Nome: Rogério Marcos Fernandes Neto NUSP: 10284632 Curso: Bacharelado em Ciência da Computação MAC0320 - Introdução à Teoria dos Grafos

LISTA 8

E30. Seja G um grafo simples com n vértices, e seja α a cardinalidade de um conjunto independente máximo de G. Prove que

$$(a)\frac{n}{\alpha} \le \chi(G) \le n - \alpha + 1.$$

(b) Caracterize (diga como são) os grafos G de ordem n tais que $\chi(G) = n - \alpha + 1$.

Solução: a)

Prova. Seja G um grafo de cardinalidade n e seja α a cardinalidade de um conjunto independente máximo de G. Sabemos que existe uma partição $\{X_1, X_2, \dots, X_{\chi(G)}\}$ dos vértices de G em conjuntos independentes. Assim,

$$n = \sum_{i=1}^{\chi(G)} |X_i|$$

$$n \le \sum_{i=1}^{\chi(G)} \alpha$$

$$n \le \chi(G) \cdot \alpha$$

$$\implies \frac{n}{\alpha} \le \chi(G)$$
pois $|X_i| \le \alpha$

Por outro lado, sabemos que com exceção de alguma parte X_j com tamanho α , todas as outras tem tamanho pelo menos 1, isso é, $|X_i| \ge 1$, $i \ne j$. Portanto

$$n = \sum_{i=1}^{\chi(G)} |X_i|$$

$$n = \sum_{i=1, i \neq j}^{\chi(G)} |X_i| + |X_j|$$

$$n \ge \sum_{i=1, i \neq j}^{\chi(G)} 1 + \alpha \qquad \text{pois } |X_i| \ge 1 \text{ para } i \ne j$$

$$n \ge (\chi(G) - 1) + \alpha$$

$$\implies \chi(G) \le n - \alpha + 1$$

b) Grafos dessa forma possuem uma click com $n-\alpha$ vértices e outros α vértices se conectam com todos os vértices da click mas não com eles mesmos. Mais formalmente, um grafo G=(V,A) dessa forma é definido por

$$V := \{v_1, \dots, v_n\}$$
$$A := \{\{v_i v_j\} : i, j < \alpha \text{ ou } i < \alpha, j \ge \alpha\}$$

Note que dessa forma os $n-\alpha$ primeiros vértices formam uma click e os α ultimos vértices formam um conjunto independente de tamanho α . Portanto, se particionarmos V no menor número de componentes independentes possível, teremos uma componente de tamanho α e $\chi(G)-1$ componentes de tamanho 1. Por construção, não existe outra opção de componentes de tamanho $\chi(G)$. Portanto temos que

$$n = \chi(G) - 1 + \alpha \implies \chi(G) = n - \alpha + 1$$

E31. Seja G um grafo de ordem n. Prove, por indução em n, que $\chi(G) + \chi(\bar{G}) \leq n+1$.

Solução:

Prova. Seja G um grafo de ordem n. Por indução em n iremos mostrar que $\chi(G) + \chi(\bar{G}) \leq n+1$. Base: Suponha n=1. Nesse caso, claramente tanto G quando \bar{G} são coloridos com uma única cor e portanto temos que $\chi(G) + \chi(\bar{G}) = 1 + 1 \leq n+1$.

Passo: Suponha agora que ≥ 2 e que a afirmação vale para grafos com até n-1 vértices. Seja v um vértice qualquer de G e seja H:=G-v. Como |V(H)|=n-1 então, por hipótese, sabemos que $\chi(H)+\chi(\bar{H})\leq (n-1)+1=n$. Sejam $\{X_1,\ldots,X_k\}$ e $\{X_1',\ldots,X_{k'}'\}$ colorações de H e \bar{H} respectivamente.

a) Se $\chi(H) + \chi(\bar{H}) \leq n - 1$ podemos atribuir a v uma cor distinta das k cores utilizadas em H, e outra cor distinta das k' cores utilizadas em \bar{H} . Assim obtemos as colorações $\{\{v\}, X_1, \ldots, X_k\}$ e $\{\{v\}X_1', \ldots, X_{k'}'\}$ para G e G' respectivamente. Portanto

$$\chi(G) + \chi(\bar{G}) = (\chi(H) + 1) + (\chi(\bar{H}) + 1) \le n - 1 + 2 = n + 1$$

b) Se $\chi(H) + \chi(\bar{H}) = n$, então afirmo que se for atribuída uma nova cor a v para colorir G então não será atribuída uma nova cor para colorir v em \bar{G} e vice-versa. De fato, suponha que sejam atribuídas novas cores para v em ambas as colorações. Então temos que $g_H(v) \geq k$ e $g_{\bar{H}}(v) \geq k'$. Mas sabemos também que $g_H(v) + g_{\bar{H}}(v) = n - 1$. Portanto, temos que

$$\chi(H) + \chi(\bar{H}) = k + k' \le g_H(v) + g_{\bar{H}}(v) = n - 1$$

o que contradiz nossa hipótese. Portanto sabemos que $\chi(G) + \chi(\bar{G}) \leq \chi(H) + \chi(\bar{H}) + 1 = n + 1$.

