PHP 2550 HW #4

Blain Morin

November 9, 2018

1a. Construct a good logistic regression model predicting the decision to switch wells as a function of the 4 predictors (arsenic, distance, association and education) on the training data. Consider potential transformations of continuous variables and possible interactions.

Table 1: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Switched Wells	3,020	0.575	0.494	0	0	1	1
Arsenic Level	3,020	1.657	1.107	0.510	0.820	2.200	9.650
Distance	3,020	48.332	38.479	0.387	21.117	64.041	339.531
Active in Community $= 1$	3,020	0.423	0.494	0	0	1	1
Years of Education	3,020	4.828	4.017	0	0	8	17

Table 2: Regression Results

	(1)	(2)	(3)	(4)				
Arsenic	0.467^{***} (0.042)		0.463*** (0.041)	0.348^{***} (0.059)				
Distance	-0.009^{***} (0.001)		-0.009^{***} (0.001)	-0.009^{***} (0.001)				
$\log(Arsenic)$		0.844*** (0.068)						
$\log({\rm Distance})$		-0.348^{***} (0.048)						
Active in Community	-0.124 (0.077)	-0.128^* (0.077)	-0.124 (0.077)	-0.123 (0.077)				
Years Education	0.042*** (0.010)	0.041*** (0.010)		-0.0004 (0.018)				
${\rm Graduated\ Highschool} = 1$			0.608*** (0.156)					
Arsenic * Education				0.029*** (0.011)				
Constant	-0.157 (0.100)	1.159*** (0.183)	0.006 (0.088)	0.028 (0.120)				
Observations Log Likelihood Akaike Inf. Crit.	3,020 $-1,953.913$ $3,917.826$	3,020 $-1,955.532$ $3,921.063$	3,020 $-1,955.784$ $3,921.569$	3,020 $-1,950.173$ $3,912.346$				

Note:

*p<0.1; **p<0.05; ***p<0.01