

Marco Cognetta

About Me

- PhD Student at Tokyo Institute of Technology
 - Tokenization and machine translation
- PhD Student Researcher at Google Tokyo
 - Keyboard language modeling and federated learning
- I am interested in making models smaller and faster

A Problem with Modern Neural Networks

- Deep neural networks require too much space and are too slow
- Many orthogonal ways to address this:
 - Quantization
 - Distillation
 - Low-rank approximations

Another Approach

- Observation: deep neural models are overparameterized
 - Tend to train faster and be more robust to noise
 - Implemented as dense matrix operations which is nice for current hardware
 - However, most parameters are not very impactful

The Lottery Ticket Hypothesis

Deep, dense neural networks contain sparse subnetworks that account for most of the performance of the overall model.

The Lottery Ticket Hypothesis

Deep, dense neural networks contain sparse subnetworks that account for most of the performance of the overall model.

- Some results find subnetworks (winning tickets) that have <10% of the number of parameters of the original model
- This enables models to run on hyper-resource-constrained systems

Finding Lottery Tickets

- An extremely simple loop
 - Train model to convergence
 - Prune the bottom X% of parameters
 - Reset the model
 - Reset to the *initial* parameters
 - Repeat until performance degrades

LotteryTickets.jl

- Prunable layer wrappers
 - All Flux layers are supported
 - Dense → PrunableDense
 - An easy interface for defining prunable wrappers for custom layers
 - Mimics sparse matrices and gradients
- Pruner types
 - \circ Describes the method for choosing parameters to prune
 - MagnitudePruneGroup
 - Prunes a group of layers collectively by magnitude

Core (Layers)

 Thinly wrap layers to capture and mask gradients and to retain the initialization weights

- Masking vs Sparse Representations
 - Sparse-dense matrix multiply is substantially slower than element-wise-product + dense-dense multiply until things are really sparse

```
using Flux, LotteryTickets
function main(config)
 m = Chain(
        PrunableDense(1024 => 256),
        PrunableLSTM(256 => 256),
        PrunableDense(256 => 64),
        Dense(64 \Rightarrow 10),
  g1 = MagnitudePruneGroup([m[1], m[2]], 0.2)
  g2 = MagnitudePruneGroup([m[3]], 0.1)
  p = Pruner([g1, g2])
  for in 1:config.pruning rounds
    train_model!(m, config)
    pruneandrewind!(p)
  end
  sparsify(m)
end
```

```
julia> @prunable Chain(Dense(2=>5), Dense(5=>2))
Chain(
   PrunableDense(
        Dense(2 => 5),  # 15 parameters
),
   PrunableDense(
        Dense(5 => 2),  # 12 parameters
),
)  # Total: 4 trainable arrays, 27 parameters,
        # plus 4 non-trainable, 40 parameters
```

Other Interesting Projects

- The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks, Frankle & Bieber (ICLR 2019)
 - o The original paper on this idea
- OpenLTH
 - A Python library for Lottery Ticket style pruning
- <u>TinuNets.il</u>
 - o A Julia library for iterative pruning
- <u>Proving the Lottery Ticket Hypothesis for Convolutional</u> <u>Neural Networks</u>, da Cunha et al. (ICLR 2022)
 - The authors use Julia to implement their experiments!
- <u>EfficientML</u>
 - An MIT course on efficient deep learning (including sparsification)

Thanks!

repo my site

