Discretisation of 2D domains, bounded by NURBS curves

Author: Andrej Kolar-Požun Mentor: Marjetka Knez

29. november 2023

▶ NURBS - Non Uniform Rational B-Splines.

- ► NURBS Non Uniform Rational B-Splines.
- ▶ B-Splines $N_{k,p}(\xi)$ basis for polynomial splines with prescribed smoothness.

- NURBS Non Uniform Rational B-Splines.
- ▶ B-Splines $N_{k,p}(\xi)$ basis for polynomial splines with prescribed smoothness.
- ▶ B-Splines + Control points \rightarrow B-Spline Curve (special case Bézier curve).

- NURBS Non Uniform Rational B-Splines.
- ▶ B-Splines $N_{k,p}(\xi)$ basis for polynomial splines with prescribed smoothness.
- ▶ B-Splines + Control points \rightarrow B-Spline Curve (special case Bézier curve).
- $C(\xi) = \frac{\sum_{k=1}^{n} P_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$

- NURBS Non Uniform Rational B-Splines.
- ▶ B-Splines $N_{k,p}(\xi)$ basis for polynomial splines with prescribed smoothness.
- ▶ B-Splines + Control points \rightarrow B-Spline Curve (special case Bézier curve).
- $C(\xi) = \frac{\sum_{k=1}^{n} P_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- Multipatch NURBS are also common.

 $ightharpoonup \partial \Omega = C(I)$ - simple and closed curve.

- $ightharpoonup \partial \Omega = C(I)$ simple and closed curve.
- ▶ Goal discretise Ω . Obtain $X \subset \Omega$.

- $ightharpoonup \partial \Omega = C(I)$ simple and closed curve.
- ▶ Goal discretise Ω . Obtain $X \subset \Omega$.
- Motivation Meshless methods and Monte Carlo.

- $ightharpoonup \partial \Omega = C(I)$ simple and closed curve.
- ▶ Goal discretise Ω . Obtain $X \subset \Omega$.
- Motivation Meshless methods and Monte Carlo.
- Requirement 1: Algorithm takes N or h as input.

- $ightharpoonup \partial \Omega = C(I)$ simple and closed curve.
- ▶ Goal discretise Ω . Obtain $X \subset \Omega$.
- Motivation Meshless methods and Monte Carlo.
- ▶ Requirement 1: Algorithm takes *N* or *h* as input.
- Requirement 2: Quasiuniformness, quasirandomness.

ightharpoonup inRS¹ algorithm for calculating indicator function of Ω.

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- ▶ inRS¹ algorithm for calculating indicator function of Ω.
- $C(\xi) = \frac{\sum_{k=1}^{n} P_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- ▶ inRS¹ algorithm for calculating indicator function of Ω.
- $C(\xi) = \frac{\sum_{k=1}^{n} P_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- Main idea try reduce to the polygon case.

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- \blacktriangleright inRS¹ algorithm for calculating indicator function of Ω.
- $C(\xi) = \frac{\sum_{k=1}^{n} P_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- ▶ Main idea try reduce to the polygon case.
- ▶ Divide I into I_k such that C restricted to it is a pair of rational functions.

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- ▶ inRS¹ algorithm for calculating indicator function of Ω .
- $C(\xi) = \frac{\sum_{k=1}^{n} \mathbf{P}_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- Main idea try reduce to the polygon case.
- Divide I into I_k such that C restricted to it is a pair of rational functions.
- For each I_k , calculate the roots of the derivatives of the appropriate rational function.

