ALMMo Fuzzy Systems and Deep Fuzzy

Evolving Fuzzy Inference Systems (EFIS)

- Fuzzy rule based (FRB) systems designed to learn online while also being robust and capable of adapting to abrupt changes in the data stream (non-stationary environments)
- EFIS algorithms must be computationally lightweight in terms of processing power and memory requirements

Evolving Fuzzy Inference Systems (EFIS)

- Many different algorithms proposed:
 - DENFIS [Kasabov & Song, 2002]
 - SAFIS [Rong et al. , 2006]
 - eClass [Angelov, 2008]
 - FLEXFIS [Lughofer, 2008]
 - PANFIS [Pratama et al., 2014]
 - ALMMo [Angelov et al., 2017]
 - SOFIS [Angelov et al., 2018]

ALMMo Systems

- AnYa type fuzzy rule-based system rules modelled by nonparametric data clouds
- Cloud structure is recursively updated based on density and distance condition-defined heuristics
- Computationally lightweight, simple architecture

Some statistics

ALMMo Systems

	ALMMo System (ALMMo-1)	ALMMo-0 Classifier (ALMMo-0)	
Antecedents	Recursively updated cloud parameters	Recursively updated cloud parameters	
Consequents	Linear -> Updated using WRLS	No parameters -> Winner- takes-all approach	
Problem Types	Regression, Classification	Classification	
Online Cloud Quality Monitoring	Removal of stale clouds that have low utility (importance of a rule relative to the other rules)	No mechanisms introduced -> Mainly applied on non-online problems	

Winner-takes-all approach for deciding on the class:

IF
$$x \sim f_j^i$$
 THEN $Label^i$

$$\lambda_j^i = \exp\left[-\frac{1}{2} \left\| x - f_j^i \right\|^2\right]$$

$$\hat{y} = \underset{i=1,2,...,L}{\operatorname{arg\,max}} (\lambda_{j^*}^i)$$

ALMMo-0 — Training algorithm

ALMMo-1

IF
$$x \sim \Theta_i$$
 THEN $y_i = u^T \cdot a_i$

$$u = \begin{bmatrix} 1, & x \end{bmatrix}^T$$

Regression:

$$y = \sum_{j=1}^{N} (y_i \lambda_i)$$

Classification

$$y_{bc} = \begin{cases} 1, y_r \ge 0.5 \\ 0, y_r < 0.5 \end{cases}$$

ALMMo-1

ALMMo-1 – Training Algorithm

ALMMo-1 – Training Algorithm

Function:

Make clouds, match the data being fed

Methodology:

IF no cloud is nearby:

Create a new cloud and initialize the respective rule

Else:

Update the antecedents of one existing rules

Training Algorithm

Function:

Removes clouds with low utility η_i

Utility Update:

Every existing cloud gets utility update on every iteration

Removal criteria:

$$\eta_i < \eta_0$$

ALMMo-1 – Training Algorithm

Function:

Updates the consequents of every rule

$$C_i \leftarrow C_i - \frac{\lambda_i C_i u_j u_j^T C_i}{1 + \lambda_i u_j^T C_i u_j}$$

$$a_i \leftarrow a_i + \lambda_i C_i u_j (y_j - u_j^T a_i)$$

ALMMo-1 – Training Algorithm

Function:

Updates the consequents of every rule

$$C_i \leftarrow C_i - \frac{\lambda_i C_i u_j u_j^T C_i}{1 + \lambda_i u_j^T C_i u_j}$$

$$a_i \leftarrow a_i + \lambda_i C_i u_j (y_j - u_j^T a_i)$$

ALMMo-1 Multi Class

 Highly dimensional and non-stationary problems (such as image recognition and financial time series forecast) are generally too complex for traditional machine learning methods, as well as ALMMo systems

 Simplicity of ALMMo systems and other EFIS makes them suitable as the building blocks of multi-layer ensemble architectures

 Such architectures can achieve comparable or even better performances than state-of-the-art methods on problems such as image recognition and time series forecast, while remaining transparent

- Multi-Layer Multi-Model Images Classifier Ensemble [Angelov, 2017]
- Fast deep learning approach network for handwriting recognition
- Interpretable structure

- Image transformation layers (Normalization, Scaling, Rotation)
- Global feature descriptors (GIST, HOG)

(a) The structure of the training process

	Г		Г	
Approaches		Training Time	PC Parameters	
The Proposed MICE approach (this paper)	99.32%	i. Less than 1 minute per class for each member of the ALMMo committee with GIST features; ii. Less than 4 minutes per class for each member of the ALMMo committee with HOG features.	Core i7-4790 (3.60GHz), 16 GB DDR3	
Committee of 7 Convolutional Neural Networks [3]	99.73% ± 2%	Almost 14 hours for each one of the 5 DNNs.	Core i7-920 (2.66GHz), 12 GB DDR3	
Committee of 35 Convolutional Neural Networks [4]	99.77%	Almost 14 hours for each one of the 35 DNNs.	Core i7-920 (2.66GHz), 12 GB DDR3	

MICE (SVM Conflict Resolver)

 Cascade of the MICE classifier and an auxiliary SVM for conflict resolution [Angelov, 2018]

MICE (SVM Conflict Resolver)

Approaches	Accuracy	
The Proposed Approach	99.55%	
DLFRB Classifier	99.44%	

SOFEmsemble

- Self Organizing Fuzzy Inference Ensemble System [Angelov & Gu, 2021]
- Big streaming data classification
- Uses SOFIS (Self Organizing Fuzzy Inference System) as the building blocks for the ensemble architecture

SOFEmsemble

SOFEmsemble

Algorithm	MNIST	FMNIST
SOFEnsemble	0.9918	0.9095
DRB	0.9914	0.9004
DCNN	0.9913	0.9078

Dataset	FC		MNIST		FMNIST	
Algorithm	Acc	t _{exe}	Acc	t _{exe}	Acc	t _{exe}
SOFEnsemble	0.9173	192	0.9869	53	0.9017	54
SOFIS	0.8778	1757	0.9866	956	0.8868	1085
ESAFIS	0.7359	5480	0.9830	34612	0.8962	29388
eClass0	0.3456	74	0.8386	100	0.7351	95
eClass1	0.3647	374	0.9764	10769	0.8878	10786
ALMMo0	0.8932	1717	0.9864	462	0.8882	470
ALMMo	0.7012	160	0.9748	5627	0.8735	4881
KNN	0.9107	_	0.9852	_	0.8966	-
SVM	0.7247	4641	0.9857	153	0.8936	178
DT	0.9180	38	0.9010	196	0.8088	153
RF	0.9591	715	0.9631	4191	0.8872	4501
SC	0.8472	17137	0.9762	1111	0.8817	1139
MLP	0.7667	214	0.6011	80	0.8289	102
ELM	0.6481	14	0.9424	3	0.8465	3
НР	0.9069	545	0.9864	76	0.8845	99

MEEFIS

- Multi-Layer Ensemble Evolving Fuzzy Inference System [Gu, 2020]
- Ensemble of multiple-input multiple-output (MIMO) first-order evolving fuzzy inference system (EFIS) organized in a multi-layered architecture
- General architecture

MEEFIS

MEEFIS

MEEFIS

Algorithm	MNIST (#Training Images)				Fashion MNIST (#Training Images)							
	10000	20000	30000	40000	50000	60000	10000	20000	30000	40000	50000	60000
MEEFIS ($\eta_0 = 0.1$)	0.9742	0.9745	0.9746	0.9748	0.9751	0.9754	0.8765	0.8786	0.8797	0.8801	0.8799	0.8810
MEEFIS $(\eta_0 = 0)$	0.9756	0.9765	0.9773	0.9775	0.9778	0.9788	0.8834	0.8881	0.8896	0.8905	0.8913	0.8916
AdaBo	0.9446	0.9447	0.9446	0.9446	0.9454	0.9451	0.8178	0.8187	0.8190	0.8196	0.8199	0.8192
RanFor	0.9477	0.9559	0.9602	0.9606	0.9626	0.9631	0.8638	0.8733	0.8778	0.8816	0.8847	0.8872
MLP	0.4543	0.4717	0.6232	0.5848	0.6351	0.5650	0.6304	0.7451	0.8028	0.7739	0.8045	0.8318
eClass0	0.8470	0.8556	0.8512	0.8603	0.8551	0.8500	0.7289	0.7303	0.7147	0.7497	0.7233	0.7167
ALMMo	0.9676	0.9695	0.9707	0.9715	0.9722	0.9723	0.8666	0.8694	0.8696	0.8699	0.8702	0.8705

Algorithm	NDEI	t_{exe}	#rules
MEEFIS	0.1392	2.92	74 (8.2)
OS-Fuzzy-ELM	0.2991	0.93	5
CEFNS	0.2635	0.44	5
SAFIS [24]	0.38	/	6
ESAFIS	0.2955	5.83	6
eTS	0.3805	/	9
ALMMo	0.4437	0.46	7
SB-ALMMo	0.4402	0.86	4
GENEFIS (C) [28]	0.280	4.46	19
GENEFIS (B) [28]	0.339	3.02	9
LEOA [44]	0.2480	144.78	42

