EXERCICES — CHAPITRE 11

Exercice 1 – Pour chacune des fonctions suivantes, donner une primitive et indiquer un intervalle sur lequel votre réponse est valide.

- 1. $f_1(x) = x^2 3x + 7$
- 2. $f_2(x) = \frac{x^4 + 1}{x^2}$
- 3. $f_4(x) = \frac{1}{x^3}$

- 4. $f_5(x) = (7x+1)^8$
- 5. $f_6(x) = \frac{2x+1}{(x^2+x+1)^4}$
- 6. $f_8(x) = \frac{x^2}{\sqrt{x^3 + 1}}$

Exercice 2 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur \mathbf{R} .

- 1. $f(x) = 3x^2 + \frac{1}{2}$
- 2. $f(x) = x^3 4x + \sqrt{2}$

3. $f(x) = \frac{x^2}{2} - \frac{x}{3} + 1$

Exercice 3 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur $]0, +\infty[$.

- 1. $f(x) = 3x + \frac{3}{x^2}$
- 2. $f(x) = \frac{x^3 2x^2 + 1}{x^2}$

- $3. \ f(x) = \frac{\sqrt{x} 2}{\sqrt{x}}$
- **Exercice 4** Dans chacun des cas suivants, calculer la primitive F de la fonction f qui vérifie la condition donnée.
- 1. f est définie sur **R** par $f(x) = x^2 5x 1$ et $F\left(-\frac{1}{2}\right) = \frac{1}{2}$.
- 2. f est définie sur **R** par $f(x) = 3x^2 5x + \frac{1}{2}$ et F(1) = 0.
- 3. f est définie sur]0, $+\infty$ [par $f(x) = x \frac{1}{x^2} + 1$ et F(1) = 2.
- 4. f est définie sur $]0, +\infty[$ par $f(x) = x^3 + \frac{2}{x^2}$ et $F(1) = -\frac{1}{4}$.
- 5. f est définie sur]0, $+\infty$ [par $f(x) = 2x^3 1 \frac{1}{x^2}$ et F(1) = 1.

Exercice 5 – Soit *F* et *G* les fonctions définies sur] – 1, + ∞ [par $F(x) = \frac{x^2 + x + 1}{x + 1}$ et

 $G(x) = x - 2 + \frac{1}{x+1}$. Montrer que F et G sont deux primitives sur $]-1,+\infty[$ d'une même fonction f que l'on précisera.

Exercice 6 – Soit f la fonction définie sur $\left[\frac{1}{2}, +\infty\right[$ par $f(x) = \frac{2x^2 - 4x}{(2x^2 + x - 1)^2}$.

Montrer que la fonction G définie sur $\left[\frac{1}{2}, +\infty\right[$ par $G(x) = \frac{2x^2}{2x^2 + x - 1}$ est une primitive de la fonction f.

Exercice 7 – Dans chacun des cas suivants, déterminer une primitive F de la fonction f.

- 1. f est définie sur $\left[\frac{1}{2}, +\infty\right[$ par $f(x) = \frac{3}{(2x-1)^3}$.
- 2. f est définie sur **R** par $f(x) = (x+1)(x^2+2x-3)^3$.
- 3. f est définie sur]1, $+\infty$ [par $f(x) = \frac{x}{(x^2 1)^2}$.
- 4. f est définie sur $\left| \frac{1}{2}, +\infty \right|$ par $f(x) = \frac{4}{(1-2x)^2}$.

Exercice 8 – Calculer les intégrales suivantes.

- 1. $A = \int_{-1}^{2} (x^2 3x + 1) dx$,
- 2. $B = \int_{2}^{6} \left(\frac{x^2}{2} \frac{2}{x^2} 1 \right) dx$.

Exercice 9 – Calculer les intégrales suivantes.

- 1. $I_1 = \int_{-2}^{3} (x^3 + x 2) \, \mathrm{d}x$,
- 2. $I_2 = \int_3^{11} \sqrt{2x+3} \, \mathrm{d}x$,

3. $I_3 = \int_0^1 \frac{t^4}{\sqrt{t^5 + 3}} dt$.

Exercice 10 – Montrer que la fonction F définie sur]1,+ ∞ [par $F(x) = \frac{x^2 + 3x - 1}{x - 1}$ est une primitive de la fonction f définie par

$$f(x) = \frac{x^2 - 5x + 1}{(x - 1)^2}.$$

En déduire la valeur de

$$\int_2^3 \frac{x^2 - 5x + 1}{(x - 1)^2} \, \mathrm{d}x.$$

Exercice 11 – Montrer que la fonction F définie sur \mathbf{R} par $F(x) = 12x^2(x^3+1)^3$ est une primitive de la fonction f définie par

$$f(x) = (x^3 + 1)^4.$$

En déduire la valeur de

$$f(x) = (x^3 + 1)^4.$$
$$\int_0^1 (x^3 + 1)^4 dx.$$