

BFS с использованием GraphBLAS

Рустам Азимов

BFS

- ▶ BFS алгоритм обхода графа в ширину
- ► Хоть BFS является одним из простейших алгоритмов обхода графа, он служит основой для многих других важных алгоритмов анализа графов
- Формулировки
 - Levels вычислить уровень каждой вершины, относительно стартовой
 - Parents для каждой вершины v вычислить предыдущую вершину p на пути от стартовой вершины до вершины v (эта информация используется для восстановления путей)
 - ▶ MSBFS (Multiple-Source BFS) начать обход из нескольких стартовых вершин

semiring	domain	Ф	\otimes	0
any-pair	{T, F}	any	pair	F

level = 1

semiring	domain	Ф	8	0
any-pair	{T, F}	any	pair	F

level = 2

semiring	domain	Ф	8	0
any-pair	{T, F}	any	pair	F

level = 3

	<u> </u>	(2)	3	4)	9	6	7
f			0		0		0
			•	<u> </u>	leve	el	
	①	2	3	4	6	6	7
	1	2	3	2	3		3

semiring	domain	Ф	8	0
any-pair	{T, F}	any	pair	F

level = 4

f is empty → terminate

BFS-LEVELS: ALGORITHM

- **Input:** adjacency matrix **A**, source vertex *s*, #vertices *n*
- Output: vector of visited vertices v (integer)
- Workspace: frontier vector **f** (Boolean)

- 1. $\mathbf{f}(s) = T$
- 2. for level = 1 to n 1 *terminate earlier if **f** is empty
- 3. $\mathbf{s}\langle\mathbf{f}\rangle = level$ assign the level value to the vertices in the frontier
- 4. $clear(\mathbf{f})$ clear the frontier \mathbf{f}
- 5. $\mathbf{f}(\neg \mathbf{s}) = \mathbf{f}$ any pair \mathbf{A} advance the frontier

$$\mathbf{f}\langle \neg \mathbf{p} \rangle = \mathbf{f} \min. \text{ first } \mathbf{A}$$

$$\mathbf{f}\langle \neg \mathbf{p} \rangle = \mathbf{f} \min. \text{ first } \mathbf{A}$$

$$p\langle f\rangle = f$$

$$\iint f\langle f\rangle = id$$

first(x, y) = x

 $\mathbf{f}\langle \neg \mathbf{p} \rangle = \mathbf{f} \min. \text{ first } \mathbf{A}$

f is empty → terminate

BFS-PARENTS: ALGORITHM

- Input: adjacency matrix A, source vertex s, #vertices n
- Output: parent vertices vector p (integer)
- Workspace: vertex index vector idx (integer), frontier vector
 f (integer)
- 1. idx = [1 2 ... n] we assume 1-based indexing here
- 2. f(s) = s
- 3. $\mathbf{p}(s) = 0$
- 4. for l = 1 to n 1 *terminate earlier if the frontier is empty
- 5. $f(\neg p) = f \min . \text{ first } A \text{ advance the frontier}$
- 6. $\mathbf{p}\langle \mathbf{f} \rangle = \mathbf{f}$ assign parent ids to the frontier's vertices
- 7. $\mathbf{f}(\mathbf{f}) = \mathbf{idx}$ assign vertex ids $\mathbf{f}(i) = i$

BFS-PARENTS: OPTIMIZATION

- Использование операции min в качестве операции сложения позволяет выбрать из нескольких возможных предыдущих вершин и обеспечивает детерминированность
- ▶ Можно использовать другие операции, например полукольцо any.first для выбора произвольного parent

MSBFS

- ightharpoonup Мы использовали вектор f в качестве текущего фронта
- ▶ Фронт инициализировался с одной стартовой вершиной
- ▶ Что будет, если стартовых вершин будет несколько?
- Какие будут проблемы?

0

 $\mathbf{F}\langle \neg \mathbf{S} \rangle = \mathbf{F}$ any. pair \mathbf{A}

DIRECTION-OPTIMIZING BFS

- ▶ Direction-optimizing BFS алгоритм был опубликова в 2012 году
 - S. Beamer, K. Asanovic, D. Patterson: Direction-Optimizing Breadth-First Search, SC 2012
- Направление обхода через матрично-векторное умножение меняется и иногда вычисляется, как vA (push), а иногда, как A^Tv (pull)
 - Использует push направление, когда вектор (фронт) сильно разрежен и имеет малое количество ненулевых значений
 - ▶ Использует pull направление, когда вектор (фронт) становится слишком плотным

Источники

- ▶ Книга: Kepner J., Gilbert J. "Graph algorithms in the language of linear algebra"
- Презентация: Gábor Szárnyas "Introduction to GraphBLAS"