Лабораторна робота № 8

Тема: Вплив похибки вимірювання вихідної величини на точність визначення коефіцієнтів рівняння регресії.

Мета роботи: Знайти таке $m_{onm.}$ - кількість дослідів, при якому виконується критерій Кохрена. Простежити вплив похибки вимірювання значень функції відгуку на точність визначення коефіцієнтів регресії.

Перший етап: Знайти таке $m_{onm.}$ при якому виконується критерій Кохрена. Для цього вибираємо $m_{min,}$ відповідно до таблиці варіантів, і збільшуємо його до тих пір поки не знайдемо $m_{onm,}$ таким шляхом: $m_{min,}$ $m_{min,}$ $m_{min,}$ + Δm , $m_{min,}$ + Δm , $m_{min,}$ + Δm , $m_{min,}$ Варіанти вибираються по номеру в списку в журналі викладача.

Другий етап: Використовуючи m_{onm} і похибку вимірювання значень функції відгуку $\delta y_1 = 10\%$; $\delta y_2 = 5\%$; $\delta y_3 = 2\%$; $\delta y_4 = 1\%$; $\delta y_5 = 0.1\%$ знаходимо коефіцієнти рівняння регресії і відносні похибки нормованих коефіцієнтів рівняння регресії bj

Теоретичні відомості

Похибки у вимірюваннях при проведенні експерименту спотворюють математичну модель об'єкта. Модель описується рядом Тейлора, тому це спотворення проявляється в неточному визначенні нормованих коефіцієнтів b_i рівняння регресії.

При проведенні експерименту змінюються значення вхідних змінних (факторів) $x_i, x_2, ..., x_k$ і вимірюють значення функції відгуку y

Рис. 1. Схема експерименту.

З таблиці варіантів необхідно вибрати рівняння регресії, що описує досліджуваний об'єкт і містить натуралізовані значення коефіцієнтів а $_j$ рівняння регресії, початкове мінімальне число вимірів m_{min} в точках факторного простору і крок Δm зміни числа вимірів.

Приймаємо такі позначення

 $x_1, x_2, ..., x_k$ - Вхідні змінні (фактори);

 y^* - ідеальне значення вихідної змінної;

у - виміряне значення функції відгуку;

 Δy -абсолютна похибка вимірювання функції відгуку.

bj - нормовані коефіцієнти рівняння регресії

 σj - відносна похибка коефіцієнтів рівняння регресії bj

 δv - похибка вимірювання функції відгуку

р - ймовірність підтвердження гіпотези однорідності дисперсії

Відносна похибка функції відгуку δy визначається за формулою:

$$\delta y = \frac{\Delta y}{y^*}$$
, де

 Δy -абсолютна похибка значення функції відгуку.

у * - ідеальне значення функції відгуку;

При лінійній формі рівняння регресії достатньо використовувати повний факторний експеримент (ПФЕ). Для лінійного трифакторного рівняння регресії $N = 2^3 = 8$. Середнє значення функції відгуку при *j-ому* експерименті

$$\overline{y_j} = \frac{1}{m} \sum_{g=1}^{m} y_{jg}$$
 $(j = \overline{1, N}) (g = \overline{1, m})$

де $\overline{y_i}$ - середнє значення функції відгуку, отриманому при j-ому експерименті

 y_{jg} - Значення функції відгуку, отриманому при g-му досліді при j-му експерименті

N - кількість експериментів (рядків матриці планування)

т - кількість дослідів; кількість вимірювань у при одній і тій же комбінації факторів

Після проведення дослідів повинні бути отримані середні значення функції відгуку для всіх N точок факторного простору:

$$Y(\overline{y_1}, \overline{y_2}, ... \overline{y_N}),$$

Ми повинні вибрати випадкове значення з проміжку [Yj (1 - δ y)]; Y _j (1 + δ y)], де δ y - похибка вимірювання функції відгуку

і підставити в матрицю планування для ПФЕ і порахувати значення функції відгуку:

$$y_{i\sigma} = Yj*(1+(2*random(10000)/10000 - 1)* \delta y) = Yj*(1+[-1..1]* \delta y)$$

$$(j=\overline{1,N}) (g=\overline{1,m})$$

 δy - похибка вимірювання функції відгуку

Үі - ідеальне значення функції відгуку при і експерименті.

Ці дані використовуються для обчислення натуралізованих коефіцієнтів рівняння регресії a_k за формулами, виведеними на основі методу найменших квадратів.

За критерієм Кохрена перевіряється властивість однорідності дисперсій функції відгуку. Рівень значимості для критерію Кохрена вибрати рівним 0.01, тобто a=0.01. Якщо виявиться, що дисперсії неоднорідні, то в кожній точці факторного простору проводяться Δm додаткових вимірів. Послідовно проводячи серії по Δm додаткових вимірів, необхідно домогтися однорідності дисперсій. Мінімальне значення m, при якому критерій Кохрена виконується,

назвемо оптимальним і позначимо m_{onm} ,

Дисперсію обчислюємо за формулою:

$$D = \sum_{g=1}^{m} (Y_{cp} - y_g)^2 / (m-1)$$

m - кількість дослідів; кількість вимірювань y при одній і тій же комбінації факторів Y_{cp} - середнє значення функції відгуку при експерименті.

у_д - значення функції відгуку при експерименті.

Далі обчислюємо суму дисперсій і знаходимо значення коефіцієнту Кохрена:

$$G_p = D_{max} / \sum_{i=1}^{N} D_i$$

де: D_{max} - максимальне значення дисперсії з усіх по рядкам дисперсій для функції відгуку, N=8 для 3 факторів.

Значення коефіцієнта Кохрена, що було розраховане, порівнюється з табличним значенням Gт. Це критерій, що вибирається з таблиць для прийнятого рівня значимості p і для кількості степенів свободи відповідно чисельника f_1 і знаменника f_2 :

$$f_1 = m - 1$$
; $f_2 = N$.

Для цього значення f_1 шукається в горизонтальному заголовку таблиці (вибирається стовпець), а f_2 вибирається зліва у вертикальному заголовку таблиці (вибирається рядок) і на перетині отримуємо табличне значення $G_{\rm T}$ коефіцієнта Кохрена. Якщо виконується умова

$$G_p < G_{T_n}$$

то з обраним рівнем статистичної значимості α (з ймовірністю 1 - p) всі построкові дисперсії визнаються однорідними. В іншому випадку гіпотезу відкидають. У разі, коли дисперсії неоднорідні, то збільшуємо кількість дослідів m і проводимо обчислення спочатку. При знаходженні $m_{\text{опт}}$, обчислюємо відносні похибки коефіцієнтів рівняння регресії при $\delta y_1 = 10\%$; $\delta y_2 = 5\%$; $\delta y_3 = 2\%$; $\delta y_4 = 1\%$; $\delta y_5 = 0.1\%$, взяті з таблиці I.

Відносні похибки коефіцієнтів рівняння регресії обчислюються за формулою

$$\sigma_s = \frac{b_s - a_s}{a_s}, \quad (s = \overline{0,k}),$$
де

as - натуралізовані значення коефіцієнтів рівняння регресії bs - нормовані коефіцієнти рівняння регресії

Таблиця 1 - Відносні похибки вимірювань

№ п/п	Відносні похибки
1	$\delta y = 10\%$
2.	$\delta y = 5\%$
3	$\delta y = 2\%$
4	$\delta y = 1\%$
5	$\delta y = 0.1\%$

По заданому α з таблиці розподілів Кохрена вибираємо Gt і порівнюємо з отриманим $G_{p.}$ Використовуючи формули, що виведені на основі методу найменших квадратів, визначаємо нормовані коефіцієнти рівняння регресії b_0 , b_1 , b_2 , b_3 і обчислюємо відносні похибки коефіцієнтів рівняння регресії σ_0 , σ_1 , σ_2 , σ_3 .

Значення $\delta * y$, при якому всі відносні похибки коефіцієнтів рівняння регресії σ_0 , σ_1 , σ_2 , σ_3 будуть менше 0,001, назвемо відносною похибкою вимірювання вихідної величини, що несуттєво впливає на нормовані коефіцієнти рівняння регресії b_j .

<u>Методика розрахунку коефіцієнтів рівняння регресії з використанням методу найменших квадратів</u>

У результаті проведення дослідів ми отримуємо N значень вихідної змінної $y_i (i = \overline{1, N})$.

Необхідно визначити такі значення коефіцієнтів рівняння регресії a_i , при яких рівняння регресії найкращим чином буде наближене до всіх експериментальних даних.

Концепція критерію найменших квадратів

$$\Phi = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \rightarrow \min$$
 (1)

Величина Φ – це сума квадратів відхилень розрахункових значень \hat{y}_i (з рівняння регресії) від експериментальних значень y_i

Розрахункове значення функції відгуку ϵ функція від коефіцієнтів рівняння регресії і вхідних змінних:

$$\hat{y}_{i} = \varphi(b_{0}, b_{1}, ..., x_{1i}, x_{2i}, ..., x_{ki})$$
(2)

Сума квадратів відхилень буде мінімальна (функція має точку екстремуму), коли часткові похідні за коефіцієнтами рівняння регресії дорівнюють нулю:

$$\begin{cases} \frac{\partial \Phi}{\partial b_0} = 0; \\ \frac{\partial \Phi}{\partial b_1} = 0; \\ \Lambda \\ \Lambda \end{cases}$$
 (3)

Підставивши вираз (2) в (1) отримаємо

$$\Phi = \sum_{i=1}^{N} [y_i - \phi(b_0, b_1, ..., x_{1i}, x_{2i}, ..., x_{ki})]^2$$
(4)

Використовуючи отриманий вираз для Φ , перетворимо систему рівнянь (3):

$$\begin{cases}
-\sum_{i=1}^{N} 2[y_{i} - \phi(b_{0}, b_{1}, ..., x_{1i}, x_{2i}, ..., x_{ki})] \cdot \frac{\partial \phi}{\partial b_{0}} = 0; \\
-\sum_{i=1}^{N} 2[y_{i} - \phi(b_{0}, b_{1}, ..., x_{1i}, x_{2i}, ..., x_{ki})] \cdot \frac{\partial \phi}{\partial b_{1}} = 0; \\
\Lambda$$

$$\Lambda$$

$$\Lambda$$

Де
$$\varphi_i = \varphi(b_0, b_1, K, x_{1i}, x_{2i}, K, x_{ki})$$

Ця система дозволяє однозначно визначити коефіцієнти рівняння регресії.

Розглянемо окремий випадок, коли рівняння регресії має лінійну форму і кількість факторів k=3.

$$y_{cp_i} = \varphi(b_0, b_1, b_2, b_3, x_{1i}, x_{2i}, x_{3i}) = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i}$$
 (6)

Визначимо необхідні значення часткових похідних:

$$\frac{\partial \varphi_i}{\partial b_0} = 1; \qquad \frac{\partial \varphi_i}{\partial b_1} = x_{1i}; \qquad \frac{\partial \varphi_i}{\partial b_2} = x_{2i}; \qquad \frac{\partial \varphi_i}{\partial b_3} = x_{3i}; \tag{7}$$

Запишемо рівняння системи (7) в повній формі:

$$\begin{cases}
\sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} - y_i) \cdot 1 = 0 \\
\sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} - y_i) \cdot x_{1i} = 0 \\
\sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} - y_i) \cdot x_{2i} = 0 \\
\sum_{i=1}^{D} (b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} - y_i) \cdot x_{3i} = 0
\end{cases}$$
(8)

Представимо систему рівнянь (8) у звичайному вигляді (як систему 4-х рівнянь з 4-ма невідомими b_0 , b_1 , b_2 , b_3 , згрупуємо фактори при коефіцієнтах рівняння регресії і розділимо кожне рівняння на N.

$$\begin{cases} b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i})b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i})b_2 + (\frac{1}{N} \sum_{i=1}^{N} x_{3i})b_3 = \frac{1}{N} \sum_{i=1}^{N} y_i \\ (\frac{1}{N} \sum_{i=1}^{N} x_{1i})b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i}^2)b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i}x_{1i})b_2 + (\frac{1}{N} \sum_{i=1}^{N} x_{3i}x_{1i})b_3 = \frac{1}{N} \sum_{i=1}^{N} y_i x_{1i} \\ (\frac{1}{N} \sum_{i=1}^{N} x_{2i})b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i}x_{2i})b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i}^2)b_2 + (\frac{1}{N} \sum_{i=1}^{N} x_{3i}x_{2i})b_3 = \frac{1}{N} \sum_{i=1}^{N} y_i x_{2i} \\ (\frac{1}{N} \sum_{i=1}^{N} x_{3i})b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i}x_{3i})b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i}x_{3i})b_2 + (\frac{1}{N} \sum_{i=1}^{N} x_{3i}^2)b_3 = \frac{1}{N} \sum_{i=1}^{N} y_i x_{1i} \end{cases}$$

Введемо позначення:

$$M_{x1} = \frac{1}{N} \sum_{i=1}^{N} x_{1i} \qquad a_1 = \frac{1}{N} \sum_{i=1}^{N} x_{1i}^2 \qquad a_5 = \frac{1}{N} \sum_{i=1}^{N} x_{2i} x_{3i} \qquad a_{33} = \frac{1}{N} \sum_{i=1}^{N} x_{3i} y_i$$

$$M_{y} = \frac{1}{N} \sum_{i=1}^{N} y_{i} \qquad a_{2} = \frac{1}{N} \sum_{i=1}^{N} x_{1i} x_{2i} \qquad a_{6} = \frac{1}{N} \sum_{i=1}^{N} x_{3i}^{2} \qquad a_{4} = \frac{1}{N} \sum_{i=1}^{N} x_{2i}^{2}$$

$$M_{x2} = \frac{1}{N} \sum_{i=1}^{N} x_{2i} \qquad a_{3} = \frac{1}{N} \sum_{i=1}^{N} x_{1i} x_{3i} \qquad a_{11} = \frac{1}{N} \sum_{i=1}^{N} x_{1i} y_{i}$$

$$M_{x3} = \frac{1}{N} \sum_{i=1}^{N} x_{3i} \qquad a_{1} = \frac{1}{N} \sum_{i=1}^{N} x_{1i}^{2} \qquad a_{22} = \frac{1}{N} \sum_{i=1}^{N} x_{2i} y_{i}$$

$$M_{x3} = \frac{1}{N} \sum_{i=1}^{N} x_{3i}$$
 $a_1 = \frac{1}{N} \sum_{i=1}^{N} x_{1i}^2$ $a_{22} = \frac{1}{N} \sum_{i=1}^{N} x_{2i} y_{i}^2$

