

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Lectures 17 & 18 -Numerical Examples on Thevenin's Theorem

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Numerical Example 1

Question:

Using Thevenin's Theorem, find the magnitude and direction of current in the branch BD in the network shown.

Numerical Example 1

Solution:

Finding V_{TH}:

$$I_1 = \frac{2V}{40\Omega} = 0.05A$$
; $I_2 = \frac{2V}{35\Omega} = 0.057A$

c By KVL (ABDA),
$$-10*I_1-V_{TH}+20*I_2=0$$

$$V_{TH} = 0.64V$$

Numerical Example 1

Solution (Continued..):

 30Ω

Finding R_{TH}:

 15Ω

Numerical Example 1

Solution (Continued..):

Thevenin's Equivalent Circuit:

Hence, current through the branch BD is 11.41mA and flows from terminal B to terminal D

Numerical Example 2

Question:

Obtain the Thevenin's Equivalent across the terminals A & B for the network given.

Numerical Example 2

Solution:

Finding V_{TH} :

$$KVL (Mesh 1) : 18I_1 - 12I_2 - 0I_3 = 60$$
 ---- (1)

KVL (Mesh 2):
$$-12I_1 + 24I_2 - 8I_3 = 0$$
 ---- (2)

Current Equation(Mesh 3):
$$I_3 = 8$$
 ---- (3)

Solving (1), (2) & (3),
$$I_1 = 7.66A$$
; $I_2 = 6.5A$

$$V_{TH} = (I_2 - I_3) * 8\Omega = -12V$$

Numerical Example 2

Solution (Continued..):

Finding R_{TH}:

$$R_{TH} = \{(6\Omega \text{ II } 12\Omega) + 4\Omega) \text{ II } 8\Omega\} = 4\Omega$$

PES

Numerical Example 2

Solution (Continued..):

Thevenin's Equivalent Circuit:

Assignment Question

Question:

Using Thevenin's Theorem, find the magnitude and direction of current in the branch BD in the network shown.

Numerical Example 2

Obtain the Thevenin's Equivalent across the terminals A & B in the network shown below: 1Ω

PES

PES UNIVERSITY

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu