Definition (Surface patch).

 σ :

Definition (Surface patch).

 σ :

Definition (Surface patch).

 $\sigma: U$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

 $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

 $f:\mathbb{R}^2$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 f_x

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth.

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f_x := \lim_{h \to 0}$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall: $f: \mathbb{R}^2 \to \mathbb{R}$ $f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$ f_y

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h, y) - f(x, y))$$

$$f_y := \lim_{h \to 0}$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h, y) - f(x, y))$$

$$f_y := \lim_{h \to 0} \frac{1}{h} (f(x, y + h) - f(x, y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$
(If the limits exist!!)

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$
(If the limits exist!!)

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$
(If the limits exist!!)

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist.

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. g :

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. $g: \mathbb{R}^2$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$,

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. $g:\mathbb{R}^2\to\mathbb{R}^3$, g(x,y)

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x,y) = (g_1(x,y),$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x,y) = (g_1(x,y), g_2(x,y),$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if all partial derivatives of all orders exist. $g:\mathbb{R}^2\to\mathbb{R}^3$,

$$g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y)).$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x, y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x + h, y) - f(x, y))$$

$$\frac{\partial f}{\partial y}(x, y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x, y + h) - f(x, y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if, $g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y)).$ **Definition** (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1 ,, $g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y)).$ **Definition** (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if $g_1, g_2,$

$$g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y)).$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots , $g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y))$. **Definition** (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth , $g(x,y) = (g_1(x,y), g_2(x,y), g_3(x,y)).$ **Definition** (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x, y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x + h, y) - f(x, y))$$

$$\frac{\partial f}{\partial y}(x, y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x, y + h) - f(x, y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

and $\sigma_x(\alpha,\beta) \times \sigma_y(\alpha,\beta) \neq 0$.

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular).

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

for any $(\alpha, \beta) \in U$.

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular)

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular) for any $(\alpha, \beta) \in U$.

$$S := \{(x, y, z) \in \mathbb{R}^3\}$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular) for any $(\alpha, \beta) \in U$.

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

$$\sigma(x, y)$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

The smooth σ is a constant.

and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular) for any $(\alpha, \beta) \in U$.

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

$$U := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

$$\sigma : U \to \mathbb{R}^3$$

$$\sigma(x, y) = (x, y, \sqrt{1 - x^2 - y^2})$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular) for any $(\alpha, \beta) \in U$.

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

$$U := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

$$\sigma_1 : U \to \mathbb{R}^3$$

$$\sigma_1(x, y) = (x, y, \sqrt{1 - x^2 - y^2})$$
or, $\sigma_2(x, y) = (x, \sqrt{1 - x^2 - y^2}, y)$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \ldots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$
$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

for any $(\alpha, \beta) \in U$.

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular)

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

$$U := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

$$\sigma_1 : U \to \mathbb{R}^3$$

$$\sigma_1(x, y) = (x, y, \sqrt{1 - x^2 - y^2})$$
or,
$$\sigma_2(x, y) = (x, \sqrt{1 - x^2 - y^2}, y)$$
or,
$$\sigma_2(x, y) = (\sqrt{1 - x^2 - y^2}, x, y)$$

Recall:

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\partial f}{\partial x}(x,y) = f_x := \lim_{h \to 0} \frac{1}{h} (f(x+h,y) - f(x,y))$$

$$\frac{\partial f}{\partial y}(x,y) = f_y := \lim_{h \to 0} \frac{1}{h} (f(x,y+h) - f(x,y))$$

(If the limits exist!!)

f smooth if *all* partial derivatives of all orders exist. $g: \mathbb{R}^2 \to \mathbb{R}^3$ smooth if g_1, g_2, \dots smooth, where $g(x, y) = (g_1(x, y), g_2(x, y), g_3(x, y))$.

Notation:

$$g_x(x,y) = (g_{1x}(x,y), g_{2x}(x,y), g_{3x}(x,y))$$

$$g_y(x,y) = (g_{1y}(x,y), g_{2y}(x,y), g_{3y}(x,y))$$

Definition (Surface patch).

$$\sigma: U \to \mathbb{R}^3$$

one-one, $U \subset \mathbb{R}^2$ open (U is open if and only if for any $p \in U$, there is an open disc $D_{\epsilon}(p) := \{z \in \mathbb{R}^2 \mid ||z - p|| < \epsilon\}$ for some radius ϵ and $D_{\epsilon}(p) \subset U$.)

