International Rectifier

Data Sheet No. PD60046-P

IR2104(S)

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Internally set deadtime
- High side output in phase with input
- Shut down input turns off both channels
- Matched propagation delay for both channels

Description

The IR2104(s) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse cur-

Product Summary

Voffset	600V max.
I _O +/-	130 mA / 270 mA
Vout	10 - 20V
t _{on/off} (typ.)	680 & 150 ns
Deadtime (typ.)	520 ns

Packages

rent buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts.

Typical Connection

IR2104(S) International Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
VIN	Logic input voltage (IN & SD)		-0.3	V _{CC} + 0.3	
dV _s /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	10/
		(8 lead SOIC)	_	0.625	W
RthJA	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	°C/W
		(8 lead SOIC)	_	200	C/VV
TJ	Junction temperature		_	150	
TS	Storage temperature	_	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	V
V _{CC}	Low side and logic fixed supply voltage	10	20	v
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage (IN & SD)	0	Vcc	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	820		V _S = 0V
toff	Turn-off propagation delay	_	150	220		V _S = 600V
t _{sd}	Shutdown propagation delay	_	160	220		
t _r	Turn-on rise time	_	100	170	ns	
tf	Turn-off fall time	_	50	90		
DT	Deadtime, LS turn-off to HS turn-on &	400	520	650		
	HS turn-on to LS turn-off					
MT	Delay matching, HS & LS turn-on/off		_	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" (HO) & Logic "0" (LO) input voltage	3	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" (HO) & Logic "1" (LO) input voltage	_	_	0.8	l ,,	V _{CC} = 10V to 20V
V _{SD,TH+}	SD input positive going threshold	3	_	_	V	V _{CC} = 10V to 20V
VSD,TH-	SD input negative going threshold	_	_	0.8		V _{CC} = 10V to 20V
VoH	High level output voltage, V _{BIAS} - V _O	_	_	100	mV	$I_O = 0A$
V _{OL}	Low level output voltage, VO	_	_	100	mv	I _O = 0A
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	_	150	270	μΑ	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	3	10		V _{IN} = 5V
I _{IN-}	Logic "0" input bias current	_	_	1		V _{IN} = 0V
Vccuv+	V _{CC} supply undervoltage positive going	8	8.9	9.8		
	threshold				V	
VCCUV-	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9		
I _{O+}	Output high short circuit pulsed current	130	210	_		V _O = 0V
					mA.	PW ≤ 10 µs
I _O -	Output low short circuit pulsed current	270	360	_		V _O = 15V
						PW ≤ 10 µs

IR2104(S) International IOR Rectifier

Functional Block Diagram

Lead Definitions

Symbol	Description
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD	Logic input for shutdown
VB	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

50%

50%

IN(LO)

<u>IN(HO)</u>

Figure 3. Shutdown Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

IR2104(S) International IOR Rectifier

Figure 6A. Turn-On Time vs Temperature

Figure 6C. Turn-On Time vs Input Voltage

Figure 7B. Turn-Off Time vs Supply Voltage

Figure 6B. Turn-On Time vs Supply Voltage

Figure 7A. Turn-Off Time vs Temperature

Figure 7C. Turn-Off Time vs Input Voltage

Figure 8A. Shutdown Time vs Temperature

Figure 8B. Shutdown Time vs Voltage

Figure 9A. Turn-On Rise Time vs Temperature

Figure 9B. Turn-On Rise Time vs Voltage

Figure 10A. Turn-Off Fall Time vs Temperature

Figure 10B. Turn-Off Fall Time vs Voltage

IR2104(S) International Rectifier

Figure 11A. Deadtime vs Temperature

Figure 12A. Logic "1" (HO) & Logic "0" (LO) & Inactive SD Input Voltage vs Temperature

Figure 13A. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs Temperature

Figure 11B. Deadtime vs Voltage

Figure 12B. Logic "1" (HO) & Logic "0" (LO) & Inactive SD Input Voltage vs Voltage

Figure 13B. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs Voltage

Figure 14A. High Level Output vs Temperature

Figure 15A. Low Level Output vs Temperature

Figure 16A. Offset Supply Current vs Temperature

Figure 14B. High Level Output vs Voltage

Figure 15B. Low level Output vs Voltage

Figure 16B. Offset Supply Current vs Voltage

IR2104(S) International Rectifier

Figure 17A. VBS Supply Current vs Temperature

Figure 18A. Vcc Supply Current vs Temperature

Figure 19A. Logic"1" Input Current vs Temperature

Figure 17B. VBS Supply Current vs Voltage

Figure 18B. Vcc Supply Current vs Voltage

Figure 19B. Logic"1" Input Current vs Voltage

Figure 20A. Logic "0" Input Current vs Temperature

Figure 20B. Logic "0" Input Current vs Voltage

Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature

Figure 21B. Vcc Undervoltage Threshold(-) vs Temperature

Figure 22A. Output Source Current vs Temperature

Figure 22B. Output Source Current vs Voltage

IR2104(S) International TOR Rectifier

Figure 23A. Output Sink Current vs Temperature

Figure 23B. Output Sink Current vs Voltage

Case Outlines

International

IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 5/2/2001