

IN THE CLAIMS

Please amend the claims as follows:

Claim 1-16 (Canceled).

Claim 17 (Previously Presented): A data input device, comprising:
plural keys, said keys being arranged in at least two rows;
a plurality of unidirectional position detectors, each unidirectional position detector
being associated with a respective row of keys, each unidirectional position detector
including a first input connection, a second input connection, and an output connection;
wherein
the output connections of the unidirectional position detectors are connected at
various locations to a first ohmic resistor, and
the first input connections are connected to a first terminal of the data input device
and the second input connections are connected to a second terminal of the data input device.

Claim 18 (Previously Presented): The device as claimed in claim 17, wherein said
first ohmic resistor includes a strip of resistive material, said output connections of the
unidirectional position detectors being connected at various locations to said strip of resistive
material.

Claim 19 (Previously Presented): The device as claimed in claim 17, wherein said
first ohmic resistor includes a series layout of a plurality of discrete resistors, said output
connections of the unidirectional position detectors being connected to the series layout at
various locations between discrete resistors.

Claim 20 (Previously Presented): The device as claimed in claim 17, wherein the unidirectional position detector includes a plurality of discrete switches, said switches being connected on a first side to the output connection of the position detector and on a second side at various locations to a second ohmic resistor, said second ohmic resistor being connected between the first and second input connections of the position detector.

Claim 21 (Previously Presented): The device as claimed in claim 20, wherein said second ohmic resistor includes a strip of resistive material, said switches being connected at various locations to said strip of resistive material.

Claim 22 (Previously Presented): The device as claimed in claim 20, wherein said second ohmic resistor includes a series layout of a plurality of discrete resistors, said switches being connected to the series layout at various locations between discrete resistors.

Claim 23 (Previously Presented): The device as claimed in claim 17, wherein the unidirectional position detector includes a sensor in a form of a voltage divider, said voltage divider including

a second ohmic resistor extending substantially along the row of keys of the keyboard, conducting lines extending from the second ohmic resistor and arranged at a certain distance from one another,

a comb-like conductor, whose teeth are arranged in an interdigital manner between said conducting lines, and

an activation layer made of semiconducting material, wherein the comb-like conductor is connected to the output connection of the position detector and the second ohmic resistor is connected between the two input connections of the position detector.

Claim 24 (Previously Presented): The device as claimed in claim 23, wherein the second ohmic resistor of the voltage divider-like sensor is a nonlinear resistor.

Claim 25 (Previously Presented): The device as claimed in claim 17, wherein the unidirectional position detector includes sensors in a form of a voltage divider, said voltage divider-like sensors being laid out in series, wherein each said voltage divider includes

a second ohmic resistor extending substantially along the row of keys of the keyboard,

conducting lines extending from the second ohmic resistor and arranged at a certain distance from one another,

a comb-like conductor, whose teeth are arranged in an interdigital manner between said conducting lines, and

an activation layer made of semiconductor material.

Claim 26 (Previously Presented): The device as claimed in claim 25, wherein the second ohmic resistor of the voltage divider-like sensor is a nonlinear resistor.

Claim 27 (Previously Presented): The device as claimed in claim 17, further comprising:

at least one third ohmic resistor wired between said first ohmic resistor and the respective terminal of the data input device, said third ohmic resistor being short-circutitable with aid of a bypass circuit including a switch.

Claim 28 (Previously Presented): The device as claimed in claim 20, further comprising:

at least one third ohmic resistor wired between said second ohmic resistor and the respective terminal of the data input device, said third ohmic resistor being short-circutitable with aid of a bypass circuit including a switch.

Claim 29 (Previously Presented): The device as claimed in claim 23, further comprising:

at least one third ohmic resistor wired between said second ohmic resistor and the respective terminal of the data input device, said third ohmic resistor being short-circutitable with aid of a bypass circuit including a switch.

Claim 30 (Previously Presented): The device as claimed in claim 17, further comprising:

at least one series layout of a fourth ohmic resistor and of a switch, said series layout being wired in parallel to said first ohmic resistor.

Claim 31 (Previously Presented): The device as claimed in claim 20, further comprising:

at least one series layout of a fourth ohmic resistor and of a switch, said series layout being wired in parallel to said first ohmic resistor.

Claim 32 (Previously Presented): The device as claimed in claim 23, further comprising:

at least one series layout of a fourth ohmic resistor and of a switch, said series layout being wired in parallel to said first ohmic resistor.

Claim 33 (Previously Presented): The device as claimed in claim 20, wherein at least two discrete switches are disposed at a distance such that alternate or simultaneous actuation of the two discrete switches is possible using a single control element.

Claim 34 (Previously Presented): The device as claimed in claim 25, wherein at least two voltage divider-like sensors are disposed at a distance such that alternate or simultaneous actuation of the two voltage divider-like sensors is possible using a single control element.

Claim 35 (Previously Presented): The device as claimed in claim 23, wherein virtual keys are defined for a voltage divider-like sensor by associating a certain range of resistance with each of the keys, and wherein at least two keys are defined in such a way as to be physically disposed at a distance such that alternate or simultaneous actuation of the two keys is possible using a single control element.

Claim 36 (Previously Presented): The device as claimed in claim 17, wherein at least two unidirectional position detectors are disposed at a distance such that alternate or simultaneous actuation of the two position detectors is possible using a single control element.

Claim 37 (Previously Presented): The device as claimed in claim 20, wherein said discrete switches of plural unidirectional position detectors are connected to one end and a same second ohmic resistor.

Claim 38 (New): The device as claimed in claim 19, wherein said discrete resistors are disposed on a coupling tag of a flexible keyboard at a location which is not subject to a deformation.