平成26年6月26日判決言渡 平成25年(行ケ)第10218号 審決取消請求事件 口頭弁論終結日 平成26年6月10日

原	告	ハネ	ウエ	ル・	イン:	ターフ	ナショ	ナル
		・イ	ンコ	ーポ	レー	テッ	ド	
訴訟代理人弁護	士	牧		野		利		秋
同		末		吉				剛
訴訟代理人弁理	士	小		野		新	次	郎
同		沖		本				暁
同		松		田		豊		治
被	告	旭	硝	子	株	式	会	社
訴訟代理人弁理	士	伊		東		忠		重
同		Щ		П		昭		則
同		大		貫		進		介
同		佐	々	木		定		雄
同		伊		東		忠		彦
主				艾	ζ			

- 1 原告の請求を棄却する。
- 2 訴訟費用は原告の負担とする。
- 3 この判決に対する上告及び上告受理申立てのための付加期間を30日と定め

る。

事実及び理由

第1 請求の趣旨

- 1 特許庁が無効2011-800156号事件について平成25年3月19日 にした審決を取り消す。
- 2 訴訟費用は被告の負担とする。

第2 事案の概要

1 特許庁における手続の経緯等(当事者間に争いがない。)

原告は、発明の名称を「フッ素置換オレフィンを含有する組成物」とする特許第4699758号(平成15年10月27日出願(パリ条約による優先権主張 平成14年10月25日)、平成23年3月11日設定登録。以下「本件特許」という。請求項の数は9である。)の特許権者である。

被告は、平成23年9月1日、特許庁に対し、本件特許の特許請求の範囲の請求項1ないし8に記載された発明についての特許を無効にすることを求めて審判の請求をし、特許庁は、この審判を、無効2011-800156号事件として審理した。原告は、この過程で、平成23年12月27日、本件特許の明細書について訂正の請求をした。

特許庁は、平成25年3月19日、「訂正を認める。特許第4699758 号の請求項1ないし8に記載された発明についての特許を無効とする。審判費 用は、被請求人の負担とする。」との審決をし、審決の謄本を、同年4月4日、 原告に送達した。

2 特許請求の範囲

本件特許の特許請求の範囲の請求項1ないし8の記載は、次のとおりである (甲43。以下,これらの発明を総称して,「本件発明」という。また、本件 特許の明細書を,以下「本件明細書」という。)。

【請求項1】 (この請求項に係る発明を,以下「本件発明1」という。)

化学式(II)

【化1】

(式中, 各々のRは独立にF, またはHであり,

YはCF₃であり,

nは0であり、かつ、

不飽和な末端炭素上のRの少なくとも1つはHであり,残るRのうち少なくとも1つはFである)

の少なくとも1つの化合物と、ポリオールエステル及びポリアルキレングリコールから選択される少なくとも1つの潤滑剤とを含む熱移動組成物。

【請求項2】

前記化学式(II)の少なくとも1つの化合物が,前記熱移動組成物に対して重量で少なくとも50%の量で存在する,請求項1記載の熱移動組成物。

【請求項3】

前記化学式(II)の少なくとも1つの化合物が,前記熱移動組成物に対して重量で少なくとも70%の量で存在する,請求項2記載の熱移動組成物。

【請求項4】

前記潤滑剤が、前記熱移動組成物に対して重量で30%~50%の量で存在する、請求項1記載の熱移動組成物。

【請求項5】

前記潤滑剤が、ポリアルキレングリコールを含む、請求項1~4のいずれか 1項に記載の熱移動組成物。

【請求項6】

前記潤滑剤が、ポリオールエステルを含む、請求項 $1\sim4$ のいずれか1項に記載の熱移動組成物。

【請求項7】

前記化学式 (II) の少なくとも1つの化合物が、1、3、3、3ーテトラフルオロプロペン (HFO-1234ze) を含む、請求項1~6のいずれか1項に記載の熱移動組成物。

【請求項8】

前記化学式 (II) の少なくとも1つの化合物が、2、3、3、3ーテトラフルオロプロペン (HFO-1234yf) を含む、請求項1~6のいずれか1項に記載の熱移動組成物。

3 審決の理由

- (1) 審決の理由は、別紙審決書写しのとおりである。要するに、本件発明は、特開平4-110388号公報(以下「甲1文献」という。)に記載された発明(3つあるが、以下、順次「甲1発明A」、「甲1発明Z」、「甲1発明Y」といい、これらを総称して「甲1発明」という。)及び周知の技術に基づいて当業者が容易に発明をすることができたものであり、また、本件発明のうち本件特許の特許請求の範囲の請求項1ないし6及び8に係る発明は、ロシア特許第2073058号公報(以下「甲2文献」という。)に記載された発明(以下「甲2発明」という。)及び周知の技術に基づいて当業者が容易に発明をすることができたものであるから、特許法29条2項の規定により特許を受けることができず、同法123条1項2号に該当するというものである。
- (2) 審決が上記結論を導くに当たり認定した、甲1発明の内容、本件発明1と 甲1発明との一致点及び相違点、並びに、甲2発明の内容、本件発明1と甲 2発明との一致点及び相違点は、次のとおりである。

ア 甲1発明A関係

(ア) 甲1発明Aの内容

「分子式: $C_3H_mF_n$ (ただし, $m=1\sim5$, $n=1\sim5$ かつm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物からなる熱媒体であって,該有機化合物は3,3,3-トリフルオロー1ープロペン,<math>1,1,2ートリフルオロー1ープロペン,2ーモノフルオロー1ープロペン及び2,3,3,3ーテトラフルオロー1ープロペンに代表されるものである熱媒体と,ヒートポンプ用の熱媒体に用いられる潤滑油とからなる,熱伝達用組成物」。

(イ) 本件発明1と甲1発明Aとの一致点

「化学式(II)(同化学式及びこれに続く括弧書は、本件発明の請求項1に掲げられたものと同一であり、省略する。以下同じ。)の化合物である1、3、3、3-テトラフルオロ-1-プロペンとは2、3、3、3-テトラフルオロ-1-プロペンと、潤滑剤とを含む熱移動組成物」である点。

(ウ) 本件発明1と甲1発明Aとの相違点(以下「相違点1」という。) 本件発明1は、潤滑剤が「ポリオールエステル及びポリアルキレング リコールから選択される少なくとも1つの潤滑剤」と特定されているの に対し、甲1発明Aにおいては潤滑剤がそのように特定されたものでは ない点。

イ 甲1発明Z関係

(ア) 甲1発明Zの内容

「分子式: $C_3H_mF_n$ (ただし, $m=1\sim5$, $n=1\sim5$ かつm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物に該当する,1, 3, 3, 3-テトラフルオロ-1-プロペン(R 1 2 3 4 z e) からなる,熱媒体」。

- (イ) 本件発明1と甲1発明Zとの一致点 「化学式(II)の化合物である1,3,3,3ーテトラフルオロ-1 ープロペンを用いる冷媒」である点。
- (ウ) 本件発明1と甲1発明Zとの相違点(以下「相違点2」という。) 本件発明1は、冷媒が、「熱移動組成物」であって、上記冷媒化合物 に加えて「ポリオールエステル及びポリアルキレングリコールから選択 される少なくとも1つの潤滑剤を含む」と特定されているのに対し、甲1発明Zにおいてはそのように特定されたものではない点。

ウ 甲1発明Y関係

(ア) 甲1発明Yの内容

「分子式: $C_3H_mF_n$ (ただし, $m=1\sim5$, $n=1\sim5$ かつm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物に該当する,2,3,3,3 ーテトラフルオロー1 ープロペン(R 1 2 3 4 y f)(判決注: 審決には「R 1 2 3 4 y e 」とあるが,「R 1 2 3 4 y f 」の誤記と認める。)からなる,熱媒体」。

- (イ) 本件発明1と甲1発明Yとの一致点 「化学式(II)の化合物である2,3,3-テトラフルオロ-1 ープロペンを用いる冷媒」である点。
- (ウ) 本件発明1と甲1発明Yとの相違点(以下「相違点3」という。) 本件発明1は、冷媒が、「熱移動組成物」であって、上記冷媒化合物 に加えて「ポリオールエステル及びポリアルキレングリコールから選択 される少なくとも1つの潤滑剤を含む」と特定されているのに対し、甲1発明Yにおいてはそのように特定されたものではない点。

工 甲2発明関係

(ア) 甲2発明の内容

「1~94モル%のテトラフルオロエタン、1~94モル%の不飽和フ

ッ素化炭化水素及び $5\sim8$ 0モル%の炭素数が $3\sim5$ 個の炭化水素の3成分を含むオゾン層破壊の危険性のない作動混合物であって,該不飽和フッ素化炭化水素として,構造式 C_3 F $_n$ H $_{(6-n)}$ (式中,nは1ないし6)を有するプロピレン系フッ素化炭化水素が使用され,該プロピレン系フッ素化炭化水素が使用され,該プロピレン系フッ素化炭化水素はR1216(ヘキサフルオロプロペン),R125(1,1,3,3,3)-ペンタフルオロー1ープロペン),R1243(3,3,3)-トリフルオロー1ープロペン),R1252(1,1-ジフルオロー1ープロペン)及びR1261(2ーフルオロー1ープロペン)に代表されるものである,作動混合物」。

- (イ) 本件発明1と甲2発明との一致点 「化学式(II)の化合物である2,3,3,3-テトラフルオロ-1 ープロペンを含む熱移動組成物」である点。
- (ウ) 本件発明1と甲2発明との相違点(以下「相違点4」という。) 本件発明1は、熱移動組成物がポリオールエステル及びポリアルキレングリコールから選択される少なくとも1つの潤滑剤を含むのに対し、甲2発明は、そのような潤滑剤を含む熱移動組成物ではない点。

