

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

P

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

B. Apples in Boxes

time limit per test: 1 second memory limit per test: 256 megabytes

Tom and Jerry found some apples in the basement. They decided to play a game to get some apples.

There are n boxes, and the i-th box has a_i apples inside. Tom and Jerry take turns picking up apples. Tom goes first. On their turn, they have to do the following:

- Choose a box i $(1 \le i \le n)$ with a positive number of apples, i.e. $a_i > 0$, and pick 1 apple from this box. Note that this reduces a_i by 1.
- · If no valid box exists, the current player loses.
- If after the move, $\max(a_1,a_2,\ldots,a_n) \min(a_1,a_2,\ldots,a_n) > k$ holds, then the current player (who made the last move) also loses.

If both players play optimally, predict the winner of the game.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains two integers n, k ($2 \le n \le 10^5, 1 \le k \le 10^9$).

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^9$).

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, print "Tom" (without quotes) if Tom will win, or "Jerry" (without quotes) otherwise.

Example

input	Сору
3	
3 1	
2 1 2	
3 1	
1 1 3	
2 1	
1 4	
output	Сору
Tom	
Tom	
Jerry	

Note

Note that neither player is necessarily playing an optimal strategy in the following games, just to give you an idea of how the game is going.

In the first test case of the example, one possible situation is shown as follows.

- Tom takes an apple from the first box. The array a becomes [1,1,2]. Tom does not lose because $\max(1,1,2) \min(1,1,2) = 1 \le k$.
- Jerry takes an apple from the first box as well. The array a becomes [0,1,2]. Jerry loses because $\max(0,1,2) \min(0,1,2) = 2 > k$.

Contest is running 00:45:42 Contestant

→ Last submissions			
Submission	Time	Verdict	
318511232	May/05/2025 19:02	Pretests passed	
318510393	May/05/2025 19:00	Wrong answer on pretest 2	
318509484	May/05/2025 18:57	Wrong answer on pretest 2	
318474270	May/05/2025 17:56	Wrong answer on pretest 1	
318472305	May/05/2025 17:54	Wrong answer on pretest 1	

→ Score table		
	Score	
<u>Problem A</u>	163	
<u>Problem B</u>	489	
<u>Problem C</u>	978	
<u>Problem D</u>	1304	
<u>Problem E</u>	1793	
<u>Problem F1</u>	1467	
Problem F2	1630	
Successful hack	100	
Unsuccessful hack	-50	
Unsuccessful submission	-50	
Resubmission	-50	

^{*} If you solve problem on 01:27 from the first attempt

