Phân thực hành (Tính các tích phân xác định)

I. Phưởng pháp đổi biến số

1)
$$I = \int_{1}^{e} \frac{\ln^2 x}{x} dx$$

$$\partial t = \ln x \rightarrow dt = \frac{1}{x} dx$$

New
$$x=1$$
 this $t=0$, $x=e$ this $t=1$

Khi do ta co:
$$I = \int_{1}^{e} \frac{\ln^{2}x}{x} dx = \int_{0}^{1} t^{2} dt = \frac{1}{3}t^{3} \Big|_{0}^{1} = \frac{1}{3}(1^{3} - 0^{3}) = \frac{1}{3}$$

2)
$$I = \int_{0}^{0.75} \frac{dx}{(x+1)\sqrt{x^2+1}}$$

$$\sqrt{a} x^2 + 1 = \frac{1}{t^2} - \frac{1}{t} + 2$$

$$\begin{array}{ll} \text{Dây:} & I = \frac{1}{\sqrt{2}} \int_{\frac{4}{7}}^{1} \frac{d\left(t - \frac{1}{2}\right)}{\sqrt{\left(t - \frac{1}{2}\right)^2 + \frac{1}{4}}} \\ & = \frac{1}{\sqrt{2}} \ln\left|\left(t - \frac{1}{2}\right) + \sqrt{\left(t - \frac{1}{2}\right)^2 + \frac{1}{4}}\,\right|_{\frac{4}{7}}^{1} = \frac{1}{\sqrt{2}} \ln\frac{9 + 4\sqrt{2}}{7} \end{array}$$

3)
$$I = \sqrt[3]{h^2 + x^2} dx$$
 voi $r > 0$

Pat $x = r.\sin t \rightarrow dx = r.\cos t dt$

New $x = 0$ thi $t = 0$, $x = r.\sin t + \frac{\pi}{2}$

Day: $I = \int_0^{\pi/2} \cos^2 t dt = \frac{1}{2} \int_0^{\pi/2} (1 + \cos 2t) dt$

$$= \frac{1}{2} \int_0^{\pi/2} \left[t + \frac{\sin 2t}{2} \right]_0^{\pi/2} = \frac{\pi^2}{2} \left[\left(\frac{\pi}{2} + 0 \right) - (0 + 0) \right] = \frac{\pi r^2}{4}$$

4)
$$I = \int_{-\pi}^{\pi} sin^{7} 2x \, dx$$

Ta có $f(x) = \sin^{2} 2x$ là hàm số lẻ vi vậy theo tính chất của tích

phân xác định thì:
$$\int_{-\pi}^{\pi} \sin^{7} 2x \, dx = 0$$

5)
$$T = \int_0^2 \sqrt{4-3c^2} dx$$

$$\text{Dist } sc = 2 \sin t \qquad \left(-\frac{\pi}{2} \le t \le \frac{\pi}{2} \right)$$

To
$$c\delta$$
: $dx = 2 \cosh dt$; $\sqrt{4-x^2} = 2 \cosh t$

New
$$x = 0$$
 thi $t = 0$, $x = 2$ thi $t = \frac{\pi}{2}$

6)
$$I = \int_{0}^{3} x \sqrt{1+x} dx$$

$$\text{Vay}: \quad \mathbf{T} = \int_{1}^{2} 2(t^{2} - 1) t^{2} dt = 2\left(\frac{t^{5}}{5} - \frac{t^{3}}{3}\right)\Big|_{1}^{2} = \frac{116}{15}$$

7)
$$I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^{2} x} dx$$

Dat
$$t = sinx \rightarrow dt = cosxdx$$

Neú $x = 0$ thi $t = 0$, $x = \frac{\pi}{2}$ thi $t = 1$

$$\text{Vây}: \quad I = \int_0^1 \frac{dt}{1+t^2} = \arctan\left|_0^1 = \frac{\pi}{4}\right|$$

8)
$$I = \int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx$$

Dat $t = \frac{1}{x} \rightarrow dt = \frac{-1}{x^{2}} dx$

Neú
$$x=1$$
 thì $t=1$, $x=2$ thì $t=\frac{1}{2}$

$$\text{Day}: \ \mathbb{I} = \int_{1}^{1/2} (-e^{t}) dt = -e^{t} \Big|_{1}^{1/2} = e - \sqrt{e}$$

II. Phương pháp tích phân từng phân

3)
$$I = \int_{0}^{1} x e^{x} dx$$

$$\begin{cases} u = x \\ dv = e^{-x} dx \end{cases} \rightarrow \begin{cases} du = dx \\ v = -e^{-x} \end{cases}$$

$$\lim_{x \to 0} |x| = -\inftye^{-x} \Big|_{0}^{1} + \int_{0}^{1} e^{-x} dx = -\bar{e}^{1} - e^{-x} \Big|_{0}^{1} = \frac{e^{-2}}{e}$$

