Computational Vision Revision Notes

James Brown March 27, 2017

Contents

1	Introduction	1
2	Human Vision	1
3	Edge Detection	2
4	Noise Filtering	2
5	Advanced Edge Detection	2
6	Hough Transform	2
7	SIFT	2
8	Face Recognition	2
9	Motion	2
10	ROC Analysis	2
11	Object Recognition	2
12	Model Based Object Recognition	2

1 Introduction

These are notes I have written in preparation of the 2017 Computation Vision exam. This year the module was run by Hamid Deghani (H.Dehghani@cs.bham.ac.uk).

Computational vision is the acquisition of knowledge about objects and events in the environment through information processing of light emitted or reflected from objects. In short - we want to make a computer know what is where, by looking through information. We can also use computational vision to do automatic inference of properties of the world from images.

2 Human Vision

As humans we have evolved eyes which percieve the visible section of the electromagnetic spectrum, which falls between the wavelengths of 380nm - 760nm. Red light lies at the longer end (760nm) of visible light, and purple at the shorter end (380nm). This evolutionary process began more than 3 billion years ago with the formation of photopigments. These are molecules where light incident upon them will trigger a physical or chemical change. Photopigments capture photons which lead to the release of energy in the photopigment. This is may be used for photosynthesis or a behavioural reaction (a nerve reaction).

Photocells contain a light sensitive patch of photopigments. Using a single cell we can capture light in 1 dimension and with multiple cells we can have better direction resolution.

3 Edge Detection

An intensity image is a data matrix whose values represent intensities within some range. Each element of the matrix corresponds to one image pixel.

- 4 Noise Filtering
- 5 Advanced Edge Detection
- 6 Hough Transform
- 7 SIFT
- 8 Face Recognition
- 9 Motion
- 10 ROC Analysis
- 11 Object Recognition
- 12 Model Based Object Recognition