6CS012 - Artificial Intelligence and Machine Learning. Practical Aspects of Training a CNN.

Prepared By: Siman Giri {Module Leader - 6CS012}

1 Instructions

This sheet contains exercises for various operations performed in Convolutional Neural Networks, accompanying the tutorial slides

• Please Complete all the exercise with Pen and On Paper.

Figure 1: An example of Convolutional Neural Network.

2 Exercise - 1:

Convolutional Layer and Pooling Operations:

1. Consider the following input image:

$$I = \begin{bmatrix} 20 & 35 & 35 & 35 & 20 \\ 29 & 46 & 44 & 42 & 42 & 27 \\ 16 & 25 & 21 & 19 & 19 & 12 \\ 66 & 120 & 116 & 154 & 114 & 62 \\ 74 & 216 & 174 & 252 & 172 & 112 \\ 70 & 210 & 170 & 250 & 170 & 110 \end{bmatrix}$$

What is the output provided by a convolution layer with the following properties:

- Stride of 1.
- Filter is given by:

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- 2. Take the output from 1. and apply a max pooling layer with the following properties:
 - Stride [2, 2].
 - Window Shape [2, 2]
 - {Hint: First Compute the Output Dimension.}
- 3. For the following Feature Map of 4×4 apply the 2×2 pooling operation with stride 2:

$$I = \begin{bmatrix} 5, & 12, & 8, & 1 \\ 3, & 7, & 6, & 14 \\ 9, & 4, & 2, & 11 \\ 15, & 10, & 13, & 16 \end{bmatrix}$$

4. For the following Feature Map apply a 2×2 average pooling with stride 2.

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

3 Exercise - 2:

Model Architecture and Parameter Count.

- 1. Given is a CNN Architecture, Count the number of Parameters.
 - Given CNN Architecture:
 - (a) CONV2D Layer 1:
 - Filters: 16 Filters each of size 3×3 .
 - Input Size: $32 \times 32 \times 3$ i.e. (Height, Width Channels).
 - (b) BatchNormalization Layer 2:
 - This layer normalizes each of the 16 Feature maps (Channels).
 - (c) MaxPooling:
 - Window of 2×2 with strides of 2.
 - No Parameters to count.
 - (d) CONV2D Layer 2:
 - Filters: 32 Filters each of size 3×3 .
 - Input Size: $16 \times 16 \times 16$ after maxpooling which halves the size.
 - (e) BatchNormalization Layer 2:
 - This layer normalizes each of the 32 feature maps.
 - (f) MaxPooling Layer 2:
 - Window of 2×2 with strides of 2.
 - No Parameters to count.
 - (g) Flattening:
 - Flattens $8 \times 8 \times 32$ to 1D Vector.
 - (h) Dense layer 1:
 - Input Dimensions : From Flatten $8 \times 8 \times 32$
 - Neurons: 128
 - (i) Dense Layer 2 Output Layer:
 - Input size: 128 from Dense Layer 1.
 - Neurons: 10 (assume your dataset has 10 classes).

A Sample Computations for CONV2D Layer 1:

- CONV2D Layer 1:
 - Input Dimensions $32 \times 32 \times 3$.
 - Filter Size 3×3 .
 - Number of filters 16.
- To calculate the number of parameters:

Weight Parameters = $F_H \times F_W \times$ input channels \times Output Channels Weight Parameters = $3 \times 3 \times 3 \times 16 = 432$

_

 $\label{eq:bias_parameters} \textbf{Bias} \ \ \textbf{Parameters} = \textbf{Output} \ \ \textbf{Channels} \ i.e. \ one \ bias \ per \ filter.$

Bias Parameters = 16one per filter.

- Total Parameters for CONV2D Layer 1:

$$432 + 16 = 448$$
.

