Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

- Slido event code: 1872043
- Homework 7 is due Friday
 - For Pr. 2, use dataset
 Wine_data_v2.csv

Today's lecture

- d.o.f. and constraints in ANNs
 - Ex1: RBF networks
 - Ex2: More general ANNs

- Review of random vectors
 - Definitions
 - First and second order statistics
 - Multivariate Normal
 - Mahalanobis distance
 - Linear transformations
 - Orthonormal transformation
 - Whitening transformation
- Start Statistical Classification
 - Bayes Decision Theory (part 1)

* p.a: activation for notation changed to h post-lecture.

Copyright 2021-2024 B. Keith Jenkins. All lecture notes contained herein are for use only by students and instructors of EE 559, Spring 2024.

Complexity: degrees of freedom and constraints in ANN

Each weight that is varied during learning, is a d.o.f., unless it is "tied" or constrained in some way.

Other parameters that are optimized as a function of the data are also d.o.f.

Ex1: (-layer (fully connected) ANN:

(input) de = # neuron units in layer l.

L=1 => Assume activation functions have given (not a fen. of data)

d.o.f. = # w;d scalars = (D+1)·d, if each w;d is not constrained or tied to other weights in some way.

· d.o.f. => Nc =? (I layer ANN)

Consider a 1000 x 1000 color image as input. D=7 $3\cdot 10^6$ If $d_1=200\times 200$, with l=1 fully connected. Then how many weights in l=1? $4\cdot 10^4 \times 3\cdot 10^6 \approx 10^{11}$

· How many images would we need in our training set?

 \Rightarrow N > (3-10) d.o.f. \approx (3-10) · 10" ~ 10¹² = 1 Trillion 0

Ex 2: ChatGPT

GPT3; has 175 Billion parameters.
(Wikipedia has 4.2 billion words.)

GPT4: 1.7 Trillion parameters

GPT5; 2T-5T

Will GPT run out of words to learn from ?

Can reduce d.o.f. by;

Example for images as input

(1) Eliminate some interconnections eg, keep interconnections "local".

input 1st Lidden
ND x ND nodes layer

- (2) "Tie" some weights to each other e.g., same set of weights is repeated.
- (1) § (2) are used to reduce d.o.f. in convolutional neural networks (CNNs), commonly used for ML on images and for computer vision.

 [Bishop Sec. 5.5.6; Goodfellow Ch.9]
- (3) regularization can be used to constrain the weights in some other way.

 [Bishop 5.5 describes some techniques.]

Random Vectors and Their Properties

Ref: Bishop 2.3.0-2.3.3; Duda, Hart, and Stork A.4.8-A.5.2; 2.5

Definitions and Properties for 1 Random Vector

Let $\underline{x} = \begin{bmatrix} x_1, x_2 & \cdots, & x_D \end{bmatrix}^T$ in which the components of \underline{x} are random variables (r.v.).

The joint probability density function p is:

$$p(\underline{x}) = p(x_1, x_2, \dots x_D)$$

in which p is a scalar. Note that:

$$\int p(\underline{x}) d\underline{x} \triangleq \iint \cdots \int p(x_1, x_2, \cdots, x_D) dx_1 dx_2 \cdots dx_D = 1$$

Mean or Expected Value

$$\begin{split} \underline{m} &= E\left\{\underline{x}\right\} = \int \underline{x} \; p\left(\underline{x}\right) d\underline{x} \\ m_i &= \iint \cdots \int x_i \; p\left(x_1, x_2, \cdots, x_D\right) dx_1 dx_2 \cdots dx_D \; = \; \int x_i \; \iint \cdots \int p\left(x_i, \cdots, x_D\right) dx_1 dx_2 \cdots dx_D \\ &= \int x_i p\left(x_i\right) dx_i \; &\text{a.i. i.$$} \neq k \end{split}$$
 in which $p\left(x_i\right) = \iint \cdots \int p\left(x_1, x_2, \cdots, x_D\right) dx_1 dx_2 \cdots dx_{i-1} dx_{i+1} \cdots dx_D$

