LOUIS-MARC MERCIER

MTH2302D : Probabilités et statistique

TD 9 : Yoda

 ${\Large \textcircled{c}} Mercier$

Intervalles de confiance $(1 - \alpha)$

Une moyenne

- σ^2 connue, $X \sim N(\mu, \sigma^2)$ ou n grand : $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
- σ^2 inconnue et $X \sim N(\mu, \sigma^2)$: $\overline{X} \pm t_{\alpha/2; n-1} \frac{S}{\sqrt{n}}$
- σ^2 inconnue et *n* grand : $\overline{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$

Une variance σ^2

- $X \sim N(\mu, \sigma^2)$, μ connue: $S_{\mu}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$ $\left[rac{nS_{\mu}^2}{\chi^2_{lpha/2;n}}; rac{nS_{\mu}^2}{\chi^2_{1-lpha/2;n}}
 ight]$
- $X \sim N(\mu, \sigma^2)$, μ inconnue : $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ $\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2;n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2;n-1}}\right]$
- pour σ , avec n grand : $\left[S/(1+\frac{z_{\alpha/2}}{\sqrt{2n}}); S/(1-\frac{z_{\alpha/2}}{\sqrt{2n}})\right]$

Une proportion p

• n est très grand : $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Différence de deux moyennes $\mu_1 - \mu_2$

- σ_1^2, σ_2^2 connues, $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$
- ou n_1, n_2 grands : $\overline{X}_1 \overline{X}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- σ_1^2, σ_2^2 inconnues, $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2 (\sigma_1^2 = \sigma_2^2)$
- $\overline{X}_1 \overline{X}_2 \pm t_{\alpha/2; n_1 + n_2 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}; \ S_p^2 = \frac{(n_1 1) S_1^2 + (n_2 1) S_2^2}{n_1 + n_2 2}$
- σ_1^2 , σ_2^2 inconnues, $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, 2 ($\sigma_1^2 \neq \sigma_2^2$) $\overline{X}_1 - \overline{X}_2 \pm t_{\alpha/2;\nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}; \quad \nu = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 + 1} + \frac{(S_2^2/n_2)^2}{n_2 + 1}} - 2$
- n_1, n_2 grands

$$\overline{X}_1 - \overline{X}_2 \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

• Données couplées, $D_i = X_{1,i} - X_{2,i}, i = 1, ..., n$

$$\overline{D} \pm t_{\alpha/2;n-1} \frac{S_D}{\sqrt{n}}$$

Rapport de deux variances σ_1^2/σ_2^2

• $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$

$$\left[\frac{S_1^2}{S_2^2}F_{1-\alpha/2;n_2-1;n_1-1}; \quad \frac{S_1^2}{S_2^2}F_{\alpha/2;n_2-1;n_1-1}\right]$$

Différence de deux proportions $p_1 - p_2$

• n_1 et n_2 grands

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Tests paramétriques (seuil α)

- **Une moyenne.** Critères de rejet de $H_0: \mu = \mu_0$ contre H_1 $H_1: \mu > \mu_0$ H_1 : $\mu < \mu_0$ $H_1: \mu \neq \mu_0$ • σ^2 connue, $X \sim N(\mu, \sigma^2)$ ou *n* grand : statistique $Z_0 = \frac{\overline{X} - \mu_0}{\sigma / n}$
- si $Z_0 < -z_\alpha$ | si $Z_0 > z_\alpha$ | si $|Z_0| > z_\alpha$ σ^2 inconnue et $X \sim N(\mu, \sigma^2)$: statistique du test $T_0 = \frac{\overline{X} \mu_0}{S/\sqrt{n}}$ $\operatorname{si} T_0 < -t_{\alpha;n-1} \qquad \qquad \operatorname{si} T_0 > t_{\alpha;n-1} \qquad \qquad \operatorname{si} |T_0| > t_{\alpha/2;n-1}$
- σ^2 inconnue et *n* grand : statistique du test $Z_0 = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$ $\operatorname{si} Z_0 < -z_{\alpha}$ $\operatorname{si} Z_0 > z_{\alpha}$ si $|Z_0| > z_{\alpha/2}$

Une variance. Critères de rejet de
$$H_0: \sigma^2 = \sigma_0^2$$
 contre H_1

$$H_1: \sigma^2 < \sigma_0^2 \qquad H_1: \sigma^2 > \sigma_0^2 \qquad H_1: \sigma^2 \neq \sigma_0^2$$

- $X \sim N(\mu, \sigma^2)$: la statistique du test $\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$
- n est grand ($n \ge 40$): la statistique du test $Z_0 = \frac{S \sigma_0}{\sigma_0 t \sqrt{2n}}$ $\operatorname{si} Z_0 < -z_{\alpha}$ $\operatorname{si} Z_0 > z_{\alpha}$

Une proportion. Critères de rejet de $H_0: p = p_0$ contre H_1 $H_1: p < p_0$ $H_1: p > p_0$ $H_1: p \neq p_0$

• si n est très grand : la statistique du test $Z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$ $\operatorname{si} Z_0 < -z_{\alpha}$ $\operatorname{si} Z_0 > z_{\alpha}$

Deux moyennes. Critères de rejet de H_0 : $\mu_1 = \mu_2$ contre H_1 $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 < \mu_2$

• σ_1^2 , σ_2^2 connues, $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, 2 ou n_1, n_2 grands

statistique du test
$$Z_0 = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}}$$

si $Z_0 < -z_\alpha$ | si $Z_0 > z_\alpha$ | si $|Z_0| > z_{\alpha/2}$
• σ_1^2, σ_2^2 inconnues, $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$ ($\sigma_1^2 = \sigma_2^2$)

la statistique du test
$$T_0 = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$
 avec $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

si
$$T_0 < -t_{\alpha;n_1+n_2-2}$$
 | si $T_0 > t_{\alpha;n_1+n_2-2}$ | si $|T_0| > t_{\alpha/2;n_1+n_2-2}$
• σ_1^2, σ_2^2 inconnues, $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2 \ (\sigma_1^2 \neq \sigma_2^2)$

- la statistique du test $T_0 = \frac{\overline{X}_1 \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$; avec $v = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 + 1} + \frac{(S_2^2/n_2)^2}{n_2 + 1}} 2$ si $T_0 < -t_{\alpha;\nu}$ | si $T_0 > t_{\alpha;\nu}$ | si $|T_0| > t_{\alpha/2;\nu}$ n_1, n_2 grands: la statistique du test $Z_0 = \frac{\overline{X}_1 \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
- si $Z_0 < -z_\alpha$ | si $Z_0 > z_\alpha$ | si $|Z_0| > z_{\alpha/2}$ Données couplées, $D_i = X_{1,i} X_{2,i}, i = 1, \dots, n$: statistique $T_0 = \frac{\overline{D}}{S_D/\sqrt{n}}$

si $T_0 < -t_{\alpha;n-1}$ | si $T_0 > t_{\alpha;n-1}$ | si $|T_0| > t_{\alpha/2;n}$ Deux variances. Critères de rejet de $H_0: \sigma_1^2 = \sigma_2^2$ contre H_1 $|T_0| > t_{\alpha/2;n-1}$

$$H_1: \sigma_1^2 < \sigma_2^2$$
 $H_1: \sigma_1^2 > \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$

- $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2$: la statistique du test $F_0 = \frac{S_1^2}{S^2}$
- si $F_0 < F_{1-\alpha;n_1-1;n_2-1} \mid \text{ si } F_0 > F_{\alpha;n_1-1;n_2-1} \mid \text{ si } F_0 < F_{1-\alpha/2;n_1-1;n_2-1}$ ou si $F_0 > F_{\alpha/2;n_1-1;n_2-1}$

La fonction de répartition d'une loi N(0,1): $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\{-u^2/2\} du$.

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91308	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,99989	0,99990	0,99990	0,99990	0,99991	0,99991	0,99992	0,99992	0,99992	0,99992

α	0,25	0,10	0,05	0,025	0,010	0,005	0,001	0,0005
z_{α}	0,674	1,282	1,645	1,960	2,326	2,576	3,090	3,291
$z_{\alpha/2}$	1,150	1,645	1,960	2,241	2,576	2,807	3,291	3,481

Calcul de β et n (cas d'une moyenne μ)

 $X \sim N(\mu, \sigma^2)$ avec σ^2 connue et niveau (seuil) critique α .

Hypothèses	valeur de eta	valeur de <i>n</i>	
$H_0: \mu = \mu_0$ contre $H_1: \mu < \mu_0$	$eta(\mu) = \Phi\left(z_{lpha} + rac{(\mu - \mu_0)\sqrt{n}}{\sigma} ight)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$	
$H_0: \mu = \mu_0$ contre $H_1: \mu > \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$	
$H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$	$eta(\mu) = \Phi\left(z_{lpha/2} - rac{(\mu - \mu_0)\sqrt{n}}{\sigma} ight) - \Phi\left(-z_{lpha/2} - rac{(\mu - \mu_0)\sqrt{n}}{\sigma} ight)$	$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$	

Calcul de β et n (cas de deux moyennes μ_1 , μ_2)

 $X_1 \sim N(\mu_1, \ \sigma_1^2); \ X_2 \sim N(\mu_2, \ \sigma_2^2)$ avec σ_1^2, σ_2^2 connues et niveau (seuil) critique α .

Hypothèses	valeur de eta	$n=n_1=n_2$		
$H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 < \mu_2$	$eta(\mu_1, \mu_2) = \Phi\left(z_{lpha} + rac{(\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} ight)$	$n = \frac{(z_{\alpha} + z_{\beta})^{2}(\sigma_{1}^{2} + \sigma_{2}^{2})}{(\mu_{1} - \mu_{2})^{2}}$		
$H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 > \mu_2$	$eta(\mu_1, \mu_2) = \Phi\left(z_{lpha} - rac{(\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} ight)$	$n = \frac{(z_{\alpha} + z_{\beta})^{2}(\sigma_{1}^{2} + \sigma_{2}^{2})}{(\mu_{1} - \mu_{2})^{2}}$		
$H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 \neq \mu_2$	$\beta(\mu_1, \mu_2) = \Phi\left(z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$	$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$		

Quelques centiles