CS231A Midterm Review

May 2nd 2025

Agenda

- Exam logistics
- Preparation tips
- Core topics

Midterm logistics

- Format
 - o 8 True/False questions, 6 multiple choice questions, and 3 short answer questions
- 80 Minutes during class time (1:30 PM 2:50 PM, May 5)
- Gates B1- Basement floor of the Gates Building
- Practice exam
- SCPD students 24 hours window
- Open notes but closed Internet
- No electronic devices are allowed (calculators are allowed)

Preparing for the midterm

Resources:

- Lectures 1 10
- Problem Sets 0 2
- Course notes
- Recommended textbooks

Again: open notes!

 Focus on foundations & high-level understanding; you will have time to look up details.

Core topics (1/2)

- General background
 - Necessary linear algebra
 - Homogeneous coordinates
 - Transformations
 - Formulating & solving least squares problems (when do we use an SVD?)
- Camera models
 - Perspective & non-perspective
 - Degrees of freedom
 - Distortion
 - Calibration
- Single view metrology
 - Vanishing points, vanishing lines

Core topics (2/2)

- Multiview geometry
 - Epipolar geometry; essential and fundamental matrices; 8-point algorithm
 - Structure from motion
 - Stereo
 - Perspective, affine, similarity ambiguities
- Active and volumetric stereo
 - Structured lighting
 - Space carving & Shadow carving & Voxel coloring
 - Fitting & Matching
 - Least squares
 - RANSAC
 - Hough transforms
- Representations & Representation Learning (High Level Questions)

Necessary Linear Algebra

- 4 Basic spaces of a matrix: Null space, column space, row space
- Invertibility; Rank; Determinant
- Special matrices: identity matrix, orthogonal matrix, etc.
- QR decomposition: Decomposition of a matrix into orthogonal and upper triangular matrices.
- SVD:
 - Data Compression: Vectors corresponding to k largest singular values
 - Solve a (non-zero) vector in the null space of a matrix approximately: The vector corresponding to the smallest singular value

Homogeneous Coordinates

Augmented space for writing coordinates:

2D:
$$\begin{bmatrix} x \\ y \end{bmatrix} \iff \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \iff \begin{bmatrix} wx \\ wy \\ w \end{bmatrix}$$

3D:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \iff \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \iff \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}$$

2D Lines

Homogeneous coordinates give us a neat way of representing 2D lines as vectors/orthogonality constraints:

$$egin{aligned} ax+by+c&=0\ egin{bmatrix} a&b&c\end{bmatrix}egin{bmatrix} x&y&1\end{bmatrix}^T&=0 \end{aligned}$$

- => symmetry between lines and points
- => cross products suddenly becomes very useful!

2D Lines

How can we get the line connecting two points?

Given:
$$egin{bmatrix} [x_1 & y_1 & 1] \\ [x_2 & y_2 & 1] \end{bmatrix}$$

Unknown:
$$\begin{bmatrix} a & b & c \end{bmatrix}$$

Subject to:
$$egin{bmatrix} a & b & c \end{bmatrix}egin{bmatrix} x_1 & y_1 & 1 \end{bmatrix}^T = 0 \ egin{bmatrix} a & b & c \end{bmatrix}egin{bmatrix} x_2 & y_2 & 1 \end{bmatrix}^T = 0 \end{bmatrix}$$

Solution

$$egin{bmatrix} a \ b \ c \end{bmatrix} = egin{bmatrix} x_1 \ y_1 \ 1 \end{bmatrix} imes egin{bmatrix} x_2 \ y_2 \ 1 \end{bmatrix}$$

2D Lines

How can we get the intersection of two lines?

Given:
$$egin{bmatrix} a_1 & b_1 & c_1 \end{bmatrix} \ egin{bmatrix} a_2 & b_2 & c_2 \end{bmatrix}$$

Unknown:
$$\begin{bmatrix} x & y & 1 \end{bmatrix}$$

Subject to:
$$egin{bmatrix} \left[a_1 & b_1 & c_1
ight] \left[x & y & 1
ight]^T = 0 \ \left[a_2 & b_2 & c_2
ight] \left[x & y & 1
ight]^T = 0 \end{bmatrix}$$

Solution:

$$egin{bmatrix} wx \ wy \ w \end{bmatrix} = egin{bmatrix} a_1 \ b_1 \ c_1 \end{bmatrix} imes egin{bmatrix} a_2 \ b_2 \ c_2 \end{bmatrix}$$

Transformations

Isometric transformations:

Distances preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Similarity transformations:

Shapes preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} SR & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, S = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Affine transformations:

Parallelism preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective transformations:

Lines preserved

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A & t \\ v & b \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Pinhole Cameras

$$P' = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x & 0 \\ 0 & \frac{\beta}{\sin \theta} & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Camera Models

- Weak perspective projection
 - Useful when relative depth of the scene is small and distant
 - Magnification m is the ratio of the depth of the scene to camera focal length f'
 - Under what cases is the weak perspective accurate and why?

