Конспект лекций по курсу «Теория вероятностей»

Лектор: канд. физ.-мат. наук Родионов Игорь Владимирович Набор: Алексей Шепелев

Содержание

1	Лекция	от 10.02.2018	1
2	Лекция	от 17.02.2018	5
3	Лекция	от 03.03.2018	5
4	Лекция	от 10.03.2018	5
5	Лекция	от 17.03.2018	8
6	Лекция	от 24.03.2018	12
7	Лекция	от 31.03.2018	14
8	Лекция	от 07.04.2018	18
9	Лекция	от 14.04.2018	21
10	Лекция	от 21.04.2018	26
11	Лекция	от 28.04.2018	26

1 Лекция от 10.02.2018

Будем обозначать вероятностное пространство как $(\Omega, \mathcal{F}, \mathsf{P})$, где

- 1. Ω пространство элементарных исходов;
- 2. $\mathcal{F} \sigma$ -алгебра на Ω ;
- 3. Р вероятностная, Р : $\mathcal{F} \to [0,1]$, причем
 - a) $P(\Omega) = 1$;

b) Р —
$$\sigma$$
-аддитивна, то есть $\forall \{A_n\}_{n=1}^{+\infty} \in \mathcal{F}$, причем $A_n \cap A_m = \emptyset$ при $n \neq m$: $P\left(\bigsqcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mathsf{P}(A_n)$.

Определение. Последовательность $\{A_n\}$ убывает к A, если $\forall n: A_n \supseteq A_{n+1}$ и $A = \bigcap_{n=1}^{+\infty} A_n$. Последовательность $\{A_n\}$ возрастает к A, если $\forall n: A_n \subseteq A_{n+1}$ и $A = \bigcup_{n=1}^{+\infty} A_n$.

Теорема (о непрерывности вероятностной меры). Пусть (Ω, \mathcal{F}) — измеримое пространство и на нем определена функция $P: \mathcal{F} \to [0,1]$, удовлетворяющая следующим свойствам: $P(\Omega) = 1$ и P — конечно аддитивная. Тогда следующие утверждения эквивалентны:

- 1. P вероятностная мера;
- 2. $\forall A \downarrow A : P(A_n) \rightarrow P(A)$ (непрерывность снизу);
- 3. $\forall A \uparrow A : P(A_n) \to P(A)$ (непрерывность сверху);
- 4. $\forall A \downarrow \varnothing : \mathsf{P}(A_n) \to 0$ (непрерывность в нуле).

Теорема (Каратеодори). $[6/\partial]$ Пусть Ω — некое множество, \mathcal{A} — σ -алгебра на Ω и P_{σ} — вероятностная мера на (Ω, \mathcal{A}) . Тогда существует единственная вероятностная мера на $(\Omega, \sigma(\mathcal{A}))$, являющаяся продолжением P_{σ} , то есть $\forall A \in \mathcal{A} : \mathsf{P}_{\sigma}(A) = \mathsf{P}(A)$.

Рассмотрим измеримое пространство $(\mathbb{R},\mathscr{B}(\mathbb{R}))$ и вероятностную меру P на нем.

Определение. Функция $\mathcal{F}(x), x \in \mathbb{R}$, заданная по правилу $F(x) = \mathsf{P}\big((-\infty, x]\big)$ — функция распределения вероятностной меры P .

Лемма (свойство функции распределения). Пусть $F(x) - \phi$ ункция распределения, тогда

- 1. F(x) не убывает;
- 2. $\lim_{x \to +\infty} F(x) = 1$; $\lim_{x \to -\infty} F(x) = 0$;
- 3. F(x) непрерывна справа.
- **Δ** Пусть $y \geqslant x$, тогда $F(y) F(x) = P((-\infty, y]) P((-\infty, x]) = P((x, y]) \geqslant 0$, следовательно, F(x) неубывает.

Пусть $x_n \to -\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \varnothing$, следовательно, $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} 0$ по теореме о непрерувности вероятностной меры.

Пусть $x_n \to +\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \mathbb{R}$, следовательно, $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} \mathsf{P}(\mathbb{R}) = 1.$

Пусть $x_n \downarrow x$, тогда $(-\infty, x_n] \downarrow (-\infty, x]$, отсюда по теореме о непрерывности вероятностной меры вытекает, что $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} \mathsf{P}\big((-\infty, x]\big) = F(x)$.

Свойство 1. Функция распределения имеет предел слева $\forall x \in \mathbb{R}$, при этом число точек разрыва не более, чем счетно.

▲ Пусть $x_n \to x - 0$ — возрастающая последовательность, тогда $F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to +\infty]{} P((-\infty, x_n]) = F(x - 0)$. Каждая точка разрыва — скачок функции распределения, каждому скачку сопоставим [F(x - 0), F(x)], а этому отрезку в свою очередь сопоставим некую рациональную точку, которая лежит в (F(x - 0), F(x)). Следовательно каждому скачку мы сопоставили точку из \mathbb{Q} , а так как \mathbb{Q} счетно, то число разрывов не более, чем счетно.

Определение. Функция F(x), котороя удовлетворяет свойствам 1)-3) из леммы, называется функцией распределения на \mathbb{R} .

Теорема (о взаимно однозначном соответствии между вероятностной мерой и функцией распределения на \mathbb{R}). Пусть F(X) — функция распределения на \mathbb{R} , тогда существует единственная вероятностная мера P на $(\mathbb{R},\mathscr{B}(\mathbb{R}))$ такая, что F(x) является ее функцией распределения, то есть $F(x) = \mathsf{P}(-\infty,x]$).

▲ Рассмотрим полукольцо $S = \{(a, b]\}$ на \mathbb{R} . Определим σ -аддитивную вероятностную меру P((a, b]) = F(b) - F(a), а по теореме P единственным образом продолжается на всю σ -алгебру $\mathscr{B}(\mathbb{R})$.

Классификация вероятностных мер и функций распределения на прямой

(1) Дискретное распределение

Пусть $\mathscr{X} \subseteq \mathbb{R}$ не более, чем счетно.

Определение. Вероятностная мера P на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, удовлетворяющая свойству $\mathsf{P}(\mathbb{R} \backslash \mathscr{X}) = 0$, называется дискретной вероятностной мерой на \mathscr{X} , ее функция распределения также называется дискретной.

Рассмотрим
$$\mathscr{X}=\{x_k\}$$
, положим $p_k=\mathsf{P}\big(\{x_k\}\big)$, тогда $\mathsf{P}(\mathscr{X})=1=\sum\limits_k\mathsf{P}(x_k)$.

Определение. Набор чисел $\{p_k\}$ на называется распределением вероятностей на \mathscr{X} .

2 Абсолютно непрерывное распределение

Определение. Пусть F(x) — функция распределения вероятностной меры Р на \mathbb{R} , причем $\forall x \in \mathbb{R}$ верно $F(x) = \int\limits_{-\infty}^{x} p(t) \, dt$, где $p(t) \geqslant 0$, а $\int\limits_{-\infty}^{+\infty} p(t) \, dt = 1$. Тогда Р абсолютно непрерывна, F(x) также называется абсолютно непрерывной, а p(t) — плотность распределения F(x). Причем p(t) определена однозначно, кроме множества меры нуль.

Примеры:

1. Равномерное распределение R[a,b]

$$p(x) = \frac{1}{b-a} \cdot I(x \in [a, b]).$$

2. Нормальное (гауссовское) распределение $N(a, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left[-\frac{(x-a)^2}{2\sigma^2}\right].$$

3. Экспоненциальное распределение $Exp(\alpha)$ '

$$p(x) = \alpha e^{-\alpha x} \cdot I(x > 0).$$

4. Распределение Коши Cauchy(θ)

$$p(x) = \frac{\theta}{\pi (x^2 + \theta^2)}.$$

5. Гамма распределение $\Gamma(\alpha, \gamma)$

$$p(x) = \frac{x^{\alpha - 1} \gamma^{\alpha}}{\Gamma(\alpha)} \cdot e^{-\gamma x} \cdot I(x > 0).$$

Определение. $\Gamma(\alpha) = \int\limits_0^{+\infty} x^{\alpha-1} e^{-x} \, dx$, причем $\forall n \in \mathbb{N} : \Gamma(n) = (n-1)!, \, \forall \lambda \in \mathbb{R} : \Gamma(\lambda \pm 1) = \lambda \Gamma(\lambda)$, а $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(3) Сингулярные распределения

Определение. Пусть F(x) — функция распределения на \mathbb{R} . Точка $x_0 \in \mathbb{R}$ называется точкой роста F(x), если $\forall \varepsilon > 0 : F(x_0 + \varepsilon) - F(x_0 - \varepsilon) > 0$.

Определение. Функция распределения называется сингулярной, если она непрерывна и множество ее точек роста имеет Лебегову меру нуль. Например, функция Кантора.

Теорема (Лебега о функции распределения). $[6/\partial]$ Пусть F(x) — функция распределения на \mathbb{R} . Тогда существуют единственные α_1, α_2 и $\alpha_3, \alpha_i \geqslant 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$ и функции распределения $F_1(x), F_2(x)$ и $F_3(x)$ такие, что $F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x) + \alpha_3 F_3(x)$, где $F_1(x)$ — дискретная функция распределения, $F_2(x)$ — абсолютно непрерывная, а $F_3(x)$ — сингулярная.

2 Лекция от 17.02.2018

Вероятностная мера в $(\mathbb{R},\mathscr{B}(\mathbb{R}))$

Определение.

3 Лекция от 03.03.2018

Свойство 1.

Свойство 2.

Свойство 3.

Свойство 4.

Свойство 5.

Свойство 6.

4 Лекция от 10.03.2018

Свойство 7. Если $\xi = \eta$ почти наверное и $\mathsf{E}|\eta| <= +\infty$, то $\mathsf{E}|\xi| < +\infty$ и $\mathsf{E}\xi = \mathsf{E}\eta$.

▲ Пусть $A = \{\xi \neq \eta\}$, тогда $I_A = 0$ почти наверное, следовательно $\xi \cdot I_a = 0$ почти наверное и $\eta \cdot I_A = 0$ почти наверное. Так как $\xi = \xi \cdot I_A + \xi \cdot I_{\overline{A}}$, то $\xi = \xi \cdot I_A + \eta \cdot I_A$, потому что на \overline{A} выполняется $\xi = \eta$. Из свойства 6 имеем $\mathsf{E}\xi = \mathsf{E}(\xi \cdot I_A) + \mathsf{E}(\eta \cdot I_{\overline{A}}) = \mathsf{E}(\eta \cdot I_A) + E(\eta \cdot I_{\overline{A}}) = \mathsf{E}\eta$.

Свойство 8. Пусть $\xi \geqslant 0$ и $\mathsf{E}\xi \geqslant 0$, тогда $\xi = 0$ почти наверное.

▲ Рассмотрим события $A = \{\xi > 0\}$ и $A_n = \{\xi > \frac{1}{n}\}$, следовательно, $A_n \uparrow A$. Имеем $\mathsf{P}(A_n) = \mathsf{E} I_{A_n}$, так как $n\xi > 1$ на A_n , то $\mathsf{E} I_{A_n} \leqslant \mathsf{E}(n\xi \cdot I_A) \leqslant n\mathsf{E}\xi = 0$, значит, $\mathsf{P}(A) = \lim_{n \to +\infty} \mathsf{P}(A_n)$.

Свойство 9. Пусть $\mathsf{E}\xi$ и $\mathsf{E}\eta$ конечны, $\forall A \in \mathcal{F} : \mathsf{E}(\xi \cdot I_A) \leqslant \mathsf{E}(\eta \cdot I_A)$. Тогда $\xi \leqslant \eta$ почти наверное.

