Outline

Research focuses

St. of the Ar

Results

Perspectives

Population Density Estimation from Mobile Data

Ghazaleh Khodabandelou

October 26, 2015

Outline

Outline

Research focuses

St. of the Art

Danulka

- Research focuses: inputs, goals, methods
- State of the art
- Preliminary results (Milano mobile phone data)

Research Focuses

Research focuses

Inputs: Mobile phone data + Census, land-use maps, users' activities/purpose, etc.

Goals:

- Quantifying crowd size: crowd disasters, events and anomaly detection, human mobility prediction, health, etc.
- Clustering: users' mobility patterns, type of infrastructures, activity patterns

Methods:

- Linear regression (simple, multiple), more complex methods
- Markov chain, Hidden Markov Models, more complex models

Quantifying crowd size with mobile phone and Twitter data¹

Input: Mobile phone and Twitter data

St. of the Art

■ Goal: Estimation of the number of people in a specific area at a given time

¹ Botta, Federico, Helen Susannah Moat, and Tobias Preis. Royal Society Open Science 2.5 (2015)

Quantifying crowd size with mobile phone and Twitter data

■ Method: Ordinary least-squares regression

St. of the Art

Results: Linear relationship between the # of people attending the football
matches and the volume of incoming and outgoing phone calls and SMS
messages,

Accurate estimation of the number of people in a given location and time

Relating land-use and human intra-city mobility²

Input: Land-use maps of the trip (origin-destination) + Purposes of people's trips + population density maps

■ Goal: Prediction of mobility patterns

St. of the Art

- Method: Markov process: Mobility model
 - Transition matrix between land-use types (capturing the trends)
 - Combining these observations with the gravity model to a model of human mobility

² Lee, Minjin, and Petter Holme. arXiv preprint arXiv:1505.07372 (2015) > 4 = > 4 = > = =

Relating land use and human intra-city mobility

- Results: Predicting the trip lengths, the population density
- (A) Average observed population density as a function of the population density predicted by the model
- (B) Average observed flux density as a function of the flux density predicted by the model

(A)

model population density

10-⁵

Dynamic population mapping using mobile phone data³

■ Goal: prediction of population density by MP & RS

St. of the Art

Method: Linear regression model with population-weighted least squares

Figure: Comparison of predicted population density datasets with baseline data

- MP relies on the density of towers (higher in urban areas)
- RS depends on geospatial datasets (cannot capture intraurban variations)

³ Deville, Pierre, et al., Proceedings of the National Academy of Sciences 111.45 (2014)

Dynamic population mapping using mobile phone data

- MP lower precision, especially in low-density areas
- **RS** higher precision but less accurate predictions (overestimation of ρ in $a_{low-density}$, underestimation of ρ in $a_{high-density}$)
- Normalized RMSE of both methods decreases with population density
- General increase of r values with population density
- RMSE (MP) > RMSE (RS) (except in high-density areas)

Comparing the performance of the MP & RS (Precision and accuracy assessments)

St. of the Art

RMSEs normalized by the average population density of intervals for MP, RS & COMB

A Comparative Evaluation of Urban Fabric Detection Techniques

Based on Mobile Traffic Data⁴

St. of the Art

Signature: representation of the typical mobile traffic observed at a unit area Signatures clustering \approx subscribers' activities clustering

Goals: Analyzing the different steps common to all urban fabric detection techniques:

	Soto	Cici	MWS
(1)Mobile traffic signa- ture	$S_a(wd,t)$ $S_a(we,t)$ Normalization (standard score)	$S_a(\mathbf{d},t)$, Filtering (FFT, IFFT), Seasonal Communication Series (SCS)	$s_a(mon,t) = \mu_{1/2}(\{v_a(d,t) d\in \mathbf{d}), \text{ standard score, daily normalization}$
(2) Distance between sig- natures	Euclidian $(d_{ab} = \hat{s}_a, \hat{s}_b)$	Pearson $(d_{ab}=1-p_{ab})$	Pearson, Euclid- ian
(3) Clustering of signatures	k-means (k=5, 10)	linkage(a whole family of solu- tions)	linkage

- Median Week Signature (MWS) is based on:
 - Mobile traffic activity within a one-week period $d^{mon} \bigcup ...d^{sun} = \mathbf{d}$
 - Median is more robust to outliers (not for average and absolute values)

Metrics: Density, coverage, Entropy, F-score → MWS-stdscr-pearsons

A Comparative Evaluation of Urban Fabric Detection Techniques Based on Mobile Traffic Data

St. of the Art

10 largest clusters identified identified through MWS-stdscr-pearson

Personalized routing for multitudes in smart cities⁵

Outline _____

Research focuses

St. of the Art

Perspective

(2015)

Capturing human mobility → understanding underlying patterns, designing intelligent systems

- Input: Mobile phone data
- **Goal:** An adaptive routing strategy considering constraints to recommend personalized routes
 - Constraints: Pollution layer, Event layer, Crime layer, Traffic layer
- **Method:** Defining a potential energy landscapes:
 - Constructing total constraint matrix by defining linear combination of constraints
 - Constructing a pairs of origin-destination probability matrix

⁵ De Domenico, Manlio, Antonio Lima, Marta C Gonzalez and Alex Arenas. EPJ Data Science 4, no. 1

Personalized routing for multitudes in smart cities

Outline Research focuses

St. of the Art

Results

Integration of diverse layers of constraints → Recommendations

Symbolic Transfer Entropy⁶

St of the Art

- Input: Micro-blogging data (key words)
- Golas: Mapping of influence networks (extracting networks of causal influence among different geographical sub-units before, during, and after collective social phenomena)
- Method: Symbolic transfer entropy quantifies the directional flow of information between two time series X and Y:
 - categorizing the signals in a small set of symbols or alphabet
 - computing from the relative frequency of symbols in each sequence \hat{X} and \hat{Y} the joint and conditional probabilities of the sequences indices (Shannon's entropy)

⁶ Staniek, Matthus, and Klaus Lehnertz, Physical Review Letters 100.15 (2008) = × 4 = × 9

Symbolic Transfer Entropy

Research focuses

St. of the Art

Results

Symbolic Transfer Entropy

Results:

Jutline

Research focuses

St. of the Art

Results

Results - Population Density & Number of Call-in Per Night

Outline

Research focuses

St. of the Art

Results

Results - Population Density & Number of Call-out Per Night

Outline

Research

St. of the Ar

Results

Results - Population Density & Number of SMS-in Per Night

Outline

Research

St. of the Art

Results

Results - Population Density & Number of SMS-out Per Night

Outline

Research

St. of the Ar

Results

Results - Population Density & Number of Call-in for Week Days

Outline

Research focuses

St. of the Art

Results

Perspectives

Outline

Research focuses

St. of the

Results

- Week-days, Week-end for whole dataset
- Applying a regression model fits better data distribution
- Mix of methods (e.g. Transfer Entropy + layers of constraints)
- **.**..