второй переформулировкой определения ГПМ: найдутся открытое множество $S\subset \mathbb{R}^n$ и окрестность W точки p такие, что между ними существует диффеоморфизм

$$\Phi: S \to W$$
,

для которого, кроме того, выполняется условие

$$M \cap W = \Phi(\widetilde{S}),$$

где

$$\widetilde{S} = \{ u \in S \mid u = (u_1, \dots, u_k, 0, \dots, 0) \}.$$

Пусть $P:\mathbb{R}^n\to\mathbb{R}^{n-k}$ — проекция, сопоставляющая столбцу из \mathbb{R}^n его последние n-k элементов. Рассмотрим отображение $F:\mathbb{R}^n\to\mathbb{R}^{n-k}$ заданное по правилу

$$F := x \mapsto P\Phi^{-1}(x)$$
.

По определению, $F \in C^1(W)$ и

$$\operatorname{rank} F(p) = \operatorname{rank} d_p F = \operatorname{rank} P d_p \Phi^{-1}$$
.

Так как $d_p\Phi^{-1}\in \operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^n)$ — обратимый оператор, то

$$\operatorname{rank} P \operatorname{d}_p \Phi^{-1} = \operatorname{rank} P = n - k.$$

Кроме того, из-за биективности Ф,

$$x \in M \cap W \iff \Phi^{-1}(x) \in \widetilde{S}$$

$$\iff P\Phi^{-1}(x) = 0$$

$$\iff F(x) = 0.$$

Так что F соответствует требованиям.

 $(2)\Longrightarrow (1)$. Воспользуемся теоремой о неявной функции. Перенумеруем координаты так, чтобы первые n-k столбцов матрицы f'(p) были линейно независимы. Тогда найдутся окрестность $U=U_a\times U_b$ (где $U_a\subset\mathbb{R}^{n-k}$ и $U_b\subset\mathbb{R}^k$) точки p и непрерывно-дифференцируемая функция $g\colon U_b\to U_a$ такие, что для $\binom{x}{y}\in U$ равенство $F\binom{x}{y}=0$ выполняется тогда и только тогда, когда x=g(y). Положим

$$\varphi := y \mapsto \begin{pmatrix} g(y) \\ y \end{pmatrix}.$$

Это карта пересечения $M \cap U$. Легко видеть, что ранг её дифференциала равен k.

Примеры

Пример 5.10. Покажем, что

$$M := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

— гладко параметризуемое многообразие размерности 2 в \mathbb{R}^3 . Для этого рассмотрим соотношение

$$F(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1.$$

Ясно, что $F \in C^{\infty}(\mathbb{R}^3)$. Посмотрим на матрицу Якоби этого отображения:

$$F'(x, y, z) = \left(\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right).$$

Если $(x, y, z) \in M$, то одно из чисел $\{x, y, z\}$ отлично от нуля, так что

$$\operatorname{rank} F'(x, y, z) = 1.$$

Значит, мы попадаем в условие теоремы непосредственно выше, когда

$$n-k=1$$
.

Отсюда имеем

$$k = 2$$
.

Пример 5.11. Покажем, что

$$M := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x^2 + y^2 + z^2 = 1, x + y + z = 0 \right\}.$$

— ГПМ, и найдём его размерность. Определим

$$F(x,y,z) := \begin{pmatrix} x^2 + y^2 + z^2 - 1 \\ x + y + z \end{pmatrix}.$$

Тогда

$$F'(x,y,z) := \begin{pmatrix} 2x & 2y & 2z \\ 1 & 1 & 1 \end{pmatrix}.$$

Если строки этой матрицы линейно зависимы, то

$$x = y = z$$
.

Подстановкой можно убедиться, что эти равенства не выполняются для точек из M.

Значит, M — гладко параметризованное многообразие размерности

$$3 - 2 = 1$$
.