Шукані невідомі (коефіцієнти рівняння регресії) знайдемо з системи лінійних рівнянь за правилом Крамера:

$$b_0 = \frac{\begin{vmatrix} M_y & M_{x1} & M_{x2} & M_{x3} \\ a_{11} & a_1 & a_2 & a_3 \\ a_{22} & a_2 & a_4 & a_5 \\ a_{33} & a_3 & a_5 & a_6 \end{vmatrix}}{\begin{vmatrix} 1 & M_{x1} & M_{x2} & M_{x3} \\ M_{x1} & a_{11} & a_2 & a_3 \\ M_{x2} & a_{22} & a_4 & a_5 \\ M_{x3} & a_{33} & a_5 & a_6 \end{vmatrix}} = \frac{d0}{d}$$

$$b_1 = \frac{\begin{vmatrix} 1 & M_y & M_{x2} & M_{x3} \\ M_{x1} & a_{11} & a_2 & a_3 \\ M_{x2} & a_{22} & a_4 & a_5 \\ M_{x3} & a_{33} & a_5 & a_6 \end{vmatrix}}{\begin{vmatrix} 1 & M_{x1} & M_{x2} & M_{x3} \\ M_{x1} & a_1 & a_2 & a_3 \\ M_{x2} & a_2 & a_5 & a_5 \\ M_{x3} & a_3 & a_3 & a_4 & a_6 \end{vmatrix}} = \frac{d1}{d}$$

$$b_{2} = \frac{\begin{vmatrix} 1 & M_{x1} & M_{y} & M_{x3} \\ M_{x1} & a_{1} & a_{11} & a_{3} \\ M_{x2} & a_{2} & a_{22} & a_{5} \\ M_{x3} & a_{3} & a_{33} & a_{6} \end{vmatrix}}{\begin{vmatrix} 1 & M_{x1} & M_{x2} & M_{y} \\ M_{x1} & a_{1} & a_{2} & a_{11} \\ M_{x2} & a_{2} & a_{4} & a_{22} \\ M_{x3} & a_{3} & a_{5} & a_{6} \end{vmatrix}} = \frac{d2}{d}$$

$$b_{3} = \frac{\begin{vmatrix} 1 & M_{x1} & M_{x2} & M_{y} \\ M_{x1} & a_{1} & a_{2} & a_{11} \\ M_{x2} & a_{2} & a_{4} & a_{22} \\ M_{x3} & a_{3} & a_{5} & a_{33} \\ M_{x1} & a_{1} & a_{2} & a_{3} \\ M_{x2} & a_{2} & a_{4} & a_{5} \\ M_{x3} & a_{3} & a_{5} & a_{6} \end{vmatrix}} = \frac{d3}{d}$$

Порахуємо визначники:

d0:=my*(a1*a4*a6+a2*a5*a3+ a2*a5*a3-a3*a4*a3-a2*a2*a6-a1*a5*a5)mx1*(a11*a4*a6+a22*a5*a3+a2*a5*a33-a33*a4*a3-a22*a2*a6-a11*a5*a5) mx3*(a11*a2*a5+a1*a4*a33+a3*a2*a22-a33*a2*a2-a22*a1*a5-a3*a4*a11);

d1:=1*(a11*a4*a6+a2*a5*a33+a22*a5*a3-a3*a4*a3-a22*a2*a6-a11*a5*a5)my*(mx1*a4*a6+mx2*a5*a3+a2*a5*mx3-mx3*a4*a3-mx2*a2*a6-mx1*a5*a5)
+mx2*(mx1*a22*a6+mx2*a33*a3+mx3*a11*a5-mx3*a22*a3-mx2*a11*a6-mx1*a33*a5)mx3*(mx1*a22*a5+a11*a4*mx3+a33*a2*mx2-mx3*a22*a2-mx2*a11*a5-a33*a4*mx1);

d2 := 1*(a1*a22*a6+a11*a5*a3+a2*a33*a3-a3*a22*a3-a2*a11*a6-a1*a33*a5) - mx1*(mx1*a22*a6+mx2*a33*a3+a11*a5*mx3-mx3*a22*a3-mx2*a11*a6-mx1*a33*a5) + my*(mx1*a2*a6+mx2*a3*a3+a1*mx3*a5-mx3*a2*a3-mx2*a1*a6-mx1*a3*a5) - mx3*(mx1*a2*a33+a1*a22*mx3+mx2*a3*a11-mx3*a2*a11-mx2*a1*a33-a3*a22*mx1);

 $\begin{array}{l} d3 := 1*(a1*a4*a33 + a2*a22*a3 + a2*a5*a11 - a3*a4*a11 - a2*a2*a33 - a1*a5*a22) - \\ mx1*(mx1*a4*a33 + mx2*a5*a11 + a2*a22*mx3 - mx3*a4*a11 - mx2*a2*a33 - mx1*a5*a22) + \\ mx2*(mx1*a2*a33 + mx2*a3*a11 + mx3*a1*a22 - mx3*a2*a11 - mx2*a1*a33 - mx1*a3*a22) - \\ my*(mx1*a2*a5 + a1*a4*mx3 + a3*a2*mx2 - mx3*a2*a2 - mx2*a1*a5 - a3*a4*mx1); \end{array}$

d:=(a1*a4*a6+a2*a5*a3+ a2*a5*a3-a3*a4*a3-a2*a2*a6-a1*a5*a5)mx1*(mx1*a4*a6+mx2*a5*a3+a2*a5*mx3-mx3*a4*a3-mx2*a2*a6-mx1*a5*a5)
+mx2*(mx1*a2*a6+mx2*a3*a3+mx3*a1*a5-mx3*a2*a3-mx2*a1*a6-mx1*a3*a5)mx3*(mx1*a2*a5+a1*a4*mx3+a3*a2*mx2-mx3*a2*a2-mx2*a1*a5-a3*a4*mx1);

Слід зазначити, що при повному факторному експерименті виконується властивість симетричності плану, тому Mx1 = 0, Mx2 = 0, Mx3 = 0. Обчислення спрощуються

$$b_0 = \frac{\begin{vmatrix} M_y & 0 & 0 & 0 \\ a_{11} & a_1 & a_2 & a_3 \\ a_{22} & a_2 & a_4 & a_5 \\ a_{33} & a_3 & a_5 & a_6 \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 0 & 0 \\ a_{11} & a_2 & a_3 \\ 0 & a_{22} & a_4 & a_5 \\ 0 & a_1 & a_2 & a_3 \\ 0 & a_2 & a_4 & a_5 \\ 0 & a_3 & a_5 & a_6 \end{vmatrix}} = \frac{d0}{d}$$

$$b_1 = \frac{\begin{vmatrix} 1 & M_y & 0 & 0 \\ 0 & a_{11} & a_2 & a_3 \\ 0 & a_{22} & a_4 & a_5 \\ 0 & a_{33} & a_5 & a_6 \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a_{11} & a_2 & a_3 \\ 0 & a_2 & a_5 & a_5 \\ 0 & a_3 & a_4 & a_6 \end{vmatrix}} = \frac{d1}{d}$$

$$b_{2} = \frac{\begin{vmatrix} 1 & 0 & M_{y} & 0 \\ 0 & a_{1} & a_{11} & a_{3} \\ 0 & a_{2} & a_{22} & a_{5} \\ 0 & a_{3} & a_{33} & a_{6} \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 0 & M_{y} \\ 0 & a_{1} & a_{2} & a_{11} \\ 0 & a_{2} & a_{4} & a_{22} \\ 0 & a_{3} & a_{5} & a_{3} \end{vmatrix}} = \frac{d2}{d}$$

$$b_{3} = \frac{\begin{vmatrix} 1 & 0 & 0 & M_{y} \\ 0 & a_{1} & a_{2} & a_{11} \\ 0 & a_{2} & a_{4} & a_{22} \\ 0 & a_{3} & a_{5} & a_{33} \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a_{1} & a_{2} & a_{3} \\ 0 & a_{2} & a_{4} & a_{5} \\ 0 & a_{3} & a_{5} & a_{6} \end{vmatrix}} = \frac{d3}{d}$$

