1986 US congressmen voting

EDUCATIONAL DATA EXPLORATION AND MACHINE LEARNING PROJECT SUMMARY

export_administration_act_south_africa political_party

republican	У	
republican	?	
democrat	n	
democrat	у	

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435 entries, 0 to 434
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	handicapped_infants	435 non-null	object		
1	water_project_cost_sharing	435 non-null	object		
2	adoption_of_the_budget_resolution	435 non-null	object		
3	physician_fee_freeze	435 non-null	object		
4	el_salvador_aid	435 non-null	object		
5	religious_groups_in_schools	435 non-null	object		
6	anti_satellite_test_ban	435 non-null	object		
7	aid_to_nicaraguan_contras	435 non-null	object		
8	mx_missile	435 non-null	object		
9	immigration	435 non-null	object		
10	synfuels_corporation_cutback	435 non-null	object		
11	education_spending	435 non-null	object		
12	superfund_right_to_sue	435 non-null	object		
13	crime	435 non-null	object		
14	duty_free_exports	435 non-null	object		
15	export administration act south africa	435 non-null	object		
16	political party	435 non-null	object		
dtypes: object(17)					
memory usage: 57.9+ KB					

Data info

Dataset used in this project was data containing votes of individual members of congress in selected votings in 1986 paired with their political affiliation (Source: https://www.apispreadsheets.com/datasets/121)

In this project we explore the data and then apply machine learning to distinct between republicans and democrats based on their voting choices.

Voting pattern similarity political party -2

Voting patterns similarity

After encoding the data, I created a matrix of euclidean distance between each pair of congressmen and then used embedding function to project this data in 2D space. Each dot represents a member of the congress. Members voting in a similar manner are closer to each other.

Obviosly, it's impossible to translate multidimensional dependencies into 2D, but the visualisation can give us some insight into nature of the task.

Least differentiating votings

Both parties voted pretty much the same :

- water_project_cost_sharing,
- imigration,

These variables may not be useful in predicting political affiliattion.

Most differentiating votings

Base Models

XGBoost

In [13]: rfc_base_acc=accuracy_score(preds,y_test)

print("Accuracy RFC z domyślnymi hiperparametrami: " + str(rfc_base_acc))

Accuracy RFC z domyślnymi hiperparametrami: 0.9724770642201835

```
In [8]: xgb base = xgb.XGBClassifier(objective = "binary:logistic", seed = 1613, use label encoder=False, verbosity=0)
        xgb_base.fit(X_train, y_train)
        preds=xgb base.predict(X test)
In [9]: xgb_base_acc=accuracy_score(preds,y_test)
        print("Accuracy XGB z domyślnymi hiperparametrami: " + str(xgb base acc))
        Accuracy XGB z domyślnymi hiperparametrami: 0.9724770642201835
        SVM
In [4]: svm_base=SVC(random_state=42)
        svm base.fit(X train, y train)
        preds=svm base.predict(X test)
In [5]: svm_base_acc=accuracy_score(preds,y_test)
        print("Accuracy SVM z domyślnymi hiperparametrami: " + str(svm_base_acc))
        Accuracy SVM z domyślnymi hiperparametrami: 0.963302752293578
         Random Forest
In [12]: rfc base = RandomForestClassifier(random state=16)
         rfc_base.fit(X_train, y_train)
         preds=rfc base.predict(X test)
```

As a base, I used XGBoost, SVM and Random Forest models. As we can see, the base models applied on all features achieve a very good result of accuracy close ~97%. However, for educational purposes I applied some feature selection and tuning methods.

Feature Selection and hyperparameter tuning

Using various techniques such as **Recursive Feature Elimination**, **SelectKBest** or XGBoost **feature_importances** I was able to greatly limit the numer of used variables without a significant of accuracy of the models. However, due to relatively small dataset I decided to stick to the whole dataset.

I then applied hyperparameter tuning via GridSearch to tune parameters of the models and gained a slight increase in accuracy.

Final classification by XGBoost model