LECTURE 20: An introduction to classical statistics

- Unknown constant θ (not a r.v.)
- if $\theta = \mathbf{E}[X]$: estimate using the sample mean $(X_1 + \cdots + X_n)/n$
 - terminology and properties
- Confidence intervals (CIs)
- CIs using the CLT
- CIs when the variance is unknown
- Other uses of sample means
- Maximum Likelihood estimation

Classical statistics

- Inference using the Bayes rule: unknown Θ and observation X are both random variables
- Po Px16

- Find $p_{\Theta|X}$
- Classical statistics: unknown constant θ

Px (210)

- also for vectors X and θ : $p_{X_1,...,X_n}(x_1,...,x_n;\theta_1,...,\theta_m)$
- $p_X(x;\theta)$ are NOT conditional probabilities; θ is NOT random
- mathematically: many models, one for each possible value of heta

Problem types in classical statistics

• Classical statistics: unknown constant θ

- Hypothesis testing: $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$
- Composite hypotheses: $H_0: \theta = 1/2$ versus $H_1: \theta \neq 1/2$
- Estimation: design an **estimator** $\widehat{\Theta}$, to "keep estimation **error** $\widehat{\Theta} \theta$ small"

Estimating a mean

• X_1, \ldots, X_n : i.i.d., mean θ , variance σ^2

$$\widehat{\Theta}_n$$
 = sample mean = $M_n = \frac{X_1 + \dots + X_n}{n}$

 $\widehat{\Theta}_n$: estimator (a random variable)

Properties and terminology:

• $\mathbf{E}[\widehat{\Theta}_n] = \theta$ (unbiased)

$$\hat{\Theta} = \mathcal{G}(x)$$

$$E[\hat{\Theta}] = \sum_{x} \mathcal{G}(x) P_{x}(x; \theta)$$

- for all θ in the second consistency) $\bullet \quad \text{WLLN: } \widehat{\Theta}_n \to \theta \quad \text{(consistency)}$ for all o
- mean squared error (MSE): $\mathbf{E} \left[(\widehat{\Theta}_n \theta)^2 \right] = \mathbf{van} \left(\widehat{\Theta}_{\mathbf{N}} \right) = \underbrace{\sigma^{\mathbf{N}}}_{\mathbf{N}}$ •

On the mean squared error of an estimator

• For any estimator, using $\mathbf{E}[Z^2] = \mathrm{var}(Z) + (\mathbf{E}[Z])^2$: $\mathbf{Z} = \mathbf{0} - \mathbf{\theta}$

$$\mathbf{E}[(\widehat{\Theta} - \theta)^{2}] = \operatorname{var}(\widehat{\Theta} - \theta) + \left(\mathbf{E}[\widehat{\Theta} - \theta]\right)^{2} = \operatorname{var}(\widehat{\Theta}) + (\operatorname{bias})^{2}$$

$$\widehat{\Theta}_n = M_n: MSE = \sigma^2/n + O$$

$$\hat{\Theta} = 0$$
 : $MSE = 0 + \theta^2$

• $\sqrt{\text{var}(\widehat{\Theta})}$ is called the standard error

Confidence intervals (CIs)

- The value of an estimator $\widehat{\Theta}$ may not be informative enough 95%
- An 1α confidence interval is an interval $[\widehat{\Theta}^-, \widehat{\Theta}^+]$,

s.t.
$$P(\widehat{\Theta}^- \le \theta \le \widehat{\Theta}^+) \ge 1 - \alpha$$
, for all θ

- often $\alpha = 0.05$, or 0.025, or 0.01
- interpretation is subtle

CI for the estimation of the mean

$$\widehat{\Theta}_n$$
 = sample mean = $M_n = \frac{X_1 + \dots + X_n}{n}$

normal tables: $\Phi(1.96) = 0.975 = 1 - 0.025$

$$\mathbf{P}\left(\frac{|\widehat{\Theta}_n - \theta|}{\sigma/\sqrt{n}} \le 1.96\right) \approx 0.95 \quad (CLT)$$
std of the sample mean(theta_n) $Z_n = \frac{(S_n - n\mu)}{\sqrt{n}\sigma}$

$$\mathbf{P}\left(\widehat{\Theta}_{n} - \frac{1.96\,\sigma}{\sqrt{n}} \le \theta \le \widehat{\Theta}_{n} + \frac{1.96\,\sigma}{\sqrt{n}}\right) \approx 0.95$$

Confidence intervals for the mean when σ is unknown

$$\widehat{\Theta}_n$$
 = sample mean = $M_n = \frac{X_1 + \dots + X_n}{n}$

$$\mathbf{P}\Big(\widehat{\Theta}_n - \frac{1.96\,\sigma}{\sqrt{n}} \le \theta \le \widehat{\Theta}_n + \frac{1.96\,\sigma}{\sqrt{n}}\Big) \approx 0.95$$

- Option 1: use upper bound on σ
 - if X_i Bernoulli: $\sigma \leq 1/2$
- Option 2: use ad hoc estimate of σ

