Computational Engineering - Numerical Methods

Dr. Kalidas Yeturu

Roots of functions

- Motivation
 - Very generic, applicable in different engineering contexts
 - Solving gradient function equals 0
 - Plotting of contours
- Some of the popular examples
 - Matlab roots() and fzero() functions
 - Python scipy.optimize.root()

Definition and examples

- Given f(x)
- Roots are a set of values of x, $\exists x : \{x : f(x) = 0\}$
- Simple equations
 - f(x) = mx + c
 - $f(x) = ax^2 + bx + c \rightarrow$

$$x = \left\{ \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \frac{-b + \sqrt{b^2 - 4ac}}{2a} \right\}$$

Need sophisticated methods for finding roots of higher order and transcendental functions

Higher order polynomials

$$- f(x) = 5x^2 - x^3 + 7x^6$$

- Transcendental equations
 - $f(x) = \ln(x^2) 1$

$$- f(x) = e^{-0.2x} \sin(3x - 0.5)$$

- Types of methods
 - Single real root detection
 - Determining all roots both real and complex

Root detection by visual inspection of plots

•
$$f(c) = \frac{gm}{c} \left(1 - e^{\frac{-c}{m} * t} \right) - v$$

- t = 10, g = 9.8, v = 40, m = 68.1
- Plot and examine where it intersects X axis
- Root ~ 14.75

<u>Issues</u>

- Error prone
- Subjective
- Not scalable (imagine, we need it as a routine invoked 1 million times)
- Difficult for multivariate scenarios

c	f (c)	
4	34.115	
8	17.653	
12	6.067	
16	-2.269	
20	-8.401	

Algorithms for root finding

- Bracketing methods
 - Where root exists in an interval
 - Bisection
 - Regula Falsi
- Open methods
 - Where starting from a single point, a sequence of steps will lead to root
 - Simple Fixed Point
 - Newton-Raphson
 - Secant Method
- Iterative in nature
 - New value at time step t+1 depends of value at time step t
- Special cases and convergence aspects

Root finding – Bracketing methods

- Given an interval of coordinates on X axis
- Determine a point in the closed interval as root
- Case (a) Root does not exist in the interval
- Case (b) Single root exists
- Case (c) Two roots exist
- Case (d) Multiple roots exist

Bracketing methods...

Same sign 0 roots

Opposite sign
1 roots

Same sign

2 roots

Opposite sign 3 roots

Same sign

Even number of roots

Computation Engineering course, IIT Tirupati - Dr. Kalidas Yeturu

Bracketing methods...

- Opposite signs
 - Case (e): Function is tangential to X axis:Two roots
 - Case (f): Function is discontinuous: Two roots
- Same sign, function touches X axis
 - Case (g) : One root
- These are special cases, need to handled separately

Bracketing methods - Bisection/Bolzano method

- 1. Choose xl and xu such that function changes sign $f(x_l) * f(x_u) < 0$
- 2. Determine mid point $x_r = \frac{x_l + x_u}{2}$
- 3. Evaluate cases
 - $\quad \text{If } f(x_l) * f(x_r) < 0 \\ \quad \text{Root lies between } [x_l \text{ and } x_r] \\ \quad \text{Set xu} = \text{xr}$

Goto Step 2

 $- \quad \text{If } f(x_l) * f(x_r) > 0 \\ \text{Root lies between } [x_r \text{ and } x_u] \\ \text{Set xl} = \text{xr}$

Goto Step 2

- If $f(x_l) * f(x_r) = 0$ x_r is the root **Break** from loop

Report x_r

Bisection method...

Input initial xr

END Bisect

Iteration	ΧĮ	Χu	X _r	ε _α (%)	ε _t (%)
1	12	16	14		5.279
2	14	16	15	6.667	1.487
3	14	15	14.5	3.448	1.896
4	14.5	15	14.75	1.695	0.204
5	14.75	15	14.875	0.840	0.641
6	14.75	14.875	14.8125	0.422	0.219

$$\varepsilon_a = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| * 100\%$$

$$\varepsilon_t = \left| \frac{true - x_r^{new}}{true} \right| * 100\%$$

T Error is small

Number of iterations is over

Bisection method...!

