Коллоквиум по линейной алгебре

Лектор: Чубаров И. А. • Автор: Пшеничный Никита, группа 109

1 курс • Весенний семестр 2024 г.

Аннотация

При подготовке данного файла я использовал курсы лекций И. А. Чубарова и Т. Е. Панова и книги «Курс алгебры» Э. Б. Винберга и «Задачи по линейной алгебре» А. А. Гайфуллина, А. В. Пенского и С. В. Смирнова.

Обо всех ошибках и опечатках пишите мне, исправлю.

Программа коллоквиума

1	Векторные пространства. Линейная зависимость и независимость векторов. Базис, размерность. Примеры	2
2	Матрица перехода от одного базиса к другому. Изменение координат вектора при замене базиса	5
3	Изоморфизм векторных пространств одинаковой размерности	6
4	Векторные подпространства, равносильность двух способов их задания. Сумма и пересечение подпространств. Формула Грассмана	6
5	Прямая сумма подпространств. Внешняя прямая сумма векторных пространств	10
6	Факторпространство, его размерность. Коразмерность. Связь с решениями неоднородной системы линейных уравнений	11
7	Линейные функции на векторном пространстве, их ядра. Изменение коэффициентов линейной формы при замене базиса. Сопряжённое пространство V^* , дуальный базис. Канонический изоморфизм $V \simeq V^{**}$	13
8	Линейные отображения и операторы. Ядро и образ, связь их размерностей. Критерий инъективности	15
9	Задание линейных отображений (операторов) матрицами. Изменение матрицы линейного отображения при переходе к другим базисам. Нахождение ядра и образа при помощи матрицы	16

 $^{^*}$ Telegram: @pshenikita. Последняя компиляция: 20 марта 2024 г.

1. Векторные пространства. Линейная зависимость и независимость векторов. Базис, размерность. Примеры

Определение 1. Линейным (или векторным) пространством над полем $\mathbb F$ называется множество V с заданными на нём операциями сложения $+:(u,v)\in V\times V\mapsto (u+v)\in V$ и умножения элементов V на элементы $\mathbb F\cdot:(\lambda,v)\in\mathbb F\times V\mapsto (\lambda\cdot v)\in V$, удовлетворяющие следующим аксиомам:

1.
$$v + u = u + v \ \forall u, v \in V;$$

2. $(u + v) + w = u + (v + w) \ \forall u, v, w \in V;$
3. $\exists \mathbf{0} \in V : v + \mathbf{0} = v \ \forall v \in V;$
4. $\forall v \in V \ \exists (-v) \in V : v + (-v) = \mathbf{0};$
5. $\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v \ \forall u, v \in \mathbb{F}, \ \forall \lambda \in \mathbb{F};$
6. $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v \ \forall v \in V, \ \forall \lambda, \mu \in \mathbb{F};$
7. $\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v \ \forall v \in V, \ \forall \lambda, \mu \in \mathbb{F};$
8. $1 \cdot v = v \ \forall v \in V.$

Определение 2. Элементы множества V называются векторами, элемент **0** называется нулевым вектором, а элемент (-v) называется противоположным к v. Элементы \mathbb{F} называют скалярами.

Предложение 1.

1. $\mathbf{0} \cdot v = \lambda \cdot \mathbf{0} = \mathbf{0} \ \forall v \in V, \ \forall \lambda \in \mathbb{F};$

 $2. (-1) \cdot v = -v \ \forall v \in V;$

3. $\lambda v = \mathbf{0} \Rightarrow \lambda = 0$ или $v = \mathbf{0}$.

Доказательство.

1. $0 \cdot v + 0 \cdot v = (0 + 0) \cdot v = 0 \cdot v \Rightarrow 0 \cdot v = 0$. Аналогично, $\lambda \cdot 0 + \lambda \cdot 0 = \lambda(0 + 0) = \lambda \cdot 0 \Rightarrow \lambda \cdot 0 = 0$;

2. $v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = (1-1) \cdot v = 0 \cdot v = \mathbf{0} \Rightarrow -v = (-1) \cdot v$.

3. $\lambda \neq 0 \Rightarrow \mathbf{0} = \lambda^{-1} \lambda v = v$.

Пример 1.

- 1. Множество $\{0\}$ из одного элемента является линейным пространством над любым полем.
- 2. Множества геометрических векторов на прямой, плоскости или пространстве являются линейными пространствами над полем \mathbb{R} .
- 3. Поле \mathbb{F} является векторным пространством над самим собой.
- 4. Поле $\mathbb C$ является линейным пространством над полем $\mathbb R$, а поле $\mathbb R$ является линейным пространством над полем $\mathbb Q$.
- 5. Пусть $\mathbb{F}^n := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} : x_i \in \mathbb{F} \right\}$ множество столбцов фиксированной длины n из элементов

поля Г. Операции покоординатного сложения и умножения на скаляры

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}, \quad \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}.$$

задают на \mathbb{F}^n структуру линейного пространства над \mathbb{F} . Его часто называют $\kappa oopdu$ натным.

Пусть V — линейное пространство над полем \mathbb{F} .

Определение 3. Линейной комбинацией системы векторов $\{v_i: i\in I\}$ называется формальная сумма вида $\sum_{i\in I} \lambda_i v_i$, в которой лишь конечное число скаляров λ_i отличны от нуля.

Примечание. Линейную комбинацию системы $\{v_i : i \in I\}$ можно также определить как функцию $i \in I \mapsto \lambda_i \in \mathbb{F}$, которая принимает ненулевое значение только на конечном числе индексов.

Определение 4. Линейная комбинация $\sum\limits_{i\in I}\lambda_iv_i$ называется *тривиальной*, если $\lambda_i=0\ \forall i\in I.$

Определение 5. Система векторов $\{v_i: i\in I\}$ называется *линейно зависимой*, если существует нетривиальная линейная комбинация, представляющая нулевой вектор. В противном случае система называется *линейно независимой*.

Лемма 1. Если система векторов $\{v_i : i \in I\}$ линейно зависима, то в ней найдётся вектор, представленный линейной комбинацией всех остальных.

Доказательство. Пусть
$$\sum\limits_{i\in I}\lambda_iv_i=\mathbf{0},$$
 причём $\exists \lambda_j\neq 0.$ Тогда $v_j=\sum\limits_{i\in I\setminus\{j\}}\frac{-\lambda_i}{\lambda_j}v_i.$

Определение 6. Базисом пространства V называется линейно независимая система $\{v_i: i \in I\}$, порождающая всё пространство V, т.е. такая, что каждый вектор из V представляется какой-то линейной комбинацией системы $\{v_i: i \in I\}$.

Определение 7. Линейное пространство называется *конечномерным*, если в нём существует базис, состоящий из конечного числа векторов. В противном случае пространство называется *бесконечномерным*.

Предложение 2. Представление любого вектора линейного пространства в виде линейной комбинации базисных векторов единственно.

Доказательство. Действительно, если $v = \sum_{i \in I} \lambda_i v_i = \sum_{i \in I} \mu_i v_i$ (где $\{v_i : i \in I\}$ — базис), то получаем $\mathbf{0} = \sum_{i \in I} (\lambda_i - \mu_i) v_i$. Из линейной независимости базиса, линейная комбинация в правой части тривиальна и $\lambda_i = \mu_i \ \forall i \in I$ и два представления v совпадают.

Определение 8. Линейная комбинация системы векторов $\langle v_i : i \in I \rangle$ есть множество всевозможных линейных комбинаций $\sum_{i \in I} \lambda_i v_i$.

Теорема 1. В конечномерном пространстве все базисы состоят из одного числа элементов.

Доказательство этой теоремы будет опираться на следующую лемму.

Лемма 2 (О линейной зависимости). Пусть $\{e_1, \ldots, e_m\}$ и f_1, \ldots, f_n — две (конечные) линейно независимые системы, причём $\{f_1, \ldots, f_n\} \subseteq \langle e_1, \ldots, e_n \rangle \Rightarrow n \leqslant m$.

