ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ We now have all the required axioms.

- ▶ We now have all the required axioms.
- ► A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.

- We now have all the required axioms.
- ► A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.
- ▶ 01-03, axioms of order, and

- We now have all the required axioms.
- ▶ A1-A4, axioms for addition; M1-M4, axioms for multiplication and D-distributivity axiom.
- ▶ 01-03, axioms of order, and
- ► C- Completeness axiom.

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

In such a case, u is said to be an upper bound of S.

▶ Definition 9.8: Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a least upper bound (or supremum) of S if

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

- ▶ Definition 9.8: Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a least upper bound (or supremum) of S if
- ightharpoonup (i) u_0 is an upper bound of S;

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

- ▶ Definition 9.8: Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a least upper bound (or supremum) of S if
- ightharpoonup (i) u_0 is an upper bound of S;
- ▶ (ii) If u is an upper bound of S, then $u_0 \le u$.

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

- ▶ Definition 9.8: Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a least upper bound (or supremum) of S if
- \triangleright (i) u_0 is an upper bound of S;
- ▶ (ii) If u is an upper bound of S, then $u_0 \le u$.
- ▶ C. Completeness axiom (Least upper bound property): Every non-empty subset of \mathbb{R} which is bounded above has a least upper bound.

▶ Definition 9.1: A non-empty subset S of \mathbb{R} is said to be bounded above if there exists $u \in \mathbb{R}$ such that

$$x \le u, \ \forall x \in S.$$

- ▶ Definition 9.8: Let S be a non-empty subset of \mathbb{R} , which is bounded above. Then $u_0 \in \mathbb{R}$ is said to be a least upper bound (or supremum) of S if
- ightharpoonup (i) u_0 is an upper bound of S;
- ▶ (ii) If u is an upper bound of S, then $u_0 \le u$.
- ▶ C. Completeness axiom (Least upper bound property): Every non-empty subset of \mathbb{R} which is bounded above has a least upper bound.
- ▶ If *S* is non-empty and bounded above, its least upper bound is unique and is denoted by sup(*S*).

A Lemma

▶ Lemma 10.1: Let ϵ be a positive real number. Then there exists a natural number n such that

$$0<\frac{1}{n}<\epsilon.$$

A Lemma

▶ Lemma 10.1: Let ϵ be a positive real number. Then there exists a natural number n such that

$$0<\frac{1}{n}<\epsilon$$
.

▶ Proof: This inequality is equivalent to

$$0 < 1 < n.\epsilon$$
.

A Lemma

▶ Lemma 10.1: Let ϵ be a positive real number. Then there exists a natural number n such that

$$0<\frac{1}{n}<\epsilon.$$

▶ Proof: This inequality is equivalent to

$$0 < 1 < n.\epsilon$$
.

Now the result is a special case of Archimedean property with x = 1.

▶ An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.

- An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.
- ▶ The set of even integers is: $\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$.

- An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.
- ▶ The set of even integers is: $\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form 2k + 1 for some integer k, and conversely all integers of the form 2k + 1 with $k \in \mathbb{Z}$ are all odd.

- An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.
- ▶ The set of even integers is: $\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form 2k + 1 for some integer k, and conversely all integers of the form 2k + 1 with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$.

- An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.
- ▶ The set of even integers is: $\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form 2k + 1 for some integer k, and conversely all integers of the form 2k + 1 with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$.
- Proposition 10.1: Square of an even integer is even and square of an odd integer is odd.

- An integer $n \in \mathbb{Z}$ is said to be an even number if it is a multiple of 2, that is, it is of the form 2k for some integer k.
- ▶ The set of even integers is: $\{\ldots, -4, -2, 0, 2, 4, 6, \ldots\}$.
- ▶ An integer $n \in \mathbb{Z}$ is said to be an odd number if it is not an even number. Odd integers are all of the form 2k + 1 for some integer k, and conversely all integers of the form 2k + 1 with $k \in \mathbb{Z}$ are all odd.
- ▶ The set of odd integers is: $\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$.
- Proposition 10.1: Square of an even integer is even and square of an odd integer is odd.
- Proof. Exercise.

► Theorem 10.2: There is no rational number x such that $x^2 = 2$.

- ► Theorem 10.2: There is no rational number x such that $x^2 = 2$.
- ▶ Proof: The proof is by contradiction.

