COMP20003 Workshop Week 12

Welcome to the last workshop! Good Luck!

- 1 MST & Greedy Algorithm for building MST
- 2 Prim's Algorithm
- 3 Kruskal's Algorithm

LAB: Assignment 2 | Pass exams

Question of the Year: Do you still need time for assignment 3. Send me a letter Y or N © Note: Grady is running consultation right now ...

MST & Greedy Algorithm

Greedy algorithm:

A myopic policy of always taking the "best" bite in each step.

NOT always works...

In many cases it's the best policy!

Dijkstra's algorithm is greedy.

Greedy example: Dijkstra's Algorithms

Would you apply the greedy policy when applying for a job after graduation :-?

8

MST - overview

Task: give a connected, weighted graph G = (V, E, w), find a MST for G.

What's a spanning tree? How many edges in a spanning tree? What's a MST? Can G have more than one MST?

Further Topics:

- Which algorithms? Complexity = ?
- Which algorithm is better for:
 - dense graphs
 - sparse graphs

In this graph, the visual length of an edge represent its weight. In particular edges (3,4), (4,5) and (5,3) have the same weight.

MST & Greedy Algorithm

Greedy algorithm can be used for the MST task, for example:

Prim: MST built by taking a vertex at a time	Kruskal: MST built by taking an edge at a time
<pre>T= any vertex while (T < V): add to T the vertex that has least distance to T</pre>	<pre>T= EMPTY SET OF edges while (T < V -1): add to T the lightest edge that doesn't make cycle in T</pre>
Note: distance between node u and set T is defined as the minimal distance between u and any member of T	

Prim's Algorithm

- Consider a randomly-chosen vertex as the MST-so-far.
- At each stage we, expand the MST-so-far by adding a vertex to that tree (the one that is closest to the so-far MST).

Sounds familiar? Similar to a studied algorithm?

Note: in the graph: the visual length of an edge represents its weight. For example, edge (3,4) has the smallest weight, and the next is (3,5).

Comparing: Dijkstra's & Prim's Algorithms

Comparing: Dijkstra's & Prim's Algorithms

Comparing: Dijkstra's & Prim's Algorithms

- Dijkstra's: choose node with the shortest distance to the red node
- Prim's: choose node with the shortest distance to any of the green nodes

Prim's algorithm: operates vertex-by-vertex

Given a (connected) weighted graph G

```
Prim(G): Find a MST of G
                                          Dijkstra(G,s): find shortest paths from s
for each u in V:
                                          for each u in V:
                                             dist[u]=∞
  cost[u]=∞
  prev[u]=nil
                                             prev[u]=nil
  done[u] = FALSE // =1 if in MST
                                             done[u] = FALSE // =1 if shortest path found
s= any vertex in V
cost[s]=0
                                          dist[s]=0
H= makePQ(V)
                                          H= makePQ(V)
while (H \neq Ø):
                                          while (H \neq Ø):
  u= deleteMin(H)
                                             u= deleteMin(H)
  done[u] = TRUE //add u to MST
                                             done[u] = TRUE // shortest path to u found
  for each v adjacent to u:
                                             for each v adjacent to u:
    if (!done[v]
                                               if (!done[v]
         && cost[v] > w(u,v)):
                                                   && dist[v]> dist[u]+w(u,v)):
      cost[v] = w(u,v) // \downarrow in H
                                                 dist[v] = dist[u] + w(u,v) // \downarrow in H
      prev[v]= u
                                                 prev[v]= u
```

Complexity of Prim's: same as Dijkstra's, O((E+V) log V)

Example

Suppose we want to find the minimum spanning tree of the following graph.

(a) Run Prim's algorithm; whenever there is a choice of nodes, always use alphabetic ordering (e.g., start from node A).