Доказательство. Пусть $f_j = a_{1j}e_1 + \ldots + a_{mj}e_m, \ a_{ij} \in \mathbb{F}, \ j=1,\ldots,n.$ Т. к. f_1,\ldots,f_n — линейно независимая система векторов, то $x_1f_1 + \ldots + x_nf_n = \mathbf{0} \Leftrightarrow x_1 = \ldots = x_n = 0$. Подставляя сюда выражения f_i через e_1,\ldots,e_m , получаем

$$\mathbf{0} = x_1(a_{11}e_1 + \dots + a_{m1}e_m) + \dots + x_n(a_{1n}e_1 + \dots + a_{mn}e_m) =$$

$$= (a_{11}x_1 + \dots + a_{1n}x_n)e_1 + \dots + (a_{m1}x_1 + \dots + a_{mn}x_n)e_m.$$

 $T. \, \text{к.} \, e_1, \ldots, e_m$ — линейно независимая система, то последнее равенство равносильно

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0, \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0. \end{cases}$$

Если n > m, то эта система имеет ненулевое решение, что противоречит линейно независимости системы f_1, \ldots, f_n .

Теперь докажем теорему 1:

Доказательство. Пусть V — конечномерное пространство. По определению, в V существует базис e_1, \ldots, e_m . Пусть $\{f_i : i \in I\}$ — другой базис. Если этот базис бесконечен, то в нём содержится конечная линейно незавсимая система векторов f_1, \ldots, f_n , где n > m. При этом, т. к. e_1, \ldots, e_m — базис, мы имеем $\{f_1, \ldots, f_n\} \subseteq \langle e_1, \ldots, e_m \rangle$, что противоречит лемме о линейной зависимости. Следовательно, базис $\{f_i : i \in I\}$ конечен, т. е. имеет вид f_1, \ldots, f_n . Тогда $\{f_1, \ldots, f_n\} \subseteq \langle e_1, \ldots, e_m \rangle$ и $\{e_1, \ldots, e_m\} \subseteq \langle f_1, \ldots, f_m \rangle$. Отсюда n = m.

Лемма 3. В конечномерном пространстве любую линейно независимую систему можно дополнить до базиса.

Доказательство. Пусть $\{e_1, \ldots, e_k\}$ — конечная подсистема в V. Тогда, если эта система максимальна по включению, то она базис. Иначе существует $e_{k+1} \in V$ такой, что система $\{e_1, \ldots, e_k, e_{k+1}\}$ линейно независима. Продолжная процесс далее, за конечное число шагов получим базис (в силу конечномерности пространства V).

Примечание. Ниже изложен удобный алгоритм дополнения линейно независимой системы до базиса. Пусть

$$u_1 = \begin{pmatrix} u_{11} \\ \vdots \\ u_{1n} \end{pmatrix}, \quad u_2 = \begin{pmatrix} u_{21} \\ \vdots \\ u_{2n} \end{pmatrix}, \quad \dots, \quad u_m = \begin{pmatrix} u_{m1} \\ \vdots \\ u_{mn} \end{pmatrix}$$

линейно независимы. Обозначим

$$U = \begin{pmatrix} u_{11} & u_{21} & \dots & u_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1n} & u_{2n} & \dots & u_{mn} \end{pmatrix}.$$

Отметим, что $\operatorname{rk} U = m$, а $\operatorname{rk}(U \mid E) = n$. Так что нужно привести матрицу $(U \mid E)$ элементарными преобразованиями к ступенчатому виду и дополнить столбцы матрицы U единичными столбцами, вошедшими в базис матрицы $(U \mid E)$.

Лемма 4. Всякое конечномерное линейное пространство V обладает базисом. Более точно, из всякого конечного порождающего множества $S \subset V$ можно выбрать базис пространства V.

Доказательство. Если множество S линейно независимо, то по лемме 1 в нём найдётся вектор, линейно выражающийся через остальные. Выкидывая этот вектор, мы получаем порождающее множество из меньшего числа векторов. Продолжая так дальше, мы в конце концов получим линейно независимое порождающее множество, т. е. базис.

Примечание. Чтобы сделать это на практике, выписываем векторы в матрицу по столбцам, приводим её к ступенчатому виду и те столбцы, в которых стоят лидеры, будут базисными.

Определение 9. *Размерностью* конечномерного линейного пространства V (обозначается $\dim V$) называется число элементов в базисе V. Если V бесконечномерно, то пишут $\dim V = \infty$.

Лемма 5 (Свойство монотонности размерности). Подпространство W конечномерного пространства V конечномерно, причём $\dim W \leqslant \dim V$ и равенство достигается только при W = V.

Доказательство. Пусть $\dim V = m$ и e_1, \ldots, e_m — базис пространства V. Если $\dim W > m$, то в W найдётся линейно независимая система f_1, \ldots, f_n с n > m. Причём $\{f_1, \ldots, f_n\} \subseteq \langle e_1, \ldots, e_m \rangle = V$, что противоречит лемме о линейной зависимости. Следовательно, $\dim W \leqslant \dim V$.

Пусть $\dim W = \dim V = m$ и пусть f_1, \ldots, f_m — базис в W. Тогда каждый вектор линейно выражается через f_1, \ldots, f_m , так как иначе получили бы линейно независимую систему f_1, \ldots, f_m, e_i из m+1 векторов в V, что противоречит теореме 1. Следовательно, любой вектор из V лежит в $\langle f_1, \ldots, f_m \rangle = W$, т.е. $V \subseteq W$, а обратное включение верно из условия. Итак, получаем V = W.

Примечание. В нулевом пространстве $\{0\}$ базисом естественно считать пустое множество \emptyset . Поэтому $\dim\{0\} = 0$.

2. МАТРИЦА ПЕРЕХОДА ОТ ОДНОГО БАЗИСА К ДРУГОМУ. ИЗМЕНЕНИЕ КООРДИНАТ ВЕКТОРА ПРИ ЗАМЕНЕ БАЗИСА

Определение 1. Пусть V — линейное пространство, и e_1, \ldots, e_n — базис в V. Любой вектор $x \in V$ единственным образом представляется в виде линейной комбинации базисных векторов: $x = \sum_{i=1}^n x_i e_i$. Числа $x_1, \ldots, x_n \in \mathbb{F}$ называются $\kappa oopdunamamu$ вектора x в базисе e_1, \ldots, e_n .

Обозначения Эйнштейна. Вместо $\sum_{i=1}^n x_i e_i$ пишем $x^i e_i$ (суммирование производится по повторяющемуся индексу). В связи с этим обозначением, нам будет также удобно обозначать координаты вектора верхними индексами вместо нижних. Для произведения матриц: $c_k^i = a_j^i b_k^j$ (суммирование опять производится по повторяющемуся индексу). Матрица (d_k^j) является обратной к (c_j^i) , если $c_i^i d_k^j = \delta_k^i$ — символ Кронекера.

Пусть в пространстве V заданы два базиса: «старый» e_1, \ldots, e_n и «новый» e'_1, \ldots, e'_n . Нам будет удобно обозначать векторы нового базиса через $e_{1'}, \ldots, e_{n'}$. Элементы нового базиса выражаются через элементы старого: $e_{i'} = c^i_{i'}e_i, \ i' = 1, \ldots, n$. Эти формулы равносильны одному матричному равенству

$$(e_{1'}, \dots, e_{n'}) = (e_1, \dots, e_n) \cdot \begin{pmatrix} c_{1'}^1 & \cdots & e_{n'}^1 \\ \vdots & \ddots & \vdots \\ c_{1'}^n & \cdots & c_{n'}^n \end{pmatrix}.$$

Определение 2. Матрица $C := (c_{i'}^i)$ называется *матрицей перехода* от базиса e_1, \ldots, e_n к базису $e_{1'}, \ldots, e_{n'}$. Её столбцами являются координаты новых базисных векторов в старом базисе.

Предложение 1.

- 1. Матрица $C_{e'\to e}=(c_i^{i'})$ перехода от базиса $e_{1'},\dots,e_{n'}$ к базису e_1,\dots,e_n является обратной к матрице $C_{e\to e'}$ перехода от e_1,\dots,e_n к $e_{1'},\dots,e_{n'}$, т. е. $C_{e\to e'}\cdot C_{e'\to e}=E$. В частности, матрица перехода всегда невырождена.
- 2. Если $e_1, \ldots, e_n, e_{1'}, \ldots, e_{n'}, e_{1''}, \ldots, e_{n''}$ три базиса, то для соответствующих матриц перехода выполнено $C_{e \to e'} \cdot C_{e' \to e''} = C_{e \to e''}$.

