SEQUENCE LISTING

- <110> CHEN, WENFANG
 MEEK, THOMAS D.
 POWELL, DAVID J.
 TEW, DAVID G.
- <120> Method of Site Specific Labeling of Proteins and Uses
 Therefor
- <130> P50892
- <140> 09/889,344
- <141> 2001-07-16
- <150> PCT/US00/01481
- <151> 2000-01-20
- <150> US 60/117,327
- <151> 1999-01-22
- <160> 16
- <170> FastSEQ for Windows Version 3.0
- <210> 1
- <211> 5
- <212> PRT
- <213> Artificial Sequence
- <220>
- <221> unsure
- <222> (5)
- <223> Where Xaa at position (5) can represent Leucine or Isoleucine
- <220>
- <223> Wherein the amino acid sequence is modified by reacting a

```
<223> transglutaminase with a detectable labeling compound
      <400> 1
Gln Ser Lys Val Xaa
 1
      <210> 2
      <211> 207
      <212> PRT
      <213> Artificial Sequence
      <220>
      <221> unsure
      <222> (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)
      <222> (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28)
      <222> (29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(39)(40)(41)
      <222> (42)(43)(44)(45)(46)(47)(48)(49)(50)(51)(52)(53)(54)
      <222> (55) (56) (57) (58) (59) (60) (61) (62) (62) (64) (65) (66) (67)
      <222> (68)(69)(70)(71)(72)(73)(74)(75)(76)(77)(78)(79)(80)
      <222> (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93)
      <222> (94) (95) (96) (97) (98) (99) (100) (101) (106) (107) (108) (109)
      <222> (110) (111) (112) (113) (114) (115) (116) (117) (118) (119) (120)
      <222> (121) (122) (123) (124) (125) (126) (127) (128) (129) (130) (131)
      <222> (132) (133) (134) (135) (136) (137) (138) (139) (140) (141) (142)
      <222> (143)(144)(145)(146)(147)(148)(149)(150)(151)(152)(153)
      <222> (154) (155) (156) (157) (158) (159) (160) (161) (162) (163) (164)
      <222> (165) (166) (167) (168) (169) (170) (171) (172) (173) (174) (175)
      <222> (176) (177) (178) (179) (180) (181) (182) (183) (184) (185) (186)
      <222> (187) (188) (189) (190) (191) (192) (193) (194) (195) (196) (197)
      <222> (198) (199) (200) (201) (202) (203) (204) (205) (206) (207)
      <223> Where Xaa can represent none or any one of the twenty naturally
      <223> occurring amino acids
      <220>
      <223> Wherein the amino acid sequence is modified by reacting a
      <223> transglutaminase with a detectable labeling compound
      <400> 2
```

10

15

1

5

```
25
          3.0
  20
40
55
70
       75
90
Xaa Xaa Xaa Xaa Gln Ser Lys Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa
  100
      105
          110
120
         125
130
    135
        140
150
145
       155
           160
170
   165
190
  180
      185
195
     200
         205
```

- <210> 3
- <211> 207
- <212> PRT
- <213> Artificial Sequence
- <220>
- <221> unsure
- <222> (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)
- <222> (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28)
- <222> (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41)
- <222> (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54)
- <222> (55) (56) (57) (58) (59) (60) (61) (62) (62) (64) (65) (66) (67)
- <222> (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) (80)
- <222> (81) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93)
- <222> (94)(95)(96)(97)(98)(99)(100)(101)(106)(107)(108)(109)

```
<222> (110)(111)(112)(113)(114)(115)(116)(117)(118)(119)(120)
    <222> (121)(122)(123)(124)(125)(126)(127)(128)(129)(130)(131)
    <222> (132) (133) (134) (135) (136) (137) (138) (139) (140) (141) (142)
   <222> (143) (144) (145) (146) (147) (148) (149) (150) (151) (152) (153)
    <222> (154) (155) (156) (157) (158) (159) (160) (161) (162) (163) (164)
    <222> (165) (166) (167) (168) (169) (170) (171) (172) (173) (174) (175)
    <222> (176) (177) (178) (179) (180) (181) (182) (183) (184) (185) (186)
    <222> (187) (188) (189) (190) (191) (192) (193) (194) (195) (196) (197)
   <222> (198) (199) (200) (201) (202) (203) (204) (205) (206) (207)
   <223> Where Xaa can represent none or any one of the twenty naturally
    <223> occurring amino acids
   <220>
   <223> Wherein the amino acid sequence is modified by reacting a
   <223> transglutaminase with a detectable labeling compound
<400> 3
5
                       10
                                    15
20
                    25
                                  30
40
50
               55
                            60
70
                          75
                                       80
85
                       90
Xaa Xaa Xaa Xaa Gln Ser Lys Val Xaa Xaa Xaa Xaa Xaa Xaa Xaa
       100
                    105
140
               135
150
                          155
                                       160
165
                       170
                                    175
```

```
180
                          185
                                          190
200
                                       205
     <210> 4
     <211> 10
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Derivative of a factor XIII substrate
     <400> 4
Leu Ser Leu Ser Gln Ser Lys Val Leu Gly
1
              5
                             10
    <210> 5
     <211> 10
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Derivative of a factor XIII substrate
    <400> 5
Ile Gly Glu Gly Gln Ser Lys Val Leu Gly
1
                             10
    <210> 6
    <211> 10
     <212> PRT
    <213> Artificial Sequence
    <220>
    <223> Derivative of a factor XIII substrate
    <400> 6
Leu Gly Pro Gly Gln Ser Lys Val Ile Gly
1
             5
                             10
```

```
<210> 7
      <211> 81
      <212> DNA
      <213> Unknown
      <220>
      <223> Oligonucleotide designed to introduce Q tag
      <400> 7
tgtacctcag accatatgag cctgtccctg tcccagtcca aagttctgcc gggtccgagc
                                                                         60
actatcgaag aacgcgttaa g
                                                                         81
      <210> 8
      <211> 37
      <212> DNA
      <213> Unknown
      <220>
      <223> Oligonucleotide designed to introduce Q tag
      <400> 8
                                                                         37
tgatgtcagt caagcttacg cctggtggcc gttgatg
      <210> 9
      <211> 14
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Derivative of a factor XIII substrate
      <400> 9
Met Ser Leu Ser Leu Ser Gln Ser Lys Val Leu Pro Gly Pro
 1
                 5
                                     10
      <210> 10
      <211> 37
      <212> DNA
      <213> Unknown
```

```
<220>
      <223> Oligonucleotide designed to introduce Q tag
      <400> 10
tgtacctcag accatatgag cactatcgaa gaacgcg
                                                                        37
      <210> 11
      <211> 78
      <212> DNA
      <213> Unknown
      <220>
      <223> Oligonucleotide designed to introduce Q tag
tgatgtcagt caagettacg gacceggcag aactttggac tgggacaggg acagegeetg
                                                                        60
gtggccgttg atgtaatc
                                                                        78
      <210> 12
      <211> 12
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Derivative of E. coli ACP protein
      <400> 12
Leu Ser Leu Ser Gln Ser Lys Val Leu Pro Gly Pro
1
                 5
                                    10
      <210> 13
      <211> 92
      <212> DNA
      <213> Unknown
      <220>
      <223> Oligonucleotide designed to introduce Q tag into
            Streptococcus haemophilus FabH gene
```