▲ Рассмотрим событие $B = \{\xi > \eta\}$. Из условия и построения B получаем, что $\mathsf{E}(\eta \cdot I_B) \leqslant \mathsf{E}(\xi \cdot I_B) \leqslant \mathsf{E}(\eta \cdot I_B)$, следовательно, $\mathsf{E}(\xi \cdot I_B) = \mathsf{E}(\eta \cdot I_B)$, значит $\mathsf{E}\big((\xi - \eta) \cdot I_B\big) = 0$. Так как $(\xi - \eta) \cdot I_B \geqslant 0$, то по свойству $8 \ (\xi - \eta) \cdot I_B = 0$ почти наверное, следовательно $I_B = 0$ почти наверное, потому что $\xi - \eta > 0$ на B. ■

Теорема (о математическом ожидании произвольной случайной величины). Пусть $\xi \perp \eta$, причем $\xi \in \eta$ конечны, тогда $\xi \in \eta$ конечно $\xi \in \eta$. ▲ Пусть ξ и η — простые случайные величины, то есть ξ принимает значения $\{x_1, \ldots, x_n\}$, η принимает значения $\{y_1, \ldots, y_n\}$. Тогда по линейности

$$\begin{split} \mathsf{E}\xi\eta &= \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}, \eta = y_{j}) = \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}) \cdot \mathsf{P}(\eta = y_{j}) = \\ &= \sum_{k=1}^{n} x_{k} \mathsf{P}(\xi = x_{k}) \sum_{j=1}^{n} y_{j} \mathsf{P}(\eta = y_{j}) = \mathsf{E}\xi \cdot \mathsf{E}\eta. \end{split}$$

Рассмотрим $\xi_n \uparrow \xi$, $\xi_n = \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} I\left(\frac{k}{2^n} \leqslant \xi \leqslant \frac{k+1}{2^n}\right) + nI(\xi > n)$, следовательно, $\xi_n = \varphi_n(\xi)$, значит, $\xi_n - \mathcal{F}_{\xi}$ -измеримая. Пусть $\xi, \eta \geqslant 0$. Существует последовательность \mathcal{F}_{ξ} -измеримых (\mathcal{F}_{η} -измеримых) простых неотрицательных простых функций $\xi_n \uparrow \xi$ ($\eta_n \uparrow \eta$). Так как $\xi \perp \eta$, то $\xi_n = \varphi_n(\xi) \perp \varphi_n(\eta) = \eta_n$. Следовательно, $\xi_n \cdot \eta_n \uparrow \xi \cdot \eta$, а по определению математического ожидания $\mathsf{E}\xi\eta = \lim_{n \to +\infty} \mathsf{E}(\xi_n \eta_n) = \lim_{n \to +\infty} \mathsf{E}\xi_n \cdot \mathsf{E}\eta_n = \mathsf{E}\xi \cdot \mathsf{E}\eta$.

Пусть теперь ξ и η — произвольные случайные величины. ξ^+ и ξ^- — функции от ξ , η^+ и η^- — функции от η , следовательно, $\xi^+ \perp \!\!\! \perp \eta^+$ и $\xi^- \perp \!\!\! \perp \eta^-$, отсюда $(\xi\eta)^+ = \xi^+\eta^+ + \xi^-\eta^-$ значит, $\mathsf{E}(\xi\eta)^+ = \mathsf{E}\xi^+\eta^+ + \mathsf{E}\xi^-\eta^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + \mathsf{E}\xi^-\mathsf{E}\eta^-$, аналогично $\mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\eta^- + \mathsf{E}\xi^-\eta^+ = \mathsf{E}\xi^+\mathsf{E}\eta^- + \mathsf{E}\xi^-\mathsf{E}\eta^+$. Осталось заметить, что $\mathsf{E}\xi\eta = \mathsf{E}(\xi\eta)^+ - \mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + E\xi^-\mathsf{E}\eta^- - \mathsf{E}\xi^+\mathsf{E}\eta^- - \mathsf{E}\xi^-\mathsf{E}\eta^+ = (\mathsf{E}\xi^+ - \mathsf{E}\xi^-)(\mathsf{E}\eta^+ - \mathsf{E}\eta^-) = \mathsf{E}\xi + \mathsf{E}\eta$.

Пусть
$$\xi = \sum_{i=1}^n x_i \cdot I(\xi = x_i)$$
 — простая случайная величина. Тогда $\mathsf{E} g(\xi) = \sum_{i=1}^n g(x_i) \cdot \mathsf{P}(\xi = x_i) = \sum_{i=1}^n g(x_i) \Delta F_\xi(x_i)$, где $\Delta F_\xi(x_i) = F_\xi(x_i) - F_\xi(x_i - 0)$.

Теорема (о замене переменной в интеграле Лебега). $[6/\partial]$ Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) — два измеримых пространства и $X = X(\omega)$ — $\mathcal{F}|\mathcal{E}$ -измеримая функция со значениями в E, то есть $\forall B \in \mathcal{E}: X^{-1}(B) \in \mathcal{F}$. Пусть P — вероятностная мера на (Ω, \mathcal{F}) и P_X — вероятностная мера на (E, \mathcal{E}) , заданная по правилу $P_X(A) = P(\omega: X(\omega) = A)$ для $A \in \mathcal{E}$. Тогда для любой \mathcal{E} -измеримой функции $g(x), x \in E$, то есть $\forall B \in \mathcal{E}: g^{-1}(B) \in E$, верно, $\int_A g(x) P_X(dx) = \int_{X^{-1}(A)} g(X(\omega)) P(d\omega)$.

Пусть $\xi: \Omega \to \mathbb{R}(\mathbb{R}^n)$, в таком случае вероятностная мера P_ξ однозначно восстанавливается по F_ξ , следовательно, по теореме $\mathsf{E} g(\xi) = \int g(\xi) \, d\mathsf{P} = \int g(x) \mathsf{P}_\xi(dx) = \int g(x) \, d\mathcal{F}_\xi(x)$.

Пусть ξ — абсолютно непрерывная случайная величина с плотностью $p_{\xi}(x)$, тогда $d\mathcal{F}_{\xi}(x)=p_{\xi}(x)$, следовательно $\mathsf{E}g(x)=\int\limits_{\mathbb{D}}g(x)p_{\xi}(x)\,dx$.

Прямое произведение вероятностных пространств и формула свертки

Определение. Пусть $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$ — два вероятностных пространства. Тогда $(\Omega, \mathcal{F}, \mathsf{P})$ — их прямое произведение, если

- 1. $\Omega = \Omega_1 \times \Omega_2$;
- 2. $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, то есть $\mathcal{F} = \sigma \{ \{ B_1 \times B_2 \} | B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2 \};$
- 3. $P = P_1 \otimes P_2$, то есть P продолжение вероятностной меры $P_1 \times P_2$, заданное на прямоугольнике $B_1 \times B_2$, $B_1 \in \mathcal{F}_2$, $B_2 \in \mathcal{F}_2$ по правилу $P(B_1 \times B_2) = P_1(B_1) \cdot P_2(B_2)$. Так как $\{B_1 \times B_2\}$ полукольцо, то P существует и единственна по теореме Каратеодори.

Теорема (Фубини). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — прямое произведение вероятносных пространств $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$. Пусть $\xi: \Omega \to \mathbb{R}$ такая, что $\int\limits_{\Omega} \left| \xi(\omega_1, \omega_2) \right| d\mathsf{P} < +\infty$. Тогда интегралы $\int\limits_{\Omega_1} \xi(\omega_1, \omega_2) \mathsf{P}_1(d\omega_1)$ и $\int\limits_{\Omega_2} \xi(\omega_1, \omega_2) \mathsf{P}_2(d\omega_2)$ определены почти наверное относительно P_2 и P_1 соответственно, являются измеримыми случайными величинами относительно \mathcal{F}_2 и \mathcal{F}_1 , следовательно,

$$\int\limits_{\Omega} \xi(\omega_1,\omega_2) \, d\mathsf{P} = \int\limits_{\Omega_2} \int\limits_{\Omega_1} \xi(\omega_1,\omega_2) \mathsf{P}_1(d\omega_1) \mathsf{P}_2(d\omega_2) + \int\limits_{\Omega_1} \int\limits_{\Omega_2} \xi(\omega_1,\omega_2) \mathsf{P}_2(d\omega_2) \mathsf{P}_1(d\omega_1).$$

Из всего этого следует, что двойной интеграл равен повторному.

Утверждение. Пусть $\xi \perp \eta$ — случайные величины, тогда $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2), \mathsf{P}_{(\xi,\eta)}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\xi}) \otimes (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\eta}).$

- ▲ Достаточно проверить свойство прямого произведения:
- 1. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$;
- 2. $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R}))$ по определению борелевской σ -алгебры в \mathbb{R}^2 ;

3.
$$P_{(\xi,\eta)}(B_1 \times B_2) = P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1) \cdot P(\eta \in B_2) = P_{\xi}(B_1) \cdot P_{\eta}(B_2)$$
.

Лемма (о свертке). Пусть случайные величины ξ и η независимы c функциями распределения F_{ξ} и F_{η} . Тогда

$$F_{\xi+\eta}(z) = \int_{\mathbb{R}} F_{\xi}(z-x) dF_{\eta}(x) = \int_{\mathbb{R}} F_{\eta}(z-x) dF_{\xi}(x).$$

Если ξ и η имеют плотности распределения f_{ξ} и f_{η} соответственно, то $\xi + \eta$ имеет плотность распределения

$$f_{\xi+\eta}(z) = \int_{\mathbb{R}} f_{\xi}(z-x) f_{\eta}(x) dx = \int_{\mathbb{R}} f_{\eta}(z-x) f_{\xi}(x) dx$$

.

Δ Заметим, $F_{\xi+\eta}(z) = \mathsf{P}(\xi+\eta\leqslant z)$, а по теореме о замене переменных в интеграле Лебега это равно $\int\limits_{\mathbb{R}^2} I(x+y\leqslant z)\mathsf{P}_{\xi}(dx)\mathsf{P}_{\eta}(dy)$, полученный двойной интеграл по Фубини можно записать как повторный:

$$\int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{R}} I(x+y\leqslant z) \mathsf{P}_{\xi}(dx) \right) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}} \left(\int\limits_{-\infty}^{z-y} \mathsf{P}_{\xi}(dx) \right) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}} F_{\xi}(z-y) \, dF_{\eta}(y).$$

Перейдем ко второму пункту доказательства:

$$\begin{split} F_{\xi+\eta}(z) &= \int\limits_{\mathbb{R}^2} I(x+y\leqslant z) \mathsf{P}_{\xi}(dx) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}^2} I(x+y\leqslant z) f_{\xi}(x) f_{\eta}(y) \, dx \, dy \stackrel{t=x+y}{=} \\ &\stackrel{t=x+y}{=} \int\limits_{\mathbb{R}^2} I(t\leqslant z) f_{\xi}(x) f_{\eta}(t-x) \, dx \, dt = \int\limits_{-\infty}^z \left(\int\limits_{\mathbb{R}} f_{\xi}(x) f_{\eta}(t-x) \, dx \right) \, dt. \end{split}$$

Следовательно, по определению плотности, $f_{\xi+\eta} = \int_{\mathbb{R}} f_{\xi}(x) f_{\eta}(t-x) dx$.

5 Лекция от 17.03.2018

Дисперсия и ковариация

Определение. Дисперсией случайной величины ξ называется $\mathsf{D}\xi = \mathsf{E}(\xi - \mathsf{E}\xi)^2,$ если $\mathsf{E}\xi < +\infty.$ Очевидно, $\mathsf{D}\xi \geqslant 0.$

Определение. Ковариация двух случайных величин называется $\text{cov}(\xi, \eta) = \mathsf{E}\big((\xi - \mathsf{E}\xi)(\eta - \mathsf{E}\eta)\big)$. Легко заметить, что $\text{cov}(\xi, \xi) = \mathsf{D}\xi$. Если $\text{cov}(\xi, \eta) = 0$, то случайные величины ξ и η называются некоррелированными.

