### Equações de estimação regularizadas

Vinicius Ricardo Riffel Orientador: Prof. Dr. Wagner Hugo Bonat

> Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação viniciusriffel@ufpr.br

> > Set. 14, 2022







- Sobre a apresentação
- 2 Introdução
- Metodologia
- 4 Resultados
- 5 Considerações e trabalho futuros
- 6 Referências

#### Sumário

- Sobre a apresentação
- 2 Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- 4 Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- Considerações e trabalho futuros
- 6 Referências

### Sobre a apresentação

- TCC sob orientação do Prof. Dr. Wagner Hugo Bonat.
- Objetivo: propor um algoirtmo de estimação baseado em equações de estimação regularizadas.
- Início em  $\approx$  dez/2021 e ainda não foi finalizado.
- Provisoriamente, a implementação está hospeada em https://github.com/vriffel/mcglm

#### Sumário

- Sobre a apresentação
- 2 Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- 5 Considerações e trabalho futuros
- 6 Referências

### Introdução

- Modelos de regressão são técnicas que permitem descrever problemas do mundo real de forma probabilística.
- Suposições são feitas na aplicação de tais técnicas.
- Há diferentes modelos disponíveis:
  - Modelo linear (LM)
  - Modelo linear generalizado (GLM)
  - Equações de estimação generalizadas (GEE)
  - Modelos multivariados de covariância linear generalizados (McGLM)

• Especificação de um LM:

$$E(Y) = \mu = X\beta$$

$$Var(Y) = \tau I$$

• Suposições: normalidade, independência, variância constante.

#### **GLM**

Especificação de um GLM:

$$E(Y) = g^{-1}(\mu) = g^{-1}(X\beta)$$

$$Var(Y) = \tau V(\mu)$$

- Suposições: família exponencial natural e independência.
- Ao utilizar quase-verossimilhança, não haverá a limitação da distribuição assumida.

### **GEE**

Especificação:

$$E(Y) = g^{-1}(\mu) = g^{-1}(X\beta)$$

$$\mathit{Var}(\mathsf{Y}) = au \mathit{V}(\mu)^{rac{1}{2}} \Omega(
ho) \mathit{V}(\mu)^{rac{1}{2}}$$

- Limitações: dados multivariados e estrutura de covariância.
- Estimado via equações de estimação.

# McGLM (Bonat e Jørgensen, 2016).

Especificação:

$$\begin{split} \textit{E}\left(\mathsf{Y}\right) &= \left(g_{1}^{-1}\left(\mathsf{X}_{1}\beta_{1}\right), g_{2}^{-1}\left(\mathsf{X}_{2}\beta_{2}\right), \ldots, g_{R}^{-1}\left(\mathsf{X}_{R}\beta_{R}\right)\right) \end{split}$$
 
$$\textit{Var}\left(\mathsf{Y}\right) &= \boldsymbol{\Sigma}_{R} \overset{\textit{G}}{\otimes} \boldsymbol{\Sigma}_{b}$$

$$\boldsymbol{\Sigma}_{R} \overset{G}{\otimes} \boldsymbol{\Sigma}_{b} = \mathsf{Bdiag}\left(\tilde{\boldsymbol{\Sigma}}_{1}, \tilde{\boldsymbol{\Sigma}}_{2}, \dots, \tilde{\boldsymbol{\Sigma}}_{R}\right) \left(\boldsymbol{\Sigma}_{b} \otimes \mathsf{I}\right) \mathsf{Bdiag}\left(\tilde{\boldsymbol{\Sigma}}_{1}^{\mathcal{T}}, \tilde{\boldsymbol{\Sigma}}_{2}^{\mathcal{T}}, \dots, \tilde{\boldsymbol{\Sigma}}_{R}^{\mathcal{T}}\right)$$

$$\mathbf{\Sigma}_r = V(\mu_r; p_r)^{rac{1}{2}}(\Omega( au_r))V(\mu_r; p_r)^{rac{1}{2}}$$

$$h(\Omega(\tau_r)) = \tau_{r0}Z_{r0} + \tau_{r1}Z_{r1} + \ldots + \tau_{rD}Z_{rD}$$

#### Sumário

- Sobre a apresentação
- 2 Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- 4 Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- Considerações e trabalho futuros
- 6 Referências

### Equações de estimação

- As equações de estimação são métodos de estimação que se destacam por sua generalidade e propriedades.
- Diversos métodos de estimação são casos particulares:
  - mínimos quadrados;
  - método da máxima verossimilhança;
  - quase-verossimilhança.

