Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

1. (CURRENTLY AMENDED) A compound of formula (1):

(1)

or stereoisomers or pharmaceutically acceptable salts thereof, wherein:

A is

G is selected from $-C(O)R^3$, $-C(O)NR^2R^3$, $-C(O)OR^3$, $-SO_2NR^2R^3$, $-SO_2R^3$, $-C(-S)NR^2R^3$, $C(-NR^{1a})NR^2R^3$, $C(-CHCN)NR^2R^3$, $C(-CHNO_2)NR^2R^3$, and $C(-C(CN)_2)NR^2R^3$,;

W, at each occurrence, is independently selected from C or N, provided at least two of W are C;

X is 0;

x1 and x2 are independently selected from C and N7

Z1-is selected from G and N7

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

72 is selected from NR12, 0, 6 and C;

- R^1 and R^2 are independently selected from H, $C_{1-\theta}$ alkyl, $C_{3-\theta}$ alkenyl, $C_{3-\theta}$ alkynyl, and a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^a ;
- R^{1a} is independently selected from H, C_{1-6} alkyl, $(CH_2)_r C_{3-6} \text{ cycloalkyl, and a } (CH_2)_r C_{3-10}$ carbocyclic residue substituted with 0-5 R^a ,
- Rb, at each occurrence, is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl;
- Rc, at each occurrence, is selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;
- alternatively, R² and R³ join to form a 5, 6, or 7 membered ring substituted with 0-3-R^a;

Serial No. 10/613,841

- R^3 is selected from a $(CR^{3'}R^{3''})_r$ - C_{3-10} carbocyclic residue substituted with 0-5 R^{15} and a $(CR^{3'}R^{3''})_r$ 5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{15} ;
- $R^{3'}$ and $R^{3''}$, at each occurrence, are selected from H, C_{1-6} alkyl, $(CH_2)_TC_{3-6}$ cycloalkyl, and phenyl;
- R^4 is hydrogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_{r}C_{3-6} \text{ cycloalkyl, and a } (CH_2)_{r}-C_{3-10}$ carbocyclic residue substituted with 0-5 R^a ;
- alternatively, R⁴ joins-with R⁸ or R¹¹ to form a pyrrolidine or piperidine ring system substituted with 0 3 R^{4d};
- $R^{4'}$ is absent, taken with the nitrogen to which it is attached to form an N-oxide, or selected from C_{1-8} alkyl, C_{2-6} alkenyl, C_{3-8} alkynyl, $(CH_2)_{T}C_{3-6}$. cycloalkyl, $(CH_2)_{T}C(0)R^{4b}$, $(CH_2)_{T}C(0)NR^{4a}R^{4a'}$, $(CH_2)_{T}C(0)CR^{4a}$, and a $(CH_2)_{T}C_{3-10}$ carbocyclic residue substituted with 0-3 R^{4C} ;
- R^{4a} and R^{4a} , at each occurrence, are selected from H, C_{1-6} alkyl, $(CH_2)_TC_{3-6}$ cycloalkyl, and phenyl;
- R^{4b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{2-8} alkynyl, and phenyl;

Serial No. 10/613,841

- \mathbb{R}^{4c} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, C_{1} , C_{1} , C_{1} , C_{1} , C_{1} , C_{2} , C_{2} , C_{3} ,
- \mathbb{R}^{4d} , is selected from \mathbb{H} , \mathbb{C}_{1-6} alkyl, $(\text{CHR'})_q\text{OH}$, $(\text{CHR'})_q\text{OC}(0)\,\mathbb{R}^{7b}$, $(\text{CHR'})_q\text{OC}(0)\,\mathbb{N}^{1a}$,
- R^5 is selected from a $(CR^5'R^5'')_t$ - $C_{3-10310}$ carbocyclic residue substituted with 0-5 R^{16} and a $(CR^5'R^5'')_t$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{16} ;
- $R^{5'}$ and $R^{5'}$ at each occurrence, are selected from H, C_{1-6} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and phenyl;
- R⁷, is selected from H, C₁ & alkyl, C₂ & alkonyl, C₃ & alkynyl, (CHR') & alk

