Causal Limits of Distributed Computation

Francesco d'Amore

Based on the works [Coiteux-Roy et al. STOC '24], [Akbari et al. STOC '25], [Balliu et al. STOC '25], [Balliu et al. '25].

INdAM - RomaTre 07 May 2025

Table of content

1. Intro

- Distributed computation
- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds
- 3. From quantum back to classical
- Simulation in weaker models
- 4. Conclusions and open problems

• Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

• Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

Problem examples

- Broadcast: one node is informed, we want all nodes informed

• Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

Problem examples

- Broadcast: one node is informed, we want all nodes informed

Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

Problem examples

- Broadcast: one node is informed, we want all nodes informed
 - algorithm: in each round, send everything

• Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

Problem examples

- Broadcast: one node is informed, we want all nodes informed
 - algorithm: in each round, send everything
- 3-coloring: output a color so that neighbors have different colors

• Synchronous distributed network

- graph G = (V, E) with |V| = n
- E: communication links
- discrete communication rounds: t = 1, 2, ...
- each node in V runs the same algorithm
- each round = local computation + communication

Problem examples

- Broadcast: one node is informed, we want all nodes informed
 - algorithm: in each round, send everything
- 3-coloring: output a color so that neighbors have different colors
 - algorithm: ?? we need to break symmetry

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)

- **Distributed network** of *n* processors/nodes
 - graph G = (V, E) with |V| = n
 - E: communication links
 - each node in $oldsymbol{V}$ runs the same algorithm
- Time is synchronous: nodes alternate
 - arbitrary local computation & update of state variables
 - sending of messages to all neighbors
 - * no bandwidth constraints
- Unique identifiers to nodes in the set $1, \ldots, poly(n)$
 - * adversarially chosen n is known to the nodes
 - needed to solve even basic problems (2-coloring a 2-path)
- Complexity measure: number of communication rounds

Complexity measure: number of communication rounds

Equivalence:

• A: T(n)-round LOCAL algorithm

Complexity measure: number of communication rounds

Equivalence:

• A: T(n)-round LOCAL algorithm

knowledge after 2 rounds of communication

Complexity measure: number of communication rounds

Equivalence:

- A: T(n)-round LOCAL algorithm
- f: function mapping radius-T(n) neighborhoods to node outputs

knowledge after 2 rounds of communication

Complexity measure: number of communication rounds

Equivalence:

- A: T(n)-round LOCAL algorithm
- f: function mapping radius-T(n) neighborhoods to node outputs

- given a LOCAL algorithm A, we can construct the mapping f
- given f, we can construct a LOCAL algorithm B that simulates f

knowledge after 2 rounds of communication

Complexity measure: number of communication rounds

Equivalence:

- A: T(n)-round LOCAL algorithm
- f: function mapping radius-T(n) neighborhoods to node outputs

- given a LOCAL algorithm $m{A}$, we can construct the mapping f
- given f, we can construct a LOCAL algorithm B that simulates f

knowledge after 2 rounds of communication

• Locality T = diam(G) + 1 is always sufficient to solve any problem: gathering algorithm

• **Problem**: 2-coloring even cycles. Assume we have a T-round LOCAL algorithm with $T \leq \frac{n}{2} - 2$

existence of o(n)-round LOCAL algorithm that 2-colors even cycles \implies 2-coloring of odd cycles

• **Problem**: 2-coloring even cycles requires locality $\Omega(n)$

existence of o(n)-round LOCAL algorithm that 2-colors even cycles \implies 2-coloring of odd cycles

[Naor and Stockmeyer STOC '93 & SICOMP '95]

• Problems whose solutions might be "hard to find" but are "easy to check"

- "analogue" of NP in the distributed setting
- coloring, maximal independent set, maximal matching, etc.

[Naor and Stockmeyer STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.
- "Easy to check"
 - radius $r = \Theta(1)$
 - each node can check its solution within its radius-r neighborhood
 - a globally valid iff each node is locally happy

[Naor and Stockmeyer STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

3-coloring: the blue node checks if its color is different from those of its neighbors

valid LCL

[Naor and Stockmeyer STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

Leader election: the checking radius should be r = diam(G)

not an LCL

[Naor and Stockmeyer STOC '93 & SICOMP '95]

- Problems whose solutions might be "hard to find" but are "easy to check"
 - "analogue" of NP in the distributed setting
 - coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy

3-coloring: the blue node checks if its color is different from those of its neighbors

