mtcars Regression Analysis

Saurabh Ghadge

05/02/2022

Objective of study are:

- "Is an automatic or manual transmission better for MPG"
- "Quantify the MPG difference between automatic and manual transmissions"
 Attaching require packages:

```
data(mtcars)
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.3.1 --
```

```
## v ggplot2 3.3.5 v purrr 0.3.4

## v tibble 3.1.6 v dplyr 1.0.7

## v tidyr 1.1.4 v stringr 1.4.0

## v readr 2.1.1 v forcats 0.5.1
```

```
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```

Let us look at the some quick summary data-

```
head(mtcars)
```

```
str(mtcars)
```

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0011010111 ...
## $ am : num 11100000000 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 11 2 1 4 2 2 4 ...
```

EDA

first we plot pair plot:

pairs(mtcars)


```
g <- ggplot(data = mtcars, mapping = aes(x = mpg,y = am))
g + geom_point()
```


Plot gives us idea about manual transmission are tends to give more mileage.

```
g <- ggplot(data = mtcars, mapping = aes(x = mpg,y = disp))
g + geom_point()+facet_grid(am~.)+geom_smooth()
```

$`geom_smooth()`$ using method = 'loess' and formula 'y \sim x'

Plot shows that Miles/(US) gallon is negatively correlated Displacement (cu.in.) which is seen deeply negatively correlated with cars having manual transmission (1).

```
g <- ggplot(data = mtcars, mapping = aes(x = mpg,y = wt))
g + geom_point()
```


Above plot shows that weight and mpg are strongly negatively correlated.

here,R is treating some of the column as numeric instead of that they should be treated as factor, And then we will find correlation of mpg with other continuous variable.

```
mtcars <- tibble(mtcars)
mtcars$vs <- as.factor(mtcars$vs)
mtcars$am <- as.factor(mtcars$am)
mtcars$gear <- as.factor(mtcars$gear)
mtcars$carb <- as.factor(mtcars$carb)
mtcars$cyl <- as.factor(mtcars$cyl)
head(mtcars)
```

```
## # A tibble: 6 x 11
                                       mpg cyl disp hp drat wt gsec vs am
                                                                                                                                                                                                                                                                                                              gear carb
## <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct > <f
## 1 21 6
                                                                                              160 110 3.9 2.62 16.5 0
                                                                                                                                                                                                                                                                                                                             4
## 2 21 6
                                                                                                160 110 3.9 2.88 17.00
## 3 22.8 4
                                                                                                                                    93 3.85 2.32 18.6 1
                                                                                                                                                                                                                                                                                                                                      1
                                                                                                    108
## 4 21.4 6
                                                                                                    258 110 3.08 3.22 19.4 1
                                                                                                                                                                                                                                                                                                                                        1
## 5 18.7 8
                                                                                                    360 175 3.15 3.44 17.00
                                                                                                                                                                                                                                                                                                                 3
                                                                                                                                                                                                                                                                                                                                          2
## 6 18.1 6
                                                                                                  225 105 2.76 3.46 20.2 1
                                                                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                                                                                                                                         1
```

```
cont_mtcars <- mtcars %>% select(mpg,disp,hp,drat,wt,qsec)
cor(cont_mtcars)
```

```
## mpg disp hp drat wt qsec
## mpg 1.0000000 -0.8475514 -0.7761684 0.68117191 -0.8676594 0.41868403
## disp -0.8475514 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788
## hp -0.7761684 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339
## drat 0.6811719 -0.7102139 -0.4487591 1.00000000 -0.7124406 0.09120476
## wt -0.8676594 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588
## qsec 0.4186840 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000
```

Here, we see that mpg and qsec are moderately correlated so we are including in our study.

Now we will fit the model (multiple linear regression) model with all other continuous variable and with including only one categorical variable am (Transmission (0 = automatic, 1 = manual)).

```
new_mtcars <- mtcars %>% select(mpg,disp,hp,drat,wt,qsec,am)
fit1 <- lm(mpg~.,data = new_mtcars)
summary(fit1)
```

```
##
## Call:
## Im(formula = mpg ~ ., data = new_mtcars)
##
## Residuals:
##
      Min
            1Q Median
                          3Q
                                Max
## -3.2669 -1.6148 -0.2585 1.1220 4.5564
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.71062 10.97539 0.976 0.33848
## disp
            0.01310 0.01098 1.193 0.24405
## hp
           -0.02180 0.01465 -1.488 0.14938
## drat
            1.02065 1.36748 0.746 0.46240
## wt
           -4.04454 1.20558 -3.355 0.00254 **
## gsec
            0.99073  0.48002  2.064  0.04955 *
## am1
            2.98469 1.63382 1.827 0.07969.
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.45 on 25 degrees of freedom
## Multiple R-squared: 0.8667, Adjusted R-squared: 0.8347
## F-statistic: 27.09 on 6 and 25 DF, p-value: 8.637e-10
```

