Ejercicio 1

Calcular el coeficiente C de contingencia para las variables 'Tipo de delito' y 'Edad' de los condenados en el año 2006 a partir de los siguientes datos y comentar los resultados.

stadística de lo Penal. Condenados. Resultados nacionales							
Condenados según tipo de delito, edad y sexo Jnidades:nº de condenados							
	De 18 a 20 años	De 21 a 25 años	De 26 a 30 años	De 31 a 35 años	De 36 a 40 años	De 41 a 50 años	De 51 a 60 año
	Ambos sexos	Ambos sexos					
Homicidio y formas	12	78	78	72	73	93	6
Homicidio y formas De las lesiones	12 629	78 3.029	78 3.712	72 3.295	73 3.118	93 3.985	6 1.52

Solución:

Primero sumamos los valores de la tabla por filas y por columnas:

Delito\Edad	18-20	21-25	26-30	31-35	36-40	41-50	51-60	Suma
Homicidio	12	78	78	72	73	93	61	467
Lesiones	629	3029	3712	3295	3118	3985	1523	19291
Libertad	68	270	438	503	527	808	361	2975
Orden	314	943	1074	912	841	965	320	5369
Suma	1023	4320	5302	4782	4559	5851	2265	28102

A continuación calculamos e_{ij} , $(n_{ij}-e_{ij})^2/e_{ij}$ y chi cuadrado:

$e_{ij} \\$								
	17	71,79	88,11	79,47	75,76	97,23	37,64	
	702,25	2965,52	3639,63	3282,67	3129,59	4016,5	1554,84	
	108,3	457,33	561,29	506,24	482,64	619,41	239,78	
ln.	195,45	825,35	1012,97	913,62	871,02	1117,86	432,74	
(111	(++ij-=ij) /=ij							
	1,47	0,54	1,16	0,7	0,1	0,18	14,5	
	7,64	1,36	1,44	0,05	0,04	0,25	0,65	
	15	76,74	27,08	0,02	4,08	57,42	61,28	
	71,91	16,77	3,68	0	1,03	20,9	29,37	

$$\chi^2 = 415,35$$

Finalmente calculamos C y C_{max}:
$$C = \sqrt{\frac{415,35}{28102 + 415,35}} = 0,12$$
 $C_{max} = \sqrt{1 - \frac{1}{4}} = 0,87$

 $\frac{C}{C_{max}}$ =0,1379=13,79% , C toma un valor muy bajo respecto al máximo, por lo que podemos afirmar que las variables son prácticamente independientes.

Ejercicio 2

Hallar la covarianza y el coeficiente de correlación para las variables 'Población residente de Alemania y Reino Unido' y 'Tasa de ocupación hotelera' en Mallorca a partir de los datos de la siguiente tabla (fuentes: IBAB y Conselleria de Turisme).

Año	Residentes Alemania y Reino Unido	Tasa ocupación hotelera
1998	13191	83,9
1999	15955	83,7
2000	18943	79,5
2001	22028	78,6
2002	24934	72,2
2003	28147	72,4
2004	25293	73
2005	29307	72,8

Solución:

Seguimos el procedimiento del ejemplo 2.

Residentes extran.	Tasa ocup. Hotel.
13191	83,9
15955	83,7
18943	79,5
22028	78,6
24934	72,2
28147	72,4
25293	73
29307	72,8

Covarianza=-24390,57 Coeficiente de correlación=-0,95

Estos resultados indican una fuerte correlación lineal negativa entre las variables, a una mayor cantidad de residentes extranjeros se corresponde una menor tasa de ocupación hotelera. Esto sugiere que muchos extranjeros han preferido, en los últimos años, adquirir una vivienda en Baleares en lugar de ir a los hoteles.

Ejercicio 3

Calcular la recta de regresión lineal para los datos del ejercicio anterior y predecir a partir de ella el valor de la tasa de ocupación hotelera si el número de residentes alemanes y británicos llega a 35000. Dibujar el diagrama de dispersión y representar sobre él la recta de regresión.

Solución:

Utilizamos los datos de la tabla del ejercicio anterior y seguimos el procedimiento del ejemplo 3.

Covarianza=-24390,57 Varianza Nº residentes=29214062,69 Media Nº residentes=22224,75 Media Tasa oc. Hoteles=77,01

Recta de regresión: Tasa ocupación=-0,000835 · № residentes + 95,57

Predicción si nº residentes=35000:

Tasa ocupación= $-0.000835 \cdot 35000 + 95.57 = 66.35\%$

Finalmente, el diagrama de dispersión y la correspondiente recta de regresión se muestran a continuación:

Diagrama dispersión

Nº Residentes extranj.