Nome, cognome, matricola

Calcolatori Elettronici (12AGA) –esame del 5.7.2022

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Tempo: 15 minuti.

1	Si consideri una memoria con architettura a vettore composta da 1024 parole da 32 bit ciascuna. Quante uscite ha il decoder alimentato dai bit di indirizzo?			
2		T (1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2	Quale <u>vantaggio</u> offre un contatore sincrono rispetto ad uno asincrono?	Tutte le uscite assumono il valore corretto contemporaneamente e in modo indipendente dalla frequenza	A	
	ad the ashlerene:	Hanno un ritardo che cresce linearmente con il parallelismo	В	
		Minor costo dell'hardware necessario	C	
		Maggiore affidabilità	D	
3	Si consideri una memoria equipaggiata con un codice di parità. Quale delle seguenti affermazioni è <u>vera</u> ?	Il codice è in grado di rilevare tutti gli errori che coinvolgono un solo bit		
		Il codice è in grado di rilevare e correggere tutti gli errori che	В	
		coinvolgono un solo bit		
		Il codice è in grado di rilevare tutti gli errori che coinvolgono uno o due bit	С	
		Il codice è in grado di rilevare e correggere tutti gli errori che	D	
		coinvolgono un solo bit, e di rilevare quelli che ne coinvolgono		
		due		
4	Quale svantaggio offre il meccanismo di arbitraggio	Maggiore costo HW	A	
•	basato su richieste indipendenti rispetto ai meccanismi	Minore velocità	В	
	alternativi (Daisy Chain e Polling)?	Difficoltà di aggiunta di una nuova unità	С	
		Bassa tolleranza ai guasti	D	
5	Si consideri una cache set associative a 4 vie, composta da 1024 linee da 32 bit ciascuna. Quanti insiemi di linee compongono la cache?			
6	Nel caso di un sistema che supporta il DMA, quale	Burst mode	A	
	meccanismo garantisce la massima velocità di	Cycle stealing	В	
	trasferimento dati da memoria a periferico (o	Transparent DMA	С	
	viceversa)?	I 3 meccanismi garantiscono la stessa velocità di trasferimento	D	
6	Quale vantaggio presenta il meccanismo dell'I/O	Maggiore semplicità dell'hardware della CPU	A	
	programmato rispetto all' interrupt?	Minor numero di accessi all'interfaccia della periferica	В	
		Maggiore velocità nel gestire l'operazione di I/O	С	
		Possibilità di gestire tipi diversi di periferiche	D	
		•		

7	Che cos'è un processore multicore?	Un sistema che integra sullo stesso dispositivo più processori	A	
		Un processore realizzato su un unico dispositivo	В	
		Un processore realizzato su un dispositivo in cui sono presenti anche una memoria e alcune periferiche	С	
		Un processore realizzato con più circuiti alloggiati in un unico package	D	
9	Su quanti bit è rappresentato ciascun operando all'interno del codice macchina di un'istruzione MIPS	5	A	
	di tipo R?	8	В	
		16	С	
		Dipende dall'istruzione	D	
100	Si scriva un frammento di codice in grado di caricare nel registro \$s1 il valore 0x12345678, utilizzando l'istruzione lui.			

Risposte corrette

1	2	3	4	5	6	7	8	9	10
1024	A	A	A	256	A	A	A	A	

Domanda 10

lui \$s1, 0x1234 ori \$s1, \$s1, 0x5678

Domande a risposta ape	e rta (sino a 5 punti per ogni do Tempo: 4	omanda) – Non è poss 10 minuti.	ibile consultare alcun mate	riale -
Si consideri un processore con	nnesso ad una memoria da 64KB	e dotato di una cache di	rect mapped da 32 linee, ciaso	cuna da 16
	nente le 32 linee contengano i pri			
linea 1 il blocco 1, e così via)	, si determini quali dei seguenti 1	12 accessi in memoria da	parte del processore provoca	no un hit (H),
e quali un miss (M), completa	ando la tabella seguente.			
Indirizzo	Blocco (riportarlo anche in	Numero di linea	H/M	
	forma binaria)			
0100 0000 0011 0011				
1010 1000 1000 0011				
0000 0000 0101 0100				
0000 1000 1001 1000				
0000 0100 0111 1010				
0000 0100 0010 0101				
0101 0000 1111 0110				
0000 1000 1001 1111 0000 0000 1000 1100				
0000 0000 1000 1100				
0000 0011 0011 0100				
1010 1000 1000 0110				
1010 1000 1000 0110				

