Double-click (or enter) to edit

written material

going to grab this data from gh:

https://raw.githubusercontent.com/stefanbund/py3100/main/ProductList_118.csv

The Ulta Beauty Problem

our work entails designing and delivering a business intelligence application that serves a major retail enterprise. The system

first, install the plotly visualization library.

Double-click (or enter) to edit

our system depends on the use of the pandas and numpy libraries.

```
import pandas as pd
import numpy as np

url ='https://raw.githubusercontent.com/stefanbund/py3100/main/ProductList_118.csv'
url_m = 'https://raw.githubusercontent.com/stefanbund/py3100/main/matrix.csv'

df_m = pd.read_csv(url_m) #make a pandas dataframe
```

'pd' is referring to pandas and uses that library to get data from a CSV file which is known by the URL. df is referring to dataframe in which you can get data from CSV file

df_m

	City	1	2	3	4	5	6	7	8	9	 32	33
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436	 1340	6923
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765	 4424	8813
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044	 5430	1601
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236	 9169	7829
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302	 1556	5533
5	Hoover	9741	7377	9410	9790	8864	2522	5347	9145	8402	 6031	7673
6	Dothan	7646	2060	4911	4976	7851	4277	7423	6183	6641	 8253	1565
7	Auburn	4326	2659	6928	4656	1828	5199	5331	6294	3076	 6128	3737
8	Decatur	3786	2891	8124	2469	3704	3623	2409	8287	2032	 6622	9742
9	Madison	1934	3628	9190	3275	9344	5778	1256	3523	1781	 6619	6128
10	Florence	8017	3187	1128	4706	9962	7547	4440	4530	9569	 8306	1392
11	Gadsden	2290	6402	8598	7547	5158	9731	8038	4435	7357	 4488	3591
12	Vestavia Hills	9471	9142	4419	3846	2016	5069	4853	6336	9062	 4613	2942
13	Prattville	6039	8003	6180	4610	3548	7115	6720	8512	9954	 8225	7278
14	Phenix City	8788	8269	6838	2863	6753	6608	4048	8774	4513	 5704	8720
15	Alabaster	1733	9767	3274	7125	7437	5748	5399	6513	3038	 7351	9503
16	Bessemer	6559	2453	1578	5158	3058	8075	7066	8530	8346	 8921	3517
17	Enterprise	8436	7800	7234	5063	4274	1948	7887	6647	1320	 4840	6309
18	Opelika	9998	8953	7923	6176	4369	9503	2126	1816	9224	 3217	1170
19	Homewood	2373	7188	9880	9236	5969	9998	8703	8440	4643	 8144	8091
20	Northport	3536	9231	8651	6374	4842	5704	8484	6322	2012	 2154	8484
21	Pelham	6830	3736	2734	6443	8494	6206	7290	8518	6176	 9219	4891

```
22 Trussville 2794 8273 9174 2850 8351 3978 5995 4632 7693 ... 2582 9365

23 Mountain Brook 8433 9368 2141 2357 6566 1482 4787 3900 6615 ... 4666 9227

24 Fairhope 8114 1464 2811 3090 4686 7995 7676 1304 7332 ... 4911 3255

25 rows × 42 columns
```

df m.columns #dimensionality of the matrix

list all cities in the matrix dataframe

df_m['City'] #explore a Series inside the dataframe

0	Birmingham									
1	Montgomery									
2	Mobile									
3	Huntsville									
4	Tuscaloosa									
5	Hoover									
6	Dothan									
2 3 4 5 6 7	Auburn									
8	Decatur									
9	Madison									
10	Florence									
11	Gadsden									
12	Vestavia Hills									
13	Prattville									
14	Phenix City									
15	Alabaster									
16	Bessemer									
17	Enterprise									
18	0pelika									
19	Homewood									
20	Northport									
21	Pelham									
22	Trussville									
23	Mountain Brook									
24	Fairhope									
Name:										

investigate quartile as an analytic tool

with this, you are able to find the city or series in the dataframe.