When transmission of car is automatic (am = 0),we can interpret intercept as expected Miles/(US) gallon when all other regressors are held constant or all regressor haves value equal to zero for automatic transmission(beta_0),and when transmission of car is manual the intercept becomes Intercept + am1 = 10.71 + 2.98 = 13.69 which is expected Miles/(US) gallon for manual transmission car when all other regressors are held constant or all regressor haves value equal to zero.

Also from summary of fitted model we see that p value for variable *disp*, *hp*, *drat* is not significant, i.e. it is try to say that slope of that variable is nearly close to zero, So excluding those variable from model will not affect the model that much.

p_value for *qsec*, *wt* is highly significant suggesting that they are playing important role in this model. The Value of *R square* is 0.8867, which tells that about 87% variability in target variable/output data is explained by our model.

Following are residual diagnostic plot:

plot(fit1)

Scale-Location

 $Im(mpg \sim .)$

From Residual Vs Fitted plot we see that, as time goes, spread of data is somewhat seems to be increasing.. which tells that residuals are increasing function of target, i.e assumption of constant variance is violated here. Which can be made stabilized using log transformation on output/target variable before fitting. Quantile plot of residuals is showing our residuals are normally distributed. Plot can we made more interpretative as residuals are following Gaussian (Normal) distribution if we use log transformation to target at starting of model building.

Residual Vs leverage plot shows that there are no outlier in our data.

Leaverage and Outlier:

```
hatvalues(fit1)
```

```
##
        1
               2
                      3
                             4
                                    5
                                          6
                                                 7
## 0.16148727 0.16225320 0.11806146 0.14351038 0.18462126 0.23448333 0.19932582
               9
                      10
                             11
                                    12
                                           13
                                                  14
## 0.16340542 0.48867565 0.26642121 0.21880667 0.14339389 0.09410647 0.09210156
##
        15
               16
                      17
                             18
                                    19
                                            20
                                                   21
## 0.28930770 0.28440803 0.25173079 0.13156185 0.32927212 0.18295746 0.20310492
##
        22
               23
                       24
                              25
                                      26
                                             27
                                                     28
## 0.20484136 0.11024720 0.26362755 0.19582828 0.11465363 0.19194769 0.21532367
##
        29
               30
                       31
## 0.37700712 0.27202320 0.57662468 0.13487918
```

Only observation at 31 time point haves a high value for Hat. Lets try to fit a model without a including Transmission of car, and copare with previous model.

```
new_mtcars <- mtcars %>% select(mpg,disp,hp,drat,wt,qsec)
fit2 <- lm(mpg~.,data = new_mtcars)
summary(fit2)
```

```
##
## Call:
## Im(formula = mpg ~ ., data = new_mtcars)
##
## Residuals:
      Min
            1Q Median
                          3Q
                                Max
## -3.5404 -1.6701 -0.4264 1.1320 5.4996
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.53357 10.96423 1.508 0.14362
## disp
            0.00872 0.01119 0.779 0.44281
## hp
           -0.02060 0.01528 -1.348 0.18936
            2.01578 1.30946 1.539 0.13579
## drat
## wt
           -4.38546 1.24343 -3.527 0.00158 **
## asec
            0.64015 0.45934 1.394 0.17523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.558 on 26 degrees of freedom
## Multiple R-squared: 0.8489, Adjusted R-squared: 0.8199
## F-statistic: 29.22 on 5 and 26 DF, p-value: 6.892e-10
```

The value of both *R_square* and *adj R_square* decreases in this model if we compared them with previous model, which indicate that Transmission plays significant role in estimating Miles/(US) gallon of car. For more validation Let us compare both model by AIC..

```
AIC(fit1,fit2)
```

```
## df AIC
## fi†1 8 156.2687
## fi†2 7 158.2784
```

Criteria is that we use model with higher AIC, here AIC for model 2 high, which shows Transmission adds significant linear prediction beyond the other variable.

