Projekt MORO

Jakub Postępski

3 stycznia 2019

1 Parametry DH

L. p.	a_{i-1}	α_{i-1}	d_i	$ heta_i$
1	0	0	0	θ_1
2	a_1	$-\pi/2$	0	θ_2
3	a_2	0	0	θ_3
4	a_3	$\pi/2$	a_4	θ_4
5	0	$\pi/2$	0	θ_5
6	0	$\pi/2$	0	θ_6

Tabela 1: Parametry DH

2 Kinematyka prosta

Przejścia pomiędzy członami:

$$T_1^0 = \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 & 0\\ \sin(\theta_1) & \cos(\theta_1) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_2^1 = \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) & 0 & a_1\\ 0 & 0 & 1 & 0\\ -\sin(\theta_2) & -\cos(\theta_2) & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_3^2 = \begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & a_2\\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_4^3 = \begin{pmatrix} \cos(\theta_4) & -\sin(\theta_4) & 0 & a_3\\ \sin(\theta_4) & \cos(\theta_4) & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_5^4 = \begin{pmatrix} \cos(\theta_5) & -\sin(\theta_5) & 0 & 0\\ \sin(\theta_4) & \cos(\theta_5) & 0 & 0\\ \sin(\theta_5) & \cos(\theta_5) & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_6^5 = \begin{pmatrix} \cos(\theta_6) & -\sin(\theta_6) & 0 & 0\\ \sin(\theta_6) & \cos(\theta_6) & 0 & 0\\ \sin(\theta_6) & \cos(\theta_6) & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Po wymnożeniu:

$$T_{6}^{0} = \begin{pmatrix} \sin(\theta_{6}) & (\cos(\theta_{4}) & \sin(\theta_{1}) - \sin(\theta_{4}) & (\cos(\theta_{1}) & \sin(\theta_{2}) & \sin(\theta_{3}) - \cos(\theta_{1}) & \cos(\theta_{2}) & \cos(\theta_{3})))) - \cos(\theta_{6}) & (\cos(\theta_{5}) & (\sin(\theta_{1}) & \sin(\theta_{4}) + \cos(\theta_{5})) & (\cos(\theta_{5}) & (\cos(\theta_{5}) & \sin(\theta_{4}) - \cos(\theta_{4}) & \sin(\theta_{2}) & \sin(\theta_{3}) - \cos(\theta_{2}) & \cos(\theta_{3}) & \sin(\theta_{1}))) + \sin(\theta_{5}) & (\cos(\theta_{2}) & \sin(\theta_{1}) & \sin(\theta_{2}) & \sin(\theta_{3}) & (\cos(\theta_{2}) & \sin(\theta_{3})) - \cos(\theta_{4}) & \cos(\theta_{5}) & (\cos(\theta_{2}) & \sin(\theta_{3}) & \cos(\theta_{5}) & \cos$$

$$T_{6}^{0} = \begin{pmatrix} s_{6}(c_{4}s_{1} - s_{4}(c_{1}s_{2}s_{3} - c_{1}c_{2}c_{3})) - c_{6}(c_{5}(s_{1}s_{4} + c_{4}(c_{1}s_{2}s_{3} - c_{1}c_{2}c_{3})) - s_{5}(c_{1}c_{2}s_{3} + c_{1}c_{3}s_{2})) & c_{6}(c_{4}s_{1} - s_{4}(c_{1}s_{2}s_{3} - c_{1}c_{2}c_{3})) \\ c_{6}(c_{5}(c_{1}s_{4} - c_{4}(s_{1}s_{2}s_{3} - c_{2}c_{3}s_{1})) + s_{5}(c_{2}s_{1}s_{3} + c_{3}s_{1}s_{2})) - s_{6}(c_{1}c_{4} + s_{4}(s_{1}s_{2}s_{3} - c_{2}c_{3}s_{1})) & -c_{6}(c_{1}c_{4} + s_{4}(s_{1}s_{2}s_{3} - c_{2}c_{3}s_{1})) \\ c_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3}) - c_{4}c_{5}(c_{2}s_{3} + c_{3}s_{2})) - s_{4}s_{6}(c_{2}s_{3} + c_{3}s_{2}) & -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3}) - c_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ 0 & -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{4}s_{6}(c_{2}s_{3} + c_{3}s_{2}) & -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3}) - c_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{4}s_{6}(c_{2}s_{3} + c_{3}s_{2}) & -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) - s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ -s_{6}(s_{5}(c_{2}c_{3} - s_{2}s_{3})) \\ -s_{6}(s_{5}(c$$

3 Kinematyka odwrotna