第3 原告の主張

1 取消事由1-1 (甲1発明の認定の誤り)

審決は,甲1文献が,「分子式: $C_3H_mF_n$ (ただし, $m=1\sim5$, $n=1\sim5$ かつm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物」(以下「 $C_3H_mF_n$ で示される化合物」という。)に属する個別の化合物である1,3,3,3-テトラフルオロー1ープロペン(以下「HFO-1234ze」という。なお,「R1234ze」も同義である。)又は2,3,3,3-テトラフルオロー1ープロペン(以下「HFO-1234yf」という。なお,「R1234yf」も同義である。)と潤滑油との組合せからなる

熱伝達用組成物(甲1発明A),あるいは上記の個別の化合物からなる熱媒体(甲1発明Z及び甲1発明Y)を開示すると認定した。

しかし、甲1文献は、潤滑剤(「潤滑油」や「冷凍機油」と同義。以下同じ。)との組合せの観点では、 $C_3H_mF_n$ で示される化合物という上位概念しか開示しておらず、個別の化合物を開示しているわけではないし、潤滑剤といかなる個別の化合物との組合せも開示していない。

よって,甲1文献に記載された発明は,正しくは「分子式: $C_3H_mF_n$ (ただし, $m=1\sim5$, $n=1\sim5$ かつm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物からなる熱媒体からなる,ヒートポンプ用の熱媒体に用いられる熱伝達用組成物」と認定されるべきであり,審決による甲1発明の認定には誤りがある。

2 取消事由1-2 (予想外かつ顕著な効果の看過)

審決は、甲1文献中の「ヒートポンプ用の熱媒体に対して要求される一般的な特性(例えば、潤滑油との相溶性、材料に対する非浸蝕性など)に関しても、問題はないことが確認されている」との記載から、当業者は、「甲1の特許請求の範囲に係る発明について、汎用の潤滑油のうちの適当なものを併用して、混和性や材料への浸蝕性などに問題がない冷媒組成物とすることができることを意味していると、理解する。」と認定した。

そして、冷媒化合物及び潤滑剤からなる組成物の混和性、金属や高分子材料と接触させたときの挙動を検討し、混和性や材料への浸蝕性に問題がないか否かを確認することは、当業者が通常行う程度のことであり、何ら困難性はないと判断した上、「ハイドロフルオロカーボン(HFC)系およびその他の純粋冷媒に関する最新物性情報」(日本冷凍空調学会論文集18巻3号203頁ないし216頁。以下「甲37文献」という。)や特開平5-85970号公報(以下「甲8文献」という。)等の公知文献がポリアルキレングリコール(以下「PAG」という。)及びポリオールエステル(以下「POE」という。)

を含む2ないし4種類の潤滑剤を開示することなどを根拠として, 甲1発明に おいて, 潤滑剤としてPAG又はPOEを用いることとして, 相違点1ないし 3に係る本件発明1の構成を備えたものとすることは, 当業者が容易に想到し 得ると判断した。

しかしながら、審決には、本件発明がHFO-1234ze及びHFO-1234yfをPAG又はPOEと組み合わせることにより、優れた混和性及び安定性という当業者の予想を超える顕著で有利な技術的効果を奏することを看過した誤りがある。

(1) 甲1文献は、HFO-1234ze又はHFO-1234yfと具体的な 潤滑剤との組合せについて何ら開示しておらず、これらを組み合わせた際の 混和性及び安定性に関するいかなる結果も開示していない。

そもそも、異性体を含め30種類にも及ぶ $C_3H_mF_n$ で示される化合物の全てについて、甲1文献が述べるように「一般的な特性…に関しても、問題はない」ことはあり得ない。

また,冷媒化合物と潤滑剤との混和性が乏しくても油分離器を設置すれば 冷媒化合物を実用化することができるところ,甲1文献では,油分離器を備 えたシステムによって全ての冷媒の評価が行われているから,潤滑剤の種類 や冷媒化合物との混和性や安定性は検討されていないことが確認される。

さらに、甲1文献の実施例1におけるHFO-1243zfの能力の値には重大な誤りがあるから、甲1文献の「一般的な特性…に関しても、問題はない」との記載は、信用性を欠く。

よって、当業者が甲1文献によって、甲1文献の特許請求の範囲に係る発明について、汎用の潤滑剤のうちの適当なものを併用して混和性や安定性等に問題がない冷媒組成物とすることができることを意味していると理解するはずはない。

(2) 冷媒化合物と潤滑剤との混和性は、冷媒化合物の分子中の塩素原子の有無

や双極子モーメントなどによっても予測不能で、実験的研究によって初めて 明らかになる。

甲37文献は、ハイドロフルオロカーボン(以下「HFC」という。)冷媒の一部について、潤滑剤との混和性を試験した結果にすぎず、化合物によっては混和性に乏しいとの結果も出ているから、これに基づいて、炭素一炭素二重結合を有するためHFCとは物性の基本的に異なるHFO-1234 z e 及びHFO-1234 y f の混和性を予測することはできない。

また、甲8文献は2-トリフルオロメチル-3、3、3-トリフルオロプロペン(以下「HFO-1336」という。)と特定の潤滑剤についての試験結果であり、これとは構造的に非常に異なるHFO-1234ze及びHFO-1234yfと潤滑剤との混和性について当業者に何ら教示しない。

さらに、ハイドロフルオロオレフィン(以下「HFO」という。)は、本件特許の優先権主張日(以下「本件優先日」という。)の当時、反応性の高さや毒性への懸念から冷媒化合物としては回避されるべきと認識されており、そのため、当業者は冷媒としてのHFOや、これに適した潤滑剤を見出すことに関心がなかった。したがって、その当時、HFOに対する汎用の潤滑剤は存在せず、これに適した潤滑剤を予測することも不可能であった。

加えて、甲1文献に記載された実験が行われた当時、PAG及びPOEは 冷媒の技術分野における汎用の潤滑剤でもなかったから、当業者がPAG及 びPOEを汎用の潤滑剤として検討するということはないし、甲1文献は、 これに記載された冷媒化合物とPAGやPOEとの混和性を何ら示唆するも のではない。

(3) 本件明細書に記載のとおり、HFO-1234zeは、-50℃から70℃までの幅広い温度範囲において、潤滑剤の濃度が5、20及び50重量%において、PAG及びPOEのいずれの潤滑剤とも混和するという顕著かつ有利な効果を奏する。同様に、HFO-1234yfも、潤滑剤と技術

常識からは予想外の混和性を有する。

さらに、HFO-1234ze及びHFO-1234yfは、炭素-炭素 二重結合を有するハイドロフルオロオレフィンであるところ、フルオロオレフィンは、炭素-炭素二重結合について求核付加反応を起こしやすいことが、本件優先日の当時、当業者に周知であった。そして、PAG及びPOEのいずれも、オレフィン化合物と求核付加する可能性のある反応部位を有する。

したがって、当業者は、フルオロオレフィンとPAG又はPOEとの組合 せが安定であるとは予測せず、本件発明において、HFO-1234ze及 UHFO-1234yfが、PAG及UPOEとの間で安定性を有すること は、当業者に予想外の事項であった。

3 取消事由1-3 (不飽和化合物に関する阻害事由の看過)

フルオロオレフィンは、本件優先日当時、前記 2(3)のとおりの反応性がある と認識されており、また、一般に、毒性があると信じられていた。

これらの技術常識は、当業者が熱移動組成物においてフルオロオレフィンを使用することを検討すること、フルオロオレフィンとの使用に適した潤滑剤を探すこと、潤滑剤としてフルオロオレフィンと反応するかもしれないPAGやPOEを選択することを阻害するものである。

審決には、かかる阻害事由を看過した誤りがある。

4 取消事由2-1 (甲2発明の認定の誤り)

甲2文献に記載された発明は、「冷凍システム(RS)及びヒートポンプ (HP) における、 $1\sim94mo1\%$ のHFC-134a、 $1\sim94mo1\%$ のCF $_3$ CH=CH $_2$ (R1243zf)及び $5\sim80mo1\%$ のプロパン、イソブタン又はn-ペンタンである炭素数 $3\sim5$ の炭化水素の3成分を含む疑似共沸組成の作動流体」と認定されるべきであり、審決による甲2発明の認定には誤りがある。

甲2文献の技術的課題は、「作動混合物の比冷却効率を高めることと、RS

の蒸発器における常圧沸点を250Kより低くすること」であるが、同文献には「体積冷凍能力が最大となる理由は、疑似共沸組成が存在することで説明できる。このような混合物を使用すると、…エクセルギー効率を維持しながらRS及びHPの冷却効率が向上する」と記載されており、上記技術的課題の解決手段は、疑似共沸組成を組み合わせて形成するものに限られる。しかるに、疑似共沸組成物の形成は予測できないものであり、甲2文献において実際にそれが確認されているのは、(HFC-134a)+(HFO-1243zf)+(プロパン、イソブタン又はn-ペンタン)の系のみである。甲2文献は、HFO-1234yfを含むそれ以外の不飽和フッ素化プロペンが、テトラフルオロエタン及び炭化水素と疑似共沸組成を形成するか否か、どのような成分とどのような条件で疑似共沸組成物を形成するのか、何ら開示ないし示唆しない。よって、甲2文献にHFO-1234yfを含有する疑似共沸組成物について記載されているとはいえない。

5 取消事由2-2 (予想外かつ顕著な効果の看過)

審決は、甲2発明において潤滑剤としてPOE又はPAGを用いることとして、相違点4に係る本件発明1の構成を備えたものとすることは当業者が容易に想到し得ると判断した。

しかし、審決は、前記2のとおり、HFO-1234yfが熱移動システムを構成する材料と潤滑剤との組合せにおいて優れた安定性という顕著な効果を実現することを看過した誤りがある。

