MODEL RELEASE NOTE

1. 모델 버전 DTNS FTG V4.0 / V4.1 2. 배포 일자 (YYMMDD) 23.04.12

- 3. 변경 내용 (필요시 별도 문서 첨부)
- 3-A. FTG 모델 수정 (FTG.slx)
- ① FTG 입출력 인터페이스 변경
- (V4.1) 입력 포트 [IN_FTG_TF_CMD(BUS_FLCC_TF_CMD)]를 [IN_FTG_DTFOutput(DTFOut put)]으로 변경
 - → AUTO TF 모드로 비행시 DTF 출력값을 입력받기 위함
- (V4.1) 입력 포트 [IN_FTG_GCAS_CMD(BUS_FLCC_GCAS_CMD)]를 [IN_FTG_GCAWSOutput (GCAWSOutput)]으로 변경
 - → AUTO GCAWS 모드로 비행시 GCAWS 출력값을 입력받기 위함
- (V4.0) 입력 포트 [IN_FTG_SENSOR] 추가
 - → 출력값 변조가 아닌 입력단에서 센서 동작을 제어하기 위함
 - → 센서별 ModeWord(유효성 플래그 등), 상태, 주입 오차 등을 요소로 포함하는 구조체
 - * 입력 포트 변경으로 인해 기존 FTG_INPUT_SCENARIOS_*가 호환되지 않음.

새로 입력시나리오를 생성하거나 그림 2와 같이 추가된 입력 포트에 빈값 []을 할당해주어야 함.

그림 1. FTG V4.1 구조

그림 2. 기존 FTGScenario 호환 방법

- (V4.0) 출력 포트 수정 [OUT_SENSOR_*_DP]
 - → 모든 수치 데이터를 double로 출력
 - → ModeWord, TimeTag 등은 원 자료형 유지

```
/* Customized model step function */
extern void FTG_Step(BUS_FLCC_STICK *p_IN_FTG_STICK,

DTFOutput *p_IN_FTG_DTFOutput,

GCAWSOutput *p_IN_FTG_GCWASOutput,

BUS_FLCC_FLIGHT_CMD *p_IN_FTG_FLIGHT_CMD,

BUS_SENSOR_ALL_INPUTSTATUS *p_IN_FTG_SENSOR,

BUS_SENSOR_RALT_DP *p_OUT_RALT_Datapump,

BUS_SENSOR_INS_DP *p_OUT_INS_Datapump,

BUS_SENSOR_GPS_DP *p_OUT_GPS_Datapump,

BUS_DYN_STATE *p_OUT_TRUE_STATE);
```

그림 3. 수정된 FTG 모델 C코드의 호출함수 원형

② (V4.0) 최신 MAP API (Post방식 포함) 적용

- Post방식이 구현된 최신 MAP API가 적용되었음 참조 Mail#:A2K2023032203, Mail#:A2K2023032402

3-B. RALT 센서모델 수정 (M_RALT.slx)

① (V4.0) RALT 센서모델 인터페이스 변경

- (표 1 참조) 모든 수치 데이터는 double로 출력
- ModeWord, TimeTag, Valid 플래그 등은 원 자료형 유지

[입력] BUS_SENSOR_RALT_INPUTSTATUS				
자료명	자료형	단위	비고	
InputActivated	boolean		INPUTSTATUS 주입 활성화 플래그	
			(기본값: false)	
radarAltitudeValid	boolean		레이더 고도 유효	
coneFOV	double	deg	(0~30도) 범위에서 사용 (기본값: 30도)	
InjectedError	double	m	레이더 고도 주입 오차	
[출력] BUS_SENSOR_RALT_DP				
자료명	자료형	단위	비고	
RALTModeWord	uint16			
TimeTag	uint16			
RadarAltitude	double	m	직하방, 오차0	
RadarAltitudeTrue	double	m	직하방, 오차X	
RadarAltitudeCone	double	m	원뿔형, 오차0	
RadarAltitudeValid	boolean		RALTModeWord에서 RdarAltitudeValid 값 추출	

표 1. RALT 센서모델 인터페이스

```
extern_void M_RALT_Init(void);
extern_void M_RALT_Step(const_BUS_DYN_STATE *p_IN_STATE, const
- BUS_SENSOR_RALT_INPUTSTATUS *p_IN_RALT_STATUS, BUS_SENSOR_RALT_DP
- *p_OUT_RALTDatapump);
```

