

Dhouha Grissa

Customer Segmentation Chalenge Analysis

Challenge

What are the most important factors for predicting whether a customer has converted or not?

Input data

	customer_id	converted	customer_segment	gender	age	related_customers	family_size	initial_fee_level	credit_account_id	branch
53	15054	1	12	female	29.0	1	0	52.0000	9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6	Helsinki
54	15055	0	11	male	65.0	0	1	123.9584	726a2749e243fa32b5dbbbcde1ff60642830a8a6f7afba	Tampere
55	15056	1	11	male	NaN	0	0	71.0000	8bcd382724ad10f5fa61a06ec296715b408693f3dad6b7	Helsinki
56	15057	1	12	female	21.0	0	0	21.0000	9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6	Helsinki
57	15058	0	13	male	28.5	0	0	14.4584	9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6	Tampere

- 9 variables describing every customer
- Heterogenous data: numeric, categorical, etc.
- Data with missing values
- Data is not normally distributed

Exploratory data analysis

Adjustment of variable types

		customer_segment	gender	age	related_customers	family_size	initial_fee_level	credit_account_id	branch
53	15054	12	2	29.0	1	0	52.0000	0	1.0
54	15055	11	1	65.0	0	1	123.9584	1	2.0
55	15056	11	1	NaN	0	0	71.0000	1	1.0
56	15057	12	2	21.0	0	0	21.0000	0	1.0

- Converting the following variables to numerical variables:
 - gender
 - credit_account_id
 - branch

Detection and Treatment of missing values

credit_account_id

branch

Imputation based on the 'most frequent' value

Choice of k

53 54	12.0	2.0	29.0	1.0	0.0	52.0000	0.0	1.0
54					0.0	52.0000	0.0	1.0
	11.0	1.0	65.0	0.0	1.0	123.9584	1.0	2.0
55	11.0	1.0	33.5	0.0	0.0	71.0000	1.0	1.0
56	12.0	2.0	21.0	0.0	0.0	21.0000	0.0	1.0

Identification of Atypical Data

Distribution of the remaining Categorical variables

Does 'gender' variable influence the results?

Relationship of 'gender' with other variables

Does 'gender' variable influence the results? Response: No

Correlation between the variables

(family_size, related_customers) → cor = 0.48 (credit_account_id, initial_fee_level) → cor = 0.48

Removal of outliers

- age <= 1 and age => 65
- Initial_fee_level>1000
- Family_size>=5
- Related_customers>= 8

```
The size of the dataset before removal of outliers is: (891, 10) The size of the dataset after removal of outliers is: (850, 10)
```

Supervised Classification and Prediction: Approach

Data: balanced, scaling?

- The data is balanced
- Applied StandardScaler()

Results of Logistic Regression

Evaluation of the "test" dataset

accuracy	0.7922
precision	0.7320
recall	0.7245
F1	0.7282
auc	0.7794
mcc	0.5600

Evaluation of the "training" dataset

accuracy	. 0.8202
precision	
recall	. 0.7403
F1	. 0.7585
auc	. 0.8048
mcc	. 0.6158

Predictors according to Logistic Regression

feature_label	feature_importance
gender	1.272313
customer_segment	0.869218
age	0.448167
related_customers	0.298624
credit_account_id	0.238446
branch	0.141566
family_size	0.132265
initial_fee_level	0.028447

Performance of Naïve bayes

Final Results

- The results of LR are promising with an AUC = 0.80, compared to an AUC=0.78 for Naïve Bayes → I rely on the results of LR.
- I have also applied Random Forest but I have noticed an overfitting when comparing the performance of the training vs test sets.

- The major factors that predict if the customer will convert or not are:
 - Gender
 - Customer_segment

Thank you for your confidence!