Ministério da Educação

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca UNED Nova Friburgo
Bacharelado em Sistemas de Informação
Disciplina de Sistemas Operacionais
Professor Bruno Policarpo

Lista de Exercícios: Escalonamento

- 1. O que é um escalonador? Quais são as situações nas quais o escalonador deve tomar uma decisão de quem executar?
- 2. Um processo *CPU-Bound* é aquele em que o surto de utilização da CPU entre duas requisições de I/O é grande, enquanto que um processo *I/O-Bound* é aquele em que o surto entre duas requisições de I/O é pequeno.

Conforme a velocidade dos processadores aumenta, processos caracterizados como *CPU-Bound* e *I/O-Bound* tendem a continuar com essas características, ou elas podem mudar? Explique.

- 3. Você consegue saber se um processo é *CPU-Bound* ou *I/O-Bound* olhando o seu código? Se sim, como seria feita essa análise? Você acha que é possível fazer essa análise também com o processo já em execução?
- 4. Um processador de 32 bits possui 32 registradores no total. Salvar um registrador na memória ou restaurá-lo leva 10ns. Qual é o tempo mínimo necessário para realizar uma troca de contexto nesse processador?
- 5. Considere um Sistema Operacional de lotes. 4 tarefas, chamadas A-B-C-D, com tempos de execução de 6m, 2m, 3m e 8m, respectivamente, chegam ao sistema nos tempos 0m, 2m, 1m, e 4m, respectivamente.

Esboce o *escalonamento*, calcule a *vazão* e o *tempo de retorno* desse sistema considerando os seguintes algoritmos de escalonamento em lote:

- (a) First-Come, First-Served.
- (b) Shortest Job First
- 6. Explique como o tempo de troca de contexto e o tamanho do *quantum* interferem no desempenho do algoritmo de escalonamento *Round-Robin*.
- 7. Considere os processos e seus respectivos tempo de execução abaixo:
 - A-9 ms
 - B-5 ms
 - C-7 ms
 - D-2 ms

Supondo que as trocas de contexto levam 1ms, com quantum de 3ms, esboce um gráfico de *processo x tempo* para os seguintes algoritmos de escalonamento:

- (a) Round-Robin
- (b) Prioridade. Considere que a cada troca de contexto a prioridade cai em 1, que os processos ao caírem de prioridade são adicionados no início da fila seguinte e que as prioridades são 4-3-2-2, respectivamente.

Ministério da Educação

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca
UNED Nova Friburgo
Bacharelado em Sistemas de Informação
Disciplina de Sistemas Operacionais
Professor Bruno Policarpo

Lista de Exercícios: Escalonamento

- 8. Em um dado sistema, um processo é executado em média por um tempo *T* antes de ser bloqueado devido a uma operação de I/O. Uma troca de contexto exige um tempo *S*, sendo efetivamente um tempo desperdiçado. Para um algoritmo de escalonamento *Round-Robin* com quantum *Q*, esboce uma fórmula para a eficiência da CPU sob as seguintes suposições:
 - (a) $Q = \infty$
 - (b) Q > T
 - (c) S < Q < T
 - (d) Q = S
 - (e) Q aproximadamente igual a 0
- 9. Considere as tarefas abaixo:
 - T1: leva 3s para ser computada e deve ser concluída em períodos de 5s
 - T2: leva 1s para ser computada e deve ser concluída em períodos de 3s

As tarefas conseguem ser escalonadas em um sistema de tempo real? Se sim, esboce um possível escalonamento para os primeiros 10s

- 10. Considere um sistema de tempo real de chamada em voz com vídeo em que o processamento de voz ocorre a cada 5ms com um tempo de computação de 1ms e o vídeo é processado a cada 33ms com um tempo de computação de 11ms.
 - (a) Considerando voz e vídeo em apenas uma direção, esse sistema é escalonável?
 - (b) Considere agora que esse sistema é bidirecional, ou seja, entre 2 pessoas. Esse sistema continua escalonável.

Ministério da Educação

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca UNED Nova Friburgo Bacharelado em Sistemas de Informação Disciplina de Sistemas Operacionais Professor Bruno Policarpo

Lista de Exercícios: Escalonamento

Gabarito

4)

640ns

9)

Sim

10)

a) Sim

b) Não