tSVD

Lasitha Gunaseakara

Department of Scientific Computing

July 11, 2025

Outline

- Introduction
- Example
- Applications of tSVD
- 4 tSVD for Highly Oscillatory Integrals

SVD : Singular Value Decomposition

SVD is a fundamental matrix factorization technique in linear algebra, applicable to any $m \times n$ matrix. It decomposes a matrix $A_{m \times n}$ into three matrices: $A = U \Sigma V^T$, where:

- U is an $m \times m$ orthogonal matrix.
- Σ is $m \times n$ diagonal matrix whose diagonal elements are non-negative singular values(decreasing order) of A
- V^T (the conjugate transpose of V) is an $n \times n$ orthogonal matrix.

Geometric Interpretation

tSVD: Truncated Singular Value Decomposition

tSVD is a variant of SVD where the decomposition is truncated to retain only the first k largest singular values and their corresponding singular vectors. For a matrix A, tSVD approximates A as $A \approx U_k \Sigma_k V_k^T$, where:

- U_k and V_k^T are truncated versions of U and V^T containing only the first k columns.
- Σ_k is a diagonal matrix containing only the first k largest singular values from Σ .

How tSVD works?

- 2 basic steps
- Data Matrix \Rightarrow Decomposition \Rightarrow Truncation

SVD vs tSVD

• Second figure (tSVD) : k < m and $k < n^{-1}$

¹reference: https://en.wikipedia.org/wiki/SingularValueDecomposition

Example _____

Under determined example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
. Lets decompose A using SVD.

SVD example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
. Lets decompose A using SVD.

•
$$A = U\Sigma V^T$$

SVD example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}. \text{ Lets decompose } A \text{ using SVD. } A = U\Sigma V^T$$

$$\bullet \ \ U = \begin{pmatrix} 0.50453315 & 0.76077568 & -0.81649658 \\ 0.5745157 & 0.05714052 & -0.82 \\ 0.64449826 & -0.64649464 & 0.40824829 \end{pmatrix}$$

$$\bullet \ \Sigma = \begin{pmatrix} 25.4624074 & 0 & 0 & 0 \\ 0 & 1.29066168 & 0 & 0 \\ 0 & 0 & 2.32149215 \times 10^{-15} & 0 \end{pmatrix}$$

tSVD example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
. Lets approximate A using tSVD.

tSVD example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}$$
. Lets decompose A using tSVD (up to rank 2).

• $A \approx U_k \Sigma_k V_k^T$

tSVD example

$$A = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{pmatrix}.$$
 Lets decompose A using tSVD. $A \approx U_k \Sigma_k V_k^T$

$$\bullet \ \Sigma_k = \begin{pmatrix} 25.46240744 & 0 \\ 0 & 1.29066168 \end{pmatrix}$$

•
$$V_k^T = \begin{pmatrix} 0.14087668 & 0.34394629 & 0.54701591 & 0.75008553 \\ -0.82471435 & -0.42626394 & -0.02781353 & 0.37063688 \end{pmatrix}$$

Singular values comparison

Singular values approximated to 2 decimals

SVD				tSVD
25.46 0 0	0 1.29 0	$0 \\ 0 \\ 2.32 \times 10^{-15}$	0 0 0	$\begin{pmatrix} 25.46 & 0 \\ 0 & 1.29 \end{pmatrix}$

• Truncation up to Rank: k = 2 in SVD to get tSVD.²

 $^{^2}$ remove the minimum Singular value $2.32\times 10^{-15}\,$

Applications of tSVD

Applications

- Dimensionality Reduction
- Handling ill-conditioned matrices
- Noise Reduction

tSVD for Highly Oscillatory Integrals

Condition Number

• Ax = b, the Condition Number : cond(A)

•

$$cond(A) = \frac{LargestSingularValue}{SmallestSingularValue}$$
 (1)

- $cond(A) \gg 1 \Rightarrow ill$ -conditioned ³
- Otherwise, well-conditioned ⁴

 $^{^{3}\}mathrm{small}$ change in input cause to a huge change in output

⁴https://en.wikipedia.org/wiki/ConditionNumber

Highly Oscillatory Integrals

Li et al. developed a modified Levin method and show

$$I(\omega) = \int_{a}^{b} f(x)e^{i\omega g(x)}dx \tag{2}$$

can be solved using Chebyshev spectral collocation method using tSVD to solve the resulting linear system of coefficients.

$$\left(D + \frac{b-a}{2}i\omega\Sigma\right)p = \frac{b-a}{2}f\tag{3}$$

where $D = \text{Chebyshev differential matrix and } \Sigma = diag(g'(x)).$

How do we solve the linear system ?

- Depending on the condition number of the linear system use tSVD or linear solver⁵ to find p values
- If $\left(D+\frac{b-a}{2}i\omega\Sigma\right)$'s condition number is $\gg 1,$ use tSVD
- Start with SVD and then tSVD by truncating Singular values
- Improved Conditioning

Only tSVD?

- **Pseudo-Inverse**: Using the Moore-Penrose Pseudo-Inverse for solving linear systems, especially if the matrix is not full rank.
- **Iterative Methods**: Conjugate Gradient Method is useful for large, sparse, symmetric, and positive-definite matrices.
- QR Decomposition: Particularly effective if the matrix is more raw-dominant.
- LU Decomposition: Can be useful, especially with partial pivoting to handle ill-conditioned behavior.

24 / 24