Emne TIØ4126 Optimering og beslutningsstøtte Løsningsforslag til øving 1

Oppgave 1: Grafisk illustrering av lineært todimensjonalt mulighetsområde

3.1-3

a)

X ₂			
5-			
3 2			
1	\angle	\	·>
0 2	Z=6	8 Z=12	Z=18

b)

	slope-intercept form	slope	x, intercept
Z=6	$x_2 = -\frac{2}{3}x_1 + 2$	$-\frac{2}{3}$	2
Z=12	$x_2 = -\frac{2}{3}x_1 + 4$	$-\frac{2}{3}$	4
Z=18	$x_2 = -\frac{2}{3}x_1 + 6$	$-\frac{2}{3}$	6

Oppgave 2: Max problem

a) Den siste ulikheten i oppgaveteksten før ikke-negativitetskravene ser slik ut:

$$\frac{x_2}{x_1} \le \frac{7}{8}$$

Denne er ikke-lineær, slik at formuleringen i oppgaven IKKE er et LP-problem. Restriksjonen er imidlertid enkel å formulere lineært. Enkelt kan vi si at vi multipliserer på begge sider av ulikhetstegnet med x_1 . Hvis vi samtidig multipliserer med den konstante nevneren får vi:

$$8x_2 \le 7x_1$$

Selv om vi har lov til å multiplisere en ligning med en variabel, så er det ikke like enkelt med en ulikhet. Hvis variabelen viser seg å være negativ skulle vi ha byttet retning på ulikhetstegnet. Her slipper vi det fordi vi har krav til at x_1 ikke skal være negativ.

Fortsatt har vi et problem med omformuleringen vår. Den opprinnelige formen på ulikheten gjør at vi ikke har lov til å ha $x_1 = 0$. Men det er lov slik vi har omformulert. Siden vi har krav om $x_1 \ge 0$, så kan $x_1 \ne 0$ skrives slik: $x_1 > 0$. Ekte ulikheter klarer vi ikke å regne med i LP, slik at vi må skrive den slik:

$$x_1 \ge \varepsilon$$
, hvor $\varepsilon > 0$

Denne ulikheten bør egentlig være en del av den omformulerte modellen. Omformuleringen av den ikke-lineære restriksjonen skriver vi slik med alle variablene på venstre side:

$$-7x_1 + 8x_2 \le 0$$

Hvis \leq restriksjonen er effektiv for alle (små) positive verdier, så kan vi få x_1 så nær null vi bare vil, og det rimer dårlig med den opprinnelige formuleringen. Vi beholder derfor ikke-negativitetskravet til x_1 . Hvis vi imidlertid får $x_1 \leq \Box 0$, må vi konkludere med at den opprinnelige formuleringen ikke har noen fornuftig løsning.

Ved å lese av i figuren over ser vi at omtrentlig løsning på maksimeringsproblemet er: $x1 \approx 2.6$, $x2 \approx 2.4$, noe som gir $Z \approx 22.2$

b) Ut i fra den grafiske løsningen ser vi at restriksjonene (3) og (6) er de bindende, mens de andre restriksjonene ikke er det. Det betyr at vi kan finne eksakt løsning ved å løse følgende ligningssett: (3) $x_1 + x_2 = 5$, og (6) - $7x_1 + 8x_2 = 0$.

Fra (3) får vi: $x_1 = 5 - x_2$

Setter det inn i (6) og får: $x_2 = 7/3$

Det gir igjen: $x_1 = 8/3$, og z = 22.

Oppgave 3: Matematisk modellering og løsning i Excel

a)

$$Min!z = x_1 + x_2 + x_3$$

når

$$2x_1 + x_2 + 0.5x_3 \ge 400$$

$$0.5x_1 + 0.5x_2 + x_3 \ge 100$$

$$1.5x_2 + 2x_3 \ge 300$$

$$x_1, x_2, x_3 \ge 0$$

hvor

- x_i antall finans objekter av type i
- z Minimal investeringskostnad
- b) Se Excel utskrift.
- c) $(x_1, x_2, x_3) = (100, 100, 200)$ er en mulig løsning. Det vil generere \$400 millioner på 5 år, \$300 millioner på 10 år og \$550 millioner på 20 år. Total beløp investert vil bli \$400 millioner.
- d) Gjøres selv
- e) Optimal løsning: $x_1 = 100$, $x_2 = 200$, $x_3 = 0$, og z = 300.

Oppgave 4: Mer generell formulering av ruteplanleggingsproblem

Indekser

i, j – noder

Konstanter

N - antall noder

 $A_{ij} = 1$ hvis det eksisterer en bue mellom node i og j/=0 ellers

 C_{ij} - kostnad for å transportere en enhet mellom i og j

 K_{APii} - maksimal transportkapasitet i antall enheter på vei mellom i og i

 T_{ILGi} - maksimalt antall enheter tilgjengelig i node i (negativ for etterspørselsnoder)

<u>Bestemmelsesvariable</u>

 x_{ij} = antall enheter transportert fra i til j

$\underline{Summasjons form}$

$$\min z = \sum_{i=1}^{N} \sum_{j=1}^{N} C_{ij} x_{ij},$$

når

$$x_{ij} \leq K_{AP_{ij}}, \quad i = 1,...,N, j = 1,...N | A_{ij} = 1,$$

$$\sum_{i=1}^{N} x_{ij} - \sum_{i=1}^{N} x_{ji} = T_{ILG_i}, \qquad i = 1, ..., N,$$

$$x_{ij} \ge 0,$$
 $i = 1,...,N, j = 1,...,N | A_{ij} = 1.$