Numerical methods for plasma sheaths CEMRACS 2022

Team: Valentin Ayot; Averil Prost; Christian Tayou Fotso.

Supervisors: Mehdi Badsi; Yann Barsamian; Anaïs Crestetto;
Nicolas Crouseilles; Michel Mehrenberger.

June 1, 2023

Table of Contents

Introduction

Introduction

000000

Building block

Advectio

Poisson

Algorithms for the full mode

Evolution problem

Stationary problem

Towards the equilibrium

Results

Comparison between the evolutionary algorithms

Dialog with equilibrium code

Motivation

Introduction 000000

Study the formation of steady sheath.

The model

$$\begin{cases} \partial_t f_i(t, x, v) + v \partial_x f_i(t, x, v) - \partial_x \phi(t, x) \partial_v f_i(t, x, v) = v f_e(t, x, v), \\ \partial_t f_e(t, x, v) + v \partial_x f_e(t, x, v) + \frac{1}{\mu} \partial_x \phi(t, x) \partial_v f_e(t, x, v) = 0, \\ -\lambda^2 \partial_{xx} \phi(t, x) = \int_{\mathbb{R}} f_i(t, x, v) dv - \int_{\mathbb{R}} f_e(t, x, v) dv \end{cases}$$
(1)

- $f_i := f_i(t, x, v), (t, x, v) \in \mathbb{R}^+ \times [-1, 1] \times \mathbb{R}$ Density of ions.
- $f_e := f_e(t, x, v), (t, x, v) \in \mathbb{R}^+ \times [-1, 1] \times \mathbb{R}$ Density of electrons.
- $\phi := \phi(t, x), (t, x) \in \mathbb{R}^+ \times [-1, 1]$ Electrostatic potential.
- mass ratio $\mu > 0$, ionization frequency $\nu \ge 0$, and Debye length $\lambda > 0$.

Boundary conditions

Introduction

000000

- $f_{i,e}(0,x,v) = f_{i,e}^0(x,v)$,
- $f_{i,e}(t, x = -1, v > 0) = 0$ and $f_{i,e}(t, x = 1, v < 0) = 0$,
- $\phi(t,0) = 0$, $\partial_x \phi(t,0) = 0$,
- $\bullet \quad -\lambda^2 \partial_{xx}^2 \phi(0,x) = \int_{\mathbb{D}} f_i^0(x,v) dv \int_{\mathbb{D}} f_e^0(x,v) dv.$

Boundary conditions

We consider

Introduction 000000

$$f_i^0(x, v) := \frac{e^{-v^2/2}}{\sqrt{2\pi}}, \quad f_e^0(x, v) := \frac{\sqrt{\mu}e^{-\mu v^2/2}}{\sqrt{2\pi}}, \quad \phi(0, x) = E(0, x) := 0.$$

Let the electric field and currents be defined $\forall (t, x) \in \mathbb{R}^+ \times [-1, 1]$ as

$$E(t,x) := -\partial_x \phi(t,x)$$
, and $J_{i,e}(t,x) := \int_{\mathbb{R}} v f_{i,e}(t,x,v) dv$.

Then, denoting $J := J_i - J_e$,

$$\lambda^2 \partial_t E(t, \pm 1) := J(t, \pm 1) \pm \frac{\nu}{2} \int_{-1}^1 \int_{\mathbb{R}} f_e(t, y, \nu) \, dy d\nu.$$

Objectives of the CEMRACS project

- Investigate numerically the stationary solution with high-order approximation method.
- Integrate nonperiodic boundary conditions.
- Tools to approximate Vlasov equations:
 - Finite difference code (FD),
 - Semi-Lagrangian code (SL).
 - Fixed-point code (FP).

