Diffusion Models

Diffusion Models

A hedgehog using a calculator.

A corgi wearing a red bowtie and a purple

A transparent sculpturea duck made out of glass

High-level overview

- Diffusion models are probabilistic models used for image generation
- They involve reversing the process of gradually degrading the data
- Consist of two processes:
 - ➤ The forward process: data is progressively destroyed by adding noise across multiple time steps
 - ➤ The reverse process: using a neural network, noise is sequentially removed to obtain the original data

A high-level conceptual overview of the entire image space.

Three Categories

- Denoising Diffusion Probabilistic Models (DDPM)
- ➤ Noise Conditioned Score Networks (NCSN)
- ➤ Stochastic Differential Equations (SDE)

Notations

 $p(x_0)$ - data distribution

 $\mathcal{N}(x; \mu, \sigma \cdot I)$ - Gaussian distribution

Random Variable (image)

Mean Vector

Covariance matrix. *I* is the identity matrix

Forward Process (Iterative)

$$x_t \sim p(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} \cdot x_{t-1}, \beta_t \mathbf{I})$$

Forward Process (One Shot)

DDPMs. Properties of β_t

$$\sqrt{1.\beta_t} \ll 1, t = \overline{1,T}$$

$$x_t{\sim}p(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} \cdot x_{t-1}, \beta_t \mathbb{I})$$

 x_t is created with a small step modeled by β_t

 x_{t-1} comes from region close to x_t , therefore we can model with Gaussian

DDPMs. Properties of β_t

DDPMs. Training objective

Remember that:

Neural Network

Cross Entropy and KL (Kullback-Leibler) divergence

- Entropy: $E(P) = -\Sigma_i P(i) \log P(i)$
- Cross Entropy: $C(P) = -\Sigma_i P(i) \log Q(i)$
- KL divergence: $D_{KL}(P \parallel Q) = \Sigma_i P(i) log[P(i)/Q(i)] = \Sigma_i P(i) [logP(i) logQ(i)]$

DDPMs. Training Objective

$$\min_{\theta} \mathbb{E}_{x_0 \sim p(x_0)} \left[-\log p_{\theta}(x_0|x_1) + KL(p(x_T|x_0)||p_{\theta}(x_T)) + \sum_{t=2}^{T} KL(p(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\min_{\theta} \mathbb{E}_{x_0 \sim p(x_0)} \left[-\log p_{\theta}(x_0|x_1) + \sum_{t=2}^{T} KL(p(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

Notations:

$$p(x_{t-1}|x_t,x_0) = \mathcal{N}\left(x_t,x_0,\tilde{\beta}_t I\right)$$

$$\tilde{\beta}_t = \prod_{t=1}^t \alpha_t$$

$$\tilde{\mu}(x_t,x_0) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\hat{\beta}_t}} z_t\right), z_t \sim \mathcal{N}(0,1)$$

$$\tilde{\beta}_t = \frac{1-\hat{\beta}_{t-1}}{1-\hat{\beta}_t} \cdot \beta_t$$

$$\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x_0 \sim p(x_0), z_t \sim \mathcal{N}(0, \mathbf{I})} \|z_t - z_{\theta}(x_t, t)\|_2^2$$

DDPMs. Training Algorithm

Training algorithm:

Repeat
$$x_0 \sim p(x_0) \\ t \sim \mathcal{U}(\{1, \dots, T\}) \\ z_t \sim \mathcal{N}(0, \mathbf{I}) \\ x_t = \sqrt{\hat{\beta}_t} \cdot x_0 + \sqrt{(1 - \hat{\beta}_t)} z_t \\ \theta = \theta - lr \cdot \nabla_{\theta} \mathcal{L}_{simple}$$
 Until convergence

DDPMs. Training Algorithm

$$\min_{\theta} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x_0 \sim p(x_0), z_t \sim \mathcal{N}(0, \mathbf{I})} \|z_t - z_{\theta}(x_t, t)\|_{2}^{2}$$

$$\hat{\beta_t} = \prod_{i=1}^{t} \alpha_i$$

Training algorithm:

Repeat
$$x_0 \sim p(x_0) \qquad \text{%We sample an image from our data set} \\ t \sim \mathcal{U}(\{1,\dots,T\}) \qquad \text{%choose randomly a time step t of the forward process} \\ z_t \sim \mathcal{N}(0,\mathbf{I}) \qquad \text{%sample the noise z_t} \\ x_t = \sqrt{\hat{\beta}_t} \cdot x_0 + \sqrt{(1-\hat{\beta}_t)} z_t \qquad \text{% Get noisy image} \\ \theta = \theta - lr \cdot \nabla_{\theta} \mathcal{L}_{simple} \qquad \text{%Update neural network weights} \\ \text{Until convergence}$$

