PID control

Kjartan Halvorsen

October 5, 2021

Lead-lag compensator for position control of the DC motor

Feedback control

Feedback control

Activity What is the transfer function from the load disturbance v(t) to the control error e(t)?

Feedback control - eliminating a constant disturbance

$$\frac{E(s)}{V(s)} = \frac{-G(s)}{1 + G(s)F(s)}$$

The final value theorem If steady-state exists

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}sE(s)$$

Feedback control - eliminating a constant disturbance

$$\frac{E(s)}{V(s)} = \frac{-G(s)}{1 + G(s)F(s)}$$

The final value theorem

If steady-state exists

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}sE(s)$$

Applied to a constant (step input) disturbance

$$V(s) = \frac{1}{s}$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{-G(s)}{1 + G(s)F(s)} \frac{1}{s}$$
$$= \lim_{s \to 0} \frac{-G(s)}{1 + G(s)F(s)}$$

Feedback control - eliminating a constant disturbance

$$\frac{E(s)}{V(s)} = \frac{-G(s)}{1 + G(s)F(s)}$$

The final value theorem

If steady-state exists

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}sE(s)$$

Applied to a constant (step input) disturbance

$$V(s) = \frac{1}{s}$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{-G(s)}{1 + G(s)F(s)} \frac{1}{s}$$
$$= \lim_{s \to 0} \frac{-G(s)}{1 + G(s)F(s)}$$

Activity Assume $F(s) = \frac{\bar{F}(s)}{s}$ and $G(0) = b < \infty$. Determine $\lim_{t \to \infty} e(t)$.

The PID controller

$$\begin{array}{c|c}
r(t) & E & v(t) \\
\hline
 y(t) & F(s) & v(t) \\
\end{array}$$

Parallel form (ISA)

$$F(s) = k_c \left(1 + \frac{1}{\tau_i s} + \tau_d s \right)$$

Series form

$$F(s) = \mathcal{K}_c \left(rac{ au_I s + 1}{ au_I s}
ight) (au_D s + 1) = \underbrace{rac{\mathcal{K}_c (au_I + au_D)}{ au_I}}_{\mathcal{K}_c} \left(1 + \underbrace{rac{1}{(au_I + au_D)} s}_{ au_I} + \underbrace{rac{ au_I au_D}{ au_I + au_D} s}_{ au_d}
ight)$$

The PID - Parallel form

$$u(t) = k_c \left(e(t) + \frac{1}{\tau_i} \int_0^t e(\xi) d\xi + \tau_d \frac{d}{dt} e(t) \right)$$

The PID - Parallel form, modified D-part

$$u(t) = k_c \left(e(t) + \underbrace{\frac{1}{\tau_i} \int_0^t e(\xi) d\xi}_{u_D(t)} + \underbrace{\tau_d \frac{d}{dt} \left(- y(t) \right)}_{u_D(t)} \right)$$

The PID - Parallel form

Activity Sketch the error signal e(t), the derivative signal $u_D(t)$ and the integral signal $u_I(t)$ (use $\tau_i = \tau_d = 1$)

The PID - Parallel form, solution

The PID - Parallel form, solution

$$u(t) = k_c \left(e(t) + \underbrace{\frac{1}{\tau_i} \int_0^t e(\xi) d\xi}_{u_D(t)} + \underbrace{\tau_d \frac{d}{dt} \left(- y(t) \right)}_{u_D(t)} \right)$$

The PID - practical form

The parameter N is chosen to limit the influence of noisy measurements. Typically,

PID tuning

Method by Smith & Corripio using table by Ziegler-Nichols

Given process model (fitted to response of the system)

$$G(s) = K \frac{\mathrm{e}^{-s\theta}}{\tau s + 1}$$

and PID controller

$$F(s) = k_c \left(1 + rac{1}{ au_i s} + au_d s
ight)$$

Choose the PID parameters according to the following table (Ziegler-Nichols, 1943)

Controller	k _c	$ au_{i}$	$ au_{d}$
Р	$\frac{ au}{ heta K}$		
PI	$rac{0.9 au}{ heta K}$	$\frac{\theta}{0.3}$	
PID	$\frac{1.2 au}{ heta K}$	2θ	$\frac{\theta}{2}$

Gives good control for

$$0.1 < \frac{\theta}{\tau} < 0.6.$$

Fitting first-order model with delay

Assuming a plant model of first-order with time constant au and delay heta

$$Y(s) = \frac{Ke^{-s\theta}}{s\tau + 1}U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K(1 - e^{-\frac{t-\theta}{\tau}})u_H(t-\theta)$$

Individual activity Evaluate the response y(t) at the two time instants $t = \theta + \frac{\tau}{3}$ and $t = \theta + \tau$!

