EXHIBIT A

CLAIM CONSTRUCTION POSITIONS AND SUPPORTING EVIDENCE

1. U.S. Patent No. 7,619,912

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"rank" (All claims)	"an independent set of DRAM devices on a memory module that act together to read or write the full, fixed bitwidth of the memory module in response to command signals, including chip select signals, issued for one read or write transaction"	 12:13-25: "[I]n certain embodiments, two ranks of memory devices having a memory density are used to simulate a single rank of memory devices having twice the memory density" 7:9-13: "Thus, in certain embodiments, even though the memory module 10 actually has the first number of ranks of memory devices 30, the memory module 10 simulates a virtual memory module by operating as having the second number of ranks of memory devices 30." 6:31-38: "[I]n certain embodiments, the memory devices 30 are arranged in four ranks, as schematically illustrated by FIG. 1A. In other embodiments, the memory devices 30 are arranged in two ranks, as schematically 	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '912 and '417/'215 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the inventions. For example, the expert may testify as to the understanding by a POSITA of the term "rank." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses. IPR2023-00203, EX2047, EX2105 through EX2108, EX2112, EX1034.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		illustrated by FIG. 1B. Other numbers of ranks of the memory devices 30 are also compatible with embodiments described herein." • 7:55-8:43, 8:64-9:18: logic tables "for the selection among ranks of memory devices 30" • 10:31-35: "In certain embodiments, the SPD device 70 comprises data which characterize the memory module 10 as having fewer ranks of memory devices than the memory module 10 actually has," • Fig. 1A, 1B, 2A, 3A (showing multiple memory devices in each rank):	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Figure ID. 50 CS ₀ CS ₀ Commend Signals Ac-A ₀ Ac-A ₀ One CS ₀ Commend Signals Ac-A ₀ One CS ₀	
		Figure 2A: BA4 BA4 BA4 Ax-A11 RASICAS/WE CS CS 1 R0 A12 A12 A13 R1 A12 A13 Figure 3A:	
		BA ₀ RA ₁ RA ₂ RA ₃	
		12:12-24: "In certain embodiments, two memory devices having a memory density are used to simulate a single memory device having twice the memory density, and	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		 an additional address signal bit is used to access the additional memory. Similarly, in certain embodiments, two ranks of memory devices having a memory density are used to simulate a single rank of memory devices having twice the memory density, and an additional address signal bit is used to access the additional memory. Table 1 (7:56-8:10) (showing that the description that follows the logic diagram of Table 1 refers to ranks of multiple memory devices): 	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Table 1 provides a logic table compatible with certain embodiments described herein for the selection among ranks of memory devices 30 using chip-select signals.	
		TABLE I State CS_0 CS_1 A_{n+1} Command CS_{0d} CS_{0B} CS_{1d} CS_{1B}	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		State CS_0 CS_1 A_{s+1} Command CS_{Qf} CS_{QB} CS_{Lf} CS_{LB}	
		5 1 0 1 Active 1 1 1 0 6 1 0 x Active 1 1 0 0 7 1 1 x x 1 1 1 1	
		Note: 1. CS ₀ , CS ₁ , CS _{0,t} , CS _{0,t} , CS _{1,t} , and CS _{1,t} are active low signals. 2. A _{n+1} is an active high signal. 3. 'x' is a Don't Care condition. 4. Command involves a number of command signals that define operations such as refresh, precharge, and other operations.	
		act together to read or write:	
		• 8:46-60: "The 'Command'	
		column of Table 1 represents the various commands that a	
		memory device (e.g., a DRAM	
		device) can execute, examples	
		of which include, but are not	
		limited to, activation, read,	
		write, precharge, and refresh. In certain embodiments, the	
		command signal is passed	
		through to the selected rank	
		only In such embodiments,	
		the command signal (e.g.,	
		read) is sent to only one	
		memory device or the other	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		memory device so that data is supplied from one memory device at a time. In other embodiments, the command signal is passed through to both associated ranks in such embodiments, the command signal (e.g., refresh) is sent to both memory devices to ensure that the memory content of the memory devices remains valid over time." • 2:16-18: "The DRAM devices of a memory module are generally arranged as ranks or rows of memory, each rank of memory generally having a bit width." in response to a chip-select signal: • 2:34-38: "During operation, the ranks of a memory module are selected or activated by control signals that are received from the processor. Examples of such control signals include, but are not limited to, rank-select signals, also called chip-select signals." • Table 1 (CS ₀ , CS ₁ , etc.)	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		• 6:64-7:1: "In certain embodiments, the set of output control signals corresponds to a first number of ranks in which the plurality of memory devices 30 of the memory module 10 are arranged."	
		Prosecution History: Prosecution History for Inter Partes Reexamination No. 95/000,578: Examiner allowed claim 16 by concluding that Amidi failed to teach "transmit[ting] a command signal to only one DDR memory device at a time when there is a plurality of memory devices in a rank." IPR2022- 615, EX1010, at 3866.	
		The Board affirmed this construction on appeal [Decision by PTAB in Inter Partes Reexamination Nos. 95/000,578; 95/000,579; and 95/001,339]: "Presumably, because Amidi discusses a particular cell within a bank, Requestor 1 contends that the command signals are being transmitted to one DDR memory device at a time as recited. Yet as the Examiner indicates:	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Requester 1 asserts that "[o]ne of ordinary skill in the art would have understood from the '152 publication [of Amidi] that the command signal may be transmitted to the DDR memory devices serially in a sequential fashion" without any reasoned explanation to support the assertion The claims require transmission of a command signal to only one DDR memory device at a time. Requester has not provided a reasonable explanation as to why one skilled in the art would transmit a command signal to only one DDR memory device at a time when there is a plurality of memory devices in a rank." IPR2022-615, EX1011, at 79.	

"A memory module	Preamble is limiting;	Support in Specification:	
connectable to a computer	and plain and ordinary	• 2:46-50: "In certain	
system, the memory	meaning	embodiments, a memory	
module comprising"		module is connectable to a	
		computer system. The memory	
(All claims)		module comprises a printed	
		circuit board, a plurality of	
		memory devices coupled to the	
		printed circuit board, and a	
		logic element coupled to the	
		printed circuit board."	
		Abstract: "A memory module	
		connectable to a computer	
		system includes a printed	
		circuit board, a plurality of	
		memory devices coupled to the	
		printed circuit board, and a	
		logic element coupled to the	
		printed circuit board."	
		• 1:28-34: "These memory	
		modules are typically mounted	
		in a memory slot or socket of a	
		computer system (e.g., a	
		server system or a personal	
		computer) and are accessed by	
		the processor of the computer	
		system. Memory modules	
		typically have a memory	
		configuration with a unique	
		combination of rows, columns,	
		and banks which result in a	
		total memory capacity for the	
		memory module."	

• 2:4-15: "The commercially-
available 512-MB (64 Mx8-
byte) memory modules and the
1-GB (128 Mx8-byte) memory
modules described above are
typically used in computer
systems (e.g., personal
computers) which perform
graphics applications since
such "x8" configurations are
compatible with data mask
capabilities often used in such
graphics applications.
Conversely, memory modules
with "x4" configurations are
typically used in computer
systems such as servers which
are not as graphics-intensive."
• 3:3-14: "In certain
embodiments, a memory
module is connectable to a
computer system. The memory
module comprises a plurality
of memory devices arranged in
a first number of ranks. The
memory module comprises
means for coupling the
memory module to the
computer system. The memory
module further comprises
means for inputting a first set
of control signals to the
memory module. The first set

of control signals corresponds
to a second number of ranks
smaller than the first number
of ranks. The memory module
further comprises means for
generating a second set of
control signals in response to
the first set of control signals."
• 3:15-28: "In certain
embodiments, a memory
module is connectable to a
computer system. The memory
module comprises a first
memory device having a first
data signal line and a first data
strobe signal line. The memory
module further comprises a
second memory device having
a second data signal line and a
second data strobe signal line.
The memory module further
comprises a common data
signal line connectable to the
computer system. The memory
module further comprises an
isolation device electrically
coupled to the first data signal
line, to the second data signal
line, and to the common data
signal line. The isolation
device selectively alternates
between electrically coupling
the first data signal line to the

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"signal"	Plain and ordinary	common data signal line and electrically coupling the second data signal line to the common data signal line." Support in Specification:	Netlist may rely on expert
(All claims)	meaning	 2:34-38: "During operation, the ranks of a memory module are selected or activated by control signals that are received from the processor. Examples of such control signals include, but are not limited to, rank-select signals, also called chip-select signals." 5:14-21: "The logic element 40 receives a set of input control signals from the computer system. The set of input control signals correspond to a second number of memory devices smaller than the first number of memory devices. The logic element 40 generates a set of output control signals in response to the set of input control signals. The set of output control signals corresponds to the first number of memory devices." 	testimony to explain the technology, the state of the art at the time the applications leading to the '912 and '417/'215 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the inventions. For example, the expert may testify as to the understanding by a POSITA of the term "signal." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses. Wiley Electrical and Electronics Engineering Dictionary (1st ed. 2004) at 707.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		 5:36-41: "The register 60 receives and buffers a plurality of control signals, including address signals (e.g., bank address signals, row address signals), and transmits corresponding signals to the appropriate memory devices 30." 6:54-63: " the logic element 40 receives a set of input control signals, which includes address signals (e.g., bank address signals, row address signals, column address signals, gated column address strobe signals, chip select signals) and command signals from the computer system. In response to the set of input control signals, the logic element 40 generates a set of output control signals which includes address signals and command signals." 6:64-7:2: "In certain embodiments, the set of output control signals corresponds to a first number of ranks in 	Newton's Telecom Dictionary (21st ed. 2005) at 761. McGraw-Hill Dictionary of Scientific and Technical Terms (6th ed. 2003) at 1929. Dictionary of Science and Technology (1st ed. 2003) at 555. Collins English Dictionary (7th ed. 2005) at 1499. The New Oxford American Dictionary (2nd ed. 2005) at 1578. Collins Dictionary Electronics Definitions for the Digital Age (2nd ed. 2004) at 378. ASTM Dictionary of Engineering Science & Technology (10th ed. 2005) at 557.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		which the plurality of memory devices 30 of the memory module 10 are arranged, and the set of input control signals corresponds to a second number of ranks per memory module for which the computer system is configured." • 7:39-43: " the memory module 10 receives row/column address signals or signal bits bank address signals chip-select signals and command signals (e.g., refresh, precharge, etc.) from the computer system." • 7:46-49: "The logic element 40 receives the two chip-select signals (CS_0 , CS_1) and one row/column address signal from the computer system.	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Logic Tables Table 1 provides a logic table compatible with certain embodiments described herein for the selection among ranks of memory devices 30 using chip-select signals.	
		TABLE 1	
		$ \text{State} \text{CS}_0 \text{CS}_1 \text{A}_{n+1} \text{ Command} \text{CS}_{0A} \text{CS}_{0B} \text{CS}_{1A} \text{CS}_{1B} $	
		1 0 1 0 Active 0 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	
		State CS_0 CS_1 A_{n+1} Command CS_{0A} CS_{0B} CS_{1A} CS_{1B}	
		5 1 0 1 Active 1 1 1 0 6 1 0 x Active 1 1 0 0 7 1 1 x x 1 1 1 1	
		• 8:19-43: "In Logic State 1: CS_0 is active low, A_{n+1} is nonactive, and Command is active. CS_{0A} is pulled low, thereby	
		selecting Rank 0. In Logic State 2: CS_0 is active low,	
		A_{n+1} is active, and Command	
		is active. CS_{0B} is pulled low,	
		thereby selecting Rank 1. In	
		Logic State 3: CS_0 is active	
		low, A_{n+1} is Don't Care, and Command is active high. $CS_{0,4}$	
		and CS_{0B} are pulled low,	
		thereby selecting Ranks O and	
		1. In Logic State 4: CS_1 is	
		active low, A_{n+1} is non-active,	
		and Command is active. CS_{1A}	
		is pulled low, thereby selecting	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		is active low, A_{n+1} is active, and Command is active. CS_{1B} is pulled low, thereby selecting Rank 3. In Logic State 6: CS_1 is active low, A_{n+1} , is Don't Care, and Command is active. CS_{1A} and CS_{1B} are pulled low, thereby selecting Ranks 2 and 3. In Logic State 7: CS_0 and CS_1 are pulled non-active high, which deselects all ranks, i.e., CS_{0A} , CS_{0B} , CS_{1A} , and CS_{1B} are pulled high." • 21:28-33: "In certain embodiments, a memory controller of a computer system utilizing a 1-GB 128 M×8 memory module 10 comprising pairs of the 512-Mb 128 M×4 memory devices 30 supplies the address and control signals including the extra row address (A13) to the memory module 10."	