[Naor and Stockmeyer STOC '93 & SICOMP '95]

• Problems whose solutions might be "hard to find" but are "easy to check"

- "analogue" of NP in the distributed setting
- coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy
- A **lot of literature** studying LCLs:
 - classification of LCLs based on complexity (locality)
 - e.g.: complexity T(n) in randomized-LOCAL $\Longrightarrow O(T(2^{n^2}))$ in deterministic-LOCAL [Chang et al. SICOMP '19]

3-coloring: the blue node checks if its color is different from those of its neighbors

[Naor and Stockmeyer STOC '93 & SICOMP '95]

• Problems whose solutions might be "hard to find" but are "easy to check'

- "analogue" of NP in the distributed setting
- coloring, maximal independent set, maximal matching, etc.

"Easy to check"

- radius $r = \Theta(1)$
- each node can check its solution within its radius-r neighborhood
- a globally valid iff each node is locally happy
- A **lot of literature** studying LCLs:
 - classification of LCLs based on complexity (locality)
 - e.g.: complexity T(n) in randomized-LOCAL $\Longrightarrow O(T(2^{n^2}))$ in deterministic-LOCAL [Chang et al. SICOMP '19]
 - [BFHKLRSU STOC '16; BHKLOPRSU PODC'17; GKM STOC '17; GHK FOCS '18; CP SICOMP '19; BHKLOS STOC '18; BBCORS PODC '19; BBOS PODC '20; BBHORS JACM '21; BBCOSS DISC '22; AELMSS ICALP '23; etc.]

3-coloring: the blue node checks if its color is different from those of its neighbors

Complexity landscape of LCLs

Paths and cycles

det-LOCAL	O(1)	$\Theta(\log^\star n)$	$\Theta(n)$	
rand-LOCAL	rand-LOCAL $O(1)$		$\Theta(n)$	

ullet Balanced d-dimensional toroidal grids

det-LOCAL	O(1)	$\Theta(\log^\star n)$	$\Theta(n^{1/d})$	
rand-LOCAL	d-LOCAL $O(1)$		$\Theta(n^{1/d})$	

Complexity landscape of LCLs

Paths and cycles

det-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n)$
rand-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(n)$

ullet Balanced d-dimensional toroidal grids

det-LOCAL	O(1)	$\Theta(\log^\star n)$	$\Theta(n^{1/d})$	
rand-LOCAL	O(1)	$\Theta(\log^\star n)$	$\Theta(n^{1/d})$	

randomness does not help

Complexity landscape of LCLs

Paths and cycles

det-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n)$	
rand-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(n)$	

ullet Balanced d-dimensional toroidal grids

det-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n^{1/d})$	
rand-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n^{1/d})$	

randomness does not help

• Bounded-degree trees

det-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(\log n)$		$\Theta(n^{1/k})$	$\Theta(n)$
rand-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(\log\log n)$	$\Theta(\log n)$	$\Theta(n^{1/k})$	$\Theta(n)$

Complexity landscape of LCLs

Paths and cycles

det-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n)$
rand-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(n)$

ullet Balanced d-dimensional toroidal grids

det-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n^{1/d})$
rand-LOCAL	O(1)	$\Theta(\log^{\star}n)$	$\Theta(n^{1/d})$

randomness does not help

General graphs??

• Bounded-degree trees

det-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(\log n)$		$\Theta(n^{1/k})$	$\Theta(n)$
rand-LOCAL	O(1)	$\Theta(\log^{\star} n)$	$\Theta(\log\log n)$	$\Theta(\log n)$	$\Theta(n^{1/k})$	$\Theta(n)$

Table of content

1. Intro

- The LOCAL model of computation
- Locally checkable labeling (LCL) problems

2. Quantum and causality-based models

- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds

3. Locality-based models

- The online-LOCAL model
- Relation with causality-based models
- Simulation in weaker models

4. Conclusions and open problems

[Gavoille et al. DISC '09]

- Distributed system of n quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits
- Complexity measure: number of communication rounds

[Gavoille et al. DISC '09]

- Distributed system of n quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits
- Complexity measure: number of communication rounds

[Gavoille et al. DISC '09]

- Distributed system of n quantum processors/nodes
 - quantum computation
 - quantum communication (qubits)
 - output: measurement of qubits
- Complexity measure: number of communication rounds

local computation + measurement round 1: communication local computation + measurement round 2: communication local computation + measurement measure

• **Question**: is there any graph problem that admits quantum advantage?

light cone for

the red node

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al. STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al. STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- **Question**: what about problems that actually interest the distributed computing community?

