

Disciplina: ICC204 - Aprendizagem de Máquina e Mineração de Dados Prof. Rafael Giusti (rgiusti@icomp.ufam.edu.br)

06/07/2019

Lista de Exercícios 6

- 1. Qual é a relação entre a a dimensionalidade dos dados, a capacidade de um modelo e o fenômeno do *overfitting*?
- 2. Normalize o conjunto de dados abaixo utilizando o método da estandardização (z-escores) e classifique o exemplo (4, 16, 18) utilizando o método dos k vizinhos mais próximos com k=1 e distância euclidiana.

X1	X2	Х3	Classe
1	10	3	+
1	12	16	+
1	16	33	+
2	14	3	+
2	17	18	+
2	18	34	-
3	25	26	-
3	29	18	-

- 3. Monte uma pequena base de treino e treine um modelo perceptron, utilizando função sigmoide, para classificar a função ((X1 e X2) ou (X3)). Faça uma única época, isto é, uma única passagem pelo conjunto de dados.
- 4. Desenhe a rede neural representada pelos pesos abaixo. Faça uma única iteração feed-forward e propagação retrógada para um exemplo cujos valores são $x_1=1$ e $x_2=0,5$ e cuja saída esperada é t=0.

Primeira camada:

$$w_{01} = -1,55$$
 $w_{11} = 6,64$ $w_{21} = -15$ $w_{02} = -6,37$ $w_{12} = -8,98$ $w_{22} = -19$

Segunda camada:

$$w_{13} = 0.76$$
 $w_{13} = 2.4$ $w_{23} = 9$ $w_{14} = 10.1$ $w_{14} = -28$ $w_{24} = -20$

Terceira camada:

$$w_{15} = -0.5$$
 $w_{15} = 0.24$ $w_{25} = 32$