df_m.dtypes
df_m.columns

City 1	object int64
2	int64
3	int64
4	int64
5	int64
6	int64
1 2 3 4 5 6 7	int64
8	int64
9	int64
10	int64
11	int64
12	int64
13	int64
14	int64
15	int64
16	int64
17	int64
18	int64
19	int64
20	int64
21	int64
22	int64
23	int64
24	int64
25	int64
26	int64 int64
27 28	int64
29	int64
30	int64
31	int64
32	int64
33	int64
34	int64
34 35	int64
36	int64
37	int64
38	int64
39	int64
40	int64
41	int64
dtype:	object

Quantiles for each display, all stores

Double-click (or enter) to edit

$$df_3 = df_m.quantile([0.25, 0.5, 0.75], numeric_only=True, axis=1) df_3$$

	0	1	2	3	4	5	6	7	8	9	• • •
0.25	3082.0	3633.0	2236.0	3473.0	3657.0	4628.0	4254.0	3588.0	3704.0	3451.0	
0.50	5343.0	5431.0	5311.0	5771.0	5131.0	7588.0	5156.0	5331.0	6589.0	5875.0	
0.75	7242.0	8074.0	7508.0	7935.0	7490.0	9145.0	6840.0	7606.0	8221.0	7783.0	

3 rows × 25 columns

per store, the quartile values

columns of the dataframe and numeric values are used. This is what is needed and calculated for final numbers and percentiles.

```
l = df_3.T.columns #transpose, T
l
    Float64Index([0.25, 0.5, 0.75], dtype='float64')

df_3.T.mean()
    0.25    3535.24
    0.50    5826.36
    0.75    7953.00
    dtype: float64
```

define the global quartile boundary, per q

Double-click (or enter) to edit

The mean is calculated for 0.25 or 25th percentile and the rows and columns are often switched for understandable ways to calculate

```
df_3.T[0.5].mean()
5826.36
```

Double-click (or enter) to edit

The mean is calculated for 0.5 or 50th percentile and the rows and columns are often switched for understandable ways to calculate

```
df_3.T[0.75].mean()
7953.0
```

Double-click (or enter) to edit

The mean is calculated for 0.75 or 75th percentile and the rows and columns are often switched for understandable ways to calculate

```
kk = df_3.T.mean()
kk #series
0.25 3535.24
0.50 5826.36
0.75 7953.00
dtype: float64
```

what percentage of displays are at or below the 25th quartile, per store? exercise

3.2 for this is also calculated within the dataframe and possibly switch rows and columns may make it more understandable to calculate

```
# n =
((df_m.iloc[:, 1:] \le kk[0.25]).sum(axis=1) / df_m.shape[1]) * 100
# print(round(n))
           28.571429
    1
           21.428571
    2
           38.095238
    3
           26.190476
    4
           21.428571
    5
           16,666667
    6
           19.047619
    7
           23.809524
    8
           21,428571
           28.571429
    9
    10
           26.190476
    11
           19.047619
    12
           26.190476
           23.809524
    13
    14
           28.571429
    15
           28.571429
    16
           14.285714
    17
          19.047619
    18
           28.571429
    19
           19.047619
           28.571429
    20
    21
           23.809524
    22
           33.333333
    23
           19.047619
    24
           33.333333
```

The calculations being done are of certain values under 0.25 within the data frame and also includes the numbers under the specific value of 0.25 within each row.

```
 la = df_m['25qt'] = round(((df_m.iloc[:, 1:] <= kk[0.25]).sum(axis=1) / df_m.shapell = df_m['50qt'] = round(((df_m.iloc[:, 1:] <= kk[0.50]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shapell = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_
```

