Математический анализ. Лекция 2

08.09.2018

Onp. Множество отрезков $\{[a_1,b_1],[a_2,b_2]...\}$ называется **системой вложенных отрезков**, если $[a_n,b_n]\supset [a_{n+1},b_{n+1}]\forall n\in\mathbb{N}$, т.е. каждый следющий отрезок содержится в предыдущем.

Лемма о вложенных отрезках ($npuhuun\ henpepuвhocmu\ Kahmopa$) Для каждой системы вложенных отрезков $\exists c \in \mathbb{R}$, что $\forall n \in \mathbb{N} : c \in [a_n, b_n]$

 $\blacktriangleright A = \{a_n \mid n \in \mathbb{N}\}, B = \{b_n \mid n \in \mathbb{N}\}\$

Имеем $\forall n, m \in \mathbb{N} : a_n \leq a_{n+m} \leq b_{n+m} \leq b_m$

Значит \forall элемент из A меньше \forall элемента из B. По аксиоме непрерывности Кантора $\exists c \in R : a_n \leq c \leq b_n, \ \forall a_n \in A; \forall b_n \in B$

Onp. Система вложенных отрезков называется **стягивающейся**, если $\forall \epsilon>0 \ \exists n\in\mathbb{N}: b_n-a_n<\epsilon$

Теорема Стягивающаяся система вложенных отрезков имеет ровно одну точку

▶ Предположим противное. $c \neq c$ ' $\forall n \ c, c$ ' $\in [a_n, b_n]$ Для определённости $c \leq c$ ' $\forall n \ a_n \leq c \leq c$ ' $\leq b_n \Rightarrow c$ ' $-c \leq b_n - a_n \Rightarrow$ $\exists k \in \mathbb{N} : c$ ' $-c \leq b_k - a_k$ противоречит определению \blacksquare

Сначала для б.д.д. определим операции "\lequiv "sup", а затем "+", "-"

Onp. Бесконечные десятичные дроби - выражения вида $\alpha=\pm\alpha_0, \alpha_1\alpha_2...$, где $\alpha_0\in\{0,1,2,...\}$ $\alpha_n\in\{0,1,3,...,9\}$ Если знак "+" \Rightarrow $\alpha\geq0$ Если знак "-" \Rightarrow $\alpha\leq0$

Опр. Сравнение б.д.д.

- 1. Пусть $\alpha \geq 0, \beta \geq 0$ б.д.д. $\alpha = \alpha_0, \alpha_1 \alpha_2 \alpha_3...$ $\beta = \beta_0, \beta_1 \beta_2 \beta_3...$ Скажем, что $\alpha < \beta$, если волняется хотя бы одно утверждение
 - $\alpha_0 < \beta_0$
 - $\alpha_0 = \beta_0$ и $\alpha_1 < \beta_1$
 - $\alpha_0 = \beta_0$ и $\alpha_1 = \beta_1$ и $\alpha_2 < \beta_2$
 -
- 2. $\alpha \leq 0$ и $\beta \geq 0$ и $\exists (\alpha$ или $\beta) \neq 0$: $\beta > \alpha$
- 3. $\alpha < 0$ и $\beta < 0$: $\beta < \alpha \Leftrightarrow -\beta > -\alpha$

Опр. Определим точную верхнюю грань произвольного множества б.д.д

Пусть X - ограниченное сверху множество б.д.д. (т.е. \exists б.д.д. $c: \forall x \in X: x \leq c$) Определим $\gamma = \gamma_0, \gamma_1 \gamma_2 \dots = \sup X$ алгоритмом $\gamma_0 = \max \{ \alpha_0 \mid \alpha \in X \} \quad | \quad A_1 := \{ \alpha \in X \mid \alpha_0 = \gamma_0 \}$ $\gamma_1 = \max \{ \alpha_1 \mid \alpha \in A_1 \} \quad | \quad A_2 := \{ \alpha \in A_1 \mid \alpha_1 = \gamma_1 \}$ $\gamma_2 = \max \{ \alpha_2 \mid \alpha \in A_2 \} \quad | \quad A_3 := \{ \alpha \in A_2 \mid \alpha_2 = \gamma_2 \}$

Onp. **Сумма** б. д. д.

 $lpha = lpha_0, lpha_1 lpha_2 lpha_3...$ eta = eta 0, eta 1 eta 2 eta 3... $(lpha + eta) := \sup\{x + y \mid egin{subarray}{c} 0 \le x \le lpha \\ 0 \le y \le eta \end{subarray}\}$ х, у - конечные десятичные дроби

Проверим аксиому непрервыности (а. 14)

A и B, $\forall a \in A, b \in B, a \leq b, \exists c \in R : a \leq c \leq b$ Проверим для A и B - б.д.д. Возьмём в множестве б.д.д c := supA Мы знаем (по построению) $\forall a \in A \ a \leq c$ Teopema о единственности множества вещественных чисел.

Пусть \mathbb{R} и \mathbb{R} - множества, удоволетворяющие всем аксиомам (1 - 14). Тогда имеет место биекция $\mathbb{R} \longleftrightarrow \mathbb{R}$ такая, что

- $x + y \leftrightarrow \widetilde{x} + \widetilde{y}$
- $xy \leftrightarrow \widetilde{x}\widetilde{y}$
- $x \le y \leftrightarrow \widetilde{x} \le \widetilde{y}$