Réalité augmentée Tag Image Unity/VUforia

Christophe Vestri

Le mardi 7 mars 2017

Objectifs du cours

- Connaitre/approfondir la RA
- Avoir quelques bases théoriques
- Expérimenter quelques méthodes et outils
- Réaliser un projet en RA

- Evaluation:
 - Présence (20%)
 - Participation en classe (40%)
 - Projet (40%)

Plan du cours

- 28 février : Réalité augmentée intro Html5/JS
- 7 mars: Tag image, Unity/Vuforia projet final
- 14 mars: Leaflet/geoloc/access en JS
- 21 mars: Vision par ordinateur et RA (openCV C++)
- 28 mars : A définir: Projet, OpenCV/Calibration/Pose3D,
 RV ou QRCodes

Plan Cours 2

- Tag Image
 - Théorie
 - Démonstration ArtMobilis
- Projet Final
 - Installation Unity et Vuforia
 - Développement d'une démo Start wars
 - Exercices

Installer Unity

- Récuperer les installateurs et packages
 - UnityDownloadAssistant-5.5.2f1.exe
 - vuforia-unity-6-2-10.unitypackage
 - vuforia-samples-core-unity-6-2-10
 - GameAssets
 - atat_obj
- Lancer l'installation de Unity, ca va prendre du temps

Rappel du premier cours

Autre définition de la RA

- <u>RAPro</u>: Combiner le monde réel et des données virtuelles en temps réel
- 5 sens:
 - Visuel: smartphone, lunettes...
 - Sonore: déficients visuels
 - Tactile/haptique: systèmes retour de force
 - Odorat: Cinema 4D
 - Goût:

Principaux systèmes de RA

Principalement 2 systèmes:

- RA avec caméra fixe
- RA Mobile: la caméra est en mouvement

RA avec caméra Fixe

RA avec caméra Fixe

Démo National Geographics

Magic Mirror

RA avec caméra Mobile

- Smartphones, tout pour la RA
 - Camera + écran déterminer/montrer ce qui doit être vu
 - Donnée GPS- localisation
 - Compas quelle direction on regarde
 - Accéléromètre orientation
 - Connection Internet fournir des données utiles
- 58% des Français ont un smartphone en 2015
- 90% des 18-24ans
- Lunettes de RA et VR

Types de RA mobile

Marqueurs caméras:

- Caméra pour détecter un marqueur dans le monde réel
- Calcul de sa position et orientation
- Augmente la réalité

Capteurs:

- GPS pour localiser son téléphone
- Recherche de Point d'interêt proche de nous
- Mesure orientation (compas, accélérometre)
- Augmente la réalité

Types de RA mobile

Utilisation de marqueurs caméras:

- Marqueurs Spécifiques:
 - Tag visuels
 - Formes spécifiques (carrés, cercles)
- Marqueurs Images
 - Photo, image de l'objet/scène
- Processus de RA
 - Détection du marqueur dans la vidéo
 - Transformation 2D-3D
 - Affichage 3D

Exemple de Marqueur image

- Pour faire de la RA, il va falloir
 - Retrouver l'image,
 - la délimiter
 - Dans toutes les conditions (proche, loin, oblique)

Exemple de Marqueur image

- Concrètement il va falloir
 - Avoir un moyen pour décrire l'image de référence

- Avoir un moyen de retrouver
- De le différentier des autres images

-> Vision par ordinateur

Vision par ordinateur et RA

- Analyse image/vidéo -> vision par ordinateur
- Plusieurs technologies
 - Détection de marqueurs spécifiques: coins, primitives naturels, carrés, ronds
 - Mise en correspondance: primitives, images
 - Reconnaissance d'image: monument, façade, visage
 - Reconnaissance d'objets: tables, chaise....
 - Recalage caméra: calcule de la pose
 - Traitement d'image: contraste, segmentation
 - Mixer image et synthétique

Technologies nécessaires

Detection et Appariement

- Plusieurs méthodes existent pour décrire, détecter, et apparier les images
- Pixels, points, segments, régions, et droites des images peuvent être utilisées
- Quatre étapes sont nécessaires dans la détection et l'appariement des primitives
 - Détection de primitives
 - Description des primitives
 - Appariement des primitives
 - Tracking de primitives

Quelques termes

- Marqueur utilisé pour spécifier où et quelle information ou contenu doit être placé (spécifiques ou image)
- Primitives naturelles points/parties d'un objet visualisé
- Detecteur utilisé pour rechercher dans les images les points spécifiques répétitifs
- Descripteur utilisé pour caractériser les points ou région à partir de l'image. Ils sont utilisés dans la mise en correspondance
- Canal association d'un marqueur à l'objet synthétique à afficher

Qu'est-ce qu'une image

- Image de couleur = 3 images (+ alpha)
- Algorithmes avec 1 entrée => Image de gris

Image de float

Qu'est-ce qu'une primitive

- Une primitive c'est:
- Un élément spécifique de l'image
- Pixels/Point/coin unique de l'image

