Стек

14 июня 2017 г.

Стек

- стек это упорядоченный набор элементов, в котором добавление новых и удаление существующих элементов допустимо только с одного конца
- вершиной стека называется тот его конец, на котором добавляются и удаляются элементы
- стек действует по принципу LIFO (последний пришел первый ушел)
- базовый адрес начальный адрес памяти, в которой размещается стек

Основные операции

- добавить элемент (push)
- получить значение верхнего элемента и удалить его (рор)
- только получить значение, не удаляя
- узнать количество элементов
- проверить на пустоту

Пример работы

ı	push(4)	I	push(5)	I	pop()	I
			вершина 5			
	вершина		5		вершина	
вершина	4		4		4	
3	3		3		3	
2	2		2		2	
1	1		1		1	
0	0		0		0	

БАЗОВЫЙ АДРЕС

Пример реализации

```
class Stack
 int * stackPtr;
                      // указатель на стек
 const int maxSize; // максимальный размер стека
                     // индекс вершины
 int top;
public:
 void push(const int&); // поместить элемент в стек
 void pop();
                // удалить элемент из стека
 int getSize() const; // получить размер стека
```

Пример реализации

```
void Stack::push(const int& value) {
  if (top < maxSize) {</pre>
    stackPtr[top++] = value;
void Stack::pop() {
  if (top > 0) {
    stackPtr[--top];
int Stack::getSize() const {
  return top+1;
```

Вопросы?