

STIC Search Report

Silondrie de Santa de La Companya de

TO: Kiet Ngo

Location: Rnd 5B65

Art Unit: 2195

Monday, April 04, 2005

Case Serial Number: 10014337

From: David Holloway

Location: EIC 2100

RND 4B19

Phone: 2-3528

david.holloway@uspto.gov

Section voices

Dear Examiner Ngo,

Attached please find your search results for above-referenced case. Please contact me if you have any questions or would like a re-focused search.

David

STIC EIC 2100 Search Request Form

Today's Date:	What date would you like to use to limit the search?
	Priority Date: 12/08/2000 Other:
Name <u>5184 Tug</u> AU <u>2195</u> Exami Room # <u>5065</u> Ph Serial # <u>10014/33</u>	one 2-6 (5) Where have you searched so far? USP DWPI EPO JPO ACM IBM TDB
Is this a "Fast & Focused" Search Request? (Circle One) YES NO A "Fast & Focused" Search is completed in 2-3 hours (maximum). The search must be on a very specific topic and meet certain criteria. The criteria are posted in EIC2100 and on the EIC2100 NPL Web Page at http://ptoweb/patents/stic/stic-tc2100.htm.	
What is the topic, novelty, motivation, utility, or other specific details defining the desired focus of this search? Please sinclude the concepts, synonyms, keywords, acronyms, definitions, strategies, and anything else that helps to describe the topic. Please attach a copy of the abstract, background, brief summary, pertinent claims and any citations of relevant art you have found.	
Automatic Workload Configuration Yipins Ding Kenneth Neuman Films Pate: 12/08/2000 - Earliest finanty Invention: Recording a los of transactions/processes/s. travet actions where The log has a reward of time stamps periods of time for the transactions and where The log has a reward of time stamps periods of time for the transactions and Similarity factor / continued convertion coefficient to determine / verify what transactions used what system / network law conjuitor resources Buss words: Work load characterization, conselection, workload graping transaction log,	
	J/
STIC Searcher	Phone
Date picked up	Date Completed


```
Items
                Description
Set
                (TRANSACTION? OR ACTIVIT?) (2N) (LOG OR LOGS OR RECORD OR RE-
         4231
Ş1
             CORDS OR HISTORY OR HISTORIES OR MONITOR?).
                 (USAGE? OR RESOURCE? OR USE) (2N) (LOG OR LOGS OR RECORD OR -
S2
        16888
             RECORDS OR HISTORY OR HISTORIES OR MONITOR?)
          165
                S1 AND S2
S3
S4
       948423
                WORKLOAD? OR (MULIPLE? OR PLURAL? OR SEVERAL OR ALL OR MANY
              OR DIFFERENT OR VARIOUS) (2N) (RESOURCE?) OR BANDWIDTH? OR MEM-
             ORY
                MODEL? OR SIMULAT? OR HEURISTIC? OR ALGORITHM? OR FORMULA?
S5
      1365343
             OR COEFFICIENT?
                LINK OR MAP OR MAPPING OR CONNECT? OR CORRELAT? OR LINKS
S6
      3946500
S7
         2021
                (CAPACITY OR ENTERPRISE OR PERFORMANCE?) (2N) (PLANNING OR M-
             ANAGEMENT OR PLAN OR PLANS)
                TRANSACTION? OR ACTIVIT?
S8
       401786
S9
           32
                S3 AND S4
S10
            0
                S3 AND S5 AND S6 AND S7
S11
          165
                S3 AND S8
S12
           46
                S11 AND (S5 OR S6 OR S7)
           70
                S9 OR S12
S13
S14
           26
                S13 AND IC=G06F
                IDPAT (sorted in duplicate/non-duplicate order)
S15
           26
S16
           26
                IDPAT (primary/non-duplicate records only)
                TIMESTAMP? OR TIMED OR CALENDAR? OR SCHEDUL? OR TIMING OR -
S17
       343161
             DURATION OR EXPIRATION
                S17 AND S11
S18
           13
                S18 NOT S13
S19
            8
S20
                IDPAT (sorted in duplicate/non-duplicate order)
            8
S21
            8
                IDPAT (primary/non-duplicate records only)
S22
       113235
                MC=(T01-J05A2B OR T01-N01A2E OR T01-S03)
                S22 AND (S1 OR S2)
S23
          736
                S22 AND S1 AND S2
S24
           11
                S24 NOT (S18 OR S13)
S25
            7
                IDPAT (sorted in duplicate/non-duplicate order)
S26
                IDPAT (primary/non-duplicate records only)
S27
File 347: JAPIO Nov 1976-2004/Nov (Updated 050309)
         (c) 2005 JPO & JAPIO
File 350: Derwent WPIX 1963-2005/UD, UM &UP=200521
         (c) 2005 Thomson Derwent
```

16/5/7 (Item 7 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2005 Thomson Derwent. All rts. reserv.

014861719 **Image available**

WPI Acc No: 2002-682425/200273

XRPX Acc No: N02-538815

Automatic workload characterization method for e-commerce, involves determining transactions using specific resources based on comparison of timestamps in transaction log with timestamps in resource log

Patent Assignee: DING Y (DING-I); NEWMAN K (NEWM-I)

Inventor: DING Y; NEWMAN K

Number of Countries: 001 Number of Patents: 001

Patent Family:

Priority Applications (No Type Date): US 2000254340 P 20001208; US 200114337 A 20011210

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

US 20020116441 A1 23 G06F-009/00 Provisional application US 2000254340

Abstract (Basic): US 20020116441 A1

NOVELTY - A log of transactions comprising timestamp and a log of resource usage comprising several timestamps and system performance metrics which reflect resource consumption, are generated in a computer. The timestamps in transaction log are compared with the timestamp in resource log, based on which the transactions using specific resources are determined.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- (1) Carrier medium storing automatic workload characterization program; and
 - (2) Automatic workload characterization system.

