Tópicos Avançados em Programação

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2016

Conceitos

- ▶ Bentley, J. L. *Multidimensional binary search trees used for associative searching*. Communications of the ACM; 18(9):509–517; 1975.
- Modificação de árvore binária de busca que permite armazenamento eficiente de dados multidimensionais.
- ► Estrutura de dados eficiente para a contagem do número de pontos que caem dentro de um determinado subespaço k-dimensional.
 - ► Elementos armazenados em uma *k-d tree* são associados a uma coordenada do ponto.
- ▶ Utilizada no processamento de imagens, como um meio de particionamento de pontos em um espaço k-dimensional.
- ► Aplicação em processamento de imagem: objetos posicionados em uma cena, traçado de raios, ...

- ► Cada nível da árvore é associado com um discriminador específico.
 - ightharpoonup Discriminador: dado usado para as decisões de ramificação (coordenada x ou y no caso 2-dimensional).
- ▶ Discriminador em cada nível de uma k-d tree:
 - $0, k, 2 \cdot k, \ldots$ nós de busca ordenados na 1^{2} coordenada.
 - 1, k+1, $2 \cdot k+1$, ...: nós de busca ordenados na $2^{\underline{a}}$ coordenada.
 - $j, k+j, 2\cdot k+j, \ldots$: nós de busca ordenados na (k+1)-ésima coordenada.
- ► Embora o *k* refira-se à dimensão, é comum o uso de termos como "3-dimensional *k-d tree*" no lugar de "3-*d tree*".

Busca de um elemento

- ▶ Busca de um elemento associado a P = (6.9, 5.0):
 - 1. O discriminador da raiz (A = (4.0, 5.5)) é o x.
 - 2. Como P.x > A.x, a busca continua na subárvore à direita de A (raiz é C = (7.0, 9.0)).
 - 3. O discriminador do nó C é o y.
 - 4. Como P.y < C.y, a busca continua na subárvore à esquerda de C (raiz é D = (6.9, 5.0)).
 - 5. Dado que P=D, a busca é encerrada com sucesso!

Construção

- \triangleright Dado um conjunto \mathcal{C} de pontos, como construir uma k-d tree balanceada?
- Processo com duas etapas básicas:
 - 1. Usar a mediana relativa a uma coordenada para particionar o conjunto de pontos.
 - Vamos supor que não há duplicidade, mas se ocorrer, pode-se escolher qualquer uma das medianas.
 - 2. Associar o ponto relativo à mediana a um nó da árvore.

Construção

- 1. Ordenar os pontos em $\mathcal C$ com base na primeira coordenada e encontrar a mediana m.
- 2. Associar o ponto relativo à mediana m à raiz da k-d-tree.
- 3. Particionar o conjunto $C \{m\}$ em dois subconjuntos C_1 e C_2 .
 - lacktriangle Pontos com a primeira coordenada menor ou maior do que a primeira coordenada de m, respectivamente.
- 4. Ordenar os pontos nas partições C_1 e C_2 em relação à segunda coordenada.
- 5. A mediana da primeira partição definirá a raiz da subárvore à esquerda e a mediana da segunda partição definirá a raiz da subárvore à direita.
- 6. Repetir esse processo até que cada subconjunto contenha apenas 1 ponto.

Construção

▶ Dado um conjunto C de pontos, como construir uma k-d tree balanceada?

```
 \mathcal{C} = \{ & (0.3, 9.0), (3.7, 0.4), (5.6, 7.8), (0.1, 4.8), (4.1, 8.9), \\ (9.5, 0.7), (9.7, 0.9), (5.4, 6.5), (0.4, 6.1), (7.3, 6.9), \\ (4.6, 5.8), (0.8, 8.9), (0.4, 4.1), (9.4, 0.2), (3.3, 0.7), \\ (5.5, 5.4), (0.6, 0.5), (0.4, 0.6), (7.4, 9.7), (2.9, 1.5), \\ (0.5, 8.8), (2.3, 2.3), (5.5, 0.2), (0.2, 9.7), (0.5, 0.7), \\ (0.6, 2.8), (0.9, 5.5), (0.2, 9.1), (0.5, 9.7), (6.8, 4.2), \\ (9.7, 1.8) \}
```


