Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 18: June 9th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

Definition 18.1 Given an integer $k \geq 0$. a k regular graph is a graph in which every vertex has degree k.

Example 18.2 3-Regular Graph

Example 18.3 Let $n \in \mathbb{N}$. The complete graph K_n is the graph with n vertices such that the graph with n vertices such that every two vertices are adjacent

Problem 18.4 Let $Q_k = (V, E)$, $V = \{0, 1\}^k$ and $E = \{S_1S_2 : S_1S_2 \in \{0, 1\}^k, S_1 \text{ and } S_2 \text{ differ in exactly one digit}\}$ Show Q_k is regular and find $|E(Q_k)|$

Solution: Let $s \in \{0,1\}^k$. Every neighbour s' of s is obtained by changing one digit S, do s has k neighbours $\Rightarrow Q_k$ is k-regular

$$\begin{aligned} 2 \cdot \mid E(Q) \mid &= \sum_{s \in V(G_k)} deg(s) \\ &= \sum_{s \in V(G_k)} k \\ &= k \cdot \mid V(Q_k) \mid \\ &= k \cdot 2^k \\ \implies \mid E(Q_k) \mid = k \cdot 2^{k-1} \end{aligned}$$

Definition 18.5 The degree sequence of a graph is the sequence of degree in decreasing order

Exercise

- ullet Prove that if two graphs have distinct degree sequences \Longrightarrow they are not isomorphic
- Find two non-isomorphic graphs with the same degree sequence.

18.1 Bipartite Graphs

Definition 18.6 A bipartite graph is a graph where the set of vertices can be partitioned into two sets A,B such that every edge joins a vertex in A to a vertex in B

Problem 18.7 Show the k-cube Q_k is bipartite Solution:

Set $A = \{s \in \{0,1\}^k : s \text{ has an even number of 1's} \}$ and $b = \{s \in \{0,1\}^k : s \text{ has an odd number of 1's} \}$

Since for every $s_1s_2 \in E(Q_k)$, s_1 and s_2 differ in one digit. So either s_1 has an even number of 1's and s_0 has an odd number of 1's or viceversa