Amortized Projection Optimization for Sliced Wasserstein Generative Models

Khai Nguyen, Nhat Ho

Presenter: Yue Xiang

2022.6.30

Outlines

Wasserstein Distances and Its Variants

Apply (Sliced)-Wasserstein Distances to Generative Models

Amortized Sliced Wasserstein and Amortized Models

Experiments

Wasserstein Distances and Its Variants

Apply (Sliced)-Wasserstein Distances to Generative Models

Amortized Sliced Wasserstein and Amortized Models

Experiments

Wasserstein-p Distance

The Wasserstein- p distance between two probability measures $\mu \in \mathcal{P}_p\left(\mathbb{R}^d\right)$ and $\nu \in \mathcal{P}_p\left(\mathbb{R}^d\right)$:

$$W_p(\mu,
u) := \left(\inf_{\pi\in\Pi(\mu,
u)}\int_{\mathbb{P}^d imes\mathbb{P}^d}\|x-y\|_p^pd\pi(x,y)
ight)^{rac{1}{p}}.$$

Wasserstein-p Distance

The Wasserstein- p distance between two probability measures $\mu \in \mathcal{P}_p\left(\mathbb{R}^d\right)$ and $\nu \in \mathcal{P}_p\left(\mathbb{R}^d\right)$:

$$W_p(\mu,
u) := \left(\inf_{\pi \in \Pi(\mu,
u)} \int_{\mathbb{R}^d imes \mathbb{R}^d} \|x-y\|_p^p d\pi(x,y)
ight)^{rac{1}{p}}.$$

- ► Computational complexity: $\mathcal{O}(m^3 \log m)$
- ▶ Curse of dimensionality: sample complexity: $\mathcal{O}\left(m^{-1/d}\right)$ m is the number of supports of two mini-batch measures.

Wasserstein-p Distance (d = 1)

When d = 1, the Wasserstein distance has a closed form:

$$W_p(\mu, \nu) = \left(\int_0^1 |F_{\mu}^{-1}(z) - F_{\nu}^{-1}(z)|^p dz\right)^{1/p}$$
 (1)

 F_{μ} , F_{ν} : cumulative distribution function (CDF) of μ and ν .

- ▶ Computational complexity: $\mathcal{O}(m \log m)$
- ▶ No curse of dimensionality: $\mathcal{O}\left(m^{-1/2}\right)$

Sliced-Wasserstein Distance

$$egin{aligned} \mathsf{SW}_p(\mu,
u) := \left(\int_{\mathbb{S}^{d-1}} \; \mathsf{W}_p^p(heta\sharp\mu, heta\sharp
u) d heta
ight)^{rac{1}{p}} \ &pprox \left(rac{1}{L}\sum_{i=1}^L \; \mathsf{W}_p^p\left(heta_i\sharp\mu, heta_i\sharp
u
ight)
ight)^{rac{1}{p}}. \end{aligned}$$

► For each $\theta \in \mathbb{S}^{d-1}$, $W_p^p(\theta \sharp \mu, \theta \sharp \nu)$ can be computed in linear time $\mathcal{O}(n \log n)$ (n is the number of supports of μ and ν).

Sliced-Wasserstein Distance

$$egin{aligned} \mathsf{SW}_p(\mu,
u) := \left(\int_{\mathbb{S}^{d-1}} \; \mathsf{W}_p^p(heta\sharp\mu, heta\sharp
u) d heta
ight)^{rac{1}{p}} \ &pprox \left(rac{1}{L}\sum_{i=1}^L \; \mathsf{W}_p^p\left(heta_i\sharp\mu, heta_i\sharp
u
ight)
ight)^{rac{1}{p}}. \end{aligned}$$

- ► For each $\theta \in \mathbb{S}^{d-1}$, $W_p^p(\theta \sharp \mu, \theta \sharp \nu)$ can be computed in linear time $\mathcal{O}(n \log n)$ (n is the number of supports of μ and ν).
- $lackbox{}{}$ $\theta_1,\ldots,\theta_L\sim\mathcal{U}\left(\mathbb{S}^{d-1}\right)$, L should be sufficiently large compared to the dimension d.

