Project Design Brief

Project
Name

미세먼지 데이터 시각화 웹 서비스 개발

04 조

202202552 김경민 202202570 김은수 202202605 심여민

지도교수: 원유재 교수님 (서명)

1

Document Revision History

Rev#	DATE	AFFECIED SECTION	AUTHOR
1	2025/03/13	1 ~ 8	김경민, 김은
			수, 심여민
2	2025/3/14	3 ~ 7	김경민, 김은 수, 심여민
			수, 심여민

Table of Contents

1	프로젝트 주제 이름
5	
2	대상 이해당사자
(STAKEHOLDER)	5
3০);	해당사자의 고충(PAIN POINT) 또는 니즈
(NEEDS)	5
4 6	이해당사자의 이유
5 8	프로젝트 수행자의 의도
69	탐구 내용 및 기대 결과
7 11	프로젝트 관련 학습 계획
8 프로젝 ¹	트 관련 현장방문 / 인터뷰 / 관찰 계획

List of Figure

그림 목차 항목을 찾을 수 없습니다.

1. 프로젝트 주제 이름

"미세먼지 데이터 시각화 웹 서비스 개발"

2. 대상 이해당사자 (stakeholder)

일반 사용자: 미세먼지 정보가 필요한 시민 (예: 학생, 직장인, 노약자 등)

환경 기관: 환경 보호 및 대기 질 개선을 목표로 하는 정부 기관

개발자 및 연구원: 미세먼지 데이터를 연구하는 전문가

3. 이해당사자의 고충(pain point) 또는 니즈 (needs)

일반 사용자: 미세먼지 수치가 높을 때 어떻게 행동해야 할지 모름.

고충	니즈
미세먼지 정보가 너무 복잡해서 이해하기	직관적인 시각화(지도, 그래프) 제공
어려움 (수치만으로는 체감이 잘 되지 않음)	
미세먼지가 나쁠 때 어떻게 행동해야 할지	미세먼지 농도별 행동 가이드 제공
모름	
실시간으로 쉽게 접근할 수 있는 정보 부족	미세먼지 예측 기능 (미래 정보 제공)

환경 사용자: 미세먼지 정보를 더 효과적으로 전달하고 싶음.

고충	니즈
공공 데이터는 제공하지만 사용자 활용도가	지역별 미세먼지 히트맵, 계절별 트렌드
낮음	그래프로 사용자 친화적인 인터페이스 제공
미세먼지 관련 경고/공지 전달이 어려움	미세먼지 알림/공지 시스템 도입

개발자 및 연구원: 미세먼지 데이터를 분석하고 싶지만 자료가 부족하거나 가공이 어려움.

고충	니즈	
여러 기관의 데이터를 통합해서 분석하기	데이터 정제 및 분석 기능 제공/데이터	
어려움	패턴 분석을 위한 인터랙티브 시각화 제공	
연구 결과를 직관적으로 전달하기 어려움	연구 결과를 시각화된 대시보드 및 그래프,	
	차트로 표현하는 기능 제공	

4. 이해당사자의 이유

일반 사용자: 건강을 위해 미세먼지를 피해야 하지만, 실시간 정보를 알기 어려움

- 1. 미세먼지 정보가 너무 복잡해서 이해하기 어려움 (수치만으로 체감이 잘 되지 않음)
 - 일반적인 미세먼지 데이터는 PM2.5, PM10 같은 수치로 제공되지만, 이러한 값이 얼마나 나쁜지 직관적으로 이해하기 어려움
 - o "PM2.5가 75면 심각한 건가?" 같은 의문이 생김
 - 사용자는 단순한 숫자가 아니라 색상(좋음/보통/나쁨), 지도(히트맵), 그래프 같은 형태로 정보를 보고 싶어 함
- 2. 미세먼지가 나쁠 때 어떻게 행동해야 할지 모름
 - 미세먼지 수치가 높아도 정확히 어떤 행동을 해야 하는지 알기 어려움
 - 예를 들어, "PM2.5가 100 이상이면 실외 활동을 자제해야 하나?", "마스크를 꼭 써야 하는지?" 같은 고민이 생김
 - 사용자는 현재 미세먼지 상태에 따라 구체적인 행동 가이드(마스크 착용, 환기 여부, 실내 운동 권장 등)를 원함
- 3. 실시간으로 쉽게 접근할 수 있는 정보 부족
 - 미세먼지 농도는 시간대별로 변동이 크지만, 현재 서비스들은 과거 데이터만 제공하는 경우가 많음
 - 사용자는 "지금 미세먼지가 안 좋으면 몇 시간 후에는 나아질까?" 같은 예측 정보를 알고 싶어 함
 - 미세먼지 예보가 제공되면, 미리 대비할 수 있어 생활 패턴을 조정하는 데 도움 됨