10)
$$I = \int_{-\pi/3}^{\pi/3} x \operatorname{arcfan} x \, dx$$

$$far \int u = arctan xc$$
 $\Rightarrow \int du = \frac{1}{x^2 + 1} dx$

$$\int du = \frac{x^2}{2}$$

Vay:
$$I = \frac{x^2}{2} \arctan x \Big|_{0}^{\sqrt{3}} - \int_{0}^{\sqrt{3}} x^2 \cdot \frac{1}{1+x^2} dx$$

$$= \frac{\pi}{2} - \frac{1}{2} \int_{0}^{\sqrt{3}} dx + \frac{1}{2} \int_{0}^{\sqrt{3}} \frac{dx}{1+x^{2}}$$

$$= \frac{\pi}{2} - \frac{\sqrt{3}}{2} + \frac{1}{2} \arctan x \Big|_{0}^{\sqrt{3}} = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

11)
$$I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^2 x} dx$$

Ut hain duti dan tich phan là hain chan nen ta có: $I = \int_{-\infty}^{T_3} \frac{r \sin x}{\cos^2 x} dx$

$$\widehat{U_{\text{ay}}}: \widehat{I} = 2 \left[-\frac{x}{\cos x} \Big|_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos x} \right]$$

$$= 2 \left(\frac{\pi}{3 \cos \frac{\pi}{3}} - \left| \ln \tan \left(\frac{\chi}{2} + \frac{\pi}{4} \right) \right|_{0}^{\frac{\pi}{3}} \right)$$

$$=2\left(\frac{2\pi}{3}-\ln\tan\left(\frac{\pi}{6}+\frac{\pi}{4}\right)+\ln\tan\frac{\pi}{4}\right)$$

$$=2\left(\frac{2\pi}{3}-\ln\tan\frac{5\pi}{2}\right)$$

$$\partial \tilde{A} = \ln x$$

$$\partial u = \ln x$$

$$\partial u = \ln x$$

$$\partial u = \frac{dx}{x^{\alpha}}$$

$$\partial v = x$$

$$|\nabla_{x_{1}}y_{1}|^{2} = |x_{1}|^{2} + |\int_{1}^{e} |x_{1}|^{2} \frac{dx_{1}}{|x_{2}|^{2}} = |e-x_{1}|^{2} = |e-e+1| = 1$$

13)
$$I = \int_{0}^{2\pi} x \cos x \, dx$$

$$\begin{array}{ccc}
\text{Dat} & \text{fu = x} \\
\text{Idv = cosxdx} & \text{fu = dx} \\
\end{array}$$

$$\lim_{n \to \infty} |x| = x \sin x \Big|_{0}^{2\pi} - \int_{0}^{2\pi} \sin x dx = \cos x \Big|_{0}^{2\pi} = 0$$

14)
$$I = \int_{0}^{\pi/2} e^{x} \cos x \, dx$$

$$\rightarrow I = e^{x} \sin x \Big|_{0}^{T_{2}} - \int_{0}^{T_{2}} e^{x} \sin x dx = e^{T/2} - \int_{0}^{T/2} e^{x} \sin x dx$$

$$I = e^{x} \sin x \Big|_{0}^{T_{2}} - \int_{0}^{T/2} e^{x} \sin x dx = e^{T/2} - \int_{0}^{T/2} e^{x} \sin x dx$$

$$\begin{array}{ll} \text{ Finh } I_1\colon \ \text{dat} \\ \text{d}v = \text{sinscdx} \end{array} \longrightarrow \begin{cases} \text{d}u = e^x \text{d}x \\ v = -\cos x \end{cases}$$

$$\rightarrow 1_1 = -e^x \cot x \Big|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} e^{xx} \cot x = 1 + 1$$

$$\text{Off} \quad I = e^{\sqrt{1/2}} - (1+I) \iff I = \frac{e^{\sqrt{2}}-1}{2}$$

$$\begin{cases}
u = \operatorname{orctqx} \\
\operatorname{dv} = \operatorname{dx}
\end{cases}$$

$$\Rightarrow \begin{cases}
\operatorname{du} = \frac{\operatorname{dx}}{1+x^2} \\
v = x
\end{cases}$$

Vay
$$I = x \operatorname{carctax} \left| \frac{1}{x} - \int \frac{x}{1+x^2} dx \right|$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{0}^{1} \frac{d(1+x^{2})}{1+x^{2}} = \frac{\pi}{4} - \frac{1}{2} \ln|1+x^{2}|_{0}^{1} = \frac{\pi}{4} - \frac{1}{2} \ln 2$$

16) I =
$$\int_{0}^{1} \frac{x \operatorname{carctax}}{(1+x^{2})^{2}} dx$$

$$xef \quad J = \int_{0}^{1} \frac{dx}{(1+x^2)^2}$$

Dật
$$x = t g t$$
 ta có $dx = (1 + t g^2 t) dt$
Nế u $t = 0$ thủ $x = 0$, $t = \frac{\pi}{4}$ thủ $x = 1$

$$J = \int_{0}^{\pi} \frac{dx}{(1+x^{2})^{2}} = \int_{0}^{\pi/4} \frac{(1+tq^{2}x)dx}{(1+tq^{2}x)^{2}} = \int_{0}^{\pi/4} \frac{dx}{1+tq^{2}x} = \int_{0}^{\pi/4} \cos^{2}x dx$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos 2x}{2} dx = \left(\frac{t}{2} + \frac{1}{4} \sin 2t\right) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}$$