

SIMULAÇÃO ACÚSTICA E AURALIZAÇÃO: QUÃO PRÓXIMOS DO AMBIENTE REAL PODEMOS CHEGAR?

TRABALHO DE CONCLUSÃO DE CURSO ENGENHARIA ELÉTRICA

AUTOR: RENATO JUNQUEIRA COELHO NETTO

SUMÁRIO

1. INTRODUÇÃO

- i. Objetivo Geral
- ii. Objetivos Específicos

2. FUNDAMENTAÇÃO TEÓRICA

- i. Acústica Arquitetônica
- Som em ambientes fechados
- iii. Parâmetros acústicos do ambiente

3. ETAPAS DO TRABALHO

- i. Levantamento Arquitetônico
- ii. Calibragem do modelo
- iii. Procedimentos Experimentais

4. RESULTADOS

- i. Avaliação Objetiva
- ii. Avaliação Subjetiva

5. CONCLUSÕES

INTRODUÇÃO

Avaliação Acústica

- Percepção do público: expectativa vs realidade
- Percepção dos apresentadores: avaliação do local de trabalho

Critérios de qualidade da sala

- Espectro de uso
- Estrutura primária
- Estrutura secundária
- Influências que afetam a qualidade

Critérios acústicos

- Correlação entre eles
- Tempo
- Energia

Softwares utilizados

Objetivos

Objetivo Geral

 Comparar a fidelidade de um modelo de simulação acústica com a realidade através de um processo de auralização e explicar a importância deste estudo.

Objetivos Específicos

- Realizar a modelagem acústica do Santuário Dom Bosco;
- Utilizar medições acústicas para calibrar o modelo;
- Testar a fidelidade do modelo em relação ao ambiente real;
- Fazer uma análise dos resultados objetivos e subjetivos afim de comprovar, ou não, a qualidade do modelo em estudo.

FUNDAMENTAÇÃO TEÓRICA

Acústica Arquitetônica

- História e subdivisões
- Condições de audibilidade

Som em ambientes fechados

- Som Direto
- Reverberação
- Ruído de Fundo
- Fala

Parâmetros acústicos do ambiente

- Resposta ao Impulso (IR)
- Tempo de Reverberação (RT)
- Inteligibilidade de Fala (SI)
- Índice de Inteligibilidade de Fala (STI)

Acústica Arquitetônica

- História e evolução
- Subdivisão em 3 áreas:
 - Isolamento Acústico
 - Condicionamento Acústico
 - Acústica Urbanística
- Condições de audibilidade
 - Espectro vocal
 - Faixa de Frequência da audição humana
 - Arquitetura do ambiente

Som em Ambientes Fechados

- Som Direto
- Reverberação
- Ruído de Fundo
- Fala

Som em Ambientes Fechados

Exemplo de Everest

Resposta ao Impulso (IR)

Tempo de Reverberação (RT)

• Eyring
$$RT = 0.163 (0.049) \frac{V}{-\ln(1-\alpha)S_{tot} + 4mV}$$

• Sabine
$$RT = 0.163(0.049) \frac{V}{A_{tot} + 4mV}$$

- Inteligibilidade de Fala (SI) $m(F) = \frac{1}{\sqrt{1 + (2\pi F \cdot RT/13.8)^2}} \cdot \frac{1}{1 + 10^{\frac{S/N}{100d8}}}$
- Índice de Transmissão de Fala (STI)

Syllable intelligibility	STI-value
poor	0 to 0.3
satisfactory	0.3 to 0.45
good	0.45 to 0.6
very good	0.6 to 0.75
excellent	0.75 to 1.0

Parâmetros acústicos	Conceito
Tempo de Reverberação (TR)	É definido como o tempo necessário para o nível de pressão sonora existente em uma sala decair 60 dB, a partir do momento em que uma fonte sonora é cessada.
Tempo de Decaimento Inicial (EDT)	Caracteriza a parte inicial da curva de decaimento energético. É seis vezes o intervalo de tempo correspondente ao decaimento médio entre 0 dB e 10 dB após a fonte ter cessado.
Definição (D50)	Trata da relação entre a energia que chega ao ouvinte dentro dos primeiros 50 ms e a energia total recebida pelo mesmo. São as 'reflexões úteis' que dão suporte ao som direto.
Inteligibilidade da fala (SI)	É a proporção de itens da fala corretamente compreendidos e repetidos pelo ouvinte para um dado teste de inteligibilidade da fala. Avaliado através de testes subjetivos.
Índice de transmissão da fala (STI)	É o correlato físico do SI. Expressa o grau de alteração da profundidade de modulação em amplitude sofrida pelo sinal da fala, causada pela reverberação e pelo ruído de fundo.
Índice de articulação da fala (AI)	É um método de estimativa da inteligibilidade na presença do ruído. É a probabilidade de compreender um som individualmente.
Clareza (C80)	É o quociente em dB entre a energia recebida nos primeiros 80 ms do sinal percebido pelo ouvinte e a energia recebida após esse intervalo de tempo. Similar à Definição, porém indicado para fins musicais.

