Chapter 3: Series

31 Def and Ex

3.2 Convergence Tests

• Lemma 3.1

Let $a_n \geq 0$ for all $n \in \mathbb{N}^*$ and let $s_k = \sum_{n=1}^k a_n$. Then

$$\sum_{n=1}^{\infty} a_n \text{ converges if and only if } (s_n) \text{ is bounded.}$$

Proof. Since $s_{n+1} = s_n + a_{n+1} \ge s_n$, it follows that (s_n) is an increasing sequence. By Theorem 2.9, this sequence and hence the series converges if and only if the sequence (s_n) is bounded.

• Theorem 3.6 (Comparison Test)

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with nonnegative terms and assume that $a_n \leq b_n$ for all $n \in \mathbb{N}^*$.

(i) If $\sum_{n=1}^{\infty} b_n$ converges, then also $\sum_{n=1}^{\infty} a_n$ converges.

(ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then also $\sum_{n=1}^{\infty} b_n$ diverges.

Proof. Let $s_k = \sum_{n=1}^k a_n$ and $t_k = \sum_{n=1}^k b_n$. Then both (s_k) and (t_k) are increasing sequences with $s_k \le t_k$.

Hence, if $\sum b_n$ converges, then (t_k) is bounded, say

 $t_k \leq M$ for all $k \in \mathbb{N}$, and $s_k \leq t_k \leq M$ for all $k \in \mathbb{N}$. Hence (s_k) is a bounded sequence and thus converges by Lemma 3.1.

(ii) is the contrapositive of (i).

Example 3.5

Test the series $\sum_{n=1}^{\infty} \frac{\sin^2 n + 10}{n + 2^n}$ for convergence.

Solution. Putting

$$a_n = \frac{\sin^2 n + 10}{n + 2^n}$$

$$\frac{\sin^2 n + 10}{n + 2^n} \le \frac{11}{n + 2^n} < \frac{11}{2^n} = 11 \left(\frac{1}{2}\right)^n = b_n$$
it follows that $0 < a_n < 11 \left(\frac{1}{2}\right)^n =: b_n$. By Theo-

rem 3.1, the series with general term b_n converges.

Hence $\sum_{n=1}^{\infty} \frac{\sin^2 n + 10}{n + 2^n}$ converges by the Comparison Test.

Definition 3.2

- 1. A series $\sum_{n=1}^{\infty} a_n$ is called **absolutely convergent** if the series of its absolute values $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. A series $\sum_{i} a_{i}$ is called **conditionally conver**gent if it is convergent but not absolutely convergent.

Theorem 3.7 Every absolutely convergent series is convergent.

Proof. Let $\sum_{i} a_{i}$ be absolutely convergent. Let $\epsilon > 0$.

Then, by Theorem 3.5, there is $K \in \mathbb{N}$ such that for

all
$$m \ge k \ge K$$
, $\sum_{n=k}^{m} |a_n| < \epsilon$. Because of

all
$$m \ge k \ge K$$
, $\sum_{n=k}^{m} |a_n| < \epsilon$. Because of
$$\left| \sum_{n=k}^{m} |a_n| \le \sum_{n=k}^{m} |a_n| \right| \le \sum_{n=k}^{m} |a_n|$$

it follows that $\left|\sum_{n=k}^{m} a_n\right| < \epsilon$ for these k, m and there-

fore
$$\sum_{n=1}^{\infty} a_n$$
 converges by Theorem 3.5.

Definition 3.3 An alternating series is a series of the form

$$\sum_{n=1}^{\infty} (-1)^n b_n \quad \text{or} \quad \sum_{n=1}^{\infty} (-1)^{n-1} b_n \quad \text{with } b_n \ge 0.$$

Theorem 3.8 (Alternating series test)

If the alternating series $\sum_{n=1}^{\infty} (-1)^n b_n$ or $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ satisfies

- (i) $b_n \ge b_{n+1}$ for all n,
- (ii) $\lim_{n\to\infty} b_n = 0$, then the series converges.

Proof. For $k \in \mathbb{N}^*$ and $m \in \mathbb{N}$, we have

$$(-1)^{k} \sum_{n=k}^{k+2m} (-1)^{n} b_{n}$$

$$= (b_{k} - b_{k+1}) + (b_{k+2} - b_{k+3}) + \dots + (b_{k+2m-2} - b_{k+2m-1})$$

$$+b_{k+2m} + b_{k+2m} + b_{k+2} - \dots - (b_{k+2m-1} - b_{k+2m}). \leq b_{k+2m}$$

Hence

$$0 \le b_{k+2m} \le (-1)^k \sum_{n=k}^{k+2m} (-1)^n b_n \le b_k.$$
 Similarly,
$$0 \le (-1)^k \sum_{n=k}^{k+2m+1} (-1)^n b_n \le b_k - b_{k+2m+1} \le b_k.$$

Now let $\epsilon > 0$. Since $b_k \to 0$ as $k \to \infty$, there is $K \in \mathbb{N}$ such that $b_K < \epsilon$. Hence for all l > k > K:

$$\left|\sum_{n=k}^{l} (-1)^n b_n\right| \le b_k \le b_K < \epsilon.$$

Hence the alternating series converges.

• **Note.** $\lim_{n\to\infty} b_n = 0$ is necessary by Theorem 3.3 since $\lim_{n\to\infty} (-1)^n b_n = 0 \Leftrightarrow \lim_{n\to\infty} b_n = 0 \Leftrightarrow \lim_{n\to\infty} (-1)^{n-1} b_n = 0$

• **Example 3.6** The alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} \underbrace{\frac{3n}{4n-1}}$ does not converge since

$$\lim_{n \to \infty} \frac{3n}{4n - 1} = \frac{3}{4} \neq 0$$

and thus (ii) is not satisfied, which is necessary for convergence. See the <u>note</u> following the statement of the Alternating Series Test.