그림 4. 변경된 M_RALT 모델의 호출함수와 전달인자

② (V4.0) 3종의 레이더 고도계 측정치 출력 제공

1) 직하방 AGL

- 2) 직하방 AGL + 고도 비례 가우시안 오차
- 3) 원뿔형 최단 경사거리 + 고도 비례 가우시안 오차

그림 5. 원뿔형 레이더 고도계 측정치 작동 방식

③ (V4.0) 최신 MAP API (Post방식 포함) 적용

- Post방식이 구현된 최신 MAP API가 적용되었음 참조 Mail#: A2K2023032203

3-C. INS 센서모델 수정 (M_INS.slx)

① (V4.0) INS 센서모델 인터페이스 변경

- (표 2 참조) 모든 수치 데이터는 double로 출력
- ModeWord, TimeTag, Valid 플래그 등은 원 자료형 유지

[입력] BUS_SENSOR_INS_INPUTSTATUS				
자료명	자료형	단위	비고	
InputActivated	boolean		INPUTSTATUS 주입 활성화 플래그	
			(기본값: false)	
INSModeWord	uint16		(기본값: 0)	
AlignmentTrigger	boolean		true로 trigger시 INS 항법해가 참값과 일치됨	
			(기본값: false)	
			INS 주입 오차 (위치(3), 속도(3), 자세(3),	
InjectedError	double[12]	m	가속도(3))	
[출력] BUS_SENSOR_INS_DP				
자료명	자료형	단위	비고	
INSModeWord	uint16			
INSTimeTag	uint16			
VelocityX	double	m/s		
VelocityY	double	m/s		
VelocityZ	double	m/s		
PlatformAzimuth	double	deg		
Roll	double	deg		
Pitch	double	deg		
TrueHeading	double	deg		
AccelerationX	double	m/ss		
AccelerationY	double	m/ss		
AccelerationZ	double	m/ss		
Latitude	double	deg		
Longitude	double	deg		
InertialAltitude	double	m		

표 2. INS 센서모델 인터페이스

② (V4.0) 최신 MAP API (Post방식 포함) 적용

- FTG V4.0부터는 Post방식이 구현된 최신 MAP API가 적용되었음 참조 Mail#: A2K2023032203

3-D. GPS 센서 모델 수정 (M_GPS.slx)

① (V4.1) GPS 센서모델 인터페이스 변경

- (표 3 참조) 모든 수치 데이터는 double로 출력
- ModeWord, TimeTag, Valid 플래그 등은 원 자료형 유지
- GPSStatusFOM은 13-16번째 비트에 FOM 값이 할당되었으나(V4.0), 수치입력을 직접 받도록 수 정하였음(V4.1). (ex: FOM=3 => GPSStatusFOM=3)

[입력] BUS_SENSOR_GPS_INPUTSTATUS				
자료명	자료형	단위	비고	
	boolean		INPUTSTATUS 주입 활성화 플래그	
InputActivated			(기본값: false)	
00014	uint16		1st bit (=1): Navigation Data Valid / (=0): Not	
GPSModeWord			Valid	
SAASStatusWord	uint16		1st Bit (=1): Daily Key In Use (P code)	
GPSStatusFOM	uint16		Figure of Merit (1~9)	
GPSSatelliteState	uint16			
InjectedError	double[6	m	GPS주입 오차 (위치(3), 속도(3))	
[출력] BUS_SENSO	R_GPS_DP			
자료명	자료형	단위	비고	
GPSModeWord	uint16			
GPSTimeOfValidity	uint16			
SAASStatusWord	uint16			
Latitude	double	deg		
Longitude	double	deg		
Altitude	double	m		
VelocityEast	double	m/s		
VelocityNorth	double	m/s		
VelocityUp	double	m/s		
GPSStatusFOM	uint16			
EstimatedHorizont	To select			
alPositionError	double	m		
EstimatedVerticalP				
ositionError	double	m		
GPSSatelliteState	uint16			

표 3. GPS 센서모델 인터페이스

② (V4.0) P코드 동작 모드 구현

- 입력된 SA/AS Status Word가 "Daily Key In Use"인 경우 P코드 사용 수준의 GPS 오차 사용 하도록 구현
- 10초 주기로 GPS 오차가 범위 내에서 변하도록 $u \sim U(0,1)$ 설계