Определение. Величина $\rho(\xi,\eta) = \frac{\text{cov}(\xi,\eta)}{\sqrt{\mathsf{D}\xi\cdot\mathsf{D}\eta}}$ называется коэффициентом корреляции случайных величин ξ и η при условии, что $\mathsf{D}\xi$ и $\mathsf{D}\eta$ не равны нулю и конечны.

Свойства ковариации и дисперсии

Свойство 1 (Билинейность ковариации). $cov(a\xi+b\zeta,\eta)=a\,cov(\xi,\eta)+b\,cov(\zeta,\eta)$

Свойство 2.
$$cov(\xi,\eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi \cdot \mathsf{E}\eta \ \Rightarrow \ \mathsf{D}\xi = \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2$$

Свойство 3. Пусть $c \in \mathbb{R}$, тогда $\mathsf{D}(c\xi) = c^2 \mathsf{D}\xi$, $\mathsf{D}(\xi + c) = \mathsf{D}\xi$, $\mathsf{D}c = 0$.

Свойство 4 (Неравенство Коши-Буняковского). $|\mathsf{E}\xi\eta|^2\leqslant\mathsf{E}\xi^2\cdot\mathsf{E}\eta^2$

▲ Рассмотрим для $\lambda \in \mathbb{R}$ функцию $f(\lambda) = \mathsf{E}(\xi - \lambda \eta)^2 \geqslant 0$. Имеем $f(\lambda) = \mathsf{E}\xi^2 + 2\lambda\mathsf{E}\xi\eta + \lambda^2\mathsf{E}\eta^2 \geqslant 0$. Для выполнения неравенства дискриминант полученного многочлена должен быть меньше нуля: $D = 4\mathsf{E}\xi\eta - 4\mathsf{E}\xi^2\eta^2 \leqslant 0$, откуда следует неравенство.

Свойство 5. $|\rho(\xi,\eta)| \le 1$, причем $\rho(\xi,\eta) = \pm 1 \iff \xi = a\eta + b$ почти наверное.

• Рассмотрим случайные величины $\xi_1 = \xi - \mathsf{E}\xi$ и $\eta_1 = \eta - \mathsf{E}\eta$, следовательно $\rho(\xi,\eta) = \frac{\mathsf{E}\xi_1\eta_1}{\sqrt{\mathsf{E}\xi_1^2\cdot\mathsf{E}\eta_1^2}} \leqslant 1$ по неравенству Коши-Буняковского. Пусть $|\rho(\xi,\eta)| = 1$, тогда дискриминант D=0, следовательно, $\exists!\lambda_0: f(\lambda_0)=0$, то есть $\mathsf{E}(\xi_1+\lambda_0\eta_1)^2=0$, отсюда $(\xi_1+\lambda_0\eta)^2=0$ почти наверное, а, значит, и $\xi_1+\lambda_0\eta=0$ почти наверное. Теперь можно заключить, что $\xi=\mathsf{E}\xi-\lambda_0(\eta-\mathsf{E}\eta)$.

Свойство 6. *Если* $\xi \perp \eta$, то $cov(\xi, \eta) = 0$, обратное неверное.

 \blacktriangle $\operatorname{cov}(\xi,\eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi \cdot \mathsf{E}\eta$, но так как $\xi \perp \!\!\! \perp \eta$, то $\mathsf{E}\xi\eta = \mathsf{E}\xi \cdot \mathsf{E}\eta$, следовательно, $\operatorname{cov}(\xi,\eta) = 0$.

Лемма. Пусть ξ_1, \ldots, ξ_n — попарно некоррелированные случайные величины (например, независимые в совокупности), $Dx_1, \ldots, D\xi_n < +\infty$, тогда $D(\xi_1, \ldots, \xi_n) = D\xi_1 + \ldots + D\xi_n$.

$$D\left(\sum_{i=1}^{n} \xi_{i}\right) = \cos\left(\sum_{i=1}^{n} \xi_{i}, \sum_{j=1}^{n} \xi_{j}\right) = \sum_{i,j=1}^{n} \cos(\xi_{i}, \xi_{j}).$$

По условию, если $i \neq j$, то $cov(\xi_i, \xi_j) = 0$, следовательно

$$D\left(\sum_{i=1}^{n} \xi_i\right) = \sum_{i=1}^{n} \operatorname{cov}(\xi_i, \xi_i) = \sum_{i=1}^{n} \mathsf{D}\xi_i.$$

Многомерный случай

Определение. Пусть $\vec{\xi} = (\xi_1, \dots, \xi_n)$ — случайный вектор, тогда его математическим ожиданием называется вектор из математических ожиданий его компонент, то есть $\vec{\xi} = (\vec{\xi}_1, \dots, \vec{\xi}_n)$.

Определение. Матрицей ковариаций случайного вектора $\vec{\xi}$ называется

$$\operatorname{Var} \vec{\xi} = \begin{pmatrix} \operatorname{cov}(\xi_1, \eta_1) & \cdots & \operatorname{cov}(\xi_1, \eta_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(\xi_n, \eta_1) & \cdots & \operatorname{cov}(\xi_n, \eta_n) \end{pmatrix} = \|\operatorname{cov}(\xi_i, \eta_j)\|_{i,j=1}^n.$$

Лемма. Матрица ковариаций случайного вектора — симметрическая и неотрицательно определенная¹.

lacktriangle Матрица $\mathrm{Var}\, \vec{\xi} = \|\mathrm{cov}(\xi_i,\eta_j)\|_{i,j=1}^n$ — симметрическая, так как $r_{ij} \equiv \mathrm{cov}(\xi_i,\xi_j) = \mathrm{cov}(\xi_j,\xi_i) \equiv r_{ji}$. Пусть $\vec{x} \in \mathbb{R}^n$, тогда

$$\vec{x}^T \operatorname{Var} \vec{\xi} \vec{x} = (\vec{x}, \operatorname{Var} \vec{\xi} \vec{x}) = \sum_{i,j=1}^n \operatorname{cov}(\xi_i, \xi_j) x_i x_j = \sum_{i,j=1}^n \operatorname{cov}(x_i \xi_i, x_j \xi_j) = \\ = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{j=1}^n x_j \xi_j \right) = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{i=1}^n x_i \xi_i \right) = \operatorname{D} \left(\sum_{i=1}^n x_i \xi_i \right) \geqslant 0.$$

Неравенства

Лемма (Неравенство Маркова). Пусть $\xi\geqslant 0$ — случайная величина, $\mathsf{E}\xi<+\infty$ (существует). Тогда $\forall \varepsilon>0: \mathsf{P}(\xi\geqslant \varepsilon)\leqslant \frac{\mathsf{E}\xi}{\varepsilon}.$

▲ $P(\xi \geqslant \varepsilon) = EI(\xi \geqslant \varepsilon)$. На множестве $\xi \geqslant \varepsilon$ случайная величина $\frac{\xi}{\varepsilon} \geqslant 1$, следовательно $EI(\xi \geqslant \varepsilon) \leqslant E\left(\frac{\xi}{\varepsilon} \cdot I(\xi \geqslant \varepsilon)\right) \leqslant \frac{1}{\varepsilon} \cdot E\xi$.

 Π емма (Неравенство Чебышёва). Π усть $\xi-$ случайная величина такая, что $\mathsf{D}\xi<+\infty,\ mor\partial a\ \forall \varepsilon>0: \mathsf{P}\big(|\xi-\mathsf{E}\xi|\geqslant \varepsilon\big)\leqslant \frac{\mathsf{D}\xi}{\varepsilon^2}.$

▲
$$P(|\xi - E\xi| \geqslant \varepsilon) = P(|\xi - E\xi|^2 \geqslant \varepsilon^2)$$
. Из неравенства Маркова имеем, что $P(|\xi - E\xi|^2 \geqslant \varepsilon^2) \leqslant \frac{E(\xi - E\xi)^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}$. ■

Лемма (Неравенство Йенсена). Пусть g(x) -борелевская выпуклая вниз (вверх) функция $u \ \mathsf{E} \xi < +\infty$. Тогда $\mathsf{E} g(\xi) \geqslant g(\mathsf{E} \xi)$ ($\mathsf{E} g(\xi) \leqslant g(\mathsf{E} \xi)$).

▲ Так как g(x) выпукла вниз, то $\forall x_0 \in \mathbb{R} : g(x) \geqslant g(x_0) + \lambda(x_0)(x - x_0)$. Положим $x = \xi$ и $x_0 = \mathsf{E}\xi$, тогда $g(\xi) \geqslant g(\mathsf{E}\xi) + \lambda(\mathsf{E}\xi)(\xi - \mathsf{E}\xi)$, считая математическое ожидание от обоих частей неравенства, получаем $\mathsf{E}g(\xi) \geqslant g(\mathsf{E}\xi) + 0$. ■

 $^{^1}$ Матрица A неотрицательно определена, если $\forall \vec{x} \in \mathbb{R}^n : \vec{x}^T A \vec{x} \geqslant 0$

Определение. Пусть ξ и $\{\xi_i\}_{i=1}^{+\infty}$ — случайные величины, тогда $\xi_n \stackrel{\mathsf{P}}{\to} \xi$ сходится по вероятность, если $\forall \varepsilon > 0 : \mathsf{P}(\omega : |\xi_n(\omega) - \xi(\omega)| > \varepsilon) \to 0$ при $n \to +\infty$.

Теорема (Закон больших чисел в форме Чебышёва). Пусть $\{\xi_1, \dots, \xi_n\}_{i=1}^{+\infty} - nocnedoвательность пonapho некоррелированных случайных величин таких, что <math>\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C$. Обозначим $S_n = \sum_{i=1}^n \xi_i$, тогда $\frac{S_n - \mathsf{E}S_n}{n} \stackrel{\mathsf{P}}{\to} 0$ при $n \to +\infty$.

▲ По неравенству Чебышёва Р $\left| \frac{S_n - \mathsf{E} S_n}{n} \right| > \varepsilon \geqslant \frac{\mathsf{D}(S_n - \mathsf{E} S_n)}{n^2 \varepsilon^2}$, по свойству дисперсии о сдвиге это равно $\frac{\mathsf{D} S_n}{n^2 \varepsilon^2}$. Применяя лемму о дисперсии суммы, получаем $\frac{\sum_{i=1}^n \mathsf{D} \xi_i}{n^2 \varepsilon^2} \to 0$.

Следствие. Пусть $\{\xi_n\}_{i=1}^{+\infty}$ — независимые случайные величины такие, что $\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C \land \mathsf{E}\xi_n = a.$ Тогда $\frac{S_n}{n} \stackrel{\mathsf{P}}{\to} a$ при $n \to +\infty$.

Условные математические ожидания (УМО)

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство; $\xi: \Omega \to \mathbb{R}$ — случайная величина; $\mathcal{F}_{\xi} = \{\xi^{-1}(B), B \in \mathscr{B}(\mathbb{R})\}$ — σ -алгебра, порожденная ξ . Если \mathcal{G} — под σ -алгебра σ -алгебра \mathcal{F} , то ξ называется \mathcal{G} -измеримой, если $\mathcal{F}_{\xi} \subset \mathcal{G}$.

