

EFM

≡ Title	ENERGY-WEIGHTED FLOW MATCHING FOR OFFLINE REINFORCEMENT LEARNING
■ 日期	2024.09
血 发表单位	THU
a github	暂无
上次编辑	@2025年5月7日 14:59
≡ 备注	Sec.5 QIPO还没看
※ 状态	To see again
★ 重要程 度	***

PRELIMINARIES

METHODOLOGY

ENERGY-WEIGHTED FLOW MATCHING

WEIGHTED DIFFUSION MODELS

COMPARISON BETWEEN CEP AND CLASSIFIER (FREE) GUIDANCE

PRELIMINARIES

In order to ensure that the vector field \mathbf{v} generates the probability density path p_t , the following continuity equation (Villani et al., 2009) is required: 连续性方程

$$\frac{\mathrm{d}}{\mathrm{d}t} p_t(\mathbf{x}) + \mathrm{div} \cdot [p_t(\mathbf{x}) \mathbf{v}_t(\mathbf{x})] = 0, \quad \forall \mathbf{x} \in \mathbb{R}^d.$$
 (3.1)

The objective of flow matching is to learn a neural network $\mathbf{v}_t^{\boldsymbol{\theta}}$ to learn the ground truth vector field \mathbf{u}_t by minimizing their differences, i.e., $\mathcal{L}_{FM}(\boldsymbol{\theta}) = \mathbb{E}_{t,p_t(\mathbf{x})} \|\mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_t(\mathbf{x})\|_2^2$ with respect to the network parameter $\boldsymbol{\theta}$. However, it is infeasible to calculate the ground truth vector field \mathbf{u}_t . To address this issue, Lipman et al. (2022) suggests to match the *conditional vector field* $\mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)$ instead of the vector field $\mathbf{u}_t(\mathbf{x})$, as presented by the following theorem:

Theorem 3.1 (Theorem 1, 2; Lipman et al. 2022). Given the conditional vector field $\mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)$ that generates the conditional distribution $p_{t0}(\mathbf{x}|\mathbf{x}_0)$, then the "marginal" vector field $\mathbf{u}_t(\mathbf{x}) = \int_{\mathbf{x}_0} p_{0t}(\mathbf{x}_0|\mathbf{x})\mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)d\mathbf{x}_0$ generates the marginal distribution $p_t(\mathbf{x})$. In addition, up to a constant factor independent of θ , Flow Matching loss $\mathcal{L}_{FM}(\theta)$ and Conditional Flow Matching loss $\mathcal{L}_{CFM}(\theta)$ are equal, where

$$\mathcal{L}_{\text{FM}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\mathbf{x}} \|\mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_t(\mathbf{x})\|_2^2, \ \mathcal{L}_{\text{CFM}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\mathbf{x}_0,\mathbf{x}} \|\mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)\|_2^2, \tag{3.2}$$
 where $t \sim \lambda(t)$, \mathbf{x}_0 follows the data distribution $p_0(\cdot)$ and $\mathbf{x} \sim p_{t0}(\cdot|\mathbf{x}_0)$ where p_{t0} is generated by conditional vector field \mathbf{u}_{t0} . Hence $\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{FM}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text{CFM}}(\boldsymbol{\theta})$.

METHODOLOGY

ENERGY-WEIGHTED FLOW MATCHING

给定Conditional Flow $u_{t0}(x|x_0)$ 以及生成的条件概率路径 $p_{t0}(x|x_0)$

设Energy-Guided的目标分布为 $q_t(x) \propto p_t(x) \exp(-\mathcal{E}_t(x))$,则 $q_t(x)$ 由如下Flow生成

$$\hat{\mathbf{u}}_t(\mathbf{x}) = \int_{\mathbf{x}_0} p_{0t}(\mathbf{x}_0|\mathbf{x}) \mathbf{u}_t(\mathbf{x}|\mathbf{x}_0) rac{\exp(-eta \mathcal{E}(\mathbf{x}_0))}{\exp(-\mathcal{E}_t(\mathbf{x}))} d\mathbf{x}_0$$

为了拟合上述Flow,有如下定理

令

$$\mathcal{L}_{ ext{EFM}}(heta) = \mathbb{E}_{t,\mathbf{x}} \left[rac{\exp(-\mathcal{E}_t(\mathbf{x}))}{\mathbb{E}_{p_t(\mathbf{ ilde{x}})}[\exp(-\mathcal{E}_t(\mathbf{ ilde{x}}))]} \|\mathbf{v}_t^{ heta}(\mathbf{x}) - \hat{\mathbf{u}}_t(\mathbf{x})\|_2^2
ight]$$

以及

$$\mathcal{L}_{ ext{CEFM}}(heta) = \mathbb{E}_{t, \mathbf{x}, \mathbf{x}_0} \left[rac{\exp(-eta \mathcal{E}(\mathbf{x}_0))}{\mathbb{E}_{p_0(\widetilde{\mathbf{x}_0})}[\exp(-eta \mathcal{E}(\widetilde{\mathbf{x}_0}))]} \|\mathbf{v}_t^{ heta}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)\|_2^2
ight]$$

