Exercices de Géométrie Différentielle 1

Séance 9 - 7/12/2021

- 1. Calculer le flow des champs de vecteur suivant sur \mathbb{R}^2 :
 - a) $A = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$,
 - b) $B = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$,
 - c) $C = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$.
- 2. Soit γ une courbe intégrable maximale non-constante d'un champ de vecteur. Montrer que si γ est non-invective, alors γ est périodique, c'est-à-dire qu'il existe un T>0 telle que $\gamma(t+T)=\gamma(t)$ pour tout $t\in\mathbb{R}$.
- 3. Montrer que pour tout $h \in C^{\infty}(N)$ et $f: M \to N$ on a

$$f^*dh = d(h \circ f).$$

A. Soit $\omega \in \Omega^1(\mathbb{S}^1)$, qui est la restriction de dx à \mathbb{S}^1 , c'est-à-dire que

$$\omega(v_1, v_2) = v_1, \text{ si } v_1, v_2 \in T_m \mathbb{S}^1.$$

Calculer $f^*\omega$, où $f:\mathbb{S}^1\to\mathbb{S}^1:z\to z^2.$

B. Pour tout $\omega_1, \omega_2 \in \Omega^1(N)$ et $f: M \to N$ on a

$$f^*(\omega_1 \wedge \omega_2) = f^*\omega_1 \wedge f^*\omega_2.$$