EMG Workshop w/ IEEE

Goals:

- Successfully measure electrical activity of a muscle using Arduino and electrodes to introduce biofeedback
- Relate the context of the workshop into the realm of Neurotechnology and emerging technologies (BCI, etc.)

Anatomy

- Neurons in the brain communicate through electrical activity (voltage)
 - Muscles communicate the same way
- Motor Neurons in the brain send signals to peripheral muscles through electrical signal
 - Electrical signal causes muscle to contract

Role of EMG

- Electromyography:
 - Process of sensing electrical activity produced by skeletal muscles
- Electromyograph (EMG):
 - Instrument that performs electromyography
 - Measures faint electrical signals
- How?
 - Sensors placed along path of neurons picking up speed and strength of signals

A note about Safety

- Recording electrodes only and NOT stimulating electrodes
- Muscle sensor is only for sensory purposes and does not transmit any electricity to the electrodes
 - Works opposite with electricity flow from body to the sensor due to path of least resistance

Electrical Circuit Basics

- Voltage potential difference, always measured between two points
- There has to be a voltage reference, GND in this case
- Analog vs digital signals
 - Analog can take any value in a range eg. 0-5V
 - Digital can only take distinct, defined values 0V or 1V
- Positive and negative voltage
 - Voltage can be positive or negative (this is in relation to the reference point)
- Connections between pins allow the flow of current and transmission of changes in voltage → voltage changes over time → EMG signals

Arduino - An intro

Arduino IDE

- Written in C++
- Special libraries for Arduino setup/usage
- Make sure you have it downloaded
 - Only one person in each group needs
- Create a new Sketch (code)
 - Tells the arduino what to do

```
Fig. 128 State Tube Holp

State Chairs

Minimal State Tube

Minima
```

Organization of the Sketch

Setup():

- Initialize variables, pin modes, libraries (e.g. serial communication, setting pin modes (I vs O), etc.)
- Runs once

Loop():

- Instructions (e.g. reading sensors, controlling outputs, logic, etc.)
- Runs repeatedly, after setup()

```
void setup() {
   // put your setup code here, to run once:

void loop() {
   // put your main code here, to run repeatedly:
   // put your main code here, to run repeatedly:
}
```

Functions to be used:

Serial.begin(value);

- Initializes serial communication on the Arduino board
 - Through baud specification (rate of data transfer in bits per second; we are using 9600)

analogRead(value);

- Reads voltage values from the analog pins on the board (A0, A1...)
 - Converts analog voltage and provides a corresponding digital value (ADC)
 - Range of conversion:
 - 0 -1023 (10 bit); 0 = 0 volts, 1023 = reference voltage

Code:

Copy from github:

 https://github.com/rskdmr/emg_s ketch_code/blob/main/read-info

Or: Github.com → Search
 "rskdmr" → Users → Repositories
 → emg_sketch_code → read-info

```
EMG.ino

// Connection to Myoware sensor

#define SENSOR_PIN 0

// Integer for sensor value
int sensorValue;

// void setup() {

// Set up serial port
Serial.begin(9600);

// Set up serial port

// Serial.begin(9600);

// Read sensor value
sensorValue = analogRead(SENSOR_PIN);

// Print value to Serial Monitor
Serial.println(sensorValue);

// Print value to Serial Monitor
Serial.println(sensorValue);

// Print value to Serial Monitor
```

Hardware

Schematic of EMG Circuit

Hardware Setup

- 1. Connect the arduino to your laptop using the USB-A to USB-B cable. If required, use a USB-C to USB-A adapter.
- 2. Wire the EMG sensor to the arduino **GND** and **A0** pins. Use M-F jumper wires.
- 3. Connect the EMG sensor to the power supply via the breadboard. Use M-F jumper wires.
- 4. Connect the electrodes to the EMG sensor.
- 5. Start up the Arduino IDE and connect to the Arduino board.
- 6. Attach the electrodes to the muscle. One for ground and two to measure the potential difference.
- 7. Put your code in the IDE and upload it to the Arduino.
- 8. Open the serial monitor or serial plotter to visualize the sensor readings.

Electrode Placement

3 electrodes:

- 1 GND (Yellow)
 - Boney part of the body
 - As a reference to muscle voltage
- 2 on muscle pathway for potential difference (Red/Green)*
 - Forearm muscle
 - Bicep brachii
 - Green in front of red

^{*}Ensure same muscle for both electrodes

Output:

- After pressing run, open serial plotter or monitor
- Before flexing muscle, let the sensor sit to adjust to the voltage of the muscle.
 - It won't be exactly stable (due to noise)
- Look at the y-axis
 - What do you notice?

Output - Define Limits

- In order to view the measured output of the sensor, we need to view the info in a set point of reference.
- Do this by defining two constant Serial values, 1 and 2.

Code - Define Limits

- Add two bounds:
 - One lower
 - One upper
- Use the "Serial.print(#)" function
 - Creates constant "limit" on serial monitor
- Change the numbers according to your data
 - Anywhere between 300-900 range

```
// Add "fake" plots to stabilize Y axis
Serial.print(0); // To freeze the lower limit
Serial.print(" ");
Serial.print(1000); // To freeze the upper limit
Serial.print(" ");
```

Refining Signal

Rectified EMG signal:

- Applied ReLU (ramp function)
 - Holds positives, converts negative to 0
 - Remove negative polarity to simplify data

Integration

- Envelope Detection
 - Calculates areas under rectified curve
 - Captures general trend/energy content

Varies by application

So What?

• Numbers on a graph are only interesting for so long

Neurotechnology Applications

- Emerging neurotechnologies rely on the principles performed today, just more complex
 - Locate Signal
 - Record
 - Read/visualize data in an coherent way
 - Use data to manipulate external system
- Technologies including:
 - BCI
 - Communication, limb/muscle control, everyday interaction, etc.
 - EEG
 - Understanding brain waves (Neurbale and focus state)

Need for Diverse Studies within Neurotechnology

Electrical Engineers:

Circuitry design, transferring electrical signal from body into computer data, etc.

Biomedical Engineers/Neuroscientists:

Understanding of nervous system to implement technologies in an effective/safe manner

Data/Computer Scientists:

 Extract and decode data in a readable manner to use with external systems like prosthetics

And Others!