아두이노와 FPGA를 이용한 로봇 제작

조한철(Baram) 2015. 11. 7.

Baram ?

목차

- FPGA
- FPGA 사용예
- FPGA for DIY
- Why FPGA?
- DIY Microcontroller?
- ZPUino
- ZPUino 주변장치 추가
- 카메라/LCD 제어
- 로봇 제작

FPGA

- FPGA란?
 - Field Programmable Gate Array로 논리요소를 프로그래밍을 통해 구현 가능
 - 프로그래밍 언어
 - VHDL
 - Verilog

- FPGA 제조사
 - Altera
 - Xilinx

FPGA 사용예

FPGA for DIY

- 가격이 높다
- 새로운 언어 습득 필요
 - VHDL/Verilog 언어
- 하드웨어 개념 이해 필요
 - 프로그래밍 하듯이 하드웨어를 설계 할 수 있지만 실제 하드웨어로 구현되기때문에 팬인/팬아웃/클럭타이밍과 같은 하드웨어 회로 요소를 고려하여 작성 필요
 - 동일한 설계가 10Mhz에서는 동작하지만 100Mhz에서는 동작하지 않을 수도 있음
- 정보 부족
 - FPGA를 사용하여 DIY를 사람들이 적기 때문에 참조 할 수 있는 정보가 제한적

Why FPGA?

PWM이 100개가 필요할때? UART가 100개가 필요할때? 초음파센서를 100개 제어 필요할때?

100Mhz 센서데이터를 실시간 처리 필요할때?

DIY Microcontroller?

Project	Files	Statistics	Status	License
16 Bit Microcontroller	•	<u>Stats</u>	wbc	LGPL
16-bit CPU based loosely on Caxton Foster's Blue architecture	•	Stats		LGPL
16-bit Open uRISC core Processor	•	<u>Stats</u>		LGPL
1664 microprocessor	•	<u>Stats</u>		Others
32 Bit RISC Processor Design		<u>Stats</u>		LGPL
4004 CPU and MCS-4 family chips	•	Stats		Others
5502VHDL	•	<u>Stats</u>		
6502 Verilog Design		<u>Stats</u>		LGPL
6809 and 6309 Compatible core	•	<u>Stats</u>		LGPL
68hc05	•	Stats		
68hc08	•	Stats		
8-bit microcontroller with extended peripheral set	•	<u>Stats</u>		LGPL
8051 core	•	<u>Stats</u>	wbc	
8080 Compatible CPU	•	Stats	done	
A-Z80 CPU	•	<u>Stats</u>	done	LGPL
ae18	•	<u>Stats</u>	done wbc	LGPL
aeMB	•	<u>Stats</u>	done wbc	LGPL
ag 6502 soft core with phase-level accuracy	•	<u>Stats</u>	done	GPL
AltOr32 - Alternative Lightweight OpenRisc CPU	•	<u>Stats</u>	done wbc	LGPL
<u> Alwcpu - A light weight CPU</u>	•	<u>Stats</u>	done wbc	LGPL
Amber ARM-compatible core	•	<u>Stats</u>	done wbc occp	LGPL
An inventory of soft processor cores	•	<u>Stats</u>		LGPL
ao486	•	Stats		BSD
ao68000 - Wishbone 68000 core	•	<u>Stats</u>	wbc	BSD
aoR3000	•	<u>Stats</u>		BSD
Apollo Guidance Computer NOR eMulator	•	<u>Stats</u>		GPL
<u>Aquarius</u>	•	<u>Stats</u>	wbc	GPL
ARM4U	•	<u>Stats</u>	done	GPL
ASPIDA sync/async DLX Core	•	<u>Stats</u>	wbc	
	_			

< http://opencores.org/ >

ZPUino

ZPUino

- ZPU 32bit core의 소프트프로세서
- Wishbone 오픈소스 버스를 사용하고 추가적으로 필요한 주변장치 추가 가능

• 최대 100Mhz동작 속도

- http://www.alvie.com/zpuino/
- ZAP(ZPUino Arduino Papilio) IDE 2.3.0
 - http://forum.gadgetfactory.net/index.php?/files/file/8-zap-zpuino-arduino-papilio-ide/

주변장치 추가

- IO SLOT
 - ZPUino에서 주변장치는 IO SLOT로 Wishbone 버스에서 하나의 독립된 메모리 공간으로 할당됨
 - 기본 16개의 IO SLOT이 존재하며 변경 가능

IO SLOT 1

IO SLOT 2

• IO SLOT 기본 인터페이스

```
slot14: zpuino_empty_device
port map (
  wb_clk_i
                => wb_clk_i,
                => wb_rst_i,
  wb_rst_i
  wb_dat_o
                => slot_read(14),
  wb dat i
                => slot_write(14),
  wb_adr_i
                => slot_address(14),
                => slot_we(14),
  wb_we_i
                => slot_cyc(14),
  wb_cyc_i
                => slot_stb(14),
  wb stb i
                => slot_ack(14),
  wb ack o
  wb_inta_o
                => slot_interrupt(14)
```

miniSpartan6+ 보드

- Kickstarter를 통해 펀딩에 성공함
- 사양
 - SPARTAN6 LX9(75\$) or LX25(105\$)
 - SDRAM 32MB
 - 8Ch ADC
 - https://www.scarabhardware.com

