

Sınıflandırma Modelini Değerlendirme

- Model başarımını değerlendirme ölçütleri nelerdir?
 - Hata oranı
 - Anma
 - Kesinlik
 - F-ölçütü
- Farklı modellerin başarımı nasıl karşılaştırılır?
 - ROC

Sınıflandırma Hatası

- Sınıflandırma yöntemlerinin hatalarını ölçme
 - başarı: örnek doğru sınıfa atandı
 - hata: örnek yanlış sınıfa atandı
 - hata oranı: hata sayısının toplam örnek sayısına bölünmesi
- Hata oranı sınama kümesi kullanılarak hesaplanır.

Model Başarımını Değerlendirme

- Model başarımını değerlendirme ölçütleri
 - modelin ne kadar doğru sınıflandırma yaptığını ölçer
 - hız, ölçeklenebilirlik gibi özellikleri değerlendirmez.
- Sınıflandırma işlemlerinde gerçek veri ile öngörülen değerleri karşılaştırmak amacıyla karışıklık matrisinden (confusion matrix) yararlanılır.

Karışıklık Matrisi

- Matrisin satırlarını gerçek değerlere ilişkin sınıf etiketleri, sütunlarını ise öngörülen sınıf etiketleri oluşturur.
- Karışıklık matrisi:

	ÖNGÖRÜLEN SINIF					
⊻		Sınıf=Yes	Sınıf=No			
DOĞRU SINIF	Sınıf=Yes	а	b			
	Sınıf=No	С	d			

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Model Başarımını Değerlendirme : Doğruluk

	ÖNGÖRÜLEN SINIF					
		Sınıf=Yes	Sınıf=No			
DOĞRU SINIF	Sınıf=Yes	a (TP)	b (FN)			
CINI	Sınıf=No	c (FP)	d (TN)			

Modelin başarımı:

$$Doğruluk = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$
 Hata Oranı =
$$\frac{b+c}{a+b+c+d} = \frac{FN+FP}{TP+TN+FP+FN}$$
 Hata Oranı =
$$1 - Doğruluk$$

Siniflandirici A				
TP=25	FN=25			
FP=25	TN=25			

Doğruluk=%50

Sınıflandırıcı B				
TP=50	FN=0			
FP=25	TN=25			

Doğruluk=%75

Sınıflandırıcı C				
TP=25	FN=25			
FP=0 TN=50				
Doğumluk 0/75				

Doğruluk=%75

- Hangi sınıflandırıcı daha iyi?
 - B ve C, A'dan daha iyi bir sınıflandırıcı
 - B, C'den daha iyi bir sınıflandırıcı mı?

Model Başarımını Değerlendirme : Kesinlik

	ÖNGÖRÜLEN SINIF					
		Sınıf=Yes	Sınıf=No			
DOĞRU SINIF	Sınıf=Yes	a (TP)	b (FN)			
31.VI	Sınıf=No	c (FP)	d (TN)			

Kesinlik =
$$\frac{\text{Doğru sınıflandırılmış pozitif örnek sayısı}}{\text{Pozitif sınıflandırılmış örneklerin sayısı}}$$
$$= \frac{\text{TP}}{\text{TP} + \text{FP}}$$

Model Başarımını Değerlendirme : Anma

	ÖNGÖRÜLEN SINIF					
		Sınıf=Yes	Sınıf=No			
DOĞRU SINIF	Sınıf=Yes	a (TP)	b (FN)			
32.121	Sınıf=No	c (FP)	d (TN)			

$$= \frac{TP}{TP + FN}$$

Anma / Kesinlik

- A modeli B modelinden daha iyi anma ve kesinlik değerine sahipse A modeli daha iyi bir sınıflandırıcıdır.
- Kesinlik ve anma arasında ters orantı var.

Sınıflandırıcıları Karşılaştırma

- Doğruluk en basit ölçüt
- Kesinlik ve anma daha iyi ölçme sağlıyor
 - Model A'nın kesinliği model B'den daha iyi ancak model B'nin anma değeri model A'dan daha iyi olabilir.

4

Model Başarımını Değerlendirme : F-ölçütü

 F-ölçütü: Anma ve kesinliğin harmonik ortalamasını alır.

$$F-\ddot{o}l\ddot{c}\ddot{u}\ddot{u} = \frac{2 * Kesinlik * Anma}{Kesinlik + Anma}$$

4

ROC (Receiver Operating Characteristic)

- İşaret işlemede bir sezicinin, gürültülü bir kanalda doğru algılama oranının yanlış alarm oranına karşı çizdirilen grafiği (algılayıcı işletim eğrisi)
- Farklı sınıflandırıcıları karşılaştırmak için ROC eğrileri
- Doğru pozitif (TPR y ekseni) oranının yanlış pozitif (FPR – x ekseni) oranına karşı çizdirilen grafiği
 - TPR = TP / (TP + FN)
 - FPR = FP / (TN + FP)
- ROC üzerindeki her nokta bir sınıflandırıcının oluşturduğu bir modele karşı düşer.

ROC Eğrisi

- iki sınıftan oluşan tek boyutlu bir veri kümesi (positive – negative)
- x > t için her örnek pozitif olarak sınıflandırılıyor.

ROC Eğrisi

(FPR, TPR)

- (0,0): Bütün örneklerin negatif sınıflandırılması
- (1,1): Bütün örneklerin pozitif sınıflandırılması
- (0,1): ideal durum
- Çapraz çizgi:
 - Rastlantısal tahmin

4

ROC Eğrilerinin Kullanılması

- Farklı modelleri karşılaştırmak için
- M₁ veya M₂ birbirlerine üstünlük sağlamıyor
 - küçük FPR değerleri için M₁
 daha iyi
 - büyük FPR değerleri için M₂
 daha iyi
- ROC eğrisi altında kalan alan
 - ideal = 1
 - Rastlantisal tahmin=0.5

ROC Eğrisinin Çizilmesi

- Her örnek için P(+|A) olasılığı hesaplanır.
- P(+|A) değeri azalarak sıralanır.
- Her farklı P(+|A) değeri için bir eşik değeri uygulanır.
- Her eşik değeri için TP, FP,
 TN, FN hesaplanır.

Örnek	P(+ A)	Doğru Sınıf
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

ROC Eğrisinin Çizilmesi

Sınıf	+		+	-	-	-	+	-	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

$$TPR = TP / (TP + FN)$$

$$FPR = FP / (TN + FP)$$

4

Model Parametrelerini Belirleme

- Sınama kümesi sınıflandırıcı oluşturmak için kullanılmaz.
- Bazı sınıflandırıcılar modeli iki aşamada oluşturur:
 - modeli oluştur
 - parametreleri ayarla
- Sınama kümesi parametreleri ayarlamak için kullanılmaz.
- Uygun yöntem üç veri kümesi kullanma: öğrenme, geçerleme, sınama
 - geçerleme kümesi parametre ayarlamaları için kullanılır.
 - model oluşturulduktan sonra öğrenme ve geçerleme kümesi son modeli oluşturmak için kullanılabilir.

Sınıflandırma: Öğrenme, Geçerleme, Sınama

Test verisi parametre ayarlaması için kullanılmaz!

Öğrenme, sınama, geçerleme kümelerini oluşturma

- Öğrenme, sınama ve geçerleme kümelerini oluşturma
 - holdout
 - k-kat çapraz geçerleme
 - biri hariç çapraz geçerleme
 - bootstrap

Verinin Dengesiz Dağılımı

- Küçük veya dengesiz veri kümeleri için örnekler tanımlayıcı olmayabilir.
- Veri içinde bazı sınıflardan çok az örnek olabilir.
 - tıbbi veriler: %90 sağlıklı, %10 hastalık
 - elektronik ticaret: %99 alışveriş yapmamış, %1 alışveriş yapmış
 - güvenlik: %99 sahtekarlık yapmamış, %1 sahtekarlık yapmış
- Örnek: Sınıf1: 9990 örnek, Sınıf2: 10 örnek
 - bütün örnekleri sınıf1'e atayan bir sınıflandırıcının hata oranı: 9990 / 10000= %99,9
 - hata oranı yanıltıcı bir ölçüt olabilir.

Dengeli Dağılım Nasıl Sağlanır?

- Veri kümesinde iki sınıf varsa
 - İki sınıfın eşit dağıldığı bir veri kümesi oluştur
 - Az örneği olan sınıftan istenen sayıda rasgele örnekler seç
 - Çok örneği olan sınıftan aynı sayıda örnekleri ekle
- Veri kümesinde iki sınıftan fazla sınıf varsa
 - Öğrenme ve sınama kümesini farklı sınıflardan aynı sayıda örnek olacak şekilde oluştur.

Örnek

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Eğitim Kümesi

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Sınama Kümesi

Büyük Veri Kümelerinde Değerlendirme

- Veri dağılımı dengeli ise: Veri kümesindeki örnek sayısı ve her sınıfa ait örnek sayısı fazla ise basit bir değerlendirme yeterli
 - holdout yöntemi: Belli sayıda örnek sınama için ayrılır, geriye kalan örnekler öğrenme için kullanılır
 - genelde veri kümesinin 2/3'ü öğrenme, 1/3'i sınama kümesi olarak ayrılır
 - öğrenme kümesi kullanılarak model oluşturulur ve sınama kümesi kullanılarak model değerlendirilir.

Tekrarlı Holdout Yöntemi

- Veri kümesini farklı altkümelere bölerek holdout yöntemini tekrarlama
 - Her eğitme işleminde veri kümesinin belli bir bölümü öğrenme kümesi olarak rasgele ayrılır.
 - Modelin hata oranı, işlemler sonunda elde edilen modellerin hata oranlarının ortalamasıdır.
- Problem: Farklı eğitme işlemlerindeki sınama kümeleri örtüşebilir.

k-Kat Çapraz Geçerleme

Veri kümesi eşit boyutta k adet farklı gruba ayrılır.

Bir grup sınama, diğerleri öğrenme için ayrılır.

 Her grup bir kere sınama kümesi olacak şekilde deneyler k kere tekrarlanır.

Biri Hariç Çapraz Geçerleme

- k-kat çapraz geçerlemenin özel hali
 - k sayısı veri kümesindeki örnek sayısına (N) eşit
- Model N-1 örnek üzerinde eğitilir, dışarıda bırakılan 1 örnek üzerinde sınanır.
- Bu işlem her örnek 1 kez sınama için kullanılacak şekilde tekrarlanır.
 - model N kez eğitilir.
- Model başarımı denemelerin başarımının ortalaması
- Verinin en etkin şekilde kullanımı

Bootstrap Yöntemi

- Veri kümesinden yerine koyma yöntemi ile örnekler seçilerek öğrenme kümesi oluşturulur.
 - N örnekten oluşan veri kümesinden yerine koyarak N örnek seçilir.
 - Bu küme öğrenme kümesi olarak kullanılır.
 - Öğrenme kümesinde yer almayan örnekler sınama kümesi olarak kullanılır.

Veri	Eğitim Kümesi(1)	Test Kümesi(1)	
Örnek 1	Örnek 1		
Örnek 2	Örnek 1	Örnek 2	
Örnek 3	Örnek 3	Örnek 4	
Örnek 4	Örnek 3		
Örnek 5	Örnek 5		

0.632

0.632 bootstrap

- N örnekten oluşan bir veri kümesinde bir örneğin seçilmeme olasılığı: $1 \frac{1}{N}$
- Sınama kümesinde yer alma olasılığı:

$$\left(1 - \frac{1}{N}\right)^N \approx e^{-1} = 0.368$$

 Öğrenme kümesi veri kümesindeki örneklerin %63,2'sinden oluşuyor.

4

Bootstrap Yönteminde Model Hatasını Belirleme

- Model başarımını sadece sınama kümesi kullanarak belirleme kötümser bir yaklaşım
 - model örneklerin sadece ~%63'lük bölümüyle eğitiliyor
- Model başarımı hem öğrenme kümesindeki hem de sınama kümesindeki başarım ile değerlendirilir.
 hata = 0,632 hata(sınama) + 0,368 hata(öğrenme)
- İşlem birkaç kez tekrarlanarak hatanın ortalaması alınır.

- Sınıflandırıcıları birleştirme
 - Bagging
 - Boosting

4

Model Başarımını Artırma

- Bir grup sınıflandırıcı kullanma
 - Bagging
 - Boosting

Bagging

- N örnekten oluşan bir veri kümesinde bootstrap yöntemi ile T örnek seç
- Bu işlemi k öğrenme kümesi oluşturmak üzere tekrarla
- Aynı sınıflandırma algoritmasını k öğrenme kümesi üzerinde kullanarak k adet sınıflandırıcı oluştur
- Yeni bir örneği sınıflandırmak için her sınıflandırıcının sonucunu öğren
- Yeni örnek en çok hangi sınıfa atanmışsa o sınıfın etiketiyle etiketlendir

Boosting

- Öğrenme kümesindeki her örneğin bir ağırlığı var.
- Her öğrenme işleminden sonra, her sınıflandırıcı için yapılan sınıflandırma hatasına bağlı olarak örneklerin ağırlığı güncelleniyor.
- Yeni bir örneği sınıflandırmak için her sınıflandırıcının doğruluğuna bağlı olarak ağırlıklı ortalaması alınıyor.