Introdução aos Modelos Biomatemáticos

Alessandro Margheri Faculdade de Ciências da Universidade de Lisboa Mestrado em Bionformática e Biologia Computacional 2008/09

October 10, 2008

Até agora	
	3
Equações autónomas	4
Equações não autónomas: factores exteriores	5
Equações não autónomas: factores exteriores	6
E.D.O. escalares de primeira ordem autónomas	7
	8
Solução do PVI $x'=rx, x(t_0)=x_0 \ldots \ldots \ldots \ldots \ldots \ldots$	9
Solução do PVI $x'=rx, x(t_0)=x_0 \ldots \ldots \ldots \ldots \ldots \ldots$	10
Duas questões naturais	11
Existência, unicidade e método de separação de variáveis	12
Existência, unicidade e método de separação de variáveis	13
Existência, unicidade e método de separação de variáveis	14
Solução explicita das equações de Malthus e logística	15
Consequências do Teorema	16
Crescimento e comportamento assimptótico das soluções	17
nterpretação Geométrica de $x'=f(x)$: recta das fases	18
Interpretação Geométrica de $x'=f(x)$: recta das fases	19
	20
	21
Retrato de fase da equação $x'=f(x)$	22
Gráficos qualitativos das soluções	23
Gráficos qualitativos das soluções	24
	25
Definição	26
Estabilidade dos equilíbrios	27
Equação Linearizada	28
Equação linearizada	29
	30
Equação Linearizada	31
Teorema de linearização	

Equações dependentes de parâmetros	33
Equações dependentes de parâmetros	34
Equações dependentes de parâmetros	35
Bifurcações	36
	37
Bifurcação sela-nó	38
Detecção de uma bifurcação	39
Detecção da bifurcação sela-nó	40
Diagrama de bifurcação	41
Diagrama de bifurcação	42

Até agora....

$$x' = rx$$
 Equação de Malthus

$$x' = rx(1 - \frac{x}{K})$$
 Equação logística

$$x' = r(x - E)(1 - \frac{x}{K})$$
 Efeito de Allee

Outros modelos:

$$x' = \frac{rx(K-x)}{K+ax}$$
, [F. Smith (1963)]

$$x' = rx\left(1 - \left(\frac{x}{K}\right)^{\theta}\right)$$
, [Ayala, Gilpin and Ehrenfeld (1973)]

$$x' = x(re^{1-\frac{x}{K}} - d)$$
. [Nisbet and Gurney (1982)]

2 / 42

Equações diferenciais (estabelecem uma relação entre uma função incógnita e a(s) sua(s) derivadas)

ordinárias (a função incógnita é função de uma variável independente "t")

escalares (e toma valores reais)

de primeira ordem (a derivada envolvida é só a primeira)

autónomas (o segundo membro não depende explicitamente da variável independente t)

3 / 42

Equações autónomas

Em cada equação a variação instantânea per capita do efectivo populacional depende só do tamanho da população e não do instante em que esse tamanho é atingido.

Estamos portanto a ignorar o impacto de factores exteriores à população (p. ex : *factores sazonais, imigração*) sobre o seu crescimento. A população é considerada como um sistema autónomo

Equações não autónomas: factores exteriores

Se, por exemplo, quisermos ter em conta os efeitos das estações no modelo de Malthus, podemos supor que a taxa intrínseca de crescimento r é uma função do tempo

$$t \to r(t)$$

periódica de período p, isto é,

$$r(t+p) = r(t), \quad p > 0 \quad \forall t \in \mathbf{R}$$

e chegar à equação:

$$N' = r(t)N$$

(ver ex. 4, 26 das TPS e protocolo da P)

5 / 42

Equações não autónomas: factores exteriores

Se para além dos factores sazonais quisermos ter também em conta o fenómeno da imigração, podemos alterar a equação anterior da seguinte forma:

$$N' = r(t)N$$
 + $\underbrace{I(t)}_{\mbox{taxa instantánea de imigração}}$

(ver protocolo da P)

Analogas alterações podem-se introduzir na equação logística e na equação que descreve o efeito de Allee

6 / 42

E.D.O. escalares de primeira ordem autónomas

(*)
$$x'(t) = f(x(t))$$
 (ou $x' = f(x)$)

 $x \to f(x)$ função real de variável real x definida num intervalo aberto J

Solução de (*) é uma função real de variável real $t \to x(t)$ que satisfaz (*) num intervalo aberto I

