Analysis

January 9, 2019

```
In [2]: library(Homo.sapiens)
        library(taRifx) ## Removes factors
        library(scales)
        library(SchramekLOH)
        library(gplots)
        library(IdeoViz)
        library (reshape)
In [917]: detach("package:SchramekLOH", unload=TRUE)
          require(SchramekLOH)
Loading required package: SchramekLOH
Attaching package: 'SchramekLOH'
The following objects are masked _by_ '.GlobalEnv':
    compTwoGenes, df.ex, doTheChi, generateIgvAttributes, getSegIQR,
    mapIds, plotIdeoGene, seg, snp6
The following object is masked from 'package:OrganismDbi':
    mapIds
The following object is masked from 'package: Annotation Dbi':
    mapIds
```

1 Setup

Loading in all the precomputed data files

```
data("geneExpr") # df.ex
data("mapping") # mapping
data("snp6") # snp6
data("Affyseg") # affyseg
data("TCGAseg") # seg
```

Setting up some of the paths

Determine whether to use the TCGA Segs or the Affymetrix SNP6 Segs (same that the bird-seeds originate from)

```
In [5]: #### Read in Birdseed + Segs ####
     use.affy <- FALSE
     if(use.affy) seg <- affyseg</pre>
```

In [6]: head(seq)

ID	chrom	loc.start	loc.end	num.mark	seg.mean
TCGA-CN-6010-01	1	3218610	70988682	38435	-0.0543
TCGA-CN-6010-01	1	70990192	71001138	11	0.1953
TCGA-CN-6010-01	1	71002192	104005432	19689	-0.2485
TCGA-CN-6010-01	1	104009909	104613056	160	-0.0488
TCGA-CN-6010-01	1	104613622	149881398	9504	-0.2554
TCGA-CN-6010-01	1	149882014	247813706	61340	0.1959

2 Preprocess

2.1 Ordering all the data structures

```
In [7]: #### Chromosome order datasets ####
    seg$chrom <- gsub("(chr).*\\1", "\\1", paste0("chr", seg$chrom))
    seg.ids <- split(seg, f=seg$ID)
    seg.chr <- lapply(seg.ids, function(seg.i){</pre>
```

```
seg.tmp <- split(seg.i, f=seg.i$chrom)</pre>
           chrom.ord <- match(paste0("chr", c(1:22)), names(seg.tmp))</pre>
           seq.tmp[chrom.ord]
         })
In [8]: head(seg.chr[['BALMS_p_TCGAb54and67_SNP_N_GenomeWideSNP_6_A03_730402']][['c
NULL
In [9]: #### Map Probesets to Genomic Loci ####
        if (exists("ref.probe.ord")) {
             snp6 <- snp6[match(ref.probe.ord, snp6$V4),]</pre>
             snp6.ord <- snp6[,c(4, 1:3)]
             colnames (snp6.ord) <- c("probeset_id", "chrom", "start", "end")</pre>
             snp6.chr <- split(snp6.ord, f=snp6.ord$chrom)</pre>
             bs.chr <- split(as.data.frame(df.bs), snp6.ord$chrom)</pre>
             goi.df <- getGeneLoci(goi)</pre>
             goi.chr <- split(goi.df, f=goi.df$chr)</pre>
             chrom.ord <- match(paste0("chr", c(1:22, "X", "Y")), names(snp6.chr))</pre>
             snp6.chr <- snp6.chr[chrom.ord]</pre>
             bs.chr <- bs.chr[chrom.ord]</pre>
         }
```

2.2 Formatting the Gene expression data

```
In [10]: #### Expression analysis
          if(exists("df.ex")){
              ## Generate z-score per gene
              z <- function(x) { (x - mean(x, na.rm=TRUE)) / sd(x, na.rm=TRUE) }</pre>
              z.ex <- data.frame(t(apply(df.ex, 1, z)), stringsAsFactors=FALSE)</pre>
              ## Map Genes to Genomic Loci ##
              ord <- match (rownames (df.ex), gaf$V2)
              gaf.ord <- gaf[ord, c("V2", "V17")]</pre>
              gaf.ord$chr <- gsub(":.*", "", gaf.ord$V17)</pre>
              gaf.ord$start <- as.numeric(gsub("^.*:", "", gsub("-.*", "", gaf.ord$</pre>
              gaf.ord$end <- as.numeric(gsub(":.*", "", gsub("^.*?-", "", gaf.ord$VI
              ## Reorder all the matrices into genomic loci numerical order
              chr.ord <- paste0("chr", c(1:22, "X", "Y"))</pre>
              gaf.ord <- gaf.ord[order(gaf.ord$start),]</pre>
              gaf.ord <- gaf.ord[order(match(gaf.ord$chr, chr.ord)), ]</pre>
              ord <- match(gaf.ord$V2, rownames(df.ex))</pre>
              df.ex <- df.ex[ord,]</pre>
              z.ex <- z.ex[ord,]</pre>
```

```
## Order the list by chromosomes
gaf.chr <- split(gaf.ord, f=gaf.ord$chr)
z.chr <- split(z.ex, f=gaf.ord$chr)

chrom.ord <- match(paste0("chr", c(1:22, "X", "Y")), names(gaf.chr))
gaf.chr <- gaf.chr[chrom.ord]
z.chr <- z.chr[chrom.ord]</pre>
```

