H5	Klopné obvody	3D2
23. 4. 2018		Meinlschmidt

ZADÁNÍ:

- 1. Popište vlastnosti klopných obvodů:
 - a) Astabilní klopný obvod
 - b) Monostabilní klopný obvod
 - c) Bistabilní klopný obvod
 - d) Uveď te praktické příklady použití jednotlivých typů obvodů
- 2. Měření AKO s NE555:
 - a) Vypočtěte hodnoty součástek pro zadanou frekvenci
 - b) Změřte parametry sestaveného obvodu a porovnejte se zadanými
 - c) Upravte hodnotu rezistoru R₁, tak aby AKO generoval požadovanou frekvenci
 - d) Změřte upravenou hodnotu rezistoru R₁
- 3. Měření MKO s NE555:
 - a) Vypočtěte hodnoty součástek pro zadanou délku pulsu
 - b) Změřte parametry sestaveného obvodu a porovnejte se zadanými
 - c) Upravte hodnotu rezistoru R, tak aby MKO generoval puls požadované délky
 - d) Změřte upravenou hodnotu rezistoru R
- 4. Uložte naměřené průběhy jednotlivých měření. Nastavte zobrazování důležitých údajů na obrazovce osciloskopu.

ODPOVĚDI NA OTÁZKY:

Popište vlastnosti klopných obvodů:

Astabilní klopný obvod nemá žádný stabilní stav. Neustále osciluje (kmitajá) z jednoho stavu do druhého. Použit lze jako impulzní generátor.

Monostabilní klopný obvod má jeden stabilní stav, ze kterého se obvod překlopí pouze s příchodem spouštěcího impulzu, po stanovené době se překlopí zpět. Použit lze jako zpožďovací prvek.

Bistabilní klopný obvod má oba stavy stabilní. Používá se pro paměťové prvky, které mají mnoho variant (RS, JK, D a T).

TEORIE:

Vnitřní zapojení obvodu NE555.

SCHÉMA ZAPOJENÍ

POPIS PRÁCE:

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například generátor průběhů, číslicový osciloskop atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

Nejdříve jsme pomocí vytknutí vypočítali hodnotu R_1 . Dále jsme provedli zapojení obvodu a hodnotu R_1 upravovali tak dlouho, dokud frekvence obvodu nedosáhla požadované hodnoty (před a po korekci).

Zbylé hodnoty jsme změřili pomocí osciloskopu a zapsali do záznamového archu.

TABULKY

AKO		
f – zadaná	730,00 Hz	
C – zvolená	68,00 nF	
R_2	10,00 kΩ	
R_1	9069 Ω	
f naměřená	703,11 Hz	
R ₁ – nastavený	8050 Ω	
Střída	65 %	
U_{CMIN}	1,55 V	
U_{CMAX}	3,26 V	

МКО		
t _{NESTAB} – zadaná	730,00 Hz	
С	47,00 μF	
R – vypočetný	63887,86 Ω	
t _{NESTAB} – naměřená	4,120 Hz	
R – nastavený	51900 Ω	
U_{CMIN}	-60 mV	
U_{CMAX}	3,28 V	

<u>VÝPOČTY</u>

AKO

$$t_{NAB} = 0.693 \cdot C \cdot (R_1 + R_2)$$

$$t_{VYB} = 0.693 \cdot C \cdot R_2$$

$$T = t_{NAB} + t_{VYB} = 0.693 \cdot C \cdot (R_1 + 2 \cdot R_2)$$

$$\frac{1}{f} = 0.693 \cdot C R_1 + 0.693 \cdot C \cdot 2 \cdot R_2$$

$$R_1 = \frac{1}{0.693 \cdot C} - (2 \cdot R_2)$$

MKO

$$t_{\text{NESTAB}} = 1,099 \cdot C \cdot R$$

$$\frac{t_{\text{NESTAB}}}{1,099 \cdot C} = R$$

GRAFY

AKO - Před korekcí

AKO - Po korekci

MKO – Před korekcí

MKO - Po korekci

SPOLUPRACOVALI:

Kropáček Tomáš

ZÁVĚR:

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí. Zapojování obvodu proběhlo hladce.