$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} dt \int_{-\sqrt{a^{2}}}^{\sqrt{a^{2}}} dt = 2\pi \int_{0}^{4} 2 (3 - \sqrt{a^{2}}) \sqrt{t} dt$ $= -2\pi \int_{0}^{0} (9a^{2} - t) \sqrt{t} dt \qquad t = 9a^{2}$ $= 2\pi \int_{0}^{9a^{2}} (9a^{2} \sqrt{t} - 4t) / t$ $= 2\pi \left[\int_{0}^{9a^{2}} 3a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$ $= 2 \left[\int_{0}^{9a^{2}} 3a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$ $= 2 \left[2 27\pi a \left(6 - \frac{18}{a^{2}} \right) \right]$ $= 2 2 27\pi a \left(6 - \frac{18}{a^{2}} \right)$

Área

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Medida $\bar{d}e^{-2\pi}$ una superficie. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\mathbf{A} \left[\mathbf{r}^2 \mathbf{e}^{\frac{3}{2}} \mathbf{e}^{\frac{2}{5}} \mathbf{f}^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2.27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= \frac{e_{8\pi} rea}{5} a^{5}.$$

Measure of a surface.

Aproximación

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Valor cercano a uno real.

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Approximation ap-roksi-méishon

Altura

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Distancia: $(9a^2 - t)\sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Height
$$a^{2}$$
 a^{3} a^{2} a^{5} a^{5} a^{5} a^{5} a^{5} a^{5} a^{5} a^{5} a^{5} a^{5}

Vertical distance.

Aceleración

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Cambio de velocidad.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Acceleration

ak-se-le-rei-shon $= \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5}\right)$

Change of speed.

Análisis

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Estudio detallado de algo. $t = 9a^2 - t$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Analysts

a-ná-li-sis

Detailed study of something.

Base

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Fundamento o soporte de algo. $= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} \, dt$ $= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) \, dt$

$$= 2\pi \int_{0}^{9a^{2}} (3a \sqrt{t} - t \sqrt{t}) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$$

$$= 2\mathbf{B} \begin{bmatrix} 9a^{2} \frac{2}{t^{\frac{3}{2}}} \mathbf{e} & \frac{2}{5}t^{\frac{5}{2}} \end{bmatrix}_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right)$$

$$= 6\mathbf{B} \begin{bmatrix} a^{2} \frac{2}{t^{\frac{3}{2}}} \mathbf{e} & \frac{2}{5}t^{\frac{5}{2}} \end{bmatrix}_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right)$$

$$= 6\mathbf{B} \begin{bmatrix} a^{2} \frac{2}{t^{\frac{3}{2}}} \mathbf{e} & \frac{2}{5}t^{\frac{5}{2}} \end{bmatrix}_{0}^{9a^{2}}$$

$$= \frac{2.27\pi a}{6.68} = \frac{6.68\pi}{5} a^{5}.$$

Foundation or support of something.

Bivariable

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Con $dos \sqrt{\frac{9a^2-t}{4}} \sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Bivariate

With two variables.

Borde

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Límite de una región. $= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} \, dt$ $= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) \, dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$= 2 \mathbf{E} \frac{1}{6} \mathbf{g}^{2} \mathbf{e}^{\frac{3}{5}} \mathbf{e}^{\frac{2}{5}t^{\frac{5}{2}}} \mathbf{e}^{\frac{9a^{2}}{5}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

Boundary of a region.

Brújula

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2} - \rho^{2}}}^{\sqrt{9a^{2} - \rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2} - \rho^{2}} d\rho$$

Indica dirección.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Compass

 $= 2 \cdot \frac{27\pi a^5}{6} \left(6 - \frac{10}{5} \right)$ $= \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{10}{5} \right)$

Indicates direction.

Bloque

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Porción sólida de materia. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$\begin{array}{l}
\mathbf{B} \mathbf{1}_{0} c^{2} c^{2} t^{\frac{3}{4}} \\
\mathbf{E} \mathbf{0} \mathbf{C} \mathbf{K}^{2} c^{\frac{5}{2}} \\
= 2 \cdot 27 \pi a^{5} \left(6 - \frac{18}{5} \right) \\
= \frac{6 \cdot 27}{5} a^{5} c^{\frac{18}{5}} \\
= \frac{6 \cdot 27}{5} a^{\frac{18}{5}} c^{\frac{18}{5}}
\end{array}$$

Solid piece of matter.

Campo

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Región donde actúa una magnitud.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

= Fig.
$$a^{2} = a^{2} \cdot a^{5} = a^{5} \cdot a^{5}$$

Region where a magnitude acts.

Curva

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Línea sina (9 a^2-t) \sqrt{t} dt= $2\pi \int_0^0 (9a^2-t) \sqrt{t} \, dt$ = $2\pi \int_0^{9a^2} \left(9a^2\sqrt{t}-t\sqrt{t}\right) \, dt$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Curve
$$t^{\frac{3}{2}}$$
 $t^{\frac{3}{2}}$ $t^{\frac{2}{2}}$ $t^{\frac{3}{2}}$ $t^{\frac{3}{$

$$= \frac{6\mathbf{Kerv}}{5}a^5.$$

Line without angles.

Cambio

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Variación de una cantidad. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Change
$$\begin{bmatrix} 2^{2} & 3^{3} & 2^{2} & 5^{3} \\ -2^{2} & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} & 6^{2} & 18 \\ -2 & 27\pi a^{5} &$$

Variation of a quantity.

Continuidad

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Sin interrupciones.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Continuity

$$\text{kon}_{=\frac{64}{5}a^{5}}^{=2 \cdot 27\pi a^{5}} \left(6 - \frac{18}{5}\right)$$

Without interruptions.

Coordenada

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2} - \rho^{2}}}^{\sqrt{9a^{2} - \rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2} - \rho^{2}} d\rho$$

Número que indica posición. $= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt$ $= 9a^2 - \rho^2$ $= 2\pi \int_0^{9a^2} (9a^2\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{\pi} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Coordinate

koor-**d**i-neit

Number indicating position.

Derivada

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Tasa de cambio instantánea. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Derivative

$$\mathbf{de} = 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{15} \right)$$

$$= \frac{4}{5} a^{5} \cdot 27\pi a^{5} \left(6 - \frac{18}{15} \right)$$

Instantaneous rate of change.

Diferencia

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Distinción entre valores.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Difference

Distinction between values.

Dimensión

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Medida en una dirección. $t = 9a^2 - 1$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Dimension

Measure in one direction.

Divergente

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2} - \rho^{2}}}^{\sqrt{9a^{2} - \rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2} - \rho^{2}} d\rho$$

Que se
$$\frac{-2\pi}{9a^2} \int_{0}^{0} (9a^2 - t)\sqrt{t} \, dt$$

= $2\pi \int_{0}^{9a^2} (9a^2\sqrt{t} - t\sqrt{t}) \, dt$
= $2\pi \left[\int_{0}^{9a^2} 9a^2\sqrt{t} \, dt - \int_{0}^{9a^2} t\sqrt{t} \, dt \right]$

Divergent dai-vér-yent

That separates.

Dirección

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Orientación de una línea. $t = 9a^2 - t$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Direction dai-rek-shon

Orientation of a line.

Ecuación

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Relación entre variables. $t = 9a^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Equation

e-kuei-shōn $=\frac{2\cdot 27\pi a^5 \left(6-\frac{18}{5}\right)}{5}a^5.$

Relationship between variables.

Escalar

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Cantidad $\sin^{2\pi} \int_{c^{9a^2}}^{0} (9a^2 - t)\sqrt{t} dt$

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Scalar $\begin{bmatrix} \frac{2}{5} & \frac{27\pi a^5}{6} & \frac{18}{5} \\ \frac{2}{5} & \frac{27\pi a^5}{5} & \frac{6}{3} & \frac{18}{5} \end{bmatrix}$

Quantity without direction.

Eje

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Línea de referencia.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= {}^{2}\mathbf{A} \overset{2}{\mathbf{X}} \overset{3}{\mathbf{1}} \overset{2}{\mathbf{5}} \overset{2}{\mathbf{5}} \overset{5}{\mathbf{5}} \overset{1}{\mathbf{5}} \overset{9}{\mathbf{5}} \overset{2}{\mathbf{5}} \overset{1}{\mathbf{5}} \overset{1}{\mathbf{$$

Reference line.

Extremo

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Punto máximo o mínimo. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Extreme

$$=\frac{2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)}{\text{eks-trim}}$$

Maximum or minimum point.

Elipse

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Curva cerrada ovalada.

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

ETT9 $\frac{2}{10}$ $\frac{2}{10}$

Oval closed curve.

Función

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Relación entre variables. $t = 9a^2 - t$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Function

fank-shon

Relation between variables.

Flujo

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Movimiento de un fluido. $t = 9a^2 - \rho^2$

$$= 2\pi \int_{0}^{9a^{2}} \left(9a^{2}\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt\right]$$

$$= 2\mathbf{F} \left[\mathbf{1}^{2}\mathbf{0}\mathbf{w}^{\frac{3}{2}}\mathbf{v}^{\frac{2}{5}}\mathbf{t}^{\frac{5}{2}}\right]_{0}^{9a^{2}}$$

$$= 2\mathbf{f}^{2}\mathbf{n}\mathbf{0}^{5}\left(6 - \frac{18}{5}\right)$$

Movement of a fluid.

Frontera

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2} - \rho^{2}}}^{\sqrt{9a^{2} - \rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2} - \rho^{2}} d\rho$$

Límite de una región. = $2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt$ = $2\pi \int_0^9 (9a^2\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{3a} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Boundary

$$\mathbf{b} = \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5} \right)$$

Limit of a region.

Factor

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Elemento $m_{t}^{-2\pi}$ Ultiplicador.

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Factor
$$\begin{bmatrix} 2^{2} & 3^{3} & 2^{2} & 5^{3} \\ -2^{2} & 7\pi a^{5} & 6 & -\frac{18}{5} \end{bmatrix}$$

Multiplying element.

Frecuencia

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Número de repeticiones. $t = 9a^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Frequency

$$\mathbf{fri}_{=\frac{6}{5}a^{5}}^{2}$$

Number of repetitions.

Gradiente

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Vector de $\bar{\mathbf{d}}_{erivadas}^{-2\pi \int_{9a}^{0} (9a^2 - t)\sqrt{t} dt}$ parciales.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Gradient

$$\mathbf{gre}_{=}^{=} \underbrace{\frac{2 \cdot 27\pi a^5}{5}}_{=} \underbrace{\left(6 - \frac{18}{5}\right)}_{5}$$

Vector of partial derivatives.

Gráfica

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Representación visual.

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

=
$$\frac{\mathbf{Graph}^{2}}{\mathbf{faph}}^{2} \begin{bmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{bmatrix}^{9} \\ = \frac{2 \cdot 27\pi a^{5}}{5} \begin{pmatrix} 6 - \frac{18}{5} \\ \frac{1}{5} & \frac{1}{5} \end{bmatrix}^{9} \\ = \frac{6\mathbf{graf}}{5} a^{5}.$$

Visual representation.

Gauss

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Científico del teorema de flujo.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Gauss
$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$
= gaus
$$= \frac{2 \cdot 27\pi a^{5}}{5} \left(6 - \frac{18}{5}\right)$$

Scientist of the flux theorem.

Geometría

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Estudio de figuras y espacios. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{\pi} \left(9a^2 \sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Geometry yió-me-tri

Study of shapes and spaces.

