EE340: Control Systems Lab Manual

Dr. Syed Abdul Rahman Kashif

M. Ali Shafique

Name:	
Registration Number:	
Section:	

Department of Electrical Engineering

University of Engineering and Technology Lahore

Important Instructions

- Every student should have lab manual in the lab; otherwise there will no evaluation and attendance
- Those students who have been given Laptop must have it in the lab
- Every student should fill his/her own manual in the lab, complete in all respects, otherwise there will be deduction of marks, and no excuse will be accepted
- Every student will have to submit simulation assignments in individual. Assignments after due date will not be accepted
- Every student must have text book in lab.
- There will be a term project and number of simulation/hardware assignments for this lab.

Part A System Modeling

Experiment No. 1

System Modeling of R-C Circuit

Pre-Lab Reading

Chapter 1 of Katsuhiko Ogata, Modern Control Engineering, 5 th edition, Prentice Hall 2010.

Chapter 1 of N. S. Nise, Control Systems Engineering, 5 th edition, John Wiley Inc, 2009.

Objectives

- Understand system modeling.
- Understand system transfer function.
- Observe behavior of system.

Circuit Diagram

Figure 1.1: RC Circuit

Section 1.1: Theoretical Calculations

- Find Transfer function of system shown in Figure 1.1
- Find zero, pole and gain from Transfer function.

Control Systems Lab, UET

- Find differential equation of system.
- Find Unit step response of system.
- Fill table below.

Observation Set:

No.	Time	V_o (dc)
1	1ms	
2	2ms	
3	3ms	
4	4ms	
5	5ms	
6	6ms	
7	7ms	
8	8ms	

Section 1.2: Simulation

- Define Transfer function of system in Matlab.
- \bullet Find zero, pole and gain from Transfer function.
- Find Unit step response of system.
- Fill table below.

Observation Set:

No.	Time	V_o (dc)
1	1ms	
2	2ms	
3	$3 \mathrm{ms}$	
4	4ms	
5	$5\mathrm{ms}$	
6	6ms	
7	7ms	
8	8ms	

Matlab Functions:

No.	Code
1	tf
2	zpk
3	stepplot

Section 1.3: Hardware Results

- Patch Circuit on breadboard.
- Generate 50 Hz Square wave with Vp-p 1V and offset 0.5V and use as input.
- \bullet Observe output using Oscilloscope.
- Fill table below.

Observation Set:

No.	Time	V_o (dc)
1	1ms	
2	$2 \mathrm{ms}$	
3	$3 \mathrm{ms}$	
4	4ms	
5	$5 \mathrm{ms}$	
6	6ms	
7	7ms	
8	8ms	