Answer all questions.

1. We claim that $T(n) = \Theta(n^2)$.

(a) We show by induction that $T(n) \le n^2 + 1$:

For n = 0, 1, 2, 3, it clearly holds.

Suppose it holds for $n \leq k$.

Then, for n = k + 1,

$$T(k+1) = T(k-2) + k + 1 \le (k-2)^2 + 1 + k + 1 \le (k+1)^2 + 1$$
, as $k \ge 3$.

(b) We show by induction that $T(n) \ge n^2/100$.

This clearly holds for n = 0, 1, 2, 3.

Suppose it holds for n = k.

Then, for n = k + 1

$$T(k+1) = T(k-2) + k + 1 \geq \tfrac{(k-2)^2}{100} + k + 1 = \tfrac{k^2 - 4k + 4 + 100k + 100}{100} \geq (k+1)^2/100.$$

2. Not optimal, as for S=15, optimal gives three 5's, though the greedy algorithm gives one 12 and three 1's.

A	В	С	D	E	F	Rem
0	∞	∞	∞	∞	∞	A, B, C, D, E, F
0	2	∞	5	10	∞	B, C, D, E, F
0	2	5	5	8	∞	C, D, E, F
0	2	5	5	8	10	D, E, F
0	2	5	5	7	10	E, F
0	2	5	5	7	9	F
0	2	5	5	7	9	

Table 1: Dist Array and Rem

- 3. The last row above gives the distance from A to different vertices at the end of the Dijkstra's algorithm.
- 4. By induction on n.

For n = 1, it was shown in class.

Suppose by induction that $4 \times (3k+1)$ board with a missing square can be tiled using trominoes.

Then, for n = k + 1, consider the board of size $4 \times (3k + 4)$ with a missing square.

The missing square is either in the first 3k columns or in the last 4 columns.

If the missing square is in the first 3k columns, then by induction one can tile the $4 \times (3k+1)$ part with a missing square; the 4×3 part can be tiled using tutorial 4 Q4 method.

On the other hand, if the missing square is in the last 4 columns, then the $4 \times 3k$ board can be tiled using Tutorial 4 Q4 method, while the 4×4 board with missing square can be tiled using the method done in lecture.

5. Without loss of generality assume that all d_i are > 0, and the end point of journey is larger than all d_i (otherwise, we can ignore the $d_i \le 0$, and the $d_i \ge$ end point of journey).

Assume that initially the tank is full.

Let $d_0 = 0$, and $d_{n+1} =$ endpoint for the following.

Assume that $d_{i+1} - d_i \leq D$ in above (otherwise the journey cannot be performed).

- 1. Assume that the d_i 's are in sorted order (otherwise sort them).
- 2. laststop = 0.
- 3. $stops = \emptyset$.
- 3. For i = 1 to n do {

 If $d_{i+1} d_{laststop} > D$, then { $stops = stops \cup \{i\}$ laststop = i }

4. End.

To show that the above algorithm gives optimal number of stops, suppose the stops used by the above algorithm are $A_1, A_2, \ldots A_k$. Suppose the optimal algorithm uses stops B_1, B_2, \ldots, B_r and $r \leq k$. Let $A_0 = B_0 = 0$.

We first claim by induction that $A_j \geq B_j$, for $0 \leq j \leq r$.

This is clearly true for j = 0 (by definition).

Now suppose by induction that $A_w \geq B_w$. Then, as $d_{A_{w+1}+1} - d_{A_w} > D$, and $B_w \leq A_w$, we have that $B_{w+1} \leq A_{w+1}$ (otherwise the optimal method doesn't have enough fuel to go from stop B_w to stop B_{w+1}).

It follows that $B_r \leq A_r$.

As optimal is able to reach the destination, this implies that $d_{n+1} - d_{B_r} \leq D$. But, then $d_{n+1} - d_{A_r} \leq D$, and the algorithm would not fill gas any more beyond the stoppage at A_r . Thus r = k.