9.4

Observation X	5	8	7	10	7	6	9	11	4	2	7	7	12
Serial/Days			3		1				9			12	TO STATE OF
Observation	9	11	3	7	8	5	G	7	6	9	11	4	
serial/Days	14	15	16	17	18	19	20	21	22	23	24	25	

Here the population size is 25. And sample size is 4 So. Sampling interval $k = \frac{N}{n} = \frac{25}{4} = 6.25 \approx 6$.

Now, random | - k = 1-6 any random numbe 1-k is 5.

selected numbers 5, 11, 17,23

Now
$$S = \frac{1}{n-1} \left[\frac{2}{2} - \frac{2}{n} \right] = \frac{1}{100} = 0.21$$

The extimate of standard correr of population total is

totat is
$$V(\hat{x}) = N(\sqrt{z}) = 25 \times 0.21 = 131.25$$

and
$$\bar{X} = \sqrt{V(\bar{X})} = \sqrt{131.25} = 11.4564$$

Estimated the propontion of day which less than 8 signals are received, In our selected sample there are 3 signal are less then 8 so, a = 3 $P = \frac{a}{v} = \frac{3}{4} = 0.75$

9,5 Given data,

Observation (2)	14	13	1.0	2	6	7	4	3	2	0	1	10	3	0	6
1 1 1	1	10	3	4	5	6	7	8	9	10	11	12	13	14	15
Observation(2)	8	0	1	4	3	2	6	3	7	5	8	0	2	3	5-
social (N)	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

using sample mandom sampling mathod now, The 5 random mumbers are, 11, 16,09,12,10, Random number 11/16/09/12/10 observation 1/8/2014 Herea SUSI (Ex)] FO.28 = \frac{1}{4} [85 - 45] = 10 The variances of sample meanis v(2) = N-n x(5)

And $\chi = \sqrt{V(\bar{x})} = \sqrt{1.67} = 1.292$

The stan estimate of standard error of population total

and
$$\bar{\chi} = \sqrt[3]{(\bar{\chi})} = \sqrt[3]{1503} = 38,768$$

was manife mandant sam mergin of environt of long The sample size is given by $n = \frac{2^{\circ} pq}{d} = \frac{1.96}{6.1}$ $\frac{1.96}{6.1}$ 01= [24-28] == Obserbation 10 7 87107 Serial Using simple random sampling selected 4 days e od 11, 16, 9, 12 Nau, Random days 11 16 9

Here
$$5 = \frac{1}{n-1} \left[2x - \frac{5x}{n} \right]$$

$$= \frac{1}{3} \left[2244 - \frac{4900}{4} \right] = 339.67.$$

The variance of sample mean is $\sqrt{26} = \frac{N-n}{14.n} s^{2}$ = $\frac{23-4}{23\times4} \times 339.67$ = 70.15

The sandord error of estimate of mean is $\bar{x} = \sqrt{6}\bar{x} = 570.15 = 8.38$,

Given that, margin of $\neq 5.05$. P = 0.3q = 0.7

And Z= 1.96.

The sample size n is given by $= \frac{2^{2}pq}{d^{2}}$ $= \frac{(1.96)^{2} \times 0.3 \times 0.7}{(6.05)^{2}}$

= 322.69 = 323