

TÉCNICAS DE BINARIZACIÓN

Autor: Pascual Andrés Carrasco Gómez

ÍNDICE

- 1. Introducción
- 2. Técnicas Globales
- 3. Técnicas Locales
- 4. Técnicas Aprendizaje Automático Supervisado
- 5. Conclusiones

1. INTRODUCCIÓN

- Binarización: Técnica de reducción de información en la que los únicos valores posibles son verdadero y falso.
- En una imagen digital los valores verdadero y falso corresponden a dos colores: blanco (255) y negro (0).
- Permite separar objetos o regiones (de interés) de una imagen.

1. TÉCNICAS GLOBALES VS TÉCNICAS LOCALES

Propiedades	Técnicas Globales	Técnicas Locales	
Obtención del umbral	Información completa (imagen)	Ventana análisis	
Ajuste de parámetros	No requiere (Habitualmente)	Si requiere	
Sensibilidad al ruido (señal)	Mayor sensibilidad	Menor sensibilidad	
Coste computacional	Menor	Mayor → Ventana de análisis	

2. TÉCNICAS GLOBALES

Otsu (1979)

 Umbral (t) que maximiza la varianza entre-clase:

$$\sigma_b^2(t)=\omega_0(t)\omega_1(t)[\mu_0(t)-\mu_1(t)]^2$$

Pesos
$$\omega_0(t) = \sum_{i=0}^{t-1} p(i)$$
 $\omega_1(t) = \sum_{i=t}^{L-1} p(i)$

$$\mu_0(t) = \sum_{i=0}^{t-1} i rac{p(i)}{\omega_0}$$
 Medias $\mu_1(t) = \sum_{i=0}^{L-1} i rac{p(i)}{\omega_0}$

NUEVO INVENTO
MAQUINA DE BICORIDER
FIRST SI COMPANIONE DE BICORIDE
Septe.

LA FIND E SECONO DE LA Explanta de Actività
LA FIND E SECONO DE LA Explanta de Actività
LA FIND E SECONO DE LA Explanta de Actività
LA FIND E SECONO DE LA Explanta de Actività
LA FIND E SECONO DE LA EXPLANTA DESCRIPTA DE SECONO

LA FIND E SECONO DE LA EXPLANTA DE SECONO

LA FIND E SECONO

LA FIND

nos veluminosa y la mas ligera, concillo, schela y barata que se conco-Eamejo facil y escritara ciara DEFOSITARIO EXCLUSIVO: LUIS VILAS A E Celle Amargh, In. — Proctora.

Se suplica qua, a sur posible, al page en efeutar es Strapes del Giro Mutto

3. TÉCNICAS LOCALES

• Bernsen (1986)

$$T(x,y) = \begin{cases} \frac{I_{\text{max}} + I_{\text{min}}}{2} & \text{if } I_{\text{max}} - I_{\text{min}} \ge L \\ \delta & \text{if } I_{\text{max}} - I_{\text{min}} < L \end{cases}$$

• Niblack (1986)

$$T(x,y) = m(x,y) + ks(x,y)$$

• Sauvola (2000)

$$T(x,y) = m(x,y) \times \left(1 + k\left(1 - \frac{s(x,y)}{R}\right)\right)$$

- Entrenamiento mediante pares de imágenes (original, binarizada).
- Necesidad de corpus grande y variado para entrenar los modelos.
- Mediante cada pixel de cada imagen del corpus obtenemos un vector de características.
- Problemas computacionales: temporal y espacial.

Dataset utilizado → H-DIBCO (ICFHR)

Datasets	Tamaño	Distribución	
DIBCO 2009/10/12/13/14	76 imágenes	Train	
DIBCO 2016	10 imágenes	Test (Competición)	

http://vc.ee.duth.gr/h-dibco2016/

- Obtenemos 3 valores de cada pixel → ventana de análisis
 - Media global Media local
 - Desviación típica global Desviación típica local
 - thr_otsu I(x,y)

Goddel varifyon Jagan in somm to. bouljufo; diel wante wer during pleasen

Goldel varifylan Dagen sin somm to. bous july; diel wample win dantem pleater

K-Neighbours

SVM

Colle vaifyden Sayan sin serim to. Konstjale, diel wants were darken pleaken

Gold miffon Tayen sin serim la. bruljufo; diel wants was dunden pleasen

K-Means

MLP

Método	FM	FPS	PSNR	DRD
SVM	86.90	89.31	17.80	4.99
MLP	84.07	87.93	16.90	5.99
K-Neighbours	83.40	86.63	16.80	6.15
K-Means	85.29	85.22	16.55	6.58
Otsu	86.61	88.67	17.80	5.56
Sauvola	82.52	86.85	16.42	7.49
Mejor	88.72	91.84	18.45	3.86
Peor	76.10	77.99	14.21	15.14

5. CONCLUSIONES

- Técnicas globales y locales como método base.
- Diferentes enfoques con técnicas de aprendizaje automático.
- Las estrategias simples "suelen ser" las mejores opciones.
- Evaluación del sistema con resultados numéricos (No visuales).
- Compararse con resultados del estado del arte es una buena praxis para evaluar nuestro sistema.

6. REFERENCIAS

- Otsu N (1979) A thresholding selection method from gray-scale histogram. IEEE T Syst Man Cyb 9:62-66
- Bernsen J (1986) Dynamic thresholding of gray-level images. In: Proc Int Conf on Pat Recog, pp 1251-1255
- Niblack W (1986) An introduction to digital image processing. Prentice Hall, New Jersey, pp 115-116
- Sauvola J, Pietikainen M (2000) Adaptive document image binarization. Pattern Recognit 33(2):225-236
- ICFHR2016 Handwritten Document Image Binarization Contest (H-DIBCO 2016)

TÉCNICAS DE BINARIZACIÓN

Autor: Pascual Andrés Carrasco Gómez