Turbulence Modelling Peddi Harishteja

1. Boundary Conditions:

At wall, i.e., @y = 0, U=0, k = 0, ϵ = 2vk/(y^2) At centreline i.e., @y = 1, Symmetric boundary condition is applied for U,k and ϵ .

c.

2. Results:

A. Velocity:

B. kinetic energy:

C. Dissipation(ε):

D.Turbulent Shear Stress:

E.viscous Diffusion of K:

F. Turbulent Diffusion of K

G.Production rate of K:

H. Turbulent viscosity:

.

TKE -Budget:

i) DNS

ii) k-epsilon

iii) k-omega

Boundary Conditions:

- i) velocity=0 at the wall.
- ii) production rate=0 at the wall
- iii) Turbulence Kinetic Energy k=0 at the wall
- iv) Eddy Viscosity vt = 0 at the wall
- v) Calculate the wall-normal gradient of velocity using a finite difference method.
- vi) $\varepsilon = 2vk/(y^2)$ wall function for ε for wall-normal distances within a certain range $(y+\le 3)$.
- vii) At centreline i.e., @y = 1, Symmetric boundary condition is applied for U,k and ε .

$\underline{\mathsf{tw}} = -\partial \mathbf{P}/\partial \mathbf{x}$:

Given the momentum equation for fully developed flow:

$$0 = (-1/\rho) *(\partial P/\partial x) + \partial \left[(v + vt) \, \partial U/\partial y \right] / \partial y$$

IIntegrating the equation from wall to channel centerline(from 0 to δ):

$$\int (-1/\rho)^* (\partial P/\partial x) dy + \int {\partial [(v + vt) \partial U/\partial y]/\partial y} dy = 0$$

Now, we have:

$$(-1/\rho)^*(\partial P/\partial x)\delta + [(v + vt) \partial U/\partial y]\delta = 0$$
 from (0 to δ)

Given that vt=0 at the wall (y=0) and $\partial U/\partial y=0$ at the channel axis (y= δ):

$$(1/\rho)^*(\partial P/\partial x) = -\nu[\partial U/\partial y]$$

Given ρ =1 and δ =1

$$-(\partial P/\partial x) = \tau w.$$