Discrete Computational Structures Take Home Exam 1

Ersel Hengirmen 2468015

Question 1 (7 pts)

a) Construct a truth table for the following compound proposition.

$$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$$

(3.5/7 pts)

Table 1	. 7	Cruth	table	for (Question	1 ล

						<u> </u>
p	q	$\neg p$	$\neg q$	$q \rightarrow \neg p$	$p \leftrightarrow \neg q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow \neg q)$
Τ	Т	F	F	F	F	T
Т	F	F	Т	Т	Τ	T
F	T	Т	F	T	Τ	T
F	F	Т	Т	T	F	F

b) Show that whether the following conditional statement is a tautology by using a truth table.

$$[(p \vee q) \wedge (r \to p) \wedge (r \to q)] \to r$$

(3.5/7 pts)

Table 2: Truth table for Question 1.b

						-		
p	q	r	$p \lor q$	$r \to p$	$r \rightarrow q$	$(p \lor q) \land (r \to p) \land (r \to q)$	$[(p \lor q) \land (r \to p) \land (r \to q)] -$	$\rightarrow r$
T	Т	Т	Т	Τ	Τ	T	T	
T	Т	F	Т	Τ	Τ	T	F	
T	F	Т	Т	Τ	F	${ m F}$	${f T}$	
\mathbf{T}	F	F	Т	Τ	Τ	${f T}$	F	
F	Т	Т	Т	F	Τ	F	${f T}$	
F	Т	F	Т	${ m T}$	${ m T}$	T	\mathbf{F}	
F	F	Т	F	F	F	F	${f T}$	
F	F	F	F	Τ	Τ	F	${f T}$	

It is not a tautology since there are cases where this conditional statement is False

Question 2 (8 pts)

Show that $(p \to q) \land (p \to r)$ and $(\neg q \lor \neg r) \to \neg p$ are logically equivalent. Use tables 6,7 and 8 given under the section "Propositional Equivalences" in the course textbook and give the reference to the table and the law in each step.

Question 3

(30 pts, 2.5 pts each)

Let F(x, y) mean that x is the father of y; M(x, y) denotes x is the mother of y. Similarly, H(x, y), S(x, y), and B(x, y) say that x is the husband/sister/brother of y, respectively. You may also use constants to denote individuals, like Sam and Alex. You can use $\vee, \wedge, \rightarrow, \neg, \forall, \exists$ rules and quantifiers. However, you are not allowed to use any predicate symbols other than the above to translate the following sentences into predicate logic. \exists ! and exclusive-or (XOR) quantifiers are forbidden:

- 1) Everybody has a mother.
- 2) Everybody has a father and a mother.
- **3**) Whoever has a mother has a father.
- 4) Sam is a grandfather.
- **5**) All fathers are parents.
- **6**) All husbands are spouses.

- 7) No uncle is an aunt.
- 8) All brothers are siblings.
- 9) Nobody's grandmother is anybody's father.
- **10**) Alex is Ali's brother-in-law.
- 11) Alex has at least two children.
- 12) Everybody has at most one mother.

- 1. $\forall y \exists x M(x,y)$
- 2. $\forall y \exists x \exists z (F(x,y) \land M(z,y))$
- 3. $\forall y \exists x \exists z (M(x,y) \to F(z,y))$
- 4. $\exists x \exists y (F(Sam, x) \land (F(x, y) \lor M(x, y)))$
- 5. $\forall x \exists y \exists z (F(x,y) \to (F(x,z) \lor M(x,z)))$
- 6. $\forall x \exists y \exists z (H(x,y) \rightarrow (H(x,z) \lor H(z,x)))$
- 7. $\forall x \exists y \exists z \exists v \exists w ((B(x,y) \land (M(y,z) \lor F(y,z)) \rightarrow \neg (S(x,v) \land (M(v,w) \lor F(v,w))))$
- 8. $\forall x \exists y \exists z ((B(x,y) \land B(y,x)) \rightarrow ((M(z,x) \land M(z,y)) \lor (F(z,x) \land F(z,y))))$
- 9. $\forall x \exists y \exists z ((M(x,y) \land (F(y,z) \lor M(y,z)) \rightarrow \forall v \neg F(x,v))$
- 10. $\exists x((S(x,Ali) \lor B(x,Ali)) \land H(Alex,x))$