	< 4	400>	13													
tato	catat	ga	gcct	gtcc	ct g	ccca	agtco	aaa	agtto	ctgc	cggg	gtccg	gg t	acco	ctcgag	60
gga	tccg	ctt	ttgca	aaaaa	at aa	agtca	aggtt	gc								92
		210>														
		211>														
			DNA													
	<2	213>	Unkr	nown												
		220>			-1		a :					0	.			
	<223> Oligonucleotide designed to introduce Q tag into Streptococcus haemophilus FabH gene															
			Stre	eptoc	cocci	is na	aemor	oniii	ıs ra	ndr ç	jene					
	< 4	100>	14													
ctca			agcto	cacta	ag to	ggato	cctta	a aat	tata	aga	atga	agcat	ac o	ccc		53
		_	J						_	_		, ,	-			
	<2	210>	15													
	<2	211>	364													
	<2	212>	PRT													
	<2	213>	Arti	ific	ial s	Seque	ence									
	<2	220>														
	<2	223>	Modi	ified	d sec	queno	ce of	Sti	cepto	ococi	ıs ha	emor	hilu	ıs Fa	abH	
		100> ·				•				•		_	_			
	GIY	Hıs	His		Hıs	Hıs	Hıs	Hıs		His	Hıs	Ser	Ser		His	
1	G1	~1	. 7	5	Wat.	C	T	C	10	C	01 =	C = 22	T	15	T 011	
шe	GIU	GTĀ	Arg 20	HIS	Mec	ser	Leu	25	ьeu	ser	GIII	ser	ъуs 30	vai	Leu	
Dro	Gly	Pro	Gly		Lou	Glu.	Glv		λla	Dhe	λla	Lare		Ser	Gln	
FIO	Gly	35					40				AIG	45	116	Ser	GIII	
Val	Ala		Tyr								Asn		Asp	Leu	Ala	
	50		- 1 -			55		***	, 441		60		110p			
Gln		Met	Asp	Thr	Asn		Glu	Trp	Ile	Ser		Arg	Thr	Gly	Ile	
65			-		70	-		-		75		-		-	80	
	Gln	Arg	His	Ile	Ser	Arg	Thr	Glu	Ser	Thr	Ser	Asp	Leu	Ala	Thr	
				85					90					95		

Glu Val Ala Lys Lys Leu Met Ala Lys Ala Gly Ile Thr Gly Lys Glu

```
Leu Asp Phe Ile Ile Leu Ala Thr Ile Thr Pro Asp Ser Met Met Pro
        115
                            120
                                                 125
Ser Thr Ala Ala Arg Val Gln Ala Asn Ile Gly Ala Asn Lys Ala Phe
                        135
Ala Phe Asp Leu Thr Ala Ala Cys Ser Gly Phe Val Phe Ala Leu Ser
                    150
                                         155
                                                             160
Thr Ala Glu Lys Phe Ile Ala Ser Gly Arg Phe Gln Lys Gly Leu Val
                165
                                     170
Ile Gly Ser Glu Thr Leu Ser Lys Ala Val Asp Trp Ser Asp Arg Ser
            180
                                185
Thr Ala Val Leu Phe Gly Asp Gly Ala Gly Gly Val Leu Leu Glu Ala
                                                 205
Ser Glu Gln Glu His Phe Leu Ala Glu Ser Leu Asn Ser Asp Gly Ser
                        215
Arg Ser Glu Cys Leu Thr Tyr Gly His Ser Gly Leu His Ser Pro Phe
                                         235
                    230
Ser Asp Gln Glu Ser Ala Asp Ser Phe Leu Lys Met Asp Gly Arg Thr
                245
                                     250
Val Phe Asp Phe Ala Ile Arg Asp Val Ala Lys Ser Ile Lys Gln Thr
                                 265
Ile Asp Glu Ser Pro Ile Glu Val Thr Asp Leu Asp Tyr Leu Leu Leu
                            280
His Gln Ala Asn Asp Arg Ile Leu Asp Lys Met Ala Arg Lys Ile Gly
                        295
                                             300
Val Asp Arg Ala Lys Leu Pro Ala Asn Met Met Glu Tyr Gly Asn Thr
                    310
                                         315
Ser Ala Ala Ser Ile Pro Ile Leu Leu Ser Glu Cys Val Glu Gln Gly
                325
                                     330
                                                         335
Leu Ile Pro Leu Asp Gly Ser Gln Thr Val Leu Leu Ser Gly Phe Gly
                                345
                                                     350
Gly Gly Leu Thr Trp Gly Thr Leu Ile Leu Thr Ile
        355
                            360
      <210> 16
      <211> 503
      <212> PRT
      <213> Artificial Sequence
```

<223> Modified sequence of Erythropoietin receptor

<220>

fusion protein

	<400>		16												
Met	Asp	His	Leu	Gly	Ala	Ser	Leu	Trp	Pro	Gln	Val	Gly	Ser	Leu	Cys
1				5					10					15	
Leu	Leu	Leu	Ala	Gly	Ala	Ala	Trp	Ala	Pro	Pro	Pro	Asn	Leu	Pro	Asp
			20					25					30		
Pro	Lys	Phe	Glu	Ser	Lys	Ala	Ala	Leu	Leu	Ala	Ala	Arg	Gly	Pro	Glu
		35					40					45			
Glu	Leu	Leu	Cys	Phe	Thr	Glu	Arg	Leu	Glu	Asp	Leu	Val	Cys	Phe	Trp
	50					55					60				
	Glu	Ala	Ala	Ser		Gly	Val	Gly	Pro		Asn	Tyr	Ser	Phe	Ser
65					70					75					80
Tyr	Gln	Leu	Glu		Glu	Pro	Trp	Lys		Cys	Arg	Leu	His		Ala
_			_	85			_	-1	90	~	_	_	_	95	
Pro	Thr	Ala	_	GIY	Ala	Val	Arg		Trp	Cys	Ser	Leu		Thr	Ala
λαν	Πb×	Cor	100	Dho	W-1	Dwo	T 011	105	T 011	7 × ~	77	Πb ~	110	77-	Cor
ASD	THE	115	ser	Pne	Vai	PIO	120	GIU	ьeu	Arg	Val	125	Ala	Ala	ser
Glaz	Δla		Δνα	ጥኒም	ніс	Ara		Tle	Hic	Tla	Asn		Val	Val	T.011
Gry	130	FIO	ALG	ıyı	1113	135	vai	116	1115	116	140	Giu	vai	Vai	пеа
Leu		Ala	Pro	Val	Glv		Val	Ala	Ara	Leu	Ala	Asp	Glu	Ser	Glv
145					150				3	155					160
His	Val	Val	Leu	Arg	Trp	Leu	Pro	Pro	Pro	Glu	Thr	Pro	Met	Thr	Ser
				165					170					175	
His	Ile	Arg	Tyr	Glu	Val	Asp	Val	Ser	Ala	Gly	Asn	Gly	Ala	Gly	Ser
			180					185					190		
Val	Gln	Arg	Val	Glu	Ile	Leu	Glu	Gly	Arg	Thr	Glu	Cys	Val	Leu	Ser
		195					200					205			
Asn	Leu	Arg	Gly	Arg	Thr	Arg	Tyr	Thr	Phe	Ala	Val	Arg	Ala	Arg	Met
	210					215					220				
Ala	Glu	Pro	Ser	Phe	Gly	Gly	Phe	Trp	Ser	Ala	Trp	Ser	Glu	Pro	Val
225					230					235					240
Ser	Leu	Leu	Thr	Pro	Ser	Asp	Leu	Asp	Pro	Leu	Ser	Leu	Ser	Gln	Ser
				245					250	_	_			255	
Lys	Val	Leu	_	Val	Phe	Phe	Ala		Ile	Glu	Gly	Arg	_	Thr	Glu
ъ.	.	a .	260			m)		265	•	_		~	270		D
Pro	Lys		Ala	Asp	Lys	Thr		Thr	Cys	Pro	Pro		Pro	Ala	Pro
		275					280					285			

Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys
	290					295					300				
Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val
305					310					315					320
Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp
				325					330					335	
Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr
			340					345					350		
Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp
		355					360					365			
Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu
	370					375					380				
Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg
385					390					395					400
Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys
				405					410					415	
Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp
			420					425					430		
Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys
		435					440					445			
Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser
	450					455					460				
Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser
465					470					475					480
Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser
				485					490					495	
Leu	Ser	Leu	Ser	Pro	Gly	Lys									