Generated on 2014-11-13 20:39:44 by gEcon version 0.8.0 (2014-11-13) Model name: ${\tt ttb}$

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, N_t, a_t, L_t} U_t = \beta E_t [U_{t+1}] + \gamma^{-1} (L_t^{1-\mu} C_t^{\mu})^{\gamma}$$
(1.1)

s.t.:

$$C_t = \pi_t + N_t W_t \quad (\lambda_t^{\rm c}) \tag{1.2}$$

$$L_t = 1 - \alpha N_t - \eta a_{t-1} (1 - \alpha) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right)$$
(1.3)

$$a_t = N_t + a_{t-1} \left(1 - \eta \right) \quad \left(\lambda_t^{\text{CONSUMER}^3} \right) \tag{1.4}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathcal{U}} = 0 \quad (U_t) \tag{1.5}$$

$$-\lambda_t^{c} + \mu C_t^{-1+\mu} L_t^{1-\mu} (L_t^{1-\mu} C_t^{\mu})^{-1+\gamma} = 0 \quad (C_t)$$
(1.6)

$$\lambda_t^{\text{CONSUMER}^3} + \lambda_t^{\text{c}} W_t - \alpha \lambda_t^{\text{CONSUMER}^2} = 0 \quad (N_t)$$
(1.7)

$$-\lambda_t^{\text{CONSUMER}^3} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{U}} \left(\lambda_{t+1}^{\text{CONSUMER}^3} \left(1 - \eta \right) - \eta \lambda_{t+1}^{\text{CONSUMER}^2} \left(1 - \alpha \right) \right) \right] = 0 \quad (a_t)$$

$$(1.8)$$

$$-\lambda_t^{\text{CONSUMER}^2} + (1 - \mu) L_t^{-\mu} (L_t^{1-\mu} C_t^{\mu})^{-1+\gamma} C_t^{\mu} = 0 \quad (L_t)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t, N_t^{\rm d}, Z_t, Y_t, S_t, X_t, \pi_t, S_t^{\rm lag^1}, S_t^{\rm lag^2}} \Pi_t = \pi_t + \lambda_t^{\rm c-1} E_t \left[\lambda_{t+1}^{\rm c} \lambda_{t+1}^{\rm U} \Pi_{t+1} \right]$$
(2.1)

s t

$$Y_t = \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_t K_{t-1}^{\theta} N_t^{d^{1-\theta}}\right)^{-\nu}\right)^{-\nu^{-1}} \quad \left(\lambda_t^{\text{FIRM}^1}\right)$$

$$(2.2)$$

$$K_t = S_{t-3} + K_{t-1} (1 - \delta) \quad \left(\lambda_t^{\text{FIRM}^2}\right)$$
 (2.3)

$$X_{t} = \psi \left(S_{t-3} + S_{t-2} + S_{t-1} + S_{t} \right) \quad \left(\lambda_{t}^{\text{FIRM}^{3}} \right)$$
 (2.4)

$$\pi_t = Z_{t-1} - X_t + Y_t - Z_t - N_t^{d} W_t \quad \left(\lambda_t^{\text{FIRM}^4}\right)$$
 (2.5)

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$

$$(2.6)$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} (1 - \delta) + \theta \lambda_{t+1}^{\text{FIRM}^{1}} \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{\text{d}}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-1-\nu} \right) \right] = 0 \quad (K_{t}) \quad (2.7)$$

$$-\lambda_{t}^{\text{FIRM}^{4}}W_{t} + \lambda_{t}^{\text{FIRM}^{1}}\Lambda_{t}(1-\theta)K_{t-1}^{\theta}N_{t}^{d-\theta}\left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t}K_{t-1}^{\theta}N_{t}^{d^{1-\theta}}\right)^{-\nu}\right)^{-1-\nu^{-1}}\left(\Lambda_{t}K_{t-1}^{\theta}N_{t}^{d^{1-\theta}}\right)^{-1-\nu} = 0 \quad \left(N_{t}^{d}\right)$$
(2.8)

$$-\lambda_{t}^{\text{FIRM}^{4}} + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{4}} + \sigma \lambda_{t+1}^{\text{FIRM}^{1}} Z_{t}^{-1-\nu} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{-1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_{t})$$
(2.9)

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^4} = 0 \quad (Y_t) \tag{2.10}$$

$$\psi \lambda_t^{\text{FIRM}^3} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad (S_t)$$
(2.11)

$$-\lambda_t^{\text{FIRM}^3} - \lambda_t^{\text{FIRM}^4} = 0 \quad (X_t)$$
 (2.12)

$$1 - \lambda_t^{\text{FIRM}^4} = 0 \quad (\pi_t) \tag{2.13}$$

$$-\lambda_t^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^2}}} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad \left(S_t^{\text{lag}^1} \right)$$
(2.14)

$$-\lambda_t^{\text{FIRM}^{\text{Slag}^2}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^2} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad \left(S_t^{\text{lag}^2} \right)$$
(2.15)

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{\text{c}}^{-1} \lambda_t^{\text{c}} \lambda_t^{\text{U}} = 0 \quad (\Pi_t)$$

$$(2.16)$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{\text{d}}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{\text{d}}^{1-\theta} \right)^{-1-\nu} \right) \right] = 0 \quad (K_{t})$$
 (2.17)

$$-W_{t} + \Lambda_{t} (1 - \theta) K_{t-1}^{\theta} N_{t}^{d-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{d^{1-\theta}} \right)^{-1-\nu} = 0 \quad (N_{t}^{d})$$

$$(2.18)$$

$$-1 + E_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 + \sigma Z_t^{-1-\nu} \left(\sigma Z_t^{-\nu} + \left(\Lambda_{t+1} K_t^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_t)$$
(2.19)

$$-\psi + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} \right) \right] = 0 \quad (S_t)$$
 (2.20)

$$-\lambda_t^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^2}}} \right) \right] = 0 \quad \left(S_t^{\text{lag}^1} \right)$$
(2.21)

$$-\lambda_t^{\text{FIRM}^{\text{Slag}^2}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^2} \right) \right] = 0 \quad \left(S_t^{\text{lag}^2} \right)$$
 (2.22)

3 EQUILIBRIUM

3.1 Identities

$$N_t^{\rm d} = N_t \tag{3.1}$$

4 EXOG

4.1 Identities

$$-1 + \Lambda_t = \epsilon_t^{\Lambda} + \phi^{a} \left(-1 + \Lambda_{t-1} \right) + \phi^{b} \left(-1 + \Lambda_{t-1} \right)$$
(4.1)

5 Equilibrium relationships (after reduction)

$$-1 + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(1 + \sigma Z_t^{-1-\nu} \left(\sigma Z_t^{-\nu} + \left(\Lambda_{t+1} K_t^{\theta} N_{t+1}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.1)

$$-\psi + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRM}^{\text{S}^{\text{lag}^1}}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(L_{t+1}^{1-\mu} C_{t+1}^{\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.2)

$$S_{t-1} - S_t^{\log^1} = 0 (5.3)$$

$$S_{t-1}^{\log^{1}} - S_{t}^{\log^{2}} = 0 ag{5.4}$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \beta C_{t}^{1-\mu} L_{t}^{-1+\mu} \left(C_{t}^{\mu} L_{t}^{1-\mu} \right)^{1-\gamma} \text{E}_{t} \left[\left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{1-\theta} \right)^{-1-\nu} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1} L_{t+1}^{1-\theta} L_{t+1}^{1-\theta}$$

$$-\lambda_t^{\text{FIRMS}^{\text{lag}^1}} + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRMS}^{\text{lag}^2}} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0 \tag{5.6}$$

$$-\lambda_t^{\text{FIRM}^{\text{Slag}^2}} + \beta C_t^{1-\mu} L_t^{-1+\mu} \left(C_t^{\mu} L_t^{1-\mu} \right)^{1-\gamma} \mathcal{E}_t \left[\left(-\psi + \lambda_{t+1}^{\text{FIRM}^2} \right) C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0 \tag{5.7}$$

$$-W_{t} + \Lambda_{t} (1 - \theta) K_{t-1}^{\theta} N_{t}^{-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t} K_{t-1}^{\theta} N_{t}^{1-\theta} \right)^{-1-\nu} = 0$$

$$(5.8)$$

$$-Y_t + \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_t K_{t-1}^{\theta} N_t^{1-\theta}\right)^{-\nu}\right)^{-\nu^{-1}} = 0$$
(5.9)

$$S_{t-1}^{\log^2} - K_t + K_{t-1} (1 - \delta) = 0 (5.10)$$

$$-a_t + N_t + a_{t-1} (1 - \eta) = 0 (5.11)$$

$$-\pi_t + \Pi_t - \beta \left(C_t^{-1+\mu} \right)^{-1} \left(L_t^{1-\mu} \right)^{-1} \left(\left(C_t^{\mu} L_t^{1-\mu} \right)^{-1+\gamma} \right)^{-1} \mathcal{E}_t \left[\Pi_{t+1} C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] = 0$$
 (5.12)

$$\pi_t - C_t + N_t W_t = 0 (5.13)$$

$$U_t - \beta E_t [U_{t+1}] - \gamma^{-1} (C_t^{\mu} L_t^{1-\mu})^{\gamma} = 0$$
(5.14)

$$\beta \left((1-\eta) \left(-\mu \mathcal{E}_{t} \left[W_{t+1} C_{t+1}^{-1+\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] + \alpha \left(1-\mu \right) \mathcal{E}_{t} \left[C_{t+1}^{\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} L_{t+1}^{-1-\mu} \right] \right) - \eta \left(1-\alpha \right) \left(1-\mu \right) \mathcal{E}_{t} \left[C_{t+1}^{\mu} L_{t+1}^{1-\mu} \left(C_{t+1}^{\mu} L_{t+1}^{1-\mu} \right)^{-1+\gamma} \right] \right)$$

$$(5.15)$$

$$1 - L_t - \alpha N_t - \eta a_{t-1} (1 - \alpha) = 0 \tag{5.16}$$

$$-1 - \epsilon_t^{\Lambda} + \Lambda_t - \phi^{a} \left(-1 + \Lambda_{t-1} \right) - \phi^{b} \left(-1 + \Lambda_{t-1} \right) = 0$$
(5.17)

$$Z_{t-1} - \pi_t + Y_t - Z_t - \psi \left(S_{t-1} + S_{t-1}^{\log^2} + S_{t-1}^{\log^2} + S_t \right) - N_t W_t = 0$$
(5.18)

 \sim

6 Steady state relationships (after reduction)

$$-1 + \beta \left(1 + \sigma Z_{\rm ss}^{-1-\nu} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.1)

$$-\psi + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^{\rm S^{lag^1}}}\right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.2)

$$S_{\rm ss} - S_{\rm ss}^{\rm lag^1} = 0 \tag{6.3}$$

$$S_{\rm ss}^{\rm lag^1} - S_{\rm ss}^{\rm lag^2} = 0 \tag{6.4}$$

$$-\lambda_{\rm ss}^{\rm FIRM^2} + \beta \left(\lambda_{\rm ss}^{\rm FIRM^2} (1 - \delta) + \theta \Lambda_{\rm ss} K_{\rm ss}^{-1 + \theta} N_{\rm ss}^{1 - \theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-\nu}\right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-1 - \nu}\right) C_{\rm ss}^{-1 + \mu} C_{\rm ss}^{1 - \mu} L_{\rm ss}^{-1 + \mu} L_{\rm ss}^{1 - \mu} = 0 \quad (6.5)$$

$$-\lambda_{\rm ss}^{\rm FIRM^{\rm Slag^{1}}} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^{\rm Slag^{2}}} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.6)

$$-\lambda_{\rm ss}^{\rm FIRM^{\rm Slag^2}} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^2} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0 \tag{6.7}$$

$$-W_{\rm ss} + \Lambda_{\rm ss} (1 - \theta) K_{\rm ss}^{\theta} N_{\rm ss}^{-\theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-\nu} \right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-1 - \nu} = 0$$
 (6.8)

$$-Y_{\rm ss} + \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1-\theta}\right)^{-\nu}\right)^{-\nu^{-1}} = 0 \tag{6.9}$$

$$-K_{\rm ss} + S_{\rm ss}^{\rm lag^2} + K_{\rm ss} (1 - \delta) = 0 \tag{6.10}$$

$$-a_{\rm ss} + N_{\rm ss} + a_{\rm ss} (1 - \eta) = 0 \tag{6.11}$$

$$-\pi_{\rm ss} + \Pi_{\rm ss} - \beta \Pi_{\rm ss} 1 L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0 \tag{6.12}$$

$$\pi_{\rm ss} - C_{\rm ss} + N_{\rm ss} W_{\rm ss} = 0 \tag{6.13}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \gamma^{-1} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{\gamma} = 0 \tag{6.14}$$

$$\beta \left((1-\eta) \left(\alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} - \mu W_{ss} C_{ss}^{-1+\mu} L_{ss}^{1-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \eta (1-\alpha) (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{\mu} L_{ss}^{-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu} \right)^{-1+\gamma} \right) - \alpha (1-\mu) C_{ss}^{\mu} L_{ss}^{\mu} L_{ss}^{\mu}$$

$$1 - L_{ss} - \alpha N_{ss} - \eta a_{ss} (1 - \alpha) = 0 \tag{6.16}$$

$$-1 + \Lambda_{ss} - \phi^{a} \left(-1 + \Lambda_{ss} \right) - \phi^{b} \left(-1 + \Lambda_{ss} \right) = 0 \tag{6.17}$$

$$-\pi_{\rm ss} + Y_{\rm ss} - \psi \left(2S_{\rm ss} + S_{\rm ss}^{\rm lag^1} + S_{\rm ss}^{\rm lag^2} \right) - N_{\rm ss} W_{\rm ss} = 0 \tag{6.18}$$

ĊΤ

7 Parameter settings

$\alpha = 1$	(7.1)
$\beta = 0.99$	(7.2)
$\delta = 0.025$	(7.3)
$\eta = 0.5$	(7.4)
$\gamma = -1$	(7.5)
$\mu = 0.34$	(7.6)
$\nu = 3$	(7.7)
$\phi^{\rm a}=0.906$	(7.8)
$\phi^{\rm b}=0.088$	(7.9)
$\psi = 0.25$	(7.10)
$\sigma = 0.01$	(7.11)
$\theta = 0.36$	(7.12)

6

8 Steady-state values

	Steady-state values
a	0.6064
π	0.1283
C	0.8261
K	11.0149
L	0.6968
Λ	1
N	0.3032
П	12.8257
S	0.2754
S^{lag^1}	0.2754
S^{\log^2}	0.2754
U	-135.4461
W	2.3014
Y	1.1015
Z	1.0987

9 The solution of the perturbation

9.1 P

$$\begin{array}{c} a_{t-1} & K_{t-1} & \Lambda_{t-1} & S_{t-1} & S_{t-1}^{\mathrm{lag}^1} & S_{t-1}^{\mathrm{lag}^2} & Z_{t-1} \\ a & \begin{pmatrix} 0.5 & -0.0601 & 0.1549 & -0.0012 & -0.0024 & -0.0037 & -0.0086 \\ 0 & 0.975 & 0 & 0 & 0 & 0.025 & 0 \\ 0 & 0 & 0.994 & 0 & 0 & 0 & 0 \\ 0 & -8.077 & 6.257 & -1.0496 & -1.0055 & -0.8423 & 8.6102 \\ S^{\mathrm{lag}^1} & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ S^{\mathrm{lag}^2} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0.453 & 0.2652 & 0.0002 & -0.0056 & -0.0193 & 0.4187 \end{pmatrix}$$

9.2 Q

$$\begin{array}{c} \epsilon^{\Lambda} \\ a \\ K \\ \Lambda \\ S \\ S^{\mathrm{lag}^1} \\ S^{\mathrm{lag}^2} \\ Z \end{array} \begin{pmatrix} 0.1558 \\ 0 \\ 1 \\ 6.2947 \\ 0 \\ 0 \\ 0.2668 \end{pmatrix}$$

9.3 R

$$\lambda^{\text{FIRM}^2} \begin{pmatrix} a_{t-1} & K_{t-1} & \Lambda_{t-1} & S_{t-1} & S_{t-1}^{\text{lag}^1} & S_{t-1}^{\text{lag}^2} & Z_{t-1} \\ \lambda^{\text{FIRM}^2} & 0 & -0.0493 & 0.0617 & -0.0009 & -0.0019 & -0.0025 & 0.0167 \\ \lambda^{\text{FIRM}^{\text{Slag}^2}} & 0 & -0.0227 & 0.025 & -0.0016 & -0.0017 & -0.0015 & 0.0126 \\ \lambda^{\text{FIRM}^{\text{Slag}^2}} & 0 & -0.0376 & 0.044 & -0.0012 & -0.0024 & -0.0022 & 0.0165 \\ \pi & 0 & 1.3828 & -1.7195 & 0.0202 & 0.041 & 0.0647 & 0.1891 \\ C & 0 & 0.4442 & 0.6996 & 0.0019 & 0.0039 & 0.0062 & 0.0545 \\ L & 0 & 0.0523 & -0.1348 & 0.001 & 0.0021 & 0.0033 & 0.0075 \\ N & 0 & -0.1202 & 0.3098 & -0.0023 & -0.0048 & -0.0075 & -0.0172 \\ \Pi & 0 & 0.8155 & 0.0939 & 0.0046 & 0.0091 & 0.014 & 0.0989 \\ U & 0 & -0.0465 & -0.2798 & -0.0003 & -0.0006 & -0.0009 & -0.0046 \\ W & 0 & 0.3919 & 0.8344 & 0.0009 & 0.0018 & 0.0029 & 0.047 \\ Y & 0 & 0.2802 & 1.1803 & -0.0015 & -0.003 & -0.0047 & -0.0008 \end{pmatrix}$$

9.4 S

 ϵ^{Λ} $\lambda^{\mathrm{FIRM}^2}$ 0.06210.0252 $\lambda^{\mathrm{FIRM}^{\mathrm{S}^{\mathrm{lag}^2}}}$ 0.0443-1.7299C0.7038L-0.1356N0.3117П 0.0945U-0.28150.8395W1.1874

10 Statistics of the model

10.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
C	0.8261	0.2883	0.0831	Y
K	11.0149	0.093	0.0087	Y
L	0.6968	0.0533	0.0028	Y
Λ	1	0.4096	0.1678	Y
N	0.3032	0.1225	0.015	Y
U	-135.4461	0.1153	0.0133	Y
W	2.3014	0.3399	0.1155	Y
Y	1.1015	0.4723	0.2231	Y

10.2 Correlation matrix

	C	K	L	Λ	N	U	W	Y
a	0.9543	-0.1427	-0.9156	0.9519	0.9156	-0.9551	0.9532	0.9469
$\lambda^{ ext{FIRM}^2}$	0.9535	-0.3445	-0.999	0.9851	0.999	-0.9786	0.9655	0.9808
$\lambda^{\mathrm{FIRM}^{\mathrm{S}^{\mathrm{lag}^{1}}}}$	0.9189	-0.3123	-0.9813	0.9538	0.9813	-0.9461	0.9334	0.9536
$\lambda^{ ext{FIRM}^{ ext{S}^{ ext{lag}^2}}}$	0.9415	-0.3346	-0.9959	0.9746	0.9959	-0.9675	0.9548	0.9726
π	-0.9228	0.4079	0.9932	-0.9663	-0.9932	0.9566	-0.9386	-0.9601
C	1	-0.0689	-0.9613	0.989	0.9613	-0.994	0.9991	0.9937
K	-0.0689	1	0.3125	-0.2068	-0.3125	0.171	-0.1075	-0.1669
L	-0.9613	0.3125	1	-0.9891	-1	0.9836	-0.9723	-0.9861
Λ	0.989	-0.2068	-0.9891	1	0.9891	-0.9992	0.9941	0.9983
N	0.9613	-0.3125	-1	0.9891	1	-0.9836	0.9723	0.9861
П	0.5469	0.7454	-0.3036	0.4173	0.3036	-0.4523	0.5115	0.4537
S	0.6373	-0.1735	-0.7313	0.6684	0.7313	-0.66	0.6554	0.684
S^{\log^1}	0.5043	-0.2471	-0.5156	0.5098	0.5156	-0.5088	0.5086	0.5115
S^{\log^2}	0.3796	-0.2113	-0.316	0.3713	0.316	-0.3758	0.3715	0.3551
U	-0.994	0.171	0.9836	-0.9992	-0.9836	1	-0.9974	-0.9991
W	0.9991	-0.1075	-0.9723	0.9941	0.9723	-0.9974	1	0.9976
Y	0.9937	-0.1669	-0.9861	0.9983	0.9861	-0.9991	0.9976	1
Z	0.8794	0.2007	-0.766	0.8151	0.766	-0.833	0.8661	0.8414

10.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7305	0.4987	0.3069	0.1534	0.0236
K	0.8674	0.72	0.6137	0.5297	0.3681
L	0.6809	0.4258	0.2416	0.1333	-0.0011
Λ	0.7212	0.4838	0.2859	0.1249	-0.0024
N	0.6809	0.4258	0.2416	0.1333	-0.0011
U	0.7238	0.4879	0.2907	0.1298	0.0022
\overline{W}	0.721	0.4848	0.2936	0.1466	0.0162
Y	0.7051	0.4634	0.2752	0.1393	0.0069

11 Statistics of the model

11.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
C	0.75	0.6104	0.3726	Y
K	10.0002	0.197	0.0388	Y
L	0.6326	0.1129	0.0127	Y
Λ	0.9079	0.8672	0.752	Y
N	0.2753	0.2594	0.0673	Y
U	-122.969	0.2441	0.0596	Y
\overline{W}	2.0894	0.7196	0.5178	Y
Y	1	1	1	Y

11.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
C	-0.0457	0.0881	0.2302	0.427	0.681	0.9937	0.7438	0.5265	0.3448	0.1984	0.0719
K	-0.4647	-0.472	-0.4503	-0.3907	-0.2912	-0.1669	0.018	0.2779	0.6192	0.6097	0.5685
L	-0.0857	-0.213	-0.3367	-0.5075	-0.7249	-0.9861	-0.6361	-0.3607	-0.1629	-0.0451	0.0902
Λ	0.0291	0.1602	0.295	0.4793	0.7138	0.9983	0.7105	0.4668	0.265	0.1019	-0.0259
N	0.0857	0.213	0.3367	0.5075	0.7249	0.9861	0.6361	0.3607	0.1629	0.0451	-0.0902
U	-0.0096	-0.1417	-0.2788	-0.4668	-0.7068	-0.9991	-0.7218	-0.4853	-0.2877	-0.1267	0.0009
\overline{W}	-0.0253	0.1081	0.2481	0.4418	0.6914	0.9976	0.7308	0.5032	0.3181	0.1753	0.0468
Y	0.0069	0.1393	0.2752	0.4634	0.7051	1	0.7051	0.4634	0.2752	0.1393	0.0069

12 Impulse response functions

12.1 Shock ϵ^{Λ}

Figure 1: Impulse response function for ϵ^{Λ} shock

Figure 2: Impulse response function for ϵ^{Λ} shock