

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 14

ACOPLAMENTOS LIGADOS POR ATRITO

Professor: Dr. Paulo Sergio Olivio Filho

OBJETIVOS

- Acoplamentos Ligados por Atrito
- Tolerâncias de eixos e furos
- Dimensionamento com base nas pressões
- Calculo IT

ACOPLAMENTOS

- o <u>Ligações por atrito</u>:
 - o Ajuste prensado
 - Elementos intermediários (anéis cônicos)

- o <u>Ligações por adesão</u>:
 - o Colas, soldas

- o <u>Ligações por forma</u>:
 - Chavetas e eixos estriados

TIPOS DE LIGAÇÃO

OINTERFERÊNCIA

- ODiâmetro do cubo ligeiramente menor que o diâmetro do eixo.
- OAs duas partes são forçadas juntamente em uma prensa, de preferência com óleo lubrificante aplicado à junta.
- OA deflexão elástica do eixo e do cubo atua no sentido de criar grandes forças normais e de atrito entre as partes
- OA força de atrito transmite o torque do eixo ao cubo e resiste igualmente a movimentos axiais

TIPOS DE LIGAÇÃO

OSomente peças relativamente pequenas podem ser ajustadas por pressão sem exceder a capacidade de força de uma prensa típica de oficina mecânica.

oPara peças grandes, um ajuste por encolhimento pode ser feito aquecendo-se o o cubo para expandir seu diâmetro interno e/ou um ajuste por expansão pode ser feito resfriando-se o eixo para reduzir seu diâmetro.

OAs peças quentes e frias podem ser escorregadas juntas com uma pequena força axial, e quando elas entrarem em equilíbrio com a temperatura ambiente, suas variações dimensionais vão criar a interferência desejada para contato por atrito

TIPOS DE LIGAÇÃO

OA quantidade de interferência necessária para criar uma junta apertada varia com o diâmetro do eixo.

O típico é aproximadamente 0,001 a 0,002 unidades de interferência diametral por unidade de diâmetro do eixo (a regra dos milésimos), as quantidades menores sendo usadas com diâmetros de eixo maiores. Por exemplo, a interferência para um diâmetro de 2 in seria cerca de 0,004 in, mas um diâmetro de 8 in receberia somente cerca de 0,009 a 0,010 in de interferência.

OUma outra regra de memória de usinagem (e mais simples) é usar 0,001 in de interferência para diâmetros até 1 in e 0,002 in para diâmetros de 1 até 4 in.

 O cubo experimenta as mesmas tensões que um cilindro de parede grossa sujeito à pressão interna

$$p = \frac{0.5\delta}{\frac{r}{E_o} \left(\frac{r_o^2 + r^2}{r_o^2 - r^2} + v_o\right) + \frac{r}{E_i} \left(\frac{r^2 + r_i^2}{r^2 - r_i^2} - v_i\right)}$$

Onde

 $\delta = 2\Delta r$ É a interferência diametral entre as duas peças

r é o raio nominal da interface entre as peças

ri é o raio interno (se houver) de um eixo vazado e ro é o raio externo do cubo

O torque que pode ser transmitido por ajuste por interferência pode ser definido em termos da pressão p na interface, o que cria uma força de atrito no raio do eixo.

$$T = 2\pi r^2 \mu p l$$

Onde:

I é o comprimento do cubo engajado, r é o raio do eixo e μ é o coeficiente de atrito entre o eixo e o cubo.

A padronização da AGMA sugere um valor de 0,12 $\leq \mu \leq 0,15$ para cubos expandidos hidraulicamente e 0,15 $< \mu < 0,20$ para cubos de ajuste por encolhimento ou pressão.

$$p = \frac{0.5\delta}{\frac{r}{E_o} \left(\frac{r_o^2 + r^2}{r_o^2 - r^2} + v_o\right) + \frac{r}{E_i} \left(\frac{r^2 + r_i^2}{r^2 - r_i^2} - v_i\right)}$$

$$T = 2\pi r^2 \mu p l$$

Equações podem ser combinadas para dar uma expressão que defina o torque que se pode obter para uma deformação, coeficiente de atrito e geometria particulares.

$$T = \frac{\pi l r \mu \delta}{\frac{1}{E_o} \left(\frac{r_o^2 + r^2}{r_o^2 - r^2} + \nu_o \right) + \frac{1}{E_i} \left(\frac{r^2 + r_i^2}{r^2 - r_i^2} - \nu_i \right)}$$

