

Systèmes d'Exploitation

Didier Verna Epita

Généralités

Allocation

Répertoires

Swap

Espace libre

Lopado nore

Corruption

Performance

Systèmes d'Exploitation Implémentation des systèmes de fichiers

Didier Verna

didier@lrde.epita.fr http://www.lrde.epita.fr/~didier

Table des matières

Systèmes d'Exploitation Didier Verna

LFIIA

Généralités

Allocation

Répertoires

Swap

Espace libre

Corruption

- 1 Généralités
- 2 Méthodes d'allocation
- Implémentation des répertoires
- Implémentation du swap
- 5 Représentations de l'espace libre
- 6 Corruption des systèmes de fichiers
- Performances des systèmes de fichiers

Fonctionnalités requises

Systèmes d'Exploitation

EPITA

Généralités

Allocation Répertoires

neperione

Swap

Espace libre

Corruption

- Définir l'interface utilisateur : caractéristiques et attributs des fichiers, opérations sur les fichiers, structures des répertoires etc.
- Définir l'interface matérielle : structure de données, algorithmes, liaison entre système logique et dispositif de stockage en mémoire auxiliaire

Allocation et efficacité

Utiliser la mémoire auxiliaire le plus efficacement possible

Systèmes d'Exploitation Didier Verna

LITIA

Généralités Allocation

Répertoires

Swap

Espace libre

Corruption

Performance

Efficacité des entrées / sorties :

transferts de données par « blocs » (Cf. aussi le DMA).

⇒ Allocation d'espace disque également par bloc plutôt que par octet. Compromis espace / performance : blocs de 1K.

Accès direct :

par opposition aux périphériques à accès séquentiel (ex. bandes magnétiques).

⇒ Implémentation des méthodes d'accès aux fichiers facile.

Allocation contiguë Exemple: IBM VM/CMS

Systèmes d'Exploitation Didier Verna

Généralités Allocation

Répertoires

Swap

Espace libre

Corruption

Performance

Principe

- Fichiers stockés par blocs contigus sur le disque
- Temps de positionnement des têtes minimal
- Entrée de répertoire : adresse du premier bloc et longueur (en nombre de blocs)
- Accès direct et séquentiel faciles à implémenter : il suffit de mémoriser l'adresse du premier bloc
- Gestion de l'espace libre : Cf. *-fit, fragmentation externe, compactage etc.
- Problème majeur : fichiers de taille variable
 - ► **Trop d'espace :** fragmentation interne
 - Pas assez d'espace : déplacement (coûteux) du fichier. Pas toujours possible.
- Utilisation actuelle : CD / DVD-ROM

Allocation chaînée

Systèmes d'Exploitation Didier Verna

Généralités Allocation

Répertoires

....

Swap
Espace libre

Corruption

Performance

Principe

- Fichier = chaîne non contiguë de blocs disque
- Chaque bloc se termine par un pointeur sur le bloc suivant
- Une entrée de répertoire contient un pointeur sur le premier bloc

Avantages

- Pas de fragmentation externe
- Pas de limite de taille

Inconvénients

- Accès direct inefficace
- Fiabilité: perte de pointeur critique. Solutions: listes doublement chaînées, reproduction du nom de fichier et numéro de bloc dans chaque bloc etc. Coûteux dans tous les cas.

File Allocation Table (FAT)

Variante de l'allocation chaînée (MS-DOS, OS/2)

Systèmes d'Exploitation Didier Verna

_....

Généralités Allocation

Répertoires

Swap

Espace libre

Corruption

Performance

Principe

- Une FAT au début de chaque partition
- Table indexée par numéros de bloc
- Chaque entrée pointe sur le numéro de bloc suivant
- Une entrée de répertoire contient un pointeur sur le premier bloc
- Avantages (à condition de mettre la FAT en mémoire)
 - Moins de risque de corruption
 - Accès séquentiel aussi rapide
 - Accès direct (presque) aussi rapide que l'accès séquentiel

Inconvénients

► Taille de la FAT Disque de 20G, blocs de 1Kb ⇒ FAT de 80M

Allocation indexée (« i-nodes ») Schéma analogue à la pagination

Systèmes d'Exploitation Didier Verna

Généralités Allocation

Répertoires

Swap

Espace libre

Corruption

Performance

Principe

- Chaque fichier possède un bloc d'index (1^{er} bloc)
- Une entrée de répertoire pointe sur le bloc d'index
- ► La ie entrée du bloc d'index pointe sur le ie bloc de données du fichier

Avantages

- Implémentation efficace de l'accès direct
- ▶ Table des i-nodes de taille proportionnelle au nombre de fichiers (Cf. FAT : taille du disque)

Inconvénients

- Fragmentation interne plus grande qu'avec l'allocation chaînée
- Problème de la taille des index

Schémas d'indexation

Comment stocker des index sur plusieurs blocs?

Systèmes d'Exploitation Didier Verna

Généralités

Allocation

Répertoires

· ·

Swap
Espace libre

Espace libre
Corruption
Performance

- Schéma chaîné: réserver le dernier mot du bloc d'index pour un pointeur sur le bloc d'index suivant.
- Index à multiniveaux : analogue à la pagination à plusieurs niveaux. Index pointant sur des index pointant ... sur des blocs de données. Indexation à 2 niveaux ⇒ Fichiers de l'ordre de 10 Go.
- Schéma combiné: les premières entrées pointent sur des blocs de données. Les suivantes pointent sur des blocs d'index de différents niveaux.

