Earning yields prediction

Neural networks and econometrics models in forecasting stock returns

Andrey Grishin

Faculty of Economics Moscow State University

January 20, 2023

Agenda

- Problem Formalization
- Main Techniques
- Already existing solutions
 - Stationary methods
 - Non Stationary Methods
- A RNN
 - Simple RNN
 - GRU
 - LSTM
- **(5)** Comparison of results
- 6 Conclusion

Problem Formalization

Given:

- Company name.
- $y_t: t = \overline{1, n}$ its earning yields series.

Aim:

- **1** To predict the yield in the *next* period of time.
- **2** Mathematical view: $\mathbb{E}(y_{t+1}|y_t, y_{t-1}, ..., y_1)$.

History of Methods:

- Statistics.
- Machine Learning.
- Oeep Learning.

Main Techniques

Models:

- **1 Decomposition**: deconstruction of time series.
- 2 Smooth-based: removal of anomalies.
- Moving-Average: tracking a single type of data.
- **Exponential Smoothing**: (2) + exponential window function.

Already existing solutions

Existing solutions for TS forecasting problem:

- Time-series decomposition.
- ② Time-series regression models.
- Exponential smoothing (EWMA).
- ARIMA, SARIMA, SARIMAX.
- **4 ARFIMA**, VAR, SVAR.

- (Recurrent) Neural Networks.
- GARCH, FIGARCH.
- SETARMA, ADL.
- SVM, SSA, TBATS. etc.

Stationary methods (1)

AR(F)IMA(p, d, q) (Autoregressive Fractionally Integrated Moving Average)

$$\left(1 - \sum_{i=1}^{p} \phi_i L^i\right) \nabla^d(y_t - \mu) = \left(1 + \sum_{j=1}^{q} \theta_j L^j\right) \varepsilon_t \tag{1}$$

$$ARIMA \Rightarrow d \in \mathbb{Z}^+$$

$$\nabla^d = (1 - L)^d$$

$$ARFIMA \Rightarrow d \in (-0.5, 0.5)$$

$$\nabla^d = \sum_{k=0}^{\infty} \frac{\Gamma(k-d)L^k}{\Gamma(-d)\Gamma(k+1)}$$

Stationary methods (2)

■ GARCH(p, q)¹ Conditional Heteroscedasticity:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^q \phi_i \sigma_{t-i}^2 = \alpha_0 + \alpha(L) \varepsilon_t^2 + \beta(L) \sigma_t^2$$
 (2)

FIGARCH(p, d, q)

$$\sigma_t^2 = \alpha_0 \left[1 - \beta \left(L \right) \right]^{-1} + \varepsilon_t^2 \left[1 - \left[1 - \beta \left(L \right) \right]^{-1} \cdot \left(1 - L \right)^d \cdot \overbrace{\phi \left(L \right)}^{1 - \alpha \left(L \right) - \beta \left(L \right)} \right]$$
(3)

$$d \in (0,1)$$

¹Empirically proved that GARCH(1, 1) is better to use in practice.

Stationary methods (3)

1 SETARMA($k; p_1, \ldots, p_k; q_1, \ldots, q_k$) (Self Exciting Threshold ARMA)

$$y_{t} = \sum_{i=1}^{k} \left[\phi_{0}^{(i)} + \overbrace{\Phi^{(i)}(L) y_{t}}^{\sum_{j=1}^{p_{i}} \phi_{j}^{(i)} y_{t-j}} + \varepsilon_{t} - \overbrace{\Theta^{(i)}(L) \varepsilon_{t}}^{\sum_{w=1}^{q_{i}} \theta_{w}^{(i)} \varepsilon_{t-w}} \right] \cdot I(y_{t-d} \in R_{i})$$

$$(4)$$

 $\varepsilon \sim N(0, \sigma^2), d$ threshold delay, $I(\cdot)$ Bernoulli random process

$$R_i = [r_{i-1}, r_i) : -\infty = r_0 < \ldots < r_{i-1} < r_i < \cdots < r_k = \infty : r_i - \text{ threshold}$$

$$\bigcup_{i=1}^k R_i = \mathbb{F}$$

Non Stationary Methods (1)

