

# Robustness, Resilience and Sustainability (Part I)



### **Dictionary Definitions**

#### Robust

- Dictionary.com
  - Strong and effective in all or most situations and conditions
- Merriam-Webster
  - Capable of performing without failure under a wide range of conditions
- Oxford Dictionaries
  - Able to withstand or overcome adverse conditions

### **Dictionary Definitions**

#### Resilient

- Dictionary.com
  - Returning to the original form or position after being bent, compressed, or stretched
- Merriam-Webster
  - Able to become strong, healthy, or successful again after something bad happens
- Oxford Dictionaries
  - Able to withstand or recover quickly from difficult conditions

## **Dictionary Definitions**

#### Sustainable

- Dictionary.com
  - Able to be maintained or kept going, as an action or process
- Merriam-Webster
  - Able to be used without being completely used up or destroyed
- Oxford Dictionaries
  - Able to be maintained at a certain rate or level



Sparse connectivity





Dense connectivity



## Robustness



## Recovery From Shock







# Tragedy of the Commons

- Grassland = Common-Pool Resource (CPR)
- Renewed at rate  $\alpha$ , extracted at rate  $\beta$
- Sustainable vs. Unsustainable



#### Modelling Considerations

- Cannot consider all variables
  - Mathematically not tractable
- Model only the most important variables
  - Results are still insightful
- Modelling choices include
  - Time-independent (equilibrium) vs. time-dependent (dynamic)
  - Deterministic vs. probabilistic
  - Continuous (differential equations) vs. discrete (agent-based models)

## Toy Model of Common-Pool Resource

S(t) = CPR level at time t

L(t) =exploiter population at time t



#### Fixed Points of Toy Model

Fixed Point: 
$$\frac{dS}{dt} = 0 = \frac{dL}{dt}$$

Trivial Fixed Point:

$$(S,L) = (0,0)$$

(S,L)=(0,0) No resource, no extractor

Unstable

Trivial Fixed Point:

$$(S,L)=(K,0)$$
 Full resource, no

**Unstable** 

extractor

Non-Trivial Fixed Point: 
$$(S,L) = \left(-\frac{\delta}{\phi\beta}, \frac{\alpha}{\beta}\left(1 + \frac{\delta}{\phi\beta K}\right)\right)$$

Net death with no extraction

Does not always exist

#### Prisoner's Dilemma

- In a homogeneous group of extractors:
  - What happens if the cooperators are small, i.e. small  $\beta$ , and defectors are large, i.e. large  $\beta$ ?
  - Extractors can choose to cooperate or defect
- More defectors result in smaller equilibrium, S
- Increasing proportion of defectors can drive the regime shift from finite-resource state to zero-resource state



# Robustness, Resilience and Sustainability (Part II)



## Subak System in Bali







### Subak System in Bali



Lansing and Fox. (2011). Philos Trans R Soc Lond B Biol Sci, 366(1566), 927-934.



Tri Hita Karana

- Harmony between nature, spirit and man
- High levels of cooperation



#### Ultimatum Game



#### Ultimatum Game





Lansing and Fox. (2011). Philos Trans R Soc Lond B Biol Sci, 366(1566), 927-934

## Large-Scale Survey

- 83 farmers, *N*, from each Subak
- Eleven questions on the following were posed:
  - Community structure
  - Farming practices
  - Religious practices
  - Conflict management

#### Large-Scale Survey





 $\ @$  2014 by The Wenner-Gren Foundation for Anthropological Research.











© 2014 by The Wenner-Gren Foundation for Anthropological Research.



© 2014 by The Wenner-Gren Foundation for Anthropological Research.



## Tavoni-Schlüter-Levin Model



Hendrik Santoso Sugiarto



Chew Lock Yue

#### Tavoni-Schlüter-Levin Model



Communal effort: 
$$E=N(e_c)+N(e_d)=N(f_c)e_c+(1-f_c)e_d$$
 Cooperator effort Praction of cooperators

Payoff: 
$$\pi_c = \frac{e_c}{E} F(E,R) - we_c,$$
 
$$\pi_d = \frac{e_d}{E} F(E,R) - we_d,$$
 
$$F = \gamma E^{\alpha} R^{\beta}, \quad \alpha + \beta < 1$$



Retrieved from "Socioecological regime shifts in the setting of complex social interactions" (doi: https://doi.org/10.1103/PhysRevE.91.062804). Copyright 2015 by The American Physical Society. Reprinted with permission.



Retrieved from "Socioecological regime shifts in the setting of complex social interactions" (doi: https://doi.org/10.1103/PhysRevE.91.062804). Copyright 2015 by The American Physical Society. Reprinted with permission.



Retrieved from "Socioecological regime shifts in the setting of complex social interactions" (doi: https://doi.org/10.1103/PhysRevE.91.062804). Copyright 2015 by The American Physical Society. Reprinted with permission.







# Robustness, Resilience and Sustainability (Part III)



#### Resilience of a Swarm

- Reynolds and Boids
  - Swarming is produced by three simple rules:
    - Moving in the same direction as neighbours
    - Staying close to neighbours
    - Avoiding collision with neighbours
- Work by Roland Bouffanais (Assistant Professor, SUTD)
  - Who are neighbours?
  - How big is a neighbourhood?
  - What is k-nearest neighbours?

#### Resilience of a Swarm

- When k is small, no swarming is produced. When k is large, there is no recovery from shocks.
- In real swarms, *k* is determined by the adaptation to achieve maximum recovery rate, i.e. real swarms are resilient.

#### **Acknowledgements**

- Slide 9: Reproduced by permission of The Garrett Hardin Society. (1986). *Garrett Hardin* [photograph]. Retrieved from <a href="http://www.garretthardinsociety.org/gh/garrett-hardin-photo-1986.html">http://www.garretthardinsociety.org/gh/garrett-hardin-photo-1986.html</a>.
  - Slide 10: Photo of a flock of sheep, extracted from Pixabay: <a href="https://pixabay.com/en/sheep-flock-flock-of-sheep-wool-1305432/">https://pixabay.com/en/sheep-mool-1305432/</a> by Tama66: <a href="https://pixabay.com/en/users/Tama66-1032521/">https://pixabay.com/en/users/Tama66-1032521/</a> (Public Domain)
- Slides 16-17 and 20: Lansing, J.S. and Fox, K.M. (2011). Niche construction on Bali: the gods of the countryside. *Philos Trans R Soc Lond B Biol Sci*, 366(1566), 927-934. doi: 10.1098/rstb.2010.0308
- Slides 16-17: Photos taken in Bali, reproduced with permission from John Stephen Lansing.
- Slides 16-17: Photo of traditional ceremony in Bali, extracted from Wikimedia Commons: <a href="https://commons.wikimedia.org/wiki/File%3AOdalan\_procession.JPG">https://commons.wikimedia.org/wiki/File%3AOdalan\_procession.JPG</a> by Midori: <a href="https://commons.wikimedia.org/wiki/User:Midori">https://commons.wikimedia.org/wiki/User:Midori</a> under CC BY 3.0: <a href="https://creativecommons.org/licenses/by/3.0">https://creativecommons.org/licenses/by/3.0</a>
- Slides 16-17: Photo of rice terrace in Bali, extracted from Wikimedia Commons: <a href="https://commons.wikimedia.org/wiki/File:Bali\_panorama.jpg">https://commons.wikimedia.org/wiki/Special:Contributions/\*drew~commonswiki</a> under CC BY-SA 3.0: <a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a>
  - Slide 18: Photo of John Stephen Lansing [Photograph]. (2012). Retrieved May 9, 2017, from <a href="https://www.youtube.com/watch?v=h9ozS8BKUFI">https://www.youtube.com/watch?v=h9ozS8BKUFI</a>.
- Slide 19: Photo of US currency, extracted from Wikimedia Commons: <a href="https://commons.wikimedia.org/w/index.php?curid=10086032">https://commons.wikimedia.org/w/index.php?curid=10086032</a> by Bureau of Engraving and Printing: <a href="https://www.newmoney.gov/newmoney/files/100">https://www.newmoney.gov/newmoney/files/100</a> Materials/100 GlossyFront EN WEB031210.pdf (Public Domain)
- Slides 22-26: Lansing, J.S., Cheong, S.A., Chew, L.Y., Cox, M.P., Ho, M-H.R. and Arthawiguna, W.A. (2014). Current Anthropology, 55(2), 232-239. doi:10.1086/605344
- Slide 26: Figure for Principal Component Analysis (on the right), reproduced with permission from John Stephen Lansing.
- Slide 27: Photo of Hendrik Santoso Sugiarto, reproduced with permission from Hendrik Santoso Sugiarto.
- Slide 27: Photo of Chew Lock Yue, reproduced with permission from Chew Lock Yue.
- Slides 29-31: Sugiarto, H.S., Chung, N.N., Lai, C.H. and Chew L.Y. (2015). Socioecological regime shifts in the setting of complex social interactions. *Physical Review E*, 91(6), 062804. doi: https://doi.org/10.1103/PhysRevE.91.062804