Определение. Пусть ξ — случайная случайная величина на $(\Omega, \mathcal{F}, \mathsf{P}), \mathcal{G}$ — под σ -алгебра \mathcal{F} . Условным математическим ожиданием случайной величины ξ относительно \mathcal{G} называется случайная величина $\mathsf{E}(\xi|\mathcal{G}),$ обладающая следующими свойствами:

- 1. $\mathsf{E}(\xi|\mathcal{G})$ является σ -измеримой случайной величиной;
- 2. $\forall A \in \mathcal{G} : \mathsf{E}(\xi \cdot I_A) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_A\big)$ или, что тоже самое, $\int_A \xi \, d\mathsf{P} = \int_A \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P}$.

Обозначаем $\mathsf{E}(\xi|\eta) \equiv \mathsf{E}(\xi|\mathcal{F}_{\eta})$, если такая η существует.

Определение. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство. Функция множеств $\nu : \mathcal{F} \to \mathbb{R}$ — заряд (мера со знаком), если ν — σ -аддитивна на \mathcal{F} , то есть $\nu \left(\bigsqcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} \nu(A_i)$ для $\{A_i\}_{i=1}^{+\infty} \in \mathcal{F}$, ряд в правой части сходится абсолютно и $\sup_{A \in \mathcal{F}} |\nu(A)| < +\infty$.

Определение. Заряд ν называется абсолютно непрерывным относительно меры P, если $\forall A \in \mathcal{F} : (P(A) = 0 \Rightarrow \nu(A) = 0).$

Теорема (Радона-Никодима). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, ν — заряд на \mathcal{F} , абсолютно непрерывный относительно меры P . Тогда существует и единственна случайная величина η на $(\Omega, \mathcal{F}, \mathsf{P})$ такая, что $\mathsf{E}\eta < +\infty$ и $\nu(A) = \int_A \eta \, d\mathsf{P} = \mathsf{E}\eta \cdot I_A$.

6 Лекция от 24.03.2018

Лемма (о существовании УМО). Пусть ξ — случайная величина $c \ E|\xi| < +\infty$. $T \operatorname{г} \partial a \ \forall \mathcal{G} \subset \mathcal{F} \ (nod\sigma\text{-ansebpa}) : E(\xi|\mathcal{G})$ существует и единственно почти наверное.

▲ Рассмотрим вероятностное пространство $(\Omega, \mathcal{G}, \mathsf{P})$. Положим, что $\forall A \in \mathcal{G}: Q(A) = \int_A \xi \, d\mathsf{P} = \mathsf{E}(\xi \cdot I_A)$, следовательно, Q(A) — заряд на $(\Omega, \mathcal{G}, \mathsf{P})$, абсолютно непрерывный относительно меры P . Тогда по теореме Радона-Никодима существует и единственна почти наверное случайная величина η на $(\Omega, \mathcal{G}, \mathsf{P})$ с $\mathsf{E}\eta < +\infty$ такая, что $Q(A) = \int_A \eta \, d\mathsf{P}$. Значит, η — УМО. Действительно, η \mathcal{G} -измерима и $\forall A \in \mathcal{G}: \int_A \eta \, d\mathsf{P} = \int_A \xi \, d\mathsf{P}$.

Теорема. Пусть σ -алгебра $\mathcal G$ порожедена разбиением $\Omega \ \{D_n\}_{n=1}^{+\infty}$, причем, $\mathsf{P}(D_n) > 0$. Тогда, если $\mathsf{E}\xi < +\infty$, то $\mathsf{E}(\xi|\mathcal G) = \sum\limits_{n=1}^{+\infty} \frac{\mathsf{E}(\xi \cdot I(D_n))}{\mathsf{P}(D_n)} \cdot I(D_n)$.

▲ Пусть η \mathcal{G} -измерима. Покажем, что $\eta = \sum_{n=1}^{+\infty} c_n I_{D_n}(\omega)$. Пусть $\eta \neq$ const на D_n , тогда $\exists a \neq b : \{\omega : \eta(\omega) = a\} \cap D_n \neq \emptyset$ и $\{\omega : \eta(\omega) = b\} \cap D_n \neq \emptyset$, следовательно, $\{\omega : \eta(\omega) = a\} \cap D_n = D_n$ и $\{\omega : \eta(\omega) = b\} \cap D_n \neq D_n$, иначе $\{\omega : \eta(\omega) = a\} \notin \mathcal{G}$, то есть η не \mathcal{G} -измерима. Получили противоречие.

Найдем $c_n: \mathsf{E}(\xi|\mathcal{G}) = \sum_{n=1}^{+\infty} c_n I_{D_n}$, так как $\mathsf{E}(\xi|\mathcal{G})$ \mathcal{G} -измерима по определению.

$$\mathsf{E}(\xi \cdot I_{D_n}) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_{D_n}\big) = \mathsf{E}\left(\sum_{m=1}^{+\infty} c_m I_{D_m} I_{D_n}\right) = \mathsf{E}(c_n I_{D_n}) = c_n \mathsf{P}(D_n).$$

Следовательно,
$$c_n = \frac{\mathsf{E}(\xi \cdot I_{D_n})}{\mathsf{P}(D_n)}.$$

Свойства УМО

Свойство УМО: если $\forall A \in \mathcal{F} : \mathsf{E}(\xi \cdot I_A) = \mathsf{E}(\eta \cdot I_A)$, то $\xi = \eta$ дочти наверное на $(\Omega, \mathcal{F}, \mathsf{P})$.

Свойство 1. Если ξ *G*-измерима, то $\mathsf{E}(\xi|\mathcal{G}) = \xi$ почти наверное.

\(\bigcepsilon \) ξ удовлетворяет свойствам УМО: первому по условия, а второму, поскольку $\int\limits_A \xi \, d\mathsf{P} = \int\limits_A \xi \, d\mathsf{P}$. Следовательно, $\mathsf{E}(\xi|\mathcal{G}) = \xi$ почти наверное.

Свойство 2 (формула полной вероятности). $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\big) = \mathsf{E}\xi$.

A Так как $\Omega \in \mathcal{G}$, то по интегральному свойству $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\big) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\cdot I_{\Omega}\big) = \mathsf{E}(\xi\cdot I_{\Omega}) = \mathsf{E}\xi.$

Свойство 3 (линейность). $\mathsf{E}(\alpha\xi + \beta\eta|\mathcal{G}) = \alpha\mathsf{E}(\xi|\mathcal{G}) + \beta\mathsf{E}(\eta|\mathcal{G}).$

 \blacktriangle $\alpha \mathsf{E}(\xi|\mathcal{G}) + \beta \mathsf{E}(\eta|\mathcal{G})$ \mathcal{G} -измерима. Осталось проверить интегральное свойство:

$$\forall A \in G : \int_{A} \left(\alpha \mathsf{E}(\xi|\mathcal{G}) + \beta \mathsf{E}(\eta|\mathcal{G}) \right) d\mathsf{P} = \alpha \int_{A} \mathsf{E}(\xi|\mathcal{G}) d\mathsf{P} + \beta \int_{A} \mathsf{E}(\eta|\mathcal{G}) d\mathsf{P} =$$

$$= \alpha \int_{A} \xi d\mathsf{P} + \beta \int_{A} \eta d\mathsf{P} = \int_{A} (\alpha \xi + \beta \eta) d\mathsf{P} = \int_{A} \mathsf{E}(\alpha \xi + \beta \eta) d\mathsf{P}$$

Свойство 4. Пусть ξ не зависит от \mathcal{G} , то есть $\mathcal{F}_{\xi} \perp \mathcal{G}$. Тогда $\mathsf{E}(\xi|\mathcal{G}) = \mathsf{E}\xi$ почти наверное.

▲ Пусть $\xi \perp \mathcal{G}$, что равносильно $\forall A \in \mathcal{G} : \xi \perp I_A$. Е ξ — константа, следовательно, она измерима относительно \mathcal{G} , так как $\mathcal{F}_{\mathsf{E}\xi} = \{\Omega, \varnothing\}$. Интегральное свойство УМО: $\mathsf{E}(\xi \cdot I_A) = \boxed{\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_A\big)} = \mathsf{E}\xi \cdot \mathsf{P}(A) = \boxed{\mathsf{E}\big(\mathsf{E}(\xi) \cdot I_A\big)}$, следовательно, $\mathsf{E}\xi = \mathsf{E}(\xi|\mathcal{G})$.

Свойство 5. Пусть $\xi \leqslant \eta$ почти наверное, тогда $\mathsf{E}(\xi|\mathcal{G}) \leqslant \mathsf{E}(\eta|\mathcal{G})$ почти наверное.

▲ $\xi \leqslant \eta$ почти наверное, следовательно, $\forall A \in \mathcal{G} \int\limits_A \xi \, d\mathsf{P} \leqslant \int\limits_A \eta \, d\mathsf{P}$, что равносильно $\int \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P} \leqslant \int\limits_A \mathsf{E}(\eta|\mathcal{G}) \, d\mathsf{P}$, а из свойств математического ожидания вытекает, что $\mathsf{E}(\xi|\mathcal{G}) \leqslant \mathsf{E}(\eta|\mathcal{G})$ почти наверное.

Свойство 6. $|E(\xi|\mathcal{G})| \leq E(|\xi||\mathcal{G})$.

$$\blacktriangle -|\xi| \leqslant \xi \leqslant |\xi|.$$

Свойство 7 (телескопическое свойство). Пусть $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, тогда

- 1. $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_1)\big|\mathcal{G}_2\big) = \mathsf{E}(\xi|\mathcal{G}_1)$ почти наверное,
- 2. $\mathsf{E}(\mathsf{E}(\xi|\mathcal{G}_2)|\mathcal{G}_1) = \mathsf{E}(\xi|\mathcal{G}_1)$ normu наверное.
- \blacktriangle (1) $\mathsf{E}(\xi|\mathcal{G}_1)$ \mathcal{G}_2 -измерима, следовательно, по первому свойству $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_1)\big|\mathcal{G}_2\big) = \mathsf{E}(\xi|\mathcal{G}_1)$. (2) Пусть $A \in \mathcal{G}_1$, следовательно, $A \in \mathcal{G}_2$.

$$\mathsf{E}\big(\mathsf{E}(\xi|G_1)\cdot I_A)=\mathsf{E}\big(\xi\cdot I_A\big)=\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\cdot I_A\big)=\mathsf{E}\Big(\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\big|G_1\big)\cdot I_A\Big).$$

По свойству математического ожидания $\mathsf{E}(\xi|\mathcal{G}_1) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\big|\mathcal{G}_1\big).$

Свойство 8. $[6/\partial]$ Пусть $\forall n > 1 : |\xi_n| \leqslant \eta$, $\exists \eta < +\infty \ u \ \xi_n \xrightarrow{n.n.} \xi$. Тогда $\forall \mathcal{G} \subset \mathcal{F} : \mathsf{E}(\xi_n|\mathcal{G}) \xrightarrow{n.n.} \mathsf{E}(\xi|\mathcal{G})$.

Свойство 9. Пусть η *G*-измерима, $\mathsf{E}|\xi\eta|<+\infty$, $\mathsf{E}|\xi|<+\infty$, $\mathsf{E}|\eta|<+\infty$. Тогда $\mathsf{E}(\xi\eta|\mathcal{G})=\eta\mathsf{E}(\xi|\mathcal{G})$ почти наверное.

 \blacktriangle Пусть $\eta = I_B$, где $B \in \mathcal{G}$. Тогда

$$\begin{aligned} \forall A \in \mathcal{G} : \mathsf{E} \big(\mathsf{E} (\xi \eta | \mathcal{G}) \cdot I_A \big) &= \mathsf{E} (\xi \eta \cdot I_A) = \mathsf{E} (\xi I_B I_A) = \\ &= \mathsf{E} (\xi I_{A \cap B}) = \mathsf{E} \big(\mathsf{E} (\xi | \mathcal{G}) \cdot I_{A \cap B} \big) = \mathsf{E} \big(\eta \mathsf{E} (\xi | \mathcal{G}) \cdot I_A \big). \end{aligned}$$

Следовательно, $\mathsf{E}(\xi\eta|\mathcal{G})=\eta\mathsf{E}(\xi|\mathcal{G})$ почти наверное по свойству математического ожидания.

