强化学习

E] -	录			7.1 亿	直函数近似	28
_		永			7.2 B	随机梯度下降	29
1	导论		5		7.3 扌	\ \ 大法	30
	-	可夫决策过程与贝尔曼方程	6		7.4 I	DQN	31
2				8	策略梯	弟 度	32
	2.1	马尔可夫决策过程	6		8.1 柞	既念	32
		2.1.1 要素	6		8.2 F	REINFORCE	34
		2.1.2 状态、动作与收益	7	9		-Critic方法	35
		2.1.3 策略	8		9.1 村	既念	35
		2.1.4 回报与折扣	9			基线优势	36
		2.1.5 值函数	10			ГRPO与PPO	
		2.1.6 构建要点	11			9.3.1 TRPO	
	2.2	贝尔曼方程	11			9.3.2 PPO	38
		2.2.1 贝尔曼方程	11			确定性策略Actor-Critic方法	39
		2.2.2 贝尔曼最优方程	11			0.4.1 DPG	39
3	动态	规划	12		-	9.4.2 DDPG	40
	3.1	策略迭代	13	10	-	搜索方法总结对比	41
	3.2	值迭代	14				•
	3.3	对比与补充	15	11		既念	42
4	蒙特	卡洛	16			^{یری}	
	4.1	概念	16			开	
	4.2	on-policy	17	12	附录	· · · · · · · · · · · · · · · · · · ·	44
	4.3	off-policy				既念与原理	
	4.4	对比				12.1.1 历史与发展	
5		差分	19			12.1.2 贝尔曼最优方程求解	
J		TD(0)				表格型方法	
	-	Sarsa	-			12.2.1 DP补充	
	5.2					12.2.2 MC补充	-
		Q-learning	21			12.2.3 TD补充	46
	•	n-TD				[2.2.4 模型和规划	
	0	n-Sarsa				12.2.5 Dyna-Q	
	-	对比与补充				12.2.6 改进方法	-
6		型方法总结对比	26		-	直函数近似	
7	值函	数近似	28		12.4 梦	数学基础	52

冬	片		图 8 图 9	TD回溯图	19 20
图 1	马尔可夫决策过程	7	图 10	期望Sarsa回溯图	21
图 2	回收机器人状态转移	8	图 11	Q-learning回溯图	21
图 3		10	图 12	双Q-learning回溯图	22
图 4		12	图 13	n-Sarsa回溯图	24
图 5	DP回溯图:显示一步的所有		图 14	表格型方法对比	27
5	11-41	12	图 15	多智能体强化学习	43
图 6		15	图 16	n-树回溯回溯图	47
图 7	MC回溯图:显示一幕所有采		图 17	Q(sigma)回溯图	48
,	N-111 11 41	16			
表	 格		表 3	MC对比	18
12	10		表 4	各算法中的q _t 表达式	28
表 1	值函数计算例题	15	表 5	REINFORCE、PPO、DDPG比	
表 2	DP对比	_		较	41
算	法		算法 14	DQN	31
71	<i>/</i> Δ		算法 15	REINFORCE	35
算法 1	策略迭代	13	算法 16	QAC	35
算法 2		14	算法 17	A ₂ C	37
算法3	MC-On-policy (first visit) .	17	算法 18	重要性采样off-policy Actor-	
算法4	* *	18	Critic	c	37
算法 ₅	TD(0)	20	算法 19	PPO	39
算法6		20	算法 20	确定性策略Actor-Critic	
算法7	Q-learning (off-policy-TD) .	21	(DPC	G)	39
算法8	双Q-learning	22	算法 21	DDPG	40
算法9		23	算法 22	MADDPG	44
算法 10	n-Sarsa	24	算法 23	n-树回溯	47
算法 11	n-期望Sarsa-off-policy	25	算法 24	n -Q(σ)-off-policy	49
算法 12	· 梯度MC	29	算法 25	Dyna-Q	50
算法 13	; 半梯度TD(0)	30	算法 26	确定性环境下的优先遍历	51

要点	5	要点 17	Sarsa (on-policy-TD)	20
× /	**	要点 18	$Q\mbox{-learning (off-policy-TD)} \ \ .$	21
要点 1	马尔可夫决策过程及其元素	6 要点 19	n-TD	23
要点 2	马尔可夫性	要点 20	n-Sarsa	23
要点3		8 要点 21	表格型方法总结对比	26
要点4	ルロトプン	要点 22	值函数近似与随机梯度下降	28
ク 灬 Ŧ 要点 5	// 	要点 23	DQN	31
		要点 24	经验回放	31
要点6		要点 25	策略梯度(公式推导)	32
要点7		要点 26	REINFORCE	34
要点8	策略迭代1	3 要点 27		
要点9	策略改进证明 1	3 要点 28	基线优势	
要点 10	值迭代 1	4 要点 29		
要点 11	值函数计算例题 1	5 证明)	37
要点 12	蒙特卡洛 1	6 要点 30	DDPG	40
要点 13	on-policy 1	7 要点 31	策略搜索方法总结对比	41
要点 14	off-policy	7 要点 32	多智能体强化学习	42
要点 15	重要度采样 1	7 要点 33	纳什均衡求解	42
要点 16	时序差分 (TD(0)) 1	9 要点 34	多智能体算法(MADDPG) .	43

1 导论

特征 智能体与环境交互 (采样), 在不断尝试中学习策略, 使收益最大化。

- 试错探索: 不会获知应采取的行动,通过尝试获得。
- 延迟收益: 一个动作的收益可能无法短期体现, 而是长期浮现。
- 环境不确定性: 当前动作不但会影响当前收益,还会影响后续环境,进而影响后续收益。
- 影响未知性: 无法预测动作的影响, 需要与环境频繁交互。
- 试探(开拓动作空间)与开发/贪心(根据经验获得收益)折中。

优化方法对比

- 凸优化: 状态空间较小。可线性规划。
- 最优控制: 已知模型,解析回报函数。可动态规划,解HJB方程。
- 进化算法: 控制策略简单。如遗传算法。
- 机器学习
 - 有监督学习: 有标签数据, 注重推断与泛化能力。
 - 无监督学习: 无标签数据,寻找数据隐含结构。
- 强化学习: 交互数据, 优化策略以优化收益。

分类

- 1. 模型依赖性
 - 有模型: 学习模型, 规划策略。
 - 无模型: 直接试错策略。
- 2. 策略更新方法
 - 值函数: 求解值函数重构策略。
 - 直接策略搜索: 策略梯度等方法, 搜索策略空间。

- Actor-Critic方法: 类似策略梯度,同时逼近值函数和策略。
- 3. 回报函数是否已知
 - 正向: 从回报到策略。
 - 逆向: 从专家示例到回报。
- 4. 任务体量: 分层强化学习、元强化学习、多智能体强化学习、迁移学习等
- 5. 框架
 - 间接强化学习: 充分利用有限经验, 获得更好策略, 减少与环境的交互。
 - 直接强化学习:不受模型设计偏差影响。

发展

值函数→直接策略搜索(策略梯度等)→深度强化学习。详见12.1.1。

发展方向: 与深度学习结合, 与专业知识结合, 理论分析型增强, 与认知科学结合, 体 量增大,与贝叶斯结合。

马尔可夫决策过程与贝尔曼方程 2

2.1 马尔可夫决策过程(Markov decision process, MDP)

2.1.1 要素 1

- 状态 (state, S): 强化学习依赖的概念。
- 动作 (action, A): 智能体做出的选择。
- 奖励/收益 (reward, R): 短期学习目标,环境给予智能体的信号。
- 策略 (policy, π): 特定状态下动作空间上的分布 $\pi(a|s) = p[A_t = a|S_t = s]$ 。
- 回报 (return, G): 长期收益累计,可能含有折扣,需综合评估。
- 折扣因子 (γ∈ [0,1])。

- 值函数 (value function, V): 对s预估的期望回报。
- 行为/动作值函数 (Q): 对(s,a)预估的期望回报。
- 环境模型 (P): 模拟环境的反应,可以是确定性转移,也可以是随机性转移。
- 大写字母表示空间, 小写字母表示个体, 上标*表示最优。

图 1: 马尔可夫决策过程

2.1.2 状态、动作与收益

序贯交互轨迹(TRAJECTORY) $\tau = s_0, a_0, r_1, s_1, a_1, r_2, \ldots$

随机变量s',r服从离散概率分布 $p(s',r|s,\alpha) \doteq Pr\{S_t=s',R_t=r|S_{t-1}=s,A_{t-1}=\alpha\}$

$$\sum_{s' \in S} \sum_{r \in R} p(s',r|s,\alpha) = 1$$

马尔可夫性 2 即"无记忆性",未来状态仅依赖当前状态,而独立于过去状态。

$$P(S_{t+1}|S_t, S_{t-1}, ..., S_0) = P(S_{t+1}|S_t)$$

状态转移与期望收益

由s和a转移到s'的概率,包括s'下各可能收益情况:

$$p(s'|s,\alpha) \doteq \Pr\{S_t = s'|S_{t-1} = s, A_{t-1} = \alpha\} = \sum_{r \in R} p(s',r|s,\alpha)$$

若不指定a,由s转移到s'的概率为:

$$p(s'|s) = \sum_{\alpha \in A} [p(s'|s, \alpha)p(\alpha|s)]$$

返回目录

有无s'的两种期望收益:

$$\begin{split} r(s,\alpha) &\doteq \mathsf{E}[\mathsf{R}_t|S_{t-1} = s, A_{t-1} = \alpha] = \sum_{r \in \mathsf{R}} r \sum_{s' \in \mathsf{S}} p(s',r|s,\alpha) \\ r(s,\alpha,s') &\doteq \mathsf{E}[\mathsf{R}_t|S_{t-1} = s, A_{t-1} = \alpha, S_t = s'] = \sum_{r \in \mathsf{R}} r \frac{p(s',r|s,\alpha)}{p(s'|s,\alpha)} \end{split}$$

图 2: 回收机器人状态转移

2.1.3 策略

贪婪策略 $\pi(a|s) = \operatorname{argmax}_a q(a)$.

探索-利用平衡策略

• ε-greedy策略 ³ : 靠近贪心策略,但所有动作概率不为零。实际使用时需注意多最优 情况。

$$\alpha = \begin{cases} \text{argmax}_{\alpha}q(\alpha) & \text{,} p = 1 - \varepsilon \\ \text{random}(\alpha) & \text{,} p = \varepsilon \end{cases} \Rightarrow \pi(\alpha|s) = \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A|} & \text{,} \alpha = \text{argmax}_{\alpha}q(\alpha) \\ \frac{\varepsilon}{|A|} & \text{,} \text{otherwise} \end{cases}$$

• UCB(Upper Confidence Bound)策略:可以自适应平衡探索与利用。

$$\pi(a|s) = Q(a) + c\sqrt{\frac{\ln N}{n(a)}}$$

其中,c控制探索强度,N是当前轮数,n(a)是a被选次数。

• 玻尔兹曼分布(Boltzmann): 可以动态调整探索强度。

$$\pi(\alpha|s) = \frac{e^{Q(\alpha)/\tau}}{\sum_{\alpha'} e^{Q(\alpha)/\tau}}$$

其中τ是温度参数,控制随机程度,趋于0时贪心,趋于∞时随机。

• 高斯策略:

$$\pi = \mu + \varepsilon, \varepsilon \sim N(0, \sigma^2)$$

增量式更新 4 将轮次更新转化为递推关系,减少空间复杂度,如运行均值:

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i = Q_n + \frac{1}{n} (R_n - Q_n)$$

2.1.4 回报与折扣 5

- 幕 (episode): 一次交互序列,幕间没有联系。
- 终止时刻T: 划分非终结状态集S和所有状态集S+。
- 分幕式任务 (episodic tasks): 有终止状态,可分幕。

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T = \sum_{k=t+1}^T R_k$$

• 持续性任务 (continuing tasks): 没有终止状态,持续进行,不能自然分幕。

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \leqslant \frac{1}{1-\gamma} \max R_{t}$$

