DM4: Filtrage et cinétique chimique – corrigé

Exercice 1: FILTRE DE HARTLEY

- 1. En utilisant les comportements de la bobine et du condensateur à basse et haute fréquence, on obtient les résultats suivants :
 - À basse fréquence, la bobine se comporte comme un fil et on a directement $\underline{s} = 0$ car la tension de sortie est prise aux bornes d'une bobine.
 - À haute fréquence, le condensateur se comporte comme un fil, la tension aux bornes des deux bobines est donc nulle. En faisant un pont diviseur de tension, on trouve que $\underline{s} = 0$ également.

C'est un filtre qui coupe les hautes et les basses fréquences, c'est donc un passe-bande .

2. On commence par déterminer la tension \underline{u}_C aux bornes de C en fonction de \underline{e} . On utilise pour cela un pont diviseur de tension en calculant une impédance équivalente $\underline{Z}_{\rm eq}$ des deux bobines et du condensateur. On a :

$$Z_{\rm eq} = \frac{2jL\omega/(jC\omega)}{2jL\omega + 1/(jC\omega)} = \frac{2L/C}{j(2L\omega - 1/(C\omega))}$$
(1)

$$\underline{u}_{C} = \frac{\underline{Z}_{\text{eq}}}{\underline{Z}_{\text{eq}} + R} \underline{e} = \frac{2\frac{L}{C}}{2\frac{L}{C} + jR(2L\omega - \frac{1}{C\omega})} = \frac{1}{1 + jR\left(C\omega - \frac{1}{2L\omega}\right)}$$
(2)

En utilisant un second pont diviseur de tension formé par les deux bobines en série, on a

$$\underline{\underline{s}} = \frac{1}{2}\underline{\underline{u}}_{C} = \underbrace{\frac{\frac{1}{2}}{1 + jR\left(C\omega - \frac{1}{2L\omega}\right)}}_{\underline{\underline{H}}(\omega)}\underline{\underline{e}}$$
(3)

3. En partant de l'équation (3), on a

$$\underline{H}(\omega) = \frac{\frac{1}{2}}{1 + jR\sqrt{\frac{C}{2L}}\left(\sqrt{2LC}\omega - \frac{1}{\sqrt{2LC}\omega}\right)} \tag{4}$$

En notant $\overline{H_0 = \frac{1}{2}}$, $\overline{\omega_0 = \frac{1}{\sqrt{2LC}}}$ et $\overline{Q = R\sqrt{\frac{C}{2L}}}$, on retrouve bien l'expression demandée. On a les valeurs numériques suivantes :

- -Q = 71;
- $--\omega_0 = 7.1 \cdot 10^4 \, \mathrm{rad} \, \mathrm{s}^{-1} \, ;$
- $-H_0 = 0.5.$
- 4. On commence par déterminer l'expression de $G_{\mathrm{dB}}(\omega)$:

$$G_{\mathrm{dB}}(\omega) = 20 \log(G(\omega)) = 20 \log(|\underline{H}|(\omega)) = 20 \log\left(\frac{H_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}\right)$$
 (5)

On détermine ensuite les expressions approchées de $G_{\rm dB}(\omega)$ à haute et basse fréquence, c'est-à-dire lorsque $x \to \infty$ et lorsque $x \to 0$.

— Lorsque $x \to \infty$, on a

$$G_{\rm dB}(\omega) \approx 20 \log \left(\frac{H_0}{Qx}\right) = 20 \log(H_0/Q) - 20 \log(x)$$
 (6)

On a donc une asymptote de pente $-20\,\mathrm{dB/d\acute{e}cade}$. Graphiquement, on trouve une pente de $\frac{-73-(-43)}{1.5-0}=-20\,\mathrm{dB/d\acute{e}cade}$.

2024-2025 page 1/5

— Lorsque $x \to 0$, on a

$$G_{\rm dB}(\omega) \approx 20 \log \left(\frac{H_0}{Q/x}\right) = 20 \log(H_0/Q) + 20 \log(x) \tag{7}$$

On a donc une asymptote de pente $20\,\mathrm{dB/d\acute{e}cade}$. Graphiquement, on trouve une pente de $\frac{-73-(-43)}{-1.5-0}=20\,\mathrm{dB/d\acute{e}cade}$.

