# Bowdoin

## **Convolutional Nearest Neighbors:** Reinterpreting Convolution Through K-Nearest Neighbor Selection

Mingi Kang, Jeova Farias Sales Rocha Neto PhD.

Bowdoin College, ME



## INTRODUCTION

- Convolutional Nearest Neighbor (ConvNN) reinterprets convolution as k-nearest neighbor aggregation with flexible neighbor selection criteria.
- Standard convolution implicitly performs k-NN with fixed spatial distance (e.g., 3x3 kernel = k = 9 spatially-adjacent neighbors including self).
- ConvNN generalizes this by allowing neighbor selection based on:
  - Spatial distance (reduces to standard convolution)
  - Feature similarity (cosine/Euclidean)
- Hybrid spatial-feature metrics
- Core Algorithm of ConvNN:
  - 1. Compute pairwise similarities between all spatial positions
  - 2. Select k-nearest neighbors per position via hard top-k
  - 3. Aggregate neighbors with learnable weights (1D convolution)

### **BASE ALGORITHM**

Convolution

with stride k

#### **ConvNN Visualization**



#### 1. Similarity Computation

$$S = XX^{\mathsf{T}} \in \mathbb{R}^{n \times n}$$
 where  $S_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ 

#### 2. K-Nearest Neighbor Selection

$$I_k = k - argmax(XX^\top) \in \mathbb{R}^{n \times n}$$

Neighbors = 
$$X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

**Algorithm 1** Convolutional Nearest Neighbors 1D

**Input**:  $\mathbf{X} \in \mathbb{R}^{B \times C \times N}$  (batch × channels × tokens)

**Parameters**: *k* (number of neighbors)

**Output**:  $\mathbf{Y} \in \mathbb{R}^{B \times C' \times N}$ 

- 1: // For each batch element 2: Let  $X = \mathbf{X}[b,:,:]^{\top} \in \mathbb{R}^{N \times C}$  with columns  $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^N$
- 4: // Step 1: Compute similarity matrix 5: Assume each  $\mathbf{x}_i$  is  $\ell_2$ -normalized:  $\|\mathbf{x}_i\|_2 = 1$
- 6: Compute similarity:  $S = XX^{\top} \in \mathbb{R}^{N \times N}$  where  $S_{ij} = \mathbf{x}_i^{\top} \mathbf{x}_j$
- 8: // Step 2: Find k-nearest neighbors 9:  $I_k = argmax_k(S) \in \{0,1\}^{N \times N}$

11: // Step 3: Gather features

12: **for**  $i \in [1, N]$  **do** 13:  $\mathcal{N}_k(\mathbf{x}_i) = X[I_k[i,:],:] \in \mathbb{R}^{k \times C}$ 

14:  $\mathbf{V}_{prime}[:,:,i\cdot k:(i+1)\cdot k] = \mathcal{N}_k(\mathbf{x}_i)^{\top}$ 

**15: end for** 

17: **// Step 4: Convolve** 

18:  $\mathbf{Y} = \text{Conv1D}(\mathbf{V}_{prime}, \text{kernel\_size} = k, \text{stride} = k)$ 

20: return Y

## SIMILARITY COMPUTATION SPEED-UPS









• To reduce O(N<sup>2</sup>) complexity of all to all similarity computation, we introduce two sampling methods: Random Sparsification and Spatial Sparsification.

• Trade-off between computational efficiency and neighbor selection quality is controlled by sampling parameter n.

# **ARCHITECTURE AND TRAINING**

- Architecture: VGG-11 with Conv2d layers replaced by ConvNN and branching layers
- **Dataset**: CIFAR-10 image classification
- **Training**: 60 epochs with AdamW (Ir=1e-5, wd=1e-6), StepLR scheduler (gamma=0.95, step=2)
- Variants tested:
  - Location-only (spatial distance)
  - Feature-only (cosine similarity)
  - Hybrid (weighted combination)
  - Branching with ratio (e.g., 50% Conv2d + 50% ConvNN)

## **RESULTS**

#### **Training and Test Loss**





Branching ConvNN = Branching with branching ratio 0.500, kernel\_size = 3, K = 9, Feature Similarity and Aggregation





Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation

Table 1: CIFAR10 ConvNN Branching Ratio (Color Similarity and Color Aggregation) Branching Ratio ( $\lambda$ ) | Params Top-1 Acc. | Test Loss | GFlops Conv2d 0.000 $130.015M \mid 69.78\%$ 2.570.293Branching 0.125130.015M73.49%1.810.3250.250130.015M74.32%1.560.325Branching 1.230.500130.015M73.61%0.325Branching 1.2368.63%0.325Branching 0.750130.015M1.33Branching 0.875130.015M65.66%0.325ConvNN 1.000  $130.015M \mid 50.250\%$ 1.840.325

VGG 11 Architecture with kernel\_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models:  $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$ 