则有

$$abla_{ heta}\mathcal{L}_{ ext{EFM}}(heta) =
abla_{ heta}\mathcal{L}_{ ext{CEFM}}(heta)$$

将 $\mathcal{L}_{\text{CEFM}}(\theta)$ 中的 t, x_0 固定得到

$$\mathcal{L}_{ ext{CEFM}}(heta;t,\mathbf{x}) = \mathbb{E}_{p_{0t}(\mathbf{x}_0|\mathbf{x})} \left[rac{\exp(-eta \mathcal{E}(\mathbf{x}_0))}{\mathbb{E}_{p_0(\widetilde{\mathbf{x}_0})}[\exp(-eta \mathcal{E}(\widetilde{\mathbf{x}_0}))]} \|\mathbf{v}_t^{ heta}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)\|_2^2
ight]$$

直观上来说,能量值越低的样本在Loss里的权重越高,因此 $\mathbf{v}_t^{\theta}(\mathbf{x})$ 会更倾向于生成能量值低的样本;而原始的CFM则平等对待每一个样本,无先验偏好

此Loss亦可从Importance Sampling推导得到

Remark 4.6 (Connection with the importance sampling). The conditional weighted energy guided loss $\mathcal{L}_{\text{CEFM}}$ can be also interpreted from the importance sampling techniques. Suppose we can sample directly from the data $q_0(\mathbf{x}) \propto p_0(\mathbf{x}) \exp(-\beta \mathcal{E}(\mathbf{x}))$, minimizing the following loss \mathcal{L}_q will get a velocity field \mathbf{v}_t for generating distribution q_0

$$\mathcal{L}_q(\theta) = \mathbb{E}_{t,\mathbf{x}_0 \sim q_0(\mathbf{x}), \mathbf{x} \sim q_{t0}(\mathbf{x}|\mathbf{x}_0)} [\|\mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0)\|_2^2],$$

where $q_{t0}(\mathbf{x}|\mathbf{x}_0) = p_{t0}(\mathbf{x}|\mathbf{x}_0)$. Since , where Z is a constant, changing the data distribution from q_0 to p_0 yields that

$$\begin{split} \mathcal{L}_q(\theta) &= \mathbb{E}_{t, \mathbf{x}_0 \sim p_0(\mathbf{x}), \mathbf{x} \sim q_{t0}(\mathbf{x}|\mathbf{x}_0)} \left[\frac{q_0(\mathbf{x})}{p_0(\mathbf{x})} \| \mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0) \|_2^2 \right] \\ &= \mathbb{E}_{t, \mathbf{x}_0 \sim p_0(\mathbf{x}), \mathbf{x} \sim p_{t0}(\mathbf{x}|\mathbf{x}_0)} \left[\frac{\exp(-\beta \mathcal{E}(\mathbf{x}_0))}{\mathbb{E}_{p_0(\widetilde{\mathbf{x}}_0)}[\exp(-\beta \mathcal{E}(\widetilde{\mathbf{x}}_0)]} \| \mathbf{v}_t^{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{u}_{t0}(\mathbf{x}|\mathbf{x}_0) \|_2^2 \right] = \mathcal{L}_{\text{CEFM}}(\theta), \end{split}$$

where the second equation is given by $q_0(\mathbf{x}) = p_0(\mathbf{x}) \exp(-\beta \mathcal{E}(\mathbf{x})) / \mathbb{E}_{\mathbf{x}_0}[\exp(-\beta \mathcal{E}(\mathbf{x}_0))]$ according to Lemma B.1.

WEIGHTED DIFFUSION MODELS

回顾<u>CEP</u>,其Intermediate Energy-guided Term需要计算对能量函数的梯度,而如下推论 使得我们不再需要计算这个梯度

设
$$abla_{\mathbf{x}} \log q_t(\mathbf{x}) =
abla_{\mathbf{x}} \log p_t(\mathbf{x}) -
abla_{\mathbf{x}} \mathcal{E}_t(\mathbf{x})$$
且 $p_{t0}(\mathbf{x}|\mathbf{x}_0)$ Gaussian,则有

$$abla_{\mathbf{x}} \log q_t(\mathbf{x}) = \int_{\mathbf{x}_0} p_{0t}(\mathbf{x}_0|\mathbf{x})
abla_{\mathbf{x}} \log p_{t0}(\mathbf{x}|\mathbf{x}_0) rac{\exp(-eta \mathcal{E}(\mathbf{x}_0))}{\exp(-\mathcal{E}_t(\mathbf{x}))} d\mathbf{x}_0$$

