Universität Duisburg-Essen Lehrstuhl für Ökonometrie Dr. Yannick Hoga MSc. Martin Arnold

Übungsblatt 7 — Multiple Regression

Zu diesem Übungsblatt empfehlen wir neben der Lektüre von Kapitel 6 des Lehrbuches Introduction to Econometrics von Stock & Watson eine Aufarbeitung mithilfe von Kapitel 6 in unserem Online-Companion Introduction to Econometrics with R.

Aufgabe 1 — Anwendungsbeispiel: Produktivität im Produzierenden Gewerbe

Nehmen Sie an, dass die durchschnittliche Produktivität von Angestellten im produzierenden Gewerbe (avgprod) von zwei Faktoren abhängt: der durchschnittlichen Ausbildungszeit (avgtrain) und der durchschnittlichen Begabung (avgabil), und das

$$avgprod = \beta_0 + \beta_1 avgtrain + \beta_2 avgabil + u.$$

Die Annahmen des Gauss-Markov-Theorems seien erfüllt. Falls Trainigsprogramme für die Angestellten von Firmen mit unterdurchschnittlicher Begabung verpflichtend angeboten werden (sodass avgtrain und avgabil negativ korreliert sind), würde dann der Schätzer $\tilde{\beta}_1$, den man aus einer Regression von avgprod auf avgtrain erhält, das wahre β_1 eher unter- oder überschätzen?

Aufgabe 2 — Ursachen einer Verzerrten KQ-Schätzung

Was sind mögliche Ursachen einer verzerrten KQ-Schätzung?

- (a) Heteroskedastizität.
- (b) Das Auslassen einer wichtigen Variable.
- (c) Ein Stichproben-Korrelationskoeffizient von 0.95 zwischen zwei erklärenden Variablen im Modell.
- (d) Perfekte Multikollinearität.

Regressor	(1)	(2)	(3)
College (X_1)	5.46	5.48	5.44
Female (X_2)	-2.64	-2.62	-2.62
Age (X_3)		0.29	0.29
Ntheast (X_4)			0.69
Midwest (X_5)			0.60
South (X_6)			-0.27
Intercept	12.69	4.40	3.75
Zusammenf. Statistiken			
\overline{SSR}	157133	154598	153986
TSS	190696	190862	191050
SER			
R^2			
\overline{R}^2			
n	4000	4000	4000

Tabelle 1: Ergebnisse dreier Regressionen von AHE auf das Geschlecht und andere Variablen

Aufgabe 3 — Multiples Regressionsmodell mit Dummyvariablen

Betrachte die Regressionsergebnisse aus der Tabelle 1. Der zugrunde liegende Datensatz umfassst Erhebungen von 4000 Vollzeitbeschäftigten. Diese haben entweder einen High-School- oder einen College-Abschluss und sind zwischen 25 und 34 Jahren alt. Die Variablen sind:

```
AHE = \text{average hourly earnings (in Dollar)} College = \text{Bin\"are Variable (1 f\"ur College, 0 f\"ur High-School)} Female = \text{Bin\"are Variable (1 f\"ur Frau, 0 sonst)} Age = \text{Alter} Ntheast = \text{Bin\"are Variable (1 f\"ur Northeast, 0 sonst)} Midwest = \text{Bin\"are Variable (1 f\"ur Midwest, 0 sonst)} South = \text{Bin\"are Variable (1 f\"ur South, 0 sonst)} West = \text{Bin\"are Variable (1 f\"ur West, 0 sonst)}
```

- (a) Berechnen Sie \overline{R}^2 für jede der Regressionen (1), (2) und (3).
- (b) Benutzen Sie die Ergebnisse der Regression (1). Verdienen Beschäftigte mit einem College-Abschluss im Durchschnitt mehr als solche, die nur einen High-School-Abschluss besitzen? Wie viel mehr? Verdienen Männer im Schnitt mehr als Frauen? Wie viel mehr?
- (c) Benutzen Sie die Ergebnisse der Regression (3). Existieren große regionale Differenzen? Warum taucht der Regressor West nicht in der Regression auf? Juanita ist eine 28-jährige College-Absolventin aus dem Süden. Jennifer ist eine 28-jährige College-Absolventin aus dem mittleren Westen. Wie groß ist der zu erwartende Unterschied ihres Stundenlohns?