- ► Theorem 10.2: There is no rational number x such that $x^2 = 2$.
- ▶ Proof: The proof is by contradiction.
- Suppose x is a rational number such that $x^2 = 2$.

- ► Theorem 10.2: There is no rational number x such that $x^2 = 2$.
- ▶ Proof: The proof is by contradiction.
- Suppose x is a rational number such that $x^2 = 2$.
- As x is a rational number, $x = \frac{p}{q}$, for some integers, p, q with $q \neq 0$.

- ► Theorem 10.2: There is no rational number x such that $x^2 = 2$.
- Proof: The proof is by contradiction.
- Suppose x is a rational number such that $x^2 = 2$.
- As x is a rational number, $x = \frac{p}{q}$, for some integers, p, q with $q \neq 0$.
- Without loss of generality, we may assume that p,q are relatively prime (they have no common factor bigger than 1). This is possible, because, if $p=rp_1$ and $q=rq_1$, with r>1, we can write $x=\frac{p_1}{q_1}$.

▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.
- Since squares of odd numbers are odd, p also must be even. Say, p=2k, with $k\in\mathbb{Z}$.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.
- Since squares of odd numbers are odd, p also must be even. Say, p=2k, with $k\in\mathbb{Z}$.
- ► Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.
- Since squares of odd numbers are odd, p also must be even. Say, p=2k, with $k\in\mathbb{Z}$.
- ► Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.
- Since squares of odd numbers are odd, p also must be even. Say, p=2k, with $k \in \mathbb{Z}$.
- ► Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.
- Consequently, both p and q are even. This is a contradiction, as we have taken p, q to be relatively prime.

- ▶ We have $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and are relatively prime.
- As $x^2 = 2$, we get $\frac{p^2}{q^2} = 2$ or $p^2 = 2q^2$.
- ln particular, p^2 is even.
- Since squares of odd numbers are odd, p also must be even. Say, p=2k, with $k\in\mathbb{Z}$.
- ► Then we get $4k^2 = 2q^2$ or $2k^2 = q^2$.
- ▶ In particular, q^2 is even and hence q is also even.
- ► Consequently, both *p* and *q* are even. This is a contradiction, as we have taken *p*, *q* to be relatively prime.
- ▶ This completes the proof.

Square root of 2 as a real number

► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.

Square root of 2 as a real number

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{ x \in \mathbb{R} : x > 0, \ x^2 < 2 \}.$$

Square root of 2 as a real number

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{x \in \mathbb{R} : x > 0, \ x^2 < 2\}.$$

▶ Then S is non-empty as $1 \in S$.

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{x \in \mathbb{R} : x > 0, \ x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b:

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{x \in \mathbb{R} : x > 0, \ x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b:
- ► a < b if and only if $a^2 < b^2$.

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{x \in \mathbb{R} : x > 0, \ x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b:
- ightharpoonup a < b if and only if $a^2 < b^2$.
- ▶ If $x \in S$, then $x^2 < 2 < 4 = 2^2$.

- ► Theorem 10.3: There exists unique positive real number s such that $s^2 = 2$.
- ▶ Proof: Consider the set *S* defined by

$$S = \{x \in \mathbb{R} : x > 0, \ x^2 < 2\}.$$

- ▶ Then S is non-empty as $1 \in S$.
- ▶ We have seen earlier that for positive real numbers a, b:
- ightharpoonup a < b if and only if $a^2 < b^2$.
- ▶ If $x \in S$, then $x^2 < 2 < 4 = 2^2$.
- As $x^2 < 2^2$, we get x < 2. Therefore S is bounded above by 2.

Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.

- Now, as *S* is non-empty and bounded above, by the completeness of axiom of real numbers, *S* has a least upper bound.
- Let *s* be the least upper bound of *S*.

- Now, as *S* is non-empty and bounded above, by the completeness of axiom of real numbers, *S* has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.

- Now, as *S* is non-empty and bounded above, by the completeness of axiom of real numbers, *S* has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.
- ► Suppose $s^2 < 2$.

