Problem D. Frog 1

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

There are N stones, numbered $1, 2, \ldots, N$. For each i ($1 \le i \le N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to Stone i+1 or Stone i+2. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

Constraints

- All values in input are integers.
- $2 \le N \le 10^5$
- $1 \le h_i \le 10^4$

Input

Input is given from Standard Input in the following format:

$$egin{bmatrix} N \ h_1 \ h_2 \ \dots \ h_N \end{bmatrix}$$

Output

Print the minimum possible total cost incurred.

Sample 1

Input	Output
4 10 30 40 20	30

If we follow the path $1 \rightarrow 2 \rightarrow 4$, the total cost incurred would be |10 - 30| + |30 - 20| = 30.

Sample 2

Aula 21 - Programação Dinâmica Jun 13, 2023

Input	Output
2 10 10	0

If we follow the path 1 \Rightarrow 2, the total cost incurred would be |10-10|=0.

Sample 3

Input	Output
6 30 10 60 10 60 50	40

If we follow the path $1 \rightarrow 3 \rightarrow 5 \rightarrow 6$, the total cost incurred would be |30-60|+|60-60|+|60-60| = 40.