3D打印机 用户使用指南

目 录

第1	章	认识您的 3d 打印机	4
	1.1	3D 打印机介绍	4
	1.2	注意事项	5
第 2	章	机器的组装	6
	2.1	喷头的组装	6
	2.2	料架和送丝管的安装	9
	2.3	玻璃平台的安装	11
第3	章	液晶屏的使用介绍	12
	3.1	液晶屏信息介绍	12
	3.2	液晶屏的控制介绍	15
		3.2.1 暂停、恢复和停止打印	15
		3.2.2 打印速度和温度调节	16
		3.2.3 手动预热	17
		3.2.4 自动预热	18
		3.2.5 控制机器 XYZ 移动	18
		3.2.6 解锁	19
	3.3	选择模型打印	19
	3.4	中途换料功能	20
第4	章	软件使用介绍	23
	4.1	切片软件的安装	23
	4.2	切片软件的使用介绍	25
		4.2.1 快速打印	25
		4.2.2 完整模式打印	25
		4.2.3 基本设置	25
		4.2.4 高级设置	27
		4.2.5 CURA 打印界面	29
	4.3	3 查看模型	31
第 5	章	打印准备操作	33

5.1	进料	33
5.2	打印平台的调整	34
	5.2.1 粗调	34
	5.2.2 微调	35
第6章	打印练习	37
第7章	打印技巧	40
7.1	底部平坦	40
7.2	避免悬空	40
7.3	组装匹配图形公差	42
7.4	大体积图形的打印	42
第8章	打印图片浮雕	43
第9章	导出 STL 格式文件	45
9.1	Pro/E 导出 STL 文件	45
9.2	UG 导出 STL 文件	46
9.3	solidworks 导出 STL 文件	49
第 10 章	常见问题分析	51

第1章 认识您的3D打印机

1.1 3D 打印机介绍

1.2 注意事项

- 1. 在 3D 打印机工作期间及打印结束后的一段时间内,喷嘴的温度都高达 200℃以上, 所以请勿用手触碰喷嘴;
- 2. 请按照指南的说明操作使用机器,如有问题可以联系售后;
- 3. 打印的模型如有支撑需要拆卸,请戴好手套,以免拆卸过程中被工具或者支撑材料 划伤;
- 4. 日常使用过程中,需要定时给 3D 打印机的十字滑台光轴进行清洁和润滑工作 ,添加润滑油时注意不要滴到机壳和皮带上;
- 5. 阅读《用户指南下》,同时结合实际来进行机器操作,将更有利于您熟悉掌握机器的使用;
- 6. 在打印过程中遇到了机器打印上的问题,可以先拍下照片用以更直观的反映问题,同时提供机器编号的照片(机器背面底部的标签),然后联系售后;