"row[/column] address signal" (All claims) Plain and ordinary meaning	 T:39-46: The memory module 10 receives row/column address signals or signal bits 40 (A₀ - A_{n+1}), bank address signals (BA₀ - BA_m), chipselect signals (CS₀ and CS₁), and command signals (e.g., refresh, precharge, etc.) from the computer system. The A₀ - A_n row/column address signals are received by the register 60, which buffers these address signals and sends these address signals to the appropriate ranks of memory devices 30." T:56-59: "The logic element 40 receives the two chip-select signals (CS₀, CS₁, etc.) and one row/column address signal from the computer system. Table 1, 7:55-8:19: 	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '912 and '417/'215 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "row/column address signal." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses.
---	--	---

Logic Tables Table 1 provides a logic table compatible with certain embodiments described herein for the selection among ranks of memory devices $\bf 30$ using chip-select signals. TABLE 1 State CS ₀ CS ₁ A_{a+1} Command CS _{0a} CS _{1a} CS _{1a} CS _{1a} 1 0 1 0 Active 0 1 1 1 2 0 1 1 Active 1 0 1 1 3 0 1 x Active 0 0 1 1 4 1 0 0 Active 1 1 0 1
• 8:19-43: "In Logic State 1: CS_0 is active low, A_{n+1} is nonactive, and Command is active. CS_{0A} is pulled low, thereby selecting Rank 0. In Logic State 2: CS_0 is active low, A_{n+1} is active, and Command is active. CS_{0B} is pulled low, thereby selecting Rank 1. In Logic State 3: CS_0 is active low, A_{n+1} is Don't Care, and Command is active high. CS_{0A} and CS_{0B} are pulled low, thereby selecting Ranks O and 1. In Logic State 4: CS_1 is active low, A_{n+1} is non-active, and Command is active. CS_{1A} is pulled low, thereby selecting Rank 2. In Logic State 5: CS_1 is active low, A_{n+1} is active, and Command is active. CS_{1B}

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"coupled to the printed circuit board" (Claims 15, 16, 28, 86, 88)	Plain and ordinary meaning	is pulled low, thereby selecting Rank 3. In Logic State 6: CS_1 is active low, A_{n+1} , is Don't Care, and Command is active. CS_{1A} and CS_{1B} are pulled low, thereby selecting Ranks 2 and 3. In Logic State 7: CS_0 and CS_1 are pulled non-active high, which deselects all ranks, i.e., CS_{0A} , CS_{0B} , CS_{1A} , and CS_{1B} are pulled high." • $A_0 - A_n$ in Figs. 1A, 1B. Support in Specification: • 2:46-50: "The memory module comprises a printed circuit board, a plurality of memory devices coupled to the printed circuit board, and a logic element coupled to the printed circuit board." • 5:9-25: "The memory module 10 comprises a printed circuit board 20 and a plurality of memory devices 30 coupled to the printed circuit board 20 The memory module 10 further comprises a logic element 10 coupled to the printed board 20 [T]he memory module 10 further	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '912 and '417/'215 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the inventions. For example, the expert may testify as to the understanding by a POSITA of the term "coupled to [a] printed circuit board." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		comprises a phase-lock loop device 50 coupled to the printed circuit board 20 and a	testimony of Defendants' expert(s) and witnesses.
		register 60 coupled to the printed circuit board 20." • Figs. 1A, 1B:	Wiley Electrical and Electronics Engineering Dictionary (1st ed. 2004) at 151.
		Figure IA: 20	Newton's Telecom Dictionary (21st ed. 2005) at 219.
		CS ₁	McGraw-Hill Dictionary of Scientific and Technical Terms (6 th ed. 2003) at 501.
		Ap-As 70	Dictionary of Science and Technology (1st ed. 2003) at 151.
		30 30 30 30 30 30 30	Collins Dictionary Electronics Definitions for the Digital Age (2nd ed. 2004) at 95.
		Command Signals Buty Bith Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom Gottom	Merriam-Webster's Collegiate Dictionary (11th ed. 2008) at 286.
			Cambridge Dictionary of American English (2nd ed. 2008) at 191.
		a plurality of double-data-rate (DDR) memory devices "coupled to the printed circuit board." • 5:9-12: "The memory module	Longman Dictionary of American English (4th ed. 2008) at 232.
		10 comprises a printed circuit	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		 board 20 and a plurality of memory devices 30 coupled to the printed circuit board 20." 5:11-13: "The memory module further comprises a logic element 40 coupled to the printed circuit board 20." 5:23-25: "the memory module 10 further comprises a register 60 coupled to the printed circuit board 20." 5:23-24: "the memory module 10 further comprises a phase-lock loop device 50 coupled to the printed circuit board 20." 	The American Heritage Dictionary of the English Language (4 th ed. 2006) at 419. Macmillan English Dictionary for Advanced Learners (2nd ed. 2007) at 338. The New Oxford American Dictionary (3rd ed. 2005) at 397.

"mounted to the printed	Plain and ordinary	Support in Specification:	Netlist may rely on expert
circuit board"	meaning	• 1:26-31: "Certain types of	testimony to explain the
		memory modules comprise a	technology, the state of the art at
(Claims 1, 39, 77, 80, 82,		plurality of dynamic random-	the time the applications leading to
90)		access memory (DRAM)	the '912 patent were filed, the level
		devices mounted on a printed	of ordinary skill in the relevant art,
		circuit board (PCB). These	and the meaning of this claim
		memory modules are typically	element to a person of ordinary
		mounted in a memory slot or	skill in the art at the time of the
		socket of a computer system	invention. For example, the expert
		(e.g., a server system or a	may testify as to the understanding
		personal computer) and are	by a POSITA of the term "mounted
		accessed by the processor of	to [a] printed circuit board."
		the computer system."	
		• 6:12-16: "Memory devices 30	Netlist may also rely on the expert
		compatible with embodiments	to respond to Defendants' claim
		described herein include, but	construction positions and any
		are not limited to, random	testimony of Defendants' expert(s)
		access memory (RAM),	and witnesses.
		dynamic random-access	Wiley Fleatrical and Fleatronics
		memory (DRAM),	Wiley Electrical and Electronics Engineering Dictionary (1st ed.
		synchronous DRAM	2004) at 484.
		(SDRAM), and double-data-	2004) at 404.
		rate DRAM (e.g., DDR-1,	McGraw-Hill Dictionary of
		DDR-2, DDR-3)."	Scientific and Technical Terms (6th
		• Figs. 11A, 11B:	ed. 2003) at 1377.
			od. 2003) at 1511.
			Dictionary of Science and
			Technology (1st ed. 2003) at 406.
			155mio 1085 (15t 55t 2005) at 100.
			Collins English Dictionary (7th ed.
			2005) at 1064.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Figure 11A: 310, 320 300 370 362 380 360	
		Figure 11B:	
		310,320 364	
		• 5:25-27: "In certain embodiments, the phase-lock loop device 50 and the register 60 are each mounted on the printed circuit board."	
		• Figs. 1A, 1B.	

"wherein the logic
element generates gated
column access strobe
(CAS) signals or chip-
select signals of the output
[control] signals <i>in</i>
response at least in part to
(i) the [at least one] row
address signal, (ii) the
bank address signals, and
(iii) the [at least one] chip-
select signal of the
[set/plurality] of input
[control] signals and (iv)
the PLL clock signal"

(Claims 1, 15, 28, 39)

Plain and ordinary meaning

Support in Specification:

- 5:18-20: "The logic element 40 generates a set of output control signals in response to the set of input control signals."
- 6:54-63: "... the logic element 40 receives a set of input control signals, which includes address signals (e.g., bank address signals, row address signals, column address signals, gated column address strobe signals, chip select signals) and command signals from the computer system. In response to the set of input control signals, the logic element 40 generates a set of output control signals which includes address signals and command signals."

"wherein the logic element generates gated column access strobe (CAS) signals or chip-select signals"

- Figs. 1A, 1B, 3A, 3B;
- 17:28-19:52 [Verilog code]
- 22:50-63: "To access the additional memory density of the high-density memory module 10, the two chip-select signals (CS0, CS 1) are used

Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '912 and '417/'215 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the inventions. For example, the expert may testify as to the understanding by a POSITA of the term "respond to," being "responsive to," and "in response to."

Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses.

Wiley Electrical and Electronics Engineering Dictionary (1st ed. 2004) at 659.

McGraw-Hill Dictionary of Scientific and Technical Terms (6th ed. 2003) at 1797.

Dictionary of Science and Technology (1st ed. 2003) at 522.

with other address and control ASTM Dictionary of Engineering
signals to gate a set of four Science & Technology (10 th ed.
gated CAS signals. For 2005) at 514.
example, to access the
additional ranks of four-rank The American Heritage Dictionary
1-GB 128 Mx8-byte DDR-1 of the English Language (4 th ed.
DRAM memory module, the 2006) at 1486.
CS0 and CS 1 signals along
with the other address and Bloomsbury English Dictionary
control signals are used to gate (2nd ed. 2004) at 1589.
the CAS signal appropriately,
as schematically illustrated by Longman Business English
FIG. 3A. FIG. 3B Dictionary (2nd ed. 2007) at 462.
schematically illustrates an
exemplary logic element 40
compatible with embodiments
described herein. In certain
embodiments, the logic
element 40 comprises a
programmable-logic device
(PLD) 42 and four "OR" logic
elements 52, 54, 56, 58
electrically coupled to
corresponding ranks 32, 34,
36, 38 of memory devices 30."
• 23:6-25: "In the embodiment
schematically illustrated by
FIG. 3B, the PLD 42 transmits
each of the four "enabled
CAS" (ENCAS0 a, ENCAS0b,
ENCAS1a, ENCAS1b) signals
to a corresponding one of the
"OR" logic elements 52, 54,

_		
	56, 58. The CAS signal is also	
	transmitted to each of the four	
	"OR" logic elements 52, 54,	
	56, 58. The CAS signal and the	
	"enabled CAS" signals are	
	"low" true signals. By	
	selectively activating each of	
	the four "enabled CAS" signals	
	which are inputted into the	
	four "OR" logic elements 52,	
	54, 56, 58, the PLD 42 is able	
	to select which of the four	
	ranks 32, 34, 36, 38 is active.	
	In certain embodiments, the	
	PLD 42 uses sequential and	
	combinatorial logic procedures	
	to produce the gated CAS	
	signals which are each	
	transmitted to a corresponding	
	one of the four ranks 32, 34,	
	36, 38. In certain other	
	embodiments, the PLD 42	
	instead uses sequential and	
	combinatorial logic procedures	
	to produce four gated chip-	
	select signals (e.g., CS0a,	
	CS0b, CS1a, andCS1b) which	
	are each transmitted to a	
	corresponding one of the four	
	ranks 32, 34, 36, 38."	
	"of the output [control] signals <i>in</i>	
	response"	

6:55-63: "As schematically illustrated by FIGS. IA and 1B, in certain embodiments, the logic element 40 receives a set of input control signals, which includes address signals (e.g., bank address signals, row address signals, column address signals, gated column address strobe signals, chipselect signals) and command signals (e.g., refresh, precharge) from the computer system. In response to the set of input control signals, the logic element 40 generates a set of output control signals which includes address signals and command signals."

"(i) the [at least one] row address signal,"

- A_{n+1} in Figs. 1A, 1B;
- *A*13 in Figs. 3A, 3B;
- 7:46-53: "The logic element 40 receives the two chip-select signals (CS0, CS1) and one row/column address signal (An+i) from the computer system. Both the logic element 40 and the register 60 receive the bank address signals (BA0-BAm) and at least one

	command signal (a grafical)
	command signal (e.g., refresh,
	precharge, etc.) from the
	computer system."
	"(ii) the bank address signals,"
	• $BA_0 - BA_m$ in Figs. 1A, 1B;
	• BA_0 , BA_1 in Figs. 3A, 3B;
	• 7:46-53: "The logic element 40
	receives the two chip-select
	signals (CS0, CS1) and one
	row/column address signal
	(An+i) from the computer
	system. Both the logic element
	40 and the register 60 receive
	the bank address signals (BA0-
	BAm) and at least one
	command signal (e.g., refresh,
	precharge, etc.) from the
	computer system."
	"and (iii) the [at least one] chip-select
	signal of the [set/plurality] of input
	[control] signals"
	• CS_0 , CS_1 in Fig. 1A;
	• CS_0 in Fig. 1B;
	• 7:46-53: "The logic element 40
	receives the two chip-select
	1
	signals (CS0, CS1) and one
	row/column address signal
	(An+i) from the computer
	system. Both the logic element
	40 and the register 60 receive
	the bank address signals (BA0-

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		BAm) and at least one command signal (e.g., refresh, precharge, etc.) from the computer system."	
		 "and (iv) the PLL clock signal" Figs. 1A, 1B; 5:29-30: "In response to signals received from the computer system, the phase-lock loop device 50 transmits clock signals to the plurality of memory devices 30, the logic elements 40, and the register 60." 17:28-19:52 [Verilog code] - "clk_in" 	

"wherein the logic element responds to at least (i) a row address bit of the at least one row/column address signal, (ii) the bank signals, and (iii) the at least one chip-select signal of the set of input control signals and (iv) the PLL clock by generating a first number of chip-select signals generated by the logic element equal to the first number of ranks, and the at least one chip-select signals comprises a second number of chip-select signals equal to the second number of ranks." See intrinsic evidence for "in response to." See evidence for "in response to." See evidence for "in response to." See evidence for "in response to." Vo." See intrinsic evidence for "in response to." It. To." See evidence for "in response to." Vo." See ovidence for "in response to." Vo." See ovidence for "in response to." Vo." See ovidence for "in response to."

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"wherein the generation of the first number of chipselect signals of the output control signals by the logic element is based on the logic element responsive at least in part to (i) the at least one row address signal, (ii) the bank address signals, and (iii) the at least one chipselect signal of the set of input control signals received by the logic element and (iv) the clock signals received from the phase-lock loop device" (Claim 80)	Plain and ordinary meaning	See intrinsic evidence for "in response to."	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '912 patent were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "based on." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses. See also Merriam-Webster's Collegiate Dictionary (11th ed. 2008) at 101.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
			Cambridge Dictionary of American English (2nd ed. 2008) at 62.
			Longman Dictionary of American English (4th ed. 2008) at 75.
			The American Heritage Dictionary of the English Language (4 th ed. 2006) at 148.
			Macmillan English Dictionary for Advanced Learners (2nd ed. 2007) at 107.
			The New Oxford American Dictionary (3rd ed. 2005) at 136.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"wherein the logic	Plain and ordinary	See intrinsic evidence for "in response	See evidence for "in response
element <i>responds to</i> at	meaning	to."	to."
least the at least one row			
address signal, the bank			
address signals, and the at			
least one chip-select			
signal of the set of input			
[control] signals and the			
PLL clock signal by			
generating a number of			
rank-selecting signals of			
the set of output [control]			
signals that is greater than			
double or equal to double			
the number of chip-select			
signals of the set of input			
[control] signals"			
(Claim 82, 86)			
"wherein the logic	Plain and ordinary	See intrinsic evidence for "in response	See evidence for "in response
element <i>responds to</i> at	meaning	to."	to."
least (i) the row address			
signal, (ii) the bank			
address signals, (iii) and			
the one chip-select signal			
of the set of input control			
signals and (iv) the PLL			
clock signal by generating			
a number of rank-			
selecting signals of the set			

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
of output signals that is greater than double or			
equal to double the			
number of chip-select			
signals of the set			
of input control signals"			
(Claim 88)			
"wherein the logic	Plain and ordinary	See intrinsic evidence for "in response	See evidence for "in response
element <i>responds to</i> at	meaning	to."	to."
least (i) the at least one			
row signal, (ii) the bank			
address signals, (iii) and			
the second number of			
chip-select signals of the			
plurality of input signals			
and (iv) the PLL clock			
signal by generating the			
first number of chip-select			
signals of the plurality of			
output signals that is			
greater than double or			
equal to double the second			
number of chip-select			
signals of the plurality of			
input signals"			
(Claim 90)			