Les valeurs trouvées graphiquement sont donc compatibles avec les valeurs théoriques.

5. La valeur a correspond à l'ordonnée à l'origine des asymptote, d'après la question précédente on a

$$a = 20 \log(H_0/Q) = -43 \,\mathrm{dB}$$
 (8)

La valeur de b correspond au gain pour ω_0 , c'est-a dire pour x=1. On a alors

$$b = 20\log(H_0) = -6 \,\mathrm{dB}$$
 (9)

- 6. En général, lorsque le diagramme de Bode présente une pente à 20 dB/décade, le filtre peut être utilisé comme dérivateur et lorsqu'il y a une pente à -20 dB/décade, il peut être utilisé comme intégrateur. Vérifions cela par le calcul :
 - à basse fréquence, la fonction de transfert s'écrit

$$\underline{H}(\omega) = \frac{H_0}{-jQ/x} = \frac{H_0}{Q}jx = \frac{H_0}{Q\omega_0}j\omega \tag{10}$$

On a donc $\underline{s} = \frac{H_0}{Q\omega_0} j\omega\underline{e}$ et le filtre a bien un comportement dérivateur car le signal d'entrée est multiplié par $j\omega$.

— à haute fréquence, la fonction de transfert s'écrit

$$\underline{H}(\omega) = \frac{H_0}{jQx} = \frac{H_0}{Q} \frac{1}{jx} = \frac{H_0\omega_0}{Q} \frac{1}{j\omega}$$
(11)

On a donc $\underline{s} = \frac{H_0 \omega_0}{Q} \frac{\underline{e}}{j\omega}$ et le filtre a bien un comportement intégrateur car le signal d'entrée est divisé par $j\omega$.

- 7. Pour produire ce signal, on utilise un GBF réglé pour produire un signal sinusoïdal avec une pulsation $\omega_1 = \omega_0$, d'amplitude E_1 avec une décalage (offset) égal à E_0 .
- 8. Le filtre étant un passe bande, la composante continue est totalement coupée. On a également $\omega_1 = \omega_0$. À cette pulsation, la fonction de transfert est $\underline{H}(\omega_0) = H_0 = \frac{1}{2}$. Le signal de sortie est donc

$$s_1(t) = \frac{E_1}{2}\cos(\omega_1 t) \tag{12}$$

9. La valeur efficace es $e_2(t)$ est :

$$E_{2,\text{eff}} = \sqrt{\frac{1}{T} \int_0^T e_2(t)^2 dt} = \sqrt{\frac{1}{T} \int_0^T E_2^2 dt} = \sqrt{E_2^2} = E_2$$
(13)

10. Le spectre de $e_2(t)$ est uniquement composé d'harmonique impaires d'amplitude proportionnelle à 1/n, où n est le numéro de l'harmonique. Il ressemble à ça :

2024-2025 page 2/5

11. On utilise l'expression du gain déterminé dans l'équation 5 pour déterminer les amplitudes des pics dans le signal de sortie. On a

Pulsation	Amplitude d'entrée (V)	Gain	Amplitude de sortie (V)
$\omega_2 = \omega_0/3$	1,27	$2.7 \cdot 10^{-3}$	$3.4 \cdot 10^{-3}$
$3\omega_2 = \omega_0$	$0,\!42$	$5,0 \cdot 10^{-1}$	$2,1 \cdot 10^{-1}$
$5\omega_2 = 5\omega_0/3$	0,25	$6.6 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$
$7\omega_2 = 7\omega_0/3$	0,18	$3.7\cdot10^{-3}$	$6.8 \cdot 10^{-4}$

On remarque que l'amplitude de sortie du pic de pulsation $3\omega_2$ est bien supérieure à l'amplitude des autres pics. Le signal de sortie sera donc proche d'un signal sinusoïdal de pulsation $3\omega_2$. D'où le nom de « tripleur de fréquence ».

