On PAC Learning Halfspaces in Non-interactive Local Privacy Model with Public Unlabeled Data

Jinyan Su

Jinhui Xu

Di Wang

Background

- Learning half spaces: $y = sign(\langle w^*, x \rangle + \theta^*)$
- (α, β) -PAC learner: $Pr \left[y \neq \text{sign}(\langle \hat{w}, x \rangle) \right] \leq \alpha \text{ w.p. at least } 1 \beta$ $(x,y) \sim \mathcal{P}$
- Local Differential Privacy: $Pr[\mathcal{A}(x) \in E] \leq e^{\epsilon} Pr[\mathcal{A}(x') \in E] + \delta$
- Non-interactive: interact only once (T=1)
- Goal:

Additional public data $q \sim \mathcal{P}_{\chi}$

- Design private (α, β) -PAC learner in NLDP model with public unlabeled data
- Sample complexity as low as possible

Motivation

• The public unlabeled data is cheap Learn a weak/noisy labeler

Via Massart Noise model

- 1. Private part: Construct Massart Noise example oracle f
- Label are flipped w.p. $\leq \lambda$

- Devide Private data into k disjoint groups
- Using NLDP algorithm in [Wang et al.(2020)] for each groups of data
- Boost accuracy by majority voting $\Rightarrow \hat{f}$ with $\lambda = \frac{3}{16}$ Private data: $\tilde{O}(d\text{Ploy}(\frac{1}{\epsilon}, \frac{1}{\delta}))$ Public data: $O(\frac{d}{\alpha^4})$
- 2. Non-private part:
 - Label public data with \hat{f}
 - Invoke Non-private algorithm for learning half spaces with Massart Noise

Via Self-supervised learning

- 1. Private part
 - Use Logistic Loss NLDP⇒w^{priv}

Pseudo labeler Sufficiently small but constant error C_{err}

- Non-private part
 Convert weak learner to strong learner⇒Self-training
 - Label unlabeled data with pseudo labeler
 - Gradient descent on pseudo labeled data⇒ Update pseudo labeler

Private data:
$$\tilde{O}(d \mathrm{Ploy}(\frac{1}{\epsilon}, \frac{1}{\delta}))$$
Public data: $O(\frac{d}{\alpha^2})$

Comparison to previous result:

Methods	Private data	Public data	With Public data?	Assume Large margin?
Prior method [Daniely and Feldman (2019)]	$\tilde{O}\left(rac{d^{10}}{\epsilon^2 \cdot \gamma^{12} \alpha^6} ight)$	$ ilde{O}\left(rac{d^{10}}{\epsilon^2\cdot\gamma^{12}lpha^6} ight)$	Yes	Yes
This paper (via Massart noise model)	$\tilde{O}(dPloy(\frac{1}{\epsilon}, \frac{1}{\delta}))$	$O(\frac{d}{\alpha^4})$	Yes	No
This paper (via self-training)	$\tilde{O}(dPloy(\frac{1}{\epsilon}, \frac{1}{\delta}))$	$O(\frac{d}{\alpha^2})$	Yes	No

Limitations and Future direction

- Distribution dependent (bounded distribution/ mixture distribution)
- Find efficient PAC learning algorithm with Massart Noise