Section I

10 marks
Attempt Questions 1 – 10
Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

If a function is a continuous probability distribution, what is the area under the curve?

- A. -1
- B. 0.5
- C. 1
- D. 2
- 2 Two sets A and B are represented in the Venn diagram below.

The shaded region can be described by which of the following?

- A. *B*
- B. $A \cap B$
- C. A'
- D. A'∩B

3 The correlation coefficient for the scatterplot shown was found to be -0.6.

The point (4, 9) was found to be recorded incorrectly and should have been plotted as (4, 1).

Which of the following best describes the new correlation coefficient?

- A. Positive but closer to 0
- B. Positive but closer to 1
- C. Negative but closer to 0
- D. Negative but closer to -1

4 Consider the diagram below.

What is the true bearing of A from B?

- A. 037°
- B. 143°
- C. 307°
- D. 323°

5-The probability distribution table for a discrete random variable X is shown.

x	1	2	3	4
P(X=x)	0.4	0.2	0.15	0.25

What is the expected value of X?

$$E(x) = 1 \times 0.4 + 2 \times 0.2 + 3 \times 0.15$$

+ 4×0.25
 $E(x) = 2.25$

What is the exact value of $\int_{-6}^{0} \sqrt{36 - x^2} \, dx$? 6

Packets of Cereal are labelled as having a mass of 500 grams. The machine that fills the packets follows a normal distribution with a mean of 510 grams and a standard deviation of 5 grams.

What percentage of packets will have a mass less than 500 grams?

- A. 2.5%
- B. 5%
- C. 34%
- D. 50%

8 Which of the following is the gradient of the normal to $y = \log_3 x$

at the point (9, 2)?

A.
$$-\frac{1}{9 \ln 3}$$

C.
$$\frac{1}{9 \ln 3}$$

$$J = \frac{\log e^{\chi}}{\log e^{3}}$$

$$\frac{dy}{d\chi} = \frac{1}{\log e^{3}} \times \frac{1}{\pi}$$

$$at c = q, m_{T} = \frac{1}{9 \ln 3}$$

$$m_{T} = -90$$

9 The graph of y = f(x) has been drawn to scale for $0 \le x \le 8$.

Which of the following integrals has the smallest value?

$$A. \int_0^1 f(x) dx$$

$$B. \int_0^2 f(x) dx$$

$$C. \int_0^6 f(x) dx$$

D.
$$\int_{0}^{8} f(x) dx$$

For what values of m does the quadratic equation
$$x^2 + mx + (m+1)^2 = 0$$

have two equal roots?

A.
$$m = \frac{2}{3}$$
, $m = 2$

B.
$$m = \frac{2}{3}$$
, $m = -2$

C.
$$m = -\frac{2}{3}$$
, $m = 2$

D.
$$m = -\frac{2}{3}$$
, $m = -2$

$$\Delta = 0$$

$$= 7 m^{2} - 4(1)(m+1)^{2} = 0$$

$$m' - 4(m+1)^{2} = 0$$

$$(m+2(m+1))(m-2(m+1)) = 0$$

$$(3m+2)(-m-2) = 0$$

$$m = -\frac{2}{3} \text{ or } m = -\frac{2}{3}$$

Question 11 (2 marks)

Find the centre and radius of the circle with the equation $x^2 + 4x + y^2 - 8y - 5 = 0$.

 $2(2+4)(+(42)^{2}+4)^{2}=5+4+16$ $(1(+2)^{2}+(g-4)^{2}=2(-4)^{2}=$

Question 12 (1 mark)

The histogram below shows the distribution of spleen weight for a sample of 32 seals. 1 The histogram has a log_{10} scale.

Find the number of seals in this sample with a spleen weight of more than 1000 grams.

Question 13 (5 marks)

The table shows the height and weight of basketball players on the 2013 roster for the NBL Perth Wildcats.