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

a (CHR')₂ 5 10 membered heterocyclic-system containing 1-4-heteroatoms-selected from N, O, and S, substituted with 0 2 R⁷⁰;

R^{7a} and R^{7a'}, at each occurrence, are selected from H,

C_{1 6}—alkyl, C₃₋₈ alkenyl, C₃₋₈ alkynyl, a—(CH₂)_x—C₃

10—carbocyclic residue substituted with 0 5 R^{7e},

and a—(CH₂)_x—5—10 membered heterocyclic system

containing 1-4 heterostoms selected from N, O, and

C, substituted with 0 3 R^{7e}?

R^{7b}, at each occurrence, is selected from C₁₋₆-alkyl,

C₂₋₈-alkenyl, C₂₋₈ alkynyl, a (CH₂)_±-C₃₋₆

carbocyclic residue substituted with 0 2 R^{7e}, and

a (CH₂)_±-5-6 membered heterocyclic system

containing 1 4 heteroatoms selected from N, 0, and

G₇-substituted with 0 3 R^{7e};

R^{7e}, at each occurrence, is selected from C₁ e alkyl,

C₂ alkenyl, C₂ alkynyl, (CH₂)_±C₃ e cycleallyl,

Cl. -Br, I, P, (CF₂)_±CF₃, NO₂, CN, (CH₂)_±NR^{3f}R^{7f},

(CH₂)_±OH, (CH₂)_±OC₁ alkyl, (CH₂)_±SC₁ alkyl,

(CH₂)_±C(O)OH, (CH₂)_±C(O)R^{7b}, (CH₂)_±C(O)NR^{3f}R^{7f},

(CH₂)_±NR^{3f}C(O)R^{7a}, (CH₂)_±C(O)OC₁ alkyl,

(CH₂)_±OC(O)R^{7b}, (CH₂)_±C(-NR^{7f})NR^{7f}R^{7f},

(CH₂)_±S(O)₂NR^{7f}R^{7f}, (CH₂)_±NHC(-NR^{7f})NR^{7f}R^{7f},

(CH₂)_±S(O)₂NR^{7f}R^{7f}, (CH₂)_±NR^{7f}S(O)₂R^{7b}, and

(CH₂)_±phenyl substituted with 0 3 R^{7o};

Serial No. 10/613,841

- R^{7d}, at each occurrence, is selected from methyl, CF₂,

 C₂₋₆ alkyl substituted with 0 3 R^{7e}, and a C₃₋₁₀

 carbocyclic residue substituted with 0-3 R^{7e};
- R^{7e} , at each occurrence, is solected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{3-6} cycloalkyl, C_{1} , F_{7} Br, I, $(CF_{2})_{\pm}CF_{2}$, $(CH_{2})_{\pm}OC_{1-5}$ alkyl, $(CH_{2})_{q}OH$, OH, $(CH_{2})_{q}SH$, SH, $(CH_{2})_{\pm}SC_{1-5}$ alkyl, $(CH_{2})_{q}NR^{7f}R^{7f}$, and $(CH_{2})_{\pm}Phenyl$,
- R^{7f}, at each-occurrence, is selected from H, C₁₋₆
 alkyl, and C₁₋₆ sycloalkyl,
- R⁰ is selected from H, C₁₋₆-alkyl, C₃₋₆-cycloalkyl, and (CH₂)_zphenyl substituted with 0-3 R^{0a};
- R^{8a}, at each-occurrence, is selected from C₁₋₆ alkyl,

 C₂₋₈ alkenyl, C₂₋₆ alkynyl, C₂₋₆ cycloalkyl, Cl, F,

 Br, I, CN, NO₂, (CF₂)₂CF₃, (CH₂)₂OC₁₋₅ alkyl, OH,

 SH, (CH₂)₂SC₁₋₅ alkyl, (CH₂)₂NR^{7f}R^{7f}, and

 (CH₂)₂phenyl,
- alternatively, R⁷ and R⁸ join to form G₃₋₇ eyeloalkyl, or which
- R^{8b} is selected from H, C₁ c_alkyl, C₂ cycloalkyl, OH,

