11-01-2021

Métodos Numericos para la Computación

Entrega 8

4ºCurso

Grupo Prácticas 11

Alejandro Daniel Herrera Cardenes Carlos Eduardo Pacichana Bastidas UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

Indice

Practica 1	2
Descripción	2
Trabajo realizado	2
Practica 2	3
Descripción	3
Trabajo realizado	3
Practica 3	4
Descripción	4
Trabajo realizado	4
Practica 4	5
Descripción	5
Trabajo realizado	5
Gráfica	6
Practica 5	7
Descripción	7
Trabajo realizado	7
Practica 6	9
Descripción	9
Trahajo realizado	c

Descripción

- Ejecuta el programa varias veces para comprobar que no es determinista, ya que el orden en el que aparecen los mensajes varía en cada ejecución
- Modifica el programa para que solo el hilo maestro indique el total de hilos

Trabajo realizado

Como podemos observar los mensajes aparecen en ordenes dispares por tanto sabemos que no es un programa secuencial.

MP

Resultado Ejecución:

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

```
[COMIENZO]
Hola desde el hilo 0 somos 4
Hola desde el hilo 2
Hola desde el hilo 1
Hola desde el hilo 3
[FINAL]
```

Resultado de la ejecución 1

```
[COMIENZO]
Hola desde el hilo 0 somos 4
Hola desde el hilo 1
Hola desde el hilo 2
Hola desde el hilo 3
[FINAL]
```

Resultado de la ejecución 2

```
[COMIENZO]
Hola desde el hilo 0 somos 4
Hola desde el hilo 3
Hola desde el hilo 2
Hola desde el hilo 1
[FINAL]
```

Resultado de la ejecución 3

Descripción

- Modifica el programa anterior para que cada hilo realice una tarea que consuma tiempo como, por ejemplo, multiplicar dos números en coma flotante varios millones de veces
- Añade al mensaje que muestra cada hilo el tiempo que ha tardado en ejecutar la operación
- Realiza varias pruebas cambiando el número total de hilos y determina si, a
 partir de los datos obtenidos, puedes verificar el número de hilos que es capaz de
 ejecutar el procesador de forma simultánea

Trabajo realizado

Vemos que casi no hay diferencias cambiando entre número de hilos solo los últimos procesos por posible ruido en el procesador o cualquier aplicación que esté haciendo algo en ese momento.

MP

Resultado Ejecución:

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

```
[COMIENZO]
Hola desde el hilo 0 - tiempo 0.002727 - calculo 8250000.000000, somos 8
Hola desde el hilo 3 - tiempo 0.002727 - calculo 8250000.000000
Hola desde el hilo 1 - tiempo 0.002727 - calculo 8250000.000000
Hola desde el hilo 5 - tiempo 0.002892 - calculo 8250000.000000
Hola desde el hilo 2 - tiempo 0.002727 - calculo 8250000.000000
Hola desde el hilo 6 - tiempo 0.002727 - calculo 8250000.000000
Hola desde el hilo 4 - tiempo 0.002744 - calculo 8250000.000000
Hola desde el hilo 7 - tiempo 0.002727 - calculo 8250000.0000000
[FINAL]
```

Resultado de la ejecución 1

```
[COMIENZO]
Hola desde el hilo 0 - tiempo 0.002728 - calculo 8250000.000000, somos 9
Hola desde el hilo 2 - tiempo 0.002790 - calculo 8250000.000000
Hola desde el hilo 3 - tiempo 0.002730 - calculo 8250000.000000
Hola desde el hilo 4 - tiempo 0.002727 - calculo 8250000.000000
Hola desde el hilo 5 - tiempo 0.002728 - calculo 8250000.000000
Hola desde el hilo 8 - tiempo 0.002730 - calculo 8250000.000000
Hola desde el hilo 7 - tiempo 0.003410 - calculo 8250000.000000
Hola desde el hilo 1 - tiempo 0.005245 - calculo 8250000.0000000
Hola desde el hilo 6 - tiempo 0.005414 - calculo 8250000.0000000
[FINAL]
```

