Macroeconomia Aberta e DSGE: Fundamentos, Estimação e Aplicações

Modelo Novo Keynesiano em economia aberta

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Política monetária em uma economia

pequena aberta

Nos modelos anteriores, trabalhamos apenas com variáveis reais.

Nos modelos anteriores, trabalhamos apenas com variáveis reais. Mas, para compreendermos o efeito da política monetária em uma economia pequena aberta, precisamos alterar a estrutura do modelo.

Nos modelos anteriores, trabalhamos apenas com variáveis reais. Mas, para compreendermos o efeito da política monetária em uma economia pequena aberta, precisamos alterar a estrutura do modelo.

 Trabalharemos com o modelo desenvolvido por Gali and Monacelli (2005) (uma versão simplificada é desenvolvida no capítulo 8 de Galí (2008)).

Mundo: um contínuo de economias pequenas.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.
 - Bens domésticos são exportados,

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.
 - Bens domésticos são exportados, bens estrangeiros são importados.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.
 - Bens domésticos são exportados, bens estrangeiros são importados.
- Competição monopolística, preços rígidos.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.
 - Bens domésticos são exportados, bens estrangeiros são importados.
- Competição monopolística, preços rígidos.
- Lei do preço único: pass-through completo.

- Mundo: um contínuo de economias pequenas.
- Economia pequena: efeito desprezível sobre o resto do mundo.
- Apenas bens transacionáveis.
 - Bens domésticos são exportados, bens estrangeiros são importados.
- Competição monopolística, preços rígidos.
- Lei do preço único: pass-through completo.
- Mercados financeiros internacionais completos.

Famílias

As famílias possuem preferências acerca do consumo total (C),

As famílias possuem preferências acerca do consumo total (C), que é resultado da combinação dos bens consumidos e produzidos domesticamente ($C_{h,t}$)

As famílias possuem preferências acerca do consumo total (C), que é resultado da combinação dos bens consumidos e produzidos domesticamente ($C_{h,t}$) e dos bens consumidos e produzidos internacionalmente ($C_{f,t}$):

As famílias possuem preferências acerca do consumo total (C), que é resultado da combinação dos bens consumidos e produzidos domesticamente ($C_{h,t}$) e dos bens consumidos e produzidos internacionalmente ($C_{f,t}$):

$$C_t \equiv \left[\left(1 - lpha
ight)^{rac{1}{\eta}} \left(C_{H,t}
ight)^{rac{\eta-1}{\eta}} + lpha^{rac{1}{\eta}} \left(C_{F,t}
ight)^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}},$$

As famílias possuem preferências acerca do consumo total (C), que é resultado da combinação dos bens consumidos e produzidos domesticamente ($C_{h,t}$) e dos bens consumidos e produzidos internacionalmente ($C_{f,t}$):

$$\mathcal{C}_t \equiv \left[\left(1-lpha
ight)^{rac{1}{\eta}} \left(\mathcal{C}_{H,t}
ight)^{rac{\eta-1}{\eta}} + lpha^{rac{1}{\eta}} \left(\mathcal{C}_{F,t}
ight)^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}},$$

onde

$$C_{H,t} \equiv \left(\int_0^1 C_{H,t}(j)^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}; \qquad C_{F,t} \equiv \left(\int_0^1 \left(C_{i,t}\right)^{\frac{\gamma-1}{\gamma}} di\right)^{\frac{\gamma}{\gamma-1}},$$

com eta>0 mede a substituibilidade entre bens domésticos e importados, $\alpha\in[0,1]$ representa o grau de "home bias" e $\epsilon>1$ é a elasticidade de substituição entre bens domésticos e estrangeiros.

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo e às horas trabalhadas (N),

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo e às horas trabalhadas (N),

$$E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right),$$

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo e às horas trabalhadas (N),

$$E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right),$$

sujeita à seguinte restrução orçamentária:

$$\int_0^1 P_{H,t}(j) C_{H,t}(j) dj + \int_0^1 \int_0^1 P_{i,t}(j) C_{i,t}(j) dj di + \mathbb{E}_t \{ Q_{t,t+1} B_{t+1} \} \leq B_t + W_t N_t + T_t$$

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

 Parte 1: alocação intratemporal (quanto consumir de cada bem, dado o nível de consumo total);

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

- Parte 1: alocação intratemporal (quanto consumir de cada bem, dado o nível de consumo total);
- Parte 2: alocação intertemporal (quanto consumir e trabalhar).

