Shiny Application to Iowa DNR MSIM-SGCN Modeling

Xiaodan (Annie) Lyu, Tyler M. Harms

September 23, 2016

Introduction

- Data Collection
 - Multiple Species Inventory and Monitoring (MSIM) Program
 - Iowa DNR and Iowa State University
- Survey Objects
 - ▶ 414 SGCN, only 69 SGCN where sufficient data were available
 - ▶ Birds, mammals, reptiles, amphibians, odonates and butterflies
- Primary Sampling Interval
 - ▶ 2006-2014

Objectives

- Predict the distribution of species of conservation need
 - robust design occupancy model
- Create predictive species maps for priority SGCN
 - ArcGIS raster files
 - Shiny interactive web application
- Prioritize areas of conservation action for SGCN
 - habitat restoration and management

Methods

- ► Robust design occupancy model (MacKenzie et al. 2003)
 - package RMark
- Parameters of Interest
 - probability of occupancy (ψ)
 - probability of colonization (γ)
 - probability of extinction (ϵ)
 - probability of detection (p)
- Model types
 - RDOccupEG, RDOccupPE, RDOccupPG, . . .

Methods

Including Covariates

$$heta = rac{\exp(oldsymbol{Z'}oldsymbol{eta})}{1+\exp(oldsymbol{Z'}oldsymbol{eta})}$$

- ightharpoonup heta is the probability of interest
- **Z** is the matrix of covariate information
- \triangleright β is the vector of logistic model coefficients to be estimated

- Landscape habitat variables
 - Radius of sampled site: 200m, 500m and 1km
 - Land use classification:
 Water, Wetland, Grassland, Woodland and Agriculture
 - Landscape configuration: percentage of landscape (PLAND), large patch index (LPI), edge density (ED), patch density (PD) and interspersion-juxtaposition (IJI)
- Climate variables
 - Wind, Cloud, Temperature

Model Selection and Validation

- ► Akaike's Information Criterion adjusted for small sizes (AIC_c)
 - ▶ Models with $\triangle AIC_c \le 2 \Rightarrow$ strong support (Burnham and Anderson 2002)
- Area under the receiver operating characteristic curve (AUC)
 - evaluate performance of predicting occupancy
 - training data set: survey years 2006-2012, 2004
 - test data set: survey year 2013 (better representative)
 - package pROC
 - ▶ AUC = $0.5 \Rightarrow$ random guess
 - ► AUC = 1.0 ⇒ perfect prediction (Jimenez-Valverde 2012)

Results

Statistics	Value/Range
Number of SGCN modeled	64 out of 69
Occupancy Prob $\hat{\psi}$	$0.001(0.0003)\sim0.995(0.004)$
Colonization Prob $\hat{\gamma}$	$0.0003(0.0001) \sim 0.999(0.00007)$
Detection Prob \hat{p}	$0.030(0.028)\sim 0.998(0.006)$
AUC values	0.426~0.921
Number of AUC > 0.5	61 out of 64

Table 2: Best Models for Each Specie

Species	Model
Red-shouldered Hawk	$\psi(Wod1KPLND)\gamma(Ag1KPD)p(Cld)$
Yellow-billed Cuckoo	$\psi(Wod500PLND)\gamma(Wod1kLPI)p(Wind)$
Red-headed Woodpecker	$\psi(Wod500PLND)\gamma(Ag500PD)p(Cld)$
Eastern Wood-pewee	$\psi(Wod500PLND)\gamma(Wod1KPLND)p(Wind)$
Acadian Flycatcher	$\psi(Wod500PLND)\gamma(Wod500PLND)p(Wind)$
Veery	$\psi(Wod1kED)\gamma(Ag500LPI)p(Wind)$

Table 3: AUC and Coefficients Estimates under Best Model

Species	AUC	Psi.Cov	Gam.Cov	p.Cov
Red-shouldered Hawk	0.798	0.034	0.002	-0.008
Yellow-billed Cuckoo	0.706	0.060	0.042	-0.076
Red-headed Woodpecker	0.610	0.017	-0.002	-0.004
Eastern Wood-pewee	0.906	0.128	0.071	-0.110
Acadian Flycatcher	0.892	0.092	0.070	0.086
Veery	0.551	0.005	-0.578	0.179

Plains Pocket Gopher Colonization

Figure 1: Predictive Map

Northern Bobwhite Occupancy

Figure 2: Predictive Map of Range-Restricted Specie

Shiny

- ▶ **Shiny** by RStudio is a web application framework for R.
- No HTML, CSS or JavaScript knowledge required to turn your analyses into interactive web applications.

```
install.packages("shiny")
library("shiny")
runExample("01_hello")
```

- ui.R defines the page layout and user interface
- server.R contains the R code to create any output
- ► More information available at Shiny Webpage

About Our Shiny Application

- ► Interactive web application to display predictive maps and parameter estimates for each SGCN
- Easy to download personalized data and maps
- Available to researchers and managers across lowa (credentials needed)
- Hosted by CSSM for 1-2 years
- ► The URL for accessing the application is https://dnrswg.cssm.iastate.edu/