

(E MARKING

ELECTROMAGNETIC COMPATIBILITY
ELECTRICAL SAFETY
LASER SPECTROSCOPY
ENVIRONMENTAL PHYSICS

G.S.D. S.r.l.

Certified in accordance with UNI EN ISO 9001:2008

by

TÜV Rheinland Italia S.r.l. Certificate N. 39 00 1850509

Divino	JUNEAU AL I HISICS	
G.S.D. Srl PISA - Italy	Test Report n. FCC-17179B	Rev. 01
Manufacturer	Astrel Instruments s.r.l.	
Address	Via Appia Nuova 868 00178 Roma Italy	
Product Name	AST8300	
Testing Laboratory Name	G.S.D. S.r.l.	
Address	Via Marmiceto, 8 56121 Ospedaletto Pisa (PI) Italy	
Tel/Fax	+39 050 984254 / +39 050 984262	
P.IVA/VAT	01343950505	
http – e-mail	www.gsd.it - info@gsd.it	
	FCC Listed: Registration Number: 424037	

G.S.D. s.r.l.
Via Marmiceto, 8
56121 OSPEDALETTO - PISA

Tel. 050.984254 - Fax 050.984262 P. IVA 01343950505

SENIOR EMOTEST MANAGER
Dr. Gian Luca Genovesi

Location and Date of Issue Pisa, 2017 May 02

Quality manager *Dr. Daviđ Pe*wiccia

	INDEX
1.	MANUFACTURER AND EUT IDENTIFICATION
2.	REFERENCE STANDARDS
3.	TEST GENERALITY, RESULT, CONDITION, MEASUREMENT UNCERTAINTY6
4.	RADIATED EMISSIONS8
5.	POWERLINE CONDUCTED EMISSIONS15
6.	PHOTO18

Report Revision History							
Revision details							
Date	Page No.(s)	Details					
2017 March 30	20	Rev. 00					
		First Issue					
2017 May 02	20	Rev. 01					
		Second Issue – Pag3. FCC ID inserted					

1. Manufacturer and Eut identification ¹				
Manufacturer	Astrel Instruments s.r.l			
Address	Via Appia Nuova 868 00178 Roma			
	Italy			
Product Name	AST8300			
Date of reception	2017 February 28			
Sampling	Laboratory sample for certification			
Test Item Description	CCD Astrocamera			
Nominal Input Voltage	Dedicated Power Supply			
FCC ID	2AKOS-ASTCCDCAM01			

_

¹A detailed documentation is preserved in the internal fascicle.

Fig. 1.1 Equipment Photo

2. Reference Standards	
lests and measurements are performed ac below:	coordingly to the reference standards given in the table
TEST	Standard
Emissions: Radiated – Section 15.109	FCC Rules ad Regulations, Title 47 Part 15 – Sub part C ANSI C63.4 2014 – American National Standard for Methods of Measuring of Radio-Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 kHz – 40 GHz
Emissions: Conducted – Section 15.107	FCC Rules ad Regulations, Title 47 Part 15 – Sub part C ANSI C63.4 2014 – American National Standard for Methods of Measuring of Radio-Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 kHz – 40 GHz

3. Test generality, Result, Condition, Measurement uncertainty

Sub-part 2.1033(b)

Test And Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2 and the following individual Parts: 15.109; Unintentional Radiators

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing: In accordance with ANSI C63.4-2009, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures.

All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

Summary of Test Results

TEST	RESULT
Emissions: conducted Section 15.107	Pass
Emissions: radiated Section 15.109	Pass

Measurement uncertainty

TEST	Expanded Uncertainty
Conducted Emission – $50\Omega/50\mu H$ (150 kHz - 30 MHz)	± 3.5 dB
Radiated Emission – (Semianechoic Room) (30 MHz - 18 GHz)	± 4.7 dB

Climatic Conditions

PARAMETER	Value		
Temperature	$(293 \pm 3) \text{ K}$		
Relative humidity	$(50 \pm 5) \%$		

Extensions

The results refer only to the sampled EUT and under the specified conditions.

