CHAPTER - 13

CURRENT ELECTRICITY & CAPACITANCE

The given circuit can be simplified as follows 1. 3

2.

$$R_1 = 2 \times 10^{-6} \Omega$$
 and $R = \pi \times 1 \times 10^{-6} \Omega$

On solving, $R' = 0.88 \times 10^{-6} \Omega$

Current in the bulb = $\frac{P}{V} = \frac{4.5}{1.5} = 3A$

Current in 1 Ω resistance = $\frac{1.5}{1}$ = 1.5A

Hence total current from the cell i=3+1.5=4.5A

By using $E = V + ir \implies E = 1.5 + 4.5 \times (2.67) = 13.5V$

- Balancing length is independent of the cross sectional area of the wire. 4.
- In series $P_{Consumed} \propto \text{Brightness} \propto \frac{1}{P_{const}}$ 5.
- By using $R = \rho \cdot \frac{1}{A}$; here $A = \pi(r_2^2 r_1^2)$ 6.

Outer radius $r_2 = 5cm$

Inner radius $r_1 = 5 - 0.5 = 4.5 \text{ cm}$

So
$$R = 1.7 \times 10^{-8} \times \frac{5}{\pi \{(5 \times 10^{-2})^2 - (4.5 \times 10^{-2})^2\}} = 5.6 \times 10^{-5} \Omega$$

7. 3
$$R_{t_1} = R_1(1 + \alpha_1 t)$$
 and $R_{t_2} = R_2(1 + \alpha_2 t)$
Also $R_{eq} = R_{t_1} + R_{t_2} \Rightarrow R_{eq} = R_1 + R_2 + (R_1\alpha_1 + R_2\alpha_2)t$
 $\Rightarrow R_{eq} = (R_1 + R_2) \left\{ 1 + \left(\frac{R_1\alpha_1 + R_2\alpha_2}{R_1 + R_2} \right) t \right\}$
So $\alpha_{eff} = \frac{R_1\alpha_1 + R_2\alpha_2}{R_1 + R_2}$.

8. 2 Let the voltage across any one cell is
$$V$$
, then
$$V = E - ir = E - r_1 \left(\frac{2E}{r_1 + r_2 + R} \right)$$

But
$$V = 0$$

$$\Rightarrow E - \frac{2Er_1}{r_1 + r_2 + R} = 0$$

$$\Rightarrow r_1 + r_2 + R = 2r_1$$

$$\Rightarrow R = r_1 - r_2$$

When only S_1 is closed $V_1 = \frac{3}{4}E = 0.75E$

When only S_2 is closed $V_2 = \frac{6}{7}E = 0.86E$

and when both S_1 and S_2 are closed combined resistance of 6R and 3R is 2R

:
$$V_3 = \left(\frac{2}{3}\right)E = 0.67 E \implies V_2 > V_1 > V_3$$

10. 2 Here,
$$E = 2V$$
, $1 = \frac{2}{2} = 1A$ and $r = 1\Omega$

Therefore,
$$V = E - ir = 2 - 1 \times 1 = 1V$$

- 11. 2
- 12. 2

SECTION II (NUMERICAL)

13. 10
$$H = \frac{V^2}{R}t$$

Since supply voltage is same and equal amount of heat will produce, therefore
$$\frac{R_1}{t_1} = \frac{R_2}{t_2}$$
 or $\frac{R_1}{R_2} = \frac{t_1}{t_2}$ (i)

But
$$R \propto I \Rightarrow \frac{R_1}{R_2} = \frac{I_1}{I_2}$$
(ii)

By (i) and (ii),
$$\frac{l_1}{l_2} = \frac{t_1}{t_2}$$
(iii)

Now
$$l_2 = \frac{2}{3} l_1 \Rightarrow \frac{l_1}{l_2} = \frac{3}{2}$$

... By equation (iii), $\frac{3}{2} = \frac{15}{t_2} \implies t_2 = 10$ minutes

14. 10
$$H = \frac{V^2}{R}t$$

Since supply voltage is same and equal amount of heat will produce, therefore

$$\frac{R_1}{t_1} = \frac{R_2}{t_2}$$
 or $\frac{R_1}{R_2} = \frac{t_1}{t_2}$ (i)

But
$$R \propto I \Rightarrow \frac{R_1}{R_2} = \frac{I_1}{I_2}$$
(ii)

By (i) and (ii),
$$\frac{l_1}{l_2} = \frac{t_1}{t_2}$$
(iii)

