

The complexity of bounding projective dimension

Alexandra Seceleanu

University of Nebraska-Lincoln

SIAM AG 2013

Notation

Joint work with C. Huneke, P. Mantero and J. McCullough [HMMS].

$$R = K[X_1, \dots, X_N]$$
 polynomial ring $I = (f_1, \dots, f_n)$ homogeneous ideal of R

$$N=$$
 very large integer (assumed unknown)
 $n=$ (smaller) known integer
 $d_1, \ldots, d_n=$ positive integers
(often $d_1=\ldots=d_n=d$)

number of variables of R number of generators of I degrees of generators of I

Stillman's Question

Question (Stillman)

Is there a bound, independent of N, on the projective dimension of ideals in $R = K[X_1, \ldots, X_N]$ which are generated by n homogeneous polynomials of given degrees d_1, \ldots, d_n ?

Stillman's Question

Question (Stillman)

Is there a bound, independent of N, on the projective dimension of ideals in $R = K[X_1, \ldots, X_N]$ which are generated by n homogeneous polynomials of given degrees d_1, \ldots, d_n ?

- ▶ Hilbert's Syzygy Theorem guarantees $pd(S/I) \le N$, but we seek a bound independent of N.
- ► This question is still open in full generality!

Approaches

Two ideas in pursuing this question:

1. relevant "variable" counting if I is contained in a K-subalgebra of R generated by a regular sequence y_1, \ldots, y_s , then

$$pd(R/I) = pd(K[y_1, \dots, y_s]/I) \le s$$

Approaches

Two ideas in pursuing this question:

1. relevant "variable" counting if I is contained in a K-subalgebra of R generated by a regular sequence y_1, \ldots, y_s , then

$$pd(R/I) = pd(K[y_1, \dots, y_s]/I) \le s$$

Ananyan-Hochster (2011, 2013+) Stillman's question has affirmative answer for ideals generated by quadratic polynomials and cubic polynomials - bounds are doubly exponential

Approaches

Two ideas in pursuing this question:

1. relevant "variable" counting if I is contained in a K-subalgebra of R generated by a regular sequence y_1, \ldots, y_s , then

$$pd(R/I) = pd(K[y_1, \dots, y_s]/I) \le s$$

Ananyan-Hochster (2011, 2013+) Stillman's question has affirmative answer for ideals generated by quadratic polynomials and cubic polynomials - bounds are doubly exponential

2. case analysis based on fixing the multiplicity of I

Eisenbud-Huneke I generated by 3 quadrics has $pd(R/I) \le 4$ Engheta I generated by 3 cubics has $pd(R/I) \le 36$ HMMS I generated by 4 quadrics has $pd(R/I) \le 9$

The multiplicity approach

Given I of height h and generated in degree d, one has $e(R/I) \le d^h$. Inspired by Stillman's question we asked:

Question (MS)

Can one bound the projective dimension of all (unmixed) ideals of a given height h and multiplicity e?

The case e = 2, h = 2

Engheta Let J be a height two unmixed ideal of multiplicity two. Then J is one of the following:

- 1. $(x,y) \cap (w,z)$ with independent linear forms w,x,y,z.
- 2. (x, yz) with independent linear forms x, y, z.
- 3. (x, q) a prime ideal, with x linear form and q irreducible quadratic.
- 4. (x, y^2) with independent linear forms x, y.
- 5. $(x,y)^2 + (ax + by)$ with independent linear forms x, y and a, b such that x, y, a, b form a regular sequence.
- ▶ Note: by relevant "variable" counting $pd R/J \le 4$.

The answer is NO (even under additional assumptions)

Theorem (HMMS)

Let K be an algebraically closed field.

For any integers $h, e \ge 2$ with $(h, e) \ne (2, 2)$ and for any integer $p \ge 5$, there exists an ideal $I_{h,e,p}$ in a polynomial ring over K such that

- $ightharpoonup I_{h,e,p}$ is a primary ideal
- $ightharpoonup I_{h,e,p}$ has height h and multiplicity e
- $ightharpoonup \sqrt{I_{h,e,p}}$ is a linear prime
- $Pd(R/I_{h,e,p}) \geq p.$

We call such ideals multiple structures on the corresponding linear space.

Classifying multiple structures on linear spaces

► Engheta's theorem is an example of classification of double structures supported on a codimension 2 linear space.

Classifying multiple structures on linear spaces

- ► Engheta's theorem is an example of classification of double structures supported on a codimension 2 linear space.
- ► Manolache classifies locally Cohen-Macaulay multiple structures in codimension 2 and multiplicity at most 4
- Manolache classifies locally complete intersection multiple structures of degree at most 6

Classifying multiple structures on linear spaces

- ► Engheta's theorem is an example of classification of double structures supported on a codimension 2 linear space.
- Manolache classifies locally Cohen-Macaulay multiple structures in codimension 2 and multiplicity at most 4
- ► Manolache classifies locally complete intersection multiple structures of degree at most 6
- we (HMMS) show that no such finite characterization of multiple structures is possible if one only assumes Serre's (S_1) property holds.

Relation to vector bundles

- ► Hartshorne's Conjecture in Codimension Two Any smooth variety of codimension two in a projective space P^N of dimension N ≥ 6 is a complete intersection.
- Rank Two Bundle Conjecture
 Any vector bundle of rank two on \mathbb{P}^N , $N \ge 6$ splits.
- ► Vatne Conjecture on Triple Linear Schemes

Consider a linear subspace L of dimension $N \ge 6$ and a (locally) CohenMacaulay scheme X, e(X) = 3 supported on L.

Then there exists a (locally) CohenMacaulay scheme Y, e(Y) = 2 supported on L such that $Y \subset X$.

Idea of proof

We wish to construct $I_{h,e,p}$ of height h, multiplicity e and $pd(R/I) \ge p$.

- ▶ only need $I_{2,e,p}$ and $I_{3,3,p}$ as $I_{h+1,e,p+1} = I_{h,e,p} + (y)$
- ▶ produce an ideal *L* of appropriate height using a 3-generated ideal with large projective dimension (many constructions known)
- ▶ use linkage appropriately to obtain $I_{2,e,p}$ or $I_{3,3,p}$ from L

Details

Suppose
$$f,g,h\in R_d$$
, $\operatorname{ht}(x,y,f,g,h)\geq 4$ and $pd\,R/(f,g,h)=p$. Let
$$L=(x,y)^3+(y^2f+xyg+x^2h).$$

Details

Suppose $f, g, h \in R_d$, $\operatorname{ht}(x, y, f, g, h) \ge 4$ and pd R/(f, g, h) = p. Let $L = (x, y)^3 + (y^2 f + xyg + x^2 h).$

Then R/L has the following free resolution:

$$0 \to R \xrightarrow{d_3 = \begin{pmatrix} f & g & h & -y & x \end{pmatrix}^T} R^5 \xrightarrow{d_2} R^5 \xrightarrow{d_1} R \to R/L \to 0,$$

Dualize and check that $pd Ext^2(R/L, R) = p - 1$.

Set I = C: L, where C is a complete intersection contained in L. Then $Ext_R^2(R/L,R) = I/C$, so pd R/I = p.

Linkage

