Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Modelos Estocásticos de Investigação Operacional

Trabalho Prático - Grupo 9

Identificação do Grupo

Número:	Nome completo:	Rubrica:
A8448°	TimegoHenrique delliveira Magunas	TIGO
A 84 802	João Nuno Cardoso Gorgalus de Abreu	João Aboren
485370		Hugo Maties
A86272	Morgo Fernandes Motions rford Manuel Carvalho da Silva Cantinho	Mond Continueno

Data de entrega: 2020-

Conteúdo

1	Par	te 1 - Descrição do Trabalho e Análise de Resultados	1
	1.1	Análise do problema	1
	1.2	Implementação da solução	2
	1.3	Análise de resultados	4
2	Par	te 2 - Gestão de Água na Barragem Tarbela em Alturas de Extrema Afluência usando	
	\mathbf{Pro}	gramação Dinâmica Estocástica Bayesiana	5
	2.1	Introdução	5
	2.2	Modelo	5
	2.3	Tratamento dos dados	6
	2.4	Aplicação do modelo e respostas	9
	2.5	Conclusão	9
	2.6	Referências	9
3	Ane	exos	10
	3.1	Anexo A1	10
		3.1.1 Página com os dados fornecidos pelo docente	10
	3.2	-	11
	3.3	Anexo A3	12
	3.4	Anevo A4	1/

1. Parte 1 - Descrição do Trabalho e Análise de Resultados

1.1 Análise do problema

O problema apresentado é de número infinito de estágio com alternativas, para resolução deste problema identificamos os seguintes estados, estágios e decisões:

- Estados: 13 estados (0,1,..,13), ou seja números de carros no final dia;
- Estágios : Final do dia
- Decisões : 7 decisões, sendo estas as seguintes:
 - K=0 Não existir transferência de veículos;
 - K=1 Transferir de uma filial para outra 1 veículo;
 - K=2 Transferir de uma filial para outra 2 veículos;
 - K=3 Transferir de uma filial para outra 3 veículos;
 - K=4 Receber 1 veículo da outra filial;
 - K=5 Receber 2 veículos da outra filial;
 - K=6 Receber 3 veículos da outra filial;

Figura 1.1: Rede de Prog Dinâmica

1.2 Implementação da solução

Para implementação do algoritmo de iteração, começamos por definir matrizes de transição 13x13 de custo e de probabilidade para cada uma das decisões em cada filial, para isso encontramos um padrão de forma a preencher a matriz de probabilidades e de custo no caso da decisão de não transferir/receber, no entanto havia uma excepção a esse padrão na coluna 12 das matrizes, pois foi necessário tivemos considerar o caso de overflow, ou seja, os casos em que empresário teve um excesso de veículos. Para encontrar este padrão escrevemos as seguintes expressões das probabilidades:

```
Decisão: Nenhuma transferência na filial 1
-Estado final 0
Transição
0 -> 0 :
            Satisfeitos : -P(0) * R(0);
            Insatisfeito : -P(1) * R(0);
                            - P(2) * R(0);
                            - P(12) * R(0);
1 -> 0 :
           Satisfeitos :
                            - P(1) * R(0);
           Insatisfeito:
                            - P(2) * R(0);
                            - P(3) * R(0);
                            - P(12) * R(0);
2 -> 0 :
          Satisfeitos :
                            - P(2) * R(0);
           Insatisfeito:
                            - P(3) * R(0);
                            - P(4) * R(0);
                            - P(12) * R(0);
11 -> 0 :
           Satisfeitos :
                            -P(11) * R(0);
            Insatisfeito:
                            -P(12) * R(0);
12 -> 0 :
            Satisfeitos :
                            - P(12) * R(0);
-Estado Final 1
Transição
0 -> 1 :
            Satisfeitos : -P(0) * R(1);
            Insatisfeito : -P(1) * R(1);
                            - P(2) * R(1);
                            - P(12) * R(1);
1 -> 1 :
           Satisfeitos
                          : - P(0) * R(0);
                            - P(1) * R(1);
            Insatisfeitos : -P(2) * R(1);
                            - P(3) * R(1);
                             - P(12) * R(1);
```

```
2 -> 1 : Satisfeitos : - P(1) * R(0);

- P(2) * R(1);

Insatisfeito : - P(3) * R(1);

- P(4) * R(1);

...

- P(12) * R(1);

...

12 -> 1 : Satisfeitos : - P(11) * R(0);

- P(12) * R(1);
```

