An Inexact Primal Dual Smoothing Framework for Large-Scale Non-Bilinear Saddle Point Problems

L. T. K. Hien¹, **Renbo Zhao**², William B. Haskell³

 $^1{\rm Department}$ of Mathematics and OR, University of Mons, Belgium $^2{\rm Operations}$ Research Center, MIT, MA $^3{\rm Krannert}$ School of Management, Purdue University, IN

INFORMS Annual Meeting Seattle, WA, Oct. 2019

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

 $ightharpoonup (\mathbb{E}_1, \|\cdot\|_{\mathbb{E}_1})$ and $(\mathbb{E}_2, \|\cdot\|_{\mathbb{E}_2})$ are finite-dimensional real normed spaces, with dual spaces $(\mathbb{E}_1^*, \|\cdot\|_{\mathbb{E}_1^*})$ and $(\mathbb{E}_2^*, \|\cdot\|_{\mathbb{E}_2^*})$.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

- $ightharpoonup (\mathbb{E}_1, \|\cdot\|_{\mathbb{E}_1})$ and $(\mathbb{E}_2, \|\cdot\|_{\mathbb{E}_2})$ are finite-dimensional real normed spaces, with dual spaces $(\mathbb{E}_1^*, \|\cdot\|_{\mathbb{E}_1^*})$ and $(\mathbb{E}_2^*, \|\cdot\|_{\mathbb{E}_2^*})$.
- $\triangleright \mathcal{X} \subseteq \mathbb{E}_1$ and $\Lambda \subseteq \mathbb{E}_2$ are nonempty, convex and compact.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

- $ightharpoonup (\mathbb{E}_1, \|\cdot\|_{\mathbb{E}_1})$ and $(\mathbb{E}_2, \|\cdot\|_{\mathbb{E}_2})$ are finite-dimensional real normed spaces, with dual spaces $(\mathbb{E}_1^*, \|\cdot\|_{\mathbb{E}_1^*})$ and $(\mathbb{E}_2^*, \|\cdot\|_{\mathbb{E}_2^*})$.
- $\triangleright \ \mathcal{X} \subseteq \mathbb{E}_1$ and $\Lambda \subseteq \mathbb{E}_2$ are nonempty, convex and compact.
- $\triangleright f$, g and h are convex, closed and proper (CCP) functions.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

- $ightharpoonup (\mathbb{E}_1, \|\cdot\|_{\mathbb{E}_1})$ and $(\mathbb{E}_2, \|\cdot\|_{\mathbb{E}_2})$ are finite-dimensional real normed spaces, with dual spaces $(\mathbb{E}_1^*, \|\cdot\|_{\mathbb{E}_1^*})$ and $(\mathbb{E}_2^*, \|\cdot\|_{\mathbb{E}_2^*})$.
- $\triangleright \ \mathcal{X} \subseteq \mathbb{E}_1$ and $\Lambda \subseteq \mathbb{E}_2$ are nonempty, convex and compact.
- \triangleright f, g and h are convex, closed and proper (CCP) functions.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} \{ S(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) - h(\lambda) \}$$
 (SPP)

- $ightharpoonup (\mathbb{E}_1, \|\cdot\|_{\mathbb{E}_1})$ and $(\mathbb{E}_2, \|\cdot\|_{\mathbb{E}_2})$ are finite-dimensional real normed spaces, with dual spaces $(\mathbb{E}_1^*, \|\cdot\|_{\mathbb{E}_1^*})$ and $(\mathbb{E}_2^*, \|\cdot\|_{\mathbb{E}_2^*})$.
- $\triangleright \ \mathcal{X} \subseteq \mathbb{E}_1$ and $\Lambda \subseteq \mathbb{E}_2$ are nonempty, convex and compact.
- \triangleright f, g and h are convex, closed and proper (CCP) functions.
- $f \text{ is } \mu\text{-strongly convex (s.c.) and } L\text{-smooth on } \mathcal{X} \ (\mu > 0), \text{ i.e.,}$ $\frac{\mu}{2} \left\| x x' \right\|_{\mathbb{E}_1}^2 \leq f(x) f(x') \left\langle \nabla f(x'), x x' \right\rangle \leq \frac{L}{2} \left\| x x' \right\|_{\mathbb{E}_1}^2, \forall \, x, x' \in X.$
- \triangleright g and h have easily computable proximal operators.

$$\Phi(x,\lambda) := \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x,\lambda)$$

For any $i \in [n]$:

$$\Phi(x,\lambda) := \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x,\lambda)$$

For any $i \in [n]$:

 $\triangleright \Phi_i(\cdot, \lambda)$ is convex and $\Phi_i(x, \cdot)$ is concave for any $(x, \lambda) \in \mathcal{X} \times \Lambda$.

$$\Phi(x,\lambda) := \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x,\lambda)$$

For any $i \in [n]$:

- $\triangleright \Phi_i(\cdot,\lambda)$ is convex and $\Phi_i(x,\cdot)$ is concave for any $(x,\lambda) \in \mathcal{X} \times \Lambda$.
- $$\begin{split} & \hspace{-0.5cm} \triangleright \hspace{0.2cm} \Phi_i \text{ is } (L^i_{xx}, \, L^i_{x\lambda}, \, L^i_{\lambda\lambda}) \text{-smooth, i.e., for any } x, x' \in \mathcal{X} \text{ and } \lambda, \lambda' \in \Lambda, \\ & \hspace{0.2cm} \| \nabla_x \Phi_i(x, \lambda) \nabla_x \Phi_i(x', \lambda) \|_{\mathbb{E}^*_1} \leq L^i_{xx} \, \| x x' \|_{\mathbb{E}_1} \,, \\ & \hspace{0.2cm} \| \nabla_x \Phi_i(x, \lambda) \nabla_x \Phi_i(x, \lambda') \|_{\mathbb{E}^*_1} \leq L^i_{x\lambda} \, \| \lambda \lambda' \|_{\mathbb{E}_2} \,, \\ & \hspace{0.2cm} \| \nabla_\lambda \Phi_i(x, \lambda) \nabla_\lambda \Phi_i(x', \lambda) \|_{\mathbb{E}^*_2} \leq L^i_{x\lambda} \, \| x x' \|_{\mathbb{E}_1} \,, \\ & \hspace{0.2cm} \| \nabla_\lambda \Phi_i(x, \lambda) \nabla_\lambda \Phi_i(x, \lambda') \|_{\mathbb{E}^*_2} \leq L^i_{\lambda\lambda} \, \| \lambda \lambda' \|_{\mathbb{E}_2} \,. \end{split}$$

$$\Phi(x,\lambda) := \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x,\lambda)$$

For any $i \in [n]$:

- $\triangleright \Phi_i(\cdot,\lambda)$ is convex and $\Phi_i(x,\cdot)$ is concave for any $(x,\lambda) \in \mathcal{X} \times \Lambda$.
- $\triangleright \Phi \text{ is } (L_{xx}, L_{x\lambda}, L_{\lambda\lambda}) \text{-smooth, where } L_{xx} \leq (1/n) \sum_{i=1}^{n} L_{xx}^{i}, L_{\lambda\lambda} \leq (1/n) \sum_{i=1}^{n} L_{\lambda\lambda}^{i}.$

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s. t. $g_i(x) \le 0, \forall i \in [n]$

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

 \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

▷ Any saddle point of (Lag) is an optimal primal-dual pair.

$$\min_{x \in \mathcal{X}} f(x) + r(x)$$
 s.t. $g_i(x) \le 0, \forall i \in [n]$

- $\triangleright f$ is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

- ▷ Any saddle point of (Lag) is an optimal primal-dual pair.
- $ightharpoonup \mathbb{R}^n_+$ is unbounded: allowed since different convergence criteria (other than duality gap) is used.

 \triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$

- \triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$
- \triangleright n noisy samples $\{S_i\}_{i=1}^n$ of \mathcal{D} consisting of m objects with kernel matrices $\{K_i\}_{i=1}^n\subseteq\mathbb{S}_+^m$

- \triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$
- \triangleright n noisy samples $\{S_i\}_{i=1}^n$ of \mathcal{D} consisting of m objects with kernel matrices $\{K_i\}_{i=1}^n\subseteq\mathbb{S}_+^m$
- \triangleright Find a label kernel matrix $M \in \mathbb{S}^m_+$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_1 or \mathcal{D}_2

- \triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$
- \triangleright n noisy samples $\{S_i\}_{i=1}^n$ of \mathcal{D} consisting of m objects with kernel matrices $\{K_i\}_{i=1}^n \subseteq \mathbb{S}_+^m$
- \triangleright Find a label kernel matrix $M \in \mathbb{S}^m_+$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_1 or \mathcal{D}_2

$$\min_{M \in \mathsf{M}} \max_{\lambda_i \in \Lambda, \, \forall i \in [n]} \frac{1}{n} \sum_{i=1}^n \left[-\langle \lambda_i \lambda_i^T, \, K_i \circ M + \alpha \, I \rangle + 2 \, \lambda_i^T e \right],$$

- \triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$
- \triangleright n noisy samples $\{S_i\}_{i=1}^n$ of \mathcal{D} consisting of m objects with kernel matrices $\{K_i\}_{i=1}^n \subseteq \mathbb{S}_+^m$
- ightharpoonup Find a label kernel matrix $M \in \mathbb{S}^m_+$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_1 or \mathcal{D}_2

$$\min_{M \in \mathsf{M}} \max_{\lambda_i \in \Lambda, \, \forall i \in [n]} \frac{1}{n} \sum_{i=1}^n \left[-\langle \lambda_i \lambda_i^T, \, K_i \circ M + \alpha \, I \rangle + 2 \, \lambda_i^T e \right],$$

where

$$\mathsf{M} := \left\{ M \in \mathbb{S}_+^m : \operatorname{diag}(M) = e, |e^T M| \le l \right\}$$
$$\Lambda := \left\{ \lambda \in \mathbb{R}^m : 0 \le \lambda_i \le C, \forall i \in [m] \right\}$$
$$l, C : \text{finite constants}$$

> Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^d$

- ightharpoonup Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^d$
- \triangleright Random variable ξ with realizations $\Xi := \{\xi_1, \dots, \xi_n\}$

- ightharpoonup Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^d$
- \triangleright Random variable ξ with realizations $\Xi := \{\xi_1, \dots, \xi_n\}$
- \triangleright Convex and compact distributional uncertainty set \mathcal{P} , each element P is a probability distribution with support Ξ

- ightharpoonup Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^d$
- \triangleright Random variable ξ with realizations $\Xi := \{\xi_1, \dots, \xi_n\}$
- \triangleright Convex and compact distributional uncertainty set \mathcal{P} , each element P is a probability distribution with support Ξ
- \triangleright For each $i \in [n]$, μ_i -strongly convex loss function $f(\cdot, \xi_i)$

