CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2022

NIST SP 961 (May 2024)

An extensive list of constants is available on the NIST Physics Laboratory Web site physics.nist.gov/constants. For numerical values a number in parentheses, if present, is the one-standarddeviation uncertainty in the last two digits. For units with square brackets the full descriptions of $[m]^{-1}$ and [m] are cycles per meter and meter per cycle, respectively. For the first radiation constant the full description of $[m]^2$ is m^{-2} $(m/cycle)^4$.

Quantity	Symbol	Numerical value	Unit	Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c	299 792 458 (exact)	$\mathrm{m}\ \mathrm{s}^{-1}$	muon g-factor $-2(1+a_{\mu})$	g_{μ}	-2.00233184123(82)	
Newtonian constant of gravitation	G	$6.67430(15) \times 10^{-11}$	$m^{3} kg^{-1} s^{-2}$	muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345146(71)	
Planck constant	h	$6.62607015 \times 10^{-34} \text{ (exact)}$	$ m J~Hz^{-1}$	proton mass	$m_{ m p}$	$1.67262192595(52) \times 10^{-27}$	kg
in eV s		$4.135667696 \times 10^{-15}$	${ m eV~Hz^{-1}}$	in u	-	1.007 276 466 5789(83)	u
	\hbar	$1.054571817\ldots\times10^{-34}$	Js	energy equivalent in MeV	$m_{\mathrm{p}}c^2$	938.272 089 43(29)	MeV
in eV s		$6.582119569 \times 10^{-16}$	eV s	proton-electron mass ratio	$m_{ m p}^{ m P}/m_{ m e}$	1836.152 673 426(32)	
elementary charge	e	$1.602176634 \times 10^{-19}$ (exact)	C	proton magnetic moment	$\mu_{ m p}$	$1.41060679545(60)\times 10^{-26}$	$J T^{-1}$
vacuum magnetic permeability $4\pi\alpha\hbar/e^2c$	μ_0	$1.25663706127(20) \times 10^{-6}$	$N A^{-2}$	to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792 847 344 63(82)	
$\mu_0/(4\pi \times 10^{-7})$	F-0	0.999 999 999 87(16)	N A ⁻²	proton magnetic shielding correction $1-\mu_{\rm p}'/\mu_{\rm p}$	σ'	$2.56715(41) \times 10^{-5}$	
vacuum electric permittivity $1/\mu_0 c^2$	ϵ_0	$8.8541878188(14)\times 10^{-12}$	$\mathrm{F}~\mathrm{m}^{-1}$	$(\mathrm{H}_2\mathrm{O}, \mathrm{sphere}, 25 ^\circ\mathrm{C})$	P		
To sephson constant $2e/h$	$K_{ m J}$	483597.8484×10^9	$^{\mathrm{Hz}}\mathrm{V}^{-1}$	proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	2/	$2.6752218708(11)\times10^{8}$	$s^{-1} T^{-1}$
From Klitzing constant $\mu_0 c/2\alpha = 2\pi\hbar/e^2$	-	25 812.807 45	Ω	proton gyromagnetic ratio $2\mu_{\rm p}/n$	$\gamma_{ m p}$	42.577478461(18)	$^{ m S}$ $^{ m I}$ $^{ m MHz}$ $^{ m T}^{-1}$
	$R_{\rm K}$	$2.067833848 \times 10^{-15}$	Wb	-1:-11-1	. /	$2.675153194(11) \times 10^8$	$s^{-1} T^{-1}$
nagnetic flux quantum $2\pi\hbar/(2e)$	Φ_0	2.007 833 848 X 10	уу Б Ј Т ^{−1}	shielded proton gyromagnetic ratio $2\mu_{\rm p}'/\hbar$	$\gamma_{ m p}'$	2.675 153 194(11) × 10°	S 1
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$9.2740100657(29) \times 10^{-24}$		$(\mathrm{H_2O,sphere,25^{\circ}C})$		12 222 222 12(22)	
in eV T ⁻¹		$5.7883817982(18) \times 10^{-5}$	$eV T^{-1}$			42.576 385 43(17)	$ m MHz~T^{-1}$
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.0507837393(16) \times 10^{-27}$	$J T^{-1}$	neutron mass in u	m_{n}	1.00866491606(40)	u
