Clock drawing test (machine learning) Вторая итерация

Постановка задачи

- •Представление каждого сервиса docker контейнером.
- •Реализация REST-API на серверной части
- •Реализация приёма REST-запросов на ML сервисе
- Извлечение расположения цифр и других объектов на изображении на ML сервисе
- •Формирование логики оценки на ML сервисе

Методы решения, технологии

При выполнении задач для данной итерации, связанных с методами машинного обучения, использовалась библиотека EasyOCR от JaidedAI.

Результат (Docker-контейнеризация)

Было проведена организация проекта по docker-контейнерам. Используются следующие docker-контейнеры:

```
·mse1h2024-clock-ml-backend — контейнер серверной части
```

·mse1h2024-clock-ml-frontend — контейнер пользовательского интерфейса

·mse1h2024-clock-ml-processing — контейнер ml сервиса

Для сборки и запуска проекта необходимо ввести: docker-compose up --build

Результат (REST-API)

Была реализована REST-API передача запросов в следующих частях проекта:

- •Между пользовательским интерфейсом и серверной частью
- •Между серверной частью и ML сервисом

Результат (Извлечение расположения цифр)

Было реализовано извлечение расположения цифр из картинки, передаваемой на ML сервис. Для реализации извлечения использовалась библиотека EasyOCR.

Результат (Формирование логики оценки)

На ML сервисе было реализовано формирование логики оценки. Оценка происходит после извлечения круга циферблата, стрелок и чисел часов.

Планы на следующую итерацию

•Реализация передачи сообщений через RabbitMQ.

•Написание интеграционных и функциональных тестов

Спасибо за внимание!