Syntaks og semantik

Lektion 4

14 februar 2008

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

Forord

- Administrivia
- Non-deterministiske endelige automater
- NFAs og regulære udtryk
- Eksempel på delmængdekonstruktion
- Transitionssystemer

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

Syntaksopgaven

Et tip / ønske til syntaksopgaven:

Indfør 4 alfabeter:

$$\Sigma_0 = \{0\}$$
 $\Sigma_1 = \{1, 2, ..., 9\}$
 $\Sigma_2 = \{a, ..., z, A, ..., z\}$
 $\Sigma_3 = \{+, -, *\}$

Sæt $\Sigma=\Sigma_0\cup\Sigma_1\cup\Sigma_2\cup\Sigma_3$, og betragt alle automater og udtryk over alfabetet Σ .

udtrykkene. Brug $\Sigma_0,\,\Sigma_1,\,\Sigma_2,\,\Sigma_3$ som forkortelser på automaters pile og i

Administrivia NFA

NFA vs. RE

Eksempel

Transitionssystemer

3/24

Planen

- i dag: afslutning på kursusdelen omhandlende regulære sprog
- og afslutning på syntaksopgavens del omhandlende regulære sprog
- næste gang: perspektivering og spørgetime!
- og start på kontekstfrie sprog

Administrivia

NFA

NFA vs. RE

Eksempel

Transitionssystemer

5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- $arrow q_0 \in Q$: starttilstanden
- $lackbox{lack}{lack} F\subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og

 $y_1,y_2,\ldots,y_m\in\Sigma\cup\{arepsilon\}$ og $r_0,r_1,\ldots,r_m\in Q$ således at $w=v_1,v_2=v_2$

- $w = y_1 y_2 \dots y_m \text{ og}$ $r_0 = q_0,$
- **2** $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og
- \circ $r_m \in F$.

Administrivia

NFA

NFA vs. RE

Eksempel

Transitionssysteme

Administrivia

NFA

NFA vs. RE

Eksempel

Transitionssystemer

7/24

5/24

enhver DFA er også en NFA

- enhver NFA kan laves om til en DFA der genkender samme sprog (delmængdekonstruktionen)
- et sprog er defineret til at være regulært hvis der er en DFA der genkender det
- ⇒ et sprog er regulært hvis og kun hvis der er en NFA der genkender det
- regulære sprog er lukket under ∪, ∘, * (vises ved at konstruere en ny NFA ud fra de givne NFAs)
- regulære sprog er lukket under ∩ og ⁻ (komplement) (vises ved at konstruere en ny DFA ud fra de givne DFAs; konstruktionerne virker kun for DFAs!)
- NFAs er generelt mere simple at fremstille
- NFA = abstraktion!

on!

Lemma 1.55: Hvis et sprog beskrives ved et regulært udtryk, da er det regulært.

Bevises ved strukturel induktion:

- konvertér de basale regulære udtryk til NFAs
- brug lukningsegenskaber til at konvertere sammensætninger af regulære udtryk til sammensætninger af NFAs
- Smart!

I dag: Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.

(Bevises ved at generalisere NFAs til GNFAs.)

⇒ Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

Opgave 1.16

Konvertér følgende to NFAs til DFAs ved hjælp af delmængdekonstruktionen: (ved tavlen)

(

(a)

8/24

DFA og NFA: Transitions-systemer: en generalisering af endelige automater, både

delene er Definition: Et transitionssystem er en 4-tupel (Q, Σ, T, q_0) , hvo

- Q : en mængde af tilstande (endelig eller uendelig)
- Σ : et alfabet (en endelig mængde)
- $T \subseteq Q \times \Sigma \times Q : \text{transitions-relationen}$
- $q_0 \in Q$: starttilstanden
- En NFA er et endeligt transitionssystem med en specificeret mængde af accepttilstande, og med et specielt tegn $\varepsilon \in \Sigma$
- En DFA er en NFA som opfylder følgende egenskaber:
- der er ingen transitioner $(q, \varepsilon, q') \in T$
- for alle $q \in Q$ og alle $a \in \Sigma$, med $a \neq \varepsilon$, findes $q' \in Q$ og en transition $(q, a, q') \in T$
- $oxed{a}$ hvis $(q,a,q_1')\in \mathcal{T}$ og $(q,a,q_2')\in \mathcal{T}$, så er $q_1'=q_2'$