USE - For characterizing automatic workload for e-commerce, e-business, etc.

ADVANTAGE - Enables determining with much greater precision, that which resources are used by which **workloads**. Allows **workloads** to be constructed automatically, without the need of significant assistance or intervention by a user assistance.

DESCRIPTION OF DRAWING(S) - The figure shows the flowchart explaining the automatic **workload** characterization method.

pp; 23 DwgNo 18/18

Title Terms: AUTOMATIC; CHARACTERISTIC; METHOD; DETERMINE; TRANSACTION; SPECIFIC; RESOURCE; BASED; COMPARE; TRANSACTION; LOG; RESOURCE; LOG

Derwent Class: T01

International Patent Class (Main): G06F-009/00

16/5/16 (Item 16 from file: 350)
DIALOG(R) File 350: Derwent WPIX

(c) 2005 Thomson Derwent. All rts. reserv.

012099670 **Image available** WPI Acc No: 1998-516581/199844

XRPX Acc No: N98-403917

Transaction management system for e.g. network computing environment - has preliminary treatment advance unit that starts updating decision preliminary treatment when preparation indication is transmitted from another resource manager

Patent Assignee: TOSHIBA KK (TOKE)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 10228405 A 19980825 JP 97241323 A 19970905 199844 B

Priority Applications (No Type Date): JP 96328620 A 19961209 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 10228405 A 14 G06F-012/00

Abstract (Basic): JP 10228405 A

The system has a transaction monitor (11) that transmits an updating decision preparation indication to resource managers (21a), when an application process requires a transaction commitment. A preparation indication notifying unit enables each resource manager to transmit a preparation indication notification to all other resource managers, when the updating decision preparation indication is transmitted from the transaction monitor.

A preliminary treatment advance unit starts an updating decision preliminary treatment when the preparation indication notification is transmitted from another resource manager and the updating decision preliminary treatment is not yet started. Preferably, the resource managers are connected by a second network. The data transfer rate of the second network is faster than the first network which connects the transaction monitor to the resource managers.

ADVANTAGE - Shortens transaction decision time since frequency of communication with transaction monitor and resource manager is reduced. Shortens transaction nullification time since recovery process is started in advance.

Dwg.2/8

Title Terms: TRANSACTION; MANAGEMENT; SYSTEM; NETWORK; COMPUTATION; ENVIRONMENT; PRELIMINARY; TREAT; ADVANCE; UNIT; START; UPDATE; DECIDE; PRELIMINARY; TREAT; PREPARATION; INDICATE; TRANSMIT; RESOURCE; MANAGE

Derwent Class: T01

International Patent Class/(Main): G06F-012/00

(Item 18 from file: 350) 16/5/18 DIALOG(R) File 350: Derwent WPIX (c) 2005 Thomson Derwent. All rts. reserv. 009958036 **Image available** WPI Acc No: 1994-225749/199428 XRPX Acc No: N94-178027 Heavily loaded resources evaluation system for operational management of computer systems - has selection program which compares resource utilisation ratio information in system utilisation record entered in utilisation ratio threshold value file to extract record indicative of status Patent Assignee: NEC CORP (NIDE) Inventor: NISHIUCHI T; SHIRAMIZU A Number of Countries: 003 Number of Patents: 005 Patent Family: Patent No Kind Date Applicat No Kind Date Week AU 9351904 Α 19940609 AU 9351904 A 19931124 199428 B CA 2110092 A 19940528 CA 2110092 Α 19931126 199431 Α US 5475844 19951212 US 93155815 Α 19931123 199604 AU 665130 В 19951214 AU 9351904 Α 19931124 199606 CA 2110092 C 19980818 CA 2110092 Α 19931126 199844 Priority Applications (No Type Date): JP 92341236 A 19921127 Patent Details: Main IPC Patent No Kind Lan Pg Filing Notes AU 9351904 A 51 G06F-011/30 18 G06F-017/00 US 5475844 A AU 665130 В G06F-011/30 Previous Publ. patent AU 9351904 CA 2110092 A G06F-007/00 G06F-007/00 CA 2110092 С Abstract (Basic): AU 9351904 A The system has system management facility file (SMFF) which contains status of utilisation of each of the resources constituting a computer system, recorded at regular intervals as a system resource utilisation record . The execution hysteresis of each of the jobs executed on the computer system is recorded at regular intervals as job record . A system configuration file holds information on connective relationships between an external memory unix and an external memory (control unit to control the external memory unit and information on names of files stored in it as system configuration data. The system management facility record input program (SMFRIP) inputs each record in SMFF and resource utilisation ratio threshold value file (RURTVF) stores the alarm and limit values within performance guarantee, for utilisation ratio (UR) of each of the resources constituting the computer system as threshold values of the resource utilisation ratio (RUR). Further, a heavily loaded resource selection program compares information on RURs in the system resource utilisation record entered by SMFRIP with limit value of utilisation ratio threshold values (URTV) in this KURTVF, and extracting the resource name, recorded time and RUR in the system RUR indicating a heavily loaded status. USE/ADVANTAGE - To determine loading status of resources constituting a computer system, identifying name of job or resource and presenting to user a result of performance evaluation readily and reliably, even if not versed in performance evaluation procedures. Dwg.1/10 Title Terms: HEAVY; LOAD; RESOURCE; EVALUATE; SYSTEM; OPERATE; MANAGEMENT;

Title Terms: HEAVY; LOAD; RESOURCE; EVALUATE; SYSTEM; OPERATE; MANAGEMENT COMPUTER; SYSTEM; SELECT; PROGRAM; COMPARE; RESOURCE; UTILISE; RATIO; INFORMATION; SYSTEM; UTILISE; RECORD; ENTER; UTILISE; RATIO; THRESHOLD; VALUE; FILE; EXTRACT; RECORD; INDICATE; STATUS

Derwent Class: T01

International Patent Class (Main): G06F-007/00; G06F-011/36;

G06F-017/00

International Patent Class (Additional): G06F-011/34

16/5/21 (Item 21 from file: 350)
DIALOG(R) File 350: Derwent WPIX

(c) 2005 Thomson Derwent. All rts. reserv.