Height H (cm)	191	201	200	204	211	192	196	203	188	202	186
Weight W(kg)	92	99	95	109	105	97	95	100	82	103	92

(a)	Using your calculator, find the correlation coefficient for this data correct to two decimal places. $V = 0.83$
(b)	Describe the correlation between height and weight.
5	Strong positive correlation
(c)	Find the equation of the least-squares regression line for this data.
	Third the equation of the least-squares regression fine for this data. $ y = -59.02 + 0.7902 $ (Use your calculator $y = -59.02 + 0.790 + 0.$
(d)	Answer to 1 decimal place.
	For h = 198, W= -0.79 × 198 - 59.02
	$\dot{W} = 97.4 \log$
ä	
(e)	Can your equation from part (c) be used to make reliable estimates for a player who is 162 cm tall? Justify your response.
	Its an extrapolation as 162 cm is
	ortside of the data range so
	Its an extrapolation as 162 cm is Outside of the data range so the egh is not relable

Question 14 (1 mark)

Question 16 (5 marks)

Sophie retires from being a teacher, with a superannuation balance of \$775 320. She decides on receiving a monthly annuity of \$7000, with 7.5 % per annum interest paid on the balance, before the annuity is paid at the end of each month.

The annuity can be modelled by the recurrence relation

$$T_{n+1} = (1+r)T_n - 7000, \quad T_0 = 775320$$

where T_n represents the balance in the superannuation fund after n months.

(a)	Show that $r = 0.00625$.	1

(P)	After 3 months, what is the balance remaining in the fund?	2
		8

Question 17 (7 marks)

Consider a random variable X with a probability density function defined by:

$$f(x) = \begin{cases} kx^2 & 2 \le x \le 8 \\ 0 & \text{otherwise} \end{cases}$$

(a)	Show that $k = \frac{1}{168}$.	2
(p)	Find the mode.	2

(c)	Find the median correct to two decimal places.	2

d)	Given the mean is $x = 6.07$, describe the skew of the distribution. Justify your	1
	answer.	

Question 18 (5 marks)

The angle of elevation of a tower QR of height h metres from a point Y due east of it is 45° . From another point X, the bearing of the tower is 030° and the angle of elevation is 28° . The points X, Y and R are on the same level ground. The distance between X and Y is 1000 metres.

360 - 150 - 90 = 360 - 240	900
= 125	5.5.5
,	•••

(c) Hence find the height of the tower QR. Give you answer to the nearest metre.	
$h = \frac{4\pi}{4\pi}$ $h = \frac{4\pi}{h}$ $h = \frac{2\pi}{h}$ $h = \frac{2\pi}{h}$	
$\frac{120^{\circ}}{10^{\circ}} \times \text{Y}^{2} = \times \text{R}^{2} + \text{R} + \text{Y}^{2} - 2(\times \text{R})(\text{R} + \text{R}) \cos 12$	٥
$\frac{1000^{2} = h^{2} + 4an^{2} 62^{\circ} + h^{2} - 2h^{2} + 4an 62(-\frac{1}{2})}{1000^{2} = h^{2} + 4an^{2} 62^{\circ} + h^{2} + h^{2} + 4an 62^{\circ}}$ $1000^{2} = h^{2} \left(+4an^{2} 62^{\circ} + 1 + 4an 62^{\circ} \right)$	
1000 ² = h ² +a ² 62°+1++a ₂ 62°	
h = 10002 V Jun 2620+1 + Jun 620	
h = 394.734 h = 395 m (rearst nefe)	

Question 19 (2 marks)

Solve $2 = 4\cos 3x$, in the interval $0 \le x \le \frac{\pi}{4}$.

	2

= cos 3.c	0 < 316 <	371
		7
· · 31 = 605 2		<u> </u>
31 = I		
1、7(二丁		
7		***************************************

Question 20 (2 marks)

End of Booklet B

Question 21 (5 marks)

The diagram shows a circle with centre O and radius 30 cm. The points A and B lie on the circle such that $\angle AOB = 80^{\circ}$.

(a) Convert 80° to rac	lians.
------------------------	--------

1

1

(b) Show that the area of sector *AOB* is equal to 628 cm², rounded to the nearest square centimetre.

