ENTRAÎNEMENT

Exercice 14. Soient $n \ge 2$ et x > 0. Simplifier au maximum les expressions suivantes :

(i)
$$5^{2^{2n}} \left(\frac{1}{5^{2^{n}-1}}\right)^{2^{n}+1}$$

(iv)
$$\prod_{k=1}^{n} \left(\sqrt[n]{x}^k \right)^k$$

$$(vii) \ \frac{\sqrt[n]{x^{n-3}}}{x^{-\frac{3}{n}}}$$

$$(ii)$$
 $\sqrt{1+x^2}$

$$(v) x^{\frac{n-1}{n^2-1}} (2x)^{-\frac{1}{n+1}}$$

(viii)
$$\frac{2^n + 2^{n+1}}{2^{-(n+1)} + 2^{-n}}$$

$$(iii) \ \frac{\sqrt{x^3 + x^5}}{x}$$

$$(vi) \left(\sqrt{x^7}\right)^{\frac{6}{7}} \sqrt[7]{x^{14}}$$

$$(ix) \ x^{-\frac{n^2}{2}} \sqrt{x^n} \prod_{i=1}^n x^i$$

Exercice 15. Déterminer, si cela est possible :

- (i) Deux réels dont la somme vaut 30 et le produit 209.
- (ii) Deux réels dont la somme des carrés vaut 30 et le produit des carrés vaut 209.

Exercice 16. Soient $a, b, c \in \mathbb{R}$ avec $a \neq 0$. Pour tout $x \in \mathbb{R}$, on note $f(x) = ax^2 + bx + c$.

- 1. Montrer que si a > 0, alors f admet un minimum atteint en $-\frac{b}{2a}$ et n'admet pas de maximum. Indication: on pour mettre l'expression $f(x) = ax^2 + bx + c$ sous forme canonique.
- 2. Montrer que si a < 0, alors f atteint un maximum atteint en $-\frac{b}{2a}$ et n'admet pas de minimum.

 \blacksquare Exercice 17. Déterminer l'ensemble des réels x vérifiant chacune des conditions suivantes :

(i) L'équation $xy^2 + (2-x)y + 1 = 0$ d'inconnue y admet deux solutions réelles distinctes.

(ii)
$$2x^4 - x^2 - 1 = 0$$

(vi)
$$x-1 \le \sqrt{x^2+2}$$

(iii)
$$x^4 + 2x^2 - 3 > 0$$

(vii)
$$(x-1)^4 \le 16x^4$$

$$(iv) \ x^6 - 3x^3 + 1 = 0$$

$$(vii) (x-1)^4 \leqslant 16x^4$$

$$(v) (x^2-2)(x^2-1) > (x^2-2)^2$$

(viii)
$$x > 0$$
 et $x^2 \sqrt{x} - 4x + \frac{1}{\sqrt{x}} < 0$

Exercice 18. Soient $x, y \in \mathbb{R}$. Donner une condition nécessaire et suffisante pour que le second volet de l'inégalité triangulaire soit une égalité, c'est-à-dire pour que

$$||x| - |y|| = |x - y|.$$

\blacksquare Exercice 19. Trouver l'ensemble des réels x vérifiant les inégalités suivantes :

(i)
$$|x-2| < |x-1|$$

(ii)
$$|x| + |x - 1| \le 3$$

(iii)
$$|3x-2| < |x-1|$$

$$(iv) |2x+3| \leq |3x+2|$$

(v)
$$|x-1| + |3x+1| \ge 8$$

$$(vi) \sqrt{1-x^2} > |3x+1|$$

$$(vii) \ (x+1)^2 \leqslant |x+1|$$

(viii)
$$\frac{1}{2} < \frac{|x+1|}{|x-1|} \leqslant 1$$

Exercice 20. Montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, on a

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$$

Indication : procéder par double inégalité.

Exercice 21. Soit $n \in \mathbb{N}^*$.

- 1. Montrer que $S:=(3+\sqrt{7})^n+(3-\sqrt{7})^n$ est un entier pair.
- 2. En déduire que $\lfloor (3+\sqrt{7})^n \rfloor$ est impair.

Exercice 22. Soient $A \ge 0$ et $x_1, \ldots, x_n \in [0, A]$. On appelle moyenne géométrique des x_k le réel

$$G := \sqrt[n]{\prod_{k=1}^{n} x_k}.$$

Montrer que $G \in [0, A]$.

Exercice 23. Soient $x_1, \ldots, x_n \in [-2, 1]$. Proposer le meilleur encadrement possible du produit

$$\prod_{k=1}^{n} x_k$$

par des constantes réelles.

Exercice 24. Soit $n \in \mathbb{N}^*$.

- 1. Montrer que pour tout $k \in \mathbb{N}^*$ on a $\frac{1}{(k+1)^2} \leqslant \frac{1}{k} \frac{1}{k+1}$.
- 2. En déduire l'inégalité $\sum_{k=1}^{n} \frac{1}{k^2} \leqslant 2 \frac{1}{n}$.
- **Exercice 25.** Soient A et B des parties de \mathbb{R} non vides, majorées et telles que $A \cap B \neq \emptyset$.
 - 1. Montrer que $\sup(A \cap B) \leq \min(\sup(A), \sup(B))$.
 - 2. Y a-t-il égalité dans l'inégalité précédente?
 - 3. Montrer que $\sup(A \cup B) = \max(\sup(A), \sup(B)).$
 - 4. Montrer que si $\mathbb{R} \setminus A$ est non vide et minoré, alors $\sup(A) \geqslant \inf(\mathbb{R} \setminus A)$.
 - 5. Y a-t-il égalité dans l'inégalité précédente?

Exercice 26. Soient A et B des parties non vides de \mathbb{R} et

$$A + B := \{x + y, x \in A \text{ et } y \in B\}.$$

- 1. Que vaut A + B si A = [-1, 1] et B = [0, 3]?
- 2. Que vaut A + B si $A = \mathbb{Z}$ et B = [0, 1]?
- 3. Montrer que si A et B sont majorées, alors

$$\sup(A+B) = \sup(A) + \sup(B).$$

- **Exercice 27.** Soit A une partie non vide et bornée de \mathbb{R} et soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha \neq 0$. Donner la borne supérieure de $B := \{\alpha x + \beta, x \in A\}$ en fonction des bornes de A.
- **Exercice 28.** Soit A une partie de $\mathbb R$ et soient $f:A\to\mathbb R$ et $g:A\to\mathbb R$ des fonctions majorées.
 - 1. Montrer que f+g est majorée et que l'on a $\sup_A (f+g) \leqslant \sup_A f + \sup_A g.$
 - 2. Donner un exemple de cas où $\sup_A (f+g) < \sup_A f + \sup_A g.$