Касательное пространство и функция условия

Функция условия и карта многообразия — двойственные понятия (сравните с теоремой на странице 41):

Теорема 5.12 (касательное пространство — ядро дифференциала условия). Пусть функция F и ГПМ

$$M := \{ x \in \mathbb{R}^n \mid F(x) = 0 \}$$

— такие же, как в предыдущей теореме (страница 45). Тогда

$$T_p(M) = \operatorname{Ker} F'(p).$$

Доказательство. Покажем, что $T_p(M) \subset \operatorname{Ker} F'(p)$. Пусть $v \in T_p(M)$ и γ — соответсвующий путь по многообразию M, проходящий через p в некоторый момент c и имеющий в c дифференциал v. В частности, для любого t по определению функции F верно

$$F(\gamma(t)) = 0.$$

Дифференцируя это равенство, получаем

$$F'(\gamma(t))\gamma'(t) = 0.$$

Если t = c, то

$$F'(p)v = 0.$$

Значит,

$$v \in \operatorname{Ker} F'(p)$$
.

Покажем, что $\dim T_p(M) \geqslant \dim \operatorname{Ker} F'(p)$. Касательное пространство $T_p(M)$ имеет ту же размерность, что и само многообразие M (страница 41)

$$\dim T_p(M) = \dim M = k$$
.

Размерность ядра можно посчитать из размерности образа, по определению функции F равной n-k:

$$\dim \operatorname{Ker} F'(p) = n - \dim \operatorname{Im} F'(p) = k.$$

Пример 5.12. Найдём общий вид аффинной касательной плоскости к двумерной сфере S^2 . Пусть

$$p := \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \in S^2.$$

Касательное пространство к S_2 в точке p по теореме выше имеет вид

$$T_p(S_2) = \operatorname{Ker} \left(2x_0 \quad 2y_0 \quad 2z_0 \right).$$

Сдвинув начало отсчёта в точку p, получаем определяющее соотношение для точки $(x, y, z)^{T}$ в аффинном подпространстве $p + T_{p}(S^{2})$:

$$(x-x_0)x_0 + (y-y_0)y_0 + (z-z_0)z_0 = 0.$$

5.8 ГПМ и графики

Теорема 5.13 (ГПМ локально является графиком отображения). Пусть $M \subseteq \mathbb{R}^n$ — ГПМ размерности k, p — точка оттуда. Тогда существует R — окрестность нуля в касательном пространстве $T_p(M), C^1$ -отображение $\xi : R \to \big(T_p(M)\big)^\perp$ и окрестность $W \subset \mathbb{R}^n$ точки p такая, что

$$M \cap W = p + \{\xi(w) + w \mid w \in R\}.$$

Эта полезное замечание говорит, что можно поставить репер в точке p таким образом, что часть многообразия будет в системе координат этого репера графиком функции на касательном пространстве.

Доказательство. После замены базиса и перенумеровки векторов можно считать, что касательное пространство $T_p(M)$ порождено векторами e_1, \ldots, e_k (их действительно k по теореме на странице 41) и, соответственно, его ортогонал $(T_p(M))^{\perp}$ — векторами e_{k+1}, \ldots, e_n . Вспомним, что всё многообразие M задаётся как множество уровня какой-то непрерывно дифференцируемой функции F с рангом дифференциала везде n-k (страница 45). Применим теорему о неявном отображении (страница 32) и получим функцию ξ и все окрестности к ней. Условие, что R является окрестностью нуля, эквивалентно тому, что окрестность $M \cap W$ нашего многообразия содержит точку p.

6 Множители Лагранжа

Определение. Пусть $f: \mathbb{R}^m \to \mathbb{R}$ — скалярная функция, $F: \mathbb{R}^m \to \mathbb{R}^n$ — векторнозначная функция. Обозначим

$$K := \{ x \in \mathbb{R}^m \mid F(x) = 0 \}.$$

Будем говорить, что f имеет локальный минимум в точке x_0 *при условии* F, если $x_0 \in K$ и сужение $f|_K$ имеет локальный минимум в x_0 . В таком случае x_0 называется точкой условного экстремума.

Аналогично с максимумом и строгими экстремумами.