• **Example 3.7** Find whether the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^3 + 1}$ is convergent.

Solution. Clearly, we have an alternating series with

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{n^2}{n^3 + 1} = 0.$$

To show that $b_n \ge b_{n+1}$ we have at least the following 2 choices:

- 1. Show the inequality directly by cross-multiplication and simplification
- 2. Show that $f(x) = \frac{x^2}{x^3 + 1}$ has a negative derivative for sufficiently large x.

 Alternatively, write

$$\frac{n^2}{n^3+1} = \frac{n^2 + \frac{1}{n}}{n^3+1} - \frac{\frac{1}{n}}{n^3+1} = \frac{1}{n} - \frac{1}{n(n^3+1)}$$

Then

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^3 + 1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n^3 + 1)}$$

is the sum of two alternating series which converge by the alternating series test; hence the series converges.

Theorem 3.9 (Ratio Test)

(i) If
$$\lim_{n\to\infty} \sup \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) If
$$\lim_{n\to\infty}\inf\left|\frac{a_{n+1}}{a_n}\right|=l>1$$
, then the series $\sum_{n=1}^\infty a_n$ diverges.

Proof. Note that the ratio test assumes $a_n \neq 0$ for all $n \in \mathbb{N}$.

(i) Let $\epsilon > 0$ such that $L + \epsilon < 1$. Then there is $K \in \mathbb{N}$ such that $\left| \frac{a_{n+1}}{a_n} \right| < L + \epsilon$ for all $n \geq K$. Hence, for m > K:

$$|a_m| = |a_K| \left| \frac{a_{K+1}}{a_K} \right| \cdots \left| \frac{a_m}{a_{m-1}} \right| < |a_K| (L+\epsilon)^{m-K}. \tag{*}$$

0<[+ < < 1

Since $\sum_{m=K}^{\infty} |a_K| (L+\epsilon)^{m-K}$ is a convergent geometric series, it follows from (*) and the Comparison Test, Theorem 3.6, that $\sum_{m=K}^{\infty} a_m$ converges absolutely. Hence

also $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) Let $l' \in (1, l)$. Then there is $K \in \mathbb{N}$ such that $\left|\frac{a_{n+1}}{a_n}\right| > l'$ for all $n \geq K$. Hence for m > K:

$$|a_m| = |a_K| \left| \frac{a_{K+1}}{a_K} \right| \cdots \left| \frac{a_m}{a_{m-1}} \right| > |a_K|, \quad \boxed{4}$$

so that $a_n \not\to 0$ as $n \to \infty$. Hence $\sum_{n=1}^\infty a_n$ diverges by the Test of Divergence, Theorem 3.3.

• Theorem 3.10 (Root Test)

(i) If $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(ii) If $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|} = L > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Proof.

(i) Let $\epsilon > 0$ such that $L + \epsilon < 1$. Then there is $K \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} < L + \epsilon$ for all $n \ge K$. Hence $|a_n| < (L + \epsilon)^n$ for all $n \ge K$: Since $\sum_{n = K}^{\infty} (L + \epsilon)^n$ is a convergent geometric series, it follows from the comparison test, Theorem 3.6, that $\sum_{n = K}^{\infty} a_n$ converges absolutely. Hence also $\sum_{n = K}^{\infty} a_n$ converges absolutely.

(ii) Let $L' \in (1,L)$. Then for each $K \in \mathbb{N}$ there is $m \geq K$ such that $\sqrt[n]{|a_n|} > L'$. Hence $|a_m| > (L')^m > 1$ for this m, and we conclude $a_n \not\to 0$ as $n \to \infty$. Indeed, if $a_n \to 0$ as $n \to \infty$, for $\epsilon = 1$ there would be $K \in \mathbb{N}$ such that $|a_n| < 1$ for all n > K.

Hence $\sum_{n=1}^{\infty} a_n$ diverges by the Test of Divergence. \square

Tutorial

• Theorem 3.2.1.

- 1. Test $\sum_{n=1}^{\infty} \left\{ \left(\frac{1}{2}\right)^n + 5\left(\frac{3}{4}\right)^n \right\} n \sin\left(\frac{1}{n}\right)$ for convergence.
- 2. Prove that the sequence $(a_n)_{n=1}^{\infty}$ converges if and only if
- (i) $(a_{2n})_{n=1}^{\infty}$ converges,
- (ii) $(a_{2n-1})_{n=1}^{\infty}$ converges,
- (i) $(a_n a_{n-1}) \to 0$ as $n \to \infty$.
- 3. Use Tut 2 to prove that the Alternating Series. **Hint.** Show that $(s_{2n})_{n=1}^{\infty}$ and $(s_{2n-1})_{n=1}^{\infty}$ are monotonic sequences.
- 4. Use the alternating series test, ratio test or root test to test for convergence:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^n n}{2n+1} \right)^{2n}$$
, (b) $\sum_{n=1}^{\infty} \frac{n! 2^n}{(2n)!}$,

(c)
$$\sum_{n=1}^{\infty} (-1)^n \left(e - \left(1 + \frac{1}{n} \right)^n \right)$$
, (d) $\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$,

(e)
$$\sum_{n=1}^{\infty} \frac{2^n}{n}$$
.