

# Машинное обучение



И

## Анализ больших данных



18/02/23

Кабалянц Петр Степанович







- 1. Напоминание о методе максимального правдоподобия.
- 2. Восстановление плотности распределения класса.
- 3. Ошибки задачи классификации.

### Метод максимального правдоподобия:

#### Дискретный случай:

$$L(x_1,...,x_n,\theta)=P(X=x_1|\theta)^* P(X=x_2|\theta)^*...^* P(X=x_n|\theta)$$
 Найти  $\theta$  при котором  $L$  максимальна

#### Непрерывный случай:

$$L(x_1,...,x_n,\theta)=f_{\theta}(x_1)^* f_{\theta}(x_2)^*...^* f_{\theta}(x_n)$$

Найти θ при котором L максимальна,

 $f_{\theta}(x)$  – «предполагаемая» плотность распределения генеральной совокупности

Обычно ищут максимум натурального логарифма функции правдоподобия:  $InL(x_1,...,x_n,\theta)=InP(X=x_1|\theta)+InP(X=x_2|\theta)+...+InP(X=x_n|\theta)$ 

$$InL(x_1,...,x_n,\theta) = Inf_{\theta}(x_1) + Inf_{\theta}(x_2) + ... + Inf_{\theta}(x_n)$$

### Пример 1 метод максим. правдоподобия:

10, 4, 6, 8, 9, 1, 3, 8, 7, 5, 7, 4, 5, 9, 6, 7, 8, 7, 9, 6

n=20 – объем выборки, m=10 – длина серий схемы Бернулли

 $X \sim B(10, p)$ :  $P(X=k) = C_{10}^k p^k (1-p)^{10-k}$ 

p\*-?

#### Пример 1 метод максим. правдоподобия:

```
10, 4, 6, 8, 9, 1, 3, 8, 7, 5, 7, 4, 5, 9, 6, 7, 8, 7, 9, 6 n=20 – объем выборки, m=10 – длина серий схемы Бернулли X\sim B(10, p): P(X=k)=C_{10}^k p^k (1-p)^{10-k} p*-?
```

$$L(x_1,...,x_{20,p})=P(X=10|p)^*\ P(X=4|p)^*...^*\ P(X=6|p)=$$
 Найти р при котором L максимальна 
$$=\mathcal{C}_{10}^{10}p^{10}(1-p)^{10-10}\ ^*\mathcal{C}_{10}^4p^4(1-p)^{10-4}\ ^*...^*\ \mathcal{C}_{10}^6\ p^6(1-p)^{10-6}=\\ =(\mathcal{C}_{10}^{10}...\mathcal{C}_{10}^6)p^{10+4+...+6}\ (1-p)^{0+6+...+4}=(\mathcal{C}_{10}^{10}...\mathcal{C}_{10}^6)p^{129}(1-p)^{71}\\ InL=In(\mathcal{C}_{10}^{10}...\mathcal{C}_{10}^6)+129Inp+71In(1-p)\\ (InL)'=0+129/p-71/(1-p)=0\\ 129(1-p)=71p 200p=129\\ p^*=129/200=(x_1+...+x_n)/n^*m=x_B/m$$

## Пример 2 метод максим. правдоподобия:

10, 4, 6, 8, 9, 1, 3, 8, 7, 5, 7, 4, 5, 9, 6, 7, 8, 7, 9, 6

$$X \sim R(a, b)$$
:  $P(X < k) = (k-a)/(b-a)$ , если  $a < k < b$ 

$$f_{a,b}(x) = \begin{cases} 0, x \notin [a,b] \\ \frac{1}{b-a}, x \in [a,b] \end{cases}$$

a\*. b\*-?

$$L(x_1,..., x_{20},a,b) = \begin{cases} 0, \exists i: x_i \notin [a,b] \\ \frac{1}{(b-a)^{20}}, \forall i \ x_i \in [a,b] \end{cases}$$

Найти a, b при котором L максимальна.

### Пример 2 метод максим. правдоподобия:

10, 4, 6, 8, 9, 1, 3, 8, 7, 5, 7, 4, 5, 9, 6, 7, 8, 7, 9, 6 X~R(a, b): P(X<k)=(k-a)/(b-a), если a<k<br/>b a\*, b\*-?

$$L(x_1,..., x_{20},a,b) = \begin{cases} 0, \exists i : x_i \notin (a,b) \\ \frac{1}{(b-a)^{20}}, \forall i \ x_i \in (a,b) \end{cases}$$

Найти a, b при котором L максимальна.

$$a^*=minx_i=1$$

$$b*=maxx_i=10$$



Egon Pearson (сын)



K(C)arl Pearson (отец)

#### Neyman-Pearson



Jerzy Neyman (Юрий Нейман, родом из Бендер)





Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.

Было много критиков. Среди них был Владимир Вапник, математик и отец метода опорных векторов, одной из наиболее широко используемых моделей ИИ. Однажды мартовским днем 1995 года Ванник и Ларри Джакел, которые завербовали его и Лекуна в Bell Labs, заключили пари. Джакел заключил пари, что к 2000 году мы будем иметь представление о том, как работают глубокие искусственные нейронные сети. Ванник не согласился. Он также считал, что к 2005 году "никто в здравом уме не будет использовать нейронные сети, которые по сути похожи на те, что использовались в 1995 году". На карту был поставлен дорогой ужин, поэтому они составили ставку на бумаге и подписами ее - перед свидетемями. ЛеКун был третьим официальным подписантом, Ботту - неофициальным наблюдателем. Ванник выиграет первую половину пари. В 2000 году внутренная работа нейронных сетей все еще была в значительной степени окутана тайной, и даже сейчас исследователи не могут математически точно определить, что заставляет их работать хорошо. К 2005 году глубокие нейронные сети все еще использовались в банкоматах и банках, и они во многом основывались на работах Лекуна середины 1980-x u Harana 90-x.

#### Задача восстановления плотности

**Дано:** простая (i.i.d.) выборка  $X^{\ell} = \{x_1, \dots, x_{\ell}\} \sim p(x)$ .

Найти параметрическую модель плотности распределения:

$$p(x) = \varphi(x; \theta),$$

где heta — параметр, arphi — фиксированная функция.

Критерий — максимум (логарифма) правдоподобия выборки:

$$L(\theta; X^{\ell}) = \ln \prod_{i=1}^{\ell} \varphi(x_i; \theta) = \sum_{i=1}^{\ell} \ln \varphi(x_i; \theta) \to \max_{\theta}.$$

Необходимое условие оптимума:

$$\frac{\partial}{\partial \theta} L(\theta; X^{\ell}) = \sum_{i=1}^{\ell} \frac{\partial}{\partial \theta} \ln \varphi(x_i; \theta) = 0,$$

где функция  $\varphi(x;\theta)$  достаточно гладкая по параметру  $\theta$ .

## Случай п-мерной нормальной плотности

Пусть объекты x описываются n признаками  $f_j(x) \in \mathbb{R}$  и выборка порождена n-мерной гауссовской плотностью:

$$p(x) = \mathcal{N}(x; \mu, \Sigma) = \frac{\exp\left(-\frac{1}{2}(x - \mu)^{\mathsf{T}}\Sigma^{-1}(x - \mu)\right)}{\sqrt{(2\pi)^n \det \Sigma}}$$

 $\mu \in \mathbb{R}^n$  — вектор математического ожидания,  $\Sigma \in \mathbb{R}^{n \times n}$  — ковариационная матрица (симметричная, невырожденная, положительно определённая).

#### Выборочные оценки максимального правдоподобия:

$$\frac{\partial}{\partial \mu} \ln L(\mu, \Sigma; X^{\ell}) = 0 \quad \Rightarrow \quad \hat{\mu} = \frac{1}{\ell} \sum_{i=1}^{\ell} x_{i}$$

$$\frac{\partial}{\partial \Sigma} \ln L(\mu, \Sigma; X^{\ell}) = 0 \quad \Rightarrow \quad \hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_{i} - \hat{\mu})(x_{i} - \hat{\mu})^{\mathsf{T}}$$

#### Нормальный эллипсоид

Эллипсоид рассеяния — облако точек эллиптической формы:



При  $\Sigma = \mathrm{diag}(\sigma_1^2, \dots, \sigma_n^2)$  оси эллипсоида параллельны ортам. В общем случае:  $\Sigma = VSV^{\mathsf{T}}$  — спектральное разложение,  $V = (v_1, \dots, v_n)$  — ортогональные собственные векторы,  $S = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$  — собственные значения матрицы  $\Sigma$   $(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu) = (x-\mu)^{\mathsf{T}}VS^{-1}V^{\mathsf{T}}(x-\mu) = (x'-\mu')^{\mathsf{T}}S^{-1}(x'-\mu')$ .  $x' = V^{\mathsf{T}}x$  — декоррелирующее ортогональное преобразование

## Проблема мультиколлинеарности

**Проблема:** при  $\ell < n$  матрица  $\hat{\Sigma}$  вырождена, но даже при  $\ell \geqslant n$  она может оказаться плохо обусловленной.

**Регуляризация ковариационной матрицы**  $\hat{\Sigma} + \tau I_n$  увеличивает собственные значения на  $\tau$ , сохраняя собственные векторы (параметр  $\tau$  можно подбирать по скользящему контролю)

**Диагонализация ковариационной матрицы** — оценивание n одномерных плотностей признаков  $f_j(x)$ ,  $j=1,\ldots,n$ :

$$\hat{p}_j(\xi) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_j} \exp\left(-\frac{(\xi-\hat{\mu}_j)^2}{2\hat{\sigma}_j^2}\right), \quad j=1,\ldots,n$$

где  $\hat{\mu}_j$  и  $\hat{\sigma}_i^2$  — оценки среднего и дисперсии признака j:

$$\hat{\mu}_{j} = \frac{1}{\ell} \sum_{i=1}^{\ell} f_{j}(x_{i})$$

$$\hat{\sigma}_{j}^{2} = \frac{1}{\ell} \sum_{i=1}^{\ell} (f_{j}(x_{i}) - \hat{\mu}_{j})^{2}$$

## Задача восстановления смесей распределений

#### Порождающая модель смеси распределений:

$$p(x) = \sum_{j=1}^k w_j \varphi(x, \theta_j), \qquad \sum_{j=1}^k w_j = 1, \qquad w_j \geqslant 0,$$

k — число компонент смеси;  $\varphi(x,\theta_j) = p(x|j)$  — функция правдоподобия j-й компоненты;  $w_j = P(j)$  — априорная вероятность j-й компоненты.

**Задача 1:** при фиксированном k, имея простую выборку  $X^{\ell} = \{x_1, \dots, x_{\ell}\} \sim p(x)$ , оценить вектор параметров  $(w, \theta) = (w_1, \dots, w_k, \theta_1, \dots, \theta_k)$ .

**Задача 2:** оценить ещё и k.

## Функция правдоподобия и ЕМ-алгоритм

Задача максимизации логарифма правдоподобия

$$L(w,\theta) = \ln \prod_{i=1}^{\ell} p(x_i) = \sum_{i=1}^{\ell} \ln \sum_{j=1}^{k} w_j \varphi(x_i,\theta_j) o \max_{w,\theta}$$

при ограничениях  $\sum_{j=1}^k w_j = 1; \ w_j \geqslant 0.$ 

#### Итерационный алгоритм Expectation-Maximization:

начальное приближение параметров  $(w,\theta)$ ;

#### повторять

оценка скрытых переменных  $G=(g_{ij}), \ g_{ij}=P(j|x_i)$ :

 $G := \mathsf{E}$ -шаг $(w, \theta)$ ;

максимизация правдоподобия отдельно по компонентам:

$$(w,\theta) := \mathsf{M}\text{-}\mathsf{шar}(w,\theta,G);$$

**пока**  $w, \theta$  и G не стабилизируются;

## Теорема ЕМ-алгоритма

#### Теорема (необходимые условия экстремума)

Точка  $(w_j, \theta_j)_{j=1}^k$  локального экстремума  $L(w, \theta)$  удовлетворяет системе уравнений относительно  $w_i, \theta_i$  и  $g_{ij}$ :

