CS5489 Lecture 4.1: Duality

Kede Ma

City University of Hong Kong (Dongguan)

Slide template by courtesy of Benjamin M. Marlin Part of slides are borrowed from Stephen P. Boyd

Outline

- 1 Review
- 2 Convex Optimization Problems
- 3 Duality

Convex Set

■ Line segment between $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$: all points

$$\mathbf{x} = \alpha \mathbf{x}^{(1)} + (1 - \alpha) \mathbf{x}^{(2)}$$

with $0 \le \alpha \le 1$

Convex set: contains line segment between any two points in the set

$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \mathcal{X}, \ 0 \le \alpha \le 1 \implies \alpha \mathbf{x}^{(1)} + (1 - \alpha)\mathbf{x}^{(2)} \in \mathcal{X}$$

Convex Function

 $f: \mathbb{R}^N \mapsto \mathbb{R}$ is convex if dom(f) is a convex set and

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \text{dom}(f), 0 \le \alpha \le 1$

- This is also called Jensen's inequality
- $\blacksquare f$ is concave if -f is convex

Non-Convex

First-Order Condition

 \blacksquare f is **differentiable** if the gradient

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_N}\right]^T$$

exists at each $\mathbf{x} \in \text{dom}(f)$

■ **1st-order condition**: differentiable *f* with convex domain is convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \text{ for all } \mathbf{x}, \mathbf{y} \in \text{dom}(f)$$

 \blacksquare First-order approximation of f is global underestimator

Second-Order Condition

• f is **twice differentiable** if the Hessian $\nabla^2 f(\mathbf{x}) \in \mathbb{S}^N$

$$\nabla^2 f(\mathbf{x})_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$$

exists at each $\mathbf{x} \in \text{dom}(f)$

■ **2nd-order condition**: twice differentiable *f* with convex domain is convex iff

$$\nabla^2 f(\mathbf{x}) \succeq 0$$

■ This means that the Hessian matrix is positive semidefinite

$$\mathbf{A} \succeq 0 \Longleftrightarrow \forall \mathbf{x}, \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$

Outline

- 1 Review
- **2** Convex Optimization Problems
- 3 Duality

Optimization Problem in Standard Form

minimize $f_0(\mathbf{x})$ subject to $f_i(\mathbf{x}) \leq 0, i = 1, ..., r$ $h_i(\mathbf{x}) = 0, i = 1, ..., s$

- $\mathbf{x} \in \mathbb{R}^N$ is the optimization variable
- $f_0: \mathbb{R}^N \mapsto \mathbb{R}$ is the objective or cost function
- $f_i: \mathbb{R}^N \mapsto \mathbb{R}, i = 1, \dots, r$, are the inequality constraint functions
- $h_i: \mathbb{R}^N \mapsto \mathbb{R}, i=1,\ldots,s$ are the equality constraint functions

Optimal value:

$$p^* = \min\{f_0(\mathbf{x})|f_i(\mathbf{x}) \le 0, i = 1, \dots, r, h_i(\mathbf{x}) = 0, i = 1, \dots, s\}$$

- $p^* = \infty$ if problem is infeasible (no **x** satisfies the constraints)
- $p^* = -\infty$ if the problem is unbounded below

Optimal and Locally Optimal Points

- **x** is **feasible** if $\mathbf{x} \in \text{dom}(f_0)$ and it satisfies the constraints
- A feasible **x** is optimal if $f_0(\mathbf{x}) = p^*$
- **x** is locally optimal if there is an R > 0 such that **x** is optimal for

minimize
$$f_0(\mathbf{z})$$

subject to $f_i(\mathbf{z}) \le 0, i = 1, ..., r$
 $h_i(\mathbf{z}) = 0, i = 1, ..., s$
 $\|\mathbf{z} - \mathbf{x}\|_2 \le R$

- Examples:
 - $f_0(x) = -\log x$, $dom(f_0) = \mathbb{R}_{++}$: $p^* = -\infty$
 - $f_0(x) = x \log x$, dom $(f_0) = \mathbb{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
 - $f_0(x) = x^3 3x$: $p^* = -\infty$, locally optimum at x = 1

