MATH 576 Homework 7

Problem 1 Let m be a positive integer. Let $G = \{0 \mid *m\}$. Prove that $G \not\geq *m$, but G > *k whenever k is a nonnegative integer and $k \neq m$.

We first show that $G - *m = \{0 \mid *m\} - *m = \{0 \mid *m\} + *m \in \mathcal{N}$. If L goes first, they can move to $\{0 \mid *m\}$. Then, R must move to *m, and then L can win by moving to *0 = 0. On the other hand, if R goes first, they can win immediately by moving to *m + *m = *0 = 0. So $G + *m \in \mathcal{N}$ and thus $G \not\geq *m$.

Now, let k be a non-negative integer with $m \neq k$. We show that $G - *k = \{0 \mid *m\} - *k = \{0 \mid *m\} + *k \in \mathcal{L}$. If L goes first, they can move $\{0 \mid *m\}$ as before. Then, R must move to *m, and then L can win by moving to *0. However, consider if R goes first. If they move to $\{0 \mid *m\} + *(k')$ for some 0 < k' < k, L can move to $\{0 \mid *m\}$ and win as before. If R moves to $\{0 \mid *m\}$, L can move to 0 and win. Finally, if R moves to *m + *k, L can move to *m + *m = 0 if $m \leq k$ and *k + *k = 0 if m > k and win in either case. So $G - *k \in \mathcal{L}$ and thus G > *k.

Problem 2 Let x_1 and x_2 be numbers with $x_1 > x_2 > 0$. Determine the Left and Right stops and the confusion interval of the game

$$\pm x_1 \pm x_2$$
.

From Theorem 14.1.1, we have $\pm x_1 \pm x_2 = \{\{x_1 + x_2 \mid x_1 - x_2\} \mid \{-x_1 + x_2 \mid -x_1 - x_2\}\}$. So we have

$$L(\pm x_1 \pm x_2) = L(\{\{x_1 + x_2 \mid x_1 - x_2\} \mid \{-x_1 + x_2 \mid -x_1 - x_2\}\})$$

$$= R(\{x_1 + x_2 \mid x_1 - x_2\})$$

$$= L(x_1 - x_2)$$

$$= x_1 - x_2$$

and

$$R(\pm x_1 \pm x_2) = R(\{\{x_1 + x_2 \mid x_1 - x_2\} \mid \{-x_1 + x_2 \mid -x_1 - x_2\}\})$$

$$= L(\{-x_1 + x_2 \mid -x_1 - x_2\})$$

$$= R(-x_1 + x_2)$$

$$= -x_1 + x_2.$$

We now check if $\pm x_1 \pm x_2 - (x_1 - x_2) \in \mathcal{N}$. We note that if L goes first, they will move to $\{x_1 + x_2 \mid x_1 - x_2\} - x_1 + x_2$, and R will respond by moving to $x_1 - x_2 - x_1 + x_2 = 0$ and winning. So the position is in \mathcal{P}^R , and thus it is not true that $\pm x_1 \pm x_2 \not\geq x_1 - x_2$. Similar reasoning shows that $\pm x_1 \pm x_2 - (-x_1 + x_2) \not\in \mathcal{N}$: if R goes first, they will move to $\{-x_1 + x_2 \mid -x_1 - x_2\} + x_1 - x_2$, and L will respond by moving to $-x_1 + x_2 + x_1 - x_2 = 0$ and winning. So it is not true that $\pm x_1 \pm x_2 \not\geq -x_1 + x_2$.

Therefore, the confusion interval of $\pm x_1 \pm x_2$ is $(-x_1 + x_2, x_1 - x_2)$.

Nathan Bickel

Problem 3 Let x > 0 be a number and let m be a positive integer. Prove that $+_x \ngeq *m$. On the other hand, if $m \ge 2$, give an example of a game G > 0 such that $+_G > *m$.

We first show that $+_x - *m = +_x + *m = \{0 \mid \{0 \mid -x\}\} + *m \in \mathcal{N}$. If L moves first, they can win by moving to $+_x \in \mathcal{L}$. If R moves first, they can move to $\{0 \mid -x\} + *m$. Then, if L moves to 0 + *m = *m, R can win by moving to 0, and if L moves to $\{0 \mid -x\} + *k$ for some k < m, R can win by moving to -x + *k, which we have showed in a previous homework is in R. So $+_x \not\geq *m$.

We claim that for all $m \geq 2$, we have $+_{\uparrow} > *m$. We show that

$$+\uparrow -*m = +\uparrow +*m = \{0 \mid \{0 \mid -\uparrow \}\} +*m = \{0 \mid \{0 \mid \downarrow \}\} +*m = \{0 \mid \{0 \mid \{* \mid 0\}\}\} +*m \in \mathcal{L}.$$

If L moves first, they can win by taking all m tokens and moving to $+_{\uparrow} \in \mathcal{L}$. So $+_{\uparrow} - *m \in \mathcal{N}^{L}$.

