11. Полезная мощность в номинальном режиме двигателя

$$P_{\text{ном}} = P_{\text{эм}} - P_{\text{э2}} - P_{\text{до6}} - P_{\text{мех}} = 58\,117\,-\,2304\,-\,290\,-\,580 =$$
 $= 54\,943\,\,\mathrm{Br}$, т. е. $P_{\text{ном}} \approx 55\,\,\mathrm{kBr}$.

Задача 3.11. Трехфазный асинхронный двигатель с короткозам-кнутым ротором работает от сети переменного тока напряжением $U_{1\pi}=380$ В частотой $f_1=50$ Гц. При номинальной нагрузке ротор двигателя вращается с частотой $n_{\text{ном}}$; перегрузочная способность двигателя $\lambda_{\text{м}}$, а кратность пускового момента $M_{\text{п}}/M_{\text{ном}}$ (табл. 3.12). Рассчитать значения параметров и построить механическую характеристику двигателя в относительных единицах $M_*=f(s)$, если электромагнитная мощность в режиме номинальной нагрузки равна $P_{\text{эм}}$. Определить, при каком снижении напряжения относительно номинального двигатель утратит способность пуска с номинальным моментом на валу и при каком снижении напряжения он утратит перегрузочную способность.

Параметр	Варианты									
	1	2	3	4	5	6	7	8	9	10
Рэм, кВт	7,5	15	11	4,0	15	1,1	30	3,0	7,5	37
$n_{\scriptscriptstyle{ ext{HOM}}}$, об/мин	1440	2940	960	1420	720	2920	580	1430	730	575
$\lambda_{_{M}}$	2,2	1,9	2,0	2,2	2,0	1,9	1,8	2,2	1,7	1,8
$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle { m HOM}}$	1,4	1,4	1,2	1,0	1,0	1,2	1,4	1,0	0,9	1,0
2p	4	2	6	4	8	2	10	4	8	10

Таблица 3.12

Решение варианта 1.

Расчет ведем в относительных единицах по упрощенной формуле

$$M_* = 2/[(s/s_{\rm kp}) + (s_{\rm kp}/s)],$$

где $M_* = M/M_{\rm max}$ — относительное значение электромагнитного момента.

1. Номинальное скольжение

$$s_{\text{HOM}} = (n_1 - n_{\text{HOM}})/n_1 = (1500 - 1440)/1500 = 0.04.$$

2. Критическое скольжение

$$s_{\text{\tiny KP}} = s_{\text{\tiny HOM}} \left(\lambda_{\text{\tiny M}} + \sqrt{\lambda_{\text{\tiny M}}^2 - 1} \right) = 0,04 \left(2, 2 + \sqrt{2, 2^2 - 1} \right) = 0,17.$$

3. Рассчитаем относительные значения момента при скольжениях:

$$s_{\text{hom}} = 0.04$$
; $s_{\text{kp}} = 0.17$; $s = 0.2$; $s = 0.5$; $s = 0.8$.

Параметр	Значения параметра								
<i>s</i>	0,04	0,17	0,2	0,5	0,8	1,0			
M_*	0,445	1,0	0,98	0,61	0,4	0,64			
М, Н ∙ м	47,7	105	103	64	42	66,8			

Результаты расчета приведены в табл. 3.13. По полученным данным рассчитаны фактические значения момента и построена механическая характеристика $M_* = f(s)$ двигателя (рис. 3.8). В связи с тем, что приближенная формула относительного значения момента при больших скольжениях дает заметную ошибку, величину пускового момента, соответствующую скольжению s=1,0, определим по номинальному значению момента

$$M_{\text{HOM}} = 9.55 P_{\text{DM}} / n_1 = 9.55 \cdot 7500 / 1500 = 47.7 \text{ H} \cdot \text{M}.$$

Следовательно,

$$M_{\rm n} = M_{\rm hom} \cdot 1.4 = 47.7 \cdot 1.4 = 66.8 \; {\rm H \cdot M}.$$