Е-шаг: 
$$g_{ij} = \frac{w_j \varphi(x_i, \theta_j)}{\sum_{s=1}^k w_s \varphi(x_i, \theta_s)}, \quad i = 1, \dots, \ell, \quad j = 1, \dots, k;$$

М-шаг: 
$$heta_j = rg \max_{ heta} \sum_{i=1}^\ell g_{ij} \ln arphi(x_i, heta), \quad j=1,\ldots,k;$$

$$w_j = rac{1}{\ell} \sum_{i=1}^{\ell} g_{ij}, \quad j=1,\ldots,k.$$

ЕМ-алгоритм — это метод простых итераций для её решения

### Вероятностная интерпретация

Е-шаг — это формула Байеса:

$$g_{ij} = P(j|x_i) = \frac{P(j)p(x_i|j)}{p(x_i)} = \frac{w_j\varphi(x_i,\theta_j)}{p(x_i)} = \frac{w_j\varphi(x_i,\theta_j)}{\sum_{s=1}^k w_s\varphi(x_i,\theta_s)}.$$

Очевидно, выполнено условие нормировки:  $\sum_{i=1}^k g_{ij} = 1$ .

**М-шаг** — это максимизация взвешенного правдоподобия, с весами объектов  $g_{ij}$  для j-й компоненты смеси:

$$heta_j = rg \max_{ heta} \sum_{i=1}^\ell g_{ij} \ln \varphi(x_i, heta),$$

$$w_j = \frac{1}{\ell} \sum_{i=1}^{\ell} g_{ij}.$$

## Доказательство теоремы

Лагранжиан оптимизационной задачи  $L(w,\theta) \to \max$ :

$$\mathscr{L}(w,\theta) = \sum_{i=1}^{\ell} \ln \left( \sum_{j=1}^{k} w_j \varphi(x_i,\theta_j) \right) - \lambda \left( \sum_{j=1}^{k} w_j - 1 \right).$$

Приравниваем нулю производные:

$$\frac{\partial \mathscr{L}}{\partial w_j} = 0 \quad \Rightarrow \quad \lambda = \ell; \quad w_j = \frac{1}{\ell} \sum_{i=1}^{\ell} \underbrace{\frac{w_j \varphi(x_i, \theta_j)}{p(x_i)}}_{g_{ij}} = \frac{1}{\ell} \sum_{i=1}^{\ell} g_{ij},$$

$$\frac{\partial \mathscr{L}}{\partial \theta_j} = \sum_{i=1}^{\ell} \underbrace{\frac{\mathsf{w}_j \varphi(\mathsf{x}_i, \theta_j)}{\mathsf{p}(\mathsf{x}_i)}}_{\mathsf{p}(\mathsf{x}_i)} \frac{\partial}{\partial \theta_j} \ln \varphi(\mathsf{x}_i, \theta_j) = \frac{\partial}{\partial \theta_j} \sum_{i=1}^{\ell} \mathsf{g}_{ij} \ln \varphi(\mathsf{x}_i, \theta_j) = 0.$$

# Алгоритм восстановления смеси распределений

вход:  $X^{\ell} = \{x_1, \dots, x_{\ell}\}, k;$ **выход:**  $(w_j, \theta_j)_{i=1}^k$  — параметры смеси распределений; инициализировать  $(\theta_i)_{i=1}^k$ ,  $w_i := \frac{1}{K}$ ; повторять E-шаг (expectation): для всех  $i=1,\ldots,\ell$ ,  $j=1,\ldots,k$  $g_{ij} := \frac{w_j \varphi(x_i, \theta_j)}{\sum_{s=1}^k w_s \varphi(x_i, \theta_s)};$ M-шаг (maximization): для всех  $j=1,\ldots,k$  $heta_j := rg \max_{ heta} \sum_{i=1}^\ell g_{ij} \ln arphi(x_i, heta); \quad extit{$w_j := rac{1}{\ell} \sum_{i=1}^\ell g_{ij};$}$ пока  $w_i, \theta_i$  и/или  $g_{ii}$  не сошлись;