Dato il diagramma degli stati della macchina di Moore rappresentata figura, progettare il relativo circuito minimo a due livelli. E' necessario arrivare alla rappresentazione delle funzioni delle uscite e degli stati futuri senza disegnare il circuito.

Si completi la seguente tabella di transizione degli stati considerando che Inp rappresenta il segnale di ingresso, Out il valore di uscita, S0-S1 lo stato corrente e F0-F1 lo stato futuro.

Inp	S0	S1	F0	F1	Out	

Funzione Out

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0				
I = 1				

Funzione F0

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0				
I = 1				

Funzione F1

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0				
I = 1				

13	Si descrivano le principali caratteristiche dei processori di tipo RISC.

14	Si descrivano le principali caratteristiche delle memorie dinamiche, evidenziando vantaggi e svantaggi rispetto alle memorie di tipo statico.
	tipo statico.

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Il cifrario di Vigenère cifra un testo in chiaro utilizzando una parola chiave, chiamata verme. Sia N la lunghezza del verme: il carattere che si trova in posizione i-esima del verme è associato ai caratteri del testo in chiaro che si trovano in posizione i + k * N, dove k è un numero naturale. Ad esempio, se il verme è "mips", con N=4:

- 'm' (i = 0) è associata ai caratteri del testo in chiaro in posizione $0, 4, 8, 12, 16, \dots$
- 'i' (i = 1) è associata ai caratteri del testo in chiaro in posizione 1, 5, 9, 13, 17, ...
- 'p' (i = 2) è associata ai caratteri del testo in chiaro in posizione 2, 6, 10, 14, 18, ...
- 's' (i = 3) è associata ai caratteri del testo in chiaro in posizione 3, 7, 11, 15, 19 ...

Si assuma che il testo in chiaro e il verme contengano solamente lettere minuscole.

Ciascuna lettera minuscola del testo in chiaro è cifrata aggiungendo il numero ordinale della lettera corrispondente del verme (a = 0, b = 1, c = 2, ..., z = 25).

Nell'esempio precedente, alle lettere del testo in chiaro in posizione 0, 4, 8, 12, 16, ... è aggiunto 12 perché la lettera 'm' si trova in posizione 12 (cominciando a contare da 0) nell'alfabeto, alle lettere del testo in chiaro in posizione 1, 5, 9, 13, 17, ... è aggiunto 8 perché la lettera 'i' si trova in posizione 8. La lettera ottenuta con questa addizione corrisponde alla lettera cifrata; se si supera la lettera 'z' occorre ricominciare dalla 'a'.

Esempio

testo in chiaro: "calcolatorielettronici"

verme: "mips"

testo cifrato: "oiauatplazxwxmildwcaoq"

Si scriva una procedura cifrarioVigenere che cifra un testo in chiaro secondo il cifrario di Vigenère. La procedura riceve in input:

- l'indirizzo della stringa contenente il testo in chiaro
- l'indirizzo della stringa contenente il verme
- la lunghezza del verme
- l'indirizzo della stringa (non inizializzata) che conterrà il testo cifrato.

La procedura salva il testo cifrato in memoria e restituisce il numero di lettere cifrate.

Di seguito un esempio di programma chiamante:

```
LEN = 4
             .data
                   .asciiz "calcolatorielettronici"
testoInChiaro:
                   .ascii "mips"
verme:
testoCifrato:
                   .space 23
             .text
             .globl main
             .ent main
main:
             [\ldots]
             la $a0, testoInChiaro
             la $a1, verme
             li $a2, LEN
             la $a3, testoCifrato
             jal cifrarioVigenere
             [\ldots]
             jr $ra
             .end main
```

Nell'esempio, la procedura restituisce 22.