Max-Sliced Wasserstein Distance

$$\operatorname{Max} - \operatorname{SW}(\mu, \nu) := \max_{\theta \in \mathbb{S}^{d-1}} \operatorname{W}_p(\theta \sharp \mu, \theta \sharp \nu).$$

- overcome the curse of dimensionality of the Wasserstein distance,
- overcome the issues of Monte Carlo samplings in sliced-Wasserstein distance.

Max-SW Distance: Projected Gradient Descent:

Algorithm 1 Max-SW

```
Input: Probability measures: \mu, \nu, learning rate \eta, max number of iterations T. Initialize \theta while \theta not converge or reach T do \theta = \theta - \nabla_{\theta} W_p(\theta \sharp \mu, \theta \sharp \nu) \theta = \frac{\theta}{\|\theta\|_2} end while Return: \theta
```

Wasserstein Distances and Its Variants

Apply (Sliced)-Wasserstein Distances to Generative Models

Amortized Sliced Wasserstein and Amortized Models

Experiments

Generative Models

$$\min_{\phi \in \Phi} \mathcal{D}(\mu, \nu),$$

where $\mathcal{D}(\cdot,\cdot)$ can be Wasserstein distance or SW distance or Max-SW distance.

Generative Models

$$\min_{\phi \in \Phi} \mathcal{D}(\mu, \nu),$$

where $\mathcal{D}(\cdot, \cdot)$ can be Wasserstein distance or SW distance or Max-SW distance.

- ▶ The number of training samples is often huge, e.g., one million.
- ► The dimension of data is also large,e.g., ten thousand.

Mini-batch Loss Based on Wasserstein Distances

$$\tilde{\mathcal{D}}(\mu,\nu) := \mathbb{E}_{X,Y \sim \mu^{\otimes m} \otimes \nu^{\otimes m}} \mathcal{D}\left(P_X, P_Y\right)$$

where $m \ge 1$ is the mini-batch size and \mathcal{D} is a Wasserstein metric.

Mini-batch Max-sliced Wasserstein Distance

$$ext{m-MAX-SW}(\mu,
u) = \mathbb{E}_{X,Y\sim\mu^{\otimes m}\otimes
u^{\otimes m}}\left[\max_{ heta\in\mathbb{S}^{d-1}} \ ext{W}_p\left(heta\sharp P_X, heta\sharp P_Y
ight)
ight]$$

Mini-batch Max-sliced Wasserstein Distance

$$ext{m-MAX-SW}(\mu,
u) = \mathbb{E}_{X,Y\sim\mu^{\otimes m}\otimes
u^{\otimes m}}\left[\max_{ heta\in\mathbb{S}^{d-1}} \ ext{W}_p\left(heta\sharp P_X, heta\sharp P_Y
ight)
ight]$$

Each pair of mini-batch contains its own optimization problem of finding the "max" slice.

Train Generative Models with Mini-Batch Max-SW

Algorithm 2 Training generative models with mini-batch max-sliced Wasserstein

Input: Data probability measure μ , model learning rate η_1 , slice learning rate η_2 , model maximum number of iterations T_1 , slice maximum number of iterations T_2 , number of mini-batches k (is often set to 1).

```
Initialize \phi, the model probability measure \nu_{\phi}
```

while ϕ not converge or reach T_1 do

 $\begin{array}{l} \nabla_{\phi} = 0 \\ \text{Sample } (X_1, Y_{\phi,1}), \ldots, (X_k, Y_{\phi,k}) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m} \\ \text{for } i = 1 \text{ to } k \text{ do} \\ \text{while } \theta \text{ not converge or reach } T_2 \text{ do} \end{array}$

while
$$\theta$$
 not converge or reach T_2 d
$$\theta = \theta - \nabla_{\theta} W_p(\theta \sharp P_{X_i}, \theta \sharp P_{Y_{\phi,i}})$$

$$\theta = \frac{\theta}{\|\theta\|_2}$$
end while

$$v_{\phi}$$
 – end for

$$\phi = \phi - \nabla_{\phi}$$

end while

Return: ϕ, ν_{ϕ}

Q: How can we avoid the nested-loop in mini-batch Max-SW due to several local optimization problems?

