Recurrent Neural Network Grammers

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, Noah A. Smith

導入

Recurrent Neural Network Grammers (RNNGs)

- ▶ 文の確率的生成モデル
 - ▶ 単語や句の入れ子的・階層的構造を陽に表現
- ▶ 問題:構文解析,文生成
- ▶ 動機: Sequential な Recurrent Neural Networks (RNNs) は 自然言語の潜在的な入れ子構造を考慮できていない
- ▶ 構文解析または文生成のアルゴリズム

RNNGの定義

$$RNNG := (N, \Sigma, \Theta)$$

 $\left\{egin{aligned} N: 非終端記号の有限集合\ \Sigma: 終端記号の有限集合 (N \cup \Sigma = \emptyset)\ \Theta: NN のパラメータ \end{aligned}
ight.$

構文解析のアルゴリズム

$$f: X \to Y$$

x:終端記号(単語)の列(入力)y:構文木(出力)S:スタックB:入力バッファ

▶ スタックの要素:終端記号, open または closed な非終端記号

▶ 入力バッファの要素:終端記号

構文解析のアルゴリズム

▶ 初期状態

$$B = [T_1, \dots, T_n]$$
$$S = \emptyset$$

構文解析のアルゴリズム

- ▶ 遷移の制約
 - ▶ n: スタック内の open な非終端記号の数

遷移	制約
nt(X)	$B \neq \emptyset \land n < 100$
SHIFT	$B \neq \emptyset \land n \geq 1$
	スタック内の一番上の要素が
REDUCE	
	$\land (n \ge 2 \lor B = \emptyset)$

文生成のアルゴリズム

$$f: X \to Y$$

 x:?

 y:終端記号(単語)の列(出力)

 S:スタック

 T:出力バッファ

▶ スタックの要素:終端記号, open または closed な非終端記号

▶ 出力バッファの要素:終端記号

文生成のアルゴリズム

▶ 初期状態

$$B = \emptyset$$

$$S = \emptyset$$

文生成のアルゴリズム

- ▶ 遷移の制約
 - ▶ n: スタック内の open な非終端記号の数
 - $\rightarrow A_G(T, S, n)$

遷移	制約
GEN(X)	$n \ge 1$
REDUCE	スタック内の一番上の要素が open な非終端記号でない ∧ n > 1