第2章 机器的组装

2.1 喷头的组装

拿出机器后,把包装机器用的 胶带撕掉,左边竖着放的盒子 为配件盒,拿出配件盒。

从配件盒里拿出电源线,电源接口在机器背面,接上电源线,打开电源开关。

● 按下液晶屏旋钮,在液晶屏菜单 栏上选择 prepare→autohome, 平台会上升复位,然后拿出平台 底部的盒子。

注意:按下旋钮可确定选项 向左旋转旋钮菜单下翻 向右旋转旋钮菜单上翻

● 下面开始安装挤出头,找到 十字滑台里白色的 PTFE 圆 座的孔(在图中的右下方), 并且找到 PTFE 的内孔。

● 将白色送丝胶管对准 PTFE 圆座内孔, 然后慢慢按入,注意胶管方向, 切记不要弄错了方向,有倒角的 一端朝上。

铝管与固定块按如图位置安装, 对准螺丝的孔位,然后把螺丝用内六角扳手拧紧。

● 安装完成后,导向管会漏出一小 截的高度。

把挤出机电机的两个螺纹孔和电机固定座的螺丝对准,然后拧紧螺丝,注意固定座上的两颗螺丝要加上垫片。

把风扇装上,风扇外壳的四边对准电机的四周,外壳上有圆槽的一面向外。

电机线的端子方向如图所示, 有两块凸起的面朝外。

● 将挤出机电机散热风扇线(白色端子)接好。

将喷嘴冷却风扇线(红色端子)接好 将喷嘴测温线(黑丝端子)接好。

2.2 料架和送丝管的安装

将料架安装上去,料架与机壳接触的一端不宜过长,厚度与螺母平齐。

拧紧送料架的螺母,将送料架固定好,注意位置不要过深,以免料架挡到了打印平台边缘,根据目测随时调整。

装上导料管,扣在机器背后的固定扣上,如图示方向用力按压, 扣紧固定扣。

导料管的另一头对准风扇外壳上 相对应的的圆槽。

然后用缠绕带,把导料管和电机 线缠在一起。

把料盘挂在料架上,然后把耗材线从导料管的口进入,一直往上送入。

● 直至另一端出现耗材线头将耗材 线对准电机孔**右边的孔**后插入, 并盖上风扇外壳。

2.3 玻璃平台的安装

把玻璃板放在热床平台上面,玻璃板与热床平台对齐后四周用夹子夹紧。

第3章 液晶屏的使用介绍

3.1 液晶屏信息介绍

开机之后,我们会发现液晶屏幕的显示如图:

接着是液晶屏里的所有选项的一个总揽如下所示:

Print from SD 选择 SD 卡的模型打印

Version 查看版本(点开显示为机器信息)

主界面常见的报错信息提示:

超出机器行程报错:

ERR_MIN_X_LIMIT X 轴超出最小行程

ERR_MIN_Y_LIMIT Y 轴超出最小行程

ERR_MAX_X_LIMIT X 轴超出最大行程

ERR_MAX_Y_LIMIT Y轴超出最大行程

温度异常报错:

Err: MAXTEMP 超过最大温度,喷嘴加热功率过大

Err: MINTEMP 小于最小温度,喷嘴热敏电阻接触不良

Err: MAXTEMP BED 超过最大热床温度,热床加热功率过大

加热失败报错:

Heating failed 加热失败

ERR:1 Heating failed 升温阶段,10s 内加热必须超过 1°C,否则报警

ERR:2 Heating failed 异常: 温度曲线没有波动 恒温阶段,温度没有变化! 热敏电阻损坏

ERR:3 Heating failed 异常: 温度没有下降

其他类型报错:

KILLED. 异常关闭

ERR:Wrong Firmware! 固件烧错

STOPPED. 错误导致停止

Sleep... 停歇

Wait for user... 等待用户按下按钮

3.2 液晶屏的控制介绍

3.2.1 暂停、恢复和停止打印

打印过程中可以根据实际情况的需求,选择**暂停、恢复**和**停止打印功能。**

● **暂停打印 Pause Print** : 在打印途中暂停,之后可恢复继续原来的打印。

 恢复打印 Resume Print : 暂停过 后恢复原来的打印。

● **停止打印 Stop Print** : 退出本次打印,之后将不能再继续之前的打印了。

3.2.2 打印速度和温度调节

打印过程中,如果觉得温度或者速度不适合,可以通过旋钮控制进行调节。

● Tune: 打印过程按下旋钮进入菜单,选择 Tune 的菜单可以进入**打印速** 度,喷嘴温度和热床温度的控制选择。

● 打印速度 Speed: Cura 软件编译 速度的百分比,如 121%,即代表 编译的速度乘以 121%。

比如软件编译的速度是 **50**,用旋钮调节速度 **Speed 为 121%**,则实际打印速度为: **50x121%=60.5**,速度超过 100%就比原来变快,低于则变慢。

