Class imbalance problem

- "A study of the behavior of several methods for balancing machine learning training data." *ACM Sigkdd Explorations Newsletter* 6.1 (2004): 20-29.
- "Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm." *International Conference on Neural Information Processing*. Springer Berlin Heidelberg, 2010.
- "Class imbalances versus class overlapping: an analysis of a learning system behavior." *Mexican international conference on artificial intelligence*. Springer Berlin Heidelberg, 2004.

20 Oct, 2016

Hunsik Shin

hunsik@dm.snu.ac.kr

Introduction

Class imbalance

- Occurs in which examples in training data belonging to **one class heavily outnumber** the examples in the other class
- In real data, minority class describes an **infrequent** but **important event**(e.g. fraud, disease)
- Major obstacle in inducing classifiers in imbalanced domain

Two main approaches to deal with imbalanced data

- > Data-level approach: re-balancing the class distribution before a classifier is trained
 - Under-sampling : random under sampling, Tom□ links, Wilson's Edited nearest neighbor rule(ENN)
 - Over-sampling : random over sampling, Synthetic Minority Over-sampling(SMOTE)
 - Combined method : under-sampling+ over-sampling
- Algorithm-level approach: strengthening the existing classifier by adjusting algorithms to recognize the smaller classes
 - Cost-sensitive learning

Introduction

Evaluation

- The most straightforward way to evaluate the performance → confusion matrix
- Common metric is 'Error rate' or 'Accuracy'

• Err(error rate) =
$$\frac{FP+FN}{TP+FN+FP+TN}$$

• Accuracy =
$$\frac{TP+TN}{TP+FN+FP+TN} = 1$$
 - Err

If proportion of majority class = 99%, then accuracy becomes 99%

(by simply forecasting every new example as the majority)

- The area under the ROC curve(**AUC**) or **Geometric mean** are used for performance evaluation
- AUC represents the expected performance as a single scalar

	p' (Predicted)	n' (Predicted)		
P	True Positive	False Negative		
(Actual)	(TP)	(FN)		
n	False Positive	True Negative		
(Actual)	(FP)	(TN)		

<confusion matrix>

<area under the curve(AUC)>

Introduction

Data-level approach

- 1. Under-sampling
 - Tomek-links
 - Condensed Nearest Neighbor(CNN) Rule

2. Over-sampling

- Synthetic Minority Over-sampling Technique(SMOTE)

3. Combined method

- Complementary Neural Network(CMTNN) with SMOTE

Under-sampling — "Tomek-link"

Tomek-link

- A pair of two examples belonging to different classes
- If two examples form Tomek-link, then either one of these examples is noise or both are borderline
- Tomek-link can be used as an under-sampling or data cleaning method

Def) A (E_i, E_i) pair is called a Tomek link,

if there is not an example E_l such that $d(E_i, E_l) < d(E_i, E_i)$ or $d(E_i, E_l) < d(E_i, E_l)$.

* E_i , E_j belongs to different classes

Under-sampling — "Condensed Nearest Neighbor"

Condensed Nearest Neighbor Rule

- To find a consistent subset of examples.
 - Subset that correctly classifies the whole examples by 1-nearest neighbor
- Condensed Nearest Neighbor(CNN) can be used as an under-sampling method

Algorithm)

- 1. Randomly draw one majority class example and all examples from minority class
- 2. Using this subset of examples, classify all examples by 1-nearest neighbor
- 3. Misclassified examples from majority class are moved to the existed subset
- 4. This subset becomes a consistent subset of all examples
 - → Not guarantee to find the smallest consistent subset.

Over-sampling – "smote"

- Synthetic Minority Over-sampling(SMOTE)
 - > SMOTE is an over-sampling technique that increases a number of new minority class instances by interpolation method.

The Synthetic Minority Oversampling Technique(SMTOE) algorithm

Combined method — "CMTNN + SMOTE"

- Complementary Neural Network(CMTNN): Under-sampling
 - > CMTNN is a technique using a pair of complementary feedforward neural networks
 - Truth Neural Network(Truth NN): trained to predict the degree of the truth membership
 - Falsity Neural Network(Falsity NN): trained to predict the degree of the false membership

Under-sampling technique

Fig. 1. Complementary Neural Network

For Truth NN: If $Y_{Truth \ i} \neq O_{Truth \ i}$ then $M_{Truth} \leftarrow M_{Truth} \ U \ \{T_i\}$ For Falsity NN: If $Y_{Falsity \ i} \neq O_{Falsity \ i}$ then $M_{Falsity} \leftarrow M_{Falsity} \ U \ \{T_i\}$

- 1. $T_c \leftarrow T (M_{Truth} \cap M_{Falsity})$
- 2. $T_c \leftarrow T (M_{Truth} \cup M_{Falsity})$

- $M_{Truth} = the misclassification patterns of Truth NN$
- $M_{Falsity} = the \ misclassification \ patterns \ of \ Falsity \ NN$
- Y = the predction ouputs
- T = the training data
- 0 = the actual data

Combined method — "CMTNN + SMOTE"

Synthetic Minority(SMOTE): Over-sampling

SMOTE is an over-sampling technique that increases a number of new minority class instances by interpolation method.

