The Dot Product

January 5, 2007

The Dot Product

• If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

• It is also called the **scalar product** or **inner product**.

Examples

• $\langle 2, 1 \rangle \cdot \langle -1, 3 \rangle$.

Examples

- $\langle 2, 1 \rangle \cdot \langle -1, 3 \rangle$.
- $\langle 3, -2, 1 \rangle \cdot \langle 0, 1, 1 \rangle$.

Properties of the Dot Product

• If a, b, and c are vectors in V_3 and c is a scalar, then

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

5.
$$0 \cdot a = 0$$
.

The angle between two vectors

ullet If θ is the angle between the vectors a and b, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

The angle between two vectors

• If θ is the angle between the vectors a and b, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

• If θ is the angle between the nonzero vectors a and b, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Orthogonal vectors

• a and b are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Lecture 15

Direction Angles

- The **direction angles** of a nonzero vector a are the angles α , β , and γ that a makes with the positive x-,y-, and z-axes.
- The cosines of these direction angles are called the **direction cosines** of the the vector a:

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}, \cos \beta = \frac{a_2}{|\mathbf{a}|}, \cos \gamma = \frac{a_3}{|\mathbf{a}|}.$$

Projections

• Scalar projection of b onto a:

$$comp_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

Projections

• Scalar projection of b onto a:

$$comp_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

• Vector projection of b onto a

$$\operatorname{proj}_a b = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Work done by a constant force

• The work done by a constant force F is

 $\mathbf{F} \cdot \mathbf{D}$,

where D is the displacement vector.

Work done by a constant force

• The work done by a constant force F is

$$\mathbf{F} \cdot \mathbf{D}$$
,

where **D** is the displacement vector.

• Example: A constant force $\mathbf{F} = -2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ moves an object along a straight line from the point (1,0,0) to (-3,2,3). Find the work done.

Lecture 15