Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

1

4

Contents

1 Definitions and Examples

2 The Yoneda Lemma

3	Adjunctions 7
4	Limits 10
1	Definitions and Examples
De	finition 1.1 (Category). A category C consists of
Ó	a. a collection ob C of objects A, B, C, \ldots
l	b. a collection $\operatorname{mor} \mathcal{C}$ of $morphisms f, g, h, \dots$
(c. two operations dom, cod from morphisms to objects. We write $f: A \to B$ or $A \xrightarrow{f} B$ to mean 'f is a morphism and dom $f = A$ and cod $f = B$ '
Ó	d. an operation assigning to each object A a morphism $1_A:A\to A$
(e. a partial binary operation $(f,g) \mapsto gf$, s.t. gf is defined \iff dom $g = \operatorname{cod} f$, and then $gf : \operatorname{dom} f \to \operatorname{cod} g$
sati	is fying
	$f. \ f1_A = f \ and \ 1_B f = f \ \forall f : A \to B$
9	g. $h(fg) = (hg)f$ whenever gf and hg are defined
	finition 1.2 (Functor). Let $\mathcal C$ and $\mathcal D$ be categories. A functor $\mathcal C \to \mathcal D$ sists of
	1

a. a mapping $A \to FA$ from ob C to ob D

b. a mapping $f \to Ff$ from $mor \mathcal{C}$ to $mor \mathcal{D}$

satisfying dom $Ff = F \operatorname{dom} f$, $\operatorname{cod} Ff = F \operatorname{cod} f$ for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition 1.3. By a contravariant functor $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be covariant.

Definition 1.4 (Natural transformation). Let C and D be two categories and $F, G : C \Rightarrow D$ two functors. A **natural transformation** $\alpha : F \rightarrow G$ assigns to each $A \in \text{ob } C$ a morphism $\alpha_A : FA \rightarrow GA$ in D, such that

$$FA \xrightarrow{Ff} FB$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$GA \xrightarrow{Gf} GB$$

commutes.

We can compose natural transformations: given $\alpha: F \to G$ and $\beta: G \to H$, the mapping $A \mapsto \beta_A \alpha_A$ is the A-component of a natural transformation $\beta \alpha: F \to H$.

Definition 1.5. Given categories C, D, we write [C, D] for the category of all functors $C \to D$ and natural transformations between them.

Lemma 1.6. Given $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \to G$, α is an isomorphism in $[\mathcal{C}, \mathcal{D}] \iff each \alpha_A$ is an isomorphism in \mathcal{D} .

Definition 1.7 (Faithful and full). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say that F is **faithful** if, given $f, g \in \text{mor } C$, the equations dom f = dom g, cod f = cod g and Ff = Fg imply f = g.
- b. F is **full** if, given any $g: FA \to FB$ in \mathcal{D} , there exists $f: A \to B$ in \mathcal{C} with Ff = g.
- c. We say a subcategory C' of C is **full** if the inclusion $C' \hookrightarrow C$ is a full functor.

For example, **Gp** is a full subcategory of the category **Mon** of monoids, but **Mon** is a non-full subcategory of the category **Sgp** of semigroups.

Definition 1.8 (Equivalence of categories). Let C and D be categories. An equivalence between C and D is a pair of functors $F: C \to D$, $G: D \to C$ together with natural isomorphisms $\alpha: 1_C \to GF$, $\beta: FG \to 1_D$. We write $C \simeq D$ to mean that C and D are equivalent.

We say a property P of categories is **categorical** if whenever C has P and $C \simeq D$ then D has P.

For example, being a groupoid is a categorical property, but being a group is not.

Definition 1.9 (Slice category). Given an object B of a category C, define the **slice category** C/B to have morphisms $A \xrightarrow{f} B$ as objects, and morphisms $(A \xrightarrow{f} B) \to (A' \xrightarrow{f'} B)$ are morphisms $h : A \to A'$ making

commute.

Lemma 1.10. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is part of an equivalence $\mathcal{C} \simeq \mathcal{D} \iff F$ is full, faithful and **essentially surjective**, i.e. for every $B \in \operatorname{ob} \mathcal{D}$, there exists $A \in \operatorname{ob} \mathcal{C}$ s.t. $FA \cong B$.

