Unified Theory of Adaptive-Softened N-Body Dynamics Production version v1.4 (29 Jul 2025)

Abstract

I formulate self-gravitating N-body dynamics in an extended phase space where the global Plummer softening length ϵ is itself a canonical coordinate. A harmonic spring drives ϵ toward a smooth, pair-distance—dependent target $\epsilon_{\star}(q)$, while a quartic wall prevents excursions outside $[\epsilon_{\min}, \epsilon_{\max}]$. A fixed-step, symmetric Strang splitting combines three exact sub-flows—kinetic drift, potential kick (Plummer + wall), and harmonic spring—into a second-order symplectic, time-reversible integrator. Linear and angular momentum are conserved to machine precision and a backward-error bound controls the long-time drift of a modified energy by $\mathcal{O}(h^2)$, independent of the run length. All benchmark and ML-training datasets shipped with this paper are generated by this ham_soft integrator in production mode.

0 Notation and Phase-Space Manifold

Symbol	Definition	Dimension
$q_i \in \mathbb{R}^d$	Cartesian position of body i	L
$p_i = m_i \dot{q}_i$	Canonical momentum	$ m MLT^{-1}$
ϵ	Global Plummer softening	${f L}$
π	Momentum conjugate to ϵ	$ m MLT^{-1}$
$\epsilon_{\star}(q)$	Target softening (smooth, ≥ 0)	${ m L}$
$m_i > 0$	Mass of body i	M
G	Gravitational constant	$L^3 M^{-1} T^{-2}$
$\mu_{ m soft}$	Oscillator "soft mass"	M
$k_{ m soft}$	Spring constant	${ m M}~{ m T}^{-2}$
$\omega_{ m spr}$	$\sqrt{k_{ m soft}/\mu_{ m soft}}$	T^{-1}
$S_{\mathrm{bar}}(\epsilon)$	Quartic wall potential	${ m M~L^2~T^{-2}}$
α	Log-sum-exp smoothing scale	L
$\lambda > 1$	Log-sum-exp safety factor	
$r_{ij} = q_i - q_j $	Pair distance	${f L}$
$r_{ m max}$	$\max_{i < j} r_{ij} \text{ (block-max)}$	L
$ heta_{ m cap}$	Spring phase cap (default 0.1 rad)	_
$\phi_{ m BH}$	Barnes–Hut opening angle (default 0.5)	_

Extended phase-space
$$\Gamma = (q, p, \epsilon, \pi) \in \mathbb{R}^{2dN+2}$$
, symplectic form $\omega = \sum_{i=1}^{N} \mathrm{d}q_i \wedge \mathrm{d}p_i + \mathrm{d}\epsilon \wedge \mathrm{d}\pi$.

1 Extended Hamiltonian

$$H_{\text{ext}} = \underbrace{\frac{1}{2} \sum_{i} \frac{\|p_i\|^2}{m_i}}_{T(p)} + \underbrace{V_{\text{grav}}(q, \epsilon) + S_{\text{bar}}(\epsilon)}_{V(q, \epsilon)} + \underbrace{\frac{\pi^2}{2\mu_{\text{soft}}} + \frac{k_{\text{soft}}}{2} \left(\epsilon - \epsilon_{\star}(q)\right)^2}_{S(\epsilon, \pi; q)}$$
(1)

where
$$V_{\rm grav} = -G \sum_{i < j} \frac{m_i m_j}{\sqrt{r_{ij}^2 + \epsilon^2}}$$
 and

$$S_{\rm bar}(\epsilon) = \frac{k_{\rm wall}}{4} \left[(\epsilon - \epsilon_{\rm min})^{-4} + (\epsilon - \epsilon_{\rm max})^{-4} \right].$$

1.1 Oscillator parameters (production mode)

$$\mu_{
m soft} = \mu_{
m soft}^{
m init}, \quad k_{
m soft} = k_{
m soft}^{
m init}, \quad \omega_{
m spr} = \sqrt{k_{
m soft}/\mu_{
m soft}}$$

Both parameters are frozen. A compile-time flag HAM_SOFT_EXPERIMENTAL re-enables time-varying heuristics; such runs are labelled *non-symplectic*.

