Question Number		Scheme		Marl	Marks	
1.		$T_1 \uparrow \uparrow T_2$	$T_1 = \frac{175 \times 0.2}{1}$	B1		
		$T_1 \uparrow \uparrow T_2$ $5g$	$\frac{175 \times 0.2}{1} + \frac{\lambda \times 0.3}{0.9} = 49$	M1 A 1		
			$\Rightarrow \lambda = 42$	M1 A1	(5)	
				(5 1	(5 marks)	
2.	(a)	5.1	$3, 4, 5 \Delta$	B1		
		4l $ 5l $ $ T $	$R(\uparrow) T \sin \theta = mg$	M1		
		T m_g	$T = \frac{5mg}{4}$	A1	(3)	
	(<i>b</i>)	$R (\leftarrow) \qquad T + T \cos \theta$		M1 A2		
		$\frac{8}{5}$ ×	$\frac{5mg}{4} = \frac{mv^2}{3l}$	M1		
		v =	$\sqrt{6gl}$	A1	(5)	
(c)		Could not assume tensions	same	B1	(1)	
				(91	marks)	
3.	(a)	Cylinder	half-sphere toy			
		$\pi r^2 h ho$	$\frac{2}{3}\pi r^36\rho \qquad \pi r^2h\rho + \frac{2}{3}\pi r^36\rho$	M1 A1		
		$\frac{h}{2} + r$	$\frac{5r}{8}$ d	B1 B1		
		$\pi r^2 h \rho(\frac{h}{2} + r) + \epsilon$	$4\pi r^3 \rho \frac{5r}{8} = (\pi r^2 h \rho + 4\pi r^3 \rho)d$	M1 A1		
			$\Rightarrow d = \frac{h^2 + 2rh + 5r^2}{2(h+4r)} \tag{*}$	A1	(7)	
	(<i>b</i>)	$d=r$, \Rightarrow h^2+2r	$h + 5r^2 = 2r(h + 4r)$	M1, M1		
			$h = \sqrt{3}r$	A1	(3)	
				(10 1	marks)	

Question Number		Scheme		Marks	
4.	(a)	$\frac{2\pi}{\omega} = \pi \Rightarrow = 2$			
		$2.4^2 = 4 (a^2 - 0.5^2)$		M1 A1ft	
		a = 1.3 m	A1	(4)	
	<i>(b)</i>	$v_{\rm max} = a\omega = 2.6 \mathrm{m s}^{-1}$	B1	(1)	
(c) arct		$arct_{max} = a\omega^2 = 5.2 \text{ m s}^{-2}$	B1ft	(1)	
	(d) $0.5 = 1.3 \sin 2t$		M1		
		$t = \frac{1}{2} \sin^{-1} \left(\frac{0.5}{1.3} \right)$	M1 A1		
		Total time = $4t = 0.79 (2 dp)$	M1 A1	(5)	
				(11 marks)	
5.	(a)	$800 \ \frac{dv}{dt} = \frac{48000}{(t+2)^2}$	M1		
		$v = 60 \int \frac{\mathrm{d}t}{(t+2)^2} = \frac{-60}{(t+2)} (+c)$	M1 A1		
		$t = 0, v = 0 \Rightarrow c = 30$	M1 A1		
		$v = 30 - \frac{60}{(t+2)} \Rightarrow v \to 30 \text{ as } t \to \infty$	A1	(6)	
	(<i>b</i>)	$s = \int v dt = 30t - 60 \ln (t + 2) \ (+ c)$	M1 A1		
		substitute in $t = 0$ and $t = 6$	M1		
		$s = 180 - 60 \ln 8,60 \ln 2$	A1, A1		
		≈ 96.8 m	A1	(6)	
			(12 marks)		

Question Number		Scheme		Marks	
6.	(a)	$\frac{1}{2} \times \frac{58.8}{4} x^2 = 0.5 \times 9.8 (x+4)$		A1 A1	
		$3x^2 - 2x - 8 = 0$		M1 A1	
		(3x+4)(x-2) = 0, x = 2			
		Distance fallen = 6 m	M1	A 1	(7)
(b)		$\frac{1}{2} \times 0.5v^2 = \frac{1}{2} \times \frac{58.8}{4} \times 3^2 - 0.5 \times 9.8 \times 3$	M1	M1 A1 A1	
		$v = 14.3 \text{ m s}^{-1}$	M1	A1	(5)
				(12 marks)	
7.	(a)	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga\ (1 + \cos 60^\circ)$	M1	A1	
		$v^2 = u^2 - 3ga$	A1		(3)
	(<i>b</i>)	$R + mg\cos 60^\circ = \frac{mv^2}{a}$		A1	
		$R = \frac{m}{a} \left(6ga - 3ga \right) - \frac{mg}{2}$			
		$=rac{5mg}{2}$	A1		(3)
	(c)	$R = 0$ at $B \Rightarrow \frac{mg}{2} = \frac{mv^2}{a} \Rightarrow v^2 = \frac{1}{2} ag$	M1		
		$\Rightarrow u^2 = \frac{7ga}{2} \implies u = \sqrt{\frac{7ga}{2}}$	M1	A1	(3)
	(<i>d</i>)	$(\rightarrow) B \text{ to } C: v \cos 60^{\circ} \times t = a\sqrt{3}$	M1	A1	
		$t = \frac{2a\sqrt{3}}{v}$			
		$C \stackrel{60^{\circ}}{=} B$ $a^{\frac{\sqrt{3}}{2}} \qquad a^{\frac{\sqrt{3}}{2}}$ $(\uparrow) B \text{ to } C: 0 = v \sin 60t - \frac{1}{2}gt^2$	M1	A1	
		$\Rightarrow t = \frac{2v\sin 60^{\circ}}{g} = \frac{v\sqrt{3}}{g}$			
		$\therefore \frac{2a\sqrt{3}}{v} = \frac{v\sqrt{3}}{g} \Rightarrow v^2 = 2ga$	M1	A1	
		$\Rightarrow u^2 = 5ga$			
		$\Rightarrow u = \sqrt{5ga}$	A1		(7)
				(16 m	arks)