FEM

Sebastian Müller, Fritz Schelten

Juni 19, 2017

Überblick

Ansatz function space

Stiffness Matrix

Solution

Errors and error estimators

Basisfunctions, Shapefunctions

Triangle elements

Basisfunctions, Shapefunctions

Square elements

Stiffness matrix

Calculation for rect. triangles and squares

```
for all \nabla \varphi_i for all \nabla \varphi_j = \nabla \varphi_1, \dots, \nabla \varphi_i a_{ij} = 0 if basis nodes of \varphi_i, \varphi_j are neighbours for all shape functions s_i of \nabla \varphi_i for all shape functions s_j of \nabla \varphi_j if (\operatorname{domain}(s_i) = \operatorname{domain}(s_j)) a_{ij} = a_{ij} + \int_{d(s_i)} \nabla \varphi_i \cdot \nabla \varphi_j (+\varphi_i \cdot \varphi_j) dx; end end A(i,j) = A(j,i) = a_{ij}; end end
```

all gradients of basis functions are calculated before

Stiffness matrix

Calculation for arb. triangles

```
\begin{array}{l} \text{for all } \nabla \varphi_i \\ \text{for all } \nabla \varphi_j \\ a_{ij} = 0 \\ \text{for all shape functions } s_i \text{ of } \nabla \varphi_i \\ \text{for all shape functions } s_j \text{ of } \nabla \varphi_j \\ \text{if } (\text{domain}(s_i) = \text{domain}(s_j)) \\ a_{ij} = a_{ij} + \int_{d(s_i)} \nabla \varphi_i \cdot \nabla \varphi_j (+\varphi_i \cdot \varphi_j) dx; \\ \text{end} \\ \text{end} \\ \text{A(i,j)} = a_{ij}; \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{end} \\ \end{array}
```

all gradients of basis functions are calculated before

Evaluation of solution

for rectangular triangles

Class solution assembles a shape function for each domain by summing up weighted corresponding shape functions of all basis functions.

Evaluation is done by detecting the domain related to (x,y)

```
\begin{split} & \text{interval} = \text{ceil}\left(x/nodeDistance_x; y/nodeDistance_y\right) \\ & \text{domainIndex} = 2 \cdot \left[\left((interval_y - 1) \cdot meshIntervals_y\right) + interval_x\right] \\ & \text{u} = \text{solution.shapeScalarFunctions}\left(\text{domainIndex}\right). \text{evaluate}(x,y); \\ & \text{if } (u == 0) \text{ then } u = \text{solution.shapeScalerFunctions}\left(\text{domainIndex} - 1\right). \text{evaluate}(x,y); \\ \end{aligned}
```

Evaluation of solution

for squares

Class solution assembles a shape function for each domain by summing up weighted corresponding shape functions of all basis functions.

Evaluation is done by detecting the domain related to (x,y)

```
\begin{split} & \mathsf{interval} \ = \ \mathsf{ceil} \left( x / nodeDistance_x; y / nodeDistance_y \right) \\ & \mathsf{domainIndex} \ = \ \left( (interval_y - 1) \cdot meshIntervals_y \right) + interval_x \\ & \mathsf{u} \ = \ \mathsf{solution} \ . \ \mathsf{shapeScalarFunctions} \left( \mathsf{domainIndex} \right) . \ \mathsf{evaluate} \left( \mathsf{x} \ , \mathsf{y} \right); \end{split}
```

A posteriori estimator

Calculation

$$\begin{split} r_K(u_h) &:= (f + \nabla u_h)|_K \text{ and } r_E(u_h) := [\eta_E \cdot \nabla u_h]_E \\ \eta &:= \left[\sum_K \eta_K^2\right]^{1/2} \text{, where } \eta_K^2 := h_K^2 \|r_K^2\|_{0,K}^2 + \frac{1}{2} \sum_{E \subset K} h_E \|r_E\|_{0,E}^2 \\ \text{where } K \text{ are domains and } E \text{ are edges.} \end{split}$$

This uses the shape scalar function array of the solution.