其中γ越大代表长期收益越重要。

• 统一表示: 有限项终止后, 状态持续转移回自己, 相当于无限项。

$$G_t \doteq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

2.1.5 值函数 6

值函数

$$\begin{split} \nu_{\pi}(s) &\doteq \mathsf{E}_{\pi}[\mathsf{G}_{\mathsf{t}}|\mathsf{S}_{\mathsf{t}} = s] = \mathsf{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^{k} \mathsf{R}_{\mathsf{t}+k+1}|\mathsf{S}_{\mathsf{t}} = s], s \in \mathsf{S} \\ &= \mathsf{E}_{\pi}[\underbrace{\mathsf{R}_{\mathsf{t}+1}}_{\mathsf{U}\mathsf{D}\mathsf{U} \not \mathsf{S} \mathsf{M}} + \gamma \underbrace{\mathsf{G}_{\mathsf{t}+1}}_{\mathsf{R} \times \mathsf{S} \mathsf{M}} |\mathsf{S}_{\mathsf{t}} = s](\mathsf{E} \mathring{\mathsf{u}} \mathring{\mathsf{u}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}}) \\ &= \sum_{\mathfrak{a} \in \mathsf{A}} \pi(\mathfrak{a}|s) [\sum_{r \in \mathsf{R}} \mathsf{p}(r|s,\mathfrak{a})r + \gamma \sum_{s' \in \mathsf{S}} \mathsf{p}(s'|s,\mathfrak{a})\nu_{\pi}(s')] (\mathring{\mathsf{D}} \mathfrak{D} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathcal{E}) \\ &= \sum_{\mathfrak{a} \in \mathsf{A}} \pi(\mathfrak{a}|s) \underbrace{\sum_{s' \in \mathsf{S}, r \in \mathsf{R}} \mathsf{p}(s',r|s,\mathfrak{a})[r + \gamma \nu_{\pi}(s')]}_{\mathsf{U} \cap \mathsf{S} \not \mathsf{E}} (\mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathring{\mathsf{E}} \mathcal{E}) \end{split}$$

行为值函数

$$\begin{split} q_{\pi}(s,\alpha) &\doteq \mathsf{E}_{\pi}[\mathsf{G}_t|\mathsf{S}_t = s, \mathsf{A}_t = \alpha] = \mathsf{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k \mathsf{R}_{t+k+1}|\mathsf{S}_t = s, \mathsf{A}_t = \alpha], s \in \mathsf{S} \\ &= \sum_{r \in \mathsf{R}} \mathsf{p}(r|s,\alpha)r + \gamma \sum_{s' \in \mathsf{S}} \mathsf{P}(s'|s,\alpha) \underbrace{\sum_{\alpha' \in \mathsf{A}} \pi(\alpha'|s') q_{\pi}(s'|\alpha')}_{\nu_{\pi}(s')}($$
状态值函数递推关系)

s'的价值信息回传给s。 回溯算法

图 3: DP回溯图(节点可以重复)

最优值函数与最优策略

- $\forall s \in S$, $q_{\pi}(s, \pi'(s)) = \nu_{\pi'}(s) \geqslant \nu_{\pi}(s)$, 则称 π' 优于或等于 π 。
- $\nu_{\pi}(s)$ 定义了 π 的偏序关系, π^* 存在且可能不唯一,它们共享:

$$v^*(s) \doteq \max_{\pi} v_{\pi}(s) \quad q^*(s, \alpha) \doteq \max_{\pi} q_{\pi}(s, \alpha)$$

- 确定s, a, r (不含先验知识,不为达到子目标而舍弃最终目标)。
- 奖励与惩罚是相对的,可以全奖励或全惩罚。
- 同一问题可能有多层次MDP。
- 利用先验知识,人为排除愚蠢动作。

2.2 贝尔曼方程 7

2.2.1 贝尔曼方程

$$\begin{split} \underline{\nu_{\pi}(s)} &= \sum_{\alpha \in A} \pi(\alpha|s) \sum_{s' \in S, r \in R} P(s', r|s, \alpha) [r + \gamma \underline{\nu_{\pi}(s')}] \\ &= \underbrace{\sum_{\alpha \in A} \pi(\alpha|s) \sum_{r \in R} P(r|s, \alpha)}_{r_{\pi}(s)} + \gamma \underbrace{\sum_{s' \in S} [\sum_{\alpha \in A} \pi(\alpha|s) P(s'|s, \alpha)] \underline{\nu_{\pi}(s')}}_{p_{\pi}(s'|s)} \end{split}$$

2.2.2 贝尔曼最优方程

方程组中方程数为|S|,如P已知,并具有马尔可夫性,则可求解。但一般难以满足,且计算资源有限,求近似解。

形式

•
$$s \rightarrow a^*$$
:

$$egin{aligned}
u^*(s) &= \max_{\alpha \in A} q_{\pi^*}(s, \alpha) ($$
凸组合最优) \\
&= \max_{\pi} \sum_{s \in S} \pi(\alpha|s) q(s, \alpha) (元素) \\
&= \max_{\pi} (r_{\pi} + \gamma P_{\pi}
u) (矩阵) \end{aligned}

•
$$(s, a) \rightarrow (s, a)_{\text{next}}^*$$
:

$$\begin{aligned} q^*(s, \alpha) &= E[R_{t+1} + \gamma \max_{\alpha'} q^*(S_{t+1}, \alpha') | S_t = s, A_t = \alpha] \\ &= \sum_{s' \in S, r \in R} p(s', r | s, \alpha) [r + \gamma \max_{\alpha'} q^*(s', \alpha')] \end{aligned}$$

图 4: DP回溯图的两种形式(最优)

求解 伸缩映射性,见12.1.2。

贪婪最优策略 π^* 中, $\nu(s) = E[r(\mathfrak{a}^*|s)]$,可使用贪心策略求取(证明: 凸组合最大值为最大一项)。

3 动态规划 (DYNAMIC PROGRAMMING, DP): 期望更新

使用值函数结构化组织最优策略搜索,将贝尔曼方程转化成近似逼近理想值函数的递归更新公式,即将多阶段决策问题转化为多个单阶段决策问题。

图 5: DP回溯图:显示一步的所有转移

3.1 策略迭代 8

$$\pi_0 \xrightarrow{PE} \nu_{\pi_0} \xrightarrow{PI} \pi_1 \xrightarrow{PE} \nu_{\pi_1} \xrightarrow{PI} \pi_2 \xrightarrow{PE} \nu_{\pi_2} \xrightarrow{PI} \dots$$

反复进行PE和PI,得到改进的 ν_{π} 估计和 π ,最后收敛到最优。

- 策略评估 (PE):
 - 直接求解: $v_{\pi_{\nu}} = (I \gamma P_{\pi_{\nu}})^{-1} r_{\pi_{\nu}}$.
 - 迭代求解:

$$\nu_{\pi_k}^{(j+1)} = r_{\pi_k} + \gamma P_{\pi_k} \nu_{\pi_k}^{(j)} = \sum_{\alpha \in A} \pi(\alpha|s) [r(\alpha|s) + \gamma \sum_{s' \in S} P(s'|s,\alpha) \nu_{\pi}(s')], j = 0,1,2,\dots$$

- 截断策略评估:不需要完全收敛。
- 策略改进 (PI) ⁹:
 - 理论: $\nu_{\pi}(s) \leq q_{\pi}[s, \pi'(s)] 则 \pi' 不次于 π$

$$\begin{split} \nu_{\pi}(s) &\leqslant q_{\pi}[s, \pi'(s)] \\ &= E_{\pi'}[R_{t+1} + \gamma \nu_{\pi}(S_{t+1}) | S_t = s, A_t = \pi'(s)] \\ &\leqslant E_{\pi'}\{R_{t+1} + \gamma q_{\pi}[S_{t+1}, \pi'(S_{t+1})] | s_t = s\} \\ &\leqslant E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s] \\ &= \nu_{\pi'}(s) \end{split}$$

- 贪心策略: $\pi_{k+1} = argmax_{\pi}(r_{\pi} + \gamma P_{\pi} \nu_{\pi_k})$

算法 1: 策略迭代

- 1: 参数: 估计精度阈值 $\theta > 0$
- 2: 初始化: $\forall s \in S$,任意初始化 $\nu(s) \in R$, $\pi(s)$
- 3: 循环

> 策略评估

7:
$$\nu_{\pi_{k}}^{(j+1)}(s) \leftarrow \sum_{\alpha \in A} \pi_{k}(\alpha|s) \left[\sum_{r \in R} p(r|s,\alpha)r + \gamma \sum_{s' \in S} p(s'|s,\alpha)\nu_{\pi_{k}}^{(j)}(s')\right]$$
8:
$$\Delta \leftarrow \max(\Delta, |\nu - \nu_{\pi_{k}}^{(j+1)}(s)|)$$

8:
$$\Delta \leftarrow \max(\Delta, |\nu - v_{\pi_k}^{(j+1)}(s)|)$$

算法 1: 策略迭代

9: 直到 Δ < θ

10: 策略稳定←true

> 策略改进

n: 对于 ∀s ∈ S 执行

12: $a_{\text{old}} \leftarrow \pi(s)$

13: 对于 $\forall \alpha \in A(s)$ 执行

14: $q_{\pi_k}(s, a) \leftarrow \sum_{r \in R} p(r|s, a)r + \gamma \sum_{s' \in S} p(s'|s, a) \nu_{\pi_k}(s')$

15: $a_k^*(s) \leftarrow argmax_a q_{\pi_k}(s,a)$,并更新 $\pi(s)$

16: 如果 $a_{old} \neq a_k^*(s)$ 那么

17: 策略稳定←false

18: 直到 策略稳定

3.2 值迭代 10

$$u_0 \xrightarrow{PU} \pi_1' \xrightarrow{VU} u_1 \xrightarrow{PU} \pi_2' \xrightarrow{VU} u_2 \xrightarrow{PU} \dots$$

结合极端PE和PI,只进行一次PE遍历,对每个状态更新一次。

$$v_{k+1} = \max_{\pi} r_{\pi} + \gamma P_{\pi} v_k, k = 1, 2, 3, \dots$$

- 策略更新(PU): $\pi_{k+1} = argmax_{\pi}(r_{\pi} + \gamma P_{\pi}\nu_{k})$,贪婪选取。
- 价值更新(VU): $\nu_{k+1}=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}\nu_k=\max_{\alpha\in A}q_k$ 。

算法 2: 值迭代

- 1: 参数: 估计精度阈值 $\theta > 0$
- 2: 初始化: $\forall s \in S^+$,任意初始化 $\nu(s)$, $\nu(终止) = 0$
- 3: 循环
- $4: \quad \Delta \leftarrow 0$
- 5: 对于 ∀s ∈ S 执行
- 6: 对于 $\forall \alpha \in A(s)$ 执行
- 7: $q_k(s, a) \leftarrow \sum_{r \in R} p(r|s, a)r + \gamma \sum_{s' \in S} p(s'|s, a) \nu_k(s')$
- 8: $a_k^*(s) \leftarrow \operatorname{argmax}_a q_k(s, a)$ ▷ 贪婪策略

算法 2: 值迭代 若 $a=a_k^*$ 且 $\pi_{k+1}(a|s)=0$,则 ${} \diamondsuit\pi_{k+1}(a|s)=1$ ▷ 策略更新 9: $\nu_{k+1}(s) \leftarrow max_{\alpha} \, q_k(s,\alpha)$ ▷ 价值更新 10: $\Delta \leftarrow max(\Delta, |\nu_{k+1} - \nu_k|)$ ▷一轮中反复更新精度 12: 直到 Δ < θ

出界和障碍-1分,目标1分,折扣率λ。 例题

图 6: 值函数计算例题

k = 0	a_1	\mathfrak{a}_2	\mathfrak{a}_3	\mathfrak{a}_4	\mathfrak{a}_5	k = 1	a_1	\mathfrak{a}_2	\mathfrak{a}_3	\mathfrak{a}_4	\mathfrak{a}_5
s ₁	-1	-1	0	-1	0	s ₁	$-1+\gamma 0$	$-1+\gamma 1$	$0+\gamma 1$	$-1+\gamma 0$	$0+\gamma 0$
s ₂	-1	-1	1	0	-1	s ₂	$-1+\gamma 1$	$-1+\gamma 1$	$1+\gamma 1$	$0 + \gamma 0$	$-1+\gamma 1$
\$3	0	1	-1	-1	0	\$3	$0 + \gamma 0$	$1+\gamma 1$	$-1+\gamma 1$	$-1+\gamma 1$	$0+\gamma 1$
S ₄	1	1	1	0	1	\$4	$1+\gamma 1$	$1+\gamma 1$	$1+\gamma 1$	$0+\gamma 1$	$1+\gamma 1$