Autocorrelation and Cross-correlation Matrix

Autocorrelation matrix:

$$E\left\{\underline{x}\underline{x}^{T}\right\} = E\left\{\begin{bmatrix} x_{1} \\ \vdots \\ x_{D} \end{bmatrix} \begin{bmatrix} x_{1} & \cdots & x_{D} \end{bmatrix}\right\}$$

$$= E\left\{\begin{bmatrix} x_{1}x_{1} & x_{1}x_{2} & x_{1}x_{3} & \cdots & x_{1}x_{D} \\ x_{2}x_{1} & & \ddots & & \vdots \\ \vdots & & & & & \vdots \\ x_{D}x_{1} & & \cdots & & x_{D}x_{D} \end{bmatrix}\right\}$$

$$= \begin{bmatrix} E\left\{x_{1}x_{1}\right\} & E\left\{x_{1}x_{2}\right\} & E\left\{x_{1}x_{3}\right\} & \cdots & E\left\{x_{1}x_{D}\right\} \\ E\left\{x_{2}x_{1}\right\} & & \vdots & & \vdots \\ E\left\{x_{D}x_{1}\right\} & & \cdots & & E\left\{x_{D}x_{D}\right\} \end{bmatrix}$$

in which $E\{x_i x_j\} = \iint x_i x_j p(x_i, x_j) dx_i dx_j$.

Cross-correlation matrix is $E\left\{\underline{x}\,\underline{y}^{T}\right\}$.

EE 559

Covariance Matrix

$$\underline{\underline{\Sigma}} = E\left\{ (\underline{x} - \underline{m}) (\underline{x} - \underline{m})^T \right\}$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1D} \\ \sigma_{21} & & & & \\ \sigma_{31} & & \ddots & & \\ \vdots & & & & \\ \sigma_{D1} & & \cdots & & \sigma_{DD} \end{bmatrix}$$

in which
$$\sigma_{ij} = E\left\{\left(x_i - m_i\right)\left(x_j - m_j\right)\right\}$$
, and $\sigma_{ii} = \sigma_i^2 = E\left\{\left(x_i - m_i\right)^2\right\}$.

Note that
$$\sum_{i=1}^{\infty} E\left\{\left(\underline{x} - \underline{m}\right)\left(\underline{x} - \underline{m}\right)^T\right\}$$

$$= E\left\{\underline{x}\underline{x}^T\right\} - E\left\{\underline{m}\underline{x}^T\right\} - E\left\{\underline{x}\underline{m}^T\right\} + E\left\{\underline{m}\underline{m}^T\right\}$$

$$= E\left\{\underline{x}\underline{x}^T\right\} - \underline{m}E\left\{\underline{x}^T\right\} - E\left\{\underline{x}\right\}\underline{m}^T + \underline{m}\underline{m}^T$$

$$= E\left\{\underline{x}\underline{x}^{T}\right\} - \underline{m}\underline{m}^{T} - \underline{m}\underline{m}^{T} + \underline{m}\underline{m}^{T}$$

$$\underline{\Sigma} = E\left\{\underline{x}\underline{x}^{T}\right\} - \underline{m}\underline{m}^{T}$$

 $\underline{\underline{\Sigma}}$ is symmetric and positive semi-definite.

We will assume $\underline{\underline{\Sigma}}$ is positive definite, so that $\left|\underline{\underline{\Sigma}}\right| > 0$.

 $\left|\underline{\underline{\Sigma}}\right| = 0$ is a degenerate case; for example this will happen when:

$$\sigma_{ii} = 0$$
 for some i , or $x_i = \alpha x_i$.

EE 559

The covariance matrix is often normalized:

$$\underline{\underline{\Sigma}} = \underline{\underline{\Gamma}} \underline{\underline{R}} \underline{\underline{\Gamma}}$$

in which

$$\underline{\underline{\Gamma}} = \begin{bmatrix} \sigma_1 & 0 \\ \sigma_2 & 0 \\ 0 & \ddots & \\ & \sigma_D \end{bmatrix}, \quad \underline{\underline{R}} = \begin{bmatrix} 1 & r_{ij} \\ 1 & \ddots & \\ r_{ji} & \ddots & \\ & 1 \end{bmatrix}$$

with

$$r_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_i}$$

Note that $0 \le \left| r_{ij} \right| \le 1$. $\underline{\underline{R}}$ is often called a "correlation matrix", but this terminology can be confusing. Another term is "normalized covariance matrix".

