## **AX5043 Programming Manual**

# Advances High Performance ASK and FSK Narrow-Band Transceiver for 27–1050 MHz Range

#### **OVERVIEW**

AX5043 is a true single chip low-power CMOS transceiver for narrow band applications. A fully integrated VCO supports carrier frequencies in the 433 MHz, 868 MHz and 915 MHz ISM band. An external VCO inductor enables carrier frequencies from 27 MHz to 1050 MHz. The on-chip transceiver consists of a fully integrated RF front-end with modulator, and demodulator. Base band data processing is implemented in an advanced and flexible communication controller that enables user friendly communication via the SPI interface.



ON Semiconductor®

www.onsemi.com

#### APPLICATION NOTE

An on-chip low power oscillator as well as Wake-on-radio enable very low power standby applications. The AX5043 is also available with the AX8052F100 microcontroller in a single integrated circuit as the AX8052F143. Figure 1 shows the block diagram of the AX5043.



Figure 1. Block Diagram

## **TABLE OF CONTENTS**

| Overview             | . 1 |
|----------------------|-----|
| FIFO Operation       | . 7 |
| Programming the Chip | 12  |
| Register Overview    | 21  |
| Register Details     | 34  |
| Pafarances           | 7/  |

## Connecting the AX5043 to an AX8052F100 or other Microcontroller

The AX5043 can easily be connected to an AX8052F100 or any other microcontroller. The microcontroller communicates with the AX5043 via a register file that is implemented in the AX5043 and that can be accessed serially via an industry standard Serial Peripheral Interface (SPI) protocol.

Reset is performed by the integrated power-on-reset (POR) block and can be performed manually via the register file.

The AX5043 sends and receives data via the SPI port in frames. This standard operation mode is called frame mode.

In frame mode, the internal communication controller performs frame delimiting, and data is received and transmitted via a 256 Byte FIFO, accessible via the register file. The FIFO is shared between receive and transmit. Figure 2 shows the corresponding diagram. Connecting the interrupt line is highly recommended, though not strictly required. With the AX8052F100, it is also recommended to connect the SYSCLK line. This allows the Microcontroller to run from the precise crystal clock of the AX5043, or to calibrate its internal oscillators from against this clock.



Figure 2. Connecting AX5043 to AX8052F100 or other  $\mu\text{C}$ 

## **Pin Function Descriptions**

**Table 1. PIN FUNCTION DESCRIPTION** 

| Symbol  | Pin(s)     | Туре | Description                                                                                                                                                                      |
|---------|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDD_ANA | 1          | Р    | Analog power output, decouple to neighboring GND                                                                                                                                 |
| GND     | 2          | Р    | Ground, decouple to neighboring VDD_ANA                                                                                                                                          |
| ANTP    | 3          | Α    | Differential antenna input/output                                                                                                                                                |
| ANTN    | 4          | Α    | Differential antenna input/output                                                                                                                                                |
| ANTP1   | 5          | Α    | Single-ended antenna output                                                                                                                                                      |
| GND     | 6          | Р    | Ground, decouple to neighboring VDD_ANA                                                                                                                                          |
| VDD_ANA | 7          | Р    | Analog power output, decouple to neighboring GND                                                                                                                                 |
| FILT    | 8          | Α    | Optional synthesizer filter                                                                                                                                                      |
| L2      | 9          | Α    | Optional synthesizer inductor                                                                                                                                                    |
| L1      | 10         | Α    | Optional synthesizer inductor                                                                                                                                                    |
| DATA    | 11         | I/O  | In wire mode: Data in-out/output Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor                                    |
| DCLK    | 12         | I/O  | In wire mode: Clock output Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor                                          |
| SYSCLK  | 13         | I/O  | Default functionality: Crystal oscillator (or divided) clock output Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor |
| SEL     | 14         | I    | Serial peripheral interface select                                                                                                                                               |
| CLK     | 15         | I    | Serial peripheral interface clock                                                                                                                                                |
| MISO    | 16         | 0    | Serial peripheral interface data output                                                                                                                                          |
| MOSI    | 17         | I    | Serial peripheral interface data input                                                                                                                                           |
| NC      | 18         | N    | Must be left unconnected                                                                                                                                                         |
| IRQ     | 19         | 0    | Default functionality: Transmit and receive interrupt Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor               |
| PWRAMP  | 20         | I/O  | Default functionality: Power amplifier control output Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor               |
| ANTSEL  | 21         | I/O  | Default functionality: Diversity antenna selection output Can be programmed to be used as a general purpose I/O pin Selectable internal 65 k $\Omega$ pull-up resistor           |
| NC      | 22         | N    | Must be left unconnected                                                                                                                                                         |
| VDD_IO  | 23         | Р    | Power supply 1.8 V – 3.6 V                                                                                                                                                       |
| NC      | 24         | N    | Must be left unconnected                                                                                                                                                         |
| GPADC1  | 25         | А    | GPADC input                                                                                                                                                                      |
| GPADC2  | 26         | А    | GPADC input                                                                                                                                                                      |
| CLK16N  | 27         | Α    | Crystal oscillator input/output                                                                                                                                                  |
| CLK16P  | 28         | А    | Crystal oscillator input/output                                                                                                                                                  |
| GND     | Center Pad | Р    | Ground on center pad of QFN, must be connected                                                                                                                                   |

A = analog signal

I = digital input signal

O = digital output signal

I/O = digital input/output signal

N = not to be connected

P = power or ground

All digital inputs are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible and 5 V tolerant.

#### **SPI Register Access**

Registers are accessed via a synchronous Serial Peripheral Interface (SPI). Most Registers are 8 bits wide and accessed using the waveforms as detailed in Figure 3. These waveforms are compatible to most hardware SPI master controllers, and can easily be generated in software. MISO changes on the falling edge of CLK, while MOSI is latched on the rising edge of CLK.



Figure 3. SPI 8bit Long Address Read/Write Access

The most important registers are at the beginning of the address space, i.e. at addresses less than 0x70. These

registers can be accessed more efficiently using the short address form, which is detailed in Figure 4.



Figure 4. SPI 8bit Read/Write Access

Some registers are longer than 8 bits. These registers can be accessed more quickly than by reading and writing individual 8 bit parts. This is illustrated in Figure 5. Accesses are not limited by 16 bits either, reading and writing data

bytes can be continued as long as desired. After each byte, the address counter is incremented by one. Also, this access form also works with long addresses.



Figure 5. SPI 16bit Read/Write Access

During the address phase of the access, the chip outputs the most important status bits. This feature is designed to speed up software decision on what to do in an interrupt

handler. The table below shows which register bit is transmitted during the status timeslots.

**Table 2. SPI STATUS BITS** 

| SPI Bit Cell | Status     | Register Bit                                                                                         |  |  |
|--------------|------------|------------------------------------------------------------------------------------------------------|--|--|
| 0            | -          | 1 (when transitioning out of deep sleep, this bit transitions from 0→1 when the power becomes ready) |  |  |
| 1            | S14        | PLL LOCK                                                                                             |  |  |
| 2            | S13        | FIFO OVER                                                                                            |  |  |
| 3            | S12        | FIFO UNDER                                                                                           |  |  |
| 4            | S11        | THRESHOLD FREE ( FIFO Free > FIFO threshold)                                                         |  |  |
| 5            | S10        | THRESHOLD COUNT (FIFO count > FIFO threshold)                                                        |  |  |
| 6            | S9         | FIFO FULL                                                                                            |  |  |
| 7            | S8         | FIFO EMPTY                                                                                           |  |  |
| 8            | <b>S</b> 7 | PWRGOOD (not BROWNOUT)                                                                               |  |  |
| 9            | S6         | PWR INTERRUPT PENDING                                                                                |  |  |
| 10           | S5         | RADIO EVENT PENDING                                                                                  |  |  |
| 11           | S4         | XTAL OSCILLATOR RUNNING                                                                              |  |  |

Table 2. SPI STATUS BITS (continued)

| SPI Bit Cell | Status | Register Bit             |  |  |
|--------------|--------|--------------------------|--|--|
| 12           | S3     | WAKEUP INTERRUPT PENDING |  |  |
| 13           | S2     | POSC INTERRUPT PENDING   |  |  |
| 14           | S1     | PADC INTERRUPT PENDING   |  |  |
| 15           | S0     | undefined                |  |  |

Note that bit cells 8–15 (S7...S0) are only available in two address byte SPI access formats.

#### Deep Sleep

The chip can be programmed into deep sleep mode. In deep sleep mode, the chip is completely switched off, which results in very low leakage power. All registers loose their programming.

To enter deep sleep mode, write the deep sleep encoding into bits 3:0 of PWRMODE. At the rising edge of the SEL line, the chip will enter deep sleep mode.

To exit deep sleep mode, lower the SEL line. This will initiate startup and reset of the chip. Then poll the MISO line. The MISO line will be held low during initialization, and will rise to high at the end of the initialization, when the chip becomes ready for further operation.

#### Address Space

The address space has been allocated as follows. Addresses from 0x000 to 0x06F are reserved for "dynamic registers", i.e. registers that are expected to be frequently accessed during normal operation, as they can be efficiently accessed using single address byte SPI accesses. Addresses from 0x070 to 0x0FF have been left unused (they could only be accessed using the two address byte SPI format). Addresses from 0x100 to 0x1FF have been reserved for physical layer parameter registers, for example receiver, transmitter, PLL, crystal oscillator. Adresses from 0x200 to 0x2FF have been reserved for medium access parameters, such as framing, packet handling. Addresses from 0x300 to 0x3FF have been reserved for special functions, such as GPADC.

#### **FIFO OPERATION**

The AX5043 features a 256 Byte FIFO. The same FIFO is used for both reception and transmission. During transmit, only the write port is accessible by the microcontroller. During receive, only the read port is accessible by the microcontroller. Otherwise, both ports are accessible through the register file.

In order to prevent transmitting premature data, the FIFO contains three pointers. Data is read at the read pointer, up to the write pointer. Data is written to the write ahead pointer. The write pointer is not updated when data is written, therefore, new data is not immediately visible to the consumer. Writing the COMMIT command to the FIFOSTAT register copies the write ahead pointer to the write pointer, thus making the written data visible to the

receiver. Writing the ROLLBACK command to the FIFOSTAT register sets the write ahead pointer to the write pointer, thus discarding data written to the FIFO. During transmit, this means that the transmitter will only consider data written to the FIFO after the commit command. During receive, this feature is used by the receiver to store packet data before it is known whether the CRC check passes. FIFOCOUNT reports the number of bytes that can be read without causing an underflow. FIFOFREE reports the number of bytes that can be written without causing an overflow. FIFOCOUNT and FIFOFREE do not add up to 256 Bytes whenever there are uncommitted bytes in the FIFO. Figure 6 illustrates this.



Figure 6. FIFO Pointer

#### **FIFO Chunk Encoding**

In order to distinguish meta-data (such as RSSI) from receive or transmit data, FIFO contents are organized as chunks. Chunks consist of a header that encodes the chunk length as well as the payload data format.

Each chunk starts with a single byte header. The header encodes the length of a chunk, and indicates the data it contains. The top 3 bits encode the length (or optionally refer to an additional length byte after the header byte), and the bottom 5 bits indicate what payload data the chunk contains. The following table lists the encoding of the length bits (top 3 bits of the first chunk header byte). Figure 7 shows the chunk header byte encoding.



Figure 7. FIFO Header byte Format

The following table lists the chunk payload size encoding:

Table 3. CHUNK PAYLOAD SIZE ENCODING

| Top Bits | Chunk Payload Size  |  |  |
|----------|---------------------|--|--|
| 000      | No payload          |  |  |
| 001      | Single byte payload |  |  |
| 010      | Two byte payload    |  |  |
| 011      | Three byte payload  |  |  |

Table 3. CHUNK PAYLOAD SIZE ENCODING (continued)

| Top Bits    | Chunk Payload Size                                                                                                                                                                                           |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 100         | Invalid                                                                                                                                                                                                      |  |  |  |
| 101 Invalid |                                                                                                                                                                                                              |  |  |  |
| 110         | Invalid                                                                                                                                                                                                      |  |  |  |
| 111         | Variable length payload; payload size is encoded in the following length byte the length byte is part of the header (and not included in length), everything after the length byte is included in the length |  |  |  |

The following table lists the chunk types and their encodings. The Hdr Byte column lists the complete FIFO Chunk Header Byte, consisting of the length and data format encodings.

**Table 4. CHUNK TYPES AND THEIR ENCODINGS** 

| Name          | Dir                | Hdr. Byte | Description  |
|---------------|--------------------|-----------|--------------|
|               |                    | 7–0       |              |
| No Payload Co | No Payload Command |           |              |
| NOP           | Т                  | 00000000  | No Operation |

#### One Byte Payload Commands

| RSSI   | R | 00110001 | RSSI                                  |
|--------|---|----------|---------------------------------------|
| TXCTRL | Т | 00111100 | Transmit Control (Antenna, Power Amp) |

#### **Two Byte Payload Commands**

| FREQOFFS | R | 01010010 | Frequency Offset                     |
|----------|---|----------|--------------------------------------|
| ANTRSSI2 | R |          | Background Noise<br>Calculation RSSI |

#### **Three Byte Payload Commands**

| REPEATDATA | Т | 01100010 | Repeat Data            |  |
|------------|---|----------|------------------------|--|
| TIMER      | R | 01110000 | Timer                  |  |
| RFFREQOFFS | R | 01110011 | RF Frequency Offset    |  |
| DATARATE   | R | 01110100 | Datarate               |  |
| ANTRSSI3   | R | 01110101 | Antenna Selection RSSI |  |

#### Variable Length Payload Commands

| DATA  | TR | 11100001 | Data           |  |
|-------|----|----------|----------------|--|
| TXPWR | Т  | 11111101 | Transmit Power |  |

Direction: T = Transmit, R = Receive

#### NOP Command

**Table 5. NOP COMMAND** 

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

The NOP command will be discarded without effect by the transmitter. The receiver will not generate NOP commands.

#### RSSI Command

**Table 6. RSSI COMMAND** 

| 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|------|---|---|---|---|---|---|---|--|
| 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| RSSI |   |   |   |   |   |   |   |  |

The RSSI command will only be generated by the receiver at the end of a packet if bit STRSSI is set in register PKTSTOREFLAGS. The encoding is the same as that of the RSSI register.

#### TXCTRL Command

**Table 7. TXCTRL COMMAND** 

| 7 | 6         | 5    | 4          | 3          | 2            | 1 | 0           |
|---|-----------|------|------------|------------|--------------|---|-------------|
| 0 | 0         | 1    | 1          | 1          | 1            | 0 | 0           |
| 0 | SETT<br>X | TXSE | TXDI<br>FF | SETA<br>NT | ANTS<br>TATE |   | PAST<br>ATE |

The TXCTRL command allows certain aspects of the transmitter to be changed on the fly. If SETTX is set, TXSE and TXDIFF are copied into the register MODCFGA. If SETANT is set, ANTSTATE is copied into register DIVERSITY. If SETPA is set, PASTATE is copied into register PWRAMP.

## FREQOFFS Command

**Table 8. FREQOFFS COMMAND** 

| 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|-----------------|--|--|--|--|--|--|--|--|--|
| 0 1 0 1 0 0 1 0 |  |  |  |  |  |  |  |  |  |
| FREQOFFS1       |  |  |  |  |  |  |  |  |  |
| FREQOFFS0       |  |  |  |  |  |  |  |  |  |

The FREQOFFS command will only be generated by the receiver at the end of a packet if bit STFOFFS is set in register PKTSTOREFLAGS. The encoding is the same as that of the TRKFREQ register.

#### ANTRSSI2 Command

**Table 9. ANTRSSI2 COMMAND** 

| 7 6 5 4 3 2 1 0 |           |  |  |  |  |  |  |  |  |  |
|-----------------|-----------|--|--|--|--|--|--|--|--|--|
| 0 1 0 1 0 1     |           |  |  |  |  |  |  |  |  |  |
| RSSI            |           |  |  |  |  |  |  |  |  |  |
|                 | BGNDNOISE |  |  |  |  |  |  |  |  |  |

The ANTRSSI2 command will be generated by the receiver when it is idle if bit STANTRSSI is set in register PKTSTOREFLAGS. If DIVENA is set in register DIVERSITY, the ANTRSSI3 command is generated instead. The encoding of the RSSI field is the same as that of the RSSI register. The BGNDNOISE field contains an estimate of the background noise.

#### REPEATDATA Command

**Table 10. REPEATDATA COMMAND** 

| 7 6 5 4 3 2 1 0                             |  |  |  |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                             |  |  |  |  |  |  |  |  |  |
| 0 0 UNENC RAW NOCRC RESIDUE PKTEND PKTSTART |  |  |  |  |  |  |  |  |  |
| REPEATCNT                                   |  |  |  |  |  |  |  |  |  |
| DATA                                        |  |  |  |  |  |  |  |  |  |

The REPEATDATA command allows the efficient transmission of repetitive data bytes. The DATA byte given in the payload is repeated REPEATCNT times. See DATA command for a description of the flag byte. This command is especially handy for constructing preambles.

TIMER Command

**Table 11. TIMER COMMAND** 

| 7               | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|--|--|--|
| 0 1 1 1 0 0 0 0 |                 |  |  |  |  |  |  |  |  |  |
| TIMER2          |                 |  |  |  |  |  |  |  |  |  |
| TIMER1          |                 |  |  |  |  |  |  |  |  |  |
| TIMER0          |                 |  |  |  |  |  |  |  |  |  |

The TIMER command will only be generated by the receiver at the start of a packet if bit STTIMER is set in register PKTSTOREFLAGS. The payload is a copy of the  $\mu$ s timer TIMER register. This command enables exact packet timing for example for frequency hopping systems.

RFFREQOFFS Command

**Table 12. RFFREQOFFS COMMAND** 

| 7               | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|--|--|--|--|
| 0 1 1 1 0 0 1 1 |                 |  |  |  |  |  |  |  |  |  |  |
| RFFREQOFFS2     |                 |  |  |  |  |  |  |  |  |  |  |
| RFFREQOFFS1     |                 |  |  |  |  |  |  |  |  |  |  |
|                 | RFFREQOFFS0     |  |  |  |  |  |  |  |  |  |  |

The RFFREQOFFS command will only be generated by the receiver at the end of a packet if bit STRFOFFS is set in register PKTSTOREFLAGS. The encoding is the same as that of the TRKRFFREQ register.

#### DATARATE Command

**Table 13. DATARATE COMMAND** 

| 7               | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|--|--|--|
| 0 1 1 1 0 1 0 0 |                 |  |  |  |  |  |  |  |  |  |
| DATARATE2       |                 |  |  |  |  |  |  |  |  |  |
| DATARATE1       |                 |  |  |  |  |  |  |  |  |  |
| DATARATE0       |                 |  |  |  |  |  |  |  |  |  |

The DATARATE command will only be generated by the receiver at the end of a packet if bit STDR is set in register PKTSTOREFLAGS. The encoding is the same as that of the TRKDATARATE register.

#### ANTRSSI3 Command

**Table 14. ANTRSSI3 COMMAND** 

| 0 1 1 1 0 1 0 1  ANTORSSI2  ANTORSSI0 | 7               | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|---------------------------------------|-----------------|-----------------|--|--|--|--|--|--|--|--|--|
| ANTORSSI1                             | 0 1 1 1 0 1 0 1 |                 |  |  |  |  |  |  |  |  |  |
|                                       | ANTORSSI2       |                 |  |  |  |  |  |  |  |  |  |
| ANTORSSI0                             | ANTORSSI1       |                 |  |  |  |  |  |  |  |  |  |
|                                       |                 |                 |  |  |  |  |  |  |  |  |  |

The ANTRSSI3 command will be generated by the receiver when it is idle if bit STANTRSSI is set in register PKTSTOREFLAGS. If DIVENA is not set in register DIVERSITY, the ANTRSSI2 command is generated instead. The encoding of the ANTORSSI and ANT1RSSI fields are the same as that of the RSSI register.

The BGNDNOISE field contains an estimate of the background noise.

#### DATA Command

The DATA command transports actual transmit and receive data. While the basic format is the same for transmit and receive, the semantics of the flag byte differs.

**Table 15. TRANSMIT DATA FORMAT** 

| 7                                           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|---------------------------------------------|---|---|---|---|---|---|---|--|
| 1                                           | 1 | 1 | 0 | 0 | 0 | 0 | 1 |  |
| LENGTH                                      |   |   |   |   |   |   |   |  |
| 0 0 UNENC RAW NOCRC RESIDUE PKTEND PKTSTART |   |   |   |   |   |   |   |  |
| DATA                                        |   |   |   |   |   |   |   |  |

LENGTH includes the flags byte as well as all DATA bytes.

Setting RAW to one causes the DATA to bypass the framing mode, but still pass through the encoder.

Setting UNENC to one causes the DATA to bypass the framing mode, as well as the encoder, except for inversion. UNENC has priority over RAW.

Setting NOCRC suppresses the generation of the CRC bytes.

Setting RESIDUE allows the transmission of a number of data bits that is not a multiple of eight. All but the last data byte are transmitted as if RESIDUE was not set. The last byte however contains only 7 bits or less. The transmitter looks for the highest bit set. This is considered the stop bit. Only bits below the stop bit are transmitted. If the MSBFIRST in register PKTADDRCFG is set, the algorithm

is reversed, i.e. the lowest bit set is considered the stop bit and bits above the stop bit are transmitted.

PKTSTART and PKTEND bits enable the transmission of packets that are larger than the FIFO size. If PKTSTART is set, the radio packet starts at the beginning of the DATA command payload. If PKTEND is set, the radio packet ends at the end of the DATA command payload. If PKTSTART is not set, this command is the continuation of a previous DATA command. If PKTEND is not set, the packet is continued with the next DATA command.

PKTSTART in RAW mode causes the DATA bytes to be aligned to DiBit boundaries in 4–FSK mode.

For example, to transmit 20 bits of an alternating 0-1 pattern as a preamble, the following bytes should be written to the FIFO (MSBFIRST = 0 in register PKTADDRCFG is assumed):

**Table 16. FIFO COMMAND** 

| 0xE1 | FIFO Command                                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------|
| 0x04 | Length Byte                                                                                                                     |
| 0x24 | Flag Byte: Unencoded, to ensure 0–1 remains 0–1, and Residue set, because the number of bits transmitted is not a multiple of 8 |
| 0xAA | Alternating 0–1 bits                                                                                                            |
| 0xAA | Alternating 0–1 bits                                                                                                            |
| 0x1A | Alternating 0–1 bits; Bit 4 is the "Stop" bit                                                                                   |

**Table 17. RECEIVE DATA FORMAT** 

| 7                                                         | 6      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|-----------------------------------------------------------|--------|---|---|---|---|---|---|--|--|
| 1                                                         | 1      | 1 | 0 | 0 | 0 | 0 | 1 |  |  |
|                                                           | LENGTH |   |   |   |   |   |   |  |  |
| 0 ABORT SIZEFAIL ADDRFAIL CRCFAIL RESIDUE PKTEND PKTSTART |        |   |   |   |   |   |   |  |  |
| DATA                                                      |        |   |   |   |   |   |   |  |  |

ABORT is set if the packet has been aborted. An ABORT sequence is a sequence of seven or more consecutive one bits when HDLC [1] framing is used. Note that if ACCPTABRT is not set in register PKTACCEPTFLAGS, then aborted packets are silently dropped.

SIZEFAIL is set if the packet does not pass the size checks. Size checks are implemented using the PKTLENCFG, PKTLENOFFSET and PKTMAXLEN registers. Note that if ACCPTSZF is not set in register PKTACCEPTFLAGS, then packets with an invalid size are silently dropped.

ADDRFAIL is set if the packet does not pass the address checks. Address checks are implemented using the

PKTADDRCFG, PKTADDR and PKTADDRMASK registers. Note that if ACCPTADDRF is not set in register PKTACCEPTFLAGS, then packets which do not match the programmed address are silently dropped.

CRCFAIL is set if the packet does not pass the CRC check. Note that if ACCPTCRCF is not set in register PKTACCEPTFLAGS, then packets which fail the CRC check are silently dropped.

RESIDUE, PKTEND and PKTSTART work identical as in transmit mode, see above.

The receiver generates chunks up to PKTCHUNKSIZE bytes. If PKTMAXLEN is larger than PKTCHUNKSIZE, multiple chunks may be generated for one packet. Since

CRC and size checks may only be performed at the end of the packet, only the last chunk can be dropped at failure of one of those tests. It is therefore important that the microcontroller receiver routine clears its receive buffer at the beginning of DATA commands whose PKTSTART bit is set, as the buffer may still contain bytes from erroneous packets.

TXPWR Command

**Table 18. TXPWR COMMAND** 

| 7 | 6                     | 5   | 4     | 3       | 2    | 1 | 0 |  |  |  |  |  |  |
|---|-----------------------|-----|-------|---------|------|---|---|--|--|--|--|--|--|
| 1 | .   .   .   .   .   . |     |       |         |      |   |   |  |  |  |  |  |  |
|   |                       |     | LENGT | H = 10  |      |   |   |  |  |  |  |  |  |
|   |                       | TX  | PWRCC | EFFA (7 | ':0) |   |   |  |  |  |  |  |  |
|   |                       | TXF | PWRCO | EFFA (1 | 5:8) |   |   |  |  |  |  |  |  |
|   |                       | TX  | PWRCO | EFFB (7 | ':0) |   |   |  |  |  |  |  |  |
|   |                       | TXF | PWRCO | EFFB (1 | 5:8) |   |   |  |  |  |  |  |  |
|   |                       | TX  | PWRCO | EFFC (7 | ':0) |   |   |  |  |  |  |  |  |
|   |                       | TXF | PWRCO | EFFC (1 | 5:8) |   |   |  |  |  |  |  |  |
|   |                       | TX  | PWRCO | EFFD (7 | ':0) |   |   |  |  |  |  |  |  |
|   |                       | TXF | WRCO  | EFFD (1 | 5:8) |   |   |  |  |  |  |  |  |
|   | TXPWRCOEFFE (7:0)     |     |       |         |      |   |   |  |  |  |  |  |  |
|   |                       | TXF | PWRCO | EFFE (1 | 5:8) |   |   |  |  |  |  |  |  |

The TXPWR command allows the transmit power to be changed on the fly. This command updates the TXPWRCOEFFA, TXPWRCOEFFB, TXPWRCOEFFC, TXPWRCOEFFD and TXPWRCOEFFE registers.

#### PROGRAMMING THE CHIP

#### **Power Modes**

To enable the lowest possible application power consumption, the AX5043 allows to shut down its circuits

when not needed. This is controlled by the PWRMODE register. Idd values are typical; for exact values, please refer to the AX5043 datasheet [2].

**Table 19. PWRMODE REGISTER STATES** 

| PWRMODE register | Name      | Description                                                                                          | Typical Idd |
|------------------|-----------|------------------------------------------------------------------------------------------------------|-------------|
| 0000             | POWERDOWN | Powerdown; all circuits powered down except for the register file                                    | 400 nA      |
| 0001             | DEEPSLEEP | Deep Sleep Mode; Chip is fully powered down until SEL is lowered again; looses all register contents | 50 nA       |
| 0101             | STANDBY   | Crystal Oscillator enabled                                                                           | 230 μΑ      |
| 0111             | FIFOON    | FIFO and Crystal Oscillator enabled                                                                  | 310 μΑ      |
| 1000             | SYNTHRX   | Synthesizer running, Receive Mode                                                                    | 5 mA        |
| 1001             | FULLRX    | Receiver Running                                                                                     | 7–11 mA     |
| 1011             | WORRX     | Receiver Wake-on-Radio Mode                                                                          | 500 nA      |
| 1100             | SYNTHTX   | Synthesizer running, Transmit Mode                                                                   | 5 mA        |
| 1101             | FULLTX    | Transmitter Running                                                                                  | 6–70 mA     |

The following list explains the typical programming flow. Preparation:

- 1. Reset the Chip. Set SEL to high for at least 1μs, then low. Wait until MISO goes high. Set, and then clear, the RST bit of register PWRMODE.
- 2. Set the PWRMODE register to POWERDOWN.
- 3. Program parameters. It is recommended that suitable parameters are calculated using the AX\_RadioLab tool available from Axsem.
- 4. Perform auto-ranging, to ensure the correct VCO range setting.

The chip is now ready for transmit and receive operations.

## FIFO Power Management

The FIFO is powered down during POWERDOWN and DEEPSLEEP modes (Register PWRMODE). The FIFO EMPTY and FIFO FULL bits (Register FIFOSTAT), as well as the FIFOCOUNT and FIFOFREE registers read zero. Reads from the FIFO will return undefined data, and writes to the FIFO will be lost.

In the receive case, the FIFO is automatically powered on when the chip PWRMODE is set to FULLRX. The FIFO should be emptied before the PWRMODE is set to POWERDOWN. In Wake-on-radio or POWERDOWN mode, the FIFO is automatically kept powered until it is emptied by the microprocessor.

In the transmit case, PWRMODE should first be set to FULLTX. Before writing to the FIFO, the microprocessor must ensure that the SVMODEM bit is high in Register POWSTAT, to ensure that the on-chip voltage regulator supplying the FIFO has finished starting up. The transmitter remains idle until the contents of the FIFO are committed (unless the FIFO AUTO COMMIT bit is set in Register FIFOSTAT).

#### Autoranging

Whenever the frequency changes, the synthesizer VCO should be set to the correct range using the built-in autoranging. A re-ranging of the VCO is required if the frequency change required is larger than 5 MHz in the 868/915 MHz band or 2.5 MHz in the 433 MHz band. Each individual chip must be auto-ranged. If both frequency register sets FREQA and FREQB are used, then both frequencies must be auto-ranged by first starting auto-ranging in PLLRANGINGA, waiting for its completion, followed by starting auto-ranging in PLLRANGINGB and waiting for its completion.

Figure 8 shows the flow chart of the auto-ranging process.



Figure 8. Autoranging Flow Chart

Before starting the auto-ranging, the appropriate frequency registers (FREQA3, FREQA2, FREQA1 and FREQA0 or FREQB3, FREQB2, FREQB1 and FREQB0) need to be programmed. Auto-ranging starts at the VCOR (register PLLRANGINGA or PLLRANGINGB) setting; if you already know the approximately correct synthesizer VCO range, you should set VCORA/VCORB to this value prior to starting auto-ranging; this can speed up the ranging process considerably. If you have no prior knowledge about the correct range, set VCORA/VCORB to 8. Starting with VCORA/VCORB < 6 should be avoided, as the initial synthesizer frequency can exceed the maximum frequency specification.

Hardware clears the RNG START bit automatically as soon as the ranging is finished; the device may be programmed to deliver an interrupt on resetting of the RNG START bit.

