Equivalence Relations + Cosets

- Reminder: Exam next Wednesday (any 90 minutes), review Monday
- Video: If G = group $H \subseteq G$ subgroup,

 we can define an equivalence relation

 on G by $a \sim b \iff a^{-1}b \in H \iff aH = bH$ $(-a+b \in H)$

And in this equivalence relation,

Worksheet 26: Equivalence Relations and Cosets

Math 335

Reporter:

Recorder:

Equity Manager:

1. $G = S_3$ be the symmetric group (under the operation of composition), and let

$$H = \{e, (1,3)\}.$$

Consider the equivalence relation on G defined by

$$a \sim b \Leftrightarrow a^{-1}b \in H.$$

(a) Find all elements of [e]. (Remember, these are the elements $b \in S_3$ such that $e \sim b$.)

(b) Similarly, find all elements of [(1,2)]. (1,2) \leftarrow (1,2) \leftarrow

$$[(1,2)] = \{(1,2), (1,2) \circ (1,3)\}$$
$$= \{(1,2), (1,3,2)\}$$

(c) Compare your answers to parts (a) and (b) to the calculations in Problem 2 of Worksheet 22. Do you find that [a] = aH?

2. Let $S = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, with the equivalence relation

$$(a,b) \sim (c,d) \quad \Leftrightarrow \quad \frac{a}{b} = \frac{c}{d}.$$

For example, $(1,2) \sim (3,6)$ because $\frac{1}{2} = \frac{3}{6}$. Remember, this means that

$$[(1,2)] = [(3,6)].$$

In each of the following cases, I'm going to try to define a function

$$f: \left\{ \begin{matrix} \text{equivalence classes of} \\ S \text{ under } \sim \end{matrix} \right\} \to \mathbb{Q}.$$

Which ones are well-defined?

(a)
$$f([(a,b)]) = a + b$$

Not well-defined, e.g.
$$[(1,2)] = [(3,6)]$$
 but $1+2 \neq 3+6$

(b)
$$f([(a,b)]) = \frac{a}{b}$$

Well-defined, e.g.
$$[(1,2)]=[(3,6)]$$
 and $\frac{1}{2}=\frac{3}{6}$

(c)
$$f([(a,b)]) = \frac{b}{a}$$

Well-defined, e.g.
$$[(1,2)]=[(3,6)]$$
 and $\frac{2}{1}=\frac{6}{3}$

3. Challenge: What's another way to think of the domain of the functions in Problem 2? Using this perspective, can you express any of the functions in Problem 2 more succinctly?

The domain is
$$A!$$
 In this sense, the functions in parts (b) $= (c)$ are $f(x) = x$ and $f(x) = \frac{1}{x}$.