计算机组成原理

第10章 控制单元的设计

刘宏伟

哈尔滨工业大学

计算机科学与技术学院

第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

10.1 组合逻辑设计

- 一、组合逻辑控制单元框图
 - 1. CU 外特性

2. 节拍信号

10.1

二、微操作的节拍安排

10.1

采用同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

10.1

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用 时间较短 的微操作 尽量 安排在 一个节拍 内完成 并允许有先后顺序

2. 取指周期 微操作的 节拍安排

10.1

$$T_0 \qquad PC \longrightarrow MAR$$

$$1 \longrightarrow R$$

原则二

 $T_1 \qquad M (MAR) \longrightarrow MDR$

原则二

 $(PC) + 1 \longrightarrow PC$

 T_2 MDR \longrightarrow IR

原则三

 $\mathbf{OP}(\mathbf{IR}) \longrightarrow \mathbf{ID}$

3. 间址周期 微操作的 节拍安排

 T_0 Ad (IR) \longrightarrow MAR

 $1 \longrightarrow R$

 T_1 M (MAR) \longrightarrow MDR

 T_2 MDR \longrightarrow Ad (IR)

4. 执行周期 微操作的 节拍安排

10.1

① CLA
$$T_0$$

$$T_1$$

$$T_2 0 \longrightarrow AC$$
② COM T_0

$$T_1$$

$$T_2 \overline{AC} \longrightarrow AC$$
③ SHR T_0

$$T_1$$

$$T_2 L(AC) \longrightarrow R(AC)$$

$$AC_0 \longrightarrow AC_0$$

10.1 4 CSL T_0 T_1 $R(AC) \longrightarrow L(AC) \qquad AC_0 \longrightarrow AC_n$ (5) **STP** T_0 $T_2 \quad 0 \longrightarrow G$ (6) ADD X T_0 Ad (IR) →MAR $1 \rightarrow R$ T_1 M (MAR) \longrightarrow MDR T_2 (AC) + (MDR) \longrightarrow AC (7) STA X T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow W$ $AC \longrightarrow MDR$

 $MDR \longrightarrow M (MAR)$

$$\textcircled{8} \text{ LDA } X \qquad T_0 \qquad \text{Ad (IR)} \longrightarrow \text{MAR} \qquad 1 \longrightarrow R \qquad \textbf{10.1}$$

$$T_1$$
 M (MAR) \longrightarrow MDR

$$T_2$$
 MDR \longrightarrow AC

$$\bigcirc$$
 JMP X T_0

$$T_1$$

$$T_2$$
 Ad (IR) \longrightarrow PC

$$\bigcirc BAN X T_0$$

$$T_1$$

$$T_2$$
 $A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$

5. 中断周期 微操作的 节拍安排

10.1

$$T_0$$
 0 \longrightarrow MAR 1 \longrightarrow W 硬件关中断

$$T_1$$
 PC \longrightarrow MDR

$$T_2$$
 MDR \longrightarrow M (MAR) 向量地址 \longrightarrow PC

中断隐指令完成

10.1

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		PC → MAR						
			1 → R						
	T_1		$M(MAR) \rightarrow MDR$						
FE			$(PC)+1 \longrightarrow PC$						
取指	T_2		MDR→ IR						
			$OP(IR) \rightarrow ID$						
		I	1→ IND						
		// Ī	$1 \longrightarrow EX$						

10.1

1. 列出操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0	T	$Ad(IR) \longrightarrow MAR$						
			1 → R						
IND 间址	T_1		$M(MAR) \rightarrow MDR$						
	T_2		MDR→Ad (IR)						
		IND	$1 \longrightarrow EX$						

间址周期标志

10.1

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			$Ad(IR) \longrightarrow MAR$						
	T_0		$1 \longrightarrow R$						
			$1 \longrightarrow W$						
EX	T_1		$M(MAR) \rightarrow MDR$						
执行			AC→ MDR						
	T		$(AC)+(MDR)\rightarrow AC$						
			$MDR \longrightarrow M(MAR)$						
	T_2		MDR→AC						
			$0 \longrightarrow AC$						

10.1

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		PC → MAR	1	1	1	1	1	1
			$1 \longrightarrow R$	1	1	1	1	1	1
	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1
FE			$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1
取指	T_2		MDR→ IR	1	1	1	1	1	1
			$OP(IR) \longrightarrow ID$	1	1	1	1	1	1
		I	1→ IND			1	1	1	1
		Ī	$1 \longrightarrow EX$	1	1	1	1	1	1

10.1

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		$Ad(IR) \longrightarrow MAR$			1	1	1	1
			$1 \longrightarrow R$			1	1	1	1
IND 间址	T_1		$M(MAR) \rightarrow MDR$			1	1	1	1
1-171	T_2		MDR→Ad (IR)			1	1	1	1
		ĪND	$1 \longrightarrow EX$			1	1	1	1

10.1

1. 列出操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
			$Ad(IR) \longrightarrow MAR$			1	1	1	
	T_0		$1 \longrightarrow R$			1		1	
			$1 \longrightarrow W$				1		
EX	T_1		$M(MAR) \rightarrow MDR$			1		1	
执行			AC→ MDR				1		
	T		$(AC)+(MDR)\rightarrow AC$			1			
			$MDR \longrightarrow M(MAR)$				1		
	T_2		MDR→AC					1	
			$0 \longrightarrow AC$	1					

2. 写出微操作命令的最简表达式 10.1

```
M (MAR) \longrightarrow MDR

= FE \cdot T_1 + IND T_1 (ADD + STA + LDA + JMP + BAN)

+ EX T_1 (ADD +LDA)

= T_1 { FE + IND (ADD + STA + LDA + JMP + BAN)

+ EX (ADD +LDA) }
```

3. 画出逻辑图

10.1

特点

- ▶ 思路清晰,简单明了
- > 庞杂,调试困难,修改困难
- ➤ 速度快 (RISC)