EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olch	a	II	3	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA		o Ni Cwiczenia.			
WFiIS AGH	Opracowanie d	0			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
7.10.2016	12.10.2016				

Ćwiczenie nr 0: Opracowanie danych pomiarowych

1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego.

2 Wstęp teoretyczny

Wahadło matematyczne to punkt materialny zawieszony na nieważkiej i nierozciągliwej nici.

Na rysunku przedstawione są działające siły, gdzie siły $\vec{F_N}$ i $\vec{F_S}$ to siły składowe. Siłę $\vec{F_N}$ równoważy siła naciągu nitki, więc o ruchu wahadła decyduje tylko siła $\vec{F_S}$.

Wychylamy punkt materialny z położenia równowagi o bardzo mały kącie $\alpha < 5^o$. Możemy wyprowadzić wzór na okres wahadła:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Okres wahadła matematycznego jest wprost proporcjonalny do pierwiastka z długości wahadła. Gdy przekształcimy ten wzór uzyskamy wzór na przyśpieszenie grawitacyjne:

$$g = \frac{4\pi^2 l}{T^2}$$

3 Układ pomiarowy

Do uzyskania pomiarów niezbędny jest zestaw wahadła prostego (rysunek po prawej), sekundomierz (stoper) oraz przymiar milimetrowy (linijka).

4 Wykonanie ćwiczenia

Przy pomocy linijki dokonujemy pomiaru długości wahadła rozumianą jako odległość od środka ciężarka do punktu zawieszenia nici. Niewielką masę wprawiamy w ruch z małą amplitudą (nieprzekraczającą 3 stopni) i mierzymy czas wykonania się 30 pełnych okresów. Sekundomierz uruchamiamy i zatrzymujemy w tej samej fazie ruchu. Pomiar powtarzamy dziesięciokrotnie.

W następnej kolejności chcemy zbadać pomiar zależności okresu drgań od długości wahadła, więc dziesięciokrotnie mierzymy czas wykonania się 30 pełnych okresów jak wcześniej, lecz na różnych długościach nici w zakresie od 10 cm do długości maksymalnej.

5 Wyniki i ich opracowanie

Tablica 1: Pomiar okresu drgań przy ustalonej długości wahadła.

Długość wahadła l=395mm, niepewność pomiarowa u(l)=1mm.

	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Lp.	liczba okresów k	czas t dla k okresów w $[s]$	okres $T_i = t/k$ w [s]			
1	30	37,37	1,245667			
2	30	37,22	1,240667			
3	30	37,25	1,241667			
4	30	37,34	1,244667			
5	30	37,06	1,235333			
6	30	37,32	1,244000			
7	30	37,31	1,243667			
8	30	37,13	1,237667			
9	30	37,47	1,249000			
10	30	37,38	1,246000			

Tablica 2: Pomiar zależności okresu drgań od długości wahadła.

Lp.	l[mm]	k	t[s]	$T_i[s]$	$T_i^2[s^2]$
1	105	30	19,25	0,641667	0,411736
2	125	30	20,66	0,688667	0,474261
3	148	30	22,62	0,754000	0,568516
4	160	30	23,88	0,796000	0.633616
5	190	30	25,81	0,860333	0,740173
6	202	30	26,47	0,882333	0,778512
7	225	30	28,28	0,942667	0,888620
8	245	30	29,22	0,974000	0,948676
9	280	30	31,16	1,038667	1,078828
10	318	30	33,50	1,116667	1,246944

5.1 Błąd gruby

Nie stwierdzamy błędu grubego, żaden z wyników nie różni się znacząco od pozostałych, a przyrządy pomiarowe były umiejętnie użyte.

5.2 Niepewność typu A - pomiar okresu

Średnia arytmetyczna:

$$\overline{T} = \frac{1}{n} \sum T_i$$

$$\overline{T} = \frac{1,245667 + 1,245667 + \dots + 1,249000 + 1,246000}{10} \approx 1,242833s$$

Estymator odchylenia standardowego:

$$s_T = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n - 1}}$$

$$s_T = \sqrt{\frac{(1,245667 - 1,242833)^2 + (1,240667 - 1,242833)^2 + \dots + (1,246000 - 1,242833)^2}{10 - 1}} \approx 0,004089s$$

Ponieważ za wynik pomiaru przyjmujemy średnią, **niepewność pomiaru** u(T) utożsamiamy z estymatorem odchylenia standardowego średniej.

Estymator odchylenia standardowego średniej:

$$u(T) = s_{\overline{T}} = \frac{s_T}{\sqrt{n}}$$

$$u(T) \approx \frac{0,004089s}{\sqrt{10}} \approx 0,0013s$$

5.3 Niepewność typu B - pomiar długości wahadła

Długość wahadła otrzymałyśmy mierząc go przymiarem milimetrowym od środka masy ciała do punktu zawieszenia "na oko" – przyjmujemy niepewność równą u(l)=3mm.

