

CS120: Computer Networks

Lecture 11. Routing 2

Zhice Yang

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

Link State Routing

- Network topology is known to all routers
 - Accomplished via broadcasting link state packets (LSP) to all routers
- Routing Algorithm: computes shortest paths from one node ('source') to all other nodes
 - Based on Dijkstra's Algorithm

```
Initialization:
M = \{s\}
for all nodes v
  if v adjacent to s
then D_s(v) = c(u, v)
else D_s(v) = \inf
Loop
  find w not in M such that D_s(w) is a minimum
    add w to M
    update D_s(v) for all v adjacent to w and not in M:
        D_s(v) = \min(D_s(v), D_s(w) + c(w, v))
until all nodes in M
```

- M: set of node processed
- S: node of the local router
- v: node of other routers
- $D_s(v)$ distance from s to v
- c(u, v) link weight between node u and v

Target Router

M	$D_{D}(A)$	$D_D(B)$	$D_D(C)$
D}	Inf, from D	11, from D	2, from D

M	$D_D(A)$	$D_D(B)$	$D_D(C)$
[D}	Inf, from D	11, from D	2, from D
[D, C}	12, from C	5, from C	2, from D

VI	$D_{D}(A)$	$D_D(B)$	$D_{D}(C)$
D}	Inf, from D	11, from D	2, from D
D, C}	12, from C	5, from C	2, from D
D, C, B}	10, from B	5, from C	2, from D

VI	$D_{D}(A)$	$D_D(B)$	$D_{D}(C)$
D}	Inf, from D	11, from D	2, from D
D, C}	12, from C	5, from C	2, from D
D, C, B}	10, from B	5, from C	2, from D

Dijkstra's Algorithm (Another notation)

<Destination, Cost, Nexthop>

Step	Confirmed	Tentative
1	(D,0,-)	
2	(D,0,-)	(B,11,B) (C,2,C)
3	(D,0,-) (C,2,C)	(B,11,B)
4	(D,0,-) (C,2,C)	(B,5,C) (A,12,C)
5	(D,0,-) (C,2,C) (B,5,C)	(A,12,C)
6	(D,0,-) (C,2,C) (B,5,C)	(A,10,C)
7	(D,0,-) (C,2,C) (B,5,C) (A,10,C)	

Link State Packet

- Contains key Information to describe the network topology
 - ID of the router
 - Neighbors of the router, and the cost to the neighbor
 - i.e., neighbor ID and connection weight
 - Sequence Number
 - Age

Link State Packet

- Reliably flood an LSP to all routers
 - Basic Flooding
 - Increase the seq number of the LSP
 - Transmit LSP to adjacent routers
 - Routers ACK the received LSP
 - Store LSP if
 - No such LSP
 - or Seq # Received LSP > Seq # stored LSP
 - Forward new LSP to adjacent routers
 - Do not forward to the router transmitted the LSP
 - Abandon old LSP
 - Increase age of forwarding LSP
 - Increase age of stored LSP
 - Keep LSP up to date
 - Generate new LSP when link states change
 - Periodically generate LSP to update age

Open Shortest Path First (OSPF)

- "Open": nonproprietary standard created under Engineering Task Force (IETF).
- Security: all OSPF messages authenticated (to prevent malicious intrusion)
- Hierarchical routing: OSPF in large domains
- Load balancing: multiple same-cost paths allowed (only one path in RIP)

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

The Discussion on Routing So Far ...

- Routers in the network are managed by the same administrator
 - e.g. Residential building, Campus, Network of a same ISP, Network of a big company, etc.
- Routers running same routing protocol
 - OSPF, RIP, etc.
 - These routers have certain coverage, called the routing area (see next slides)

The Real Internet: Network of Network

- 1. Who is responsible for connecting them?
- 2. How to route in among networks?