 CN, and (CH₂), phenyl,

Serial No. 10/613.841

AMENDMENTS TO THE CLAIMS

R¹¹, is selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₈ alkynyl, (CH₂)_qOH, (CH₂)_qOH, (CH₂)_qOR^{11d}, (CH₂)_qOH, (CH₂)_qOR^{11d}, (CH₂)_qOH, (CH

Rila and Rila, at each occurrence, are selected from H,

C1 6 alkyl, C3 8 alkenyl, C3 8 alkynyl, a (CH2) C3 C3 carbocyclic residue substituted with 0 5 Rila,

and a (CH2) 5 10 membered heterocyclic system

containing 1 4 heteroatoms selected from N, 0, and

C, substituted with 0 3 Rila,

R^{11b}, at each occurrence, is selected from C₁₋₆-alkyl,

C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)₂-C₂₋₆

carbocyclic residue substituted with 0 2 R^{11e}, and

a (CH₂)₂-5-6 membered heterocyclic system

containing 1 4 heteroatoms selected from N, 0, and
S, substituted with 0 3 R^{11e};

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

 $\begin{array}{c} (\text{CH}_2)_{\pm}\text{OH}, -\langle \text{CH}_2\rangle_{\pm}\text{OG}_{1-4} - \text{alkyl}, \quad (\text{CH}_2)_{\pm}\text{CC}_{1-4} - \text{alkyl}, \\ (\text{CH}_2)_{\pm}\text{C}(\text{O})\text{OH}, \quad (\text{CH}_2)_{\pm}\text{C}(\text{O})\text{R}^{11b}, \quad (\text{CH}_2)_{\pm}\text{C}(\text{O})\text{NR}^{11f}\text{R}^{11f}, \\ (\text{CH}_2)_{\pm}\text{NR}^{11f}\text{C}(\text{O})\text{R}^{11b}, \quad (\text{CH}_2)_{\pm}\text{C}(\text{O})\text{OG}_{1-4} - \text{alkyl}, \\ (\text{CH}_2)_{\pm}\text{OC}(\text{O})\text{R}^{11b}, \quad (\text{CH}_2)_{\pm}\text{C}(\text{-NR}^{11f})\text{NR}^{11f}\text{R}^{11f}, \\ (\text{CH}_2)_{\pm}\text{NHC}(-\text{NR}^{11f})\text{NR}^{11f}\text{R}^{11f}, \quad (\text{CH}_2)_{\pm}\text{C}(\text{O})_{2}\text{R}^{11b}, \\ (\text{CH}_2)_{\pm}\text{S}(\text{O})_{2}\text{NR}^{11f}\text{R}^{11f}, \quad (\text{CH}_2)_{\pm}\text{NR}^{11f}\text{S}(\text{O})_{2}\text{R}^{11b}, -\text{and} \\ (\text{CH}_2)_{\pm}\text{phenyl-substituted with 0-3-R}^{11e}, \end{array}$

R^{11d}, at each occurrence, is-selected from methyl, CF₃7

C₂₋₆ alkyl substituted with 0-3 R^{11e}, C₂₋₆ alkenyl,

C₃₋₆ alkynyl, and a C₂₋₁₀ carbocyclic residue

substituted with 0-3 R^{11e};

R^{11e}, at each occurrence, is selected from C₁ 6-alkyl,

C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F,

Br, I, CN, NO₂, (CF₂)₂CF₃, (CH₂)₂OC₁₋₅ alkyl, OH,

SH, (CH₂)₂SC₁₋₅ alkyl, (CH₂)₂NR^{11f}R^{31f}, and

(CH₂)₂phenyl,

R^{11f}, at each occurrence, is selected from H, C₁₋₆ alkyl, and C₁₋₆ eyelcalkyl;