5.4 Przyspieszenie ziemskie

Aby obliczyć przyspieszenie ziemskie korzystamy ze wzoru:

$$g = \frac{4\pi^2 l}{\overline{T}^2},$$

gdzie l, to długość wahadła, a \overline{T} to średnia arytmetyczna okresów drgań dla dziesięciu pomiarów.

$$g \approx \frac{4\pi^2 \cdot 0,395m}{(1,242833s)^2} \approx 10,095575 \frac{m}{s^2}$$

5.5 Niepewność złożona $u_c(g)$

Niepewność złożoną obliczamy korzystając z prawa przenoszenia niepewności.

$$u_{c}(g) = \sqrt{\left(\frac{\partial f}{\partial l}u(l)\right)^{2} + \left(\frac{\partial f}{\partial T}u(T)\right)^{2}} = \sqrt{\left[\frac{4\pi^{2}}{T^{2}}u(l)\right]^{2} + \left[\frac{8\pi^{2}l}{T^{3}}u(T)\right]^{2}}$$

$$\approx \sqrt{\left[\frac{4\pi^{2}}{(1,242833s)^{2}} \cdot 0,003m\right]^{2} + \left[\frac{8\pi^{2} \cdot 0,395m}{(1,242833s)^{3}} \cdot 0,0013s\right]^{2}}$$

$$\approx 0,078 \frac{m}{s^{2}}$$

Wyliczoną wartość g możemy zapisać uwzględniając teraz niepewność złożoną $u_c(g)$:

$$g = 10,100(78)\frac{m}{s^2}$$

5.6 Niepewność rozszerzona U(g)

Niepewność rozszerzoną wyrażamy jako iloczyn niepewności złożonej i bezwymiarowego współczynnika rozszerzenia k (umowna wartość to k=2).

$$U(g) = k \cdot u_c(g) \approx 2 \cdot 0,078 \frac{m}{s^2} \approx 0,16 \frac{m}{s^2}$$

Wyliczoną wartość g możemy zapisać uwzględniając teraz niepewność rozszerzoną U(g):

$$g = 10, 10(16) \frac{m}{s^2}$$

5.7 Porównanie z wartością tabelaryczną

Wartość zmierzona g_z :

$$g_z = 10, 10 \frac{m}{s^2}$$

Wartość tabelaryczna g:

$$g = 9,811 \frac{m}{s^2}$$

$$|g - g_z| = 0,289 \frac{m}{s^2} > 0,16 \frac{m}{s^2}$$

Wartość zmierzona nie mieści się w granicach niepewności rozszerzonej, a co za tym idzie również złożonej.

5.8 Wykres zależności okresu od długości wahadła T(l)

Zależność okresu od długości wahadła

5.9 Wykres zlinearyzowany T^2 w funkcji l

5.10 Dopasowanie prostej typu y = ax

Korzystając z funkcji REGLINP() w arkuszu kalkulacyjnym obliczyłyśmy współczynnik a prostej y=ax, który wyniósł:

$$a \approx 3,912982 \frac{s^2}{m}$$

Niepewność współczynnika kierunkowego prostej:

$$u(a) \approx 0,048 \frac{s^2}{m}$$

Wyliczoną wartość a możemy zapisać uwzględniając teraz niepewność u(a):

$$a = 3,913(48)\frac{s^2}{m}$$

Korelacja liniowa danych wyniosła $r^2\approx 0,998809\pm 0,009794$, co świadczy o tym, że uzyskałyśmy dobre dopasowanie danych. Punkty układają się na lub bardzo blisko linii prostej y=3,913x, co widać to także na powyższym wykresie.

5.11 Wartość przyspieszenia ziemskiego z otrzymanej wartości współczynnika nachylenia $a=\frac{4\pi^2}{a}$

Przekształcając wzór do postaci:

$$g = \frac{4\pi^2}{a}$$

oraz podstawiając współczynnik kierunkowy a wyliczony w poprzednim podpunkcie otrzymujemy:

$$g \approx \frac{4\pi^2}{3,912982 \frac{s^2}{m}} \approx 10,089088 \frac{m}{s^2}$$

5.12 Niepewność u(g) na podstawie uzyskanej z dopasowania niepewności u(a)

Wyprowadzając wzór i podstawiając otrzymane wcześniej wartości a oraz u(a) otrzymujemy:

$$u(g) = \sqrt{\left[\frac{\partial g}{\partial a}u(a)\right]^2} = \left|\frac{\partial g}{\partial a}u(a)\right| = \left|\frac{\partial \frac{4\pi^2}{a}}{\partial a}u(a)\right| = \left|\frac{-4\pi^2}{a^2}u(a)\right|$$
$$u(g) \approx \left|\frac{-4\pi^2}{\left(3,913\frac{s^2}{m}\right)^2}0,048\frac{s^2}{m}\right| \approx 0,12\frac{m}{s^2}$$

Wyliczoną wartość g możemy zapisać uwzględniając teraz niepewność u(g) na podstawie uzyskanej z dopasowania niepewności u(a):

$$g = 10, 10(12)\frac{m}{s^2}$$

5.13 Porównanie z wartością tabelaryczną

Wartość zmierzona g_z :

$$g_z = 10, 10 \frac{m}{s^2}$$

Wartość tabelaryczna g:

$$g = 9,811 \frac{m}{s^2}$$

$$|g - g_z| = 0,289 \frac{m}{s^2} > 0,12 \frac{m}{s^2}$$

Wartość zmierzona nie mieści się w granicach niepewności u(g) na podstawie uzyskanej z dopasowania niepewności u(a).

6 Wnioski

- Otrzymane wartości nie zgadzają się z wartościami tabelarycznymi i nie mieszczą się również w zakresie niepewności. Przyczyną błędu mogą być niewystarczająco dokładne przyrządy pomiarowe, niewykryty wcześniej błąd systematyczny np. związany z uruchamianiem i zatrzymywaniem stopera lub zbyt duża amplituda z jaką wahał się ciężarek.
- Różnica otrzymanego przez nas przyspieszenia i standardowego przyspieszenia dla Krakowa $g=9,811\frac{m}{s^2}$ nie jest jednak tak wielka, więc można stwierdzić, że błędu grubego nie popełniono.
- Wraz z wydłużeniem nici, na której zawieszony jest ciężarek rośnie też okres wahadła. Tak jak zostało to przedstawione na wykresie w podpunkcie 5.8, zależność kwadratu okresu od długości wahadła jest zależnością proporcjonalną.