CSE 431/531: Algorithm Analysis and Design (Fall 2024) Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

Data Compression and Huffman Code

2 Summary

Summary of Studies until Mid Term I

Rooted binary tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the

message

example

letters	a	b	c	$\mid d \mid$	$\mid e \mid$	
frequencies	18	3	4	6	10	

scheme 1

scheme 2

example

letters	a	b	c	d	$\mid e \mid$	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total = 89
scheme 2 length	1	3	3	3	3	total = 87
scheme 3 length	1	4	4	3	2	total = 84

 ${\it scheme}\ 1 \qquad \qquad {\it scheme}\ 2 \qquad \qquad {\it scheme}\ 3$

Q: What types of decisions should we make?

• Can we directly give a code for some letter?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

• Focus on the "structure" of the optimum encoding tree

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

 So we can irrevocably decide to make the two least frequent letters brothers.

• So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?

• So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?

A: Yes, though it is not immediate to see why.

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- ullet d_x the depth of letter x in our output encoding tree.

$$\sum_{x \in S} f_x d_x$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- ullet d_x the depth of letter x in our output encoding tree.

$$\sum_{x \in S} f_x d_x$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- ullet d_x the depth of letter x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- ullet d_x the depth of letter x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

In order to minimize

$$\sum_{x \in S} f_x d_x,$$

we need to minimize

$$\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x,$$

subject to that d is the depth function for an encoding tree of $S \setminus \{x_1, x_2\}$.

• This is exactly the best prefix codes problem, with letters $S\setminus\{x_1,x_2\}\cup\{x'\}$ and frequency vector f!

Def. The codes given the greedy algorithm is called the Huffman codes.

Def. The codes given the greedy algorithm is called the Huffman codes.

$\mathsf{Huffman}(S,f)$

- 1: **while** |S| > 1 **do**
- 2: let x_1, x_2 be the two letters with the smallest f values
- 3: introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$
- 4: let x_1 and x_2 be the two children of x'
- 5: $S \leftarrow S \setminus \{x_1, x_2\} \cup \{x'\}$
- 6: return the tree constructed

Algorithm using Priority Queue

```
\mathsf{Huffman}(S,f)
 1: Q \leftarrow \text{build-priority-queue}(S)
 2: while Q.size > 1 do
         x_1 \leftarrow Q.\text{extract-min}()
 3:
    x_2 \leftarrow Q.\text{extract-min}()
 4:
    introduce a new letter x' and let f_{x'} = f_{x_1} + f_{x_2}
 5:
         let x_1 and x_2 be the two children of x'
 6:
       Q.insert(x', f_{x'})
 7:
 8: return the tree constructed
```

Outline

Data Compression and Huffman Code

2 Summary

Summary of Studies until Mid Term I

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- Interval scheduling problem: schedule the job j^* with the earliest deadline

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- ullet Interval scheduling problem: schedule the job j^* with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- ullet Interval scheduling problem: schedule the job j^* with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future
- Huffman codes: make the two least frequent letters brothers

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is "safe" if there is always an optimum solution that "agrees with" the decision made according to the strategy.

 \bullet Take an arbitrary optimum solution S

- ullet Take an arbitrary optimum solution S
- \bullet If S agrees with the decision made according to the strategy, done

- ullet Take an arbitrary optimum solution S
- \bullet If S agrees with the decision made according to the strategy, done
- So assume S does not agree with decision

- ullet Take an arbitrary optimum solution S
- \bullet If S agrees with the decision made according to the strategy, done
- ullet So assume S does not agree with decision
- Change S slightly to another optimum solution S' that agrees with the decision

- Take an arbitrary optimum solution S
- \bullet If S agrees with the decision made according to the strategy, done
- ullet So assume S does not agree with decision
- ullet Change S slightly to another optimum solution S' that agrees with the decision
 - \bullet Interval scheduling problem: exchange j^* with the first job in an optimal solution

- ullet Take an arbitrary optimum solution S
- \bullet If S agrees with the decision made according to the strategy, done
- ullet So assume S does not agree with decision
- ullet Change S slightly to another optimum solution S' that agrees with the decision
 - \bullet Interval scheduling problem: exchange j^* with the first job in an optimal solution
 - Offline caching: a complicated "copying" algorithm

- ullet Take an arbitrary optimum solution S
- ullet If S agrees with the decision made according to the strategy, done
- ullet So assume S does not agree with decision
- ullet Change S slightly to another optimum solution S' that agrees with the decision
 - \bullet Interval scheduling problem: exchange j^* with the first job in an optimal solution
 - Offline caching: a complicated "copying" algorithm
 - Huffman codes: move the two least frequent letters to the deepest leaves.

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- ullet Interval scheduling problem: remove j^* and the jobs it conflicts with

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- \bullet Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- ullet Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial
- Huffman codes: merge two letters into one

Outline

Data Compression and Huffman Code

2 Summary

Summary of Studies until Mid Term I

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm
 - Topological Ordering problem: topological-sort algorithm (Queue or Stack)

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap
 - Huffman Code problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap
 - Huffman Code problem
 - Exercise problems (Lecture: Monday, 30th September)