表 1: 值函数计算例题

3.3 对比与补充

	策略迭代	值迭代
维护内容	值函数+策略	值函数
收敛速度	较快	较慢
收敛性	依赖初始策略质量,可能陷入局部最优	保证全局最优
适用策略空间	简单	复杂
计算成本	较低	较高(迭代遍历所有动作)

表 2: DP对比

补充见12.2.1。

4 蒙特卡洛 (MONTE CARLO, MC): 采样更新

针对分幕式任务,不需要P,通过多幕采样数据获得经验代替值函数解决问题。

4.1 概念 12

核心需求 由于P的缺失, $\nu(s)$ 是不够的,需要评估q(s,a)。

估计q(s,a)

- 访问 (visit): 给定的一幕中,指定状态的一次出现。
- 首次访问(first visit): $\hat{\mathfrak{q}}(s,a) = \frac{G_{11}(s,a) + G_{21}(s,a) + ...}{N(s,a)}$ 。
- 每次访问(every visit): $\hat{\mathfrak{q}}(s,\mathfrak{a}) = \frac{G_{11}(s,\mathfrak{a}) + G_{12}(s,\mathfrak{a}) + \cdots + G_{21}(s,\mathfrak{a}) + \cdots}{N(s,\mathfrak{a})}$ 。

N(s)是s的访问次数, $N(s) \rightarrow \infty$, $\hat{q}(s, a) \rightarrow q_{\pi}(s, a)$ 。

图 7: MC回溯图:显示一幕所有采样到的转移

幕长 靠近目标的状态比远离目标的状态更早具有非零值,幕长应足够长,无需无限长。

优势

- 不需要P, 可从实际经历和模拟经历中学习。
- 对每个状态的估计是独立的,可聚焦于状态子集,无需考虑其他状态,效率高。
- 无马尔可夫性时性能损失较小。

恒温策略: $\forall (s,a), \pi(a|s) > 0$

- 1. 试探性出发 (ES): 为采样部分无法正常获得的(s, α), 可设定所有(s, α)都有概率作为 起始。满足充分探索的理论要求, 但实际中很难实现。
- 2. ε-greedy策略。

4.2 on-policy (同轨)

采样并改进相同策略。

算法 3: MC-On-policy (first visit)

- 1: 参数: € > 0
- 2: 初始化: $\forall s \in S, a \in A(s)$,任意初始化 $q(s,a) \in R$,初始化Returns(s,a)为空列表, ϵ -greedy初始化 π
- 3: 循环
- 根据 π 生成一幕序列 S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , ..., S_{T-1} , A_{T-1} , R_T
- $G \leftarrow 0$
- 对于 t = T 1, T 2, ..., 0 执行 6:
- $G \leftarrow \gamma G + R_{t+1}$
- 如果 S+在此幕中首次出现 那么 8:
- 将G加入Returns(S_t , A_t) 9:
- $q(S_t, A_t) \leftarrow average[Returns(S_t, A_t)]$ 10:
- $a^* \leftarrow argmax_aq(S_t, a)$ 11:
- ϵ -greedy策略选取 $\pi(\alpha|S_t)$ 12:

4.3 off-policy (离轨)

采样与改进不同策略,前者称为行为策略(Behavior Policy)b(保证对所有可能动作的 采样),后者称为目标策略(Target Policy)π。

重要度采样(IMPORTANCE SAMPLING) 5 off-policy的数学基础。

计算G时,对轨迹在π和b中出现的相对概率进行加权:

$$\rho_{t:T-1} = \Pi_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)} (约去相同的转移概率)$$

- 普通重要度采样: $\nu(s) \doteq \frac{\sum_{t \in \tau(s)} \rho_{t:T(t)-1} G_t}{|\tau(s)|}$,无偏但无界。
- 加权重要度采样: $\nu(s) \doteq \frac{\sum_{t \in \tau(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \tau(s)} \rho_{t:T(t)-1}}$,有偏但偏差值渐近收敛。 减小方差的方法见12.2.2。

增量式更新

$$\begin{split} \nu_{n+1} &\doteq \nu_n + \frac{W_n}{C_n} [G_n - \nu_n] (\nu_n 和 G_n 线性组合) \\ C_{n+1} &\doteq C_n + W_{n+1} \end{split}$$

其中, W_i 是随机权重, C_i 是其累加和。

算法 4: MC-Off-policy (every visit)

- 1: 初始化: $\forall s \in S, \alpha \in A(s)$,任意初始化 $q(s,\alpha) \in R, C(s,\alpha) = 0$,初始化 $\pi(s) = argmax_{\alpha}q(s,\alpha)$ $\qquad \qquad$ 目标策略为贪婪策略
- 2: 循环
- 3: 根据b生成一幕序列 S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , ..., S_{T-1} , A_{T-1} , R_T ▷ 行为策略 为 ϵ -greedy策略
- 4: $G \leftarrow 0, W \leftarrow 1$
- 5: 对于 t = T 1, T 2, ..., 0 执行
- 6: $G \leftarrow \gamma G + R_{t+1}$
- 7: $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$
- 8: $q(S_t, A_t) \leftarrow q(S_t, A_t) + \frac{W}{C(S_t, A_t)}[G q(S_t, A_t)]$ ▷ 增量式更新
- 9: $\pi(S_t) \leftarrow argmax_a q(S_t, a)$
- 10: 如果 $A_t \neq \pi(S_t)$ 那么
- 11: break

▶ 如果不是最优动作则退出内层循环

12: $W \leftarrow \frac{W}{b(A_t|S_t)}$

▷更新重要度采样权重

潜在问题: 贪心行为普遍时, 只会从幕尾学习; 贪心行为不普遍时, 学习速度较慢。

4.4 对比

策略类型	稳定性	收敛性
on-policy	较稳定	需要更多样本 (更新需要新的数据)
off-policy	不太稳定(使用行为策略)	更快找到优质解

表 3: MC对比

5 时序差分(TEMPORAL DIFFERENCE, TD): 采样更新

TD可直接从与环境的互动中获取信息,不需要P,同时运用自举思想,可基于已得到的其他状态估计来更新当前 $\nu(s)$,相当于结合了DP和MC的优点。

5.1 TD(0) 16

更新公式为:

新息: TD误差 (error)
$$\delta_t$$

$$\nu_{t+1}(s_t) = \nu_t(s_t) + \alpha_t(s_t) \underbrace{\left[r_{t+1} + \gamma \nu_t(s_{t+1}) - \nu_t(s_t)\right]}_{\text{TD目标 (target)}}$$

- $G_t = V_{\pi}(s_t)$ 的无偏估计; $r_{t+1} + \gamma V_{\pi}(s_{t+1})$ 是无偏估计,而 $r_{t+1} + \gamma V(s_{t+1})$ 是有偏估计。
- MC误差可写成TD误差之和 $G_t \nu(s_t) = \sum_{k=t}^{T-1} \gamma^{k-t} \delta_k$,其在步长较小时成立。

图 8: TD回溯图

优势

- 不需要P,R。
- 更新快: MC须等到幕尾确定增量,更新G_t; 而TD只需等到下一时刻,更新TD目标。
- 方差小: MC更新依赖很多随机动作, TD更新仅依赖一个随机动作, 因此TD目标的方差比G_t的方差要小很多。
- 随机任务中, TD(0)收敛速度要比常量αMC快。前者的最优性与预测回报更相关, 找出的是完全符合马尔可夫过程的最大似然估计参数, 收敛到确定性等价估计; 而后者只在有限方面最优, 找出的是最小化训练集均方误差的估计。
- 自举性: TD需要初始猜测值, MC没有进行初始猜测。
- 只评估当前动作,与后续动作无关。

算法 5: TD(0)

1: 输入: 待评估策略π

2: 参数: 步长α∈(0,1]

3: 初始化: $\forall s \in S^+$,任意初始化 $\nu(s)$, $\nu(终止) = 0$

4: 对于 每一幕 执行

初始化s 5:

当 s不是终止状态 执行

由 π (s)获得α并执行,观察r,s' 7:

 $v(s) \leftarrow v(s) + \alpha[r + \gamma v(s') - v(s)]$

 $s \leftarrow s'$

5.2 Sarsa (on-policy-TD)

Sarsa (State-Action-Reward-State-Action),更新单元为 $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$,是TD算 法的q(s,a)版本:

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + \alpha_t(s_t, a_t)[r_{t+1} + \gamma q_t(s_{t+1}, a_{t+1}) - q_t(s_t, a_t)]$$

图 9: Sarsa回溯图

算法 6: Sarsa (on-policy-TD)

- 1: 参数: 步长 $\alpha \in (0,1], \epsilon > 0$
- 2: 初始化: $\forall s \in S^+$,任意初始化 $q(s,a),q(终止,\cdot)=0$
- 3: 对于 每一幕 执行
- 初始化s 4:
- 使用从q得到的 ϵ -greedy策略,在s选择 α
- 当 s不是终止状态 执行
- 执行 α ,观察r,s'7:
- 使用从q得到的 ϵ -greedy策略,在s'处选择 α' 8:

算法 6: Sarsa (on-policy-TD)

9:
$$q(s,\alpha) \leftarrow q(s,\alpha) + \alpha[R + \gamma q(s',\alpha') - q(s,\alpha)]$$

10:
$$s \leftarrow s', a \leftarrow a'$$

期望SARSA

$$q_{t+1}(s_t, \alpha_t) = q_t(s_t, \alpha_t) + \alpha_t(s_t, \alpha_t) \{r_{t+1} + \gamma [\underbrace{\sum_{\alpha} \pi(\alpha | s_{t+1}) q_t(s_{t+1}, \alpha)}_{\nu_t(s_{t+1})}] - q_t(s_t, \alpha_t) \}$$

- 相较Sarsa, 期望Sarsa虽然计算复杂, 但消除了随机选择带 来的方差。
- α的选择会影响长期稳态性等指标。

- 生成策略可以基于相同或不同策略,即离轨或在轨是可变 的,因此Q-learning可视为期望Sarsa的特例。

图 10: 期望Sarsa回溯图

Q-learning (off-policy-TD) 5.3

Q-learning旨在求解行为值贝尔曼最优方程,直接逼近 $q^*(s,a)$,更新单元为 (s_t,a_t,r_t,s_{t+1}) 。

$$q_{t+1}(s_t, \alpha_t) = q_t(s_t, \alpha_t) + \alpha_t(s_t, \alpha_t)[r_{t+1} + \gamma \max_{\alpha} q_t(s_{t+1}, \alpha) - q_t(s_t, \alpha_t)]$$

图 11: Q-learning回溯图

算法 7: Q-learning (off-policy-TD)

- 1: 参数: 步长 $\alpha \in (0,1]$, 探索率 $\epsilon > 0$
- 2: 初始化: $\forall s \in S^+, \alpha \in A(s)$,任意初始化 $q(s,\alpha), q(终止,\cdot) = 0$
- 3: 对于 每一幕 执行

算法 7: Q-learning (off-policy-TD)

- 初始化s 4:
- 当 s不是终止状态 执行 5:
- 使用从q得到的 ϵ -greedy策略,在s选择 α 并执行,观察r,s'
- $q(s, a) \leftarrow q(s, a) + \alpha[r + \gamma \max_{\alpha} q(s', a) q(s, a)]$ 7:
- $s \leftarrow s'$ 8:

双Q-LEARNING 双学习: 划分样本,学习两个独立的估计 $q_1(a), q_2(a)$,确定 $a^* = argmax_a q_1(a)$, 再计算 $q_2(a*) = q_2(argmax_aq_1(a))$,后者是无偏的(可以交换再来一次)。需要双倍内存, 但是计算量不会增大。

 $q_{1_{t+1}}(s_t, a_t) = q_{1_t}(s_t, a_t) + \alpha_t(s_t, a_t) \{r_{t+1} + \gamma q_{2_t}[s_{t+1}, argmax_a q_{1_t}(s_{t+1}, a)] - q_{1_t}(s_t, a_t)\}$

图 12: 双Q-learning回溯图

算法 8: 双Q-learning

- 1: 参数: 步长 $\alpha \in (0,1]$, 探索率 $\epsilon > 0$
- 2: 初始化: $\forall s \in S^+, \alpha \in A(s)$,任意初始化 $q_1(s,\alpha), q_2(s,\alpha), q_1(终止, \cdot) = q_2(终止, \cdot) =$ 0
- 3: 对于每一幕执行
- 初始化s
- 当 s不是终止状态 执行 5:
- 基于 $q_1 + q_2$,使用 ϵ -greedy策略在s选择 α 并执行,观察r, s'6:
- 如果以0.5的概率那么 7:
- $q_1(s, a) \leftarrow q_1(s, a) + \alpha[r + \gamma q_2(s', argmax_a Q_1(s', a)) Q_1(s, a)]$ 8:
- 否则 9:
- $q_2(s, a) \leftarrow q_2(s, a) + \alpha[r + \gamma q_1(s', argmax_a Q_2(s', a)) Q_2(s, a)]$ 10:
- $s \leftarrow s'$ 11:

