Appendix S6: results after SWARM clustering. Supplementary Materials of "Finding fungi in a needle stack: high alpha and low beta-diversity of foliar endophytic Ascomycetes revealed by metabarcoding in Corsican pine forests".

Adrien Taudiere*

CEFE - Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier: France

November 9, 2017

Abstract

Plant leaves host highly diverse communities of foliar endophytic fungi (FEF). Compared to the other compartments of the plant microbiome, FEF diversity is poorly known. We here document the communities of FEF associated with the endemic Corsican black pine *Pinus nigra* subsp. *laricio* at three sites across its natural range and examine the effect of tree age and light exposure on FEF composition. Metabarcoding using next-generation sequencing provided 8243608 Ascomycota ITS2 sequences clustered into 642 FEF operational taxonomic units (OTUs). Site is the main determinant to explain the diversity and composition of FEF communities. Tree age somewhat affects FEF community composition, whereas needle location (shade vs canopy) has no effect. Results are robust against the various options of the bioinformatic pipeline specifically developed. This study provides the first picture of FEF diversity in a Mediterranean island and underlines the complementarity of forest massifs for fungal conservation.

Key words: foliar endophyte; fungi; community ecology; metabarcoding; Cyclaneusma minus, Pinus nigra subsp. laricio, Mediterranean, endemism, environmental sequencing

To set the filter parameter, see directly section 'Choice of filter parameters' 2.1.

To read a summary of this appendix, see directly section 'Summary' 7.

^{*}adrien.taudiere@zaclys.net

Contents

1	Intr	Introduction									
	1.1	R requirements	4								
	1.2	System and session informations	4								
	1.3	Some usefull functions	6								
_			_								
2	Dat		6								
	2.1	Choice of filter parameters	6								
	2.2	Load and convert loading	6								
		2.2.1 Otu table	6								
		2.2.2 Taxonomy	6								
		· · · · · · · · · · · · · · · · · · ·	7								
		2.2.4 Representative sequences	7								
		2.2.5 Samples information	8								
		2.2.6 Create the phyloseq object	8								
		2.2.7 Caracteristics of the phyloseq data	8								
	2.3	Filter sample by number of sequences	8								
	2.4	Filter OTUs by number of samples	8								
	2.5	Filter OTUs by number of sequences	10								
	2.6	Summary of filtration workflow									
3	Sim	1	1								
	3.1	Number of sequences and OTUs by samples									
	3.2	Number of sequences and samples for each OTUs	12								
	3.3	Distribution of sequences in the taxonomy	14								
	3.4	Focus on the 30 more abundant OTUs (number of sequences)	14								
	3.5	Focus on the 30 more frequent OTUs (number of samples)	16								
4	NT	and an effective of a second of the control of the									
4		mber of sequences and OTUs in function of putative ecology (using FUNGuild ware; Nguyen et al, 2015)	L8								
	SOIT	ware, Nguyen et al, 2013)	.0								
5	Dis	tribution of fungal endophytic alpha-biodiversity	9								
		Local diversity = Diversity by sites	19								
	5.2	Diversity by age of tree									
	5.3	Diversity by elevation of the sample									
	5.4	Which factor affect diversity?									
	0.1	, in the factor and the factor of the factor									
6	Eff€	ect of site, age and elevation on fungal endophytic beta-diversity	28								
	6.1	Venn diagramm	28								
	6.2	Venn diagramm for OTUs present in at least 3 samples	28								
	6.3	Ordination	28								
	6.4	Permanova on sites, host ages and elevation	35								
	6.5	Permanova on sites, host ages and individual trees	35								
	6.6		36								
	6.7	· · · · · · · · · · · · · · · · · · ·	40								
	•		40								
		· · · · · · · · · · · · · · · · · · ·	43								
	6.8		43								
	_										

7	Sun	n <mark>mary</mark>	46
	7.1	Filtering summary	46
	7.2	Alpha diversity	46
	7.3	Beta diversity	47

1 Introduction

This supplementary material presents the ecological analysis of endophytic fungal communities in *Pinus nigra* subsp. *laricio*, an endemic species of Corsica. The dataset analysed here was computed using SWARM clustering (see main article and Sup. Mat. 1 for more details).

1.1 R requirements

First, set the working directory. In this directory, there is data folder and a R script "functions_for_phyloseq.R".

```
setwd("~/Nextcloud/GitHub/FEF_paper/")
```

Then, we may need to install packages.

1.2 System and session informations

This document was created with R version 3.4.2 (2017-09-28) on Linux the 2017-11-09 15:03:33. See below for more information.

```
## R version 3.4.2 (2017-09-28)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 16.04.3 LTS

## Matrix products: default

## BLAS: /usr/lib/libblas/libblas.so.3.6.0

## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
```

```
## locale:
                                         LC_NUMERIC=C
LC_COLLATE=fr_FR.UTF-8
##
    [1] LC_CTYPE=fr_FR.UTF-8
    [3] LC TIME=fr FR.UTF-8
##
    [5] LC_MONETARY=fr_FR.UTF-8
                                         LC_MESSAGES=fr_FR.UTF-8
    [7] LC_PAPER=fr_FR.UTF-8
[9] LC_ADDRESS=fr_FR.UTF-8
##
                                         LC_NAME=fr_FR.UTF-8
                                         LC_TELEPHONE=fr_FR.UTF-8
##
## [11] LC_MEASUREMENT=fr_FR.UTF-8
                                        LC_IDENTIFICATION=fr_FR.UTF-8
##
## attached base packages:
## [1] parallel stats4
                                         stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
                                     lattice_0.20-35
gridExtra_2.2.1
    [1] vegan_2.4-4
[3] permute_0.9-4
##
##
##
    [5] venneuler_1.1-0
                                      rJava_0.9-8
                                     data.tree_0.7.0
## [7] d3treeR_0.1
    [9] treemap_2.4-2
                                     networkD3_0.4
## [11] multtest 2.32.0
                                     adegenet_2.1.0
                                     ips_0.0-7
## [13] ade4 1.7-8
## [15] XML_3.98-1.9
                                     colorspace_1.3-2
## [17] DECIPHER_2.4.0
                                     RSQLite_2.0
## [19] Biostrings_2.44.2
                                     XVector_0.16.0
## [21] phangorn_2.2.0
                                     ape_4.1
                                     limma 3.32.5
## [23] edgeR_3.18.1
## [25] mvabund_3.12.3
                                     DESeq2_1.16.1
## [27] SummarizedExperiment_1.6.3 DelayedArray_0.2.7
## [29] matrixStats 0.52.2
                                     Biobase 2.36.2
## [31] GenomicRanges_1.28.4
                                     GenomeInfoDb_1.12.2
## [33] IRanges_2.10.3
                                     S4Vectors_0.14.3
## [35] BiocGenerics_0.22.0
                                     schoRsch 1.4
## [37] xtable_1.8-2
                                     circlize_0.4.1
## [39] VennDiagram_1.6.17
                                     futile.logger_1.4.3
## [41] plyr_1.8.4
                                     cluster_2.0.6
## [43] phyloseq_1.20.0
                                     ggplot2_2.2.1
## [45] knitr_1.17
##
## loaded via a namespace (and not attached):
     [1] backports_1.1.0
[3] fastmatch_1.1-0
                                   Hmisc_4.0-3
igraph_1.1.2
##
##
                                   sp_1.2-5
##
     [5] lazyeval_0.2.0
                                   BiocParallel 1.10.1
##
     [7] splines 3.4.2
     [9] gridBase_0.4-7
                                   digest_0.6.12
##
##
    [11] foreach_1.4.3
                                   htmltools_0.3.6
##
    [13] viridis_0.4.0
                                   gdata_2.18.0
    [15] magrittr_1.5
                                   checkmate_1.8.3
##
    [17] memoise_1.1.0
                                   readr 1.1.1
##
    [19] annotate_1.54.0
                                   gmodels_2.16.2
    [21] blob_1.1.0
                                   dplyr_0.7.2
    [23] RCurl_1.95-4.8
##
                                   isonlite 1.5
    [25] genefilter_1.58.1
                                   bindr_0.1
##
##
    [27] brew_1.0-6
                                   survival_2.41-3
##
    [29] iterators 1.0.8
                                   glue_1.1.1
##
    [31] gtable_0.2.0
                                   zlibbioc_1.22.0
##
    [33] seqinr_3.4-5
                                   Rook_1.1-1
##
    [35] shape_1.4.3
                                   scales 0.5.0
    [37] futile.options_1.0.0
##
    [39] Rcpp_0.12.12
                                   viridisLite_0.2.0
    [41] htmlTable 1.9
##
                                   foreign_0.8-69
                                   spdep_0.6-15
    [43] bit_1.1-12
##
    [45] Formula_1.2-2
                                   tweedie_2.2.5
    [47] htmlwidgets_0.9
##
                                   DiagrammeR_0.9.1
                                   acepack_1.4.1
    [49] RColorBrewer_1.1-2
##
    [51] pkgconfig_2.0.1
[53] deldir_0.1-14
                                   nnet_7.3-12
locfit_1.5-9.1
##
##
    [55] rlang_0.1.2
                                   reshape2_1.4.2
    [57] AnnotationDbi 1.38.2
##
                                   visNetwork 2.0.1
##
    [59] munsell_0.4.3
                                   tools_3.4.2
##
    [61] downloader_0.4
                                   evaluate_0.10.1
##
    [63] biomformat 1.4.0
                                   stringr_1.2.0
purrr_0.2.3
    [65] bit64_0.9-7
##
    [67] bindrcpp_0.2
                                   nlme_3.1-131
    [69] mime 0.5
                                   rstudioapi 0.6
##
    [71] compiler_3.4.2
                                   rgexf_0.15.3
##
    [73] tibble_1.3.4
                                   statmod_1.4.30
    [75] geneplotter_1.54.0
##
                                   stringi 1.1.5
##
    [77] highr_0.6
                                   Matrix_1.2-11
##
    [79] LearnBayes_2.15
                                   GlobalOptions_0.0.12
##
    [81] data.table 1.10.4
                                   bitops 1.0-6
##
    [83] httpuv_1.3.5
                                   R6_2.2.2
    [85] latticeExtra_0.6-28
##
                                   gridSVG_1.5-1
    [87] codetools_0.2-15
                                   lambda.r_1.1.9
##
    [89] boot_1.3-20
                                   MASS_7.3-47
                                   assertthat 0.2.0
##
    [91] gtools_3.5.0
[93] rhdf5_2.20.0
                                   GenomeInfoDbData_0.99.0
##
    [95] mgcv_1.8-22
                                   expm_0.999-2
    [97] hms_0.3
                                   influenceR_0.1.0
##
    [99] quadprog_1.5-5
                                   rpart_4.1-11
## [101] tidyr_0.7.1
## [103] shiny_1.0.5
                                   coda 0.19-1
                                   base64enc_0.1-3
```

