

BUNDESREPUBLIK **DEUTSCHLAND**

Off nl gungsschrift _® DE 40 25 570 A 1

(51) Int. Cl.5: A 23 L 3/22 A 23 L 2/16 A 23 C 3/033

DEUTSCHES PATENTAMT Aktenzeichen:

P 40 25 570.0

Anmeldetag:

11. 8.90

43 Offenlegungstag:

10. 10. 91

3 Innere Priorität: 3 3 3

06.04.90 DE 40 11 247.0

(71) Anmelder:

Rieken, Gerd, Dipl.-Ing., 2900 Oldenburg, DE

(74) Vertreter:

Jabbusch, W., Dipl.-Ing. Dr.jur.; Lauerwald, J., Dipl.-Phys., Pat.-Anwälte, 2900 Oldenburg

(72) Erfinder: gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

😒 Vorrichtung zum Pasteurisieren von Flüssigkeiten, insbesondere Milch

Bei Vorrichtungen zum Pasteurisieren von Flüssigkeiten, insbesondere Milch, mit Pumpe, Wärmeaustauscher, Erhitzer und Kühler, tritt auf der pasteurisierten Seite der Wärmeaustauscher ein unerwünschter Druckabfall auf, sobald ein von einer Kontrollautomatik betätigbares, hinter dem Erhitzer sitzendes Urnschaltventil anspricht. Zur Vermeidung des Druckabfalls ist vorhergesehen, daß der vom Kühler wegführende Abschnitt einer Abgangsleitung des Umschaltventils an die Druckseite einer zweiten Pumpe angeschlossen ist und daß der zweiten Pumpe eine bei der Druckabfall in der ersten Abgangsleitung eine ihre Inbetriebsetzung bewirkende Einschalteinrichtung zugeordnet

Eine zweite Lösung sieht vor, daß der vom Kühler wegführende Abschnitt der Abgangsleitung ein Absperrorgan aufweist, daß hinter dem Absperrorgan eine Rücklaufleitung abgezweigt ist, daß in den zum Wärmeaustauscher führenden Abschnitt der Abgangsleitung eine zweite Pumpe derart eingesetzt ist, daß der vom Umschaltventil herangeführt Teil des Abschnitts mit der Saugseite und der zum Wärmeaustauscher führende Teil des Abschnitts mit der Druckseite der Pumpe verbunden ist, daß die Rücklaufleitung in den zur Saugseite der zweiten Pumpe geführten Teil des Abschnitts mündet und daß dem Absperrorgan eine bei Drucksbfall in der Abgangsleitung ansprechende Einschaltvorrichtung zugeordnet ist.

Beschreibung

Die Erfindung betrifft eine Vorrichtung zum Pasteurisieren von Flüssigkeiten, insbesondere Milch, mit einer Pumpe, welche die Flüssigkeit durch eine Rohrleitung drückt, die zunächst durch die kalte Seite wenigstens eines vorwärmenden Wärmeaustauschers und eines nachfolgenden pasteurisierenden Erhitzers führt, dem eine bestimmte Parameter der durchfließenden Flüssigkeit fortlaufend überprüfende Kontrollautomatik nachgeordnet ist, sowie ein in der Rohrleitung sitzendes, in Abhängigkeit von Steuerimpulsen der Kontrollautomatik betätigbares Umschaltventil, welches die Rohrleitung in zwei Abgangsleitungen verzweigt, von denen eine erste Abgangsleitung in der normalen Schaltstel- 15 lung des Umschaltventils zur warmen Seite des der pasteurisierten Flüssigkeit die für die Vorwärmung benötigte Wärme entziehenden Wärmetauschers sowie nachfolgend durch einen Kühler bis zur Weiterverarbeitung geführt ist, und die zweite Abgangsleitung einen 20 zurückführenden Umlauf bildet.