Definition 1.11. a. A **skeleton** of a category C is a full subcategory C' containing exactly one object from each isomorphism class of objects of C.

b. We say C is **skeletal** if it's a skeleton of itself. Equivalently, any isomorphism f in C satisfies dom $f = \operatorname{cod} f$.

For example, \mathbf{Mat}_K is skeletal. The full subgategory of standard vector spaces K^n is a skeleton of $\mathbf{fd} \ \mathbf{Mod}_K$.

Remark 1.12. The following statements are each equivalent to the Axiom of Choice:

- 1. Every small category has a skeleton
- 2. Any small category is equivalent to each of its skeletons
- 3. Any two skeletons of a given small category are isomorphic

Definition 1.13. Let $f: A \to B$ be a morphism in a category C.

a. f is a monomorphism if, given $g, h : D \Rightarrow A$, the equation fg = fh implies g = h. We write $A \mapsto B$ if f is monic.

- b. Dually, f is an **epimorphism** if, given $k, l : B \Rightarrow C$, kf = lf implies k = l. We write $A \rightarrow B$ if f is epic.
- c. C is a balanced category if every $f \in \text{mor } C$ which is both monic and epic is an isomorphism.

2 The Yoneda Lemma

Definition 2.1. A category C is **locally small** if, for any two objects A, B of C, the morphism $A \to B$ are parametrised by a set C(A, B).

Given local smallness, $B \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$: if $g : B \to B'$, the mapping $f \mapsto gf : \mathcal{C}(A, B) \to \mathcal{C}(A, B')$ is functorial since h(gf) = (hg)f for any $h : B' \to B''$.

Similarly, $A \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}^{op} \to \mathbf{Set}$.

Lemma 2.2 (Yoneda). Let C be a locally small category, $A \in ob C$ and $F : C \rightarrow Set$. Then

- i. There is a bijection between natural transformations $C(A, -) \to F$ and elements of FA.
- ii. Moreover, this bijection is natural in both A and F.

Proof. Bijection: given $\alpha : \mathcal{C}(A, -) \to F$, define $\Phi(\alpha) = \alpha_A(1_A) \in FA$. Given $x \in FA$, define $\Psi(x) : \mathcal{C}(A, -) \to F$ by

$$\Psi(x)_B(A \xrightarrow{f} B) = (Ff)(x) \in FB$$

 $\Psi(x)$ is natural: given $g: B \to C$, we have

$$\Psi(x)_{C}(\mathcal{C}(A,g)(f)) = \Psi(x)_{C}(gf)$$

$$= F(gf)(x)$$

$$= (Fg)(Ff)(x)$$

$$= (Fg)\Psi(x)_{B}(f)$$

 $\Phi\Psi(x)=x$ since $F(1_A)(x)=x$, and $\Psi\Phi(\alpha)=\alpha$ since, for any $f:A\to B$,

$$\Psi\Phi(\alpha)_B(f) = Ff(\Phi(\alpha))$$

$$= Ff(\alpha_A(1_A))$$

$$= \alpha_B(\mathcal{C}(A, f)(1_A))$$

$$= \alpha_B(f)$$

Corollary 2.3. The mapping $A \to \mathcal{C}(A, -)$ is a full and faithful functor $\mathcal{C}^{op} \to [\mathcal{C}, \mathbf{Set}]$.

Proof. Given two objects A, B, 2.2(i) gives us a bijection from $\mathcal{C}(B, A)$ to the collection of natural transformations $\mathcal{C}(A, -) \to \mathcal{C}(B, -)$ (by taking $F : C \mapsto \mathcal{C}(B, C)$). We need to show this is functorial, but given $f \in \mathcal{C}(B, A), \Psi(F)_A$ sends 1_A to $\mathcal{C}(B, f)(1_A) = f$, so it's the natural transformation $g \mapsto gf$.

Hence, given
$$e: C \to B$$
, $\Psi(fe)(g) = g(fe) = (gf)(e) = \Psi(e)\Psi(f)g$

We call this functor the **Yoneda embedding**. Hence any locally small category C is equivalent to a full subcategory of $[C^{op}, \mathbf{Set}]$.

