Математические основы информационной безопасности

Груздев Дмитрий Николаевич

<u>Методы классификации</u>

Классификация

 $(x_1, y_1), ..., (x_m, y_m)$ – обучающая выборка, $x_i \in X, y \in Y$

Ү – конечное

Задача:

построить алгоритм А:Х->Ү

Метод ближайших соседей

 $(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)$ — объекты-ответы $\rho(x_i, x_j) \geq 0$ — функция расстояния

1NN метод:

A(x) = класс ближайшего к x объекта

kNN метод:

A(x) = класс в котором лежат большинство из k ближайших к x объектов

<u>1NN</u>

Преимущества: простота реализация, наглядность результатов

Недостатки: неустойчивость к шуму, нужно хранить всю выборку

<u>kNN</u>

Белые области – точки, в одинаковой степени относящиеся к нескольким классам.

Метод парзеновского окна

х – исследуемый объект

$$\rho(x, x_1^*) \le \rho(x, x_2^*) \le ... \le \rho(x, x_m^*)$$

Возьмем к ближайших соседей

$$W_i = K(\rho(x, x_i^*)/\rho(x, x_k^*))$$
 вес i-го соседа

К – ядро, невозрастающая, положительная на [0, 1]

$$W_{Y_i} = \sum W_i \mid y_i \in Y_i$$

Выбрать класс с наибольшей суммой весов

Отбор эталонов

В обучающей выборке есть излишние объекты.

Количество обучающих объектов влияет на скорость работы алгоритма.

Задача: уменьшить размер обучающей выборки без уменьшения качества классификации.

Алгоритм добавления эталонов:

- 1. Исключить выбросы из обучающей выборки;
- 2. Взять по одному объекту в каждом классе (самые удаленные от границ объекты);
- 3. Добавлять объекты из приграничных объектов, пока не получим классификацию приемлемого качества.

Бинарное решающее дерево

Б.Р.Д. – алгоритм классификации, задающийся бинарным деревом:

Внутренняя вершина – бинарная функция β_ν(x) → {0,1} Внешняя вершина (лист) – метка класса

Алгоритм классификации:

Для заданного x начиная c корневой вершины вычислять $β_v(x)$. Если $β_v(x) = 0$, идти в левое поддерево, если $β_v(x) = 1 - 1$ в правое. Когда дойдем до листа, то получим нужный класс.

Пример решающего дерева

Котенок = (x1-цвет, x2-возраст, x3-лоточность) Классы = {беру, не беру, неопределенно}

Разбиение выборки

```
(x_1, y_1), \ldots, (x_m, y_m) — обучающая выборка, x_i \in X, y \in Y x_i = (x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(n)}) — признаки \beta(x_i) \to \{0,1\} - разбиение
```

Варианты правил разбиений (условие для $\beta(x_i) = 1$, иначе $\beta(x_i) = 0$):

- Пороговое условие: $x_i^{(j)} = a_i$
- Пороговое условие: $a_i \le x_i \le b_i$; $a_i \le x_i \le x_i \le b_i$
- Конъюнкция пороговых условий: $\land (a_i \le x_i \le b_i), j \in J$
- Синдром: выполняется не меньше d условий из J
- Полуплоскость: $\Sigma W_i X_i^{(j)} \ge W_0$
- Wap: $\rho(x_i, x_0) \le w_0$

Величины, выделенные красным, настраиваются по обучающей выборке.

Эффективность разбиения

Коэффициент Джини:

количество пар объектов принадлежащих одному классу и оказавшихся в одном поддереве:

$$I(\beta_{v}) = |\{(x_{i}, x_{j}): \beta_{v}(x_{i}) = \beta_{v}(x_{j}) \text{ if } y_{i} = y_{j}\}| / |\{x_{i}, x_{j}\}|$$

Коэффициент В.И.Донского:

количество пар объектов принадлежащих разным классам и оказавшихся в разных поддеревьях:

$$I(β_v) = |\{(x_i, x_j): β_v(x_i) \neq β_v(x_j) \text{ и } y_i \neq y_j\}| / |\{x_i, x_j\}|$$

Энтропийный коэффициент

Построение дерева ID3

Алгоритм ID3:

- 1. Если все объекты выборки U из одного класса, вернуть лист с меткой этого класса.
- 2. Найти разбиение β с максимальным коэффициентом разбиения и определить U = U₀ ∪ U₁ по β.
- 3. Если $U_0 = \emptyset$ или $U_1 = \emptyset$, вернуть метку класса, объектов которого в U больше всего (мажоритарного класса).
- 4. Рекурсивно построить левое и правое поддерево по U₀ и U₁ соответственно.