Bei einer Vorrichtung zum Pasteurisieren von Flüssigkeiten, die mit Platten- oder Röhrenwärmeaustauschern betrieben wird, die wie vorbeschrieben von der Flüssigkeit nacheinander durchströmt werden, ergeben 25 sein. Dies ist eine einfache Maßnahme, die bewirkt, daß sich infolge des natürlichen Druckgefälles entlang dem Strömungsweg der Flüssigkeiten unterschiedlich hohe Drücke innerhalb der Wärmeaustauscher, was bei Undichtigkeiten dazu führen kann, daß aufgrund der Druckdifferenz nicht pasteurisierte Flüssigkeit durch 30 die Leckstelle zumindest zum Teil in die pasteurisierte Flüssigkeit eindringt. Gesetzliche Verordnungen bestimmen, daß Maßnahmen zu treffen sind, die Druckdifferenz in den Wärmeaustauschern zwischen pasteurisierter und nicht pasteurisierter Seite auszugleichen, da- 35 mit Verunreinigungen des pasteurisierten Produkte durch Leckagen ausgeschlossen sind. Bekannt ist es, vor den Einlauf des pasteurisierenden Erhitzers eine Druckerhöhungspumpe zu setzen, durch die der Druck im pasteurisierte Flüssigkeit führenden Abschnitt der 40 Rohrleitung so weit erhöht wird, daß eine Druckdifferenz zwischen nicht pasteurisierter Seite und pasteurisierter Seite in den nachfolgenden Wärmeaustauschern aufgehoben ist. Es hat sich gezeigt, daß diese Maßnahme ausreichend wirksam ist, solange die Istwerte der die 45 Kontrollautomatik durchfließenden Flüssigkeit den Sollwerten entsprechen. Abweichungen, beispielsweise in der Temperatur, die erkennen lassen, daß die Pasteurisierung durch den Erhitzer nicht ausreichend war, führen zu einer Umschaltung des Umschaltventils, so daß 50 dann, wenn eine nicht einwandfreie Pasteurisierung der Flüssigkeit festgestellt wird, eine Abführung der nicht einwandfreien Flüssigkeit aus dem weiteren Verarbeitungsverfahren erfolgt. Das Ansprechen des Umschaltventils hat den Nachteil, daß in der bei normaler Schalt- 55 stellung des Umschaltventils zur warmen Seite eines Wärmeaustauschers führenden ersten Abgangsleitung augenblicklich ein Druckabfall auftritt, der zu den vorstehend b schriebenen Problemen einer Druckdifferenz in nachfolgenden Wärmeaustauschern führt, durch die 60 das nach wie vor in der ersten Abgangsleitung noch verbliebene, vorher einwandfrei pasteurisierte Produkt verunreinigt werden kann.

Der Erfindung liegt die Aufgabe zugrunde, für eine Vorrichtung zum Pasteurisieren von Flüssigkeiten eine 65 Ausgestaltung zu finden, durch die der Druckabfall in der ersten Abgangsleitung nach Ansprechen des Umschaltventils vermieden werden kann.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß der vom Kühler wegführende Abschnitt der ersten Abgangsleitung an die Druckseite einer zweiten Pumpe angeschlossen ist und daß der zweiten Pumpe eine bei Druckabfall in der ersten Abgangsleitung eine ihre Inbetriebs tzung bewirkende Einschalteinrichtung zugeordnet ist.