1.3 Some useful functions

The function as.binary0tuTable converts a phyloseq object into a phyloseq object with binary (i.e. 0/1) OTU table. It allows to suppress effect due to the number of sequences wich may be the result of a lot of molecular artefact (Lindhal et al., 2013).

funky.color and transpa allow to create nice color palette.

accu_plot allows to plot accumulation curves in fonction of a factor in samples data (@sam_data of phyloseq object).

otu_circle uses the package circlize to plot circle of OTUs/sequences distributions in samples. sankey_phyloseq is an alternative using Sankey plot.

phyloseq_to_edgeR, wrote by Paul J. McMurdie, converts phyloseq OTU count data into DGEList for edgeR package.

plot_deseq2_phyloseq and plot_edgeR_phyloseq plot the result of differential analysis of count data (using either the package DESeq2 or edgeR).

```
source(file = "functions_for_phyloseq.R")
```

2 Data

2.1 Choice of filter parameters

```
#Choose the dataset folder
data_folder <- "Swarm"

#Choose the minimum number of sequences by sample.

N_sam_min <- 20000

#Choose the minimum number of samples by OTU.

N_otu_sam_min <- 1

#Choose the minimum number of sequences by OTU.

N_seq_otu_min <- 5
```

2.2 Load and convert loading

2.2.1 Otu table

```
#Import biom data
dataBiom <- import_biom(paste("data/", data_folder, "/otu_table.biom", sep=""))</pre>
```

2.2.2 Taxonomy

2.2.3 Add FUNguild information to taxonomy Table

```
taxRDP2 <- as.data.frame(taxRDP)</pre>
funguild <- read.delim(paste("data/", data_folder, "/FUNGUILD.guilds.txt", sep = ""))</pre>
match_interm <- match(rownames(taxRDP2), funguild$OTU_ID)</pre>
taxRDP2$Trophic_Mode <- NA
taxRDP2$Trophic_Mode <- as.character(funguild$Trophic.Mode)[match_interm]
taxRDP2$Guild <- NA
taxRDP2$Guild <- as.character(funguild$Guild)[match_interm]</pre>
taxRDP2$Confidence_Ranking <- NA
taxRDP2$Confidence_Ranking <- as.character(funguild$Confidence.Ranking)[match_interm]
taxRDP2$Growth_Morphology <- NA
taxRDP2$Growth_Morphology <- as.character(funguild$Growth.Morphology)[match_interm]
taxRDP2$Trait <- NA
taxRDP2$Trait <- as.character(funguild$Trait)[match_interm]</pre>
taxRDP2 <- tax_table(as.matrix(taxRDP2))</pre>
taxa_names(taxRDP2) <- taxa_names(dataBiom)</pre>
colnames(taxRDP2) <- c("Domain", "Phylum", "Class", "Order", "Family", "Genus", "Species",</pre>
                        "Trophic_Mode", "Guild", "Confidence_Ranking", "Growth_Morphology",
                        "Trait")
```

2.2.4 Representative sequences

```
map_endo <-
   import_qiime(map = "data/map_qiimedata.txt")

## Processing map file...

map_endo <- map_endo[order(rownames(map_endo)),]</pre>
```

2.2.5 Samples information

2.2.6 Create the phyloseq object

```
data_all <- merge_phyloseq(dataBiom, repset, taxRDP2)
sample_data(data_all) <- map_endo
data_all@tax_table[data_all@tax_table == ""] <- NA</pre>
```

2.2.7 Caracteristics of the phyloseq data

The data are made of 8.419809×10^6 sequences representing 15479 OTUs allocate to 80 samples.

2.3 Filter sample by number of sequences

If we discard samples with less than 2×10^4 sequences, we keep 72 on the 80 samples (90%).

```
barplot(sort(sample_sums(data_all)))
abline(h = N_sam_min)
data.f1 <- prune_samples(sample_sums(data_all) > N_sam_min, data_all)
data.f1 <- prune_taxa(taxa_sums(data.f1) >= 1, data.f1)
```

2.4 Filter OTUs by number of samples

First, we can visualize the number of OTUs in a given number of samples (Figure 2.2).

Figure 2.1: Number of sequences by sample. Horizontal line indicates the filtering parameter.

```
df_nbOtu_sample <- data.frame("Nb of OTUs" = table(rowSums(as.binaryOtuTable(</pre>
  data.f1)@otu_table))[table(rowSums(as.binaryOtuTable(data.f1)@otu_table)) > 1],
  "Nb samples" = as.numeric(names(table(rowSums(as.binaryOtuTable(data.f1)@otu_table))
                            [table(rowSums(as.binaryOtuTable(data.f1)@otu_table)) > 1])))
g <- ggplot(df_nbOtu_sample, aes(y = Nb.of.OTUs.Freq, x = Nb.samples))
g + geom_point(size = 4, col = rgb(0.1, 0.1, 0.1, 0.5)) +
  scale_y_continuous(trans = 'log10') +
  geom\_smooth(size = 2, col = rgb(0.1, 0.1, 0.1, 0.5)) +
  geom_vline(xintercept= N_otu_sam_min)
## 'geom_smooth()' using method = 'loess'
summary(df_nb0tu_sample$Nb.samples)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      1.00 18.75
                    36.50
                             36.50
                                     54.25
                                             72.00
```

```
N_otu_sam_min
## [1] 1
```

If we discard OTUs present in less than 1 sample, we keep 15391 on the 15391 OTUs (100%).

Figure 2.2: Number of OTU present in a given number of samples. Vertical bar illustrates the filtering parameter.

