Régression spline & GAM

Vincent Lefieux

Splines

Interpolation spline

regression spini

GAM

Plan

Splines

Interpolation spline

Régression spline

GAM

Splines

Interpolation spline

Régression spline

GAIVI

Plan

Splines

Splines

Interpolation spline

Régression spline

GAN

Point de vue physique I

- ▶ Le terme spline (cerce en français) désigne une latte en bois flexible utilisée par les dessinateurs industriels pour matérialiser des lignes à courbure variable passant par des points fixés à priori.
- L'enjeu était d'obtenir des courbes « lisses », d'éventuelles discontinuités pouvant être synonymes de ruptures potentielles à cause d'une faiblesse mécanique.
- Le tracé de la spline minimise l'énergie de déformation de la latte considérée.

Splines

Interpolation spline

Régression spline

GAN

Point de vue physique II

Splines

Interpolation spline

Régression spline

GAM

Point de vue mathématique

Splines

Interpolation spline

Régression splin

GAIVI

Références

► Une spline est une fonction définie par morceaux par des polynômes.

Interpolation : exemple I

Splines

Interpolation spline

Régression spline

GAM

Interpolation: exemple II

Splines

Interpolation spline

Régression spline

GAN

Interpolation: exemple III

Splines

Interpolation spline

Régression spline

GAM

Lissage : point de vue physique I

Splines

Interpolation spline

Régression spline

GAM

Lissage : point de vue physique II

Splines

Interpolation spline

Régression spline

GAM

Lissage : point de vue physique III

Splines

Interpolation spline

Régression spline

GAM

Lissage : point de vue physique IV

- La latte, liée aux points via des ressorts, correspond à une courbe lissée.
- ➤ Sa forme est celle qui minimise l'énergie totale de déformation (allongement des ressorts et courbure de la latte) :

$$E(m,\lambda) = \sum_{i=1}^{n} (y_i - m(x_i))^2 + \lambda \int \left[m^{(2)}(x)\right]^2 dx$$

où $(x_i, y_i)_{i \in \{1, \dots, n\}}$ est l'ensemble des points, m l'équation de la forme de la latte (avec $m^{(2)}$ comme dérivée seconde) et λ le rapport entre la raideur de la latte et celle des ressorts.

Splines

Interpolation spline

Regression spline

GAM

Données considérées dans le cas univarié

▶ On dispose d'un échantillon de (X, Y):

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où $X \in \mathbb{R}$ et $Y \in \mathbb{R}$.

On note:

$$d_n = (x_i, y_i)_{i \in \{1, \dots, n\}}$$
.

Splines

Interpolation spline

Regression spilin

GAM

Splines d'interpolation, de moindres carrés et de lissage

► Pour l'interpolation, on utilise des splines d'interpolation pour ajuster *m* telle que :

$$\forall i \in \{1,\ldots,n\} : y_i = m(x_i) .$$

Pour le modèle de régression :

$$\forall i \in \{1,\ldots,n\}: y_i = m(x_i) + \varepsilon_i$$
,

on utilise:

Des splines de moindres carrés qui minimisent :

$$\sum_{i=1}^{n} (y_i - m(x_i))^2.$$

Des splines de lissage qui minimisent :

$$\sum_{i=1}^{n} (y_i - m(x_i))^2 + \lambda \int \left[m^{(2)}(x)\right]^2 dx.$$

Splines

Interpolation spline

Régression spline

GAM

Données considérées dans le cas multivarié

ightharpoonup On dispose d'un échantillon de (X, Y):

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où
$$X = \left(X^1, \dots, X^p\right)^{\top} \in \mathbb{R}^p$$
 et $Y \in \mathbb{R}$.

On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

Splines

Interpolation spline

Regression spiling

GAM

Rétérences

Cas de la régression multivariée

Splines

Interpolation spline

Regression splin

GAM

- ► Le modèle MARS (Multivariate Adaptive Regression Splines) : (Friedman, 1991).
- ► Le modèle GAM (Generalized Additive Models) : (Hastie et Tibshirani, 1986).

Splines polynomiales d'ordre d

▶ On considère K nœuds (knots) : $(\xi_1, ..., \xi_K)$ sur [a, b] :

$$a < \xi_1 < \ldots < \xi_K < b$$
.

- ▶ Une spline polynomiale d'ordre $d \in \mathbb{N}^*$ est une fonction :
 - continûment différentiable jusqu'à l'ordre :
 - d 2 si d > 1.
 - ▶ 0 si d=1 (simplement continue),
 - constituée de polynômes de degré (inférieur ou égal à) (d-1) sur les intervalles inter-noeuds $[a, \xi_1]$, $[\xi_1, \xi_2], \dots, [\xi_{K-1}, \xi_K], [\xi_K, b].$
- On parle de :
 - ightharpoonup spline linéaire si d=2,
 - ightharpoonup spline cubique si d=4.

Splines

Interpolation spline

Régression spline

GAM

Splines linéaires

On considère K nœuds (knots) : (ξ_1, \ldots, ξ_K) sur [a, b] :

$$a < \xi_1 < \ldots < \xi_K < b$$
.

- Une spline linéaire (spline d'ordre 2) est une fonction :
 - continue,
 - constituée de droites sur les intervalles inter-noeuds $[a, \xi_1], [\xi_1, \xi_2], \ldots, [\xi_{K-1}, \xi_K], [\xi_K, b].$

Splines

Interpolation spline

Regression spiling

JAIVI

Splines cubiques

▶ On considère K nœuds (knots) : (ξ_1, \ldots, ξ_K) sur [a, b] :

$$a < \xi_1 < \ldots < \xi_K < b$$
.

- ► Une spline cubique (spline d'ordre 4) est une fonction :
 - continûment différentiable jusqu'à l'ordre 2,
 - constituée de polynômes de degré (inférieur ou égal à) 3 sur les intervalles inter-noeuds $[a, \xi_1]$, $[\xi_1, \xi_2]$,..., $[\xi_{K-1}, \xi_K]$, $[\xi_K, b]$.

Splines

Interpolation spline

Regression splin

O,

Rétérences

Espace des splines polynomiales d'ordre d

- ▶ On note $S_d(\xi_1, ..., \xi_K)$ l'ensemble des splines polynomiales d'ordre d ayant pour nœuds $(\xi_1, ..., \xi_K)$.
- $\mathcal{S}_d(\xi_1,\ldots,\xi_K)$ est un sous-espace vectoriel de l'espace des fonctions dérivables jusqu'à l'ordre (d-2) (si d>1, 0 sinon), de dimension d+K.
- ▶ On peut considérer comme base :

$$S_{1}(x) = 1$$
,
 \vdots
 $S_{d}(x) = x^{d-1}$,
 $\forall k \in \{1, ..., K\} : S_{d+k}(x) = [(x - \xi_{k})_{+}]^{d-1}$

où:

$$x_{+} = \max(x, 0) = \begin{cases} x & \text{si } x \ge 0 \\ 0 & \text{sinon} \end{cases}.$$

Splines

Interpolation spline

Régression spline

GAM

Illustration

Splines

Interpolation spline

Régression spline

GAM

Remarques

- On trouve également les splines naturelles d'ordre pair : elles diffèrent des splines d'ordre d au niveau des intervalles $[a,\xi_1]$ et $[\xi_K,b]$ sur lesquels elles coincident avec un polynôme de degré $\frac{d}{2}-1$. Des splines cubiques naturelles coincident donc avec des droites sur le premier et le dernier intervalle.
- La base (S_1, \ldots, S_{d+K}) de S_d (ξ_1, \ldots, ξ_K) , définie précédemment, est simple d'un point de vue conceptuel mais est peu utilisée en pratique, à cause du support non compact des fonctions de la base, et des problèmes d'arrondis pouvant apparaître pour de grandes valeurs de x.
- On lui préfère très souvent la base B-splines dans laquelle chaque fonction de base a un support fini. Les B-splines sont une généralisation des courbes de Bézier, et ont été généralisées par les NURBS (Non-Uniform Rational Basis Splines).

Splines

Interpolation spline

Régression spline

GAM

B-splines

▶ On considère K nœuds (knots) : $(\xi_1, ..., \xi_K)$ sur $[a, b] := [\xi_0, \xi_{K+1}]$:

$$a=\xi_0\leq \xi_1\leq \ldots \leq \xi_K\leq b=\xi_{K+1}\ .$$

Quand les nœuds sont équidistants, on parle de B-splines uniformes.

