## Задача А. Разрезание графа

 Имя входного файла:
 cutting.in

 Имя выходного файла:
 cutting.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан неориентированный граф. Над ним в заданном порядке производят операции следующих двух типов:

- cut разрезать граф, то есть удалить из него ребро;
- ask проверить, лежат ли две вершины графа в одной компоненте связности.

Известно, что после выполнения всех операций типа cut рёбер в графе не осталось. Найдите результат выполнения каждой из операций типа ask.

### Формат входного файла

Первая строка входного файла содержит три целых числа, разделённые пробелами — количество вершин графа n, количество рёбер m и количество операций k ( $1 \le n \le 50\,000$ ,  $0 \le m \le 100\,000$ ,  $m \le k \le 150\,000$ ).

Следующие m строк задают рёбра графа; i-я из этих строк содержит два числа  $u_i$  и  $v_i$  ( $1 \le u_i, v_i \le n$ ), разделённые пробелами — номера концов i-го ребра. Вершины нумеруются с единицы; граф не содержит петель и кратных рёбер.

Далее следуют k строк, описывающих операции. Операция типа сит задаётся строкой «сит u v»  $(1 \le u, v \le n)$ , которая означает, что из графа удаляют ребро между вершинами u u v. Операция типа ask задаётся строкой «ask u v»  $(1 \le u, v \le n)$ , которая означает, что необходимо узнать, лежат ли в данный момент вершины u u v в одной компоненте связности. Гарантируется, что каждое ребро графа встретится в операциях типа сит ровно один раз.

### Формат выходного файла

Для каждой операции **ask** во входном файле выведите на отдельной строке слово «YES», если две указанные вершины лежат в одной компоненте связности, и «NO» в противном случае. Порядок ответов должен соответствовать порядку операций **ask** во входном файле.

#### Пример

| cutting.in | cutting.out |
|------------|-------------|
| 3 3 7      | YES         |
| 1 2        | YES         |
| 2 3        | NO          |
| 3 1        | NO          |
| ask 3 3    |             |
| cut 1 2    |             |
| ask 1 2    |             |
| cut 1 3    |             |
| ask 2 1    |             |
| cut 2 3    |             |
| ask 3 1    |             |

### Задача В. Минимальный каркас

 Имя входного файла:
 mst.in

 Имя выходного файла:
 mst.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Требуется найти в связном графе остовное дерево минимально веса.

### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $1 \le n \le 20000, \ 0 \le m \le 100000$ ). Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами  $b_i$ ,  $e_i$  и  $w_i$  — номера концов ребра и его вес соответственно ( $1 \le b_i$ ,  $e_i \le n, \ 0 \le w_i \le 100000$ ).

Граф является связным

### Формат выходного файла

Выведите единственное целое число - вес минимального остовного дерева.

### Примеры

| mst.in | mst.out |
|--------|---------|
| 4 4    | 7       |
| 1 2 1  |         |
| 2 3 2  |         |
| 3 4 5  |         |
| 4 1 4  |         |

# Задача С. Поиск набора образцов

Имя входного файла: console2.in
Имя выходного файла: console2.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Напишите программу, которая для каждой строки из заданного набора S проверяет, верно ли, что она содержит как подстроку одну из строк из набора T.

### Формат входного файла

Первая строка входного файла содержит натуральное число n ( $1 \le n \le 1000$ ) — количество строк в наборе T. Каждая из следующих n строк содержит непустую строку. Гарантируется, что суммарная длина всех строк из набора T не превышает  $80\,000$ . Оставшаяся часть файла содержит строки из набора S. Каждая строка состоит из ASCII символов с кодами от 32 до 126 включительно. Строка может быть пустой. Гарантируется, что размер входного файла не превышает  $1\,\mathrm{MB}$ .

### Формат выходного файла

В выходной файл выведите все строки из набора S (в том порядке, в котором они находятся во входном файле), содержащие как подстроку по крайней мере одну строку из набора T.

### Примеры

| console2.in | console2.out |
|-------------|--------------|
| 3           | sudislavl    |
| gr          | group b      |
| sud         |              |
| abc         |              |
| lksh        |              |
| sudislavl   |              |
| kostroma    |              |
| summer      |              |
| group b     |              |
|             |              |

# Задача D. Кубики

 Имя входного файла:
 cubes.in

 Имя выходного файла:
 cubes.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать своё творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков настоящие, а какие — всего лишь отражение в зеркале.



Помогите Пете! Выясните, сколько у него может быть кубиков. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

### Формат входного файла

Первая строка входного файла содержит два целых числа: N ( $1 \le N \le 100\,000$ ) и количество различных цветов, в которые могут быть раскрашены кубики,— M ( $1 \le M \le 100\,000$ ). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

### Формат выходного файла

В выходной файл выведите в порядке возрастания все такие K, что у Пети может быть K кубиков.

### Примеры

| cubes.in    | cubes.out |
|-------------|-----------|
| 6 2         | 3 5 6     |
| 1 1 2 2 1 1 |           |