, σ smooth and $\sigma_x(\alpha, \beta) \times \sigma_y(\alpha, \beta) \neq 0$ (regular) for any $(\alpha, \beta) \in U$.

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

$$U := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

$$\sigma_1 : U \to \mathbb{R}^3$$

$$\sigma_1(x,y) = (x, y, \sqrt{1 - x^2 - y^2})$$
or, $\sigma_2(x,y) = (x, \sqrt{1 - x^2 - y^2}, y)$
or, $\sigma_2(x,y) = (\sqrt{1 - x^2 - y^2}, x, y)$

$$\sigma_{1x}(x,y) = (1,0,\frac{x}{\sqrt{1-x^2-y^2}})$$

$$\sigma_{1y}(x,y) = (0,1,\frac{y}{\sqrt{1-x^2-y^2}})$$

 $\sigma:U\to\mathbb{R}^3$

 $\sigma: U \to \mathbb{R}^3$ $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\sigma: U \to \mathbb{R}^3$ $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$ $\Phi: \tilde{U} \to U$

$$\begin{split} \sigma: U &\to \mathbb{R}^3 \\ \tilde{\sigma}: \tilde{U} &\to \mathbb{R}^3 \\ \Phi: \tilde{U} &\to U \text{ smooth,} \end{split}$$

 $\sigma: U \to \mathbb{R}^3$ $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible,

 $\sigma: U \to \mathbb{R}^3$ $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\sigma:U\to\mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

f

 $\sigma:U\to\mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(lpha,eta)$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$ $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$ $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f\circ\gamma$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta)$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $(f \circ \gamma)'(t_0)$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $(f \circ \gamma)'(t_0) = f_x(x(t_0), y(t_0))x'(t_0) + f_y(x(t_0), y(t_0))y'(t_0)$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

$$(f \circ \gamma)'(t_0) = f_x(x(t_0), y(t_0))x'(t_0) + f_y(x(t_0), y(t_0))y'(t_0) = (f_x(x, y), f_y(x, y)).\dot{\gamma}(t_0)$$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

$$(f \circ \gamma)'(t_0) = f_x(x(t_0), y(t_0))x'(t_0) + f_y(x(t_0), y(t_0))y'(t_0) = \nabla(f)(x(t_0), y(t_0)).\dot{\gamma}(t_0),$$

where $\nabla(f)(x, y) = (f_x(x, y), f_y(x, y)),$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $(f \circ \gamma)'(t_0) = \nabla(f)(x(t_0), y(t_0)).\dot{\gamma}(t_0),$ where $\nabla(f)(x, y) = (f_x(x, y), f_y(x, y)),$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $[(f \circ \gamma)'(t_0) = \nabla(f)(x(t_0), y(t_0)).\dot{\gamma}(t_0)],$

where $\nabla(f)(x,y) = (f_x(x,y), f_y(x,y)),$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $f_{\mathbf{v}}(x(t_0), y(t_0)) := (f \circ \gamma)'(t_0) = \nabla(f)(x(t_0), y(t_0)).\dot{\gamma}(t_0),$ where $\nabla(f)(x, y) = (f_x(x, y), f_y(x, y)),$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $\begin{aligned}
f_{\mathbf{v}}(x(t_0), y(t_0)) &:= (f \circ \gamma)'(t_0) = \nabla(f)(x(t_0), y(t_0)).\mathbf{v}, \\
\text{where } \nabla(f)(x, y) &= (f_x(x, y), f_y(x, y)), \\
\mathbf{v} &= \dot{\gamma}(t_0),
\end{aligned}$

 $\sigma: U \to \mathbb{R}^3$

 $\tilde{\sigma}: \tilde{U} \to \mathbb{R}^3$

 $\Phi: \tilde{U} \to U$ smooth, invertible, and inverse smooth

 $\tilde{\sigma}(x,y) = \sigma(\Phi(x,y))$

Importance of partial derivatives

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

 $\gamma(t) = (x(t), y(t))$

 $f \circ \gamma : (\alpha, \beta) \to \mathbb{R}$

 $f_{\mathbf{v}}(x(t_0), y(t_0)) := (f \circ \gamma)'(t_0) = \nabla(f)(p).\mathbf{v}$

where $\nabla(f)(x,y) = (f_x(x,y), f_y(x,y)),$

 $\mathbf{v} = \dot{\gamma}(t_0),$

and $p = (x(t_0), y(t_0))$