5.4 n-TD ¹⁹

n-TD作为MC和TD的一般推广,在两种极端方法间找到了性能更好的平衡点。n-TD在n步后进行更新,截断得到n步回报。

$$G_{t:t+n} \doteq r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n \nu_{t+n-1}(s_{t+n})$$

其中
$$\nu_{t+n}(s_t) \doteq \nu_{t+n-1}(s_t) + \alpha[G_{t:t+n} - \nu_{t+n-1}(s_t)]_{\circ}$$

```
算法 9: n-TD
 1: 输入: 待评估策略π
 2: 参数: 步长α∈ [0,1], n∈N+
 3: 初始化: \forall s \in S, 任意初始化\nu(s)
 4: 对于 每一幕 执行
       初始化so为非终止状态
       T \leftarrow \infty
 6:
       对于 t = 0,1,2,... 执行
 7:
           如果t<T那么
 8:
               根据\pi(\cdot|s_t)获得\alpha_t并执行,观察r_{t+1},s_{t+1}
 9:
                如果 S_{t+1}是终止状态 那么
10:
                   T \leftarrow t + 1
11:
                                                                   ► τ是正在更新的状态的时间
           \tau \leftarrow t - n + 1
12:
            如果τ≥0那么
13:
               G \leftarrow \textstyle \sum_{i=\tau+1}^{min(\tau+n,T)} \gamma^{i-\tau-1} R_i
14:
               如果 \tau + n < T 那么
15:
                   G \leftarrow G + \gamma^n V(S_{\tau+n})
16:
               V(S_{\tau}) \leftarrow V(S_{\tau}) + \alpha[G - V(S_{\tau})]
17:
            如果 \tau = T - 1 那么
18:
               break
19:
```

5.5 n-Sarsa ²⁰

n-Sarsa统一了Sarsa和MC, 其节点转移全部基于采样得到的单独路径:

$$q_{t+n}(s_t, a_t) \doteq q_{t+n-1}(s_t, a_t) + \alpha[G_{t:t+n} - q_{t+n-1}(s_t, a_t)]$$

n-期望Sarsa只对最后一个状态到动作的转移展开:

图 13: n-Sarsa回溯图

```
算法 10: n-Sarsa
 1: 参数: 步长\alpha \in [0,1], 探索率\epsilon > 0, 步数n \in N_+
 2: 初始化: \forall s \in S, \alpha \in A,任意初始化Q(s, \alpha),初始化\pi(如基于Q的\epsilon-greedy\pi\text{略})
 3: 对于每一幕执行
        初始化s_0为非终止状态,根据\pi(\cdot|s_0)选取a_0
        T \leftarrow \infty
 5:
        对于 t = 0,1,2,... 执行
             如果t<T那么
 7:
                 执行\alpha_t,观察r_{t+1},s_{t+1}
 8:
                 如果 s++1是终止状态 那么
 9:
                     T \leftarrow t+1
10:
                 否则
11:
                     根据\pi(\cdot|s_{t+1})选取a_{t+1}
12:
             \tau \leftarrow t-n+1
                                                                           ▷ τ是正在更新的状态的时间
13:
             如果 \tau \geqslant 0 那么 G \leftarrow \sum_{i=\tau+1}^{min(\tau+n,T)} \gamma^{i-\tau-1} R_i
14:
15:
                 如果 \tau + n < T 那么
16:
                     G \leftarrow G + \gamma^n Q(s_{\tau+n}, a_{\tau+n})
17:
                 Q(S_{\tau}, A_{\tau}) \leftarrow Q(s_{\tau}, \alpha_{\tau}) + \alpha[G - Q(s_{\tau}, \alpha_{\tau})]
18:
             如果 \tau = T - 1 那么
19:
```

算法 10: n-Sarsa

20:

break

OFF-POLICY-N-TD

$$\nu_{t+n}(s_t) \doteq \nu_{t+n-1}(s_t) + \alpha \rho_{t:t+n-1}[G_{t:t+n} - \nu_{t+n-1}(s_t)]$$

其中重要度采样率为目标策略和行为策略采取n个动作的相对概率:

$$\rho_{t:h} \doteq \prod_{k=t}^{min(h,T-1)} \frac{\pi(\alpha_k|s_k)}{b(\alpha_k|s_k)}$$

算法 11: n-期望Sarsa-off-policy

```
1: 输入: b(a|s) > 0
 2: 参数: 步长\alpha \in [0,1], 探索率\epsilon > 0, 步数n \in N_+
 3: 初始化: \forall s \in S, \alpha \in A,任意初始化Q(s, \alpha),初始化\pi
 4: 对于 每一幕 执行
         初始化so为非终止状态,根据b(·|so)选取ao
         T \leftarrow \infty
 6:
         对于 t = 0, 1, 2, ... 执行
              如果t<T那么
 8:
                   执行\alpha_t,观察r_{t+1},s_{t+1}
 9:
                   如果 s++1是终止状态 那么
10:
                       T \leftarrow t+1 \\
                   否则
12:
                       根据 b(\cdot|s_{t+1})选取a_{t+1}
13:
                                                                                 ▷ τ是正在更新的状态的时间
              \tau \leftarrow t-n+1
14:
              如果τ≥0那么
15:
                  \begin{split} \rho \leftarrow \prod_{i=\tau+1}^{min(\tau+n-1,T-1)} \frac{\pi(A_i|S_i)}{b(A_i|S_i)} \\ G \leftarrow \sum_{i=\tau+1}^{min(\tau+n,T)} \gamma^{i-\tau-1} R_i \end{split}
                                                                                                ▷ 重要性采样权重
16:
17:
                   如果 \tau + n < T 那么
18:
                       G \leftarrow G + \gamma^n \sum_{\alpha} \pi(\alpha|s_{\tau+n}) Q(s_{\tau+n}, \alpha)
                                                                                     ▷ 期望Sarsa使用期望值
19:
                   Q(s_{\tau}, a_{\tau}) \leftarrow Q(s_{\tau}, a_{\tau}) + \alpha \rho [G - Q(s_{\tau}, a_{\tau})]
20:
              如果 \tau = T - 1 那么
21:
```

算法 11: n-期望Sarsa-off-policy

22:

break

对比与补充 5.6

Sarsa较为保守,在存在风险的任务中,会避开低回报动作; Q-learning较为乐观,更倾 向于探索并找到最优解。在存在陷阱的任务中,Sarsa会比Q-learning取得更好的结果。 补充见12.2.3。

表格型方法总结对比 6

21 基于模型的方法(DP、启发式搜索)主要进行规划,无模型的方法(MC、TD)主 要进行学习,二者的核心都是值函数的计算。

表格型方法介绍 见12.2.4

三个维度

- 更新: 期望更新能产生更好的估计,但是需要更多的计算。
- 自举程度。
- 同轨/离轨。

图 14: 表格型方法对比

表达式对比 统一格式:

$$q_{t+1}(s_t,\alpha_t) = q_t(s_t,\alpha_t) + \alpha_t(s_t,\alpha_t)[\bar{q}_t - q_t(s_t,\alpha_t)]$$

算法	q _t 表达式	求解目标
Sarsa	$r_{t+1} + \gamma q_t(s_{t+1}, a_{t+1})$	
n-Sarsa	$r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^n q_t(s_{t+n}, a_{t+n})$	贝尔曼方程
期望Sarsa	$r_{t+1} + \gamma \sum_{a \in A} \pi_t(a s_{t+1}) q_t(s_{t+1}, a)$	
Q-learning	$r_{t+1} + \gamma \max_{\alpha} q_t(s_{t+1}, \alpha)$	贝尔曼最优方程
MC	$r_{t+1} + \gamma r_{t+2} + \cdots$	贝尔曼方程

表 4: 各算法中的qt表达式

值函数近似 7

7.1 值函数近似 22

$$\hat{\mathbf{v}}(\mathbf{s}, \boldsymbol{\omega}) \approx \mathbf{v}_{\pi}(\mathbf{s}), \boldsymbol{\omega} \in \mathbf{R}^{\mathbf{d}}, \mathbf{d} \ll |\mathbf{S}|$$

目标函数

$$J(\omega) = E[(\nu_{\pi}(s) - \hat{\nu}(s, \omega))^{2}]$$

对s按重要程度加权:

$$\overline{VE}(\omega) \doteq \sum_{s \in S} \mu(s) [\nu_{\pi}(s) - \hat{\nu}(s, w)]^2$$

一般无法保证最优, 求解局部最优。

近似方法

- $v_{\pi}(s_t)$:
 - MC: Gto
 - TD: $\mathbf{r}_{t+1} + \gamma \hat{\mathbf{v}}(\mathbf{s}_{t+1}, \boldsymbol{\omega}_t)$.
- $\hat{\mathbf{v}}(\mathbf{s}, \boldsymbol{\omega})$:
 - 线性参数: $\hat{\mathbf{v}}(\mathbf{s}, \boldsymbol{\omega}) = \boldsymbol{\varphi}(\mathbf{s})^{\mathsf{T}} \boldsymbol{\omega}$, $\boldsymbol{\varphi}(\mathbf{s})$ 为特征函数。
 - * 多项式基函数。

* 径向基函数
$$\phi_i(s) = e^{-\frac{||s-c_i||^2}{2\sigma_i^2}}$$
。

- * 表格法可视为特殊情况。
- 非线性参数:
 - * 神经网络: 输入状态, 网络参数为 ω , 输出 $\hat{v}(s,\omega)$ 。
 - * 决策树。
 - * 模糊网络。
- 非参数方法: 核函数 (见12.3)、高斯回归等。

优势

- 具有一定泛化能力,适应部分观测问题。
- 曲线拟合: 用少量参数储存状态, 阶数越高越近似。

7.2 随机梯度下降(SGD)

$$\omega_{k+1} = \omega_k - \alpha_k \nabla_{\omega} J(\omega_k)$$

其中,

$$\begin{split} \nabla_{\omega}J(\omega) &= \nabla_{\omega}\mathsf{E}[(\nu_{\pi}(s) - \hat{\nu}(s,\omega))^2] \\ &= \mathsf{E}[\nabla_{\omega}(\nu_{\pi}(s) - \hat{\nu}(s,\omega))^2](有界可换求导与期望顺序) \\ &= -2\mathsf{E}[(\nu_{\pi}(s) - \hat{\nu}(s,\omega))\nabla_{\omega}\hat{\nu}(s,\omega)] \end{split}$$

因此
$$\omega_{k+1} = \omega_k + \underbrace{\alpha}_{\sharp E} [\nu_{\pi}(s_k) - \hat{\nu}(s_k, \omega_k)] \nabla_{\omega} \hat{\nu}(s_k, \omega_k)$$
。

负梯度方向降速最快 梯度方向增长最快,负梯度方向下降最快。

算法 12: 梯度MC

1: 输入: 待评估 π , 可微函数 $\hat{v}: S \times R^d \to R$

2: 参数: 步长α > 0

 $_{3}$: 初始化: 任意初始化 $w \in \mathbb{R}^d$

算法 12: 梯度MC

4: 循环 ▷ 对每一幕

- $_{5}$: 根据 π 生成一幕交互数据 $_{5}$ 0, $_{6}$ 0, $_{7}$ 1, $_{1}$ 1, $_{1}$ 1, $_{1}$ 1, $_{1}$ 2, $_{1}$ 7, $_{1}$ 7
- 6: 对于 $t = 0, 1, \dots, T-1$ 执行
- 7: $w_{t+1} \leftarrow w_t + \alpha_t [G_t \hat{v}(s_t, w_t)] \nabla_{\omega} \hat{v}(s_t, w_t)$

半梯度下降 只考虑 w_t 对估计值的影响,而忽略对目标的影响。在使用自举目标时,目标本身依赖于w,有偏。

- 优势: 学习速度较快,支持持续在线学习,无需等待幕结束。
- 局限: 稳健性差, 在非线性函数近似中可能不稳定。

算法 13: 半梯度TD(0)