• EWMA (Exponential Weighted Moving Average²)

$$EWMA_t = \frac{v_t}{1 - \beta^t} = \beta \cdot y_t + (1 - \beta) \cdot EWMA_{t-1}$$
 (5)

Neural Networks (sequential adjustment of feature space):

$$\varphi_k(W_{k-1}\cdot\varphi_{k-1}(W_{k-2}\cdot(\ldots(W_1\cdot X)\ldots))) \tag{6}$$

3 SVM - Support Vector Machine Regressor.

$$\begin{cases}
\langle w, w \rangle + C \sum_{j=1}^{n} \xi_{j} \to \min_{w, b} : C \in \mathbb{R} \\
y_{j}(\langle w, x_{j} \rangle + b) \ge 1 - \xi_{j} : \forall j \\
\xi_{j} \ge 0 : \forall j
\end{cases}$$
(7)

 $^{^{2}\}beta = \frac{2}{n+1}$: n - number of days for averaging, 2 - smoothing factor.

Non Stationary Methods (SSA) (2)

Singular Spectrum Analysis (SSA)

• Turn $Y = (y_0, ..., y_{N-1})$ into Hankel's (trajectory) matrix.

$$Y \to X \in \mathbb{R}^{L,K} : L \in [2, \lfloor N/2 \rfloor], K = N - L + 1$$
 (8)

Singular Vector Decomposition (SVD) of Hankelian.

$$X = \underbrace{U}_{L \times L} \underbrace{\sum}_{L \times K} \underbrace{V^*}_{K \times K} \tag{9}$$

 $d - \operatorname{rank}(X)$.

For orthonormal $V \in \mathbb{R}^{K,K} \Rightarrow V^{-1} = V^T$ and $V \in \mathbb{C}^{K,K} \Rightarrow V^* = \left(\overline{V}\right)^T$

U - **columns** are performing **orthonormal basis set** in space of **columns** in X.

V - columns are performing orthonormal basis set in space of rows in X.

 Σ - "diagonal" matrix composed of singular values of XX^T , which are equal to X^TX .

Non Stationary Methods (SSA) (3)

1 X spectral decomposition can be represented:

$$X = \sum_{j=0}^{d-1} \sigma_j U_j V_j^* = \sum_{j=0}^{d-1} \sigma_j \underbrace{U_j}_{V_j^*} \underbrace{V_j^*}_{V_j^*} = \sum_{j=0}^{d-1} X_j = \sum_{s \in S} X_s + \sum_{t \in T} X_t + \dots$$
 (10)

 $s \in \mathcal{S}$ - seasonality. $t \in \mathcal{T}$ - trend.

 (σ_j, U_j, V_j^*) - singular triple : $\sigma_j = \sqrt{\lambda_j}$ - contribution of j elementary matrix to X.

2 Reconstruction of Hankel's matrix from X_j elementary matrix by Hankelisation.

$$\hat{H}: L \times K \to L \times K$$

 $\tilde{X}_j = \hat{H}X_j$ — anti-diagonal elements are \approx equal. (11)
 $\tilde{X}_j \to \tilde{Y}_j$ — reconstructed Y by anti-diagonal averaging.

Non Stationary Methods (SSA) (4)

$$\hat{H}(A+B) = \hat{H}A + \hat{H}B.$$
 $\hat{H}(\alpha A) = \alpha \hat{H}A \Rightarrow \text{Linear Operator.}$ (12)

$$X = \hat{H}X = \hat{H}\left(\sum_{j=0}^{d-1} \sigma_j U_j V_j^*\right) = \sum_{j=0}^{d-1} \hat{H}X_j = \sum_{j=0}^{d-1} \tilde{X}_j$$
 (13)

$$\tilde{x}_{m,n} = \begin{cases}
\frac{1}{s+1} \sum_{l=0}^{s} x_{l,s-l} & , 0 \leq s \leq L-1 \\
\frac{1}{L-1} \sum_{l=0}^{L-1} x_{l,s-l} & , L \leq s \leq K-1 \\
\frac{1}{K+L-S-1} \sum_{l=s-K+1}^{L} x_{l,s-l} & , K \leq s \leq K+L-2
\end{cases}$$
(14)

s = m + n. We achieve the reconstructed times series from its decomposed parts.

Non Stationary Methods (SSA) (5)

Q: How to determine, which components should be grouped together?