Fitting first-order model with delay

Assuming a plant model of first-order with time constant au and delay heta

$$Y(s) = \frac{Ke^{-s\theta}}{s\tau + 1}U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K(1 - e^{-\frac{t-\theta}{\tau}})u_H(t-\theta)$$

i

$$y_f = \lim_{t \to \infty} y(t) = u_f K \quad \Rightarrow \quad K = \frac{y_f}{u_f}.$$

$$Y(s) = rac{K \mathrm{e}^{-s heta}}{s au + 1} U(s) \stackrel{U(s) = rac{u_f}{s}}{\Longrightarrow} y(t) = u_f K \left(1 - \mathrm{e}^{-rac{t - heta}{ au}}\right) u_s(t - heta)$$

$$Y(s) = rac{K \mathrm{e}^{-s heta}}{s au + 1} U(s) \stackrel{U(s) = rac{u_f}{s}}{\Longrightarrow} y(t) = u_f K \left(1 - \mathrm{e}^{-rac{t - heta}{ au}}\right) u_s(t - heta)$$

$$Y(s) = rac{K \mathrm{e}^{-s heta}}{s au + 1} U(s) \stackrel{U(s) = rac{u_f}{s}}{\Longrightarrow} y(t) = u_f K \left(1 - \mathrm{e}^{-rac{t - heta}{ au}}\right) u_s(t - heta)$$

$$Y(s) = \frac{K e^{-s\theta}}{s\tau + 1} U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K \left(1 - e^{-\frac{t - \theta}{\tau}}\right) u_s(t - \theta)$$

$$y_{f} = 1.6 \text{ -1.5}$$

$$0.632y_{f} = 1.0112 \text{ --1}$$

$$u_{f} = 0.8 \text{ ---}$$

$$0.283y_{f} = 0.4528 \text{ } 0.5$$

$$0 \text{ } 1 \text{ } 2 \text{ } 3 \text{ } 4 \text{ } 5 \text{ } 6 \text{ } 7 \text{ } 8 \text{ } 9 \text{ } 10 \text{ } 11$$

$$t_{1} = 1.7 = \theta + \frac{\tau}{3}$$

$$t_{2} = 3.1 = \theta + \tau$$

$$\begin{cases} 1.7 = \theta + \frac{\tau}{3} \\ 3.1 = \theta + \tau \end{cases} \Rightarrow \begin{cases} \theta = 1 \\ \tau = 2.1 \end{cases}, \quad K = \frac{y_{f}}{u_{f}} = \frac{1.6}{0.8} = 2$$

Analytical PID design

Analytical PID design

Activity Solve for F(s) in the closed-loop transfer function

$$G_c(s) = \frac{G(s)F(s)}{1 + G(s)F(s)}$$

Analytical PID design - Solution

Analytical PID design - Solution

Solving for F(s) in the closed-loop transfer function $G_c(s) = \frac{G(s)F(s)}{1+G(s)F(s)}$

$$egin{aligned} ig(1+G(s)F(s)ig)G_c(s)&=G(s)F(s)\ G_c(s)&=ig(1-G_c(s)ig)G(s)F(s)\ F(s)&=rac{G_c(s)}{G(s)}\ 1-G_c(s) \end{aligned}$$

Analytic PID tuning - first-order with delay

Given model $G(s)=K\frac{\mathrm{e}^{-s\theta}}{\tau s+1}$ of the process and desired closed-loop transfer function $G_c(s)=\frac{\mathrm{e}^{-s\theta}}{\tau_c s+1}$

Activity Show that the controller becomes

$$F(s) = \frac{1}{K} \left(\frac{\tau s + 1}{\tau_c s + 1 - e^{-s\theta}} \right) \approx \frac{1}{K} \left(\frac{\tau s + 1}{(\tau_c + \theta) s} \right) = \underbrace{\frac{\tau}{K(\tau_c + \theta)}}_{k_c} \left(1 + \underbrace{\frac{1}{\tau_i} s}_{\tau_i} \right).$$

Which is a PI-controller with $k_c = \frac{\tau}{K(\tau_c + \theta)}$ and $\tau_i = \tau$.

Example

$$k_c = \frac{\tau}{K(\tau_c + \theta)}$$
 and $\tau_i = \tau$.

Activity Determine the controller for the choice $au_c = au$