Let $W_{DS} \in \mathbb{R}^{|V_{DS}| \times d_1}$ and $W_G \in \mathbb{R}^{|V_G| \times d_2}$ be the domain specific and generic word embedding matrices. Let $w_{i,DS}$ and $w_{i,G}$ be the embedding of the word $i \in V_{\cap} = V_{DS} \cap V_G$ Let ϕ_{DS} and ϕ_G be the projection directions of $w_{i,DS}$ and $w_{i,G}$, respectively.

For each embedding of each word, we will project it like so (the ϕ 's are like the a and b in the CCA tutorial):

$$\overline{w}_{i,DS} = w_{i,DS} \ \phi_{DS} \ \text{and} \ \overline{w}_{i,G} = w_{i,G} \ \phi_{G}$$

and we'll maximize the correlation of this projection like so:

$$\rho(\phi_{DS}, \phi_G) = \max \frac{\mathbb{E}[<\overline{w}_{i,DS}, \overline{w}_{i,G}>]}{\sqrt{\mathbb{E}[\overline{w}_{i,DS}^2] \ \mathbb{E}[\overline{w}_{i,G}^2]}}$$

We can repeat this process up to $d = \min(d_1, d_2)$ times, such that each canonical variable is uncorrelated with the previous ones.

Once we do that, we have two matrices of projection vectors: $\phi_{DS} \in \mathbb{R}^{d_1 \times d}$ and $\phi_G \in \mathbb{R}^{d_2 \times d}$

Finally, for a particular word i, we achieve its domain-adapted word embedding like so:

$$w_{i,DA} = \frac{1}{2} w_{i,DS} \ \phi_{DS} + \frac{1}{2} w_{i,G} \ \phi_{G}$$