(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 December 2005 (22.12.2005)

PCT

(10) International Publication Number WO 2005/121701 A2

(51) International Patent Classification⁷: G01C 5/00

(21) International Application Number:

PCT/US2004/043741

(22) International Filing Date:

23 December 2004 (23.12.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/576,660

3 June 2004 (03.06.2004) US

- (71) Applicant (for all designated States except US): BAE SYSTEMS [US/US]; 65 Spit Brook Road, Nashua, NH 03060 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): KRAVITZ, Arnold [US/US]; 11 oak Wood Lane, Hollis, NH 03049 (US).
- (74) Agents: NIEVES, Peter, A. et al.; 175 Canal Street, Manchester, NH 03101 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 $\textbf{(54) Title:} \ \textbf{METHOD} \ \textbf{AND} \ \textbf{SYSTEM} \ \textbf{FOR} \ \textbf{PROVIDING} \ \textbf{A} \ \textbf{COVERT} \ \textbf{WARNING} \ \textbf{NOTIFICATION} \ \textbf{OF} \ \textbf{A} \ \textbf{HAZARD} \ \textbf{TO} \ \textbf{AN} \ \textbf{AIR-CRAFT}$

the the pro sig

(57) Abstract: A system and method for providing a covert warning notification of a hazard to an aircraft is provided. Generally, the system contains a detection system capable of detecting the hazard, and a transceiver capable of allowing the system to provide the covert warning to a location external from the aircraft. A memory and a processor are also provided within the system, where the processor is configured by the memory to perform the steps of: determining a category of radar system associated with a received signal; determining a modulation scheme, based on the determined category of radar system, for displaying an array of icons on the location external from the aircraft, the array of icons providing the covert warning; and using the received signal to provide the array of icons.