Costruzione di altri spazi veltoriali

(i) dat: V, W spaz: veltorial:, anche $V \times W$ e' spazio veltoriale, con $d: W \times W = d: M \cup d: M \cup S: M \cup B = \{ \underline{V}_i \}_{i \in I}$ base $d: V \in B' = \{ \underline{W}_i \}_{i \in I} \}$, allora $B \times \{\underline{v}_i \} \cup \{\underline{v}_i \}_{i \in I} \}$ base $d: V \times W$.

proiezioni $\{P_{U}: V \times W \rightarrow V, (\underline{V}, \underline{w}) \mapsto \underline{V} \text{ (proiezione su V)} \}$ $\{P_{W}: V \times W \rightarrow W, (\underline{V}, \underline{w}) \mapsto \underline{w} \text{ (proiezione su w)} \}$ $\text{immersioni} \{i_{V}: V \rightarrow V \times W, \underline{V} \mapsto (\underline{V}, \underline{O}) \text{ (immersione da V)} \}$ $\{i_{W}: W \rightarrow V \times W, \underline{W} \mapsto (\underline{O}, \underline{w}) \text{ (immersione da w)} \}$

OSS. $f: V \times W \rightarrow V \oplus W$, $(\underline{V}, \underline{W}) \rightarrow \underline{V} + \underline{W}$ & un isomorfismo

- (ii) date un insieme X e un campo K si può costruire lo spazio $V_X = \left\{ \begin{array}{c} \sum_{x \in X} \alpha_x X \mid \alpha_x \in K \ , \ \alpha_x \neq 0 \ \text{un numero finito di volte} \right\}$ con la somma e prodotto esterno termine a termine.

(i)
$$1.T = T$$
 $\chi_1 + \dots + \chi_5 \longleftrightarrow \{\chi_1, \dots, \chi_5\}$

(ii)
$$0 \cdot T = 0$$

(iii) Sia V sp. vett. Sv K, UCV ssp. . Sia
$$\underline{\cup} \wedge \underline{\cup}' (\Rightarrow) \underline{\vee} - \underline{\vee}' \in U$$
.

Allora V/~ e' l'insieme dei sottospazi affini, e si indica con V/U.

Prop. V/U e' una spazio vettoriale su IK con:

le cui operazion: sono ben definite, dacché: $V \sim V'$, $\omega \sim \omega' \implies V + \omega \sim V' + \omega'$

Teorema (i)
$$\pi: V \rightarrow V/U$$
, $V \mapsto [V]_U$ & lineare e surgettiva

- (i) $\forall V_2, V_2 \in V$, $\pi(V_2 + V_2) = [V_2 + V_2]_U = [V_2]_U + [V_2]_U = \pi(V_2) + \pi(V_2) = \pi(V_2) + \pi(V_2) = \pi(V_2) + \pi(V_2) = \pi(V_2)_U = \pi(V_$
- (ii) π(y)=[y], = [o], ⇔ y ∈ U, duque Ker π= U.
- (iii) dim V = dim Ker T + dim Im T => dim V/U = dim V dim U.
- (iv) $\ker \pi|_{U'} = \ker \pi \cap U' = \{0\}$, duague $\pi|_{U'}$ e' iniettiua. Sia ora $u \in V$. Poiché $V = U \oplus U'$, $\exists u \in U$, $u' \in U' \mid u = u + u'$, ossia $\forall u \in V \exists u' \in U' \mid [u]_{v} = [u']_{v} = \pi(u')$; quindi $\pi|_{U'}$ e' surgettiua. Pertanto $\pi|_{U'}$ e' un isomorfismo.

Teorema 5:2 $f: V \rightarrow W$ lineare, allora $f: V/\ker f \rightarrow Im f, \underline{V} + \ker f \mapsto f(\underline{V})$ e' un isomerfismo, ossia $V/\ker f \cong Imm f$.

Prop. $f: V \rightarrow W$ lineare, $U \subset V$, $Z \subset W$ ssp. t.c. $f(U) \subset Z$. Allora s; ha una applicazione $\tilde{f}: V/U \rightarrow W/Z$ t.c. $\tilde{f}([U]_U) = [f(U)]_W$

OSS. S:2 $B = \{ U_2, ..., U_n, ..., U_m \}$ base di V + c. $B_U = \{ U_2, ..., U_n \}$ sia base di U. Allora $T = \{ [V_{n+1}]_U, ..., [V_m]_U \}$ è' una base di V/U.

