The 2021 Freshman Programming Contest Hunan University

Problem K

Zby2001

Time Limit: 3 seconds Memory Limit: 512 MB

Description

Zby2001 is a very clever boy.

One day Sjie gives him a problem:

Giving Zby2001 an array P of length $n(1 \le n \le 10^6)$. For each $0 \le i < n$, i appears exactly once in the array P. And Zby2001 can do the following operations any times:

Change P_i to $((P_i + 1) \mod n)$ for every $0 \le i < n$.

Change P to Q , such that $Q_{P_i} = i$ for every $0 \leq i < n$.

Sjie asks how many different arrays he can get. For two arrays A and B, if there exists an integer i such that $A_i \neq B_i$, they are different.

Zby2001 doesn't think the problem is worth doing. So Sjie asks you for help.

Input

The first line contains a single integer $n \ (1 \le n \le 10^6)$.

The second line contains n integers $0 \le P_0, P_1, P_2, \dots, P_{n-1} < n$, represents the array P. It is guaranteed that P is a permutation from 0 to n-1.

Output

Print a single integer, represents how many different arrays you can get.

Sample Input1

Output for Sample input1

4	4
0 1 2 3	

Sample Input2

Output for Sample input2

4	16
0 2 1 3	

Note:

In sample1, 4 arrays you can get are:

P1= [0,1,2,3]

P2= [1,2,3,0]

P3= [2,3,0,1]

P4= [3,0,1,2]