butions with means and covariance matrices characterized by (27-30).

To complete the proof of Theorem 1, we need to establish the tightness of $\ln L(h;\lambda)$ and $\ln L(h;\mu)$, viewed as random elements of the space $C\left[0,\overline{h}\right]^r$, as $n,p\to\infty$ so that $p/n\to c$. Formulae (25-26) and the facts that $S-p=O_p(1)$, and that $\Delta_p(z_{i0})=O_p(1)$ for i=1,...,r, where $O_p(1)$ are uniform in $h\in(0,\overline{h}]^r$, imply that for an arbitrarily small positive ε , there must exist B>0 such that $\Pr\left(\sup_{h\in(0,\overline{h}]^r}|\ln L(h;\lambda)|>B\right)<\varepsilon$ and $\Pr\left(\sup_{h\in(0,\overline{h}]^r}|\ln L(h;\mu)|>B\right)<\varepsilon$ for sufficiently large n and p. Since, as implied by Proposition 1, $\ln L(h;\lambda)$ and $\ln L(h;\mu)$ are continuous functions on $h\in[0,\overline{h}]^r$, $\sup_{h\in(0,\overline{h}]^r}|\ln L(h;\lambda)|=\sup_{h\in[0,\overline{h}]^r}|\ln L(h;\lambda)|$, and $\sup_{h\in(0,\overline{h}]^r}|\ln L(h;\mu)|=\sup_{h\in[0,\overline{h}]^r}|\ln L(h;\mu)|$, so that the tightness of $\ln L(h;\lambda)$ and $\ln L(h;\mu)$ follows. \square

Proof of theorem 2

To save space, we only derive the asymptotic power envelope for the relatively more difficult case of real-valued data and μ -based tests. According to the Neyman-Pearson lemma, the most powerful test of the null h = 0 against a point alternative $h = (h_1, ..., h_r)$ is the test which rejects the null when $\ln L(h; \mu)$ is larger than a critical value C. It follows from Theorem 1 that, for such a test to have asymptotic size α , C must be

$$C = \sqrt{W(h)}\Phi^{-1}(1-\alpha) + m(h), \qquad (63)$$

where

$$m(h) = \frac{1}{2} \sum_{i,j=1}^{r} \left(\ln \left(1 - \frac{h_i h_j}{c} \right) + \frac{h_i h_j}{c} \right) \text{ and}$$

$$W(h) = -\sum_{i,j=1}^{r} \left(\ln \left(1 - \frac{h_i h_j}{c} \right) + \frac{h_i h_j}{c} \right).$$

Now, according to Le Cam's third lemma and Theorem 1, under $h = (h_1, ..., h_r)$, $\ln L(h; \mu) \stackrel{d}{\to} N(m(h) + W(h), W(h))$. Therefore, the asymptotic power $\beta_{\mu}(h)$