DDPMs. Sampling

- Pass the current noisy image along with t to the neural network
- With the resultant $z_{ heta}$ compute the mean of the gaussian distribution

DDPMs. Sampling

Sample the image x_{t-1} for the next iteration

Three Categories

- Denoising Diffusion Probabilistic Models (DDPM)
- ➤ Noise Conditioned Score Networks (NCSN)
- > Stochastic Differential Equations (SDE)

Score Function

 $\nabla_x \log p(x)$

 Direction we need to change the input x such that the density becomes greater

Score Function

- Second formulation of Diffusion Model
- Langevin dynamics method
 - Starts from a random sample
 - Apply iterative updates with the score function to modify the sample
 - Result will have a higher chance of being a sample of the true distribution p(x)

Naïve score-based model

• Score: gradient of the logarithm of the probability density with respect to the input

$$\nabla_x \log p(x)$$

Langevin dynamics

$$x_i = x_{i-1} + \frac{\gamma}{2} \nabla_x \log p(x) + \sqrt{\gamma} \omega_i$$

Step size – controls the magnitude of the update in the direction of the score

Score – estimated by the score network

Noise – random gaussian noise N(0, I)

Naïve score-based model

- The score is approximated with a neural network
- Score network is trained using score matching

$$\mathbb{E}_{x \sim p(x)} \| s_{\theta}(x) - \nabla_x \log p(x) \|_2^2$$

- Denoising score matching:
 - Add small noise to each sample of the data:

$$x' \sim \mathcal{N}(x', x, \sigma \cdot I) = p_{\sigma}(x')$$

Objective

$$\mathbb{E}_{x' \sim p_{\sigma}(x')} \| s_{\theta}(x') - \nabla_{x'} \log p_{\sigma}(x') \|_{2}^{2}$$

After training:

$$s_{\theta}(x) \approx \nabla_x \log p(x)$$

Naïve score-based model. Problems

- Solution:
 - > Perturb the data with random Gaussian noise at different scales
 - Learn score estimations noisy distributions via a single score network

Credit images Yang Song: https://yang-song.net/blog/2021/score/

• Given a sequence of Gaussian noise scales $\sigma_1 < \sigma_2 < \cdots < \sigma_T$ such that:

$$\circ \ p_{\sigma_1}(x) \approx p(x_0)$$

Approximating the true data distribution

$$\circ \ p_{\sigma_T}(x) \approx \mathcal{N}(0,I)$$

Almost equally with the standard gaussian distribution.

And the forward process i.e. noise perturbation given by:

$$p_{\sigma_t}(x_t|x) = \mathcal{N}(x_t; x, \sigma_t^2 \cdot I) = \frac{1}{\sigma_t \cdot \sqrt{2\pi}} \cdot \exp\left(\frac{-1}{2} \cdot \left(\frac{x_t - x}{\sigma_t}\right)^2\right)$$

The gradient can be written as:

$$\nabla_{x_t} \log p_{\sigma_t}(x_t | x) = -\frac{x_t - x}{\sigma_t^2}$$

Training the NCSN with denoising score matching, the following objective is minimized:

$$\mathcal{L}_{dsm} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{p(x)} \mathbb{E}_{p_{\sigma_t}(x_t|x)} \left\| s_{\theta}(x_t, \sigma_t) + \frac{x_t - x}{\sigma_t^2} \right\|_2^2$$

Training the NCSN with denoising score matching, the following objective is minimized:

Noise Conditioned Score Network (NCSNs). Sampling

Parameters:

N – number of iterations for Langevin dynamics $\sigma_0 < \sigma_1 < ... < \sigma_T$ - noise scales $\{\gamma_t | t = 1, T\}$ - update magnitude

Algorithm:

$$x_T^0 \sim \mathcal{N}(0,I); \qquad \qquad \text{%sample some standard gaussian noise}$$

$$\textbf{for } \mathbf{t} = T, 1 \text{ do:} \qquad \qquad \text{%start from the largest noise scale, which is denoted by the time step}$$

$$\textbf{for } \mathbf{i} = 1, N \text{ do:} \qquad \qquad \text{%for N iterations execute the Langevin dynamics updates}$$

$$z_t \sim \mathcal{N}(0,I) \qquad \qquad \text{% get noise}$$

$$x_t^i = x_t^{i-1} + \frac{\gamma_t}{2} \cdot s_\theta \big(x_t^{i-1}, \sigma_t \big) + \sqrt{\gamma_t} z_t \qquad \qquad \text{% update}$$

$$x_{t-1}^0 = x_t^N \qquad \qquad \text{% next iteration}$$

$$\textbf{return } x_0$$

DDPM vs NCSN. Losses

DDPM:
$$\mathcal{L}_{simple} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x_0 \sim p(x_0), z_t \sim \mathcal{N}(0, \mathbf{I})} \|z_{\theta}(x_t, t) - z_t\|_2^2$$