- 11. $\exists x \exists y (x \neq y \land (F(Alex, x) \lor M(Alex, x)) \land (F(Alex, y) \lor M(Alex, y)))$
- 12. $\forall x \exists y (M(y, x) \land \forall z (y \neq z \rightarrow \neg M(z, x)))$

Question 4 (25 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

$$\mathbf{a)}\ p \to q, r \to s \vdash (p \lor r) \to (q \lor s)$$

(12.5/25 pts)

1	$p \rightarrow q$	premise
2	$r \to s$	premise
3	$p \lor r$	assumption
$4 \mid \lceil$	p	assumption
5	q	\rightarrow e 1,4
6	$q \vee s$	$\vee i_1$ 5
7 [r	assumption
8	s	\rightarrow e 2,7
9	$q \vee s$	$\vee i_2 \ 8$
10	$q \vee s$	$\vee e \ 3, 4 - 6, 7 - 9$
11	$(p \lor r) \to (q \lor s)$	\rightarrow i 3 – 10

b)
$$(p \rightarrow (r \rightarrow \neg q)) \rightarrow ((p \land q) \rightarrow \neg r)$$

(12.5/25 pts)

1	$p \to (r \to \neg q)$	assumption
2	$p \wedge q$	assumption
3	p	∧e 2
4	q	∧e 2
5	$r \rightarrow \neg q$	\rightarrow e 1,3
6	r	assumption
7	$\neg q$	\rightarrow e 5,6
8		¬e 4, 7
9	$\neg r$	¬i 6 – 8
10	$(p \land q) \to \neg r$	→i 2 – 9
11	$(p \to (r \to \neg q)) \to ((p \land q) \to \neg r)$	\to i 1 – 10

Question 5 (30 pts)

Prove the following claim by natural deduction. Use only the natural deduction rules \vee , \wedge , \rightarrow , \neg introduction and elimination. If you attempt to make use of a lemma or equivalence, you need to prove it by natural deduction too.

a)
$$\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$$
 (12.5/25 pts)

b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$
 (17.5/25 pts)

For this question I will add several theorems that will be proven first and used later these are in order: Rule1, Rule2

Table 3: Proof for Rule1: $\neg \exists x P(x) \vdash \forall x \neg P(x)$

1		$\neg \exists x P(x)$	premise
2	x_0		
3		$P(x_0)$	assumption
4		$\exists x P(x_0)$	$\exists xi \ 3$
5		\perp	$\neg e \ 1,4$
6		$\neg P(x_0)$	$\neg i \ 3-5$
7		$\forall x \neg P(x)$	$\forall xi \ 2-6$

1	$\neg(p \to q)$	premise
2	$\neg (p \land \neg q)$	assumption
3	p	assumption
4	$\neg q$	assumption
5	$p \land \neg q$	$\wedge i \ 3,4$
6	\perp	$\neg e \ 2, 5$
7	$\neg \neg q$	$\neg i \ 4 - 6$
8	q	¬¬e 7
9	 $p \rightarrow q$	\rightarrow i 3 – 8
10	\perp	$\neg e 1, 9$
11	$p \land \neg q$	$\neg i \ 2 - 10$

Table 5: Proof for Question 5.b $\forall x P(x) \to S \vdash \exists x (P(x)) \to S$

		<u> </u>	()
1		$\forall x P(x) \to S$	premise
2		$\neg \exists x (P(x) \to S)$	assumption
3		$\forall x \neg (P(x) \to S)$	Rule1 2
4	x_0		
5		$\neg (P(x_0) \to S)$	$\forall e \ 3$
6		$P(x_0) \wedge \neg S$	Rule2 5
7		$P(x_0)$	$\wedge e_1$ 6
8		$\forall x P(x)$	$\forall xi \ 4-7$
9	x_0		
10		$\neg (P(x_0) \to S)$	$\forall e \ 3$
11		$P(x_0) \wedge \neg S$	Rule2 10
12		$\neg S$	$\wedge e_2 \ 11$
13		$\forall x \neg S$	$\forall xi \ 9-12$
14		$\neg S$	$\forall e \ 13$
15		S	$\rightarrow e 1, 8$
16		\perp	$\neg e \ 14, 15$
17		$\neg\neg\exists x(P(x)\to S)$	$\neg i \ 2 - 16$
18		$\exists x (P(x) \to S)$	$\neg \neg e \ 17$