008750522 **Image available**
WPI Acc No: 1991-254538/199135
XRPX Acc No: N91-194136

Document history log exception reports generation in data processor - recording occurrence of each event relating to selected resource object within history log

Patent Assignee: IBM CORP (IBMC); INT BUSINESS MACHINES CORP (IBMC)

Inventor: JANIS F L; WANG D S; WILLIAMS M L

Number of Countries: 004 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No Kind Date Week EP 443971 A 19910828 EP 91480003 Α 19910108 199135 B US 5128885 19920707 US 90484704 Α 19900223 199230 EP 443971 **A**3 19920805 EP 91480003 Α 19910108 199336

Priority Applications (No Type Date): US 90484704 A 19900223

Cited Patents: NoSR.Pub; 3.Jnl.Ref; US 4757533

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 443971 A

Designated States (Regional): DE FR GB

US 5128885 A 8 G06F-011/00

Abstract (Basic): EP 443971 A

The method efficiently maintains a record of activities relating to a selected resource object managed by a resource manager and accessible by a users within the data processing system. A history log having a finite storage capacity (74) is created. The history log is associated with a selected resource object. The method records within the history log those activities relating to the said selected resource object (76,78).

In indication (82) of the nonrecordability of an activity relating to the selected resource object is generated in the event the recordation of the said activity shall exceed the said storage capacity.

ADVANTAGE - Maintains multiple resource objects.(9pp Dwg.No.1/3 Title Terms: DOCUMENT; HISTORY; LOG; REPORT; GENERATE; DATA; PROCESSOR; RECORD; OCCUR; EVENT; RELATED; SELECT; RESOURCE; OBJECT; HISTORY; LOG

Derwent Class: T01

International Patent Class (Additional): G06F-011/34

```
(Item 1 from file: 350)
 21/5/1
DIALOG(R) File 350: Derwent WPIX
(c) 2005 Thomson Derwent. All rts. reserv.
             **Image available**
014979102
WPI Acc No: 2003-039616/200303
Related WPI Acc No: 1998-041501; 1999-571512; 2001-366847; 2001-512830;
  2002-617110; 2003-898891; 2003-899871; 2005-030106
XRPX Acc No: N03-030978
  User- activity monitoring system for telecommuting applications,
  stores actual time when user is engaged in specific task, and stops
  storing on expiration of idle time limit
Patent Assignee: LEHMAN M G (LEHM-I); SKINNER G R (SKIN-I); RES INVESTMENT
  NETWORK INC (REIN-N)
Inventor: LEHMAN M G; SKINNER G R
Number of Countries: 001 Number of Patents: 002
Patent Family:
Patent No
              Kind
                     Date
                             Applicat No
                                             Kind
                                                    Date
                                                             Week
                                                   19980119
US 20020128803 A1 20020912 US 95374908
                                              Α
                                                             200303 B ·
                                                  199/50417
                             US 95423029
                                              Α
                             US 96732675
                                              Α
                                                  19961015
                             US 99374050
                                             Α
                                                  19990813
                             US 2000740412
                                              Α
                                                  20001219
                             US 200263768
                                                  20020510
US 6622116
               B2 20030916
                             US 95423029
                                                  T9950417
                                                            200362
                             US 96732675
                                                  19961015
                             US 97987908
                                             Ά
                                                  19971209
                             US 99374050
                                             Α
                                                  19990813
                             US 2000740412
                                              Α
                                                  20001219
                             US 200263768
                                                  20020510
                                             Α
Priority Applications (No Type Date): U$\frac{1}{2000740412} A 20001219; US 95374908
  A 19950119; US 95423029 A 19950417; US 96732675 A 19961015; US 99374050 A
  19990813; US 200263768 A 20020510; US 97987908 A 19971209
Patent Details:
                         Main IPC
Patent No Kind Lan Pg
                                      Filing Notes
US 20020128803 A1
                     28 G06F-011/00
                                       CIP of application US 95374908
                                      CIP of application US 95423029
                                      CIP of application US 96732675
                                      CIP of application US 99374050
                                      Cont of application US 2000740412
                                      CIP of patent US 5696702
                                      CIP of patent US 6185514
                                      Cont of patent US 6397167
                       G06F-003/05
US 6622116 B2
                                      CIP of application US 95423029
                                      CIP of application US 96732675
                                      CIP of application US 97987908
                                      CIP of application US 99374050
                                      Cont of application US 2000740412
                                      CIP of patent US 5696702
                                      CIP of patent US 5963914
                                      CIP of patent US 6185514
                                      Cont of patent US 6397167
```

Abstract (Basic): US 20020128803 A1

NOVELTY - A data collector monitors certain portions of the user's activity . A data analyzer determines which portions of the user's activity constitutes a continuous predefined activity. A timer stores an actual time when the user is engaged in a specified task, and stops storing upon expiration of an idle time limit.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- (1) Computer use monitoring method;(2) User-activity monitoring method; and
- (3) Method for automatically collecting and analyzing information

about time and activity performed on computer.

