Лекция 29 от 27.04.2016

Ортогональные дополнения

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n$.

Определение. Векторы x,y называются ортогональными, если (x,y) = 0. Обозначение: $x \perp y$.

Определение. Пусть $S \subseteq \mathbb{E}$ — произвольное подпространство. Ортогональным дополнением к S называется множество $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

Замечание.

- 1. S^{\perp} nodnpocmpaнство в \mathbb{E} .
- 2. $S^{\perp} = \langle S \rangle^{\perp}$.

Предложение. Пусть S-nodnpocmpaнcmso в $\mathbb E.$ Тогда:

- 1. dim $S^{\perp} = n \dim S$;
- 2. $\mathbb{E} = S \oplus S^{\perp}$;
- 3. $(S^{\perp})^{\perp} = S$.

Доказательство.

1. Выделим в S базис (e_1, \ldots, e_k) и дополним его векторами (e_{k+1}, \ldots, e_n) до базиса \mathbb{E} . Рассмотрим вектор $x \in \mathbb{E}$ и представим его в виде $x_1e_1 + \ldots + x_ne_n$. Если $x \in S^{\perp}$, то это то же самое, если $(x, e_i) = 0$ для $i = 1 \ldots k$. Итого:

$$(x,e_i) = (e_1,e_i)x_1 + (e_2,e_i)x_2 + \dots, (e_n,e_i)x_n = 0, \quad i = 1\dots k$$

Получим однородную СЛУ $G\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}=0$, где $G\in Mat_{k\times n}(\mathbb{R})$ и $g_{ij}=(e_i,e_j)$. Заметим,

что rk G = k, так как это часть матрицы Грама, и ее левый верхний $k \times k$ минор больше нуля. Следовательно, размерность пространства решений $\dim S^{\perp} = n - \operatorname{rk} G = n - \dim S$.

- 2. Из предыдущего пункта получаем, что $\dim S + \dim S^{\perp} = n$. Вместе с тем, поскольку (x,x) = 0 тогда и только тогда, когда x = 0, то $S \cap S^{\perp} = \{0\}$. Следовательно, $\mathbb{E} = S \oplus S^{\perp}$.
- 3. $S \subset (S^{\perp})^{\perp}$ всегда. Вместе с тем, $\dim(S^{\perp})^{\perp} = n \dim S^{\perp} = n (n k) = k = \dim S$. И так как размерности совпадают, то $S = (S^{\perp})^{\perp}$.

Итак, мы теперь знаем, что $\mathbb{E} = S \oplus S^{\perp}$. Значит, для $x \in \mathbb{E}$ существует единственное представление его в виде x = y + z, где $y \in S$, $z \in S^{\perp}$.

Определение. Вектор у называется ортогональной проекцией вектора x на подпространство S. Обозначение: $\operatorname{pr}_S x$.

Вектор z называется ортогональной составляющей вектора x вдоль подпространства S. Обозначение: ort $_S x$.

Ортогональные и ортонормированные базисы. Свойства

Определение. Базис (e_1,\ldots,e_n) в $\mathbb E$ называется ортогональным, если $(e_i,e_j)=0 \ \forall i\neq j.$ Это равносильно тому, что $G(e_1,\ldots,e_n)$ диагональна.

Базис называется ортонормированным, если дополнительно $(e_i, e_i) = 1 \ \forall i.$ Это равносильно тому, что $G(e_1,\ldots,e_n)=E$.

Замечание. Если (e_1,\ldots,e_n) ортогональный базис, то $\left(\frac{e_1}{|e_1|},\ldots,\frac{e_n}{|e_n|}\right)$ ортонормированный.

Теорема. В любом конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из того, что всякую положительно определенную квадратичную форму можно привести к нормальному виду.

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1, \ldots, e'_n) , причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$.

Предложение. (e'_1, \dots, e'_n) — ортонормированный тогда и только тогда, когда $C^TC = E$ или, что то же самое, $C^{-1} = C^T$.

 Доказательство. Условие, что базис (e_1',\ldots,e_n') является ортонормированным, равносильно тому, что $G(e'_1, \ldots, e'_n) = E$. С другой стороны, $G(e'_1, \ldots, e'_n) = C^T G(e_1, \ldots, e_n) C$, причем аналогично $G(e_1, \ldots, e_n) = E$. Откуда и следует, что $C^T C = E$.

Определение. Матрица С в таком случае называется ортогональной.

Свойства.

1. $C^{T}C = E$, значит, $C^{T} = C^{-1}$, и тогда $CC^{T} = E$. Итого, получаем:

$$\sum_{k=1}^{n} c_{ki} c_{kj} = \delta_{ij} = \sum_{k=1}^{n} c_{ik} c_{jk}$$

Напомним, что δ_{ij} это символ Кронекера.

2. $\det C = \pm 1$.

Пример. $C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ — матрица поворота на угол φ в \mathbb{R}^2 .