2. U.S. Patent No. 9,858,215

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"rank" (All claims)	See "rank" (912 patent)	'215, 2:41-52 ("The DRAM devices of a memory module are generally arranged as ranks or rows of memory, each rank of memory generally having a bit width. For example, a memory module in which each rank of the memory module is 64 bits wide is described as having an "×64" organization. Similarly, a memory module having 72-bit-wide ranks is described as having an "×72" organization. The memory capacity of a memory module increases with the number of memory devices. The number of memory devices of a memory module can be increased by increasing the number of memory devices per rank or by increasing the number of ranks.") '215, FIGS 1, 4A-4B, 5C-5D, 8A-9B, 10A, 11A and accompanying descriptions (depicting ranks 32a/b/c/d with memory devices 30):	See "rank" (912 patent)

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		32 DQ0 DQ63 DQS0 DQS7 rcs0# DQ63 DQS0 DQS0 DQS0 DQS0 DQS0 DQS0 DQS0 DQS0	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		320 30 00S0 1040 114 1200 FIG. 4A 32b	
		7320 1040 30 1040 114 114 112 112 112 112 112 112	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		CSo	
		FIG. 9A	
		RAS/CAS/WE	
		'215 Prosecution History:	
		283: Amendment based on PTAB interview adding the language: "A memory module operable in a computer system to communicate data with a memory controller of the computer system via a data bus"	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"operable in a computer system to communicate data" (Claim 1)	Plain and ordinary meaning	'215 at Abstract ("A memory module is operable to communicate data with a memory controller via a memory bus in response to memory commands received from the memory controller.") '215, 3:11-28 ("In certain embodiments, a memory module is operable in a computer system to communicate data with a memory controller of the computer system via a memory bus in response to memory commands received from the memory controllerIn certain embodiments, the printed circuit board has a plurality of edge connections configured to be electrically coupled to a corresponding plurality of contacts of a module slot of the computer system. The register is configured to receive and buffer first command and address signals representing the first memory command, and to receive and buffer second command and address signals representing the second memory command.") '215, 3:57-61 ("The second control signals are different from the first control signals, a circuit is configured to be mounted on a memory module that is operable to communicate data with a memory controller via a data bus in response to memory commands received from the memory controller.")	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '215/'417 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "operable in a computer system to communicate data." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		'215, cl. 1 ("1. A memory module operable in a computer system to communicate data with a memory controller of the computer system via a memory bus in response to memory commands received from the memory controller, the memory commands including a first memory command and a subsequent second memory command, the first memory command to cause the memory module to receive or output a first data burst and the second memory command to cause the memory module to receive or output a second data burst, the memory module comprising: a printed circuit board having a plurality of edge connections configured to be electrically coupled to a corresponding plurality of contacts of a module slot of the computer system;")	
		'215 Prosecution History: 283-284: Amendment based on PTAB interview adding language to claim 1: a plurality of memory integrated circuits mounted on the printed circuit board and arranged in a plurality of ranks including a first rank and a second rank, the plurality of memory integrated circuits including at least one first memory integrated circuit in the first rank and at least one second memory integrated circuit in the second rank,	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		wherein the first rank is selected to receive or output the first data burst in response to the first memory command and is not selected to communicate data with the memory controller in response to the second memory command, and wherein the second rank is selected to receive or output the second data burst in response to the second memory command and is not selected to communicate data with the memory controller in response to the first memory command; and"	
"logic coupled to the buffer and configured to respond to the first memory command by providing first control signals to the buffer to enable communication of the first data burst	Plain and ordinary meaning, that is, the limitation does not require the first rank and second rank of memory integrated circuits to be on different forks and the	Abstract (" The memory module further comprises logic providing first control signals to the buffer to enable communication of a first data burst between the memory controller and the at least one first memory integrated circuit through the buffer in response to a first memory command")	See evidence for "coupled to" and "respond to"/"in response to." Dictionary Definition for Logic:
between the at least one first memory integrated circuit and the memory controller through the buffer"; (Claim 1)	term is not a 112(b) term.	3:11-56 ("The memory module comprises a printed circuit board, a register coupled to the printed circuit board, a plurality of memory integrated circuits mounted on the printed circuit board, a buffer, and logic coupled to the bufferIn certain embodiments, the buffer is coupled between the at least one first memory integrated circuit and the memory bus, and between the at least one second memory integrated circuit and the memory bus. The logic	McGraw-Hill Dictionary of Scientific and Technical Terms (5th ed. 1994) Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		is configured to respond to the first memory	leading to the '215/'417
		command by providing first control signals to the	patents were filed, the
		buffer to enable communication of the first data	level of ordinary skill in
		burst between the at least one first memory 50	the relevant art, and the
		integrated circuit and the memory controller	meaning of this claim
		through the buffer. The logic is further	element to a person of
		configured to respond to the second memory	ordinary skill in the art
		command by providing second control signals to	at the time of the
		the buffer to enable communication of the second	invention. For example,
		data burst between the at least one second	the expert may testify as
		memory integrated circuit and the memory	to the understanding by
		controller through the buffer."	a POSITA of the term
		6.07.50 ((7	"respond to," "coupled,"
		6:37-59 ("In certain embodiments, the circuit	"burst" and "data burst."
		comprises a logic element selected from a group	
		consisting of: a programmable- logic device	Netlist may also rely on
		(PLD), an application-specific integrated circuit	the expert to respond to
		(ASIC), a field-programmable gate array	Defendants' claim
		(FPGA), a custom-designed semiconductor device, and a complex programmable- logic	construction positions and any testimony of
		device (CPLD). In certain embodiments, the logic	Defendants' expert(s)
		element of the circuit 40 is a custom device.	and witnesses.
		Sources of logic elements compatible with	and withesses.
		embodiments described herein include, but are	Simon Collin,
		not limited to, Lattice Semiconductor	Dictionary of Science
		Corporation of Hillsboro, Oreg., Altera	and Technology (2 nd ed.
		Corporation of San Jose, Calif., and Xilinx	2007) at 91.
		Incorporated of San Jose, Calif. In certain	2007) 11 71.
		embodiments, the logic element comprises	
		various discrete electrical elements, while in	

certain 50 other embodiments, the logic element comprises one or more integrated circuits. In certain embodiments, the circuit 40 further comprises one or more switches which are operatively coupled to the logic element to receive control signals from the logic element. Examples of switches compatible with certain embodiments described herein include, but are not limited to, field-effect transistor (FET) switches, such as the SN74AUCIG66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex.") Bruce L. Jacob, Synchronous DRAM Architectures, Organizations, and Alternative Technologies (2002) at 10. Hewlett-Packard, Memory Technology Evolution: An Overview of System Memory Technologies (2008) at 5.	Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
Authoritative Dictionary of IEEE Standards Terms (7th ed. 2000) at 127, 128.			comprises one or more integrated circuits. In certain embodiments, the circuit 40 further comprises one or more switches which are operatively coupled to the logic element to receive control signals from the logic element. Examples of switches compatible with certain embodiments described herein include, but are not limited to, field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available	Dictionary of Computer and Internet Terms, Vol. 1 (2016) at 75. Wiley Electrical and Electronics Engineering Dictionary at 85. Bruce L. Jacob, Synchronous DRAM Architectures, Organizations, and Alternative Technologies (2002) at 10. Hewlett-Packard, Memory Technology Evolution: An Overview of System Memory Technologies (2008) at 5. IEEE 100 The Authoritative Dictionary of IEEE Standards Terms (7th ed. 2000) at

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		FIG. 3A 1040 1020 114 1200 112 1200 112 1200 1200 112 1200 12	
		FIG. 3B	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		32a 104a 40 1114 30 102a 1114 120a 1112 120a 1112 120b 120b	
		7320 100 30 1020 114 112 FIG. 4B	
		8:57-9:17 ("In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which are coupled to the DQ data signal lines and the DQS data strobe signal lines. In certain such embodiments, each switch 120 comprises a data path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays FPGA), custom-designed semiconductor devices, and complex programmable- logic devices (CPLD). Example logic elements 122 are available from Lattice Semiconductor Corporation of Hillsboro, Oreg., Altera Corporation of San Jose, Calif., and Xilinx Incorporated of San Jose, Calif.") 9:65-11:36 ("An exemplary section of Verilog code corresponding to logic compatible with a circuit 40 which provides load isolation is listed below in Example 1. The exemplary code of	
		Example 1 corresponds to a circuit 40 comprising	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		six FET switches for providing load isolation to DQ and DQS lines [Table of Code]")	
		13:21-26 ("While in certain embodiments, the switches 130 are integral with a logic element of the circuit 40, in certain other embodiments, the switches 130 are separate components which are operatively coupled to a logic element 122 of the circuit 40, as schematically illustrated by FIG. 8D.")	
		CSo	
		FIG. 9A	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		CS ₀ A _{n+1} Command Signals BA ₀ -BA _m A ₀ -A _n FIG. 9B	
		Figs. 9A and 9B; 15:21-56 ("As schematically illustrated by FIGS. 9A and 9B, in certain embodiments, the circuit 40 receives a set of input command signals (e.g., refresh, precharge) and address signals (e.g., bank address signals, row address signals, column address signals, gated column address strobe signals, chip-select signals) from the memory controller 20 of the computer system. In response to the set of input address and command signals, the circuit 40 generates a set of output address and command signals In certain embodiments, the memory module 10 simulates a virtual memory module when the number of memory devices 30 of the memory	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		module 10 is larger than the number of memory devices 30 per memory module for 50 which the computer system is configured to utilize. In certain embodiments, the circuit 40 comprises logic (e.g., address decoding logic, command decoding logic) which translates between a system memory domain of the computer system and a physical memory domain of the memory module 10."	
		16:4-17:40 (logic tables)	
		22:58-23:16 ("The circuit 40 of certain embodiments provides substantially all of the translation logic used for the decoding (e.g., command and address decoding). In certain such embodiments, there is a fully transparent operational conversion from the "system memory" density domain of the computer system to the "physical memory" density domain of the memory module 10. In certain embodiments, the logic translation equations are programmed in the circuit 40 by hardware, while in certain other embodiments, the logic translation equations are programmed in the circuit 40 by software. Examples 1 and 2 provide exemplary sections of Verilog code compatible with certain embodiments described herein. As described more fully below, the code of Examples 1 and 2 includes logic to reduce potential problems due to "back-to-back"	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		adjacent read commands which cross memory device boundaries or "BBARX." Persons skilled in the art are able to provide additional logic translation equations compatible with embodiments described herein. An exemplary section of Verilog code compatible with memory density multiplication from 512 Mb to 1 Gb using DDR2 memory devices with the BA2 density transition bit is listed below in Example 2. The exemplary code of Example 2 corresponds to a circuit 40 which receives one chip-select signal from the computer system and which 15 generates two chip-select signals.")	
		23:20-26:60 (Verilog code) RAS/CAS/WE CSo CS1 A13 ENCAS 10 ENCAS	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		embodiments, the circuit 40 comprises a programmable-logic device (PLD) 42 and four "OR" logic elements 52, 54, 56, 58 electrically coupled to corresponding ranks 32a, 32b, 32 c, 32 d of memory devices 30. In certain embodiments, the PLD 42 comprises an ASIC, an FPGA, a custom-designed semiconductor device, or a CPLD. In certain embodiments, the PLD 42 and the four "OR" logic elements 52, 54, 56, 58 are discrete elements, while in other certain embodiments, they are integrated within a single integrated circuit. Persons skilled in the art can select an appropriate PLD 42 and appropriate "OR" logic elements 52, 54, 56, 58 in accordance with embodiments described herein. In the embodiment schematically illustrated by FIG. 11B, the PLD 42 transmits each of the four "enabled CAS" (ENCAS0 a, ENCAS0b, ENCAS1a, ENCAS1b) signals to a corresponding one of the "OR" logic elements 52, 54, 56, 58. The CAS signal is also transmitted to each of the four "OR" logic elements 52, 54, 56, 58. The CAS signal and the "enabled CAS" signals are "low" true signals. By selectively activating each of the four "enabled CAS" signals which are inputted into the four "OR" logic elements 52, 54, 56, 58, the PLD 42 is able to select which of the four ranks 32a, 32b, 32 c, 32 d is active")	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		Pg. 130: a buffer coupled between the at least one first memory integrated circuit and the data bus, and between the at least one second memory integrated circuit and the data bus, wherein the buffer is configured in response to the first memory command to provide a first data path between the at least one first memory integrated circuit and the data bus, wherein the buffer or cutputting the first data burst in response to the first memory command, and wherein the buffer is configured in response to the second memory command, and wherein the buffer is configured in response to the second data path between the at least one second memory integrated circuit and the data bus while the memory module is receiving or outputting the second data burst in response to the second memory command, the second data path being different from the first data path, and logic compled to the buffer and configured to respond to the first memory command by providing first control signals to the buffer to enable communication of the first data burst between	
"wherein the logic is further configured to respond to the second memory command by providing second control signals to the buffer to enable communication of the second data burst between the at least one second memory integrated circuit and the memory controller through the buffer, the second control signals being different from the first control signals" (Claim 1)	Plain and ordinary meaning, that is, the limitation does not require the first rank and second rank of memory integrated circuits to be on different forks and the term is not a 112(b) term.	Abstract ("The memory module further comprises logic providing first control signals to the buffer to enable communication of a first data burst between the memory controller and the at least one first memory integrated circuit through the buffer in response to a first memory command, and providing second control signals to the buffer to enable communication of a second data burst between the at least one second memory integrated circuit and the memory bus through the buffer in response to a second memory command.") 3:44-61 ("The logic is further configured to respond to the second memory command by providing second control signals to the buffer to	See evidence for "coupled to" and "respond to"/"in response to." See evidence for "logic coupled to" above.

