

Chapter 10: Làm việc với tập tin XML, JSON

Exercise 1: Đọc và hiển thị tập tin XML

- Link: http://www.w3schools.com/xml/plant_catalog.xml
 (http://www.w3schools.com/xml/plant_catalog.xml)
- Download nội dung xml từ link trên vào tập tin plant_catalog.xml
- Đọc nội dung tập tin và chuyển thành dataframe
- Xuất nội dung dataframe
- Liệt kê những cây trồng quanh năm (Annual) và cần có nắng (Sunny)
 - [1] "Plants grow in sunny and annual:"

	COMMON	BOTANICAL	ZONE	LIGHT	PRICE	AVAILABILITY
23	Black-Eyed Susan	Rudbeckia hirta	Annual	Sunny	\$9.80	061899
26	Butterfly Weed	Asclepias tuberosa	Annual	Sunny	\$2.78	063099

Exercise 2: Ghi nội dung vào file XML

- Sử dụng dữ liệu mtcars
- · Tạo tài liệu xml từ dữ liệu này nhưng chỉ lấy thông tin: names, mpg, wt, gear
- Ghi tài liệu xml này vào tập tin mtcars.xml
- Đọc tập tin vừa ghi để xem kết quả

gear	wt	mpg	names
4	2.62	21	Mazda RX4
4	2.875	21	Mazda RX4 Wag
4	2.32	22.8	Datsun 710
3	3.215	21.4	Hornet 4 Drive
3	3.44	18.7	Hornet Sportabout
2	2.46	10 1	Valiant

Exercise 3: Đọc, xử lý và ghi nội dung JSON

- Cung cấp tập tin orange.json
- Đọc nội dung tập tin này => kiểm tra kiểu dữ liệu => đưa vào data.frame
- Cho biết cây cam có tuổi thọ cao nhất, thấp nhất
- Cho biết các cây cam có circumference >100 và age >1000. Có tất cả bao nhiêu cây cam?
- Chuyển dữ liệu những cây cam này thành json
- Ghi vào tập tin json
- Đọc nội dung tập tin vừa ghi để kiểm tra kết quả

	Tree	age	circumference
1	1	1004	115
2	1	1231	120
3	1	1372	142
4	1	1582	145
5	2	1004	156
6	2	1231	172
7	2	1372	203
8	2	1582	203
9	3	1004	108
10	3	1231	115
11	3	1372	139
12	3	1582	140
13	4	1004	167
14	4	1231	179
15	4	1372	209
16	4	1582	214
17	5	1004	125
18	5	1231	142
19	5	1372	174
20	5	1582	177

Exercise 4: Đọc nội dung từ URL và ghi nội dung JSON

- Cung cấp URL: http://phuong13021982.pythonanywhere.com/mystore/product_service/)
- Đọc nội dung từ URL này => đọc JSON => chuyển thành data.frame tên là Tivis
- Bổ cột description trong Tivis
- Chuyển Tivis thành json

	pk	name	fee	image
1	2	Asanzo 50 inch	9000000	images/asanzo_4k_50_11690000.jpg
2	11	Dell Vostro V3568 XF6C61	11999000	images/Dell_vostro.jpg
3	12	Macbook Air 2017 MQD32	18990000	images/MacbooAir.jpg
4	3	Panasonic 40 inch	6590000	images/panansonic_40_6590000.jpg
5	5	Samsung 32 inch	5999000	images/samsung_32_5990000.jpg
6	9	Samsung Galaxy J2 Prime	2690000	images/SamsungPrime.jpg
7	6	Sharp 45 inch	7490000	images/sharp_45_7490000.jpg
8	7	Sony 48 inch	11599000	images/sony_48_11599000.png
9	4	Sony 55 inch	20590000	images/sony_55_20590000.jpg
10	8	TCL 55 inch	9900000	images/tcl_55_9900000.jpg
11	1	Toshiba 32 inch	4590000	images/toshiba32_4590000.jpg
12	10	iPad WiFi 32GB New 2018	8390000	images/iPad Samsung Wifi.ipg

- Ghi vào tập tin tivis.json
- Đọc nội dung của tập tin vừa ghi và xem kết quả

Exercise 1: Đọc và hiển thị tập tin XML

```
In [2]: # Load the package required to read XML files.
library("XML")
# Also Load the other required package.
library("methods")
```

```
In [3]: # download file xml
fileUrl = "http://www.w3schools.com/xml/plant_catalog.xml"
# tao file co ten La plant_catalog.xml
download.file(fileUrl, destfile = "Du_lieu/plant_catalog.xml")
```

```
In [14]: # chuyen noi dung file sang data frame
xmldataframe <- xmlToDataFrame("Du_lieu/plant_catalog.xml")
print("Plants data frame:")
head(xmldataframe)</pre>
```