Estes exemplos correspondem ao estado final ser 0 e 1, sendo P(X) o número de pedidos na filial e R(0) o número de veículos recebidos, por exemplo no caso de transição $12 \to 1$ podemos ter 11 pedidos e ficamos com 1 veículo ou 12 pedidos e temos de receber 1 para ficar-mos no estado final 1. No caso da coluna 12 tivemos de ter em conta o excesso, ou seja, por exemplo a transição de estado $3 \to 12$ podemos ter 0 pedidos e 12 entregas ocorrendo assim um excesso de 3 veículos que terão de ser reencaminhamos para outras filias do mesmo grupo mas não da gerência do empresário.

Para os custos a fórmula usada foi

```
P(X) * 30 * satisfeitos + taxa * (-10)
```

Sendo P(X) a probabilidade de pedidos multiplicada por 30, que é o crédito por cada veículo alugado e multiplicado pelos "satisfeitos" que são os clientes que conseguiram comprar, isto é o número de veículos comprados mais a taxa caso sejam guardados mais de 8 veículos durante a noite. Quando há transferências nas matrizes de decisão vemos as linhas e colunas onde a probabilidade é diferente de 0 e retiramos 7,14 ou 21 que é o custo de uma duas e três transferências respetivamente.

As matrizes para as restantes decisões foram obtidas através de *shift's*, caso uma filial transferi-se veículos para uma outra filial, seria necessário um *shift* nas linhas da matriz da primeira filial consoante o número de automóveis(no máximo 3) que esta transferiu para a outra filial. Do ponto de vista da filial que recebeu os automóveis, a decisão que corresponde à decisão da primeira filial transferir "X"automóveis para outra filial é a de receber "X"automóveis, neste caso é feito um *shift* nas linhas da matriz para baixo onde o número de *shifts* feitos é igual ao número de carros recebidos.

Após isto juntamos as matrizes de transições das decisões de cada filial tanto a de custo como a de probabilidades, obtendo-se deste modo 7 matrizes 169x169 de probabilidades e de custos, esta junção *join* foi obtida através da seguinte fórmula:

```
P((X,Y),(Z,W)) = F1(X,Z)*F2(Y,W)
```

onde **F1** representa a probabilidade/custo na Filial 1 e **F2** representa a probabilidade/custo na Filial 2, consoante estamos a definir a matrizes de transição de probabilidades ou custos. Sendo X,Y,Z e W:

```
X o estado inicial na filial 1;
Y o estado inicial na filial 2;
Z o estado final na filial 1;
W o estado final na filial 2.
```

De seguida definimos um ciclo que itera até o maior e o menor elemento de D_n se encontrarem com uma diferença menor que 0.01, para encontrar este valor calculamos os vetores esperança da contribuição de estágio ${\bf Q}$ e o vetor esperança do total da contribuição quando o sistema parte de (n,i) e segue uma política ótima ${\bf F}$, sendo os valores deste vetor obtidos pelo máximos de $Q^k + P^k * F_{n-1}$, uma vez que queremos **maximizar** os lucros .

1.3 Análise de resultados

O ganho(g) obtido após n iterações é limitado por $29.4108 \le g_{n=21} \le 29.4188$, isto significa 30 lucro/dia . A política ótima de transferências de carros entre filiais é uma tal que para um estado final definido, se saiba qual a decisão correta a tomar.