Name of data set	No. of instances	No. of attributes	Minority class (%)	Majority class (%)
Pima Indians Diabetes data	768	8	34.90	65.10
German Credit data	1000	20	30.00	70.00
Haberman's Survival data	306	3	26.47	73.53
SPECT Heart data	267	22	20.60	79.40

Table 1. Characteristics of data sets used in the experiment

The Proposed Combined Techniques

- 1. Under-sampling only the majority using CMTNN 1 \rightarrow over-sampling the minority class using SMOTE
- 2. Under-sampling only the majority using CMTNN 2 → over-sampling the minority class using SMOTE
- 3. Over-sampling the minority class using **SMOTE** \rightarrow under-sampling only the majority using **CMTNN 1**
- 4. Over-sampling the minority class using **SMOTE** → under-sampling only the majority using **CMTNN 2**
- → Training ANN, kNN, SVM classifiers

Combined method – "CMTNN + SMOTE"

Experiment result : AUC, G-mean

		Indian German etes data Credit data			Haberman's Survival data		SPECT Heart data	
Techniques	GM	AUC	GM	AUC	GM	AUC	GM	AUC
Original Data	70.12	0.8276	63.92	0.7723	33.11	0.5885	64.05	0.7590
a. ENN	72.64	0.8298	70.74	0.7794	50.45	0.6305	71.80	0.7895
b. Tomek links	73.11	0.8288	70.48	0.7793	51.88	0.6323	72.88	0.8178
c. SMOTE	74.30	0.8281	71.48	0.7777	58.60	0.6345	73.59	0.8241
d. Technique I								
(Majority)								
+ SMOTE	75.55	0.8332	72.03	0.7855	60.00	0.6452	73.86	0.8374
e. Technique II								
(Majority)								
+ SMOTE	74.53	0.8300	73.32	0.7873	62.78	0.6770	74.32	0.8273
f. SMOTE +								
Technique I	75.00	0.8285	71.52	0.7844	61.41	0.6653	73.00	0.8264
g. SMOTE +								
Technique II	74.96	0.8300	72.07	0.7860	58.59	0.6248	74.04	0.8373
Best technique	d	d	e	e	e	e	e	d
Second best	f	e & g	g	g	f	f	g	g

Table. 2. The results of G-Mean and AUC for each data set classified by ANN

Class imbalance vs overlapping

Class overlapping

- Several works point out 'class imbalance' as an obstacle on applying ML algorithm
- In some cases, learning algorithms perform well on several imbalanced domain
 - → Not solely caused by **class imbalance**, but is also related to the degree of **data overlapping**
 - → The degree of class overlapping has a **strong correlation** with class imbalance

Positive	Distance of Class Centroids						
instances	0	1	2	3	9		
1%	50.00% (0.00%)	64.95% (9.13%)	90.87% (6.65%)	98.45% (2.44%)	99.99% (0.02%)		
					99.99% (0.02%)		
5%	50.00% (0.00%)	81.00% (2.86%)	98.25% (1.45%)	98.95% (1.11%)	100.00% (0.00%)		
10%	50.00% (0.00%)	86.69% (2.11%)	98.22% (1.14%)	99.61% (0.55%)	99.99% (0.02%)		
15%	50.00% (0.00%)	88.41% (2.37%)	98.92% (0.75%)	99.68% (0.49%)	99.99% (0.02%)		
20%	50.00% (0.00%)	90.62% (1.44%)	99.08% (0.42%)	99.90% (0.21%)	99.99% (0.02%)		
25%	50.00% (0.00%)	90.88% (1.18%)	99.33% (0.32%)	99.90% (0.14%)	99.98% (0.03%)		
30%	50.00% (0.00%)	90.75% (0.81%)	99.24% (0.29%)	99.86% (0.14%)	$\mid 99.99\% \; (0.02\%) \mid$		
35%	50.00% (0.00%)	91.19% (0.94%)	99.36% (0.43%)	99.91% (0.08%)	99.99% (0.02%)		
40%	50.00% (0.00%)	90.91% (0.99%)	99.46% (0.10%)	99.90% (0.13%)	99.99% (0.03%)		
45%	50.00% (0.00%)	91.73% (0.79%)	99.44% (0.22%)	99.90% (0.09%)	99.98% (0.04%)		
50%	50.00% (0.00%)	91.32% (0.68%)	99.33% (0.19%)	99.87% (0.13%)	99.99% (0.03%)		

<Mean AUC obtained from classifiers varying class priors and class overlapping, (standard dev)>

Application?

Limitations

- 1. Under-sampling
 - Information loss of majority class examples
- 2. Over-sampling
 - Over-fitting to minority class(or over-generalization)

