

# **CLASSROOM CONTACT PROGRAMME**

(Academic Session: 2019 - 2020)

# **Enthusiast, Leader & Achiever Course**

PHASE : ALL PHASE TARGET : PRE-MEDICAL 2020

Test Type : MAJOR Test Pattern : NEET (UG)

**TEST DATE: 12-08-2020** 

| 1201 5/112 1 12 00 2020 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Q.                      | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
| A.                      | 3   | 2   | 3   | 4   | 4   | 3   | 2   | 3   | 4   | 3   | 2   | 2   | 2   | 4   | 1   | 3   | 4   | 3   | 1   | 4   | 4   | 3   | 1   | 4   | 4   | 1   | 4   | 2   | 1   | 1   |
| Q.                      | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| Α.                      | 1   | 2   | 3   | 3   | 4   | 3   | 1   | 4   | 3   | 2   | 4   | 3   | 1   | 4   | 2   | 4   | 2   | 3   | 2   | 1   | 4   | 2   | 4   | 2   | 2   | 2   | 4   | 4   | 4   | 1   |
| Q.                      | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| Α.                      | 2   | 2   | 4   | 3   | 1   | 3   | 3   | 2   | 2   | 4   | 4   | 1   | 4   | 3   | 2   | 2   | 1   | 2   | 3   | 2   | 1   | 1   | 1   | 2   | 3   | 3   | 3   | 1   | 4   | 3   |
| Q.                      | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| Α.                      | 2   | 2   | 3   | 4   | 3   | 1   | 1   | 4   | 4   | 1   | 4   | 3   | 4   | 2   | 4   | 4   | 1   | 1   | 1   | 2   | 3   | 3   | 2   | 1   | 4   | 3   | 1   | 2   | 3   | 1   |
| Q.                      | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| Α.                      | 4   | 3   | 4   | 3   | 4   | 2   | 3   | 1   | 3   | 4   | 2   | 3   | 4   | 3   | 1   | 4   | 3   | 4   | 3   | 3   | 2   | 4   | 3   | 1   | 2   | 4   | 3   | 4   | 3   | 4   |
| Q.                      | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| A.                      | 2   | 1   | 2   | 1   | 3   | 4   | 4   | 2   | 2   | 2   | 1   | 4   | 2   | 4   | 3   | 3   | 2   | 4   | 4   | 3   | 4   | 3   | 4   | 3   | 3   | 2   | 2   | 2   | 3   | 1   |

# HINT - SHEET

$$\frac{GM^2}{(2R)^2} = \frac{mv^2}{R}$$

$$\therefore V = \frac{1}{2} \sqrt{\frac{GM}{R}}$$

# 2. Ans (2)

$$g' = g\left(1 - \frac{d}{R}\right)$$

$$g' = \frac{g}{4}$$

$$\frac{g}{4} = g\left(1 - \frac{d}{R}\right)$$

$$\frac{d}{R} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$d = \frac{3}{4} R$$

# 3. Ans (3)



$$E^0 = E^{\infty}$$

$$\frac{1}{2}mV_e^2 + \left(\frac{-GMm}{\left(\frac{L}{\sqrt{3}}\right)} \times 3\right) = 0 + 0$$

$$V_e = \sqrt{\frac{6\sqrt{3}GM}{L}}$$

# 4. Ans (4)

$$\frac{L}{K.E} = \frac{mV R_0}{\frac{1}{2}mV^2} = \frac{2R_0}{V} = 2\sqrt{\frac{R_0^3}{GM}}$$



 $T\sin\theta = m\omega^2 r$ 

 $T\sin\theta = m\omega^2 L\sin\theta$ 

$$T = m\omega^2 L$$

$$324 = \frac{1}{2} \left( \omega^2 \right) \frac{1}{2}$$

$$\omega = 36$$

# 6. Ans (3)

By conservation of momentum,

$$2m \times 5 = m \times V$$

So, 
$$V' = 10 \text{ m/sec}$$

Let, skater stops after travelling distance s.

