GA 2450 Complex analysis I

Textbook: Basic complex analysis, Marsdan-Hoffman. Office hours: Thursday 1:30-3:00 pm.

Notations: , \mathbb{R} , \mathbb{C} , \mathbb{Z} , $\mathbb{Z}_{\geq 0}$ and \mathbb{Z}_{+}

. open intervals: (a,b), a,b \(\text{IR} \). — textbook: Ja, b[

· closed intervals: [a,b]

· mappings (functions): $f: A \to \mathbb{C}$.

· 3: exist, V: for all

Complex numbers.

Historically: Solving quadratic equations. $\chi^2+1=0 \Rightarrow \chi=\sqrt{-1}$. — called ineginary.

Generally: a complex number Z = X + iy

x = Re 2, real part of 2.

y = lm t, (maginary part of z.

Complex variables are essential to many math problems:

- Solving polynomial equations of any degree.

Thun (Foundamental Then of olgebra): P(2) = an 2" + ... + a, 2 + ao, aj E C.

Then P(2)=0 has n roots (counted w/multiplicity) in C.

- Computing real integrals.

$$\underline{EX}: \int_{0}^{\infty} \frac{\sin^{2}x}{\chi^{2}} dx = \frac{\pi}{2}, \qquad \int_{0}^{\infty} \frac{\chi^{\alpha-1}}{1+\chi} dx = \frac{\pi}{\sin(4\pi)} \quad (0 < \alpha < 1)$$

The complex number system: C

Def: C is the set \mathbb{R}^2 with the following operations: for any $Z=\chi_{+i}\gamma_{-i}$ identify C with the pair $(\chi_{+i}\gamma_{+i})\in\mathbb{R}^2$. Then for $Z_1=\chi_{+i}\gamma_{+i}$, $Z_2=\chi_{2+i}\gamma_{2}$,

- Addition $Z_1 + Z_2 = (\chi_1 + \chi_2) + i(\chi_1 + \chi_2)$ \Leftrightarrow vector addition 13

denoted by i.

 $(\chi_1, \gamma_1) + (\chi_2, \gamma_1) = (\chi_1 + \chi_2, \gamma_1 + \chi_1)$

- scalor multiplication: if a E IR, then

$$\alpha \neq = \alpha x + i(by)$$

(2x,2y)

- complex multiplication.

$$2_1 2_2 = (\chi_1 + i \gamma_1) (\chi_2 + i \gamma_2) = (\chi_1 \chi_2 - \gamma_1 \gamma_1) + i (\chi_1 \gamma_2 + \chi_2 \gamma_1)$$

Reason: couplex linear + distribution law.

$$Ex: (\pi + \sqrt{2}i) + (2-i) = (\pi + 2) + (\sqrt{2}-i)i$$

$$(\pi + \sqrt{2}i) \cdot (2-i) = (2\pi + \sqrt{2}) + (2\sqrt{2} - \pi)i$$

Note: 2, 2260 are equal => Ret, = Retz, Indi= Intz

Field structure of C

- · C is closed render addition and multiplication.
- · Addition and multiplication are resociative and commutative, and multiplication is distributive over addition.
- Identity for t: 0 = 0 + 0 i. Identity for multiplication: $l = l + 0 \cdot i$
- $7 = \alpha + bi$ has adalytive inverse $-2 = -\alpha bi$ Multiplicative inverse:

EX:
$$\frac{1}{2-2i} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

$$\frac{1}{3-2i} = \frac{3+2i}{(3-2i)(3+2i)} = \frac{3+2i}{3^2+2^2} = \frac{3}{13} + \frac{2}{13}i$$

$$\frac{1}{3-2i} = \frac{3+2i}{(3-2i)(3+2i)} = \frac{3+2i}{3^2+2^2} = \frac{3}{13} + \frac{2}{13}i$$

Important operations:

· Conjugation: , $Z = \alpha + bi$. Say $w = \alpha - bi$ the couplex conjugate of Z

$$\frac{\overline{2}}{\overline{2}} = \overline{2}$$

$$\frac{\overline{2}}{2} = \overline{2}$$

Application: Consider a polynomial equation

$$Q_{11} 2^{11} + \cdots + Q_{\ell} 2 + Q_{0} = 0 \tag{1}$$

Suppose W is a solution. Then
$$\overline{W}$$
 solves $\overline{Q}_{11} \cdot \overline{Q}_{12} + \overline{Q}_{10} = 0$

Thus, if each aj is real, aj = aj, then w is also a solution to (1)

> nonreal roots of a polynomial of real coefficients occur in complex conjugate
pairs

Modulus For z = ce+bi, call $|z| = \sqrt{\alpha^2 + b^2}$ the modulus of z.

•
$$|2|^2 = 2\overline{2}$$
. Thus, multiplicative inverse
$$\frac{1}{2} = \frac{\overline{2}}{|2|^2}$$

$$\begin{aligned} \left| \overline{\mathcal{L}}_{1} + \overline{\mathcal{L}}_{1} \right|^{2} &= \left(\overline{\mathcal{L}}_{1} + \overline{\mathcal{L}}_{2} \right) = \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{1} + \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{2} + \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{2} + \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{2} \\ &= \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{1} + \overline{\mathcal{L}}_{2} \overline{\mathcal{L}}_{2} + \overline{\mathcal{L}}_{1} \overline{\mathcal{L}}_{2} \\ &= \left| \overline{\mathcal{L}}_{1} \right|^{2} + \left| \overline{\mathcal{L}}_{1} \right|^{2} + 2 \operatorname{Re} \left(\overline{\mathcal{L}}_{2} \overline{\mathcal{L}}_{2} \right) \\ &\leq \left| \overline{\mathcal{L}}_{1} \right|^{2} + \left| \overline{\mathcal{L}}_{2} \right|^{2} + 2 \left| \overline{\mathcal{L}}_{1} \right| \left| \overline{\mathcal{L}}_{1} \right| = \left(\left| \overline{\mathcal{L}}_{1} \right| + \left| \overline{\mathcal{L}}_{2} \right| \right)^{2} \end{aligned}$$

$$\Rightarrow$$
 $|z_1+z_1| \leq |z_1|+|z_1|$ — triangle inequality.

Square voots.

Then:
$$(x+yi)^2 = \alpha+bi$$

 $\Rightarrow x^2-y^2+2xyi = \alpha+bi$ $\Rightarrow (x^2-y^2) = \alpha (1)$
 $\Rightarrow 2xxy = b (2)$

First, obscure
$$(x^2+y^2)^2 = 0^2+b^2$$
 $(|w|^2=|z|)$.
 $\Rightarrow x^2+y^2 = \sqrt{\alpha^2+b^2}$.

Thus
$$\chi^2 = \frac{1}{2} \left(a + \sqrt{a^2 + b^2} \right), \qquad \chi^2 = \frac{1}{2} \left(-a + \sqrt{a^2 + b^2} \right)$$

$$(\chi, \gamma) = \pm \left(\sqrt{\frac{1}{2}(\alpha + \sqrt{\alpha^2 + b^2})}, \sqrt{\frac{1}{2}(-\alpha + \sqrt{\alpha^2 + b^2})} \right)$$
if $b < 0$, then

$$(\chi_1 \gamma) = \pm \left(\sqrt{\frac{1}{2} (\alpha + \sqrt{\alpha^2 + b^2})}, -\sqrt{\frac{1}{2} (-\alpha + \sqrt{\alpha^2 + b^2})} \right)$$

Geometric representation of complex numbers.

· Couplex plane

e.g. to EC, R>O. Then circle w/ conter to and radius R $= \{ 1 \in \mathbb{C} : |2 - 20| = R \}$ Disk w/ center to and radius R= {2 EC: 12-2d ER} . ε neighborhards: $\{z\colon |z-z_0|<\varepsilon\}$ Some thus, we also tak about deleted wholes, or punctured clisk: {Z: 0< 12-7-1 < E } $\frac{EX}{}$ $\frac{EX}{}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ represents an ellipse. focci = (-1,-1) and (3,3)· Polar coordinate sepresentation; recall forp=(x,y) EIR2, polar coord (v,0) represents: r = dist from (0,0) to p. $\theta = \text{cangle from possitive } x - \text{caxis} + b \overrightarrow{OP}$ $\theta \in [0, 2\pi)$. and: x= rcoso, Y= rsh0. Hence: $z = x + yi = r \cos 0 + r \sin 0 i = r (\cos 0 + \sin 0 i)$ O is called the argument of 2. Now if we let $Z_1 = V_1(\cos\theta_1 + i\sin\theta_2)$, $Z_2 = V_2(\cos\theta_1 + i\sin\theta_2)$ $= r_1 r_2 \left(c_0 S(\theta_1 + \theta_2) + i Sh(\theta_1 + \theta_2) \right)$ Prop: |t,t2| = |2,1 |t2|, ang (2,2) = ang (2) + ang (2) (mad 27) · lu penticular, when wis writ_ i.o. [w]=1. Heer w= cos0+ i'SinO for some O Thus, 2w = notating 2 counterclockwise by <math>0. · If Z= r(cos0 + isin0), n ∈ Z+, then $2^n = r^n \left(\cos(n0) + i \sin(n0) \right)$ Rep (de Moivre): $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$ · n-th wot: If Z= r (cos0+ isin0), then n-th works of z can be computed: w= p(cost + isht) satisfies w== 2 $\Leftrightarrow \rho^n = r$, $ny = \theta$ mod 2π

$$\begin{cases} \rho = r^{\frac{1}{n}} \\ \gamma = \frac{\theta}{n} + \frac{2\pi k}{n}, \quad k=0,..., n-1 \end{cases}$$

$$\Leftrightarrow w = r^{\frac{1}{n}} \left(\cos \left(\frac{\theta + 2\pi k}{n} \right) + i \sin \left(\frac{\theta + 2\pi k}{n} \right) \right), \quad k=0,..., n-1$$

$$\text{Particularly, } n-\text{th voot of unity:}$$

$$\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, \quad k=0,..., n-1.$$

The Rienann splure.

. We will soon see: consider the set $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ co = infinity, s.t.:

- $\forall 2 \in \hat{C} \setminus \{0\}, \quad \frac{2}{5} = \infty$.

 $\forall \ \xi \in \mathbb{C}, \quad \frac{\pi}{\xi} = 0.$

Geometically, & = corplex plane + one point at a

Model: Riemann sphere.
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

assigns
$$W \in C$$
 by $W = \frac{X + i Y}{1 - 2}$.

this is an one-to-one and outs map

Z > w is a homeomorphism between SISN}

Define
$$\varphi: S \to \hat{C}$$
, $\varphi(N) = \infty$
 $\varphi(Z) = \frac{\chi + i \gamma}{1 - Z}$

Geometrically this is called the stereographic projection.