TD1: Quelques éléments d'algèbre matricielle

Exercice 1. (Trigonalisation / diagonalisation)

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$.

- 1. Énoncer le théorème de décomposition de Schur.
- 2. Montrer que A est normale si et seulement si il existe une matrice unitaire U et une matrice diagonale D contenant les valeurs propres de A telles que $A = UDU^*$. On pourra calculer les éléments diagonaux de TT^* et T^*T où T est la matrice triangulaire supérieure telle que $A = UTU^*$ avec U unitaire.
- 3. Montrer que si A est hermitienne, elle est diagonalisable dans une base de vecteurs propres orthogonaux et que ses valeurs propres sont réelles.
- 4. Montrer que si A est unitaire, elle est diagonalisable dans une base de vecteurs propres orthogonaux et que ses valeurs propres ont pour module 1.

Exercice 2. (Valeurs propres du laplacien)

On veut tout d'abord déterminer les couples (λ, v) , avec $\lambda \in \mathbb{R}$ et $v \in C^2([0, 1], \mathbb{R})$ non identiquement nulle, solutions de

(1)
$$\begin{cases} -v''(x) = \lambda v(x) \text{ sur }]0, 1[\\ v(0) = v(1) = 0 \end{cases}$$

- 1. Montrer que si (λ, v) satisfait (1) alors nécessairement $\lambda > 0$ (suggestion : multiplier l'équation par v puis intégrer sur [0,1]). On posera alors $\lambda = \omega^2$ avec $\omega \neq 0$.
- 2. Montrer que les solutions sont de la forme :

$$\lambda = (k\pi)^2, v(x) = C\sin(k\pi x), \ k \in \mathbb{N}^*, \ C \in \mathbb{R}^*.$$

Soit $N \geq 3$. On considère $A \in \mathcal{M}_N(\mathbb{R})$, la matrice de discrétisation du laplacien 1D :

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

- 3. Montrer que, pour tout $1 \le k \le N$, le vecteur $V_k = \left(\sin\left(k\pi\frac{i}{N+1}\right)\right)_{1 \le i \le N}$ est un vecteur propre de A.
- 4. Montrer que les valeurs propres de A sont :

$$\lambda_k = 4 \left(\sin \left(\frac{k \pi}{2(N+1)} \right) \right)^2, \quad 1 \le k \le N$$

5. En déduire le rayon spectral de A.

Exercice 3. (Méthode de Gauss)

Soit

$$A = \begin{pmatrix} 2 & 1 & 0 & 4 \\ 4 & 1 & -2 & 8 \\ -4 & -2 & 3 & -7 \\ 0 & 3 & -12 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 2 \\ -9 \\ 2 \end{pmatrix} \text{ et } X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

- 1. Écrire le système linéaire AX = b, noté (S). On note $A^{(1)} = A$ et $b^{(1)} = b$.
- 2. Résoudre par la méthode de Gauss le système linéaire (S). Pour chaque étape k $(k \in \{1,2,3\})$ de l'élimination,
 - a) préciser la matrice $A^{(k+1)}$ et le second membre $b^{(k+1)}$ tels que (S) s'écrit sous la forme $A^{(k+1)}X = b^{(k+1)}$,
 - b) donner la matrice $M^{(k)}$ telle que $A^{(k+1)} = M^{(k)}A^{(k)}$.
 - c) calculer $L^{(k)} = (M^{(k)})^{-1}$.
- 3. Donner la matrice triangulaire inférieure L avec des 1 sur la diagonale et la matrice triangulaire supérieure U telles que A = LU. En déduire la valeur de $\det(A)$.

Exercice 4. Soit $n \in \mathbb{N}^*$. On définit $E_{ij} \in \mathcal{M}_n(\mathbb{R})$ la matrice avec un 1 dans la position (i,j) et 0 partout ailleurs. On définit ensuite $V_{ij}(\lambda) = I + \lambda E_{ij}$, $\lambda \in \mathbb{R}$, i > j.

- 1. Exprimer le produit $E_{ij} E_{kl}$ en fonction de E_{il} .
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Quels sont les résultats des opérations $V_{ij}(\lambda)A$ et $AV_{ij}(\lambda)$?
- 3. Soit $\lambda, \lambda' \in \mathbb{R}$ et i, j, k tels que i > j et k > j. Quelle est la forme de la matrice $V_{ij}(\lambda)V_{kj}(\lambda')$?
- 4. En déduire l'expression de $(V_{ij}(\lambda))^{-1}$
- 5. Soit $B^{(j)} \in \mathcal{M}_n(\mathbb{R})$ définie par $B^{(j)} = \sum_{i=j+1}^n b_i^{(j)} E_{ij}$ et $L^{(j)} = I + B^{(j)}$.
 - a) Montrer que $B^{(j)}B^{(k)}=0$ pour tout $j \leq k$.
 - b) En déduire l'expression de $L^{(j)}L^{(k)}$ pour tout $j \leq k$, puis celle de $(L^{(j)})^{-1}$.