Problem

Let B and C be languages over $\Sigma = \{0, 1\}$. Define

 $B \stackrel{1}{\leftarrow} C = \{w \in B | \text{ for some } y \in C, \text{ strings } w \text{ and } y \text{ contain equal numbers of 1s} \}.$

Show that the class of regular languages is closed under the $\stackrel{1}{\longleftarrow}$ operation.

Step-by-step solution

Step 1 of 2

Given that B and C are two languages and $B \leftarrow C = \{w \in B \mid \text{ for some } y \in C, \text{ srings } w \text{ and } y \text{ contain equal numbers of } 1\}$ over the alphabet $\Sigma = \{0,1\}$

We have to prove that class of regular languages closed under ____ operation

That means if B and C are regular languages than $B \leftarrow C$ is also a regular language.

So given that B and C are regular languages.

We know that

"A language is regular if it is recognized by an automation"

ullet Let $\,M_{\scriptscriptstyle R}\,$ be the DFA that recognizes the language $\,B\,$

$$M_{\scriptscriptstyle B} = \left(Q_{\scriptscriptstyle B}, \Sigma, \delta_{\scriptscriptstyle B}, q_{\scriptscriptstyle B}, F_{\scriptscriptstyle B}\right)$$

• Let $~M_c~$ be the DFA that recognizes the language $~C~M_C = \left(Q_C, \Sigma, \delta_C, q_C, F_C\right)$

Now we have to construct an NFA which recognizes $B \leftarrow C$.

Comment

Step 2 of 2

Construction of NFA to recognize $B \leftarrow C \stackrel{!}{:} C$

Let
$$N = (Q, \Sigma, \delta, q_0, F)$$
 be the NFA.

Now *N* has to decide whether a string $w \in B \leftarrow C$ or not.

- For that first machine M checks whether $w \in B$ or not.
- If $w \in B$, then non deterministically find out a string of that contains the same number of 1s as contained in w and checks that $y \in C$.
- That means for each string B, there are C (number of strings in C) parallel machings will exist

Thus Q = set of states

$$=Q_{B}\times Q_{C}$$

 $\Sigma = \text{set of alphabet}$

= same as B and C

 δ is given by, for $(q,r) \in Q$ and $a \in \Sigma$

$\left\{\left(\delta_{_B}(q,0),r\right)\right\} \text{ if } a=0$
$\delta(q,r), a = \begin{cases} \left\{ \left(\delta_{\scriptscriptstyle B}(q,0), r \right) \right\} & \text{if } a = 0 \\ \left\{ \left(\left(\delta_{\scriptscriptstyle B}(q,1) \right), \delta_{\scriptscriptstyle C}(r,1) \right) \right\} & \text{if } a = 1 \\ \left\{ \left(q, \delta_{\scriptscriptstyle C}(r,0) \right) \right\} & \text{if } a = \epsilon \end{cases}$
$\left\{\left(q, \delta_{_{C}}(r, 0)\right)\right\}$ if $a = \epsilon$
$q_{\scriptscriptstyle 0} = { m start state}$
$= \left(q_{\scriptscriptstyle B}, q_{\scriptscriptstyle c}\right)$
F = set of final states
$=F_B \times F_C$
Thus we defined an NFA N to recognize $B \leftarrow C$.
Hence $B \leftarrow^{\perp} C$ is regular.

Therefore class of regular languages closed under $\ B \xleftarrow{\ \ } C$ operation

Comments (3)