- ightharpoonup Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^d$
- \triangleright Random variable ξ with realizations $\Xi := \{\xi_1, \dots, \xi_n\}$
- \triangleright Convex and compact distributional uncertainty set \mathcal{P} , each element P is a probability distribution with support Ξ
- \triangleright For each $i \in [n]$, μ_i -strongly convex loss function $f(\cdot, \xi_i)$

$$\min_{x \in \mathcal{X}} \max_{P \in \mathcal{P}} \sum_{i=1}^{n} p_i f(x, \xi_i).$$

 \triangleright Sion's minimax theorem ensures (SPP) has at least one saddle point $(x^*, \lambda^*) \in X \times \Lambda$, i.e.,

$$S(x^*, \lambda) \le S(x^*, \lambda^*) \le S(x, \lambda^*), \quad \forall (x, \lambda) \in X \times \Lambda.$$

 \triangleright Sion's minimax theorem ensures (SPP) has at least one saddle point $(x^*, \lambda^*) \in X \times \Lambda$, i.e.,

$$S(x^*, \lambda) \le S(x^*, \lambda^*) \le S(x, \lambda^*), \quad \forall (x, \lambda) \in X \times \Lambda.$$

 \triangleright For any $(x,\lambda) \in X \times \Lambda$, define

 $\Delta(x,\lambda) := \psi^{\mathrm{P}}(x) - \psi^{\mathrm{D}}(\lambda).$

$$\begin{split} \widehat{\psi}^{\mathrm{P}}(x) &:= \max_{\lambda \in \Lambda} \Phi(x, \lambda) - H(\lambda) \\ \psi^{\mathrm{P}}(x) &:= \max_{\lambda \in \Lambda} S(x, \lambda) = f(x) + g(x) + \widehat{\psi}^{\mathrm{P}}(x) \quad \text{(Primal func.)} \\ \widehat{\psi}^{\mathrm{D}}(\lambda) &:= \min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda) \\ \psi^{\mathrm{D}}(\lambda) &:= \min_{x \in \mathcal{X}} S(x, \lambda) = \widehat{\psi}^{\mathrm{D}}(\lambda) - h(\lambda). \end{split} \tag{Dual func.)}$$

(Duality gap)

Sion's minimax theorem ensures (SPP) has at least one saddle point $(x^*, \lambda^*) \in X \times \Lambda$, i.e.,

$$S(x^*, \lambda) \le S(x^*, \lambda^*) \le S(x, \lambda^*), \quad \forall (x, \lambda) \in X \times \Lambda.$$

 \triangleright For any $(x,\lambda) \in X \times \Lambda$, define

$$\widehat{\psi}^{\mathbf{P}}(x) := \max_{\lambda \in \Lambda} \Phi(x, \lambda) - H(\lambda)$$

$$\psi^{\mathbf{P}}(x) := \max_{\lambda \in \Lambda} S(x, \lambda) = f(x) + g(x) + \widehat{\psi}^{\mathbf{P}}(x) \quad \text{(Primal func.)}$$

$$\widehat{\psi}^{\mathbf{D}}(\lambda) := \min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda)$$

$$\psi^{\mathbf{D}}(\lambda) := \min_{x \in \mathcal{X}} S(x, \lambda) = \widehat{\psi}^{\mathbf{D}}(\lambda) - h(\lambda). \quad \text{(Dual func.)}$$

$$\Delta(x, \lambda) := \psi^{\mathbf{P}}(x) - \psi^{\mathbf{D}}(\lambda). \quad \text{(Duality gap)}$$

 \triangleright The saddle point (x^*, λ^*) exists $\Rightarrow \psi^{P}(x^*) = \Phi(x^*, \lambda^*) = \psi^{D}(\lambda^*)$.

(Duality gap)

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

There exists a Legendre function $\omega : \mathbb{E}_2 \to \overline{\mathbb{R}}$ that is 1-s.c. and continuous on Λ , such that for any $\xi \in \mathbb{E}_2^*$ and $\tau > 0$,

$$\min_{\lambda \in \Lambda} h(\lambda) + \langle \xi, \lambda \rangle + \tau^{-1} \omega(\lambda)$$
 (BPP)

has easily computable solution.

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

1

There exists a Legendre function $\omega : \mathbb{E}_2 \to \overline{\mathbb{R}}$ that is 1-s.c. and continuous on Λ , such that for any $\xi \in \mathbb{E}_2^*$ and $\tau > 0$,

$$\min_{\lambda \in \Lambda} h(\lambda) + \langle \xi, \lambda \rangle + \tau^{-1} \omega(\lambda)$$
 (BPP)

has easily computable solution.

The same applies to the (non-smooth) function g.

