

Regularizing Neural Networks via Adversarial Model Perturbation

Yaowei Zheng,¹ Richong Zhang,¹ Yongyi Mao²

¹BDBC and SKLSDE, Beihang University, Beijing, China ²School of EECS, University of Ottawa, Ottawa, Canada

Test Error (%)

 24.31 ± 0.303

 24.48 ± 0.351

 22.07 ± 0.256

 24.50 ± 0.234

 21.78 ± 0.210

 25.23 ± 0.229

 24.28 ± 0.138

Test Error (%)

 27.84 ± 0.297

 27.72 ± 0.337

 27.49 ± 0.179

 27.93 ± 0.271

 26.81 ± 0.254

 29.12 ± 0.145

 27.81 ± 0.327

 25.60 ± 0.168

(c) CIFAR-100

Test NLL

 1.056 ± 0.013

 1.110 ± 0.021

 2.099 ± 0.005

 0.950 ± 0.011

 0.910 ± 0.007

 1.110 ± 0.012

 1.059 ± 0.011

 0.774 ± 0.016

Test NLL

 1.827 ± 0.209

 1.221 ± 0.037

 1.136 ± 0.013

 1.535 ± 0.389

 1.873 ± 0.035

 1.049 ± 0.049

CIFAR-100

 1.605 ± 0.062

Summary

Background: Effective regularization schemes are highly desired in deep learning for alleviating overfitting and improving generalization.

Motivation: Previous work suggested that flat minima can improve generalization both in theoretical and empirical perspectives [1-4].

Contribution: We propose Adversarial Model Perturbation (AMP) as a powerful regularization scheme principled by the objective of finding flat minima, which achieves better classification performance and calibration results.

(Better minima are flatter, visualized by Li et al., 2018.)

Training Algorithm

Optimization Objective:

$$\min_{\boldsymbol{\theta}} \max_{\Delta: \|\Delta\| \leq \epsilon} \mathcal{L}_{\mathrm{ERM}}(\boldsymbol{\theta} + \Delta)$$

Pseudo-code:

while θ not converged do Initialize perturbation Δ with $\mathbf{0}$; for $n \leftarrow 1$ to N do Update Δ to maximize $\mathcal{L}_{ERM}(\boldsymbol{\theta} + \Delta)$ via gradient ascent with learning rate ζ ; if $\|\Delta\|_2 > \epsilon$ then Normalize Δ to restrict its norm $||\Delta||_2$ to ϵ ; Update θ to minimize $\mathcal{L}_{ERM}(\theta + \Delta)$ via gradient

PyTorch Implementation:

descent with learning rate η ;

Official Code:

https://github.com/hiyouga/AMP-Regularizer

Method

AMP: Adversarial Model Perturbation

We derive an AMP loss from the empirical risk (ERM loss) by applying the "worst" perturbation on the model parameters to penalize the sharp minima.

$$\mathcal{L}_{ ext{ERM}}(oldsymbol{ heta}) := rac{1}{|D|} \sum_{(oldsymbol{x}, oldsymbol{y}) \in \mathcal{D}} \ell(oldsymbol{x}, oldsymbol{y}; oldsymbol{ heta})$$

$$\mathcal{L}_{\mathrm{AMP}}(oldsymbol{ heta}) := \max_{\Delta: \|\Delta\| \leq \epsilon} \mathcal{L}_{\mathrm{ERM}}(oldsymbol{ heta} + \Delta)$$

It can be seen as an analogue of a "max-pooling" operation on the empirical risk on each point in the parameter space.

Theoretical Justification

AMP Finds Flatter Minima:

We assume that the loss surface of each local minimum in $\mathcal{L}_{\mathrm{ERM}}$ can be *locally* approximated as an inverted Gaussian surface γ with a mean vector μ and a covariance matrix κ . Under the locally Gaussian assumption, the empirical risk $\gamma(\theta; \mu, \kappa, A, C)$ is minimized when $\theta = \mu$ and the minimum value is $\gamma^*(\boldsymbol{\mu}, \boldsymbol{\kappa}, A, C) = C - A$. The minimum value of the AMP loss is the empirical risk at the location in the narrowest principal direction of the cross-section of the loss surface:

$$\gamma^*_{ ext{AMP}}(oldsymbol{\mu}, oldsymbol{\kappa}, A, C) = C - A \exp\left(-rac{\epsilon^2}{2\sigma^2}
ight)$$

where σ^2 is the smallest eigenvalue of κ .

It is clear that γ_{AMP}^* although related to the minimum value of empirical risk γ^* , it also takes into account the curvature of the surface around the local minimum.

AMP Regularizes Gradient Norm:

Consider that N=1 (in fact used). The AMP training is equivalent to ERM training with an additional term:

$$\widetilde{\mathcal{J}}_{\mathrm{ERM}}(\boldsymbol{\theta}) := \mathcal{J}_{\mathrm{ERM}}(\boldsymbol{\theta}) + \Omega(\boldsymbol{\theta})$$

where

$$\Omega(\boldsymbol{\theta}) := \begin{cases} \zeta \|\nabla_{\boldsymbol{\theta}} \mathcal{J}_{\text{ERM}}(\boldsymbol{\theta})\|_{2}^{2}, \|\zeta\nabla_{\boldsymbol{\theta}} \mathcal{J}_{\text{ERM}}(\boldsymbol{\theta})\|_{2} \leq \epsilon \\ \epsilon \|\nabla_{\boldsymbol{\theta}} \mathcal{J}_{\text{ERM}}(\boldsymbol{\theta})\|_{2}, \|\zeta\nabla_{\boldsymbol{\theta}} \mathcal{J}_{\text{ERM}}(\boldsymbol{\theta})\|_{2} > \epsilon \end{cases}$$

Note that a minimum with smaller gradient norms around it is a flatter minimum.

Experiments

Results on Image Classification Benchmarks:

PreActResNet18	Test Error (%)	Test NLL	PreActResNet18	Test Error (%)	Test NLL
ERM	2.95 ± 0.063	0.166 ± 0.004	ERM	5.02 ± 0.212	0.239 ± 0.009
Dropout	2.80 ± 0.065	0.156 ± 0.012	Dropout	4.86 ± 0.148	0.223 ± 0.009
Label Smoothing	2.78 ± 0.087	0.998 ± 0.002	Label Smoothing	4.85 ± 0.115	1.038 ± 0.003
Flooding	2.84 ± 0.047	0.130 ± 0.003	Flooding	4.97 ± 0.082	0.166 ± 0.003
MixUp	2.74 ± 0.044	0.146 ± 0.004	MixUp	4.09 ± 0.117	0.198 ± 0.004
Adv. Training	2.77 ± 0.080	0.151 ± 0.018	Adv. Training	4.99 ± 0.085	0.247 ± 0.006
RMP	2.93 ± 0.066	0.161 ± 0.010	RMP	4.97 ± 0.167	0.239 ± 0.008
AMP	2.30 ± 0.025	0.096 ± 0.002	AMP	3.97 ± 0.091	0.129 ± 0.003
VGG16	Test Error (%)	Test NLL	VGG16	Test Error (%)	Test NLL
VGG16 ERM	Test Error (%) 3.14±0.060	Test NLL 0.140±0.027	VGG16 ERM	Test Error (%) 6.32±0.193	Test NLL 0.361±0.012
	. ,				
ERM	3.14 ± 0.060	0.140 ± 0.027	ERM	6.32 ± 0.193	0.361 ± 0.012
ERM Dropout	3.14 ± 0.060 2.96 ± 0.049	0.140 ± 0.027 0.134 ± 0.027	ERM Dropout	6.32±0.193 6.22±0.147	0.361 ± 0.012 0.314 ± 0.009
ERM Dropout Label Smoothing	3.14 ± 0.060 2.96 ± 0.049 3.07 ± 0.070	0.140 ± 0.027 0.134 ± 0.027 1.004 ± 0.002	ERM Dropout Label Smoothing	6.32 ± 0.193 6.22 ± 0.147 6.29 ± 0.158	0.361 ± 0.012 0.314 ± 0.009 1.076 ± 0.003
ERM Dropout Label Smoothing Flooding	3.14 ± 0.060 2.96 ± 0.049 3.07 ± 0.070 3.15 ± 0.085	0.140 ± 0.027 0.134 ± 0.027 1.004 ± 0.002 0.128 ± 0.003	ERM Dropout Label Smoothing Flooding	6.32 ± 0.193 6.22 ± 0.147 6.29 ± 0.158 6.26 ± 0.145	0.361 ± 0.012 0.314 ± 0.009 1.076 ± 0.003 0.234 ± 0.005
ERM Dropout Label Smoothing Flooding MixUp	3.14 ± 0.060 2.96 ± 0.049 3.07 ± 0.070 3.15 ± 0.085 3.09 ± 0.057	0.140 ± 0.027 0.134 ± 0.027 1.004 ± 0.002 0.128 ± 0.003 0.160 ± 0.003	ERM Dropout Label Smoothing Flooding MixUp	6.32 ± 0.193 6.22 ± 0.147 6.29 ± 0.158 6.26 ± 0.145 5.48 ± 0.112	0.361 ± 0.012 0.314 ± 0.009 1.076 ± 0.003 0.234 ± 0.005 0.251 ± 0.003
ERM Dropout Label Smoothing Flooding MixUp Adv. Training	3.14 ± 0.060 2.96 ± 0.049 3.07 ± 0.070 3.15 ± 0.085 3.09 ± 0.057 2.94 ± 0.091	0.140 ± 0.027 0.134 ± 0.027 1.004 ± 0.002 0.128 ± 0.003 0.160 ± 0.003 0.122 ± 0.003	ERM Dropout Label Smoothing Flooding MixUp Adv. Training	6.32 ± 0.193 6.22 ± 0.147 6.29 ± 0.158 6.26 ± 0.145 5.48 ± 0.112 6.49 ± 0.130	0.361 ± 0.012 0.314 ± 0.009 1.076 ± 0.003 0.234 ± 0.005 0.251 ± 0.003 0.380 ± 0.010

(b) CIFAR-10

Improvement over Various Data Augmentation Techniques:

Test Error (%)	Augment	WideResNet-28-10		PyramidNet-164-270	
Dataset	Technique	ERM	AMP	ERM	AMP
SVHN	Vanilla	2.57 ± 0.067	2.19±0.036	2.47 ± 0.034	2.11±0.041
	Cutout	2.27 ± 0.085	1.83 ± 0.018	2.19 ± 0.021	1.82 ± 0.023
	AutoAug	1.91 ± 0.059	1.61 ± 0.024	1.80 ± 0.044	1.35 ± 0.056
CIFAR-10	Vanilla	3.87 ± 0.167	3.00±0.059	3.60 ± 0.197	2.75±0.040
	Cutout	3.38 ± 0.081	2.67 ± 0.043	2.83 ± 0.102	2.27 ± 0.034
	AutoAug	2.78 ± 0.134	2.32 ± 0.097	2.49 ± 0.128	1.98 ± 0.062
CIFAR-100	Vanilla	19.17 ± 0.270	17.33±0.110	17.13 ± 0.210	15.09±0.092
	Cutout	18.12 ± 0.114	16.04 ± 0.071	16.45 ± 0.136	14.34 ± 0.153
	AutoAug	17.79 ± 0.185	$14.95 {\pm} 0.088$	15.43 ± 0.269	13.36 ± 0.245

Calibration Results: (lower is better)

PreActResNet18

Label Smoothing

Adv. Training

Dropout

Flooding

MixUp

VGG16

ERM

Dropout

Flooding

MixUp

Label Smoothing

Adv. Training

CIFAR-10

Flatness of the Selected Minima:

(a) SVHN

AMP Training Loss

ERM Test Loss

AMP Test Loss

Loss Values with Varying Perturbation Size:

(a) CIFAR-10 Training Set

(b) CIFAR-10 Test Set

References:

- [1] Hochreiter et al. Flat minima. Neural Computation, 9(1):1-42, 1997.
- [2] Keskar *et al*. On large-batch training for deep learning: Generalization gap and sharp minima. In ICLR, 2017.
- [3] Li et al. Visualizing the loss landscape of neural nets. In NeurIPS, 2018.
- [4] Foret et al. Sharpness-aware minimization for efficiently improving generalization. In ICLR, 2021.