Portanto, pelo princípio da indução, a afirmação vale.

E32. Seja G um grafo que tem uma coloração própria (de seus vértices) na qual toda cor é usada pelo menos 2 vezes. Mostre que que G que tem uma coloração (de seus vérties) com $\chi(G)$ cores que tem essa mesma propriedade.

Solução:

Prova. Seja G um grafo que possui uma coloração própria $C = \{X_1, \ldots, X_k\}$ onde toda cor é usada pelo menos duas vezes. Seja $C' = \{X'_1, \ldots, X'_{k'}\}$ uma coloração qualquer de G com $\chi(G) = k'$ cores. Se todas as cores de C' são utilizadas duas vezes então não há o que mostrar. Portanto, suponha que exista pelo menos uma cor que possui um único vértice. Iremos repetir o seguinte procedimento a fim de adequar a coloração C':

- a) Tome v um vértice que seja o único de sua cor. Caso não exista tal vértice, pare.
- b) Seja X_j o conjunto de vértices que tem a mesma cor que v em C
- c) Pinte com a mesma cor de v em C' todos vértices de X_j .

Alguns fatos:

- 1. Note que o conjunto de vértices de X_j podem ser pintados com a mesma cor de v uma vez que v era o único de sua cor e todo vértice em X_j não é adjacente.
- 2. Vértices que ja foram repintados não serão repintados novamente, pois como vimos, todos os vértices de X_j foram pintados com a mesma cor e, como $|X_j| \ge 2$, não existem vértices solitários pertecentes a X_j .
- 3. A quantidade de cores não é alterada pois são utilizadas cores ja presentes nos vértices.
- 4. G é finito.

Devido a esses fatos o algoritmo para e o algoritmo está correto.

E33. Sejam I_1, I_2, \ldots, I_n intervalos fechados na reta real. Seja G o grafo simples com vértices v_1, v_e, \ldots, v_n tal que para todo i, j,

$$v_i$$
 é adjacente a v_j se e só se $I_i \cap I_j \neq \emptyset$

Mostre que $\chi(G) = \omega(G)$. (Lembramos que uma *clique* é um subgrafo completo, e $\omega(G)$ denora a cardinalidade de uma clique máxima em G) **Sugestão:** indução em n. Remova um intervalo que tem o menor extremo superior.

OBS: O grafo G acima definido é chamado de grafo de intervalos.

Solução:

Prova. Seja G um grafo de intervalos de ordem n.

Base: Suponha n=1. Nesso caso é claro que $\chi(G)=\omega(G)=1$ e portanto a afirmação vale.

Passo: Suponha $n \geq 2$ e que a afirmação vale para grafos de intervalos de ordem até n-1. Seja I_j um intervalo com menor extremo inferior e seja $H := G - v_j$. Por hipótese temos que $\chi(H) = \omega(H)$, e portanto existe uma coloração $\{X_1, \ldots, X_k\}$ dos vértices de H. Temos duas situações:

- a) $\omega(G) = \omega(H) + 1$. Nessa caso, basta atribuir uma nova cor a v_j diferente das k cores utilizadas em H. Assim, $\{v_j, X_1, \ldots, X_k\}$ é uma coloração para G com $\chi(G) = k + 1 = \omega(H) + 1 = \omega(G)$ cores.
- b) $\omega(G) = \omega(H)$. Nesse caso, v_j tem, no máximo, $\omega(G) 1$ vizinhos. De fato, como I_j tem extremo superior mínimo, então todo intervalo que intersecta I_j deve conter seu extremo superior. Caso contrário teríamos um intervalo com extremo superior menor que de I_j . Mas então v_j e seus vizinhos formam uma clique, pois todo intervalo I_i que intersecta I_j tem como ponto comum o extremo superior de I_j . Como sabemos que a maior clique tem tamanho $\omega(G)$, então I_j tem no máximo $\omega(G) 1$ vizinhos. Portanto, basta atribuir a v_j uma cor distinta daquela de seus vizinhos. Assim, é possível colorir G com $\omega(G)$ cores.

Portanto, pelo princípio da indução afirmação vale.

B7. Seja G um grafo tal que todo par de circuitos ímpares tem (pelo menos) um vértice em comum. Mostre que que G tem uma 5-coloração.

Solução:

Prova. Seja G um grafo tal que todo par de circuitos ímpares tem pelo menos um vértice em comum. Seja G um circuito ímpar qualquer em G e seja H:=G-C. Como todo circuito ímpar em G tem pelo menos um vértice em comum com G, então G não tem circuitos ímpares. Portanto G é impared. Dessa forma, é possível colorir G como G é um circuito impar então possível colorir G como G é um circuito impar então possível colorir G como G digamos G0 em conjuntos independentes, pois G1 apenas acrescenta arestas que ligam G2 h e não arestas que ligam G3 h e não arestas que ligam G4 h e não arestas que ligam G6. Dessa forma, a independencia entre os conjuntos é mantida.