RÉSEAUX DE NEURONES EN PYTORCH

Jérémie Cabessa Laboratoire DAVID, UVSQ

L'implémentation d'un réseau de neurones en PyTorch requiert les éléments suivants:

- ▶ Datasets: datasets de train, validation et test sur lesquels entraîner et évaluer le modèle.
- Dataloaders: dataloaders de train, validation et test qui permettent de "processer" les data sous forme de batchs.
- ▶ Model: le réseau de neurones en soi, une classe qui hérite de torch.nn.Module.

L'implémentation d'un réseau de neurones en PyTorch requiert les éléments suivants:

- ▶ Datasets: datasets de train, validation et test sur lesquels entraîner et évaluer le modèle.
- Dataloaders: dataloaders de train, validation et test qui permettent de "processer" les data sous forme de batchs.
- ▶ Model: le réseau de neurones en soi, une classe qui hérite de torch.nn.Module.

L'implémentation d'un réseau de neurones en PyTorch requiert les éléments suivants:

- ▶ Datasets: datasets de train, validation et test sur lesquels entraîner et évaluer le modèle.
- Dataloaders: dataloaders de train, validation et test qui permettent de "processer" les data sous forme de batchs.
- ► Model: le réseau de neurones en soi, une classe qui hérite de torch.nn.Module.

- ▶ Loss function: fonction de coût qui permet d'évaluer l'erreur entre les prédictions du modèle et les valeurs réelles.
- Optimizer: méthode d'optimisation pour minimiser la fonction de coût: en général une variante de la "stochastic gradient descent".
- ▶ Training loop: fonction qui utilisent tous les ingrédients précédents pour entraîner le modèle sur les data d'entraînement.
- Testing loop: fonction qui évalue le modèle sur les data de test.

- ▶ Loss function: fonction de coût qui permet d'évaluer l'erreur entre les prédictions du modèle et les valeurs réelles.
- Optimizer: méthode d'optimisation pour minimiser la fonction de coût: en général une variante de la "stochastic gradient descent".
- ▶ Training loop: fonction qui utilisent tous les ingrédients précédents pour entraîner le modèle sur les data d'entraînement.
- Testing loop: fonction qui évalue le modèle sur les data de test.

- ▶ Loss function: fonction de coût qui permet d'évaluer l'erreur entre les prédictions du modèle et les valeurs réelles.
- Optimizer: méthode d'optimisation pour minimiser la fonction de coût: en général une variante de la "stochastic gradient descent".
- ➤ Training loop: fonction qui utilisent tous les ingrédients précédents pour entraîner le modèle sur les data d'entraînement.
- Testing loop: fonction qui évalue le modèle sur les data de test.

- ▶ Loss function: fonction de coût qui permet d'évaluer l'erreur entre les prédictions du modèle et les valeurs réelles.
- Optimizer: méthode d'optimisation pour minimiser la fonction de coût: en général une variante de la "stochastic gradient descent".
- ► Training loop: fonction qui utilisent tous les ingrédients précédents pour entraîner le modèle sur les data d'entraînement.
- ► Testing loop: fonction qui évalue le modèle sur les data de test.

DATASETS AND DATALOADERS

CUSTOM FUNCTION

```
def reshape_batch(batch):
    """Flatten 28 x 28 matrices into 768 x 1 vectors."""
    batch_size = batch[0].shape[0]
    batch[0] = batch[0].view(batch_size, -1) # flattening
    return batch
```

Model

```
class Network(nn.Module):
   def init (self):
       super(Network, self).__init__()
       self.fc1 = nn.Linear(784, 256)
       self.fc2 = nn.Linear(256, 256)
       self.fc3 = nn.Linear(256, 128)
       self.fc4 = nn.Linear(128, 64)
       self.fc5 = nn.Linear(64, 10)
   def forward(self. x):
       x = self.fc1(x)
       x = nn.ReLU()(x)
       x = self.fc2(x)
       x = nn.ReLU()(x)
       x = self.fc3(x)
       x = nn.ReLU()(x)
       x = self.fc4(x)
       x = nn.ReLU()(x)
       x = self.fc5(x)
       return x
# Put network to GPU if exists
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
network = Network()
network.to(device)
```

LOSS FUNCTION AND OPTIMIZER

```
# Loss function
loss = nn.CrossEntropyLoss()
# Optimizer
optimizer = torch.optim.SGD(network.parameters(), lr=0.005)
```

