1 Extended fields

Let F be a totally ordered field. Let $F_{\infty} = F \cup \{\bot, \top\}$. We define operations + and \cdot on F_{∞} so that (for all $a \in F_{\infty}$ and for all $p \in F, p > 0$) from top down:

All other cases of all operations and relations preserve their behavior from F. We keep the product between negative numbers and $\{\bot, \top\}$ undefined.

2 Farkas-like conjecture

Let $A \in F_{\infty}^{m \times n}$ and $b \in F^m$. Exactly one of the following is true:

- $\exists x \in F^n$ such that $0 \leq x$ and $Ax \leq b$
- $\exists y \in F^m$ such that $0 \leq y$ and $(-A^T)y \leq 0$ and $b^Ty < 0$

3 Counterexample

$$A = \begin{pmatrix} \bot & \top \\ \top & \bot \end{pmatrix} \qquad \qquad b = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

Both are true.

4 Remark

For all other versions of Farkas lemma that I tried to generalize to F_{∞} similar counterexample still applies. However, they might work if it was forbidden for a row of A to contain both \bot and \top and alike for a column.

The problem is when the conversion to the finite version requires us to delete both rows and columns, the rows must be deleted first both in the primar and in the dual, and so, if deleting a row stops deleting a column from triggering, it leads to a different result in the primar than in the dual because of the matrix transposition.

5 New attempt

Let $A \in F_{\infty}^{m \times n}$ and $b \in F_{\infty}^{m}$. Assuming that no row and no column of A contains both \bot and \top elements and that A does not have \bot on any row where b has \bot , exactly one of the following is true:

- $\exists x \in F^n$ such that $0 \leq x$ and $Ax \leq b$
- $\exists y \in F^m$ such that $0 \leq y$ and $(-A^T)y \leq 0$ and $b^Ty < 0$

6 Proof sketch

- $\bullet \ A \in F_{\infty}^{I \times J}$
- $b \in F_{\infty}^{I}$
- if $\bot \in b$ then easy; assume $\bot \notin b$
- $I' := \{ i \in I \mid b_i \neq \top \land \bot \notin A_{i,\star} \}$
- $J' := \{ j \in J \mid \top \notin A_{\star,j} \}$
- $A' := A \upharpoonright (I' \times J')$
- $b' := b \upharpoonright I'$
- $\bullet \ A' \in F^{I' \times J'}$
- $b' \in F^{I'}$

7 Proof idea

We need to do the following steps in given order:

- 1. Delete all rows of (A|b) where A has \perp or b has \top (they are tautologies).
- 2. Delete all columns of A that contain \top (they force respective variables to be zero).
- 3. If b contains \perp then the $(\exists x)$ part cannot be satisfied, but y=0 satisfies the other part. Stop here.
- 4. Assume there is no \perp in b. Use the normal Farkas. Whichever solution Farkas outputs, extend it with zeros on all deleted positions.