

# ロコトレ支援ロボット"Tocco"

ロコモーティブシンドローム予防を目的とした運動支援ロボット

### 研究目的

本研究では、QOLの低下が危惧されるロ コモーティブシンドローム, およびこ れを防ぐために考案をされた, ロコ モーショントレーニングに着目をし, ロボットの音声や動きを利用した働き かけにより高齢者の運動支援を行う. ロコトレ(ロコモーショントレーニン

グ) は誰でも手軽に出来るよう工夫を されたプログラムである反面, 面白み に欠け、なかなか浸透しないのが現状 である.

ロボットを使用することによりロコト レに興味を持ってもらい、これらの問 題点を解決することを目指すと同時に 医療福祉現場におけるロボットの活用 の可能性を探る.

### 基本構成

基本構成は本体部, バルブユニット部, 制御部、インタフェース部から構成され ている. 本体部のサイズはバルブユニッ トを内蔵した台座を含めて、幅300mm, 奥行290mm, 高さ490mmで, 外装には親し みやすさを考慮したパンダ型のぬいぐる みを用いた. 駆動系は、首前後・左右傾 げ, 両肩部上下, 両脚部上下の5部位9 chを想定する仕様とした. 頚部の前後運 動の稼動範囲は28度とし、初期位置は胴 体を10度後方に傾斜させてその胴体に対 して首を5度前方傾斜させるようにし た. 首の回旋運動の設定については、 Three position valveを用いて,中間位 置を約0度、左右±40度とした、肩の前 後運動の稼動範囲は40度、左右運動の稼 動範囲は30度とした. 脚部の前後運動の 稼動範囲は20度、左右の開き具合の初期 位置は±20度でV字型とした. 各部位の 稼動範囲は微調整できるようにした.

本体ーバルブユニットと制御部はCC-Link (FX2N-16CCL-M) で繋ぎ、PLC

(Programmable Logic Controller) 制 御にはシーケンサ (FX1N-24MT) を用い た. コンプレッサには比較的小型のオイ ルフリーコンプレッサ(0FP-041C) を用 いた.

ロコトレを行うユーザーの身体の動き を簡単に計測するために、KINECT (Microsoft社)を採用した.これにより, 通常人間の動きの計測などに装着してい た各センサーが必要なくなり、ユーザー に負担をかけず動きを計測することが可 能となった.

Juliusは、HTK ascii形式を用いた音響 モデル、HTK形式の単語辞書、複数のテ キストコーパスから学習された単語2gramと(逆向き)単語3-gramを用いた ARPA標準形式の単語3-gram言語モデルを 採用して音声認識を行う.

### 本体 · 外装

(株式会社セキグチ殿製)



### 本体 • 駆動系

(株式会社ココロ殿製作協力)



- 首前後傾げシリンダ 4 腕上下シリンダ
- 首左右シリンダ 5 足上下シリンダ
- 3 脇開閉シリンダ
  - 6 バルブボックス
  - バルブユニット

- 7 スピードコントローラ 9 バルブ
- 8 フィルタレギュレータ 10 シリアル伝送システム

### 制御部



- アナログ拡張ユニット 13 シーケンサ (Fx1N-24MT)
- 12 CC-LINK (Fx2N-16CCL-M)

## KINECTによる計測



KINECTによりユーザーの動きをキャプチャリングし ロコトレが正しく行われているかを計測する

## 音声認識



ユーザとToccoの,音声認識による会話の様子

## ロボットが支援するロコトレのプログラムの一例

音声認識

音声発話

「ロコトレスタート!」 → 「OK!準備はいい?」 → 「いいよ!」



「右足を上げて、 僕に手を振ってね」

1分間の計測

