Procesy stochastyczne Zestaw zadań nr 7

Zadanie 1. Pokaż, że następujące procesy są martyngałami

 $-W_t,$ $-W_t^2 - t,$ $-\exp\left(\sigma W_t - \frac{\sigma^2 t}{2}\right), \ \sigma > 0.$

Zadanie 2. Oblicz

- $\mathbb{P}(W_s < W_t),$
- $\mathbb{P}(0 < W_2 < W_3)$
- $-\mathbb{E}W_1W_2^2$
- $-\mathbb{E}(W_2^2(W_3-W_1)).$

Zadanie 3. Niech proces X będzie określony jako $X_t = tW_t - \int_0^t W_s ds$. Czy proces X jest martyngałem?

Zadanie 4. Wyznacz gęstość zmiennej losowej $X=W(s)+W(t),\ gdzie\ 0\leq s\leq t..$

Zadanie 5. Określmy następujący proces (most Browna)

$$B_t = W_t - tW_1, \ t \in [0, 1].$$

Sprawdź, czy jest on martyngałem i znajdź jego funkcję kowariancji.

Zadanie 6. Udowodnij, że zachodzi

$$\lim_{t \to \infty} \frac{W_t}{t} = 0 \ p.n.$$

Zadanie 7. Niech $W_t = (W_t^1, W_t^2)$, gdzie $\{W_t^1\}$, $\{W_t^2\}$ są niezależnymi procesami Wienera. Dla R>0 i t>0 znajdź $\mathbb{P}(||W_t||< R)$, gdzie $||\cdot||$ jest normą euklidesową w \mathbb{R}^2 . Oblicz $\lim_{t\to\infty} \mathbb{P}(||W_t||< R)$.

Zadanie 8. Niech $\{L_n\}$ będzie ciągiem niezależnych zmiennych losowych takich, że $\mathbb{P}(L_n=1)=\mathbb{P}(L_n=-1)$ dla każdego $n\in\mathbb{N}$. Określmy $h=\frac{1}{N}$ oraz proces $X_n=h^{\alpha}L_n$. Pokaż, że dla $\alpha\in(0,1/2)$ $\sum_{k=1}^{N}X_k\to 0$ w L_2 , natomiast dla $\alpha\in(1/2,\infty)$ $\sum_{k=1}^{N}X_k\to\infty$ w L_2 . Co dostajemy dla $\alpha=1/2$?

Zadanie 9. Udowodnij, że proces Winera ma własnośc Markowa.

Zadanie 10. Niech T_a będzie czasem, jaki upłynie zanim proces Wienera WW dotknie poziomu $a \in \mathbb{R}$.

- $Znajd\acute{z} \mathbb{P}(T_2 \leq 8)$.
- Wyznacz medianę T_2 .

Zadanie 11. Niech proces M będzie zadany jako $M_t = \sup_{0 \le s \le t} W(s)$. Wyznacz

- $\mathbb{P}(M_4 \leq 2),$
- gestość M_4 ,
- średnią oraz medianę M_4 .

Zadanie 12. Pokaż, że proces określony jako $Z_t = \sqrt{t}N(0,1)$ nie jest procesem Wienera.

Zadanie 13. Udowodnij, że dla prawie wszystkich trajektorii procesu Wienera, zachodzi

$$\sup_{t} W_t = +\infty \ \inf_{t} W_t = -\infty.$$

Zadanie 14. Procesem Wienera z dryftem μ i wariancją σ^2 nazywamy proces $X_t = \mu t + \sigma W(t)$.

- Wykaż, że proces X ma niezależne i stacjonarne przyrosty.
- Znajdź rozkład X(t).
- Sprawdź, czy proces X jest martyngałem.