- 1: 输入: 待评估 π , 可微函数 $\hat{v}: S^+ \times R^d \to R, \hat{v}(终止, \cdot) = 0$
- 2: 参数: 步长α > 0
- 3: 初始化: 任意初始化 $w \in \mathbb{R}^d$
- 4: 循环

▷ 对每一幕

- 5: 初始化s
- 6: 对于 $t = 0, 1, \dots, T-1$ 执行
- τ : 选取 $\alpha_t \sim \pi(\cdot|s_t)$ 并采取,观察 r_t , s_{t+1}
- 8: $w_{t+1} \leftarrow w_t + \alpha_t [r_{t+1} + \gamma \hat{v}(s_{t+1}, w_t) \hat{v}(s_t, w_t)] \nabla_{\omega} \hat{v}(s_t, w_t)$
- 9: 如果 s_{t+1} 为终止状态 那么
- 10: break

7.3 批方法

最小二乘法减少迭代计算量:

$$LS(\omega) = \sum_{t=1}^{T} [q_t^{\pi} - \hat{q}(s_t, \alpha, \omega)]^2 = E_D[(q^{\pi} - \hat{q}(s, \alpha, \omega))^2]$$

7.4 DQN (Deep Q-Network, 深度Q网络) 23

利用卷积神经网络作为非线性函数近似器,最小化损失函数,适用于高维空间:

$$J(\omega) = E\{[R + \gamma \max_{\alpha' \in A(S')} \hat{q}(S', \alpha', \underbrace{\omega^{-}}_{\exists k m \beta A}) - \hat{q}(S, A, \underbrace{\omega}_{\pm m \beta})]^{2}\}$$

目标网络: $y^{DQN} = r + \gamma \max_{\alpha'} Q(s', \alpha'; \theta^-)$ 。

主要技术

- 两个网络: 主网络 $\hat{q}(s, \alpha, \omega)$ 和目标网络 $\hat{q}(s', \alpha', \omega^-)$,后者参数阶段性从前者同步。
 - 防止过拟合:
 - * 随机丢弃法 (dropout)。
 - * 批量归一化(batch normalization)。
 - * 残差直连边。
 - 更新:
 - * 软更新: 部分更新。
 - * 硬更新: 直接复制。
- 经验回放(Experience Replay) ²⁴ : 存储经验到固定大小的回放缓冲区,训练时从中随机选取。可以打乱样本相关性,提升训练稳定性。可改进为优先经验回放。
- 帧堆叠:将图像作为神经网络输入时,堆叠多帧图像作为输入,并跳帧选取放入帧,增加时间信息。
- 奖励裁剪(Reward Clipping): 将奖励限制在特定范围内(甚至使用符号函数), 避免大奖励幅度波动, 提升训练稳定性, 适用于奖励范围差异大的环境。

算法 14: DQN

- 1: 初始化: ω , ω ⁻,经验回放缓冲区B = {(s, a, r, s')},计数器t ← 0
- 2: 循环
- 3: 如果 t mod C = 0 那么

▷每隔C步更新目标网络(初始化一致)

- 4: $\omega^- \leftarrow \omega$
- 5: 从B中均匀采样小批量样本 $\{(s,a,r,s')\}$
- 6: 对于 每个样本 执行

算法 14: DQN

如果 s' 是终止状态 那么 7:

8: $y \leftarrow r$

否则

 $y \leftarrow r + \gamma \max_{\alpha'} \hat{q}(s', \alpha', \omega^-)$ ▷计算目标值 10:

使用小批量样本 $\{(s,a,y)\}$ 更新主网络参数 ω ,最小化损失 $[y-\hat{q}(s,a,\omega)]^2$

 $t \leftarrow t + 1$ 12:

两个值函数逼近网络,一个选择动作,一个评估值函数。 DOUBLE-DON

目标网络: $y^{DDQN} = r + \gamma Q[s', argmax_a Q(s_{t+1}, a, \theta_t), \theta^-]$ 。

策略梯度(POLICY GRADIENT) 8

概念 ²⁵ 8.1

将策略参数化,搜索策略空间,是同轨策略:

$$\pi(\alpha|s,\theta) = \pi_{\theta}(\alpha|s)$$

梯度与梯度上升(倪推导)

学习θ使以下指标最大。

• 平均状态价值:

$$\bar{\nu}_{\pi} = \sum_{s \in S} d(s) \nu_{\pi}(s) = E[\nu_{\pi}(S)]$$

其中 $d(s) \ge 0$ 为s的权重, $\sum_{s \in S} d(s) = 1$,其可由以下方法选取:

- 均匀分布: $d(s) = \frac{1}{|S|}$ 。
- 只美心 s_0 : $d(s_0) = 1$, $d(s \neq s_0) = 0$ 。
- 平稳分布: $\mathbf{d}_{\pi}^{\mathsf{T}}\mathbf{P}_{\pi}=\mathbf{d}_{\pi}^{\mathsf{T}}$, 根据访问频次赋予概率。

• 平均单步奖励:

$$\begin{split} \bar{r}_{\pi} &= \sum_{s \in S} \underbrace{\frac{d_{\pi}(s)}{\# \text{Ad} \text{Ad} \sum_{\alpha \in A} \pi(\alpha|s)}}_{\text{Fin} \sum_{\alpha \in A} \pi(\alpha|s)} \underbrace{\frac{r_{\pi}(s)}{r(s,\alpha)}}_{\text{Nessential}} = \text{E}[r_{\pi}(S)] \\ &= \lim_{n \to \infty} \frac{1}{n} \text{E}[\sum_{k=1}^{n} R_{t+k}] = \lim_{n \to \infty} \frac{1}{n} \text{E}[\sum_{k=1}^{n} R_{t+k}|S_{t} = s_{0}] \end{split}$$

梯度为:

$$\begin{split} \nabla_{\theta} J(\theta) &= \sum_{s \in S} \eta(s) \sum_{\alpha \in A} \nabla_{\theta} \pi(\alpha|s,\theta) q_{\pi}(s,\alpha) \\ &= \sum_{s \in S} \eta(s) \sum_{\alpha \in A} \pi(\alpha|s,\theta) \nabla_{\theta} \ln \pi(\alpha|s,\theta) q_{\pi}(s,\alpha) \\ &= E[\nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A)] \\ &\approx \nabla_{\theta} \ln \pi(\alpha|s,\theta) q_{\pi}(s,\alpha) (采样近似) \end{split}$$

为确保 $\pi(a|s,\theta) > 0$,使用softmax函数, $\pi(a|s,\theta) = \frac{e^{h(s,a,\theta)}}{\sum_{a' \in A} e^{h(s,a',\theta)}}$ 。

$$\begin{split} \theta_{t+1} &= \theta_t + \alpha \nabla_{\theta} J(\theta) = \theta_t + \alpha E[\nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A)] \\ &= \theta_t + \alpha \underbrace{\nabla_{\theta} \ln \pi(a_t|s_t,\theta_t)}_{\beta_t = \frac{q_{\pi}(s_t,a_t)}{\pi(a_t|s_t,\theta_t)}} \underbrace{q_{\pi}(s_t,a_t)}_{q(s_t,a_t) \text{近似}} (随机梯度) \end{split}$$

- $\alpha\beta_{t}$ 足够小时,若 $\beta_{t} > 0$,则选择 (s_{t}, α_{t}) 的概率增加,且幅度与 β_{t} 正相关。
- $β_t$ 与 $q_\pi(s_t, a_t)$ 正相关,与 $\pi(a_t|s_t, \theta_t)$ 负相关,倾向于选择高价值动作,探索低概率动作。

似然率策略梯度 (郭推导)

$$\begin{split} \label{eq:definition} & \text{记R}(\tau) = \sum_{t=0}^{H} R(s_t, u_t), \;\; \text{目标函数为} U(\theta) = \sum_{\tau} P(\tau, \theta) R(\tau), \;\; \text{其梯度为:} \\ & \nabla_{\theta} U(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau, \theta) R(\tau) = \sum_{\tau} \nabla_{\theta} P(\tau, \theta) R(\tau) (运算换序) \\ & = \sum_{\tau} P(\tau, \theta) \frac{\nabla_{\theta} P(\tau, \theta)}{P(\tau, \theta)} R(\tau) = \sum_{\tau} P(\tau, \theta) \nabla_{\theta} \ln P(\tau, \theta) R(\tau) (复合求导) \end{split}$$

经验平均为:

$$\nabla_{\theta} U(\theta) \approx \hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \ln P(\tau, \theta) R(\tau)$$

其无偏但方差很大,其中

$$\begin{split} \nabla_{\theta} \ln P(\tau^{(i)}, \theta) &= \nabla_{\theta} \ln [\prod_{t=0}^{H} P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)}) \cdot \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})] \\ &= \nabla_{\theta} [\underbrace{\sum_{t=0}^{H} \ln P(s_{t+1}^{(i)} | s_{t}^{(i)}, u_{t}^{(i)})}_{\text{5d}} + \underbrace{\sum_{t=0}^{H} \ln \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})]}_{\text{5d}} \\ &= \nabla_{\theta} [\underbrace{\sum_{t=0}^{H} \ln \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})]}_{\text{5d}} = \underbrace{\sum_{t=0}^{H} \nabla_{\theta} \ln \pi_{\theta}(u_{t}^{(i)} | s_{t}^{(i)})}_{\text{\mathfrak{g} \BM $\B$$

减小方差:

- 基线。
- 修改值函数。

优势

- 可以逼近确定性策略,可以逼近任意概率分布,不受q(s,a)限制,策略是更简单的函数 逼近。
- 策略参数化更容易加入先验知识。
- 在状态空间大时,存储和泛化能力强。

REINFORCE (MC-policy gradient)

用MC估计 $q_{\pi}(s, a)$,使用与θ无关的 G_t 代替 $q_{\pi}(s_t, a_t)$:

$$\theta_{t+1} \doteq \theta_t + \alpha G_t \nabla_{\theta} ln \pi(\alpha_t | s_t, \theta_t)$$

▷ TD误差

算法 15: REINFORCE

- 1: 输入: 可微分的 π (α|s,θ)
- 2: 参数: 步长 $\alpha > 0$, 折扣因子 $\gamma \in (0,1)$
- 3: 初始化: 初始化 $\theta \in \mathbb{R}^{d'}$
- 4: 循环
- 接照 $\pi(\cdot|\cdot,\theta)$ 生成一幕 $s_0,a_0,r_1,\cdots,s_{T-1},a_{T-1},r_T$ 5:
- 对于 $t = 0, 1, \dots, T-1$ 执行 6:
- $G_t \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ 7:
- $\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \ln \pi (\alpha_t | s_t, \theta_t)$

ACTOR-CRITIC方法 9

9.1 概念 27

结合策略梯度和价值方法,一般是on-policy方法。

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta \ln \pi(\alpha_t | s_t, \theta_t) q_\pi(s_t, \alpha_t)$$

- 演员 (Actor): 策略更新,用于采取行动,对应算法更新。
- 评论家(Critic): 策略评估或价值估计,用于评判策略,对应估计 $q_{\pi}(s, a)$,采用TD方 法。

算法 16: QAC

- 1: 初始化: 策略参数θ和评论家参数w
- 2: 对于每个回合执行
- 对于 t = 0, 1, 2, ..., T 1 执行
- 根据 $\pi(a|s_t,\theta_t)$ 选择 α_t ,观察 r_{t+1} , s_{t+1} ,再根据 $\pi(a|s_{t+1},\theta_t)$ 选择 α_{t+1}
- $\delta_{t} = r_{t+1} + \gamma q(s_{t+1}, a_{t+1}, w_{t}) q(s_{t}, a_{t}, w_{t})$ 5:
- $w_{t+1} = w_t + \alpha_w \delta_t \nabla_w q(s_t, a_t, w_t)$ ▷ 评论家价值更新
- $\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \ln \pi(\alpha_t | s_t, \theta_t) q(s_t, \alpha_t, w_{t+1})$ ▷演员策略更新 7:

基线优势 28 9.2

基本的Actor-Critic方法有较大方差,引入基线降低。

基线

$$\nabla_{\theta} J(\theta) = E_{S \sim \eta, A \sim \pi} \{ \nabla_{\theta} \ln \pi(A|S, \theta_{t}) [q_{\pi}(S, A) - b(S)] \}$$