В этом разделе мы научимся находить условные экстремумы в случае, когда функция F задаёт гладко параметризованное многообразие, а функция f непрерывно дифференцируема.

6.1 Необходимое условие

Теорема 6.1 (метод множителей Лагранжа, часть 1: необходимое условие). Пусть $n \le m$. Пусть $F: \mathbb{R}^m \to \mathbb{R}^n$ — функция условия некоторого ГПМ M размерности n, а $p \in M$ — точка оттуда. Если скалярная функция $f: \mathbb{R}^m \to \mathbb{R}$ класса C^1 имеет локальный экстремум в точке p при условии F, то

- 1. grad $_p f \perp T_p(M)$, где M многообразие, заданное функцией F;
- 2. $\operatorname{grad}_{p} f \in \operatorname{span}\{\operatorname{grad}_{p} F_{i} \mid i\};$
- 3. существует вектор $\lambda \in \mathbb{R}^n$ такой, что функция Лагранжа из \mathbb{R}^{m+n} в \mathbb{R} , определяемая формулой

$$L(x,\lambda) := f(x) - \lambda^{\mathrm{T}} F(x)$$

имеет нулевой градиент в точке (p, λ) .

Доказательство. Пункт 1: покажем, что любой касательный вектор $v \in T_p(M)$ ортогонален градиенту функции f в точке p. По определению, существует путь γ по многообразию M, проходящий через p в момент c и имеющий v своим дифференциалом в этой точке. Поскольку функция f имеет экстремум в точке p, функция

$$f \circ \gamma$$

имеет экстремум в точке c. Значит, её дифференциал там равен нулю:

$$0 = f'(\gamma(c))\gamma'(c) = f'(p)v.$$

Что и требовалось доказать.

Выведем утверждение пункта 2 из пункта 1 с учётом равенства

$$T_p(M) = \operatorname{Ker} F'(p)$$

(страница 48). Из пункта 1 имеем

$$\operatorname{grad}_p f \in (T_p(M))^{\perp}.$$

В то же время, очевидно,

$$\operatorname{Ker} F'(p) = \left(\operatorname{span}\left\{\operatorname{grad}_{p} F_{i} \mid i\right\}\right)^{\perp}.$$

Значит,

$$\operatorname{grad}_p f \in \operatorname{span}\{\operatorname{grad}_p F_i \mid i\}.$$

Пункт 3: продифференцировав функцию Лагранжа и приравняв к нулю, понимаем, что нам нужен такой вектор $\lambda \in \mathbb{R}^n$, что

$$f'(p) = \lambda^{\mathrm{T}} F'(p).$$

Можно видеть, что его существование и утверждает пункт 2.

Пример 6.1. Попробуем максимизировать квадратичную форму

$$f(x) \coloneqq x^{\mathrm{T}} A x,$$

(где A — симметричная матрица $n \times n$) на сфере S^{n-1} . Из-за компактности последней максимум действительно достигается. Заведём функцию Лагранжа

$$L(x,\lambda) = f(x) - \lambda \Big(\sum x_k^2 - 1\Big).$$

Посчитаем её частные производные по каждой переменной:

$$\begin{split} \partial_{x_j} L(x,\lambda) &= \partial_{x_j} f(x) - 2\lambda x_j \\ &= \left(\lim_{t \to 0} \frac{\langle A(x+te_j), x+te_j \rangle - \langle Ax, x \rangle}{t} \right) - 2\lambda x_j \\ &= 2\langle Ax, e_j \rangle - 2\lambda x_j; \end{split}$$

$$\partial_{\lambda_j} L(x,\lambda) = \sum x_k^2 - 1.$$

Приравнивая эти выражения к нулю, получаем

$$\operatorname{grad}_{x,\lambda} L = 0 \iff \begin{cases} \forall j : x^{\mathsf{T}} A e_j = x^{\mathsf{T}} \lambda e_j, \\ \sum x_k^2 = 1. \end{cases} \iff \begin{cases} Ax = \lambda x, \\ \|x\|^2 = 1. \end{cases}$$

Величина λ и будет равна нашему максимуму:

$$f(x) = \langle Ax, x \rangle$$

$$= \langle \lambda x, x \rangle$$

$$= \lambda \langle x, x \rangle$$

$$= \lambda ||x||^2$$

$$= \lambda.$$

Таким образом, мы доказали, что

$$\sup_{\|x\|=1} f(x)$$

равен максимальному собственному числу матрицы A (аналогично,

$$\inf_{\|x\|=1} f(x)$$

равен минимальному собственному числу).

