Approximating discontinous functions

Egon Elbre
Department of Computer Science
University of Tartu
Tartu

December 31, 2012

Abstract

Calculating discontinuous functions can be difficult and computationally expensive. By combining using approximation functions we can lower the computational expensiveness. Defining good approximation function can be a hard to get right. However, defining an approximation that works for some value can be simpler. We show how combining several simple approximations can give us a better approximation and reduce computational requirements.

1 Introduction

Outline

2 Theory

We are trying to approximate a function f:

$$f: X \mapsto \mathbb{R}$$

Although we explain the idea in \mathbb{R} set, the results also apply to any set that has transitive relation < and +- operation (TODO: find the correct algebraic structure). Using < we can define min and max for that set.

$$\min(x,y) := \begin{cases} x & \text{if } x \leq y, \\ y & \text{otherwise.} \end{cases}$$

$$\max(x,y) := \begin{cases} y & \text{if } x \leq y, \\ x & \text{otherwise.} \end{cases}$$

X can be any set.

2.1 Exact approximation

Let's assume we are interested in range $R \subseteq X$. Let's assume we have functions α and β such that

$$\alpha(x) \le f(x), \forall x \in R$$

 $\beta(x) \le f(x), \forall x \in R$

Now we can define ϵ function.

$$\alpha(x) = f(x) + \varepsilon_{\alpha}, \varepsilon_{\alpha} \ge 0$$

 $\beta(x) = f(x) + \varepsilon_{\beta}, \varepsilon_{\alpha} \ge 0$

It is trivial to derive function γ where ε_{γ} is smaller than ε_{α} and ε_{β} .

$$\gamma(x) = \max(\alpha(x), \beta(x))$$

$$= \max(f(x) - \varepsilon_{\alpha}(x), f(x) - \varepsilon_{\beta}(x))$$

$$= f(x) - \min(\varepsilon_{\alpha}(x), \varepsilon_{\beta}(x)).$$

This also gives us a usefulness requirement for α and β :

$$\exists x \in R, \ \alpha(x) < \beta(x)$$

 $\exists x \in R, \ \beta(x) < \alpha(x)$

This means that function α and β must be complementary. For some inputs one should give better approximations than the other.

2.2 Probablisitic approximation

3 Approximating an unknown function

4 Examples

Although the theory is straightforward the complexity arises from finding the appropriate functions to combine.

Levenshtein Distance

Clustering

- 5 Results
- 6 Conclusions

References