Модель $X \boxplus K$

May 25, 2020

1 Математическое описание моделей

Определим математичские модели " $X \boxplus K$ ":

- 1. $Y_{g_4} = g_4(x) \equiv x \boxplus K$, где
 - $x \in V_4$ вектор входных данных,
 - $k \in V_4$ некоторый неизвестный постоянный в эксперименте ключ,
 - $Y_{g_4} \in V_4$ выходные данные модели $g_4;$
- 2. $Y_{g_8} = g_8(x) \equiv x \boxplus K$, где
 - $x \in V_8$ вектор входных данных,
 - $k \in V_8$ некоторый неизвестный постоянный в эксперименте ключ,
 - $Y_{g_8} \in V_8$ выходные данные модели $g_8;$
- 3. $Y_{g_{16}} = g_{16}(x) \equiv x \boxplus K$, где
 - $x \in V_{16}$ вектор входных данных,
 - $k \in V_{16}$ некоторый неизвестный постоянный в эксперименте ключ,
 - $Y_{g_{16}} \in V_{16}$ выходные данные модели $g_{16};$
- 4. $Y_{g_{32}} = g_{32}(x) \equiv x \boxplus K$, где
 - $x \in V_{32}$ вектор входных данных,
 - $k \in V_{32}$ некоторый неизвестный постоянный в эксперименте ключ,
 - $Y_{g_{32}} \in V_{g_{32}}$ выходные данные модели $g_{32}.$

2 Описание используемых нейронных сетей

Для решения поставленных задач использовались следующие нейронные сети (с минимальным количеством параметров):

- 1. Модель g_4 : нейронная сеть с одним скрытым слоем, с 4 нейронами на скрытом слое (HNN-4).
- 2. Модель g_8 : нерйонная сеть с одним скрытым слоем, с 8 нейронами на скрытом слое (HNN-8).
- 3. Модель g_{16} : нерйонная сеть с одним скрытым слоем, с 16 нейронами на скрытом слое (HNN-16).
- 4. Модель g_{32} : нерйонная сеть с одним скрытым слоем, с 64 нейронами на скрытом слое (HNN-64). (Примечание: для модлеи g_{32} также была построенна HC с 32 нейронами на скрытом слое. Однако масимально достигнутая точность была 87.5%. Поэтому от нее я отказался и использовал модель HNN-64.)

Точность построенной модели к реальной оценивалась использовалось расстояние Хэмминга: $w(y,\hat{y}) = \sum_{i=1}^{j} y_i \oplus \hat{y}_i$, где $y_i \in V_j$.

Для оценки точности проведенного эксперимента использовалось следующая функция: $\hat{f} = L - \frac{1}{T_e} \sum_{j=1}^{T_e} w(y^{(j)}, y^{(j)})$, где L - количество бит в выходных данных оцениваемой модели.

Компьютерные эксперименты проводились на следующих данных:

- 1. Модель G_4 :
 - количество параметров для HNN-4: 32;
 - обучающая выборка $T_o = 10$ пар (x, y);
 - экзаменационная выборка $T_e = 6$ пар (x, y).
- 2. Модель G_8 :
 - количество параметров для HNN-8: 128;
 - обучающая выборка $T_o = 128$ пар (x, y);
 - экзаменационная выборка $T_e = 24$ пар (x, y).
- 3. Модель G_{16} :
 - количество параметров для HNN-16: 512;
 - обучающая выборка $T_o = 512$ пар (x, y);
 - экзаменационная выборка $T_e = 102$ пар (x, y).
- 4. Модель G_{32} :
 - количество параметров для HNN-64: 4096;
 - обучающая выборка $T_o = 2048$ пар (x, y);
 - экзаменационная выборка $T_e = 409$ пар (x, y).

3 Результаты компьютерных экспериментов

График точности построенной неройнной сети HNN-4 модели g_4 от количества итераций обучения.

График точности построенной неройн
ной сети HNN-8 модели g_8 от количества итераций обучения.

График точности построенной неройн
ной сети HNN-16 модели g_{16} от количества итераций обучения.

График точности построенной неройн
ной сети HNN-64 модели g_{32} от количества итераций обучения.