Q: How can we avoid the nested-loop in mini-batch Max-SW due to several local optimization problems?

A: Amortized optimization.

Q: How can we avoid the nested-loop in mini-batch Max-SW due to several local optimization problems?

A: Amortized optimization.

► Solve all optimization problems independently **×**

Q: How can we avoid the nested-loop in mini-batch Max-SW due to several local optimization problems?

A: Amortized optimization.

- ► Solve all optimization problems independently **×**
- ► Train an amortized model to predict informative slicing directions for all mini-batch measures ✓

Amortized Model

For each context variable x in the context space $\mathcal{X}, \theta^*(x)$ is the solution of the optimization problem $\theta^*(x) = \arg\min_{\theta \in \Theta} \mathcal{L}(\theta, x)$, where Θ is the solution space.

A parametric function $f_{\psi}: \mathcal{X} \to \Theta$, where $\psi \in \Psi$, is called an amortized model if

$$f_{\psi}(x) \approx \theta^{\star}(x), \quad \forall x \in \mathcal{X}.$$

Train the Amortized Model

The amortized model is trained by the amortized optimization objective:

$$\min_{\psi \in \Psi} \mathbb{E}_{x \sim p(x)} \mathcal{L} \left(f_{\psi}(x), x \right),$$

where p(x) is a probability measure on $\mathcal X$ which measures the "importance" of optimization problems.

Wasserstein Distances and Its Variants

Apply (Sliced)-Wasserstein Distances to Generative Models

Amortized Sliced Wasserstein and Amortized Models

Experiments

Let $p \geq 1$, $m \geq 1$, and μ, ν are two probability measure in $\mathcal{P}\left(\mathbb{R}^d\right)$. Given an amortized model $f_{\psi}: \mathbb{R}^{dm} \times \mathbb{R}^{dm} \to \mathbb{S}^{d-1}$ where $\psi \in \Psi$, the amortized sliced Wasserstein between μ and ν is defined as:

$$\mathcal{A} - SW(\mu,
u) := \max_{\psi \in \Psi} \mathbb{E}_{(X,Y) \sim \mu^{\otimes m} \otimes
u^{\otimes m}} \left[W_p \left(f_{\psi}(X,Y) \sharp P_X, f_{\psi}(X,Y) \sharp P_Y
ight)
ight].$$

Let $p \geq 1$, $m \geq 1$, and μ , ν are two probability measure in $\mathcal{P}\left(\mathbb{R}^d\right)$. Given an amortized model $f_{\psi}: \mathbb{R}^{dm} \times \mathbb{R}^{dm} \to \mathbb{S}^{d-1}$ where $\psi \in \Psi$, the amortized sliced Wasserstein between μ and ν is defined as:

$$\mathcal{A} - SW(\mu,\nu) := \max_{\psi \in \Psi} \mathbb{E}_{(X,Y) \sim \mu^{\otimes m} \otimes \nu^{\otimes m}} \left[W_p \left(f_{\psi}(X,Y) \sharp P_X, f_{\psi}(X,Y) \sharp P_Y \right) \right].$$

$$\operatorname{m-Max} - \operatorname{SW}(\mu, \nu) = \mathbb{E}_{X, Y \sim \mu^{\otimes m} \otimes \nu \otimes m} \left[\max_{\theta \in \mathbb{S}^{d-1}} \ \operatorname{W}_p \left(\theta \sharp P_X, \theta \sharp P_Y \right) \right].$$

Proposition 1. The amortized sliced Wasserstein losses are positive and symmetric. However, they are not metrics since they do not satisfy the identity property, namely, $\mathcal{A}\text{-SW}(\mu,\nu)=0 \Leftrightarrow \mu=\nu$.