4. RADIATED EMISSIONS

In the following table you can find the limits established by the reference standard:

FREQUENCY RANGE	Field Strenght
(MHz)	QUASI-PEAK LIMITS
	$[dB(\mu V/m)]$
$30 \div 88$	40
88 ÷ 216	43,5
216 ÷ 960	46
Above 960	54

Test Equipment

EQUIPMENT	Manufacturer	Model	Cal. Due	
EMI Receiver	HP	HP8546A	01/2018	
EMI Receiver Filter Section	HP	HP85460A	01/2018	
Anechoic Chamber	Comtest	CSA01	01/2018	
Bilog Antenna	Schaffner	CBL6112B	01/2018	
Horn Antenna	EMCO	3115	01/2018	
Controller	Deisel	HD100	01/2018	
Turn Table	Deisel	MA240	01/2018	
LISN	GSD	NTW06	01/2018	

Test procedure: RE22R02

Notes

Azimuth position EUT-Antenna corresponding to 0° identifies the rotating table orientation (TT) in which the instrument to be tested shows the front part turned towards the antenna. Positive grades individuate clockwise rotations of TT when this one is observed from the top. For negative degrees, TT rotation is anticlockwise.

Antenna height respect to the mass plane is conventionally individuated with: MA=XXX where XXX indicates the height (always positive for e>100) expressed in cm.

Antenna horizontal polarisation is indicated by POL=H.

Antenna vertical polarisation is indicated by POL=V.

EUT was tested in the three ortogonal planes.

Results and conclusions

In all the operative conditions, equipment complied with the standard limits. Graphics in following figures show the most significant registrations of the performed measurements.

RL IRC 2	CISPR PREAMP The state of the	PEAKAMPTD 45.452 dBμV/m 46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	Time Domain rch-Meas OFF	SENSE:INT SOURCE OF FREQUENCY S Atten: 2 dB AVGAMPTD 35.029 dBµV/m 36.346 dBµV/m 38.658 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m 37.930 dBµV/m	FEAKLL1 A -28.547 dB -27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	ean 1 ee Run OFF	AVGLL2A -18.971 dB -17.654 dB -15.341 dB -15.448 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB -12.631 dB	06:19:53 PM Mar 23, 20 TRACE 1 2 3 TYPE WW W-P DET P A P DET P A P COMPOSITE AMPCOR 29.505 dB 29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 37.748 dB
2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 3 1 1 1 1	1.1090 GHz 1.1090 GHz 1.1113 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	PEAKAMPTD 45.452 dBμV/m 46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	OFF	Atten: 2 dB AVGAMPTD 35.029 dBµV/m 36.346 dBµV/m 38.658 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	1/Fr PEAKLL1A -28.547 dB -27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.689 dB -20.233 dB -20.265 dB -24.055 dB	OFF	-18.971 dB -17.654 dB -15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	TYPE WWW PDET P A P COMPOSITE AMPCOR 29.505 dB 29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 3 1 1 1 1	1.1090 GHz 1.1090 GHz 1.1113 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	PEAKAMPTD 45.452 dBμV/m 46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	OFF	Atten: 2 dB AVGAMPTD 35.029 dBµV/m 36.346 dBµV/m 38.658 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	PEAKLL1A -28.547 dB -27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	ee Run OFF	-18.971 dB -17.654 dB -15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	29.505 dB 29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 3 1 1 1 1	1.1090 GHz 1.1090 GHz 1.1113 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	PEAKAMPTD 45.452 dBμV/m 46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	OFF	35.029 dBµV/m 36.346 dBµV/m 38.658 dBµV/m 38.552 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	PEAKLL1A -28.547 dB -27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	OFF	-18.971 dB -17.654 dB -15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	29.505 dB 29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 2 3 1 1 1 1	1.1090 GHz 1.1113 GHz 1.3333 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	45.452 dBμV/m 46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.945 dBμV/m 53.029 dBμV/m		35.029 dBµV/m 36.346 dBµV/m 38.658 dBµV/m 38.552 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-28.547 dB -27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB		-18.971 dB -17.654 dB -15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	29.505 dB 29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1	1.1113 GHz 1.3333 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	46.145 dBμV/m 47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m		36.346 dBµV/m 38.658 dBµV/m 38.552 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-27.855 dB -26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	 	-17.654 dB -15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	29.512 dB 30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.3333 GHz 1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4876 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	47.697 dBμV/m 47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	38.658 dBµV/m 38.552 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-26.303 dB -26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	 	-15.341 dB -15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	30.133 dB 30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
2 1 2 2 1 1 2 2 2 2 3 3 1 1 2 2 5 5 1 1 3 3 2 2 3 5 1 1	1.3333 GHz 1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4876 GHz 3.6003 GHz 5.7050 GHz 5.8003 GHz	47.121 dBμV/m 48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	38.552 dBµV/m 35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-26.878 dB -25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	 	-15.448 dB -18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	30.133 dB 32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
1 1 2 2 2 1 1 1 2 2 2 2 3 1 1 1 2 2 5 5 2 2 5 6 1 1 7 7 1 1 3 3 2 2 9 1 1	1.8975 GHz 2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	48.230 dBμV/m 48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 53.735 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	35.523 dBµV/m 36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-25.769 dB -25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	 	-18.476 dB -17.553 dB -15.086 dB -15.105 dB -12.660 dB	32.508 dB 33.308 dB 34.965 dB 35.015 dB 37.748 dB
2 2 2 1 1 2 2 2 2 3 1 1 2 2 5 1 2 2 3 1 1 1 2 2 3 3 1 1 1 1 2 2 3 3 1 1 1 1	2.1185 GHz 2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	48.824 dBμV/m 51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 53.735 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	36.446 dBµV/m 38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-25.176 dB -22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB	 	-17.553 dB -15.086 dB -15.105 dB -12.660 dB	33.308 dB 34.965 dB 35.015 dB 37.748 dB
2	2.6663 GHz 2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	51.311 dBμV/m 51.019 dBμV/m 53.767 dBμV/m 53.735 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	38.913 dBµV/m 38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-22.689 dB -22.980 dB -20.233 dB -20.265 dB -24.055 dB		-15.086 dB -15.105 dB -12.660 dB	34.965 dB 35.015 dB 37.748 dB
1 1 2 2 1 2 2 1 2 3 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 3 1 1 1 1	2.6788 GHz 3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	51.019 dBµV/m 53.767 dBµV/m 53.735 dBµV/m 49.945 dBµV/m 49.660 dBµV/m 53.029 dBµV/m	 	38.895 dBµV/m 41.340 dBµV/m 41.369 dBµV/m 37.861 dBµV/m	-22.980 dB -20.233 dB -20.265 dB -24.055 dB		-15.105 dB -12.660 dB	35.015 dB 37.748 dB
2 0	3.4828 GHz 3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	53.767 dBμV/m 53.735 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m		41.340 dBμV/m 41.369 dBμV/m 37.861 dBμV/m	-20.233 dB -20.265 dB -24.055 dB		-12.660 dB	37.748 dB
0	3.4875 GHz 3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	53.735 dBμV/m 49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m	 	41.369 dBμV/m 37.861 dBμV/m	-20.265 dB -24.055 dB			
1	3.6008 GHz 3.6013 GHz 5.7050 GHz 5.8003 GHz	49.945 dBμV/m 49.660 dBμV/m 53.029 dBμV/m		37.861 dBµV/m	-24.055 dB		12.00 T UD	37.763 dB
2	3.6013 GHz 5.7050 GHz 5.8003 GHz	49.660 dBμV/m 53.029 dBμV/m					-16.139 dB	38.102 dB
3	5.7050 GHz 5.8003 GHz	53.029 dBµV/m		or look ample that	-24 339 dB		-16.070 dB	38.104 dB
2 5	5.8003 GHz			41.235 dBµV/m			-12.765 dB	42.019 dB
5		55.097 dBµV/m		42.081 dBuV/m			-11.919 dB	42.116 dB
5	7.4625 GHZ	57.018 dBµV/m		44.723 dBµV/m			-9.277 dB	45.167 dB
3 2 2		56.703 dBµV/m		44.626 dBµV/m			-9.374 dB	45.173 dB
1		59.820 dBµV/m		47.991 dBµV/m			-6.009 dB	46.844 dB
		60.051 dBuV/m		47.932 dBµV/m			-6.068 dB	46.860 dB
<u> </u>	12.019 GHz	62.043 dBµV/m		50.268 dBµV/m	-11.956 dB		-3.731 dB	48.758 dB
	12.138 GHz	62.707 dBµV/m		50.685 dBµV/m	-11.293 dB		-3.315 dB	48.809 dB
			III					
G					5	STATUS		
DL V								

•		EMI Receiver - Frequ	uency Scan						
	RL	RF 5	0 Ω AC CORRE	C C	SENSE:INT SOURCE OF				06:17:32 PM Mar 23, 20
					FREQUENCY S		can /1		TRACE 1 2 3 TYPE WW₩
		CISPR PREAMF) Soon Soo	Time Domain (arch-Meas	Atten: 2 dB		ree Run		DET P A P
IG			PEAKAMPTD 44.693 dBuV/m	OFF	AVG AMPTD 33.853 dBuV/m	PEAK LL1 A	OFF	-20.147 dB	29.505 dB
	21		44.163 dBµV/m		31.944 dBµV/m			-20.147 dB	29.849 dB
	2		46.083 dBµV/m		36.622 dBµV/m			-17.378 dB	30.133 dB
	1		45.895 dBµV/m		33.586 dBµV/m			-20.414 dB	31.229 dB
	2		48.778 dBuV/m		36.364 dBuV/m			-17.636 dB	33.300 dB
	1		48.853 dBµV/m		36.416 dBµV/m			-17.584 dB	33.314 dB
	1		50.466 dBµV/m		38.388 dBµV/m			-15.611 dB	34.743 dB
	2		50.696 dBµV/m		38.807 dBµV/m			-15.193 dB	34.974 dB
	1		53.720 dBµV/m		41.429 dBµV/m			-12.571 dB	37.827 dB
	2		53.453 dBµV/m		41.508 dBµV/m			-12.492 dB	37.849 dB
-	1		53.731 dBµV/m		41.581 dBµV/m			-12.419 dB	37.932 dB
	<u>2</u>		50.310 dBµV/m		38.000 dBµV/m			-16.000 dB	38.111 dB
3	1		53.360 dBµV/m		40.820 dBµV/m			-13.180 dB	41.287 dB
1	2	5.8013 GHz	54.711 dBµV/m		42.023 dBµV/m	-19.289 dB		-11.977 dB	42.117 dB
5	1		56.340 dBµV/m		44.364 dBµV/m	-17.660 dB		-9.635 dB	44.696 dB
6	2	7.5125 GHz	56.657 dBµV/m		44.704 dBµV/m	-17.343 dB		-9.295 dB	45.260 dB
7	1	9.3128 GHz	60.802 dBµV/m		47.955 dBµV/m	-13.198 dB		-6.045 dB	46.849 dB
8	2	9.3258 GHz	60.059 dBµV/m		47.929 dBµV/m	-13.940 dB		-6.071 dB	46.852 dB
9	√ 2	9.9325 GHz	62.819 dBµV/m		51.763 dBµV/m	-11.181 dB		-2.236 dB	47.418 dB
0	1	11.813 GHz	62.357 dBµV/m		50.330 dBµV/m	-11.643 dB		-3.669 dB	48.745 dB
				III					
3							STATUS		
_	ίΗ								

5. Powerline Conducted emissions

Equipment shall meet the limits below when using a CISPR16 quasi-peak and average detector receivers.

FCC, 15.107

1 0 0, 10:107				
	Frequency range	$oldsymbol{Q}$ uasi-peak limit	Average Limit	
	(MHz)	[dB (µV)]	[dB (μV)]	
	$0.15 \div 0.50$	$66 \div 56^{(*)}$	$56 \div 46^{(*)}$	
	$0.50 \div 5$	56	46	
	5 ÷ 30	60	50	

^(*) Limit decreasing linearly with logarithm of frequency

Test Equipment

EQUIPMENT	Manufacturer	Model	CAL. DUE
EMI Receiver	HP	HP8546A	
EMI Receiver Filter Section	HP	HP85460A	
Screened Room	GSD	CSC01	
Transient Limiter	HP	11947A	01/2018
LISN	GSD	GSDA01	01/2018

Test procedure: CE22R01

The EUT power cable was connected to a LISN and the monitored output of the LISN was connected to a spectrum analyzer by a transient limiter. The conducted emissions from 150 kHz to 30 MHz were monitored and compared to the specification limits

Test method

Test method was in accordance with the reference standard.

EUT modes of operations were tested in order to achieve the maximum level of emission.

Results

Equipment complied with the test specification limits.

Graphics in following figures show some registrations of the frequency spectrum of the conducted emissions.

Line 2

EUT mode: Connected to PC by Ethernet

6. Рното

Fig. 6.1
Conducted Emissions Test Set-up

Fig. 6.2
Radiated Emissions Test Set-up

Fig. 6.3
Radiated Emissions Test Set-up