12. On fait la même analyse qu'à la question précédente, en déterminant les amplitudes des différentes harmoniques du signal de sortie :

Pulsation	Amplitude d'entrée (V)	Gain	Amplitude de sortie (V)
$\omega_3 = \omega_0$	0,41		$2.0 \cdot 10^{-1}$
$3\omega_3 = 3\omega_0$	0,05	,	$1.2 \cdot 10^{-4}$
$5\omega_3 = 5\omega_0$	0,02		$2.4 \cdot 10^{-5}$
$7\omega_3 = 7\omega_0$	0,01	$1,0 \cdot 10^{-3}$	$8.5 \cdot 10^{-6}$

On remarque que l'amplitude de sortie du pic de pulsation $\omega_3 = \omega_0$ est bien supérieure à l'amplitude des autres pics. Le signal de sortie sera donc proche d'un signal sinusoïdal de pulsation ω_3 et d'amplitude $2,0 \cdot 10^{-1}$ V.

Exercice 2 : CINÉTIQUE CHIMIQUE

1. La vitesse volumique de réaction est

$$v = -\frac{\mathrm{d[RBr]}}{\mathrm{d}t} = -\frac{\mathrm{d[I^-]}}{\mathrm{d}t} = \frac{\mathrm{d[RI]}}{\mathrm{d}t} = \frac{\mathrm{d[Br^-]}}{\mathrm{d}t}$$
(1)

D'autre part, vu la loi de vitesse on a

$$v = k[RBr]^{\alpha}[I^{-}]^{\beta}$$
 (2)

- 2. (a) Pour l'expérience I, on remarque que $[RBr]_0 \approx 20 \times [I^-]_0$, donc RBr est en large excès par rapport à I^- et on peut considérer sa concentration comme constante au cours du temps. On a donc une dégénérescence de l'ordre par rapport à RBr.
 - (b) Pour montrer que la réaction est d'ordre 1 par rapport à I^- , on trace $\ln[I^-]$ en fonction du temps et on obtient le graphique suivant :

2024-2025 page 3/5

Comme les points s'alignent parfaitement sur une droite de coefficient directeur $a = -0.266 \,\mathrm{h^{-1}}$ et d'ordonnée à l'origine b = -6.17, on en conclut que l'hypothèse d'un ordre 1 par rapport à I⁻ est validée.

- (c) L'équation théorique de la droite obtenue à la question précédente est $\ln([I^-]) = ([I^-]_0) k_{app}t$. Le coefficient directeur obtenu par la régression linéaire donne directement $\overline{k_{app} = 0.266 \, h^{-1}}$.
- 3. (a) On a $n_{\text{RBr}} = n_{\text{RBr}}(0)(1-\tau)$ et une relation similaire pour n_{I^-} . En divisant par le volume de la solution, on obtient

$$[RBr] = [RBr]_0(1 - \tau) \text{ et } [I^-] = [I^-]_0(1 - \tau)$$
 (3)

Comme $[RBr]_0 = [I^-]_0 = C_0$, on a finalement $\overline{[RBr] = [I^-] = C_0(1-\tau)}$.

(b) Dans cette expérience, les réactifs sont en proportions stœchiométriques, elle va donc être sensible à l'ordre global de la réaction. La question revient donc à se demander si l'ordre global de la réaction est 1 ou 2. On va donc tracer $1/[I^-]$ et $\ln([I^-])$ en fonction du temps pour obtenir les graphiques suivant :

Les points sont parfaitement alignés dans le graphique de gauche, et pas vraiment dans celui de droite. On en conclut que la réaction est d'ordre global 2 et donc l'ordre partiel par rapport à RBr est $\overline{\alpha=1}$.

- (c) On utilise l'expression de la constante de vitesse apparente trouvée avec les résultats de l'expérience 1 : $k_{\rm app} = k[{\rm RBr}]_0. \ {\rm Et} \ {\rm on} \ {\rm trouve} \quad \overline{k = k_{\rm app}/[{\rm RBr}]_0 = 6.11\,{\rm mol}^{-1}\,\ell\,h^{-1}} \ . \ {\rm On} \ {\rm peut} \ {\rm aussi} \ {\rm utiliser} \ {\rm le} \ {\rm coefficient} \ {\rm directeur} \ {\rm de} \ {\rm la} \ {\rm question} \ {\rm précédente}, \ {\rm le} \ {\rm résultat} \ {\rm ext} \ {\rm le} \ {\rm même}.$
- 4. (a) On commence par établir un tableau d'avancement volumique :

