Main

December 16, 2020

1 Import the necessary packages

1.0.1 Run pip install statsmodels and pip install pandas-datareader if not already installed

```
[1]: import pandas as pd
  import numpy as np
  from datetime import date, datetime
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  from statsmodels.formula.api import ols
  from sklearn.linear_model import LogisticRegression
  import pandas_datareader.data as web
```

2 Load data sets & process data

S&P 500: index that measures the stock performance of 500 large companies listed on stock exchanges in the United States, used as a benchmark. * Average annual return: 10% (6% after inflation) * Traded from 9.30 a.m. to 4 p.m. EST

 $\mathbf{SSE}:$ index of all stocks traded at the Shanghai Stock Exchange * Traded from 9.30 a.m. to 4 p.m. GMT +8

FXI: track the investment results of the FTSE China 50 Index composed of large-capitalization Chinese equities * Available to international investors * Traded on the Hong Kong Stock Exchange * Traded from 9.30 a.m. to 4 p.m. EST

2.0.1 Load S&P 500, Shanghai Composite Index & iShares China large-cap ETF data from 1/2/2018 to 12/31/2019 (trade war period)

2.0.2 Calculate change in prices between Close (previous day) to Open, then Open - Close (same day)

```
[3]: spx['CloseOpen'] = np.log(spx['Open']) - np.log(spx['Close'].shift(1))
    spx['OpenClose'] = np.log(spx['Close']) - np.log(spx['Open'])
    spx = spx.dropna()

sse['CloseOpen'] = np.log(sse['Open']) - np.log(sse['Close'].shift(1))
    sse['OpenClose'] = np.log(sse['Close']) - np.log(sse['Open'])
    sse = sse.dropna()

fxi['CloseOpen'] = np.log(fxi['Open']) - np.log(fxi['Close'].shift(1))
    fxi['OpenClose'] = np.log(fxi['Close']) - np.log(fxi['Open'])
    fxi = fxi.dropna()
```

2.0.3 Load lstm balanced data set: data set of Trump's Trade war related tweets with sentiment categorized using LSTM algorithm: 1 being positive and -1 being negative sentiment

The models were trained by a data set by the Crowdflower's Data for Everyone Library. This data set included tweets about the GOP 2016 Debate and each tweet was labeled postive neutral or negative. The data set was highly imbalanced so the majority class was undersampled to yield our LSTM model.

Our code for training the LSTM model is in LSTM_balanced_training and LSTM unbalanced training.

Our code for data preprocessing and predicting for the LSTM model is in $LSTM_sentiment_analysis_prediction$.

```
[4]: lstm_bal = pd.read_csv('../output/results/LSTM_balanced_spm_results.csv')
lstm_bal['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_bal['real_Date']]

lstm_sse = pd.read_csv('../output/results/LSTM_balanced_sse_results.csv')
lstm_sse['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_sse['real_Date']]
```

2.0.4 Load textblob data set: data set of Trump's tweets Trade war related tweets with sentiment categorized using textblob algorithm: 1 being positive, -1 being negative, and 0 being neutral sentiment

The textblob is trained using the textblob models as a sentiment analysis model. We need to do natural language processing before training and predicting the model. After predicting, we save the prediction results in the file textblob_prediction_SPM and textblob_prediction_SSE.

Our code for data preprocessing, training and predicting for the textblob model is in textblob_sentiment_analysis.

```
[5]: textblob_spm = pd.read_csv('.../output/results/textblob_prediction_data_spm.

csv', index_col = 0)

textblob_spm['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

textblob_spm['real_Date']]

textblob_sse = pd.read_csv('.../output/results/textblob_prediction_data_sse.

csv', index_col = 0)

textblob_sse['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

textblob_sse['real_Date']]
```