Definitions and Properties for 2 Random Vectors

Two random vectors \underline{x} and y are defined as:

- Uncorrelated if
$$E\left\{\underline{x}\ \underline{y}^T\right\} = E\left\{\underline{x}\right\}E\left\{\underline{y}^T\right\}$$

- Orthogonal if
$$E\left\{\underline{x}^T\underline{y}\right\} = 0$$

- Independent if
$$p(\underline{x}, \underline{y}) = p(\underline{x})p(\underline{y})$$

As a result,

- (1) independent => uncorrelated
- (2) uncorrelated ≠> independent, in general.
- (3) If $E\{\underline{x}\} = \underline{0}$ or $E\{\underline{y}\} = \underline{0}$, then uncorrelated => orthogonal.

Normal or Gaussian density [DHS 2.5]

Univariate case

$$p(x) = N(x|m,\sigma^{2}) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-m}{\sigma}\right)^{2}\right\}$$

$$E\{x\} = m, \quad E\{(x-m)^{2}\} = \sigma^{2}$$

$$N(x|m,\sigma^{2})$$

$$\chi \qquad \text{(living area}$$

Multivariate case

$$p(\underline{x}) = N(\underline{x}|\underline{m},\underline{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\underline{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}d_M^2(\underline{x},\underline{m},\underline{\Sigma})\right\}$$

in which $\left|\underline{\underline{\Sigma}}\right| = \text{determinant of }\underline{\underline{\Sigma}}$,

$$d_{M}^{2}\left(\underline{x},\underline{m},\underline{\underline{\Sigma}}\right) = \left(\underline{x} - \underline{m}\right)^{T} \underline{\underline{\Sigma}}^{-1}\left(\underline{x} - \underline{m}\right)$$
$$= \operatorname{tr}\left\{\underline{\underline{\Sigma}}^{-1}\left(\underline{x} - \underline{m}\right)\left(\underline{x} - \underline{m}\right)^{T}\right\}$$

 $tr\{\underline{\underline{A}}\}$ = trace of $\underline{\underline{A}}$, and

 $d_{_M}\!\left(\underline{x},\underline{m},\underline{\underline{\Sigma}}\right)$ = Mahalanobis distance between \underline{x} and \underline{m} .

Thus, the multivariate normal is a function of:

D mean values and

$$\frac{D(D+1)}{2}$$
 variance values.

[1] scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/

Uncorrelated Features

If the x_i and x_j are uncorrelated $\forall j \neq i$, then for $i \neq j$:

$$\sigma_{ij} = E\left\{\left(x_i - m_i\right)\left(x_j - m_j\right)\right\}$$

$$= E\left\{x_i x_j\right\} - m_i m_j = E\left\{x_i\right\} E\left\{x_j\right\} - m_i m_j$$

$$= 0$$

Thus

$$\underline{\Sigma} = \begin{bmatrix} \sigma_{11} & 0 \\ \sigma_{22} & 0 \\ 0 & \ddots & 0 \\ & \sigma_{DD} \end{bmatrix}, \quad \underline{\Sigma}^{-1} = \begin{bmatrix} \frac{1}{\sigma_{11}} & 0 \\ \frac{1}{\sigma_{22}} & \ddots & 0 \\ 0 & \frac{1}{\sigma_{DD}} \end{bmatrix}$$

and

$$d_{M}^{2}(\underline{x},\underline{m},\underline{\Sigma}) = (\underline{x}-\underline{m})^{T} \underline{\Sigma}^{-1}(\underline{x}-\underline{m})$$

$$\Rightarrow d_{M}^{2}(\underline{x},\underline{m},\underline{\Sigma}) = \sum_{i=1}^{D} \frac{(x_{i}-m_{i})^{2}}{\sigma_{ii}}$$

$$= \text{Euclidean dist}_{i}^{2} \text{ with auto-normalizing}$$

$$\text{factor } \frac{1}{T_{i}} = \frac{1}{T_{i}} \text{ for each feature } \mathcal{K}_{i}^{2}.$$

Also, for the normal case (with uncorrelated features):

$$p(\underline{x}) = \frac{1}{(2\pi)^{D/2} \left(\prod_{i=1}^{D} \sigma_{ii}\right)^{1/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{D} \frac{(x_{i} - m_{i})^{2}}{\sigma_{ii}}\right\} d_{m} (\underline{x}, \underline{m}, \underline{\xi})$$

$$= \prod_{i=1}^{D} \left[\frac{1}{(2\pi)^{1/2} \sigma_{ii}^{1/2}} \exp\left\{-\frac{1}{2} \frac{(x_{i} - m_{i})^{2}}{\sigma_{ii}}\right\}\right]$$

$$= \prod_{i=1}^{D} p(x_{i}) = \prod_{i=1}^{D} N(x_{i} | m_{i}, \sigma_{ii})$$

So uncorrelated => independent for the normal case.