вернуть  $(w_i, \theta_i)_{i=1}^k$ ;

## Пример

Две гауссовские компоненты k=2 в пространстве  $X=\mathbb{R}^2$ . Расположение компонент в зависимости от номера итерации L:



## Модификация алгоритма

#### Проблемы базового варианта ЕМ-алгоритма:

- Как выбирать начальное приближение?
- Как определять число компонент?
- Как ускорить сходимость?

#### Добавление и удаление компонент в ЕМ-алгоритме:

- Если слишком много объектов  $x_i$  имеют слишком низкие правдоподобия  $p(x_i)$ , то создаём новую k+1-ю компоненту, по этим объектам строим её начальное приближение.
- Если у j-й компоненты слишком низкий  $w_i$ , удаляем её.

Регуляризация 
$$L(w,\theta) - au \sum_{j=1}^k \ln w_j o \max$$
:

$$w_j \propto \left(rac{1}{\ell}\sum_{i=1}^\ell g_{ij} - au
ight)_+$$

# Непараметрический подход

Задача: по выборке  $X^\ell = (x_i)_{i=1}^\ell$  оценить плотность  $\hat{p}(x)$ , без введения параметрической модели плотности

**Дискретный случай:**  $x_i \in D$ ,  $|D| \ll \ell$ . Гистограмма частот:

$$\hat{p}(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [x_i = x]$$

**Одномерный непрерывный случай:**  $x_i \in \mathbb{R}$ . По определению плотности, если P[a,b] — вероятностная мера отрезка [a,b]:

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P[x - h, x + h]$$

Эмпирическая оценка плотности по окну ширины h (заменяем вероятность на долю объектов выборки):

$$\hat{p}_h(x) = \frac{1}{2h} \frac{1}{\ell} \sum_{i=1}^{\ell} [|x - x_i| < h]$$

$$p(x) = F'(x) = \lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{h \to 0} \frac{F(x+h) - F(x-h)}{2h} = \lim_{h \to 0} \frac{P(X < x+h) - P(X < x-h)}{2h} = \lim_{h \to 0} \frac{P(x-h < X < x+h)}{2h}$$

#### Метод окна Эмануэля Парзена и Мюррея Розенблатта







Мишель Лоэв (Michel Loève), (1907-1979) ученик Поля Леви, учился в Париже, работал в Беркли, автор известного курса по теории вероятностей

Эмануэль Парзен (1929-2016), Emanuel Parzen, ученик Лоэва, учился в Гарварде и Беркли, работал в Стенфорде, в Техасском университете

Мюррей Розенблатт (1926-2019), университет Калифорнии

## Окно Парзена

Эмпирическая оценка плотности по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{\ell h} \sum_{i=1}^{\ell} \frac{1}{2} \left[ \frac{|x - x_i|}{h} < 1 \right].$$

**Обобщение:** оценка Парзена-Розенблатта по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{\ell h} \sum_{i=1}^{\ell} K\left(\frac{x - x_i}{h}\right),$$

где K(r) — *ядро*, удовлетворяющее требованиям:

- чётная функция;
- нормированная функция:  $\int K(r) dr = 1$ ;
- невозрастающая при r>0, неотрицательная функция.

В частности, при  $K(r) = \frac{1}{2} [|r| < 1]$  имеем эмпирическую оценку.

## Теорема Парзена

#### Теорема (одномерный случай, $x_i \in \mathbb{R}$ )

Пусть выполнены следующие условия:

- 1)  $X^{\ell}$  простая выборка из распределения p(x);
- 2) ядро K(z) непрерывно и ограничено:  $\int_X K^2(z) \ dz < \infty$ ;
- 3) последовательность  $h_\ell$ :  $\lim_{\ell \to \infty} h_\ell = 0$  и  $\lim_{\ell \to \infty} \ell h_\ell = \infty$ .