Waiting until auto-ranging terminates can be performed by either polling the register PLLRANGINGA or PLLRANGINGB for RNG START to go low, or by enabling the IRQMPLLRNGDONE interrupt in register IRQMASK1.

## **Choosing the Fundamental Communication Characteristics**

The following table lists the fundamental communication characteristics that need to be chosen before the device can be programmed.

**Table 20. FUNDAMENTAL COMMUNICATION CHARACTERISTIC** 

| Parameter            | Description                                                                                                                                                                                                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f <sub>XTAL</sub>    | Frequency of the connected crystal in Hz                                                                                                                                                                                                                                                                            |
| modulation           | FSK, MSK, OQPSK, 4–FSK or AFSK (for recommendations see below)                                                                                                                                                                                                                                                      |
| f <sub>CARRIER</sub> | Carrier frequency (i.e. center frequency of the signal) in Hz                                                                                                                                                                                                                                                       |
| BITRATE              | Desired bit rate in bit/s                                                                                                                                                                                                                                                                                           |
| h                    | Modulation index, determines the frequency deviation for FSK $32 > h \ge 0.5$ for FSK, $4$ –FSK or AFSK, $f_{deviation} = 0.5 * h * BITRATE$ $h = 0.5$ for MSK and OQPSK (For AFSK, $f_{deviation}$ is usually set according to the FM channel specification. For 25 kHz channels, it is often approximately 3 kHz) |
| encoding             | Inversion, differential, manchester, scrambled, for recommendations see the description of the register ENCODING.                                                                                                                                                                                                   |

The following table gives an overview of the trade-offs between the different modulations that AX5043 offers, they should be considered when making a choice.

Table 21. TRADE-OFFS BETWEEN THE DIFFERENT MODULATION

| Modulation        | Trade-offs                               |
|-------------------|------------------------------------------|
| f <sub>XTAL</sub> | Frequency of the connected crystal in Hz |
| FSK               | For bit rates up to 125 kbit/s           |
|                   | Frequency deviation is a free parameter  |

Table 21. TRADE-OFFS BETWEEN THE DIFFERENT MODULATION (continued)

| Modulation | Trade-offs                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSK        | For bit rates up to 125 kbit/s Robust and spectrally efficient form of FSK (Modulation is the same as FSK with h = 0.5) Frequency deviation given by bit rate The advantage of MSK over FSK is that it can be demodulated with higher sensitivity. Slightly longer preambles required than for FSK                                                                                                     |
| OQPSK      | For bit rates up to 125 kbit/s Very similar to MSK, with added precoding / postdecoding For new designs, use MSK instead                                                                                                                                                                                                                                                                               |
| PSK        | For bit rates up to 125 kBit/s Spectrally efficient and high sensitivity Very accurate frequency reference (maximum carrier frequency deviation ±1/4 · BITRATE) and long preambles required                                                                                                                                                                                                            |
| 4-FSK      | For bit rates up to 100 kSymbols/s, or 200 kbit/s Similar to FSK, but four frequencies are used to transmit 2 bits simultaneously Very slightly more spectrally efficient compared to FSK ((1 + 3 h/2) · BITRATE versus (1 + h) · BITRATE) for small h.  Longer preambles required as frequency offset estimation needs to be more precise to successfully demodulate For new designs, use FSK instead |
| AFSK       | For bit rates up to 25 kbit/s Bits are FSK modulated in the audio band, then frequency modulated on the carrier frequency. For legacy compatibility applications only.                                                                                                                                                                                                                                 |

Given these fundamental physical layer parameters, AX\_RadioLab should be used to compute the register settings of the AX5043.

#### **Framing**

Figure 1 shows the block diagram of the AX5043. After the user writes a transmit packet into the FIFO, the Radio Controller sequences the transmitter start-up, and signals the Packet Controller to read the packet from the FIFO and add framing bits, allowing the receiver to lock to the transmit waveform, and to detect packet and byte boundaries. If MSB first is selected (register PKTADDRCFG), then the bits within each byte are swapped when the data is read out from the FIFO.

The Packet Controller also (optionally) adds cyclic redundancy check bits at the end of the packet, to enable the receiver to detect transmission errors. Both 16 and 32 Bit CRC can be selected, as well as different generator polynomials. The CRC polynomial can be selected in register FRAMING. The following polynomials are supported:

• CRC-CCITT (16bit):

$$x^{16} + x^{12} + x^5 + 1$$
 (hexadecimal: 0x1021)

• CRC-16 (16bit):

$$x^{16} + x^{15} + x^2 + 1$$
 (hexadecimal: 0x8005)

• CRC-DNP (16bit):

$$x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^{8} + x^{6} + x^{5} + x^{2} + 1$$
 (hexadecimal: 0x3D65)

This polynomial is used for Wireless M-Bus.

• CRC-32 (32bit):

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$
 (hexadecimal: 0x04C11DB7)

The CRC is always transmitted MSB first regardless of the MSB first setting of register PKTADDRCFG, to enable the receiver to process CRC bits as they arrive (otherwise, they would have to be stored and reordered). For an in-depth guide on how CRC's are computed, see [3].

Finally, the encoder is able to perform certain bit-wise operations on the bit-stream:

• Manchester:

Manchester transmits a one bit as 10 and a zero bit as 01, i.e. it doubles the data rate on the radio channel. Its advantage is that the resulting bit-stream has many transitions and thus simplifies synchronizing to the transmission on the receiver side. The downside is that it now requires twice the amount of energy for the transmission. Manchester is not recommended, except for compatibility with legacy systems.

• Scrambler:

The scrambler ensures that even highly regular transmit data results in a seemingly random transmitted bit-stream. This avoids discrete tones in the spectrum. Do not confuse the scrambler with encryption – it does not provide any secrecy, its actions are easily reversed. Its use is recommended.

• Differential:

Differential transmits zero bits as constant level, and one bits as level change. This allows to accommodate modulations that can invert the bit-stream, such as PSK. It is available for compatibility with other Axsem transceivers, but usually not used on the AX5043.

#### • Inversion:

If on, the bit-stream is inverted. Useful for example for compatibility with legacy systems, such as POCSAG, which differ from the usual convention that the higher FSK frequency signifies a one.

The encoder is controlled using the register ENCODING. It may be temporarily bypassed *except for the inversion* by setting the UNENC bit of the FIFO chunks DATA or REPEATDATA. This is useful for synthesizing preambles.

The receiver performs these tasks in reverse order.

#### **Transmitter**

Figure 9 shows the transmitter flow chart. The microprocessor first places the chip into FULLTX mode. This prepares the chip for a future transmission, enables the FIFO in transmit direction, but does not yet power-up the synthesizer or any other transmit circuitry.

The microprocessor can now write the preamble and the actual packet to the FIFO. The preamble is programmable to allow standards to be implemented that specify a specific preamble to be used. Otherwise, the recommendations for preambles can be found below.

Waiting for the crystal oscillator to start up may be performed by polling the register XTALSTATUS, or by enabling the IRQMXTALREADY interrupt in register IRQMASK1.

After the FIFO contents are committed (writing the Commit command to the FIFOSTAT register), the transmitter notices that the FIFO is no longer empty. It then powers up the synthesizer and settles it (registers TMGTXBOOST and TMGTXSETTLE determine the timing). The Preamble and the Packet(s) are then transmitted, followed by the transmitter and synthesizer shut-down.

The transmitter is automatically ramped up and down smoothly, to prevent unwanted spurious emissions. The ramp time is normally one bit time, but may be longer by changing the SLOWRAMP field of register MODCFGA.

The PWRMODE register should stay at FULLTX until the transmission is fully completed. The end of the transmission may be determined by polling the register RADIOSTATE until it indicates idle, or by enabling the radio controller interrupt (bit IRQMRADIOCTRL) in register IRQMASKO and setting the radio controller to signal an interrupt at the end of transmission (bit REVMDONE of register RADIOEVENTMASKO).



Figure 9. Transmitter Flow Chart

#### Recommended Preamble

The main purpose of the preamble is to allow for the receiver to acquire vital transmission parameters before the actual packet data starts. The minimum duration of the preamble is dependent on how much time the receiver needs to acquire these parameters to sufficient precision. More specifically, it depends on:

- The time needed for the receiver adaptive gain control (AGC) to acquire the signal strength.
- The time needed for the receiver to acquire the maximum possible frequency offset (registers MAXRFOFFSET0, MAXRFOFFSET1 and MAXRFOFFSET2).
- The time needed for the receiver to acquire the maximum possible data rate offset (registers MAXDROFFSET0, MAXDROFFSET1 and MAXDROFFSET2).
- The time needed for the receiver to acquire the exact bit sampling time (registers TIMEGAIN0, TIMEGAIN1, TIMEGAIN2 and TIMEGAIN3).
- The time needed to acquire the actual frequency deviation in 4–FSK mode (registers FSKDMAX0, FSKDMAX1, FSKDMIN0 and FSKDMAX0).

On the AX5043, these loops run in parallel. An AGC that is significantly off however causes the received signal to fall outside the IF strip dynamic range, and thus prevents the other loops from working. And a frequency offset that is compensated insufficiently causes the received signal to fall (partially) outside the IF filter, thus also preventing the timing and 4–FSK loops from working.

The minimum possible preamble duration can be achieved under the following conditions:

• Use a transmitter with a sufficiently precise bit timing. If the maximum deviation of the transmitter data rate from the receiver data rate is less than approximately 0.1%, then the data rate acquisition loop should be switched off completely (setting registers

MAXDROFFSET0, MAXDROFFSET1 and MAXDROFFSET2 to zero). The AX5043 is able to track the remaining small offset without the data rate offset loop. All Axsem transmitters derive the bit rate timing from the crystal reference and can therefore easily meet this requirement.

- Use an FSK frequency deviation that is larger than the maximum frequency offset between transmitter and receiver. In this case, receiver frequency offset acquisition is not needed. Do not use 4–FSK.
- Use the AX5043 receiver parameter set feature, below.

Finally, the frame synchronization word achieves byte synchronization.

The recommended preamble bit pattern is now discussed. If the standard to be implemented requires a specific preample, use it.

In FEC mode, HDLC [1] flags (pattern 01111110) must be transmitted. The convolutional encoder ensures enough bit transitions, and the AX5043 receiver needs flags to synchronize its interleaver.

If the *scrambler* or *manchester* is enabled, send RAW bytes 00010001. The scrambler or manchester encoder ensure enough transitions to acquire the bit timing.

In 4–FSK mode, send UNENCODED bytes 00010001. This ensures that the preamble toggles between the highest and the lowest frequency. The frequent transitions ensure the bit timing is acquired as quickly as possible, and the maximum and minimum frequencies allow the deviation to be acquired.

Otherwise, use UNENCODED 01010101. This preamble ensures the maximum number of transitions for bit timing synchronization. This preamble could also be used with the scrambler enabled; the main purpose of the scrambler is however to ensure no spectral lines (tones), this would be defeated by this preamble.

If MSBFIRST in register PKTADDRCFG is set, then the preamble sequences should be reversed.

#### Receiver

Figure 10 shows the receiver flow chart. When the microprocessor places the chip into FULLRX mode, the AX5043 immediately powers up the synthesizer, settles it

(registers TMGRXBOOST and TMGRXSETTLE determine the timing) and starts receiving. The reception continues until the microprocessor changes the PWRMODE register.



Figure 10. Receiver Flow Chart

If antenna diversity is enabled, the AX5043 continuously switches between the antennas (controlled by the ANTSEL pin) to find the antenna with the better signal strength, until a valid preamble is detected. Antenna scanning is resumed after a packet is completed.

Actual packet data in the FIFO may be preceded and followed by meta-data. Meta-data may be a time stamp at the beginning of the packet, and signal strength, frequency offset and data rate offset at the end of the packet. Which meta-data is written to the FIFO is controlled by the register PKTSTOREFLAGS.

Wake-on-Radio mode allows the AX5043 to periodically poll the radio channel for a transmission while using only very little power. Figure 11 shows the wake-on-radio flow



Figure 11. Wake-on-Radio Receiver Flow Chart

chart. The AX5043 periodically wakes up. The wake-up is controlled by the on-chip low-power 640 Hz/10 kHz RC oscillator and the period is programmed using the WAKEUPFREQ1 and WAKEUPFREQ0 registers.

After waking up, the AX5043 quickly settles the AGC and computes the channel RSSI. If it is below an absolute threshold (register RSSIABSTHR) and a dynamic threshold (register BGNDRSSITHR), it is switched off immediately. Otherwise, it looks for a valid preamble. If none is found within a preprogrammed time (registers TMGRXPREAMBLE1 and TMGRXPREAMBLE2), the receiver is powered down. Otherwise, it continues to receive the packet.

If a packet is successfully received, the receiver may either be shut down again, or continue to run if WORMULTIPKT is set in register PKTMISCFLAGS.

In Wake-on-Radio mode, the AX5043 is completely autonomous until a packet is received. The microprocessor may be shut down and only wake up once the FIFO is no longer empty (IRQMFIFONOTEMPTY interrupt in register IRQMASK0).

#### Receiver State Machine

Figure 12 shows the receiver timing diagram. The actions in the first two lines are time controlled. The arrows below indicate which register controls the timing. The actions colored in a darker shade of blue are only performed when diversity mode is enabled (DIVENA is set in register DIVERSITY). The actions in the last line are detailed in the state diagram Figure 13.

SYNTHBOOST and SYNTHSETTLE form the two stage procedure to settle the synthesizer on the first LO frequency. During SYNTHBOOST, the synthesizer is operated at a higher loop bandwidth (register PLLLOOPBOOST), while during SYNTHSETTLE, the final settling is done at the nominal, lower noise, loop bandwidth (register PLLLOOP).

IFINIT settles the IF strip. COARSEAGC uses a fast AGC time constant to quickly settle the AGC to a value close to the correct one. This is especially important during wake-on-radio, as it is desirable to keep the receiver powered the shortest possible time to save power. AGC settles the AGC using a slower time constant. RSSI measures the received signal strength. This value is then used to determine whether the receiver should be kept running in wake-on-radio, or to select the antenna with the stronger signal in diversity mode.



Figure 12. Transmitter Flow Chart

Once the receiver is initialized, PREAMBLE1, PREAMBLE2, PREAMBLE3, and PACKET coordinate the reception of packets. The receiver contains several loops that acquire and track transmission parameters the receiver needs to know in order to correctly receive a packet.

- The AGC acquires and tracks the signal strength
- The frequency tracking loop acquires and tracks the frequency offset
- The timing and data rate tracking loop acquires and tracks the sampling time and the data rate offset

The bandwidth of these loops is programmable. The bandwidth controls the acquisition time as well as the

noisiness of the parameter estimates. In order to allow both fast acquisition to enable short preambles and low steady state noise performance to enable high receiver sensitivity, the receiver supports multiple acquisition and tracking loop parameter sets. When the receiver searches for a transmission signal, it uses wide loop bandwidths. Once it detects a preamble with sufficient probability, it switches to a lower loop bandwidth. Once a frame start is detected, it switches to an even lower loop bandwidth. Figure 13 shows the state diagram that controls which receiver parameter set is used.



Figure 13. Receiver State Diagram

Conditions are evaluated in priority order. The priority number is given in parentheses at the beginning of arrow labels.

In order to reduce the number of registers that need to be programmed if not all parameter sets are different, the parameter set number of Figure 13 is not directly used to address the parameter set. Instead, it indexes into register RXPARAMSETS, where the actual parameter set number is read out.

### **Low Power Oscillator Calibration**

The low power oscillator is used to control the wake-up frequency, or polling period, during wake-on-radio mode. In

order to increase the precision of the wake-up frequency, calibration logic allows the low power oscillator to be calibrated against the crystal oscillator or TCXO.

Figure 14 shows a block diagram of the calibration logic. It works similarly to a PLL. The reference frequency from the crystal or TCXO is divided by the value of the LPOSCREF register. This signal is then compared to the actual frequency of the Low Power Oscillator. The frequency difference is then low pass filtered (LPOSCKFILT register) and used to adjust the Low Power Oscillator frequency (LPOSCFREQ register).



Figure 14. Low Power Oscillator Calibration Logic

When enabled (LPOSCCALIBR or LPOSCCALIBF enabled in register LPOSCCONFIG), the calibration logic is only activated when the crystal oscillator or TCXO is

enabled as well. This allows "opportunistic" calibration – the Low Power Oscillator is calibrated whenever the reference frequency is enabled.

#### **Auxiliary DAC**

The AX5043 contains an auxiliary DAC. It can be used to output various receiver signals, such as RSSI or Frequency Offset, or just a value under program control. The DAC signal can be output either on the PWRAMP or ANTSEL pad.

The DAC may be operated in two modes.  $\Sigma\Delta$  mode employs a digital modulator to output a high resolution signal. Its output voltage range is  $\frac{1}{4}$  VDDIO to  $\frac{3}{4}$  VDDIO for a DACVALUE range from -2048 to 2047.

PWM mode outputs a pulse width modulated signal. It is only suitable for low frequency signals. Its output voltage range is 0 to VDDIO for a DACVALUE range from -2048 to 2047.



Figure 15. DAC RC Filter

A low pass filter, such as a simple R-C filter as shown in Figure 15, must be used to obtain the analog voltage.



Figure 16. DAC Signal Scaling

Figure 16 shows the DAC Signal scaling. DACINPUT in register DACCONFIG selects the source signal. The input signals are left aligned to 24 bits and padded with zeros. A signed shifter then shifts the selected value to the right by 0 to 15 digits as selected by the lower four bits of the DACVALUE register. The signal is then limited to the DAC

value range of  $-2^{11}...2^{11}-1$ . This signal is then sent to the DAC core. Note that if DACVALUE is selected as input, the register value is directly sent to the DAC, the shifter is not used. In fact, DACVALUE and DACSHIFT share the same register bits.

## **REGISTER OVERVIEW**

#### **Table 22. CONTROL REGISTER MAP**

| Addr    |                        | <u>-</u> |     | I EK IVIA |              |             |        | Bit              | •            |               |                |                            |                                       |
|---------|------------------------|----------|-----|-----------|--------------|-------------|--------|------------------|--------------|---------------|----------------|----------------------------|---------------------------------------|
| Hex     | Name                   | Dir      | R   | Reset     | 7            | 6           | 5      | 4                | 3            | 2             | 1              | 0                          | Description                           |
|         | on & Interface Probing |          | K   | Reset     |              |             |        | 1 -              |              |               | <u>'</u>       | Ů                          | Description                           |
| 000     | REVISION               | R        | R   | 01010001  | SILICONRE    | =\//7:0\    |        |                  |              |               |                |                            | Silicon Revision                      |
|         |                        | RW       | R   |           |              |             |        |                  |              |               |                |                            |                                       |
| 001     | SCRATCH                | RW       | К   | 11000101  | SCRATCH(     | (7:0)       |        |                  |              |               |                |                            | Scratch Register                      |
| 1       | ting Mode              | D.44     |     | I         | Бот          | DESEN       | VOEN   | Luros            | DIAKDAGON    | -(0,0)        |                |                            |                                       |
| 002     | PWRMODE                | RW       | R   | 011-0000  | RST          | REFEN       | XOEN   | WDS              | PWRMODE      | =(3:0)        |                |                            | Power Mode                            |
| _       | e Regulator            | Ι_       | I _ | 1         | I            | T           | I      | T                | I            | I             | I              | 1                          |                                       |
| 003     | POWSTAT                | R        | R   |           | SSUM         | SREF        | SVREF  | SVANA            | SV<br>MODEM  | SBE<br>VANA   | SBEV<br>MODEM  | SVIO                       | Power<br>Management<br>Status         |
| 004     | POWSTICKYSTAT          | R        | R   |           | SSSUM        | SSREF       | SSVREF | SSVANA           | SSV<br>MODEM | SS<br>BEVANA  | SSBEV<br>MODEM | SSVIO                      | Power<br>Management<br>Sticky Status  |
| 005     | POWIRQMASK             | RW       | R   | 00000000  | MPWR<br>GOOD | MSREF       | MSVREF | MS VANA          | MSV<br>MODEM | MS<br>BE VANA | MSBEV<br>MODEM | MSVIO                      | Power<br>Management<br>Interrupt Mask |
| Interru | pt Control             |          |     |           |              |             |        |                  |              |               |                |                            |                                       |
| 006     | IRQMASK1               | RW       | R   | 00000     | -            | -           | -      | IRQMASK(         | 12:8)        |               |                |                            | IRQ Mask                              |
| 007     | IRQMASK0               | RW       | R   | 00000000  | IRQMASK(     | 7:0)        |        |                  |              |               | IRQ Mask       |                            |                                       |
| 008     | RADIOEVENTMAS<br>K1    | RW       | R   | 0         | -            | _           | -      | -                | -            | -             | -              | RADIO<br>EVENT<br>MASK (8) | Radio Event<br>Mask                   |
| 009     | RADIOEVENTMAS<br>K0    | RW       | R   | 00000000  | RADIO EVI    | ENT MASK (7 | 7:0)   |                  |              |               |                |                            | Radio Event<br>Mask                   |
| 00A     | IRQINVERSION1          | RW       | R   | 00000     | -            | -           | -      | IRQINVER         | SION (12:8)  |               |                |                            | IRQ Inversion                         |
| 00B     | IRQINVERSION0          | RW       | R   | 00000000  | IRQINVER     | SION (7:0)  |        |                  |              |               |                |                            | IRQ Inversion                         |
| 00C     | IRQREQUEST1            | R        | R   |           | -            | -           | -      | IRQREQUE         | EST (12:8)   |               |                |                            | IRQ Request                           |
| 00D     | IRQREQUEST0            | R        | R   |           | IRQREQUE     | EST (7:0)   |        |                  |              |               |                |                            | IRQ Request                           |
| 00E     | RADIOEVENTREQ<br>1     | R        |     |           | -            | -           | -      | -                | -            | -             | -              | RADIO<br>EVENT<br>REQ(8)   | Radio Event<br>Request                |
| 00F     | RADIOEVENTREQ<br>0     | R        |     |           | RADIO EVI    | ENT REQ (7: | 0)     |                  |              |               |                |                            | Radio Event<br>Request                |
| Modula  | ation & Framing        |          |     |           |              |             |        |                  |              |               |                |                            |                                       |
| 010     | MODULATION             | RW       | R   | 01000     | -            | -           | -      | RX HALF<br>SPEED | MODULAT      | ION(3:0)      |                |                            | Modulation                            |
| 011     | ENCODING               | RW       | R   | 00010     | -            | -           | -      | ENC<br>NOSYNC    | ENC<br>MANCH | ENC<br>SCRAM  | ENC<br>DIFF    | ENC INV                    | Encoder/Decoder<br>Settings           |
| 012     | FRAMING                | RW       | R   | -0000000  | FRMRX        | CRCMODE     | (2:0)  |                  | FRMMODE      | (2:0)         |                | FABORT                     | Framing settings                      |
| 014     | CRCINIT3               | RW       | R   | 11111111  | CRCINIT (3   | 31:24)      |        |                  |              |               |                |                            | CRC Initialisation<br>Data            |
| 015     | CRCINIT2               | RW       | R   | 11111111  | CRCINIT (2   | 23:16)      |        |                  |              |               |                |                            | CRC Initialisation<br>Data            |
| 016     | CRCINIT1               | RW       | R   | 11111111  | CRCINIT (1   | 15:8)       |        |                  |              |               |                |                            | CRC Initialisation<br>Data            |
| 017     | CRCINIT0               | RW       | R   | 11111111  | CRCINIT (7   | 7:0)        |        |                  |              |               |                |                            | CRC Initialisation<br>Data            |

| Addr   |                     |     |   |          |              |                |                  | Bi              | t            |               |              |                           |                                                   |
|--------|---------------------|-----|---|----------|--------------|----------------|------------------|-----------------|--------------|---------------|--------------|---------------------------|---------------------------------------------------|
| Hex    | Name                | Dir | R | Reset    | 7            | 6              | 5                | 4               | 3            | 2             | 1            | 0                         | Description                                       |
| Forwa  | rd Error Correction | ı   |   |          |              |                |                  |                 |              |               |              |                           |                                                   |
| 018    | FEC                 | RW  | R | 00000000 | SHORT<br>MEM | RSTVI<br>TERBI | FEC NEG          | FEC POS         | FECINPSH     | IIFT (2:0)    |              | FEC ENA                   | FEC (Viterbi)<br>Configuration                    |
| 019    | FECSYNC             | RW  | R | 01100010 | FECSYNC      | (7:0)          |                  |                 |              |               |              | •                         | Interleaver<br>Synchronisation<br>Threshold       |
| 01A    | FECSTATUS           | R   | R |          | FEC INV      | MAXMETRI       | C (6:0)          |                 |              |               |              |                           | FEC Status                                        |
| Status |                     |     |   |          |              |                |                  |                 |              |               |              |                           |                                                   |
| 01C    | RADIOSTATE          | R   | - | 0000     | -            | -              | _                | -               | RADIOSTA     | TE (3:0)      |              | Radio Controller<br>State |                                                   |
| 01D    | XTALSTATUS          | R   | R |          | -            | _              | _                | _               | -            | -             | -            | XTAL<br>RUN               | Crystal Oscillator<br>Status                      |
| Pin Co | nfiguration         |     |   |          |              |                |                  |                 |              |               |              |                           |                                                   |
| 020    | PINSTATE            | R   | R |          | -            | _              | PS PWR<br>AMP    | PS ANT<br>SEL   | PS IRQ       | PS DATA       | PS DCLK      | PS SYS<br>CLK             | Pinstate                                          |
| 021    | PINFUNCSYSCLK       | RW  | R | 001000   | PU<br>SYSCLK | _              | _                | PFSYSCL         | (4:0)        |               |              | SYSCLK Pin<br>Function    |                                                   |
| 022    | PINFUNCDCLK         | RW  | R | 00100    | PU DCLK      | PI DCLK        | _                | -               | -            | PFDCLK (2     | 2:0)         | DCLK Pin<br>Function      |                                                   |
| 023    | PINFUNCDATA         | RW  | R | 10111    | PU DATA      | PI DATA        | _                | _               | -            | PFDATA (2     | t:0)         |                           | DATA Pin<br>Function                              |
| 024    | PINFUNCIRQ          | RW  | R | 00011    | PU IRQ       | PI IRQ         | -                | -               | -            | PFIRQ (2:0    | ))           |                           | IRQ Pin Function                                  |
| 025    | PINFUNCANTSEL       | RW  | R | 00110    | PU<br>ANTSEL | PI<br>ANTSEL   | _                | _               | -            | PFANTSEL      | _ (2:0)      |                           | ANTSEL Pin<br>Function                            |
| 026    | PINFUNCPWRAMP       | RW  | R | 000110   | PU<br>PWRAMP | PI<br>PWRAMP   | _                | _               | PFPWRAM      | 1P(3:0)       |              |                           | PWRAMP Pin<br>Function                            |
| 027    | PWRAMP              | RW  | R | 0        | -            | -              | -                | -               | -            | -             | -            | PWRAMP                    | PWRAMP Control                                    |
| FIFO   |                     |     |   |          |              |                |                  |                 |              |               |              |                           |                                                   |
| 028    | FIFOSTAT            | R   | R | 0        | FIFO<br>AUTO | -              | FIFO FREE<br>THR | FIFO<br>CNT THR | FIFO<br>OVER | FIFO<br>UNDER | FIFO<br>FULL | FIFO<br>EMPTY             | FIFO Control                                      |
|        |                     | W   |   |          | COMMIT       | -              | FIFOCMD (5       | :0)             |              |               |              |                           |                                                   |
| 029    | FIFODATA            | RW  |   |          | FIFODATA     | (7:0)          |                  | FIFO<br>Data    |              |               |              |                           |                                                   |
| 02A    | FIFOCOUNT1          | R   | R | 0        | -            | -              | -                | -               | -            | -             | -            | FIFO<br>COUNT<br>(8)      | Number of Words currently in FIFO                 |
| 02B    | FIFOCOUNT0          | R   | R | 00000000 | FIFOCOUN     | IT (7:0)       |                  |                 |              | •             |              |                           | Number of Words currently in FIFO                 |
| 02C    | FIFOFREE1           | R   | R | 1        | -            | _              | -                | -               | -            | -             | -            | FIFO<br>FREE(8)           | Number of Words<br>that can be<br>written to FIFO |
| 02D    | FIFOFREE0           | R   | R | 00000000 | FIFOFREE     | (7:0)          |                  |                 |              |               |              |                           | Number of Words<br>that can be<br>written to FIFO |
| 02E    | FIFOTHRESH1         | RW  | R | 0        | -            | -              | -                | -               | -            | -             | -            | FIFO<br>THRESH<br>(8)     | FIFO Threshold                                    |
| 02F    | FIFOTHRESH0         | RW  | R | 00000000 | FIFOTHRE     | SH (7:0)       |                  |                 |              |               |              |                           | FIFO Threshold                                    |