2.5 Filter OTUs by number of sequences

We can visualize the number of sequences by OTU (Figure 2.3).

```
df_nbseq_Otu <- data.frame("Nb of sequences by OTUs" = rowSums(data.f2@otu_table))</pre>
g <- ggplot(df_nbseq_Otu, aes(x = Nb.of.sequences.by.OTUs))</pre>
g + geom_histogram(size = 2, col = rgb(0.8, 0.8, 0.8, 0.3)) +
  scale_x_continuous(trans = 'log10') +
  geom_vline(xintercept= N_seq_otu_min)
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
summary(df_nbseq_Otu[, 1])
                                                            Max.
##
        Min.
               1st Qu.
                           Median
                                               3rd Qu.
                                       Mean
                   1.0
                              2.0
                                      545.6
                                                  14.0 1236989.0
```

If we discard OTUs with less than 1 sequences, we keep 6064 on the 15479 OTUs (39.18%).

```
data.f3 <- prune_taxa(rowSums(data.f2@otu_table) >= N_seq_otu_min, data.f2)
```


Figure 2.3: Number of sequences by OTU (log10 transformed). Horizontal bar illustrates the filtering parameter.

2.6 Summary of filtration workflow

The filtered data are made of 8.382948×10^6 sequences representing 6064 OTUs allocate to 72 samples.

	Nb.of.OTUs	Nb.of.samples	Nb.of.sequences
No filter	15479	80	8419809.00
Nb of sequences by sample ≥ 20000	15391	72	8397636.00
Nb of sample by $OTUs >= 1$	15391	72	8397636.00
Nb of sequences by OTUs $>= 5$	6064	72	8382948.00

Table 1: Number of OTUs, samples and sequences after filtering

3 Simple description of the dataset

3.1 Number of sequences and OTUs by samples

Figure 3.1: Number of OTUs by sample in fonction of the number of sequences by sample (log10 axe). The tendency is represented by the line obtained from loess (Local Polynomial Regression Fitting).

```
geom_smooth(size = 2, col = rgb(0.1, 0.1, 0.1, 0.5))
## 'geom_smooth()' using method = 'loess'
```

```
ggplot(as.data.frame(data.f3@refseq@ranges), aes(x = width)) + geom_density() +
ylab("Reference sequences length")
```

3.2 Number of sequences and samples for each OTUs

Figure 3.2: Distribution of reference sequences length.

Figure 3.3: Number of sequences by OTUs (log10 axe) in fonction of the number of samples where OTUs were found. The tendency is represented by the line obtain from gam (Generalized additive models with integrated smoothness estimation).

Figure 3.4: Distribution of the number of sequences in the Ascomycota taxonomy. Colors represent Class, bold lines delimit Order and thick line delimit species.

3.3 Distribution of sequences in the taxonomy

3.4 Focus on the 30 more abundant OTUs (number of sequences)

```
the30mostfrequents <- sort(decreasing = T, rowSums(data.f3@otu_table))[1:30]
barplot(the30mostfrequents, horiz = T, cex.names = 0.4, las = 2)</pre>
```

Phylum	Class	Order	Family	Genus	Species	Trophic_Mode	Guild	Nb.sequences
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	=	1236989
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	_	450861
Ascomycota	Dothideomycetes	Pleosporales				-	_	447439
Ascomycota	Dothideomycetes	Pleosporales				-	=	321439
Ascomycota	Leotiomycetes	unidentified	unidentified	unidentified	Leotiomycetes sp BLD3	_	_	321041
Ascomycota	Dothideomycetes	Capnodiales				-	=	184871
Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Capnobotryella	Capnobotryella sp MA 4642	Saprotroph	Undefined Saprotroph	171529
Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	unidentified	Dothioraceae sp		-	165977
Ascomycota	Dothideomycetes	Pleosporales				-	-	116606
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	_	116577
Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	unidentified	Dothioraceae sp	_	_	106621
						-	_	103925
						-	_	102289
Ascomycota	Dothideomycetes	Pleosporales				-	-	95146
Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Capnobotryella	Capnobotryella sp MA 4642	Saprotroph	Undefined Saprotroph	88575
						- 1	=	87076
Ascomycota	Leotiomycetes	Rhytismatales	Rhytismataceae	Lophodermium		Pathotroph	Plant Pathogen	86099
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus		-	84315
Ascomycota	Dothideomycetes	Dothideales	Dothioraceae	unidentified	Dothioraceae sp	-	_	81555
Ascomycota	Dothideomycetes	Capnodiales				-	_	77060
Ascomycota	Leotiomycetes	unidentified	unidentified	unidentified	Leotiomycetes sp BLD3	_	_	75144
Ascomycota	Leotiomycetes	Rhytismatales	Rhytismataceae	Lophodermium		Pathotroph	Plant Pathogen	74295
-	-	•	-	_		-	-	72400
						-	_	71797
Ascomycota	Dothideomycetes	Capnodiales	Mycosphaerellaceae	Phaeothecoidea	Phaeothecoidea sp	Saprotroph	Undefined Saprotroph	70457
Ascomycota	Dothideomycetes	Capnodiales	Incertae sedis	Capnobotryella	Capnobotryella sp MA 4642	Saprotroph	Undefined Saprotroph	67353
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus		-	65868
Ascomycota	Leotiomycetes	Helotiales	Hyaloscyphaceae	Lachnellula	Lachnellula calyciformis	Saprotroph	Undefined Saprotroph	63453
Ascomycota	,				·		-	63406

Table 2: Taxonomie of the 30 more abundant OTUs (number of sequences)

Figure 3.5: Number of sequences of the 30 most abundant OTUs (number of sequences). Colors indicate Order, bold lines delimit Class and thick lines delimit species.

3.5 Focus on the 30 more frequent OTUs (number of samples)

Phylum	Class	Order	Family	Genus	Species	Trophic_Mode	Guild	Nb.samples
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	=	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	72
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	71
	•			•	-	_	_	70
Ascomycota	Dothideomycetes	Capnodiales				-	_	70
Ascomycota	Dothideomycetes	Capnodiales				_	_	70
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	_	70
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	_	70
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	-	-	70
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	_	70
Ascomycota	Leotiomycetes	Incertae sedis	Incertae sedis	Cyclaneusma	Cyclaneusma minus	_	-	70

Table 3: Taxonomie of the 30 more frequent OTUs (number of samples)

Figure 4.1: Distribution of OTUs into functional Guild.

4 Number of sequences and OTUs in function of putative ecology (using FUNGuild software; Nguyen et al, 2015)

```
tabPutativeEcology <- apply(data.f3@tax_table, 2, function(x) table(x))
tabPutativeEcology_percent <- apply(data.f3@tax_table, 2, function(x)
    round(table(x)/dim(data.f3@tax_table)[1]*100, 3))
sum(data.f3@otu_table[data.f3@tax_table[,"Trophic_Mode"] == "-"]) /
    sum(data.f3@otu_table)*100

## [1] 82.06287

tmdata <- as.data.frame(data.f3@tax_table[data.f3@tax_table[,"Trophic_Mode"] != "-"])
tmdata$Nb.sequences <- rowSums(data.f3@otu_table[data.f3@tax_table[,"Trophic_Mode"] != "-"])
tmdata$Nb.OTU <- rep(1, length(tmdata$Nb.sequences))

ggplot(tmdata) + geom_bar(aes(x = Trophic_Mode, fill=Guild), position = "dodge") +
    scale_fill_discrete("Paired") + theme_grey()</pre>
```

```
ggplot(tmdata, stat = "identity") +
  geom_bar(aes(x = Trophic_Mode, weight = Nb.sequences, fill = Guild), position = "dodge") -
  scale_fill_discrete("Paired") + scale_y_log10() + theme_grey()
```


Figure 4.2: Distribution of sequences (log10 transformed) into functional Guild.

5 Distribution of fungal endophytic alpha-biodiversity

5.1 Local diversity = Diversity by sites

```
accu_plot(data.f3, "Sites", nbSeq = FALSE)

accu_plot(data.f3, "Sites", step = 5000)

measures_index <- c("Observed", "Chao1", "Shannon", "Simpson")
p <- plot_richness(data.f3, x = "Sites", color = "Sites", measures = measures_index)
p + geom_boxplot(data = p$data, alpha = 0.5)</pre>
```

5.2 Diversity by age of tree

Figure 5.1: Rarefaction curves for each site. Note that if singletons were removed, these curves are biaised.