Global

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Referido al todo.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Global
$$a^{\frac{2}{5}}$$
 $a^{\frac{3}{2}}$ $a^{\frac{1}{5}}$ $a^{\frac{1}{5}}$ $a^{\frac{1}{5}}$ $a^{\frac{1}{5}}$

Referring to the whole.

Hessiana

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Matriz de segundas derivadas par- p

$$= 2 \text{ciales} \sqrt{t} - t \sqrt{t} dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t \sqrt{t} dt \right]$$

Hess can $=\frac{2.27\pi a^5}{6} \left(6 - \frac{18}{5}\right)$ $=\frac{8\pi}{5}a^5$.

Matrix of second? order partial derivatives.

Hiperplano

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Subespacio $de^{\frac{1}{9}dimensión}$ n-1.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Hyperplane

 $j\acute{a}i$ = $\underbrace{\begin{array}{c} 2 \cdot 27\pi a^5 \\ \mathbf{per} \end{array}}_{5} \underbrace{\begin{array}{c} 6 \\ \mathbf{per} \end{array}}_{5} \underbrace{\begin{array}{c} 18 \\ \mathbf{per} \end{array}}_{5}$

Subspace of dimension n-1.

Hipersuperficie

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Superficie en dimensión superior.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Hypersurface

$$j\acute{a}i$$
- $\underset{\underline{b}}{\overset{=}{\underset{0}\overset{2}{\underset{0}\overset{2}{\underset{0}\overset{2}{\underset{0}\overset{1}\overset{1}{\underset{0}\overset{1}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}\overset{1}{\underset{0}\overset{1}\overset{1}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}{\underset{0}\overset{1}\overset{1}{\underset{0}\overset{1}\overset$

Surface in higher dimension.

Hipersfera

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Esfera en n $(9a^2-t)\sqrt{t} dt$ the second $(9a^2-t)\sqrt{t} dt$ the second $(9a^2-t)\sqrt{t} dt$ the second $(9a^2-t)\sqrt{t} dt$ the second $(9a^2-t)\sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Hypersphere

$$\mathbf{j}\mathbf{\acute{a}}\mathbf{\ddot{i}}\mathbf{\overset{2\cdot27\pi a^{5}}{-per-sfir}}\mathbf{\overset{6-\overset{18}{\underline{18}}}{\overset{6}{5}a^{5}}}.$$

Sphere in n dimensions.

Helicoide

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Superficie generada por una hélice.

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Helicoid $je_{\frac{648}{5}a^5}^{2}$

Surface generated by a helix.

Integral doble

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Integral sobre
$$\mathbb{R}^2$$
.
$$= 2\pi \int_0^9 (9a^2 - t)\sqrt{t} dt^2$$

$$= 2\pi \int_0^{9a^2} (9a^2\sqrt{t} - t\sqrt{t}) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

 $t = 9a^2 - \rho^2$

Double integral

dá-b $\overset{=}{\underset{=}{\overset{2}{\text{0}}}}\overset{1}{\underset{5}{\overset{2}{\text{7}}\pi a^{5}}}\overset{\left(6-\frac{18}{5}\right)}{\underset{=}{\overset{1}{\text{8}}}}$ gral

Integral over 22.

Integral triple

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Integral sobre
$$\mathbb{R}^3$$
.
$$= 2\pi \int_0^{9a} (9a^2 - t) \sqrt{t} dt$$

$$= 2\pi \int_0^{9a} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$

 $t = 9a^2 - \rho^2$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Triple integral

Integral over 23.

Integral múltiple

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Integral en varias variables. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

ENG

Multiple integral mol-ti-pol in-te-gral

ol in-te-gral
((3)

Integral in several variables.

Integrando

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Función que se integra. = $2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt$ = $2\pi \int_0^{9a} (9a^2\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Integrand

in-te-grand
$$= \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5}\right)$$

$$= \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5}\right)$$

Function being integrated.

Isosuperficie

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Conjunto donde la función es cons- p2

$$tante^{2} \left(3 \cdot D_{t}\right) \cdot t\sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt \right]$$

Isosurface

$$\begin{array}{l}
\stackrel{=}{\text{ai-so}} = 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5} \right) \\
\stackrel{=}{\text{so}} = \frac{2 \cdot 27\pi a^5}{5} a^5 \cdot \frac{18}{5} \\
\stackrel{=}{\text{so}} = \frac{18}{5} a^5 \cdot \frac{18}{5} a^5 \cdot \frac{18}{5} \\
\stackrel{=}{\text{so}} = \frac{18}{5} a^5 \cdot \frac{18}{5} a$$

Set where the function is constant (3D).

Jacobiano

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Determinante de derivadas parcia- ρ^2

$$= 2\pi \int_0^{9a^2} \mathbf{9}a^2 \sqrt{t} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Jacobian ya-kó-bian

Determinant of partial derivatives.

Junto

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

En el mismo $\log \log (9a^2 - t)\sqrt{t} dt$ posición.

$$= 2\pi \int_0^{9a} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Together

$$tu_{-\frac{8}{5}a^{5}}^{=2 \cdot 27\pi a^{5}} de^{-\frac{18}{5}}$$

In the same place or position.

Justifica-

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Explicación razonada.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Justification $= 2.27\pi a^{5} \left(6 - \frac{18}{8}\right)$

yus- $t_{=}^{\frac{1}{5}}\frac{2}{6}t_{=}^{27\pi}a^{5}$ (6 - $\frac{18}{5}$) n

Juicio

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Capacidad para evaluar.

$$= 2\pi \int_0^{3a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Judgment yudj-ment

Ability to evaluate.

Jirón

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Parte pequeña o fragmento. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$\begin{array}{c} \mathbf{P} \mathbf{1} \underbrace{0}_{0} \underbrace{0}_{0}^{2} \underbrace{0}_$$

Small part or fragment.

