Rank-Based Identification of High-Dimensional Surrogate Markers: Application to Vaccinology

SFdS JdS 2025 - Marseille

Arthur Hughes¹, Layla Parast³, Rodolphe Thiébaut¹², Boris Hejblum¹

¹University of Bordeaux, BPH INSERM U1219, INRIA SISTM ²CHU de Bordeaux, Service d'information Médicale, ³University of Texas at Austin, USA

Digital Public Health Graduate Program

What is a surrogate marker?

- Intermediate endpoint
- Treatment effect on surrogate predicts treatment effect on primary outcome

Transcriptomics

Background

Could gene expression markers serve as surrogates?

Limitations of Current Methodology

Existing methods require...

- Restrictive assumptions
- Large sample sizes
- Low-dimensional setting

Limitations of Current Methodology

Existing methods require...

Background 0000

- Restrictive assumptions
- Large sample sizes
- Low-dimensional setting

New approach to evaluate high-dimensional surrogate markers in small-sample setting

Intuition of the rank-based test

Rank	Primary Outcome	Perfect surrogate	Good surrogate	Useless surrogate	
1					
2					
3					= Treated
4					= Untreated
5					
6					
7					
8					

Notation

- ullet n sample size
- $A \in \{0,1\}$ binary treatment indicator
- Y continuous response
- $S = (S_1, ..., S_p)$ candidate surrogates
- ullet Y^a response had treatment been a
- ullet S^a surrogate candidates had treatment been a

A non-parametric test for surrogacy of a single marker

- $U_Y = \mathbb{P}(Y^1 > Y^0) + \frac{1}{2}\mathbb{P}(Y^1 = Y^0)$ • $0.5 < U_Y < 1 \implies$ positive treatment effect
- $U_{S_j} = \mathbb{P}(S_j^1 > S_j^0) + \frac{1}{2}\mathbb{P}(S_j^1 = S_j^0)$
- $\delta_j = U_Y U_{S_j}$ • i.e. $\delta_i \approx 0 \implies S_i$ approximates treatment effect on Y
- $\bullet \ \ \text{Non-Inferiority Test} \ H_0: \delta_j \geq \epsilon \quad \ \ \text{vs} \quad \ H_1: \delta_j < \epsilon$

Estimation with rank-sum statistics

• Define
$$G(A,B)=\begin{cases} 1, & \text{if} \quad A>B\\ \frac{1}{2}, & \text{if} \quad A=B\\ 0, & \text{if} \quad B$$

•
$$\widehat{U}_Y = (n_1 n_0)^{-1} \sum_{i=1}^{n_1} \sum_{k=1}^{n_0} G(Y_{i1}, Y_{k0})$$

•
$$\widehat{U_{S_j}} = (n_1 n_0)^{-1} \sum_{i=1}^{n_1} \sum_{k=1}^{n_0} G(S_{ji1}, S_{jk0})$$

•
$$\widehat{\delta_j} = \widehat{U_Y} - \widehat{U_{S_j}}$$

Screening stage

- One-sided $(1-\alpha)\%$ C.I. estimated as $[-1,\widehat{\delta}_j+\Phi^{-1}(1-\alpha)\widehat{\sigma}_{\delta_j}]$
- p-value is $p_j = P(Z < \widehat{\delta}_j)$ where $Z \sim N(\epsilon, \widehat{\sigma}_{\delta_j})$
- Test every candidate $S_1, ..., S_p$ and correct p-values for test multiplicity
- Define candidate surrogates $S = \{j : p_{j, adj} \leq \alpha\}$

Evaluation Step

Evaluate combined surrogacy of candidates

- $\widehat{\gamma_S} := \sum_{j \in S} \widehat{\delta_j}^{-1} \bar{S_j}$
 - ullet $ar{S}_j$ is S_j standardised
 - \bullet Weighted by $\widehat{\delta_j}^{-1} \implies$ stronger surrogates contribute more
- Re-apply rank-test to evaluate $\widehat{\gamma_{\mathcal{S}}}$

Data description

- Open data from Human Immune Project Consortium
- SDY1276 GE/Antibody response for *Trivalent Inactivated Influenza* (n = 103)

Data description

- Open data from Human Immune Project Consortium
- SDY1276 GE/Antibody response for Trivalent Inactivated Influenza (n = 103)

Can the treatment effect on GE at day 1 predict the treatment effect on day 28 on the antibodies?

Screening Results

222 significant genes after multiple testing correction

Gene	Gene set	δ (95% C.I.)	p_{adj}
CNDP2		-0.026 (-0.056, 0.004)	1.6e-43
IFI44L	M8.3 (Type 1 Interferon)	-0.026 (-0.056, 0.004)	1.6e-43
IFITM3	M15.127 (Interferon)	-0.026 (-0.056, 0.004)	1.6e-43
NPC2		-0.026 (-0.056, 0.004)	1.6e-43
PSME1		-0.026 (-0.056, 0.004)	1.6e-43
SERPING1	M15.127 (Interferon)	-0.026 (-0.056, 0.004)	1.6e-43
VAMP5		-0.026 (-0.056, 0.004)	1.6e-43
EPB41L3	M12.2 (Monocytes)	-0.013 (-0.05, 0.024)	1.1e-30
IFI6	M8.3 (Type 1 Interferon)	-0.013 (-0.05, 0.024)	1.1e-30
IRF7	M10.1 (Interferon)	-0.013 (-0.05, 0.024)	1.1e-30
MX1	M8.3 (Type 1 Interferon)	-0.013 (-0.05, 0.024)	1.1e-30
MYOF	M16.6 (Monocytes), M16.15 (Cell death)	-0.013 (-0.05, 0.024)	1.1e-30
OAS3	M8.3 (Type 1 Interferon)	-0.013 (-0.05, 0.024)	1.1e-30
PSMB9	M13.17 (Interferon), M15.64 (Interferon)	-0.013 (-0.05, 0.024)	1.1e-30
RHBDF2	M15.37 (Inflammation), M15.64 (Interferon)	-0.013 (-0.05, 0.024)	1.1e-30

Table: Top 15 genes by adjusted p-value from screening stage on 75% of the data.

Evaluation results

- $\delta_{\gamma_{\mathcal{S}}} =$ -0.0385(-0.102, 0.0248)
- p = 0.00311
- $\implies \gamma_{\mathcal{S}}$ a suitable surrogate for the day 28 treatment effect of TIV on neutralising antibodies

Discussion

Conclusions

- New method to identify high-dimensional surrogate markers of continuous responses
- Application to influenza vaccination
 - 222-gene signature of mainly interferon genes predicts vaccine effect on antibodies
- Perspectives
 - Generalisability: other years of TIV, other vaccines?
 - Extension to other data types (survival, binary outcome) and complex designs

Statistics > Methodology

[Submitted on 5 Feb 2025]

Rank-Based Identification of High-dimensional Surrogate Markers: Application to Vaccinology

Arthur Hughes, Layla Parast, Rodolphe Thiébaut, Boris P. Hejblum

Thank you for listening

How to choose the threshold ϵ ?

- ullet depends on n, treatment effect on Y, desired power and significance
- If desired power 100 imes (1-eta)% to test a treatment effect on Y based on a test with S_j
- ϵ can be chosen adaptively as $\epsilon = \max\{0, \widehat{u}_Y u_{\alpha,\beta}^*\}$
 - where $u_{\alpha,\beta}^* = \frac{1}{2} \sqrt{\frac{n_0 + n_1 + 1}{12n_0n_1}} [\Phi^{-1}(\beta) \Phi^{-1}(1-\alpha)]$

Estimation - paired case

- Data: $m{Y_i} = (Y_i^1, Y_i^0)^T$ and surrogate candidate $m{S_{ij}} = (S_{ij}^1, S_{ij}^0)^T$.
- $\widehat{U}_Y = n^{-1} \sum_{i=1}^n G(Y_i^1, Y_i^0)$
- $\widehat{U}_{S_j} = n^{-1} \sum_{i=1}^n G(S_{ij}^1, S_{ij}^0)$

Two one-sided test procedure

We want to test $\delta \in [-\epsilon, \epsilon]$ Perform **Two one-sided tests** :

$$H_0^{(1)}:\delta\geq\epsilon,\quad\text{and}\quad H_0^{(2)}:\delta\leq-\epsilon.$$
 resulting in two p-values $p^{(1)}=\Phi\Big(\frac{\widehat{\delta}-\epsilon}{\widehat{\sigma}_{\delta}}\Big)$, $p^{(2)}=1-\Phi\Big(\frac{\widehat{\delta}+\epsilon}{\widehat{\sigma}_{\delta}}\Big)$

Final p-value is $p=\max\{p^{(1)},p^{(2)}\}$ and $(1-2\alpha)\times 100\%$ C.I. is

$$\left[\widehat{\delta} - \Phi^{-1}(1 - \alpha)\,\widehat{\sigma}_{\delta},\,\widehat{\delta} + \Phi^{-1}(1 - \alpha)\,\widehat{\sigma}_{\delta}\right]$$

Simulation Setup

- P = 500 candidate surrogates
- Response : $Y_a \sim \mathcal{N}(\mu_{y_a}, \sigma_{y_a})$,
 - with $\mu_{y_1} = 3$, $\mu_{y_0} = 0$, and $\sigma_{y_a} = 1$
- Setting 1 : 100% invalid surrogates $S_{j,a} \sim \mathcal{N}(m_j, \sigma_j)$
 - $m_j \sim U(0.5, 2.5), \ \sigma_j \sim U(0.5, 2)$
- Setting 2 : 10% valid surrogates $S_{i,a} = y_a + \mathcal{N}(0, \sigma_{\mathsf{valid}})$
 - ullet $\sigma_{
 m valid}$ controls surrogate strength

Setting 1 : no true surrogates

Figure: False positive rate across 500 data generations.

Setting 2 : 10% true surrogates

Figure: Power and FDP across 500 data generations with different multiple correction methods.