

5 Enzymes

The 5 Cytochrome P450 block of enzymes we are talking about today are a part of a larger block of more than 50 different enzymes.

These 5 are responsible for breaking down about 90% of drugs.

Genetics affect the way they metabolize proteins.

Because of this, there are HUGE implications for prescribing drugs that are ineffective or possibly toxic for the individual patient.

Current Treatment Experience

OUTDATED + INACCURATE

The majority of diagnostics science, and treatment are based on relatively healthy white males

GENE EXPRESSION

Genes expression for drug metabolism can vary which can have a dramatic effect on how a person uptakes and expels the drug

DANGERS

Treating 'blind' can result in side effect variance, variable treatment success, toxicity and even death.

GOALS

01

02

Tailored Medicine

Create tailored treatment plans based on cytochrome isoenzyme activity

Pharmackinetic s

These models can also aide in creating new drugs that utilize these specific enzymes.

Efficiency + Efficacy

With machine learning, medicine can be quickly tailored to the patient

04

Patient Outcome

Overall patient outcome will be improved, with timeliness, and more effective treatment.

Research Process

- At least 20 research papers
- Pubchem
- Chembl
- Rdkit
- NCBI & Nature.com

adme-pred-py

ProTip! What's not been updated in a month: updated:<2021-01-19.
</p>

I stumbled upon an open source project that had an open issue specifically to create CYP450 inhibition machine learning model!

adme-pred-py

imkcenz/

Open Source Collaboration

I reached out to the creator of the project.

Shared info about my capstone and asked if I could contribute to his project

· Collaboration

I did start playing around with the chembl.etl.py that you linked to me and successfully ran the Swiss Query. I've done a str.contains on a bunch of terms that should pull up cytochrome p450 things but nothing pops up under those searches. I did test to make sure I am using the right method and it does pull up known receptor.

I also attempted to create a CYP specific query in CHEMBL based off of the swiss guery but I am struggling to figure out what exactly I need to modify (I'm getting there slowly using developer tools in chrome to try to find the path). This is where I am getting a bit overwhelmed. I am not sure if I should be looking at ADME assays rather than binders (the current swiss query looks up binders as "B").

4:59 PM

Cool! So I'm not sure Chembl has this assay in it or not. I suspect that we'll have to use the python mysgl connector to hook up to the metrabase database, and run queries against that. I may have some time tonight to give this a try.

The chemble et is more of a framework for what our code will look like. Setting up db connections, querying against the db, doing some preliminary data aggregation and cleaning, and saving the results to a csv file.

Feature Engineering

Pubchem ID

842319

Canonical SMILES

CC1=CC(=NO1)C(=O)NN=CC2=CC=CC=C2Br

Hashed Morgan **Fingerprint**

[1, 1, 0, 0, 0, 0, 1, 0, 1, 1,1, 1, 0, 0, 1, ...] 64 Bits

Morgan **Bitstring**

11000010111100101101 011110001001110010111 00101...

String

11000010111100101101 011110001001110010111 00101...

Features

|1 |2 |3 |4 |5 |6 |7... |1 |1 |0 |0 |0 |0 |0 |0....

Feature Creation Process

Enter: Obnoxiously long lambda function. (no this is not good practice but... time).

cyp2c19_512['MORGAN_BTSTR'] =

cyp2c19_512.apply(lambda row: AllChem.GetMorganFingerprintAsBitVect

(Chem.MolFromSmiles(row['SMILES']), 2, nBits=512)

.ToBitString(), axis=1)

SwissAdme Features

After working with fingerprint data, I decided to tackle using SwissAdme's feature set.

They had **50** features, and Rdkit is not the easiest to learn so I ended up with **17** of those features in the second round of well, everything.

