

USE OF YNES, ESSENTIAL BACTERIAL GENES AND
POLYPEPTIDES

1 ATGATTACAATAGTTTATAATTCTAGGCCATCTGGCTGGTTGGATTCCATCTGGTCTCTGGATTCAACAGTTATTCTTCAMTCAAATCTACGGGAGC 100
TACTAATGTTATCAAATAATTAGGATCGGATAGACGGACCCAAAGCTTAAGGTAGACCGAGACCTAACCTGTTAGTTAGATGGCTCG
1 M I T I V L L I L A Y L L G S I P S G L W I G O V F F O I N L R E H 14
101 ATGGTTCTGGTAACACTGGAACCGACCAACACCTTCCGCATTAGGTAAAGAAAGCTGGTATGGCAAACCTTTGATTGACTTTTCAAAGGAACCCCTAGC 200
TACCAAGACCATTTGTGACCTTGCTGGTTGGAAAGGGTAAAGCTGAAACACTAACTGAAAAGCTTCCCTGGATCG
35 G S G N T G T T N T F R I L G K A G M A T F V I D F F K G T L A 67
201 AACGGCTGCTTCCGATTATTTCTACAGGGCTTCTCCTCTCATCTTGGACTTTGGCTGTATCGGCCATACCTCCCTATCTCTGGAGGATT 300
TTGGGACGAACGGCTAAATAAAAAGTAGATGTTCGGCAAAGAGGAGGTAGAAACCTGAAACCGACATAAGCCGGATAGAAAAGCTGGCTCAA
68 T L L P I I F H L Q G V S P L I F G L L A V I G H T F P I F A G F 100
301 AAAGGTGGTAAGGCTGTCGCAACCAAGTGGCTGTTGGAGGTAGTTGGCTATCTCTGTCTCACCTGGATTATCTCTGGAGCTCTATC 400
TTTCCACCATTCCGACAGCGTTGGTCAGGACCTCACTAAAGCCTAAACGGCTAAAGCAAGAGATGGAAACGCCATAAGAAGAAAACCTCGAGAGATAG
101 K G G K A V A T S A G V I F G F A P I F C L Y L A I I F F G A L Y L 134
401 TTGGCAGTATGATTCACTGTCTAGTGTCAAGGCATCGATTGGGGTGTATTCGGGCTCTGGCTTTGGTTTATCCCTGAGTAACCTATGA 500
ACCGGTCACTAAACTGACAGATCACAGTGTCTAGTAACGCCGACATAAGCCCCAAGACGAGAAAAGGTGAAAACCAAATAGGACTCATGGATACT
135 G S M I S L S S V T A S I A A V I G V L L F P L F G F I L S N Y D 167
501 CCTCTCTCTCATGGCTTAACTTCTAGGACTCTGGCTAGTTGATTATCATTCAGGACATAAGGACATAAGGAGTATGGCTGATCAAATAAAACTGAAAATTGGTC 600
GGAACCCCTAACCTGGATTGGTAGTTAGGATCTAGTTGAGGATAGTGAACGATCAGTGTGTTATCGAGGATAGTTGACTTTGACTTTAAACCGAG
168 S L F I A I I L A S L I I R H K D N I A R I K N K T E N L V 200
601 CCTTGGGGATTGAACTTAACCCATCAAGATCCTAAAAAATAA 642 SEQ ID NO:2
GGAACCCCTAACCTGGATTGGTAGTTAGGATCTAGGATTTTATT SEQ ID NO:11
201 P W G L N L T H Q D P K K • 213 SEQ ID NO:1

FIG. 1

Applicant(s): Christian Fritz et al.

USE OF YNES, ESSENTIAL BACTERIAL GENES AND POLYPEPTIDES

1 M I T I V L L I L A Y L L G S I P S G L W I G O V F F O I N L R E H 34
 101 ATGGATTCAAAATAGTTTATTAACTCCTAGCCCTATCTGGTGGGCTCATCTGGATTCTGGATTCACAGTTCTACAGTTCTAAGGTTAGATGGCTCG
 TACTAATGTTTATCAAATAATTAGGATCGGATAGACCAAGCTAAGGTAGACCAGACCTAACCTGTTACAAGGTTAGATGGCTCG
 101 ATGGTTCTGGTAACACTGGAACGCCAACACCTTCGGCATTTAGGTAAGAAAAGCTGGTATGGCACACCTTTGGATTGACTTTTCAAGGAAACCCCTAGC
 TACCAAGACCATTGTGACCTTGCTGGTTGCTGGTAAAGGGTAAATCCATTCTTGACCCATACCGGTGGAAACACTAACTGAAAAGTTCTGGGATCG
 35 G S G N T G T T N T F R I L G K K A G M A T F V I D F F K G T L A 67
 201 AACGCTGGCTTCGGATTATTTTCATCTACAGGGCTTCTCCTCTCATCTGGACTTTGGCTGTTATCGGCCATACCTTCCTATCTTGGCAGGATT
 TTGGACGGAAAGGCTTAATAAAAGTAGATGTTAGATGTTAGGAGGTAGAAAGAGGAAGGGATAGAAACCTGAAACCGACAATAGCCGGTATGGAAAGGGT
 68 T L L P I I F H L Q G V S P L I F G L L A V I G H T F P I F A G F 100
 301 AAAGGTGGTAAGGGCTGTCGCAACCAACGGCTGGAGTGATTTCGGATTTCGGCTATCTTCTGTCTCATCTTGCGATTATCTCTGGCTCTCTATC
 TTCCACCATTCGACAGGGTGGTCAGACCCCTCAAAAGCTAAACGGQATAGAAAGACAGAGATGGAAACGCTAATAAGAAGAACCTCGAGAGATAG
 101 K G G K A V A T S A G V I F G F A P I F C L Y L A I I F F G A L Y L 134
 401 TTGGCAGATTGATTCACTGTCTAGTGTCAAGGATCTGATTGGGGCTGTTATCGGGGTTCTGCTCTTCCACTTTGGTTTATCTGAGTAACTATGA
 AACCGTCATACTAAAGTGACAGATCACAGTGACAGATCAAGTGACAGATCAAGTGACAGATCAAGTGACAGATCAAGTGACAGATCAAGTGACAGAT
 135 G S M I S L S S V T A S I A A V I G V L L F P L F G F I L S N Y D 167
 501 CTCTCTCTCATCGCTATTATCTTAGGCACTTGCTAGTTGATTATCATTCTGCTATAAGGACAATAAGCTGTATCAAAAATAACTGAAAATTGGTC
 GAGAGAAAGTAGGATAATGAATCGTGAACGATCAAATAGTAAGCAGTCAAGTGTCGTAAGCTAACACTAACTGAGTAACTGAGTAACTGAGT
 168 S L F I A I I L A L A S L I I I R H K D N I A R I K N K T E N L V 200
 601 CCTGGGGATTGAAACCTAACCCCTAACAGATCCAAANAAATA 642 SEQ ID NO:2
 GGAAACCCCTAACCTGGATTGGTAGTTCTAGGATTTTTATT 642 SEQ ID NO:11
 201 P W G L N L T H Q D P K K • 213 SEQ ID NO:1

EIG

SEQ ID NO:1