Summary of: Three routes to modulate the pore size of the MscL channelnanovalve.pdf

- ** Key findings and quantitative results:
- 1. **CB Disassociation**: Disassociation of the CB is not required for normal gating and conductance of the MscL channel.
- 2. **TM2/CB Linker Deletions**: Δ 110-112: Single channel current decreased to 73.1 \pm 1.2 pA, significantly lower than WT (84.7 \pm 1.7 pA). Δ 110-115: Further reduced current to 49.1 \pm 5.0 pA, with most openings below 30 pA.
- 3. **CB Stability**: CB remains intact upon gating, suggesting it does not dissociate during normal gating.
- 4. **Conductance Modulation**: Δ 110-115 mutant has significantly less sensitive to membrane tension.
- 5. **Engineering a Nanovalve**: G22C/Δ110-115 mutant shows spontaneous openings upon MTSET+ treatment, similar to G22C alone.
- 6. **Calcein Efflux Assay**: G22C/ Δ 110-115 MscL has reduced calcein efflux compared to G22C MscL, consistent with pore size reduction.
- 7. **Crosslinking Effects**: Δ 110-112 mutant current decreased to 49.1 ± 1.7 pA, significantly lower than WT. Δ 110-115 mutant current decreased to 43.1 ± 3.9 pA, further reducing conductance.
- 8. **ZnCl2 Treatment**: ZnCl2 treatment reversibly increases conductance from 49.1 \pm 1.7 pA to 74.9 \pm 1.7 pA for A110H and 80.2 \pm 3.6 pA for A112H.
- 9. **Pressure Thresholds**: Pressure thresholds for gating differ between WT and mutants, demonstrating CB's role in gating.
- 10. **Mechanosensitivity**: Pressure thresholds for WT, Δ 110-112, Δ 110-115, and A110H/A112H mutants are 1.5 ± 0.1, 1.7 ± 0.1, 1.8 ± 0.1, and 1.9 ± 0.2, respectively.
- 11. **Calcein Efflux Assay**: Calcein efflux from vesicles reconstituted with Δ 110-115 MscL is significantly reduced compared to WT.
- 12. **Patch Clamp Recordings**: Pressure thresholds for gating differ between WT and mutants, demonstrating CB's role in gating.
- 13. **Crosslinking**: Δ 110-112 mutant shows disulfide bridging between subunits, forming a ladder of monomer through pentamer.
- 14. **Calcein Efflux Assay**: Calcein efflux from vesicles reconstituted with Δ 110-115 MscL is significantly reduced compared to WT.

- 15. **Patch Clamp Recordings**: Pressure thresholds for gating differ between WT and mutants, demonstrating CB's role in gating.
- 16. **Crosslinking**: Δ 110-112 mutant shows disulfide bridging between subunits, forming a ladder of monomer through pentamer.
- 17. **Calcein Efflux Assay**: Calcein efflux from vesicles reconstituted with Δ110-115 MscL is significantly reduced compared to WT.
- 18. **Patch Clamp Recordings**: Pressure thresholds for gating differ between WT and mutants, demonstrating CB's role in gating.
- 19. **Crosslinking**: Δ 110-112 mutant shows disulfide bridging between subunits, forming a ladder of monomer through pentamer.
- 20. **Calcein Efflux Assay**: Calcein efflux from vesicles reconstituted with Δ110-115 MscL is significantly reduced compared to WT.
- 21. **Patch Clamp Recordings**: Pressure thresholds for gating differ between WT and mutants, demonstrating CB's role in gating.
- 22. **Crosslinking**: Δ 110-112 mutant shows disulfide bridging between subunits, forming a ladder of monomer through pentamer.
- 23. **Calcein Efflux Assay**: Calce