5.3 Diversity by elevation of the sample

5.4 Which factor affect diversity?

Figure 5.2: Rarefaction curves for each sample using sequences number on x-axes. Note that if singletons were removed, these curves are biaised.

Figure 5.3: Diversity of each sites

Figure 5.4: Rarefaction curves for each host age. Note that if singletons were removed, these curves are biaised.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-169.7099523	180.4367338	-0.9405510	0.3504716
sqrt(readNumbers)	3.6352080	0.4587897	7.9234730	0.0000000
$data.f3@sam_data\$SitesBavella$	-49.6428188	80.4392050	-0.6171471	0.5393272
$data.f3@sam_data\$SitesVerghello$	-114.7273185	80.5393450	-1.4244879	0.1591634
$data.f3@sam_data\$AgeOld$	-14.6366862	80.0911628	-0.1827503	0.8555716
$data.f3@sam_data\$AgeYoung$	-120.4101491	82.0227984	-1.4680083	0.1469997
$data.f3@sam_data\$ElevationMiddle$	70.9260851	81.1127439	0.8744136	0.3851626
$data.f3@sam_data\$ElevationTop$	-14.1869138	80.0164374	-0.1773000	0.8598327

Table 4: Summary of the linear model of species richness (Hill number with q = 0)

Post-hoc Tukey tests among the three experimental treatments with partial residuals, after accounting for differential sequencing success.

```
tuk1 <- TukeyHSD(aov(lm(hill.1 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))
tuk2 <- TukeyHSD(aov(lm(hill.2 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))
tuk3 <- TukeyHSD(aov(lm(hill.3 ~ sqrt(readNumbers))$residuals ~ data.f3@sam_data$Site))</pre>
```


Figure 5.5: Diversity in function of tree age. Color represent sites.

Figure 5.6: Rarefaction curves for each elevation. Notes that if singletons were removed, these curves are biaised.

```
ggplot(data = df) + geom_linerange(aes(ymax = xSup, ymin = xInf, x = y), size = 2) +
  geom_point(aes(x=y, y=x), size=4, shape=21, fill="white") +
  coord_flip() + theme_gray() + geom_hline(yintercept = 0) +
  ylab("Differences in mean levels") + xlab("")
```


Figure 5.7: Diversity in function of elevation. Color represent sites.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	12.9703294	9.5718525	1.3550490	0.1801656
sqrt(readNumbers)	0.1035362	0.0243380	4.2540991	0.0000698
$data.f3@sam_data\$SitesBavella$	-19.4074863	4.2671589	-4.5481049	0.0000247
$data.f3@sam_data\$SitesVerghello$	-10.0679214	4.2724711	-2.3564633	0.0215228
$data.f3@sam_data\$AgeOld$	0.7542946	4.2486958	0.1775356	0.8596484
$data.f3@sam_data\$AgeYoung$	-3.3431380	4.3511657	-0.7683316	0.4451161
$data.f3@sam_data\$ElevationMiddle$	4.0435791	4.3028889	0.9397359	0.3508864
$data.f3@sam_data\$ElevationTop$	1.7596500	4.2447318	0.4145492	0.6798582

Table 5: Summary of the linear model of the exponential of Shannon's entropy index (Hill number with q=1)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	10.2095670	3.3737936	3.0261386	0.0035652
sqrt(readNumbers)	0.0258823	0.0085784	3.0171465	0.0036589
$data.f3@sam_data\$SitesBavella$	-9.8360012	1.5040467	-6.5396913	0.0000000
$data.f3@sam_data\$SitesVerghello$	-4.8631943	1.5059191	-3.2293861	0.0019593
$data.f3@sam_data\$AgeOld$	0.4809093	1.4975390	0.3211331	0.7491559
$data.f3@sam_data\$AgeYoung$	-0.1876484	1.5336566	-0.1223536	0.9030024
$data.f3@sam_data\$ElevationMiddle$	1.0405173	1.5166405	0.6860672	0.4951487
$data.f3@sam_data\$ElevationTop$	0.2540789	1.4961418	0.1698227	0.8656852

Table 6: Summary of the linear model of inverse of Simpson's concentration index (Hill number with q=2)

Figure 5.8: Results of the Tuckey HSD testing for differences in mean Hill numbers among pairs of modalities

Figure 6.1: Venn diagramm of the distribution of OTUs among Sites

6 Effect of site, age and elevation on fungal endophytic betadiversity

6.1 Venn diagramm

```
venn_phyloseq(data.f3, "Sites", printValues = F)
venn_phyloseq(data.f3, "Age", printValues = F)
venn_phyloseq(data.f3, "Elevation", printValues = F)
```

6.2 Venn diagramm for OTUs present in at least 3 samples

```
data.f3_3samp <- subset_taxa(data.f3, rowSums(data.f3@otu_table>0)>2)
venn_phyloseq(data.f3_3samp, "Sites", printValues = F)

venn_phyloseq(data.f3_3samp, "Age", printValues = F)

venn_phyloseq(data.f3_3samp, "Elevation", printValues = F)
```

6.3 Ordination

Ordination of the OTUs table using NMDS (Non-metric MultiDimensional Scaling).

Figure 6.2: Venn diagramm of the distribution of OTUs among host age

Figure 6.3: Venn diagramm of the distribution of OTUs among elevation of samples

Figure 6.4: Venn diagramm of the distribution of OTUs among Sites

Figure 6.5: Venn diagramm of the distribution of OTUs among host age

Figure 6.6: Venn diagramm of the distribution of OTUs among elevation of samples whitin the tree

```
my.ord.nmds <- ordinate(data.f3, method = "NMDS")
my.ord.nmds$stress</pre>
```

```
stressplot(my.ord.nmds)
```

```
my.ord.nmds_gower <- ordinate(data.f3, distance = "gower", method = "NMDS")</pre>
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1900518
## Run 1 stress 0.2173177
## Run 2 stress 0.1901357
## ... Procrustes: rmse 0.02115491 max resid 0.1447914
## Run 3 stress 0.1900932
## ... Procrustes: rmse 0.01468843 max resid 0.05968772
## Run 4 stress 0.1907819
## Run 5 stress 0.1901122
## ... Procrustes: rmse 0.0209189 max resid 0.1432302
## Run 6 stress 0.1896506
## ... New best solution
## ... Procrustes: rmse 0.01018155 max resid 0.05280492
## Run 7 stress 0.190831
## Run 8 stress 0.1906432
## Run 9 stress 0.4086769
```


Figure 6.7: Stress plot of the NMDS

Figure 6.8: NMDS of OTU table. Colors represent sites and shape the age of tree.

```
## Run 10 stress 0.2104146
## Run 11 stress 0.1895849
## ... New best solution
## ... Procrustes: rmse 0.006033086 max resid 0.03771183
## Run 12 stress 0.2067051
## Run 13 stress 0.2094959
## Run 14 stress 0.1895764
## ... New best solution
## ... Procrustes: rmse 0.002154834 max resid 0.01176039
## Run 15 stress 0.2148128
## Run 16 stress 0.2299369
## Run 17 stress 0.1906359
## Run 18 stress 0.2112671
## Run 19 stress 0.1904534
## Run 20 stress 0.1907523
## *** No convergence -- monoMDS stopping criteria:
       2: no. of iterations >= maxit
       18: stress ratio > sratmax
##
my.ord.PCoA <- ordinate(data.f3, method = "PCoA")</pre>
my.ord.PCoA_gower <- ordinate(data.f3, distance = "gower", method = "PCoA")
my.ord.DCA <- ordinate(data.f3, method = "DCA")</pre>
my.ord.DCA_gower <- ordinate(data.f3, distance = "gower", method = "DCA")
p_NMDS_BRAY <- plot_ordination(data.f3, my.ord.nmds, color = "Sites",</pre>
                                shape = "Age", label = "CODE") + geom_point(size = 5)
p_NMDS_GOWER <- plot_ordination(data.f3, my.ord.nmds_gower, color = "Sites",
                                 shape = "Age", label = "CODE") + geom_point(size = 5)
p_PCoA_BRAY <- plot_ordination(data.f3, my.ord.PCoA, color = "Sites",</pre>
                                shape = "Age", label = "CODE") + geom_point(size = 5)
p_PCoA_GOWER <- plot_ordination(data.f3, my.ord.PCoA_gower, color = "Sites",
                                 shape = "Age", label = "CODE") + geom_point(size = 5)
p_DCA_BRAY <- plot_ordination(data.f3, my.ord.DCA, color = "Sites",</pre>
                               shape = "Age", label = "CODE") + geom_point(size = 5)
p_DCA_GOWER <- plot_ordination(data.f3, my.ord.DCA_gower, color = "Sites",
                                shape = "Age", label = "CODE") + geom_point(size = 5)
```


Figure 6.9: Comparison of different distances (bray (up) and gower (bottom)) and ordination methods (NMDS (left), PCoA (center) and DCA (right)).

