1.

Vjerojatnost

Unija i presjek događaja

Događaj koji se ostvaruje ako se ostvario *barem jedan* od događaja A, B naziva se **unija** ili **zbroj** (**suma**) događaja i označava s $A \cup B$, A + B, A ili B.

Događaj koji se ostvaruje ako su se ostvarila *oba* događaja A i B naziva se **presjek** ili **umnožak** (**produkt**) događaja i označava s $A \cap B$, AB, A i B.

Razlika događaja. Komplement događaja

Događaj koji se ostvaruje ako se ostvari događaj A, a da se ne ostvari događaj B, nazivamo **razlika događaja** A i B i označavamo s $A \setminus B$, A - B.

Događaj $\Omega \setminus A$ nazivamo **komplementom** ili **suprotnim događajem** događaja A. On se ostvaruje ako i samo ako se A nije ostvario. Označavamo ga s \overline{A} ili s A^c .

Vjerojatnost

Vjerojatnost je preslikavanje $P: \mathscr{F} \to [0,1]$ definirano na algebri događaja \mathscr{F} , koje ima svojstva

- 1) $P(\Omega) = 1$, $P(\emptyset) = 0$ (norminanost),
- 2) ako je $A \subset B$, onda vrijedi $P(A) \leq P(B)$ (monotonost),
- 3) ako su A i B disjunktni događaji, onda je $P(A \cup B) = P(A) + P(B)$ (aditivnost).

Broj P(A) nazivamo vjerojatnost događaja A.

Vjerojatnost komplementa

Za svaki događaj A vrijedi $P(\overline{A}) = 1 - P(A)$.

Vjerojatnost unije

Za bilo koja dva događaja A i B vrijedi

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

Klasična vjerojatnost

U klasičnom vjerojatnosnom prostoru vjerojatnost događaja računa se formulom:

$$P(A) = \frac{M}{N} = \frac{\text{broj povoljnih ishoda}}{\text{broj mogućih ishoda}}.$$

Silvesterova formula

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i}A_{j})$$

$$+ \sum_{i < j < k} P(A_{i}A_{j}A_{k}) - \dots + (-1)^{n+1} P(A_{1}A_{2} \cdots A_{n}).$$

Neprekinutost vjerojatnosti

Teorem 1.1. Neka je P vjerojatnost na σ -algebri \mathscr{F} . P je σ -aditivna ako i samo ako vrijedi

$$A_1 \subset A_2 \subset \ldots \implies \lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}(\bigcup_{n=1}^{\infty} A_n).$$
 (1)

Geometrijska vjerojatnost

Neka je Ω ograničeni podskup n-dimenzionalnog prostora \mathbf{R}^n (n=1,2,3). Pretpostavit ćemo da je Ω izmjeriv skup, tj. da postoji njegova mjera $m(\Omega)$ (duljina za n=1, površina za n=2, obujam za n=3). Neka je A izmjeriv podskup od Ω . Kažemo da biramo točku **na sreću** unutar skupa Ω , ako je vjerojatnost da ona bude izabrana unutar podskupa A jednaka

$$P(A) = \frac{m(A)}{m(\Omega)}. (1)$$

Ovako definiranu vjerojatnost nazivamo **geometrijska vjerojatnost**.

Broj elemenata Kartezijeva umnoška

Ako skup A ima m elemenata, a skup B n elemenata, tad Kartezijev umnožak $A \times B$ ima nm elemenata. Pišemo $k(A \times B) = k(A) \cdot k(B)$.