Относительное значение пускового момента

$$M_{\text{n*}} = M_{\text{n}}/M_{\text{max}} = 66.8/105 = 0.63,$$

где максимальное значение момента

$$M_{\text{max}} = M_{\text{HOM}} \lambda_{\text{M}} = 47.7 \cdot 2.2 = 105 \text{ H} \cdot \text{M}.$$

4. Известно, что величина электромагнитного момента прямо пропорциональна U_1^2 . Поэтому при кратности пускового момента $M_{\rm II}/M_{\rm HoM}=1,4$ пусковой момент окажется равным номинальному, если напряжение питания уменьшится до значения

$$U'_{1\pi} = U_{1\pi} / \sqrt{1.4} = 380 / 1.18 = 322 B.$$

Рис. 3.8. Механическая характеристика асинхронного двигателя

В итоге даже незначительное дальнейшее снижение напряжения приведет к тому, что при номинальном нагрузочном моменте на валу двигателя пуск не произойдет. Что же касается перегрузочной способности двигателя, то, учитывая, что $\lambda_{\scriptscriptstyle M}=2,\!2,$ она будет утрачена при уменьшении напряжения сети до величины

$$U_{1\pi}/\sqrt{2.2} = 380/1.48 = 257 \,\mathrm{B}.$$

Задача 3.12. Трехфазный асинхронный двигатель с короткозамкнутым ротором серии А2, работающий от сети частотой 50 Гц напряжением 380 В при соединении обмотки статора «звездой», имеет номинальные параметры, приведенные в табл. 3.14: полезная мощность $P_{\text{ном}}$, частота вращения $n_{\text{ном}}$, КПД $\eta_{\text{ном}}$, коэффициент мощности $\cos \varphi_{\text{1ном}}$; кратность пускового тока $I_{\text{п}}/I_{\text{ном}}$, кратности пускового $M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle {
m HOM}}$ и максимального $M_{\scriptscriptstyle {
m max}}/M_{\scriptscriptstyle {
m HOM}}$ моментов; активное сопротивление фазной обмотки статора при температуре 20 °C $r_{1.20}$. Требуется рассчитать параметры и построить механическую характеристику двигателя $n_2 = f(M)$. Коэффициент мощности в режиме короткого замыкания принять равным

$$\cos \phi_{\scriptscriptstyle K} = 0.5 \cos \phi_{\scriptscriptstyle 1 \scriptscriptstyle HOM}.$$

Решение варианта с двигателем А2-71-4.

1. Потребляемая двигателем мощность в режиме номинальной нагрузки

$$P_{\text{tuom}} = P_{\text{how}}/\eta_{\text{now}} = 22/0.9 = 24.4 \text{ kBt}.$$

Таблица 3.14

Тип двигателя	<i>Р</i> _{ном} , кВт	$n_{\scriptscriptstyle{ ext{HOM}}}, \ ext{oб/мин}$	η _{ном} , %	$\cos\phi_{1\text{HOM}}$	$I_{\scriptscriptstyle \Pi}/I_{\scriptscriptstyle 1 \scriptscriptstyle m HOM}$	$rac{M_{_{ m II}}}{M_{_{ m HOM}}}$	$rac{M_{ m max}}{M_{ m HOM}}$	<i>т</i> _{1.20} , Ом при 20°С
A2-61-2	17	2900	88,0	0,88	7	1,2	2,2	0,1900
A2-62-2	22	2900	89,0	0,88	7	1,1	2,2	0,1540
A2-71-2	30	2900	90,0	0,90	7	1,1	2,2	0,1170
A2-72-2	40	2900	90,5	0,90	7	1,0	2,2	0,0770
A2-81-2	55	2900	91,0	0,90	7	1,0	2,2	0,0540
A2-82-2	75	2900	92,0	0,90	7	1,0	2,2	0,0347
A2-91-2	100	2920	93,0	0,90	7	1,0	2,2	0,0209
A2-92-2	125	2920	94,0	0,90	7	1,0	2,2	0,0144
A2-61-4	13	1450	88,5	0,88	7	1,3	2,0	0,2700
A2-62-4	17	1450	89,5	0,88	7	1,3	2,0	0,1890
A2-71-4	22	1455	90,0	0,88	7	1,2	2,0	0,1700

2. Потребляемый двигателем ток n_2 , об/мин в режиме номинальной нагрузки

$$I_{1\text{HOM}} = P_{1\text{HOM}}/(3U_1\cos\varphi_{1\text{HOM}}) =$$

= 24 400/(3 \cdot 220 \cdot 0.88) = 42 A.