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al. STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- **Question**: what about problems that actually interest the distributed computing community?
 - Yes! But artificial LCLs [Balliu et al. STOC '25; Balliu et al. '25]
 - Otherwise we do not know

- **Question**: is there any graph problem that admits quantum advantage?
 - yes! [Le Gall et al. STACS '19]
 - problem with complexity $\Omega(n)$ in randomized-LOCAL and O(1) in quantum-LOCAL
- Question: what about problems that actually interest the distributed computing community?
 - Yes! But artificial LCLs [Balliu et al. STOC '25; Balliu et al. '25]
 - Otherwise we do not know
- What do we know?
 - focus on LCLs
 - input graph degree is bounded by a constant Δ [Naor and Stockmeyer SICOMP '95]

ullet Run a 2-round algorithm A in G

light cone for

- Run a 2-round algorithm A in G
 - output for the red and blue nodes is determined by their respective light cones

light cone for

- ullet Run a 2-round algorithm A in G
 - output for the red and blue nodes is determined by their respective light cones
- Output distributions for red and blue nodes are independent
 - as long as their distance is at least 5

light cone for

- ullet Run a 2-round algorithm A in G
 - output for the red and blue nodes is determined by their respective light cones
- Output distributions for red and blue nodes are independent
 - as long as their distance is at least 5

light cone for

- ullet Run a 2-round algorithm A in G
 - output for the red and blue nodes is determined by their respective light cones
- Output distributions for red and blue nodes are independent
 - as long as their distance is at least 5
- Output distributions remains the same if light cone is the same
 - non-signaling property
 - changes that are beyond 2-hops away do not influence the output distribution
 - also known as causality

Abstracting output distributions

- \bullet A T-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than ${f 2T}$ are independent
 - non-signaling beyond distance T

Abstracting output distributions

- \bullet A T-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than $\mathbf{2}T$ are independent
 - non-signaling beyond distance $oldsymbol{T}$
- Then we can just think about output distributions!
 - computational models that produce directly distributions with the aforementioned properties

Abstracting output distributions

- \bullet A T-round distributed algorithm yields an **output distribution** with the following **properties**:
 - outputs of subsets of nodes at distance more than 2T are independent
 - non-signaling beyond distance $oldsymbol{T}$
- Then we can just think about output distributions!
 - computational models that produce directly distributions with the aforementioned properties

[Holroyd and Liggett Forum of Mathematics Pi '14] [Akbari et al. STOC '24]* finitely-dependent distributions if T = O(1)

[Gavoille et al. DISC '09] [Arfaoui and Fraigniaud PODC '12 & SIGACT News '14]

• $X \to Y$ means that locality T in X becomes locality O(T) in Y

• $X \to Y$ means that locality T in X becomes locality O(T) in Y

• $X \to Y$ means that locality T in X becomes locality O(T) in Y

• $X \to Y$ means that locality T in X becomes locality O(T) in Y independence + non-signaling deterministic LOCAL randomized LOCAL local local locality O(T) in Y independence + non-signaling locality O(T) in Y independence + non-signaling locality O(T) in Y locality O(T) locality O(T) in Y locality O(T) locality O(

independence + • $X \to Y$ means that locality T in X becomes locality O(T) in Ynon-signaling boundedrandomized deterministic quantum dependence LOCAL LOCAL LOCAL model randomized LOCAL + shared randomness

independence + • $X \to Y$ means that locality T in X becomes locality O(T) in Ynon-signaling boundeddeterministic randomized quantum dependence LOCAL LOCAL LOCAL model quantum randomized _OCAL + shared LOCAL + shared quantum state randomness

• Is it possible to "sandwich" quantum-LOCAL between weaker and stronger models?