Background (Smoothing)

 $\Delta_{\varrho}(x,\lambda) := \psi_{\varrho}^{\mathrm{P}}(x) - \psi^{\mathrm{D}}(\lambda)$

For any
$$(x, \lambda) \in X \times \Lambda$$
, define
$$S_{\rho}(x, \lambda) := S(x, \lambda) - \rho \omega(\lambda) \qquad \text{(Regularized saddle func.)}$$

$$\widehat{\psi}_{\rho}^{P}(x) := \max_{\lambda \in \Lambda} \Phi(x, \lambda) - h(\lambda) - \rho \omega(\lambda)$$

$$\psi_{\rho}^{P}(x) := \max_{\lambda \in \Lambda} S_{\rho}(x, \lambda)$$

$$= f(x) + g(x) + \widehat{\psi}_{\rho}^{P}(x) \qquad \text{(Smoothed primal func.)}$$

(Smoothed duality gap)

Background (Smoothing)

For any
$$(x, \lambda) \in X \times \Lambda$$
, define
$$S_{\rho}(x, \lambda) := S(x, \lambda) - \rho\omega(\lambda) \qquad \text{(Regularized saddle func.)}$$
$$\widehat{\psi}_{\rho}^{P}(x) := \max_{\lambda \in \Lambda} \Phi(x, \lambda) - h(\lambda) - \rho\omega(\lambda)$$
$$\psi_{\rho}^{P}(x) := \max_{\lambda \in \Lambda} S_{\rho}(x, \lambda)$$

$$= f(x) + g(x) + \widehat{\psi}_{\rho}^{P}(x)$$
 (Smoothed primal func.)
$$\Delta_{\rho}(x,\lambda) := \psi_{\rho}^{P}(x) - \psi^{D}(\lambda)$$
 (Smoothed duality gap)

Recall
$$\widehat{\psi}^{D}(\lambda)$$
:= $\min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda)$ and f is μ -s.c. on \mathcal{X} . Define $x^*(\lambda)$:= $\arg\min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda)$.

Background (Smoothing)

For any
$$(x, \lambda) \in X \times \Lambda$$
, define

$$\begin{split} S_{\rho}(x,\lambda) := & S(x,\lambda) - \rho\omega\left(\lambda\right) & \text{(Regularized saddle func.)} \\ \widehat{\psi}^{\mathrm{P}}_{\rho}(x) := & \max_{\lambda \in \Lambda} \Phi(x,\lambda) - h(\lambda) - \rho\omega(\lambda) \\ \psi^{\mathrm{P}}_{\rho}(x) := & \max_{\lambda \in \Lambda} S_{\rho}(x,\lambda) \\ &= & f(x) + g(x) + \widehat{\psi}^{\mathrm{P}}_{\rho}(x) & \text{(Smoothed primal func.)} \\ \Delta_{\rho}(x,\lambda) := & \psi^{\mathrm{P}}_{\rho}(x) - \psi^{\mathrm{D}}(\lambda) & \text{(Smoothed duality gap)} \end{split}$$

Recall $\widehat{\psi}^{\mathrm{D}}(\lambda)$:= $\min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda)$ and f is μ -s.c. on \mathcal{X} . Define $x^*(\lambda)$:= $\arg\min_{x \in \mathcal{X}} f(x) + g(x) + \Phi(x, \lambda)$.

Lemma 1 (Smoothness of $\widehat{\psi}^{D}$)

The function $\widehat{\psi}^D$ is differentiable on \mathbb{E}_2 and $\nabla \widehat{\psi}^D(\lambda) = \nabla_{\lambda} \Phi(x^*(\lambda), \lambda)$, for any $\lambda \in \mathbb{E}_2$. In addition, $\nabla \widehat{\psi}^D$ is L_D -Lipschitz on \mathbb{E}_2 , where

$$L_{\rm D} := L_{\lambda\lambda} + 2L_{\lambda x}^2/\mu$$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k\geq 0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k\geq 0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k\geq 0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

 $\hat{\lambda}^k := \tau_k \lambda^k + (1 - \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k>0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use N_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{\mathcal{D}}(\hat{\lambda}^k) \le \gamma_k.$$
 (PS)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k\geq 0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use \mathbb{N}_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{D}(\hat{\lambda}^k) \le \gamma_k.$$
 (PS)

 $x^{k+1} := \tau_k x^k + (1 - \tau_k) \tilde{x}_{\gamma_k}(\hat{\lambda}^k), \ \rho_{k+1} := \tau_k \rho_k.$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k>0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use \mathbb{N}_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{\mathcal{D}}(\hat{\lambda}^k) \le \gamma_k.$$
 (PS)

- $x^{k+1} := \tau_k x^k + (1 \tau_k) \tilde{x}_{\gamma_k}(\hat{\lambda}^k), \ \rho_{k+1} := \tau_k \rho_k.$
- ▶ Use N_1 to find $\tilde{\lambda}_{\rho_{k+1},\eta_k}(x^{k+1}) \in \Lambda$ such that

$$\psi_{\rho_{k+1}}^{P}(x^{k+1}) - S_{\rho_{k+1}}(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_k}(x^{k+1})) \le \eta_k.$$
 (DS2)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences; $\{\tau_k\}_{k\geq 0}$: interpolation sequence; N_1 , N_2 : deterministic first-order solvers.

Initialize: $x^0 \in \mathcal{X}, \lambda^0 \in \Lambda \text{ and } k = 0$

Repeat (until some convergence criterion is met)

▶ Use N_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\psi_{\rho_k}^{\mathbf{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \le \eta_k.$$
 (DS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use \mathbb{N}_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{\mathcal{D}}(\hat{\lambda}^k) \le \gamma_k.$$
 (PS)

- $x^{k+1} := \tau_k x^k + (1 \tau_k) \tilde{x}_{\gamma_k} (\hat{\lambda}^k), \ \rho_{k+1} := \tau_k \rho_k.$
- ▶ Use N_1 to find $\tilde{\lambda}_{\rho_{k+1},\eta_k}(x^{k+1}) \in \Lambda$ such that

$$\psi_{\rho_{k+1}}^{\mathbf{P}}(x^{k+1}) - S_{\rho_{k+1}}(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_k}(x^{k+1})) \le \eta_k.$$
 (DS2)

 $\lambda^{k+1} := \tau_k \lambda^k + (1 - \tau_k) \tilde{\lambda}_{\rho_{k+1}, \eta_k}(x^{k+1}), \ k := k + 1.$

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

 \triangleright (PS) is μ -s.c., $(L + L_{xx})$ -smooth, composite.