As in both model we observe that variable disp, hp, drat, are not playing that much of significant role in model. So next we are going to fit the model by dropping them. And also we use log transformation to target variable to make variability of target constant over time.

```
cars <- mtcars %>% select(mpg,wt,qsec,am)
fit3 <- lm(log(mpg)~.,data = cars)
summary(fit3)
```

```
##
## Call:
## Im(formula = log(mpg) ~ ., data = cars)
##
## Residuals:
##
      Min
            1Q Median
                          3Q
                               Max
## -0.13879 -0.08114 -0.03466 0.07030 0.26575
##
## Coefficients:
##
         Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.69410 0.31326 8.600 2.40e-09 ***
## wt
          ## qsec
           0.08558  0.06351  1.347  0.18863
## am1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1107 on 28 degrees of freedom
## Multiple R-squared: 0.8752, Adjusted R-squared: 0.8619
## F-statistic: 65.47 on 3 and 28 DF, p-value: 9.036e-13
```

All regression coefficients have their respective meaning as explained earlier in this case we have to exp(coef) as we use a log transformation at start of model. We see that now all variables are playing significant role in model building, which can seen by their respective p_values. Also this model is explaining about 88% variability from the output variable.

To verify validity we can see residual diagnosis which in case are looking satisfying all criteria i.e. constant variance of residual,normality of residual.

For choosing best model with best set of parameters we can use stepwise selection statistical procedure to do so..

* Best Subset Regression Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC.

 $best_fit \leftarrow ols_step_best_subset(Im(mpg \sim ., data = mtcars)) \\ best_fit$