- Is it possible to "sandwich" quantum-LOCAL between weaker and stronger models?
 - yes! for some problems

• Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: quantum-LOCAL algorithm with locality $T \le \lfloor \frac{\sqrt{n}-2}{4} \rfloor$ that 3-colors grids with high probability

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: quantum-LOCAL algorithm with locality $T \le \lfloor \frac{\sqrt{n}-2}{4} \rfloor$ that 3-colors grids with high probability
 - failure with prob. 1 overall \Longrightarrow failure with prob. $\frac{1}{4}$ in at least one of the regions

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: quantum-LOCAL algorithm with locality $T \le \lfloor \frac{\sqrt{n}-2}{4} \rfloor$ that 3-colors grids with high probability
 - failure with prob. 1 overall \Longrightarrow failure with prob. $\frac{1}{4}$ in at least one of the regions

- exploit non-signaling principle ${\it H}$: odd quadrangulation of Klein-bottle

- locally grid-like, $\mathcal{X}(H) = 4$ [Mohar et al. Combinatorica '13]

- Graph-existential lower bound arguments based on indistinguishability hold! [Coiteux-Roy et al. STOC '24]
- Example: 3-coloring $\sqrt{n} \times \sqrt{n}$ grids is hard $(T = \Theta(\sqrt{n}))$
 - find graph H that locally is like a grid but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: quantum-LOCAL algorithm with locality $T \le \lfloor \frac{\sqrt{n}-2}{4} \rfloor$ that 3-colors grids with high probability
 - failure with prob. 1 overall \Longrightarrow failure with prob. $\frac{1}{4}$ in at least one of the regions
 - exploit non-signaling principle

H: odd quadrangulationof Klein-bottle

- locally grid-like, $\mathcal{X}(H) = 4$ [Mohar et al. Combinatorica '13]

• Boosting failure prob. is also possible

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
 - makes use of a "cheating graph" from [Bogdanov '13]
 - upper bound in deterministic LOCAL, lower bound in the non-signaling model
 - no quantum advantage

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
 - makes use of a "cheating graph" from [Bogdanov '13]
 - upper bound in deterministic LOCAL, lower bound in the non-signaling model
 - no quantum advantage
- Tree coloring: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al. STOC '24]

Some results: non-signaling model

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
 - makes use of a "cheating graph" from [Bogdanov '13]
 - upper bound in deterministic LOCAL, lower bound in the non-signaling model
 - no quantum advantage
- Tree coloring: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al. STOC '24]
- Grid coloring: 3-coloring grids of size $n_1 \times n_2$ has complexity $\Omega(\min\{n_1, n_2\})$ [Coiteux-Roy et al. STOC '24]

Some results: non-signaling model

Graph-existential lower bound arguments based on indistinguishability

- **Graph coloring**: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
 - makes use of a "cheating graph" from [Bogdanov '13]
 - upper bound in deterministic LOCAL, lower bound in the non-signaling model
 - no quantum advantage
- Tree coloring: c-coloring trees has complexity $\Omega(\log_c n)$ [Coiteux-Roy et al. STOC '24]
- Grid coloring: 3-coloring grids of size $n_1 \times n_2$ has complexity $\Omega(\min\{n_1, n_2\})$ [Coiteux-Roy et al. STOC '24]

What about other known lower bounds? E.g., 3-coloring cycles has complexity $\Theta(\log^* n)$ [Linial FOCS '87]

• Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a bounded-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett Forum of Mathematics Pi '14]
 - [Holroyd et al. Electronic Communications in Probability '18]

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a bounded-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett Forum of Mathematics Pi '14]
 - [Holroyd et al. Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a bounded-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett Forum of Mathematics Pi '14]
 - [Holroyd et al. Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question
- Is there any hope to rule out quantum advantage for LCLs of complexity $\Theta(\log^* n)$ in classical LOCAL?
 - * using stronger models

- Can we similarly rule out quantum advantage for 3-coloring cycles? Classical complexity $T = \Theta(\log^* n)$
 - no! There is a bounded-dependent distribution that 3-colors paths and cycles (T = O(1))
 - [Holroyd and Liggett Forum of Mathematics Pi '14]
 - [Holroyd et al. Electronic Communications in Probability '18]
- Is there any quantum-LOCAL algorithm that 3-colors paths and cycles with locality $T = o(\log^* n)$?
 - major open question
- Is there any hope to rule out quantum advantage for LCLs of complexity $\Theta(\log^* n)$ in classical LOCAL?
 - * using stronger models
 - no!
 - For any $\Theta(\log^* n)$ LCL Π on bounded degree graphs, there is a bounded-dependent distribution (T = O(1)) solving Π [Akbari et al. STOC '24]

Table of content

1. Intro

- Distributed computation
- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds

3. From quantum back to classical

- Simulation in weaker models
- 4. Conclusions and open problems

- Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T

G	

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$
- We can "nicely" decompose the graph with a LOCAL algorithm

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$
- We can "nicely" decompose the graph with a LOCAL algorithm

