

Algorytmy i struktury danych 2

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.180.03345.22

Języki wykładowe : polski

Przedmiot powiązany z badaniami naukowymi : Tak

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.ASD2.OL

Koordynator przedmiotu

Maciej Ślusarek

Prowadzący zajęcia

Okres Semestr 4

Maciej Ślusarek, Marcin Briański, Krzysztof Potępa

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia laboratoryjne: 30

Liczba punktów ECTS 6.0

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	zna standardowe algorytmy i struktury danych stosowane w rozwiązaniach problemów algorytmicznych w geometrii obliczeniowej, przetwarzaniu tekstów, zagadnieniach teorioliczbowych	IAN_K1_W04, IAN_K1_W06, IAN_K1_W07, IAN_K1_W08, IAN_K1_W09, IAN_K1_W10, IAN_K1_W11, IAN_K1_W12	egzamin ustny, zaliczenie
W2	rozumie znaczenie pojęcia obliczeniowej trudności, zna definicję klasy NP i problemu NP-zupełnego, identyfikuje przykładowe problemy NP-zupełne, zna wybrane algorytmy aproksymacyjne	IAN_K1_W11	egzamin ustny, zaliczenie
Umiejętności – Student potrafi:			
U1	potrafi modelować problemy przedstawione w języku naturalnym posługując się językiem matematyki i zaawansowanymi koncepcjami algorytmicznymi	IAN_K1_U01, IAN_K1_U06, IAN_K1_U07, IAN_K1_U17, IAN_K1_U21, IAN_K1_U22	egzamin ustny, zaliczenie
U2	potrafi zaproponować rozwiązanie dla typowego problemu algorytmicznego w omawianych dziedzinach oraz ustnie i pisemnie przedstawić jego rozwiązanie	IAN_K1_U03, IAN_K1_U06, IAN_K1_U10, IAN_K1_U11, IAN_K1_U17, IAN_K1_U21, IAN_K1_U22	egzamin ustny, zaliczenie
U3	projektuje i implementuje algorytmy wykorzystując podstawowe i wybrane zaawansowane techniki algorytmiczne	IAN_K1_U06, IAN_K1_U07, IAN_K1_U08, IAN_K1_U11, IAN_K1_U17	egzamin ustny, zaliczenie
U4	ma pogłębioną umiejętność testowania swojego programu, szukania w nim błędów IAN_K1_U03, IAN_K1_U05 i optymalizowania go		egzamin ustny, zaliczenie
Kompetencji społecznych – Student jest gotów do:			

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
K1	potrafi precyzyjnie formułować pytania, służące pogłębieniu lub uzupełnieniu IAN_K1_K01		egzamin ustny,
	własnego zrozumienia danego tematu		zaliczenie

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia laboratoryjne	30	
samodzielne rozwiązywanie zadań komputerowych	60	
przygotowanie do zajęć	30	
przygotowanie do egzaminu	30	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

La	Treści programowe	Efekty
		uczenia się
Lp.		dla
		przedmiotu
-	1 Wyczykiwania wzorca w takścia: profikca cyfikcy matada K	MP automat Abo

- 1. Wyszukiwanie wzorca w tekście: prefikso-sufiksy, metoda KMP, automat Aho-Corasic, algorytm Karpa-Rabina, algorytm Karpa-Millera-Rosenberga. 2. Tablice sufiksowe: algorytmy konstrukcji, tablica wspólnych prefiksów i optymalny algorytm wyszukiwania, drzewa sufiksowe i ich związek z tablicami sufiksowymi. 3. Podstawowe techniki geometrii obliczeniowej: wyznacznik wektorów, sortowanie biegunowe, zamiatanie, algorytmy wypukłej otoczki, znajdowanie przecięć odcinków.
- 1. 4. Dalsze algorytmy geometryczne: przynależność punktu do wielokąta, reprezentacja podziału płaszczyzny, lokalizacja punktu na płaszczyźnie metodą warstw, kd-drzewa. 5. Programowanie liniowe, metoda sympleks, dualność. 6. Problemy liczbowe: algorytm Euklidesa, arytmetyka modularna, logarytm dyskretny, algorytm RSA. 7. Liczby pierwsze, algorytm Millera-Rabina. 8. Szybkie przekształcenie Fouriera. 9. Trudność obliczeniowa: klasa NP, problemy NP-zupełne, przykłady dowodów NP-zupełności, algorytmy aproksymacyjne.

W1, W2, U1, U2, U3, U4, K1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin ustny	Pozytywna ocena z egzaminu, obejmującego zakres przedmiotów ASD1 i ASD2. Dopuszczenie do egzaminu pod warunkiem pozytywnej oceny z laboratorium. Końcowa ocena jest średnią ważoną ocen z laboratorium ASD1 i ASD2 oraz egzaminu.
ćwiczenia laboratoryjne	zaliczenie	Zaliczenie laboratorium na podstawie programów zaliczeniowych, zadań domowych oraz kolokwiów.

Wymagania wstępne i dodatkowe

Algorytmy i struktury danych 1, Matematyka dyskretna

Literatura

Obowiązkowa

1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, wydanie III, PWN, 2012

Dodatkowa

1. L.Banachowski, K.Diks, W.Rytter, Algorytmy i struktury danych, PWN, 2018