R¹⁵, at each occurrence, is selected from $C_{1-\theta}$ alkyl, $(CH_2)_r C_{3-\theta} \text{ cycloalkyl}, Cl, Br, I, F, NO_2, CN, \\ (CHR')_r NR^{15a}R^{15a'}, (CHR')_r OH, (CHR')_r O(CHR')_r R^{15d}, \\ (CHR')_r SH, (CHR')_r C(O)H, (CHR')_r S(CHR')_r R^{15d}, \\ (CHR')_r C(O)OH, (CHR')_r C(O)(CHR')_r R^{15b}, \\ (CHR')_r C(O)NR^{15a}R^{15a'}, (CHR')_r NR^{15f} C(O)(CHR')_r R^{15b}, \\ (CHR')_r NR^{15f} C(O)NR^{15a}R^{15a'}, (CHR')_r C(O)O(CHR')_r R^{15d}, \\ (CHR')_r NR^{15f} C(O)NR^{15a}R^{15a'}, (CHR')_r C(O)O(CHR')_r R^{15d}, \\ (CHR')_r C(O)O(CHR')_r C(O)NR^{15a}R^{15a'}, (CHR')_r C(O)O(CHR')_r R^{15d}, \\ (CHR')_r C(O)O(CHR')_r C(O)O(CHR')_r C(O)O(CHR'$

" Sérial No. 10/613,841

AMENDMENTS TO THE CLAIMS

(CHR') rOC(O) (CHR') rRl5b, (CHR') rC(=NRl5f) NRl5aRl5a', (CHR') rNHC(=NRl5f) NRl5aRl5a', (CHR') rS(O) p(CHR') rRl5b, (CHR') rS(O) 2NRl5aRl5a', (CHR') rNRl5fS(O) 2(CHR') rRl5b, Cl-6 haloalkyl, C2-8 alkenyl substituted with 0-3 R', C2-8 alkynyl substituted with 0-3 R', (CHR') rphenyl substituted with 0-3 Rl5e, and a (CH2) r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 Rl5e;

- R', at each occurrence, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_TC_{3-6}$ cycloalkyl, and $(CH_2)_T$ phenyl substituted with R^{15e} ;
- R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_T$ C_{3-10} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_T$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{15e} ;
- R^{15b}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e}, and $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e};

Serial No. 10/613,841

- R^{15d} , at each occurrence, is selected from C_{3-8} alkenyl, C_{3-8} alkynyl, methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{15e} , a $(CH_2)_T$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{15e} , and a $(CH_2)_T$ 5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{15e} ;
- R^{15e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{15f}R^{15f}$, and $(CH_2)_rphenyl$;
- R^{15f} , at each occurrence, is selected from H, C_{1-6} alkyl, C_{3-6} cycloalkyl, and phenyl;

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

alkenyl substituted with 0-3 R', C_{2-8} alkynyl substituted with 0-3 R', and $(CHR')_{r}$ phenyl substituted with 0-3 R^{16e};

- R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_{T^-}$ C_{3-10} carbocyclic residue substituted with 0-5 R^{16e} , and a $(CH_2)_{T^-}$ 5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{16e} ;
- R^{16b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_TC_{3-6}$ carbocyclic residue substituted with 0-3 R^{16e} , and a $(CH_2)_T$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{16e} ;
- R^{16d} , at each occurrence, is selected from C_{3-8} alkenyl, C_{3-8} alkynyl, methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{16e} , a $(CH_2)_r$ - C_{3-10} carbocyclic residue substituted with 0-3 R^{16e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{16e} ;
- R^{16e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_TC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_TCF_3$, $(CH_2)_TOC_{1-5}$

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{16f}R^{16f}$, and $(CH_2)_rphenyl$;