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

- \triangleright (PS) is μ -s.c., $(L + L_{xx})$ -smooth, composite.
- \triangleright The constraint set \mathcal{X} is compact.

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

- \triangleright (PS) is μ -s.c., $(L + L_{xx})$ -smooth, composite.
- \triangleright The constraint set \mathcal{X} is compact.
- ▶ Use optimal first-order solver, e.g., APG in [Nesterov'13].

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

- \triangleright (PS) is μ -s.c., $(L + L_{xx})$ -smooth, composite.
- \triangleright The constraint set \mathcal{X} is compact.
- Use optimal first-order solver, e.g., APG in [Nesterov'13].
- $\triangleright \kappa_{\mathcal{X}} := (L + L_{xx})/\mu \text{ and } D_{\mathcal{X}} := \max_{x,x' \in \mathcal{X}} ||x x'|| < +\infty, \text{ then}$

$$P(\tilde{x}^N, \lambda) - P^*(\lambda) \le L_P \left(1 + \sqrt{\kappa_{\mathcal{X}}/2}\right)^{-2(N-1)} D_{\mathcal{X}}^2.$$

$$\min_{x \in \mathcal{X}} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}$$
 (PS)

- \triangleright (PS) is μ -s.c., $(L + L_{xx})$ -smooth, composite.
- \triangleright The constraint set \mathcal{X} is compact.
- □ Use optimal first-order solver, e.g., APG in [Nesterov'13].
- $ho \kappa_{\mathcal{X}} := (L + L_{xx})/\mu \text{ and } D_{\mathcal{X}} := \max_{x,x' \in \mathcal{X}} \|x x'\| < +\infty, \text{ then}$

$$P(\tilde{x}^N, \lambda) - P^*(\lambda) \le L_P \left(1 + \sqrt{\kappa_{\mathcal{X}}/2}\right)^{-2(N-1)} D_{\mathcal{X}}^2.$$

$$N \ge \left\lceil \sqrt{\kappa_{\mathcal{X}}} \log \left(L_P D_X^2 / \epsilon \right) \right\rceil \implies P(\tilde{x}^N, \lambda) - P^*(\lambda) \le \epsilon.$$

No need to know $P^*(\lambda)$ or $x^*(\lambda)$!

Outer Iteration Complexity

Theorem 2 (Outer Iteration Complexity of DSF)

If we choose $\rho_0 = 8L_D (L_D = L_{\lambda\lambda} + 2L_{\lambda x}^2/\mu)$ and for any $k \in \mathbb{Z}_+$,

$$\tau_k = \frac{k+1}{k+3}, \quad \gamma_k = \frac{\varepsilon}{4(k+3)} \quad and \quad \eta_k = \frac{\varepsilon}{4(k+3)}, \tag{1}$$

then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$\Delta(x^K, \lambda^K) \le \frac{32L_D D_{\Lambda}^2 + 2\Delta(x^0, \lambda^0)}{(K+1)(K+2)} + \frac{\varepsilon}{2}.$$
 (2)

Outer Iteration Complexity

Theorem 2 (Outer Iteration Complexity of DSF)

If we choose $\rho_0 = 8L_D$ $(L_D = L_{\lambda\lambda} + 2L_{\lambda x}^2/\mu)$ and for any $k \in \mathbb{Z}_+$,

$$\tau_k = \frac{k+1}{k+3}, \quad \gamma_k = \frac{\varepsilon}{4(k+3)} \quad and \quad \eta_k = \frac{\varepsilon}{4(k+3)}, \tag{1}$$

then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$\Delta(x^K, \lambda^K) \le \frac{32L_D D_{\Lambda}^2 + 2\Delta(x^0, \lambda^0)}{(K+1)(K+2)} + \frac{\varepsilon}{2}.$$
 (2)

Thus, to achieve an ε -duality gap, the outer iteration complexity is $O(\sqrt{L_{\rm D}/\varepsilon}) = O(\sqrt{L_{\lambda\lambda}/\varepsilon} + L_{\lambda x}/\sqrt{\mu\varepsilon})$.

Inner Iteration Complexity (Oracle Complexity)

Theorem 3 (Oracle complexity of DSF)

For any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$, let $C^{\mathrm{P}}_{\mathsf{det}}$ and $C^{\mathrm{D}}_{\mathsf{det}}$ denote the primal and dual oracle complexities to achieve an ε -duality gap, respectively. Then we have

$$\begin{split} C_{\mathsf{det}}^{\mathsf{P}} &= O\left(n\sqrt{\kappa_{\mathcal{X}}L_{\mathsf{D}}/\varepsilon}\log\left((L+L_{xx})L_{\mathsf{D}}/\varepsilon\right)\right), \\ C_{\mathsf{det}}^{\mathsf{D}} &= O\left(n\left(\sqrt{L_{\lambda\lambda}L_{\mathsf{D}}}/\varepsilon\right)\log\left(L_{\lambda\lambda}L_{\mathsf{D}}/\varepsilon\right)\right). \end{split}$$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,n_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k,0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k, 0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

 $\hat{\lambda}^k := \tau_k \lambda^k + (1 - \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k, 0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use M_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$\mathbb{E}\left[S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{D}(\hat{\lambda}^k) \mid \mathcal{F}_{k,1}\right] \le \gamma_k \quad \text{a.s.}$$
 (rPS)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,n_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k, 0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use M_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$\mathbb{E}\left[S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{D}(\hat{\lambda}^k) \,\middle|\, \mathcal{F}_{k,1}\right] \le \gamma_k \quad \text{a.s.}$$
 (rPS)

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k,0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use M_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$\mathbb{E}\left[S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{D}(\hat{\lambda}^k) \,\middle|\, \mathcal{F}_{k,1}\right] \le \gamma_k \quad \text{a.s.}$$
 (rPS)

- $x^{k+1} = \tau_k x^k + (1 \tau_k) \tilde{x}_{\gamma_k}(\hat{\lambda}^k), \, \rho_{k+1} = \tau_k \rho_k.$
- ▶ Use M_1 to find $\tilde{\lambda}_{\rho_{k+1},\eta_k}(x^{k+1}) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_{k+1}}^{P}(x^{k+1}) - S_{\rho_{k+1}}(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}(x^{k+1})) \,\middle|\, \mathcal{F}_{k,2}\right] \le \eta_{k} \quad \text{a.s.} \quad (\text{rDS2})$$

Input: ρ_0 : smoothing parameter; $\{\eta_k\}_{k\geq 0}$, $\{\gamma_k\}_{k\geq 0}$: error sequences, $\{\tau_k\}_{k\geq 0}$: interpolation sequence; M_1 , M_2 : randomized subroutines.

Initialize: $x^0 \in \mathcal{X}$, $\lambda^0 \in \Lambda$ and k = 0

Repeat (until some convergence criterion is met)

▶ Use M_1 to find $\tilde{\lambda}_{\rho_k,\eta_k}(x^k) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_k}^{\mathrm{P}}(x^k) - S_{\rho_k}(x^k, \tilde{\lambda}_{\rho_k, \eta_k}(x^k)) \,\middle|\, \mathcal{F}_{k,0}\right] \le \eta_k \quad \text{a.s.}$$
 (rDS1)

- $\hat{\lambda}^k := \tau_k \lambda^k + (1 \tau_k) \tilde{\lambda}_{\rho_k, \eta_k}(x^k).$
- ▶ Use M_2 to find $\tilde{x}_{\gamma_k}(\hat{\lambda}^k) \in \mathcal{X}$ such that

$$\mathbb{E}\left[S(\tilde{x}_{\gamma_k}(\hat{\lambda}^k), \hat{\lambda}^k) - \psi^{D}(\hat{\lambda}^k) \mid \mathcal{F}_{k,1}\right] \le \gamma_k \quad \text{a.s.}$$
 (rPS)

- ▶ Use M_1 to find $\tilde{\lambda}_{\rho_{k+1},\eta_k}(x^{k+1}) \in \Lambda$ such that

$$\mathbb{E}\left[\psi_{\rho_{k+1}}^{P}(x^{k+1}) - S_{\rho_{k+1}}(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}(x^{k+1})) \,\middle|\, \mathcal{F}_{k,2}\right] \le \eta_{k} \quad \text{a.s.} \quad (\text{rDS2})$$

 $\lambda^{k+1} := \tau_k \lambda^k + (1 - \tau_k) \tilde{\lambda}_{\rho_{k+1}, \eta_k}(x^{k+1}), k := k+1.$

$$\min_{x \in X} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}, \quad \Phi(x, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x, \lambda)$$

$$\min_{x \in X} \left\{ P(x, \lambda) := f(x) + g(x) + \Phi(x, \lambda) \right\}, \quad \Phi(x, \lambda) = \frac{1}{n} \sum_{i=1}^{n} \Phi_i(x, \lambda)$$

 \triangleright Recall $\kappa_{\mathcal{X}} := (L + L_{xx})/\mu$. Use optimal randomized first-order solver, e.g., RPDG in [Lan & Zhou'18], we have

$$N = \Omega\left((n + \sqrt{n\kappa_{\chi}})\log\left(1/\epsilon\right)\right) \implies \mathbb{E}[P(\tilde{x}^N, \lambda) - P^*(\lambda)] \le \epsilon.$$

Outer Iteration Complexity

Theorem 4 (Outer Iteration Complexity of RSF)

If we choose $\rho_0 = 8L_D (L_D = L_{\lambda\lambda} + 2L_{\lambda x}^2/\mu)$ and for any $k \in \mathbb{Z}_+$,

$$\tau_k = \frac{k+1}{k+3}, \quad \gamma_k = \frac{\varepsilon}{4(k+3)} \quad and \quad \eta_k = \frac{\varepsilon}{4(k+3)},$$
(3)

then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$\mathbb{E}[\Delta(x^K, \lambda^K)] \le \frac{32L_D D_\Lambda^2 + 2\Delta(x^0, \lambda^0)}{(K+1)(K+2)} + \frac{\varepsilon}{2}.$$
 (4)

Outer Iteration Complexity

Theorem 4 (Outer Iteration Complexity of RSF)

If we choose $\rho_0 = 8L_D$ $(L_D = L_{\lambda\lambda} + 2L_{\lambda x}^2/\mu)$ and for any $k \in \mathbb{Z}_+$,

$$\tau_k = \frac{k+1}{k+3}, \quad \gamma_k = \frac{\varepsilon}{4(k+3)} \quad and \quad \eta_k = \frac{\varepsilon}{4(k+3)}, \tag{3}$$

then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$\mathbb{E}[\Delta(x^K, \lambda^K)] \le \frac{32L_D D_\Lambda^2 + 2\Delta(x^0, \lambda^0)}{(K+1)(K+2)} + \frac{\varepsilon}{2}.$$
 (4)

Thus, to achieve an ε -expected duality gap, the outer iteration complexity is $O(\sqrt{L_{\rm D}/\varepsilon}) = O(\sqrt{L_{\lambda\lambda}/\varepsilon} + L_{\lambda x}/\sqrt{\mu\varepsilon})$.