NCSN:
$$\mathcal{L}_{dsm} = \frac{1}{T} \sum_{t=1}^{T} \lambda(\sigma_t) \mathbb{E}_{x_0 \sim p(x_0), x_t \sim p_{\sigma_t}(x_t|x_0)} \left\| s_{\theta}(x_t, \sigma_t) + \frac{x_t - x_0}{\sigma_t^2} \right\|$$

We can rewrite the noise z_t , as follows:

$$x_t \sim \mathcal{N}(x_t; x_0, \sigma_t^2 I) \Rightarrow x_t = x_0 + \sigma_t \cdot z_t, z_t \sim \mathcal{N}(0, I) \Rightarrow z_t = \frac{x_t - x_0}{\sigma_t}$$

• So, $s_{\theta}(x_t, \sigma_t)$ learns to approximate a scaled negative noise $\frac{-z_t}{\sigma_t}$.

DDPM vs NCSN. Sampling

DDPM:
$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\beta}_t}} z_{\theta}(x_t, t) \right) + \sqrt{\beta_t} \cdot z_t$$

• Iterative updates are based on subtracting some form of noise from the noisy image.

NCSN:
$$x_t^i = x_t^{i-1} + \frac{\gamma_t}{2} \cdot s_\theta(x_t^{i-1}, \sigma_t) + \sqrt{\gamma_t} \cdot z_t$$

• This is true also for NCSN because $s_{ heta}ig(x_t^{i-1},\sigma_tig)$ approximates the negative of the noise.

$$\mathcal{L}_{dsm} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{p(x)} \mathbb{E}_{p_{\sigma_t}(x_t|x)} \left\| s_{\theta}(x_t, \sigma_t) + \frac{x_t - x}{\sigma_t^2} \right\|_2^2 \qquad \min_{\theta} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{x_0 \sim p(x_0), z_t \sim \mathcal{N}(0, \mathbf{I})} \left\| z_t - z_{\theta}(x_t, t) \right\|_2^2$$

$$\mathcal{L}_{dsm} = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{p(x)} \mathbb{E}_{p_{\sigma_t}(x_t|x)} \left\| s_{\theta}(x_t, \sigma_t) - \left(-\frac{x_t - x}{\sigma_t^2} \right) \right\|_2^2$$

$$z_t = \frac{x_t - x_0}{\sigma_t}$$

Therefore, the generative processes defined by NCSN and DDPM are very similar.

Stochastic Differential Equations (SDEs)

- A generalized framework that can be applied over the previous two methods
- However, the diffusion process is continuous, given by an SDE
- Works by the same principle:
 - \triangleright Gradually transforms the data distribution p(x₀) into noise
 - > Reverse the process to obtain the original data distribution

Stochastic Differential Equations (SDEs)

The forward diffusion process is represented by the following SDE:

Stochastic Differential Equations (SDEs)

The reverse-time SDE is defined as:

$$\partial x = [f(x,t) - \sigma(t)^2 \cdot \nabla_x \log p_t(x)] \partial t + \sigma(t) \cdot \partial \widehat{\omega}$$

The training objective is similar to NCSN, but adapted for continuous time:

$$\mathcal{L}_{dsm}^* = \mathbb{E}_t \left[\lambda(t) \mathbb{E}_{p(x_0)} \mathbb{E}_{p_t(x_t|x_0)} \left\| s_{\theta}(x_t, t) + \nabla_{x_t} \log p_t(x_t|x_0) \right\|_2^2 \right]$$

- The score function is used in the reverse-time SDE:
 - > It employs a neural network to estimate the score function.
 - > Then uses a numerical SDE solver to generate samples.

Stochastic Differential Equations (SDEs). NCSN

The process of NCSN:

$$x_t \sim \mathcal{N}(x_t; x_{t-1}, (\sigma_t^2 - \sigma_{t-1}^2) \cdot I) \Rightarrow x_t = x_{t-1} + \sqrt{(\sigma_t^2 - \sigma_{t-1}^2)} \cdot z_t$$

We can reformulate the above expression to look like a discretization of an SDE:

$$x_t - x_{t-1} = \sqrt{\frac{(\sigma_t^2 - \sigma_{t-1}^2)}{t - (t-1)}} \cdot z_t$$

• Translating the above discretization in the continuous case:

$$\partial x = \sqrt{\frac{\partial \sigma^2(t)}{\partial t}} \partial \omega(t)$$

$$\partial x = f(x, t)\partial t + \sigma(t) \cdot \partial \omega_t$$

Stochastic Differential Equations (SDEs). DDPM

The process of DDPM:

$$x_i \sim \mathcal{N}(x_i; \sqrt{1-\beta_i} \cdot x_{i-1}, \beta_i \mathbf{I}) \Rightarrow x_i = \sqrt{1-\beta_i} \cdot x_{i-1} + \sqrt{\beta_i} \cdot z_i$$