1.2 Target softening $\epsilon_{\star}(q)$

Definition.

$$\epsilon_{\star}(q) = \frac{\alpha}{\lambda} \operatorname{softplus}(-\lambda L(q)), \qquad L(q) := \log \sum_{i < j} e^{-r_{ij}/\alpha}.$$
(2)

Gradient (complete).

$$\frac{\partial \epsilon_{\star}}{\partial q_i} = \sigma_{\star} \sum_{j \neq i} w_{ij} \frac{q_i - q_j}{r_{ij}}, \qquad \sigma_{\star} := (1 + e^{\lambda L})^{-1}$$
(3)

with symmetrised weights

$$w_{ij} = \frac{\exp[-(r_{ij} - r_{\max})/\alpha]}{\sum_{k < l} \exp[-(r_{kl} - r_{\max})/\alpha]}, \quad w_{ij} = w_{ji}.$$

Note. Patch G1 corrects the exponent in the logistic prefactor σ_{\star} . Earlier drafts erroneously used $1 + e^{4\lambda L/\alpha}$; the proper factor is $(1 + e^{\lambda L})^{-1}$, which restores the force amplitude and preserves torque cancellation.

2 Canonical Equations of Motion

$$\dot{q}_{i} = \frac{p_{i}}{m_{i}},
\dot{p}_{i} = -\nabla_{q_{i}}V + k_{\text{soft}}(\epsilon - \epsilon_{\star})\nabla_{q_{i}}\epsilon_{\star},
\dot{\epsilon} = \frac{\pi}{\mu_{\text{soft}}},
\dot{\pi} = -\partial_{\epsilon}V - k_{\text{soft}}(\epsilon - \epsilon_{\star}),$$

$$(4)$$

3 Exact Spring Sub-Flow (S_{harm})

Freeze q and $\epsilon_{\star}^{\text{in}} := \epsilon_{\star}(q)$ for the entire sub-flow. Defining $\Delta = \epsilon - \epsilon_{\star}^{\text{in}}$, $\eta = \pi/(\mu_{\text{soft}}\omega_{\text{spr}})$, the flow over τ is

$$\begin{bmatrix} \Delta(\tau) \\ \eta(\tau) \end{bmatrix} = R(\theta) \begin{bmatrix} \Delta(0) \\ \eta(0) \end{bmatrix}, \qquad R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad \theta = \omega_{\rm spr} \tau,$$

with momentum impulse $p_i \leftarrow p_i + k_{\text{soft}} \mathcal{I}(\tau) \nabla_{q_i} \epsilon_{\star}^{\text{in}}, \ \mathcal{I}(\tau) = \left[\Delta(0) \sin \theta + \eta(0) (1 - \cos \theta) \right] / \omega_{\text{spr}}.$

4 Second-Order Fixed-Step Symplectic Integrator

$$\Phi^h = \varphi_S^{h/2} \circ \varphi_V^{h/2} \circ \varphi_T^h \circ \varphi_V^{h/2} \circ \varphi_S^{h/2}$$
(5)

Each $\varphi_V^{h/2}$ updates (p,π) while $holding~(q,\epsilon)$ fixed:

$$p_i \leftarrow p_i - \frac{h}{2} \nabla_{q_i} \left[V_{\text{grav}} + S_{\text{bar}} \right],$$

 $\pi \leftarrow \pi - \frac{h}{2} \partial_{\epsilon} \left[V_{\text{grav}} + S_{\text{bar}} \right].$

Because h is constant, Φ^h is symmetric and symplectic.

5 Boundary Handling — Smooth Barrier

 $S_{\rm bar}(\epsilon)$ is part of the Hamiltonian and is integrated exactly by the φ_V half-kick. If $\epsilon > 0.9 \, \epsilon_{\rm max}$ and $|\pi| > \pi_{\rm crit} = 0.1 \sqrt{2 \mu_{\rm soft} H_{\rm ext}(0)}$, the run aborts; no non-canonical step-size adjustment is attempted.

6 Conserved and Monitored Invariants

6.1 Linear momentum

By translational symmetry of V_{grav} and the barrier's dependence on ϵ only, $\sum_i p_i$ is conserved up to roundoff in the fixed-step scheme.