Kilómetro

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Mil metros de longitud.

$$= 2\pi \int_0^{3a} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Kilometer ki-lometer

One thousand meters in length.

Kappa

$$\int_{9}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Símbolo usado en vectores y tenso- p2

$$= 2\pi \int_{0}^{2\pi} \mathbf{e} \mathbf{s}_{0} a^{2} \sqrt{t} - t \sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$$

$$= \mathbf{K} \mathbf{a} \mathbf{p} \mathbf{p} \mathbf{a}^{2} \mathbf{a}^{\frac{3}{2}} \mathbf{a}^{2} \mathbf{b}^{\frac{3}{2}} \right]_{0}^{9a^{2}}$$

$$= \underbrace{ka-pa}_{5}^{2 \cdot 27\pi a^{5}} \left(6 - \frac{18}{5}\right)$$

Symbol used in vectors and tensors.

Kernel

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Función núcleo en integrales. $= 2\pi \int_{0}^{2\pi} (9a^{2} - t) \sqrt{t} dt$ $= 2\pi \int_{0}^{9a^{2}} (9a^{2} \sqrt{t} - t \sqrt{t}) dt$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Core function in integrals.

Kepleriano

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Relacionado con las leyes de Kepler.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Keplerian $= 2 \cdot 27\pi g^{5} \left(6 - \frac{18}{5}\right)$

 $kep_{48} = 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$ $kep_{48} = \frac{1}{5} a^{5}$.

Related to Kepler's laws.

Kinemática

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Parte de la mecánica que estudia el permiento de la movimiento de la movimiento de la movimiento de la movimiento de la mecánica que estudia el permiento de la mecánica de la mecáni

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t\sqrt{t} \, dt \right]$$

Kinematics $= \frac{2}{2} \cdot \frac{2}{7}\pi a^5$ $(s - \frac{18}{12})$ ki-ne, má-tiks

5

Branch of mechanics studying motion.

Límite

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Valor al que tien de una función. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\pi \left[2a^2 + \frac{3}{5} - \frac{2}{5}t^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2\sqrt{27\pi}a^5 \left(6 - \frac{18}{5}\right)$$

Value a function approaches.

Laplaciano

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Operador diferencial de segundo or - p2

$$= 2\pi \mathbf{d} \mathbf{e}^{2} \mathbf{n} \mathbf{e}^{2} \sqrt{t} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt \right]$$

Laplacian la-pla-shan

Second-order differential operator.

Lineal

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Que tiene forma de línea. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

L'inear
$$\begin{bmatrix} 2^2 + \frac{3}{4} & 2^{-\frac{5}{4}} \\ -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

Having the form of a line.

Longitud

$$\int_{9}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Medida de una distancia. $t = 9a^2 - t \sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Length
$$\begin{bmatrix} 2 & 2 & 3 & 2 & \frac{15}{5} \\ -2 & 27\pi a^5 & 6 & -\frac{18}{5} \end{bmatrix} = \frac{6 - \frac{18}{5}}{5} a^5$$
.

Measurement of distance.

Logaritmo

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Inversa de la función exponencial.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Logarithm

Inverse of the exponential function.

Magnitud

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Propiedad $que_{9}^{=-2\pi}$ puede medirse.

$$= 2\pi \int_0^{9a} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Magnitude maggni-tiud

Property that can be measured.

Matriz

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2} - \rho^{2}}}^{\sqrt{9a^{2} - \rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2} - \rho^{2}} d\rho$$

Arreglo rectangular de números.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Matrix
$$= \frac{2}{5} \cdot \frac{27\pi a^5}{6} \cdot \frac{18}{5}$$
 $= \frac{2}{5} \cdot \frac{27\pi a^5}{5} \cdot \frac{6}{5} \cdot \frac{18}{5}$

Rectangular array of numbers.

Máximo

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Valor más alto.

$$= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt$$

$$= 2\pi \int_0^{9a^2} (9a^2\sqrt{t} - t\sqrt{t}) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

 $\mathbf{m}_{=}^{=2}\mathbf{k}_{5}^{27\pi a^{5}}\mathbf{k}_{-}^{\left(6-\frac{18}{5}\right)}\mathbf{m}_{0}^{=2}\mathbf{m}_{0}^{27\pi a^{5}}\mathbf{m}_{0}^{-1}\mathbf{m$

Highest value.

Mínimo

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Valor más bajo.

$$= 2\pi \int_0^9 (9a^2 \sqrt{t} - t\sqrt{t}) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

MThum. $= \frac{2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)}{\text{mi-ni-mom}}$ $= \frac{18}{5}a^5$

Lowest value.

Modelo

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Representación de un sistema. $= -2\pi \int_{r^{9}a^2}^{t} (9a^2 - t)\sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} \, dt - \int_0^{9a^2} t\sqrt{t} \, dt \right]$$

$$\begin{array}{l} \mathbf{Mode}^{2} \overset{2}{\mathbf{L}} \overset{3}{\mathbf{L}} \overset{2}{\mathbf{L}} \overset{5}{\mathbf{L}} \overset{9a^{2}}{\mathbf{L}} \\ = 2 \cdot 27\pi a^{5} & 6 - \frac{18}{5} \\ \mathbf{mo-del}^{5} & \mathbf{del}^{5} \end{array}$$

Representation of a system.

Normal

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Perpendicular $\mathbf{a}^{0}_{\mathbf{a}}$ una superficie. $\mathbf{a}^{0}_{\mathbf{a}}$ $\mathbf{a}^{0}_{\mathbf{a}}$

$$= 2\pi \int_0^{\pi} (3a\sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Norma
$$\mathbf{L}^{\frac{5}{2}}$$
 $\begin{bmatrix} \mathbf{Norma} & \mathbf{L}^{\frac{5}{2}} \end{bmatrix}_{0}^{s}$ $= \frac{2}{5} \cdot \frac{27\pi a^{5}}{5} \left(6 - \frac{18}{5} \right)$ $= \frac{6}{5} \cdot \frac{18}{5} \cdot \frac{18}{5}$

Perpendicular to a surface.