in eV T ⁻¹		$3.15245125417(98) \times 10^{-8}$	$eV T^{-1}$	energy equivalent in MeV	$m_{\rm n}c^2$	939.56542194(48)	MeV
ine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525643(11) \times 10^{-3}$		neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 419 46(40)	
inverse fine-structure constant	α^{-1}	137.035 999 177(21)		neutron magnetic moment	$\mu_{ m n}$	$-9.6623653(23) \times 10^{-27}$	$J T^{-1}$
Rydberg frequency $\alpha^2 m_e c^2 / 2h = E_h / 2h$	cR_{∞}	$3.2898419602500(36)\times10^{15}$	$_{ m Hz}$	to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304276(45)	
energy equivalent in eV		13.605693122990(15)	eV	deuteron mass in u	$m_{ m d}$	2.013553212544(15)	u
Rydberg constant	R_{∞}	10973731.568157(12)	$[m^{-1}]$	energy equivalent in MeV	$m_{\rm d}c^2$	1875.61294500(58)	MeV
Bohr radius $\hbar/\alpha m_{\rm e} c = 4\pi\epsilon_0 \hbar^2/m_{\rm e} e^2$	a_0	$5.29177210544(82) \times 10^{-11}$	m	deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.9990075012699(84)	
Hartree energy $\alpha^2 m_e c^2 = e^2/4\pi\epsilon_0 a_0 = 2(cR_\infty)h$	$E_{ m h}$	$4.3597447222060(48) \times 10^{-18}$	J	deuteron magnetic moment	$\mu_{ m d}$	$4.330735087(11) \times 10^{-27}$	$J T^{-1}$
in eV		27.211386245981(30)	eV	to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.8574382335(22)	
electron mass	$m_{ m e}$	$9.1093837139(28) \times 10^{-31}$	kg	helion (³ He nucleus) mass in u	$m_{ m h}$	3.014932246932(74)	u
in u		$5.485799090441(97) \times 10^{-4}$	u	energy equivalent in MeV	$m_{ m h}c^2$	2808.391 611 12(88)	MeV
energy equivalent in MeV	$m_{ m e}c^2$	0.510 998 950 69(16)	MeV	shielded helion magnetic moment	$\mu_{ m h}'$	$-1.07455311035(93)\times10^{-26}$	$J T^{-1}$
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633170(11) \times 10^{-3}$		(gas, sphere, 25 °C)	. 11	` '	
electron-proton mass ratio		$5.446170214889(94) \times 10^{-4}$		to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.15867149457(94) \times 10^{-3}$	
electron charge to mass quotient		$-1.75882000838(55)\times10^{11}$	$C kg^{-1}$	to nuclear magneton ratio	$\mu_{\rm h}'/\mu_{ m N}$	-2.1274977624(17)	
educed Compton wavelength $\hbar/m_e c = \alpha a_0$	λc	$3.8615926744(12) \times 10^{-13}$	m	alpha particle mass in u	m_{α}	4.001 506 179 129(62)	u
Compton wavelength	λ_{C}	$2.42631023538(76) \times 10^{-12}$	[m]	energy equivalent in MeV	$m_{\alpha}c^2$	3727.379 4118(12)	MeV
lassical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403205(13) \times 10^{-15}$	m	Boltzmann constant	k	1.380649×10^{-23} (exact)	$J K^{-1}$
Thomson cross section $(8\pi/3)r_c^2$	$\sigma_{ m e}$	$6.6524587051(62) \times 10^{-29}$	m^2	Avogadro constant	$N_{\mathbf{A}}$	$6.02214076 \times 10^{23}$ (exact)	mol^{-1}
lectron magnetic moment		$-9.2847646917(29) \times 10^{-24}$	$J T^{-1}$	atomic mass constant $\frac{1}{12}m(^{12}C) = 1$ u		$1.66053906892(52)\times10^{-27}$	kg
to Bohr magneton ratio	$\mu_{ m e} \ \mu_{ m e}/\mu_{ m B}$	-1.00115965218046(18)	J 1	energy equivalent in MeV	$m_{ m u} c^2$	931.49410372(29)	MeV