3 Merging financial data with sentiment data

3.1 1. Merging S&P 500 with lstm data set

```
[6]: spx_reg = spx.merge(lstm_bal, how = 'outer', on = ['Date'])

#Split data set into Close-Open and Open-Close
spx_reg_CO = spx_reg[['Date','CloseOpen','B']]
spx_reg_CO = spx_reg_CO.dropna()

spx_reg_OC = spx_reg[['Date','OpenClose','A']]
spx_reg_OC = spx_reg_OC.dropna()

#Sort into Positive and Negative Columns
spx_reg_CO['Positive'] = (spx_reg_CO['B'] == 1)
spx_reg_CO['Negative'] = (spx_reg_CO['B'] == -1)
spx_reg_OC['Positive'] = (spx_reg_OC['A'] == 1)
spx_reg_OC['Negative'] = (spx_reg_OC['A'] == -1)
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_CO['Positive']]
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_OC['Positive']]
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_OC['Positive']]
spx_reg_OC['Negative'] = [int(x==True) for x in spx_reg_OC['Negative']]
```

3.2 2. Merging S&P 500 with textblob data set

```
[7]: spx_textblob = spx.merge(textblob_spm, how = 'outer', on = ['Date'])
     #Split data set into Close-Open and Open-Close
     spx_textblob_CO = spx_textblob[['Date','CloseOpen','B']]
     spx_textblob_CO = spx_textblob_CO.dropna()
     spx_textblob_OC = spx_textblob[['Date', 'OpenClose', 'A']]
     spx_textblob_OC = spx_textblob_OC.dropna()
     #Sort into Positive and Negative Columns
     spx_textblob_CO['Positive'] = (spx_textblob_CO['B'] == 1)
     spx_textblob_CO['Negative'] = (spx_textblob_CO['B'] == -1)
     spx textblob OC['Positive'] = (spx textblob OC['A'] == 1)
     spx_textblob_OC['Negative'] = (spx_textblob_OC['A'] == -1)
     spx_textblob_CO['Positive'] = [int(x==True) for x in__
      →spx_textblob_CO['Positive']]
     spx_textblob_CO['Negative'] = [int(x==True) for x in__
     →spx_textblob_CO['Negative']]
     spx textblob OC['Positive'] = [int(x==True) for x in___
      ⇔spx_textblob_OC['Positive']]
     spx_textblob_OC['Negative'] = [int(x==True) for x in__
      ⇔spx_textblob_OC['Negative']]
```

3.3 3. Merging Shanghai Composite Index with 1stm data set

```
[8]: sse_reg = sse.merge(lstm_sse, how = 'outer', on = ['Date'])
    sse_reg_CO = sse_reg[['Date','CloseOpen','B']]
    sse_reg_CO = sse_reg_CO.dropna()

sse_reg_CC = sse_reg[['Date','OpenClose','A']]
    sse_reg_CC = sse_reg_OC.dropna()

sse_reg_CO = sse_reg_OC.dropna()

sse_reg_CO['Positive'] = (sse_reg_CO['B'] == 1)
    sse_reg_CO['Negative'] = (sse_reg_CO['B'] == -1)
    sse_reg_OC['Positive'] = (sse_reg_OC['A'] == 1)
    sse_reg_OC['Negative'] = (sse_reg_OC['A'] == -1)
    sse_reg_CO['Positive'] = [int(x==True) for x in sse_reg_CO['Positive']]
    sse_reg_OC['Positive'] = [int(x==True) for x in sse_reg_CO['Positive']]
    sse_reg_OC['Negative'] = [int(x==True) for x in sse_reg_OC['Positive']]
    sse_reg_OC['Negative'] = [int(x==True) for x in sse_reg_OC['Negative']]
```

3.4 4. Merging Shanghai Composite Index with textblob data set

```
[9]: sse_textblob = sse.merge(textblob_sse, how = 'outer', on = ['Date'])
     sse_textblob_CO = sse_textblob[['Date','CloseOpen','B']]
     sse_textblob_CO = sse_textblob_CO.dropna()
     sse_textblob_OC = sse_textblob[['Date','OpenClose','A']]
     sse_textblob_OC = sse_textblob_OC.dropna()
     sse_textblob_CO['Positive'] = (sse_textblob_CO['B'] == 1)
     sse_textblob_CO['Negative'] = (sse_textblob_CO['B'] == -1)
     sse_textblob_OC['Positive'] = (sse_textblob_OC['A'] == 1)
     sse_textblob_OC['Negative'] = (sse_textblob_OC['A'] == -1)
     sse_textblob_CO['Positive'] = [int(x==True) for x in_

→sse textblob CO['Positive']]
     sse_textblob_CO['Negative'] = [int(x==True) for x in__

¬sse_textblob_CO['Negative']]
     sse_textblob_OC['Positive'] = [int(x==True) for x in__
     →sse textblob OC['Positive']]
     sse_textblob_OC['Negative'] = [int(x==True) for x in__

¬sse_textblob_OC['Negative']]
```

