CS 480/680 Introduction to Machine Learning

Lecture 12 Expectation Maximization and Gaussian Mixture Models

Kathryn Simone 24 October 2024

We know how to estimate parameters and make predictions

Problem Type 2:

Given:
$$\{x_1 = 1, x_2 = 2, x_3 = 0\}, x_i \sim \mathcal{N}(\mu, \sigma^2 = 1.0)$$

Task: Estimate μ

Problem Type 1:

Given:
$$\{x_1 = 1, x_2 = 2, x_3\}, x_i \sim \mathcal{N}(\mu = 1.0, \sigma^2 = 1.0)$$

Task: Predict x_3

Can we estimate parameters if data is missing?

Problem Type 3:

Given: $\{x_1 = 1, x_2 = 2, x_3\}, x_i \sim \mathcal{N}(\mu, \sigma^2 = 1.0)$

Task: Estimate (x_3, μ)

How could we solve it?

 μ :

 x_3 :

KEY IDEA BEHIND EM ALGORITHM

Lecture Outline

I. How does the EM algorithm work in a special case?

II. How does the EM algorithm work in general?

Lecture Outline

I. How does the EM algorithm work in a special case?

II. How does the EM algorithm work in general?

Estimating the parameters of a mixture of Gaussians

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

$$X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$X = (1 - \Delta) \cdot X_1 + \Delta \cdot X_2$$

Where Δ is a binary random variable:

$$\Delta \in \{0,1\}$$

Let π denote the probability of Δ taking on the value of 1:

$$\Pr[\Delta = 1] = \pi$$

Let $\mathcal{N}_{\mu,\sigma^2}$ denote the normal density with mean μ and variance σ^2 . Then the density of x is

$$p(x) = (1 - \pi) \mathcal{N}_{\mu_1, \sigma_1^2}(x) + \pi \mathcal{N}_{\mu_2, \sigma_2^2}(x)$$

Can we find the parameters through direct maximization?

$$p(x) = (1 - \pi)\mathcal{N}_{\mu_1, \sigma_1^2}(x) + \pi\mathcal{N}_{\mu_2, \sigma_2^2}(x)$$

$$\mathcal{L}(\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2 \mid \mathbf{X}) = \prod_{i=1}^n \left[(1 - \pi) \mathcal{N}_{\mu_1, \sigma_1^2}(x) + \pi \mathcal{N}_{\mu_2, \sigma_2^2}(x) \right]$$

$$\log \mathcal{L}(\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2 \mid \mathbf{X}) = \sum_{i=1}^n \log \left[(1 - \pi) \mathcal{N}_{\mu_1, \sigma_1^2}(x) + \pi \mathcal{N}_{\mu_2, \sigma_2^2}(x) \right]$$

$$\frac{\partial \log \mathcal{L}}{\partial \sigma_2} = ?? \qquad \frac{\partial \log \mathcal{L}}{\partial \mu_2} = ?? \qquad \frac{\partial \log \mathcal{L}}{\partial \sigma_1} = ?? \qquad \frac{\partial \log \mathcal{L}}{\partial \mu_1} = ?? \qquad \frac{\partial \log \mathcal{L}}{\partial \pi} = ??$$

The likelihood function for a mixture model is nonconvex

Label-switching problem:

- Parameters are unidentifiable because likelihood surface has two symmetric modes
- Even with mixing weight π , and variances σ_1^2 , σ_2^2 known!

Thought experiment 1: If we knew the sample assignments...

$$\log \mathcal{L}(\pi, \mu_{1}, \sigma^{2}, \mu_{2}, \sigma_{2} \mid \mathbf{X})$$

$$= \sum_{i=1}^{n} \log \left[(1 - \pi) \mathcal{N}_{\mu_{1}, \sigma_{1}^{2}}(x) + \pi \mathcal{N}_{\mu_{2}, \sigma_{2}^{2}}(x) \right]$$

$$= \sum_{i=1}^{n} \left[(1 - \Delta_{i}) \log \mathcal{N}_{\mu_{1}, \sigma_{1}^{2}}(x) + \Delta_{i} \log \mathcal{N}_{\mu_{2}, \sigma_{2}^{2}}(x) \right]$$

$$+ \sum_{i=1}^{n} \left[(1 - \Delta_{i}) \log (1 - \pi) + \Delta_{i} \log \pi \right]$$

$$= \begin{cases} \sum_{i=1}^{n} \log \mathcal{N}_{\mu_{1}, \sigma_{1}^{2}}(x) + \sum_{i=1}^{n} \log (1 - \pi) & \text{if } \Delta = 0 \\ \sum_{i=1}^{n} \log \mathcal{N}_{\mu_{2}, \sigma_{2}^{2}}(x) + \sum_{i=1}^{n} \log \pi & \text{if } \Delta = 1 \end{cases}$$

Thought experiment 1: If we knew the sample assignments...

$$= \begin{cases} \sum_{i=1}^{n} \log \mathcal{N}_{\mu_{1}, \sigma_{1}^{2}}(x) + \sum_{i=1}^{n} \log(1 - \pi) & \text{if } \Delta = 0\\ \sum_{i=1}^{n} \log \mathcal{N}_{\mu_{2}, \sigma_{2}^{2}}(x) + \sum_{i=1}^{n} \log \pi & \text{if } \Delta = 1 \end{cases}$$

$$\hat{\boldsymbol{\mu}}_1 = \frac{1}{|\Delta_0|} \sum_{i \in \Delta_0} x_i \qquad \qquad \hat{\boldsymbol{\mu}}_2 = \frac{1}{|\Delta_1|} \sum_{i \in \Delta_1} x_i$$

$$\hat{\sigma}_{1}^{2} = \frac{1}{|\Delta_{0}|} \sum_{i \in \Delta_{0}} (x_{i} - \hat{\mu}_{1})^{2} \quad \hat{\sigma}_{2}^{2} = \frac{1}{|\Delta_{1}|} \sum_{i \in \Delta_{1}} (x_{i} - \hat{\mu}_{2})^{2} \quad \hat{\pi} = \frac{1}{N} \sum_{i=1}^{n} \Delta_{i}$$

$$\hat{\pi} = \frac{1}{N} \sum_{i=1}^{N} \Delta$$

... we could compute the parameters empirically

Thought experiment 2: If we knew the parameters...

$$p(x) = (1-\pi)\mathcal{N}_{\mu_1,\sigma_1^2}(x) + \pi\mathcal{N}_{\mu_2,\sigma_2^2}(x)$$

$$\Pr[\Delta_i = 1 \mid \pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mathbf{X}]$$

$$= \frac{\pi\mathcal{N}_{\mu_2,\sigma_2^2}(x_i)}{(1-\pi)\mathcal{N}_{\mu_1,\sigma_1^2}(x_i) + \pi\mathcal{N}_{\mu_2,\sigma_2^2}(x_i)}$$

$$= \gamma_i : \text{ "responsibility of mode 2 for observation } i$$

$$= \mathbb{E}[\Delta_i \mid \pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mathbf{X}] :$$

"expectation of Δ_i given parameters and data"

...we could compute the probability of a sample assignment

Could we combine these two somehow?

Recall Lloyd's algorithm for K-Means clustering

Comparing Lloyd's algorithm to GMM parameter estimation

Adapting Lloyd's algorithm for GMM parameter estimation?

Adapting Lloyd's algorithm for GMM parameter estimation?

Iterative procedure convergences on the given dataset

Algorithm 8.1 EM Algorithm for Two-component Gaussian Mixture.

- 1. Take initial guesses for the parameters $\hat{\mu}_1, \hat{\sigma}_1^2, \hat{\mu}_2, \hat{\sigma}_2^2, \hat{\pi}$ (see text).
- 2. Expectation Step: compute the responsibilities

$$\hat{\gamma}_i = \frac{\hat{\pi}\phi_{\hat{\theta}_2}(y_i)}{(1-\hat{\pi})\phi_{\hat{\alpha}_i}(y_i) + \hat{\pi}\phi_{\hat{\alpha}_i}(y_i)}, \ i = 1, 2, \dots, N.$$
 (8.42)

3. Maximization Step: compute the weighted means and variances:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}, \qquad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})},$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, \qquad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} (y_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}},$$

and the mixing probability $\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_i / N$.

4. Iterate steps 2 and 3 until convergence.

Why is it called Expectation-Maximization (EM)?

Gaussian Mixture Models

The probability density for a point x is determined by the sum of densities of independent Gaussian distributions

$$p(x) = \sum_{j=1}^{k} \pi_j \mathcal{N}(\mu_j, \Sigma_j, x)$$

Where:

 μ_j, Σ_j : mean vector and covariance matrix of j^{th} Gaussian, for $x \in \mathbb{R}^d, d > 1$ each Gaussian is multivariate

k: number of Gaussians in the model,

 π_j : mixing weight associated with with the j^{th} Gaussian; $\pi_j \in [0, 1]$ and $\sum_{j=1}^k = 1$

EM for mixtures of multivariate Gaussians

Lecture Outline

I. How does the algorithm work in a common special case?

II. How does the algorithm work in general?

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n \mid \theta)$$

 y_n : observed data

 θ : parameters to estimate

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n \mid \theta)$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} p(y_n, z_n \mid \theta) \right]$$

p(y)