- R^{16f} , at each occurrence, is selected from H, C_{1-5} alkyl, and C_{3-6} cycloalkyl, and phenyl;
- R¹⁷, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_qOH$, $(CH_2)_qSH$, $(CH_2)_qOR^{17d}$, $(CH_2)_qSR^{17d}$, $(CH_2)_qNR^{17a}R^{17a}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{17b}$, $(CH_2)_rC(O)NR^{17a}R^{17a}$, $(CH_2)_qNR^{17a}C(O)R^{17b}$, $(CH_2)_qNR^{17a}C(O)H$, $(CH_2)_rC(O)OR^{17b}$, $(CH_2)_qOC(O)R^{17b}$, $(CH_2)_qS(O)_pR^{17b}$, $(CH_2)_qS(O)_2NR^{17a}R^{17a}$, $(CH_2)_qNR^{17a}S(O)_2R^{17b}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{17c} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{17c} ;
- R^{17a} and $R^{17a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, a $(CH_2)_r$ C_{3-10} carbocyclic residue substituted with 0-5 R^{17e} , and a $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, 0, and S, substituted with 0-3 R^{17e} ;
- R^{17b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{17e} , and a $(CH_2)_r$ -5-6 membered heterocyclic system

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{17e} ;

- R^{17c}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, C_{1} , Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{17f}R^{17f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)NR^{17f}R^{17f}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{17b}$, $(CH_2)_rC(O)NR^{17f}R^{17f}$, $(CH_2)_rNR^{17f}C(O)R^{17a}$, $(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{17b}$, $(CH_2)_rC(eNR^{17f})NR^{17f}R^{17f}$, $(CH_2)_rS(O)_pR^{17b}$, $(CH_2)_rNHC(eNR^{17f})NR^{17f}R^{17f}$, $(CH_2)_rS(O)_2NR^{17f}R^{17f}$, $(CH_2)_rNR^{17f}S(O)_2R^{17b}$, and $(CH_2)_rDHenyl$ substituted with 0-3 R^{17e} ;
- R^{17d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{17e} , C_{3-6} alkenyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{17c} ,
- R^{17e}, at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO₂, $(CF_2)_TCF_3$, $(CH_2)_TOC_{1-5}$ alkyl, OH, SH, $(CH_2)_TSC_{1-5}$ alkyl, $(CH_2)_TNR^{17f}R^{17f}$, and $(CH_2)_T$ phenyl;
- R^{17f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;

Serial No. 10/613,841

- R18, is selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CHR')_qOH$, $(CHR')_qSH$, $(CHR')_qOR^{18d}$, $(CHR')_qSR^{18d}$, $(CHR')_qCOR^{18a}$, $(CHR')_rC(O)CH$, $(CHR')_rC(O)R^{18b}$, $(CHR')_rC(O)R^{18a}R^{18a'}$, $(CHR')_qNR^{18a}C(O)H$, $(CHR')_qNR^{18a}C(O)R^{18a}$, $(CHR')_qOC(O)R^{18b}$, $(CHR')_qS(O)_pR^{18b}$, $(CHR')_qS(O)_2NR^{18a}R^{18a'}$, $(CHR')_qNR^{18a}S(O)_2R^{18b}$, $(CHR')_qS(O)_2NR^{18a}R^{18a'}$, $(CHR')_qNR^{18a}S(O)_2R^{18b}$, C_{1-6} haloalkyl, a $(CHR')_r$ C_{3-10} carbocyclic residue substituted with 0-3 R^{18c} , and a $(CHR')_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{18c} ;
- R18a and R18a', at each occurrence, are selected from H,

 C1-6 alkyl, C3-8 alkenyl, C3-8 alkynyl, a (CH2)r
 C3-10 carbocyclic residue substituted with 0-5

 R18e, and a (CH2)r-5-10 membered heterocyclic

 system containing 1-4 heteroatoms selected from N,

 O, and S, substituted with 0-3 R18e;
- R^{18b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_T-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{18e} , and a $(CH_2)_T-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{18e} ;
- R^{18C} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{18f}R^{18f}$,

