Dealing with Missing Values in Multivariate Joint Models for Longitudinal and Survival Data

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

♥ N Erler • www.nerler.com • NErler

ISCB 2020

Chronic Hepatitis C

Image: https://www.hepatitisc.uw.edu/go/evaluation-staging-monitoring/natural-history/core-concept/alleant-staging-monitoring/natural-histor

L

Longitudinal Covariates

Baseline Covariates

Missing Values in Longitudinal Covariates

Multivariate Joint Model

Proportional hazards model for time until event:

$$h_i(t) = h_0(t) \exp \left(\underbrace{\mathbf{x}_i^{\top} \boldsymbol{\beta}^{(tc)}}_{\text{time constant}} + \sum_{k=1}^{K} \underbrace{\eta_{ki}(t)^{\top} \boldsymbol{\beta}_k^{(tv)}}_{\text{varying}} \right)$$

Multivariate Joint Model

Proportional hazards model for time until event:

$$h_i(t) = h_0(t) \exp \left(\underbrace{\mathbf{x}_i^{\top} \boldsymbol{\beta}^{(tc)}}_{\text{time constant}} + \sum_{k=1}^{K} \underbrace{\eta_{ki}(t)^{\top} \boldsymbol{\beta}_k^{(tv)}}_{\text{varying}} \right)$$

Longitudinal (mixed) model for each biomarker k = 1, ...K:

$$\mathbb{E}(y_{ki}(t) \mid \mathbf{b}_{ki}) = \eta_{ki}(t)$$

$$= \underbrace{\mathbf{x}_{ki}(t)^{\top} \boldsymbol{\beta}^{(k)}}_{\text{fixed effects}} + \underbrace{\mathbf{z}_{ki}(t)^{\top} \mathbf{b}_{ki}}_{\text{random effects}}$$

Multivariate Joint Model

Proportional hazards model for time until event:

$$h_i(t) = h_0(t) \exp \left(\underbrace{\mathbf{x}_i^{\top} \boldsymbol{\beta}^{(tc)}}_{\text{time constant}} + \sum_{k=1}^{K} \underbrace{\eta_{ki}(t)^{\top} \boldsymbol{\beta}_k^{(tv)}}_{\text{varying}} \right)$$

Longitudinal (mixed) model for each biomarker k = 1, ...K:

$$\mathbb{E}(y_{ki}(t) \mid \mathbf{b}_{ki}) = \eta_{ki}(t)$$

$$= \underbrace{\mathbf{x}_{ki}(t)^{\top} \boldsymbol{\beta}^{(k)}}_{\text{fixed}} + \underbrace{\mathbf{z}_{ki}(t)^{\top} \mathbf{b}_{ki}}_{\text{random effects}}$$

Missing values in (baseline) covariates.

Imputation of a (baseline) variable x_i :

→ sample from the **predictive distribution** of the missing values given the observed values

Imputation of a (baseline) variable x_i :

⇒ sample from the **predictive distribution** of the missing values given the observed values

$p(x_i \mid everything else)$

- culture of the contraction of the culture of the cu
- repeatedly measured variables (incl. outcomes)
- survival outcome

Imputation of a (baseline) variable x_i :

→ sample from the **predictive distribution** of the missing values given the observed values

$p(x_i | everything else)$

- culture of the contraction of the culture of the cu
- repeatedly measured variables (incl. outcomes)
- survival outcome
- **→** We cannot directly specify the (correct) imputation model!

Idea:

- ► specify the joint distribution p(everything)
- ▶ derive $p(x_i | everything else)$ from p(everything)

Idea:

- specify the joint distribution p(everything)
- derive $p(x_i | everything else)$ from p(everything)

But:

```
p(everything) = p(survival outcome, longitudinal outcomes, longitudinal covariates, baseline covariates, random effects, parameters) = p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta)
```

Does this really solve anything?