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		between the at least one second memory integrated circuit and the memory controller through the buffer. The second control signals are different from the first control signals, a circuit is configured to be mounted on a memory module that is operable to communicate data with a memory controller via a data bus in response to memory commands received from the memory controller.")	
"in response to the first memory command, providing first control signal to a buffer to enable communication of the first data burst between the at least one first memory integrated circuit and the memory controller through the buffer"; and (Claim 21)	Plain and ordinary meaning, that is, the limitation does not require the first rank and second rank of memory integrated circuits to be on different forks and the term is not a 112(b) term.	From '215 patent Specification: 3:44-61 ("In certain embodiments, the buffer is coupled between the at least one first memory integrated circuit and the memory bus, and between the at least one second memory integrated circuit and the memory bus. The logic is configured to respond to the first memory command by providing first control signals to the buffer to enable communication of the first data burst between the at least one first memory integrated circuit and the memory controller through the buffer. The logic is further configured to respond to the second memory command by providing second control signals to the buffer to enable communication of the second data burst between the at least one second memory integrated circuit and the memory controller through the buffer. The second control signals are different from the first control	See evidence for "in response to"

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		signals, a circuit is configured to be mounted on a memory module that is operable to communicate data with a memory controller via a data bus in response to memory	
		commands received from the memory controller. 6:24.36 ("In certain ambadiments, the plurelity of	
		6:24-36 ("In certain embodiments, the plurality of memory devices 30 comprises a first number of memory devices 30. In certain such embodiments, the circuit 40 selectively isolates a second number of the memory devices 30 from	
		the computer system, with the second number less than the first number. In certain embodiments, the plurality of memory devices 30 are arranged in a first number of ranks. For	
		example, in certain embodiments, the memory devices 30 are arranged in two ranks, as schematically illustrated by FIG. 1. In other embodiments, the memory devices 30 are	
		arranged in four ranks. Other numbers of ranks of the memory devices 30 are also compatible with embodiments described herein."	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		320 320 1040 30 1040 114 1200 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120	
		7320 0050 1040 114 1000 1020 114 112 112 112 112 112	
		8:12-56 (" The memory modules 10 of FIGS. 4A and 4B comprises two ranks 32a, 32b, with each rank 32a, 32b having a corresponding set of DQ data signal lines and a corresponding set Of DQS data strobe lines. Other numbers of ranks (e.g., four ranks) of memory devices 30 of the memory module 10 are also compatible with	
		certain embodiments described herein. For simplicity, FIGS. 4A and 4B illustrate only a single DQ data signal line and a single DQS data strobe signal line from each rank 32. The circuit 40 of FIG. 4A selectively isolates one or more of the DQ data signal lines 102a, 102b of the two	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		ranks 32a, 32b from the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to the memory devices 30 of one or both of the ranks 32a, 32b via the DQ data signal lines 102a, 102b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102a of the first rank 32a and a second DQ data signal from the DQ data signal line 102b of the second rank 32b to be transmitted to the memory controller 20 via the common DQ data signal line 11")	
		FIG. 8B	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		FIG. 8C 320 1040 1020 1112	
		FIG. 8D 1020 1020 1120 120	
		12:25-66 ("FIGS. 8A-8D schematically illustrate circuit diagrams of example memory modules 10 comprising a circuit 40 which multiplexes the DQS data strobe signal lines 104a, 104b of two ranks 32a, 32b from one another in accordance with certain embodiments described herein. While the DQS data strobe signal lines 104a, 104b of FIGS. SA-SD correspond to two ranks 32a, 32b of memory devices 30, in certain other embodiments, the circuit 40 multiplexes the DQS data strobe signal	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		lines 104a, 104b corresponding to two individual memory devices.")	
		13:1-49 ("In certain embodiments, as schematically illustrated by FIG. 8B, the circuit 40 comprises a switch 130 which multiplexes the	
		DQS data strobe signal lines 104a, 104b from one another. For example, the circuit 40 receives a DQS data strobe signal from the common DQS	
		data strobe signal line 114 and selectively transmits the DQS data strobe signal to the first DQS data strobe signal line	
		104a, to the second DQS data strobe signal line 104b, or to both DQS data strobe signal lines 104a, 104b. As another example, the circuit 40	
		receives a first DQS data strobe signal from the first rank 32a of memory devices 30 and a second DQS data strobe signal from a second rank 32b of	
		memory devices 30 and selectively switches one of the first and second DQS data strobe signals to the common DQS data	
		strobe signal line 114The circuit 40 of certain embodiments controls the isolation of the DQS data strobe signal lines 104a, 104b by monitoring	
		commands received by the memory module 10 from the computer system and producing "windows" of operation whereby the appropriate	
		switches 130 are activated or deactivated to enable and disable the DQS data	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		strobe signal lines 104a, 104b to mitigate BARX collisions. In certain other embodiments, the circuit 40 monitors the commands received by the memory module 10 from the computer system and selectively activates or deactivates the switches 120 to enable and disable the DQ data signal lines 102a, 102b to reduce the load of the memory module 10 on the computer system. In still other embodiments, the circuit 40 performs both of these functions together.") 32:55-67 ("In certain embodiments, the memory module 400 comprises a plurality of memory devices configured in pairs, each pair having a first memory device 410 and a second memory device 420. For example, in certain embodiments, a 128 Mx72-bit DDR SDRAM high-density memory module400 comprises thirty-six 64 Mx4-bit DDR-1 SDRAM integrated circuits in FBGA packages configured in eighteen pairs. The first memory device 410 of each pair has the first DQS pin 412 electrically coupled to the second DQS pin 422 of the second memory device 420 of the pair. In addition, the first DQS pin 412 and the second DQS pin 422 are concurrently active when the first memory device 420 are concurrently enabled.")	
		From '215 Patent Prosecution History:	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		in response to the first memory command, providing a first data path first control signals to a buffer to enable communication of the first data burst between the at least one first memory integrated circuit and the memory controller through the buffer data bus while the memory command; and in response to the first memory command; and in response to the second memory command, providing a second data path second control signals to the buffer to enable communication of the second data burst between the at least one second memory integrated circuit and the memory controller through the buffer, the second control signals being different from the first control signals data bus while the memory module is receiving or outputting the second data burst in response to the second memory command, the second data path being different from the first data path.	
"in response to the second memory command, providing second control signals to the buffer to enable communication of the second data burst between the at least one second memory integrated circuit and the memory controller through the buffer, the second control signals being different from the first control signals"	Plain and ordinary meaning, that is, the limitation does not require the first rank and second rank of memory integrated circuits to be on different forks and the term is not a 112(b) term.	See above	See evidence for "burst" above. See evidence for "in response to."
(Claim 21) "the memory module has	Plain and ordinary	"In certain embodiments, the circuit 40 comprises	Netlist may rely on
an overall <i>CAS latency</i> " / "overall	meaning	the SPD device 240 which reports the CAS	expert testimony to explain the technology,

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
CAS latency of the memory module" (Claims 3, 4, 24, 25)		latency (CL) to the memory controller of the computer system. The SPD device 240 of certain embodiments reports a CL which has one more cycle than does the actual operational CL of the memory array The one-cycle time delay of certain such embodiments provides sufficient time for read and write data transfers to provide the functions of the data path multiplexer/demultiplexer." 16:22-17:13:	the state of the art at the time the applications leading to the '215/'417 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "CAS latency," "overall CAS latency of the memory module," and "actual operational CAS latency" of an SDRAM device. Netlist may also rely on the expert to respond to Defendants' claim construction positions
			and any testimony of Defendants' expert(s) and witnesses. Wiley Electrical and Electronics Engineering

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		TABLE 1 Com- State CS ₀ CS ₁ A _{n+1} mand CS _{0d} CS _{0R} CS _{1d} CS _{1R}	Dictionary (2004) at 532.
		State CS ₀ CS ₁ A _{n+1} mand CS _{0,d} CS _{0,d} CS _{1,d} CS _{1,R}	High Definition, An A to Z Guide to Personal Technology (2006) at 49. Micron DDR4 SDRAM
		A. Su formular involves 2 number of command signals that define operations such as refresh, precharge, and other operations. In Logic State 1: CS ₀ is active low, A _{n+1} is non-active, and	Datasheet, EDY4016A,
		Command is active. $CS_{0.d}$ is pulled low, thereby selecting Rank 0. In Logic State 2: CS_0 is active low, A_{n+1} is active, and Command is active. CS_{0B} is pulled low, thereby selecting Rank 1. In Logic State 3: CS_0 is active low, A_{n+1} is Don't Care, and Command is active high. $CS_{0.d}$ and $CS_{0.B}$ are pulled low, thereby selecting Ranks 0 and 1. In Logic State 4: CS_1 is active low, A_{n+1} is non-active, and Command is active. $CS_{1.d}$ is pulled low, thereby selecting Rank 2. In Logic State 5: CS_1 is active low, A_{n+1} is active, and Command is active. CS_1B is pulled low, thereby selecting Rank 3. In Logic State 6: CS_1 is active low, A_{n+1} is Don't Care, and Command is active. $CS_{1.d}$ and CS_1B are pulled low, thereby selecting Ranks 2 and 3. In Logic State 7: CS_0 and CS_1 are pulled non-active high, which deselects all ranks, i.e., $CS_{0.d}$, $CS_{0.B}$, $CS_{1.d}$, and $CS_{1.B}$ are pulled high.	Bruce L. Jacob, Synchronous DRAM Architectures, Organizations, and Alternative Technologies (2002) at 10. Hewlett-Packard, Memory technology evolution: an overview of system memory
		"The "Command" column of Table 1 represents the various commands that a memory device	technologies (2008) at 3, 4.
		(e.g., a DRAM device) can execute, examples of which include, but are not limited to, activation, read, write, precharge, and refresh."	JEDEC Terms, Definitions, and Letter
		17:13-35:	Symbols for Microcomputers,

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
Term, Phrase, or Clause		Table 2 provides a logic table compatible with certain embodiments described herein for the selection among ranks of memory devices 30 using gated CAS signals. TABLE 2 CS* RAS* CAS* WE* Density Dens	
		30:16-18 ("The DQS or data strobe is a bidirectional signal that is used during both read cycles and write cycles to validate or latch data.") 7:46-52 "While various figures of the present application denote read operations by use of DQ and DQS lines which have triangles pointing towards the memory controller, certain embodiments described herein are also compatible with write operations (e.g., as would	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
Term, Phrase, or Clause		be denoted by triangles on the DQ or DQS lines pointing away from the memory controller)." 20:22-47 ("In certain embodiments, the circuit 40 comprises the SPD device 240 which reports the CAS latency (CL) to the memory controller of the computer system. The SPD device 240 of certain embodiments reports a CL which has one more cycle than does the actual operational CL of the memory array. In certain embodiments, data transfers between the memory controller and the memory module are registered for one additional clock cycle by the circuit 40. The additional clock cycle of certain embodiments is added to the transfer time budget with an incremental overall CAS latency. This extra cycle of time in certain embodiments advantageously provides sufficient	
		time budget to add a buffer which electrically isolates the ranks of memory devices 30 from the memory controller 20. The buffer of certain embodiments comprises combinatorial logic, registers, and logic pipelines. In certain embodiments, the buffer adds a one-clock cycle time delay, which is equivalent to a registered DIMM, to accomplish the address decoding. The one-cycle time delay of certain such embodiments provides sufficient time for read and write data transfers to provide the functions of the data path multiplexer/demultiplexer").	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"actual operational CAS latency of each of the	Plain and ordinary meaning	See above	See evidence for "CAS latency" above.
plurality of memory integrated circuits" / "actual operational CAS latency of the memory integrated circuits"			
(Claims 3, 4, 24, 25)			
"burst of data strobe signals"	Plain and ordinary meaning	See '215 patent at 11:38-57 ("Due to their source synchronous nature, DDR SDRAM (e.g., DDR1, DDR2, DDR3) memory devices operate with a	See evidence for "burst" above.
(Claims 12, 13, 28, 29)		data transfer protocol which surrounds each burst of data strobes with a pre-amble time interval and a post-amble time interval. The pre-amble time interval provides a timing window for the receiving memory device to enable its data capture circuitry when a known valid level is present on the strobe signal to avoid false triggers of the memory device's capture circuit. The post-amble time interval provides extra time after the last strobe for this data capture to facilitate good signal integrity. In certain embodiments, when the computer system accesses two consecutive bursts of data from the same memory device, termed herein as a "back-to-back adjacent read," the post-amble time interval of the first read	See also JESD79 (IPR2023- 00455, EX1060). JESD79-2 (IPR2023- 00455, EX1064).