A pressão p é usada nas Equações 4.47 (tensões em cilindros-Norton) para encontrar as tensões radial e tangencial em cada peça. Para o eixo:

$$\sigma_{t_{eixo}} = -p \frac{r^2 + r_i^2}{r^2 - r_i^2}$$
$$\sigma_{r_{eixo}} = -p$$

Onde:

ri é o raio interno de um eixo vazado

Para o cubo:

$$\sigma_{t_{cubo}} = p \frac{r_o^2 + r^2}{r_o^2 - r^2}$$
$$\sigma_{r_{cubo}} = -p$$

Para o cubo:

$$\sigma_{t_{cubo}} = p \frac{r_o^2 + r^2}{r_o^2 - r^2}$$
$$\sigma_{r_{cubo}} = -p$$

Essas tensões precisam ser mantidas abaixo das resistências de escoamento dos materiais para manter o ajuste. Se os materiais escoarem, o cubo se soltará do eixo.

Análise fotoelástica de tensões de (a) montagem comum de ajuste por pressão e (b) montagem com rasgo no cubo para ajuste por pressão. (Fonte: R. E. Peterson e A. M. Wahl "Fatigue of Shafts at Fitted Members, with a Related Photoelastic Analysis" ASME J. App Mech, vol. 57, p. A1, 1935.)

Tolerância

Dimensão máxima	Dimensão mínima
20,00	20,00
+ 0,28	+ 0.15
20,28	20,15
Dimensão máxima:	20,28
Dimensão mínima:	- <u>20,15</u>
Tolerância:	0,13

Na cota $20^{+0.15}_{+0.28}$, a tolerância é **0,13 mm** (treze centésimos de milímetro).

Tolerância ISO (ABNT/ISO NBR 6158)

Campos de tolerância

(letras maiúsculas)

Tolerância ISO

					Tolera	incias fu	ndamenta	ais ISO a	té 500 mi	m				
		ŝ	Grupo	de dimer	sões em	mm (mil	imetros)	 valore 	s da tabe	la em μr	n (micro	ns)		
qualidade	Até 1	> l ≤ 3	>3 ≤ 6	>6 ≤ 10	>10 ≤ 18	> 18 ≤ 30	> 30 ≤ 50	> 50 ≤ 80	> 80 ≤ 120	> 120 ≤ 180	> 180 ≤ 250	> 250 ≤ 315	> 315 ≤ 400	> 400 ≤ 500
IT 01	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,8	1	1,2	2	2,5	3	4
IT 0	0,5	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2	3	4	5	6
IT 1	0,8	0,8	1	1	1,2	1,5	1,5	2	2,5	3,5	4,5	6	7	8
IT 2	1,2	1,2	1,5	1,5	2	2,5	2,5	3	4	5	7	8	9	10
IT 3	2	2	2,5	2,5	3	4	4	5	6	8	10	12	13	15
IT 4	3	3	4	4	5	6	7	8	10	12	14	16	18	20
IT 5	4	4	5	6	- 8	9	11	13	15	18	20	23	25	27
IT 6	6	6	8	9	- 11	13	16	19	22	25	29	32	36	40
IT 7	10	10	12	15	18	21	25	30	35	40	46	52	57	63
IT 8	14	14	18	22	27	33	39	46	54	63	72	81	89	97
IT 9	25	25	30	36	43	52	62	74	87	100	115	130	140	155
IT 10	40	40	48	58	70	84	100	120	140	160	185	210	230	250
IT 11	60	60	75	90	110	130	160	190	220	250	290	320	360	400
IT 12		100	120	150	180	210	250	300	350	400	460	520	570	630
IT 13		140	180	220	270	330	390	460	540	630	720	810	890	970
IT 14		250	300	360	430	520	620	740	870	1000	1150	1300	1400	1550
IT 15		400	480	580	700	840	1000	1200	1400	1600	1850	2100	2300	2500
IT 16	-	600	750	900	1100	1300	1600	1900	2200	2500	2900	3200	3600	4000

>	≤	a	Ь	c	cd	d	e	ef	f	fg	g	h
0	1	X	X	-60	-34	-20	-14	-10	-6	-4	-2	0
1	3	-270	-140	-60	-34	-20	-14	-10	-6	-4	-2	0
3	6	-270	-140	-70	-46	-30	-20	-14	-10	-6	-4	(
6	10	-280	-150	-80	-56	-40	-25	-18	-13	-8	-5	(
10	14	-290	-150	-95	X	-50	-32	X	-16	X	-6	(
14	18	-290	-150	-95	X	-60	-32	X	-16	X	-6	(
18	24	-300	-160	-110	X	-65	-40	X	-20	X	-7	(
24	30	-300	-160	-110	X	-65	-40	X	-20	X	-7	(
30	40	-310	-170	-120	X	-80	-50	X	-25	X	-9	(
40	50	-320	-180	-130	X	-80	-50	X	-25	X	-9	(
50	65	-340	-180	-140	X	-100	-60	X	-30	X	-10	(
65	80	-360	-200	-150	X	-100	-60	X	-30	X	-10	(
80	100	-380	-220	-170	X	-120	-72	X	-36	X	-12	(
100	120	-410	-240	-180	X	-120	-72	X	-36	X	-12	(
120	140	-460	-260	-200	X	-145	-85	X	-43	X	-14	(
140	160	-520	-280	-210	X	-145	-85	X	-43	X	-14	(
160	180	-580	-310	-230	X	-145	-85	X	-43	X	-14	(
180	200	-660	-340	-240	X	-170	-100	X	-50	X	-15	(
200	225	-740	-380	-260	X	-170	-100	X	-50	X	-15	(
225	250	-820	-420	-280	X	-170	-100	X	-50	X	-15	(
250	280	-920	-480	-300	X	-190	-110	X	-56	X	-17	(
280	315	-1050	-540	-330	X	-190	-110	X	-56	X	-17	(
315	355	-1200	-600	-360	X	-210	-125	X	-62	X	-18	(
355	400	-1350	-680	-400	X	-210	-125	X	-62	X	-18	(
400	450	-1500	-760	-440	X	-230	-135	X	-68	X	-20	1

Section 1	16	17	j8	k4 a	1 42	200	1	1	-	a eixe	100	- 14		1950	PROJECTOR	100000	1427	zb	2222
> ≤	j5 j6	j7	Jo	k7	k≤3 k>7	m	n	p	Г	S	t	u	v	X	У	Z	za	20	ZC
0 1	-2	-4	-6	0	0	2	4	6	10	14	X	18	X	20	X	26	32	40	60
1 3	-2	-4	-6	0	0	2	4	6	10	14	X	18	X	20	X	26	32	40	60
3 6	-2	-4	X	-1	0	4	8	12	15	19	X	23	X	28	X	35	42	50	80
6 10	-2	-5	X	1	0	6	10	15	19	23	X	28	X	34	X	42	52	67	97
10 14	-3	-5	X	1	0	7	12	18	23	28	X	33	X	40	X	50	64	90	130
14 18	-3	-6	X	1	0	7	12	18	23	28	X	33	39	45	X	60	77	108	150
18 24	-4	-8	X	2	0	8	15	22	28	35	X	41	47	54	63	73	98	136	188
24 30	-4	-8	X	2	0	8	15	22	28	35	41	48	55	64	75	88	118	160	218
30 40	-5	-10	X	2	0	9	17	26	34	43	48	60	68	80	94	112	148	200	274
40 50	-5	-10	X	2	0	9	17	26	34	43	54	70	81	97	114	136	180	242	325
50 65	-7	12	X	2	0	11	20	32	41	53	66	87	102	122	144	172	226	300	405
65 80	-7	-12	X	2	0	11	20	32	43	59	75	102	120	146	174	210	274	360	480
80 100	-9	-15	X	3	0	13	23	37	51	71	91	124	146	178	214	258	335	445	585
100 120	-9	-15	X	3	0	13	23	37	54	79	104	144	172	210	254	310	400	525	690
120 140	-11	-18	X	3	0	15	27	43	63	92	122	170	202	248	300	365	470	620	800
140 160	-11	-18	X	3	0	15	27	43	65	100	134	190	228	280	340	415	535	700	900
160 180	-11	-18	X	3	0	15	27	43	68	108	146	210	252	310	380	465	600	780	1000
180 200	-13	-21	X	4	0	17	31	50	77	122	166	236	284	350	425	520	670	880	1150
200 225	-13	-21	X	4	0	17	31	50	80	130	180	258	310	385	470	575	740	960	1250
225 250	-13	-21	X	4	0	17	31	50	84	140	196	284	340	425	520	640	820	1050	1350
250 280	-16	-26	X	4	0	20	34	56	94	158	218	315	385	475	580	710	920	1200	1550
280 315	-16	-26	X	4	0	20	34	56	98	170	240	350	423	525	650	790	1000	1300	1700
315 355	-18	-28	X	4	0	21	37	62	108	190	268	390	475	590	730	900	1150	1500	1900
355 400	-18	-28	X	4	0	21	37	62	114	208	294	435	530	660	820	1000	1300	1650	2100
400 450	-20	-32	X	5	0	23	40	68	126	232	330	490	595	740	920	110	1450	1850	2400
450 500	-20	-32	X	5	9	23	40	68	132	252	360	530	660	820	1000	1250	1600	2100	2800