A: Introduce the inner weights.

lacktriangledown Firstly: inner weighted product (frequency of each element in \tilde{X}_j).

$$w_{k} = \begin{cases} k+1 & , \ 0 \leq k \leq L-1 \\ L & , \ L \leq k \leq K-1 \\ N-k & , \ K \leq k \leq N-1 \end{cases}$$
 (15)

Orrelation matrix (there is no noiseless dependences in real world data).

$$W_{corr} = \left\{ w_{i,j} = \frac{\left(\tilde{Y}_{j}, \tilde{Y}_{i}\right)_{w}}{\|\tilde{Y}_{i}\|_{w} \|\tilde{Y}_{j}\|_{w}} \right\}_{i,j=0}^{N-1} : \left(\tilde{Y}_{j}, \tilde{Y}_{i}\right)_{w} = \sum_{k=0}^{N-1} w_{k} \cdot \tilde{y}_{i,k} \cdot \tilde{y}_{j,k}$$
(16)

 $w_{i,j} \to 1$ if components \tilde{Y}_i and \tilde{Y}_j are close, else $w_{i,j} \to 0$. In practice is $w_{i,j} \ge 0.3 \Rightarrow \tilde{Y}_i$ and \tilde{Y}_j should be grouped together.

(ロ) (型) (注) (注) (注) (2) (の)

Non Stationary Methods (SSA) (6)

Forecasting algorithm:

Note: U_j - j column of U.

- **1** Count $r = |\{\sigma_j : \sigma_j > 0\}|$.
- 2 Take $\{\underline{U}_{i,k}: 1 \le j \le r, 1 \le k < L\}: U$ matrix of orthonormal column-vectors.
- **3** Take $\{\pi_j : \pi_j = U_{j,L} : j = \overline{1,r}\}$ π_j the last element of each of r columns in matrix U.
- **o** Evaluate $\nu = \sum_{j=1}^r \pi_j^2$.
- **6** Compute vector of coefficients $R = (a_{L-1}, \ldots, a_1)^T = \frac{1}{1-\nu} \sum_{j=1}^r \pi_j \underline{U}_j : \underline{U}_j \in \mathbb{R}^{L-1,1}$
- Evaluate the forecast formula:

$$y_{t} = \begin{cases} \tilde{y}_{t} & , \ t = \overline{1, N} \\ \sum_{j=1}^{L-1} a_{j} y_{t-j} & , \ t = \overline{N+1, N+h} \end{cases}$$
 (17)

 \tilde{y}_t - reconstructed TS without noise components.

Simple RNN⁴ (1)

• Simple RNN block³ specified for our problem:

$$egin{aligned} h_t &= anh\left(W_{hh}h_{t-1} + b_{hh} + W_{hx}x_t + b_{hx}
ight) \ W_{hx} &\in \mathbb{R}^{H_{out} imes H_{in}}, x_t \in \mathbb{R}^{H_{in} imes 1} \ W_{hh} &\in \mathbb{R}^{H_{out} imes H_{out}}, h_t \in \mathbb{R}^{H_{out} imes 1} \ b_{hx}, b_{hh} &\in \mathbb{R}^{H_{out} imes 1} \end{aligned}$$

Figure 1: Simple RNN cell

15 / 20

³Usually h_0 is initialized with **0**.

⁴Do not look at bidirectional way.

Gate Recurrent Unit

• GRU:

$$r_{t} = \sigma (W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})$$

$$z_{t} = \sigma (W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})$$

$$n_{t} = \tanh (W_{in}x_{t} + b_{in} + r_{t} * (W_{hn}h_{t-1} + b_{hn}))$$

$$h_{t} = (1 - z_{t}) * n_{t} + z_{t} * h_{t-1}$$

Figure 2: GRU cell

Long-Short Term Memory

• LSTM:

$$\begin{split} i_t &= \sigma \left(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi} \right) \\ f_t &= \sigma \left(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf} \right) \\ g_t &= \tanh \left(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg} \right) \\ o_t &= \sigma \left(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho} \right) \\ c_t &= f_t * c_{t-1} + i_t * g_t \\ h_t &= o_t * \tanh \left(c_t \right) \end{split}$$

Figure 3: LSTM cell

Comparison of results

content...

Conclusion

content...

Thank you for attention!