Global irrigation water demands biased by unreliable irrigation efficiencies

R code

Arnald Puy

Contents

1	Read in data						
2	The model						
	2.1	Function to create sample matrix	7				
	2.2	Define distributions	8				
2.3 Uncertainty in the proportion of large-scale irrigated areas							
2.4 Function to create sample matrix and transfrom to appropriate distributions							
	2.5	Run the model	11				
	2.6	Define settings	12				
	2.7	Run model	12				
	2.8	Extract model output	13				
3		Uncertainty analysis					
	3.1	Retrieve data from ISIMIP	31				
4	Sensitivity analysis 3						

```
# Function to read in all required packages in one go:
loadPackages <- function(x) {</pre>
  for(i in x) {
    if(!require(i, character.only = TRUE)) {
      install.packages(i, dependencies = TRUE)
      library(i, character.only = TRUE)
  }
}
# Load the packages
loadPackages(c("data.table", "tidyverse", "sensobol", "wesanderson",
               "cowplot", "parallel", "foreach", "doParallel",
               "countrycode", "ggridges", "scales", "overlapping",
               "sp", "rworldmap", "ncdf4"))
# Create custom theme
theme_AP <- function() {</pre>
  theme_bw() +
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.background = element_rect(fill = "transparent",
                                            color = NA),
          legend.key = element_rect(fill = "transparent",
                                     color = NA),
          legend.position = "top",
          strip.background = element rect(fill = "white"),
          plot.margin = margin(t = 0, r = 0.3, b = 0, l = 0.3, unit ="cm"))
}
# Set checkpoint
dir.create(".checkpoint")
library("checkpoint")
checkpoint("2021-08-02",
           R.version ="4.0.3",
           checkpointLocation = getwd())
```

1 Read in data

```
# READ IN DATA -----
# Rohwer data
rohwer <- fread("rohwer_data_all.csv")</pre>
rohwer[rohwer == ""] <- NA</pre>
rohwer <- rohwer[, Large_fraction:= Large_fraction / 100]</pre>
# Jager data
jager <- fread("jager_data.csv")</pre>
jager.list <- split(jager, jager$Country)</pre>
# Bos data
bos <- fread("bos_data.csv")</pre>
bos <- bos[, Scale := ifelse(Irrigated_area < 10000, "<10.000 ha", ">10.000 ha")]
# Solley data (USA)
usa.dt <- fread("usa_efficiency.csv")</pre>
usa.dt <- usa.dt[, Efficiency:= consumptive.use / total.withdrawal]
# FAO 1997 data (Irrigation potential in Africa)
fao_dt <- fread("fao_1997.csv")</pre>
fao_dt <- fao_dt[, Efficiency:= Efficiency / 100]</pre>
# Create data set with E_a values as defined by Rohwer
bos.rohwer.ea <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.6, 0.7),
                              "variable" = "E[a]")
# Create data set with E_c values as defined by Rohwer
bos.rohwer.ec <- data.table("Irrigation" = c("Surface", "Sprinkler"),</pre>
                              "Value" = c(0.8, 0.95),
                              "variable" = "E[c]")
bos.rohwer.all <- rbind(bos.rohwer.ec, bos.rohwer.ea)</pre>
# As a function of scale
bos.rohwer.mf.ec <- data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.85, 0.59),
                                 "variable" = "E[c]")
bos.rohwer.mf.ed \leftarrow data.table("Scale" = c("<10.000 ha", ">10.000 ha"),
                                 "Value" = c(0.81, 0.72),
                                 "variable" = "E[d]")
bos.rohwer.mf.all <- rbind(bos.rohwer.mf.ec, bos.rohwer.mf.ed)</pre>
```

```
bos2 <- copy(bos)</pre>
bos2 <- setnames(bos2, c("E_a", "E c", "E_d"), c("E[a]", "E[c]", "E[d]"))
# Field and conveyance efficiency -----
a <- bos2 %>%
 melt(., measure.vars = c("E[a]", "E[c]")) %>%
  ggplot(., aes(value, fill = Irrigation, color = Irrigation)) +
  geom_histogram(position = "identity", alpha = 0.4, bins = 15) +
 facet_wrap(~variable, labeller = label_parsed) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_vline(data = bos.rohwer.all, aes(xintercept = Value,
                                       color = Irrigation,
                                        group = variable),
            lty = 2,
            size = 1) +
  labs(x = "", y = "Counts") +
  theme_AP()
# As a function of scale -----
b <- melt(bos2, measure.vars = c("E[c]", "E[a]", "E[d]")) %>%
 na.omit() %>%
  ggplot(., aes(value, fill = Scale, color = Scale)) +
 geom histogram(bins = 15, position = "identity", alpha = 0.6) +
 labs(x = "Irrigation efficiency", y = "Counts") +
 facet_wrap(~ variable, labeller = label_parsed) +
  geom_vline(data = bos.rohwer.mf.all, aes(xintercept = Value,
                                         color = Scale,
                                         group = variable),
            lty = 2,
             size = 1) +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  scale_color_manual(values = wes_palette(2, name = "Chevalier1"),
                    name = "Scale",
                    labels = c("<10.000 ha", ">10.000 ha")) +
  scale_fill_manual(values = wes_palette(2, name = "Chevalier1"),
                    name = "Scale",
                    labels = c("<10.000 ha", ">10.000 ha")) +
  theme_AP()
bottom <- plot_grid(a, b, ncol = 1, labels = c("c", "d"))
```

Warning: Removed 74 rows containing non-finite values (stat_bin).