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

$$C_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}}\right)^{-\varepsilon} C_{H,t}; \quad C_{i,t}(j) = \left(\frac{P_{i,t}(j)}{P_{i,t}}\right)^{-\varepsilon} C_{i,t}$$

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

$$C_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}}\right)^{-\varepsilon} C_{H,t}; \quad C_{i,t}(j) = \left(\frac{P_{i,t}(j)}{P_{i,t}}\right)^{-\varepsilon} C_{i,t}$$

onde $P_{H,t} \equiv \left(\int_0^1 P_{H,t}(j)^{1-\varepsilon} \, dj\right)^{\frac{1}{1-\varepsilon}}$ representa o índice de preços com bens domésticos

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

$$C_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}}\right)^{-\varepsilon} C_{H,t}; \quad C_{i,t}(j) = \left(\frac{P_{i,t}(j)}{P_{i,t}}\right)^{-\varepsilon} C_{i,t}$$

onde $P_{H,t} \equiv \left(\int_0^1 P_{H,t}(j)^{1-\varepsilon}\,dj\right)^{\frac{1}{1-\varepsilon}}$ representa o índice de preços com bens domésticos e $P_{i,t} \equiv \left(\int_0^1 P_{i,t}(j)^{1-\varepsilon}\,dj\right)^{\frac{1}{1-\varepsilon}}$ é o índice de preços com bens importados.

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

$$C_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}}\right)^{-\varepsilon} C_{H,t}; \quad C_{i,t}(j) = \left(\frac{P_{i,t}(j)}{P_{i,t}}\right)^{-\varepsilon} C_{i,t}$$

onde $P_{H,t} \equiv \left(\int_0^1 P_{H,t}(j)^{1-\varepsilon}\,dj\right)^{\frac{1}{1-\varepsilon}}$ representa o índice de preços com bens domésticos e $P_{i,t} \equiv \left(\int_0^1 P_{i,t}(j)^{1-\varepsilon}\,dj\right)^{\frac{1}{1-\varepsilon}}$ é o índice de preços com bens importados. Temos também que:

$$\int_0^1 P_{H,t}(j) \ C_{H,t}(j) \ dj = P_{H,t} \ C_{H,t} \ e \ \int_0^1 P_{i,t}(j) \ C_{i,t}(j) \ dj = P_{i,t} \ C_{i,t}.$$

Parte 1: a alocação ótima e as curvas de demanada por tipo de bem

Ao combinarmos as curvas de demanda individuais de cada bem, obtemos:

Parte 1: a alocação ótima e as curvas de demanada por tipo de bem

Ao combinarmos as curvas de demanda individuais de cada bem, obtemos:

$$C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t}\right)^{-\eta} C_t; \qquad C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t}\right)^{-\eta} C_t$$

Parte 1: a alocação ótima e as curvas de demanada por tipo de bem

Ao combinarmos as curvas de demanda individuais de cada bem, obtemos:

$$C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t}\right)^{-\eta} C_t; \qquad C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t}\right)^{-\eta} C_t$$

onde $P_t \equiv \left[(1-\alpha)(P_{H,t})^{1-\eta} + \alpha(P_{F,t})^{1-\eta} \right]^{\frac{1}{1-\eta}}$ é o índice de preços ao consumidor.

Parte 2: reescrevendo a restrição orçamentária

Dado que o total consumido pelas famílias domésticas será de $P_{H,t}C_{H,t} + P_{F,t}C_{F,t} = P_tC_t$, temos que:

Parte 2: reescrevendo a restrição orçamentária

Dado que o total consumido pelas famílias domésticas será de $P_{H,t}C_{H,t} + P_{F,t}C_{F,t} = P_tC_t$, temos que:

$$P_t C_t + \mathbb{E}_t \{ Q_{t,t+1} B_{t+1} \} \le B_t + W_t N_t + T_t.$$

A equação da oferta de trabalho é dada por:

A equação da oferta de trabalho é dada por:

$$C_t^{\sigma} N_t^{\varphi} = \frac{W_t}{P_t}$$

A equação da oferta de trabalho é dada por:

$$C_t^{\sigma} N_t^{\varphi} = \frac{W_t}{P_t}$$

Podemos obter a equação de Euler da seguinte forma:

A equação da oferta de trabalho é dada por:

$$C_t^{\sigma} N_t^{\varphi} = \frac{W_t}{P_t}$$

Podemos obter a equação de Euler da seguinte forma:

$$\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \left(\frac{P_t}{P_{t+1}}\right) = Q_{t,t+1} \iff$$

