HONI 2015/2016 3. kolo, 28. studenog 2015.

ZADATAK	MLJEKAR	KARTE	РОТ	ESEJ	MOLEKULE	SLON	NEKAMELEONI	DOMINO
izvorni kôd	mljekar.pas mljekar.c mljekar.cpp mljekar.py mljekar.java	karte.pas karte.c karte.cpp karte.py karte.java	pot.pas pot.c pot.cpp pot.py pot.java	esej.pas esej.c esej.cpp esej.py esej.java	molekule.pas molekule.c molekule.cpp molekule.py molekule.java	slon.pas slon.c slon.cpp slon.py slon.java	nekameleoni.pas nekameleoni.c nekameleoni.cpp nekameleoni.py nekameleoni.java	domino.pas domino.c domino.cpp domino.py domino.java
ulazni podaci	standardni ulaz							
izlazni podaci				st	andardni izlaz			
vremensko ograničenje	1 sekunda	1 sekunda	1 sekunda	1 sekunda	1 sekunda	1 sekunda	3 sekunde	4 sekunde
memorijsko ograničenje	64 MB	64 MB	64 MB	64 MB	64 MB	64 MB	512 MB	512 MB
	20	30	50	80	100	120	140	160
broj bodova	ukupno 700, maksimalno 600							
	(broj osvojenih bodova jednak je zbroju bodova 5 zadataka koji ukupno donose najviše bodova)							

Iza sedam mora, iza sedam gora nalazi se selo Kravosel. U Kravoselu živi točno 5 **obitelji**. Svaka od tih obitelji ima točno K_i ukućana, a svaki ukućanin pije točno B_i boca mlijeka dnevno. Mljekar Ivan se nedavno zaposlio u Kravoselu i upravo se priprema za svoj prvi radni dan. No, naišao je na problem. On ne zna koliko boca mlijeka treba ponijeti sa sobom u dostavu.

Pomozite Ivanu u pripremi za njegov prvi radni dan i riješite mu problem!

ULAZNI PODACI

Ulaz će se sastojati od ukupno 5 redaka. U svakom retku nalaze se prirodni brojevi K_i i B_i (1 $\leq K_i, B_i \leq 10$) iz teksta zadatka.

IZLAZNI PODACI

U jedini redak ispišite ukupan broj boca mlijeka koje Ivan mora ponijeti sa sobom u dostavu.

PRIMJERI TEST PODATAKA

ulaz	ulaz	ulaz
3 2	8 5	2 5
4 1	1 3	7 10
5 5	4 4	9 3
8 2	6 3	1 1
3 7	10 1	7 4
izlaz	izlaz	izlaz
72	87	136

Pojašnjenje prvog primjera:

Prva obitelj: 3 ukućana, svaki od njih pije 2 boce dnevno pa ta obitelj troši 3*2=6 boca dnevno.

Druga obitelj: 4 ukućana, svaki od njih pije 1 bocu dnevno, pa ta obitelj troši 4*1=4 boca dnevno.

Treća obitelj: 5 ukućana, svaki od njih pije 5 boca dnevno, pa ta obitelj troši 5*5=25 boca dnevno.

Četvrta obitelj: 8 ukućana, svaki od njih pije 2 boce dnevno, pa ta obitelj troši 8*2=16 boca dnevno.

Peta obitelj: 3 ukućana, svaki od njih pije 7 boca dnevno, pa ta obitelj troši 3*7=21 boca dnevno.

Cijelo selo Kravosel ukupno troši 6+4+25+16+21=72 boce dnevno, pa toliko boca mora Ivan ponijeti sa sobom u dostavu.

Mirko i Slavko, kao i uvijek, igraju novu igru s igraćim kartama. Pravila su sljedeća:

- 1. Na početku Mirko zamisli neku kartu i kaže njenu vrijednost (V_m) i boju (B_m) .
- 2. Zatim da Slavku Q pokušaja da pogodi koju je to kartu on zamislio.
- 3. Slavko Q puta kaže neku kartu (njenu vrijednost V_i i boju B_i) na što mu Mirko odgovori s:
 - (a) 00 karta koju si rekao nije dobre vrijednosti niti je dobre boje
 - (b) 01 karta koju si rekao nije dobre vrijednosti, ali je dobre boje
 - (c) 10 karta koju si rekao je dobre vrijednosti, ali nije dobre boje
 - (d) 11 karta koju si rekao je i dobre vrijednosti i dobre boje

Slavko je slabe sreće i uvijek uspije pogoditi kartu tek na Q-tom pokušaju! Zbog toga, Mirku je ova igra ubrzo dojadila, ali ne i Slavku. Budući da ga Slavko ne želi pustiti na miru, Mirko želi napisati program koji će igrati ovu igru sa Slavkom. Pomozite Mirku i napišite program za Slavka!