2 The model

2.1 Function to create sample matrix

```
sample_matrix_fun <- function(IFT) {
  params <- params_fun(IFT = IFT)
  mat <- sensobol::sobol_matrices(N = N, params = params)
  out <- list(params, mat)
  names(out) <- c("parameters", "matrix")
  return(out)
}</pre>
```

2.2 Define distributions

```
# DEFINE TRUNCATED DISTRIBUTIONS -
# EA SURFACE -----
Ea.surface <- bos[Irrigation == "Surface"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape <- 3.502469
scale <- 0.5444373
minimum <- Ea.surface$min
maximum <- Ea.surface$max</pre>
weibull_dist <- sapply(c(minimum, maximum), function(x)</pre>
  pweibull(x, shape = shape, scale = scale))
# EC SURFACE -----
Ec.surface <- bos[Irrigation == "Surface"][, .(min = min(E_c, na.rm = TRUE),</pre>
                                                 \max = \max(E_c, na.rm = TRUE))]
shape1 <- 5.759496
shape2 <- 1.403552
minimum.beta <- Ec.surface$min
maximum.beta <- Ec.surface$max</pre>
beta_dist <- sapply(c(minimum.beta, maximum.beta), function(x)</pre>
  pbeta(x, shape1 = shape1, shape2 = shape2))
# EA SPRINKLER -----
Ea.sprinkler <- bos[Irrigation == "Sprinkler"][, .(min = min(E_a, na.rm = TRUE),</pre>
                                                 max = max(E_a, na.rm = TRUE))]
shape.spr <- 6.9913711
scale.spr <- 0.7451178
minimum.spr <- Ea.sprinkler$min
maximum.spr <- Ea.sprinkler$max</pre>
weibull_dist_spr <- sapply(c(minimum.spr, maximum.spr), function(x)</pre>
  pweibull(x, shape = shape.spr, scale = scale.spr))
# MANAGEMENT FACTOR (m) ----
```

```
shape1.m < -5.759496
shape2.m < -1.403552
minimum.m < - 0.65
maximum.m <- 1</pre>
beta_dist.m <- sapply(c(minimum.m, maximum.m), function(x)</pre>
 pbeta(x, shape1 = shape1.m, shape2 = shape2.m))
# FUNCTION TO TRANSFORM TO APPROPRIATE DISTRIBUTIONS -----
distributions_fun <- list(</pre>
  # SURFACE IRRIGATION
  # -----
  "Ea_surf" = function(x) {
   out <- qunif(x, weibull_dist[[1]], weibull_dist[[2]])</pre>
   out <- qweibull(out, shape, scale)</pre>
 },
  "Ec_surf" = function(x) {
   out <- qunif(x, beta_dist[[1]], beta_dist[[2]])</pre>
   out <- qbeta(out, shape1, shape2)</pre>
 },
  # SPRINKLER IRRIGATION
  # -----
  "Ea_sprinkler" = function(x) {
   out <- qunif(x, weibull_dist_spr[[1]], weibull_dist_spr[[2]])</pre>
   out <- qweibull(out, shape.spr, scale.spr)</pre>
 },
  "Ec_sprinkler" = function(x) qunif(x, 0.64, 0.96),
  # MICRO (DRIP) IRRIGATION
  "Ea_micro" = function(x) out <- qunif(x, 0.75, 0.95),
  "Ec_micro" = function(x) out <- qunif(x, 0.9, 0.95),
  # PROPORTION LARGE
  # -----
  "Proportion_large" = function(x) x,
```

2.3 Uncertainty in the proportion of large-scale irrigated areas

2.4 Function to create sample matrix and transfrom to appropriate distributions

```
# FULL ALGORITHM TO CREATE SAMPLE MATRIX -----
```

```
full_sample_matrix <- function(IFT, Country) {
   tmp <- sample_matrix_fun(IFT = IFT)
   mat <- tmp[["matrix"]]
   temp <- colnames(mat)
   mat <- sapply(seq_along(temp), function(x) distributions_fun[[temp[x]]](mat[, x]))
   colnames(mat) <- temp
   countries.frac <- countries.list[[Country]]
   out <- list(tmp$parameters, mat)
   names(out) <- c("parameters", "matrix")
   return(out)
}</pre>
```

2.5 Run the model

```
# FULL MODEL -----
full_model <- function(IFT, Country, sample.size, R) {</pre>
  country.differences <- setdiff(rohwer$Country, jager$Country)</pre>
  tmp <- full_sample_matrix(IFT = IFT, Country = Country)</pre>
  mat <- tmp$matrix</pre>
  if(IFT == "Surface" | IFT == "Mixed" | IFT == "Jager") {
    X1 <- mat[, "X1"]</pre>
    X2 <- mat[, "X2"]</pre>
    index <- paste(Country, X1, X2, sep = ".")</pre>
    Proportion_large <- triggers.dt[index][, Proportion_large]</pre>
  }
  if(IFT == "Surface") {
    Mf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
    y <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf</pre>
  } else if(IFT == "Sprinkler") {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf
  } else if(IFT == "Mixed") {
    Mf.surf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
    y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
    Mf.sprink <- mat[, "m"]</pre>
    y.sprink <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.sprink</pre>
```

```
y <- 0.5 * y.surf + mat[, "r_L"] * y.sprink</pre>
  } else if(IFT == "Micro") {
    Mf <- mat[, "m"]</pre>
    y <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf
 } else if(IFT == "Jager") {
    if(Country %in% country.differences == TRUE) {
      next
    }
    Mf.surf <- mat[, "m"] - mat[, "r_L"] * Proportion_large</pre>
    y.surf <- mat[, "Ea_surf"] * mat[, "Ec_surf"] * Mf.surf</pre>
    Mf.spr <- mat[, "m"]</pre>
    y.spr <- mat[, "Ea_sprinkler"] * mat[, "Ec_sprinkler"] * Mf.spr</pre>
    Mf.micro <- mat[, "m"]</pre>
    y.micro <- mat[, "Ea_micro"] * mat[, "Ec_micro"] * Mf.micro
    y <- jager.list[[Country]]$Surface_fraction * y.surf +
      jager.list[[Country]]$Sprinkler_fraction * y.spr +
      jager.list[[Country]]$Drip_fraction * y.micro
 }
  ind <- sobol_indices(N = sample.size, Y = y, params = tmp$parameters,
                        boot = TRUE, R = R)
  out <- list(y, ind)</pre>
 names(out) <- c("output", "indices")</pre>
 return(out)
}
```

