Assignment 2

Morton Codes & Hashbased Octrees

Octree

- Uniform grid inefficient
 - Cubic complexity (in 3D)
 - Many empty cells

Octree http://en.wikipedia.org/wiki/Octree

- Hierarchically split volume into 8 octants
- Visualization in 2D (quadtree)

Octree with maximum M=5 levels

Octree

- Applications
 - Acceleration structure
 - Next neighbor retrieval
 - Adaptive resolution

Octree http://en.wikipedia.org/wiki/Octree

Splitting criteria

- 1. Until maximum level
 - Number of maximum levels M
 - Resolution up to $2^{M-1} \times 2^{M-1} \times 2^{M-1}$
 - Typically M=9, larger for complex objects
- 2. Maintain minimum samples per node
 - Typically 1 to 5
 - For noisier inputs 5 to 10

Hashtable based Octree

- Pointerless data structure with hashing
- Very fast & flexible navigation through the tree

Following work by Lewiner et al.

http://zeus.mat.puc-rio.br/tomlew/pdfs/fastdualoctree_sgp.pdf

Hashbased Octree

 Octree Cells & Octree Vertices are stored in Hashtables, the hashes are given by morton codes

Hashbased octree

 Navigation: compute target hash and retrieve target cell instead of following links.

Link based

Hash based

 Integer that uniquely encodes level and position of a cell in a multigrid

 Assign a coordinate system expressed with fractions in a binary system

Coordinates in a multigrid cell share first bits:

- Morton codes of multigrid cells:
 - Swizzeling coordinates + 1 delimiter
 - Our convention
 - 1 xy xy xy xy
 - 1 xyz xyz xyz xyz in 3D

0.10x0.01x

1 00 10 01

- 1 Delimiter:
 - -0000,00000000=0
 - With delimiter: 10000 vs 100000000

Final Morton codes of the first three levels

Navigation

Via morton code manipulations

- Go to parent cell: simple bit shift
 - C>>3 in R^3, C>>2 in R^2.

Go to neighbors....

Navigation (,brute force')

From cell to cell, for a given difference vector

Unswizzeling/reswizzeling inefficient.

- Bitwise manipulations
- Dilated addition/subtraction:
 - Ignore the bits where a mask is 0.

Intuition: masked bits are set to 1 with addition, to 0 in subtraction, such that added/subtracted bits carry to the next unmasked bit

Example (try it out with pen and paper)

$$x = 0b \ 000 \ 011 \ 111$$
 $y = 0b \ 111$
 $mask = 0b \ 100 \ 100 \ 100$
 $x + y = 0b \ 000 \ 111 \ 011$

Legend: __ ignored bits

 When dropping the last term of the formula, the masked bits are set to zero

$$x + y = \underbrace{\left(\left(\underbrace{x \mid \sim mask}\right) + \underbrace{y \& mask}\right) \& mask}_{\text{Computes the correct value for the bits denoted by mask}}\right) \& mask}$$

$$x - y = ((\underbrace{(x \& mask)}_{\text{Set masked bits 0}} - y \& mask) \& mask).$$

$$x = 0b \ 000 \ 011 \ 111$$

 $y = 0b \ 111$
 $mask = 0b \ 100 \ 100 \ 100$

$$x + y = 0b \ 000 \ 100 \ 000$$

 For the navigation, manipulate x bits, y bits and z bits separately:

```
xyz \ xyz \ xyz
x = 0b1 \ 000 \ 101 \ 111
y = 0b011
xyz \ xyz \ xyz
mask_x = 0b \ 100 \ 100 \ 100
mask_y = 0b \ 010 \ 010 \ 010
mask_z = 0b \ 001 \ 001 \ 001
```

Addition

```
Result = (((x|\sim mask_x) + (y\&mask_x))\&mask_x)|(((x|\sim mask_y) + (y\&mask_y))\&mask_y)|(((x|\sim mask_z) + (y\&mask_z))\&mask_z)
```

Subtraction

```
Result = (((x\&mask_x) - (y\&mask_x))\&mask_x)|(((x\&mask_y) - (y\&mask_y))\&mask_y)|(((x\&mask_z) - (y\&mask_z))\&mask_z)
```

- To navigate through morton codes:
 - Use swizzeled difference vector (no delimiter)

$$y = \begin{pmatrix} 1.010 \\ 0.110 \end{pmatrix} \quad 10 \ 01 \ 11 \ 00$$

 And use bit magic to modify xyz bits of a morton code separately.

```
Result = (((x| \sim mask_x) + (y\&mask_x))\&mask_x)|(((x| \sim mask_y) + (y\&mask_y))\&mask_y)|(((x| \sim mask_z) + (y\&mask_z))\&mask_z)
```

Check for Overflows!