6 取消事由2-3 (不飽和化合物に関する阻害事由の看過)

前記3のとおりのフルオロオレフィンの反応性や毒性についての技術常識は、当業者がHFO-1234yfを熱伝達用途に使用することを検討すること、これとの使用に適した潤滑剤を検討することを、いずれも阻害するものであり、審決には、かかる阻害事由を看過した誤りがある。

第4 被告の主張

1 取消事由 1-1 について

甲1文献には、特許請求の範囲に $C_3H_mF_n$ で示される化合物からなる熱媒体が記載され、明細書には、「 $C_3H_mF_n$ で示される化合物…は、ヒートポンプ用の熱媒体に対して要求される一般的な特性(例えば、潤滑油との相溶性、材料に対する非浸蝕性など)に関しても、問題はないことが確認されている。」と記載され、実施例2としてHFO-1234zeを、実施例5としてHFO-1234yfを、それぞれ熱媒体とする例が記載されている。

以上に加え,冷凍機やヒートポンプにおいて,冷媒に潤滑剤を加えて用いることが技術常識であることを踏まえれば,当業者であれば,甲1文献の記載事項から,甲1発明A,甲1発明Z及び甲1発明Yを把握することができる。

したがって、審決による甲1発明の認定に誤りはない。

2 取消事由 1 - 2 について

相違点1ないし3に係る審決の認定判断は妥当であり、審決には原告の主張する取消事由はない。

(1) 甲1文献に接した当業者は、慣用されている汎用の潤滑剤は問題なく使用することができると理解するし、仮に疑義を持ったとしても、簡単に入手できる汎用の潤滑剤を問題なく使用することができることを実証して容易に確認することができる。また、開示されている発明がいわゆるマーカッシュ形式で記載されている一群の化合物の集合の場合、実施例に示された代表的な化合物と潤滑剤との混和性に問題がないことを確認すれば、当該一群の化合物に属する他の化合物と潤滑剤との混和性に問題があることを示す明確な証拠がない限り、当業者は、一群の化合物についても問題はないと理解する。よって、審決による甲1文献の理解に誤りはない。

油分離器を採用する理由は様々であり、甲1文献に記載されたシステムが油分離器を備えていることを理由に、当業者が、甲1文献では潤滑剤の種類が検討されていないことが確認できると理解することはあり得ない。

(2) 新たな冷媒化合物に適合する潤滑剤を選定する場合,従来から用いられている冷媒化合物に適合している潤滑剤(汎用の潤滑剤)が使用可能であるかをまず検討することは、当業者の通常の創作活動の範囲内のもので、格別な創作能力の発揮を必要としない。

審決は、HFOに汎用の潤滑剤が存在した旨のことには触れておらず、原 告の主張は的外れである。

(3) HFO-1234ze及びHFO-1234yfと, PAGないしPOE との間に予想外の混和性及び安定性があるとする原告の主張は否認ないし争う。

HFO-1234ze及びHFO-1234yfの潤滑剤として、従来から冷媒化合物の潤滑剤として混和性及び安定性に優れているとして汎用されているPAG及びPOEを選択することが容易想到である以上、混和性及び安定性に優れていることは予想外の効果とはいえない。

3 取消事由 1 - 3 について

甲1文献や甲8文献にはフルオロオレフィンを冷媒とする発明が開示されており、甲1文献にはHFO-1234zeあるいはHFO-1234yfを冷媒とし、これらの化合物と潤滑剤との組合せが開示され、甲8文献にはHFOの潤滑剤としてPAGやPOEを用いることが開示されている。

よって、フルオロオレフィンの反応性や毒性に対する懸念は、当業者が熱移動組成物においてフルオロオレフィンを使用することさえ阻害し、フルオロオレフィンの使用に適した潤滑剤を探すことを阻害するとの原告の主張は、いずれも的外れであり、審決の判断に誤りはない。

4 取消事由 2-1 について

当業者は、技術常識に基づくと疑念を生じる場合でない限り、特許請求の範囲の記載どおりに解釈し、不飽和フッ素化プロペンとして、甲2文献の表1に記載のR1234等の物質が含まれると理解し、また、甲2文献に記載されて

いる不飽和化合物がテトラフルオロエタン及び炭化水素と疑似共沸混合物を形成すると理解し、さらに、技術常識及び甲 2 文献に記載されている実施例を参照して、HFO-1234yf を含む組成物を実施することができると理解するのであり、審決による甲 2 発明の認定に誤りはない。

5 取消事由 2 - 2 について

前記2のとおり、PAGやPOEは本件優先日当時において既に周知の潤滑剤であるから、F2文献に記載のHFO-1234yfの潤滑剤としてPAGやPOEを用いることは当業者が容易に想到し得るものである。

したがって、審決がHFO-1234yfを含む熱移動組成物の予想外に顕著な効果を看過したとの原告の主張は失当である。

6 取消事由2-3について 前記3のとおり、審決の判断に誤りはない。

第5 当裁判所の判断

当裁判所は、原告の主張は理由がなく、審決に取り消されるべき違法はない と判断する。その理由は次のとおりである。

- 1 取消事由1-1 (甲1発明の認定の誤り) について
 - (1) 甲1文献の記載内容について

甲1文献(甲1)には、次の記載がある(なお、誤記は適宜訂正した。)。 ア 発明の名称

「熱伝達用流体」

- イ 特許請求の範囲
 - 「1. 分子式: C₃H_mF_n

(但し、 $m=1\sim5$, $n=1\sim5$ 且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物からなる熱媒体。」

ウ 産業上の利用分野(1頁左下欄9行目ないし11行目)

「本発明は、冷凍機、ヒートポンプなどで使用される熱伝達用流体に関す

る。」

エ 従来技術とその問題点(1頁左下欄14行目ないし2頁左上欄4行目)「従来、ヒートポンプの熱媒体(冷媒)としては、クロロフルオロ炭化水素、フルオロ炭化水素、これらの共沸組成物ならびにその近辺の組成物が知られている。これらは、一般にフロンと称されており、現在R-11(トリクロロモノフルオロメタン)、R-22(モノクロロジフルオロメタン)、R-502(R-22+クロロペンタフルオロエタン)などが主に使用されている。

しかしながら、近年、大気中に放出された場合に、ある種のフロンが成層圏のオゾン層を破壊し、その結果、人類を含む地球上の生態系に重大な悪影響を及ぼすことが指摘されている。従って、オゾン層破壊の危険性の高いフロンについては、国際的な取決めにより、使用および生産が規制されるに至っている。規制の対象になっているフロンには、R-11とR-12とが含まれており、またR-22については、オゾン層破壊への影響が小さいため、現在規制の対象とはなっていないが、将来的には、より影響の少ない冷媒の出現が望まれている。冷凍・空調設備の普及に伴って、需要が毎年増大しつつあるフロンの使用および生産の規制は、居住環境をはじめとして、現在の社会機構全般に与える影響が極めて大きい。従って、オゾン層破壊問題を生じる危険性のない或いはその危険性の極めて小さい新たなヒートポンプ用の熱媒体(冷媒)の開発が緊急の課題となっている。」

オ 問題点を解決するための手段(2頁左上欄5行目ないし3頁左上欄11 行目)

「本発明者は、ヒートポンプ或いは熱機関に適した熱伝達用流体であって、 且つ当然のことながら、大気中に放出された場合にもオゾン層に及ぼす影響が小さいか或いは影響のない新たな熱伝達用流体を得るべく種々研究を 重ねてきた。その結果、特定の構造を有する有機化合物がその目的に適合する要件を具備していることを見出した。

すなわち,本発明は、下記の熱伝達用流体を提供するものである:

「分子式: $C_3H_mF_n$

(但し、 $m=1\sim5$, $n=1\sim5$ 且つm+n=6)

で示され且つ分子中に二重結合を1個有する有機化合物からなる熱伝達用 流体。」

本発明で使用する代表的な化合物の主な物性は、以下の通りである。

- I. $F_3C-CH=CH_2$ (3, 3, 3-トリフルオロー1ープロペン)
- II. $F_3C-CH=CHF$ (1, 3, 3, 3ーテトラフルオロー1ープロペン)
- III. $H_3C-CF=CF_2$ (1, 1, 2-\)
- IV. $H_3C-CF=CH_3(2-EJJNJD-1-JDC)$

(判決注:上記のそれぞれの化合物毎に、沸点、臨界温度、臨界圧力、分子量の記載がある。)

本発明において熱伝達用流体として使用する $C_3H_mF_n$ で示される化合物は、オゾン層に影響を与える塩素原子および臭素原子を全く含まないので、オゾン層の破壊問題を生じる危険性はない。

また、一方では、 $C_3H_mF_n$ で示される化合物は、ヒートポンプ用熱媒体としての特性にも優れており、成績係数、冷凍能力、凝縮圧力、吐出温度などの性能において、バランスが取れている。さらに、この化合物の沸点は、現在広く使用されているR-12、R-22、R-114 およびR-502のそれに近いため、これら公知の熱媒体の使用条件下、即ち蒸発温度-20から10 ℃および凝縮温度30から60 ℃での使用に適している。

. . .