Now
$$I_2 = \frac{2}{3} I_1 \implies \frac{I_1}{I_2} = \frac{3}{2}$$

... By equation (iii), $\frac{3}{2} = \frac{15}{t_2} \implies t_2 = 10$ minutes

15. The given circuit can be simplifies as follows

$$R' = \frac{2r}{3} = \frac{2}{3} \times \frac{3}{2} = 1\Omega$$

16. 4 If two resistances are R_1 and R_2 then $S = R_1 + R_2$ and $P = \frac{R_1 R_2}{(R_1 + R_2)}$

From given condition $S = nP_i$ i.e. $(R_1 + R_2) = n\left(\frac{R_1R_2}{R_1 + R_2}\right)$

$$\Rightarrow (R_1 + R_2)^2 = n R_1 R_2 \Rightarrow (R_1 - R_2)^2 + 4 R_1 R_2 = nR_1 R_2$$

So $n=4+\frac{(R_1-R_2)^2}{R_1R_2}$. Hence minimum value of n is 4.

17. 4 Total current through the circuit

$$i = \frac{10}{\frac{1000}{3} + 500} = \frac{3}{250} A$$

Now voltmeter reading = $i_v \times R_V = \frac{2}{3} \times \frac{3}{250} \times 500 = 4V$.

18. 8

$$P=\frac{16^2}{8R}=4$$

$$R = 8\Omega$$
.

JEE ADVANCED LEVEL SECTION III 19. B

20. A

wheat stone application.

21. A

22. C

Apply KUL in outside loop, i's 1.6 = 10.5A V= 2-19. => 1-0.2+5=0V.

23. A Vc kl.

SECTION IV (More than one correct)

26. A,B

Radiul.
$$g' = 2 + (21 - 3) r$$
;

 $x - distance$ from one end.

 $g' = 2 + 2x - 2(1+x)$.

 $x = 2 + 2x - 2(1+x)$.

 $x = 2 + 2x - 2(1+x)$.

$$R_{1} : \int_{\pi}^{\chi} \frac{dx}{\pi x^{2} C(1+x)^{2}} \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}}$$

$$= \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}} \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}}$$

$$R_{1} : \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}} \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}} \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}}$$

$$R_{1} : \int_{\pi}^{\pi} \frac{dx}{(1+x)^{2}} \int_{\pi}^{\pi} \frac{dx}{(1+$$

27. A,B,C,D

opposition. .. Ly will be shouted

SECTION V - (Numerical type)

28. 20

30. 1

SECTION VI - (Matrix match type)

31. A-q, B-p, C-p

CAPACITANCE

SECTION - I

1. 2 energy remains some

3.
$$C = C_1 + C_2$$

$$C = \frac{\varepsilon_0 \left(\frac{2A}{3}\right)}{d} + 2\frac{\varepsilon_0 \left(\frac{A}{3}\right)}{d} = \frac{4\varepsilon_0 A}{3d}.$$

$$c' = \frac{\varepsilon_0 A}{d} \therefore C = \frac{4}{3}C^1$$

$$c^1 = \frac{3}{4}c.$$

4. 1
$$\frac{C_1}{C_2}=rac{k_1arepsilon_0A/d_1}{k_2arepsilon_0A/d_2}$$

5. 1
$$V = \frac{Q}{C}$$
 $V \propto \frac{1}{C}$.
 $C_1 = \frac{Q}{C}$ $C_2 = \frac{1}{2} = \frac{1}{2}$

SECTION II (NUMERICAL)

6. 0

2μF,18μF

PART II - (JEE ADVANCED LEVEL)

SECTION - III (One correct answer)

8. D

Some beinging them in contact, V becomes
$$\frac{1}{4(q_1-q_2)} = \frac{1}{4(q_1+q_2)}$$
 $q = \frac{1}{4(q_1-q_2)} = \frac{1}{4(q_1+q_2)}$
 $q = \frac{1}{4(q_1-q_2)} = \frac{1}{4(q_1-q_2)}$
 $q = \frac{1}{4(q_1-q_2)} = \frac{1}{4(q_1-q_2)}$

9. A
$$\frac{a_1 + a_2 + a_3}{3}$$
, using the notion $e = 0$ incide a conductor.

SECTION - IV (More than one correct answer)

10. A,C

11. A,B,C,D

12. B,C,D

same is the change on suf.

tind vollage access suf when

add voltage access suf and AMF

which will be same as Vaccess 39MF

13. B,C

SECTION - V (Numerical Type - Upto two decimal place)

14. 3

15. 2

SECTION - VI (Matrix Matching)

17. A-p, B-r,s, C-p, D-r