2.6 Define settings

```
# DEFINE SETTINGS -----
N <- 2^14
R <- 10^2
```

2.7 Run model

```
# RUN MODEL -----
new.rohwer <- rohwer[Country %in% jager$Country][, IFT:= "Jager"]</pre>
```

2.8 Extract model output

```
# EXTRACT MODEL OUTPUT -----
names(y) <- c("Rohwer et al. 2007", "Jägermeyr et al. 2015")
output <- tmp <- list()</pre>
for(i in names(y)) {
  output[[i]] <- lapply(y[[i]], function(x) x[["output"]][1:(2 * N)])</pre>
  if(i == "Rohwer et al. 2007") {
    names(output[[i]]) <- rohwer$Country</pre>
  } else if(i == "Jägermeyr et al. 2015") {
    names(output[[i]]) <- new.rohwer$Country</pre>
  }
  tmp[[i]] <- lapply(output[[i]], data.table) %>%
    rbindlist(., idcol = "Country")
  if(i == "Rohwer et al. 2007") {
    tmp[[i]] <- merge(tmp[[i]], rohwer[, .(Country, IFT)], all.x = TRUE) %%</pre>
      .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
  } else if(i == "Jägermeyr et al. 2015") {
    tmp[[i]] <- tmp[[i]][, IFT:= "Jager"]</pre>
 }
 tmp[[i]] <- tmp[[i]][, Continent:= countrycode(tmp[[i]][, Country],</pre>
                                                    origin = "country.name",
```

```
destination = "continent")]
}
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
uncertainty.dt <- rbindlist(tmp, idcol = "Approach")</pre>
uncertainty.dt <- uncertainty.dt[, Study:= ifelse(IFT == "Jager",
                                                    "The proportion of IFTs is known",
                                                    "The proportion of IFTs is not known")]
# EXPORT UNCERTAINTY IN IRRIGATION EFFICIENCY -----
fwrite(uncertainty.dt, "uncertainty.dt.csv")
# COMPUTE RANGES -----
calc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %%</pre>
  .[, .(range = max - min), .(Continent, Country)] %>%
  .[order(range)]
print(calc, n = Inf)
##
        Continent
                                    Country
                                                range
##
     1:
             Asia
                                     Cyprus 0.4679420
     2:
                      United Arab Emirates 0.4900561
##
             Asia
##
     3:
             Asia
                                     Israel 0.4944147
##
     4:
             Asia
                                     Jordan 0.5149145
                                    Austria 0.6014893
##
     5:
           Europe
##
     6:
           Europe
                                    Belgium 0.6014893
             <NA>
                                   Byelarus 0.6014893
##
     7:
           Europe
                                    Denmark 0.6014893
##
     8:
           Europe
                                    Finland 0.6014893
##
     9:
           Europe
                                    Germany 0.6014893
##
    10:
##
    11:
           Europe
                                    Greece 0.6014893
    12:
           Europe
                                    Hungary 0.6014893
##
                                     Latvia 0.6014893
##
    13:
           Europe
    14:
                                  Lithuania 0.6014893
##
           Europe
                                Luxembourg 0.6014893
## 15:
           Europe
##
  16:
           Africa
                                     Malawi 0.6014893
                                   Slovakia 0.6014893
## 17:
           Europe
                                     Sweden 0.6014893
## 18:
           Europe
## 19:
           Europe
                                Switzerland 0.6014893
                                    Ukraine 0.6147176
## 20:
           Europe
## 21:
           Europe
                            Czech Republic 0.6477047
## 22:
           Europe
                                     Russia 0.6622102
## 23:
           Europe
                                    Croatia 0.6645827
                            United Kingdom 0.6680857
## 24:
           Europe
```