[1] "Plants data frame:"

COMMON	BOTANICAL	ZONE	LIGHT	PRICE	AVAILABILITY
Bloodroot	Sanguinaria canadensis	4	Mostly Shady	\$2.44	031599
Columbine	Aquilegia canadensis	3	Mostly Shady	\$9.37	030699
Marsh Marigold	Caltha palustris	4	Mostly Sunny	\$6.81	051799
Cowslip	Caltha palustris	4	Mostly Shady	\$9.90	030699
Dutchman's-Breeches	Dicentra cucullaria	3	Mostly Shady	\$6.44	012099
Ginger, Wild	Asarum canadense	3	Mostly Shady	\$9.03	041899

[1] "Plants grow in sunny and annual:"

	COMMON	BOTANICAL	ZONE	LIGHT	PRICE	AVAILABILITY
23	Black-Eyed Susan	Rudbeckia hirta	Annual	Sunny	\$9.80	061899
26	Butterfly Weed	Asclepias tuberosa	Annual	Sunny	\$2.78	063099

Exercise 2: Ghi nội dung vào file XML

```
In [9]: # Load the packages required to read XML files.
         library("XML")
         library("methods")
         df <- mtcars
         df <- cbind(names = rownames(df), df)</pre>
         rownames(df) <- c()
         print(head(df))
                              mpg cyl disp hp drat wt qsec vs am gear carb
                       names
                   Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0
               Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
                  Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
              Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0
         5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
                     Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0
         6
In [10]: print("Create xml...")
         [1] "Create xml..."
In [11]: doc = newXMLDoc()
         # Simple creation of an XML tree using these functions
         top = newXMLNode("cars", doc = doc)
         for(row in 1:nrow(df)){
           carnode = newXMLNode("car", parent=top)
           newXMLNode("names", df[row, "names"],parent=carnode)
           newXMLNode("mpg", df[row, "mpg"],parent=carnode)
           newXMLNode("wt", df[row, "wt"],parent=carnode)
           newXMLNode("gear", df[row, "gear"],parent=carnode)
In [12]: # save file
         print("Saving file...")
         cat(saveXML(doc,
                     indent = TRUE,
                     prefix = "<?xml version=\"1.0\" encoding=\"utf-8\"</pre>
                                         standalone=\"no\"?>\n"),
             file="Du_lieu/mtcars_new.xml")
         print("Complete!")
         [1] "Saving file..."
```

[1] "Complete!"

In [15]: # chuyen noi dung file sang data frame
xmldataframe <- xmlToDataFrame("Du_lieu/mtcars_new.xml")
head(xmldataframe)</pre>


```
names
                 mpg
                          wt gear
     Mazda RX4
                   21
                        2.62
                                 4
 Mazda RX4 Wag
                   21
                       2.875
     Datsun 710
                        2.32
                 22.8
                                 4
   Hornet 4 Drive
                 21.4 3.215
                                 3
Hornet Sportabout 18.7
                                 3
                        3.44
                                 3
         Valiant 18.1
                        3.46
```

Exercise 3: Đọc, xử lý và ghi nội dung JSON

```
In [16]: # Load the package required to read JSON files.
         library("rjson")
In [24]: # Give the input file name to the function.
         result <- fromJSON(file = "Du_lieu/orange.json")
         # cho biet kieu du lieu cua orange
         print(paste("Data type:",class(result)))
         #neu khong phai La data frame thi doi thanh data frame
         #in ket qua
         data <- data.frame(result)</pre>
         print(head(data))
          [1] "Data type: list"
           Tree age circumference
              1 118
              1 484
                                 58
                                87
              1 664
              1 1004
                                115
              1 1231
                                120
              1 1372
         6
                                142
In [18]: # cho biet trong nhung cay cam nay cay nao co tuoi tho cao nhat
         data_max_year <- data[which.max(data$age ),]</pre>
         print("Max year:")
         print(data_max_year)
```

[1] "Max year:"