- Now, as *S* is non-empty and bounded above, by the completeness of axiom of real numbers, *S* has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.
- ► Suppose $s^2 < 2$.
- ▶ We want to choose a natural number *n* such that

$$(s+\frac{1}{n})^2<2.$$

- Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.
- ► Suppose $s^2 < 2$.
- We want to choose a natural number n such that

$$\left(s+\frac{1}{n}\right)^2<2.$$

$$(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}.$$

- Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.
- ► Suppose $s^2 < 2$.
- We want to choose a natural number n such that

$$\left(s+\frac{1}{n}\right)^2<2.$$

- $(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}.$
- ► Since $n^2 \ge n$, $\frac{1}{n^2} \le \frac{1}{n}$.

- Now, as S is non-empty and bounded above, by the completeness of axiom of real numbers, S has a least upper bound.
- Let s be the least upper bound of S.
- ► Claim: $s^2 = 2$.
- ► Suppose $s^2 < 2$.
- ▶ We want to choose a natural number *n* such that

$$(s+\frac{1}{n})^2<2.$$

- $(s + \frac{1}{n})^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2}.$
- $\blacktriangleright \text{ Since } n^2 \ge n, \ \frac{1}{n^2} \le \frac{1}{n}.$
- ► Hence, $(s + \frac{1}{n})^2 \le s^2 + \frac{2s}{n} + \frac{1}{n}$.

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

▶ or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

▶ Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

- ▶ Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $ightharpoonup 0 < \frac{1}{n} < \frac{2-s^2}{2s+1}.$

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

- ▶ Since $\frac{2-s^2}{2s+1} > 0$, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $ightharpoonup 0 < \frac{1}{n} < \frac{2-s^2}{2s+1}.$
- Choosing such an n, clearly we have

$$(s+\frac{1}{n})^2<2.$$

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

- ▶ Since $\frac{2-s^2}{2s+1}$ > 0, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $ightharpoonup 0 < \frac{1}{n} < \frac{2-s^2}{2s+1}.$
- Choosing such an n, clearly we have

$$(s+\frac{1}{n})^2<2.$$

▶ Hence, $s + \frac{1}{n} \in S$. This is clearly a contradiction as s is an upper bound for S.

▶ We want *n*, such that

$$s^2+\frac{2s+1}{n}<2,$$

or

$$\frac{1}{n}<\frac{2-s^2}{2s+1}.$$

- ▶ Since $\frac{2-s^2}{2s+1}$ > 0, by a direct application of Lemma 10.1, there exists $n \in \mathbb{N}$ such that
- $ightharpoonup 0 < \frac{1}{n} < \frac{2-s^2}{2s+1}$.
- Choosing such an n, clearly we have

$$(s+\frac{1}{n})^2<2.$$

- ▶ Hence, $s + \frac{1}{n} \in S$. This is clearly a contradiction as s is an upper bound for S.
- ▶ Therefore, $s^2 < 2$ is not true.

Suppose $s^2 > 2$.

- ► Suppose $s^2 > 2$.
- ▶ We want to get a natural number m, such that

$$(s-\frac{1}{m})^2>2.$$

- Suppose $s^2 > 2$.
- ▶ We want to get a natural number *m*, such that

$$(s-\frac{1}{m})^2>2.$$

► We have, $(s - \frac{1}{m})^2 = s^2 - \frac{2s}{m} + \frac{1}{m^2} > s^2 - \frac{2s}{m}$.

- Suppose $s^2 > 2$.
- ▶ We want to get a natural number m, such that

$$(s-\frac{1}{m})^2>2.$$

- We have, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m}$.
- Using Lemma 10.1, choose a natural number m, such that $\frac{1}{m} < \frac{s^2-2}{2s}$.

- Suppose $s^2 > 2$.
- ▶ We want to get a natural number *m*, such that

$$(s-\frac{1}{m})^2>2.$$

- We have, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m}$.
- Using Lemma 10.1, choose a natural number m, such that $\frac{1}{m} < \frac{s^2-2}{2s}$.
- or $\frac{2s}{m} < s^2 2$.
- ► Then, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m} > s^2 (s^2 2) = 2$.

- Suppose $s^2 > 2$.
- We want to get a natural number m, such that

$$(s-\frac{1}{m})^2>2.$$

- We have, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m}$.
- Using Lemma 10.1, choose a natural number m, such that $\frac{1}{m} < \frac{s^2-2}{2s}$.
- or $\frac{2s}{m} < s^2 2$.
- ► Then, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m} > s^2 (s^2 2) = 2$.
- ▶ Hence, $s \frac{1}{m} > x$ for every $x \in S$.