Utilisé pour représenter/simplifier

l'information contenue dans

l'image

Qu'est-ce qu'une primitive

Ca peut être aussi

Segments

Contours

Régions

Détecteur de primitive

- Il va extraire/sélectionner les primitives de l'images
- Critères de qualité:
 - Caractérisables: distinctif,
 particularité, reconnaissable,
 précision
 - Répétabilité et invariance: échelle, rotation, illumination, point de vue, bruit

Détecteur de primitive

Détection de coins

FAST: Features from Accelerated Segment Test http://www.edwardrosten.com/work/fast.html

- Cercle Bresenham 16 pixels autour du point analysé
- On détecte un coin en p si

l'intensité de N pixels est > ou < de X% à I_p

Rapide et robuste

- Description du point à partir de l'image (locale)
- Utilisé pour l'appariement
 - Stockage des descriptions des marqueurs image
 - Comparer avec les primitives de l'image courante
- Critères de qualité:
 - Discriminant
 - Invariant : échelle, rotation, illumination, point de vue, bruit
 - Rapide et empreinte mémoire faible

BRIEF: Binary robust independent elementary features http://cvlab.epfl.ch/research/detect/brief

- Vecteur de N paires de points sur un patch
- Comparaison pour chaque paire
 - Si | 1 < | 2 alors c = 1
 - Sinon c=0
- Descripteur=100101001...
- Rapide et robuste

ORB (Oriented FAST and Rotated BRIEF)
http://docs.opencv.org/.../py feature2d/
py orb/py orb.html

- Prise en compte rotation pour robustesse
- Direction=pixel avec variation la plus forte
- Rotated BRIEF pour aligner les descripteurs lors du matching

Autre exemple: GAFD Gravity Aligned Feature Descriptors

- Utilisé par Metaio (Apple)
- Utilise les capteur inertiel pour avoir des descriteurs alignés avec la gravité

Reconnaissance par matching

Appariement des coins

- Brute force matching, on teste toutes les paires
- Similarité= Distance de Hamming (nombre de bits différents)

$$A = 101100100100$$
 $B = 10010001111$

Distance de Hamming = 3

Si on a un nombre de coins appariées suffisants, l'objet est retrouvé

Relocalisation 2D du pattern

Calcul de l'homographie du plan

- Système d'équation linéaire
- Estimation robuste (RANSAC)
- Filtrage des outliers
- Décomposition en VP

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix}}_{homography \ \mathbf{H}} \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}.$$

Cacul de la Pose 3D

Calcul de la pose de la caméra par rapport à un objet 3D

- General case:
 - 6DoF
 - Projection model
- Simplification
 - Calibration connue
 - Perspective-n-Point
 - Projection ortho
 - POSIT

POSIT

POSIT: Pose from Orthography and Scaling with ITerations

- Algorithme itératif pour résoudre PnP non coplanaires
- 4 points coplanaires:
 Coplanar POSIT

More on Pose 3D

Calcul de la pose de la caméra par rapport à un objet 3D

- POSIT: <u>original publications</u>, <u>3D pose estimation</u>
- Real Time pose estimation : OpenCV tutorial, C++
- Eric Marchand: Article Complet Pose 3D AR
- <u>Caméra calibration</u>: OpenCV tutorial, C++
- <u>posest</u>: C++ opensource
- Minimal problems in Computer Vision: many links
- Moving camera = Kalman/SLAM

Objectif de ArtMobilis

Un parcours urbain en réalité augmentée

- Géolocalisation des points d'intérêts
- Tracking de la localisation des contenus augmentés
- Support mobile (android, IOS, tablettes)
- OpenSource: https://github.com/artmobilis/
- LabMobilis:
 - Implémentation orientée Web pour adaptabilité
 - Application HTML5, CSS3 et JavaScript

Navigateurs compatibles

- Caniuse: 67% des navigateurs
- Compatible avec Firefox/chrome/AndroidBrowser/Edge

Librairies Javascript utilisées

Framework:

- Angularjs
- Ionic
- Cordova

AR Image demo:

- Js-ArUco: https://github.com/jcmellado/js-aruco
- three.js: https://github.com/mrdoob/three.js
- jsfeat : https://github.com/inspirit/jsfeat

Prototype développé

- Demo
- Code

Unity et Vuforia

- Préparation du projet Final
 - Installation Unity et Vuforia
 - Développement d'une démo Start wars
 - Exercices
- Projet Final
 - Trouver un sujet en RA pour la semaine prochaine
 - Jusqu'à la fin du cours pour le réaliser
 - Techno au choix: Vuforia, JS, C++ (OpenCV)

Vidéo de la démo

 http://wirebeings.com/star-warsaugmented-reality.html

Unity

Create Unity ID

Create a Project for the demo

Vuforia

Register

Download SDK and Samples

Vuforia

Ask for an application license

Création de la Demo

- On va le faire ensemble
- Voir aussi les étapes dans le fichier demostartwars.docx ou pdf

Exercices

- Ajouter des objets fixes dans la scène
- Fond sonore (musique star wars par ex)
- Faire voler un Xwing ou autre
- Mettre une video de maitre Yoda dans cockpit
- Tester sur votre mobile si Android SDK (ios)
- Surprenez-nous...

Pour la prochaine fois

- Proposer un projet de RA
- Jusqu'à la fin du cours de RA pour le réaliser
- Techno au choix: Vuforia, JS, C++ (OpenCV)