TRAINING LOOP

```
# Training loop
def train(model, loss=None, optimizer=None,
          train dataloader=None, val dataloader=None, nb epochs=20):
    min_val_loss = torch.inf
    train losses = []
    val_losses = []
    for e in range(nb epochs):
        train loss = 0.0
        # Iterate over train dataloader
        for data, labels in train_dataloader:
            # Transfer data to GPU if available
            if torch.cuda.is_available():
                data, labels = data.cuda(), labels.cuda()
            # Reset gradients to 0
            optimizer.zero_grad()
            # Forward Pass (on reshaped data)
            data, labels = reshape batch([data, labels])
            targets = model(data)
            # Compute training loss
            current_loss = loss(targets, labels)
            train loss += current loss.item()
            # Compute gradients
            current_loss.backward()
            # Update weights
            optimizer.step()
```

401401451451 5

TRAINING LOOP

```
val_loss = 0.0

# Put model in eval mode
model.eval()

# Iterate over validation dataloader
for data, labels in val_dataloader:

# Transfer data to GPU if available
    if torch.cuda.is_available():
        data, labels = data.cuda(), labels.cuda()
    # Forward Pass (on reshaped data)
    data, labels = reshape_batch([data, labels])
    targets = model(data)
    # Compute validation loss
    current_loss = loss(targets, labels)
    val_loss += current_loss.item()
```

TRAINING LOOP

```
# Print and save losses
print(f"Epoch {e+1}/{nb_epochs}", end="\t")
print(f"Train Loss: {train_loss/len(train_dataloader):.3f}", end="\t")
print(f"Validation Loss: {val_loss/len(val_dataloader):.3f}", end="\t")

train_losses.append(train_loss/len(train_dataloader))
val_losses.append(val_loss/len(val_dataloader))

# Save model if val loss decreases
if val_loss < min_val_loss:
    min_val_loss = val_loss
    torch.save(model.state_dict(), "best_model.pt")</pre>
return train_losses, val_losses
```

Test loop

```
def predict(model, test_dataloader):
    labels_1 = []
    preds_1 = []
    # Put model in eval mode
    model.eval()
    # Testing loop
    with torch.no_grad():
        for i, batch in enumerate(test dataloader):
            data, labels = reshape_batch(batch)
            labels 1.extend(labels.tolist())
            preds = model(data)
            preds = torch.argmax(preds, dim=1)
            preds_1.extend(preds.tolist())
    return labels_1, preds_1
```

RESULTS

С

RESULTS

```
# Load best model
cwd = os.getcwd()
path = os.path.join(cwd, "best_model.pt")

network = Network()
network.load_state_dict(torch.load(path))
network.eval()

# Compute train and test predictions
train_labels, train_preds = predict(network, train_dataloader)
test_labels, test_preds = predict(network, test_dataloader)

# Get the classification tables
print(classification_report(train_labels, train_preds, digits=4))
print(classification_report(test_labels, test_preds, digits=4))
```

TRAIN RESULTS

	precision	recall	f1-score	support
0	0.9621	0.9748	0.9684	4954
1	0.9662	0.9688	0.9675	5576
2	0.9509	0.9323	0.9415	4965
3	0.9492	0.9154	0.9320	5119
4	0.9373	0.9421	0.9397	4884
5	0.9339	0.9248	0.9294	4509
6	0.9702	0.9526	0.9613	4915
7	0.9488	0.9521	0.9504	5218
8	0.9016	0.9367	0.9188	4851
9	0.9102	0.9283	0.9192	5009
accuracy			0.9432	50000
macro avg	0.9430	0.9428	0.9428	50000
weighted avg	0.9435	0.9432	0.9433	50000

TEST RESULTS

	precision	recall	f1-score	support
0	0.9443	0.9867	0.9651	980
1	0.9719	0.9762	0.9741	1135
2	0.9522	0.9273	0.9396	1032
3	0.9515	0.9327	0.9420	1010
4	0.9370	0.9389	0.9379	982
5	0.9250	0.9126	0.9187	892
6	0.9572	0.9342	0.9456	958
7	0.9542	0.9329	0.9434	1028
8	0.9013	0.9281	0.9145	974
9	0.9062	0.9286	0.9173	1009
accuracy			0.9405	10000
macro avg	0.9401	0.9398	0.9398	10000
weighted avg	0.9408	0.9405	0.9405	10000