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

- R^{18d} , at each occurrence, is selected from methyl, CF_3 , C_{2-6} alkyl substituted with 0-3 R^{18e} , C_{3-6} alkenyl, C_{3-6} alkynyl, and a C_{3-10} carbocyclic residue substituted with 0-3 R^{18c} ;
- R^{18e}, at each occurrence, is selected from C₁₋₆ alkyl,
 C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F,
 Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH,
 SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{18f}R^{18f}, and
 (CH₂)_rphenyl;
- R^{18f} , at each occurrence, is selected from H, C_{1-6} alkyl, and C_{3-6} cycloalkyl;
- R¹⁹ is oclected from C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈

 alkynyl, C(0)R^{19b}, C(0)NR^{19a}R^{19a}, C(0)OR^{19a}, and

 EO₂R^{19a}, a (CHR')_E C₃₋₁₀ carbocyclic residue

 substituted with 0-3 R¹⁶, and a (CHR')_E-5-10

 membered heterocyclic system containing 1-4

 heteroatoms selected from N, O, and S, substituted
 with 0-2 R¹⁶;

Serial No. 10/613,841

- R^{19a}-io selected from C₁₋₈ alkyl, C₃₋₈ alkenyl, C₃₋₈

 alkynyl, C₃₋₆ cycloalkyl, a (CR⁵/5R⁵/)₅ C₃₋₁₀₃₁₀

 carbocyclic residue substituted with 0-5 R¹⁵¹⁶ and a (CR⁵/5R⁵//5)₂ 5-10 membered heterocyclic system containing 1-4 heteroacomo selected from N, 0, and S, substituted with 0-3 R¹⁶¹⁶.
- m, at-each occurrence, is selected from 1, 2, 3, 4, and
- n, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5;
- o, at each occurrence, is selected from 1 and 2;
- p, at each occurrence, is selected from 1 and 2;
- r, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5;
- q, at each occurrence, is selected from 1, 2, 3, 4, and 5;

Serial No. 10/613,841

- s, at each occurrence, is selected from 0, 1, and 2;
- t, at each occurrence, is selected from 0, 1, 2, 3, 4, and 5; and
- u, at each occurrence, is independently selected from 0, 1, and 2+.
- w, at each occurrence, is selected from 0 and 1; and w, at each occurrence, is selected from 0, 1, 2, and 3.
- 2. (CURRENTLY AMENDED) The compound of claim 1, wherein:
- R4' is absent or, taken with the nitrogen to which it is attached to form an N-oxide;
- R⁷, is selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, CHR')_qOR^{7a}, (CHR')_qOR^{7a}, CHR')_qOR^{7a}, (CHR')_qOR^{7a}, (CHR')_qOR^{7a}, (CHR')_qOR^{7a}, (CHR')_qOR^{7a}, (CHR')_qOR^{7a}, (CHR')_qOR^{7a}, CHR')_qOR^{7a}, CHR')_qOR^{7a}, CHR')_qOR^{7a}, allegalkyl, a (CHR')_x-C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{7a}, and a (CHR')_x-5-10 membered beterocyclic system containing 1-4 beteroatoms selected from N, O, and S, substituted with 0-2 R^{7a};

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

alternatively, R7 and R8 join to form-C3 7 cycloalkyl7
or =NR8h;

R11, io-selected-from H, C₁ (-alkyl, -C₂₋₈-alkenyl, C₂₋₈
alkynyl, (CH₂)_qOH, (CH₂)_qOR^{11d}, (CH₂)_qNR^{11a}R^{11a'},
(CH₂)₄C(O)R^{11b}, (CH₂)₄C(O)NR^{11a}R^{11a'},
(CH₂)₄NR^{11a}C(O)R^{11b}, (CH₂)₄NR^{11a}C(O)NHR^{11a},
(CH₂)₄NHC(O)NHR^{11a}, (CH₂)₄NHC(O)OR^{11a},
(CH₂)₄OC(O)NHR^{11a}, -C₁ (haloalkyl, a (CH₂)₂-C₃₋₁₀
carbocyclic residue-substituted with 0.5 R^{11c}, and
a (CH₂)₂ 5.10 membered heterocyclic system
containing 1 1 heteroatems selected from N, O, and
S, substituted with 0.3 R^{11c}.

3. (PREVIOUSLY AMENDED) The compound of claim 2, wherein:

A is

$$(H^{18})_{ii}$$
 $(H^{18})_{ij}$ $(CH_2)_{ij}$ $(CH_2)_{ij}$ $(CH_2)_{ij}$ and

t is selected from 0, 1, and 2.