| Addr   |              |     |   |          | Bit            |                     |         |              |           |                            |           |         |                                          |  |
|--------|--------------|-----|---|----------|----------------|---------------------|---------|--------------|-----------|----------------------------|-----------|---------|------------------------------------------|--|
| Hex    | Name         | Dir | R | Reset    | 7              | 6                   | 5       | 4            | 3         | 2                          | 1         | 0       | Description                              |  |
| Synthe | esizer       |     |   |          |                |                     |         |              |           | •                          |           |         |                                          |  |
| 030    | PLLLOOP      | RW  | R | 01001    | FREQB          | -                   | -       | -            | DIRECT    | FILT EN                    | FLT (1:0) |         | PLL Loop Filter<br>Settings              |  |
| 031    | PLLCPI       | RW  | R | 00001000 | PLLCPI         |                     |         | •            | •         |                            | •         |         | PLL Charge<br>Pump Current<br>(Boosted)  |  |
| 032    | PLLVCODIV    | RW  | R | -000-000 | -              | VCOI<br>MAN         | VCO2INT | VCOSEL       | -         | RFDIV                      | REFDIV (1 | :0)     | PLL Divider<br>Settings                  |  |
| 033    | PLLRANGINGA  | RW  | R | 00001000 | STICKY<br>LOCK | PLL Autoranging     |         |              |           |                            |           |         |                                          |  |
| 034    | FREQA3       | RW  | R | 00111001 | FREQA (31      | FREQA (31:24)       |         |              |           |                            |           |         |                                          |  |
| 035    | FREQA2       | RW  | R | 00110100 | FREQA (23      | 3:16)               |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 036    | FREQA1       | RW  | R | 11001100 | FREQA (15      | FREQA (15:8)        |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 037    | FREQA0       | RW  | R | 11001101 | FREQA (7:      | 0)                  |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 038    | PLLLOOPBOOST | RW  | R | 01011    | FREQB          | _                   | -       | -            | DIRECT    | FILT EN                    | FLT (1:0) |         | PLL Loop Filter<br>Settings<br>(Boosted) |  |
| 039    | PLLCPIBOOST  | RW  | R | 11001000 | PLLCPI         |                     |         |              |           | PLL Charge<br>Pump Current |           |         |                                          |  |
| 03B    | PLLRANGINGB  | RW  | R | 00001000 | STICKY<br>LOCK | PLL LOCK            | RNGERR  | RNG<br>START | VCORB (3: | 0)                         |           |         | PLL Autoranging                          |  |
| 03C    | FREQB3       | RW  | R | 00111001 | FREQB (31      | :24)                |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 03D    | FREQB2       | RW  | R | 00110100 | FREQB (23      | 3:16)               |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 03E    | FREQB1       | RW  | R | 11001100 | FREQB (15      | 5:8)                |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| 03F    | FREQB0       | RW  | R | 11001101 | FREQB (7:      | 0)                  |         |              |           |                            |           |         | Synthesizer<br>Frequency                 |  |
| Signal | Strength     |     |   |          |                |                     |         |              |           |                            |           |         |                                          |  |
| 040    | RSSI         | R   | R |          | RSSI (7:0)     |                     |         |              |           |                            |           |         | Received Signal<br>Strength Indicator    |  |
| 041    | BGNDRSSI     | RW  | R | 00000000 | BGNDRSS        | I (7:0)             |         |              |           |                            |           |         | Background RSSI                          |  |
| 042    | DIVERSITY    | RW  | R | 00       | -              | _                   | _       | -            | -         | -                          | ANT SEL   | DIV ENA | Antenna Diversity<br>Configuration       |  |
| 043    | AGCCOUNTER   | RW  | R |          | AGCCOUN        | TER (7:0)           |         |              |           |                            |           |         | AGC Current<br>Value                     |  |
| Receiv | er Tracking  |     |   |          |                |                     |         |              |           |                            |           |         |                                          |  |
| 045    | TRKDATARATE2 | R   | R |          | TRKDATAF       | TRKDATARATE (23:16) |         |              |           |                            |           |         |                                          |  |
| 046    | TRKDATARATE1 | R   | R |          | TRKDATAF       | RATE (15:8)         |         |              |           |                            |           |         | Datarate Tracking                        |  |
| 047    | TRKDATARATE0 | R   | R |          | TRKDATAF       | RATE (7:0)          |         |              |           |                            |           |         | Datarate Tracking                        |  |
| 048    | TRKAMPL1     | R   | R |          | TRKAMPL        | (15:8)              |         |              |           |                            |           |         | Amplitude<br>Tracking                    |  |
| 049    | TRKAMPL0     | R   | R |          | TRKAMPL        | (7:0)               |         |              |           |                            |           |         | Amplitude<br>Tracking                    |  |
| 04A    | TRKPHASE1    | R   | R |          | -              | -                   | _       | -            | TRKPHASI  | ≣ (11:8)                   |           |         | Phase Tracking                           |  |
| 04B    | TRKPHASE0    | R   | R |          | TRKPHASE       | E (7:0)             | -       | -            | -         |                            |           |         | Phase Tracking                           |  |

| Addr   |                     |     |   |          | Bit          |                   |           |            |         |            |   |   |   |   |                                        |
|--------|---------------------|-----|---|----------|--------------|-------------------|-----------|------------|---------|------------|---|---|---|---|----------------------------------------|
| Hex    | Name                | Dir | R | Reset    | 7            | 6                 | 5         | 4          | 3       | 2          | 1 | ı | ( | 0 | Description                            |
| Receiv | er Tracking         |     | • |          | •            | -                 | •         | •          |         |            | • |   |   |   |                                        |
| 04D    | TRKRFFREQ2          | RW  | R |          | -            | -                 | _         | -          | TRRFKFR | EQ (19:16) |   |   |   |   | RF Frequency<br>Tracking               |
| 04E    | TRKRFFREQ1          | RW  | R |          | TRRFKFRE     | EQ (15:8)         |           |            |         |            |   |   |   |   | RF Frequency<br>Tracking               |
| 04F    | TRKRFFREQ0          | RW  | R |          | TRRFKFRE     | EQ (7:0)          |           |            |         |            |   |   |   |   | RF Frequency<br>Tracking               |
| 050    | TRKFREQ1            | RW  | R |          | TRKFREQ      | (15:8)            |           |            |         |            |   |   |   |   | Frequency<br>Tracking                  |
| 051    | TRKFREQ0            | RW  | R |          | TRKFREQ      | (7:0)             |           |            |         |            |   |   |   |   | Frequency<br>Tracking                  |
| 052    | TRKFSKDEMOD1        | R   | R |          | -            | -                 | TRKFSKDEN | MOD (13:8) |         |            |   |   |   |   | FSK Demodulator<br>Tracking            |
| 053    | TRKFSKDEMOD0        | R   | R |          | TRKFSKDE     | KFSKDEMOD (7:0)   |           |            |         |            |   |   |   |   | FSK Demodulator<br>Tracking            |
| Timer  |                     | _   | - | =        | <del>-</del> |                   |           |            |         |            |   |   |   |   | •                                      |
| 059    | TIMER2              | R   | - |          | TIMER (23:   | :16)              |           |            |         |            |   |   |   |   | 1 MHz Timer                            |
| 05A    | TIMER1              | R   | - |          | TIMER (15:   | 8)                |           |            |         |            |   |   |   |   | 1 MHz Timer                            |
| 05B    | TIMER0              | R   | - |          | TIMER (7:0   | ))                |           |            |         |            |   |   |   |   | 1 MHz Timer                            |
| Wakeu  | p Timer             |     |   |          |              |                   |           |            |         |            |   |   |   |   |                                        |
| 068    | WAKEUPTIMER1        | R   | R |          | WAKEUPT      | AKEUPTIMER (15:8) |           |            |         |            |   |   |   |   |                                        |
| 069    | WAKEUPTIMER0        | R   | R |          | WAKEUPT      | AKEUPTIMER (7:0)  |           |            |         |            |   |   |   |   |                                        |
| 06A    | WAKEUP1             | RW  | R | 00000000 | WAKEUP (     |                   |           |            |         |            |   |   |   |   |                                        |
| 06B    | WAKEUP0             | RW  | R | 00000000 | WAKEUP (     |                   |           |            |         |            |   |   |   |   | Wakeup Time Wakeup Time                |
| 06C    | WAKEUPFREQ1         | RW  | R | 00000000 |              | REQ (15:8)        |           |            |         |            |   |   |   |   | Wakeup<br>Frequency                    |
| 06D    | WAKEUPFREQ0         | RW  | R | 00000000 | WAKEUPF      | REQ (7:0)         |           |            |         |            |   |   |   |   | Wakeup<br>Frequency                    |
| 06E    | WAKEUPXOEARLY       | RW  | R | 00000000 | WAKEUPX      | OEARLY (7:0       | ))        |            |         |            |   |   |   |   | Wakeup Crystal<br>Oscillator Early     |
| Physic | al Layer Parameters |     |   |          | •            |                   |           |            |         |            |   |   |   |   |                                        |
| Receiv | er Parameters       |     |   |          |              |                   |           |            |         |            |   |   |   |   |                                        |
| 100    | IFFREQ1             | RW  | R | 00010011 | IFFREQ (1    | 5:8)              |           |            |         |            |   |   |   |   | 2nd LO / IF<br>Frequency               |
| 101    | IFFREQ0             | RW  | R | 00100111 | IFFREQ (7:   | 0)                |           |            |         |            |   |   |   |   | 2nd LO / IF<br>Frequency               |
| 102    | DECIMATION          | RW  | R | -0001101 | -            | DECIMATIO         | DN (6:0)  |            |         |            |   |   |   |   | Decimation<br>Factor                   |
| 103    | RXDATARATE2         | RW  | R | 00000000 | RXDATARA     | ATE (23:16)       |           |            |         |            |   |   |   |   | Receiver Datarate                      |
| 104    | RXDATARATE1         | RW  | R | 00111101 | RXDATARA     | RXDATARATE (15:8) |           |            |         |            |   |   |   |   | Receiver Datarate                      |
| 105    | RXDATARATE0         | RW  | R | 10001010 | RXDATARA     | ATE (7:0)         |           |            |         |            |   |   |   |   | Receiver Datarate                      |
| 106    | MAXDROFFSET2        | RW  | R | 00000000 | MAXDROF      | FSET (23:16)      | )         |            |         |            |   |   |   |   | Maximum<br>Receiver Datarate<br>Offset |
| 107    | MAXDROFFSET1        | RW  | R | 00000000 | MAXDROF      | FSET (15:8)       |           |            |         |            |   |   |   |   | Maximum<br>Receiver Datarate<br>Offset |
| 108    | MAXDROFFSET0        | RW  | R | 10011110 | MAXDROF      | FSET (7:0)        |           |            |         |            |   |   |   |   | Maximum<br>Receiver Datarate<br>Offset |

| Addr   |                     |          |          |          |                      |                     |                      | Bi                    | it               |             |                  |                                                  |                                                     |
|--------|---------------------|----------|----------|----------|----------------------|---------------------|----------------------|-----------------------|------------------|-------------|------------------|--------------------------------------------------|-----------------------------------------------------|
| Hex    | Name                | Dir      | R        | Reset    | 7                    | 6                   | 5                    | 4                     | 3                | 2           | 1                | 0                                                | Description                                         |
|        | /er Parameters      | <u> </u> | <u> </u> | 110001   |                      |                     |                      |                       | _                | 1           | l                |                                                  | Besonption                                          |
|        | ı                   |          |          | I        | I                    | 1                   |                      |                       |                  |             |                  |                                                  | I                                                   |
| 109    | MAXRFOFFSET2        | RW       | R        | 00000    | FREQ<br>OFFS<br>CORR | -                   | _                    | _                     | MAXREOF          | FSET (19:16 | 5)               |                                                  | Maximum<br>Receiver RF<br>Offset                    |
| 10A    | MAXRFOFFSET1        | RW       | R        | 00010110 | MAXRFOF              | FSET (15:8)         |                      |                       |                  |             |                  | Maximum<br>Receiver RF<br>Offset                 |                                                     |
| 10B    | MAXRFOFFSET0        | RW       | R        | 10000111 | MAXRFOF              | FSET (7:0)          |                      |                       |                  |             |                  | Maximum<br>Receiver RF<br>Offset                 |                                                     |
| 10C    | FSKDMAX1            | RW       | R        | 00000000 | FSKDEVM              | AX (15:8)           |                      |                       |                  |             |                  | Four FSK Rx<br>Deviation                         |                                                     |
| 10D    | FSKDMAX0            | RW       | R        | 10000000 | FSKDEVM              | AX (7:0)            |                      |                       |                  |             |                  | Four FSK Rx<br>Deviation                         |                                                     |
| 10E    | FSKDMIN1            | RW       | R        | 11111111 | FSKDEVMI             | IN (15:8)           |                      |                       |                  |             |                  |                                                  | Four FSK Rx<br>Deviation                            |
| 10F    | FSKDMIN0            | RW       | R        | 10000000 | FSKDEVMI             | IN (7:0)            |                      |                       |                  |             |                  | Four FSK Rx<br>Deviation                         |                                                     |
| 110    | AFSKSPACE1          | RW       | R        | 0000     | -                    | -                   | _                    | -                     | AFSKSPAC         | CE(11:8)    |                  | AFSK Space (0)<br>Frequency                      |                                                     |
| 111    | AFSKSPACE0          | RW       | R        | 01000000 | AFSKSPAC             | CE (7:0)            |                      |                       |                  |             |                  | AFSK Space (0)<br>Frequency                      |                                                     |
| 112    | AFSKMARK1           | RW       | R        | 0000     | -                    | -                   | -                    | -                     | AFSKMAR          | K (11:8)    |                  | AFSK Mark (1)<br>Frequency                       |                                                     |
| 113    | AFSKMARK0           | RW       | R        | 01110101 | AFSKMARI             | K (7:0)             |                      |                       |                  |             |                  |                                                  | AFSK Mark (1)<br>Frequency                          |
| 114    | AFSKCTRL            | RW       | R        | 00100    | -                    | -                   | -                    | AFSKSHIF              | T0 (4:0)         |             |                  |                                                  | AFSK Control                                        |
| 115    | AMPLFILTER          | RW       | R        | 0000     | -                    | -                   | -                    | -                     | AMPLFILTI        | ER (3:0)    |                  |                                                  | Amplitude Filter                                    |
| 116    | FREQUENCYLEAK       | RW       | R        | 0000     | -                    | -                   | -                    | _                     | FREQUEN          | CYLEAK (3:  | 0)               |                                                  | Baseband<br>Frequency<br>Recovery Loop<br>Leakiness |
| 117    | RXPARAMSETS         | RW       | R        | 00000000 | RXPS3 (1:0           | 0)                  | RXPS2 (1:0)          |                       | RXPS1 (1:0       | 0)          | RXPS0 (1:0       | 0)                                               | Receiver<br>Parameter Set<br>Indirection            |
| 118    | RXPARAMCURSET       | R        | R        |          | _                    | _                   | _                    | RXSI (2)              | RXSN (1:0)       | )           | RXSI (1:0)       |                                                  | Receiver<br>Parameter<br>Current Set                |
| Receiv | ver Parameter Set 0 |          |          |          |                      |                     |                      |                       |                  |             |                  |                                                  |                                                     |
| 120    | AGCGAIN0            | RW       | R        | 10110100 | AGCDECA              | Y0 (3:0)            |                      |                       | AGCATTAC         | CK0 (3:0)   |                  |                                                  | AGC Speed                                           |
| 121    | AGCTARGET0          | RW       | R        | 01110110 | AGCTARG              | ET0 (7:0)           |                      |                       |                  |             |                  |                                                  | AGC Target                                          |
| 122    | AGCAHYST0           | RW       | R        | 000      | -                    | -                   | -                    | -                     | -                | AGCAHYS     | ST0 (2:0)        |                                                  | AGC Digital<br>Threshold Range                      |
| 123    | AGCMINMAX0          | RW       | R        | -000-000 | -                    | AGCMAXD             | A0 (2:0)             |                       | -                | AGCMIND     |                  | AGC Digital<br>Minimum/<br>Maximum Set<br>Points |                                                     |
| 124    | TIMEGAIN0           | RW       | R        | 11111000 | TIMEGAIN             | 0M (3:0)            |                      |                       | TIMEGAIN         | 0E (3:0)    |                  |                                                  | Timing Gain                                         |
| 125    | DRGAIN0             | RW       | R        | 11110010 | DRGAIN0M             | A (3:0)             |                      |                       | DRGAIN0E (3:0)   |             |                  |                                                  | Data Rate Gain                                      |
| 126    | PHASEGAIN0          | RW       | R        | 110011   | FILTERIDX            | (0 (1:0)            | -                    | -                     | PHASEGAIN0 (3:0) |             |                  |                                                  | Filter Index,<br>Phase Gain                         |
| 127    | FREQGAINA0          | RW       | R        | 00001111 | FREQ<br>LIM0         | FREQ<br>MODULO<br>0 | FREQ<br>HALFMOD<br>0 | FREQ<br>AMPL<br>GATE0 | FREQGAIN         |             | Frequency Gain A |                                                  |                                                     |

| Addr Bit |                     |     |   |          |                   |                     |                      |                       |            |           |           |                                              |                                                  |
|----------|---------------------|-----|---|----------|-------------------|---------------------|----------------------|-----------------------|------------|-----------|-----------|----------------------------------------------|--------------------------------------------------|
| Hex      | Name                | Dir | R | Reset    | 7                 | 6                   | 5                    | 4                     | 3          | 2         | 1         | 0                                            | Description                                      |
| Receiv   | ver Parameter Set 0 |     |   |          | <u> </u>          | 1                   |                      | <u> </u>              | I.         |           |           |                                              |                                                  |
| 128      | FREQGAINB0          | RW  | R | 00–11111 | FREQ<br>FREEZE0   | FREQ<br>AVG0        | -                    | FREQGAIN              | NB0 (4:0)  |           |           |                                              | Frequency Gain B                                 |
| 129      | FREQGAINC0          | RW  | R | 01010    | -                 | -                   | -                    | FREQGAIN              | NC0 (4:0)  |           |           |                                              | Frequency Gain                                   |
| 12A      | FREQGAIND0          | RW  | R | 001010   | RFFREQ<br>FREEZE0 | -                   | -                    | FREQGAIN              | ND0 (4:0)  |           |           |                                              | Frequency Gain                                   |
| 12B      | AMPLGAIN0           | RW  | R | 010110   | AMPL<br>AVG0      | AMPL<br>AGC0        | -                    | -                     | AMPLGAIN   | 10 (3:0)  |           | Amplitude Gain                               |                                                  |
| 12C      | FREQDEV10           | RW  | R | 0000     | -                 | -                   | -                    | -                     | FREQDEV    | 0 (11:8)  |           | Receiver                                     |                                                  |
|          |                     |     |   |          |                   |                     |                      |                       |            |           |           | Frequency<br>Deviation                       |                                                  |
| 12D      | FREQDEV00           | RW  | R | 00100000 | FREQDEV           | 0 (7:0)             |                      |                       |            |           |           | Receiver<br>Frequency<br>Deviation           |                                                  |
| 12E      | FOURFSK0            | RW  | R | 10110    | -                 | -                   | -                    | DEV<br>UPDATE0        | DEVDECA    | Y0 (3:0)  |           |                                              | Four FSK Control                                 |
| 12F      | BBOFFSRES0          | RW  | R | 10001000 | RESINTB0          | (3:0)               |                      |                       | RESINTA0   | (3:0)     |           | Baseband Offset<br>Compensation<br>Resistors |                                                  |
| Receiv   | ver Parameter Set 1 |     |   |          |                   |                     |                      |                       |            |           |           |                                              |                                                  |
| 130      | AGCGAIN1            | RW  | R | 10110100 | AGCDECA           | Y1 (3:0)            |                      |                       | AGCATTAC   |           | AGC Speed |                                              |                                                  |
|          |                     |     |   |          |                   |                     |                      |                       |            |           |           |                                              |                                                  |
| 131      | AGCTARGET1          | RW  | R | 01110110 | AGCTARG           | ET1 (7:0)           |                      |                       |            |           |           |                                              | AGC Target                                       |
| 132      | AGCAHYST1           | RW  | R | 000      | -                 | -                   | -                    | -                     | -          | AGCAHYS   | ST1 (2:0) |                                              | AGC Digital<br>Threshold Range                   |
| 133      | AGCMINMAX1          | RW  | R | -000-000 | -                 | AGCMAXD             | A1 (2:0)             |                       | -          | AGCMIND   | OA1 (2:0) |                                              | AGC Digital<br>Minimum/<br>Maximum Set<br>Points |
| 134      | TIMEGAIN1           | RW  | R | 11110110 | TIMEGAIN          | 1M (3:0)            |                      |                       | TIMEGAIN   | 1E (3:0)  |           |                                              | Timing Gain                                      |
| 135      | DRGAIN1             | RW  | R | 11110001 | DRGAIN1N          | Л (3:0)             |                      |                       | DRGAIN1E   | (3:0)     |           |                                              | Data Rate Gain                                   |
| 136      | PHASEGAIN1          | RW  | R | 110011   | FILTERIDX         | (1 (1:0)            | -                    | -                     | PHASEGA    | N1 (3:0)  |           |                                              | Filter Index,<br>Phase Gain                      |
| 137      | FREQGAINA1          | RW  | R | 00001111 | FREQ<br>LIM1      | FREQ<br>MODULO<br>1 | FREQ<br>HALFMOD<br>1 | FREQ<br>AMPL<br>GATE1 | FREQGAIN   | IA1 (3:0) |           |                                              | Frequency Gain A                                 |
| 138      | FREQGAINB1          | RW  | R | 00–11111 | FREQ<br>FREEZE1   | FREQ<br>AVG1        | -                    | FREQGAIN              | NB1 (4:0)  |           |           |                                              | Frequency Gain B                                 |
| 139      | FREQGAINC1          | RW  | R | 01011    | -                 | -                   | -                    | FREQGAIN              | INC1 (4:0) |           |           |                                              | Frequency Gain<br>C                              |
| 13A      | FREQGAIND1          | RW  | R | 001011   | RFFREQ<br>FREEZE1 | -                   | -                    | FREQGAIN              | IND1 (4:0) |           |           |                                              | Frequency Gain<br>D                              |
| 13B      | AMPLGAIN1           | RW  | R | 010110   | AMPL<br>AVG1      | AMPL1<br>AGC1       | -                    | -                     | AMPLGAIN   | 11 (3:0)  |           |                                              | Amplitude Gain                                   |
| 13C      | FREQDEV11           | RW  | R | 0000     | _                 | -                   | -                    | -                     | FREQDEV    | 1 (11:8)  |           |                                              | Receiver<br>Frequency<br>Deviation               |
| 13D      | FREQDEV01           | RW  | R | 00100000 | FREQDEV           | 1 (7:0)             |                      |                       |            |           |           |                                              | Receiver<br>Frequency<br>Deviation               |

| Addr   |                     |     |   |          |                   |                              |                      | Bi                    | t                 |           |           |                                                  |                |                                                  |
|--------|---------------------|-----|---|----------|-------------------|------------------------------|----------------------|-----------------------|-------------------|-----------|-----------|--------------------------------------------------|----------------|--------------------------------------------------|
| Hex    | Name                | Dir | R | Reset    | 7                 | 6                            | 5                    | 4                     | 3                 | 2         | 1         |                                                  | 0              | Description                                      |
| Receiv | ver Parameter Set 1 |     |   | ı        |                   |                              |                      |                       |                   |           |           |                                                  |                | <u>I</u>                                         |
| 13E    | FOURFSK1            | RW  | R | 11000    | -                 | -                            | -                    | DEV<br>UPDATE1        | DEVDECA           | Y1 (3:0)  |           |                                                  |                | Four FSK Control                                 |
| 13F    | BBOFFSRES1          | RW  | R | 10001000 | RESINTB1          | (3:0)                        |                      |                       | RESINTA1          | (3:0)     |           |                                                  |                | Baseband Offset<br>Compensation<br>Resistors     |
| Receiv | ver Parameter Set 2 |     |   |          |                   |                              |                      |                       |                   |           |           |                                                  |                |                                                  |
| 140    | AGCGAIN2            | RW  | R | 11111111 | AGCDECA           | Y2 (3:0)                     |                      |                       | AGCATTAG          | CK2 (3:0) |           |                                                  |                | AGC Speed                                        |
| 141    | AGCTARGET2          | RW  | R | 01110110 | AGCTARG           | ET2 (7:0)                    |                      |                       |                   |           |           |                                                  |                | AGC Target                                       |
| 142    | AGCAHYST2           | RW  | R | 000      | -                 | -                            | -                    | -                     | -                 | AGCAHYS   |           | AGC Digital<br>Threshold Range                   |                |                                                  |
| 143    | AGCMINMAX2          | RW  | R | -000-000 | -                 | AGCMAXD                      | A2(2:0)              |                       | _                 | AGCMINE   |           | AGC Digital<br>Minimum/<br>Maximum Set<br>Points |                |                                                  |
| 144    | TIMEGAIN2           | RW  | R | 11110101 | TIMEGAIN          | 2M (3:0)                     |                      |                       | TIMEGAIN          | 2E (3:0)  |           |                                                  |                | Timing Gain                                      |
| 145    | DRGAIN2             | RW  | R | 11110000 | DRGAIN2N          | Л (3:0)                      |                      |                       | DRGAIN2E          | (3:0)     |           |                                                  |                | Data Rate Gain                                   |
| 146    | PHASEGAIN2          | RW  | R | 110011   | FILTERIDX         | (2 (1:0)                     | -                    | -                     | PHASEGA           | IN2 (3:0) |           |                                                  |                | Filter Index,<br>Phase Gain                      |
| 147    | FREQGAINA2          | RW  | R | 00001111 | FREQ<br>LIM2      | FREQ<br>MODULO<br>2          | FREQ<br>HALFMOD<br>2 | FREQ<br>AMPL<br>GATE2 | FREQGAIN          | NA2 (3:0) |           | Frequency Gain A                                 |                |                                                  |
| 148    | FREQGAINB2          | RW  | R | 00–11111 | FREQ<br>FREEZE2   | FREQ<br>AVG2                 | -                    | FREQGAIN              | NB2 (4:0)         |           |           |                                                  |                | Frequency Gain B                                 |
| 149    | FREQGAINC2          | RW  | R | 01101    | -                 | -                            | -                    | FREQGAIN              | NC2 (4:0)         |           |           |                                                  |                | Frequency Gain<br>C                              |
| 14A    | FREQGAIND2          | RW  | R | 001101   | RFFREQ<br>FREEZE2 | -                            | -                    | FREQGAIN              | ND2 (4:0)         |           |           |                                                  |                | Frequency Gain<br>D                              |
| 14B    | AMPLGAIN2           | RW  | R | 010110   | AMPL<br>AVG2      | AMPL<br>AGC2                 | -                    | -                     | AMPLGAIN          | 12 (3:0)  |           |                                                  |                | Amplitude Gain                                   |
| 14C    | FREQDEV12           | RW  | R | 0000     | -                 | -                            | -                    | -                     | FREQDEV           | 2 (11:8)  |           |                                                  |                | Receiver<br>Frequency<br>Deviation               |
| 14D    | FREQDEV02           | RW  | R | 00100000 | FREQDEV:          | 2 (7:0)                      |                      |                       |                   |           |           |                                                  |                | Receiver<br>Frequency<br>Deviation               |
| 14E    | FOURFSK2            | RW  | R | 11010    | -                 | -                            | _                    | DEV<br>UPDATE2        | DEVDECA           | Y2 (3:0)  |           |                                                  |                | Four FSK Control                                 |
| 14F    | BBOFFSRES2          | RW  | R | 10001000 | RESINTB2          | (3:0)                        |                      |                       | RESINTA2          | (3:0)     |           |                                                  |                | Baseband Offset<br>Compensation<br>Resistors     |
| Receiv | ver Parameter Set 3 |     |   |          | •                 |                              |                      |                       |                   |           |           |                                                  |                |                                                  |
| 150    | AGCGAIN3            | RW  | R | 11111111 | AGCDECA           | Y3 (3:0)                     |                      |                       | AGCATTAG          |           | AGC Speed |                                                  |                |                                                  |
| 151    | AGCTARGET3          | RW  | R | 01110110 | AGCTARG           | ET3 (7:0)                    |                      |                       |                   |           |           |                                                  |                | AGC Target                                       |
| 152    | AGCAHYST3           | RW  | R | 000      | -                 | -                            | -                    | -                     | - AGCAHYST3 (2:0) |           |           |                                                  |                | AGC Digital<br>Threshold Range                   |
| 153    | AGCMINMAX3          | RW  | R | -000-000 | -                 | AGCMAXD                      | A3 (2:0)             |                       | -                 | AGCMINE   | DA3 (2:0) |                                                  |                | AGC Digital<br>Minimum/<br>Maximum Set<br>Points |
| 154    | TIMEGAIN3           | RW  | R | 11110101 | TIMEGAIN          | 3M (3:0)                     |                      |                       | TIMEGAIN          | 3E (3:0)  |           |                                                  |                | Timing Gain                                      |
| 155    | DRGAIN3             | RW  | R | 11110000 | DRGAIN3N          | RGAIN3M (3:0) DRGAIN3E (3:0) |                      |                       |                   |           |           |                                                  | Data Rate Gain |                                                  |

| Addr   | e 22. CONTRO       |     | 1 |          | Ì                 |                                     |           | Bi             | t         |                             |         |                                              |                                         |
|--------|--------------------|-----|---|----------|-------------------|-------------------------------------|-----------|----------------|-----------|-----------------------------|---------|----------------------------------------------|-----------------------------------------|
|        |                    | l   |   |          | 7                 | 6                                   | 5         | 4              | 3         | 2                           | 1       | 0                                            | ┥ ∣                                     |
| Hex    | Name               | Dir | R | Reset    |                   | 0                                   | 3         | 4              |           | 2                           | 1       | J 0                                          | Description                             |
| Receiv | er Parameter Set 3 | 1   |   | 1        |                   |                                     | 1         |                |           |                             |         |                                              |                                         |
| 156    | PHASEGAIN3         | RW  | R | 110011   | FILTERIDX         | FILTERIDX3 (1:0) – PHASEGAIN3 (3:0) |           |                |           | Filter Index,<br>Phase Gain |         |                                              |                                         |
| 157    | FREQGAINA3         | RW  | R | 00001111 | FREQ<br>LIM3      | ` '                                 |           |                |           |                             |         | Frequency Gain A                             |                                         |
| 158    | FREQGAINB3         | RW  | R | 00–11111 | FREQ<br>FREEZE3   | FREQ<br>AVG3                        | -         | FREQGAIN       | NB3 (4:0) |                             |         |                                              | Frequency Gain B                        |
| 159    | FREQGAINC3         | RW  | R | 01101    | _                 | _                                   | _         | FREQGAIN       | NC3 (4:0) |                             |         |                                              | Frequency Gain<br>C                     |
| 15A    | FREQGAIND3         | RW  | R | 001101   | RFFREQ<br>FREEZE3 | -                                   | -         | FREQGAIN       | ND3 (4:0) |                             |         |                                              | Frequency Gain<br>D                     |
| 15B    | AMPLGAIN3          | RW  | R | 010110   | AMPL<br>AVG3      | AMPL<br>AGC3                        | -         | -              | AMPLGAIN  | 13 (3:0)                    |         |                                              | Amplitude Gain                          |
| 15C    | FREQDEV13          | RW  | R | 0000     | -                 | -                                   | -         | -              | FREQDEV:  | 3 (11:8)                    |         |                                              | Receiver<br>Frequency<br>Deviation      |
| 15D    | FREQDEV03          | RW  | R | 00100000 | FREQDEV:          | 3 (7:0)                             |           |                |           |                             |         |                                              | Receiver<br>Frequency<br>Deviation      |
| 15E    | FOURFSK3           | RW  | R | 11010    | _                 | _                                   | _         | DEV<br>UPDATE3 | DEVDECA   | Y3 (3:0)                    |         |                                              | Four FSK Control                        |
| 15F    | BBOFFSRES3         | RW  | R | 10001000 | RESINTB3          | RESINTB3 (3:0) RESINTA3 (3:0)       |           |                |           |                             |         | Baseband Offset<br>Compensation<br>Resistors |                                         |
| Transn | nitter Parameters  |     |   |          |                   |                                     |           |                |           |                             |         |                                              | •                                       |
| 160    | MODCFGF            | RW  | R | 00       | -                 | -                                   | -         | -              | -         | -                           | FREQ SI | HAPE (1:0)                                   | Modulator<br>Configuration F            |
| 161    | FSKDEV2            | RW  | R | 00000000 | FSKDEV (2         | 23:16)                              | •         | •              | •         | I                           |         |                                              | FSK Frequency<br>Deviation              |
| 162    | FSKDEV1            | RW  | R | 00001010 | FSKDEV (1         | 15:8)                               |           |                |           |                             |         |                                              | FSK Frequency<br>Deviation              |
| 163    | FSKDEV0            | RW  | R | 00111101 | FSKDEV (7         | 7:0)                                |           |                |           |                             |         |                                              | FSK Frequency<br>Deviation              |
| 164    | MODCFGA            | RW  | R | 0000-101 | BROWN<br>GATE     | PTTLCK<br>GATE                      | SLOW RAMI | P (1:0)        | -         | AMPL<br>SHAPE               | TX SE   | TX DIFF                                      | Modulator<br>Configuration A            |
| 165    | TXRATE2            | RW  | R | 00000000 | TXRATE (2         | 3:16)                               |           |                |           |                             |         |                                              | Transmitter<br>Bitrate                  |
| 166    | TXRATE1            | RW  | R | 00101000 | TXRATE (1         | 5:8)                                |           |                |           |                             |         |                                              | Transmitter<br>Bitrate                  |
| 167    | TXRATE0            | RW  | R | 11110110 | TXRATE (7         | 7:0)                                |           |                |           |                             |         |                                              | Transmitter<br>Bitrate                  |
| 168    | TXPWRCOEFFA1       | RW  | R | 00000000 | TXPWRCO           | TXPWRCOEFFA (15:8)                  |           |                |           |                             |         | Transmitter Predistortion Coefficient A      |                                         |
| 169    | TXPWRCOEFFA0       | RW  | R | 00000000 | TXPWRCC           | TXPWRCOEFFA (7:0)                   |           |                |           |                             |         | Transmitter Predistortion Coefficient A      |                                         |
| 16A    | TXPWRCOEFFB1       | RW  | R | 00001111 | TXPWRCC           | TXPWRCOEFFB (15:8)                  |           |                |           |                             |         | Transmitter Predistortion Coefficient B      |                                         |
| 16B    | TXPWRCOEFFB0       | RW  | R | 11111111 | TXPWRCC           | TXPWRCOEFFB (7:0)                   |           |                |           |                             |         |                                              | Transmitter Predistortion Coefficient B |