EE 559

Linear Transformation of Random Vectors

Let
$$\underline{y} = \underline{\underline{\mathbf{A}}} \underline{x}$$
,

 \underline{x} and y are random vectors

2 in orig. feat. space y in transformed feat. space.

Then $\underline{m}_{v} = \underline{\underline{A}} \underline{m}_{x}$,

 $\underline{\underline{A}}$ is deterministic

And

$$\underline{\underline{\Sigma}}_{y} = \mathbf{E} \left\{ (\underline{y} - \underline{m}_{y}) (\underline{y} - \underline{m}_{y})^{T} \right\}$$

$$= \mathbf{E} \left\{ (\underline{\underline{A}}\underline{x} - \underline{\underline{A}}\underline{m}_{x}) (\underline{\underline{A}}\underline{x} - \underline{\underline{A}}\underline{m}_{x})^{T} \right\}$$

$$= \underline{\underline{A}} \mathbf{E} \left\{ (\underline{x} - \underline{m}_{x}) (\underline{x} - \underline{m}_{x})^{T} \right\} \underline{\underline{A}}^{T}$$

$$\underline{\underline{\Sigma}}_{y} = \underline{\underline{A}} \underline{\underline{\Sigma}}_{x} \underline{\underline{A}}^{T}$$

Assuming $\underline{\underline{A}}$ is nonsingular,

$$d_{M}^{2}(\underline{y}, \underline{m}_{y}, \underline{\Sigma}_{y}) = (\underline{y} - \underline{m}_{y})^{T} \underline{\Sigma}_{y}^{-1}(\underline{y} - \underline{m}_{y})$$

$$= [\underline{\underline{A}}(\underline{x} - \underline{m}_{x})]^{T} [\underline{\underline{A}} \underline{\Sigma}_{x} \underline{\underline{A}}^{T}]^{-1} [\underline{\underline{A}}(\underline{x} - \underline{m}_{x})]$$

$$= (\underline{x} - \underline{m}_{x})^{T} \underline{\underline{A}}^{T} (\underline{\underline{A}}^{T})^{-1} \underline{\Sigma}_{x}^{-1} \underline{\underline{A}}^{T} (\underline{x} - \underline{m}_{x})$$

$$= (\underline{x} - \underline{m}_{x})^{T} \underline{\Sigma}_{x}^{-1} (\underline{x} - \underline{m}_{x})$$

$$= d_{M}^{2}(\underline{x}, \underline{m}_{x}, \underline{\Sigma}_{x})$$

 \Rightarrow Mahalanobis distance is preserved under a linear transformation with nonsingular $\underline{\underline{A}}$.

Orthonormal Transformation

is a special case of a linear transformation.

Let
$$\underline{\underline{y}} = \underline{\underline{\underline{E}}}^T \underline{\underline{x}}$$
, \Longrightarrow $\underline{\underline{A}} = \underline{\underline{\underline{E}}}^T$. Let $\underline{\underline{\underline{E}}}^T \underline{\underline{\underline{E}}} = \underline{\underline{\underline{I}}} = \underline{\underline{\underline{E}}} \underline{\underline{\underline{E}}}^T$ ($\underline{\underline{\underline{E}}}$ is orthonormal).

Also let
$$\underline{\underline{E}} = \text{eigenmatrix of } \underline{\underline{\Sigma}}_x : \underline{\underline{E}} \triangleq \begin{bmatrix} \underline{e}_1 & \underline{e}_2 & \cdots & \underline{e}_D \end{bmatrix}$$