Доказательство. Первое утверждение следует из второго, если положить e''=e, поэтому будем доказывать второе утверждение. Пусть $C_{e\to e'}=(c^i_{i'}),\,C_{e'\to e''}=(c^{i'}_{i''}),\,C_{e\to e''}=(c^i_{i''}).$ Тогда

$$c^i_{i''}e_i = e_{i''} = c^{i'}_{i''}e_{i'} = c^{i'}_{i''}c^i_{i'}e_i = c^i_{i'}c^{i'}_{i''}e_i \Rightarrow c^i_{i''} = c^i_{i'} \cdot c^{i'}_{i''}.$$

5

Примечание. Важное практическое следствие. Заметим, что в \mathbb{R}^n писать матрицу перехода от стандартного базиса к любому другому очень легко — достаточно написать базисные векторы, в которые мы хотим перейти, по столбцам матрицы. Пусть мы хотим написать матрицу перехода от базиса $a = \{a_1, a_2, \dots, a_n\}$ к базису $b = \{b_1, b_2, \dots, b_n\}$. Для этого можно написать матрицу A перехода от стандартного к a, потом матрицу B перехода от стандартного к b, а потом выдать ответ — $A^{-1}B$.

Примечание. Трюк от Александра Александровича (и в Винберге находил). Чтобы найти матрицу $X = A^{-1}B$ при известных A и B, не надо искать A^{-1} , а потом умножать её на B. Домножим на A слева, получим AX = B. Это n систем линейных уравнений с одной и той же матрицей A (решив i-ую систему, найдём i-ый столбец X). Эти системы можно решать одновременно, записав матрицу A в правой части и приписав к ней каждый столбец B по очереди. Выглядеть будет как $(A \mid B)$. Решить системы — значит привести эту матрицу $n \times 2n$ к улучшенному ступенчатому виду: $(E \mid X)$. В правой части теперь будут стоять столбцы матрицы X.

Теорема 1 (Закон изменения координат). Пусть x^1, \ldots, x^n — координаты вектора x в базисе e_1, \ldots, e_n , а $x^{1'}, \ldots, x^{n'}$ — в базисе $e_{1'}, \ldots, e_{n'}$. Тогда два набора координат связаны формулой

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = C \cdot \begin{pmatrix} x^{1'} \\ \vdots \\ x^{n'} \end{pmatrix}.$$

Доказательство. В обозначениях Эйнштейна утверждение равносильно $x^i = c^i_{i'} x^{i'}, i = 1, \dots, n$. Оно верно, потому что

$$x^{i}e_{i} = x = x^{i'}e_{i'} = x^{i'}c_{i'}^{i}e_{i} \Rightarrow x^{i} = x^{i'}c_{i'}^{i} = c_{i'}^{i}x^{i'}.$$

3. Изоморфизм векторных пространств одинаковой размерности

Определение 1. Пусть V и W — линейные пространства над полем \mathbb{F} . Отображение $\mathcal{A}: V \to W$ называется линейным, если $\forall u, v \in V, \forall \lambda \in \mathbb{F}$ выполнено $\mathcal{A}(u+v) = \mathcal{A}u + \mathcal{A}v, \, \mathcal{A}(\lambda v) = \lambda \mathcal{A}v.$

Определение 2. Биективное линейное отображение $\mathcal{A}: V \to W$ называется *изоморфизмом*, а пространства V и W, между которыми есть изоморфизм, называются *изоморфными*.

Теорема 1. Два конечномерных пространства V и W над полем $\mathbb F$ изоморфны тогда и только тогда, когда они имеют одинаковые размерности.

Доказательство. Из определения изоморфизма вытекает, что свойство системы векторов быть линейно независимой и порождать всё пространство сохраняются при изоморфизмах, т.е. при изоморфизме базис переходит в базис¹. Следовательно, если $\mathcal{A}:V\to W$ — изоморфизм, то $\dim V=\dim W$. Пусть теперь $\dim V=\dim W=n$. Выберем базисы e_1,\ldots,e_n и f_1,\ldots,f_n соответственно. Тогда формула $\mathcal{A}(x^ie_i)=x^if_i$ определяет линейное отображение $\mathcal{A}:V\to W$. Оно является биекцией, т. к. формула $\mathcal{A}^{-1}(x^if_i)=x^ie_i$ определяет обратное отображение.

4. Векторные подпространства, равносильность двух способов их задания. Сумма и пересечение подпространств. Формула Грассмана

Определение 1. Непустое подмножество $W \subseteq V$ линейного пространства V называется nodnpo-cmpancmbom, если $\forall u, v \in W, \forall \lambda \in \mathbb{F}$ выполнено $(u+v) \in \mathbb{F}$ и $\lambda u \in W$.

 $^{^{1}}$ Это частный случай того, что «образ базиса является базисом образа» при $\operatorname{Im} \mathcal{A} = W$.

Предложение 1. Множество всех решений системы однородных линейных уравнений с n неизвестными является подпространством координатного пространства \mathbb{F}^n .

Доказательство. Рассмотрим произвольную систему однородных линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Очевидно, что нулевой столбец является её решением и что произведение любого решения на число также является решением. Докажем, что сумма решений $(u_1, \ldots, u_n)^t$ и $(v_1, \ldots, v_n)^t$ является решением. Подставляя её компоненты в *i*-ое уравнение системы, получаем

$$a_{i1}(u_1 + v_1) + \ldots + a_{in}(u_n + v_n) = \underbrace{a_{i1}u_1 + \ldots + a_{in}u_n}_{=0} + \underbrace{a_{i1}v_1 + \ldots + a_{in}v_n}_{=0} = 0.$$

Определение 2. Φ ундаментальная система решений — это базис подпространства решений однородной СЛУ.

Предложение 2. Линейная оболочка $\langle v_i : i \in I \rangle$ является линейным подпространством в V. Более того, она является наименьшим по включению линейным подпространством, содержащим все векторы системы $\{v_i : i \in I\}$.

Доказательство. Сумма векторов системы и результат умножения вектора системы на скаляр представляются линейными комбинациями и потому принадлежат линейной оболочке. Следовательно, $\langle v_i : i \in I \rangle$ — подпространство. Если W — подпространство, содержащее все векторы из системы $\{v_i : i \in I\}$, то W также содержит все векторы, представляющиеся их линейными комбинациями, а значит, $W \supseteq \langle v_i : i \in I \rangle$.

Теорема 1. Способы задания подпространства с помощью однородной системы линейных уравнений и линейной оболочки равносильны.

Нам понадобится следующая лемма.

Лемма 1. Пусть матрица B состоит из столбцов фундаментальной системы решений системы Ax=0 (где x — вектор). Тогда линейная система $B^ty=0$ задаёт линейную оболочку строк матрицы A.

Доказательство. Поскольку каждый столбец матрицы B является решением системы Ax=0, имеет место матричное равенство AB=0, которое эквивалентно $B^tA^t=0$. Таким образом, если матрицу B^t интерпретировать как матрицу коэффициентов некоторой линейной системы, все столбцы матрицы A^t (строки A) будут ей удовлетворять.

Допустим, что некоторый столбец, не принадлежащий линейной оболочке столбцов матрицы A^t , тоже удовлетворяет системе $B^ty=0$. Тогда рассмотрим матрицу C^t , которая получается дописыванием к матрице A этого столбца справа; полученная матрица будет удовлетворять соотношению $B^tC^t=0$, а следовательно, и соотношению CB=0. Это означает, что столбцы матрицы B являются решениями не только линейной системы Ax=0, но и системы Cx=0, отличающейся от системы Ax=0 одним добавленным уравнением, которое по предположению линейно не выражается через исходные уравнения. Это означает, что ранг матрицы C на единицу больше ранга матрицы A, т.е. количество свободных неизвестных у системы Cx=0 на единицу меньше, чем у системы Ax=0. Значит, все столбцы матрицы B не могут быть решениями системы Cx=0— противоречие. Таким образом, системе $B^ty=0$ удовлетворяют все строки матрицы A, и притом только они.