本発明で使用する $C_3H_mF_n$ で示される化合物或いは $C_3H_mF_n$ で示される化合物とR-22, R-32, R-124, R-125, R-134 a, R-142b, R-143 a およびR-152 a の少なくとも一種との混合物は,ヒートポンプ用の熱媒体に対して要求される一般的な特性(例えば,潤滑油との相溶性,材料に対する非浸蝕性など)に関しても,問題はないことが確認されている。」

カ 発明の効果(3頁左上欄12行目ないし同頁右上欄4行目)

「本発明による熱伝達用流体によれば、下記の様な顕著な効果が達成される。

- (1) 従来からR-12, R-22或いはR-502を熱媒体として使用してきたヒートポンプと同等以上のサイクル性能が得られる。
- (2) 熱媒体としての優れた性能のゆえに、機器設計上も有利である。
- (3) 仮に本発明による熱伝達用流体が大気中に放出された場合にも、オゾン層破壊の危険性はない。」
- キ 実施例1(3頁右上欄8行目ないし4頁左上欄16行目)

「熱媒体として F_3 C-CH=CH $_2$ (3, 3, 3-トリフルオロ-1-プロペン)を使用する1馬力のヒートポンプにおいて,蒸発器における熱媒体の蒸発温度を-10 $^{\circ}$ C, -5 $^{\circ}$ C, 5 $^{\circ}$ Cおよび10 $^{\circ}$ Cとし,凝縮器における凝縮温度を50 $^{\circ}$ Cとし,過熱度および過冷却度をそれぞれ5 $^{\circ}$ Cおよび3 $^{\circ}$ Cとして,運転を行なった。

また、比較例として、R-12(比較例1)、R-22(比較例2) およびR-502(比較例3)を熱媒体として使用して、上記と同一条件下にヒートポンプの運転を行なった。

これらの結果から、成績係数 (COP) および冷凍効果を次式により、 求めた…。

...

本実施例ならびに比較例で使用した冷凍サイクルの回路図を第2図(判 決注:省略)に示す。

COPおよび冷凍能力の算出結果を比較例1~3の結果と対比して第3図(判決注:省略)および第4図にそれぞれ示す。

なお,第3図に示す成績係数は,R-22を熱媒体とした場合の蒸発温度5 $^{\circ}$ Cにおける測定値(COP_B)で,それぞれの熱媒体の測定値(COP_A)を除したものである。特に,本発明による熱媒体の結果は," $^{\circ}$ で示してある。

また,第4図に示す冷凍能力は,R-22を熱媒体とした場合の蒸発温度 5 \mathbb{C} における測定値(能力 B)で,それぞれの熱媒体の測定値(能力 A)を除したものである。本発明による熱媒体の結果は,やはり "〇"で示してある。

第3図から明らかな様に、本実施例による作動流体は、COPに関して、R-12およびR-22と同程度の良好な値を示している。さらに、第4図から明らかな様に、冷凍効果に関して、R-12よりも高めの値を示している。

また、蒸発温度5℃における凝縮圧力および圧縮機吐出温度の比較結果 を第1表に示す。

第 1 表

	凝縮圧力	吐出温度			
	$(kg/cm^2 \cdot A)$	(\mathcal{C})			
実施例1	9	5 1			
比較例1	1 2	5 9			
比較例2	2 0	7 3			
比較例3	2 2	_			

本実施例による熱媒体の凝縮圧力および吐出温度は、R-12よりも低

い値を示しており、機器設計上有利である。

以上の結果から、 $F_3C-CH=CH_2$ を熱媒体として使用する本発明においては、従来から広く使用されているR-12、R-22 およびR-5 02を使用するヒートポンプと同等以上のサイクル性能が得られており、本発明は、機器設計上からも有利であることが、明らかである。」

ク 実施例2(4頁左上欄17行目ないし同頁右上欄13行目)

「熱媒体として F_3 C-CH=CHF(1, 3, 3, 3-F+F)フルオロ-1-プロペン)を使用するとともに、蒸発器における熱媒体の蒸発温度を5 % とする以外は実施例 1 と同様にしてヒートポンプの運転を行なった。成績係数および冷凍能力を下記第 2 表に示す。

何れの数値も、R-22を熱媒体とした場合の蒸発温度 5 $^{\circ}$ $^{\circ}$ における測定値(COP_B および冷凍能力 $_B$)により本発明熱媒体の測定値(COP_A および冷凍能力 $_A$)を除した数値で示してある。

第 2 表

実施例 2 R-12 R-502

 $\label{eq:coparing} \text{COP}_{\text{\tiny A}}/\text{COP}_{\text{\tiny B}} \qquad \quad \text{1. O 1} \qquad \quad \text{1. O 2} \qquad \quad \text{O. 9 2}$

能力A/能力B 0.43 0.61 1.03」

ケ 実施例3(4頁右上欄14行目ないし同頁左下欄10行目)

「熱媒体として H_3 C-CF=CF $_2$ (1, 1, 2-トリフルオロー1-プロペン)を使用するとともに、蒸発器における熱媒体の蒸発温度を5 $^{\circ}$ Cとする以外は実施例1と同様にしてヒートポンプの運転を行なった。

成績係数および冷凍能力を下記第3表(判決注:省略)に示す。…」

コ 実施例4 (4頁左下欄11行目ないし同頁右下欄7行目)

成績係数および冷凍能力を下記第4表(判決注:省略)に示す。…」 サ 実施例5(4頁右下欄8行目ないし12行目)

「熱媒体として F_3 C-CF=C H_2 を使用する以外は実施例 1 と同様にして,ヒートポンプの運転を行なったところ,実施例 1 とほぼ同様の結果が得られた。」

シ 図面の簡単な説明

「第4図は、実施例1および比較例1~3による冷凍能力を示すグラフである。」(5頁左上欄3行目ないし4行目)

(2) 甲1発明の認定について

上記(1)のとおり、甲1文献には、特許請求の範囲に「分子式: $C_3H_mF_n$ (但し、 $m=1\sim5$ 、 $n=1\sim5$ 且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物」すなわち $C_3H_mF_n$ で示される化合物からなる熱媒体が記載され、その代表的な化合物として、1、3、3、3ーテトラフルオロー1ープロペンすなわちHFO-1234zeを含む4つの具体的な化合物の物性が、その沸点、臨界温度、臨界圧力及び分子量をもって示されている。そして、実施例1ないし4においては、これら4つの化合物を熱媒体として用いてヒートポンプを運転した際の成績係数(COP)及び冷凍能力が開示されている。

また、実施例5として、熱媒体として2、3、3、3ーテトラフルオロー

1-プロペンすなわちHFO-1234yfである「 $F_3C-CF=CH_2$ 」を使用する以外は実施例 1 と同様にして,ヒートポンプの運転を行なったところ,実施例 1 とほぼ同様の結果が得られたことが記載されており,当該化合物の物性についての記載はないものの,これを熱媒体としてヒートポンプを運転することができたことが記載されている。

さらに、「本発明で使用する $C_3H_mF_n$ で示される化合物…は、ヒートポンプ用の熱媒体に対して要求される一般的な特性(例えば、潤滑油との相溶性、材料に対する非浸蝕性など)に関しても、問題はないことが確認されている。」との記載があることから、実施例1ないし5で用いられた具体的な化合物に代表される $C_3H_mF_n$ で示される化合物をヒートポンプ用の熱媒体に用いられる潤滑油とともに熱伝達用組成物として用いることも記載されていると認めることができる。

以上によれば、甲1文献には、 $C_3H_mF_n$ で示される化合物からなる熱媒体であって、該有機化合物は実施例1ないし5で用いられた具体的な化合物に代表されるものである熱媒体と、ヒートポンプ用の熱媒体に用いられる潤滑油とからなる、熱伝達用組成物(甲1発明A)、並びに、 $C_3H_mF_n$ で示される化合物に該当するHFO-1234zeからなる熱媒体(甲1発明Z)及びHFO-1234yfからなる熱媒体(甲1発明Y)の各発明が記載されていると認められるから、審決による甲1発明の認定に誤りはない。

(3) 原告の主張について

原告は,甲1文献は,潤滑剤との組合せの観点では, $C_3H_mF_n$ で示される化合物という上位概念しか開示していないから,同文献に記載された発明は, $C_3H_mF_n$ で示される化合物からなる熱媒体からなる,ヒートポンプ用の熱媒体に用いられる熱伝達用組成物と認定されるべきであり,審決による甲1発明の認定には誤りがあると主張する。

しかしながら、甲1文献には $C_3H_mF_n$ で示される化合物のうちHFO-

1234ze及びHFO-1234yfを含む5つの個別の化合物が熱媒体として開示されているのは前記のとおりであるから,甲1発明Z及び甲1発明Yの認定に誤りがないことは明らかである。これに加えて,甲1文献における「一般的な特性(例えば,潤滑油との相溶性,材料に対する非浸蝕性など)に関しても,問題はないことが確認されている。」との記載から,具体的な潤滑剤の種類やこれと組み合わせた場合の実験結果についての記載はないものの,上記5つの個別の化合物と潤滑剤とを組み合わせることにより熱伝達用組成物として用いることができることを,実際に実験を行うなどして確認したものであると理解することができる。よって,これらの記載から甲1発明Aを認定することができることも前記のとおりである。

したがって、原告の上記主張を採用することはできない。

(4) 小括

以上によれば、原告の主張する取消事由1-1は理由がない。

2 取消事由1-2 (予想外かつ顕著な効果の看過) について

原告は、審決が、本件発明1と甲1発明との相違点に係る構成の容易想到性の判断に関して、本件発明がHFO-1234ze及びHFO-1234yfをPAG又はPOEと組み合わせることにより、優れた混和性及び安定性という当業者の予想を超える顕著で有利な技術的効果を奏することを看過したと主張する。

そこで、甲1文献及び本件優先日以前に頒布された刊行物の記載内容並びに 技術常識等を踏まえ、本件明細書中に記載された上記の冷媒化合物と潤滑剤と の組合せの奏する混和性及び安定性の程度が、当業者の予想を超える顕著で有 利なものであるといえるかどうかを検討する。

