Large-Sample Confidence Interval for a Population Proportion

It is often necessary to construct confidence intervals on a population proportion.

- Suppose a random sample of size n has been taken from a large (possible infinite) population and that $X (\leq n)$ observations in this sample belong to a class of interest.
- Then $\hat{p} = \frac{X}{n}$ is a *point estimator* of the proportion of the population p that belongs to this class.
- Note that n and p are the parameters of a binomial distribution.
- We know that the sampling distribution of \hat{p} is approximately normal with mean p and variance p(1-p)/n, if p is not too close to either 0 or 1 and if n is relatively large.

Normal Approximation for a Binomial Proportion If n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

is approximately standard normal.

To construct the confidence interval on p, note that

$$P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$$

SO

$$P(-z_{\alpha/2} \le \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \le z_{\alpha/2}) = 1 - \alpha$$

This may be rearranged as

$$P(\hat{p} - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}) = 1 - \alpha$$

The quantity $\sqrt{p(1-p)/n}$ is called the *standard error* of the point estimator \hat{p} . Unfortunately, the upper and lower limits of the confidence interval contain the unknown parameter p. A satisfactory solution is to replace \hat{p} by \hat{p} in the standard error, which result in.

$$P(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}) = 1 - \alpha$$

Approximate Confidence Interval on a Binomial Proportion

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belong to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution.

Example: The fraction of defective integrated circuits produced in a photolithography process is being studied. A random sample of 85 circuits is tested, revealing 10 defectives.

Calculate a 95% CI on the fraction of defective circuits produced by this particular tool.

Point estimate
$$\hat{p} = \frac{X}{n} = \frac{10}{85} = 0.117647$$

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$0.117647 - 1.96\sqrt{\frac{0.117647(1 - 0.117647)}{85}} \le p \le 0.117647 + 1.96\sqrt{\frac{0.117647(1 - 0.117647)}{85}}$$

which simplifies to

$$0.049153 \le p \le 0.186141$$

MTB > POne 85 10;

SUBC> UseZ.

Test and CI for One Proportion

SampleXNSample p95% CI110850.117647(0.049153; 0.186141)

Using the normal approximation.

```
MTB > Random 100 c1-c100;
SUBC> Bernoulli 0.3.
MTB > POne C1-C100;
SUBC> UseZ.
```

Test and CI for One Proportion: C1; C2; C3; C4; C5; C6; C7; C8; ...