Idea:

- ► specify the joint distribution p(everything)
- derive $p(x_i | everything else)$ from p(everything)

But:

```
p(\textbf{everything}) = p(\textbf{survival outcome}, \\ \textbf{longitudinal outcomes}, \\ \textbf{longitudinal covariates}, \\ \textbf{baseline covariates}, \\ \textbf{random effects}, \\ \textbf{parameters}) \\ = p(\textbf{T}, \textbf{D}, \textbf{y}, \textbf{X}, \textbf{b}, \theta)
```

Does this really solve anything? **\(\delta\)Yes, it does!**

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

Joint distribution

$$p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta) = p(\mathbf{T}, \mathbf{D} \mid \mathbf{X}, \mathbf{b}, \theta) \quad p(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \theta) \quad p(\mathbf{X} \mid \theta) \quad p(\mathbf{b} \mid \theta) \quad p(\theta)$$

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

Joint distribution

$$p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta) = \underbrace{p(\mathbf{T}, \mathbf{D} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\text{survival}} \quad p(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \theta) \quad p(\mathbf{X} \mid \theta) \quad p(\mathbf{b} \mid \theta) \quad p(\theta)$$

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

Joint distribution

$$p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta) = \underbrace{p(\mathbf{T}, \mathbf{D} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\substack{\text{survival} \\ \text{model}}} \underbrace{p(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\substack{\text{multivariate} \\ \text{longitudinal}}} p(\mathbf{X} \mid \theta) \quad p(\mathbf{b} \mid \theta) \quad p(\theta)$$

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

Joint distribution

$$p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta) = \underbrace{p(\mathbf{T}, \mathbf{D} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\text{survival}} \underbrace{p(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\text{multivariate longitudinal model}} p(\mathbf{X} \mid \theta) \underbrace{p(\mathbf{b} \mid \theta)}_{\text{priors}} \underbrace{p(\theta)}_{\text{priors}}$$

From probability theory:

$$p(\mathbf{A}, \mathbf{B}) = p(\mathbf{A} \mid \mathbf{B}) p(\mathbf{B})$$

Joint distribution

$$p(\mathbf{T}, \mathbf{D}, \mathbf{y}, \mathbf{X}, \mathbf{b}, \theta) = \underbrace{p(\mathbf{T}, \mathbf{D} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\text{survival model}} \underbrace{p(\mathbf{y} \mid \mathbf{X}, \mathbf{b}, \theta)}_{\text{multivariate longitudinal model}} \underbrace{p(\mathbf{X} \mid \theta)}_{\text{imputation part}} \underbrace{p(\mathbf{b} \mid \theta)}_{\text{random effects}} \underbrace{p(\theta)}_{\text{priors}}$$

analysis model

Imputation part

$$p(\mathbf{X} \mid \theta) = p(\mathbf{x}_1, \dots, \mathbf{x}_p, \mathbf{X}_{compl.} \mid \boldsymbol{\theta}) = p(\mathbf{x}_1 \mid \mathbf{X}_{compl.}, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p, \boldsymbol{\theta})$$

$$p(\mathbf{x}_2 \mid \mathbf{X}_{compl.}, \mathbf{x}_3, \dots, \mathbf{x}_p, \boldsymbol{\theta})$$

$$\vdots$$

$$p(\mathbf{x}_p \mid \mathbf{X}_{compl.}, \boldsymbol{\theta})$$

Imputation part

$$p(\mathbf{X} \mid \theta) = p(\mathbf{x}_1, \dots, \mathbf{x}_p, \mathbf{X}_{compl.} \mid \theta) = p(\mathbf{x}_1 \mid \mathbf{X}_{compl.}, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p, \theta)$$

$$p(\mathbf{x}_2 \mid \mathbf{X}_{compl.}, \mathbf{x}_3, \dots, \mathbf{x}_p, \theta)$$

$$\vdots$$

$$p(\mathbf{x}_p \mid \mathbf{X}_{compl.}, \theta)$$

Estimation:

via MCMC → Gibbs sampling (using Metropolis-Hastings, ...)