Definition 2.4. A functor $C \to Set$ is representable if it's isomorphic to C(A, -) for some A.

A representation of $F: \mathcal{C} \to \mathbf{Set}$ is a pair (A, x) where $A \in \text{ob } \mathcal{C}$, $x \in FA$ and $\Psi(x): \mathcal{C}(A, -) \to F$ is an isomorphism. We also call x a universal element of F.

Corollary 2.5 ('Representations are unique up to unique isomorphism'). If (A, x) and (B, y) are both representations of $F : \mathcal{C} \to \mathbf{Set}$, then there's a unique isomorphism $f : A \to B$ s.t Ff(x) = y.

Definition 2.6 (Product and coproduct). Given two objects A, B of a locally small category C, we define their **product** to be a representation of the functor

$$\mathcal{C}(-,A) \times \mathcal{C}(-,B) : \mathcal{C}^{op} \to \mathbf{Set}$$

i.e. an object $A \times B$ equipped with morphisms $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$ s.t. given any pair $(f : C \to A, g : C \to B)$, there exists a unique $h : C \to A \times B$ s.t. $\pi_1 h = f$ and $\pi_2 h = g$.

More generally, we can define the product $\prod_{i \in I} A_i$ of a family $\{A_i | i \in I\}$ of objects, or the product of the empty family, i.e. a **terminal object** 1 s.t. for every A there's a unique $A \to 1$.

Dualizing, we get the notion of coproduct or sum.

Definition 2.7 (Equaliser and coequaliser). Given a parallel pair $f, g : A \Rightarrow B$ in a locally small category C, the assignment $C \mapsto FC = \{h : C \to A \mid fh = gh\}$ is a subfunctor F of C(-,A). A representation of F is called an **equaliser** of (f,g).

In elementary terms, it's an object E equipped with $e: E \to A$ s.t. fe = ge, s.t. any h with fh = gh factors uniquely as h = ek

Dually, we have the notion of **coequaliser**, i.e. a morphism $q: B \to Q$ satisfying qf = qg, and universal among such.

Definition 2.8. a. We say a monomorphism is **regular** if it occurs as an equaliser (dually, regular epimorphism).

b. We say $f: A \to B$ is a **split monomorphism** if there exists $g: B \to A$ with $gf = 1_A$.

Every split monomorphism is regular: if $gf = 1_A$, f is an equaliser of $(1_B, fg)$ [see sheet 1, q2].

Definition 2.9. Let C be a (locally small) category, G a collection of objects of C.

- a. Say \mathcal{G} is a **separating family** if the functors $\mathcal{C}(G,-)$, $G \in \mathcal{G}$ are jointly faithful, i.e. if given $f,g:A \Rightarrow B$ with $f \neq g$, there exists $G \in \mathcal{G}$ and $h:G \to A$ with $fh \neq gh$.
- b. Say \mathcal{G} is a **detecting family** if the $\mathcal{C}(G, -)$, $G \in \mathcal{G}$ jointly reflect isomorphisms, i.e. if given $f : A \to B$ s.t. every $g : G \to B$ with $G \in \mathcal{G}$ factors uniquely through f, f is an isomorphism.

Lemma 2.10. i. If C is balanced, then any separating family is detecting

ii. If C has equalisers, then every detecting family is separating

Definition 2.11. An object P is **projective** if C(P, -) preserves epimorphisms, i.e. if given

$$P \\ \downarrow^f \\ A \stackrel{e}{-\!\!\!-\!\!\!-\!\!\!-} B$$

there exists $g: P \to A$ with eg = f.

Dually, P is **injective** in C if it's projective in C^{op} .

If P satisfies this property $\forall e$ in some class \mathcal{E} of epimorphisms, we call it \mathcal{E} -projective.

Corollary 2.12. Representable functors are (pointwise) projective in [C, Set]

Proof. Given

$$\begin{array}{c} \mathcal{C}(A,-) \\ & \downarrow^{\beta} \\ F \stackrel{\alpha}{-\!\!\!-\!\!\!-\!\!\!-} G \end{array}$$

 β corresponds to some $y \in GA$. α_A is surjective, so $\exists x \in FA$ with $\alpha_A(x) = y$. x corresponds to $\gamma : \mathcal{C}(A, -) \to F$ with $\alpha \gamma = \beta$.

