

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Next Event Simulation

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

DE simulation Next-Event Simulation

Next-Event Simulation

Next-event simulation is a more general approach to discrete-event simulation

- system state
- events
- simulation clock
- event scheduling
- event list

Prof. Vittoria de Nitto Personè

2

DE simulation Next-Event Simulation

Definitions and Terminology - State

The *state* of a system is a complete characterization of the system at an instance in time

Prof. Vittoria de Nitto Personè

3

3

model development

Algorithm 1.1: how to develop a model

- 1. Goals and objectives
- 2. Conceptual model (cm)

very high level

which are the state variables, how they are related, which can be ignored and which not

3. Convert cm into a *specification* model (sm)

important: collecting and statistically analyzing data to provide the input models that drive the simulation

- 4. Convert sm into a computational model (cptm)
- 5. Verification

Is cptm consistent with sm?

6. Validation

Is cptm consistent with the system being analyzed?

Can an expert distinguish simulation output from system output?

Prof. Vittoria de Nitto Personè

4

DE simulation Next-Event Simulation

Definitions and Terminology - State

- Conceptual model: abstract collection of variables and how they evolve over time
- Specification model: collection of mathematical variables together with logic and equations
- Computational model: collection of program variables systematically updated
- Example ssq: the state is <u>number of jobs</u> in the node
- Example inventory system: the state is current inventory level

Prof. Vittoria de Nitto Personè

5

5

DE simulation Next-Event Simulation

Definitions and Terminology - Events

An *event* is an occurrence that may change the state of the system.

By definition, state cannot change except at an event time.

Each event has an associated event type.

- We can define artificial events (do not change system state)
 - Statistically sample the state of the system
 - Schedule an event at a prescribed time (block arrival flow into the node, an inventory review without orders etc.)

Prof. Vittoria de Nitto Personè

6

DE simulation Next-Event Simulation

Definitions and Terminology - Simulation Clock

The *simulation clock* represents the current value of simulated time

• Discrete-event simulations lack definitive simulated time

As a result, it is difficult to generalize or embellish models

Prof. Vittoria de Nitto Personè

7

/

DE simulation Next-Event Simulation

Definitions and Terminology - Event Scheduling & Event List

scheduler

- a time-advance mechanism to guarantee that events occur in the correct order
- next-event time advance is typically used in discreteevent simulation

event list

 the data structure containing the time of next occurrence for each event type

To build a *next-event* simulation:

- · construct a set of state variables
- · identify the event types
- construct <u>a set of algorithms</u> that define <u>state changes for</u> <u>each event type</u>

Prof. Vittoria de Nitto Personè

8

DE simulation Next-Event Simulation

Next-Event Simulation

Algorithm 1

- Initialize set simulation clock and first time of occurrence for each event type
- Process current event scan event list to determine most imminent event; advance simulation clock; update state
- 3. Schedule new events new events (if any) are placed in the event list
- 4. **Terminate -** Continue advancing the clock and handling events until termination condition is satisfied

Note that the simulation clock runs asynchronously; inactive periods are ignored

Prof. Vittoria de Nitto Personè

9

9

DE simulation Next-Event Simulation

Conceptual model: MSQ

Definition 1

A multi-server service node consists of

- Conceptual model:
 abstract collection of
 variables and how they
 evolve over time
- A single queue (if any)
- Two or more servers operating in parallel

At any instant in time,

- Each server is either busy or idle
- The queue is either *empty* or *not empty*
- If one or more servers is idle, the queue must be empty
- If the queue is not empty, all servers must be busy

Prof. Vittoria de Nitto Personè

11

11

DE simulation Next-Event Simulation

Conceptual model: MSQ

When a job arrives:

If all servers are busy, the job enters the queue
 Else an idle server is selected and the job enters service

When a job departs:

If the queue is empty, the server becomes idle
 Else a job is removed from the queue, served by server

Servers process jobs independently

Prof. Vittoria de Nitto Personè

12

DE simulation Next-Event Simulation

Conceptual model: Server Selection Rule

 $\frac{\text{Definition 2}}{\text{The algorithm used to select an idle server is}}$ called the server selection rule Common selection rules:

- random: at random from the idle servers
- in order: lowest-numbered idle server
- cyclic: first available, starting after last selected (circular search may be required) equity: use longest-idle or lowest-utilized
- priority: choose the "best" idle server (modeler specifies how to dermine "best")

Prof. Vittoria de Nitto Personè

13