EE 2000 SIGNALS AND SYSTEMS

Ch. 4 Fourier Transform

OUTLINE

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

INTRODUCTION: MOTIVATION

Motivation:

 Fourier series: periodic signals can be decomposed as the summation of orthogonal complex exponential signals

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp[jn\omega_0 t]$$

$$c_n = \frac{1}{T} \int_0^T x(t) \exp[jn\omega_0 t] dt$$

• each harmonic contains a unique frequency: n/T

• time domain ←→ frequency domain

$$(T=\infty)$$

How about aperiodic signals

INTRODUCTION: TRANSFER FUNCTION

System transfer function

System with periodic inputs

OUTLINE

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

Fourier Transform

$$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$

- given x(t), we can find its Fourier transform $X(\omega)$

Inverse Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$

- given $X(\omega)$, we can find the time domain signal x(t)
- signal is decomposed into the "weighted summation" of complex exponential functions. (integration is the extreme case of summation)

$$x(t) \leftarrow X(\omega)$$

Example

Find the Fourier transform of

$$x(t) = rect(t/\tau)$$

$$X(\omega) = \tau \operatorname{sinc} \frac{\omega \tau}{2\pi}$$

- Example
 - Find the Fourier transform of $x(t) = \exp(-a|t|)$ a > 0

- Example
 - Find the Fourier transform of $x(t) = \exp(-at)u(t)$ a > 0

- Example
 - Find the Fourier transform of $x(t) = \delta(t-a)$

FOURIER TRANSFORM: TABLE

x(t)	$X(\omega)$	
1	$2\pi\delta(\omega)$	
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$	
$\delta(t)$	1	
$\delta(t-t_0)$	$\exp(-j\omega t_0)$	
$\exp(j\omega_0 t)$	$2\pi\delta(\omega-\omega_0)$	
$\mathrm{rect}(t/ au)$	$ au { m sinc} rac{\omega au}{2\pi}$	
$\operatorname{sinc}(t)$	$\mathrm{rect}\left(rac{\omega au}{2\pi} ight)$	
sgn(t)	$rac{2}{j\omega}$	
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$	

x(t)	$X(\omega)$
$\exp(-at)u(t), \Re(a) > 0$	$\frac{1}{a+j\omega}$
$t\exp(-at)u(t), \Re(a) > 0$	$\frac{1}{(a+j\omega)^2}$
$\frac{t^{n-1}}{(n-1)!} \exp(-at)u(t), \Re(a) > 0$	$\frac{1}{(a+j\omega)^n}$
$\exp(-a t), a > 0$	$\frac{2a}{a^2 + \omega^2}$
$ t \exp(-a t), \Re(a) > 0$	$\frac{4aj\omega}{a^2 + \omega^2}$

The existence of Fourier transform

- Not all signals have Fourier transform
- If a signal have Fourier transform, it must satisfy the following two conditions
 - 1. x(t) is absolutely integrable

$$\int_{-\infty}^{+\infty} |x(t)| \, dt < \infty$$

- 2. x(t) is well behaved
 - The signal has finite number of discontinuities, minima,
 and maxima within any finite interval of time.

Example

$$- x(t) = \exp(t)u(t)$$

OUTLINE

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

PROPERTIES: LINEARITY

Linearity

- If $x_1(t) \Leftrightarrow X_1(\omega)$ $x_2(t) \Leftrightarrow X_2(\omega)$
- then $ax_1(t) + bx_2(t) \Leftrightarrow aX_1(\omega) + bX_2(\omega)$

Example

- Find the Fourier transform of $x(t) = 2rect(t/\tau) + 3\exp(-2t)u(t) + 4\delta(t)$

PROPERTY: TIME-SHIFT

Time shift

 $- \text{ If } x(t) \Leftrightarrow X(\omega)$ $- \text{ Then } x(t-t_0) \Leftrightarrow X(\omega) \exp[-j\omega t_0]$ phase shift

Review: complex number

$$c = c | e^{j\theta} = c | \cos(\theta) + j | c | \sin(\theta) = a + jb$$

$$a = c | \cos \theta \qquad b = c | \sin \theta$$

$$|c| = \sqrt{a^2 + b^2} \qquad \theta = a \tan(b/a)$$

- Phase shift of a complex number c by $\theta_0 : c \exp(j\theta_0) = |c| \exp[j(\theta + \theta_0)]$

time shift in time domain - frequency shift in frequency domain

PROPERTY: TIME SHIFT

- Example:
 - Find the Fourier transform of x(t) = rect[t-2]

PROPERTY: TIME SCALING

Time scaling

- If
$$x(t) \Leftrightarrow X(\omega)$$

Then

$$x(at) \Leftrightarrow \frac{1}{|a|} X \left(\frac{\omega}{a}\right)$$

Example

- Let $X(\omega) = rect[(\omega - 1)/2]$, find the Fourier transform of x(-2t + 4)

PROPERTY: SYMMETRY

- Symmetry
 - If $x(t) \Leftrightarrow X(\omega)$, and x(t) is a real-valued time signal
 - Then $X(-\omega) = X^*(\omega)$

PROPERTY: DIFFERENTIATION

Differentiation

- If

$$x(t) \Leftrightarrow X(\omega)$$

Then

$$\frac{dx(t)}{dt} \Leftrightarrow j\omega X(\omega)$$

$$\frac{d^n x(t)}{dt^n} \Leftrightarrow (j\omega)^n X(\omega)$$

Example

- Let
$$X(\omega) = rect[(\omega - 1)/2]$$
, find the Fourier transform of $\frac{dx(t)}{dt}$

PROPERTY: DIFFERENTIATION

Example

- Find the Fourier transform of x(t) = sgn(t)

(Hint:
$$\frac{d}{dt} \left[\frac{1}{2} \operatorname{sgn}(t) \right] = \delta(t)$$
)

PROPERTY: CONVOLUTION

Convolution

- If
$$x(t) \Leftrightarrow X(\omega)$$
, $h(t) \Leftrightarrow H(\omega)$

- Then
$$x(t) \otimes h(t) \Leftrightarrow X(\omega)H(\omega)$$

time domain

frequency domain

PROPERTY: CONVOLUTION

Example

- An LTI system has impulse response $h(t) = \exp(-at)u(t)$ If the input is $x(t) = (a-b)\exp(-bt)u(t) + (c-a)\exp(-ct)u(t)$ Find the output (a>0,b>0,c>0)

PROPERTY: MULTIPLICATION

- Multiplication
 - If $x(t) \Leftrightarrow X(\omega)$, $m(t) \Leftrightarrow M(\omega)$
 - Then $x(t)m(t) \Leftrightarrow \frac{1}{2\pi} [X(\omega) \otimes M(\omega)]$

PROPERTY: DUALITY

- Duality
 - If

$$g(t) \Leftrightarrow G(\omega)$$

- Then

$$G(t) \Leftrightarrow 2\pi g(-\omega)$$

PROPERTY: DUALITY

Example

- Find the Fourier transform of $h(t) = Sa\left(\frac{t}{2}\right)$

(recall: $\operatorname{rect}(t/\tau) \Leftrightarrow \tau \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right)$)

PROPERTY: DUALITY

- Example
 - Find the Fourier transform of x(t) = 1

- Find the Fourier transform of $x(t) = e^{j\omega_0 t}$

PROPERTY: SUMMARY

Properties	time-domain	frequency-domain
Linearity	$\sum_{n=1}^{N} \alpha_n x_n(t)$	$\sum_{n=1}^{N} \alpha_n X_n(\omega)$
Time shift	$x(t-t_0)$	$X(\omega)\exp(-j\omega t_0)$
Frequency shift	$\exp(j\omega_0 t)x(t)$	$X(\omega-\omega_0)$
Time scaling	$x(\alpha t)$	$X(\omega/lpha)/ lpha $
Differentiation	$d^n x(t)/dt^n$	$(j\omega)^n X(\omega)$
Multiplication by t	$(-jt)^n x(t)$	$-rac{d^nX(\omega)}{d\omega^n}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$
Convolution	$x(t)\otimes h(t)$	$X(\omega)H(\omega)$
Multiplication	x(t)m(t)	$rac{1}{2\pi}X(\omega)\otimes M(\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$

PROPERTY: EXAMPLES

- Examples
 - 1. Find the Fourier transform of $x(t) = \cos(\omega_0 t)$

- 2. Find the Fourier transform of x(t) = u(t) $u(t) = \frac{1}{2} [\operatorname{sgn}(t) + 1]$ $\operatorname{sgn}(t) \leftrightarrow \frac{2}{j\omega}$

PROPERTY: EXAMPLES

Examples

- 3. A LTI system with impulse response
$$h(t) = \exp[-at]u(t)$$

Find the output when input is $x(t) = u(t)$

- 4. If
$$x(t) \Leftrightarrow X(\omega)$$
, find the Fourier transform of $\int_{-\infty}^{t} x(\tau) d\tau$
(Hint: $\int_{-\infty}^{t} x(\tau) d\tau = x(t) \otimes u(t)$)