Structure des i-node

Schéma combiné d'Unix (BSD, System V)

Systèmes d'Exploitation

LITIA

Généralités

Allocation

Répertoires

Swap

Espace libre

Lopace nor

Corruption
Performance

Implémentation des répertoires

Systèmes d'Exploitation Didier Verna

2....

Généralités

Allocation

Répertoires

Swap

Espace libre

Corruption

- Liste linéaire: noms de fichiers / attributs / pointeurs sur des blocs de données, ou noms de fichiers / pointeurs sur des i-nodes.
 - Avantage : implémentation simple
 - Inconvénient : recherche linéaire dans la liste
 - Caching des répertoires fréquemment utilisés. Triage de la liste (arbre binaire chaîné, recherche dichotomique etc.)
- **Table de hachage :** transformation des noms de fichiers en index de tableau (fonction de hachage).
 - Avantage : temps de recherche plus court
 - Inconvénient : tables de taille fixe, fonction de hachage dépendante de la taille de la table

Implémentation du swap

Systèmes d'Exploitation Didier Verna

LFIIA

Généralités

Allocation Répertoires

Swap

Espace libre
Corruption
Performance

Utilisation

- Stockage des images mémoires des processus
- Stockage des pages supprimées de la mémoire

Emplacement

- Système de fichiers (Windows). Utilisation des primitives standard de création, destruction, allocation d'espace. Implémentation facile. Inconvénient : lenteur.
- Partition distincte Pas de système de fichiers. Plus de fragmentation interne, mais accès plus efficace. Inconvénient : réservation de l'espace au moment du formattage disque.
- Remarque : certains systèmes (ex. Solaris 2) permettent l'existence de plusieurs espaces de swap, en partition ou en fichiers.

Représentation de l'espace libre

Systèmes d'Exploitation Didier Verna

Généralités Allocation

Répertoires Swap

Espace libre

Corruption

- Vecteur binaire: (Mac OS) représentation de chaque bloc dans l'ordre par un bit d'occupation. Instructions matérielles facilitant la manipulation (i386, 68030). Efficace à condition que le vecteur en entier soit maintenu en mémoire vive.
 - Liste chaînée: un pointeur sur le premier bloc libre. Chaque bloc libre pointe sur le suivant. Inefficace en cas de besoin de plus d'un bloc.
- Groupement : stockage des adresses de blocs libres dans autant de blocs libres que nécessaire. Efficace grâce au principe de lecture par bloc.
- Compactage: en général, plusieurs blocs libres se suivent. Stockage d'une adresse de bloc et du nombre de blocs libres contigus. Liste plus courte que dans les cas précédents.

Corruption des systèmes de fichiers Profiter de la redondance ...

Systèmes d'Exploitation Didier Verna

Généralités

Allocation

Répertoires

Swap

Espace libre

- Vérification de blocs : parcours de tous les i-nodes et calcul de deux compteurs par blocs : présence dans des fichiers et dans l'espace libre. Chaque bloc ne devrait être présent qu'une fois : en libre ou en fichier.
- Vérification de fichiers : parcours de tous les répertoires et calcul d'un compteur de références par fichier. Comparaison avec le compteur de référence de l'i-node.

$\mathsf{RAM} = O(ns)$, disque = O(ms)

Systèmes d'Exploitation Didier Verna

Généralités Allocation

Répertoires

Swap

Espace libre

Corruption

Performance

- Caching: Cf. algorithmes de pagination (LRU etc.). Mais attention aux blocs critiques pour la cohérence du système de fichiers: sauvegarder immédiatement tous les blocs structurels, ou simplement tous les blocs (« write-through cache »).
- Read-ahead : lire à l'avance plus d'un bloc. Analogue à la prépagination. Intéressant pour l'accès séquentiel.
- Organisation physique: profiter de blocs libres contigüs, maintenir une proximité entre les i-nodes et les blocs de données correspondants.

Structure des disques

Systèmes d'Exploitation

Didier Verna EPITA

Généralités

Allocation

Répertoires

Swap

Espace libre

·

Corruption

Délai de réception d'une E/S

Systèmes d'Exploitation

EPITA Généralités

Allocation Répertoires

Swap

Espace libre

- Temps de positionnement : déplacement des têtes sur la piste (le cylindre) considéré(e).
- Temps de latence : passage du bloc sous la tête par rotation des plateaux.
- Temps de transfert : temps effectif de transfert des données vers (ou depuis) la mémoire.

Algorithmes d'ordonnancement des disques

Systèmes d'Exploitation Didier Verna

Généralités
Allocation
Répertoires

Swap
Espace libre

Corruption

- Fcfs: servir la requête arrivée en premier.

 Implémentation simple. Intrinsèquement juste. Risque de déplacement « sauvage » des têtes.
- SSTF: servir la requête la plus proche de la position actuelle. Basé sur l'écart entre pistes. Analogue au SJF. Risque de famine. Non optimal (contrairement au SJF).
- SCAN: balayage avant / arrière perpétuel des pistes. Service des requêtes en fonction de la position des têtes. Aussi appelé « ascenseur » ou « chasse-neige ».
- C-Scan : Scan circulaire. En fin de disque, retour au début sans traiter aucune requête.
- [C-]LOOK: [C-]SCAN avec retour quand plus aucune requête n'existe dans la direction courante. Le plus utilisé.