Problem 1. In the context of our proof of the zig-zag lemma. Prove that $\ker(\phi_*) \subset \operatorname{Im}(\partial_*)$ and $\ker(\psi_*) \subset \operatorname{Im}(\phi_*).$

Problem 2. Let $A: S^n \to S^n$ be the antipodal map. What is $A_*: H_n(S^n) \to H_n(S^n)$?

Problem 3. Give a geometric description of the boundary map in the Mayer-Vietoris sequence.

Problem 4. Using the Mayer-Vietoris sequence, compute the homology of the n-Sphere, $H_*(S^n)$.

Proof. We'll start by computing the reduced homology of S^0 and proceed by induction. The zeroth reduced homology group is the one less than the number of connected components copies of Z. Since S^0 is two disjoint points we have that $\widetilde{H}_0(S^0) \cong \mathbb{Z}$.

Next assume that $\widetilde{H}_{n-1}(S^{n-1}) \cong \mathbb{Z}$ and is zero elsewhere. Then consider S^n as the union of a point * and D^n enlarging them both slightly. Their intersection will be homotopy equivalent to S^{n-1} . Then using the Mayer-Vietoris sequence we have the long exact sequence

$$\cdots \longrightarrow H_n(S^{n-1}) \longrightarrow H_n(*) \oplus H_n(D^n) \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^{n-1}) \longrightarrow \cdots$$

All other portions of the sequence be either zero or $H_p(S^n)$ sandwiched between two zeros forcing it to be zero. Rewrite the above sequence with the portions we know and we get

$$0 \longrightarrow H_n(S^n) \longrightarrow (H_{n-1}(S^{n-1}) \cong \mathbb{Z}) \longrightarrow 0$$

Which implies that $\widetilde{H}_n(S^n) \cong \widetilde{H}_{n-1}(S^{n-1}) \cong \mathbb{Z}$. Therefore the homology of S^n is

$$H_p(S^n) = \begin{cases} \mathbb{Z} & p = n, 0\\ 0 & \text{else} \end{cases}$$

except for S^0 which has $H_0(S^0) = \mathbb{Z}^2$ and 0 elsewhere.

Problem 5. Let $T^2 = S^1 \times S^1$ be the torus, and $h: S^1 \to T^2$ an embedding of the unit circle into T^2 . Form the space

$$X = T^2 \cup_h D^2$$

by attaching a 2-cell D^2 to T^2 via the map h. Compute the homology of X. Note that there is more than one case.