Main
> Speed: 121
Nozzle: 0
Bed: 75

● 喷嘴温度 Nozzle: 选择 Tune →Nozzle ,旋转旋钮就可以更改喷嘴温度了。

热床 Bed : 选择 Tune → Bed ,
 旋转旋钮就可以更改热床温度了。

Main	9
Speed:	121
Nozzle:	0
>Bed:	75

3.2.3 手动预热

在准备打印之前,可以通过手动调节旋钮使喷嘴和热床一起升温,达到选定的的温度,从而可以减少打印前温度上升的准备时间。

● 按下旋钮, **选择 control** →

● 选择 **温度** Temperature →

● 栏目中的选项分别为 **喷嘴温度**Nozzle、热床温度 Bed 和喷嘴
风扇速度 Fan Speed,可根据
自己打印的需要进行调节。

3.2.4 自动预热

选择对应耗材的预热选项,可自动预热,喷嘴和热床可一起升温,达到设定的温度,从而减少打印前的准备时间。

● 按下旋钮选择 Prepare →

● 根据耗材可以选择 PLA 或者 ABS 的预热选项 "Preheat PLA"或者 "Preheat ABS",温度会自行升 高到设定的数值。

Auto Home > Preheat PLA Preheat ABS Cooldown

3.2.5 控制机器 XYZ 移动

● 可以手动调节,单独控制 xyz 方向的移动,选择"Move Axis"。

Preheat PLA
Preheat ABS
Cooldown
> Move Axis →

● 选择需要控制的 xyz 轴进行控制, 例如控制 z 轴向下移动 , 选择菜单 "Move Z →",按下旋钮确认选择。 Prepare

Move X +000.0 →

Move Y +000.0 →

> Move Z +150.0 →

● 旋转旋钮进行设置 z 轴的行程后,按下旋钮确定, z 轴就会运动到设置的高度。

3.2.6 解锁

● 想要手动移动十字滑台,却发现无 法移动,这是因为上电以后电机被 锁死,需要解锁:选择"Prepare → Disable Steppers",电机解锁, 十字滑台可自由移动。

3.3 选择模型打印

● 插入 SD 卡,信息介绍栏目会显示" Card inserted",说明 SD 卡已插入。

选择 " Print from SD ", 按下旋钮 按钮确认选择。 Info Screen

Prepare

Control

Print From SD

→

选择测试图,选择自己编译好的 格式为.gcode 的文件,等待机器 准备,开始打印。 Main >test.gcode و

3.4 中途换料功能

我们机器在使用过程中,经常遇到模型没有打印完,耗材就快用完的情况。以前都是手动去换料或者直接把剩下不多的料扔掉,这样浪费时间也提高了成本。现在中途换料功能解 决这一难题。

下面就我们机器中途换料的操作过程:

● 首先把要换的料的线头部分剪好, 以方便进料。

● 需要在液晶屏上找到换料的指令, 首先按下旋钮,**选择"Tune"**。 Info Screen >Tune Control Pause Print ± → +

● 然后选择 更换耗材 "Change Filament "。 Main
> Change Filament
Speed: 100
Nozzle: 200

● 屏幕会提示是否确定更换耗材,此 时选择 "YES"。

Change Filament Yes No

选择换料功能后,需要等待大概一分 半钟机器才会停止打印。

Change Filament 1/5

Wait For The Maching To Stop

机器开始退料,退料完成后,机器 会出现提示声音。

Change Filament 2/5

Form The Feeder

● 这时可以把原来的料拿出来,把要 换的料插入挤出头 (插入到挤出齿 轮即可)。

换好新料后,选择继续。 选择 > Press to continue

Change Filament 3/5 Pls Push Filament Into Feeder >Press To Continue

● 等待挤出头进料

Change Filament 4/5

Waiting To Enter The Extruder

● 完成换料操作

Change Filament 5/5

Done!
Press To Finish

3.5 断电续打

机器在打印时出现**突然断电,使得机器停止打印**,液晶屏也会无法显示。**为了避免打** 印过程中断电,造成打印失败,所以机器便增加了断电续打的功能(M14 机器除外)。

● 断电了之后,当再次通电后,机器 会自动"归零"。

● 液晶屏提示是否选择继续打印, 选择 "YES"后,液晶屏显示工作台 和喷嘴加热,加热到设定的温度开 始继续打印;若选择 "NO",机器 结束打印,用户可以选择其他图形进 行打印;若 30 秒内不作出选择,机器默 认继续打印。

Continue Print
Are You Sure?
> Yes
No

第4章 软件使用介绍

4.1 切片软件的安装

切片软件程序 CURA,目录在 SD 卡 软件→WIN(苹果的电脑选择文件夹 mac):