So, 
$$0^2 = 10^2 - 2 \times \mu \times g \times s$$

$$S = 10 \text{ m}$$

### 7. Ans (2)

$$h_1 - h_2 = \frac{1}{2}g(t_1^2 - t_2^2) = \frac{1}{2} \times 9.8 [(5)^2 - (3)^2]$$
  
= 8 × 9.8 = 78.4 m

# 8. Ans (3)

Given

$$\vec{\mathbf{u}} = \hat{\mathbf{i}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{i}}) + \hat{\mathbf{j}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{j}}) + \hat{\mathbf{k}} \times (\vec{\mathbf{a}} \times \hat{\mathbf{k}})$$

Let 
$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

$$\vec{a} \times \hat{i} = -a_v \hat{k} + a_z \hat{i}, \ \hat{i} \times (\vec{a} \times \hat{i}) = a_v \hat{i} + a_z \hat{k}$$

$$\vec{a} \times \hat{i} = -a_x \hat{k} - a_z \hat{i}, \ \hat{i} \times (\vec{a} \times \hat{i}) = a_x \hat{i} + a_z \hat{k}$$

$$\vec{a} \times \hat{k} = -a_x \hat{j} + a_y \hat{i}, \ \hat{k} \times (\vec{a} \times \hat{k}) = a_x \hat{i} + a_y \hat{j}$$

So 
$$\vec{u} = 2\vec{a}$$

### 9. Ans (4)

$$Y = \frac{F/A}{\Delta L/L} \Rightarrow F = \left(\frac{AY}{L}\right) \Delta L$$

$$\Rightarrow \quad W = \left(\frac{AY}{L}\right) \ell \quad .....(i)$$

⇒ When W & 3W attached at two ends of

string then tension T = 
$$\frac{2(W)(3W)}{W+3W} = \frac{3W}{2}$$

$$\Rightarrow \frac{3W}{2} = \left(\frac{AY}{L}\right) x \quad ....(ii)$$

By equation (i) and (ii)  $x = \frac{3\ell}{2}$ 

### 10. Ans (3)

Before entering water, velocity of ball =  $\sqrt{2gh}$ .

If after entering water, this velocity does not change then it should be equal to terminal velocity.

$$\dot{} \cdot \sqrt{2gh} = \frac{2}{9} \frac{r^2(\rho_b - \rho_w)g}{n}$$

$$h = \frac{1}{2g} \left[ \frac{2}{9} \frac{r^2 (\rho_b - \rho_w) g}{\eta} \right]^2$$

$$= \frac{2}{81} \frac{r^4 (\rho_b - \rho_w)^2 g}{\eta^2}$$

$$= \frac{2}{81} \times \frac{(3 \times 10^{-4})^4 (10^4 - 10^3)^2 \times 10}{(10^{-5})^2} = 1.6 \times 10^3 \text{ m}$$

### 11. Ans (2)

Using continuity equation:-

$$A_1V_1 = A_2V_2 \Rightarrow 10 \times 1 = 5 \times V_2 \Rightarrow V_2 = 2m/s$$

Applying Bernoulli's theorem

$$P_1 + \frac{1}{2}\rho V_1^2 = P_2 + \frac{1}{2}\rho V_2^2$$

$$\Rightarrow 2000 + \frac{1}{2} \times 1000 \times (1)^2 = P_2 + \frac{1}{2} \times 1000 \times (2)^2$$

$$\Rightarrow P_2 = 500 \text{ Pa}$$

### 12. Ans (2)

Here, the work done by surface tension force is being converted into gravitational potential energy and heat.

so 
$$W_{Fs} = U_{\sigma} + heat$$

$$\Rightarrow$$
  $(2\pi r)$   $(T) \times (h) = mg h/2 + heat  $\{h/2\}$$ 

because of P. E. of com.}

$$\Rightarrow 2 \pi T \times r \times \frac{2T}{rog} =$$

$$\frac{(\rho g \times \pi r^2 \times h) \times 2T}{r \rho g} \times \frac{1}{2} + heat$$