Let $\underline{\underline{y}} = \underline{\underline{E}}^T \underline{x}$, $\Rightarrow \underline{\underline{A}} = \underline{\underline{E}}^T$. Let $\underline{\underline{E}}^T \underline{\underline{E}} = \underline{\underline{I}} = \underline{\underline{E}} \underline{\underline{E}}^T$ ($\underline{\underline{E}}$ is orthonormal). Also let $\underline{\underline{E}} = \text{eigenmatrix}$ of $\underline{\Sigma}_x$: $\underline{\underline{E}} \triangleq \begin{bmatrix} \underline{e}_1 & \underline{e}_2 & \cdots & \underline{e}_D \end{bmatrix}$ in which \underline{e}_n is the n^{th} eigenvector of $\underline{\Sigma}_x$, and $\{\underline{e}_n, n = 1, 2, \cdots, D\}$ is

$$\underline{\underline{\mathbf{E}}} \text{ satisfies: } \underline{\underline{\boldsymbol{\Sigma}}}_{x}\underline{\underline{\mathbf{E}}} = \underline{\underline{\mathbf{E}}} \underline{\boldsymbol{\Delta}}, \text{ in which } \underline{\boldsymbol{\Delta}} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{D} \end{bmatrix}$$

and λ_n is the n^{th} eigenvalue of $\underline{\underline{\Sigma}}_x$.2

Note that:
$$\underline{\underline{\Sigma}}_y = \underline{\underline{A}} \ \underline{\underline{\Sigma}}_x \underline{\underline{A}}^T = \underline{\underline{E}}^T \left(\underline{\underline{\Sigma}}_x \underline{\underline{E}}\right) = \underline{\underline{E}}^T \underline{\underline{E}} \ \underline{\underline{\Lambda}} = \underline{\underline{\Lambda}} \ .$$
 Thus $\underline{\underline{\Sigma}}_y = \underline{\underline{\Lambda}}$

and $\underline{\underline{\mathrm{F}}}$ diagonalizes $\underline{\Sigma}_{\scriptscriptstyle \chi}$.

 $\underline{\underline{\Sigma}}_y = \text{diagonal} \implies \text{the components of } \underline{y} \text{ are uncorrelated.}$

Comments:

- Orthonormal transformations are the basis of PCA.
- It can be shown that Euclidean distance is preserved under an 2. orthonormal transformation.

¹ Note that $\{\underline{e}_n, n=1, 2, \cdots, D\}$ is orthogonal, because $\underline{\underline{\Xi}}_x$ is real and symmetric. The set can be made orthonormal by normalizing each eigenvector 2 All λ_{n} are real because $\sum_{=x}$ is symmetric. All $\lambda_{n}\!>$ 0 to unit length. because we assumed \sum_{x} is positive definite.

Whitening Transformation

Another special case of a linear transformation

Let
$$g = \underline{\bigwedge}^{-l/2} \underline{E}^{T} \underline{r} \Rightarrow \underline{A} = \underline{\bigwedge}^{-l/2} \underline{E}^{T}$$

in which E = eigenmatrix of \leq_{x} , and $\Delta = eigenvalue$ mtx. of \leq_{x}

$$\Rightarrow \sigma_{ii}^2 = 1$$
, $\sigma_{ij}^2 = 0$ for $i \neq j$.

:- the elements of y are uncorrelated and have unit variance.

Comment: The whitening transformation is not orthonormal, and Euclidean distances are not preserved. $\|y_1 - y_2\|_2^2 \neq \|z_1 - x_2\|_2^2$

STATISTICAL CLASSIFICATION

Assume: data pts. x: (and unknowns x) are drawn i.i.d. from p(x).

Bayes Dectsion Theory [Bishop 1.5]

Consider $p(x|Si) = \frac{\text{class-conditional density}}{\text{e-g:}}$ $p(x_1|S_1) = p(\text{living area | price increase})$

p(x2/Si) = p (distance to park | price increase)

 $p(x, (S_z) = p(living area) price decrease)$

Assume: p(x | Si) 15 known ti

Priors: P(Si)

e.g.: P(S,) = P(price increase), without knowledge of 1.

Assume: P(Si) is known ti

If P(Si) are unknown, can estimate by:

$$\hat{P}(S_i) = \frac{Ni}{N}$$
, in which $N = \sum_{i=1}^{\infty} N_i$

Bayes minimum-error classifier (C=2 classes)

Goal: choose decision boundary and regions that minimize P(error) = Pe
Let "e" denote "error"

$$P_e = P(e, S_1) + P(e, S_2)$$

=
$$P(e|S_1)P(S_1) + P(e|S_2)P(S_2)$$

 $\int P(x|S_1) dx \int P(x|S_2) dx$

(i) :
$$P_e = P(S_i) \int p(x|S_i) dx + P(S_2) \int p(x|S_2) dx$$