Доказательство. Пусть подпространство задано однородной системой линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Тогда задать его линейной оболочкой можно, найдя Φ CP. С помощью элементарных преобразований приведём её к ступенчатому виду. Число ненулевых уравнений в этом ступенчатом виде равно $r=\mathrm{rk}\,A$. Поэтому общее решение будет содержать r главных неизвестных и с точностью до перенумерации неизвестных будет иметь вид

$$\begin{cases} x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_n, \\ x_2 = c_{21}x_{r+1} + c_{22}x_{r+2} + \dots + c_{2,n-r}x_n, \\ \dots \\ x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_n. \end{cases}$$

Придавая поочерёдно одному из свободных неизвестных $x_{r+1}, x_{r+2}, \ldots, x_n$ значение 1, а остальным — 0, получим следующие решения системы:

$$u_{1} = \begin{pmatrix} c_{11} \\ \vdots \\ c_{r1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad u_{2} = \begin{pmatrix} c_{12} \\ \vdots \\ c_{r2} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad u_{n-r} = \begin{pmatrix} c_{1,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Ранг системы векторов $\{u_1, u_2, \dots, u_{n-r}\}$ равен рангу матрицы

$$\begin{pmatrix} c_{11} & c_{21} & \dots & c_{r1} & 1 & 0 & \dots & 0 \\ c_{12} & c_{22} & \dots & c_{r2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{1,n-r} & c_{2,n-r} & \dots & c_{r,n-r} & 0 & 0 & \dots & 1 \end{pmatrix}$$

Если поменять местами блоки, отделённые чертой, то получится улучшенный ступенчатый вид с количеством ступенек, равным n-r. Так что ранг системы векторов $\{u_1, u_2, \ldots, u_{n-r}\}$ равен количеству векторов в этой системе, поэтому она линейно независима. Эта система также порождает всё подпространство решений, т. к. любая линейная комбинация вида

$$\lambda_1 u_1 + \ldots + \lambda_{n-r} u_{n-r}$$

является решением, в котором свободные неизвестные имеют значения $\lambda_1, \dots, \lambda_{n-r}$.

Теперь пусть подпространство задано линейной оболочкой

$$\left\langle u_1 = \begin{pmatrix} u_{11} \\ \vdots \\ u_{1n} \end{pmatrix}, \quad u_2 = \begin{pmatrix} u_{21} \\ \vdots \\ u_{2n} \end{pmatrix}, \quad \dots, \quad u_m = \begin{pmatrix} u_{m1} \\ \vdots \\ u_{mn} \end{pmatrix} \right\rangle$$

Составим матрицу

$$U = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{m1} & u_{m2} & \dots & u_{mn} \end{pmatrix}$$

из строк u_1, u_2, \ldots, u_n . Найдём ФСР системы Ux = 0 (указанным выше способом), и запишем её векторы по строкам в матрицу U'. По лемме 1 пространство решений однородной системы линейных уравнений U'y = 0 есть линейная оболочка строк матрицы U, а это и есть данные нам векторы.

Предложение 3. Пересечение $V_1 \cap V_2$ подпространств в V является подпространством в V.

Доказательство. Во-первых, $\mathbf{0} \in V_1$ и $\mathbf{0} \in V_2$, поэтому $\mathbf{0} \in V_1 \cap V_2 \neq \emptyset$. Во-вторых, $\forall u, v \in V_1 \cap V_2$, $\forall \lambda \in \mathbb{F}$ сумма u + v и произведение λv также лежат в V_1 и в V_2 , а значит, и в $V_1 \cap V_2$.

Примечание. Аналогично доказывается, что для любого семейства подпространств $\{U_i : i \in I\}$ их пересечение $\bigcap_{i \in I} U_i$ тоже подпространство.

Определение 3 (Сумма подпространств). $V_1 + V_2 := \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}.$

Предложение 4. $V_1 + V_2 = \langle V_1 \cup V_2 \rangle$.

Доказательство. Включение $V_1 + V_2 \subseteq \langle V_1 \cup V_2 \rangle$ следует из того, что вектор $v_1 + v_2$ является линейной комбинацией векторов $v_1, v_2 \in V_1 \cup V_2$. Докажем обратное включение. Для этого рассмотрим линейную комбинацию $v = \lambda_1 u_1 + \ldots + \lambda_n u_n$ векторов $u_1, \ldots, u_n \in V_1 \cup V_2$. Можно считать, что $u_1, \ldots, u_k \in V_1$ и $u_{k+1}, \ldots, u_n \in V_2$. Тогда мы имеем $v = v_1 + v_2$, где $v_1 = \lambda_1 u_1 + \ldots + \lambda_n u_n \in V_1$ и $v_2 = \lambda_{k+1} u_{k+1} + \ldots + \lambda_n u_n \in V_2$. Следовательно, $v \in V_1 + V_2$.

Примечание. Само объединение $V_1 \cup V_2$ подпространств в общем случае не является подпространством. Примером служит объединение двух прямых на плоскости.

Теорема 2 (Формула Грассмана). $\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$.

Доказательство. Выберем базис e_1, \ldots, e_k пространства $V_1 \cap V_2$. Воспользовавшись леммой 3 из первого вопроса, можем дополнить его до базиса $e_1, \ldots, e_k, f_1, \ldots, f_\ell$ пространства V_1 и до базиса $e_1, \ldots, e_k, g_1, \ldots, g_m$ пространства V_2 . Тогда мы имеем $\dim(V_1 \cap V_2) = k$, $\dim V_1 = k + \ell$, $\dim V_2 = k + m$. Докажем, что $e_1, \ldots, e_k, f_1, \ldots, f_\ell, g_1, \ldots, g_m$ — базис пространства $V_1 + V_2$. Заметим, что т. к. $V_1 + V_2 = \langle V_1 \cup V_2 \rangle$, то любой вектор из $V_1 + V_2$ выражается через эту систему векторов. Остаётся проверить, что эта система линейно независима. Пусть имеет место равенство

$$\lambda_1 e_1 + \ldots + \lambda_k e_k + \mu_1 f_1 + \ldots + \mu_\ell f_\ell + \nu_1 q_1 + \ldots + \nu_m q_m = \mathbf{0}.$$

Перепишем его в виде

$$\lambda_1 e_1 + \ldots + \lambda_k e_k + \mu_1 f_1 + \ldots + \mu_\ell f_\ell = -\nu_1 g_1 - \ldots - \nu_m g_m.$$

Вектор, стоящий в обеих частях этого равенства, лежит в $V_1 \cap V_2$ и линейно выражается через e_1, \ldots, e_k . Т. к. векторы $e_1, \ldots, e_k, f_1, \ldots, f_\ell$ линейно независимы по построению, получаем $\mu_1 = \ldots = \mu_\ell = 0$. Аналогично, $\nu_1 = \ldots = \nu_m = 0$. Тогда из линейной независимости e_1, \ldots, e_k следует $\lambda_1 = \ldots = \lambda_k = 0$. Итак, $\dim(V_1 + V_2) = k + \ell + m$, отсюда вытекает требуемое.

Алгоритм вычисления базисов в $U_1 + U_2$ и $U_1 \cap U_2$ (U_1 и U_2 — подпространства конечномерного пространства V). При доказательстве формулы Грассмана мы попутно показали, что базис $U_1 + U_2$ есть объединение базисов U_1 и U_2 . Отметим, что в случае, когда сумма $U_1 + U_2$ прямая, пересечение этих базисов пустое.

Чтобы найти базис пересечения, зададим оба подпространства в виде системы линейных уравнений. Система, состоящая из всех уравнений обоих систем, будет задавать пересечение этих подпространств. Для нахождения базиса ищем ФСР.

5. Прямая сумма подпространств. Внешняя прямая сумма векторных ПРОСТРАНСТВ

Определение 1. Сумма $V_1 + V_2$ подпространств пространства V называется *прямой* (обозначается $V_1 \oplus V_2$), если $\forall v \in V_1 + V_2$ представление $v = v_1 + v_2$, где $v_1 \in V_1$, $v_2 \in V_2$, единственно.

