Logic Simulation

- Purpose
 - Design Verification
 - Performance Evaluation
 - Evaluation of Alternative Designs
 - Debugging
 - ▲ observe internal signals
 - ▲ can change clock rate, gate delays
 - ▲ can start the simulation in any desired state
 - ▲ can be interfaced to partial designs

ECE 1767 University of Toronto

Outline

- Types of Simulation
- Logic Simulation in Presence of Unknowns
- Simulation of Synchronous Sequential Circuits
- Gate Evaluation Methods
- Event-Driven Simulation
- Hazard Detection

FCF 1767

Types of Simulation

- Compiled Code
 - functional verification, timing not incorporated
- Table Driven
 - primitives are evaluated using tables
- Event Driven (activity-directed)
 - 1% 10% of lines are active in a simulation
- Time Driven / Cycle Based

Event: change in signal line --> "active line"
Evaluate gates only when inputs change.
Level of simulation depends on level of the model.

ECE 1767

University of Toronto

Unknown Value

- Unlike real circuits, which have only two signal values (0, 1), a simulator cannot restrict itself to 0,
 - 1. Why? (0, 1, U, Z, Rising, Falling)
- At the start, flip-flops are in an "unknown" state.
- Formally, unknown is a set of two values {0,1}
 - Boolean Operation op
 - 0 op U = {0} op {0,1} = {0 op 0, 0 op 1}
 - op = AND

$$\triangle$$
 0 AND U = {0 AND 0, 0 AND 1} = {0,0} = {0} = 0

▲ 1 AND U = {1 AND 0, 1 AND 1} = {0,1} = U

ECE 1767

Unknown Value

- A subtle difference between unknown U and don't care X
- In Boolean algebraic operations, they are the same, but when differences do exist, care must be taken.

ECE 1767 University of Toronto

Logic Simulation in Presence of Unknowns

• Use high-level Boolean functions of modules.

Coding for Three Values

- Values: 0, 1, U
- An encoding: 00, 11, 01


```
AND 00 11 01
00 00 00 00
11 00 11 01
01 00 01 01
```

bit-wise AND on the codes

ECE 1767

University of Toronto

Simulation of Synchronous Sequential Circuits

Procedure CKT1 inputs A, B; static Q; begin

Ē = B NAND Q F = A OR B Q = F

end

Every call advances the clock by 1.

Assume data is stable at inputs to flip-flops when clock signal arrives

ECE 1767

Gate Evaluation Methods

Controlling value and Inversion value:

- Controlling value controls the output of the gate
- If there is a controlling input, output of gate is $c \oplus i$ otherwise $c' \oplus i$

	С	i
AND	0	0
OR	1	0
NAND	0	1
NOR	1	1

ECE 1767 University of Toronto

Gate Evaluation Methods

- Input scanning
 - Look for controlling value c
 - If found then output = c
 - else if unknown found then output = X
 - else output = c
- Count based
 - C_0 = count of 0's
 - C_x = count of x's
 - if C₀ > 0 then output 0
 - else if C_x > 0 then output x
 - else output 1
- Table based -- indexed look-up

ECE 1767

Table-Based Indexed Look-up

• $2^6 = 64$ entries in table, since 0,1,x require 2 bits

		Α	В	<u>C_</u>
Index I =	0			

	Α	В	С	D[I]
Ī	00	00	00	0
	00	00	01	0
	11	11	11	1

Of 64 entries, 27 are useful

zoom tables: gate type is part of index

ECE 1767

University of Toronto

Event-Driven Simulation

- All τ = 0: zero delay simulation
 - easiest, fastest
- All τ = 1: unit delay simulation
 - moderate
- Different τ's: variable delay, assignable delay simulation
 - hardest, slowest

ECE 1767

Event-Driven Simulation

- Different gates may have different delays
 - In the project you will implement a zero-delay simulator
- Logic Simulation Algorithm with Delay

Two-pass strategy when delay is not zero:

- Need to schedule events, that is, changes of logic values
- Need to keep a queue of activated gates

ECE 1767 University of Toronto

Observation on Logic Simulation Algorithm with Delay

- Correct only if an event at time t+k does not schedule an event earlier than an already scheduled event for the same gate.
- Example:

event list

0: (a,0)

1: (a,1)

6: (e,0)

2: (d,0)

4: (e,1)

Need to cancel 6: (e,0)

ECE 1767

Zero-Delay vs. Unit-Delay Simulation

Level: 1 2 3 4 5

- In unit-delay simulation, gate A is evaluated 3 times
- In zero-delay simulation, gate A is evaluated once
 - zero-delay gives steady-state values of nodes

ECE 1767

University of Toronto

Assigned-Delay Simulation Example

Time t1

Pass 1: $a \neq a' \longrightarrow (a'1)$ is an event, add g to Activated $c \neq c' \longrightarrow (c'1)$ is an event, add h to Activated $d \neq d' \longrightarrow (d'0)$ is an event, add h to Activated $e \neq e' \longrightarrow (e'1)$ is an event, add i to Activated

Pass 2: g' = 1 at time 1+5 = 6 h' = 1 at time 1+3 = 4 i' = 0 at time 1+3 = 4

Time t4

Pass 1: h' = h, so no event $i' \neq i \rightarrow (i',0)$ is an event, add I, m to Activated Pass 2: i' = 1 at time 4+4 = 8m' = 0 at time 4+4 = 8

ECF 1767

Assigned-Delay Simulation Example

Event List

Time Event

t6: (g',1) means at time t6, g will take on value 1.

Hazard Detection

- Important for unclocked flip-flops (latches)
 - t: A=0, B=1 --> 1
 - t': A=U, B=U --> U 1 U 1 ES
 - t+1: A=1, B=0 --> 1
- Hazard exists if and only if the output sequence has 0U0 or 1U1