Assignment 3 LCD Display

[diagram of MSP432 to LCD]

Minimum amount of time necessary for the LCD to start up.

Amount of time from when device is powered up until character can be written.

= 20ms Power on + 37us Set function + 37us Display Set + 1.52ms Display Clear

= calculated ___

2.

Figure 2: Timing Diagram for clearing the LCD and displaying the letter A

Instruction	Instruction code											Execution
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L		-	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37µs

Clear_LCD(); // clear the display
Home_LCD(); // move the cursor to the top left of the LCD
Write_char_LCD(); // write a character on the LCD

```
void init_LCD() {
  send_command(0x00);
  delay_ms(100);
  send_command(0x30);
  send_nybble(50);
  delay_ms(50, FREQ_3_MHz);
  send_nybble(50);
  delay_ms(50, FREQ_3_MHz);
  send_nybble(50);
  delay_ms(50, FREQ_3_MHz);
  send_command(0x20);
  send_nybble(10);
  send_command(0x28);
  send_command(0x10);
  send_command(0x0F);
  send_command(0x06);
}
void Clear_LCD() {
  send_command(0x01);
  delay_ms(10, FREQ_3_MHz);
}
void Home_LCD() {
  send_command(0x02);
  delay_ms(10, FREQ_3_MHz);
}
void Write_char_LCD(Byte byte) {
```

Colleen Lau Jonathan Richarte April 16, 2018 A3 LCD

```
P3->OUT |= BIT3; // RS high
  P4->OUT &= ~BIT1; // R/W low
  output_even_pin(P6, 4, byte, 7);
  output_even_pin(P6, 5, byte, 6);
  output_even_pin(P4, 6, byte, 5);
  output_odd_pin(P1, 5, byte, 4);
  send_nybble(10);
  output_even_pin(P6, 4, byte, 3);
  output_even_pin(P6, 5, byte, 2);
  output_even_pin(P4, 6, byte, 1);
  output_odd_pin(P1, 5, byte, 0);
  send_nybble(10);
}
void Clear_LCD() {
  send command(0x01);
  delay_ms(10, FREQ_3_MHz);
}
void Home LCD() {
  send_command(0x02);
  delay_ms(10, FREQ_3_MHz);
}
void Write_char_LCD(Byte byte) {
  P3->OUT |= BIT3; // RS high
  P4->OUT &= ~BIT1; // R/W low
  output_even_pin(P6, 4, byte, 7);
  output_even_pin(P6, 5, byte, 6);
  output_even_pin(P4, 6, byte, 5);
  output_odd_pin(P1, 5, byte, 4);
  send_nybble(10);
  output_even_pin(P6, 4, byte, 3);
  output_even_pin(P6, 5, byte, 2);
  output_even_pin(P4, 6, byte, 1);
  output_odd_pin(P1, 5, byte, 0);
```

Colleen Lau Jonathan Richarte April 16, 2018 A3 LCD

```
send_nybble(10);
}
```