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$
- We can "nicely" decompose the graph with a LOCAL algorithm
- locality $T = \tilde{O}(\sqrt{nT})$

diam
$$(C_i) = \tilde{O}(\sqrt{nT})$$

dist $(C_i, C_j) > 2T + \Omega(1)$
unclustered nodes = $O(\sqrt{n/T})$

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$
- We can "nicely" decompose the graph with a LOCAL algorithm
- locality $T = \tilde{O}(\sqrt{nT})$
- sample from ρ in unclustered nodes
- solution exists in each cluster because of LCL definition
- brute-force a solution inside each cluster

$$\begin{aligned} &\text{diam}(C_i) = \tilde{O}(\sqrt{nT}) \\ &\text{dist}(C_i, C_j) > 2T + \Omega(1) \\ &\text{\# unclustered nodes} = O(\sqrt{n/T}) \end{aligned}$$

- ullet Start with a bounded-dependent distribution ho with locality T solving some LCL Π
- locality T= independence at distance 2T+1 plus non-signaling beyond distance T
- ullet **Observation**: LOCAL algorithms A_1 and A_2 with localities T_1 and T_2
- merged into a single LOCAL algorithm B with locality $T = O(T_1 + T_2)$
- We can "nicely" decompose the graph with a LOCAL algorithm
- locality $T = \tilde{O}(\sqrt{nT})$
- sample from ρ in unclustered nodes
- solution exists in each cluster because of LCL definition
- brute-force a solution inside each cluster

diam
$$(C_i) = \tilde{O}(\sqrt{nT})$$

dist $(C_i, C_j) > 2T + \Omega(1)$
unclustered nodes = $O(\sqrt{n/T})$

- ullet Bounded dependent distribution with locality $T \Longrightarrow \mathsf{LOCAL}$ algorithm with locality $ilde{O}(\sqrt{nT})$
- LOCAL complexity is $\Theta(n) \Longrightarrow$ bounded-dependence complexity $\tilde{\Omega}(n)$ (same for quantum-LOCAL)
- bounded-dependence (or quantum-LOCAL) complexity $O(1) \Longrightarrow \text{LOCAL}$ complexity is $\tilde{O}(\sqrt{n})$

Table of content

1. Intro

- Distributed computation
- The LOCAL model of computation
- Locally checkable labeling (LCL) problems
- 2. Quantum and causality-based models
- The non-signaling model & bounded-dependence model
- State-of-the-art lower bounds & upper bounds
- 3. From quantum back to classical
- Simulation in weaker models
- 4. Conclusions and open problems

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
- $O(\log^* n)$ LOCAL $\to O(1)$ bounded-dependence. Other complexities?

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
- $O(\log^* n)$ LOCAL $\to O(1)$ bounded-dependence. Other complexities?
- How to create bounded-dependent distributions that do not rely on [Holroyd et al. Forum of Mathematics,Pi '14]?

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
- $O(\log^* n)$ LOCAL $\to O(1)$ bounded-dependence. Other complexities?
- How to create bounded-dependent distributions that do not rely on [Holroyd et al. Forum of Mathematics,Pi '14]?
- T bounded-dependence $\implies \tilde{O}(\sqrt{nT})$ LOCAL. Better reduction?

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
- $O(\log^* n)$ LOCAL $\to O(1)$ bounded-dependence. Other complexities?
- How to create bounded-dependent distributions that do not rely on [Holroyd et al. Forum of Mathematics,Pi '14]?
- T bounded-dependence $\implies \tilde{O}(\sqrt{nT})$ LOCAL. Better reduction?
- $T \Longrightarrow \tilde{O}(\sqrt{nT})$ How to get lower bounds directly in quantum-LOCAL? boundedrandomized deterministic quantum dependence LOCAL LOCAL LOCAL model quantum randomized non-signaling LOCAL + shared LOCAL + shared LOCAL quantum state randomness

- Possibility to derive **results** for quantum-LOCAL **by "sandwiching"** it between weaker and stronger models
 - Graph coloring: c-coloring χ -chromatic graphs has complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$ [Coiteux-Roy et al. STOC '24]
- $O(\log^* n)$ LOCAL $\to O(1)$ bounded-dependence. Other complexities?
- How to create bounded-dependent distributions that do not rely on [Holroyd et al. Forum of Mathematics,Pi '14]?
- T bounded-dependence $\Longrightarrow \tilde{O}(\sqrt{nT})$ LOCAL. Better reduction?

