Shell 命令的使用

Table of contents 目录

	TABLE OF	CONTENTS 目录	1
1	SHELI	L 简介	2
2	SHELI	L 的使用	2
	2.1	帮助命令	2
	2.2	系统基本信息获取命令	7
	2.2.1	版本命令	7
	2.2.2	Show 命令	8
	2.3	常用检测命令	8
	2.3.1	端口类	8
	2.3.2	收发包类	10
	2.3.3	程序调试类	12
	2.4	检测芯片的命令	12
	2.4.1	寄存器的访问	12
	2.4.2	内存的访问	16
	2.4.3	中断等其他命令	20
	2.5	高级配置命令	21
	2.5.1	Vlan 管理命令	21
	2.5.2	L2 命令	22
	2.5.3	L3 命令	23
	2.5.4	Mirroring 命令	25
	2.5.5	Filtering	25
	2.5.6	Spanning Tree Group Management	25
	2.6	错误检测命令	25
	2.6.1	Text	25
	2.6.2	CONFig	26
2	REFE	RENCE DOCUMENTS 参老文献	26

1 shell 简介

shell 即 BCM Diagnostic Shell 是一个普通的命令行解释器(CLI),它可以提供对嵌入了 BCM 交换芯片的嵌入式平台的一种精确控制作用。shell 支持所有Broadcom 交换芯片,并提供了对所有寄存器,内存和最高层 API 的直接访问功能。此外,由于 shell 支持交互和非交互两种模式,所以它可以嵌入到客户的设计中,以提供额外诊断服务。

Shell 命令可被分为六大类:

- 1. 帮助命令: ??, help
- 2. 系统基本信息获取命令: Version, show
- 3. 常用检测命令: 端口类: PORT, COMBO

收发包类: TX, PacketWatcher 程序调试类: Debug, DebugMod

4. 检测芯片的命令:寄存器的访问: Getreg, EditReg 等

内存访问: Dump, Write 等

中断管理: INTR

- 5. 高级配置命令: VLAN, L2, L3 等
- 6. 错误检测命令: Test, CONFig,等

2 Shell 的使用

以 DCN DS45XX 项目为例来说明 shell 的使用。

2.1 帮助命令

BCM.0> help //输入 help 命令得到 shell 中所有可用的命令共 201 条

Help: Type help "command" for detailed command usage

Help: Upper case letters signify minimal match

Commands common to all modes:

? Display list of commands

ASSert Assert

BackGround Execute a command in the background.

BCM Set shell mode to BCM.
BCMX Set shell mode to BCMX.
break place to hang a breakpoint

CASE Execute command based on string match

CD Change current working directory

cint Enter the C interpreter

CONFig Configure Management interface

CONSole Control console options

CoPy Copy a file

CPUDB Update the CPU database

CTEcho Send an echo request using CPUTRANS

CTInstall Set up transport pointers in CPU transports

CTSetup Modify the CPUTRANS setup DATE Set or display current date

DBDump Dump the current StackTask CPUDB
DBParse Parse a line of CPUDB dumped code

DeBug Enable/Disable debug output

DeBugMod Enable/Disable debug output per module
DELAY Put CLI task in a busy-wait loop for some amount of

time

DEVice Device add/remove
DISPatch BCM Dispatch control.
Echo Echo command line

EDline Edit file using ancient line editor

EXIT Exit the current shell (and possibly reset)

EXPR Evaluate infix expression

FLASHINIT Initialize on board flash as a file system
FLASHSYNC Sync up on board flash with file system
FOR Execute a series of commands in a loop

Help Print this list OR usage for a specific command

HISTory List command history

IF Conditionally execute commands
JOBS List current background jobs
KILL Terminate a background job

LOCal Create/Delete a variable in the local scope
LOG Enable/Disable logging and set log file
LOOP Execute a series of commands in a loop

LS List current directory
MKDIR Make a directory
MODE Set shell mode

MORe Copy a file to the console
MoVe Rename a file on a file system

NOEcho Ignore command line

Pause Pause command processing and wait for input

PRINTENV Display current variable list

RCCache Save contents of an rc file in memory

RCLoad Load commands from a file REBOOT Reboot the processor

RM Remove a file from a file system

RMDIR Remove a directory

RPC Control BCM API RPC daemon.

SAVE Write data to a file

SET Set various configuration options

SETENV Create/Delete a variable in the global scope

SHell Invoke a system dependent shell

SLeep Suspend the CLI task for specified amount of time TIME Time the execution of one or more commands

Version Print version and build information

Commands for current mode:

ADC Show MAX127 A/D Conversions AGE Set ESW hardware age timer

Attach SOC device(s)

Auth Port-based network access control
BaseBoard Configure baseboard system parameters.
BIST Run on-chip memory built-in self tests

BPDU Manage BPDU addresses

BTiMeout Set BIST operation timeout in microseconds

CABLEdiag Run Cable Diagnotics

CACHE Turn on/off software caching of tables
CellDataTest External packet buffer tuning routine

CellHDR Dump cell header given CBPHEADER index

CHeck Check a sorted memory table CLEAR Clear a memory table or counters

CLOCKS Set core clock frequency.
COLOR Manage packet color

COMBO Control combination copper/fiber ports

COS Manage classes of service

CounTeR Enable/disable counter collection
CustomSTAT Enable/disable counter collection

DAC Set DAC register

DELete Delete entry by key from a sorted table

DETach Detach SOC device(s)
DMA DMA Facilities Interface

DmaRomTest Simple test of the SOC DMA ROM API

DMIRror Manage directed port mirroring
DMux Configure DMUX on a port
DSCP Map Diffserv Code Points

DTAG Double Tagging

Dump an address space or registers

EditReg Edit each field of SOC internal register

EGRess Manage source-based egress enabling

EthernetAV Set/Display the Ethernet AV characteristics

EXTernalTuning External memory automatic tuning EXTernalTuning2 External memory automatic tuning 2

EXTernalTuningSum External memory automatic tuning (summary)

FieldProcessor Manage Field Processor

Filter Create/Destroy CPU filter entries

Getreg Get register

GPORT Get a GPORT id

Convert hex words to higig info **H2HIGIG** H2HIGIG2 Convert hex words to higig2 info **HASH** Get or set hardware hash modes

HClksel Set I2C HClk (MUX for clock-chip-selects)

HeaderMode Get or set packet tx header mode

I2C Inter-Integrated Circuit (I2C) Bus commands Display packets pending in the Ingress Buffer **IBDump**

Initialize SOC and S/W **INIT** Insert into a sorted table Insert

INTR Enable, disable, show interrupts

IPFIX IPFIX

IPG Set default IPG values for ports

IPMC Manage IPMC (IP Multicast) addresses

L2 Manage L2 (MAC) addresses L2MODE Change ARL handling mode L3 Manage L3 (IP) addresses

LCDMSG Print message on Matrix Orbital LCD display (via

I2C)

