Meeting Notes 31.03.2022

Attendance 🗸 🗙:

Name	abbr	attendance
Marco	forstma1	▽
Dan	hochsdan	▽
Luis	miranlui	▽
Monika	reif	$\overline{\mathbf{V}}$
Stefan	brrt	×

Notes

What we have done:

- Gobal trajectory optimization input testing, how it works, settings, etc.: https://github.com/TUMFTM/global_racetrajectory_optimization
- Started with chapter 2
- Revision of chapter 1
- Tried to get middle point of cones with different color (demo)

What we want to accomplish by next week:

- Calculate distance from middle point to border
- Integrate global trajectory into ROS project
- Work on chapter 2
- Optimize triangulation with less cones

Problems:

• If there are not a lot of cones in curve, it will "break" the algorithm

Todos:

- Change chapter title from "Theoretical Principles" to "Background"
- Better to move some information about Formula Student from chapter 1 to chapter 2
 - => Explain different tracks and challenges as well
- Create a figure about the methods
 - Problem => two different sides 1. Exploration (Triangulation, RRT) 2. Optimization Figure should give a overview of whole project, show how everything works
 - => Put it at the beginning of the methods chapter
- Also create overview / figures for the algorithms => how they work

- Think about how to compare different algorithms
 - => How to test and verify the algorithms? Look at precision and timing?
- Notes for Marco:
 - Update diagram with output + inner working of algorithm
 - Implement: Input transformation for algorithm (+ maybe also needed for output)
 - Maybe able to start optimizing in parts? Don't need to wait for whole track