Порахуємо визначники:

$$d := (a1*a4*a6+a2*a5*a3+a2*a5*a3-a3*a4*a3-a2*a2*a6-a1*a5*a5)$$

Далі знайдемо коефіцієнти рівняння регресії:

 $b_0 = (d_0/d)$

 $b_1 = (d_1/d)$

 $b_2 = (d_2/d)$

 $b_3 = (d_3/d)$

Де b_0 , b_1 , b_2 , b_3 нормовані коефіцієнти рівняння регресії

Після даних обчислень можемо порахувати відносні похибки визначення коефіцієнтів рівняння регресії:

 $|(b_0-a_0)/b_0| = \sigma_0$

 $|(b_1-a_1)/b_1| = \sigma_I$

 $|(b_2-a_2)/b_2| = \sigma_2$

 $|(b_3-a_3)/b_3| = \sigma_3$

Де b_0 , b_1 , b_2 , b_3 нормовані коефіцієнти рівняння регресії a_0 , a_1 , a_2 , a_3 натуралізовані коефіцієнти рівняння регресії

Порядок виконання роботи

- 1. Знайти таке $m_{onm.}$, при якому виконується критерій Кохрена. Для цього вибираємо m_{min} і збільшуємо його до тих пір поки не знайдемо $m_{onm.}$ таким шляхом: $m_{min.}$ $m_{min.}$ + Δm , $m_{min.}$ + Δm + Δm , ... $m_{onm.}$ Варіанти вибираються по номеру в списку в журналі викладача.
- 2. Використовуючи m_{onm} і похибку вимірювання вихідної величини δy_1 =10%; δy_2 =5%; δy_3 =2%; δy_4 =1%; δy_5 =0.1%, знаходимо коефіцієнти рівняння регресії і відносні похибки коефіцієнтів рівняння регресії .

Зміст звіту

- 1. Вихідні дані (рівняння моделі, m_{min} крок Δm , похибки спостережень δy).
- 2. Результати досліджень.
- 3. Аналіз результатів і висновки.

Варіанти

№ Варіанта	Рівняння регресії	m_{min}	Δm		$\alpha = 1 - p$
101	$Y = 10 + 4x_1 + 40x_2 + 89x_3$	2.	2.	0.95	0.05
102	$Y = 8 + 6x_1 + 42x_2 + 97x_3$	3	1	0.99	0.01
103	$Y = 1 + 41x_1 + 13x_2 + 53x_3$	4	1	0.95	0.05
104	$Y = 15 + 34x_1 + 41x_2 + 102x_3$	2.	2.	0.99	0.01
105	$Y = 7 + 25x_1 + 67x_2 + 77x_3$	3	2.	0.95	0.05
106	$Y = 14 + 3x_1 + 38x_2 + 69x_3$	4	1	0.99	0.01
107	$Y = 5 + 16x_1 + 30x_2 + 67x_3$	2.	2.	0.95	0.05
108	$Y = 17 + 36x_1 + 60x_2 + 87x_3$	3	2.	0.99	0.01
109	$Y = 12 + 4x_1 + 32x_2 + 54x_3$	4	1	0.95	0.05
110	$Y = 1 + 3x_1 + 48x_2 + 75x_3$	2.	1	0.99	0.01
111	$Y = 16 + 29x_1 + 49x_2 + 88x_3$	3	2.	0.95	0.05
112	$Y = 14 + 6x_1 + 31x_2 + 72x_3$	4	2.	0.99	0.01
113	$Y = 11 + 2x_1 + 38x_2 + 100x_3$	2.	1	0.95	0.05
114	$Y = 5 + 16x_1 + 30x_2 + 102x_3$	3	1	0.99	0.01
11	$Y = 3 + 12x_1 + 56x_2 + 73x_3$	4	2.	0.95	0.05
116	$Y = 10 + 4x_1 + 40x_2 + 89x_3$	2.	1	0.99	0.01
117	$Y = 8 + 6x_1 + 42x_2 + 97x_3$	3	2.	0.95	0.05
118	$Y = 1 + 41x_1 + 13x_2 + 53x_3$	4	2.	0.99	0.01
119	$Y = 15 + 34x_1 + 41x_2 + 102x_3$	2.	2.	0.95	0.05
120	$Y = 7 + 25x_1 + 67x_2 + 77x_3$	3	1	0.99	0.01
121	$Y = 14 + 3x_1 + 38x_2 + 69x_3$	4	2.	0.95	0.05
122	$Y = 5 + 16x_1 + 30x_2 + 67x_3$	2.	1	0.99	0.01
123	$Y = 17 + 36x_1 + 60x_2 + 87x_3$	3	1	0.95	0.05
124	$Y = 12 + 4x_1 + 32x_2 + 54x_3$	4	2.	0.99	0.01
125	$Y = 1 + 3x_1 + 48x_2 + 75x_3$	2.	2.	0.95	0.05
126	$Y = 16 + 29x_1 + 49x_2 + 88x_3$	3	1	0.99	0.01
127	$Y = 14 + 6x_1 + 31x_2 + 72x_3$	4	1	0.95	0.05
128	$Y = 11 + 2x_1 + 38x_2 + 100x_3$	2.	2.	0.99	0.01
129	$Y = 5 + 16x_1 + 30x_2 + 102x_3$	3	2.	0.95	0.05
130	$Y = 3 + 12x_1 + 56x_2 + 73x_3$	4	2.	0.99	0.01
131	$Y = 10 + 4x_1 + 40x_2 + 89x_3$	3	1	0.95	0.05
132	$Y = 8 + 6x_1 + 42x_2 + 97x_3$	2.	2.	0.99	0.01
133	$Y = 1 + 41x_1 + 13x_2 + 53x_3$	3	2.	0.95	0.05
134	$Y = 15 + 34x_1 + 41x_2 + 102x_3$	4	1	0.99	0.01
135	$Y = 7 + 25x_1 + 67x_2 + 77x_3$	2.	1	0.95	0.05

