

Linguagens Formais e Programação

Aula 3 – Teoria das Linguagens Formais

Prof. Flávio Ceci, Dr.

flavio.ceci@unisul.br

1

Introdução

- O que é linguagem?
 - Uma linguagem como sendo uma forma de comunicação;
 - Um conjunto de elementos (símbolos) e um conjunto de métodos (regras) para combinar estes elementos, usado e entendido por uma determinada comunidade
 - 1. Linguagens Naturais (ou idiomáticas)
 - 2. Linguagens de Programação, de Controle, de Consulta
 - 3. Protocolos de Comunicação

Fonte: Furtado

- Alfabeto (ou vocabulário)
 - É um conjunto finito, não vazio, de símbolos (elementos);
 - Exemplos:
 - ∑ = {a, b, c,...,z}
 - $\Sigma = \{0, 1\}$
 - $\Sigma = \{a, e, i, o, u\}$

Fonte: Furtado

3

Conceitos Básicos

- Sentenças, palavras ou cadeia
 - Uma sentença sobre um alfabeto ∑, é uma sequência (ou cadeia) finita de símbolos do alfabeto.
 - Exemplo de sentenças sobre $\Sigma = \{a, b\}$:
 - a, b, aa, ab, bb, aaa, aab, aba, baa, ...

Fonte: Furtado

- Tamanho de uma sentença (palavra):
 - Seja w uma sentença.
 - O tamanho da sentença w, denotado por |w|, é definido pelo número de símbolos (elementos do alfabeto) que compõem w.
 - Exemplos:
 - Seja ∑ = { a , b , c }
 se x = aba, então |x| = 3
 se x=c, então |x|=1

Fonte: Furtado

5

Conceitos Básicos

- Sentença vazia:
 - É uma sentença constituída de nenhum símbolo;
 isto é, uma sentença de tamanho 0 (zero).
 - Observações:
 - Representaremos a sentença vazia por ε (épsolon).
 - Por definição, $|\varepsilon| = 0$

Fonte: Furtado

- Potência de uma sentença:
 - Seja w uma sentença.
 - A n-ésima potência de \underline{w} , representada por w^n , significa \underline{w} repetido \underline{n} vezes.
 - Exemplos:
 - se x = ab, então x^3 = ababab
 - Para x, $x^0 = \varepsilon$

Fonte: Furtado

7

Conceitos Básicos

- Prefixo, Sufixo e Subpalavra:
 - Prefixo de uma palavra é qualquer sequência inicial de símbolos da palavra.
 - Sufixo de uma palavra é qualquer sequência final de símbolos da palavra.
 - Subpalavra é qualquer sequência contígua de símbolos da palavra.
 - Exemplo: Identificar os prefixos, sufixos e subpalavras de "aaba".

ε, a, aa, aab, aaba

 ε , a, ba, aba, aaba

ε, a, b, aa, ab, ba, aab, aba, aaba

Fonte: PALAZZO apud CASTIÑEIRA (2017)

- Fechamento de um Alfabeto:
 - Seja ∑ um alfabeto.
 - O <u>fechamento reflexivo</u> (ou simplesmente fechamento) de ∑, representado por ∑*, é dado pelo conjunto de todas as possíveis sequências que podem ser formadas a partir de ∑, inclusive a sentença vazia.
 - O <u>fechamento transitivo</u> (ou fechamento positivo) de Σ , representado por Σ^+ , é dado por Σ^* { ϵ }.

Fonte: Furtado

9

Conceitos Básicos

- Fechamento de um Alfabeto:
 - Exemplos:
 - Seja $\Sigma = \{0, 1\}$, temos que:
 - $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 11, 000,...\}$
 - $\Sigma^+ = \{0, 1, 00, 01, 11, 000, ...\}$

Fonte: Furtado

Fonte: Furtado (2014)

11

Linguagem e suas Representações

- Linguagem:
 - Uma linguagem L sobre um alfabeto Σ , é um subconjunto de Σ *; isto é, $L \subseteq \Sigma$ *
- Representações de Linguagens:
 - O estudo de linguagens está intimamente relacionado ao estudo das formas de representação dessas linguagens. O problema de representação de uma linguagem, por sua vez, está relacionado com o fato dela ser finita ou infinita