dtype: float64

print(la, ll, lll)

```
28.6
0
1
      21.4
2
      38.1
3
      26.2
4
      21.4
5
      16.7
6
      19.0
7
      23.8
8
      21.4
9
      28.6
10
      26.2
11
      19.0
12
      26.2
13
      23.8
14
      28.6
15
      28.6
16
      14.3
17
      19.0
18
      28.6
19
      19.0
20
      28.6
21
      23.8
22
      33.3
23
      19.0
24
      33.3
dtype: float64 0
                        55.8
      55.8
1
2
      60.5
3
      51.2
4
      60.5
5
      34.9
6
      55.8
7
      51.2
8
      46.5
9
      48.8
10
      48.8
11
      41.9
      53.5
12
13
      44.2
14
      48.8
15
      41.9
16
      46.5
17
      41.9
18
      55.8
19
      41.9
20
      53.5
21
      51.2
```

```
22
      48.8
23
      53.5
      67.4
24
dtype: float64 0
                  77.3
      70.5
1
2
      79.5
3
      77.3
      79.5
4
5
      59.1
6
      90.9
7
      79.5
8
      70.5
      7E A
```

When calculating, they include values under 0.25, 0.50, and 0.75. The way to express this within the data frame is by calculating the lower values of the added columns

```
# df_m
end_set = ['City','25qt','50qt','75qt']
df_m[end_set]
```

	City	25qt	50qt	75qt
0	Birmingham	28.6	55.8	77.3
1	Montgomery	21.4	55.8	70.5
2	Mobile	38.1	60.5	79.5
3	Huntsville	26.2	51.2	77.3
4	Tuscaloosa	21.4	60.5	79.5
5	Hoover	16.7	34.9	59.1
6	Dothan	19.0	55.8	90.9
7	Auburn	23.8	51.2	79.5
8	Decatur	21.4	46.5	70.5
9	Madison	28.6	48.8	75.0
10	Florence	26.2	48.8	63.6
11	Gadsden	19.0	41.9	68.2
12	Vestavia Hills	26.2	53.5	70.5
13	Prattville	23.8	44.2	75.0
14	Phenix City	28.6	48.8	75.0
15	Alabaster	28.6	41.9	84.1
16	Bessemer	14.3	46.5	70.5
17	Enterprise	19.0	41.9	72.7
18	Opelika	28.6	55.8	72.7
19	Homewood	19.0	41.9	68.2
20	Northport	28.6	53.5	75.0
21	Pelham	23.8	51.2	72.7
22	Trussville	33.3	48.8	75.0
23	Mountain Brook	19.0	53.5	70.5
24	Fairhope	33.3	67.4	86.4

The set is now ending by what is being said 'end set' and this is known by the selection of certain columns of the values 0.25,0.50, and 0.75 from the dataframe

create a choropleth for each store

```
5
                                                              7
               Citv
                        1
                              2
                                     3
                                           4
                                                        6
                                                                     8
                           5343
0
        Birmingham
                     8285
                                 6738
                                        6635
                                              5658
                                                     8118
                                                          4311
                                                                 8535
                                                                        3436
1
        Montgomery
                           6585
                                 8300
                                        8874
                                              8208
                                                     5363
                                                           3552
                     1287
                                                                 3387
                                                                        2765
2
            Mobile 8035
                           5569
                                 9492
                                        5905
                                              5024
                                                     1107
                                                           6937
                                                                 5580
                                                                        8044
3
        Huntsville 6280
                                 3399
                           2841
                                        5448
                                             6173
                                                     5451
                                                          7488
                                                                 9981
                                                                        5236
4
        Tuscaloosa 4079
                           1066
                                 3923
                                        4177
                                              4277
                                                     4219
                                                          9436
                                                                 8160
                                                                       4302
5
            Hoover 9741
                           7377
                                 9410
                                        9790
                                             8864
                                                     2522
                                                           5347
                                                                 9145
                                                                        8402
6
            Dothan 7646
                           2060
                                 4911
                                        4976
                                              7851
                                                     4277
                                                           7423
                                                                 6183
                                                                        6641
7
                    4326
                           2659
                                 6928
                                        4656
                                              1828
                                                     5199
                                                          5331
                                                                 6294
                                                                        3076
            Auburn
8
                                             3704
           Decatur 3786
                           2891
                                 8124
                                        2469
                                                     3623
                                                          2409
                                                                 8287
                                                                        2032
9
           Madison 1934
                           3628
                                 9190
                                        3275
                                              9344
                                                     5778
                                                           1256
                                                                 3523
                                                                        1781
10
          Florence
                    8017
                           3187
                                 1128
                                        4706
                                              9962
                                                     7547
                                                          4440
                                                                 4530
                                                                       9569
           Gadsden 2290
                                 8598
                                        7547
                                              5158
                                                     9731
                                                           8038
                                                                 4435
                                                                       7357
11
                           6402
12
    Vestavia Hills
                     9471
                           9142
                                 4419
                                        3846
                                              2016
                                                     5069
                                                           4853
                                                                 6336
                                                                        9062
13
        Prattville
                     6039
                           8003
                                  6180
                                        4610
                                              3548
                                                     7115
                                                           6720
                                                                 8512
                                                                        9954
14
       Phenix City
                     8788
                           8269
                                  6838
                                        2863
                                              6753
                                                     6608
                                                           4048
                                                                 8774
                                                                        4513
```