- if
$$X_i$$
 Bernoulli: $\widehat{\sigma} = \sqrt{\widehat{\Theta}_n(1 - \widehat{\Theta}_n)}$

$$\sigma = \sqrt{\theta(1-\theta)}$$

Confidence intervals for the mean when σ is unknown

$$\mathbf{P}\Big(\widehat{\Theta}_n - \frac{1.96\,\sigma}{\sqrt{n}} \le \theta \le \widehat{\Theta}_n + \frac{1.96\,\sigma}{\sqrt{n}}\Big) \approx 0.95$$

 Option 3: Use sample mean estimate of the variance

- Two approximations involved here:
 - CLT: approximately normal
 - using estimate of σ
- correction for second approximation (t-tables) used when n is small

Start from $\sigma^2 = \mathbf{E}[(X_i - \theta)^2]$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \theta)^2 \longrightarrow \sigma^2$$

(but do not know θ)

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \widehat{\Theta}_n)^2 \rightarrow \sigma^2$$

Other natural estimators

$$\bullet \quad \theta_X = \mathbf{E}[X]$$

•
$$\theta_X = \mathbf{E}[X]$$
 $\widehat{\Theta}_X = \frac{1}{n} \sum_{i=1}^n X_i$

$$\bullet \quad \theta = \mathbf{E}[g(X)]$$

•
$$\theta = \mathbf{E}[g(X)]$$
 $\widehat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$

•
$$v_X = \operatorname{var}(X) = \mathbf{E}[(X - \theta_X)^2]$$

$$\widehat{v}_X = \frac{1}{n} \sum_{i=1}^n \left(X_i - \widehat{\Theta}_X \right)^2$$

•
$$cov(X,Y) = \mathbf{E}\Big[(X - \theta_X)(Y - \theta_Y)\Big]$$

$$(X_{i},Y_{i})$$

$$\widehat{\operatorname{cov}}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\Theta}_X) (Y_i - \widehat{\Theta}_Y)$$

$$\widehat{\rho} = \frac{\widehat{\mathsf{cov}}(X, Y)}{\sqrt{\widehat{v}_X} \cdot \sqrt{\widehat{v}_Y}}$$

• next steps: find the distribution of $\widehat{\Theta}$, MSE, confidence intervals,...

Maximum Likelihood (ML) estimation

• Pick θ that "makes data most likely"

$$\widehat{\theta}_{\mathsf{ML}} = \arg\max_{\theta} \left(p_X(x; \theta) \right)$$

- also applies when x, θ are vectors or x is continuous
- compare to Bayesian posterior: $p_{\Theta|X}(\theta \mid x) = \frac{p_{X|\Theta}(x \mid \theta)p_{\Theta}(\theta)}{p_{X}(x)}$
 - interpretation is very different

Comments on ML

- maximize $p_X(x;\theta)$
- maximization is usually done numerically
- if have n i.i.d. data drawn from model $p_X(x;\theta)$, then, under mild assumptions:
 - consistent: $\widehat{\Theta}_n \to \theta$
 - asymptotically normal: $\frac{\widehat{\Theta}_n \theta}{\sigma(\widehat{\Theta}_n)} \longrightarrow N(0,1) \qquad \text{(CDF convergence)}$
 - ullet analytical and simulation methods for calculating $\widehat{\sigma}pprox\sigma(\widehat{\Theta}_n)$
 - hence confidence intervals $\mathbf{P}\Big(\widehat{\Theta}_n 1.96\,\widehat{\sigma} \le \theta \le \widehat{\Theta}_n + 1.96\,\widehat{\sigma}\Big) \approx 0.95$
 - asymptotically "efficient" ("best")

•

ML estimation example: parameter of binomial

• K: binomial with parameters n (known), and θ (unknown)

$$p_K(k;\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

$$\log \left[\binom{n}{k} \right] + k \log \theta + (n-k) \log (i-\theta)$$

$$0 + \frac{k}{\theta} - \frac{n-k}{1-\theta} = 0 \Rightarrow k-k\theta = n\theta - k\theta$$

$$\widehat{\theta}_{\mathsf{ML}} = \frac{k}{n}$$
 $\widehat{\Theta}_{\mathsf{ML}} = \frac{K}{n}$

ullet same as MAP estimator with uniform prior on heta

ML estimation example — normal mean and variance

•
$$X_1, \dots, X_n$$
: i.i.d., $N(\mu, v)$
$$f_X(x; \mu, v) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi v}} \exp\left\{-\frac{(x_i - \mu)^2}{2v}\right\}$$

minimize
$$\frac{n}{2}\log v + \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2v}$$

- minimize w.r.t.
$$\mu$$
: $\widehat{\mu} = \frac{x_1 + \dots + x_n}{n}$

- minimize w.r.t.
$$\mu$$
:
$$\widehat{\mu} = \frac{x_1 + \dots + x_n}{n}$$

$$\frac{1}{\sqrt{2}} (x_i - \mu) = \emptyset \implies \sum_{i=1}^{\infty} x_i = n \mu$$

- minimize w.r.t.
$$v$$
:
$$\hat{v} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

- minimize w.r.t.
$$v$$
:
$$\hat{v} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2.$$

$$\sum_{i=1}^{n} \frac{(x_i - \mu)}{x_i x_i} = 0$$