Nivel

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Altura o posición relativa. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\pi \left[9a^2\frac{2}{5}t^{\frac{3}{2}} - \frac{2}{5}t^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)$$

Height or relative position.

Newton

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

$$dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} \, d\rho$$

$$t = 9a^2 - \rho^2$$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Newton
$$\begin{bmatrix} 2^{2} & 3^{\frac{3}{2}} & 2^{\frac{15}{2}} \end{bmatrix}^{9a}$$

= $2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$
niú-ton $= \frac{18}{5}a^{5}$.

Unit of force.

Nabla

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Símbolo del operador gradiente.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Nabla²]₀
=
$$\frac{2 \cdot 27\pi a^5}{\text{ná-bla}} \left(6 - \frac{18}{5}\right)$$
= $\frac{2 \cdot 27\pi a^5}{5} a^5$.

Symbol for gradient operator.

Número real

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Valor continuo sin imaginarios. $(9a^2 - t)\sqrt{t} dt$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Real number

Continuous value without imaginaries.

Operador

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Símbolo que realiza una operación.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Operator

Symbol performing an operation.

Ortogonal

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

En ángulo recto. $= 2\pi \int_{0}^{9a^{2}} (9a^{2} - t)\sqrt{t} dt$ $= 2\pi \int_{0}^{9a^{2}} (9a^{2}\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Orthogonal or- $\frac{1}{2}$

At right angles.

Orden

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Secuencia ϕ disposición.

$$=2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Sequence or arrangement.

Origen

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Punto $(0,\bar{0},0)^{9a^2-t}$ de referencia.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Ortigin
$$\begin{bmatrix} 2^{2} t^{\frac{3}{2}} & 2^{\frac{5}{2}} \\ 0 & 0 \end{bmatrix}_{0}^{9a^{2}} \\ = \frac{2 \cdot 27\pi a^{5}}{648\pi} \begin{pmatrix} 6 - \frac{18}{5} \\ -18 \end{pmatrix} \\ = \frac{648\pi}{5} a^{5}. \end{bmatrix}$$

Reference point (0,0,0).

Oscilación

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Movimiento repetido o alternante.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Oscillation

Repeated or alternating motion.

Plano

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Superficie plana q ue se extiende in $-\rho^2$ finitamente t t

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Plane
$$t^{\frac{3}{2}}$$
 = $2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$ = $\frac{2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)}{\text{plein}}$ = $\frac{2 \cdot 27\pi a^{5}}{5}$

Flat surface extending infinitely.

Parábola

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Curva simétrica generada por una - per ecuación cuadrática.

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Parabota pa-ra-bo-la

Symmetrical curve from a quadratic equation.

Parcial

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Derivada respecto a una variable.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Partial $= \frac{2 \cdot 27\pi a^5}{5} \left(\frac{6}{5} - \frac{18}{10} \right)$

Derivative with respect to one variable.

Pendiente

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Grado de inclinación de una recta.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$\begin{array}{c} \mathbf{S} \mathbf{\hat{l}}_{0} a^{2} \frac{1}{3} - 2 \frac{1}{5} \\ \mathbf{S} \mathbf{\hat{l}}_{0} \mathbf{\hat{p}} \mathbf{\hat{e}}^{t} \mathbf{\hat{b}} \end{bmatrix}_{0}^{2} \\ = 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right) \\ = \mathbf{\hat{s}}_{0} \mathbf{\hat{p}} \mathbf{\hat{b}} \mathbf{\hat{b}} \\ = \frac{18}{5} a^{5}. \end{array}$$

Degree of tilt of a line.

Proyección

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Sombra o representación sobre un - p2

$$= 2 p \int_{0}^{2} \Omega Q \sqrt{t} - t \sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$$

Projection
pro-yek-shon

Shadow or representation on a plane.

Queso

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Figura usada en ejemplos volumétri-

$$= 2\pi \int_0^{2\pi} \int_0^{2\pi} s^2 \sqrt{t} - t\sqrt{t} dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Cheese
$$_{0}$$
 = $2 \cdot 27\pi a_{5}^{5} \left(6 - \frac{18}{5}\right)$ = $\frac{6400}{5}a_{5}^{5}$.

Shape used in volume examples.

Quadrante

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Una de las cuatro partes del plano- p²

ENG

cartesiano.
$$_{t\sqrt{t}}$$
) $_{dt}$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt \right]$$

Quadrant kuố-drant

One of four parts of the Cartesian plane.

Quociente

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Resultado de que división. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Quotient kuós-shent

Result of a division.

Quiralidad

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Propiedad de no ser superponible - pe con su imagen especular.

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Chirality kai-rá-li-ti

Property of not being superimposable on its mirror image.

Química

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Ciencia que estudia ala materia y sus ρ^2

$$\begin{array}{l} \textbf{cambios}_{t} & \text{cambios}_{t-t\sqrt{t}} dt \\ = 2\pi \left[\int_{0}^{9a^2} 9a^2 \sqrt{t} dt - \int_{0}^{9a^2} t\sqrt{t} dt \right] \end{aligned}$$

Chemistry

ke-mis-tri

Science studying matter and its changes.

Radio

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Distancia del centro al borde de un p²

$$= \mathbf{Cinculov}_{0} \mathbf{Culov}_{t} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt \right]$$

Rad tus
$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)$$
 rei-dius

Distance from center to edge of a circle.

Rotación

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Giro alrededor de un punto o eje.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Rotation ro-téi-shon

Turn around a point or axis.