3. Пусковой ток двигателя

$$I_{\rm II} = I_{\rm 1 HOM} (I_{\rm II}/I_{\rm 1 HOM}) = 42 \cdot 7 = 294 \, {\rm A}.$$

4. Сопротивление короткого замыкания двигателя

$$Z_{\rm K} = U_1/I_{\rm H} = 220/294 = 0.75 \,{\rm OM}.$$

Рис. 3.9. Механическая характеристика асинхронного двигателя

5. Коэффициент мощности в режиме короткого замыкания

$$\cos \varphi_{\kappa} = 0.5 \cdot 0.88 = 0.44; \sin \varphi_{\kappa} = 0.895.$$

6. Активная и индуктивная составляющие сопротивления короткого замыкания

$$x_{\text{K}} = Z_{\text{K}} \sin \varphi_{\text{K}} = 0.75 \cdot 0.895 = 0.67 \text{ OM};$$

 $r_{\text{K}} = Z_{\text{K}} \cos \varphi_{\text{K}} = 0.75 \cdot 0.44 = 0.33 \text{ OM}.$

7. Сопротивление фазной обмотки статора при рабочей температуре

$$r_1=r_{1.20}[1+\alpha(\theta_{
m pa6}-20)]=0,\!17[1+0,\!004(75-20)]=0,\!21$$
 Ом, где $\theta_{
m pa6}=75\,^{\circ}{
m C}$ — рабочая температура; $\alpha=0,\!004$ — температурный коэффициент сопротивления меди.

8. Скольжение в режиме номинальной нагрузки

$$s_{\text{HOM}} = (n_1 - n_{\text{HOM}})/n_{\text{HOM}} = (1500 - 1455)/1500 = 0.03.$$

9. Приведенное значение активного сопротивления фазы обмотки ротора

$$r_2' = r_{\kappa} - r_1 = 0.33 - 0.21 = 0.12 \text{ Om}.$$

10. Номинальное значение электромагнитного момента определяем по формуле

$$M = \frac{m_1 U_1^2 r_2' p}{2\pi f_1 s_{\text{HOM}} \left[\left(r_1 + r_2' / s_{\text{HOM}} \right)^2 + x_{\text{K}}^2 \right]} =$$

$$= \frac{3 \cdot 220^2 \cdot 0,12 \cdot 2}{2 \cdot 3,14 \cdot 50 \cdot 0,03 \left[\left(0,21 + 0,12 / 0,03 \right)^2 + 0,67^2 \right]} = 204 \,\text{H} \cdot \text{M}.$$

11. Максимальный момент

$$M_{\rm max} = 204 \cdot 2 = 408 \, {\rm H} \cdot {\rm M}.$$

$$M_{\rm H} = 204 \cdot 1.2 = 245 \; {\rm H} \cdot {\rm M}.$$

13. Критическое скольжение

$$egin{align} s_{ ext{ iny FD}} &= s_{ ext{ iny HOM}} \left[M_{ ext{ iny MADM}} \, / \, M_{ ext{ iny HOM}} \, + \sqrt{\left(M_{ ext{ iny MADM}} \, / \, M_{ ext{ iny HOM}}
ight)^2 - 1}
ight] = \ &= 0.03 \Big[2 + \sqrt{2^2 - 1} \Big] = 0.11. \end{split}$$

14. Момент при скольжении s = 0.5

$$M = \frac{m_1 U_1^2 r_2' p}{2\pi f_1 s \left[\left(r_1 + r_2' / s \right)^2 + \left(x_1 + x_2' \right)^2 \right]} =$$

$$= \frac{3 \cdot 220^2 \cdot 0,12 \cdot 2}{2 \cdot 3,14 \cdot 50 \cdot 0,5 \left[\left(0,21 + 0,12 / 0,5 \right)^2 + 0,69^2 \right]} = 341 \,\mathrm{H} \cdot \mathrm{m}.$$

15. Рассчитав частоту вращения по формуле

$$n_2=n_1(1-s),$$

получаем результаты расчета параметров для построения механической характеристики двигателя:

16. По полученным данным строим механическую характеристику $n_2 = f(M)$, представленную на рис. 3.9.

Задача 3.13. В табл. 3.15 приведены технические данные трехфазных асинхронных двигателей с фазным ротором серии АК2. Требуется определить номинальное $M_{\text{пом}}$ и максимальное M_{max} значения моментов, номинальное $s_{\text{ном}}$ и критическое $s_{\text{кр}}$ скольжения, а также сопротивление резистора, который следует включить в цепь фазной обмотки ротора, чтобы начальный пусковой момент двигателя был равен максимальному; построить механическую характеристику для этого режима и по ней определить скольжение, соответствующее номинальному моменту $M_{\text{ном}}$. Напряжение сети 380 В, частота 50 Гц; обмотка статора соединена «звездой». Кратность пускового тока при прямом (безреостатном) включении двигателя в сеть $I_{\text{п}}/I_{\text{ном}}=7$; коэффициент мощности в режиме короткого замыкания принять равным

$$\cos \varphi_{\rm K} = 0.5 \cos \varphi_{\rm HOM}$$
.

Решение варианта с двигателем АК2-82-8.

						10-10-0
Тип двигателя	Р _{ном} , кВт	<i>п</i> _{ном} , об/мин	η _{ном} , %	соѕ фиом	$rac{M_{ m max}}{M_{ m HOM}}$	<i>т</i> _{1 20} , Ом, при 20 °C
AK2-81-4	40	1440	90,0	0,84	2,0	0,0725
AK2-82-4	55	1440	90,5	0,84	2,0	0,0390
AK2-91-4	75	1450	90,5	0,85	2,0	0,0326
AK2-92-4	100	1450	90,5	0,85	2,0	0,0210
AK2-81-6	30	960	89,0	0,84	1,8	0,0920
AK2-82-6	40	960	89,0	0,85	1,8	0,0605
AK2-91-6	55	960	89,0	0,86	1,8	0,0590
AK2-92-6	75	960	90,5	0,86	1,8	0,0350
AK2-81-8	22	720	87,5	0,79	1,7	0,1570
AK2-82-8	30	720	87,5	0,79	1,7	0,0935

1. Потребляемая двигателем мощность в номинальном режиме

$$P_{1\text{HOM}} = P_{\text{HOM}}/\eta_{\text{HOM}} = 30/0,875 = 34,3 \text{ kBt.}$$

2. Ток, потребляемый двигателем в номинальном режиме,

$$I_{1\text{HOM}} = P_{1\text{HOM}}/(3U_1\cos\varphi_{\text{HOM}}) = 34\,300/(3\cdot220\cdot0.79) = 66\,\text{A}.$$

3. Скольжение в номинальном режиме

$$s_{\text{HOM}} = (750 - 720)/750 = 0.04.$$

4. Активное сопротивление фазы статора при рабочей температуре 75 $^{\circ}\mathrm{C}$

$$r_1 = r_{1.20}[1 + \alpha(75 - 20)] = 0.0935[1 + 0.004 \cdot 55] = 0.0935 \cdot 1.22 = 0.114 \text{ Om}.$$

5. Пусковой ток при прямом (безреостатном) включении

$$I_{\rm II} = I_{1_{\rm HOM}}(I_{\rm II}/I_{1_{\rm HOM}}) = 66 \cdot 7 = 462 \text{ A}.$$

6. Сопротивление короткого замыкания

$$Z_{\rm K} = U_1/I_{\rm H} = 220/462 = 0.48 \, {\rm OM}.$$

7. Коэффициент мощности короткого замыкания

$$\cos \varphi_{\text{k}} = 0.5 \cos \varphi_{1\text{HOM}} = 0.5 \cdot 0.79 = 0.395; \sin \varphi_{\text{k}} = 0.918.$$