A equação da oferta de trabalho é dada por:

$$C_t^{\sigma} N_t^{\varphi} = \frac{W_t}{P_t}$$

Podemos obter a equação de Euler da seguinte forma:

$$\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \left(\frac{P_t}{P_{t+1}}\right) = Q_{t,t+1} \iff$$

$$\beta R_t \mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \left(\frac{P_t}{P_{t+1}}\right) \right\} = 1 \iff$$

A equação da oferta de trabalho é dada por:

$$C_t^{\sigma} N_t^{\varphi} = \frac{W_t}{P_t}$$

Podemos obter a equação de Euler da seguinte forma:

$$\begin{split} \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) &= Q_{t,t+1} \iff \\ \beta R_t \mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) \right\} &= 1 \iff \\ \mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{\beta R_t}{\Pi_{t+1}} \right) \right\} &= 1 \\ \text{com } R_t &= \frac{1}{\mathbb{E}_t \{ Q_{t,t+1} \}} \text{ sendo o retorno bruto do título.} \end{split}$$

11

Integração econômica: comércio

internacional e fluxo de capitais

Ao definirmos que os termos de troca bilaterais sejam dados por $S_{i,t} = \frac{P_{i,t}}{P_{H,t}}$, temos que os termos de troca efetivos são dados por:

Ao definirmos que os termos de troca bilaterais sejam dados por $S_{i,t} = \frac{P_{i,t}}{P_{H\,t}}$, temos que os termos de troca efetivos são dados por:

$$S_t \equiv \frac{P_{F,t}}{P_{H,t}} = \left(\int_0^1 S_{i,t}^{1-\gamma} di\right)^{\frac{1}{1-\gamma}}.$$

No equilíbrio simétrico, temos que $s_{i,t}=1, \forall i\in [0,1]$. Ao log-linearizarmos os termos de troca efetivos, temos:

No equilíbrio simétrico, temos que $s_{i,t}=1, \forall i\in[0,1]$. Ao log-linearizarmos os termos de troca efetivos, temos:

$$s_t \equiv \log S_t = p_{F,t} - p_{H,t} = \int_0^1 s_{i,t} \, di$$

No equilíbrio simétrico, temos que $s_{i,t}=1, \forall i\in[0,1]$. Ao log-linearizarmos os termos de troca efetivos, temos:

$$s_t \equiv \log S_t = p_{F,t} - p_{H,t} = \int_0^1 s_{i,t} \, di$$

Assim como é importante log-linearizar outras definições:

No equilíbrio simétrico, temos que $s_{i,t}=1, \forall i\in[0,1]$. Ao log-linearizarmos os termos de troca efetivos, temos:

$$s_t \equiv \log S_t = p_{F,t} - p_{H,t} = \int_0^1 s_{i,t} \, di$$

Assim como é importante log-linearizar outras definições:

$$p_t \equiv (1 - \alpha)p_{H,t} + \alpha p_{F,t} = p_{H,t} + \alpha s_t,$$

No equilíbrio simétrico, temos que $s_{i,t}=1, \forall i\in[0,1]$. Ao log-linearizarmos os termos de troca efetivos, temos:

$$s_t \equiv \log S_t = p_{F,t} - p_{H,t} = \int_0^1 s_{i,t} \, di$$

Assim como é importante log-linearizar outras definições:

$$p_t \equiv (1 - \alpha)p_{H,t} + \alpha p_{F,t} = p_{H,t} + \alpha s_t,$$

е

$$\pi_t = \pi_{H,t} + \alpha \Delta s_t.$$

Defina $\mathcal{E}_{i,t}$ como a taxa de câmbio bilateral nominal entre a economia doméstica e o país i

Defina $\mathcal{E}_{i,t}$ como a taxa de câmbio bilateral nominal entre a economia doméstica e o país i e $P_{i,t}^i(j)$ como o preço no país i do produto j expresso na moeda do país i.

Defina $\mathcal{E}_{i,t}$ como a taxa de câmbio bilateral nominal entre a economia doméstica e o país i e $P_{i,t}^i(j)$ como o preço no país i do produto j expresso na moeda do país i. Então, temos:

A lei do preço único vale para todos os bens do tipo j no país i a cada instante de tempo t:

 $P_{i,t}(j) = \mathcal{E}_{i,t}P_{i,t}^i(j), \forall i,j \in [0,1]$ em todo instante de tempo.