6.2 Достаточное условие

Лемма 6.2. Пусть M — гладко параметризованное многообразие, p — точка оттуда. Пусть $x \in M$ и $x \to p$. Обозначим разность x - p за h и проекцию вектора h на касательное пространство $T_p(M)$ за \widehat{h} . Тогда

- 1. $||h \widehat{h}|| = o(||h||)$,
- 2. $||h|| \sim ||\widehat{h}||$.

В этой лемме довольно много геометрической интуиции.

Доказательство. Пункт 1. Покажем, что

$$dist(x, p + T_p(M)) = o(||h||).$$

Тогда результат будет следовать из того, что, по определению \hat{h} ,

$$\operatorname{dist}(x, p + T_p(M)) = ||h - \widehat{h}||.$$

Воспользуемся тем, что касательное пространство — это образ дифференциала карты (страница 41). Пусть φ — карта многообразия в окрестности точки p; $a := \varphi^{-1}(p)$. Разложим карту по формуле Тейлора в окрестности точки a: если $t := \varphi^{-1}(x) - a$, то

$$\varphi(a+t) - \underbrace{\left(\varphi(a) + \varphi'(a)t\right)}_{\in p + T_p(M)} = o(\|t\|).$$

Получается, достаточно показать, что

$$o(||t||) = o(||\varphi(a+t) - \varphi(a)||).$$

Это так по билипшицевости карты φ в некоторой окрестности точки a (страница 40): для какого-то $c \in \mathbb{R}$,

$$||t|| \le c||\varphi(a+t) - \varphi(a)||.$$

Так мы доказали, что

$$||h - \widehat{h}|| = o(||h||).$$

Пункт 2. Оценим с помощью пункта 1:

$$||h|| \le ||\widehat{h}|| + ||h - \widehat{h}||$$

= $||\widehat{h}|| + o(||h||)$.

Поделив обе части на ||h||, получаем

$$1 \leqslant \frac{\|\widehat{h}\|}{\|h\|} + o(1).$$

Но, поскольку вектор \hat{h} — это ортогональная проекция h,

$$1 \geqslant \frac{\|\widehat{h}\|}{\|h\|}.$$

Так что, действительно,

$$||h|| \sim ||\widehat{h}||$$
.

Теорема 6.3 (метод множителей Лагранжа, часть 2: достаточное условие). Пусть f, F, M, p, L — как в первой части (страница 50), но вдобавок функции f и F принадлежат и классу C^2 . Пусть нашёлся такой вектор $\lambda \in \mathbb{R}^n$, что $L'(p, \lambda) = 0$. Обозначим $\widetilde{L} := x \mapsto L(x, \lambda)$. Тогда

- 1. Если гессиан функции \widetilde{L} положителен на пространстве $T_p(M) \leq \mathbb{R}^m$, то функция f имеет строгий локальный минимум в p при условиях F.
- 2. Если гессиан не знакоопределён на $T_p(M)$, то f не имеет условного экстремума в точке p.