8. Индуктивная составляющая сопротивления короткого замыкания

$$x_{\kappa} = Z_{\kappa} \sin \varphi_{\kappa} = 0.48 \cdot 0.918 = 0.44 \text{ Om}.$$

9. Активная составляющая сопротивления короткого замыкания

$$r_{\rm k} = Z_{\rm k} {\cos \varphi_{\rm k}} = 0.48 \cdot 0.395 = 0.19 \; {
m Om}.$$

10. Активное сопротивление фазы ротора, приведенное к фазе статора,

$$r_2' = r_{\kappa} - r_1 = 0.19 - 0.114 = 0.076 \text{ Om}.$$

11. Активное сопротивление фазы ротора при скольжении $s_{\text{ном}}=0.04$ $r_2'/s_{\text{ном}}=0.076/0.04=1.9$ Ом.

12. Номинальное значение электромагнитного момента

$$\begin{split} M_{\text{\tiny HOM}} &= \frac{m_{\text{\tiny I}} U_{1}^{2} r_{2}^{\prime} p}{2\pi f_{\text{\tiny I}} s_{\text{\tiny HOM}} \left[\left(r_{\text{\tiny I}} + r_{2}^{\prime} / s_{\text{\tiny HOM}} \right)^{2} + x_{\text{\tiny K}}^{2} \right]} = \\ &= \frac{3 \cdot 220^{2} \cdot 0,076 \cdot 4}{2 \cdot 3,14 \cdot 50 \cdot 0,04 \left[\left(0,114 + 1,9 \right)^{2} + 0,44^{2} \right]} = 720 \;\; \text{H} \cdot \text{M}. \end{split}$$

13. Максимальное значение момента

$$egin{align} M_{
m max} &= rac{m_{
m l} U_{
m l}^2 p}{4\pi f_{
m l} \left[\pm r_{
m l} + \sqrt{r_{
m l}^2 + x_{
m k}^2}
ight]} = \ &= rac{3 \cdot 220^2 \cdot 4}{4 \cdot 3,14 \cdot 50 \left[0,114 + \sqrt{0,114^2 + 0,44^2}
ight]} = 1640 \;\; {
m H} \cdot {
m m}. \end{split}$$

14. Критическое скольжение

$$s_{\text{KD}} \approx \pm r_2'/x_{\text{K}} = 0.076/0.44 = 0.17.$$

15. Сопротивление резистора $r_{\text{доб}}$, при включении которого в цепь ротора пусковой момент становится максимальным, должно быть та-

Рис. 3.10. Искусственная механическая характеристика асинхронного двигателя M = f(s)

ким, чтобы общее активное сопротивление фазы ротора было равно сопротивлению $x_{\rm k}$. Следовательно,

$$r_{\text{ло6}} = x_{\text{\tiny K}} - r_2' = 0.44 - 0.076 =$$

= 0.364 Om.

16. Для построения искусственной механической характеристики M = f(s), соответствующей приведенному значению сопротивления цепи ротора $r_{no6} + r_2' = 0,44$ Ом, рассчитаем значения моментов при скольжениях s = 0,5 и s = 0,75.

Результаты расчета электромагнитного момента для ряда значений скольжения представлены ниже:

Из построений на рис. 3.10 следует, что при номинальном моменте $M_{\text{ном}}=720~\text{H}\cdot\text{м}$ скольжение составляет s=0,32, что соответствует частоте вращения $n_{\text{ном}}=750(1-0,32)=510~\text{об/мин}$.

Задача 3.14. Трехфазный асинхронный двигатель номинальной мощностью $P_{\text{ном}}$ включен в сеть напряжением 380 В, частотой 50 Гц, обмотка статора соединена «звездой». Вращаясь с частотой $n_{\text{ном}}$ двигатель потребляет ток $I_{\text{1ном}}$ при коэффициенте мощности $\cos \varphi_1$. При работе в режиме холостого хода двигатель потребляет из сети мощность P_{10} при токе I_{10} ; активное сопротивление фазной обмотки статора при рабочей температуре r_1 (табл. 3.16). Определить все виды потерь двигателя в режиме номинальной нагрузки, приняв величину механических потерь $P_{\text{мех}}$.