Example

	а	b	С	d	е	f	g	h
	0,nil	-	-	-	-	-	-	-
a		1,a	-	-	4,a	8,a	-	-
b			2,b	-	4,a	6.b	6,b	-
С			•	3,c	4,a	6,b	2,c	-
g				,g	4,a	1,g	U	1,g
d					4,a	1,g		1,g
f					4,a		(1,g
h					4,a			
9								

Kruskal's algorithm

Purpose: Find MST of G= (V,E,w)

Prim's algorithm: processing node-by-node, ie. adding a new node to MST at each step.

Kruskal's algorithm: operates edge-by-edge.

```
0 set MST-so-far to empty
3 for each (u,v), in increasing order of weight:
4   if ((u,v) does not form a cycle in MST-so-far):
5   add edge (u,v) to MST
```

How do we implement?

Suppose that the above 5 green vertices and 3 red edges are in our MST-so-far. The next lightest are AB (should be rejected), then CD.

How can we recognize that inclusion of AB would create a cycle in the MST-so-far?

Using disjoit sets

How can we recognize that inclusion of AB would create a cycle in the MST-so-far?

Think about disjoint sets:

- After adding (C,D) to MST, we have 6 disjoint sets.
- After adding (B,C) the sets ABE and CD are joined into ABCDE → we will have 5 disjoint sets

Needed:

- an ID for each set?
- Operator Find(u) : find the set the set a node u belongs to
- Operator Union(u,v): join the disjoin sets of u and v into a single set

Kruskal's algorithm

```
for each (u,v), in increasing order of weight:
   if ((u,v) does not form a cycle in MST-so-far):
      add edge (u,v) to MST
```

Implement step 3-5 using disjoint set:

- Before the loop: Make | V | disjoint subsets, each contains a single node of V.
- In the loop body:
 - u and v not belong to a same set \Leftrightarrow (u,v) does not form a cycle in the MST.
- Step 3: The algorithm stops when we have V-1 edges in MST

Operations:

```
makeset(u)- return a tree that contains single u
find(u) - return the root (means, ID) of the tree that contains u;
union(u,v) - joins trees containing u and v.
```

Kruskal's algorithm

Purpose: generate MST with Efficient checking for cycle in finding MST

```
0 set X= empty. X is the MST-so-far
1 E1 = E, but sorted in increasing order of weights
2 for each u: makeset(u) (build single-element set {u})
3 while ( |X| < |V|-1 ) :
3a set (u,v)= the next edge in E1
4 if (find(u) ≠ find(v) ): // u & v do not belong to a same set
5 add edge (u,v) to X
6 union(u,v)</pre>
```

Watch online lecture for how to actually implement makeset(u), find(u), union(u, v)

- \rightarrow We can implement with O(V+ElogV) or even O(V+E) for steps 2-6
- → The cost of KA is dominated by ElogE of the sorting phase in step 0

Example (Kruskal's)

0 1 2 3 4 5 6	Edges in MST	А	В	С	D	E	F	G	н
		0	1	,	3	4	5	6	7
AB 0 0 2 3 4 5 6	AB	0	0	2	3	4	5	6	7

Note: number in table represents tree ID, if a tree ID is the same as node ID, then the node is the root of its tree

Example (Kruskal's)

Edges in MST	A	В	С	D	E	F	G	Н
	0	1	2	3	4	5	6	7
AB	0	0	2	3	4	5	6	7
DG	0	0	2	3	4	5	3	7
GF	0	0	2	3	4	?	3	7

Note: number in table represents tree ID, if a tree ID is the same as node ID, then the node is the root of its tree

Rules:

- 1) join smaller tree to bigger tree (weighted, or join-by-rank optimization)
- 2) when joins, joins to the root, ie. id[F]= id[G]

Edges in MST	A	В	С	D	Ε	F	G	Н
	0	1	2	3	4	5	6	7
AB	0	0	2	3	4	5	6	7
DG	0	0	2	3	4	5	3	7
GF	0	0	2	3	4	6?	3	7
GF	0	0	2	3	4	3	3	7

Rules:

- 1) join smaller tree to bigger tree (weighted, or join-by-rank optimization)
- 2) when joins, joins to the root

Edges in MST	A	В	С	D	E	F	G	Н
	0	1	2	3	4	5	6	7
AB	0	0	2	3	4	5	6	7
DG	0	0	2	3	4	5	3	7
GF	0	0	2	3	4	3	3	7
GH	0	0	2	3	4	3	3	3

Rules:

3) Path compression

- Now, the pathlen of B,C is >1
- we will have find(B)= D, and at that time we will make B point directly to D. That is called path compression.

Edges in MST	A	В	С	D	E	F	G	Н
	0	1	2	3	4	5	6	7
AB	0	0	2	3	4	5	6	7
DG	0	0	2	3	4	5	3	7
GF	0	0	2	3	4	3	3	7
GH	0	0	2	3	4	3	3	3
BC	0	0	0	3	4	3	3	3
CG	3	0	0	3	4	3	3	3

After adding A---E to the MST-so-far, the latter has enough V-1 egdes, and we stop. Note that in our treearray, there is only a single tree at this stage.

Edges in MST	Α	В	С	D	Е	F	G	Н
	0	1	2	3	4	5	6	7
AB	0	0	2	3	4	5	6	7
DG	0	0	2	3	4	5	3	7
GF	0	0	2	3	4	3	3	7
GH	0	0	2	3	4	3	3	3
BC	0	0	0	3	4	3	3	3
CG	3	0	0	3	4	3	3	3
АЕ	3	0	0	3	3	3	3	3

Notes

In the lecture, weighted and path compression was mentioned, but probably without much of details.

Complexity of *a single* union and find using disjoint-set:

- find: O(1)
- union: time for tracing depends on the depth of the tree
 - naïve: O(V)
 - weighted: O(log V)
 - weighted + path compression: O(1)

Justify the Complexity

Kruskal's: generate MST with Efficient checking for cycle in finding MST

```
0 set X= empty. X is the set of the MST-so-far
1 E1 = E, but sorted in increasing order of weights
                                                                   O(E \log E)
2 for each u:
                                                                   V \times
    add makeset(u) to X
                                                                     0(1)
    (build set {u} and add to X with X= X {u})
3 while (|X| < |V| - 1):
    (u,v) = next edge in E1
                                                                     0(1)
   if (find(u) \neq find(v)):
                                                                     0(1)
5
   union(u,v)
                                                                     0(1)
6
      add (u,v) to X
                                                                     O(1)
```

True or False:

- Loop (3) is O(V), and hence we don't need to fully sort E1, just make E1 a minheap. As the result, step 1 is O(E), step 3-6 is O(V log E)?
- We can use distribution counting and make Kruskal's to make step 1 be O(E)
- Since $E = O(V^2)$ in the worst case, Kruskal's is $O(E \log V)$ just like Prim's.

Justify the Complexity

Kruskal's: generate MST with Efficient checking for cycle in finding MST

```
0 set X= empty. X is the set of the MST-so-far
1 E1 = E, but sorted in increasing order of weights
                                                                  O(E log E)
2 for each u:
                                                                  V \times
    add makeset(u) to X
                                                                    O(1)
    (build set {u} and add to X with X= X {u})
3 for each edge (u,v) in E1 (in increasing order of weight): EX
   if (find(u) \neq find(v)):
                                                                    0(1)
5
     union(u,v)
                                                                    O(1)
6
      add (u,v) to X
                                                                    0(1)
```

	Prim	Kruskal
General	(E+V) log V	E log E
Dense Graph	E log V	E log E
V< <e, faster<="" is="" prim's="" td=""><td></td><td></td></e,>		
Sparse Graph	V log V	V log V
Kruskal's is faster because of the data structures		

Lab Time:

Learning experience from the semester?

LAB:

- finish ass2, or
- go through some questions, especially short questions, in past-exam papers,
- give questions to the in-lazy-mode Anh

Good Luck!