(1) 本件明細書の記載内容について

ア 本件明細書(甲43)には、次の記載がある。

(ア) 背景技術

塩素含有組成物(クロロフルオロカーボン(CFC)、ハイドロクロ ロフルオロカーボン(HCF)など)を空調および冷却システムにおけ る冷媒として用いることは、オゾン破壊性を伴う。そのため、塩素を含 有する冷媒を、ハイドロフルオロカーボン(HFC)など、オゾン層を 破壊しないであろう、塩素を含有しない冷媒化合物で置き換えることが 望ましいが、代用品となり得る任意の冷媒についても、優れた熱移動特 性、化学的安定性、低毒性または無毒性、不燃性、および潤滑剤相溶性 などの特性を備える必要があることは、一般に重要であり、中でも、潤 滑剤の相溶性が特に重要である。しかるに、HFCを含む塩素を含有し ない冷却流体の多くが、慣例的にCFCおよびHFC(判決注:「HC F」の誤記と認められる。)と共に用いられる種類の潤滑剤,例えば, 鉱物油、アルキルベンゼン、またはポリ(アルファーオレフィン)を含 む潤滑剤に、比較的不溶および非混和のうちの少なくとも1つである。 圧縮冷却、空調、およびヒートポンプのシステムのうちの少なくとも1 つにおいて、冷却流体ー潤滑剤の組合せを所望の効率レベルで作用させ るためには、広い操作温度範囲に渡って潤滑剤が冷却流体に充分に可溶 である必要がある(【0005】ないし【0007】)。

(イ) 課題を解決するための手段

出願人らは、上述の必要および他の必要が、炭素数3~炭素数4の1つ以上のフルオロアルケン、好適には以下の化学式(I)(判決注:省略)の化合物を含有する組成物によって満たされることを見出した。

本発明によって、熱移動用の方法およびシステムを含む、本発明の組成物を利用する方法およびシステムも提供される(【0015】ないし【0017】)。

(ウ) 発明を実施するための最良の形態

本発明の非常に好適な実施態様,特に,低い毒性の化合物を含有する

実施態様では、本発明の組成物は、テトラフルオロプロペン(HFO-1234)、ペンタフルオロプロペン(HFO-1225)、およびそれらの組合せからなる群から選択される1つ以上の化合物を含有する。

本発明の化合物が、不飽和な末端炭素が1つ以下のフッ素置換基を有するテトラフルオロプロペンおよびペンタフルオロプロペン化合物、特に、1、3、3、3ーテトラフルオロプロペン(HFO-1234ze)、2、3、3、3ーテトラフルオロプロペン(HFO-1234yf)、および1、2、3、3、3ーペンタフルオロプロペン(HFO-1225ye)、およびそれらの各々の任意のまたは全ての立体異性体であることはさらに好適である。出願人らは、マウスおよびラットへの吸入曝露によって評価されるように、そうした化合物が有する急性毒性レベルが非常に低いことを発見した(【0022】、【0023】)。

本発明による冷媒組成物、特に蒸気圧縮システムで用いられる冷媒組成物は、一般に組成物の重量の約30%~約50%の量で潤滑剤を含有する。ハイドロフルオロカーボン(HFC)冷媒と共に冷却機に用いられるポリオールエステル(POE)およびポリアルキレングリコール(PAG)など、一般的に用いられる冷却潤滑剤が、本発明の冷媒組成物と共に用いられてもよい(【0029】)。

エ) 実施例1

本発明の幾つかの組成物のCOPを、COPが1.00、能力値が1.00、および吐出温度が約79.4 $^{\circ}$ C(175 $^{\circ}$ F)であるHFC-134aを基準として、一定の範囲の凝縮器温度および蒸発器温度に渡って測定し、以下の表1に報告する。

表1

冷媒組成物	比COP	比能力	吐出温度
HF01225ye	1.02	0.76	約 70.0℃ (158°F)
HFO トランス-1234ze	1.04	0.70	約 73.9℃ (165°F)
HFO シス-1234ze	1.13	0.36	約 68.3℃ (155°F)
HF0-1234yf	0.98	1.10	約 75.6℃ (168°F)

(【0053】ないし【0055】)

(才) 実施例2

種々の冷却潤滑剤とHFO-1225yeおよびHFO-1234zeとの混和性が試験されている。試験された潤滑剤は、鉱物油(炭素数3)、アルキルベンゼン(ゼロール(Zerol)150)、エステル油(モービル(Mobil)EAL22ccおよびソレスト(Solest)120)、ポリアルキレングリコール(PAG)油(グッドレンチ(Goodwrench)冷却油、134aシステム用)、およびポリ(アルファーオレフィン)油(CP-6005-100)である。各々の冷媒/油の組合せにおいて、3つの組成物、すなわち、潤滑剤が5、20、および50重量パーセントであり、各々の残りが試験される本発明の化合物である組成物が試験されている(【0056】)。

潤滑剤組成物は、肉厚(heavy-walled)のガラスチューブ中に配置される。ガラスチューブは脱気され、本発明の冷媒組成物が添加され、その後でガラスチューブが密封される。続いてガラスチューブは空気浴環境の(air bath environmental)チャンバ内に置かれ、その温度が約-50 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0

る(【0057】)。

(カ) 実施例3

冷却および空調システムに用いられる金属との接触時の、本発明の冷媒化合物および組成物とPAG潤滑油との相溶性が、多くの冷却および空調用途で見出されるより充分に過酷な条件である350°Fで試験されている(【0059】)。

アルミニウム片、銅片、および鋼片が、肉厚のガラスチューブに加えられる。2グラムの油がガラスチューブに添加される。続いてガラスチューブは脱気されて、1グラムの冷媒が添加される。ガラスチューブは350°Fのオーブン中に1週間置かれ、目視で観察される。曝露期間が終わると、ガラスチューブが取り出される(【0060】)。

この処置は、以下の油および本発明の化合物の組合せに対してなされた。

(判決注:下記の「HFC」は、それぞれ「HFO」を指すと解される。)

- a) HFC-1234zeおよびGMグッドレンチPAG油
- b) HFC-1243 z f およびGMグッドレンチ油PAG油
- c) HFC-1234zeおよびMOPAR-56PAG油

- d) HFC-1243zfおよびMOPAR-56PAG油
- e) HFC-1225yeおよびMOPAR-56PAG油

全ての場合で、ガラスチューブの内容物の外観の変化は最小である。 このことは、本発明の冷媒化合物および組成物が、冷却および空調システムに見出されるアルミニウム、鋼、および銅との接触時、および、それらの種類のシステムにてそのような組成物に含まれるまたはそのような組成物と共に用いられる可能性のある種類の潤滑油との接触時に、安定であることを示している(【0061】)。

比較例:

アルミニウム片、銅片、および鋼片が、鉱物油およびCFC-12と 共に肉厚のガラスチューブに加えられ、実施例3でのように、350° Fで1週間加熱される。曝露期間が終わるとガラスチューブが取り出され、目視で観察される。液体の内容物が黒く変色しているのが観察され、このことはガラスチューブの内容物が激しく分解している事を示している(【0062】)。

CFC-12 および鉱物油の組合せは、これまで多くの冷媒システムおよび方法で選択されている。したがって、本発明の冷媒化合物および組成物は、広範に用いられている従来技術の冷媒ー潤滑油の組合せよりも有意に優れた、一般的に用いられる多くの潤滑油に対する安定性を有する(【0063】)。

イ 上記のとおり、本件明細書には、本件発明に係る熱移動組成物の混和性について、実施例 2 において、HFO-1234zeとPAG又はPOEとの組合せ、及びHFO-1225yeとPOEとの組合せは、-50 から 70 でまでの温度範囲にわたって、潤滑剤の濃度が 5 、20 、50 重量%の組成において混和性があると記載され、また、HFO-1225yeとPAGとの組合せについては、-50 でないし-30 での温度範囲で

は非混和性であり、-20 C ないし50 C の温度範囲では部分的に混和性であり、60 C では P A G の濃度が50 重量%の場合に混和性であり、70 C では P A G の濃度が5 重量%ないし50 重量%の場合に混和性であると記載されている。

一方, HFO-1234yfとPAG又はPOEとの組合せについては,明確な実験結果の記載はないものの,実験結果のある他の2つの冷媒化合物との構造の類似性に照らすと,同程度の混和性があると考えられる。

また、本件発明に係る熱移動組成物の安定性については、実施例3において、HFO-1234zeとPAG、HFO-1225yeとPAGを、アルミニウム片、銅片及び鋼片とともにガラスチューブに入れ、350°Fのオーブンに1週間置いたところ、ガラスチューブの内容物の外観の変化は最小であり、本件発明の冷媒化合物が、冷却及び空調システムに見出されるアルミニウム、鋼及び銅との接触時、並びに潤滑剤との接触時に、安定であり、比較例であるCFC-12と鉱油との組合せと比べて、有意に優れた安定性を有すると記載されている。

一方、HFO-1234zeとPOE、HFO-1234yfとPAG 又はPOEとの組合せについては、明確な実験結果の記載はないものの、 実験結果のある他の2つの冷媒化合物との構造の類似性や、PAGとPO Eとの構造の類似性に照らすと、本件発明の全体にわたって、上記実験結 果と同程度の安定性があると考えられる。

(2) 公知文献の記載内容について

ア 甲37文献(甲37)には、HFC系冷媒であるHFC-32、HFC-125、HFC-134a、HFC-143a及びHFC-152aと、PAGやPOEなどの潤滑剤との相溶性に関して、次の記載がある。

「HFC系冷媒は分子中に塩素原子をもたないために潤滑油との相溶性が低下することが知られている。従来冷凍機油として広く使用されてきたナ

フテン系鉱油はHFC系冷媒と相溶性をもたない. 相溶性の観点からHFC系冷媒に適合する潤滑油としては、ポリアリキレングリコール(PAG)油、エステル(POEなど)系油、ポリエーテル油、フッ素系油、カーボネート油などの合成油が開発されている. 一方、HFC系冷媒との相溶性はないが、潤滑性を重視して、あえてナフテン系鉱油などを用いることを推奨する報告もある.

冷媒と潤滑油の相溶性に関して溶液論等を駆使して理論的に取り扱うことが試みられているが、これらはいずれも実測値に基づいた半経験的な解析にとどまっている。したがって、HFC系冷媒とそれらに適合するように新たに開発された潤滑油との相溶性を明らかにするためには、HFC系冷媒と潤滑油の個々の組み合わせに対して相挙動を実測する実験的研究に拠らざるを得ないのが現状となっている。

本報で取上げた主要なHFC系冷媒,R32,R125,R134a,R143a,R152aについては,代表的な潤滑油との相溶性に関する一部のデータが冷媒および潤滑油メーカーなどから公表されている.その一例を表4.1.1に示した.ここでは,密封ガラス容器を用い,温度233-363K,油濃度20-80mass%の範囲で測定された5種のHFC系冷媒と4種の潤滑油との相溶性の概要がまとめられている.

Table 4.1.1 Miscibility of oils with HFCs tested in glass sealed tubes for oil contents of 20-80

Oils`	HFCs	R32	R125	R134a	R143a	R152a
Mineral	Naphthenic oils	Immiscible	Immiscible	Immiscible	Immiscible	Immiscible
	PAG oils	Immiscible below 233 K	Miscible	Miscible	Immiscible	Miscible
Synthetic	Ester oils	Miscible	Miscible	Miscible	Immiscible	Miscible
P	PFE oils	Immiscible	Miscible	Miscible	Immiscible below 263 K	Immiscible

(207頁右欄下から4行目ないし208頁左欄下から8行目)

そして、表4.1.1によれば、R32、R125、R134a、R1

43a, R152aという5つの冷媒と、ナフテン系油、PAG油、エステル系油、PFE油(パーフルオロエーテル油を指す。)という4つの潤滑剤との相溶性の有無が記載され、鉱油であるナフテン系油はいずれの冷媒とも相溶性がないこと、R143aはPAG油、エステル系油と相溶性がなく、PFE油とは特定の温度範囲で相溶性がないこと、R125とR134aはPAG油、エステル系油、PFE油と相溶性があったこと、R152aはPAG油、エステル系油と相溶性があったこと等が記載されている。

イ 甲8文献(甲8)は、HFO-1336を冷媒に用いた発明を開示する ものである。

同文献には、特許請求の範囲の請求項1として、「2-トリフルオロメチル-3、3、3-トリフルオロプロペン(判決注:「HFO-1336」である。)からなる冷媒。」と記載され、発明の詳細な説明の欄に、

「【従来技術とその問題点】従来,作動流体乃至冷媒としては,クロロフルオロアルカン類,これらの共沸組成物並びにその近辺の組成の組成物が知られている。…オゾン層破壊の可能性の高いこれらクロロフルオロアルカンについては,国際的な取り決めにより,使用及び生産が制限されるに至っている。…上記の様なクロロフルオロアルカンに代替し得る有望な化合物…としては,水素原子を含むクロロフルオロアルカンまたはフルオロアルカン…が挙げられる。しかしながら,これらの代替候補化合物は,単独では,ODP(判決注:「オゾン破壊係数」を意味する。),不燃性ならびにその他の冷媒として要求される各種性能を全て満足するものではない。…また,共沸混合組成物として,…などが知られているが,これらの冷媒は塩素原子を含んでいるので,今後その使用が制限される方向にある。」(【0002】ないし【0007】),「【発明が解決しようとする課題】本発明は,ODPがゼロであり,冷媒としての性能に優れ,機器

運転時に相変化に際しての組成変化を実質的に伴わない冷媒を提供するこ とを主な目的とする。」(【0008】),「【課題を解決するための手 段】本発明者は、上記のような技術の現状に鑑みて種々研究を重ねてきた。 その結果、2-トリフルオロメチル-3、3、3-トリフルオロプロペン がその目的に合致する要件を具備していることを見出した。」(【000 9】),「【発明の効果】本発明で使用する2-トリフルオロメチルー3, 3,3-トリフルオロプロペンは、易分解性であり、オゾン層に影響を与 える塩素原子を含まないので、ODPはゼロであり、オゾン層の破壊問題 を生じる危険性はない。本発明による冷媒は、冷凍能力が高く、成績係数 も比較的良好である。例えば、CFC11に比して、冷凍能力において約 1.25倍であり、成績係数においては同等であるという総合的に優れた 性能を発揮する。…本発明による冷媒は、PAG(ポリアルキレングリコ ール) 系油, ポリエステル系油などとの相溶性に優れている。本発明によ る冷媒は、熱安定性に比較的優れている。」(【0014】)と記載され、 実施例1において、同発明による冷媒を使用し、冷凍機油としてPAGを 使用して冷凍機の運転を行い, COP及び冷凍能力を測定した結果が開示 されている(【0016】)。

ウ 「特定フロン クロロカーボン 代替品開発の現状とその方向」131 頁ないし137頁(甲3。以下「甲3文献」という。)には、HFC-1 34aのPAGやPOEとの相溶性及び化学的安定性などに関して、次の 記載がある。

「(2) 冷凍機油に必要な性能

冷凍機油は、冷媒と混合・溶解して冷凍サイクルを循環し、高温と低温 にさらされながら、繰り返し使用される。このような特別の条件で使われ る冷凍機油には、次のような性能が要求される。

① 潤滑性 …

- ② 冷媒との溶解性 冷媒との溶解性(相溶性)が良く,コンプレッサーや冷凍サイクルの低温部で,二層分離を起こさないこと。コンプレッサー内での二層分離は,潤滑不良の原因となる。また相溶性が悪いと,低温部からのオイル・リターンを妨げたり,詰まりの原因となる。さらに,冷凍機油ー冷媒混合液中に固形物を含んでいたり,析出したりしないこと。
- ③ 安定性 冷凍機油の保管中や取り扱い中に劣化しないよう酸化安定性の良いこと。冷凍機油が、冷凍サイクルで遭遇する高温で熱分解や重合をしないこと。また、コンプレッサー構成材料や冷媒と化学反応を起こさないことも重要な性能である。」(131頁下から4行目ないし132頁8行目)

「3 HFC-134a用冷凍機油

前述の冷凍機油の役割と必要な性能を考え、HFC-134a用冷凍機油として鉱油を評価した結果、適さないことが判明した。コンプレッサーメーカーと冷凍機油メーカーは、HFC-134a用として新たな冷凍機油の開発・検討を進めている。これまでの検討結果から、最も有力なHFC-134a用冷凍機油は、ポリアルキレングリコール系冷凍機油(以下、PAG系油と記す)とポリオールエステル系油(以下、エステル系油と記す)である。」(132頁9行目ないし同頁14行目)

「(1) 溶解性(相溶性)

HFC-134aは、その構造中に塩素原子を含んでいないことから、鉱油とは溶解しない。求められるHFC-134aとの溶解性は、カーエアコンで上部臨界溶解温度:+80 ℃以上、下部臨界溶解温度:-30 ℃以下、電気冷蔵庫では上部:+102 ℃以上、下部:-35 ℃以下といわれている。…図にカーエアコン用と電気冷蔵庫用冷凍機油の臨界溶解度曲線を示す。PAG系油、エステル系油ともに、ほぼ満足いくレベルに達している。ただし、PAG系油でも改質していないものはHFC-134a

との溶解性は悪い。」(133頁1行目ないし134頁1行目)

「(3) 化学的安定性

冷凍機油の化学的安定性は、シールドチューブテストで評価する。このテストは、パイレックスチューブに冷凍機油・冷媒・金属触媒を封入し、175 $\mathbb{C} \times 14$ 日加熱処理し、冷媒の分解量・冷凍機油の変色・金属触媒の変化を調べる。HFC-134 aは、化学的に安定であるため、シールドチューブテストでは、PAG系油・エステル系油ともに良い結果である。しかし、エラストマーなどの有機材が共存すると、異なる挙動をするので、それぞれの材料を用いたオートクレーブテストによる確認が必要である。」(134 = 8 = 14

エ 「代替フロンカーエアコン」(『冷凍』67巻782号19頁ないし26頁)(甲10。以下「甲10文献」という。)には、HFC-134aのPAGやPOEとの熱安定性及び相溶性などに関して、次の記載がある(誤記は適宜訂正した。)。

「現在,カーエアコン用R12代替冷媒として国内外ともR134aが採用されている.」(19頁右欄17行目及び18行目)

「現在、カーエアコン用スクロールコンプレッサには、R12用冷凍機油として、鉱油のフレオールS83 (又はスニソ5GS) を使用している.これら鉱油はR134aと溶解しないため、冷凍機油として不適当である.このため種々の冷凍機油を検討した結果、合成油であるPAG (ポリアルキレングリコール) 油及びエステル油がR134aと溶解し、R134aの用冷凍機油として有望であることが判明した.」(20頁右欄下から2行目ないし21頁左欄7行目)

「(1) 熱安定性

シールドチューブテストでは、R134aとPAG油及びR134aと エステル油とも従来のP12と鉱油と同等であり、各々の冷媒と冷凍機油 の共存下では熱的に安定である. …

(2) 相溶性

図4に冷媒と冷凍機油の二層分離温度を示す.従来のR12と鉱油は低温側に二層分離領域があり,R134aとPAG油では高温側に分離領域がある.又,R134aとエステル油には低温側と高温側に分離する領域がある.カーエアコンの運転範囲では,PAG油,エステル油ともこの二層分離温度は実用上問題ない.」(21頁右欄2行目ないし18行目)