P, FOM	σ	<pre>PCodeAvailable = logical(bitget(statusWord, 1));</pre>
P Available	6.25 + 4.3u	if (PCodeAvailable)
FOM = 1	12.5 + 12.5u	EPE = 6.25 + 4.3 * variableNoise;
FOM = 2	25 + 25u	else switch FOM
FOM = 3	50 + 25u	<pre>case uint16(1) EPE = 12.5 + 12.5 * variableNoise;</pre>
FOM = 4	75 + 25u	case uint16(2)
FOM = 5	100 + 100u	EPE = 25 + 25 * variableNoise;
FOM = 6	200 + 300u	case uint16(3) EPE = 50 + 25 * variableNoise;
FOM = 7	500 + 500u	case uint16(4)
FOM = 8	1000 + 4000u	EPE = 75 + 25 * variableNoise; case uint16(5)
FOM = 9	5000 + 4000u	EPE = 100 + 100 * variableNoise;

3-E. 센서 메시지 생성 모델 분리 (M_MSGPACKER.slx)

- 기존 FTG는 센서 출력값을 ICD와 유사한 구조체로 인코딩하여 출력하였으나, 인터페이스를 수정 하면서 수치 데이터는 모두 double형 데이터로 출력하고 있음.
- 센서 출력값을 ICD 유사 메시지로 변환하는 모델을 별도로 생성해 해당 기능을 분리하였음

그림 7. M_MSGPACKER 입출력 구조

3-F. 오토 파일럿 개선 및 수정 (M_FLCC.slx)

- ① (V4.0) 고도 제어기 개선 [M_FLCC/AutoPilot/PITCH_ALT HOLD/holdAltitudePitchComman d]
- 선회비행시 고도가 진동하며 유지되지 못하는 문제 발생
- 고도 제어를 위한 피치 명령 생성기의 PI 제어이득 값을 조정 (Kh_p = 0.4 -> 0.2, Kh_i = 0.1->0.01)
- 피치 명령 생성기의 고도 변화율 출력 제한을 (hDotlim 삭제) (hLim = 40 -> 250, hDotlim 삭제)

그림 8. 고도제어기 게인 값 및 출력 제한값 해제(좌 수정 전, 우 수정 후)

② (V4.0) 경로점 비행을 위한 선회비행시 롤 자서 n Subsystem/getDesiredRollAngle]	명령 한계값 변경 [M_FLCC/AutoPilot/If Actio
- 현재 경로점 비행시 최대 뱅크각(롤 자세각)은 6 상 작동할 수 없는 값임	iO도로 설정되어 있으며, 이는 레이더 고도계가 정
 경로점 비행 중 선회비행시에도 레이더 고도계가 뱅크각 제한 	· 정상 작동 범위에 있도록 최대 28도 이내로 최대
③ (V4.1) Auto-GCAWS를 위한 회복기동 제어기 - 입력되는 최대 비행경로각, 최대 풀업가속도에 따	라라 회복기동 수행
- Auto-GCAWS 혹은 PARS 트리거시 회복기동 절 1) 롤 자세 회복	<u> </u>
2) 최대 풀업가속도 명령 인가 (최대 비행경로각 3) 수평 회복 (5초간)	도달 후 10초까지)
4) 회복기동 종료	
4. 변경 사유 (필요시 별도 문서 첨부) - FTG SW 개선을 위한 탑재 모델 수정	
5. 배포자	
A. 이름	B. 소속기관

KAIST

김성중, 이호형

6. 첨부 (해석 결과 포함)

레이더 고도계의 직하방 측정치와 원뿔형 측정치 비교

- 원뿔형 방사패턴으로 획득한 레이더 고도계 측정치와 직하방 측정치를 비교한 그래프는 그림 9과 같다.
- 원뿔형 측정치는 방사된 좌표점과의 경사거리 가운데 최단 거리를 채택하기 때문에, 항상 직하방 측정치보다 작거나 같은 AGL 고도가 측정됨 (파란 선이 노란 선 보다 아래에 위치)

그림 9. 직하방 측정치와 원뿔형 측정치 비교

고도 제어기 개선 및 수정

- 연속되는 선회 기동 및 상승 기동 시뮬레이션을 수행한 결과, 고도 결과는 그림 10-11과 같음.
- 동일한 기동 수행시 기존 버전 대비 비슷한 상승률을 유지하면서 고도제어기의 반응에서 진동 현 상이 줄어듦

그림 10. 선회 기동 시 시간에 따른 롤각 반응

그림 11. 이전 버전 고도제어기와 수정된 고도 제어기 비교

FTG 오토파일럿 모드 작동 검증

- 입력 롤/피치 자세 유지 기능 정상
- 입력 기준고도 유지/변경 기능 정상
- 입력 기준속도 유지/변경 기능 정상

그림 12. FTG 기능 시험 결과 및 입력 테이블ㄴ데

그림 13. Auto-GCAWS 시험 결과