SQUARE CONTOURS FOR SUMMATION OF SERIES

For information only – not examinable.

LEMMA. For C_N the square contours with vertices $(N + \frac{1}{2})(\pm 1 \pm i)$, the functions $cosec \ \pi z$, $\cot \pi z$ are uniformly bounded (in z and N) on the C_N .

Proof. On the horizontal sides, z = x + iy, $|y| \ge 1/2$. Then

$$|cosec \ \pi z| = 1/(\frac{1}{2}|e^{i\pi z} - e^{-i\pi z}|).$$

Now $|e^{i\pi z}|=|e^{i\pi x}.e^{-\pi y}|=e^{-\pi y},\ |e^{-i\pi z}|=e^{\pi y},$ and as $|z_1-z_2|\geq ||z_1|-|z_2||,$ $1/|z_1-z_2|\leq 1/||z_1|-|z_2||.$ So

$$|cosec \ \pi z| \le 1/(\frac{1}{2}|e^{-\pi y} - e^{\pi y}|).$$

The RHS is $1/(\frac{1}{2}|e^{\pi y}-e^{-\pi y}|)$ if $y \ge 0$, $1/(\frac{1}{2}|e^{-\pi y}-e^{\pi y}|)$ if $y \le 0$. So RHS $= 1/sh|\pi y|$. But $|y| \ge 1/2$, sh' = ch > 0, so $sh \uparrow$. So $1/sh \downarrow$, so RHS $\le 1/sh(\pi/2)$.

Similarly, $cot = cos/sin = cos \ cosec$,

$$|\cos \pi z| = \frac{1}{2} |e^{i\pi z} = e^{-i\pi z}| \le \frac{1}{2} (|e^{i\pi z} + |e^{-i\pi z}|) = \frac{1}{2} (e^{-\pi y} + e^{\pi y}) = ch \pi y.$$

So

 $|\cot \pi z| = |\cos \pi z| |\cos \varepsilon \pi z| \le ch \pi y/sh \pi |y| = coth \pi |y| \le coth(\pi/2),$

as $|y \ge 1/2$, and $coth \downarrow$ (check!).

On the vertical sides, $z = \pm (N + \frac{1}{2}) = iy \ (|y| \le N + \frac{1}{2})$, so

$$|cosec \pi z| = 1/|\sin \pi z|$$
 = $1/|\sin(\pm \pi (N + \frac{1}{2}) + i\pi y)|$
 = $1/|\cos(i\pi y)|$ (trig addition formulae)
 = $1/ch|\pi y|$
 ≤ 1 ,

as $ch \uparrow$ on **R**. Similarly, the trig addition formulae used again give

$$|\cot \pi z| = \frac{|\pm \sin i\pi y|}{|\pm \cos i\pi y|} = |\tan i\pi y| = |1 - e^{-2\pi y}|/|1 + e^{2\pi y}| \le 1.$$

Combining gives the result. //

Cor. cosec z, cot z are uniformly bounded on the squares Γ_N with vertices $(N+\frac{1}{2})\pi(\pm 1 \pm i)$.