If R moves first to $\{0 \mid \{* \mid 0\}\} + *m$, L can move to $\{0 \mid \{* \mid 0\}\} + *$. Then, if R moves to $\{0 \mid \{* \mid 0\}\}$, L wins by moving to 0, and if R moves to $\{* \mid 0\} + *$, L wins by moving to * + * = 0. If R instead moves first to $+_{\uparrow} + *k$ for some k < m, L is winning if k = 0 and L can move to $+_{\uparrow} \in \mathcal{L}$ if k > 0. So $+_{\uparrow} - *m \in \mathcal{P}^L$.

Thus,
$$+_{\uparrow} - *m \in \mathcal{N}^L \cap \mathcal{P}^L = \mathcal{L}$$
, and so $+_{\uparrow} > *m$.

Problem 4 Let n be a positive integer and let x and y be numbers with x > y > 0. Prove that

$$n \cdot +_x < +_y$$
.

We first prove a lemma: we claim for all $n \ge 0$, we have $n \cdot +_x + \{y \mid 0\} \in \mathcal{N}^R$. We prove this by induction on n. The base case follows from $\{y \mid 0\} \in \mathcal{N}^R$ (R wins by moving to 0). Let n > 0, and suppose

$$(n-1)\cdot +_x + \{y \mid 0\} \in \mathcal{N}^R.$$

Suppose R moves first in $n \cdot +_x + \{y \mid 0\}$. R can move to $(n-1) \cdot +_x + \{0 \mid -x\} + \{y \mid 0\}$. Then, L's only hope is to move to $(n-1)\cdot +_x + \{y \mid 0\}$, for if they do not, R can move to -x and gain an insurmountable advantage (as -x is less than the sum of y and any finite number of infinitesimals). But $(n-1) \cdot +_x + \{y \mid 0\} \in \mathcal{N}^R$ by the induction hypothesis, so R is winning and thus $n \cdot +_x + \{y \mid 0\} \in \mathcal{N}^R$.

We now show that $n \cdot +_x + -_y = n \cdot +_x - +_y \in \mathcal{R}$. We proceed by induction on n. The base case follows from $-y \in \mathcal{R}$. Let n > 0, and suppose we have $(n-1) \cdot +_x + -y \in \mathcal{R}$. We have

$$n \cdot +_x + -_y = n \cdot \{0 \mid \{0 \mid -x\}\} + \{\{y \mid 0\} \mid 0\}.$$

Suppose L moves first. They should not move to $n \cdot +_x + \{y \mid 0\}$ by the lemma, but all their other options are to $0 + (n-1) \cdot \{0 \mid \{0 \mid -x\}\} + \{\{y \mid 0\} \mid 0\} = (n-1) \cdot +_x + -_y$, which is in \mathbb{R} by the induction hypothesis. So $n \cdot +_x + -_y \in \mathcal{P}^R$.

Suppose R moves first. They can move to $\{0 \mid -x\} + (n-1) \cdot +_x + -y$. Then, L's only hope is to move to $(n-1)\cdot +_x + -_y$ for the same reason as in the lemma: if they do not, R can move to -x in $\{0 \mid -x\}$ and gain an insurmountable advantage. But $(n-1) \cdot +_x + -_y \in \mathcal{R}$ by the induction hypothesis, so L is losing regardless. So $n \cdot +_x + -_y \in \mathcal{N}^R$.

Therefore, $n \cdot +_x + -_y \in \mathcal{P}^R \cap \mathcal{N}^R = \mathcal{R}$, and we have $n \cdot +_x < +_y$.

Problem 5 Let $G = \{-1 \mid \{1 \mid 0\}, 1\}$. Explain why the argument below showing that L(G) = 0 and R(G) = 1 is wrong and give an argument correctly determining what L(G) and R(G) are.

Proof. We have L(G) = R(-1) = 0, since -1 is an infinitesimal. Similarly, $R(G) = \min\{L(\{1 \mid 0\}), L(1)\}$. But L(1) = 1 and $L(\{1 \mid 0\}) = R(1) = 1$, so

$$R(G) = \min\{1, 1\} = 1.$$

The definition of L(G) and R(G) state that L(G) = R(G) = G if G is a number and have an alternate definition otherwise. The argument assumes the alternate definition holds, which is not necessarily true if G is a number.

In fact, G is a number: in particular, $G \in \mathcal{P}$, so G = 0. To see this, note that if L moves first, they must move to $-1 \in \mathcal{R}$. Also, if R moves first, they must move to $1 \in \mathcal{L}$ or to $\{1 \mid 0\}$, and if they move to $\{1 \mid 0\}$, L can win by moving to $1 \in \mathcal{L}$. So $G \in \mathcal{P}^R \cap \mathcal{P}^L = \mathcal{P}$, so we have G = 0 and therefore L(G) = R(G) = 0. \square