Defina $\mathcal{E}_{i,t}$ como a taxa de câmbio bilateral nominal entre a economia doméstica e o país i e $P_{i,t}^i(j)$ como o preço no país i do produto j expresso na moeda do país i. Então, temos:

A lei do preço único vale para todos os bens do tipo j no país i a cada instante de tempo t:

$$P_{i,t}(j) = \mathcal{E}_{i,t}P_{i,t}^i(j), \forall i,j \in [0,1]$$
 em todo instante de tempo. No agregado, temos que $P_{i,t} = \mathcal{E}_{i,t}P_{i,t}^i$, onde $P_{i,t}^i = \left(\int_0^1 P_{i,t}^i(j)^{1-\varepsilon}\,dj\right)^{\frac{1}{1-\varepsilon}}$.

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

$$p_{i,t}^i = \int_0^1 p_{i,t}^i(j) dj.$$

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

$$p_{i,t}^i = \int_0^1 p_{i,t}^i(j) dj.$$

O logaritmo do índice da taxa de câmbio nominal efetiva é dado por:

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

$$p_{i,t}^i = \int_0^1 p_{i,t}^i(j) dj.$$

O logaritmo do índice da taxa de câmbio nominal efetiva é dado por:

$$e_t = \int_0^1 e_{i,t} di$$

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

$$p_{i,t}^i = \int_0^1 p_{i,t}^i(j) dj.$$

O logaritmo do índice da taxa de câmbio nominal efetiva é dado por:

$$e_t = \int_0^1 e_{i,t} di$$

E, finalmente, o índice de preços mundial loglinearizado é:

O índice de preços doméstico loglinearizado para o país i (na moeda do próprio país) é dado por:

$$p_{i,t}^i = \int_0^1 p_{i,t}^i(j) dj.$$

O logaritmo do índice da taxa de câmbio nominal efetiva é dado por:

$$e_t = \int_0^1 e_{i,t} di$$

E, finalmente, o índice de preços mundial loglinearizado é:

$$p_t^* = \int_0^1 p_{i,t}^i di$$

Então, $P_{F,t}$ pode ser loglinearizado em torno de um estado estacionário simétrico como:

Então, $P_{F,t}$ pode ser loglinearizado em torno de um estado estacionário simétrico como:

$$p_{F,t} = \int_0^1 \left(e_{i,t} + p_{i,t}^i \right), di = e_t + p_t^*,$$

Então, $P_{F,t}$ pode ser loglinearizado em torno de um estado estacionário simétrico como:

$$p_{F,t} = \int_0^1 \left(e_{i,t} + p_{i,t}^i \right)$$
 , $di = e_t + p_t^*$,

E, combinando com a definição loglinearizada dos termos de troca, obtemos:

$$s_t = e_t + p_t^* - p_{H,t}.$$

A taxa de câmbio real bilateral com o país i é definida como:

A taxa de câmbio real bilateral com o país i é definida como:

$$Q_{i,t} \equiv \frac{\mathcal{E}_{i,t} P_t^i}{P_t},$$

A taxa de câmbio real bilateral com o país i é definida como:

$$Q_{i,t} \equiv \frac{\mathcal{E}_{i,t} P_t^i}{P_t},$$

Temos que o o logaritmo da taxa de câmbio real efetiva é dado por:

$$q_t = \int_0^1 q_{i,t} di,$$

A taxa de câmbio real bilateral com o país i é definida como:

$$Q_{i,t} \equiv \frac{\mathcal{E}_{i,t} P_t^i}{P_t},$$

Temos que o o logaritmo da taxa de câmbio real efetiva é dado por:

$$q_t = \int_0^1 q_{i,t} di,$$

е

$$q_t = \int_0^1 \left(e_{i,t} + p_t^i - p_t \right) di = e_t + p_t^* - p_t = s_t + p_{H,t} - p_t = (1 - \alpha) s_t$$

Compartilhamento de risco internacional

Compartilhamento de risco internacional

Podemos escrever a equação de Euler do país *i* (expressa na moeda doméstica) como:

$$\mathbb{E}_t \beta \left(\frac{C_{t+1}^i}{C_t^i} \right)^{-\sigma} \left(\frac{\mathcal{E}_{i,t} P_t^i}{\mathcal{E}_{i,t+1} P_{t+1}^i} \right) = \mathbb{E}_t Q_{t,t+1}.$$

Combinando a equação acima com a equação de Euler das famílias da economia doméstica (e assumindo posição líquida de ativos externos igual a zero e um ambiente ex ante idêntico), temos:

$$C_t = C_t^i \mathcal{Q}_{i,t}^{\frac{1}{\sigma}}$$

Compartilhamento de risco internacional

Log-linearizando e agregando $(c_t^* = \int_0^1 c_t^i di)$ sobre i, obtemos:

$$c_t = c_t^* + rac{1}{\sigma}q_t = c_t^* + \left(rac{1-lpha}{\sigma}
ight)s_t.$$

Ou seja, sob a hipótese de mercados internacionais de ativos completos, os níveis de consumo entre países se igualam, dado o nível dos termo de troca.

Paridade descoberta dos juros (UIP)

Ao permitirmos que as famílias invistam tanto em títulos domésticos (B_t) quanto em títulos estrangeiros (B_t^*) , A restrição orçamentária pode ser reescrita como:

$$P_{t}C_{t} + Q_{t,t+1}B_{t+1} + Q_{t,t+1}^{*}\mathcal{E}_{t}B_{t+1}^{*} \leq B_{t} + \mathcal{E}_{t}B_{t}^{*} + W_{t}N_{t} + T_{t}.$$

As condições de otimalidade com respeito a esses ativos são:

$$\beta \mathbb{E}_t \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) = Q_{t,t+1},$$

е

$$\beta \mathbb{E}_t \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \left(\frac{P_t}{P_{t+1}} \right) \left(\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \right) = Q_{t,t+1}^*.$$

Paridade descoberta dos juros (UIP)

Ao combinarmos esses resultados, temos:

$$\mathbb{E}_t \left[\frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \right] = \frac{Q_{t,t+1}^*}{Q_{t,t+1}},$$

cuja forma loglinear familiar é:

$$i_t = i_t^* + \mathbb{E}_t \left[\Delta e_{t+1} \right]$$

Paridade descoberta dos juros (UIP)

Combinando o resultado anterior com a definição dos termos de troca, obtemos:

$$s_t = \mathbb{E}_t \sum_{k=0}^{\infty} \left[(i_{t+k}^* - \pi_{t+k+1}^*) - (i_{t+k} - \pi_{H,t+k+1}) \right].$$

Ou seja, no modelo, os termos de troca representam a soma esperada da diferença entre as taxas de juros reais.

Empresas

O lado da oferta segue exatamente a mesma estrutura do modelo Novo-Keynesiano básico:

• Retornos constantes à escala ($Y_t = A_t N_t$).

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.
- Rigidez nominal de preço:

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.
- Rigidez nominal de preço: o preço fixado pelas firmas é o preço doméstico $P_{H,t}(j)$ (índice de preços da produção doméstica).

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.
- Rigidez nominal de preço: o preço fixado pelas firmas é o preço doméstico P_{H,t}(j) (índice de preços da produção doméstica).
 Portanto, o custo marginal é dado por:

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.
- Rigidez nominal de preço: o preço fixado pelas firmas é o preço doméstico P_{H,t}(j) (índice de preços da produção doméstica).
 Portanto, o custo marginal é dado por: mc_t = w_t p_{H,t} a_t.

O lado da oferta segue exatamente a mesma estrutura do modelo Novo-Keynesiano básico:

- Retornos constantes à escala $(Y_t = A_t N_t)$.
- Concorrência monopolística.
- Rigidez nominal de preço: o preço fixado pelas firmas é o preço doméstico P_{H,t}(j) (índice de preços da produção doméstica).
 Portanto, o custo marginal é dado por: mc_t = w_t p_{H,t} a_t.

A precificação à Calvo também se aplica neste caso:

$$\bar{p}_{H,t} = \mu + (1 - \beta\theta) \mathbb{E}_t \sum_{k=0}^{\infty} (\beta\theta)^k (mc_{t+k} + p_{H,t+k}),$$

onde $\bar{p}_{H,t}$ denota o preço definido pelas firmas autorizadas a reajustar.

