

Joint Optimization of Time-of-day Intervals and Robust Signal Timing for Isolated Intersection

Yunqing JIA, Chengchuan AN*, Zhenbo LU, Jingxin XIA.

$$\min_{g_{P}^{l},C_{P},L_{P}} Td = \sum_{n=1}^{D} \sum_{l=1}^{L} \sum_{P=1}^{\rho} d_{P}^{n}(g_{P}^{l},C_{P},L_{P})$$

$$\sum_{p=1}^{\rho} L_{P} = TL$$

$$L_{P}^{Min} \leq L_{P} \leq L_{P}^{Max}$$

$$mod(L_{P},C_{P}) = 0$$

$$\min_{g_P^l, C_P} \sum_{l=1}^L \sum_{P=1}^{\rho} \overline{d_P^n}(g_P^l, C_P) + \gamma \sigma_{d_P^n}(g_P^l, C_P)$$

$$\sum_{l \in l^c} g_P^l + L_t = C_P$$

$$C.t.(LL) \begin{vmatrix} g_P^{Min} \leq g_P \leq g_P^{Max} \\ C_P^{Min} \leq C_P \leq C_P^{Max} \end{vmatrix}$$

Regulation of Duration of TOD Intervals

,,,,	
	Notations
	rectations

Td	total delay for all TOD intervals on D days (s)
l	lane group (L lane groups in total)
l^c	set of critical lane groups
n	day (D days in total)
P	TOD interval (ρ TOD intervals in total)
d_P^n	total delay of TOD interval P on day n (s)
$\overline{d_P^n}$	average total delay of TOD interval P for D days (s)
$\sigma_{d_P^n}$	SD of total delay of TOD interval P for D days (s)
g_P^l	effective green time of lane group l in TOD interval P (s)
C_P	cycle length in TOD interval $P(s)$
L_P	duration of TOD interval $P(s)$
TL	sum of the durations of all TOD intervals (s)
L_t	total lost time for each cycle (s)
$L_P^{Min}(L_P^{Max})$	minimum (maximum) duration of TOD interval (s)
$g_P^{Min}(g_P^{Max})$	minimum (maximum) effective green time (s)
$C_P^{Min}(C_P^{Max})$	minimum (maximum) cycle length (s)
γ	robustness ratio

Algorithm 1: Method of adjusting TOD intervals for estimating delays

Input: Total No. of data-collecting periods I (with each duration of T_I), duration set of TOI intervals $\{L_P\}_{P=1}^{\rho}$, cumulative arrivals A_2 , effective green time set $\{g_P\}_{P=1}^{\rho}$, effective red time before green set $\{r_P\}_{P=1}^{\rho}$, and cycle length set $\{C_P\}_{P=1}^{\rho}$.

Output: Total delay d_i for each data-collecting interval i. Initialization: $t_P \leftarrow \sum_P L_P$, $A_2^0 = 0$, $D_2^0 = 0$, $\varepsilon_0 = 0$

for i=1:I do

Update $A_1^i \leftarrow A_2^{i-1}$ and $D_1^i \leftarrow D_2^{i-1}$; Update $k_i \leftarrow (A_2^i - A_1^i)/(T_I + \varepsilon_{i-1})$; if i > 0 and $i \le t_1$ then Update $\varepsilon_i \leftarrow mod(T_I + \varepsilon_{i-1}, C_1)$; return d_i with g_1, r_1, C_1, k_1 for $\lfloor (T_I + \varepsilon_{i-1})/C_1 \rfloor$ cycles; Update $A_2^i \leftarrow A_1^{i-1} + k_i C_1 \lfloor (T_I + \varepsilon_{i-1})/C_1 \rfloor$; return D_2^i for $\lfloor (T_I + \varepsilon_{i-1})/C_1 \rfloor$ cycles; else if $i > t_P$ and $i \le t_{P+1}$ $(P+1 \le \rho)$

Update $\varepsilon_{i} \leftarrow mod(T_{I} + \varepsilon_{i-1}, C_{P+1});$ return d_{i} with $g_{P+1}, r_{P+1}, C_{P+1}, k_{P+1}$ for $\lfloor (T_{I} + \varepsilon_{i-1})/C_{P+1} \rfloor$ cycles; Update $A_{2}^{i} \leftarrow A_{1}^{i-1} + k_{i}C_{P+1} \lfloor (T_{I} + \varepsilon_{i-1})/C_{P+1} \rfloor;$ return D_{2}^{i} for $\lfloor (T_{I} + \varepsilon_{i-1})/C_{P+1} \rfloor$ cycles;

Results

end for

endif

7 6.5 Scheme 1 Scheme 2 Scheme 3 5.5 5 4.5 4 3.5 3

Partitional delay

for multiple days