3 Analysis

}

3.1 Visualization and generate StdRes

Setting up the colours that will be used for all visualizations

Visualization for the colour bars and ranges used

```
In [52]: #pdf(file.path(plotsdir, "legend.pdf"), width=6)
    null <- split.screen(c(1,3))
    screen(1); color.bar(p, min=0, max=-10, title="AB-Std.Res")
    screen(2); color.bar(r, min=0, max=1, title="SNP density")
    screen(3); color.bar(cn, min=-5, max=5, title="CN-LogR")
    close.screen(all.screens=TRUE)
    #dev.off()</pre>
```


Summarize the standardized residuals data into data frames

```
## Reduce the gene to a single segment
sample.stdres.bkup <- sample.stdres</pre>
sample.stdres <- lapply(sample.stdres, function(i) {</pre>
  single.j <- sapply(split(i[['genes']], f=i[['genes']]$gene), function()</pre>
    uniq.j <- apply(j, 2, unique)</pre>
    if (any (sapply (uniq.j[c('seg.start', 'seg.end', 'seg.mean')], length)
      uniq.j[['seg.start']] <- min(uniq.j[['seg.start']])</pre>
      uniq.j[['seg.end']] <- max(uniq.j[['seg.end']])</pre>
      uniq.j[['seg.mean']] <- mean(uniq.j[['seg.mean']])</pre>
    }
    sapply(uniq.j, function(x) x)
  remove.factors(data.frame(t(single.j)))
})
names (sample.stdres) <- colnames (bs.chr[[1]])</pre>
```

In [16]: head(all.stdres[['FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_D08_777884']

	chrom	start	end	stdres
[0,1e+06]	chr1	0	1000797	-2.5980762
(1e+06,2e+06]	chr1	1000797	2001595	-0.9878292
(2e+06,3e+06]	chr1	2001595	3002393	-0.3333333

In [17]: head(sample.stdres[['FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_D08_77788

		gene	chr	gene.start	gene.end	bin.start	bin.end	seg.start	seg.end	seg.n
A	DAM10	ADAM10	chr15	58888510	59042177	58814431	59621572	54814864	74252408	0.086
	AJUBA	AJUBA	chr14	23440410	23451848	22652964	23466738	20501368	35724239	-0.26
	JAG1	JAG1	chr20	10618332	10654694	10038090	11035720	455764	25990441	-0.28

In [15]: #save(all.stdres, sample.stdres, sample.stdres.bkup, file=file.path(tmpdi load(file.path(tmpdir, paste0("tmp", use.affy, ".RData")))

3.2 Generate 'Attributes' files for use in IGV

Summarize all the Standardized Residuals into LOH/Het value annotations for IGV visualization

```
In [18]: stdres.thresh <- -5
         attributes <- lapply(seq_along(sample.stdres), generateIgvAttributes,
                               sample.stdres=sample.stdres, mapping.cov=mapping.cov,
                               stdres.thresh=-5)
         attributes <- do.call("rbind", attributes)</pre>
         head(attributes, 5)
```

	TRACK_ID	ADAM10	AJUBA	JAG1	JAG2	NOTCH1	NOTCH2	NOTCH3	N
loh.val	TCGA-CN-6011-01	Het	Het	Het	LOH	Het	LOH	Het	H
loh.val1	TCGA-CN-6012-01	Het	LOH	LOH	LOH	LOH	LOH	Het	H
loh.val2	TCGA-CN-6016-01	Het	Het	LOH	LOH	LOH	Het	LOH	L
loh.val3	TCGA-CN-6018-01	Het	Het	LOH	LOH	LOH	Het	Het	L
loh.val4	TCGA-CN-6019-01	LOH	LOH	LOH	LOH	Het	Het	LOH	L
TA7 1	.1 1								