6.4 Permanova on sites, host ages and elevation

If we only keep the 583 OTUs present in more than 30 sample, the Permanova results is the following:

```
res.ado_sampMin30 <- adonis(t(data.f3@otu_table[rowSums(data.f3@otu_table>0)>=30,]) ~
Sites * Age * Elevation, sam_data, permutation = 9999)
```

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.91	0.96	4.19	0.10	0.0001
Age	2	0.67	0.34	1.47	0.04	0.0444
Elevation	2	0.54	0.27	1.18	0.03	0.2007
Sites:Age	4	1.55	0.39	1.69	0.08	0.0017
Sites:Elevation	4	0.91	0.23	0.99	0.05	0.4715
Age:Elevation	4	1.10	0.27	1.20	0.06	0.1231
Sites:Age:Elevation	8	1.85	0.23	1.01	0.10	0.4306
Residuals	45	10.27	0.23		0.55	
Total	71	18.79			1.00	

Table 7: Result of the permanova on abundances (number of sequence).

6.5 Permanova on sites, host ages and individual trees

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.86	0.93	4.48	0.11	0.0001
Age	2	0.63	0.32	1.52	0.04	0.0427
Elevation	2	0.51	0.25	1.22	0.03	0.1883
Sites:Age	4	1.48	0.37	1.78	0.09	0.0007
Sites:Elevation	4	0.85	0.21	1.02	0.05	0.4256
Age:Elevation	4	1.04	0.26	1.24	0.06	0.1096
Sites:Age:Elevation	8	1.69	0.21	1.02	0.10	0.4228
Residuals	45	9.35	0.21		0.54	
Total	71	17.42			1.00	

Table 8: Result of the permanova on abundances (number of sequence) using only OTUs present in more than 30 samples

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.28	0.64	3.40	0.09	0.0001
Age	2	0.52	0.26	1.38	0.04	0.0412
Elevation	2	0.40	0.20	1.06	0.03	0.3178
Sites:Age	4	1.09	0.27	1.44	0.07	0.0056
Sites:Elevation	4	0.64	0.16	0.85	0.04	0.8820
Age:Elevation	4	0.88	0.22	1.18	0.06	0.1080
Sites:Age:Elevation	8	1.51	0.19	1.01	0.10	0.4517
Residuals	45	8.45	0.19		0.57	
Total	71	14.76			1.00	

Table 9: Result of the permanova on OTUs (each OTU is representing by one sequence)).

6.6 Differences in abundances and OTUs number by Order.

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.91	0.96	4.67	0.10	0.0001
Age	2	0.67	0.34	1.64	0.04	0.0158
Sites:Age	4	1.54	0.39	1.88	0.08	0.0006
Sites:Age:IndividualTree	18	5.45	0.30	1.48	0.29	0.0001
Residuals	45	9.22	0.20		0.49	
Total	71	18.79			1.00	

Table 10: Result of the permanova on abundances (number of sequence).

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.86	0.93	5.00	0.11	0.0001
Age	2	0.63	0.32	1.70	0.04	0.0174
Sites:Age	4	1.48	0.37	1.98	0.08	0.0003
Sites:Age:IndividualTree	18	5.07	0.28	1.51	0.29	0.0002
Residuals	45	8.38	0.19		0.48	
Total	71	17.42			1.00	

Table 11: Result of the permanova on abundances (number of sequence) using only OTUs present in more than 30 samples

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Sites	2	1.28	0.64	3.73	0.09	0.0001
Age	2	0.52	0.26	1.52	0.04	0.0171
Sites:Age	4	1.10	0.28	1.61	0.07	0.0008
Sites:Age:IndividualTree	18	4.16	0.23	1.35	0.28	0.0001
Residuals	45	7.70	0.17		0.52	
Total	71	14.76			1.00	

Table 12: Result of the permanova on OTUs (each OTU is representing by one sequence)).

Figure 6.10: Taxonomic distribution of sequences in the different site * age combinaison.

Figure 6.11: Taxonomic distribution of OTUs in the different site * age combinaison.

Change in abundance for Sites (Verghello vs Asco)

Figure 6.12: OTUs significantly different in terms of abundances between Verghello (positive values) and Asco (negative values)

6.7 Differences in abundances for each OTUs

6.7.1 Pairwise comparison of the OTUs composition by sites

```
library("DESeq2")
packageVersion("DESeq2")

## [1] '1.16.1'

data.f3_deseq2 <- phyloseq_to_deseq2(data.f3, ~ Sites)
data.f3_deseq2 <- DESeq(data.f3_deseq2, test = "Wald", fitType = "parametric")
res.f3_deseq2 <- results(data.f3_deseq2)</pre>
```


Figure 6.13: OTUs significantly different in terms of abundances between Verghello (positive values) and Bavella (negative values)

Figure 6.14: OTUs significantly different in terms of abundances between Asco (positive values) and Bavella (negative values)

6.7.2 Pairwise comparison of Order composition by sites

6.8 Distribution of OTUs abundance in the fungal phylogeny

```
library("cluster")
library("phytools")
## Loading required package: maps
##
## Attaching package: 'maps'
## The following object is masked from 'package:plyr':
##
##
      ozone
## The following object is masked from 'package:cluster':
##
##
      votes.repub
data.f3_interm <- data.f3
data.f3_interm@otu_table <- otu_table(apply(data.f3@otu_table, 2, function(x) tapply(x, as.factor(data.f3_interm@otu_table))
data.f3_interm@tax_table <- tax_table(apply(data.f3@tax_table, 2, function(x) tapply(x, as.factor(data.f3_intermotax_table))
data.f3_interm@refseq <- NULL
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("uncultured", data.f3_interm@tax_table[,"Specie
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("sp$", data.f3_interm@tax_table[, "Species"]))</pre>
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Fam:
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Orde
data.f3_interm <- subset_taxa(data.f3_interm, !grepl("unidentified", data.f3_interm@tax_table[,"Class
data.f3_interm <- subset_taxa(data.f3_interm, rowSums(data.f3_interm@otu_table)>100)
tree_tax_interm <- as.data.frame(unclass(data.f3_interm@tax_table))</pre>
tree_tax_interm$OTUs <- rownames(tree_tax_interm)</pre>
tree_tax_interm <- as.data.frame(replace(as.matrix(tree_tax_interm)), which(is.na(tree_tax_interm)),</pre>
data.f3_interm@tax_table <- tax_table(as.matrix(tree_tax_interm))</pre>
tree_tax_interm$pathString <- paste("Fungi",</pre>
                            tree_tax_interm$Phylum,
                            tree_tax_interm$Class,
                            tree_tax_interm$Order,
```

```
tree_tax_interm$Family,
                                                             tree_tax_interm$Genus,
                                                             tree_tax_interm$OTUs,
                                                             sep = "/")
write(ToNewick(as.Node(tree_tax_interm, na.rm = TRUE)), file="tree.txt")
tree <- phytools::read.newick(file="tree.txt")</pre>
tree <- ape::collapse.singles(tree)</pre>
data.f3_interm@phy_tree <- tree
taxa_names(data.f3_interm@phy_tree) <- gsub("_", " ", taxa_names(data.f3_interm@phy_tree))</pre>
taxa_names(data.f3_interm@otu_table) <- gsub("_", " ", taxa_names(data.f3_interm@otu_table))</pre>
taxa_names(data.f3_interm@tax_table) <- gsub("_", " ", taxa_names(data.f3_interm@tax_table))</pre>
taxa_names(data.f3_interm@phy_tree) <- gsub(",", "", taxa_names(data.f3_interm@phy_tree))</pre>
taxa_names(data.f3_interm@otu_table) <- gsub(",", "", taxa_names(data.f3_interm@otu_table))</pre>
taxa_names(data.f3_interm@tax_table) <- gsub(",", "", taxa_names(data.f3_interm@tax_table))</pre>
ptree <- plot_tree(data.f3_interm, color = "Class", shape = "Sites", ladderize = "left", justify = "
cond <- gsub(",", "", rownames(data.f3_interm@otu_table)[rowSums(data.f3_interm@otu_table) >= 1])
df_cond <- as.data.frame(ptree$data)[ptree$data$OTU %in% cond,]
df_cond$Species <- data.f3_interm@tax_table[taxa_names(data.f3_interm) %in% cond,"OTUs"]
cond_Deseq <- levels(df$Species)</pre>
df_cond_Deseq <- as.data.frame(ptree$data)[ptree$data$OTU %in% cond_Deseq,]
df_cond_Deseq$Species <- data.f3_interm@tax_table[gsub("_", " ", taxa_names(data.f3_interm)) %in% co
ptree + geom_text(data = df_cond, aes(x = 215, y = y, label = OTU), hjust = "left") + scale_shape_magnetic = state = state = state = other state = state = other state = o
sum(!is.na(match(gsub("_", " ", data.f3@tax_table[,"Species"]), gsub("_", " ", tree$tip.label))))
## [1] 1066
sum(rowSums(data.f3@otu_table)[gsub("_", " ", data.f3@tax_table[,"Species"]) %in% gsub("_", " ", tre
## [1] 36.11315
```



```
ptree + geom_text(data = df_cond, aes(x = 585, y = y, label = OTU), hjust = "left") + scale_shape_maggsave("phylo_map.pdf", width = 20, height = 15)
```


