CSE221

Lecture 21: Disjoint Sets

Hyungon Moon

Acknowledgment: The content of this file is based on the slides of the textbook as well as the slides provided by Prof. Won-Ki Jeong. Some slides are based on https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/UnionFind.pdf

Disjoint Sets

- A disjoint set is a partition of a set of elements.
- For example, S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

A partition of S is

$$\{ \{0, 6, 7, 8\}, \{1, 4, 9\}, \{2, 3, 5\} \}$$

Tree Representation of Sets

Set representation using a tree

- The element at the root = the identity of the set
 - For all elements in a set, chasing the pointers will reach the same root node.
- Easy to check whether two elements are in the same set.

Set Representation

Data representation

Array representation

i	[o]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4

Union-Find Operations

- makeSet(x): Create a singleton set containing the element x and return the position storing x in this set
- union(A,B): Return the set A U B, destroying the old A and B
- **find(p)**: Return the set containing the element at position p

Simple Union

 Merging two disjoint sets by setting a parent of one set as the other set

```
void Sets::SimpleUnion(int i, int j)
{
   parent[i] = j;
}
```


Simple Find

Find the root of the tree containing i

```
int Sets::SimpleFind(int i)
{
   while(parent[i] >= 0) i = parent[i]);
   return i;
}
```


Find 6: 6->0->4

Degenerate Case

- union(0,1), union(1,2),... makes a degenerate tree
 - $O(n^2)$ for find(0), find(1), ..., find(n-1)

Union-by-Size (i.e., Weighted Union)

- Maintain a subtree count for each node
- Initially, the count is I
- Link the root of the smaller tree to the root of the larger tree (breaking ties arbitrarily).
- E.g., union(7, 3)

Union-by-Size (i.e., Weighted Union)

Attach small tree to large tree

```
int Sets::WeightedUnion(int i, int j)
// parent[i] = -count[i], parent[j] = -count[j]
   int temp = parent[i] + parent[j];
   if(parent[i] > parent[j]) { i has fewer nodes
      parent[i] = j; // j is the root of united set
     parent[j] = temp;
  else {
      parent[j] = i;
     parent[i] = temp;
```


Union-by-Size (i.e., Weighted Union)

Find O(?)

Analysis of Union-by-Size

- Theorem: $n = size(r) >= 2^{height(r)}$ for every root node r
- Proof:
 - Base case: when size(r) = I, height(r) = 0
 - Assume true after adding i links
 - When height(r) <= height(s), size'(r) = size(r) + size(s) >= 2 size(s) >= 2 x $2^{\text{height(s)}} = 2^{\text{height(s)}+1} = 2^{\text{height'(r)}}$
- Corollary: Any Union and Find Operations takes O(log n) time in the worst case

Union-by-Rank

- Maintain an integer called *rank* for each node.
- Initially, the rank is 0.
- Link the root of the smaller rank to root of larger rank (if tie, increase rank of the new root by I).
- Rank = height (before using path compression)
- E.g., union(7, 3)

Union-by-Rank

```
\frac{\text{MAKE-SET}(x)}{parent(x) \leftarrow x}.
rank(x) \leftarrow 0.
```

```
FIND (x)

WHILE x \neq parent(x)

x \leftarrow parent(x).

RETURN x.
```

```
UNION-BY-RANK (x, y)
r \leftarrow \text{FIND}(x).
s \leftarrow \text{FIND}(y).
IF (r = s) RETURN.
ELSE IF rank(r) > rank(s)
   parent(s) \leftarrow r.
ELSE IF rank(r) < rank(s)
   parent(r) \leftarrow s.
ELSE
   parent(r) \leftarrow s.
   rank(s) \leftarrow rank(s) + 1.
```

Theorem: Any Union and Find Operations takes
 O(log n) time in the worst case

Path Compression

- If there is a node j between i and root(i), set parent(j) = root(i)
 - O(I) find after collapsing

FIND(x)

IF $x \neq parent(x)$ $parent(x) \leftarrow \text{FIND}(parent(x)).$

RETURN parent(x).

Path Compression

• Find(x)

Analysis of Disjoint Set Union Algorithms

• By using Union-by-Size / Union-by-Rank with path compression, the amortized time per operation is $O(\alpha(n))$, where $\alpha(n)$ is the inverse Ackermann function:

$$\alpha_k(n) = \begin{cases} 1 & \text{if } n = 1\\ \lceil n/2 \rceil & \text{if } k = 1\\ 1 + \alpha_k(\alpha_{k-1}(n)) & \text{otherwise} \end{cases}$$

$$\alpha(n) = \min\{k : \alpha_k(n) \leq 3\}$$

																	2	† 655 3	2 2 ²	_	_
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		216	 265536		2 ↑ 65536
$\alpha_1(n)$	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8		215	 265535		huge
$\alpha_2(n)$	1	1	2	2	3	3	3	3	4	4	4	4	4	4	4	4		16	 65536		2 ↑ 65535
$\alpha_3(n)$	1	1	2	2	3	3	3	3	3	3	3	3	3	3	3	3		4	 5		65536
$\alpha_4(n)$	1	1	2	2	3	3	3	3	3	3	3	3	3	3	3	3		3	 3		4

Equivalent Classes

For each pair (i,j): if Find(i) != Find(j), then Union(Find(i),Find(j))

Find(x) returns root of the tree containing x

Questions?