3038

8346

1320

9224

4643

2012

6176

7693

6615 7332

15 16 17 18 19 20 21 22 23 24	E	Alabas Besse nterpr Opel Homew Northp Pel russvi ain Br Fairh	mer ise ika ood ort ham lle ook	1733 6559 8436 9998 2373 3536 6830 2794 8433 8114	9767 2453 7800 8953 7188 9231 3736 8273 9368 1464	3274 1578 7234 7923 9880 8651 2734 9174 2141 2811	7125 5158 5063 6176 9236 6374 6443 2850 2357 3090	7437 3058 4274 4369 5969 4842 8494 8351 6566 4686	5748 8075 1948 9503 9998 5704 6206 3978 1482 7995	5399 7066 7887 2126 8703 8484 7290 5995 4787 7676	6513 8530 6647 1816 8440 6322 8518 4632 3900 1304
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	36 3555 2805 9807 7935 3657 9748 5650 4387 9305 1746 5929 2549 5142 1591 3520 2479 4810 3461 5191 8787 6947 2777 1650 5765 3457	37 1341 4601 2652 2605 2158 7224 4400 6890 6509 4470 1123 5175 9619 4401 7654 9673 7641 2640 9304 5459 5401 4045 9470 3653 4808	38 1756 4449 9296 9982 4469 4628 7842 2833 6848 7054 7306 5997 9601 3457 6845 7478 5365 4375 2720 8389 6681 7309 6356 5198 7227	7598 5727 2815 3338 2513 8106 5083 5408 6573 8746 9608 8098 4245 7738 7207 3545 8634 3100 5242 9018 4770 9266	3 150 7 231 5 488 9 911 8 813 7 614 6 933 8 970 8 370 8 355 6 400 7 23 9 139 5 434 8 382 7 700 6 681 4 491 2 222 8 166 4 28 3 34 4 5 4 94	9 186 5 882 6 745 6 387 5 696 3 167 7 211 7 874 6 137 0 694 0 973 1 257 8 120 6 352 2 948 7 283 2 154 4 602 8 830 4 264 4 874 5 393	2 21 8 38 5 26 3 21 1 16 1 19 6 23 4 21 4 28 3 26 1 19 6 26 3 23 2 28 3 14 0 19 8 28 5 19 7 28 0 23 3 33 5 19	55. 4 55. 1 60. 2 51. 4 60. 7 34. 0 55. 8 51. 4 46. 6 48. 2 48. 0 41. 2 53. 8 44. 1 6 41. 2 53. 8 44. 1 6 41. 2 53. 8 51. 8 51. 8 51. 9 41. 9 55. 9 55. 9 55. 9 55. 9 6 41. 9 6 55. 9 6 55. 9 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 77. 8 70. 5 79. 2 77. 5 79. 9 59. 8 90. 2 79. 5 70. 8 63. 9 68. 5 70. 9 72. 8 75. 9 68. 5 70. 9 72. 8 75. 9 72.	3 352 5 361 5 366 3 358 5 352 9 363 5 356 6 356 2 356 0 368 1 356 0 368 1 356 7 368 7 368 7 368 7 368 7 368 5 352 0 352 0 352 0 353 7 368 5 356 7 368 7 368	101 501 301 401 216 330 501 756 530 901 216 966 367 920 330 301 209 473 124 173 213

