CHAP. 15]

A 70- Ω high-frequency lossless line is used at a frequency where $\lambda = 80$ cm with a load at x = 0 of $(140 + j91) \Omega$. Use the Smith Chart to find: Γ_R , VSWR, distance to the first voltage maximum from the load, distance to the first voltage minimum from the load, the impedance at $V_{
m max}$, the impedance at $V_{
m min}$, the input impedance for a section of line that is 54 cm long, and the input admittance.

On the Smith Chart plot the normalized load $Z_R/R_0 = 2 + j1.3$, as shown in Fig. 15-21. Draw a radial line from the center through this point to the outer λ -circle. Read the angle of Γ_R on the angle scale: $\phi_R = 29^\circ$. Measure the distance from the center to the z-point and determine the magnitudes of Γ_R and VSWR from the scales at the bottom of the chart.

$$|\Gamma_R| = 0.50$$
 VSWR = 3.0 and $\Gamma_R = 0.5 / 29^\circ$

Draw a circle at the center passing through the plotted normalized impedance. Note that this circle intersects the horizontal line at 3 + j0. This point of intersection could be used to determine the VSWR instead of the bottom scale, because the circle represents a constant VSWR. Locate the intersection of the VSWR circle and the radial line from the center to the open-circuit point at the right of the z-chart. This intersection is the point where the yoltage is a maximum (the current is a

Fig. 15-21

minimum) and the impedance is a maximum. The normalized impedance at this point is 3+j0, whence $Z_{\text{max}} = 210 + j0 \,\Omega$. To find the distance from the load to the first V_{max} use the outer scale (wavelengths toward the generator). The reference position is at 0.21λ and the max. line is at 0.25λ ; so the distance is 0.04λ toward the generator, or $3.2\,\mathrm{cm}$ from the load.

From the V_{max} point move 0.25λ toward the generator and locate the V_{min} point. The normalized impedance is 0.33 + j0, and $Z_{min} = 23.1 + j0 \Omega$. The distance from the load to the first minimum is

$$0.25\lambda + 0.04\lambda = 0.29\lambda = 23.2 \text{ cm}$$

To find the input impedance, move $\frac{54}{80} = 0.675$ wavelengths from the load toward the generator, and read the normalized impedance. Once around the circle is 0.5λ , so locate the point that is 0.175λ from the load on the outer scale. The point is at $0.21\lambda + 0.175\lambda = 0.385\lambda$. Through this point draw a radial line and locate the intersection with the VSWR circle. The normal impedance is 0.56 - j0.71and $Z_{in} = 39.2 - j49.7 \Omega...$

The normalized input admittance is located a diameter across on the chart, which corresponds to the inversion of a complex number. For z = 0.56 - j0.71, y = 0.68 + j0.87; therefore,

$$Y_{\rm in} = \frac{y}{R_0} = (9.71 + j12.4) \text{ mS}$$