Muitas vezes consideraremos o seguinte Problema de Valores Iniciais:

$$(PVI) \begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$$

 $t_0 \in \mathbf{R}, \ \mathbf{x_0} \in \mathbf{I}$

Por exemplo, os PVIs relativos às equações de Malthus e logística são os seguintes:

$$\left\{ \begin{array}{l} x'=rx \\ x(t_0)=x_0 \end{array} \right., \quad \left\{ \begin{array}{l} x'=rx(1-\frac{x}{K}) \\ x(t_0)=x_0 \end{array} \right.$$

8 / 42

Solução do PVI x'=rx, $x(t_0)=x_0$

Se $x_0=0,$ então $x(t)=x_0=0, \quad t\in {\bf R}$ é solução do PVI correspondente

Se $x_0 > 0$

$$\frac{x'(t)}{x(t)} = r \iff (*) \quad \frac{d}{dt} \log x(t) = r$$

Integrando (*) entre t_0 e t, pelo Teorema Fundamental do Cálculo (TFC) obtemos:

$$\log x(t) - \log x(t_0) = \log \frac{x(t)}{\underbrace{x_0}_{x(t_0) = x_0}} = r(t - t_0)$$

9 / 42

Solução do PVI x'=rx, $x(t_0)=x_0$

Explicitando em relação a $\,x(t)\,$ e tendo em conta que $\,x(t_0)=x_0\,$ obtemos,

$$x(t) = x_0 e^{r(t-t_0)}, \quad t \in \mathbf{R},$$

que é (a única) solução do PVI considerado.

De facto

$$x(t) = x_0 e^{r(t-t_0)}$$

é solução do PVI considerado $\forall x_0 \in \mathbf{R}$. (o que muda nas passagens anteriores se $x_0 < 0$?)

O método utilizado chama-se

método de separação de variáveis.

Duas questões naturais

No caso geral

 \blacksquare que condições sobre f(x) garantem que o PVI (PVI) $\left\{ \begin{array}{l} x'=f(x) \\ x(t_0)=x_0 \end{array} \right.$ admite solução única ?

Não é dificil ver que o PVI $\left\{ \begin{array}{l} x' = \sqrt{|x|} \\ x(0) = 0 \end{array} \right.$

admite a solução $x(t)=0 \quad \forall t \in \mathbf{R}$ e a solução

 $x(t) = \left\{ \begin{array}{ll} 0 & t \leq 0 \\ \frac{t^2}{4} & t > 0 \end{array} \right. \Rightarrow \text{há geração expontânea!}$

■ de que forma essa solução pode ser determinada ?

11 / 42

Existência, unicidade e método de separação de variáveis

Se f tem derivada contínua em J então para todo o $t_0 \in \mathbf{R}$ e $x_0 \in \mathbf{R}$ o problema de valores iniciais

 $(PVI) \begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$

admite solução única.

Se $f(x_0)=0$ então a única solução de (PVI) é $x(t)=x_0$ (solução <u>estacionária</u> ou <u>constante</u>).

Neste caso x_0 diz-se um <u>equilíbrio</u> da equação $x^\prime = f(x)$

Existência, unicidade e método de separação de variáveis

Se $f(x_0) \neq 0$, podemos separar as variáveis na nossa equação da seguinte forma:

$$(*) \quad \frac{x'(t)}{f(x(t))} = 1$$

Se
$$H(x) = P\left(\frac{1}{f(x)}\right)$$
, (isto é $H'(x) = \frac{1}{f(x)}$)

$$\underbrace{\frac{d}{dt}(H(x(t)))}_{\text{regra da cadeia}} = \underbrace{\frac{1}{f(x(t))}x'(t)}_{\text{regra da cadeia}} = \underbrace{\frac{1}{f(x(t))}}x'(t)$$

Logo, integrando entre t_0 e t os dois membros de (*), pelo TFC obtemos

$$H(x(t)) - H(x(t_0)) = t - t_0$$

13 / 42

Existência, unicidade e método de separação de variáveis

Concluimos que a única solução x=x(t) do (PVI) satisfaz para todo o $t\in I$ a equação:

$$(**)$$
 $H(x) = H(x(t_0)) + t - t_0$

Chegar a uma solução explícita x=x(t) é equivalente a explicitar (**) em ordem a x

Embora teoricamente isso seja sempre possível, a sua implementação prática é restrita a casos muito simples.

