

Original data flow graph: Replicated data flow graph:

Step 2: For each edge $U \rightarrow V$ with m delays in the

$$\left| \frac{i+m}{J} \right|$$
 delays for $i = 0, 1, ..., J-1$.
(% = mod or modulo, find the remainder.)

(L● J = floor, same as truncation.)

Edges without delay such as $A \rightarrow C$, $D \rightarrow C$ are unchanged.

Edge $C \rightarrow D$ has m = 9 delays. So, $C_0 \rightarrow D_{(0+9)\%2} = D_1$ has $\lfloor (0+9)/2 \rfloor = 4$ delays. $C_1 \rightarrow D_{(1+9)\%2} = D_0 \text{ has}$ \(\((1+9)/2 \) = 5 delays.

9D,

Pair of registers: AR0, AR2, AR4, AR6, T0, T2 Refers to 2 registers such as AR0 and AR1

Example Pair(AR0) 2 x 16 bits

k4/-k4: 4-bit unsigned constant (with "-" if negative) K16: 16-bit signed constant

register uses k4, -k4, K16 memory uses K8, K16 k16 absolute addressing:

Denoted by "3

original data flow graph, draw J edges $U_i \rightarrow V_{(i+m)\%J}$ with of XDP) + 16-bit constant, to obtain a 23-bit address, then *abs16(16-bit unsigned constant) = use 7-bit DPH (high part 16-bit data at this address

DPH = bits 22-16 constant = bits 15-0

*abs16(#0501h) 16-bit data at (DPH)_0501 MOV #256, *abs16(#0501h) move value 256

Before		Aπer		
DPH	00h	DPH	00h	
00_0501	FC00h	00_0501	0100h	
MOV AC0, *abs16(#0E10h) Before		move 16 bits After		
AC0	01_4500_0030h	AC0	01_4500_0	030h
DPH	00h	DPH	00h	
00_0E10	0000h	00_0E10	0030h	4

A circular buffer consists of:

- One buffer start address register
- One buffer size register
- Pointer offset stored in ARx or CDP

It is possible to have up to 3 simultaneous circular buffers of different sizes.

- In D unit ALU/MAC, overflow is detected typically at bit 31 Accumulator overflow status bit (ACOVx) is set to 1

During overflow, the result may be saturated

- If saturation mode bit for D unit (SATD) is 1, then positive result is typically saturated to 00_7FFF_FFFFh and negative result is saturated to FF_8000_0000h
 - If saturation mode bit for A unit (SATA) is 1, then positive saturated to 7FFFh and negative to 8000h
 - If saturation on multiplication bit (SMUL) is 1, then same as SATD for multiplication result

 If fractional mode status bit (FRCT) is 1, products are automatically shifted left by 1 bit.