#### Тогда:

- 1)  $\hat{p}_{h_\ell}(x) o p(x)$  при  $\ell o \infty$  для почти всех  $x \in X$ ;
- 2) скорость сходимости имеет порядок  $O(\ell^{-2/5})$ .

А как быть в многомерном случае, когда  $x_i \in \mathbb{R}^n$ ?

## Обобщения на многомерный случай

**①** Если объекты описываются n признаками  $f_i: X \to \mathbb{R}$ :

$$\hat{p}_{h_1...h_n}(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} \prod_{j=1}^{n} \frac{1}{h_j} K\left(\frac{f_j(x) - f_j(x_i)}{h_j}\right)$$

**2** Если на X задана функция расстояния  $\rho(x, x')$ :

$$\hat{p}_h(x) = \frac{1}{\ell V(h)} \sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)$$

где  $V(h) = \int_X K(\frac{
ho(x,x_i)}{h}) dx$  — нормировочный множитель

Сферическое гауссовское ядро — частный случай обоих:

$$\hat{p}_h(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}h} \exp\left(-\frac{(f_j(x) - f_j(x_i))^2}{2h^2}\right)$$

### Выбор ядра



$$E(r) = \frac{3}{4}(1-r^2)ig[|r|\leqslant 1ig]$$
 — оптимальное (Епанечникова);

$$Q(r)=rac{15}{16}(1-r^2)^2ig[|r|\leqslant 1ig]$$
 — квартическое;

$$T(r) = (1-|r|)[|r| \leqslant 1]$$
 — треугольное;

$$G(r) = (2\pi)^{-1/2} \exp(-\frac{1}{2}r^2)$$
 — гауссовское;

$$\Pi(r)=rac{1}{2}ig[|r|\leqslant 1ig]$$
 — прямоугольное.

# Выбор ядра не влияет на качество восстановления

Функционал качества восстановления плотности:

$$J(K) = \int_{-\infty}^{+\infty} \mathsf{E}\big(\hat{p}_h(x) - p(x)\big)^2 \, dx.$$

Асимптотические значения отношения  $J(K^*)/J(K)$  при  $\ell \to \infty$  не зависят от вида распределения p(x).

| ядро $K(r)$           | степень гладкости        | $J(K^*)/J(K)$ |
|-----------------------|--------------------------|---------------|
| Епанечникова $K^*(r)$ | $\hat{p}_h'$ разрывна    | 1.000         |
| Квартическое          | $\hat{p}_h'''$ разрывна  | 0.995         |
| Треугольное           | $\hat{p}_h'$ разрывна    | 0.989         |
| Гауссовское           | $\infty$ дифференцируема | 0.961         |
| Прямоугольное         | $\hat{p}_h$ разрывна     | 0.943         |

# Зависимость оценки плотности от ширина окна

Оценка  $\hat{p}_h(x)$  при различных значениях ширины окна h:



- Качество восстановления плотности существенно зависит от ширины окна h, но слабо зависит от вида ядра K
- При неоднородности локальных сгущений плотности можно задавать  $h_k(x) = \rho(x, x^{(k+1)})$ , где k число соседей

## Выбор ширины окна

Скользящий контроль Leave One Out для оценки плотности:

$$LOO(h) = -\sum_{i=1}^{\ell} \ln \hat{p}_h(x_i; X^{\ell} \setminus x_i) \to \min_h,$$

Типичный вид зависимости LOO(h) или LOO(k):



## Три подхода

Параметрическое оценивание плотности:

$$\hat{p}(x) = \varphi(x, \theta).$$

Восстановление смеси распределений:

$$\hat{p}(x) = \sum_{j=1}^{k} w_j \varphi(x, \theta_j), \quad k \ll \ell.$$

Непараметрическое оценивание плотности:

$$\hat{p}(x) = \sum_{i=1}^{\ell} \frac{1}{\ell V(h)} K\left(\frac{\rho(x, x_i)}{h}\right).$$

#### Математика поможет:



Спасибо за терпение!