Билет 30. Определение двойного интеграла. Теорема о его существовании, свойства. Геометрический смысл двойного интеграла.

1. Двойные интегралы

Определение: Пусть $D \in \mathbb{R}^2$ (D - замкнутая ограниченная область n-мерного пространства). Диаметром d области D называется наибольшее расстояние между двумя её точками

Пусть непрерывная функция F(x,y) замкнута и огрнаичена в области D. Проделаем следующие опреации:

- 1) Разобъем область D на непересекающиеся области ΔS_i ; обозначим d_i диаметром этой области, а ΔS_i её площадь.
 - **2)** В каждой из этой области произвольным образом выберем точку $M_i(x;y)$

- 3) Составим интегральную сумму по $i \sum f(x_i; y_i) \Delta S_i$
- **4)** Возьмем предел этих интегральных сумм при условии, что диаметр всех областей стремится к нулю

$$\sigma_n = \lim_{d_i \to 0} \sum_{i=1}^n f(x_i; y_i) \Delta S_i$$

Определение: двойным интегралом от $f(x_i; y_i)$ по области D называется предел интегральных сумм при условии, что он не зависит от разбиения на области и выбора точек.

Обозначение:

$$\iint_D f(x;y) dS; \iint_D f(x;y) dx dy$$

Теорема о существовании двойного интеграла (без док-ва): Если D - замкнутая ограниченная область, и F(x;y) непрерывна на D, то двойной интеграл существует.

2. Свойства двойного интеграла:

Свойства:

1) $\iint_D dx \, dy = S_D$ - площадь области интегрирования. Действительно,

$$\iint_D dx \, dy = \lim_{d_i \to 0} \sum_{i=1}^n 1 * \Delta S_i = S_D$$

$$\iint_D \lambda f(x;y) \, dx \, dy = \lambda \iint_D f(x;y) \, dx \, dy$$

3) Линейность:

$$\iint_{D} (f(x;y) + g(x;y)) \, dx \, dy = \iint_{D} f(x;y) \, dx \, dy + \iint_{D} g(x;y) \, dx \, dy$$

4) Свойство аддитивности: пусть область D разделена на области D_1 и D_2 , то есть $D=D_1+D_2$, $D=D_1\cup D_2$ и $D_1\cap D_2=\varnothing$. Тогда

$$\iint_D f(x;y) \, dx \, dy = \iint_{D_1} f(x;y) \, dx \, dy + \iint_{D_2} f(x;y) \, dx \, dy$$

5) Пусть $f(x;y) \leq g(x;y) \ \forall Oxy \in D$, тогда

$$\iint_D f(x;y) \, dx \, dy \le \iint_D g(x;y) \, dx \, dy$$

6) (Следствие) Пусть m и M - наименьшее и наибольшее значение f(x;y) в области D. Тогда можно дать оценку двойному интегралу:

$$mS_D \le \iint_D f(x; y) \, dx \, dy \le MS_D$$

7) Из п.5 с помощью теоремы Коши можно получить теорему о среднем: Существует точка $(x_0; y_0)$, такая, что

$$\iint_D f(x;y) \, dx \, dy = f(x_0; y_0) * S_D$$

3. Геометрический смысл двойного интеграла

Пусть имеется цилиндрическое тело, ограниченное снизу плоскостью Oxy, а сверху поверхностью z = f(x; y). D - проекция тела на плокскость Oxy.

При разбиении области D на элементы ΔS_i тело разобъется на соответсвующие цилиндрические тела объемом V_i . При $d_i \to 0$ можно считать, что объем соответствующего тела приблизительно равен объему цилиндра, площадь основания которого равна ΔS_i , а высота $z_i = f(x_i; y_i)$. Отсюда: $V_i \approx f(x_i; y_i) \Delta S_i$ и

$$V = \lim_{d_i \to 0} \sum_{i=1}^{n} V_i = \lim_{d_i \to 0} \sum_{i=1}^{n} f(x_i; y_i) \Delta S_i = \iint_D f(x_i; y_i) \, dx \, dy$$

То есть двойной инетграл - это объем тела.

Если плоское тело D и его объем описывается функцией $\rho(x;y)$, тогда масса m этого тела равна $\iint_D \rho(x_i;y_i) \, dx \, dy$