

# Band-limited Digital Predistortion with Band-Switching Feedback Architecture for 5G mmWave Power Amplifiers

Soubhik Deb, Masaaki Tanio, Shinichi Hori, Noriaki Tawa, Yasushi Wada, Kazuaki Kunihiro

**NEC Corporation** 

#### **Outline**

- Introduction & motivation
- Conventional band-limited digital predistortion
- Proposed band-limited digital predistortion
- Measurement results
- Conclusions

#### Introduction



**Estimator** 

**ADC** 

#### **Motivation**



**Bandwidth increased** 

BW = 800 MHz, 256 QAM, Dual polarization → 12.8 Gbps ADC sampling rate is 4 GSps – expensive, power hungry Objective is to realize wideband DPD with low-speed ADC

#### **Conventional Method**

One solution is to use PA inband nonlinearity only



Further improvement preferable for higher modulation

## **Proposed Band-limited Digital predistortion**

Extraction of PA inband and outbands with low-speed ADC **Band-switching feedback architecture** PA Inband ······



**Advantages:** 

- ADC is low-speed, same as BW
- Further decrease in PA nonlinearity

## Multiband Observation Receiver (ORx) - 1



## Multiband Observation Receiver (ORx) - 2

Downconvert by  $f_l$  for extracting left outband (LO) Downconvert by  $f_r$  for extracting right outband (RO) PA Inband **Complex BPF extracts PA outband** Combiner used for combining LO and RO  $f_{l}f_{c}f$ PA Left **PA Right**  $f_l/0$ Outband Outband Complex **BPF** RO **Multiband-**Inband ORx BW

#### **Band Switch – PA Inband**



## **Band Switch – PA Outband**



#### **Error Restoration & Coefficient Estimator**



- **Reconstruct the previous error**
- **Reconstruct the residual nonlinearity over** PA inband and PA outband
- **Obtain DPD update from MMSE cost function**

- Residual error in PA inband
- Obtain DPD update from

MMSE cost function

## **Experimental Set-up**



GaN PA with Psat of 37 dBm

Sampling rate of the Oscilloscope: 2.4 GHz

Filter implemented in MATLAB has bandwidth of 800 MHz

DPD model: a Volterra series including memory effect

Fc = 26 GHz, Modulation: 256 QAM OFDM

#### Measurement Results – 200 MHz BW



Bandwidth: 200 MHz (2 x 100 MHz)

**PAPR: 7.6 dB** 

Proposed DPD improves the ACLR by 6~8 dB as compared to conventional DPD

#### **Measurement Results – 800MHz BW**



Bandwidth: 800 MHz (8 x 100 MHz)

**PAPR: 7.6 dB** 

Proposed DPD improves the ACLR by 2~3 dB as compared to conventional DPD under 256 QAM OFDM

#### **Measurement Results – AM/AM & AM/PM**



**Bandwidth: 800 MHz** 

PAPR: 9 dB

Proposed DPD achieves substantial linearity and the memory effect is also mitigated

#### **Measurement Results – Constellations**





In-phase

No DPD

**EVM: 5.01%** 

**Proposed DPD** 

**EVM: 1.33%** 

**Bandwidth: 800 MHz** 

PAPR: 9 dB

## **Measurement Results – Summary**

Bandwidth: 800 MHz (8 x 100 MHz)

| Para-<br>meter |           | PAPR 7.6 d               | В               | PAPR 9 dB |                          |                 |  |
|----------------|-----------|--------------------------|-----------------|-----------|--------------------------|-----------------|--|
|                | No<br>DPD | Conven-<br>tional<br>DPD | Proposed<br>DPD | No DPD    | Conven-<br>tional<br>DPD | Proposed<br>DPD |  |
| ACLR<br>(dBc)  | -29/-26.2 | -40.7/-40.1              | -43.6/-42       | -29.1/-26 | -43.22/-41.9             | -44.4/-42.8     |  |
| Pout<br>(dBm)  | 30.2      | 30.2                     | 30.2            | 28.5      | 28.5                     | 28.5            |  |
| EVM(%)         | 5.57      | 3.04                     | 2.96            | 5.01      | 1.34                     | 1.33            |  |
| $\eta_D(\%)$   | 10.17     | 10.09                    | 10.08           | 8.4       | 8.26                     | 8.26            |  |

## **Benchmarking**

| Parameters Groups          | Fc<br>(GHz) | BW<br>(MHz) | PAPR<br>(dB) | ACLR<br>(dB)    | EVM<br>(%) | Pout<br>(dBm) | ADC<br>BW<br>(MHz) | $\eta_D$ (%) |
|----------------------------|-------------|-------------|--------------|-----------------|------------|---------------|--------------------|--------------|
| [1]                        | 20          | 200         | 7            | -45.5/<br>-45.5 | -          | 1             | 98.304             | 1            |
| [2]                        | 24          | 320         | 6            | -47             | -          | 1             | 500                | -            |
| [3]                        | 30          | 200         | -            | -48             | 1.6        | 15*           | 500<br>(MSa/s)     | 1            |
| [3]                        | 30          | 800         | 8.5*         | < 45*           | -          | 15*           | 2000*<br>(MSa/s)   |              |
| This work<br>(7.6 dB)      | 26          | 200         | 7.6          | -50.1/<br>-51.4 | 3.41       | 30.5          | 200                | -            |
| This work<br>(PAPR 7.6 dB) | 26          | 800         | 7.6          | -43.6/<br>-42   | 2.96       | 30.2          | 800                | 10.08        |
| This work<br>(PAPR 9 dB)   | 26          | 800         | 9            | -44.4/<br>-42.8 | 1.33       | 28.5          | 800                | 8.2          |

- [1] Q. Zhang et al., 2017 89th IEEE ARFTG Microwave Measurement Conference
- [2] Y. Beltagy et al., 2017 IEEE IMS
- [3] S. Boumaiza, 2017 IEEE MTT-S IMS Workshop

\* Estimated

#### Conclusion

- Wideband DPD for 5G mmWave PA
- A band-switching feedback architecture for improving the linearity while keeping narrow ADC bandwidth
- Verification of the performance using 26 GHz GaN PA
  - ACLR of -51 dB and EVM of 3.41% with Pout of 30.5 dBm is achieved for 200 MHz at 256 QAM OFDM modulation
  - ACLR of -43 dB and EVM of 2.96% with Pout of 30.2 dBm is achieved for 800 MHz at 256 QAM OFDM modulation

## Thank you

# Orchestrating a brighter world



#### DPD Model

### **Volterra Series Nonlinear**

#### The DPD model used:

p is nonlinearity

order and m is the memory tap

**Basis Functions**  $\sum_{(p,m)} a_{i,p,m} |x(n-m)|^{p-1} \cdot x(n-m) + \sum_{(p,m)} a_{j,p,m} |x(n-m)|^{p-1} \cdot x(n)$ +  $\sum_{(p,m)} a_{k,p,m} |x(n)|^{p-1} \cdot x(n-m)$  $a_{i,p,m}, a_{i,p,m}$  and  $a_{k,p,m}$ are DPD coefficients

#### **Error Restoration & Coefficient Estimator**



#### **Reconstruct the previous error:**

$$\varepsilon^{t_{k-1}}(n) \approx \boldsymbol{\psi}_{t_{k-1}}(n).\Delta \boldsymbol{a}^T$$

#### **Reconstruct the residual nonlinearity:**

$$\varepsilon^{r+l+i,t_k}(n) = \delta \cdot G_o^{-1} \cdot y^{r+l,t_k}(n) + \varepsilon^{t_{k-1}}(n)$$

#### **Cost function for closed-loop estimator:**

$$K_{DPD} = E[|\varepsilon^{r+l+i,t_k}(n) - \psi_{r+l+i}(n).\Delta a^T|^2]$$

#### **Residual error in PA inband:**

$$\varepsilon^{t_k}(n) = G_o^{-1} y^{t_k}(n) - x(n)$$

#### **Cost function for the estimator:**

$$J_{DPD} = E[|\varepsilon^{t_k}(n) - \boldsymbol{\psi}_{t_k}(n).\Delta \boldsymbol{a}^T]$$

#### **Obtain the update:**

$$a(t_k) = a(t_{k-1}) - \beta.\Delta a$$