Proposition 2. The amortized sliced Wasserstein losses are lower-bounds of the mini-batch maxsliced Wasserstein loss, namely,

 $\mathcal{A}\text{-SW}(\mu,\nu) \leq \text{m-Max-SW}(\mu,\nu)$ for all probability measures μ and ν on \mathbb{R}^d .

Linear Amortized Model

Assumption: the optimal projecting direction lies on the subspace that is spanned by the basis $\{x_1, \ldots, x_m, y_1, \ldots, y_m, w_0\}$ where $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_m)$.

Linear Amortized Model

- Assumption: the optimal projecting direction lies on the subspace that is spanned by the basis $\{x_1, \ldots, x_m, y_1, \ldots, y_m, w_0\}$ where $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_m)$.
- ▶ Given $X, Y \in \mathbb{R}^{dm}$, and the one-one "reshape" mapping $T : \mathbb{R}^{dm} \to \mathbb{R}^{d \times m}$, the linear amortized model is defined as:

$$f_{\psi}(X,Y) := rac{w_0 + T(X)w_1 + T(Y)w_2}{\|w_0 + T(X)w_1 + T(Y)w_2\|_2^2},$$

where $w_1, w_2 \in \mathbb{R}^m, w_0 \in \mathbb{R}^d$ and $\psi = (w_0, w_1, w_2)$.

Generalized Linear Amortized Model

Assumption: the optimal projecting direction lies on the subspace that is spanned by the basis $\{x'_1,\ldots,x'_m,y'_1,\ldots,y'_m\}$ where $g_{\psi_1}(X)=(x'_1,\ldots,x'_m)$ and $g_{\psi_1}(Y)=(y'_1,\ldots,y'_m)$, e.g., $g_{v_1}(X)=(W_2\sigma(W_1x_1)+b_0,\ldots,W_2\sigma(W_1x_m)+b_0)$, where $\sigma(\cdot)$ is the Sigmoid function.

Generalized Linear Amortized Model

- Assumption: the optimal projecting direction lies on the subspace that is spanned by the basis $\{x'_1,\ldots,x'_m,y'_1,\ldots,y'_m\}$ where $g_{\psi_1}(X)=(x'_1,\ldots,x'_m)$ and $g_{\psi_1}(Y)=(y'_1,\ldots,y'_m)$, e.g., $g_{v_1}(X)=(W_2\sigma(W_1x_1)+b_0,\ldots,W_2\sigma(W_1x_m)+b_0)$, where $\sigma(\cdot)$ is the Sigmoid function.
- ▶ Given $X, Y \in \mathbb{R}^{dm}$, and the one-one "reshape" mapping $T : \mathbb{R}^{dm} \to \mathbb{R}^{d \times m}$, the generalized linear amortized model is defined as:

$$f_{\psi}(X,Y) := rac{oldsymbol{w}_0 + T(oldsymbol{g}_{\psi_1}(X))\,oldsymbol{w}_1 + T(oldsymbol{g}_{\psi_1}(Y))\,oldsymbol{w}_2}{\|oldsymbol{w}_0 + T(oldsymbol{g}_{\psi_1}(X))\,oldsymbol{w}_1 + T(oldsymbol{g}_{\psi_1}(Y))\,oldsymbol{w}_2\|_2^2},$$

where $w_1, w_2 \in \mathbb{R}^m, w_0 \in \mathbb{R}^d, \psi_1 \in \Psi_1, g_{\psi_1} : (\mathbb{R}^d)^{\otimes m} \to (\mathbb{R}^d)^{\otimes m}$ and $\psi = (w_0, w_1, w_2, \psi_1)$.