Таблица 3.16

Параметр	Варианты								
Параметр	_ 1	2	3	4	5	6			
Р _{вом} , кВт	15	7,0	75	100	7,0	10			
<i>I</i> _{1ном} , А	32	14	140	180	11	19			
$n_{\scriptscriptstyle{\mathrm{HoM}}}$, об/мин	1455	2910	960	1460	1450	2920			
$r_{ m l}$, Ом	0,25	0,58	0,036	0,015	0,52	0,33			
$\cos \varphi_1$ ·	0,85	0,90	0,88	0,91	0,86	0,91			
P ₁₀ , B _T	820	400	1270	2000	300	330			
<i>I</i> ₁₀ , A	7,0	4,0	31	43	4,5	5,0			
P _{mex} , Br	160	170	250	450	120	220			

Решение варианта 1.

1. Электрические потери в обмотке статора в режиме холостого хода

$$P_{\text{al}0} = m_1 I_{10}^2 r_1 = 3 \cdot 7^2 \cdot 0.25 = 37 \text{ Bt.}$$

2. Постоянные потери (сумма магнитных и механических потерь)

$$P_{\text{noct}} = P_{10} - P_{310} = 820 - 37 = 783 \text{ Bt.}$$

3. Магнитные потери

$$P_{\text{M}} = P_{\text{HOCT}} - P_{\text{Mex}} = 383 - 160 = 223 \text{ Bt.}$$

4. Мощность, потребляемая из сети при номинальной нагрузке,

$$P_{1\text{HOM}} = m_1 U I_{1\text{HOM}} \cos \varphi_1 = 3 \cdot 220 \cdot 32 \cdot 0.85 = 17952 \text{ Bt.}$$

5. Суммарные потери

$$\sum P = P_{1\text{HOM}} - P_{\text{HOM}} = 17952 - 15000 = 2952 \text{ Bt.}$$

6. КПД двигателя в номинальном режиме

$$\eta_{\text{HOM}} = P_{\text{HOM}}/P_{\text{1HOM}} = 15/17,95 = 0.83.$$

7. Переменные потери (сумма электрических потерь в обмотках статора и ротора и добавочных потерь) в номинальном режиме

$$P_{\text{пер. HOM}} = \sum P - P_{\text{пост}} = 2952 - 783 = 2169 \text{ Bt.}$$

8. Добавочные потери в номинальном режиме

$$P_{\text{доб. hom}} = 0.005 P_{\text{1hom}} = 0.005 \cdot 17952 = 90 \text{ Bt.}$$

9. Электрические потери в обмотке статора в номинальном режиме

$$P_{\text{31 HOM}} = m_1 I_{1 \text{HOM}}^2 r_1 = 3 \cdot 32^2 \cdot 0,25 = 768 \text{ Bt.}$$

10. Электрические потери в обмотке ротора в номинальном режиме

$$P_{
m э2ном} = P_{
m пер.\, ном} - P_{
m э1ном} - P_{
m доб.\, ном} = 2169 - 768 - 90 = 1311~{
m Bt}.$$

Круговая диаграмма и рабочие характеристики

Задача 3.15. По рабочим характеристикам трехфазных асинхронных двигателей, приведенным в Приложении 2, и данным табл. 3.17 по каждому из предлагаемых вариантов требуется определить:

- а) параметры двигателя в номинальном режиме работы ток статора $I_{\text{пюм}}$, КПД $\eta_{\text{ном}}$, коэффициент мощности $\cos \varphi_{\text{ном}}$, скольжение $s_{\text{ном}}$, частоту вращения $n_{\text{ном}}$, потребляемую мощность $P_{\text{1ном}}$;
- б) максимальное значение КПД η_{max} и соответствующие этому КПД нагрузку P_2 , выразив ее в долях от номинальной $P_{\text{ном}}$;