USE - For monitoring user's activity such as file, keystroke, mouse activity in remote telecommuting employment application, determining activity costs, estimating time and amount billable for future projects/work, measuring cost/benefit of new software/hardware, project management linking, nano-business costing, resource management tool, manufacturing systems, remote education, screening new hires, disk duplicating machines, video conferencing consultation with automatic billing calculations, publication services, etc.

ADVANTAGE - Enables automatic measurement of time and work done by operator and provides documentation tool beneficial to both management and workers. Avoids collection of voluminous and meaningless activities. Provides automatic and accurate documentation and unaltered proof of work done on a computer. Also the amount of time and work performed out of sight can be accurately documented and encrypted to prevent manipulation of recorded data. Allows managers to feel more comfortable with having their computer-oriented employees telecommute, resulting in economic benefits to the employer, employee and ecological benefits from reduced vehicle usage and car emissions due to commuting.

DESCRIPTION OF DRAWING(S) - The figure shows a block diagram of the data collection and analysis system.

pp; 28 DwgNo 1/18

Title Terms: USER; ACTIVE; MONITOR; SYSTEM; APPLY; STORAGE; ACTUAL; TIME; USER; ENGAGE; SPECIFIC; TASK; STOP; STORAGE; EXPIRE; IDLE; TIME; LIMIT

Derwent Class: S04; T01; T05; W01; W05

International Patent Class (Main): G06F-003/05; G0&F-011/00

International Patent Class (Additional): G06F-015(00

DIALOG(R) File 350: Derwent WPIX (c) 2005 Thomson Derwent. All rts. reserv. 011048016 **Image available** WPI Acc No: 1997-025940/199703 XRPX Acc No: N97-021750 Computer based transaction processing system in enterprise such as bank - has co-ordinatable transaction monitor that optimises usage limit of computer system resources assigned to serve for transaction demand Patent Assignee: IBM CORP (IBMC); INT BUSINESS MACHINES CORP (IBMC Inventor: COBB E E; HOLDSWORTH S A J; HOUSTON I S C; SMITH S A Number of Countries: 002 Number of Patents: 002 Patent Family: Patent No Kind Date Applicat No Kind Date Week JP 8286962 Α 19961101 JP 95309177 Α 19951128 199703 B US 6070197 Α 20000530 US 94357837 Α 19941216 200033 US 97909575 Α 19970812 Priority Applications (No Type Date): US 94357837 A 19941216; US 97909575 A 19970812 Patent Details: Main IPC Patent No Kind Lan Pg Filing Notes 11 G06F-012/00 JP 8286962 A G06F-015/163 Cont of application US 94357837 US 6070197 Α Abstract (Basic): JP 8286962 A The system consists of a unit that accepts a transaction demand and transmits the details to a transaction monitor mechanism through a transmitting unit. The transaction monitoring mechanism carries out scheduling of the details included in the received command. Then a co-ordinatable transaction monitor optimizes usage limit of computer system resources assigned for the particular transaction demand. ADVANTAGE - Raises efficiency of processing. Dwg.9/9 Title Terms: COMPUTER; BASED; TRANSACTION; PROCESS; SYSTEM; BANK; CO; TRANSACTION; MONITOR; OPTIMUM; LIMIT; COMPUTER; SYSTEM; RESOURCE; ASSIGN ; SERVE; TRANSACTION ; DEMAND Index Terms/Additional Words: ATMUS 60701 97 US 94357 837 US 9790 Derwent Class: 701 International Patent Class (Main): G06F-Q12/00; G06F-015/163 International Patent Class (Additional): 506F-009/44; G06F-009/46; G06F-015/16 File Segment: EPI

(Item 5 from file: 350)

21/5/5

```
(Item 7 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2005 Thomson Derwent. All rts. reserv.
008230725
             **Image available**
WPI Acc No: 1990-117726/199016
Related WPI Acc No: 1994-343445
XRPX Acc No: N90-091237
  Computer system power consumption red using system - monitors accesses to
  peripheral devices via address bus and providing adaptable inactivity
  timer
Patent Assignee: COMPAQ COMPUTER CORP (COPQ
Inventor: BOONE C; CARTER R R; CEPULIS D J; GARNER P M; BOONE C A; CARTER R
  ; CEPULIS D; GARNER P
Number of Countries: 015 Number of Patents: 010
Patent Family:
Patent No
                     Date
                              Applicat No
                                              Kind
                                                     Date
                                                              Week
              Kind
EP 364222
                    19900418
                              EP 89310369
                                                   19891011
                                                             199016
               Α
                                              Α
                    19901225
                              US 88257954
US 4980836
               Α
                                               Α
                                                   19881014
                                                             199103
CA 1332005
                    19940913
                              CA 612893
                                               Α
                                                   19890925
                                                             199437
EP 364222
               В1
                   19950301
                              EP 89310369
                                               Α
                                                   19891011/
                                                             199513
DE 68921405
               \mathbf{E}
                   19950406
                              DE 621405
                                               Α
                                                   198910/11
                                                             199519
                              EP 89310369
                                                   1989/1011
                                               Α
                   19950501
ES 2068900
               Т3
                              EP 89310369
                                               Α
                                                   19891011
                                                             199524
                                                   19881014
                              US 88257954
US 36189
               \mathbf{E}
                    19990413
                                               Α
                                                             199922
                              US 92993093
                                               Α
                                                   19921218
                   19970428
                                                   19891014
KR 9706390
                              KR 8914811
               B1
                                                             199940
EP 364222
               B2
                    20010613
                              EP 89310369
                                                   19891011
                                                             200134
                              EP 94110155
                                                   19891011
                                               Α
JP 3260355
               B2
                    20020225
                              JP 89267935
                                               Α
                                                   19891013
                                                             200216
Priority Applications (No Type Date)
                                       'US 88257954 A 19881014; US 92993093 A
  19921218
Cited Patents: A3...9047; EP 134986; ER 172344; NoSR.Pub; US 4203153; US
  4293927
Patent Details:
                          Main IPC
Patent No Kind Lan Pg
                                       Filing Notes
EP 364222
   Designated States (Regional): BE CH DE ES FR GB GR IT LI NL SE
CA 1332005
              C
                        G06F-001/32
EP 364222
              B1 E 29 G06F-001/32
   Designated States (Regional): BE CH DE ES FR GB GR IT LI NL SE
                        G06F-001/32
                                      Based on patent EP 364222
DE 68921405
              Ε
              Т3
ES 2068900
                        G06F-001/32
                                      Based on patent EP 364222
US 36189
                        G06F-001/32
                                      Reissue of patent US 4980836
KR 9706390
                        G06F-001/00
              B1
EP 364222
              B2 E
                        G06F-001/32
                                      Related to application EP 94110155
                                      Related to patent EP 623869
   Designated States (Regional): BE CH DE ES FR GB GR IT LI NL SE
              B2
                     26 G06F-001/32
                                      Previous Publ. patent JP 2176921
Abstract (Basic): EP 364222 A
       . A battery powered computer system (C) monitors the address bus (20)
    to determine when selected peripheral devices have n not been accessed
```

