Publications and Achievements

Hiroshi Yamada Last update: 10.04.2022

1. Conference/Symposium/Workshop Papers (Referred)

- [1] Takeru Wada, and <u>Hiroshi Yamada</u>, Towards Making Unikernels Rejuvenatable, Proc. of the 14th Int'l Workshop on Software Aging and Rejuvenation (WoSAR '22), To appear, 2022.
- [2] Takumi Iguchi, and <u>Hiroshi Yamada</u>, Graceful ECC-uncorrectable Error Handling in the Operating System Kernel, Proc. of the 33rd IEEE Int'l Symp. on Software Reliability Engineering (ISSRE '22), To appear, 2022.
- [3] Shuhei Enomoto, and <u>Hiroshi Yamada</u>, A Multi-variant Execution Environment for Securing In-memory KVSes, Proc. of the 18th European Dependable Computing Conference (EDCC '22), pp.9-16, 2022.
- [4] Tsuyoshi Shimomura, and <u>Hiroshi Yamada</u>, Hardening In-memory Key-value Stores against ECC-uncorrectable Memory Errors, Proc. of the 52nd Annual IEEE/IFIP Int'l Conf. on Dependable Systems and Networks (DSN '22), pp.509-521, 2022.
- [5] Naoki Aoyama, and <u>Hiroshi Yamada</u>, Copying Values v.s. References for Memory Page Compaction in Virtualized Systems, Proc. of the 37th ACM/SIGAPP Symp. on Applied Computing (SAC '22), pp.1205-1207, 2022.
- [6] Hitoshi Mitake, Hiroshi Yamada, and Tatsuo Nakajima: A Highly Scalable Index Structure for Multicore In-Memory Database Systems, Proc. of the 13rd Int'l Conf. on Intelligent and Distributed Computing (IDC '19), pp.210-217, 2019.
- [7] Hitoshi Mitake, <u>Hiroshi Yamada</u>, and Tatsuo Nakajima: Looking into the Peak Memory Consumption of Epoch-Based Reclamation in

- Scalable in-Memory Database Systems, Proc. of the 30th Int'l Conf. on Database and Expert Systems Applications (DEXA '19), pp.3-18, 2019.
- [8] Yusuke Suzuki, <u>Hiroshi Yamada</u>, Shinpei Kato, and Kenji Kono: CPUs as Co-processors of GPUs: Running GPGPU Applications at the Full Speed with PullKernels, Proc. of the 8th Workshop on Systems for Multi-core and Heterogeneous Architectures (SFMA '18), co-located with ACM EuroSys '18, 4 pages, 2018.
- [9] Yuto Jumonji, and <u>Hiroshi Yamada</u>: Efficient Software Rejuvenation of In-memory Key-value Storages, Proc. of the 9th Int'l Workshop on Software Aging and Rejuvanation (WoSAR '17), 6 pages, 2017
- [10] Yusuke Suzuki, Hiroshi Yamada, Shinpei Kato, and Kenji Kono: GLoop: An Event-driven Runtime for Consolidating GPGPU Applications, Proc. of the 8th ACM Symp. on Cloud Computing (SoCC '17), pp.80—93, 2017
- [11] Ken Terada and <u>Hiroshi Yamada</u>: Dwarf: Shortening Downtime of Reboot-based Kernel Updates, Proc. of the 12th European Dependable Computing Conf. (EDCC '16), pp.208-217, 2016.
- [12] Hitoshi Mitake, <u>Hiroshi Yamada</u>, and Tatsuo Nakajima: Analyzing The Tradeoff Between Throughput and Latency in Multicore Scalable In-Memory Database Systems, Proc. of the 7th ACM Asia-Pacific Workshop on Systems (APSys '16), pp.17:1—17:9, 2016
- [13] Yusuke Suzuki, <u>Hiroshi Yamada</u>, Shinpei Kato, and Kenji Kono: Towards Multi-tenant GPGPU: Event-driven Programming Model for System-wide Scheduling on Shared GPUs, 2016 Workshop on Multicore and Rack-scale Systems (MaRS '16), 7 pages, 2016.
- [14] Akane Koto, Kono Kenji, and Hiroshi Yamada: A Guideline for Selecting Live Migration Policies and Implementations, In Proc. of the 6th IEEE Int'l Conf. on Cloud Computing Technology and Science (CloudCom'14), pp.226-233, 2014.
- [15] Kenji Kono, Shunsuke Miyahara, <u>Hiroshi Yamada</u>, and Takeshi Yoshimura: FoyxFeed: Forging Device-level Asynchronous Events for