106		La		0.00	0.01
136	$Y = 14 + 3x_1 + 38x_2 + 69x_3$	3	2.	0.99	0.01
137	$Y = 5 + 16x_1 + 30x_2 + 67x_3$	4	1	0.95	0.05
138	$Y = 17 + 36x_1 + 60x_2 + 87x_3$	4	1	0.99	0.01
139	$Y = 12 + 4x_1 + 32x_2 + 54x_3$	3	2.	0.95	0.05
140	$Y = 1 + 3x_1 + 48x_2 + 75x_3$	3	2.	0.99	0.01
141	$Y = 16 + 29x_1 + 49x_2 + 88x_3$	2.	1	0.95	0.05
142	$Y = 14 + 6x_1 + 31x_2 + 72x_3$	3	1	0.99	0.01
143	$Y = 11 + 2x_1 + 38x_2 + 100x_3$	4	2.	0.95	0.05
144		2.	1	0.99	0.03
145	$Y = 5 + 16x_1 + 30x_2 + 102x_3$	3	2.	0.95	
	$Y = 3 + 12x_1 + 56x_2 + 73x_3$				0.05
201	Y = 10 + 4x1 + 40x2 + 89x3	2.	2.	0.99	0.01
202	Y = 8 + 6x1 + 42x2 + 97x3	3	1	0.95	0.05
203	Y = 1 + 41x1 + 13x2 + 53x3		1	0.99	0.01
204	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.95	0.05
205	Y = 7 + 25x1 + 67x2 + 77x3	3	2.	0.99	0.01
206	Y = 14 + 3x1 + 38x2 + 69x3	2.	2.	0.95	0.05
	Y = 5 + 16x1 + 30x2 + 67x3 $Y = 17 + 26x1 + 60x2 + 87x2$				0.01
208	Y = 17 + 36x1 + 60x2 + 87x3	3	2.	0.95	0.05
209	Y = 12 + 4x1 + 32x2 + 54x3	1	1	0.99	0.01
210	Y = 1 + 3x1 + 48x2 + 75x3 $Y = 16 + 20x1 + 40x2 + 88x2$	2.	2.	0.95	0.05
212	Y = 16 + 29x1 + 49x2 + 88x3 $Y = 14 + 6x1 + 31x2 + 72x3$	4	2.	0.99	0.01
213	Y = 11 + 2x1 + 31x2 + 72x3 $Y = 11 + 2x1 + 38x2 + 100x3$	2.	1	0.95	0.05
214	Y = 5 + 16x1 + 30x2 + 100x3	3	1	0.93	
214		4	2.	0.99	0.01
216	Y = 3 + 12x1 + 56x2 + 73x3 $Y = 10 + 4x1 + 40x2 + 89x3$	2.	1	0.93	0.05
217		3	2.	0.99	0.01
218	Y = 8 + 6x1 + 42x2 + 97x3 $Y = 1 + 41x1 + 13x2 + 53x3$	4	2.	0.93	0.03
219	Y = 15 + 34x1 + 13x2 + 33x3 Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.95	0.05
220	Y = 7 + 25x1 + 67x2 + 77x3	3	1	0.99	0.03
221	Y = 14 + 3x1 + 38x2 + 69x3	4	2.	0.95	0.05
222	Y = 5 + 16x1 + 30x2 + 67x3	2.	1	0.99	0.03
223	Y = 17 + 36x1 + 60x2 + 67x3	3	1	0.95	0.05
224	Y = 12 + 4x1 + 32x2 + 54x3	4	2.	0.99	0.03
225	Y = 1 + 3x1 + 48x2 + 75x3	2.	2.	0.95	0.05
226	Y = 16 + 29x1 + 49x2 + 88x3	3	1	0.99	0.03
227	Y = 14 + 6x1 + 31x2 + 72x3	4	1	0.95	0.05
228	Y = 11 + 2x1 + 38x2 + 100x3	2.	2.	0.99	0.03
229	Y = 5 + 16x1 + 30x2 + 100x3	3	2.	0.95	0.05
230	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.99	0.01
231	Y = 10 + 4x1 + 40x2 + 89x3	3	1	0.95	0.05
232	Y = 8 + 6x1 + 42x2 + 97x3	2.	2.	0.99	0.01
233	Y = 1 + 41x1 + 13x2 + 53x3	3	2.	0.95	0.05
234	Y = 15 + 34x1 + 41x2 + 102x3	4	1	0.99	0.01
235	Y = 7 + 25x1 + 67x2 + 77x3	2.	1	0.95	0.05
236	Y = 14 + 3x1 + 38x2 + 69x3	3	2.	0.99	0.01
237	Y = 5 + 16x1 + 30x2 + 67x3	4	1	0.95	0.05
238	Y = 17 + 36x1 + 60x2 + 87x3	4	1	0.99	0.01
239	Y = 12 + 4x1 + 32x2 + 54x3	3	2.	0.95	0.05
240	Y = 1 + 3x1 + 48x2 + 75x3	3	2.	0.99	0.01
241	Y = 16 + 29x1 + 49x2 + 88x3	2.	1	0.95	0.05
242	Y = 14 + 6x1 + 31x2 + 72x3	3	1	0.99	0.01
243	Y = 11 + 2x1 + 38x2 + 100x3	4	2.	0.95	0.05
244	Y = 5 + 16x1 + 30x2 + 102x3	2.	1	0.99	0.01
245	Y = 3 + 12x1 + 56x2 + 73x3	3	2.	0.95	0.05
301	Y = 10 + 4x1 + 40x2 + 89x3	2.	2.	0.99	0.01
302	Y = 8 + 6x1 + 42x2 + 97x3	3	1	0.95	0.05
		1 -		-	

