EEE5062计算方法 作业十

习题P316: 1、2、5(1)

作业提交DDL: 2022/5/31 16:20前

姓名: 江宇辰 学号: 11812419 提交时间: 2022.05.30

Q1

1. 用欧拉法解初值问题

$$y' = x^2 + 100y^2$$
, $y(0) = 0$.

取步长 h=0,1, 计算到 x=0,3 (保留到小数点后 4 位).

解: 由题意得:

欧拉法公式为 $y_{n+1}=y_n+hf(x_n,y_n)=y_n+h(x_n^2+100y_n^2),\ n=0,1,2$, 将 $y_0=0$ 代入

得:

$$y(0.1) \approx y_1 = 0$$

$$y(0.2) \approx y_2 = 0.0010$$

$$y(0.3) \approx y_3 = 0.0050$$

Q2

2. 用改进欧拉法和梯形法解初值问题

$$y' = x^2 + x - y$$
, $y(0) = 0$.

取步长 h=0.1, 计算到 x=0.5, 并与准确解 $y=-e^{-x}+x^2-x+1$ 相比较.

解:改进的欧拉法为 $y_{n+1}=y_n+rac{1}{2}h[f(x_n,y_n)+f(x_{n+1},y_n+hf(x_n,y_n))]$,将 $f(x,y)=x^2+x-y$ 代入得:

$$y_{n+1} = (1-h+rac{h^2}{2})y_n + rac{h}{2}[(1-h)x_n(1+x_n) + (1+x_{n+1})x_{n+1})]$$

同理,梯形法的公式为
$$y_{n+1}=rac{2-h}{2+h}y_n+rac{h}{2+h}[x_n(1+x_n)+x_{n+1}(1+x_{n+1})]$$

将 y_0 ,h代入得:

x_n	改进欧拉法 y_n	$\left y(x_n)-y_n\right $	梯形法 y_n	$\left y(x_n)-y_n\right $
0.1	0.0055	3.37418036e-4	0.005238095	7.55132781e-4
0.2	0.021927500	6.58253078e-4	0.021405896	1.36648778e-4
0.3	0.050144388	9.62608182e-4	0.049367239	1.85459653e-4
0.4	0.090930671	1.25071672e-3	0.089903692	2.23738443e-4
0.5	0.144992257	1.52291668e-3	0.143722388	2.53048087e-4

由表可知, 梯形法较改进的欧拉法更加精确。

Q5 (1)

5. 取 h=0.2,用四阶经典的龙格一库塔方法求解下列初值问题:

(1)
$$\begin{cases} y' = x + y, & 0 < x < 1, \\ y(0) = 1. \end{cases}$$

解:四阶经典龙格-库塔方法公式为:

$$egin{cases} y_{n+1} = y_n + rac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) & (n = 0, 1, 2, \ldots) \ K_1 = f(x_n, y_n) \ K_2 = f(x_n + rac{h}{2}, y_n + rac{h}{2}K_1) \ K_3 = f(x_n + rac{h}{2}, y_n + rac{h}{2}K_2) \ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$

由题意得, f(x,y)=x+y, 将 $h=0.2,y_0=y(0)=1$ 代入得:

x_n	y_n
0.2	1.242800000
0.4	1.583635920
0.6	2.044212913
0.8	2.651041652
1.0	3.436502273