Так как доказали для индикаторов, то доказали и для любой простой функции. Теперь пусть η — произвольная случайная величина. Возьмем последовательно простых \mathcal{F}_{η} -измеримых случайных величин $\eta_n: |\eta_n| \leq |\eta|$ и $\eta_n \xrightarrow{\text{п.н.}} \eta$. По свойству $\theta \in (\xi \eta|\mathcal{G}) = \eta_n \mathsf{E}(\xi|\mathcal{G})$, то есть $\theta \in (\xi \eta|\mathcal{G}) = \eta_n \mathsf{E}(\xi|\mathcal{G})$ почти наверное.

Теорема (о наилучшем квадратичном прогнозе). Пусть ξ — случайная величина, \mathcal{G} — подо-алгебра \mathcal{F} . Обозначим $\mathcal{A}_{\mathcal{G}} = \{\eta | \eta - \mathcal{G}$ -измеримая сл. вел. $\}$. Тогда $\inf_{\eta \in \mathcal{A}_{\mathcal{G}}} \mathsf{E}(\xi - \eta)^2 = \mathsf{E}\big(\xi - \mathsf{E}(\xi | \mathcal{G})\big)^2$.

 \blacktriangle Пусть $\eta \in \mathcal{A}_{\mathcal{G}}$, тогда

$$\begin{split} \mathsf{E}(\xi-\eta)^2 &= \mathsf{E}\big(\xi-\mathsf{E}(\xi|\mathcal{G})+\mathsf{E}(\xi|\mathcal{G})-\eta\big)^2 = \\ &= \mathsf{E}\big(\xi-\mathsf{E}(\xi-\mathsf{E}(\xi|\mathcal{G})\big)^2+\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})-\eta\big)^2+2\mathsf{E}\Big(\big(\xi-\mathsf{E}(\xi|\mathcal{G})\big)\big(\mathsf{E}(\xi|\mathcal{G})-\eta\big)\Big). \end{split}$$

Пусть $\varkappa \equiv \xi - \mathsf{E}(\xi|\mathcal{G}), \ \psi \equiv \mathsf{E}(\xi|\mathcal{G}) - \eta$. Рассмотрим $\mathsf{E}(\varkappa\psi)$, по свойству 2 это равно $\mathsf{E}\big(\mathsf{E}(\varkappa\psi|\mathcal{G})\big)$, а по свойству 3, это можно переписать, как $\mathsf{E}\big(\psi\mathsf{E}(\varkappa|\mathcal{G})\big)$. Но $\mathsf{E}(\varkappa|\mathcal{G}) = \mathsf{E}\big((\xi - \mathsf{E}(\xi|\mathcal{G}))\big|\mathcal{G}\big) = 0$, следовательно, $\mathsf{E}(\varkappa\psi) = 0$. Значит $\mathsf{E}(\xi - \eta)^2 = \mathsf{E}\big(\xi - \mathsf{E}(\xi|\mathcal{G})\big)^2 + \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) - \eta\big)^2 \geqslant \mathsf{E}\big(\xi - \mathsf{E}(\xi|\mathcal{G})\big)^2$.

7 Лекция от 31.03.2018

Условные распределения

Определение. Пусть $A \in \mathcal{F}$, тогда по определению $\mathsf{P}(A|\mathcal{G}) = \mathsf{E}(I_A|\mathcal{G}), \, \mathcal{G} \subset \mathcal{F}$. Если ξ, η — случайные величины на $(\Omega, \mathcal{F}, \mathsf{P})$, то $\mathsf{E}(\xi|\eta) = \mathsf{E}(\xi|\mathcal{F}_{\eta})$.

Определение. Величиной $\mathsf{E}(\xi|\eta=y)$ называется такая борелевска функция $\varphi(y),$ что $\forall B\in\mathscr{B}(\mathbb{R}): \mathsf{E}(\xi\cdot I(\eta\in B)=\int\limits_{B}\varphi(y)\mathsf{P}_{\eta}(dy).$

Лемма. Если $\mathsf{E}\xi$ существует, то $\mathsf{E}(\xi|\eta=y)$ существует и единственно почти наверное относительно P_{η} .

▲ Рассмотрим $\psi(B) = \mathsf{E}\big(\xi \cdot I(\eta \in B)\big)$ — заряд на $\big(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\eta}\big)$, потому что $\psi(B)$ σ -аддитивна по свойству интеграла Лебега и конечна, так как $\mathsf{E}(\xi) < +\infty$. ψ абсолютно непрерывна относительно P_{η} , так как если $\mathsf{P}_{\eta}(B) = 0$, то $I(\eta \in B) = 0$ почти наверное, следовательно, $\mathsf{E}\big(\xi \cdot I(\eta \in B)\big) = 0$, а, значит, выполнены условия теоремы Радона-Никодима, то есть существует и единственна почти наверное случайная величина φ на $\big(\mathbb{R}, \mathscr{B}(\mathbb{R}), P_{\eta}\big)$ (борелевская функция) такая, что $\psi(B) = \int\limits_{\mathcal{B}} \varphi(y) \mathsf{P}_{\eta}(dy)$. ■

Лемма. $\mathsf{E}(\xi|\eta=y)=\varphi(y)$ тогда и только только тогда, когда $\mathsf{E}(\xi|\eta)=\varphi(\eta)$ почти наверное.

 \blacktriangle Пусть $B \in \mathscr{B}(\mathbb{R})$, тогда $\mathsf{E}\big(\mathsf{E}(\xi|\eta) \cdot I(\eta \in B)\big) = \mathsf{E}\big(\xi \cdot I(\eta \in B)\big) = \int_{\mathbb{R}} \varphi(y) \mathsf{P}_{\eta}(dy)$.

По теореме о замене переменных в интеграле Лебега это можно переписать, как $\int \varphi(\eta) d\mathsf{P} = \mathsf{E}\big(\varphi(\eta)\cdot I(\eta\in B)\big)$, что равносильно условию $\mathsf{E}(\xi|\eta) = \varphi(\eta)$ почти $\{\eta\in B\}$ наверное по Свойству. Обратно аналогично, по тем же равенствам.

Следствие. Пусть $\xi - \mathcal{F}_{\eta}$ -измеримая случайная величина, тогда существует борелевская функция $\psi(x)$ такая, что $\xi = \psi(x)$ почти наверное.

A Так как $\xi - \mathcal{F}_{\eta}$ -измеримая, то по свойству 1 $\xi = \mathsf{E}(\xi|\eta)$ почти наверное. С другой стороны, так как существует единственная $\psi(x): \psi(x) = \mathsf{E}(\xi|\eta = x)$, то $\xi = \mathsf{E}(\xi|\eta) = \psi(\eta)$.

Определение. Условным распределением случайной величины ξ при условии $\eta = y$ называется вероятностная мера $\mathsf{P}(\xi \in B || \eta = y) = \mathsf{E}\big(I(\xi \in B) | \eta = y)$. Является мерой на $\mathscr{B}(R)$.

Определение. Условной плотностью случайной величины ξ относительно η называется плотность условного распределения $\mathsf{P}(\xi \in B | \eta = y)$, то есть функция $f_{\xi|\eta}(x|y)$ такая, что $\mathsf{P}(\xi \in B | \eta = y) = \int\limits_{k}^{\infty} f_{\xi|\eta}(x|y) \, dx$.

Теорема (о свойстве условной плотности). Пусть существует условная плотность случайной величины ξ относительно случайной величины η $f_{\xi|\eta}(x|y)$. Тогда для любой борелевской функции g(x) такой, что $\mathsf{E}\big|g(x)$ существует, выполнено $\mathsf{E}\big(g(\xi)|\eta=y\big)=\int\limits_{\mathbb{D}}g(x)f_{\xi|\eta}(x|y)\,dx$ относительно P_{η} почти наверное.

 \blacktriangle Пусть $B \in \mathscr{B}(\mathbb{R})$, пусть также $g(x) = I_A(x), A \in \mathscr{B}(\mathbb{R})$. Тогда

$$\begin{split} \int\limits_{\mathbb{R}} g(x) \cdot f_{\xi|\eta}(x|y) \, dx &= \int\limits_{\mathbb{R}} I_A(x) \cdot f_{\xi|\eta}(x|y) \, dx = \int\limits_{A} \cdot f_{\xi|\eta}(x|y) \, dx = \\ &= \mathsf{P}(\xi \in A|\eta = y) = \mathsf{E}\big(I(\xi \in A)|\eta \in y) = \mathsf{E}\big(g(\xi)|\eta = y)\big). \end{split}$$

Так как доказали для индикаторов, то доказали и для всех простых функций g(x). Далее с помощью теоремы Лебега для условных математических ожиданий доказываем для всех g(x). ($\mathsf{E}(\xi_n|\eta) \xrightarrow{\mathrm{n.h.}} \mathsf{E}(\xi|\eta)$, где $\xi_n \xrightarrow{\mathrm{n.h.}} \to \xi$, ξ_n —простые)

Теорема (о виде условной плотности). Пусть ξ и η — случайные величины такие, что существует их совместная плотность $f_{(\xi,\eta)}(x,y)$. Пусть $f_{\eta}(y)$ — плотность случайной величины η , тогда функция

$$\varphi(x,y) = \frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)} \cdot I(f_{\eta}(y) > 0)$$

есть условная плотность $f_{\xi|\eta}(x|y)$.

 \blacktriangle Для любых $A \in \mathscr{B}(\mathbb{R}), B \in \mathscr{B}(\mathbb{R})$ выполнено

$$P(\xi \in B, \eta \in A) = \int_{B \bowtie A} f_{(\xi, \eta)}(x, y) \, dx \, dy = \int_{A} \left(\int_{B} \frac{f_{(\xi, \eta)}(x, y)}{f_{\eta}(y)} \, dx \right) f_{\eta}(y) \, dy,$$

с другой стороны

$$\mathsf{P}(\xi \in B, \eta \in A) = \mathsf{E}\big(I(\xi \in B, \eta \in A)\big) = \int_{\{\eta \in A\}} I(\xi \in B) \, d\mathsf{P}.$$

Далее по интегральному свойству получаем, что

$$P(\xi \in B, \eta \in A) = \int_{\{\eta \in A\}} E(I(\xi \in B)|\eta) dP,$$

заменяя переменные, окончательно имеем следующее:

$$\begin{split} \mathsf{P}(\xi \in B, \eta \in A) &= \int\limits_A \mathsf{E} \big(I(\xi \in B | \eta = y) \mathsf{P}_{\eta}(dy) = \\ &= \int\limits_A \mathsf{P}(\xi \in B | \eta = y) \mathsf{P}_{\eta} \, dy = \int\limits_A \mathsf{P}(\xi \in B | \eta = y) f_{\eta}(y) \, dy. \end{split}$$

Алгоритм подсчета УМО

- 1. Найти совместную плотность $f_{(\xi,\eta)}(x,y)$, затем $f_{\eta}(y)=\int\limits_{\mathbb{R}}f_{(\xi,\eta)}(x,y)\,dx$, тогда условная плотность $f_{\xi|\eta}(x|y)=\frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)}$.
- 2. Вычислить $\varphi(y) = \mathsf{E}\big(g(\xi)|\eta=y\big) = \int\limits_{\mathbb{R}} g(x) f_{\xi|\eta}(x|y) \, dx.$
- 3. Тогда $\mathsf{E}\big(g(x)|\eta) = \varphi(\eta)$

Виды сходимости случайных величин

Определение. Последовательность $\{\xi_n\}_{n\geqslant 1}$ сходится к случайной величине ξ

- 1. по вероятности $(\xi_n \xrightarrow{\mathsf{P}} \xi)$, если $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : |\xi_n(\omega) \xi(\omega)| \geqslant \varepsilon \big) \xrightarrow[n \to +\infty]{} 0$,
- 2. почти наверное $(\xi_n \xrightarrow{\text{п.н.}} \xi)$, если $P(\omega : \xi_n \to \xi) = 1$,
- 3. в $L_p(\xi_n \xrightarrow{L_p} \xi)$, если $\mathsf{E}|\xi_n|^p < +\infty$, $\mathsf{E}|\xi|^p < +\infty$ и $\mathsf{E}|\xi_n \xi|^p \xrightarrow[n \to +\infty]{} 0 \ (p > 0)$,
- 4. по распределению $(\xi_n \xrightarrow{d} \xi)$, если для любой непрерывной ограниченной функции f(x) выполнено $\mathsf{E} f(\xi_n) \xrightarrow[n \to +\infty]{} \mathsf{E} f(\xi)$.

