Day No. 2 11 - 02 - 2023

Analog Systems Design

2. Sampling

- 1. Aliasing and subsampling in Frequency / Time domain
 - The sampled signal does not have to be a base-band signal
 - Images appears at $|\pm kf_s \pm f_a|$ where k = 0,1,2,...
 - If $f_s < 2 f_{max} \ {\rm under \ sampling}$ (band-pass sampling) is happening
 - The signal with $f_{max}=f_a$ in fig. B is down converted to a base-band signal as $f_s<2f_{max}$

- The subsampling can be used to demodulate (down convert) an RF signal
- Samples of a 1 MHz signal is identical to a 19 MHz signal and 39 MHz Signal as they are sampled with $f_s=20\,MHz$ where at 19 and 39 MHz signals $f_s<2f_{max}$

- Example: FM signal of 100 kHz bandwidth at 10.7 MHz, The signal is down converted by a MHz sampling clock
 - As the signal appears at fs and its multiples and its image at fsignal = 2 fs = 10.7 MHz, so fs = 5.35 MHz

Day No. 2

- 2. Anti-Aliasing Filter (AAF)
 - To ensure the Nyquist criterion, we must ensure that the signal is band-limited signal, the problem is that, there is a duality between the time and band limited signals, as any time limited signal is band unlimited and vice versa
 - All real signals are time limited, so we need these signals to be limited at frequency domain to ensure the Nyquist criterion and avoid aliasing
 - This can be achieved by Anti-Aliasing Filters (AAF)
 - AAF can be
 - Active filters or Passive filter
 - Continues time or Discrete time
 - Low pass filters (for base band signals) or Band pass filters (for band pass filters)

- Example: Signal band: 33 MHz to 39 MHz, Which sampling rate to choose to subsample the signal?
 - a) 78 MHz: fs = 2 fmax so not a valid option
 - b) 39 MHz: fs < 2 fmax so, it is a valid option
 - c) 19.5 MHz: fs < 2 fmax so, it is a valid option
 - d) 13 MHz: fs < 2 fmax so, it is a valid option

Option b) has easier AAF requirements as it has a large relaxation region but its higher sampling rate means higher power consumption and higher memory

Option d) needs a very complex AAF but with lower power consumption

I choose option b) as the technology scaling tends to move all the complexity to digital domain