Таблица 3.17

Параметр	Варианты							
Параметр	1	2	3	4	5	6		
Рисунок (см. приложение 2)	П. 2.1	П. 2.2	П. 2.3	П. 2.4	П. 2.5	П. 2.6		
$P_{\scriptscriptstyle{HOM}}$ к B т	250	2,8	7,5	160	4,0	45		
Напряжение сети $U_{1,n}$ В	660	220	380	380	220	380		
Схема соединения обмотки статора	Y	Δ	Y	Δ	Δ	Y		
2p	4	4	4	4	4	4		

в) отношение переменных потерь $P_{\text{пер. ном}}$ к постоянным потерям $P_{\text{пост}}$ при номинальной нагрузке;

г) активное сопротивление фазы обмотки статора r_1 .

Решение варианта 1.

1. Параметры двигателя при номинальном режиме (см. рис. П. 2.1): полезная мощность двигателя $P_{\text{ном}}=250~\text{kBt};$

ток статора $I_{1\text{ном}} = 250 \text{ A};$

скольжение $s_{\text{ном}} = 1,7 \%$ или 0,017;

частота вращения $n_{\text{ном}} = 1500(1 - 0.017) = 1474$ об/мин;

коэффициент полезного действия $\eta_{\text{ном}} = 0,92;$

коэффициент мощности $\cos \varphi_{1\text{ном}} = 0.88;$

потребляемая мощность $P_{\text{1-ном}} = P_{\text{ном}}/\eta_{\text{ном}} = 250/0,92 = 271,7 \text{ кBr.}$

2. Максимальное значение КПД $\eta_{max} = 0,94$ соответствует нагрузке

$$P_2 = 150$$
 кВт, т.е. $0.6P_{\text{ном}}$ (см. рис. $\Pi.2.1$).

3. Потребляемая двигателем мощность при нагрузке 0,6 $P_{\scriptscriptstyle {
m HOM}}\!=150\,{
m kBr}$

$$P_1 = P_2/\eta_{\text{max}} = 150/0,94 = 159,6 \text{ kBr}.$$

4. Сумма потерь при нагрузке $P_2 = 0.6 P_{\text{ном}} = 150 \ \text{кBt}$,

$$\Sigma P = P_1 - P_2 = 159,6 - 150 = 9,6 \text{ kBt.}$$

5. Постоянные потери

$$P_{\text{moct}} = P_{\text{m}} + P_{\text{mex}} = \sum P/2 = 9.6 /2 = 4.8 \text{ kBt.}$$

6. Суммарные потери двигателя при номинальной нагрузке

$$\sum P_{\text{HOM}} = P_{1\text{HOM}} - P_{\text{HOM}} = 271.7 - 250 = 21.7 \text{ kBt.}$$

7. Переменные потери в режиме номинальной нагрузки

$$P_{\text{пер. ном}} = \sum P_{\text{ном}} - P_{\text{пост}} = 21700 - 4800 = 16900 \text{ Bt.}$$

8. Отношение переменных потерь к постоянным при номинальной нагрузке

$$P_{\text{пер. Hom}}/P_{\text{пост}} = 16\,900/4800 \approx 3.5.$$

9. Добавочные потери при номинальной нагрузке

$$P_{\text{доб}} = 0.005 P_{\text{1110M}} = 0.005 \cdot 271700 = 1359 \text{ Bt.}$$

10. Момент холостого хода

$$M_0 = 9.55 P_{\text{пост}}/n_1 = 9.55 \cdot 4800/1500 = 31 \text{ H} \cdot \text{M}.$$

11. Номинальный момент на валу двигателя

$$M_{\mathrm{2hom}} = 9.55 P_{\mathrm{Hom}} / n_{\mathrm{Hom}} = 9.55 \cdot 250\,000 / 1474 = 1620\;\mathrm{H\cdot M}.$$

12. Электромагнитный момент в номинальном режиме

$$M_{\text{HoM}} = M_{2\text{HoM}} + M_0 = 1620 + 31 = 1651 \text{ H} \cdot \text{M}.$$