ДОМАШНЕЕ ЗАДАНИЕ

6.1. Дискретная случайная величина X имеет ряд распределения, заданный таблицей.

X	-3	-1	0	3	5
P	0.15	0.25	0.07	0.3	0.23

Найти ряд распределения случайной величины

- a) $Y = 2^X$;
- 6) $Z = X^2$;
- B) U = |X 1|.
- 6.2. Случайная величина X распределена равномерно в интервале (0, 4). Найти функцию распределения и функцию плотности распределения вероятностей случайной величины
 - a) $Y = \ln(1+X);$
 - 6) $Z = X^2 + 1$;
 - B) $U = (X 2)^2$.
- 6.3. Случайная величина X распределена по экспоненциальному закону с параметром λ . Найти плотность распределения случайной величины
 - a) $Y = \sqrt{X}$;
 - 6) $Z = 1/X^2$.
- 6.4. Случайная величина X распределена по нормальному закону с параметрами m и σ^2 . Найти плотность распределения случайной величины
 - a) $Y = \operatorname{arctg} X$;
 - 6) $Z = 1/(1+X^2)$.
- 6.5. Распределение дискретного двумерного случайного вектора (X_1, X_2) задано таблицей

$X_1 \backslash X_2$	10	12	14
1	0.08	0.02	0.10
2	0.32	0.08	0.40

Найти ряд распределения случайной величины

- a) $Y = -2X_1 + X_2 8$;
- 6) $Z = X_1^2 + (X_2 12)^2 1$;
- B) $U = (X_2 12)/X_1$.
- 6.6. Двумерный случайный вектор (X_1, X_2) распределен равномерно в квадрате с вершинами $A_1(0, 0), A_2(0, 2), A_3(2, 2), A_4(2, 0)$. Найти функцию распределения случайной величины
 - a) $Y = X_1 + X_2$;
 - 6) $Z = X_1/X_2$.