The (Short) Schnorr Signature Scheme

Public parameters:

ho Group $G = \langle g \rangle$ of size $p \approx 2^{2k}$, where k is the security parameter

 \triangleright Hash function $H: \{0,1\}^* \to \mathbb{Z}_p$

$Kg(1^k)$	Sign(sk,m)	$Vfy(pk, m, \sigma)$
1: $sk \leftarrow \mathbb{Z}_p$	1: $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; $I \leftarrow g^r$	1: $R \leftarrow g^s \cdot pk^{-e}$
$2: pk \leftarrow g^{sk}$	$2: e \leftarrow H(I m)$	2: if $H(R m) = e$ then
$s: \mathbf{return} \ (pk, sk)$	$3: \mathbf{s} \leftarrow \mathbf{r} + \mathbf{s}\mathbf{k} \cdot \mathbf{e} \mod \mathbf{p}$	3: return 1
	4: return $\sigma = (s, e)$	4: else return 0

2k bits

2k bits

Short Schnorr Signature!

The (Short) Schnorr Signature Scheme

Public parameters:

- $hd Group\ G = \langle g
 angle$ of size $p pprox 2^{2k}$, where k is the security parameter
- \triangleright Hash function $H: \{0,1\}^* \to \mathbb{Z}_p$

Short Schnorr Signature!

Summary of Our Results

Research Questions

Are short Schnorr signatures secure (multi-user security)?