Imputation part

$$p(\mathbf{X} \mid \theta) = p(\mathbf{x}_1, \dots, \mathbf{x}_p, \mathbf{X}_{compl.} \mid \theta) = p(\mathbf{x}_1 \mid \mathbf{X}_{compl.}, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p, \theta)$$

$$p(\mathbf{x}_2 \mid \mathbf{X}_{compl.}, \mathbf{x}_3, \dots, \mathbf{x}_p, \theta)$$

$$\vdots$$

$$p(\mathbf{x}_p \mid \mathbf{X}_{compl.}, \theta)$$

Estimation:

via MCMC → Gibbs sampling (using Metropolis-Hastings, ...)

Software:

Implemented in the **R** package **JointAI** (using JAGS)

In Practice: Analysis of the HCV Data

```
librarv("JointAI")
library("splines")
fmla <- list(
  # formula for survival model
  Surv(etime, event) ~ age + sex + alc + smoke + BMI + DM + year +
    logBili + logALT + logAST + Plt,
  # formulas for the longitudinal outcomes
  logBili ~ age + sex + time + (time | id),
  logAST \sim age + sex + ns(time, df = 5) + (ns(time, df = 5) | id),
  logALT \sim age + sex + ns(time, df = 3) + (ns(time, df = 3) | id),
  Plt
          ~ age + sex + ns(time, df = 3) + (ns(time, df = 3) | id)
```

In Practice: Analysis of the HCV Data

```
librarv("JointAI")
library("splines")
fmla <- list(</pre>
  # formula for survival model
  Surv(etime, event) ~ age + sex + alc + smoke + BMI + DM + year +
    logBili + logALT + logAST + Plt,
  # formulas for the longitudinal outcomes
  logBili ~ age + sex + time + (time | id),
  logAST \sim age + sex + ns(time, df = 5) + (ns(time, df = 5) | id),
 logALT \sim age + sex + ns(time, df = 3) + (ns(time, df = 3) | id),
 Plt
         \sim age + sex + ns(time, df = 3) + (ns(time, df = 3) | id)
```

In Practice: Analysis of the HCV Data

Additional options:

- covariate model types
- **▶** hyper-parameters
- ► number of **chains & thinning** interval
- **.**...

Additional features:

- ▶ use of **auxiliary** variables
- ▶ use of ridge **shrinkage** priors
- ► multi-level settings (e.g., multi-center)
- ▶ ..

For more info, see https://nerler.github.io/JointAl

Longitudinal ⇒ Survival

Longitudinal → Longitudinal

Longitudinal → Survival

Longitudinal → Longitudinal

type of association

- underlying value $\eta_{ki}(t)$
- ▶ slope
- ► cumulative effect
- ▶ time-lag
- **.**..
- combination of the above

Longitudinal → Longitudinal

▶ independent

Longitudinal → Longitudinal

- **▶** independent
- **correlated** random effects
 - endogenous
 - (136 elements!)
 - 🙁 linear association

Longitudinal ⇒ Survival

type of association

- underlying value $\eta_{ki}(t)$
- ▶ slope
- cumulative effect
- ▶ time-lag
- **.**..
- combination of the above

Longitudinal → Longitudinal

- **▶** independent
- correlated random effects
 - endogenous
 - (136 elements!)
 - Iinear association

fixed effects

- potentially non-linear
- exogenous

```
logBili ~ logAST + logALT + Plt + ...
logAST ~ logALT + Plt + ...
logALT ~ Plt + ...
Plt ~ ...
```

(Interim) Conclusion: Does it work?

► Theoretically: •

(if no assumptions are violated)

(Interim) Conclusion: Does it work?

► Theoretically: •

(if no assumptions are violated)

- ► Practically:
 - available in software
 - computationally feasible:
 - **2** 713
 - ~20,000 rows
 - complex model (4 dependent outcomes)
 - 2 10,000 iterations
 - 6.5h

(Interim) Conclusion: Does it work?

► Theoretically: id

(if no assumptions are violated)

- ► Practically: 🐞
 - available in software
 - computationally feasible:
 - **2** 713
 - **■** ~20,000 rows
 - complex model (4 dependent outcomes)
 - 2 10,000 iterations
 - ② 6.5h
- ► Empirically: to be continued... 🏖 💸 🖍

Thank you for your attention.

- n.erler@erasmusmc.nl
- N_Erler
- y N_Erie
- O NErler
- www.nerler.com

lversity Medical Center Rotterdam