2. Parte 2 - Gestão de Água na Barragem Tarbela em Alturas de Extrema Afluência usando Programação Dinâmica Estocástica Bayesiana

2.1 Introdução

A afluência de água à bacia de uma barragem é o elemento incerto que afecta directamente o seu fluxo de saída, a sua eficiência energética e económica, e o bem-estar das comunidades à sua volta dependentes da água, do terreno, e da energia que a barragem providencia. O paper aqui analisado visa utilizar Programação Dinâmica Estocástica Bayesiana e Inferência Bayesiana para modelar a afluência de água na barragem Tarbela, no Paquistão, a maior do mundo em volume, responsável por 50% da irrigação do país e pela geração de 30% da sua energia, e, devido à geografia do local, especialmente vulnerável ao derretimento de gelo durante o verão e às chuvas das monções. O objectivo é determinar a política óptima do valor do fluxo de saída no fundo da barragem a ser utilizado durante estas estações (15 de Junho a 30 de Setembro) por forma a maximizar o lucro esperado por produção de energia hidroelétrica, minimizando as perdas causadas pelas cheias.

2.2 Modelo

A notação usada no modelo é a seguinte:

- \bullet I_t Afluência à bacia da barragem (inflow) no momento t
- ullet nh_t Diferença de altura entre o nível da água no reservatório e a profundidade da turbina no momento t
- η Eficiência da central
- \bullet C_t Custos no momento t causados pelo excesso de fluxo no fundo da barragem
- S_t Armazenamento de água no momento t
- R_t Precipitação no momento t
- E_t Evaporação no momento t
- O_t Fluxo no fundo da barragem (outflow) no momento t
- \bullet λ Limite estimado de danos por excesso de fluxo

A equação que permite estimar a quantidade de água armazenada na barragem é

$$S_t = I_t + R_t + S_{t-1} - E_t - O_t$$

Por forma a impedir a insuficiência de recursos por falta ou cheias por excesso de fluxo, foi introduzida ao fluxo a restrição

$$0.89 <= O_t <= 2.8,$$

Foi necessário garantir água suficiente na barragem para irrigação ou outras actividades e assegurar que a estrutura física da barragem não é colocada sob pressão. Portanto, o armazenamento foi restringido por

$$1378 <= S_t <= 1550,$$

A função de geração de energia na barragem em kilowatt/hora no momento t é dada por

$$KWH_t = 2725.I_t.nh_t.\eta$$

A função objectivo do modelo é dada por

Maximize
$$2725[(I_t.nh_t.\eta) + \Sigma.nh_t.\eta E(I_t)] - C_t e^{-\lambda}$$
,

A primeira parcela da função está subdividida em duas partes: uma determinística, que usa a afluência num dado momento para estimar a produção de energia, e outra estocástica, que usa inferência Bayesiana para conseguir estimativas de fluxos futuros esperados. C_t é um custo fixo por unidade de fluxo em excesso, sendo λ dado por

$$\max (0, O_t-2.8)$$

2.3 Tratamento dos dados

Foi criada uma distribuição da afluência histórica à barragem entre 1986 e 2014 usando dados factuais existentes. Usando os dados de 1986 a 2011, serão feitas depois previsões para os anos 2012 a 2014 que serão comparadas com os dados factuais. As melhores previsões conseguidas são usadas para criar uma distribuição normal da previsão. Esta nova distribuição é usada no modelo acima descrito como informação corrente num dado momento t para, como esperado de um modelo Bayesiano, actualizar as probabilidades anteriores e gerar novas previsões futuras à medida que o tempo passa, o que permite esperar uma redução da incerteza do erro.

Foi realizado um *Unit Root Test* e o teste de Dickey-Fuller aumentado aos dados conseguidos usando o *software* EViews e estes confirmam-se estacionários.

	t-Statistics	
Augment	-8.785166	
	1% level	-3.432253
Test critical values	5% level	-2.862266
	10% level	-2.567201

Figura 2.1: Resultados do Unit Root Test aos dados

Variable	Coefficient	Std. Error	t-Statistic
INFLOW(-1)	-0.048742	0.005548	-8.78517

Figura 2.2: Valores dos coeficientes do Unit Root Test aos dados

O primeiro passo da metodologia usada para resolver este problema foi então gerar a previsão de afluência para 2012 a 2014, tendo sido para este efeito utilizado em primeiro lugar um processo autoregressivo de ordem um (RA 1). As previsões deste modelo, comparadas com os dados factuais de 2012 a 2014, revelam-se excelentes, com +-2 standard error, raiz de valor quadrático médio de 0.62, erro médio absoluto de 0.391191, e alta proporção de covariância. Foi também treinada uma Rede Neuronal Artificial (RNA), mas, ao serem comparados os resultados de ambos, o primeiro modelo revelou-se ser mais apropriado.