2.5

2.0

1.5

0.5

0.0

0.5

1.0

1.5

 θ : parameters to estimate

 z_n : hidden variables

 $p(y_n, z_n \mid \theta)$: joint distribution of y_n and z_n

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n \mid \theta)$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} p(y_n, z_n \mid \theta) \right]$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} p(y_n, z_n \mid \theta) \frac{q_n(z_n)}{q_n(z_n)} \right]$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} q_n(z_n) \frac{p(y_n, z_n \mid \theta)}{q_n(z_n)} \right]$$

 y_n : observed data

 θ : parameters to estimate

 z_n : hidden variables

 $p(y_n, z_n \mid \theta)$: joint distribution of y_n and z_n

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n \mid \theta)$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} p(y_n, z_n \mid \theta) \right]$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} p(y_n, z_n \mid \theta) \frac{q_n(z_n)}{q_n(z_n)} \right]$$

$$\ell(\theta) = \sum_{n=1}^{N} \log \left[\sum_{z_n} q_n(z_n) \frac{p(y_n, z_n \mid \theta)}{q_n(z_n)} \right]$$

$$\ell(\theta) \ge \sum_{n} \sum_{z_n} q_n(z_n) \log \frac{p(y_n, z_n \mid \theta)}{q_n(z_n)}$$

 y_n : observed data

 θ : parameters to estimate

 z_n : hidden variables

 $p(y_n, z_n \mid \theta)$: joint distribution of y_n and z_n

Jensen's Inequality:

$$\log \mathbb{E}_{q_n}[Z] \ge \mathbb{E}_{q_n}[\log Z]$$

$$\log \sum_{z_n} q_n(z_n) \frac{p(y_n, z_n \mid \theta)}{q_n(z_n)} \ge \sum_{z_n} q_n(z_n) \log \frac{p(y_n, z_n \mid \theta)}{q_n(z_n)}$$

How can we maximize $\ell(\theta)$?

$$\ell(\theta) \ge \sum_{n} \sum_{z_n} q_n(z_n) \log \frac{p(z_n \mid y_n, \theta) p(y_n \mid \theta)}{q_n(z_n)}$$

$$\geq \sum_{n} \sum_{z_n} q_n(z_n) \log \frac{p(z_n \mid y_n, \theta)}{q_n(z_n)} p(y_n \mid \theta)$$

$$\geq \sum_{n} \left[\sum_{z_n} q_n(z_n) \log \frac{p(z_n \mid y_n, \theta)}{q_n(z_n)} + \sum_{z_n} q_n(z_n) \log p(y_n \mid \theta) \right]$$

$$\geq \sum_{n} \left[-D_{\mathrm{KL}} \left(q_{n}(z_{n}) \parallel p(z_{n} \mid y_{n}, \theta) \right) + \log p(y_{n} \mid \theta) \right]$$

Select:
$$q_n^* = p(z_n \mid y_n, \theta)$$

$$\implies \ell(\theta) = \sum \log p(y_n \mid \theta)$$

Kullback-Leibler divergence

$$D_{\mathrm{KL}}(q \parallel p) \triangleq \sum_{z} q(z) \log \frac{q(z)}{p(z)}$$

$$D_{\mathrm{KL}}(q \parallel p) \ge 0$$

$$D_{\mathrm{KL}}(q \parallel p) = 0$$
 iff $q = p$

How can we maximize $\ell(\theta)$?

$$\ell^t(\theta) = \sum_{n} \log p(y_n \mid \theta)$$

$$\theta^{t+1} = \arg\max_{\theta} \sum_{n} \log p(y_n \mid \theta)$$

$$\ell^t(\theta) \geq \sum_n \left[-D_{\mathrm{KL}} \left(q_n(z_n) \, \| \, p(z_n \mid y_n, \theta) \right) \right] \qquad \ell^t(\theta) = \sum_n \log p(y_n \mid \theta)$$
 Initialize parameters
$$\theta^{t+1} = \arg \max_{\theta} \sum_n \log p(y_n \mid \theta)$$

EM as bound optimization

$$\ell(\theta) \ge -D_{\mathrm{KL}} (q_n(z_n) \| p(z_n | y_n, \theta)) + \log p(y_n | \theta)$$

$$\ell(\theta) \ge Q(\theta, \theta^t)$$

$$\ell(\theta^t) = Q(\theta^t, \theta^t)$$

EM as Maximization-Maximization

Elements of Statistical Learning, Section 8.5

Now that we're at the end of the lecture, you should be able to...

- ★ Define the parameterization of a Gaussian Mixture Model (GMM).
- Define the label-switching problem and its effect on the convexity of the MLE objective for GMMs.
- ★ Recognize Expectation Maximization (EM) as an extension of MLE involving unobserved variables.
- * Recommend EM for appropriate applications involving missing data.
- Relate K-Means clustering to EM for GMMs.
- ★ Implement the EM algorithm and apply it to parameter estimation for a GMM.
- ★ Interpret the EM algorithm as **maximizing a lower-bound** with reference to appropriate terminology including **KL Divergence**, **posterior distribution**.
- ★ Compute the output of the **E-step** and **M-step** for a GMM, given current estimates.