Buy, Invent or Both?

Ruming Liu¹

Stevens Institute of Technology 1

Corporate Finance Seminar Nov 28, 2023

Outline

Main Results

Models Setup

3 Do Startup Patent Acquisitions Affect Inventor Productivity?

Main Results

Main Results

- 1. For high-profit firm, in a more volatile environment, there is less R&D relative to acquisitions.
- 2. While only high-profit forms make acquisitions, the lower-profit end of this group favors acquisitions that squelch competition over those that provide synergies.
- 3. Both synergy and competition acquisitions play a crucial role in developing corporate innovation

Models Setup

Acquirer V.S. Target

- This model is a game between acquirers and targets.
- Acquirer is the company who may consider acquire other firms(targets).
- Targets can bargain and decide whether to accept the acquisition.
- Both parties goal is to maximize their profit
- Problem: The model only considers that acquirers can never be the targets.
 Acquirer may consider be acquired if it's better.

Key objective Functions

- Firms' production function: $y_t(k_t, h_t, z_t) = e^{z_t} h_t^{\Phi} (1 m_c) k_t^{\Phi}$
- $z_t = \rho_z z_{t-1} + \sigma_z \epsilon_t$ is a random process of market profit shock.
- $h_t = \rho_h h_{t-1} + \omega_t$ is the firm's stock of patents, where ω_t is the random process of R&D project.
- m_c is the market shares of your competitor.
- $k_t = (1 \delta)k_{t-1} + I_{t-1}$ is the capital.
- Acquirer' decision: 1. internal R&D project: ω_t 2. Investment of capital: I_t 3. Acquisition: m_t .
- Target's decision: Accept the contract if $P_t \geq (1 + \mu)V_T$.
- Problem: 1. Target should compare acquisition with non-acquisition. 2. Assuming target quits the market once be acquired.

Synergy v.s Competition

- Basic production: $y_t(k_t, h_t, z_t) = e^{z_t} h_t^{\Phi} (1 m_c) k_t^{\alpha}$
- After synergy acquisition: $\Pi(k_t,h_t,z_t)=(1-\tau_c)e^{z_t}h_t^{\Phi+m_s}(1-m_c)k_t^{\alpha}$
- After competition acquisition: $\Pi(k_t,h_t,z_t)=(1-\tau_c)e^{z_t}h_t^\Phi k_t^\alpha$
- Maximization: $V(k_t,h_t,z_t) = \max_{I_t,\omega_t,m_t} \{e(.) + \phi(e(.)) + \frac{1}{1+r} \int V(k_{t+1},h_{t+1},z_{t+1}) dF(z_{t+1})\}$
- Red part is the financing and its interest (debts)
- Problem: What does V contain? $k_t + 1_{m_t} \times V_T + h_t + \Pi_t...$

Estimation

- SMM: The estimation determines the parameter values that minimize the distance between the model-generated moments and the corresponding real moments from the empirical data.
- Question: Over-fitting and out sample test?
- Question: Most of the results coming from model simulation, can we design an experiment with simple regression to confirm these results?

Repeated Game?

- In Table 1, final sample includes 738 completed deals and 681 unique firm-year deals.
- That indicates some acquirers acquire repeatedly.
- Question: If this is the situation, the firm's production should be updated after 1st synergy acquisition. $e^{z_t}h_t^{\Phi}(1-m_c)k_t^{\alpha} \to e^{z_t}h_t^{\Phi+m_s}(1-m_c)k_t^{\alpha}$
- Maybe they should drop duplicated acquirer.

Fixed searching cost?

- The price of acquisition is: $P_t = V_T + \eta(V_{A,t+1} V_{A-,t} V_T D \times k_{A,t})$
- ullet It assumes the searching cost for a company is fixed given its capital k_A .
- In table 6 panel B, they argue that the increasing bargaining power η attracts more targets on the market which leads to higher synergy acquisition.

Panel B:Target Bargainning Power

• Question: if that is the situation, the acquirers' searching cost should also negatively related to η .

Figure Mistakes?

 Figure 5 Panel B draws the one of the main results: when profit of physical investment is low, firm reduces synergy acquisitions but increases competition acquisitions instead.

Panel B: Curvature of the Profit Function

Panel A: Curvature of the Profit Function

• Question: for a same graph, patterns are different in Figure 4 Panel A?

Thanks!

E-mail: rliu38@stevens.edu

Do Startup Patent Acquisitions Affect Inventor Productivity?

