OMB No. 0651-0011

INFORMATION DISCLOSURE CITATION

		ION DISCLOSURE	CHAIION	OIP	E
Atty. Docket No.	03495.0304	Appln. No.	10/734,622	7	6
Applicant	Annick LIM et al.			S NUL g	2004 ju
Filing Date	December 15, 2003	Group:	1645	THE	240

U.S. PATENT DOCUMENTS						
Examiner Initlal*	Document Number	Issue Date	Name	Class	Sub Class	Filing Date If Appropriate

	FOREIGN PATE	NT DOCUMENT	s		
Document Number	Publication Date	Country	Class	Sub Class	Translation Yes or No
			1		

	OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)			
DT	Arakawa et al., Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion (2002). Science 295, 130 1-6			
DT	Arstila et al., A direct estimate of the human αβ T cell receptor diversity (1999). Science 286, 958-6 1			
DT	Baron et al., The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct (2003). Immunity 18, 193-204			
DT	Berek et al., Maturation of the immune response in germinal centers (1991). Cell 67, 1121-9			
DT	Bollum, F. J., Terminal deoxynucleotidyl transferase: biological studies (1978). Adv Enzymol Relat Areas Mol Biol 47, 347-74			
DT	Bousso et al., Individual variations in the murine T cell response to a specific peptide reflect variability in naïve repertoires (1998). Immunity 9, 169-78			
DT	Cabaniols et al., Most α/β T cell receptor diversity is due to terminal deoxynucleotidyl transferase (2001). J Exp Med 194, 13 85-90			
DT	Casrouge et al., Size estimate of the αβ TCR repertoire of naïve mouse splenocytes (2000). J Immunol 164, 5782-7			
DT	Delassus et al., PCR-based analysis of the murine immunoglobulin heavy-chain repertoire (1995). J Immunol Methods 184, 219-29			
DT	Even et al T-cell repertoires in healthy and diseased human tissues analysed by T-cell receptor β-chain CDR3 size determination: evidence for oligoclonal expansions in tumours and inflammatory diseases (1995). Res Immunol 146, 65-80			
DT	Gilfihlan et al., Mice lacking TdT: Mature animals with an immature lymphocyte repertoire (1993). Science 261, 1175-8			
DT	Gojobori et al., Relative contributions of germline gene variation and somatic mutation to immunoglobulin diversity in the mouse (1986), Mol Biol Evol 3, 156-67			

OMB No. 0651-0011

INFORMATION DISCLOSURE CITATION OIPE

Atty. Docket No.	03495.0304	Appln. No.	10/734,622	WW 0 0 2004
Applicant	Annick LIM et al.	_		(y JUN 3 0 2004 g)
Filing Date	December 15, 2003	Group:	1645	1,00

	OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)			
· DT	Honjo et al., Molecular mechanism of class switch recombination: Linkage with somatic hypermutation (2002) Annu Rev Immunol 20, 165-96			
DT	Klein et al., Evidence for a large compartment of IgM-expressing memory B cells in humans (1997). Blood 89, 1288-98			
DT	Klein et al., Human immunoglobulin (Ig) M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (Memory) B cells (1998). J Exp Med 188, 1679-89			
DT	Komori et al., Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes (1993). Science 261, 1171-5			
DT	Lefranc et al., IMGT, the international immunogenetics database (1999). Nucleic Acids Res 27, 209-12			
DT	LeMaoult et al., Clonal expansions of B lymphocytes in old mice (1997). J Immunol 159, 3 866-74			
DT	Lim et al., Spread of clonal T-cell expansions in rheumatoid arthritis patients (1996). Hum Immuno 48, 77-83			
DT	Lim et al., Combination of MHC-peptide multimer-based T cell sorting with the immunoscope permits sensitive ex vivo quantitation and follow-up of human CD8+ T cell immune responses (2002). J Immunol Methods 261, 177-94			
DT	MacLennan et al, Antigen-driven selection of virgin and memory B cells (1986). Immunol Rev 91, 6			
DT	Muramatsu et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme (2000). Cell 102, 553-63			
DT	Odendahi et al., disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus (2000). J Immunol 165, 5970-9			
DT	Oettinger et al., RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination (1990). Science 248, 1517-23			
DT	Okazaki et al., The AID enzyme induces class switch recombination in fibroblasts (2002). Nature 416, 340-5			
DT	Pannetier et al., The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments (1993). Proc Nati Acad Sci U S A 90, 43 19-23			
DT	Pannetier et al., T-cell repertoire diversity and clonal expansions in normal and clinical samples (1995). Immunol Today 16, 176-8 1			
DT	Peggs et al., Assessing diversity: immune reconstitution and T-cell receptor BV spectratype analysis following stem cell transplantation (2003). Br J Haematol 120, 154-65			
DT	Revy et al., Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2) (2000). Cell 102, 565-75			

INFORMATION DISCLOSURE CITATION

				OIPE -
Atty. Docket No.	03495.0304	Appln. No.	10/734,622,/	· ·
Applicant	Annick LIM et al.			JUN 3 0 2004 ju
Filing Date	December 15, 2003	Group:	1645	J. J

	iun			
	OTHER DOCUMENTS (Including Author, Title, Date, Pertinent Pages, Etc.)			
DT	Reynaud et al., A hyperconversion mechanism generates the chicken light chain preimmune repertoire (1987). Cell <i>48</i> , 379-88			
DT	Schatz et al., The V(D)J recombination activating gene, RAG-1 (1989). Cell 59, 1035-48			
DT	Schittek et al., Natural occurrence and origin of somatically mutated memory B cells in mice (1992). J Exp Med 176, 427-3 8			
DT	Thompson et al., Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment (1987). Cell 48, 369-78			
DT	Tuaillon et al., Evidence that terminal deoxynucleotidyltransferase expression plays a role in Ig heavy chain gene segment utilization (2000). J Immunol 164, 6387-97			
DT	Wack et al., An improved PCR-heteroduplex method permits high-sensitivity detection of clonal expansions in complex T cell populations (1996). J Immunol Methods 196, 181-92			
DT	Wagner et al., Perturbation of the T cell repertoire in rheumatoid arthritis (1998). Proc Natl. Acad Sci U S A 95, 14447-52			
DT	Wedderburn et al., Molecular fingerprinting reveals non-overlapping T cell oligoclonality between an inflamed site and peripheral blood (1999). This Immunol 11, 535-43			
DT	Williams et al., The contribution of somatic hypermutation to the diversity of serum immunoglobulin: Dramatic increase with age (2000). Immunity 13, 409-17			
DT	Wu et al., Immunoglobulin somatic hypermutation: Double-strand DNA breaks, AID and error-prone DNA repair (2003). J Clin Immunol 23, 23 5-46			
DT	Yoshikawa et al., AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts (2002). Science 296, 2033-6			
DT	Zing et al., Cloning of size-selected human immunoglobulin heavy-chain rearrangements from third complementarity-determining region fingerprint profiles (1996). Biotechniques 20, 78-82, 84, 86-7			
Examiner	/David Thomas/ Date Considered 12/19/2006			
t	nitial if reference considered, whether or not citation is in conformance with MPEP 609; draw line nrough citation if not in conformance and not considered. Include copy of this form with next communication to applicant.			
Form PTO 1449	Patent and Trademark Office - U.S. Department of Commerce			