Kartezijev umnožak nekoliko skupova

Broj elemenata u Kartezijevu umnošku k skupova je

$$k(S_1 \times S_2 \times \dots \times S_k) = n_1 \cdot n_2 \cdot \dots \cdot n_k = k(S_1) \cdot k(S_2) \cdot \dots \cdot k(S_k). \tag{1}$$

Varijacija s ponavljanjem k-tog razreda u n-članom skupu S je svaka uređena k-torka Kartezijeva umnoška k skupova $S \times S \times \cdots \times S = S^k$. Broj varijacija s ponavljanjem označavamo s \overline{V}_n^k . On jednak je broju elemenata Kartezijeva umnoška S^k :

$$\overline{V}_n^k = k(S \times S \times \cdots \times S) = [k(S)]^k = n^k.$$

Princip uzastopnog prebrojavanja

Ako element s_1 možemo izabrati iz skupa S_1 na n_1 različitih načina, nakon toga (bez obzira na to koji smo element već izabrali) element s_2 iz skupa S_2 na n_2 načina, nakon toga element s_3 iz skupa S_3 na n_3 načina itd., onda je ukupan broj načina izbora niza s_1, s_2, \ldots, s_k jednak

$$N = n_1 \cdot n_2 \cdot \cdot \cdot n_k$$
.

Broj permutacija

Broj različitih permutacija skupa od n elemenata je

$$P_n = n \cdot (n-1) \cdots 2 \cdot 1 = n! \tag{2}$$

Permutacije s ponavljanjem

Neka u nizu s_1, s_2, \ldots, s_n postoji prva skupina od k_1 identičnih elemenata, druga skupina od k_2 identičnih elemenata, ..., r-ta skupina od k_r identičnih elemenata, $k_1 + k_2 + \ldots + k_r = n$. Bilo koji razmještaj elemenata takva niza nazivamo **permutacijom s ponavljanjem**. Njihov ukupni broj označavamo s $P_n^{k_1,k_2,\ldots,k_r}$ i vrijedi

$$P_n^{k_1, k_2, \dots, k_r} = \frac{n!}{k_1! \cdot k_2! \cdots k_r!}.$$
 (3)

C_n^k

Sa C_n^k označavamo broj načina na koji iz skupa od n elemenata možemo odabrati k elemenata, ne pazeći na njihov poredak.

Kombinacije

Svaki podskup od k (različitih) elemenata skupa S nazivamo **kombinacijom** u skupu S. Broj različitih kombinacija je

$$C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}.$$
(4)

Veza kombinacija, permutacija i varijacija. Broj varijacija k-tog razreda u skupu S od n elemenata je $V_n^k = \frac{n!}{(n-k)!}$. Sve varijacije možemo dobiti tako da najprije odaberemo k elemenata skupa S, a zatim ih permutiramo na sve moguće načine. Izbor elemenata možemo učiniti na C_n^k načina, a permutirati ih na P_k načina. Po teoremu o uzastopnom prebrojavanju, ukupan broj varijacija jednak je

$$V_n^k = C_n^k \cdot P_k,$$

2.

Uvjetna vjerojatnost

Uvjetna vjerojatnost

Neka je $B \in \mathscr{F}$ događaj pozitivne vjerojatnosti: P(B) > 0. Uvjetna vjerojatnost uz uvjet B je funkcija $P_B : \mathscr{F} \to [0,1]$ definirana formulom

$$P_B(A) := \frac{P(AB)}{P(B)}, \quad \forall A \in \mathscr{F}.$$
 (1)

Vjerojatnost umnoška

Vjerojatnost umnoška dvaju događaja računa se formulom

$$P(AB) = P(B)P(A \mid B) \tag{2}$$

Definicija i kriterij nezavisnosti događaja

Za događaje A i B kažemo da su **nezavisni**, ako vrijedi bilo koja od jednakosti: $P(A \mid B) = P(A)$ ili $P(B \mid A) = P(B)$.