O terceiro método usado para fazer uma previsão de afluência futura foi uma distribuição preditiva Bayesiana. Primeiro, recorrendo ao software *EasyFit*, determinou-se a distribuição da afluência real e da prevista. A qualidade do ajuste é feita pelo programa através do teste de Kolmogorov-Simirnov com as hipóteses

H0: Os dados seguem a distribuição especificada (hipótese nula)

HA: Os dados não seguem a distribuição especificada (hipótese alternativa)

Kolmogorov-Smirnov Statistic	P-value
0.06767	0.01332

Figura 2.3: Resultados do teste de Kolmogorov-Simirnov à previsão Bayesiana

Os dados são aceites a um nível de significância de 5%, e verifica-se que tanto a distribuição real como a prevista seguem a distribuição normal, o que, de acordo com a teoria preditiva Bayesiana, implica que também a distribuição Bayesiana daí resultante seguirá uma distribuição normal.

Day	Actual	ANN	AR(1)	Bayesian	MAE ANN	MAE AR(1)	MAE Bayesian	
1	3.77	3.58	3.34	3.74	0.19	0.42	0.03	
2	3.37	3.89	2.75	3.44	0.52	0.62	0.07	
3	2.78	3.31	2.84	2.69	0.53	0.06	0.09	
4	2.86	2.68	2.89	2.78	0.18	0.03	0.08	
5	2.92	2.99	2.75	2.95	0.08	0.16	0.03	
6	2.78	3.04	2.75	2.69	0.26	0.02	0.09	
7	2.78	2.84	2.75	2.69	0.06	0.03	0.09	
8	3.06	2.88	4.19	3.17	0.17	1.13	0.11	
9	4.22	3.24	3.77	3.95	0.98	0.45	0.27	
10	3.79	4.57	3.5	3.5	0.77	0.29	0.29	
11	3.23	3.66	3.12	3.18	0.43	0.11	0.05	
12	3.14	3.1	3.15	3.2	0.04	0	0.06	
13	3.17	3.19	2.92	3.1	0.02	0.25	0.07	
14	2.94	3.26	2.84	3	0.31	0.11	0.06	
15	2.86	2.97	2.42	2.78	0.11	0.44	0.08	
16	2.44	2.94	2.84	2.48	0.5	0.4	0.04	
17	2.32	2.41	2.42	2.26	0.09	0.1	0.06	
18	2.29	2.42	2.3	2.2	0.12	0.01	0.09	
19	2.35	2.42	2.28	2.19	0.07	0.07	0.16	
20	2.29	2.5	2.33	2.22	0.2	0.04	0.07	
21	2.1	2.41	2.28	2.19	0.32	0.18	0.09	
22	2.12	2.18	2.08	2.09	0.06	0.04	0.03	
23	2.21	2.36	2.19	2.15	0.15	0.02	0.06	
24	1.98	2.36	2.19	2.04	0.38	0.21	0.06	
25	1.95	2.16	1.9	2	0.21	0.05	0.04	
26	1.93	2.12	1.93	2	0.2	0	0.07	
27	1.98	2.1	1.91	2.04	0.11	0.07	0.06	
28	1.9	2.17	1.97	1.95	0.27	0.07	0.05	
29	1.64	2.05	1.88	1.84	0.41	0.24	0.2	
30	30 1.67 1.79 1.63 1.84		1.84	0.12	0.04	0.17		
		Total		7.88	5.68	2.72		

Figura 2.4: Tabela de comparação das previsões por RA 1, RNA, e Bayesiana, e respectivo erro médio absoluto

2.4 Aplicação do modelo e respostas

Após a comparação dos três métodos entre as épocas críticas de 15 de Junho a 15 de Julho, verifica-se que a previsão Bayesiana é a mais aproximada da afluência real à barragem. O método RA 1, com erro médio absoluto de 5.68, mostrou-se superior à RNA (7.88), mas não tão preciso quanto o Bayesiano, com 2.72. Com estas informações, foi escolhida a previsão Bayesiana para ser colocada no modelo de Programação Dinâmica Estocástica Bayesiano, e o modelo foi corrido no software GAMS, que gerou valores para fluxo, custos, armazenamento, e lucro. A título de exemplo, os autores destacam que, para um valor de afluência de 2.48 mil milhões de metros cúbicos, o fluxo deverá ser de 1.2284500 e o armazenamento de 1402 pés (para λ =0), o que resulta num lucro de 5.527 milhões de dólares com perdas nulas.