##	OF.	Eumana	Domonio	0 6604020
##	25:	Europe		0.6684038
##	26:	Africa		0.6796764
##	27:	Americas		0.6796800
##	28:	Africa		0.6838233
##	29:	Americas	United States	
##	30:	Asia		0.6879111
##	31:	Asia		0.6892404
##	32:	Europe	Netherlands	
##	33:	Asia	Saudi Arabia	
##	34:	Asia	Kazakhstan	
##	35:	Africa	Mozambique	
##	36:	Americas		0.6959479
##	37:	Europe		0.6976147
##	38:	Africa		0.6985666
##	39:	Africa		0.6985699
##	40:	Africa		0.7002246
##	41:	Africa	South Africa	
##	42:	Africa		0.7025813
##	43:	Asia	•	0.7036842
##	44:	Asia	Kuwait	0.7046397
##	45:	Americas	Canada	0.7077460
##	46:	Africa	Ivory Coast	0.7091386
##	47:	Europe	•	0.7108935
##	48:	Africa	Burkina Faso	0.7115694
##	49:	Europe	Bulgaria	0.7147026
##	50:	Africa	Algeria	0.7182193
##	51:	Europe	Spain	0.7190056
##	52:	Americas	French Guiana	0.7191150
##	53:	Oceania	Australia	0.7218235
##	54:	Africa	Lesotho	0.7226186
##	55:	Asia	Japan	0.7247774
##	56:	Americas	Uruguay	0.7264713
##	57:	Asia	Iraq	0.7277116
##	58:	Asia	Azerbaijan	0.7284226
##	59:	Africa	•	0.7299519
##	60:	Africa	Zaire	0.7306228
##	61:	Africa	Botswana	0.7322712
##	62:	Africa	Gabon	0.7325094
##	63:	Americas	Paraguay	0.7327599
##	64:	Asia	Turkey	0.7330840
##	65:	Africa	Uganda	0.7335162
##	66:	Americas		0.7340006
##	67:	Asia	Burma	0.7344695
##	68:	Americas	Guatemala	0.7352743
##	69:	Africa	Tanzania	0.7353794
##	70:	Oceania	Papua New Guinea	0.7357704
##	71:	Asia		0.7364300
##	72:	Africa	-	0.7364368
			•	

```
73:
                                     Ecuador 0.7379232
##
         Americas
    74:
##
           Africa
                                        Kenya 0.7381012
##
    75:
         Americas
                                        Haiti 0.7389654
    76:
##
           Africa
                                         Chad 0.7398257
##
    77:
           Africa Central African Republic 0.7406275
    78:
                                    Colombia 0.7406412
##
         Americas
##
    79:
           Africa
                                       Gambia 0.7410900
##
    80:
         Americas
                                 Puerto Rico 0.7411452
##
    81:
           Africa
                              Western Sahara 0.7412732
           Europe
##
    82:
                                    Portugal 0.7424699
    83:
##
                                 El Salvador 0.7424882
         Americas
##
    84:
              Asia
                                        India 0.7430188
    85:
                                    Cameroon 0.7430382
##
           Africa
##
    86:
              Asia
                                Turkmenistan 0.7431978
##
    87:
           Africa
                                        Egypt 0.7434191
##
    88:
              Asia
                                        Syria 0.7437367
##
    89:
           Africa
                                  Madagascar 0.7453378
##
    90:
         Americas
                                  Costa Rica 0.7460634
    91:
                                        Yemen 0.7464134
##
              Asia
    92:
           Africa
                          Equatorial Guinea 0.7472551
##
##
    93:
           Europe
                                       Serbia 0.7476467
##
    94:
           Africa
                                     Liberia 0.7479554
##
    95:
         Americas
                                     Bolivia 0.7480052
    96:
           Africa
                                     Somalia 0.7480674
##
##
    97:
             Asia
                                        Laos 0.7481253
    98:
                                    Ethiopia 0.7482251
##
           Africa
##
    99:
           Africa
                                       Rwanda 0.7482431
## 100:
             Asia
                                  Kyrgyzstan 0.7484823
## 101:
              Asia
                                       Bhutan 0.7487014
## 102:
           Europe
                                      Norway 0.7488203
           Europe
## 103:
                                      Poland 0.7495878
## 104:
           Africa
                                         Mali 0.7501681
## 105:
              Asia
                                   Sri Lanka 0.7502131
## 106:
                                    Mongolia 0.7502820
              Asia
## 107:
         Americas
                                    Trinidad 0.7505246
## 108:
           Africa
                               Guinea-Bissau 0.7507230
## 109:
           Africa
                                      Guinea 0.7508012
## 110:
              Asia
                                        China 0.7508179
## 111:
                                  Mauritania 0.7508221
           Africa
## 112:
              Asia
                                   Indonesia 0.7509219
## 113:
             Asia
                                     Armenia 0.7511245
## 114:
           Europe
                     Bosnia and Herzegovina 0.7513991
## 115:
           Africa
                                     Morocco 0.7514743
## 116:
              Asia
                                         Iran 0.7514788
## 117:
         Americas
                                    Suriname 0.7515058
## 118:
         Americas
                                         Peru 0.7516554
## 119:
         Americas
                                   Argentina 0.7521091
## 120:
                                        Chile 0.7522434
         Americas
```

```
## 121:
           Africa
                                Sierra Leone 0.7525826
## 122:
           Africa
                                       Niger 0.7526578
## 123:
           Africa
                                      Angola 0.7530253
## 124:
           Africa
                                     Burundi 0.7531444
## 125:
         Americas
                                      Belize 0.7533846
## 126:
                                 South Korea 0.7544530
             Asia
## 127:
         Americas
                                      Mexico 0.7544977
## 128:
             Asia
                                    Malaysia 0.7545882
## 129:
           Africa
                                    Djibouti 0.7546681
## 130:
         Americas
                                    Honduras 0.7550064
## 131:
           Africa
                                        Togo 0.7550732
## 132:
           Africa
                                     Eritrea 0.7555949
## 133:
                                     Moldova 0.7563886
           Europe
## 134:
             Asia
                                    Cambodia 0.7569788
## 135:
           Africa
                                     Senegal 0.7574388
## 136:
           Europe
                                   Macedonia 0.7578519
## 137:
           Africa
                                     Nigeria 0.7589399
           Africa
## 138:
                                       Sudan 0.7593515
## 139:
                                    Thailand 0.7607690
             Asia
## 140:
             Asia
                                    Pakistan 0.7615949
## 141:
         Americas
                                   Nicaragua 0.7622110
## 142:
                                     Vietnam 0.7641254
             Asia
## 143:
         Americas
                                   Venezuela 0.7645259
## 144:
         Americas
                         Dominican Republic 0.7645690
## 145:
                                     Albania 0.7647019
           Europe
## 146:
                                  Uzbekistan 0.7672137
             Asia
## 147:
             Asia
                                  Tajikistan 0.7680949
## 148:
             Asia
                                     Georgia 0.7709388
## 149:
             Asia
                                  Bangladesh 0.7714909
## 150:
         Americas
                                      Guyana 0.7752999
## 151:
                                 Philippines 0.7759418
             Asia
## 152:
         Americas
                                      Panama 0.7774470
## 153:
           Europe
                                    Slovenia 0.7784899
## 154:
                                 North Korea 0.7820092
             Asia
## 155:
           Africa
                                       Ghana 0.7850875
## 156:
             Asia
                                 Afghanistan 0.7865884
## 157:
             Asia
                                        Oman 0.7878713
## 158:
          Oceania
                                 New Zealand 0.7892427
        Continent
                                     Country
                                                  range
ggplot(calc, aes(range)) +
  geom_histogram() +
  labs(x = "Range", y = "N. of countries") +
  theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# COMPARE RANGES -----
```

```
ranges_empirical <- uncertainty.dt[, .(higher = max(V1), lower = min(V1)), IFT] %>%
  .[, Study:= "This study"]%>%
  .[!IFT == "Jager"]
ranges_efficiencies <- fread("ranges_efficiencies.csv")</pre>
rbind(ranges_empirical, ranges_efficiencies)[, mean.value:= (higher + lower) / 2] %>%
  .[, Study:= factor(Study, levels = c("This study",
                                        "Brouwer et al. 1989",
                                        "Rogers et al. 1997",
                                        "Clemmens and Molden 2007",
                                        "Rohwer et al. 2007",
                                        "Van Halsema and Vincent 2012"))] %>%
 na.omit() %>%
 ggplot(., aes(mean.value, Study, color = ifelse(Study == "This study", "red", "black"))) +
  geom point() +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  geom_errorbar(aes(xmin = lower, xmax = higher)) +
  scale_color_identity() +
  facet_wrap(~IFT, ncol = 4) +
  labs(x = "Irrigation efficiency", y = "") +
  theme_AP()
```



```
# CHECK OVERLAP -----
dd <- uncertainty.dt[!Continent == "Oceania"][Study == "The proportion of IFTs is not known"] '
  split(., .$Continent, drop = TRUE)
overlap.dt <- lapply(dd, function(x) split(x, x$IFT, drop = TRUE)) %%</pre>
  lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
 lapply(., function(x) overlap(x)$0V)
overlap.dt
## $Africa
## Surface-Sprinkler
                        Surface-Mixed
                                         Sprinkler-Mixed
           0.2341197
                                               0.1513037
##
                             0.7482128
##
## $Americas
## Surface-Mixed
##
       0.7622839
##
## $Asia
## Surface-Micro Surface-Mixed Micro-Mixed
##
      0.04502982
                   0.72015229
                                  0.01232303
##
## $Europe
                                         Sprinkler-Mixed
## Surface-Sprinkler
                        Surface-Mixed
          0.2404475
                                               0.1536190
                             0.7435392
ff <- uncertainty.dt[!Continent == "Oceania"] %>%
  .[Country %in% intersect(rohwer[, Country], jager[, Country])] %>%
  split(., .$Country, drop = TRUE) %>%
 lapply(., function(x) split(x, x$Approach, drop = TRUE)) %>%
 lapply(., function(x) lapply(x, function(y) y[, V1])) %>%
 lapply(., function(x) overlap(x)$0V) %>%
 lapply(., data.table) %>%
 rbindlist(., idcol = "Country") %>%
  .[, Continent:= countrycode(.[, Country],
                             origin = "country.name",
                             destination = "continent")]
list_continents <- list(c("Africa", "Asia"), c("Americas", "Europe"))</pre>
# PLOT OVERLAP -----
dd <- list()
for(i in 1:length(list_continents)) {
  dd[[i]] <- ff[Continent %in% list_continents[[i]]] %>%
    ggplot(., aes(reorder(Country, V1), V1)) +
   geom_point() +
```

```
scale_color_discrete(name = "GM") +
labs(y = "Overlap", x = "") +
facet_wrap(~Continent, scales = "free_y") +
coord_flip() +
theme_AP()
}
dd
```

