Ecuaciones escalares autónomas

Dados un intervalo abierto $I \subset \mathbb{R}$ y una función continua $f: I \to \mathbb{R}^d$, un instante $t_0 \in \mathbb{R}$ y un valor $x_0 \in I$, consideramos PVI:

$$(P) \begin{cases} x' = f(x) \\ x(t_0) = x_0. \end{cases}$$

Teorema

- El PVI (P) tiene solución.
- ② Si $f(x_0) \neq 0$ entonces la solución es única en sentido local.
- **3** Si $f(x_0) = 0$ y f es derivable en x_0 entonces la solución es única en sentido global.
- Si $f(x_0) = 0$ y existen un número $\delta \neq 0$ y una función $G \in \mathcal{C}(J)$ tales que $G(x_0) = 0$ y

$$G'(x) = \frac{1}{f(x)}$$
 $\forall x \in (x_0, x_0 + \delta) \subset I$

entonces la solución de (P) no es única en sentido local.

Demostración

- Oistinguimos dos casos:
 - Caso 1: $f(x_0) = 0$. La función $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(t) = x_0$ es solución.
 - Caso 2: $f(x_0) \neq 0$. Por continuidad existe un intervalo abierto $K \subset I$ tal que $x_0 \in K$ y $f(x) \neq 0$ $\forall x \in K$. Definimos

$$G: K \to \mathbb{R}, G(x) = \int_{x_0}^x \frac{1}{f(z)} dz.$$

Se aplica el teorema de la función implícita a la ecuación:

$$G(x) = t - t_0$$

- 2 Es consecuencia del teorema de la función implícita.
- Sea $\varphi: J \to \mathbb{R}$ una solución de (P). Queremos probar que $\varphi \equiv x_0$. Supongamos que no; entonces existe $\tau \in I$ tal que $\varphi(\tau) \neq x_0$. Distinguimos dos casos:
 - Caso 1: $\tau > t_0$. Si definimos

$$ilde{t}_0 = ext{máx} \left\{ t \in [t_0, au] \ : \ arphi(t) = x_0
ight\}.$$

se cumple $\varphi(\tilde{t}_0) = x_0 \text{ y } \varphi(t) \neq x_0 \text{ } \forall t \in (\tilde{t}_0, \tau].$

Definimos

$$y: (\tilde{t}_0, \tau] \to \mathbb{R}, \quad y(t) = \ln |\varphi(t) - x_0|.$$

Estudiamos esta función y llegamos a una contradicción.

- Caso 2: $\tau < t_0$. Demostración similar.
- Una solución de (P) es $\varphi_1 : \mathbb{R} \to \mathbb{R}, \quad \varphi_1(t) = x_0.$
 - Caso 1: Si $G(x_0 + \delta) > 0$ entonces otra solución es

$$\varphi_2: (-\infty, t_0 + G(x_0 + \delta)) \to \mathbb{R}, \quad \varphi_2(t) = \begin{cases} x_0 & \text{si } t \leq t_0 \\ G^{-1}(t - t_0) & \text{si } t > t_0 \end{cases}$$

• Caso 2: Si $G(x_0 + \delta) < 0$ entonces otra solución es

$$arphi_2: (t_0 + G(x_0 + \delta), +\infty) o \mathbb{R}, \quad arphi_2(t) = egin{cases} G^{-1}(t - t_0) & \mathsf{si} & t < t_0 \ x_0 & \mathsf{si} & t \geq t_0 \end{cases}$$

Notas

- Rebajar hipótesis del apartado 3.
- Aplicar a ecuaciones con variables separadas.

Ejercicio

Estudia la unicidad del PVI

$$\begin{cases} x' = |x|^p \\ x(0) = 0 \end{cases}$$

según los valores de $p \in (0, +\infty)$.