Homework5-DataVis-ggplot

YOUR NAME HERE

DUE: Thursday, March 25

Necessary items:

- libraries: tidyverse, ggsci, ggforce, patchwork, Hmisc
- files: bloom_df.csv, hw_task2_blank.png

Within RStudio you can directly edit these blocks of code and turn in your homework that way with your code and figures printed.

I **HIGHLY** recommend getting your code to work in a normal R script then just copy and pasting the final code over to this document

First: import libraries, set your working directory, and read in bloom_df

```
library(tidyverse)
library(ggforce)
library(ggsci)
library(patchwork)
library(Hmisc)
setwd('~/g/Classes/DataScience/data_vis/') #change to match your ggplot directory
bloom_df <- read.csv('bloom_df.csv')</pre>
```

bloom_df contents

- taxa: genus_species
- genus
- species
- logbodysize
- $\bullet \ \ trophic_position$
- reg: diadromous or non-diadromous

Let's take a peak and look at the structure

bloom_df[1:5,]

##		taxa	genus	species	logbodysize	<pre>trophic_position</pre>
##	1	Alosa_alabamae	Alosa	alabamae	1.707570	0.4313638
##	2	Alosa_alosa	Alosa	alosa	1.778151	0.5563025
##	3	Alosa_fallax	Alosa	fallax	1.778151	0.5563025
##	4	Alosa mediocris	Alosa	mediocris	1.778151	0.6127839

```
##
            reg
## 1 diadromous
## 2 diadromous
## 3 diadromous
## 4 diadromous
## 5 diadromous
str(bloom_df)
## 'data.frame':
                    50 obs. of 6 variables:
                      : Factor w/ 50 levels "Alosa_alabamae",..: 1 2 3 4 5 6 7 8 9 10 ...
##
  $ taxa
   $ genus
                      : Factor w/ 34 levels "Alosa", "Amazonsprattus", ...: 1 1 1 1 1 1 2 3 3 3 ...
##
                      : Factor w/ 48 levels "aestuaria", "alabamae",...: 2 3 19 31 36 39 41 11 13 14 ...
## $ species
                     : num 1.71 1.78 1.78 1.78 1.6 ...
  $ logbodysize
   $ trophic_position: num  0.431 0.556 0.556 0.613 0.544 ...
##
   $ reg
                      : Factor w/ 2 levels "diadromous", "non-diadromous": 1 1 1 1 1 1 2 2 2 2 ...
```

1.602060

0.5440680

Graphical tasks

This next tasks are going to ask you to make a series of figures. For each one, I would like you to make all of them *look good*. Change the theme around, change the axis labels, etc. Additionally, each of these will use the **reg** column which has 2 factors. Change the color and/or shape of them both.

Task 1: Continuous vs. continuous plot

5 Alosa_pseudoharengus Alosa pseudoharengus

Create two scatterplots of logbodysize vs. trophic_position grouped by reg

First plot:

• a 2 trend lines (method = 'lm'), one for each reg variable

```
#plot 1.1
```

Second plot

• a single trend line for the whole model

```
#plot 1.2
```

Task 2: Continuous vs. categorical

The layout will be:

- 2 panels: trophic_position and logbodysize
- x axis: reg
- y axis: value of trophic_position and logbodysize

Create 4 plots:

- bar and error bars (mean and 95% conf. int.)
- point and error bars (mean and 95% conf. int.)
- box plots
- raw data + point and error bars (mean and 95% conf. int.)

All these plots should have the same general layout but change the type of plot to visualize the data.

 $\mathbf{HINT:}$ logbody size and trophic_position need to be turned into long form at

Figure 1: sample layout for task2

```
#plot 2.1

#plot 2.2

#plot 2.3
```

Example layout:

Task 3: layering your plots

Take your two favorite figures that you made and put them together using *patchwork* or *ggarrange*Feel free to make any other figure you want with this data and include it here. Have fun with it, play around.

#plot 3