Part B

```
In [2]: def int_to_binary(number):
    if number == 0:
        return "0"
    bitstring = []
    while number > 0:
        remainder = number % 2
        bitstring.insert(0, remainder)
        number = number // 2
    return bitstring

# Example usage
number = 100
binary_string = int_to_binary(number)
print(binary_string)

[1, 1, 0, 0, 1, 0, 0]
```

Once you understand how this works you can use Bin or even Format

```
In [5]: bin(100)
Out[5]: '0b1100100'
```

Now the opposite:

```
In [7]:

def binary_to_int(bitstring):
    result = 0
    length = len(bitstring)
    for i in range(length):
        digit = int(binary_string[i])
        power = length - i - 1
        result += digit * (2 ** power)
    return result

# Test
binary_string = [1, 1, 0, 0, 1, 0, 0]
result = binary_to_int(binary_string)
print(result)
```

100

Using now the Python Library

```
In [9]: int('0b1100100',base=2)
Out[9]: 100
```

Graphical interpretation of the derivative

```
In [16]: from IPython.display import Image
Image("graphic.png", width=500, height=500)
```

Out[16]:

Computation using the definition

Now for the derivative using the definition...

$$f'(x) = \lim_{\delta o 0} rac{f(x + \delta x - f(x))}{\delta x}$$

Since $f(x) = 5x^2$, then..

$$f'(x) = \lim_{\delta o 0} rac{5(x+\delta)^2 - 5x^2}{\delta}$$
 $f'(x) = \lim_{\delta o 0} rac{5x^2 + 10x\delta + 5\delta^2 - 5x^2}{\delta}$
 $f'(x) = \lim_{\delta o 0} rac{10x\delta + 5\delta^2}{\delta}$
 $f'(x) = \lim_{\delta o 0} 10x + 5\delta$
 $f'(x) = 10x$

Should be the same with the formula you learnt before...

Approximation via graphical intuition

Let us now use the graphical intuition to approximate derivatives of arbitrary functions, visualising the results with plots

```
import numpy as np
import matplotlib.pyplot as plt

def function(x):
    return 5*x*x
```

```
In [24]: x = np.linspace(-1, 1)
y = [function(x_value) for x_value in x ]
plt.plot(x,y)
```

Out[24]: [<matplotlib.lines.Line2D at 0x7fdaea69b700>]


```
In [32]:

def derivative_approximation(function, x_values, delta):
    y = [function(x) for x in x_values]
    y_prime = [(function(x + delta)-function(x))/delta for x in x_values]
    return y_prime
```

```
In [33]: x = np.linspace(-1, 1)
y = [function(x_value) for x_value in x ]
y_prime = derivative_approximation(function, x, 0.01)
plt.plot(x,y)
plt.plot(x,y_prime)
```

Out[33]: [<matplotlib.lines.Line2D at 0x7fdaea71d760>]

Now for something more complicated

```
In [36]: x = np.linspace(-10, 10, 200)
y = [np.sin(x_value) for x_value in x ]
y_prime = derivative_approximation(np.sin, x, 0.2)
plt.plot(x,y)
plt.plot(x,y_prime)
plt.plot(x, [np.cos(x_value) for x_value in x ])
```

Out[36]: [<matplotlib.lines.Line2D at 0x7fdab9e9f6d0>]

McLaurin Series

The Maclaurin series for e^x is:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

We can do an approximation on the basis of this

```
def factorial(n):
In [37]:
              if n < 2:
                  return 1
                  return n * factorial(n-1)
         def approximation_e(x, number_of_terms):
In [41]:
              summation = 0.0
              for n in range(number_of_terms+1):
                  summation = summation + (x**n/factorial(n))
              return summation
         np.exp(5)
In [45]:
         148.4131591025766
Out[45]:
In [47]: for i in range(20):
          print(approximation_e(5, i))
         1.0
         6.0
         18.5
         39.3333333333333
         65.375
         91.41666666666667
         113.1180555555556
         128.61904761904762
         138.30716765873015
         143.68945656966488
         146.38060102513225
         147.60384850489015
         148.1135349547893
         148.3095682047505
         148.37958007973663
         148,40291737139867
         148.41021027504306
         148.41235524670316
         148.4129510721643
         148.4131078683383
         And now we can visualise it
In [53]: x = np.linspace(-5, 5, 200)
         y = [np.exp(x_value) for x_value in x ]
         plt.plot(x,y, label="True")
```

y_approx = [approximation_e(x_value, terms) for x_value in x]

for terms in [1, 5, 10, 20]:

```
plt.plot(x,y_approx, label="{} terms ".format(terms))
plt.legend()
```

Out[53]: <matplotlib.legend.Legend at 0x7fdad97a4e20>

Challenge: Can you do this for an arbitrary function?

In []: