WHAT IS CLAIMED IS:

1. A compound of Formula I:

Formula I

or Formula II:

Formula II

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_m R^2_{2m^-}$ wherein m=1 to 4; $-C(R^2)_2 SC(R^2)_{2^-}$, $-C(R^2)_2 SSC(R^2)_{2^-}$, or $-C(R^2)_2 OC(R^2)_2$;

n is from 0 to 4;

M is selected from CH₂Cl, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)qH wherein q is 0, 1 or 2; -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H, CH₂OH, CH₂SCH₂CR²=CH₂, phenyl, C(R²)₂ phenyl, furan, thiophene, halogen, C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol, H,

or

A is O, S or phenyl and x is 0 or 1; wherein R^1 is C_1 - C_{22} alkyl; and R^2 is H or C_1 - C_{22} alkyl,

except that if the compound is a STOC or SOTOC, at least one M substituent cannot be H and n must be 1, 2, 3 or 4.

2. The compound of claim 1, further defined as having Formula I:

wherein X^1 , X^2 , X^3 and X^4 are O or S, wherein at least two and up to all four of X^1 , X^2 , X^3 and X^4 are S.

3. The compound of claim 1, further defined as having Formula II:

wherein n is 1, 2, 3 or 4.

- 4. The compound of claim 1, further defined as:
 - 2-(Mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
 - 2,7-Bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
 - 2-(S-methyl)-7-vinyl-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
 - 2-(Mercaptomethyl)-7-vinyl-1,4,6,9-tetrathiaspiro[4.4]nonane;
- $\label{eq:continuity} \mbox{7-(Mercaptomethyl)-2-(S-methyl)-1,4,6,9-tetrathiaspiro[4.4] nonane thiolacetate;}$
 - 2-Mercaptomethyl-1-oxa-4,6,9-trithiaspiro[4.4]nonane; or
 - 2,7-Bis(mercaptomethyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane.

- 5. The compound of claim 1, further defined as:
 - 2-(Chloromethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;
 - 2-(S-Methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
 - 4-(S-Methyl)-1,3-dithiolane-2-thione thiolacetate;
- 2-(Chloromethyl)-7-(S-methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
 - 2,7-Bis(S-methyl)-1,4,6,9-tetrathiaspiro[4.4]nonane thiolacetate;
 - 2-(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane thiolacetate;
 - 2-(Mercaptomethyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane;
- 2-(Chloromethyl)-7-(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane thiolacetate; or
 - 2,7-Bis(S-methyl)-1-oxa-4,6,9-trithiaspiro[4.4]nonane thiolacetate.
- 6. A method for manufacturing optical lenses comprising:

Polymerizing STOC or SOTOC compound of Formula I:

or a bisSTOC or bisSOTOC compound of Formula Π :

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_mR^2_{2m}$ - wherein m = 1-4; $-C(R^2)_2SC(R^2)_2$ -, $-C(R^2)_2SSC(R^2)_2$ -, or $-C(R^2)_2OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must be 1, 2, 3 or 4; and

M is selected from CH_2Cl , $CH_2SC(O)R^1$, $CH_2SC(S)R^1$, $CH_2S(CH_2CH_2S)qH$ wherein q is 0, 1 or 2; $-CR^2=CH_2$, $-CH_2OC(O)CR^2=CH_2$, $CH_2N=C=S$, $CH_2N=C=O$, CH_2NR^2H , CH_2OH , $CH_2SCH_2CH_2CR^2=CH_2$, phenyl, $C(R^2)_2$ phenyl, furan, thiophene, halogen, C_3 - C_6 cycloalkyl, C_3 - C_6 heretocyclics, thiol, H_2 , except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1; R^1 is C_1 - C_{22} alkyl; and R^2 is H or C_1 - C_{22} alkyl to form a polymer, and forming an optical lens with said polymer.

7. A method for manufacturing an optical lens comprising: polymerizing a STOC or SOTOC compound of Formula I:

or a bisSTOC or bisSOTOC compound of Formula II

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_m R^2_{2m}$ wherein m = 1-4; $-C(R^2)_2 SC(R^2)_2$ -, $-C(R^2)_2 SSC(R^2)_2$ -, or $-C(R^2)_2 OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must be 1, 2, 3 or 4; and

M is selected from CH₂Cl, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)qH wherein q is 0, 1 or 2; -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H, CH₂OH, CH₂SCH₂CH₂CR²=CH₂, phenyl, C(R²)₂ phenyl, furan, thiophene, halogen, C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol, H₂, except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1;

 R^1 is C_1 - C_{22} alkyl; and

 R^2 is H or C_1 - C_{22} alkyl to form a polymer forming all or part of the optical lens.

- 8. The method of claim 7, wherein the polymer forms the body of the lens.
- 9. The method of claim 7, wherein the polymer forms a coating of the lens.
- 10. A (co)polymer comprising (co)polymerized monomers of Formula I:

or Formula II:

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 , are independently O or S; and preferably at least two and up to all four of X^1 , X^2 , X^3 and X^4 , and at least two and up to all four of X^5 , X^6 , X^7 , and X^8 are sulfur;

Z is $-C_mR^2_{2m}$ — wherein m = 1-4; $-C(R^2)_2SC(R^2)_2$ —, $-C(R^2)_2SSC(R^2)_2$ —, or $-C(R^2)_2OC(R^2)_2$;

n is from 0 to 4, except that if the compound is a STOC or SOTOC, n must be 1, 2, 3 or 4; and

M is selected from CH₂Cl, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)qH wherein q is 0, 1 or 2; -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H, CH₂OH, CH₂SCH₂CH₂CR²=CH₂, phenyl, C(R²)₂ phenyl, furan, thiophene, halogen, C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol, H₂, except that if the compound is a STOC or SOTOC, at least one M moiety cannot be H;

or

wherein A is S, O or phenyl and x is 0 or 1;

 R^1 is C_1 - C_{22} alkyl; and

R² is H or C₁-C₂₂ alkyl

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 are independently O or S; n is 0 to 4

Z is $-C_mR^2_{2m^-}$ wherein m = 1-4; $-C(R^2)_2SC(R^2)_2$ -, $-C(R^2)_2SSC(R^2)_2$ -, or $-C(R^2)_2OC(R^2)_2$ -;

M is CH₂Cl, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)qH wherein q is 0, 1 or 2; -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H, CH₂OH, CH₂SCH₂CH₂CR²=CH₂, phenyl, C(R²) phenyl, furan, thiophene, halogen, C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol,

or

wherein A is S, O or phenyl and x is 0 or 1; wherein R^1 is C_1 - C_{22} alkyl; and R^2 is H or C_1 - C_{22} alkyl to form the polymer.

- 11. The (co)polymer of claim 10, further defined as comprised in an optical lens.
- 12. A method of preparing a bisSTOC or bisSOTOC compound, comprising using either one of the following reactions schemes:

Reaction scheme 2

$$X^{1} = X^{2} + X^{4} \xrightarrow{X^{1}} X^{5} + X^{8} = X^{7} \xrightarrow{M_{n'}} X^{1} \times X^{2} \times X^{5} \times X^{7} \times X^{8} = X^{8} \times X^{8}$$

wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , and X^8 are independently O or S; n' is independently 0, 1 or 2;

n is 0 to 4,

Z is $-C_mR^2_{2m^-}$ wherein m = 1-4; $-C(R^2)_2SC(R^2)_2$ -, $-C(R^2)_2SSC(R^2)_2$ -, $-C(R^2)_2OC(R^2)_2$ -;

M is independently selected from CH₂Cl, CH₂SH, CH₂SC(O)R¹, CH₂SC(S)R¹, CH₂S(CH₂CH₂S)qH wherein q is 0, 1 or 2, -CR²=CH₂, -CH₂OC(O)CR²=CH₂, CH₂N=C=S, CH₂N=C=O, CH₂NR²H, CH₂OH, CH₂SCH₂CH₂CR²=CH₂, phenyl, C(R²)₂ phenyl, furan, thiophene, halogen, C₃-C₆ cycloalkyl, C₃-C₆ heretocyclics, thiol, H,

or

wherein A is S, O or phenyl and x is 0 or 1;

 R^1 is C_1 - C_{22} alkyl; and

R² is H or C₁-C₂₂ alkyl.

13. The method of claim 12, comprising reacting a substituted ethylenetrithiocarbonate with a bis-methylthiirane sulphide or a bis-methylthiirane disulphide, in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSTOC as shown in the reaction below:

wherein

M is selected from CR_2SR' , $CR_2=CH_2$, R=H, or C_1-C_4 alkyl; and R'=H, acetyl, allyl, acrylate, or methacrylate and n=1 or 2.

14. The method of claim 12, comprising reacting a bis-ethylenetrithiocarbonate sulfide or a bis-ethylenetrithiocarbonate, with substituted thiirane in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSTOC according to the following reaction:

$$S = S$$
 $S = S$
 $S =$

wherein M is CR_2Cl , CR_2SR' , or $CR_2=CH_2$; R is H, alkyl C_1-C_4 , R' is H, allyl, acrylate, or methacrylate and n=1 or 2.

15. The method of claim 12, comprising reacting a substituted ethylenedithiocarbonate with bis-methylthiirane sulphide or bis-methylthiirane disulphide in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSOTOC according to the reaction

wherein $M = CR_2SR^3$, $CR_2=CH_2$; R = H, C_1-C_4 alkyl, R' = H, acetyl, allyl, acrylate, or methacrylate, and n = 1 or 2.

16. The method of claim 12, further defined as a method wherein at least one of bis-ethylenetrithiocarbonate sulfide or bis-ethylenetrithiocarbonate is reacted with a substituted oxirane, in the presence of a catalytic amount of tetrafluoroboric acid to produce the bisSOTOC according to the reaction

$$S = \left(S\right)_{n} - \left(S\right)_{n} -$$

wherein $M = CR_2Cl$, CR_2OR or $CR_2=CH_2$; R = H, C_1-C_4 alkyl; R' = H, allyl, acrylate or methacrylate); and n = 1 or 2.

- 17. The method of preparing a polythiourethane polymer having a high refractive index which comprises reacting at least one polyisocyanate or prepolymer thereof, preferably a diisocyanate, with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two, SH bearing substituent(s) as set forth in anyone of claims 1 to 5 or a mixture thereof.
- 18. The method of preparing a polymer having a high refractive index which comprises reacting a monomer having at least one unsaturated reactive group or a mixture thereof and/or one or more polyepisulfides with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two, SH bearing substituent(s) as set forth in anyone of claims 1 to 5 or a mixture thereof.
- 19. The method of preparing a polymer having a high refractive index which comprises reacting a monomer having at least one and preferably 2 SH groups or a mixture thereof and/or one or more polyepisulfides with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one, preferably two episulfide bearing substituent(s) as set forth in claims 1 to 5, or a mixture thereof.
- 20. The method of preparing a polymer having a high refractive index which comprises reacting one or more of copolymerizable monomers as in claim 18 or 19 and/or one or more polythiol monomer(s) and/or polyepisulfide monomer(s) or prepolymer(s) thereof with a STOC, SOTOC, bisSTOC or bisSOTOC compound having at least one unsaturated group or mixtures thereof.

- 21. The method of claim 17, further defined as comprising:

 preparing a mixture of m-xylylene diisocyanate (m-XDI) and 2,7

 bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane;

 adding a catalyst solution comprising KSCN and a crown-ether; and curing the mixture at a temperature above 20°C.
- 22. The method of claim 17, further defined as comprising: dissolving SnBu₂Cl₂ in m-xylylene diisocyanate (m-XDI); adding 2,7-Bis(mercaptomethyl)-1,4,6,9-tetrathiaspiro[4.4]nonane; stirring; and curing at a temperature above 30°C.