LED Control/Load LED processor LINKscan Configure/Display link scanning LISTmem

List the entry format for a given table

List register fields Listreg

LOOKup Look up a table entry **MCAST** Manage multicast table

MemSCAN Turn on/off software memory error scanning

MemWatch Turn on/off memory snooping Manage XGS4 Mac-in-MAC MIM

MIRror Manage port mirroring MmuConFiG Configure MMU mode

Modify table entry by field names **MODify**

ModMap **MODID** Remapping Modreg Read/modify/write register **MPLS** Manage XGS4 MPLS **MPLSER** Manage XGS3 MPLS

MTiMeout Set MIIM operation timeout in usec

MultiCast Manage multicast operation

MUXsel Set I2C LPT state (MUX for clock-chip-selects)

NVram Manipulate Nonvolatile memory **OAM** Manage OAM groups and endpoints

Monitor ports for packets **PacketWatcher**

Convert port bitmap string to hex **PBMP**

PCIE R/W PCIE core registers

PHY Set/Display phy characteristics / POE Configure PowerOverEthernet controllers.
POESel Set I2C POE (MUX for poe-chip-selects)

POP Pop an entry from a FIFO PORT Set/Display port characteristics

PortRate Set/Display port rate metering characteristics

PortSampRate Set/Display sflow port sampling rate

PortStat Display port status in table PPDclk Show PPD clock delay

PROBE Probe for available SOC units
PUSH Push an entry onto a FIFO

PVlan Port VLAN settings

QDR Read/write over QDR interface RATE Manage packet rate controls

RateBw Set/Display port bandwidth rate metering

characteristics

RegCMp Test a register value

REMove Delete entry by index from a sorted table

RXCfg Configure RX settings

RXInit Call bcm_rx_init

RXMon Register an RX handler to dump received

packets

SCHan Send raw S-Channel message, get response

SEArch Search a table for a byte pattern

Setreg Set register

SHOW Show information on a subsystem
SOC Print internal Driver control information
SRAM External DDR2_SRAM test control

STACKMode Set/get the stack mode StackPortCb Manage Stack Port Callbacks

StackPortGet Get stacking characteristics of a port
StackPortSet Set stacking characteristics of a port
STG Manage spanning tree groups

STiMeout Set S-Channel timeout in microseconds
STKMode Hardware Stacking Mode Control

StkTask Stack task control
SwitchControl General switch control

SYnth Show synthesizer frequency

SystemSnake Cycle packets through selected system

TCAM TCAM control

TEMPerature Show environmental conditions
TestClear Clear run statisistics for a test
TestList List loaded tests and status
TestMode Set global test run modes

TestParameters Set test Parameters

TestRun Run a specific or selected tests

TestSelect Select tests for running

TRUNK Manage port aggregation
TrunkPool Trunk pool table configuration
TX Transmit one or more packets
TXCount Print current TX statistics

TXSTArt Transmit one or more packets in background TXSTOp Terminate a previous "txstart" command

VLAN Manage virtual LANs
WARMBOOT Optionally boot warm
WLAN Manage XGS4 WLAN
Write Write entry(s) into a table

XAUI Run XAUI BERT on specified port pair
XClocks Configure clocks for PCI, SDRAM, Core clock
XPoe Communication with PD63000 PowerOverEthernet

MCU.

XQDump Display packets pending in the XQ

XQErr Inject bit errors into packets pending in XQ

2.2 系统基本信息获取命令

2.2.1 版本命令

BCM.0> Version

Broadcom Command Monitor: Copyright (c) 1998-2010 Broadcom Corporation

Release: sdk-xgs-robo-5.9.2 built 20110614 (Tue Jun 14 17:34:14 2011)

From pengzhang@smc-pc:/home/pengzhang/work/sdk/sdk-xgs-robo-5.9.2

Platform: KEYSTONE

OS: Unix (Posix)

ROBO Chips: BCM5324_A0, BCM5324_A1, BCM5396_A0, BCM5389_A0, BCM5398_A0, BCM5397_A0, BCM5348_A0, BCM5347_A0, BCM5395_A0, BCM53242_A0, BCM53262_A0, BCM53115_A0, BCM53118_A0, BCM53280_A0, BCM53280_B0, BCM53101_A0,

BCM53125_A0, BCM53128_A0

Chips: BCM5690_A0, BCM5670_A0, BCM5673_A0, BCM5674_A0, BCM5665_A0, BCM5665_B0, BCM5650_C0, BCM5695_A0, BCM5675_A0, BCM56601_A0, BCM56601_B0, BCM56601_C0, BCM56602_A0, BCM56602_B0, BCM56602_C0, BCM56504_A0, BCM56504_B0, BCM56304_B0, BCM56314_A0, BCM56112_A0, BCM56612_A0, BCM56624_A0, BCM56624_B0, BCM56624_B0, BCM56680_A0, BCM56680_B0, BCM56224_A0, BCM56224_B0, BCM56820_A0, BCM56725_A0, BCM53314_A0, BCM53324_A0, BCM56634_A0, BCM56634_B0, BCM56524_A0, BCM56524_B0, BCM56685_A0, BCM56685_B0, BCM56524_A0, BCM566524_B0, BCM56685_A0, BCM56685_B0, BCM56524_A0, BCM56685_B0, BCM566524_A0, BCM56685_B0, BCM566524_B0, BCM56685_A0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM56685_B0, BCM56685_B0, BCM566524_B0, BCM56685_B0, BCM5668

BCM56334 A0, BCM56334 B0,

BCM56840 A0, BCM56840 B0, BCM56142 A0,

PHYs: BCM5218, BCM5220/21, BCM5226, BCM5228,

BCM5238, BCM5248, BCM5324/FE, BCM5348/FE,

BCM53242/FE, BCM53262/FE, BCM53101/FE, BCM53280/FE,

BCM5400, BCM5401, BCM5402, BCM5404,

BCM5424/34, BCM5411, BCM5461, BCM5464,

BCM5466, BCM5478, BCM5488, BCM5482,

BCM5481, BCM5461, BCM5464, BCM5466,

BCM5478, BCM5488, BCM54980, BCM54980,

BCM54980, BCM54980, BCM53314, BCM5398,

BCM5395, BCM53115, BCM53118, BCM5482/801x,

BCM54684, BCM54640, BCM54682E, BCM54684E,

BCM54685, BCM54616, BCM5421S, BCM54680,

BCM53324, BCM53125, BCM53128, BCM54880,

BCM54881, BCM54810, BCM54640E, BCM54880E,

BCM54680E, BCM52681E, BCM8703, BCM8704,

BCM8705/24/25, BCM8706/8726, BCM8727, BCM8728/8747

2.2.2 Show 命令

SHOW unit: 显示系统的芯片信息

SHOW features: 从驱动的角度显示当前芯片的特点 SHOW params: 从驱动的角度显示当前芯片的配置信息

2.3 常用检测命令

2.3.1 端口类

1. PortStat: 该命令可显示所有端口的状态信息

```
BCM.0> ps
                   speed/
                            link
                                  auto
                                           STP
                                                                    1rn
                                                                         inter
      Ena link
                                                           discrd
port
                   duplex
                            scan
                                   neg?
                                          state
                                                   pause
                                                                    ops
                                                                          face
                                         Forward
                                                                         SGMII
                    1G FD
                              SW
                                    Yes
                                                   TX
                                                                     FA
ae0
       En up
                                                            None
                  100M FD
                                                                         SGMII
                              SW
                                    Yes
                                                   ТX
                                                            None
                                                                     FΆ
ge1
       En
           up
                                         Forward
                     - HD
       En down
                                                   TX RX
                                                                         SGMII
ge2
                                    Yes
                                         Forward
                                                            None
ge3
       En down
                              SW
                                         Forward
                                                   TX RX
                                                            None
                                                                         SGMII
                     - HD
ge4
       En down
                              SW
                                    Yes
                                         Forward
                                                   TX RX
                                                            None
                                                                     FA
                                                                         SGMII
                     - HD
                                                                         SGMII
       En down
                                                   TX RX
ge9
                                    Yes
                                         Forward
                                                            None
                                                                     FA
ge10
                     - HD
                                                   TX RX
                                                                         SGMII
       En down
                              SW
                                         Forward
                                                                     FΑ
                                    Yes
                                                            None
ge11
                     - HD
       En down
                                    Yes
                                         Forward
                                                   TX RX
                                                            None
                                                                     FA
hg0
       En
                   10G FD
                              SW
                                    No
                                                            None
                                                                     FΑ
                                                                         XGMII
           up
BCM.0> ps ?
Usage (PortStat): Display info about port status in table format.
    Link scan modes:
        SW = software
        HW = hardware
    Learn operations (source lookup failure control):
        F = SLF packets are forwarded
C = SLF packets are sent to the CPU
        A = SLF packets are learned in L2 table
        D = SLF packets are discarded.
    Pause:
        TX = Switch will transmit pause packets
        RX = Switch will obey pause packets
```

2. Port

Port 的具体使用命令如表 1-1 所示。

表 1-1port 命令使用

Port ge	获得 GE 端口的状态信息
Port ge1 an=off	关掉 GE1 口的自动协商功能
Port ge2-ge5 sp=100	设置端口 2-5 的最大速度到 100Mbps
Port ge10 an=off sp=10 fd=false	是端口 10 速度到 10Mbps
Port ge10 MIDX=Xover	接入端口控制
Help port	列举 port 的其他功能命令

Port 使用的具体例子如下:

3. COMBO

COMBO 的具体使用命令如表 1-2 所示

表 1-2 COMBO 命令使用

Combo ge22-ge23	显示 combo 口的设置
Combo ge22 filber preferred=1	把光纤设置为端口10的主流媒介
Combo ge23 copper enable=0	使端口11上的铜线媒介失去作用
Combo ge22 watch=on	媒介转换报告使能
Combo ge23 f autoneg_enable=0	为光纤媒介配置设置

force_speed=1000

具体使用例子如下:

BCM.0> combo ge22

Port ge22:

ge22: Copper medium

enable=1 preferred=1 force_speed=1000 force_duplex=1 master=Auto autoneg_enable=1 autoneg_advert=1000,100,10,pause(0xc3f)

MDIX=Auto

ge22: Fiber medium (active)

enable=1 preferred=0 force_speed=1000 force_duplex=1 master=None autoneg_enable=1 autoneg_advert=1000full,pause(0x349c20) MDIX=ForcedNormal

2.3.2 收发包类

1. Tx: 一个简单的数据包发送器,使用例子如表 1-3 所示

表 1-3 tx 命令使用

tx 10 pbm=ge0 length=100	从源地址到目的地址传送 10 个 100B
sm=0x001122334455 dm=0xfffffffff	的数据帧
tx 100 pbm=ge0	传输 100 个该数据帧

2. PacketWatch: 一个简单的抓包工具,使用例子如表 1-4

表 1-4 PW 命令的使用

tx 100 pbm=ge0	记忆最后的 20 个数据包
pw report –raw	Do not dump raw packets on the console
pw start	Start the daemon
pw count	收包计数
pw stop	停止计数
pw report +decode	Allow dumping the decoded packets
pw dump	Dump the logged packets

具体使用例子如下:

3. LINKscan: 如实反映当前端口的链路状态,使用例子如表 1-5 所示 表 1-5 LINKscan 的使用

TO Envisedin [1] [X/I]	
link	Displays current status of linkscan
link?	Lists the built-in help for linksca
link force=ge1	Forces linkscan to update ports status instantly

2.3.3 程序调试类

1. DeBug: 控制 debug 输出

2. DeBugMod: 按照模块来控制 debug 设置

它们的使用例子如表 1-6 所示

表 1-6 调试命令的使用

db	Shows the debugging settings
db +SOCMEM	Enable debugging output for table accesses
db -intr	Disable interrupt debugging
db tx	Toggle packet transmit debug
dbm soc +verbose +10g	Add verbose messages for HiGig/10GE driver
dbm bcm +verbose +vlan	Add verbose messages for BCM VLAN operations
dbm bcmx	Show debug levels for the BCMX module

2.4 检测芯片的命令

2.4.1 寄存器的访问

系统的寄存器分类如表 1-7 所示

表 1-7 系统的寄存器分类

REGISTER TYPE	DESCRIPTION
PCIC	PCI configuration space registers
PCIM	PCI memory-mapped registers (CMIC registers)
SOC	Registers and memories accessible via S-channel operations
PHY	PHY registers (MIIM addresses)

读 PHY 寄存器实例:

BCM.0> phy 1

Port ge0 (PHY addr 0x01): BCM54682E (54682 Gigabit PHY Driver)

0x00: 0x1140	0x01: 0x79c9	0x02: 0x0362	0x03: 0x5d24
0x04: 0x01e1	0x05: 0x0000	0x06: 0x0064	0x07: 0x2001
0x08: 0x0000	0x09: 0x0600	0x0a: 0x0000	0x0b: 0x0000
0x0c: 0x0000	0x0d: 0x4007	0x0e: 0x0000	0x0f: 0x3000
0x10: 0x0001	0x11: 0x0000	0x12: 0x0000	0x13: 0x0000
0x14: 0x0000	0x15: 0x0000	0x16: 0x0000	0x17: 0x0000
0x18: 0x7067	0x19: 0x1000	0x1a: 0x0000	0x1b: 0xffff
0x1c: 0x2418	0x1d: 0x0000	0x1e: 0x0000	0x1f: 0x0000

BCM.0> phy 1-5

Port ge0 (PHY addr 0x01): BCM54682E (54682 Gigabit PHY Driver)

```
0x04: 0x01e1
                         0x05: 0x0000
                                           0x06: 0x0064
                                                            0x07: 0x2001
         0x08: 0x0000
                          0x09: 0x0600
                                           0x0a: 0x0000
                                                            0x0b: 0x0000
         0x0c: 0x0000
                          0x0d: 0x4007
                                           0x0e: 0x0000
                                                            0x0f: 0x3000
         0x10: 0x0001
                          0x11: 0x2000
                                           0x12: 0x0000
                                                            0x13: 0x0000
         0x14: 0x0000
                          0x15: 0x0000
                                           0x16: 0x0000
                                                            0x17: 0x0000
         0x18: 0x7067
                          0x19: 0x1000
                                           0x1a: 0x0000
                                                            0x1b: 0xffff
         0x1c: 0x2418
                         0x1d: 0x0000
                                           0x1e: 0x0000
                                                            0x1f: 0x0000
Port ge1 (PHY addr 0x02): BCM54682E (54682 Gigabit PHY Driver)
         0x00: 0x1140
                          0x01: 0x79c9
                                           0x02: 0x0362
                                                            0x03: 0x5d24
         0x04: 0x01e1
                         0x05: 0x0000
                                           0x06: 0x0064
                                                            0x07: 0x2001
         0x08: 0x0000
                          0x09: 0x0600
                                           0x0a: 0x0000
                                                            0x0b: 0x0000
         0x0c: 0x0000
                          0x0d: 0x4007
                                           0x0e: 0x0000
                                                           0x0f: 0x3000
         0x10: 0x0001
                          0x11: 0x0001
                                           0x12: 0x0000
                                                            0x13: 0x0000
         0x14: 0x0000
                          0x15: 0x0000
                                           0x16: 0x0000
                                                            0x17: 0x0000
         0x18: 0x7067
                                           0x1a: 0x0000
                                                            0x1b: 0xffff
                          0x19: 0x1000
         0x1c: 0x2418
                                           0x1e: 0x0000
                                                           0x1f: 0x0000
                          0x1d: 0x0000
Port ge2 (PHY addr 0x03): BCM54682E (54682 Gigabit PHY Driver)
         0x00: 0x1140
                          0x01: 0x79c9
                                           0x02: 0x0362
                                                            0x03: 0x5d24
         0x04: 0x01e1
                          0x05: 0x0000
                                           0x06: 0x0064
                                                            0x07: 0x2001
         0x08: 0x0000
                          0x09: 0x0600
                                           0x0a: 0x0000
                                                            0x0b: 0x0000
         0x0c: 0x0000
                          0x0d: 0x4007
                                           0x0e: 0x0000
                                                            0x0f: 0x3000
         0x10: 0x0001
                          0x11: 0x0000
                                           0x12: 0x0000
                                                            0x13: 0x0000
                                                            0x17: 0x0000
         0x14: 0x0000
                          0x15: 0x0000
                                           0x16: 0x0000
         0x18: 0x7067
                          0x19: 0x1000
                                           0x1a: 0x0000
                                                            0x1b: 0xffff
         0x1c: 0x2418
                          0x1d: 0x0000
                                           0x1e: 0x0000
                                                            0x1f: 0x0000
Port ge3 (PHY addr 0x04): BCM54682E (54682 Gigabit PHY Driver)
         0x00: 0x1140
                          0x01: 0x79c9
                                           0x02: 0x0362
                                                            0x03: 0x5d24
         0x04: 0x01e1
                         0x05: 0x0000
                                           0x06: 0x0064
                                                            0x07: 0x2001
         0x08: 0x0000
                          0x09: 0x0600
                                           0x0a: 0x0000
                                                            0x0b: 0x0000
         0x0c: 0x0000
                          0x0d: 0x4007
                                           0x0e: 0x0000
                                                            0x0f: 0x3000
         0x10: 0x0001
                          0x11: 0x2001
                                           0x12: 0x0000
                                                            0x13: 0x0000
         0x14: 0x0000
                                                            0x17: 0x0000
                          0x15: 0x0000
                                           0x16: 0x0000
         0x18: 0x7067
                          0x19: 0x1000
                                           0x1a: 0x0000
                                                            0x1b: 0xfffff
         0x1c: 0x2418
                          0x1d: 0x0000
                                           0x1e: 0x0000
                                                           0x1f: 0x0000
Port ge4 (PHY addr 0x05): BCM54682E (54682 Gigabit PHY Driver)
         0x00: 0x1140
                          0x01: 0x79c9
                                           0x02: 0x0362
                                                            0x03: 0x5d24
         0x04: 0x01e1
                         0x05: 0x0000
                                           0x06: 0x0064
                                                            0x07: 0x2001
         0x08: 0x0000
                          0x09: 0x0600
                                           0x0a: 0x0000
                                                            0x0b: 0x0000
         0x0c: 0x0000
                          0x0d: 0x4007
                                           0x0e: 0x0000
                                                            0x0f: 0x3000
         0x10: 0x0001
                          0x11: 0x2000
                                           0x12: 0x0000
                                                            0x13: 0x0000
                                                            0x17: 0x0000
         0x14: 0x0000
                          0x15: 0x0000
                                           0x16: 0x0000
         0x18: 0x7067
                          0x19: 0x1000
                                           0x1a: 0x0000
                                                            0x1b: 0xfffff
         0x1c: 0x2418
                          0x1d: 0x0000
                                           0x1e: 0x0000
                                                            0x1f: 0x0000
关于 PHY 寄存器的其他命令如表 1-8 所示
```

表 1-8 PHY 命令

phy all	Dumps all registers on all PHYs attached to the chip. This	
	command is equivalent to command dump phy.	
phy ge1	Dumps all registers on the PHY attached to port ge1. This	
	command is equivalent to command dump phy ge1	
phy ge 0x2	Prints the first half of the PHY ID register on all GE	
	PHYs	
phy ge0 0x0 0x8000	Resets the PHY on ge0 (by writing 1 into the Reset bit in	
	register 0)	

关于 PCI 总线的命令如表 1-9 所示

表 1-9 PCI 命令

show pci	Displays the summary of all devices discovered on
	the PCI bus
dump peic	Dumps the PCI configuration registers for the
	current chip
g pcic 0x10	Dumps a specific PCI configuration register for the
	current chip
s pcic 0x10 0x81000004	Sets a specified value to a PCI configuration register

1. Listreg : 此命令将显示寄存器的所有详细信息,使用例子如表 1-10 所示 表 1-10 Listreg 命令的使用

Get a list of matching register names
Get all the info about a register
Get all the chip register names organized by block
Get all the counter registers
Get all the info about a (SOC) register with the specified address
Interpret value 0x00000123 as the contents of CONFIG register

2. Getreg: 这个命令将会获取某个寄存器的简要信息,使用例子如表 1-11 所示表 1-11 Getreg 命令的使用

EXAMPLE	DESCRIPTION
g CMIC_IRQ_STAT Prints CMIC_IRQ_STAT in hex, then field-by-field	
g CONFIG	Prints all the copies of CONFIG in all blocks
g raw CONFIG	Prints all the copies of CONFIG in all blocks in short form
g chg CONFIG.ge1 It shows only fields/registers that have changed from defaults	
g pcic 0x10	Gets the value of PCIC-type register with address 0x10

读 pcic、pcim 寄存器某一位上的值:

BCM.0> get pcic 0x0

pci cfg[0x0] = 0xb14314e4

BCM.0> get pcim 0x4

cpu[0x4] = 0x40

3. Setreg: 设置一个寄存器的值,使用例子如表 1-12 所示

表 1-12 Setreg 命令的使用

s mac_ctrl 0x1	Sets the value of MAC_CTRL register to 0x1
s mac_ctrl rxen=1	Set RXEN field in MAC_CTRL register to 1 (BUT all
	other fields will be set to 0!)
s mac_ctrl txen=1,rxen=1	A more reasonable setting
s gmacc2 ipgt=0xe	Sets the value of IPG fields of all GE ports to 0xe
s gmacc2.ge0 ipgt=0xe	Sets the value of IPG fields of ge0 to 0xe

4. Modreg: 设置寄存器值的命令,具体例子如表 1-13 所示

表 1-13 Modreg 的使用

m mac_ctrl rxen=0	Disable Rx, but Tx will be unaffected
m cpu_control_1 uvlan_tocpu=1	Trap packets with unknown VLAN to CPU (without affecting other settings)
m cos_sel.ge0 cos6=2	On ge0, map 802.1p priority 6 onto COS queue 2
m cpu_control_2 cpu_protocol_priority=7	Use higher priority for trapped BPDUs

Setreg 与 Modreg 的区别在于:用 Setreg 命令设置寄存器的值时,寄存器的其他为被自动清零;而用 Modreg 设置寄存器值时,寄存器的其他位保持不变,因此 Modreg 为更安全的寄存器设置命令:

BCM.0> g gmacc1.ge0

GMACC1.ge0[0x1]=1: <FULLD=1, PADEN=0, VLPAD=0, ADPAD=0, CRCEN=0, FLCHK=0,
HUGEN=0, JUMBO=0, PUREP=0, FCTX=0, FCRX=0, PARF=0, LONGP=0, MIFG=0,
GLVR=0, DCRC12=0, CLRCNT=0, RXEN0=0, TXEN0=0, AUTOZ=0>

BCM.0> m gmacc1.ge0 jumbo=1

BCM.0> g gmacc1.ge0

GMACC1.ge0[0x1]=0x81: <FULLD=1, PADEN=0, VLPAD=0, ADPAD=0, CRCEN=0, FLCHK=0, HUGEN=0, JUMBO=1, PUREP=0, FCTX=0, FCRX=0, PARF=0, LONGP=0, MIFG=0, GLVR=0, DCRC12=0, CLRCNT=0, RXEN0=0, TXEN0=0, AUTOZ=0>

BCM.0> s gmacc1.ge0 fctx=1

BCM.0> g gmacc1.ge0

GMACC1.ge0[0x1]=0x201: <FULLD=1,PADEN=0,VLPAD=0,ADPAD=0,CRCEN=0, FLCHK=0,HUGEN=0,JUMBO=0,PUREP=0,FCTX=1,FCRX=0,PARF=0,LONGP=0, MIFG=0,GLVR=0,DCRC12=0,CLRCNT=0,RXEN0=0,TXEN0=0,AUTOZ=0>

2.4.2 内存的访问

1. LISTmem: 该命令的作用是显示关于本表的所有细节,具体例子如表 1-14 所示

表 1-14 LISTmem 的使用

list	Lists all the chip memories
list 13	Lists all the chip memories with the names
	containing "L3" as a substring
list 13_entry	Lists all information about the L3_ENTRY
	table and its fields
list 13_entry 0x01 0x02 0x03	Interprets the value
0x04	0x000000100000002000000300000004
	as an L3_ENTRY
list gimask.ge3	Lists the gimask table located on block ge3

2. Dump: 该命令的作用是打印所指定表的所有表项及其相应的值。 打印 PCI 的配置情况:

BCM.0> DUMP PCIC

0000: b14314e4 DeviceID=b143 VendorID=14e4

000c: 00000008 BIST=00 HeaderType=00 LatencyTimer=00

CacheLineSize=08

0010: 08000004 BaseAddress0=08000004

```
0014: 00000000
               BaseAddress1=00000000
0018: 00000000
               BaseAddress2=00000000
001c: 00000000
               BaseAddress3=00000000
0020: 00000000
               BaseAddress4=00000000
0024: 00000000
               BaseAddress5=00000000
0028: 00000000
               CardbusCISPointer=00000000
002c: b14314e4
               SubsystemID=b143 SubsystemVendorID=14e4
               ExpansionROMBaseAddress=00000000
0030: 00000000
0034: 00000048
               Reserved=000000 CapabilitiesPointer=48
0038: 00000000
               Reserved=00000000
003c: 00000105
               Max Lat=00 Min Gnt=00 InterruptPin=01 InterruptLine=05
0040: 00000000
               Reserved=00 RetryTimeoutValue=00 TRDYTimeoutValue=00
0044: dead0000
               PLLConf=0
0048: c8035001
               CapabilityID=01 CapabilitiesPointer=50 PWR-MGMT
0048: c8035001
004c: 00002008
               CapabilityID=03 CapabilitiesPointer=58 VPD
0050: 00005803
0054: 00000000
0058: 0086a005
               CapabilityID=05 CapabilitiesPointer=a0 MSI
005c: 00000000
0060: 00000000
0064: 00000000
0068: 00000000
006c: 00000000
00a0: 0000ac11
               CapabilityID=11 CapabilitiesPointer=ac MSI-X
00a4: 00000000
00a8: 00000000
               CapabilityID=10 CapabilitiesPointer=00 PCIE
00ac: 00020010
00b0: 00008002
00b4: 00101c20
其他应用例子如表 1-15 所示:
```

表 1-15 Dump 的使用

d vlan	Prints all VALID entries from the VLAN table
d vlan 100	Print an entry corresponding to a VLAN 100 (if it is valid)
d all vlan 110	Print an entry corresponding to VLAN 100 (regardless)
d vlan 100 3	Prints valid entries from the VLAN 100 – 102 range
d chg l2_table	Prints all the entries in GIRULE.ge1 we've messed up

```
BCM.0> vlan show
       ports cpu,ge,hg (0x0000000000003fff), untagged ge (0x000000000000fff)
vlan 100 ports ge0-ge3 (0x00000000000000f), untagged none (0x000000000000000)
vlan 102 ports ge7-ge9 (0x00000000000000000), untagged none (0x00000000000000000)
vlan 103 ports gel0-gel1 (0x000000000000000), untagged none (0x0000000000000000)
vlan 104 ports ge3-ge8 (0x0000000000001f8), untagged none (0x0000000000000000)
VLAN.ar10[1]: <VALID=1,STG=1,PORT_BITMAP=0x3fff,UT_BITMAP=0xfff>
VLAN.arl0[100]: <VALID=1,STG=1,PORT_BITMAP=0xf,UT_BITMAP=0>
VLAN.arl0[101]: <VALID=1,STG=1,PORT_BITMAP=0x70,UT_BITMAP=0>
VLAN.ar10[102]: <VALID=1,STG=1,PORT_BITMAP=0x380,UT_BITMAP=0>
VLAN.arl0[103]: <VALID=1,STG=1,PORT_BITMAP=0xc00,UT_BITMAP=0>
VLAN.arl0[104]: <VALID=1,STG=1,PORT_BITMAP=0x1f8,UT_BITMAP=0>
VLAN.arl0[105]: <VALID=1,STG=1,PORT_BITMAP=0xfff,UT_BITMAP=0>
BCM.0> d vlan 102
VLAN.arl0[102]: <VALID=1,STG=1,PORT_BITMAP=0x380,UT_BITMAP=0>
BCM.0> d vlan 110
BCM.0> d all vlan 110
VLAN.arl0[110]: <VALID=0,STG=0,PORT_BITMAP=0,UT_BITMAP=0>
BCM.0> d vlan 100 3
VLAN.arl0[100]: <VALID=1,STG=1,PORT_BITMAP=0xf,UT_BITMAP=0>
VLAN.arl0[101]: <VALID=1,STG=1,PORT_BITMAP=0x70,UT_BITMAP=0>
VLAN.arl0[102]: <VALID=1,STG=1,PORT_BITMAP=0x380,UT_BITMAP=0>
BCM.0> d chg 12 table
L2_TABLE.ar10[3080]: <MAC_ADDR=1,VLAN_ID=1>
```

3. Write: 该命令的作用是该某个表里写一些值或者是表项,具体例子如表 1-16 表 1-16 Write 的使用

Make 12_valid_bits [12] a
valid entry
Sets the values all
ffpcounters to 0
Creat vlan2 with ge0 and
gelas the only members
Put all port in stg 1 into
disabled state
Creat a filiter that will trap
packets with source IP addr
192.168.1/24 to cpu

4. MODify: 此命令可作为一个更安全的写命令代替,具体例子如表 1-17 表 1-17MODify 的使用

mod vlan 110 1	Set the port bitmap for VLAN 110 to ge0-ge3
port_bitmap=0xf	
mod vlan 110 10	The same operation for VLANs 110-119
port_bitmap=0xf	(regardless of the VALID bit, BTW!)

Write 与 MODify 的使用区别如下实例所示:

```
BCM.0> d trunk bitmap
TRUNK BITMAP.arl0[0]: <TRUNK BITMAP=1,RTAG=0>
TRUNK_BITMAP.arl0[1]: <TRUNK_BITMAP=1,RTAG=0>
TRUNK_BITMAP.arl0[2]: <TRUNK_BITMAP=1,RTAG=0>
TRUNK_BITMAP.arl0[3]: <TRUNK_BITMAP=1,RTAG=0>
TRUNK_BITMAP.arl0[29]: <TRUNK_BITMAP=1,RTAG=0>
TRUNK_BITMAP.arl0[30]: <TRUNK_BITMAP=1,RTAG=0>
TRUNK BITMAP.arl0[31]: <TRUNK BITMAP=1,RTAG=0>
BCM.0> w trunk_bitmap 0 32 rtag=1
BCM.0> d trunk bitmap
TRUNK BITMAP.arl0[0]: <TRUNK BITMAP=0,RTAG=1>
TRUNK_BITMAP.arl0[1]: <TRUNK_BITMAP=0,RTAG=1>
TRUNK_BITMAP.ar10[2]: <TRUNK_BITMAP=0,RTAG=1>
TRUNK_BITMAP.ar10[3]: <TRUNK_BITMAP=0,RTAG=1>
TRUNK_BITMAP.arl0[29]: <TRUNK_BITMAP=0,RTAG=1>
TRUNK_BITMAP.arl0[30]: <TRUNK_BITMAP=0,RTAG=1>
TRUNK BITMAP.arl0[31]: <TRUNK BITMAP=0,RTAG=1>
BCM.0> mod trunk_bitmap 0 32 trunk_bitmap=1
BCM.0> d trunk bitmap
TRUNK BITMAP.arl0[0]: <TRUNK BITMAP=1,RTAG=1>
TRUNK_BITMAP.arl0[1]: <TRUNK_BITMAP=1,RTAG=1>
TRUNK_BITMAP.arl0[2]: <TRUNK_BITMAP=1,RTAG=1>
TRUNK BITMAP.arl0[3]: <TRUNK BITMAP=1,RTAG=1>
TRUNK_BITMAP.arl0[29]: <TRUNK_BITMAP=1,RTAG=1>
TRUNK_BITMAP.arl0[30]: <TRUNK_BITMAP=1,RTAG=1>
TRUNK_BITMAP.arl0[31]: <TRUNK_BITMAP=1,RTAG=1>
```

5. Insert: 给哈希表或者存储表插入新的条目,具体例子如表 1-18 表 1-18 Insert 的使用

i girule.ge1	Insert an entry into the sorted
filter=0x66778899aabb,dst_port=0xd,action=0x20	GIRULE table
i l2x mac_addr=0x001122334455,vlan_id=0x123,	Insert an entry into L2 table
tgid_port=0x2	
i L2_ENTRY mac_addr=0x001122334455\	Insert an entry into L2 table to
vlan_id=1 cpu=1static_bit=1 valid=1	trap All packets destined to
	MAC 00:11:22:33:44:55 valn
	1 to cpu

6. REMove: 删除表项命令, 具体例子如表 1-19 表 1-19 REMove 的使用

rem girule.ge1 0	Removes the first entry from GI RULE table
	on block ge1. And all the remaining entries
	will shift up automatically.
rem 12x 536	Removes an entry 536 from an L2 table

7. LOOKup: 寻找指定表项命令,具体例子如表 1-20 表 1-20 LOOKup 的使用

look l2x	Finds a specific entry in L2 table
mac_addr=0x66778899aa44,vlan_id=0x6a	

8. SEArch: 功能更强大的查找条目命令,它支持十六进制数和字段值的参数查 找当使用十六进制字符串参数时要小心单词的边界:查找与字节顺序无关(It accepts patterns both as hex data and as field values. (When using hex string patterns do beware of word boundaries); A search will be successful regardless of byte ordering.) 具体例子如表 1-21

表 1-21 SEArch 的使用

sea l2x all 0x22334455	Both will match entrie s with
sea 12x all 0x55443322	MAC_ADDR=0x001122334455
sea l2x vlan_id=100	Finds all entries in L2 table corresponding to
	VLAN 100
sea vlan stg=1	Finds VLANs belonging to Spanning Tree
	Group 1

2.4.3 中断等其他命令

1. Interrupts: 该命令为我们提供了对某块芯片的中断管理能力,具体例子如表 1-22

表 1-22 Interrupts 的使用

*** - ==		
intr names	Lists all interrupt names that you can use in other	
	INTR commands	
intr pending	Shows pending interrupts on the current chip	
intr mask	Shows which interrupts are currently enabled	
intr disable ChainDone3	Disable DMA3	
intr enable miimopdone	Enable MII Operation Complete Interrupt	

SHOW Interrupts – shows interrupt counters

2. Counters 关于计数器的命令,如表 1-23 所示

表 1-24 计数器命令

1-c	Lists all counter register names
g gtpkt	Prints transmit packet counters for all GE ports
show counters	Display all non-zero counters for the current chip
show c changed ge0	Show only non-zero counters that have changed on ge0
show c same Z ge	Show counters that haven't changed on all GE ports
	including zero counters
show statistics all	Show all non-zero SNMP counters for all ports
show s ge0 all	Show all SNMP counters for ge0 port

2.5 高级配置命令

2.5.1 Vlan 管理命令

表 1-24 vlan 管理命令

	2寸 Vidii 白 注 pp 〈
vlan create 5 pbm=ge5-ge10	Creates VLAN 11 with member ports ge5-ge10.
ubm=ge6-ge8	Only member ports can transmit frames
	belonging to the VLAN. Ports ge6-ge8 will
	transmit them untagged, ge5,ge9,ge10 will tag
	them.
port ge0-ge5 VlanFilter=on	After applying this command, the specified
	ports can receive frames only from the VLANs
	they belong to
vlan show	Shows current VLANs configuration
vlan add 5 pbm=ge0-ge3	Add ports to ge0-ge3 to an existing VLAN with
	ID 5
vlan destroy 5	Deletes the VLAN with ID 5
Vlan protocol add pbm=ge	Make all untagged ARP packets(ethertype
frame=1 ether=0x806 vlan=2	0x806) go to vlan 2 with priority 7
prio=7	
Vlan ip4 add ipaddr=192.168.1.0	Make all untagged packets with source ip
netmask=255.255.255.0 vlan=3	address 192.168.1.0/24 go on vlan 3
Vlan mac add	Make all untagged packets with MAC SA
mac=00:00:01:00:00:05 vlan=5	00:00:01:00:00:05 go on vlan 5
Pvaln set ge0-ge5 5	Tell the chip to assign VID=5 to untagged (or
	priority tagged) packets arriving on ge0-ge5
pvlan show	Shows which VLANs are assigned to untagged
	packets that arrive on a specific port
pvlan set ge0-ge5 5	Tells the chip to assign VID=5 to untagged
	(or priority tagged) packets arriving on
	ge0-ge5
	,

BCM.0> vlan show

vlan 1 ports cpu, ge, hg (0x00000000003fff), untagged ge (0x000000000000000fff)

BCM.0> vlan add 5 pbm=ge0-ge3

VLAN: ERROR: Entry not found

BCM.0> vlan create 5 pbm=ge5-ge10 ubm=ge6-ge8

BCM.0> vlan show

vlan 1 ports cpu, ge, hg (0x00000000003fff), untagged ge (0x000000000000000fff)

BCM.0> vlan add 5 pbm=ge0-ge3

BCM.0> vlan show

vlan 1 ports cpu, ge, hg (0x00000000003fff), untagged ge (0x0000000000000000fff)

BCM.0> port all VlanFilter=on

PORT: Error: Could not set port hg0 information: Feature unavailable

BCM.0> port ge0-ge5 VlanFilter=on

BCM.0> vlan show

vlan 1 ports cpu, ge, hg (0x00000000003fff), untagged ge (0x00000000000000fff)

BCM.0> vlan destroy 5

BCM.0> vlan show

vlan 1 ports cpu, ge, hg (0x00000000003fff), untagged ge (0x00000000000000fff)

2.5.2 L2 命令

表 1-25 L2 命令使用

12 watch start	Starts a thread monitoring dynamic L2 table entry
	adding and deletion, that is, the MAC addresses
	learned by the chip will be shown on the console
	instantly
12 add mac=0x001122334455	Adds an L2 table entry
vlan=10 pbm=ge0	
12 add mac=0x000011223300	vlan=100 pbm=ge Adds incrementing entries for all
vlan=100 pbm=ge	ge ports
12 show pbm=ge0-ge3	Shows L2 entries for ports ge0-ge3
12 clear vlan=100	Deletes all 12 entries with VLAN ID 100
12 hash	Get an L2 table bucket index for a (potential) entry
mac=0x112233445566 v=10	

```
BCM.0> 12 show
```

BCM.0> 12 watch start

BCM.0>

L2 ADD: mac=00:00:00:00:00:01 vlan=1 modid=0 port=0/ge0 Hit L2 ADD: mac=00:00:00:00:00:02 vlan=1 modid=0 port=1/ge1 Hit

BCM.0> 12 show

0:ge0: mac=00:00:00:00:00:01 vlan=1 modid=0 port=0/ge0 Hit 0:ge1: mac=00:00:00:00:00:02 vlan=1 modid=0 port=1/ge1 Hit

BCM.0>

BCM.0> 12 add mac=0x001122334455 vlan=10 pbm=ge0

ADD: mac=00:11:22:33:44:55 vlan=10 modid=0 port=0/ge0 L2 ADD: mac=00:11:22:33:44:55 vlan=10 modid=0 port=0/ge0

BCM.0> 12 show

0:ge0: mac=00:00:00:00:00:01 vlan=1 modid=0 port=0/ge0 Hit 0:ge0: mac=00:11:22:33:44:55 vlan=10 modid=0 port=0/ge0 0:ge1: mac=00:00:00:00:00:02 vlan=1 modid=0 port=1/ge1 Hit

BCM.0> 12 clear v=10

L2: Removing static and non-static addresses by VLAN L2 DEL: mac=00:11:22:33:44:55 vlan=10 modid=0 port=0/ge0

BCM.0>12 show

0:ge0: mac=00:00:00:00:00:01 vlan=1 modid=0 port=0/ge0 Hit 0:ge1: mac=00:00:00:00:00:02 vlan=1 modid=0 port=1/ge1 Hit

BCM.0> 12 hash mac=00:00:00:00:00:01 vlan=1

Hash[0] of key 0x00100000000001 is bucket 0x181 (385)