for a preset amount of time. After this preset time the system powers itself off and stops the system clock thus placing it in a standby mode. The system can be reawakened by pressing a standby switch.

The preset time can be altered by the user and also depends upon other factors. The timer is disabled if an AC adapter is providing the system power, and the preset time is reduced in steps relating to the amount of energy remaining in the battery. If the standby switch is pressed during system operation, then the preset time is reduced to a very small time allowing rapid, but controlled shut down of the system. ${\tt USE/ADVANTAGE}$ - Provides uniform and controllable means of . automatically providing shut down on inactive system while providing protection against data .

Dwg.1/7

Title Terms: COMPUTER; SYSTEM; POWER; CONSUME; RED; SYSTEM; MONITOR; ACCESS; PERIPHERAL; DEVICE; ADDRESS; BUS; ADAPT; INACTIVE; TIME

Derwent Class: T01; U24

International Patent Class (Main): G06F-001/00; G06F-001/32

International Patent Class (Additional): G01R-019/00; G06F-001/26;

G06F-001/28; H02J-003/14

```
Set
                Description
        Items
                (TRANSACTION? OR ACTIVIT?) (2N) (LOG OR LOGS OR RECORD OR RE-
        60086 ·
             CORDS OR HISTORY OR HISTORIES OR MONITOR?)
                (USAGE? OR RESOURCE? OR USE) (2N) (LOG OR LOGS OR RECORD OR -
S2
        63428
             RECORDS OR HISTORY OR HISTORIES OR MONITOR?)
S3
                S1 AND S2
         2146
                WORKLOAD? OR (MULTIPL? OR PLURAL? OR SEVERAL OR ALL OR MANY
S4
      1545956
              OR DIFFERENT OR VARIOUS) (2N) (RESOURCE?) OR BANDWIDTH? OR MEM-
             ORY
S5
                MODEL? OR SIMULAT? OR HEURISTIC? OR ALGORITHM? OR FORMULA?
     14484964
             OR COEFFICIENT?
                LINK OR MAP OR MAPPING OR CONNECT? OR CORRELAT? OR LINKS
S6
      6523875
S7
       217498
                (CAPACITY OR ENTERPRISE OR PERFORMANCE?) (2N) (PLANNING OR M-
             ANAGEMENT OR PLAN OR PLANS)
S8
      5820424
                TRANSACTION? OR ACTIVIT?
S9
          586
                S3 AND S4
S10
          125
                S3 AND S5 AND S6 AND S7
$11
           77
                S9 AND S10
S12
           67
                RD (unique items)
S13
           55
                S12 NOT PY>2000
File
       8:Ei Compendex(R) 1970-2005/Mar W4
         (c) 2005 Elsevier Eng. Info. Inc.
File
      35:Dissertation Abs Online 1861-2005/Mar
         (c) 2005 ProQuest Info&Learning
     65: Inside Conferences 1993-2005/Apr W1
File
         (c) 2005 BLDSC all rts. reserv.
File
       2:INSPEC 1969-2005/Mar W4
         (c) 2005 Institution of Electrical Engineers
File
      94:JICST-EPlus 1985-2005/Feb W3
         (c) 2005 Japan Science and Tech Corp(JST)
File 111:TGG Natl.Newspaper Index(SM) 1979-2005/Apr 01
         (c) 2005 The Gale Group
       6:NTIS 1964-2005/Mar W4
File
         (c) 2005 NTIS, Intl Cpyrght All Rights Res
File 144: Pascal 1973-2005/Mar W4
         (c) 2005 INIST/CNRS
     34:SciSearch(R) Cited Ref Sci 1990-2005/Mar W4
File
         (c) 2005 Inst for Sci Info
      99:Wilson Appl. Sci & Tech Abs 1983-2005/Feb
File
         (c) 2005 The HW Wilson Co.
      95:TEME-Technology & Management 1989-2005/Feb W3
         (c) 2005 FIZ TECHNIK
File 148:Gale Group Trade & Industry DB 1976-2005/Apr 04
         (c) 2005 The Gale Group
File
       9:Business & Industry(R) Jul/1994-2005/Mar 31
         (c) 2005 The Gale Group
File 275:Gale Group Computer DB(TM) 1983-2005/Apr 04
         (c) 2005 The Gale Group
```

13/5/4 (Item 4 from file: 148)
DIALOG(R) File 148: Gale Group Trade & Industry DB
(c) 2005 The Gale Group. All rts. reserv.

