PERIODIC TRENDS

General Chemistry I, Lecture Series 8 Pengxin Liu

Reading:

OGB8 §3.2, §§3.4–3.6, §5.5

H He

Li Be

Alternative Periodic Tables

N O F Ne Na Mg

1928

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra

The Periodic Table

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Atomic size

- No precise definition
- Atomic/ionic radius = radius of outermost orbital

Radial Distribution

For H atom, r(2s) > r(2p)

Radial Distribution

For H atom, r(3s) > r(3p) > r(3d)

Radial Distribution

Radii of Isoelectronic (等电子的) Ions

Periodic Trends in Atomic Radii

Radii of Atoms with Same n

Atom	Z	Z _{eff} (2s)	Valence shell
Li	3	~1.30	2s ¹
Be	4	~1.95	$2s^2$
В	5	~2.60	2 s ² 2 p ¹
С	6	~3.25	2 s ² 2 p ²

For s and p subshells, $\Delta Z_{\text{eff}}(ns) \approx 0.65 \Delta Z$

For 2s and 2p, $Z_{\text{eff}} \approx 0.65(Z-1)$, so $r(Z) = \frac{n^2}{Z_{\text{eff}}} a_0$ $\approx \frac{4a_0}{0.65} \cdot \frac{1}{Z-1}$

Radii of Atoms with Same n (2)

For d subshells, $\Delta Z_{\rm eff}(ns) \approx 0.15 \Delta Z$; For f subshells, $\Delta Z_{\rm eff}(ns) \approx 0$.

For 4s,

$$Z_{\text{eff}} \approx 0.15Z + 1.53$$
,
so $r(Z) = \frac{n^2}{Z_{\text{eff}}} a_0$
 $\approx \frac{16a_0}{0.15} \cdot \frac{1}{Z + 10}$

Atom	Z	Z _{eff} (4s)	Valence shell
Mn	25	5.28	$3d^54s^2$
Fe	26	5.43	$3a^64s^2$
Co	27	5.58	3d ⁷ 4s ²
Ni	28	5.71	30 ⁸ 4s ²

Trends in Atomic Radii (1)

Trends in Atomic Radii (2)

Summary

- Atomic radius is determined by the valence s subshell
- When estimating Z_{eff} for ns:
 - np electrons only partly screens ns;
 - (n-1)d electrons efficiently screens ns;
 - (*n*–2)*f* electrons completely screens *ns*.
- The trends in atomic radius $r_{n,Z}$
 - Periods according to n
 - $r_{n,Z}$ decreases within the same period
 - s-, p-, and d-blocks
- The Periodic Table

Gaining and Losing an Electron

Ionic Bonds

First Ionization Energy (IE₁)

- 1. General Trend: generally increase moving across a period, then fall abruptly for the alkali atom at the beginning of the next period.
- 2. d-block contraction, Lanthanide contraction.
- 3. Zigzag: empty, half full of p orbitals.

Anomaly of the Trend in IE

Electron configurations

- Hg: [Xe] 4f¹⁴ 5d¹⁰ 6s²
- Hg+: [Xe] 4f¹⁴ 5d¹⁰ 6s¹
- TI: [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p¹

Relativistic effect of 6s electrons

$$v \rightarrow c \Rightarrow m_{\rm e}' = \frac{m_{\rm e}}{\sqrt{1 - v^2/c^2}} \uparrow$$

$$\Rightarrow \text{Ry} = \frac{e^4 m_e}{8\varepsilon_0^2 h^2} \uparrow \Rightarrow E_{n,Z} \approx -\frac{Z_{\text{eff}}^2}{n^2} \text{Ry} \downarrow$$

For $_{80}$ Hg $6s^2$, $v/c \approx 80/137 \approx 0.58$ $m_e' = 1.23 m_e$

Ionic Bonding: Energetics

Ionic Bonding: Geometry

Mulliken's Electronegativity (1934) 电负性

Tendency to attract electrons from a nearby atom.

$$\chi \propto \frac{1}{2}(IE_1 + EA)$$

Robert S. Mulliken (U. of Chicago, 1896–1986)

 CI^{-} r = 167 pm

4

Pauling's Electronegativity (1932)

Linus Pauling (Caltech, 1901–1994)

$$H_2 + CI_2 \rightarrow 2 HCI$$

$$\Delta E = -95 \text{ kJ/mol} = -0.98 \text{ eV/molecule}$$

 $|\chi_{\text{Cl}} - \chi_{\text{H}}| \approx \sqrt{0.98} = 0.99$

$$H_2 + Br_2 \rightarrow 2 HBr$$

$$\Delta E = -53 \text{ kJ/mol} = -0.55 \text{ eV/molecule}$$

 $|\chi_{\text{Br}} - \chi_{\text{H}}| \approx \sqrt{0.55} = 0.74$

$$Br_2 + Cl_2 \xrightarrow{?} 2 BrCl$$

$$\Delta E = -1.0 \text{ kJ/mol} = -0.01 \text{ eV/molecule}$$

 $|\chi_{\text{Cl}} - \chi_{\text{Br}}| \approx \sqrt{0.01} = 0.1$

Calculating Electronegativities

$$(\chi_A - \chi_B)^2 \propto q^2 \propto \Delta E$$

Electronegativity and Bonding

From Ionic to Covalent Bonding

Ionic

Polar Covalent

Covalent

Periodic Trends in Forming Hydrides

```
LiH BeH<sub>2</sub>
NaH MgH<sub>2</sub>
```

Ionic Covalent Polar

```
\chi = 2.20
                                            \chi = 2.55
Н
                                                                       He
Li
    Be
                                                   В
                                                           N
                                                               0
                                                                       Ne
                                                   Αl
                                                       Si
                                                                S
Na
   Mg
                                                                       Ar
        Sc
                     Cr Mn Fe
                                 Co
                                      Ni
                                          Cu
                                             Zn
                                                                        Kr
    Ca
                                                      Ge
                                                  Ga
                                                           As
                                                               Se
Rb
                                 Rh
    Sr
            Zr
                Nb Mo Tc
                            Ru
                                     Pd Ag Cd
                                                      Sn
                                                           Sb
                                                                       Xe
                                                   In
         *
            Hf
                         Re Os
                                                           Bi
Cs
    Ba
                 Ta
                     W
                                Ir
                                      Pt Au
                                              Hg
                                                   Tl
                                                      Pb
                                                               Po
                                                                       Rn
        **
Fr
    Ra
```

Periodic Trends in Forming Oxides

```
Li<sub>2</sub>O BeO
Na<sub>2</sub>O MgO
```

Ionic Covalent

```
Н
                                                                   He
Li
    Be
                                                       N
                                                                   Ne
                                               Αl
                                                   Si
Na
   Mg
                                                           S
                                                                   Ar
                                      Cu Zn
       Sc
                   Cr Mn Fe
                              Co
                                   Ni
                                                   Ge
                                               Ga
                                                       As
                                                                   Kr
                                                           Se
Rb
                               Rh
    Sr
           Zr
               Nb Mo Tc
                          Ru
                                   Pd Ag Cd
                                                   Sn
                                                       Sb
                                                                   Xe
                                               In
Cs
   Ba
                   W
                       Re Os
                              lr
                                   Pt Au
                                           Hg
                                               Tl
                                                   Pb
                                                       Bi
                                                           Po
                                                                   Rn
        **
Fr
    Ra
```

Acid/Base Properties of Oxides

Basic:

$$Na_2O + H_2O \rightarrow Na^+(aq) + OH^-(aq)$$

Acidic:

$$Cl_2O_7 + H_2O \rightarrow ClO_4^-(aq) + H^+(aq)$$

Amphoteric 两性的:

$$Al_2O_3 + H^+(aq) \rightarrow Al^{3+}(aq) + H_2O$$

 $Al_2O_3 + OH^-(aq) + H_2O \rightarrow Al(OH)_4^-(aq)$

aq: aqueous 水合

Most acidic: HClO₄

Most basic: CsOH

Summary

- Electronegativity
 - Mulliken: $\chi \propto \frac{1}{2}(IE_1 + EA)$
 - Pauling: $(\chi_A \chi_B)^2 \propto q^2 \propto \Delta$
- Bonding
 - Ionic
 - Covalent / polar covalent
- Oxides and hydrides
 - Charge
 - Basic, acid, amphoteric

$$\chi_{\rm F} = 4.0$$

 $\chi_{\rm H} = 2.2$

Next Lecture Series: Bonding in Molecules

Reading: OGB8 §6, YY §§3.2—3.5