Write and save the data structures

3.3 Generate contigency tables and test for significance

Initialize the contigency table to be used for quick reference later

Available mutations to compare for LOH, where "ADAM10" actually means "ADAM10 LOH"

```
In [53]: print(names(ctbl))
```

```
[1] "NOTCH1_CNA"
                      "NOTCH1_MUT"
                                      "NOTCH1_FUSION" "NOTCH2_CNA"
[5] "NOTCH2_MUT"
                      "NOTCH2_FUSION" "NOTCH3_CNA"
                                                       "NOTCH3_MUT"
[9] "NOTCH3_FUSION" "NOTCH4_CNA"
                                      "NOTCH4_MUT"
                                                       "NOTCH4_FUSION"
[13] "JAG1_CNA"
                                                       "JAG2_CNA"
                      "JAG1_MUT"
                                      "JAG1_FUSION"
[17] "JAG2_MUT"
                     "JAG2_FUSION"
                                      "DLL1_CNA"
                                                       "DLL1_MUT"
                                                       "ADAM10_FUSION"
[21] "DLL1_FUSION"
                     "ADAM10_CNA"
                                      "ADAM10_MUT"
[25] "AJUBA_CNA"
                     "AJUBA_MUT"
                                      "AJUBA_FUSION"
                                                       "ADAM10"
[29] "AJUBA"
                     "JAG1"
                                      "JAG2"
                                                       "NOTCH1"
[33] "NOTCH2"
                     "NOTCH3"
                                      "NOTCH4"
```

Run the chi-squared analysis on the samples that are of interest

\$p
[1] 0.8926257

```
$Std.Res
  j
      HETLOSS no_alteration
 Het 0.2426701
                -0.2426701
 LOH -0.2426701
                 0.2426701
$Contigency
   j
i HOMDEL no_alteration
 Het 4
 LOH 7
                   250
$p
[1] 0.5777054
$Std.Res
       HOMDEL no_alteration
 Het -0.8616207 0.8616207
 LOH 0.8616207 -0.8616207
$Contigency
    HETLOSS HOMDEL no_alteration
 Het
        24 1
                         126
 LOH
        51
               0
                           304
$p
[1] 0.7377338
$St.d.Res
      HETLOSS no_alteration
 Het 0.4717808 -0.4717808
 LOH -0.4717808 0.4717808
```

3.4 StdRes plots

```
xlab = "Genomic Loci (Mb)")
#dev.off()
```

Attaching package: 'reshape'

The following objects are masked from 'package:S4Vectors':

expand, rename

3.5 Ideogram of HetLoss over Gene of Interest

Set up the Ideogram hg19 reference

```
In [27]: ideo_hg19 <- getIdeo("hg19")

Visualize each gene of interest in their ideogram

In [30]: for(gene in rownames(sample.stdres[[1]])) {
            pdf(file.path(outdir, paste0("ideo_", gene, ".pdf")), height=20)
            plotIdeoGene(ideo_hg19, sample.stdres, gene, thresh=-0.1)
            dev.off()
      }
</pre>
```

In [28]: plotIdeoGene(ideo_hg19, sample.stdres, 'ADAM10', thresh=-0.1)

