Puissances d'un endomorphisme géométrique

Dans tout le problème, \mathbb{R}^3 est muni de sa structure euclidienne orientée usuelle et rapporté à sa base canonique (orthonormée directe) notée (e_1, e_2, e_3) .

On note $\mathcal{L}(\mathbb{R}^3)$ la \mathbb{R} algèbre des endomorphismes de \mathbb{R}^3 , $\mathcal{M}_3(\mathbb{R})$ la \mathbb{R} -algèbre des matrices carrées d'ordre 3 à coefficients réels et I_3 la matrice identité.

Partie I

Soit s l'endomorphisme de \mathbb{R}^3 de matrice $S = \frac{1}{3} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$ dans la base canonique.

- 1. Calculer $\det s$. En déduire que s est un automorphisme de \mathbb{R}^3 .
- 2. Soit $e_1' = (1,1,1)$, $e_2' = (1,-1,0)$ et $e_3' = (1,1,-2)$.
- 2.a Montrer que (e'_1, e'_2, e'_3) est une base de \mathbb{R}^3 .
- 2.b Déterminer la matrice S' de s dans la base (e'_1, e'_2, e'_3) .
- 2.c Calculer S'^n et donner une méthode de calcul de S^n . (on ne demande pas d'effectuer lesdits calculs).
- 3.a La famille (I_3,S) est-elle libre dans $\mathcal{M}_3(\mathbb{R})$?
- 3.b Montrer que S^2 peut s'exprimer comme combinaison linéaire de I_3 et S.
- 3.c En déduire que pour tout $n \in \mathbb{N}$, il existe un unique couple (a_n, b_n) de réels tels que $S^n = a_n I_3 + b_n S$.
- 3.d Donner les valeurs de a_0, b_0, a_1, b_1 et exprimer, pour $n \in \mathbb{N}$, a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- 3.e Montrer que la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante, puis que la suite $(b_n + 1)_{n \in \mathbb{N}}$ est géométrique.
- 3.f En déduire l'expression de a_n et b_n pour tout $n \in \mathbb{N}$.
- 4. Soit $B = S 2I_3$.
- 4.a Calculer B^n pour $n \in \mathbb{N}$.
- 4.b En déduire l'expression de S^n en fonction de I_3 et B pour $n \in \mathbb{N}$.
- 4.c Comparer avec le résultat de la question 3.

Partie II

Soit f l'endomorphisme de \mathbb{R}^3 de matrice $A = \frac{1}{3} \begin{pmatrix} -1 & -1 & 5 \\ 5 & -1 & -1 \\ -1 & 5 & -1 \end{pmatrix}$ dans la base canonique.

On pose $u = f \circ s^{-1}$ et on note U la matrice de u dans la base canonique.

- 1. Calculer U ; vérifier que u est une rotation vectorielle et que $u \circ s = s \circ u = f$.
- 2. Soit (e_1'', e_2'', e_3'') la famille obtenue en normant les vecteurs e_1', e_2' et e_3' de la question I.2.
- 2.a Montrer que (e_1'', e_2'', e_3'') est base orthonormée directe.
- 2.b Ecrire la matrice U' de u dans cette base et caractériser géométriquement u.
- 3.a Exprimer la matrice de s dans la base (e_1'', e_2'', e_3'') en fonction de S'.
- 3.b En déduire la matrice de f dans la base (e_1'', e_2'', e_3'') .
- 4.a Quel est l'ensemble des vecteurs invariants par f?
- 4.b Soit $P = \text{Vect}(e_2'', e_3'')$.

- 4.b.i Montrer que f(P) = P.
- 4.b.ii Soit g l'endomorphisme de P tel que pour tout x de P, g(x)=f(x). Montrer que g est la composée de deux applications linéaires simples que l'on reconnaîtra.