

Multi-Task Learning for Recognizing Customer Characteristics

DongHwan Lee

2023. 11. 30. Seminar

Contents

Research Objective

Method – Facial Expression Recognition

Experiment & Results

O4. Conclusion

Research Objective

Customer Characteristics Analysis

My final goal is to build an integrated system for analyzing customer characteristics.

Age/Gender/Expression ··· Recognition

System Utilization Examples

- Sales can be improved by providing a shopping experience that can increase satisfaction.
- Store can be managed efficiently.

People Counting System Overview

- Detector is used to find specific objects in an image.
- Tracker is used for object tracking in a series of images.

Demonstration

• It needs to be modified. (Not yet published)

Enter

Exit

Method – Facial Expression Recognition

D. -H. Lee and J. -H. Yoo, "CNN Learning Strategy for Recognizing Facial Expressions," in *IEEE Access*, vol. 11, pp. 70865-70872, Jul. 2023, doi: 10.1109/ACCESS.2023.3294099.

Motivation

• Solving the performance degradation problem caused by an increase in the number of similar facial expressions to classify at a time.

[Causes of reduced performance]

• Intra-class difference

• Inter-class similarity

Preprocessing

Face Detection and Data Augmentation

CNN Model Optimization

CNN Learning Strategy based on Divide and Conquer

- Face Detection (Normalization)
 - ✓ Use RetinaFace to remove unnecessary areas
 - ✓ Resolution: 130×160
- Data Augmentation
 - √ Horizontal Flip, Randomly Rotation (-10° ~ +10°)

CNN Model Optimization

Learning Strategy (1/3)

• Divide and conquer is a computer algorithm for solving one problem by dividing it into several smaller problems.

Learning Strategy (2/3)

Learning Strategy (3/3)

Face Detection and Data Augmentation

CNN Model Optimization

CNN Learning Strategy based on Divide and Conquer

- ① Convert confusion matrix to weighted directed graph
- 2 Applying the shortest path search algorithm and grouping expressions
- 3 CNN model learning by group.

• Group1: 3Class

• Group2: 2Class

Algorithm 1 Divide and Conquer based CNN Learning Strategy

Input: a facial expression dataset E

 $E \leftarrow [C_1, C_2, ..., C_n], n = \text{the label of facial expression}$

Phase 1 - Grouping similar facial expressions

Train dataset E using the optimized CNN for creating the confusion matrix Analyze the confusion matrix for grouping similar facial expressions $S \leftarrow [S_1, S_2, ..., S_m], m = \text{the label of similar facial expression group}$

Phase 2 - Classifying similar facial expression groups

Train generated set S using the optimized CNN

$$S_{\rm m} \leftarrow [R_{1, F_1}, R_{2, F_2}, ..., R_{{\rm m}, F_{\rm m}}]$$

 $F_{\rm m}$ = the number of final facial expressions in $S_{\rm m}$

for all attribute $R_{\text{m,}F_{\text{m}}} \in S_{\text{m}}$ **do**

while
$$F_{\rm m} > 1$$
 do if $F_{\rm m} > 2$ then

if $F_{\rm m}$ is even then

Generate new facial expression group S_{m}

$$S'_{m} \leftarrow [R_{1',F_{m}/2}, R_{2',F_{m}/2}]$$

$$R_{\text{m, }F_{\text{m}}} \leftarrow S_{\text{m}}$$

$$F_{\rm m} \leftarrow F_{\rm m}/2$$

else

Train final facial expression in R_{m, F_m} using the optimized CNN

else

Train final facial expression in R_{m, F_m} using the optimized CNN

$$F_{\mathrm{m}} \leftarrow F_{\mathrm{m}}/2$$
 end

end

Experiment & Result

Environment

- GPU: NVIDIA RTX A6000
- Hyperparameter: Epoch 10,000, learning rate 0.001, optimizer Adam, loss function L1

- Grouping Expressions $k = \left[\frac{N}{2}\right]$
 - N: Total number of labels in the dataset
 - Ex) N = 4, k = 2
 - Ex) N = 7, k = 4, k = 2
 - Ex) N = 8, K = 4, k = 2

Thermal DB

• Small scale, collected from the laboratory.

Dataset	Samples	Subject	Resolution	Expressions
Tufts	565	113	336×256	4
RWTH	1,782	90	1024×768	8

RGB DB

• Large scale, collected from the web.

Dataset	Samples	Subject	Resolution	Expressions
RAF	15,339	-	100×100	7
FER2013	35,887	-	48×48	7

Result

Datasets	Expressions	Methods	Group	Accuracy(%)
		Kamath <i>et al.</i>	-	96.20
Tufts	4	Optimized model	-	96.07
		Proposed method	ab, c, d	97.75
RWTH	8	Kopaczka <i>et al.</i>	-	46.70
		Optimized model	-	54.72
		Proposed method	aefg, h, i, j, k	62.50
RAF	7	Zhang <i>et al.</i>	-	90.35
		Optimized model	-	85.10
		Proposed method	aghj, e, i, k	90.81
FER2013	7	Pham <i>et al.</i>	-	76.82
		Optimized model	-	69.04
		Proposed method	aegk, h, i, j	77.83

@: Neutral, D: Smile, C: Sleepy, D: Shock, E: Fear, D: Contempt, Sadness,

(h): Disgust, (i): Surprise, (ii): Happiness, (k): Anger

Conclusion

Summary & Future Works

[Summary]

- My goal is to create an all-in-one system for analyzing customer characteristics.
- This semester, I plan to implement each module.
 - 1. People Counting Module
 - 2. Age/Gender/Expression ··· Recognition Module

[Future Works]

- Extend from facial expression to age, gender.
- · Combine two modules.

Thank you