Редукция дерева: C4.5, CART

Контрольная выборка длины k ≈ 0.5*m

Алгоритм редукции (стрижки) дерева:

- 1. Если ни один объект контрольной выборки не зашел в вершину v, то заменяем ее на лист с мажоритарным классом обучающей подвыборки для этой вершины.
- 2. Пробуем каждую вершину заменить на ее правое или левое поддерево, или на фиксированный класс. Если количество ошибок классификации уменьшилось, оставляем замену.

Линейный классификатор

$$(x_1, y_1), ..., (x_m, y_m)$$
 — обучающая выборка, $x_i \in X$, $y \in Y$ $X = \mathbb{R}^n$, $Y = \{-1, 1\}$ Задача: построить алгоритм классификации вида $A(x, \theta) = \text{sign } f(x, \theta)$, где θ — набор параметров $f(x, \theta)$ — дискриминантная функция $f(x, \theta) = 0$ — разделяющая поверхность $M_i(\theta) = y_i^* f(x_i, \theta)$ — отступ объекта x_i $M_i(\theta) < 0 \Leftrightarrow A(x, \theta)$ — ошибается на x_i

Функция ошибок

Функция [х]:

[x] = 1, если x - истинно, [x] = 0, если x - ложно

E(θ) = Σ[M_i(θ) < 0] – количество ошибок на обучающей выборке, дискретная функция ошибки

E*(θ) = ΣL(M_i(θ)) – непрерывная функция, на которую мы заменяем дискретную функцию ошибки L(M) – невозрастающая, неотрицательная

Будем минимизировать Ε*(θ)

Оптимальная разделяющая гиперплоскость

Разделяющая гиперплоскость максимально удалена от разделяемых классов.

Метод опорных векторов

 $(x_1, y_1), ..., (x_m, y_m)$ — обучающая выборка, $x_i \in X$, $y \in Y$

$$X = \mathbb{R}^n, Y = \{-1, 1\}$$

$$f(x, \theta) = \langle x, \theta \rangle$$

$$A(x, \theta) = sign(\langle x, \theta \rangle)$$

$$M_i(\theta) = y_i^* < x, \theta > 0$$

$$L(M_i) = (1 - M_i(\theta))_+$$

$$E^*(\theta) = \Sigma(1 - M_i(\theta)) \rightarrow min$$

Вероятность ошибки

Разделяющая гиперплоскость позволяет оценить вероятность ошибки классификации.

<u>Логистическая регрессия</u>

$$(x_1, y_1), ..., (x_m, y_m)$$
 – обучающая выборка, $x_i \in X$, $y \in Y$

$$X = \mathbb{R}^{n}, Y = \{-1, 1\}$$
 $f(x, \theta) = \langle x, \theta \rangle$
 $A(x, \theta) = sign(\langle x, \theta \rangle)$
 $M_{i}(\theta) = y_{i}^{*} \langle x_{i}, \theta \rangle$
 $L(M_{i}) = log_{2}(1 + e^{-Mi})$

 $E^*(\theta) = \sum \log_2(1 + e^{-Mi}) \rightarrow \min$

$$P(y|x) = 1/(1 + exp(-\langle x, \theta \rangle^*y))$$

Логистическая функция

$$M = \langle x, \theta \rangle^* y - \text{отступ } x$$

$$P(y|x) = \frac{1}{1 + e^{-\langle x, \theta \rangle^* y}}$$

$$P(1|x) = \frac{1}{1 + e^{-\langle x, \theta \rangle}}$$

$$P(-1|x) = \frac{1}{1 + e^{\langle x, \theta \rangle}}$$

$$P(-1|x) + P(1|x) = 1$$

Многоклассовая классификация

- 1. Построить разделяющие плоскости для каждого класса.
- 2. Для нового объекта посчитать, с какой вероятностью он относится к каждому классу.
- 3. Результат алгоритма класс с максимальной вероятностью.

scikit-learn.org

https://sesc-infosec.github.io/