Relatório: Algoritmos de Rasterização de Circuferências

Autor: Kaio Guilherme Ferraz de Sousa Silva

1. Introdução

Este relatório visa comparar três algoritmos para desenhar círculos em um ambiente computacional. Cada algoritmo utiliza uma abordagem diferente para gerar o contorno de um círculo, permitindo uma análise de eficiência e complexidade. Os três algoritmos são:

- 1. **Algoritmo Incremental com Simetria**: Utiliza a técnica de simetria para desenhar um círculo com base em cálculos incrementais.
- 2. **Equação Paramétrica**: Desenha o círculo utilizando a formulação trigonométrica para calcular os pontos da borda.
- 3. **Método de Bresenham**: Um algoritmo clássico de rasterização de círculos que usa uma abordagem incremental com uma equação de decisão.

Algoritmos Analisados

- 1. Algoritmo Incremental com Simetria: Desenha um círculo de forma eficiente utilizando simetria e incrementos ao longo dos octantes.
- 2. **Equação Paramétrica**: Usa a equação e para calcular os pontos ao longo da circunferência.

```
x=xc+r\cdot cos(\theta)x = xc + r \cdot cdot \cdot cos(\theta)

y=yc+r\cdot sin(\theta)y = yc + r \cdot cdot \cdot sin(\theta)
```

 Método de Bresenham: Um algoritmo de rasterização baseado em decisões incrementais com a escolha do ponto mais próximo da circunferência ideal

2. Descrição do Funcionamento

2.1 Algoritmo Incremental com Simetria

Este algoritmo utiliza a simetria dos círculos para desenhar todos os 8 octantes ao mesmo tempo. Ele começa com um ponto inicial no topo do círculo e, em seguida, calcula os pontos sucessivos baseando-se em decisões incrementais.

Processo:

- Calcula o raio do círculo a partir do centro e de um ponto de extremidade.
- 2. Desenha o ponto inicial (topo do círculo).
- 3. Utiliza a simetria para desenhar os 8 pontos ao mesmo tempo.
- 4. A cada iteração, a posição dos pontos é ajustada com base em um parâmetro de decisão.
- 5. O desenho é feito diretamente na tela, com um controle de velocidade para a renderização.

2.2 Algoritmo Equação Paramétrica

O algoritmo **Equação Paramétrica** utiliza a equação trigonométrica para calcular os pontos do círculo. O parâmetro tt varia de 1 a 360 graus, sendo utilizado para calcular as coordenadas xx e yy para cada ponto do círculo.

• Processo:

- Calcula o raio do círculo com base nas coordenadas do centro e da extremidade.
- 2. Utiliza a equação paramétrica para calcular as coordenadas e dos pontos ao longo da circunferência.

XX

уу

- 3. Desenha os pontos calculados diretamente na tela.
- 4. A velocidade de renderização é controlada com um atraso entre as operações.

2.3 Algoritmo Método de Bresenham

O **Método de Bresenham** é uma abordagem eficiente para rasterizar círculos, utilizando um algoritmo de decisão baseado em incrementos que escolhe o ponto mais próximo da circunferência ideal.

Processo:

- 1. Calcula o raio do círculo.
- 2. Desenha os primeiros pontos simétricos baseados no raio e centro.
- 3. A cada iteração, avalia a posição do próximo ponto com base em uma decisão incremental.
- 4. O algoritmo desenha os pontos simétricos dos 8 octantes do círculo.

3. Diferenças Entre os Algoritmos

Característica	Incremental com Simetria	Equação Paramétrica	Método de Bresenham
Tipo de Algoritmo	Incremental com simetria	Trigonométrico	Incremental com decisão
Velocidade	Controlada por parâmetro de decisão	Controlada por t e atraso	Controlada por parâmetro de decisão
Precisão	Alta, especialmente para círculos pequenos	Alta para qualquer círculo	Alta, mesmo em círculos grandes
Limitações	Desempenho pode cair em áreas muito grandes	Dependente de precisões angulares	Pode sofrer de erros de arredondamento em círculos grandes

4. Análise de Desempenho

Os algoritmos Incremental com Simetria, Equação Paramétrica e Método de Bresenham são executados simultaneamente, cada um em uma thread separada para garantir que o desempenho de um não interfira no outro. O algoritmo Incremental com Simetria utiliza a simetria dos 8 octantes para desenhar o círculo em tempo real, enquanto o de Equação Paramétrica calcula os pontos com base nas funções trigonométricas e oferece controle através de um parâmetro de velocidade. Já o Método de Bresenham, amplamente utilizado por sua eficiência, utiliza cálculos incrementais para determinar o ponto mais próximo da circunferência ideal. A execução independente dos algoritmos pode ser visualizada no GIF abaixo, destacando as características e a performance de cada um.

Foram usadas matrizes de 400x400 pixel em escala 1:1

5. Conclusão

Os três algoritmos têm suas vantagens e limitações, mas a escolha do algoritmo adequado depende do tipo de aplicação e dos requisitos específicos de desempenho. O **Incremental com Simetria** é eficiente e simples, ideal para círculos pequenos e médios. O **Equação Paramétrica** oferece uma abordagem matemática precisa, sendo útil quando a precisão dos pontos é essencial. O **Método de Bresenham**, por outro lado, é muito eficiente para grandes círculos, especialmente quando a precisão é importante, e sua abordagem incremental permite um controle fino sobre os pontos desenhados.

A decisão de qual algoritmo usar deve levar em conta os requisitos de desempenho, precisão e complexidade da implementação desejada.