| Monte Carlo Methods                                     |
|---------------------------------------------------------|
| (estimate value functions                               |
| I discover optimal policies                             |
|                                                         |
| Monte Carlo: experience sample apisodes                 |
|                                                         |
| Sample sequences of                                     |
| States, actions, and remards                            |
| from actual or simulated interaction                    |
| with an environment                                     |
| actual experience                                       |
| simulated experience                                    |
|                                                         |
| Average sample Vetorns"                                 |
|                                                         |
| Experiences -> episodes                                 |
| 1                                                       |
| DP: compute value functions  [Mc: Learn value functions |
| (MC: Learn value functions                              |
| Simply average the returns observed after               |

| Visits to that state                                                               |
|------------------------------------------------------------------------------------|
|                                                                                    |
| "As more returns are observed, the average should converge to the expected value." |
| A set of apisodes  Visit                                                           |
| State 5                                                                            |
| first - visit Mc Method                                                            |
| estimate Vx(5) as the average of the Veturns                                       |
| every-visit Mc method                                                              |
| average all the vecturns following first visit to                                  |
|                                                                                    |
|                                                                                    |
|                                                                                    |



| Maintaining exploration (Sufficient exploration)                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------|
| exploring Starts: episodes begin with state-action  pairs randomly solected to  cover all possibilities  action-value function 9 |
| $\pi(s) = avg \max_{\alpha} q(s, \alpha)$                                                                                        |
| $Q_{\pi_k}(s, \pi_{kn}(s)) = Q_{\pi_k}(s, argmax Q_{\pi_k}(s, a))$                                                               |
| every pair has = Max 9 Tk (5, a)  a non-zero probability of being selected as the start 9 Tk (5, Tk (5))                         |
| Mc Control with Exploring Start:  episode t= T-1, T-2,, o                                                                        |
| $G = VG + R_{t+1}$                                                                                                               |
| if St, At in So, Ao, S, A, St., At-1:                                                                                            |



| Episode: t=T-1, T-2,, 0                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G = VG + Rxxx                                                                                                                                               |
| if St, At in So, Ao, Si, A.,, St., At-1                                                                                                                     |
| Append G to Returns (St, At)                                                                                                                                |
| Q(St, At) = average (Returns (St, At))                                                                                                                      |
| A* = argmax Q(St, a)                                                                                                                                        |
| For all a E A (S+).                                                                                                                                         |
| $T(a S_{\star}) = \begin{cases} 1-2+\frac{2}{ A(S_{\star}) } & \text{if } a=A^{\star} \\ \frac{2}{ A(S_{\star}) } & \text{if } a\neq A^{\star} \end{cases}$ |
| (A(Sx)) fatA                                                                                                                                                |
| Problem: Sufficient exploration                                                                                                                             |
| (Maintaining exploration)                                                                                                                                   |
|                                                                                                                                                             |
| with                                                                                                                                                        |
| exploring start exploring start                                                                                                                             |
| On-policy Tracks)>0 -) deterministic                                                                                                                        |
| 1 off - policy                                                                                                                                              |

Monte Carlo Control Without Exploring Starts 9/ (s, \(\ta'(s))) = \(\frac{7}{a}\)\(\ta'(\omega) = \(\frac{7  $=\frac{\varepsilon}{|A(S)|} = \frac{\varepsilon}{2} \left(\frac{\varepsilon}{S,\alpha} + (1-\varepsilon) \max_{\alpha} \frac{\varepsilon}{S,\alpha}\right)$  $\frac{2}{|A(S)|} = \frac{2}{a} \frac{1}{|A(S)|} = \frac{2}{|A(S)|} = \frac{2}{|A(S)|$  $=\frac{\varepsilon}{|A(5)|} = \frac{9}{9} (5, \alpha) - \frac{5}{|A(5)|} = \frac{9}{9} (5, \alpha) + \frac{5}{9} \pi (\alpha(5)) (5, \alpha)$  $= \sqrt{\chi(S)}$   $= \sqrt{$ Solect an action at random 2 probability | E for non-greedy actions  $\left| \left| -2 + \frac{5}{|A(5)|} \right|$  for gready actions

| Off-policy Prediction                                                                                          |
|----------------------------------------------------------------------------------------------------------------|
| On-policy method: learn action values not for a  the optimal policy, but for a  near-optimal policy that still |
| 2×plov=3                                                                                                       |
| target policy: Lecrned policy, -> optimal policy behavior policy: generate policy -> more explan               |
| Estimate $\sqrt{2}$ , $\sqrt{2}$ , $\sqrt{5}$ ( $5 \neq 7$ )                                                   |
| be havior  policy                                                                                              |
| tanger                                                                                                         |
| policy                                                                                                         |
| Converage 7(a/s) >0, b(a/s) >0                                                                                 |
| Inportance Sampling (ratio)                                                                                    |
| Weight returns according to the relative probability                                                           |
| of their trajectories occurring under the target                                                               |

| and behavior policies.                                                  |
|-------------------------------------------------------------------------|
|                                                                         |
| State-action tragectory:                                                |
|                                                                         |
| At, Stri, Atri,, ST                                                     |
| ? {A+, S++1, A++1,, ST (8+, A++, ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ |
|                                                                         |
| = T(Ax15+1P(Ste) St. At) T(Ath Stal)                                    |
| P (ST ) ST-1, AT-1)                                                     |
|                                                                         |
| T -(                                                                    |
| = TT T(AKISK) P(SKH [SK, AK)                                            |
|                                                                         |
| TT-1 T (AK (SK) P(SK+1   SK, AK)                                        |
| 1+: T-1=<br>T-1 b(Ak   Sk) P(Sk)   Sk, Ak)                              |
| (1/k2+ 2/ 1/k/ )k/ )k+(1/ )k. Hk/                                       |
| T-1                                                                     |
| = T-1<br>= T(Ak   Sk)<br>= K=+ b(Ak, Sk)                                |
| K=+ b(AK,SK)                                                            |

E[ (+: T-1 G+ (5+=5) = Vz (5)

Variance of the importance sampling-scaled veturns:

$$V_{ar}[x] = E[(x - \overline{x})^2]$$

$$= E[x^2 - 2x \overline{x} + \overline{x}^2]$$

$$= E[x^2] - \overline{x}^2$$

Experted square of the improtance sampling

 $\tau$   $\tau_{-1}$   $\tau_{-1}$   $\tau_{-1}$ 