Construção

1. Ordenar os pontos em $\mathcal C$ com base na primeira coordenada e encontrar a mediana m:

```
 \mathcal{C} = \left\{ \begin{array}{c} (0.1, \, 4.8), \, (0.2, \, 9.1), \, (0.2, \, 9.7), \, (0.3, \, 9.0), \, (0.4, \, 0.6), \\ (0.4, \, 4.1), \, (0.4, \, 6.1), \, (0.5, \, 0.7), \, (0.5, \, 8.8), \, (0.5, \, 9.7), \\ (0.6, \, 0.5), \, (0.6, \, 2.8), \, (0.8, \, 8.9), \, (0.9, \, 5.5), \, (2.3, \, 2.3), \\ (2.9, \, 1.5), \\ (3.3, \, 0.7), \, (3.7, \, 0.4), \, (4.1, \, 8.9), \, (4.6, \, 5.8), \, (5.4, \, 6.5), \\ (5.5, \, 0.2), \, (5.5, \, 5.4), \, (5.6, \, 7.8), \, (6.8, \, 4.2), \, (7.3, \, 6.9), \\ (7.4, \, 9.7), \, (9.4, \, 0.2), \, (9.5, \, 0.7), \, (9.7, \, 0.9), \, (9.7, \, 1.8) \end{array} \right\}
```


Construção

3. Associar o ponto relativo à mediana m à raiz da k-d-tree:

Construção

4. Particionar o conjunto $C - \{m\}$ em dois subconjuntos C_1 e C_2 :

```
 C_1 = \left\{ \begin{array}{c} (0.1, 4.8), (0.2, 9.1), (0.2, 9.7), (0.3, 9.0), (0.4, 0.6), \\ (0.4, 4.1), (0.4, 6.1), (0.5, 0.7), (0.5, 8.8), (0.5, 9.7), \\ (0.6, 0.5), (0.6, 2.8), (0.8, 8.9), (0.9, 5.5), (2.3, 2.3) \end{array} \right\} 
 C_2 = \left\{ \begin{array}{c} (3.3, 0.7), (3.7, 0.4), (4.1, 8.9), (4.6, 5.8), (5.4, 6.5), \\ (5.5, 0.2), (5.5, 5.4), (5.6, 7.8), (6.8, 4.2), (7.3, 6.9), \\ (7.4, 9.7), (9.4, 0.2), (9.5, 0.7), (9.7, 0.9), (9.7, 1.8) \end{array} \right\}
```

Construção

5. Ordenar os pontos nas partições C_1 e C_2 em relação à segunda coordenada:

```
 \mathcal{C}_1 = \left\{ \begin{array}{c} (0.6,\, 0.5),\, (0.4,\, 0.6),\, (0.5,\, 0.7),\, (2.3,\, 2.3),\\ (0.6,\, 2.8),\, (0.4,\, 4.1),\, (0.1,\, 4.8),\\ (0.9,\, 5.5),\\ (0.4,\, 6.1),\, (0.3,\, 9.0),\, (0.2,\, 9.1),\, (0.2,\, 9.7),\\ (0.5,\, 8.8),\, (0.8,\, 8.9),\, (0.5,\, 9.7) \end{array} \right. \right\} 
 \mathcal{C}_2 = \left\{ \begin{array}{c} (5.5,\, 0.2),\, (9.4,\, 0.2),\, (3.7,\, 0.4),\, (3.3,\, 0.7),\\ (9.5,\, 0.7),\, (9.7,\, 0.9),\, (9.7,\, 1.8),\\ (6.8,\, 4.2),\\ (5.5,\, 5.4),\, (4.6,\, 5.8),\, (5.4,\, 6.5),\, (7.3,\, 6.9),\\ (5.6,\, 7.8),\, (4.1,\, 8.9),\, (7.4,\, 9.7) \end{array} \right. \right\}
```


