مسلك العلوم الرياضية أ و ب

مادة الرياضيات

المعامل 9

ملة الإنجاز: أربع ساعات

الملكة المغربية

الإمتحات الوطنى الموحد

لنيل شهادة البكالوريا

الدورة العادية 2011

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: 4,0 ن) الجزءان الأول و الثاني مستقلان

نعتبر المصفوفتين \mathbb{A} و \mathbb{I} المعرفتين بما يلي : $\mathscr{M}_3(\mathbb{R}),+, imes$ المعرفتين بما يلي : \mathbb{I}

$$\mathbb{A} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \mathfrak{I} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $\forall n \in \mathbb{N} : \mathbb{A}^{n+1} = \mathbb{A}^n \times \mathbb{A}$ و $\mathbb{A}^2 = \mathbb{A} \times \mathbb{A}$ و $\mathbb{A}^1 = \mathbb{A}$ و $\mathbb{A}^0 = \mathbb{I}$: نضع

 $\forall k \in \mathbb{N} : \mathbb{A}^{2k} = \mathbb{I} : 1$ بین أن

0,50 ن

<u>0,50 ن</u>

<u>0,50 ن</u>

بين أن المصفوفة A تقبل مقلوبا A^{-1} ينبغي تحديده. <u>0,50 ن</u>

اليكن α عددا حقيقيا موجبا قطعا

 $x * y = (x - \alpha)(y - \alpha) + \alpha$: نضع $I =]\alpha, +\infty[$ لکل $x * y = (x - \alpha)(y - \alpha) + \alpha$

I بين أن : * قانون تركيب داخلي في I

بين أن القانون * تبادلي و تجميعي

﴿ بين أن المجموعة (*,I) تقبل عنصر ا محايدا يتم تحديده <u>0,50 ن</u>

> بين أن المجموعة (I,*) زمرة تبادلية \bigcirc 0,50 ن

بين أن التطبيق ϕ تشاكل تقابلي من (*,I) إلى $(\times,+)$.

 $x^{(3)}=x*x*x$: بحيث $x^{(3)}=lpha^3+lpha$: المعادلة I المعادلة (ب <u>0,50 ن</u>

التمرين الثاني: (2,5 ن)

N=111...11 العدد الصحيح الطبيعي الممثل في نظمة العد العشري بما يلي : N=111...112010 مرة 1

> 11 بين أن N يقبل القسمة على العدد 11 0,25 ن

 $10^{2010}-1=9N$: و أن يا العدد 2011 أولي و أن $(\hat{2})$ تحقق أن العدد 2011 أولي و أن $(\hat{2})$

(ب) بين أن العدد 2011 يقسم العدد 9N 0,50 ن

 استنتج أن العدد 2011 يقسم العدد N . <u>0,50 ن</u>

بين أن العدد N يقبل القسمة على العدد (3)0,50 ن

الصفحة : 191

الاجوية من اقتراح الأستاذ بدر الدين الفاتحي -

التمرين الثالث: (3,5 ن) الجزءان الأول و الثاني مستقلان

نيكن m عددا عقديا غير منعدم نعتبر في المجموعة m المعادلة ذات المجهول m (I)

$$(E_m): z^2 + [(1-i)m - 4]z - im^2 - 2(1-i)m + 4 = 0$$

. (E_m) تحقق أن العدد $z_1=2-m$ العدد (1)

 (E_m) ليكن z_2 الحل الثاني للمعادلة (2)

$$z_1 z_2 = 1 \iff im^2 + 2(1-i) - 3 = 0$$
 بين أن (أ)

 $z_1 z_2 = 1$ بحیث m حدد قیمتی m

<u>0,50 ن</u>

0,50 ن

<u>1,00</u> ن

0,25 ن

0,25 ن

<u>0,50 ن</u>

0,50 ن

0,25 ن

0,50 ن

. (o, \vec{u}, \vec{v}) المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر (II)