ETAPAS DO TRABALHO

- Levantamento Arquitetônico
 - Dimensões
 - Mobiliário
 - Revestimento
- Calibragem do modelo
 - Definição de materiais
 - RT Analítico vs RT Real
- Procedimentos Experimentais
 - Gravações e Medições Binaurais
 - Auralização

Levantamento Arquitetônico

Dimensões

- capacidade de 1200 pessoas
- área de audiência de aproximadamente 1600m²
- volume médio de 23.214m³, cuja geometria remete à um prisma quadrangular de dimensões médias iguais a 39,79m x 39,799m x 14,659m.

Mobiliário

- Grupos de cadeiras de couro simples
- Bancos de madeira medindo 1,90m cada e espaço médio entre fileiras de 1,25m

Revestimento

Levantamento Arquitetônico

Materiais

- CARPT CONC: carpete central (em vermelho);
- MARBLE: piso;
- WIND GLASS: sala de vidro;
- CONCRETE S: paredes;
- DOOR HOLLOW: portas;
- Standard, Ideal, Absorber: portas abertas, ou seja, acesso ao exterior do ambiente;
- CstmStndGlass: vitrais;
- WoodPewNotUpholstrd: bancos;
- Opening into reverb space: escadas;
- CstmAbsOvrZinc: cadeiras.

Materiais

Item	A 100Hz	A 125Hz	A 160Hz	A 200Hz	A 250Hz	A 315Hz	A 400Hz	A 500Hz	A 630Hz	A 800Hz	A 1000Hz	A 1250Hz	A 1600Hz	A 2000Hz	A 2500Hz	A 3150Hz	A 4000Hz	A 5000Hz	A 6300Hz	A 8000Hz	A 10000Hz
CARPT CONC	0.04	0.04	0.04	0.04	0.04	0.08	0.11	0.15	0.2	0.25	0.3	0.37	0.43	0.5	0.53	0.57	0.6	0.6	0.6	0.6	0.6
MARBLE	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
WIND GLASS	0.35	0.35	0.32	0.28	0.25	0.23	0.2	0.18	0.16	0.14	0.12	0.1	0.09	0.07	0.08	0.08	0.09	0.09	0.09	0.09	0.09
CONCRETE S	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.06
DOOR HOLLW	0.15	0.15	0.13	0.12	0.1	0.09	0.07	0.06	0.07	0.07	0.08	0.09	0.09	0.1	0.08	0.07	0.05	0.04	0.03	0.02	0.02
Standard, Ideal, A	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CstmStndGlass	0.56	0.55	0.49	0.4	0.36	0.28	0.25	0.2	0.17	0.15	0.12	0.1	0.09	0.07	0.06	0.05	0.04	0.04	0.04	0.04	0.04
WoodPewNotUp	0.03	0.03	0.04	0.04	0.05	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Opening into rev	0.35	0.35	0.35	0.35	0.35	0.33	0.32	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.28	0.27	0.25	0.23	0.22	0.2	0.2
CstmAbsOvrZinc	0.02	0.02	0.02	0.04	0.06	0.1	0.12	0.16	0.2	0.24	0.27	0.3	0.32	0.35	0.43	0.58	0.73	0.89	0.94	0.98	0.99
SlightlyUphlstrdS	0.12	0.12	0.14	0.15	0.17	0.18	0.18	0.19	0.2	0.2	0.21	0.22	0.23	0.24	0.25	0.25	0.26	0.26	0.26	0.26	0.26