	RBr	+	\mathbf{I}^-	\longrightarrow	RI	+	Br^-
État initial			b_0		0		0
Au temps t	$a_0 - x$		$b_0 - x$		x		x

La loi de vitesse s'écrit alors

$$v = -\frac{d(a_0 - x)}{dt} = \frac{dx}{dt} = k(b_0 - x)(a_0 - x)$$
 soit $\frac{\frac{dx}{dt}}{(a_0 - x)(b_0 - x)} = k$ (4)

En utilisant la relation fournie par l'énoncé, on a

$$\frac{1}{b_0 - a_0} \left(\frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{a_0 - x} - \frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{b_0 - x} \right) = k \quad \text{ou} \quad \frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{a_0 - x} - \frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{b_0 - x} = k(b_0 - a_0)$$
 (5)

On remarque que $\frac{dx}{dt}/(a_0-x)=-\frac{d}{dt}(\ln(a_0-x))$ et $\frac{dx}{dt}/(b_0-x)=-\frac{d}{dt}(\ln(b_0-x))$ On obtient

$$\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{b_0-x}{a_0-x}\right) = k(b_0-a_0) \quad \text{donc} \quad \ln\left(\frac{b_0-x}{a_0-x}\right) = k(b_0-a_0)t + A \tag{6}$$

En t = 0, on a x(0) = 0 et donc $A = \ln\left(\frac{b_0}{a_0}\right)$. Et finalement

$$\left\{ \ln \left(\frac{(b_0 - x)a_0}{(a_0 - x)b_0} \right) = k(b_0 - a_0)t \right.$$
(7)

2024-2025 page 4/5

(b) À $T_1 = 323$ K, le réactif limitant est RBr, donc au bout de $t_{1/2}$, on a $x = a_0/2$, on obtient alors

$$k(T_1) = \frac{1}{(b_0 - a_0)t_{1/2}} \ln \left(\frac{(b_0 - a_0/2)a_0}{(a_0 - a_0/2)b_0} \right) = \frac{1}{(b_0 - a_0)t_{1/2}} \ln \left(\frac{2b_0 - a_0}{b_0} \right) = 2.47 \cdot 10^{-1} \,\mathrm{mol}^{-1} \,\ell\,\mathrm{h}^{-1}$$

(8)

(c) Les réactifs sont en proportions stoechiométriques, et au cours de la réaction, on a toujours $[RBr] = [I^-] = a_0 - x$. La loi de vitesse devient donc

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(T_2)(a_0 - x)^2 \tag{9}$$

On suit ce que l'énoncé propose et on pose $u = \frac{1}{a_0 - x}$, on a donc $x = a_0 - \frac{1}{u}$, et $\frac{dx}{dt} = \frac{1}{u^2} \frac{du}{dt}$. L'équation (9) devient $\frac{du}{dt} = k(T_2)$ que l'on peut résoudre simplement pour trouver

$$u(t) = k(T_2)t + B$$
 avec $B = u(0) = \frac{1}{a_0}$. (10)

Donc finalement

$$\frac{1}{a_0 - x(t)} = \frac{1}{a_0} + k(T_2)t \tag{11}$$

(d) Le temps de demi-réaction est tel que $x(t_{1/2})=a_0/2,$ et on obtient $t_{1/2}=\frac{1}{k(T_2)a_0}$, ou

$$k(T_2) = \frac{1}{t_{1/2}a_0} = 10.3 \,\mathrm{mol}^{-1} \,\ell \,\mathrm{h}^{-1}$$
(12)

(e) On écrit la loi d'Arrhenius pour les deux températures $T_1 = 323 \,\mathrm{K}$ et $T_2 = 353 \,\mathrm{K}$, on note $k = k(T_1)$ et $k' = k(T_2)$, et on a

$$\ln\left(\frac{k'}{k}\right) = \frac{E_a}{RT_1} - \frac{E_a}{RT_2} \quad \text{donc} \quad E_a = \frac{RT_1T_2}{(T_2 - T_1)} \ln\left(\frac{k'}{k}\right) = 118 \,\text{kJ} \,\text{mol}^{-1}$$
(13)

L'ordre de grandeur pour E_a semble raisonnable.

2024-2025 page 5/5