Resultado de la ejecución 2

Descripción

- Escribe un programa que sume dos vectores de números en coma flotante
 - Declara tres vectores de 100 elementos
 - Inicializa cada elemento del primero con el valor de su índice
 - Inicializa cada elemento del segundo con el doble del valor de su índice
 - Suma los dos vectores en el tercero y comprueba el resultado
- Paraleliza el código de forma que haya cuatro hilos entre los que se repartan grupos de 10 iteraciones planificadas de forma dinámica; ten cuidado al determinar qué variables son privadas y cuáles compartidas
- Modifica el programa para que cada hilo muestre qué elementos del vector resultado ha calculado y comprueba las variaciones que se producen en diferentes ejecuciones

Trabajo realizado

Podemos ver en la ejecución los hilos toman de forma dinámica tramos de elementos del vector

MP

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

```
[COMIENZO]
Hilo: 0 - Posicion: 0 - Resultado 0.000000
Hilo: 0 - Posicion: 1 - Resultado 3.000000
Hilo: 1 - Posicion: 30 - Resultado 90.000000
Hilo: 1 - Posicion: 31 - Resultado 93.000000
Hilo: 2 - Posicion: 20 - Resultado 60.000000
Hilo: 2 - Posicion: 21 - Resultado 63.000000
Hilo: 2 - Posicion: 22 - Resultado 66.000000
Hilo: 0 - Posicion: 2 - Resultado 6.000000
Hilo: 0 - Posicion: 3 - Resultado 9.000000
Hilo: 0 - Posicion: 4 - Resultado 12.000000
Hilo: 0 - Posicion: 5 - Resultado 15.000000
Hilo: 0 - Posicion: 6
                        - Resultado 18.000000
Hilo: 0 - Posicion: 7
Hilo: 0 - Posicion: 8
                        - Resultado 21.000000
                         - Resultado 24.000000
Hilo: 0 - Posicion: 9 - Resultado 27.000000
```

Resultado de la ejecución 1

```
Hilo: 3 - Posicion: 10 - Resultado 30.000000 Hilo: 3 - Posicion: 11 - Resultado 33.000000 Hilo: 3 - Posicion: 12 - Resultado 36.000000 Hilo: 3 - Posicion: 13 - Resultado 39.000000 Hilo: 3 - Posicion: 14 - Resultado 42.000000 Hilo: 3 - Posicion: 15 - Resultado 45.000000 Hilo: 3 - Posicion: 16 - Resultado 48.000000 Hilo: 3 - Posicion: 17 - Resultado 51.000000 Hilo: 3 - Posicion: 17 - Resultado 51.000000 Hilo: 3 - Posicion: 18 - Resultado 54.000000 Hilo: 3 - Posicion: 19 - Resultado 57.000000 Hilo: 2 - Posicion: 23 - Resultado 69.000000 Hilo: 2 - Posicion: 24 - Resultado 72.000000 Hilo: 2 - Posicion: 25 - Resultado 75.000000 Hilo: 2 - Posicion: 26 - Resultado 78.000000 Hilo: 2 - Posicion: 27 - Resultado 81.000000 Hilo: 2 - Posicion: 28 - Resultado 84.000000 Hilo: 2 - Posicion: 29 - Resultado 87.000000
```

Resultado de la ejecución 2

Descripción

- Modifica el programa anterior para que la planificación se realice de forma estática y ejecútalo varias veces para comprobar los cambios que se producen en su comportamiento
- Añade al programa las instrucciones necesarias para medir el tiempo de ejecución de la suma de los dos vectores y comprueba las diferencias que se producen
 - Utiliza varios tamaños de vector (100, 1000, 10000...)
 - Utiliza varios tamaños de grupo de iteraciones (10, 100...)
 - Dibuja una gráfica que detalle las diferencias encontradas

Trabajo realizado

Observamos que los grupos de elementos del vector coinciden con el numero del hilo que lo esta ejecutando.

