

WM_W800_QFLASH 布局说明 V1.1

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2019/9/25	[C]创建文档	Cuiyc	
V0.2	2020/7/8	统一字体	Cuiyc	
V1.0	2020/8/10	升级版本号	Cuiyc	
V1.1	2021/2/23	更新用户区位置,与 SDK 保持一致	Cuiyc	

目录

又	鬥修改	记录		2
目	录			3
1	引言			5
	1.1	编!	写目的	5
	1.2	预热	期读者	5
	1.3	术i	语定义	5
	1.4	参	考资料	5
2	W80		SH 的布局	
	2.1	QF	ELASH 大于 2M 的布局	6
		2.1.1	物理层参数区	6
		2.1.2	SECBOOT 参数区	
		2.1.3	SECBOOT 存放区	8
		2.1.4	升级 IMG 存放区	8
		2.1.5	运行 IMG 参数区	9
		2.1.6	运行 IMG 存放区	10
		2.1.7	用户参数区	10
		2.1.8	系统参数区	10
		2.1.9	升级 IMG 参数区	11
	2.2	QF	ELASH 小于 2M 的布局	11
3	FAQ			14
	3.1	为个	什么布局划分总是以 64KB 为倍数划分?	14

3.2 为什么总是留一部分升级区在内部 Flash 里?14

1 引言

1.1 编写目的

本文档主要用于阐述 W800 中的 QFLASH 布局, 使读者了解当前 W800 的 QFLASH 的使用情况。

1.2 预期读者

该文档适用的读者包括研发人员、测试人员、W800 的工程使用人员等。

1.3 术语定义

序号	术语/缩略语	说明/定义		
1	QFLASH	W800 internel Quad-SPI FLASH		
2	IMG	IMAGE		
3	RF	Radio Frequency		
4	MAC	Media Access Control		
5	SECBOOT	Second Boot		
6	ROM	Read-Only Memory		
7	UPD	Image Upgrade Area		
8	МВ	Mega Byte		
9	КВ	Kilo Byte		

1.4 参考资料

无

2 w800 QFLASH 的布局

地址空间: 0x8000000-0x8XFFFFF, 共(X+1)MB, X >= 1, 针对 2M 及以上的 QFLASH。

2.1 QFLASH 大于 2M 的布局

图 2-1 升级 Image 为压缩格式

2.1.1 物理层参数区

地址空间: 0x8000000-0x8001FFF, 共8KB

参数内容:

系统 RF 及 MAC 相关参数。

参数布局:

图 2-3

2.1.2 SECBOOT 参数区

地址空间: 0x8002000-0x80023FF, 共 1KB

参数内容:

SECBOOT 启动校验相关信息及启动地址

参数布局:

字段	描述	
magic_no	魔术字,固定值 0xA0FFFF9F	
img_attr	Img_Attr_Type, IMAGE Attribute	
img_addr	Image area 在 flash 中的位置,运行位置	
img_len Image area 的字节数长度		
img_header_addr	IMAGE header 在 flash 中的位置	
upgrade_img_addr	升级区地址,升级 IMAGE header 在 flash 中存放位置	
org_checksum	lmage area 的 crc32 结果	
und na	升级版本号,值较大的表示版本较新;当版本号为 0xFFFFFFF	
upd_no	时,可升级任意版本号固件	
ver	lmage 版本号,字符串	
next	下一个 image header 在 flash 中的位置	
hd_checksum Image header 的以上字段的 crc32 的值		

W800 的 IMAGE Attribute 字段描述:

字段 Bit 描述

	4	0x0: SECBOOT;	
img_type		OxE: ft 测试程序;	
		其它值: 用户自定义	
code_encrypt	1	0: 固件明文存储; 1: 固件由客户加密后存储	
pricey_sel	3	芯片内置 8 组 RSA 私钥用于解密固件加密的秘钥,用户可任	
		选一组使用,取值范围 0~7	
signature 1 0		0: IMAGE 不包含签名部分; 1: IMAGE 包含 128Bytes 签名	
zip_type	1	0:不压缩;1:image area 部分为压缩档	
reserved	1	保留	
erase_block_en	1	0: 不支持 64KB Block 擦除; 1: 支持 Block 擦除	
oraco alveres	1	0:Sector 或 Block 擦除前检查 flash 是否全 F,全 F 的 Sector	
erase_always		或 Block 不进行擦除操作; 1: 总是先擦后写	

2.1.3 SECBOOT 存放区

地址空间: 0x8002400-0x800FFFF, 共 55KB

参数内容:

SECBOOT IMAGE 内容

参数布局:

平铺的 SECBOOT IMAGE, 可为加密文件

2.1.4 升级 IMG 存放区

地址空间:

0x8010000-0x80CFFFF, 共768KB

参数内容:

OTA 升级 IMAGE 文件(可为 secboot, User Image)

参数布局:

2.1.5 运行 IMG 参数区

地址空间: 0x80D0000-0x80D03FF, 共 1KB

参数内容:

运行区 IMAGE 启动校验相关信息及启动地址

参数布局:

字段	描述
magic_no	魔术字,固定值 0xA0FFFF9F
img_attr	Img_Attr_Type, IMAGE Attribute
img_addr	Image area 在 flash 中的位置,运行位置
img_len	lmage area 的字节数长度
img_header_addr	IMAGE header 在 flash 中的位置
upgrade_img_addr	升级区地址,升级 IMAGE header 在 flash 中存放位置
org_checksum	lmage area 的 crc32 结果
upd_no	升级版本号,值较大的表示版本较新;当版本号为 OxFFFFFFF
ири_по	时,可升级任意版本号固件
ver	Image 版本号,字符串
next	下一个 image header 在 flash 中的位置

hd_checksum

Image header 的以上字段的 crc32 的值

2.1.6 运行 IMG 存放区

地址空间:

0x80D0400-0x81DFFFF, 共 1087KB

参数内容:

平铺的运行时 IMAGE

参数布局:

2.1.7 用户参数区

地址空间: 0x81E0000-0x8XFBFFF, 共 (X+1) MB - 1808KB, X>=1。

参数内容:

用于用户存放自定义参数时使用。

用户可用参数区大小与用户 Image 空间大小相关

参数布局:

用户自定义

2.1.8 系统参数区

地址空间: 0x8XFC000-0x8XFEFFF, 共 12KB

参数内容:

系统运行时所需的相关参数

参数布局:

MAGIC Number:4Byte			
PARTITION_NUM:2Byte	PARTITION_NUM:2Byte MODIFY_CNT:2Byte		
RESERVED:4Byte			
RESERVED:2Byte Length:2Byte(整个参数的大小,包含 CRC 值,由系统参数决定			
Data Content(系统参数决定)			
CRC Value:4byte(CRC 之前的内容的值)			

- 1) 系统参数 1 区 (0x8XFC000-0x8XFCFFF)
- 2) 系统参数 2 区 (0x8XFD000-0x8XFDFFF)
- 3) 系统参数 3 区 (0x8XFE000-0x8XFEFFF)

2.1.9 升级 IMG 参数区

地址空间: 0x8XFF000-0x8XFFFFF, 共 4KB

参数内容:

OTA 升级 IMAGE 校验信息,用于区分是否 OTA。

SECBOOT 搬移 OTA 固件后改写。

参数布局:

2.2 QFLASH 小于 2M 的布局

针对上述的不同 Size, QFlash 的布局会不同,以 1MB 举例如下。

1) < 2MB, 不考虑 OTA 升级的场景

图 3-1

- 2) < 2MB, 考虑 OTA 升级的场景
 - (1) QFlash 空间够,则布局如下:

图 3-2

(2) QFlash 空间不足够,则布局如下,部分 OTA 区域要放置到内部 QFlash,部分 OTA 和全部用户区都放到外部存储设备:

图 3-3

如下是针对不同 Flash Size 和基本功能支持情况做的划分。

SIZE		应用场景		
	Wi-Fi 使用	BL/BLE	ОТА	
16KB	基本收发功能	基本收发功能	不支持	
32KB	基本收发功能	基本收发功能	不支持	
64KB	基本收发功能	基本收发功能	不支持	
128KB	基本收发功能	基本收发功能	不支持	
256KB	基本收发功能	基本收发功能	不支持	
512KB	Wi-Fi 所有功能	不确定	有条件支持	
1MB	Wi-Fi 所有功能	基本功能	有条件支持	
>=2MB	Wi-Fi 所有功能	基本功能	支持	

注:

有条件支持:内部 Flash 基本都划分为代码空间,要通过外挂存储设备才可实现OTA 固件的存储。

支持: 内部存储空间已经满足运行区和 OTA 区域

不支持:内部存储空间不足以支撑 OTA 相关代码(Wi-Fi+OTA 应用, 蓝牙+OTA 应用)的运行。

3 FAQ

3.1 为什么布局划分总是以 64KB 为倍数划分?

考虑到 QFlash 的实现方式不同,针对掉电过程中,如果有 QFlash 的写动作,可能会破坏整个扇区的操作。

3.2 为什么总是留一部分升级区在内部 Flash 里?

因为 ROM 里总是认定 SECBOOT 的升级区域在内部 QFlash 里。

为了预防 SECBOOT 升级,必须把 OTA 区域预留在内部 QFlash 里。