MULTIPLEXACIÓN

Redes de Datos I

MULTIPLEXACIÓN

- Principios de multiplexación
- Multiplexación en el tiempo
- Multiplexación en frecuencia
- Multiplexación en longitud de onda

Principios de multiplexación

Principios de multiplexación

MUX: Multiplexor DEMUX: Demultiplexor

La multiplexación es la combinación de dos o más canales de información en un solo medio de transmisión usando un dispositivo llamado multiplexor. El proceso inverso es la demultiplexación

MULTIPLEXACIÓN

- Principios de multiplexación
- Multiplexación en el tiempo
- Multiplexación en frecuencia
- Multiplexación en longitud de onda

TDM es una técnica de multiplexación en donde el canal se comparte asignando ranuras de tiempo a cada fuente

Cada canal de entrada tiene asignado una ranura de tiempo. La velocidad del canal de salida es n veces la máxima velocidad del canal de entrada. Pierde eficiencia si no todos los canales de entrada transmiten continuamente.

Ejercicio:

Hay 5 canales para multiplexar. Cada uno transmite a 1kbps. Calcular:

- a) El tiempo de cada ranura de los canales antes de multiplexar
- b) El tiempo de cada ranura del canal multiplexado
- c) El tiempo de cada trama transmitida
- d) La velocidad del canal a la salida del multiplexor

Técnicas para multiplexar canales con diferentes velocidades

TDM Sincrónico: sincronización

TDM Sincrónico: jerarquía digital

Trama E1

E-x es la versión europea. La versión americana (T-x) es análoga, pero difiera en las cantidades de canales agrupados.

Trama E	Velocidad (Mbps)	Canales
E1	2,048	30
E2	8,448	120
E3	34,368	480
FΛ	139 26/	1 920

TDM Sincrónico: jerarquía digital

- Estandar de TDM: ITU-T G.704.
- Multiplexación de 32 señales de 64 kbit/s en una señal de 2.048 kbit/s (2M).

 Trama de 2M: 32 time-slots o intervalos de tiempo. Cada intervalo de tiempo: 8 bits. Entrelazado de bytes.

TDM Estadístico

- **Direccionamiento**: no hay ranuras reservadas o preasignadas. Se debe incluir la dirección a la que corresponde cada ranura. Por ejemplo, si son 8 canales, se necesitan 3 bits de direccionamiento.
- Tamaño de la ranura: se debe mantener la eficiencia entre el tamaño de la dirección y la del campo de los datos. Es deseable que el campo de datos sea mucho mayor que el de direccionamiento.
- No es necesario patrón de sincronismo.
- Ancho de banda: La capacidad del canal es normalmente menor a la suma de las capacidades de los canales de entrada.

MULTIPLEXACIÓN

- Principios de multiplexación
- Multiplexación en el tiempo
- Multiplexación en frecuencia
- Multiplexación en longitud de onda

DMT: Discrete Multi Tone

DMT: Ejemplo

La cantidad de Bits/Baudios se determina de acuerdo a la calidad de cada canal

Se divide el espectro en 256 canales, separados entre sí por 4,3125 kHz.
Cada canal se modula con

Cada canal se modula con QAM, a 4ksymb/s

Nombre	Standard	Velocidad de bajada	Velocidad de subida	Año
ADSL	ANSI T1.413 Issue 2	8.0 Mbit/s	1.0 Mbit/s	1998
ADSL (G.dmt)	ITU G.992.1	8.0 Mbit/s	1.3 Mbit/s	1999
ADSL over POTS	ITU G.992.1 Annex A	12.0 Mbit/s	1.3 Mbit/s	2001
ADSL Lite (G.lite)	ITU G.992.2	1.5 Mbit/s	0.5 Mbit/s	1999
ADSL2	ITU G.992.3	12.0 Mbit/s	1.3 Mbit/s	2002
splitterless ADSL2	ITU G.992.4	1.5 Mbit/s	0.5 Mbit/s	2002
ADSL2+	ITU G.992.5	24.0 Mbit/s	1.4 Mbit/s	2003
ADSL2+M	ITU G.992.5 Annex M	24.0 Mbit/s	3.3 Mbit/s	2008

Velocidad del canal de bajada en función de la distancia

<u>Ejercicio</u>: En un enlace ADSL con técnica DMT (224 canales de bajada y 25 de subida) y modulación QAM, los valores de potencia de transmisión del módem son de -3 dBm y la sensibilidad de recepción es de -39 dBm.

Frecuencia (MHz)	Atenuación (dB/100m)
0,0000 - 0,1380	1,75
0,1380 - 0,2966	1,9
0,2966 – 0,5073	2,0
0,5073 – 0,8728	2,2
0,8728 – 1,1010	3,3

a) ¿Máximo bitrate posible a 1700m?

Atenuación máxima = -39dBm - (-3dBm) = 36dB

A 1700m las últimas dos bandas estarían apagadas.

Canales en funcionamiento = (0,5073-0,138)MHz/4kHz=92

Bitrate = $92 \times 15 \times 4kbps = 5,52Mbps$

<u>Ejercicio</u>: En un enlace ADSL con técnica DMT (224 canales de bajada y 25 de subida) y modulación QAM, los valores de potencia de transmisión del módem son de -3 dBm y la sensibilidad de recepción es de -39 dBm.

Frecuencia (MHz)	Atenuación (dB/100m)
0,0000 - 0,1380	1,75
0,1380 - 0,2966	1,9
0,2966 – 0,5073	2,0
0,5073 – 0,8728	2,2
0,8728 – 1,1010	3,3

- a) ¿Máximo bitrate posible a 1700m?
- b) ¿Máxima distancia para obtener 4Mbps de bajada?

DOCSIS: Data over Cable Service Interface Specification

- DOCSIS 1.0 es un estándar en los servicios de acceso a alta velocidad basados en redes de cable. Define las siguientes especificaciones:
 - El Cable módem (CM) y el Sistema de terminación de CM (CMTS)
 - La interfaz de radiofrecuencia (RFI)
 - El sistema de gestión
 - Protocolos de prueba para aceptación
- DOCSIS 1.1 añadió una serie de características, entre ellas la calidad de servicio (QoS), una programación más robusta, la clasificación de paquetes y otras mejoras que facilitan los servicios de voz y de datos.

DOCSIS 1.X

DOCSIS 1.X	Modulación	Rango de frecuencias (MHz)	Ancho de banda del canal (MHz)	Tasa total de transmisión (Mbps)	Tasa nominal de transmisión (Mbps)
Descendente	256 QAM	88-860	6	42,88	~38
Descendente	64 QAM	88-860	6	30,34	~27
			0,2	0,64	~0,6
	16 QAM	5-42	0,4	1,28	~1,2
			0,8	2,56	~2,3
			1,6	5,12	~4,6
۸			3,2	10,24	~9,0
Ascendente			0,2	0,32	~0,3
			0,4	0,64	~0,6
	QPSK	5-42	0,8	1,26	~1,2
			1,6	2,56	~2,3
			3,2	5,12	~4,6

Canal descendente (800-806 MHz) 42,88 Mb/s compartidos por 3 usuarios

Un canal ascendente – (29,7–31,3 MHz) 2,56 Mb/s compartidos por 3 usuarios Dos canales ascendentes (29,7-31,3 y 31,3-32,9 MHz)
2,56 Mb/s compartidos por usuarios A y C
2,56 Mb/s dedicados al usuario B

DOCSIS 2.0

- El ancho de banda del canal de bajada (6 MHz) y las velocidades no cambian respecto a DOCSIS 1.x.
- La velocidad en el canal de subida llega hasta 30,72 Mbps, soportando 64-QAM en el flujo ascendente, además de 8-QAM y 32-QAM y opcionalmente soporta Trellis Code Modulation de 128-QAM (TCM). Además, amplía el ancho de banda del canal hasta 6,4 MHz.

DOCSIS 2.0

DOCSIS 2.0	Modulación	Modulación Ancho de banda del canal	
Doscondonto	256 QAM	6	42,88
Descendente	64 QAM	6	30,34
	32 QAM	3,2	12,80
	64 QAM	3,2	15,36
Ascendente	16 QAM	6,4	20,48
Ascendente	32 QAM	6,4	25,60
	64 QAM	6,4	30,72
	128 QAM *	6,4	35,84

*: Opcional

DOCSIS 3.0

- DOCSIS 3.0 Mantiene el ancho de banda del canal de bajada en 6 MHz y el ancho de banda del canal de subida de hasta 6,4 MHz; introduce la unión de canales (bonding).
 - Une varios canales en forma lógica para aumentar la velocidad de transmisión.
 - Por ej., 4 canales de bajada enlazados: 4x42,88=171Mbps
- Mantiene la compatibilidad con 1.x y 2.0
- · Se modifica el espectro de frecuencias que utiliza, tanto en bajada como en subida

DOCSIS 3.0

Docsis 3.0						
Canales e	enlazados	Tasa total de transmisión (Mbps)				
Bajada	Subida	Bajada	Subida			
4	4	171,52	122,88			
8	4	343,04	122,88			
16	4	686,08	122,88			
24	8	1029,12	245,76			
32	8	1372,16	245,76			

DOCSIS 3.1

- DOCSIS 3.1 Mantiene la compatibilidad con 1,x, 2.0 y 3.0
- Introduce la multiplexación por división de frecuencia ortogonal (OFDM)
- Soporta hasta 4096 QAM en bajada y en subida. Opcionalmente, 16384 QAM en bajada.
- Espectro de frecuencias utilizado:
 - Bajada: 258 MHz a 1218 MHz, opcional hasta 1794 MHz (y 108 MHz inferior)
 - Subida: 5 MHz a 85 MHz (obligatorio), opcional hasta 204 MHz

OFDM

- Multiplexación por división de frecuencia ortogonal
- Las subportadoras son ortogonales.
- El pico de una subportadora recae en los nulos de las otras subportadoras, lo que idealmente resulta en la no interferencia entre ellas.

OFDM vs SC-QAM

Hasta 7600 subportadoras, dentro de un canal OFDM, de hasta 192 MHz.

En el canal de subida, se utiliza acceso multiple por division de frecuencia ortogonal. Además, se usa en conjunto con acceso multiple por division de tiempo (TDMA)

OFDM

Elimina el concepto del canal de 6 MHz, ya no es necesario

Flexibilidad en el ancho de banda del canal:

- Bajada: mínimo de 24 MHz, hasta 192 MHz
- Subida: mínimo de 6,4MHz, hasta 95 MHz

	Orden de modulación	Portadoras Δ=25kHz	Portadoras Δ=50kHz
ida	64-QAM	0.47 Gbps	0.46 Gbps
subida	128-QAM	0.55 Gbps	0.53 Gbps
de de	256-QAM	0.63 Gbps	0.61 Gbps
idac	512-QAM	0.71 Gbps	0.69 Gbps
Velocidad de	1024-QAM	0.78 Gbps	0.76 Gbps
>	2048-QAM	0.86 Gbps	0.84 Gbps
	4096-QAM	0.94 Gbps	0.91 Gbps

Debe soportar, al menos:

- En bajada: 2 canales OFDM de 192 MHz
- En subida: 2 canales OFDMA de 96 MHz

	Orden de modulación	Portadoras Δ=25kHz	Portadoras Δ=50kHz
bajada	256-QAM	1.26 Gbps	1.20 Gbps
baj	512-QAM	1.42 Gbps	1.35 Gbps
de	1024-QAM	1.58 Gbps	1.50 Gbps
idad	2048-QAM	1.73 Gbps	1.65 Gbps
Velocidad	4096-QAM	1.89 Gbps	1.80 Gbps
>	8192-QAM	2.05 Gbps	1.96 Gbps
	16384-QAM	2.21 Gbps	2.11 Gbps

Máximas velocidades: ascendente = 2x0.94 Gbps = 1.88 Gbps descendente = 5x1.94 Gbps = 9.45 Gbps

Startup Procedure					
Procedure Status Commen					
Acquire Downstream Channel	825000000 Hz	Locked			
Connectivity State	ОК	Operational			
Boot State	ОК	Operational			
Security	Enabled	BPI+			

	Downstream Channel Status								
Channel Index	Channel ID	Lock Status	Channel Type	Bonding Status	Center Frequency	Width	SNR/MER Threshold Value	Receive Level	Modulation/Profile ID
1	20	Locked	SC-QAM Downstream	Bonded	825000000 Hz	6000000 Hz	38.8 dB	-5.1 dBmV	QAM256
2	1	Locked	SC-QAM Downstream	Bonded	603000000 Hz	6000000 Hz	39.7 dB	-3.4 dBmV	QAM256
3	2	Locked	SC-QAM Downstream	Bonded	609000000 Hz	6000000 Hz	39.5 dB	-3.7 dBmV	QAM256
4	3	Locked	SC-QAM Downstream	Bonded	615000000 Hz	6000000 Hz	39.8 dB	-3.3 dBmV	QAM256
30	30	Locked	SC-QAM Downstream	Bonded	885000000 Hz	6000000 Hz	38.5 dB	-4.7 dBmV	QAM256
31	31	Locked	SC-QAM Downstream	Bonded	891000000 Hz	6000000 Hz	38.6 dB	-4.8 dBmV	QAM256
32	33	Locked	OFDM Downstream	Bonded	906000000 Hz	94000 kHz	36.0 dB	-4.7 dBmV	0, 1, 2, 255

Upstream Channel Status								
Channel Index	Channel ID	Lock Status	Channel Type	Bonding Status	Center Frequency	Width	Transmit Level	Modulation/Profile ID
1	53	Locked	SC-QAM Upstream	Bonded	38600000 Hz	6400000 Hz	50.0 dBmV	ATDMA
2	54	Locked	SC-QAM Upstream	Bonded	32200000 Hz	6400000 Hz	50.0 dBmV	ATDMA
3	55	Locked	SC-QAM Upstream	Bonded	25800000 Hz	6400000 Hz	48.0 dBmV	ATDMA
4	56	Locked	SC-QAM Upstream	Bonded	19400000 Hz	6400000 Hz	49.0 dBmV	ATDMA

MULTIPLEXACIÓN

- Principios de multiplexación
- Multiplexación en el tiempo
- Multiplexación en frecuencia
- Multiplexación en longitud de onda

WDM: Wavelight Division Multiplexing

WDM: Orígenes

WDM: continuación

• WDM Densa (DWDM), muchas longitudes de onda, utilizado principalmente en larga distancia

• WDM Ligera ('Coarse' CWDM), pocas longitudes de onda, utilizado principalmente en

entornos metropolitanos

WDM: continuación

• WDM Ligera ('Coarse' CWDM): 18 canales de 20nm, entre 1270nm y 1610nm. Aprox. hasta 100km. No utiliza amplificadores. Capacidad: 10Gbps

WDM: continuación

• WDM Densa ('Dense' DWDM): Aumenta la cantidad de canales y disminuye su anchura. Por ejemplo, 40 canales de 0.8nm (100GHz) u 80 canales de 0.4nm (50GHz). También hay de 25 y 12.5GHz. Permite amplificadores.

WDM: continuación

• WDM Corta ('Short' SWDM): Permite transmitir 40-100 Gbps, en corta distancia (<500m). Utiliza 4 canales, en fibra multimodo, en 1° ventana.

Nominal channel wavelength, nm							
850 880 910 940							
start	stop	start	stop	start	stop	start	stop
844	858	874	888	904	918	934	948

Tipos de WDM

Característica	DWDM (Dense WDM)	CWDM (Coarse WDM)	SWDM (Short- wavelength WDM)
Número de canales	40 – 320	18	4
Longitudes de onda	1530-1625 nm	1270 – 1610 nm	850-940 nm
Separación canales	0,1 - 0,8 nm	20 nm	30 nm
Alcance máx.	1000s de km (con amplificadores)	60 km (aprox)	440 m
Estándar	ITU-T G.694.1	ITU-T G.694.2	TIA 492AAAE
Fibra preferida	SM (ITU-T G.655)	SM (ITU-T G.652)	MM (ISO/IEC OM5)
Aplicación	MAN, WAN	LAN, MAN	LAN
Coste	Alto	Medio	Bajo
Implantación	1990s	2000s	2010s

Rogelio Montañana

217

Arquitectura FTTx

Fiber to the node

Fiber to the cabinet

Fiber to the building

Fiber to the home

Redes ópticas pasivas (PON)

Son redes ópticas que se consideran pasivas debido a que los únicos elementos activos son los equipos de la oficina central y el cliente

GPON: Gigabit PON G.984

