IBM DATA SCIENCE CAPSTONE PROJECT

Niki Yaw

Sept 2023

TABLE OF CONTENTS

- EXECUTIVE SUMMARY
- INTRODUCTION
- METHODOLOGY
- RESULTS
- CONCLUSION

9/28/23 Sample Footer Text

EXECUTIVE SUMMARY

- GOAL: IDENTIFY FACTORS THAT INFLUENCE THE SUCCESS OF FALCON9 ROCKET LANDING
- METHODOLOGY: STUDY RELATIONSHIPS BETWEEN VARIABLES THAT CONTRIBUTES TO THE SUCCESS OR FAILURE OF THE ROCKET LANDING
- RESULTS:
 - EXPLORATORY DATA ANALYSIS:
 - LANDING SITES WITH HIGHEST SUCCESS RATE >> KSC LC-39A
 - ORBITS WITH 100% SUCCESS RATE -> SSO, HEO, GEO, ES-L1
 - VISUALIZATION: LAUNCH SITES ARE CLOSE TO THE COAST, NEAR THE EQUATOR
 - PREDICTIVE ANALYSIS: DECISION TREE MODEL HAS THE HIGHEST ACCURACY

INTRODUCTION

- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars where other providers cost upwards of 165 million dollars each, mostly because SpaceX can reuse the first stage.
- But there are times where the first stage does not land, or it will crash mid-flight, or even being sacrificed due to the mission parameters like payload, orbit and customer.
- In this project, we will determine the price of each launch by gathering information and training a machine learning model to predict if SpaceX will be able to reuse the first stage.

METHODOLOGY

- DATA COLLECTION
- DATA WRANGLING
- EXPLORATORY ANALYSIS (EDA) WITH PANDAS, MATPLOTLIB & SQL
- INTERACTIVE VISUAL ANALYTICS (FOLIUM) & DASHBOARD (PLOTLY DASH)
- CLASSIFICATION PREDICTIVE ANALYSIS

DATA COLLECTION & DATA WRANGLING

DATA COLLECTION

- SPACEX REST API ROCKET LAUNCH DATA (KEEP ONLY FALCON 9 DATA)
- WIKIPEDIA WITH BEAUTIFULSOUP FALCON 9 LAUNCH DATA

DATA WRANGLING

- UNDERSTAND THE DATASET
- FOCUS ON LANDING OUTCOMES

EDA & INTERACTIVE VISUAL ANALYTICS

EXPLORATORY DATA ANALYSIS

- SQL QUERIES TO LEARN AND UNDERSTAND THE DATASET
- PANDAS + MATPLOTLIB MULTIPLE VISUALIZATIONS TO STUDY RELATIONSHIPS

INTERACTIVE VISUAL ANALYTICS

- FOLIUM GEOSPATIAL MAPS TO LOCATE DIFFERENT LAUNCH SITES
- PLOTLY DASH INTERACTIVE WEB APPLICATION TO PRESENT FINDINGS

PREDICTIVE ANALYSIS

- MACHINE LEARNING MODELS WITH MULTIPLE CLASSFICATION METHODS
 - LOGISTIC REGRESSION
 - SUPPORT VECTOR MACHINE
 - DECISION TREE CLASSIFIER
 - K NEAREST NEIGHBOURS
- ACCURACY SCORE, JACCARD SCORE AND F1 SCORE FOR ALL

RESULTS - EDA WITH VISUALIZATION

2 IMPORTANT VISUALIZATIONS (6 IN TOTAL):

- LAUNCH SUCCESS YEARLY TREND
- SUCCESS RATE VS ORBIT TYPE

SCATTER PLOTS:

- FLIGHT NUMBER VS LAUNCH SITE
- PAYLOAD VS LAUNCH SITE
- FLIGHT NUMBER VS ORBIT TYPE
- PAYLOAD MASS VS ORBIT TYPE

RESULTS - EDA WITH SQL

3 IMPORTANT FINDINGS (10 QUERIES IN TOTAL):

- NAMES OF LAUNCH SITES
- TOTAL NUMBER OF SUCCESSFUL AND FAILURE MISSION OUTCOMES
- DATES FOR SUCCESSFUL LANDING OUTCOMES IN GROUND PAD

Launch_Site
CCAFS LC-40
VAFB SLC-4E
KSC LC-39A
CCAFS SLC-40

Mission_Outcome	COUNT(*)
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Date
2015-12-22
2016-07-18
2017-02-19
2017-01-05
2017-03-06
2017-08-14
2017-07-09
2017-12-15
2018-08-01

RESULTS - INTERACTIVE MAPS WITH FOLIUM

3 VISUALIZATIONS:

- MARKERS FOR LAUNCH SITES
- COLORED MARKERS FOR LAUNCH OUTCOMES
- DISTANCE FROM LAUNCH SITES

RESULTS - DASHBOARD WITH PLOTLY DASH

WEB-BASED APPLICATION DASHBOARD WITH DROPDOWN OPTIONS & RANGE SLIDER

RESULTS - PREDICTIVE ANALYSIS

- LOGISTIC REGRESSION
 - BEST SCORE: 84.64%
- SUPPORT VECTOR MACHINE
 - BEST SCORE: 84.82%
- DECISION TREE ***
 - BEST SCORE: 90.18%

The best model is DecisionTree with an accuracy score of 0.9017857142857144

Best parameters are : {'criterion': 'gini', 'max_depth': 4, 'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2, 'splitter': 'random'}

- K NEAREST NEIGHBOUR
 - BEST SCORE: 84.82%

CONCLUSION

IMPORTANT FINDINGS

- OVER THE YEARS: SUCCESS RATE HAS BEEN INCREASING STEADILY
- TYPES OF ORBIT: GEO, SSO, HEO AND ES-L1 ALL HAVE A SUCCESS RATE OF 100%
- PAYLOAD MASS: THE HIGHER THE PAYLOAD MASS, THE HIGHER THE SUCCESS RATE
- LOCATION: ALL LAUNCH SITES ARE NEAR COASTAL AREAS
- MACHINE LEARNING ALGORITHM: DECISION TREE SEEMS TO OUTPERFORM THE REST BY JUST SLIGHTLY