get heat evolved = 
$$\frac{2\pi T^2}{\rho g}$$

#### 13. Ans (2)

$$T_1 = m(g - a_1)$$

$$T_2 = mg$$

$$T_3 = m (g + a_2)$$





When string is cut acceleration of A

$$a_A = \frac{5mg - 4mg}{4m} = \frac{g}{4}$$
 up wards

Acceleration of B,  $a_B = g$  downwards

# 15. Ans (1)

Acceleration 
$$a = \frac{30 - 10}{5 + 3 + 2} = 2 \text{ m/s}^2$$
  
 $T_2 - 10 = 2 \times a$   $T_2 = 10 + 2 \times 2 = 14 \text{ N}$   
 $T_1 - T_2 = 3a \Rightarrow T_1 = 14 + 3 \times 2 = 20 \text{ N}$   
 $\frac{T_1}{T_2} = \frac{20}{14} = \frac{10}{7}$ 

# 16. Ans (3)

After the impact bullet and block move together and comes to rest after covering a distance of 40 m.

$$m = 0.02 \text{ kg}$$
  $u_2 = 0$ 

By conservation of momentum,

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

or

$$\Rightarrow$$
 0.02 × 250 + 0.23 × 0 = 0.02 v + 0.23 v

$$\Rightarrow$$
 5 + 0 = v(0.25)

$$\Rightarrow$$
 V = 500 / 25 = 20ms<sup>-1</sup>

By conservation of energy,

=

$$\begin{split} &\frac{1}{2}Mv^2 = \mu Nd\\ \Rightarrow &\text{ or } \frac{1}{2}\times 0.25\times 400 = \mu\times 0.25\times 9.8\times 40\\ \Rightarrow &\mu = \frac{200}{9.8\times 40} = 0.51\\ \Rightarrow &\mu = 0.51 \end{split}$$

# 17. Ans (4)

Since t = const.,  $\alpha = \text{const.}$ Let  $n_1 = \text{no.}$  of additional rotations before coming to rest  $\omega_f^2 - \omega_i^2 = 2\alpha\theta$   $\Rightarrow \left(\frac{\omega_0}{2}\right) - \omega_0^2 = 2\alpha(2\pi n) \text{ or } \frac{-3\omega_0^2}{4} = 4\alpha\pi n$ also,  $0^2 - \left(\frac{\omega_0}{2}\right)^2 = 2\alpha(2\pi n_1)$ or  $\frac{-\omega_0^2}{4} = 4\alpha\pi n_1$ 

# 18. Ans (3)

M = Mass of the square plate before cutting the holes

Mass of one hole,

 $\Rightarrow \frac{n_1}{n} = \frac{1}{3} \quad \therefore n_1 = n/3$ 

$$m = \left(\frac{M}{16R^2}\right) \pi R^2 = \frac{\pi M}{16}$$

: Moment of inertia of the remaining portion

$$I = I_{square} - 4I_{hole}$$

$$= \frac{M}{12} (16R^2 + 16R^2) - 4 \left[ \frac{mR^2}{2} + m(2R^2) \right]$$

$$= \frac{8}{3} MR^2 - 10mR^2$$

$$= \left( \frac{8}{3} - \frac{10\pi}{16} \right) MR^2$$

### 19. Ans (1)



Balance torque on rod.

$$\begin{split} \vec{\tau}_{spring} &+ \vec{\tau}_{rod} + \vec{\tau}_{mass} = \vec{0} \\ \vec{\tau}_{spring} &= (kx) \frac{L}{2} AC \ W \\ \vec{\tau}_{rod} &= Mg \frac{L}{2} CW \ (\text{due to weight of rod}) \\ \vec{\tau}_{mass} &= MgL \ CW \ (\text{due to weight of mass } M) \\ so, \ kx \frac{L}{2} - mg \frac{L}{2} - mgL = 0 \\ x &= \frac{3Mg}{k} \end{split}$$



$$\vec{L} = \vec{r} \times \vec{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & 4 & -2 \end{vmatrix}$$

$$\vec{L} = \vec{r} \times \vec{p} = \hat{i} (-4+4) - \hat{j} (-2+3) + \hat{k} (4-6)$$

$$= 0\hat{i} - 1\hat{j} - 2\hat{k}$$

 $\vec{L}$  has components along -y-axis and -z-axis but it has no components in the x-axis. The angular momentum is in Y-Z plane, i.e. perpendicular to x-axis.

# 21. Ans (4)

D = D<sub>1</sub> - D<sub>2</sub> = 4.23 - 3.87 = 0.36 cm  

$$\Delta D = \Delta D_1 + \Delta D_2 = 0.02 \text{ cm}$$
  
 $t = \frac{D}{2} = 0.18 \text{ cm}$   
 $\frac{\Delta t}{t} = \frac{\Delta D}{D}$   
 $\Rightarrow \Delta t = \frac{\Delta D}{2} = 0.01$   
 $\Rightarrow t = (0.18 \pm 0.01) \text{ cm}$ 

### 22. Ans (3)

Radius of Curvature is given by

$$= \frac{\text{(velocity)}^2}{\text{Normal acceleration}} = \frac{(2v)^2}{\frac{v^2}{R}} = 4R$$



#### 23. Ans (1)

$$x_{m} = \frac{\int_{0}^{1} dm x}{\int_{0}^{1} dm}$$

when b tends to 0 the density becomes uniform and hence the centre of mass is at 0.5. So option

(a) tends to 0.5 as b tends to 0.

### 24. Ans (4)

As cross-section areas of both the tubes A and C are same and tube is horizontal. Hence according to equation of continuity

$$V_{\rm A} = V_{\rm C}$$

Therefore according to Bernoull's theorem

$$P_A = P_C$$

i.e. height of liquid is same in both the tubes A and C

#### 25. Ans (4)

Given  $F \propto v^2$ 

As power is given by P = FV

Therefore  $P \propto v^3$ 

$$\frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^3$$

$$\frac{P_2}{24} = \left(\frac{2v}{v}\right)^3 = 8$$

$$P_2 = 192 \text{ hp}$$

### 26. Ans (1)



Before collision

By conservation of linear momentum

$$mv_0 = mv_1 + 2mv_2$$
  
or  $v_0 = v_1 + 2v_2$  .....(1)

Coefficient of restitution

$$e = \frac{v_2 - v_1}{v_0} \Rightarrow ev_0 = v_2 - v_1$$
 ....(2)

by (1) & (2)

$$(1 - 2e)v_0 = 3v_1 \qquad ....(3)$$

$$\frac{v_1}{v_0} = \frac{1 - 2e}{3}$$

Ratio of KE of m, after & before

$$\frac{k_{\mathrm{f}}}{k_{\mathrm{i}}} = \left(\frac{v_{\mathrm{l}}}{v_{\mathrm{0}}}\right)^{2} = \left(\frac{1 - 2e}{3}\right)^{2}$$

### 27. Ans (4)

$$\begin{aligned} v_1 &= \frac{v_A}{2}, v_2 = \frac{v_A + v_B}{2} \\ v_3 &= \frac{v_B}{2} = \frac{2 \left[ v_2 - v_1 \right]}{2} \end{aligned}$$



28. Ans (2)

$$\vec{u} = \hat{i} + 2\hat{j} \quad u \cos \theta = 1, \tan \theta = 2$$

$$y = x \tan \theta - \frac{g}{2(u \cos \theta)^2} \cdot x^2$$

$$y = 2x - 5x^2$$

29. Ans (1)

$$\frac{a}{V + \left(-\frac{\sqrt{3}V}{2}\right)} = \frac{2a}{V\left(2 - \sqrt{3}\right)}$$

30. Ans (1)

$$h = \ell - \ell \cos 60^{\circ} = \ell - \ell \times \frac{1}{2} = \ell/2$$



by law of conservation of mechanical energy

$$\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mgh$$

$$\therefore v^{2} = u^{2} - 2g\frac{\ell}{2}$$

$$v = \sqrt{(3)^{2} - 10 \times \frac{1}{2}} = 2 \text{ m/s}$$

31. Ans (1)

For 
$$\theta < 5^{\circ} \tan \theta \approx \theta \approx 2 = 2 \times \frac{\pi}{180}$$

$$\tan \theta = \frac{v^2}{rg} = \frac{h}{b}$$

$$\frac{2 \times 3.14}{180} = \frac{h}{1800} = 62.8 \text{ mm}$$

32. Ans (2)

$$mg = 20N \text{ and } \frac{mv^2}{r} = \frac{2 \times (4)^2}{1} = 32N$$

It is clear that 52 N tension will be at the bottom of the circle. Because we know that

$$T_{Bottom} = mg + \frac{mv^2}{r}$$

33. Ans (3)

$$F = (100 + 8 + 4) a = 112 a \dots (1)$$

For balancing B & C

Pseudo force on B  $F_B = 8a$ 

$$T_{BC} = mg = 4g = 8a$$

$$a = g/2$$
,  $F = 112(\frac{g}{2}) = 560 \text{ N}$ 

34. Ans (3)

Viscous force is given by

$$F = \eta A \frac{V}{d}$$

$$\frac{F_1}{F_2} = \frac{V_1}{V_2}$$

$$\frac{800}{2400} = \frac{2}{V_2}$$

$$V_2 = 6 \text{ cm/s}$$

35. Ans (4)

$$F_{\text{max}} = \frac{(1)(3)(0.2)(10)}{2} = 3N$$

So there will be relative motion.



36. Ans (3)

For equilibrium, the total upward push will be equal to the downward pull. If V is the volume of the sphere, then we have

$$\left(\frac{V}{3}\right) (13.6) g + \left(\frac{2V}{3}\right) (0.9) g = V \rho g$$

$$\therefore \quad \rho = \left(\frac{13.6 + 1.8}{2}\right) g cm^{-3} = 5.1 g cm^{-3}$$

37. Ans (1)

$$w = \frac{1}{2} \times 6 \times 10 - 4 \times 5 + 4 \times 5 - 5 \times 2$$
$$= 30 - -20 + 20 - 10 = 20J$$

$$w = k_f - k_i$$
$$20 = k_f - 25$$
$$k_f = 45J$$



B moves in a circle (shown by the dashed curve) of radius I with uniform speed.



Massless rod 1 can exert force  $T_1$  on B only along its length i.e. towards the center of the circular path. Hence  $T_1$  contributes only to centripetal acceleration of B.

The tension in rod 2 that is,  $T_2$  can contribute to both tangential and centripetal acceleration of B. As the angular speed is uniform so tangential acceleration of B is zero. Hence  $T_2 = 0$ 

The tension in rod connecting mass B and C is zero.

# 39. Ans (3)

Power 
$$P = \frac{3t^2}{2}$$
,  $P = Fv = m\left(\frac{dv}{dt}\right)v$   

$$\Rightarrow \int_0^V mv \ dv = \int_0^2 \frac{3t^2}{2} dt \Rightarrow \frac{1}{2}m[v^2]_0^v = \frac{3}{2}\left[\frac{t^3}{3}\right]_0^2$$

$$\Rightarrow 2v^2 = 2^3 \Rightarrow v = 2 \text{ m/s}$$

# 40. Ans (2)

$$\begin{bmatrix} \frac{\text{Magnetic flux}}{\text{Electronic flux}} \end{bmatrix} = \begin{bmatrix} \frac{B. A.}{E. A.} \end{bmatrix} = \begin{bmatrix} \frac{B}{E} \end{bmatrix}$$

$$\text{As, } \begin{bmatrix} \frac{E}{B} \end{bmatrix} = [\text{V elocity}] = [\text{LT}^{-1}]$$

$$\Rightarrow \begin{bmatrix} \frac{B}{E} \end{bmatrix} = [\text{TL}^{-1}]$$

### 41. Ans (4)

$$g = 4\pi^2 L/T^2$$

Here, 
$$T = \frac{t}{n}$$
 and  $\Delta T = \frac{\Delta t}{n}$ . Therefore,  $\frac{\Delta T}{T} = \frac{\Delta t}{t}$ .