3.6 Expression of AJUBA Mutants

Grab gene expression for all samples and assign them to their proper data structures. Then, separate the samples based on their mutations

```
In [37]: .mutBoxplot <- function(ex.by.mut) {
            ex.id <- colnames(ex.by.mut[[1]])[3]</pre>
```

```
boxplot(lapply(ex.by.mut, function(x) x[,ex.id]), outline=FALSE)
              x <- sapply(seq_along(ex.by.mut), function(x){</pre>
                  ex <- ex.by.mut[[x]]</pre>
                  points (x=rep(x, nrow(ex)), y=ex[, ex.id],
                         pch=16, col=alpha("black", rescale(as.numeric(ex[,4]), to=c
                         cex=rescale (as.numeric (ex[,4]), to=c(1,2))
              })
              NULL
         }
In [56]: ex.by.mut <- parseIdsByMutation('AJUBA', getGeneExp('JUB'),</pre>
                                           seg.ids=seg.ids, lo.q=0.1, hi.q=0.9)
         null <- .mutBoxplot(ex.by.mut)</pre>
         lapply(ex.by.mut, head, 3)
Warning message in min(x):
"no non-missing arguments to min; returning Inf''Warning message in max(x):
"no non-missing arguments to max; returning -Inf"Warning message in min(x):
"no non-missing arguments to min; returning Inf"Warning message in max(x):
"no non-missing arguments to max; returning -Inf"
            TRACK_ID | Alt
                                    JUB.84962 IQR.90.
      TCGA-BA-4074-01
                       no_alteration -1.0212289 0.4705
$'NA'
      TCGA-BA-4076-01
                       no_alteration -0.1099163 1.2144
      TCGA-BA-4077-01
                       no_alteration -0.3082486 1.0026
             TRACK ID | AJUBA MUT
                                       JUB.84962
                                                 IQR.90.
       TCGA-BA-5556-01
                       R428Q I304Dfs*2
                                       -0.6325205
                                                 0.1064
$mut
                        S230Ffs*76
      TCGA-BB-A5HY-01
                                       NA
                                                  0.68
      TCGA-BB-A6UO-01 | V264Lfs*2
                                       NA
                                                 0.71
           TRACK_ID | AJUBA_CNA JUB.84962 IQR.90.
     TCGA-4P-AA8I-01
                      HETLOSS
                                   NA
                                             0.2877
$cna
     TCGA-BA-4075-01
                      HETLOSS
                                   -0.2885436
                                             0.6765
     TCGA-BA-4078-01 | HETLOSS
                                   -0.6562828 0.7544
$fusion TRACK_ID | AJUBA_FUSION JUB.84962 IQR.90.
```


	TRACK_ID	AJUBA_MUT	JUB.84962	IQR.90.
13	TCGA-CV-6003-01	T337_C341del	2.65706121	0.7254
11	TCGA-CR-6493-01	C406S	0.72805934	0.6963
25	TCGA-CX-7082-01	H360Y	0.69803062	0.6209
6	TCGA-CN-6997-01	R50Efs*192	0.35677236	0.9341
15	TCGA-CV-7099-01	H423Y	-0.06802904	0.068
10	TCGA-CR-6491-01	Q103*	-0.37074236	0.7302
18	TCGA-CV-7424-01	D108Rfs*16	-0.38532999	0.6718
1	TCGA-BA-5556-01	R428Q I304Dfs*2	-0.63252046	0.1064
14	TCGA-CV-6950-01	Q353*	-0.73796721	0.5662
4	TCGA-CN-4738-01	A351Qfs*39	-0.82308846	0.1903
30	TCGA-HD-7753-01	R324Gfs*84	-0.95843514	0.5462
29	TCGA-DQ-7588-01	R428*	-1.08991576	0.6774
7	TCGA-CN-6998-01	N433I	-1.12249891	0.2421
5	TCGA-CN-6018-01	C270Wfs*10	-1.16581195	0.2961
17	TCGA-CV-7418-01	E279*	-1.28425163	1.0081
12	TCGA-CV-5435-01	L280Afs*26	-1.35174099	0.8639
16	TCGA-CV-7177-01	E305Sfs*105	-1.40261590	0.8049
19	TCGA-CV-7432-01	R293*	-1.40352314	0.5513
2	TCGA-BB-A5HY-01	S230Ffs*76	NA	0.68
3	TCGA-BB-A6UO-01	V264Lfs*2	NA	0.71
8	TCGA-CN-A63V-01	C426Y	NA	0.2171
9	TCGA-CQ-5327-01	Q76*	NA	0.0558
20	TCGA-CV-A45Q-01	Q103* S302Wfs*108	NA	0.2981
21	TCGA-CV-A460-01	R293Lfs*13	NA	0.3748
22	TCGA-CV-A463-01	R371*	NA	0.3251
23	TCGA-CV-A6JM-01	E253Gfs*53	NA	0.6672
24	TCGA-CV-A6K2-01	G370R T361Sfs*48	NA	0.0437
26	TCGA-D6-A6EN-01	I339Nfs*50	NA	0.043
27	TCGA-D6-A6EP-01	X414_splice	NA	1.0883
28	TCGA-D6-A74Q-01	Q362*	NA	0.6643
31	TCGA-P3-A5QF-01	E507Kfs*54	NA	0.8036
32	TCGA-UF-A71D-01	X414_splice	NA	0.6532
33	TCGA-UF-A7JF-01	R77Pfs*164	NA	0.6197