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- ▶ inRS¹ algorithm for calculating indicator function of Ω .
- $C(\xi) = \frac{\sum_{k=1}^{n} \mathbf{P}_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- Main idea try reduce to the polygon case.
- Divide I into I_k such that C restricted to it is a pair of rational functions.
- For each I_k , calculate the roots of the derivatives of the appropriate rational function.
- ▶ For each $I_{k,j}$ find $a_{k,j} = \min_{I_{k,j}} \alpha_k(\xi)$

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

- ▶ inRS¹ algorithm for calculating indicator function of Ω .
- $C(\xi) = \frac{\sum_{k=1}^{n} \mathbf{P}_{k} w_{k} N_{k,p}(\xi)}{\sum_{k=1}^{n} w_{k} N_{k,p}(\xi)}.$
- Main idea try reduce to the polygon case.
- Divide I into I_k such that C restricted to it is a pair of rational functions.
- For each I_k , calculate the roots of the derivatives of the appropriate rational function.
- ▶ For each $I_{k,j}$ find $a_{k,j} = \min_{I_{k,j}} \alpha_k(\xi)$
- ▶ Cover $\partial\Omega$ by monotone boxes $\mathcal{B}_{k,j} = [a_{k,j}, b_{k,j}] \times [c_{k,j}, d_{k,j}]$.

¹Sommariva, Vianello inRS: Implementing the indicator function of NURBS-shaped planar domains.

▶ If (x_0, y_0) outside global bounding box \rightarrow also outside Ω .

- ▶ If (x_0, y_0) outside global bounding box \rightarrow also outside Ω .
- ▶ If (x_0, y_0) outside monotone boxes polygon case.

- ▶ If (x_0, y_0) outside global bounding box \rightarrow also outside Ω .
- ▶ If (x_0, y_0) outside monotone boxes polygon case.
- If inside one of the monotone boxes polynomial solve.

degenerate cases and multipatch.

degenerate cases and multipatch.

► Halton nodes + rejection sampling

▶ DIVG² - Dimension Independent Variable Density node Generation.

 $^{^2}$ Slak, Kosec: On generation of node distributions for meshless PDE discretizations

▶ DIVG² - Dimension Independent Variable Density node Generation.

²Slak, Kosec: On generation of node distributions for meshless PDE discretizations

- ▶ DIVG² Dimension Independent Variable Density node Generation.
- q queue of active points, initially filled with seed points. Algorithm runs as long as it's non-empty.

²Slak, Kosec: On generation of node distributions for meshless PDE discretizations

- ▶ DIVG² Dimension Independent Variable Density node Generation.
- q queue of active points, initially filled with seed points. Algorithm runs as long as it's non-empty.
- At each step, pop q to get a point x_0 , use it to generate new candidates.

²Slak, Kosec: On generation of node distributions for meshless PDE discretizations

- ▶ DIVG² Dimension Independent Variable Density node Generation.
- q queue of active points, initially filled with seed points. Algorithm runs as long as it's non-empty.
- At each step, pop q to get a point x_0 , use it to generate new candidates.
- Candidate is accepted if it's inside the domain and if it is far enough from already accepted points.

²Slak, Kosec: On generation of node distributions for meshless PDE discretizations

- ▶ DIVG² Dimension Independent Variable Density node Generation.
- q queue of active points, initially filled with seed points. Algorithm runs as long as it's non-empty.
- At each step, pop q to get a point x_0 , use it to generate new candidates.
- Candidate is accepted if it's inside the domain and if it is far enough from already accepted points.
- Algorithm is efficient with the help of a kd-tree.

²Slak, Kosec: On generation of node distributions for meshless PDE discretizations

▶ sDIVG³ idea - use DIVG in the parameter space.

³Duh, Kosec, Slak: Fast variable density node generation on parametric surfaces with application to mesh-free methods

▶ sDIVG³ idea - use DIVG in the parameter space.

³Duh, Kosec, Slak: Fast variable density node generation on parametric surfaces with application to mesh-free methods

► NURBS-DIVG⁴

- ▶ NURBS-DIVG⁴
- Multipatch Discretise each patch seperately with sDIVG.

⁴Duh, Shankar, Kosec: Discretization of non-uniform rational B-spline (NURBS) models for meshless isogeometric analysis

▶ Interior check - $(\mathbf{p} - \mathbf{x}) \cdot \mathbf{n} > 0$

▶ Interior check - $(\mathbf{p} - \mathbf{x}) \cdot \mathbf{n} > 0$

- lnterior check $(\mathbf{p} \mathbf{x}) \cdot \mathbf{n} > 0$
- ▶ Improve accuracy with supersampling.

Comparison

NURBS describing the duck shape