1 1582

Tree age circumference

145

```
In [19]: # cho biet trong nhung cay cam nay cay nao co tuoi tho thap nhat'
         data_min_year <- data[which.min(data$age ),]</pre>
         print("Min year:")
         print(data_min_year)
          [1] "Min year:"
           Tree age circumference
               1 118
                                30
         # danh sach cac cay trong co circumference >100 va age >1000
In [25]:
         large_100_age_1000 <- subset(data, data$age>1000 &
                                        data$circumference>100)
         print(head(large_100_age_1000))
         print(class(large_100_age_1000))
         print(paste("Number of rows:", nrow(large_100_age_1000)))
             Tree age circumference
                1 1004
         4
                                 115
                1 1231
                                 120
                1 1372
                                 142
                1 1582
                                 145
         11
                2 1004
                                 156
                2 1231
                                 172
             "data.frame"
          [1]
             "Number of rows: 20"
In [21]: # ghi vao file
         # doc file de kiem tra ket qua
         large_100_age_1000_json <- toJSON(large_100_age_1000)</pre>
         write(large_100_age_1000_json, file="Du_lieu/large_100_age_1000_new.json")
In [26]: # Give the input file name to the function.
         result <- from JSON (file = "Du_lieu/large_100_age_1000_new.json")
         #in ket qua
         data <- data.frame(result)</pre>
          print(head(data))
           Tree age circumference
               1 1004
                                115
              1 1231
                                120
              1 1372
                                142
              1 1582
                                145
              2 1004
                                156
```

Exercise 4: Đọc nội dung từ URL và ghi nội dung JSON

172

6

2 1231

```
In [27]: library(httr)
    library("jsonlite")
```

fromJSON, toJSON

Attaching package: 'jsonlite'

The following objects are masked from 'package:rjson':

```
In [28]: # doc noi dung tu internet
URL <- "http://phuong13021982.pythonanywhere.com/mystore/product_service/"
getURL <- GET(URL)
content <- rawToChar(getURL$content)
json <- fromJSON(content)
Tivis <- data.frame(json)
print(class(Tivis))
#bo cot description
Tivis$description <-NULL
print(Tivis)</pre>
```

```
[1] "data.frame"
                                    fee
                                                                    image
   pk
                          name
                Asanzo 50 inch 9000000 images/asanzo_4k_50_11690000.jpg
   11 Dell Vostro V3568 XF6C61 11999000
                                                  images/Dell vostro.jpg
   12
        Macbook Air 2017 MQD32 18990000
                                                    images/MacbooAir.jpg
3
             Panasonic 40 inch 6590000 images/panansonic_40_6590000.jpg
4
               Samsung 32 inch 5999000
                                           images/samsung_32_5990000.jpg
6
       Samsung Galaxy J2 Prime
                                2690000
                                                 images/SamsungPrime.jpg
                 Sharp 45 inch 7490000
                                             images/sharp_45_7490000.jpg
8
                  Sony 48 inch 11599000
                                             images/sony_48_11599000.png
9
                  Sony 55 inch 20590000
                                             images/sony_55_20590000.jpg
10
                   TCL 55 inch 9900000
                                               images/tcl_55_9900000.jpg
11
               Toshiba 32 inch 4590000
                                            images/toshiba32_4590000.jpg
12 10
                                            images/iPad_Samsung_Wifi.jpg
       iPad WiFi 32GB New 2018 8390000
```

```
In [33]: #ghi noi dung nay vao tap tin tivi.json'
Tivis_json <- toJSON(Tivis)
write(Tivis_json, file="Du_lieu/tivis_new.json")</pre>
```

In [35]: # Give the input file name to the function.
 result <- fromJSON(txt= "Du_lieu/tivis_new.json")
Print the result.
 print("json data read from file:")
 data <- data.frame(result)
 data</pre>

[1] "json data read from file:"

image	fee	name	pk
images/asanzo_4k_50_11690000.jpg	9000000	Asanzo 50 inch	2
images/Dell_vostro.jpg	11999000	Dell Vostro V3568 XF6C61	11
images/MacbooAir.jpg	18990000	Macbook Air 2017 MQD32	12
images/panansonic_40_6590000.jpg	6590000	Panasonic 40 inch	3
images/samsung_32_5990000.jpg	5999000	Samsung 32 inch	5
images/SamsungPrime.jpg	2690000	Samsung Galaxy J2 Prime	9
images/sharp_45_7490000.jpg	7490000	Sharp 45 inch	6
images/sony_48_11599000.png	11599000	Sony 48 inch	7
images/sony_55_20590000.jpg	20590000	Sony 55 inch	4
images/tcl_55_9900000.jpg	9900000	TCL 55 inch	8
images/toshiba32_4590000.jpg	4590000	Toshiba 32 inch	1
images/iPad_Samsung_Wifi.jpg	8390000	iPad WiFi 32GB New 2018	10