>	≤	A	В	C	Cd	D	E	EF	F	FG	G	Н
0	1	X	X	60	34	20	14	10	6	-4	2	()
1	3	270	140	60	34	20	14	10	6	-4	2	0
3	6	270	140	70	46	30	20	14	10	-6	4	0
6	10	280	150	80	56	40	25	18	13	-8	5	0
10	14	290	150	95	X	50	32	X	16	X	6	0
14	18	290	150	95	X	60	32	X	16	X	- 6	0
18	24	300	160	110	X	65	40	X	20	X	7	0
24	30	300	160	110	X	65	40	X	20	X	7	0
30	40	310	170	120	X	80	50	X	25	X	9	0
40	50	320	180	130	X	80	50	X	25	X	9	0
50	65	340	180	140	X	100	60	X	30	X	10	0
65	80	360	200	150	X	100	60	X	30	X	10	0
80	100	380	220	170	X	120	72	X	36	X	12	0
100	120	410	240	180	X	120	72	X	36	X	12	0
120	140	460	260	200	X	145	85	X	43	X	14	0
140	160	520	280	210	X	145	85	X	43	X	14	0
160	180	580	310	230	X	145	85	X	43	X	14	0
180	200	660	340	240	X	170	100	X	50	X	15	0
200	225	740	380	260	X	170	100	X	50	X	15	0
225	250	820	420	280	X	170	100	X	50	X	15	0
250	280	920	480	300	X	190	110	X	56	X	17	0
280	315	1050	540	330	X	190	110	X	56	X	17	0
315	355	1200	600	360	X	210	125	X	62	X	18	0
355	400	1350	680	400	X	210	125	X	62	X	18	0
400	450	1500	760	440	х	230	135	X	68	X	20	0

e		15	17	J8	K4 a	K<3	M	N	P	R	S	T	U	V	X	Y	Z	ZA	ZB	ZB
> :	\$3	J6	650 	30	K7	K>7	378	27	85251	35				10.50		10000 m		Aur v	200	-
0	1	2	4	6	0	0	-2	-4	-6	-10	-14	X	-18	X	-20	X	-26	-32	-40	-60
1	3	2	4	6	0	0	-2	-4	-6	-10	-14	X	-18	X	-20	X	-26	-32	-40	-60
3	6	2	4	X	-1	0	-4	-8	-12	-15	-19	X	-23	X	-28	X	-35	-42	-50	-80
6	10	2	5	X	-1	0	-6	-10	-15	-19	-23	X	-28	X	-34	X	-42	-52	-67	-97
10	14	3	- 5	X	-1	0	-7	-12	-18	-23	-28	X	-33	X	-40	X	-50	-64	-90	-130
14	18	3	6	X	-1	0	-7	-12	-18	-23	-28	X	-33	39	-45	X	-60	-77	-108	-150
18	24	4	8	X	-2	0	-8	-15	-22	-28	-35	X	-41	-47	-54	-63	-73	-98	-136	-188
24	30	4	8	X	-2	0	-8	-15	-22	-28	-35	-41	-48	-55	-64	-75	-88	-118	-160	-218
30	40	5	10	X	-2	0	-9	-17	-26	-34	-43	-48	-60	-68	-80	-94	-112	-148	-200	-274
40	50	5	10	X	-2	0	-9	-17	-26	-34	-43	-54	-70	-81	-97	-114	-136	-180	-242	-32
50	65	7	12	X	-2	0	-11	-20	-32	-41	-53	-66	-87	-102	-122	-144	-172	-226	-300	-40:
65	80	7	12	X	-2	0	-11	-20	-32	-43	-59	-75	-102	-120	-146	-174	-210	-274	-360	-480
80	100	9	15	X	+3	0	-13	-23	-37	-51	-71	-91	-124	-146	-178	-214	-258	-335	-445	-585
100	120	9	15	X	-3	0	-13	-23	-37	-54	-79	-104	-144	-172	-210	-254	-310	-400	-525	-690
120	140	11	18	X	-3	0	-15	-27	-43	-63	-92	-122	-170	-202	-248	-300	-365	-470	-620	-800
140	160	11	18	X	-3	0	-15	-27	-43	-65	-100	-134	-190	-228	-280	-340	-415	-535	-700	-900
160	180	11	18	X	-3	0	-15	-27	-43	-68	-108	-146	-210	-252	-310	-380	-465	-600	-780	-100
180	200	13	21	X	-4	0	-17	-31	-50	-77	-122	-166	-236	-284	-350	-425	-520	-670	-880	-115
200	225	13	21	X	-4	0	-17	-31	-50	-80	-130	-180	-258	-310	-385	-470	-575	-740	-960	-125
225	250	13	21	X	-4	0	+17	-31	-50	-84	-140	-196	-284	-340	-425	-520	-640	-820	-1050	-135
250	280	16	26	X	-4	- 0	-20	-34	-56	-94	-158	-218	-315	-385	-475	-580	-710	-920	-1200	-155
280	315	16	26	X	-4	0	-20	-34	-56	-98	-170	-240	-350	-423	-525	-650	-790	-1000	-1300	-170
315	355	18	28	X	-4	0	-21	-37	-62	108	-190	-268	-390	-475	-590	-730	-900	-1150	-1500	-190
355	400	18	28	X	-4	0	-21	-37	-62	-114	-208	-294	-435	-530	-660	-820	-1000	-1300	-1650	-210
400	450	20	32	X	-5	0	-23	-40	-68	-126	-232	-330	-490	-595	-740	-920	-1100	-1450	-1850	-240
450	500	20	32	X	-5	9	-23	-40	-68	132	-252	-360	-530	-660	-820	-1000	-1250	-1600	-2100	-280

LIGAÇÕES POR ATRITO

UTEPR CORNÉLIO PROCÓPIO

 Transmissão se dá pela força de atrito geradas nas superfícies conjugadas;

- ajuste cilíndrico
- ajuste a pressão
- ajuste prensado

- Princípio
 - Furo do cubo ligeiramente menor que diâmetro do eixo

AJUSTE PRENSADO

OAs pressões originárias da montagem com interferência provocarão tensões no eixocubo, podendo ocasionar falhas dos elementos. Por outro lado, elas não podem ser suficientemente baixas para que não haja movimento relativo entre as peças.

OAssim, o dimensionamento de ligações prensadas consiste em determinar dois valores básicos:

 \circ A **pressão máxima** $p_{m\acute{a}x}$ deverá ficar abaixo de determinado limite para evitar falha dos elementos;

 \circ A pressão deve ser superior a **pressão mínima** p_{min} para garan transmissão dos esforços

DETERMINAÇÃO DA PRESSÃO MÁXIMA

Modelo matemático proposto do Fédosiev:

- o Para cilindros concêntricos sob pressão
- o Em coordenadas polares:

$$\sigma_t^r = \frac{p_a a^2 - p_b b^2}{b^2 - a^2} \mp \frac{a^2 b^2}{r^2} \frac{p_a - p_b}{b^2 - a^2}$$

Sendo p_a a pressão interna e p_b a pressão externa

DETERMINAÇÃO DA PRESSÃO MÁXIMA

- Modelo matemático proposto do Fédosiev:
 - Para cilindros concêntricos sob pressão
 - o Em coordenadas polares:

Tensões no eixo

Tensões no cubo

CONSIDERAÇÕES DE PROJETO

- o Para **não causar escoamento** do material
- o Para propiciar a montagem e desmontagem
 - \circ Arbitra-se o valor máximo de tensão $< 0.9 \sigma_{\rm esc}$

$$\sigma_{eq} = \sigma_{max} - \sigma min$$

Eixo vazado

$$\sigma_{eq} = p \cdot \frac{2R^2}{R^2 - R_1^2} \le 0,9\sigma_e$$
 $\sigma_{eq} = p \le 0,9\sigma_e$

$$p_{max} = 0,45\sigma_e \cdot \frac{R^2 - R_1^2}{R^2}$$

Eixo maciço

$$\sigma_{eq} = p \le 0,9\sigma_e$$

$$p_{max} = 0,9\sigma_e$$

Cubo

$$\sigma_{eq} = p \cdot \frac{2R_2^2}{R_2^2 - R^2} \le 0,9\sigma_e$$

$$p_{max} = 0,45.\sigma_e.\frac{R_2^2 - R^2}{R_2^2}$$

- o onde R₁ é o raio interno interno do eixo vazado e R₂ o raio do cubo.
- \circ deve-se utilizar o menor dos valores de P_{max} , de forma que a peça mais fraca não escoe ao ser aplicado o ajuste prensado.
- \circ Para materiais de comportamento frágil, trocar $\sigma_{\rm esc}$ por $\sigma_{\rm rup}$

CALCULO DA MÍNIMA PRESSÃO

Seja o caso geral em que a ligação é submetida a um momento torçor (T) e a uma força axial (P_n) .