 $\frac{AH}{4H} = \frac{80}{360} \times \pi \times 30^{2}$ $= 628 \text{ cm}^{2} \left(\text{nearest cm}^{2} \right)$

= 628 cm 2 (nearest cm²)

This uses rule on Ref. sleet

The sleet

This uses rule on Ref. 5 teet

(c) Find the perimeter of the shaded segment, giving your answer correct to one	3
decimal place.	Late
decimal place. A correlength = $\frac{80}{360} \times 2 \times 77 \times 30 = \frac{1}{2}$	3
30	
180 V length AB =>	
30/B AB = 30	
Sin 80° Sin 50°	
150-8 AB = 30 sin 80°	
50° 50°	
Penneler = AB + 40II	
= 30 sin 80° + 40T	
51 n 50° 3	
= 80.5 cm	Œ.
Question 22 (3 marks) Solve the equation $\ln(x^2-5) = 2\ln x - \ln 5$. $\ln\left(x^2-5\right) - 2\ln x = -\ln 5$	
Solve the equation $\ln(x^2 - 5) = 2 \ln x - \ln 5$	3
$\ln(x^2-5)-2\ln x = -\ln 5$	
	•?
- en (x25) + 2 ln 2 = ln 5	•):
$-\ln\left(\chi^{\perp}_{5}\right)+\ln\kappa^{2}_{2}=\ln 5$	3 //
en /202) = en 5	3 0
(22-5)	
$c^2 = 5$. 8
2L ² -5	(*)()
	(*)
$x^{2} = 56c^{2} - 5$	
$y = 5x^2 - 2y$	
25= 4114	
2 = x-	
$n = \sqrt{\frac{2r}{4}} = \frac{5}{2} as x > \sqrt{5}$	onle
¥ 2 1 7 7 0 2	
* But 21708 -29-	
ルーケン	
21 > 5 -: 2 > 15 only	
21 > V5 - 2 > 13 only	

Question 23 (5 marks)

Professor Smith has a colony of bacteria. Initially there are 1000 bacteria. The number of bacteria N(t), after t minutes is given by $N(t) = 1000e^{kt}$.

(a) After 20 minutes the decimal places.	here are 2000 bacteria. Find the value of k correct to four $k \times \infty$	2
	2000 = 1000 e	
***************	2- e 60 C	
*************	ln 2 = 20 K	
317411717111111111111111111111111111111	L = 0.0347	
	<u> </u>	10

(b) Find the amount of	f bacteria when $t = 120$. 0.03474	1
10/	N= 1000 e +=120=> N=1000 e	120
vicu	N = 64328	
<u></u>		
NB: H	using k=100 ln 2, N= 64000)	
	change of the number of bacteria per minute, when $t = 120$?	2
	N= 1000 E	
at	$N = 0.0347 \times 1000 e^{0.0347}$ = 0.0347 × N	
	- 0.0347 × 1V	
Using N	$=64328$, $\frac{dN}{dt} = 0.0347 \times 643$ = 2232 back	28
(NB: H	Using N=64000, dN = 222	0 - 8 bad

Question 24 (3 marks)

600 students at a primary school were asked whether they preferred Rugby, Soccer or AFL. The results are given in the following table.

	Rugby	Soccer	AFL	_	
Female	52	130	88	270	F
Male	104	155	71	230	M

A student is chosen at random.

(a) Find the probability that the student prefers Rugby.	1
P(R)=P(Rugby)= 104+52 - 13 600 50	
600 50	
F	
(b) Determine whether the events "the student is Female" and "the student prefers	2
Rugby" are independent, justifying your answer with mathematical reasoning.	
R	
$P(F \cap R) = P(F), P(R)$	
52 = 270 0 13	
600 600 50	
= 47	
<u> </u>	
i. P(FAR) 7 P(F). P(R) i. Not Independent.	
Question 25 (2 marks) 3 R 50	
The graph $y = f(x)$ of $f(x) = x^3$ is translated 3 units right and 5 units up, then	2
horizontally dilated by a scale factor of $\frac{1}{2}$ to produce $y = g(x)$. Find the equation of	
the transformed function $g(x)$.	
$\mathcal{L}(1) = 2^3 0 $	
$(9(11)=(2(-3)^3+5)$	
$=(2n-3)^3+5$	
(3)	

$$g(n) = \frac{(2n-3)^{\frac{-31}{3}}}{2n-3} + 5$$

0	4.	26 (4		11
	WELL WITH	4	mar	KSI
Vuc	SOLULIA		TTTCCT	1101

Susannah is competing in a card building competition where the number of cards to build each level follows an arithmetic sequence. She builds the fifth level of the stack using 200 cards. For the first four levels, she uses a combined total of 1200 cards.

(a)	Find the common difference between the number of cards used to build each level.	2
	3	
	;	
6)	How many cards were used to create the base level?	1
×		

(c) How many levels will Susannah be able to make?	1

3	
Question 27 (3 marks)	
Show that $\frac{1+\cot\theta}{\csc\theta} - \frac{\sec\theta}{\tan\theta + \cot\theta} = \cos\theta$.	3
$1 + \cot \theta - \sec \theta$	
LHS = cosec 0 +and + coto	
· · · · · · · · · · · · · · · · · ·	
= sino(1+vot 0) - 1 tan 0+ w+0	
= sino (1+ cae) - 1 1 sino) cao sino + cao	
= SINO (SINO + WOO) - 1 , 1	2
SINO COSO SINº0 + WI	
= Sin O + war o - 1 Sin O was	3 6
tore	-
= SIND + 000 - SIND	
= 000	
= RHS	

Question 28 (6 marks)

A random variable is normally distributed with mean 0 and standard deviation 1. The table below shows the probability this random variable lies between 0 and z for different values of z.

Z	0.1	0.2	0.3	0.4	0.5	0.6
Probability	0.0398	0.0793	0.1179	0.1554	0.1915	0.2257

The probability values given in the table for different values of z are represented by the shaded area in the following diagram.

(a) Using the table, find the probability that a value lies between 0.2 and 0.6.	1
Daily charges for gas usage are normally distributed with a mean of \$7.65 and standard deviation of \$1.44.	
(b) Two adults are comparing their gas charges. Find the probability that both of their gas charges are between \$6.21 and \$10.53.	r 2

31	

5	By first calculating a z-score, find how many people out of 1000, are expected to have a daily charge greater than \$8.37.
	3

	,

Question 29 (7 marks)

Consider the curve $y = 3x^2 + x^3$.

(a) Find the coordinates of any stationary point(s) and point(s) of inflection then determine their nature.

4

6x = -6 1(-1, 2) is a possible POIDFor 2(-1), say x = -2, $d^2y = -6 < 0$ 10 = -6 < 0 10 = -6 10 = -2 10

(b) Sketch the curve $y = 3x^2 + x^3$, showing any stationary points, points of inflection and intercepts with the axes.

 $y = 3x^{2} + x^{3}$ $y = x^{2}(3 + x)$ solut at x = 0, -3

(c) For what interval is the curve $y = 3x^2 + x^3$ decreasing?

For decreasing, y < 0, this means

 $x \in (-2,0)$

Question 30 (3 marks)

t=0, x=1, v=1

A particle moves in a straight line with an initial displacement equal to 1 metre and initial velocity equal to 1 ms^{-1} . Find the exact position of the particle after 5 seconds if its acceleration in ms^{-2} is given by $a = 2 \sin t$. Give your answer to the nearest metre.

when t=0, x=1 & V=1

 $a = 2 \sin t$ $v = 2 \cos t + dt$

 $y = -2 \cos t + c$

When t=0, V=1: 1=-2000 +0

J = -2(1) + 0

 $f' \cdot V = -2 \cos t + 3$

Now $sc = (2 \cos t + 3) dt$

 $x = -2 \sin t + 3t + k$

Went=0, x=1: 1=-2=10+ k

 $C = -2 \sin t + 3 + + 1$

Need or when t=5 i or = - 2sin 5 + 3(5) +,

-46- 21=18 m

3

Question 31 (4 marks)

(a) Show that $\frac{d}{dx}(\log_e(\sin x)) = \cot x$	•			*	
d (On (sin sc)	· = .	C05	<u>عر</u>	V	

1

(b) The shaded region in the diagram is bounded by the curve $y = \cot x$ and the lines $y = \frac{\pi}{2} - x$ and $x = \frac{\pi}{4}$. Using the result of part (a), or otherwise, find the exact area of the shaded region.

