Variation data from high throughput sequencing

Experimental Sequencing Reads

Aligned Reads

Reference Genome

Variants

CNV

Single Nucleotide Polymorphisms (SNPs)

What are SNPs

SNPs are genetic variations. Each SNP represents a single change in one nucleotide.

There are different types of SNPs but broadly can be divided into synonymous, nonsynonymous non-coding.

Synonymous: a nucleotide change that does not change the amino acid sequence – also called silent mutation.

<u>Nonsynonymous</u>: a nucleotide change that results an amino acid change. These can be missense (results in a different amino acid) or nonsense (results in a stop codon) mutations.

Important factors to think about when considering SNPs:

- Can a SNP be called based on the data?
- How many of your sample had suffient reads to call a SNP at that position?
- What is the frequency of the SNP? What could affect read frequency?
- How many of your samples have that SNP? Minor/major allele frequency.

Isolate X aligned sequencing reads

Copy Number Variations

What are Copy Number Variations (CNVs)?

A phenomenon in which a region of the genome appears a different number of times in different individuals

Types of CNV

Polyploidy

- Duplication of the whole genome
- Common in plants
- Happened twice in the vertebrate lineage leading to humans

Aneuploidy

- Duplication of some but not all chromosomes
- Common in Leishmania and Trypanosoma cruzi

Segmental duplications

- Duplication of part of a chromosome
- We'll look at an example in Candida

Gene duplications

- Duplication of a single gene
- ROP5 in Toxoplasma gondii

Short CNVs

 Duplications of short regions, e.g., CAG repeats in Huntingdon's disease or BRC repeats in BRCA2

Types of CNV

Polyploidy

- Duplication of the whole genome
- Common in plants
- Happened twice in the vertebrate lineage leading to humans

Aneuploidy

- Duplication of some but not all chromosomes
- Common in Leishmania and Trypanosoma cruzi

Segmental duplications

- Duplication of part of a chromosome
- We'll look at an example in Candida

Gene duplications

- Duplication of a single gene
- ROP5 in Toxoplasma gondii

Short CNVs

 Duplications of short regions, e.g., CAG repeats in Huntingdon's disease or BRC repeats in BRCA2

CNVs and Coverage

In whole genome sequencing (WGS) one would expect to sample evenly along the genome resulting in even coverage after alignment

This is subject to minor variation associated with GC content and stochastic variation

Duplication results in increased coverage

Reference genome without duplication

Deletion results in decreased coverage

Duplications Associated with Drug Resistance

In VEuPathDB

- Search for supernumerary chromosomes in different isolates
- Search for genes with increased or decreased copy number in different isolates
- Explore coverage in JBrowse

