Math 156, Sec 4, H.W. 7 Franchi-Pereira, Philip

Problem 1 Consider the sequence $\{\frac{3}{7n} + 9\}$. Then we have

$$\lim_{n \to \infty} \frac{3}{7n} + 9 = 9$$

Def:

$$\lim_{n \to \infty} \frac{3}{7n} + 9 := \forall \varepsilon > 0, \exists N \in \mathbb{Z}^+, \forall n > N, |(\frac{3}{7n} + 9) - (9)| < \varepsilon$$

.

Scratch Work: $\left|\frac{3}{7n} + 9 - 9\right| < \varepsilon$ so $\left|\frac{3}{7n}\right| < \varepsilon$ and since n is positive, we have $\frac{3}{7n} < \varepsilon$. Then $3 < 7n\varepsilon$ and $\frac{3}{7\varepsilon} \le n$.

<u>Proof</u>: Given $\varepsilon>0$, take $N=\left\lceil\frac{3}{7\varepsilon}\right\rceil+1$. Observe that if $n\geq N$ then $n\geq \left\lceil\frac{3}{7\varepsilon}\right\rceil+1$ so $n>\left\lceil\frac{3}{7\varepsilon}\right\rceil$ and so $n>\frac{3}{7\varepsilon}$. Then $7\varepsilon n>3$ and $\varepsilon>\frac{3}{7n}$. Thus $\left|\left(\frac{3}{7n}+9\right)-\left(9\right)\right|<\varepsilon$ and L=9

Problem 2: Consider the sequence $\{\frac{1}{5n+4}-3\}$. Then we have

$$\lim_{n\to\infty}\frac{1}{5n+4}-3=-3$$

Def:

$$\lim_{n\to\infty}\frac{1}{5n+4}-3=3:=\forall \varepsilon>0, \exists N\in\mathbb{Z}^+, \forall n>N, |(\frac{1}{5n+4}-3)-(-3)|<\varepsilon$$

Scratch Work: $\left|\frac{1}{5n+4} - 3 + 3\right| < \varepsilon$ so $\left|\frac{1}{5n+4}\right| < \varepsilon$ and since n is positive, $\frac{1}{5n+4} < \varepsilon$. Then $1 < (5n+4)\varepsilon$ and $1 < 5n\varepsilon + 4\varepsilon$ which becomes $\frac{1-4\varepsilon}{5\varepsilon} < n$.

<u>Proof:</u> Given $\varepsilon > 0$, take $N = \lceil \frac{1-4\varepsilon}{5\varepsilon} \rceil$. Observe that if $n \ge N$ then $n \ge \lceil \frac{1-4\varepsilon}{5\varepsilon} \rceil$ so then $n \ge \frac{1-4\varepsilon}{5\varepsilon}$. We see that $n \cdot 5\varepsilon + 4\varepsilon \ge 1$ so $\varepsilon(5n+4) \ge 1$ and $\varepsilon \ge \frac{1}{5n+4}$. Thus $|(\frac{1}{5n+4}-3)-(-3)| < \varepsilon$ and L=-3

Problem 3 Consider the sequence $\{\frac{15}{n^2} + \frac{2}{\sqrt{n}} + 3\}$. Then we have

$$\lim_{n \to \infty} \frac{15}{n^2} + \frac{2}{\sqrt{n}} + 3 = 3$$

Def:

$$\lim_{n\to\infty}\frac{15}{n^2}+\frac{2}{\sqrt{n}}+3=3:=\forall\varepsilon>0, \exists N\in\mathbb{Z}^+, \forall n>N, |(\frac{15}{n^2}+\frac{2}{\sqrt{n}}+3)-(3)|<\varepsilon$$

Scratch Work: $|\frac{15}{n^2} + \frac{2}{\sqrt{n}} + 3 - 3| = |\frac{15}{n^2} + \frac{2}{\sqrt{n}}|$. Since $\sqrt{n} \le n^2$ then $\frac{1}{\sqrt{n}} \ge \frac{1}{n^2}$, so $|\frac{15}{n^2} + \frac{2}{\sqrt{n}}| \le |\frac{15}{\sqrt{n}} + \frac{2}{\sqrt{n}}|$. So $|\frac{17}{\sqrt{n}}| < \varepsilon$ and we have $\frac{17^2}{\varepsilon^2} \le n$.

<u>Proof</u>: Given $\varepsilon > 0$, take $N = \lceil \frac{17^2}{\varepsilon^2} \rceil$. Observe that if n > N then $n > \lceil \frac{17^2}{\varepsilon^2} \rceil$ and taking the square root of both sides we have $\sqrt{n} > \frac{17}{\varepsilon}$, then $\varepsilon > \frac{17}{\sqrt{n}}$. Since $\frac{17}{\sqrt{n}} = \frac{15}{\sqrt{n}} + \frac{2}{\sqrt{n}}$ and $\sqrt{n} < n^2$, then we have $\frac{15}{\sqrt{n}} > \frac{15}{n^2}$ and so $\frac{17}{\sqrt{n}} > \frac{15}{n^2} + \frac{2}{\sqrt{n}}$. Therefore $\varepsilon > |\frac{15}{n^2} + \frac{2}{\sqrt{n}}|$, and $\varepsilon > |(\frac{15}{n^2} + \frac{2}{\sqrt{n}} + 3) - (3)|$, so L = 3.

Problem 4 Show that the sequence n^7 diverges to infinity.

Def:

$$\lim_{n \to \infty} n^7 = -\infty \forall M \in \mathbb{Z}^+, \exists N \in \mathbb{Z}^+, (n > N \implies n^7 > M)$$

<u>Scratch Work</u>: We need $n^7 > M$. Solve for n by taking the seventh root $n > \sqrt[7]{M}$, so $N = \lceil \sqrt[7]{M} \rceil$.

<u>Proof</u>: Given any number $M \in \mathbb{Z}^+$, choose $N = \lceil \sqrt[7]{M} \rceil$. If n > N then $n > \lceil \sqrt[7]{M} \rceil$, which means $n > \sqrt[7]{M}$ and in turn $n^7 > M$. Therefore the sequence diverges to infinity.