#### Definição equação de estimação

Uma equação de estimação de estimação é definida como:

$$g(Y; \beta) = 0$$

#### Estimando um McGLM

 Os McGLM são estimados utilizando o método modified chaser (Jørgensen e Knudsen, 2004).

#### Funções de estimação de um McGLM

$$\psi_{\boldsymbol{\beta}}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \boldsymbol{D}^T \mathsf{C}^{-1} \left( \mathcal{Y} - \mathcal{M} \right)$$

$$\psi_{\boldsymbol{\lambda}_i}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \mathsf{tr} \left( W_{\boldsymbol{\lambda}_i}(\mathsf{r}^T \mathsf{r}) - \mathsf{C} \right)$$

#### Algoritmo de estimação de um McGLM

$$\beta^{(i+1)} = \beta^{(i)} - S_{\beta}^{-1} \psi_{\beta}(\beta^{(i)}, \boldsymbol{\lambda}^{(i)})$$
$$\boldsymbol{\lambda}^{(i+1)} = \boldsymbol{\lambda}^{(i)} - S_{\boldsymbol{\lambda}}^{-1} \psi_{\boldsymbol{\lambda}_i}(\beta^{(i+1)}, \boldsymbol{\lambda}^{(i)})$$

## Equações de estimação regularizadas

- A regularização é uma restrição imposta no processo de estimação dos modelos.
- Torna possível lidar com high dimensional data, diminuir o erro preditivo e fazer seleção de covariáveis.
- Um exemplo de regularização em equações de estimação é (Fu, 2003):

$$g^*(Y; \beta) = g(Y; \beta) - \gamma p'(|\beta|) = g(Y; \beta) - \gamma p'(\beta) \frac{\beta}{|\beta|}$$

ullet  $\gamma$  pode ser escolhido via validação cruzada.

### Estimando um McGLM regularizado

#### Equações de estimação do McGLM regularizado

$$\psi_{\beta}^{*}(\beta, \lambda) = \mathbf{D}^{T} \mathsf{C}^{-1} (\mathcal{Y} - \mathcal{M}) - \gamma \odot \Gamma(p_{1}'(|\beta|))$$
  
$$\psi_{\lambda_{i}}^{*}(\beta, \lambda) = \mathsf{tr} \left( W_{\lambda_{i}}(\mathsf{r}^{T}\mathsf{r}) - \mathsf{C} \right) - \gamma_{i} \odot \Gamma(p_{2}'(|\lambda_{i}|))$$

#### Algoritmo de estimação

$$\beta^{(i+1)} = \beta^{(i)} - S_{\beta}^{*-1} \psi_{\beta}^{*}(\beta^{(i)}, \lambda^{(i)})$$
$$\lambda^{(i+1)} = \lambda^{(i)} - S_{\lambda}^{*-1} \psi_{\lambda_{i}}^{*}(\beta^{(i+1)}, \lambda^{(i)})$$

## Por que regularizar?

- Torna possível estimar um McGLM em high dimensional data.
- Melhora capacidade preditiva.
- Permite diminuir o número de parâmetros e construir redes de associação.
- Pode haver viés nas estimativas penalizadas.

#### Sumário

- Sobre a apresentação
- Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- Considerações e trabalho futuros
- 6 Referências

## Estudo de simulação

- Conjunto de dados teca
  - Variáveis resposta: níveis de 3 elementos químicos no solo;
  - Covariável: Nível da medição no solo;
  - Disponível no pacote EACS (Zeviani, 2019).
- Objetivo: verificar se as estimativas penalizadas se comportam de maneira esperada.
- Penalização Ridge.
- Estrutura de covariância parecida com a não estruturada, mas com os interceptos.
- Estrutura de média linear.

## Conjunto de dados teca



# Conjunto de dados teca



- Conjunto de dados yeastG1 (Spellman et al, 1998):
  - Variável resposta: nível de expressão genética em 4 tempo distintos;
  - 96 covariáveis;
  - 263 indivíduos:
  - Disponível no pacote PGEE (Inan et al, 2017).
- Objetivo: regularizar a estrutura de média para melhorar o erro preditivo.
- Penalização Ridge.
- Estrutura de covariância parecida com a não estruturada, mas com os interceptos.
- Estrutura de média linear.
- ullet Seleção de  $\gamma$  via validação cruzada com 10 folds, utilizamos EQM.
- A estrutura de dependência foi preservada removendo os indivíduos para validação.







( LEG/DEST/UFPR ) CE094 14/09/2022 24/35

- Conjunto de dados marks (Mardia et al, 1979):
  - Variável resposta: nota de 88 alunos em 6 disciplinas (Álgebra, Análise, Estatística, Mecânica, Vetores);
  - Disponível no pacote bnlearn (Scutari, 2010).
- Objetivo: construir uma rede de associações entre as disciplinas.
- Penalização Ridge.
- Estrutura de covariância parecida com a não estruturada, mas com os interceptos.
- Modelamos a precisão (função de ligação inversa).
- Estrutura de média linear.

- ullet Seleção de  $\gamma$  via validação cruzada com uma fold.
- EQM do valor predito não foi possível.
- Utilizamos a soma dos EQMs entre a matriz de correlação da base de teste e as matrizes estimadas.





 A conclusão pela existência de associação significativa é feita pelas estimativas dos coeficientes de dispersão.

| Coeficiente       | Estimativa | Erro padrão | Estatística Z | Relação   |
|-------------------|------------|-------------|---------------|-----------|
| $\hat{	au}_{10}$  | 0.00644    | 0.00032     | 20.28         |           |
| $\hat{	au}_{11}$  | -0.00215   | 0.00040     | -5.34         | MECH-VECT |
| $\hat{	au}_{12}$  | -0.00124   | 0.00041     | -3.03         | MECH-ALG  |
| $\hat{	au}_{13}$  | -0.00027   | 0.00041     | -0.66         | MECH-ANL  |
| $\hat{	au}_{14}$  | -0.00055   | 0.00042     | -1.33         | MECH-STAT |
| $\hat{	au}_{15}$  | -0.00111   | 0.00041     | -2.73         | VECT-ALG  |
| $\hat{	au}_{16}$  | -0.00068   | 0.00041     | -1.67         | VECT-ANL  |
| $\hat{	au}_{17}$  | -0.00123   | 0.00041     | -2.99         | VECT-STAT |
| $\hat{	au}_{18}$  | -0.00201   | 0.00040     | -5.02         | ALG-ANL   |
| $\hat{	au}_{19}$  | -0.00097   | 0.00041     | -2.35         | ALG-STAT  |
| $\hat{	au}_{110}$ | -0.00164   | 0.00041     | -4.01         | STAT-ANL  |

( LEG/DEST/UFPR ) CE094 14/09/2022 29/35



• Aplicando a correção de Bonferroni a rede fica:



#### Sumário

- Sobre a apresentação
- 2 Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- 4 Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- Considerações e trabalho futuros
- 6 Referências

## Considerações e trabalho futuros

- Foi apresentado um modelo baseado em equações de estimação regularizadas para lidar com os mais variados conjuntos de dados.
- Consistência dos estimadores.
- Outros tipos de penalização.
- Escolha dos valores de  $\gamma$ .

### Sumário

- Sobre a apresentação
- Introdução
  - Do LM ao McGLM
- Metodologia
  - Equações de estimação
  - Estimando um McGLM
  - Equações de estimação regularizadas
  - Estimando um McGLM regularizado
- 4 Resultados
  - Estudo de simulação
  - Aplicação em dados reais
- Considerações e trabalho futuros
- Referências

#### Referências

- BONAT, W. H.; JØRGENSEN, B. Multivariate covariance generalized linear models. Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 65, n. 5, p. 649–675, 2016.
- FU, W. J. Penalized estimating equations. Biometrics, v. 59, n. 1, p. 126-132, 2003.
- JØRGENSEN, B.; KNUDSEN, S. J. Parameter orthogonality and bias adjustment for estimating functions. Scandinavian Journal of Statistics, v. 31, n. 1, p. 93–114, 2004.
- INAN, G.; ZHOU, J.; WANG, L. PGEE: Penalized Generalized Estimating Equations in High-Dimension. [S.l.], 2017. R package version 1.5.
- MARDIA, K.; KENT, J.; BIBBY, J. Multivariate analysis. London [u.a.]: Acad. Press, 1979. (Probability and mathematical statistics). ISBN 0124712509.
- SCUTARI, M. Learning bayesian networks with the bnlearn R package. Journal of Statistical Software, v. 35, n. 3, p. 1–22, 2010.
- SPELLMAN, P. T. et al. Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, v. 9, n. 12, p. 3273–3297, 1998. PMID: 9843569.

ZEVIANI, W. M. EACS: Estatística Aplicada à Ciência do Solo. [S.I.], 2019.