オ その他、HFC系冷媒との相溶性を確保することができる潤滑剤としてPAGやPOEを挙げる文献として、「最新 新冷媒絶縁システム技術」75頁及び76頁(甲4)及び特開平10-159730号公報(甲7。以下「甲7文献」という。)があり、また、HFC-134aに対する潤滑剤としてPAGやPOEを挙げる文献として、特開2000-282076号公報(甲5。以下「甲5文献」という。)、「フロンの環境化学と対策技術」127頁(季刊化学総説11号。甲9)及び"Lubricants for HFC Refrigerant Compressors" (石油学会誌37巻3号226頁ないし235頁。甲20)がある。

(3) 検討

ア 技術常識について

前記(2)の各文献の記載及び証拠(甲17,52,53,61)によれば,空調システムに用いられる熱移動組成物は、冷媒化合物とともに、圧縮機 を潤滑するための潤滑剤を含有していること、潤滑剤には様々な種類のも のがあるが、冷媒化合物に適する潤滑剤の選択に当たっては、冷媒の使用 温度範囲内における冷媒化合物との相溶性や化学的安定性(熱安定性とも いう。)、周辺材料に対する非浸蝕性などが重要な考慮要素となること、 ここに「相溶性」とは、潤滑剤が冷媒と均一に溶け合い、二層に分離しな い性質を指すこと、「化学的安定性」とは、冷媒と潤滑剤を金属触媒とと もに混合した状態で、一定温度で一定期間、加熱させたときの化学的安定 性をいい、その一般的な試験方法としてシールドチューブ試験(試験管に 冷媒、潤滑剤及び金属触媒を封入し、これを一定温度にて一定期間加熱後、 冷媒の分解量・潤滑剤の変色・金属触媒の変化の有無を調べるもの。)が あることは、いずれも技術常識であると認められる。

一方、本件明細書には、冷媒化合物と潤滑剤との「混和性」について、上記(1)イのとおりの記載があるが、ここに「混和性」とは、同明細書に(冷媒と)「潤滑剤の相溶性が特に重要であることを認めるに到った。… 冷却流体は…潤滑剤と相溶であることが非常に望ましい。」、「冷却流体 一潤滑剤の組合せを所望の効率レベルで作用させるためには、広い操作温 度範囲に渡って潤滑剤が冷却流体に充分に可溶である必要がある」(【0007】)などの記載があることや、実施例2がその内容に照らして、冷媒化合物と潤滑剤との相溶性について試験したものであると認められることに照らすと、「相溶性」と同義であると認められる(なお、本件明細書においては、上記記載に加え、化学的安定性について試験した実施例3について「相溶性」の試験であるとの記載があること(【0059】)などに照らせば、本件明細書における「相溶性」の語は、混和性と化学的安定性の両者を含む趣旨で用いられていると解される。)。

イ 冷媒と潤滑剤との相溶性について

甲1文献には、HFOに属するHFO-1234ze又はHFO-12 34yfからなる熱媒体(甲1発明Z及び甲1発明Y)、若しくはこれら

の化合物と潤滑剤との組合せからなる熱伝達用組成物(甲1発明A)が開示されていると認められるものの、具体的な潤滑剤の種類については開示されていないから、甲1文献に接した当業者としては、これらの冷媒化合物と組み合わせるべき潤滑剤としていずれの潤滑剤を選択すべきなのかを、上記の考慮要素を踏まえて検討することとなると考えられる。

甲37文献、甲3文献、甲5文献、甲7文献及び甲10文献の記載によ れば、本件優先日以前より、塩素を含む冷媒であるクロロフルオロカーボ ン (以下「CFC」という。) あるいはハイドロクロロフルオロカーボン (HCFないしHCFCと略称される。)系の冷媒がオゾン層を破壊する ことから、代替冷媒として塩素を含まないHFC系の冷媒に関する研究が 行われていたこと,HFC系冷媒は,分子中に塩素原子を持たないために, これまでCFC系の冷媒とともに潤滑剤として用いられてきた鉱油との間 で相溶性が悪いこと、そこで、HFC系の冷媒と相溶性があり組み合わせ ることができる潤滑剤として、PAG、エステル油(POE)、PFEな どの使用が検討されていたこと、その結果、HFC系冷媒のうちHFC-143aについてはPAG及びPOEのいずれとも相溶性はなく,HFC -32については、PAGとは233K(概ね-40°)より低温では相 溶性はなく、POEとは233Kないし363K(概ね−40℃ないし8 9°C) の間では相溶性があること、HFC-125、HFC-134a及 ないし363K(概ね-40 $^{\circ}$ ないし89 $^{\circ}$)の間では相溶性があること (なお、HFC-134aについては、PAGとは80℃以上において、 POEとは-40℃以下及び80℃以上において二層分離領域があるとの 実験結果も存在した。)などの点が明らかになっていたことが認められる。 以上に加え、本件明細書に「ハイドロフルオロカーボン(HFC)冷媒 と共に冷却機に用いられるポリオールエステル(POE)およびポリアル

キレングリコール(PAG)など、一般的に用いられる冷却潤滑剤が、本発明の冷媒組成物と共に用いられてもよい。」(【0029】)との記載があることに照らしても、本件優先日の当時、PAG及びPOEは、HFC系の冷媒に関しては、具体的な化合物によっては例外はあるものの、これと一般的には相溶性を有する潤滑剤として使用可能であることが、当業者において認識されていたということができる。

そして、HFOは、水素、フッ素及び炭素からなり、炭素-炭素二重結合を有する化合物の総称であり、二重結合の有無の点でHFCとはその構造が異なるものの、水素、フッ素、炭素からなり、塩素を含まない化合物である点でHFCと共通する化合物であること、甲8文献には、HFOに属する点で甲1発明の冷媒化合物と共通する化合物であるHFO-1336を冷媒に用いる発明が開示され、具体的な実験条件は明記されていないものの、この冷媒がPAG及びPOEのいずれとも良好な相溶性を有することが記載されていることからすれば、当業者が、甲1発明に係るHFO系の冷媒化合物であるHFO-1234zeやHFO-1234yfと組み合わせるべき潤滑剤として、上記のようなPAGやPOEとの相溶性を示すHFC系の冷媒やHFO-1336との間で認められた相溶性と同程度の相溶性を示す可能性がそれなりに高いことを予測し、PAGないしはPOEを選択することは、特段の創意工夫を要することなく行うことができるといえる。

なお、甲37文献には、「HFC系冷媒とそれらに適合するように新たに開発された潤滑油との相溶性を明らかにするためには、HFC系冷媒と潤滑油の個々の組み合わせに対して相挙動を実測する実験的研究に拠らざるを得ないのが現状となっている.」との記載があり、HFC系の冷媒の中にもPAGやPOEと相溶性を有しないものがあることからすれば、当業者としては、HFO-1234yfとPAG

ないしPOEとの組合せが相溶性を有するかどうか、いかなる条件下で相溶性を有するかについて、実際に混合することなしには確認することはできないといえる。しかしながら、このことは、当業者がHFO-1234 z e やHFO-1234 y f とPAGないしはPOEとを組み合わせた場合の相溶性について、上記のように予測することを妨げるものではない。

そうすると、本件明細書に、HFO-1234zeやHFO-1225 yeとPAG又はPOEとの組合せが奏する混和性についての記載があり、かかる試験結果が冷媒化合物の構造の類似性からHFO-1234yfについても妥当するとしても、これらの混和性(相溶性)は、上記のとおり当業者が予測することができたものであり、また、その相溶性の程度が予測を超える程に格別顕著なものであることを認めるに足りる証拠もない。

ウ 冷媒と潤滑剤の化学的安定性について

甲1文献には、冷媒と潤滑剤の化学的安定性について明確な記載はないものの、HFOとは前記のとおりその構造に共通する点のあるHFC系の冷媒であるHFC-134aとPAG又はPOEとを組み合わせたものについて、甲3文献には、シールドチューブ試験では良好な結果が得られたと記載され、また、甲10文献には、従来技術であるCFC-12と鉱油とを組み合わせたものと同等の化学的安定性を有すると記載されている。また、甲8文献には、HFO系の冷媒であるという点でHFO-1234ze及びHFO-1234gfと共通するHFO-1336について、PAGないしはPOEとの組合せを前提に「本発明による冷媒は、熱安定性に比較的優れている。」と記載され、実施例1では同冷媒とPAGとを組み合わせた熱移動組成物を用いて冷凍機の運転を行ったことが記載されているから、当業者は、これらの記載によって、同冷媒と潤滑剤との組合せが実用可能な程度の化学的安定性を有していることを理解するということができる。

(4) 原告の主張について

ア 原告は、当業者が甲1文献によって、同文献に記載された冷媒化合物と 汎用の潤滑剤のうち適当なものを併用して混和性等に問題がない冷媒組成 物とすることができることを意味していると理解するはずがないと主張す る。

しかしながら、甲1文献の記載だけでなく、前記(2)の各文献の記載に照らせば、本件優先日の当時、当業者が、甲1文献に開示された具体的な冷媒化合物とある種の潤滑剤との組合せを踏まえ、相溶性や化学的安定性をある程度予想した上で、PAG又はPOEを潤滑剤として選択することを、特段の創意工夫を要することなく行うことができると考えられることは前記のとおりであり、甲1文献が冷媒化合物と潤滑剤との相溶性等について具体的な結果を開示していないことや、実施例の冷凍サイクルにおいて油分離器が用いられていることは、かかる結論を左右するものではない。

なお、原告は、甲1文献の実施例1において示された冷媒の能力の値に 誤りがあるとも指摘するが、仮に、本件優先日当時、原告が提出するシミ ュレーション(甲68)と同様のシミュレーションを行い、実施例1の冷媒化合物の能力の値がその記載されたものよりも低いとの結果を得た当業者がいたとしても、これとは化合物の構造の異なる実施例2ないし5について追加の確認等を行うことなく、直ちに甲1文献の記載全体の信用性を疑うものと考えることはできない。

