I. SUITES

On appelle suite toute fonction de IN vers IR, qui à un nombre n associe son image u_n , appelé **terme général** de la suite.

On peut la définir (c'est-à-dire permettre de déterminer les termes $u_1,\,u_2,\,u_3\,...$ de deux façons différentes :

ightarrow À la façon d'une fonction, en donnant un moyen de calculer directement u_n à partir de n.

On a une formule de u_n en fonction de n (type F1 sur mode récurrence de la calculatrice)

Exemples:
$$u_n = \frac{1}{n}$$
; $u_1 = \frac{1}{1} = 1$; $u_2 = \frac{1}{2} = 0$, 5; $u_3 = \frac{1}{3}$; ... $v_n = 5n - 2$; $v_0 = -2$; $v_1 = 3$; $v_2 = 8$; $v_3 = 13$

 \rightarrow Par **récurrence**, en donnant $\left\{ \begin{array}{l} \text{Le premier terme } u_0 \\ \text{La relation qui relie un terme } u_n \, \grave{a} \, \text{son suivant } u_{n+1} \end{array} \right.$

Exemple:
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 1 \end{cases}$$
$$u_1 = 2u_0 + 1 = 2 \times 1 + 1 = 3;$$
$$u_2 = 2u_1 + 1 = 2 \times 3 + 1 = 7$$

Programme pour calculer le terme de rang n après saisie de n

Algorithme

Saisir N
Pour K allant de 1 à N
U prend la valeur [expression de la suite]
FinPour
Afficher U

Programme casio

 $0\rightarrow N$ "RANG="?→N
For $1\rightarrow K$ to N
[expression de la suite] → U
Next

II. ALGORITHMIQUE

On cherche à déterminer tous les termes d'une suite (définie en fonction de *n*) jusqu'à un certain rang P.

Algorithme

N prend la valeur 0
Saisir P
Tant que N ≤ P
U prend la valeur [expression de la suite]
Afficher U
N prend la valeur N+1
Fin de boucle.

Programme casio

III. LIMITE D'UNE SUITE

a. Limite infinie

Soit (u_n) une suite

Si pour tout entier naturel p, on peut trouver un rang à partir duquel tous les termes (u_n) sont supérieurs à 10^p , alors on dit que la suite (u_n) a pour limite $+\infty$ quand n tend vers $+\infty$.

On note : $\lim_{n\to+\infty} u_n = +\infty$

Concrètement, on mettra en évidence cette limite en montrant qu'on peut rendre u_n « aussi grand qu'on veut » à l'aide d'un programme donc voici l'algorithme :

Algorithme

N prend la valeur 0 U prend la valeur 0

Saisir P

Tant que U est inférieur ou égal à 10^P

N prend la valeur N+1

U prend la valeur [expression de la suite]

Fin tant que.

Afficher N

Programme casio

 $\begin{array}{|c|c|} 0 \rightarrow N \\ 0 \rightarrow U \end{array}$

"RANG="?→P

While $U \le 10^P$

 $N+1 \rightarrow N$

[expression de la suite] \rightarrow U

Whileend

N

b. Limite finie

Rappel: le nombre |a - b| se lit « valeur absolue de a - b » et est égal à la distance entre les nombres a et b, il est donc toujours positif.

Soit (u_n) une suite et I un nombre donné.

Si pour tout entier naturel p, on peut trouver un rang à partir duquel tous les termes (u_n) sont à une distance de l inférieure à 10^{-p} , alors on dit que la suite u_n a pour limite l quand n tend vers $+\infty$. On note : $\lim_{n \to \infty} u_n = l$

Concrètement, on mettra en évidence cette limite en montrant qu'on peut rendre u_n « aussi proche de Iqu'on veut » à l'aide d'un programme donc voici l'algorithme :

Algorithme

N prend la valeur 0

U prend la valeur $[u_{\theta}]$

Saisir L

Saisir P

Tant que |U-L| est supérieur ou égal à 10^(-P)

N prend la valeur N+1

U prend la valeur [expression de la suite]

Fin tant que. Afficher N

Programme casio

$$0 \rightarrow N$$
 $[u_{\theta}] \rightarrow U$

"10^-P P="?→P

"LIMITE="?→L

While $abs(U-L) \ge 10^P$

 $N+1 \rightarrow N$

[expression de la suite] \rightarrow U whileend

N