Real-Time Databases Real-Time Systems Design (CS 6414)

Sumanta Pyne

Assistant Professor
Computer Science and Engineering Department
National Institute of Technology Rourkela
pynes@nitrkl.ac.in

May 9, 2021

Overview

- Conventional and real-time database differs on
 - characteristics of stored data
 - timing constraints on database operations
 - performance goals
- Example applications
 - Process control
 - Internet Service Management
 - Spacecraft Control System
 - Network Management System
- Concurrency control protocols ACID properties
 - Atomicity
 - Consistency
 - Isolation
 - Durability

Real-time Databases - three issues

- Temporal Data or Perishable Data
 - Data whose validity lost after prespecified time interval elapses
 - Temperature sensor data sampled every 100 msec, old values archived
 - New stock market price quotations, previous ones obselete
 - Aircraft computes current position and path deviation every few msec
- Timing constraints on database operations
 - Real-time tasks assume deterministic execution time
 - Real-time database transacation execution time unpredictable
 - Transactions require many records and disk accesses
- Performance metric
 - Transaction response time
 - Transactional database #transacations completed per unit time
 - Optimize average response time for non-real-time applications
 - Real-time database #transacations missing deadlines per unit time

3/9

Real-time database Design issues

- Data access in secondary memory make transactions miss deadline
- Impossible to predict transacation response time due to protocols for
 - concurrency control, commit and recovery
- Roll backs cascading effects introducting unpredictable delay
- Use of databases impractical in hard real-time applications
- Use of an in-memory database can solve identified problems
- In real-time applications set of transactions are known before hand
- Transactions fixed use same amount and types of data each time
- Effective resource usage plans deterministic transacation executions

Characteristics of Temporal Data

- Temporal Consistency
 - Requires actual states of environment and database be very close
 - Closeness remains within limits required by application
- Two main requirements
 - Absolute Validity consistency between environment and its reflection
 - Relative Consistency among data used to derive new data
- How to Respresent Data Items in a Real-Time Database?
 - Data item d:(value,avi,timestamp)
 - Three components
 - d_value value recorded for d
 - d_avi absolute validity interval for d
 - *d_timestamp* time when *d* was measured
 - Example d=(120,5) msec, 100 msec)
 - data item with value 120
 - recorded at 100 msec
 - with an absolute validity interval of 5 msec

Relative Consistency Set

- A set of data items is used to derive a new data
- Derived data correctness relative consistency of data items
- Anti-missile sys new missile position from curr velocity & position
- Incorrect to use earlier sampled position with current velocity
- Relative consistency contemporary data items to derive new data
- R Relative consistency set
- R_avi R associated with relative validity interval (rvi)
- Condition for Absolute Validity
 - d is absolutely valid, if (Current time d_timestamp $\leq d$ _avi)
- Condition for Relative Consistency
 - d is relatively consistent, if $(d_timestamp d_timestamp' \le R_rvi)$

6/9

Concurrency Control in Real-Time Databases

- Locking-based concurrency control
- 2PL leads to deadlocks
- T1: Lock d1, Lock d2, Unlock d2, Unlock d1
 T2: Lock d2, Lock d1, Unlock d1, Unlock d2
- 2PL-WP
- 2PL-HP
- PCP
 - Read, Absolute, Read-Write Ceilings
 - Transaction requesting data object granted same
 - iff priority of requesting data object > read-write celing of all

Optimistic Concurrency Control Protocols

- Forward OCC
- OCC Broadcast Commit
- Speculative Concurrency Control
- Comparision of Concurrency Control Protocols

Thank you