The Universe

Robin Adams

July 25, 2022

Contents

1	Cat	egory Theory	5
	1.1	Categories	5
2	Top	oology	7
	2.1	Topologies and Topological Spaces	7
	2.2	Closed Sets	8
	2.3	Basis for a Topology	8
	2.4	Continuous Functions	8
3	Metric Spaces		
	3.1	Metrics	9
	3.2	Subspaces	10

4 CONTENTS

Chapter 1

Category Theory

1.1 Categories

Definition 1.1 (Category). A category C consists of:

- a class C of objects;
- for any objects $X,Y\in\mathcal{C}$, a set $\mathcal{C}[X,Y]$ of morphisms. We write $f:X\to Y$ for $f\in\mathcal{C}[X,Y]$
- for any object $X \in \mathcal{C}$, an *identity* morphism $id_X : X \to X$
- for any morphisms $f: X \to Y$ and $g: Y \to Z$, a morphism $g \circ f: X \to Z$, the *composite* of f and g

such that:

Unit Laws For any $f: X \to Y$ we have $f = \mathrm{id}_Y \circ f = f \circ \mathrm{id}_X$

Associativity For any $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$, we have

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Chapter 2

Topology

2.1 Topologies and Topological Spaces

Definition 2.1 (Topology). Let X be a set. A *topology* on X is a set $\mathcal{T} \subseteq \mathcal{P}X$ such that:

- 1. $X \in \mathcal{T}$
- 2. $\forall \mathcal{U} \subseteq \mathcal{T}. \bigcup \mathcal{U} \in \mathcal{T}$
- 3. $\forall U, V \in \mathcal{T}.U \cap V \in \mathcal{T}$

Definition 2.2 (Topological Space). A topological space X consists of a set X and a topology \mathcal{T} on X. We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 2.3 (Discrete Topology). Let X be a set. The *discrete* topology on X is $\mathcal{P}X$.

Definition 2.4 (Indiscrete Topology). Let X be a set. The *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 2.5 (Open Neighbourhood). Let X be a topological space. Let $x \in X$ and $U \subseteq X$. Then U is an *open Neighbourhood* of x if and only if $x \in U$ and U is open.

Definition 2.6 (Coarser, Finer). Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X. Then \mathcal{T} is coarser, smaller or weaker than \mathcal{T}' , and \mathcal{T}' is finer, larger or stronger than \mathcal{T} , if and only if $\mathcal{T} \subseteq \mathcal{T}'$.

Proposition 2.7. Let X be a set. The intersection of a set of topologies on X is a topology on X.

Corollary 2.7.1. Let X be a set. The poset of topologies on X is a complete lattice.

2.2 Closed Sets

Definition 2.8 (Closed Set). Let X be a topological space and $C \subseteq X$. Then C is *closed* if and only if X - C is open.

2.3 Basis for a Topology

Definition 2.9 (Basis for a Topology). Let X be a set. A *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ such that:

- 1. $\bigcup \mathcal{B} = X$
- 2. $\forall B_1, B_2 \in \mathcal{B}. \forall x \in B_1 \cap B_2. \exists B_3 \in \mathcal{B}. x \in B_3 \subseteq B_1 \cap B_2$

The topology generated by \mathcal{B} is then the coarsest topology that includes \mathcal{B} . Given $x \in X$, a basic open neighbourhood of x is a set $B \in \mathcal{B}$ such that $x \in B$.

Proposition 2.10. Let X be a set and \mathcal{B} be a basis for a topology \mathcal{T} on X. Let $U \subseteq X$. Then $U \in \mathcal{T}$ if and only if $\forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U$.

2.4 Continuous Functions

Definition 2.11 (Continuous). Let X and Y be topological spaces and $f: X \to Y$. Then f is *continuous* if and only if, for any open set V in Y, we have $f^{-1}(V)$ is open in X.

Proposition 2.12. For any topological space X, the identity function on X is continuous.

Proposition 2.13. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Then $g \circ f$ is continuous.

Chapter 3

Metric Spaces

3.1 Metrics

Definition 3.1 (Metric, Metric Space). Let X be a set. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that:

- 1. $\forall x, y \in X.d(x, y) \ge 0$
- 2. $\forall x, y \in X.d(x, y) = 0 \Leftrightarrow x = y$
- 3. $\forall x, y \in X.d(x, y) = d(y, x)$
- 4. $\forall x, y, z \in X.d(x, z) \leq d(x, y) + d(y, z)$

A metric space X consists of a set X and a metric on X.

Definition 3.2 (Open Ball). Let X be a metric space. Let $x \in X$ and $\epsilon > 0$. The *open ball* with *center* x and *radius* ϵ is $B(x, \epsilon) = \{y \in X \mid d(x, y) < \epsilon\}$.

Definition 3.3 (Metric Topology). On any metric space, the *metric topology* is the topology generated by the basis consisting of the open balls.

Definition 3.4 (Metrizable). A topological space X is *metrizable* if and only if there exists a metric d on X such that the topology on X is the metric topology induced by d.

Definition 3.5 (Euclidean Metric). The *Euclidean metric* on \mathbb{R}^n is defined by

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.$$

We write just \mathbb{R}^n for the metric space \mathbb{R}^n under the Euclidean metric.

3.2 Subspaces

Proposition 3.6. Let X be a set and $Y \subseteq X$. Let d be a metric on X. Then $d \upharpoonright Y^2$ is a metric on Y.

Given a metric space (X,d) and a set $Y\subseteq X$, we will write just Y for the metric space $(Y,d\upharpoonright Y^2)$.

Definition 3.7 (Interval). The interval I is the metric space I=[0,1] as a subspace of \mathbb{R} .

Definition 3.8 (Disk). Let $n \in \mathbb{Z}^+$. The *n*-disk D^n is the metric space

$$D^n = \{ x \in \mathbb{R}^n \mid d(x,0) \le 1 \}$$

as a subspace of \mathbb{R}^n .

Definition 3.9 (Sphere). Let $n \in \mathbb{Z}^+$. The *n*-sphere S^n is the metric space

$$D^{n} = \{ x \in \mathbb{R}^{n+1} \mid d(x,0) = 1 \}$$

as a subspace of \mathbb{R}^{n+1} .