Do Startup Patent Acquisitions Affect Inventor Productivity?

Ruming Liu (SIT) SIT Econometrics Seminar 14/23

Main Results

- Acquisition of a startup inventor's first patent has a negative effect on future productivity of the patent's inventor.
- Acquisition also leads the future patents' quality decreasing.
- In identification strategy, they use shared examiners as instrument variable.

Basic OLS Regression

- $Y = \beta X + \epsilon$, where Y represents the inventors' future productivity or patents quality, and X is an indicator variable of whether startup patent is acquired.
- There exists endogeneity issue which may cause $\hat{\beta}$ biased.
 - (1) Acquirers are good in selection. $(\hat{\beta} > \beta)$
 - (2) Or Only targets with limited innovation prospects are willing to being acquired. $(\hat{\beta} < \beta)$

Quasi-random Assignments in Patent Application

- Some interesting finding in patents application.
- The examiners of patent applications are assignment randomly. (robustness test, specialization)
- Examiners do some citations to the new patents. What's more, examiners are more likely to add citations to patents that they recently reviewed.

Ruming Liu (SIT) SIT Econometrics Seminar

Citations associated with acquisitions?

- Potential acquirers: any firm that had been granted a patent in the same art unit that reviewed the startup patent within the 5 years prior to the startup patent's grant date.
- Question: Only competition acquisition?
- $\mathbf{1}_{PotentialAcuqirerAquire?} = \alpha \times \mathbf{1}_{HasCitationFromPotentialAcquirer} + \epsilon$ Table 3. Are examiner-added citations associated with more startup patent

Table 3. Are examiner-added citations associated with more startup patent acquisitions?

	(1)	(2)	(3)	(4)	(5)
Panel A: Full sample					
1{Examiner-added cite to startup}	1.440***	1.430***	1.376***	1.345***	1.304***
	(13.01)	(12.83)	(11.78)	(11.20)	(10.33)
Fixed effects:					
Incumbent firm	Y	N	N	N	N
Startup patent Art unit × Year	Y	Y	N	N	N
Incumbent firm × Year	N	Y	\times Art	\times Art	\times Art
Incumbent firm \times Tech. group	N	N	N	Y	\times Year
N obs.	29,615,297	29,596,720	29,499,060	27,354,436	23,137,188
Adi. R^2	0.005	0.018	0.099	0.132	0.206

Dep. var.: Startup's first patent acquired by incumbent?

Sharing examiners associated with acquisitions?

- Does sharing examiners also increase the likelihood of acquisitions?
- $\mathbf{1}_{PotentialAcuqirerAquire?} = \alpha \times \mathbf{1}_{SharingExaminers?} + \epsilon$

Table 4. Does sharing examiner with an incumbent increase the likelihood that a startup patent is acquired?

		Dep. var.: Startup's first patent acquired by incumbent?										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
D 14 E 11 C 1												
Panel A: Full Sampl	e											
1{Same examiner}	0.052*** (17.29)	0.051*** (16.95)	0.030*** (12.62)	0.027*** (10.40)	0.027*** (8.35)	0.037*** (14.61)	0.036*** (14.45)	0.026*** (10.89)	0.023*** (8.73)	0.023*** (7.22)		

Instrument Variable

- We just showed: Sharing Examiners with potential acquirers \rightarrow Citation linkage with potential acquirers' patents $\uparrow \rightarrow$ Acquired by potential acquirer \uparrow .
- Recall: the examiners assignments are random.
- SharingExaminers ~ Acquisition, but SharingExaminers ~ Productivty/FuturePatentsQuality
- It can be applied as an IV.

2SLS

- First-stage: Linkages to incumbents via shared examiners as source of exogenous variation in startup patent acquisitions.
- $\hat{\mathbf{1}}_{PotentialAcuqirerAquire?} = \gamma \times N \ linked \ incumbents + \epsilon$
- Where "N linked incumbents" counts the number of incumbent firms with whom the startup patent is linked via a shared patent examiner.
- Question: maybe consider the ratio instead of absolute value?
- Second-stage: $Y = \beta \times \hat{\mathbf{1}}_{PotentialAcuqirerAquire}$?
- Main regression results: β are significant negative for both future patents' quantity & quality. Which is opposite to the OLS regression.

Conclusion

- Highlight: the IV selection
- Question: what's the mechanism behind potential acquirers → Acquired by potential acquirer ↑
- Question: acquirers outside of the same unit?

Thanks!

E-mail: rliu38@stevens.edu