利用上述推论可以得到拟合 $\nabla_{\mathbf{x}} \log q_t(\mathbf{x})$ 的Loss

$$egin{aligned} \mathcal{L}_{ ext{ED}}(heta) &= \mathbb{E}_{t,\mathbf{x}} \left[rac{\exp(-\mathcal{E}_t(\mathbf{x}))}{\mathbb{E}_{p_t(ilde{\mathbf{x}})}[\exp(-\mathcal{E}_t(ilde{\mathbf{x}}))]} \|\mathbf{s}_t^{ heta}(\mathbf{x}) -
abla_{\mathbf{x}} \log q_t(\mathbf{x}) \|_2^2
ight], \ \mathcal{L}_{ ext{CED}}(heta) &= \mathbb{E}_{t,\mathbf{x},\mathbf{x}_0} \left[rac{\exp(-eta \mathcal{E}(\mathbf{x}_0))}{\mathbb{E}_{p_0(ilde{\mathbf{x}}_0)}[\exp(-eta \mathcal{E}(ilde{\mathbf{x}}_0))]} \|\mathbf{s}_t^{ heta}(\mathbf{x}) -
abla_{\mathbf{x}} \log p_{t0}(\mathbf{x}|\mathbf{x}_0) \|_2^2
ight], \end{aligned}$$

满足

$$abla_{ heta}\mathcal{L}_{ ext{ED}}(heta) =
abla_{ heta}\mathcal{L}_{ ext{CED}}(heta)$$

至此,我们不再需要估计 $\nabla_{\mathbf{x}}\mathcal{E}_t(\mathbf{x}), \mathcal{E}_t(\mathbf{x})$

训练算法如下(非常EASY就可以部署)

Algorithm 1 Training Energy-Weighted Diffusion Model

Input: Score function $\mathbf{s}_t^{\boldsymbol{\theta}}(\cdot)$, schedule (μ_t, σ_t) , guidance scale β , batch size B, time weight $\lambda(t)$

- 1: for batch $\{\mathbf{x}_0^i, \mathcal{E}(\mathbf{x}_0^i)\}_i$ do
- 2: **for** index $i \in [B]$ **do**
- 3: Calculate guidance $g_i = \operatorname{softmax}(-\beta \mathcal{E}(\mathbf{x}_0^i)) = \exp(-\beta \mathcal{E}(\mathbf{x}_0^i)) / \sum_j \exp(-\beta \mathcal{E}(\mathbf{x}_0^j))$
- 4: Sample $t_i \sim U(0,1)$, calculate μ_{t_i}, σ_{t_i} , sample $\epsilon_i \sim \mathcal{N}(0, \mathbf{I}_d)$ and $\mathbf{x}_{t_i} = \mu_{t_i} \mathbf{x}_0^i + \sigma_{t_i} \epsilon_i$
- 5: end for
- 6: Calculate and take a gradient step using $\mathcal{L}_{CED}(\theta) = \sum_{i} \lambda(t_i) g_i \|\mathbf{s}_{t_i}^{\theta}(\mathbf{x}_{t_i}) + \epsilon_i / \sigma_{t_i}\|_2^2$.
- 7: end for

COMPARISON BETWEEN CEP AND CLASSIFIER (FREE) GUIDANCE

考虑
$$q_0(\mathbf{x}) \propto p_0(\mathbf{x}) p^{eta}(c|\mathbf{x})$$
,则有 $\mathcal{E}(\mathbf{x}) = -\log p(c|\mathbf{x})$

有如下引理成立

Lemma 4.10. Given the same guidance scale β and the same diffusion process, let the energy function be defined by $\mathcal{E}(\mathbf{x}) = -\log p(c|\mathbf{x})$, the score function for CG and CFG are both:

$$\nabla_{\mathbf{x}} \log q_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log \left[\mathbb{E}_{p_{0t}(\mathbf{x}_0|\mathbf{x})} p(c|\mathbf{x}_0) \right]^{\beta}, \tag{4.6}$$

while the score function for energy-weighted diffusion and CEP are both

$$\nabla_{\mathbf{x}} \log q_t(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log \mathbb{E}_{p_{0t}(\mathbf{x}_0|\mathbf{x})} p^{\beta}(c|\mathbf{x}_0). \tag{4.7}$$

这里用到

$$egin{aligned} p_t(c|\mathbf{x}_t) &= \int p_t(c|\mathbf{x}_0,\mathbf{x}_t) p_{0t}(\mathbf{x}_0|\mathbf{x}_t) \mathrm{d}\mathbf{x}_0 \ &= \mathbb{E}_{p_{0t}(\mathbf{x}_0|\mathbf{x}_t)} p(c|\mathbf{x}_0) \end{aligned}$$

其关系总结如下

Table 1: Comparison between guidance methods. *Exact Guidance?* means if the model can generate $p(\mathbf{x})p^{\beta}(c|\mathbf{x})$ when $\beta \neq 1$. *w/o Auxiliary Model?* means if the method can direct learn the guidance without auxiliary model (\checkmark) or not (\times).

Guidance	Exact Guidance?	w/o Auxiliary Model?
Classifier-guidance (Dhariwal & Nichol, 2021)	×	×
Classifier-free guidance (Ho & Salimans, 2021)	×	✓
Contrastive energy prediction (Lu et al., 2023)	✓	×
Energy-weighted diffusion (ours)	✓	✓