Indicator (Dummy) Variables – Part IV

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 6 – Lecture 6C

A Case Study: Table B.18, page 571 of Textbook

y: fuel consumption (g/km)

 x_1 : vehicle (0 - bus, 1 - truck)

Objective: compare mean fuel consumption between bus and truck

Two methods: Regression, ANOVA

The Case Study – Regression Analysis Method

Truck: mean fuel consumption $\bar{y}_1 = 357 \text{ g/km}$

Bus: mean fuel consumption $\bar{y}_0 = 361.25 \text{ g/km}$

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

$$\mu_1 = \beta_0 + \beta_1 \qquad \Rightarrow \qquad \beta_1 = \mu_1 - \mu_0$$

$$\mu_0 = \beta_0 \qquad \Rightarrow \qquad \beta_0 = \mu_0$$

The Case Study – Regression Analysis Method

Truck: mean fuel consumption $\bar{y}_1 = 357 \text{ g/km}$

Bus: mean fuel consumption $\bar{y}_0 = 361.25 \text{ g/km}$

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

$$\hat{\beta}_1 = \bar{y}_1 - \bar{y}_0 = -4.25$$

$$\hat{\beta}_0 = \bar{y}_0 = 361.25$$

The Case Study – Regression Analysis Method

$$\hat{\sigma}^2 = 89.25$$

$$Est.Var(\hat{\beta}_1) = 22.3125 \implies Est.se(\hat{\beta}_1) = 4.72$$

To test H_0 : $\mu_1 = \mu_0$, use the t test statistic

$$t_0 = -4.25/4.72 = -0.90 \Rightarrow |t_0| = 0.90 < t_{0.025;14}$$

Cannot conclude $\mu_1 \neq \mu_0$ p-value=0.3835

The Case Study – ANOVA Method

Source	Sum of Squares		Mean Square	F Value	Pr > F
SS _{Reg}	72.25	1	72.25	0.81	0.3835
SS _{Res}	1249.50	14	89.25		
SS _T	1321.75	15			

To test H_0 : $\mu_1 = \mu_0$, use the F test statistic

$$F_0 = 72.25/89.25 = 0.81 \implies \text{p-value} = 0.3835$$

Cannot conclude $\mu_1 \neq \mu_0$