Table of Contents

Building blocks

Advection Poisson

Towards the equilibrium

1D Transport

$$\begin{cases}
\partial_t u(t, x) + c \partial_x u(t, x) &= 0 & \text{for } t \ge 0, x \in [a, b], c > 0, \\
u(0, x) &= u_0(x) & \text{for } x \in [a, b], \\
u(t, a) &= u_L(t) & \text{for } t \ge 0.
\end{cases} \tag{2}$$

The solution is constant along the characteristic lines:

$$u(t,x) = \begin{cases} u_0(x - ct) & \text{if } x - a \ge ct, \\ u_L\left(t - \frac{x - a}{c}\right) & \text{if } x - a \le ct. \end{cases}$$
 (3)

Algorithms for the full model

Let $x_i := a + i\Delta x$, $\Delta x > 0$, $x_N = b$ and $t_n := n\Delta t$, $\Delta t > 0$.

$$u_i^{n+1} \simeq u(t_{n+1}, x_i) = u(t_n, x_i - c\Delta t).$$
 (4)

1D Transport

Introduction

- Choice of Lagrange interpolation on a stencil of width 2d + 2.
- Ghost points: Inflow x_{-i} , Outflow x_{N+i} , $i \in \mathbb{N}$.

Inflow: we set $i_0 := [c\Delta t/\Delta x]$, then for all $i < i_0$,

$$u_i^{n+1} \simeq u_L(t_{n+1} - i\Delta x/c). \tag{5}$$

For $i \in [i_0, d-1]$, interpolation with $u_{-i}^n := u_L(t_n + j\Delta x/c), j \in \mathbb{N}$.

1D Transport

Introduction

Outflow: if the interpolation stencil needs ghost points at the right of the domain $(i_0 \le d)$. Idea from (Coulombel et al. 2020):

- Introduce the finite difference operator $(Du)_i := u_i u_{i-1}$.
- Let $k_b \in \mathbb{N}$, and deduce u_{N+i}^n by enforcing $\left(D^{k_b}u^n\right)_{N+i} = 0$, $i \in [1, d]$.

Then u_{N+i}^n is a linear combination of u_{N+i-1}^n , \cdots , $u_{N+i-k_i}^n$.

Equivalent to polynomial extrapolation of order $k_b - 1$.

Poisson equation

Let $x \in [-1, 1]$. We look for symmetric solutions: $\phi(t, x) = \phi(t, -x)$, with

$$\begin{cases}
-\lambda^2 \partial_{xx}^2 \phi(t, x) = n(t, x) := \int_{v \in \mathbb{R}} (f_i - f_e)(t, x, v) dv, \\
\phi(t, 0) = \partial_x \phi(t, 0) = 0.
\end{cases} \tag{6}$$

Algorithms for the full model

Let $E := -\partial_x \phi$ the electric field in (1). Then E(t, x) = -E(t, -x). with

$$\begin{cases} \lambda^2 \partial_x E(t, x) &= n(t, x) \\ -E(t, 0) &= 0. \end{cases} \Longrightarrow E(t, x) = \frac{1}{\lambda^2} \int_0^x n(t, y) dy. \tag{7}$$

- Resolution by quadrature.
- Numerically, useful to enforce the symmetry of n.

Table of Contents

Introduction

Building block

Advectio

Poisson

Algorithms for the full model

Evolution problem

Stationary problem

Towards the equilibrium

Results

Comparison between the evolutionary algorithms

Dialog with equilibrium code

Classical explicit upwind scheme for f_s , $s \in \{e, i\}$:

$$\frac{f_{s,k,l}^{n+1} - f_{s,k,l}^{n}}{\Delta t} + \binom{v_l}{c_s E_k^n} + D_{k,l}^{-1} f_s^n + \binom{v_l}{c_s E_k^n} D_{k,l}^{+1} f_s^n = S_{s,k,l}^n$$

where $S_e \coloneqq 0$, $S_i \coloneqq \nu f_e$, $c_e \coloneqq -\frac{1}{u}$, $c_i \coloneqq 1$, and $D_{k,l}^{\pm} f \coloneqq \pm \left(\frac{f_{k\pm 1,l} - f_{k,l}}{\Lambda \nu}, \frac{f_{k,l\pm 1} - f_{k,l}}{\Lambda \nu}\right)^l$.