 A level k morton code +/- a difference vector should produce a level k Morton code.

C = 0b1 xyz xyz ... xyz is a level k Morton code iff
 (C >> (3*k)) == 0b1

Separate Addition and Subtratcion

Addition & subtraction need to be handled separately with dilated addition / subtraction

$$y = \begin{pmatrix} 1.010 \\ -0.110 \end{pmatrix}$$

 In the Java code: write separate methods to compute positive & negative neighbors

Vertex Codes

 Vertices do not belong to one fixed level, but to all levels above some level.

- To get a unique code: Restict maximal multigrid layer and use highest level Morton codes for all vertices.
 - Equal to padding lower level code with zeros

Vertex Codes

 Vertex code intuition: 1 prefix, swizzle together coordinates & pad to the maximal lenght.

Vertex Codes (Navigation)

- Vertex -> cell and cell -> vertex:
 - Unpadded vertex code = cell code
 - Padded cell code = vertex code

Vertex code 0b1 00 11 00 00 00

Cell code 0b1 00 11 00 00 00 0b1 00 11 00 00 0b1 00 11 00 0b1 00 11

Vertex Codes (Navigation)

- Navigation:
 - Unpad code to appropriate cell level
 - Cell to cell navigation
 - Repad

Vertex code 0b1 00 11 00 00 00

Cell code 0b1 00 11 00 00 00 0b1 00 11 00 00 0b1 00 11 00 0b1 00 11

Hashbased Octree

- Octree: subset of multigrid
- Problem:
 - because of 1-delimiter: we cannot assign vertex codes on the red boundary

Solution: use the codes in first quadrant only.

Codes in Hashbased Octree

	Morton Code:	level
root cell	0b1000	1
general cell	$0b1 000 xyz xyz \cdots xyz$	k
	$3k \ bits$	

	Morton Code:	maxLevel	minLevel
vertex	$0b1 \underbrace{xyz \cdots xyz}_{} 000 \cdots 000$	$\max_{vertex \in cell} cell.level$	$\min_{vertex \in cell} cell.level$
	$3 \cdot minLevel\ bits$ $tree.depth \cdot 3\ bits$		

Navigation in the Hashoctree

Find neighbors

- 1. Compute theoretical Morton code of neighbor
- 2. Check existence of the associated vertex or cell, if inexistent, decide:
 - retrieve next existing vertex/cell, or
 - return null.

Navigation cell-> cell

 Neighbor cells: find a neighbor cell of less or equal level

Navigation cell-> cell

 Neighbor cells: find a neighbor cell of less or equal level

Navigation cell-> cell

- Compute the negihbor code on the same level
- Iterate until the level 0 is reached:
 - Check if the cell exists
 - If not: go to the parent.

Navigation Vertex -> Vertex

Neighbors: closest vertex in some direction

 Unpad to finest level cell code, compute neighbor cell code, repad, check existence. Iterate up to minimum level of vertex

Bit Arithmetic

- ~ not. | or. >> rightshift. << leftshift
- 64 bit long:
 - First bit decides about positive, negative.
 - Negatives are coded as ~ (positive 1).
 - $-4 = ^{(3)} = ^{(0b000...0011)} = 0b111...1100$
 - -1 = 0b(111111...111)
 - \sim (-1 << k) = 0b(00...011111) can be a handy mask

Summary

Dilated Operations:

$$x + y = ((\underbrace{(x \mid \sim mask)}_{\text{Set masked bits 1}} + \underbrace{y \& mask}_{\text{Set masked bits 1}}) \& mask)$$

$$\text{Computes the correct value for the bits denoted by mask}$$

$$x - y = ((\underbrace{(x \& mask)}_{\text{Set masked bits 0}} - y \& mask) \& mask).$$

$$\text{Set masked bits 0}$$

$$Result = (((x| \sim mask_x) + (y\&mask_x))\&mask_x)|$$
$$(((x| \sim mask_y) + (y\&mask_y))\&mask_y)|$$
$$(((x| \sim mask_z) + (y\&mask_z))\&mask_z)$$

Morton Codes:

	Morton Code:	level
root cell	0b1000	1
general cell	$0b1\ 000\ xyz\ xyz\cdots\ xyz$	k
	$3k \ bits$	

	Morton Code:	maxLevel	minLevel
vertex	$0b1 \underbrace{xyz \cdots xyz}_{} 000 \cdots 000$	$\max_{vertex \in cell} cell.level$	$\min_{vertex \in cell} cell.level$
	$3 \cdot minLevel\ bits$ $tree.depth \cdot 3\ bits$		

Summary

- I am paid to help
- And use the forum ©

Questions?