Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Programma finale del corso

Riferimenti:

- [D] Dispensa sulla prima parte del corso (disponibile su moodle).
- [BB] M. Bisiacco, S. Braghetto, "Teoria dei Sistemi Dinamici", Società Editrice Esculapio, 2ª Ed., 2010.
 - [F] E. Fornasini, "Appunti di Teoria dei Sistemi", Edizioni Libreria Progetto, Padova, 2015.

Parte I: Modelli, soluzioni, stabilità di sistemi dinamici

Lezione	Data	Argomenti trattati	Riferimenti
#1	28/02/22	Introduzione al corso. Programma preliminare e obiettivi del corso. Definizione generale di sistema dinamico.	[F, §1.1]
#2	02/03/22	Classificazione dei sistemi dinamici. Rappresentazione esterna. Rappresentazione interna o di stato e proprietà di separazione. Sistemi lineari in rappresentazione di stato. Principio di sovrapposizione degli effetti. Vantaggi della rappresentazione di stato.	[D, §1.1, 1.2] [BB, §1.1, 1.2] [F, §1.2–1.5]
#3	03/03/22	Esempi di modelli di stato lineari a tempo continuo e a tempo discreto. Passaggio da funzione di trasferimento di sistema SISO a modello di stato. Esempi di modelli di stato non lineari.	[D, §1.3, §2.2]
#4	03/03/22	Traiettorie di stato e ritratto di fase di un sistema. Pun- ti di equilibrio con e senza ingressi. Stabilità semplice e asintotica. Linearizzazione di sistemi.	[D, §1.4-1.5, 3.1] [BB, §2.1-2.2, 2.5, 3.2] [F, §1.6, 3.1]
#5	07/03/22	Richiami di algebra lineare. Spazi vettoriali e trasformazioni lineari. Fatti base su matrici.	[F, §A.1-A.2, A.4]
#6	09/03/22	Complementi di algebra lineare. Calcolo inversa e determinante di matrice. Matrici triangolari e triangolari a blocchi. Forma canonica di Jordan.	[D, §A.3.2] [BB, §1.5-1.6] [F, §A.7-A.8]
#7	10/03/22	Soluzioni di sistemi lineari autonomi a tempo continuo (evoluzione libera). Esponenziale di matrice e sue proprietà. Calcolo diretto dell'esponenziale di matrice.	[D, §A.1-A.2] [BB, §1.3-1.4] [F, §2.5]

#8	10/03/22	Introduzione a Matlab [®] .	
#9	14/03/22	Calcolo dell'esponenziale di matrice tramite Jordan. Modi elementari a tempo continuo e loro carattere. Evoluzione complessiva di un sistema lineare a tempo continuo nel dominio del tempo e di Laplace. Matrice di trasferimento. Equivalenza algebrica di sistemi.	[D, §2.1, A.3] [BB, §1.3,1.7-1.8,3.1] [F, §2.5-2.6, §1.7]
#10	16/03/22	Soluzioni di sistemi lineari autonomi a tempo discreto (evoluzione libera). Calcolo della potenza di una matrice tramite Jordan. Modi elementari a tempo discreto e loro carattere. Evoluzione complessiva di un sistema lineare a tempo discreto nel dominio del tempo e Zeta.	[BB, §3.5-3.7] [F, §2.1-2.4]
#11	17/03/22	Stabilità asintotica, semplice e BIBO di sistemi lineari. Teorema di linearizzazione per la stabilità di equilibri di sistemi non lineari.	[D, §3.2, 3.3] [BB, §2.2, 2.5] [F, §2.2, 2.5]
#12	17/03/22	Simulazione della dinamica (linearizzata e non) di un segway in $Matlab^{\mathbb{R}}$.	

Parte II: Analisi e controllo di sistemi dinamici lineari

Lezione	Data	Argomenti trattati	Riferimenti
#13	21/03/22	Raggiungibilità e controllabilità di sistemi dinamici: definizioni generali. Raggiungibilità di sistemi lineari a tempo discreto: proprietà degli spazi raggiungibili e criterio di raggiungibilità del rango. Raggiungibilità di sistemi algebricamente equivalenti.	[BB, §4.1-4.2] [F, §5.1]
#14	23/03/22	Calcolo dell'ingresso a energia minima per sistemi lineari a tempo discreto. Spazi F-invarianti e caratterizzazione geometrica dello spazio raggiungibile. Forma di Kalman di raggiungibilità. Test PBH di raggiungibilità e autovalori non raggiungibili.	[BB, §4.2-4.4] [F, §5.4, 5.7-5.8]
#15	24/03/22	Controllabilità di sistemi lineari a tempo discreto: proprietà degli spazi controllabili, criterio di controllabilità tramite sottospazi. Caratterizzazione della controllabilità tramite forma di Kalman. Test PBH di controllabilità.	[BB, §4.5] [F, §5.2]
#16	24/03/22	Raggiungibilità di sistemi lineari a tempo continuo: criterio di raggiungibilità del rango. Equivalenza tra raggiungibilità e controllabilità di sistemi lineari a tempo continuo.	[BB, §4.6] [F, §5.3]
#17	28/03/22	Introduzione al problema del controllo. Retroazione statica dallo stato e dall'uscita di sistemi lineari. Esempio di controllo in retroazione statica dallo stato e dall'uscita della posizione dell'albero di un motore elettrico.	[F, §6.1]

#18	30/03/22	Matrice di retroazione di sistemi lineari algebricamente equivalenti. Sistema retroazionato e forma di Kalman. Controllo in retroazione per sistemi singolo ingresso: allocazione degli autovalori e raggiungibilià. Metodo diretto di allocazione degli autovalori. Controllori dead-beat.	[BB, §5.1] [F, §6.1, 6.4, 6.8]
#19	31/03/22	Controllo in retroazione dallo stato della dinamica (linearizzata) di un segway in Matlab [®] . Discretizzazione di sistemi lineari continui tramite campionamento e interpolazione di ordine zero.	[F, §9.3]
#20	31/03/22	Controllo in retroazione per sistemi con più ingressi: lemma di Heymann. Stabilizzabilità di sistemi a tempo continuo e discreto.	[BB, §5.2-5.3] [F, §6.5]
#21	04/04/22	Osservabilità e ricostruibilità di sistemi dinamici: definizioni generali. Stati indistinguibili e non osservabili. Osservabilità di sistemi lineari a tempo discreto: proprietà degli spazi non osservabili e criterio di osservabilità del rango. Spazio non ricostruibile e criterio di ricostruibilità per sistemi lineari a tempo discreto.	[BB, §6.3-6.5] [F, §7.1-7.2]
#22	06/04/22	Osservabilità di sistemi lineari a tempo continuo. Equivalenza tra osservabilità e ricostruibilità di sistemi lineari a tempo continuo. Sistema duale e sue proprietà. Forma di Kalman di osservabilità. Test PBH di osservabilità. Proprietà equivalenti all'osservabilità. Proprietà equivalenti alla ricostruibilità.	[BB, §6.1-6.2, 6.5] [F, §7.3, 7.4]
#23	07/04/22	Stimatori ad anello aperto e chiuso. Rivelabilità di sistemi a tempo continuo e discreto. Regolatore: definizione ed equazioni dinamiche. Principio di separazione e condizioni di esistenza di regolatori stabilizzanti e dead-beat.	[BB, §6.6, 7.1] [F, §7.6-7.7]
#24	07/04/22	Controllo tramite regolatore della dinamica (linearizzata e non) di un segway in $Matlab^{\mathbb{R}}$.	[F, Esempio 7.7.1]