Construção

6. A mediana da primeira partição definirá a raiz da subárvore à esquerda e a mediana da segunda partição definirá a raiz da subárvore à direita:

Construção

7. Repetir esse processo até que cada subconjunto contenha apenas 1 ponto:

Exemplo 1.2 (Construção)

Exemplo 1.2 (Construção)

Exemplo 1.2 (Construção)

Exemplo 1.3 (Construção)

k-*D Tree*

Exemplo 1.3 (Construção)

2. Associar o ponto relativo à mediana a um nó da árvore:

k-*D Tree*

Exemplo 1.3 (Construção)

2. Associar o ponto relativo à mediana a um nó da árvore:

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- $[0.0, 0.0] \times [2.9, 5.5].$
- $\triangleright [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(6.8.4.2)

 \triangleright [2.9, 4.2] × [10.0, 10.0].

(0.4,6.1)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- $[0.0, 0.0] \times [2.9, 5.5].$
- $\qquad \qquad [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(6.8.4.2)

 \triangleright [2.9, 4.2] × [10.0, 10.0].

(04.4.1) (23.23) (02.9.1) (08.8.9) (37.0.4) (97.0.9) (5.4.6.5) (5.67.8)

INF/UFG - TAP 2016/19 (11.4.8) (06.0.5) (0.6.2.8) (03.9.0) (02.9.7) (05.8.8) (05.9.7) (55.0.2) (33.0.7) (97.1.8) (4.6.5.8) (41.8.9) (73.6.9) (74.9.7) Trees (40 - 86 de 88)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- $[0.0, 0.0] \times [2.9, 5.5].$
- $\triangleright [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(6.8.4.2)

 \triangleright [2.9, 4.2] \times [10.0, 10.0].

(0.4,6.1)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- $[0.0, 0.0] \times [2.9, 5.5].$
- $\triangleright [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(6.8.4.2)

 \triangleright [2.9, 4.2] × [10.0, 10.0].

(0.4,6.1)

(2.3,2.3)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- $[0.0, 0.0] \times [2.9, 5.5].$
- $[2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(9.7,0.9)

 \triangleright [2.9, 4.2] \times [10.0, 10.0].

(5.4,6.5)

((5.6,7.8) (73.6.9) (74.9.7) Trees (43 – 86 de 88) INF/UFG - TAP 2016/1 (0.1.4.8) (0.6.0.5) (0.6.2.8)

(3.7,0.4)

((0.8,8.9))

(0.4,6.1)

(0.2,9.1)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- \triangleright [0.0, 0.0] \times [2.9, 5.5].
- $\triangleright [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].
- \triangleright [2.9, 4.2] × [10.0, 10.0].

(6.8.4.2)

(0.4,6.1)

- \triangleright [0.0, 0.0] \times [2.9, 10.0].
- \triangleright [0.0, 5.5] \times [2.9, 10.0].
- ightharpoonup [0.0, 0.0] imes [2.9, 5.5].
- $\triangleright [2.9, 0.0] \times [10.0, 10.0].$
- \triangleright [2.9, 0.0] × [10.0, 4.2].

(6.8.4.2)

 \triangleright [2.9, 4.2] × [10.0, 10.0].

(0.4,6.1)

Caminhos a partir da raiz limitam as regiões dos pontos nas sub-árvores:

$$[0.0, 0.0] \times [2.9, 10.0].$$

Caminhos a partir da raiz limitam as regiões dos pontos nas sub-árvores:

 $[0.0, 5.5] \times [2.9, 10.0].$

Caminhos a partir da raiz limitam as regiões dos pontos nas sub-árvores:

 $[0.4, 5.5] \times [2.9, 10.0].$

Caminhos a partir da raiz limitam as regiões dos pontos nas sub-árvores:

$$[0.4, 5.5] \times [2.9, 8.9].$$

k-*D* Tree

• Quantos pontos existem no quadrante $[5.0, 0.0] \times [10.0, 5.0]$?