Classical explicit upwind scheme for f_s , $s \in \{e, i\}$:

$$\frac{f_{s,k,l}^{n+1} - f_{s,k,l}^{n}}{\Delta t} + \left(\frac{v_l}{c_s E_k^n}\right)_{+} D_{k,l}^{-} f_s^n + \left(\frac{v_l}{c_s E_k^n}\right)_{-} D_{k,l}^{+} f_s^n = S_{s,k,l}^n$$

where $S_e \coloneqq 0$, $S_i \coloneqq \nu f_e$, $c_e \coloneqq -\frac{1}{\mu}$, $c_i \coloneqq 1$, and $D_{k,l}^{\pm} f \coloneqq \pm \left(\frac{f_{k\pm 1,l} - f_{k,l}}{\Delta x}, \frac{f_{k,l\pm 1} - f_{k,l}}{\Delta \nu}\right)^l$. Integration for *E*, assuming E(t, 0) = 0:

$$E_k^{n+1} = \frac{1}{\lambda^2} \text{Trapezoid}_{\Delta x} \left(n_i^n - n_e^n \right)$$

Classical explicit upwind scheme for f_s , $s \in \{e, i\}$:

$$\frac{f_{s,k,l}^{n+1} - f_{s,k,l}^{n}}{\Delta t} + \left(\frac{v_l}{c_s E_k^n}\right)_{+} D_{k,l}^{-} f_s^n + \left(\frac{v_l}{c_s E_k^n}\right)_{-} D_{k,l}^{+} f_s^n = S_{s,k,l}^n$$

Algorithms for the full model

where $S_e \coloneqq 0$, $S_i \coloneqq \nu f_e$, $c_e \coloneqq -\frac{1}{\mu}$, $c_i \coloneqq 1$, and $D_{k,l}^{\pm} f \coloneqq \pm \left(\frac{f_{k\pm 1,l} - f_{k,l}}{\Delta x}, \frac{f_{k,l\pm 1} - f_{k,l}}{\Delta \nu}\right)^l$. Integration for E, assuming E(t,0) = 0:

$$E_k^{n+1} = \frac{1}{\lambda^2} \text{Trapezoid}_{\Delta x} \left(n_i^n - n_e^n \right)$$

First order, diffusive, CFL condition.

Classical explicit upwind scheme for f_s , $s \in \{e, i\}$:

$$\frac{f_{s,k,l}^{n+1} - f_{s,k,l}^{n}}{\Delta t} + \left(\frac{v_l}{c_s E_k^n}\right)_{+} D_{k,l}^{-} f_s^n + \left(\frac{v_l}{c_s E_k^n}\right)_{-} D_{k,l}^{+} f_s^n = S_{s,k,l}^n$$

where $S_e \coloneqq 0$, $S_i \coloneqq \nu f_e$, $c_e \coloneqq -\frac{1}{\mu}$, $c_i \coloneqq 1$, and $D_{k,l}^{\pm} f \coloneqq \pm \left(\frac{f_{k\pm 1,l} - f_{k,l}}{\Delta x}, \frac{f_{k,l\pm 1} - f_{k,l}}{\Delta \nu}\right)^l$. Integration for *E*, assuming E(t, 0) = 0:

$$E_k^{n+1} = \frac{1}{\lambda^2} \text{Trapezoid}_{\Delta x} \left(n_i^n - n_e^n \right)$$

- First order, diffusive, CFL condition.
- Common speed mesh for electrons and ions.

Strang splitting:

Introduction

$$\frac{\Delta t}{2}$$

$$\frac{\Delta t}{2}$$

$$\begin{cases} \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection at constant speed} \\ \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \end{cases}$$

Algorithms for the full model

$$\begin{cases} \partial_t f_i = \nu f_e & \text{Pointwise ODE} \end{cases}$$

Strang splitting:

$$\frac{\Delta t}{2}$$

$$\begin{cases} \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection at constant speed} \\ \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \end{cases}$$

Algorithms for the full model

$$\frac{\Delta t}{2}$$

$$\left\{ \partial_t f_i = \nu f_e \quad \text{Pointwise ODE} \right.$$

$$\Delta t$$

$$\partial_t f_s + c_s E \partial_v f_s = 0$$
 Again, advection at constant speed

Strang splitting:

$$\frac{\Delta t}{2}$$

$$\Delta t$$

$$\frac{\Delta t}{2}$$

$$\frac{\Delta t}{2}$$

$$\begin{cases} \partial_t f_s + \nu \partial_x f_s = 0 & \text{Linear advection at constant speed} \\ \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \\ \partial_t f_i = \nu f_e & \text{Pointwise ODE} \\ \partial_t f_s + c_s E \partial_\nu f_s = 0 & \text{Again, advection at constant speed} \end{cases}$$

 $\begin{cases} \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \\ \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection at constant speed.} \end{cases}$

Algorithms for the full model

 $\{\partial_t f_i = v f_e \text{ Pointwise ODE }\}$

Strang splitting:

Introduction

$$\begin{array}{ll} \frac{\Delta t}{2} & \begin{cases} \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection at constant speed} \\ \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \partial_t f_i = v f_e & \text{Pointwise ODE} \\ \partial_t f_s + c_s E \partial_v f_s = 0 & \text{Again, advection at constant speed} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \partial_t f_i = v f_e & \text{Pointwise ODE} \\ \partial_t f_i = v f_e & \text{Pointwise ODE} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \\ \partial_t f_s + v \partial_x f_s = 0 & \text{Linear advection at constant speed.} \end{cases} \end{array}$$

Use of the 1D solver (with appropriate boundary conditions).

Strang splitting:

$$\begin{array}{ll} \frac{\Delta t}{2} & \begin{cases} \partial_t f_s + \nu \partial_x f_s = 0 & \text{Linear advection at constant speed} \\ \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \partial_t f_i = \nu f_e & \text{Pointwise ODE} \\ \partial_t f_s + c_s E \partial_\nu f_s = 0 & \text{Again, advection at constant speed} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \partial_t f_i = \nu f_e & \text{Pointwise ODE} \\ \partial_t f_i = \nu f_e & \text{Pointwise ODE} \end{cases} \\ \frac{\Delta t}{2} & \begin{cases} \lambda^2 \partial_x E = n_i - n_e & \text{Resolution by (numerical) integration} \\ \partial_t f_s + \nu \partial_x f_s = 0 & \text{Linear advection at constant speed.} \end{cases} \end{array}$$

Algorithms for the full model

- Use of the 1D solver (with appropriate boundary conditions).
- Different speed meshes for f_e and f_i .

Fixed-point algorithm (Badsi et al. 2021) (FP, Julia ♥)

Equilibrium state:

$$\begin{cases} v\partial_x f_s - c_s \partial_x \phi \partial_v f_s = S_s, & \frac{d}{d\tau} [f_s(x_s(\tau), v_s(\tau))] = S_s(x_s(\tau), v_s(\tau)) \\ -\lambda^2 \partial_{xx}^2 \phi = n_i - n_e \end{cases}$$

Fixed-point algorithm (Badsi et al. 2021) (FP. Julia 💙)

Equilibrium state:

Introduction

$$\begin{cases} v\partial_x f_s - c_s \partial_x \phi \partial_v f_s = S_s, & \frac{d}{d\tau} [f_s(x_s(\tau), v_s(\tau))] = S_s(x_s(\tau), v_s(\tau)) \\ -\lambda^2 \partial_{xx}^2 \phi = n_i - n_e \end{cases}$$

Suppose ϕ^k is known. Iteration of

$$f_e^k(x, v) := f_{e,b}(x_e(-\tau), v_e(-\tau))$$

Fixed-point algorithm (Badsi et al. 2021) (FP. Julia 💙)

Equilibrium state:

Introduction

$$\begin{cases} v\partial_x f_s - c_s \partial_x \phi \partial_v f_s = S_s, & \frac{d}{d\tau} [f_s(x_s(\tau), v_s(\tau))] = S_s(x_s(\tau), v_s(\tau)) \\ -\lambda^2 \partial_{xx}^2 \phi = n_i - n_e \end{cases}$$

Suppose ϕ^k is known. Iteration of

$$f_e^k(x, v) := f_{e,b}(x_e(-\tau), v_e(-\tau))$$

$$f_i^k(x, v) := f_{i,b}(x_i(-\tau), v_i(-\tau)) + \int_{-\tau}^0 v f_e^k(x_i(s), v_i(s)) ds$$