- Suppose $s^2 > 2$.
- ▶ We want to get a natural number *m*, such that

$$(s-\frac{1}{m})^2>2.$$

- We have, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m}$.
- Using Lemma 10.1, choose a natural number m, such that $\frac{1}{m} < \frac{s^2-2}{2s}$.
- or $\frac{2s}{m} < s^2 2$.
- ► Then, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m} > s^2 (s^2 2) = 2$.
- ▶ Hence, $s \frac{1}{m} > x$ for every $x \in S$.
- ▶ This contradicts the fact that *s* is the least upper bound for *S*.

- Suppose $s^2 > 2$.
- We want to get a natural number m, such that

$$(s-\frac{1}{m})^2>2.$$

- We have, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m}$.
- Using Lemma 10.1, choose a natural number m, such that $\frac{1}{m} < \frac{s^2-2}{2s}$.
- or $\frac{2s}{m} < s^2 2$.
- ► Then, $(s \frac{1}{m})^2 = s^2 \frac{2s}{m} + \frac{1}{m^2} > s^2 \frac{2s}{m} > s^2 (s^2 2) = 2$.
- ▶ Hence, $s \frac{1}{m} > x$ for every $x \in S$.
- This contradicts the fact that s is the least upper bound for S.
- ▶ Therefore, $s^2 > 2$ is not possible.

▶ Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.

- Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- So we have shown the existence of a positive real number s such that $s^2 = 2$.

- Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If 0 < t < s, we have $0 < t^2 < s^2 = 2$, and if s < t, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.

- Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If 0 < t < s, we have $0 < t^2 < s^2 = 2$, and if s < t, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.
- ▶ We denote s, by $\sqrt{2}$.

- Since both $s^2 < 2$ and $s^2 > 2$ are not possible, the only possibility is $s^2 = 2$, by the trichotomy property.
- So we have shown the existence of a positive real number s such that $s^2 = 2$.
- ▶ If 0 < t < s, we have $0 < t^2 < s^2 = 2$, and if s < t, we get $2 = s^2 < t^2$. Hence s is the unique positive real number such that $s^2 = 2$.
- ▶ We denote s, by $\sqrt{2}$.
- ▶ It is easily seen that $-\sqrt{2}$ is the only other real number whose square 2.

Other roots

Exercise: Show that there is unique positive real number t, such that $t^2 = 3$.

Other roots

- Exercise: Show that there is unique positive real number t, such that $t^2 = 3$.
- Exercise: Show that there is unique real number x such that $x^3 = 2$.

Integer part and fractional part

▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.

Integer part and fractional part

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

▶ Then *T* is non-empty and is bounded above by *x*.

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

- ▶ Then *T* is non-empty and is bounded above by *x*.
- $\blacktriangleright \ \mathsf{Take} \ [x] = \mathsf{sup}(T).$

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

- ▶ Then *T* is non-empty and is bounded above by *x*.
- ► Then [x] is known as the integer part of x.

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

- ▶ Then *T* is non-empty and is bounded above by *x*.
- ► Then [x] is known as the integer part of x.
- ▶ [x] is the unique integer satisfying $[x] \le x < [x] + 1$.

- ▶ Given any positive real number x, we know that there exists a natural number n, such that x < n.
- Now it is easy to see that given any real number x, there exist integers, m, n such that m < x < n.
- Fix a real number x. Take

$$T = \{m : m \in \mathbb{Z}, m \le x\}.$$

- ▶ Then *T* is non-empty and is bounded above by *x*.
- $\blacktriangleright \ \mathsf{Take} \ [x] = \mathsf{sup}(T).$
- ► Then [x] is known as the integer part of x.
- ▶ [x] is the unique integer satisfying $[x] \le x < [x] + 1$.
- ightharpoonup x [x] is known as the fractional part of x. Note that

$$0 \le x - [x] < 1, \quad \forall x \in \mathbb{R}.$$

Intervals

Notation: For any two real numbers a, b with a < b, we write

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}.$$

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}.$$

$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}.$$

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}.$$

$$(a,\infty) := \{x \in \mathbb{R} : a \le x\}.$$

$$[a,\infty) := \{x \in \mathbb{R} : a \le x\}.$$

$$(-\infty,a) := \{x \in \mathbb{R} : x < a\}.$$

$$(-\infty,a) := \{x \in \mathbb{R} : x \le a\}.$$

Intervals

Notation: For any two real numbers a, b with a < b, we write

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}.$$

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}.$$

$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}.$$

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}.$$

$$(a,\infty) := \{x \in \mathbb{R} : a \le x\}.$$

$$[a,\infty) := \{x \in \mathbb{R} : a \le x\}.$$

$$(-\infty,a) := \{x \in \mathbb{R} : x < a\}.$$

$$(-\infty,a) := \{x \in \mathbb{R} : x \le a\}.$$

We call (a, b) as open interval and [a, b] as closed interval. Intervals [a, b) etc. are called semi-open intervals.

▶ Lemma 10.8: For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.

- ▶ Lemma 10.8: For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- Proof: It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.

- ▶ Lemma 10.8: For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- Proof: It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.
- ▶ Theorem 10.9: Suppose a, b are real numbers such that a < b.
 - (i) Then there exists a rational number r such that a < r < b.
 - (ii) There exists an irrational number s such that a < s < b.

- ▶ Lemma 10.8: For any rational number $x \neq 0$, $x\sqrt{2}$ is an irrational number.
- Proof: It is easily seen that if $x\sqrt{2}$ is rational, then so is $\sqrt{2}$. But we have already proved that $\sqrt{2}$ is not rational.
- Theorem 10.9: Suppose a, b are real numbers such that a < b.
 (i) Then there exists a rational number r such that a < r < b.
 (ii) There exists an irrational number s such that a < s < b.
- ▶ Proof: (i) Case I: a = 0: We know that there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < b$. Since $\frac{1}{n}$ is rational, we are done.

► Case II: a > 0. Now as (b - a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b - a)$, or 1 < nb - na, that is, na + 1 < nb.

- ▶ Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.

- ► Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.
- ► Then $m-1 \le na < m$. Which implies, on dividing by n, $a < \frac{m}{n}$.

- ► Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.
- ► Then $m-1 \le na < m$. Which implies, on dividing by n, $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} \frac{1}{n} \le a$

- ► Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.
- ► Then $m-1 \le na < m$. Which implies, on dividing by n, $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} \frac{1}{n} \le a$
- or $\frac{m}{n} < a + \frac{1}{n} < a + (b a) = b$.

- ► Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.
- ► Then $m-1 \le na < m$. Which implies, on dividing by n, $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} \frac{1}{n} \le a$
- or $\frac{m}{n} < a + \frac{1}{n} < a + (b a) = b$.
- So we have $a < \frac{m}{n} < b$.

- ► Case II: a > 0. Now as (b a) > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < (b a)$, or 1 < nb na, that is, na + 1 < nb.
- ▶ Take m = [na] + 1. So $m \in \mathbb{N}$.
- ► Then $m-1 \le na < m$. Which implies, on dividing by n, $a < \frac{m}{n}$.
- ▶ And also, $\frac{m}{n} \frac{1}{n} \le a$
- or $\frac{m}{n} < a + \frac{1}{n} < a + (b a) = b$.
- ▶ So we have $a < \frac{m}{n} < b$.
- Case III: a < 0. The result for this case can be derived from Case I and Case II (Exercise).

▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.

- ▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{\mathsf{a}}{\sqrt{2}} < \frac{\mathsf{m}}{\mathsf{n}} < \frac{\mathsf{b}}{\sqrt{2}}$$

- ▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{\mathsf{a}}{\sqrt{2}} < \frac{\mathsf{m}}{\mathsf{n}} < \frac{\mathsf{b}}{\sqrt{2}}$$

This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b$$
.

- ▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{\mathsf{a}}{\sqrt{2}} < \frac{\mathsf{m}}{\mathsf{n}} < \frac{\mathsf{b}}{\sqrt{2}}$$

This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b$$
.

As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.

- ▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b$$
.

- As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.
- ► This completes the proof.

- ▶ We have a < b. Hence $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$.
- From (i), we have rational number $\frac{m}{n}$, (with $m \neq 0$) such that

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

This implies,

$$a < \frac{m}{n} \cdot \sqrt{2} < b$$
.

- As $\frac{m}{n} \cdot \sqrt{2}$ is irrational we are done.
- ► This completes the proof.
- ► END OF LECTURE 10.