3 Adjunctions

Definition 3.1 (D.M. Khan, 1958). Let C and D be categories and $F: C \to D$, $G: D \to C$ be two functors. An **adjunction** between F and G is a bijection between morphisms $FA \to B$ in D and morphisms $A \to GB$ in C, which is natural in A and B.

(If C and D are locally small, this says that $(A, B) \to D(FA, B)$ and $(A, B) \to C(A, GB)$ are naturally isomorphic functors $C^{op} \times D \to \mathbf{Set}$).

We say F is **left adjoint** to G, or G is **right adjoint** to F, and write $F \dashv G$.

Theorem 3.2. Let $G: \mathcal{D} \to \mathcal{C}$ be a functor. Given $A \in \text{ob } \mathcal{C}$, let $(A \downarrow G)$ be the category whose objects are pairs (B, f) with $B \in \text{ob } \mathcal{D}$, $f: A \to GB$ and whose morphisms $(B, f) \to (B', f')$ are morphisms $g: B \to B'$ in \mathcal{D} such that

$$A \xrightarrow{f} GB$$

$$\downarrow^{Gg}$$

$$GB'$$

commutes. Then specifying a left adjoint for G is equivalent to specifying an initial object of $(A \downarrow G)$ for each A.

Proof. First suppose G has a left adjoint F. Let $\eta_A: A \to GFA$ be the morphism corresponding to $1_{FA}: FA \to FA$. The pair (FA, η_A) is an object of $(A \downarrow G)$. We'll show it's initial.

Given $g: FA \to B$, the composite $A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$ must correspond to $FA \xrightarrow{1} FA \xrightarrow{g} B$ under the adjunction.

So, for any object (B, f) of $(A \downarrow G)$, the unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \downarrow G)$ is the morphism $FA \to B$ corresponding to f.

Conversely, suppose we're given an initial object (FA, η_A) of $(A \downarrow G)$ for each G. Given $f: A \to A'$, the composite $A \xrightarrow{f} A' \xrightarrow{\eta_{A'}} GFA'$ is an object of $(A \downarrow G)$, so there's a unique morphism $Ff: FA \to FA'$ making

$$A \xrightarrow{\eta_A} GFA$$

$$\downarrow^f \qquad \qquad \downarrow^{GFf}$$

$$A' \xrightarrow{\eta_{a'}} GFA'$$

commute.

 $f \mapsto Ff$ is functorial: given $f': A' \to A''$, then (Ff')(Ff) and F(f'f) are both morphisms $(FA, \eta_A) \to (FA'', \eta_{A''}f'f)$ in $(A \downarrow G)$, so they're equal.

Finally, given $f: A \to GB$, the morphism $g: FA \to B$ corresponding to it is the unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \downarrow G)$.

The naturality of this bijection is given by naturality of η , and naturality in B is immediate. \Box

Corollary 3.3. If F, F' are both left-adjoint to G, then there's a canonical natural isomorphism $F \to F'$.

Proof. For each A, (FA, η_A) and $(F'A, \eta'_A)$ are both initial in $(A \downarrow G)$, so there's a unique isomorphism $\alpha_A : (FA, \eta_A) \to (F'A, \eta'_A)$.

 α is natural: given $f: A \to A'$, $\alpha_{A'}f$ and $(Ff)\alpha_A$ are both morphisms $(FA, \eta_A) \to (F'A', \eta'_{A'}f)$ in $(A \downarrow G)$. So they're equal.

Lemma 3.4. Given $\mathcal{C} \xleftarrow{F}_{G} \mathcal{D} \xleftarrow{H}_{K} \mathcal{E}$, if $F \dashv G$ and $H \dashv K$ then $HF \dashv GK$.

Proof. We have bijections

$$\mathcal{E}(HFA, C) \cong \mathcal{D}(FA, KC) \cong \mathcal{C}(A, GKC)$$

which are natural in A and C.

Corollary 3.5. Given a commutative square $\begin{array}{c} \mathcal{C} \stackrel{F}{\longrightarrow} \mathcal{D} \\ \downarrow_G & \downarrow_H \text{ of categories and} \\ \mathcal{E} \stackrel{K}{\longrightarrow} \mathcal{F} \end{array}$

functors, suppose all the functors in the diagram have left adjoints. Then the $\mathcal{F} \longrightarrow \mathcal{E}$ diagram $\downarrow \qquad \downarrow$ of left adjoints commutes up to natural isomorphism.

Given $F \dashv G$, we have a natural transformation $\eta : 1_{\mathcal{C}} \to GF$ defined as in 3.2. We call η the **unit** of the adjunction.

Dually, we have $\epsilon: FG \to 1_{\mathcal{D}}$, the **counit**. $\epsilon_B: FGB \to B$ corresponds to $1_{GB}: GB \to GB$.

Theorem 3.6. Suppose we're given $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$. Specifying an adjunction $F \dashv G$ is equivalent to specifying natural transformations $\eta: 1_{\mathcal{C}} \to GF$ and $\epsilon: FG \to 1_{\mathcal{D}}$ such that

$$F \xrightarrow{F\eta} FGF \qquad and \qquad G \xrightarrow{\eta_G} GFG$$

$$\downarrow^{1_F} \downarrow^{\epsilon_F} \qquad \downarrow^{G_F}$$

$$\downarrow^{G}$$

$$\downarrow^{G}$$

commute. (We say η and ϵ satisfy the **triangular identities**).

Proof. Given $F \dashv G$, we define η and ϵ as already described. Since ϵ_{FA} : $FGFA \to FA$ corresponds to 1_{GFA} , the composite $\epsilon_{FA}(F\eta_A)$ corresponds to $A \xrightarrow{\eta_A} GFA \xrightarrow{1_{GFA}} GFA$, so it must be 1_{FA} .

Similarly for the other identity.

Conversely, given η and ϵ satisfying the \triangle^r identities, we map $f:A\to GB$ to the composite $FA \xrightarrow{Ff} FGB \xrightarrow{\epsilon_B} B$ and $g:FA\to B$ to the composite $A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$.

We have

$$\Phi(A \xrightarrow{f} GB) = FA \xrightarrow{Ff} FGB \xrightarrow{\epsilon_B} B$$

$$\Psi(FA \xrightarrow{g} B) = A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$$

So

$$\Psi\Phi(f) = A \xrightarrow{\eta_A} GFA \xrightarrow{GFf} GFGB \xrightarrow{G\epsilon_B} GB$$
$$= A \xrightarrow{f} GB \xrightarrow{\eta_{GB}} GFGB \xrightarrow{G\epsilon_B} GB$$
$$= f$$

And dually $\Phi \Psi(g) = g$.

Naturality of Φ in A is immediate from its definition, and naturality in B follows from that of ϵ .

Lemma 3.7. Suppose given $C \stackrel{F}{\longleftrightarrow} \mathcal{D}$ and natural isomorphisms $\alpha : 1_{\mathcal{C}} \to GF$, $\beta : FG \to 1_{\mathcal{D}}$. Then there exist natural isomorphisms α' , β' which additionally satisfy the triangular identities. In particular $(F \dashv G)$.

Proof. We define $\alpha' = \alpha$ and take β' to be the composite

$$FG \xrightarrow{\beta_{FG}^{-1}} FGFG \xrightarrow{F_{\alpha_G}^{-1}} FG \xrightarrow{\beta} 1_{\mathcal{D}}$$

Note that, since $\begin{array}{c} FGFG \xrightarrow{FG\beta} FG \\ \downarrow_{\beta_{FG}} & \downarrow_{\beta} \text{ commutes and } \beta \text{ is monic, we have } FG\beta = \\ FG \xrightarrow{\beta} 1_{\mathcal{D}} \end{array}$

 $\beta_F G$.

Similarly, $GF\alpha = \alpha_{GF} : GF \to GFGF$.