 $z^{'}=-(z-1)+1$: بحيث z الذي يربط النقطة M التي لحقها z بالنقطة M التي لحقها z بحيث $z^{'}=-(z-1)+1$ و الدوران ${\cal R}$ الذي مركزه النقطة Ω ذات اللحق (i+i) و قياس زاويته $rac{\pi}{2}$ و ليكن "z لحق النقطة "M صورة \mathcal{R} بالدوران M

اللحق 1 آمركزي الذي مركزه النقطة ذات اللحق 1 آمركزي الذي مركزه النقطة ذات اللحق 1 آ(1)

. z'' = iz + 2: بين أن

ك نفترض أن النقطة M تخالف O أصل المعلم و لتكن A النقطة التي لحقها (2)

 Ω حدد مجموعة النقط M بحيث تكون النقط Ω و Ω و M' و M' متداورة Ω

. $n\epsilon \mathbb{N}^*$ بحيث (E) : $e^x=x^n$ التمرين الرابع (E) : $e^x=x^n$ عديث الحلول الموجبة للمعادلة $f(x) = \frac{x}{\ln x}$; $x \neq 0$: يعتبر الدالة العددية f المعرفة على المجموعة $\int 1,+\infty$: المعرفة على المجموعة $\mathcal{D} = [0,1[\ \cup\]]$

$$\int f(x) = \frac{x}{\ln x}; x \neq 0$$

$$f(0) = 0$$

و ليكن (\mathscr{C}) المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم $(\mathcal{C},ec{t},ec{t})$.

.
$$\left(e^x=x^n\iff n=f(x)
ight)$$
: لدينا $\left[0,1\right]$ لدينا $\left[0,1\right]$ من المجموعة $\left[0,1\right]$

ين أن الدالة f قابلة للإشتقاق على اليمين في (2)

 أحسب النهايات التالية ثم أوّل هندسيا النتائج المحصل عليها: 1,50 ن

$$\left[\lim_{x\to 1^-} f(x)\right] \circ \left[\lim_{x\to 1^+} f(x)\right] \circ \left[\lim_{x\to +\infty} f(x)\right] \circ \left[\lim_{x\to +\infty} \frac{f(x)}{x}\right]$$

EXCEL

أدرس تغيرات الدالة f على كل من المجالين [0,1] و $]\infty+,1[$ ثم إعط جدول تغيراتها. 40,75 ن

بین أن (
$$\mathscr{C}$$
) یقبل نقطة انعطاف یتم تحدید زوج احداثیتیها.

(ک) أنشيء المنحني (ک) <u>0,50 ن</u>

. $1 < lpha_n < e < b_n$ بين أنه إذا كان $n \geq 3$ فإن المعادلة (E) تقبل بالضبط حلين اثنين $lpha_n$ و $lpha_n$ بين أنه إذا كان 0,50 ن

الصفحة : 192 - رمضان 2012 -لأجوية من اقتراح الأستاذ بدر الدين الفاتحي -

- . $(b_n)_{n\geq 3}$ و $(\alpha_n)_{n\geq 3}$ دراسة تقارب المتتاليتين (II)
- $(b_n)_{n\geq 3}$ بين أن $b_n\geq n$: $b_n\geq 3$ ثم استنتج نهاية المتتالية ($\forall n\geq 3$) : $b_n\geq n$
 - بین أن المتتالیهٔ $(\alpha_n)_{n>3}$ تناقصیهٔ ثم استنتج أنها متقاربه ($(\alpha_n)_{n>3}$ <u>0,50 ن</u>
- . $(lpha_n)_{n \geq 3}$ بين أن بين أن $(orall n)_{n \geq 3}$: $rac{1}{n} < ln(lpha_n) < rac{e}{n}$ بين أن ج
 - $\lim_{n \to +\infty} (\alpha_n)^n = e$: بین أن \mathfrak{C}

التمرين الخامس: (3,5 ن)

0,50 ن

<u>0,50 ن</u>

<u>0,50 ن</u>

0,50 ن

0,50 ن

0,50 ن

0,25 ن

0,50 ن

<u>0,50 ن</u>

$$F(x) = e^{-x^2} \int_0^x e^{-t^2} dt$$

 $F(x)=e^{-x^2}\int_0^x e^{-t^2}dt$: بما يلي: $[0,+\infty[$ المعرفة على المعرفة على إنعتبر الدالة العددية $[0,+\infty[$