策略梯度期望不变:

$$\begin{split} E_{S \sim \eta, A \sim \pi}[\nabla_{\theta} \ln \pi(A|S, \theta_t) b(S)] &= \sum_{s \in S} \eta(s) \sum_{\alpha \in A} \nabla_{\theta} \pi(\alpha|s, \theta_t) b(s) \\ &= \sum_{s \in S} \eta(s) b(s) \sum_{\alpha \in A} \nabla_{\theta} \pi(\alpha|s, \theta_t) \\ &= \sum_{s \in S} \eta(s) b(s) \nabla_{\theta} 1(交換求和与求导) \\ &= 0 \end{split}$$

为使策略梯度方差最小化,求偏导得:

$$\begin{split} b^*(s) &= \frac{\mathsf{E}_{A \sim \pi}[\|\nabla_\theta \ln \pi(A|s,\theta_t)\|^2 q_\pi(s,A)]}{\mathsf{E}_{A \sim \pi}[\|\nabla_\theta \ln \pi(A|s,\theta_t)\|^2]} \\ &= \mathsf{E}_{A \sim \pi}[q_\pi(s,A)](省略权重) \\ &= \nu_\pi(s) \end{split}$$

如果直接用 $b(s) = q_{\pi}(s, \alpha)$, 会导致策略梯度为0。

优势函数

$$\theta_{t+1} = \theta_t + \alpha E\{\nabla_\theta \ln \pi(A|S,\theta_t) \underbrace{[q_\pi(S,A) - \nu_\pi(s)]}_{\text{优势函数}\delta_\pi(S,A)} \}$$

此时, $\beta_t = \frac{\delta_{\pi}(s_t, s_t)}{\pi(a_t|s_t, \theta_t)}$,正相关项为相对值,而非绝对值,更合理。 使用TD进行近似:

$$\delta_t = q_t(s_t, \alpha_t) - \nu_t(s_t) \approx r_{t+1} + \gamma \nu_t(s_{t+1}) - \nu_t(s_t)$$

这时只需要一个网络进行估计。

算法 17: A2C

- 1: 初始化: 策略参数θ和评论家参数w
- 2: 对于 每个回合 执行
- 对于 t = 0, 1, 2, ..., T-1 执行
- 根据 $\pi(a|s_t,\theta_t)$ 选择 a_t ,执行后观察 r_{t+1} , s_{t+1}
- $\delta_{t} = r_{t+1} + \gamma v(s_{t+1}, w_{t}) v(s_{t}, w_{t})$ ▷ 优势函数 5:
- ▷ 评论家价值更新 $w_{t+1} = w_t + \alpha_w \delta_t \nabla_w v(s_t, w_t)$
- ▷演员策略更新 $\theta_{t+1} = \theta_t + \alpha_\theta \delta_t \nabla_\theta \ln \pi(\alpha_t | s_t, \theta_t)$ 7:

加入重要性采样由on-policy变成off-policy: OFF-POLICY

$$\nabla_{\theta} J(\theta) = \mathsf{E}_{S \sim \rho, A \sim \beta} \left[\frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S, \theta) q_{\pi}(S, A) \right]$$

其中β是行为策略,ρ是状态分布。其也可以采用上述基线b*(s)。

算法 18:重要性采样off-policy Actor-Critic

- 1: 初始化: $\beta(a|s)$, $\pi(a|s, \theta_0)$, $\nu(s, w_0)$
- 2: 对于每个回合执行
- 对于 t = 0, 1, 2, ..., T-1 执行
- 根据 $\beta(s_t)$ 选择 α_t ,观察 r_{t+1} , s_{t+1} 。
- $\delta_t = r_{t+1} + \gamma v(s_{t+1}, w_t) v(s_t, w_t)$ ▷ 优势函数
- ▷ 评论家价值更新
- $w_{t+1} = w_t + \alpha_w \frac{\pi(\alpha_t | s_t, \theta_t)}{\beta(\alpha_t | s_t)} \delta_t \nabla_w v(s_t, w_t)$ $\theta_{t+1} = \theta_t + \alpha_\theta \frac{\pi(\alpha_t | s_t, \theta_t)}{\beta(\alpha_t | s_t)} \delta_t \nabla_\theta \ln \pi(\alpha_t | s_t, \theta_t)$ ▷演员策略更新

TRPO与PPO 29 9.3

TRPO(Trust Region Policy Optimization,信赖域策略优化)

限制每次策略更新的幅度,保证稳定性和单调提升。

替代回报函数

$$\begin{split} &\eta(\tilde{\pi}) = \eta(\pi) + \underbrace{E_{s_0,a_0,\cdots \sim \tilde{\pi}}[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t,a_t)]}_{\text{新旧策略回报差}} \\ &= \eta(\pi) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A^{\pi}(s,a) \\ &L_{\pi}(\tilde{\pi}) = \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A^{\pi}(s,a) (\text{忽略状态分布变化}) \\ &= \eta(\pi) + E_{s \sim \rho_{\theta_{old}},a \sim \pi_{\theta_{old}}}[\frac{\tilde{\pi}_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)} A_{\theta_{old}}(s,a)] (\text{重要性采样动作分布}) \\ &\bar{\pi}L_{\pi_{\theta_{old}}}(\pi_{\theta_{old}}) = \eta(\pi_{\theta_{old}}), \nabla_{\theta}L_{\pi_{\theta_{old}}}(\pi_{\theta})\big|_{\theta=\theta_{old}} = \nabla_{\theta}\eta(\pi_{\theta})\big|_{\theta=\theta_{old}} \circ \\ & \hat{\pi}_{\theta_{old}}(\pi,\tilde{\pi}), \varepsilon = \max_{s,a} |A_{\pi}(s,a)|, \quad \text{惩罚因子C} = \frac{2\varepsilon\gamma}{(1-\gamma)^2}, \quad \text{则有:} \\ &\eta(\tilde{\pi}) \geqslant L_{\pi}(\tilde{\pi}) - \frac{4\varepsilon}{(1-\gamma)^2} \alpha^2 \quad \eta(\tilde{\pi}) \geqslant L_{\pi}(\tilde{\pi}) - CD_{\text{KL}}^{\text{max}}(\pi,\tilde{\pi}) \end{split}$$

优化: 共轭梯度搜索 问题转化为:

9.3.2 PPO (Proximal Policy Optimization, 近端策略优化)

限制新旧策略的变化幅度,保证策略更新的稳定性,简化TRPO的实现并提升效率。

$$\begin{split} L^{CLIP}(\theta) &= E_t[min\{r_t(\theta)\hat{A}_t, clip[r_t(\theta), 1-\varepsilon, 1+\varepsilon]\hat{A}_t\}] \\ L^{CLIP+VF+S}_t(\theta) &= \hat{E}_t\{L^{CLIP}_t(\theta) - c_1L^{VF}_t(\theta) + c_2S[\pi_{\theta}](s_t)\} \end{split}$$

其中,

- 值函数损失函数LVF。
- 熵S。

• 优势函数估计 $\hat{A}_t = \delta_t + (\gamma \lambda) \delta_{t+1} + \dots + (\gamma \lambda)^{T-t+1} \delta_{T-1}$, δ 为TD误差。

算法 19: PPO

- 1: 初始化θ, θ_{old}
- 2: 对于 每个回合 执行
- 对于 actor = 1, 2, ..., N 执行
- 用 $\pi_{\theta_{\text{old}}}$ 采集T步序列 $\{(s_t, a_t, r_t, s_{t+1})\}_{t=1}^T$
- 优势估计Ât 5:
- 回报Â+
- 汇总所有样本,数量为NT 7:
- 对于 k = 1, 2, ..., K 执行
- 随机采样M个minibatch
- 10:
- 概率比 $r_t(\theta) = \frac{\pi_{\theta}(\alpha_t|s_t)}{\pi_{\theta_{\text{old}}}(\alpha_t|s_t)}$ clip损失: $L^{CLIP} = min(r_t(\theta)\hat{A}_t, clip(r_t(\theta), 1 \varepsilon, 1 + \varepsilon)\hat{A}_t)$ 11:
- 值函数损失 L^{VF} 和熵正则项 $S[\pi_{\Theta}](s_{+})$
- 总损失 $L = E[L^{CLIP} c_1L^{VF} + c_2S]$ 13:
- 对θ梯度下降优化L 14:
- $\theta_{old} \leftarrow \theta$ 15:

确定性策略Actor-Critic方法(off-policy)

9.4.1 DPG

在策略是确定性时:

$$\nabla_{\theta}J(\theta) = \sum_{s \in S} \underbrace{\rho_{\mu}(s)}_{\text{K\&}\text{A}} \left. \nabla_{\theta}\mu(s) [\nabla_{\alpha}q_{\mu}(s,\alpha)] \right|_{\alpha = \mu(s)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] \right|_{\alpha = \mu(S)} \\ = E_{S \sim \rho_{\mu}} \{\nabla_{\theta}\mu(S) [\nabla_{\alpha}q_{\mu}(S,\alpha)] | \nabla_{\theta}\mu(S) | \nabla_{\theta$$

算法 20: 确定性策略Actor-Critic (DPG)

1: 初始化: $\beta(a|s)$, $\mu(s, \theta_0)$, $q(s, a, w_0)$ 。

D β可用μ+噪声替代

- 2: 对于每个回合执行
- 3: 对于 t = 0, 1, 2, ..., T 1 执行
- 根据β(s_t)生成 α_t , 观察 r_{t+1} , s_{t+1}

算法 20: 确定性策略Actor-Critic (DPG)

5:
$$\delta_t = r_{t+1} + \gamma q(s_{t+1}, \mu(s_{t+1}, \theta_t), w_t) - q(s_t, a_t, w_t)$$
 ▷ 优势函数

6:
$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w q(s_t, a_t, w_t)$$
 ▷ 评论家价值更新

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t, \theta_t) [\nabla_a q(s_t, a, w_{t+1})]|_{a=\mu(s_t)}$$
 ▷ 演员策略更新

9.4.2 DDPG ³⁰

结合DON和DPG,演员、评论家各有主网络和目标网络,一共四个网络。为在确定性策 略中保障探索性,引入噪声。

OU (ORNSTEIN-UHLENBECK) 噪声

均值回归随机过程
$$dX_t = \underbrace{\theta}_{\text{回归速度参数}} \underbrace{(\underbrace{\mu}_{\text{Hyb}(i)} - X_t)dt} + \underbrace{\sigma}_{\text{噪声强度}} \underbrace{dW_t}_{\text{维纳过程}}$$
,离散为:
$$X_{t+1} = X_t + \theta(\mu - X_t) + \sigma \epsilon_t$$

- 相邻时刻噪声值相关,适合连续控制任务,使动作平滑变化。
- 噪声逐渐回归均值,避免长期偏离,提供了自然的探索衰减机制。

算法 21: DDPG

- 1: 初始化: 随机初始化评论家网络 $Q(s, a|\theta^Q)$ 和演员网络 $\mu(s|\theta^\mu)$,初始化目标网络 Q', μ' , 使 $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu'} \leftarrow \theta^{\mu}$, 初始化经验回放池R
- 2: 对于每个回合执行
- 初始化探索噪声过程N
- 接收初始状态s₁ 4:
- 对于 t = 1,...,T 执行
- 选择 $a_t = \mu(s_t|\theta^{\mu}) + N_t$ ▷ 带噪声的确定性策略
- 执行 α_t , 观察 r_t , s_{t+1} 7:
- 存储转移(s_t , a_t , r_t , s_{t+1})到R > 经验回放 8:
- 从R中随机采样N个小批量 (s_i, a_i, r_i, s_{i+1}) 9:
- 目标值 $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ ▷目标网络 10:
- 更新评论家: 最小化损失 $L = \frac{1}{N} \sum_{i} (y_i Q(s_i, a_i | \theta^Q))^2$ 11:
- 更新演员: $\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{\alpha} Q(s, \alpha | \theta^{Q}) |_{s=s_{i}, \alpha=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_{i}}$ 12:

算法 21: DDPG

软更新目标网络参数 13:

策略搜索方法总结对比

31

算法	REINFORCE	PPO	DDPG
策略类型	随机策略 on-policy	随机策略 on-policy	确定性策略 off-policy
适用场景	离散动作空间	离散/连续动作空间	连续动作空间
网络架构	策略网络	策略、价值网络	演员、评论家网络(主+目标)
回报	完整轨迹回报Gt	优势函数Â _t	评论家Q值
探索	策略分布本身的随机性		OU噪声
稳定性	方差大	限制策略更新大小	目标网络、经验回放、软更新
样本效率	低(需完整轨迹)	中等	高 (可复用样本)