2.5.3 L3 命令

L3 命令包括两类: L3 控制类和 IPMC 类

L3 控制命令有: 13 intf:管理 L3 层接口命令

13 table: 管理 L3 表命令

13 defip:管理路由表命令

l3 ip6host: 管理基于 ipv6 地址的 L3 表 l3 ip6route:管理基于 ipv6 地址的路由表

IPMC 控制命令有: ipmc table: 管理 IPMC 组命令

Ipmc repl: 管理 IPMC 响应命令

具体使用例子如表 1-26 所示

表 1-26 L3 命令使用

L3 intf mac=00:00:01:00:00:fe vlan=1	创建一个 IP 接口,这个命令会在 L2
intf=1	表上创建一个新的条目,并且在
	L3_INTF 表的 L3bit 位使能
L3 intf add mac=00:00:02:00:00:fe valn=2	创建第二个 IP 接口
intf=2	
L3 l3table add ip=192.168.2.1 intf=2	创建一个L3条目(地址解析条目),
mac=00:00:02::00:00:01 port=ge0	给地二层接口上的的主机 IP 地址为
	192.168.2.1 和 MAC 地址为
	00:00:02::00:00:01

L3 defip add ip=192.168.3.0 mask=255.255.255.0 gateway=192.168.2.3 mac=00:00:02:00:00:03 intf=2 port=ge3	为 ip192.168.3.0 创建一个 IP 路由通过网关 192.168.2.3,一个 L3 层的地址解析条目将会自动的添加到 L3 表中
Ipmc config enable=1	IPMC 使能
Ipmc table add src ip =192.168.1.1 vlan=1	添加 IPMC 条目给 244.0.0.1 l,无需
mc_ip=244.0.0.1 l3_map=ge0-ge5	检查源端口,这个命令将创建 IPMC
Nocheck=1	组 0
Ipmc repl add MCG=0 pbm=ge0-ge2	按照所需添加 IPMC 的复本。在
vlan=2	XGS3 芯片中, vlan 参数实际上是指
Ipmc repl add MCG=0 pbm=ge2-ge5	接口数
vlan=3	

BCM.0> vlan show

vlan 1 ports cpu,ge,hg (0x000000000003fff), untagged ge (0x000000000000fff)

BCM.0> vlan create 2 pbm=ge0-ge3

BCM.0> vlan create 3 pbm=ge4-ge7

BCM.0> 13 intf add vlan=2 mac=0x500

BCM.0> L2 ADD: mac=00:00:00:00:05:00 vlan=2 modid=0 port=0/ge0 Static L3 L2 ADD: mac=00:00:00:05:00 vlan=2 modid=0 port=0/ge0 Static L3

BCM.0> 13 intf add vlan=3 mac=0x500

BCM.0> L2 ADD: mac=00:00:00:00:05:00 vlan=3 modid=0 port=0/ge0 Static L3 L2 ADD: mac=00:00:00:05:00 vlan=3 modid=0 port=0/ge0 Static L3

BCM.0> 13 intf show

Free L3INTF entries: 510

Unit 0 Entry Mac Address VLAN ID 0 00:00:00:00:05:00 2 1 00:00:00:00:05:00 3

BCM.0> 12 show

0:ge0: mac=00:00:00:00:05:00 vlan=3 modid=0 port=0/ge0 Static L3 0:ge0: mac=00:00:00:00:05:00 vlan=2 modid=0 port=0/ge0 Static L3 BCM.0> 13 13table add ip=192.168.1.2 mac=0x202 intf=1 port=ge6

BCM.0> 13 13table show

Free L3 table entries: 4095

BCM.0> 13 13table destroy ip=192.168.1.2

BCM.0> 13 13table show

Free L3 table entries: 4096

Unit 0 Entry IP address Mac Address INTF PORT HIT

BCM.0> 13 intf destroy in=0

BCM.0> 13L2 DEL: mac=00:00:00:00:05:00 vlan=2 modid=0 port=0/ge0 Static L3 L2 DEL: mac=00:00:00:05:00 vlan=2 modid=0 port=0/ge0 Static L3

BCM.0> 13 intf show

Free L3INTF entries: 511

Unit 0 Entry Mac Address VLAN ID 1 00:00:00:05:00 3

2.5.4 Mirroring 命令

镜像命令允许数据包被复制到某个特定端口来观察。需要注意的是,基于端口的镜像命令是由一个逻辑入口和一个逻辑出口来支持的(Note that port-based mirroring is supported on both an ingress and egress basis.)Mirroring 命令的使用如表 1-27 所示。

1 1-27 Willioning μμ ζ μ Ι ΙΧ/ μ	
mirror mode=12 port=ge0	Mirror all traffic from all ports to ge0
mirror mode=12 port=ge7	All packets received by the ingress port of ge0 are
IngressBitMap=ge0	mirrored to ge7. Note that this occurs even though
	ge7 and ge0 are not in the same VLAN
mirror mode=12 port=ge7	All packets sending by the egress port of ge0 are
EgressBitMap=ge0	mirrored to ge7
mir	Displays current settings of port mirroring

表 1-27 Mirroring 命令的使用

2.5.5 Filtering

Filtering 命令的作用是创建简单的过滤器,将数据包传向 CPU。如果你需要做一些大的改动,那么就需要直接编辑 GIRULE (or GIMASK)表。Filtering 命令的使用如表 1-28 所示。

1 20 1 IIIC	Ting in 4 h K/h
filter create dm=0x000102030405	Trap all packets with the destination MAC
	00:01:02:03:04:05 to the CPU
filter show	Shows existing filter settings
mod girule.ge0 0 1 ACTION=0xc	Modifies the filter so that packets will go to
	CPU only

表 1-28 Filtering 命令的使用

2.5.6 Spanning Tree Group Management

STG 命令用于管理生成树组和生成树的应用,它的使用如表 1-29 所示表 1-29 STG 命令的使用

stg show	Shows the existing STP groups. Group 1 is the default one.
stg stp 1	Shows STP states for all ports in STG 1.
stp 1 start	Start STP for STG 1
stp 1 show details	Shows the STP state fpr STG 1
stp 1 root	Show the current root
stg stp 1 all forward	Show the current root

2.6 错误检测命令

2.6.1 Text

Text 命令帮助用户来验证芯片是否正常工作,它的使用如表 1-30 所示. 表 1-30 Text 命令的使用

TestList	Lists available tests
TestSelect +41	Adds test #41 to the list of selected tests
TestSelect -40	Removes test #40 from the list of selected tests
TestMode StopOnError	Chooses the mode to run tests
TestClear *	Clears statistics for all the tests
TestRun	Runs all the selected tests
TestRun 41	Runs only the specified test

2.6.2 **CONFig**

表 1-31 CONFig 命令的使用

config	Displays the configuration
config add pbmp_valid.1=0xf	Enables only ports 0-3 on unit 1. This will take
	effect only after the re-initialization of the driver
config pbmp_valid.1=0xff	Changes the value of the existing config variable
config delete pbmp_valid.1	Deletes the config variable (thus re-enabling all
	the ports).

3 Reference Documents 参考文献

- 1) BCM_CLI_Quick_Start_Guide.pdf
- 2) Generic SDK Introduction .pdf