Notes for the course -- REAL ANALYSIS

Josenaldo Júnior

January 23, 2020

Contents

Ι	Elon	2
6	Some Topological Notions	3

Part I

Chapter 6

Some Topological Notions

Definition (Interior Point). The point a is *interior* to the set $X \subseteq \mathbb{R}$ when there is some $\epsilon > 0$ st $(a - \epsilon, a + \epsilon) \subseteq \mathbb{R}$. The set of interior points of X, called the *interior* of X, is represented as int X.

Definition (Neighborhood). If $a \in \text{int } X$, then X is a *neighborhood* of a.

Definition (Open Set). $X \subseteq \mathbb{R}$ is open iff int X = X.

Fact (Limit of a Sequence in Terms of Open Sets). $a = \lim x_n$ iff for every open set A containing a, x_n is eventually contained in A.

Theorem 1. Arbitrary unions of opens are open; finite intersections of opens are open.

Definition (Adherent Point). a is adherent to the set $X \subseteq \mathbb{R}$ when a is the limit of a sequence of points of X.

Definition (Closure). The *closure* of $X \subseteq R$ is the set of points that adhere to X. It is denoted by \overline{X} .

Definition (Closed Set). A set X is *closed* when $\overline{X} = X$.

Definition (Dense Set). Let $X \subseteq Y$. X is dense on Y if $Y \subseteq \overline{X}$.

Theorem 2. a adheres to X iff every neighborhood of a intersects X.

Corollary. Closures are closed.

Theorem 3. A set is closed iff its complement in \mathbb{R} is open.

Theorem 4. Arbitrary intersections of closeds are closed; finite unions of closeds are closed.

Definition (Cision). The sets A and B are a cision of $X = A \cup B$ if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

Theorem 5. Intervals of the rect only admit the trivial cision.

Corollary. The only clopen subsets of \mathbb{R} are \emptyset and \mathbb{R} .

Definition (Accumulation Point). a is an accumulation point of X if every neighborhood of a intersects $X \setminus \{a\}$. The set of accumulation points of X is denoted as X'.

Definition (Isolated Point). $a \in X$ is a point *isolated* from X if a is not an accumulation point of X.

Definition (Discrete Set). A set is *discrete* if all of its elements are isolated points.

Theorem 6. Given $X \subseteq \mathbb{R}$ and $a \in \mathbb{R}$, the following are equivalent:

- 1. $a \in X'$
- 2. $a \in \overline{X \setminus \{a\}}$
- 3. Every interval centered in a has infinite elements of X.

Theorem 7. Every bounded infinite set has an accumulation point.

Definition (Compact Set). A set $X \subseteq \mathbb{R}$ is *compact* if it is limited and closed.

Theorem 8. A set $X \subseteq \mathbb{R}$ is compact iff every sequence of points of X has a subsequence that converges to a point of X.

Fact. Every compact set has a mininum and a maximum element.

Theorem 9. Given a sequence $X_1 \supseteq X_2 \supseteq ...$ of compact nonempty sets, there exists an element belonging to each X_i .

Theorem 10 (Borel–Lebesgue). Every open covering of a compact set has a finite subcovering.