C Cura_15.08.21.exe

双击鼠标运行 CURA Cura_15.08.21.exe 软件安装包,按软件提示操作,安装组件时需要注意,如果在使用 CURA 需要打开 OBJ 和 AMF 的文件,那么需要在安装的时候勾选对应的组件。如下图:

- 可根据自己打印的需求进行勾选,然后点击 install 继续下一步安装
- 1、Install Arduino Drivers : 安装 arduino 驱动
- 2、Open STL files with Cura: 用 cura 打开 STL 文件的组件
- 3、Open OBJ files with Cura: 用 cura 打开 OBJ 文件的组件
- 4、Open AMF files with Cura: 用 cura 打开 AMF 文件的组件

 安装过程中会弹如图的下界面,这 是需要装切片的驱动,点击"下一 步",如果杀毒软件出现提示,请放 心添加信任。

● 接下来点击完成选项,驱动安装 完成。

● 接下来将会继续到切片软件的安装,等绿色的进度条完成后,点击选项"Next"。

● 最后,点击选项 Finish,完成切片 的安装。

安装完成之后,软件会自动开启, 就可以看到以下界面。

4.2 切片软件的使用介绍

4.2.1 快速打印(不建议使用)

点击"专家配置"一切换到"快速打印模式"

快速打印:不需要用户自己设置 参数,所有的参数将根据需求设 为相应的默认值。

图中的选项包括打印的模式,

材料,是否支撑。

4.2.2 完整模式打印

点击**专家配置一切换到完整** 模式-选择"是"

可以看到完整模式会出现各种参数,把鼠标放在参数的选项上,可以 看到每个参数的详细介绍。

可以根据显示的信息作为参考, 对打印的参数进行设置。

4.2.3 基本设置

1. 层厚:每一层丝的厚度,支持 0.05-0.3,推荐 0.1-0.2 之间取值。

效果: 层厚越小,表面越精细,打印时间越长。

2. **壁厚**: 模型外壁厚度,每 0.4 为一层丝,推荐 0.8-2.0 之间取值。

效果: 壁厚越厚, 强度越好, 打印时间越久。

3. 允许反抽: 打印的时候将丝回抽。

效果: 如果不反抽会产生拉丝,影响成型效果。

4. 底部/顶部厚度: 底部和顶部的厚度。

效果: 如果打印模型出现顶部破孔,可以适当调大这个数值。

5. 填充率: 0 为空心, 100 为实心。

效果: 减少填充可以节省打印时间,但是影响强度。空心有时候会因为壁厚太薄, 无法完成模型打印,适当的填充有时候是必要的。

6. 打印速度: 推荐 40-60。

效果: 适当的调低速度, 让打印的时候有足够的冷却时间, 可以让模型打印得更好。

7、**打印温度**: 打印时挤出头的温度,ABS 推荐 210-230℃,PLA 推荐 190-220℃。**效果**: 如果温度太低则无法挤出,会卡住造成出丝不畅。

8、热床温度: ABS 推荐 90-100℃, PLA 推荐 60-70℃。

效果: 温度太低, 耗材粘性不够, 会造成粘不紧, 出现翘边的情况。

9、**支撑类型**:打印的过程中因为有悬空,丝会因为重力作用掉下来,所以需要添加支撑,但是不是所有悬空都是需要支撑的。None:无**支撑**,Touching buildplate:外部 支撑。在模型有外部悬空的地方增加支撑,内部不添加支撑。Everywhere:在模型任何悬空的地方都添加支撑。包括模型内部。

效果:模型如果悬空则需要添加支撑,不添加支撑的话悬空地方打印丝会掉下来。

10、平台附着类型:增加一个底座,可以让打印的模型粘得更紧。None:

不添加底座。Brim:加厚底座,并在周围增加附着材料。Raft:网状的底座。

效果:添加底座可以让平台粘得更紧,Raft 类型底座更省材料。

- 11、**直径**:耗材直径,一般直径为 1.75mm。
- 12、流量:打印时丝的流速。

效果:直径和流量这 2 个参数是配合使用的。直径越大,出丝越慢,流量越大, 出丝越快。

4.2.4 高级设置

1、 喷嘴直径: 0.4 目前这个数值是固定的。

反转速度: 反抽的速度。

效果: 理论上速度快一点会更好, 但是有可能导致不出丝。

2、 反转长度: 反抽回去丝的长度。这 2 个参数是在基本设置那选择,

一般默认允许反抽。

效果: 反抽回去丝的长度如果太短也有可能造成拉丝,如果太长则有可能不出丝。

3、 初始层高度: 第一层的厚度。

效果: 第一层设置厚一点,可以让模型粘得更紧。

4、 **切除底部**:有些模型底部不平,或者接触面比较少的时候,可以 切掉一部分。

效果:对于底部不是很重要或者需要分开打印的模型,可以设置切除 一定高度来进行打印,效果会更好。

5、 **双头重叠**: 双喷头机器打印才需要设置,设置双头打印的时候重复挤压量。 **效果**: 设置一定的重复挤压量,可以让两种颜色粘得更紧。

6、 移动速度: 机器移动的速度。

效果: 移动速度越快, 打印时间更短。

7、 底层打印速度: 打印底层的速度, 低速可以粘得更紧。

效果: 适当调低底层的打印速度,可以让底部粘的更紧,这样才能更好的打印。

8、 填充速度: 打印填充的速度。

效果: 加快填充速度,可以打印得更快。

9、 外壁速度: 打印外壁的速度, 低速打印可以让外壁打印得更好。

效果:减低外壁打印速度,可以让表面更光滑。

10、 内壁速度: 打印内壁的速度。速度快点可以缩短打印时间。

效果: 加速内壁打印速度, 可以缩短打印时间。

11、 层最小打印时间:每层打印的最小时间,在打印太快的时候,机器会根据这个。 层最小打印时间调低速度,确保足够的冷却时间。

效果:控制机器每层的最小打印时间,确保有足够的冷却时间。

12、 打开喷嘴冷却风扇: 打开喷嘴冷却风扇, 加快冷却。

效果:打印时用于加速冷却,成型效果更好,ABS 慎用,容易裂开。

4.2.5 CURA 打印界面

旋转:

点击旋转图标,会出现以模型中 心为圆心的三个不同颜色的圆圈, 模型可绕垂直圆圈平面的中心轴 旋转任意角度。

> 鼠标左键选中圆圈不放,移动 鼠标即可对模型做任意方向旋转。

缩放:

● 对模型按比例进行缩放

Scale 代表模型的尺寸比例, 可以**选择改变尺寸的比例**来进行 缩放模型的大小。

Size 代表模型的尺寸大小, 可以**直接改变数值**,来改变模型 的大小,改变其中一个方向的尺 寸,其它的尺寸都会自行根据比 例更改。

● 把图中模型的 X 的大小从 156.129 改为 100, Scale 会显示尺寸变为原来的 0.64 倍, Y 和 Z 的尺寸 Size 也会自动改为相应的数值。

● 如果只想对某一方向单独进行缩放,可以点击 uniform scale 的图标 可以对单一方向进行缩放。

Uniform 的图标变为解锁后,更改X的尺寸,Y和Z的尺寸比例没变,尺寸大小也没有自行改变。

自动镜像:

镜像

x 方向做镜像

y 方向作镜像

z方向作镜像

4.3 查看模型

● 查看模型尺寸是否可以打印

模型尺寸或者说摆放的位 置超过了机器的打印的范围,那 么模型会呈现灰色,如图所示。

根据需求自行更该模型大小或者 移动模型位置,直到模型全部显示为 黄色才行。

● 查看模型悬空情况

打印的模型经常会出现悬空的地方(可以查看第7章),那么要查看悬空的情况的话可以用以下的方法。

View mode 查看模式: 位于软件右上角处

普通状态查看

: 看悬空部分,悬空需要加支撑的部分会显示为红色

: 透明模式

X 射线模型

模型查看的基本操作

选中模型,单击鼠标右键,可以 对模型进行如下操作:

居中: 把模型的位置放置到机器中间

删除物体: 把不需要的模型删掉

倍增物体:成倍的增加模型

不同角度查看模型:按住鼠标右键不

动,移动鼠标

移动模型:按住鼠标左键,移动鼠标

远近缩放查看模型:滚动鼠标的滚轮

第5章 打印准备操作

5.1 进料

从进料开始到打印模型,都需要使用液晶屏来进行操作的,所以先简单介绍一下液晶屏的基本操作方法。

基本功能	操作	备注
菜单选择	通过旋转液晶屏实现	顺时针旋转列表下翻 顺时针旋转列表上翻
选中菜单	按下液晶屏旋钮	按下旋钮会进入选中界面
返回上一级	选择""并选中该菜单	

● 接下来进行进料操作,按下液晶屏 旋钮,进入主菜单。

进料: 选择 prepare → change Filament → load →

平台会自动上升回零,之后再下降一段距离。并且液晶屏上会显示喷嘴正在加热升温,在达到 230℃后电机齿轮就会顺时针转动,带动耗材进去,喷嘴就可以开始均匀的出料了。

Nozzle : 219/230°

Hotend Heating Please Wait.... 退料:退料与进料操作基本相同,有以下步骤:

选择 prepare→chang Filament→
Unload →

5.2 打印平台的调整

5.2.1 粗调

- 液晶屏选择 prepare → autohome →
- 等到平台复位完成后,电机会自动
 锁死,需要选则 prepare → Disable
 Steppers → 来解锁电机。
- 依次移动喷嘴到玻璃板四周进行 调节喷嘴与玻璃般的距离。

逆时针旋转平台螺母, 平台向下

Main
Change Filament
Disable Steppers
>Auto Home

Main
Change Filament
→
Disable Steppers
Auto Home

顺时针旋转平台螺母,平台向上

● 粗调时,喷嘴与玻璃板的大概距离距离是一**张纸**的间隔,如果距离过大,就要顺时针旋 转平台螺母,使平台向上;如果距离过小碰到喷嘴,就逆时针旋转螺母,使平台向下。

5.2.2 微调

选择**对应机型**的打印调试平台专用辅助调试文件 **adjust.gcode**,等打印机开始打印时,眼睛平视打印平台,查看喷嘴跟平台距离大概是一张纸的距离,通过查看第一层的效果来对平台进行微调,打印完第一层即可停止打印。

如果出来的丝是呈锯齿状,说明平台和喷嘴距离过大,丝是从喷嘴甩下来而不是刚好贴紧的。

这时稍微顺时针旋转螺母,使 平台向上,直到现象消失,出现贴 紧的线条为止。

如果发现出丝过细或者出丝不连贯, 说明喷嘴与平台的距离过小,导致 喷嘴出丝量过小。

这时稍微逆时针旋转螺母, 使平台向下, 直到出丝量饱满顺畅为止。

调整好平台打印的效果应该是 出丝饱满并且线条压平贴紧平台。

如果发现打印时,喷嘴跟平台距离过大或者过小,请停止打印,重新调整平台直到平台 跟喷嘴距离合适为止。**多数情况下打印失败都是由于平台没调好造成的**,所以请按照要求 反复调试,确定平台高度已调到较佳。并且在打印第一层的是时候,最好看着机器打印,确 认机器打印正常后才离开。

第6章 打印练习

上一章我们已经了解了切片软件的功能,现在就来一次实际的操作吧!

完成一次打印我们需要以下流程 "STL 文件" \rightarrow "gcode 文件" \rightarrow "3D 打印机" 具体操作如下:

● 打开 Cura 切片软件,点击图标 或者选择"文件"栏目里的"打开模型或 gcode", 找到自己想要打印的 STL 格式的文件,点击打开,如下图:

● 在"设备"栏目里选择相应的 机型的 3D 打印机。

接下来设置打印所需要的参数并且手动调节模型的位置和角度,设置完之后软件就会自行编译,等待编译完成后,软件会显示出此次打印需要的时间和耗材。

注意:可根据软件提供的信息 查看一下耗材是否充足, 平台是否调好

● 点击图标 可直接把 gcode 文件存入 SD 卡内。

如果想把 gcode 文件保存到其他地方,或者需要对 gcode 文件进行重新命名,可选择"文件"里的"save GCode"保存到相应的文件里。

注意: gcode 文件命名只能取英文和数字, 而中文名字机器不能读取

● 然后把 SD 卡插入机器液晶屏的卡槽内。

注意: SD 卡有文字图案的一面朝外, 并且检查平台是否调好,具体 参照章节 2.2

● 选择"Print from SD",找到之前保存的 gcode 文件,选择打印。

注意:按下旋钮为确认选择 旋钮左旋,菜单上翻 旋钮右转,菜单下翻

J Info screen

Prepare

Control

Print from SD

等待模型开始打印,然后模型就打 印出来了!