Now

$$\beta_F' \circ F_{\alpha'} = F \xrightarrow{F\alpha} FGF \xrightarrow{\beta_{FGF}^{-1}} FGFGF \xrightarrow{F\alpha_{GF}^{-1}} FGF \xrightarrow{\beta_F} F$$

$$= F \xrightarrow{\beta_F^{-1}} FGF \xrightarrow{FGF\alpha} FGFGF \xrightarrow{FGF\alpha^{-1}} FGF \xrightarrow{\beta_F} F$$

$$= 1_F$$

and

$$G\beta' \circ \alpha'_{G} = G \xrightarrow{\alpha_{G}} GFG \xrightarrow{GFG\beta^{-1}} GFGFG \xrightarrow{GF\alpha_{G}^{-1}} GFG \xrightarrow{G\beta} G$$

$$= G \xrightarrow{G\beta^{-1}} GFG \xrightarrow{\alpha_{GFG}} GFGFG \xrightarrow{\alpha_{GFG}^{-1}} GFG \xrightarrow{\beta_{F}} G$$

$$= 1_{G}$$

Lemma 3.8. Suppose $C \xleftarrow{F}_G \mathcal{D}$, $(F \dashv G)$ is an adjunction with counit ϵ . Then

 $i. \ \epsilon \ is \ (pointwise) \ epic \iff G \ is \ faithful$

 $ii. \ \epsilon \ is \ an \ isomorphism \iff G \ is \ full \ and \ faithful$

Proof. i. Given $g: B \to B'$, the morphism $Gg: GB \to GB'$ corresponds to

$$FGB \xrightarrow{\epsilon_B} B \xrightarrow{g} B'$$

So, for fixed B, composition with ϵ_B is injective on morphisms $B \to B'$ $\iff (g \mapsto Gg)$ is injective on morphisms $B \to B'$.

Hence G is faithful $\iff \epsilon_B$ is epic $\forall B$.

ii. Similarly, ϵ_B is $0 \ \forall B \implies G$ is bijective on morphisms with given domain and codomain, i.e. G is full and faithful.

Conversely, if G is full and faithful, 1_{FGB} factors uniquely as $FGB \xrightarrow{\epsilon_B} B \xrightarrow{g} FGB$, so ϵ_B is split monic. But it's epic by (i), hence an isomorphism.

Definition 3.9. i. A **reflection** is an adjunction satisfying the conditions of 3.8(ii).

ii. A reflective subcategory of C is a full subcategory C' for which the inclusion $C' \hookrightarrow C$ has a left adjoint.

Dually, coreflection and coreflective subcategory.

4 Limits

Definition 4.1. a. Let J be a category (almost always small, often finite). A diagram of shape J in a category C is a functor $D: J \to C$.

E.g. if J is the finite category \downarrow , a diagram of shape J is a

commutative square. If J is the category \downarrow , a diagram of shape

J is a not-necessarily-commutative square

The objects D(j), $j \in \text{ob } J$ are called **vertices** of D, and the morphisms $D(\alpha)$, $\alpha \in \text{mor } J$ are called **edges** of D.

b. Let $D: J \to \mathcal{C}$ be a diagram in \mathcal{C} . A **cone over D** is a pair $(A, (\lambda_j | j \in \mathcal{C}))$

ob J)) where
$$\lambda_j: A \to D(j) \ \forall j$$
, and $D(j) \xrightarrow{\lambda_j} D(j')$ commutes for $D(j) \xrightarrow{D(\alpha)} D(j')$

each $\alpha: j \to j'$ in J.

A is called the **apex** of the cone, and the λ_j are its **legs**.

Equivalently, λ is a natural transformation $\triangle A \rightarrow D$, where $\triangle A$ is the **constant diagram** with all vertices A and all edges 1_A .

A morphism $f: (A, (\lambda_j)) \to (B, (\mu_j))$ of cones over D is a morphism $A \xrightarrow{f} B$ $f: A \to B \text{ s.t.}$ $A \to B \text{ s.t.}$ $A \to B \text{ s.t.}$

Cone(D) of cones over D.

Note that $A \mapsto \triangle A$ is a functor $\mathcal{C} \to [J,\mathcal{C}]$ and Cone(D) is in fact the category $(\triangle \downarrow D)$.

A cocone over $D: J \to \mathcal{C}$ is a cone over $D: J^{op} \to \mathcal{C}^{op}$. We write Cocone(D) for the category of cocones over D.