ex Predict	n ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec v	b r carb s gear carb s am gear o 	o carb				
wt cyl wt cyl hp wt cyl hp wt am cyl hp wt ge cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	n ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec v drat wt qsec v	b r carb s gear carb s am gear o 	o carb				
cyl wt cyl hp wt cyl hp wt am cyl hp wt ge cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec volumet drat wt qsec volumet	r carb s gear carb s am gear d bsets Regr	carb				
cyl hp wt cyl hp wt am cyl hp wt ge cyl disp hp w cyl disp hp o cyl disp hp c cyl disp hp c cyl disp hp c	ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec volumet drat wt qsec volumet	r carb s gear carb s am gear d bsets Regr	carb				
cyl hp wt am cyl hp wt ge cyl disp hp w cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec volumet drat wt qsec volumet	r carb s gear carb s am gear d bsets Regr	carb				
cyl hp wt ge cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c cyl disp hp c	ar carb vt gear carb vt vs gear carl drat wt vs gea drat wt qsec volumet drat wt qsec volumet	r carb s gear carb s am gear d bsets Regr	carb				
cyl disp hp w cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	vt gear carb vt vs gear carl drat wt vs gea drat wt qsec volumeter drat wt qsec volumeter Su	r carb s gear carb s am gear d bsets Regr	carb				
cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	vt vs gear carl drat wt vs gea drat wt qsec v drat wt qsec v 	r carb s gear carb s am gear d bsets Regr	carb				
cyl disp hp w cyl disp hp c cyl disp hp c cyl disp hp c	vt vs gear carl drat wt vs gea drat wt qsec v drat wt qsec v 	r carb s gear carb s am gear d bsets Regr	carb				
cyl disp hp c	drat wt gsec v drat wt gsec v 	s gear carb s am gear (bsets Regr	carb				
cyl disp hp o	drat wt qsec v Su	vs am gear (bsets Regr	carb				
	Su	bsets Regr					
	Su	bsets Regr					
		_					
		_					
			ression Sumr	mary			
4di							
Adi							
Auj.	Pred						
-Square R-	-Square R-S	quare C((p) AIC	SBIC	SBC	MSEP	FPE
						,	
E20 0.7/	14/ 0.700	7 ((720	1// 0204	749070	170 4277	207.017	0.057
	146 0.7087	0.0739	100.0294	/4.89/0	1/0.4200	290.9107	9.857
	200 0.702	2 10 4 2	15/ / 222	/ E 00/11	1/2 0510	202 2/25	7 150
	200 0.793	-3.1942	100.0223	65.9041	163.9510	202.2635	7.1507
	261 0 00/1	2 0700	15/ /402	45 7227	162 2626	10/1 22/1/	4 400
	0.0041	-3.9700	154.4692	05.7237	103,2030	104.2244	6.699
	401 0 901E	2 10 40	154 4440	47 4002	16 / 7270	170 7050	6.7163
	+01 0.6013	-3.1049	134.4009	07.0003	104.7270	179.7059	0.7103
	040 Tu-f	2 52/7	1/ / 000/	/ O 0 0 1 /	102 1540	172 5//0	0 2277
	769 -TUT	-2.5267	164.0994	69.8814	183.1540	1/3.5660	8.3277
	144 T. C	2.0410	1/210/0	70 4070	100 7170	1/E 120E	0.21/5
	144 -INT	-2.0419	163.1968	12.4312	183./1/2	165,1205	8.2165
	100 T (0.5074	4 / 4 4000	7/ 0000	407.4744	4// 050/	0 (400
	102 -Inf	-0.53/1	164.1880	76.2000	186.1/41	166.9526	8.6193
0.017	224 T.C	1 1007	1/5/20/	00 0707	100 0004	171 5/00	0.4053
3917 0.80	124 -Inf	1.1997	165.6386	80.2787	189.0904	1/1.5699	9.1953
0004 0.70	200 T (2 4 4 2 2	1/7 5175	04.4004	100 1050	170.0/12	0.0705
3921 0.79	109 -Inf	3.1423	167.5175	84.4924	192.4350	1/9.0613	9.9705
2021 07	700 Tu (E 0000	140 2155	00 7/70	105 5007	104 2470	10 7074
3931 0.77 9	790 -Inf	5.0000	169.2155	88.7678	195.5987	186.2479	10.7861
	528 0.74 01 0374 0.82 02 03572 0.83 06 0659 0.84 08 08 08 08 08 08 08 08 08 08	528 0.7446 0.7087 01 0374 0.8200 0.793 02 0572 0.8361 0.8041 066 0659 0.8401 0.8015 08 0754 0.8069 -Inf 09 0862 0.8144 -Inf 08898 0.8102 -Inf	528 0.7446 0.7087 6.6739 01 0374 0.8200 0.793 -3.1942 02 0572 0.8361 0.8041 -3.9700 06 0659 0.8401 0.8015 -3.1849 08 0754 0.8069 -Inf -2.5267 00 0862 0.8144 -Inf -2.0419 0898 0.8102 -Inf -0.5371 0917 0.8024 -Inf 1.1997	01 0374	0.7087 6.6739 166.0294 74.8970 0.7087 0.6739 166.0294 74.8970 0.8374 0.8200 0.793 -3.1942 156.6223 65.9041 0.2 0.8361 0.8041 -3.9700 154.4692 65.7237 0.6659 0.8401 0.8015 -3.1849 154.4669 67.6803 0.8069 -Inf -2.5267 164.0994 69.8814 0.0 0.8662 0.8144 -Inf -2.0419 163.1968 72.4372 0.898 0.8102 -Inf -0.5371 164.1880 76.2000 0.8917 0.8024 -Inf 1.1997 165.6386 80.2787	0.7446 0.7087 6.6739 166.0294 74.8970 170.4266 01 0.8374 0.8200 0.793 -3.1942 156.6223 65.9041 163.9510 0.2 0.8361 0.8041 -3.9700 154.4692 65.7237 163.2636 0.8401 0.8015 -3.1849 154.4669 67.6803 164.7270 0.88 0.754 0.8069 -Inf -2.5267 164.0994 69.8814 183.1540 0.862 0.8144 -Inf -2.0419 163.1968 72.4372 183.7172 0.898 0.8102 -Inf -0.5371 164.1880 76.2000 186.1741 0.8917 0.8024 -Inf 1.1997 165.6386 80.2787 189.0904	0.7446 0.7087 6.6739 166.0294 74.8970 170.4266 296.9167 01 0.8374 0.8200 0.793 -3.1942 156.6223 65.9041 163.9510 202.2635 0.8361 0.8041 -3.9700 154.4692 65.7237 163.2636 184.2244 0.8659 0.8401 0.8015 -3.1849 154.4669 67.6803 164.7270 179.7059 0.8754 0.8069 -Inf -2.5267 164.0994 69.8814 183.1540 173.5660 0.8662 0.8144 -Inf -2.0419 163.1968 72.4372 183.7172 165.1205 0.8898 0.8102 -Inf -0.5371 164.1880 76.2000 186.1741 166.9526 0.8917 0.8024 -Inf 1.1997 165.6386 80.2787 189.0904 171.5699

which shows that model 4 having regressor cyl hp wt am is doing well.

summary:-

• Model with Regressor cyl,hp,wt,am are best set of regressor as it generates better adjusted R_square and also other evaluation metrics values as compared other subsets of regressor involving in model.

Conclussions:-

- From above we see that including Transmission is play significant role.
- Manual transmission tends to give a better mileage as compared to automatic transmission.