Motivation 8.4% DAILY/ WEEKLY FEEDBACK 9.2% REAL TIME - PREMISE LEVEL

Real time appliance level information can save upto 12% energy annually

Instrumenting each appliance

- * Costly (Proportional to # appliances)
- * Intrusive
- * Difficult for loads such as lighting

Data Preprocessing

$$P_{norm} = P_{raw}.(\frac{230}{V})^2$$

Monthly Cost

Geyser

Refrigerator

Unclassified

Home 1: Power

Breakdown

Power Breakdown ■ Ground First

Second

Home 1: Floor-wise

Insights

Refrigerator: Rs. 120 Geyser : Rs. 720

Appliance Step Change Clustering

KMeans

Applications

Recommendations

"You can save 3 trees from getting cut if you replace your washing machine with a more energy efficient one."

Fault Detection

Load Shifting

"Peak demands result in higher transmission losses."

Small reduction in peak usage significantly reduce overall costs.

Appliance Signatures

Problem Definition

"Analyzing changes in the power going into a house to

deduce what appliances are used in the house"

Appliance Signatures

Pattern

Electricity Meter Recognition Appliance Usage

Each appliance has a unique power signature Pattern recognition techniques can be used to find appliance usage from meter level data/

Raw Power Plot

Non Intrusive Load Monitoring

Information

Nipun Batra¹ Ishaan Malhotra² Amarjeet Singh¹ Haimonti Dutta³ ¹ IIIT Delhi ² DTU ³ CCLS Columbia

System Architecture

Smart Meter

Data

RS-485 Serial Communication

Cloud

3rd Party **Applications**

Analytics Recommender Report Systems tools

Disaggregated Appliance wise Power Consumption

Appliance Step Change Manual Annotation

Future Work

Richer Feature set:

- * Certain appliances likely to be on at certain times of day/season- Using appliance temporal dynamics
- * Certain appliances likely to be used together-Modeling coupling amongst appliances

Distributed data analysis: Imperative given "big" and "distributed" nature of problem

Using customized Probabilistic Graphical Models to factor dependencies

Acknowledgements

Work supported by DEITy under Indo-US joint collaboration