Регрессионный анализ: панельные данные и каузальность

Вопросы для самопроверки после лекции 1

В чем разница между панельными данными и TSCS-data? Почему их важно различать?

В чем разница между панельными данными и TSCS-data? Почему их важно различать?

Ответ

По структуре разницы нет: N пространственных единиц наблюдаются несколько (Т) временных периодов. Однако в TSCS более длительный временной период: зависимость между временными периодами требует моделирования автокорреляции в явном виде и применения особого класса моделей.

К чему приводит оценивание pooled regression model (без поправок на подгруппы) применительно к панельным данным?

К чему приводит оценивание pooled regression model (без поправок на подгруппы) применительно к панельным данным?

твет

• aggregation bias

K чему приводит оценивание pooled regression model (без поправок на подгруппы) применительно к панельным данным?

Ответ

- aggregation bias
- некорректная значимость оценок: заниженные стандартные ошибки

К чему приводит оценивание pooled regression model (без поправок на подгруппы) применительно к панельным данным?

Ответ

- aggregation bias
- некорректная значимость оценок: заниженные стандартные ошибки
- неустойчивость

Запишите спецификацию классической модели с фиксированными эффектами. Проинтерпретируйте оценки коэффициентов (в общем виде).

4/9

Daria Salnikova RAPDC Проверь себя

Запишите спецификацию классической модели с фиксированными эффектами. Проинтерпретируйте оценки коэффициентов (в общем виде).

Ответ

$$y_{it} = b_0 + \gamma_1 * D_{1i} + ... \gamma_{n-1} * D_{(n-1)i} + b_1 * x_{it} + e_{it}$$

Запишите спецификацию классической модели с фиксированными эффектами. Проинтерпретируйте оценки коэффициентов (в общем виде).

Ответ

$$y_{it} = b_0 + \gamma_1 * D_{1i} + ... + \gamma_{n-1} * D_{(n-1)i} + b_1 * x_{it} + e_{it}$$

• $\hat{b_0}$ – чему в среднем равно значение зависимой переменной в базовой категории при равенстве предикторов 0

4/9

Daria Salnikova RAPDC Проверь себя

Запишите спецификацию классической модели с фиксированными эффектами. Проинтерпретируйте оценки коэффициентов (в общем виде).

Ответ

$$y_{it} = b_0 + \gamma_1 * D_{1i} + ... \gamma_{n-1} * D_{(n-1)i} + b_1 * x_{it} + e_{it}$$

- $\hat{b_0}$ чему в среднем равно значение зависимой переменной в базовой категории при равенстве предикторов 0
- $\hat{\gamma}_i$ на сколько в среднем отклоняется значение зависимой переменной в і-ой пространственной единице в отличие от базовой категории при прочих равных

Daria Salnikova RAPDC Проверь себя

Что содержательно отражают фиксированные эффекты?

Daria Salnikova RAPDC Проверь себя 5/9

Что содержательно отражают фиксированные эффекты?

Ответ

Набор неизменяющихся во времени характеристик пространственных единиц.

Позволяет ли включение фиксированных эффектов полностью избавиться от эндогенности?

Позволяет ли включение фиксированных эффектов полностью избавиться от эндогенности?

Ответ

Нет, мы можем пропустить существенные изменяющиеся во времени характеристики. Напоминание: Эндогенность — это случай нарушения условия $Cov(e_i, x_i) = 0$. В широком смысле — проблема пропущенных значимых переменных.

Можно ли получить оценку коэффициента при предикторе в FE-модели на основе соответствующих коэффициентов регрессий, оцененных на отдельных N подвыборках?

Можно ли получить оценку коэффициента при предикторе в FE-модели на основе соответствующих коэффициентов регрессий, оцененных на отдельных N подвыборках?

Ответ

Нас интересует оценка коэффициента при предикторе x_{it} :

$$y_{it} = b_0 + \gamma_1 * D_{1i} + ... + \gamma_{n-1} * D_{(n-1)i} + b_1 * x_{it} + e_{it}$$

- $m{Q}$ Для каждой из N подвыборок (N стран) оценим регрессию $y_{it} = a_0 + a_1 * x_{it} + e_{it}$ и сохраним $\hat{a_1}$ для каждой страны
- **2** Суммируем взвешенные значения $\hat{a_1}$: $\sum_{i=1}^{n} \hat{a_{1i}} * \frac{\hat{Var}_i(x_{it})}{\sum_{i=1}^{n} \hat{Var}_i(x_{it})}$

Как изменяется процедура получения оценки коэффициента при x_{it} в FE-модели при наличии контрольных переменных?

Как изменяется процедура получения оценки коэффициента при x_{it} в FE-модели при наличии контрольных переменных?

Ответ

Нас интересует оценка коэффициента при предикторе x_{it} :

$$y_{it} = b_0 + \gamma_1 * D_{1i} + ... \gamma_{n-1} * D_{(n-1)i} + b_1 * x_{it} + b_2 * z_{it} + e_{it}$$

- lacktriangledown Очистим y_{it} от эффекта z_{it} . Для этого нужно сохранить остатки регрессии y_{it} на z_{it} .
- f 2 По такому же принципу очищаем x_{it} от эффекта z_{it}
- **3** Далее повторяем уже знакомую процедуру, однако вместо y_{it} и x_{it} используем сохраненные остатки (очищенный эффект y_{it} и x_{it})

Какие пространственные единицы получают наибольший вес в расчете оценки коэффициента в FE-модели?

Какие пространственные единицы получают наибольший вес в расчете оценки коэффициента в FE-модели?

Ответ

С максимальным разбросом значений предиктора. Те страны, у которых предиктор вообще не изменяется во времени, не участвуют в формировании оценки коэффициента в FE-модели.