POLIMI GRADUATE MANAGEMENT

MACHINE LEARNING IN PYTHON - LAB SESSION

Andrea Mor - andrea.mor@polimi.it

SUPERVISED LEARNING

CLASSIFICATION PROBLEM

Area	Pothers	\mathbf{Pmob}		NumSMS	Class
1	0.27	0.67		36	?
4	0.44	0.22		50	?
4	0.31	0.47		14	?
:		:	:	:	:
2	0.31	0.14		49	?

CLASSIFICATION FORMULATION

$$\mathcal{S}_m = \{(\mathbf{x}_i, y_i), \ i \in \mathcal{M}\}$$
 : training set, where $\ \mathbf{x}_i \in \Re^n \ \ ext{and} \ \ y_i \in \mathcal{D}$

$${\mathcal H}$$
 denotes a set of functions $f({\mathbf x}): \Re^n \mapsto {\mathcal D}$

Classification problem: define a hypotheses space $\mathcal H$ and a function $f^*\in\mathcal H$ which optimally describes the relationship between $\mathbf x_i$ and $\ y_i$

MULTI-CLASS CLASSIFICATION

1. One-vs-Rest We perform |H| different binary classifications: one for every class.

We decide based on a majority vote.

2. One-vs-One We perform |H|(|H-1|)/2 binary classifications: one for every pair of classes. We decide based on a majority vote.

CLASSIFICATION MODELS

- Heuristics Methods
 - Nearest Neighbours
 - Classification Trees
- Regression Methods
 - Logistic regression
- Separation Methods
 - Support vector machine
 - Perceptron
 - Neural Networks

- Probabilistic Methods
 - Bayesian Methods
- Ensemble Methods

EVALUATION DIMENSIONS

- Prediction accuracy
- Speed
- Robustness
- Scalability
- Intepretability
- Rules effectiveness

QUALITY MEASURES - CONFUSION MATRIX

- Precision = ^{TP}/_{TP+FP} "proportion of true positives among positive predictions"
- ► False Positive rate = ^{FP}/_{FP+TN} "proportion of false positives among actual negatives"
- Recall (True Positive rate)= TP "proportion of true positives among actual positive"
- ► Geom. mean=√Precision × Recall

$$\qquad \text{F-score} = \frac{(\beta^2 + 1)}{\beta^2} \frac{1}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$

QUALITY MEASURES - ROC CURVE & AUC

- If we accepting even with small probability then TPR = FPR = 1
- If we accepting just with high probability then TPR = FPR = 0
- ▶ The perfect classificator is the the point (0,1)
- $ightharpoonup AUC \in [0.5, 1]$ area under the curve is a quality measure of our algorithm.

POLIMI SRADUATE MANAGEMENT

WORKFLOW

UNDER/OVER-FITTING

POLIMI GRADUATE MANAGEMENT

CROSS VALIDATION

THE ALGORITHMS

KNN K-NEAREST NEIGHBOURS

- ightharpoonup k: number of neighbours
- neighbour weights
- distances

Tree

types

- Binary tree (zero/two descendants)
- General trees
- Uni-variate tree ($X_j < b$)
- Multi-variate tree ($\sum_{j=1}^{n} w_j x_j = b$)

POLIMI GRADUATE MANAGEMENT

Split

criteria

- Gini index:
- Entropy index:
- Miss-classification index:

$$1 - \sum_{h=1}^{H} f_h^2$$

$$-\sum_{h=1}^{H} f_h \log_2 f_h$$
$$1 - \max_h f_h$$

- impurity measure: "gini", "entropy"
- max_depth
- min_samples_split: minimum number of samples to split an internal node
- min_sample_leaf: minimum number of samples required to be at a leaf node

classification by an axis parallel tree classification by an oblique tree

I NGISTIC REGRESSINN

The model postulates that

$$\log \left[\frac{P(y=1|x)}{P(y=0|x)} \right] = w^T x$$

then if
$$p = P(y = 1|x)$$

then if
$$p=P(y=1|x)$$
:
$$\frac{p}{1-p}=e^{w^Tx}$$

$$\Rightarrow p = P(y = 1|x) = \frac{e^{w^T x}}{1 + e^{w^T x}} = \frac{1}{1 + e^{-w^T x}},$$

$$P(y = 0|x) = 1 - p = \frac{1}{1 + e^{w^T x}} = \frac{e^{-w^T x}}{1 + e^{-w^T x}}$$

NAIVE BAYESIAN CLASSIFIER

Bayes Theorem

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{\sum_{l=1}^{H} P(\mathbf{x}|y)P(y)}$$

Maximum a posteriori hypothesis

$$y_{MAP} = \arg\max_{y \in \mathcal{H}} P(y|\mathbf{x}) = \arg\max \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

Independence (Naive)

$$P(\mathbf{x}|y) = P(x_1|y) \times P(x_2|y) \times \cdots \times P(x_n|y) = \prod_{j=1}^{n} P(x_j|y)$$

NAIVE BAYESIAN CLASSIFIER

Categorical/discrete attributes

$$P(x_j|y) = P(x_j = r_{jk}|y = v_h)$$

- ightarrow empirical frequency of the observed value on the class v_h
- Numerical attribute

$$P(x_j|y) \sim N(\mu_{jh}, \sigma_{jh})$$

 \rightarrow assuming Gaussian density with empirical parameters

ENSEMBLE METHODS

RANDOM FOREST

- 1. Create different (simple) tree models (stumps)
- 2. Each model is created with a subset of observation/features (\sim 2m/3)
- 3. We combine the prediction of all trees

- n_estimators: Number of trees
- max_features: Number of features selected for the split
- bootstrap=False: Use all samples
- Tree parameters

ADABOOST

- 1. Assign equal weights to observations $w_i^{(0)} = 1/m$
- 2. For k = 1, ..., K
 - Select a sample of observations based on the weights.
 - Create the k-th weak learner and compute predictions $x^{(k)}$
 - Compute the model weighted error and assign its coefficient:

$$\alpha^{(k)} = \lambda \times \log((1 - error)/error)$$

Update sample weights:

$$w_i^{(k+1)} \propto w_i^{(k)} \times \exp(-\alpha^{(k)} y_i \hat{x}_i^{(k)})$$

3. Final weighted prediction

- n_estimators: Number of estimators (K)
- base_estimator: Weak estimator type
- learning_rate: weights of estimator in final decision (λ)

GRADIENT BOOSTING

$$P_{k}(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^{k}$$

- 1. Train a weak learner F_0 and compute predictions $\hat{y}_0 = F_0(x)$
- 2. For k = 1, ..., K
 - Compute the difference between the target (y) and the prediction of the current learner (\hat{y}_{k-1})
 - Train e weak learner that minimizes the loss function (error):

$$f_k = \arg\min_f L_m = \arg\min_f \sum_{i=1}^n l(y_i, F_{k-1}(x_1) + f(x_i))$$

•
$$F_k = F_{k-1} + \lambda f_k$$

- n_estimators: Number of estimators (K)
- base_estimator: Weak estimator type
- learning_rate: weights of estimator in final decision (λ)

THANK YOU