[[1]]

[[2]]

3 Uncertainty analysis

[[2]]

Picking joint bandwidth of 0.012

Picking joint bandwidth of 0.0108

PLOT UNCERTAINTY IN EACH IRRIGATION TECHNOLOGY ------

```
## [[1]]
## Picking joint bandwidth of 0.012
## Picking joint bandwidth of 0.012
```


[[2]]

Picking joint bandwidth of 0.0126

Picking joint bandwidth of 0.0113


```
limits = c(0, 1)) +
facet_wrap(~Continent, scales = "free") +
scale_color_discrete(name = "Irrigation") +
theme_AP()
}
dd
```

[[1]]

Warning: Removed 1 rows containing missing values (geom_point).

[[2]]


```
# CALCULATE THE UNCERTAINTY IN THE RANGES ------
selection_continents <- c("Africa", "Asia", "Americas", "Europe")

factor_unc <- uncertainty.dt[, .(min = min(V1), max = max(V1)), .(Continent, Country)] %>%
    .[Continent %in% selection_continents] %>%
    .[, factor:= max / min]

ggplot(factor_unc, aes(factor)) +
    geom_histogram() +
    facet_wrap(~Continent, ncol = 4) +
    labs(x = "Factor", y = "N. of countries") +
    theme_AP()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Number of countries whose irrigation water withdrawals fluctuate a factor of x
# due to uncertainty in irrigation efficiency
factor_unc %>%
    .[, factor:= floor(max / min)] %>%
    .[, .(number.countries = .N), factor] %>%
    .[order(factor)] %>%
    print()
```