3.7 Linear regression of HETLOSS Regions

Combines the StdRes of surrounding 1Mb bins to look for stable LOH regions rather than just artifactual regions that only span 1Mb

Identifying the HETLOSS samples

```
In [42]: hetloss.idx <- which (mut.attr[, mut] == 'HETLOSS')</pre>
         homloss.idx <- which (mut.attr[, mut] == 'HOMDEL')</pre>
         mut.ids <- mut.attr[c(hetloss.idx, homloss.idx), 'TRACK_ID', drop=TRUE]</pre>
         mapped.ids <- mapIds(mut.ids, mapping.cov, in.type='tcga', out.type='affy</pre>
  Setting a boolean tag for those samples annotated as "HETLOSS"
In [43]: range.stdres$HETLOSS <- FALSE</pre>
         range.stdres[which(rownames(range.stdres) %in% mapped.ids),]$HETLOSS <- THETLOSS</pre>
In [44]: head(range.stdres)
                                                              mean
                                                                        sd
                                                                                 seg
   FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_D08_777884
                                                              -1.9134714
                                                                        3.643712
                                                                                 -0.2648
    FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_E01_777860
                                                              -4.0880991
                                                                        3.115277
                                                                                 0.7224
    FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_E08_777904
                                                                                 0.0006
                                                              -1.8242195 1.922516
    FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_C04_777934
                                                              -2.5143447
                                                                        2.839284
                                                                                 0.0766
    FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_F02_777880
                                                              -1.4897747
                                                                                 -0.0713
                                                                        2.670505
   FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_D03_777770
                                                             -0.8075069 1.608582
                                                                                 -0.2031
In [45]: with (range.stdres, plot (mean~seg, cex=sd, x = c(-1, 0.5),
                                    col=alpha('grey', 1-rescale(sd, to=c(0,1))),
                                    pch=16, ylab="StdRes", xlab="Seq"))
         axis(side=1, at = seq(-5, 4, by=0.1),
               labels = rep("", length(seq(-5, 4, by=0.1))), tick = TRUE)
         with(range.stdres[which(range.stdres$HETLOSS),],
               points(mean~seg, cex=sd,
                    col=alpha('red', 1-rescale(sd, to=c(0,1))),
                    pch=16))
```

H

ΤI

FA

FA

FA

TI

TI

For interest, there was one AJUBA case that had Homozygous Deletion, and one AJUBA case where the logRRatio was EXTREMELY low. I wanted to see the details of these cases

```
3.7.1 ——
```

Sample with a -3.0 segment

- [1] "Low LRR case"
- [1] "TCGA-CN-6988-01, MIRES_p_TCGA_151_SNP_N_GenomeWideSNP_6_G03_831548"

	TRACK_ID	_	NOTCH1_MUT	NOTCH1_F	JSION	NOTCH2_	CNA NO
323	TCGA-CN-6988-01	no_alteration	no_alteration	no_alteration	ı	no_alterati	ion no
				mean	sd	seg	HETLOS
MIR	ES_p_TCGA_151_SN	P_N_GenomeWide	SNP_6_G03_83154	8 -10.39918	2.1536	58 -2.944	FALSE

3.8 Comparison of Seg/LOH between two genes

Create a colour schema for the unique ids (UID)

```
In [48]: col.df <- data.frame("UID"=c("HOMDEL_HETLOSS", "HETLOSS_HOMDEL", "HETLOSS_NA", "HOMDEL_NA", "HOMDEL_SNV_NA", "HETLOSS_NA", "NA_HOMDEL", "NA_HOMDEL-SNV", "NA_HETLOSS", "Col"=c("#00441b", "#00441b", "#00441b", "#238b45", "#350f15", "#a50f15", "#a50f15", "#a50f15", "#a50f15", "#6baed6", "God "#08519c", "#08519c", "#08519c", "#6baed6", "God "#6baed6", "#6
```


