1 Grundlagen der Elektrotechnik

(2+2+2+4+2 Punkte)

Bestimmen Sie in den folgenden Schaltungen die gesuchten Größen!

1. Reihenschaltung

2. Parallelschaltung

3. Diodenschaltung

Bestimmen Sie die Kennwerte der folgenden Schaltung unter Verwendung der Maschenund Knotenregel.

- Maschenregel: Die Summe aller Spannungen innerhalb einer Masche des Stromkreises ist immer 0.
- Knotenregel: Die Summe der zu- und abfließenden Ströme eines Punktes ist immer 0.

$$R = 120 \,\Omega, \quad U_1 = 20 \,V, \quad U_2 = 6 \,V, \quad U_3 = 14 \,V, \quad U_4 = 6 \,V, \quad U_5 = 18 \,V$$

- 4. Stellen Sie die beiden Maschengleichungen auf und bestimmen Sie die Ströme I_L und $I_1!$
- 5. Bestimmen Sie anhand der Knotenregel den Strom I_2 !

2 High-Power-Leuchtdiode mit Transistorschaltungen (2+2+2+4+2 Punkte)

Da Sie mit der Helligkeit ihres leuchtenden Weihnachtssterns am Fenster überhaupt nicht zufrieden sind, haben Sie kurzerhand beschlossen: Das können Sie besser. Als erstes haben Sie sich eine richtig helle High-Power-LED in warmweiß besorgt und für die Ansteuerung einen passenden Transistor. Die Datenblätter zu den Komponenten finden Sie als Datei neben dem Aufgabenblatt.

- a) Wie hoch ist der empfohlene Strom und die zugehörige Spannung der LED?
- b) Welche Gate-Source-Spannung müssen Sie anlegen, damit der Transistor den gewünschten Diodenstrom führen kann?
- c) Welchen Widerstand hat der Transistor bei diesem Strom?
- d) Bestimmen Sie aus dem Schaubild den Wert des Vorwiderstands $R_v!$
- e) Wie müssten Sie einen Spannungsteiler vor dem Gate dimensionieren, um die gewünschte Gatespannung aus der Versorgungsspannung abzuleiten?

3 RC-Glied (6+3 Punkte)

Abbildung 1: RC-Glied

Gegeben ist folgende Schaltung am Eingang (V_{in}) wird eine Pulsquelle geschaltet, welche ein Rechtecksignal mit 0V,1V mit einer Frequenz von 750Hz erzeugt.

- a) Bestimmen Sie die Funktionen für die Ladekurve der Schaltung von 0V \to 1V und die Entladekurve von 1V \to 0V
- b) Zeichnen Sie V_{in} und V_{out} für zwei Perioden. Zu Beginn ist das Rechtecksignal auf 1V und der Kondensator ungeladen.