Equilíbrio nos mercados

O total de bens produzidos domesticamente é dado por:

$$\underbrace{Y_t(j)}_{\text{Produção do bem }j} = \underbrace{C_{H,t}(j)}_{\text{demanda doméstica do bem }j} + \underbrace{\int_0^1 C_{H,t}^i(j) di}_{\text{exportações do bem }j \text{ para cada país}}$$

Note que, devido à estrutura aninhada da demanda, a demanda pelo bem doméstico j no país i é dada por:

$$C_{H,t}^{i}(j) = \alpha \left(\frac{P_{H,t}(j)}{P_{H,t}}\right)^{-\varepsilon} \left(\frac{P_{H,t}}{\mathcal{E}_{i,t}P_{F,t}^{i}}\right)^{-\gamma} \left(\frac{P_{F,t}^{i}}{P_{t}^{i}}\right)^{-\eta} C_{t}^{i}$$

$$\begin{split} Y_t &\equiv \left[\int_0^1 Y_t(j)^{1-\frac{1}{\varepsilon}} \, dj \right]^{\frac{\varepsilon}{\varepsilon-1}} \\ &= (1-\alpha) \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} C_t + \alpha \int_0^1 \left(\frac{P_{H,t}}{\mathcal{E}_{i,t} P_{F,t}^i} \right)^{-\gamma} \left(\frac{P_{F,t}^i}{P_t^i} \right)^{-\eta} C_t^i \, di \\ &= \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} \left[(1-\alpha) C_t + \alpha \int_0^1 \left(\frac{\mathcal{E}_{i,t} P_{F,t}^i}{P_{H,t}} \right)^{\gamma-\eta} \mathcal{Q}_{i,t}^{\eta} C_t^i \, di \right] \\ &= \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} C_t \left[(1-\alpha) + \alpha \int_0^1 \left(S_t^i S_{i,t} \right)^{\gamma-\eta} \mathcal{Q}_{i,t}^{\eta-\frac{1}{\sigma}} \, di \right] \end{split}$$

Assuma uma função Cobb-Douglas e que $\sigma=\eta=\gamma=1$. Nesse caso especial, temos:

$$Y_t = S_t^{\alpha} C_t$$
.

Note que, no nível mundial, os termos de troca são unitários, ou seja, $\int_0^1 s_t^i di = 0$. A aproximação loglinear da equação em torno do estado estacionário simétrico é a seguinte:

$$y_t = c_t + \alpha \gamma s_t + \alpha \left(\eta - \frac{1}{\sigma} \right) q_t = c_t + \frac{\alpha \omega}{\sigma} s_t$$

onde $\omega \equiv \sigma \gamma + (1 - \alpha)(\sigma \eta - 1)$. Agregando, temos:

$$y_t^* \equiv \int_0^1 y_t^i di = \int_0^1 c_t^i di + \frac{\alpha \omega}{\sigma} \int_0^1 s_t^i di = \int_0^1 c_t^i di \equiv c_t^*.$$

Combinando as equações anteriores para expressar o produto y_t em termos da demanda mundial e dos termos de troca, obtemos:

$$\begin{aligned} y_t &= y_t^* + \frac{1}{\sigma_\alpha} s_t \\ \text{onde } \sigma_\alpha &\equiv \frac{\sigma}{1 + \alpha(\omega - 1)} > 0. \text{ Finalmente,} \\ y_t &= \mathbb{E}_t y_{t+1} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1} - \rho) - \frac{\alpha \omega}{\sigma} \mathbb{E}_t \Delta s_{t+1} \\ &= \mathbb{E}_t y_{t+1} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{H,t+1} - \rho) - \frac{\alpha \Theta}{\sigma} \mathbb{E}_t \Delta s_{t+1} \\ &= \mathbb{E}_t y_{t+1} - \frac{1}{\sigma_\alpha} (i_t - \mathbb{E}_t \pi_{H,t+1} - \rho) + \alpha \Theta \mathbb{E}_t \Delta y_{t+1}^* \end{aligned}$$

• Sensibilidade à taxa real: σ_{α} (economia aberta) $< \sigma$ (economia fechada) no caso em que $\omega > 1$, ou seja, quando η e γ são elevados.

- Sensibilidade à taxa real: σ_{α} (economia aberta) $< \sigma$ (economia fechada) no caso em que $\omega > 1$, ou seja, quando η e γ são elevados.
- Ou seja,

- Sensibilidade à taxa real: σ_{α} (economia aberta) $< \sigma$ (economia fechada) no caso em que $\omega > 1$, ou seja, quando η e γ são elevados.
- Ou seja, (i) o efeito direto de um aumento da taxa de juros real sobre a demanda agregada é amplificado pela apreciação cambial induzida (e a consequente substituição em direção aos bens estrangeiros); (ii) esse efeito é atenuado pela depreciação real esperada (quando a inflação pelo IPC é maior do que a inflação doméstica), o que reduz o impacto sobre a taxa real de juros relevante para consumo: $i_t \mathbb{E}_t \pi_{t+1}$ em relação a $i_t \mathbb{E}_t \pi_{H,t+1}$.
- Sensibilidade ao crescimento internacional:

$$\Theta \equiv (\sigma\gamma-1)+(1-\alpha)(\sigma\eta-1)=\omega-1 \text{ \'e positivo se } \eta \text{ e } \gamma$$
 forem altos (em relação a σ).

Balança Comercial

No caso da função Cobb-Douglas ($\omega=0$), temos:

$$P_{H,t}Y_t = P_tC_t, \quad t > 0,$$

Balança Comercial

No caso da função Cobb-Douglas ($\omega=0$), temos:

$$P_{H,t}Y_t = P_tC_t, \quad t > 0,$$

o que implica que a balança comercial, definida por

$$nx_t \equiv \left(\frac{1}{Y}\right) \left(Y_t - \frac{P_t}{P_{H,t}}C_t\right),$$

A log-linearização resulta em:

$$nx_t = y_t - c_t - \alpha s_t = \alpha \left(\frac{\omega}{\sigma} - 1\right) s_t.$$

Assim, o sinal das exportações líquidas é ambíguo e depende das elasticidades de substituição.

A condição de equilíbrio no mercado de trabalho é dada por:

A condição de equilíbrio no mercado de trabalho é dada por:

$$N_t \equiv \int_0^1 N_t(j) \; dj = \frac{Y_t}{A_t} \int_0^1 \left(\frac{P_t(j)}{P_t} \right)^{-\epsilon} dj.$$

Log-linearização:

$$y_t = a_t + n_t$$

A precificação à la Calvo implica em:

A condição de equilíbrio no mercado de trabalho é dada por:

$$N_t \equiv \int_0^1 N_t(j) \; dj = rac{Y_t}{A_t} \int_0^1 \left(rac{P_t(j)}{P_t}
ight)^{-\epsilon} dj.$$

Log-linearização:

$$y_t = a_t + n_t$$

A precificação à la Calvo implica em:

$$\pi_{H,t} = \beta \mathbb{E}_t \pi_{H,t+1} + \frac{(1 - \beta \theta)(1 - \theta)}{\theta} \hat{mc}_t$$
 (9.27)

onde o coeficiente de sensibilidade da inflação ao custo marginal é dado por $\lambda \equiv \frac{(1-\beta\theta)(1-\theta)}{\theta}.$

O sistema dinâmico log-linearizado

Equações (1/5)

$$w - p_t = \sigma c_t + \varphi n_t$$

$$\pi_t = \pi_{ht} + \alpha (s_t - s_{t-1})$$

$$s_t = s_{t-1} + e_t - e_{t-1} - \pi_{ht}$$

$$y_t = n_t + a_t$$

Equações (2/5)

$$\begin{aligned} y_t &= c_t + s_t \, \frac{\alpha \, \left(\sigma \, \gamma + (1 - \alpha) \, \left(\sigma \, \eta - 1\right)\right)}{\sigma} \\ \\ y_t &= {y^*}_t + s_t \, \frac{1}{\frac{\sigma}{1 - \alpha + \alpha \, \left(\sigma \, \gamma + (1 - \alpha) \, \left(\sigma \, \eta - 1\right)\right)}} \\ \\ nx_t &= s_t \, \alpha \, \left(\frac{\sigma \, \gamma + (1 - \alpha) \, \left(\sigma \, \eta - 1\right)}{\sigma} - 1\right) \end{aligned}$$

Equações (3/5)

$$x_t = y_t - \bar{y}_t$$

$$\bar{y}_t = a_t \, \tfrac{1+\varphi}{\varphi + \tfrac{\varphi}{1-\alpha+\alpha\,(\sigma\,\gamma + (1-\alpha)\,(\sigma\,\eta - 1))}} + y^*{}_t \, \alpha \, \tfrac{\frac{\varphi}{1-\alpha+\alpha\,(\sigma\,\gamma + (1-\alpha)\,(\sigma\,\eta - 1))}\,(-((1-\alpha)\,(\sigma\,\eta - 1) + \sigma\,\gamma - 1))}{\varphi + \tfrac{\varphi}{1-\alpha+\alpha\,(\sigma\,\gamma + (1-\alpha)\,(\sigma\,\eta - 1))}}$$

$$\pi_{ht} = \beta \, \pi_{ht+1} + x_t \, \frac{(1-\beta \, \theta) \, (1-\theta)}{\theta} \, \left(\phi + \frac{\sigma}{1-\alpha + \alpha \, (\sigma \, \gamma + (1-\alpha) \, (\sigma \, \eta - 1))} \right)$$

$$x_t = x_{t+1} - \left(r_t - \pi_{h_{t+1}} - \overline{r}_t\right) \left(\frac{\sigma}{1 - \alpha + \alpha \left(\sigma \gamma + \left(1 - \alpha\right) \left(\sigma \eta - 1\right)\right)}\right)^{(-1)}$$

Equações (4/5)

$$\vec{r}_t = \mathbf{a}_t \; \left(1 - \rho_s\right) \; \frac{1 + \varphi}{\varphi + \frac{1}{1 + \alpha(\sigma + \gamma(\tau + 1) + \alpha(\sigma + \gamma)}} \left(- \left(\frac{\sigma}{1 - \alpha + \alpha(\sigma + \gamma(\tau + 1) + \alpha(\sigma + \gamma))}\right) \right) + \left(\mathbf{y}^*_{t+1} - \mathbf{y}^*_{t}\right) \; \alpha \\ \frac{\sigma}{1 - \alpha + \alpha(\sigma + \gamma(\tau + 1) + \alpha(\sigma + \gamma))} \left(\left(1 - \alpha\right) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1 + \frac{\frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left(- \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma \eta - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1 - \alpha(\sigma + \gamma)} \left((1 - \alpha) \; \left(\sigma - 1\right) + \sigma \; \gamma - 1\right) + \frac{\sigma}{1$$

$$a_t = \rho_a a_{t-1} + \varepsilon^a_{\ t}$$

$$y^*_t = \rho_y y^*_{t-1} + \varepsilon^*_t$$

$$\pi^*_{t} = 0$$

Equações (5/5)

$$r_t = \pi_t \phi_{\pi}$$

$$\pi_t = p_t - p_{t-1}$$

$$\pi_{ht} = p_{ht} - p_{ht-1}$$

Definições auxiliares sobre parâmetros (1/2)

$$\rho = \beta^{(-1)} - 1$$

$$\omega = \sigma \gamma + (1 - \alpha) (\sigma \eta - 1)$$

$$\sigma_{-}a = \frac{\sigma}{1 - \alpha + \alpha (\sigma \gamma + (1 - \alpha) (\sigma \eta - 1))}$$

$$\Theta = (1 - \alpha) (\sigma \eta - 1) + \sigma \gamma - 1$$

$$\lambda = \frac{(1 - \beta \theta) (1 - \theta)}{\theta}$$

Definições auxiliares sobre parâmetros (1/2)

$$\textit{Psi} = \frac{\frac{\sigma}{1-\alpha+\alpha\left(\sigma\,\gamma+(1-\alpha)\,\left(\sigma\,\eta-1\right)\right)}\left(-\left((1-\alpha)\,\left(\sigma\,\eta-1\right)+\sigma\,\gamma-1\right)\right)}{\varphi+\frac{\sigma}{1-\alpha+\alpha\left(\sigma\,\gamma+(1-\alpha)\,\left(\sigma\,\eta-1\right)\right)}}$$

kappa_a =
$$\frac{\left(1-\beta\,\theta\right)\left(1-\theta\right)}{\theta}\,\left(\phi+\frac{\sigma}{1-\alpha+\alpha\left(\sigma\,\gamma+\left(1-\alpha\right)\left(\sigma\,\eta-1\right)\right)}\right)$$

Calibração

Parâmetros do modelo

Parâmetro	Valor	Descrição
σ	1.000	Coeficiente de aversão relativa ao risco
η	1.000	Substituição doméstico-importado
γ	1.000	Elasticidade de substituição entre os bens importados
φ	3.000	Inverso da elasticidade-Frisch da oferta de trabalho
ε	6.000	Elasticidade de substituição entre os bens domésticos
θ	0.750	Parâmetro do Calvo.
β	0.990	Fator de desconto intertemporal
α	0.400	grau de abertura/home bias
ϕ_{π}	1.500	Sensibilidade da taxa de juros à variações na taxa de inflação
$ ho_a$	0.900	Coeficiente de persistência da produtividade
$ ho_{\scriptscriptstyle \mathcal{Y}}$	0.860	Coeficiente de persistência do PIB mundial

Referências i

- Gali, Jordi, and Tommaso Monacelli. 2005. "Monetary Policy and Exchange Rate Volatility in a Small Open Economy." *The Review of Economic Studies* 72 (3): 707–34.
- Galí, Jordi. 2008. *Monetary Policy, Inflation, and the Business Cycle*. Princeton University Press.