[25 rows x 46 columns]

experiment with chloropleths

We are abe to see data of all store, locations (zipcodes), and cities based off of specific colors per item.

df_m.columns

```
import plotly.express as px
import pandas as pd

# Load data
df_demo = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2

# Create choropleth map
fig = px.choropleth(df_demo, locations='code', locationmode='USA-states', color='

# Show map
fig.show()
```


df_demo

code state category total beef pork poultry dairy

	COUC	56466	Cuccyoty	exports	2001	Poru	Pourcry	warry	fresh
0	AL	Alabama	state	1390.63	34.4	10.6	481.0	4.06	8.0
1	AK	Alaska	state	13.31	0.2	0.1	0.0	0.19	0.0
2	AZ	Arizona	state	1463.17	71.3	17.9	0.0	105.48	19.3
3	AR	Arkansas	state	3586.02	53.2	29.4	562.9	3.53	2.2
4	CA	California	state	16472.88	228.7	11.1	225.4	929.95	2791.8
5	CO	Colorado	state	1851.33	261.4	66.0	14.0	71.94	5.7
6	CT	Connecticut	state	259.62	1.1	0.1	6.9	9.49	4.2
7	DE	Delaware	state	282.19	0.4	0.6	114.7	2.30	0.5
8	FL	Florida	state	3764.09	42.6	0.9	56.9	66.31	438.2
9	GA	Georgia	state	2860.84	31.0	18.9	630.4	38.38	74.6
10	HI	Hawaii	state	401.84	4.0	0.7	1.3	1.16	17.7
11	ID	Idaho	state	2078.89	119.8	0.0	2.4	294.60	6.9
12	IL	Illinois	state	8709.48	53.7	394.0	14.0	45.82	4.0
13	IN	Indiana	state	5050.23	21.9	341.9	165.6	89.70	4.1
14	IA	lowa	state	11273.76	289.8	1895.6	155.6	107.00	1.0
15	KS	Kansas	state	4589.01	659.3	179.4	6.4	65.45	1.0
16	KY	Kentucky	state	1889.15	54.8	34.2	151.3	28.27	2.1
17	LA	Louisiana	state	1914.23	19.8	0.8	77.2	6.02	5.7
18	ME	Maine	state	278.37	1.4	0.5	10.4	16.18	16.6
19	MD	Maryland	state	692.75	5.6	3.1	127.0	24.81	4.1
20	MA	Massachusetts	state	248.65	0.6	0.5	0.6	5.81	25.8
21	MI	Michigan	state	3164.16	37.7	118.1	32.6	214.82	82.3
22	MN	Minnesota	state	7192.33	112.3	740.4	189.2	218.05	2.5
23	MS	Mississippi	state	2170.80	12.8	30.4	370.8	5.45	5.4
24	MO	Missouri	state	3933.42	137.2	277.3	196.1	34.26	4.2
25	MT	Montana	state	1718.00	105.0	16.7	1.7	6.82	1.1
26	NE	Nebraska	state	7114.13	762.2	262.5	31.4	30.07	0.7

27	NV	Nevada	state	139.89	21.8	0.2	0.0	16.57	0.4
28	NH	New Hampshire	state	73.06	0.6	0.2	0.8	7.46	2.6
29	NJ	New Jersey	state	500.40	0.8	0.4	4.6	3.37	35.0

Through python we were able to see the total amount of products such as beef, pork, fresh fruits, dairy, etc have been exported. The specific code of 'pd.read_csv' is used as it is what is loading the data through the CSV file with all the provided info.

```
the data through the CSV file with all the provided info.
     33
           ND
                North Dakota
                                        3761.96 78.5
                                                        16 1
                                                                   0.5
                                                                         8.14
                                                                                  0.1
                                 state
df demo.columns
    Index(['code', 'state', 'category', 'total exports', 'beef', 'pork',
     'poultry',
            'dairy', 'fruits fresh', 'fruits proc', 'total fruits', 'veggies
            'veggies proc', 'total veggies', 'corn', 'wheat', 'cotton'],
           dtype='object')
map demo #2: state of AL
from urllib.request import urlopen
```


df_us.columns

Index(['fips', 'unemp'], dtype='object')

df_us

	fips	unemp
0	01001	5.3
1	01003	5.4
2	01005	8.6
3	01007	6.6
4	01009	5.5
3214	72145	13.9
3215	72147	10.6
3216	72149	20.2
3217	72151	16.9
3218	72153	18.8

3219 rows × 2 columns

documentation here, with more discussion here, and specifially to do counties, here

county list for ulta stores in Alabama, by FIPS code

As we can see from the information provided that this shows the amount of people that are unemployed and we can also tell by the color coding that it is much higher in some states compared to others. This is howe we differentiate which states are economically doing better or worse by looking at the map and code.

```
al fips =[
    {'County': 'Autauga', 'FIPS Code': '01001'},
   {'County': 'Baldwin', 'FIPS Code': '01003'},
    {'County': 'Barbour', 'FIPS Code': '01005'},
    {'County': 'Bibb', 'FIPS Code': '01007'},
   {'County': 'Blount', 'FIPS Code': '01009'},
   {'County': 'Bullock', 'FIPS Code': '01011'},
   {'County': 'Butler', 'FIPS Code': '01013'},
   {'County': 'Calhoun', 'FIPS Code': '01015'},
   {'County': 'Chambers', 'FIPS Code': '01017'},
   {'County': 'Cherokee', 'FIPS Code': '01019'},
   {'County': 'Chilton', 'FIPS Code': '01021'},
   {'County': 'Choctaw', 'FIPS Code': '01023'},
   {'County': 'Clarke', 'FIPS Code': '01025'},
   {'County': 'Clay', 'FIPS Code': '01027'},
   {'County': 'Cleburne', 'FIPS Code': '01029'},
   {'County': 'Coffee', 'FIPS Code': '01031'},
   {'County': 'Colbert', 'FIPS Code': '01033'},
   {'County': 'Conecuh', 'FIPS Code': '01035'},
   {'County':'Greene', 'FIPS Code': '28073'},
    {'County': 'Hale', 'FIPS Code': '28065'}.
   {'County': 'Henry', 'FIPS Code': '28067'},
    {'County': 'Houston', 'FIPS Code': '28069'},
   {'County':'Jackson', 'FIPS Code': '28071'},
   {'County':'Jefferson', 'FIPS Code': '28073'},
    {'County':'Lamar', 'FIPS Code': '28073'}]
len(al fips)
    25
```

'al_fips' means that we are shown information regarding the counties within Alabama with the specific FIPS (federal) codes and further information.

```
df_m.columns
```