4. (ORIGINAL) The compound of claim 3, wherein:

R17 is selected from H; and

R18 is selected from H.

Serial No. 10/619,841 AMENDMENTS TO THE CLAIMS

5. (PREVIOUSLY AMENDED) The compound of claim 4,

A is

wherein:

- 6. (PREVIOUSLY AMENDED) The compound of claim 5, wherein:
- G is selected from $-C(O)R^3$, $-C(O)NR^2R^3$, $-C(O)OR^3$, $-SO_2NR^2R^3$, and $-SO_2R^3$, $-C(=S)NR^2R^3$, $C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$, $C(=CHNO_2)NR^2R^3$, and $C(=C(CN)_2)NR^2R^3$.
- 7. (PREVIOUSLY AMENDED) The compound of claim 6, wherein:
- G is selected from $-C(0)NR^2R^3$, $C(=NR^{1a})NR^2R^3$, $C(=CHCN)NR^2R^3$, $C(=CHNO_2)NR^2R^3$, and $C(=C(CN)_2)NR^2R^3$.
 - 8. (ORIGINAL) The compound of claim 7, wherein:
- R^{16} , at each occurrence, is selected from methyl, ethyl, propyl, iso-propyl, C_{2-8} alkenyl, C_{2-8} alkenyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, NO₂,

Serial No. 10/613,841

- CN, $(\text{CHR}')_r \text{NR}^{16a} \text{R}^{16a'}$, $(\text{CHR}')_r \text{OH}$, $(\text{CHR}')_r \text{O}(\text{CHR}')_r \text{R}^{16d}$, $(\text{CHR}')_r \text{C}(\text{O}) (\text{CHR}')_r \text{R}^{16b}$, $(\text{CHR}')_r \text{C}(\text{O}) \text{NR}^{16a} \text{R}^{16a'}$, $(\text{CHR}')_r \text{NR}^{16f} \text{C}(\text{O}) (\text{CHR}')_r \text{R}^{16b}$, $(\text{CHR}')_r \text{S}(\text{O})_p (\text{CHR}')_r \text{R}^{16b}$, $(\text{CHR}')_r \text{S}(\text{O})_2 \text{NR}^{16a} \text{R}^{16a'}$, $(\text{CHR}')_r \text{NR}^{16f} \text{S}(\text{O})_2 (\text{CHR}')_r \text{R}^{16b}$, C_{1-6} haloalkyl, and $(\text{CHR}')_r \text{Phenyl}$ substituted with 0-3 R^{16e} ;
- R^{16a} and $R^{16a'}$, at each occurrence, are selected from H, methyl, ethyl, and a $(CH_2)_x$ - C_{3-6} carbocyclic residue substituted with 0-2 R^{16e} ;
- R16e, at each occurrence, is selected from methyl, ethyl, Cl, F, Br, I, CN, CF3, and OCH3;
- R^{16f}, at each occurrence, is selected from H; and r is selected from 0, 1, and 2.
- 9. (PREVIOUSLY AMENDED) The compound of claim 8, wherein:
- R^3 is selected from a $(CR^3'R^{3''})_T-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{15} and a $(CR^{3'}CR^{3''})_T-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15} ;
- R3' and R3", at each occurrence, are selected from H;