Non-Linear Amortized Model

Assumption: the optimal projecting direction lies on the **image** of the function $h_{\psi_2}(\cdot)$ that maps from the subspace spanned by $\{x_1,\ldots,x_m,y_1,\ldots,y_m\}$ where $X=(x_1,\ldots,x_m)$ and $Y=(y_1,\ldots,y_m)$.

Non-Linear Amortized Model

- Assumption: the optimal projecting direction lies on the **image** of the function $h_{\psi_2}(\cdot)$ that maps from the subspace spanned by $\{x_1, \ldots, x_m, y_1, \ldots, y_m\}$ where $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_m)$.
- ▶ Given $X, Y \in \mathbb{R}^{dm}$, and the one-one mapping $T : \mathbb{R}^{dm} \to \mathbb{R}^{d \times m}$, the non-linear amortized model is defined as:

$$f_{\psi}(X,Y) := rac{h_{\psi_2} \left(w_0 + T(X) w_1 + T(Y) w_2
ight)}{\left\| h_{\psi_2} \left(w_0 + T(X) w_1 + T(Y) w_2
ight)
ight\|_2^2},$$

where $w_1, w_2 \in \mathbb{R}^m, w_0 \in \mathbb{R}^d, \psi_2 \in \Psi_2, h_{\psi_2} : \mathbb{R}^d \to \mathbb{R}^d$ and $\psi = (w_0, w_1, w_2, \psi_2)$.

$$\begin{split} & \text{Train a generative model } \nu_{\phi} \text{ parametrized by } \phi \in \Phi \text{:} \\ & \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathbb{E}_{\left(X, Y_{\phi}\right) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}} \operatorname{W}_{p} \left(f_{\psi} \left(X, Y_{\phi}\right) \sharp P_{X}, f_{\psi} \left(X, Y_{\phi}\right) \sharp P_{Y_{\phi}} \right) \\ & := \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathcal{L} \left(\mu, \nu_{\phi}, \psi \right) \text{.} \end{split}$$

$$\begin{split} & \text{Train a generative model } \nu_{\phi} \text{ parametrized by } \phi \in \Phi \text{:} \\ & \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathbb{E}_{\left(X, Y_{\phi}\right) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}} \text{ W}_{p} \left(f_{\psi} \left(X, Y_{\phi}\right) \sharp P_{X}, f_{\psi} \left(X, Y_{\phi}\right) \sharp P_{Y_{\phi}} \right) \\ & := \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathcal{L} \left(\mu, \nu_{\phi}, \psi \right) \text{.} \end{split}$$

► Minimax problem ⇒ alternating stochastic gradient descent-ascent

$$\begin{split} & \text{Train a generative model } \nu_{\phi} \text{ parametrized by } \phi \in \Phi \text{:} \\ & \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathbb{E}_{\left(X, Y_{\phi}\right) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}} \operatorname{W}_{p} \left(f_{\psi} \left(X, Y_{\phi} \right) \sharp P_{X}, f_{\psi} \left(X, Y_{\phi} \right) \sharp P_{Y_{\phi}} \right) \\ & := \min_{\phi \in \Phi} \max_{\psi \in \Psi} \mathcal{L} \left(\mu, \nu_{\phi}, \psi \right) \text{.} \end{split}$$

- ► Minimax problem ⇒ alternating stochastic gradient descent-ascent
- ► The stochastic gradients of ϕ and ψ can be estimated from mini-batches $(X_1, Y_{\phi,1}) \dots (X_k, Y_{\phi,k}) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}$:

$$\nabla_{\phi} \mathcal{L} \left(\mu, \nu_{\phi}, \psi \right) = \frac{1}{k} \nabla_{\phi} W_{p} \left(f_{\psi} \left(X_{i}, Y_{\phi, i} \right) \sharp P_{X_{i}}, f_{\psi} \left(X_{i}, Y_{\phi, i} \right) \sharp P_{Y_{\phi, i}} \right),$$

$$\nabla_{\psi} \mathcal{L} \left(\mu, \nu_{\phi}, \psi \right) = \frac{1}{k} \nabla_{\psi} W_{p} \left(f_{\psi} \left(X_{i}, Y_{\phi, i} \right) \sharp P_{X_{i}}, f_{\psi} \left(X_{i}, Y_{\phi, i} \right) \sharp P_{Y_{\phi, i}} \right).$$

