# IMPLEMENTATION OF RANDOM NUMBER GENERATOR IN ARDUINO USING EMBEDDED C

### Sai Harshith Kalithkar harshith.work@gmail.com FWC22118

IIT Hyderabad-Future Wireless Communications Assignment-3

#### March 2023

# Contents

| 1 | Problem                                                    | 2           |
|---|------------------------------------------------------------|-------------|
| 2 | Introduction                                               | 2           |
| 3 | Components 3.1 Arduino                                     | 2<br>2<br>2 |
| 4 | Implementation4.1 Truth table4.2 K-map4.3 Boolean Equation | 3<br>3<br>4 |
| 5 | Hardware                                                   | 5           |
| 6 | Software                                                   | 5           |

#### 1 Problem

(GATE2021-QP-EC)

Q.46 The propogation delay of the exclusive-OR(XOR) gate in the circuit in the figure is 3ns. The propogation delay of all the flip-flops is assumed to be zero. The clock(Clk) frequency provided to the circuit is 500MHz.



Figure 1: Circuit

Starting from the initial value of the flip-flop outputs Q2Q1Q0 = 111 with D2 = 1, the minimum number of triggering clock edges after which the flip-flop outputs Q2Q1Q0 becomes  $1\ 0\ 0$  (in integer) is \_\_\_

#### 2 Introduction

A random number generator using D flip-flops is a simple digital circuit that generates a sequence of random binary numbers. To implement this type of random number generator, we use a series of D flip-flops connected in a feedback loop. The output of each flip-flop is fed back into the input of the next flip-flop, creating a circuit that generated a sequence of random binary values.

The feedback loop creates a delay in the circuit, which causes the circuit to exhibit unpredictable behavior. This unpredictable behavior results in a sequence of random binary values. The length of the delay can be adjusted to control the randomness of the output.

# 3 Components

#### 3.1 Arduino

The Arduino Uno has some ground pins, analog input pins A0-A3 and digital pins D1-D13 that can be used for both input as well as output. It also has two power pins that can generate 3.3V and 5V. In<br/>the following exercises, we use digital pins,<br/>GND and 5V .

#### 3.2 Seven Segment Display

The seven segment display has eight pins, a,b,c,d,e,f,g and dot that take an active LOW input,i.e. the LED will glow only if the input is connected to

| Components            | Value            | Quantity |
|-----------------------|------------------|----------|
| Breadboard            |                  | 1        |
| Resistor              | $\geq 220\Omega$ | 1        |
| Arduino               | Uno              | 1        |
| Seven Segment Display | Common Anode     | 1        |
| Decoder               | 7447             | 1        |
| Flip Flop             | 7474             | 2        |
| Jumper Wires          |                  | 20       |

Table 1: Components

ground. Each of these pins is connected to an LED segment. The dot pin is reserved for the LED.

# 4 Implementation

A 7474 IC which has 14 pins and can store two seperate binary values. So we consider two IC's since we have three values and connect the D inputs of each flip-flop to the input signals of 7447 IC . Later interface 7447 IC to seven segment display for the output. The CLK input is used to trigger the flip-flop, and the Q output is used to read the stored value. When a positive edge is detected on the CLK input, the current value on the D input is stored in the flip-flop. The boolean expression of the D flip-flop is Q(t+1)=D

#### 4.1 Truth table

| P  | resent Stat | ie e | Fl | ip-Flop inp | ut | Next State |     |     |  |
|----|-------------|------|----|-------------|----|------------|-----|-----|--|
| Q2 | Q1          | Q0   | D2 | D1          | D0 | Q2'        | Q1' | Q0' |  |
| 1  | 1           | 1    | 0  | 1           | 1  | 0          | 1   | 1   |  |
| 0  | 1           | 1    | 1  | 0           | 1  | 1          | 0   | 1   |  |
| 1  | 0           | 1    | 0  | 1           | 0  | 0          | 1   | 0   |  |
| 0  | 1           | 0    | 0  | 0           | 1  | 0          | 0   | 1   |  |
| 0  | 0           | 1    | 1  | 0           | 0  | 1          | 0   | 0   |  |
| 1  | 0           | 0    | 1  | 1           | 0  | 1          | 1   | 0   |  |
| 1  | 1           | 0    | 1  | 1           | 1  | 1          | 1   | 1   |  |

Table 2: Truth Table

#### 4.2 K-map

Since Q' = D, we find the k-maps for D as outputs



Figure 2: For D2



Figure 3: For D1

Figure 4: For D0

# 4.3 Boolean Equation

By solving the K-maps above we obtain as follows :

$$D2 = \overline{Q2}Q0 + \overline{Q0}Q2 \tag{1}$$

$$D1 = Q2 (2)$$

$$D0 = Q1 \tag{3}$$

#### 5 Hardware

1. Make the connections between the seven segment display and the 7447 IC as shown in Table 3  $\,$ 

| 7447    | $\overline{a}$ | $\bar{b}$ | $\overline{c}$ | $\overline{d}$ | $\overline{e}$ | $\overline{f}$ | $\overline{g}$ |
|---------|----------------|-----------|----------------|----------------|----------------|----------------|----------------|
| Display | a              | b         | c              | d              | e              | f              | g              |

Table 3: 7447

2. Connect the Arduino,7447 and the two 7474 ICs according to Table4

|         | INPUT |    | OUTPUT |     |     | CLOCK |       |      |    |   |    |    |
|---------|-------|----|--------|-----|-----|-------|-------|------|----|---|----|----|
|         | Q0    | Q1 | Q2     | Q0' | Q1' | Q2'   | CLOCK |      | 5V |   |    |    |
| Arduino | D6    | D7 | D8     | D2  | D3  | D4    | D13   |      |    |   |    |    |
| 7474    | 5     | 9  |        | 2   | 12  |       | CLK1  | CLK2 | 1  | 4 | 10 | 13 |
| 7474    |       |    | 5      |     |     | 2     | CLK1  | CLK2 | 1  | 4 | 10 | 13 |
| 7447    |       | •  |        | 7   | 1   | 2     |       |      | 16 |   |    |    |

Table 4: Connections

- 3. Make the other D input pins of 7474 grounded and supply 5V and GND from the arduino as well.
- 4. When the clock edge is trigerred we observe display of random numbers.

#### 6 Software

Now write the following code and upload in arduino to see the results.

```
#include <avr/io.h>
#include < util/delay.h>
int Q0, Q1, Q2; //inputs
int DO, D1, D2, CLK; //output
int main(void){
    DDRD = 0b11100011:
    DDRB = 0b00100111;
    while(1){
            PORTB |= (1<<PB5);
            _delay_ms(1000);
            Q0 = (PIND & (1 << PD2)) >> PD2;
            Q1 = (PIND & (1 << PD3)) >> PD3;
            Q2 = (PIND & (1 << PD4)) >> PD4;
            D2 = (Q2 && !Q0) || (Q0 && !Q2);
            D1 = (Q2);
            D0 = (Q1);
            PORTB &= ~(1 << PB5);
```

```
PORTB = (DO << PBO) | (D1 << PB1) | (D2 << PB2);
}
```