C2 S4: Monte Carlo Methdod for Estimating Heat Content

I. Monte Carlo Integration

- A. Definition and application
- B. Heat content Q_{Ω}
 - i. Golbal solution u(s,t): integration over the initial position: conditional probability multiply initial condition
 - a. Estimating the local solution based on the Random Walk Method (RWM)
 - b. Generating initial positions distributed uniformly in the domain, and run RWM to estimate u(s,t).
 - ii. Intergation u(s,t) over the space domain

II. Brownian Motion (BM)

- A. General description and history of BM (easier for non-mathematican to understand)
 - i. irregualer, continuous, and permanent random motion found by Brownion: microscopic pollen grains suspend in the water
 - ii. Einstein's explaination for BM and the solution to the heat equation
 - a. Becaue of the continual collision from the surrounding water molecules, pollen grains have the same average kinetic energy as the molecules.
 - b. Einstein's proof: BM provides a solution to the Fourier's heat equation

B. Mathematical Prospective

- i. Formula
- ii. BM's propertities
- C. Random Walk
 - i. Definition and history
 - ii. Connection with BM