Tarea 2

Instrucciones

1. Selecciona 10 clases de la base de datos Caltech 10. https://data.caltech.edu/records/mzrjq-6wc02

```
1 # Find the name of each class
2 base_path = "/content/drive/MyDrive/Colab Notebooks/Vision Computational -semana2/Dia Martes/caltech-101"
3 class_names = listdir(base_path)[:5]
4 print("Num of classes:", len(class_names))
```

Num of classes: 5

2. Selecciona 40 imágenes por cada una de las clases: 400 imágenes en total.

```
1 # Load first 40 images from first class and a label for the class
 2 X = []
 3 Y = []
 4 X_frec=[]
 5 for clase in range(0,5):
      print(class names[clase])
      file_names1 = [join(base_path, class_names[clase], f) for f in listdir(join(base_path, class_names[clase]))]
      X1 = np.array([resize(imread(f, as_gray='True'), (300, 200)) for f in file_names1[:40]])
 9
      Y1 = np.full((len(X1)), clase)
    X frec.append(len(X1))
10
                                                                          HoG = (64, 128)
11
     X.append(X1) # Agregar los datos de la clase actual a la lista X
12
      Y.append(Y1) # Agregar las etiquetas de la clase actual a la lista Y
13
14
15 X = np.concatenate(X) # Convertir la lista de datos en un arreglo numpy
16 Y = np.concatenate(Y) # Convertir la lista de etiquetas en un arreglo numpy
18 print(X.shape)
19 print(Y.shape)
```


- 3. Calcula los descriptores GIST, HoG, y SIFT+BoW para cada imagen.
 - GIST

HoG

```
1 # Compute HOG for each image
2 HOG = np.array([hog(img) for img in X])
3 print(HOG.shape)
4
(200, 6804)
```

SIFT+BoW

```
1 def compute_SIFT(file_path):
2 img = cv2.imread(file_path)
   gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
   sift = cv2.SIFT_create()
4
   _, desc = sift.detectAndCompute(gray, None)
desc = np.clip(normalize(desc), 0.0, 0.2)
5
   return(normalize(desc))
1 from random import sample
3 train_SIFTS = []
4 for file_name in sample(names_train, len(names_train)):
     train_SIFTS.extend(compute_SIFT(file_name))
     if len(train_SIFTS) >= 50_000:
        break
9 train_SIFTS = np.array(train_SIFTS)
1 # Train a visual dictionary
2 from sklearn.cluster import KMeans
4 num_clusters = 500
5 kmeans = KMeans(n_clusters=num_clusters, n_init=10).fit(train_SIFTS)
6 print(f"Inertia: {kmeans.inertia_}")
```

```
1 # Read an image, estimate its SIFT descriptors and BoW representation
2 def get_visual_words(file_path):
   SIFTS = compute_SIFT(file path)
     v_words = kmeans.predict(SIFTS)
     return(v_words)
1 # Compute the BOW representation for all the training set
2 BOW_train = np.zeros((len(names_train), num_clusters))
3 bins = np.arange(0, num_clusters+1)
4 for it_file, file_name in enumerate(names_train):
   v_words = get_visual_words(file_name)
     BOW_train[it_file], _ = np.histogram(v_words, bins, density=True)
1 # Show all BOW representations sum up to one
2 plt.figure(figsize=(12, 3))
3 plt.plot(BOW_train.sum(axis=1))
4 plt.show()
5
6 print(BOW_train.shape)
7 print(y_train.shape)
```

4. Subdivide tus imágenes en sets de entramiento y prueba.

```
GIST
  1 # Split train and test sets
  2 x_train, x_test, y_train, y_test = train_test_split(X_gist, Y, test_size=0.1)
  4 print(x train.shape)
  5 print(x_test.shape)
  6 print(y_train.shape)
  7 print(y_test.shape)
 (180, 512)
 (20, 512)
 (180,)
 (20,)
HoG
  1 # Split train and test sets
  2 x_train, x_test, y_train, y_test = train_test_split(HOG, Y, test_size=0.1)
 4 print(x train.shape)
  5 print(x_test.shape)
  6 print(y_train.shape)
  7 print(y_test.shape)
 (180, 6804)
 (20, 6804)
 (180,)
 (20,)
SIFT+BoW
 1 # Split training and test sets
 2 names_train, names_test, y_train, y_test = train_test_split(all_files_names, all_files_classes, test_size=0.1)
 4 print(y_train.shape)
 5 print(y_test.shape)
(180,)
(20,)
```

5. Entrena un clasificador por cada descriptor de imágenes (realiza GridSearch para encontrar los mejores hiperparámetros).

```
3 # Define grid search parameters
4 hyperparams = {'learning_rate': [0.001, 0.01, 0.1],
                 'n estimators': [2, 5, 10],
                'max_depth': range(2, 7),
                'min_samples_split': range(2, 7),
               'min_samples_leaf': range(1, 6, 2),
               'max_features': [None, 'sqrt', 'log2']}
10 hyperparams
{'learning_rate': [0.001, 0.01, 0.1],
 'n_estimators': [2, 5, 10],
 'max_depth': range(2, 7),
'min_samples_split': range(2, 7),
'min_samples_leaf': range(1, 6, 2),
'max_features': [None, 'sqrt', 'log2']}
GIST
  1 # Create and train the classifiers with grid search
  2 gs_model = GridSearchCV(GradientBoostingClassifier(), hyperparams, verbose=True, n_jobs=3)
  3 gs_model.fit(x_train, y_train)
 Fitting 5 folds for each of 1215 candidates, totalling 6075 fits
                 GridSearchCV
  ▶ estimator: GradientBoostingClassifier
        ▶ GradientBoostingClassifier
HoG
  1 # Create and train the classifiers with grid search
  2 gs_model = GridSearchCV(GradientBoostingClassifier(), hyperparams, cv=2, //erbose=True, n_jobs=3)
  3 gs_model.fit(x_train, y_train)
 Fitting 2 folds for each of 2025 candidates, totalling 4050 fits
                GridSearchCV
   ▶ estimator: GradientBoostingClassifier
       ▶ GradientBoostingClassifier
SIFT+BoW
  1 # Create and train the classifiers with grid search
  2 gs_model = GridSearchCV(GradientBoostingClassifier(), hyperparams, verbose=True, n_jobs=3)
  3 gs_model.fit(BOW_train, y_train)
 Fitting 5 folds for each of 2025 candidates, totalling 10125 fits
               GridSearchCV
  ▶ estimator: GradientBoostingClassifier
       ▶ GradientBoostingClassifier
```

6. Reporta el mejor clasificador para cada combinación. Puedes utilizar la siguiente tabla como ejemplo.

	Train Acc.	Val Acc.	Test Acc.	Tiempo de entrenamiento
GIST	1.000	0.861	0.800	23 min
HoG	1.000	0.800	0.750	1h,45min
SIFT+BoW	1.000	0.672	0.550	26 min

6. Incluye el tamaño de la bolsa de palabras visuales de modelo BoW.

400

50 -

```
Anum_clusters = 500
5 kmeans = KMeans(n_clusters=num_clusters, n_init=10).fit(train_SIFTS)
6 print(f"Inertia: {kmeans.inertia_}")
7
8 # Show frequency distribution of words
9 plt.figure(figsize=(16, 3))
10 plt.hist(kmeans.labels_, num_clusters)
11 plt.xlim(0, num_clusters)
12 plt.show()

Inertia: 12452.669921875
```

7. Reporta la matriz de confusión. Únicamente para el mejor modelo de todas las combinaciones probadas.

300

200

100

