Complex Methods: Example Sheet 1

Part IB, Lent Term 2017 Dr R. E. Hunt

Comments on or corrections to this example sheet are very welcome and may be sent to reh10@cam.ac.uk. Starred questions are useful, but optional: they should not be attempted at the expense of other questions.

Cauchy-Riemann equations

1. (i) Where, if anywhere, in the complex plane are the following functions differentiable, and where are they analytic?

Im z; $|z|^2$; sech z.

- (ii) Let $f(z) = z^5/|z|^4$, $z \neq 0$, f(0) = 0. Show that the real and imaginary parts of f satisfy the Cauchy–Riemann equations at z = 0, but that f is not differentiable at z = 0.
- **2.** Find, as functions of z, complex analytic functions f(z) whose real parts are the following:

(i) x

(iii) $\sin x \cosh y$

(iv) $\log(x^2 + y^2)$ (v) $\frac{y}{(x+1)^2 + y^2}$ (vi) $\tan^{-1}\left(\frac{2xy}{x^2 - y^2}\right)$

Deduce that the above functions are harmonic on appropriately-chosen domains, which you should specify.

- * 3. By considering w(z) = (i+z)/(i-z), show that $\phi(x,y) = \tan^{-1} \frac{2x}{x^2 + u^2 1}$ is harmonic.
 - **4.** Verify that the function $\phi(x,y) = e^x(x\cos y y\sin y)$ is harmonic. Find its harmonic conjugate and, by considering $\nabla \phi$ or otherwise, determine the family of curves orthogonal to $\phi(x,y)=c$ for a given constant c.

Find an analytic function f(z) such that Re $f = \phi$. Can the expression $f(z) = \phi(z,0)$ be used to determine f(z) in general?

Branches of multi-valued functions

5. Show how the principal branch of $\log z$ can be used to define a branch of z^i which is singlevalued and analytic on the domain $\mathcal{D} = \mathbb{C} \setminus (-\infty, 0]$. Evaluate i^i for this branch.

Show, using polar coordinates, that the branch of z^i defined above maps \mathscr{D} onto an annulus which is covered infinitely often.

How would your answers change, if at all, for a different branch?

6. Exhibit three different branches of the function $z^{3/2}$.

How many branch points does $[z(z+1)]^{1/3}$ have? Draw some possible branch cuts, both in the complex plane and on the Riemann sphere.

Repeat for $(z^2 + 1)^{1/2}$.

- * Repeat also for $[z(z+1)(z+2)]^{1/3}$ and $[z(z+1)(z+2)(z+3)]^{1/2}$.
- 7. Let $f(z) = (z^2 1)^{1/2}$, and consider two different branches of the function f(z):

 $f_1(z)$: branch cut [-1, 1], with $f_1(x) = +\sqrt{x^2 - 1}$ for real x > 1;

 $f_2(z)$: branch cut $(-\infty, -1] \cup [1, \infty)$, with $f_2(x) = +i\sqrt{1-x^2}$ for real $x \in (-1, 1)$.

Find the limiting values of f_1 and f_2 above and below their respective branch cuts. Prove that f_1 is an odd function, i.e., $f_1(z) = -f_1(-z)$, and that f_2 is even.

Conformal mappings

8. How does the disc |z-1| < 1 transform under the mapping $z \mapsto z^{-1}$? Use the identity

$$\frac{z}{(z-1)^2} = \left(\frac{1}{1-z} - \frac{1}{2}\right)^2 - \frac{1}{4}$$

to show that the map $f(z) = z/(z-1)^2$ is a one-to-one conformal mapping of the disc |z| < 1 onto the domain $\mathbb{C} \setminus (-\infty, -\frac{1}{4}]$.

- **9.** Find conformal mappings f_i of \mathscr{U}_i onto \mathscr{V}_i for each of the following cases. If the mapping is a composition of several functions, provide a sketch for each step. \mathscr{D} denotes the unit disc |z| < 1.
 - (i) \mathcal{U}_1 is the angular sector $\{z: 0 < \arg z < \alpha\}$, $\mathcal{V}_1 = \{z: 0 < \operatorname{Im} z < 1\}$.
 - (ii) $\mathscr{U}_2 = \{z : \text{Re } z < 0, -\frac{\pi}{2} < \text{Im } z < \frac{\pi}{2} \}, \mathscr{V}_2 = \mathscr{D}.$
 - (iii) $\mathcal{U}_3 = \mathcal{D}$, $\mathcal{V}_3 = \mathcal{D} \setminus (-1, 0]$.
- * (iv) \mathcal{U}_4 is the open region bounded between two circles $\{z: |z| < 1, |z+i| > \sqrt{2}\}$, $\mathcal{V}_4 = \mathcal{D}$.

Laplace's equation

10. Show that

$$g(z)=e^z$$
 maps the strip $\mathscr{S}=\{z:0<\operatorname{Im} z<\pi\}$ onto the UHP $\{z:\operatorname{Im} z>0\}$, $h(z)=\sin z$ maps the half-strip $\mathscr{H}=\{z:-\frac{\pi}{2}<\operatorname{Re} z<\frac{\pi}{2},\ \operatorname{Im} z>0\}$ onto the UHP.

Find a conformal map $f: \mathscr{H} \to \mathscr{S}$. Hence find a function $\phi(x,y)$ which is harmonic on the half-strip \mathscr{H} with the following limiting values on its boundary $\partial \mathscr{H}$:

$$\phi(x,y) = \begin{cases} 0 & \text{on } \partial \mathcal{H} \text{ in the LHP } (x < 0), \\ 1 & \text{on } \partial \mathcal{H} \text{ in the RHP } (x > 0). \end{cases}$$

Give ϕ as a function of x and y. Is there only one such function?

* 11. Using conformal mapping(s), find a solution to Laplace's equation in the upper half-plane $\{(x,y):y>0\}$ with boundary conditions

$$\phi(x,0) = \begin{cases} 1 & x \in [-1,1], \\ 0 & \text{otherwise.} \end{cases}$$

[Find a map f of the upper half-plane onto itself that makes the boundary conditions easier to deal with.]

Series expansions

12. Find the first two non-vanishing coefficients in the series expansion about the origin of each of the following functions, assuming principal branches when there is a choice. You may make use of standard expansions for $\log(1+z)$, etc.

(i)
$$z/\log(1+z)$$
 (ii) $(\cos z)^{1/2} - 1$ (iii) $\log(1+e^z)$ (iv) e^{e^z}

State the range of values of z for which each series converges.

How would your answers differ if you assumed branches different from the principal branch?