9/24

Ikke-regulære sprog

Regulære og ikke-regulære sprog

Regulære sprog genereres af regulære udtryk Ikke-regulære sprog

> NFA ⇒ RE Ikke-regulære sprog

findes et regulært udtryk R over Σ således at L = [R]Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da

automater (GNFA) regulære udtryk: generaliserede nondeterministiske endelige Nøgle til beviset: Ny slags maskiner der kombinerer NFA og

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_t)$, hvor delene

- Q : en endelig mængde af tilstande
- Σ : input-alfabetet
- $alpha q_0 \in Q$: starttilstanden
- **5** $q_f \in Q$: accepttilstanden

givet alfabet Σ . Notation: $\mathcal{R}=\mathcal{R}(\Sigma)=$ mængden af alle regulære udtryk over et

ikke til andet.) (Bemærk at GNFAs introduceres kun for det her bevis. De bruges 11/24

NFA ⇒ RE Ikke-regulære sprog

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_t)$, hvor delene

- ③ $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \to \mathcal{R}:$ transitions-funktionen ⑤ $q_f \in Q:$ accepttilstanden

Ligesom NFAs, men

- med kun én accepttilstand
- med regulære udtryk på transitionerne i stedet for tegn
- med transitioner fra enhver tilstand til enhver tilstand (også sig selv), bortset fra at
- starttilstanden ikke har indgående transitioner, og at
- accepttilstanden ikke har udgående transitioner

er $T \subseteq Q \times \mathcal{R}(\Sigma) \times Q$. er $\mathcal{R}(\Sigma)$, så transitionerne transitionssystem: alfabeter Endnu en speciel form for

12/24

Definition 1.64: En GNFA er en 5-tupel $(Q, \Sigma, \delta, q_0, q_f)$, hvor delene

- Q : en endelig mængde af tilstande
- Σ : input-alfabetet
- \bullet $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \to \mathcal{R}: \text{transitions-funktionen}$
- $oldsymbol{a} q_0 \in Q$: starttilstanden
- $q_f \in Q$: accepttilstanden

 $y_1,y_2,\ldots,y_m\in\Sigma^*$ (!) og $r_0,r_1,\ldots,r_m\in Q$ således at $w=y_1y_2\ldots y_m$ GNFAen accepterer et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og

- $r_0 = q_0$
- ② $y_{i+1} \in [\![\delta(r_i, r_{i+1})]\!]$ for alle i = 0, 1, ..., m-1, og
- $r_m = q_f.$

regulært udtryk ved at fjerne én tilstand ad gangen. Bevisidé: konvertér en DFA til en GNFA og så GNFAen til et

13/24

NFA ⇒ RE

Ikke-regulære sprog

NFA ⇒ RE

Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da findes et regulært udtryk R over Σ således at $L = \llbracket R \rrbracket$.

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$:
- $(a)\,$ Lav en ny starttilstand q_0 og en ny accepttilstand q_f , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
- <u>6</u> Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels
- (c) Indsæt ∅-transitioner hvor der mangler pile

Eksempel 1.68'

NFA ⇒ RE Ikke-regulære sprog

findes et regulært udtryk R over Σ således at L = [R]Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$:
- $(a)\,$ Lav en ny starttilstand q_0 og en ny accepttilstand q_f , med ε -transitioner fra q_0 til den gamle starttilstand og fra alle gamle accepttilstande til q_f .
- Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
- (c) Indsæt Ø-transitioner hvor der mangler pile.

