Оценка интегралов методом Монте-Карло

Пример:

Найти оценку интеграла

$$I = \int_{0}^{2} e^{-\frac{x^2}{2}} dx$$

Дано:

Начало интервала а = 0

Конец интервала b = 2

Число повторных испытаний n = 200

Число повторных оценок m=5

Блок-схема алгоритма

Примечание:

Rnd – это генерация случайной величины, равномерно распределенной от 0 до 1.

Формулы для расчета характеристик

1. Математическое ожидание (MO):
$$\overline{I} = \frac{1}{m} \sum_{k=1}^{m} I_k$$

2. Выборочная дисперсия:
$$S^2 = \frac{1}{m-1} \sum_{k=1}^{m} (I_k - \overline{I})^2$$

3. <u>Среднеквадратическое отклонение (СКО)</u>: $\sigma = \sqrt{S^2}$

4. Интервальная оценка:

Число степеней свободы равно m-1 = 4

Пусть $\alpha = 0.05$ (доверительная вероятность 0.95) - для лабораторных работ брать такое же значение α .

Тогда табличное значение будет равно **2,7764** (*ищется по таблице критерия Стьюдента - см. вложения к работе*)

В результате получаем формулу для интервальной оценки

$$\bar{I} - \frac{2,7764\sigma}{\sqrt{m}} < \bar{I} < \bar{I} + \frac{2,7764\sigma}{\sqrt{m}}$$

Результаты

	Значение	
	интеграла:	
1	1,200290422	
2	1,286976286	
3	1,242796465	
4	1,158641244	
5	1,235577122	

MO	Дисперсия	СКО
1,224856308	0,002320899	0,048175705

Интервальная оценка:

 $1,165177128 < \bar{I} < 1,28453548727748$