Теорема (Александрова). $[6/\partial] \xi_n \xrightarrow{d} \xi$ тогда только тогда, когда $F_{\xi_n}(x) \xrightarrow{e \text{ основном}} F_{\xi}(x)$, то есть $F_{\xi_n}(x) \to F_{\xi}(x)$ во всех точках непрерывности функции распределения $F_{\xi}(x)$.

Лемма (критерий сходимости почти наверное). $\xi_n \xrightarrow{n.n.} \xi$ тогда и только тогда, когда $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : \sup_{k \geq n} |\xi_k(\omega) - \xi(\omega)| \geqslant \varepsilon \big) \xrightarrow[n \to +\infty]{} 0.$

Тогда $\{\omega: \xi_n(\omega) \not\to \xi(\omega)\} = \bigcup_{m=1}^{+\infty} A^{\frac{1}{m}} = \{\omega: \exists m \ \forall n \ \exists k \geqslant n: |\xi_k(\omega) - \xi(\omega)| > \varepsilon\}.$ Следовательно,

$$P(\omega : \xi_n(\omega) \not\to \xi(\omega)) = 0 \Leftrightarrow P\left(\bigcup_{m=1}^{+\infty} A^{\frac{1}{m}}\right) = 0 \Leftrightarrow$$
$$\Leftrightarrow \forall m \in \mathbb{N} : P\left(A^{\frac{1}{m}}\right) = 0 \Leftrightarrow \forall \varepsilon > 0 : P(A^{\varepsilon}) = 0,$$

так как всегда существует m, что $\frac{1}{m} \geqslant \varepsilon \geqslant \frac{1}{m+1}$, то есть $A^{\frac{1}{m+1}} \supseteq A^{\varepsilon} \supseteq A^{\frac{1}{m}}$. Но $\bigcup_{k\geqslant n} A_k^{\varepsilon} \downarrow A^{\varepsilon}$, следовательно,

$$\begin{split} 0 &= \mathsf{P}\left(A^{\varepsilon}\right) = \lim_{n \to +\infty} \mathsf{P}\left(\bigcup_{k \geqslant n} A_{k}^{\varepsilon}\right) \Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\bigcup_{k \geqslant n} A_{k}^{\varepsilon}\right) \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow \\ &\Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\omega : \sup_{k \geqslant n} \left|\xi_{k}(\omega) - \xi(\omega)\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0. \end{split}$$

Теорема (взаимоотношения различных видов сходимости).

$$n.H.$$
 L_n
 $P \longrightarrow d$

следовательно, $P(|\xi_n - \xi| \geqslant \varepsilon) \to 0$.

 $(L_p \Rightarrow \mathsf{P})$ $\mathsf{P}(|\xi_n - \xi| \geqslant \varepsilon) = \mathsf{P}(\omega : |\xi_n(\omega) - \xi(\omega)|^p > \varepsilon^p$, а по неравенству Маркова это меньше или равно $\frac{\mathsf{E}|\xi_n(\omega) - \xi(\omega)|^p}{\varepsilon p} \xrightarrow[n \to +\infty]{} 0.$

 $(\mathsf{P}\Rightarrow d)$ Пусть f(x) — ограниченная непрерывная функция, тогда $\exists C\in\mathbb{R}\ \forall x\in\mathbb{R}: |f(x)|\geqslant C.$ Зафиксируем $\varepsilon>0$, возьмем $N\in\mathbb{R}: \mathsf{P}\big(|\xi|>N\big)\leqslant \frac{\varepsilon}{4C}.$ На отрезке $[-N,N]\ f(x)$ равномерно непрерывна, следовательно,

$$\exists \delta > 0 \forall x, y \in \mathbb{R} : \left(|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2} \right).$$

Рассмотрим разбиение Ω :

$$A_{1} = \{\omega : |\xi(\omega)| < N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta\},$$

$$A_{2} = \{\omega : |\xi(\omega)| > N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta\},$$

$$A_{3} = \{\omega : |\xi_{n}(\omega) - \xi(\omega)| > \delta\}.$$

Оценим

$$\left| \mathsf{E} f(\xi_n) - \mathsf{E} f(\xi) \right| \leqslant \mathsf{E} \left| f(\xi_n) - f(\xi) \right| = \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1$$

Пусть $\omega \in A_1$, тогда $\left| f(\xi_n) - f(\xi) \right| \leqslant \frac{\varepsilon}{2}$, следовательно, $\mathsf{E} \left[\left| f(\xi_n) - f(\xi) \right| \cdot I_{A_1} \right] \leqslant \frac{\varepsilon}{2} \cdot \mathsf{E} I_{A_1} = \frac{\varepsilon}{2} \cdot \mathsf{P}(A_1) \leqslant \frac{\varepsilon}{2}$. Если же $\omega \in A_2, A_3$, то $\left| f(\xi_n) - f(\xi) \right| \leqslant 2C$.

Значит,
$$\leq \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(A_2) + 2C \cdot \mathsf{P}(A_3) \leq \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(|\xi| > N) + 2C \cdot \mathsf{P}(|\xi_n - \xi| > \delta) \leq C_1 \varepsilon$$
. Следовательно, $\mathsf{E}f(\xi_n) \to \mathsf{E}f(\xi)$, то есть $\xi_n \stackrel{d}{\to} \xi$.

8 Лекция от 07.04.2018

Контрпримеры

Пример (п.н. $\neq L_p$, а значит, $P \neq L_p$ и $d \neq L_p$). Рассмотрим $\Omega = [0,1]$, $\mathcal{F} = \mathcal{B}([0,1])$, $P = \lambda$. Пусть $\xi_n = e^n \cdot I_{\left[0,\frac{1}{n}\right]}$, $\xi = 0$, тогда $\xi_n \xrightarrow{\text{п.н.}} \xi$, но $\mathsf{E}|\xi_n - \xi|^p = e^{np} \cdot \frac{1}{n} \to +\infty$.

Пример $(L_p \not\Rightarrow \text{ п.н., P} \not\Rightarrow \text{ п.н., } d \not\Rightarrow \text{ п.н.})$. Рассмотрим $\Omega = [0,1], \mathcal{F} = \mathcal{B}\big([0,1]\big),$ $P = \lambda$. Возьмем $\xi_{2^n+i} = I\left(\omega \in \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)\right), \quad i = 0, \dots, 2^n-1; \quad n \in \mathbb{Z}_+$. Тогда $\xi_k \xrightarrow{L_p} 0$ при $k \to +\infty$, так как $\mathsf{E}|\xi_k|^p = \frac{1}{2^n}$, где $n = [\log_2 k]$. Но для любой точки из [0,1] существует бесконечно много ξ_i таких, что $\xi_i(\omega) = 1$ и $\xi_i(\omega) = 0$, следовательно, $\forall \omega : \xi_i(\omega) \xrightarrow[i \to +\infty]{} 0$.

Пример $(d \not\Rightarrow P)$. Пусть $\Omega = \{\omega_1, \omega_2\}$, $P(\omega_i) = \frac{1}{2}$, $\forall n \in \mathbb{Z}_+ : \xi_n(\omega_1) = 1, \xi_n(\omega_2) = 0$. Тогда $\xi_n \sim \text{Bern}\left(\frac{1}{2}\right)$. $\xi(\omega_1) = 1, \xi(\omega_2) = 0$, значит, $\xi \sim \text{Bern}\left(\frac{1}{2}\right)$, следовательно, по теореме Александрова $\xi_n \xrightarrow{d} \xi$, но $P(|\xi_n - \xi| > 0.5) = 1$, значит, $\xi_n \xrightarrow{P} \xi$.

Определение. Последовательность чисел $\{x_n\}$ называется фундаментальной, если $|x_n-x_m|\to 0$ при $n,m\to +\infty$.

Теорема (критерий Коши сходимости числовой последовательности). $[6/\partial]$ Последовательность чисел $\{x_n\}$ сходится тогда и только тогда, когда $\{x_n\}$ фундаментальна.

Теорема (критерий Коши сходимость почти наверное). Последовательно случайных величин $\{\xi_n\}$ сходится почти наверное тогда и только тогда, когда $\{\xi_n\}$ фундаментальна почти наверное, то есть $P(\omega : |\xi_n(\omega) - \xi(\omega)| \to 0) = 1$ при $n, m \to +\infty$.

- \blacktriangle (\Rightarrow) Пусть $\xi_n \xrightarrow{\text{п.н.}} \xi$, тогда, если $\omega \in \{\omega : \xi_n(\omega) \xi(\omega)\}$, то $\omega \in \{\omega : \{\xi_n\} \text{фундаментальная}\}$, следовательно, $\mathsf{P}(\omega : \{\xi_n(\omega)\} \text{фундаментальная}) \geqslant \mathsf{P}(\omega : \xi_n(\omega) \to \xi(\omega)) = 1$.
- (\Leftarrow) Обозначим $A = \{\omega : \{\xi_n\} \Phi$ ундаментальная $\}$. Построим такую случайную величину ξ , что $\xi_n \xrightarrow{\text{п.н.}} \xi$. По критерию Коши для любого $\omega \in A$ у последовательности $\{\xi_n(\omega)\}$ существует предел $\xi(\omega)$. Положим по определению $\xi(\omega) = \lim_{n \to +\infty} \xi_n(\omega) \cdot I_A(\omega)$. Тогда $\xi_n \cdot I_A \to \xi$, то есть ξ случайная величина, как предел случайных величин, и $\mathsf{P}(\omega : \xi_n(\omega) \to \xi(\omega) \to \xi(\omega)) = \mathsf{P}(A) = 1$.

Лемма (критерий фундаментальности почти наверное). [6/d] Последовательность случайных величин $\{\xi_n\}$ фундаментальна почти наверное тогда и только тогда, когда $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : \sup_{k \geqslant n} |\xi_k(\omega) - \xi_n(\omega)| > \varepsilon \big) \xrightarrow[n \to +\infty]{} 0.$

Определение. Пусть $\{A_n\}_{n\in\mathbb{N}}$ — последовательность событий, тогда событием $\{A_n \text{ бесконечно часто (б.ч.})\}$ называется событие $\{\omega: \forall n \exists k \geqslant n: \omega \in A_k\}$, то есть все такие ω , что ω принадлежит бесконечному числу элементов из $\{A_n\}_{n\in\mathbb{N}}$. $\{A_n \text{ б.ч.}\} = \bigcap_{n=1}^{\infty} \bigcup_{k\geqslant n}^{\infty} A_k$.