UID	TCGA_ID	TRACK_ID
HETLOSS_HETLOSS	TCGA-CQ-5332-01	FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_B0
HETLOSS_HETLOSS	TCGA-CV-5966-01	FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_A1
HETLOSS_HETLOSS	TCGA-H7-A76A-01	UNDID_p_TCGA_353_354_355_37_NSP_GenomeWideSNP_
HETLOSS_HETLOSS	TCGA-CV-7435-01	MAULS_p_TCGA_189_190_SNP_N_GenomeWideSNP_6_G
HETLOSS_HETLOSS	TCGA-MT-A7BN-01	UNDID_p_TCGA_353_354_355_37_NSP_GenomeWideSNP_
HETLOSS_HETLOSS	TCGA-D6-6826-01	MIRES_p_TCGA_151_SNP_N_GenomeWideSNP_6_D04_83
HETLOSS_HETLOSS	TCGA-UF-A7JA-01	CUTCH_p_TCGAb_355_37_52_NSP_GenomeWideSNP_6_0
HETLOSS_HETLOSS	TCGA-CQ-6221-01	CLUBS_p_TCGA_186_188_SNP_N_GenomeWideSNP_6_B0
HETLOSS_HETLOSS	TCGA-UF-A719-01	CUTCH_p_TCGAb_355_37_52_NSP_GenomeWideSNP_6_0
HETLOSS_HETLOSS	TCGA-CV-6940-01	MIRES_p_TCGA_151_SNP_N_GenomeWideSNP_6_F12_83
HETLOSS_HETLOSS	TCGA-CN-4725-01	BALMS_p_TCGAb54and67_SNP_N_GenomeWideSNP_6_G
HETLOSS_HETLOSS	TCGA-BA-5152-01	GROVE_p_TCGA_b145_153_SNP_N_GenomeWideSNP_6_0
HETLOSS_HETLOSS	TCGA-CQ-7072-01	RICES_p_TCGA_Batch_310_311_NSP_GenomeWideSNP_6_

	UID	TCGA_ID	TRACK_ID
2	HETLOSS_HOMDEL-SNV	TCGA-QK-A8ZA-01	MESNE_p_TCGAb_401_02_03_04_05_N_Genom
10	HETLOSS_NA	TCGA-CV-6441-01	FISTS_p_TCGA_b107_121_SNP_N_GenomeWid
28	HETLOSS_NA	TCGA-KU-A66T-01	RICES_p_TCGA_Batch_310_311_NSP_GenomeV
33	HETLOSS_NA	TCGA-CV-7104-01	PEAKY_p_TCGA_b164_SNP_N_GenomeWideSI
50	HETLOSS_NA	TCGA-P3-A6T3-01	UNDID_p_TCGA_353_354_355_37_NSP_Genom
60	HETLOSS_NA	TCGA-CV-7435-01	MAULS_p_TCGA_189_190_SNP_N_GenomeWid
85	HETLOSS_NA	TCGA-UF-A719-01	CUTCH_p_TCGAb_355_37_52_NSP_GenomeWi
105	HETLOSS_SNV	TCGA-DQ-5631-01	GROVE_p_TCGA_b145_153_SNP_N_GenomeW
114	NA_HOMDEL	TCGA-BB-4224-01	BALMS_p_TCGAb54and67_SNP_N_GenomeWi
115	NA_HOMDEL	TCGA-P3-A5QA-01	LEGIT_p_TCGA_300_301_302_N_GenomeWides

	UID	TCGA_ID	TRACK_ID
3	HETLOSS_NA	TCGA-CR-5247-01	PEAKY_p_TCGA_b164_SNP_N_GenomeWideSNP_6_B09_863
4	HETLOSS_NA	TCGA-F7-7848-01	MAULS_p_TCGA_189_190_SNP_N_GenomeWideSNP_6_G10
7	HETLOSS_NA	TCGA-CN-4735-01	BALMS_p_TCGAb54and67_SNP_N_GenomeWideSNP_6_A03
17	HETLOSS_NA	TCGA-CV-7435-01	MAULS_p_TCGA_189_190_SNP_N_GenomeWideSNP_6_G12
18	HETLOSS_NA	TCGA-CN-A63U-01	RICES_p_TCGA_Batch_310_311_NSP_GenomeWideSNP_6_C
31	HETLOSS_NA	TCGA-UF-A719-01	CUTCH_p_TCGAb_355_37_52_NSP_GenomeWideSNP_6_G0
50	HETLOSS_NA	TCGA-HD-7229-01	PEAKY_p_TCGA_b164_SNP_N_GenomeWideSNP_6_B12_863
77	NA_HOMDEL	TCGA-BB-4224-01	BALMS_p_TCGAb54and67_SNP_N_GenomeWideSNP_6_A01
78	NA_HOMDEL	TCGA-CV-5434-01	FISTS_p_TCGA_b107_121_SNP_N_GenomeWideSNP_6_F03_
81	NA_HOMDEL	TCGA-P3-A5QA-01	LEGIT_p_TCGA_300_301_302_N_GenomeWideSNP_6_F06_13

In []: