Sea V un espacio vectorial y sea $U \subseteq V$ un subespacio. Demostrar que

$$(U^{\perp})^{\perp} = U$$

Para que la igualdad se cumpla, se debe cumplir que un lado esté contenido en el otro y viceversa, es decir, se debe cumplir que $U\subseteq (U^\perp)^\perp$ y $(U^\perp)^\perp\subseteq U$, partamos con la segunda:

$$(U^{\perp})^{\perp} \subseteq U$$
:

Primero, sabemos que $U \in \mathbf{V}$ por enunciado, pero por definición de complemento ortogonal sabemos también que $U^{\perp} \in \mathbf{V}$, ya que por definición, el complemento ortogonal de U son todos los vectores de V que son ortogonales a todos los vectores de U:

$$U^{\perp} = \{ \vec{v} \in \mathbf{V} \mid \langle \vec{v}, \vec{u} \rangle = 0 \text{ para todo } \vec{u} \in U \}$$

Aplicamos la misma definición para el complemento ortogonal del complemento ortogonal de U. Partimos suponiendo del hecho que U^{\perp} está en V, así que por definición, el complemento ortogonal de un subespacio de V, debe cumplir que:

$$(U^{\perp})^{\perp} = \{ \vec{v} \in \mathbf{V} \mid \langle \vec{v}, \vec{u_2} \rangle = 0 \text{ para todo } \vec{u_2} \in (U^{\perp})^{\perp} \}$$

Ahora, sabiendo que tanto U, su complemento ortogonal, y el complemento ortogonal de éste último pertenecen a V, tomamos un vector \vec{v} cualquiera perteneciente a $(U^{\perp})^{\perp}$, pero sabemos que ese vector también debe estar en V, ya que $(U^{\perp})^{\perp}$ es subespacio vectorial de V.

Hemos visto en clase que, por teorema, podemos establecer V como suma directa de un subespacio vectorial de éste y su complemento ortogonal:

$$V = U \oplus U^{\perp}$$

Luego, sabiendo que \vec{v} debe estar tanto en $(U^{\perp})^{\perp}$ como en V, podemos establecer la siguiente descomposición:

$$\vec{v} = \vec{u} + \vec{w}$$

donde tenemos que $\vec{u} \in U$ y $\vec{w} \in U^{\perp}$.

Ahora, dado que $\vec{v} \in (U^{\perp})^{\perp}$, éste vector debe ser ortogonal a todos los vectores que viven en U^{\perp} , pero \vec{v} vive en U^{\perp} , así que se debe cumplir que:

$$\langle \vec{v}, \vec{w} \rangle = 0$$

Ahora, sustituimos la ecuación que resultó de la descomposición de \vec{v} planteada anteriormente $(\vec{v} = \vec{u} + \vec{w})$ en el producto punto:

$$\langle \vec{u} + \vec{w}, \vec{w} \rangle = 0$$

Pero, el producto punto tiene como propiedad la linealidad en la descomposición del argumento, tanto en R como en C (aunque para descomponer el segundo argumento se debe aplicar el conjugado si estamos en C):

$$\langle \vec{u} + \vec{w}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{w}, \vec{w} \rangle = 0$$

Hemos definido anteriormente que $\vec{u} \in U$ y $\vec{w} \in U^{\perp}$, por lo que \vec{u} y \vec{w} son ortogonales por definición, así que su producto punto es cero, por lo que la igualdad anterior se convierte en:

$$\langle \vec{w}, \vec{w} \rangle = 0$$

Lo que es lo mismo que:

$$\|\vec{w}\|^2 = 0$$

Pero, ya sea en C o en R, la norma de un vector siempre es mayor o igual a cero, y particularmente sólo puede ser 0 si el vector es el vector nulo, así que $\vec{w} = \vec{0}$. Sabiendo esto, volvemos a la primera descomposición planteada, pero reemplazando $\vec{w} = \vec{0}$:

$$\vec{v} = \vec{u} + \vec{w} = \vec{u} + \vec{0} = \vec{u}$$

Ahora, si $\vec{v} = \vec{u}$, eso significa que si $\vec{v} \in (U^{\perp})^{\perp}$ y también $\vec{v} \in V$, este vector \vec{v} también debe estar en U, porque $\vec{v} = \vec{u}$.

$$(U^{\perp})^{\perp} \subset U$$

2

$$U\subseteq (U^\perp)^\perp$$
:

Haremos algo similar a lo anterior, no necesitamos nombrar las definicions formales ya que ya lo hemos hecho. Así que, primero que nada, tomaremos un vector genérico de U y demostraremos que pertenece a $(U^{\perp})^{\perp}$. Tomamos $\vec{u} \in U$. Luego, tomamos también un vector genérico en el complemento ortogonal de U, esto es, tomamos $\vec{w} \in U^{\perp}$

Por la definición del conjunto complemento ortogonal (U^{\perp}) , sabemos que cualquier vector que pertenezca a dicho subespacio, debe ser ortogonal a todos los vectores del subespacio U. De esta forma, podemos plantear el producto interno:

$$\langle \vec{w}, \vec{u} \rangle = 0$$

Suponiendo que los vectores están en subespacios de V, siendo V en R, entonces el producto interno puede cambiar de orden y cumplir con

$$\langle \vec{u}, \vec{w} \rangle = 0$$

Esto demuestra que $\vec{u} \in U$ es ortogonal al vector genérico $\vec{w} \in U^{\perp}$

Por definición, $(U^{\perp})^{\perp}$ son todos los vectores que son ortogonales a U^{\perp} , pero el vector $\vec{u} \in U$ que hemos elegido, cumple exactamente con ese requerimiento, así que $\vec{u} \in (U^{\perp})^{\perp}$, por lo que, al demostrar que un elemento genérico de U, el vector \vec{u} , pertenece también a $(U^{\perp})^{\perp}$, podemos concluir que, dado que un vector genérico es en cierta forma una generalización de todos los vectores en un espacio vectorial,

$$U\subseteq (U^\perp)^\perp$$

como se quería demostrar.

Así, quedan demostradas ambas inclusiones, y se concluye que $(U^{\perp})^{\perp} = U$ En estas demostraciones hemos pensado en espacios vectoriales finitos, ya que son en los que se enfoca el libro de estudio.