Metodi Matematici per l'Informatica (secondo canale) — 13 Giugno 2022 Soluzioni di Andrea Princic. Cartella delle soluzioni.

Es 1. Sia f una funzione da A a B, dove A e B sono insiemi finiti di cardinalità n e m, rispettivamente.

- $\square_V \square_F \mathbf{A}$. f è necessariamente suriettiva se n > 0 e m = 1
- $\square_V \boxtimes_F \mathbf{B}$. f è necessariamente suriettiva se n > m
- $\square_V \square_F$ C. f è necessariamente iniettiva se n=0
- $\square_V \square_F$ **D.** f può essere suriettiva se n > m
- Es 2. Scrivere la definizione di insieme delle parti di un insieme.

L'insieme delle parti di un insieme A è l'insieme di tutti i sottoinsiemi di A

Es 3. La chiusura transitiva della relazione $R = \{(1,2),(2,1),(1,3),(3,2)\} \subseteq \mathbb{N} \times \mathbb{N}$ è:

- $\square_V \mathbf{\nabla}_F \mathbf{A}. \ \mathbb{N} \times \mathbb{N}$
- $\square_V \square_F$ **B.** $\{1,2,3\} \times \{1,2,3\}$
- $\square_V \boxtimes_F \mathbf{C}. \{(1,1),(2,2),(3,3),(2,3),(3,1)\}$
- $\square_V \square_F$ **D.** una relazione di equivalenza su $\mathbb{N} \times \mathbb{N}$
- Es 4. Scrivere la definizione di numerabilità di un insieme e fare un esempio.

Un insieme si dice numerabile se può essere messo in corrispondenza biunivoca con l'insieme dei numeri naturali \mathbb{N} . Un esempio di insieme numerabile è l'insieme dei numeri razionali \mathbb{Q} , mentre l'insieme dei numeri reali \mathbb{R} non è numerabile.

Es 5. Dimostrare che per ogni $n \geq 2$ si ha

$$\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}$$

dove x è un numero reale.

Caso base n = 2:

$$\begin{split} \sum_{k=0}^{1} x^k &= 1+x \\ &= \frac{(1+x)(1-x)}{1-x} \\ &= \frac{1-x^2}{1-x} \end{split}$$

Passo induttivo n + 1:

$$\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n-1} x^{k} + x^{n}$$

$$= \frac{1 - x^{n}}{1 - x} + x^{n}$$

$$= \frac{1 - x^{n} + x^{n}(1 - x)}{1 - x}$$

$$= \frac{1 - x^{n} + x^{n}(1 - x)}{1 - x}$$

$$= \frac{1 - x^{n+1}}{1 - x}$$

Es 6. Definire il concetto di *interpretazione* nella logica predicativa.

Interpretare significa dare un significato ad ogni predicato e scegliere un dominio.

Es 7. Vero o Falso? (N.B. Le lettere A, B, C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).

$$\square_V \boxtimes_F \mathbf{A}$$
. Se $A \models B \lor C$ e $B \models \neg C$ allora $(A \to C) \models \neg B$

A	B	C	$A \vDash B \lor C$	$B \vDash \neg C$	$(A \to C) \vDash \neg B$	risultato
F	F	F	V	V	V	V
F	F	V	V	V	V	V
F	V	F	V	V	F	F
F	V	V	V	F	F	V
V	F	F	F	V	V	V
V	F	V	V	V	V	V
V	V	F	V	V	V	V
V	V	V	V	F	F	V

Il risultato è dato da $(A \vDash B \lor C) \land (B \vDash \neg C) \rightarrow ((A \rightarrow C) \vDash \neg B)$. Il simbolo \vDash viene trattato allo stesso modo di \rightarrow nella tavola di verità.

 $\square_V \boxtimes_F \mathbf{B}$. Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile

perché $A \to B = \neg A \lor B = \neg (A \land \neg B)$ e il fatto che $A \land \neg B$ sia soddisfacibile non implica che la sua negazione non lo possa essere.

Es 8. L'enunciato seguente è una tautologia?

$$\square_V \boxtimes_F \mathbf{A}. \exists x (A(x) \to \neg B(x)) \to \neg \forall x (B(x) \to A(x))$$

Si può scrivere anche

$$\exists x (\neg A(x) \lor \neg B(x)) \to \exists x (B(x) \land \neg A(x))$$

che è falso nel caso in cui A e B siano insoddisfacibili.

- Es 9. Formalizzare la proposizione seguente con un enunciato nel linguaggio predicativo \mathcal{L} composto da un simbolo \in di relazione binaria.
 - A. Ogni insieme X è intersezione di una qualche coppia di insiemi Y e Z

$$\forall X \; \exists Y \; \exists Z \; \forall x (x \in X \leftrightarrow (x \in Y \land x \in Z))$$

Tableau