Data Structure for Disjoint Sets

21.1 Disjoint-set operations

Disjoint set data structure:

- 1. a data structure maintains a collection $S=\{S_1, S_2, ..., S_k\}$ of **disjoint dynamic** sets.
- 2. Each set is identified by a representative, which is some member of the set. In some applications, it doesn't matter which member is used as the representative; we only care that if we ask the representative of a set without modifying the set between the requests, we get the same answer. In other applications, there may be a representative rule for choosing the representative, such as choosing the smallest member in the set.
- 3. The following operations should be supported.

Make-Set(x): create a new set {x}.
Union(x, y): unite the two sets containing x, y.
Find-Set(x): return a pointer to the
representative of the set containing x.

21-1×

Initially, $S = \emptyset$.

- n: number of Make-Set operations
 m: total number of Make-Set, Union, and Find-Set operation.
- m≥n and the number of Union operations is at most n-1.
 most n-1.
 m = n + f + u
 m ≥ n; u ≤ n-1

An application of disjoint-set data structures

(a) 4 connected components

Edge processed	Collection of disjoint sets									
initial sets	{a}	{ <i>b</i> }	{c}	{ <i>d</i> }	{e}	<i>{f}</i>	{g}	{ <i>h</i> }	$\{i\}$	$\{j\}$
\bigcirc (b,d)	{ <i>a</i> }	$\{b,d\}$	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	$\{j\}$
\bigcirc (e,g)	$\{a\}$	$\{b,d\}$	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	$\{j\}$
\bigcirc (a,c)	$\{a,c\}$	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	$\{j\}$
(h,i)	$\{a,c\}$	$\{\underline{b},d\}$			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
\bigcirc (a,b)	$\{a,b,c,d\}$				$\{e,g\}$	$\{f\}$		$\{h,i\}$		$\{j\}$
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$
$\uparrow (7) (b,c)$	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$

CONNECTED-COMPONENTS (G)

```
    for each vertex v ∈ V[G]
    do MAKE-SET(v)
    for each edge (u, v) ∈ E[G]
    do if FIND-SET(u) ≠ FIND-SET(v)
    then UNION(u, v)
```

SAME-COMPONENT (u, v)

- 1 if FIND-SET(u) = FIND-SET(v)
- 2 then return TRUE
- 3 else return FALSE

21.2 Linked-list representation

(First object in a list is the representative.)

* Make-Set, Find-Set: O(1) time.

A simple implementation of Union(x, y)

(Appending the first list onto the second) O(|(1)|) time

worst-case: O(n), best-case: $O(1) \Rightarrow$ amortized

- $O(n^2)$ time for m=2n-1 operations.
- * An example showing $\Omega(n^2)$ for O(n) operations. Operation Number of objects updated

opular.	rumoer or objects apacited						
$MAKE-SET(x_1)$		1					
$MAKE-SET(x_2)$		1	n Make				
•		. }					
•		;	O(n)				
$MAKE-SET(x_n)$		1					
$Union(x_1, x_2)$	1 + 1	1					
UNION (x_2, x_3)	1 + 2	2	n-1 Union				
UNION (x_3, x_4)	1 + 3	3	$O(\Sigma k)$				
:		:					
• 1	. + (n - 1)	:	$O(n^2)$				
UNION (x_{n-1}, x_n)	()	n-1					

^{*} Thus, the *amortized time* of each operation is O(n) (tight)

A weighted-union heuristic

- 1. Each representative stores the length of the list.
- 2. Append the smaller list onto the longer.

Theorem 21.1: Using the weighted-union heuristic, a sequence of *m Make-Set*, *Union*, and *Find-Set* operations takes $O(m+n \lg n)$ time, where n is the number of Make-Set operations. Make, FIND: O(m)

```
* m = n + f + u
* m ≥ n
```

Union: O(n |q n) 21-5a

Proof: After Make-Set(x) is performed, the list containing x has only one element. At the first time x's representative pointer is updated, the list containing x has at least two elements. Continuing on, we observe that after the k-th time x's representative is updated, the list containing x has at least 2^k elements. Since $k=O(\lg n)$, the time for all *Union* operations is at most $O(n \lg n)$. The time for each *Make-Set* and *Find-Set* operation is *O*(1). Thus, the theorem holds. Q.E.D.

```
Union:
          (i) best: O(1) (ii) worst-case: O(n)
          (iii) amortized: n \lg n / (n-1) = O(\lg n)
```

21.3 Disjoint-set forests

(The root of a tree is the representative.)