Camera Calibration

- Intrinsic Parameters: K
- Extrinsic Parameters: R, T
- 11 DOF
 - o 5 from K
 - o 3 from R
 - o 3 from T
- Degenerate cases
- Know how to construct the homogeneous linear system

Single View Metrology

Under projective transformation, parallel lines converge to a vanishing

We used this for camera calibration in PSET 1!

$$\mathbf{v} = K \mathbf{d}$$

$$\mathbf{n} = \mathbf{K}^{\mathrm{T}} \mathbf{l}_{\mathrm{horiz}}$$
[Eq. 27]

$$\cos \theta = \frac{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}{\sqrt{\mathbf{v}_1^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_1} \sqrt{\mathbf{v}_2^{\mathrm{T}} \boldsymbol{\omega} \, \mathbf{v}_2}} \quad \stackrel{\theta = 90}{\longrightarrow}$$
[Eq. 28]

$$\begin{array}{ccc}
\theta = 90 \\
\rightarrow & V_1^T \boldsymbol{\omega} V_2 = 0
\end{array}$$
[Eq. 29]

Useful to:

$$\omega = (K K^T)^{-1}$$
[Eq. 30]

- To calibrate the camera
- To estimate the geometry of the 3D world

Essential matrix:

A point \rightarrow epipolar line mapping for canonical cameras (K = I)

$$egin{aligned} l' &= E^T p \ l &= E p' \ p^T E p' &= 0 \end{aligned}$$

Given a 2D point in one camera, a correspondence in the other must lie on an epipolar line

If **p'** is known, we can compute **I** and search for **p** using:

$$l^T p = 0$$

If p is known, we can compute l' and search for p' using:

 $l^{\prime T}p^\prime=0$

Fundamental matrix:

A point → epipolar line mapping for general projective cameras

$$egin{aligned} l' &= F^T p \ l &= F p' \ \hline p^T F p' &= 0 \end{aligned}$$

Computing the fundamental matrix with the 8-point

algorithm:

 $p^T F p' = 0$

Estimating F

• Homogeneous system $\mathbf{W}\mathbf{f} = 0$

=> Solve with SVD, then project to rank 2

Parallel images planes or rectification: simplifies correspondence problem, moves epipoles to infinity

Structure from Motion

Determining *structure* and *motion*

- Structure: **n** 3D points
- Motion: **m** projection matrices

You've implemented a few algorithms for this!

- Factorization
- Triangulation

Factorization Method

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{X}}_{11} & \hat{\mathbf{X}}_{12} & \cdots & \hat{\mathbf{X}}_{1n} \\ \hat{\mathbf{X}}_{21} & \hat{\mathbf{X}}_{22} & \cdots & \hat{\mathbf{X}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{X}}_{m1} & \hat{\mathbf{X}}_{m2} & \cdots & \hat{\mathbf{X}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

$$\mathbf{Cameras} \\ (2 \, \mathbf{m} \times \mathbf{n}) & \mathbf{S} \end{bmatrix}$$

- Affine Structure from Motion
- Assume all points are visible
- SVD solution not unique
- Ambiguities
 - Affine Ambiguity
 - Similarity Ambiguity

Algebraic approach

- Compute fundamental matrix F
- Use F to estimate projective cameras
- Use these cameras to triangulate and estimate points in 3D
- Works with 2 views

Bundle Adjustment

Non-linear method for refining structure and motion

Goal: minimize reprojection

error Advantages

- Handle large number of views
- Handle missing data

Limitations

- Large minimization problem
- Require good initialization

Active Stereo

Active Stereo

- Replaces one camera with a projector
- Solves matching problem

Volumetric Stereo

Space carving

- Use contours and silhouettes
- Complexity: O(N^3)
- Octrees
- Conservative estimations
- Cannot carve concavity

Volumetric Stereo

Shadow carving

- Use shadows
- Complexity: O(2N^3)
- Conservative estimations
- Can carve concavity
- Limitations with reflective & low albedo regions

Volumetric Stereo

Voxel coloring

- Use colors
- Complexity: O(LN^3)
- Model intrinsic scene colors and textures

Fitting and Matching

- 3 Techniques:
 - Least Square Methods
 - Normal Equations
 - SVD
 - RANSAC
 - Hough Transform
- Advantages and disadvantages of each technique?

Least square

• Find (m, b) to minimize the fitting error (residual):

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Normal Equation:

$$h = \left(X^T X\right)^{-1} X^T Y$$

Fail for vertical lines

Least square

 Find a line to minimize the sum of squared distance to the points

$$E = \sum_{i=1}^{n} (ax_i + by_i + d)^2$$

- Can be solved by SVD
- However, susceptible to outliers!

RANSAC

Random sample consensus
For fitting a model to noisy
data! Iterative approach:

- Sample a subset of points
- Fit our model
- Count the total # of inliers that match this model
- Repeat for a finite number of iterations M and keep the set with the maximal number of inliers

Hough Transforms

Key idea for line fitting:

- Map points in (x,y) to a line in our Hough space
- Each point in our Hough space represents a line in our (x,y) space
- Intersection of lines in hough spaceline
- Polar line representation
- Discretization and voting

Representation Learning

- What is a representation?
- Input vs. intermediate vs. output representation
- What makes a good representation?
- Supervised vs. Unsupervised vs. Self-supervised learning

Good Luck!

Questions