Fixed-point algorithm (Badsi et al. 2021) (FP. Julia 💙)

Equilibrium state:

Introduction

$$\begin{cases} v\partial_x f_s - c_s \partial_x \phi \partial_v f_s = S_s, & \frac{d}{d\tau} [f_s(x_s(\tau), v_s(\tau))] = S_s(x_s(\tau), v_s(\tau)) \\ -\lambda^2 \partial_{xx}^2 \phi = n_i - n_e \end{cases}$$

Suppose ϕ^k is known. Iteration of

$$\begin{aligned} f_e^k(x,v) &\coloneqq f_{e,b}(x_e(-\tau),v_e(-\tau)) \\ f_i^k(x,v) &\coloneqq f_{i,b}(x_i(-\tau),v_i(-\tau)) + \int_{-\tau}^0 v f_e^k(x_i(s),v_i(s)) ds \\ -\lambda^2 \partial_{xx}^2 \phi^{k+1} &\coloneqq \int_v [f_i^k(\cdot,v) - f_e^k(\cdot,v)] dv \end{aligned}$$

until convergence.

• The electron density $f_e(x, v)$ is constant along its characteristics.

- The electron density $f_e(x, v)$ is constant along its characteristics.
- The ion density $f_i(x, v)$ is the integral along its characteristics of vf_e .

- The electron density $f_e(x, y)$ is constant along its characteristics.
- The ion density $f_i(x, y)$ is the integral along its characteristics of $y f_e$.

Algorithms for the full model

Figure: Left: electron density f_e . Right: ion density f_i (logscale).

$$\lambda = 0.1$$
, $\mu := \frac{m_e}{m_i} = \frac{1}{100}$, $\nu = 42$, $N_{x,\nu_e,\nu_i} = 1024$.

Table of Contents

Towards the equilibrium

Results

Comparison between the evolutionary algorithms Dialog with equilibrium code

Validation test case (DF): one-species (Malkov 2020)

Discretization parameters:

$$x \in [-1.5, 1.5], v_e \in [-2, 2], N_x = 2048, N_y = 2049.$$

Figure: Left: solution at t = 0.01, Right: solution at t = 0.05.

Validation test case (DF): one-species (Malkov 2020)

Figure: Error L^1 on the field E at time T = 0.1.

(SL)/(DF): Two-species Vlasov-Poisson

Simulation parameters:

$$\begin{cases} x \in [-1, 1], \ v_e \in [-20, 20], \ v_i \in [-10, 10], \ N_x = 256, \ N_{v_e} = 255, \\ N_{v_i} = 255, \ d = 8, \ k_b = 1, \ \mu = 1/100, \nu = 10, \ N_t = 3000, \ T = 3. \end{cases}$$

Figure: Electron distribution in phase space. Left: initial condition, right: time T=3.

(SL)/(DF): Two-species Vlasov-Poisson

Simulation parameters:

$$\begin{cases} x \in [-1, 1], \ v_e \in [-20, 20], \ v_i \in [-10, 10], \ N_x = 256, \ N_{v_e} = 255, \\ N_{v_i} = 255, \ d = 8, \ k_b = 1, \ \mu = 1/100, \nu = 10, \ N_t = 3000, \ T = 3. \end{cases}$$

Figure: Ion distribution in phase space. Left: initial condition, right: time T=3.

(SL)/(DF): Two-species Vlasov-Poisson with mask

Idea: multiply the initial conditions by a mask \mathcal{M} defined as

$$\mathcal{M}(x) := \frac{1}{2} \left(\tanh \left(\frac{x - x_l}{d_r} \right) - \tanh \left(\frac{x - x_r}{d_r} \right) \right), \text{ with } x_l = -0.1, x_r = 0.1, d_r = 0.1.$$

Figure: Electron distribution in phase space. Left: initial condition, right: time T=3.