Nuždan i dovoljan uvjet za nezavisnost jest da bude:

$$P(AB) = P(A)P(B). (1)$$

Nezavisnost događaja

Događaji A_1, A_2, \ldots, A_n su **nezavisni** ako za svaki $k, 2 \le k \le n$ i svaki izbor $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ nekolicine tih događaja vrijedi

$$P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k}).$$

Formula potpune vjerojatnosti

Neka je $\{H_1,\ldots,H_n\}$ potpun sustav događaja. Za svaki događaj $A\subset\Omega$ vrijedi

$$\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}(H_i) \mathbf{P}(A \mid H_i).$$

Bayesova formula

Vrijedi

$$oldsymbol{P}(H_i \mid A) = rac{oldsymbol{P}(H_i) oldsymbol{P}(A \mid H_i)}{\sum_{j=1}^n oldsymbol{P}(H_j) oldsymbol{P}(A \mid H_j)}.$$

3.

Diskretne slučajne varijable i vektori

Slučajna varijabla

Preslikavanje $X: \Omega \to S$ je **diskretna slučajna varijabla** ako je za svaki $x_k \in S$ skup $A_k := (\omega \in \Omega : X(\omega) = x_k)$ događaj. Označimo

$$p_k := \mathbf{P}(A_k) = \mathbf{P}(X = x_k). \tag{1}$$

Za ove brojeve vrijedi $p_k > 0$, $\sum p_k = 1$. **Zakon razdiobe** slučajne varijable X sastoji se od područja vrijednosti koje ona poprima i odgovarajućih vjerojatnosti. Pišemo

$$X \sim \begin{pmatrix} x_1 & x_2 & x_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}. \tag{2}$$

Nezavisne slučajne varijable — definicija i temeljno svojstvo

Slučajne varijable $X, Y : \Omega \to S$ su **nezavisne** ako za sve $x_k, y_j \in S$ vrijedi

$$P(X = x_k, Y = y_i) = P(X = x_k)P(Y = y_i)$$
 (3)

Tada vrijedi općenitije, za sve A, $B \subset S$

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B). \tag{4}$$

Nezavisnost niza slučajnih varijabli

Slučajne varijable X_1, X_2, \dots, X_n definirane na istom vjerojatnosnom prostoru su **nezavisne**, ako za sve $A_1, A_2, \dots, A_n \subset S$ vrijedi

$$P(X_1 \in A_1, X_2 \in A_2, ..., X_n \in A_n) = P(X_1 \in A_1)P(X_2 \in A_2) \cdots P(X_n \in A_n).$$
 (5)

Slučajne varijable X_1, X_2, \ldots su nezavisne ako su za svaki n nezavisne slučajne varijable $X_{i_1}, X_{i_2}, \ldots, X_{i_n}$, za svaki izbor (različitih) indeksa i_1, i_2, \ldots, i_n .

Neka slučajna varijabla X poprima vrijednosti u skupu (x_1, \ldots, x_n) , a slučajna varijabla Y u skupu (y_1, \ldots, y_m) . Razdioba slučajnog vektora (X, Y) je poznata ako znamo vjerojatnosti

$$p_{ij} = \mathbf{P}(X = x_i, Y = y_j)$$

pri čemu mora biti $\sum_{i,j} p_{ij} = 1$. Zakon razdiobe slučajnog vektora pišemo u obliku tablice

Marginalne razdiobe varijabli X i Y su

$$X \sim \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}, \qquad Y \sim \begin{pmatrix} y_1 & y_2 & \dots & y_m \\ q_1 & q_2 & \dots & q_m \end{pmatrix},$$

Ako poznajemo marginalne razdiobe, razdioba vektora još uvijek nije određena, pomoću margina *ne možemo* općenito rekonstruirati vjerojatnosti u tablici. To je moguće učiniti samo ako su komponente slučajnog vektora *nezavisne*, jer onda vrijedi

$$p_{ij} = P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i) = p_i q_i.$$

Uvjetna vjerojatnost događaja $\{X = x_i \mid Y = y_i\}$ dana je sa

$$P(X = x_i \mid Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{q_j}.$$

Skup svih takvih vjerojatnosti za sve i daje **uvjetnu razdiobu** varijable X uz uvjet $Y = y_i$:

$$X \mid Y = y_j \sim \begin{pmatrix} x_1 & x_2 & \dots \\ \frac{p_{1j}}{q_j} & \frac{p_{2j}}{q_j} & \dots \end{pmatrix}.$$

Ta se razdioba čita iz j-tog stupca razdiobe vektora (X,Y). Elementi tog stupca podijeljeni su sa odgovarajućom marginom.

