

Eunice Ofori-Addo MATH 530 Eastern Washington University

INTRODUCTION

Modern Portfolio Theory (MPT), was pioneered by Harry Markowitz in his paper "Portfolio Selection" published in 1952 by the Journal of Finance.

MPT is a mathematical framework for constructing the ideal portfolio that maximizes the expected return and simultaneously reduces the volatility(risk) of the portfolio.

MODERN PORTFOLIO THEORY

The theory assumes that investors are risk-averse.

And employs the core idea of diversification.

Portfolio Frontier/Efficient Frontier

Standard Deviation/Risk

Portfolio Selection

Goals:

- Maximize returns
- Minimize risk
- Stay within budget

Output:

 A portfolio representing a list of investments and the expected return

Inputs:

- Historical price data
- Budget
- Risk tolerance

A good portfolio is more than a long list of good stocks and bonds. It is a balanced whole, providing the investor with protections and opportunities with respect to a wide range of contingencies. - Harry Markowitz

MATHEMATICAL MODEL

The classical mean-variance optimization model can be formulated as:

 $min_w \frac{1}{2} w^T \Sigma w$

Subject to a set of constraints.

$$\sum_{i=1}^{n} r_i w_i \ge r$$

$$\sum_{i=1}^n w_i = 1$$

$$0 \le w_i \le 1, \qquad i = 1, \dots, n$$

Since the objective function is quadratic, and the constraints are linear, the resulting optimization problem is a quadratic problem.

Solve this problem as a convex problem and thus use Lagrangian to find the weights.

METHODOLOGY

By choosing cryptocurrencies from top 20 list.

Assets: Bitcoin (*BTC*), Ethereum (*ETH*), Cardona (*ADA*), Polkadot (*DOT*), Chainlink (*LINK*), Stellar (*XLM*), Binance Coin (*BNB*) and Tether (*USDT*).

Data: Historical closing price data. Computed the expected returns, standard deviation and

correlation.

Rate of Return Correlation and Covariance Matrix

втс	1	0.74	0.56	0.56	0.62	0.58	0.58	-0.074
HI -	0.74	1	0.66	0.65	0.78	0.61	0.6	-0.051
ADA	0.56	0.66	1	0.56	0.66	0.7	0.51	-0.028
DOT -	0.56	0.65	0.56	1	0.64	0.45	0.5	-0.029
LINK	0.62	0.78	0.66	0.64	1	0.64	0.59	-0.047
XLM	0.58	0.61	0.7	0.45	0.64	1	0.47	-0.054
BNB	0.58	0.6	0.51	0.5	0.59	0.47	1	-0.028
USDT	-0.074	-0.051	-0.028	-0.029	-0.047	-0.054	-0.028	1
_	втс	ETH	ADA	рот	LINK	хĽМ	BNB	USDT

0.8		втс	ETH	ADA	DOT	LINK	XLM	BNB	USDT
	втс	0.001679	0.001797	0.001692	0.001952	0.002032	0.001955	0.001908	-0.000004
- 0.6	ETH	0.001797	0.003469	0.002842	0.003220	0.003675	0.002984	0.002822	-0.000004
	ADA	0.001692	0.002842	0.005407	0.003488	0.003874	0.004230	0.002990	-0.000003
- 0.4	DOT	0.001952	0.003220	0.003488	0.007119	0.004324	0.003168	0.003350	-0.000003
	LINK	0.002032	0.003675	0.003874	0.004324	0.006321	0.004200	0.003758	-0.000005
	XLM	0.001955	0.002984	0.004230	0.003168	0.004200	0.006830	0.003112	-0.000006
- 0.2	BNB	0.001908	0.002822	0.002990	0.003350	0.003758	0.003112	0.006346	-0.000003
	USDT	-0.000004	-0.000004	-0.000003	-0.000003	-0.000005	-0.000006	-0.000003	0.000002

- 0.0

IMPLEMENTATION

By coding a simulation in python, historical data is used to simulate the modeling of 10,000 different portfolios by random generation of asset weights.

Optimal Portfolio: Portfolio with the maximum Sharpe Ratio.

Minimum Volatility Portfolio: Portfolio with minimum standard deviation.

	Returns	Volatility	Sharpe Ratio	BTC weight	ETH weight	ADA weight	DOT weight	LINK weight	XLM weight	BNB weight	USDT weight
0	1.932547	1.021557	1.891571	0.245803	0.076195	0.197609	0.139965	0.166302	0.056053	0.082264	0.035809
1	1.942314	0.967662	2.007016	0.242714	0.040284	0.009369	0.235118	0.071736	0.071928	0.225111	0.103740
2	1.932486	1.025233	1.884730	0.010170	0.190177	0.139464	0.078747	0.183944	0.090136	0.181719	0.125642
3	1.489055	0.924090	1.611158	0.141631	0.040543	0.182929	0.143331	0.211727	0.082819	0.005997	0.191023
4	1.565053	0.955179	1.638281	0.006648	0.007378	0.274672	0.038381	0.255900	0.094678	0.081887	0.240456

Efficient Frontier

RESULTS

Maximum Sharpe Ratio Portfolio Allocation

Annualised Return: 2.160293306670845

Annualised Volatility: 0.8725066035511487

Allocation:

BTC weight 0.118305 ETH weight 0.023159 ADA weight 0.286227 DOT weight 0.049655 0.013580 LINK weight XLM weight 0.011716 BNB weight 0.270454 USDT weight 0.226902 Name: 8516, dtype: float64

Minimum Volatility Portfolio Allocation

Annualised Return: 1.3468223949020957 Annualised Volatility: 0.6370392312435751

Allocation:

BTC weight 0.101083 ETH weight 0.016179 ADA weight 0.009373 0.186172 DOT weight LINK weight 0.007681 XLM weight 0.059611 0.175495 BNB weight 0.444405 USDT weight Name: 9733, dtype: float64

OPTIMAL PORTFOLIO

MINIMUM RISK PORTFOLIO

FUTURE WORK - VOLATILITY MODELS

Returns are assumed to be normally distributed.

However, some return distributions have fat tails. Standard deviation may not be a perfect measure of risk/volatility.

Therefore, we could explore other volatility models to represent risk.

FUTURE WORK - QUBO

Writing optimization problem as QUBO (Quadratic Unconstrained Binary Optimization) and solving with quantum annealing optimizer.

Thank You!