注意:模型打印完后会粘紧平台,可以用铲子慢慢把底部铲开,如果太紧可以加热平台后,再取出。

第7章 打印技巧

FDM 类型 3D 打印机的原理决定了它的打印特性,掌握了这些特性才能更好的打印出理想的图形。主要总结为以下几点:

7.1 底部平坦

打印的时候,选择底部是平坦的一面, 由于打印是从底部开始一层层打印的, 底层决定了整个打印物体的质量,所以 打印底层是最重要的,选好一个平坦的 底部作为底层打印是打印成功的关键。

7.2 避免悬空

由于打印的时候喷嘴出来的丝是流体,在重力的作用下会往下垂,如果打印的图形有悬空的地方,打印的丝就会往下垂。所以打印的时候就需要使用软件生成支撑,打印结束后再把支撑去除。类似盖房子的时候,由于混凝土是流体,会往下掉,所以需要先打好木桩才能盖房子,等混凝土凝固了再拆去木桩。

跟建筑一样,拆去木桩以后会留下木桩的痕迹,打印完毕以后也会留下支撑的一些痕迹。 所以如果想提高打印品质,就需要尽量避开悬空的地方,可以从以下两点进行改进。

一、通过改变打印位置来避免悬空

● 如图示箭头位置出现了悬空

● 这个方向上也出现了悬空

● 所以最后决定有这个方向来打印

二. 在设计上避免出现悬空

这个模型出现了悬空的结构,并且 通过改变位置也无法避免悬空,所 以在设计时可以把悬空的斜面和柱 子与主体分割开来打印,后期再用 胶水粘上。

● 这个模型底部还出现悬空,但是 是属于装配的零件。

● 但是是属于装配的零件,直接把零件分来来打印,然后在装配上去就好了。

7.3 组装匹配图形公差

如果打印的物体是需要进行组装的图形,例如螺丝和螺母、齿轮的匹配这些图形,由于 打印过程塑料的热胀冷缩以及底层打印产生膨大的边缘,所以需要把公差放大一点,一般公 差设置为 0.4mm,具体根据实际图形进行设置。

7.4 大体积图形的打印

如果打印的体积比较大,必须使用 PLA 耗材,ABS 耗材本身特性决定了它不适合用于大体积的图形,容易裂开和变形,所以体积大的图形需要使用 PLA。

如果大体积的图形打印过程还是容易翘边,可以用点 502 胶水把图形底部黏住,但是切记不要让 502 把喷嘴堵死。

第8章 打印图片浮雕

通过我们的 3D 打印机可以把喜欢的图片打印成浮雕,用 Cura 软件可以直接把喜欢的图片生成能够打印的 gcode 文件,然后到机器操作打印浮雕。

选择好图片以后,最好使用 PS 将背景换成透明之后保存为 PNG 格式,如果不需要替换透明背景可以直接保存为 BMP/JPG/JPEG/PNG 等图片格式。

● 在 cura 内打开模型,选择想要 打印的图片。

 选择打开图片后会出现如图的界面。 设置好相应的参数,参数介绍如下:
 Darker is higher:深色的地方突出 Lighter is higher:浅色的地方突出 No smoothing:无平滑处理 Light smoothing:轻度平滑处理 Heavy smoothing:强平滑处理

 适当改小层厚的数值,浮雕的透 光性会更好一点,一般可以设置
 为 2mm 左右,也可以根据自己需求 设置参数。

 设置好参数后,点击"OK" 软件就会出现如图所示的模型 文件(图片立着打可以效果会 更好),生成 gcodde 后就可以 打印了。

第9章 导出 STL 格式文件

9.1 Pro/E 导出 STL 文件

选择"文件"栏目, 点开"另存为"中 的"保存副本"。

● 在保存文件的"类型"栏目勾选(*stl)的格式,给文件命名后点击确定。

● 接下来在参数的选择上把格式选为"二进制","弦高"和"角度控制"输入值为"0",然后确定完成导出。

9.2 UG 导出 STL 文件

新建(N)... Ctrl+N 部件(P)... 将选定的对象写入到新的或现有的部件文件。 打开(O)... Ctrl+O 关闭(<u>C</u>) Parasolid... 将实体和片体导出到 Parasolid 文本文件。 保存(S) 用户定义特征(U)... 計 首选项(P) 使用工作部件中的几何体导出用户定义特征定义部件。 打印(P)... PDF... 将当前显示的布局或图纸导出到 PDF 文件。 绘图(L)... Ctrl+P 导入(<u>M</u>) 导出(E) 将当前显示的布局或图纸导出到 CGM 文件。 实用工具(U) 将选定的实体和片体导出到 STL (立体制版)文件。 执行① 属性(I) 多边形文件(0)... 导出选定的几何体到 .ply (Vericut 多边形)文件。 ? 帮助(H) 编创 HTML... **退出(X)** 导出部件文件数据到 HTML 文件。

导出显示部件的内容到 .jt 文件。

分析 应用模块 曲面 装配

曲线

渲染

反向工程

NX 🖬 🤊 • ભ 🛷 🐚 🖺 🚅 • 🛷 👰 🔞 - ▼

文件(F)

主页

● 选择栏目"导出", "STL"格式。 在"三角公差"和 "相邻公差"输入 为"0"即可,点击 确认。

● 给零件命名,然后 点击"ok"。

● 点击确认。

选择需要转换的模型文件,点击确定。

点击确定,之后的 弹出的选择框都选 择确定,直到完成 文件的导出。

9.3 solidworks 导出 STL 文件

点击"文件"栏目
 选择"另存为"。

"保存类型"栏目选择
 "STL(.*stl)"。

3. 然后选择界面左下方 的"选项"按钮。

4. 如图位置的选项,输出为"二进制",把"误差"和"公差"的参数都调到最右端,然后点击确认。

5. 然后点击保存,完成格 式转换。

第 10 章 常见问题分析

1. 使用机器时被机器电到了

金属外壳机器本身带有静电,这个静电不会对人体造成伤害。出现静电原因是家里没有接地线,解决此问题的方法:

- (1) 家里铺设电线的时候接好地线;
- (2) 用一条导线连接机器金属外壳上(可以连接在 Z 轴平台光轴的底部),将 另外一端引到家里大型的金属物体上面,例如窗户:

2. 机器打印过程的时候粘得不够紧,容易翘边

- (1) 打印平台和喷嘴之间的距离太大,可以通过调节平台下面的四个水平调节 螺母,确保平台与喷嘴的距离合适,大概的距离可以跟一张名片的厚度一样;
- (2) 打印平台的温度不够高,一般使用 PLA 的打印平台温度设置为 70℃左右,ABS 设置为 90℃左右:
- (3) 打印平台没有使用耐高温胶布,可以通过贴上耐高温胶布提高粘性;
- (4) 平台冷却风扇太早打开,可以把该风扇的接口拔下,记得不要拔插电机散 热的风扇的接口;

3. 无法正常出丝

- (1) 温度没有达到耗材的最佳熔点,可以适当调节温度,一般是温度不够高;
- (2) 送料盘的丝打结了,耗材供应不上,剪掉耗材以后调整耗材以后重新打印;
- (3) 打印平台和喷嘴距离太小,堵住喷嘴,适当调节水平调节螺母降低平台;
- (4) 购买的耗材线径太大, 剪掉耗材更换好的耗材;
- (5) 喷嘴损坏,由于各种原因导致喷嘴损坏,请联系售后;

4. 打印过程发生了移位

- (1)被异物缠绕或者阻挡,检查十字滑台是否被线缠绕或者有异物阻挡其运动, 将异物排除;
- (2) 光轴灰尘太多摩擦力增大,可以使用纸巾或者布匹加上酒精进行擦拭,去 除油污黏住的灰尘;
- 5. 如有疑问,请联系我们的售后工程师。