Taller de Álgebra I

Clase 9 - Algoritmos sobre enteros I

Primer cuatrimestre 2020

PARTE I

Algoritmo de división (lento y conceptual)

Teorema de la división

Teorema

Dados $a \in \mathbb{Z}$, $d \in \mathbb{Z}$, $d \neq 0$, existen únicos $q, r \in \mathbb{Z}$ tales que a = qd + r y $0 \leq r < |d|$.

Terminología y notación

- a es el dividendo, d el divisor, q el cociente y r el resto
- ightharpoonup q se escribe a/d, mientras que r se escribe $r_d(a)$

Problemas: dados $a \in \mathbb{Z}$ y $d \in \mathbb{Z} \setminus \{0\}$

- división: determinar a/d
- resto: determinar $r_d(a)$

Algoritmos para división y resto en naturales

División y resto en naturales

Demostración inductiva de existencia para $a \ge 0, d > 0$

Casos base: a < d. Entonces $a = 0d + a \Rightarrow q = 0$ y r = a.

Paso inductivo $a \ge d$. Por inducción, como $a - d \ge 0$, existen q' y $0 \le r < d$ tales que (a - d) = q'd + r. En consecuencia, a = qd + r con q = q' + 1.

Algoritmos para división y resto en naturales

División y resto en naturales

Demostración inductiva de existencia para $a \ge 0, d > 0$

```
Casos base: a < d. Entonces a = 0d + a \Rightarrow q = 0 y r = a. Paso inductivo a \ge d. Por inducción, como a - d \ge 0, existen q' y 0 \le r < d tales que (a - d) = q'd + r. En consecuencia, a = qd + r con q = q' + 1.
```

Algoritmo general para el resto

Observación

Supongamos que a=qd+r y sea $r'=r_{|d|}(|a|)$. Si $a\geq 0$ o r'=0, entonces r=r'; caso contrario, r=|d|-r'.

Algoritmo general para el resto

Observación

Supongamos que a=qd+r y sea $r'=r_{|d|}(|a|)$. Si $a\geq 0$ o r'=0, entonces r=r'; caso contrario, r=|d|-r'.

- I Si $a \ge 0$, entonces |a| = a = qd + r = |qd + r| = |q||d| + r. Luego r' = r
- 2 Si a < 0, entonces |a| = -a = (-qd |d|) + (|d| r) = (|q| 1)|d| + (|d| r). Luego, $|d| - r \equiv r'(\mathsf{mod}|d|)$ y, como $r < |d| \Rightarrow r = 0$ si r' = 0 y |d| - r = r' si $r' \neq 0$.

Algoritmo general para el resto

Observación

Supongamos que a=qd+r y sea $r'=r_{|d|}(|a|)$. Si $a\geq 0$ o r'=0, entonces r=r'; caso contrario, r=|d|-r'.

- I Si $a \ge 0$, entonces |a| = a = qd + r = |qd + r| = |q||d| + r. Luego r' = r
- 2 Si a < 0, entonces |a| = -a = (-qd |d|) + (|d| r) = (|q| 1)|d| + (|d| r). Luego, $|d| - r \equiv r'(\mathsf{mod}|d|)$ y, como $r < |d| \Rightarrow r = 0$ si r' = 0 y |d| - r = r' si $r' \neq 0$.

```
-- | Modulo de numeros enteros a `modulo` d = a `mod` d

modulo :: Int -> Int -> Int

modulo a d | a >= 0 || r' == 0 = r'

| otherwise = abs d - r'

where r' = abs a `modNat` abs d
```

Algoritmo general para la división

Observaciones: para calcular la división

- 1 Para todo n, $n = \operatorname{sgn}(n) \cdot |n|$ y, si n = 0, entonces n = p|n| para todo p
- 2 Si a = qd + r, entonces $|a r| = |qd| = |q| \cdot |d|$, i.e., |q| = |a r|/|d|
- Si a = qd + r, entonces q = 0 o $sgn(q) = sgn(a) \cdot sgn(d)$

Algoritmo general para la división

Observaciones: para calcular la división

- 1 Para todo n, $n = \operatorname{sgn}(n) \cdot |n|$ y, si n = 0, entonces n = p|n| para todo p
- 2 Si a = qd + r, entonces $|a r| = |qd| = |q| \cdot |d|$, i.e., |q| = |a r|/|d|
- 3 Si a = qd + r, entonces q = 0 o $sgn(q) = sgn(a) \cdot sgn(d)$

```
-- | Division de numeros enteros: n `dividido` m = n `div` m
dividido :: Int -> Int -> Int
dividido a d = sgq * absq --obs 1
where absq = abs (a-r) `divNat` (abs d) --obs 2
sgq = (signum a) * (signum d) --obs 3
r = a `modulo` d
```

A partir de ahora, usamos div y mod que son más eficientes

PARTE II

Sistemas de numeración

Escritura de números en una base

Propiedad

Si b>1 y n>0, entonces existe una única secuencia d_k,\ldots,d_0 tal que

- $ightharpoonup d_k > 0$ y $0 \le d_i < b$ para todo $0 \le i \le k$, y
- $n = d_k b^k + \ldots + d_0 b^0$

Terminología: visto en teórica

- $(d_k \dots d_0)_b$ es la representación de n en base b.
- $ightharpoonup (0)_b$ es la representación de 0 en base b.

Representación por listas

- Escribimos $[d_0, \ldots, d_k]_b$ para todo n > 0 y $[]_b = 0$
- Notar que la lista $[d_0,\ldots,d_k]_b$ "se escribe" al revés de $(d_k\ldots d_0)_b\ldots$
- lacksquare ..., lo que *conviene para programar* porque el *i*-ésimo corresponde al digito b^i .

- ▶ $1537 = (1537)_{10} = [7, 3, 5, 1]_{10}, 29 = (11101)_2 = [1, 0, 1, 1, 1]_2$
- ▶ $1024 = (400)_{16} = [0,0,4]_{16}, 255 = (FF)_{16} = [15,15]_{16}$

Ejercicios

Observaciones: si $n = [d_0, \dots, d_k]_b$ y n > 0, entonces

- $ightharpoonup d_0 = n \mod b$ (¿por qué?)
- $ightharpoonup n/b = [d_1, \ldots, d_k]_b$ (¿por qué?)

Ejercicios

- **1** Definir la función digitos :: Integer -> Integer -> [Integer] que, dados $n \ge 0$ y b > 1, retorne su representación por listas en base b.
- 2 Definir la función numero :: [Integer] -> Integer -> Integer que, dada la representación por listas de $n \ge 0$ en base b > 1, retorne n.

PARTE III

Algoritmo de Euclides

Máximo común divisor

Problema del máximo comun divisor (mcd):

- ▶ Dados $a, b \in \mathbb{Z}$ (|a| + |b| > 0), encontrar (a : b) = max{d t. q. d | a y d | b}
- (a : b) es el máximo común divisor (mcd) de a y b
- ▶ Obs: (a : b) siempre existe y es positivo (¿por qué?)

Posible algoritmo: por definición

```
mcdDef :: Int -> Int -> Int
mcdDef a 0 = abs a
mcdDef 0 b = abs b
mcdDef a b = maximo (interseccion (divisores a) (divisores b))
```

Ejercicios

- \blacksquare Escribir la función divisores :: Int -> Set Int que dado un valor $n \neq 0$ retorna el conjunto de sus divisores positivos
- 4 Completar la función mcdDef, definiendo las funciones restantes
- Medir el tiempo que tarda mcdDef para un par de valores en $10^{10} \le a,b \le 2 \cdot 10^{10}$

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a:b)=(b:r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- ightharpoonup Como caso base, (a:0)=|a|

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a:b)=(b:r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- Como caso base, (a : 0) = |a|

Ejemplo:

(30 : 48) — Dividimos 30 por 48, q = 0, r = 30

Observación fundamental

$$(a : b) = (a + kb : b)$$
 para todo $k \in \mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a : b) = (b : r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- ightharpoonup Como caso base, (a:0)=|a|

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a : b) = (b : r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- ightharpoonup Como caso base, (a : 0) = |a|

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18
- = (30 : 18) q = 1, r = 12

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a : b) = (b : r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- Como caso base, (a : 0) = |a|

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18
- = (30 : 18) -q = 1, r = 12
- = (18 : 12) -q = 1, r = 6

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a:b)=(b:r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- Como caso base, (a : 0) = |a|

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18
- = (30 : 18) -q = 1, r = 12
- = (18 : 12) -q = 1, r = 6
- = (12 : 6) q = 2, r = 0

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- ightharpoonup (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a:b)=(b:r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- Como caso base, (a : 0) = |a|

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18
- = (30 : 18) q = 1, r = 12
- = (18 : 12) -q = 1, r = 6
- = (12 : 6) q = 2, r = 0
- $\mathbf{6} = (6 : 0)$

