

Do You See What I See? An Egocentric View of our Pansophical Planning Problems

Xiaotian Liu, Alison Parades, and Christian Muise

Motivation

- ☐ Embodied agents are often egocentric
- Classical planning are mostly pansophical
- ☐ Need to integrate egocentricity in planning
- Egocentric planning conversion is time consuming and lack standards

Goal

How do we semi-automatically convert classic pansophical planning problems to egocentric alternatives.

Egocentric or Partially Observable

Egocentric:

When environment is unknown and require exploration and discovery

Partially Observable:

 Formulate belief states and deal with uncertainty beyond environmental uncertainty (Conformant, Contingent, Epidemic,etc)

Approach

Egocentric Subset Extractor

 Extract Subset of predicates that are observable by egocentric agents

Interactive Exploration via Replanning

Explore until the original goal can be reached

```
Algorithm 1: Egocentric Subset Extractor
    Input: P = \langle O, F, I, A, G \rangle
    Anchor Object Set S = \langle T, C, R \rangle
   Output: Egocentric projection P'
    Initialize O' = \emptyset and I' = \emptyset;
    for p \in I where type(p) \in R do
    | if p has object o \in C then
         for o \in p do
          if type(o) \in T then
            O' = O' \cup \{o\};
 7 for p \in I where type(p) \notin R do
 8 If p has o \in O' or p is constant then
        I' = I' \cup \{p\};
        for o \in p do
         \bigcup O' = O' \cup \{o\};
13 A^{'} = A;
14 G^{'} = G;
15 return P' = \langle O', F', I', A', G' \rangle;
```

Algorithm 2: Iterative Exploration via Replanning				
Input: Problem $P = \langle O, F, I, A, G \rangle$				
Anchor object set $S = \langle T, C, R \rangle$				
Exploration action set E				
Output: Plan M for the pansophical environment				
1 Initialize $O_e, F_e, I_e, A_e, G_e = \emptyset;$				
2 plan $M = [\];$				
3 while no plan can be found for P do				
$ \begin{array}{c c} 4 & O_e = O; \\ 5 & A_e = A; \end{array} $				
$ \begin{array}{c c} \mathbf{for} \ o \in A, \\ \mathbf{for} \ o \in O \ \mathbf{do} \end{array} $				
7 if $type(o) \in T$ and $o \notin C$ then				
$\{I_e = I_e \cup \{ \text{ (unknown o) } \};$				
for $a \in E$ do				
10 $ $				
$PRE(a') = PRE(a') \cup (unknown o)$				
13 $ADD(a') = ADD(a') \cup (explored)$				
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $				
15 $G_e = \{ (explored) \};$ 16 $F_e = F \cup I_e \cup G_e;$				
$F_e = F \cup I_e \cup G_e;$ $\pi = \text{SOLVE}(/O, F, I, A, C, V).$				
$\pi = \text{SOLVE}(\langle O_e, F_e, I_e, A_e, G_e \rangle);$ $M_e \text{ and } \sigma d(\pi);$				
$M.extend(\pi);$ $\mathbf{for}\ a \in \pi\ \mathbf{do}$				
$ $ if $a \in \mathcal{H}$ then				
add anchor objects in a to C ;				
$I_e = \operatorname{PROGRESS}(I_e, \pi)$;				
$G_e = G;$				
$P = ESE(\langle O_e, F_e, I_e, A_e, G_e \rangle, \langle T, C, R \rangle);$				
25 $M.extend(Solve(P));$				
26 return M ;				

Key Assumptions

- ☐ World is made from objects and their states/relationships ☐ Anchor Objects: objects that capture the egocentric view
- Connection Predicates: predicates that define relationship among anchor objects
- **Exploration Action:** Actions that lead the agent to a new egocentric state

Results

	Success	Egocentric	Pansophical
	Rate	Plan Len	Plan Len
Search-&-Resc.	100%	26	10
Blocks World	100%	16	11
Elevator	100%	29	22
Sokoban	75%	64	41
Minecraft	0%	NA	27

- 5 Planning Domains
- Successful Domains:
- Search-&-Rescue (loc, (conn))
- Blocks-World (block, (on))
- Elevator(floor, (above or below))
- Minecraft (no connection predicate)
- Sokoban
- Failure when action lead to dead end

Future Work

- More complex planning domain
- Dead-end detection
- Integration with partial observable planning approaches

Author Information

Xiaotian Liu liu.x@queensu.ca Alison Paredes 20asp3@queensu.ca

Christian Muise christian.muise@queensu.ca