- . $(\forall x \ge 0): 0 \le F(x) \le xe^{-x^2}$: بين أن (j) (1)
- . $+\infty$ عند F عند الدالة عند $(\forall {\sf x} \geq 1): e^{-x^2} \leq e^{-x}:$ بين أن بين أن بين أب
- . $(\forall {
 m x} \geq 0): \ F'(x) = e^{-2x^2} 2xF(x)$ و أن $[0, +\infty[$ و أن $F'(x) = e^{-2x^2} 2xF(x)]$ و أن $[0, +\infty[$

$$egin{aligned} G(x) &= F(an x) \ G(x) &= G(an x) \end{aligned}$$
 : يعتبر الدالة العددية G المعرفة على G المعرفة على G بما يلي G نعتبر الدالة العددية G المعرفة على G المعرفة على G المعرفة على أيام المعرفة

- بين أن الدالة G متصلة على اليسار في $\frac{\pi}{2}$
- . $F(c) = \frac{1}{2c}e^{-2c^2}$ و أن F'(c) = 0 : بين أنه يوجد عدد حقيقي c ينتمي إلى المجال c المجال c بين أنه يوجد عدد حقيقي c0,75 ن

 $\left(\left[0,\frac{\pi}{2}\right]$ على المجال المجال (یمکن تطبیق مبر هنهٔ رول بالنسبهٔ للدالهٔ و

 $H(x)=F'(x)rac{e^{x^2}}{2x}$: بما يلي $]0,+\infty[$ المعرفة على $]0,+\infty[$ المعرفة على $]0,+\infty[$

- (i) بين أن الدالة H تناقصية قطعا على المجال $+\infty$
- . F استنتج أن العدد c وحيد ثم إعط جدول تغيرات الدالة Θ

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2011 عناصر الإجابة

9	المعامل	NR24	الرياضيات	الماكة
4	ماة الإنجاز		شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة) او المسلط

عناصر الإجابة و سلم التنقيط

4 نقط	التمرين الأول
البر هان بالترجع	الجزء
	الأول: 1-
ن 0.5 $A^{-1} = A$	-2
*قانون ترکیب داخل <i>ي</i>	الجزء
	الثاني: 1-أ)
تبادلية القانون *	ب)
تجميعية القانون *	
العنصر المحايد : $e = a + 1$	ج)
مماثل x هو : $a+\frac{1}{2}$ دماثل x هو :	-2
x-a	
زمرة تبادلية $(I,*)$	
arphiتقابل $arphi$ 0.25	(1-3
ϕ تشاكل ϕ	
$a<0$ حل المعادلة هو: $a>0$ إذا كان $a\geq0$ و المعادلة لا تقبل حلا إذا كان	ب)

2.5 نقطة	التمرين
	الثاني
قابلية قسمة العدد N على 11 وابلية قسمة العدد N على 11	-1
التحقق من أن 2011 عدد أولي	(1 -2
0.25التحقق من أن $-1=9$ -1	
حسب مبر هنة فيرما : 2011 يقسم العدد $10^{2010}-1$	ب)
الإستنتاج باستعمال مبر هنة كوص 0.5ن	ج)
نلاحظ أن: 2011 × 11 = 22121 وأن 2011 و 11 عددين أوليين فيما بينها	-3
3.5 نقطة	التمرين
	الثالث
التحقق	الجزء
	الأول:-1-
التكافئ	(1-2
نیمتي m هما $:\left(rac{2-\sqrt{2}}{2} ight)+i\left(rac{2+\sqrt{2}}{2} ight)$ و $\left(rac{2+\sqrt{2}}{2} ight)+i\left(rac{2-\sqrt{2}}{2} ight)$	<u>ب</u>)
نن	الجزء الثاني: 1-أ)
0.25z'' - (1+i) = i(z-(1+i))	ب)

الصفحة
2
3

NR24	للبكالوريا –الدورة العادية علا عناصر الإجابة – مادة: الرياضيات - شعبة العلوم البكالوريا –الدورة العادية العلوم الرياضية (أ) و (ب)	ن الوطني الموحد	الامتحار
	0.25 $\frac{z^{''}-2}{z^{'}-2}=-i$	(1-2	
	متساوي الساقين و قائم الزاوية في $AM^{'}M^{''}$		
	(تمنح النقطة كاملة حتى و لو لم يتطرق المترشح للحالات الخاصة)	ب)	
	المستقيم الذي معادلته: $x=1$		

6.5 نقطة	التمرين الرابع
	التمرين الرابع الجزء الأول
$0.25 e^x = x^n \Leftrightarrow n = f(x)$	-1
قابلية اشتقاق الدالة f على اليمين في 0 0ن	-2
لكل نهاية من النهايات الأربعة	-3
ن 0.25 ساب 0.25 ن	-4
تغیرات $f^{'}$ میں۔۔۔۔۔۔۔۔۔۔ن	
جدول تغیرات f f جدول تغیرات تغیرات جدول تغیرات	
زوج إحداثيتي نقطة الانعطاف $\left(e^2;rac{e^2}{2} ight)$	-5
إنشاء المنحنى	-6
وجود و وحدانية $a_n < e$ و $a_n < 0$ ن	-7
وجود و وحدانية $b_n > e$ و جود و وحدانية الله و حدانية الله و الله عند الله و الله	
	الجزء الثاني 1-
0.25 $(\forall n \geq 3)$ $b_n \geq n$	-1
0.25 $\lim_{n\to+\infty} b_n = +\infty$	
المنتالية $(a_n)_{n \geq 3}$ تناقصية $(a_n)_{n \geq 3}$	(1-2
استنتاج تقارب $\left(a_n\right)_{n\geq 3}$ ن	
0.25 ناطیر : $ln(a_n)$: تأطیر	ب)
استنتاج أن: $\lim_{n \to +\infty} a_n = 1$ ن: 0.25	
استنتاج أن: $\lim_{n o +\infty} a_n^n = e$ استنتاج أن:	(ट

حة	الصف
	3
3	

الامتحان الوطني الموحد للبكالوريا الدورة العادية علا الدورة العادية العلوم الإجابة – مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

5.5نقطة	التمرين الخامس
ناطیر $F(x)$ $F(x)$ ناطیر	(1-1
0.25 $\forall x \ge 1$ $e^{-x^2} \le e^{-x}$	ب)
استنتاج أن: $\lim_{x \to +\infty} F(x) = 0$ ن	
قابلية اشتقاق الدالة F	-2
حساب $F^{'}(x)$ ن	
اتصال الدالة G على اليسار في $rac{\pi}{2}$	(1-3
$\lim_{x \to +\infty} F(x) = 0$ و $\lim_{x \to +\infty} tan x = +\infty$ إدن الصحيحة: $\lim_{x \to \frac{\pi}{2}} tan x = +\infty$	
$0 \le G(x) = F(\tan x) \le \tan(x)e^{-\tan x}$ او من أجل $\frac{\pi}{4} \le x < \frac{\pi}{2}$ لدينا:	
إدن أو أية طريقة صحيحة أخرى	,
$c_1\in\left]0,rac{\pi}{2} ight[$ عطبيق مبر هنة رول : وجود $c_1\in\left]0$	ب)
0.25 نحیث $G'(c_1) = (1 + tan^2(c_1))F'(tanc_1) = 0$	
ن مود $[c=tanc_1]$ وجود $[c=tanc_1]$ وجود $[c=tanc_1]$ بحیث $[c=tanc_1]$ وجود الم	
0.25 $F(c) = \frac{e^{-2c^2}}{2c}$ -	
الدالة H قابلة للاشتقاق على $]0,+\infty$ و	(1-4
$0.5H'(x) = -\left(2 + \frac{1}{2x^2}\right)e^{-x^2} < 0$	
الدالة H تقابل(متصلة و رتيبة قطعا) و $H(c)$ ومنه وحدانية العدد c c	ب)
جدول تغیرات الدالمة F F جدول تغیرات الدالمة	