EE306002: Probability

College of Electrical Engineering National Tsing Hua University Spring 2022

Homework #2

Coverage: chapter 3–4

Due date: 29 March, 2022

Instructor: Chong-Yung Chi

TAs: Meng-Ying Chang & Ting-Jie Huang & Meng-Syuan Lin & Chien-Wei Huang

Problem 3.1.14. (10 points) Prove that if P(A) = a and P(B) = b, then $P(A|B) \ge (a+b-1)/b$.

Problem 3.2.14. (10 points) In a series of games, the winning number of the nth game, $n = 1, 2, 3, \ldots$, is a number selected at random from the set of integers $\{1, 2, ..., n + 2\}$. Don bets on 1 in each game and says that he will quit as soon as he wins. What is the probability that he has to play indefinitely?

Hint: Let A_n be the event that Don loses the first n games. To calculate the desired probability, $P(\lim_{n\to\infty} A_n)$, use Theorem 1.8: For any increasing or decreasing sequence of events, $\{E_n\}_{n\geq 1}$,

$$\lim_{n \to \infty} P(E_n) = P(\lim_{n \to \infty} E_n).$$

Problem 3.3.18. (10 points) A number is selected at random from the set $\{1, 2, 3, ..., 20\}$. Then a second number is selected randomly between 1 and the first number selected. What is the probability that the second number is 5?

Problem 3.4.14. (10 points) A certain cancer is found in one person in 5000. If a person does have the disease, in 92% of the cases the diagnostic procedure will show that he or she actually has it. If a person does not have the disease, the diagnostic procedure in one out of 500 cases gives a false positive result. Determine the probability that a person with a positive test result has cancer.

Problem 3.5.40. (10 points) A fair coin is tossed n times. Show that the events "at least two heads" and "one or two tails" are independent if n = 3 but dependent if n = 4.

Problem 4.2.16. (10 points) In a small town there are 40 taxis, numbered 1 to 40. Three taxis arrive at random at a station to pick up passengers. What is the probability that the number of at least one of the taxis is less than 5?

Problem 4.3.8. (10 points) From 18 potential women jurors and 28 potential men jurors, a jury of 12 is chosen at random. Let X be the number of women selected. Find the probability mass function of X.

Problem 4.4.14. (10 points) The distribution function of a random variable X is given by

$$F(x) = \begin{cases} 0 & x < -3 \\ 3/8 & -3 \le x < 0 \\ 1/2 & 0 \le x < 3 \\ 3/4 & 3 \le x < 4 \\ 1 & x \ge 4. \end{cases}$$

Calculate E(X), $E(X^2 - 2|X|)$, and E(X|X|).

Problem 4.5.6. (10 points) Let X be a discrete random variable with the set of possible values $\{x_1, x_2, \ldots, x_n\}$; X called a **discrete uniform random variable** if

$$P(X = x_i) = \frac{1}{n}, \ 1 \le i \le n.$$

Find E(X) and Var(X) for the special case, where $x_i = i$, $1 \le i \le n$. Note that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{ and } \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$

Problem 4.6.1 (10 points) Mr. Norton owns two appliance stores. In store 1 the number of TV sets sold by a salesperson is, on average, 13 per week with a standard deviation of 5. In store 2 the number of TV sets sold by a salesperson is, on average, 7 with a standard deviation of 4. Mr. Norton has a position open for a person to sell TV sets. There are two applicants. Mr. Norton asked one of them to work in store 1 and the other in store 2, each for one week. The salesperson in store 1 sold 10 sets, and the salesperson in store 2 sold 6 sets. Based on this information, which person should Mr. Norton hire?

References

[1] Saeed Ghahramani, Fundamentals of Probability: With Stochastic Processes, Chapman and Hall/CRC; 4th edition (September 4, 2018)