This means area is between one of and n=11

$$\frac{\#^{2}}{32} = \left(\ln\left(\sin\frac{\pi}{2}\right) - \frac{\pi^{2}}{4} + \frac{\pi^{2}}{3}\right) - \left(\ln\left(\sin\frac{\pi}{4}\right) - \frac{\pi^{2}}{8} + \frac{\pi^{2}}{32}\right)$$

$$= \ln\left(1\right) - \ln\left(\frac{\pi^{2}}{3}\right) - \frac{\pi^{2}}{8} + \frac{\pi^{2}}{32}$$

$$= - \ln \sqrt{2} - 47 - \frac{11^{2}}{32} + \frac{32}{32}$$

$$= \ln \sqrt{2} - \frac{11^{2}}{32}$$

Question 32 (5 marks)

A stained glass feature is being created in the shape of a rectangle surmounted by an isosceles triangle of height equal to half its base. The perimeter is to be 150 cm.

5

By showing that the area, in square centimetres, of the stained glass figure is given by $A = 150x - (2\sqrt{2} + 1)x^2$. Determine the width and the height of the figure for which the area is the greatest. Give your answer to one decimal place.

Qu32 Continued

For greatest area:
$$\frac{dA}{dx} = 0$$

$$A = 150xi - (1 + 2\sqrt{2})x^{2}$$

$$\frac{dA}{dx} = 150 - (1 + 2\sqrt{2})x2x$$

Require
$$\frac{dA}{d\pi} = 0$$
 i
 $150 - 2\pi (1 + 2\sqrt{2}) = 0$
 $75 - 2(1 + 2\sqrt{2}) = 0$
 $2(1 + 2\sqrt{2}) = 75$
 $2(1 + 2\sqrt{2}) = 75$
 $2(1 + 2\sqrt{2}) = 75$
 $2(1 + 2\sqrt{2}) = 19.6$

Test nature of SP:
$$\frac{d^2A}{dn^2} = -(1+2\sqrt{2}) \times 2$$

$$= 7 \text{ concave down}$$

$$= 10 \text{ cal max at } n = 19.6$$

i. Width =
$$2\pi c = 2 \times 19.6 = 39.2 \text{cm}$$

height = $9 + x = 75 - 19.6 - \sqrt{2} \times 19.6 + 19.6$
= 47.3cm

Question 33 (7 marks)

On a Ferris Wheel at a fair, the height of a carriage from the ground is modelled by the function $h(t) = -a \cos\left(\frac{\pi t}{10}\right) + b$, where t is the number of seconds after the ride has started, h is the height in metres and a and b are constants. The carriage has a maximum height of 17 metres when t = 10 and a minimum height of 1 metre when t = 20.

The graph of h(t) is shown.

(a) What are the values of a and b?

 $a = \frac{17 - 1}{2} = \frac{16}{2} = 8$ b = 1 + 8 = 9

2

2

(b) If the ride lasts for 3 minutes. How many rotations are completed before the ride comes to a stop?

From the graph, period = 20 sec.

3 min = 3×60= 180 sec.

 $\frac{180}{20} = \frac{9}{20} \text{ rotations}$

(c) When the carriage is 11 metres or higher above the ground passengers can see the ocean in the distance. On a 3-minute ride, for how long do they see the ocean to the nearest second?
$h = -8\cos\frac{\pi t}{10} + 9$
Need t when h=11:
$11 = -8\cos \frac{\pi t}{4} + 9$? 10 ? 20
$\frac{z}{-2} = \cos \pi +$
cos Tt = -1
$\int II + = \cos^2 \frac{1}{4} \int$
7.71 + = 71 - 405 - 4 0R 71 + 405 - 4 = 1.8235 = 4.4597
t = 5.804 $t = 14.19569$
1. Passengers can see the ocean for 14.19569 - 5.804 Fee
for 14.19569 - 5.804 fee = 8.3917 sec per rotation
" Since There are 9 notations in 3 min, 110
= 9 x 8.3917 fec = 75.5 seconds

End of paper