2.5 Conclusão

Com esta análise conclui-se ser este o modelo mais preciso de previsão de afluência na barragem Tarbela. Este paper consegue, desta forma, especificar uma abordagem que permite determinar o volume de fluxo no fundo da barragem e o nível do armazenamento para uma dada afluência, ao mesmo tempo que dá o custo e o lucro dessa mesma decisão. Isto permite não só aumentar a eficiência energética e a produção económica da barragem, mas também garantir uma maior segurança, tanto para as comunidades que vivem perto da barragem e ficam desta forma menos sujeitos a danos causados por cheias, mas também para todo o restante país dependente da água da barragem para irrigação e produção energética. Os autores delineiam ainda uma possível continuação a este estudo ao adicionar-lhe uma restrição de sedimentação. Visto a sedimentação na barragem diminuir o armazenamento disponível para água, deverá ser possível utilizar o período de máxima afluência de tal forma que faça escoar sedimentos consolidados.

2.6 Referências

• Nayab A., e Faisal M. (2018). Water Management in Tarbela Dam By using Bayesian Stochastic Dynamic Programming in Extreme Inflow Season. *Journal of Civil & Environmental Engineering*, Volume 8, Issue 2. doi: 10.4172/2165-784X.1000299

3. Anexos

3.1 Anexo A1

3.1.1 Página com os dados fornecidos pelo docente

```
Grupo que inclui o Aluno com o Nº 86272
MEIO-TP1 - Tabelas de probabilidades de pedidos e entregas de automóveis

FILIAL 1
Número de clientes: ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12
Probabilidade (pedidos): ; 0.0376 ; 0.0732 ; 0.1068 ; 0.1356 ; 0.1228 ; 0.1188 ; 0.1096 ; 0.0848 ; 0.0808 ; 0.0532 ; 0.0404 ; 0.0292 ; 0.0072
Probabilidade (entregas): ; 0.0280 ; 0.1048 ; 0.1780 ; 0.2232 ; 0.1860 ; 0.1244 ; 0.0772 ; 0.0516 ; 0.0156 ; 0.0076 ; 0.0032 ; 0.0004 ; 0.0000

FILIAL 2
Número de clientes: ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12
Probabilidade (pedidos): ; 0.0320 ; 0.0964 ; 0.1748 ; 0.2192 ; 0.1856 ; 0.1376 ; 0.0768 ; 0.0428 ; 0.0200 ; 0.0076 ; 0.0056 ; 0.0008 ; 0.0008
Probabilidade (entregas): ; 0.0396 ; 0.0856 ; 0.1212 ; 0.1372 ; 0.1248 ; 0.1160 ; 0.0908 ; 0.0828 ; 0.0780 ; 0.0572 ; 0.0372 ; 0.0184 ; 0.0112
```

Figura 3.1: Dados fornecidos pelo docente

3.2 Anexo A2

3.3 Anexo A3

```
/* Probabilidade pedidos filiais */
float pedidos[FILIAIS][13]{ 0.0376, 0.0732, 0.1068, 0.1356, 0.1228, 0.1188, 0.1096, 0.0848, 0.0808, 0.0532, 0.0404, 0.0292, 0.0072, 0.0320, 0.0964, 0.1748, 0.2192, 0.1856, 0.1376, 0.0768, 0.0428, 0.0200, 0.0076, 0.0056, 0.0008, 0.0008 };

/* Probabilidade entregas filiais */
float entregas[FILIAIS][13]{ 0.0280, 0.1048, 0.1780, 0.2232, 0.1860, 0.1244, 0.0772, 0.0516, 0.0156, 0.0076, 0.0032, 0.0004, 0.0000, 0.0396, 0.0856, 0.1212, 0.1372, 0.1248, 0.1160, 0.0908, 0.0828, 0.0780, 0.0572, 0.0372, 0.0184, 0.0112 };
```