14 / 42

Solução explicita das equações de Malthus e logística

No caso dos PVIs relativos às equações de Malthus e logística

$$\begin{cases} x' = rx \\ x(t_0) = x_0 \end{cases}, \quad \begin{cases} x' = rx(1 - \frac{x}{K}) \\ x(t_0) = x_0 \end{cases}$$

o método de separação de variáveis permite encontrar explicitamente as respectivas (únicas) soluções:

$$x(t) = x_0 e^{r(t-t_0)}, (*) x(t) = \frac{Kx_0}{x_0 + (K - x_0)e^{-r(t-t_0)}}$$

O ex. 7 das TPs mostra como chegar a (*)

Consequências do Teorema

- \blacksquare Os gráficos de duas soluções distintas não se podem intersectar no plano (t,x).
- \blacksquare uma solução <u>não estacionária</u> $t \to x(t)$ de

x' = f(x)

é tal que

 $x'(t) \neq 0$

para todo o $t \in I$.

16 / 42

Crescimento e comportamento assimptótico das soluções

Suponhamos (por simplicidade) $J = \mathbf{R}$ e seja x(t) uma solução da equação

$$(*) x'(t) = f(x(t))$$

crescente no seu domínio $I =]\alpha, \beta[$. Então:

- \blacksquare ou $\lim_{t\to\beta} x(t) = +\infty$ ($\beta \in \mathbf{R}$ ou $\beta = +\infty$)
- \blacksquare ou $\lim_{t\to+\infty} x(t) = \overline{x} \in \mathbf{R}$

onde \overline{x} é um equilíbrio de (*)

Podem-se formular resultados análogos para $t \to \alpha$ (e para x(t) decrescente no seu domínio)

17 / 42

Interpretação Geométrica de x' = f(x): recta das fases

As informações qualitativas obtidas com o resultado precedente podem ser representadas geometricamente de uma forma simples associando à equação um campo vectorial sobre uma recta.

Interpretação Geométrica de x' = f(x): recta das fases

 $t \to x(t), \ t \in I$, pode ser vista como a posição no instante t de uma partícula que se move ao longo de uma recta onde foi fixado um referencial com coordenada x.

Neste caso, x'(t) representa a velocidade da partícula no instante t.

Se $t \to x(t), \ t \in I$, é solução de

$$x'(t) = f(x(t))$$

a velocidade no ponto x(t) é dada por f(x(t)) e representa-se por um vector de origem x(t) e extremidade x(t) + f(x(t)).

19 / 42

Interpretação Geométrica de x' = f(x): recta das fases

Em particular, se

$$x_0 = x(t_0), \quad t_0 \in I,$$

$$x'(t_0) = f(x(t_0)) = f(x_0) \implies$$

<u>a velocidade da partícula</u> no ponto x_0 é o vector $f(x_0)$ de origem x_0 e extremidade $x_0 + f(x_0)$.

20 / 42

A cada $x \in \mathbf{R}$ fica associado o vector (aplicado em x)

O sentido (direita/esquerda) para onde aponta o vector f(x) depende do sinal da função f no ponto x.

A função

$$x \to f(x)$$

diz-se campo vectorial em R

Retrato de fase da equação x' = f(x)

O retrato de fase de x'=f(x) é uma representação estilizada do comportamento qualitativo das soluções de x'=f(x)

No plano (x, x') desenha-se o gráfico da função x' = f(x).

A seguir, sobre o eixo dos x (recta das fases) assinalam-se os equilíbrios (que correspondem aos zeros de f) e desenham-se as setas do campo em alguns pontos representativos (um para cada intervalo onde f tem sinal constante).