- ▶ On définit de manière récursive la base de B-splines d'ordre $d \in \mathbb{N}^*$ avec $d \leq K$:
 - 1. Pour $i \in \{1, ..., K-1\}$:

$$B_{i,1}(x) = \begin{cases} 1 & \text{si } x \in [\xi_i, \xi_{i+1}[\\ 0 & \text{sinon} \end{cases}.$$

Si $\xi_i = \xi_{i+1}$, on pose par convention $B_{i,1} = 0$.

2. Pour $i \in \{1, ..., K - d\}$:

$$B_{i,d}(x) = \frac{x - \xi_i}{\xi_{i+d-1} - \xi_i} B_{i,d-1}(x) + \frac{\xi_{i+d} - x}{\xi_{i+d} - \xi_{i+1}} B_{i+1,d-1}(x).$$

Par convention, une fraction dont le dénominateur est nul, est considérée nulle.

Splines

Interpolation spline

Régression spline

GAM

Illustration

Splines

Interpolation spline

Régression spline

GAM

Splines naturelles d'ordre d

▶ On considère K nœuds (knots) : $(\xi_1, ..., \xi_K)$ sur [a, b] :

$$a < \xi_1 < \ldots < \xi_K < b$$
.

- ▶ Une spline naturelle d'ordre $d \in \mathbb{N}^*$ pair est une fonction :
 - **continûment différentiable** jusqu'à l'ordre d-2 ($d \ge 2$),
 - constituée de polynômes de degré :
 - $ightharpoonup rac{d}{2} 1$ sur les intervalles $[a, \xi_1]$ et $[\xi_K, b]$,
 - (inférieur ou égal à) (d-1) sur les intervalles inter-noeuds $[\xi_1, \xi_2], \ldots, [\xi_{K-1}, \xi_K]$.
- ▶ On parle de spline cubique naturelle si d = 4.

Splines

Interpolation spline

Régression spline

GAM

Splines cubiques naturelles

▶ On considère K nœuds (knots) : (ξ_1, \ldots, ξ_K) sur [a, b] :

$$a < \xi_1 < \ldots < \xi_K < b$$
.

- Une spline cubique naturelle est une fonction :
 - continûment différentiable jusqu'à l'ordre 2,
 - constituée de polynômes de degré :
 - ▶ 1 sur les intervalles $[a, \xi_1]$ et $[\xi_K, b]$,
 - (inférieur ou égal à) 3 sur les intervalles inter-noeuds $[\xi_1, \xi_2], \ldots, [\xi_{K-1}, \xi_K].$

Splines

Interpolation spline

Regression spline

GAIM

Espace des splines naturelles d'ordre d

Splines

Interpolation spline

Regression splin

GAM

- ▶ On note $\mathcal{S}_d^{\star}(\xi_1, \dots, \xi_K)$ l'ensemble des splines naturelles d'ordre d ayant pour nœuds (ξ_1, \dots, ξ_K) .
- $\mathcal{S}_d(\xi_1,\ldots,\xi_K)$ est un sous-espace vectoriel de l'espace des fonctions dérivables jusqu'à l'ordre (d-2), de dimension K.

Plan

Interpolation spline

Splines

Interpolation spline

Regression spiin

GAN

Concepts généraux

On dit qu'une fonction f est absolument continue s'il existe $a \in \mathbb{R}$ et une fonction g intégrable tels que :

$$\forall x \in \mathbb{R} : f(x) = \int_{a}^{x} g(y) dy$$
.

- Soit $W^d(a, b)$ l'ensemble des fonctions f définies sur [a, b] telles que :
 - $(f^{(0)}, \ldots, f^{(d-1)})$ sont absolument continues et de carré intégrable,
 - $ightharpoonup f^{(d)}$ est de carré intégrable.
- ▶ La régularité d'une fonction $f \in W^d(a, b)$ peut être mesurée par :

$$\int_{a}^{b} \left[f^{(d)}(x) \right]^{2} \mathrm{d}x .$$

Splines

Interpolation spline

Regression spline

GAM

Splines d'interpolation I

▶ On dispose d'un échantillon de $(X, Y) \in \mathbb{R} \times \mathbb{R}$:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$

tel que les $(x_i)_{i \in \{1,...,n\}}$ sont distincts.