Kako bi vam pomogao, Mirko kaže da su moguće vrijednosti karata A, K, Q, J, T, 9, 8, 7, 6, 5, 4, 3 i 2, a moguće boje S, H, D i C.

ULAZNI PODACI

U prva dva retka nalazi se opis Mirkove karte, V_m i B_m , iz teksta zadatka.

U sljedećem retku nalazi se prirodan broj Q ($1 \le Q \le 52$) iz teksta zadatka.

U sljedećih 2Q redaka nalaze se opisi Slavkovih pokušaja, V_i i B_i , iz teksta zadatka.

IZLAZNI PODACI

 ${\bf U}$ svaki od ${\bf Q}$ redaka ispišite odgovor na Slavkov upit iz teksta zadatka.

PRIMJERI TEST PODATAKA

ulaz	ulaz	ulaz
Q H 2 A C Q H	Q H 2 A H Q	Q H 2 Q C Q H
izlaz 00 11	izlaz 01 11	10 11

Pojašnjenje prvog primjera: Mirkova karta je **QH** (dama herc). Dao je Slavku 2 pokušaja. Prvi put Slavko pita je li karta **AC** (as tref). Mirko mu odgovara da nije dobra vrijednost niti je dobra boja (00). Sljedeći put Slavko pita je li karta **QH** (dama herc). Mirko mu odgovara da je i dobra vrijednost i dobra boja (11).

Učiteljica je svojim učenicima poslala elektroničko pismo sa sljedećim zadatakom: "Napišite program koji će odrediti i ispisati vrijednost varijable X ako je zadan izraz:

$$X = broj_1^{pot_1} + broj_2^{pot_2} + \ldots + broj_N^{pot_N}$$

i vrijedi da su $broj_1$, $broj_2$ do $broj_N$ prirodni brojevi, a pot_1 , pot_2 do pot_N cijeli jednoznamenkasti brojevi". Na žalost, kada je Katja skinula taj zadatak na svoje računalo, izgubilo se oblikovanje teksta pa se zadatak pretvorio u zbroj N prirodnih brojeva tj. postao je oblika:

$$X = P_1 + P_2 + \dots + P_N.$$

Npr. nakon što se izgubilo oblikovanje originalni zadatak oblika $X=21^2+125^3$ postao je zadatak oblika X=212+1253. Pomozite Katji tako što ćete napisati program koji će za zadanih N prirodnih brojeva P_1 do P_N odrediti i ispisati vrijednost varijable X iz originalnog zadatka. Podsjetnik: Znamo da vrijedi da je $a^N=a\cdot a\cdot ...\cdot a$ (n puta).

ULAZNI PODACI

U prvom retku nalazi se prirodan broj N ($1 \le N \le 10$), broj pribrojnika iz teksta zadatka. U sljedećih N redaka nalazi se prirodan broj P_i ($10 \le P_i \le 9999, i = 1 \dots N$) iz teksta zadatka.

IZLAZNI PODACI

U prvi redak treba ispisati vrijednost varijable $X~(X\leqslant 1\,000\,000\,000)$ iz originalnog zadatka.

PRIMJERI TEST PODATAKA

ulaz	ulaz	ulaz
2 212 1253	5 23 17 43 52 22	3 213 102 45
izlaz	izlaz	izlaz
1953566	102	10385

Pojašnjenje prvog primjera: $21^2 + 125^3 = 441 + 1953125 = 1953566$

Maturantima se bliži državna matura: jedan od obaveznih zadataka bit će im pisanje eseja iz hrvatskoga jezika. Mirko misli da će se ostvariti predizborna obećanja izvjesnih stranaka, ona o informatizaciji i digitalizaciji, pa sluti da će eseje ove godine umjesto čovjeka ocjenjivati računalo.

Da bi provjerio svoje slutnje, Mirko će na maturi napisati esej koji možda i neće imati smisla, ali bi trebao proći automatsku provjeru osnovnih uvjeta. Esej prolazi provjeru ako:

- \bullet sadrži najmanje A, a najviše B riječi;
- svaka riječ sadrži najmanje jedno, a najviše 15 slova;
- ullet korišteni vokabular dovoljno je velik, tj. esej sadrži barem $\frac{B}{2}$ različitih riječi.

Mirko je sinoć do kasno u noć gledao Big Brother pa vas moli da vi takav esej napišete umjesto njega. Esej treba ispisati u jednom retku, koristeći samo mala slova engleske abecede i razmake (dakle, bez interpunkcijskih znakova poput točke, zareza i slično). Korištene riječi mogu, ali ne moraju biti riječi hrvatskoga (ili bilo kojega) jezika.

