Notes on Probability Theory 18.175

Tianyu Du

February 4, 2019

Contents

1	Preliminaries	1
2	Random Variables	3

1 Preliminaries

Definition 1.1. A probability space is a triple (Ω, \mathcal{F}, P) where Ω is the sample space, \mathcal{F} is a σ -algebra of Ω (events) and $P : \mathcal{F} \to [0, 1]$ is the probability function.

Remark 1.1. (Ω, \mathcal{F}) is a measurable space or Borel space.

Definition 1.2. A **algebra**, A, of set X is a collection of subsets of X closed under complementation and *finite* union.

Definition 1.3. A σ -algebra of set X is a collection of subsets of X closed under complementation and *countable* union.

Remark 1.2. We can also define algebra and σ -algebra using closures under complementation and finite/countable intersection.

Proof. Use DeMorgan's Law.

Definition 1.4. A measure μ on \mathcal{A} is σ -finite if there exists *countable* collection $A_n \in \mathcal{A}$ with $\mu(A_n) < \infty$ and $\cup A_n = \Omega$.

Definition 1.5. A semi-algebra S is a collection of sets closed under intersection such that $S \in S$ implies that S^c is a *finite disjoint* union of sets in S.

Lemma 1.1. Let S be a semi-algebra, then

$$\overline{S}$$
 = all finite disjoint unions of sets in S (1.1)

is an algebra, called the **algebra generated by** S.

Proof. We are going to show the equivalent definition of algebra, that's, \bar{S} is closed under complementation and finite intersection.

Intersection: Let $A, B \in \bar{\mathcal{S}}$, then by definition of $\bar{\mathcal{S}}$,

$$A = \cup_i A_i \ A_i \in \mathcal{S} \tag{1.2}$$

$$B = \cup_j B_j \ B_j \in \mathcal{S} \tag{1.3}$$

Then by definition of semi-algebra, $A_i \cap B_j \in \mathcal{S}$. Then

$$A \cap B = (\cup_i A_i) \cap (\cup_j B_j) \tag{1.4}$$

$$= \cup_{i,j} A_i \cap B_j \in \bar{\mathcal{S}} \tag{1.5}$$

By an inductive argument, we've shown that \bar{S} is closed under intersection.

Complementation: Let $A \in \bar{\mathcal{S}}$, by definition

$$A = \cup_i A_i \ A_i \in \mathcal{S} \tag{1.6}$$

Therefore, by DeMorgan's Law, $A^c = \bigcap_i A_i^c$ and by definition of semi-algebra, for each A_i^c , it's a finite union of disjoint sets in S.

By definition of \bar{S} , each $A_i^c \in \bar{S}$. And as shown above, \bar{S} is closed under finite intersection.

Therefore $A^c \in \bar{\mathcal{S}}$.

So \bar{S} is closed under complementation.

Therefore \bar{S} is an algebra.

Definition 1.6. A measure on algebra is a function $\mu: \mathcal{A} \to \mathbb{R}$ such that

- (i) $\mu(A) \ge \mu(\emptyset) = 0 \ \forall A \in \mathcal{A}$,
- (ii) and countably additive for disjoint set $\{A_i\}_i$

$$\mu(\cup_i A_i) = \sum_i \mu(A_i) \tag{1.7}$$

Definition 1.7. A measure μ on \mathcal{F} is a probability measure if $\mu(\Omega) = 1$.

Definition 1.8. The **Borel** σ -algebra \mathcal{B} on a topological space is the smallest σ -algebra containing all open sets.

Theorem 1.1. For each right continuous, non-decreasing function F such that $\lim_{x\to\infty} F = 0$ and $\lim_{x\to\infty} F = 1$, there is an unique measure defined on the Borel sets of $\mathbb R$ with

$$P((a,b]) \equiv F(b) - F(a) \tag{1.8}$$

Definition 1.9. A collection \mathcal{P} of sets is a π -system is it's closed under intersection.

Definition 1.10. A collection \mathcal{L} of subsets of Ω is a λ -system(Dynkin system) if

- (i) $\Omega \in \mathcal{L}$.
- (ii) (Closed under set difference) If $A, B \in \mathcal{L} \land A \subseteq B \implies B \backslash A \in \mathcal{L}$.
- (iii) (Contain set sequence limit) If $A_n \in \mathcal{L}$ and $A_n \uparrow A$, then $A \in \mathcal{L}$.

Theorem 1.2. If \mathcal{P} is a π -system and \mathcal{L} is a λ -system containing \mathcal{P} , then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$, where $\sigma(\mathcal{A})$ denotes the smallest σ -algebra containing \mathcal{A} .

Theorem 1.3 (Caratheodory Extension Theorem). If μ is a σ -finite measure on an algebra \mathcal{A} , then μ has a *unique* extension to the σ -algebra generated by \mathcal{A} .

2 Random Variables

Definition 2.1. A measurable space is a tuple (S, Σ) where Σ is a σ -algebra on S.

Remark 2.1. The definition of measurable spaces does not require a specific measure.

Definition 2.2. Let (X, Σ) and (Y, Π) be two measurable spaces, and function $f: X \to Y$ is a **measurable function** if

$$\forall \mathcal{E} \in \Pi, \ f^{-1}(\mathcal{E}) \in \Sigma$$

Denoted as $f:(X,\Sigma)\to (Y,\Pi)$.

Definition 2.3. A random variable is a measurable function $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$. We say X is \mathcal{F} -measurable.

Theorem 2.1. If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S} , then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) .

Definition 2.4. Let $F_X(x) \equiv P(X \leq x)$ be the **distribution function** for X. And write $f = f_X = F_X'$ for the **density function** of X. The distribution function must be

- (i) Non-decreasing
- (ii) Right-continuous
- (iii) $\lim_{x\to\infty} F(x) = 1$
- (iv) $\lim_{x\to-\infty} F(x) = 0$