Доказательство. Обозначим гессиан функции \widetilde{L} в точке p за H, а его квадратичную форму — за Q. По формуле Тейлора, при $h \to 0$,

$$\widetilde{L}(p+h) - \widetilde{L}(p) = \frac{1}{2}Q(h) + o(\|h\|^2).$$

Первый дифференциал в этой формуле равен нулю, так как по условию $L'(p,\lambda)=0$. Разумеется, мы хотим теперь воспользоваться положительностью формы Q на касательном пространстве. Обозначим для вектора h его проекцию на касательное пространство $T_p(M)$ за \hat{h} и переразложим квадратичную форму в правой части формулы Тейлора:

$$\begin{split} Q(h) &= Q\Big(\widehat{h} + (h - \widehat{h})\Big) \\ &= Q(\widehat{h}) + Q(h - \widehat{h}) + 2\Big(h - \widehat{h}\Big)^{\mathrm{T}} H \widehat{h}. \end{split}$$

Используя первую теорему Вейерштрасса и однородность, получаем такие оценки:

$$\begin{split} Q(h-\widehat{h}) &= O\Big(\|h-\widehat{h}\|^2\Big), \\ 2\Big(h-\widehat{h}\Big)^{\mathrm{T}} H \widehat{h} &= O\Big(\|h-\widehat{h}\|\|\widehat{h}\|\Big). \end{split}$$

По лемме на странице 52, каждое из этих слагаемых имеет асимптотику

$$o(\|\widehat{h}\|^2),$$

как и, в общем-то, остаточный член в изначальной формуле Тейлора. Перепишем её в новом виде:

$$\widetilde{L}(p+h) - \widetilde{L}(p) = \frac{1}{2}Q(\widehat{h}) + o(\|\widehat{h}\|^2).$$

Теперь мы, наконец, можем использовать положительность формы Q на подпространстве $T_p(M)$: существует такая константа $\alpha>0$, что для любого вектора $x\in T_p(M)$ выполняется неравенство $Q(x)\geqslant \alpha\|x\|^2$ (страница 25). Тогда

$$\widetilde{L}(p+h)-\widetilde{L}(p)\geqslant \|\widehat{h}\|^2\Big(\frac{\alpha}{2}+o(1)\Big).$$

Так как $\|\widehat{h}\| \sim \|h\|$, множитель

$$\|\widehat{h}\|^2$$

в некоторой окрестности точки p положителен. Поэтому из неравенства выше следует, что найдётся окрестность точки p, в которой для любого вектора p+h, если $h\neq 0$, верно

$$\widetilde{L}(p+h) - \widetilde{L}(p) > 0.$$

Если $p, p + h \in M$, эта разность переписывается так:

$$\widetilde{L}(p+h) - \widetilde{L}(p) = f(p+h) - \lambda^{\mathrm{T}} F(p+h) - f(p) + \lambda^{\mathrm{T}} F(p)$$
$$= f(p+h) - f(p).$$

Значит, у функции f действительно строгий локальный минимум при условии F в точке p.

Предположим теперь, что форма Q не является знакоопределённой: нашлись два таких вектора \widehat{h}_+ и \widehat{h}_- из касательного пространства $T_p(M)$, что

$$Q(\widehat{h}_{-}) < 0 < Q(\widehat{h}_{+}).$$

Многообразие M локально является графиком некоторой функции на касательном пространстве (страница 49), так что можно предполагать существование векторов h_+ и h_- таких, что точки $p+h_+$ и $p+h_-$ принадлежат многообразию M, а вектора \widehat{h}_+ , \widehat{h}_- являются образами h_+ , h_- при проекции на касательное пространство $T_p(M)$. Устремим некоторый скаляр t к нулю. Выполнены равенства

$$\widetilde{L}(p+th_{+}) - \widetilde{L}(p) = \frac{t^{2}}{2}Q(\widehat{h}_{+}) + o(t^{2}),$$

$$\widetilde{L}(p+th_{-}) - \widetilde{L}(p) = \frac{t^{2}}{2}Q(\widehat{h}_{-}) + o(t^{2}).$$

Теперь ясно, что найдётся окрестность точки p, в которой функция \widetilde{L} , а потому и f,

не может иметь условный экстремум.

7 Выпуклые функции

Определение. Множество называется *выпуклым*, если вместе с любыми двумя точками x, y оно содержит отрезок [x, y] между ними.