202	Tr. 1 11 1 10 0 70 0	1			0.01
303	Y = 1 + 41x1 + 13x2 + 53x3	4	1	0.99	0.01
304	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.95	0.05
305	Y = 7 + 25x1 + 67x2 + 77x3	3	2.	0.99	0.01
306	Y = 14 + 3x1 + 38x2 + 69x3	4	1	0.95	0.05
307	Y = 5 + 16x1 + 30x2 + 67x3	2.	2.	0.99	0.01
308	Y = 17 + 36x1 + 60x2 + 87x3	3	2.	0.95	0.05
309	Y = 12 + 4x1 + 32x2 + 54x3	4	1	0.99	0.01
310	Y = 1 + 3x1 + 48x2 + 75x3	2.	1	0.95	0.05
311	Y = 16 + 29x1 + 49x2 + 88x3	3	2.	0.99	0.01
312	Y = 14 + 6x1 + 31x2 + 72x3	4	2.	0.95	0.05
313	Y = 11 + 2x1 + 38x2 + 100x3	2.	1	0.99	0.01
314	Y = 5 + 16x1 + 30x2 + 102x3	3	1	0.95	0.05
315	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.99	0.01
316	Y = 10 + 4x1 + 40x2 + 89x3	2.	1	0.95	0.05
317	Y = 8 + 6x1 + 42x2 + 97x3	3	2.	0.99	0.01
318	Y = 1 + 41x1 + 13x2 + 53x3	4	2.	0.95	0.05
319	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.99	0.01
320	Y = 7 + 25x1 + 67x2 + 77x3	3	1	0.95	0.05
321	Y = 14 + 3x1 + 38x2 + 69x3	4	2.	0.99	0.01
322	Y = 5 + 16x1 + 30x2 + 67x3	2.	1	0.95	0.05
323	Y = 17 + 36x1 + 60x2 + 67x3	3	1	0.99	0.03
324	Y = 12 + 4x1 + 32x2 + 54x3	4	2.	0.95	0.05
325	Y = 1 + 3x1 + 48x2 + 75x3	2.	2.	0.93	0.03
		3			
326	Y = 16 + 29x1 + 49x2 + 88x3		1	0.95	0.05
327	Y = 14 + 6x1 + 31x2 + 72x3	4	1	0.99	0.01
328	Y = 11 + 2x1 + 38x2 + 100x3	2.	2.	0.95	0.05
329	Y = 5 + 16x1 + 30x2 + 102x3	3	2.	0.99	0.01
330	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.95	0.05
331	Y = 10 + 4x1 + 40x2 + 89x3	3	1	0.99	0.01
332	Y = 8 + 6x1 + 42x2 + 97x3	2.	2.	0.95	0.05
333	Y = 1 + 41x1 + 13x2 + 53x3	3	2.	0.99	0.01
334	Y = 15 + 34x1 + 41x2 + 102x3	4	1	0.95	0.05
335	Y = 7 + 25x1 + 67x2 + 77x3	2.	1	0.99	0.01
336	Y = 14 + 3x1 + 38x2 + 69x3	3	2.	0.95	0.05
337	Y = 5 + 16x1 + 30x2 + 67x3	4	1	0.99	0.01
338	Y = 17 + 36x1 + 60x2 + 87x3	4	1	0.95	0.05
339	Y = 12 + 4x1 + 32x2 + 54x3	3	2.	0.99	0.01
340	Y = 1 + 3x1 + 48x2 + 75x3	3	2.	0.95	0.05
341	Y = 16 + 29x1 + 49x2 + 88x3	2.	1	0.99	0.01
342	Y = 14 + 6x1 + 31x2 + 72x3	3	1	0.95	0.05
343	Y = 11 + 2x1 + 38x2 + 100x3	4	2.	0.99	0.01
344	Y = 5 + 16x1 + 30x2 + 102x3	2.	1	0.95	0.05
345	Y = 3 + 12x1 + 56x2 + 73x3	3	2.	0.99	0.01
401	Y = 10 + 4x1 + 40x2 + 89x3	2.	2.	0.95	0.05
402	Y = 8 + 6x1 + 42x2 + 97x3	3	1	0.99	0.01
403	Y = 1 + 41x1 + 13x2 + 53x3	4	1	0.95	0.05
404	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.99	0.01
405	Y = 7 + 25x1 + 67x2 + 77x3	3	2.	0.95	0.05
406	Y = 14 + 3x1 + 38x2 + 69x3	4	1	0.99	0.01
407	Y = 5 + 16x1 + 30x2 + 67x3	2.	2.	0.95	0.05
408	Y = 17 + 36x1 + 60x2 + 67x3	3	2.	0.99	0.01
409	Y = 12 + 4x1 + 32x2 + 54x3	4	1	0.95	0.05
410	Y = 1 + 3x1 + 48x2 + 75x3	2.	1	0.99	0.03
411	Y = 16 + 29x1 + 49x2 + 88x3	3	2.	0.95	0.05
412	Y = 14 + 6x1 + 31x2 + 72x3	4	2.	0.93	0.03
412	Y = 14 + 6x1 + 31x2 + 72x3 Y = 11 + 2x1 + 38x2 + 100x3	2.	1	0.99	0.05
413	Y = 11 + 2x1 + 38x2 + 100x3 Y = 5 + 16x1 + 30x2 + 102x3	3	1	0.93	0.03
415	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.95	0.05

41.6	X 10 4 1 40 2 00 2	1.0	1.	0.00	0.01
416	Y = 10 + 4x1 + 40x2 + 89x3	2.	1	0.99	0.01
417	Y = 8 + 6x1 + 42x2 + 97x3	3	2.	0.95	0.05
418	Y = 1 + 41x1 + 13x2 + 53x3	4	2.	0.95	0.05
419	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.99	0.01
420	Y = 7 + 25x1 + 67x2 + 77x3	3	1	0.95	0.05
501	Y = 14 + 3x1 + 38x2 + 69x3	4	2.	0.99	0.01
502	Y = 5 + 16x1 + 30x2 + 67x3	2.	1	0.95	0.05
503	Y = 17 + 36x1 + 60x2 + 87x3	3	1	0.99	0.01
504	Y = 12 + 4x1 + 32x2 + 54x3	4	2.	0.95	0.05
505	Y = 1 + 3x1 + 48x2 + 75x3	2.	2.	0.99	0.01
506	Y = 16 + 29x1 + 49x2 + 88x3	3	1	0.95	0.05
507	Y = 14 + 6x1 + 31x2 + 72x3	4	1	0.99	0.01
508	Y = 11 + 2x1 + 38x2 + 100x3	2.	2.	0.95	0.05
509	Y = 5 + 16x1 + 30x2 + 102x3	3	2.	0.99	0.01
510	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.95	0.05
511	Y = 10 + 4x1 + 40x2 + 89x3	3	1	0.99	0.01
512	Y = 8 + 6x1 + 42x2 + 97x3	2.	2.	0.95	0.05
513	Y = 1 + 41x1 + 13x2 + 53x3	3	2.	0.99	0.01
514	Y = 15 + 34x1 + 41x2 + 102x3	4	1	0.95	0.05
515	Y = 7 + 25x1 + 67x2 + 77x3	2.	1	0.93	0.03
516	Y = 14 + 3x1 + 38x2 + 69x3	3	2.	0.95	0.05
517	Y = 14 + 3x1 + 38x2 + 69x3 Y = 5 + 16x1 + 30x2 + 67x3	4	1	0.93	0.03
518	Y = 17 + 36x1 + 60x2 + 87x3	4	1	0.95	0.05
519	Y = 12 + 4x1 + 32x2 + 54x3	3	2.	0.99	0.01
520	Y = 1 + 3x1 + 48x2 + 75x3	3	2.	0.95	0.05
601	Y = 16 + 29x1 + 49x2 + 88x3	2.	1	0.99	0.01
602	Y = 14 + 6x1 + 31x2 + 72x3	3	1	0.95	0.05
603	Y = 11 + 2x1 + 38x2 + 100x3	4	2.	0.99	0.01
604	Y = 5 + 16x1 + 30x2 + 102x3	2.	1	0.95	0.05
605	Y = 3 + 12x1 + 56x2 + 73x3	3	2.	0.99	0.01
606	Y = 10 + 4x1 + 40x2 + 89x3	2.	2.	0.95	0.05
607	Y = 8 + 6x1 + 42x2 + 97x3	3	1	0.99	0.01
608	Y = 1 + 41x1 + 13x2 + 53x3	4	1	0.95	0.05
609	Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.99	0.01
610	Y = 7 + 25x1 + 67x2 + 77x3	3	2.	0.95	0.05
611	Y = 14 + 3x1 + 38x2 + 69x3	4	1	0.99	0.01
612	Y = 5 + 16x1 + 30x2 + 67x3	2.	2.	0.95	0.05
613	Y = 17 + 36x1 + 60x2 + 87x3	3	2.	0.99	0.01
614	Y = 12 + 4x1 + 32x2 + 54x3	4	1	0.95	0.05
615	Y = 1 + 3x1 + 48x2 + 75x3	2.	1	0.99	0.01
616	Y = 16 + 29x1 + 49x2 + 88x3	3	2.	0.95	0.05
617	Y = 14 + 6x1 + 31x2 + 72x3	4	2.	0.99	0.01
618	Y = 11 + 2x1 + 38x2 + 100x3	2.	1	0.95	0.05
619	Y = 5 + 16x1 + 30x2 + 102x3	3	1	0.99	0.01
620	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.95	0.05
701	Y = 10 + 4x1 + 40x2 + 89x3	2.	1	0.99	0.03
702	Y = 8 + 6x1 + 42x2 + 97x3	3	2.	0.95	0.05
702	Y = 1 + 41x1 + 13x2 + 53x3	4	2.	0.93	0.03
	Y = 1 + 41x1 + 13x2 + 33x3 Y = 15 + 34x1 + 41x2 + 102x3	2.	2.	0.99	
704 705		3	1		0.05
	Y = 7 + 25x1 + 67x2 + 77x3 $Y = 14 + 3x1 + 38x2 + 69x3$		2.	0.99	0.01
706		4		0.95	0.05
707	Y = 5 + 16x1 + 30x2 + 67x3	2.	1	0.99	0.01
708	Y = 17 + 36x1 + 60x2 + 87x3	3	1	0.95	0.05
709	Y = 12 + 4x1 + 32x2 + 54x3	4	2.	0.99	0.01
710	Y = 1 + 3x1 + 48x2 + 75x3	2.	2.	0.95	0.05
711	Y = 16 + 29x1 + 49x2 + 88x3	3	1	0.99	0.01
712	Y = 14 + 6x1 + 31x2 + 72x3	4	1	0.95	0.05
713	Y = 11 + 2x1 + 38x2 + 100x3	2.	2.	0.99	0.01

714	Y = 5 + 16x1 + 30x2 + 102x3	3	2.	0.95	0.05
715	Y = 3 + 12x1 + 56x2 + 73x3	4	2.	0.99	0.01
716	Y = 10 + 4x1 + 40x2 + 89x3	3	1	0.95	0.05
717	Y = 8 + 6x1 + 42x2 + 97x3	2.	2.	0.99	0.01
718	Y = 1 + 41x1 + 13x2 + 53x3	3	2.	0.95	0.05
719	Y = 15 + 34x1 + 41x2 + 102x3	4	1	0.99	0.01
720	Y = 7 + 25x1 + 67x2 + 77x3	2.	1	0.95	0.05

Приклад виконання лабораторної роботи: Пункт1.

Початкові дані:

$$y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$$

 $p = 0.99$; $\alpha = 1 - p = 0.01$
 $m_{min} = 4$; $\Delta m = 2$; $N = 8$

Пункт 1

I.
$$m_1 = m_{min} = 4$$

1. Матриця ПФЕ

Обчислюються ідеальні значення функції відгуку Y_i $i = \overline{1,8}$.

					ar
	<i>x</i> ₀	<i>x</i> ₁	x_2	<i>x</i> ₃	у
1	+1	-1	+1	+1	
					26
2	+1	+1	+1	+1	
					108
3	+1	-1	-1	+1	
					0
4	+1	+1	-1	+1	
					82
5	+1	-1	+1	-1	
					-80
6	+1	+1	+1	-1	
					2
7	+1	-1	-1	-1	
					-106
8	+1	+1	-1	-1	
					-24

2. Обчислення значень у і дисперсій

Проводимо m = 2 дослідів і обчислюємо значення функції відгуку залежно від похибки вимірювання функції відгуку бу і додаткових зовнішніх факторів, які представлені у вигляді $(1 + (2 * \frac{random(10000)}{10000} - 1) * \delta y)$. Тобто функція відгуку в іј-му експерименті буде представлена у вигляді

іј-му експерименті буде представлена у вигляді $y_{ij} = y_i * (1 + (2 * \frac{random(10000)}{10000} - 1) * \delta y)$, де y_i - це ідеальні значення функції відгуку, обчислені на першому етапі.

Обчислюємо дисперсії за формулою:

$$D_{i} = \sum_{t=1}^{m} \frac{(y_{m} - y)^{2}}{m - 1} i = \overline{1,8}$$

Де y_m - середнє значення функції відгуку при і-му експерименті. y_i - значення функції відгуку в і-ому досліді. m - кількість дослідів.

Наприклад, обчислимо D_1:

	x_0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	y ₁	<i>y</i> ₂	\mathbf{Y}_3	\mathbf{Y}_4	y_m	D
1	+1	-1	+1	+1	25.43684	24.26476	24.88096	23.87268	24.61381	0.473285
2	+1	+1	+1	+1	115.495199	104.71248	108.87696	111.63096	110.1789	20.6494
3	+1	-1	-1	+1	0.0	0.0	0.0	0.0	0.0	0.0
4	+1	+1	-1	+1	79.54328	73.96072	78.66916	78.99716	77.79258	6.6558
5	+1	-1	+1	-1	-84.7344	-83.6304	-81.39359	-76.3424	-81.5252	13.8698
6	+1	+1	+1	-1	2.18948	1.98108	2.10388	2.11364	2.09702	0.007438
7	+1	-1	-1	-1	-108.98071	-96.86916	-107.7871	-104.174	-104.452	29.7363
8	+1	+1	-1	-1	-23.58768	-22.11408	-21.612	-25.9310	-23.31	3.7529

3. Критерій Кохрена

Обчислюємо експериментальне значення критерію Кохрена, тобто відношення максимальної дисперсії до суми всіх дисперсій: $G_p = 0.3957187379267401$

При m = 4:
$$G_t$$
= 0.5209

Робимо висновок, що дисперсії однорідні, так як $G_p < G_t$

Оскільки критерій Кохрена виконується, то переходимо до другого пункту.

Пункт 2

Оптимальним значенням кількості дослідів ϵ $m_2 = 4$, оскільки при цьому значенні критерій Кохрена виконується. Використовуючи $m_{\text{опт}} = 4$ обчислимо коефіцієнти рівняння регресії в залежності від похибки вимірювань функції відгуку бу.

1.
$$\delta y = 0.1$$

 $\alpha = 0.01$
 $y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$
 $m = 4$

y_1	y_2	\mathbf{Y}_3	\mathbf{Y}_{4}	\mathcal{Y}_m	D
27.54752	26.123	28.407	24.3630	132.73739999999998	3.131232
101.686	106.99	107.44	109.62	142.88988999999998	11.3566
0.0	0.0	0.0	0.0	56.700599999999994	0.0
90.0310	80.4174	88.45668	79.85324	59.55768	28.1214
-82.7295	-82.043	-85.057	-86.307	-45.81951	3.95997
2.0723	1.905	1.83	2.0807	-34.560050000000004	0.0154
-102.311	-106.917	-99.9	-95.951	-134.41809	20.9960

-22.7678	-22.103	-21.9331	-22.2604	-113.49234999999999	0.12974

$$G_p = 0.41531$$

$$G_t = 0.5209$$

Дисперсії однорідні.

Коефіцієнти рівняння регресії:

 $b_1 = 1.5153950000000052$

 $b_2 = 41.192687500000005$

 $b_3 = 11.230805000000002$

 $b_4 = 52.9187675$

Відносні похибки

 $\sigma_1 = 0.3401060449585774$

 $\sigma_2 = 0.0046777113049$

 $\sigma_3 = 0.15753055991$

 $\sigma_4 = 0.00153504141$

2. $\delta y = 0.05$

 $\alpha = 0.01$

$$y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$$

m = 4

y_1	y_2	\mathbf{Y}_3	\mathbf{Y}_{4}	${\cal Y}_m$	D
24.98002	26.0902	25.829	24.901	25.45036	0.35875648986
106.71372000000001	104.88	111.4041 6	106.7871 6	107.4470400000	7.73522809
0.0	0.0	0.0	0.0	0.0	0.0
78.4625	79.51	85.641	79.445	80.7663	10.7949608534
-83.6488	-81.2272	-80.94	-78.6464	-81.11	4.18578026666
2.0058	1.94508	1.96072	2.04126	1.98821499999	0.001913202
-109.54781	-106.867	-102.72	-106.994	-106.5334	7.97247
-23.25528	-23.68392	-22.8268	-23.0433	-23.2023	0.1336555

 $G_p = 0.34618346970674574$

 $G_t = 0.5209$

Дисперсії однорідні.

Коефіцієнти рівняння регресії:

 $b_1 = 0.6000649999999972$

 $b_2 = 41.149736250000004$

 $b_3 = 12.842438750000001$

 $b_4 = 52.8158624999999994$

Відносні похибки

 $\sigma_1 = 0.6664861306691853$

 $\sigma_2 = 0.003638814331404211$

 $\sigma_3 = 0.012268795130519797$

 $\sigma_{A} = 0.003486405244257928$

3.
$$\delta y = 0.02$$
 $\alpha = 0.01$

$$y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$$

m = 4

<i>y</i> ₁	y_2	\mathbf{Y}_3	$\mathbf{Y_4}$	\mathcal{Y}_m	D
26.46696	26.429520	26.33488	25.48468	26.17900999	0.21735335613
106.669	106.153632	107.73475	108.12484	107.17056	0.8382250
0.0	0.0	0.0	0.0	0.0	0.0
81.83042	80.8346	80.44364	81.355808	81.116121999	0.366384798
-78.5808	-78.7852	-79.9558	-78.6883	-79.00256	0.410860543
2.0301	2.01497	1.9679	1.99190	-107.344186	07.3983666669E - 4
-107.2783	-107.8227	-107.656	-106.6186	-123.120786000000	0.2858936229706744
-24.203424	-23.76182	-23.88412	-23.71699	-23.891591	0.0482066004480001

 $G_v = 0.38669513686497786$

 $G_{\star} = 0.5209$

Дисперсії однорідні.

Коефіцієнти рівняння регресії:

 $b_1 = 0.7785737499999987$

 $b_2 = 40.82050775$

 $b_3 = 13.308487750000001$

 $b_4 = 52.83784925$

Відносні похибки

 $\sigma_1 = 0.284399840092222$

 $\sigma_2 = 0.004397109685633508$

 $\sigma_3 = 0.023179774877126903$

 $\sigma_{A} = 0.0030688370609634934$

4.
$$\delta y = 0.01$$

 $\alpha = 0.05$
 $y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$
 $m = 4$

$\mathbf{Y_1}$	\mathbf{Y}_2	Y ₃	$\mathbf{Y_4}$	\mathcal{Y}_m	D
25.867088	25.795171	25.991836	25.8990	25.888278	0.006652435781333461
108.8717760	107.14	107.4358	107.178	107.658288	0.6711942113280085
0.0	0.0	0.0	0.0	0.0	0.0
81.36728	81.889	81.457652	81.3525279	81.516815	0.06398688173200076
-79.414239	-80.1432	-79.39152	80.695680	-79.91116	0.3954231360000068
1.989852	1.99590	1.991144	1.984936	1.99046000	2.034426666666627E-5
-105.2457	-105.5367	-105.580	-106.607	-105.7426	0.3542999939733317
-23.82024	-23.9486	-24.06676	-23.80089	-23.909135	0.015342269952000262

 $G_{v} = 0.44540820688883387$

 $G_c = 0.5209$

Дисперсії однорідні.

Коефіцієнти рівняння регресії:

 $b_1 = 0.9363641250000017$

 $b_2 = 40.877742625$

 $b_3 = 12.970102375$

 $b_4 = 52.829481125$

Відносні похибки

 $\sigma_1 = 0.06796060773900135$

 $\sigma_2 = 0.00299080543956521$

 $\sigma_3 = 0.002305118659481688$

 $\sigma_4 = 0.003227721934208171$

5.
$$\delta y = 0.0010$$

 $\alpha = 0.05$
 $y = 1 + 41 * x_1 + 13 * x_2 + 53 * x_3$
 $m = 4$

<i>y</i> ₁	<i>y</i> ₂	\mathbf{Y}_3	\mathbf{Y}_4	\mathcal{Y}_m	D
25.976064 4	26.02268	26.01311	26.001996 8	26.00346	4.0515608432003386E -4
107.9453	107.9620	107.9428	107.9706	107.955	1.77413600108294E-4

		8			
0.0	0.0	0.0	0.0	0.0	0.0
82.027224	81.94679	82.07742	81.94271	81.998540	0.00427972281396096
02.02/224	8			4	0.00427972281390090
-79.94374	-80.0262	-80.0548	-80.0094	-80.00857	0.002218121386
2.0010084	2.001317	2.000371	2.00001	2.0006784	3.49778500006624E-7
	_	-	-106.021	_	
-105.9168	106.0005	105.9504		105.97224	0.00226553072947033
	7			103.97224	
-24.0189	-24.0107	_	-23.9803	-24.00505	2.86232146596656E-4
-24.0103	-24.0107	24.01012		-24.00303	2.002321403900301-4

 $G_v = 0.4442990738964867$

 $G_c = 0.5209$

Дисперсії однорідні.

Коефіцієнти рівняння регресії:

 $b_1 = 0.996482187499999$

 $b_2 = 40.99086576250001 \\$

 $b_3 = 12.991217012500002$

 $b_4 = 52.992826512499995$

Відносні похибки

 $\sigma_{\!\scriptscriptstyle 1} = 0.003530231191414$

 $\sigma_2 = 2.228359252745738E - 4$

 $\sigma_3 = 6.760711865214316E - 4$

 $\sigma_4 = 1.3536714253791678E - 4$

	δy = 10%	$\delta y = 5\%$	δy = 2%	$\delta y = 1\%$	$\delta y = 0.1\%$
b ₁	1.515395000000005	0.6000649999999972	0.778573749999998	0.936364125000001	0.996482187499999
b_2	41.19268750000000	41.149736250000004	40.82050775	40.877742625	40.99086576250001
b_2	11.230805000000000	12.842438750000000	13.308487750000001	12.970102375	12.991217012500002
<i>b</i> ₄	52.9187675	52.815862499999999	52.83784925	52.829481125	52.99282651249999

	$\delta y = 10\%$	$\delta y = 5\%$	$\delta y = 2\%$	$\delta y = 1\%$	$\delta y = 0.1\%$
σ_1	0.340106044958577	0.666486130669185	0.2843 99840	0.067960607739001	0.003530231191414
σ_2	0.0046777113049	0.00363881434211	0.00439710968563	0.002990805439565	2.2835952745738E - 4

σ_{2}	0.15753055991	0.012268795130519	0.023179774877	0.002305118659481	6.7607118214316E - 4
σ_4	0.00153504141	0.003486405244257	0.003068837060963	0.003227721934208	1.3536713791678E - 4