##		factor	number.countries
##	1:	2	4
##	2:	3	15
##	3:	4	1
##	4:	5	4
##	5:	8	1
##	6:	12	1
##	7:	17	10
##	8:	18	18
##	9:	20	1
##	10:	24	6
##	11:	25	4
##	12:	26	8
##	13:	27	11
##	14:	28	14
##	15:	29	10
##	16:	30	5
##	17:	31	8
##	18:	32	6
##	19:	33	4
##	20:	34	3
##	21:	35	5
##	22:	36	1
##	23:	38	1
##	24:	39	3
##	25:	40	2
##	26:	41	1
##	27:	42	1
##	28:	47	1
##	29:	51	1
##	30:	52	3

```
## 31: 53 1
## factor number.countries
```

3.1 Retrieve data from ISIMIP

```
# FUNCTIONS TO EXTRACT DATA FROM .NC FILES -
coords2country = function(points) {
  countriesSP <- rworldmap::getMap(resolution = 'low')</pre>
  pointsSP = sp::SpatialPoints(points, proj4string=CRS(proj4string(countriesSP)))
  indices = sp::over(pointsSP, countriesSP)
  indices$ADMIN
}
# Function to load and extract data from .nc files from ISIMIP
open_nc_files <- function(file, dname, selected.years, vec) {
 ncin <- nc_open(file)</pre>
  # get longitude, latitude, time
 lon <- ncvar_get(ncin, "lon")</pre>
  lat <- ncvar_get(ncin, "lat")</pre>
  # Get variable
  tmp_array <- ncvar_get(ncin, dname)</pre>
 m <- lapply(selected.years, function(x) vec[[x]])</pre>
  out <- lapply(m, function(x) {
    tmp_slice <- lapply(x, function(y) tmp_array[, , y])</pre>
    # create dataframe -- reshape data
    # matrix (nlon*nlat rows by 2 cols) of lons and lats
    lonlat <- as.matrix(expand.grid(lon,lat))</pre>
    # vector of `tmp` values
    tmp_vec <- lapply(tmp_slice, function(x) as.vector(x))</pre>
    # create dataframe and add names
    tmp_df01 <- lapply(tmp_vec, function(x) data.frame(cbind(lonlat, x)))</pre>
    names(tmp_df01) \leftarrow x
    da <- lapply(tmp_df01, data.table) %>%
      rbindlist(., idcol = "month") %>%
      na.omit()
    # Convert coordinates to country
    Country <- coords2country(da[1:nrow(da), 2:3])</pre>
    df <- cbind(Country, da)</pre>
    setDT(df)
    out <- na.omit(df)[, .(Water.Withdrawn = sum(x)), Country]</pre>
    out[, Water.Withdrawn:= Water.Withdrawn * 10000]
    out[, Continent:= countrycode(out[, Country],
                                    origin = "country.name",
                                    destination = "continent")] %>%
      .[, Code:= countrycode(out[, Country],
```

```
origin = "country.name",
                              destination = "un")] %>%
      .[, Country:= countrycode(out[, Code],
                                 origin = "un",
                                 destination = "country.name")] %>%
      .[!Continent == "Oceania"]
    setcolorder(out, c("Country", "Continent", "Code", "Water.Withdrawn"))
 })
 return(out)
}
# READ IN NC FILES ---
# Define settings
vecs <- 1:((2010 - 1970) * 12)
vec <- split(vecs, ceiling(seq_along(vecs) / 12))</pre>
names(vec) <- 1971:2010
selected.years <- "2010"
dname <- "pirrww"</pre>
files <- list("h08 wfdei nobc hist varsoc co2 pirrww global monthly 1971 2010.nc",
              "pcr-globwb_wfdei_nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc",
              "lpjml wfdei nobc hist varsoc co2 pirrww global monthly 1971 2010.nc",
              "watergap2_wfdei_nobc_hist_varsoc_co2_pirrww_global_monthly_1971_2010.nc")
names.isimip <- c("HO8", "PCR-GLOBWB", "LPJmL", "WaterGap")</pre>
isimip.dt <- mclapply(files, function(x)</pre>
  open_nc_files(file = x, dname = dname, selected.years = selected.years, vec = vec),
mc.cores = detectCores() * 0.75)
# EXTRACT CORRECTIVE COEFFICIENTS FOR IRRIGATION EFFICIENCY FOR LPJML ------
ncin <- nc_open("irrigation_project_efficiencies.nc")</pre>
lon <- ncvar_get(ncin, "lon")</pre>
lat <- ncvar_get(ncin, "lat")</pre>
tmp_array <- ncvar_get(ncin)</pre>
lonlat <- as.matrix(expand.grid(lon,lat))</pre>
da <- na.omit(cbind(lonlat, as.vector(tmp_array))) %>%
  data.frame() %>%
 na.omit()
Country <- coords2country(da[1:nrow(da), 1:2])</pre>
lpjml_efficiencies <- cbind(Country, da) %>%
 na.omit() %>%
  data.table() %>%
 [, (Ep = mean(V3)), Country]
```

```
# ARRANGE NC FILES -----
names(isimip.dt) <- names.isimip</pre>
isimip.dt <- lapply(isimip.dt, function(x) rbindlist(x)) %>%
  rbindlist(., idcol = "Model") %>%
  na.omit() %>%
  # To correct for duplicate country in Cyprus
  .[, .(Water.Withdrawn = mean(Water.Withdrawn)), .(Model, Country, Continent, Code)]
lpjml_harmonized <- merge(isimip.dt[Model == "LPJmL"], lpjml_efficiencies, all.x = TRUE) %>%
  .[, Water.Withdrawn:= Water.Withdrawn * Ep] %>%
  .[, Ep:= NULL]
isimip.dt <- rbind(isimip.dt[!Model == "LPJmL"], lpjml_harmonized)</pre>
fwrite(isimip.dt, "isimip.dt")
# MERGE UNCERTAINTY IN EP WITH ISIMIP DATA -----
efficiency.dt <- copy(uncertainty.dt) %>%
  setnames(., "V1", "Ep")
ghm.dt <- dcast(isimip.dt, Country + Continent + Code ~ Model, value.var = "Water.Withdrawn")</pre>
full.dt <- merge(efficiency.dt, ghm.dt, by = c("Country", "Continent"), all.x = TRUE) %>%
  .[, (names.isimip):= lapply(.SD, function(x) x / Ep), .SDcols = names.isimip]
tmp.dt <- melt(full.dt, measure.vars = names.isimip, variable.name = "Model",</pre>
               value.name = "IWW_corrected")
ghm.large <- melt(ghm.dt, measure.vars = names.isimip, variable.name = "Model",</pre>
     value.name = "IWW")
gm.uncertainty <- tmp.dt[, .(min = min(IWW_corrected), max = max(IWW_corrected)),</pre>
                          .(Country, Continent, Model)]
gm.dt <- merge(ghm.large, gm.uncertainty)</pre>
# PLOT UNCERTAINTY IN EP WITH ISIMIP DATA -----
countries_list <- c("Egypt", "Sudan", "South Africa", "Morocco", "Madagascar",</pre>
                    "United States", "Mexico", "Brazil", "Chile", "Peru",
                    "India", "China", "Pakistan", "Iran", "Indonesia",
                    "Italy", "Spain", "France", "Ukraine", "Romania")
gm.dt[Country %in% countries_list] %>%
  ggplot(., aes(reorder(Country, IWW), IWW, color = Model)) +
  geom_point(position = position_dodge(0.7)) +
  geom_errorbar(aes(ymin = min,
                    ymax = max),
                position = position_dodge(0.7)) +
  scale_y_log10(breaks = trans_breaks("log10", function(x) 10 ^ (2 * x)),
```

```
labels = trans_format("log10", math_format(10 ^ .x))) +
scale_color_discrete(name = "GM") +
labs(y = expression(paste("Irrigation water withdrawal ", " ", "(", 10^9, m^3/year, "", ")")
        x = "") +
facet_wrap(~Continent, scales = "free_y") +
coord_flip() +
theme_AP()
```

