Pendulum on a Cart using LEGO NXT Kits

S.R.Manikandasriram

Indian Institute of Technology, Madras srmanikandasriram@gmail.com

October 17, 2014

LEGO Pendulum on a Cart

Using

- LEGO Mindstorms NXT Kit
- HiTechnic Angle Sensor
- Simulink (with Hardware Support Package for LEGO NXT)

Figure: LEGO Pendulum on a Cart

Objective: To rapidly damp the oscillation of the pendulum on a moving cart caused by external disturbances and/or jerk in the cart movement.

Building the Pendulum and the Cart

Figure: Cart powered by a single motor

Crane

Mathematical Modelling - Equations of Motion

The equations of motion are derived using Lagrangian dynamics.

The Lagrangian takes the form

$$L = T - U$$

The Euler-Lagrange equations of motions for the robot are given by:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = Q_i \qquad i = 1, 2, \dots, n$$

where $q = (\theta, \phi, \psi)$ are the generalized coordinates.

Mathematical Modelling - State Equations of the System

On solving the Euler-Lagrange equations, a non-linear model of the system is obtained. On linearizing the model about the equilibrium point($\psi=0$) and neglecting second order terms like $\dot{\psi}^2$ and $\dot{\phi}^2$, we obtain:

$$\begin{split} \left[(2m+M)R^2 + 2J_w + 2n^2 J_m \right] \ddot{\theta} + \left(MLR - 2n^2 J_m \right) \ddot{\psi} &= F_{\theta} \\ \left(MLR - 2n^2 J_m \right) \ddot{\theta} + \left(ML^2 + J_{\psi} + 2n^2 J_m \right) \ddot{\psi} - MgL\psi &= F_{\psi} \\ \left[\frac{1}{2} mW^2 + J_{\phi} + \frac{W^2}{2R^2} \left(J_w + n^2 J_m \right) \right] \ddot{\phi} &= F_{\phi} \end{split}$$

Mathematical Modelling - State Space Representation

Here, we consider x_1, x_2 as states and u as input and thus the state space representation of the linearized model is of the form:

$$\dot{\mathbf{x_1}} = A_1 \mathbf{x_1} + B_1 \mathbf{u}$$
$$\dot{\mathbf{x_2}} = A_2 \mathbf{x_2} + B_2 \mathbf{u}$$

where,

$$\mathbf{x_1} = [\theta, \psi, \dot{\theta}, \dot{\psi}]^T, \mathbf{x_2} = [\phi, \dot{\phi}]^T, \mathbf{u} = [v_I, v_r]^T$$

Controller Design

A Servo (PID type) controller is employed to track the reference signal. An integral gain is inserted into the feedback loop in order to regulate out steady state errors.

 C_{θ} is an output matrix to derive θ from \mathbf{x}_1

Figure: Servo Controller Block diagram

Controller Design

Additionally,

- P control is used for wheel synchronization when moving straight. This is required since two DC motors don't move at the same speed for a given voltage.
- Rotation is achieved by giving higher power to the left motor
- Remote controlled via Bluetooth by altering the $\dot{\theta}$ reference for speed and rotation is achieved as explained above.

Figure: Simplified Simulink Model of NXTway-GS

Figure: Simplified Simulink Model of Remote

Demonstration

References

Yorihisa Yamamoto (2008)

NXTway-GS Model-Based Design

Control of self-balancing two-wheeled robot built with LEGO Mindstorms NXT.

MathWorks Simulink

LEGO Mindstorms NXT Support from Simulink

http://www.mathworks.in/hardware-support/lego-mindstorms-simulink.html

Gyro Sensor (NGY1044)

HiTechnic

www.hitechnic.com/cgi-bin/commerce.cgi?preadd = action&key = NGY1044

Jonsson Per, Piltan Ali, Rosen Olov

Two wheeled balancing LEGO robot

Thank You!