SwissADME Feature Creation

FEATURES	LIST		n_atoms	n_bonds
single_bond	n_heteroatom s	logp	aromatic_bond	n_heavy_atom s
double_bond	n_rings	tpsa	Molecular_ weight'	h_bond_donors
triple_bond	n_rot_bonds	N_aromatic_ atom	Molar_ refractivity	H_bond_ acceptors

Feature Importance with SwissAdme Features 0.08 0.06 Importance 0.04 0.02 0.00 n_rings tpsa molecular_weight rot_bonds logp n_aromatic_atom single_bond double_bond triple_bond h_bond_acceptors molar_refractivity n_atoms n_carbons n_heteroatoms n_heavy_atoms h_bond_donors **Features**

aromatic_bond

Hashed Morgan Fingerprint Markov Chain Neural Network

Tuned to: Accuracy Then Recall	CYP2c19	CYP2c9	CYP2d6	CYP1a2	CYP3a4	
AUC	0.48	0.46	0.52	0.52	0.58	
Accuracy	0.95	0.92	0.94	0.94	0.94	
Dropout	0	0	0	0	0	

SwissFeatures Markov Chain Neural Network

Tuned to: Accuracy Then Recall	CYP2c19	CYP2c9	CYP2d6	CYP1a2	CYP3a4	
AUC	0.42	0.60	0.56	0.53	0.49	
Accuracy	0.94	0.93	0.96	0.95	0.92	
Dropout	0	0	0	0	0	

SUC Gridsearched for Parameter Tuning

Hashed Morgan Fingerprint Gridsearched Tuned SUC

Weighted avg	CYP2c19	CYP2c9	CYP2d6	CYP1a2	CYP3a4
precision	0.87	0.88	0.88	0.87	0.88
recall	0.93	0.94	0.94	0.90	0.94
F1 score	0.90	0.91	0.91	0.93	0.91

SwissFeatures Gridsearched Tuned SUC

Ο.						
	Weighted AUG	CYP2c19	CYP2c9	CYP2d6	CYP1a2	CYP3a4
	precision	0.91	0.88	0.90	0.88	0.88
	recall	0.91	0.93	0.92	0.94	0.90
	F1 score	0.91	0.91	0.91	0.91	0.89

Wrap up

GOALS

01

02

Tailored Medicine

Create tailored treatment plans based on cytochrome isoenzyme activity

Pharmackinetic s

These models can also aide in creating new drugs that utilize these specific enzymes.

Efficiency + Efficacy

With machine learning, medicine can be quickly tailored to the patient

04

Patient Outcome

Overall patient outcome will be improved, with timeliness, and more effective treatment.

What's Next?

PRODUCTIONIZE CODE

Code is not production ready. Need to convert to scripts.

Also add the rest of the SwissADME features.

TRAIN ON MORE RECENT DATA

New medications are being made every day. Keeping our project up to date will keep it relevant and useful.

MORE TO PROJECT

There is still a lot of work to be done on the adme-pred-py project, though this is a HUGE chunk of it.

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution

Resources pt.1

Modern treatment diversity issues:

https://www.sciencedaily.com/releases/2008/10/081015132108.htm

https://press.uchicago.edu/Misc/Chicago/213095.html

https://www.ncbi.nlm.nih.gov/books/NBK220337/

https://www.theguardian.com/life and style/2019/nov/13/the-female-problem-male-bias-in-medical-trials. The style-style interest of the style

General resources on CYP450 gene expression/affect on drug metabolism

https://www.nature.com/articles/6500462 https://www.nature.com/articles/6500285

https://www.nature.com/articles/gim2007123

SwissADME - Data gathering:

http://www.swissadme.ch

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912882/

https://www.nature.com/articles/nbt.1581

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477067/

https://pubmed.ncbi.nlm.nih.gov/26400175/

Resources pt.2

Data detangling:

https://depth-first.com/articles/2019/01/11/extended-connectivity-fingerprints https://www.rdkit.org/docs/RDKit_Book.html/

https://www.researchgate.net/publication/51509126_Transfer_learning_for_cytochrome_P450_isozyme_selectivity_prediction https://www.cheminformania.com/fetch-the-sherif-i-found-a-fingerprint/

General Research:

https://www.aafp.org/afp/2007/0801/p391.html

Toxicity

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431904/https://academic.oup.com/jat/article/29/7/590/731303

https://www.hindawi.com/journals/bmri/2015/971982/

https://www.sciencedirect.com/science/article/pii/S1752928X16300051

Design and images:

https://pubchem.ncbi.nlm.nih.gov/gene/CYP2C19/human(to get to rcsb for each molecule)

https://www.rcsb.org/3d-view/2HI4/1 (for 3d molecule images)

https://www.flaticon.com/

https://www.freepik.com/

https://slidesgo.com