Considere A un subconjunto de un espacio métrico X y sea \in > 0. Interprete el conjunto

 $A_{\in} = \{ x \in X \mid d(x,A) < \in \}$

Como relaciona $A_{\in 1}$ y $A_{\in 2}$ cuando $\in_1 < \in_2$. Calcule X_{\in} y \emptyset_{\in}

Respuesta /

La definición de espacio métrico, establece que un subconjunto A de un espacio métrico X es un subespacio métrico si hereda la topología inducida por la distancia d en X2. El conjunto $A_{\in \{x \in X \mid d(x,A) < \epsilon\}}$ se puede interpretar como el conjunto de los puntos de X que están a una distancia menor que \in del subconjunto A. Es decir, son los puntos que tienen algún punto de A como vecino próximo. Se puede demostrar que $A_{\in \{x \in X\}}$ es un conjunto abierto.

Como relaciona A_(\in 1) y A_(\in 2) cuando \in _1 < \in _2, se puede ver que si x pertenece a A_(\in 1), entonces d(x,A) < \in _1 < \in _2, lo que implica que x también pertenece a A_(\in 2). Por lo tanto, A_(\in 1) está contenido en A_(\in 2).

Para calcular X_{\in} , se debe tomar el conjunto de todos los puntos de X que están a una distancia menor que \in de algún punto en X. Por lo tanto, X_{\in} es la unión de todos los conjuntos A_{\in} para cada punto en X. Se tiene que X_{\in} = $\{x \in X \mid d(x,X) < \in\}$ que es igual a X si \in > 0 y a \emptyset si \in ≤ 0.

Por otro lado, $\emptyset \subseteq \{x \in X \mid d(x,\emptyset) < \epsilon\} = \emptyset$, ya que la distancia de cualquier punto a un conjunto vacío no está definida. Por lo cual, $\emptyset \subseteq \epsilon$ es el conjunto vacío ya que no hay puntos en X que estén a una distancia menor que ϵ del conjunto vacío.