Crypto math II

Alin Tomescu alinush@mit.edu

May 19, 2015

Abstract

A quick overview on group theory from Ron Rivest's 6.857 course in Spring 2015.

1 Overview

- Group theory review
- Diffie-Hellman (DH) key exchane
- Five crypto groups:
 - $-\mathbb{Z}_p^*$
 - $-\mathbb{Q}_n$
 - $-\mathbb{Z}_n^*$
 - $-\mathbb{Q}_n$
 - elliptic curves

2 Group theory review

Here, we are talking about multiplicative groups (where the operation between group elements is something resembling multiplication)

Definition: (\mathbb{G}, \cdot) is a *finite abelian group* of size t if:

- \exists identity 1 such that $\forall a \in \mathbb{G}, a \cdot 1 = 1 \cdot a = a$
- $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} \text{ such that } a \cdot b = 1$
- $\forall a, b, c \in \mathbb{G}, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- $\forall a, b \in \mathbb{G}, a \cdot b = b \cdot a$

2.1 Order and generators

Definition: The order of a in \mathbb{G} is denoted by order(a) and is equal to the least u such that $a^u = 1$

Lagrange's Theorem: In a finite abelian group of size t, for all $a \in \mathbb{G}$, $order(a) \mid t$

Theorem: In a finite abelian group of size $t, \forall a \in \mathbb{G}, a^t = 1$

Example: $a^{(p-1)} = 1, \forall a \in \mathbb{Z}_p^*$ because $|\mathbb{Z}_p^*| = 1$

Definition: $\langle a \rangle = \{a^i : i \ge 0\} = \text{subgroup generated by } a.$

Definition: If $\langle a \rangle = \mathbb{G}$ then \mathbb{G} is *cyclic* and a is a *generator* of \mathbb{G} .

Note: $|\langle a \rangle| = order(a)$

Exercise: In a finite abelian group \mathbb{G} of order t, where t is prime, we have: $\forall a \in \mathbb{G}$, if $a \neq 1 \Rightarrow a$ is a generator of \mathbb{G} .

Solution: We know that the size of any subgroup of \mathbb{G} must divide t. Since t is prime, any subgroup can either have size 1 or t. Thus, only trivial subgroups can exist: the subgroup made up of the identity element ($\{1\}$) and \mathbb{G} itself. Since $a \neq 1$, any subgroup generated by a cannot be equal to $\{1\}$ because it will have to contain a itself which is different than 1. Thus, if a generates any subgroup, it has to generate \mathbb{G} itself. How do we know that a generates any subgroup at all then? We know $a \in G \Rightarrow a^u \in G, \forall u$ and, informally, we know that there cannot be a u, 1 < u < t such that $a^u = 1$ because that would create a subgroup of \mathbb{G} of size u, which would imply $u \mid t$, which would be false since t is prime.

Theorem: \mathbb{Z}_p^* is always cyclic (i.e. there exists a generator within \mathbb{Z}_p^*)

2.2 Discrete logs

Theorem: If \mathbb{G} is a cyclic group of order t and generator g then the relation $x \leftrightarrow g^x$ is one-to-one between $[0, 1, \dots, t-1]$ and \mathbb{G} .

 $x \mapsto g^x$: exponentiation, "powering-up" $g^x \mapsto x$: discrete logarithm (DL)

Computing discrete logarithms (the DL problem) is commonly assumed to be hard/infeasible for well-chosen groups \mathbb{G} (e.g. \mathbb{Z}_p^* for p a large randomly chosen prime).

In practice, we need to be able to translate *bits of data* or *messages* from a message space M as group elements of \mathbb{G} . We need an one-to-one correspondence (injective, and surjective) function $f: M \to \mathbb{G}$ such that $f(m) \in \mathbb{G}$ can be chosen to represent message $m \in M$.