МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №3 по дисциплине «Алгоритмы и структуры данных»

Тема: Бинарные деревья

Студент гр. 9303	 Скворчевский Б.С.
Преподаватель	 Филатов А.Ю.

Санкт-Петербург 2020

Цель работы.

Ознакомиться с понятием бинарного дерева, изучить его особенности и реализовать программу, решающую поставленную задачу с помощью бинарного дерева.

Основные теоретические положения.

 \mathcal{L} ерево — конечное множество T, состоящее из одного или более узлов, таких, что

- а) имеется один специально обозначенный узел, называемый *корнем* данного дерева;
- б) остальные узлы (исключая корень) содержатся в $m \ge 0$ попарно не пересекающихся множествах $T_1, T_2, ..., T_m$, каждое из которых, в свою очередь, является деревом. Деревья $T_1, T_2, ..., T_m$ называются noddepesьями данного дерева.

При программировании и разработке вычислительных алгоритмов удобно использовать именно такое *рекурсивное* определение, поскольку рекурсивность является естественной характеристикой этой структуры данных.

Наиболее важным типом деревьев являются *бинарные деревья*. Удобно дать следующее формальное определение. *Бинарное дерево* — конечное множество узлов, которое либо пусто, либо состоит из корня и двух непересекающихся бинарных деревьев, называемых правым поддеревом и левым поддеревом. Так определенное бинарное дерево *не* является частным случаем дерева.

Постановка задачи.

Вариант 1д.

Задано бинарное дерево b типа BT с типом элементов Elem. Для введенной пользователем величины E (**var** E: Elem):

- определить, входит ли элемент E в дерево b;
- определить число вхождений элемента E в дерево b;
- найти в дереве b длину пути (число ветвей) от корня до ближайшего узла с элементом E (если E не входит в b, за ответ принять -1).

Выполнение работы.

Программа принимает 2 строки из файла и записывает их в переменные tree (дерево) и E (элемент для поиска). Далее она выводит их на экран. После происходит проверка синтаксиса. Далее вызывается метод SetElem, который устанавливает элемент для поиска, метод read_tree, который в свою очередь вызывает метод read_node, считывающий дерево из строки, метод search_elem, который выполняет поиск элемента в дереве. Далее на экран выводится число вхождений элемента E в дерево и длина минимального пути до него.

Выводы.

Были изучены основные понятия бинарного дерева и его особенности. Была реализована программа, решающая поставленную задачу с помощью бинарного дерева.

ПРИЛОЖЕНИЕ А ТЕСТИРОВАНИЕ

Таблица 1 - Примеры тестовых случаев

№	Входные данные	Выходные данные	Комментарий
1	(a(b(d)(e))(c(d)(e))(f(i)	Введено бинарное дерево:	Программа
	(k)))	(a(b(d)(e))(c(d)(e))(f(i)(k)))	работает
	d	Введён элемент для поиска: d	корректно
		Элемент d встречается в	
		бинарном дереве 2 раз.	
		Длина кратчайшего пути равна	
		2.	
2	(a(b(d)(e))(c(d)(e))(f(i)	Введено бинарное дерево:	Программа
	(k)))	(a(b(d)(e))(c(d)(e))(f(i)(k)))	работает
	c	Введён элемент для поиска: с	корректно
		Элемент с встречается в	
		бинарном дереве 1 раз.	
		Длина кратчайшего пути равна	
		1.	
3	(a(b(d)(e(g(o)))))	Введено бинарное дерево:	Программа
	o	(a(b(d)(e(g(o)))))	работает
		Введён элемент для поиска: о	корректно
		Элемент о встречается в	
		бинарном дереве 1 раз.	
		Длина кратчайшего пути равна	
		4.	
4	(j(d(x)(k))y(m(f))(j))	Введено бинарное дерево:	Программа
	f	(j(d(x)(k))y(m(f))(j))	работает
		Введён элемент для поиска: f	корректно

		Элемент f встречается в	
		бинарном дереве 1 раз.	
		Длина кратчайшего пути равна	
		2.	
5	(j(d(x)(k))y(m(f))(j))	Введено бинарное дерево:	Программа
	X	(j(d(x)(k))y(m(f))(j))	работает
		Введён элемент для поиска: х	корректно
		Элемент х встречается в	
		бинарном дереве 1 раз.	
		Длина кратчайшего пути равна	
		2.	