Which neighborhood fits you best?

Project 4
Real Estate Pricing Forecasting

Group 2: Anh Pham, Kathy Nguyen, Miguel Soriano, Robert Morris

Problem

Why finding the right home is challenging

- Complex influential factors
- Identifying affordable properties within homebuyers' criteria
- Understanding market trends

Solution

Smarter way to buy: Data-driven decisions

- Using Al to predict real estate home prices
- Categorize neighborhoods based on user defined preferences
- Develop interactive community dashboards
- Maintaining 75% accuracy within predictions

Objective and Methodology

Objective

- Forecast home prices based on historical data and external factors
- Provide a user-friendly tool for personalized recommendations
- Ensure accuracy and user satisfaction

Methodology

- Data cleaning Python Panda
- Model Training Scikit-learn
- Visualization Python Matplotlib, Tableau
- User Interface HTML/CSS, JavaScript, MongoDB Database

Data Sources and Cleaning

Data sources: from Kaggle

- Primary Dataset:
 - Housing Price Dataset (more than 21.613 entries)
- Supplementary Datasets:
 - Crime Rates by City and State
 - Average income by Zip Code
 - US City Zip Code Data

Data cleaning:

- Data Cleaning and Preparation:
 Remove inconsistencies, convert data to correct data types
- Merge Datasets: Merge some supplementary dataset to get strong features collerating to price
- Feature Engineering: Create new factors, detect outliers

Model Building and Analysis

Model building:

- First test: with 18 features -> Identify strong/weak features
- Second test: with 4 features
- Select the best model: Use GridSearchCV

Model	best_score
linear_regression	0.744857
lasso	0.744803
decision_tree	0.671300

⇒ Model for prediction: Linear Regression

Correlation Analysis

Dashboard Demo

~75%

Model Performance

- Achieved ~75% accuracy using Linear Regression
- Tested 18 features, narrowed down to top 4 via correlation analysis
 - Used GridSearchCV to confirm best model: Linear Regression

Conclusion

Key Takeaways

- Data-driven models simplify complex home-buying decisions
- Neighborhood insights based on user preferences and market data
- Transparent, accurate predictions build user trust

Final Thought

Smarter real estate choices start with the right data.

Questions?