Improved Bisection method

2n evaluations of f(x)

```
FUNCTION Bisect(x1. xu. es. imax. xr. iter. ea)
  iter = 0
 DO.
   xrold = xr
   xr = (x1 + xu) / 2
    iter = iter + 1
    IF xr \neq 0 THFN
      ea = ABS((xr - xrold) / xr) * 100
                              Two times f(x) evaluations
    END IF
    test = f(x1) * f(xr)
    IF test < 0 THEN
      xu = xr
    ELSE IF test > 0 THEN
      x1 = xr
   FI SF
       ea = 0
   END IF
   IF ea < es OR iter ≥ imax EXIT
 FND DO
 Bisect = xr
END Bisect
```

n+1 evaluations of f(x)

```
FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
 iter = 0
                      One time evaluation
 f1 = f(x1) \leftarrow
                      before the loop
 DO
   xrold = xr
   xr = (x1 + xu) / 2
                           Single invocation
   fr = f(xr) \longleftarrow
                           of f(x) inside the loop
   iter = iter + 1
   IF xr \neq 0 THEN
     ea = ABS((xr - xrold) / xr) * 100
   END IF
   test = fl * fr
   IF test < 0 THEN
     xu = xr
   ELSE IF test > 0 THEN
                           Remember the value
     x1 = xr
     f1 = fr
   ELSE
     ea = 0
   FND IF
   IF ea < es OR iter ≥ imax EXIT
 END DO
 Bisect = xr
END Bisect
```

Bracketing methods – Regula Falsi Method

- Consider triangles ΔABC and ΔCDE
- Vertical angles are same $\langle ACB = \langle ECD \rangle$
- Ratio of opposite side by adjacent sides are same $\Rightarrow \frac{ED}{CD} = \frac{AB}{AC}$
- Translating the above ratio to function values and X coordinates

$$\frac{f(x_u)}{(x_u - x_r)} = \frac{-f(x_l)}{(x_r - x_l)}$$

After rearranging terms, we have

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Idea – As the bracket is close to the root,
curve segment is nearly a straight line...

- 1. Choose xl and xu such that function changes sign $f(x_l) * f(x_u) < 0$
- 2. Determine mid point

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- 1. Evaluate cases
 - If $f(x_l) * f(x_r) < 0$ Root lies between $[x_l \text{ and } x_r]$

Set xu = xr

Goto Step 2

- If $f(x_l) * f(x_r) > 0$ Root lies between $[x_r \text{ and } x_u]$ Set $x_l = x_r$

Goto Step 2

- If $f(x_l) * f(x_r) = 0$ x_r is the root **Break** from loop
- Report x_r

Naïve approach

- 1. Choose xI and xu such that function changes sign $f(x_1) * f(x_n) < 0$
- 2. Determine mid point

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- 1. Evaluate cases
 - $\quad \text{If } f(x_l) * f(x_r) < 0 \\ \text{Root lies between } [x_l \text{ and } x_r] \\ \text{Set } xu = xr$

Goto Step 2

- If $f(x_l) * f(x_r) > 0$ Root lies between $[x_r \text{ and } x_u]$ Set xl = xr
 - Goto Step 2
- If $f(x_l) * f(x_r) = 0$ x_r is the root **Break** from loop
- Report x_r


```
FUNCTION ModFalsePos(x1, xu, es, imax, xr, iter, ea)
 iter = 0
 f1 = f(x1)
 fu = f(xu)
xrold = xr
   xr = xu - fu * (x1 - xu) / (f1 - fu)
   fr = f(xr)
   iter = iter + 1
   IF xr <> 0 THEN
     ea = Abs((xr - xrold) / xr) * 100
   END IF
   test = f1 * fr
   IF test < 0 THEN
     xu = xr
     fu = f(xu)
      iu = 0
     i1 = i1 + 1
     If il \geq 2 THEN fl = fl / 2
   FLSE IF test > 0 THEN
     x1 = xr
     f1 = f(x1)
     i1 = 0
     iu = iu + 1
     IF iu ≥ 2 THEN
   ELSE
     ea = 0
   END IF
   IF ea < es OR iter ≥ imax THEN EXIT
END DO
 ModFalsePos = xr
END ModFalsePos
```


 x_u is not moving

...

If
$$|I| \le 2$$
 IFIEN $|I| = |I| / 2$

ELSE IF test > 0 THEN

 $x1 = xr$
 $f1 = f(x1)$
 $i1 = 0$
 $iu = iu + 1$

IF $iu \ge 2$ THEN $fu = fu / 2$

EISE

...

$$f(x_l) < 0$$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

$$x'_r = x_u - \frac{\frac{f(x_u)}{2}(x_l - x_u)}{f(x_l) - \frac{f(x_u)}{2}}$$

Let $x_r - x_r' > 0 \rightarrow f(x_l^-) > 0$ Ends up in a contradiction! $\Rightarrow x_r < x_r'$

i.e. root estimate moves right after $f(x_u) \leftarrow \frac{f(x_u)}{2}$

Bracketing interval detection