▶ Il existe une unique fonction $\widehat{m} \in W^d(a, b)$ vérifiant :

$$\forall i \in \{1, \dots, n\} : y_i = \widehat{m}(x_i) ,$$

$$\widehat{m} = \arg \min_{m \in W^d(a,b)} \int_a^b \left[m^{(d)}(x) \right]^2 dx .$$

La fonction \widehat{m} est une spline naturelle d'ordre 2d ayant pour nœuds (x_1, \ldots, x_n) .

Splines

Interpolation spline

regression spini

GAN

Splines d'interpolation II

► Il est possible de relaxer les conditions d'interpolation, notamment dans le cas où les (xi)i∈{1,...,n} ne sont pas distincts, par :

$$\sum_{i=1}^{n} (y_i - m(x_i))^2 \le \varepsilon$$

où $\varepsilon \in \mathbb{R}^*$ donne le niveau de la relaxation.

On peut montrer que la fonction \widehat{m} est alors la solution du problème d'optimisation suivant :

$$\widehat{m} = \arg\min_{m \in W^d(a,b)} \sum_{i=1}^n (y_i - m(x_i))^2 + \lambda \int_a^b [m^{(d)}(x)]^2 dx$$

où λ dépend de ε (de manière complexe).

Splines

Interpolation spline

Regression spline

GAM

Plan

Régression spline

Splines

Interpolation spline

Régression spline

GAM

Données considérées

▶ On dispose d'un échantillon de (X, Y):

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où $X \in \mathbb{R}$ et $Y \in \mathbb{R}$.

On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

Splines

Interpolation spline

Régression spline

GAM

Splines de moindres carrés I

On appelle spline de moindres carrés d'ordre d ayant comme nœuds (ξ_1, \ldots, ξ_K) , la fonction \widehat{m} suivante :

$$\widehat{m} = \arg \min_{m \in \mathcal{S}_d(\xi_1, \dots, \xi_K)} \sum_{i=1}^n (y_i - m(x_i))^2.$$

Splines

Interpolation spline

Régression spline

GAM

Splines de moindres carrés II

- ▶ On considère la base $(S_1, ..., S_{d+K})$ de $S_d(\xi_1, ..., \xi_K)$.
- ► On peut écrire :

$$\widehat{m}(x) = \sum_{j=1}^{d+K} \widehat{\theta}_j S_j(x)$$

où $\left(\widehat{\theta}_1,\ldots,\widehat{\theta}_{d+K}\right)^{ op}\in\mathbb{R}^{d+K}$ minimisent :

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d+K} \theta_j S_j(x_i) \right)^2.$$

Splines

Interpolation spline

Régression spline

GAIVI

Splines de moindres carrés III

On note:

$$\mathbf{y} = (y_1, \dots, y_n)^{\top},$$

$$\widehat{\mathbf{y}} = (\widehat{m}(x_1), \dots, \widehat{m}(x_n))^{\top},$$

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_{d+K})^{\top},$$

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_1, \dots, \widehat{\theta}_{d+K})^{\top},$$

$$\mathbf{N} = [S_j(x_i)]_{i \in \{1, \dots, n\}, i \in \{1, \dots, d+K\}}.$$

On cherche $\widehat{\theta}$ qui minimise :

$$(\mathsf{y} - \mathsf{N}\,\theta)^{\top}\,(\mathsf{y} - \mathsf{N}\,\theta)$$
.

La solution est :

$$\widehat{m{ heta}} = \left(m{\mathsf{N}}^{ op} m{\mathsf{N}}
ight)^{-1} m{\mathsf{N}} \, m{\mathsf{y}} \; .$$

Splines

Interpolation spline

Régression spline

GAM

Splines de moindres carrés IV

On peut écrire :

$$\hat{\mathbf{y}} = \mathbf{S} \mathbf{y}$$

où:

$$S = N \left(N^{\top} N \right)^{-1} N^{\top}$$

est la matrice de lissage (smoothing).