• If we consider time step size $\Delta t = \frac{1}{T}$, instead of 1, and $\beta(t)\Delta t = \beta_i$:

$$x_t = \sqrt{1 - \beta(t)\Delta t} \cdot x_{t - \Delta t} + \sqrt{\beta(t)\Delta t} \cdot z_t$$

• Using Taylor expansion of $\sqrt{1-\beta(t)\Delta t}$:

$$x_t \approx (1 - \frac{\beta(t)\Delta t}{2}) \cdot x_{t-\Delta t} + \sqrt{\beta(t)\Delta t} \cdot z_t$$

$$x_{t} \approx x_{t-\Delta t} - \frac{\beta(t)\Delta t}{2} \cdot x_{t-\Delta t} + \sqrt{\beta(t)\Delta t} \cdot z_{t} \iff x_{t} - x_{t-\Delta t} = -\frac{\beta(t)\Delta t}{2} \cdot x_{t} + \sqrt{\beta(t)\Delta t} \cdot z_{t}$$

For the continuous case, the above becomes:

$$\partial x = -\frac{1}{2} \beta(t) x_t \partial t + \sqrt{\beta(t)} \partial \omega(t)$$

Conditional generation.

Diffusion models estimate the score function, $\nabla_{x_t} log p_t(x_t)$ to sample from a distribution p(x).

Sampling from $\mathbf{p}(x|y)$ requires the score function of this probability density, $\nabla_{x_t} \log p_t(x_t|y)$; \mathbf{y} is condition.

Solution 1. Conditional training: train the model with an additional input y to estimate $\nabla_{x_t} \log p_t(x_t|y)$.

Conditional generation. Classifier Guidance

Diffusion models estimate the score function, $\nabla_{x_t} log p_t(x_t)$ to sample from a distribution p(x).

Sampling from $\mathbf{p}(x|y)$ requires the score function of this probability density, $\nabla_{x_t} \log p_t(x_t|y)$.

Solution 2. Classifier guidance:

Bayes rule:

$$p_t(x_t|y) = \frac{p_t(y|x_t) \cdot p_t(x_t)}{p_t(y)} \iff$$

Logarithm:

$$\log p_t(x_t|y) = \log p_t(y|x_t) + \log p_t(x_t) - \log p_t(y) \iff$$

Gradient:

$$\nabla_{x_t} \log p_t(x_t|y) = \nabla_{x_t} \log p_t(y|x_t) + \nabla_{x_t} \log p_t(x_t) - \nabla_{x_t} \log p_t(y) \iff$$

Classifier

Unconditional diffusion model

Conditional generation. Classifier Guidance

Solution 2. Classifier guidance:

Guidance weight $\nabla_{x_t} \log p_t(x_t|y) = \text{S} \cdot \nabla_{x_t} \log p_t(y|x_t) + \nabla_{x_t} \log p_t(x_t)$

Problem

- Need to have good gradients estimates at each step of denoising process
 - Need a classifier that is robust to noise added in the image.
 - Training of the classifier on noisy data, which can be problematic..

Conditional generation. Classifier-free Guidance

Solution 3. Classifier-free guidance

$$\nabla_{x_t} \log p_t(x_t|y) = s \cdot \nabla_{x_t} \log p_t(y|x_t) + \nabla_{x_t} \log p_t(x_t)$$
 Bayes rule:
$$p_t(y|x_t) = \frac{p_t(x_t|y) \cdot p_t(y)}{p_t(x_t)}$$
 Logarithm:
$$\log p_t(y|x_t) = \log p_t(x_t|y) - \log p_t(x_t) + \log p_t(y)$$
 Gradient
$$\nabla_{x_t} \log p_t(y|x_t) = \nabla_{x_t} \log p_t(x_t|y) - \nabla_{x_t} \log p_t(x_t)$$
 from above
$$\nabla_{x_t} \log p_t(x_t|y) = s \cdot \nabla_{x_t} \log p_t(y|x_t) + \nabla_{x_t} \log p_t(x_t)$$

$$\nabla_{x_t} \log p_t(x_t|y) = s \cdot (\nabla_{x_t} \log p_t(x_t|y) - \nabla_{x_t} \log p_t(x_t)) + \nabla_{x_t} \log p_t(x_t)$$

$$\nabla_{x_t} \log p_t(x_t|y) = s \cdot \nabla_{x_t} \log p_t(x_t|y) + (1-s) \cdot \nabla_{x_t} \log p_t(x_t)$$
 Learned by a single model

Conditional generation. Classifier-free Guidance

Thank You