$$Q = Q_1 \cup \{q_0, q_f\}$$

$$(q,q') = \begin{cases} \varepsilon & \text{hvis } q = q_0 \text{ eller } q' = q_f \\ a_1 \cup a_2 \cup \dots \cup a_k & \text{hvis } q,q' \in Q_1 \text{ og } \delta_1(q,a_i) = q' \\ & \text{for alle } i = 1,2,\dots,k \\ \emptyset & \text{hvis } q,q' \in Q_1 \text{ og } \delta_1(q,a) \neq q' \\ & \text{for alle } a \in \Sigma \end{cases}$$

15/24

Ikke-regulære sprog

findes et regulært udtryk R over Σ således at L = [R]. Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L \subseteq \Sigma^*$, da

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_f)$
- Konvertér G til et regulært udtryk R:
- CONVERT(G):
- Lad k = |Q| antallet af tilstande i G
- Hvis k = 2, returnér $\delta(q_0, q_f)$
- **◎** Vi har k > 2. Lad $q_{rip} \in Q \setminus \{q_0, q_f\}$.

Lad $Q'=Q\setminus\{q_{\mathsf{rip}}\}$, og definér $\delta': \left(Q'\setminus\{q_f\}\right) imes \left(Q'\setminus\{q_0\}\right) o \mathcal{R}$ på følgende måde:

findes et regulært udtryk R over Σ således at $L = \llbracket R
rbracket$ Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L\subseteq \Sigma^*$, da

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- Konvertér G til et regulært udtryk R:

CONVERT(G):

- Lad k = |Q| antallet af tilstande i G.
- **2** Hvis k = 2, returnér $\delta(q_0, q_t)$
- Vi har k > 2. Lad $q_{rip} \in Q \setminus \{q_0, q_f\}$.

Lad
$$Q'=Q\setminus \{q_{\mathsf{rip}}\}$$
, og definér $\delta': (Q'\setminus \{q_f\})\times (Q'\setminus \{q_0\})\to \mathcal{R}$ på følgende måde: For $q\in Q'\setminus \{q_f\}$ og $q'\in Q'\setminus \{q_0\}$ lad $H_1=\delta(q,q_{\mathsf{rip}}), H_2=\delta(q_{\mathsf{rip}},q_{\mathsf{rip}}), H_3=\delta(q_{\mathsf{rip}},q_{\mathsf{rip}})$ og $H_4=\delta(q,q')$, og lad

og $R_4 = \delta(q, q')$, og lad $\delta'(q, q') = R_4 \cup R_1(R_2)^* R_3$. $R_1 = \delta(q, q_{\mathsf{rip}}), R_2 = \delta(q_{\mathsf{rip}}, q_{\mathsf{rip}}), R_3 = \delta(q_{\mathsf{rip}}, q')$ For $q \in Q' \setminus \{q_f\}$ og $q' \in Q' \setminus \{q_0\}$ lad

a Returnér Convert $(G' = (Q', \Sigma, \delta', q_0, q_f))$

17/24

NFA ⇒ RE

Ikke-regulære sprog

NFA ⇒ RE

findes et regulært udtryk R over Σ således at L = [R]. Lemma 1.60: Givet et alfabet Σ og et regulært sprog $L\subseteq \Sigma^*$, da

Bevis: Lad $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ være en DFA med [M] = L.

- Konvertér M til en GNFA $G = (Q, \Sigma, \delta, q_0, q_t)$
- Nonvertér G til et regulært udtryk R.
- Vis at [M] = [R]:
- Vis at [M] = [G]: nemt
 Vis at [G] = [R]:
- Hvis k = |Q| = 2: $Q = \{q_0, q_t\}$, og $R = \delta(q_0, q_t) \Rightarrow \sqrt{2}$
- **a** Hvis k > 2: Vis at $\llbracket G \rrbracket = \llbracket G' \rrbracket$
- Done

NFA ⇒ RE Ikke-regulære sprog

Ikke alle sprog er regulære. F.x. sproget $\{0^n1^n \mid n \in \mathbb{N}\}$:

– en uendelig automat!