o Deve-se determinar o equilíbrio entre as forças

CALCULO DA MÍNIMA PRESSÃO

1) P_{min}: Carregamento axial

Quando houver, a pressão devido ao atrito é:

$$P_a \leq p.A.\mu_{el}$$

 \circ Para a área perimetral $A = d\pi l$, pressão do ajuste p e coeficiente de atrito na direção axial μ_{el} , temos:

$$p \ge \frac{P_a}{\pi.d.l.\mu_{el}}$$

 Considerando que deve haver uma segurança em relação ao escorregamento axial, pode-se escrever que:

$$p_{min} = \frac{n_d.P_a}{\pi.d.l.\mu_{el}}$$

Recomenda-se coeficiente de segurança na faixa de: $n_d = 1,3$ a 1,8

CALCULO DA MÍNIMA PRESSÃO

2) P_{min}: Carregamento de torque

OQuando houver, a pressão devido ao atrito é:

$$P_t \leq p.A.\mu_{et}$$

 \circ Para a área perimetral $A = d\pi l$, pressão do ajuste p e coeficiente de atrito na direção axial μ_{el} , temos:

$$p \ge \frac{P_a}{\pi.d.l.\mu_{el}}$$

o Considerando que deve haver uma segurança em relação ao **escorregamento tangencial**, pode-se escrever que:

$$p_{min} = \frac{2T.n_d}{\pi.d^2.l.\mu_{et}}$$

Recomenda-se coeficiente de segurança na faixa de: $n_d = 1,3$ a 1,8

COEFICIENTES DE ATRITO NAS INTERFACES

		Coeficiente	de atrito estático
Material 1	Material 2	seco	lubrificado
Aço	Aço	0,74	
Aço	Alumínio	0,61	
Aço	Bronze	$0,\!35$	0,19
Aço	Cobre	$0,\!53$	
Aço	FoFo	$0,\!4$	0,21
Aço	Latão	$0,\!51$	
Aço	Poliestireno	0,3-0,35	0,3-0,35
Aço	Teflon	0,04	0,04
Aço	Zinco	$0,\!5$	
Aço duro	Aço duro	0,78	0,11-0,23
Alumínio	Alumínio	1,05	0,3
Cobre	Cobre	$0,\!55$	
FoFo	FoFo	1,1	
Teflon	Teflon	0,04	0,04

Um eixo de aço 1020 laminado a quente, maciço com diâmetro de 20 mm deve ser montado por interferência em um cubo em alumínio 6060 e outro em Ferro Fundido Nodular. Calcule os valores de pressão máxima que pode ser projetado ambas as ligações de forma que não falhe. Admita que o diâmetro da alma (d_2) seja igual a 1,5 diâmetro nominal.

Aco 1020

 $\sigma_e = 207 \text{ MPa}$

Alumínio

 $\sigma_e = 105 \text{ MPa}$

Ferro fundido

 $\sigma_r = 550 \text{ MPa}$

EXEMPL0 1

Um eixo de aço 1020 laminado a quente, maciço com diâmetro de 20 mm deve ser montado por interferência em um cubo em alumínio 6060 e outro em Ferro Fundido Nodular. Calcule os valores de pressão máxima que pode ser projetado ambas as ligações de forma que não falhe. Admita que o diâmetro da alma (d_2) seja igual a 1,5 diâmetro nominal.

Aco 1020

$$\sigma_e = 207 \text{ MPa}$$

Eixo macico

$$p_{max} = 0,9\sigma_e$$

$$p_{max} = 0,9 \times 207$$

$$p_{max} = 186,3 MPa$$

Alumínio

$$\sigma_e = 105 \text{ MPa}$$
 $\sigma_r = 550 \text{ MPa}$

Cubo de alumínio

Ferro fundido

$$\sigma_r = 550 \text{ MPa}$$

Cubo de ferro fundido

$$p_{max} = 0,45.\sigma_e.\frac{R_2^2 - R^2}{R_2^2}$$

$$p_{max} = 0.45 \times 550 \times \frac{15^2 - 10^2}{15^2}$$

A polia da imagem abaixo, construída em alumínio ($\sigma_e = 165$ MPa) deve ser montada em um eixo de aço baixo carbono ($\sigma_e = 340$ MPa) e deve transmitir um torque de 240 Nm. Considere um coeficiente de atrito da ordem de 0,14 e coeficiente de segurança recomendado de 1,3.

- O eixo, maciço, tem **30 mm** de diâmetro e a alma do cubo conta com um diâmetro de **60 mm**, por **60 mm** de comprimento:
 - (a) Avalie as pressões mínima e máxima devido ao torque;
 - o (b) Avalie a pressão mínimo para um força axial de 20kN.