| Addr   |                   |     |   |          |              |                                                   |            | Bi             | t         |           |          |                          |                                                         |  |
|--------|-------------------|-----|---|----------|--------------|---------------------------------------------------|------------|----------------|-----------|-----------|----------|--------------------------|---------------------------------------------------------|--|
| Hex    | Name              | Dir | R | Reset    | 7            | 6                                                 | 5          | 4              | 3         | 2         | 1        | 0                        | Description                                             |  |
| Transr | nitter Parameters | 1   |   | 110001   |              |                                                   |            |                |           | <u> </u>  | <u> </u> | <u> </u>                 | 2000                                                    |  |
| 16C    | TXPWRCOEFFC1      | RW  | R | 00000000 | TXPWRCC      | XPWRCOEFFC (15:8)                                 |            |                |           |           |          |                          |                                                         |  |
| 16D    | TXPWRCOEFFC0      | RW  | R | 00000000 | TXPWRCC      | WRCOEFFC (7:0)                                    |            |                |           |           |          |                          |                                                         |  |
| 16E    | TXPWRCOEFFD1      | RW  | R | 00000000 | TXPWRCC      | WRCOEFFD (15:8)                                   |            |                |           |           |          |                          |                                                         |  |
| 16F    | TXPWRCOEFFD0      | RW  | R | 00000000 | TXPWRCC      | PWRCOEFFD (7:0)                                   |            |                |           |           |          |                          |                                                         |  |
| 170    | TXPWRCOEFFE1      | RW  | R | 00000000 | TXPWRCC      | DEFFE (15:8)                                      |            |                |           |           |          |                          | Transmitter Predistortion Coefficient E                 |  |
| 171    | TXPWRCOEFFE0      | RW  | R | 00000000 | TXPWRCC      | DEFFE (7:0)                                       |            |                |           |           |          |                          | Transmitter Predistortion Coefficient E                 |  |
| PLL Pa | arameters         |     |   |          |              |                                                   |            |                |           |           |          |                          |                                                         |  |
| 180    | PLLVCOI           | RW  | R | 0-010010 | VCOIE        | -                                                 | VCOI (5:0) |                |           |           |          |                          | VCO Current                                             |  |
| 181    | PLLVCOIR          | RW  | R |          | ı            | - VCOIR (5:0)                                     |            |                |           |           |          | VCO Current<br>Readback  |                                                         |  |
| 182    | PLLLOCKDET        | RW  | R | 011      | LOCKDETI     | LOCKDETDLYR (1:0) LOCK DETT DLYM LOCKDETDLY (1:0) |            |                |           |           |          | PLL Lock Detect<br>Delay |                                                         |  |
| 183    | PLLRNGCLK         | RW  | R | 011      | _            | -                                                 | _          | -              | -         | PLLRNGCI  | _K (2:0) |                          | PLL Ranging<br>Clock                                    |  |
| Crysta | l Oscillator      |     |   |          |              |                                                   |            |                |           |           |          |                          |                                                         |  |
| 184    | XTALCAP           | RW  | R | 00000000 | XTALCAP      | (7:0)                                             |            |                |           |           |          |                          | Crystal Oscillator<br>Load Capacitance<br>Configuration |  |
| Baseb  | and               |     |   |          |              |                                                   |            |                |           |           |          |                          | <u>.</u>                                                |  |
| 188    | BBTUNE            | RW  | R | 01001    | -            | -                                                 | -          | BB TUNE<br>RUN | BBTUNE (3 | 3:0)      |          |                          | Baseband Tuning                                         |  |
| 189    | BBOFFSCAP         | RW  | R | -111-111 | -            | CAP INT B                                         | (2:0)      |                | -         | CAP INT A | (2:0)    |                          | Baseband Offset<br>Compensation<br>Capacitors           |  |
|        | ayer Parameters   |     |   |          |              |                                                   |            |                |           |           |          |                          |                                                         |  |
| 200    | PKTADDRCFG        | RW  | R | 001–0000 | MSB<br>FIRST | CRC SKIP<br>FIRST                                 | FEC SYNC   | -              | ADDR POS  | 3 (3:0)   |          |                          | Packet Address<br>Config                                |  |
| 201    | PKTLENCFG         | RW  | R | 00000000 | LEN BITS (   | LEN BITS (3:0)  LEN POS (3:0)                     |            |                |           |           |          |                          | Packet Length<br>Config                                 |  |
| 202    | PKTLENOFFSET      | RW  | R | 00000000 | LEN OFFS     | EN OFFSET (7:0)                                   |            |                |           |           |          |                          |                                                         |  |
| 203    | PKTMAXLEN         | RW  | R | 00000000 | MAX LEN (    | MAX LEN (7:0)                                     |            |                |           |           |          |                          |                                                         |  |
| 204    | PKTADDR3          | RW  | R | 00000000 | ADDR (31:    | DDR (31:24)                                       |            |                |           |           |          |                          |                                                         |  |
| 205    | PKTADDR2          | RW  | R | 00000000 | ADDR (23:    | DDR (23:16)                                       |            |                |           |           |          |                          |                                                         |  |
| 206    | PKTADDR1          | RW  | R | 00000000 | ADDR (15:    | 8)                                                |            |                |           |           |          |                          | Packet Address 1                                        |  |
| 207    | PKTADDR0          | RW  | R | 00000000 | ADDR (7:0    | )                                                 |            |                |           |           |          |                          | Packet Address 0                                        |  |

| Addr   |              |          |   |          |               |                                        |    | Ві       | it         |          |                                           |                                               |                                                      |  |  |
|--------|--------------|----------|---|----------|---------------|----------------------------------------|----|----------|------------|----------|-------------------------------------------|-----------------------------------------------|------------------------------------------------------|--|--|
| Hex    | Name         | Dir      | R | Reset    | 7             | 6                                      | 5  | 4        | 3          | 2        | 1                                         | 0                                             | Description                                          |  |  |
| Packe  | t Format     | <u>I</u> |   |          |               |                                        | 1  |          |            |          |                                           |                                               | - 1                                                  |  |  |
| 208    | PKTADDRMASK3 | RW       | R | 00000000 | ADDRMAS       | DRMASK (31:24)                         |    |          |            |          |                                           |                                               |                                                      |  |  |
| 209    | PKTADDRMASK2 | RW       | R | 00000000 | ADDRMAS       | RMASK (23:16)                          |    |          |            |          |                                           |                                               |                                                      |  |  |
| 20A    | PKTADDRMASK1 | RW       | R | 00000000 | ADDRMAS       | RMASK (15:8)                           |    |          |            |          |                                           |                                               |                                                      |  |  |
| 20B    | PKTADDRMASK0 | RW       | R | 00000000 | ADDRMAS       | DRMASK (7:0)                           |    |          |            |          |                                           |                                               |                                                      |  |  |
| Patter | n Match      |          |   |          |               |                                        |    |          |            |          |                                           |                                               |                                                      |  |  |
| 210    | MATCH0PAT3   | RW       | R | 00000000 | MATCH0PA      | AT (31:24)                             |    |          |            |          |                                           |                                               | Pattern Match<br>Unit 0, Pattern                     |  |  |
| 211    | MATCH0PAT2   | RW       | R | 00000000 | MATCH0PA      | AT (23:16)                             |    |          |            |          |                                           |                                               | Pattern Match<br>Unit 0, Pattern                     |  |  |
| 212    | MATCH0PAT1   | RW       | R | 00000000 | MATCH0PA      | AT (15:8)                              |    |          |            |          |                                           |                                               | Pattern Match<br>Unit 0, Pattern                     |  |  |
| 213    | MATCH0PAT0   | RW       | R | 00000000 | MATCH0PA      | AT (7:0)                               |    |          |            |          |                                           |                                               | Pattern Match<br>Unit 0, Pattern                     |  |  |
| 214    | MATCH0LEN    | RW       | R | 000000   | MATCH0<br>RAW | -                                      | -  | MATCHOLE | EN (4:0)   |          |                                           |                                               | Pattern Match<br>Unit 0, Pattern<br>Length           |  |  |
| 215    | MATCHOMIN    | RW       | R | 00000    | -             | - – MATCHOMIN (4:0)                    |    |          |            |          | Pattern Match<br>Unit 0, Minimum<br>Match |                                               |                                                      |  |  |
| 216    | MATCH0MAX    | RW       | R | 11111    | _             | MATCH0MAX (4:0)                        |    |          |            |          |                                           | Pattern Match<br>Unit 0, Maximum<br>Match     |                                                      |  |  |
| 218    | MATCH1PAT1   | RW       | R | 00000000 | MATCH1PA      | AT (15:8)                              | •  | •        |            |          |                                           |                                               | Pattern Match<br>Unit 1, Pattern                     |  |  |
| 219    | MATCH1PAT0   | RW       | R | 00000000 | MATCH1PA      | AT (7:0)                               |    |          |            |          |                                           |                                               | Pattern Match<br>Unit 1, Pattern                     |  |  |
| 21C    | MATCH1LEN    | RW       | R | 00000    | MATCH1<br>RAW | -                                      | -  | -        | MATCH1LI   | EN (3:0) |                                           |                                               | Pattern Match<br>Unit 1, Pattern<br>Length           |  |  |
| 21D    | MATCH1MIN    | RW       | R | 0000     | -             | -                                      | -  | -        | MATCH1M    | IN (3:0) |                                           |                                               | Pattern Match<br>Unit 1, Minimum<br>Match            |  |  |
| 21E    | MATCH1MAX    | RW       | R | 1111     | _             | -                                      | -  | -        | MATCH1M    | AX (3:0) |                                           |                                               | Pattern Match<br>Unit 1, Maximum<br>Match            |  |  |
| Packe  | t Controller |          |   | •        |               | •                                      | •  |          |            |          |                                           |                                               | •                                                    |  |  |
| 220    | TMGTXBOOST   | RW       | R | 00110010 | тмстхво       | OSTE (2:0)                             |    | тмдтхво  | OSTM (4:0) |          |                                           |                                               | Transmit PLL<br>Boost Time                           |  |  |
| 221    | TMGTXSETTLE  | RW       | R | 00001010 | TMGTXSE       | TMGTXSETTLEE (2:0)  TMGTXSETTLEM (4:0) |    |          |            |          |                                           | Transmit PLL<br>(post Boost)<br>Settling Time |                                                      |  |  |
| 223    | TMGRXBOOST   | RW       | R | 00110010 | TMGRXBO       | TMGRXBOOSTE (2:0) TMGRXBOOSTM (4:0)    |    |          |            |          |                                           | Receive PLL<br>Boost Time                     |                                                      |  |  |
| 224    | TMGRXSETTLE  | RW       | R | 00010100 | TMGRXSE       | TMGRXSETTLEE (2:0)  TMGRXSETTLEM (4:0) |    |          |            |          |                                           |                                               | Receive PLL<br>(post Boost)<br>Settling Time         |  |  |
| 225    | TMGRXOFFSACQ | RW       | R | 01110011 | TMGRXOF       | FSACQE (2:                             | 0) | TMGRXOF  | FFSACQM (4 | :0)      |                                           |                                               | Receive<br>Baseband DC<br>Offset Acquisition<br>Time |  |  |

| Addr   |                        |       |   |          | Bit                    |                        |                 |                     |                     |                               |               |                                          |                                                           |  |
|--------|------------------------|-------|---|----------|------------------------|------------------------|-----------------|---------------------|---------------------|-------------------------------|---------------|------------------------------------------|-----------------------------------------------------------|--|
| Hex    | Name                   | Dir   | R | Reset    | 7                      | 6                      | 5               | 4                   | 3                   | 2                             | 1             | 0                                        | Description                                               |  |
| Packet | Controller             |       |   |          |                        |                        |                 |                     |                     |                               |               |                                          |                                                           |  |
| 226    | TMGRXCOARSEA<br>GC     | RW    | R | 00111001 | TMGRXCC                | DARSEAGCE              | (2:0)           | TMGRXCO             | DARSEAGCM           | 1 (4:0)                       |               |                                          | Receive Coarse<br>AGC Time                                |  |
| 227    | TMGRXAGC               | RW    | R | 00000000 | TMGRXAG                | GCE (2:0)              |                 | TMGRXAG             |                     | Receiver AGC<br>Settling Time |               |                                          |                                                           |  |
| 228    | TMGRXRSSI              | RW    | R | 00000000 | TMGRXRS                | SSIE (2:0)             |                 | TMGRXRS             | TMGRXRSSIM (4:0)    |                               |               |                                          |                                                           |  |
| 229    | TMGRXPREAMBLE<br>1     | RW    | R | 00000000 | TMGRXPR                | EAMBLE1E (             | (2:0)           | TMGRXPR             | REAMBLE1M           | (4:0)                         |               |                                          | Receiver<br>Preamble 1<br>Timeout                         |  |
| 22A    | TMGRXPREAMBLE 2        | RW    | R | 00000000 | TMGRXPR                | EAMBLE2E (             | (2:0)           | TMGRXPR             | REAMBLE2M           | (4:0)                         |               |                                          | Receiver<br>Preamble 2<br>Timeout                         |  |
| 22B    | TMGRXPREAMBLE 3        | RW    | R | 00000000 | TMGRXPR                | REAMBLE3E (            | (2:0)           | TMGRXPR             | REAMBLE3M           | (4:0)                         |               |                                          | Receiver<br>Preamble 3<br>Timeout                         |  |
| 22C    | RSSIREFERENCE          | RW    | R | 00000000 | RSSIREFE               | RENCE (7:0)            | 1               |                     |                     |                               |               |                                          | RSSI Offset                                               |  |
| 22D    | RSSIABSTHR             | RW    | R | 00000000 | RSSIABST               | SSIABSTHR (7:0)        |                 |                     |                     |                               |               | RSSI Absolute<br>Threshold               |                                                           |  |
| 22E    | BGNDRSSIGAIN           | RW    | R | 0000     | _                      | -                      | -               | -                   | BGNDRSS             | IGAIN (3:0)                   |               |                                          | Background RSSI<br>Averaging Time<br>Constant             |  |
| 22F    | BGNDRSSITHR            | RW    | R | 000000   | -                      | - BGNDRSSITHR (5:0)    |                 |                     |                     |                               |               | Background RSSI<br>Relative<br>Threshold |                                                           |  |
| 230    | PKTCHUNKSIZE           | RW    | R | 0000     | -                      | -                      | _               | -                   | PKTCHUN             | KSIZE (3:0)                   |               |                                          | Packet Chunk<br>Size                                      |  |
| 231    | PKTMISCFLAGS           | RW    | R | 00000    | -                      | -                      | -               | WOR<br>MULTI<br>PKT | AGC<br>SETTL<br>DET | BGND<br>RSSI                  | RXAGC<br>CLK  | RXRSSI<br>CLK                            | Packet Controller<br>Miscellaneous<br>Flags               |  |
| 232    | PKTSTOREFLAGS          | RW    | R | -0000000 | -                      | ST ANT<br>RSSI         | ST CRCB         | ST RSSI             | ST DR               | ST<br>RFOFFS                  | ST<br>FOFFS   | ST<br>TIMER                              | Packet Controller<br>Store Flags                          |  |
| 233    | PKTACCEPTFLAG<br>S     | RW    | R | 000000   | -                      | -                      | ACCPT<br>LRGP   | ACCPT<br>SZF        | ACCPT<br>ADDRF      | ACCPT<br>CRCF                 | ACCPT<br>ABRT | ACCPT<br>RESIDUE                         | Packet Controller<br>Accept Flags                         |  |
| Specia | l Functions            |       |   |          |                        |                        |                 |                     |                     |                               |               |                                          |                                                           |  |
| Genera | al Purpose ADC         |       |   |          |                        |                        |                 |                     |                     |                               |               |                                          |                                                           |  |
| 300    | GPADCCTRL              | RW    | R | 000000   | BUSY                   | -                      | 0               | 0                   | 0                   | GPADC1<br>3                   | CONT          | CH ISOL                                  | General Purpose<br>ADC Control                            |  |
| 301    | GPADCPERIOD            | RW    | R | 00111111 | GPADCPE                | RIOD (7:0)             |                 |                     |                     |                               |               |                                          | GPADC Sampling<br>Period                                  |  |
| 308    | GPADC13VALUE1          | R     |   |          | -                      | -                      | -               | -                   | -                   | -                             | GPADC13       | VALUE (9:8)                              | GPADC13 Value                                             |  |
| 309    | GPADC13VALUE0          | R     |   |          | GPADC13\               | VALUE (7:0)            |                 |                     |                     |                               |               |                                          | GPADC13 Value                                             |  |
| Low P  | ower Oscillator Calibr | ation |   |          |                        |                        |                 |                     |                     |                               |               |                                          |                                                           |  |
| 310    | LPOSCCONFIG            | RW    | R | 00000000 | LPOSC<br>OSC<br>INVERT | LPOSC<br>OSC<br>DOUBLE | LPOSC<br>CALIBR | LPOSC<br>CALIBF     | LPOSC<br>IRQR       | LPOSC<br>IRQF                 | LPOSC<br>FAST | LPOSC<br>ENA                             | Low Power<br>Oscillator<br>Configuration                  |  |
| 311    | LPOSCSTATUS            | R     | R |          | -                      | -                      | -               | -                   | -                   | -                             | LPOSC<br>IRQ  | LPOSC<br>EDGE                            | Low Power<br>Oscillator Status                            |  |
| 312    | LPOSCKFILT1            | RW    | R | 00100000 | LPOSCKFI               | LPOSCKFILT (15:8)      |                 |                     |                     |                               |               |                                          | Low Power<br>Oscillator<br>Calibration Filter<br>Constant |  |

| Addr        |                       |        |   |          |            |                  |   | В | it       |          |   |                                                     |                                                           |
|-------------|-----------------------|--------|---|----------|------------|------------------|---|---|----------|----------|---|-----------------------------------------------------|-----------------------------------------------------------|
| Hex         | Name                  | Dir    | R | Reset    | 7          | 6                | 5 | 4 | 3        | 2        | 1 | 0                                                   | Description                                               |
| Low P       | ower Oscillator Calib | ration |   |          |            |                  |   |   |          |          |   |                                                     |                                                           |
| 313         | LPOSCKFILT0           | RW     | R | 11000100 | LPOSCKF    | DSCKFILT (7:0)   |   |   |          |          |   |                                                     | Low Power<br>Oscillator<br>Calibration Filter<br>Constant |
| 314         | LPOSCREF1             | RW     | R | 01100001 | LPOSCRE    | OSCREF (15:8)    |   |   |          |          |   |                                                     | Low Power<br>Oscillator<br>Calibration<br>Reference       |
| 315         | LPOSCREF0             | RW     | R | 10101000 | LPOSCRE    | OSCREF (7:0)     |   |   |          |          |   |                                                     | Low Power<br>Oscillator<br>Calibration<br>Reference       |
| 316         | LPOSCFREQ1            | RW     | R | 00000000 | LPOSCFR    | POSCFREQ (9:2)   |   |   |          |          |   | Low Power<br>Oscillator<br>Calibration<br>Frequency |                                                           |
| 317         | LPOSCFREQ0            | RW     | R | 0000     | LPOSCFR    | LPOSCFREQ (1:-2) |   |   |          |          | - | Low Power<br>Oscillator<br>Calibration<br>Frequency |                                                           |
| 318         | LPOSCPER1             | RW     |   |          | LPOSCPE    | R (15:8)         |   |   |          |          |   |                                                     | Low Power Oscillator Calibration Period                   |
| 319         | LPOSCPER0             | RW     |   |          | LPOSCPE    | R (7:0)          |   |   |          |          |   |                                                     | Low Power<br>Oscillator<br>Calibration Period             |
| DAC         |                       |        |   |          |            |                  |   |   |          |          |   |                                                     |                                                           |
| 330         | DACVALUE1             | RW     | R | 0000     | -          | -                | - | - | DACVALU  | ≣ (11:8) |   |                                                     | DAC Value                                                 |
| 331         | DACVALUE0             | RW     | R | 00000000 | DACVALU    | E (7:0)          |   |   |          |          |   |                                                     | DAC Value                                                 |
| 332         | DACCONFIG             | RW     | R | 000000   | DAC<br>PWM | DAC CLK<br>X2    | - | - | DACINPUT | (3:0)    |   |                                                     | DAC<br>Configuration                                      |
| Perfor      | mance Tuning Regis    | ters   |   |          |            |                  |   |   |          |          |   |                                                     |                                                           |
| F00-<br>FFF | PERFTUNE              | RW     |   |          |            |                  |   |   |          |          |   |                                                     | Performance<br>Tuning Registers                           |

#### **REGISTER DETAILS**

## **Revision and Interface Probing**

**REVISION** 

#### **Table 23. REVISION**

| Name     | Bits | R/W | Reset    | Description      |
|----------|------|-----|----------|------------------|
| REVISION | 7:0  | R   | 01010001 | Silicon Revision |

## SCRATCH

#### Table 24. SCRATCH

| Name    | Bits | R/W | Reset    | Description      |
|---------|------|-----|----------|------------------|
| SCRATCH | 7:0  | R   | 11000101 | Scratch Register |

The SCRATCH register does not affect the function of the chip in any way. It is intended for the Microcontroller to test communication to the AX5043.

## **Operating Mode**

**PWRMODE** 

#### **Table 25. PWRMODE**

| Name    | Bits | R/W | Reset | Description                                                                                                                                   |
|---------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| PWRMODE | 3:0  | RW  | 0000  | See Table 26: PWRMODE Bit Value                                                                                                               |
| WDS     | 4    | R   | -     | Wakeup from Deep Sleep                                                                                                                        |
| REFEN   | 5    | RW  | 1     | Reference Enable; set to 1 to power the internal reference circuitry                                                                          |
| XOEN    | 6    | RW  | 1     | Crystal Oscillator Enable                                                                                                                     |
| RST     | 7    | RW  | 0     | Reset; setting this bit to 1 resets the whole chip. This bit does not auto-reset – the chip remains in reset state until this bit is cleared. |

## **Table 26. PWRMODE BIT VALUES**

| Bits | Meaning                                                                                              |
|------|------------------------------------------------------------------------------------------------------|
| 0000 | Powerdown; all circuits powered down                                                                 |
| 0001 | Deep Sleep Mode; Chip is fully powered down until SEL is lowered again; looses all register contents |
| 0101 | Crystal Oscillator enabled                                                                           |
| 0111 | FIFO enabled                                                                                         |
| 1000 | Synthesizer running, Receive Mode                                                                    |
| 1001 | Receiver Running                                                                                     |
| 1011 | Receiver Wake-on-Radio Mode                                                                          |
| 1100 | Synthesizer running, Transmit Mode                                                                   |
| 1101 | Transmitter Running                                                                                  |

## **Power Management**

**POWSTAT** 

## Table 27. POWSTAT

| Name      | Bits | R/W | Reset | Description                                                                     |
|-----------|------|-----|-------|---------------------------------------------------------------------------------|
| SVIO      | 0    | R   | -     | IO Voltage Large Enough (not Brownout)                                          |
| SBEVMODEM | 1    | R   | -     | Modem Domain Voltage Brownout Error (Inverted; 0 = Brownout, 1 = Power OK)      |
| SBEVANA   | 2    | R   | -     | Analog Domain Voltage Brownout Error (Inverted; 0 = Brownout, 1 = Power OK)     |
| SVMODEM   | 3    | R   | -     | Modem Domain Voltage Regulator Ready                                            |
| SVANA     | 4    | R   | -     | Analog Domain Voltage Regulator Ready                                           |
| SVREF     | 5    | R   | -     | Reference Voltage Regulator Ready                                               |
| SREF      | 6    | R   | -     | Reference Ready                                                                 |
| SSUM      | 7    | R   | -     | Summary Ready Status (one when all unmasked POWIRQMASK power sources are ready) |

## *POWSTICKYSTAT*

## Table 28. POWSTICKYSTAT

| Name       | Bits | R/W | Reset | Description                                                                                 |
|------------|------|-----|-------|---------------------------------------------------------------------------------------------|
| SSUM       | 7    | R   | -     | Summary Ready Status (one when all unmasked POWIRQMASK power sources are ready)             |
| SSVIO      | 0    | R   | -     | Sticky IO Voltage Large Enough (not Brownout)                                               |
| SSBEVMODEM | 1    | R   | -     | Sticky Modem Domain Voltage Brownout Error (Inverted; 0 = Brownout detected, 1 = Power OK)  |
| SSBEVANA   | 2    | R   | -     | Sticky Analog Domain Voltage Brownout Error (Inverted; 0 = Brownout detected, 1 = Power OK) |
| SSVMODEM   | 3    | R   | -     | Sticky Modem Domain Voltage Regulator Ready                                                 |
| SSVANA     | 4    | R   | -     | Sticky Analog Domain Voltage Regulator Ready                                                |
| SSVREF     | 5    | R   | -     | Sticky Reference Voltage Regulator Ready                                                    |
| SSREF      | 6    | R   | -     | Sticky Reference Ready                                                                      |
| SSSUM      | 7    | R   | -     | Sticky Summary Ready Status (zero when any unmasked POWIRQMASK power sources is not ready)  |

## **POWIRQMASK**

## Table 29. POWIRQMASK

| Name       | Bits | R/W | Reset | Description                                                                                                                                                          |
|------------|------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSVIO      | 0    | RW  | 0     | IO Voltage Large Enough (not Brownout) Interrupt Mask                                                                                                                |
| MSBEVMODEM | 1    | RW  | 0     | Modem Domain Voltage Brownout Error Interrupt Mask                                                                                                                   |
| MSBEVANA   | 2    | RW  | 0     | Analog Domain Voltage Brownout Error Interrupt Mask                                                                                                                  |
| MSVMODEM   | 3    | RW  | 0     | Modem Domain Voltage Regulator Ready Interrupt Mask                                                                                                                  |
| MSVANA     | 4    | RW  | 0     | Analog Domain Voltage Regulator Ready Interrupt Mask                                                                                                                 |
| MSVREF     | 5    | RW  | 0     | Reference Voltage Regulator Ready Interrupt Mask                                                                                                                     |
| MSREF      | 6    | RW  | 0     | Reference Ready Interrupt Mask                                                                                                                                       |
| MPWRGOOD   | 7    | RW  | 0     | If 0, interrupt whenever one of the unmasked power sources fail (clear interrupt by reading POWSTICKYSTAT); if 1, interrupt when all unmasked power sources are good |

## **Interrupt Control**

IRQMASK1, IRQMASK0

Table 30. IRQMASK1, IRQMASK0

| Name             | Bits | R/W | Reset | Description                               |
|------------------|------|-----|-------|-------------------------------------------|
| IRQMFIFONOTEMPTY | 0    | RW  | 0     | FIFO not empty interrupt enable           |
| IRQMFIFONOTFULL  | 1    | RW  | 0     | FIFO not full interrupt enable            |
| IRQMFIFOTHRCNT   | 2    | RW  | 0     | FIFO count > threshold interrupt enable   |
| IRQMFIFOTHRFREE  | 3    | RW  | 0     | FIFO free > threshold interrupt enable    |
| IRQMFIFOERROR    | 4    | RW  | 0     | FIFO error interrupt enable               |
| IRQMPLLUNLOCK    | 5    | RW  | 0     | PLL lock lost interrupt enable            |
| IRQMRADIOCTRL    | 6    | RW  | 0     | Radio Controller interrupt enable         |
| IRQMPOWER        | 7    | RW  | 0     | Power interrupt enable                    |
| IRQMXTALREADY    | 8    | RW  | 0     | Crystal Oscillator Ready interrupt enable |
| IRQMWAKEUPTIMER  | 9    | RW  | 0     | Wakeup Timer interrupt enable             |
| IRQMLPOSC        | 10   | RW  | 0     | Low Power Oscillator interrupt enable     |
| IRQMGPADC        | 11   | RW  | 0     | GPADC interrupt enable                    |
| IRQMPLLRNGDONE   | 12   | RW  | 0     | PLL autoranging done interrupt enable     |

Zero disables the corresponding interrupt, while one enables it.

## RADIOEVENTMASK1, RADIOEVENTMASK0

Table 31. RADIOEVENTMASK1, RADIOEVENTMASK0

| Name              | Bits | R/W | Reset | Description                                 |
|-------------------|------|-----|-------|---------------------------------------------|
| REVMDONE          | 0    | RW  | 0     | Transmit or Receive Done Radio Event Enable |
| REVMSETTLED       | 1    | RW  | 0     | PLL Settled Radio Event Enable              |
| REVMRADIOSTATECHG | 2    | RW  | 0     | Radio State Changed Event Enable            |
| REVMRXPARAMSETCHG | 3    | RW  | 0     | Receiver Parameter Set Changed Event Enable |
| REVMFRAMECLK      | 4    | RW  | 0     | Frame Clock Event Enable                    |

## IRQINVERSION1, IRQINVERSION0

Table 32. IRQINVERSION1, IRQINVERSION0

| Name               | Bits | R/W | Reset | Description                                  |
|--------------------|------|-----|-------|----------------------------------------------|
| IRQINVFIFONOTEMPTY | 0    | RW  | 0     | FIFO not empty interrupt inversion           |
| IRQINVFIFONOTFULL  | 1    | RW  | 0     | FIFO not full interrupt inversion            |
| IRQINVFIFOTHRCNT   | 2    | RW  | 0     | FIFO count > threshold interrupt inversion   |
| IRQINVFIFOTHRFREE  | 3    | RW  | 0     | FIFO free > threshold interrupt inversion    |
| IRQINVFIFOERROR    | 4    | RW  | 0     | FIFO error interrupt inversion               |
| IRQINVPLLUNLOCK    | 5    | RW  | 0     | PLL lock lost interrupt inversion            |
| IRQINVRADIOCTRL    | 6    | RW  | 0     | Radio Controller interrupt inversion         |
| IRQINVPOWER        | 7    | RW  | 0     | Power interrupt inversion                    |
| IRQINVXTALREADY    | 8    | RW  | 0     | Crystal Oscillator Ready interrupt inversion |
| IRQINVWAKEUPTIMER  | 9    | RW  | 0     | Wakeup Timer interrupt inversion             |
| IRQINVLPOSC        | 10   | RW  | 0     | Low Power Oscillator interrupt inversion     |
| IRQINVGPADC        | 11   | RW  | 0     | GPADC interrupt inversion                    |
| IRQINVPLLRNGDONE   | 12   | RW  | 0     | PLL autoranging done interrupt inversion     |

#### IRQREQUEST1, IRQREQUEST0

Table 33. IRQREQUEST1, IRQREQUEST0

| Name              | Bits | R/W | Reset | Description                                |
|-------------------|------|-----|-------|--------------------------------------------|
| IRQRQFIFONOTEMPTY | 0    | R   | -     | FIFO not empty interrupt pending           |
| IRQRQFIFONOTFULL  | 1    | R   | -     | FIFO not full interrupt pending            |
| IRQRFIFOTHRCNT    | 2    | R   | ı     | FIFO count > threshold interrupt pending   |
| IRQRFIFOTHRFREE   | 3    | R   | -     | FIFO free > threshold interrupt pending    |
| IRQRFIFOERROR     | 4    | R   | -     | FIFO error interrupt pending               |
| IRQRQPLLUNLOCK    | 5    | R   | -     | PLL lock lost interrupt pending            |
| IRQRRADIOCTRL     | 6    | R   | -     | Radio Controller interrupt pending         |
| IRQRPOWER         | 7    | R   | ı     | Power interrupt pending                    |
| IRQRXTALREADY     | 8    | R   | -     | Crystal Oscillator Ready interrupt pending |
| IRQRWAKEUPTIMER   | 9    | R   | -     | Wakeup Timer interrupt pending             |
| IRQRLPOSC         | 10   | R   | -     | Low Power Oscillator interrupt pending     |
| IRQRGPADC         | 11   | R   | -     | GPADC interrupt pending                    |
| IRQRQPLLRNGDONE   | 12   | R   | -     | PLL autoranging done interrupt pending     |

## $RADIOEVENTREQ1,\,RADIOEVENTREQ0$

Table 34. RADIOEVENTREQ1, RADIOEVENTREQ0

| Name              | Bits | R/W | Reset | Description                                  |
|-------------------|------|-----|-------|----------------------------------------------|
| REVRDONE          | 0    | RC  | 1     | Transmit or Receive Done Radio Event Pending |
| REVRSETTLED       | 1    | RC  | -     | PLL Settled Radio Event Pending              |
| REVRRADIOSTATECHG | 2    | RC  | -     | Radio State Changed Event Pending            |
| REVRRXPARAMSETCHG | 3    | RC  | -     | Receiver Parameter Set Changed Event Pending |
| REVRFRAMECLK      | 4    | RC  | -     | Frame Clock Event Pending                    |

The bits in this register are cleared upon reading this register.

#### **Modulation and Framing**

**MODULATION** 

**Table 35. MODULATION** 

| Name         | Bits | R/W | Reset | Description                                  |
|--------------|------|-----|-------|----------------------------------------------|
| REVRDONE     | 0    | RC  | ı     | Transmit or Receive Done Radio Event Pending |
| MODULATION   | 3:0  | RW  | 1000  | See table 36: Modulation Bit Values          |
| RX HALFSPEED | 4    | RW  | 0     | If set, halves the receive bitrate           |

## **Table 36. MODULATION BIT VALUES**

| Bits | Inputs       |
|------|--------------|
| 0000 | ASK          |
| 0001 | ASK Coherent |
| 0100 | PSK          |
| 0110 | OQSK         |
| 0111 | MSK          |
| 1000 | FSK          |
| 1001 | 4-FSK        |
| 1010 | AFSK         |
| 1011 | FM           |

Transmitter amplitude shaping is set using the MODCFGA register, and frequency shaping is set using the MODCFGF register.

#### **ENCODING**

**Table 37. ENCODING** 

| Name       | Bits | R/W | Reset | Description                                                                                                     |
|------------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------|
| ENC INV    | 0    | RW  | 0     | Invert data if set to 1                                                                                         |
| ENC DIFF   | 1    | RW  | 1     | Differential Encode/Decode data if set to 1                                                                     |
| ENC SCRAM  | 2    | RW  | 0     | Enable Scrambler/Descrambler if set to 1                                                                        |
| ENC MANCH  | 3    | RW  | 0     | Enable manchester encoding/decoding. FM0/FM1 may be achieved by also appropriately setting ENC DIFF and ENC INV |
| ENC NOSYNC | 4    | RW  | 0     | Disable Dibit synchronisation in 4–FSK mode                                                                     |



Figure 17. Scrambler Schematic Diagram



Figure 18. Descrambler Schematic Diagram

The intention of the scrambler is the removal of tones contained in the transmit data, i.e. to randomize the transmit spectrum. The scrambler polynomial is  $1 + X^{12} + X^{17}$ , it is therefore compatible to the K9NG/G3RUH Satellite Modems.

Figure 17 and Figure 18 show schematic diagrams of the scrambler and the descrambler operation. The numbered boxes represent delays by one bit.

ENC NOSYNC should normally be set to zero, unless the chip is either in the RXFRAMING or TXFRAMING mode and PWRUP is not used as a synchronisation signal.

Figure 19 shows a few well known encodinf formats used in telecom.



Figure 19. Customary Encodings

**Table 38. CUSTOMARY ENCODING MODES DESCRIPTION** 

| Name | Bits                                          | Description                                                                                                                                                                                                                                             |
|------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NRZ  | INV = 0, DIFF = 0,<br>SCRAM = 0,<br>MANCH = 0 | NRZ represents 1 as a high signal level, 0 as a low signal level. NRZ performs no change.                                                                                                                                                               |
| NRZI | INV = 1, DIFF =1,<br>SCRAM = 0,<br>MANCH = 0  | NRZI represents 1 as no change in the signal level, and 0 as a change in the signal level. NRZI is recommended for HDLC [1]. The HDLC bit stuffing ensures that there are periodic zeros and thus transitions, and the encoding is inversion invariant. |

Table 38. CUSTOMARY ENCODING MODES DESCRIPTION(continued)

| Name       | Bits                                          | Description                                                                                                                                            |
|------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| FM1        | INV = 1, DIFF = 1,<br>SCRAM = 0,<br>MANCH = 1 | FM1 (Biphase Mark) always ensures transitions at bit edges. It encodes 1 as a transition at the bit center, and 0 as no transition at the bit center.  |
| FM0        | INV = 0, DIFF = 1,<br>SCRAM = 0,<br>MANCH = 1 | FM0 (Biphase Space) always ensures transitions at bit edges. It encodes 1 as no transition at the bit center, and 0 as a transition at the bit center. |
| Manchester | INV = 0, DIFF = 0,<br>SCRAM = 0,<br>MANCH = 1 | Manchester encodes 1 as a 10 pattern, and 0 as a 01 pattern. Manchester is not inversion invariant.                                                    |

### **Guidelines:**

- Manchester, FM0, and FM1 are not recommended for new systems, as they double the bitrate.
- In HDLC [1] mode, use NRZI, NRZI + Scrambler, or NRZ + Scrambler.
- In Raw modes, the choice depends on the legacy system to be implemented.

## **FRAMING**

#### **Table 39. FRAMING**

| Name    | Bits | R/W | Reset | Description                                                                                                                                                                               |
|---------|------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FABORT  | 0    | S   | 0     | Write 1 to abort current HDLC [1] packet / pattern match                                                                                                                                  |
| FRMMODE | 3:1  | RW  | 000   | See Table 40: FRMMODE Bit Values                                                                                                                                                          |
| CRCMODE | 6:4  | RW  | 000   | See Table 41: CRCMODE Bit Values                                                                                                                                                          |
| FRMRX   | 7    | R   | -     | Packet start detected, receiver running; this bit is set when a flag is detected in HDLC [1] mode or when the preamble matches in Raw Pattern Match mode. Cleared by writing 1 to FABORT. |

**Table 40. FRMMODE BIT VALUES** 

| Bits | Meaning                         |
|------|---------------------------------|
| 000  | Raw                             |
| 001  | Raw, Soft Bits                  |
| 010  | HDLC [1]                        |
| 011  | Raw, Pattern Match              |
| 100  | Wireless M-Bus                  |
| 101  | Wireless M-Bus, 4-to-6 Encoding |

NOTE: The wireless M-Bus definition of "Manchester" is inverse to the definition used by the AX5043. AX5043 defines "Manchester" as the transmission of the data bit followed by the transmission of the inverted data bit. Wireless M-Bus defines it the other way around. In order to avoid having to enable inversion in the ENCODING register, the AX5043 inverts normal data bits when FRMMODE is set to Wireless M-Bus.

**Table 41. CRCMODE BIT VALUES** 

| Bits | Meaning        |
|------|----------------|
| 000  | Off            |
| 001  | CCITT (16 bit) |
| 010  | CRC-16         |
| 011  | DNP (16 bit)   |
| 110  | CRC-32         |

NOTE: If FRMMODE is set to Raw, Soft Bits, register F72 must be set to 0x06. Otherwise, it should be left or set to 0x00.

## CRCINIT3, CRCINIT2, CRCINIT1, CRCINIT0

Table 42. CRCINIT3, CRCINIT2, CRCINIT1, CRCINIT0

| Name    | Bits | R/W | Reset     | Description                        |
|---------|------|-----|-----------|------------------------------------|
| CRCINIT | 31:0 | RW  | 0xFFFFFFF | CRC Reset Value; normally all ones |

#### **Forward Error Correction**

FEC

Table 43. FEC

| Name        | Bits | R/W | Reset | Description                                    |
|-------------|------|-----|-------|------------------------------------------------|
| FECENA      | 0    | RW  | 0     | Enable FEC (Convolutional Encoder)             |
| FECINPSHIFT | 3:1  | RW  | 000   | Attenuate soft Rx Data by 2-FECINPSHIFT        |
| FECPOS      | 4    | RW  | 0     | Enable noninverted Interleaver Synchronisation |
| FECNEG      | 5    | RW  | 0     | Enable inverted Interleaver Synchronisation    |
| RSTVITERBI  | 6    | RW  | 0     | Reset Viterbi Decoder                          |
| SHORTMEM    | 7    | RW  | 0     | Shorten Backtrack Memory                       |



Figure 20. Schematic Diagram of the Convolutional Encoder

FECENA enables the Forward Error Correction and the Interleaver.

The Interleaver is a 4 x 4 matrix interleaver, i.e. transmit bits are filled in row-wise and read out column-wise.

The Convolutional Code is a nonsystematic Rate ½ code with the generators  $g_1 = 1 + D^3 + D^4$  and  $g_2 = 1 + D + D^2 + D^4$ . It has a minimum free distance of  $d_{free} = 7$ . Figure 20 shows a schematic diagram of the convolutional encoder.

In the Transmitter, HDLC [1] flags are aligned (by inserting zero bits) to the interleaver. In the Receiver, a convolver to the encoded/interleaved flag sequence establishes deinterleaver synchronisation and inversion detection. That means, that FEC only works with HDLC framing.

The Viterbi decoder uses soft metric.

### **FECSYNC**

**Table 44. FECSYNC** 

| Name    | Bits | R/W | Reset    | Description                           |
|---------|------|-----|----------|---------------------------------------|
| FECSYNC | 7:0  | RW  | 01100010 | Interleaver Synchronisation Threshold |

### **FECSTATUS**

**Table 45. FECSTATUS** 

| Name      | Bits | R/W | Reset | Description                                |
|-----------|------|-----|-------|--------------------------------------------|
| MAXMETRIC | 6:0  | R   | -     | Metric increment of the survivor path      |
| FEC INV   | 7    | R   | -     | Inverted Synchronisation Sequence received |

## **Status**

## *RADIOSTATE*

## **Table 46. RADIOSTATE**

| Name        | Bits | R/W | Reset | Description                                     |
|-------------|------|-----|-------|-------------------------------------------------|
| RADIO STATE | 3:0  | R   | 0000  | See Table 47: Radio Controller State Bit Values |

# **Table 47. RADIOSTATE BIT VALUES**

| Bits | Meaning              |
|------|----------------------|
| 0000 | Idle                 |
| 0001 | Powerdown            |
| 0100 | Tx PLL Settings      |
| 0110 | Tx                   |
| 0111 | Tx Tail              |
| 1000 | Rx PLL Settings      |
| 1001 | Rx Antenna Selection |
| 1100 | Rx Preamble 1        |
| 1101 | Rx Preamble 2        |
| 1110 | Rx Preamble 3        |
| 1111 | Rx                   |

## *XTALSTATUS*

# Table 48. XTALSTATUS

| Name     | Bits | R/W | Reset | Description                                       |
|----------|------|-----|-------|---------------------------------------------------|
| XTAL RUN | 0    | R   | _     | 1 indicates crystal oscillator running and stable |

# **Pin Configuration**

*PINSTATE* 

## **Table 49. PINSTATE**

| Name     | Bits | R/W | Reset | Description                |
|----------|------|-----|-------|----------------------------|
| PSSYSCLK | 0    | R   | ı     | Signal Level on Pin SYSCLK |
| PSDCLK   | 1    | R   | -     | Signal Level on Pin DCLK   |
| PSDATA   | 2    | R   | ı     | Signal Level on Pin DATA   |
| PSIRQ    | 3    | R   | ı     | Signal Level on Pin IRQ    |
| PSANTSEL | 4    | R   | -     | Signal Level on Pin ANTSEL |
| PSPWRAMP | 5    | R   | -     | Signal Level on Pin PWRAMP |

## *PINFUNCSYSCLK*

# Table 50. PINFUNCSYSCLK

| Name     | Bits | R/W | Reset | Description                       |
|----------|------|-----|-------|-----------------------------------|
| PFSYSCLK | 4:0  | RW  | 01000 | See Table 51: PFSYSCLK Bit Values |
| PUSYSCLK | 7    | RW  | 0     | SYSCLK weak Pullup enable         |

## Table 51. PFSYSCLK BIT VALUES

| Bits  | Meaning           |
|-------|-------------------|
| 0000  | ldle              |
| 00000 | SYSCLK Output '0' |
| 00001 | SYSCLK Output '1' |

Table 51. PFSYSCLK BIT VALUES (continued)

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00010 | SYSCLK Output 'Z'                       |
| $\begin{array}{c c} 00101 & \text{SYSCLK Output } \frac{f_{XTAL}}{2} \\ 00110 & \text{SYSCLK Output } \frac{f_{XTAL}}{4} \\ 00111 & \text{SYSCLK Output } \frac{f_{XTAL}}{4} \\ 00100 & \text{SYSCLK Output } \frac{f_{XTAL}}{8} \\ 01000 & \text{SYSCLK Output } \frac{f_{XTAL}}{16} \\ 01001 & \text{SYSCLK Output } \frac{f_{XTAL}}{32} \\ 01010 & \text{SYSCLK Output } \frac{f_{XTAL}}{64} \\ 01011 & \text{SYSCLK Output } \frac{f_{XTAL}}{128} \\ 01100 & \text{SYSCLK Output } \frac{f_{XTAL}}{256} \\ 01101 & \text{SYSCLK Output } \frac{f_{XTAL}}{512} \\ 01110 & \text{SYSCLK Output } \frac{f_{XTAL}}{1024} \\ 01111 & \text{SYSCLK Output Low Power (LP) Oscillator} \\ \end{array}$                                                                                                                                | 00011 | SYSCLK Output inverted $f_{XTAL}$       |
| $\begin{array}{c c} \text{SYSCLK Output} \frac{f_{XTAL}}{2} \\ \hline 00110 & \text{SYSCLK Output} \frac{f_{XTAL}}{4} \\ \hline 00111 & \text{SYSCLK Output} \frac{f_{XTAL}}{8} \\ \hline 01000 & \text{SYSCLK Output} \frac{f_{XTAL}}{16} \\ \hline 01001 & \text{SYSCLK Output} \frac{f_{XTAL}}{32} \\ \hline 01010 & \text{SYSCLK Output} \frac{f_{XTAL}}{32} \\ \hline 01011 & \text{SYSCLK Output} \frac{f_{XTAL}}{64} \\ \hline 01011 & \text{SYSCLK Output} \frac{f_{XTAL}}{128} \\ \hline 01100 & \text{SYSCLK Output} \frac{f_{XTAL}}{256} \\ \hline 01101 & \text{SYSCLK Output} \frac{f_{XTAL}}{256} \\ \hline 01101 & \text{SYSCLK Output} \frac{f_{XTAL}}{1024} \\ \hline 01110 & \text{SYSCLK Output} \frac{f_{XTAL}}{1024} \\ \hline 01111 & \text{SYSCLK Output Low Power (LP) Oscillator} \\ \hline \end{array}$ | 00100 | SYSCLK Output $f_{XTAL}$                |
| $\begin{array}{c c} \text{SYSCLK Output} \frac{f_{XTAL}}{4} \\ \hline 00111 & \text{SYSCLK Output} \frac{f_{XTAL}}{8} \\ \hline 01000 & \text{SYSCLK Output} \frac{f_{XTAL}}{16} \\ \hline 01001 & \text{SYSCLK Output} \frac{f_{XTAL}}{32} \\ \hline 01010 & \text{SYSCLK Output} \frac{f_{XTAL}}{64} \\ \hline 01011 & \text{SYSCLK Output} \frac{f_{XTAL}}{64} \\ \hline 01100 & \text{SYSCLK Output} \frac{f_{XTAL}}{128} \\ \hline 01100 & \text{SYSCLK Output} \frac{f_{XTAL}}{256} \\ \hline 01101 & \text{SYSCLK Output} \frac{f_{XTAL}}{512} \\ \hline 01110 & \text{SYSCLK Output} \frac{f_{XTAL}}{1024} \\ \hline 01111 & \text{SYSCLK Output Low Power (LP) Oscillator} \\ \hline \end{array}$                                                                                                                        | 00101 | SYSCLK Output $\frac{f_{XTAL}}{2}$      |
| $\begin{array}{c c} 01000 & \text{SYSCLK Output } \frac{f_{XTAL}}{16} \\ \hline 01001 & \text{SYSCLK Output } \frac{f_{XTAL}}{32} \\ \hline 01010 & \text{SYSCLK Output } \frac{f_{XTAL}}{64} \\ \hline 01011 & \text{SYSCLK Output } \frac{f_{XTAL}}{64} \\ \hline 01100 & \text{SYSCLK Output } \frac{f_{XTAL}}{128} \\ \hline 01100 & \text{SYSCLK Output } \frac{f_{XTAL}}{256} \\ \hline 01101 & \text{SYSCLK Output } \frac{f_{XTAL}}{512} \\ \hline 01110 & \text{SYSCLK Output } \frac{f_{XTAL}}{1024} \\ \hline 01111 & \text{SYSCLK Output Low Power (LP) Oscillator} \\ \hline \end{array}$                                                                                                                                                                                                                            | 00110 | SYSCLK Output $\frac{f_{XTAL}}{4}$      |
| SYSCLK Output $\frac{f_{ATAL}}{16}$ 01001 SYSCLK Output $\frac{f_{ATAL}}{32}$ 01010 SYSCLK Output $\frac{f_{ATAL}}{64}$ 01011 SYSCLK Output $\frac{f_{ATAL}}{128}$ 01100 SYSCLK Output $\frac{f_{ATAL}}{128}$ 01101 SYSCLK Output $\frac{f_{ATAL}}{256}$ 01101 SYSCLK Output $\frac{f_{ATAL}}{512}$ 01110 SYSCLK Output $\frac{f_{ATAL}}{1024}$ 01111 SYSCLK Output Low Power (LP) Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00111 | SYSCLK Output $\frac{f_{XTAL}}{8}$      |
| $\begin{array}{c} \text{SYSCLK Output} \frac{f_{ATAL}}{32} \\ \text{O1010} & \text{SYSCLK Output} \frac{f_{ATAL}}{64} \\ \text{O1011} & \text{SYSCLK Output} \frac{f_{ATAL}}{128} \\ \text{O1100} & \text{SYSCLK Output} \frac{f_{ATAL}}{256} \\ \text{O1101} & \text{SYSCLK Output} \frac{f_{ATAL}}{512} \\ \text{O1110} & \text{SYSCLK Output} \frac{f_{ATAL}}{1024} \\ \text{O1111} & \text{SYSCLK Output Low Power (LP) Oscillator} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                           | 01000 | SYSCLK Output $\frac{f_{XTAL}}{16}$     |
| $\begin{array}{c} \text{SYSCLK Output} \frac{f_{XTAL}}{64} \\ \text{O1011} & \text{SYSCLK Output} \frac{f_{XTAL}}{128} \\ \text{O1100} & \text{SYSCLK Output} \frac{f_{XTAL}}{256} \\ \text{O1101} & \text{SYSCLK Output} \frac{f_{XTAL}}{512} \\ \text{O1110} & \text{SYSCLK Output} \frac{f_{XTAL}}{1024} \\ \text{O1111} & \text{SYSCLK Output Low Power (LP) Oscillator} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01001 | SYSCLK Output $\frac{f_{XTAL}}{32}$     |
| $\begin{array}{c} \text{O1100} & \text{SYSCLK Output } \frac{f_{XTAL}}{256} \\ \\ \text{O1101} & \text{SYSCLK Output } \frac{f_{XTAL}}{512} \\ \\ \text{O1110} & \text{SYSCLK Output } \frac{f_{XTAL}}{1024} \\ \\ \text{O1111} & \text{SYSCLK Output Low Power (LP) Oscillator} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01010 |                                         |
| 01101 SYSCLK Output $\frac{f_{XTAL}}{512}$ 01110 SYSCLK Output $\frac{f_{XTAL}}{1024}$ 01111 SYSCLK Output Low Power (LP) Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01011 |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01100 | SYSCLK Output $\frac{f_{XTAL}}{256}$    |
| SYSCLK Output ALAL 1024  01111 SYSCLK Output Low Power (LP) Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01101 | SYSCLK Output $\frac{f_{XTAL}}{512}$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01110 | SYSCLK Output $\frac{f_{XTAL}}{1024}$   |
| 11111 SYSCLK Output Test Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01111 | SYSCLK Output Low Power (LP) Oscillator |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11111 | SYSCLK Output Test Observation          |

# *PINFUNCDCLK*

# Table 52. PINFUNCDCLK

| Name   | Bits | R/W | Reset | Description                     |
|--------|------|-----|-------|---------------------------------|
| PFDCLK | 2:0  | RW  | 100   | See Table 53: PFDCLK Bit Values |
| PIDCLK | 6    | RW  | 0     | DCLK inversion                  |
| PUDCLK | 7    | RW  | 0     | DCLK weak Pullup enable         |

# Table 53. PFDCLK BIT VALUES

| Bits | Meaning                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 000  | DCLK Output '0'                                                                                                                           |
| 001  | DCLK Output '1'                                                                                                                           |
| 010  | DCLK Output 'Z'                                                                                                                           |
| 011  | DCLK Output Modem Data Clock Input; use when inputting/outputting framing data on DATA                                                    |
| 100  | DCLK Output Modem Data Clock Output; use when observing modem data on DATA                                                                |
| 101  | DCLK Output Modem Data Clock Output; use when inputting/outputting framing data on DATA, and you do not want to generate a clock yourself |
| 110  | invalid                                                                                                                                   |
| 111  | DCLK Output Test Observation                                                                                                              |

## **PINFUNCDATA**

## **Table 54. PINFUNCDATA**

| Name   | Bits | R/W | Reset | Description                     |
|--------|------|-----|-------|---------------------------------|
| PFDATA | 3:0  | RW  | 0111  | See Table 55: PFDCLK Bit Values |
| PIDATA | 6    | RW  | 0     | DATA inversion                  |
| PUDATA | 7    | RW  | 1     | DATA weak Pullup enable         |

### **Table 55. PFDATA BIT VALUES**

| Bits | Meaning                            |
|------|------------------------------------|
| 0000 | DATA Output '0'                    |
| 0001 | DATA Output '1'                    |
| 0010 | DATA Output 'Z'                    |
| 0011 | DATA Input/Output Framing Data     |
| 0100 | DATA Input/Output Modem Data       |
| 0101 | DATA Input/Output Async Modem Data |
| 0110 | Invalid                            |
| 0111 | DATA Output Modem Data             |
| 1111 | DATA Output Test Observation       |

In Asynchronous Wire Mode, the maximum bitrate is limited to .

# **PINFUNCIRQ**

## **Table 56. PINFUNCIRQ**

| Name  | Bits | R/W | Reset | Description                    |
|-------|------|-----|-------|--------------------------------|
| PFIRQ | 2:0  | RW  | 011   | See Table 57: PFIRQ Bit Values |
| PIIRQ | 6    | RW  | 0     | IRQ inversion                  |
| PUIRQ | 7    | RW  | 0     | IRQ weak Pullup enable         |

## **Table 57. PFIRQ BIT VALUES**

| Bits | Meaning                      |
|------|------------------------------|
| 000  | IRQ Output '0'               |
| 001  | IRQ Output '1'               |
| 010  | IRQ Output 'Z'               |
| 011  | IRQ Output Interrupt Request |
| 111  | IRQ Output Test Observation  |

# *PINFUNCANTSEL*

### **Table 58. PINFUNCANTSEL**

| Name     | Bits | R/W | Reset | Description                       |
|----------|------|-----|-------|-----------------------------------|
| PFANTSEL | 2:0  | RW  | 110   | See Table 59: PFANTSEL Bit Values |
| PIANTSEL | 6    | RW  | 0     | ANTSEL inversion                  |
| PUANTSEL | 7    | RW  | 0     | ANTSEL weak Pullup enable         |

# Table 59. PFANTSEL BIT VALUES

| Bits | Meaning           |
|------|-------------------|
| 000  | ANTSEL Output '0' |

Table 59. PFANTSEL BIT VALUES (continued)

| 001 | ANTSEL Output '1'                      |
|-----|----------------------------------------|
| 010 | ANTSEL Output 'Z'                      |
| 011 | ANTSEL Output Baseband Tune Clock      |
| 100 | ANTSEL Output External TCXO Enable     |
| 101 | ANTSEL Output DAC                      |
| 110 | ANTSEL Output Diversity Antenna Select |
| 111 | ANTSEL Output Test Observation         |

# *PINFUNCPWRAMP*

# Table 60. PINFUNCPWRAMP

| Name     | Bits | R/W | Reset | Description                       |
|----------|------|-----|-------|-----------------------------------|
| PFPWRAMP | 3:0  | RW  | 0110  | See Table 61: PFPWRAMP Bit Values |
| PIPWRAMP | 6    | RW  | 0     | PWRAMP inversion                  |
| PUPWRAMP | 7    | RW  | 0     | PWRAMP weak Pullup enable         |

## **Table 61. PFPWRAMP BIT VALUES**

| Bits | Meaning                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------|
| 0000 | PWRAMP Output '0'                                                                                          |
| 0001 | PWRAMP Output '1'                                                                                          |
| 0010 | PWRAMP Output 'Z'                                                                                          |
| 0011 | PWRAMP Input DiBit Synchronisation<br>(4–FSK); use when inputting/outputting<br>4–FSK framing data on DATA |
| 0100 | PWRAMP Output DiBit Synchronisation<br>(4–FSK); use when observing 4–FSK<br>modem data on DATA             |
| 0101 | PWRAMP Output DAC                                                                                          |
| 0110 | PWRAMP Output Power Amplifier Control                                                                      |
| 0111 | PWRAMP Output External TCXO Enable                                                                         |
| 1111 | PWRAMP Output Test Observation                                                                             |

# **PWRAMP**

# Table 62. PWRAMP

| Name   | Bits | R/W | Reset | Description             |
|--------|------|-----|-------|-------------------------|
| PWRAMP | 0    | RW  | 0     | Power Amplifier Control |

The PWRAMP bit may be output on the PWRAMP pin. This signal may be used to control an external power amplifier.

# FIFO Registers

**FIFOSTAT** 

# Table 63. FIFOSTAT

| Name             | Bits | R/W | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIFO EMPTY       | 0    | R   | 1     | FIFO is empty if 1. This bit is dangerous to use when PWRMODE is set to Receiver Wake-on-Radio mode. In this mode, the FIFO and thus the FIFOSTAT register is only powered up while the FIFO is not empty, and powered down immediately when the FIFO becomes empty. When powered down, reading FIFOSTAT returns zero, indicating a non-empty FIFO while in reality the FIFO is empty. In Wake-on-Radio mode, it is recommended to use the IRQRQFIFONOTEMPTY bit of Register IRQREQUESTO. This bit will work in all cases, even when the interrupt is masked. |
| FIFO FULL        | 1    | R   | 0     | FIFO is full if 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIFO UNDER       | 2    | R   | 0     | FIFO underrun occured since last read of FIFOSTAT when 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIFO OVER        | 3    | R   | 0     | FIFO overrun occured since last read of FIFOSTAT when 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIFO CNT THR     | 4    | R   | 0     | 1 if the FIFO count is > FIFOTHRESH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FIFO FREE THR    | 5    | R   | 0     | 1 if the FIFO free space is > FIFOTHRESH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIFOCMD          | 5:0  | W   | _     | See Table 64: FIFOCMD Bit Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIFO AUTO COMMIT | 7    | RW  | 0     | If one, FIFO write bytes are automatically committed on every write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## **Table 64. FIFOCMD BIT VALUES**

| Bits   | Meaning                                    |
|--------|--------------------------------------------|
| 000000 | No Operation                               |
| 000001 | ASK Coherent                               |
| 000010 | Clear FIFO Error (OVER and UNDER)<br>Flags |
| 000011 | Clear FIFO Data and Flags                  |
| 000100 | Commit                                     |
| 000101 | Rollback                                   |
| 000110 | Invalid                                    |
| 000111 | Invalid                                    |
| 001XXX | Invalid                                    |
| 01XXXX | Invalid                                    |
| 1XXXXX | Invalid                                    |

# **FIFODATA**

# Table 65. FIFODATA

| Name     | Bits | R/W | Reset | Description          |
|----------|------|-----|-------|----------------------|
| FIFODATA | 7:0  | RW  | ı     | FIFO access register |

Note that when accessing this register, the SPI address pointer is not incremented, allowing for efficient burst accesses.

### FIFOCOUNT1, FIFOCOUNT0

## Table 66. FIFOCOUNT1, FIFOCOUNT0

| Name      | Bits | R/W | Reset | Description                            |
|-----------|------|-----|-------|----------------------------------------|
| FIFOCOUNT | 8:0  | R   | -     | Current number of committed FIFO Words |

## FIFOFREE1, FIFOFREE0

## Table 67. FIFOFREE1, FIFOFREE0

| Name     | Bits | R/W | Reset | Description                        |
|----------|------|-----|-------|------------------------------------|
| FIFOFREE | 8:0  | R   | -     | Current number of empty FIFO Words |

### FIFOTHRESH1, FIFOTHRESH0

# Table 68. FIFOTHRESH1, FIFOTHRESH0

| Name      | Bits | R/W | Reset     | Description    |
|-----------|------|-----|-----------|----------------|
| FIFOFRESH | 8:0  | R   | 000000000 | FIFO Threshold |

# **Synthesizer**

### PLLLOOP, PLLLOOPBOOST

The PLLLOOP and PLLLOOPBOOST select PLL Loop Filter configuration for both normal mode and boosted

mode. All fields in this register are separate, except for FREQSEL, which is common to both registers.

# Table 69. PLLLOOP, PLLLOOPBOOST

| Name        | Bits | R/W | Reset | Description                                                |
|-------------|------|-----|-------|------------------------------------------------------------|
| FLT         | 1:0  | RW  | 01    | See Table 70: FLT and FLTBOOST Bit Values                  |
| FLTBOOST    |      |     | 11    |                                                            |
| FILTEN      | 2    | RW  | 0     | Enable External Filter Pin                                 |
| FILTENBOOST |      |     | 0     |                                                            |
| DIRECT      | 3    | RW  | 1     | Bypass External Filter Pin                                 |
| DIRECTBOOST |      |     | 1     |                                                            |
| FREQSEL     | 7    | RW  | 0     | Frequency Register Selection; 0 = use FREQA, 1 = use FREQB |

## **Table 70. FLT AND FLTBOOST BIT VALUES**

| Bits | Meaning                                                      |
|------|--------------------------------------------------------------|
| 00   | External Loop Filter                                         |
| 01   | Internal Loop Filter, BW = 100 kHz for $I_{CP}$ = 68 $\mu A$ |
| 10   | Internal Loop Filter x2, BW = 200 kHz for $I_{CP}$ = 272 mA  |
| 11   | Internal Loop Filter x5, BW = 500 kHz for $I_{CP}$ = 1.7 mA  |

### PLLCPI, PLLCPIBOOST

# Table 71. PLLCPI, PLLCPIBOOST

| Name        | Bits | R/W | Reset    | Description                               |
|-------------|------|-----|----------|-------------------------------------------|
| PLLCPI      | 7:0  | RW  | 00001000 | Charge pump current in multiples of 8.5μA |
| PLLCPIBOOST |      |     | 11001000 |                                           |

#### **PLLVCODIV**

## Table 72. PLLVCODIV

| Name    | Bits | R/W | Reset | Description                                                                                             |
|---------|------|-----|-------|---------------------------------------------------------------------------------------------------------|
| REFDIV  | 1:0  | RW  | 00    | See Table 73: REFDIV Bit Value                                                                          |
| RFDIV   | 2    | RW  | 0     | RF divider: 0 = no RF divider, 1 = divide RF by 2                                                       |
| VCOSEL  | 4    | RW  | 0     | 0 = fully internal VCO1, 1 = internal VCO2 with external inductor or external VCO, depending on VCO2INT |
| VCO2INT | 5    | RW  | 0     | 1 = internal VCO2 with external Inductor, 0 = external VCO                                              |

### **Table 73. REFDIV BIT VALUES**

| Bits | Meaning                       |
|------|-------------------------------|
| 00   | $f_{PD} = f_{XTAL}$           |
| 01   | $f_{PD} = \frac{f_{XTAL}}{2}$ |
| 10   | $f_{PD} = \frac{f_{XTAL}}{4}$ |
| 11   | $f_{PD} = \frac{f_{XTAL}}{8}$ |

### PLLRANGINGA, PLLRANGINGB

## Table 74. PLLRANGINGA, PLLRANGINGB

| Name        | Bits | R/W | Reset | Description                                                                                                                                             |
|-------------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCORA       | 3:0  | RW  | 1000  | VCO Range; depending on bit FREQSEL of PLLLOOP, VCORA                                                                                                   |
| VCORB       |      |     | 1000  | or VCORB is used                                                                                                                                        |
| RNG START   | 4    | RS  | 0     | PLL Autoranging; Write 1 to start autoranging, bit clears when autoranging done. Autoranging always applies to the VCOR selected by FREQSEL of PLLLOOP. |
| RNGERR      | 5    | R   | -     | Ranging Error; Set when RNG START transitions from 1 to 0 and the programmed frequency cannot be achieved                                               |
| PLL LOCK    | 6    | R   | -     | PLL is locked if 1                                                                                                                                      |
| STICKY LOCK | 7    | R   | -     | if 0, PLL lost lock after last read of PLLRANGINGA or PLLRANGINGB register                                                                              |

## FREQA3, FREQA2, FREQA1, FREQA0

# Table 75. FREQA3, FREQA2, FREQA1, FREQA0

| Name  | Bits | R/W | Reset      |            | Description                                                                       |
|-------|------|-----|------------|------------|-----------------------------------------------------------------------------------|
| FREQA | 31:0 | RW  | 0x3934CCCD | Frequency; | $FREQA = \left[ \frac{f_{CARRIER}}{f_{XTAL}} \times 2^{24} + \frac{1}{2} \right]$ |

It is not recommended to use an RF frequency that is an integer multiple of the reference frequency, due to stray RF desensitizing the receiver.

It is strongly recommended to always set bit 0 to avoid spectral tones.

## FREQB3, FREQB2, FREQB1, FREQB0

Table 76. FREQB3, FREQB2, FREQB1, FREQB0

| Name  | Bits | R/W | Reset      |            | Description                                                                       |
|-------|------|-----|------------|------------|-----------------------------------------------------------------------------------|
| FREQB | 31:0 | RW  | 0x3934CCCD | Frequency; | $FREQB = \left[ \frac{f_{CARRIER}}{f_{XTAL}} \times 2^{24} + \frac{1}{2} \right]$ |

See notes of FREQA register.

### Signal Strength

RSSI

#### Table 77, RSSI

| Name | Bits | R/W | Reset | Description                     |
|------|------|-----|-------|---------------------------------|
| RSSI | 7:0  | R   | -     | Received Signal Strength, in dB |

### **BGNDRSSI**

### Table 78. BGNDRSSI

| Name     | Bits | R/W | Reset    | Description             |
|----------|------|-----|----------|-------------------------|
| BGNDRSSI | 7:0  | RW  | 00000000 | Background Noise (RSSI) |

#### **DIVERSITY**

## **Table 79. DIVERSITY**

| Name   | Bits | R/W | Reset | Description              |
|--------|------|-----|-------|--------------------------|
| DIVENA | 0    | RW  | 0     | Antenna Diversity Enable |
| ANTSEL | 1    | RW  | 0     | Antenna Select           |

DIVENA enables the internal antenna diversity logic.

The ANTSEL bit may be output on pin ANTSEL, and this signal may be used to control an external antenna switch.

### **AGCCOUNTER**

#### **Table 80. AGCCOUNTER**

| Name       | Bits | R/W | Reset | Description                        |
|------------|------|-----|-------|------------------------------------|
| AGCCOUNTER | 7:0  | R   | -     | Current AGC Gain, in 0.75 dB steps |

## **Receiver Tracking**

TRKDATARATE2, TRKDATARATE1, TRKDATARATE0

# Table 81. TRKDATARATE2, TRKDATARATE1, TRKDATARATE0

| Name        | Bits | R/W | Reset | Description                     |
|-------------|------|-----|-------|---------------------------------|
| TRKDATARATE | 23:0 | R   | -     | Current datarate tracking value |

#### TRKAMPL1, TRKAMPL0

# Table 82. TRKAMPL1, TRKAMPL0

| Name    | Bits | R/W | Reset | Description                      |
|---------|------|-----|-------|----------------------------------|
| TRKAMPL | 15:0 | R   | -     | Current amplitude tracking value |

## TRKPHASE1, TRKPHASE0

# Table 83. TRKPHASE1, TRKPHASE0

| Name     | Bits | R/W | Reset | Description                  |
|----------|------|-----|-------|------------------------------|
| TRKPHASE | 11:0 | R   | ı     | Current phase tracking value |

## TRKRFFREQ2, TRKRFFREQ1, TRKRFFREQ0

## Table 84. TRKRFFREQ2, TRKRFFREQ1, TRKRFFREQ0

| Name      | Bits | R/W | Reset | Description                         |
|-----------|------|-----|-------|-------------------------------------|
| TRKRFFREQ | 19:0 | RW  | _     | Current RF frequency tracking value |

This Register is reset to zero when the demodulator is not running. In order to avoid write collisions between the demodulator and the microcontroller with undefined results, TRKFREQ should be frozen before attempting to write to.

To freeze, set the RFFREQFREEZE bit in the appropriate FREQGAIND0, FREQGAIND1,FREQGAIND2, or

FREQGAIND3 register, then wait for  $\frac{1}{4 \times BAUDRATE}$  for the freeze to take effect.

#### TRKFREQ1, TRKFREQ0

### Table 85. TRKFREQ1, TRKFREQ0

| Name    | Bits | R/W | Reset | Description                      |
|---------|------|-----|-------|----------------------------------|
| TRKFREQ | 15:0 | RW  | -     | Current frequency tracking value |

The current frequency offset estimate is 
$$\Delta f = \frac{TRKFREQ}{2^{16}} \times BITRATE$$

This Register is reset to zero when the demodulator is not running. In order to avoid write collisions between the demodulator and the microcontroller with undefined results, TRKFREQ should be frozen before attempting to write to. To freeze, set the FREQFREEZE bit in the appropriate FREQGAINB0, FREQGAINB1,FREQGAINB2, or FREQGAINB3 register, then wait for  $\frac{1}{4 \times BAUDRATE}$  for the freeze to take effect.

#### TRKFSKDEMOD1, TRKFSKDEMOD0

### Table 86. TRKFSKDEMOD1, TRKFSKDEMOD0

| Name        | Bits | R/W | Reset | Description                   |
|-------------|------|-----|-------|-------------------------------|
| TRKFSKDEMOD | 13:0 | R   | ı     | Current FSK demodulator value |

### TRKAFSKDEMOD1, TRKAFSKDEMOD0

#### Table 87. TRKAFSKDEMOD1, TRKAFSKDEMOD0

| Name         | Bits | R/W | Reset | Description                    |
|--------------|------|-----|-------|--------------------------------|
| TRKAFSKDEMOD | 15:0 | R   | -     | Current AFSK demodulator value |

Tracking Register Resets

Writes to TRKAMPL1, TRKAMPL0, TRKPHASE1, TRKPHASE0, TRKDATARATE2, TRKDATARATE1, TRKDATARATE0 cause the following action:

## **Table 88. TRACKING REGISTER RESET**

| Name      | Bits | R/W | Reset | Description                                         |
|-----------|------|-----|-------|-----------------------------------------------------|
| DTRKRESET | 3    | W   | -     | Writing 1 clears the Datarate Tracking Register     |
| ATRKRESET | 4    | W   | -     | Writing 1 clears the Amplitude Tracking Register    |
| PTRKRESET | 5    | W   | -     | Writing 1 clears the Phase Tracking Register        |
| RTRKRESET | 6    | W   | -     | Writing 1 clears the RF Frequency Tracking Register |
| FTRKRESET | 7    | W   | -     | Writing 1 clears the Frequency Tracking Register    |

### Timer

### TIMER2, TIMER1, TIMER0

The main purpose of the fast  $\mu$ s Timer is to enable the microcontroller to exactly determine the packet start time. A

snapshot of this timer at packet start can be written to the FIFO.

Table 89. TIMER2, TIMER1, TIMER0

| Name  | Bits | R/W | Reset | Description                                                                                                               |
|-------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------|
| TIMER | 23:0 | R   | -     | 1 MHz (f <sub>XTAL</sub> / 16) Counter; starts counting as soon as modem voltage regulator and Crystal Oscillator running |

### **Wakeup Timer**

The wakeup timer is a low power timer that can generate periodic events. It can generate a microcontroller interrupt (register IRQMASK1) or start the receiver in wake-on-radio mode (register PWRMODE). The interrupt can be cleared by reading or writing any wakeup timer register.

The wakeup timer is driven by the low power oscillator. At every low power oscillator clock edge, the WAKEUPTIMER register is incremented by 1. The

counting frequency can be set to 640 Hz or 10.24 kHz (register LPOSCCONFIG).

Whenever the WAKEUPTIMER register matches the WAKEUP register, an event is signalled, and the WAKEUPFREQ register is added to the WAKEUP register, to prepare for the next wakeup event.

Since crystals often take a significant amount of time to start up, the crystal oscillator may be started early using the WAKEUPXOEARLY register.

#### WAKEUPTIMER1. WAKEUPTIMER0

### Table 90. WAKEUPTIMER1, WAKEUPTIMER0

| Name        | Bits | R/W | Reset | Description  |
|-------------|------|-----|-------|--------------|
| WAKEUPTIMER | 15:0 | R   | ı     | Wakeup Timer |

#### WAKEUP1, WAKEUP0

### Table 91. WAKEUP1, WAKEUP0

| Name   | Bits | R/W | Reset  | Description |
|--------|------|-----|--------|-------------|
| WAKEUP | 15:0 | RW  | 0x0000 | Wakeup Time |

#### WAKEUPFREQ1, WAKEUPFREQ0

## Table 92. WAKEUPFREQ1, WAKEUPFREQ0

| Name       | Bits | R/W | Reset  | Description                            |
|------------|------|-----|--------|----------------------------------------|
| WAKEUPFREQ | 15:0 | RW  | 0x0000 | Wakeup Frequency; Zero disables Wakeup |

#### WAKEUPXOEARLY

#### **Table 93. WAKEUPXOEARLY**

| Name          | Bits | R/W | Reset | Description                                                                                       |
|---------------|------|-----|-------|---------------------------------------------------------------------------------------------------|
| WAKEUPXOEARLY | 7:0  | RW  | 0x00  | Number of LPOSC clock cycles by which the Crystal Oscillator is woken up before the main receiver |

#### **Receiver Parameters**

IFFREQ1, IFFREQ0

### Table 94. IFFREQ1, IFFREQ0

| Name   | Bits | R/W | Reset  | Description                                                                                                    |
|--------|------|-----|--------|----------------------------------------------------------------------------------------------------------------|
| IFFREQ | 15:0 | RW  | 0x1327 | IF Frequency; $IFFREQ = \left[ \frac{f_{IF} \times f_{XTALDIV}}{f_{XTAL}} \times 2^{20} + \frac{1}{2} \right]$ |

Please use the AX\_RadioLab software to calculate the optimum IF frequency for given physical layer parameters.

### **DECIMATION**

### **Table 95. DECIMATION**

| Name       | Bits | R/W | Reset   | Description                                                                                        |
|------------|------|-----|---------|----------------------------------------------------------------------------------------------------|
| DECIMATION | 6:0  | RW  | 0001101 | Filter Decimation factor; Filter Output runs at                                                    |
|            |      |     |         | $f_{BASEBAND} = \frac{f_{XTAL}}{2^4 \times f_{XTALDIV} \times DECIMATION}$ The value 0 is illegal. |

#### RXDATARATE2, RXDATARATE1, RXDATARATE0

Table 96. RXDATARATE2, RXDATARATE1, RXDATARATE0

| Name       | Bits | R/W | Reset    | Description                                                                                                          |
|------------|------|-----|----------|----------------------------------------------------------------------------------------------------------------------|
| RXDATARATE | 23:0 | RW  | 0x003D8A | $RXDATARATE = \left[ \frac{2^7 \times f_{XTAL}}{f_{XTALDIV} \times BITRATE \times DECIMATION} + \frac{1}{2} \right]$ |

RXDATARATE - TIMEGAINx  $\geq 2^{12}$  should be ensured when programming. Otherwise, the hardware does it, but

this may cause instability due to asymmetric timing correction.

#### MAXDROFFSET2, MAXDROFFSET1, MAXDROFFSET0

Table 97. MAXDROFFSET2, MAXDROFFSET1, MAXDROFFSET0

| Name        | Bits | R/W | Reset    | Description                                                                                                                                   |
|-------------|------|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| MAXDROFFSET | 23:0 | RW  | 0x00009E | $MAXDROFFSET = \left[ \frac{2^7 \times f_{XTAL} \times \Delta BITRATE}{f_{XTALDIV} \times BITRATE^2 \times DECIMATION} + \frac{1}{2} \right]$ |

The maximum bitrate offset the receiver is able to tolerate can be specified by the parameter  $\Delta BITRATE$ . The receiver will be able to tolerate a data rate within the range BITRATE  $\pm \Delta BITRATE$ . The downside of increasing  $\Delta BITRATE$  is that the required preamble length increases. Therefore,

 $\Delta BITRATE$  should only be chosen as large as the transmitters require. If the bitrate offset is less than approximately  $\pm 1\%$ , receiver bitrate tracking should be switched off completely by setting MAXDROFFSET to zero, to ensure minimum preamble length.

### MAXRFOFFSET2, MAXRFOFFSET1, MAXRFOFFSET0

Table 98. MAXRFOFFSET2, MAXRFOFFSET1, MAXRFOFFSET0

| Name         | Bits | R/W | Reset   | Description                                                                                       |
|--------------|------|-----|---------|---------------------------------------------------------------------------------------------------|
| MAXRFOFFSET  | 19:0 | RW  | 0x01687 | $MAXRFOFFSET = \left[ \frac{f_{CARRIER}}{f_{XTAL}} \times 2^{24} + \frac{1}{2} \right]$           |
| FREQOFFSCORR | 23   | RW  | 0       | Correct frequency offset at the first LO if this bit is one; at the second LO if this bit is zero |

This register sets the maximum frequency offset the built-in Automatic Frequency Correction (AFC) should handle. Set it to the maximum frequency offset between Transmitter and Receiver. Enlarging this register increases the time needed for the AFC to achieve lock. The AFC can only achieve lock if the transmit signal partially passes

through the receiver channel filter. This limits the practically usable range for the AFC circuit to approximately  $\pm^1/_4$  of the Filter Bandwidth. The acquisition and tracking range can be increased by increasing the Receiver Channel Filter Bandwidth, at the expense of slightly reducing the Sensitivity.

## FSKDMAX1, FSKDMAX0

Table 99. FSKDMAX1, FSKDMAX0

| Name      | Bits | R/W | Reset  | Description                           |
|-----------|------|-----|--------|---------------------------------------|
| FSKDEVMAX | 15:0 | RW  | 0x0080 | Current FSK Demodulator Max Deviation |

In manual mode, it should be set to  $3 \times 512 \times \frac{f_{DEVIATION}}{BAUDRATE}$ 

## FSKDMIN1, FSKDMIN0

Table 100. FSKDMIN1, FSKDMIN0

| Name      | Bits | R/W | Reset  | Description                           |
|-----------|------|-----|--------|---------------------------------------|
| FSKDEVMIN | 15:0 | RW  | 0xFF80 | Current FSK Demodulator Min Deviation |

In manual mode, it should be set to 
$$-3 \times 512 \times \frac{f_{DEVIATION}}{BAUDRATE}$$
.

AFSKSPACE1, AFSKSPACE0

#### Table 101. AFSKSPACE1, AFSKSPACE0

| Name      | Bits | R/W | Reset  | Description                           |
|-----------|------|-----|--------|---------------------------------------|
| AFSKSPACE | 15:0 | RW  | 0x0040 | AFSK Space (0-Bit encoding) Frequency |

For receive, the register should be computed as follows:

$$AFSKSPACE = \left[ \frac{f_{AFSKSPACE} \times DECIMATION \times f_{XTALDIV} \times 2^{16}}{f_{XTAL}} + \frac{1}{2} \right]$$
 For transmit, the register has a slightly different

definition: 
$$AFSKSPACE = \left[ \frac{f_{AFSKSPACE} \times 2^{18}}{f_{XTAL}} + \frac{1}{2} \right]$$

AFSKMARK1, AFSKMARK0

### Table 102. AFSKMARK1, AFSKMARK0

| Name     | Bits | R/W | Reset  | Description                          |
|----------|------|-----|--------|--------------------------------------|
| AFSKMARK | 15:0 | RW  | 0x0075 | AFSK Mark (1-Bit encoding) Frequency |

For receive, the register should be computed as follows:

$$AFSKMARK = \left[ \frac{f_{AFSKMARK} \times DECIMATION \times f_{XTALDIV} \times 2^{16}}{f_{XTAL}} + \frac{1}{2} \right]$$

For transmit, the register has a slightly different

definition: 
$$AFSKMARK = \left[ \frac{f_{AFSKMARK} \times 2^{18}}{f_{XTAL}} + \frac{1}{2} \right]$$

**AFSKCTRL** 

#### Table 103, AFSKCTRL

| Name      | Bits | R/W | Reset | Description                                                                                                                                                                                                                                                                                        |
|-----------|------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AFSKSHIFT | 4:0  | RW  | 00100 | AFSK Detector Bandwidth;                                                                                                                                                                                                                                                                           |
|           |      |     |       | $2 \times \left[ \log_2(\frac{f_{XTAL}}{2^5 \times BITRATE \times f_{XTALDIV} \times DECIMATION}) \right]$ 3dB corner frequency of the AFSK detector filter is: $f_c = \frac{f_{XTAL}}{2^5 \times \pi \times f_{XTALDIV} \times DECIMATION} \times \arccos\frac{(k^2 + 2k - 2)}{2 \times (k - 1)}$ |
|           |      |     |       | $k = 2^{-\left[\frac{AFSKSHIFT}{2}\right]}$ with                                                                                                                                                                                                                                                   |

# AMPLFILTER

# Table 104. AMPLFILTER

| Name       | Bits | R/W | Reset | Description                                                                                                                         |
|------------|------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| AMPLFILTER | 3:0  | RW  | 0000  | 3dB corner frequency of the Amplitude (Magnitude) Lowpass Filter;                                                                   |
|            |      |     |       | $f_c = \frac{f_{XTAL}}{2^5 \times \pi \times f_{XTALDIV} \times DECIMATION} \times \arccos \frac{(k^2 + 2k - 2)}{2 \times (k - 1)}$ |
|            |      |     |       | with $k = 2^{-AMPLFILTER}$                                                                                                          |
|            |      |     |       | 0000: Filter bypassed                                                                                                               |

#### *FREQUENCYLEAK*

### **Table 105. FREQUENCYLEAK**

| Name          | Bits | R/W | Reset | Description                                                    |
|---------------|------|-----|-------|----------------------------------------------------------------|
| FREQUENCYLEAK | 3:0  | RW  | 0000  | Leakiness of the Baseband Frequency Recovery Loop (0000 = off) |

### *RXPARAMSETS*

#### **Table 106. RXPARAMSETS**

| Name  | Bits | R/W | Reset                                                      | Description                                                                           |  |
|-------|------|-----|------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| RXPS0 | 1:0  | RW  | 00 RX Parameter Set Number to be used for initial settling |                                                                                       |  |
| RXPS1 | 3:2  | RW  | 00                                                         | RX Parameter Set Number to be used after Pattern 1 matched and before Pattern 0 match |  |
| RXPS2 | 5:4  | RW  | 00                                                         | 00 RX Parameter Set Number to be used after Pattern 0 matched                         |  |
| RXPS3 | 7:6  | RW  | 00                                                         | RX Parameter Set Number to be used after a packet start has been detected             |  |

#### *RXPARAMCURSET*

## **Table 107. RXPARAMCURSET**

| Name | Bits | R/W | Reset                                                        | Reset Description |  |
|------|------|-----|--------------------------------------------------------------|-------------------|--|
| RXSI | 1:0  | R   | RX Parameter Set Index (determines which RXPS is used)       |                   |  |
| RXSN | 3:2  | R   | RX Parameter Set Number (=RXPS[RXSI (1:0)])                  |                   |  |
| RXSI | 4    | R   | Rx Parameter Set Index (special function bit), See Table 108 |                   |  |

## **Table 108. RX PARMETERS SET INDEX BIT VALUES**

| RXSI Bits | Meaning                                |
|-----------|----------------------------------------|
| 0XX       | Normal Function (indirection via RXPS) |
| 1X0       | Coarse AGC                             |
| 1X1       | Baseband Offset Acquisition            |

### AGCGAINO, AGCGAIN1, AGCGAIN2, AGCGAIN3

## Table 109. AGCGAIN0, AGCGAIN1, AGCGAIN2, AGCGAIN3

| Name       | Bits | R/W | Reset | Description              |
|------------|------|-----|-------|--------------------------|
| AGCATTACK0 | 3:0  | RW  | 0100  | AGC gain reduction speed |
| AGCATTACK1 |      |     | 0100  |                          |
| AGCATTACK2 |      |     | 1111  | AGC gain reduction speed |
| AGCATTACK3 |      |     | 1111  |                          |
| AGCDECAY0  | 7:4  | RW  | 1011  | AGC gain increase speed  |
| AGCDECAY1  |      |     | 1011  |                          |
| AGCDECAY2  |      |     | 1111  |                          |
| AGCDECAY3  |      |     | 1111  |                          |

The 3dB corner frequency of the AGC loop is:

$$\begin{split} f_{3dB} &= \frac{f_{XTAL}}{2^5 \times \pi \times f_{XTALDIV}} \times \arccos\left(\frac{2 + 2^{1 - AGC(ATTACK|DECAY)} - 2^{-2AGC(ATTACK|DECAY)x}}{2 + 2^{1 - ACG(ATTACK|DECAY)x}}\right) \\ &\cong \frac{f_{XTAL}}{2^5 \times \pi \times f_{XTALDIV}} \times \left(2^{-AGC(ATTACK|DECAY)x} - 2^{-1 - 2 \times AGC(ATTACK|DECAY)x}\right) \end{split}$$

The AGC {ATTACK | DECAY } x values can be computed from the 3dB corner frequency  $f_{3dB}$  as follows:

$$\begin{split} c &= \cos \left( \frac{2^5 \times \pi \times f_{XTALDIV} \times f_{3dB}}{f_{XTALDIV}} \right) \\ &AGC (ATTACK | DECAY | x = -\log_2 (1 - c + \sqrt{c^2} - 4 \times c + 3)) \\ &\cong -\log_2 \left( 1 - \sqrt{1} - \frac{2^6 \times \pi \times f_{XTALDIV} \times f_{3bD}}{f_{XTAL}} \right) \end{split}$$

The recommended AGCATTACK setting is  $f_{3dB} \cong BITRATE/10$  for ASK, and  $f_{3dB} \cong BITRATE$  for (G)FSK.

The recommended AGCDECAY setting is  $f_{3dB} \cong BITRATE/100$  for ASK, and  $f_{3dB} \cong BITRATE/10$  for (G)FSK.

A value of 0xF in the AGC{ATTACK|DECAY}x disables AGC update. Thus, setting the AGCGAI N0/AGCGAIN1/AGCGAIN2/AGCGAIN3 register to 0xFF completely freezes the AGC.

### AGCTARGET0, AGCTARGET1, AGCTARGET2, AGCTARGET3

### Table 110. AGCTARGET0, AGCTARGET1, AGCTARGET2, AGCTARGET3

| Name                                                 | Bits | R/W | Reset    | Description                                                                                                                            |
|------------------------------------------------------|------|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| AGCTARGET0<br>AGCTARGET1<br>AGCTARGET2<br>AGCTARGET3 | 7:0  | RW  | 01110110 | The target ADC output average magnitude is $\frac{{}^{AGCTARGETx}}{2  \  \   16}$ Note that the ADC can produce magnitudes from 029-1. |
| AGGIANGETS                                           |      |     |          |                                                                                                                                        |

### AGCAHYSTO, AGCAHYST1, AGCAHYST2, AGCAHYST3

### Table 111. AGCAHYST0, AGCAHYST1, AGCAHYST2, AGCAHYST3

| Name                                             | Bits | R/W | Reset | Description                                                                                                                                                                                                               |
|--------------------------------------------------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGCAHYST0<br>AGCAHYST1<br>AGCAHYST2<br>AGCAHYST3 | 2:0  | RW  | 000   | This field specifies Digital Threshold Range. It is (AGCAHYSTx+1) 3 dB; If set to zero, the analog AGC always follows immediately. Increasing this value gives the AGC controller more leeway delay analog AGC following. |

# AGCMINMAX0, AGCMINMAX1, AGCMINMAX2, AGCMINMAX3

## Table 112. AGCMINMAX0, AGCMINMAX1, AGCMINMAX2, AGCMINMAX3

| Name                                             | Bits | R/W | Reset | Description                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGCMAXDA0<br>AGCMAXDA1<br>AGCMAXDA2<br>AGCMAXDA3 | 6:4  | RW  | 000   | When the digital AGC attenuation exceeds its maximum value, it is reset to the value given in AGCMAXDAx, and the analog AGC gain is recomputed accordingly. This value is given in 3 dB steps. Setting it to AGCAHYSTx causes "drag" AGC behaviour with minimum analog AGC steps (probably desirable); decreasing it causes less frequent but larger analog AGC steps |
| AGCMINDA0<br>AGCMINDA1<br>AGCMINDA2<br>AGCMINDA3 | 2:0  | RW  | 000   | When the digital AGC attenuation exceeds its minimum value, it is reset to the value given in AGCMINDAx, and the analog AGC gain is recomputed accordingly. This value is given in 3 dB steps. Setting it to 000 causes "drag" AGC behaviour with minimum analog AGC steps (probably desirable); increasing it causes less frequent but larger analog AGC steps       |

### TIMEGAINO, TIMEGAIN1, TIMEGAIN2, TIMEGAIN3

### Table 113. TIMEGAIN0, TIMEGAIN1, TIMEGAIN2, TIMEGAIN3

|            | - ,  | _   | ,     |                                                        |
|------------|------|-----|-------|--------------------------------------------------------|
| Name       | Bits | R/W | Reset | Description                                            |
| TIMEGAIN0E | 3:0  | RW  | 1000  | Gain of the timing recovery loop; this is the exponent |
| TIMEGAIN1E |      |     | 0110  |                                                        |
| TIMEGAIN2E |      |     | 0101  |                                                        |
| TIMEGAIN3E |      |     | 0101  |                                                        |

Table 113. TIMEGAIN0, TIMEGAIN1, TIMEGAIN2, TIMEGAIN3 (continued)

| Name       | Bits | R/W | Reset | Description                                            |
|------------|------|-----|-------|--------------------------------------------------------|
| TIMEGAIN0M | 7:4  | RW  | 1111  | Gain of the timing recovery loop; this is the mantissa |
| TIMEGAIN1M |      |     |       |                                                        |
| TIMEGAIN2M |      |     |       |                                                        |
| TIMEGAIN3M |      |     |       |                                                        |

$$TIMEGAINxM, TIMEGAINxE = \underset{TIMEGAINxM, E}{\operatorname{arg min}} \left| \frac{RXDATARATE}{TMGCORRFRACx} - TIMEGAINxM \times 2^{TIMEGAINxE} \right|$$

TMGCORRFRAC should be chosen at least 4. Larger values result in less sampling time jitter, but slower timing lock-in.

DRGAINO, DRGAIN1, DRGAIN2, DRGAIN3

Table 114. DRGAIN0, DRGAIN1, DRGAIN2, DRGAIN3

| Name     | Bits | R/W | Reset | Description                                              |
|----------|------|-----|-------|----------------------------------------------------------|
| DRGAIN0E | 3:0  | RW  | 0010  | Gain of the datarate recovery loop; this is the exponent |
| DRGAIN1E |      |     | 0001  |                                                          |
| DRGAIN2E |      |     | 0000  |                                                          |
| DRGAIN3E |      |     | 0000  |                                                          |
| DRGAINOM | 7:4  | RW  | 1111  | Gain of the datarate recovery loop; this is the mantissa |
| DRGAIN1M |      |     | 1111  |                                                          |
| DRGAIN2M |      |     | 1111  |                                                          |
| DRGAIN3M |      |     | 1111  |                                                          |

$$DRGAINxM, DRGAINxE = \underset{DRGAINxM, E}{\operatorname{arg min}} \left| \frac{RXDATARATE}{DRGCORRFRACx} - DRGAINxM \times 2^{DRGAINxE} \right|$$

DRGCORRFRAC should be chosen at least 64. Larger values result in less estimated datarate jitter, but slower datarate acquisition.

PHASEGAINO, PHASEGAIN1, PHASEGAIN2, PHASEGAIN3

Table 115. PHASEGAIN0, PHASEGAIN1, PHASEGAIN2, PHASEGAIN3

| Name                                                 | Bits | R/W | Reset | Description                                                 |
|------------------------------------------------------|------|-----|-------|-------------------------------------------------------------|
| PHASEGAIN0<br>PHASEGAIN1<br>PHASEGAIN2<br>PHASEGAIN3 | 3:0  | RW  | 0011  | Gain of the phase recovery loop                             |
| FILTERIDX0<br>FILTERIDX1<br>FILTERIDX2<br>FILTERIDX3 | 7:6  | RW  | 11    | Decimation Filter Fractional Bandwidth, see the table below |

This register does not normally need to be changed.

**Table 116. RELATIVE BANDWIDTH** 

|            | $\frac{f_{XTAL}}{\text{Relative Bandwidth}} \frac{f_{XTAL}}{2^{16} \times f_{XTALDIV} \times DECIMATION} Hz$ |            |          |          |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------|------------|----------|----------|--|--|--|--|--|
| FILTERIDXx | –3dB BW                                                                                                      | nominal BW | -10dB BW | -40dB BW |  |  |  |  |  |
| 00         | 0.121399                                                                                                     | 0.150000   | 0.174805 | 0.256653 |  |  |  |  |  |
| 01         | 0.149475                                                                                                     | 0.177845   | 0.202759 | 0.284729 |  |  |  |  |  |
| 10         | 0.182373                                                                                                     | 0.210858   | 0.235718 | 0.317566 |  |  |  |  |  |
| 11         | 0.221497                                                                                                     | 0.250000   | 0.274780 | 0.356812 |  |  |  |  |  |

NOTE: 1. Fractional Filter Bandwidth

The relative bandwidths in the table above need to be multiplied with  $\frac{f_{XTAL}}{2^{16} \times f_{XTALDIV} \times DECIMATION}$  to get the bandwidth in Hz.

# FREQGAINA0, FREQGAINA1, FREQGAINA2, FREQGAINA3

Table 117. FREQGAINA0, FREQGAINA1, FREQGAINA2, FREQGAINA3

| Name          | Bits | R/W | Reset | Description                                                                                    |
|---------------|------|-----|-------|------------------------------------------------------------------------------------------------|
| FREQGAINA0    | 3:0  | RW  | 1111  | Gain of the baseband frequency recovery loop; the frequency                                    |
| FREQGAINA1    |      |     | 1111  | error is measured with the phase detector                                                      |
| FREQGAINA2    |      |     | 1111  |                                                                                                |
| FREQGAINA3    |      |     | 1111  |                                                                                                |
| FREQAMPLGATE0 | 4    | RW  | 0     | If set to 1, only update the frequency offset recovery loops if the                            |
| FREQAMPLGATE1 |      |     | 0     | amplitude of the signal is larger than half the maximum (or larger than the average amplitude) |
| FREQAMPLGATE2 |      |     | 0     | , ,                                                                                            |
| FREQAMPLGATE3 |      |     | 0     |                                                                                                |
| FREQHALFMOD0  | 5    | RW  | 0     | If 1, the Frequency offset wraps around from 0x1fff to – 0x2000,                               |
| FREQHALFMOD1  |      |     | 0     | and vice versa.                                                                                |
| FREQHALFMOD2  |      |     | 0     |                                                                                                |
| FREQHALFMOD3  |      |     | 0     |                                                                                                |
| FREQMODULO0   | 6    | RW  | 0     | If 1, the Frequency offset wraps around from 0x3fff to – 0x4000,                               |
| FREQMODULO1   |      |     | 0     | and vice versa.                                                                                |
| FREQMODULO2   |      |     | 0     |                                                                                                |
| FREQMODULO3   |      |     | 0     |                                                                                                |
| FREQLIM0      | 7    | RW  | 0     | If 1, limit Frequency Offset to – 0x40000x3fff                                                 |
| FREQLIM1      |      |     | 0     |                                                                                                |
| FREQLIM2      |      |     | 0     |                                                                                                |
| FREQLIM3      |      |     | 0     |                                                                                                |

Set FREQGAINA0 = 15 and FREQGAINB0 = 31 to completely disable the baseband frequency recovery loop, setting its output to zero.

FREQGAINB0, FREQGAINB1, FREQGAINB2, FREQGAINB3

Table 118. FREQGAINB0, FREQGAINB1, FREQGAINB2, FREQGAINB3

| Name        | Bits | R/W | Reset                                 | Description                                                   |
|-------------|------|-----|---------------------------------------|---------------------------------------------------------------|
| FREQGAINB0  | 4:0  | RW  | 11111                                 | Gain of the baseband frequency recovery loop; the frequency   |
| FREQGAINB1  |      |     |                                       | error is measured with the frequency detector                 |
| FREQGAINB2  |      |     |                                       |                                                               |
| FREQGAINB3  |      |     |                                       |                                                               |
| FREQAVG0    | 6    | RW  | 0                                     | Average the frequency offset of two consecutive bits; this is |
| FREQAVG1    |      |     | useful for 0101 preambles in FSK mode | useful for 0101 preambles in FSK mode                         |
| FREQAVG2    |      |     |                                       |                                                               |
| FREQAVG3    |      |     |                                       |                                                               |
| FREQFREEZE0 | 7    | RW  | 0                                     | Freeze the baseband frequency recovery loop if set            |
| FREQFREEZE1 |      |     |                                       |                                                               |
| FREQFREEZE2 |      |     |                                       |                                                               |
| FREQFREEZE3 |      |     |                                       |                                                               |

Set FREQGAINA0 = 15 and FREQGAINB0 = 31 to completely disable the baseband frequency recovery loop,

FREQGAINCO, FREQGAINC1, FREQGAINC2, FREQGAINC3

Table 119. FREQGAINC0, FREQGAINC1, FREQGAINC2, FREQGAINC3

| Name       | Bits | R/W | Reset | Description                                                    |
|------------|------|-----|-------|----------------------------------------------------------------|
| FREQGAINC0 | 4:0  | RW  | 01010 | Gain of the RF frequency recovery loop; the frequency error is |
| FREQGAINC1 |      |     | 01011 | measured with the phase detector                               |
| FREQGAINC2 |      |     | 01101 |                                                                |
| FREQGAINC3 |      |     | 01101 |                                                                |

Set FREQGAINC0 = 31 and FREQGAIND0 = 31 to completely disable the RF frequency recovery loop, setting its output to zero.

FREQGAIND0, FREQGAIND1, FREQGAIND2, FREQGAIND3

Table 120. FREQGAIND0, FREQGAIND1, FREQGAIND2, FREQGAIND3

| Name          | Bits | R/W | Reset | Description                                                    |
|---------------|------|-----|-------|----------------------------------------------------------------|
| FREQGAIND0    | 4:0  | RW  | 01010 | Gain of the RF frequency recovery loop; the frequency error is |
| FREQGAIND1    |      |     | 01011 | measured with the frequency detector                           |
| FREQGAIND2    |      |     | 01101 |                                                                |
| FREQGAIND3    |      |     | 01101 |                                                                |
| RFFREQFREEZE0 | 7    | RW  | 0     | Freeze the RF frequency recovery loop if set                   |
| RFFREQFREEZE1 |      |     |       |                                                                |
| RFFREQFREEZE2 |      |     |       |                                                                |
| RFFREQFREEZE3 |      |     |       |                                                                |

Set FREQGAINC0 = 31 and FREQGAIND0 = 31 to completely disable the RF frequency recovery loop, setting its output to zero.

AMPLGAINO, AMPLGAIN1, AMPLGAIN2, AMPLGAIN3

Table 121. AMPLGAIN0, AMPLGAIN1, AMPLGAIN2, AMPLGAIN3

| Name      | Bits | R/W | Reset | Description                                                      |
|-----------|------|-----|-------|------------------------------------------------------------------|
| AMPLGAIN0 | 3:0  | RW  | 0110  | Gain of the amplitude recovery loop                              |
| AMPLGAIN1 |      |     |       |                                                                  |
| AMPLGAIN2 |      |     |       |                                                                  |
| AMPLGAIN3 |      |     |       |                                                                  |
| AMPLAGC0  | 6    | RW  | 1     | if 1, try to correct the amplitude register when AGC jumps. This |
| AMPLAGC1  |      |     |       | is not perfect, though                                           |
| AMPLAGC2  |      |     |       |                                                                  |
| AMPLAGC3  |      |     |       |                                                                  |
| AMPLAVG0  | 7    | RW  | 0     | if 0, the amplitude is recovered by a peak detector with decay;  |
| AMPLAVG1  |      |     |       | if 1, the amplitude is recovered by averaging                    |
| AMPLAVG2  |      |     |       |                                                                  |
| AMPLAVG3  |      |     |       |                                                                  |

This register does not normally need to be changed.

FREQDEV10, FREQDEV00, FREQDEV11, FREQDEV01, FREQDEV12, FREQDEV02, FREQDEV13, FREQDEV03

**Table 122. FREQDEVx VALUES** 

| Name     | Bits | R/W | Reset | Description                                                                                                        |
|----------|------|-----|-------|--------------------------------------------------------------------------------------------------------------------|
| FREQDEV0 | 11:0 | RW  | 0x020 | Receiver Frequency Deviation;                                                                                      |
| FREQDEV1 |      |     | 0x020 | $FREQDEVx = \left[ \frac{f_{DEVIATION} \times 2^8 \times k_{SF}}{BITRATE} + \frac{1}{2} \right]$                   |
| FREQDEV2 |      |     | 0x020 | $\begin{bmatrix} REQDEVX & - \\ BITRATE & 2 \end{bmatrix}$                                                         |
| FREQDEV3 |      |     | 0x020 | is $k_{SF}$ transmitter shaping and receiver filtering dependent constant. It is usually around $k_{sf} \cong 0.8$ |

Enabling this feature (FREQDEVx  $\neq$  0) can lead the frequency offset estimator to lock at the wrong offset. It is therefore recommended to enable it only after the frequency

offset estimator is close to the correct offset (i.e. FREQDEV0 = 0).

FOURFSKO, FOURFSK1, FOURFSK2, FOURFSK3

Table 123. FOURFSK0, FOURFSK1, FOURFSK2, FOURFSK3

| Name       | Bits | R/W | Reset | Description             |
|------------|------|-----|-------|-------------------------|
| DEVDECAY0  | 3:0  | RW  | 0110  | Deviation Decay         |
| DEVDECAY1  |      |     | 1000  |                         |
| DEVDECAY2  |      |     | 1010  |                         |
| DEVDECAY3  |      |     | 1010  |                         |
| DEVUPDATE0 | 4    | RW  | 1     | Enable Deviation Update |
| DEVUPDATE1 |      |     |       |                         |
| DEVUPDATE2 |      |     |       |                         |
| DEVUPDATE3 |      |     |       |                         |



Figure 21. 4-FSK Frequency Diagram

In 4–FSK mode, two bits are transmitted together during each symbol, by using four frequencies instead of two. Figure 21 depicts the frequencies used.



Figure 22. Wiremode Timing Diagram

Wiremode is also available in 4–FSK mode, see Figure 22. The two bits that encode one symbol are serialized on the DATA pin. The PWRUP pin can be used as a synchronisation pin to allow symbol (dibit) boundaries to be reconstructed. DCLK is approximately but not exactly square. Gray encoding is used to reduce the number of bit errors in case of a wrong decision. The two bits encode the following frequencies:

Table 124. 4-FSK BIT TO FREQUENCY MAPPING

| M <sub>x</sub> | L <sub>x</sub> | Frequency                                         |
|----------------|----------------|---------------------------------------------------|
| 0              | 0              | f <sub>CARRIER</sub> * 3 V f <sub>DEVIATION</sub> |
| 0              | 1              | f <sub>CARRIER</sub> * f <sub>DEVIATION</sub>     |
| 1              | 1              | f <sub>CARRIER</sub> + f <sub>DEVIATION</sub>     |
| 1              | 0              | f <sub>CARRIER</sub> + 3 V f <sub>DEVIATION</sub> |

In framing mode, unless ENC NOSYNC in the ENCODING register is set, the shift register is synchronized to the dibit boundaries, and the pattern matches only at dibit

boundaries. The shift register shifts right, so the bits end up in the FIFO word as follows:

**Table 125.** 

| 7                | 6                | 5                | 4                | 3                | 2                | 1              | 0              |
|------------------|------------------|------------------|------------------|------------------|------------------|----------------|----------------|
| L <sub>n+3</sub> | M <sub>n+3</sub> | L <sub>n+2</sub> | M <sub>n+2</sub> | L <sub>n+1</sub> | M <sub>n+1</sub> | L <sub>n</sub> | M <sub>n</sub> |

In 4–FSK mode, it is no longer sufficient to compare the actual frequency with the center frequency and just record the sign. The frequency deviation of the transmitter must be known in order to choose the correct decision thresholds. This is the purpose of the FSKDMAX1, FSKDMAX0, FSKDMIN1 and FSKDMIN0 registers. These registers can either be set manually or recover the frequency deviation automatically. DEVUPDATE selects automatic mode if set to one, and manual mode if set to zero. Normally, automatic

mode can be selected, but if the frequency deviation of the transmitter is exactly known at the receiver, manual mode can result in slightly better performance.

In automatic mode, FSKDMAX1, FSKDMAX0, FSKDMIN1 and FSKDMIN0 record the maximal and the minimal frequency seen at the receiver. "Leakage" or "gravity to zero" is added such that if these registers are disturbed by noise spikes, the effect decays. The amount of leakage is controlled by DEVDECAY.

**Table 126. AMOUNT OF LEAKAGE** 

| Bits | Meaning |
|------|---------|
| 0000 | 0       |
| 0001 | 1       |
| 0010 | 2       |
| 0011 | 5       |
| 0100 | 11      |
| 0101 | 22      |
| 0110 | 44      |

Table 126. AMOUNT OF LEAKAGE (continued)

| 0111 | 88    |
|------|-------|
| 1000 | 177   |
| 1001 | 355   |
| 1010 | 709   |
| 1011 | 1419  |
| 1100 | 2839  |
| 1101 | 5678  |
| 1110 | 11356 |
| 1111 | 22713 |

BBOFFSRESO, BBOFFSRES1, BBOFFSRES2, BBOFFSRES3

# Table 127. BBOFFSRES0, BBOFFSRES1, BBOFFSRES2, BBOFFSRES3

| Name     | Bits | R/W | Reset | Description                                         |
|----------|------|-----|-------|-----------------------------------------------------|
| RESINTA0 | 3:0  | RW  | 1000  | Baseband Gain Block A Offset Compensation Resistors |
| RESINTA1 |      |     |       |                                                     |
| RESINTA2 |      |     |       |                                                     |
| RESINTA3 |      |     |       |                                                     |
| RESINTB0 | 7:4  | RW  | 1000  | Baseband Gain Block B Offset Compensation Resistors |
| RESINTB1 |      |     |       |                                                     |
| RESINTB2 |      |     |       |                                                     |
| RESINTB3 |      |     |       |                                                     |

### **Transmitter Parameters**

MODCFGF

This register selects the frequency shaping mode of the transmitter.

# Table 128. MODCFGF

| Name      | Bits | R/W | Reset | Description                       |
|-----------|------|-----|-------|-----------------------------------|
| FREQSHAPE | 1:0  | RW  | 00    | See Table129: FREQSHAPE Bit Value |

## Table 129. FREQSHAPE BIT VALUES

| Bits | Meaning              |
|------|----------------------|
| 01   | Invalid              |
| 00   | External Loop Filter |
| 10   | Gaussian BT = 0.3    |
| 11   | Gaussian BT = 0.5    |

FSKDEV2, FSKDEV1, FSKDEV0

# Table 130. FSKDEV2, FSKDEV1, FSKDEV0

| Name   | Bits | R/W | Reset    | Description                                                                                                      |
|--------|------|-----|----------|------------------------------------------------------------------------------------------------------------------|
| FSKDEV | 23:0 | RW  | 0x000A3D | (G)FSK Frequency Deviation; $FSKDEV = \left[ \frac{f_{DEVIATION}}{f_{XTAL}} \times 2^{24} + \frac{1}{2} \right]$ |

Note that  $f_{\mbox{\scriptsize DEV IATION}}$  is actually half the deviation. The mark frequency is

 $f_{CARRIER} + f_{DEVIATION}$ , the space frequency is  $f_{CARRIER} - f_{DEV}$ 

$$f_{DEVIATION} = \frac{h}{2} \times BITRATE$$

In AFSK mode, the register has a slightly different

definition: 
$$FSKDEV = \left[ \frac{0.858785 \times f_{DEVIATION}}{f_{XTAL}} \times 2^{24} + \frac{1}{2} \right]$$

In FM mode, the register has a different definition. It defines the conditioning of the ADC values prior to applying them to the transmit amplitude or the frequency deviation.

Table 131. FMSHIFT, FMINPUT, FMSEXT, FMOFFS

| Name    | Bits | R/W | Reset | Description                                   |
|---------|------|-----|-------|-----------------------------------------------|
| FMSHIFT | 2:0  | RW  | 101   | These Bits Scale the ADC Value, See Table 132 |
| FMINPUT | 9:8  | RW  | 10    | Input Selection, See Table 133                |
| FMSEXT  | 14   | RW  | 0     | ADC Sign Extension                            |
| FMOFFS  | 15   | RW  | 0     | ADC Offset Subtract                           |

### **Table 132. FMSHIFT BIT VALUES**

| Table 132. FMSHIFT BIT VALUES |                                                              |  |  |  |  |  |
|-------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Bits                          | Meaning                                                      |  |  |  |  |  |
| 000                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{15}}$ |  |  |  |  |  |
| 001                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{14}}$ |  |  |  |  |  |
| 010                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{13}}$ |  |  |  |  |  |
| 011                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{12}}$ |  |  |  |  |  |
| 100                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{11}}$ |  |  |  |  |  |
| 101                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^{10}}$ |  |  |  |  |  |
| 110                           | FM: $f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^9}$    |  |  |  |  |  |
| 111                           | $FM: f_{DEVIATION} = \frac{+ ADCFS \times f_{XTAL}}{2^8}$    |  |  |  |  |  |

**Table 133. FMINPUT BIT VALUES** 

| Bits | Meaning |
|------|---------|
| 00   | GPADC13 |
| 01   | GPADC1  |
| 10   | GPADC2  |
| 11   | GPADC3  |

### **MODCFGA**

This register selects the amplitude shaping mode of the transmitter. Amplitude shaping is used even for constant modulus modulation such as FSK, to ramp up and down the transmitter at the beginning and the end of the transmission.

Table 134. MODCFGA

| Name        | Bits | R/W | Reset | Description                                        |
|-------------|------|-----|-------|----------------------------------------------------|
| TXDIFF      | 0    | RW  | 1     | Enable Differential Transmitter                    |
| TXSE        | 1    | RW  | 0     | Enable Single Ended Transmitter                    |
| AMPLSHAPE   | 2    | RW  | 1     | See Table 135                                      |
| SLOWRAMP    | 5:4  | RW  | 00    | See Table136                                       |
| PTTLCK GATE | 6    | RW  | 0     | If 1, disable transmitter if PLL looses lock       |
| BROWN GATE  | 7    | RW  | 0     | If 1, disable transmitter if Brown Out is detected |

**Table 135. AMPLSHAPE BIT VALUES** 

| Bits | Meaning       |
|------|---------------|
| 0    | Unshaped      |
| 1    | Raised Cosine |

Table 136. SLOWRAMP BIT VALUES

| Bits | Meaning                     |
|------|-----------------------------|
| 00   | Normal Startup (1 Bit Time) |
| 01   | 2 Bit Time Startup          |
| 10   | 4 Bit Time Startup          |
| 11   | 8 Bit Time Startup          |

If BROWN GATE is set, the transmitter is disabled whenever one (or more) of the SSVIO, SSBEVMODEM or SSBEVANA bits of the POWSTICKYSTAT register is zero.

In order for this to work, the user must read the POWSTICKYSTAT after setting the PWRMODE register for transmission.

#### TXRATE2, TXRATE1, TXRATE0

#### Table 137. TXRATE2, TXRATE1, TXRATE0

| Name   | Bits | R/W | Reset    | Description                                                                                    |
|--------|------|-----|----------|------------------------------------------------------------------------------------------------|
| TXRATE | 23:0 | RW  | 0x0028F6 | Transmit Bitrate, $TXRATE = \left[\frac{BITRATE}{f_{XTAL}} \times 2^{24} + \frac{1}{2}\right]$ |

In asynchronous wire mode, BITRATE  $< \frac{f_{XTAL}}{32}$ 

# TXPWRCOEFFA1, TXPWRCOEFFA0

### Table 138. TXPWRCOEFFA1, TXPWRCOEFFA0

| Name        | Bits | R/W | Reset  | Description                                                                                        |
|-------------|------|-----|--------|----------------------------------------------------------------------------------------------------|
| TXPWRCOEFFA | 15:0 | RW  | 0x0000 | Transmit Predistortion, $\mathit{TXPWRCOEFFA} = \left[\alpha_0 \times 2^{12} + \frac{1}{2}\right]$ |

See TXPWRCOEFFB0 for an explanation.

### TXPWRCOEFFB1, TXPWRCOEFFB0

### Table 139. TXPWRCOEFFB1, TXPWRCOEFFB0

| Name        | Bits | R/W | Reset  | Description                                                                               |
|-------------|------|-----|--------|-------------------------------------------------------------------------------------------|
| TXPWRCOEFFB | 15:0 | RW  | 0x0FFF | Transmit Predistortion, $TXPWRCOEFFB = \left[\alpha_1 \times 2^{12} + \frac{1}{2}\right]$ |

The transmit predistortion circuit applies the following function to the output of the raised cosine amplitude shaping:

$$f(x) = \alpha_4 \cdot x^4 + \alpha_3 \cdot x^3 + \alpha_2 \cdot x^2 + \alpha_1 \cdot x + \alpha_0$$
  
x is the input from the raised cosine shaping circuit  $(0 \le x \le 1)$ , and the output  $f(x)$  drives the power amplifier

(0 means no output power, 1 means maximum output power).

For conventional (non-predistorted output),  $\alpha_0 = \alpha_2 = \alpha_3 = \alpha_4 = 0$  and  $0 \le \alpha_1 \le 1$  controls the output power. If hard amplitude shaping is selected, both the raised cosine amplitude shaper and the predistortion is bypassed, and  $\alpha_1$  used.

# TXPWRCOEFFC1, TXPWRCOEFFC0

### Table 140. TXPWRCOEFFC1, TXPWRCOEFFC0

| Name        | Bits | R/W | Reset  | Description                                                                               |
|-------------|------|-----|--------|-------------------------------------------------------------------------------------------|
| TXPWRCOEFFC | 15:0 | RW  | 0x0000 | Transmit Predistortion, $TXPWRCOEFFB = \left[\alpha_2 \times 2^{12} + \frac{1}{2}\right]$ |

See TXPWRCOEFFB0 for an explanation.

# TXPWRCOEFFD1, TXPWRCOEFFD0

### Table 141. TXPWRCOEFFD1, TXPWRCOEFFD0

| Name        | Bits | R/W | Reset  | Description                                                                               |
|-------------|------|-----|--------|-------------------------------------------------------------------------------------------|
| TXPWRCOEFFD | 15:0 | RW  | 0x0000 | Transmit Predistortion, $TXPWRCOEFFB = \left[\alpha_3 \times 2^{12} + \frac{1}{2}\right]$ |

See TXPWRCOEFFB0 for an explanation.

## TXPWRCOEFFE1, TXPWRCOEFFE0

# Table 142. TXPWRCOEFFE1, TXPWRCOEFFE0

| Name        | Bits | R/W | Reset  | Description                                                                               |
|-------------|------|-----|--------|-------------------------------------------------------------------------------------------|
| TXPWRCOEFFE | 15:0 | RW  | 0x0000 | Transmit Predistortion, $TXPWRCOEFFB = \left[\alpha_4 \times 2^{12} + \frac{1}{2}\right]$ |

See TXPWRCOEFFB0 for an explanation.

# **PLL Parameters**

*PLLVCOI* 

# Table 143. PLLVCOI

| Name  | Bits | R/W | Reset  | Description                                                                                                   |
|-------|------|-----|--------|---------------------------------------------------------------------------------------------------------------|
| VCOI  | 5:0  | RW  | 010010 | This field sets the bias current for both VCOs. The increment is 50 $\mu A$ for VCO1 and 10 $\mu A$ for VCO2. |
| VCOIE | 7    | RW  | 0      | Enable manual VCOI                                                                                            |

### **PLLVCOIR**

## Table 144. PLLVCOIR

| Name  | Bits | R/W | Reset | Description                                                                                                                                                                                                   |
|-------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCOIR | 5:0  | R   | -     | This field reflects the actual VCO current selected. If VCOIE (Register PLLVCOI) is selected, this field reads the same as VCOI (also Register PLLVCOI). Otherwise, the value reflects the automatic setting. |

## PLLLOCKDET

# Table 145. PLLLOCKDET

| Name        | Bits | R/W | Reset | Description                                                                                                               |
|-------------|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------|
| LOCKDETDLY  | 1:0  | RW  | 11    | See Table 146: LOCKDETDLY Bit Values                                                                                      |
| LOCKDETDLYM | 2    | RW  | 0     | 0 = Automatic Lock Delay (determined by the currently active frequency register); 1 = Manual Lock Delay (Bits LOCKDETDLY) |
| LOCKDETDLYR | 7:6  | R   | _     | Lock Detect Read Back (not valid in power down mode)                                                                      |

## **Table 146. LOCKDETDLY BIT VALUES**

| Bits | Meaning                  |
|------|--------------------------|
| 00   | Lock Detector Delay 6ns  |
| 01   | Lock Detector Delay 9ns  |
| 10   | Lock Detector Delay 12ns |
| 11   | Lock Detector Delay 14ns |

## **PLLRNGCLK**

# **Table 147. PLLRNGCLK**

| Name      | Bits | R/W | Reset | Description                         |
|-----------|------|-----|-------|-------------------------------------|
| PLLRNGCLK | 2:0  | RW  | 011   | See Table 148: PLLRNGCLK Bit Values |

**Table 148. PLLRNGCLK BIT VALUES** 

| Bits | Meaning                                                   |
|------|-----------------------------------------------------------|
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^8}$    |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^9}$    |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^8}$    |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^{11}}$ |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^{12}}$ |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^{13}}$ |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{2^{14}}$ |
| 000  | PLL Ranging Clock: $f_{PLLRNG} = \frac{f_{XTAL}}{215}$    |

 $f_{PLLRNG}$  should be less than one tenth of the loop filter bandwidth, to allow enough settling time.

# **Crystal Oscillator**

**XTALCAP** 

# Table 149. XTALCAP

| Name    | Bits | R/W | Reset    | Description                                   |
|---------|------|-----|----------|-----------------------------------------------|
| XTALCAP | 7:0  | RW  | 00000000 | Load Capacitance Configuration, See Table 150 |

## **Table 150. LOCKDETDLY BIT VALUES**

| Bits   | Meaning |
|--------|---------|
| 000000 | 3 pF    |
| 000001 | 8.5 pF  |
| 000010 | 9 pF    |
|        |         |
| 110111 | 36 pF   |
|        |         |
| 111111 | 40 pF   |

For values XTALCAP(5:0)  $\neq$  0,  $C_L = 8 \text{ pF} + 0.5 \text{ pF} \cdot \text{XTALCAP}$  (5:0).

