Week 7 – part 3 :Spike Response Model (SRM)

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 7 – Optimizing Neuron Models For Coding and Decoding

Wulfram Gerstner EPFL, Lausanne, Switzerland

√ 7.1 What is a good neuron model?

- Models and data

√ 7.2 AdEx model

- Firing patterns and analysis

7.3 Spike Response Model (SRM)

- Integral formulation

7.4 Generalized Linear Model

- Adding noise to the SRM

7.5 Parameter Estimation

- Quadratic and convex optimization

7.6. Modeling in vitro data

- how long lasts the effect of a spike?

7.7. Helping Humans

Week 7 – part 3 :Spike Response Model (SRM)

√ 7.1 What is a good neuron model?

- Models and data

7.2 AdEx model

- Firing patterns and analysis

7.3 Spike Response Model (SRM)

- Integral formulation

7.4 Generalized Linear Model

- Adding noise to the SRM

7.5 Parameter Estimation

- Quadratic and convex optimization

7.6. Modeling in vitro data

- how long lasts the effect of a spike?

7.7. Helping Humans

Exponential versus Leaky Integrate-and-Fire

$$\tau \frac{du}{dt} = -(u - u_{rest}) + \Delta \exp\left(\frac{u - \vartheta}{\Delta}\right) + RI(t)$$

$$\sum_{\substack{150 \\ 100 \\ -50 \\ -80}} \frac{150}{50}$$

$$u \text{ [mV]}$$

$$\tau \frac{du}{dt} = -(u - u_{rest}) + RI(t)$$

Leaky Integrate-and-Fire

Reset if $u = \vartheta$

Neuronal Dynamics – 7.3 Adaptive leaky integrate-and-fire

$$\tau \frac{du}{dt} = -(u - u_{rest}) - R \sum_{k} w_{k} + RI(t)$$

$$\tau_{k} \frac{dw_{k}}{dt} = a_{k}(u - u_{rest}) - w_{k} + b_{k}\tau_{k} \sum_{f} \delta(t - t^{f})$$

SPIKE AND SPIKE AND w_k jumps by an amount b_k If $u = \vartheta(t)$ then reset to $u = u_r$

If
$$u = \vartheta(t)$$
 then reset to $u = u_r$

Dynamic threshold

Neuronal Dynamics – 7.3 Adaptive leaky I&F and SRM

$$\tau \frac{du}{dt} = -(u - u_{rest}) - R \sum_{k} w_{k} + RI(t)$$

$$\tau_{k} \frac{dw_{k}}{dt} = a_{k}(u - u_{rest}) - w_{k} + b_{k}\tau_{k} \sum_{f} \delta(t - t^{f})$$

Adaptive leaky I&F

Linear equation → can be integrated!

$$u(t) = \sum_{f} \eta (t - t^{f}) + \int_{0}^{\infty} ds \, \kappa(s) I(t - s)$$

$$\mathfrak{Spike Response Model (SRM)}$$

$$\mathfrak{O}(t) = \theta_{0} + \sum_{f} \theta_{1}(t - t^{f})$$
Gerstner et al. (1996)

Neuronal Dynamics – 7.3 Bursting in the SRM

SRM with appropriate η leads to bursting

potential

$$u(t) = \sum_{t'} \underline{\eta(t-t')} + \int_0^\infty \underline{\kappa(s)} I(t-s) ds + u_{rest}$$

threshold

$$\vartheta(t) = \theta_0 + \sum_{t'} \theta_1(t - t')$$

Linear filters for

- input
- threshold
- refractoriness

Linear filters for

- input
- threshold
- refractoriness