De facto, nesses pontos será suficiente desenhar uma seta que aponte no mesmo sentido do vector (para a direita se f é positiva no ponto, para a esquerda se f é negativa no ponto)

22 / 42

Gráficos qualitativos das soluções

O gráfico de x' = f(x) no plano (x, x') permite também um esboço qualitativo no plano (t, x) do gráfico das soluções (séries temporais) x = x(t) da equação

$$x'(t) = f(x(t))$$

Com efeito, se $x(t_0)=x_0$, o declive da recta tangente ao gráfico de x=x(t) no ponto $(t_0,x(t_0))$ será

$$x'(t_0) = f(x(t_0)) = f(x_0).$$

23 / 42

Gráficos qualitativos das soluções

Se, por exemplo, $f(x_0) > 0$ sabemos que:

- (a) $t \to x(t)$ é crescente no seu domínio (x = x(t) desloca-se para a direita ao aumentar do tempo t sobre a recta das fases)
- (b) o declive da recta tangente ao gráfico da solução x=x(t) no ponto (t,x(t)) será dado pelo valor f(x(t))

Juntando (a) e (b) consegue-se esboçar gráfico de x=x(t)

O argumento anterior esta ligado a interpretação geométrica da equação x'=f(x) como campo de direcções no plano (t,x) (veremos nas aulas P como associar à equação x'=f(t,x) um campo de direcções e utilizaremos o programa 'dfield' para o representar).

Estabilidade dos equilíbrios

A equação logística mostra que o comportamento das soluções dessa equação com valores iniciais próximos dos equilíbrios dependem do equilíbrio considerado.

Em geral, a evolução das soluções com valores iniciais próximos dos equilíbrios é usada para dar uma classificação dos próprios equilíbrios.

25 / 42

Definição

Um equilíbrio x_0 da equação x'=f(x) diz-se <u>(localmente) estável</u> se todas as soluções x(t) com condições iniciais 'suficientemente próximas' de x_0 ficam 'próximas' de x_0 para todo o $t \geq t_0$.

Se para além disso essas soluções são tais que

$$\lim_{t \to +\infty} x(t) = x_0$$

então x_0 diz-se (localmente) assimptóticamente estável

Um equilíbrio diz-se instável se não for estável

26 / 42

Estabilidade dos equilíbrios

Juntando a definição anterior com as noções adquiridas sobre o estudo qualítativo da e.d.o. x' = f(x), temos o seguinte:

Teorema Seja x_0 um equilíbrio de x' = f(x).

Se existir $\delta > 0$ tal que

$$(x - x_0)f(x) < 0 \quad ((x - x_0)f(x) > 0)$$

para todo o

$$x \in]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}]$$

então x_0 é (localmente) assimptóticamente estável (instável)

Equação Linearizada

Há outra forma de determinar a estabilidade de um equilíbrio x_0 de x' = f(x) que pode ser generalizada para sistemas e que, no caso escalar, mostra o significado dinâmico de $f'(x_0)$.

Seja x_0 um equilíbrio da equação x' = f(x)

Seja $y_0 \in \mathbf{R}$ uma perturbação de x_0 (i.e., y_0 é uma condição inicial 'próxima' de x_0) e seja y(t) a solução do correspondente PVI

$$\begin{cases} x' = f(x) \\ x(t_0) = y_0 \end{cases}$$

Definimos desvio de y(t) do equilíbrio $x_0 \quad u(t) = y(t) - x_0$

28 / 42

Equação linearizada

Da definição de u(t), segue-se que

$$y(t) = x_0 + u(t) \rightarrow x_0 \iff u(t) \rightarrow 0$$

isto é

 x_0 é um equilíbrio localmente assimptoticamente estável para $x'=f(x)\iff u(t)\to 0$ 29 / 42

Equação Linearizada

Observamos que de

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

para $x-x_0$ 'pequeno' segue-se

$$u'(t) \approx f'(x_0)u(t)$$

Logo, se u(t) for 'pequeno', é razoável pensar que o seu comportamento (e logo o comportamento de y(t)) possa ser determinado analizando a solução z(t) da equação linear

$$z' = f'(x_0)z$$
 (equação linearizada em x_0)

que satisfaz $z(0) = u(0) = y_0 - x_0$.

Equação Linearizada

Temos

$$z(t) = e^{f'(x_0)t} z_0, \quad z_0 \in \mathbf{R}$$

Logo

- z = 0 é assimptoticamente estável se $f'(x_0) < 0$
- $\blacksquare z = 0$ é instável se $f'(x_0) > 0$

31 / 42

Teorema de linearização

Se $f'(x_0) \neq 0$ então o equilíbrio x_0 de x' = f(x) tem as mesmas propriedades de estabilidade do equilíbrio z = 0 para a equação linearizada, isto é:

- lacktriangle se $f'(x_0) < 0$ então x_0 é localmente assimptóticamente estável
- se $f'(x_0) > 0$ então x_0 é instável

Para além disso uma perturbação y(t) de x_0 tende exponencialmente para o (afasta-se exponencialmente do) equilíbrio x_0 se $f'(x_0) < 0$ ($f'(x_0) > 0$):

$$y(t) = x_0 + u(t) \approx x_0 + e^{f'(x_0)t}(y_0 - x_0)$$

32 / 42

Equações dependentes de parâmetros

Em geral, tem interesse o estudo de como se altera o crescimento de uma população isolada quando o sistema é sujeito a perturbações exteriores.