Región

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Zona o $\bar{\mathbf{a}}^{-2\pi}\int_{0}^{0}(9a^{2}\int_{0}^{t)\sqrt{t}}dt$ espacio. $=2\pi\int_{0}^{9a^{2}}\left(9a^{2}\sqrt{t}-t\sqrt{t}\right)dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Region

$$= \frac{2}{5} 27\pi a^{5} \left(6 - \frac{18}{5}\right)^{9a}$$
= $\frac{2}{5} 27\pi a^{5} \left(6 - \frac{18}{5}\right)$
= $\frac{18}{5} a^{5}$

Area of space.

Rango

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Conjunto de valores posibles de una per la conjunto de valores per la conjunto

Set of possible function values.

Resultado

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Valor obtenido tras una operación.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Result
$$\begin{bmatrix} 2^{2}t^{\frac{3}{2}} \\ -2^{\frac{3}{2}}t^{\frac{3}{2}} \end{bmatrix}_{0}^{a}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= \frac{618\pi}{5}a^{5}.$$

Value obtained after an operation.

Superficie

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Área que delimita un cuerpo. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Surface. $= \frac{2}{5} \cdot \frac{27\pi a^5}{5} \cdot \frac{6 - \frac{18}{5}}{5}$ sér-fes

Area bounding a body.

Suma

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Resultado de agregar valores. $^{t=9a^2-\rho^2}$

$$= 2\pi \int_{0}^{3a} \left(9a^{2}\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt\right]$$

$$= 2\pi \left[3a^{2}\frac{2}{5}t^{\frac{3}{2}} - \frac{2}{5}t^{\frac{5}{2}}\right]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= 36000$$

Result of adding values.

Simetría

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Equilibrio $\bar{\mathbf{de}}$ forma o posición.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Symmetry

$$\mathbf{si-me-tri} = \frac{2 \cdot 27\pi a^5}{5} \begin{pmatrix} 6 - \frac{10}{10} \\ \frac{6}{5} a^5 \end{pmatrix}$$

Balance of form or position.

Sistema

$$\int_{9}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Conjunto de elementos relaciona - p2

$$= 2\pi \int_0^{9a^2} \mathbf{S} a^2 \sqrt{t} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

System
$$\begin{bmatrix} 2^{2} & 3^{2} & 2^{4} & 5 \\ 2^{2} & 5^{2} & 6^{4} &$$

Set of related elements.

Scalar

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Cantidad con magnitudapero sin di- p²

$$= \operatorname{reción}_{0} \left(\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} \, dt - \int_{0}^{9a^{2}} t \sqrt{t} \, dt \right)$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} \, dt - \int_{0}^{9a^{2}} t \sqrt{t} \, dt \right]$$

Scalar
$$= \frac{2}{5} \frac{27\pi a^5}{6} \left(6 - \frac{18}{5}\right)$$

= $\frac{2}{5} \frac{27\pi a^5}{6} \left(6 - \frac{18}{5}\right)$

Quantity with magnitude but no direction.

Tangente

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Recta que toca una curva en un pun-

$$= 2\pi \int_{0}^{\mathbf{t}} \mathbf{O}(9a^{2}\sqrt{t} - t\sqrt{t}) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt \right]$$

Tangent =2 · 27πa⁵ (6 - 18) tán-yent

Line that touches a curve at one point.

Teorema

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Proposición demostrada matemáti- p²

camente
$$t = 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

thus. $\frac{1}{480}$ rem

Proposition proven mathematically.

Triple

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Que tiene tres partes o componen- p2

$$= 2\pi \int_0^{2\pi} 9a^2 \sqrt{t} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$\begin{array}{c} \mathbf{Tr} \begin{bmatrix} \mathbf{\hat{t}}^2 \mathbf{\hat{t}}^{\frac{3}{4}} & \mathbf{\hat{t}}^{\frac{2}{4}} \\ \mathbf{\hat{t}} \mathbf{\hat{t}} \mathbf{\hat{t}} \mathbf{\hat{t}} \end{bmatrix}^{9a} \\ = 2 \cdot 27\pi a^5 \begin{pmatrix} 6 & 18 \\ 5 & a \end{pmatrix} \\ = \frac{18}{5} a & . \end{array}$$

Having three parts or components.

Trayectoria

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Camino seguido por por punto $o(a^2 - \rho^2)$

$$= \mathbf{C} \mathbf{U} \mathbf{\hat{e}rp} \mathbf{\hat{o}} \mathbf{\hat{t}} - t\sqrt{t} dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Trajectory tra-yék-to-ri

Path followed by a point or body.

Transformación

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Cambio de forma o posición. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Transformation trans- $f_{0\pi}^{2\cdot 27\pi a^5}$ (6 $f_{5\pi}^{18}$) shon

Change of shape or position.

Unidad

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Cantidad adoptada como referencia. $= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt \cos t = 9a^2 - \rho \cos t = 2\pi \int_0^0 (9a^2\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{3a} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\mathbf{U} \left[\int_0^{2a^2} \frac{3}{4} \frac{1}{5} \frac{2}{5} t^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)$$

Quantity taken as reference.

Universal

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Que aplica a todo. = $2\pi \int_0^0 (9a^2 - t)\sqrt{t} dt$ = $2\pi \int_0^{9a} (9a^2\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Universal yu-n $\overset{=}{\overset{1}{5}}$ - $\overset{2}{\overset{7}{5}}$ - $\overset{6}{\overset{1}{5}}$ - $\overset{1}{\overset{5}{5}}$

That applies to everything.

Ubicación

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Lugar donde algo se encuentra. $= 2\pi \int_{0}^{0} (9a^{2} - t)\sqrt{t} dt$ $= 2\pi \int_{0}^{0} (9a^{2}\sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{\infty} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Location $\begin{array}{c}
\text{Location} \\
\text{lo-kéi-shon} \\
= \frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5}\right)
\end{array}$

Place where something is found.

