MATH 232 Section 4.3 pre-lecture comments

Lecture Outline

Section 4.3 is on applications of determinants. Determinants can be used to find the area of a parallelogram, or the volume of a parallelepiped.

We will also look at the cross product.

All matrices in this chapter are square matrices.

New terminology

- 1. parallelogram
- 2. parallepiped
- 3. cross product

VI VZ

Geometric interpretation of determinants

Theorem 4.3.5

absolite value: area is positive (or 0)

1. If A is a 2×2 matrix, then $|\det(A)|$ represents the area of the parallelogram determined by the two column vectors of A, placed with their starting points together.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \vec{c}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \vec{c}_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

must be positive (or 0) Area = 12 = -2

2. If A is a 3×3 matrix, then $|\det(A)|$ represents the volume of the parallelepiped determined by the three column vectors of A, placed with their starting points together.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \quad \vec{c}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \quad \vec{c}_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} \quad \vec{c}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$$

$$det(A) = (2x^3)(4) = 24 \quad \text{[Volume]} = 24$$

$$\frac{1}{c_1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$\vec{c}_z = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

$$\vec{c}_3 = \begin{bmatrix} \vec{o} \\ 0 \\ 4 \end{bmatrix}$$

Note:

- ► A triangle is half a parallelogram.
- ▶ If det(A) = 0, then the parallelogram/parallelepiped is degenerate (area/volume is 0). three vectors on same plane two vectors on same line

The Cross Product

Definition: Cross product (4.3.7) If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in \mathbb{R}^3 , then the cross product of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} \times \mathbf{v}$, is the vector in \mathbb{R}^3 defined as

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, \quad u_3v_1 - u_1v_3, \quad u_1v_2 - u_2v_1)$$

Equivalently:
$$U \times V = \left(\begin{bmatrix} u_2 & u_3 \\ v_2 & v_3 \end{bmatrix}, \begin{bmatrix} u_1 & u_3 \\ v_1 & v_3 \end{bmatrix}, \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right)$$

▶ A way to remember this is by a "generalized determinant":

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & v_3 \\ v_2 & v_3 \end{vmatrix} \cdot \mathbf{i} - \begin{vmatrix} u_1 & v_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

where $\hat{\mathbf{i}} = (1,0,0)$, $\hat{\mathbf{j}} = (0,1,0)$ and $\hat{\mathbf{k}} = (0,0,1)$ are standard unit vectors in \mathbb{R}^3 .

Orthogonality The cross product $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v} ; that is: $(\mathbf{v} \times \mathbf{v}) \cdot \mathbf{v} = 0$

Examples Using the vectors:

$$\mathbf{u} = (1, 0, -1) \quad \mathbf{v} = (2, 1, 1)$$

Calculate $\mathbf{u} \times \mathbf{v}$, $\mathbf{v} \times \mathbf{u}$ and $\mathbf{u} \times \mathbf{u}$

$$u \times v : |ijk| = |0-1||i-||1-||j+|10||k|$$

$$= |i-3j+|k=|(1,-3,1)|$$

$$v \times u = (-1,3,-1) \quad \text{(negative of } u \times v \text{)}$$

$$u \times u = \vec{0} = (0,0,0) \quad \text{(parallel vectors cross product is $\vec{0}$)}$$

Recall that $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$. The magnitude of the cross product is similar:

Magnitude and direction of cross product

If \mathbf{u} and \mathbf{v} are non-parallel vectors in \mathbf{R}^3 , then

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

and $\mathbf{u} \times \mathbf{v}$ is

- ▶ orthogonal to the plane spanned by u and v, and
- ▶ oriented so it satisfies the right-hand rule with respect to **u** and **v**.

Right hand rule

Examples

$$\triangleright i \times j = \langle$$

$$ightharpoonup$$
 $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

$$\triangleright$$
 i × i = $\overrightarrow{\bigcirc}$

$$\mathbf{k} \times \mathbf{j} = -\mathbf{i}$$

Theorem 4.3.8 - Algebraic properties

If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^3 and k is a scalar, then

$$(a)$$
 $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$

(d)
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

$$(b)$$
 $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$ (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$

$$(e) \mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

(c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$
 (f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

$$(f) \mathbf{u} \times \mathbf{u} = \mathbf{0}$$

Warning! In general:

 $ightharpoonup u \times v \neq v \times u$

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \neq \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$$

ambiguous

Normal vector to a plane

Find a normal vector to the plane
$$\vec{x} = (0, -3, 2) + (2, 0, 1)s + (1, 3, 0)t$$

Normal vector $\vec{n} = \begin{vmatrix} i & j & k \\ 2 & 0 & 1 \\ 1 & 3 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$

$$(2, 2, 1) \times (1, 3p) = -3i - (-1)j + (k = (-3, 1, 6))$$

Area of a parallelogram in 3D

Area of a parallelogram with sides \mathbf{u} and \mathbf{v} and angle θ :

Area =
$$\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \|\mathbf{u} \times \mathbf{v}\|$$
 in 3)

Ex: What is the area of the parallelogram formed by vectors (2,0,1)

and
$$(1,3,0)$$
?
$$|(2,0,1) \times (1,3,0)| = |(-3,1,6)|$$

$$= \sqrt{9+1+36} = \sqrt{46}$$