Splines

Interpolation spline

Régression spline

GAM

References

Splines de moindres carrés V

- Si on considère une base de B-splines, la matrice $N^{\top}N$ est alors une matrice bande avec 2d-1 diagonales non nulles.
- On considère usuellement :
 - ightharpoonup un ordre d=4,
 - ▶ un nombre de noeuds $K \in \{0, ..., n-d\}$,
 - des nœuds (ξ_1, \dots, ξ_K) équirépartis ou égaux à des quantiles empiriques de X.
- ► A *d* fixé, le nombre de nœuds *K* est un hyperparamètre modulant le lissage :
 - K = 0: l'estimateur correspond à une régression polynomiale de degré d 1.
 - K = n d: l'estimateur correspond à une spline d'interpolation.

Splines

Interpolation spline

Régression spline

GAM

Des splines de moindres carrés aux splines de lissage

Splines

Interpolation spline

Régression spline

GAM

Références

On ajoute une pénalité afin de contrôler les variations de l'estimateur (importantes dans le cas des splines de moindres carrés).

Splines de lissage I

Splines

Interpolation spline

Régression spline

GAM

Références

On appelle spline de lissage d'ordre 2d ayant comme nœuds (ξ_1, \ldots, ξ_K) , la fonction \widehat{m} suivante :

$$\widehat{m} = \arg\min_{m \in W^d(a,b)} \sum_{i=1}^n (y_i - m(x_i))^2 + \lambda \int_a^b \left[m^{(d)}(x) \right]^2 dx$$

où $\lambda \in \mathbb{R}^{+\star}$ caractérise le compromis entre l'ajustement et le caractère lisse de la fonction.

Splines de lissage II

▶ Si on considère la base $(S_1, ..., S_n)$ de $S_{2d}^{\star}(x_1, ..., x_n)$ (splines naturelles), on peut alors écrire :

$$\widehat{m}(x) = \sum_{i=1}^{n} \widehat{\theta}_{i} S_{j}(x)$$

où $\left(\widehat{\theta}_1,\ldots,\widehat{\theta}_n\right)\in\mathbb{R}^n$ minimisent :

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} \theta_j S_j(x_i) \right)^2 + \lambda \int_a^b \left(\sum_{j=1}^{n} \theta_j S_j^{(d)}(x) \right)^2 dx.$$

Splines

Interpolation spline

Régression spline

GAM

Splines de lissage III

On note:

$$\mathbf{y} = (y_1, \dots, y_n)^{\top},$$

$$\widehat{\mathbf{y}} = (\widehat{m}(x_1), \dots, \widehat{m}(x_n))^{\top},$$

$$\theta = (\theta_1, \dots, \theta_n)^{\top},$$

$$\widehat{\theta} = (\widehat{\theta}_1, \dots, \widehat{\theta}_n)^{\top},$$

$$\mathbf{N} = [S_j(x_i)]_{i \in \{1, \dots, n\}, j \in \{1, \dots, n\}},$$

$$\mathbf{\Omega} = \left[\int_a^b S_i^{(d)}(x) S_j^{(d)}(x) dx\right]_{i \in \{1, \dots, n\}, j \in \{1, \dots, n\}}.$$

lacktriangle On cherche $\widehat{ heta}$ qui minimise :

$$(\mathbf{y} - \mathbf{N}\,\boldsymbol{\theta})^{\top}\,(\mathbf{y} - \mathbf{N}\,\boldsymbol{\theta}) + \lambda\,\,\boldsymbol{\theta}^{\top}\boldsymbol{\Omega}\,\,\boldsymbol{\theta}$$
.

La solution est :

$$\widehat{oldsymbol{ heta}} = \left(\mathsf{N}^{ op} \mathsf{N} + \lambda \, \mathbf{\Omega}
ight)^{-1} \mathsf{N} \, \mathsf{y} \; .$$

Splines

Interpolation spline

Régression spline

GAM

Reference

Splines de lissage IV

On peut écrire :

$$\hat{\mathbf{y}} = \mathbf{S} \, \mathbf{y}$$

où:

$$\mathbf{S} = \mathbf{N} \left(\mathbf{N}^{\top} \mathbf{N} + \lambda \, \mathbf{\Omega} \right)^{-1} \mathbf{N}^{\top}$$

est la matrice de lissage (smoothing).