- kernel Development, In Proc. of the 20th IEEE Pacific Rim Int'l Symp. on Dependable Computing (PRDC '14), pp.145-154, 2014.
- [16] Yusuke Suzuki, Shinpei Kato, <u>Hiroshi Yamada</u>, and Kenji Kono: GPUvm: Why Not Virtualizing GPUs at the Hypervisor?, In Proc. of the 2014 USENIX Annual Technical Conference, pp.109-120, 2014.
- [17] Hikaru Horie, Masato Asahara, <u>Hiroshi Yamada</u>, and Kenji Kono: Minimizing WAN Communications in Inter-Datacenter Key-Value Stores, In Proc. of the 7th IEEE Int'l Conf. on Cloud Computing (CLOUD '14), pp.490-497, 2014.
- [18] Antonio Bovenzi, Javier Alonso, <u>Hiroshi Yamada</u>, Stefano Russo, and Kishor S. Trivedi: Towards fast OS rejuvenation: An experimental evaluation of fast OS reboot techniques, In Proc. of the 24th IEEE Int'l Symp. on Software Reliability Engineering (ISSRE '13), pp.61-70, 2013.
- [19] <u>Hiroshi Yamada</u>, Takumi Sakamoto, Hikaru Horie, and Kenji Kono: Request Dispatching for Cheaper Energy Prices in Cloud Data Centers, In Proc. of the 2nd IEEE Int'l Conf. on Cloud Networking (CloudNet '13), pp.210-214, 2013.
- [20] Hiroshi Yamada, and Kenji Kono: Traveling Forward in Time to Newer Operating Systems using ShadowReboot, In Proc. of the 9th ACM Conference on Virtual Execution Environments (VEE '13), pp.121-130, 2013.
- [21] Takeshi Yoshimura, <u>Hiroshi Yamada</u>, and Kenji Kono: Is Linux Kernel Oops Useful or Not?, In Proc of the 8th Workshop on Hot Topics in System Dependability (HotDep '12), 6 pages, 2012
- [22] Akane Koto, Hiroshi Yamada, Kei Ohmura, and Kenji Kono: Towards Unobtrusive VM Live Migration for Cloud Computing Platforms, In Proc. of the 3rd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys '12), pp.7:1-6, 2012
- [23] Hiroki Shirayanagi, <u>Hiroshi Yamada</u>, and Kenji Kono: Honeyguide: A VM Migration-aware Network Topology for Saving Energy Consumption in Data Center Networks, In Proc. of the 17th IEEE