Algorithm	NDEI	#rules
MEEFIS	0.0124	85 (9.4)
EFIS	0.0147	15
ALMMo	0.0149	7
PANFIS [27]	0.09	4
GENEFIS [28]	0.07	2
LEOA [44]	0.1229	52
SEFS [19]	0.0182	2
EFS-SLAT [45]	0.0156	23

- Datasets in which some classes (minority classes) are significantly under-represented
- Most traditional machine learning methods show a large bias towards the majority classes

		Predi	ction
		N	Р
True	N	TN	FP
Tru	Р	FN	TP

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F_1 = 2 \frac{Precision \times Recall}{Precision + Recall}$$

		Prediction		
		N P		
rue	N	990	0	
Tru	Р	8	2	

1000 patients: 990 healthy, 10 sick (1% class imbalance)

Accuracy	99.2 %
Precision	100 %
Recall	20 %
F1-Score	33.3 %

		Prediction		
		N	Р	
True	N	TN	FP	
Tri	Р	FN	TP	

$$GM = \sqrt{Recall \times Specificity}$$

$$Kappa = \frac{2(TP \times TN - FN \times FP)}{(TP + FP)(FP + TN) + (TP + FN)(FN + TN)}$$

$$Matthews = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Bias towards minority class

- Data-based approaches:
 - Random resampling
 - Synthetic data generation
 - Feature selection
 - ..

- Model-based approaches:
 - Cost sensitive learning
 - One class classification
 - Class decision threshold tuning
 - •

ALMMo Systems and Imbalanced Datasets

- ALMMo-0: classes trained separately, but larger number of majority class clouds that may capture some of the minority class samples (false negatives)
- ALMMo-1: regressor, large bias towards the majority class, threshold tuning and other cost sensitive approaches

- Stack ensemble / meta-learning approach based on the ALMMo-0 classifier
- Train multiple base models and evaluate their performance using adequate classification metrics
- Use the base models class confidence predictions together with their performance scores to train a final meta-model that predicts the sample class

Metric	ALMMo-0-M				
Metric	GM	F1	Kappa	Matthews	
Aggurgay	342/205/223	342/203/225	341/202/227	344/200/226	
Accuracy	0.00	0.00	0.00	0.00	
Recall	242/345/183	241/349/180	240/349/181	240/350/180	
Recaii	0.00	0.00	0.00	0.00	
Precision	307/242/221	306/244/220	310/244/216	309/243/218	
Precision	0.00	0.00	0.00	0.00	
Specificity	298/260/212	295/264/211	296/265/209	296/264/210	
	0.00	0.00	0.00	0.00	

TABLE X: Win/Tie/Loss results and respective Wilcoxon pairwise tests p-values of the proposed ALMMo-0-M against the original ALMMo-0 algorithm

- Cost sensitive approach that assigns a weight to each class
- Class confidence levels are weighted before the winner-takes-all approach is used to decide on the label

$$0.5 \le \omega_1 \le 1.0$$

 $0.0 \le \omega_0 \le 0.5$
 $\omega_0 + \omega_1 = 1.0$

Optimize using Bayesian Optimization

• Create an ensemble of class-weighted base models and use an adequate voting strategy to decide on the class

Metric	ALMMo-0-W				
Metric	GM	F1	Kappa	Matthews	
Accuracy	121/203/446	206/216/348	229/224/317	190/220/360	
Accuracy	1.00	1.00	1.00	1.00	
Recall	388/305/77	311/335/124	304/332/134	323/335/112	
	0.00	0.00	0.00	0.00	
Precision	158/225/387	233/242/295	251/244/275	226/243/301	
Precision	1.00	1.00	0.99	1.00	
Specificity	72/238/460	156/263/351	170/267/333	142/263/365	
	1.00	1.00	1.00	1.00	

TABLE IX: Win/Tie/Loss results and respective Wilcoxon pairwise tests p-values of the proposed ALMMo-0-W against the original ALMMo-0 algorithm

Future Work

 Combine the proposed methods with more complex architectures to improve performance on high dimensional and nonstationary imbalanced classification problems

•

Future Work

• Image recognition for imbalanced datasets:

10 samples

990 samples

Future Work

• Class imbalance is time dependent:

