MAT 2555/255I ANÁLISIS FUNCIONAL TAREA 1

PLAZO: EL 6 DE SEPTIEMBRE

Profesor: Nikola Kamburov nikamburov@mat.uc.cl

Ayudante: Matías Díaz midiaz8@uc.cl

El plazo para entregar Tarea 1 es el 6 de septiembre, miércoles, antes del inicio de la clase. Note que se corregirá sólo una selección de los ejercicios enunciados.

Reading: Melrose, Functional Analysis (Lecture Notes), 1.1–1.8, 1.10–1.11, 3.1–3.9, más apuntes de la clase.

El campo de escalares \mathbb{K} en las preguntas abajo es $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

Pregunta 1. Sea $\Omega \subset \mathbb{R}^n$ un conjunto abierto, $\alpha \in (0,1]$. Para $f \in \Omega \to \mathbb{K}$, defina su norma de Hölder

$$\|f\|_{C^\alpha}:=\sup_{x\in\Omega}|f(x)|+\sup_{x\neq y\in\Omega}\frac{|f(x)-f(y)|}{|x-y|^\alpha}.$$

El espacio $C^{\alpha}(\Omega) = \{f : \Omega \to \mathbb{K} : ||f||_{C^{\alpha}} < \infty\}$ se llama el espacio de Hölder de funciones en Ω , de exponente α . Demuestre que $(C^{\alpha}(\Omega), ||\cdot||_{C^{\alpha}})$ es un espacio de Banach.

Pregunta 2. Considere el espacio

$$c_0(\mathbb{K}):=\{\{a_k\}_{k=1}^\infty\in l^\infty(\mathbb{K}): \lim_{k\to\infty}a_k=0\}.$$

- (a) Demuestre que $c_0(\mathbb{K})$ es cerrado en $l^{\infty}(\mathbb{K})$. Concluya que $c_0(\mathbb{K})$ es un espacio de Banach.
- (b) Sea V el espacio cociente $V=l^{\infty}(\mathbb{K})/c_0(\mathbb{K})$ con la norma natural inducida

$$||[v]|| = \inf_{w \in c_0(\mathbb{K})} ||v + w||_{l^{\infty}}.$$

Demuestre que $||[v]|| = \limsup_{k \to \infty} |a_k|$.

Pregunta 3. Dé un ejemplo de una sucesión $\{v_k\}_k$ de elementos $v_k \in \mathbb{C}^{\mathbb{N}}$, que

- a) converge en l^{∞} , pero no en l^1 ;
- b) converge en l^2 , pero no en l^1 ;
- c) converge en c_0 , pero no en l^2 .

Pregunta 4. Sea $(V, \|\cdot\|)$ un espacio de Banach.

- (a) Pruebe que si $F_k := \overline{B}_{r_k}(v_k) := \{v \in V : ||v v_k|| \le r_k\}, k \in \mathbb{N}$, son bolas cerradas, tales que $F_k \supseteq F_{k+1} \forall k \in \mathbb{N}$, entonces $\bigcap_k F_k \ne \emptyset$.
- (b) Es posible tener conjuntos cerrados F_k , tales que $F_k \supseteq F_{k+1}$ y $\bigcap_k F_k = \emptyset$?

Pregunta 5. Sea V un espacio normado y sea l un funcional lineal acotado no cero en V. Considere el espacio nulo de l:

$$L = \{ v \in V : l(v) = 0 \}.$$

2 TAREA 1

(a) Demuestre que

$$|l(v)| = ||l||d(v, L)$$
 para todo $v \in V$,

donde $d(v, L) := \inf_{w \in L} ||v - w||$ es la distancia entre v y L.

(b) Pruebe que si existen $v \in V \setminus L$, y $w \in L$, tales que ||v - w|| = d(v, L), entonces l alcanza su norma en la esféra unitaria $\{x \in V : ||x|| = 1\}$.

Pregunta 6. Sean V, W espacios de Banach, $T \in \mathcal{B}(V, W)$, $\alpha \in (0, 1)$ y $\beta > 0$. Suponga que para todo $w \in W$, existe $v \in V$, tal que $||v|| \leq \beta ||w||$ y

$$||Tv - w|| \le \alpha ||w||.$$

Pruebe que para todo $w \in W$ dado, la ecuación Tv = w tiene una solución $v \in V$ con $||v|| \le \beta/(1-\alpha)||w||$.

Pregunta 7. Sea X un espacio métrico completo y sea $\{f_n\}$ una sucesión de funciones continuas en X con valores en \mathbb{K} , tal que $f(x) = \lim_{n \to \infty} f_n(x)$ existe para todo $x \in X$. En esta pregunta, demostrará que el conjunto, donde la función límite f es continua, es denso en X.

(a) Pruebe que para todo $\epsilon > 0$ y toda bola cerrada $\overline{B} \subset X$, existe una bola abierta $\tilde{B} \subset B$ y un $N \in \mathbb{N}$, tales que

$$|f_N(x) - f(x)| \le \epsilon$$
 para todo $x \in \tilde{B}$.

(Sugerencia: Considere $E_l := \{x \in \overline{B} : \sup_{i,k>l} |f_i(x) - f_k(x)| \le \epsilon \}$ y note que $\overline{B} = \bigcup_l E_l$).

(b) Defina la oscilación de f en x,

$$\operatorname{osc}(f)(x) = \lim_{r \downarrow 0} \sup_{y,z \in B_r(x)} |f(y) - f(x)|,$$

y note que f es continua en x si y solo si osc(f)(x) = 0. Demuestre que

$$F_t := \{ x \in X : \operatorname{osc}(f)(x) \ge t \}, \quad t > 0,$$

es cerrado y denso en ninguna parte. (Sugerencia: $\{x \in X : osc(f)(x) < t\}$ es abierto para cualquier función f).

(c) Concluya que el conjunto de discontinuidades de f es de la primera categoria en X, i.e. el conjunto donde f es continua es genérico en X.

Pregunta 8. Sean V, W espacios de Banach y sea $T \in \mathcal{B}(V, W)$. Demuestre que o el operador T es sobreyectivo, o la imagen T(V) es de la primera categoria en W.

Pregunta 9. Defina sobre el espacio $l^2(\mathbb{R})$ el producto interno

$$(a,b) := \sum_{k} \lambda_k a_k b_k$$
, donde $a = \{a_k\}, b = \{b_k\} \text{ y } \lambda_k \in (0,1).$

Es $l^2(\mathbb{R})$, equipado con este producto interno, siempre un espacio de Hilbert?

Pregunta 10. Considere el espacio $H = C([-1,1],\mathbb{R})$ con el producto interno L^2 sobre \mathbb{R} :

$$\langle f, g \rangle = \int_{-1}^{1} fg \, dx.$$

Sea $L \subset H$ el subespacio de funciones f, tales que f(t) = 0 para $t \ge 0$. Describa el subespacio L^{\perp} en H. Es verdadero que $H = L \oplus L^{\perp}$?