7 Summary

7.1 Filtering summary

The raw data are made of 8.419809×10^6 sequences representing 15479 OTUs allocated to 80 samples. After filtering, the dataset includes 8.382948×10^6 sequences representing 6064 OTUs allocated to 72 samples.

7.2 Alpha diversity

Host age and elevation within tree do not impact any aspect of fungal local diversity. Despite similar OTUs richness, Asco is a site more diverse than Verghello and Bavella.

7.3 Beta diversity

Site (R2 = 0.102), age (R2 = 0.036) and interaction age*site (R2 = 0.082) statistically structured the fungal endophytic beta-diversity.

1	Comparison	OTU_names 2120fb2ad80bb0cd0cc6bb0cda13444b821f154_81752	Species Cappabotryalla en MA 4642	Class	log2FoldChange (negative = n -2.93114820365422
1 2	Verghello vs Asco Verghello vs Asco	2129fb2ad89bb9ecd9cc6bb0cda13444b821f154_81752 5ab69a49181f1fa7edeb755d9379914bd37e476b_67	Capnobotryella sp MA 4642 Stictis sp 1_MW_2004	Dothideomycetes Lecanoromycetes	-2.93114820365422 22.3685008769311
3	Verghello vs Asco	$95 aba 3 eb 0 bb 4 fa ae 823 c 18 bc 459 a 2b f5 de a 87457_1614$		moromy couch	-5.84097733807965
4	Verghello vs Asco	4f72dab9d420ac7a5e9a4e6c542ed94ffd61c95b_1141		Dothideomycetes	-2.58677613505865
5 6	Verghello vs Asco Verghello vs Asco	85ed55d0ae94db1f366bb5f6e5ae40787d4a4f17_1 0b2b99a97f9103f9ba9cdfb6e60568bb150a577f_3	Capnobotryella sp MA 4642	Dothideomycetes Dothideomycetes	-4.25857698788655 -2.87423257789545
7	Verghello vs Asco	$8 dfc 55 e0 659 d2 a 2 eecc 08 d0 15 f9 650 b399 407 f32_476$		Dothideomycetes	-4.48215425478388
8	Verghello vs Asco	fbbd84ea1fd0cfee35230b0d21453462bfa3ab7d_55	Phaeomoniella sp	Eurotiomycetes	-3.30593414737481
9 10	Verghello vs Asco Verghello vs Asco	1ea239897ec572eb01eaaf1b4a2fd74a5bb1ddcf_132 5d1644228ec3b5d52480c261aaffd01437311e75_120		Dothideomycetes	-3.82031913457165 -2.62150219323512
11	Verghello vs Asco	$14 bbcfaef0ec60345e805b41b12c8eaf4dc63027_3$	fungal sp TRN287	unidentified	-3.45698293143302
12	Verghello vs Asco	90f76bb914ca347249c71a259a3b08c0c1ade366_350	Charles III - MA 4640	Dothideomycetes	-3.9637947670544
$\frac{13}{14}$	Verghello vs Asco Verghello vs Asco	ef43680f3d2b235c0211f05991b798d7dc781793_67 13bcb1e7e6715b0b196acc58d4bead0a5ca9f3ca_4	Capnobotryella sp MA 4642 fungal sp TRN256	Dothideomycetes unidentified	-2.7159309102354 -5.17884399120278
15	Verghello vs Asco	$6 db 67 c487123 e197 f5 d0 c0 401 68 a7 b442 f4 c6 df1_91$	3	Dothideomycetes	-3.12356301062611
$\frac{16}{17}$	Verghello vs Asco Verghello vs Asco	3234c07e4d0375036a68bac59a46a07831bfc8db_12631 c29fce62a47af00efa6caf6272cff91ddd9e1025_3		Dothideomycetes Dothideomycetes	-5.4060113758744 -8.27092379569942
18	Verghello vs Asco	03206ae39779c903b8d12013d31df11c5c1686df_1		Dothideomycetes	-2.93312234199654
19	Verghello vs Asco	$7 d364 ad429 d4 be24 e692 f6847 bd4 e27931260139_591$		Leotiomycetes	-2.03892751418503
$\frac{20}{21}$	Verghello vs Asco Verghello vs Asco	381bedacc1f1791bf0e34583cac7ed332f1172ae_7102 621b7a08c54cef0ad6074f201abd82958d4f24ca_1	Dothioraceae sp Capnobotryella sp MA 4642	Dothideomycetes Dothideomycetes	4.014939530706 -3.2601286252703
22	Verghello vs Asco	4022c06f1a6e238a46d4fbb544d9c22ef53645d3_97	Caphobotiyena sp MA 4042	Dothideomycetes	-3.63069804913526
23	Verghello vs Asco	466dc0940aa9251ae68eb93c4cbcf1ab566b3c93_87	Capnobotryella sp MA 4642	Dothideomycetes	-3.81935199163165
$\frac{24}{25}$	Verghello vs Asco Verghello vs Asco	51c20c6414a0bf55d51ad79ebee0f35b0c546f2b_1076 c5756692597cfc490e3cafe28728c64bdf8b270d_93	Rhytismatales sp fungal sp TRN287	Leotiomycetes unidentified	-6.95889638970096 -4.17465810320262
26	Verghello vs Asco	befc0eee9082cdb4f1f9cb5ef73d48cd66aed4c1_6919	fungal sp agrD488	unidentified	-27.1201718921273
27	Verghello vs Asco	b439655309822c91bd7c1fde4b9dca85e0c90444_4134	Rhytismatales sp	Leotiomycetes	-4.48542041655923
28 29	Verghello vs Asco Verghello vs Asco	b6d9befbf378e96475bfe0b8fefdc2886e27c80f_9234 ebf284d7e6c56983ff36773b7a7972bec7cbac7b_31	fungal sp agrD488 fungal sp TRN287	unidentified unidentified	-9.7849603590504 -4.13942183448567
30	Verghello vs Asco	$2144541a5ecd7cb520ca68a6912a5fc4b4eb086d_115$	G		-5.45200967866985
31	Verghello vs Asco	46916e5039bffebd1989535cb6eac49505e5e705_5			-3.36681406736109 2.00250784454208
$\frac{32}{33}$	Verghello vs Asco Verghello vs Asco	116e7af14dface1be67ea1f800245b925846cc94_46 40623c27671f958f10d0d4aa385bc5bfb4e7c5f7_1	Capnobotryella sp MA 4642	Dothideomycetes	-2.99250784454208 -4.01239711127149
34	Verghello vs Asco	4d958cc9c807dc047087f2865d62398d5d545d49_1	Cyclaneusma minus	Leotiomycetes	-1.80474289792475
$\frac{35}{36}$	Verghello vs Asco Verghello vs Asco	d7fc3882fe8ba96cb73bf59d3c4ee6e05e96b827_80 9cb34be49dd721930e6eec6f12c4f3371152daa8_4896		unidentified	-4.21782974931364 -28.0181191651132
36 37	Verghello vs Asco Verghello vs Asco	4c0206c663267f9aa5d260caef9cb46ad0b6f06d_36		Dothideomycetes	-28.0181191651132 -2.80070904694851
38	Verghello vs Asco	$dc07788c070e0f4f57d8233bc419ab6ee441a007_91$		Dothideomycetes	-3.14596409444666
39 40	Verghello vs Asco Verghello vs Asco	99d208ffccb844b7ba22cd50554feae679bf3d21_132 9a84deda5a9f9b6aec75e2462948151248b01cca_2333	Sporormiella sp	Dothideomycetes	-6.78688333280114 -25.0042260696885
41	Verghello vs Asco	172baa366762ff89576646619adcbc719a865e16_5	Sarea sp	Lecanoromycetes	22.5395100864668
42	Verghello vs Asco	1a03c65fd2b4316cb6385edbf31db362659ceb7b_30694	Sporormiaceae sp	Dothideomycetes	-6.19162005871566
43 44	Verghello vs Asco Verghello vs Asco	a94921efa4a8f861af50a9bea9010a3cafdde656_9 4b7944e582835381c446a61dff2a12f3ca0fa57f_771		unidentified	-25.0526484192102 -8.20648260004555
45	Verghello vs Asco	$b1028640f0591f1d2d869eb43929e018902d5030_150$	Sporormiaceae sp	Dothideomycetes	-5.70653083752731
$\frac{46}{47}$	Verghello vs Asco Verghello vs Asco	1fec2b70134ab6a98c237dd7b1493aacd6c93024_198			-24.0959815798234
48	Verghello vs Asco Verghello vs Asco	202a8ed543d9bb639a346b26c6529d72f72ea83f_3000 0be386c31e50dbb19f1283396b8f35d6b8887d9a_728			-26.3191580209506 21.8459176117285
49	Verghello vs Asco	$4688c6bb5f112d43356a680e5a20f7c2b4cb9923_11$		Eurotiomycetes	21.8569083821111
50 51	Verghello vs Asco Verghello vs Asco	e52b5868f08f9b10b7929de0be0e47346d788f30_312 1dd0ba94ebbb323d30a6979e8c5d33f94793e97b_879		Lecanoromycetes Lecanoromycetes	24.0607760960432 24.6301227542991
52	Verghello vs Asco	f5f08802062cfa41d651f0b204d214acbb1b4301_12		Dothideomycetes	21.8569083821111
