Productivity and Efficiency Analysis

8) Structural change

8c) Application to Finnish agriculture

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Consolidation of the Finnish agricultural sector

Large gap between sector-level vs. farm-level TFP estimates

Agricultural sector:

 Statistics Finland: TFP growth of agricultural sector 6.85 % per year (2004-2013)

Farm level studies (examples):

- Myyrä et al. (2009): TFP of Finnish crop farms **0.6-1.7** % per year
- Sipiläinen (2007): TFP of Finnish dairy farms 0.15 % per year
- Niemi and Ahlstedt (2009): TFP of Finnish crop farms 1.7 % per year and dairy farms 1.9 % per year

What explains the gap between sector-level and farm-level TFP estimates?

- Farm-level productivity studies focus on surviving farms observed throughout the study period
- Previous studies ignore structural changes in the sector:
 - Reallocation of resources and market share between surviving farms
 - Entry and exit of farms
 - Product switch (change of farm type)

(one exception is Kimura and Sauer (2015) who study structural change in Estonian, Dutch, and UK dairy farming)

Decomposing industry-level TFP

Entry and exit: Baily et al. (1992), Griliches and Regev (1995),
Foster et al. (2001)

 Reallocation of resources and market share: Olley and Pakes (1996)

 Combining Olley-Pakes with entry and exit: Maliranta (2003), Böckerman and Maliranta (2007), Diewert and Fox (2009), Hyytinen and Maliranta (2013), Maliranta and Määttänen (2015)

New decomposition: productivity levels

Industry productivity (P_t)

- = Productivity of non-switching surviving firms ($\bar{p}_{Sn,t}$)
- + Product switch effect $(\overline{p}_{S,t} \overline{p}_{Sn,t})$
- + Entry and exit effect $(\bar{p}_t \bar{p}_{S,t})$
- + Reallocation effect $(P_t \overline{p}_t)$

For further details, see: Kuosmanen & Kuosmanen (2019): Measuring the contribution of structural change on productivity growth without share weights

New decomposition: productivity change

$$\frac{P_{t}}{P_{t-1}} = \frac{\overline{p}_{Sn,t}}{\overline{p}_{Sn,t-1}} + \left[\frac{\overline{p}_{S,t}}{\overline{p}_{S,t-1}} - \frac{\overline{p}_{Sn,t}}{\overline{p}_{Sn,t-1}}\right] + \left[\frac{\overline{p}_{t}}{\overline{p}_{t-1}} - \frac{\overline{p}_{S,t}}{\overline{p}_{S,t-1}}\right] + \left[\frac{P_{t}}{P_{t-1}} - \frac{\overline{p}_{t}}{\overline{p}_{t-1}}\right]$$

 Unlike DOPD by Melitz and Polanec (2015), this decomposition allows one to add up percentage changes (%) of the components

For further details, see: Kuosmanen & Kuosmanen (2019): Measuring the contribution of structural change on productivity growth without share weights

Application to Finnish agriculture in 1995-2014

Data source: EU Farm Accountancy Data Network (FADN), DG AGRI

- Unbalanced rotating panel of approximately 900 farms per year
- Variables:
 - gross output (constant prices) and
 - 3 inputs: labor (hours), capital (€), land (ha)
- Method:
 - Shadow-price Törnqvist TFP-index: shadow prices of inputs estimated using the Cobb-Douglas production function

Results: the starting point

Average TFP growth of the Finnish agricultural sector and its components

	1995-2004	2004-2013
Surviving farms, same type	0.36	1.79

the gap

TFP of the sector 1.91 2.31

Results: add reallocation (Olley & Pakes, 1996)

Average TFP growth of the Finnish agricultural sector and its components

	1995-2004	2004-2013
Surviving farms, same type	0.36	1.79
+ Re-allocation effect	+0.54	+1.74
= TFP of the sector	1.91	2.31

Results: add entry and exit

Average TFP growth of the Finnish agricultural sector and its components

+ Re-allocation effect	+0.54	+1.74
+ Entry & exit effect	+1.43	-0.37
= TFP of the sector	1.91	2.31

Results: add entry and exit

Average TFP growth of the Finnish agricultural sector and its components

	1995-2004	2004-2013
Surviving farms, same type	0.36	1.79
+ Re-allocation effect	+0.54	+1.74
+ Entry & exit effect	+1.43	-0.37
+ Product switch effect	-0.42	-0.85
= TFP of the sector	1.91	2.31

Measurement issues in TFP

Melitz and Polanec (2015): "our focus is on the contrast between decomposition methods for a given set of productivity measures and weights. Addressing the numerous measurement issues for firm productivity will lead to a different starting point for the decompositions; but the contrast between the decompositions that we highlight will remain."

Further research needed:

- Consistent aggregation of firm-level TFP to industry level; correct share weights (e.g., Zelenyuk, 2006)
- Productivity estimation

New directions

- Combining the structural change decompositions with the Malmquist-type decompositions remains an unexplored avenue
- Examples of interesting research questions:
 - Does OP reallocation effect correlate with the change in allocative efficiency, scale efficiency or price effect components of the Fisher index?
 - Do new entrants contribute to technical progress? If yes, how quickly and how much?
 - Can the level or change of firm's technical or scale efficiency predict its survival or exit probability?