Cálculo da pressão máxima (material e geometria)

o Para o eixo maciço

$$p_{\text{max}} = 0.9\sigma_e = 0.9 \cdot 340$$

 $p_{\text{max}} = 306 \text{ MPa}$

 \circ Para a polia (cubo), que R = 15 mm e R₂ = 30 mm

$$p_{\text{max}} = 0,45 \cdot \sigma_e \cdot \frac{R_2^2 - R^2}{R_2^2} = 0,45 \cdot 165 \cdot \frac{30^2 - 15^2}{30^2}$$

$$p_{\text{max}} = 55,7 \text{ MPa}$$

 Para que não haja escoamento de nenhum dos dois materiais, adotaremos como pressão máxima a pressão do cubo

Cálculo da pressão mínima (carregamentos)

- o Como não há carga axial, apenas o torque será considerado
- Dado um torque de 240Nm, um diâmetro de 30mm e coeficiente de atrito da ordem de 0,14, a pressão mínima será:

$$p_{\min} = \frac{2 \cdot T \cdot n_d}{\pi \cdot d^2 \cdot l \cdot \mu_{et}} = \frac{2 \cdot 240 \times 10^3 \cdot 1,3}{\pi \cdot 30^2 \cdot 60 \cdot 0,14}$$
$$p_{\min} = 26,3 \text{ MPa}$$

Cálculo da pressão mínima (carregamentos)

 Considerando uma carga axial de 20kN, a pressão mínima será:

$$p_{\min} = \frac{P_a \cdot n_d}{\pi \cdot d \cdot l \cdot \mu_{et}} = \frac{20.000 \cdot 1,3}{\pi \cdot 30 \cdot 60 \cdot 0,14}$$
$$p_{\min} = 32,9 \text{ MPa}$$

Com isso, esta seria a nova pressão mínima do ajuste,
 e não mais a de 26,3 MPa

Calculo da sobremedida efetiva (△d)

Considerando o conjunto cubo-eixo como dois cilindros de parede espessa montados com interferência, e que eles tenham circularidade perfeita e mesmo comprimento, pode-se desenvolver uma relação entre a Sobremedida efetiva \(\Delta d \) entre os dois cilindros e a pressão "p" que atua na superfície de ajuste.

$$\Delta d = p \cdot (K_1 + K_2) \cdot D$$

onde:

p - pressão;

D - Diâmetro da superfície de ajuste

K1 - Constante elástica do eixo e

K2 - Constante elástica do cubo

- O processo de compressão produz uma sobremedida efetiva;
- Com a interferência definida Δd, determinam-se as tolerâncias de ajuste.

$$p = \frac{0.5\delta}{\frac{r}{E_o} \left(\frac{r_o^2 + r^2}{r_o^2 - r^2} + v_o \right) + \frac{r}{E_i} \left(\frac{r^2 + r_i^2}{r^2 - r_i^2} - v_i \right)}$$

UTEPR CORNÉLIO PROCÓPIO

Calculo da sobremedida efetiva (△d)

K1 - Constante elástica do eixo.

$$K_{1} = \frac{(1 - v_{1}) + (1 + v_{1}) \cdot Q_{1}^{2}}{E_{1} \cdot (1 - Q_{1}^{2})} \qquad Q_{1} = \frac{D_{1}}{D}$$

v, - Coeficiente de Poisson do material do eixo

E, - Módulo de elasticidade do material do eixo

K2 - Constante elástica do cubo.

$$K_2 = \frac{(1+v_2)+(1-v_2)\cdot Q_2^2}{E_2\cdot (1-Q_2^2)}$$
 $Q_2 = \frac{D}{D_2}$

v₂ - Coeficiente de Poisson do material do cubo

E₂ - Módulo de elasticidade do material do cubo

K₁ e K₂: calculados a partir da geometria e do material do eixo

Relação entre sobremedida e pressão!

$$\Delta d = p \cdot (K_1 + K_2) \cdot D$$

o
$$\Delta d_{max}$$
 \Rightarrow $f(p_{max})$ - Associado ao material $p_{max} = 0,9\sigma_e$
$$\Delta d_{max} = p_{max} \left[(K_1 + K_2)d \right] \qquad p_{max} = 0,45.\sigma_e$$

$$\Delta d_{\text{max}} = p_{\text{max}} \left[(K_1 + K_2)d \right]$$

$$p_{max} = 0,45.\sigma_e.\frac{R_2^2 - R^2}{R_2^2}$$

$$\circ$$
 $\Delta d_{min} \rightarrow f(p_{min})$ - Associado ao carregamento

$$\Delta d_{\min} = p_{\min} \left[(K_1 + K_2)d \right]$$

$$p_{min} = \frac{n_d.P_a}{\pi.d.l.\mu_{el}}$$

$$p_{min} = \frac{2T.n_d}{\pi.d^2.l.\mu_{et}}$$

Dado o Exemplo 2 (O eixo, maciço, tem **30 mm** de diâmetro e a alma do cubo conta com um diâmetro de **60 mm**), desconsiderando o efeito de temperatura e rugosidade, calcule a interferência máxima e mínima, além da tolerância de ajuste da ligação.