Table 2: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Color

| Aggregation) |                               |                      |                |           |        |  |  |  |
|--------------|-------------------------------|----------------------|----------------|-----------|--------|--|--|--|
| Models       | Branching Ratio ( $\lambda$ ) | Params               | Top-1 Acc.     | Test Loss | GFlops |  |  |  |
| Conv2d       | 0.000                         | $\mid 130.015M \mid$ | 69.78%         | 2.57      | 0.293  |  |  |  |
| Branching    | 0.125                         | 130.015M             | 72.92%         | 1.92      | 0.331  |  |  |  |
| Branching    | 0.250                         | 130.015M             | <b>74.20</b> % | 1.52      | 0.331  |  |  |  |
| Branching    | 0.500                         | 130.015M             | <b>73.16</b> % | 1.24      | 0.331  |  |  |  |
| Branching    | 0.750                         | 130.015M             | <b>69.98</b> % | 1.22      | 0.331  |  |  |  |
| Branching    | 0.875                         | 130.015M             | 64.77%         | 1.33      | 0.331  |  |  |  |
| ConvNN       | 1.000                         | 130.015 <i>M</i>     | 52.70%         | 1.80      | 0.331  |  |  |  |

VGG 11 Architecture with kernel\_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models:  $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$ 

Table 3: CIFAR10 ConvNN Branching Ratio (Location + Color Similarity and Loca-

| Models                                                        | Aggregation)  Branching Ratio $(\lambda)$                                    | Params                                                                                     | Top-1 Acc.                                     | Test Loss                            | GFlops                                    |
|---------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------------------------|
| Conv2d                                                        | 0.000                                                                        | 130.015M                                                                                   | 69.78%                                         | 2.57                                 | 0.293                                     |
| Branching<br>Branching<br>Branching<br>Branching<br>Branching | $ \begin{array}{c c} 0.125 \\ 0.250 \\ 0.500 \\ 0.750 \\ 0.875 \end{array} $ | $ \begin{vmatrix} 130.021M \\ 130.028M \\ 130.040M \\ 130.052M \\ 130.059M \end{vmatrix} $ | 73.75%<br>75.22%<br>74.52%<br>69.49%<br>66.14% | 1.85<br>1.46<br>1.17<br>1.15<br>1.25 | 0.331<br>0.331<br>0.331<br>0.331<br>0.325 |
| ConvNN                                                        | 1.000                                                                        | 130.065M                                                                                   | 60.09%                                         | 1.44                                 | 0.325                                     |

VGG 11 Architecture with kernel\_size = 3 (Conv2d), K = 9 (ConvNN) Branching Models:  $\lambda \times \text{ConvNN} + (1 - \lambda) \times \text{Conv2d}$ 

#### Model Performance vs. N





Branching ConvNN = Branching with branching ratio 0.250, Location + Feature Similarity and Aggregation. Spatial Sampling =  $N = N \times N$  sub grid 3, Random Sampling =  $N^2$  pixels.

#### **CONVOLUTION AND ATTENTION**

#### 1. Convolution

$$S = D = 2(1 - X^{T}X) \in \mathbb{R}^{n \times n} \text{ where } D_{ij} = || x_i - x_j ||_2^2 = 2(1 - x_i^{T}x_j)$$

$$I_k = k - argmax(2(1 - X^{T}X)) \in \mathbb{R}^{n \times n}$$

$$\text{Neighbors} = X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

## 2. Convolutional Nearest Neighbor

$$S = XX^{\mathsf{T}} \in \mathbb{R}^{n \times n} \text{ where } S_{ij} = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$$

$$I_k = k - argmax(XX^{\mathsf{T}}) \in \mathbb{R}^{n \times n}$$

Neighbors = 
$$X[I_k[i,:],:] \in \mathbb{R}^{k \times n}$$

#### 3. Attention

$$QK^{T} \in \mathbb{R}^{n \times n}$$
 where  $Q = w_{Q}X$ ,  $K = w_{k}X$ 

$$A(Q, K) = softmax(\frac{QK^{T}}{\sqrt{d_k}}) \in \mathbb{R}^{n \times n}$$

Attention(Q, K, V) = A(Q, K)V where  $V = w_vX$ 

# **DISCUSSION**

- **Hybrid similarity** (spatial + feature) outperforms pure spatial or pure feature selection
- Branching architecture achieves best performance by combining ConvNN's global context with Conv2d's spatial locality.
- ConvNN unifies convolution and attention as neighbor aggregation differ:
  - Spatial-only → standard convolution
  - All positions with soft weights with linear projection → self-attention
  - ConvNN occupies the middle ground with hard, content-aware selection
- **Feature work**: Extend to Vision Transformers, explore learnable similarity metrics, investigate soft vs. hard selection.

### REFERENCES

- A. Buades, B. Coll and J. . -M. Morel, "A non-local algorithm for image denoising," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 60-65 vol. 2, doi: 10.1109/CVPR.2005.38.
- Singh, Sidak Pal, and Martin Jaggi. "Model fusion via optimal transport." Advances in Neural Information Processing Systems 33 (2020): 22045-22055. Plötz, Tobias, and Stefan Roth. "Neural nearest neighbors networks." Advances in Neural information processing systems 31 (2018).
- Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).