12059642 SUPPLIER NUMBER: 61533696 (USE FORMAT 7 OR 9 FOR FULL TEXT)
New tool for business process re-engineering.

Nyamekye, Kofi

IIE Solutions, 32, 3, 36

March, 2000

ISSN: 1085-1259 LANGUAGE: English RECORD TYPE: Fulltext

WORD COUNT: 3438 LINE COUNT: 00289

DESCRIPTORS: Reengineering (Management) -- Research; Management research--

Research

GEOGRAPHIC CODES/NAMES: 1USA United States

PRODUCT/INDUSTRY NAMES: 8526000 (Management & Information Science)

NAICS CODES: 54172 Research and Development in the Social Sciences and

Humanities

FILE SEGMENT: AI File 88

13/5/6 (Item 6 from file: 148)
DIALOG(R) File 148: Gale Group Trade & Industry DB
(c) 2005 The Gale Group. All rts. reserv.

11474534 SUPPLIER NUMBER: 57386924 (USE FORMAT 7 OR 9 FOR FULL TEXT)
Capturing and using building-generated data. (using data from control
systems and dataloggers for evaluating performance of heating,
ventilating and air-conditioning systems)

Ivanovich, Michael; Haves, Phillip

Heating, Piping, Air Conditioning, 71, 10, 68(6)

Oct, 1999

ISSN: 0017-940X LANGUAGE: English RECORD TYPE: Fulltext

WORD COUNT: 4004 LINE COUNT: 00343

INDUSTRY CODES/NAMES: BUSN Any type of business; CNST Construction and Materials

DESCRIPTORS: Air conditioning--Evaluation; Refrigeration equipment-- Evaluation

PRODUCT/INDUSTRY, NAMES: 3585000 (Refrigeration & Air Conditioning Eqp)

SIC CODES: 3585 Refrigeration and heating equipment

NAICS CODES: 333415 Air-Conditioning and Warm Air Heating Equipment and

Commercial and Industrial Refrigeration Equipment Manufacturing

FILE SEGMENT: TI File 148

13/5,K/25 (Item 1 from file: 275)
DIALOG(R)File 275:Gale Group Computer DB(TM)
(c) 2005 The Gale Group. All rts. reserv.

02448024 SUPPLIER NUMBER: 65305996 (USE FORMAT 7 OR 9 FOR FULL TEXT)
Instant Gratification. (Technology Information)

DAVYDOV, MARK M.

Intelligent Enterprise, 3, 14, 10

Sept 8, 2000

LANGUAGE: English RECORD TYPE: Fulltext; Abstract

WORD COUNT: 3245 LINE COUNT: 00278

ABSTRACT: A new realtime data mining design that takes advantage of e-marketplaces is discussed. E-marketplace is the concept of creating dynamic extended supply chain partnerships of trading networks. Electronic trading communities take advantage of the interactive features, global reach and interconnectivity of the Internet to enable a vast array of online trade services. With the rise of e-marketplaces comes the need for tactical decision support based partly on transaction data. The need for a new data mining design is brought about by the demand for faster turnaround from data collection to data mining on transactions within and among enterprises.

DESCRIPTORS: Data warehousing/data mining; Technology development; Business-to-business exchange

PRODUCT/INDUSTRY NAMES: 3661257 (LAN/WAN Adapters); 7372422 (DBMS Utilities); 7372425 (Data Warehousing Software)

SIC CODES: 3661 Telephone and telegraph apparatus; 7372 Prepackaged software

NAICS CODES: 33421 Telephone Apparatus Manufacturing; 51121 Software Publishers

FILE SEGMENT: CD File 275

packaged and custom-developed applications used by partners for automating internal business processes such as **enterprise** resource **planning** (ERP) systems; standalone human resources and accounting applications, custom-developed legacy systems, third-party services...

...techniques such as statistics and ad hoc reporting, online analytic processing (OI.AP), and multidimensional modeling. The entire process typically consumes a great deal of time and other resources. Because of this resource drain, many organizations warehouse only 12 to 18 months worth of historical operational data, and in some...mining tools and the numerous mining techniques they use (such as sampling, profiling, clustering, predictive modeling, decision trees, and neural networks). Data thus prepared for mining is loaded into a data...

...important to enable effective governing of the network of organizations involved through upstream and downstream links in production processes for products or services. Unfortunately, because of the extremely vast amounts of...

...enabling/e-marketplaces because it provides realtime response to events occurring over large networks by monitoring transaction -level data. In turn, that provides the ability to quickly design and modify cross-enterprise management procedures. This concept is especially powerful when tied to ERP systems because it lets companies...organizes and controls the mining process

/* A compute server that handles processing of data mining algorithms

(sựch as mining calculations and evaluations)

* A data handling server (DHS) that handles the data.

./..stored and processed (that is, mined) using a high-performance database manager, preferably with powerful memory -based data handling features such as TimesTen Corp.'s TimesTen database server. Results for each...

- ...referred to as a "pattern" warehouse. Analytic tools for reporting and interpretation of the results **connect** end users to the pattern warehouse. Certain commercial products exhibit similar architectural characteristics; for example...
- ...component of this architectural option is a rule-based system that, in a sense, "mines" transaction streams by monitoring large volumes of ERP transactions in real time, retrieving only those transactions that fit a...
- ...that include traditional financial measures as well as metrics from the Supply Chain Operations Reference **Model** (SCOR) -- in particular, inventory turns, order fill rates, delivery performance, and many other performance indicators...
- ...this option is preferable for companies that require extensive mining capabilities such as building multiple **models** in parallel for comparative analysis. However, this option's effectiveness depends on how well you...
- ...important information from transaction streams, make the most of every transaction by applying data mining **algorithms**, and provide timely, focused answers to end users who really need them. ERP vendors and...
- ...technology for BI and ERP and develop new strategies that will allow them to efficiently **monitor** their **resources** across the extended enterprise -- in real time or near-

13/5/32 (Item 8 from file: 275)
DIALOG(R)File 275:Gale Group Computer DB(TM)
(c) 2005 The Gale Group. All rts. reserv.