- **Definition 4.2.** i. A **limit** (resp. **colimit**) for a diagram $D: J \to \mathcal{C}$ is a terminal object of **Cone**(D) (respectively an initial object of **Cocone**(D)).
 - ii. We say C has limits (resp. colimits) of shape J if $\triangle : C \rightarrow [J,C]$ has a right (resp. left) adjoint.

(This is equivalent to making a choice of limit (resp. colimit) for every diagram of shape J).

Definition 4.3 (Pullback). Let J be A diagram of shape J looks like

$$\begin{array}{c} A \\ \downarrow_f. \ A \ cone \ over \ it \ consists \ of \ \ \downarrow_k \ \ \ \\ B \stackrel{g}{\longrightarrow} C \\ Equivalently, \ it's \ a \ pair \ \ \downarrow_k \\ C \end{array} \begin{array}{c} D \stackrel{h}{\longrightarrow} A \\ C \\ Equivalently, \ it's \ a \ pair \ \ \downarrow_k \\ C \end{array} \begin{array}{c} C \\ c \\ c \\ c \\ c \end{array}$$

square.

A universal such pair is called a **pullback** (or **fibre product**); in **Set** it can be defined as $\{(a,b) \in A \times B \mid f(a) = g(b)\}$. A colimit of shape J^{op} is called a pushout.

Theorem 4.4. Let C be a category.

- i. If C has equalisers and all finite (resp. all small) products, then C has all finite (resp. all small) limits.
- ii. If C has pullbacks and a terminal object, then C has all finite limits.

i. Given $D: J \to \mathcal{C}$, first form the products Proof.

$$P = \prod_{j \in \text{ob } J} D(j)$$
 and $Q = \prod_{\alpha \in \text{mor } J} D(\text{cod } \alpha)$

Define $P \xrightarrow{f} Q$ by $\pi_{\alpha} f = \pi_{\operatorname{cod} \alpha} : P \to D(\operatorname{cod} \alpha)$ and $\pi_{\alpha} g = D(\alpha) \circ$ $\pi_{\operatorname{dom}\alpha}: P \to D(\operatorname{dom}\alpha) \to D(\operatorname{cod}\alpha)$, and let $e: E \to P$ be the equaliser of (f,g).

Claim $(E, (\pi_j e \mid j \in \text{ob } J))$ is a limit cone for D. It is a cone since, for any $\alpha: j \to j', D(\alpha)\pi_j e = \pi_\alpha g e = \pi_\alpha f e = \pi_{j'} e.$

Given any cone $(C, (\lambda_j \mid j \in \text{ob } J))$, the λ_j define a unique $\lambda : C \to P$, and $f\lambda = g\lambda$ since $\pi_{\alpha}f\lambda = \pi_{\alpha}g\lambda \ \forall \alpha$. So λ factors uniquely through e.

ii. Let 1 be a terminal object of \mathcal{C} . For any pair of objects (A, B) the pullback

of
$$A$$
 has the universal property of a product $A \times B$, so C $B \longrightarrow 1$

has binary products. Then we can define any finite product $\prod_{i=1}^n A_i$ as $(((A_1 \times A_2) \times A_3) \times \dots) \times A_n.$

So we need to show \mathcal{C} has equalisers. Given $A \xrightarrow{f} B$, consider the

It consists of
$$\downarrow_k$$
 satisfying $1_A h = 1_A k$ and $fh = gk$, and uni-

versal among such.

But this forces h = k, and h has the universal property of an equaliser for (f, g). So by (i), C has all finite limits.

Definition 4.5. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say F preserves limits of shape J if, given $D: J \to \mathcal{C}$ and a limit cone $(L, (\lambda_j: j \in \text{ob } J))$ for D, the cone $(FL, (F\lambda_j: j \in \text{ob } J))$ is a limit for $FD: J \to \mathcal{D}$.
- b. We say F reflects limits of shape J if, given $D: J \to \mathcal{C}$ and a cone $(L,(\lambda_j))$ such that $(FL,(F\lambda_j))$ is a limit for FD, then $(L,(\lambda_j))$ is a limit for D.
- c. We say F creates limits of shape J if, given $D: J \to \mathcal{C}$ and a limit $(M, (\mu_j))$ for FD, there exists a cone (L, λ_j) over D whose image is isomorphic to $(M, (\mu_j))$, and any such cone is a limit for D.