Internet Service Providers

- End systems connect to Internet via "Consumer" ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- "Consumer" ISPs are connected "Backbone" ISPs
 - Three Major Commercial ISPs in China

- Other ISPs
 - e.g. cernet

The Real Internet: Network of Network

Interdomain Routing Problems

- Scalability: More than 600 million destinations
 - Storage
 - Routing Table
 - Calculation
 - Shortest Path
 - Communication
 - Exchanges Routing Information
- Routing Management: Complex Routing Polices

Interdomain Routing: New Hierarchy

- Aggregate Routers into Logical Areas: Autonomous System
- Autonomous System (AS)
 - Corresponds to an administrative domain
 - e.g. University, company, backbone network
- Routers in same AS run same intradomain routing protocol
 - RIP, OSPF, etc.
- Routers in different AS run intrerdomain routing protocol
 - BGP, EGP

Interdomain routing element: AS

Autonomous System

Routing Hierarchy

Border Gateway Protocol (BGP)

- Wildly Used Interdomain Routing Protocol
- Hardly be needed for small community or companies
- Routing Element: AS
- Routing Algorithm
 - Target on Reachability
 - Not "best" route
 - Avoid Loop

Demo

- BGP Entries
 - http://bgp.potaroo.net/as2.0/bgp-active.html
- BGP Looking Glass
 - eg: https://lg.telia.net/
- AS Number Look Up
 - eg: https://www.ultratools.com/tools/asnInfo

Boarder Routers: connecting more than one ASs

- Boarder Routers: connecting more than one ASs
 - Select and configured by AS administrators
 - Routing entries exchanged with other Boarder Routers through exterior BGP (eBGP)
 - Through TCP connection

How to inject BGP routing entries into routers inside the AS?

- Method 1: Default Router (Static Method)
 - Inject a default router entry into all routers in the AS through intradomain routing protocol

Method 2: Entry Translation

• Translate and broadcast BGP entries in the AS through intradomain

routing protocol

		To/from other autonomous Prefix	cost
Prefix	cost	systems 18.0.0.0/16	3
18.0.0.0/16	10	To/from other autonomous	15
12.5.5.0/24	1	12.5.5.0/24 128.34.0.0/16	
128.34.0.0/16	13		4
128.69.0.0/16	8	128.69.0.0/16	2

systems

Overhead for Intradomain Routing is very High

Prefix	cost
18.0.0.0/16	7
12.5.5.0/24	11
128.34.0.0/16	1
128.69.0.0/16	6

- Method 3: interior BGP (iBGP)
 - Broadcast BGP entries in the AS through iBGP

Prefix	cost
18.0.0.0/16	10
12.5.5.0/24	1
128.34.0.0/16	13
128.69.0.0/16	2

Prefix	cost
18.0.0.0/16	3
12.5.5.0/24	15
128.34.0.0/16	4
128.69.0.0/16	12

Prefix	cost
18.0.0.0/16	7
12.5.5.0/24	11
128.34.0.0/16	1
128.69.0.0/16	6

- Method 3: interior BGP (iBGP)
 - Broadcast BGP entries in the AS through iBGP
 - Roughly determine the best boarder router for certain prefix

Prefix	Cost	Out
18.0.0.0/16	3	Е
12.5.5.0/24	1	Α
128.34.0.0/16	1	D
128.69.0.0/16	2	А

BGP Table for the AS

- Method 3: interior BGP (iBGP)
 - Broadcast BGP entries in the AS through iBGP
 - Roughly determine the best boarder router for certain prefix

Prefix	Cost	Out
18.0.0.0/16	3	Е
12.5.5.0/24	1	Α
128.34.0.0/16	1	D
128.69.0.0/16	2	Α

BGP Table for the AS

Dest	Next
А	А
С	С
D	С
Е	С

Routing Table of B

Prefix	Next
18.0.0.0/16	С
12.5.5.0/24	А
128.34.0.0/16	С
128.69.0.0/16	Α

Combined Table for B

Reference

- Textbook 3.3
- Textbook 4.1
- http://www.ciscopress.com/articles/article.asp?p=24090