

"We Demand Justice!": Towards Social Context Grounding of Political Texts

PURDUE UNIVERSITY®

Rajkumar Pujari Chengfei Wu Dan Goldwasser

Purdue University, West Lafayette, USA

Proposed Datasets

{rpujari, wu1491, dgoldwas}@purdue.edu

Department of Computer Science

Abstract

- ► Understanding political discourse on social media fully by reading only the text is difficult. However, knowledge of the social context information makes it easier.
- ➤ We characterize the social context required to understand such ambiguous discourse fully.
- ➤ We propose two datasets that require an understanding of social context and benchmark them using large pre-trained language models and several novel structured models.
- ➤ We show that structured models, explicitly modeling social context, outperform larger models on both tasks, but still lag significantly behind human performance.

Motivation

- ► Humans familiar with a politician's stances and, possessing knowledge about the event, can easily understand the *intended meaning*.
- ► Our main question is Can an NLP model find the right meaning?

Dataset Statistics

Target Task Data Statistics		Vague Text Data Statistics		
Unique Tweets	865	Unique Vague Texts	93	
Positive Targets	1512	Positive Examples	739	
Negative Targets	1085	Negative Examples	2217	
Neutral Targets	784	Total Examples	2956	
Non-Targets	2509	Hard Test Examples	180	
Total Data Examples	5891	Number of Events	9	
Number of Events	3			

► We use Amazon Mechanical Turk (AMT), LLMs, and contextual expert annotations to obtain the data.

Social Commonsense

Entity-Sentiment Perspective of an Event

Kavanaugh Supreme Court Nomination

Democrat-Only Entities Anita Hill Patty Murray Merrick Garland

Vague statement: First, but not the last.

The withdrawal from the Paris climate agreement

is the first of many positive actions for American

economy to come for the Trump administration

It's time for America to move forward & make

progress without being held back by a global

agreement that doesn't serve our interests

(Doesn't match vague text)

Event: US withdraws from Paris climate agreement

Jeff Flake

Agreed-Upon Entities US Supreme Court US Senate FBI Judiciary Committee

Divisive Entities
Christine Ford
Deborah Ramirez
Julie Swetnick

Author affiliation: Republican

Trump's inauguration marks the first day

of a **new era** of progress and prosperity

(Incorrect Event)

The Paris Climate Agreement withdrawal is the

first of many backward steps Trump administration

is sure to take in destroying our environment

Republican-Only Entities

Susan Collins
Chuck Grassley
Diane Feinstein
Chuck Schumer
Sean Hannity

Human Performance Benchmarking

- ► Humans familiar with context find the Vague Text Disambiguation task fairly easy. Shows the robustness of the dataset.
- ► Current NLP models lag significantly behind humans on the *Vague Text*Disambiguation task

Model	Accuracy
BERT-base + wiki	54.89
BERT-base + DCF-embs	63.38
BERT-base + DCF	64.79
Humans	<mark>94.85</mark>

Feature Importance Ablation

► Ablation of different classes of examples on the Target-Entity task. Shows that no single feature is sufficient for solving the task. A joint understanding of contextual elements is necessary to solve the task.

Data Split	Unseen Party	Unseen Event	Flip Tweet	Flip Event	Flip Party
	Ma-F1	Ma-F1	Acc	Acc	Acc
Random	44.70	29.69	75	75	75
BERT-base +wiki	57.58	39.76	<mark>88.14</mark>	89.77	87.77
BERT-base +DCF-embs	61.79	<mark>47.88</mark>	86.10	<mark>93.18</mark>	84.57
BERT-base +DCF	<mark>65.18</mark>	45.65	82.03	89.77	84.04
. 501					

Task: Given an *opinionated tweet* from a politician, identify

Targets: Brett Kavanaugh (negative), Julie Swetnick (positive),

(a) Target-Entity & Sentiment Task

Read 18 replies

Christine Ford (positive), Deborah Ramirez (positive)

intended target entities and sentiment towards them

🕵 Earl Blumenauer 🔮

3:27 PM · Sep 27, 2018

Brett Kavanaug

Supreme Court

@repblumenauer · Follow

Kavanaugh is not the victim here.

♥ 343 PReply ② Copy link

	Madal	Target-Entity Task		Target-Sentiment Task	
	Model	Macro-F1	Acc	Macro-F1	Acc
No-Context Baselines	BERT-large (B-l)	68.83	70.56	58.95	58.37
	RoBERTa-base (R-b)	65.14	66.40	61.36	60.65
Text-Context Baselines	B-l + twitter-bio	69.34	71.66	60.13	59.86
	R-b + twitter-bio	64.79	66.30	59.94	59.46
	B-l + wiki	60.33	61.05	53.9	53.32
	R-b + wiki	68.62	70.27	58.07	58.28
LLMs	GPT-3 zero-shot	69.77	73.78	54.18	56.80
	GPT-3 few-shot	66.45	67.03	55.00	57.15
Contextualized Embeddings	B-l + PAR-embs	60.25	60.56	55.89	55.80
	R-b + PAR-embs	67.67	69.18	55.51	55.40
	B-l + DCF-embs	68.32	69.97	61.22	60.75
	R-b + DCF-embs	<mark>73.56</mark>	<mark>75.82</mark>	62.90	63.03
Discourse Contextualized Models	B-l + DCF	71.17	72.94	<mark>65.34</mark>	<mark>65.31</mark>
	R-b + DCF	70.39	72.15	63.37	63.23

Vague Text Results

(b) Vague Text Disambiguation Task

Task: Given *party affiliation* and a *vague statement* in context of an *event*, identify a *plausible interpretation* of the text

	Model	Vague Text Disambiguation Task		
	Model	Macro-F1	Acc	
No-Context Baselines	BERT-large (B-l)	50.28	53.75	
	BERT-base (B-b)	54.53	56.08	
Text-Context Baselines	B-l + wiki	66.87	76.03	
	B-b + wiki	64.36	75.69	
LLMs	GPT-3 zero-shot	62.58	63.50	
	GPT-3 few-shot	61.86	62.04	
Contextualized Embeddings	B-l + PAR-embs	65.53	73.79	
	B-b + PAR-embs	65.49	72.59	
	B-l + DCF-embs	67.55	73.10	
	B-b + DCF-embs	<mark>71.71</mark>	<mark>78.45</mark>	
Discourse Contextualized Models	B-l + DCF	69.94	76.55	
	B-b + DCF	70.06	76.55	

Conclusion

- ► We conceptualize and operationalize two holistic social context grounding tasks in English on the US political domain.
- ► We evaluate existing state-of-the-art models and humans on these tasks and present interesting observations.
- ► Future work directions include building explicit and interpretable models for *Social Context Grounding*, expanding proposed datasets, designing diverse tasks, and other flavors of social context such as crosscultural understanding, emergency response, etc.

Resources

https://github.com/pujari-rajkumar/language-in-context