```
from tabulate import tabulate
import pandas as pd
import numpy as np
Lingyi_TS_Monthly_df = pd.read_csv('/content/MSFT_Stock.csv')
microsoft = pd.read_csv('MSFT_Stock.csv', index_col='Date', parse_dates=['Date'])
microsoft.head()
                         Open High
                                       Low Close
                                                     Volume
                                                              翢
                   Date
     2015-04-01 16:00:00 40.60 40.76 40.31
                                            40.72
                                                   36865322
     2015-04-02 16:00:00 40.66 40.74 40.12
                                            40.29
                                                   37487476
     2015-04-06 16:00:00 40.34
                               41.78 40.18
                                             41.55
                                                   39223692
     2015-04-07 16:00:00
                         41.61
                                41.91
                                      41.31
                                             41.53
                                                   28809375
     2015-04-08 16:00:00 41.48
                               41.69 41.04
                                            41.42 24753438
 Next steps:
             View recommended plots
import matplotlib.pyplot as plt
Lingyi_TS_df = microsoft
#Part1:Data Exploration
Lingyi_TS_df.head()
                                                              扁
                         0pen
                               High
                                       Low Close
                                                     Volume
                   Date
                                                              П.
     2015-04-01 16:00:00 40.60 40.76 40.31
                                            40.72
                                                   36865322
     2015-04-02 16:00:00 40.66 40.74 40.12
                                            40.29
                                                   37487476
     2015-04-06 16:00:00 40.34
                               41.78 40.18
                                             41.55
                                                   39223692
     2015-04-07 16:00:00
                         41.61
                                41.91
                                      41.31
                                             41.53
                                                   28809375
     2015-04-08 16:00:00
                         41.48
                               41.69 41.04
                                             41.42 24753438
 Next steps:
             View recommended plots
Lingyi_TS_df.info()
    <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 1511 entries, 2015-04-01 16:00:00 to 2021-03-31 16:00:00
    Data columns (total 5 columns):
     #
          Column Non-Null Count
                                  Dtype
     0
                  1511 non-null
                                   float64
          0pen
     1
          High
                  1511 non-null
                                   float64
     2
                  1511 non-null
                                   float64
          Low
     3
          Close
                  1511 non-null
                                   float64
```

int64

Volume 1511 non-null

dtypes: float64(4), int64(1)
memory usage: 70.8 KB

Lingyi_TS_df.describe()

	0pen	High	Low	Close	Volume	
count	1511.000000	1511.000000	1511.000000	1511.000000	1.511000e+03	ıl.
mean	107.385976	108.437472	106.294533	107.422091	3.019863e+07	
std	56.691333	57.382276	55.977155	56.702299	1.425266e+07	
min	40.340000	40.740000	39.720000	40.290000	1.016120e+05	
25%	57.860000	58.060000	57.420000	57.855000	2.136213e+07	
50%	93.990000	95.100000	92.920000	93.860000	2.662962e+07	
75%	139.440000	140.325000	137.825000	138.965000	3.431962e+07	
max	245.030000	246.130000	242.920000	244.990000	1.352271e+08	

Lingyi_TS_df.nunique()

Open 1409
High 1400
Low 1397
Close 1398
Volume 1511
dtype: int64

Lingyi_TS_df.isnull().sum()

Open 0
High 0
Low 0
Close 0
Volume 0
dtype: int64

#Exploratory Data Analysis

Lingyi_TS_df['2015':'2021'].plot(subplots = True,figsize = (10,12))
plt.title('MSFT stock attribution from 2015 to 2021')
plt.savefig('stocks.png')

Lingyi_TS_df['Change'] = Lingyi_TS_df.High.div(Lingyi_TS_df.High.shift())
Lingyi_TS_df['Change'].plot(figsize=(20,8))

Lingyi_TS_df['Return'] = Lingyi_TS_df.Change.sub(1).mul(100)#revenue rate Lingyi_TS_df['Return'].plot(figsize=(20,8))

Lingyi_TS_df.High.plot()
plt.legend(('Microsoft High'))

<matplotlib.legend.Legend at 0x7aa49e96df90>

Lingyi_TS_df.Low.plot()
plt.legend(('Microsoft Low'))

<matplotlib.legend.Legend at 0x7aa49e9f8b20>


```
rolling_MSFT =Lingyi_TS_df.High.rolling('90D').mean()
Lingyi_TS_df.High.plot()
rolling_MSFT.plot()
plt.legend('HIgh','Rolling Mean')
```

<ipython-input-48-32757c33cba0>:4: UserWarning: Legend does not support handles
A proxy artist may be used instead.

See: https://matplotlib.org/stable/tutorials/intermediate/legend_guide.html#cont plt.legend('HIgh', 'Rolling Mean')

<matplotlib.legend.Legend at 0x7aa49ea6c520>


```
microsoft_mean = Lingyi_TS_df.High.expanding().mean()
microsoft_std = Lingyi_TS_df.High.expanding().std()
Lingyi_TS_df.High.plot()
microsoft_mean.plot()
microsoft_std.plot()
plt.legend(['High','Expanding Mean','Expanding Standard Deviation'])
```

<matplotlib.legend.Legend at 0x7aa49ebfdd80>


```
microsoft_mean = Lingyi_TS_df.Low.expanding().mean()
microsoft_std = Lingyi_TS_df.Low.expanding().std()
Lingyi_TS_df.Low.plot()
microsoft_mean.plot()
microsoft_std.plot()
plt.legend(['Low', 'Expanding Mean', 'Expanding Standard Deviation'])
```

<matplotlib.legend.Legend at 0x7aa49ea87700>

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
plot_acf(Lingyi_TS_df['High'],lags = 100,title = 'MSFT')

plot_pacf(Lingyi_TS_df['Close'],lags = 25,title ='MSFT')

Lingyi_TS_Monthly_df['dateN']=pd.to_datetime(Lingyi_TS_Monthly_df['Date'])
Lingyi_TS_Monthly_df.set_index('dateN',inplace=True)
Lingyi_TS_Monthly_df.head()

	Date	0pen	High	Low	Close	Volume
dateN						
2015-04-01 16:00:00	4/1/2015 16:00:00	40.60	40.76	40.31	40.72	36865322
2015-04-02 16:00:00	4/2/2015 16:00:00	40.66	40.74	40.12	40.29	37487476
2015-04-06 16:00:00	4/6/2015 16:00:00	40.34	41.78	40.18	41.55	39223692
2015-04-07 16:00:00	4/7/2015 16:00:00	41.61	41.91	41.31	41.53	28809375
2015-04-08 16:00:00	4/8/2015 16:00:00	41.48	41.69	41.04	41.42	24753438

Next steps: View recommended plots

Lingyi_TS_Monthly_df['Close'].resample('Y').mean().plot()

<Axes: xlabel='dateN'>

Lingyi_TS_Monthly_df['Close'].resample('M').mean().plot()

<Axes: xlabel='dateN'>

Lingyi_TS_Monthly_df.describe()

	0pen	High	Low	Close	Volume	
count	1511.000000	1511.000000	1511.000000	1511.000000	1.511000e+03	ılı
mean	107.385976	108.437472	106.294533	107.422091	3.019863e+07	
std	56.691333	57.382276	55.977155	56.702299	1.425266e+07	
min	40.340000	40.740000	39.720000	40.290000	1.016120e+05	
25%	57.860000	58.060000	57.420000	57.855000	2.136213e+07	
50%	93.990000	95.100000	92.920000	93.860000	2.662962e+07	
75%	139.440000	140.325000	137.825000	138.965000	3.431962e+07	
max	245.030000	246.130000	242.920000	244.990000	1.352271e+08	