Лемма (Бореля-Кантелли). 1. Если $\sum_{k=1}^{\infty} \mathsf{P}(A_k) < +\infty, \ mo \ \mathsf{P}(A_n \ \textit{б.ч.}) = 0.$

2. Если
$$\sum_{k=1}^{\infty} P(A_k) = +\infty \ u \ \{A_k\}$$
 независимы в совокупности, то $P(A_n \ б.ч.) = 1$.

▲
$$P(A_n \text{ б.ч.}) = P\left(\bigcap_{n=1}^{\infty}\bigcup_{k\geqslant n}^{\infty}A_k\right)$$
 [≡]. Известно, что $\bigcup_{k\geqslant n}A_n\downarrow\{A_n \text{ б.ч.}\}$, следовательно, по непрерывности вероятностной меры имеем [≡] $\lim_{n\to\infty}P\left(\bigcup_{k\geqslant n}A_k\right)\leqslant\lim_{n\to\infty}\sum_{k\geqslant n}P(A_k)=0.$

Заметим, что
$$P(A_n$$
 б.ч.) = $\lim_{n\to\infty} P\left(\bigcup_{k\geqslant n} A_k\right) = \lim_{n\to\infty} \left(1 - P\left(\bigcup_{k\geqslant n} \overline{A_k}\right)\right)$, но

$$\mathsf{P}\left(\bigcup_{k\geqslant n}\overline{A}\right) = \lim_{N\to\infty}\mathsf{P}\left(\bigcap_{k=n}^{N}\overline{A_{k}}\right) = \lim_{N\to\infty}\prod_{k=n}^{N}\mathsf{P}\left(\overline{A_{k}}\right) = \lim_{N\to\infty}\prod_{k=n}^{N}\left[1-\mathsf{P}(A_{k})\right] \leqslant \\ \leqslant \lim_{N\to\infty}\prod_{k=n}^{N}\mathsf{P}\left(\overline{A_{k}}\right) = \lim_{N\to\infty}\exp\left(-\sum_{k=n}^{N}\mathsf{P}\left(A_{k}\right)\right) = \exp\left(-\sum_{k=n}^{\infty}\mathsf{P}\left(A_{k}\right)\right).$$

Теорема (Рисса). Есть последовательность случайных величин $\{\xi_n\}$ фундаментальна (или сходится) по вероятности, то из нее можно выделить подпоследовательность $\{\xi_{n_k}\}$ фундаментальную (сходящуюся) почти наверное.

▲ Пусть $\{\xi_n\}$ фундаментальна по вероятности, то есть $\forall \varepsilon : \mathsf{P}\big(|\xi_k - \xi_n| > \varepsilon\big) \xrightarrow[n,k \to \infty]{} 0.$ Докажем, что можно выделить подпоследовательность $\{\xi_{n_k}\}$, сходящуюся почти наверное. Пусть $n_1 = 1$. По индукции определим n_k , как наименьшее $n > n_{k-1}$ такое, что $\forall s \geqslant n, t \geqslant n : \mathsf{P}\big(|\xi_t - \xi_s| > 2^{-k}\big) < 2^{-k}$. Тогда $\sum_{k=1}^{\infty} \mathsf{P}\big(|\xi_{n_{k+1}} - \xi_{n_k}| > 2^{-k}\big) < \sum_{k=1}^{\infty} 2^{-k} < +\infty$, следовательно, по лемме Бореля-Кантелли $\mathsf{P}\big(|\xi_{n_{k+1}} - \xi_{n_k}| > 2^{-k}\big) < \sum_{k=1}^{\infty} 2^{-k} < +\infty$. Пусть $\mathsf{N} = \left\{\omega : \sum_{n=1}^{+\infty} \left|\xi_{n_{k+1}}(\omega) - \xi_{n_k}(\omega)\right| = +\infty\right\}$, тогда $\mathsf{P}(N) = 0$. Положим $\xi(\omega) = \left(\xi_{n_1}(\omega) + \sum_{k=1}^{+\infty} \left(\xi_{n_{k+1}}(\omega) - \xi_{n_k}(\omega)\right)\right) \cdot I_{\overline{N}}(\omega)$. Получаем, $\sum_{j=1}^{k} (\xi_{n_j+1} - \xi_{n_j}) + \xi_{n_1} = \xi_{n_{k+1}} \xrightarrow{\text{п.н.}} \xi$.

Пусть теперь $\xi_n \xrightarrow{\mathsf{P}} \xi$, тогда

$$\mathsf{P}\big(|\xi_m - \xi_n| \geqslant \varepsilon\big) \leqslant \mathsf{P}\left(|\xi_n - \xi| \geqslant \frac{\varepsilon}{2}\right) + \mathsf{P}\left(|\xi_m - \xi| \geqslant \frac{\varepsilon}{2}\right) \xrightarrow[n, m \to \infty]{} 0.$$

Следовательно, из сходимости по вероятности следует фундиментальность по вероятности, а дальше все тоже самое.

Теорема (критерий коши сходимости по вероятности). $\xi_n \stackrel{P}{\to} \xi$ тогда и только тогда, когда $\{\xi_n\}$ фундаментальна по веростности.

 \blacktriangle (\Rightarrow) Следует из теоремы Рисса.

 (\Leftarrow) Если $\{\xi_n\}$ фундаментально по вероятности, то по теореме Рисса существует подпоследовательность $\{\xi_{n_k}\}$ такая, что $\xi_{n_k} \xrightarrow{\text{п.н.}}$, то есть $\xi_{n_k} \xrightarrow{\text{Р}}$. Тогда $\mathsf{P}(|\xi_n - \xi| \geqslant \varepsilon) \leqslant \mathsf{P}(|\xi_n - \xi_{n_k}| \geqslant \frac{\varepsilon}{2}) + \mathsf{P}(|\xi_{n_k} - \xi_k| \geqslant \frac{\varepsilon}{2}) \xrightarrow[n \to +\infty]{0, \text{т.к. сход.}} 0.$

Теорема (Неравенство Колмогорова). Пусть ξ_1, \ldots, ξ_n — независимые случайные величины такие, что $\mathsf{E}\xi_i = 0$, $\mathsf{D}\xi_i < +\infty$. Обозначим $S_n = \sum\limits_{i=1}^n \xi_i$. Тогда $\forall \varepsilon > 0 : \mathsf{P}\left(\max_{1 \leqslant k \leqslant n} |S_k| \geqslant \varepsilon\right) \geqslant \frac{\mathsf{E}S_n^2}{\varepsilon^2}$.

▲ Обозначим $A = \{ \max_{1 \leqslant k \leqslant n} |S_k| \geqslant \varepsilon \}$. Разобьем A на несколько непересекающихся событий, то есть $A_k = \{ |S_k| \geqslant \varepsilon \}$ и $\forall i \leqslant k-1 : |S_k| \leqslant \varepsilon$, следовательно, $A = \bigsqcup_{k=1}^n A_k$. Тогда

$$\begin{split} \mathsf{E}(S_n^2 \cdot I_{A_k}) &= \mathsf{E} \big((S_k + \underbrace{\xi_{k+1} + \ldots + \xi_n})^2 \cdot I_{A_k} \big) = \\ &= \mathsf{E}(S_k^2 \cdot I_{A_k}) + \mathsf{E} \left(\overline{S_k}^2 \cdot I_{A_k} \right) + 2\mathsf{E} \left(S_k \overline{S_k} \cdot I_{A_k} \right) \boxed{\equiv}. \end{split}$$

Рассмотрим

$$\mathsf{E}\big(\underbrace{S_k\cdot I_{A_k}}_{\sigma\{\xi_1,\dots,\xi_k\} \ - \ \text{измер.}} \cdot \underbrace{\overline{S_k}}_{\sigma\{\xi_{k+1},\dots,\xi_n\} \ - \ \text{измер.}}\big).$$

Следовательно, $S_k \cdot I_{A_k} \perp \!\!\! \perp \overline{S_k}$, так как $\{xi_1, \dots, \xi_k\} \perp \!\!\! \perp \{\xi_{k+1}, \dots, \xi_n\}$, а, значит, $\mathsf{E}(S_k \cdot I_{A_k} \cdot \overline{S_k}) = \mathsf{E}(S_k \cdot I_{A_k}) \cdot \mathsf{E} \overline{S_k} = 0$. Отсюда

$$\mathsf{E}(S_k^2 \cdot I_{A_k}) + \mathsf{E}\left(\overline{S_k}^2 \cdot I_{A_k}\right) \geqslant \mathsf{E}(S_k^2 \cdot I_{A_k}) \geqslant \varepsilon^2 \cdot \mathsf{E}I_{A_k} = \varepsilon^2 \cdot \mathsf{P}(A_k).$$

В итоге,

$$\mathsf{E} S_n^2 \geqslant \mathsf{E} (S_n^2 \cdot I_A) = \sum_{k=1}^n \mathsf{E} (S_k \cdot I_{A_k}) \geqslant \sum_{k=1}^n \mathsf{P} (A_k) \cdot \varepsilon^2 = \mathsf{P} (A) \cdot \varepsilon^2.$$

9 Лекция от 14.04.2018

Теорема (Колмогорова-Хинчина о сходимости ряда). Пусть $\{\xi_n\}_{n\geqslant 1}$ — последовательность независимых случайных величин такая, что $\mathsf{E}\xi_n = u \; \mathsf{E}\xi^2 < +\infty$. Тогда, если $\sum_{n=1}^\infty \mathsf{E}\xi_n^2 < +\infty$, то $\sum_{n=1}^\infty \xi_n \; cxoдится$ почти наверное.

▲ Обозначим $S_n = \sum_{k=1}^n \xi_k$. По критерию Коши $\left\{\sum_{n=1}^\infty$ сходится п.н. $\right\}$ равносильно тому, что $\left\{S_n\right\}$ фундаментально п.н. $\left\{S_n\right\}$, а это в свою по критерию фундаментальности равносильно тому, что

$$\forall \varepsilon > 0 : \mathsf{P}\left(\sup_{k \geqslant n} |S_k - S_n| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Очевидно,

$$\mathsf{P}\left(\sup_{k\geqslant n}|S_k-S_n|\geqslant\varepsilon\right)=\mathsf{P}\left(\bigcup_{k\geqslant n}\left\{|S_k-S_n|\geqslant\varepsilon\right\}\right),$$

а из непрерывности вероятностной меры следует, что

$$\lim_{N\to+\infty} \mathsf{P}\left(\bigcup_{k=n}^{N} \left\{ |S_k - S_n| \geqslant \varepsilon \right\} \right) = \lim_{N\to+\infty} \mathsf{P}\left(\max_{n\leqslant k\leqslant N} |S_k - S_n| \geqslant \varepsilon \right).$$

По неравенство Колмогорова это меньше или равно, чем

$$\lim_{N\to+\infty} \frac{\mathsf{E}(S_N-S_n)^2}{\varepsilon^2} = \lim_{N\to+\infty} \frac{1}{\varepsilon^2} \sum_{k=n+1}^N \mathsf{E}\xi_k^2 = \frac{1}{\varepsilon^2} \sum_{k>n} \mathsf{E}\xi_k^2 \xrightarrow[n\to+\infty]{} 0.$$

Лемма (Тёплица). Пусть $x_n \to x$ — числовая последовательность, числа $\{a_n\}_{n\geqslant 1}$ таковы, что $\forall n: a_n\geqslant 0$ и $b_n=\sum\limits_{k=1}^n a_k\uparrow +\infty$. Тогда $\frac{1}{b_n}\sum\limits_{i=1}^n a_ix_i\xrightarrow[n\to +\infty]{}0$.

Δ Пусть $\varepsilon > 0$. Выберем n_0 так, что $\forall n > n_0 : |x_n - x| \leqslant \frac{\varepsilon}{2}$. Выберем $n_1 > n_0$ такое, что $\frac{1}{b_n} \sum_{k=1}^{n_0} a_k |x_k - x| \leqslant \frac{\varepsilon}{2}$, тогда

$$\forall n > n_1 : \left| \frac{1}{b_n} \sum_{k=1}^n a_k x_k - x \right| = \left| \frac{1}{b_n} \sum_{k=1}^n a_k x_k - \frac{1}{b_n} \sum_{k=1}^n a_k x \right| \leqslant \frac{1}{b_n} \sum_{k=1}^n a_k |x_k - x| =$$

$$= \frac{1}{b_n} \sum_{k=1}^{n_0} a_k |x_k - x| + \frac{1}{b_n} \sum_{k=n_0+1}^n a_k |x_k - x| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{1}{b_n} \sum_{k=n_0+1}^n a_k \leqslant \varepsilon.$$

Лемма (Кронекера). Пусть ряд $\sum_{n=1}^{\infty} x_n \, cxo \partial umc$ я, $\{a_n\}_{n\geqslant 1} \, maкова, \, umo \, a_n\geqslant 0$, $b_n=\sum_{k=1}^n a_k\uparrow +\infty$. Тогда $\frac{1}{b_n}\sum_{k=1}^n a_kx_k\xrightarrow[n\to +\infty]{}0$.

$$\blacktriangle$$
 Пусть $S_n = \sum_{k=1}^n x_k$, тогда $S_n \xrightarrow[n \to +\infty]{} S = \sum_{k=1}^\infty x_k$. Заметим,

$$\sum_{j=1}^{n} b_j x_j = \sum_{j=1}^{n} b_j (S_j - S_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} (b_j - b_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} a_j.$$

Следовательно,

$$\frac{1}{b_n}\sum_{k=1}^n a_k x_k = S - \frac{1}{b_n}\sum_{j=1}^n S_{j-1}a_j \xrightarrow[n \to +\infty]{} 0.$$

Теорема (усиленный закон больших чисел в форме Колмогорова-Хинчина). Пусть $\{\xi_n\}_{n\geqslant 1}$ — независимые случайные величины, $\forall n: \mathsf{D}\xi_n < +\infty$. Пусть $\{b_n\}_{n\geqslant 1}$ — числовая последовательность, $b_1>0$ и $b_n\uparrow+\infty$, причем $\sum\limits_{n=1}^{\infty}\frac{\mathsf{D}\xi_n}{b_n^2}<+\infty$. Пусть $S_n=\sum\limits_{i=1}^n\xi_i$, тогда $\frac{S_n-\mathsf{E}S_n}{b_n}\xrightarrow[n\to+\infty]{n.n.}0$.

▲ Преобразуем:

$$\frac{S_n - \mathsf{E} S_n}{b_n} = \frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E} \xi_i}{b_i}.$$

Обозначим $\eta_i = \frac{\xi_i - \mathsf{E} \xi_i}{b_i}$. Случайные величины η_i независимы и $\mathsf{E} \eta_i = 0$. Значит,

$$\sum_{i=1}^{\infty} \mathsf{E} \eta_i^2 = \sum_{i=1}^{\infty} \frac{\mathsf{E} (\xi_i - \mathsf{E} \xi_i)^2}{b_i^2} = \sum_{i=1}^{\infty} \frac{\mathsf{D} \xi_i}{b_i^2} < +\infty.$$

Следовательно, по теореме Колмогорова-Хинчина о сходимости ряда $\sum \eta_i$ сходится почти наверное. По лемме Кронекера последовательность

$$\frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E}\xi_i}{b_i}$$

сходится к нулю для всех ω , для которых сходится ряд

$$\sum_{i=1}^{\infty} \frac{\xi_i - \mathsf{E}\xi_i}{b_i} = \sum_{i=1}^{\infty} \eta_i$$

сходится. Следовательно,

$$\frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E} \xi_i}{b_i} = \frac{S_n - \mathsf{E} S_n}{b_n} \xrightarrow[n \to \infty]{\text{\tiny II.H}} 0.$$

Лемма. Пусть $\xi \geqslant 0$, $\mathsf{E}\xi < +\infty$, тогда

lack

$$\sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n) \leqslant \mathsf{E}\xi \leqslant 1 + \sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n).$$

 $\sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n) = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} \mathsf{P}(k \leqslant \xi \leqslant k+1) = \sum_{k=1}^{\infty} \sum_{n=1}^{k} \mathsf{P}(k \leqslant \xi \leqslant k+1) =$ $= \sum_{k=0}^{\infty} k \cdot \mathsf{P}(k \leqslant \xi \leqslant k+1) = \sum_{k=0}^{\infty} \mathsf{E}(k \cdot I(k \leqslant \xi \leqslant k+1)) =$ $= \sum_{k=0}^{\infty} \mathsf{E}(\lfloor \xi \rfloor) \cdot I(k \leqslant \xi \leqslant k+1) \leqslant \sum_{k=0}^{\infty} \mathsf{E}(\xi \cdot I(k \leqslant \xi \leqslant k+1)) =$ $= \mathsf{E}\left(\xi \cdot \sum_{k=0}^{\infty} I(k \leqslant \xi \leqslant k+1)\right) = \mathsf{E}\xi.$

Верхнее неравенство доказывается аналогично.

Определение. Случаные величины ξ и η одинаково распределены, если $\forall x$: $F_{\xi}(x) = F_{\eta}(x)$. Обозначают $\xi \stackrel{d}{=} \eta$.

Утверждение. Если $\xi \stackrel{d}{=} \eta$, то $\forall g(x) : \mathsf{E} g(\xi) = \mathsf{E} g(\eta)$.

$$\blacktriangle \ \mathsf{E}g(\xi) = \int g(x) \, dF_{\xi}(x) = \int g(x) \, dF_{\eta}(x) = \mathsf{E}g(\eta).$$

Теорема (Усиленный закон больших чисел в форме Колмогорова). *Пусть* $\{\xi_n\}_{n\in\mathbb{N}}$ — независимые одинаково распределенные случайные величины такие, что $\mathsf{E}|\xi_1|<+\infty$. Тогда

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow[n \to \infty]{n.n.} 0.$$

 $lacksymbol{\Delta}$ Поскольку $\mathsf{E}|\xi_1|<+\infty,$ то по предыдущей лемме $\sum\limits_{n=1}^\infty \mathsf{P}ig(|\xi_1|\geqslant nig)<+\infty.$

Так как $\xi_1 \stackrel{d}{=} \xi_n$, то $\sum_{n=1}^{\infty} \mathsf{P} \big(|\xi_n| \geqslant n \big) < +\infty$, следоватально, по лемме Бореля-Кантелли $\mathsf{P} \Big(\big\{ |\xi_n| \geqslant n \big\}$ б.ч. $\Big) = 0$. То есть с вероятностью 1 случается конечное

число $\{|\xi_n|\geqslant n\}$. Обозначим $\tilde{\xi}_n\equiv \xi_n\cdot I\{|\xi_n|\leqslant n\}$. Тогда с вероятность 1 $\xi_n=\tilde{\xi}_n$ кроме конечного числа ξ_n . Пусть $\mathsf{E}\xi_i=0$, если это не так, то $\eta_i=\xi_i-\mathsf{E}\xi_i$. Получаем, что

$$\mathsf{P}\left(\frac{\xi_n+\ldots+\xi_n}{n}\to 0\right)=\mathsf{P}\left(\frac{\tilde{\xi}_1+\ldots+\tilde{\xi}_n}{n}\to 0\right).$$

Рассмотрим

$$\mathsf{E}\tilde{\xi}_n = \mathsf{E}\Big(\xi_n \cdot I\big\{|\xi_n| \leqslant n\big\}\Big) = \mathsf{E}\Big(\xi_1 \cdot I\big(|\xi_1| \leqslant n\big\}\Big) \to \mathsf{E}\xi_1 = 0$$

по теореме Лебега о мажорируемой ходимости, поскольку

$$\left|\xi_1 \cdot I(|\xi_1| \leqslant n)\right| \leqslant \xi_1 \quad \text{if } \xi_1 \cdot I(|\xi_1| \leqslant n) \xrightarrow[n \to \infty]{\text{II.H.}} \xi_1.$$

По лемме Тёплица

$$\frac{1}{n}\sum_{i=1}^{n}\mathsf{E}\tilde{\xi}_{i}\to\mathsf{E}\xi_{1}=0\quad\Rightarrow\quad\frac{\sum\limits_{i=1}^{n}\tilde{\xi}_{i}}{n}\xrightarrow[n\to\infty]{^{\mathrm{II.H.}}}0\quad\Leftrightarrow\quad\frac{\sum\limits_{i=1}^{n}\left(\tilde{\xi}_{i}-\mathsf{E}\tilde{\xi}_{i}\right)}{n}\xrightarrow[n\to\infty]{^{\mathrm{II.H.}}}0.$$

Обозначим $\bar{\xi}_n = \tilde{\xi}_n - \mathsf{E}\tilde{\xi}_n$. По лемме Кронекера, если сходится $\sum_{k=1}^\infty \frac{\xi_k}{k}$ на какомто ω , то $\frac{1}{n}\sum_{k=1}^n k\cdot \frac{\bar{\xi}_k}{k} \xrightarrow[n \to +\infty]{} 0$ на том же ω . Проверим, что $\sum_{k=1}^\infty \frac{\bar{\xi}_k}{k}$ сходится почти наверное. По теормере Колмогорова-Хинчина доскаточно показать, что $\sum_{k=1}^\infty \frac{\mathsf{E}\left(\bar{\xi}_k\right)^2}{k^2} < +\infty$.

$$\sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\overline{\xi}_{k}\right)^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\tilde{\xi}_{k} - \mathsf{E}\tilde{\xi}_{k}\right)^{2}}{k^{2}} \leqslant \sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\tilde{\xi}_{k}\right)^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathsf{E}\left(\xi_{k}^{2} \cdot I(|\xi_{k}| \leqslant k)\right) = \sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathsf{E}\left(\xi_{1}^{2} \cdot I(|\xi_{1}| \leqslant k)\right) = \sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathsf{E}\left(\xi_{1}^{2} \cdot \sum_{n=1}^{k} I(n-1 < |\xi_{1}| \leqslant n)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) \cdot \sum_{k=n}^{\infty} \frac{1}{k^{2}} \leqslant \sum_{n=1}^{\infty} \frac{2}{n} \cdot \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) \leqslant 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n)\right) = 2 + \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I(n-1 < |\xi_{1}| \leqslant n\right)$$

Теорема (Беппо-Леви). Пусть $\{\xi_n\}_{n\geqslant 1}$ — случайные величины, $\forall n:\xi_n\geqslant 0$. Тогда $\mathsf{E}\sum_{n=1}^\infty \xi_n=\sum_{n=1}^\infty \mathsf{E}\xi_n$.

▲ Пусть $S_n = \sum_{k=1}^n \xi_k$, тогда $S_n \uparrow S = \sum_{k=1}^\infty \xi_k$. По теореме о монотонной сходимости $\mathsf{E} \sum_{k=1}^n \xi_k \xrightarrow[n \to +\infty]{} \mathsf{E} \sum_{k=1}^\infty \xi_k$, следовательно,

$$\mathsf{E} \sum_{k=1}^n \xi_k = \sum_{k=1}^n \mathsf{E} \xi_k \uparrow \mathsf{E} \sum_{k=1}^\infty \mathsf{E} \xi_k.$$

- 10 Лекция от 21.04.2018
- 11 Лекция от 28.04.2018