01978743 SUPPLIER NUMBER: 18643196 (USE FORMAT 7 OR 9 FOR FULL TEXT) Seek and fine-tune: Getting the most from client-server transactions. (Technology Tutorial) (Tutorial)

Giacone, Glynn B.

Data Based Advisor, v14, n9, p76(7)

Sep, 1996

DOCUMENT TYPE: Tutorial ISSN: 0740-5200 LANGUAGE: English

RECORD TYPE: Fulltext; Abstract

WORD COUNT: 4405 LINE COUNT: 00368

ABSTRACT: Applications that access gigabyte- and terabyte-sized databases require careful capacity planning and performance monitoring. Although performance management is meant to highlight design problems, stress testing seldom is able to mimic actual production conditions. It is possible to calculate a metric that approximates user responsiveness. Spotting unacceptable performance can be done by figuring an average transaction response time during specific time intervals. When an unacceptable performance level is found the bottleneck is uncovered by breaking down the response time into smaller service and wait time components. Methods for fine-tuning Informix Online Dynamic Server 7.1, Oracle7, and Sybase SQL Server 11 are provided, largely through instrumentation at the RDBMS and operating system level.

SPECIAL FEATURES: illustration; chart; graph

COMPANY NAMES: Informix Corp. -- Products; Oracle Corp. -- Products; Sybase

Inc. - - Products

DESCRIPTORS: Programming Tutorial; DBMS SIC CODES: 7372 Prepackaged software TICKER SYMBOLS: IFMX; ORCL; SYBS

TRADE NAMES: Informix-OnLine Dynamic Server 7.0 (DBMS) -- Usage; Oracle7

(DBMS) -- Usage; Sybase SQL Server System 11 (DBMS) -- Usage

FILE SEGMENT: CD File 275

13/5/41 (Item 17 from file: 275)
DIALOG(R)File 275:Gale Group Computer DB(TM)
(c) 2005 The Gale Group. All rts. reserv.

01623087 SUPPLIER NUMBER: 13901679 (USE FORMAT 7 OR 9 FOR FULL TEXT)
Monitors provide early warning systems. (performance monitors for client/server applications) (Client/Server Computing)

Smalley, Eric

Software Magazine, v13, n8, p31(4)

May 15, 1993

ISSN: 0897-8085 LANGUAGE: ENGLISH RECORD TYPE: FULLTEXT; ABSTRACT

WORD COUNT: 2698 LINE COUNT: 00225

ABSTRACT: Current performance monitoring tools for local area networks (LAN) are useful for identifying problems, but they lack the ability to correlate and analyze data for such tasks as capacity planning. MIS managers are hesitant to migrate mission-critical applications to client/server environments because of the lack of tools for monitoring their performance. Network performance monitoring tools are being enhanced, but individual tools lack the ability to diagnose problems in large, multivendor networks, which causes many organizations to use a combination of tools. Use of monitoring tools by Columbia Gas System Service Corp and Citgo Petroleum Corp is described. The four categories into which the tools can be placed are network analyzers, protocol analyzers, network management stations, and network operating system add-ons. Among the packages described are Legent Corp's LANSpy, Network General's Distributed Sniffer System, Concord Communication's Trakker, Metrix's NetMetrix, and ProTools' Network Control Series.

SPECIAL FEATURES: illustration; photograph; graph

DESCRIPTORS: Network Management Software; Client/Server Architecture; User Need; Applications; Performance Measurement; Network Monitors;

Industry Analysis; LAN; Trends

SIC CODES: 7372 Prepackaged software

FILE SEGMENT: CD File 275

13/5/53 (Item 29 from file: 275)
DIALOG(R) File 275: Gale Group Computer DB(TM)
(c) 2005 The Gale Group. All rts. reserv.

01437176 SUPPLIER NUMBER: 10916436 (USE FORMAT 7 OR 9 FOR FULL TEXT)
The performance road test. (capacity planning with workstations and X terminals) (includes related article on cost of capacity planning)
(Cover Story)

Coulson, Christopher J.

DEC Professional, v10, n6, p50(6)

June, 1991

DOCUMENT TYPE: Cover Story ISSN: 0744-9216 LANGUAGE: ENGLISH

RECORD TYPE: FULLTEXT; ABSTRACT

WORD COUNT: 4130 LINE COUNT: 00327

ABSTRACT: User demand for X terminals and workstations is increasing, which means that managers must know how these new resources will affect such system elements as the network, CPUs and I/O throughput. They must also determine where bottlenecks will appear and how to resolve them. This requires site-related capacity planning . The first step in capacity planning is to have an idea of what results to expect. Digital Equipment Corp conducted a series of tests to see how X terminals and workstations affect the total system. These tests show that all four parts of the system - application, host, communications and display - can affect performance. One result indicates the significance of applications and how small changes in applications can have a big impact on resource use. Another result shows that moving an application load to a remote system can improve performance. Estimating performance and configuration needs requires knowing the impact of the real workload . The number of disks needs to be maximized and the I/O load balanced over all spindles to achieve best performance in a diskless environment. Monitoring activities of users, collecting related data and using this information with capacity planning tools will result in accurately anticipating computing needs. Capacity planning tools. (table); Comparing performance. CAPTIONS: (chart); Network configuration for disk versus diskless tests. (chart)

13/5/54 (Item 30 from file: 275)
DIALOG(R)File 275:Gale Group Computer DB(TM)
(c) 2005 The Gale Group. All rts. reserv.