Splines

Interpolation spline

Régression spline

GAIM

Illustration I

Splines

Interpolation

Régression spline

GAN

Illustration II

Splines

Interpolation spline

Régression spline

GAM

Illustration III

Splines

Interpolation spline

Régression spline

GAM

Illustration IV

Splines

Interpolation spline

Régression spline

GAM

Plan

GAM

Splines

Interpolation spline

Régression spline

GAM

Données considérées

▶ On dispose d'un échantillon de (X, Y):

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}$$

où
$$X = \left(X^1, \dots, X^p\right)^{\top} \in \mathbb{R}^p$$
 et $Y \in \mathbb{R}$.

On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

Splines

Interpolation spline

Régression spline

GAM

References

Le modèle

Le modèle additif généralisé (GAM : Generalized Additive Model) suppose que :

$$Y = c + \sum_{j=1}^{p} g_j(X^j) + \varepsilon$$

où $g_i : \mathbb{R} \to \mathbb{R}$ sont p fonctions inconnues.

Pour assurer l'existence, il faut imposer une contrainte, par exemple :

$$\forall j \in \{1,\ldots,p\}: \int g_j(x) dx = 0.$$

- On peut notamment estimer les fonctions $(g_j)_{j \in \{1,...,p\}}$ par noyau, par polynômes locaux, par projection sur des bases orthogonales et par ajustement spline.
- La méthode des splines est la plus couramment employée pour les modèles GAM.

Splines

Interpolation spline

Régression splin

GAM

Le critère d'estimation

- ▶ On suppose ici que chaque fonction g_j est estimée à l'aide de fonctions splines.
- ► On cherche à minimiser :

$$\sum_{i=1}^{n} \left(y_i - c - \sum_{j=1}^{p} g_j \left(x_i^j \right) \right)^2 + \sum_{j=1}^{p} \lambda_j \int \left[g_j^{(2)} \left(x \right) \right]^2 dx$$

où $(\lambda_j)_{j\in\{1,\dots,p\}}\in\mathbb{R}^{+p}$ sont des hyperparamètres de régularisation.

- Les solutions sont des splines cubiques, chaque fonction g_j ayant pour noeuds les $\left(x_i^j\right)_{i\in\{1,\dots,n\}}$.
- On impose comme contrainte d'unicité :

$$\forall j \in \{1,\ldots,p\} : \sum_{i=1}^n g_j\left(x_i^j\right) = 0.$$

Splines

Interpolation spline

Régression spline

GAM

Estimation : méthode de backfitting

1. Initialisation:

$$\widehat{c} = \overline{y} ,$$

$$\forall j \in \{1, \dots, p\} : \widehat{g}_j(x) = 0 .$$

- 2. Pour $k \in \{1, ..., p\}$:
 - 2.1 On estime g_k en fixant tous les autres (étape de backfitting).

Le problème à minimiser est :

$$\min_{\mathbf{g}_{k}} \sum_{i=1}^{n} \left(y_{i} - \widehat{c} - \sum_{j=1, j \neq k}^{p} \widehat{g}_{j} \left(x_{i}^{j} \right) - \mathbf{g}_{k} \left(x_{i}^{k} \right) \right)^{2} + \lambda_{k} \int \left[\mathbf{g}_{k}^{(2)} \left(\mathbf{x} \right) \right]^{2} d\mathbf{x}.$$

2.2 On centre \hat{g}_k en lui soustrayant :

$$\frac{1}{n}\sum_{i=1}^{n}\widehat{g}_{k}\left(x_{i}^{k}\right).$$

On itère l'étape 2 jusqu'à stabilisation de l'optimisation.

Splines

Interpolation

Régression spline

GAM

Remarques

► Il existe d'autre méthodes d'estimation pour les modèles GAM.

- On peut réunir certaines covariables (en veillant au fléau de la dimension).
- On peut utiliser les modèles sur des séries temporelles.

Splines

Interpolation spline

Régression splin

GAM

Mise en œuvre logicielle

- ► Sous Python :
 - ► Package pygam.
- ► Sous R:
 - Package gam proposé par Hastie.
 - Package mgcv proposé par Wood.

Splines

Interpolation spline

Régression splin

GAM

Références

Friedman, J. H. 1991, «Multivariate adaptive regression splines», *The Annals of Statistics*, vol. 19, n° 1, p. 1–67. Hastie, T. et R. Tibshirani. 1986, «Generalized additive models», *Statistical Science*, vol. 1, n° 3, p. 295–318.

Splines

Interpolation spline

Regression splin

GA