25.6.2015 Lukas Graf

Parameterschätzung für die Verallgemeinerte Extremwertverteilung

Modelling Extremal Events (Kapitel 6.4.2 - Methoden 1 und 2)

DEF (GEV): Die Verallgemeinerte Extremwertverteilung ist gegeben durch

$$H_{\xi;\mu,\psi}(x) = \exp\left\{-\left(1 + \xi \frac{x - \mu}{\psi}\right)^{-1/\xi}\right\}, \quad x > \mu - \frac{\psi}{\xi}$$

mit Lageparameter μ , Skalierungsparameter ψ und Formparameter ξ .

• Weibullverteilung $\Psi_{\alpha}, \; \alpha \coloneqq -\frac{1}{\xi} \; \mathrm{für} \; \xi < 0$

Verteilungen mit endlichem rechtem Endpunkt

- Gumbelverteilung Λ für $\xi = 0$
- Frèchetverteilung Φ_{α} , $\alpha \coloneqq \frac{1}{\xi}$ für $\xi > 0$

Verteilungen mit schwerem Tail

DEF:

Sind $Z_1, Z_2, ...$ uiv $\sim G$. Dann gehört G zum maximalen Anziehungsbereich der Verteilungsfunktion H (d.h. $G \in MDA(H)$), wenn es $c_n > 0, d_n \in \mathbb{R}$ gibt mit $\frac{1}{c_n} \Big(\max_{i \leq n} Z_i - d_n \Big) \overset{d}{\to} H$

Тнеокем (Fisher-Tippett): $H_{\xi;\mu,\,\psi}$ sind die einzigen nicht-degenerierten Verteilungen, die einen maximalen Anziehungsbereich besitzen.

ZIEL: Aus einer Stichprobe (von Maxima) wollen wir den Formparameter ξ schätzen.

Methode 1: Pickands-Schätzer

GEGEBEN: $X_1, X_2, ..., X_n$ unabhängig identisch verteilt gemäß $F \in MDA(H_{\xi})$

GESUCHT: Schätzer für Formparameter ξ

MOTIVATION: Charakterisierung von Verteilungen in $F \in MDA(H_{\xi})$ durch Theorem 3.4.5:

$$F \in MDA(H_{\xi}) \iff \lim_{t \to \infty} \frac{U(tx) - U(t)}{U(ty) - U(t)} = \begin{cases} \frac{x^{\xi} - 1}{y^{\xi} - 1}, \xi \neq 0\\ \frac{\ln x}{\ln y}, \xi = 0 \end{cases}$$
 f. a. $x, y > 0$

DEF: Sei X_1 , X_2 , ..., X_n uiv. $\sim F \in MDA(H_{\xi})$ und $X_{n,n}$, ..., $X_{1,n}$ die entsprechende geordnete Stichprobe. Dann ist

$$\hat{\xi}_{k,n}^{(P)} := \log_2 \frac{X_{k,n} - X_{2k,n}}{X_{2k,n} - X_{4k,n}}$$

der *Pickands-Schätzer* für den Formparameter ξ .

THEOREM: Sei $(k) := (k_n)_{n \in \mathbb{N}}$ eine Folge, dann hat der Pickands-Schätzer $\hat{\xi}_{k,n}^{(P)}$ die folgenden Eigenschaften:

1) Für
$$k \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt: $\hat{\xi}_{k,n}^{(P)} \xrightarrow{P} \xi$ (schwache Konsistenz)

2) Für
$$\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$$
, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt: $\hat{\xi}_{k,n}^{(P)} \xrightarrow{\text{f.s.}} \xi$ (starke Konsistenz)

3) Für zusätzliche Bedingungen an k und F gilt:

$$\sqrt{k} \Big(\hat{\xi}_{k,n}^{(P)} - \xi \Big) \xrightarrow{d} N(0, v(\xi))$$

(asymptotische Normalität)

Methode 2: Hill-Schätzer

GEGEBEN: $X_1, X_2, ..., X_n$ (unabhängig) identisch verteilt gemäß $F \in MDA(\Phi_\alpha)$

GESUCHT: Schätzer für Formparameter $\alpha (= \xi^{-1})$

Motivation: Charakterisierung von Verteilungen in $F \in MDA(\Phi_{\alpha})$ durch Theorem 3.3.7:

 $F \in MDA(\Phi_{\alpha}) \iff \overline{F}(x) = x^{-\alpha}L(x)$, mit L langsam variierend

und Erinnerung an Kapitel 3.3.1:

Funktionen aus $MDA(\Phi_{\alpha})$ sind "Pareto-ähnlich", d.h.:

$$\overline{F}(x) \sim Cx^{-\alpha}$$
, für $x \to \infty$

Dann finde MLE für C und α .

DEF: (X_n) strikt stationär mit Randverteilung $F \in MDA(\Phi_\alpha)$ und $X_{n,n}, ..., X_{1,n}$ die entsprechende geordnete Stichprobe. Dann ist

$$\hat{\alpha}_{k,n}^{(H)} := \left(\frac{1}{k} \sum_{j=1}^{k} \ln X_{j,n} - \ln X_{k,n}\right)^{-1}$$

der Hill-Schätzer für den Formparameter α .

THEOREM: Sei $(k) := (k_n)_{n \in \mathbb{N}}$ eine Folge, dann hat der Hill-Schätzer $\widehat{\alpha}_{k,n}^{(H)}$ die folgenden Eigenschaften:

1) Für (X_n) schwach abhängig, linearer Prozess oder unabhängig identisch verteilt und $k \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\hat{lpha}_{k,n}^{(H)} \stackrel{P}{\longrightarrow} lpha$$
 (schwache Konsistenz)

2) Für (X_n) unabhängig identisch verteilt und $\frac{k}{\ln \ln n} \xrightarrow{n \to \infty} \infty$, $\frac{k}{n} \xrightarrow{n \to \infty} 0$ gilt:

$$\widehat{\alpha}_{k,n}^{(H)} \stackrel{\mathrm{f.s.}}{\longrightarrow} \alpha \qquad \qquad \text{(starke Konsistenz)}$$

3) Für zusätzliche Bedingungen an k und F gilt:

$$\sqrt{k} \left(\hat{\alpha}_{k,n}^{(H)} - \alpha \right) \xrightarrow{d} N(0, \alpha^2)$$
 (asymptotische Normalität)

Anwendung (Dänische Feuerschäden)

DATEN:

ca. 2100 Schäden über 1 Million dänische Kronen in den Jahren 1980-1990 (http://www.macs.hw.ac.uk/~mcneil/ftp/DanishData.txt)

ANALYSE:

Berechne Hill-Schätzer $\widehat{lpha}_{k,n}^{(H)}$ für verschiedene k und erstelle $\emph{Hill-Plot}$:

Wähle $\hat{\alpha}$ aus möglichst "stabilem" Bereich.