#### **Baseband**

**BBTUNE** 

## Table 151. BBTUNE

| Name      | Bits | R/W | Reset | Description           |
|-----------|------|-----|-------|-----------------------|
| BBTUNE    | 3:0  | RW  | 1001  | Baseband Tuning Value |
| BBTUNERUN | 4    | RW  | 0     | Baseband Tuning Start |

## BBOFFSCAP

# Table 152. BBOFFSCAP

| Name    | Bits | R/W | Reset | Description                                          |
|---------|------|-----|-------|------------------------------------------------------|
| CAPINTA | 2:0  | RW  | 111   | Baseband Gain Block A Offset Compensation Capacitors |
| CAPINTB | 6:4  | RW  | 111   | Baseband Gain Block B Offset Compensation Capacitors |

#### **Packet Format**

#### **PKTADDRCFG**

#### **Table 153. PKTADDRCFG**

| Name           | Bits | R/W | Reset | Description                                                                      |
|----------------|------|-----|-------|----------------------------------------------------------------------------------|
| ADDR POS       | 3:0  | RW  | 0000  | Position of the address bytes                                                    |
| FEC SYNC DIS   | 5    | RW  | 1     | When set, disable FEC sync search during packet reception                        |
| CRC SKIP FIRST | 6    | RW  | 0     | When set, the first byte of the packet is not included in the CRC calculation    |
| MSB FIRST      | 7    | RW  | 0     | When set, each byte is sent MSB first; when cleared, each byte is sent LSB first |

#### **PKTLENCFG**

#### **Table 154. PKTLENCFG**

| Name     | Bits | R/W | Reset | Description                                   |
|----------|------|-----|-------|-----------------------------------------------|
| LEN POS  | 3:0  | RW  | 0000  | Position of the length byte                   |
| LEN BITS | 7:4  | RW  | 0000  | Number of significant bits in the length byte |

The built-in packet length logic can support up to 255 byte packets. It is still possible to receive larger packets if packet length and, unless using HDLC, CRC is handled in the microprocessor firmware. In order to enable reception of arbitrary length packets, the following settings must be made:

- Register PKTLENCFG LEN BITS (bits 7:4) = 1111
- Register PKTMAXLEN = 0xFF
- Register PKTACCEPTFLAGS ACCPT LRGP (bit 5) = 1

### **PKTLENOFFSET**

#### **Table 155. PKTLENOFFSET**

| Name       | Bits | R/W | Reset | Description          |
|------------|------|-----|-------|----------------------|
| LEN OFFSET | 7:0  | RW  | 0x00  | Packet Length Offset |

The receiver adds LEN OFFSET to the length byte. The value of (length byte + LEN OFFSET) counts every byte in the packet after the synchronization pattern, up to and excluding the CRC bytes, but including the length byte.

For example with PKTLENCFG = 0x80 and PKTLENOFFSET = 0x00 the receiver will correctly receive the following packet (b1, b2 and b3 being data bytes).

| Mode specific Framing | 0x04 | B1 | B2 | В3 | CRC |
|-----------------------|------|----|----|----|-----|
|-----------------------|------|----|----|----|-----|

With PKTLENCFG = 0x80 and PKTLENOFFSET = 0x01 the receiver will correctly receive the following packet

| Mode specific Framing | 0x03 | B1 | B2 | В3 | CRC |
|-----------------------|------|----|----|----|-----|
|-----------------------|------|----|----|----|-----|

With PKTLENCFG = 0x00 and PKTLENOFFSET = 0x03 the receiver will correctly receive the following packet without length byte

|  | Mode specific Framing | B1 | B2 | В3 | CRC |
|--|-----------------------|----|----|----|-----|
|--|-----------------------|----|----|----|-----|

The length offset is treated as a signed value; LEN OFFSET 0xff means the length offset is -1.

#### **PKTMAXLEN**

#### **Table 156. PKTMAXLEN**

| Name    | Bits | R/W | Reset | Description           |
|---------|------|-----|-------|-----------------------|
| MAX LEN | 7:0  | RW  | 0x00  | Packet Maximum Length |

#### PKTADDR3, PKTADDR2, PKTADDR1, PKTADDR0

## Table 157. PKTADDR3, PKTADDR2, PKTADDR1, PKTADDR0

| Name | Bits | R/W | Reset      | Description    |
|------|------|-----|------------|----------------|
| ADDR | 31:0 | RW  | 0x00000000 | Packet Address |

## PKTADDRMASK3, PKTADDRMASK2, PKTADDRMASK1, PKTADDRMASK0

## Table 158. PKTADDRMASK3, PKTADDRMASK2, PKTADDRMASK1, PKTADDRMASK0

| Name     | Bits | R/W | Reset      | Description         |
|----------|------|-----|------------|---------------------|
| ADDRMASK | 31:0 | RW  | 0x00000000 | Packet Address Mask |

## **Pattern Match**

MATCHOPAT3, MATCHOPAT2, MATCHOPAT1, MATCHOPAT0

## Table 159. MATCH0PAT3, MATCH0PAT2, MATCH0PAT1, MATCH0PAT0

| Name      | Bits | R/W | Reset      | Description                                                                                          |
|-----------|------|-----|------------|------------------------------------------------------------------------------------------------------|
| MATCHOPAT | 31:0 | RW  | 0x00000000 | Pattern for Match Unit 0; LSB is received first; patterns of length less than 32 must be MSB aligned |

#### MATCH0LEN

## Table 160. MATCH0LEN

| Name      | Bits | R/W | Reset | Description                                                                                                                 |
|-----------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------|
| MATCHOLEN | 4:0  | RW  | 00000 | Pattern Length for Match Unit 0; The length in bits of the pattern is MATCH0LEN + 1                                         |
| MATCHORAW | 7    | RW  | 0     | Select whether Match Unit 0 operates on decoded (after Manchester, Descrambler etc.) (if 0), or on raw received bits (if 1) |

### **MATCHOMIN**

### Table 161. MATCH0MIN

| Name      | Bits | R/W | Reset | Description                                                                                                                                         |
|-----------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| MATCH0MIN | 4:0  | RW  | 00000 | A match is signalled if the received bitstream matches the pattern in less than MATCH0MIN positions. This can be used to detect inverted sequences. |

## MATCH0MAX

## Table 162. MATCH0MAX

| Name      | Bits | R/W | Reset | Description                                                                                          |
|-----------|------|-----|-------|------------------------------------------------------------------------------------------------------|
| MATCHOMAX | 4:0  | RW  | 11111 | A match is signalled if the received bitstream matches the pattern in more than MATCH0MAX positions. |

# MATCH1PAT1, MATCH1PAT0

# Table 163. MATCH1PAT1, MATCH1PAT0

| Name      | Bits | R/W | Reset  | Description                                                                                          |
|-----------|------|-----|--------|------------------------------------------------------------------------------------------------------|
| MATCH1PAT | 15:0 | RW  | 0x0000 | Pattern for Match Unit 1; LSB is received first; patterns of length less than 16 must be MSB aligned |

# *MATCH1LEN*

## Table 164. MATCH1LEN

| Name      | Bits | R/W | Reset | Description                                                                                                                 |
|-----------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------|
| MATCH1LEN | 3:0  | RW  | 0000  | Pattern Length for Match Unit 1; The length in bits of the pattern is MATCH1LEN + 1                                         |
| MATCH1RAW | 7    | RW  | 0     | Select whether Match Unit 1 operates on decoded (after Manchester, Descrambler etc.) (if 0), or on raw received bits (if 1) |

## **MATCH1MIN**

#### Table 165. MATCH1MIN

| Name      | Bits | R/W | Reset | Description                                                                                                                                         |
|-----------|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| MATCH1MIN | 3:0  | RW  |       | A match is signalled if the received bitstream matches the pattern in less than MATCH1MIN positions. This can be used to detect inverted sequences. |

### **MATCH1MAX**

## Table 166. MATCH1MAX

| Name      | Bits | R/W | Reset | Description                                                                                          |
|-----------|------|-----|-------|------------------------------------------------------------------------------------------------------|
| MATCH1MAX | 3:0  | RW  | 1111  | A match is signalled if the received bitstream matches the pattern in more than MATCH1MAX positions. |

## **Packet Controller**

TMGTXBOOST

## **Table 167. TMGTXBOOST**

| Name        | Bits | R/W | Reset | Description                      |
|-------------|------|-----|-------|----------------------------------|
| TMGTXBOOSTM | 4:0  | RW  | 10010 | Transmit PLL Boost Time Mantissa |
| TMGTXBOOSTE | 7:5  | RW  | 001   | Transmit PLL Boost Time Exponent |

The Transmit PLL Boost Time is TMGTXBOOSTM  $\cdot$   $2^{\text{TMGTXBOOSTE}}\mu s.$ 

### **TMGTXSETTLE**

### **Table 168. TMGTXSETTLE**

| Name         | Bits | R/W | Reset | Description                                      |
|--------------|------|-----|-------|--------------------------------------------------|
| TMGTXSETTLEM | 4:0  | RW  | 01010 | Transmit PLL (post Boost) Settling Time Mantissa |
| TMGTXSETTLEE | 7:5  | RW  | 000   | Transmit PLL (post Boost) Settling Time Exponent |

The Transmit PLL (post Boost) Settling Time is TMGTXSETTLEM  $\cdot$   $2^{TMGTXSETTLEE}\,\mu s.$ 

## TMGRXBOOST

## **Table 169. TMGRXBOOST**

| Name        | Bits | R/W | Reset | Description                     |
|-------------|------|-----|-------|---------------------------------|
| TMGRXBOOSTM | 4:0  | RW  | 10010 | Receive PLL Boost Time Mantissa |
| TMGRXBOOSTE | 7:5  | RW  | 001   | Receive PLL Boost Time Exponent |

The Receive PLL Boost Time is TMGRXBOOSTM  $\cdot$   $2^{\text{TMGRXBOOSTE}}\mu s.$ 

## TMGRXSETTLE

## Table 170. TMGRXSETTLE

| Name         | Bits | R/W | Reset | Description                                     |
|--------------|------|-----|-------|-------------------------------------------------|
| TMGRXSETTLEM | 4:0  | RW  | 10100 | Receive PLL (post Boost) Settling Time Mantissa |
| TMGRXSETTLEE | 7:5  | RW  | 000   | Receive PLL (post Boost) Settling Time Exponent |

The Receive PLL (post Boost) Settling Time is TMGRXSETTLEM  $\cdot\,2^{TMGRXSETTLEE}\,\mu s.$ 

## *TMGRXOFFSACQ*

#### **Table 171. TMGRXOFFSACQ**

| Name          | Bits | R/W | Reset | Description                                 |
|---------------|------|-----|-------|---------------------------------------------|
| TMGRXOFFSACQM | 4:0  | RW  | 10011 | Baseband DC Offset Acquisiton Time Mantissa |
| TMGRXOFFSACQE | 7:5  | RW  | 011   | Baseband DC Offset Acquisiton Time Exponent |

The Baseband DC Offset Acquisition Time is TMGRXOFFSACQM  $\cdot$   $2^{\text{TMGRXOFFSACQE}}\,\mu s.$ 

## *TMGRXCOARSEAGC*

### **Table 172. TMGRXCOARSEAGC**

| Name            | Bits | R/W | Reset | Description                      |
|-----------------|------|-----|-------|----------------------------------|
| TMGRXCOARSEAGCM | 4:0  | RW  | 11001 | Receive Coarse AGC Time Mantissa |
| TMGRXCOARSEAGCE | 7:5  | RW  | 001   | Receive Coarse AGC Time Exponent |

The Receive Coarse AGC Time is TMGRXCOARSEAGCM  $\cdot$   $2^{TMGRXCOARSEAGCE}\,\mu s.$ 

#### *TMGRXAGC*

### **Table 173. TMGRXAGC**

| Name      | Bits | R/W | Reset | Description                         |
|-----------|------|-----|-------|-------------------------------------|
| TMGRXAGCM | 4:0  | RW  | 00000 | Receiver AGC Settling Time Mantissa |
| TMGRXAGCE | 7:5  | RW  | 000   | Receiver AGC Settling Time Exponent |

The Receiver AGC Settling Time is TMGRXAGCM  $\cdot$   $2^{TMGRXAGCE}.$  Whether this time is measured in Bits or  $\mu s$  is

determined by bit RXAGC CLK in register PKTMISCFLAGS.

### **TMGRXRSSI**

### **Table 174. TMGRXRSSI**

| Name       | Bits | R/W | Reset | Description                          |
|------------|------|-----|-------|--------------------------------------|
| TMGRXRSSIM | 4:0  | RW  | 00000 | Receiver RSSI Settling Time Mantissa |
| TMGRXRSSIE | 7:5  | RW  | 000   | Receiver RSSI Settling Time Exponent |

The Receiver RSSI Settling Time is TMGRXRSSIM  $\cdot$   $2^{TMGRXRSSIE}.$  Whether this time is measured in Bits or  $\mu s$  is

determined by bit RXRSSI CLK in register PKTMISCFLAGS.

#### TMGRXPREAMBLE1

## **Table 175. TMGRXPREAMBLE1**

| Name            | Bits | R/W | Reset | Description                          |
|-----------------|------|-----|-------|--------------------------------------|
| TMGRXPREAMBLE1M | 4:0  | RW  | 00000 | Receiver Preamble 1 Timeout Mantissa |
| TMGRXPREAMBLE1E | 7:5  | RW  | 000   | Receiver Preamble 1 Timeout Exponent |

The Receiver Preamble 1 Timeout is  $TMGRXPREAMBLE1M \cdot 2^{TMGRXPREAMBLE1E} \ Bits.$ 

### TMGRXPREAMBLE2

#### **Table 176. TMGRXPREAMBLE2**

| Name            | Bits | R/W | Reset | Description                          |
|-----------------|------|-----|-------|--------------------------------------|
| TMGRXPREAMBLE2M | 4:0  | RW  | 00000 | Receiver Preamble 2 Timeout Mantissa |
| TMGRXPREAMBLE2E | 7:5  | RW  | 000   | Receiver Preamble 2 Timeout Exponent |

The Receiver Preamble 2 Timeout is  $TMGRXPREAMBLE2M \cdot 2^{TMGRXPREAMBLE2E}$  Bits.

### TMGRXPREAMBLE3

#### **Table 177. TMGRXPREAMBLE3**

| Name            | Bits | R/W | Reset | Description                          |
|-----------------|------|-----|-------|--------------------------------------|
| TMGRXPREAMBLE3M | 4:0  | RW  | 00000 | Receiver Preamble 3 Timeout Mantissa |
| TMGRXPREAMBLE3E | 7:5  | RW  | 000   | Receiver Preamble 3 Timeout Exponent |

The Receiver Preamble 3 Timeout is TMGRXPREAMBLE3M  $\cdot$  2<sup>TMGRXPREAMBLE3E</sup> Bits.

#### *RSSIREFERENCE*

### **Table 178. RSSIREFERENCE**

| Name          | Bits | R/W | Reset | Description |
|---------------|------|-----|-------|-------------|
| RSSIREFERENCE | 7:0  | RW  | 0x00  | RSSI Offset |

This register adds a constant offset to the computed RSSI value. It is used to compensate for board effects.

### **RSSIABSTHR**

### Table 179. RSSIABSTHR

| Name       | Bits | R/W | Reset | Description             |
|------------|------|-----|-------|-------------------------|
| RSSIABSTHR | 7:0  | RW  | 0x00  | RSSI Absolute Threshold |

RSSI levels above this threshold indicate a busy channel.

## **BGNDRSSIGAIN**

### **Table 180. BGNDRSSIGAIN**

| Name         | Bits | R/W | Reset | Description                             |
|--------------|------|-----|-------|-----------------------------------------|
| BGNDRSSIGAIN | 3:0  | RW  | 0000  | Background RSSI Averaging Time Constant |

The background RSSI estimate BGNDRSSI is updated after antenna RSSI measurement. Antenna RSSI measurement is performed in state RSSI in the Receiver Timing Diagram Figure 12. The background RSSI estimate is updated only once if antenna selection is performed.

The update is performed as follows: BGNDRSSI = BGNDRSSI + (RSSI - BGNDRSSI) · 2-BGNDRSSIGAIN

### **BGNDRSSITHR**

#### **Table 181. BGNDRSSITHR**

| Name        | Bits | R/W | Reset  | Description                        |
|-------------|------|-----|--------|------------------------------------|
| BGNDRSSITHR | 5:0  | RW  | 000000 | Background RSSI Relative Threshold |

RSSI levels more than BGNDRSSITHR above the background RSSI level indicate a busy channel.

## **PKTCHUNKSIZE**

### **Table 182. PKTCHUNKSIZE**

| Name         | Bits | R/W | Reset | Description                              |
|--------------|------|-----|-------|------------------------------------------|
| PKTCHUNKSIZE | 3:0  | RW  | 0000  | Maximum Packet Chunk Size, See Table 183 |

## **Table 183. PKTCHUNKSIZE BIT VALUES**

| 14510 100:1111011 | ONNOILL BIT VALUE |
|-------------------|-------------------|
| Bits              | Meaning           |
| 0000              | invalid           |
| 0001              | 1                 |
| 0010              | 2                 |
| 0011              | 4                 |
| 0100              | 8                 |
| 0101              | 16                |
| 0110              | 32                |
| 0111              | 64                |
| 1000              | 96                |
| 1001              | 128               |
| 1010              | 160               |
| 1011              | 192               |
| 1100              | 224               |
| 1101              | 240               |
| 1110              | invalid           |
| 1111              | invalid           |

The PKTCHUNKSIZE limits the maximum chunk size in the FIFO. This number includes the flags byte and all data bytes, but not the chunk header and the chunk length byte. Packets larger than PKTCHUNKSIZE - 1 are split into multiple chunks.

## **PKTMISCFLAGS**

## **Table 184. PKTMISCFLAGS**

| Name          | Bits | R/W | Reset | Description                                                                                                        |
|---------------|------|-----|-------|--------------------------------------------------------------------------------------------------------------------|
| RXRSSI CLK    | 0    | RW  | 0     | Clock source for RSSI settling timeout: 0 = 1 μs, 1 = Bit clock                                                    |
| RXAGC CLK     | 1    | RW  | 0     | Clock source for AGC settling timeout: $0 = 1 \mu s$ , $1 = Bit clock$                                             |
| BGND RSSI     | 2    | RW  | 0     | If 1, enable the calculation of the background noise/RSSI level                                                    |
| AGC SETTL DET | 3    | RW  | 0     | If 1, if AGC settling is detected, terminate settling before timeout                                               |
| WOR MULTI PKT | 4    | RW  | 0     | If 1, the receiver continues to be on after a packet is received in wake-on-radio mode; otherwise, it is shut down |

## **PKTSTOREFLAGS**

# Table 185. PKTSTOREFLAGS

| Name      | Bits | R/W | Reset | Description                                    |
|-----------|------|-----|-------|------------------------------------------------|
| ST TIMER  | 0    | RW  | 0     | Store Timer value when a delimiter is detected |
| ST FOFFS  | 1    | RW  | 0     | Store Frequency offset at end of packet        |
| ST RFOFFS | 2    | RW  | 0     | Store RF Frequency offset at end of packet     |
| ST DR     | 3    | RW  | 0     | Store Datarate offset at end of packet         |
| ST RSSI   | 4    | RW  | 0     | Store RSSI at end of packet                    |

Table 185. PKTSTOREFLAGS (continued)

| Name        | Bits | R/W | Reset | Description                                                                                                                               |
|-------------|------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ST CRCB     | 5    | RW  | 0     | Store CRC Bytes. Normally, CRC bytes are discarded after checking. In HDLC [1] mode, CRC bytes are always stored, regardless of this bit. |
| ST ANT RSSI | 6    | RW  | 0     | Store RSSI and Background Noise Estimate at antenna selection time                                                                        |

# **PKTACCEPTFLAGS**

## **Table 186. PKTACCEPTFLAGS**

| Name          | Bits | R/W | Reset | Description                                                       |
|---------------|------|-----|-------|-------------------------------------------------------------------|
| ACCPT RESIDUE | 0    | RW  | 0     | Accept Packets with a nonintegral number of Bytes (HDLC [1] only) |
| ACCPT ABRT    | 1    | RW  | 0     | Accept aborted Packets                                            |
| ACCPT CRCF    | 2    | RW  | 0     | Accept Packets that fail CRC check                                |
| ACCPT ADDRF   | 3    | RW  | 0     | Accept Packets that fail Address check                            |
| ACCPT SZF     | 4    | RW  | 0     | Accept Packets that are too long                                  |
| ACCPT LRGP    | 5    | RW  | 0     | Accept Packets that span multiple FIFO chunks                     |

# **General Purpose ADC**

GPADCCTRL

## Table 187. GPADCCTRL

| Name    | Bits | R/W | Reset | Description                                                               |
|---------|------|-----|-------|---------------------------------------------------------------------------|
| CH ISOL | 0    | RW  | 0     | Isolate Channels by sampling common mode between channels                 |
| CONT    | 1    | RW  | 0     | Enable Continuous Sampling (period according to GPADCPERIOD)              |
| GPADC13 | 2    | RW  | 0     | Enable Sampling GPADC1-GPADC3                                             |
| BUSY    | 7    | RS  | 0     | Conversion ongoing when 1; when writing 1, a single conversion is started |

## **GPADCPERIOD**

# Table 188. GPADCPERIOD

| Name        | Bits | R/W | Reset    | Description                                                              |
|-------------|------|-----|----------|--------------------------------------------------------------------------|
| GPADCPERIOD | 7:0  | RW  | 00111111 | GPADC Sampling Period, $f_{SR} = \frac{f_{XTAL}}{32 \times GPADCPERIOD}$ |

# GPADC13VALUE1, GPADC13VALUE0

# Table 189. GPADC13VALUE1, GPADC13VALUE0

| Name         | Bits | R/W | Reset | Description   |
|--------------|------|-----|-------|---------------|
| GPADC13VALUE | 9:0  | R   | -     | GPADC13 Value |

Reading this register clears the GPADC Interrupt.

### **Low Power Oscillator Calibration**

LPOSCCONFIG

#### **Table 190. LPOSCCONFIG**

| Name             | Bits | R/W | Reset | Description                                                                 |
|------------------|------|-----|-------|-----------------------------------------------------------------------------|
| LPOSC ENA        | 0    | RW  | 0     | Enable the Low Power Oscillator. If 0, it is disabled.                      |
| LPOSC FAST       | 1    | RW  | 0     | Select the Frequency of the Low Power Oscillator. 0 = 640 Hz, 1 = 10.24 kHz |
| LPOSC IRQR       | 2    | RW  | 0     | Enable LP Oscillator Interrupt on the Rising Edge                           |
| LPOSC IRQF       | 3    | RW  | 0     | Enable LP Oscillator Interrupt on the Falling Edge                          |
| LPOSC CALIBF     | 4    | RW  | 0     | Enable LP Oscillator Calibration on the Falling Edge                        |
| LPOSC CALIBR     | 5    | RW  | 0     | Enable LP Oscillator Calibration on the Rising Edge                         |
| LPOSC OSC DOUBLE | 6    | RW  | 0     | Enable LP Oscillator Calibration Reference Oscillator Doubling              |
| LPOSC OSC INVERT | 7    | RW  | 0     | Invert LP Oscillator Clock                                                  |

### **LPOSCSTATUS**

### **Table 191. LPOSCSTATUS**

| Name       | Bits | R/W | Reset | Description                                |
|------------|------|-----|-------|--------------------------------------------|
| LPOSC EDGE | 0    | R   | -     | Enabled Low Power Oscillator Edge detected |
| LPOSC IRQ  | 1    | R   | -     | Low Power Oscillator Interrupt Active      |

The EDGE and IRQ flags can be cleared by reading either the LPOSCCONFIG, LPOSCSTATUS, LPOSCPER1 or LPOSCPER0 register.

#### LPOSCKFILT1, LPOSCKFILT0

## Table 192. LPOSCKFILT1, LPOSCKFILT0

| Name       | Bits | R/W | Reset  | Description                                                          |
|------------|------|-----|--------|----------------------------------------------------------------------|
| LPOSCKFILT | 15:0 | RW  | 0x20C4 | k <sub>FILT</sub> (Low Power Oscillator Calibration Filter Constant) |

The maximum value of  $k_{FILT}$ , that results in quickest calibration (single cycle), but no jitter suppression, is:

Smaller values of  $k_{\text{FILT}}$  result in longer calibration, but increased jitter suppression.

$$k_{FILT} = \left[ \frac{21333Hz \times 2^{20}}{f_{XTAL}} \right]$$

### LPOSCREF1, LPOSCREF0

## Table 193. LPOSCREF1, LPOSCREF0

| Name     | Bits | R/W | Reset  | Description                                                                |
|----------|------|-----|--------|----------------------------------------------------------------------------|
| LPOSCREF | 15:0 | RW  | 0x61A8 | LP Oscillator Reference Frequency Divider; set to $\frac{f_{XTAL}}{640Hz}$ |

# $LPOSCFREQ1,\,LPOSCFREQ0$

## Table 194. LPOSCFREQ1, LPOSCFREQ0

| Name      | Bits | R/W | Reset | Description                                                            |
|-----------|------|-----|-------|------------------------------------------------------------------------|
| LPOSCFREQ | 9:-2 | RW  | 0x000 | LP Oscillator Frequency Tune Value; in <sup>1</sup> / <sub>32</sub> %. |

### LPOSCPER1, LPOSCPER0

## Table 195. LPOSCPER1, LPOSCPER0

| Name     | Bits | R/W | Reset | Description                        |
|----------|------|-----|-------|------------------------------------|
| LPOSCPER | 15:0 | R   | -     | Last measured LP Oscillator Period |

### DAC

## DACVALUE1, DACVALUE0

### Table 196. DACVALUE1, DACVALUE0

| Name     | Bits | R/W | Reset | Description                             |
|----------|------|-----|-------|-----------------------------------------|
| DACVALUE | 11:0 | RW  | 0x000 | DAC Value (signed) (if DACINPUT = 0000) |
| DACSHIFT | 3:0  | RW  | 0x0   | DAC Input Shift (if DACINPUT! = 0000)   |

## **DACCONFIG**

#### **Table 197. DACCONFIG**

| Name     | Bits | R/W | Reset | Description                                         |
|----------|------|-----|-------|-----------------------------------------------------|
| DACINPUT | 3:0  | RW  | 0000  | DAC Input Multiplexer, See Table 198                |
| DACCLKX2 | 6    | RW  | 0     | Enable DAC Clock Doubler if set to 1                |
| DACPWM   | 7    | RW  | 0     | Select PWM mode if 1, otherwise $\Sigma\Delta$ mode |

### **Table 198. DACINPUT BIT VALUES**

| Table 100: Dreint of Bit Village |                |  |  |  |  |
|----------------------------------|----------------|--|--|--|--|
| Bits                             | Meaning        |  |  |  |  |
| 0000                             | DACVALUER      |  |  |  |  |
| 0001                             | TRKAMPLITUDE   |  |  |  |  |
| 0010                             | TRKRFFREQUENCY |  |  |  |  |
| 0011                             | TRKFREQUENCY   |  |  |  |  |
| 0100                             | FSKDEMOD       |  |  |  |  |
| 0101                             | AFSKDEMOD      |  |  |  |  |
| 0110                             | RXSOFTDATA     |  |  |  |  |
| 0111                             | RSSI           |  |  |  |  |
| 1000                             | SAMPLE_ROT_I   |  |  |  |  |
| 1001                             | SAMPLE_ROT_Q   |  |  |  |  |
| 1100                             | GPADC13        |  |  |  |  |
| 1101                             | invalid        |  |  |  |  |
| 1110                             | invalid        |  |  |  |  |
| 1111                             | invalid        |  |  |  |  |

Note that in  $\Sigma\Delta$  mode, the output range is limited to the range  $\frac{1}{4}$ ... $\frac{3}{4}$  · VDDIO, to ensure modulator stability. The input value  $-2^{11}$  results in  $\frac{1}{4}$  · VDDIO, the input value  $2^{11}$  – 1 results in  $\frac{3}{4}$  · VDDIO. In PWM mode, the output voltage range is 0...VDDIO.

## **Performance Tuning Registers**

Registers with Addresses from 0xF00 to 0xFFF are performance tuning registers. Their optimum values are computed by AX\_RadioLab; this section only gives a rough overview of how they should be set. Do not read or write addresses not listed in the table below.

### **Table 199. REGISTER MAP**

| Addr | RX/TX | Description                                                                                                                                             |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| F00  | RX/TX | Set to 0x0F                                                                                                                                             |
| F0C  | RX/TX | Keep the default 0x00                                                                                                                                   |
| F0D  | RX/TX | Set to 0x03                                                                                                                                             |
| F10  | RX/TX | Set to 0x04 if a TCXO is used. If a crystal is used, set to 0x0D if the reference frequency (crystal or TCXO) is more than 43 MHz, or to 0x03 otherwise |
| F11  | RX/TX | Set to 0x07 if a crystal is connected to CLK16P/CLK16N, or 0x00 if a TCXO is used                                                                       |
| F1C  | RX/TX | Set to 0x07                                                                                                                                             |
| F21  | RX    | Set to 0x5C                                                                                                                                             |
| F22  | RX    | Set to 0x53                                                                                                                                             |
| F23  | RX    | Set to 0x76                                                                                                                                             |
| F26  | RX    | Set to 0x92                                                                                                                                             |

# Table 199. REGISTER MAP (continued)

| Addr | RX/TX | Description                                                                                                                                                         |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F30  | RX    | This register should be reset between WOR wake-ups. The reset value is the value read after successful packet reception or 0x3F if no packet has been received yet. |
| F31  | RX    | This register should be reset between WOR wake-ups. The reset value is the value read after successful packet reception or 0xF0 if no packet has been received yet. |
| F32  | RX    | This register should be reset between WOR wake-ups. The reset value is the value read after successful packet reception or 0x3F if no packet has been received yet. |
| F33  | RX    | This register should be reset between WOR wake-ups. The reset value is the value read after successful packet reception or 0xF0 if no packet has been received yet. |
| F34  | RX/TX | Set to 0x28 if RFDIV in register PLLVCODIV is set, or to 0x08 otherwise                                                                                             |
| F35  | RX/TX | Set to 0x10 for reference frequencies (crystal or TCXO) less than 24.8 MHz (f <sub>XTALDIV</sub> = 1), or to 0x11 otherwise (f <sub>XTALDIV</sub> = 2)              |
| F44  | RX/TX | Set to 0x24                                                                                                                                                         |
| F72  | RX    | Set to 0x06 if the framing mode is set to "Raw, Soft Bits" (register FRAMING), or to 0x00 otherwise                                                                 |

#### **REFERENCES**

- [1] Wikipedia. High-Level Data Link Control. see <a href="http://en.wikipedia.org/wiki/HDLC">http://en.wikipedia.org/wiki/HDLC</a>.
- [2] ON Semiconductor. AX5043 Datasheet. see http://www.onsemi.com
- [3] Ross N. Williams. A Painless Guide to CRC Error Detection Algorithms. http://www.ross.net/crc/download/crc\_v3.txt

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

## **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative