5 6

7 8

13

14

15161718

19

20

2122232425

26

2728

29303132

33

34353637

Inventing Time Travel: Theory and Applications of the Flux Capacitor

Vom Stuttgarter Zentrum für Simulationswissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Emmett Brown

aus Hill Valley, California

Hauptberichter:	Prof. Dr. Albert Einstein

Mitberichter: Prof. Dr. Blaise Pascal Prof. Dr. Marie Curie

Prof. Dr. Charles Darwin

Tag der mündlichen Prüfung: 21. Oktober 2015

Institute for Advanced Time Travel

2015

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm)

INVENTING TIME TRAVEL

Theory and Applications of the Flux Capacitor

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		It seems that it is not enough to have a good idea or
14	66	insight. One needs, like Schoenberg, the
15		appreciation and courage to develop the idea
16		systematically, make its objects mathematically
17		presentable by giving them names, and give them
18		much exposure in many papers.
19		
20		— Carl de Boor [Boo16]
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33	COVER FIGURE	A regular sparse grid in two dimensions (dots) as a subset of the full grid
34		(mesh, bottom) with a bicubic B-spline (mesh, top).
35		

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm)

Compiled as version 192 on February 11, 2018 at 11:39pm

Committed as 8d11cdc* on February 11, 2018 at 11:39pm

36

			1
			2
			3
			4
	lontonto		5
C	Contents		6
			7
			8
Sī	mbols and Acronyms	7	9
			10
Al	ostract/Kurzzusammenfassung	9	11
Pı	reface	11	12
		10	13
1	Introduction 1.1 Bla	13 13	14
			15
2	The Flux Capacitor	19	16
3	Conclusion	23	17
		0.	18
A	Proofs	25	19
В	Bibliography	27	20
			21
			22
			23 24
			25
			26
			27
			28
			29
			30
			31
			32
			33
			34
			35
			36

Symbols and Acronyms

Symbol	Meaning	Page
\mathbb{N}	1,2,3,	
\mathbb{N}_0	$\mathbb{N} \cup \{0\}$	
SG ⁺⁺	Sparse grid toolbox for C++	13
WTF	Acronym that you can't spell out on TV	

Abstract/Kurzzusammenfassung

Abstract

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

Kurzzusammenfassung

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Preface

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

Stuttgart, October 21, 2015 Emmett Brown

1 Introduction

Ah, Jesus Christ! Jesus Christ, Doc, you disintegrated Einstein!

- Marty McFly

TODO: write

Citations: [Boo72]

Hello World! Hello World!

Now I'm citing all references for demonstration purposes. TODO: don't cite everything

Here are some umlauts: äöüß

I'm testing the glossary: SG⁺⁺ is very cool.

1.1 Bla

This is TODO: write defined TODO: write as a := 2b. This is the function f (which is defined as y =: f(x)).

$$(1.1) X \times Y$$

$$(1.2) A \cdot \mathbf{x} = \mathbf{b}$$

(1.3)
$$\min_{\mathbf{x} \in [0,1]} \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

(1.4)
$$4(a+b)f(x)g(x)h(x)p(x)(c+d)fghf'g'h'$$

$$(1.5) f(x)\cos(x)g(x)$$

$$(1.6) f(x)\cos(x)g(x)$$

Table 1.1

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm)

FIGURE 1.1 This is a test caption.

FIGURE 1.2 This is a test caption. This is a test caption.

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm) 1.1 BLA 15

Header 1	Header 2	Header 3	Header 4
bla	bla	bla	bla
bla	bla	bla	bla
bla	bla	bla	bla

TABLE 1.1 This is a test table.

```
1 function a = \text{GetAffectedBasisFunctions}(X, \alpha, x, t, \ell, j, b)

→ nichts tun, falls Gitterpunkt nicht vorhanden

     2
                          if x_{\ell,i} \notin X then return 0
                          if t = d then
     3
                                     \begin{aligned} a &\leftarrow \alpha_{\boldsymbol{\ell},j} \cdot (b \cdot \varphi_{\ell_d,j_d}(x_d)) & \implies \text{letzte Dimension: Summanden zu Ergebnis addieren} \\ & \text{if } x_{\boldsymbol{\ell},j}^{(\text{rn}(d))} \in X \text{ then } a \leftarrow a + \alpha_{\boldsymbol{\ell},j}^{(\text{rn}(d))} \cdot (b \cdot \varphi_{\ell_d,j_d}^{(\text{rn}(d))}(x_d)) \\ & \text{if } x_{\boldsymbol{\ell},j}^{(\ln(d))} \in X \text{ then } a \leftarrow a + \alpha_{\boldsymbol{\ell},j}^{(\ln(d))} \cdot (b \cdot \varphi_{\ell_d,j_d}^{(\ln(d))}(x_d)) \end{aligned}
     4
     5
     6
     7
                         a \leftarrow \mathsf{GABF}(X, \ \boldsymbol{a}, \ x, \ t+1, \ \boldsymbol{\ell}, \ \boldsymbol{j}, \ b \cdot \varphi_{\ell_t, j_t}(x_t)) \qquad \text{mächste Dimension}
\mathbf{if} \ x_{\ell, j}^{(\mathrm{rn}(t))} \in X \ \mathbf{then} \ a \leftarrow a + \mathsf{GABF}(X, \ \boldsymbol{a}, \ x, \ t+1, \ \boldsymbol{\ell}, \ \boldsymbol{j}^{(\mathrm{rn}(t))}, \ b \cdot \varphi_{\ell_t, j_t}^{(\mathrm{rn}(t))}(x_t))
\mathbf{if} \ x_{\ell, j}^{(\mathrm{ln}(t))} \in X \ \mathbf{then} \ a \leftarrow a + \mathsf{GABF}(X, \ \boldsymbol{a}, \ x, \ t+1, \ \boldsymbol{\ell}, \ \boldsymbol{j}^{(\mathrm{ln}(t))}, \ b \cdot \varphi_{\ell_t, j_t}^{(\mathrm{ln}(t))}(x_t))
\mathbf{if} \ x_t > j_t h_{\ell_t} \ \mathbf{then} \ a \leftarrow a + \mathsf{GABF}(X, \ \boldsymbol{a}, \ x, \ t, \ \boldsymbol{\ell}^{(\mathrm{rc}(t))}, \ \boldsymbol{j}^{(\mathrm{rc}(t))}, \ b) \implies \mathrm{nächster}
     8
     9
10
11
                          else a \leftarrow a + GABF(X, \alpha, x, t, \ell^{(lc(t))}, j^{(lc(t))}, b)
12
```

ALGORITHM 1.1 Approximative Auswertung von Linearkombinationen auf dünnen Gittern, Zeilen 5, 6, 9, 10 nicht für stückweise lineare Basisfunktionen, input: Gitter $X = \{x_i\}_i$, Koeffizienten $\alpha = (\alpha_i)_i$, Auswertungspunkt $x \in [0,1]^d$, aktuelle Dimension $t \in \{1,\ldots,d\}$ (anfangs 1), Level und Index (ℓ,j) des aktuellen Punkts (für randlose Gitter anfangs (e,e)) und aktuelles Produkt b von 1D-Auswertungen (anfangs 1), output: $a \approx \widetilde{f}(x) = \sum_{k=1}^N \alpha_k \varphi_k(x)$ (für stückweise lineare Funktionen sogar

```
Fig. 1.1
Fig. 1.1a
Fig. 1.1b
Fig. 1.2
Algorithm 1.1
```

THEOREM 1.1 (TODO Theorem)

 $a = \widetilde{f}(x)$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this

36 37

gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

LEMMA 1.2 (TODO Lemma) TODO

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

DEFINITION 1.3 (TODO Definition)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm) 1.1 BLA 17

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between

this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

The Flux Capacitor

If my calculations are correct, when this baby hits 88 miles per hour...you're gonna see some serious shit.

— Emmett Brown

TODO: write

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

 $a\sqrt[n]{b} = \sqrt[n]{a^n b}$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\int_0^\infty e^{-\alpha x^2} \mathrm{d}x = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} \mathrm{d}x \int_{-\infty}^\infty e^{-\alpha y^2} \mathrm{d}y = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between

Draft v192 (Feb 11, 11:39pm) Commit 8d11cdc* (Feb 11, 11:39pm) this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

3 Conclusion

TODO: write

A Proofs

This is an appendix chapter.

B Bibliography

[Boo16] **Boor**, C. de: *A comment on Ewal Quak's "About B-splines"*. Journal of Numerical Analysis and Approximation Theory 45.1 (2016), pp. 84–86.

[Boo72] **Boor**, C. de: *On calculating with b-splines*. Journal of Approximation Theory 6.1 (1972), pp. 50–62. 10.1016/0021–9045(72)90080–9.

[Bun04] **Bungartz**, H.-J.; **Griebel**, M.: *Sparse grids*. Acta Numerica 13 (2004), pp. 147–269. 10.1017/S0962492904000182.

All URLs have last been checked on October 21, 2015.