2014-2015, LICENCE 3^{ème} ANNÉE PARCOURS MATHÉMATIQUES

M66, Modélisation et analyse numérique

TD3: Valeurs singulières, moindres carrés

Exercice 1 (Propriétés de base)

Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang $r \leq p = \min(m,n)$. On considère la décomposition en valeurs singulières de A

$$U^t A V = \operatorname{diag}(\nu_1, \dots, \nu_p)$$

où les ν_i sont les valeurs singulières de A. On note $(U_i)_{1 \leq i \leq m}$ les vecteurs colonnes de U et $(V_i)_{1 \leq i \leq n}$ ceux de V.

- a) Quel sens donne-t-on ici à la notation diag (ν_1, \dots, ν_p) ? Quelle conséquence a l'hypothèse rangA = r sur les valeurs singulières? (On pourra ordonner les valeurs singulières de telle façon que les premières soient non nulles).
- **b)** Montrer que : $A = \sum_{i=1}^r \nu_i U_i V_i^t$ et que : $A^t A = \sum_{i=1}^r \nu_i^2 V_i V_i^t$.
- c) Montrer que $\operatorname{Im}(A) = \operatorname{Vect}\{U_1, U_2, \cdots, U_r\} \text{ et } \operatorname{Ker}(A) = \operatorname{Vect}\{V_{r+1}, \cdots, V_n\}.$
- **d)** Montrer que $\operatorname{Im}(A^t) = \operatorname{Vect}\{V_1, V_2, \cdots, V_r\}$ et $\operatorname{Ker}(A^t) = \operatorname{Vect}\{U_{r+1}, \cdots, U_m\}$.
- e) Déterminer les matrices des projections orthogonales sur $\operatorname{Im}(A)$, $\operatorname{Ker}(A)$, $\operatorname{Im}(A^t)$, $\operatorname{Ker}(A^t)$ à l'aide des $(U_i)_{1 \leq i \leq m}$ et des $(V_i)_{1 \leq i \leq n}$.

Exercice 2 (Un cas concret)

Soit

$$A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & 0 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}.$$

- a) Calculer les valeurs singulières de A.
- **b)** Quel est le rang de A?
- c) Déterminer la décomposition en valeurs singulières de A.
- d) Déterminer les matrices des projections orthogonales sur Im(A) et Ker(A).
- e) Déterminer une solution au sens des moindres carrés du système Ax = b.
- f) Cette solution est-elle unique?

Exercice 3 (Approximations de rang inférieur)

Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $\{\nu_1 \geq \nu_2 \geq \cdots \geq \nu_p\}$ les valeurs singulière de A.

- a) Montrer que les valeurs singulières non nulles de A sont les racines carrés des valeurs propres non nulles de A^tA et AA^t .
- **b)** Dans le cas m = n, montrer que $|\det(A)| = \prod_{i=1}^{p} \nu_i$.
- c) Soit A symétrique. Montrer que les valeurs singulières de A sont les valeurs absolues des valeurs propres de A.
- d) Soit $U \in \mathcal{O}_m(\mathbb{R})$ et $V \in \mathcal{O}_n(\mathbb{R})$. Montrer que $||U^tAV||_2 = ||A||_2$ et que $||U^tAV||_F = ||A||_2$, où $||A||_2$ et $||A||_F$ sont respectivement la 2-norme d'opérateur de A et la norme de Frobenius de A.
- e) En déduire que $||A||_2 = \nu_1$ et que $||A||_F = \sqrt{\nu_1^2 + \dots + \nu_p^2}$.
- f) Soit rang A = r et k < r. On note $\mathcal{M}^k \subset \mathcal{M}_{m,n}(\mathbb{R})$ les matrices de rang k. Déterminer un majorant de $\inf_{M \in \mathcal{M}^k} \|A M\|_F$, et un majorant de $\inf_{M \in \mathcal{M}^k} \|A M\|_F$.
- g) Si on identifie une image $m \times n$ pixels en niveaux de gris avec une matrice $A \in \mathcal{M}_{m,n}([0,1])$, comment peut on construire « une bonne » approximation par une image dont la matrice est dans \mathcal{M}^k .
- h) Soit $A \in \mathcal{M}_{480,640}([0,1])$ une matrice qui encode une image de 480×640 pixels en niveaux de gris, dont les valeurs singulières sont majorées par $\nu_i \leq \frac{10^3}{i(i+1)}$. On considère une matrice $M_{100} \in \mathcal{M}^{100}$ qui représente « une bonne » approximation de rang 100. Donner une estimation de l'erreur quadratique moyen de cette approximation.

Exercice 4 (Solution au sens des moindres carrés)

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ une matrice rectangulaire avec $p \leq n$. On considère le système linéaire AX = b, noté dans la suite (S).

- a) Déterminer dans quels espaces sont situés l'inconnue X et le second membre b.
- b) Déterminer dans quel cas (S) n'a pas de solution.
- c) Déterminer dans quel cas (S) admet au moins une solution et dans quel cas cette solution est unique.
- d) On suppose que X est solution de (S). Vérifier que X est alors solution de $A^tAX = A^tb$, système noté (S').
- e) Démontrer que le système (S') admet toujours une solution et préciser dans quel cas elle est unique.
- f) On suppose maintenant rang(A) = p et on note X_0 la solution de (S'). Démontrer que $b AX_0$ est orthogonal à l'espace vectoriel Im(A). En déduire que X_0 est la solution au sens des moindres carrés du système (S).