Inner Iteration Complexity (Oracle Complexity)

Theorem 5 (Oracle complexity of RSF)

For any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \Lambda$, let $C^{\mathrm{P}}_{\mathsf{stoc}}$ and $C^{\mathrm{D}}_{\mathsf{stoc}}$ denote the primal and dual oracle complexities to achieve an ε -expected duality gap, respectively. Then we have

$$\begin{split} &C_{\mathsf{stoc}}^{\mathsf{P}} = O\bigg((n + \sqrt{n\kappa_{\mathcal{X}}})\sqrt{\frac{L_{\mathsf{D}}}{\varepsilon}}\log\bigg(\frac{\kappa_{\mathcal{X}}L_{\mathsf{D}}(n + \sqrt{n\kappa_{\mathcal{X}}})}{\varepsilon}\bigg)\bigg),\\ &C_{\mathsf{stoc}}^{\mathsf{D}} = O\bigg(\bigg(n\sqrt{\frac{L_{\mathsf{D}}}{\varepsilon}} + \frac{\sqrt{nL_{\lambda\lambda}}L_{\mathsf{D}}}{\varepsilon}\bigg)\log\bigg(\frac{L_{\lambda\lambda}(n + \sqrt{nL_{\lambda\lambda}}/L_{\mathsf{D}})}{\varepsilon}\bigg)\bigg). \end{split}$$

Comparison of Oracle Complexities

Figure 1: Each $\Phi_i(x,\cdot)$ is concave (not necessarily linear).

Algorithms	Primal Oracle Comp.	Dual Oracle Comp.
PDHG-type [HA18]	$O(n/\varepsilon)$	$O(n/\varepsilon)$
Mirror-Prox [Nem05]	$O(n/\varepsilon)$	$O(n/\varepsilon)$
Det. IPDS	$\widetilde{O}(n\sqrt{\kappa_{\mathcal{X}}/\varepsilon})$	$\widetilde{O}(n/arepsilon)$
Rand. IPDS	$\widetilde{O}((n+\sqrt{n\kappa_{\mathcal{X}}})/\sqrt{\varepsilon})$	$\widetilde{O}(n/\sqrt{\varepsilon} + \sqrt{n}/\varepsilon)$

Constrained Optimization Revisited

$$\min_{x \in \mathcal{X}} f(x) + r(x) \quad \text{s.t.} \quad g_i(x) \le 0, \ \forall i \in [n]$$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.

Constrained Optimization Revisited

$$\min_{x \in \mathcal{X}} f(x) + r(x) \quad \text{s.t.} \quad g_i(x) \le 0, \ \forall i \in [n]$$

- \triangleright f is μ -strongly convex (s.c.) and L-smooth on \mathcal{X} .
- \triangleright r is CCP with an easily computable proximal operator.
- \triangleright For each $i \in [n]$, g_i is convex and α_i -smooth on \mathcal{X} .
- \triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair (x^*, λ^*) exists.
- $\triangleright \ \bar{x} \in \mathcal{X}$ is an ε -optimal and ε -feasible solution if

$$f(\bar{x}) - f(x^*) \le \varepsilon$$
, and $[g_i(\bar{x})]_+ \le \varepsilon$, $\forall i \in [n]$.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

Although $\Lambda = \mathbb{R}^n_+$ is unbounded, but

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

Although $\Lambda = \mathbb{R}^n_+$ is unbounded, but

▶ The dual smoothing sub-problem has closed-form solution:

$$([g_i(x)]_+/\rho)_{i=1}^n = \arg\max_{\lambda \in \mathbb{R}_+^n} \sum_{i=1}^n \lambda_i g_i(x) - (\rho/2) \|\lambda\|_2^2$$

 \Longrightarrow No need for first-order solver, and frameworks implementable.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

Although $\Lambda = \mathbb{R}^n_+$ is unbounded, but

▶ The dual smoothing sub-problem has closed-form solution:

$$([g_i(x)]_+/\rho)_{i=1}^n = \arg\max_{\lambda \in \mathbb{R}_+^n} \sum_{i=1}^n \lambda_i g_i(x) - (\rho/2) \|\lambda\|_2^2$$

- \Longrightarrow No need for first-order solver, and frameworks implementable.
- ▷ Primal sub-optimality and constraint violation are used as convergence criteria, not duality gap.

$$\min_{x \in \mathcal{X}} \max_{\lambda \in \mathbb{R}^n_+} \left\{ S(x, \lambda) = f(x) + r(x) + (1/n) \sum_{i=1}^n n \lambda_i g_i(x) \right\}$$
 (Lag)

Although $\Lambda = \mathbb{R}^n_+$ is unbounded, but

The dual smoothing sub-problem has closed-form solution:

$$([g_i(x)]_+/\rho)_{i=1}^n = \arg\max_{\lambda \in \mathbb{R}_+^n} \sum_{i=1}^n \lambda_i g_i(x) - (\rho/2) \|\lambda\|_2^2$$

- \Longrightarrow No need for first-order solver, and frameworks implementable.
- ▷ Primal sub-optimality and constraint violation are used as convergence criteria, not duality gap.
- $\triangleright L_{xx}(\lambda) = \sum_{i=1}^{n} \lambda_i \alpha_i$ is unbounded \Longrightarrow Bound $\|\hat{\lambda}^k\|_{\infty}$ adaptively.

Convergence Rate of DSF for Constrained Opt.

Theorem 6 (Convergence Rate of DSF)

Let $(x^*, \lambda^*) \in \mathcal{X} \times \mathbb{R}^n_+$ be a saddle point of (Lag). If we apply DSF to solving (Lag), then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \mathbb{R}^n_+$,

$$f(x^{K}) - f(x^{*}) \leq \frac{2[\Delta_{\rho_{0}}(x^{0}, \lambda^{0})]_{+}}{(K+1)(K+2)} + \frac{\varepsilon}{2},$$

$$[g_{i}(x^{K})]_{+} \leq \frac{16(\lambda_{i}^{*} + \|\lambda^{*}\|_{2})L_{D} + 8\sqrt{L_{D}[\Delta_{\rho_{0}}(x^{0}, \lambda^{0})]_{+}}}{(K+1)(K+2)} + \frac{4\sqrt{L_{D}\varepsilon}}{K+1},$$

for any $K \in \mathbb{N}$ and $i \in [m]$.

Oracle Complexity of DSF for Constrained Opt.

$$M := \sum_{i=1}^{n} \alpha_i D_{\mathcal{X}} + \inf_{x \in \mathcal{X}} \|\nabla g_i(x)\|_*$$
 and $\alpha := \sum_{i=1}^{n} \alpha_i$.

Oracle Complexity of DSF for Constrained Opt.

$$M := \sum_{i=1}^{n} \alpha_i D_{\mathcal{X}} + \inf_{x \in \mathcal{X}} \|\nabla g_i(x)\|_*$$
 and $\alpha := \sum_{i=1}^{n} \alpha_i$.

Lemma 7 (Bound on $\|\hat{\lambda}^k\|_{\infty}$)

If we apply DSF to (Lag), then for any $k \in \mathbb{N}$,

$$\|\hat{\lambda}^k\|_{\infty} = O(1 + k\sqrt{\varepsilon\mu}/M).$$

Oracle Complexity of DSF for Constrained Opt.

$$M := \sum_{i=1}^{n} \alpha_i D_{\mathcal{X}} + \inf_{x \in \mathcal{X}} \|\nabla g_i(x)\|_*$$
 and $\alpha := \sum_{i=1}^{n} \alpha_i$.

Lemma 7 (Bound on $\|\hat{\lambda}^k\|_{\infty}$)

If we apply DSF to (Lag), then for any $k \in \mathbb{N}$,

$$\|\hat{\lambda}^k\|_{\infty} = O(1 + k\sqrt{\varepsilon\mu}/M).$$

Theorem 8 (Oracle Complexity of DSF)

For any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \mathbb{R}_+$, the oracle complexity of DSF to obtain an ε -optimal and ε -feasible solution is

$$O\bigg(\frac{nM}{\sqrt{\mu\varepsilon}}\sqrt{(L+\alpha)/\mu}\log\bigg(\frac{L+\alpha}{\varepsilon}\bigg)\bigg).$$

Convergence Rate of RSF for Constrained Opt.

Theorem 9 (Convergence Rate of RSF)

Let $(x^*, \lambda^*) \in \mathcal{X} \times \mathbb{R}^n_+$ be a saddle point of (Lag). If we apply RSF to solving (Lag), then for any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \mathbb{R}^n_+$,

$$\mathbb{E}[f(x^K)] - f(x^*) \le \frac{2[\Delta_{\rho_0}(x^0, \lambda^0)]_+}{(K+1)(K+2)} + \frac{\varepsilon}{2},$$

$$\mathbb{E}[[g_i(x^K)]_+] \le \frac{16(\lambda_i^* + ||\lambda^*||_2) L_D + 8\sqrt{L_D[\Delta_{\rho_0}(x^0, \lambda^0)]_+}}{(K+1)(K+2)} + \frac{4\sqrt{L_D\varepsilon}}{K+1},$$

for any $K \in \mathbb{N}$ and $i \in [m]$.

Oracle Complexity of RSF for Constrained Opt.

Theorem 10 (Oracle Complexity of RSF)

For any starting point $(x^0, \lambda^0) \in \mathcal{X} \times \mathbb{R}_+$, the oracle complexity of RSF to obtain an ε -optimal and ε -feasible solution is

$$O\bigg(\frac{\sqrt{n}M}{\sqrt{\mu\varepsilon}}\Big(\sqrt{n}+\sqrt{(L+\alpha)/\mu}\Big)\log\bigg(\frac{nM(L+\alpha)}{\mu\varepsilon}\bigg)\bigg).$$

Thank you!

References

- [HA18] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A Primal-Dual Algorithm for General Convex-Concave Saddle Point Problems. arXiv:1803.01401. 2018.
- $[{\rm Nem05}] \qquad {\rm Arkadi~Nemirovski.~"Prox-Method~with~Rate~of~Convergence~} O(1/t)~for~Variational\\ {\rm Inequalities~with~Lipschitz~Continuous~Monotone~Operators~and~Smooth~Convex-Concave~Saddle~Point~Problems".~In:~SIAM~J.~Optim.~15.1~(2005),~pp.~229-251.}$