3.5 5. Merging FXI with lstm data set

```
[10]: fxi_reg = fxi.merge(lstm_bal, how = 'outer', on = ['Date'])
   fxi_reg_CO = fxi_reg[['Date','CloseOpen','B']]
   fxi_reg_CO = fxi_reg_CO.dropna()

fxi_reg_OC = fxi_reg[['Date','OpenClose','A']]
   fxi_reg_OC = fxi_reg_OC.dropna()

fxi_reg_CO['Positive'] = (fxi_reg_CO['B'] == 1)
   fxi_reg_CO['Negative'] = (fxi_reg_CO['B'] == -1)
   fxi_reg_OC['Positive'] = (fxi_reg_OC['A'] == 1)
   fxi_reg_OC['Negative'] = (fxi_reg_OC['A'] == -1)
   fxi_reg_CO['Positive'] = [int(x==True) for x in fxi_reg_CO['Positive']]
   fxi_reg_CO['Negative'] = [int(x==True) for x in fxi_reg_CO['Positive']]
   fxi_reg_OC['Positive'] = [int(x==True) for x in fxi_reg_OC['Positive']]
   fxi_reg_OC['Negative'] = [int(x==True) for x in fxi_reg_OC['Negative']]
```

3.6 6. Merging FXI with textblob data set¶

```
[11]: fxi_textblob = fxi.merge(textblob_spm, how = 'outer', on = ['Date'])
  fxi_textblob_CO = fxi_textblob[['Date', 'CloseOpen', 'B']]
  fxi_textblob_CO = fxi_textblob_CO.dropna()
```

4 Run Regression & Calculate Point-biserial correlation coefficient on merged data set

4.0.1 Point-biserial correlation coefficient:

The point biserial correlation coefficient (rpb) is a correlation coefficient used when one variable (e.g. Y) is dichotomous. The point-biserial correlation is mathematically equivalent to the Pearson (product moment) correlation, that is, if we have one continuously measured variable X and a dichotomous variable Y, rXY = rpb.

$$r_{pb} = \frac{M_1 - M_0}{S_n} * \sqrt{\frac{n_1 * n_0}{n^2}}$$

4.1 1. S&P 500 vs. lstm sentiment

4.1.1 a. Regression

Close-Open

```
[12]: fit_spx_C0 = ols('CloseOpen ~ C(Positive)', data=spx_reg_C0).fit()
print(fit_spx_C0.summary())
```

OLS Regression Results

Dep. Variable: CloseOpen R-squared: 0.001 Model: OLS Adj. R-squared: -0.003 Method: F-statistic: Least Squares 0.2204 Date: Wed, 16 Dec 2020 Prob (F-statistic): 0.639 Time: 18:19:14 Log-Likelihood: 1098.2 No. Observations: 271 AIC: -2192. Df Residuals: BIC: 269 -2185.

Df Model: Covariance Type:	n-	1 onrobust			
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.001 C(Positive)[T.1] 0.001	0.0004	0.000	1.198	0.232	-0.000 -0.001
Omnibus: Prob(Omnibus): Skew: Kurtosis:		28.822 0.000 -0.682 4.363	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		2.144 42.000 7.58e-10 2.69

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[13]: fit_spx_0C = ols('OpenClose ~ C(Positive)', data=spx_reg_0C).fit()
print(fit_spx_0C.summary())
```

Dep. Variable:	οį	penClose	R-squared:		0.000
Model:		OLS	Adj. R-squar	ed:	-0.008
Method:	Least	Squares	F-statistic:		0.05105
Date:	Wed, 16 I	Dec 2020	Prob (F-stat	istic):	0.822
Time:	-	18:19:15	Log-Likeliho	od:	421.03
No. Observations:		125	AIC:		-838.1
Df Residuals:		123	BIC:		-832.4
Df Model:		1			
Covariance Type:	no	onrobust			
=======================================					
====					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	-0.0008	0.001	-0.632	0.529	-0.003
0.002 C(Positive)[T.1]	-0.0003	0.002	-0.226	0.822	-0.003

0.003

 Omnibus:
 34.583
 Durbin-Watson:
 2.273

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 62.282

 Skew:
 -1.232
 Prob(JB):
 2.99e-14

 Kurtosis:
 5.427
 Cond. No.
 2.99

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.1.2 b. Calculate Point-biserial correlation coefficient