Определение. Пусть $f: X \to Y$, тогда *графиком* f называется множество

$$G(f) = \{(x, f(x)) \mid x \in X\} \subset X \times Y.$$

Если $Y = \mathbb{R}$, то надграфиком f называется множество

$$\mathrm{Epi}(f) = \{(x, t) \mid x \in X, t \in \mathbb{R}, t \geqslant f(x)\} \subset X \times \mathbb{R}.$$

Определение. Функция называется *выпуклой*, если её надграфик — выпуклое множество.

Упражнение. Функция $f\colon S\subset\mathbb{R}^m\to\mathbb{R}$ выпукла тогда и только тогда, когда S — выпуклое множество и

$$\forall x, y \in S \ \forall \lambda \in [0, 1] : f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Утверждение 7.1. Если f_1, f_2 — выпуклые функции на выпуклом множестве $S \subseteq \mathbb{R}^m$, то $\max(f_1, f_2)$ — выпуклая функция на S.

Доказательство. ${\rm Epi}(\max(f_1,f_2))={\rm Epi}(f_1)\cap {\rm Epi}(f_2)$ — выпукло как пересечение выпуклых множеств.

Упражнение. Если $a \ge 0, b \ge 0, f_1, f_2$ — выпуклы на S, φ — возрастающая выпуклая функция на \mathbb{R} , то $af_1 + bf_2$ и $\varphi \circ f_1$ выпуклы на S.

Упражнение (неравенство Йенсена). Пусть $x_1, ..., x_n \in S$ — точки выпуклого множества $S \subset \mathbb{R}^m$; $\lambda_1, ..., \lambda_n$ — положительные скаляры, которые суммируются к единице:

$$\lambda_1 + \cdots + \lambda_n = 1, \quad \{\lambda_i\} > 0;$$

f — вещественнозначная выпуклая функция на S. Тогда

$$f(\lambda_1 x_1 + \dots \lambda_n x_n) \leq \lambda_1 f(x_1) + \dots + \lambda_n f(x_n).$$

Примеры 7.1.

- 1. Функция $x \mapsto \|x\|$ выпукла для любой нормы $\| \ \|$.
- 2. Если φ линейное отображение $\mathbb{R}^m \to \mathbb{R}$ (линейный функционал), то φ выпукло.

3. Отображение

$$x \mapsto \max\left(\sum a_k e^{\langle A_k x, y_k \rangle}, \sum b_k e^{\langle B_k x, z_k \rangle}\right)$$

(где $\{a_k\}, \{b_k\} \geqslant 0; \{A_k\}, \{B_k\}$ — линейные отображения; $x, \{y_k\}, \{z_k\}$ — вектора) выпукло.

Теорема 7.2. Функция $f \colon \Omega \subset \mathbb{R}^m \to \mathbb{R}$ (где Ω — выпуклая область) класса C^2 выпукла тогда и только тогда, когда её гессиан в любой точке области определения неотрицателен.

Доказательство. Предположим, гессиан неотрицателен. Пусть $x, x+h \in \Omega$. Определим функцию $\varphi \colon \mathbb{R} \to \mathbb{R}$ как

$$\varphi := t \mapsto f(x + ht).$$

Достаточно проверить, что функция φ выпукла. Известно, что скалярная функция выпукла тогда и только тогда, когда её вторая производная неотрицательна. Поэтому продифференцируем φ :

$$\varphi'(t) = f'(x + ht)h,$$

$$\varphi''(t) = h^{T}f''(x + ht)h.$$

Теперь можно видеть, что

$$\varphi''(t) \geqslant 0$$

из-за неотрицательности гессиана

$$f''(x+ht)$$
.

Предположим, что функция f выпукла. Достаточно проверить, что гессиан неотрицателен по каждому направлению вектора h. Поскольку область Ω открыта, можно считать, что найдутся точки x и h такие, что x, $x+h\in\Omega$. Рассмотрим ту же функцию φ . Из выпуклости функции f следует выпуклость φ , так что

$$\varphi''(t) \geqslant 0$$
,

поэтому

$$h^{\mathrm{T}}f''(x+ht)h \geqslant 0.$$