Uniforme

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Que no cambia en el espacio. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Untiform $= \frac{2 \cdot 27\pi a^5}{9} \left(\frac{6 - \frac{18}{5}}{6 - \frac{18}{5}} \right)$ yú-ni-form

That does not change in space.

Urbano

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Relacionado con la ciudad. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Related to the city.

Vector

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Magnitud con dirección y sentido. Magnitud con dirección y sentido.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Vector
$$= \frac{2.27\pi a^5}{\text{vek-tor}}$$

Quantity with direction and sense.

Variable

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Elemento que puede cambiar de va- p2

$$= 2\pi \int_0^{2\pi} \left[9a^2 \sqrt{t} - t\sqrt{t} \right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Vartabte $\frac{1}{48}$ $\frac{1}{16}$ $\frac{1}{48}$ $\frac{1}{16}$ $\frac{1}{16}$

Element that can change in value.

Volumen

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Espacio ocupado por un cuerpo. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

Space occupied by a body.

Velocidad

$$\int_{9}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Cambio de posición $_t$ respecto $_t$ a $ba^2 -
ho^2$

$$= \operatorname{tiem}_{0} \operatorname{pot}_{0} - t\sqrt{t} \operatorname{d}t$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} \, dt - \int_{0}^{9a^{2}} t\sqrt{t} \, dt \right]$$

Velocity $= \frac{2 \cdot 27\pi a^5}{5} \begin{pmatrix} 6 - \frac{18}{18} \end{pmatrix}$ ve₆₄ $\begin{pmatrix} 6 - \frac{18}{18} \end{pmatrix}$

Change of position over time.

Valor

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Cantidad o número asignado. $t = 9a^2 - \rho^2$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$Va^{\frac{1}{2}t^{\frac{3}{4}}} \underbrace{de^{t^{\frac{5}{2}}}}_{0}^{2}$$
= $2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$
= $\frac{\sqrt{43}}{5}a^{5}$.

Assigned quantity or number.

Watt

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Unidad $\overset{=}{d} e^{2\pi} \overset{(9a^2-t)\sqrt{t} dt}{\text{potencia.}}$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$= \mathbf{Wat}^{0a^{2}\frac{2}{5}t^{\frac{3}{2}}} \mathbf{t}^{\frac{2}{5}t^{\frac{5}{2}}} \Big]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= \frac{64 \mathbf{vat}}{2} a^{5}.$$

Unit of power.

Work

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Trabajo realizado por una fuerza. $= 2\pi \int_0^0 (9a^2 - t)\sqrt{t} \, dt$ $= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) \, dt$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$= \frac{\mathbf{Work}^{0}}{\mathbf{Vork}^{2}} \mathbf{K}^{\frac{2}{5}t^{\frac{3}{2}}} \Big]_{0}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= \frac{040\pi}{5} a^{5}.$$

Work done by a force.

Wave

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Onda o vibración periódica. $t = 9a^2 - \rho^2$

$$= 2\pi \int_{0}^{9a^{2}} \left(9a^{2}\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt\right]$$

$$= \mathbf{W} \underbrace{0a^{2} \underbrace{2}_{t} \underbrace{3}_{0}^{3}}_{\mathbf{v}} \underbrace{2}_{5} \underbrace{t^{\frac{5}{2}}}_{0}^{9a^{2}}\right]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= \underbrace{040\pi a^{5}}_{a}.$$

Periodic oscillation or vibration.

Weight

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Medida del efecto de la gravedad. $^{-\rho}$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Weight
$$\begin{bmatrix} 2^2 & 3^3 & 2^4 & 5 \\ -2 & 27\pi a^5 & 6 & -\frac{18}{5} \end{bmatrix} = \frac{640\pi}{5} a^5$$

Measure of gravitational effect.

Wireframe

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Modelo de líneas que representa $-\rho$ formas $3D_{t\sqrt{t}}$ dt

 $= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$

Wireframe uai-er-freim

Line model representing 3D shapes.

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Letra usada como variable descono-

$$= 2\pi \mathbf{C}_{0}^{\text{sid}} \mathbf{a} a^{2} \sqrt{t} - t \sqrt{t} dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2} \sqrt{t} dt - \int_{0}^{9a^{2}} t \sqrt{t} dt \right]$$

$$= 2\pi \left[9\mathbf{A}_{2}^{2} t^{\frac{3}{2}} - \frac{2}{5}t^{\frac{5}{2}} \right]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right)$$

$$= \frac{646\pi}{a^{5}} a^{5}$$

Letter used as unknown variable.

X-axis

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Eje horizontal² de un plano. $t = 9a^2 - \rho^2$ $= 2\pi \int_0^9 (9a^2 \sqrt{t} - t\sqrt{t}) dt$

$$= 2\pi \int_0^{\pi} (9a^2 \sqrt{t} - t\sqrt{t}) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

$$\mathbf{X}^{2\pi} = \mathbf{a}^{0} \mathbf{x}^{2} \mathbf{a}^{\frac{3}{4}} \mathbf{c}^{\frac{2}{4} \frac{5}{2}} \mathbf{c}^{\frac{3}{4}} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4}} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4}} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \frac{5}{4} \mathbf{c}^{\frac{3}{4} \frac{5}{4} \frac{5$$

Horizontal axis of a plane.

X-

coordinate

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

$$= -2\pi \int_{0}^{0} (9a^{2}-t)\sqrt{t} dt$$

Valor engage $(9a^2-t)\sqrt{t} dt$ = $2\pi \int_{-9a^2}^{9a^2} (9a^2\sqrt{t}-t)\sqrt{t} dt$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

X-coordinate

éks-kor-di-neit

Value on the X-axis.

Xcomponent

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Parte de un vector en el eje X.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

X-component

éks-kom-po-nent

axis.