```
[14]: x = spx_reg_C0['CloseOpen']
y = spx_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_C0[spx_reg_C0['Positive']==1]['CloseOpen'])
n1 = spx_reg_C0[spx_reg_C0['Positive']==1].shape[0]
M0 = np.mean(spx_reg_C0[spx_reg_C0['Negative']==1]['CloseOpen'])
n0 = spx_reg_C0[spx_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.004854826222243692

```
[15]: x = spx_reg_OC['OpenClose']
y = spx_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_OC[spx_reg_OC['Positive']==1]['OpenClose'])
n1 = spx_reg_OC[spx_reg_OC['Positive']==1].shape[0]
M0 = np.mean(spx_reg_OC[spx_reg_OC['Negative']==1]['OpenClose'])
n0 = spx_reg_OC[spx_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.019320563119210717

4.2 2. S&P 500 vs. textblob sentiment

4.2.1 a. Regression

Close-Open

```
[16]: fit_spx_textblob_CO = ols('CloseOpen ~ C(Positive)', data=spx_textblob_CO).fit() print(fit_spx_textblob_CO.summary())
```

OLS Regression Results

=======================================			========	========	
Dep. Variable:	C	CloseOpen R-squared:			0.000
Model:		OLS	Adj. R-squar	ed:	-0.004
Method:	Least	Squares	F-statistic:		0.06211
Date:	Wed, 16	Dec 2020	Prob (F-stat	istic):	0.803
Time:		18:19:23	Log-Likeliho	od:	909.04
No. Observations:		227	AIC:		-1814.
Df Residuals:		225	BIC:		-1807.
Df Model:		1			
Covariance Type:	n	onrobust			
====					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	0.0002	0.000	0.486	0.627	-0.001
0.001					
C(Positive)[T.1]	-0.0001	0.001	-0.249	0.803	-0.001
0.001					
Omnibus:	=======	======= 20.040	Durbin-Watso	 n·	2.252
Prob(Omnibus):		0.000	Durbin-Watson:		25.740
			Jarque-Bera (JB):		
Skew:			Prob(JB):		2.57e-06
Kurtosis:		4.096	Cond. No.		2.84
=======================================	=======	=======	========	========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

[17]: fit_spx_textblob_OC = ols('OpenClose ~ C(Positive)', data=spx_textblob_OC).fit()
print(fit_spx_textblob_OC.summary())

=======================================			=========
Dep. Variable:	OpenClose	R-squared:	0.005
Model:	OLS	Adj. R-squared:	-0.005
Method:	Least Squares	F-statistic:	0.5259
Date:	Wed, 16 Dec 2020	Prob (F-statistic):	0.470
Time:	18:19:27	Log-Likelihood:	324.17
No. Observations:	98	AIC:	-644.3
Df Residuals:	96	BIC:	-639.2
Df Model:	1		
Covariance Type:	nonrobust		

=======================================	=======		========		=======================================
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.002	-0.0003	0.001	-0.237	0.813	-0.003
C(Positive)[T.1] 0.002	-0.0013	0.002	-0.725	0.470	-0.005
Omnibus:	=======	======= 26.030	Durbin-Watso		2.177
Prob(Omnibus):		0.000	Jarque-Bera		40.024
Skew:		-1.183	Prob(JB):	(35).	2.04e-09
Kurtosis:	.=======	5.051	Cond. No.	.======	2.89

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.2.2 b. Calculate Point-biserial correlation coefficient

```
[18]: x = spx_textblob_CO['CloseOpen']
y = spx_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_CO[spx_textblob_CO['Positive']==1]['CloseOpen'])
n1 = spx_textblob_CO[spx_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(spx_textblob_CO[spx_textblob_CO['Negative']==1]['CloseOpen'])
n0 = spx_textblob_CO[spx_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.02775719450696115

```
[19]: x = spx_textblob_OC['OpenClose']
y = spx_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_OC[spx_textblob_OC['Positive']==1]['OpenClose'])
n1 = spx_textblob_OC[spx_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(spx_textblob_OC[spx_textblob_OC['Negative']==1]['OpenClose'])
n0 = spx_textblob_OC[spx_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: 0.013366760182372414

4.3 3. Shanghai Composite Index vs. lstm

4.3.1 a. Regression

Close-Open

```
[20]: fit_sse_C0 = ols('CloseOpen ~ C(Positive)', data=sse_reg_C0).fit()
print(fit_sse_C0.summary())
```

OLS Regression Results

old Regression Results						
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Wed, 16	loseOpen OLS Squares Dec 2020 18:19:43 170 168	Adj. R-squar F-statistic:	0.000 -0.006 0.02554 0.873 626.36 -1249. -1242.		
Covariance Type:	n	onrobust				
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.001	-0.0010	0.001	-1.299	0.196	-0.003	
C(Positive)[T.1] 0.002	0.0002	0.001	0.160	0.873	-0.002	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		51.207 0.000 -0.939 9.145	1		1.848 292.448 3.13e-64 3.10	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[21]: fit_sse_OC = ols('OpenClose ~ C(Positive)', data=sse_reg_OC).fit()
print(fit_sse_OC.summary())
```

Dep. Variable:	OpenClose	R-squared:	0.003
Model:	OLS	Adj. R-squared:	-0.002

```
Method:
              Least Squares F-statistic:
                                            0.6628
           Wed, 16 Dec 2020 Prob (F-statistic):
Date:
                                            0.416
Time:
                 18:19:44 Log-Likelihood:
                                           703.43
No. Observations:
                    221 AIC:
                                            -1403.
Df Residuals:
                     219 BIC:
                                            -1396.
Df Model:
                      1
Covariance Type:
           nonrobust
              coef std err t P>|t| [0.025]
0.975]
______
Intercept 0.0020 0.001 2.070 0.040 9.62e-05
0.004
C(Positive) [T.1] -0.0011 0.001 -0.814 0.416
                                       -0.004
0.002
______
Omnibus:
                   3.785 Durbin-Watson:
                                             2.043
                   0.151 Jarque-Bera (JB):
Prob(Omnibus):
                                            3.935
Skew:
                   0.159 Prob(JB):
                                            0.140
                   3.571 Cond. No.
Kurtosis:
                                             2.66
______
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.3.2 b. Calculate Point-biserial correlation coefficient

```
[22]: x = sse_reg_CO['CloseOpen']
y = sse_reg_CO['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_CO[sse_reg_CO['Positive']==1]['CloseOpen'])
n1 = sse_reg_CO[sse_reg_CO['Positive']==1].shape[0]
M0 = np.mean(sse_reg_CO[sse_reg_CO['Negative']==1]['CloseOpen'])
n0 = sse_reg_CO[sse_reg_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.018178598827927814

```
[23]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
```

```
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.07985055685344604

4.4 4. Shanghai Composite Index vs. textblob sentiment

4.4.1 a. Regression

Close-Open

```
[24]: fit_sse_textblob_CO = ols('CloseOpen ~ C(Positive)', data=sse_textblob_CO).fit() print(fit_sse_textblob_CO.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Wed, 16	OLS Squares	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.035 0.027 4.659 0.0327 489.99 -976.0 -970.2
Covariance Type:	n	onrobust			
0.975]	coef	std err	t	P> t	[0.025
Intercept	0.0006	0.001	0.702	0.484	-0.001
0.002 C(Positive)[T.1] -0.000	-0.0023	0.001	-2.159	0.033	-0.004
Omnibus: Prob(Omnibus): Skew: Kurtosis:		11.255 0.004 -0.130 5.255	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		2.009 28.330 7.05e-07 2.95

