naitiona	l Probo	xbility (of Tw	o RVs												
we h	ave 2 f	RVs, X	and Y	, with	events	A and	l B, re	spectiv	elu. Th	e prol	oabilit	u of	Y eB.	condii	rional	on
									5							
A is P	CYEB	IXEA) = P	(XEA)												
Cose	: X and	d Y a	m di	scrata	DVs											
Guse	. /			Screte	AV.											
	The jo	int Ph	AF : Px	Y(Xj.Yk) = P(x	:Y, jx=	yk)									
	Those	d:4:0,	oci Di	4C ~C	V 0:	V-	D.	(પુ _ષ ી ત્રું)	PIX: Ni	Y= 4 K)	Pero	<u>กักสหา</u>				
	ine co	noition	MI PP	IF OT	' giv	en X-	٦j: PY	(AKI A))	= PLX:	. M)	- Px	يل.				
	And if	the o	event	YEB	incluo	les mu	ltiple	possible	outco	mes:P	weBIX	: xj) =	5 WEB PY	yelxi)		
							Parks.	yn)) ⇒ P3								
	Note -	the tol	lowing	result	t: Pyc	y _k laj) =	PxCxj	ı ⇒ B	y(xj,yk)) = Prig	k ₁ xj)Px	(xj) (where	the join	nt PMF	Cor
	be ex	pressec	d as t	the pro	duct o	fac	ondit	ional F	MF and	dam	argin	al PM	F.			
	It. X	and Y	are	indep	ender	nt , the	n Pri	y _k 1xj) =	Pridry							
Case	2: X	is dis	screte	and	Y is c	ontinud	ous									
Case	3. X	and Y	are	Conti	nuous											
	īŧ×	is Co	ntinud	ous. th	en Po	X = x) =	D									
								<x≤x+h)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x≤x+h)<>								
	Frlyla	() = lim	Frigi.	x< X :	x+h) =	h->0	PCX	<x=x+h) .=x+h1</x=x+h) 								