Event = 1

Variable	Х	N	Sample p	95% CI
C1	34	100	0.340000	(0.247155; 0.432845)
C2	37	100	0.370000	(0.275372; 0.464628)
C3	39	100	0.390000	(0.294403; 0.485597)
C4	23	100	0.230000	(0.147518; 0.312482)
C5	34	100	0.340000	(0.247155; 0.432845)
C6	39	100	0.390000	(0.294403; 0.485597)
C7	23	100	0.230000	(0.147518; 0.312482)
C8	30	100	0.300000	(0.210183; 0.389817)
C9	30	100	0.300000	(0.210183; 0.389817)
C10	29	100	0.290000	(0.201064; 0.378936)
C11	34	100	0.340000	(0.247155; 0.432845)
C12	24	100	0.240000	(0.156293; 0.323707)
C13	25	100	0.250000	(0.165131; 0.334869)
C14	35	100	0.350000	(0.256516; 0.443484)
C15	33	100	0.330000	(0.237840; 0.422160)
C16	34	100	0.340000	(0.247155; 0.432845)
C17	21	100	0.210000	(0.130169; 0.289831)
C18	32	100	0.320000	(0.130109, 0.289831)
C19	25	100	0.250000	(0.165131; 0.334869)
C20	24	100	0.240000	(0.156293; 0.323707)
C21	32	100	0.320000	(0.138293; 0.323707) (0.228572; 0.411428)
C22	40	100	0.40000	(0.303982; 0.496018)
C23	42	100	0.420000	(0.323264; 0.516736)
C24	33	100	0.330000	(0.237840; 0.422160)
C25	25	100	0.250000	(0.165131; 0.334869)
C26	28	100	0.280000	(0.191998; 0.368002)
C27	31	100	0.310000	(0.219353; 0.400647)
C28	27	100	0.270000	(0.182986; 0.357014)
C29	27	100	0.270000	(0.182986; 0.357014)
C30	32	100	0.320000	(0.182986; 0.337014)
C31	34	100	0.340000	(0.247155; 0.432845)
C32	31	100	0.340000	(0.219353; 0.400647)
C32	31	100	0.310000	(0.219353; 0.400647)
C34	37	100	0.310000	(0.275372; 0.464628)
C34 C35	30	100	0.370000	(0.210183; 0.389817)
C36	29	100	0.290000	(0.210163; 0.369617)
C36	23	100	0.230000	(0.201064; 0.378936) (0.147518; 0.312482)
C37	25	100	0.250000	(0.147518; 0.312482) (0.165131; 0.334869)
C38	25 37	100	0.250000	
C40	27		0.370000	(0.275372; 0.464628)
	37	100		(0.182986; 0.357014)
C41		100	0.370000	(0.275372; 0.464628)
C42	33	100	0.330000 0.320000	(0.237840; 0.422160)
C43	32	100		(0.228572; 0.411428)
C44	31	100	0.310000	(0.219353; 0.400647)
C45	31	100	0.310000	(0.219353; 0.400647)
C46	38	100	0.380000	(0.284866; 0.475134)

C47	26	100	0.260000	(0.174029;	0.345971)
C48	23	100	0.230000	(0.147518;	0.312482)
C49	34	100	0.340000	(0.247155;	0.432845)
C50	32	100	0.320000	(0.228572;	0.411428)
C51	35	100	0.350000	(0.256516;	0.443484)
C52	34	100	0.340000	(0.247155;	0.432845)
C53	27	100	0.270000	(0.182986;	0.357014)
C54	31	100	0.310000	(0.219353;	0.400647)
C55	30	100	0.300000	(0.210183;	0.389817)
C56	32	100	0.320000	(0.228572;	0.411428)
C57	26	100	0.260000	(0.174029;	0.345971)
C58	23	100	0.230000	(0.147518;	0.312482)
C59	33	100	0.330000	(0.237840;	0.422160)
<mark>C60</mark>	29	100	0.290000	(0.201064;	0.378936)
C61	23	100	0.230000	(0.147518;	0.312482)
C62	29	100	0.290000	(0.201064;	0.378936)
<mark>C63</mark>	41	100	0.410000	(0.313602;	0.506398)
C64	30	100	0.300000	(0.210183;	0.389817)
<mark>C65</mark>	32	100	0.320000	(0.228572;	0.411428)
<mark>C66</mark>	34	100	0.340000	(0.247155;	0.432845)
<mark>C67</mark>	29	100	0.290000	(0.201064;	0.378936)
<mark>C68</mark>	22	100	0.220000	(0.138809;	0.301191)
C69	28	100	0.280000	(0.191998;	0.368002)
<mark>C70</mark>	30	100	0.300000	(0.210183;	0.389817)
C71	29	100	0.290000	(0.201064;	
C72	41	100	0.410000	(0.313602;	
C73	30	100	0.300000	(0.210183;	0.389817)
C74	28	100	0.280000	(0.191998;	0.368002)
C75	29	100	0.290000	(0.201064;	0.378936)
<mark>C76</mark>	27	100	0.270000	(0.182986;	0.357014)
C77	32	100	0.320000	(0.228572;	0.411428)
<mark>C78</mark>	28	100	0.280000	(0.191998;	
<mark>C79</mark>	27	100	0.270000	(0.182986;	0.357014)
<mark>C80</mark>	35	100	0.350000	(0.256516;	0.443484)
C81	32	100	0.320000	(0.228572;	0.411428)
C82	40	100	0.400000	(0.303982;	0.496018)
C83	25	100	0.250000	(0.165131;	0.334869)
C84	27	100	0.270000	(0.182986;	0.357014)
C85	30	100	0.300000	(0.210183;	0.389817)
C86	31	100	0.310000	(0.219353;	0.400647)
C87	32	100	0.320000	(0.228572;	0.411428)
C88	32	100	0.320000	(0.228572;	0.411428)
C89	32	100	0.320000	(0.228572;	0.411428)
C90	31	100	0.310000	(0.219353;	0.400647)
C91	25	100	0.250000	(0.165131;	0.334869)
C92	32	100	0.320000	(0.228572;	0.411428)
<mark>C93</mark>	31	100	0.310000	(0.219353;	0.400647)
C94	30	100	0.300000	(0.210183;	
C95	40	100	0.400000	(0.303982;	
<mark>C96</mark>	35	100	0.350000	(0.256516;	
<mark>C97</mark>	33	100	0.330000	(0.237840;	
<mark>C98</mark>	39	100	0.390000	(0.294403;	
<mark>C99</mark>	29	100	0.290000	(0.201064;	
C100	30	100	0.300000	(0.210183;	0.389817)