Observación fundamental

$$(a:b)=(a+kb:b)$$
 para todo $k\in\mathbb{Z}$

Si a = qb + r, entonces

- ightharpoonup (a : b) = (a qb : b) = (r : b) = (b : r)
- Luego, $(a:b)=(b:r_b(a))$ define un algoritmo que termina porque $0 \le r_b(a) < |b|$
- $\qquad \qquad \textbf{Como caso base, } (a : 0) = |a|$

- (30 : 48) Dividimos 30 por 48, q = 0, r = 30
- = (48 : 30) Dividimos 48 por 30, q = 1, r = 18
- = (30 : 18) -q = 1, r = 12
- = (18 : 12) -q = 1, r = 6
- = (12 : 6) q = 2, r = 0
- $\mathbf{6} = (6 : 0)$
- 7 = 6

Mini-análisis de eficiencia

Observación

Si
$$b \ge c > 0$$
 y $r = r_c(b)$, entonces $r < b/2$

- 1 Sea q el cociente de dividir b por c, i.e., b = qc + r
- 2 Si q > 1, entonces $r < c \le b/q \le b/2$
- \blacksquare Si q=1, entonces c>b/2 y, por lo tanto, r=b-c< b/2

Mini-análisis de eficiencia

Observación

Si
$$b \ge c > 0$$
 y $r = r_c(b)$, entonces $r < b/2$

- **1** Sea q el cociente de dividir b por c, i.e., b = qc + r
- 2 Si q > 1, entonces $r < c \le b/q \le b/2$
- 3 Si q = 1, entonces c > b/2 y, por lo tanto, r = b c < b/2

Corolario:

▶ En dos pasos de Euclides (suponiendo $a \ge b > 0$) tenemos

$$(a : b) = (c : r)$$
 para $c = r_b(a)$ y $r = r_c(b) < b/2$

Luego, si $b < 2^k$, entonces se requieren no mas de 2k pasos

Mini-análisis de eficiencia

Observación

Si
$$b \ge c > 0$$
 y $r = r_c(b)$, entonces $r < b/2$

- 1 Sea q el cociente de dividir b por c, i.e., b = qc + r
- 2 Si q > 1, entonces $r < c \le b/q \le b/2$
- \blacksquare Si q=1, entonces c>b/2 y, por lo tanto, r=b-c< b/2

Corolario:

▶ En dos pasos de Euclides (suponiendo $a \ge b > 0$) tenemos

$$(a : b) = (c : r)$$
 para $c = r_b(a)$ y $r = r_c(b) < b/2$

Luego, si $b < 2^k$, entonces se requieren no mas de 2k pasos

Ejemplo: (a:b) para $b \approx 2^{1000}$

- ► Si pudieramos calcular 10¹² restos por segundo, y
- lacktriangle el algoritmo básico para divisores recorre los valores en $[1,\sqrt{b}]$
- ▶ Tiempo Euclides $\lesssim 2000/10^{12}$ s = 2ns
- ightharpoonup Tiempo divisores $pprox \sqrt{2^{1000}}/10^{12} ext{s} > 10^{131}$ años

Algoritmo de Euclides: Ejercicios

Ejercicios

- **5** Definir la función mcd :: Int -> Int que dados $a,b\in\mathbb{Z},\ b\neq 0$, calcule (a:b) usando el algoritmo de Euclides.
- 7 Medir el tiempo de esta función y compararlo con mcdDef.
- Definir un función mcm :: Int -> Int que dados $a \ge 0$ y $b \ge 0$ calcule el mínimo $d \ge 0$ que sea múltiplo tanto de a como de b. ¿Cuánto vale mcm 0 0?

PARTE IV

Algoritmo de Euclides extendido

Algoritmo de Euclides extendido

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a,b\in\mathbb{Z}$ existen (infinitos pares) $s,t\in\mathbb{Z}$ tales que sa+tb=(a:b)

Ejemplos

- (8:5) = 1 y $2 \cdot 8 3 \cdot 5 = 1$ (o $7 \cdot 8 11 \cdot 5 = 1$)
- $(9:15) = 3 \quad y \quad 2 \cdot 9 1 \cdot 15 = 3$

Algoritmo de Euclides extendido

▶ Dados a y b, computa (a : b) junto con algún par s y t.

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a,b\in\mathbb{Z}$ existen (infinitos pares) $s,t\in\mathbb{Z}$ tales que sa+tb=(a:b)

Caso base: b=0. Entonces $(a:0)=|a|=(\operatorname{sgn} a)a+tb$ para todo $t\in\mathbb{Z}$

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a, b \in \mathbb{Z}$ existen (infinitos pares) $s, t \in \mathbb{Z}$ tales que sa + tb = (a : b)

Caso base: b=0. Entonces $(a:0)=|a|=(\operatorname{sgn} a)a+tb$ para todo $t\in\mathbb{Z}$

Paso inductivo: |b| > 0

Sea $r = r_b(a)$, i.e., r = a - qb donde q = a/b

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a,b\in\mathbb{Z}$ existen (infinitos pares) $s,t\in\mathbb{Z}$ tales que sa+tb=(a:b)

Caso base: b=0. Entonces $(a:0)=|a|=(\operatorname{sgn} a)a+tb$ para todo $t\in\mathbb{Z}$

Paso inductivo: |b| > 0

- Sea $r = r_b(a)$, i.e., r = a qb donde q = a/b
- Por inducción, existen σ e infinitos τ con $\sigma b + \tau r = (b : r)$
- Por Euclides, (a : b) = (b : r)

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a,b\in\mathbb{Z}$ existen (infinitos pares) $s,t\in\mathbb{Z}$ tales que sa+tb=(a:b)

Caso base: b=0. Entonces $(a:0)=|a|=(\operatorname{sgn} a)a+tb$ para todo $t\in\mathbb{Z}$

Paso inductivo: |b| > 0

- ► Sea $r = r_b(a)$, i.e., r = a qb donde q = a/b
- Por inducción, existen σ e infinitos τ con $\sigma b + \tau r = (b : r)$
- Por Euclides, (a : b) = (b : r)
- Luego,

$$(a : b) = (b : r) = \sigma b + \tau r = \sigma b + \tau (a - qb) = \tau a + (\sigma - q\tau)b$$

Corolario del algoritmo de Euclides (observación fundamental)

Para todo $a,b\in\mathbb{Z}$ existen (infinitos pares) $s,t\in\mathbb{Z}$ tales que sa+tb=(a:b)

Caso base: b=0. Entonces $(a:0)=|a|=(\operatorname{sgn} a)a+tb$ para todo $t\in\mathbb{Z}$

Paso inductivo: |b| > 0

- Sea $r = r_b(a)$, i.e., r = a qb donde q = a/b
- Por inducción, existen σ e infinitos τ con $\sigma b + \tau r = (b : r)$
- Por Euclides, (a : b) = (b : r)
- Luego,

$$(a : b) = (b : r) = \sigma b + \tau r = \sigma b + \tau (a - qb) = \tau a + (\sigma - q\tau)b$$

- Por lo tanto, alcanza con tomar $s = \tau$ y $t = \sigma (a/b)\tau$
- Ciertamente, s y t son enteros y $\sigma (a/b)\tau \neq \sigma (a/b)\tau'$ para $\tau \neq \tau'$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ightharpoonup El caso base es b=0

- 1 $\xi(30:48), s_0, t_0? q_0 = 0$
- $(48:30), s_1, t_1? q_1 = 1$
- 3 $\xi(30:18), s_2, t_2? q_2 = 1$
- 4 $\xi(18:12), s_3, t_3? q_3 = 1$
- 5 $\xi(12:6), s_4, t_4? q_4 = 2$
- 6 $\xi(6:0), s_5, t_5$?

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ▶ El caso base es b = 0

- 1 $\xi(30:48), s_0, t_0? q_0 = 0$
- $(48:30), s_1, t_1? q_1 = 1$
- $(30:18), s_2, t_2? q_2 = 1$
- 4 $\xi(18:12), s_3, t_3? q_3 = 1$
- $(12:6), s_4, t_4? q_4 = 2$
- **6** $\lambda(6:0), s_5, t_5?$ $\lambda(6:0) = 6, s_5 = 1, t_5 = 2.$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ▶ El caso base es b = 0

- $(30:48), s_0, t_0? q_0 = 0$
- $(48:30), s_1, t_1? q_1 = 1$
- 3 $\xi(30:18), s_2, t_2? q_2 = 1$
- 4 $\xi(18:12), s_3, t_3? q_3 = 1$
- 5 $\lambda(12:6), s_4, t_4? q_4 = 2 \rightarrow (12:6) = 6, s_4 = 2, t_4 = 1 2 \cdot 2 = -3$
- **6** $\xi(6:0), s_5, t_5$? $\rightarrow (6:0) = 6, s_5 = 1, t_5 = 2.$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ightharpoonup El caso base es b=0

- $(30:48), s_0, t_0? q_0 = 0$
- $(48:30), s_1, t_1? q_1 = 1$
- $(30:18), s_2, t_2? q_2 = 1$
- 4 $\xi(18:12), s_3, t_3?$ $q_3 = 1 \rightarrow (18:12) = 6, s_3 = -3, t_3 = 2 1 \cdot (-3) = 5.$
- **5** $\xi(12:6), s_4, t_4? q_4 = 2 \rightarrow (12:6) = 6, s_4 = 2, t_4 = 1 2 \cdot 2 = -3$
- **6** $\xi(6:0), s_5, t_5$? $\rightarrow (6:0) = 6, s_5 = 1, t_5 = 2.$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ightharpoonup El caso base es b=0

- 1 $(30:48), s_0, t_0? q_0 = 0$
- $(48:30), s_1, t_1? q_1 = 1$
- 3 $\xi(30:18), s_2, t_2? q_2 = 1 \rightarrow (30:18) = 6, s_2 = 5, t_2 = -3 1 \cdot 5 = -8$
- 4 $\lambda(18:12), s_3, t_3?$ $q_3 = 1 \rightarrow (18:12) = 6, s_3 = -3, t_3 = 2 1 \cdot (-3) = 5.$
- **6** $\xi(6:0), s_5, t_5$? $\rightarrow (6:0) = 6, s_5 = 1, t_5 = 2.$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ▶ Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ightharpoonup El caso base es b=0

- 1 $(30:48), s_0, t_0? q_0 = 0$
- (48:30), s_1 , t_1 ? $q_1 = 1 \rightarrow (48:30) = 6$, $s_1 = -8$, $t_1 = 5 1 \cdot (-8) = 13$
- 3 $\xi(30:18), s_2, t_2? q_2 = 1 \rightarrow (30:18) = 6, s_2 = 5, t_2 = -3 1 \cdot 5 = -8$
- **4** $\xi(18:12), s_3, t_3$? $q_3 = 1 \rightarrow (18:12) = 6, s_3 = -3, t_3 = 2 1 \cdot (-3) = 5.$
- **6** $\xi(6:0), s_5, t_5$? $\rightarrow (6:0) = 6, s_5 = 1, t_5 = 2.$

Queremos encontrar (a : b), s, t conociendo (b : r), σ , τ .

- ► Tomar $s = \tau$ y $t = \sigma (a/b)\tau$.
- ightharpoonup El caso base es b=0

Ejemplo:

1
$$\xi(30:48), s_0, t_0? q_0 = 0 \rightarrow (30:48) = 6, s_0 = 13, t_0 = -8 - 0 \cdot 13 = -8$$

2
$$\xi(48:30), s_1, t_1? q_1 = 1 \rightarrow (48:30) = 6, s_1 = -8, t_1 = 5 - 1 \cdot (-8) = 13$$

3
$$\xi(30:18), s_2, t_2? q_2 = 1 \rightarrow (30:18) = 6, s_2 = 5, t_2 = -3 - 1 \cdot 5 = -8$$

4
$$\xi(18:12), s_3, t_3?$$
 $q_3 = 1 \rightarrow (18:12) = 6, s_3 = -3, t_3 = 2 - 1 \cdot (-3) = 5.$

5
$$\dot{z}(12 : 6), s_4, t_4? q_4 = 2$$
 $\rightarrow (12 : 6) = 6, s_4 = 2, t_4 = 1 - 2 \cdot 2 = -3$

6
$$\xi(6:0), s_5, t_5$$
? $\rightarrow (6:0) = 6, s_5 = 1, t_5 = 2.$

Entonces,

$$sa + tb = 13 \cdot 30 - 8 \cdot 48 = 6 = (a : b)$$

Ejercicios

Ejercicios

- 9 Programar la función emcd :: Int -> Int -> (Int, Int, Int) que, dados a y b, utilice el algoritmo de Euclides extendido para obtener una tripla ((a:b), s, t) tal que sa+tb=(a:b)
- **TO** Definir una función que dados $a \neq 0$ y $b \neq 0$ encuentre el par $s, t \in \mathbb{Z}$ tal que sa + tb = (a : b) donde $s \geq 0$ sea lo mínimo posible. Repasar la teórica para este ejercicio.