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		command and the pre-amble time interval of the	
		second read command are skipped by design	
		protocol to increase read efficiency. FIG. 6A	
		shows an exemplary timing diagram of this	
		"gapless" read burst for a back-to-back adjacent	
		read condition from one memory device."); id.	
		11:58-12:4 ("In certain embodiments, when the	
		second read command accesses data from a	
		different memory device than does the first read	
		command, there is at least one time interval (e.g.,	
		clock cycle) inserted between the data strobes of	
		the two memory devices. This inserted time	
		interval allows both read data bursts to occur	
		without the post-amble time interval of the first	
		read data burst colliding or otherwise interfering	
		with the pre-amble time interval of the second	
		read data burst. In certain embodiments, the	
		memory controller of the computer system inserts	
		an extra clock cycle between successive read	
		commands issued to different memory devices, as	
		shown in the exemplary timing diagram of FIG.	
		6B for successive read accesses from different	
		memory devices.").	
		See Fig. 6A, 6B; '215 patent 4:17-24 ("FIG. 6A	
		shows an exemplary timing diagram of a gapless	
		read burst for a back-to-back adjacent read	
		condition from one memory device. FIG. 6B	
		shows an exemplary timing diagram with an extra	
		clock cycle between successive read commands	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		issued to different memory devices for successive	
		read accesses from different memory devices.)	
		CX Command Read Postamble Postamble FIG. 6A	
		CK Command Read Resd DOS DQs 000 01) (020 (033)	
		FIG. GB	
		See also '215 patent 12:13-24 ("In certain	
		embodiments described herein in which the	
		number of ranks 32 of the memory module 10 is	
		doubled or quadrupled, the circuit 40 generates a	
		set of output address and command signals so	
		that the selection decoding is transparent to the	
		computer system. However, in certain such embodiments, there are memory device	
		boundaries of which the computer system is	
		unaware, so there are occasions in which	
		BBARX occurs without the cognizance of the	
		memory controller 20 of the computer system. As	
		shown in FIG. 7 , the last data strobe of memory	
		device "a" collides with the pre-amble time	
		interval of the data strobe of memory device "b,"	
		resulting in a "collision window.")	
		See also '215 patent Fig. 7:	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		clack cernmand lett s test b collision window strobe c data a data b combined data b	
		See '215 patent at 12:25-13:15 (FIGS. 8A-8D schematically illustrate circuit diagrams of example memory modules 10 comprising a circuit 40 which multiplexes the DQS data strobe signal lines 104 a , 104 b of two ranks 32 a , 32 b from one another in accordance with certain embodiments described herein. While the DQS data strobe signal lines 104 a , 104 b of FIGS. 8A-8D correspond to two ranks 32 a , 32 b of memory devices 30 , in certain other embodiments, the circuit 40 multiplexes the DQS data strobe signal lines 104 a , 104 b corresponding to two individual memory devices 30 a , 30 b.	
		FIG. 8A schematically illustrates a circuit diagram of an exemplary memory module 10 comprising a circuit 40 in accordance with certain embodiments described herein. In certain embodiments, BBARX collisions are avoided by a mechanism which electrically isolates the DQS data strobe signal lines 104 a, 104 b from one	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		another during the transition from the first read data burst of one rank 32 a of memory devices 30 to the second read data burst of another rank 32 b of memory devices 30.	
		In certain embodiments, as schematically illustrated by FIG. 8A, the circuit 40 comprises a first switch 130 a electrically coupled to a first DQS data strobe signal line 104 a of a first rank 32 a of memory devices 30 and a second switch 130 b electrically coupled to a second DQS data strobe signal line 104 b of a second rank 32 b of memory devices 30. In certain embodiments, the time for switching the first switch 130 a and the second switch 130 b is between the two read data bursts (e.g., after the last DQS data strobe of the read data burst of the first rank 32 a and before the first DQS data strobe of the read data burst for the first rank 32 a, the first switch 130 a is enabled. After the last DQS data strobe of the first rank 32 a and before the first DQS data strobe of the second rank 32 b, the first switch 130 a is disabled and the second switch 130 b is enabled.	
		As shown in FIG. 8A , each of the ranks 32 a , 32 b otherwise involved in a BBARX collision have their DQS data strobe signal lines 104 a , 104 b selectively electrically coupled to the common	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		DQS line 114 through the circuit 40. The circuit	
		40 of certain embodiments multiplexes the DQS	
		data strobe signal lines 104 a, 104 b of the two	
		ranks 32 a, 32 b of memory devices 30 from one	
		another to avoid a BBARX collision.	
		In certain embodiments, as schematically	
		illustrated by FIG. 8B , the circuit 40 comprises a	
		switch 130 which multiplexes the DQS data	
		strobe signal lines 104 a, 104 b from one another.	
		For example, the circuit 40 receives a DQS data	
		strobe signal from the common DQS data strobe	
		signal line 114 and selectively transmits the DQS	
		data strobe signal to the first DQS data strobe	
		signal line 104 a, to the second DQS data strobe	
		signal line 104 b, or to both DQS data strobe	
		signal lines 104 a, 104 b. As another example,	
		the circuit 40 receives a first DQS data strobe signal from the first rank 32 a of memory devices	
		30 and a second DQS data strobe signal from a	
		second rank 32 b of memory devices 30 and	
		selectively switches one of the first and second	
		DQS data strobe signals to the common DQS	
		data strobe signal line 114)	
		See '215 patent at 6:60-7:13; Figure 2 ("FIG. 2	
		schematically illustrates a circuit diagram of two	
		memory devices 30 a, 30 b of a conventional	
		memory module showing the interconnections	
		between the DQ data signal lines 102 a, 102 b of	
		the memory devices 30 a, 30 b and the DQS data	

strobe signal lines 104 a, 104 b of the memory devices 30 a, 30 b. Each of the memory devices 30 a, 30 b has a plurality of DQ data signal lines and a plurality of DQS data strobe signal lines, however, for simplicity, FIG. 2 only illustrates a single DQ data signal line and a single DQS data strobe signal line for each memory device 30 a, 30 b. The DQ data signal lines 102 a, 102 b and the DQS data strobe signal lines 104 a, 104 b are typically conductive traces etched on the printed circuit board of the memory module. As shown in FIG. 2, each of the memory devices 30 a, 30 b has their DQ data signal lines 102 a, 102 b electrically coupled to a common DQ line 112 and their DQS data strobe signal lines 104 a, 104 b electrically coupled to a common DQS line 114. The common DQS line 112 and the common	Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
Thus, the computer system is exposed to the loads of both memory devices 30 a, 30 b concurrently.") See '215 patent at 3:11-61; 4:35-59 See '215 patent at 30:16-23 ("The DQS or data strobe is a bi-directional signal that is used during both read cycles and write cycles to validate or latch data. As used herein, the terms "tying			devices 30 a , 30 b . Each of the memory devices 30 a , 30 b has a plurality of DQ data signal lines and a plurality of DQS data strobe signal lines, however, for simplicity, FIG. 2 only illustrates a single DQ data signal line and a single DQS data strobe signal line for each memory device 30 a , 30 b . The DQ data signal lines 102 a , 102 b and the DQS data strobe signal lines 104 a , 104 b are typically conductive traces etched on the printed circuit board of the memory module. As shown in FIG. 2, each of the memory devices 30 a , 30 b has their DQ data signal lines 102 a , 102 b electrically coupled to a common DQ line 112 and their DQS data strobe signal lines 104 a , 104 b electrically coupled to a common DQS line 114 . The common DQ line 112 and the common DQS line 114 are electrically coupled to the memory controller 20 of the computer system. Thus, the computer system is exposed to the loads of both memory devices 30 a , 30 b concurrently.") See '215 patent at 3:11-61; 4:35-59 See '215 patent at 3:11-61; 4:35-59 See '215 patent at 3:11-61; 4:35-59	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		configuration in which corresponding pins (e.g., DQS pins) of two memory devices are electrically connected together and are concurrently active when the two memory devices are concurrently enabled (e.g., by a common chip-select or CS signal). See also IPR2022-00745, Paper 19 at 27, 39 (indicating "Two bursts of two strobe signals"); id. at 41 ("Claim 22,8 which depends on claim 15, recites that "the first burst of N-bit wide data signals and the first burst of data strobes are transferred between the first N-bit wide rank and the memory controller at a specified data rate." Ex. 1001, Claim 22 (emphasis added). For N-bit wide data signals and data strobes to be transferred between the first N-bit wide rank and the memory controller in the context of claim 22, the data signals and strobes must be transferred (1) into and out of the first N-bit wide rank, (2) through the circuitry (Limitation [15.9]), and (3) out of and in to the memory module to and from the memory controller. Ex. 2003, ¶63. And according to claim 22, that transfer must occur at a single, specified data rate. Id. This is generally shown below as applied to Fig. 4A of the '314 Patent, wherein "a specified data rate" has been assigned a value of 1 for illustrative purposes. ").	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"the at least one of the circuit components" (Claim 15)	Plain and ordinary meaning	See Claim 14 (which claim 15 is dependent on) ("14. The memory module of claim 1, wherein the buffer includes circuit components configurable to provide a first data path or a second data path depending on whether the first rank or the second rank is selected to communicate data with the memory controller."); Claim 1 ("a buffer coupled between the at least one first memory integrated circuit and the memory bus, and between the at least one second memory integrated circuit and the memory bus, and between the at least one second memory integrated circuit and the memory bus, and between the at least one second memory bus, and between the at least one second memory integrated circuit and the memory bus. The logic is configured to respond to the first memory command by providing first control signals to the buffer to enable communication of the first data burst between the at least one first memory integrated circuit and the memory controller through the buffer. The logic is further configured to respond to the second memory command by providing second control signals to the buffer to enable communication of the second data burst between	Evidence
		the at least one second memory integrated circuit and the memory controller through the buffer.	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
	Construction	The second control signals are different from the first control signals, a circuit is configured to be mounted on a memory module that is operable to communicate data with a memory controller via a data bus in response to memory commands received from the memory controller.") See also '215 patent at 14:37-60 ([0074] In certain embodiments, as schematically illustrated in FIG. 9A, the memory module 10 further comprises a phase-lock loop device 220 coupled to the printed circuit board 210 and a register 230 coupled to the printed circuit board 210. In certain embodiments, the phase-lock loop device 220 and the register 230 are each mounted on the printed circuit board 210. In response to signals received from the computer system, the phase-lock loop device 220 transmits clock signals to the plurality of memory devices 30, the circuit 40, and the register 230. The register 230 receives and buffers a plurality of command signals and address signals, column address signals, row address signals, column address signals, gated column address strobe signals, chip-select signals), and transmits corresponding signals to the appropriate memory devices 30. In certain embodiments, the register 230 comprises a plurality of	Lvidence
		register devices. While the phase-lock loop device 220, the register 230, and the circuit 40	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		are described herein in certain embodiments as being separate components, in certain other embodiments, two or more of the phase-lock loop device 220, the register 230, and the circuit 40 are portions of a single component. Persons skilled in the art are able to select a phase-lock loop device 220 and a register 230 compatible with embodiments described herein) See also '215 patent at 14:61-15:3 ([0075] In	
		certain embodiments, the memory module 10 further comprises electrical components which are electrically coupled to one another and are surface-mounted or embedded on the printed circuit board 210. These electrical components can include, but are not limited to, electrical conduits, resistors, capacitors, inductors, and transistors. In certain embodiments, at least some of these electrical components are discrete, while in other certain embodiments, at least some of these electrical components are constituents of one or more integrated circuits.)	
		See also '215 patent at 20:22-47 ("In certain embodiments, the circuit 40 comprises the SPD device 240 which reports the CAS latency (CL) to the memory controller of the computer system. The SPD device 240 of certain embodiments reports a CL which has one more cycle than does the actual operational CL of the memory array. In	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		certain embodiments, data transfers between the	
		memory controller and the memory module are	
		registered for one additional clock cycle by the	
		circuit 40 . The additional clock cycle of certain	
		embodiments is added to the transfer time budget	
		with an incremental overall CAS latency. This	
		extra cycle of time in certain embodiments	
		advantageously provides sufficient time	
		budget to add a buffer which electrically	
		isolates the ranks of memory devices 30 from	
		the memory controller 20. The buffer of	
		certain embodiments comprises combinatorial	
		logic, registers, and logic pipelines. In certain	
		embodiments, the buffer adds a one-clock cycle	
		time delay, which is equivalent to a registered	
		DIMM, to accomplish the address decoding. The	
		one-cycle time delay of certain such	
		embodiments provides sufficient time for read	
		and write data transfers to provide the functions	
		of the data path multiplexer/demultiplexer. Thus,	
		for example, a DDR2 400-MHz memory system	
		in accordance with embodiments described herein	
		has an overall CAS latency of four, and uses	
		memory devices with a CAS latency of three. In	
		still other embodiments, the SPD device 240 does	
		not utilize this extra cycle of time.").	
		See also '215 patent at 5:18-32 ("FIG. 1	
		schematically illustrates an example memory	
		module 10 compatible with certain embodiments	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		described herein. The memory module 10 is	
		connectable to a memory controller 20 of a	
		computer system (not shown). The memory	
		module 10 comprises a plurality of memory	
		devices 30, each memory device 30 having a	
		corresponding load. The memory module 10	
		further comprises a circuit 40 electrically coupled	
		to the plurality of memory devices 30 and	
		configured to be electrically coupled to the	
		memory controller 20 of the computer system.	
		The circuit 40 selectively isolates one or more of	
		the loads of the memory devices from the	
		computer system. The circuit 40 comprises logic	
		which translates between a system memory	
		domain of the computer system and a physical	
		memory domain of the memory module 10.")	
		See also '215 patent at 6:29-59 ([0046] In certain	
		embodiments, the circuit comprises a logic	
		element selected from a group consisting of: a	
		programmable-logic device (PLD), an	
		application-specific integrated circuit (ASIC), a	
		field-programmable gate array (FPGA), a	
		custom-designed semiconductor device, and a	
		complex programmable-logic device (CPLD). In	
		certain embodiments, the logic element of the	
		circuit 40 is a custom device. Sources of logic	
		elements compatible with embodiments described	
		herein include, but are not limited to, Lattice	
		Semiconductor Corporation of Hillsboro, Oreg.,	

Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
	Altera Corporation of San Jose, Calif., and Xilinx	
	Incorporated of San Jose, Calif. In certain	
	embodiments, the logic element comprises	
	various discrete electrical elements, while in	
	certain other embodiments, the logic element	
	comprises one or more integrated circuits. [0047]	
	In certain embodiments, the circuit 40 further	
	comprises one or more switches which are	
	operatively coupled to the logic element to	
	receive control signals from the logic element.	
	Examples of switches compatible with certain	
	embodiments described herein include, but are	
	not limited to, field-effect transistor (FET)	
	switches, such as the SN74AUC1G66 single	
	bilateral analog switch available from Texas	
	Instruments, Inc. of Dallas, Tex."). See also '215	
	patent at 7:53-8:10; 8:38-56 ("[0051] For	
	example, in certain embodiments, the circuit 40	
	comprises a pair of switches 120 a, 120 b on the	
	DQ data signal lines 102 a, 102 b as	
	schematically illustrated by FIG. 3A . Each	
	switch 120 a, 120 b is selectively actuated to	
	selectively electrically couple the DQ data signal	
	line 102 a to the common DQ signal line 112, the	
	DQ data signal line 102 b to the common DQ	
	signal line 112, or both DQ data signal lines 102	
	a, 102 b to the common DQ signal line 112 . In certain other embodiments, the circuit 40	
	comprises a switch 120 electrically coupled to	
	both of the DQ data signal lines 102 a, 102 b, as	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		schematically illustrated by FIG. 3B. The switch 120 is selectively actuated to selectively electrically couple the DQ data signal line 102 a to the common DQ signal line 112, the DQ data signal line 102 b to the common DQ signal line 112, or both DQ signal lines 102 a, 102 b to the common DQ signal line 112. Circuits 40 having other configurations of switches are also compatible with embodiments described herein. While each of the memory devices 30 a, 30 b has a plurality of DQ data signal lines and a plurality of DQS data strobe signal lines, FIGS. 3 A and 3 B only illustrate a single DQ data signal line and a single DQS data strobe signal line for each memory device 30 a, 30 b for simplicity. The configurations schematically illustrated by FIGS. 3A and 3B can be applied to all of the DQ data signal lines and DQS data strobe signal lines of the memory module 10.").	
		See also '215 patent at 8:57-9:17 ([0054] In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which are coupled to the DQ data signal lines and the DQS data strobe signal lines. In certain such embodiments, each switch 120 comprises a data path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and complex programmable-logic devices (CPLD). Example logic elements 122 are available from Lattice Semiconductor Corporation of Hillsboro, Oreg., Altera Corporation of San Jose, Calif., and Xilinx Incorporated of San Jose, Calif.)	
		See also '215 patent at 9:18-43 ("In certain embodiments, the load isolation provided by the circuit 40 advantageously allows the memory module 10 to present a reduced load (e.g.,	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		electrical load, such as capacitive load, inductive load, or impedance load) to the computer system by selectively switching between the two ranks of memory devices 30 to which it is coupled. This feature is used in certain embodiments in which the load of the memory module 10 may otherwise limit the number of ranks or the number of memory devices per memory module. In certain embodiments, the memory module 10 operates as having a data path rank buffer which advantageously isolates the ranks of memory devices 30 of the memory module 10 from one another, from the ranks on other memory modules, and from the computer system. This data path rank buffer of certain embodiments advantageously provides DQ-DQS paths for each rank or sets of ranks of memory devices which are separate from one another, or which are separate from the memory controller of the computer system. In certain embodiments, the load isolation advantageously diminishes the effects of capacitive loading, jitter and other sources of noise. In certain embodiments, the load isolation advantageously simplifies various other aspects of operation of the memory module 10, including but not limited to, setup-and-hold time, clock skew, package skew, and process, temperature, voltage, and transmission line variations.").	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		See also '215 patent at 12:44-59 ([0066] In certain embodiments, as schematically illustrated by FIG. 8A, the circuit 40 comprises a first switch 130 a electrically coupled to a first DQS data strobe signal line 104 a of a first rank 32 a of memory devices 30 and a second switch 130 b electrically coupled to a second DQS data strobe signal line 104 b of a second rank 32 b of memory devices 30. In certain embodiments, the time for switching the first switch 130 a and the second switch 130 b is between the two read data bursts (e.g., after the last DQS data strobe of the read data burst of the first rank 32 a and before the first DQS data strobe of the read data burst for the first rank 32 a, the first switch 130 a is enabled. After the last DQS data strobe of the first rank 32 a and before the first DQS data strobe of the second rank 32 b, the first switch 130 a is disabled and the second switch 130 b is enabled.)	
		See also '215 patent at 13:16-35 ([0069] In certain embodiments, the circuit 40 also provides the load isolation described above in reference to FIGS. 1-5. For example, as schematically illustrated by FIG. 8C, the circuit 40 comprises both the switch 120 for the DQ data signal lines 102 a , 102 b and the switch 130 for the DQS data strobe signal lines 104 a , 104 b . While in certain	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		embodiments, the switches 130 are integral with a logic element of the circuit 40, in certain other embodiments, the switches 130 are separate components which are operatively coupled to a logic element 122 of the circuit 40, as schematically illustrated by FIG. 8D. In certain such embodiments, the control and timing of the switch 130 is performed by the circuit 40 which is resident on the memory module 10. Example switches 130 compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex., and multiplexers, such as the SN74AUC2G53 2:1 analog multiplexer/demultiplexer available from Texas Instruments, Inc. of Dallas, Tex.)	
		See also '215 patent at 15:30-56 ([0079] In certain embodiments, the set of output address and command signals corresponds to a first number of ranks in which the plurality of memory devices 30 of the memory module 10 are arranged, and the set of input address and command signals corresponds to a second number of ranks per memory module for which the computer system is configured. The second number of ranks in certain embodiments is smaller than the first number of ranks. For	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		example, in the exemplary embodiment as schematically illustrated by FIG. 9A, the first number of ranks is four while the second number of ranks is two. In the exemplary embodiment of FIG. 9B, the first number of ranks is two while the second number of ranks is one. Thus, in certain embodiments, even though the memory module 10 actually has the first number of ranks of memory devices 30, the memory module 10 simulates a virtual memory module by operating as having the second number of ranks of memory devices 30. In certain embodiments, the memory module 10 simulates a virtual memory module when the number of memory devices 30 of the memory module 10 is larger than the number of memory devices 30 per memory module for which the computer system is configured to utilize. In certain embodiments, the circuit 40 comprises logic (e.g., address decoding logic, command decoding logic) which translates between a system memory domain of the computer system and a physical memory domain of the memory module 10)	
		See also '215 patent at 28:9-26 ([0147] FIG. 10B schematically illustrates an exemplary circuit 40 compatible with embodiments described herein. The circuit 40 is used for a memory module 10 comprising pairs of "×4" memory devices 30 which mimic individual "×8" memory devices. In	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		certain embodiments, each pair has the respective DQS pins of the memory devices 30 tied together. In certain embodiments, as schematically illustrated by FIG. 10B, the circuit 40 comprises a programmable-logic device (PLD) 42, a first multiplexer 44 electrically coupled to the first rank 32 a of memory devices 30, and a second multiplexer 46 electrically coupled to the second rank 32 b of memory devices 30. In certain embodiments, the PLD 42 and the first and second multiplexers 44, 46 are discrete elements, while in other certain embodiments, they are integrated within a single integrated circuit. Persons skilled in the art can select an appropriate PLD 42, first multiplexer 44, and second multiplexer 46 in accordance with embodiments described herein.)	
		See also '215 patent at 29:27-30:3 ([0153] To access the additional memory density of the high-density memory module 10, the two chip-select signals (CS0, CS1) are used with other address and command signals to gate a set of four gated CAS signals. For example, to access the additional ranks of four-rank 1-GB 128 M×8-byte DDR-1 DRAM memory module, the CS0 and CS1 signals along with the other address and command signals are used to gate the CAS signal appropriately, as schematically illustrated by	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
	Construction	FIG. 11A. FIG. 11B schematically illustrates an exemplary circuit 40 compatible with embodiments described herein. In certain embodiments, the circuit 40 comprises a programmable-logic device (PLD) 42 and four "OR" logic elements 52, 54, 56, 58 electrically coupled to corresponding ranks 32 a, 32 b, 32 c, 32 d of memory devices 30. [0154] In certain embodiments, the PLD 42 comprises an ASIC, an FPGA, a custom-designed semiconductor device, or a CPLD. In certain embodiments, the PLD 42 and the four "OR" logic elements 52, 54, 56, 58 are discrete elements, while in other certain embodiments, they are integrated within a single integrated circuit. Persons skilled in the art can select an appropriate PLD 42 and appropriate "OR" logic elements 52, 54, 56, 58 in accordance with embodiments described herein [0155] In the embodiment schematically illustrated by FIG. 11B, the PLD 42 transmits each of the four "enabled CAS" (ENCAS0 a, ENCAS0 b, ENCAS1 a, ENCAS1 b) signals to a corresponding one of the "OR" logic elements 52, 54, 56, 58. The CAS signal is also transmitted to each of the four "OR" logic elements 52, 54, 56, 58. The CAS signal and the "enabled CAS" signals are "low" true signals. By selectively activating each of the four "enabled CAS" signals which are inputted into the four "OR" logic	Evidence
		elements 52 , 54 , 56 , 58 , the PLD 42 is able to	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		select which of the four ranks 32 a , 32 b , 32 c , 32 d is active. [0156] In certain embodiments, the PLD 42 uses sequential and combinatorial logic procedures to produce the gated CAS signals which are each transmitted to a corresponding one of the four ranks 32 a , 32 b , 32 c , 32 d . In certain other embodiments, the PLD 42 instead uses sequential and combinatorial logic procedures to produce four gated chipselect signals (e.g., CS0 a, CS0 b, CS1 a, and CS1 b) which are each transmitted to a corresponding one of the four ranks 32 a, 32 b, 32 c , 32 d.)	
		See also Fig. 3A, 3B, 4A, 4B, 5A-5D, 8A, 8B, 9A, 9B, 10B; 11A-B; See also IPR2023-00455 paper 1 (petition) at 80 ("Furthermore, a POSITA would have understood that, because interfaces 520a/b, 510, and 590 include transceivers (e.g., 575), and because multiplexer/demultiplexer circuit 597 (e.g., in 591) contains "multiplexing logic and demultiplexing logic," Perego's buffer device includes logic that sends "control signals" to the transceivers, multiplexing/demultiplexing circuits, and to the input and output latches to selectively activate those circuit elements of the buffer according to the targeted rank and direction of the read and write operations."	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		EX1003, ¶318-319; EX1071, 14:62-15:6 ("The	
		address of the transaction will determine which	
		target subset of channels 370 will be utilized for	
		the data transfer portion of the transaction."),	
		17:41-44 ("The multiplexing logic is used during	
		read operations, and the demultiplexing logic is	
		used during write operations"), 17:61-62,	
		Figs.5A-5B.); IPR2023-00455 paper 1 (petition)	
		at 107-110 ("Ground 1 teaches, as explained	
		above for [1.d.2]-[1.d.3], [1.e.], [1.f.1]-[1.f.2]	
		(pp.63-80), "[t]he memory module of claim 1 ,	
		wherein the buffer includes circuit components	
		[e.g., in multiplexers 530a and 530b, and	
		interfaces 520a, 520b and 510 or 590 (and	
		respective transceivers in those interfaces),	
		shown below] configurable to provide a first data	
		path [e.g., to interface 520a for the channel 370	
		to the first rank, green, below] or a second data	
		path [e.g., to interface 520b for the channel 370	
		to the second rank, blue, below] depending on	
		whether the first rank or the second rank is	
		selected to communicate data with the memory	
		controller." EX1003, ¶483-488); ("Ground 1	
		teaches, as explained above for [1.d.2]-[1.d.3],	
		[1.e.], [1.f.1]-[1.f.2] (pp.63-80), "[t] he memory	
		module of claim 14, the [5] at least one of the	
		circuit components [from claim 14 (pp.107-109)]	
		is configured to provide the first data path [from claim 14 (pp.107-109)] in response to the first	
		7- 1	
		control signals [from [1.f.1] (pp.76-80)], and is	

Case 2:22-cv-00293-JRG Document 94-1 Filed 07/13/23 Page 90 of 128 PageID #: 6313

Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
	configured to provide the second data path [from claim 14 (pp.107-109)] in response to the second	
	control signals [from [1.f.2] (pp.76-80)]."	
	-	Construction configured to provide the second data path [from claim 14 (pp.107-109)] in response to the second

3. U.S. Patent No. 11,093,417

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"rank"	See the same term for		
(All claims)	the '912 and '215 patents		

See'417, 2:47-58 ("The DRAM devices of a memory module are generally arranged as ranks or rows of memory, each rank of memory generally having a bit width. For example, a memory module in which each rank of the memory module is 64 bits wide is described as having an "×64" organization. Similarly, a memory module having 72-bit-wide ranks is described as having an "×72" organization.

The memory capacity of a memory module increases with the number of memory devices. The number of memory devices of a memory module can be increased by increasing the number of memory devices per rank or by increasing the number of ranks.")

'417, FIGS 1, 4A-4B, 5C-5D, 8A-9B, 10A, 11A and accompanying descriptions (depicting ranks 32a/b/c/d with memory devices 30):

FIG. 1

FIG. 9A

	See the same term for the '912 patent.		
"operable in a computer system to communicate data" (Claim 1)	Plain and ordinary meaning	'417 at Abstract ("A memory module operable to communicate data with a memory controller via a N-bit wide memory bus comprises memory devices arranged in a plurality of N-bit wide ranks.")	See the same term in the '215 patent.

'417 at 3:18-28 ("A memory module is operable in a computer system to communicate data with a memory controller of the computer system via a N-bit wide memory bus in response to read or write memory commands received from the memory controller. The memory bus includes address and control signal lines and data signal lines. According to some embodiments, the memory module comprises a printed circuit board having a plurality of edge connections configured to be	· · · · · · · · · · · · · · · · · · ·
electrically coupled to a corresponding plurality of contacts of a module slot of the computer system, and memory devices mounted on the printed circuit board.")	f
'417, cl. 1 ("A memory module operable in a computer system to communicate data with a memory controller of the computer system via a N-bit wide memory bus in response to read or write memory commands received from the memory controller the memory bus including address and control signal lines and data	
signal lines, the memory module comprising: a printed circuit board having a plurality of edge	

		C* 1 1	
		connections configured to be	
		electrically coupled to a	
		corresponding plurality of contacts of	
		a module slot of the computer	
		system;")	
"data buffer control signals"	Plain and ordinary meaning	'417 at Abstract ("The memory	Netlist may
		module further comprises logic	rely on expert
(Claims 1, 3, 11)		configurable to receive a set of input	testimony to
		address and control signals	explain the
		associated with a read or write	technology, the
		memory command and output	state of the art
		registered address and control signals	at the time the
		and data buffer control signals	applications
		The circuitry is configurable to	leading to the
		enable registered transfers of N-bit	'215/'417
		wide data signals associated with the	patents were
		memory read or write command	filed, the level
		between the N-bit wide memory bus	of ordinary
		and the memory devices in response	skill in the
		to the data buffer control signals and	relevant art,
		in accordance with an overall CAS	and the
		latency of the memory module,	meaning of
		which is greater than an actual	this claim
		operational CAS latency of the	element to a
		memory devices.")	person of
		memory devices.	ordinary skill
		'417, 3:50-52 ("The logic is further	in the art at the
		configurable to output data buffer	time of the
		control signals in response to the	invention. For
		read or write memory command.")	example, the
		read of write memory command.	example, the expert may
		'417, 4:1-6("The circuitry is	testify as to the
			•
		configurable to transfer the burst of	understanding

N-bit wide data signals between the	by a POSITA
N-bit wide memory bus and the	of the term
memory devices in the one of the	"signal" and
plurality of N-bit wide ranks in	"data buffer
response to the data buffer control	control
signals and in accordance with an	signals."
overall CAS latency of the memory	8
module.")	Netlist may
'417, 4:23-29 ("In some	also rely on the
embodiments, the circuitry includes	expert to
data paths, and the circuitry is	respond to
configured to enable the data paths in	Defendants'
response to the data buffer control	claim
signals so that the N-bit wide data	construction
signals are transferred via the data	positions and
paths. In some embodiments, the data	any testimony
paths are disabled when no data	of Defendants'
signals associated with any memory	expert(s) and
command are being transferred	witnesses.
through the circuitry.")	
	See also
'417, 7:32-35 ("In certain	extrinsic
embodiments, the circuit 40 further	evidence for
comprises one or more switches	"signal."
which are operatively coupled to the	
logic element to receive control	
signals from the logic element.")	
'417, 9:37-50 ("In the example	
embodiments schematically	
illustrated by FIGS. 3A, 3B, 4A, and	
4B, the circuit 40 comprises a logic	
element which is integral with and	

	comprises the switches 120 which are coupled to the DQ data signal lines and the DQS data strobe signal lines. In certain such embodiments, each switch 120 comprises a data path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line.")	
	See also, e.g.: '417, 4:56-60 ("FIGS. 4A and 4B schematically illustrate example memory modules having a circuit which selectively isolates one or both of the DQ data signal lines of the two ranks of memory devices from the computer system in accordance with certain embodiments described herein.")	

