

FIT5201 Data Analysis Algorithms

Document Clustering and Introduction to Neural Networks

Document Clustering

- Given a collection of documents $\{d_1, d_2, ..., d_N\}$ we would like to partition them into K clusters.
- Document representation
 - Each document is made of some text
 - bag of word representation of the document
 - We treat a document as a set of words in its text irrespective of their positions
 - Also, we assume the words appearing in our collection of documents come from a dictionary denoted by ${\mathcal A}$

Bag of Words

```
(1) John likes to watch movies. Mary likes movies too.
```

(2) John also likes to watch football games.

```
[
    "John",
    "likes",
    "to",
    "watch",
    "movies",
    "Mary",
    "too",
    "also",
    "football",
    "games"
]
```

```
(1) [1, 2, 1, 1, 2, 1, 1, 0, 0, 0]
(2) [1, 1, 1, 1, 0, 0, 0, 1, 1, 1]
```


Understanding the Model in Alexandria: an example

- d₁=this one has a little star
- d₂=this one has a little car
- d₃=I would not like them here or there
- d₄=I would not like them anywhere
- d₅=I do not like green eggs and ham
- Assume we know the clusters beforehand (in reality we don't)
 - K=2 (two clusters from two books)
 - C_1 =(d_1 , d_2), C_2 =(d_3 , d_4 , d_5)
 - $-\varphi_1 = 0.4$ (2/5), $\varphi_2 = 0.6$ (3/5)
 - Dictionary for C_1 =(this, one, has, little, star, car)
 - μ_1 =(2/10, 2/10, 2/10, 2/10, 1/10, 1/10) = (0.2, 0.2, 0.2, 0.2, 0.1, 0.1)
 - Dictionary for C_2 =(I, would, not, like, them, here, there, anywhere, do, green, eggs, ham)
 - μ_2 =(0.15, 0.1, 0.15, 0.15, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05)

Quotes from Dr Suess's books One Fish, Two Fish and Green Eggs and Ham

Generating Words

- A ={this, one, has, little, star, car, I, would, not, like, them, here, there, anywhere, do, green, eggs, ham}
- P(this, one, has, little, star) = P(this)P(one)P(has) P(little) P(star)
- $P(d|k) = \prod_{w \in d} P(w|k) = \prod_{w \in \mathcal{A}} P(w|k)^{c(w,d)}$

Generative Model

- For each document d_n
 - Toss the K-face dice (with the probability parameter φ) to choose the face k (i.e., the cluster) that the n^{th} document belongs to
 - For each word placeholder in the document d_n
 - > Generate the word by tossing the dice (with the probability parameter μ_k) corresponding to the face k

Parameters:

- The clusters proportion $\varphi = (\varphi_1, \varphi_2, ..., \varphi_K), \varphi_k \ge 0, \sum_{k=1}^K \varphi_k = 1$
- The word proportion $\mu_k = (\mu_{k,1}, \mu_{k,2}, \dots, \mu_{k,|\mathcal{A}|}), \mu_{k,w} \ge 0, \sum_{w \in \mathcal{A}} \mu_{k,w} = 1$
- These are constraints which allow us to use Lagrange model to learn the parameters

Generative Model

• The probability of generating a document and its cluster (k, d) is

$$p(k,d) = p(k)p(d|k) = \varphi_k \prod_{w \in d} \mu_{k,w} = \varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d)}$$

- c(w,d) is the number of occurrences of the word w in the document d
- In practice,
 - The document cluster labels are not given to us

Complete Data

- Documents $\{d_1, d_2, \dots, d_N\}$
- We use latent variables \mathbf{z}_n to denote the cluster assignments for n^{th} document
- $\mathbf{z}_n = (z_{n1}, z_{n2}, \dots, z_{nK})$

$$- z_{nk} = \begin{cases} 1, & d_n \in \mathcal{C}_k \\ 0, & d_n \notin \mathcal{C}_k \end{cases}$$

- Only one element in z_{nk} is 1. The rest are zero

Complete Data

$$\begin{split} p(d_1, z_1, \dots, d_N, z_N) &= \prod_{n=1}^N \prod_{k=1}^K \left(\varphi_k \prod_{w \in \mathcal{A}} \mu_{k, w}^{c(w, d_n)} \right)^{z_{nk}} \\ z_{nk} &= \begin{cases} 1, & d_n \in \mathcal{C}_k \\ 0, & d_n \notin \mathcal{C}_k \end{cases} \end{split}$$

- With the constraint that $\sum_{k=1}^K \varphi_k = 1$ and $\sum_{w \in \mathcal{A}} \mu_{k,w} = 1$
- Use Lagrange model to solve the parameters
 - Constrained optimization: convert it to unconstrained optimization problems which can be solved either find a solution analytically or use an iterative algorithm to find a solution
 - Lagrange model

Complete Data

- Use Lagrange model to solve the parameters
 - Constrained optimization: convert it to unconstrained optimization problems which can be solved either finding a solution analytically or using an iterative algorithm to find a solution
 - Lagrange multipliers

maximise
$$f(x)$$

subject to $g_i(x) = 0$ $i = 1, ..., m$

> Equality constraints

$$\mathcal{L}(x,\lambda_1,\ldots,\lambda_m):=f(x)-\lambda_1g_1(x)-\ldots-\lambda_mg_m(x)$$

> The stationary points for f(x) are ensured to be the stationary points for the new function, but not conversely

Complete Data...

