THEOREM Induction $\stackrel{\triangle}{=}$ $Inv \land Next \Rightarrow Inv'$

 $\langle 1 \rangle 1$. Suffices Assume: 1. Inv

2. Next Inv'

Prove: Proof: Obvious.

 $\langle 1 \rangle 2$. Case: $\land x > y$ $\land x' = x - y$ $\land y' = y$

 $\langle 2 \rangle 1$. Type OK'

PROOF: $\langle 1 \rangle 1.1$ and the definitions of Inv and TypeOK imply that x and y are in $Nat \setminus \{0\}$. By case assumption $\langle 1 \rangle 2$, this implies that x' and y' are in $Nat \setminus \{0\}$, proving $\langle 2 \rangle 1$.

- $\langle 2 \rangle 2$. GCDInv'
 - $\langle 3 \rangle 1$. GCD(y', x') = GCD(y, x)

PROOF: $\langle 1 \rangle 1.1$ and the definitions of Inv and TypeOK imply that x and y are in $Nat \setminus \{0\}$, so $\langle 3 \rangle 1$ follows from case assumption $\langle 1 \rangle 2$ and GCD3 (substituting y for m and x for n).

 $\langle 3 \rangle 2$. GCD(x', y') = GCD(x, y)

PROOF: $\langle 1 \rangle 1.1$, the definitions of *Inv* and *TypeOK*, and $\langle 2 \rangle 1$ imply that x, y, x', and y' are in $Nat \setminus \{0\}$, so $\langle 3 \rangle 2$ follows from $\langle 3 \rangle 1$ and GCD2.

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: $\langle 3 \rangle 2$, $\langle 1 \rangle 1.1$, and the definitions of *Inv* and *GCDInv* imply $\langle 2 \rangle 2$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and definition of Inv.

 $\langle 1 \rangle 3$. Case: $\land y > x$ $\land y' = y - x$ $\land x' = x$

 $\langle 2 \rangle 1$. TypeOK'

PROOF: $\langle 1 \rangle 1.1$ and the definitions of Inv and TypeOK imply that x and y are in $Nat \setminus \{0\}$. By case assumption $\langle 1 \rangle 3$, this implies that x' and y' are in $Nat \setminus \{0\}$, proving $\langle 2 \rangle 1$.

- $\langle 2 \rangle 2$. GCDInv'
 - $\langle 3 \rangle 1. \ GCD(x', y') = GCD(x, y)$

PROOF: $\langle 1 \rangle 1.1$ and the definitions of Inv and TypeOK imply that x and y are in $Nat \setminus \{0\}$, so $\langle 3 \rangle 1$ follows from case assumption $\langle 1 \rangle 3$ and GCD3 (substituting x for m and y for n).

 $\langle 3 \rangle 2$. Q.E.D.

PROOF: $\langle 3 \rangle 1$, $\langle 1 \rangle 1.1$, and the definitions of *Inv* and *GCDInv* imply $\langle 2 \rangle 2$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and definition of Inv.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: By $\langle 1 \rangle 1.2$ and the definition of *Next*, the cases $\langle 1 \rangle 2$ and $\langle 1 \rangle 3$ are exhaustive.

CLOSE