ISE Design Suite

- Xilinx사의 FPGA 설계 Tool
 - VHDL/Verilog를 통한 프로그래밍
 - 다운로드
 - http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/designtools.html
 - 현재는 업데이트 종료된 상태이며 새로운 Tool인 Vivado가 출시되었음

개발 과정

카메라/LCD 제어

- SPI/UART
 - LCD 제어를 위한 SPI 및 UART는 기본 구현되어 있는 SPI 장치를 사용함
- **120**
 - http://sourceforge.net/projects/fpgalibre/files/I2C%20Wishbone%20Master/ 오픈소스 포팅
- 0V7670
 - http://hamsterworks.co.nz/mediawiki/index.php/0V7670_camera 오픈소스 포팅

<FPGA>

카메라/LCD 제어

- 카메라 영상 1Frame 데이터를 Dual Port Ram에 저장
- Address/Data 레지스터를 통해서 캡쳐된 이미지 데이터를 읽어옴


```
for( i=0; i<length; i++ )
{
    REGISTER(IO_SLOT(12), 0) = i;  // Dual Port Ram 주소 입력
    pixel = REGISTER(IO_SLOT(12), 0);  // 해당 주소에서 데이터 읽기
    pImage[i] = pixel;  // 1픽셀 데이터 버퍼에 저장
}
```

<1Frame 이미지 가져오기 코드>

카메라/LCD 제어 아두이노 코드

```
IMU Class
                IMU;
OV7670 Class
                OV7670;
GLCD Class
                GLCD;
void setup()
    bool ret;
    u32 i;
    Serial.begin(115200);
    0V7670.begin( 17, 16, 18, 19 );
    0V7670.setColorSpace(YUV422);
    GLCD.begin();
    GLCD.setCursor(0,0);
    GLCD.print("0V7670 Test");
    IMU.begin();
void loop()
    display_gray(); // LCD에 이미지 출력
    IMU.loop();
                     // MPU6050 계산
    GLCD.setCursor(0,4);
    GLCD.print("Roll
                        : ");
    GLCD.print(IMU.kalAngleX);
    GLCD.setCursor(0,5);
    GLCD.print("Pitch
    GLCD.print(IMU.kalAngleY);
```

```
void display_gray()
   //-- 이미지 캡쳐
   0V7670 read image( ImageBuf, 80*60, 2 );
   //-- 영상원본 출력
   for( i=0; i<80*60; i++ )
       pixel = (ImageBuf[i])8);
       ImageBuf[i] = pixel;
   GLCD.drawGray( 0, 120, 80, 60, ImageBuf );
   //-- 영상 이진화
   for( i=0; i<80*60; i++ )
       if( ImageBuf[i] < 30 ) ResultBuf[i] = 255;</pre>
       else
                             ResultBuf[i] = 0;
   GLCD.drawGray(0+80, 120, 80, 60, ResultBuf);
```

카메라/LCD 시험 영상

- LCD 시험
 - https://youtu.be/hWFfAau006w
- OV7670 카메라(컬러)
 - https://youtu.be/6bzeTHWBTKs
- OV7670 카메라(흑백 이진화)
 - https://youtu.be/YjaKDJpGefs

로봇 제작

로봇 제작

- 엔코더 입력 펄스를 4체배하여 카운트
 - 시험영상
 - https://youtu.be/JkppZ71Z9IA

FPGA 보드

Papilio Pro

- SPARTAN6 LX9 (84\$)
- SDRAM 8MB
- http://papilio.cc/

XuLA2-LX9

- SPARTAN6 LX9 (69\$)
- SDRAM 32MB
- 소형 사이즈
- http://www.xess.com/

- RASPGA EVM 보드

- SPARTAN6 LX16(77,000원)
- SDRAM 128MB
- 라즈베리파이 Shield 형태의 보드
- http://www.pu.elogics.net/

FPGA 보드

- ARTY

- Artix-7 FPGA (99\$)
- 256MB DDR3
- http://digilentinc.com/

Z-turn Board

- Zynq SoC 7010 (99\$)
- Dual-core ARM Cortex-A9 667Mhz
- 1GB DDR3
- http://www.myirtech.com/

snickerdoodle

- Zynq SoC 7010 (55\$)
- Dual-core ARM Cortex-A9 667Mhz
- 512MB DDR
- 현재 크라우드펀딩 중이며 2016년 3월 배송 예정
- https://www.crowdsupply.com/krtkl/snickerdoodl

Links

- 작업 소스코드
 - https://github.com/chcbaram/FPGA
- FPGA 관련
 - http://hamsterworks.co.nz/
 - FPGA관련 개인 프로젝트 공개
 - http://opencores.org/
 - 다양한 부분의 FPGA 오픈소스
 - http://www.zynqbook.com/
 - Xilinx의 SoC인 Zyng에 대한 책으로 PDF로 무료로 다운로드 가능
 - http://www.yes24.com/24/goods/5468475?scode=032&0zSrank=2
 - VHDL 프로그래밍 바이블 책
 - http://fpgacenter.com/
 - FPGA관련 내용 및 VHDL 문법

감사합니다.