Nr. de pontos em um subespaço

Algoritmo básico para contar os pontos

- 1. Verificar a coordenada correspondente ao nível corrente da k-d tree.
- 2. Se essa coordenada é menor que o intervalo correspondente do subespaço, visitar apenas a subárvore direita.
- 3. Se essa coordenada é maior que o intervalo correspondente do subespaço, visitar apenas a subárvore esquerda.
- 4. Caso contrário, verificar se a raiz está no subespaço e visitar ambas subárvores.
- 5. Caso especial:
 - como pode-se identificar o intervalo no qual uma subárvore pode cair, pode ser possível adicionar uma sub-árvore inteira.

((0.9.5.5))

(0.2,9.1)

((2.3,2.3)

INF/UFG - TAP 2016/1 Humberto Longo

(0.4,6.1)

- Nr. de pontos = 0.
- Raiz (2.9, 1.5) da k-d tree: como 2.9 < 5.0, apenas a subárvore direita deve ser visitada.

Nr. de pontos = 1.

((6.8,4.2)

• $(6.8,4.2) \in [5.0,0.0] \times [10.0,5.0]$ e ambas subárvores devem ser visitadas.

Nr. de pontos = 2.

((6.8,4.2)

 $(9.4, 0.2) \in [5.0, 0.0] \times [10.0, 5.0]$ e ambas subárvores devem ser visitadas.

Nr. de pontos = 2.

((6.8,4.2)

 $(3.7, 0.4) \notin [5.0, 0.0] \times [10.0, 5.0]$, mas ambas subárvores devem ser visitadas.

- Nr. de pontos = 3.
- $(5.5, 0.2) \in [5.0, 0.0] \times [10.0, 5.0]$ (nó folha).

- Nr. de pontos = 3.
- $(3.3, 0.7) \notin [5.0, 0.0] \times [10.0, 5.0] \text{ (nó folha)}.$

(0441) (2323) (0291) (08,89) (37,04) (97,09) (54,65) (56,78) (18,89) (19,70) (

Nr. de pontos = 4.

((6.8,4.2)

• $(9.7,0.9) \in [5.0,0.0] \times [10.0,5.0]$ e ambas subárvores devem ser visitadas.

(0441) (23.23) (0291) (08.89) (37.04) (97.09) (54.65) (567.8)

INF/UFG - TAP 2010/19 (14.8) (06.05) (06.28) (03.90) (02.97) (05.88) (05.97) (55.02) (33.07) (95.07) (97.18) (46.5.8) (41.89) (73.6.9) (74.97) Trees (60 - 86 de 88)

- Nr. de pontos = 5.
- $(9.5, 0.7) \in [5.0, 0.0] \times [10.0, 5.0] \ \text{(n\'o folha)}.$

INF/UFG - TAP 20[8479] Humberto Longo (62.27) (62.28) (63.90) (62.27) (65.88) (65.97) (55.02) (33.07) (95.07) (97.18) (46.58) (41.89) (73.69) (74.97) Trees (61 - 86 de 88)

- Nr. de pontos = 6.
- $(9.7, 1.8) \in [5.0, 0.0] \times [10.0, 5.0] \ \mbox{(n\'o folha)}.$

Nr. de pontos = 6.

(6.8.4.2)

 $(5.5,5.4) \not\in [5.0,0.0] \times [10.0,5.0], \text{ mas} \\ \text{ambas subárvores devem ser visitadas}.$

((0.9.5.5))

(0.4,6.1)

Nr. de pontos = 6.

