Paper Reading Seminar

Yan Wang

October 3, 2012

Image Matching via Saliency Region Correspondences

Intuition

- ▶ Segmentation is not perfect. Weak connections ⇒ graph-based segmentation (NCut)
- Matching is not perfect. Weak connections ⇒ spatial consistency check
- Combine the two tasks together ⇒ use a single graph to get a joint optimal
- ► Encoding context in the matching process ⇒ no need for spatial consistency check

Outline

- Formulation
- Optimization
- Features

Formulation

- Graph formulation
 - Vertex: pixel
 - Layer: two-layer, one for each image
 - Intra-layer edges: how strongly the pixels are similar (connected) in this image
 - Inter-layer edges: how strongly the pixels are similar (connected) across images

Formulation

Intra-layer optimization goal

$$\max_{v} \frac{v_1^T W_1 v_1 + v_2^T W_2 v_2}{v^T D v}$$

- Binary segmentation problem (extend to multi-class with 1-vs-all binary mask)
- ▶ Each segment should be internally consistent $\Rightarrow v_1^T W_1 v_1$. Only if v_{1j}, v_{1k} both positive, will $W_{1(i,j)}$ be counted
- ▶ $v_i = \{0, 1\}^{n_i}, \sum_j v_{ij} = 1$, indicator vector for image i, pixel j, and cluster k, $v = [v_1^T, v_2^T]^T$
- Normalize on the size: $\sum_{j} v_{1j}^{T} W_1 = \mathbf{1}^T W_1 = D_1$

Formumation

Inter-layer optimization goal

$$\max_{v} \frac{v_1^T C v_2}{v^T D v}$$

- "Co-saliency" regions (where $v_{ij} = v_{ik}$) should be similar
- ► Also normalize on size
- Use "context" to refine segmentation as well as matching

Formulation and optimization

Final optimization goal

$$F(v^{(c)}, C) = IntralS(v^{(c)}, C) + InterlS(v^{(c)}, C)$$

 $v^{(c)}$: binary segmentation result for the cth segment.

- Relaxation for optimizaiton
 - v to real vector
 - ▶ Joint "soft" segmentation result V (set of eigenvectors) lies in the subspace spanned by the individual "soft" segmentation results S₁ and S₂.
 - Relax the synchronization with orthogonal constraints.
 - ► EM iterative optimization, with no explicit proof of convergence (in some speicial cases, EM algorithms can arrive in stationary points)

Features

- MSER detector + SIFT descriptor
- ▶ Intra-image W
 - ➤ x, y are considered in the same segment ⇔ no edges with large magnitude spatially separate them
 - Edge detection with large magnitude ⇒ get W
- ▶ Inter-image C
 - ▶ 1. Feature detection: also consider the ellipse (orientation/scale) from the detector
 - 2. Feature matching
 - ▶ 2.0 Simplest pixel-wise matching: Gaussian kernel + descriptor + ellipse matrix

$$m_{x,y}(p,q) = e^{-\|d_p - d_q\|^2/\sigma_i^2} e^{-\|H_p(x) - H_q(y)\|^2/\sigma_p^2}$$

Features

- ▶ Inter-image *C*
 - ▶ 2.1 Adopt patch-wise feature matching score as pixel-wise score for *C*

$$M_{x,y} = \max\{m_{x,y}(p,q) \mid p \in P, q \in Q, x \in R_p, y \in R_q\}$$

One point can be involved in multiple MSER interest regions. For every point pair x, y, check all the MSER pairs (with different H settings), and pick up the highest matching score

▶ 2.2 Compute patch-wise similarity matrix *M*, and then normalize to *C*

$$D_1^{-1/2}CD_2^{-1/2} = P \circ M$$