Make-Set(x): O(1) time

Find-Set(x): O(h) time, h is the height of the tree containing x. (Find path: $x \rightarrow root$)

Union(x, y): The <u>root of x</u> points to the <u>root of y</u> $\rightarrow O(h)$ time.

Heuristics to improve the running time → height

1. **Union by rank:** the root of the smaller tree points to the root of the larger tree (according to heights).

rank[x]: height of x (number of edges in the longest path between x and a descendant leaf)

may be an approximation (upper bound)

2. Path compression: During a Find-Set(x) operation, make each node on the find path point to the root. (It will not change any rank.)

Example: Find-Set(a)

Pseudo-code for disjoint-set forests

```
MAKE-SET(x)
                             rank = 0
   p[x] \leftarrow x
2 \quad rank[x] \leftarrow 0
                                        two Find: path
                                         compression
Union(x, y)
   Link(Find-Set(x), Find-Set(y))
               root
Link(x, y)
                           union by rank
   if rank[x] > rank[y]
      then p[y] \leftarrow x
                                               //>
3
       else p[x] \leftarrow y
            if rank[x] = rank[y]
4
5
               then rank[y] \leftarrow rank[y] + 1
```

FIND-SET(x)

- 1 if $x \neq p[x]$ set x's parent as the root
- 2 then $p[x] \leftarrow \text{FIND-SET}(p[x])$ the root
- 3 return p[x] the root

21-8x

Effect of the heuristics on the running time

$$m = n + f + u$$

- 1. If only <u>Union-by-rank</u> is used, it can be easily shown that $O(m \lg n)$ time is required. (h \le \lg n, Ex 21.4-4)
- 2. If only path-compression is used, it can be shown (not proved here) that the running time is

$$\Theta(n+f\cdot(1+\log_{2+f/n}n)),$$
* better than 1

where *n* is the number of *Make-Set* operations and *f* is the number of *Find-Set* operations.

3. When both heuristics are used, the worst-case running time is $O(m\alpha(n))$, where $\alpha(n)$ is the very slowly growing inverse of Ackermann's function. Since $\alpha(n) \le 4$ for any conceivable application, we can view the running time as linear in m in all practical situations.

almost linear

Amortized: $\Rightarrow O(\alpha(n))$ per operation

21-8a

Ackermann's function and its inverse

* Let
$$g(i) = 2^2$$
 be a repeated exponentiation.

(e.g., $g(4) = 2^{2^{2^{2^2}}}$.)

(e.g.,
$$g(4) = 2^{2^{2^{2^2}}}$$
.)

* The function $\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\}$ is essentially the inverse of g(i). (e.g., $\lg^* 2^{2^{2^2}} = 5$.) lg*g(i) = i + 1

* The Ackermann's function: for integer $i, j \ge 1$,

$$A(1, j) = 2^{j}$$
 for $j \ge 1$,
 $A(i, 1) = A(i-1, 2)$ for $i \ge 2$,
 $A(i, j) = A(i-1, A(i, j-1))$ for $i, j \ge 2$,

$$\begin{bmatrix} 2 \\ \vdots \\ j \end{bmatrix}$$

- * Note that $A(2, j) = 2^2 = g(j)$ for all $j \ge 1$. Thus, $A(i, j) \ge g(j)$ for $i \ge 2$. $A(2, j) = A(1, A(2, j-1)) = 2^{A(2, j-1)}$
- * The inverse of Ackermann's function:

$$\alpha(n) = \min\{i \ge 1: A(i, 1) > \lg n\}.$$

e.g., $\alpha(4) = 2$, $\alpha(32) = 3$, $\alpha(512) = 3$, $\alpha(2^{10000}) = 4$

- * $A(4, 1) = A(3, 2) = g(16) >> 10^{80}$.
- * Since $A(4, 1) >> 10^{80}$, we have $\alpha(n) \le 4$ for all practical cases (unless lg $n > 10^{80}$).

 or $n > 2^{10}$
- * $\lg^* n \le 5$ for all practical cases (unless $n > 2^{65536}$). = $g(4) = 2^{2^{2^2}} = 2^{65536} \approx 10^{1926}$
- * Since $A(i, 1) \ge g(i)$ for $i \ge 4$, $\alpha(n) = O(\lg^* n)$.
 - 1 α \log^* \log \log \sqrt{n} n n^k 2^n g A

Homework: Ex. 21.4-4, Prob. 21-1, 21-3.

21-10×

17-13