9.S918: Statistical Inference in Brain and Cognitive Sciences

Week 2 Day 1: Causal inference, continued

Roger Levy
Dept. of Brain & Cognitive Sciences
Massachusetts Institute of Technology

April 9, 2024

Potential-outcomes framework: brief recap

- In epidemiology and many other areas of statistics, causal inference was developed out of the idea of potential outcomes (Neyman 1923, Rubin 1974)
- Consider an outcome, Y, and a potential treatment A

• Example:

Y: an individual survives to the end of the year (0: no, 1: yes)

A: an individual with heart disease receives a heart transplant (0: no, 1: yes)

Potential-outcome random variables

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$
 The value that Y would take if A were 0 $Y^{a=1}$ The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}] E[Y^{a=1}]$$

Expected value, or expectation, is defined as follows:

$$E[X] = \sum x P(X = x)$$

• So we are interested in (and likewise for $Y^{a=1}$):

$$E[Y^{a=0}] = \sum_{x} yP(Y^{a=0} = y) = 0 \times P(Y^{a=0} = 0) + 1 \times P(Y^{a=0} = 1) = \boxed{P(Y^{a=0} = 1)}$$

Counterfactual data and causal effects

- Suppose we knew what would happen for each individual in the population under each value of the treatment
- Then we could compute the counterfactual risks:

$$E[Y^{a=0}] = 0.5$$
 $E[Y^{a=1}] = 0.5$

• The average causal effect of treatment A is defined as the difference of counterfactual risks:

$$E[Y^{a=1}] - E[Y^{a=0}] = 0$$

Here, treatment is ineffective

(Hernan & Robins, 2020, Table 1				
	$Y^{a=0}$	$Y^{a=1}$		
Rheia	0	1		
Kronos	1	0		
Demeter	0	0		
Hades	0	0		
Hestia	0	0		
Poseidon	1	0		
Hera	0	0		
Zeus	0	1		
Artemis	1	1		
Apollo	1	0		
Leto	0	1		
Ares	1	1		
Athena	1	1		
Hephaestus	0	1		
Aphrodite	0	1		
Cyclope	0	1		
Persephone	1	1		
Hermes	1	0		
Hebe	1	0		
Dionysus	1	0		
$P(Y^{a=*}) = 1$	0.5	0.5		

Remember, $E[Y^{a=i}] = P(Y^{a=i} = 1)$

Estimating causal effects

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0

Dionysus

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 \mid A=i) = \frac{\operatorname{Count}(Y=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$Consistency: \text{ when } A=i, Y=Y^{a=i}$$

$$= \frac{\operatorname{Count}(Y^{a=1}=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$= \hat{P}_{MLE}(Y^{a=i}=1 \mid A=i)$$

$$Crucial step; make sure you understand it!$$

So, the following condition suffices:

$$P(Y^{a=i} = 1 | A = i) = P(Y^{a=i} = 1)$$

• This is called EXCHANGEABILITY:

$$Y^a \perp A \mid \{\}$$

Exchangeability and randomization

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

- If we ourselves determine A in a way that is *truly blind to* Y^a , it **imposes** exchangeability!
- We can now go ahead and estimate

$$\hat{P}(Y^{a=i} = 1) = \hat{P}(Y = 1 | A = i)$$

Hooray!!!

Does loss of randomization make things hopeless?

- In the real world, many datasets are not randomized this way
- **Example:** let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a
 - E.g., in this example, patients in critical condition are surely more likely to die overall!

	\overline{L}
Rheia	0
Kronos	0
Demeter	0
Hades	0
Hestia	0
Poseidon	0
Hera	0
Zeus	0
Artemis	1
Apollo	1
Leto	1
Ares	1
Athena	1
Hephaestus	1
Aphrodite	1
Polyphemus	1
Persephone	1
Hermes	1
Hebe	1
Dionysus	1

Conditional exchangeability

- But now suppose we have observed (i.e., it's in our dataset) the factor L that affected whether the treatment A was applied
- If the following condition holds, it can help us estimate the counterfactual risks $P(Y^a)$:

$A \perp Y^a \mid L$

- That is, L captures all the information available in A that is relevant to all Y^a
- This is called CONDITIONAL EXCHANGEABILITY

	L	A	$Y^{a=0}$	$Y^{a=1}$	\overline{Y}
Rheia	0	0	0	1	0
Kronos	0	0	1	0	1
Demeter	0	0	0	0	0
Hades	0	0	0	0	0
Hestia	0	1	0	0	0
Poseidon	0	1	1	0	0
Hera	0	1	0	0	0
Zeus	0	1	0	1	1
Artemis	1	0	1	1	1
Apollo	1	0	1	0	1
Leto	1	0	0	1	0
Ares	1	1	1	1	1
Athena	1	1	1	1	1
Hephaestus	1	1	0	1	1
Aphrodite	1	1	0	1	1
Polyphemus	1	1	0	1	1
Persephone	1	1	1	1	1
Hermes	1	1	1	0	0
Hebe	1	1	1	0	0
Dionysus	1	1	1	0	0

Using conditional exchangeability

- Can we estimate $P(Y^{a=i} = 1 | L)$?
- It turns out we can!

$$P(Y^{a=i} = 1 \mid L) = P(Y^{a=i} = 1 \mid L, A)$$

$$\hat{P}_{\mathsf{MLE}}(Y^{a=i} = 1 \mid L = j, A = k) = \frac{\mathsf{Count}(Y^{a=i} = 1, L = j, A = k)}{\mathsf{Count}(L = j, A = k)}$$

- In estimating this condprob:
 - when i = k we use CONSISTENCY

Consistency: when
$$A = i$$
, $Y = Y^{a=i}$

• WHEN $i \neq k$ we have "missing data", so ignore those instances

		uala, so	ignore in	ose instances
L	\boldsymbol{A}	Count(L, A)	$Count(Y^{a=0}=1, X$	(L, A) Count $(Y^{a=1} = 1, L, A)$
0	0	4	1	?
0	1	4	?	1
1	0	3	2	?
1	1	9	?	6

2/3

2/3

This is just like estimating P(Y|L,A)!

Using conditional exchangeability

- We originally characterized our goal as estimating the counterfactual risks $E[Y^{a=i}] = P(Y^{a=i} = 1)$
- With conditional exchangeability, we estimated $P(Y^{a=i}=1\,|\,L)$ these are called **stratum-specific risks** (where each **stratum** is a value of L)
- Often, this may be all you need or want
 - If the causal effect of A depends on L, then "summarizing out" L discards information!
- But there are situations where the basic counterfactual risk $E[Y^{a=i}]$ may be of interest
 - e.g., "how many lives would it save if everyone who came to the hospital with heart disease received a heart transplant?
- But we can recover the basic counterfactual risks through standardization (or the mathematically equivalent inverse probability weighting)

Standardization

L = whether the patient was in critical condition (1=yes, 0=no)

 Y^0

Y

 $\overline{Y^1}$

\boldsymbol{L}	\boldsymbol{A}	$\hat{P}_{MLE}(Y^{a=i} L)$
0	0	1/4
0	1	1/4
1	0	2/3
1	1	2/3

By the law of total probability,

We have just estimated this
$$P(Y^{a=i}) = \sum_{j} P(Y^{a=i} \mid L) P(L)$$
 We can estimate this from the data, too

 Expanding the sum and plugging in our estimates we get:

$$P(Y^{a=i} = 1) = P(Y^{a=i} = 1 | L = 0)P(L = 0) + P(Y^{a=i} = 1 | L = 1)P(L = 1)$$

$$= \frac{1}{4} \times \frac{2}{5} + \frac{2}{3} \times \frac{3}{5}$$

$$=\frac{5}{10}=\frac{1}{2}$$

(Because $\hat{P}_{\text{MLE}}(Y^{a=i} | L)$ are the same for a=0 and a=1, this work gives us the result for both counterfactual treatments, and the risk ratio is 1)

$$\hat{P}_{MLE}(L=1) = \frac{12}{20} = \frac{3}{5}$$

IDENTIFIABILITY of causal effects

- IDENTIFIABILITY means, our assumptions allow the causal effect we are interested in to be uniquely estimated from the available data (set of observed/measured variables)
 - "Uniquely estimate": if we had an arbitrary large quantity of data, we could estimate the causal effect with arbitrarily high accuracy and precision
- Simple case of unidentifiability: Hernan & Robins's heart transplant example, if L (severity of disease) affects probability of a heart transplant and we don't measure it
 - Suppose that people with transplants have lower survival rates: $\hat{P}_{MLE}(Y|A=1) < \hat{P}_{MLE}(Y|A=0)$
 - Could be because heart transplants are dangerous
 - Or: sicker people are more likely to get transplants!

The three criteria for identifiability

- Consistency: $Y = Y^{a=i}$ whenever A = i
 - Consequence: different individuals' outcomes don't affect each other
 - Consequence: there can be no "multiple versions" of the same treatment A in terms of their influence on Y
- Conditional Exchangeability: for all i, $Y^{a=i} \perp A \mid Z$ for some set of observed variables Z
 - Consequence: there can be no "hidden common causes" or "hidden mediators" of A and $Y^{a=i}$
- **Positivity**: for all i and all values of Z, P(A = i | Z) > 0
 - e.g., in our example, it can't be the case that individuals with heart disease are *always* given transplants
- If all three criteria hold, we can estimate causal effects

Summary of intro to potential outcomes

- The potential outcomes framework formalizes causal effects (or risks) through counterfactual outcome (also called potential outcome) variables
- At most one counterfactual outcome is observable in each datum, so causal effects cannot in general be naively estimated from data
- However, if the three following conditions hold, the data can be viewed as a conditionally randomized experiment and causal effects can be estimated

Hestia Poseidon

$\begin{array}{lll} \textbf{Consistency} & \textbf{Conditional Exchangeability} & \textbf{Positivity} \\ Y = Y^{a=i} \text{ whenever } A = i & \exists Z. \, \forall i.Z \, \text{is observed} & \forall i. \, \forall Z. \, P(A=i \, | \, Z) > 0 \\ & \land Y^{a=i} \perp A \, | \, Z & \end{array}$

 This analysis also sheds light on the power of randomized experiments: they offer unconditional exchangeability 14