Warning: Removed 1 rows containing missing values (geom_point).

GM → H08 → PCR-GLOBWB → LPJmL → WaterGap


```
position = position_dodge(0.7)) +
  scale_y_log10(breaks = trans_breaks("log10", function(x) 10 ^ (2 * x)),
                 labels = trans_format("log10", math_format(10 ^ .x))) +
  scale_color_manual(name = "GM", values = wes_palette("Royal1")) +
  labs(y = expression(paste("Irrigation water withdrawal ", " ", "(", 10^9, m^3/year, "", ")")
       x = "") +
  facet_wrap(~Continent, scales = "free_y") +
  coord flip() +
  theme_AP() +
  guides(color = guide_legend(nrow = 2, byrow = TRUE))
                      WaterGap, LPJmL, H08, PCR-GLOBWB
             GM
                      WaterGap, LPJmL, H08, PCR-GLOBWB
                      + uncertainty in irrigation efficiency
                Africa
                                            Americas
     Egypt -
                                 Mexico ·
                            United States -
    Sudan
Madagascar
                                  Chile ·
  Morocco
                                   Peru ·
South Africa
                                  Brazil
                 Asia
                                             Europe
     India -
                                  Spain -
  Pakistan
                                   Italy
     China ·
                                 France
 Indonesia -
                                Ukraine
      Iran
                                Romania
                 10<sup>2</sup>
                       10<sup>4</sup>
          10<sup>0</sup>
                                              10^{2}
              Irrigation water withdrawal (109m3/year)
# PLOT RANGES OF STRUCTURAL UNCERTAINTY AND RANGES OF
# STRUCTURAL UNCERTAINTY + UNCERTAINTY IN IRRIGATION EFFICIENCY (COMPLETE)
dd <- list()
for (i in 1:length(list_continents)) {
  dd[[i]] <- rbind(range.gm, range.study) %>%
    .[, mean:= (min + max) / 2] \%
    .[Continent %in% list_continents[[i]]] %>%
    ggplot(., aes(reorder(Country, mean), mean, color = Approach)) +
    geom_errorbar(aes(ymin = min,
                        ymax = max),
                   position = position_dodge(0.7)) +
    scale_y_log10(breaks = trans_breaks("log10", function(x) 10 ^ (2 * x)),
                    labels = trans_format("log10", math_format(10 ^ .x))) +
    scale_color_manual(name = "GM", values = wes_palette("Royal1")) +
    labs(y = expression(paste("Irrigation water withdrawal ", " ", "(", 10^9, m^3/year, "", ")
         x = "") +
```

facet_wrap(~Continent, scales = "free_y") +

```
coord_flip() +
    theme_AP() +
    guides(color = guide_legend(nrow = 2, byrow = TRUE))
}
dd
```

[[1]]

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

Warning: Transformation introduced infinite values in continuous y-axis

WaterGap, LPJmL, H08, PCR-GLOBWB

GMWaterGap, LPJmL, H08, PCR-GLOBWB + uncertainty in irrigation efficiency


```
##
## [[2]]
```

Warning: Transformation introduced infinite values in continuous y-axis

— WaterGap, LPJmL, H08, PCR-GLOBWB

GM ___ WaterGap, LPJmL, H08, PCR-GLOBWB

print(range.study, n = Inf)