Na isti način računamo i uvjetnu razdiobu varijable Y uz uvjet $X = x_i$:

$$Y \mid X = x_i \sim \begin{pmatrix} y_1 & y_2 & \cdots \\ \frac{p_{i1}}{p_i} & \frac{p_{i2}}{p_i} & \cdots \end{pmatrix}.$$

Očekivanje slučajne varijable

Neka slučajna varijabla X ima zakon razdiobe:

$$X \sim \begin{pmatrix} x_1 & x_2 & x_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}.$$

Očekivanje slučajne varijable X definirano je kao zbroj

$$E(X) := \sum_{k} x_k p_k. \tag{1}$$

Često se očekivanje slučajne varijable označava i simbolima \bar{x} ili m_X .

Svojstva očekivanja

Teorem 3.1. Neka je X i Y slučajne varijable definirane na istom vjerojatnosnom prostoru. Očekivanje ima svojstvo linearnosti, za sve realne brojeve s i t vrijedi

$$E(sX + tY) = sE(X) + tE(Y).$$

Ako su varijable X i Y nezavisne, tada vrijedi

$$E(XY) = E(X)E(Y).$$

Ishodišni i centralni momenti slučajne varijable

Neka slučajna varijabla X ima zakon razdiobe:

$$X \sim \begin{pmatrix} x_1 & x_2 & x_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

i neka je n prirodni broj. **Ishodišni moment reda** n slučajne varijable X definirano se formulom

$$E(X^n) := \sum_{k} x_k^n p_k. \tag{2}$$

Ako je m_X očekivanje od X, onda se **centralni moment** μ_n **reda** n definira formulom

$$\mu_n := E[(X - m_X)^n] = \sum_k (x_k - m_X)^n p_k.$$
 (3)

Disperzija slučajne varijable

Disperzija (rasipanje, varijanca) slučajne varijable X definira se formulom

$$\boldsymbol{D}(X) = \boldsymbol{E}[(X - m_X)^2]$$

Ovaj se izraz najčešće računa na način:

$$D(X) = E(X^2) - m_X^2 = \sum_k x_k^2 p_k - \left(\sum_k x_k p_k\right)^2,$$

Svojstva disperzije

Teorem 3.2. Za slučajnu varijablu X i realni broj s vrijedi

$$\boldsymbol{D}(sX) = s^2 \boldsymbol{D}(X).$$

Ako su X i Y nezavisne slučajne varijable, onda vrijedi

$$D(X+Y) = D(X) + D(Y).$$

Veličinu $\sigma_X := \sqrt{D(X)}$ nazivamo **standardna devijacija** (**odstupanje**) varijable X .

Kovarijacijski moment. Koeficijent korelacije

Kovarijacijski moment varijabli X i Y definira se formulom

$$cov(X, Y) := E[(X - m_X)(Y - m_Y)] = E(XY) - m_X m_Y.$$

Koeficijent korelacije definira se formulom

$$r(X,Y) := \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}.$$

Disperzija zbroja slučajnih varijabli

Teorem 3.3. Disperzija zbroja $S = X_1 + \ldots + X_n$ slučajnih varijabli računa se formulom

$$\mathbf{D}(S) = \sum_{i=1}^{n} \mathbf{D}(X_i) + 2\sum_{i < j} \operatorname{cov}(X_i, X_j).$$

Svojstva koeficijenta korelacije

Teorem 3.4. Za koeficijent korelacije uvijek je ispunjeno

$$|r(X,Y)| \leq 1.$$

Jednakost $r(X,Y)=\pm 1$ vrijedi onda i samo onda kad je Y=aX+b za neke konstante a i b.

Neka je a realan broj. Razdioba slučajne varijable X-a poznata nam je ukoliko znamo razdiobu varijable X. Kako se mijenjaju numeričke karakteristike? Vrijedi

$$E(X-a) = E(X) - a,$$
 $D(X-a) = D(X).$

Očekivanje i disperzija slučajne varijable aX + b iznose

$$E(aX + b) = aE(X) + b, \qquad D(aX + b) = a^2D(X).$$

Pri translaciji ne mijenja se niti kovarijacijski moment:

$$cov(X - a, Y - b) = E\{[(X - a) - E(X - a)][(Y - b) - E(Y - b)]\}$$

= $E\{[X - E(X)][Y - E(Y)]\} = cov(X, Y)$

Karakteristična funkcija

Karakteristična funkcija slučajne varijable X definira se formulom

$$\vartheta_X(t) := \boldsymbol{E}(e^{itX})$$

Dakle,

$$\vartheta_X(t) = \sum_k p_k e^{itx_k}. (4)$$

Svojstva karakteristične funkcije

- 1° Karakteristična funkcija jednoznačno određuje razdiobu: dvije različite razdiobe ne mogu imati istu karakterističnu funkciju.
- 2° Ako su X_1, \ldots, X_n nezavisne, tada je

$$\vartheta_{X_1 + \dots + X_n}(t) = \vartheta_{X_1}(t) \cdots \vartheta_{X_n}(t). \tag{5}$$

3° Vrijedi formula

$$E(X^r) = \frac{\vartheta^{(r)}(0)}{i^r}, \qquad r = 1, 2, \dots$$
 (6)

ukoliko očekivanje postoji. Posebice,

$$E(X) = -i\vartheta'(0),$$

$$D(X) = -\vartheta''(0) + \vartheta'(0)^{2}.$$
(7)

Za diskretne slučajne varijable, koje uzimaju vrijednosti u skupu (0, 1, 2, ...) često je jednostavnije umjesto karakteristične funkcije promatrati **funkciju izvodnicu** ψ_X definiranu ovako:

$$\psi_X(z) = \sum_{k=0}^{\infty} p_k z^k = \boldsymbol{E}(z^X).$$

4.

Primjeri diskretnih razdioba

Odredimo najprije karakterističnu funkciju geometrijske razdiobe:

$$\vartheta(t) = \sum_{k=1}^{\infty} e^{itk} \cdot pq^k = pe^{it} \sum_{k=0}^{\infty} (qe^{it})^k = \frac{pe^{it}}{1 - qe^{it}}.$$

$$E(X) = -i\vartheta'(0) = \frac{p}{(1-q)^2} = \frac{1}{p}.$$

Odsustvo pamćenja — temeljno svojstvo geometrijske razdiobe

Teorem 4.1. Slučajna varijabla X koja poprima vrijednosti u skupu $\{1, 2, 3, \ldots\}$ ima geometrijsku razdiobu onda i samo onda ako vrijedi za sve $k, m \ge 1$

$$P(X = k + m \mid X > k) = P(X = m).$$
 (1)

Binomna razdioba, definicija i numeričke karakterisike

Kažemo da slučajna varijabla X ima **binomnu razdiobu** s parametrima n i p i pišemo $X \sim \mathcal{B}(n,p)$, ako X poprima vrijedosti unutar skupa $\{0,1,2,\ldots,n\}$ s vjerojatnostima

$$p_k = \mathbf{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Očekivanje i disperzija binomne razdiobe su

$$m_X = np$$
, $\sigma_X^2 = npq$.

Odredimo najprije karakterističnu funkciju binomne razdiobe. Neka je $X \sim \mathcal{B}(n,p)$. Tada imamo

$$\vartheta(t) = \sum_{k=0}^{n} e^{itk} p_k = \sum_{k=0}^{n} e^{itk} \binom{n}{k} p^k q^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{it})^k q^{n-k} = (pe^{it} + q)^n.$$

Ako su $X_1 \sim \mathcal{B}(n_1,p)$ i $X_2 \sim B(n_2,p)$ nezavisne binomne slučajne varijable, onda je $X_1 + X_2$ binomna slučajna varijabla. Odredimo njezine parametre.

Vrijedi $\vartheta_{X_1}(t)=(q+pe^{it})^{n_1},\ \vartheta_{X_2}(t)=(q+pe^{it})^{n_2}$ te je zbog nezavisnosti od X_1 i X_2

$$\vartheta_{X_1+X_2}(t) = \vartheta_{X_1}(t)\vartheta_{X_2}(t) = (q + pe^{it})^{n_1+n_2}$$

Poseban, najjednostavniji primjer binomne slučajne varijable je **Bernoullijeva** ili **indikatorska** slučajna varijabla: ona poprima samo dvije vrijednosti: 1 s vjerojatnošću p i 0 s vjerojatnošću q=1-p. Ona bilježi realizaciju događaja A u jednom pokusu.

Ako su X_i Bernoullijeve nezavisne varijable s istim parametrom p, tada je njihov zbroj $X_1 + X_2 + \ldots + X_n$ binomna slučajna varijabla $\mathcal{B}(n,p)$. Ova tvrdnja slijedi zbog svojstva stabilnosti binomnih slučajnih varijabli.

Na temelju toga možemo lakše izračunati očekivanje i disperziju binomne slučajne varijable. naime, za indikatorsku slučajnu varijablu vrijedi

$$E(X_i)=0\cdot q+1\cdot p=p,$$
 $D(X_i)=0^2\cdot q+1^2\cdot p-p^2=pq,$ $\forall i,$ pa je, zbog nezavisnosti

$$E(X) = E(X_1) + \ldots + E(X_n) = np,$$

 $D(X) = D(X_1) + \ldots + D(X_n) = npq.$

Aproksimacija binomne razdiobe

Teorem 4.2. Neka je n velik a p malen. Označimo $\lambda = np$. tad vrijedi aproksimacija

$$\binom{n}{k} p^k q^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}.$$
 (1)

Poissonova razdioba, definicija i numeričke karakteristike

Kažemo da slučajna varijabla X ima **Poissonovu razdiobu** s parametrom $\lambda > 0$ i pišemo $X \sim \mathcal{P}(\lambda)$ ako ona poprima vrijednosti unutar skupa $\{0,1,2,\ldots\}$ s vjerojatnostima

$$p_k = \mathbf{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Za očekivanje i disperziju ove razdiobe vrijedi

$$m_X = \lambda$$
, $\sigma_X^2 = \lambda$.

Odredimo najprije karakterističnu funkciju Poissonove razdiobe $\mathscr{P}(\lambda)$.

$$\vartheta(t) = \sum_{k=0}^{\infty} e^{itk} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda(e^{it}-1)}.$$

Odavde, na temelju veze karakteristične funkcije i momenata slučajne varijable, dobivamo $E(X)=\lambda$, $D(X)=\lambda$.

Karakteristična funkcija Poissonove razdiobe je

$$\vartheta_{X_k}(t) = e^{\lambda_k(e^{it}-1)}, \qquad k = 1, 2$$

te slijedi

$$\vartheta_{X_1+X_2}=e^{(\lambda_1+\lambda_2)(e^{it}-1)}$$

što je karakteristična funkcija Poissonove razdiobe $P(\lambda_1 + \lambda_2)$.

Za veliko n i maleno p, binomna razdioba $\mathscr{B}(n,p)$ može se aproksimirati Poissonovom razdiobom $\mathscr{P}(np)$.