K-means Beispiel mit k = 3

Angenommen, wir haben die folgenden fünf Datenpunkte in einem zweidimensionalen Raum:

Punkte =
$$\{(2,3), (3,3), (6,7), (8,8), (10,10)\}$$

Wir möchten diese Punkte in k = 3 Cluster gruppieren.

Schritt 1: Initialisierung der Zentroiden

Wir wählen zunächst zufällig drei Datenpunkte als Anfangszentroiden:

- Zentroid 1: $C_1 = (2,3)$
- Zentroid 2: $C_2 = (6,7)$
- Zentroid 3: $C_3 = (8, 8)$

Schritt 2: Berechnung der Zuordnung

Nun berechnen wir die euklidischen Distanzen jedes Datenpunkts zu den drei Zentroiden und weisen jeden Punkt dem nächstgelegenen Zentroiden zu.

Die euklidische Distanz zwischen zwei Punkten (x_1, y_1) und (x_2, y_2) ist gegeben durch:

Distanz =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Punkt (2, 3):

Distanz zu
$$C_1 = (2,3)$$
: $\sqrt{(2-2)^2 + (3-3)^2} = 0$

Distanz zu
$$C_2 = (6,7)$$
: $\sqrt{(6-2)^2 + (7-3)^2} = \sqrt{16+16} = \sqrt{32} \approx 5{,}66$

Distanz zu
$$C_3 = (8,8)$$
: $\sqrt{(8-2)^2 + (8-3)^2} = \sqrt{36+25} = \sqrt{61} \approx 7.81$

Nächstgelegener Zentroid: C_1

Punkt (3, 3):

Distanz zu
$$C_1 = (2,3)$$
: $\sqrt{(3-2)^2 + (3-3)^2} = \sqrt{1} = 1$

Distanz zu
$$C_2 = (6,7)$$
: $\sqrt{(6-3)^2 + (7-3)^2} = \sqrt{9+16} = \sqrt{25} = 5$

Distanz zu
$$C_3 = (8,8)$$
: $\sqrt{(8-3)^2 + (8-3)^2} = \sqrt{25+25} = \sqrt{50} \approx 7.07$

Nächstgelegener Zentroid: C_1

Punkt (6, 7):

Distanz zu
$$C_1 = (2,3)$$
: $\sqrt{(6-2)^2 + (7-3)^2} = \sqrt{16+16} = \sqrt{32} \approx 5.66$

Distanz zu
$$C_2 = (6,7): \sqrt{(6-6)^2 + (7-7)^2} = 0$$

Distanz zu
$$C_3 = (8,8)$$
: $\sqrt{(8-6)^2 + (8-7)^2} = \sqrt{4+1} = \sqrt{5} \approx 2.24$

Nächstgelegener Zentroid: C_2

Punkt (8, 8):

Distanz zu
$$C_1 = (2,3)$$
: $\sqrt{(8-2)^2 + (8-3)^2} = \sqrt{36+25} = \sqrt{61} \approx 7.81$

Distanz zu
$$C_2 = (6,7)$$
: $\sqrt{(8-6)^2 + (8-7)^2} = \sqrt{4+1} = \sqrt{5} \approx 2.24$

Distanz zu
$$C_3 = (8,8)$$
: $\sqrt{(8-8)^2 + (8-8)^2} = 0$

Nächstgelegener Zentroid: C_3

Punkt (10, 10):

Distanz zu
$$C_1 = (2,3)$$
: $\sqrt{(10-2)^2 + (10-3)^2} = \sqrt{64+49} = \sqrt{113} \approx 10{,}63$

Distanz zu
$$C_2 = (6,7)$$
 : $\sqrt{(10-6)^2 + (10-7)^2} = \sqrt{16+9} = \sqrt{25} = 5$

Distanz zu
$$C_3 = (8,8)$$
: $\sqrt{(10-8)^2 + (10-8)^2} = \sqrt{4+4} = \sqrt{8} \approx 2.83$

Nächstgelegener Zentroid: C_3

Zuordnung nach dem ersten Schritt

- C_1 : {(2, 3), (3, 3)}
- C_2 : {(6, 7)}
- C_3 : {(8, 8), (10, 10)}

Schritt 3: Zentroiden aktualisieren

Wir berechnen die neuen Zentroiden, indem wir den Mittelwert der Punkte in jedem Cluster berechnen.

- Neuer Zentroid für C_1 : Mittelwert von $\{(2, 3), (3, 3)\} = (\frac{2+3}{2}, \frac{3+3}{2}) = (2.5, 3)$
- Neuer Zentroid für C_2 : Da es nur einen Punkt gibt, bleibt der Zentroid gleich (6,7).
- Neuer Zentroid für C_3 : Mittelwert von $\{(8,8), (10,10)\} = (\frac{8+10}{2}, \frac{8+10}{2}) = (9,9)$

Schritt 4: Wiederholung

Wir würden nun die Schritte 2 und 3 wiederholen, indem wir die Zuordnung der Punkte basierend auf den aktualisierten Zentroiden erneut berechnen und die Zentroiden so lange aktualisieren, bis sich die Zuordnungen nicht mehr ändern.

Endergebnis

Nach mehreren Iterationen (in diesem einfachen Beispiel könnten bereits 2 Iterationen ausreichen) würden wir eine stabile Zuordnung und endgültige Zentroiden haben. Das Ergebnis wären die 3 Cluster mit den zugehörigen Punkten.