A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

14 1.2.2. Voltage Gated Sodium Channel (VGSC, Na_v, VONa)

Voltage Gated Sodium Channel (VGS C, Na _v , VONa)		Ref
		[2, 13]
$I_{Na,Na_v} = g_{Na_v}^{max} m_{Na_v}^3 h_{Na_v} \left(V_m - V_{Na,rev}^{M-N} \right)$	(33)	
$rac{dm_{Na_{v}}}{dt}=rac{ar{m}_{Na_{v}}-m_{Na_{v}}}{ au_{m}}$	(34)	
$egin{aligned} rac{dm_{Na_v}}{dt} &= rac{ar{m}_{Na_v} - m_{Na_v}}{ au_m} \ rac{dh_{Na_v}}{dt} &= rac{ar{h}_{Na_v} - h_{Na_v}}{ au_h} \end{aligned}$	(35)	
$\bar{m}_{Na_{v}} = \frac{1}{1 + exp\left(\frac{-(V_{m}^{M-N} + V_{1/2,mNa_{v}}^{M-N})}{k_{mNa_{v}}}\right)}$	(36)	
$\bar{h}_{Na_{v}} = \frac{1}{1 + exp\left(\frac{(V_{m}^{M-N} + V_{1/2,h Na_{v}}^{M-N})}{k_{h Na_{v}}}\right)}$	(37)	

Table 3: The corresponding equations describing the ionic current transported via voltage gated sodium channels $(VGSCs, Na_vs, VONas)$ across the cell membrane (part 1/3 continued from previous page)