6.2 Angular momentum

With gradient (3), pairwise antisymmetry gives $\sum_i q_i \times \nabla_{q_i} \epsilon_{\star} = 0$, so the total angular momentum is conserved up to roundoff.

6.3 Center of mass

The center-of-mass position and velocity follow free drift when forces are internal; monitor drift as part of CI.

6.4 Modified energy

A symmetric second-order method preserves a modified Hamiltonian

$$H_{\text{mod}} = H_{\text{ext}} + h^2 C_3 + O(h^4),$$

with the coefficient bounded by

where $M_{\mathrm{tot}} = \sum_{i} m_{i}$ and

$$\epsilon_{\rm gap} = \min(\epsilon - \epsilon_{\rm min}, \ \epsilon_{\rm max} - \epsilon).$$

For fixed h,

$$|H_{\text{mod}}(t) - H_{\text{mod}}(0)| \le C_3 h^2, \qquad 0 \le t \lesssim c e^{\kappa/h}.$$

7 Fixed Sub-Step Schedule (production)

Let

$$h_{\rm sub} = \min \left(\chi \tau_{\rm grav}, \ \theta_{\rm cap} / \omega_{\rm spr}, \ \chi_{\epsilon} \ \epsilon_{\rm safe} / |\dot{\epsilon}| \right),$$
 (7.1)

with $\tau_{\text{grav}} = \min_{i < j} \frac{r_{ij}^{3/2}}{\sqrt{G(m_i + m_j)}}$, $\epsilon_{\text{safe}} = 0.1(\epsilon_{\text{max}} - \epsilon_{\text{min}})$, $\chi = \chi_{\epsilon} = 0.9$. Set $n_{\text{sub}} = \lceil h_{\text{user}}/h_{\text{sub}} \rceil$ at t = 0 and keep h_{sub} fixed.

8 Implementation Diagnostics & CI Thresholds

Check	Criterion
Jacobian symplecticity (finite diff)	$ J^{\top}\omega J - \omega _F < 10^{-11}\sqrt{N}\max(1, J _F)$
Time-reversibility (round-trip)	$\ \Phi_{0\to T}^h \circ \Phi_{T\to 0}^h(x_0) - x_0\ < 10^{-12} (1 + \ x_0\)$
Linear momentum conservation (FP64)	$\left\ \sum_{i} p_{i}(t) - \sum_{i} p_{i}(0) \right\ < 10^{-12} T$ $\ L(t) - L(0) \ < 10^{-12} T$
Angular momentum conservation (FP64)	$\ \overline{L(t)} - L(0)\ < 10^{-12}T$
Center-of-mass drift	$ R_{\rm CM}(t) - R_{\rm CM}(0) < 10^{-10}T$
Modified-energy defect (FP64)	$< 10^{-7} h^2$
Modified-energy defect (FP32)	$< 5 \times 10^{-6} h^2$ Spring phase cap monitor
$\max \theta \le \theta_{\text{cap}}$ (abort if violated)	
Barrier proximity monitor	$\epsilon_{\rm gap} \ge 0.05(\epsilon_{\rm max} - \epsilon_{\rm min})$
Performance budget	$ns/step \le baseline \times 1.10$

9 Heuristics

Barnes–Hut cache uses opening angle $\phi_{\rm BH}$ (renamed from $\theta_{\rm BH}$ to avoid collision with $\theta_{\rm cap}$).

A Experimental Adaptive Step Size (non-symplectic)

$$\omega_{ij} = \sqrt{\frac{G(m_i + m_j)}{(r_{ij}^2 + \epsilon^2)^{3/2}}}, \qquad h_{\text{sub}} \le \chi \min_{i < j} \omega_{ij}^{-1}.$$

B Patch Ledger

- P-15 Logistic factor in $\nabla \epsilon_{\star}$.
- P-16 Barrier potential added to Hamiltonian and EOM.
- P-17 Barrier term in C_3 bound.
- P-18 V-kick updates (p, π) ; explicit algorithm line.
- P-19 Distinct symbols: $\theta_{\rm cap}$ vs $\phi_{\rm BH}$.