ENGR 1330-2022 Exam 3 - Laboratory Portion

Medrano, Giovanni

R11521018

ENGR 1330 Exam 3M - Demonstrate Laboratory/Programming Skills

If you are unable to download the file, create an empty notebook and copy paste the problems into Markdown cells and Code cells (problem-by-problem)

Problem 0 (5 pts): *Profile your computer*

Execute the code cell below exactly as written. If you get an error just continue to the remaining problems.

```
In [5]: # Preamble script block to identify host, user, and kernel
import sys
! hostname
! whoami
print(sys.executable)
print(sys.version)
print(sys.version_info)
```

```
DESKTOP-6HAS1BN
desktop-6has1bn\medra
C:\Users\medra\anaconda3\python.exe
3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)]
sys.version_info(major=3, minor=8, micro=5, releaselevel='final', serial=0)
```

Exercise 1 (5 pts) Download the datafile

The file is available on Blackboard and you will need to dowenload it and place it in the same folder/directory as your Exam ipynb file. It contains values of impact strength of packaging materials in foot-pounds of branded boxes.

Download the file and read it into a dataframe.

Download the necessary datafile

```
In [40]: # download script goes here
localfile = open('boxes.csv','wb') # open connection to a local file same name as remot
localfile.write(rget.content) # extract from the remote the contents,insert into the lo
localfile.close() # close connection to the local file
```

----> 3 localfile.write(rget.content) # extract from the remote the contents,insert int o the local file same name

4 localfile.close() # close connection to the local file

NameError: name 'rget' is not defined

Store the datafile into a datafrome

```
In [1]: # read dataframe script goes here
   import pandas as pd
   dfd = pd.read_csv('boxes.csv')
   dfd
```

Out[1]:		Amazon Branded Boxes	Walmart Branded Boxes	US Postal Service Branded Boxes
	0	0.786840	1.085667	1.017169
	1	1.278068	1.019425	1.225774
	2	0.964830	0.798582	1.139398
	3	0.968899	0.647075	1.478555
	4	0.938127	0.856392	1.158053
	•••			
24999	95	1.682455	0.267142	1.005418
24999	96	0.402352	0.632802	1.234473
24999	97	1.288016	1.201354	1.288564
24999	98	0.864747	0.713163	1.438149
24999	99	1.421109	0.729032	1.283414

250000 rows × 3 columns

Describe the dataframe, how many columns are in the dataframe? What are the column names?

```
In [5]: # your script/answers go here
    dfd.describe()
```

Out[5]:		Amazon Branded Boxes	Walmart Branded Boxes	US Postal Service Branded Boxes
	count	250000.000000	250000.000000	250000.000000
	mean	1.210037	0.780308	1.199937
	std	0.300282	0.200181	0.119895
	min	-0.131195	-0.153808	0.663480
	25%	1.007211	0.646009	1.118755
	50%	1.211051	0.780008	1.200183
	75%	1.411952	0.914654	1.280694
	max	2.535326	1.655256	1.730012

Exercise 2 (15 pts.) Produce a histogram of the Amazon series and the Walmart series on the same plot. Plot Amazon using red, and Walmart using blue.

- Import suitable package to build histograms
- Apply package with plotting call to prodice two histograms on same figure space
- Label plot and axes with suitable annotation

Plot the histograms with proper formatting

```
In [21]: # your script goes here
   import matplotlib.pyplot as plt
   from numpy.lib.histograms import histogram
   #a = plt.subplots()
   graph = dfd.plot.hist(density = False, title = "Amazon vs Walmart Boxes", color = ['red graph.set_xlabel("Strength")
   graph.set_ylabel("Amount")
```

Out[21]: Text(0, 0.5, 'Amount')

Comment on the histograms, do they overlap?

TYPE HERE: Your comments regarding the histograms here

Yes they overlap

Exercise 3 (5 pts.) Summary Statistics for the Amazon and Walmart Brands

- Compute the mean strength and the standard deviation of the Amazon and Walmart brands
- Identify which series has a greater mean value
- Identify which series has the greater standard deviation

Compute the means and standard deviations

```
In [8]: # your script goes here
import statistics
aMean = statistics.mean(dfd['Amazon Branded Boxes'])
wMean = statistics.mean(dfd['Walmart Branded Boxes'])

print(aMean, wMean)

print('==========================))

aStand = statistics.stdev(dfd['Amazon Branded Boxes'])
wStand = statistics.stdev(dfd['Walmart Branded Boxes'])

print(aStand, wStand)

print('The Amazon branded boxes have a higher mean value')
print('The Amazon branded boxes have a higher standard deviation value')
```

The Amazon branded boxes have a higher mean value
The Amazon branded boxes have a higher standard deviation value

Identify which has the largest mean

TYPE HERE: Your comments regarding which has a greater mean

The Amazon branded boxes have a higher mean value

Identify which has the largest standard deviation

TYPE HERE: Your comments regarding which has a greater standard deviation

The Amazon branded boxes have a higher standard deviation value

Exercise 4 (5 pts.) Test the Amazon data for normality, interpret the results.

Build your test below

```
In [10]: # your script here
    from scipy.stats import shapiro

    stat, k = shapiro(dfd['Amazon Branded Boxes'])
    print('stat =', stat,'\nk is thus =', k)

    if k > .05:
        print('Good chance its Gaussian')
    else:
        print('Good chance its not Guaissian')

    stat = 1.0000150203704834
    k is thus = 1.0
    Good chance its Gaussian
```

C:\Users\medra\anaconda3\lib\site-packages\scipy\stats\morestats.py:1681: UserWarning: p

warnings.warn("p-value may not be accurate for N > 5000.")

-value may not be accurate for N > 5000.

```
In [12]: # your script goes here
import matplotlib.pyplot as plt
from numpy.lib.histograms import histogram
#a = plt.subplots()
graph = dfd.plot.hist(density = False, title = "Amazon vs Walmart", color = ['red', 'bl graph.set_xlabel("Strength")
graph.set_ylabel("Amount")
```

```
Out[12]: Text(0, 0.5, 'Amount')
```


Interpret the results

The data is shown to be normal.

Exercise 5 (5 pts.) Test the Walmart data for normality, interpret the results.

Build your test below

```
In [14]: # your script here
# your script here
from scipy.stats import shapiro

stat, k = shapiro(dfd['Walmart Branded Boxes'])
print('stat =', stat,'\nk is thus =', k)

if (k > .05):
    print('Good chance its Gaussian')
else:
    print('Good chance its not Guaissian')
```

stat = 1.0000152587890625
k is thus = 1.0
Good chance its Gaussian

Interpret the results

Again it is normal distribution.

Exercise 6 (10 pts.) Determine if there is evidence of a

difference in mean strength between the two brands.

Use an appropriate hypothesis test to support your assertion at a level of significance of \$\alpha = 0.10\$.

- · Choose a test and justify choice
- · Import suitable package to run the test
- Apply the test and interpret the results
- Report result with suitable annotation

Build your hypothesis test below

```
In [17]: # your script here
from scipy.stats import mannwhitneyu as l

stat, k = l(dfd['Amazon Branded Boxes'],dfd['Walmart Branded Boxes'])
print('The statistic seems to be:',stat, '\nk-value at the rejection point is =', k)

if (k>0.05):
    print('The two seem to have the same distribution')
else:
    print('The two seem to have different distribution')
```

The statistic seems to be: 7305909682.0 k-value at the rejection point is = 0.0 The two seem to have different distribution

Interpret the results

According to the Mann-Whitneyu test it is apparant that the hypothesis is rejected and the two have different distributions

```
In []:
```