PES University		
Electronic City Campus, Hosur Road, Electronic City, Bengaluru – 560100		
Department of Computer Science & Engineering		
Subject: THEORY OF		Code - UE18CS254
COMPUTATION		
HOMEWORK	Semester: IV sem CSE Sec: E. & F Sec	
Faculty: Prof. R.Bharathi	Date: 10/02/2020	

- 1. Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than four.
- 2. Find a regular expression for the set $\{a^nb^m : (n+m) \text{ is odd}\}$.
- 3. Give regular expression for the complement of $L_1\{a^nb^m, n \ge 3, m \le 4\}$.
- 4. Find a regular expression for $L = \{w \in \{0, 1\}^* : w \text{ has exactly one pair of consecutive zeros.} \}$
- 5. Find a regular expression over {0, 1} for the all strings not ending in 10.
- 6. Determine whether or not the following claim is true for all regular expressions r_1 and r_2 . The symbol \equiv stands for equivalence regular expressions in the sense that both expressions denote the same language.
 - (a) $(r_1^*)^* \equiv r_1^*$.
 - (b) $r_1^*(r_1+r_2)^* \equiv (r_1+r_2)^*$.
 - (c) $(r_1 + r_2)^* \equiv (r_1 r_2)^*$.
 - (d) $(r_1r_2)^* \equiv r_1^*r_2^*$.
- 7. Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(ab^*aa+bba^*ab)$.
- 8. Find an nfa that accepts the language $L((abab)^* + (aaa^* + b)^*)$.
- 9. Find the minimal dfa that accepts $L(abb)^* \cup L(a^*bb^*)$.
- 10. What language is accepted by the following automata.

11. Find regular expression for the language accepted by the following automata.

- 12. Write a regular experssion for the set of all C real numbers.
- 13. Construct a dfa that accepts the language generated by the grammar

$$S \rightarrow abS|A,$$

 $A \rightarrow baB, B \rightarrow aA|bb.$

- 14. Construct right- and left-linear grammars for the language $L = \{a^n b^m : n \ge 3, m \ge 2\}$.
- 15. Use the construction suggested by the above exercises to construct a left-linear gram- mar for the nfa bellow.

- 16. User the construction in Theorem 4.1 to find nfa that accept $L = ((ab)^*a^*) \cap L(baa^*)$.
- 17. Show that the following language is not regular. $L = \{a^n b^k c^n : n \ge 0, k \ge n\}$.
- 18. Determine whether or not the following language on $\Sigma = \{a\}$ is regular

$$L = \{a^n : n = 2^k \text{ for some } k \ge 0\}.$$

19. Is the following language regular? $L = \{uww^Rv : u, v, w \in \{a, b\}^+\}$