Parallel Resonant Circuits and Simulation
Spring 2019 (2185)

Parallel Resonant Circuits and Simulation

- □ Parallel Resonance (Summary)
 - General circuit
 - Simplified circuit (Q>=10)
 - Impedance and voltage over frequency (frequency response)
 - Selectivity change with varying R_L
 - Summary equations from the text
- □ Parallel Resonance ICP
 - Calculations using the Q>=10 equivalent circuit
 - ZTP calculation (exact)
 - IT calculation (exact)
 - Vc calculation (exact)
 - Simulation results/clarifications

Parallel Resonance - Summary

General Parallel R-L-C Circuit

Converted to parallel equivalent

Simplified (Q>=10)

 $R_{p} \geqslant X_{L_{p}} \geqslant X_{C}$

General circuit

TABLE 21.2

Parallel resonant circuit ($f_s = 1/(2\pi\sqrt{LC})$).

	Any Q_l	$Q_l \ge 10$	$Q_1 \geq 10, R_s \gg Q_l^2 R_l$
f_p	$f_s\sqrt{1-\frac{R_l^2C}{L}}$	fs	f_s
f_m	$f_s\sqrt{1-\frac{1}{4}\left[\frac{R_I^2C}{L}\right]}$	fs	f_s
Z_{T_p}	$R_s \ R_p = R_s \ \left(\frac{R_l^2 + X_L^2}{R_l} \right)$	$R_s \parallel Q_l^2 R_l$	$Q_l^2 R_l$
Z_{T_m}	$R_s \ \mathbf{Z}_{R-L} \ \mathbf{Z}_C$	$R_s \parallel Q_l^2 R_l$	$Q_I^2 R_I$
Q_p	$\frac{Z_{T_p}}{X_{L_p}} = \frac{Z_{T_p}}{X_C}$	$\frac{Z_{T_p}}{X_L} = \frac{Z_{T_p}}{X_C}$	\mathcal{Q}_l
BW	$\frac{f_p}{Q_p}$ or $\frac{f_m}{Q_p}$	$\frac{f_p}{Q_p} = \frac{f_s}{Q_p}$	$\frac{f_p}{Q_l} = \frac{f_s}{Q_l}$
I_L, I_C	Network analysis	$I_L = I_C = Q_l I_T$	$I_L = I_C = Q_l I_T$

 $V_p(f)$

М

Parallel Resonance – In Class Example

- 18. For the network in Fig. 21.59:
 - a. Find the resonant frequencies f_s, f_p, and f_m. What do the results suggest about the Q_p of the network?
 - b. Find the values of X_L and X

 C at resonance (f_p). How do they compare?
 - c. Find the impedance Z_{T_p} at resonance (f_p) .
 - **d.** Calculate Q_p and the BW.
 - e. Find the magnitude of currents I_L and I_C at resonance (f_p).
 - **f.** Calculate the voltage V_C at resonance (f_p) .

(a)
$$f_s$$
, f_p , f_m

$$f_s = \frac{1}{2\pi 7\sqrt{1c}} = \frac{1}{(2\pi)\sqrt{(80\mu H)(0.03\mu F)}} = \frac{102.7kHz}{102.7kHz}$$

$$f_p = f_s \sqrt{1 - \frac{R_s^2C}{c}} = (102.7kHz) \sqrt{1 - \frac{(1.5.)^2(0.03\mu F)}{80\mu H}}$$

$$= (102.7kHz)(0.9995)$$

$$= \frac{102.7kHz}{102.7kHz}$$

$$f_m = f_s \sqrt{1 - \frac{1}{4}(\frac{R_s^2C}{c})}$$

$$= (102.7kHz)(0.9999)$$

$$f_m = 102.7kHz$$

Therefore, we are using the Q>= 10 circuit and equations

Parallel Resonance – In Class Example

Simplified Circuit (Q>=10)

TABLE 21.2

Parallel resonant circuit $(f_s = 1/(2\pi\sqrt{LC}))$.