PROPERTY: EXAMPLES

Example

- 5. (Modulation) If $x(t) \Leftrightarrow X(\omega)$, $m(t) = \cos(\omega_0 t)$ Find the Fourier transform of x(t)m(t)

- 6. If
$$X(\omega) = \frac{1}{a+j\omega}$$
, find $x(t)$

PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

Differentiation in frequency domain

- If:
$$x(t) \Leftrightarrow X(\omega)$$

- Then:
$$(-jt)^n x(t) = \frac{d^n X(\omega)}{d\omega^n}$$

PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

Example

- Find the Fourier transform of $t \exp(-at)u(t)$, a > 0

PROPERTY: FREQUENCY SHIFT

Frequency shift

- If:
$$x(t) \Leftrightarrow X(\omega)$$

- Then:
$$x(t) \exp(j\omega_0 t) \Leftrightarrow X(\omega - \omega_0)$$

Example

- If
$$X(\omega) = rect[(\omega - 1)/2]$$
, find the Fourier transform $x(t) \exp(-j2t)$

PROPERTY: PARSAVAL'S THEOREM

• Review: signal energy

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

Parsaval's theorem

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$$

PROPERTY: PARSAVAL'S THEOREM

- Example:
 - Find the energy of the signal $x(t) = \exp(-2t)u(t)$

PROPERTY: PERIODIC SIGNAL

- Fourier transform of periodic signal
 - Periodic signal can be written as Fourier series

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp[jn\omega_0 t]$$

Perform Fourier transform on both sides

$$X(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} c_n \delta(\omega - n\omega_0)$$

OUTLINE

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

APPLICATIONS: FILTERING

Filtering

- Filtering is the process by which the essential and useful part of a signal is separated from undesirable components.
 - Passing a signal through a filter (system).
 - At the output of the filter, some undesired part of the signal (e.g. noise) is removed.
- Based on the convolution property, we can design filter that only allow signal within a certain frequency range to pass through.

time domain

frequency domain

APPLICATIONS: FILTERING

Classifications of filters

Band pass filter

Band stop (Notch) filter

APPLICATION: FILTERING

A filtering example

A demo of a notch filter

APPLICATIONS: FILTERING

Example

- Find out the frequency response of the RC circuit
- What kind of filters it is?

RC circuit

- Sampling theorem: time domain
 - Sampling: convert the continuous-time signal to discrete-time signal.

$$x_{s}(t) = x(t)p(t)$$

- Sampling theorem: frequency domain
 - Fourier transform of the impulse train

• impulse train is periodic
$$p(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{n = -\infty}^{+\infty} 1 \times e^{jn\omega_s t}$$

$$\omega_s = \frac{2\pi}{T_s}$$

• Find Fourier transform on both sides

$$P(\omega) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_s)$$

$$x(t)p(t) \Leftrightarrow \frac{1}{2\pi} [X(\omega) \otimes P(\omega)]$$

$$x(t)p(t) \Leftrightarrow \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_s)$$

- Sampling theorem: frequency domain
 - Sampling in time domain → Repetition in frequency domain

Frequency domain

Sampling theorem

 If the sampling rate is twice of the bandwidth, then the original signal can be perfectly reconstructed from the samples.

$$\omega_{s} > 2\omega_{B}$$

$$\omega_s = 2\omega_B$$

$$\omega_{s} < 2\omega_{B}$$

Frequency domain

APPLICATION: AMPLITUDE MODULATION

What is modulation?

 The process by which some characteristic of a carrier wave is varied in accordance with an information-bearing signal

- Information bearing signal (modulating signal)
 - Usually at low frequency (baseband)
 - E.g. speech signal: 20Hz 20KHz
- Carrier wave
 - Usually a high frequency sinusoidal (passband)
 - E.g. AM radio station (1050KHz) FM radio station (100.1MHz), 2.4GHz, etc.
- Modulated signal: passband signal

APPLICATION: AMPLITUDE MODULATION

Amplitude Modulation (AM)

$$s(t) = A_c m(t) \cos(2\pi f_c t)$$

A direct product between message signal and carrier signal

Amplitude modulation

APPLICATION: AMPLITUDE MODULATION

Amplitude Modulation (AM)

$$S(f) = \frac{A_c}{2} [M(f - f_c) + M(f + f_c)]$$

Amplitude modulation