53	Verghello vs Asco	c77c28a3b4952ab9870072e73fc27baee9ee10fc_12			21.8569083821111
54 55	Verghello vs Asco Verghello vs Bavella	e126aa1418a1e41179d5d045973a9115f19c95b6_12 4dd30fcedfbab3c28d9baf94a363b945e33f3b58_52236	fungal sp T2513 Phaeomoniella sp	unidentified Eurotiomycetes	21.8569083821111 5.78672813762305
56	Verghello vs Bavella	$4 d15 dd7 db92 d1 f1 d8 ac80 e6177 ee0 e15 c17 f97 c4_1$	-	Leotiomycetes	4.01332409347105
57 58	Verghello vs Bavella Verghello vs Bavella	a959b6e4abca32ab54e6419a12f6bdd45a7926dc_14125 b15583cc2881bbe34420ea9770606960d1632f6e_1	fungal sp TRN287 Capnobotryella sp MA 4642	unidentified Dothideomycetes	3.42949079800536 4.31883338220664
59	Verghello vs Bavella	234faa41c01668951fad40aab26275d2e6bb9ea3_792	Caphobotryena sp MA 4042	Dothideomycetes	2.68278753635605
60	Verghello vs Bavella	$099296f239ebbd73b6dc0053259a1c1bb2d76196_18178$	Cryptodiscus microstomus	Lecanoromycetes	3.88600637060885
61 62	Verghello vs Bavella Verghello vs Bavella	dbb30889e95069d373cb657d40c0a65c0a399670_1 5608683099b4de4c36138df70c7ea522653429d6_530	Leotiomycetes sp BLD3	Dothideomycetes Leotiomycetes	4.26388017017067 3.43302618060627
63	Verghello vs Bavella	25ec544e83cad160b3751c905cab409a66d68425_55573	Ecotioniyeetes sp BEB0	Incertae sedis	5.93108047853807
64	Verghello vs Bavella	7cac233e0e644664066853e91c903d44a0557e9e_29	G 1 1 1 1 154 4040	Dothideomycetes	3.66541148817684
65 66	Verghello vs Bavella Verghello vs Bavella	bc8a21206e4a1b909f6790ae1a19cd45eca1990b_1 13738155c6dcd25e7f4685b1e2d08d7320dd40c1_96340	Capnobotryella sp MA 4642 Dothioraceae sp	Dothideomycetes Dothideomycetes	5.22495694473858 3.62082434135792
67	Verghello vs Bavella	$b40a7185954b06f920b2dcda283f6ceddf081815_1$		Leotiomycetes	3.95549418036625
68 69	Verghello vs Bavella Verghello vs Bavella	1102cc9da608900e057c8410fb413f25ea96b997_1 a96597ad7bfc2fbada9ae439cc7d22266ad645dd_20703	Phaeotheca sp	Leotiomycetes Dothideomycetes	4.48497662689627 6.2091329851208
70	Verghello vs Bavella	42122073ae9cc03ee0d6dfc5c02337fb36c11281_40406	глаеотпеса sp	Dotnideomycetes	5.77093401015807
71	Verghello vs Bavella	$856b266be4f4b8e68c9e3766feb889d6b6fdd9ae_4$		Dothideomycetes	2.64259975081644
72 73	Verghello vs Bavella Verghello vs Bavella	eb69d15623e27732be2a049452453941082e80f3_146924 19e9f538c69ae04314cd541eb4ad3be5243725a3_9358	Capnodiales sp	Leotiomycetes Dothideomycetes	3.10557412028489 4.98614177753062
74	Verghello vs Bavella	$5ab69a49181f1fa7edeb755d9379914bd37e476b_67$	Stictis sp 1_MW_2004	Lecanoromycetes	25.2128942693194
75	Verghelle vs Bavella	d5b42a733721b990b0e9e89050643a004e85d70a_12664	Leotiomycetes sp BLD3	Leotiomycetes	1.73997788992562
76 77	Verghello vs Bavella Verghello vs Bavella	eba06395bfd92916a1c78548a8d961bfc3b1043e_366 63c2a2c8647ff56829e56b7e20e84cad1acf3be2_26997	fungal sp TRN287	unidentified Eurotiomycetes	3.26950052589055 4.43323775979294
78	Verghello vs Bavella	69638056c08d5fa5a610fde3f7f388c9cb032975_36	Ochrocladosporium sp	Dothideomycetes	4.71256822280818
79 80	Verghello vs Bavella Verghello vs Bavella	4fa6fb77b76eda0b865a01d11ad86c6f38cdf97d_22 f3792f5540e5316a15f7e569d12ae304f7780015_6102	Lophodermium conigenum	Leotiomycetes	4.76069433149405 3.46029790137771
81	Verghello vs Bavella	964184d85d581575f8a6cf719e92b466fa6855eb_66			5.56504794959214
82	Verghello vs Bavella	$95eea59c8f1e062a86caf86b96de7e86247216f6_78835$		D 4243	4.09288211668666
83 84	Verghello vs Bavella Verghello vs Bavella	e3b16eabc478dd436c9f47bb7c27074b1ae6dc3f_10696 e234ed0fcf2707d707d65c9d253b6031edbdcb3f_596	Ochrocladosporium sp	Dothideomycetes Dothideomycetes	-1.59398019887299 3.84996914288871
85	Verghello vs Bavella	$4c6f9ac4fdc4d461f5881019b629ef9e7111c26a_41$	_ smoondosportum sp	-	4.04298222600048
86 87	Verghello vs Bavella	$\begin{array}{l} d96b42e41a11b76e61a7da9e5d5b950d95088afb_748 \\ c937116b0ba8c96272c82250c7401c23e3027a67_1 \end{array}$		Leotiomycetes Dothideomycetes	2.64152393767329
87 88	Verghello vs Bavella Verghello vs Bavella	c937116b0ba8c96272c82250c7401c23e3027a67_1 13ade7543082ddf80b87bcf07ee2b68a7942cfb7_942	Lophodermium conigenum	Leotiomycetes Leotiomycetes	3.09518077437343 1.97101710800663
89	Verghello vs Bavella	$18b880d8ef8e75bc9226aa7019d31409ad858f79_1$	- 3	Dothideomycetes	3.10862874563196
90 91	Verghello vs Bavella Verghello vs Bavella	d524f6695383c80cfc18937c1bd318fbdf28d719_168 9cb8390ee4533dc541bc593fa443effa036501fa_1	Leotiomycetes sp BLD3	Dothideomycetes Leotiomycetes	4.16636131083704 3.49728913576814
91	Verghello vs Bavella	eed2f73eda1c60d6d7188d7a237f48eb01af06a5_1	Economy ceres sp DLD3	Leotiomycetes	24.6306260836598
93	Verghello vs Bavella	$9d49521660fa6eb0c11c5226e1d842693da33fdc_6044$			8.52932232867265
94 95	Verghello vs Bavella Verghello vs Bavella	5784dee0b4e2fcaaa6b464147972307231cc22e6_1 300fe1f394e0556d97b5877aab6125908d6065ed_1	Leotiomycetes sp BLD3 Dothioraceae sp	Leotiomycetes Dothideomycetes	3.36282441931893 3.28545721365983
96	Verghello vs Bavella	$f2404b634f814b0e01170c84e1256da9c051a946_165$	2 Junioraceae sp	Leotiomycetes	3.08047242959055
97	Verghello vs Bavella	$5d1644228ec3b5d52480c261aaffd01437311e75_120$		•	4.26604433939836
98 99	Verghello vs Bavella Verghello vs Bavella	37878801c5eddab03c0eb619b0e2af82841551ba_1 98aae36a95000076e50955da68ec9bfc20a226c3_423	Leotiomycetes sp BLD3	Dothideomycetes Leotiomycetes	2.90316282094164 3.15427999323021
100	Verghello vs Bavella	$27231 e0 e49 b69 c74 b5 ff 95 c2 ff 79 bcdb 83758661 _331$	Leotiomycetes sp BLD3 Leotiomycetes sp BLD3	Leotiomycetes	3.0126444882346
101	Verghelle vs Bavella	0a0a52b1eeba44141a974273789b654a42033c94_1	Phacemoni-11	Functions of the	3.32041444693928
102 103	Verghello vs Bavella Verghello vs Bavella	85e7558473435620c3b906b582418f7e2b9fe765_234 4b803d39fa1e2082339eb0aafbf62f71db711552_307	Phaeomoniella sp	Eurotiomycetes Dothideomycetes	2.66606625028166 2.34789728414598
104	Verghello vs Bavella			Leotiomycetes	3.47077541485874
105	Verghello vs Bavella	$\begin{array}{l} 1c312t5e901ctd7e11a329et2ad4bf1a273e60b3.1\\ 1c5321e2dc523f878d2696fae7c4e8b27ec30ee2_23\\ 6a22a2d035be9bdb18801ee57db8286e2e4ddf8f.260\\ \end{array}$	Leotiomycetes sp BLD3	Leotiomycetes Dothideomycetes	2.55492723719836 3.24788520147175
106	Verghello vs Bavella	0a22a2u033be3bub16601ee37ub6280e2e4dd181_260 L0_7JJL0EE19471EEE99_L4900_04L99EJEJ9J7J_1	Dothioraceae sp	Domingeomycetes	3.24788520147175