Xintercept

 $\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$

Punto donde $\bar{\mathbf{J}}_{\mathbf{a}}^{-2\pi}$ ($9a^2-t$) \sqrt{t} dt cruza el eje \mathbf{X} .

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt \right]$$

X-intercept éks-in-ter-sept

Point where the curve crosses the X-axis.

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Letra usada $\overset{=}{\operatorname{como}}_{p_{a^{2}}}^{0}\overset{(9a^{2}-t)\sqrt{t}\,dt}{\operatorname{gunda}}$ variable.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\pi \left[9a^2\frac{2}{3}t^{\frac{3}{2}} - \frac{2}{5}t^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)$$

$$= \frac{645\pi}{a^5} a^5.$$

Letter used as second variable.

Y-axis

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Eje vertīcal $de^{(9a^2-t)\sqrt{t}} dt$ ano. $= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

$$Y^{2\pi}$$
 ax ts^{2} .

= $\frac{2 \cdot 27\pi a^5}{5} \left(6 - \frac{18}{5}\right)$
= $\frac{3 \cdot 27\pi a^5}{5} \left(8 - \frac{18}{5}\right)$
= $\frac{3 \cdot 27\pi a^5}{5} \left(8 - \frac{18}{5}\right)$

Vertical axis of a plane.

Y-

coordinate

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Valor $\stackrel{=}{\operatorname{en}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}_{2}^{2}} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2} \stackrel{=}{\operatorname{el}}_{2}^{2$

$$=2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2 \sqrt{t} \, dt - \int_0^{9a^2} t \sqrt{t} \, dt \right]$$

Y-coordinate

uai-kor-di-heit

Value on the Y-axis.

Y-

component

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Parte de un vector en el eje Y. Parte de un vector en el eje Y.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

Y-component

uai- $k_{\underline{o}}$ \underline{o} \underline{m} \underline{n} \underline{n}

Part of a vector along the Y-axis.

Yield

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Resultado o producción de algo.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= \mathbf{Y} \cdot \begin{bmatrix} 2^2 & 3 & 2^2 t^{\frac{5}{2}} \\ \mathbf{e} & \mathbf{d} \end{bmatrix}_0^{9a}$$

$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5} \right)$$

$$= \frac{64 \mathbf{y}_1}{5} a^5.$$

Output or production of something.

Z

$$\int_0^{2\pi} d\phi \int_0^{3a} \rho^3 d\rho \int_{-\sqrt{9a^2 - \rho^2}}^{\sqrt{9a^2 - \rho^2}} dz = 2\pi \int_0^{3a} 2\rho^3 \sqrt{9a^2 - \rho^2} d\rho$$

Letra usada $\overset{=}{\text{como}}$ tercera variable.

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$= 2\pi \left[9a\frac{2}{23}t^{\frac{3}{2}} - \frac{2}{5}t^{\frac{5}{2}}\right]_0^{9a^2}$$

$$= 2 \cdot 27\pi a^5 \left(6 - \frac{18}{5}\right)$$

$$= \frac{6456}{a^5}a^5$$

Letter used as third variable.

Zona

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Espacio o $a^{-2\pi} \int_{9a^2}^{\sqrt{t}} dt dt$ Inada.

$$= 2\pi \int_{0}^{9a^{2}} \left(9a^{2}\sqrt{t} - t\sqrt{t}\right) dt$$

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} dt - \int_{0}^{9a^{2}} t\sqrt{t} dt\right]$$

$$= 2\mathbf{Z} \left[0a^{2}\right]_{0}^{\frac{3}{2}} \mathbf{E} \left[\frac{2}{5}t^{\frac{5}{2}}\right]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5}\right)$$

$$= 6456 a^{5}$$

Defined space or area.

Z-axis

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Eje perpendicular al plano XY. $^{t=9a^2-\rho^2}$

$$= 2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$$
$$= 2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$$

$$Z^{2\pi} = axis^{2} \cdot axis^{2} \cdot$$

Axis perpendicular to the XY plane.

Z-

coordinate

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$
$$= -2\pi \int_{0}^{0} (9a^{2}-t)\sqrt{t} dt$$

 $t = 9a^2 - \rho^2$

Valor engage (9a² - t)
$$\sqrt{t}$$
 dt
= $2\pi \int_0^{9a^2} \left(9a^2\sqrt{t} - t\sqrt{t}\right) dt$
= $2\pi \left[\int_0^{9a^2} 9a^2\sqrt{t} dt - \int_0^{9a^2} t\sqrt{t} dt\right]$

Z-coordinate

 $z_{i-k} = \frac{2 \cdot 27\pi a^{5}}{6} \begin{pmatrix} 6 - \frac{18}{5} \\ - \frac{18}{5} \end{pmatrix}$

Value on the Z-axis.

Zeta

$$\int_{0}^{2\pi} d\phi \int_{0}^{3a} \rho^{3} d\rho \int_{-\sqrt{9a^{2}-\rho^{2}}}^{\sqrt{9a^{2}-\rho^{2}}} dz = 2\pi \int_{0}^{3a} 2\rho^{3} \sqrt{9a^{2}-\rho^{2}} d\rho$$

Letra griega usada en fórmulas ma- p²

ENG

temáticas.
$$t\sqrt{t}$$
) dt

$$= 2\pi \left[\int_{0}^{9a^{2}} 9a^{2}\sqrt{t} \, dt - \int_{0}^{9a^{2}} t\sqrt{t} \, dt \right]$$

$$= 2\mathbf{Z} \left[\mathbf{e}^{2} \mathbf{T} \mathbf{a}^{\frac{3}{2}} \mathbf{a}^{\frac{2}{5}} t^{\frac{5}{2}} \right]_{0}^{9a^{2}}$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right)$$

$$= 2 \cdot 27\pi a^{5} \left(6 - \frac{18}{5} \right)$$

Greek letter used in formulas.