In fatti $[a_1 V_{n+2} + ... + a_m V_m]_U = [O]_U \Rightarrow a_{n+2} U_{n+2} + ... + a_m V_m \in U \Rightarrow \exists a_2, ..., a_n \in IK | a_{n+2} U_{n+2} + ... + a_m V_m = a_2 U_2 + ... + a_n V_n,$ ossia, dacché B è' base, $a_i = 0 \forall i$. Poiché T è' lin. ind. e |T| = |V/U|, T e' anche base.

Ø

Spazio duale di V

Sia V sp. vett. su K $\mathcal{L}(V, K)$ si chiama DUALE di V e si indica con V^* , i wi element: sono detti funzionali.

es.
$$V = M_n(K)$$
 the V^*

$$V = K[x] \quad val_{x_0} \in V^*$$

Prop. se dim V=n EIN, allora dim V*=n.

Infatt: dim V = dim 2 (V, IK) = dim V · dim K = n

Def. V** = (V*)*, il biduale.

OSS. S: ha l'isomorfismo canonico $\phi: V \to V^{**}$, $V \mapsto (f: w^* \mapsto w^*(v))$.

Infatt: $\phi(U) = o \Rightarrow \phi(V)(V_i^*) = U_i^*(V) = o \forall v_i \in B \text{ base. Durque}$ $V = \sum_i \alpha_i v_i \quad e^i \text{ t.c. } \alpha_i = o \forall i, \text{ oss:a che } v_i = o \text{ Poiché dim } V = o \text{ dim } V^{**}$ $V = \dim V^{**}$, $v = \dim$

<u>Def.</u> Sia $f \in L(V, W)$. Si identifica f^T wome la TRASPOSTA di f ed essa si definisce come $f^T: W^* \to V^*$, $g \mapsto g \circ f$.

<u>Prop.</u> Sia L E L (V, W). Siano Bv e Bw basi di V e W e siano Bv* e Bw* le basi di V* e W* costruite su Bv e Bw. Allora:

$$M_{Bv}^{Bw}(L^{T}) = M_{Bw}^{Bv}(L)^{T}$$

Siam $\mathbb{B}_{V} = \{ \underline{V_{2}}, ..., \underline{V_{m}} \}$ e $\mathbb{B}_{W} = \{ \underline{W_{2}}, ..., \underline{w_{n}} \}$. Sia $M_{\mathbb{B}_{W}}^{\mathbb{B}_{W}}(\mathbb{A}) = \{ \underline{W_{1}}, ..., \underline{w_{n}} \}$.

 $M_{Bv}^{\omega_{v}^{*}}(\mathcal{L}^{T})^{T} = \left[\mathcal{L}^{T}(\underline{w_{J}^{*}})\right]_{Bv}^{*} \cdot \text{Sia} \quad \mathcal{L}^{T}(\underline{w_{J}^{*}}) = \underline{w_{J}^{*}} \circ \mathcal{L} =$ $= b_{1}\underline{v_{1}^{*}} + \cdots + b_{m}\underline{v_{m}^{*}} \cdot \text{Allora} \quad \mathcal{L}^{T}(\underline{w_{J}^{*}})(\underline{v_{i}}) = b_{i}.$ $D'altra \quad parte \quad (\underline{w_{J}^{*}} \circ \mathcal{L})(\underline{v_{i}}) = \underline{w_{J}^{*}}(\mathcal{L}(\underline{v_{i}})) = \alpha_{J}i.$ $Qu'indi \quad \left[\mathcal{L}^{T}(\underline{w_{J}^{*}})\right]_{Bv}^{*} = \begin{pmatrix} \alpha_{J2} \\ \alpha_{Jm} \\ \alpha_{Jm} \end{pmatrix} = A_{J}^{T}. \quad Dunque \quad M_{Bv}^{\omega_{w}^{*}}(\mathcal{L}^{T}) =$ $= M_{w}^{V}(\mathcal{L})^{T}.$