The errors in both L and t are the least count  $(\Delta g/g) = (\Delta L/L) + 2 (\Delta T/T)$ 

$$=\frac{0.01}{20.0}+2\left(\frac{1}{90}\right)=0.027$$

Thus, the percentage error in g is

100 (
$$\Delta g/g$$
) = 100( $\Delta L/L$ ) + 2 × 100 ( $\Delta T/T$ )  
= 3%

### 42. Ans (3)

$$1 \text{ AU} = 1.496 \times 10^{11} \text{ m}$$

1 light year = 
$$9.46 \times 10^{15}$$
 m

1 parsec = 
$$3.08 \times 10^{16}$$
 m

1 fermi = 
$$10^{-15}$$
 m

# 43. Ans (1)

Initial Angular momentum

$$L_i = I_1 \omega_1 = 100 \left(\frac{2\pi}{10}\right)$$
 ....(1)

Final Angular momentum

$$L_f = (I_1 + mR^2)\omega_2 = (100 + 50 \times 2^2)\omega_2$$
 ....(2)

By 
$$L_f = L_i$$

$$\Rightarrow 300\omega_2 = 100 \left(\frac{2\pi}{10}\right)$$

$$\Rightarrow \omega_2 = \frac{2\pi}{30}$$

#### 44. Ans (4)

$$E_{\text{sphere}} = \frac{1}{2}I\omega^2 = \frac{1}{2}\left(\frac{2}{5}\text{mR}^2\right)\omega^2 \quad ....(1)$$

$$E_{\text{cylinder}} = \frac{1}{2}\left(\frac{\text{mR}^2}{2}\right)(2\omega)^2$$

$$\frac{E_{\text{sphere}}}{E_{\text{sphere}}} = \frac{1}{2}$$



#### 45. Ans (2)

As, 
$$v = \sqrt{\frac{2gh}{1 + \frac{I}{MR^2}}}$$

hence velocity is independent of the inclination of the plane and depends only on height h through with body descends.

But because 
$$t = \frac{1}{\sin \theta} \sqrt{\frac{2h}{g} \left(1 + \frac{I}{MR^2}\right)}$$
 depends

on the inclination also, hence greater the inclination lesser will be the time of descend. Hence, in present case, the speed will be same (because h is same) but time of descend will be different (because of different inclinations).

#### 46. Ans (4)

$$C_xH_y + O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$
mol.  $2$   $4$   $4$ 

$$x = 2, \qquad \frac{y}{2} = 2 \Rightarrow y = 4$$

$$H.C. = C_2H_4$$

#### 47. Ans (2)

1g molecule of V<sub>2</sub>O<sub>5</sub>

$$\Rightarrow$$
 1 mol of  $V_2O_5$ 

 $\Rightarrow$  1 mol of V<sub>2</sub>O<sub>5</sub> contain 2 mol of V-atom

#### Ans (3) 48.

$$2A_2B_{3(g)} + 5C_{2(g)} \rightarrow 3C_3B_{2(g)} + CA_{4(g)}$$
  
Volume 50 200

L.R. 
$$\frac{50}{2} = 25 \quad \frac{200}{5} = 40$$

A<sub>2</sub>B<sub>3</sub> is L.R. Acc. to stoichiometry

$$C_3B_2 = 75 \text{ ml}, CA_4 = 25 \text{ ml}$$

and reacted  $C_2 = 125 \text{ ml}$ 

So remaining  $C_2 = 75$  ml

#### 49. Ans (2)

$$\begin{split} &n=2,\,He^+,\,Z=2\\ &E_{n=2}\,=-13.6\left(\frac{Z^2}{n^2}\right)eV\\ &E_{n=2}\,=-13.6\times\left(\frac{2}{2}\right)^2=-13.6eV \end{split}$$

$$\lambda = \sqrt{\frac{150}{V}} \text{ Å}$$

#### Ans (4) 51.

No. of orbital in a shell =  $n^2$  $P_{shell}$  - n = 6no. of orbital =  $(6)^2 = 36$ 

2. Ans (2)  

$$\Delta x \cdot m\Delta V = \frac{h}{4\pi}$$

$$\Rightarrow \Delta V = \frac{h}{4\pi m(\Delta x)}$$

$$= \Delta V = 0.57 \times 10^7 \text{ ms}^{-1}$$

#### 53. Ans (4)

pK<sub>w</sub> depends on temperature

#### 54. Ans (2)

Value of K depends only on temperature.