Serial No. 10/613,841

- R15, at each occurrence, is selected from C_{1-8} alkyl, $(CH_2)_{r}C_{3-6} \text{ cycloalkyl, } Cl, \text{ Br, F, CN,}$ $(CHR')_{r}NR^{15a}R^{15a'}, (CHR')_{r}OH, (CHR')_{r}O(CHR')_{r}R^{15d},$ $(CHR')_{r}C(O) (CHR')_{r}R^{15b}, (CHR')_{r}C(O)NR^{15a}R^{15a'},$ $(CHR')_{r}NR^{15f}C(O) (CHR')_{r}R^{15b},$ $(CHR')_{r}NR^{15f}C(O)NR^{15f}R^{15f}, (CHR')_{r}C(O)O(CHR')_{r}R^{15d},$ $(CHR')_{r}OC(O) (CHR')_{r}R^{15b}, (CHR')_{r}S(O)_{p}(CHR')_{r}R^{15b},$ $(CHR')_{r}S(O)_{2}NR^{15a}R^{15a'}, (CHR')_{r}NR^{15f}S(O)_{2}(CHR')_{r}R^{15b},$ $(C_{1-6} \text{ haloalkyl, } C_{2-8} \text{ alkenyl substituted with } 0-3$ $R', C_{2-8} \text{ alkynyl substituted with } 0-3$ $R', C_{2-8} \text{ alkynyl substituted with } 0-3$ $R^{15e}, \text{ and a }$ $(CH_2)_{r}-5-10 \text{ membered heterocyclic system }$ containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 $R^{15e};$
- R', at each occurrence, is selected from H, and C_{1-6} alkyl;
- R^{15a} and $R^{15a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, a $(CH_2)_T$ - C_{3-6} carbocyclic residue substituted with 0-5 R^{15e} , and a $(CH_2)_T$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e} ;
- R^{15b} , at each occurrence, is selected from C_{1-6} alkyl, a $(CH_2)_{r}$ - C_{3-6} carbocyclic residue substituted with 0-3 R^{15e} , and $(CH_2)_{r}$ -5-6 membered heterocyclic system containing 1-2 heteroatoms selected from N, 0, and S, substituted with 0-2 R^{15e} ; and

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

 R^{15e} , at each occurrence, is selected from C_{1-6} alkyl, Cl. F, Br, I, CN, $(CF_2)_T CF_3$, and OH.

- 10. (CANCELED)
- 11. (CANCELED)
- 12. (CANCELED)
- 13. (CANCELED)
- 14. (CANCELED)
- 15. (CANCELED)
- 16. (CANCELED)
- 17. (CANCELED)
- 18. (CANCELED)
- 19. (CANCELED)
- 20. (CANCELED)
- 21. (CANCELED)
- 22. (CANCELED)
- 23. (PREVIOUSLY AMENDED) The compound of claim 1 wherein the compound is selected from:

Serial No. 10/613,841

- N-(3-acetylphenyl)-N'-((3S,4S)-4-{[4-(4-fluorobenzyl)cyclohexyl]amino}tetrahydro-3-furanyl)urea.
- 24. (ORIGINAL) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1.
- 25. (ORIGINAL) A method for modulation of chemokine receptor activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 26. (CURRENTLY AMENDED) A method for treating or preventing inflammatory diseases, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 27. (CURRENTLY AMENDED) A method for treating expreventing asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 1.
- 28. (PREVIOUSLY PRESENTED) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 9.
- 29. (PREVIOUSLY PRESENTED) A method for modulation of chemokine receptor activity comprising administering to a patient in need thereof a

Serial No. 10/613,841

AMENDMENTS TO THE CLAIMS

therapeutically effective amount of a compound of claim 9.

- 30. (PREVIOUSLY PRESENTED) A method for treating inflammatory diseases, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 9.
- 31. (CURRENTLY AMENDED) A method for treating expreventing asthma, comprising administering to a patient in need thereof a therapeutically effective amount of a compound of claim 9.
- 32. (PREVIOUSLY PRESENTED) A method according to Claim 30, wherein the disorder is selected from asthma, allergic rhinitis, atopic dermatitis, inflammatory bowel diseases, idiopathic pulmonary fibrosis, bullous pemphigoid, allergic colitis, eczema, conjunctivitis, familial eosinophilia, eosinophilic cellulitis, eosinophilic pneumonias, eosinophilic fasciitis, and eosinophilic gastroenteritis.
- 33. (PREVIOUSLY PRESENTED) The method according to Claim 32, wherein the disorder is allergic rhinitis:
- 34. (PREVIOUSLY PRESENTED) The method according to Claim 32, wherein the disorder is atopic dermatitis.
- 35. (PREVIOUSLY PRESENTED) The method according to Claim 32, wherein the disorder is inflammatory bowel diseases.