Branch: CSE/IT

Batch: Hinglish

WEEKLY TEST – 01 Subject : Algorithm

Topic: Analysis of Algorithm

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

[MCQ]

- sort the functions in increasing order of asymptotic (big
 O) complexity
 - $f_1(n) = n^{0.9999999} \log n$
 - $f_2(n) = 10000000n$
 - $f_3(n) = 1.000001^n$
 - $f_4(n) = n^2$
 - (a) $f_1(n)$, $f_2(n)$, $f_4(n)$, $f_3(n)$
 - (b) $f_3(n)$, $f_4(n)$, $f_2(n)$, $f_1(n)$
 - (c) $f_2(n)$, $f_4(n)$, $f_1(n)$, $f_3(n)$
 - (d) None of these

[MCQ]

- Sort the function in decreasing order of asymptotic (big
 O) complexity:
 - $f_1(n) = 2^{2^{10000000}}$
 - $f_2(n) = 2^{100000^n}$
 - $f_3(n) = n\sqrt{n}$
 - (a) $f_2(n)$, $f_1(n)$, $f_3(n)$ (b) $f_3(n)$, $f_1(n)$, $f_2(n)$
 - (c) $f_1(n)$, $f_3(n)$, $f_2(n)$ (d) None of these

[MCQ]

- **3.** We know that O(g(n))
 - $= \begin{cases} f(n) : \text{There exist positive constant c and } \mathbf{n}_0 \\ \text{Such that } 0 \le f(n) \le \text{c.g}(n), \text{ for all } \mathbf{n} \ge \mathbf{n}_0 \end{cases}$

Given that $f(n) = 10n^2 + 100$ and $g(n) = 2^n$; where n and no are both positive integers.

if c = 0.125 then for which value of n_0 ,

- f(n) = O(g(n))?
- (a) 12
- (b) 13
- (c) 14
- (d) 15

[MCQ]

- **4.** Suppose that there are 3 programs X_1 , X_2 and X_3 having time complexities $f_1(n)$, $f_2(n)$ and $f_3(n)$ respectively. Such that $f_1(n)$ is $O(f_2(n))$, $f_2(n)$ is $O(f_1(n))$, $f_1(n)$ is $O(f_3(n))$ and $f_3(n)$ is not $O(f_1(n))$. Then which one of the statements is true from the following statements?
 - (a) X_3 is always faster than X_1 and X_2 for very large size inputs
 - (b) X_1 is faster than X_2 and X_3 for very large inputs
 - (c) X_3 is slower than X_1 and X_2 for very large input
 - (d) X_2 is faster than X_1 and X_3 for very large size inputs

[MCQ]

- 5. Let $f(n) = \log \log \log \sqrt{n}$ and $g(n) = 2^{30^{30^{30}}}$ then which one of the following is true?
 - (i) $f(n) = \theta(g(n))$
 - (ii) $f(n) = \Omega(g(n))$
 - (iii) f(n) = O(g(n))
 - (iv) $f(n) = \omega(g(n))$
 - (a) (i), (ii) and (iii) only
 - (b) (ii), (iii) and (iv) only
 - (c) (ii) and (iv) only
 - (d) (iv) only

Q.5 to 10 Carry TWO Mark Each

[MCQ]

6. Consider the following code.

```
int a = 0;

for(int x = 0; x < n; x ++) {

    if (x%5==0){

        for (int y = 0; y < n; y ++){

        if (x == y)

            a+= x * y )

        }

    }
```

What is the highest asymptotic worst case time complexity of above code fragment?

- (a) $O(n^2)$
- (b) $O(\sqrt{n})$
- (c) O(n)
- (d) O(log n)

[MCQ]

7. Arrange following function in the ascending order growth rate.

$$\begin{split} f_1 &= (1 + 0.0001)^n, \, f_2 = \sqrt{n}^{\log n} \,, \, \, f_3 = \left(1.005\right)^{\sqrt{n}} \\ f_4 &= \left(\log n\right)^{\sqrt{n}} \,, \, \, f_5 = \left(\sqrt{n}\right)^{\log n^2} \end{split}$$

- (a) f_2 , f_5 , f_3 , f_4 , f_1
- (b) f₃, f₄, f₂, f₅, f₁
- (c) f_2 , f_5 , f_1 , f_3 , f_4
- (d) None of the above

[MCQ]

8. What is the time complexity of the following code ? for (a = 0; a < n - 2; a ++) {

for (b = 0; b < 100; b = b + 2) {

for (c = 1; c < 8*n; c ++)

[NAT]

- **9.** How many of the following statements is/are false____.
 - (i) $10\sqrt{n} + \log n = O(n)$
 - (ii) $\sqrt{n} + \log n = O(\log n)$
 - (iii) $\sqrt{n} + \log n = \theta(n)$
 - (iv) $\sqrt{n} + \log n = \theta(\sqrt{n})$

[MCQ]

10. Consider the following recursion function P(n) {if (n <= 0) return 1;

return 1; else if (n% 2 = 0)return P(n-1); else return P(n-2);

What is the time complexity of above code?

- (a) $\theta(\log n)$
- (b) $\theta(2^n)$
- (c) $\theta(n)$

}

(d) none of these

Answer Key

1. (a)

2. (**d**)

3. (d)

4. (c)

5. (c)

6. (a)

7. (a) 8. (b) 9. (2) 10. (c)

Hints and Solutions

1. (a)

The correct order of these functions is

 $f_1(n)$, $f_2(n)$, $f_4(n)$, $f_3(n)$. To see why, $f_1(n)$ grows asymptotically slower than $f_2(n)$, recall that for any c > 0, log n is $O(n^c)$. Therefore, we have

$$\begin{array}{lll} f_1(n) = n^{0.999999} \ logn = 0 (n^{0.999999}.n^{0.000001}) = O(n) = \\ O(f_2(n)) \end{array}$$

The function $f_2(n)$ is linear, while function $f_4(n)$ is quadratic, So $f_2(n)$ is $O(f_4(n))$. Finally, we know that $f_3(n)$ is exponential, which grows faster than quadratic, So, $f_4(n)$ is $O(f_3(n))$.

2. (d)

The correct order of these functions is $f_2(n)$, $f_3(n)$, $f_1(n)$ in decreasing order. The variable n never appears in the formula $f_1(n)$. So despite the multiple exponentials, $f_1(n)$ is constant. Hence it is asymptotically smaller than $f_3(n)$ which does grow with 'n'.

$$f_2(n) = 2^{100000n} f_3(n) = n\sqrt{n}$$

$$n = 1 2^{100000 \times 1} > 1\sqrt{1}$$

$$n = 2 2^{100000 \times 2} > 2\sqrt{2}$$

$$\vdots$$

$$\therefore f_2(n) > f_3(n)$$

Option (a), (b), (c) are not correct option.

So, $f_2(n)$ $f_3(n)$ $f_1(n)$ is correct decreasing order.

Hence option (d) is correct.

3. (d)

Given C = 0.125

$$f(n) \le C.g(n)$$

$$10n^2 + 100 \le 0.125 \times 2^n$$

We need to check from n = 1 to 15

So, if
$$n = 15$$

$$10 * (15)^2 + 100 \le 0.125 \times 2^{15}$$

$$2250 + 100 \le 0.125 \times 32768$$

4. (c)

Given,
$$f_1(n) = O(f_2(n))$$

$$f_2(n) = O(f_1(n))$$

$$f_1(n) = O(f_3(n))$$

$$f_3(n) \neq O(f_1(n))$$

The above functions conclude that, growth of f3 is larger than the growth rate of f_1 and f_2 .

 \therefore x₃ is slower than x₁ or x₂.

5. (c)

$$f(n) = \log \log \log \sqrt{n} \; , \; g(n) = 2^{20^{20^{20}}}$$

 $f(n) = \Omega(g(n))$ because g(n) is constant and

f(n) is depending on 2, therefore it is correct.

 $f(n) \neq O(g(n))$ because f(n) is greater than g(n)

f(n) = w(g(n)) because f(n) > g(n), Correct.

:. (ii) and (iv) are true.

6. (a)

The inner most loop (if statement) executes per loop, we must check x = y is true one per each iteration. This will take some non-zero constant amount of time. So the innermost loop will perform approximately n work.

The outer most loop and if statement will perform 'n' work during only 1/5th of the iteration and will perform a constant amount of wort in the remaining 4/5th of the time.

So, total amount of work done is approximately

$$\frac{n}{5} \cdot n + \frac{4n}{5} \cdot 1$$

$$\therefore T(n) = \frac{n^2}{5} + \frac{4n}{5}$$

Which is O(n²)

7. (a)

As we can see f_1 and f_3 are similar so lets compare these first.

$$f_1 = (1 + 0.0001)^n$$

$$f_3 = (1.005)^{\sqrt{n}}$$

... By seeing n and \sqrt{n} in exponents we can conclude that $f_1 > f_3$ (a)

Now comparing f₂, f₄, and f₅

$$f_2 = \left(\sqrt{n}\right)^{\log n}$$
, taking log

 $\log n \log \sqrt{n}$

$$f_4 = (\log n)^{\sqrt{n}}$$
, taking \log

 $\sqrt{n}\log(\log n)$

$$f_5 = \left(\sqrt{n}\right)^{\log n^2}$$
, taking \log

$$\log n^2 \log \left(\sqrt{n} \right)$$

Form above we can clearly see that

$$f_5 > f_2$$
 and $f_4 > f_5$ because of $\sqrt{n} > \log n$ (b)

Now comparing f_1 and f_2

$$(1+0.0001)^n = \left(\sqrt{n}\right)^{\log n}$$

Taking log on both sides we get

$$n \log 1.001 = \log n \log \sqrt{n}$$

By comparing above we can clearly say that 'n' of f_1 will always be greater and n makes greater than f_2 .

$$\therefore f_1 > f_2 \qquad \qquad \dots (c)$$

and similarly $f_5 > f_1$ (d)

also, $f_1 > f_4$ solving by using log(e)

 \therefore from (a), (b), (c), (d) and (e)

We can conclude that

$$f_1 > f_4 > f_3 > f_5 > f_2$$

 \therefore f₂ f₅ f₃ f₄ f₁ is correct answer.

8. (b)

- a ranging from 0 t n − 2 in first loop so it is
 O(n)
- b is ranging from 0 to 100 which is constant time in 2nd (inner loop) so O(1)
- C is ranging from 1 to 8 n inner loop so it is O
 (n)

n * 1 * n which is n^2

 \therefore O(n²), so option (b) is correct.

9. (2)

- (i) $10\sqrt{n} + \log n = O(n)$ Correct, because
- $\therefore \sqrt{n} < n$
- (ii) $\sqrt{n} + \log n = O(\log n)$ incorrect because $\sqrt{n} > \log n$
- (iii) $\sqrt{n} + \log n = \theta(n)$ incorrect it should be O(n) or $\theta(\log)$
- (iv) $\sqrt{n} + \log n = \theta \sqrt{n}$, Correct

10. (c)

One of P(n-1) of P(n-2) will be called,

In worst case

$$T(n) = T(n-1) + O(1)$$

$$T(n) = \theta(n)$$