환경 기관: 환경 공공 기관에서 사용자들에게 가시성있는 시각화 서비스를 제공하지 못해 사용자들의 이해에 어려움이 있음

- 1. 공공 데이터를 제공하지만 사용자 활용도가 낮음
 - 환경 기관(예: 환경부, 기상청)은 미세먼지 데이터를 공식적으로 제공하지만, 일반 사용자들이 쉽게 이해하고 활용하기 어려움
 - 현재 제공되는 데이터는 텍스트 위주의 정보로 구성되어 있어, 직관적인
 시각화 부족
 - o 기관 입장에서는 데이터를 제공하는 것뿐만 아니라, 사용자들이 실생활에서 이를 활용하도록 유도하는 것이 중요

개발자 및 연구원: 정제된 미세먼지 데이터가 부족하여 연구에 어려움이 있음

- 1. 기존 미세먼지 데이터가 정리되어 있지 않아 연구하기 어려움
 - 미세먼지 데이터를 연구하려면 다양한 기관(환경부, 기상청, AQICN 등)에서 제공하는 데이터를 수집해야 함
 - 그러나 기관마다 데이터 형식, 단위, 제공 방식이 다름
 → 이를 직접 변환하고 정리하는 데 시간이 많이 걸림
 - o 연구자들은 일관된 형식으로 정제된 데이터셋을 원함
- 2. 데이터를 분석 및 시각화하기 위한 도구 부족
 - 연구자들은 데이터를 단순히 저장하는 것뿐만 아니라 분석, 시각화해야 함
 - ㅇ 하지만 데이터 시각화 도구를 직접 개발하는 것은 많은 시간이 걸림
 - 연구자가 쉽게 사용할 수 있는 미세먼지 분석 및 시각화 툴(API, 대시보드 등)이 있다면 연구 효율이 증가할 것

5. 프로젝트 수행자의 의도

- 1. 시민들이 미세먼지 정보를 쉽게 이해하고 실시간으로 정보를 얻고 대비할 수 있도록 하기 위해
 - 단순 수치 제공이 아니라, 미세먼지 패턴을 직관적으로 분석하고 시각화하여 행동 가이드를 제공
 - o 미세먼지의 시간대별·계절별 변화와 공간적 차이를 한눈에 볼 수 있는 인터랙티브 지도, 그래프 제공
 - 실시간 데이터 분석 및 시각화 대시보드를 제공하여 즉각적인 대응을 가능하게 함
 - 미세먼지 농도 변화 패턴을 예측 모델을 활용한 시각적 트렌드 분석으로 제공
- 2. 데이터 분석과 시각화 기술을 활용하여 의미 있는 프로젝트를 만들고자 함
 - 기존 미세먼지 데이터 서비스들은 패턴 분석 기능이 부족하고 시각화가 제한적 → 이를 개선하는 것이 목표
 - 빅데이터를 활용한 미세먼지 패턴 분석, 시각화 및 예측 기능을 구현하여 기술적 도전
- 3. 백엔드, 웹, 연동, 배포 등 심화된 기능을 개발하기에 적합한 데이터셋을 활용하고자함
 - 미세먼지 데이터는 다양한 변수를 포함하며, 시각화와 분석이 중요한 대표적인 공공 데이터임
 - 웹과 백엔드를 연동하여 실시간 데이터 수집, 분석, 시각화를 통합적으로 구현할 수 있음

6. 탐구 내용 및 기대 결과

탐구 내용: 다양한 시각화 방법, 배포, 본격적 백엔드, 데이터셋 구축, AI 사용한 예측 서비스

- 1. 시각화의 의미 및 필요성
 - 시각화(Visualization)란?
 - 데이터 시각화의 필요성
 - 미세먼지 데이터 특성상 시각화가 중요한 이유
- 2. 시각화 시 고려해야 할 요소
 - 1) 데이터 유형에 따른 최적의 시각화 기법

데이터 유형	적절한 시각화 방법
시간별 미세먼지 변화 (시계열	라인 차트(꺾은선 그래프),
데이터)	히스토그램
지역별 미세먼지 농도 비교	히트맵, 지도
미세먼지 농도 등급별 구분	색상 코드
예측 데이터(미래 미세먼지 예보)	선형 예측 그래프, 애니메이션
	변화 시각화
실시간 공기질 변화	WebSocket 기반 동적 시각화(
	예: 애니메이션 변화 지도)

- 3. 데이터 분석 후 적용할 시각화 기술 및 기법 집중 탐구
 - 지도 기반 시각화 (Geospatial Visualization)
 - 기술: Google Maps API, Leaflet.js, Mapbox
 - 설명: 지역별 미세먼지 수치를 색상(좋음-파랑, 나쁨-빨강)으로 구분하여 히트맵으로 시각화

