Efficiently Set Operations with Disjoint-Set Structures

Rasmus Resen Amossen SOLUTION ARCHITECT rasmus.resen.org

The Match Finder App

Connecting Users

Demo

Beginning an Interaction Monitor

Disjoint Sets

Operations

FindSet(x)

Basic Maps Structure

Set ID to Item List

Item ID to Set ID

MakeSet(x) Using Maps

Complexity: O(1)

Set ID to item list

Alice Alice

Carol

Bob ↓

Bob

Erin

Frin

Dave

Frank

Frank

<u>Alice</u> Carol

Frank

Bob

Erin Dave

MakeSet(Frank)

Item ID to set ID

Alice Alice Bob ↓ Bob

Dave ↓ Erin Erin

trin

Frank

Frank

FindSet(x) Using Maps

Complexity: O(1) Alice Bob Frank Set ID to item list Bob Erin Alice Carol Frank Bob Alice Erin Erin Carol Dave Frank Dave FindSet(Carol) = Alice

Union(x, y) Using Maps

Completity: O(N) for N items

Set ID to item list

Union(Carol, Erin)

Append smaller to larger Change set ID

Alice Erin Fran ↓ ↓ ↓
Alice Erin Fran
Carol Dave

Bob

(N) for N items
Frank

Frank
Frank

Item ID to set ID

Basic Forest Structure

MakeSet(x) Using Forest

FindSet(x) Using Forest

With path compression

FindSet(x) Using Forest Ackermann function

Comple&idymp(x(ty)) (x(ty)) (x(ty)) (x(ty)) (x(ty)) (x(ty))

α(N): Inverse Ackermann function <5 in practice

FindSet(Alice) = Erin

Recursively set Parent = FindSet(Parent)

Union (Blace, EBianto))

Append smaller to larger If equal rank:

Chose one arbitrarily Increase its rank

Increase its rank

Demo

Implementing the Interaction Monitor

Lessons Learned

Efficient for finding connected components

Representative element identifies set

Disjoint-set supports three operations

MakeSet(x)

Union(x, y)

FindSet(x)

Using maps
Constant FindSet(x)
Linear Union(x, y)

Using forest
Linear FindSet(x)
Linear Union(x, y)

Rank + path compression
Constant FindSet(x)
Constant Union(x, y)