'417, 5:16-18 ("FIG. 9B schematically illustrates an example memory module with two ranks of memory devices compatible with certain embodiments described herein.")
'417, 7:10-13 ("In certain embodiments, the plurality of memory devices 30 are arranged in a first number of ranks. For example, in certain embodiments, the memory devices 30 are arranged in two ranks, as schematically illustrated by FIG. 1.")
'417, 8:65-9:9 ("The memory modules 10 of FIGS. 4A and 4B comprises two ranks 32 <i>a</i> , 32 <i>b</i> , with each rank 32 <i>a</i> , 32 <i>b</i> having a corresponding set of DQ data signal lines and a corresponding set of DQS data strobe lines The circuit 40 of FIG. 4A selectively isolates one or more of the DQ data signal lines 102 <i>a</i> , 102 <i>b</i> of the two ranks 32 <i>a</i> , 32 <i>b</i> from the computer system.")
'417, 10:5-11 ("In certain embodiments, the load isolation provided by the circuit 40 advantageously allows the memory module 10 to present a reduced load

"circuitry coupled between the data signal lines in the N-bit wide memory bus and corresponding data pins of memory devices in each of the plurality of N-bit wide ranks, the circuitry being configurable to transfer the burst of N-bit wide data signals between the N-bit wide	Plain and ordinary meaning, that is, the limitation does not require the first rank and second rank of memory integrated circuits to be on different forks and the term is not a 112(b) term.	(e.g., electrical load, such as capacitive load, inductive load, or impedance load) to the computer system by selectively switching between the two ranks of memory devices 30 to which it is coupled.") 14:37-46 ("FIGS. 8A-8D schematically illustrate circuit diagrams of example memory modules 10 comprising a circuit 40 which multiplexes the DQS data strobe signal lines 104 a, 104 b of two ranks 32 a, 32 b from one another in accordance with certain embodiments described herein. While the DQS data strobe signal lines 104 a, 104 b of FIGS. 8A-8D correspond to two ranks 32 a, 32 b of memory devices 30, in certain other embodiments, the circuit 40 multiplexes the DQS data strobe signal lines 104 a, 104 b corresponding to two individual memory devices 30 a, 30 b.") See evidence for "data buffer control signals" above. '417, 3:644:6 ("In some embodiments, the memory module further comprises circuitry coupled between the data signal lines in the N-bit wide memory bus and	See extrinsic evidence for "burst" and "in response to."
--	---	--	--

memory bus and the memory devices	corresponding data pins of memory
in the one of the plurality of N-bit	devices in each of the plurality of N-
wide ranks in response to the data	bit wide ranks. The circuitry is
buffer control signal"	configurable to transfer the burst of
	N-bit wide data signals between the
(Claim 1)	N-bit wide memory bus and the
,	memory devices in the one of the
	plurality of N-bit wide ranks in
	response to the data buffer control
	signals and in accordance with an
	overall CAS latency of the memory
	module.")
	Interest)
	'417, 4:23-45 ("In some
	embodiments, the circuitry includes
	data paths, and the circuitry is
	configured to enable the data paths in
	response to the data buffer control
	signals so that the N-bit wide data
	signals are transferred via the data
	paths. In some embodiments, the data
	paths are disabled when no data
	signals associated with any memory
	command are being transferred
	through the circuitry. In some
	embodiments, the read or write
	command is a write memory
	command, wherein the burst of N-bit
	wide data signals include a respective
	series of write data bits received by
	the circuitry from a respective one of
	the data signal lines, and wherein the

respective series of write data bits are successively transferred via a respective one of the data paths.")
Figs 3A-5D and accompanying descriptions, e.g.,
DOSO 1040 114 1200 1120 1120 1120 1120 1120
70 30a 00a 102a 114 DOSS 104b 102b 1120

module 10 compatible with certain embodiments described herein comprises a circuit 40 which selectively isolates one or both of the DQ data signal lines 102 a, 102 b of the two memory devices 30 a, 30 b from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal lines 102 a a for the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 a for a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which are coupled to the DQ data signal		
comprises a circuit 40 which selectively isolates one or both of the DQ data signal lines 102 a, 102 b of the two memory devices 30 a, 30 b from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	module 10 compatible with certain	
selectively isolates one or both of the DQ data signal lines 102 a, 102 b of the two memory devices 30 a, 30 b from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 a of the first memory device 30 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	embodiments described herein	
DQ data signal lines 102 a, 102 b of the two memory devices 30 a, 30 b from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	comprises a circuit 40 which	
the two memory devices 30 a, 30 b from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal from the DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	selectively isolates one or both of the	;
from the common DQ data signal line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	DQ data signal lines 102 <i>a</i> , 102 <i>b</i> of	
line 112 coupled to the computer system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	the two memory devices 30 a, 30 b	
system. Thus, the circuit 40 selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	from the common DQ data signal	
selectively allows a DQ data signal to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	line 112 coupled to the computer	
to be transmitted from the memory controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	system. Thus, the circuit 40	
controller 20 of the computer system to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	selectively allows a DQ data signal	
to one or both of the DQ data signal lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	to be transmitted from the memory	
lines 102 a, 102 b. In addition, the circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	controller 20 of the computer system	
circuit 40 selectively allows one of a first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	to one or both of the DQ data signal	
first DQ data signal from the DQ data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	lines 102 <i>a</i> , 102 <i>b</i> . In addition, the	
data signal line 102 a of the first memory device 30 a or a second DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	circuit 40 selectively allows one of a	
memory device 30 <i>a</i> or a second DQ data signal line 102 <i>b</i> of the second memory device 30 <i>b</i> to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B , the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	first DQ data signal from the DQ	
data signal from the DQ data signal line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	data signal line 102 a of the first	
line 102 b of the second memory device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	memory device 30 a or a second DQ	
device 30 b to be transmitted to the memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	data signal from the DQ data signal	
memory controller 20 via the common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	line 102 <i>b</i> of the second memory	
common DQ data signal line 112 (see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	device 30 b to be transmitted to the	
(see, e.g., triangles on the DQ and DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	memory controller 20 via the	
DQS lines of FIGS. 3A and 3B which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	common DQ data signal line 112	
which point towards the memory controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	(see, e.g., triangles on the DQ and	
controller) In the example embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	DQS lines of FIGS. 3A and 3B	
embodiments schematically illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	which point towards the memory	
illustrated by FIGS. 3A, 3B, 4A, and 4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	controller) In the example	
4B, the circuit 40 comprises a logic element which is integral with and comprises the switches 120 which	embodiments schematically	
element which is integral with and comprises the switches 120 which	illustrated by FIGS. 3A, 3B, 4A, and	
comprises the switches 120 which	4B, the circuit 40 comprises a logic	
	element which is integral with and	
are coupled to the DQ data signal	comprises the switches 120 which	
	are coupled to the DQ data signal	

lines and the DQS data strobe signal lines. In certain such embodiments, each switch 120 comprises a data path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUCIG66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and complex programmable-logic		
each switch 120 comprises a data path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically ocuple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	lines and the DQS data strobe signal	
path multiplexer/demultiplexer. In certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUCIG66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	lines. In certain such embodiments,	
certain other embodiments, the circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 to receive cement 122 components of the logic element 122 components as signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	each switch 120 comprises a data	
circuit 40 comprises a logic element 122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	path multiplexer/demultiplexer. In	
122 which is a separate component operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	certain other embodiments, the	
operatively coupled to the switches 120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUCIG66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	circuit 40 comprises a logic element	
120, as schematically illustrated by FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	122 which is a separate component	
FIGS. 5A-5D. The one or more switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	operatively coupled to the switches	
switches 120 are operatively coupled to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	120 , as schematically illustrated by	
to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	FIGS. 5A-5D. The one or more	
to the logic element 122 to receive control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	switches 120 are operatively coupled	
control signals from the logic element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	<u> </u>	
element 122 and to selectively electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	=	
electrically couple one or more data signal lines to a common data signal line. Example switches compatible with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and		
line. Example switches compatible with embodiments described herein include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	electrically couple one or more data	
with embodiments described herein include, but are not limited to field-effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	signal lines to a common data signal	
include, but are not limited to field- effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	line. Example switches compatible	
effect transistor (FET) switches, such as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	with embodiments described herein	
as the SN74AUC1G66 single bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	include, but are not limited to field-	
bilateral analog switch available from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	effect transistor (FET) switches, such	
from Texas Instruments, Inc. of Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	as the SN74AUC1G66 single	
Dallas, Tex. Example logic elements 122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	bilateral analog switch available	
122 compatible with certain embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	from Texas Instruments, Inc. of	
embodiments described herein include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	Dallas, Tex. Example logic elements	
include, but are not limited to, programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	122 compatible with certain	
programmable-logic devices (PLD), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	embodiments described herein	
application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), custom-designed semiconductor devices, and	include, but are not limited to,	
circuits (ASIC), field-programmable gate arrays (FPGA), custom- designed semiconductor devices, and	programmable-logic devices (PLD),	
gate arrays (FPGA), custom- designed semiconductor devices, and	application-specific integrated	
designed semiconductor devices, and	circuits (ASIC), field-programmable	
	gate arrays (FPGA), custom-	
complex programmable-logic	designed semiconductor devices, and	
	complex programmable-logic	

devices (CPLD). Example logic elements **122** are available from Lattice Semiconductor Corporation of Hillsboro, Oreg., Altera Corporation of San Jose, Calif., and Xilinx Incorporated of San Jose, Calif.")

417 Prosecution History

Pg. 29- Reasons for Allowance: "Claim I recites the limitation, 'the circuitry being configurable to transfer the burst of Nbit wide data signals between the N-bit wide memory bus and the memory devices in the one of the plurality of N-bit wide ranks in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module; wherein data transfers through the circuitry are registered for an additional amount of time delay such that the overall CAS latency of the memory module is greater than an actual operational CAS latency of each of the memory devices.' Said limitations are taught by the specification as originally filed. Said limitations, in combination with the other recited limitations, are not taught or suggested by the prior art of record... Janzen (US 2003/0018845)

		appears to be the closest prior art and teaches a memory device having a number of ranks having different burst order addressing for read and write operations. However, does not teach the limitation, 'the circuitry being configurable to transfer the burst of N-bit wide data signals between the N-bit wide memory bus and the memory devices in the one of the plurality of N-bit wide ranks in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module; wherein data transfers through the circuitry are registered for an additional amount of time delay such that the overall CAS latency of the memory module is greater than an actual operational CAS latency of each of the memory devices."	
"circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the memory bus through the circuitry" (Claim 6)	Plain and ordinary meaning	See evidence for term immediately above. See also, e.g., '417, 22:49-51 ("The buffer of certain embodiments comprises combinatorial logic, registers, and logic pipelines.")	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the

'215/417 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the memory bus	Г	
filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		filed, the level
relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		of ordinary
and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSTTA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		skill in the
meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		relevant art,
this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		and the
this claim element to a person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		meaning of
person of ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		element to a
ordinary skill in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		person of
in the art at the time of the invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
invention. For example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
example, the expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		time of the
expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		invention. For
expert may testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		example, the
testify as to the understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
understanding by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
by a POSITA of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
of the term "circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		
"circuitry includes logic pipelines configurable to enable the data transfers between the memory devices and the		of the term
includes logic pipelines configurable to enable the data transfers between the memory devices and the		
pipelines configurable to enable the data transfers between the memory devices and the		
configurable to enable the data transfers between the memory devices and the		
enable the data transfers between the memory devices and the		configurable to
transfers between the memory devices and the		enable the data
between the memory devices and the		
memory devices and the		
devices and the		
		memory bus

			through the circuitry." Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses.
"circuitry is configurable to enable the data paths in response to the data buffer control signals so that the burst of N-bit wide data signals are transferred via the data paths" (Claim 11)	Plain and ordinary meaning, not a 112(6) term	See evidence for preceding two claim terms.	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '215/'417 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim

	element to a
	person of
	ordinary skill
	in the art at the
	time of the
	invention. For
	example, the
	expert may
	testify as to the
	understanding
	by a POSITA
	of the term
	"enable [] data
	paths in
	response to []
	data buffer
	control
	signals" and
	"burst of
	data signals."
	Netlist may
	also rely on the
	expert to
	respond to
	Defendants'
	claim
	construction
	positions and
	any testimony
	of Defendants'
	expert(s) and
	witnesses.

			See also evidence for "burst."
"logic configurable to receive a set of input address and control signals associated with a read or write memory command via the address and control signal lines and to output a set of registered address and control signals in response to the set of input address and control signals, the logic is further configurable to output data buffer control signals in response to the read or write memory command" (Claim 1)	Plain and ordinary meaning, not a 112(6) term	See, e.g., '417 at Abstract ("The memory module further comprises logic configurable to receive a set of input address and control signals associated with a read or write memory command and output registered address and control signals and data buffer control signals The circuitry is configurable to enable registered transfers of N-bit wide data signals associated with the memory read or write command between the N-bit wide memory bus and the memory devices in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module, which is greater than an actual operational CAS latency of the memory devices.") '417, 3:50-52 ("The logic is further configurable to output data buffer control signals in response to the read or write memory command.") '417, 4:1-6("The circuitry is configurable to transfer the burst of N-bit wide data signals between the	See evidence for "in response to." See evidence for "logic"

N-bit wide memory bus and the
memory devices in the one of the
plurality of N-bit wide ranks in
response to the data buffer control
signals and in accordance with an
overall CAS latency of the memory
module.")
'417, 4:23-29 ("In some
embodiments, the circuitry includes
data paths, and the circuitry is
configured to enable the data paths in
response to the data buffer control
signals so that the N-bit wide data
signals are transferred via the data
paths. In some embodiments, the data
paths are disabled when no data
signals associated with any memory
command are being transferred
through the circuitry.")
'417, 7:32-35 ("In certain
embodiments, the circuit 40 further
comprises one or more switches
which are operatively coupled to the
logic element to receive control
signals from the logic element.")
'417, 9:37-50 ("In the example
embodiments schematically
illustrated by FIGS. 3A, 3B, 4A, and
4B, the circuit 40 comprises a logic
element which is integral with and
comprises the switches 120 which

1		
	are coupled to the DQ data signal	
	lines and the DQS data strobe signal	
	lines. In certain such embodiments,	
	each switch 120 comprises a data	
	path multiplexer/demultiplexer. In	
	certain other embodiments, the	
	circuit 40 comprises a logic element	
	122 which is a separate component	
	operatively coupled to the switches	
	120, as schematically illustrated by	
	FIGS. 5A-5D. The one or more	
	switches 120 are operatively coupled	
	to the logic element 122 to receive	
	control signals from the logic	
	element 122 and to selectively	
	electrically couple one or more data	
	signal lines to a common data signal	
	line.")	
	IPR2023-00454, Paper 6 ("The	
	÷ `	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	*	
	1 0	
	1 0	
	IPR2023-00454, Paper 6 ("The memory module 10 also includes a circuit 40 electrically coupled to the memory devices 30 and to the memory controller 20 of the computer system. <i>Id.</i> , 6:4-7. The circuit 40 includes a logic that translates between a system memory domain of the computer system and a physical memory domain of the memory module 10. <i>Id.</i> , 6:9-12. This may be achieved by the logic receiving input data signals, chipselect signals and other	

of ranks reconselect signate value and the select signate value and the select or of wide data signate or write select signate value and the select signates are select signates.	istered chip select signals egistered control/address ne memory devices 30.")	
(Claims 1, 15) select signal value and the and control receive or of wide data signal read or write select signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the and control receive or of wide data signal value and the analysis of t	63 ("One of the plurality	Netlist may
embodimen command is command, wide data si series of wr the circuitry the data sign respective s successively	reiving the registered chip I having the active signal ne other registered address signals is configured to output a burst of N-bit ignals in response to the re command.") 35 ("In some tts, the read or write as a write memory wherein the burst of N-bit ignals include a respective rite data bits received by y from a respective one of nal lines, and wherein the reries of write data bits are y transferred via a one of the data paths.")	rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '215/'417 patents were filed, the level of ordinary skill in the relevant art, and the meaning of this claim element to a person of ordinary skill in the art at the time of the invention. For

			testify as to the understanding by a POSITA of the term "read or write command."
			Netlist may also rely on the expert to respond to Defendants' claim construction positions and any testimony of Defendants' expert(s) and witnesses.
"the predetermined amount of time delay" (Claim 9)	Plain and ordinary meaning	'415, 4:1-15 ("The circuitry is configurable to transfer the burst of N-bit wide data signals between the N-bit wide memory bus and the memory devices in the one of the plurality of N-bit wide ranks in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module. In some embodiments, data transfers through the circuitry are registered for an additional amount of time delay such that the overall CAS latency of the memory module	Netlist may rely on expert testimony to explain the technology, the state of the art at the time the applications leading to the '215/'417 patents were filed, the level of ordinary skill in the

is greater than an actual operational	relevant art,
CAS latency of each of the memory	and the
devices.	meaning of
In some embodiments, the memory	this claim
module further comprises a phase	element to a
locked loop clock driver configured	person of
to output a clock signal in response	ordinary skill
to one or more signals received from	in the art at the
the memory controller, and the	time of the
predetermined amount of time delay	invention. For
is at least one clock cycle time	example, the
delay.")	expert may
	testify as to the
'417, 22:41-61 ("In certain	understanding
embodiments, data transfers between	by a POSITA
the memory controller and the	of the term a
memory module are registered for	"predetermined
one additional clock cycle by the	amount of time
circuit 40 . The additional clock cycle	delay."
of certain embodiments is added to	
the transfer time budget with an	Netlist may
incremental overall CAS latency.	also rely on the
This extra cycle of time in certain	expert to
embodiments advantageously	respond to
provides sufficient time budget to	Defendants'
add a buffer which electrically	claim
isolates the ranks of memory devices	construction
30 from the memory controller 20 .	positions and
The buffer of certain embodiments	any testimony
comprises combinatorial logic,	of Defendants'
registers, and logic pipelines. In	expert(s) and
certain embodiments, the buffer adds	witnesses.
a one-clock cycle time delay, which	

"overall CAS latency of the memory	Plain and ordinary meaning	is equivalent to a registered DIMM, to accomplish the address decoding. The one-cycle time delay of certain such embodiments provides sufficient time for read and write data transfers to provide the functions of the data path multiplexer/demultiplexer. Thus, for example, a DDR2 400-MHz memory system in accordance with embodiments described herein has an overall CAS latency of four, and uses memory devices with a CAS latency of three. In still other embodiments, the SPD device 240 does not utilize this extra cycle of time.")	See extrinsic
module" (Claim 1)	Tiam and ordinary meaning	configurable to enable registered transfers of N-bit wide data signals associated with the memory read or write command between the N-bit wide memory bus and the memory devices in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module, which is greater than an actual operational CAS latency of the memory devices.")	evidence for "CAS latency."

N-bit wide data signals between the	
N-bit wide memory bus and the	
memory devices in the one of the	
plurality of N-bit wide ranks in	
response to the data buffer control	
signals and in accordance with an	
overall CAS latency of the memory	
module. In some embodiments, data	
transfers through the circuitry are	
registered for an additional amount	
of time delay such that the overall	
CAS latency of the memory module	
is greater than an actual operational	
CAS latency of each of the memory	
devices.")	
1417 22 26 61 W	
'417, 22:36-61 ("In certain	
embodiments, the circuit 40	
comprises the SPD device 240 which	
reports the CAS latency (CL) to the	
memory controller of the computer	
system. The SPD device 240 of	
certain embodiments reports a CL	
which has one more cycle than does	
the actual operational CL of the	
memory array. In certain	
embodiments, data transfers between	
the memory controller and the	
memory module are registered for	
one additional clock cycle by the	
circuit 40. The additional clock cycle	
of certain embodiments is added to	
the transfer time budget with an	

	417	Pros	secution	History
--	-----	------	----------	---------

Pg. 29- Reasons for Allowance: "Claim I recites the limitation, 'the circuitry being configurable to transfer the burst of Nbit wide data signals between the N-bit wide memory bus and the memory devices in the one of the plurality of N-bit wide ranks in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module; wherein data transfers through the circuitry are registered for an additional amount of time delay such that the overall CAS latency of the memory module is greater than an actual operational CAS latency of each of the memory devices.' Said limitations are taught by the specification as originally filed. Said limitations, in combination with the other recited limitations, are not taught or suggested by the prior art of record... Janzen (US 2003/0018845) appears to be the closest prior art and teaches a memory device having a number of ranks having different burst order addressing for read and write operations. However, does not teach the limitation, 'the circuitry being configurable to transfer the

		burst of N-bit wide data signals between the N-bit wide memory bus and the memory devices in the one of the plurality of N-bit wide ranks in response to the data buffer control signals and in accordance with an overall CAS latency of the memory module; wherein data transfers through the circuitry are registered for an additional amount of time delay such that the overall CAS latency of the memory module is greater than an actual operational CAS latency of each of the memory devices."	
"actual operational CAS latency of each of the memory devices" (Claim 1)	Plain and ordinary meaning	See above intrinsic evidence for "overall CAS latency of the memory module."	See extrinsic evidence for "CAS latency."
"wherein data transfers through the circuitry are registered for an amount of time delay such that the overall CAS latency of the memory module is greater than an actual operational CAS latency of each of the memory devices"	Plain and ordinary meaning	See above intrinsic evidence for "overall CAS latency of the memory module."	See extrinsic evidence for "CAS latency" and "an amount of time delay."
(Claim 1)			

4. U.S. Patent No. 10,268,608

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
"A memory module operable to communicate with a memory controller via a memory bus, the memory bus including signal lines, the signal lines including a set of control/address signal lines and a plurality of sets of data/strobe signal lines, the memory module comprising" (Claim 1)	Preamble is limiting; and plain and ordinary meaning	See Claim 1 element 2 ("a module control device mounted on the module board and configured to receive system command signals for memory operations via the set of control/address signal lines and to output module command signals and module control signals in response to the system command signals, the module control device being further configured to receive a system clock signal and output a module clock signal and output a module clock signal"); element 3 (" the memory devices including a plurality of sets of memory devices corresponding to respective sets of the plurality of sets of data/strobe signal lines"); element 4 ("a plurality of buffer circuits corresponding to respective sets of the plurality of sets of data/strobe signal lines, wherein each respective buffer circuit of the plurality of buffer circuits is mounted on the module board, coupled between a respective set of data/strobe signal lines and a	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		respective set of memory devices ").	
		See description 3:25-50 ("A memory module according to one embodiment includes memory devices organized in groups, a module control device, and data buffers (DB). The data buffers are sometimes referred to herein as buffer circuits, isolation devices (I.D.) or load reduction devices. The memory module is operable to perform memory operations in response to memory commands (e.g., read, write, refresh, precharge, etc.), each of which is represented by a set of control/address (C/A) signals transmitted by the memory controller	
		to the memory module. The C/A signals may include, for example, a row address strobe signal (/RAS), a column address strobe signal (/CAS), a write enable signal (/WE), an output enable signal (/OE), one or more chip select signals, row/column address signals, and bank address signals. The memory controller may also transmit a system clock signal to the memory module. In one embodiment, the C/A signals and the system clock signal are received by the module control device,	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		which generates a set of module	
		command signals and a set of module	
		control signals in response to each	
		memory command from the memory	
		controller. The module command	
		signals are transmitted by the module	
		control device to the memory devices	
		via module C/A signal lines, and the	
		module control signals (referred sometimes herein as module control	
		signals) are transmitted by the module control device to the buffer circuits via	
		module control signal lines.").	
		See 4:20-35 ("FIG. 1 shows a system	
		100 including a memory controller	
		(MCH) 101 and one or more memory	
		modules 110 coupled to the MCH by a	
		memory bus 105, according to one	
		embodiment. As shown, the memory	
		bus includes C/A signal lines 120 and	
		groups of system data/strobe signal	
		lines 130. Also as shown, each	
		memory module 110 has a plurality of	
		memory devices 112 organized in a	
		plurality of ranks 114. Each memory	
		module 110 further includes a module	
		control circuit (module controller or	
		module control device) 116 coupled to	
		the MCH 101 via the C/A signal lines	
		120, and a plurality of buffer circuits	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		or isolation devices 118 coupled to the MCH 101 via respective groups of system data/strobe signal lines 130. In one embodiment, the memory devices 112, the module control circuit 116 and the isolation devices 118 can be mounted on a same side or different sides of a printed circuit board (module board) 119.").	
		See 4: 36-45 ("In the context of the present description, a rank refers to a set of memory devices that are selectable by a same chip select signal from the memory controller. The number of ranks of memory devices in a memory module 110 may vary. For example, as shown, each memory module 110 may include four ranks of memory devices 112. In another embodiment, the memory module 110 may include 2 ranks of memory devices. In yet another embodiment, the memory module may include six or more ranks of memory devices	
		112."). See 4:65-5:57 ("Referring to FIG. 2A, which illustrates one memory module 110 according to an embodiment, the module control device 116 receives	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		system memory commands	
		represented by a set of system	
		control/address (C/A) signals from the	
		MCH 101 via signal lines 120 and	
		generates module command signals	
		and module control signals based on	
		memory commands from the system.	
		The module control device 116 also	
		received a system clock MCK and	
		generates a module clock signal CK in	
		response to the system clock signal	
		MCK. The MCK signal may include a	
		pair of complementary clock signals,	
		MCK and MCK, and the module	
		clock signal may include a pair of	
		complementary clock signals CK and	
		CK. Examples of the system C/A	
		signals include, but are not limited to,	
		Chip Select (or /CS) signal, which is	
		used to select a rank of memory	
		devices to be accessed during a	
		memory (read or write) operation;	
		Row Address Strobe (or /RAS) signal,	
		which is used mostly to latch a row	
		address and to initiate a memory	
		cycle; Column Address Strove (or	
		/CAS) signal, which is used mostly to	
		latch a column address and to initiate a	
		read or write operation; address	
		signals, including bank address signals	
		and row/column address signals,	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		which are used to select a memory	
		location on a memory device or chip;	
		Write Enable (or /WE) signal, which	
		is used to specify a read operation or a	
		write operation, Output Enable (or	
		/OE) signal, which is used to prevent	
		data from appearing at the output until	
		needed during a read operation, and	
		the system clock signal MCK.	
		Examples of module command signals	
		include, but are not limited to module	
		/CS signals, which can be derived	
		from the system /CS signals and one	
		or more other system C/A signals,	
		such as one or more bank address	
		signals and/or one or more	
		row/column address signals; a module	
		/RAS signal, which can be, for	
		example, a registered version of the	
		system /RAS signal; a module /CAS	
		signal, which can be, for example, a	
		registered version of the system /CAS	
		signal; module address signals, which	
		can be, for example, registered	
		versions of some or all of the address	
		signals; a module /WE signal, which	
		can be, for example, a registered	
		version of the system /WE signal; a	
		module /OE signal, which can be, for	
		example a registered version of the	
		system /OE signal. In certain	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		embodiments, the module command	
		signals may also include the module	
		clock signal CK. Examples of module	
		control signals include, but are not	
		limited to a mode signal (MODE),	
		which specifies a mode of operation	
		(e.g., test mode or operating mode) for	
		the isolation devices 118; one or more	
		enable signals, which are used by an	
		isolation device to select one or more	
		subgroups of memory devices to	
		communicate data with the memory	
		controller; and one or more ODT	
		signals, which are used by the	
		isolation devices to set up on-die	
		termination for the data/strobe signals.	
		In one embodiment, the module	
		control signals are transmitted to the	
		isolation devices 118 via respective	
		module control signal lines 230.	
		Alternatively, the module control	
		signals can be packetized before being	
		transmitted to the isolation devices	
		118 via the module control signal lines	
		and decoded/processed at the isolation	
		devices.").	
		See 0:10 10 ("In one ambediment	
		See 9:10-10 ("In one embodiment,	
		each data buffer 118 has a set of	
		configurable operations, including, for	
		example: programmable phase	

Term, Phrase, or Clause	Netlist's Proposed Construction	Exemplary Intrinsic Evidence	Exemplary Extrinsic Evidence
		relationship between the clock it receives and the clock it regenerates, programmable phase adjustment for the data and data-strobe signals coupled to the memory devices 112, programmable phase adjustment for the data and data-strobe signals coupled to the system memory controller 101, programmable phase adjustment related to at least one control signal that is coupled to the control circuit 116.") See also Fig. 1, 2A, 2B	