ULAZNI PODACI

U prvom i jedinom retku nalaze se prirodni brojevi A i B $(1 \le A \le B \le 100\,000)$ iz teksta zadatka.

IZLAZNI PODACI

U jedini redak ispišite bilo koji esej koji zadovoljava opisana pravila.

PRIMJERI TEST PODATAKA

Napomena: svaki od donjih izlaza ispisan je u jednom retku, iako je prelomljen zbog manjka mjesta.

ulaz	ulaz	ulaz
2 7	26 30	19 19
izlaz	izlaz	izlaz
dobar je ovaj marko marulic	nama je profesor reko da to ne treba za lektiru al onda je bila buka i nisam ga cuo pa jel bi mi mogli dat bodove	konzekvence pojmovnoga diskursa u predstavljenoj noveli naizgled ne odrazavaju paradigmatske tendencije tipoloske klasifikacije iako su stilski i didakticki opravdane

U jednom kemijskom laboratoriju u Hrvatskoj znanstvenici proučavaju kemijske veze između raznih molekula. Posebno ih zanima skupina molekula kemijskog spoja nitrohidrogenlaminata.

Spoj se sastoji od N molekula koje su povezane sN-1 kovalentnih veza te su sve molekule direktno ili indirektno **povezane** vezama u jednu strukturu.

Znanstvenici žele modificirati spoj tako da sve kovalentne veze pretvore u **usmjerene** kovalentne veze. Zbog nestabilnosti novonastalog kemijskog spoja iz svake molekule će početi izlaziti velik broj impulsa koji će putovati do drugih molekula preko **usmjerenih** veza. Impuls može putovati preko usmjerene kovalentne veze samo u smjeru u kojem je veza usmjerena.

Nestabilnost spoja definira se kao **najveći** mogući broj veza preko kojih **jedan** impuls može proći u svom putovanju. Znanstvenici žele usmjeriti kovalentne veze spoja na način da novonastali kemijski spoj bude što stabilniji, drugim riječima - njihov cilj je da u novonastalom spoju najdulji put koji impuls može obaviti bude što manji.

Pomozite znanstvenicima odrediti usmjerenje za svaku kovalentnu vezu spoja.

ULAZNI PODACI

U prvom retku nalazi se prirodan broj N ($2 \le N \le 100\,000$). Slijedi N-1 redaka, u i-tom retku se nalaze brojevi a_i i b_i ($1 \le a_i, b_i \le N$) koji označavaju da su molekule a_i i b_i povezane kovalentnom vezom.

IZLAZNI PODACI

Ispišite N-1 redaka, u *i*-tom retku ispišite 1 ako će kovalentna veza biti usmjerena od a_i prema b_i , a u suprotnom ispišite 0.

Ako postoji više mogućih rješenja ispišite bilo koje od njih.

BODOVANJE

U barem 30% test primjera vrijedit će $N \leq 20$.

PRIMJERI TEST PODATAKA

ulaz	ulaz
3 1 2 2 3	4 2 1 1 3 4 1
izlaz	izlaz
1 0	0 1 0

Pojašnjenje prvog primjera: Primjer odgovara lijevoj slici iz teksta zadatka. Najdulji put koji impuls može proputovati je 1. Primjetite da je i 0 1 točno rješenje.

Pojašnjenje drugog primjera: Primjer odgovara desnoj slici iz teksta zadatka.

Učenik kojeg svi rado zovu Slon vrlo je nestašan u školi. Njemu je na nastavi dosadno i uvijek stvara nered. Kako bi ga profesor smirio i na neki način "ukrotio" on mu zadaje težak matematički problem.

Profesor Slonu zadaje aritmetički izraz A, broj P i broj M. Slon mora odgovoriti na sljedeće pitanje: "Koja je **najmanja nenegativna** vrijednost varijable x u izrazu A tako da je ostatak pri dijeljenju A s M jednak P?". Rješenje će uvijek **postojati**.

Također će vrijediti da ukoliko **primijenimo distributivnost** nad izrazom A varijabla x neće množiti varijablu x (formalno, izraz je polinom prvog stupnja u varijabli x).

Primjer valjanih izraza A: 5 + x * (3 + 2), x + 3 * x + 4 * (5 + 3 * (2 + x - 2 * x)).Primjer nevaljanih izraza A: 5 * (3 + x * (3 + x)), x * (x + x * (1 + x)).

ULAZNI PODACI

U prvom retku nalazi se izraz A ($1 \le |A| \le 100\,000$).

