Iniziato mercoledì, 16 febbraio 2022, 09:20

Stato Completato

Terminato mercoledì, 16 febbraio 2022, 09:38

Tempo impiegato 17 min. 17 secondi

Valutazione 14,00 su un massimo di 15,00 (**93**%)

Domanda 1

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

L'errore inerente è dovuto:

Scegli un'alternativa:

- a. All'uso dei numeri finiti per rappresentare i dati.
- o b. Al propagarsi degli errori di arrotondamento delle singole operazioni.
- oc. Alle imperfezioni dello strumento di misura dei dati del problema.

Le risposte corrette sono: All'uso dei numeri finiti per rappresentare i dati., Al propagarsi degli errori di arrotondamento delle singole operazioni.

Domanda 2

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)+fl(w), allora:

Scegli un'alternativa:

- a. $fl(z) = 0.59 \times 10^{1}.$
- O b. $fl(z) = 0.585 \times 10^{1}$.
- \circ c. $fl(z) = 0.58 \times 10^{1}$.

La risposta corretta è: $fl(z) = 0.58 \times 10^{1}$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

La precisione macchina ϵ puo' essere definita come:

Scegli un'alternativa:

- igcup a. Il più piccolo numero ϵ tale che $fl(1+\epsilon)=1.$
- Ob. Nessuna delle precedenti.
- ${\color{red} lackbox{}}$ c. Il più piccolo numero ${\color{red} \epsilon}$ tale che $fl(1+{\color{red} \epsilon})>1.$

La risposta corretta è: Il più piccolo numero ϵ tale che $fl(1+\epsilon)>1$.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}$$

Allora:

Scegli un'alternativa:

- lacksquare a. A è simmetrica e definita positiva.
- igcup b. A è non simmetrica e definita positiva.
- igcup c. A è simmetrica ma non definita positiva.

La risposta corretta è: \boldsymbol{A} è simmetrica e definita positiva.

Se A è una matrice $n \times n$ allora:

Scegli un'alternativa:

- \bigcirc a. $||A||_1 = \rho(A^T A)$.
- $\bigcirc \ \text{b.} \ \left|\left|A\right|\right|_1 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$
- o c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice quadrata n imes n, allora:

Scegli un'alternativa:

- $\quad \bigcirc \text{ a. } \quad \left| \left| A \right| \right|_2 = \sqrt{\max_{\lambda \in A} \lambda}$
- Ob. Nessuna delle precedenti.
- lacksquare c. $||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$

La risposta corretta è: $||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$

Usando la fattorizzazione di Cholesky $(A=LL^T)$ il sistema Ax=b si puo' risolvere risolvendo:

Scegli un'alternativa:

- \bigcirc a. i due sistemi $\left\{ egin{aligned} L^Ty = b \\ Ly = x \end{aligned} \right.$
- $\ensuremath{\circledcirc}$ b. i due sistemi $\left\{ egin{align*} Ly = b \\ L^Tx = y \end{array} \right.$

La risposta corretta è: i due sistemi $\left\{egin{align*} Ly=b \ L^Tx=y \end{array}
ight.$

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il costo computazionale della fattorizzazione di Gauss A=LR, con A $n\times n$, è di:

Scegli un'alternativa:

- \odot a. $O\left(\frac{n_3}{3}\right)$
- \bigcirc b. $O\left(\frac{n}{3}\right)$
- \bigcirc c. $O\left(\frac{n^5}{3}\right)$

La risposta corretta è: $O\left(\frac{n^3}{3}\right)$

Domanda 9

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $A=LL^T$ la fattorizzazione di Cholesky, allora la soluzione del sistema Ax=b si ottiene risolvendo:

Scegli un'alternativa:

- $igcap a. egin{array}{l} L^Tx=y \ Ly=b \end{array}$
- lacksquare b. $\left\{egin{aligned} Ly=b\ L^Tx=y \end{aligned}
 ight.$
- \bigcirc c. $\left\{egin{aligned} L^Ty = b \ Lx = y \end{aligned}
 ight.$

La risposta corretta è: $\left\{ egin{aligned} Ly = b \\ L^Tx = y \end{aligned}
ight.$

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha una e una sola soluzione se:

Scegli un'alternativa:

- lacksquare a. rg(A)=n .
- Ob. Sempre.
- \bigcirc c. rg(A)=m.

La risposta corretta è: rg(A)=n .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A matrice m imes n con (m > n) e rg(A) = k < n, Sia $A = U \Sigma V^T$ la decomposizione SVD di A con:

$$U=(u_1,u_2,\ldots,u_m) \quad V=(v_1,v_2,\ldots,v_n) \quad \Sigma=(\sigma_1,\sigma_2,\ldots,\sigma_m)$$

Allora una soluzione del problema ai minimi quadrati $min ||Ax-b||_2^2$:

Scegli un'alternativa:

- $igcolumn{1}{c}$ a. è il vettore $x^* = \sum_{i=1}^k rac{u_i^T b}{\sigma_i} v_i$.
- o b. Nessuna delle precedenti.
- igcup extstyle extsty

La risposta corretta è: è il vettore $x^* = \sum_{i=1}^k rac{u_i^T b}{\sigma_i} v_i.$

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il problema lineare ai minimi quadrati $\min \lvert \lvert Ax - b \rvert \rvert_2^2$ ha equazioni normali:

Scegli un'alternativa:

- \bigcirc a. Ax = b
- lacksquare b. $A^TAx=A^Tb$
- \bigcirc c. $Ax = A^Tb$

La risposta corretta è: $A^TAx = A^Tb$

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il metodo di discesa del gradiente:

Scegli un'alternativa:

- lacktriangle a. Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto stazionario di f(x).
- igcup b. Converge sempre ad un minimo di f(x).
- \bigcirc c. Se α è scelto opportunamente, $f \in \mathcal{C}^1$, per x_0 , converge sempre ad un minimo di f(x).

La risposta corretta è: Se lpha è scelto opportunamente, $f\in\mathcal{C}^1$, per ogni x_0 , converge sempre ad un punto stazionario di f(x).

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $lpha=rac{1}{2}$, allora:

Scegli un'alternativa:

- \bigcirc a. $x^{(1)}=(rac{1}{2}-rac{e}{2},rac{1}{2}-rac{e}{2})^T.$
- $igcup b. \ x^{(1)} = (1 + rac{e}{2}, 1 + rac{e}{2})^T.$
- lacksquare c. $x^{(1)} = (1 rac{e}{2}, 1 rac{e}{2})^T$.

La risposta corretta è: $x^{(1)}=(1-\frac{e}{2},1-\frac{e}{2})^T.$

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$, definita come $f(x_1,x_2)=x_1^2+x_2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $\alpha=1/2$, allora:

Scegli un'alternativa:

- \bigcirc a. $x^{(1)} = (3/2, 2)^T$.
- lacksquare b. $x^{(1)} = (0, 1/2)^T$.
- \circ c. $x^{(1)} = (2,3)^T$.

La risposta corretta è: $x^{(1)} = (0, 1/2)^T$.

■ lab 5 files

Vai a...