Any Q_l	$Q_l \ge 10$	$Q_1 \ge 10, R_s \gg Q_l^2 R_l$
$f_s \sqrt{1 - \frac{R_l^2 C}{L}}$	f_s	f_s
f_m $f_s \sqrt{1 - \frac{1}{4} \left[\frac{R_I^2 C}{L} \right]}$	fs	f_s
$Z_{T_p} R_s \ R_p = R_s \ \left(\frac{R_l^2 + X_L^2}{R_l} \right)$	$R_s \parallel Q_I^2 R_I$	$Q_l^2 R_l$
$Z_{T_{n}}$ $R_{s} \ \mathbf{Z}_{R-L} \ \mathbf{Z}_{C}$	$R_s \parallel Q_l^2 R_l$	$Q_I^2 R_I$
$Q_p \qquad \qquad \frac{Z_{T_p}}{X_{L_p}} = \frac{Z_{T_p}}{X_C}$	$\frac{Z_{T_p}}{X_L} = \frac{Z_{T_p}}{X_C}$	Q_I
$\frac{f_p}{Q_p}$ or $\frac{f_m}{Q_p}$	$\frac{f_p}{Q_p} = \frac{f_s}{Q_p}$	$\frac{f_p}{Q_l} = \frac{f_s}{Q_l}$
I _L , I _C Network analysis	$I_L = I_C = Q_l I_T$	$I_L = I_C = Q_l I_T$

Parallel Resonance – In Class Example

- 18. For the network in Fig. 21.59:
 - a. Find the resonant frequencies f_s, f_p, and f_m. What do the results suggest about the Q_n of the network?
 - b. Find the values of X_L and X_C at resonance (f_p). How do they compare?
 - c. Find the impedance Z_{T_n} at resonance (f_p) .
 - Calculate Q_n and the BW.
 - e. Find the magnitude of currents I_L and I_C at resonance (f_p).
 - **f.** Calculate the voltage V_C at resonance (f_p) .

FIG. 21.59

Problem 18.

$$\overline{Z_{T\rho}} \left(\overline{Z_{+}}(e + f_{\rho}) : \overline{Z_{T\rho}} = R_{s}' / / (R_{s} + j \times s) / / - j \times c \right)$$

$$= |0,000 \text{ m}|/(1.5+j5/.7) \text{ m}|/-j5/.7 \text{ m}$$

$$\overline{Z}_{Tp} = [1,5/3 \text{ m} \text$$

At fp:

$$\mathbf{Zin} = (-jXc) // (R+jXL)$$

 $= (-j51.7\Omega) // (1.5 + j51.7) \Omega$
 $= 1,783\Omega < -1.66^{\circ}$
 $\mathbf{IT} = \mathbf{E}/(\mathbf{Zin} + \mathbf{Rs})$
 $= 8.49\text{mApk} < 0.3^{\circ}$

Standard circuit analysis still works!

Very close to the value obtained using the Q>= 10 circuit approximation of 1507 Ohms

Parallel Resonance – Simulation

- 18. For the network in Fig. 21.59:
 - a. Find the resonant frequencies f_s, f_p, and f_m. What do the results suggest about the Q_n of the network?
 - b. Find the values of X_L and \dot{X}_C at resonance (f_p) . How do they compare?
 - c. Find the impedance Z_{T_p} at resonance (f_p) .
 - **d.** Calculate Q_p and the BW.
 - e. Find the magnitude of currents I_L and I_C at resonance (f_n).
 - **f.** Calculate the voltage V_C at resonance (f_p) .

What is this the plot of?

Interpret the plot

- What is fp?
- What is |**ZTP**|?

Parallel Resonance – In Class Example

Parallel Resonance – In Class Example

Plot of V2 = VP

- This should be 15.1V at fp
- Why isn't it?

Parallel Resonance – In Class Example

AC analysis magnitude is set to 1V by default

- We usually scale the result (i.e. 151mV * 100 = 15.1V)
- We can change the number and re-simulate

Parallel Resonance – In Class Example

Interpret the plot

- What is Vp at fp?
- What is fp?
- What is the BW?
- What is Qp?