

Open TURNS & Random fields

Simulation of synthetic miosrientation maps of alloy 600 specimens

G. Blatman⁽¹⁾, R. Lebrun⁽²⁾, T. Couvant⁽¹⁾

(1)EDF R&D, (2)Airbus Group

Open TURNS Users Day #7 Chatou, 20th June 2014

Outline

- 1. Context: the CORIOLIS project
- 2. Modelling and simulation of the random field
 - a) Parametric approach based on R
 - b) Non-parametric approach based on OpenTURNS
- 3. Induced improvements in OpenTURNS

Outline

- 1. Context: the CORIOLIS project
- 2. Modelling and simulation of the random field
 - a) Parametric approach based on R
 - b) Non-parametric approach based on OpenTURNS
- 3. Induced improvements in OpenTURNS

PWR nuclear power plants

PWR nuclear powerplants

Possible susceptibility
of alloy 600
components to Stress
Corrosion Cracking
(SCC)

The Coriolis project

Objective: Develop models predicting SCC initiation & growth

→ Account for significant factors at the microscopic scale : crystal misorientations due to plastic strain

Current work: Model and simulate the morphology of misorientation patterns from A600 tensile specimens

Measurement of crystallographic orientations by EBSD

Scanning Electron Microscope

Measurement of misorientations -Kernel Average Misorientation

Mesure the average misorientation among the neighbouring cells

From « Introduction to OIM analysis », TSL

KAM of alloy 600 specimens Applied microscopic strain = 11,4 %

Outline

- 1. Context: the CORIOLIS project
 - 2. Modelling and simulation of the random field
 - a) Parametric approach based on R
 - b) Non-parametric approach based on OpenTURNS
- 3. Induced improvements in OpenTURNS

Parametric approach

Tool: R, libraries 'gstat' and 'RandomFields'

Strategy:

- 1. « Gaussianize » the random field margin
- 2. Estimate the mean of the transformed field
- 3. Estimate its covariance using a parametric variogram model
- 4. Simulate a Gaussian field with the same moments
- 5. Create the non-Gaussian field applying the inverse transform

Marginal probability density function

→ Assumption of a lognormal field

Fit of a variogram model

Stationary model (spherical)

$$\gamma(h) = \sigma^2 \left[1 - \exp\left(-\frac{h}{a_0}\right) \right]$$
Variance Range parameter (Range = 30,9)

→ Good agreement

Original and simulated fields

- → We checked that marginal PDFs and variogram are well reproduced
 - → But not the « connectivity » of the high KAM regions

Outline

- 1. Context: the CORIOLIS project
 - 2. Modelling and simulation of the random field
 - a) Parametric approach based on R
 - b) Non-parametric approach based on OpenTURNS
- 3. Induced improvements in OpenTURNS

Non-parametric approach

Tool: Open TURNS version ≥ 1.3

Strategy (Box-Jenkins):

- 1. Apply optimal Box-Cox transform
 - → Field with Gaussian margin
- 2. Estimate the mean of the transformed field
- 3. Estimate its covariance
- 4. Simulate a Gaussian field with the same moments
- 5. Create the non-Gaussian field applying the inverse Box-Cox transform

Box-Cox transform

Goals:

- Stabilize the variance
- Make the data more Gaussian

Formula:
$$z_i^{(\lambda)} = \begin{cases} \frac{z_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \log(z_i) & \text{else} \end{cases}$$

Choice of λ by maximum likelihood

Comparison of marginal PDFs

 λ_{opt} =0.2 \rightarrow Consistent with the previous lognormal hypothesis

Mean estimation

Assumed trend: bilinear

+ Fourier basis

Coefficients estimated by least squares

Non-parametric covariance estimation

Non-parametric covariance estimation

Non-parametric covariance estimation

Non parametric covariance estimation

Covariance estimate (non stationary model)

$$\hat{C}(Z_i, Z_j) = \frac{1}{K} \sum_{k=1}^{K} \left(z_i^{(k)} - m_i \right) \left(z_j^{(k)} - m_j \right)$$

- Find a compromise number of subsquares vs overlapping rate
 - → 50% overlappingK=50 subsquares

Random fields realizations (new results)

(Cholesky method)

Discussion

Possible reasons for not properly representing the fine dependences :

- Optical illusion due to a lack of data?
 - → Work with the full image
- Use of too small subsquares when estimating the covariance ?
- The random field is not Gaussian
 - → Need to account for higher-order correlations

Outline

- 1. Context: the CORIOLIS project
- 2. Modelling and simulation of the random field
 - a) Parametric approach based on R
 - b) Non-parametric approach based on OpenTURNS
- 3. Induced improvements in OpenTURNS

Improvements & creation of OT classes

Parallelization of several OT classes

- BoxCoxFactory: maximum likelihood, direct & inverse transforms
- NonStationaryCovarianceModelFactory : non-parametric estimation of the covariance

Creation of a new class

- IntervalMesher: creates spatial mesh grids

Efficient Gaussian field simulation

Method	Cholesky	Gibbs sampler
Availability in OT	Already available	In the next release
Memory	O(n ²)	O(n)
Initialization	O(n³)	O(1)
Simulation	O(n²) Small constant (~0.5)	O(n²) Large constant (~20-100)

Conclusion

- The feasability of the Box-Jenkins procedure with 2D spatial data in OT has been shown
- The Coriolis application has motivated several improvements in OT
 - → Great reactivity of the OT development team
- Further developments in OT :
 - Simulation of Gaussian random fields:
 - → h-matrix
 - → Spectral method (for spatial data)