	Comparison	Order	Class	log2FoldChange (negative = more on second levels)
1	Verghello vs Asco	Xylariales	Sordariomycetes	4.94170312130346
2	Verghello vs Bavella	Capnodiales	Dothideomycetes	-0.83630320304439
3	Verghello vs Bavella	Incertae sedis	Leotiomycetes	-1.24689914032906
4	Verghello vs Bavella	Ostropales	Lecanoromycetes	3.8455899279882
5	Verghello vs Bavella	unidentified	unidentified	1.55993729587718
6	Asco vs Bavella	Botryosphaeriales	Dothideomycetes	7.35244451656061
7	Asco vs Bavella	Eurotiales	Eurotiomycetes	1.84728065403879
8	Asco vs Bavella	Incertae sedis	Leotiomycetes	-1.66769964844934
9	Asco vs Bavella	unidentified	unidentified	1.48006941015658
10	Asco vs Bavella	Xylariales	Sordariomycetes	-4.86052036037445

Table 14: Order showing differential abundances in the different sites.

	Nb.of.OTUs	Nb.of.samples	Nb.of.sequences
No filter	15479	80	8419809.00
Nb of sequences by sample ≥ 20000	15391	72	8397636.00
Nb of sample by $OTUs >= 1$	15391	72	8397636.00
Nb of sequences by $OTUs >= 5$	6064	72	8382948.00

Table 15: Number of OTUs, samples and sequences after filtering

List of Figures

2.1	Number of sequences by sample	9
2.2	Number of OTU present in a given number of samples	10
2.3	Number of sequences by OTU (log10 transformed)	11
3.1	Number of OTUs by sample in fonction of the number of sequences by sample (log10 axe)	12
3.2	Distribution of reference sequences length	13
3.3	Number of sequences by OTUs (log10 axe) in fonction of the number of samples where	
	OTUs were found	13
3.4	Distribution of the number of sequences in the Ascomycota taxonomy	14
3.5	Number of sequences of the 30 most abundant OTUs (number of sequences)	16
4.1	Distribution of OTUs into functional Guild	18
4.2	Distribution of sequences (log10 transformed) into functional Guild	19
5.1	Rarefaction curves for each site	20
5.2	Rarefaction curves for each sample using sequences number on x-axes	21
5.3	Diversity of each sites	22
5.4	Rarefaction curves for each host age	23
5.5	Diversity in function of tree age	24
5.6	Rarefaction curves for each elevation	25
5.7	Diversity in function of elevation	26
5.8	Results of the Tuckey HSD testing for differences in mean Hill numbers among pairs of	
	modalities	27
6.1	Venn diagramm of the distribution of OTUs among Sites	28
6.2	Venn diagramm of the distribution of OTUs among host age	29
6.3	Venn diagramm of the distribution of OTUs among elevation of samples	29
6.4	Venn diagramm of the distribution of OTUs among Sites	30
6.5	Venn diagramm of the distribution of OTUs among host age	30
6.6	Venn diagramm of the distribution of OTUs among elevation of samples whitin the tree .	31
6.7	Stress plot of the NMDS	32
6.8	NMDS of OTU table	32
6.9	Comparison of different distances (bray (up) and gower (bottom)) and ordination methods	
	(NMDS (left), PCoA (center) and DCA (right))	
	Taxonomic distribution of sequences in the different site * age combinaison	
	Taxonomic distribution of OTUs in the different site * age combinaison	39
6.12	OTUs significantly different in terms of abundances between Verghello (positive values)	
	and Asco (negative values)	40
6.13	OTUs significantly different in terms of abundances between Verghello (positive values)	
	and Bavella (negative values)	41
6.14	OTUs significantly different in terms of abundances between Asco (positive values) and	
	Bavella (negative values)	42
List	of Tables	
IDU (
1	Number of OTUs, samples and sequences after filtering	11
2	Taxonomie of the 30 more abundant OTUs (number of sequences)	15
3	Taxonomie of the 30 more frequent OTUs (number of samples)	17
4		23

5	Summary of the linear model of the exponential of Shannon's entropy index (Hill number	
	with $q = 1$)	27
6	Summary of the linear model of inverse of Simpson's concentration index (Hill number	
	with $q = 2$)	27
7	Result of the permanova on abundances (number of sequence)	35
8	Result of the permanova on abundances (number of sequence) using only OTUs present	
	in more than 30 samples	36
9	Result of the permanova on OTUs (each OTU is representing by one sequence))	36
10	Result of the permanova on abundances (number of sequence)	37
11	Result of the permanova on abundances (number of sequence) using only OTUs present	
	in more than 30 samples	37
12	Result of the permanova on OTUs (each OTU is representing by one sequence))	37
13	OTUs showing differential abundances in the different sites.	48
14	Order showing differential abundances in the different sites	49
15	Number of OTUs, samples and sequences after filtering	40