[CS M51A FALL 18] CH5-SAMPLE-HOMEWORK

Practice Exercises

From the book: 5.5, 5.7, 5.15. Solutions are posted.

Homework Problems

Problem 1 (20 points)

For $f(x, y, z, w) = \prod M(1, 8, 9, 12)$

- 1. Using K-maps, find all the prime implicants.
- 2. Which of these prime implicants are essential?
- 3. Write the minimal sum of products for f.
- 4. Find all the prime implicates.
- 5. Which of these prime implicates are essential?
- 6. Write the minimal product of sums for f.

Problem 2 (10 points)

We would like to examine how K-maps can be used to obtain minimal sum-of-product expressions. We are given the following expression.

$$E(x, y, z, w) = xy' + xzw + yw$$

1. Using the given expression, fill in the table below.

x	y	z	w	$\mid E \mid$
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

- 2. Draw the K-map for the table.
- 3. Identify the essential prime implicants. Is xzw essential? Why or why not?

Problem 3 (20 points)

We are given a module with four input bits, x_1, x_0, y_1, y_0 and three output bits, z_2, z_1, z_0 , which are:

$$z_2 = \sum m(7, 10, 11, 13, 14, 15)$$

$$z_1 = \sum m(2, 3, 5, 6, 8, 9, 12, 15)$$

$$z_0 = \sum m(1, 3, 4, 6, 9, 11, 12, 14)$$

1. Fill in the table.

$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
0 0 1 0	
0 0 1 1	
0 1 0 0	
0 1 0 1	
0 1 1 0	
0 1 1 1	
1 0 0 0	
$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$	
1 0 1 0	
1 0 1 1	
1 1 0 0	
1 1 0 1	
1 1 1 0	
1 1 1 1	

2. Draw K-maps for each output bit. Find the prime implicants.

- 3. Write the minimal sum of products expression for each z bit.
- 4. Looking back at the table, can you identify the high-level function of the module?

Problem 4 (20 points)

We would like to design a BCD-to-Gray-Code converter. The Gray Code is a coding scheme where each number sequence differs from its predecessor by exactly one bit. The Gray code for decimal digits is shown it the following table.

Coded value	z_3	z_2	z_1	z_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	1	1	1	0
6	1	0	1	0
7	1	0	1	1
8	1	0	0	1
9	1	0	0	0

- 1. Write the truth table for the converter. How many input bits do we need? Do not forget don't-care cases.
- 2. Draw the K-maps for each z bit. Find the prime implicants.
- 3. Write the minimal sum of products for each z bit. How many gates would we need for an AND-OR network implementation? Assume that the complements of the inputs are available.