

Round 3 2009

A. EZ-Sokoban

B. Alphabetomials

C. Football Team

D. Interesting Ranges

Contest Analysis

Questions asked

Submissions

EZ-Sokoban

7pt Not attempted 231/262 users correct (88%)

10pt Not attempted 158/219 users correct (72%)

Alphabetomials

4pt Not attempted 186/225 users correct (83%)

20pt Not attempted 37/71 users correct (52%)

Football Team

8pt Not attempted 36/138 users correct (26%)

19pt Not attempted 16/36 users correct (44%)

Interesting Ranges

9pt Not attempted 24/41 users correct (59%)

23pt Not attempted
1/3 users correct
(33%)

Top Scores	
bmerry	77
qizichao	77
winger	68
Ahyangyi	68
misof	50
rem	50
kia	50
mystic	50
marek.cygan	50
dzhulgakov	50

Problem B. Alphabetomials

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the <u>Quick-Start Guide</u> to get started.

Small input 4 points

ints Solve B-small

Large input 20 points

Solve B-large

Problem

As we all know, there is a big difference between polynomials of degree 4 and those of degree 5. The question of the non-existence of a closed formula for the roots of general degree 5 polynomials produced the famous Galois theory, which, as far as the author sees, bears no relation to our problem here.

We consider only the multi-variable polynomials of degree up to 4, over 26 variables, represented by the set of 26 lowercase English letters. Here is one such polynomial:

aber+aab+c

Given a string s, we evaluate the polynomial on it. The evaluation gives p(S) as follows: Each variable is substituted with the number of appearances of that letter in S.

For example, take the polynomial above, and let S = "abracadabra edgar". There are six a's, two b's, one c, one e, and three r's. So

Given a dictionary of distinct words that consist of only lower case letters, we call a string S a d-phrase if

$$S = "S_1 S_2 S_3 ... S_d",$$

where S_i is any word in the dictionary, for $1 \le i \le d$. i.e., S is in the form of d dictionary words separated with spaces. Given a number $\mathbf{K} \le 10$, your task is, for each $1 \le d \le \mathbf{K}$, to compute the sum of p(S) over all the d-phrases. Since the answers might be big, you are asked to compute the remainder when the answer is divided by 10009.

Input

The first line contains the number of cases **T**. **T** test cases follow. The format of each test case is:

A line containing an expression p for the multi-variable polynomial, as described below in this section, then a space, then follows an integer \mathbf{K} . A line with an integer \mathbf{n} , the number of words in the dictionary. Then \mathbf{n} lines, each with a word, consists of only lower case letters. No word will be repeated in the same test case.

We always write a polynomial in the form of a sum of terms; each term is a product of variables. We write $a^{\rm t}$ simply as t a's concatenated together. For example, a^2b is written as aab. Variables in each term are always lexicographically non-decreasing.

Output

For each test case, output a single line in the form

where X is the case number starting from 1, and sum_i is the sum of p(S), where S ranges over all i-phrases, modulo 10009.

Limits

$1 \le \mathbf{T} \le 100$.

The string ρ consists of one or more terms joined by '+'. It will not start nor end with a '+'. There will be at most 5 terms for each ρ . Each term consists at least 1 and at most 4 lower case letters, sorted in non-decreasing order. No two terms in the same polynomial will be the same.

Each word is non-empty, consists only of lower case English letters, and will not be longer than 50 characters. No word will be repeated in the same

Small dataset $1 \le \mathbf{n} \le 20$ $1 \le \mathbf{K} \le 5$ Large dataset $1 \le \mathbf{n} \le 100$ $1 \leq \mathbf{K} \leq 10$ Sample Input Output Case #1: 15 1032 7522 6864 253 Case #2: 12 96 576 ehw+hwww 5 where when what whether who whose a+e+i+o+u 3 apple orange watermelon banana

dictionary.

All problem statements, input data and contest analyses are licensed under the Creative Commons Attribution License.

 $@ \ 2008-2017 \ Google \ \ \underline{Google \ Home} - \underline{Terms \ and \ Conditions} - \underline{Privacy \ Policies \ and \ Principles}$

Powered by

Google Cloud Platform