Homework 3 Report

0456008 翁慶年

1. implementation

use dynamic programming to try to find out the hidden states. for each timestep t,

for each state s,

find the most likely previous state coming to state s

times the emission probability for state s to emit the observation at timestep t for the last timestep, find the state with largest probability backtrack through the most likely previous state to get decoded hidden state sequence.

2. log

for the probability computation, we could use log functionality to help avoid underflow.

a * b -> log(a * b) -> log(a) + log(b)

we don't have zero value for each probability in this homework, so I didn't apply smoothing method for avoiding log(0).

3. results

for the input_10.txt

the log version and non-log version output the same results

for the input_200.txt

the log version outputs the same result as the provided output_200.txt, however the non-log version gets larger accuracy (0.64), I think it's only a coincidence...?