Die erfindungsgemäße, in besonderer Art angeordnete Pumpe hinter dem Kühler ermöglicht es, in dem Abschnitt der ersten Abgangsleitung, die in der normalen Schaltstellung vom Umschaltventil durch die Wärmeaustauscher und den Kühler zur Weiterverarbeitung führt, zwischen Ausgang des Kühlers bis zum Umschaltventil einen Druck aufzubauen. Dazu wird in erfindungswesentlicher Weise eine zweite Pumpe verwendet, die bei Nullförderung einen solchen Druck liefert, durch den eine Druckdifferenz auf den beiden Seiten der Wäremaustauscher aufgehoben wird. Durch Auswahl von zweiten Pumpen mit entsprechenden Kennwerten des Druckes bei Nullförderung läßt sich eine Anpassung an Vorrichtungen zum Pasteurisieren von Flüssigkeiten ohne weiteres erreichen. Die Einschalteinrichtung für die zweite Pumpe kann mit dem Betätigungsmechanismus für das Umschaltventil gekoppelt dann, wenn das Umschaltventil anspricht, sofort auch die zweite Pumpe eingeschaltet wird und damit den erforderlichen Druck in der nunmehr vom Umschaltventil gesperrten ersten Abgangsleitung aufbaut.

Selbstverständlich ist es auch möglich, daß die Einschalteinrichtung in die Rohrleitung und die erste Abgangsleitung eingesetzte Druckmeßorgane umfaßt sowie eine Auswertungsautomatik für die Meßwerte, die bei Feststellung einer vorbestimmten Druckdifferenz in Rohrleitung und erster Abgangsleitung die Einschalteinrichtung aktiviert.

Eine besonders vorteilhafte Betriebsweise der Vorrichtung ist dadurch möglich, daß die Drehzahl der Pumpe in Abhängigkeit von sestgestellten Druckdifferenzen regelbar sein kann. Dies ermöglicht, die Vorrichtung ständig so zu betreiben, daß in der ersten Abgangsleitung immer ein um einen vorbestimmten Wert höherer Druck als in der Rohrleitung herrscht.

Verfügt die Vorrichtung über eine in der Rohrleitung sitzende weitere Druckerhöhungspumpe, kann auch diese hinsichtlich ihrer Drehzahl mitgeregelt werden, wodurch sich die vorteilhafte Betriebsweise auch bei variabler Leistung ergibt.

Nach einer zweiten Lösung, für die auch selbständiger Schutz beansprucht wird, ist zur Vermeidung eines nicht erwünschten Druckabfalls in der ersten Abgangsleitung in ebenfalls erfindungsgemäßer Weise vorgesehen, daß der vom Kühler wegführende Abschnitt der ersten Abgangsleitung ein Absperrorgan aufweist, daß hinter dem Absperrorgan eine Rücklausleitung abgezweigt ist, daß in den zum Wärmeaustauscher führenden Abschnitt der ersten Abgangsleitung eine zweite Pumpe derart eingesetzt ist, daß der vom Umschaltventil herangeführte Teil des Abschnitts mit der Saugseite der Pumpe und der zum Wärmeaustauscher führende Teil des Abschnitts mit der Druckseite der Pumpe verbunden ist, daß die Rücklaufleitung in den vom Umschaltventil zur Saugseit der zweiten Pumpe geführten Teil des Abschnitts mündet und daß dem Absperrorgan eine bei Druckabfall in der ersten Abgangsleitung ansprechende Einschalteinrichtung zugeordnet ist.

Auch durch diese Anordnung der zweiten Pumpe ist es möglich, in der ersten Abgangsleitung einen Druck-

anstieg aufzubauen, durch den der natürliche Druckabfall aufgehoben wird und eine Sicherheit gegen verunreinigende Leckagen in den Wärmeaustauschern gegeben ist. Sobald das Umschaltventil aufgrund festgestellter mangelhafter Pasteurisierung die erste Abgangsleitung schließt und die zweite Abgangsleitung öffnet, würde die zweite Pumpe nicht mehr in die erste Abgangsleitung fördern. Der Druck in der ersten Abgangsleitung fällt in unerwünschter Weise ab, so daß die vorbeschriebenen Probleme bei Leckagen auftreten. In er- 10 findungsgemäßer Weise kann dem jedoch durch das Schließen des Absperrorgans unmittelbar hinter dem Kühler entgegengewirkt werden. Da die zweite Pumpe wieder so ausgelegt ist, daß sie bei Nullförderung einen bestimmten Druck aufbaut und der von der zweiten 15 Pumpe unter Druck zu haltende Bereich relativ klein ist, wird, damit die Pumpe überhaupt den Druck aufbauen kann, die Rücklaufleitung abgezweigt, so daß über diese von der pasteurisierten Seite eine geringe Menge der Flüssigkeit entnommen werden kann, die dem Saugstut- 20 zen der zwecks Druckerhöhung vorgesehenen zweiten

Die zweite Pumpe läuft auch nach dem Ansprechen des Umschaltventils weiter. Das Ansprechen des zugeordneten Absperrorgans erfolgt wieder durch eine Einschalteinrichtung, die entweder mit dem Betätigungsmechanismus für das Umschaltventil gekoppelt ist oder
über eine Auswertungsautomatik für von Druckmeßorganen in den entsprechenden Leitungsabschnitten gelieferte Meßwerte gesteuert wird. Dabei ist auch die in 30
Abhängigkeit von Druckdifferenzen arbeitende Drehzahlregelung der Pumpe einsetzbar, die bewirkt, daß
stets eine positive Druckdifferenz gegeben ist.

Pumpe wieder zugeführt wird.

Ausführungsbeispiele, aus denen sich weitere erfinderische Merkmale ergeben, sind in der Zeichnung darge- 35 stellt. Es zeigen:

Fig. 1 eine erste Ausführung der Vorrichtung in Form eines schematischen Schaltungsdiagramms und

Fig. 2 eine zweite Ausführung in Form eines Schaltungsdiagramms.

In Fig. 1 ist eine Vorrichtung zum Pasteurisieren in Form eines schematischen Schaltbilds dargestellt. Der Zulauf zu pasteurisierender Flüssigkeit erfolgt bei 1. Mit einer ersten Pumpe 2 wird die Flüssigkeit in eine Rohrleitung 3 gedrückt und zunächst durch die kalten Seiten 45 zweier Wärmeaustauscher 4 und 5 geführt. In den Wärmeaustauschern 4 und 5 wird die zu pasteurisierende Flüssigkeit vorgewärmt, bevor sie durch einen Erhitzer 6 geleitet wird, dem über die Leitungen 7 entsprechende Wärmeenergie zugeführt wird. Dem Erhitzer 6 ist eine 50 bestimmte Parameter der durchfließenden Flüssigkeit fortlaufend überprüfende Kontrollautomatik 8 nachgeordnet, sowie ein in der Rohrleitung 3 sitzendes, in Abhängigkeit von Steuerimpulsen der Kontrollautomatik 8 betätigbares Umschaltventil 9, welches die Rohrleitung 3 in zwei Abgangsleitungen 10 und 11 verzweigt. Die erste Abgangsleitung 10 führt in der normalen Schaltstellung des Umschaltventils 9 zur warmen Seite des die pasteurisierte Flüssigkeit kühlenden und dabei die für die Vorwärmung benötigte Wärme entziehenden Wärmeaustauschers 5 bzw. 4 sowie nachfolgend durch einen Kühler 12. Nach Verlass n des Kühlers wird die abgekühlte pasteurisierte Flüssigkeit zur Weiterverarbeitung geführt. Die zweite Abgangsleitung 11 dient dazu, nach Ansprechen des Umschaltventils, z. B. aufgrund 65 festgestellter Pasteurisierungsmängel, die mangelhafte Flüssigkeit in einen beispielsweise nach 1 zurückführenden Umlauf zu leiten. Dem Erhitzer 6 ist eine in der

Rohrleitung 3 sitzende weitere Druckerhöhungspumpe 2a vorgeschaltet, die dazu dient, den Druck in der nach dem Erhitzer pasteurisierte Flüssigkeit führenden Rohrleitung 3 soweit anzuheben, daß in den Wärmeaustauschern 4 und 5 auf der pasteurisierten Seite ein höherer Druck als auf der nicht pasteurisierten Seite best ht.

Aufgrund des natürlichen Druckabfalls, der zwischen der Pumpe 2 im Verlauf der Rohrleitung 3 bis zur Wegführung der pasteurisierten Flüssigkeit zur Weiterverarbeitung proportional der Rohrlänge zunimmt, ist der Druck in den Wärmeaustauschern 4 und 5 auf der pasteurisierten Seite niedriger als auf der nicht pasteurisierten Seite. Demzufolge könnte bei Undichtigkeiten innerhalb der Wärmeaustauscher nicht pasteurisierte Flüssigkeit über entsprechende Undichtigkeiten auf die bereits pasteurisierte Seite gedrückt werden und die dort fließende Flüssigkeit verunreinigen. Dies verhindert die dem Erhitzer vorgeschaltete weitere Druckerhöhungspumpe 2a.

Für den Fall, daß eine nicht ausreichende Pasteurisierung der Flüssigkeit durch die Kontrollautomatik 8 festgestellt wird, spricht das Umschaltventil 9 an. Die beiden Pumpen 2 und 2a drücken dann mit Mängeln behaftete erhitzte Flüssigkeit in die zweite Abgangsleitung 11. Die erste Abgangsleitung 10 ist dabei gesperrt, so daß sich der Druck der beiden Pumpen 2 und 2a nicht mehr auf die erste Abgangsleitung 10 auswirken kann. In der ersten Abgangsleitung 10 tritt dadurch ein Druckabfall auf, der dazu führt, daß verunreinigende Flüssigkeit bei möglichen Leckagen innerhalb der Wärmeaustauscher 4,5 von der nicht pasteurisierten Seite auf die pasteurisierte Seite gelangen kann.

Um dies zu verhindern, ist eine zweite Pumpe 13 in den vom Kühler 12 wegführenden Abschnitt 14 der ersten Abgangsleitung 10 derart angeschlossen, daß ihre Druckseite dem Kühler zugekehrt ist. Die Pumpe ist derart ausgelegt, daß sie bei Nullforderung in der ersten Abgangsleitung 10 einen bis zum sperrenden Umschaltventil 9 anstehenden erforderlichen Druck aufbaut, der höher ist als der Druck auf der nicht pasteurisierten Seite der Wärmeaustauscher 4 und 5. Der zweiten Pumpe 13 ist eine ihre Inbetriebsetzung bewirkende Einschalteinrichtung zugeordnet, die hier nicht weiter dargestellt ist. Die Einschalteinrichtung könnte ohne weiteres mit dem Betätigungsmechanismus für das Umschaltventil 9 gekoppelt sein.

In die Rohrleitung 3 sind, falls erwünscht, Druckmeßorgane P1 und P2 eingesetzt, sowie in die erste Abgangsleitung 10 Druckmeßorgane P3 und P4. Diese ermöglichen ein Erfassen der Druckdifferenz in den Leitungen, die von der dann entsprechend ausgestalteten Auswertungsautomatik umgesetzt werden, um die Drehzahl der Pumpe 13 und gegebenenfalls auch der weiteren Druckerhöhungspumpe 2a mittels der schematisch angedeuteten Drehzahlregelung so zu ändern, daß stets ein um ein vorbestimmtes Maß höherer Druck in der ersten Abgangsleitung 10 herrscht als in der Rohrleitung 3.

In Fig. 2 ist eine zweite Ausführungsmöglichkeit für eine Vorrichtung zum Pasteurisieren von Flüssigkeiten in Form eines Schaltungsdiagramms dargestellt.

Bei der gez ichneten Ausführungsform sind gleiche Bauteile wiederum mit gleichen Bezugszahlen wie in Fig. 1 bezeichnet. Der vom Kühler wegführende Abschnitt 14 der ersten Abgangsleitung 10 weist ein Absperrorgan 15 auf. Hinter dem Absperrorgan ist eine Rücklausleitung 16 abgezweigt. In den zum Wärmeaustauscher 5 führenden Abschnitt der ersten Abgangslei-

40

tung 10 ist eine zweite Pumpe 13a derart eingesetzt, daß der vom Umschaltventil 9 herangeführte Teil des Abschnitts mit der Saugseite der Pumpe 13a und der zum Wärmeaustauscher 5 führende Teil des Abschnitts mit der Druckseite der Pumpe 13a verbunden ist. Die Rücklaufleitung 16 mündet in den vom Umschaltventil 9 zur Saugseite der zweiten Pumpe 13a geführten Teil des Abschnitts.

Dem Absperrorgan 15 ist eine bei Druckabfall in der ersten Abgangsleitung 10 ansprechende Einschaltein- 10 richtung zugeordnet, die auch mit dem Betätigungsmechanismus für das Umschaltventil wieder gekoppelt sein kann. Hier umfaßt die Einschalteinrichtung in die Rohrleitung 3 und die zweite Abgangsleitung 10 eingesetzte Druckmeßorgane P1, P2, P3 und P4, sowie eine übliche 15 Auswertungsautomatik für die Meßwerte, die bei Feststellung einer bestimmten Druckdifferenz in Rohrleitung 3 und erster Abgangsleitung 10 die Einschalteinrichtung für das Absperrorgan 15 aktiviert. Die weiter laufende zweite Pumpe 13a baut dann bei Nullförde- 20 rung wieder einen vorbestimmten Druck in dem durch die Wärmeaustauscher 4, 5 und den Kühler 12 führenden Abschnitt der zweiten Abgangsleitung 10 auf. Für den Druckaufbau holt sich die zweite Pumpe 13a die benötigte Flüssigkeit über die Rücklaufleitung 16.

Bei dieser zweiten Ausführungsform kann auf die Druckerhöhungspumpe 2a (Fig. 1) verzichtet werden, da die zweite Pumpe 13a bei in Normalstellung befindlichem Umschaltventil 9 und geöffnetem Absperrorgan 15 sowie geschlossenem zweiten Absperrorgan 17 in 30 der Rücklausseitung 16 den im Normalbetrieb naturgemäß gegebenen normalen Druckabfall zwischen pasteurisierter und nichtpasteurisierter Seite in den Wärmeaustauschern 4,5 durch entsprechende Druckerhöhung in der zweiten Abgangsleitung 10 ausgleichen kann.

Die Druckmeßorgane können jedoch auch wieder für die Beeinflussung einer Drehzahlregelung 18 genutzt werden, um damit die Drehzahl der Pumpe 13a in Abhängigkeit von Druckdifferenzen zu regeln.

Patentansprüche

1. Vorrichtung zum Pasteurisieren von Flüssigkeiten, insbesondere Milch, mit einer Pumpe, welche die Flüssigkeit durch eine Rohrleitung drückt, die zunächst durch die kalte Seite wenigstens eines vorwärmenden Wärmeaustauschers und eines nachfolgenden pasteurisierenden Erhitzers führt, dem eine bestimmte Parameter der durchfließenden Flüssigkeit fortlaufend überprüfende Kontrollautomatik nachgeordnet ist, sowie ein in der Rohrleitung sitzendes, in Abhängigkeit von Steuerimpulsen der Kontrollautomatik betätigbares Umschaltventil, welches die Rohrleitung in zwei Abgangsleitungen verzweigt, von denen eine erste Abgangsleitung in der normalen Schaltstellung des Umschaltventils zur warmen Seite des der pasteurisierten Flüssigkeit die für die Vorwärmung benötigte Wärme entzi henden Wärmeaustauschers sowie nachfolgend durch einen Kühler bis zur Weiterverarbeitung geführt ist, und die zweite Abgangsleitung einen zurückführenden Umlauf bild t, dadurch gekennzeichnet, daß der vom Kühler (12) wegführende Abschnitt (14) der ersten Abgangsleitung (10) an die Druckseite einer zweiten Pumpe (13) angeschlossen ist und daß der zweiten Pumpe

(13) eine bei Druckabfall in der ersten Abgangsleitung (10) eine ihre Inbetriebsetzung bewirkende Einschalteinrichtung zugeordnet ist.

