Differentiation

Paolo Bettelini

Contents

1	Definition	2
	1.1 Tangent	
	1.2 Derivative	4
	Chain Rule	9
	2.1 Definition	
	2.2 Proof	•
3	Rules for differentiation	4

1 Definition

1.1 Tangent

The mean slope of a function f between a point A and B is given by

$$\frac{\Delta y}{\Delta x} = \frac{f(B) - f(A)}{B - A}$$

As we make A and B closer to each other, Δx decreases. As Δx decreases the mean slope is more representative of the rate of change of f in the interval [A;B].

When Δx is infinitely small, we have the precise slope of a given point on the function. This slope is represented by the tangent line, which is parallel to the given point.

$$\lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x}$$

1.2 Derivative

The derivative of a function f(x) is another function f'(x) which represents the rate of change of f(x). In other words, f'(x) represents the slope at each x of f(x).

We define f'(x) by taking the limit of the slope for every x.

We define the derivative as

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

or

$$f'(x) = \lim_{h \to x} \frac{f(h) - f(x)}{x - h}$$

- If f'(a) > 0, then f(x) is increasing at x = a
- If f'(a) < 0, then f(x) is decreasing at x = a
- If f'(a) = 0, then f(x) is critical at x = a (changing from increase to decrease or from decrease to increase)

2

2 Chain Rule

2.1 Definition

If z depends on y, and y depends on x, then z also depends on x.

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

2.2 Proof

Assuming that z and y are differentiable in x

$$\frac{dz}{dx} = \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta y} \cdot \frac{\Delta y}{\Delta x}$$
$$= \left(\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta y}\right) \left(\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}\right)$$
$$= \left(\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta y}\right) \cdot \frac{dy}{dx}$$

As $\Delta x \to 0$ also $\Delta y \to 0$, so we can replace Δx with Δy

$$\frac{dz}{dx} = \left(\lim_{\Delta y \to 0} \frac{\Delta z}{\Delta y}\right) \cdot \frac{dy}{dx}$$
$$= \frac{dz}{dy} \cdot \frac{dy}{dx}$$

3 Rules for differentiation

$$\frac{d}{dx}(n) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}, \quad n \in \mathbb{R}^*$$

$$\frac{d}{dx}(n \cdot f(x)) = n\frac{d}{dx}(f(x))$$

$$\frac{d}{dx}(f+g) = f' + g'$$

$$\frac{d}{dx}(f \cdot g) = g'f + gf'$$

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}(f^g) = f^g\left(\frac{f'g}{f} + g'\ln f\right)$$