

The Algorithm for Newton's Method

by Sophia

WHAT'S COVERED

As you have seen in this challenge, the tangent line to a function at x = a provides a good estimate to f(x) near x = a. Another way to use the tangent line is to find its x-intercept to approximate the x-intercept of f(x). In this lesson, you will learn Newton's method, which uses successive tangent lines to approximate an x-intercept. Most graphing utilities use Newton's method to locate x-intercepts and points of intersections of graphs. Specifically, this lesson will cover:

- 1. The Idea Behind Newton's Method
- 2. Applying Newton's Method
 - 2a. Newton's Method: The Algorithm
 - 2b. Approximating x-Intercepts with Newton's Method

1. The Idea Behind Newton's Method

The goal of Newton's method is to use tangent lines to approximate an x-intercept of the graph of Y = f(x). In other words, the goal is to solve the equation f(x) = 0.

Consider the function $f(x) = x^3 + 2x - 4$.

Now, consider the picture shown above, which has two graphs:

- The solid curve is the graph of f(x).
- The dashed line is the tangent line at x = 1 (this corresponds to our "guess").

To start the process for Newton's method, we're going to "guess" x=1 as the x-intercept. Notice that the x-intercept of f(x) is very close to the x-intercept of the tangent line. The advantage of using the tangent line is that it is much easier to solve a linear equation than it is a cubic equation.

First step: Find the equation of the tangent line at x = 1.

Given $f(x) = x^3 + 2x - 4$, the derivative is $f'(x) = 3x^2 + 2$. Then, the slope of the tangent line is $f'(1) = 3(1)^2 + 2 = 5$.

Then, the equation of the tangent line is:

$$y = f(1) + f'(1)(x - 1)$$

$$y = -1 + 5(x - 1)$$

$$y = -1 + 5x - 5$$

$$y = 5x - 6$$

Then, the x-intercept of the tangent line is found by letting y = 0 and solving for x:

$$0 = 5x - 6$$

$$6 = 5x$$

$$\frac{6}{5} = x \text{ (or 1.2 in decimal form)}$$

Thus, our approximation for the x-intercept is (1.2, 0).

So, where would we go from here?

We now have a new "guess" for the x-intercept of the graph of f(x). To continue with this process, find the equation of the tangent line to f(x) at x = 1.2, then find its x-intercept. We'll formalize this process and then complete this problem in the next part of this challenge.

2. Applying Newton's Method

Consider a function y = f(x) and let x_0 be the first guess for its x-intercept.

Write the equation of the tangent line at $x = x_0$: $y = f(x_0) + f'(x_0)(x - x_0)$.

Find the x-intercept of the tangent line, which means y = 0:

$$0 = f(x_0) + f'(x_0)(x - x_0) \qquad \text{Replace y with 0.}$$

$$-f(x_0) = f'(x_0)(x - x_0) \qquad \text{Subtract } f(x_0) \text{ from both sides.}$$

$$-\frac{f(x_0)}{f'(x_0)} = x - x_0 \qquad \text{Divide both sides by } f'(x_0).$$

$$x_0 - \frac{f(x_0)}{f'(x_0)} = x \qquad \text{Add x_0 to both sides.}$$

Now, this x-intercept is the next guess for the intercept, which under normal conditions, is a closer estimate than x_0 . Since this process will continue, let's call the x-intercept of the tangent line x_1 . Then, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$.

Now, suppose we want to continue this process:

• Find the equation of the tangent line at $x = x_1$.

• Find the x-intercept of the tangent line and call it
$$x_2$$
. Then, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$.

If we continue this process, we get a sequence of estimates x_0 , x_1 , x_2 , ... for the estimates of the x-intercept that get closer to some number (which would be the actual x-intercept). Performing these iterations is what is known as Newton's method.

2a. Newton's Method: The Algorithm

Suppose the goal is to find an approximation to an x-intercept of a function y = f(x), which is equivalent to finding a solution to f(x) = 0. Starting with an initial guess at $x = x_0$, the sequence of guesses x_1, x_2, x_3 , ... is generated by the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

The process stops when one of two things occurs:

- Two consecutive x-values are "close enough" together.
- The x-values are jumping around to the point where they aren't getting closer to a common number.

Newton's Method

To find the next estimate for an x-intercept, use the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

2b. Approximating x-Intercepts with Newton's Method

 \Leftrightarrow EXAMPLE Let's pick back up with the function $f(x) = x^3 + 2x - 4$. When we left off, we had $x_0 = 1$ and $x_1 = 1.2$. Let's perform two more iterations of Newton's Method to get a better approximation of the x-intercept. To use Newton's method, it is best to organize the information into a table:

Note:
$$f(x) = x^3 + 2x - 4$$
 and $f'(x) = 3x^2 + 2$.

п	x _n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	1	-1	5	1.2
1	1.2	0.128	6.32	1.179746835
2	1.179746835	0.001468379	6.175407787	1.179509057
3	1.179509057	0.0000002	6.173724847	1.179509025

The last two estimates are identical to 6 decimal places, so we conclude that the x-intercept to six decimal places of f(x) is (1.179509, 0). This also means that the equation $x^3 + 2x - 4 = 0$ has the solution $x \approx 1.179509$.

Use Newton's method to find the approximate solution to $x - \cos x = 0$.

SUMMARY

In this lesson, you learned **the idea behind Newton's method**, which is to use tangent lines to approximate an x-intercept of the graph of y = f(x). Newton's method is a very straightforward approximation method designed to solve equations of the form f(x) = 0 (equivalent to finding the x-intercepts of the graph of y = f(x)). You learned how to **apply Newton's method** using its **algorithm**, by starting with an initial guess at $x = x_0$, then generating a sequence of guesses x_1, x_2, x_3 , ... to arrive at a close **approximation of the x-intercept**.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 2 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

Д

FORMULAS TO KNOW

Newton's Method

To find the next estimate for an x-intercept, use the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.