- Linguagem Finita:
 - É uma Linguagem que pode ser representada por enumeração.
 - Exemplo: A linguagem definida como sendo o conjunto dos inteiros positivos pares maiores que 0 e menores que 20, pode ser representado por:

 $L = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}.$

13

Linguagem e suas Representações

- · Linguagem Infinita:
 - Neste caso, na impossibilidade de usarmos enumeração, precisamos encontrar uma representação finita para estas linguagens.
 - Exemplo: A linguagem definida como sendo o conjunto dos inteiros pares poderia ser representada por ∑ ={2, 4, 6, 8, 10,...} que, que apesar de intuitiva, não é finita e nem precisa.

• Reconhecedores:

- São dispositivos formais que nos permitem verificar se uma determinada sentença pertence ou não a uma determinada linguagem;
 - é uma representação das sentenças de uma linguagem sob o ponto de vista do reconhecimento de tais sentenças.

15

Linguagem e suas Representações

• Reconhecedores:

 Esses dispositivos denominam-se autômatos; autômatos finitos, autômatos de pilha e maquinas de Turing, por exemplo, podem ser destacados como importantes classes de autômatos.

• Sistemas Geradores:

 São dispositivos formais dotados de mecanismos que permitem a geração sistemática das sentenças de uma linguagem (representação sob o ponto de vista da geração das sentenças de uma linguagem).

17

Linguagem e suas Representações

Sistemas Geradores:

- Os principais sistemas geradores disponíveis são as gramáticas, dentre as quais, por exemplo, podemos destacar as gramáticas de CHOMSKY.
- Observações: Todo reconhecedor e todo sistema gerador pode ser representado por algoritmos e/ou procedures.

- Linguagens Formais:
 - São linguagens que podem ser representadas de maneira finita e precisa através de sistemas com sustentação matemática (dispositivos formais ou modelos matemáticos).

19

Linguagens Formais

Fonte: PALAZZO apud CASTIÑEIRA (2017)

- É um conjunto de palavras sobre um alfabeto.
- Exemplos:
 - {}, { ϵ }, {a, b, aa, ab, ba, bb, aaa, ...}.
- Aplicações:
 - Modelos dinâmicos, processos de automação, provadores de teoremas, interpretadores, compiladores, lógica temporal, automação, robótica, prototipação, etc.

21

Linguagens Formais

- Concatenação de Palavras
 - Operação binaria, sem representação.
 - É a justaposição de duas ou mais palavras, produzindo uma terceira que é formada pelos símbolos da primeira, na ordem em que ocorrem, seguidos pelos símbolos da segunda, também na ordem em que ocorrem e assim sucessivamente.
 - Exemplo:
 - Se v=aa e w=ba então
 - x=vw=aaba e y=wv=baaa.

- Propriedades da Concatenação
 - Associatividade: v(wt) = (vw)t.
 - Elemento Neutro: $\varepsilon w = w = w \varepsilon$.

```
v=aa, w=b, t=a \rightarrow v(wt) = (vw)t = aaba

u=aaba \rightarrow εu = aaba = uε
```

23

Linguagens Formais

- Concatenação Sucessiva
 - De uma palavra repetidas vezes com ela mesma.
 - Notação: w^n , onde n ≥ 0 é o número de vezes que a palavra é repetida.
 - $-w^3$ = www.
 - $-w^{1}=w$.
 - $-w^0$ = ε, para w ≠ ε.

 $(ab)^3 = ababab$

Gramáticas

- Uma gramática é uma quádrupla, G=(V, T, P, S), onde:
 - V é um conjunto de símbolos variáveis ou não-terminais.
 - T é um conjunto de símbolos terminais, disjunto de V.
 - P é um conjunto finito de regras de produção.
 - S é um elemento de V denominado "variável inicial".

Exemplo:

G = (V = {S, X},
T = {a, b},
P = {S
$$\rightarrow$$
 a | aX,
X \rightarrow b | bX},
S).