01380376 SUPPLIER NUMBER: 09597535 (USE FORMAT 7 OR 9 FOR FULL TEXT)
Transaction processing monitors.
Bernstein, Philip A.

Communications of the ACM, v33, n11, p75(12)

Nov, 1990

ISSN: 0001-0782 LANGUAGE: ENGLISH RECORD TYPE: FULLTEXT; ABSTRACT

WORD COUNT: 8917 LINE COUNT: 00705

ABSTRACT: Modern transaction processing (TP) systems consist of integrated basic software, including a high- performance data base management system, communication system and TP monitor. The TP monitor should provide an interprocess communication concept that hides networking details, should manage processes and should allow system managers to easily and efficiently control large networks of terminals and processors. The TP monitor ties independent components together and provides a single, integrated interface to those components. The TP monitor's main function is to coordinate transaction requests between terminals and application programs that process the requests. The TP monitor accomplishes this by imposing a certain structure on the software components of a TP system and offering support functions for each component's activities. Other aspects of TP monitors are discussed in detail.

CAPTIONS: A model for TP monitors. (diagram): A forms manager's

CAPTIONS: A model for TP monitors. (diagram); A forms manager's compilation process. (diagram); A program implementing MM, RC and AS functions for a terminal. (program)

SPECIAL FEATURES: illustration; diagram; program

DESCRIPTORS: Software Design; Database Design; DBMS; Online Transaction

Processing

FILE SEGMENT: AI File 88

Key: IEEE JNL = IEEE Journal or Magazine, IEE JNL = IEE Journal or Magazine, IEEE CNF = IEEE Conference, II CNF = IEE Conference, IEEE STD = IEEE Standard

Online and incremental mining of separately-grouped Web access logs

Yew-Kwong Woon; Wee-Keong Ng; Ee-Peng Lim;

Web Information Systems Engineering, 2002. WISE 2002. Proceedings of the Third International Conference on 12-14 Dec. 2002 Page(s):53 - 62

IEEE CNF

2. Monitoring e-business Web services usage through a log based architecture

da Cruz, S.M.S.; Campos, M.L.M.; Pires, P.F.; Campos, L.M.; Web Services, 2004. Proceedings. IEEE International Conference on 6-9 July 2004 Page(s):61 - 69

IEEE CNF

3. Remote access to medical records via the Internet: feasibility, security and multilingual considerations

Lees, P.J.; Chronaki, C.E.; Simantirakis, E.N.; Kostomanolakis, S.G.; Orphanoudakis, S.C.; Vardas, P.E.;

Computers in Cardiology 1999

26-29 Sept. 1999 Page(s):89 - 92

IEEE CNF

4. Evaluating Web software reliability based on workload and failure data extracted from server logs

Tian, J.; Rudraraju, S.; Zhao Li; Software Engineering, IEEE Transactions on Volume 30, Issue 11, Nov. 2004 Page(s):754 - 769

IEEE JNL

5. Characterizing Web usage regularities with information foraging agents

Jiming Liu; Shiwu Zhang; Jie Yang; Knowledge and Data Engineering, IEEE Transactions on Volume 16, Issue 5, May 2004 Page(s):566 - 584 IEEE JNL

6. An automated learning system for Java programming

Daly, C.; Horgan, J.M.; Education, IEEE Transactions on Volume 47, Issue 1, Feb. 2004 Page(s):10 - 17 IEEE JNL

7. Measuring and modeling usage and reliability for statistical Web testing

Kallepalli, C.; Tian, J.; Software Engineering, IEEE Transactions on Volume 27, Issue 11, Nov. 2001 Page(s):1023 - 1036 IEEE JNL

8. Understanding relationships among teleworkers' e-mail usage, e-mail richness perceptions, and e-mail productivity perceptions under a software engineering environment

Higa, K.; Sheng, O.R.L.; Bongsik Shin; Figueredo, A.J.; Engineering Management, IEEE Transactions on Volume 47, Issue 2, May 2000 Page(s):163 - 173 IEEE JNL

9. Detection of anomalous computer session activity

Vaccaro, H.S.; Liepins, G.E.; Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on 1-3 May 1989 Page(s):280 - 289

IEEE CNF

10. Internet and World Wide Web technologies and opportunities

Chiang, T.C.;

Industrial Technology, 1996. (ICIT '96), Proceedings of The IEEE International Conference on

2-6 Dec. 1996 Page(s):858 - 862

IEEE CNF

11. Toward understanding the mobile Internet user behavior: a methodology for user clustering with aging analysis

Yamakami, T.;

Parallel and Distributed Computing, Applications and Technologies, 2003. PDCAT'2003. Proceedings of the Fourth International Conference on

27-29 Aug. 2003 Page(s):85 - 89

IEEE CNF

12. Frequent itemsets mining for database auto-administration

Aouiche, K.; Darmont, J.; Gruenwald, L.; Database Engineering and Applications Symposium, 2003. Proceedings. Seventh International 16-18 July 2003 Page(s):98 - 103

IEEE CNF

13. An intelligent algorithm of data pre-processing in Web usage mining

Zhang Huiying; Liang Wei;

Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on

Volume 4, 15-19 June 2004 Page(s):3119 - 3123 Vol.4

IEEE CNF

14. Mining traveling and purchasing behaviors of customers in electronic commerce environment

Yue-Shi Lee; Show-Jane Yen; Ghi-Hua Tu; Min-Chi Hsieh; e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004 IEEE International Conference on

28-31 March 2004 Page(s):227 - 230

IEEE CNF

HIUSDEC.

© Copyright 2005 IEEE -