- 28. Quines de les següents afirmacions són certes i quines falses? Justifica les respostes.
 - (a) $3 \in (3,5]$.
 - **(b)** $11 \notin (-\infty, \pi^2]$.
 - (c) $7 \in \{2, 3, \dots, 11\}$.
 - (d) $\pi \in (2, \infty)$.
 - (e) $-1.3 \in \{\ldots -3, -2, -1\}.$
 - (f) $[1,2] \subseteq \{0,1,2,3\}.$
 - (g) $\{-1,0,1\} \subseteq [-1,1]$.
 - **(h)** [5,7] ⊈ $(4,\infty)$.
 - (i) $\{2,4,6,8,\ldots\} \subset [2,\infty)$.
 - (j) $\{x \in \mathbb{R} : x^2 5x + 6 < 0\} = \{x \in \mathbb{R} : 2 < x < 3\}.$
- 29. D'entre els següents conjunts, quin és subconjunt de quin?

$$C = \left\{ n \in \mathbb{Z} : \exists k \in \mathbb{Z} (n = k^4) \right\}$$

$$E = \left\{ n \in \mathbb{Z} : \exists k \in \mathbb{Z} (n = 2k) \right\}$$

$$D = \left\{ n \in \mathbb{Z} : \exists k \in \mathbb{Z} (n = k - 5) \right\}$$

- **30.** Siguin $C = \{a, b, c, d, e, f\}$, $D = \{a, c, e\}$, $E = \{d, e, f\}$ i $F = \{a, b\}$. Troba:
 - (a) $C \setminus (D \cup E)$.
- (c) $F \setminus (C \setminus E)$.
- (e) $(F \cap D) \cup E$.

- **(b)** $(C \setminus D) \cup E$.
- **(d)** $F \cap (D \cup E)$.
- **(f)** $(C \setminus D) \cup (F \cap E)$.
- **31.** Considera el següent conjunt de números reals: $A = \{x \in \mathbb{R} : |2x+1| \ge 5\}$.
 - **(a)** Aplica la definició de valor absolut d'un nombre real i expressa el conjunt *A* com la unió de dos intervals.
 - **(b)** Observa que elevant al quadrat els dos membres de la desigualtat, el conjunt A el podem expressar com $A = \{x \in \mathbb{R} : 4x^2 + 4x + 1 \ge 25\}$. Usa aquesta expressió per obtenir A com a unió dels dos conjunts que has trobat a l'apartat **(a)**.
- **32.** Demostra, justificant tots els passos del teu raonament, que si A, B, C són conjunts qualssevol, aleshores $(B \cup A) \cap B = (B \cap C) \cup B$.
- **33.** Siguin *A* , *B* , *C* conjunts qualssevol.
 - (a) Demostra que $(A \cup B) \cap C \subseteq A \cup (B \cap C)$.
 - **(b)** Demostra que $(A \cup B) \cap C = A \cup (B \cap C)$ si i només si $A \subseteq C$.
- **34.** Troba $\bigcup_{k\geqslant 1} B_k$ i $\bigcap_{k\geqslant 1} B_k$ quan, per a cada $k\geqslant 1$, $B_k\coloneqq \left(-\frac{1}{k},1\right]\cup \left(2,\frac{4k-1}{k}\right]$.

35. Si $X = \{1, 2, \{5\}, 9\}$, indica quines de les següents relacions són certes i quines són falses (cal raonar-ho).

(a) $\{1,2\} \subseteq X$.

(f) $\{\{5\}\}\in \mathcal{P}(\mathcal{P}(X))$.

(b) $\{2,9\} \in \mathcal{P}(X)$.

(g) $\{2,5\} \in \mathcal{P}(X)$.

(c) $\{\{9\}\}\subseteq \mathcal{P}(\mathcal{P}(X))$.

(h) $\{2,5\} \subseteq \mathcal{P}(X)$.

(d) $\{5\} \in \mathcal{P}(X)$.

(i) $\{\emptyset\} \subseteq \mathcal{P}(X)$.

(e) $\{5\} \in \mathcal{P}(\mathcal{P}(X))$.

(j) $\{\emptyset\} \in \mathcal{P}(X)$.

36. Considera els conjunts

$$X = \{1, \{2\}, 3, 4\}$$
 $Y = \{1, 2, \{3\}, 4\}$ $Z = \{1, 2, 3, \emptyset\}.$

Calcula els conjunts següents:

(a) $\mathcal{P}(X \cap Y)$

(b) $\mathcal{P}(X \setminus Y)$

- (c) $\mathcal{P}(X) \setminus \mathcal{P}(Z)$
- 37. Escriu en llenguatge informal i de la manera més entenedora possible, usant el mínim nombre possible de símbols, els enunciats següents.
 - (a) $\forall a \in \mathbb{Z} \exists a' \in \mathbb{Z} \exists a'' \in \mathbb{N} (a' < a \land a < a'')$
 - **(b)** $\exists z \in \mathbb{Z} (z < 0 \land z^2 > 0)$
 - (c) $\forall x \forall y (x \in \mathbb{R} \land y \in \mathbb{R} \rightarrow x^2 + y^2 \geqslant 2xy)$
 - (d) $\exists x (x \in \mathbb{R} \land x > 0 \land x^3 < x^2)$
 - (e) $\forall y (y \in \mathbb{R} \to \exists x (x \in \mathbb{R} \land x^3 = y + 1))$

Són certes aquestes propietats?

- 38. Identifica els següents conjunts. Justifica la resposta.
 - (a) $A = \{x \in \mathbb{Q} : \forall p \in \mathbb{Q} (p \cdot x = -x)\}.$
 - **(b)** $B = \{ x \in \mathbb{N} : \exists m \in \mathbb{N} \ \forall k \in \mathbb{N} \ (k \neq 0 \rightarrow k \cdot x < m) \}.$
- 39. Escriu amb símbols la següent propietat:

L'arrel quadrada de qualsevol nombre real comprès estrictament entre 0 i 1 està compresa estrictament entre 0 i 1 i és més gran que el propi nombre.

Pots usar només els símbols $\ \forall$, $\ \exists$, (,) , $\ \neg$, \rightarrow , \land , \lor , \leftrightarrow , = , \in , \cdot , < , \leqslant , \mathbb{R} .

- 40. Formula, en símbols i en llenguatge natural, la negació dels enunciats del problema 37.
- **41.** Direm que un nombre real a és immadur quan és irracional i per qualsevol enter n < a hi ha un nombre real b > 0 tal que $n^3 + b < a$. Caracteritza els nombres madurs.

42. Per a cada una de les parelles de conjunts que hi ha a continuació, digues si hi ha alguna inclusió entre els dos conjunts, i calcula la intersecció i la unió entre ells.

(a)
$$X = \{x \in \mathbb{N} : x > 3\}$$
 , $Y = \{y \in \mathbb{N} : y^2 > 4\}$

(b)
$$X = \{x \in \mathbb{Z} : x^3 - x^2 - 6x = 0\}$$
, $Y = \{-2, 3\}$

(f)
$$X = \{x \in \mathbb{R} : x^2 \le 1\}$$
 , $Y = \{x \in [0, 4] : \sin x > 0\}$

(g)
$$X = \{x \in \mathbb{R} : x^3 \le 1\}$$
 $Y = \{x \in \mathbb{R} : 4x^2 - 1 < 0\}$

43. Expressa, usant intervals, el següent conjunt de nombres reals:

$$B = \left\{ x \in \mathbb{R} : \left| \frac{x - 2}{x + 5} \right| \geqslant 2 \right\}$$

Fes-ho de dues maneres: elevant al quadrat els dos termes de la desigualtat, i aplicant la definició de valor absolut. Cal que comprovis que surt el mateix conjunt.

- **44.** Siguin A, B, C conjunts. Demostra que $(A \setminus B) \cap C = (A \cap C) \setminus B = (A \cap C) \setminus (B \cap C)$.
- **45.** Demostra o troba un contraexemple per a la propietat: Si A, B, C són conjunts, aleshores $(A \cup B) \setminus (A \cap B \cap C) = [A \setminus (B \cap C)] \cup [B \setminus (A \cap C)]$.
- **46.** Per cada $k \in \mathbb{N}$ defineix un conjunt $E_k \subseteq \mathbb{R}$, de forma que tots els E_k siguin diferents i tals que $\bigcup_{k \in \mathbb{N}} E_k = \{0, \infty\}$ i $\bigcap_{k \in \mathbb{N}} E_k = \{1\} \cup [2, 3)$.
- **47.** Sigui $X = \{1,4,\{1,4\}\}$. Explicita el conjunt $\mathcal{P}(X)$, és a dir, dóna aquest conjunt per extensió.
- **48.** Demostra o refuta l'afirmació: $\mathcal{P}(X) \setminus \mathcal{P}(Y) = \mathcal{P}(X \setminus Y)$.
- 49. Considera els següents conjunts:

$$A = \left\{ z \in \mathbb{Z} : z^2 \leqslant 20 \land \exists x \in \mathbb{Z}(z = 2x) \right\}$$

$$B = \left\{ z \in \mathbb{Z} : |z| < 6 \land \exists x \in \mathbb{Z}(|z| = x^2) \right\}$$

Dóna en forma extensional:

(a)
$$A \cup B$$
, $A \cap B$, $A \setminus B$ i $B \setminus A$.

(b)
$$\mathcal{P}((A \setminus B) \cup (B \setminus A)).$$