ZADANIA

Oznaczenia: p - cena, X,Y - dobra (lub produkcja), C - koszty, FC - koszty stałe, VC - koszty zmienne, R - utarg (sprzedaż), L - nakłady pracy, K - nakłady kapitału, w - płaca, v - cena jednostki kapitału, U - użyteczność, m - dochód konsumenta, ε - elastyczność cenowa popytu. Litery T, A, M - oznaczają odpowiednio całkowite, jednostkowe (przeciętne), krańcowe (np. AVC - przeciętne koszty zmienne).

Teoria konsumenta

- 1.1 Adam osiąga zadowolenie z 3 dóbr: muzyki (M), wina (W), i sera (S). Jego funkcja użyteczności ma postać: U(M,W,S) = M+2W+3S. (a) Zakładając, że "konsumpcja" muzyki wynosi 10, skonstruuj krzywe obojętności dla U=40 i U=70. (b) Pokaż, że MRS wina na ser jest stała dla wszystkich wartości W i S na krzywych obojętności.
- 1.2 Narysuj krzywą obojętności dla poniższych funkcji użyteczności: (a) U = 3X+Y, (b) $U = (X^*Y)^{1/2}$, (c) $U = (X^2+Y^2)^{1/2}$, (d) $U = X^{2/3} * Y^{1/3}$, (e) U = InX + InY.
- 1.3 Masz następujące krzywe użyteczności: (a) U = XY, (b) $U = X^2 * Y^2$, (c) U = InX + InY. Pokaż, że każda z nich charakteryzuje się malejącą MRS, ale wykazują się one stałą, rosnącą i malejącą użytecznością krańcową względem każdego dobra.
- 1.4 Zadowolenie Kowalskiego z posiadania dóbr X i Y dane jest funkcją użyteczności jak w zad. 1.2c. Jakie będzie maksimum użyteczności Kowalskiego jeśli ceny $p_x = 3$, $p_y = 4$, i ma on do wydania 50 zł.
- 1.5 Pan A. czerpie zadowolenie z picia martini (M) w proporcji do ilości drinków: U(M)=M. Warunkiem jednak tej satysfakcji jest zmieszanie martini z 2 częściami ginu (G) i 1 częścią vermouthu (V). Tym samym prawdziwa funkcja użyteczności pana A.: $U(M)=U(G,V)=\min(G/2,V)$. Narysuj krzywą obojętności w funkcji G i V dla różnych poziomów użyteczności . Pokaż, że niezależnie od cen obu dodatków pan A. nigdy nie zmieni sposobu mieszania martini.
- 1.6 Niech funkcja użyteczności $U(X,Y) = (X^*Y)^{1/2}$.
- (a) jeżeli $p_x=20$, $p_y=10$, dochód m=200 to ile należy kupić X i Y by zmaksymalizować użyteczność? (b) obliczyć funkcje indywidualnego popytu na X i Y jako funkcje p_x i p_y .
- 1.7 Jeśli konsument ma funkcję użyteczności $U(X,Y)=X^*Y^4$, to jaką część dochodu wyda on na dobro Y?
- 1.8 Znajdź optymalny koszyk jeżeli wiesz, że $U(X,Y) = \left[X(1+Y)\right]^{1/2}$, $p_x = 5$, $p_y = 20$, zaś m = 10. Co zmieni się jeśli m = 100?
- 1.9 Znajdź optymalny koszyk dóbr jeśli wiadomo, że funkcja użyteczności ma postać U = $(XY)^{1/3}$, $p_x = 0.5$, $p_y = 4$, zaś ograniczenie dochodowe wynosi 40. Jak zmieni się optymalny koszyk jeśli dochód konsumenta podwoi się?
- 1.10 Konsument o którym wiadomo, że ma wypukłe preferencje i dochód w wysokości 100 wybrał pewien optymalny koszyk. W koszyku tym było 20 jednostek X. Ustalić ile było w koszyku dóbr Y i cenę Y (p_y) , jeśli wiemy, iż $p_x=2$ oraz że w punkcie optimum krańcowa stopa substytucji MRS = 1.

Wartość pieniądza w czasie

5.1 Pewna inwestycja trwa 2 lata, a rozkład nakładów inwestycyjnych w czasie jest następujący: rok 1 – 31 mln zł, rok 2 – 1 mln zł. Obiekt funkcjonuje przez 3 lata przynosząc zyski po 13 mln zł rocznie. Czy inwestycja jest opłacalna? Czy coś zmieni się jeśli nakłady inwestycyjne będą rozłożone rok 1 – 1 mln zł, rok 2 – 31 mln zł?

5.2 Rozważamy kupno modemu mając do wyboru urządzenia: PL Robotics i Pyxel. Parametry urządzeń są następujące:

	PL Robotics	Pyxel
Cena (zł)	300	1550
Szybkość (tys. bit/sec)	15	27

Roczne zapotrzebowanie na informacje jest 30 mld bitów. Koszt połączenia telefonicznego wynosi 3.6 zł/h. Okres eksploatacji urządzenia 4 lata. Które urządzenie opłaca się kupić? Co będzie, gdy zapotrzebowanie na informacje jest 25 mld bitów?

5.3 Czy kupiłabyś za 120 zł obligację o wartości nominalnej 200 zł i terminie wykupu za 3 lata, jeśli wiesz, że jej oprocentowanie wynosi 2.5% rocznie, stopa lokaty bankowej 5.0%, a stopa ryzyka 7.0%?