Pumping Lemma: en egenskab ved alle regulære sprog

⇒ Hvis et sprog ikke har den egenskab, kan det ikke være regulært.

der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes

Ikke-regulære sprog

• |y| > 0 og $|xy| \le p$,

mindst p kan opsplittes i tre stykker, s = xyz, med

• og således at ordene $xy'z \in A$ for alle $i \in \mathbb{N}_0$

En gang til:

For ethvert regulært sprog A

findes $p \in \mathbb{N}_0$ således at

for ethvert $s \in A \text{ med } |s| \ge p$

findes en opsplitning s = xyz således at for alle $i \in \mathbb{N}_0$ |y| > 0 og $|xy| \le p$ og $xy^iz\in A$.

20/24

NFA ⇒ RE

Ikke-regulære sprog

mindst p kan opsplittes i tre stykker, s = xyz, med der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes

- |y| > 0 og $|xy| \leq p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$

Eksempel 1.73: Sproget $B = \{0^n 1^n \mid n \in \mathbb{N}\}$ er ikke regulært.

og lad p være pumpelængden. Lad $s = 0^{\rho}1^{\rho}$, da er $|s| \ge p$. Bevis (ved modstrid; kortere end i bogen!): Antag at B er regulært,

indeholder y mindst ét 0. betingelser. Pga. $|xy| \le p$ kan y kun indeholde 0er, og pga. |y| > 0Lad s = xyz være en opsplitning af s som opfylder pumpelemmaets

ord indeholder for mange 0er. Modstrid Sidste betingelse i lemmaet siger bl.a. at ordet $xyyz \in A$, men dette

Ikke-regulære sprog

 $NFA \Rightarrow RE$

 $NFA \Rightarrow RE$

mindst p kan opsplittes i tre stykker, s = xyz, med der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes

- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$

lad p = |Q|. Lad $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$. Bevis: Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en DFA der genkender A, og

Men n+1>p, så der er flere tilstande i følgen end der er i M!Mens M læser s, kommer den igennem en følge af n+1 tilstande

gennemløbe løkken i gange og genkende strengen xy'z. del der læses i løkken, og z den del der læses efter løkken, kan vi Dvs. der er en tilstand der optræder to gange i følgen – en løkke! Hvis vi tager x til at være den del af s der læses før løkken, y den

- der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i tre stykker, s = xyz, med Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes
- |y| > 0 og $|xy| \le p$,
- og således at ordene $xy'z \in A$ for alle $i \in \mathbb{N}_0$

lad p = |Q|. Lad $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$. Bevis: Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en DFA der genkender A, og

 $r_{i+1} = \delta(r_i, s_i)$ for alle i. Lad $r_1, r_2, ..., r_{n+1} \in Q$ således at $r_1 = q_0, r_{n+1} \in F$, og

at $1 \le j < \ell \le p+1$ og $r_j = r_\ell$. Vi har $n+1 \ge p+1$, og |Q|=p. Derfor findes indices j og ℓ således

 $|y| \ge 0$, og $\ell \le p+1$ medfører $|xy| \le p$. Lad $x=s_1\dots s_{j-1},\,y=s_j\dots s_{\ell-1},\,z=s_\ell\dots s_n.$ Pga. $j<\ell$ har vi

Eftersom $\delta(r_{\ell-1}, \mathbf{s}_{\ell-1}) = r_j$, er enhver følge

og ordet den genkender er xy'z. $(r_1,\ldots,r_{j-1})(r_j,\ldots,r_{\ell-1})'(r_\ell,\ldots,r_{n+1})$ en accepterende følge for M,

Ikke-regulære sprog

23/24

Eksempel 1.74: Sproget

 $C = \{w \mid \text{antallet af 0 i } w \text{ er lig med antallet af 1} \} \subseteq \{0,1\}^* \text{ er ikke}$

(Samme bevis som for eksempel 1.73)

Bemærkning (opgave 1.48): Sproget

 $D = \{w \mid \text{antallet af 01 i } w \text{ er lig med antallet af 10} \} \subseteq \{0, 1\}^* \text{ er}$

ikke regulært ... (Men kun over alfabetet $\{0,1\}$; hvis alfabetet f.x. er $\{0,1,2\}$, er D