(6.8.4.2)

▶ $(5.4, 6.5) \notin [5.0, 0.0] \times [10.0, 5.0]$ e 6.5 > 5.0 e apenas subárvore esquerda deve ser visitada.

- Nr. de pontos = 6.
- $(4.6, 5.8) \notin [5.0, 0.0] \times [10.0, 5.0]$ (nó folha).

((0.9.5.5))

(0.4,6.1)

Nr. de pontos = 6.

(6.8.4.2)

▶ $(5.6, 7.8) \notin [5.0, 0.0] \times [10.0, 5.0]$ e 7.8 > 5.0 e apenas subárvore esquerda deve ser visitada.

- Nr. de pontos = 6.
- $(7.3, 6.9) \notin [5.0, 0.0] \times [10.0, 5.0]$ (nó folha).

- Nr. de pontos = 6.
- Menos da metade dos nós da k-d tree foram visitados.

▶ Inserção do ponto (1.5, 6.6).

Inserção do ponto (1.5, 6.6): 1.5 < 2.9.

Inserção do ponto (1.5, 6.6): 6.6 > 5.5.

Inserção do ponto (1.5, 6.6): 1.5 > 0.4.

Inserção na k-d tree

Inserção do ponto (1.5, 6.6): 6.6 < 8.9.

Inserção na k-d tree

Inserção do ponto (1.5, 6.6): 1.5 > 0.5.

- ► Vizinho mais próximo do ponto (1.0, 4.0)?
- ► NN nearest neighbour.

- Começar a busca em (2.9, 1.5). Definir melhor estimativa como distância até (1.0, 4.0). Em seguida, fazer busca em profundidade.
- Círculo NN intercepta todas as regiões (não se pode descartar qualquer região).

- Calcular a distância de (0.9, 5.5) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é menor, atualizar melhor estimativa.
- Examinar filhos à esquerda e à direita.

- Calcular a distância de (0.5, 0.7) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é maior, não atualizar melhor estimativa.
- Região não pode ser descartada, pois intercepta com círculo NN.

Calcular a distância de (0.4, 4.1) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é menor, atualizar melhor estimativa.

Calcular a distância de (0.4, 0.6) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é maior, não atualizar melhor estimativa.

Calcular a distância de (0.1, 4.8) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é maior, não atualizar melhor estimativa.

 Região não intercepta o círculo com a melhor estimativa e não pode conter NN.

Calcular a distância de (0.6, 2.8) até (1.0, 4.0) e comparar com melhor estimativa. Como a distância é maior, não atualizar melhor estimativa.

Região não intercepta o círculo com a melhor estimativa e não pode conter NN.

 Região não intercepta o círculo com a melhor estimativa e não pode conter NN.

Vizinho mais próximo do ponto (1.0, 4.0) é o ponto (0.4, 4.1).

Livros Texto I

J. L. Gersting

Fundamentos Matemáticos para a Ciência da Computação. LTC Editora, 3^a Edição, 2001.

R. P. Grimaldi

Discrete and Combinatorial Mathematics – An Applied Introduction. Addison Wesley, 1994.

D. J. Velleman

How To Prove It - A Structured Approach.

Cambridge University Press, 1996.

T. H. Cormen, C. E. Leiserson e R. L. Rivest.

Introduction to Algorithms.

McGraw-Hill, New York, 1990.

Livros Texto II

C. H. Papadimitriou, U. V. Vazirani e S. Dasgupta.

Algoritmos.

Mcgraw-Hill Brasil, 2009.

U. Manber.

Algorithms: A Creative Approach.

Addison-Wesley, 1989.

D. E. Knuth.

The Art of Computer Programming. Volume 1 – Fundamental Algorithms. Addison Wesley, 1998.

D. E. Knuth.

The Art of Computer Programming. Volume 2 – Sorting and Searching. Addison Wesley. 1998.

N 7iviani

Projeto de Algoritmos com Implementações em Pascal e C.

Editora Thomson. 2a Edição. 2004.