(SL)/(DF): Two-species Vlasov-Poisson with mask

Idea: multiply the initial conditions by a mask \mathcal{M} defined as

$$\mathcal{M}(x) := \frac{1}{2} \left(\tanh \left(\frac{x - x_l}{d_r} \right) - \tanh \left(\frac{x - x_r}{d_r} \right) \right), \quad \text{with } x_l = -0.1, \ x_r = 0.1, \ d_r = 0.1.$$

Figure: Ion distribution in phase space. Left: initial condition, right: time T=3.

Introduction

From (SL) to (FP)

Simulation parameters:

$$\begin{cases} x \in [-1, 1], \ v_e \in [-10, 10], \ v_i \in [-8, 8], \\ N_x = 8192, \ N_{v_e} = 511, \ N_{v_i} = 4095, \\ \mu = 1/2, \ \nu = 20, \ \lambda = 0.5. \end{cases}$$

Initial conditions:

$$\begin{cases} f_e(t=0,x,v) & \coloneqq \mathcal{M}(x) \times f_e^0(x,v), \\ f_i(t=0,x,v) & \coloneqq \mathcal{M}(x) \times f_i^0(x,v). \end{cases}$$

Figure: Electric field E at T=22.2.

Building blocks Algorithms for the full model Results

○○○○○

Algorithms for the full model O○○○○

O○○○○

Results
O○○○○

O○○○○

O○○○○

Results

From (SL) to (FP)

Figure: Electron and ion distributions in phase space. Left: f_e , right: f_i .

Equilibrium code

Figure: Equilibrium densities (up: f_i , down: f_e) for nonvanishing and vanishing $f_e(0,0)$.

• Idea: initialize the semi-Lagrangian with the computed steady state.

- Idea: initialize the semi-Lagrangian with the computed steady state.
- Expected: stationary state.

00000000000

- Idea: initialize the semi-Lagrangian with the computed steady state.
- Expected: stationary state.
- Result: some smoothing & oscillations, needs further investigations.

Results

- Idea: initialize the semi-Lagrangian with the computed steady state.
- Expected: stationary state.
- Result: some smoothing & oscillations, needs further investigations.

Results 00000000000

- Idea: initialize the semi-Lagrangian with the computed steady state.
- Expected: stationary state.
- Result: some smoothing & oscillations, needs further investigations.

Introduction

- Idea: initialize the semi-Lagrangian with the computed steady state.
- Expected: stationary state.
- Result: some smoothing & oscillations, needs further investigations.

What we did:

• Boundary conditions by extrapolation in a semi-Lagrangian algorithm.

What we did:

Introduction

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

Results

What we did:

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

What we may do:

• Test the equilibrium state in the FD algorithm (beware diffusion),

What we did:

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

What we may do:

- Test the equilibrium state in the FD algorithm (beware diffusion),
- Representations of ϕ (polynomial, spectral, finite elements).

What we did:

Introduction

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

What we may do:

- Test the equilibrium state in the FD algorithm (beware diffusion),
- Representations of ϕ (polynomial, spectral, finite elements).
- Regularity of n_i , convergence of the fixed-point.

What we did:

Introduction

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

What we may do:

- Test the equilibrium state in the FD algorithm (beware diffusion),
- Representations of ϕ (polynomial, spectral, finite elements).
- Regularity of n_i , convergence of the fixed-point.

What we want:

On behalf of everyone, thank the organisers and advisors for these amazing weeks.

What we did:

- Boundary conditions by extrapolation in a semi-Lagrangian algorithm.
- Full Lagrangian fixed-point algorithm for the steady state.

What we may do:

- Test the equilibrium state in the FD algorithm (beware diffusion),
- Representations of ϕ (polynomial, spectral, finite elements),
- Regularity of n_i , convergence of the fixed-point.

What we want:

• On behalf of everyone, thank the organisers and advisors for these amazing weeks.

That's all folks, enjoy the Boumllabaisse!

Thank you for your attention

Mehdi Badsi, Christophe Berthon, and Anaïs Crestetto.

A stable fixed point method for the numerical simulation of a kinetic collisional sheath.

Journal of Computational Physics, 429:109990, March 2021.

Jean-François Coulombel and Frédéric Lagoutière.

The Neumann numerical boundary condition for transport equations.

Kinetic & Related Models, 13(1):1–32, 2020.