Algorithm 3 Training generative models with amortized sliced Wasserstein

```
Input: Data probability measure \mu, model learning rate \eta_1, amortized learning rate \eta_2, maximum
number of iterations T, number of mini-batches k (is often set to 1).
Initialize \phi, the model probability measure \nu_{\phi}.
Initialize \psi, the amortized model f_{\psi}.
while \phi, \psi not converge or reach T do
    \nabla_{d} = 0: \nabla_{d} = 0
   Sample (X_1, Y_{\phi,1}), \ldots, (X_k, Y_{\phi,k}) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}
   for i = 1 to k do
      \nabla_{\phi} = \nabla_{\phi} + \frac{1}{k} \nabla_{\phi} W_p(f_{\psi}(X_i, Y_{\phi,i}) \sharp P_{X_i}, f_{\psi}(X_i, Y_{\phi,i}) \sharp P_{Y_{\phi,i}}) 
\nabla_{\psi} = \nabla_{\psi} + \frac{1}{k} \nabla_{\psi} W_p(f_{\psi}(X_i, Y_{\phi,i}) \sharp P_{X_i}, f_{\psi}(X_i, Y_{\phi,i}) \sharp P_{Y_{\phi,i}})
   end for
    \psi = \psi + \nabla_{\psi}
end while
Return: \phi, \nu_{\phi}
```

Comparison

```
while \phi not converge or reach T_1 do
    \nabla_{\phi} = 0
                                                                                                                       while \phi, \psi not converge or reach T do
    Sample (X_1, Y_{\phi,1}), \dots, (X_k, Y_{\phi,k}) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}
                                                                                                                            \nabla_{d} = 0: \nabla_{d} = 0
     for i = 1 to k do
                                                                                                                            Sample (X_1, Y_{\phi,1}), \ldots, (X_k, Y_{\phi,k}) \sim \mu^{\otimes m} \otimes \nu_{\phi}^{\otimes m}
         while \theta not converge or reach T_2 do
                                                                                                                            for i = 1 to k do
             \theta = \theta - \nabla_{\theta} W_{n}(\theta \sharp P_{X_{+}}, \theta \sharp P_{Y_{++}})
                                                                                                                                 \nabla_{\phi} = \nabla_{\phi} + \frac{1}{L} \nabla_{\phi} W_{p}(f_{\psi}(X_{i}, Y_{\phi, i}) \sharp P_{X_{i}}, f_{\psi}(X_{i}, Y_{\phi, i}) \sharp P_{Y_{\phi, i}})
             \theta = \frac{\theta}{\|\theta\|_{0}}
                                                                                                                                \nabla_{\psi} = \nabla_{\psi} + \frac{1}{L} \nabla_{\psi} W_{n}(f_{\psi}(X_{i}, Y_{\phi, i}) \sharp P_{X_{i}}, f_{\psi}(X_{i}, Y_{\phi, i}) \sharp P_{Y_{\phi, i}})
         end while
                                                                                                                            end for
         \nabla_{\phi} = \nabla_{\phi} + \frac{1}{\hbar} \nabla_{\phi} W_{p}(\theta \sharp P_{X_{+}}, \theta \sharp P_{Y_{++}})
                                                                                                                            \phi = \phi - \nabla_{\phi}
    end for
                                                                                                                            \psi = \psi + \nabla_{\psi}
    \phi = \phi - \nabla_{\phi}
end while
                                                                                                                       end while
```