イ 原告は、冷媒化合物と潤滑剤との混和性は予測不能で、実験的研究によって初めて明らかになるものであり、また、HFOに対する汎用の潤滑剤は存在せず、甲1文献に記載された実験が行われた当時、PAGやPOEは冷媒の技術分野における汎用の潤滑剤でもなかったと主張する。

しかしながら,甲1文献に記載された実験が行われた当時ではなく本件優先日の当時における公知文献の記載や技術常識を踏まえると,PAGやPOEはHFC系の冷媒に対して一般的に用いられていたということができること,HFOに対する汎用の潤滑剤の存否にかかわらず,これらの潤滑剤を,HFO-1234z eやHFO-1234y f との相溶性や化学的安定性を予測した上で,これらの冷媒に組み合わせる潤滑剤として選択することができると認められることは,いずれも前記のとおりである。

また,原告の指摘するフルオロオレフィンの反応性や毒性への懸念は, 上記のような相溶性についての予測それ自体を妨げるものではない。

ウ 原告は、フルオロオレフィンとPAG又はPOEとの組合せから予測される反応性から、HFO-1234ze及びHFO-1234yfがPAG及びPOEとの間で安定性を有することは当業者にとって予想外の事項であったと主張し、フルオロオレフィンの反応性に関して、次の文献の存在を指摘する。

すなわち, "Fluorine Chemistry: A Comprehensive Treatment" (1995) (甲63)には, 「フッ素化オレフィン」の項に, フッ素の誘導効果によって求核付加反応が促進されること, アミン類, フェノール類, アルコー

ル類等のフッ化物イオンを含む求核剤の多数が、高度フッ素化オレフィンの炭素-炭素二重結合に付加することが記載されている(235頁8行目ないし12行目)。

また、"Organic Fluorine Chemistry" (1971)(甲64)には、CC1 $F = CF_2 \& C_2H_5OH$ 、あるいは(CF_3) $_2C = CF_2 \& CH_3OH$ 又は(CH_3) $_2CHOH$ & E を反応させることが記載されている(133頁の(311)及び(312)の式)。

さらに, "Free Radical Chemistry. Part 9. Approaches to Fluorinated Polyethers—Model Compound Studies" (Israel Journal of Chemistry Vol. 39 (1999)。甲65)には, ヘキサフルオロプロピレンとポリエチレングリコールとを反応させる工程が記載されている(133頁)。

しかるに、これらの文献は、特定の構造のフルオロオレフィンと特定の構造のアルコールやエーテルを反応させる方法についての記載であり、これらの文献から、直ちに、炭素一炭素二重結合を含むHFO冷媒とPAG又はPOEとを含む熱移動組成物がその反応性により安定性を有さないと当業者が認識するものということはできない。

そして、甲8文献では、実施例において、HFO系の冷媒であるHFO-1336とPAGとを組み合わせて、冷凍機の運転に実際に使用することができることを確認しているのであるから、当業者であれば、炭素数は異なるもののHFOに属する点で共通するHFO-1234zeやHFO-1234yfとPAGとを組み合わせた場合にも、冷凍機において使用することができる程度の安定性を有すると予想することができる。

さらに、本件発明は、他の潤滑剤とを組み合わせた場合に比べ、特に優れた安定性を有していることが示されているわけではないから、潤滑剤の種類を全く特定していない甲1発明Aと比べて、当業者が予測し得ない優

れた効果を奏するというものでもない。

(5) 小括

以上によれば、本件発明は、混和性や安定性に関して当業者の予測を超える顕著な効果を奏するとはいえないから、審決の認定判断にこの点を看過した誤りがあるということはできず、原告の主張する取消事由1-2は理由がない。

- 3 取消事由1-3 (不飽和化合物に関する阻害事由の看過) について
 - (1) フルオロオレフィンの反応性について

原告は、フルオロオレフィンの反応性は当業者が熱移動組成物へのフルオロオレフィンの使用を検討することを阻害すると主張し、フルオロオレフィンの反応性に関して、前記 2(4) ウに列挙した文献に加え、次の文献の存在を指摘する。

すなわち、"National Aeronautics and Space Administration Contract No. NAS 7-918、Technical Support Package on Nearly Azeotropic Mixtures to Replace Refrigerant 12" (1992) (甲29)には、「表2R12の代替となる可能性のある流体混合物の選択」として、飽和及び不飽和の冷媒に関する評価が記載されており、炭素-炭素不飽和結合を含むフルオロオレフィンの冷媒であるパーフルオロプロペン(R1216)、2-フルオロプロペン(R1261ya)、1,1,3,3-ペンタフルオロプロペン(R1225zc)及び1,1,1,1,3,3-ペンタフルオロプロペン(R1225zc)及び1,1,1-トリフルオロプロペン(R1243zf)については、いずれもコメント欄に「反応性」と、「許容(A)/拒絶(R)」の欄に「R」と、それぞれ記載されている。

また, "Quest for alternatives" (ASHRAE Journal 1987年12月号。甲70)には, 「炭素-炭素二重結合を含有するCFC化合物は, その低い安定性のため, 考慮されない。」(38頁左欄の脚注4)との記載がある。

しかし、これらの文献は、特定の構造のフルオロオレフィンや塩素を含む フルオロオレフィンを反応性があるとして冷媒の候補から除外しているが、 塩素を含まないフルオロオレフィン全体が冷媒として使用することができな いことを示しているわけではない。

さらに、"Beyond CFCs: Extending the Search for New Refrigerants" (Proceedings of ASHRAE's 1989 CFC Technology Conference (1989)。甲 31。以下「甲31文献」という。)には、「二重結合の炭素原子を有する 化合物及びアセトンに基づく化合物は、冷媒としては問題のある評価を有す るものである。」「これらの化合物の安定性は、分子にフッ素を加えるにつれて減少する。」(42頁右欄3行目ないし9行目)との記載がある。しかし、この文献についても、炭素一炭素二重結合を有する化合物について、どの範囲まで調査ないし実験をしたのかは明らかではなく、また、炭素一炭素二重結合を有する化合物の安定性が、どの程度のフッ素を加えると冷媒として使用することができないほどに減少するのかを明らかにしているものではない。

加えて,前記 2(4)ウに列挙した文献から直ちに,炭素 – 炭素 二重結合を含む HFO冷媒とPAG又はPOEとを含む熱移動組成物がその反応性により 安定性を有さないと当業者が認識するものということはできないことは,前 記のとおりである。

むしろ、甲1文献及び甲8文献は、実施例において、HFO冷媒が冷凍機において使用することができることを確認しており、これらの冷媒が一般に冷媒に要求される程度の安定性を備えていることが認められるから、上記の各文献の記載内容を踏まえても、当業者にとって、フルオロオレフィンの反応性によって熱移動組成物へのフルオロオレフィンの使用を検討することが阻害されるということはできない。

(2) フルオロオレフィンの毒性について

原告は、フルオロオレフィンの毒性に対する懸念は当業者が熱移動組成物 へのフルオロオレフィンの使用を検討することを阻害すると主張し、フルオロオレフィンの毒性に関して、次の文献の存在を指摘する。

すなわち、特表平4-503064号公報(甲30)には、「飽和フルオロカーボン及びフルオロハイドロカーボンの製造中に不純物として存在するオレフィン系不純物は、有毒であるかもしれないので汚染物質であるとして特に好ましくなく、ほとんどの使用のために飽和生成物中のそれらの濃度は、実際上に可能な限り低いレベルまで下げなければならない。」(2頁右下欄10行目ないし14行目)との記載がある。

また、甲31文献には、「二重結合の炭素原子を有する化合物及びアセトンに基づく化合物は、冷媒としては問題のある評価を有するものである。これらの化合物は、フッ素化されていない場合は低い毒性を有するが、完全にフッ素化するとより高い毒性を有する。」「これらの種類の、部分的にフッ素化したいくつかの化合物は、低い急性毒性を有するが可燃性である。」(42頁右欄3行目ないし13行目)との記載がある。

さらに、本件優先日後の文献である "ARI Standard 700 2006 Standard for Specifications for Fluorocarbon Refrigerants" (2006) (甲32) には、「5.11.2.1 揮発性不純物である不飽和化合物 飽和のフッ素化冷媒の試験試料は、5.11.2.2に個別に記載されているものを除き、ハロゲン化された不飽和揮発性不純物を、重量で40ppm以上含んではならない。」(4頁16行目ないし18行目)との記載がある。

しかしながら、これらの文献は、いずれも、飽和のフルオロカーボンに含まれる不純物ではなく、完全にフッ素化された化合物でもない、HFO-1 2 3 4 z e やHFO-1 2 3 4 y f 等のフルオロオレフィンについて、その具体的な構造のいかんにかかわらず毒性があることを示すものではない。

したがって、当業者にとって、上記各文献に記載された知見に基づき、甲

1発明に係る特定の冷媒化合物と組み合わせるべき潤滑剤について検討を行うことが阻害されるということはできない。

(3) 小括

以上によれば、審決の認定判断にフルオロオレフィンの反応性や毒性に対する懸念を理由とする阻害事由を看過した誤りがあるということはできず、原告の主張する取消事由1-3は理由がない。

4 結論

以上のとおりであり、原告の主張は、甲2発明を主引用例とする審決の判断 に係るその余の取消事由について判断するまでもなく理由がない。よって、原 告の請求を棄却することとし、主文のとおり判決する。

知的財產高等裁判所第3部

 裁判長裁判官
 設 樂 隆 一

 裁判官
 田 中 正 哉

 裁判官
 神 谷 厚 毅