MP

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

[COMI	ENZO]	
H->0	P->0	R->0.000000
H->0	P->1	R->3.000000
H->0	P->2	R->6.000000
H->0	P->3	R->9.000000
H->0	P->4	R->12.000000
H->0	P->5	R->15.000000
H->0	P->6	R->18.000000
H->0	P->7	R->21.000000
H->0	P->8	R->24.000000
H->0	P->9	R->27.000000
H->0	P->40	R->120.000000
H->0	P->41	R->123.000000
H->3	P->30	R->90.000000
H->3	P->31	R->93.000000
H->3	P->32	R->96.000000
H->3	P->33	R->99.000000
H->3	P->34	R->102.000000
H->3	P->35	R->105.000000
H->3	P->36	R->108.000000
H->3	P->37	R->111.000000
H->3	P->38	R->114.000000
H->2	P->20	R->60.000000
H->2	P->21	R->63.000000
H->2	P->22	R->66.000000

Resultado de la ejecución

Gráfica

Podemos observar que a partir de las 1000 iteraciones los hilos empiezan a aumentar el tiempo de las operaciones al haber más sumas que realizar. (*Gráfica comparación*)

Gráfica comparación

Practica 5

Descripción

- Escribe un programa que sume y multiplique, de forma separada, los elementos de dos vectores de números en coma flotante
 - Declara cuatro vectores de 100 elementos
 - Inicializa cada elemento del primero con el valor de su índice
 - Inicializa cada elemento del segundo con el doble del valor de su índice
 - Suma los dos vectores en el tercero y comprueba el resultado
 - Multiplica los dos vectores en el cuarto y comprueba el resultado
- Paraleliza el código de forma que haya dos secciones; ten cuidado al determinar qué variables son privadas y qué variables son compartidas
 - La primera sección realizará la suma
 - La segunda sección realizará la multiplicación
- Modifica el programa para que cada hilo muestre qué elementos de cada vector resultado ha calculado y comprueba las variaciones que se producen en diferentes ejecuciones

Trabajo realizado

Observamos como cada hilo se le asigna una tarea, uno se encarga de sumar y otro de multiplicar.

MP

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

SUM	->	H->0	P->13	R->39.000000
SUM	->	H->0	P->14	R->42.000000
SUM	->	H->0	P->15	R->45.000000
SUM	->	H->0	P->16	R->48.000000
SUM	->	H->0	P->17	R->51.000000
MUL	->	H->1	P->0	R->0.000000
MUL	->	H->1	P->1	R->2.000000
MUL	->	H->1	P->2	R->8.000000
SUM	->	H->0	P->18	R->54.000000
SUM	->	H->0	P->19	R->57.000000
SUM	->	H->0	P->20	R->60.000000
MUL	->	H->1	P->3	R->18.000000
MUL	->	H->1	P->4	R->32.000000
MUL	->	H->1	P->5	R->50.000000
MUL	->	H->1	P->6	R->72.000000
SUM	->	H->0	P->21	R->63.000000
SUM	->	H->0	P->22	R->66.000000
SUM	->	H->0	P->23	R->69.000000
SUM	->	H->0	P->24	R->72.000000
SUM	->	H->0	P->25	R->75.000000
SUM	->	H->0	P->26	R->78.000000
SUM	->	H->0	P->27	R->81.000000
SUM	->	H->0	P->28	R->84.000000
SUM	->	H->0	P->29	R->87.000000
SUM	->	H->0	P->30	R->90.000000
SUM	->	H->0	P->31	R->93.000000
SUM	->	H->0	P->32	R->96.000000
SUM	->	H->0	P->33	R->99.000000
SUM	->	H->0	P->34	R->102.000000
SUM	->	H->0	P->35	R->105.000000

Resultado de la ejecución

Descripción

- ¿Cómo se comporta el programa anterior si hay menos hilos que secciones?
- ¿Cómo se comporta el programa anterior si hay más hilos que secciones?
- Modifica el programa para que haga un uso adecuado de cuatro hilos

Trabajo realizado

- 1. Dos hilos se quedarán sin hacer ninguna tarea.
- 2. Se realizarán por orden las secciones y cuando algún hilo termine su tarea, seguirá con las que falten.
- 3. Realizamos que en cada sección trabajara con la mitad de los array, así al ser cuatro hilos, tenemos cuatro secciones y aprovechamos todos los hilos.

MP

El resultado de la ejecución lo podemos ver en la imagen inferior (Resultado de ejecución).

```
[COMIENZO]
Hilo 0 Realizando Suma Primera Mitad
Hilo 3 Realizando Suma Segunda Mitad
Hilo 2 Realizando Multiplicacion Segunda Mitad
Hilo 1 Realizando Multiplicacion Primera Mitad
[FINAL]
```

Resultado de la ejecución