MA331 Homework 4 - Aparajita Rana

I pledge my honor that I have abided by the Stevens Honor System. - Aparajita Rana

(6.58 - Computing P-Value,
$$\mu = \mu O \rightarrow z = 1.77$$

(a) $\mu > \mu O \Rightarrow P(z > 1.77) = 0.038$ Cabow?

(b) $\mu \leq \mu O \Rightarrow P(z < 1.77) = 0.962$ [bolow]

(c) $y \neq \mu O \Rightarrow P(z < 1.77) = 0.038 * 2 = 0.0762$

6.59 - $\mu = \mu_0 \rightarrow z = -1.69$ (given)

(a) $\mu > \mu_0 \Rightarrow P(z > -1.69) = 0.955$

(b) $\mu \leq \mu_0 \Rightarrow P(z > -1.69) = 0.0455$

(c) $\mu \neq \mu_0 \Rightarrow P(z > -1.69) = 0.0455$

(d) $\mu = \pi_0 \Rightarrow P(z > -1.69) = 0.091$

6.71 - Attitudes towards School

Scores range 0 - 200, mean = 115, sshift mean = 127.8

(a) $\sigma = 30$, $H_0 = \mu = 115$, $H_0 = 115$, $Z = \frac{127.8 - 115}{(30.1726)} = 2.13$

P($Z > 2.13$) = 0.017

The hypothesis that older students have bottle attitude is unong hereted because the p-value is less than σ

(b) Assumption 1 is more important because there were no crazy outriers that could would make Normal Distribution matter two much.

6.73 - Are the measurements similar?

(a) $H_0 : M = 0$ mpg, $H_a : M \neq 0$ mpg

(b) $\overline{x} = 2.73 \Rightarrow z = \frac{2.35}{2.120} = \frac{4.069}{2.00002}$

P-val too small $\Rightarrow H_0$ is rejected to $\overline{x} = \frac{1.069}{2.00002}$

(b) $\overline{x} = 2.453 = 7$, 100 athletes, $\overline{x} = \frac{1.069}{2.00002} = 0.57$

(c) $\overline{x} = 2.933 = 7$, 500 athletes, $\overline{x} = \frac{1.069}{2.00002} = 0.57$

(c) $\overline{x} = 2.933 = 7$, 500 athletes, $\overline{x} = 2.84$

(c) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(c) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(d) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(e) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(f) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(g) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(g) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(g) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(g) $\overline{x} = 2.933 = 7$, 2500 athletes, $\overline{x} = 2.84$

(g) $\overline{x} = 2.84$

- 6.120 Choose the appropriate distribution
 - (a) reject to when Pois correct: P(Type I Error) = P(x=0 Ux=1 Ux=2) = (2.1+0.1+0.2 = 0.4)
 - (b) P(Type I E1101) = P(x=3 U x=4 Ux=5 Ux=6) = [0.4]
- 7.22 One-sample & test
 - (a) degrees of freedom = 15
 - (b) 2.131 8 2.249 (2.131 L t 2.249)
 - (c) 0.02 and 0.025 (0.026 PLO.025)
 - (d) value t= 2.15 at 5% level => Yes -significant 1% level => No not sig
 - (e) or P-value ≈ 805€ 0.0241
- 7.23 Another one-sample t test
 - (a) degrees of freedom for t = 26
 - (b) 1.706 8 2.056 (1.706 < 7 < 2.056)
 - (c) 0.05 80.1 (0.05 LP < 0.1)
 - (d) value t = 2.01 at 5% level => No 1% level => No
 - (e) 7- value ≈ 0.055