

Semester 1 2022/2023
Sistem Pengawasan
Nuklir (RN6086)
FMIPA ITB

Sistem Pengawasan Nuklir (RN6086)

Isotopic Composition Actinide dan Kode Komputer
ORIGEN
PR-1

Sidik Permana dan Sparisoma Viridi

Nuclear Physics and Biophysics Research Division
Physics Department, Nuclear Science and Engineering
Department, Faculty of Matematis and Natural Sciences,
Institut Teknologi Bandung

Mekanisme Transmutasi Aktinida

Simulasi Peluruhan dengan ORIGEN Code

OAK RIDGE NATIONAL LABORATORY
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
RSICC COMPUTER CODE COLLECTION

ORIGEN 2.2
Isotope Generation and Depletion Code
Matrix Exponential Method

Contributed by:
Oak Ridge National Laboratory
Oak Ridge, Tennessee

RISCC (RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER)

Simulasi Peluruhan dengan ORIGEN Code

- 1. Induk Tunggal 1. Deret Uranium: a.U-235, b.U-238,
 - 2. Deret Thorium: a. Th-232
 - 3. Deret Neptunium: a. Np-237
 - 4. Deret Americium: a. Am-241, b. Am-244
 - 5. Deret Curium : a. Cm-243, Cm-244
- Contoh : Input → 922380 :
- 92: Nomor Atom Uranium
- 238: Nomor Massa
- 0: Status ground (Bukan meta stabil)
- Untuk U-235 \rightarrow 922350

Tugas 1 (kumpulkan minggu depan Kamis via edunex):

Peluruhan dengan Nuklida Banyak

Simulasi Peluruhan dengan ORIGEN Code

Tugas 1 (kumpulkan minggu depan Kamis jam 09.30 (max)via edunex):

- 1. Plot gambar y-axis : Massa (gram) dan x-axis : Waktu peluruhan
- 2. Plot semua nuklida induk dan turunan dari masing-masing induk tunggal
- 3. Buat perbandingan peluruhan induk tunggal dalam satu grafik untuk Thorium, Uranium dan Plutonium, Americium dan Curium
- 4. Buat analisa dari data dan juga tampilkan masing-masing waktu paruh nulida induk dan turunannya

Input file: DecaySampleTestU238.INP

BAT file: DecaySampleTestU238.BAT

Output File: DecaySampleTestU238.u6

Simulasi Peluruhan dengan ORIGEN Code

1. Blok Input untuk Peluruhan

RDA **DECAY MODULE** DEC 100 4 3 4 0 DEC DEC 1.0 3 4 5 0 DEC 10.0 4 5 5 0 100.0 5 6 5 0 DEC 1000.0 6 7 5 0 DFC 10000.0 7 8 DEC 100000.0 8 DEC DEC 1000000.0 9 10 5 DEC 10000000.0 10 11 100000000.0 11 DEC

Table 4.2. Time unit designation

1 = seconds
2 = minutes
3 = hours
4 = days
5 = years
6 = stable
7 = 10³ years (kY)
8 = 10⁶ years (MY)
9 = 10⁹ years (GY)

Simulasi Peluruhan dengan ORIGEN Code

2. Blok Input untuk Nuklida dan konsentrasinya

END

2 922380 1000000.0 922350 O. O 0.0 FUEL 100% U238 ()

- Contoh : Input → 922380 :
- 92: Nomor Atom Uranium
- 238: Nomor Massa
- 0 : Status ground (Bukan meta stabil)
- Untuk U-235 \rightarrow 922350

Simulasi Peluruhan dengan ORIGEN Code

2. Blok Output Jumlah Aktinida (gram)

Ambil dari file output : DecaySampleTestU238.u6

```
5 SUMMARY TABLE: CONCENTRATIONS, GRAMS
```

1 MTIHM 3.2% UO2;BURNUP=33,000 MWD/MTIHM, 3 CYCLE

FUEL CHG FUEL DIS 100.0D 1.0YR 10.0YR 100.0YR 1000.0YR 1.0E+04YR 1.0E+05YR 1.0E+06YR 1.0E+07YR 1.0E+08YR 0.000E+00 0.000E+00 7.138E-07 2.607E-06 2.607E-05 2.608E-04 2.611E-03 2.648E-02 3.439E-01 1.439E+01 2.015E+02 2.063E+03 HE 4 PB206 0.000E+00 0.000E+00 0.000E+00 3.202E-23 3.391E-17 2.457E-12 5.498E-08 3.083E-04 4.228E-01 8.619E+01 1.290E+03 1.327E+04 PB210 0.000E+00 0.000E+00 1.024E-22 5.007E-20 5.842E-16 3.731E-12 7.281E-09 3.494E-06 3.852E-04 4.182E-03 4.395E-03 4.334E-03 **RA226** 0.000E+00 0.000E+00 5.713E-18 5.400E-16 6.192E-13 6.190E-10 5.624E-07 2.699E-04 2.975E-02 3.230E-01 3.395E-01 3.348E-01 TH230 0.000E+00 0.000E+00 8.487E-12 1.904E-10 2.105E-08 2.122E-06 2.116E-04 2.043E-02 1.457E+00 1.582E+01 1.663E+01 1.640E+01 U234 0.000E+00 0.000E+00 2.806E-05 1.380E-04 1.511E-03 1.524E-02 1.523E-01 1.504E+00 1.328E+01 5.064E+01 5.372E+01 5.298E+01 U238 1.000E+06 9.998E+05 9.985E+05 9.846E+05 SF250 0.000E+00 0.000E+00 2.275E-11 8.311E-11 8.311E-10 8.311E-09 8.311E-08 8.311E-07 8.311E-06 8.310E-05 8.304E-04 8.247E-03 1.000E+06 1.000E SUMTOT 1.000E+06

TOTAL 1.000E+06 1.000E+06

Sumber ORIGEN:

https://drive.google.com/drive/folders/1KNbdPjm7sl9UMDWGJJJ7YwO1WO7sZJeL?usp=sharing

Semester 1 2022/2023
Sistem Pengawasan
Nuklir (RN6086)
FMIPA ITB

Sidik Permana

Nuclear Physics and Biophysics Research Division
Physics Department, Nuclear Science and Engineering
Department, Faculty of Matematis and Natural Sciences,
Institut Teknologi Bandung

²³²Thank YoU²³⁸ TeriMA Kasih Merci