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[25]: fit_sse_textblob_OC = ols('OpenClose ~ C(Positive)', data=sse_textblob_OC).fit()
print(fit_sse_textblob_OC.summary())
```

OLS Regression Results

=======================================							
Dep. Variable:	0	penClose OLS	R-squared: Adj. R-squar	_			
Method:	Least	Squares	F-statistic:		-0.005 0.02868		
Date:		_	Prob (F-stat		0.866		
Time:		18:19:50			585.38		
No. Observations:		182	AIC:		-1167.		
Df Residuals:		180	BIC:		-1160.		
Df Model:		1					
Covariance Type:	n	onrobust					
====							
0.975]	coef	std err	t	P> t	[0.025		
Intercept	0.0016	0.001	1.427	0.155	-0.001		
	-0.0002	0.001	-0.169	0.866	-0.003		
Omnibus:	=======	======= 1.398			1.933		
<pre>Prob(Omnibus):</pre>		0.497	Jarque-Bera	(JB):	1.064		
Skew:		0.025	Prob(JB):		0.587		
Kurtosis:		3.371	Cond. No.		2.86		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.4.2 b. Calculate Point-biserial correlation coefficient

```
[26]: x = sse_textblob_CO['CloseOpen']
y = sse_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_CO[sse_textblob_CO['Positive']==1]['CloseOpen'])
n1 = sse_textblob_CO[sse_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_CO[sse_textblob_CO['Negative']==1]['CloseOpen'])
n0 = sse_textblob_CO[sse_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
```

```
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.07790471887144577

```
[27]: x = sse_textblob_OC['OpenClose']
y = sse_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_OC[sse_textblob_OC['Positive']==1]['OpenClose'])
n1 = sse_textblob_OC[sse_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_OC[sse_textblob_OC['Negative']==1]['OpenClose'])
n0 = sse_textblob_OC[sse_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.02791541200934203

4.5 5. FXI vs. lstm

4.5.1 a. Regression

Close-Open

```
[28]: fit_fxi_C0 = ols('CloseOpen ~ C(Positive)', data=fxi_reg_C0).fit()
print(fit_fxi_C0.summary())
```

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Wed, 16 l	Dec 2020	R-squared: Adj. R-square F-statistic: Prob (F-stati Log-Likelihoo AIC: BIC:	istic):	0.000 -0.004 0.03736 0.847 813.27 -1623. -1615.
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.002 C(Positive)[T.1] 0.003	0.0002	0.001	0.182	0.856 0.847	-0.002 -0.003
Omnibus:		10.804	Durbin-Watson	 1:	2.108

<pre>Prob(Omnibus):</pre>	0.005	Jarque-Bera (JB):	11.157
Skew:	-0.433	Prob(JB):	0.00378
Kurtosis:	3.489	Cond. No.	2.69

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[29]: fit_fxi_OC = ols('OpenClose ~ C(Positive)', data=fxi_reg_OC).fit()
print(fit_fxi_OC.summary())
```

OLS Regression Results

======================================						
Dep. Variable:	OpenClose R-squared:			0.000		
Model:		OLS	Adj. R-squar	ed:	-0.008	
Method:	Least	Squares	F-statistic:		5.350e-07	
Date:		-	Prob (F-stat	istic):	0.999	
Time:		18:19:54	Log-Likeliho	od:	426.31	
No. Observations:		125	AIC:		-848.6	
Df Residuals:		123	BIC:		-843.0	
Df Model:		1				
Covariance Type:	n	onrobust				
=======================================		=======	=======	=======		
====	6		.	P> t	[0 005	
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.002	-0.0007	0.001	-0.638	0.525	-0.003	
C(Positive)[T.1] 0.003	1.084e-06	0.001	0.001	0.999	-0.003	
Omnibus:		14.980	Durbin-Watso	 n:	2.295	
<pre>Prob(Omnibus):</pre>		0.001	Jarque-Bera	(JB):	37.041	
Skew:		-0.375	Prob(JB):		9.05e-09	
Kurtosis:		5.559	Cond. No.		2.99	
=======================================	=======	=======	========	=======	========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.5.2 b. Calculate Point-biserial correlation coefficient

```
[30]: x = fxi_reg_C0['CloseOpen']
y = fxi_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_reg_C0[fxi_reg_C0['Positive']==1]['CloseOpen'])
n1 = fxi_reg_C0[fxi_reg_C0['Positive']==1].shape[0]
M0 = np.mean(fxi_reg_C0[fxi_reg_C0['Negative']==1]['CloseOpen'])
n0 = fxi_reg_C0[fxi_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.028838620300368312

```
[31]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.07985055685344604

4.6 6. FXI vs. textblob

4.6.1 a. Regression

Close-Open

```
[32]: fit_fxi_textblob_CO = ols('CloseOpen ~ C(Positive)', data=fxi_textblob_CO).fit() print(fit_fxi_textblob_CO.summary())
```

OLS Regression Results

```
______
Dep. Variable:
                      CloseOpen R-squared:
                                                          0.002
Model:
                           OLS Adj. R-squared:
                                                         -0.003
Method:
                  Least Squares F-statistic:
                                                        0.3506
Date:
               Wed, 16 Dec 2020 Prob (F-statistic):
                                                         0.554
Time:
                       18:20:00 Log-Likelihood:
                                                         680.48
No. Observations:
                           227 ATC:
                                                         -1357.
Df Residuals:
                           225
                               BTC:
                                                         -1350.
Df Model:
                            1
Covariance Type:
                      nonrobust
```

====				Pr. 1 . 1	F0. 005
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.003	0.0009	0.001	0.693	0.489	-0.002
C(Positive)[T.1] 0.002		0.002	-0.592	0.554	-0.004
======================================	14.843 Durbin-Watson:		2.127		
Prob(Omnibus):		0.001	Jarque-Bera (JB):		16.55
Skew:		-0.552			0.00025
Kurtosis:		3.729	Cond. No.		2.84
Warnings: [1] Standard Error specified. Open-Close fit_fxi_textblob_					
print(fit_fxi_tex				_	
		•	sion Results		
========= Dep. Variable:			R-squared:		0.011
Model:	OLS Adj. R-sq			ed:	0.001
Method:	Least Squares F-statistic:			1.059	
Date:	Wed, 16 I	, 16 Dec 2020 Prob (F-statistic):			0.306
	ž.				000

[33]

		========	=========		
Dep. Variable:	 0	 penClose	R-squared:		0.011
Model:	_		Adj. R-squared:		0.001
Method:	Least Squares		F-statistic:		1.059
Date:	-		<pre>Prob (F-statistic):</pre>		0.306
Time:	•		Log-Likelihood:		330.08
No. Observations:		98	AIC:		-656.2
Df Residuals:		96	BIC:		-651.0
Df Model:		1			
Covariance Type:	n	onrobust			
====	=======	=======			:========
	coef	std err	t	P> t	[0.025
0.975]	0001	204 011	· ·	1, 101	[0.020
Intercept	0.0004	0.001	0.263	0.793	-0.002
0.003					
C(Positive)[T.1]	-0.0018	0.002	-1.029	0.306	-0.005
0.002					
Omnibus:	=======	10.815	 Durbin-Watso	n:	2.263

```
      Prob(Omnibus):
      0.004
      Jarque-Bera (JB):
      23.084

      Skew:
      -0.297
      Prob(JB):
      9.71e-06

      Kurtosis:
      5.302
      Cond. No.
      2.89
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.6.2 b. Calculate Point-biserial correlation coefficient

```
[34]: x = fxi_textblob_CO['CloseOpen']
y = fxi_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Positive']==1]['CloseOpen'])
n1 = fxi_textblob_CO[fxi_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Negative']==1]['CloseOpen'])
n0 = fxi_textblob_CO[fxi_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.044188713120793345

```
[35]: x = fxi_textblob_OC['OpenClose']
y = fxi_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Positive']==1]['OpenClose'])
n1 = fxi_textblob_OC[fxi_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Negative']==1]['OpenClose'])
n0 = fxi_textblob_OC[fxi_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.016016097171625734

5 References

https://medium.com/@outside 2SDs/an-overview-of-correlation-measures-between-categorical-and-continuous-variables-4c7f85610365

https://en.wikipedia.org/wiki/Point-biserial correlation coefficient

https://topforeignstocks.com/foreign-adrs-list/the-full-list-of-chinese-adrs/

https://finance.yahoo.com/

https://www.barchart.com/

[]:[