Figura 3.2: Print código

Figura 3.3: Print código

```
/* Do shift ao custo e retira custo de transfer oncia*/
shiftUp(custo[1][0], custo[1][4], 1); transfere(prob[1][4], custo[1][4], 1);
shiftUp(custo[1][0], custo[1][5], 2); transfere(prob[0][5], custo[1][5], 2);
shiftUp(custo[1][0], custo[1][6], 3); transfere(prob[0][3], custo[1][5], 3);

/* Preenche matrizes de probabilidades/custos da filial 2 nas decis oes de receber */
shiftDown(prob[1][0], prob[1][1], 1);
shiftDown(prob[1][0], prob[1][2], 2);
shiftDown(custo[1][0], custo[1][1], 1);
shiftDown(custo[1][0], custo[1][2], 2);
shiftDown(custo[1][0], custo[1][2], 2);
shiftDown(custo[1][0], custo[1][3], 3);
```

Figura 3.4: Print código

```
while(!flag) {
    float* fn_atual = new float[169];
    for (int i = 0; i < 169; fn_atual[i++] = 0);

    for(int i=0;i<7;i++)
        for (int j = 0; j < 169; j++) {
            pfn[i][j] = 0;
            qpfn[i][j] = 0;
        }

    for (int i = 0; i < 7; i++)
            calculaPfn(probJoin[i], fn_anterior, pfn[i]);

    for (int i = 0; i < 7; i++)
            calculaOpfn(q[i], pfn[i], qpfn[i]);

    calculaFn(qpfn, fn_atual,sol_oti);

    calculaDn(fn_atual, fn_anterior,dn);

    for (int i = 0; i < 169; i++)
            cout << "fn atual :" << fn_atual[i] << endl;

    for (int i = 0; i < 169; i++)
            cout << "fn anterior :" << fn_anterior[i] << endl;
</pre>
```

Figura 3.5: Print código

3.4 Anexo A4

[29.4189]	29.4183	29.4186	29.4185	29.4189	29.4186	29.4183	29.418	29.4182	29.4178
29.4171	29.417	29.4166	29.4188	29.4186	29.4185	29.4185	29.4182	29.4181	29.4182
29.4182	29.4177	29.4174	29.4169	29.4169	29.4164	29.4189	29.4185	29.4185	29.4181
29.418	29.4182	29.4176	29.4177	29.4178	29.4176	29.4166	29.4163	29.416	29.4186
29.4185	29.4181	29.4176	29.4176	29.4175	29.4176	29.4172	29.4174	29.4163	29.4166
29.4164	29.4154	29.4186	29.4181	29.4176	29.4176	29.4173	29.4172	29.4172	29.4167
29.4167	29.4163	29.4155	29.4154	29.4146	29.4182	29.4186	29.4176	29.4169	29.4167
29.4167	29.4167	29.4165	29.416	29.4162	29.4156	29.415	29.4151	29.4183	29.4186
29.4169	29.4164	29.4163	29.416	29.4163	29.416	29.4156	29.415	29.4149	29.4142
29.4147	29.4182	29.4169	29.4164	29.4159	29.4161	29.4161	29.416	29.4156	29.415
29.4146	29.4142	29.4136	29.4142	29.4176	29.4164	29.4159	29.4161	29.4161	29.416
29.4156	29.415	29.4146	29.4141	29.4136	29.4131	29.4134	29.4176	29.4172	29.4167
29.4165	29.416	29.4155	29.415	29.4146	29.4142	29.4136	29.4131	29.4133	29.413
29.4167	29.4167	29.4165	29.416	29.4162	29.4156	29.415	29.4145	29.4142	29.4141
29.4134	29.413	29.4116	29.416	29.4163	29.416	29.4156	29.415	29.4149	29.4142
29.4136	29.4134	29.4132	29.4122	29.4116	29.4111	29.4163	29.416	29.4156	29.415
29.4149	29.4142	29.4136	29.4134	29.4132	29.4121	29.4116	29.4111	29.4108	

Output D
n *(deveria estar em vetor)

Figura 3.6: Output política ótima.