ⁿNEURAL NETWORKS

Weather Classification

Weather Classification:

This notebook trains and tests a neural network using tensorflow and keras to classify images of weather conditions into 11 classes: ['snow', 'fogsmog', 'rainbow', 'hail', 'sandstorm', 'lightning', 'frost', 'rain', 'rime', 'glaze', 'dew']

Data preparation:

Dataset is split into train and test and train must be split into 11 folders, one for each class, with each named after the class of images it contains. I.e. all 'snow' images must be in :"/content/drive/MyDrive/[NN'22] Project Dataset/Train/snow" after mounting the drive

Preprocessing:

- 1. We the added data into folder "weather_data"
- 2. We splitted weather_data into train and validation
- 3. Train containing 80% of the data and validation containing 20%
- 4. We augmented the data using Image Generator [Horizontal flip/zooming]
- 5. We normalized the images.

Training:

Architectures:

We will use CNN with architecture, VGG16, and AlexNet:

• CNN Architecture:

```
Output Shape
                                                      Param #
Layer (type)
conv2d (Conv2D)
                            (None, 222, 222, 32)
max_pooling2d (MaxPooling2D (None, 111, 111, 32)
conv2d_1 (Conv2D)
                            (None, 109, 109, 64)
                                                      18496
max_pooling2d_1 (MaxPooling (None, 54, 54, 64)
conv2d_2 (Conv2D)
                            (None, 52, 52, 64)
                                                      36928
max_pooling2d_2 (MaxPooling (None, 26, 26, 64)
2D)
conv2d_3 (Conv2D)
                            (None, 24, 24, 128)
max_pooling2d_3 (MaxPooling (None, 12, 12, 128)
flatten (Flatten)
                            (None, 18432)
dense (Dense)
                            (None, 500)
                                                      9216500
                            (None, 500)
dropout (Dropout)
dense_1 (Dense)
                            (None, 400)
                                                      200400
dropout_1 (Dropout)
                            (None, 400)
                            (None, 350)
                                                      140350
dense_2 (Dense)
dropout_2 (Dropout)
                            (None, 350)
                            (None, 200)
dense_3 (Dense)
                                                      70200
dropout_3 (Dropout)
                            (None, 200)
                                                      0
dense_4 (Dense)
                            (None, 11)
Total params: 9,759,837
Trainable params: 9,759,837
```

• VGG Architecture:

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 224, 224, 64)	1792
conv2d_5 (Conv2D)	(None, 224, 224, 64)	36928
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 112, 112, 64)	
conv2d_6 (Conv2D)	(None, 112, 112, 128)	73856
conv2d_7 (Conv2D)	(None, 112, 112, 128)	147584
<pre>max_pooling2d_5 (MaxPooling 2D)</pre>	(None, 56, 56, 128)	
conv2d_8 (Conv2D)	(None, 56, 56, 256)	295168
conv2d_9 (Conv2D)	(None, 56, 56, 256)	590080
conv2d_10 (Conv2D)	(None, 56, 56, 256)	590080
<pre>max_pooling2d_6 (MaxPooling 2D)</pre>	(None, 28, 28, 256)	
conv2d_11 (Conv2D)	(None, 28, 28, 512)	1180160
conv2d_12 (Conv2D)	(None, 28, 28, 512)	2359808
conv2d_13 (Conv2D)	(None, 28, 28, 512)	2359808
<pre>max_pooling2d_7 (MaxPooling 2D)</pre>	(None, 14, 14, 512)	
conv2d_14 (Conv2D)	(None, 14, 14, 512)	2359808
conv2d_15 (Conv2D)	(None, 14, 14, 512)	2359808
conv2d_16 (Conv2D)	(None, 14, 14, 512)	2359808
vgg16 (MaxPooling2D)	(None, 7, 7, 512)	
flatten (Flatten)	(None, 25088)	
fc1 (Dense)	(None, 4096)	1027645
fc2 (Dense)	(None, 4096)	1678131
output (Dense)	(None, 11)	45067
Total params: 134,305,611 Trainable params: 134,305,61: Non-trainable params: 0	ı	

• AlexNet Architecture:

Layer (type)	Output Shape	Param #
conv2d_5 (Conv2D)	(None, 55, 55, 96)	34944
activation_8 (Activation)	(None, 55, 55, 96)	0
max_pooling2d_3 (MaxPooling 2D)	(None, 27, 27, 96)	0
batch_normalization_7 (BatchNormalization)	(None, 27, 27, 96)	384
conv2d_6 (Conv2D)	(None, 27, 27, 256)	614656
activation_9 (Activation)	(None, 27, 27, 256)	0
max_pooling2d_4 (MaxPooling 2D)	(None, 13, 13, 256)	0
batch_normalization_8 (BatchNormalization)	(None, 13, 13, 256)	1024
conv2d_7 (Conv2D)	(None, 13, 13, 384)	885120
activation_10 (Activation)	(None, 13, 13, 384)	0
batch_normalization_9 (BatchNormalization)	(None, 13, 13, 384)	1536

conv2d_9 (Conv2D)	(None, 13, 13, 256)	884992
activation_12 (Activation)	(None, 13, 13, 256)	ø
max_pooling2d_5 (MaxPooling 2D)	(None, 6, 6, 256)	ø
<pre>batch_normalization_11 (Bat chNormalization)</pre>	(None, 6, 6, 256)	1024
flatten_1 (Flatten)	(None, 9216)	ø
dense_3 (Dense)	(None, 4096)	37752832
activation_13 (Activation)	(None, 4096)	9
dropout_2 (Dropout)	(None, 4096)	0
batch_normalization_12 (Bat chNormalization)	(None, 4096)	16384
dense_4 (Dense)	(None, 4096)	16781312
activation_14 (Activation)	(None, 4096)	ø
dropout_3 (Dropout)	(None, 4096)	ø
batch_normalization_13 (Bat chNormalization)	(None, 4096)	16384
dense_5 (Dense)	(None, 11)	45067
activation_15 (Activation)	(None, 11)	0
Total params: 58,364,683 Trainable params: 58,345,547 Non-trainable params: 19,136		

Hyper parameters:

- Note:

Early stopping was applied on all the Models to prevent the over-fitting problem.

	CNN	VGG16	AlexNet
	Architecture	Architecture	Architecture
Optimizer	Adam	SGD	Adam
Loss	Categorical	Categorical	Categorical
	Cross entropy	Cross entropy	Cross entropy
Metrics	Accuracy	Accuracy	Accuracy
Epochs	75	30	100
			- Due to the early stopping, the model training stopped after 21 epochs

VGG:

Result:

CNN Architecture:

- It scored an accuracy of 83.12%.
- It has on Kaggle a test accuracy of 70.4% in public score and 73% in private score.

VGG16 Architecture:

- It scored an accuracy of 77%.
- It has a test accuracy of 55% in public score and 64% in private score.

AlexNet Architecture:

- It scored an accuracy of 66%.
- It has a test accuracy of 64.6% in public score and 69.5% in private score.

Conclusion:

The CNN Architecture scored the best accuracy, the AlexNet Architecture comes next, then the VGG16 Architecture.

As we see, CNN Architecture is the best model among the rest of the models mentioned above.