4 Sensitivity analysis

SAMPLE MATRIX DISTRIBUTIONS ----# Define labels

```
label_facets <- c("Ea_surf" = "$E_{a_{su}})",
                   "Ec_surf" = "$E_{c_{su}}$",
                   "Ea_sprinkler" = "$E_{a_{sp}}$",
                   "Ec_sprinkler" = "E_{c_{sp}}",
                   "Ea_micro" = "$E_{a_{mi}}$",
                   "Ec_micro" = "$E_{c_{mi}}$",
                   "Proportion_large" = "$f_L$",
                   "m" = "$m$",
                   "r_L" = "$r_L$")
mat <- data.table(full_sample_matrix(IFT = "Jager", Country = "Spain")$matrix)</pre>
mat <- mat[, Proportion_large:= NULL]</pre>
## Warning in `[.data.table`(mat, , `:=`(Proportion_large, NULL)): Column
## 'Proportion_large' does not exist to remove
melt(mat, measure.vars = colnames(mat)) %>%
  ggplot(., aes(value)) +
  geom_histogram() +
  labs(x = "Value", y = "Counts") +
  scale_x_continuous(breaks = pretty_breaks(n = 3)) +
  facet_wrap(~variable) +
  theme_AP()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
           Ea surf
                    Ea sprinkler
                                Ec surf
                                          Ec sprinkler
  150000
  100000
   50000
       0
                     Ec_micro
          Ea_micro
                                             r_L
Counts 150000 50000 50000
                                  2
                                     4
                                         0
                                            2
  150000
  100000
   50000
                       2
                            Value
# EXTRACT SOBOL' INDICES ----
ind <- lapply(y$`Rohwer et al. 2007`, function(x) x[["indices"]]$results)</pre>
```

names(ind) <- rohwer\$Country</pre>

ind <- rbindlist(ind, idcol = "Country")</pre>

```
ind[, Continent:= countrycode(ind[, Country], origin = "country.name",
                                destination = "continent")]
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
tmp.ift <- split(rohwer, rohwer$IFT)</pre>
out <- list()</pre>
for(i in names(tmp.ift)) {
  out[[i]] <- ind[Country %in% tmp.ift[[i]][, Country]]</pre>
}
# PLOT SOBOL' INDICES ----
ind.dt <- rbindlist(out, idcol = "IFT") %>%
  .[, IFT:= factor(IFT, levels = c("Surface", "Sprinkler", "Micro", "Mixed"))]
tmp <- ind.dt[, .(mean = mean(original), sd = sd(original)),</pre>
               .(sensitivity, parameters, IFT)]
tmp2 <- tmp[!IFT == "Mixed"][, parameters:= ifelse(parameters == "Ea_surf", "$E_a$",</pre>
                                                       ifelse(parameters == "Ec_surf", "$E_c$",
                                                               ifelse(parameters == "Ea_sprinkler",
                                                                       ifelse(parameters == "Ec_spring)
                                                                              ifelse(parameters == "]
                                                                                      ifelse(paramete
rbind(tmp[IFT == "Mixed"], tmp2) %>%
  ggplot(., aes(parameters, mean, fill = sensitivity), color = black) +
  geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
  geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), position = position_dodge(0.6)) +
  scale_x_discrete(labels = label_facets) +
  scale_fill_discrete(name = "Sensitivity", labels = c("$S_i$", "$T_i$")) +
  labs(x = "", y = "Sobol' indices") +
  facet_grid(~IFT, space = "free_x", scale = "free_x") +
  theme_AP()
                           Sensitivity
            Surface
                           Sprinkler
                                       Micro
                                                         Mixed
Sopol, indices 0.6 0.2 0.0
                                     E_a E_c m E_{a_{sp}}E_{a_{su}}E_{c_{sp}}E_{c_{su}} m r_L X1 X2
      E_a E_c m r_L X1 X2
                          E_a E_c m
```

EXTRACT SOBOL' INDICES FOR JAGER --

```
jager.tmp <- lapply(y[["Jägermeyr et al. 2015"]], function(x) x$indices$results)</pre>
names(jager.tmp) <- new.rohwer$Country</pre>
jager.ind <- rbindlist(jager.tmp, idcol = "Country") %>%
  .[, Continent:= countrycode(.[, Country],
                             origin = "country.name",
                             destination = "continent")] %>%
  .[, parameters:= ifelse(parameters == "Ea_surf", "E[a[su]]",
                         ifelse(parameters == "Ec_surf", "E[c[su]]",
                                 ifelse(parameters == "Ea_sprinkler", "E[a[sp]]",
                                        ifelse(parameters == "Ec_sprinkler", "E[c[sp]]",
                                               ifelse(parameters == "Ea_micro", "E[a[mi]]",
                                                      ifelse(parameters == "Ec_micro", "E[c[mi]]
                                                              ifelse(parameters == "Proportion_1:
## Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest,
Continent_vector <- c("Africa", "Americas", "Asia", "Europe")</pre>
lapply(Continent_vector, function(x)
  ggplot(jager.ind[Continent == x], aes(parameters, original, fill = sensitivity), color = bla
    geom_bar(stat = "identity", position = position_dodge(0.6), color = "black") +
    scale_fill_discrete(name = "Sensitivity", labels = c("Si", "Ti")) +
    labs(x = "", y = "Sobol' indices") +
    scale_x_discrete(labels = ggplot2:::parse_safe) +
    coord_flip() +
    scale_y_continuous(breaks = pretty_breaks(n = 3)) +
    facet_wrap(~Country) +
    theme AP() +
    theme(strip.text.x = element_text(size = 6),
          axis.text.x = element_text(size = 6)) +
    ggtitle(x)
```

[[1]]

Africa

[[2]]

Americas

[[3]]

Asia

[[4]]

Europe