Coeficientes de Absorção

Item	D 100Hz	D 125Hz	D 160Hz	D 200Hz	D 250Hz	D 315Hz	D 400Hz	D 500Hz	D 630Hz	D 800Hz	D 1000Hz	D 1250Hz	D 1600Hz	D 2000Hz	D 2500Hz	D 3150Hz	D 4000Hz	D 5000Hz	D 6300Hz	D 8000Hz	D 10000Hz
CARPT CONC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
MARBLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
WIND GLASS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
CONCRETE S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
DOOR HOLLW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
Standard, Ideal, A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
CstmStndGlass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
WoodPewNotUp	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Opening into rev	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
CstmAbsOvrZinc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) 0
SlightlyUphlstrdS	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3

Coeficientes de Espalhamento

- RT Analítico vs RT Real
 - RT de referência
 - RT medido através da IR

RT Analítico vs RT Real

- RT de referência
- RT medido através da IR
- RT simulado

Frequency	a34 Sabine	a 34 Eyring	T20 Avg Sphere	T20 Avg K10s	Delta
100 Hz	3.64	3.31	3.10	3.09	0.01
125 Hz	3.74	3.40	3.15	3.16	-0.01
160 Hz	4.10	3.76	3.51	3.52	-0.01
200 Hz	4.61	4.28	4.02	4.02	0.00
250 Hz	4.82	4.49	4.20	4.22	-0.02
315 Hz	5.21	4.89	4.60	4.60	0.00
400 Hz	5.25	4.93	4.62	4.60	0.02
500 Hz	5.39	5.06	4.75	4.74	0.01
630 Hz	5.13	4.80	4.52	4.50	0.02
800 Hz	4.80	4.48	4.28	4.27	0.01
1000 Hz	4.66	4.34	4.20	4.19	0.01
1250 Hz	4.46	4.16	4.07	4.03	0.04
1600 Hz	4.22	3.94	3.89	3.87	0.02
2000 Hz	3.91	3.65	3.68	3.64	0.04
2500 Hz	3.26	3.01	3.17	3.12	0.05
3150 Hz	2.49	2.26	2.62	2.59	0.03
4000 Hz	1.96	1.75	2.17	2.10	0.07
5000 Hz	1.53	1.34	1.77	1.68	0.09
6300 Hz	1.28	1.13	1.44	1.41	0.03
8000 Hz	1.04	0.93	1.13	1.11	0.02
10000 Hz	0.81	0.74	0.86	0.90	-0.04

- Gravações e Medições Binaurais
 - Troca da fonte Sonora
 - Desligamento de equipamentos
 - Calibragem dos microfones

Gravações e Medições Binaurais

- Posicionamento de microfones
- Medição multi-canal de IR
- Gravação dos áudios anecóicos

Fala

Música

Fala + Música

Table 3: Posição dos assentos

Seat	X [m]	Y [m]	Y Reference	X Reference
			wall	wall
1 🛛	10.65	18.7	Front wall	Right wall
2 🛛	10.65	22.2	Front wall	Right wall
3 ⊠	10.65	7.10	Back wall	Right wall
4 🗆	5.09	11.7	Back wall	Right wall
5 🗆	5.00	6.08	Back wall	Right wall
6 □	17.3	18.7	Front wall	Right wall
7 🗆	18.12	13.6	Back wall	Right wall
8 🗆	17.4	3.89	Back wall	Right wall

Auralização

- Raytracing e arquivo de resposta (.rsp)
- Função de Transferência Relacionada à Cabeça (HRTF)
- Convolução: .rsp * HRTF = BIR

Auralização

- Resposta de Impulso Binaural (BIR)
- Convolução: BIR * WAV (anecóico) = WAV (aura)

- Avaliação Objetiva
 - RT

Avaliação Objetiva

STI

- Avaliação Subjetiva
 - Fala

Posição 4: à direita da fonte sonora

Gravação

Auralização

Posição 7: à esquerda da fonte sonora

Gravação

Auralização

- Avaliação Subjetiva
 - Música

Posição 4: à direita da fonte sonora

Gravação

Auralização

Gravação

Posição 7: à esquerda da fonte sonora

Auralização

- Avaliação Subjetiva
 - Fala + Música

Posição 4: à direita da fonte sonora

Posição 7: à esquerda da fonte sonora

Auralização

Gravação

Auralização

Considerações Finais

- Parâmetros acústicos são bem representados pelos filtros criados, incluindo a variação de posição
- É notória a evolução da técnica de auralização: é muito difícil distinguir uma simulação da realidade
- O modelo e o método de cálculo são confiáveis
- Trabalhos futuros
 - Uso educacional
 - Projetos de novos ambientes
 - Estudo e renovações de espaços existentes
 - Realidade virtual
 - Ambientação de video-games

FIM