- o Do exercício vimos que $p_{max} = 55,7$ MPa e $p_{min} = 26,3$ MPa.
- o Dado que a polia é de alumínio, $v_2 = 0.334$, $E_2 = 71$ GPa, e o eixo é de aço: $v_1 = 0.292$, $E_1 = 207$ GPa.

Cálculo da constante elástica do eixo:

$$K_{1} = \frac{(1-v_{1}) + (1+v_{1})Q_{1}^{2}}{E_{1}(1-Q_{1}^{2})} = \frac{(1-0,292) + (1+0,292)(0/30)^{2}}{207 \times 10^{3}(1-(0/30)^{2})}$$

$$K_{1} = 3,42 \times 10^{-6} \quad (1/\text{MPa})$$

Cálculo da constante elástica do cubo:

$$K_2 = \frac{(1+v_2) + (1-v_2)Q_2^2}{E_2(1-Q_2^2)} = \frac{(1+0,343) + (1-0,343)(30/60)^2}{71 \times 10^3 (1 - (30/60)^2)}$$

$$K_2 = 28,305 \times 10^{-6} \quad (1/\text{MPa})$$

- Cálculo da sobremedida efetiva
 - -Teremos para a pressão máxima a sobremedida máxima:

$$\Delta d_{\text{max}} = p_{\text{max}} \left[(K_1 + K_2)d \right] = 55,7 \left[(3,42 \times 10^{-6} + 28,305 \times 10^{-6})30 \right]$$

$$\Delta d_{\text{max}} = 0,052 \text{ mm}$$

-E para a pressão mínima a sobremedida mínima

$$\Delta d_{\min} = p_{\min} \left[(K_1 + K_2)d \right] = 26,3 \left[(3,42 \times 10^{-6} + 28,305 \times 10^{-6})30 \right]$$

 $\Delta d_{\min} = 0,025 \text{ mm}$

Assim, teremos como Interferência máxima

$$I_{\text{max}} = \Delta d_{\text{max}}$$

$$I_{\text{max}} = 0,052 \,\text{mm}$$

E como Interferência mínima:

$$I_{\min} = \Delta d_{\min}$$
 $I_{\min} = 0.025 \text{mm}$

Assim, a tolerância de ajuste da ligação será de

$$T_{\rm cj} = I_{\rm m\,ax}\, - I_{\rm min}$$

EFEITO DA RUGOSIDADE

O ajuste prensado provoca um alisamento das rugosidades superficiais, reduzindo a interferência média, reduzindo assim a pressão entre as superfícies de contato.

Experiências demonstram que o amassamento corresponde, em média a 60% da rugosidade máxima das superfícies.

A perda na sobremedida será portanto:

$$\Delta d_r = 1.2 \cdot (R_e + R_c)$$

EFEITO DA TEMPERATURA

Se as peças tem diferentes coeficientes de dilatação térmica β ou trabalham com temperaturas diferentes, há necessidade de se levar em conta o efeito da temperatura.

Nestas condições haverá uma perda (ou aumento) da sobremedida dada por:

$$\Delta d_t = \Delta t_2 \cdot \beta_2 \cdot D - \Delta t_1 \cdot \beta_1 \cdot D$$

$$\Delta d_t = D \cdot (\Delta t_2 \cdot \beta_2 - \Delta t_1 \cdot \beta_1)$$

$$\Delta t_1 = t_1 - t_0$$

$$\Delta t_1 = t_1 - t_0$$

Onde:

 β_1 - coeficiente de dilatação térmica linear do eixo;

β₂ - coeficiente de dilatação linear do cubo;

 $\Delta T_{_{I}}$ e $\Delta T_{_{2}}$ - diferença de temperatura das peças no funcionamento para a temperatura de montagem;

t. - temperatura de montagem

INTERFERÊNCIA DE MONTAGEM

Para que em funcionamento a sobremedida seja ∆d (necessária para provocar "p"), durante a montagem a interferência deverá ser:

$$I = \Delta d + \Delta d_r + \Delta d_t$$

Observação: Durante a montagem ∆d, ainda não ocorreu e pode, portanto, fazer com que a pressão máxima seja ultrapassada.