#### Ans (2) 55.

$$PM_{0} = dRT$$

$$M_{0} = \frac{dRT}{P} = \frac{0.92 \times 0.082 \times 900}{1}$$

$$M_{0} = 67.98$$

$$\alpha = \frac{M_{T} - M_{0}}{M_{0}(n-1)}$$

$$M_{T} = Theortical molar mass$$

$$\alpha = \frac{80 - 67.98}{67.98 \left(\frac{3}{2} - 1\right)} \Rightarrow \alpha = 35.29\%$$

#### Ans (2) 56.

$$pK_W = 12$$
  
at neutral point  $pH = pOH = 6$   
so  $pH = 6.9$  will be of basic solution.

#### 57. Ans (4)

Due to common ion effect equation of H2S will shift in backward direction and  $[S^{-2}]$  will decrease.

#### Ans (4) 58.

Potassium ferricyanide does not give the test of ferric ion as it is available as [Fe(CN<sub>6</sub>)<sup>-3</sup> complex ion.

#### Ans (4) 59.

$$W = -300 \text{ J}$$
  
 $9 = +100 \text{ cal} = 420 \text{ J}$   
 $\Delta E = 9 + W$   
 $\Delta E = 420 - 300$ 



60. Ans (1)

W = 
$$-P_{\text{ext}} (v_2 - v_1) = -2(6-2) = -8 \text{ lit atm}$$
  
=  $-8 \times 101.3 \text{ J} = -810.4 \text{ J}$ 

61. Ans (2)

No. of moles of benzene = 
$$\frac{0.39}{78} = 5 \times 10^{-3}$$

moles

Heat evolved corresponding to 0.005 mole benzene =  $5 \times 10^{-3} \times 3250 = 16.25 \text{ kJ}$ 

62. Ans (2)

$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$$

$$= \frac{1}{2} \times 62.76 + \frac{1}{2} (151) + \frac{1}{2} (242.3) - 211.3$$

$$= 16.8 \text{ KJmol}^{-1}$$

63. Ans (4)

$$Cu_3P$$
  $\xrightarrow{(+2)}$   $CuSO_4 + H_3PO_4$ 

64. Ans (3)

$$CrO_4^{+6} \longrightarrow Cr_2O_7^{+6}$$

66. Ans (3)

$$P = \frac{dRT}{M}$$

Given:  $d_A = 2d_B$ 

$$m_A = \frac{1}{2} M_B$$

Let 
$$d_B = d$$
,  $d_A = 2d$ 

$$m_B = m$$
,  $m_A = \frac{m}{2}$ 

$$\frac{P_{A}}{P_{B}} = \frac{\left(\frac{dRT}{M}\right)_{A}}{\left(\frac{dRT}{M}\right)_{B}} = \frac{\left(\frac{2d}{m/2}\right)}{\left(\frac{d}{m}\right)} = \frac{4}{1}$$

68. Ans (2)

Non-reacting gases follow Dalton's law of partial pressure.

70. Ans (4)

Size of isoelectronic species is

Anion > Neutral > Cation

89. Ans (4)

Fact

99. Ans (4)

Mustard, Argemone, pumpkin, Bottle gourd

⇒ Parietal placentation

Gram, Pea ⇒ Marginal Placentation

 $Dianthus \Rightarrow$  Free central placentation

105. Ans (4)

A,B,C statement are correct D statement is wrong

159. Ans (2)

NCERT-XI Pg. No. # 130

160. Ans (2)

NCERT-XI Pg. No. - 136

162. Ans (4)

NCERT-XI Pg. No. 138

166. Ans (3)

NCERT-XI Pg. No. 166

167. Ans (2)

NCERT-XI Pg. No. 132 (E)

NCERT-XI Pg. No. 131 and 133 (H)

169. Ans (4)

NCERT-XI Pg. No. # 137

172. Ans (3)

NCERT XI Page No. # 137