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \dots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

Предложение. $\operatorname{pr}_S x = \sum_{i=1}^k \frac{(x,e_i)}{(e_i,e_i)} e_i$. В частности, если базис ортонормированный,

$$\operatorname{pr}_S x = \sum_{i=1}^k (x, e_i) e_i$$

Доказательство. Представим вектор x в виде суммы $x = \operatorname{pr}_S x + \operatorname{ort}_S x$. Тогда:

$$(x, e_i) = (\operatorname{pr}_S x, e_i) + \underbrace{(\operatorname{ort}_S x, e_i)}_{=0} = (\operatorname{pr}_S x, e_i) \quad i = 1, \dots, k.$$

Вместе с тем, $\operatorname{pr}_S x = \sum_{i=1}^k \lambda_j e_j$, следовательно, $(x,e_i) = \sum_{i=1}^k \lambda_j (e_j,e_i)$. Но так как базис ортогональный, все слагаемые, кроме одного, занулятся, и останется только $(x, e_i) = \lambda_i(e_i, e_i)$. Откуда и следует, что $\lambda_i = \frac{(x,e_i)}{(e_i,e_i)}$. Пусть есть базис (e_1, \ldots, e_n) в \mathbb{E} . Процесс ортогонализации Грама-Шмидта даёт ортогональный базис (f_1, \ldots, f_n) , причем:

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$\dots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

Точно так же можно заметить, что $\langle f_1, \ldots, f_i \rangle = \langle e_1, \ldots, e_i \rangle$ для всех $i = 1, \ldots, n$.

Предложение. $f_i = \operatorname{ort}_{(e_1, \dots, e_{i-1})} e_i$ для всех $i = 1, \dots, n$.

Доказательство. Воспользовавшись равенством линейных оболочек, получаем, что $e_i \in f_i + \langle f_1, \ldots, f_{i-1} \rangle$. Следовательно, данный базисный вектор можно представить в виде $e_i = f_i + \lambda_1 f_1 + \ldots + \lambda_{i-1} f_{i-1}$. И из того, что $f_i \perp \langle e_1, \ldots, e_{i-1} \rangle = \langle f_1, \ldots, f_{i-1} \rangle$ как раз и получаем, что $f_i = \operatorname{ort}_{\langle e_1, \ldots, e_{i-1} \rangle} e_i$.

Пример. Данное рассуждение проще понять, если представить себе частный случай для $\mathbb{E} = \mathbb{R}^3.$

У нас зафиксированы векторы e_1, e_2, e_3 , и мы их ортогонализируем. Для начала, $f_1 = e_1$. Вектор f_2 получается как проекция вектора e_2 на прямую, ортогональную f_1 . А вектор f_3 — как проекция e_3 на прямую, ортогональную плоскости, образованной векторами f_1 и f_2 . Аналогично для пространств большей размерности.

Теорема (Пифагора). *Если* $x,y\in\mathbb{E}$ u $x\perp y,$ mo $|x+y|=|x|^2+|y|^2$.

Доказательство.

$$|x+y|^2 = (x+y, x+y) = (x,x) + (y,y) + \underbrace{(x,y)}_{=0} + \underbrace{(y,x)}_{=0} = (x,x) + (y,y) = |x|^2 + |y|^2$$

Расстояния в евклидовых пространствах

Рассмотрим векторы $x, y \in \mathbb{E}$.

Определение. Расстоянием между векторами x и y называется число $\rho(x,y) := |x-y|$.

Предложение (Неравенство треугольника). $\rho(a,b) + \rho(b,c) \geqslant \rho(a,c)$ при $a,b,c \in \mathbb{E}$.

Доказательство. Пусть x=a-b, y=b-c. Тогда a-c=x+y. Теперь достаточно доказать, что $|x|+|y|\geqslant |x+y|$. Для этого рассмотрим $|x+y|^2$.

$$|x+y|^2 = (x,x) + 2(x,y) + (y,y) = |x|^2 + 2(x,y) + |y|^2 \leqslant |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

Сравнивая начало и конец неравенства, получаем, что $|x+y| \leqslant |x| + |y|$. \Box

Пусть P и Q — два произвольных подмножества \mathbb{E} .

Определение. Расстоянием между Р и Q называют величину

$$\rho(P,Q) := \inf \{ \rho(x,y) \mid x \in P, y \in Q \}.$$

Пусть $x \in \mathbb{E}$ и $U \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x,U) = |\operatorname{ort}_{U} x|$, причём $\operatorname{pr}_{U} x - e \partial u$ нственный ближайший к x вектор из U.

Доказательство. Пусть $y = \operatorname{pr}_U x$ и $z = \operatorname{ort}_U x$. Пусть также $y' \in U \setminus \{0\}$, тогда:

$$\rho(x, y + y') = |x - y - y'| = |z - y'| = \sqrt{|z|^2 + \underbrace{|y'|^2}_{>0}} > |z| = \rho(x, y).$$

Из того, что вектор z, которым мы огранили снизу, определяется однозначно, и следует, что существует единственный ближайший вектор к x из U.

Пусть $U \subseteq \mathbb{E}$ — подпространство, $x \in \mathbb{E}$, (e_1, \dots, e_k) — базис U.

Теорема.
$$(\rho(x,U))^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$$

- 1. $x \in U$. Тогда $\rho(x,U) = 0$. Но с другой стороны, $\det G(e_1,\ldots,e_k,x) = 0$, поскольку эти векторы линейно зависимы, и значит, равенство выполняется.
- 2. $x \notin U$. Тогда $\rho(x,U) = |\operatorname{ort}_{U}x| = |z|$. Ортогонализация Грама-Шмидта к (e_1,\ldots,e_k,x) даст нам (f_1,\ldots,f_k,z) , причём $|z|^2 = (z,z) = \frac{\delta_{k+1}}{\delta_k} = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$.