

What is face recognition?

[Courtesy of Baidu] Andrew Ng

Face verification vs. face recognition

- >> Verification
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
- → Recognition
 - Has a database of K persons
 - Get an input image
 - Output ID if the image is any of the K persons (or "not recognized")

One-shot learning

One-shot learning

Learning from one example to recognize the person again

Learning a "similarity" function

→ d(img1,img2) = degree of difference between images

If
$$d(img1,img2) \leq \tau$$
 "some" $> \tau$ "Quiterest"

Siamese network

Siamese network

Goal of learning

Parameters of NN define an encoding $f(x^{(i)})$

Learn parameters so that:

If
$$x^{(i)}$$
, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.
If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

Triplet loss

Learning Objective

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

Andrew Ng

Loss function

Training set: 10k pictures of 1k persons

Choosing the triplets A,P,N

During training, if A,P,N are chosen randomly, $d(A, P) + \alpha \le d(A, N)$ is easily satisfied. $\|f(A) - f(P)\|^2 + \alpha \le \|f(A) - f(N)\|^2$

Choose triplets that're "hard" to train on.

$$\mathcal{Q}(A,P) + \mathcal{L} \leq \mathcal{Q}(A,N)$$

$$\mathcal{Q}(A,P) \sim \mathcal{Q}(A,N)$$

$$\mathcal{L}(A,N)$$

Training set using triplet loss

Face verification and binary classification

Learning the similarity function

Face verification supervised learning

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]