Теорема 1. Следующие условия эквивалентны для подпространств V_1 и V_2 :

- 1. сумма $V_1 + V_2$ прямая;
- 2. $V_1 \cap V_2 = \{\mathbf{0}\};$
- 3. если $\mathbf{0} = v_1 + v_2$, где $v_1 \in V_1$ и $v_2 \in V_2$, то $v_1 = v_2 = \mathbf{0}$;
- 4. $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$.

Доказательство. $1 \Rightarrow 2$. Пусть найдётся $v \in V_1 + V_2, v \neq \mathbf{0}$. Тогда $\mathbf{0} = \mathbf{0} + \mathbf{0} = v + (-v)$. Получаем, что представление вектора $\mathbf{0}$ не единственно, и сумма $V_1 + V_2$ не прямая.

 $2 \Rightarrow 3$. Если существует представление $\mathbf{0} = v_1 + v_2$, где $v_1 \in V_1$ и $v_2 = (-v_1) \in V_2$ и $v_1 \neq \mathbf{0}$, т. е. $v_1 \in V_1 \cap V_2 \neq \{\mathbf{0}\}$ — противоречие.

 $3\Rightarrow 1$. Пусть у вектора $v\in V$ есть два разложения $v=u_1+u_2=v_1+v_2$, где $u_1,v_2\in V_1$ и $u_2, v_2 \in V_2$. Тогда $\mathbf{0} = (u_1 - v_1) + (u_2 - v_2)$, где $u_1 - v_1 \in V_1$ и $u_2 - v_2 \in V_2$. Следовательно, $u_1 - v_1 = u_2 - v_2 = \mathbf{0}$, т. е. два разложения совпадают.

 $2 \Leftrightarrow 4$. Следствие формулы Грассмана.

Определение 2. Сумма $V_1 + \ldots + V_n$ подпространств пространства V называется npsmoй (обозначается $V_1 \oplus \ldots \oplus V_n$), если $\forall v \in V_1 + \ldots + V_n$ представление $v = v_1 + v_2 + \ldots + v_n$, где $v_i \in V_i$, единственно.

Теорема 2. Для подпространств V_1, \ldots, V_n пространства V следующие условия эквивалентны:

- 1. сумма $V_1 + \ldots + V_n$ прямая;
- 2. $V_i \cap \sum V_j = \{0\};$
- 3. если $\mathbf{0}=v_1+\ldots+v_n$, где $v_i\in V_i$, то $v_1=\ldots=v_n=\mathbf{0};$ 4. $\dim\left(\sum_i V_k\right)=\sum_i \dim V_i.$

Доказательство. Индукция по n с помощью предыдущей теоремы.

Примечание. При $n \geqslant 3$ условие 2 в предыдущей теореме сильнее, чем условие $V_i \cup V_j = \{\mathbf{0}\}$ $\forall i \neq j$. Это последнее условие не гарантирует, что сумма подпространств прямая. Действительно, рассмотрим следующие три подпространства в \mathbb{R}^2 со стандартным базисом e_1, e_2 : $V_1 = \langle e_1 \rangle, V_2 =$ $\langle e_2 \rangle$ и $V_3 = \langle e_1 + e_2 \rangle$. Тогда $V_i \cap V_j = \{ \mathbf{0} \} \ \forall i \neq j$, но сумма данных подпространств не прямая, т. к.

$$e_1 + e_2 = e_1 + e_2 + \mathbf{0} = \mathbf{0} + \mathbf{0} + (e_1 + e_2).$$

Определение 3. Пусть V_1, \ldots, V_n — линейные пространства над одним полем \mathbb{F} . Их внейшней nрямой суммой (обозначается как $V_1 \oplus \ldots \oplus V_n$) называется линейное пространство $V_1 \times \ldots \times V_n$ с операциями, определёнными покомпонентно:

$$(u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n), \quad \lambda \cdot (v_1, \ldots, v_n) = (\lambda v_1, \ldots, \lambda v_n).$$

Предложение 1. Для любого пространства $U \subset V$ найдётся подпространство $W \subset V$ такое, что $V = U \oplus W$.

Определение 4. Такое подпространство W называется npямым дополнением к <math>U.

Доказательство. Пусть e_1, \ldots, e_k — базис в U. Его можно дополнить до базиса V векторами e_{k+1}, \ldots, e_n (где $n = \dim V$), тогда искомое $W := \langle e_{k+1}, \ldots, e_n \rangle$.

Примечание. Пространство $V = V_1 + \ldots + V_m$ можно превратить в прямую сумму пространств. Рассмотрим $U_i = \{(\mathbf{0}, \ldots, \mathbf{0}, v_i, \mathbf{0}, \ldots, \mathbf{0}) : v_i \in V_i\} \subset V$. Тогда

$$(v_1,\ldots,v_m)=(v_1,\mathbf{0},\ldots,\mathbf{0})+(\mathbf{0},v_2,\ldots,\mathbf{0})+\ldots+(\mathbf{0},\ldots,\mathbf{0},v_m),$$

а отсюда $V = U_1 \oplus \ldots \oplus U_m$.

6. Факторпространство, его размерность. Коразмерность. Связь с решениями неоднородной системы линейных уравнений

Пусть V — линейное пространство, а $W \subseteq V$ — его подпространство.

Определение 1. *Классом смежсности* вектора $v \in V$ по подпространству W называется множество $v + W := \{v + w : w \in W\}$.

Лемма 1. Равенство $v_1 + W = v_2 + W$ имеет место тогда и только тогда, когда $v_1 - v_2 \in W$.

Доказательство. Пусть $v_1+W=v_2+W$. Тогда $v_1\in v_1+W=v_2+W$, значит $\exists w\in W: v_1=v_2+w$. Следовательно, $v_1-v_2=w\in W$. Обратно, пусть $v:=v_1-v_2\in W$. Докажем, что $v_1+W\subseteq v_2+W$. Возьмём произвольный вектор $u\in v_1+W$. Тогда $u=v_1+w$ для некоторого $w\in W$. Мы имеем $u=v_1+w=v_2+(v+w)$, где $v+w\in W$. Следовательно, $u\in v_2+W$ и $v_1+W\subseteq v_2+W$. Обратное включение доказывается аналогично.

Предложение 1. Отношение $v_1 \sim v_2 \stackrel{\text{def}}{\Longleftrightarrow} u_1 - u_2 \in U$ задаёт отношение эквивалентности на V.

Доказательство. Совсем несложно проверяются все аксиомы.

Определение 2. Φ *акторпространством* линейного пространства V по подпространству W называется множество $V/W := \{v + W : v \in V\}$ с операциями сложения и умножения на скаляры:

$$(u+W)+(v+W):=(u+v)+W, \quad \lambda \cdot (v+W):=\lambda v+W.$$

Предложение 2. Приведённые выше операции определены на классах смежности корректно и задают на V/W структуру линейного пространства.

Доказательство. Проверим корректность определения операций, т. е. независимость результата операции от выбора вектора v в смежном классе v+W. Докажем для сложения. Если $u_1+W=u_2+W$ и $v_1+W=v_2+W$, то $u:=u_1-u_2\in W$ и $v:=v_1-v_2\in W$ в силу предыдущей леммы. Следовательно,

$$(u_1 + W) + (v_1 + W) = (u_1 + v_1) + W = (u_2 + v_2) + (u + v) + W =$$

= $(u_2 + v_2) + W = (u_2 + W) + (v_2 + W).$

Корректность определения умножения на скаляры проверяется аналогично. Теперь докажем, что V/W — линейное пространство. Свойства 1 и 2 сразу следуют из определения. Нулём является $\mathbf{0}+W=W$, а противоположным к v+W является (-v)+W, Проверим свойство 5:

$$\lambda \cdot ((u+W) + (v+W)) = \lambda \cdot ((u+v) + W) = (\lambda u + \lambda v) + W =$$
$$= (\lambda u + W) + (\lambda v + W) = \lambda (u+W) + \lambda (v+W).$$

Оставшиеся свойства 6-8 проверяются аналогично.

Определение 3. *Коразмерностью* подпространства W линейного пространства V (обозначается через $\operatorname{codim} W$) называется $\dim V/W$.

Теорема 1. $\operatorname{codim} W = \dim V - \dim W$.

Доказательство. Пусть $\dim V = n$, $\dim W = k$ и e_1, \ldots, e_k — базис в W. Дополним его до базиса $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ в V. Докажем, что классы $e_{k+1} + W, \ldots, e_n + W$ образуют базис в V/W. Вначале покажем, что они линейно независимы. Пусть $\lambda_{k+1}(e_{k+1}+W)+\ldots+\lambda_n(e_n+W)=\mathbf{0}+W$. Тогда $(\lambda_{k+1}e_{k+1}+\ldots+\lambda_ne_n)+W=\mathbf{0}+W$, т. е. $v:=\lambda_1e_1+\ldots+\lambda_ke_k\in W$. Т. к. e_1,\ldots,e_k — базис в W, то можем записать $v=\lambda_1e_1+\ldots+\lambda_ke_k$. Тогда получаем

$$\lambda_1 e_1 + \ldots + \lambda_k e_k - \lambda_{k+1} e_{k+1} - \ldots - \lambda_n e_n = \mathbf{0}.$$

Т. к. e_1, \ldots, e_n — базис в V, то $\lambda_1 = \ldots = \lambda_{k+1} = \ldots = \lambda_n = 0$. Значит, классы $e_{k+1} + W, \ldots, e_n + W$ линейно независимы. Осталось доказать, что эти классы порождают всё пространство. Возьмём произвольный вектор $v + W \in V/W$. Разложим вектор v по базису в V: $v = \lambda_1 e_1 + \ldots + \lambda_k e_k + \lambda_{k+1} e_{k+1} + \ldots + \lambda_n e_n$. Тогда

$$v + W = (\lambda_{k+1}e_{k+1} + \dots + \lambda_n e_n) + (\lambda_1 e_1 + \dots + \lambda_k e_k) + W =$$

= $(\lambda_{k+1}e_{k+1} + \dots + \lambda_n e_n) + W = \lambda_{k+1}(e_{k+1} + W) + \dots + \lambda_n(e_n + W).$

Итак, в базисе V/W ровно n-k векторов.

Предложение 3. Совокупность всех решений произвольной совместной системы линейных уравнений есть сумма какого-либа одного её решения и подпространства решений однородной системы линейных уравнений с той же матрицей коэффициентов.

Доказательство. Пусть $u=(u_1,u_2,\ldots,u_n)^t\in\mathbb{F}^n$ — частное решение неоднородной СЛУ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Пусть также $v=(v_1,v_2,\ldots,v_n)^t\in\mathbb{F}^n$ — произвольное решение ассоциированной однородной системы

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Тогда сумма u + v является решением первой системы. Действительно,

$$a_{i1}(u_1 + v_1) + a_{i2}(u_2 + v_2) + \dots + a_{in}(u_n + v_n) = \underbrace{a_{i1}u_1 + a_{i2}u_2 + \dots + a_{in}u_n}_{=b_i} + \underbrace{a_{i1}v_1 + a_{i2}v_2 + \dots + a_{in}v_n}_{=0} = b_i.$$

Обратно, если u' — произвольное решение неоднородной СЛУ, то v=u'-u является решением ассоциированной однородной системы (проверяется так же).

Связь определения факторпространства со структурой решений неоднородной СЛУ заключается в том, что они «похожи». Я уточню это позже у Игоря Андреевича.

7. Линейные функции на векторном пространстве, их ядра. Изменение коэффициентов линейной формы при замене базиса. Сопряжённое пространство V^* , дуальный базис. Канонический изоморфизм $V \simeq V^{**}$

Сначала см. вопрос 8.

Определение 1. Линейное отображение $f:V\to \mathbb{F}$ из пространства V над полем \mathbb{F} в поле \mathbb{F} (одномерное векторное пространство) называется линейной функцией (функционалом).

Определение 2. $V^* := \operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F}) \longrightarrow \partial \mathscr{B} \circ \mathring{u} cm \mathscr{B} e + hoe (conps \mathscr{H} \ddot{e} + hoe, \partial \mathscr{Y} a \wedge b + hoe)$ пространство к V.

Пусть e_1, \ldots, e_n — базис в V. Значение линейной функции $\xi \in V^*$ на любом векторе $x = x^i e_i \in V$ определяется её значениями на базисных векторах, т. к. $\xi(x) = \xi(x^i e_i) = x^i \xi(e_i)$. Определим линейные функции $\varepsilon^1, \ldots, \varepsilon^n \in V^*$ по правилу $\varepsilon^i(e_j) = \delta^i_j$. Тогда для любого вектора $x = x^j e_j$ мы

$$\varepsilon^{i}(x) = \varepsilon^{i}(x^{j}e_{j}) = x^{j}\varepsilon^{i}(e_{j}) = x^{j}\delta^{i}_{j} = x^{i}.$$

Определение 3. В связи с этим функции $\varepsilon^1, \dots, \varepsilon^n$ часто называют *координатными функциями*.

Предложение 1. Линейные функции $\varepsilon^1, \dots, \varepsilon^n$ образуют базис в V^* .

Доказательство. Линейная независимость: пусть $x_1\varepsilon^1 + \ldots + x_n\varepsilon^n = \mathbf{0}$. Это равенство означает, что линейная функция $\xi : x_i\varepsilon^i$ равна нулю на любом векторе из V. Вычислим её на векторе e_i :

$$\mathbf{0} = \xi(e_j) = x_i \varepsilon^i(e_j) = x_i \varepsilon^i(e_j) = x_i \delta^i_j = x_j.$$

Итак, $x_1 = \ldots = x_n = 0$, а значит, $\varepsilon^1, \ldots, \varepsilon^n$ линейное независимы.

Теперь проверим, что $\varepsilon^1, \ldots, \varepsilon^n$ порождают всё пространство V^* . Мы утверждаем, что любая линейная функция ξ представляется в виде линейной комбинации $\xi = \xi_i \varepsilon^i$, где $\xi_i = \xi(e_i)$. Действительно, для любого вектора $x = x^j e_j \in V$ мы имеем

$$\xi_i \varepsilon^i(x) = \xi_i x^i = \xi(e_i) x^i = \xi(x^i e_i) = \xi(x).$$

Таким образом, $\varepsilon^1, \dots, \varepsilon^n$ — базис в V^* .

Определение 4. Базис $\varepsilon^1, \dots, \varepsilon^n$ пространства V^* называется двойственным (сопряжённым, дуальным) базисом к e_1, \dots, e_n .

Следствие 1. $\dim V = \dim V^* \Rightarrow V \simeq V^*$.

Пусть теперь $e_{1'}, \ldots, e_{n'}$ — друго базис пространства V и $C = (c_{i'}^i)$ — матрица перехода от $e_{i'} = c_{i'}^i e_i$. Рассмотрим двойственные базисы $\varepsilon^1, \ldots, \varepsilon^n$ и $\varepsilon^{1'}, \ldots, \varepsilon^{n'}$.

Предложение 2. Матрица перехода от $\varepsilon^1,\ldots,\varepsilon^n$ к $\varepsilon^{1'},\ldots,\varepsilon^{n'}$ есть $(C^{-1})^t$

Доказательство. Для любого вектора $x = x^i e_i = x^{i'} e_{i'}$ мы имеем $\varepsilon^i(x) = x^i = c^i_{i'} x^{i'} = c^i_{i'} \varepsilon^{i'}(x)$. Следовательно, $\varepsilon^i = c^i_{i'} \varepsilon^{i'}$, что эквивалентно матричному соотношению

$$\begin{pmatrix} \varepsilon^1 \\ \vdots \\ \varepsilon^n \end{pmatrix} = C \cdot \begin{pmatrix} \varepsilon^{1'} \\ \vdots \\ \varepsilon^{n'} \end{pmatrix}$$

или
$$(\varepsilon^{1'},\ldots,\varepsilon^{n'})=(\varepsilon^1,\ldots,\varepsilon^n)\cdot (C^{-1})^t.$$

Для построения изоморфизма между пространствами V и V^* нам необходимо выбрать базис в V (и двойственный ему базис в V^*). Разные базисы дают разные изоморфизмы. Для бесконечномерных пространств ситуация иная: пространства V и V^* никогда не изоморфны, пространство

 V^* всегда «больше». Проиллюстрируем это на примере. Обозначим через \mathbb{F}^{∞} пространство финитных последовательностей из элементов поля \mathbb{F} , а через \hat{F}^{∞} — пространство всех бесконечных последовательностей элементов поля \mathbb{F} .

Предложение 3. $(\mathbb{F}^{\infty})^* \simeq \widehat{\mathbb{F}}^{\infty}$.

Доказательство. Возьмём в пространстве \mathbb{F}^{∞} базис $\{e_i\}_{i=1}^{\infty}$, $e_i = (0,\dots,0,1,0,\dots)$. Рассмотрим отображение $\mathcal{A}: (\mathbb{F}^{\infty})^* \to \widehat{\mathbb{F}}^*$, $f \mapsto (f(e_1),f(e_2),\dots)$, которое линейной функции $f \in (\mathbb{F}^{\infty})^*$ ставит в соответствие последовательность её значений на базисных векторах. Это отображение очевидно линейно. Кроме того, оно биективно: обратное отображение задаётся формулой $\mathcal{A}^{-1}(x_1,x_2,\dots) = f \in (\mathbb{F}^{\infty})^*$, где $f(e_i) = x_i$. Т. к. любой элемент $y \in \mathbb{F}^{\infty}$ есть (конечная) линейная комбинация элементов e_i , то линейная функция f однозначно восстанавливаются по её значениям на базисных векторах

Предложение 4. $\mathbb{Z}_2^\infty \not\simeq \widehat{\mathbb{Z}}_2^\infty$.

Доказательство. \mathbb{Z}_2^∞ можно отождествить с множеством рациональных чисел на отрезке [0;1] в двоичной записи, а $\widehat{\mathbb{Z}}_2^\infty$ — с множеством вещественных чисел на [0;1] в двоичной записи. Поэтому биекции между этими множествами быть не может.

Следствие 2. $\mathbb{Z}_2^{\infty} \not\simeq (\mathbb{Z}_2^{\infty})^*$.

Определение 5. $V^{**} = (V^*)^*$ — второе сопряжённое пространство.

Теорема 1. Пусть V — конечномерное линейное пространство. Отображение $\varphi : x \in V \mapsto \varphi_x \in V^{**}$, где $\varphi_x(\xi) := \xi(x)$ для $\xi \in V^*$, является изоморфизмом.

Доказательство. Из определения линейных функций следует, что $\varphi_{x+y} = \varphi_x + \varphi_y$ и $\varphi_{\lambda x} = \lambda \varphi_x$. Остаётся проверить, что отображение $x \mapsto \varphi_x$ биективное. Пусть e_1, \dots, e_n — базис пространства V и $\varepsilon^1, \dots, \varepsilon^n$ — сопряжённый базис пространства V^* . Тогда

$$\omega_i(\varepsilon^j) = \varepsilon^j(e_i) = \delta^i_j,$$

так что $\omega_1, \ldots, \omega_n$ — базис пространства V^{**} , сопряжённый $\varepsilon^1, \ldots, \varepsilon^n$. Отображение $x \mapsto \varphi_x$ переводит вектор с координатами x_1, \ldots, x_n в базисе e_1, \ldots, e_n пространства V в вектор с такими же координатами в базисе $\omega_1, \ldots, \omega_n$ пространства V^{**} . Следовательно, оно биективно.

Следствие 1. Всякий базис пространства V^* сопряжён некоторому базису пространства V.

Задача 1 (Из Винберга). Доказать, что линейные функции f_1, \ldots, f_n (где $n = \dim V$) составляют базис пространства V^* тогда и только тогда, когда не существует ненулевого вектора $x \in V$, для которого $f_1(x) = \ldots = f_n(x) = 0$.

Решение. \Rightarrow . Пусть f_1, \ldots, f_n — базис и нашёлся такой вектор $v \in V, v \neq \mathbf{0}$, для которого $f_1(v) = \ldots = f_n(v) = 0$. Этот базис сопряжён некоторому базису e_1, \ldots, e_n пространства V. А это значит, что вектор v ненулевой, но все координаты у него нулевые. Так не бывает.

 \Leftarrow . Выберем базис $\varepsilon^1, \dots, \varepsilon^n$ в V^* . Тогда $f_i = a^i_j \varepsilon^j$. Рассмотрим систему уравнений (верхними индексами обозначены координаты, а не степени)

$$\begin{cases} f_1(x) = 0, \\ f_2(x) = 0, \\ \dots \\ f_2(x) = 0 \end{cases} \Leftrightarrow \begin{cases} a_1^1 x^1 + a_2^1 x^2 + \dots + a_n^1 x^n = 0, \\ a_1^2 x^1 + a_2^2 x^2 + \dots + a_n^2 x^n = 0, \\ \dots \\ a_1^n x^1 + a_2^n x^2 + \dots + a_n^n x^n = 0, \end{cases}$$

По условию не существует ненулевого вектора x такого, что $f_1(x) = f_2(x) = \ldots = f_n(x) = 0$, поэтому выписанная система не имеет решений кроме нулевого. Поэтому она определена, а значит, по правилу Крамера матрица коэффициентов невырожденна, отсюда следует линейная независимость строк. А полноту можно не доказывать, потому что количество векторов уже правильное.

8. Линейные отображения и операторы. Ядро и образ, связь их размерностей. Критерий инъективности

Определение 1. Пусть V и W — линейные пространства над полем \mathbb{F} . Отображение $\mathcal{A}: V \to W$ называется линейным, если $\forall u, v \in V, \ \forall \lambda \in \mathbb{F}$ выполнено $\mathcal{A}(u+v) = \mathcal{A}u + \mathcal{A}v$ и $\mathcal{A}(\lambda v) = \lambda \mathcal{A}v$.

Определение 2. Линейное отображение $\mathcal{A}: V \to V$ из пространства V в себя называется линейным оператором.

Определение 3. Пусть $\mathcal{A}: V \to W$ — линейное отображение. $\mathcal{A}\partial pom\ \mathcal{A}$ называется множество $\operatorname{Ker} \mathcal{A} := \{v \in V : \mathcal{A}v = \mathbf{0}\}.$ Образом \mathcal{A} называется множество $\operatorname{Im} \mathcal{A} := \{\mathcal{A}v : v \in V\}.$

Предложение 1. Пусть $\mathcal{A}: V \to W$ — линейное отображение. Тогда $\ker \mathcal{A}$ — подпространство в V, а $\operatorname{Im} \mathcal{A}$ — подпространство в W.

Доказательство. Пусть $u, v \in \operatorname{Ker} \mathcal{A}$. Т. е. $\mathcal{A}u = \mathcal{A}v = \mathbf{0}$. Тогда $\mathcal{A}(u+v) = \mathcal{A}u + \mathcal{A}v = \mathbf{0}$ и $\mathcal{A}(\lambda u) = \lambda \mathcal{A}u = \mathbf{0}$. Следовательно, $u+v \in \operatorname{Ker} \mathcal{A}$ и $\lambda u \in \operatorname{Ker} \mathcal{A} \ \forall \lambda \in \mathbb{F}$, а значит, $\operatorname{Ker} \mathcal{A}$ — подпространство в V.

Пусть теперь $x, y \in \text{Im } \mathcal{A}$, т. е. $\exists u, v \in V : \mathcal{A}u = x, \mathcal{A}v = y$. Тогда $\mathcal{A}(u+v) = x+y$ и $\mathcal{A}(\lambda u) = \lambda x$. Следовательно, $x+y \in \text{Im } \mathcal{A}$ и $\lambda x \in \text{Im } \mathcal{A} \ \forall \lambda \in \mathbb{F}$, а значит, $\text{Im } \mathcal{A}$ — подпространство в W.

Лемма 1 (Критерий инъективности). Линейное отображение $\mathcal{A}: V \to W$ инъективно тогда и только тогда, когда $\operatorname{Ker} \mathcal{A} = \{\mathbf{0}\}.$

Доказательство. \Rightarrow . Мы знаем, что $\mathcal{A}\mathbf{0} = \mathbf{0}$, а т. к. \mathcal{A} инъективно, то $\mathbf{0}$ — единственный вектор из V, переходящий в $\mathbf{0}$, отсюда $\operatorname{Ker} \mathcal{A} = \{\mathbf{0}\}$.

$$\Leftarrow$$
. Пусть $\mathcal{A}u = \mathcal{A}v \Rightarrow \mathcal{A}(u-v) = \mathbf{0}$, значит, $u-v \in \operatorname{Ker} \mathcal{A} = \{\mathbf{0}\}$, отсюда $u=v$.

Теорема 1. Пусть $\mathcal{A}:V\to W$ — линейное отображение. Тогда соответствие $v+\mathrm{Ker}\,\mathcal{A}\mapsto \mathcal{A}v$ задаёт изоморфизм между факторпространством $V/\mathrm{Ker}\,\mathcal{A}$ и подпространством $\mathrm{Im}\,\mathcal{A}$.

Доказательство. Сначала проверим, что $v + \operatorname{Ker} \mathcal{A} \mapsto \mathcal{A}v$ действительно корректно определяет отображение $\widetilde{\mathcal{A}}: V/\operatorname{Ker} \mathcal{A} \to \operatorname{Im} \mathcal{A}$. Для этого нужно проверить, что если $u + \operatorname{Ker} \mathcal{A} = v + \operatorname{Ker} \mathcal{A}$, то $\mathcal{A}u = \mathcal{A}v$. Из равенства классов смежности следует $u - v \in \operatorname{Ker} \mathcal{A}$, а отсюда $\mathcal{A}(u - v) = \mathbf{0}$, т. е. $\mathcal{A}u = \mathcal{A}v$. Итак, отображение $\widetilde{\mathcal{A}}$ определено корректно.

Линейность и сюръективность $\widetilde{\mathcal{A}}$ очевидны. Инъективность проверяется по критерию:

$$\operatorname{Ker} \widetilde{\mathcal{A}} = \{ (v + \operatorname{Ker} \mathcal{A}) \in V / \operatorname{Ker} \mathcal{A} : \widetilde{\mathcal{A}}(v + \operatorname{Ker} \mathcal{A}) = \mathcal{A}v = \mathbf{0} \} = \operatorname{Ker} \mathcal{A} = \mathbf{0} + \operatorname{Ker} \mathcal{A}.$$

Итак, $\widetilde{\mathcal{A}}$ задаёт изоморфизм $V/\operatorname{Ker} \mathcal{A} \simeq \operatorname{Im} \mathcal{A}$.

Следствие 1. Для всякого линейного отображения $\mathcal{A}: V \to W$ мы имеем

$$\dim V = \dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A}.$$

Предложение 2. Если в каких-то базисах пространств V и W линейное отображение $\mathcal{A}:V\to W$ имеет матрицу A, то

$$\dim \operatorname{Im} \mathcal{A} = \operatorname{rk} A.$$

Доказательство. Очевидно, что Im \mathcal{A} есть линейная оболочка образов базисных векторов e_1, \ldots, e_n пространства V и, значит, dim Im \mathcal{A} есть ранг системы векторов $\mathcal{A}(e_1), \ldots, \mathcal{A}(e_n)$. Но в столбцах матрицы A как раз и записаны координаты этих векторов в каком-то базисе пространства W. Следовательно, ранг этой системы векторов равен рангу матрицы A.

Определение 4. Множество всех линейных отображений $\mathcal{A}:V\to W$ с операциями сложения и умножения на скаляры

$$(\mathcal{A}_1 + \mathcal{A}_2)(v) := \mathcal{A}_1 v + \mathcal{A}_2 v, \quad (\lambda \mathcal{A})(v) := \lambda(\mathcal{A}v)$$

является линейным пространством. Оно называется npocmpancmeom линейных omoбpaжeний из V в W и обозначается $\operatorname{Hom}_{\mathbb{F}}(V,W)$.

9. Задание линейных отображений (операторов) матрицами. Изменение матрицы линейного отображения при переходе к другим базисам. Нахождение ядра и образа при помощи матрицы

Пусть $\mathcal{A}:V\to W$ — линейное отображение, e_1,\ldots,e_m — базис в V, а f_1,\ldots,f_n — базис в W.

Определение 1. *Матрицей линейного отображения* $\mathcal{A}:V\to W$ по отношению к базисам e_1,\dots,e_m и f_1,\dots,f_n называется матрица $A=\begin{pmatrix} a_1^1&\cdots&a_m^1\\ \vdots&\ddots&\vdots\\ a_1^n&\cdots&a_m^n \end{pmatrix}$ размера $n\times m$, в которой i-ый

столбец состоит из координат вектора $\mathcal{A}(e_i)$ в базисе f_1, \ldots, f_n : $\mathcal{A}e_i = a_i^j f_j$.

Предложение 1. Пусть $x=x^je_j$ — произвольный вектор из V, а $y=y^if_i$ — его образ в W, т. е. $y=\mathcal{A}x.$ Тогда $y^i=a^i_jx^j.$

Доказательство. Действительно, $y^i f_i = y = \mathcal{A} x = \mathcal{A}(x^j e_j) = x^j \mathcal{A} e_j = x^j a^i_j f_i$. Т. к. $\{f_i\}_{i=1}^n$ — базис, отсюда следует, что $y^i = a^i_j x^j$.

Предложение 2. Пусть $\dim V = m$, $\dim W = n$. Тогда $\operatorname{Hom}_{\mathbb{F}}(V,W) \simeq \operatorname{Mat}_{\mathbb{F}}(n,m)$.

Доказательство. Выберем базисы e_1, \ldots, e_m и f_1, \ldots, f_n в V и W соответственно. Определим отображение $\mathrm{Hom}_{\mathbb{F}}(V,W) \to \mathrm{Mat}_{\mathbb{F}}(n,m)$, которое сопоставляет линейному отображению его матрицу в выбранных базисах. Непосредственно проверяется, что это отображение линейно. Кроме того, оно биективно: обратное отображение сопоставляет матрице $A = (a^i_j)$ линейного отображения, определяется в координатах формулой из предыдущего предложения. Следовательно, такое отображение $\mathrm{Hom}_{\mathbb{F}}(V,W) \to \mathrm{Mat}_{\mathbb{F}}(n,m)$ является изоморфизмом.

Теорема 1 (Закон изменения матрицы линейного отображения). Имеет место соотношение $A' = D^{-1}AC$, где A — матрица линейного отображения $A: V \to W$ по отношению к базисам e_1, \ldots, e_m и $f_1, \ldots, f_n; A'$ — матрица линейного отображения A по отношению к базисам $e_{1'}, \ldots, e_{m'}$ и $f_{1'}, \ldots, f_{n'}; C = C_{e \to e'}$ — матрица перехода от e_1, \ldots, e_m к $e_{m'}, \ldots, e_{m'}; D = D_{f \to f'}$ — матрица перехода от f_1, \ldots, f_n к $f_{1'}, \ldots, f_{n'}$.

Доказательство. Пусть $C=(c_{i'}^i),\ A=(a_i^j),\ {\rm тогда}\ \mathcal{A}e_{i'}=\mathcal{A}(c_{i'}^ie_i)=c_{i'}^i\mathcal{A}e_i=c_{i'}^ia_i^jf_j.$ С другой стороны, если $A'=(a_{i'}^{j'})$ и $D=(d_{j'}^j),\ {\rm тo}\ a_{i'}^{j'}f_{j'}=a_{i'}^{j'}d_{j'}^jf_j.$ Сравнивая два последних соотношения с учётом того, что $f_{j}^n_{j=1}$ — базис, получаем $a_i^jc_{i'}^i=d_{j'}^ja_{i'}^{j'}.$ В матричном виде это эквивалентно $AC=DA'\Rightarrow A'=D^{-1}AC.$

Поиск ядра и образа линейного оператора по его матрице. Пусть имеем матрицу A оператора $\mathcal A$ в каком-то базисе. Приведя её к ступенчатому виду, сможем найти базис системы столбцов матрицы A (его будут составлять столбцы, в которых есть лидеры). Вспомним, что по столбцам A написаны образы базисных векторов при отображении $\mathcal A$, а мы нашли базис этой системы. Это значит, что найденные нами столбцы есть базис $\operatorname{Im} \mathcal A$.

 $\operatorname{Ker} \mathcal{A}$ — это просто пространство решений СЛУ Ax=0. Чтобы найти базис ядра, нам нужно просто найти её Φ CP.