表 5: REINFORCE、PPO、DDPG比较

11 多智能体强化学习

11.1 概念 ³²

分类

挑战

- 完全协作。
- 完全竞争。
- 混合策略。
- 单智能体视角下, 其它智能体是动态的, 值函数为相互依 赖的联合值函数。
- 智能体间存在博弈关系, 求均衡解。

博弈论

- 参与人行动先后顺序:
 - 静态博弈: 同时行动。
 - 动态博弈: 有先后行动顺序,常用博弈树拓展表述。
- 参与人知识储备:
 - 完美信息博弈: 已知相关信息。
 - 非完美信息博弈: 不完全知道相关信息。

完美信息静态博弈的纳什均衡策略 (NASH EQUILIBRIUM) 所有智能体以最佳策略应 对,全理性,没有智能体能单独偏离自身策略来改善自身回报。所有智能体采取纳什均衡策 略应比部分智能体采取纳什均衡策略的价值高。

纳什均衡求解(双人零和博弈)

双人策略为 π_1, π_2 ,玩家i值函数为 $V_i = \pi_1 R_i \pi_2^\mathsf{T}$,有 $R_1 = -R_2 = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$ 。纳什均衡 指 $V_i(\pi_i^*, \pi_{-i}^*) \ge V_i(\pi_i, \pi_{-i}^*)$,求解等价于:

$$\max_{\pi_i} \min_{\pi_{-i}} \sum_{\alpha_i \in A_i} R_i^\mathsf{T} \pi_i(\alpha_i)$$

可转化为线性规划问题,用单纯形法求解:

$$\label{eq:maxV1} \begin{cases} max \, V_1 \\ \\ r_{11}p_1 + r_{21}p_2 \geqslant V_1 \\ \\ r_{12}p_1 + r_{22}p_2 \geqslant V_1 \\ \\ p_1 + p_2 = 1 \end{cases}$$

$$p_j \geqslant 0, j = 1, 2$$

非完美信息博弈的扩展式博弈 七元组 $\{H, Z, P, p, u, I, \sigma_c\}$,分别是当前节点已知所有信息(包含个人私有信息),终止状态集合,玩家集合,非终止状态到玩家映射,非终止状态到实数映射,终止状态到实数映射(玩家到终止状态时获得的回报),信息集,策略。

11.2 算法 ³⁴

图 15: 多智能体强化学习

- 完全协作。
- 完全竞争: MinimaxQ-learning算法。
- 混合策略: 纳什Q-learning算法, Friend-or-foe Q-learning算法, wolf策略爬山算法。
- 基于微分对策略。
- 深度强化学习算法。

算法 22: MADDPG

- 1: 初始化: 初始化值网络、动作网络和目标网络,初始化经验回放池D,初始化状态s
- 2: 对于 每一幕 执行
- 3: 初始化随机过程N进行动作探索
- 4: 对于 每一步 执行
- $a_i = \mu_{\theta_i}(o_i) + N_i$ ▷ 随机策略选择动作
 - 6: 执行 $\mathfrak{a} = (\mathfrak{a}_1, \cdots, \mathfrak{a}_N)$,观测 $\mathfrak{r}, \mathfrak{s}'$
- 7: 将(s, a, r, s')存储到D中
- 8: $s \leftarrow s'$
- 9: 对于 每一个智能体 执行
- 10: 从D中随机采样数据(s^j, a^j, r^j, s^{/j})
- 11: $y^j = r_i^j + \gamma Q_i^{\mu'}(s'^j, a_1', \cdots, a_N')|_{a_{\nu}' = \mu_{\nu}'(o_{\nu}^j)}$ ▷ TD目标
- 功作网络: $\nabla_{\theta_i} J = \frac{1}{S} \sum_j \nabla_{\theta_i} \mu_i(a_i | o_i) \nabla_{a_i} Q_i^{\mu}(s, a_1, \cdots, a_N) |_{a_i = \mu_i(o_i)} \triangleright 策略$

梯度

14: 目标网络: $\theta_i' \leftarrow \tau \theta_i + (1-\tau)\theta_i'$

12 附录

12.1 概念与原理

12.1.1 历史与发展

- 1. 源于动物学习心理学的试错法:效应定律(Edward Thorndike),条件反射(巴普洛夫),快乐-痛苦系统(图灵),向"老师"学习到向"评论家"学习,自动学习机(M.L.Tsetlin),分类器系统(救火队算法和遗传算法)。
- 2. 最优控制: 贝尔曼方程与马尔可夫决策过程(Richard Bellman),维度灾难。
- 3. 时序差分方法:次级强化物,广义强化(Klopf),与试错法结合(actor-critic方法,Sutton),与最优控制结合(Q-learning,Chris Watkins)。

返回正文1。

12.1.2 贝尔曼最优方程求解

收缩映射定理 $f(x_k)$, 在 $x_k \to x^*$, $k \to \infty$ 的过程中,收敛速度成指数级增长。

- 存在性: $||x_{k+1} x_k|| = ||f(x_{k+1}) f(x_k)|| \le \gamma ||x_k x_{k-1}|| \le \cdots \le \gamma^k ||x_1 x_0|| \xrightarrow{\gamma < \frac{1, \gamma^k \to 0}{\Longrightarrow}}$ $x_{k+1}-x_k \to 0$ 。同理可得 $\|x_m-x_n\| \leqslant rac{\gamma^n}{1-\gamma}\|x_1-x_0\| \to 0$,进而得到 $\{x_k\}$ 是收敛数列,存 $\operatorname{Elim}_{k\to\infty} x_k = x^*$ 。
- 唯一性: $||f(x_k) x_k|| = ||x_{k+1} x_k||$, 其快速收敛到0,则在极限处有不动点 $f(x^*) = x^*$ 。 假设存在另一不动点, 其必与该不动点相等。
- 指数级收敛: $||x^*-x_n|| = \lim_{m \to \infty} ||x_m-x_n|| \leqslant \frac{\gamma^n}{1-\nu} ||x_1-x_0|| \to 0$ 。

贝尔曼最优方程的伸缩映射性

 $\forall v1, v2$,有贝尔曼最优方程 $\pi_i^* \doteq \arg \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_i)$, 故 $f(v_i) = \max_{\pi} (r_{\pi} + \gamma P_{\pi}v_i) = r_{\pi_i^*} + \gamma P_{\pi_i^*}v_i \geqslant r_{\pi_i^*} + \gamma P_{\pi_i^*}v_i (i \neq j)$,则 $f(v_1) - f(v_2) = r_{\pi_1^*} + \gamma P_{\pi_1^*} v_1 - (r_{\pi_2^*} + \gamma P_{\pi_2^*} v_2)$ $\leq r_{\pi_1^*} + \gamma P_{\pi_1^*} v_1 - (r_{\pi_1^*} + \gamma P_{\pi_1^*} v_2)$ $= \gamma P_{\pi_1^*}(\nu_1 - \nu_2)$

同理有 $f(\nu_2) - f(\nu_1) \leqslant \gamma P_{\pi_2^*}(\nu_2 - \nu_1)$,故 $\gamma P_{\pi_2^*}(\nu_1 - \nu_2) \leqslant f(\nu_1) - f(\nu_2) \leqslant \gamma P_{\pi_1^*}(\nu_1 - \nu_2)$, 取边界极值z,有 $|f(v_1) - f(v_2)| \le z$,即 $||f(v_1) - f(v_2)||_{\infty} \le ||z||_{\infty}$ 。 又有 $||z||_{\infty} = \max_{i} |z_{i}| \leq \gamma ||v_{1} - v_{2}||_{\infty}$,所以 $||f(v_{1}) - f(v_{2})||_{\infty} \leq \gamma ||v_{1} - v_{2}||_{\infty}$ 。

贝尔曼最优方程解的性质

- 唯一性: 唯一解 ν^* 能通过 $\nu_{k+1} = f(\nu_k) = \max_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} \nu_k)$ 迭代求解,其对应策略 $\pi^* = r_{\pi} \nu_{k+1} = r_{\pi} \nu_{k+1}$ $\operatorname{argmax}_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} \nu^*)$.
- 最优性 $(v^* = v_{\pi^*} \geqslant v_{\pi})$: 由 $v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi} \pi v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*) = r_{\pi^*} + r_{\pi^*} v^*$ $\gamma P_{\pi^*} \nu^* \geqslant r_{\pi} + \gamma P_{\pi} \nu^*$,可得 $\nu^* - \nu_{\pi} \geqslant (r_{\pi} + \gamma P_{\pi} \nu^*) - (r_{\pi} + \gamma P_{\pi} \nu_{\pi}) = \gamma P_{\pi} (\nu^* - \nu_{\pi})$, 即有 $\nu^* - \nu_{\pi} \geqslant \gamma P_{\pi}(\nu^* - \nu_{\pi}) \geqslant \cdots \geqslant \gamma^n P_{\pi}^n(\nu^* - \nu_{\pi})$,由于 $\gamma < 0$, $\forall p_{ij} \in P_{\pi}, p_{ij} \leqslant 1$, $\lim_{n\to\infty} \gamma^n P_{\pi}^n(\nu^* - \nu_{\pi})$ 趋于0,所以 $\nu^* \geqslant \nu_{\pi}$ 。

返回正文2.2.2。

12.2 表格型方法

12.2.1 DP补充

- 1. 异步动态规划: 使用任意可用状态值,以任意顺序更新,避免遍历更新,减小计算量。
- 2. 广义策略迭代 (GPI): 策略评估和策略改进以更细粒度进行交替,可视为竞争与合 作。
- 3. 效率: DP的时间复杂度是动作与状态数量的多项式级, 在面对维度灾难时, 优于线性 规划和直接搜索。

返回正文3.3。

12.2.2 MC补充

减小重要性采样的方差

- 折扣敏感: 把 γ 视作幕终止的概率,得到第n步终止的无折扣部分回报 $\sum_{i=1}^{n} R_{t+i}$,即平 价部分回报。全回报 $G_t = \sum_{i=1}^{T-t} \gamma^{i-1} R_{t+i}$ 可视为各平价部分回报的加权和,即该步截止 得到的回报与概率之积的和。适用于普通型和加权型。
- 每次決策型: $E[\rho_{t:T-1}G_t] = E[\tilde{G}_t] = E[\sum_{i=1}^{T-t} \gamma^{i-1} \rho_{t:t+i-1} R_{t+i}]$ 。适用于普通型。 返回正文15。

12.2.3 TD补充

改进方法

- 批量更新: 值函数根据增量和改变, 在处理整批数据后才更新。
- 最大化偏差: 贪心策略和柔性策略都在隐式估计最大值, 会产生正偏差, 致使回报值偏 离,带来明显错误决策。
- 后位状态: 利用先验知识,知晓动作后状态,并有后位值函数。在后位状态相同的时候 可以迁移,减少计算量。

带控制变量的每次决策模型

为保证不被选择的动作不会因 $\rho_t = 0$ 而回报为0,使方差较大,采取以下n步回报off-policy方 法:

$$G_{t:h} \doteq \rho_t(r_{t+1} + \gamma G_{t+1:h}) + \underbrace{(1 - \rho_t) \nu_{h-1}(s_t)}_{$$
控制变量

其中控制变量保证ρt = 0时估计值不收缩,且不改变更新期望。 可写为以下递归形式:

$$G_{t:h} \doteq r_{t+1} + \gamma [\rho_{t+1} G_{t+1:h} + \bar{\nu}_{h-1}(s_{t+1}) - \rho_{t+1} Q_{h-1}(s_{t+1}, a_{t+1})]$$

$$= r_{t+1} + \gamma \rho_{t+1} [G_{t+1:h} - Q_{h-1}(s_{t+1}, a_{t+1})] + \gamma \bar{\nu}_{h-1}(s_{t+1})$$

树回溯

树回溯不使用重要度采样,缓解了off-policy因所学内容相关性小比on-policy慢的问题。 相比以沿途收益和底部节点估计值为更新目标的算法,树回溯的更新源于整个树的行为值估 计,即各叶子节点的行为值估计按出现概率加权。

单步回溯树:

$$G_{t:t+1} \doteq r_{t+1} + \gamma \sum_{\alpha} \pi(\alpha|s_{t+1}) Q_t(s_{t+1}, \alpha)$$

n-回溯树(递归形式),其对路径可能分支进行展开,不进行采样:

$$G_{t:t+n} \doteq r_{t+1} + \gamma \sum_{\alpha \neq \alpha_{t+1}} \pi(\alpha|s_{t+1}) Q_{t+n-1}(s_{t+1},\alpha) + \gamma \pi(\alpha_{t+1}|s_{t+1}) G_{t+1:t+n}$$

图 16: n-树回溯回溯图

算法 23: n-树回溯

- 1: 参数: 步长α∈ (0,1], n∈ N+
- 2: 初始化: $\forall s \in S, \alpha \in A$,任意初始化 $Q(s,\alpha)$,初始化 π
- 3: 对于 每一幕 执行

算法 23: n-树回溯 初始化so为非终止状态,根据它任意选取ao 4: $T \leftarrow \infty$ 5: 对于 t = 0, 1, 2, ... 执行 如果 t < T 那么 7: 执行 α_t ,观察 r_{t+1} , s_{t+1} 8: 如果 st+1是终止状态 那么 9: $T \leftarrow t+1$ 10: 否则 11: 根据 s_{t+1} 选取 a_{t+1} 12: $\tau \leftarrow t-n+1$ ▷ τ是正在更新的状态的时间 13: 如果τ≥0那么 14: 如果 t+1 ≥ T 那么 15: $\mathsf{G} \leftarrow r_\mathsf{T}$ 16: 否则 17: $G \leftarrow r_{t+1} + \gamma \sum_{\alpha} \pi(\alpha|s_{t+1}) Q(s_{t+1}, \alpha)$ 18: 对于 k = min(t, T-1) 递减到 $\tau + 1$ 执行 19: $G \leftarrow r_k + \gamma \sum_{\alpha \neq \alpha_k} \pi(\alpha|s_k) Q(s_k, \alpha) + \gamma \pi(\alpha_k|s_k) G$ 20: $Q(s_{\tau}, a_{\tau}) \leftarrow Q(s_{\tau}, a_{\tau}) + \alpha[G - Q(s_{\tau}, a_{\tau})]$ 21:

结合采样的Sarsa和展开的树回溯,在每个状态由参数σ决定是采样还是展开,将 $N-Q(\sigma)$ 两种线性情况组合起来:

如果 $\tau = T - 1$ 那么

break

22:

23:

$$G_{t:h} \doteq r_{t+1} + \gamma [\sigma_{t+1} \rho_{t+1} + (1 - \sigma_{t+1}) \pi(\alpha_{t+1} | s_{t+1})] [G_{t+1:h} - Q_{h-1}(s_{t+1}, \alpha_{t+1})] + \gamma \bar{\nu}_{h-1}(s_{t+1})$$

图 17: Q(sigma)回溯图

▷ τ是正在更新的状态的时间

▷ 计算期望状态值

```
1: 输入: b(a|s) > 0
 2: 参数: 步长\alpha \in [0,1], 探索率\epsilon > 0, 步数n \in N_+
 3: 初始化: \forall s \in S, \alpha \in A,任意初始化Q(s, \alpha),初始化\pi
 4: 对于 每一幕 执行
        初始化so为非终止状态
       根据b(·|s<sub>0</sub>)选取a<sub>0</sub>
 6:
       T \leftarrow \infty
 7:
       对于 t = 0, 1, 2, ... 执行
            如果 t < T 那么
 9:
                执行a_t,观察r_{t+1}, s_{t+1}
10:
                如果 s++1是终止状态 那么
11:
                    T \leftarrow t+1 \\
12:
                否则
13:
                    根据b(\cdot|s_{t+1})选取a_{t+1}
14:
                                                                             ▷ 指示是采样还是展开
                    选择\sigma_{t+1}
15:
                    \rho_{t+1} \leftarrow \tfrac{\pi(\alpha_{t+1}|s_{t+1})}{b(\alpha_{t+1}|s_{t+1})}
                                                                                  ▷ 重要性采样比率
16:
```

返回正文5.6。

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

算法 24: n-Q(σ)-off-policy

 $\tau \leftarrow t - n + 1$

 $G \leftarrow 0$

如果τ≥0那么

否则

如果 $\tau = T - 1$ 那么

break

对于 k = min(t, T-1)递减到 $\tau + 1$ 执行

 $\bar{V} \leftarrow \sum_{\alpha} \pi(\alpha|s_k) Q(s_k, \alpha)$

 $Q(S_{\tau}, A_{\tau}) \leftarrow Q(s_{\tau}, a_{\tau}) + \alpha[G - Q(s_{\tau}, a_{\tau})]$

如果 k = T 那么

 $G \leftarrow r_\mathsf{T}$

 $G \leftarrow r_k + \gamma [\sigma_k \rho_k + (1 - \sigma_k) \pi(\alpha_k | s_k)][G - Q(s_k, \alpha_k)] + \gamma \bar{\nu}$

12.2.4 模型和规划

模型

- 分布模型: 生成所有可能的结果的描述与概率分布。
- 样本模型: 从所有可能中按概率分布采样一个确定结果。可由分布模型生成,一般更容 易获得。

规划

- 规划: 以环境模型为输入, 生成或改进与其交互的策略。
- 规划空间:
 - 状态空间规划: 在状态空间搜索最优策略。
 - 方案空间规划: 进化算法、偏序规划。
- 规划时间:
 - 后台规划: 从环境模型生成模拟经验, 改进策略或值函数。
 - 决策时规划: 使用模拟经验为状态选择动作。

统一的状态空间规划算法 通过仿真经验的回溯操作计算值函数,进而改进策略。

模型 → 模拟经验 ➡ 值函数 → 策略

12.2.5 Dyna-Q

学习和规划由相同算法完成,真实经验用于学习,模拟经验用于规划。

算法 25: Dyna-Q

- 1: 初始化: $\forall s \in S, a \in A(S)$, 初始化Q(s,a)和Model(s,a)
- 2: 循环

3: s ← 当前(非终止)状态

▷学习

基于(s,Q)选取a,执行后观察r,s'

▷可用ε-greedy策略

 $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{\alpha} Q(s', a) - Q(s, a)]$

▷ 直接强化学习更新

6: $Model(s, a) \leftarrow r, s'$

对于 i = 1, ..., n 执行 7:

▷规划

▷ 优先级

算法 25: Dyna-Q 随机选择已观测过的s和其下采取过的a 8: $r, s' \leftarrow Model(s, a)$ ▷ 从模型获取预测 ▷ 规划更新 $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{\alpha} Q(s', a) - Q(s, a)]$ 10:

12.2.6 改进方法

鼓励长期未出现动作,模型可能不正确,需规避在次优解收敛。

集中更新有收益动作,而非均匀采样。 优先遍历

关联前导动作和前导状态,在后续动作有收益时先更新前导动作价值,进行有效更新。 按照价值改变多少对状态-动作对进行优先级排序,并由后至前反向传播出高影响序列。

算法 26: 确定性环境下的优先遍历

- 1: 初始化: $\forall s \in S, a \in A(s)$,初始化Q(s,a), Model(s,a),初始化优先级队列PQueue = NULL
- 2: 循环
- s ←当前(非终止)状态 3:
- 基于(s,q)选取a,执行后观察r,s'▷可用ε-greedy策略 4:
- $Model(s, a) \leftarrow r, s'$ 5:
- $P \leftarrow |r + \gamma \max_{\alpha} Q(s', \alpha) Q(s, \alpha)|$
- 如果P>0那么 7:
- 将(s,a)以优先级P插入PQueue 8:
- 对于 i = 1,...,n 执行
- 如果 PQueue = NULL 那么 10:
- break 11:
- ▷ 最高优先级 $(s, a) \leftarrow PQueue(0)$
- ▷ 从模型获取预测 $r, s' \leftarrow Model(s, a)$ 13:
- $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{\alpha} Q(s', a) Q(s, a)]$ > 规划更新 14:
- 对于每个可达到s的(s,ā) 执行 ▷ 反向传播更新 15:
- $\bar{r}, \bar{s'} \leftarrow Model(\bar{s}, \bar{a})$ 16:
- 如果 $\bar{s'} = s$ 那么 17:

算法 26: 确定性环境下的优先遍历		
18:	$P \leftarrow \bar{r} + \gamma \max_{\alpha} Q(s, \alpha) - Q(\bar{s}, \bar{\alpha}) $	
19:	如果 P > 0 那么	
20:	将(s̄,ā)以优先级P插入PQueue	

ON-POLICY**轨迹采样** 借助模拟生成经验回溯更新,能跳过无关状态,获得最优部分策 略。实时动态规划(RTDP)是其异步值迭代版本,可在较少访问频率下找到最优策略,并 且产生轨迹所用的策略也会接近最优策略。

启发式搜索 聚焦于当前状态。

预演算法 作为MC的特例,通过平均多个起始于可能动作并遵循给定策略的模拟轨迹的 回报来估计行为值。蒙特卡洛树搜索(MCTS)通过累积蒙特卡洛值估计来不断优化模拟轨 迹的收益。

返回正文21。

12.3 值函数近似

核函数

• 基于记忆样本,使用RBF核,存储样本状态。核函数k(s,s')可表示为特征向量x(s)的内 积,每个特征对应一个样本状态:

$$k(s, s') = x(s)^{\mathsf{T}} x(s')$$

- 非参数化,不需要学习参数。
- 避免高维计算, 高效处理特征。
- 线性参数化方法皆可重塑为核函数,相同训练数据下会得到近似结果。

返回正文7.1。

12.4 数学基础

概率空间 (Ω, F, P)

- 非负性: ∀A ∈ F, P(A) ≥ 0。
- 规范性: $P(\Omega) = 1$ 。
- 可列可加性: 若 A_1,A_2,\dots 互斥,则 $P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i)$ 。
- 运算
 - 补集: $P(A^c) = 1 P(A)$ 。
 - 交集: $P(A \cap B) = P(A) + P(B) P(A \cup B)$.

随机变量

- 离散型
 - 概率质量函数(PMF): P(X = x) = p(x), $\sum_{x} p(x) = 1$ 。
 - 期望: $E[X] = \sum_{x} xp(x)$ 。
- 连续型
 - 概率密度函数(PDF): $f(x) \ge 0$, $\int_{-\infty}^{\infty} f(x) dx = 1$.
 - 期望: $E[X] = \int_{-\infty}^{\infty} x f(x) dx$ 。
- 方差: $Var(X) = E[(X E[X])^2]$ 。

条件概率与独立性

- 条件概率: $P(B|A) = \frac{P(A \cap B)}{P(A)}, P(A) > 0$ 。
- 全概率公式: $P(B) = \sum_{A \subseteq F} P(B|A)P(A)$ 。
- 贝叶斯定理: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ 。
- 独立性: A, B独立 $\iff P(A \cap B) = P(A)P(B)$ 。
- 条件独立: P(A,B|C) = P(A|C)P(B|C)。

- 弱大数律: $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{p}{\Longrightarrow} E[X]$.
- 强大数律: $\frac{1}{n}\sum_{i=1}^{n}X_{i} \stackrel{a.s.}{\Longrightarrow} E[X]$.
- 中心极限定理: X_1, X_2, \dots 独立同分布,均值为 μ ,方差为 $\sigma^2 < \infty$,则 $\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i \mu) \stackrel{d}{\Longrightarrow} N(0, \sigma^2)$ 。

泛函分析

- 期望的线性: E[aX + bY] = aE[X] + bE[Y]。
- 协方差: $Cov(X,Y) = E[(X \mu_X)(Y \mu_Y)] = E[XY] \mu_X \mu_Y$ 。
- 相关系数: $\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X\sigma_Y}$ 。

状态分布

- 均匀分布(各状态同等重要): $J(\omega) = \frac{1}{|S|} \sum_{s \in S} [v_{\pi}(s) \hat{v}(s, \omega)]^2$ 。
- 平稳分布(马氏过程长期行为): $J(\omega) = \sum_{s \in S} d_{\pi}(s) [\nu_{\pi}(s) \hat{\nu}(s, \omega)]^2$ 。

信息论

- 熵:不确定度的度量。
 - 二值熵: $H = -p \log(p) (1-p) \log(1-p)$ 。
 - 交叉熵: $H(P,Q) = -E_{P(x)}Q(x) = -\int P(x) \log Q(x) dx$ 。
- KL散度: 衡量两个概率分布之间的距离。

$$D_{KL}(P||Q) = E_{x \sim P}[\log \frac{P(x)}{Q(x)}] = \int P(x) \log P(x) dx - \int P(x) \log Q(x) dx$$