

School of Informatics, Computing and Engineering

Activation Function CSCI-B 659

Khandokar Md. Nayem

What is AF?

Activation Function

Definition

- 1. Activation function of a node defines the output of that node given an input or set of inputs.
- 2. In Biologically inspired the activation function is usually an abstraction representing the rate of action potential firing in the cell.
- 3. In its simplest form, this function is binary (Step Function) that is, either the neuron is firing or not.
- 4. A line of +ve slope may be used to reflect the increase in firing rate that occurs as input current increases.

Activation Function Equation

$$v_k = \sum_{i=0}^m w_{ki} x_i + b_k$$

$$y_k = \varphi(v_k)$$

Why AF is important?

Nonlinearity in Neural Networks

- 1. A Neural Network without Activation function would simply be a **Linear regression Model**.
- 2. Stacked linear models form another linear model.
- 3. Non-linear functions are those which have degree more than one and they have a curvature when we plot a Non-Linear function.
- 4. We need to apply activation function so the network is more powerful and add ability to it to learn complex and complicated from data and represent non-linear complex arbitrary functional mappings between inputs and outputs.

XOR problem

$$x_{1}^{(2)} = w_{11}^{(1)} x_{1}^{(1)} + w_{12}^{(1)} x_{2}^{(1)} + b_{1}^{(1)}$$

$$x_{2}^{(2)} = w_{21}^{(1)} x_{1}^{(1)} + w_{22}^{(1)} x_{2}^{(1)} + b_{2}^{(1)}$$

$$y = w_{1}^{(2)} x_{1}^{(2)} + w_{2}^{(2)} x_{2}^{(2)} + b^{(2)}$$

$$= w_{1}^{(2)} w_{11}^{(1)} x_{1}^{(1)} + w_{1}^{(2)} w_{12}^{(1)} x_{2}^{(1)} + w_{1}^{(2)} b_{1}^{(1)}$$

$$+ w_{2}^{(2)} w_{21}^{(1)} x_{1}^{(1)} + w_{2}^{(2)} w_{22}^{(1)} x_{2}^{(1)} + w_{2}^{(2)} b_{2}^{(1)} + b^{(2)}$$

$$= (w_{1}^{(2)} w_{11}^{(1)} + w_{2}^{(2)} w_{21}^{(1)}) x_{1}^{(1)} + (w_{1}^{(2)} w_{12}^{(1)} + w_{2}^{(2)} w_{22}^{(1)}) x_{2}^{(1)} + w_{1}^{(2)} b_{1}^{(1)} + w_{2}^{(2)} b_{2}^{(1)} + b^{(2)}$$

$$= w^{(2)} (\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + b^{(2)}$$

$$= \mathbf{w}^{(2)} \mathbf{W}^{(1)} \mathbf{x} + \mathbf{w}^{(2)} \mathbf{b}^{(1)} + b^{(2)}$$

XOR problem

A nonlinear problem that needs two hyperplanes.

XOR problem Solved

Different types of AF

Linear Activation Functions

Name \$	Plot ≑	Equation +	Derivative (with respect to x)	Range +
Identity		f(x) = x	f'(x)=1	$(-\infty,\infty)$
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{ egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$	{0,1}

Nonlinear Activation Functions

Name +	Plot \$	Equation +	Derivative (with respect to x)	Range +
Logistic (a.k.a. Soft step)		$f(x)=rac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$	(0,1)
TanH		$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$	$f^{\prime}(x)=1-f(x)^2$	[-1, 1]
ArcTan		$f(x)= an^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
Softsign [7][8]		$f(x) = rac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)

Nonlinear Activation Functions

Name +	Plot ÷	Equation +	Derivative (with respect to x) +	Range +
Rectified linear unit (ReLU) ^[10]		$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$[0,\infty)$
Leaky rectified linear unit (Leaky ReLU) ^[11]		$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$
Parameteric rectified linear unit (PReLU) ^[12]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$

Nonlinear Activation Functions

Name +	Plot +	Equation \$	Derivative (with respect to x)	Range +
SoftPlus ^[18]		$f(x) = \ln(1+e^x)$	$f'(x)=rac{1}{1+e^{-x}}$	$(0,\infty)$
Softmax		$f_i(\vec{x}) = \frac{e^{x_i}}{\sum_{j=1}^J e^{x_j}}$	$\frac{df_j(\vec{x})}{dx_j} = f_i(\vec{x})(\delta_{ij} - f_j(\vec{x}))$	(0,1)

General Practice of AF

General Practice

- 1. Sigmoid functions and their combinations generally work better in the case of classifiers.
- Sigmoids and tanh functions are avoided due to the <u>vanishing gradient problem</u>.
- ReLU function is a general activation function and is used in most cases these days.
- 4. Leaky ReLU function is the best choice in case of <u>dead neurons problem</u>.
- 5. ReLU function should only be used in the hidden layers.
- As a rule of thumb, begin with using ReLU function and then move over to other activation functions, in case ReLU doesn't provide with optimum results.

Thank you!