2. Vorrichtung zum Pasteurisieren von Flüssigkeiten, insbesondere Milch, mit einer Pumpe, welche die Flüssigkeit durch eine Rohrleitung drückt, die zunächst durch die kalte Seite wenigstens eines vorwärmenden Wärmeaustauschers und eines nachfolgenden pasteurisierenden Erhitzers führt, dem eine bestimmte Parameter der durchsließenden Flüssigkeit fortlaufend überprüfende Kontrollautomatik nachgeordnet ist, sowie ein in der Rohrleitung sitzendes, in Abhängigkeit von Steuerimpulsen der Kontrollautomatik betätigbares Umschaltventil, welches die Rohrleitung in zwei Abgangsleitungen verzweigt, von denen eine erste Abgangsleitung in der normalen Schaltstellung des Umschaltventils zur warmen Seite des der pasteurisierten Flüssigkeit die für die Vorwärmung benötigte Wärme entziehenden Wärmeaustauschers geleitet sowie nachfolgend durch einen Kühler bis zur Weiterverarbeitung geführt ist, und die zweite Abgangsleitung einen zurückführenden Umlauf bildet, dadurch gekennzeichnet,

daß der vom Kühler (12) wegführende Abschnitt (14) der ersten Abgangsleitung (10) ein Absperrorgan (15) aufweist, daß hinter dem Absperrorgan eine Rücklaufleitung (16) abgezweigt ist, daß in den zum Wärmeaustauscher (5) führenden Abschnitt der ersten Abgangsleitung (10) eine zweite Pumpe (13a) derart eingesetzt ist, daß der vom Umschaltventil (9) herangeführte Teil des Abschnitts mit der Saugseite der Pumpe (13a) und der zum Wärmeaustauscher (5) führende Teil des Abschnitts mit der Druckseite der Pumpe (13a) verbunden ist, daß die Rücklaufleitung (16) in den vom Umschaltventil (9) zur Saugseite der zweiten Pumpe (13a) geführten Teil des Abschnitts mündet und

daß dem Absperrorgan (15) eine bei Druckabfall in der ersten Abgangsleitung (10) ansprechende Einschaltvorrichtung zugeordnet ist.

3. Vorrichtung nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Einschalteinrichtung mit dem Betätigungsmechanismus für das Umschaltventil (9) gekoppelt ist.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Einschalteinrichtung in die Rohrleitung (3) und die erste Abgangsleitung (10) eingesetzte Druckmeßorgane (P1, P2, P3, P4) umfaßt sowie eine Auswertungsautomatik für die Meßwerte, die bei Feststellung einer vorbestimmten Druckdifferenz in Rohrleitung (3) und erster Abgangsleitung (10) die Einschalteinrichtung aktiviert.

5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einschalteinrichtung eine in Abhängigkeit von gemessenen Druckdifferenzen regelnde Drehzahlregelung für die zweite Pumpe (13, 13a) umfaßt.

6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Rohrleitung (3) eine weitere Druckerhöhungspumpe (2a) aufweist, deren Drehzahl ebenfalls druckdifferenzabhängig regelbar ist.

7. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß in die Rücklaufleitung ein zweites Absperr rgan (17) eingesetzt ist, welches umgekehrt zum ersten Absperrorgan (15)

gemeinsam damit betätigbar ist.

Hierzu 2 Seite(n) Zeichnungen

- Leers ite-

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 40 25 570 A1 A 23 L 3/22

10. Okt ber 1991

Nummer: Int. Cl.⁵:

Off nlegungstag:

DE 40 25 570 A1 A 23 L 3/22

10. Oktober 1991