Essas perturbações podem ser causadas, por exemplo, pela intervenção humana sobre o sistema e, em geral, dependem de vários parâmetros (alguns dos quais podem, em princípio, ser controlados).

Equações dependentes de parâmetros

Do ponto de vista matemático, isto traduz-se em perceber como se altera a dinâmica de uma EDO quando a função f(x) é perturbada e a sua perturbação depende de alguns parâmetros. Por exemplo:

uma população de peixes que evoluiria de acordo com a lei logística e que é sujeita à pesca:

$$x' = f_E(x) = rx(1 - \frac{x}{K}) - Ex$$

onde o parâmetro E diz-se o *esforço de pesca* (fishing effort) e pode ser controlado de forma a satisfazer certos objectivos (ver Ex. 13 das TPs)

34 / 42

Equações dependentes de parâmetros

Quando o segundo membro de uma equação diferencial depende de um parâmetro, digamos $r \in \mathbf{R}$, ao variar de r obtém-se uma família de equações diferenciais:

$$x' = f_r(x) =$$

$$= f(x,r)$$

onde $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ e, ao variar de r, o gráfico de $x \to f_r(x)$ varia de forma contínua.

35 / 42

Bifurcações

A dinâmica da equação

$$x' = f(x, r)$$

depende de r.

Se ao variar de r houver uma alteração abrupta na dinâmica da equação diferencial, diz-se que essa equação sofreu uma bifurcação.

Em geral, ao variar do parâmetro $\,r\,$ pode verificar-se uma variação no número ou na estabilidade dos equilíbrios da equação

Os valores do parâmetro ultrapassando os quais se dá a ocorrência anterior chamam-se valores de *bifurcação*

37 / 42

Bifurcação sela-nó

Se ao variar do parâmetro dois equilíbrios colidem e desaparecem, a bifurcação correspondente chama-se <u>bifurcação sela-nó</u>. Trata-se da bifurcação que se encontra mais frequentemente (mas não é a única).

Exemplo: $x' = f(x, r) = r - x^2$

38 / 42

Detecção de uma bifurcação

Um equilíbrio x_0 da equação x'=f(x,r) vai depender de r e será denotado por $x_0(r)$. Pode-se provar que:

uma condição necessária para ter uma variação do número de equilíbrios é que exista um r_0 tal que o correspondente equilíbrio $x_0=x_0(r_0)$ da equação $x'=f_{r_0}(x)$ satisfaça

$$f_x(x_0, r_0) = 0.$$

Detecção da bifurcação sela-nó

Em particular: se o ponto (x_0, r_0) é um ponto de bifurcação sela-nó, então:

$$f(x_0, r_0), \qquad f_x(x_0, r_0) = 0.$$

Portanto para encontrar os pontos onde pode ocorrer uma bifurcação-sela-nó resolve-se o sistema:

$$\begin{cases} f(x,r) = 0\\ f_x(x,r) = 0 \end{cases}$$

De facto a condição anterior serve para encontrar os pontos onde pode ocorrer uma bifurcação qualquer (não necessariamente a bifurcação sela-nó).

40 / 42

Diagrama de bifurcação

Consideramos a equação

$$x' = f_r(x) = f(x, r).$$

Para $r=r_0$ fixado, os pontos que satisfazem

$$f(x, r_0) = 0$$

são os equilibrios da equação

$$x' = f_{r_0}(x) = f(x, r_0)$$

41 / 42

Diagrama de bifurcação

Ao variar de r, as soluções da equação

$$f(x,r) = 0$$

descrevem um lugar geométrico (uma curva) no plano (r, x).

Chama-se diagrama de bifurcação da equação x' = f(x, r) à curva

$$f(x,r) = 0$$

com os ramos que correspondem a equilíbrios instáveis desenhados em tracejado e os ramos que correspondem a equilíbrios estáveis desenhados com um traço contínuo.