to nuclear magneton ratio		-1.00113903218040(18) $-1838.281971877(32)$		Faraday constant $N_A e$	F	96 485.332 12	C mol ⁻¹
	$\mu_{ m e}/\mu_{ m N}$	$1.15965218046(18) \times 10^{-3}$			R	8.314 462 618	J mol ⁻¹ K
electron magnetic moment anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$			molar gas constant $N_{\rm A}k$ in eV K ⁻¹	n	8.617333262×10^{-5}	$eV K^{-1}$
electron g -factor $-2(1+a_e)$	$g_{ m e}$	-2.00231930436092(36)			* 7	$8.617333262 \times 10^{-3}$ $22.41396954 \times 10^{-3}$	$m^3 \text{ mol}^{-1}$
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.210 687 89(19)		molar volume of ideal gas RT/p	$V_{ m m}$	$22.41396954\ldots\times10^{-9}$	m° mol
nuon mass in u	$m_{ m \mu} \ m_{ m \mu} c^2$	0.113 428 9257(25)	u	(T = 273.15 K, p = 101.325 kPa)		F 000 00 110 10 8	· -2 · -2
energy equivalent in MeV		105.658 3755(23)	MeV	Stefan-Boltzmann constant $\pi^2 k^4/60\hbar^3 c^2$	σ	$5.670374419 \times 10^{-8}$	$W m^{-2} K^{-}$
nuon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2827(46)	r m=1	first radiation constant $2\pi hc^2$	c_1	$3.741771852 \times 10^{-16}$	$[W m^2]$
nuon magnetic moment	μ_{μ} ,	$-4.49044830(10) \times 10^{-26}$	$J T^{-1}$	second radiation constant hc/k	c_2	$1.438776877 \times 10^{-2}$	[m K]
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197048(11)\times10^{-3}$		Wien displacement law constant			_
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059704(20)		$b = \lambda_{\max} T = c_2 / 4.965114231$	b	$2.897771955 \times 10^{-3}$	[m K]
muon magnetic moment anomaly		_		Cu x unit: $\lambda(\text{Cu K}\alpha_1)/1537.400$		$1.00207697(28)\times10^{-13}$	m
$ \mu_{\rm u} /(e\hbar/2m_{\rm u})-1$	$a_{\mathfrak{u}}$	$1.16592062(41) \times 10^{-3}$		Mo x unit: $\lambda(\text{Mo K}\alpha_1)/707.831$	$xu(Mo K\alpha_1)$	$1.00209952(53) \times 10^{-13}$	m

	Energ	y equivalents	
$[1 \text{ m}^{-1}]c = 299792458 \text{ Hz}$	$(1 \text{ Hz})h/k = 4.799243073 \times 10^{-11} \text{ K}$	(1 J) = $6.241509074 \times 10^{18} \text{ eV}$	$(1 \text{ eV})/c^2 = 1.07354410083(33) \times 10^{-9} \text{ u}$
$[1 \text{ m}^{-1}]hc/k = 1.438776877 \times 10^{-2} \text{ K}$	$(1 \text{ Hz})h = 4.135667696 \times 10^{-15} \text{ eV}$	$(1 \text{ eV}) = 1.602176634 \times 10^{-19} \text{ J}$	$(1 \text{ kg}) = 6.0221407537(19) \times 10^{26} \text{ u}$
$[1 \text{ m}^{-1}]hc = 1.239841984 \times 10^{-6} \text{ eV}$	$(1 \text{ K})k/hc = 69.50348004 [m^{-1}]$	$(1 \text{ eV})/hc = 8.065543937 \times 10^5 \text{ [m}^{-1}]$	$(1 \text{ u}) = 1.66053906892(52) \times 10^{-27} \text{ kg}$
$[1 \text{ m}^{-1}]h/c = 1.33102504824(41) \times 10^{-15} \text{ u}$	$(1 \text{ K})k/h = 2.083661912 \times 10^{10} \text{ Hz}$	$(1 \text{ eV})/h = 2.417989242 \times 10^{14} \text{ Hz}$	$(1 \text{ u})c/h = 7.5130066209(23) \times 10^{14} \text{ [m}^{-1}]$
$(1 \text{ Hz})/c = 3.335640951 \times 10^{-9} \text{ [m}^{-1}]$	$(1 \text{ K})k = 8.617333262 \times 10^{-5} \text{ eV}$	$(1 \text{ eV})/k = 1.160451812 \times 10^4 \text{ K}$	$(1 \text{ u})c^2 = 9.3149410372(29) \times 10^8 \text{ eV}$