Visualizations in R

TMA4268 Statistical Learning V2019. Module 1: INTRODUCTION TO STATISTICAL LEARNING

Mette Langaas and Julia Debik, Department of Mathematical Sciences, NTNU week 2, 2019

Contents

Introduction	1
Packages needed	1
Data sets	1
Scatter Plot	2
Histogram	3
Box-plot	4
All pairs and different plots	5
Area chart	6
Heat map	7
Correlogram	8

Introduction

For each of the plots (scatter plot, histogram, boxplot, area chart, heat map, correlogram) explain what you see (including what is on the x- and y-axis) and try to transform what you see into insight about the data. All except the correlogram use ggplot2 for plotting. If you want to read more about the idea behind ggplot2 (grammar of graphics) Chapter 3 of R for Data Science is a good read.

Packages needed

```
install.packages("car")
install.packages("faraway")
install.packages("ggplot2")
install.packages("GGally")
install.packages("reshape")
install.packages("corrplot")
install.packages("corrgram")
```

Data sets

Three different data sets are used - read descriptions in R:

• SLID: ?car::SLID

mtcars: ?datasets::mtcarsozone: ?faraway::ozone

Scatter Plot

Scatterplot

Scatterplot

Histogram

Box-plot

All pairs and different plots

```
library(GGally)
ggpairs(SLID) + theme_minimal()
```


Area chart

```
ages = cut(SLID$age, breaks = 3)
SLID2 = cbind(SLID, ages)
ggplot(SLID, aes(x = wages, fill = ages)) + geom_area(stat = "bin") + theme_minimal()
```


Heat map

```
library(reshape)
head(mtcars)
carsdf = data.frame(scale(mtcars))
carsdf$model = rownames(mtcars)
cars_melt = melt(carsdf, id.vars = "model")

ggplot(cars_melt, aes(x = variable, y = model)) + geom_raster(aes(fill = value)) +
    labs(title = "Heat Map") + scale_fill_continuous(name = "Value") + theme_minimal()
```


##		mpg	сут	aisp	np	arat	Wτ	qsec	٧S	am	gear	carb
##	Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
##	Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
##	Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
##	Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
##	Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
##	Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Correlogram

The ozone data:

```
library(faraway)
data(ozone)
library(corrplot)
ozonecorr = cor(ozone)
corrplot(ozonecorr)
```


library(corrgram)
corrgram(ozone, upper.panel = panel.conf)