25

Linguagens Formais

- Regras de Produção
 - São pares do tipo (a, b), representados por a → b, onde a ∈ $(V \cup T)^+$ e b ∈ $(V \cup T)^*$.
 - Definem as condições de geração das palavras da linguagem.
 - Abreviação: a → b1, a → b2, ..., a → b_n por a → $b_1 \mid b_2 \mid ... \mid b_n$.
 - A aplicação de uma regra de produção chama-se uma derivação.

 $P = \{S \rightarrow aX | bX, X \rightarrow a|b|X\}$

- Derivação
 - Seja G=(V,T,P,S) uma gramática. Uma derivação é um par da relação denotada por →, com domínio em $(V \cup T)^+$ e contradomínio em $(V \cup T)^*$.
 - Um par (a,b) da relação é denotado de forma a →
 b.
 - Sequência de Derivação:

```
Seja G=(V,T,P,S)=({S,X},{a,b},{S→aS|X,X→ba|X},S).

Uma seqüência de derivação para produzir a palavra "aaba" nesta gramática é: S → as → aaS → aaX → aaba.
```

27

Linguagens Formais

- Definição Indutiva de Derivação
 - Para toda produção da forma S → b, onde S é o símbolo inicial de G, tem-se que S → b.
 - Para todo par a → b, onde b=uvw, se v → t é regra de P, então a → utw.
 - Portanto uma derivação é a substituição de uma subpalavra, de acordo com uma regra de produção.

- Notação
 - →* Zero ou mais passos de derivação sucessivos.
 - → + Um ou mais passos de derivação sucessivos.
 - \rightarrow^n Exatamente n passos de derivação sucessivos.
 - Uma gramatica é um formalismo gerador, pois permite derivar (gerar) todas as palavras da linguagem que representa.

29

Linguagens Formais

- Linguagem Gerada
 - Seja G=(V,T,P,S) uma gramática.
 - A linguagem gerada pela gramática G, denotada por L(G) ou GERA(G), é composta por todas as palavras formadas por símbolos terminais deriváveis a partir do símbolo inicial S.

$$L(G) = \{ w \in T^* | S \rightarrow^+ w \}.$$

- Linguagem Gerada
 - Exemplo:
 - A gramática abaixo gera o conjunto dos números naturais:

```
G=(V,T,P,S)=(
    {S, D},
    {0,1,...,9},
    {S \rightarrow D|DS, D \rightarrow 0|1|...|9},
    S

Por exemplo, gerar 593:

S \rightarrow DS \rightarrow 5S \rightarrow 5DS \rightarrow 59S \rightarrow 59D \rightarrow 593
```

31

Linguagens Formais

- Gramáticas Equivalentes
 - Duas gramáticas, G1 e G2 são ditas ser equivalentes se e somente se geram a mesma linguagem, isto é:
 - GERA(G1) = GERA(G2).

Exercícios

33

Exercícios

- 1 Informe quais dos conjuntos abaixo são alfabetos:
 - 1. Conjunto dos números inteiros
 - 2. Conjunto dos números primos
 - 3. Conjunto das letras do alfabeto brasileiro
 - 4. Conjunto dos algarismos arábicos
 - 5. Conjunto dos algarismos romanos
 - 6. Conjunto {a, b, c, d}
 - 7. Conjunto das partes de {a, b, c}
 - 8. Conjunto das vogais
 - 9. Conjunto das letras gregas

Exercícios

- 2 Apresente os possíveis prefixos e sufixos de cada uma das seguintes palavras:
 - teoria
 - universidade
 - aaa
 - abccba
 - abcabc

35

Exercícios

3 – Desenvolva uma gramática que gere a seguinte linguagem:

$$\{a^n b^n c^n \mid n \ge 0\}$$

Referencial Teórico

FURTADO, Olinto José Varela. **Linguagens Formais e Compiladores**. (Apostila) UFSC-CTC-INE.

PALAZZO L. M. apud CASTIÑEIRA, M. I. **Conceitos Introdutórios de Linguagens Formais**. Slides de aula, 2017.