시간별 미세먼지 변화 (시계열 데이터 시각화)

- 기술: D3.js, Chart.js
- 설명: 시간 흐름에 따른 미세먼지 변화를 꺾은선 그래프(Line Chart)로 표현 미세먼지 예측 시각화 (머신러닝 적용)
- 기술: Python 기반 Matplotlib, Seaborn
- 설명: LSTM 모델을 활용하여 예측된 미세먼지 농도를 예측 곡선 형태로 시각화

사용자 맞춤형 시각화 (필요한 정보만 강조)

- UI 개선: 필요 없는 데이터를 제거하고, 사용자 맞춤형 필터링 적용
- 예: "현재 내 위치에서 미세먼지 상태만 확인" 기능 제공
- 4. 미세먼지 데이터 시각화 서비스 기획

핵심기능:

기능	설명	시각화 기법
실시간 미세먼지 지도	현재 위치를 기반으로	지도 기반 히트맵
	지역별 공기질 표시	
시간별 변화 그래프	하루 동안의 미세먼지	꺾은선 그래프
	변화를 확인	
미세먼지 예측 모델	머신러닝을 활용한 미래	예측 그래프
	미세먼지 예측	
맞춤형 알림 시스템	사용자의 환경에 따라	데이터 필터링 +
	미세먼지 경보 알림	애니메이션 변화

기대 결과 : AI 사용한 예측 서비스 개발, 성공적 배포, 사용자 친화적 웹 서비스, 논문,

예측 기능, 미세먼지 데이터를 가장 직관적으로 이해할 수 있는 방식으

로

시각화, 사용자가 빠르게 현재 상태 파악하고 적절한 조치 결정할 수 있

도록

함.

정량적

- 배포 시 사용자 150명 달성
- 데이터셋 3개
- 정확도 85%

정성적

- 기업에서 사용할 수 있도록 연계
- ui/ux 사용자 친화적으로 명확하게 만들기

7. 프로젝트 관련 학습 계획

학습할 내용	기간	역할 분담
미세먼지 관련 논문 탐색	2주	팀원 협력
데이터셋 수집 후 유형 분석		
(지역별/시간별/제공 형태		
등)		
유형 분석 결과 바탕으로 데		
이터 시각화 방법 선택 및		
집중 탐구		
선행 논문 바탕으로 프로젝	2주	팀원 협력
트에 사용 또는 추가할		
아이디어 선택		
아이디어 구현 방법 및 활용		
방안 탐색 (API, 기능,		
시각화)		
백엔드_FastAPI 또는		김경민
Express.js 학습 및 서버 개발		
백엔드_PostgreSQL 또는		김은수
MongoDB 학습 및 데이터		
저장 구조 설계	2주	
백엔드_API 문서화(Swagger,		심여민
Postman) 및 배포(AWS,		
Heroku)		
프론트_React.js 및 Next.js		김은수
기본 학습		
프론트_지도 기반 미세먼지		김경민
시각화(Leaflet.js, Google	2주	
Maps API 등)		
프론트_차트 및 그래프 활용		심여민
(D3.js, Chart.js)		

ML_Python 기반 머신러닝		김경민
모델(LSTM, Random Forest,		
XGBoost 등) 학습		
ML_미세먼지 예측을 위한	2주	김은수
시간별 데이터 처리 및 학습		
ML_모델 평가 지표(심여민
G-MEAN, RMSE 등) 활용하여		
성능 개선		

8. 프로젝트 관련 현장방문 / 인터뷰 / 관찰 계획

조사할 내용	기간	역할 분담
사용자 대상 인터뷰 (미세먼지 정보 활용 실태 조사)	1~2주차	
- 일반 시민, 학생, 직장인, 노약자 등 다양한 계층 대상		
미세먼지 정보 활용 실태 조사		
- 현재 사용하는 미세먼지 정보 서비스(앱, 웹사이트)와		
불편한 점 확인		
- "미세먼지 예측 및 알림 서비스가 있다면 사용할		
의향이 있는가?" 조사		
기존 서비스 분석 (AirVisual, DustToday 등)	2~3주차	
- 기존 미세먼지 서비스들의 장점과 단점 분석		
- 데이터 시각화 방식(지도, 그래프 등) 조사		팀원 협력
- 차별화할 수 있는 기능 및 UX 개선점 도출		
미세먼지 데이터 제공 기관 (환경부, 기상청) 인터뷰	3~4주차	
- 환경부, 기상청에서 제공하는 미세먼지 데이터의 갱신		
주기, 정확도, 활용 방법, 취득 방법 조사		
- 실시간 API 데이터의 한계 및 개선점 확인		
- 향후 데이터 협력 가능 여부 논의		