Cálculo Integral En Una Variable

José Juan Hernández Cervantes

Julio-Diciembre 2017

Chapter 1

Propiedades de los Números Reales

1.1 Axioma Del Supremo.

Todo subconjunto no vacío de \mathbb{R} acotado superiormente tiene supremo.

Definición: Supremo.

Sea $A \supseteq \mathbb{R}$ $(A \neq \emptyset)$ un conjunto acotado superiormente. Diremos que \bar{x} es el supremo de A (y lo denotamos por SupA) si cumple:

- 1. \bar{x} es cota superior de A.
- 2. Si z es cota superior de A, ocurre $\bar{x} \leq z$.

Teorema: Unicidad del supremo.

Si \bar{x} es el supremo de A, \bar{x} es único.

Demostración

Supongamos $\bar x$ y $\bar y$ supremos de A. Entonces, por definición de supremo ocurre: $\bar x \le \bar y \land \bar y \le \bar x$ $\therefore \bar x = \bar y$ Q.E.D

1.2 Propiedad Arquimedeana.

Para todo par de números $x, y \in \mathbb{R}$ con $x > 0 \exists n \in \mathbb{N}$ tal que nx > y.

Demostración: por reducción a lo absurdo.

Supongamos $\forall n \in \mathbb{N}, nx \leq y$. Si $y \leq 0$ entonces $x \leq 0$, contradicción con la hipótesis x > 0. Si y > 0, sea $A = \{nx : n \in \mathbb{N}\}$. Trivialmente $A \subseteq \mathbb{R}$ y $A \neq \emptyset$ pues $x \in A$, además A está acotado superiormente por y. Invocando el axioma del supremo, existe $\bar{x} = SupA$. Como $x > 0 \Rightarrow -x < 0 \Rightarrow \bar{x} - x < \bar{x}$. Con lo que $\bar{x} - x$ no es cota superior de A. Entonces existe a tal que $\bar{x} - x < a$.

Esto es, $\exists \ n \in \mathbb{N}$ tal que $\bar{x} - x < xn = a$. Equivalentemente $\bar{x} < (n+1)x$. Como $(n+1)x \in A$, llegamos a una contradicción con la definicion de supremo. $\therefore \ \exists \ n \in \mathbb{N}$ tal que $nx > y \ \forall \ x > 0, y \in \mathbb{R}$. Q.E.D

1.3 Principio Del Buen Orden.

Todo subconjunto no vacío de \mathbb{N} tiene elemento mínimo. $\forall A \subseteq \mathbb{R}, \ A \neq \emptyset, \ \exists \ a_0 : a_0 \leq a \ \forall a \in A.$

1.4 Principio De Inducción Matemática Fuerte.

Si $A=\{P(j): j\in \mathbb{N}\}$ es una colección de enunciados con las siguientes propiedades:

- 1. P(1) es verdadero.
- 2. P(n+1) es verdadero siempre que $P(n), P(n-1), \dots, P(2), P(1)$ sean verdaderos.

Entonces P(j) es verdadero $\forall j \in \mathbb{N}$

1.4.1 El principio de inducción matemática fuerte implica el principio de buen orden.

Demostración: por reducción a lo absurdo.

Supongamos que existe $A \subseteq \mathbb{N}, A \neq \emptyset$, tal que no existe $a_0 \in A$ con $a_0 \leq a \ \forall \ a \in A$. Sea $B = \{n \in \mathbb{N} : n \notin A\}$. Entonces $1 \notin A$, pues $1 \leq n \ \forall \ n \in \mathbb{N}$. Se sigue que $1 \in B$ $(B \neq \emptyset)$. Supongamos $k \in B$, entonces $1,2,...,k-1,k \notin A$. Luego $k+1 \notin A$, de lo contrario k+1 sería el elemento más pequeño de A. Por el Principio De Inducción Matemática Fuerte tenemos $B = \mathbb{N}$, como $A \subseteq \mathbb{N} = B$ ocurre $A = \emptyset$. Contradicción con la hipótesis.

 $\therefore \ \forall \ A \subseteq \mathbb{N} \ y \ A \neq \emptyset \ \exists \ a_0 : a_0 \le a \ \forall \ a \in A.$ Q.E.D

1.4.2 El principio de buen orden implica el principio de inducción matemática fuerte.

Demostración: por reducción a lo absurdo.

Supongamos $P = \{P(n)/n \in \mathbb{N}\}$ es un conjunto de propiedades tales que:

- 1. P(1) es verdadero.
- 2. Siempre que para un $K \in \mathbb{N}, P(K)$ es verdadero, entonces P(K+1) es verdadero.

Supongamos falso que P(n) es verdadero $\forall n \in \mathbb{N}.(*)$

Entonces existe un $r \in \mathbb{N}$ tal que P(r) es falso.

Sea $A = \{K \in \mathbb{N} : P(K) \text{ es falso }\}$ luego $A \subseteq \mathbb{N}$ $y \in A \neq \emptyset$, ya que $x \in A$.

Por el principio del buen orden, existe $k_0 \in \mathbb{N}$ tal que $k_0 \leq k \ \forall \ k \in A$.

Observemos que $k_0 > 1$, pues por hipótesis P(1) es verdadero, entonces $k_0 - 1 \in$ $\mathbb{N} \ y \ k_0 - 1 < k_0 \ \text{luego} \ k_0 - 1 \not\in A.$

Entonces $P(k_0-1)$ es cierto, luego, por hipótesis, $P(k_0)$ es verdadero. Contradicción, pues $k_0 \in A$.

Llegamos a una contradicción al suponer falso (*).

1.5 Teorema Del Binomio De Newton.

Para cualesquiera $a,b\in\mathbb{R}\wedge\forall\ n\in\mathbb{N}$ se tiene: $(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}$ Demostración: Por inducción sobre n.

 $P(0): (a+b)^0 = 1.$

Por otro lado, $\sum_{k=0}^{0} \binom{0}{k} a^k b^{0-k} = \binom{0}{0} a^0 b^0 = 1$. $\therefore P(0)$ es verdadero.

Supongamos P(r) verdadero, es decir $(a+b)^r = \sum_{k=0}^r {r \choose k} a^k b^{r-k}$. Por demostrar

$$P(r+1)$$
 verdadero.
 $(a+b)^{k+1} = (a+b)^k (a+b) = \sum_{k=0}^r {r \choose k} a^k b^{r-k} (a+b)$