

BLIND DIGITAL MODULATION IDENTIFICATION USING NEURAL NETWORKS & HIGHER ORDER STATISTICS

Amen Memmi

INTRODUCTION

- Blind digital modulation identification for 2*2 MIMO systems: to discriminate among different M-ary shift keying linear modulation schemes without any priori signal information
- Applications: cognitive radios, military surveillance...
- Neural networks NN (Pattern recognition NN) are used for classification digital modulations
- Used features for the NN: higher order statistical moments and cumulants of the received signal
- Matlab: Digital communication & neural networks toolboxes

SYSTEM MODEL

Simplified scheme of the communication system

SYSTEM MODEL

Scheme of the communication system

FEATURES

- Many recent works have shown that one of the best candidates for signal identification are higher order moments and cumulants of the received signal.
- Moments: $M_{km}(x) = E[x^k(x^*)^{k-m}]$ $\approx \frac{1}{N} \sum_{p=1}^{n} x^{k-m} (i) (x^*(i))^m$

• Cumulants:
$$C_{km}(x) = Cum \left[\underbrace{x,...,x}_{(k-m)times}\underbrace{x^*,...,x^*}_{mtimes}\right]$$

$$Cum [x, y, z, w] = E (xyzw) - E (xy) E (zw)$$
$$- E (xz) E (yw) - E (xw) E (yz)$$

Closed form expressions

TABLE I Some theoretical statistical moments and cumul FOR DIFFERENT MODULATION SCHEMES OF INTEREST [1], [5], [7]

	2-PSK	4-PSK	8-PSK	4-ASK	8-ASK	16-QAM	64-QAM
C20	1	0	0	1	1	0	0
M40	1	1	0	1.64	1.77	-0.67	-0.18
M41	1	0	0	1.64	1.77	0	0
M 42	1	1	1	1.64	1.77	1.32	1.34
C40	-2	1	0	-1.36	-1.24	-0.68	-0.62
C41	-2	0	0	-1.36	-1.24	0	0
C42	-2	-1	-1	-1.36	-1.24	-0.68	-0.62
M60	1	0	0	2.92	3.62	0	0
M61	1	-1	0	2.92	3.62	-1.32	0.38
M63	1	1	1	2.92	3.62	1.96	2.08
C60	16	0	0	8.32	7.19	0	0
C61	16	-4	0	8.32	7.19	2.08	1.8
C62	16	0	0	8.32	7.19	0	0
C63	16	4	4	8.32	7.19	2.08	1.8

NEURAL NETWORK DIAGRAM

- Feedforward NN Backpropagation scaled conjugate gradient
- 13 Input features
- 6 Hidden layers + 6 Output layers
- 6 Outputs or 6 classes: 2-PSK, 4-PSK, 8-PSK, 8-QAM, 16-QAM, 64-QAM
 Optimally 1 for the right class and 0 for others, but when decision is not fully sure, values between 0 and 1 and the maximum is the most probable class

NEURAL NETWORK TRAINING

• Example:

- Low noise: SNR = 15 dB (Useful signal \approx 30 times Noise)
- 13*(1000*6) input training matrix: 13 input features * 1000 samples for each of the 6 class

MONTE-CARLO SIMULATION N=10⁵ SAMPLES FOR THE SAME SNR=15 dB

Modulation	2-PSK	4-PSK	8-PSK	8-QAM	16-QAM	64-QAM
% successful identification	100	100	100	100	98,63	93,45

SNR EFFECT (NN TRAINED AT 15dB)

NN TRAINED AT 3dB

NN TRAINED AT -9dB

IDEAS

- Performance affected by SNR in training and in identification
- → idea: consider several NNs:
 - ✓ 2 NN depending on the SNR: High and low SNR
 - ✓ 3 NN: one, NN1, to detect modulation type as a first step, then use one of the two others NN2/NN3 to detect the order of the modulation

NN CASCADE TRAINED AT 3dB