Feasibility Problem

find x

subject to
$$f_i(\mathbf{x}) \leq 0, i = 1, \dots, r$$

 $h_i(\mathbf{x}) = 0, i = 1, \dots, s$

can be considered a special case of the general problem with $f_0(\mathbf{x}) = 0$:

minimize 0
subject to
$$f_i(\mathbf{x}) \leq 0, i = 1, ..., r$$

 $h_i(\mathbf{x}) = 0, i = 1, ..., s$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex Optimization Problem in Standard Form

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0, i = 1, ..., r$
 $\mathbf{a}_i^T \mathbf{x} = b_i, i = 1, ..., s$

- \bullet f_0, f_1, \ldots, f_r are convex
- Equality constraints are affine
- Often written as

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0, i = 1, ..., r$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

 Important property: feasible set of a convex optimization problem is convex

Example

minimize $f_0(\mathbf{x}) = x_1^2 + x_2^2$

subject to
$$f_1(\mathbf{x}) = x_1/(1+x_2^2) \le 0$$

 $h_1(\mathbf{x}) = (x_1+x_2)^2 = 0$

- \bullet f_0 is convex
- Feasible set $\{(x_1, x_2) | x_1 = -x_2 \le 0\}$ is convex
- Not a convex problem (in standard form): f_1 is not convex, h_1 is not affine
- Writes it as a convex problem in standard form

minimize
$$f_0(\mathbf{x}) = x_1^2 + x_2^2$$

subject to $f_1(\mathbf{x}) = x_1 \le 0$
 $h_1(\mathbf{x}) = x_1 + x_2 = 0$

Local and Global Optima in Convex Optimization

Any locally optimal point of is (globally) optimal

Proof. Suppose \mathbf{x} is locally optimal and \mathbf{y} is optimal with $f_0(\mathbf{y}) < f_0(\mathbf{x})$. Locally optimal \mathbf{x} means there is an R > 0 such that

z feasible,
$$\|\mathbf{z} - \mathbf{x}\|_2 < R \implies f_0(\mathbf{z}) \ge f_0(\mathbf{x})$$
.

Consider
$$\mathbf{z} = \alpha \mathbf{y} + (1 - \alpha)\mathbf{x}$$
, with $\alpha = R/(2\|\mathbf{y} - \mathbf{x}\|_2)$

- $\|\mathbf{y} \mathbf{x}\|_2 > R$, so $0 < \alpha < 1/2$
- **z** is a convex combination of two feasible points, hence feasible
- $\|\mathbf{z} \mathbf{x}\|_2 = R/2$ and

$$f_0(\mathbf{z}) \le \alpha f_0(\mathbf{y}) + (1 - \alpha) f_0(\mathbf{x}) < f_0(\mathbf{x})$$

which contradicts our assumption that \mathbf{x} is locally optimal

Outline

- 1 Review
- 2 Convex Optimization Problems
- 3 Duality

Lagrangian

Standard form problem (not necessarily convex):

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
subject to $f_i(\mathbf{x}) \le 0, i = 1, ..., r$

$$h_i(\mathbf{x}) = 0, i = 1, ..., s$$

- Variable $\mathbf{x} \in \mathbb{R}^N$, domain \mathcal{X} , optimal value p^*
- Lagrangian: $L: \mathbb{R}^N \times \mathbb{R}^r \times \mathbb{R}^s \mapsto \mathbb{R}$, with $dom(L) = \mathcal{X} \times \mathbb{R}^r \times \mathbb{R}^s$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=1}^r \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^s \nu_i h_i(\mathbf{x})$$

- Weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(\mathbf{x}) \leq 0$
- \mathbf{v}_i is Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$

Lagrange Dual Function

Lagrange dual function: $g: \mathbb{R}^r \times \mathbb{R}^s \mapsto \mathbb{R}$,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{X}} \left(f_0(\mathbf{x}) + \sum_{i=1}^r \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^s \nu_i h_i(\mathbf{x}) \right)$$

g is concave and can be $-\infty$ for some λ and ν

■ Lower bound property: if $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$ **Proof**. If $\tilde{\mathbf{x}}$ is feasible and $\lambda \ge 0$, then

$$f_0(\tilde{\mathbf{x}}) \ge L(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ge \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = g(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

Minimizing over all feasible $\tilde{\mathbf{x}}$ gives $p^* \geq g(\lambda, \nu)$

Least-Norm Solution of Linear Equations

 $\begin{array}{ll}
\text{minimize} & \mathbf{x}^T \mathbf{x} \\
\text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b}
\end{array}$

- Dual function:
 - Lagrangian is $L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A} \mathbf{x} \mathbf{b})$
 - To minimize L over \mathbf{x} , set gradient equal to zero:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = 0 \implies \mathbf{x} = -(1/2)\mathbf{A}^T \boldsymbol{\nu}$$

■ Plug in L to obtain g:

$$g(\boldsymbol{\nu}) = L((-1/2)\mathbf{A}^T\boldsymbol{\nu}, \boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T\mathbf{A}\mathbf{A}^T\boldsymbol{\nu} - \mathbf{b}^T\boldsymbol{\nu}$$

a concave function of ν

Lower bound property: $p^* \ge -\frac{1}{4} \boldsymbol{\nu}^T \mathbf{A} \mathbf{A}^T \boldsymbol{\nu} - \mathbf{b}^T \boldsymbol{\nu}$ for all $\boldsymbol{\nu}$

Standard Form Linear Programming

minimize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \succeq 0$

- Dual function:
 - Lagrangian is

$$L(\mathbf{x}, \lambda, \nu) = \mathbf{c}^T \mathbf{x} + \nu^T (\mathbf{A} \mathbf{x} - \mathbf{b}) - \lambda^T \mathbf{x}$$

= $-\mathbf{b}^T \nu + (\mathbf{A}^T \nu - \lambda + \mathbf{c})^T \mathbf{x}$

 \blacksquare L is affine in **x**, hence:

$$g(\lambda, \nu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) = \begin{cases} -\mathbf{b}^{T} \nu & \mathbf{A}^{T} \nu - \lambda + \mathbf{c} = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on $\{(\lambda, \nu)|\mathbf{A}^T \nu - \lambda + \mathbf{c} = 0\}$, hence concave

■ Lower bound property: $p^* \ge -\mathbf{b}^T \mathbf{\nu}$ if $\mathbf{A}^T \mathbf{\nu} + \mathbf{c} \succeq 0$

The Dual Problem

Lagrange dual problem:

$$\max_{\lambda,\nu} g(\lambda,\nu)$$

subject to $\lambda > 0$

- λ, ν are dual feasible if $\lambda \succeq 0, (\lambda, \nu) \in \text{dom}(g)$
- Finds best lower bound p^* , obtained from Lagrange dual problem
- A convex optimization problem; optimal value denoted d^*
- Weak duality: $d^* \leq p^*$
 - Always holds (for convex and nonconvex problems)
 - Can be used to find nontrivial lower bounds for difficult problems
- Strong duality: $d^* = p^*$
 - Does not hold in general
 - (Usually) holds for convex problems, *e.g.*, SVM

Complementary Slackness

■ Assuming strong duality holds, \mathbf{x}^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(\mathbf{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \sum_{i=1}^r \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^s \nu_i^* h_i(\mathbf{x}) \right)$$

$$\leq f_0(\mathbf{x}^*) + \sum_{i=1}^r \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^s \nu_i^* h_i(\mathbf{x}^*)$$

$$\leq f_0(\mathbf{x}^*)$$

- Hence, the two inequalities hold with equality
 - **x** not only minimizes $f_0(\mathbf{x})$, but also minimizes $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$
 - $\lambda_i^{\star} f_i(\mathbf{x}^{\star}) = 0$ for $i = 1, \dots, r$ (complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(\mathbf{x}^*) = 0, \qquad f_i(\mathbf{x}^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

- The following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i)
 - Primal constraints: $f_i(\mathbf{x}) \leq 0, i = 1, \dots, r, h_i(\mathbf{x}) = 0, i = 1, \dots, s$
 - 2 Dual constraints: $\lambda \succeq 0$
 - **3** Complementary slackness: $\lambda_i f_i(\mathbf{x}) = 0, i = 1, \dots, r$
 - 4 Gradient of Lagrangian with respect to **x** vanishes:

$$\nabla f_0(\mathbf{x}) + \sum_{i=1}^r \lambda_i \nabla f_i(\mathbf{x}) + \sum_{i=1}^s \nu_i \nabla h_i(\mathbf{x}) = 0$$

If strong duality holds and \mathbf{x} , λ , ν are optimal, then they must satisfy the KKT conditions