Álgebra Linear Aula 14

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Teorema 3.3.2

Se \overrightarrow{a} e \overrightarrow{u} forem vetores de \mathbb{R}^n , com $\overrightarrow{a} \neq \overrightarrow{0}$, então \overrightarrow{u} pode ser escrito de maneira única na forma $\overrightarrow{u} = \overrightarrow{w_1} + \overrightarrow{w_2}$ onde w_1 é um múltiplo de \overrightarrow{a} e \overrightarrow{w}_2 é ortogonal a \overrightarrow{a} .

Notações

Sejam \overrightarrow{a} e \overrightarrow{u} vetores com $\overrightarrow{a} \neq \overrightarrow{0}$. Denotamos por

$$\operatorname{proj}_{\overrightarrow{a}} \overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{a}}{\|\overrightarrow{a}\|^2} \overrightarrow{a}$$

a componente vetorial de \overrightarrow{u} ao longo de \overrightarrow{a} e por

$$\overrightarrow{u} - \operatorname{proj}_{\overrightarrow{d}} \overrightarrow{u} = \overrightarrow{u} - \frac{\overrightarrow{u} \cdot \overrightarrow{d}}{\|\overrightarrow{a}\|^2} \overrightarrow{d}$$

a componente vetorial de \overrightarrow{u} ortogonal a \overrightarrow{a} .

Notações

Sejam \overrightarrow{a} e \overrightarrow{u} vetores com $\overrightarrow{a} \neq \overrightarrow{0}$. Denotamos por

$$\operatorname{proj}_{\overrightarrow{a}} \overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{a}}{\|\overrightarrow{a}\|^2} \overrightarrow{a}$$

a componente vetorial de \overrightarrow{u} ao longo de \overrightarrow{a} e por

$$\overrightarrow{u} - \operatorname{proj}_{\overrightarrow{d}} \overrightarrow{u} = \overrightarrow{u} - \frac{\overrightarrow{u} \cdot \overrightarrow{d}}{\|\overrightarrow{a}\|^2} \overrightarrow{d}$$

a componente vetorial de \overrightarrow{u} ortogonal a \overrightarrow{a} .

Exemplo 5

Escreva o vetor $\overrightarrow{v}=(5,3)$ como soma de múltiplos dos vetores $\overrightarrow{u}=(2,1)$ e um vetor ortogonal a \overrightarrow{u} .

Exemplo 6

Calcule a norma do vetor $\operatorname{proj}_{\overrightarrow{a}} \overrightarrow{u}$.

Teorema de Pitágoras

Se \overrightarrow{u} e \overrightarrow{a} são vetores ortogonais em \mathbb{R}^2 então

$$\|\overrightarrow{u} + \overrightarrow{a}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{a}\|^2.$$

Teorema de Pitágoras

Se \overrightarrow{u} e \overrightarrow{a} são vetores ortogonais em \mathbb{R}^n então

$$\|\overrightarrow{u} + \overrightarrow{a}\|^2 = \|\overrightarrow{u}\|^2 + \|\overrightarrow{a}\|^2.$$

Problema

Considere a reta

$$x + y - 1 = 0.$$

Calcule a distância do ponto (2,1) a esta reta.

Distância ponto a reta/plano

Seja r(x)=0 a equação da reta/plano com vetor normal \overrightarrow{n} e seja x_0 um ponto no plano/espaço. A distância D de x_0 para a reta/plano é dada por

$$D = \frac{|r(x_0)|}{\|n\|}.$$

Representação da Reta em \mathbb{R}^n

Seja L uma reta que contém o ponto x_0 . Se \overrightarrow{v} é um vetor paralelo a L então qualquer ponto x de L pode ser escrito como

$$\overrightarrow{x} - \overrightarrow{x}_0 = t\overrightarrow{v}$$

para algum escalar t denominado parâmetro.

Representação da Reta em \mathbb{R}^n

Seja L uma reta que contém o ponto x_0 . Se \overrightarrow{v} é um vetor paralelo a L então qualquer ponto x de L pode ser escrito como

$$\overrightarrow{x} - \overrightarrow{x}_0 = t\overrightarrow{v}$$

para algum escalar t denominado parâmetro.

Se $x_1 \neq x_0$ for outro ponto da reta L então podemos escrever x como

$$\overrightarrow{x} = t\overrightarrow{x}_1 + (1-t)\overrightarrow{x}_0.$$

Representação da Reta em \mathbb{R}^n

Seja L uma reta que contém o ponto x_0 . Se \overrightarrow{v} é um vetor paralelo a L então qualquer ponto x de L pode ser escrito como

$$\overrightarrow{x} - \overrightarrow{x}_0 = t\overrightarrow{v}$$

para algum escalar t denominado parâmetro.

Se $x_1 \neq x_0$ for outro ponto da reta L então podemos escrever x como

$$\overrightarrow{x} = t\overrightarrow{x}_1 + (1-t)\overrightarrow{x}_0.$$

Em particular se $0 \le t \le 1$ dizemos que x está no segmento de reta que liga os pontos x_1 e x_0 .

Representação de Planos em \mathbb{R}^n

Seja P um plano que contém o ponto x_0 . Se v_1 e v_2 são vetores não colineares e paralelos a P então qualquer ponto de do plano P pode ser escrito como

$$\overrightarrow{x} - \overrightarrow{x}_0 = t_1 \overrightarrow{v}_1 + t_2 \overrightarrow{v}_2$$

para algum par de escalares t_1 e t_2 denominados *parâmetros*.

Considere a seguinte equação linear

$$a_1x_1 + \dots + a_nx_n = b.$$

Considere a seguinte equação linear

$$a_1x_1 + \dots + a_nx_n = b.$$

Podemos reescrever essa equação como

$$\overrightarrow{a} \cdot \overrightarrow{x} = b.$$

Considere a seguinte equação linear homogêneo

$$a_1x_1 + \dots + a_nx_n = 0.$$

Podemos reescrever essa equação como

$$\overrightarrow{a} \cdot \overrightarrow{x} = 0.$$

Teorema 3.4.3

Se A for uma matriz $m \times n$ então o conjunto de soluções do sistema linear homogêneo Ax=0 consiste de todos os vetores de \mathbb{R}^n que são ortogonais a cada vetor linha de A.

Exemplo 7

Considere o seguinte sistema linear

$$2x + 3y + z = b_1;$$

$$x - y + 3z = b_2.$$

Obtenha o conjunto de soluções para b=(0,0) e b=(11,8).

Teorema 3.4.4

Uma solução geral de um sistema linear Ax=b pode ser obtida somando uma solução específica qualquer de AX=b e a solução geral de Ax=0.

Exemplo 8

Considere os vetores \overrightarrow{u} e \overrightarrow{v} não paralelos em \mathbb{R}^3 . Encontre um vetor \overrightarrow{w} que seja ortogonal a \overrightarrow{u} e \overrightarrow{v} simultaneamente.

Produto Vetorial

O produto vetorial $\overrightarrow{u} \times \overrightarrow{v}$ entre dois vetores em \mathbb{R}^3 é definido como

$$\overrightarrow{u} \times \overrightarrow{v} = \left(\left| \begin{array}{cc} u_2 & u_3 \\ v_2 & v_3 \end{array} \right|, - \left| \begin{array}{cc} u_1 & u_3 \\ v_1 & v_3 \end{array} \right|, \left| \begin{array}{cc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right| \right)$$