Aufgaben zur Veranstaltung Lineare Algebra 2, SS 2021

Matthias Grajewski, Andreas Kleefeld, Benno Wienke

Köln, Jülich, Aachen

Übungsblatt 13

21.06.2021

Selbstlernaufgaben

Aufgabe 1

Zeigen Sie, dass die Matrix

$$A = \left(\begin{array}{cc} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{array}\right)$$

eine Orthogonalmatrix ist. Berechnen Sie außerdem die komplexen Eigenwerte. Zeigen Sie dann, dass der Betrag der Eigenwerte von A tatsächlich 1 ist.

Aufgabe 2

Eine Matrix A besitzt die Eigenwerte $\lambda_1=1$ und $\lambda_2=2$. Die zugehörigen Eigenvektoren sind

$$v_1=\left(egin{array}{c} -rac{1}{3} \ -rac{1}{3} \end{array}
ight) \quad {
m und} \quad v_2=\left(egin{array}{c} -3 \ 3 \end{array}
ight) \; .$$

Berechnen Sie die Matrix A.

Aufgabe 3

Berechnen Sie mittels der Diagonalisierung A^8 für die Matrix

$$A = \left(\begin{array}{cc} 4 & -3 \\ 2 & -1 \end{array}\right) .$$

Berechnen Sie dazu die Eigenwerte und Eigenvektoren von A.

Aufgabe 4

Zeigen Sie: $\lambda = 0$ ist Eigenwert der Matrix A genau dann, wenn gilt: $\det(A) = 0$.

Aufgabe 5

(a) Berechnen Sie alle Eigenwerte und Eigenvektoren der folgenden Matrix:

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{array}\right) .$$

- (b) Gibt es einen Fixpunkt (d.h. existiert ein Vektor x mit Ax = x)?
- (c) Finden Sie eine Diagonalmatrix D und eine Orthogonalmatrix U, so dass gilt: $U^{\top}AU = D$.

Hausaufgaben

Aufgabe 6

Gesucht ist die Matrix A mit den Eigenwerten 1 und 4 und den zugehörigen Eigenvektoren $\binom{4}{1}$ und $\binom{2}{1}$.

Aufgabe 7

$$\mathsf{Sei}\ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ .$$

- (a) Berechnen Sie die Eigenwerte und zugehörigen Eigenvektoren.
- (b) Geben Sie eine geometrische Interpretation für die lineare Abbildung, die durch ${\cal A}$ beschrieben wird.
- (c) Bestimmen Sie A^4 unter Ausnutzung des Ergebnisses von (b).

Aufgabe 8

Berechnen Sie alle Eigenwerte und Eigenvektoren der folgenden Matrix

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix} .$$

Ist die Matrix diagonalisierbar (d.h. existiert VDV^{-1})? Falls ja, wie würde dann eine Transformationsmatrix V lauten?

Aufgabe 9

Zeigen Sie:

- (a) Eine Matrix ist genau dann invertierbar, wenn kein Eigenwert gleich 0 ist.
- (b) Das charakteristische Polynom einer 2×2 -Matrix lässt sich schreiben als

$$\lambda^2 - \operatorname{spur}(A)\lambda + \det(A)$$
.

2

(c) A symmetrisch \Rightarrow alle Eigenwerte sind reell. Gilt die Umkehrung?