 df_m

	City	1	2	3	4	5	6	7	8	9	 36	37
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436	 3555	1341
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765	 2805	4601
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044	 9807	2652
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236	 7935	2605
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302	 3657	2158
5	Hoover	9741	7377	9410	9790	8864	2522	5347	9145	8402	 9748	7224
6	Dothan	7646	2060	4911	4976	7851	4277	7423	6183	6641	 5650	4400
7	Auburn	4326	2659	6928	4656	1828	5199	5331	6294	3076	 4387	6890
8	Decatur	3786	2891	8124	2469	3704	3623	2409	8287	2032	 9305	6509
9	Madison	1934	3628	9190	3275	9344	5778	1256	3523	1781	 1746	4470
10	Florence	8017	3187	1128	4706	9962	7547	4440	4530	9569	 5929	1123
11	Gadsden	2290	6402	8598	7547	5158	9731	8038	4435	7357	 2549	5175
12	Vestavia Hills	9471	9142	4419	3846	2016	5069	4853	6336	9062	 5142	9619
13	Prattville	6039	8003	6180	4610	3548	7115	6720	8512	9954	 1591	4401
14	Phenix City	8788	8269	6838	2863	6753	6608	4048	8774	4513	 3520	7654
15	Alabaster	1733	9767	3274	7125	7437	5748	5399	6513	3038	 2479	9673
16	Bessemer	6559	2453	1578	5158	3058	8075	7066	8530	8346	 4810	7641
17	Enterprise	8436	7800	7234	5063	4274	1948	7887	6647	1320	 3461	2640
18	Opelika	9998	8953	7923	6176	4369	9503	2126	1816	9224	 5191	9304
19	Homewood	2373	7188	9880	9236	5969	9998	8703	8440	4643	 8787	5459
20	Northport	3536	9231	8651	6374	4842	5704	8484	6322	2012	 6947	5401
21	Pelham	6830	3736	2734	6443	8494	6206	7290	8518	6176	 2777	4045
22	Trussville	2794	8273	9174	2850	8351	3978	5995	4632	7693	 1650	9470
23	Mountain Brook	8433	9368	2141	2357	6566	1482	4787	3900	6615	 5765	3653

24 Fairhope 8114 1464 2811 3090 4686 7995 7676 1304 7332 ... 3457 4808 25 rows × 46 columns

```
df_m.shape[0]
```

25

transform al_fips, the list of county fps codes, into a pandas dataframe

As previosuly mentioned with pandas and data that is retrieved, this now involves the FIPS codes within ALabama and the sevral counties

```
print(len(al_fips))
df_counties = pd.DataFrame(al_fips)
df_counties.size

25
50
```

This is what we see that creates the data for the fips as it is all involved within the dataframe.

displayed data involving and including counties which is provided withtin the columns from the dataframe.

```
df_m: all display data, per store
```

```
df_m.shape[0]
```

25

includes the codes for each county

fips codes per county

df_counties.shape[0]

25

dataframe provides and shows codes per county at the percentile of 25

df_counties.columns

```
Index(['County', 'FIPS Code'], dtype='object')
```

merge the county fips codes with the stores sales results (df_m)

```
merged_df = pd.concat([df_m, df_counties], axis=1)
merged_df.head()
```

	City	1	2	3	4	5	6	7	8	9	• • •	38	39	
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436		1756	7598	
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765		4449	5727	
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044		9296	2815	
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236		9982	3338	
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302		4469	2513	

5 rows × 48 columns

There is now two dataframes from the two provided, 'df_m' adn 'df_counties' and tis is what is merged and pulls/provides data

use the merged_df as data source for the choropleth

merged_df.columns

Double-click (or enter) to edit

use the plotly api, feed it the merged_df information to do a map, with encoded quantile values

The map below is showing certain data values that are under the 25th quartile and they are all merged within the dataframe.

```
import plotly express as px
import requests
import json
import pandas as pd
# Load the geojson data for Alabama's counties
r = requests.get('https://raw.githubusercontent.com/plotly/datasets/master/geojso
counties = json.loads(r.text)
# Filter the geojson data to only include Alabama's counties
target states = ['01']
counties['features'] = [f for f in counties['features'] if f['properties']['STATE
# Load the sample data for Alabama's counties
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/fips-ur
# Create the choropleth map
fig = px.choropleth(df, geojson=counties, locations='fips', color='unemp',
                    color_continuous_scale='Viridis', range_color=(0, 12),
                    scope='usa', labels={'unemp': 'unemployment rate'})
fig.update_layout(margin={'r': 0, 't': 0, 'l': 0, 'b': 0})
fig.show()
```


This shows we are uploading github content and with the specific codes it included the counties in Alabama along with the specific features. Whatever request are put through the github link will be read and outputted.