Sample Size for a Specified Error on a Binomial Proportion

Since \hat{p} is the point estimator of p, we can define the error in estimating p by \hat{p} as $E = |p - \hat{p}|$. Note that we are approximately $100(1-\alpha)\%$ confident that this error is less than

$$z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}.$$

In situations where the sample size can be selected, we may choose n to be $\frac{100(1-\alpha)\%}{6}$ confident that the error is less than some specified value E. If we set

$$E = z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

and solve for n, the appropriate sample size is

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p(1-p)$$

An estimate of p is required to use this equation. If an estimate \hat{p} from a previous sample is available, it can be substituted for p in the equation.

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \hat{p}(1-\hat{p})$$

This means that a preliminary sample can be taken, $\frac{\hat{p}}{}$ computed, and then the given equation used to determine how many additional observations are required to estimate $\frac{\hat{p}}{}$ with the desired accuracy.

Example: Consider the situation in the previous example.

How large a sample is required if we want to be 95% confident that the error in using \hat{p} to estimate p is less that 0.05?

$$0.049153 \le p \le 0.186141$$

Using

$$\hat{p} = \frac{10}{85} = 0.117647$$
 as an initial estimate of p,

we find from

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \hat{p}(1-\hat{p}) = \left(\frac{1.96}{0.05}\right)^2 0.117647(0.882353)$$
$$= \left(\frac{1.96}{0.05}\right)^2 0.10381 = 159.512 \cong 160$$

MTB > POne 160 18.

Test and CI for One Proportion

Test and CI for One Proportion

Sample X N Sample p 95% CI
1 19 160 0.118750
$$(0.073031; 0.179219)$$

 $CI=0.179219-0.073031=0.1062$

Another Approach (Upper Bound)

Another approach to choosing n uses the fact that the sample size

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p(1-p)$$

will always be a maximum for p=0.5

[that is $p(1-p) \le 0.25$ with equality for p=0.5], and this can be used to obtain an <u>upper bound</u> on n.

In other words, we are at least $\frac{100(1-\alpha)\%}{\hat{p}}$ confident that the error in estimating p by \hat{p} is less than E if the sample size is

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 (0.25)$$

If we wanted to be at least 95% confident that our estimate \hat{p} of the true proportion p was within 0.05 regardless of the value of p, we would use this equation to find the sample size

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 (0.25) = \left(\frac{1.96}{0.05}\right)^2 (0.25) \approx 385$$

385*0.117647=45.29>>>45

Test and CI for One Proportion

Sample X N Sample p 95% CI
1 385 0.116883
$$(0.086545; 0.153260)$$

 $CI=0.153260-0.086545=0.0667$