(b) Amortized SW

Wasserstein Distances and Its Variants

Apply (Sliced)-Wasserstein Distances to Generative Models

Amortized Sliced Wasserstein and Amortized Models

Experiments

Benchmarks and Evaluations

- ▶ Benchmarks: CIFAR10 $(32 \times 32, STL10 (96 \times 96), CelebA (64 \times 64), and CelebAHQ (128 \times 128)$
- **E**valuations:
 - quantitative: FID score, Inception score (IS)
 - qualitative: randomly generated images

FID and IS Scores

Table 1: Summary of FID and IS scores of methods on CIFAR10 (32x32), CelebA (64x64), STL10 (96x96), and CelebA-HQ (128x128). We observe that \mathcal{A} -SW losses provide the best results among all the training losses.

Method	CIFAR10	(32x32)	CelebA (CelebA (64x64)		STL10 (96x96)		CelebA-HQ (128x128)	
	FID (\dagger)	IS (\uparrow)	\mid FID (\downarrow)	IS (\uparrow)	FID (\downarrow)	IS (\uparrow)	$FID(\downarrow)$	IS (\uparrow)	
SNGAN (baseline)	17.09	8.07	12.41	2.61	59.48	9.29	19.25	2.32	
SW Max-SW	14.11 34.41	$8.19 \\ 6.52$	10.45 11.28	2.70 2.60	$56.32 \\ 77.40$	$10.37 \\ 9.46$	$16.17 \\ 29.50$	$2.65 \\ 2.36$	
$\mathcal{L}A$ -SW (ours)	12.51	8.22	9.82	2.72	52.08	10.52	14.94	2.50	
\mathcal{GA} -SW (ours)	13.54	8.33	9.21	2.78	53.80	10.40	18.97	2.34	
$\mathcal{N}A$ -SW (ours)	14.44	8.35	8.91	2.82	53.90	10.14	15.17	2.72	

Convergence: FID and IS Over Training Epochs

- \blacktriangleright FID lines of A-SW are usually under the lines of other losses.
- \blacktriangleright IS lines of A-SW are usually above the lines of other's.
- *A*-SW usually help the generative models converge faster.

Computational Time and Memory

Table 2: Computational time and memory of methods (reported in the number of iterations per a second and megabytes (MB).

Method	CIFAR10 (32x32)		CelebA $(64x64)$		STL10 (96x96)		CelebA-HQ	
	Iters/s (†)	$Mem (\downarrow)$	Iters/s (†)	Mem (\downarrow)	Iters/s (†)	Mem (↓)	Iters/s (†)	Mem (\lambda)
SNGAN (baseline)	19.97	1740	6.31	6713	9.33	3866	10.41	3459
SW (L=1)	18.73	2078	6.17	8011	9.31	4597	10.25	4111
SW (L=100)	18.42	2093	6.15	8015	9.11	4609	10.17	4120
SW (L=1000)	14.96	2112	6.13	8047	9.03	4616	9.63	4143
SW (L=10000)	5.84	2421	4.21	8353	6.50	4780	5.17	4428
Max-SW $(T_2=1)$	18.61	2078	6.17	8011	9.23	4597	10.22	4111
Max-SW $(T_2=10)$	18.16	2078	6.15	8011	9.17	4597	10.16	4111
Max-SW $(T_2=100)$	13.47	2078	5.78	8011	8.32	4597	8.13	4111
LA-SW (ours)	18.58	2086	6.17	8021	9.23	4600	10.19	4115
\mathcal{GA} -SW (ours)	17.27	4151	6.07	10083	9.08	5251	10.11	6163
$\mathcal{N}_{\mathcal{A}}$ -SW (ours)	17.67	4134	6.13	10068	9.11	5249	10.15	6152

- ▶ Using sliced Wasserstein models gives better generative quality but it also costs more computational time and memory.
- \triangleright \mathcal{LA} SW is the best option of sliced Wasserstein models.