MATH472 Final Presentation

Motifs and scale-free properties of connectivity networks across species

Brandon Barton, Lowell Kalman

Mathematical and Computational Neuroscience Colorado School of Mines

Nov 2021

Network Neuroscience

- Our project is distinct from network models we have discussed so far
- Network science and graph analytic approach
 - This approach focuses on representing connectivity in large networks
 - Challenging to capture the dynamics of single neuron spiking
 - Better at representing network as a whole

Figure: The Topology of the Internet [2]

Brain Network Representation

- Given a graph G = (N, E)
- We can represent neurons as nodes (N), and synaptic connections as edges (E)
- Recall: Connectivity/ Adjacency Matrix A
- The element A_{ij} in **A** represents a connection between the nodes in the i^{th} row, and j^{th} columns

Figure: Example of a Connectivity/ Adjacency Matrix [6]

Connectivity in Brain Networks

- How is brain connectivity measured?
 - 1. Anatomical connectivity voxels of gray matter, connections of dense axonal bundles
 - 2. Functional connectivity fMRI analysis shows temporal connection between brain regions [8]
- Challenging to measure single neuron connections
 - Human brain **A**: (N = 1 Billion, E = Many Trillions) \rightarrow 1,250,000,000 TB
- Connectivity at varying resolution
 - Neuron-to-neuron connections
 - Brain region-to-region

Network Motifs

- What is a network motif?
 - Let H = (N, E) be the host graph
 - A subgraph $G = (N', E') \in H$
- A motif is simply a statistically significant subgraph existing in the larger complex network
- Motifs can represent recurring interactions of circuitry in the brain

Figure: Depiction of motif query [5]

The Degree Distribution of a Network

- p(k) = The probability of a randomly selected node having k connections
- Gives insight into the overall structure of a network

Figure: Binomial degree distribution for a random graph

Motivating Questions

- 1. Do the building blocks of network interactions (motifs) provide insight into how the complex brain network is formed fundamentally?
- 2. Do motif concentrations follow similar distributions in networks of differing scales?
- 3. Are there any striking differences between the connectomes of different animals?

Data Gathering Techniques

• Drosophila: Electron Microscopy

• Mouse: Enhanced Green Fluorescent Protein

Cat: Tract Tracing

• Macaque: Retrograde Tracing

Figure: Display of Fly Brain [7]

Connectivity Data Across Species

• We investigated networks of varying size and resolution

Network	Nodes (N)	Edges (E)	Density (ρ)	Rel. Density (ρ_r)	Avg Degree (k _{avg})
Drosophila	1780	17417	0.006	0.007	20
Mouse	213	21807	0.483	0.576	205
Cat	65	1139	0.274	0.326	35
Macaque	91	628	0.077	0.091	14

Table: Network attributes and summary statistics

Motifs

- What network motifs are useful for brain networks?
- What network motifs can we search for?
- Subgraph monomorphism task is computationally intensive, (NP-Complete) [3, 5, 9]
- DotMotif uses a variation of the VF2 algorithm [5]

Figure: Set of three node (n=3) directed motifs.

Stochastic Graph Generation

- We generated canonical random networks using NetworkX graph generators. [4]
- Barabási-Albert (BA) model [1]
 - Adds nodes one-by-one
 - Preferential attachment
- Scale-free (SF) Model
 - Variation of the BA model, with additional parameters
- We stochastically generated two graphs for each animal network
 - 1. BA networks with Nodes (N) and average degree (k_{avg}) from the animal brain networks.
 - 2. Directed scale-free (SF) networks with vertices (V)

Motif Concentrations

Discussion - Motifs

- All networks show high concentrations of simple three node motif structures
 - Unidirectional
- As complexity of motif relationships increases, motif frequency decreases across all networks.
 - SF and real networks are most similar in this regard
 - Directed network relationships are important
- The macaque network is highly similar to the SF generated network, while other networks differ significantly

Degree Distributions of Mouse, Cat, and Macaque

Figure: Degree Distributions for Real Networks

Figure: Degree Distributions for Barabasi-Albert Networks

Degree Distribution of the Drosophila

Figure: Linear and Loglog representations of the Drosophila Degree Distribution vs BA Random Network

Implications of the Degree Distributions and Scale-Free Networks

- The Drosophila network follows a power law degree distribution
 - $p(k) = k^{-\gamma}$
 - "Scale-Free": Fractal structure in the network, presence of hubs
 - Calculating γ can give more insight, but it is not trivial [2]
 - Drosophila is the network with the highest resolution: connections between individual neruons
- Mouse, Cat, and Macaque do not have a clearly distinguishable degree distribution
 - This suggests information is lost in the lower resolution connectomes
 - Could also result from having less nodes

Future Research

- Gathering data of other animals at a neuron to neuron resolution
 - It would be expected that the scale-free property emerges
- Compare networks to other random graph models
 - Sub-linear preferential attachment (limits of neuronal attachment)
- Examine relevant motifs per brain region

References

- [1] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999.
- [2] A.-L. Barabási and M. Pósfai. Network science. Cambridge University Press, Cambridge, 2016.
- [3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm for matching large graphs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(10):1367–1372, 2004.
- [4] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
- [5] J. K. Matelsky, E. P. Reilly, E. C. Johnson, J. Stiso, D. S. Bassett, B. A. Wester, and W. Gray-Roncal. DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries. *Scientific Reports*, 11(1):1–14, 2021.
- [6] D. J.-P. Rodrigue. More complex connectivity matrix.
- [7] G. C. Team. fafb-ffn1.
- [8] Q. K. Telesford, S. L. Simpson, J. H. Burdette, S. Hayasaka, and P. J. Laurienti. The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain. *Brain Connectivity*, 1(4):295–308, 2011.
- [9] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. *Journal of the ACM (JACM)*, 23(1):31–42, 1976.