Statistics - Exam preparation

by *xnacly*

Contents

1	Introduction	1
2	Abstract	1
3	Symbols and special characters	1
4	Combinatorics	1
	4.1 Binomial Coefficient	1
	4.2 Faculty	1 2 2 2
	4.3 Pascal's triangle	2
	4.4 Binomial Theorem	2
5	Probability theory	2
	5.1 Event set	2
	5.2 Random variable	2

1 Introduction

Statistics is a fairly big field. Therefore this paper will only include the absolutely necessary topics for passing the university class.

2 Abstract

This paper starts of with symbols used in the field of statistics, their meaning and in what context they are commonly used. Following Combinatorics is thematized.

3 Symbols and special characters

- n! Faculty / Fakultät
- $\binom{n}{k}$ Binomial Coefficient / Binomialkoeffizient
- Ω Event set / Ergebnismenge
- ω Result / Ergebnis
- $A \subseteq \Omega$ Event / Ereignis
- $\{\omega\}$ Elementary event / Elementarereignis
- \mathbb{P} Probability measure / Wahrscheinlichkeitsmaß

- $\mathbb{P}(A)$ Event propability / Wahrscheinlichkeit eines Ereignisses
- $\mathbb{E}(X), \mu_x, \mu$ Expected value / Erwartungswert
- σ Deviation from the mean / Standardabweichung
- $Var(X), \sigma_x^2$ Variance / Varianz
- $Cov(X,Y), \sigma_{XY}$ Kovarianz von X und Y
- $\mathcal{N}(\mu, \sigma^2)$ Normal distribution / Normalverteilung
- φ Bell curve / Glockenkurve
- \bullet Φ Error function / Fehlerintegral
- ullet X Random variable / Zufallsvariable
- \bullet Z Standard score / standard-normal verteilte Zufallsvariable 1
- Bin(n, p) Binomial distribution / Binomial alverteilung
- Pois (λ) Poisson distribution / Poission-Verteilung
- Exp(λ) Exponential distribution / Exponentialverteilung

4 Combinatorics

This chapter will introduce the Binomial Coefficient, Faculty, Pascal's triangle and the binomial Theorem.

4.1 Binomial Coefficient

n choose k; used to calculate the Amount of Sets in $\{1,...,n\}$ with exactly k Elements. n needs to be positive and k and n have to meet the following criteria: $n \in \mathbb{N}, 0 \le k \le n$.

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \tag{1}$$

Choosing k different Numbers from $\{1, ..., n\}$, there are n possibilities for the first number, n-1 possibilities for the second, and so forth.

¹read more: wikipedia

4.2 Faculty

This can be described with n!. The faculty is defined as the product of decrementing n by an increasing subtrahend:

$$n! := n \cdot (n-1) \cdot (n-2)...$$
 (2)

If n = k, there are n! possibilities to choose k Elements from n. 0! = 1.

4.3 Pascal's triangle

The pascal's triangle can be used to visualize the binomial coefficient.²

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1} \tag{3}$$

4.4 Binomial Theorem

Allows for expressing the exponents of $(x+y)^n$, $n \in \mathbb{N}$ as a polynomial with the degree of n.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k \cdot y^{n-k} \tag{4}$$

5 Probability theory

This chapter contains information on how to calculate probabilites.

5.1 Event set

The set containing results of the experiment E is notated via the event set (Ω) . Sub sets of Ω are events (ω) . Events with one entry are elementary events $\{\omega\}$. If Ω is finite: $\forall \omega \in \Omega, \mathbb{P}(\omega) \geq 0$. The sum of all propabilities of $\omega \in \Omega$ is 1^3 .

5.2 Random variable

 $X: \Omega \to \mathbb{R}$ we define $\{X = x\} := \{\omega | X(\omega) = x\}$ and can therefore shorten our definition of the propability that X is x to: $P(X = x) := P(\{X = x\})$

$$x \to \mathbb{P}(X = x) \tag{5}$$

$$x \to \mathbb{P}(X \le x) \tag{6}$$

The equation 5 defines the density / probability function of X and the equation 6 the distribution function of X.

²read more about pascal's triangle here: wikipedia

 $^{^{3}\}sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$