U drugom retku nalaze se dva cijela broja P ($0 \le P \le M - 1$) i M ($1 \le M \le 1000000$).

Aritmetički izraz A sastojat će se samo od znakova +, -, *, (,), x i znamenki od 0 do 9.

Zagrade će uvijek biti uparene, operatori +, - i * će uvijek djelovati na točno dvije vrijednosti (neće postojati izraz (-5) ili (4+-5)) i sva množenja će biti eksplicitna (neće postojati izraz 4(5) ili 2(x)).

IZLAZNI PODACI

U prvom i jedinom retku, najmanja nenegativna vrijednost varijable x.

PRIMJERI TEST PODATAKA

ulaz	ulaz	ulaz
5+3+x 9 10	20+3+x 0 5	3*(x+(x+4)*5) 1 7
izlaz	izlaz	izlaz
1	2	1

Pojašnjenje prvog primjera: Ostatak pri dijeljenju 5 + 3 + x s 10 za x = 0 je 8, a ostatak pri dijeljenju za x = 1 je 9 što je ujedno i rješenje.

"Hej! Imam super zadatak s kameleonima. Sedmi za subotu." "Reci..."

(...)

"Ma to ti je preteško, imam ja jedan lakši, neće ni taj riješit."

"Imaš niz cijelih brojeva duljine N, svi brojevi su između 1 i K. Dobiješ M upita koje moraš obraditi. Prva vrsta upita traži da promijeniš neki broj u nizu u drugu vrijednost, a druga vrsta da kažeš koja je duljina **najkraćeg uzastopnog podniza** trenutnog niza koji sadrži **sve brojeve od 1 do** K." "Hm, znam u N na šestu. Do koliko je N?

ULAZNI PODACI

U prvom retku nalaze se brojevi N, K i M ($1 \le N, M \le 100\,000, 1 \le K \le 50$). U drugom retku nalazi se N cijelih brojeva odvojenih razmakom - članovi niza. Nakon toga slijedi M upita, svaki od upita bit će jednog od ova dva oblika:

- "1 p v" promijeni broj na p-tom mjestu u nizu u v ($1 \le p \le N, 1 \le v \le K$)
- "2" koji je najkraći uzastopni podniz niza koji sadrži sve brojeve

IZLAZNI PODACI

Ispišite odgovore na naredbe druge vrste, svaki u svoj redak. Ako ne postoji podniz koji sadrži sve brojeve, ispišite -1.

PRIMJERI TEST PODATAKA

ulaz	ulaz
4 3 5 2 3 1 2 2 1 3 3 2 1 1 1 2	6 3 6 1 2 3 2 1 1 2 1 2 1 2 1 4 1 1 6 2 2
izlaz	izlaz
3 -1 4	3 3 4

Mirko je za rođendan dobio $N \times N$ tablicu u čijem je svakom polju napisan neki nenegativan cijeli broj. Nažalost, napisani brojevi preveliki su za Mirkov ukus. On će stoga na tablicu postaviti K domina koje će prekriti prevelika polja. Preciznije, Mirko domine postavlja uz sljedeća pravila:

- svaka domina pokriva dva polja tablice koja su susjedna u retku ili stupcu;
- domine se međusobno ne preklapaju (ali smiju se dodirivati);
- zbroj svih vidljivih (nepokrivenih) polja treba biti što manji.

Vaš je zadatak odrediti traženi minimalan zbroj vidljivih polja. Test podaci bit će takvi da će uvijek biti moguće postaviti K domina bez preklapanja.

ULAZNI PODACI

U prvom retku nalaze se prirodni brojevi N ($1 \le N \le 2000$), dimenzija tablice, i K ($1 \le K \le 8$), broj domina.

U sljedećih N redaka nalazi se po N cijelih brojeva iz intervala $[0,1\,000]$. Tih $N\times N$ brojeva opisuju Mirkovu tablicu.

IZLAZNI PODACI

U jedini redak ispišite minimalan zbroj vidljivih polja nakon pokrivanja dominama.

BODOVANJE

U test podatcima ukupno vrijednima 70 bodova vrijedit će $K \leq 5$.

PRIMJERI TEST PODATAKA

ulaz	ulaz
3 1 2 7 6 9 5 1 4 3 8	4 2 1 2 4 0 4 0 5 4 0 3 5 1 1 0 4 1
izlaz	izlaz
31	17

Pojašnjenje prvog primjera: Dominu postavljamo tako da pokriva polja s brojevima 9 i 5.

Pojašnjenje drugog primjera: Postavljamo domine koje pokrivaju polja [4, 5] i [5, 4] u trećem stupcu.