- Symp. On Computers and Communication (ISCC '12), pp.460-467, 2012
- [24] Hikaru Horie, Masato Asahara, <u>Hiroshi Yamada</u>, and Kenji Kono: Inter-Datacenter Elastic Key-Value Store, In Proc. of the 10th Int'l Conf. on Optical Internet (COIN '12), pp.71-72, 2012
- [25] Shuntaro Tonosaki, <u>Hiroshi Yamada</u>, and Kenji Kono: Efficiently Synchronizing Virtual Machines in Cloud Computing Environments, In Proc. of the 3rd IEEE Int'l Conf. on Cloud Computing Technology and Science (CloudCom'11), pp.154 – pp.162, 2011.
- [26] Takeshi Yoshimura, <u>Hiroshi Yamada</u>, and Kenji Kono: Can Linux be Rejuvenated without Reboots?, In Proc. of the 3rd IEEE Int'l Workshop on Software Aging and Rejuvenation (WoSAR '11), pp.50-55, 2011.
- [27] <u>Hiroshi Yamada</u>, and Kenji Kono: Traveling Forward in Time to Newer Operating Systems using ShadowReboot, In Proc. of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys '11), pp.12:1 pp.12:5, 2011.
- [28] Kazuya Yamakita, <u>Hiroshi Yamada</u>, and Kenji Kono: In Proc. of the 41st Annual IEEE/IFIP Int'l Conf. on Dependable Systems and Networks (DSN '11), pp.169 180, 2011.
- [29] Takahiro Kobayashi, Hiroshi Yamada, and Kenji Kono: Quick Reboot-based Recovery for Commodity Operating Systems in Virtualized Server Consolidation, In Proc. of 2010 Int'l Workshop on Isolation and Integration for Dependable Systems (IIDS '10), 2010.
- [30] Tetsuya Yoshida, Hiroshi Yamada, and Kenji Kono: FoxyLargo: Slowing Down CPU Speed with a Virtual Machine Monitor for Embedded Time-Sensitive Software Testing, In Proc. of 2008 Int'l Workshop on Virtualization Technology (IWVT '08), 2008.
- [31] Yoshihisa Abe, <u>Hiroshi Yamada</u>, and Kenji Kono: Enforcing Appropriate Process Execution for Exploiting Idle Resources from Outside Operating Systems, In Proc. of the 3rd ACM SIGOPS European Conf. on Computer Systems (EuroSys '08), pp.27 40,

2008.

- [32] Masato Asahara, Akio Shimada, Hiroshi Yamada, and Kenji Kono: Finding Candidate Spots for Replica-Servers based on Demand Fluctuation, In Proc. of the 13th IEEE Int'l Conf. on Parallel and Distributed Systems (ICPADS '07), CD-ROM, 2007.
- [33] <u>Hiroshi Yamada,</u> and Kenji Kono: FoxyTechnique: Tricking Operating System Policies with a Virtual Machine Monitor, In Proc. of the 3rd Int'l ACM SIGPLAN/SIGOPS Conf. on Virtual Execution Environments (VEE '07), pp. 55 64, 2007.
- [34] Hiroshi Yamada, and Kenji Kono: User-level disk-bandwidth control for resource-borrowing network applications, In Proc. of the 10th IEEE/IFIP Network Operations and Management Symposium (NOMS '06), CD-ROM, 2006.

2. Journal/Transaction Papers (Referred)

- [1] Naoki Aoyama, and <u>Hiroshi Yamada</u>, Comparison of Value- and Reference-based Memory Page Compaction in Virtualized Systems, IEICE Trans. on Information and Systems, Vol.E105-D, No.12, To appear, 2022.
- [2] Shuhei Enomoto, Hiroki Kuzuno, and Hiroshi Yamada, Efficient Protection Mechanism for CPU Cache Flush Instruction Based Attacks, IEICE Trans. on Information and Systems, Vol.E105-D, No.11, To appear, 2022.
- [3] Kaiho Fukuchi, and <u>Hiroshi Yamada</u>, Leveraging Scale-up Machines for Swift DBMS Replication on IaaS Platforms using BalenaDB, IEICE Trans. on Information and Systems, Vol.E105-D, No.1, pp.92-104, 2022.
- [4] Yuto Jumonji, and <u>Hiroshi Yamada</u>, Efficient Reboot-based Recovery of In-memory Databases, IEICE Trans. on Information and Systems, Vol.E104-D, No.12, pp.2164-2172, 2021.
- [5] Ken Terada, and Hiroshi Yamada, Shortening Downtime of Reboot-

- based Kernel Update using Dwarf, IEICE Trans. on Information and Systems, Vol.E102-D, No.12, pp.2991-3004, 2018.
- [6] Yusuke Suzuki, <u>Hiroshi Yamada</u>, Shinpei Kato, and Kenji Kono: Cooperative GPGPU Scheduling for Consolidating Server Workloads, IEICE Trans. on Information and Systems, Vol.E102-D, No.12, pp.3019-3037, 2018.
- [7] Yusuke Suzuki, Shinpei Kato, <u>Hiroshi Yamada</u>, and Kenji Kono: GPUvm: GPU Virtualization at the Hypervisor, IEEE Trans. on Computers (IEEE TC), Vol.65, No.9, pp.2752—2766, 2016.
- [8] <u>Hiroshi Yamada</u>, Survey on Mechanisms for Live Virtual Machine Migration and its Improvements, JSSST Journal on Computer Software, Vol.33, No.2, pp.2:101—2:115, 2015.
- [9] 堀江光,浅原理人,山田浩史,河野健二,データセンタ間通信による性能劣化を抑えた広域分散型キーバリューストア構築手法,情報処理学会論文誌コンピュータシステム, Vol.8, No.2, pp.1-14, 2015.
- [10] Hiroshi Yamada and Kenji Kono: A VMM-level Approach to Shortening Downtime of Operating Systems Reboots in Software Update, IEICE Trans. on Information and Systems, Vol.E97-D, No.10, pp.2663-2675, 2014.
- [11] Hiroshi Yamada, Shuntaro Tonosaki, and Kenji Kono: Efficient Update Activation for Virtual Machines in IaaS Cloud Computing Environments, IEICE Trans. on Information and Systems, Vol. E97-D, No.3, pp.469-479, 2014.
- [12] Hiroki Shirayanagi, Hiroshi Yamada, and Kenji Kono: Honeyguide: A VM Migration-aware Network Topology for Saving Energy Consumption in Data Center Networks, IEICE Transaction on Infromation and Systems, Vol.E96-D,No.9,pp.2055-2064, 2013.
- [13] Takeshi Yoshimura, <u>Hiroshi Yamada</u>, and Kenji Kono: Using Fault Injection to Analyze the Scope of Error Propagation in Linux, IPSJ Transaction on Advanced Computing System, Vol.6, No.2, pp.1-10, 2013.
- [14] Kazuya Yamakita, Hiroshi Yamada, and Kenji Kono: Lightweight

- Recovery from Kernel Failures Using Phase-based Reboot, IPSJ Transaction on Advanced Computing System, Vol. 5, No.2, pp.121–132. March, 2012.
- [15] Hikaru Horie, Masato Asahara, <u>Hiroshi Yamada</u>, and Kenji Kono: MashCache: Taming Flash Crowds by Using Their Good Features, IPSJ Transaction on Advanced Computing System, Vol. 5, No. 2, pp.10 –22, March. 2012.
- [16] Yoshihisa Abe, Hiroshi Yamada, and Kenji Kono: User-level Enforcement of Appropriate Background Process Execution, IPSJ Transaction on Advanced Computing System, Vol. 4, No. 2, pp.94— 113. March. 2011.
- [17] 吉田哲也, 山田浩史, 佐々木広, 河野健二, 中村宏: マルチコア CPU の電力消費特性を考慮した仮想 CPU スケジューラ, 情報処理 学会論文誌: コンピューティングシステム, Vol. 4, No. 2, pp.25-39, 2011 年 3 月
- [18] 石川豊, 山田浩史, 浅原理人, 花岡美幸, 河野健二: アプリケーション層プロトコルの状態を考慮した広域ネットワーク上での仮想マシン移送, 情報処理学会論文誌: コンピューティングシステム, Vol. 4, No. 2, pp.12-24, 2011 年 3 月
- [19] Tetsuya Yoshida, <u>Hiroshi Yamada</u>, and Kenji Kono: Using a Virtual Machine Monitor to Slow Down CPU Speed for Embedded Time-Sensitive Software Testing, IPSJ Transaction on Advanced Computing System, Vol. 2, No. 3, pp.116-130, 2009.
- [20] Masato Asahara, Akio Shimada, <u>Hiroshi Yamada</u>, and Kenji Kono: Strategy for Selecting Replica Server Spots on the Basis of Demand Fluctuation, IPSJ Transaction on Advanced Computing System, Vol. 1, No. 1, pp.160 173, 2008.
- [21] Hiroshi Yamada and Kenji Kono: Introducing New Resource Management Policies using a Virtual Machine Monitor, IPSJ Transaction on Advanced Computing System, Vol. 1, No. 1, pp.144–159, 2008.
- [22] Hiroshi Yamada and Kenji Kono: DiscNice: User-level Regulation of

Disk Bandwidth, IPSJ Transaction on Advanced Computing System, Vol. 48, No. SIG 18, pp.83 – 98, 2007.

3. Textbooks

- [1] Application to Operating Systems, Handbook of Software Aging and Rejuvenation: Fundamentals, Methods, Applications, And Future Directions, pp.229-259, World Scientific Publisher, Editors: Tadashi Dohi, A. Avritzer, and K. S. Trivedi, 2020.
- [2] Open Systems Dependability: Dependability Engineering for Ever-Changing Systems Second Edition, Editor: Mario Tokoro, Section6.4 Security Mechanism(pp.163-171)を担当. ISBN-10:1498736289, 2014.
- [3] Open Systems Dependability: Dependability Engineering for Ever-Changing Systems, Editor: Mario Tokoro, Section6.4 Security Mechanism(pp.86-95)を担当. ISBN-10:1466577517, 2013.

4. Awards/Honors

- [1] Distinguished Paper Award, 18th European Dependable Computing Conference (EDCC'22), 2022.
- [2] ISS 功労賞, 電子情報通信学会, 2022年.
- [3] 論文賞, 情報処理学会, 2013年.
- [4] 論文賞, 情報処理学会, 2010年.
- [5] 論文賞, 情報処理学会, 2009年.
- [6] IPSJ Digital Courier 船井若手奨励賞, 船井情報科学振興財団, 2009年.
- [7] 山下記念賞, 情報処理学会, 2008年.
- [8] IPSJ Digital Courier 船井若手奨励賞,船井情報科学振興財団,2008年.
- [9] 最優秀学生発表賞,情報処理学会システムソフトウェアとオペレーティング・システム研究会. 2007 年.

[10] 目黒会賞, 電気通信大学, 2006年.

5. Awards/Honors (Supervised Studemts)

- [1] 優秀若手発表賞、根津直也、情報処理学会システムソフトウェアとオペレーティング・システム研究会、2022 年、
- [2] コンピュータサイエンス領域賞,井口卓海,情報処理学会,2018 年.
- [3] 優秀若手発表賞、井口卓海、情報処理学会システムソフトウェアとオペレーティング・システム研究会、2021年.
- [4] 優秀若手発表賞, 榎本秀平, 情報処理学会システムソフトウェアとオペレーティング・システム研究会, 2020 年.
- [5] 最優秀学生発表賞,下村剛志,情報処理学会システムソフトウェアと オペレーティング・システム研究会,2019年.
- [6] コンピュータサイエンス領域賞、寺田献、情報処理学会、2018年
- [7] 企業賞 Fujitsu 賞, 佐藤克矢, WebDB Forum 2017, 2017 年.
- [8] 最優秀学生発表賞、清水祐太郎、情報処理学会システムソフトウェアとオペレーティング・システム研究会、2017年.
- [9] 最優秀学生発表賞、中嶋将人、情報処理学会システムソフトウェアとオペレーティング・システム研究会、2017年.
- [10] コンピュータサイエンス領域賞, 尾板弘崇, 情報処理学会, 2016年.
- [11] 最優秀学生発表賞, 寺田献, 情報処理学会システムソフトウェアとオペレーティング・システム研究会, 2016 年.
- [12] 最優秀学生発表賞、小林直登、情報処理学会システムソフトウェアとオペレーティング・システム研究会、2016 年、
- [13] 学生奨励賞, 高橋祥平, 情報処理学会データベースシステム研究会, 2016 年.
- [14] コンピュータサイエンス領域賞, 福地開帆, 情報処理学会, 2015年.
- [15] 最優秀学生発表賞、尾板弘崇、情報処理学会システムソフトウェアと オペレーティング・システム研究会、2015 年.
- [16] 最優秀学生発表賞、小林直登、情報処理学会システムソフトウェアと オペレーティング・システム研究会、2015 年.

- [17] 山下記念研究賞、鈴木勇介、情報処理学会、2014年、
- [18] 最優秀学生発表賞,福地開帆,情報処理学会システムソフトウェアと オペレーティング・システム研究会,2014年.
- [19] 最優秀学生発表賞, 古藤明音, 情報処理学会システムソフトウェアと オペレーティング・システム研究会, 2013 年.
- [20] 最優秀学生発表賞,鈴木勇介,情報処理学会システムソフトウェアと オペレーティング・システム研究会,2013年.
- [21] コンピュータサイエンス領域賞, 吉村剛, 情報処理学会, 2013年.
- [22] 中西奨励賞,鈴木勇介,慶應義塾大学理工学部情報工学科,2013年.
- [23] 最優秀学生発表賞,吉村剛,情報処理学会システムソフトウェアとオペレーティング・システム研究会,2012年.
- [24] 最優秀学生発表賞,本橋剛,情報処理学会システムソフトウェアとオペレーティング・システム研究会,2009年.

6. Grands/Funds

- [1] 細粒度のリカバリを可能にする高信頼 OS, 科学技術振興機構戦略的 創造研究推進事業さきがけ(JST-PRESTO)「社会変革に向けた ICT 基 盤強化」, 研究代表者, 40,000 千円(直接経費), 2021 年度—2024 年 度.
- [2] インメモリ DB を考慮した仮想マシン移送に関する研究, 科学研究費助成事業, 基盤研究(C), 研究代表者, 3,300 千円(直接経費), 2020年度-2022年度.
- [3] データ活用型サービスに供するディペンダブルデータベース基盤技術, セコム科学技術進行財団挑戦的研究助成, 研究代表者, 9,000 千円(直接経費), 2019 年度—2021 年度
- [4] ビッグ DBMS を仮想マシン移送に関する研究,科学研究費助成事業,基盤研究(C),研究代表者,3,000千円(直接経費),2017年度-2019年度.
- [5] IoT ワークロードにおけるハイブリッド環境の電力効率向上, 日立製作所公募型共同研究費, 研究代表者, 450 千円(直接経費), 2016 年度.

- [6] 光無線によるビッグデータ処理向け相互結合網の研究開発, 戦略的情報通信研究開発推進事業(SCOPE), 研究分担者, 2,700 千円(直接経費), 2016 年度—2017 年度
- [7] ビッグメモリアプリケーションを考慮した仮想マシン移送に関する研究, 科学研究費助成事業, 若手研究(B), 研究代表者, 3,000 千円(直接経費), 2015 年度-2016 年度.
- [8] 科学技術振興機構 科学技術人材育成費補助金,テニュアトラック普及・定着事業(個人選抜型),56,000千円(直接経費),2013年度-2016年度.
- [9] データセンタにおける低消費電力サーバに関する研究, 日立製作所公募型共同研究費, 研究代表者, 6,900千円(直接経費), 2013年度 2015年度.
- [10] 耐攻撃性を強化した高度にセキュアな OS の創出, 科学技術振興機構 戦略的創造研究推進事業 CREST(JST-CREST)「実用化を目指した組込みシステム用ディペンダブル・オペレーティングシステム」, 主たる共同研究者, 9,640千円(直接経費), 2012年度-2013年度.
- [11] OS カーネル障害からの早期回復手法に関する研究,科学研究費助成事業,若手研究(B),研究代表者,3,000千円(直接経費),2011年度-2012年度.

7. Articles

- [1] オペレーティングシステムのエージングと若化, 日本信頼性学会 誌 '14 年 1 月号, 2014 年.
- [2] 第3のOS, やさしい用語解説 山田浩史准教授に聞く, Nextcom, Vol.19,株式会社 KDDI 総研, 2014 年.