Through the Lagrange multiplier on Maximum Likelihood Function

Mixing components:
$$\varphi_k = \frac{N_k}{N}$$
 where $N_k = \sum_{n=1}^N z_{nk}$

Word proportion parameters:
$$\mu_{kw} = \frac{\sum_{n=1}^{N} z_{nk} c(w, d_n)}{\sum_{w' \in \mathcal{A}} \sum_{n=1}^{N} z_{nk} c(w', d_n)}$$

Incomplete Data and EM

$$p(d_1, \dots, d_N) = \prod_{n=1}^{N} p(d_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \left(\varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d_n)} \right)$$

- Hard to derive the analytical solutions
- Resort to EM algorithm

- Training objective: find maximum likelihood solution for models having latent variables.
 - Observed data X, Latent variable Z, set of model parameters θ
 - Log likelihood function

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

$$\gamma(z_{nk}) = p(z_n = k | x_n) = \frac{\varphi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \varphi_j N(x_n | \mu_j, \Sigma_j)}$$

- $\gamma(z_{nk})$: posterior probability once we observed x_n
- $\bullet \quad \sum_{k=1}^K \gamma(z_{nk}) = 1$
- Partial assignment or soft assignment
- φ_k prior probability of $z_n = k$
- We do simultaneously
 - Cluster prediction and parameter estimation
 - Use iterative Expectation Maximisation (EM)

- Training objective: find maximum likelihood solution for models having latent variables.
 - Observed data X, Latent variable Z, set of model parameters θ
 - Log likelihood function

$$\ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)$$

- Algorithm:
 - Choose an initial setting for the parameters θ^{old}
 - While convergence is not met:
 - > **E Step**: Evaluate $p(Z|X, \theta^{old})$
 - > **M Step**: Evaluate θ^{new} given by

$$\theta^{new} \leftarrow \arg\max_{\theta} \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$

 $> \theta^{old \leftarrow \theta^{new}}$

- Is each iteration guaranteed to increase the log likelihood function?
- What's the relationship between the Q function and log likelihood function?

Incomplete Data and EM

$$p(d_1, \dots, d_N) = \prod_{n=1}^{N} p(d_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \left(\varphi_k \prod_{w \in \mathcal{A}} \mu_{k,w}^{c(w,d_n)} \right)$$

Q function

$$\begin{split} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) &:= \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{n,k} = 1 | d_n, \boldsymbol{\theta}^{\text{old}}) \ln p(z_{n,k} = 1, d_n | \boldsymbol{\theta}) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{n,k} = 1 | d_n, \boldsymbol{\theta}^{\text{old}}) \left(\ln \varphi_k + \sum_{w \in \mathcal{A}} c(w, d_n) \ln \mu_{k,w} \right) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{n,k}) \left(\ln \varphi_k + \sum_{w \in \mathcal{A}} c(w, d_n) \ln \mu_{k,w} \right) \\ &\gamma(z_n, k) := p(z_{n,k} = 1 | d_n, \boldsymbol{\theta}^{\text{old}}) \end{split}$$

Incomplete Data and EM

$$\varphi_k = \frac{N_k}{N}$$
 where $N_k = \sum_{n=1}^{N} \gamma(z_{nk})$

$$\mu_{kw} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) c(w, d_n)}{\sum_{w' \in \mathcal{A}} \sum_{n=1}^{N} \gamma(z_{nk}) c(w', d_n)}$$

- $m{\cdot}$ Choose an initial setting for the parameters $m{ heta}^{
 m old}=(m{arphi}^{
 m old},m{\mu}_1^{
 m old},\ldots,m{\mu}_K^{
 m old})$
- While the convergence is not met:
 - **E step:** Set $\forall n, \forall k : \gamma(z_{n,k})$ based on $\boldsymbol{\theta}^{\text{old}}$
 - \circ **M Step:** Set $oldsymbol{ heta}^{ ext{new}}$ based on the above equations
 - $\bullet \ \boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$

Other Methods for Document Clustering

- Other methods can be used to encode the documents, e.g., TF-IDF
- Use Euclidian distance to measure the similarity between documents/cluster vectors
- Can use K-Means to cluster the documents into K clusters
 - What we do in the tutorial

