"algorithms for Big Data"

Lecture 3: Streaming and Sketching

Slides at http://grigory.us/big-data-csclub.html

Grigory Yaroslavtsev

(Indiana University, Bloomington)

http://grigory.us

Count-Min Sketch

- https://sites.google.com/site/countminsketch/
- Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g. $\langle x_1, x_2, ..., x_m \rangle = \langle 5, 8, 1, 1, 1, 4, 3, 5, ..., 10 \rangle$
- f_i = frequency of i in the stream = # of occurrences of value $i, f = \langle f_1, ..., f_n \rangle$
- Problems:
 - Point Query: For $i \in [n]$ estimate f_i
 - Range Query: For $i, j \in [n]$ estimate $f_i + \cdots + f_j$
 - Quantile Query: For $\phi \in [0,1]$ find j with $f_1 + \cdots + f_j \approx \phi m$
 - Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$

Count-Min Sketch: Construction

- Let $H_1, ..., H_d$: $[n] \rightarrow [w]$ be 2-wise independent hash functions
- We maintain $d \cdot w$ counters with values: $c_{i,j} = \#$ elements e in the stream with $H_i(e) = j$
- For every x the value $c_{i,H_i(x)} \ge f_x$ and so: $f_x \le \widetilde{f}_x = \min(c_{1,H_1(x)},\dots,c_{d,H_d(x)})$
- If $w = \frac{2}{\epsilon}$ and $d = \log_2 \frac{1}{\delta}$ then: $\Pr[f_x \le \widetilde{f}_x \le f_x + \epsilon m] \ge 1 - \delta.$

Count-Min Sketch: Analysis

• Define random variables $Z_1 \dots, Z_d$ such that $c_{i,H_i(x)} = f_x + Z_i$

$$\mathbf{Z}_{i} = \sum_{y \neq x, H_{i}(y) = H_{i}(x)} f_{y}$$

• Define $X_{i,y} = 1$ if $H_i(y) = H_i(x)$ and 0 otherwise:

$$\mathbf{Z}_i = \sum_{y \neq x} f_y \mathbf{X}_{i,y}$$

• By 2-wise independence:

$$\mathbb{E}[\boldsymbol{Z}_i] = \sum_{y \neq x} f_y \, \mathbb{E}[\boldsymbol{X}_{i,y}] = \sum_{y \neq x} f_y \, \Pr[H_i(y) = H_i(x)] \le \frac{m}{w}$$

By Markov inequality,

$$\Pr[\mathbf{Z}_i \ge \epsilon m] \le \frac{1}{w \ \epsilon} = \frac{1}{2}$$

Count-Min Sketch: Analysis

• All Z_i are independent

$$\Pr[Z_i \ge \epsilon m \ for \ all \ 1 \le i \le d] \le \left(\frac{1}{2}\right)^d = \delta$$

• With prob. $1 - \delta$ there exists j such that $Z_j \leq \epsilon m$

$$\widetilde{f}_{\chi} = \min(c_{1,H_1(\chi)}, \dots, c_{d,H_d(\chi)}) =$$

$$= \min(f_{\chi}, +Z_1 \dots, f_{\chi} + Z_d) \le f_{\chi} + \epsilon m$$

• CountMin estimates values f_{χ} up to $\pm \epsilon m$ with total memory $O\left(\frac{\log m \log \frac{1}{\delta}}{\epsilon}\right)$

Dyadic Intervals

• Define $\log n$ partitions of [n]:

```
\begin{split} I_0 &= \{1,2,3,...n\} \\ I_1 &= \big\{\{1,2\},\{3,4\},...,\{n-1,n\}\big\} \\ I_2 &= \{\{1,2,3,4\},\{5,6,7,8\},...,\{n-3,n-2,n-1,n\}\} \\ ... \\ I_{\log n} &= \{\{1,2,3,...,n\}\} \end{split}
```

- Exercise: Any interval (i, j) can be written as a disjoint union of at most $2 \log n$ such intervals.
- Example: For n = 256: $[48,107] = [48,48] \cup [49,64] \cup [65,96] \cup [97,104] \cup [105,106] \cup [107,107]$

Count-Min: Range Queries and Quantiles

- Range Query: For $i, j \in [n]$ estimate $f_i + \cdots f_j$
- Approximate median: Find j such that:

$$f_1 + \dots + f_j \ge \frac{m}{2} + \epsilon m$$
 and
$$f_1 + \dots + f_{j-1} \le \frac{m}{2} - \epsilon m$$

Count-Min: Range Queries and Quantiles

• Algorithm: Construct $\log n$ Count-Min sketches, one for each I_i such that for any $I \in I_i$ we have an estimate \tilde{f}_I for f_I such that:

$$\Pr[f_l \le \widetilde{f}_l \le f_l + \epsilon m] \ge 1 - \delta$$

• To estimate [i,j], let $I_1 \dots, I_k$ be decomposition: $\widetilde{f_{[i,j]}} = \widetilde{f_{l_1}} + \dots + \widetilde{f_{l_k}}$

• Hence, $\Pr[f_{[i,j]} \le \widetilde{f_{[i,j]}} \le 2 \epsilon m \log n] \ge 1 - 2\delta \log n$

Count-Min: Heavy Hitters

- Heavy Hitters: For $\phi \in [0,1]$ find all i with $f_i \ge \phi m$ but no elements with $f_i \le (\phi \epsilon)m$
- Algorithm:
 - Consider binary tree whose leaves are [n] and associate internal nodes with intervals corresponding to descendant leaves
 - Compute Count-Min sketches for each I_i
 - Level-by-level from root, mark children I of marked nodes if $\widetilde{f}_l \ge \phi m$
 - Return all marked leaves
- Finds heavy-hitters in $O(\phi^{-1} \log n)$ steps

More about Count-Min

- Authors: Graham Cormode, S. Muthukrishnan [LATIN'04]
- Count-Min is linear:

```
Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)
```

- Deterministic version: CR-Precis
- Count-Min vs. Bloom filters
 - Allows to approximate values, not just 0/1 (set membership)
 - Doesn't require mutual independence (only 2-wise)
- FAQ and Applications:
 - https://sites.google.com/site/countminsketch/home/
 - https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

- Stream: m updates $(x_i, \Delta_i) \in [n] \times \mathbb{R}$ that define vector f where $f_j = \sum_{i:x_i=j} \Delta_i$.
- Example: For n=4

$$\langle (1,3), (3,0.5), (1,2), (2,-2), (2,1), (1,-1), (4,1) \rangle$$

 $f = (4,-1,0.5,1)$

Count-Min Sketch:

$$\Pr\left[|\widetilde{f_x} - f_x| + \epsilon ||f||_1\right] \ge 1 - \delta$$

 Count Sketch: Count-Min with random signs and median instead of min:

$$\Pr\left[|\widetilde{f_x} - f_x| + \epsilon ||f||_2\right] \ge 1 - \delta$$

Count Sketch

• In addition to H_i : $[n] \rightarrow [w]$ use random signs $r[i] \rightarrow \{-1,1\}$

$$c_{i,j} = \sum_{x:H_i(x)=j} r_i(x) f_x$$

• Estimate:

$$\hat{f}_x = median(r_1(x)c_{1,H_1(x)}, ..., r_d(x)c_{d,H_d(x)})$$

• Parameters:
$$d = O\left(\log \frac{1}{\delta}\right)$$
, $w = \frac{3}{\epsilon^2}$

$$\Pr[|\widetilde{f_x} - f_x| + \epsilon ||f||_2] \ge 1 - \delta$$

ℓ_p -Sampling

- Stream: m updates $(x_i, \Delta_i) \in [n] \times \mathbb{R}$ that define vector f where $f_j = \sum_{i:x_i=j} \Delta_i$.
- ℓ_p -Sampling: Return random $I \in [n]$ and $R \in \mathbb{R}$:

$$\Pr[I = i] = (1 \pm \epsilon) \frac{|f_i|^p}{||f||_p^p} + n^{-c}$$

$$R = (1 \pm \epsilon) f_I$$

ℓ_0 -sampling

- Maintain $\widetilde{F_0}$, and (1 ± 0.1) -approximation to F_0 .
- Hash items using $h_j: [n] \to [0,2^j 1]$ for $j \in [\log n]$
- For each *j*, maintain:

$$D_{j} = (1 \pm 0.1)|\{t|h_{j}(t) = 0\}|$$

$$S_{j} = \sum_{t,h_{j}(t)=0} f_{t}i_{t}$$

$$C_{j} = \sum_{t,h_{j}(t)=0} f_{t}$$

- Lemma: At level $j = 2 + \lceil \log \widetilde{F_0} \rceil$ there is a unique element in the streams that maps to 0 (with constant probability)
- Uniqueness is verified if $D_j = 1 \pm 0.1$. If so, then output S_j/C_j as the index and C_j as the count.

Proof of Lemma

- Let $j = \lceil \log \widetilde{F_0} \rceil$ and note that $2F_0 < 2^j < 12 F_0$
- For any i, $\Pr[h_j(i) = 0] = \frac{1}{2^j}$
- Probability there exists a unique i such that $h_i(i) = 0$,

$$\sum_{i} \Pr[h_{j}(i) = 0 \text{ and } \forall k \neq i, h_{j}(k) \neq 0]$$

$$= \sum_{i} \Pr[h_{j}(i) = 0] \Pr[\forall k \neq i, h_{j}(k) \neq 0 | h_{j}(i) = 0]$$

$$\geq \sum_{i} \Pr[h_{j}(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_{j}(k) = 0 | h_{j}(i) = 0]\right)$$

$$= \sum_{i} \Pr[h_{j}(i) = 0] \left(1 - \sum_{k \neq i} \Pr[h_{j}(k) = 0]\right) \geq \sum_{i} \frac{1}{2^{j}} \left(1 - \frac{F_{0}}{2^{j}}\right) \geq \frac{1}{24}$$

• Holds even if h_i are only 2-wise independent

Application: Social Networks

- Each of n people in a social network is friends with some arbitrary set of other n-1 people
- Each person knows only about their friends
- With no communication in the network, each person sends a postcard to Mark Z.
- If Mark wants to know if the graph is connected, how long should the postcards be?

Sketching Graphs?

- We know how to sketch vectors: $v \rightarrow Mv$
- How about sketching graphs?
- $G(V, E) \equiv A_G$ (adjacency matrix): $A_G \rightarrow MA_G$
- Sketch columns of A_G
- n = |V|, m = |E|
- $O(poly(\log n))$ sketch per vertex / $\tilde{O}(n)$ total
 - Check connectivity
 - Check bipartiteness
- As always, space rather than dimension. Why?

Graph Streams

- Semi-streaming model: [Muthukrishnan '05; Feigenbaum, Kannan, McGregor, Suri, Zhang'05]
 - Graph defined by the stream of edges e_1, \dots, e_m
 - Space $\tilde{O}(n)$, edges processed in order
 - Connectivity is easy on $\tilde{O}(n)$ space for insertion-only
- Dynamic graphs:
 - Stream of insertion/deletion updates $+e_{i_1}, -e_{i_2}, \dots, -e_{i_t}$ (assume sequence is correct)
 - Resulting graph has edge e_i if it wasn't deleted after the last insertion
- Linear sketching dynamic graphs:

$$MA_{G \setminus e} = MA_G - MA_e$$

Distributed Computing

- Linear sketches for distributed processing
- S servers with o(m) memory:
 - Send m/S edges $(E_1, ..., E_S)$ to each server
 - Compute sketches ME_1, \dots, ME_S locally
 - Send sketches to a central server
 - Compute $MA_G = \sum_{i=1}^{S} ME_i$
- M has to have a small representation (same issue as in streaming)

Connectivity

- Thm. Connectivity is sketchable in $\tilde{O}(n)$ space
- Framework:
 - Take existing connectivity algorithm (Boruvka)
 - Sketch $A_G \rightarrow MA_G$
 - Run Boruvka on MA_G
- Important that the sketch is homomorphic w.r.t the algorithm

Part 1: Parallel Connectivity (Boruvka)

- Repeat until no edges left:
 - For each vertex, select any incident edge
 - Contract selected edges

• Lemma: process converges in $O(\log n)$ steps

Part 2: Graph Representation

- For a vertex i let a_i be a vector in $\mathbb{R}^{\binom{n}{2}}$
- Non-zero entries for edges (i, j)

$$-a_i[i,j] = 1 \text{ if } j > i$$

$$- a_i[i,j] = -1 \text{ if } j < i$$

Example:

$$a_1 = (1, 1, 1, 1, 0, ..., 0)$$

$$a_2 = (-1, 0, 0, 0, 0, 0, 1, 0, 1, ..., 0)$$

 $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{2,3\},\{2.4\},\{2,5\},\dots$

• Lem: For any $S \subseteq V$ supp $(\sum_{i \in S} a_i) = E(S, V \setminus S)$

Part 3: L_0 -Sampling

• There is a distribution over $M \in \mathbb{R}^{d \times m}$ with $d = O(\log^2 m)$ such w.p. 9/10 that $\forall a \in \mathbb{R}^m$: $Ca \rightarrow e \in supp(a)$

[Cormode, Muthukrishnan, Rozenbaum'05; Jowhari, Saglam, Tardos '11]

• Constant probability suffices — still $O(\log n)$ Boruvka iterations

Final Algorithm

- Construct $\log n \ \ell_0$ -samplers for each a_i
- Run Boruvka on sketches:
 - Use C_1a_i to get an edge incident on a node j
 - For i = 2 to t:
 - To get incident edge on a component $S \subseteq V$ use:

$$\sum_{j \in S} C_i a_j = C_i \left(\sum_{j \in S} a_j \right) \to$$

$$\to e \in supp\left(\sum_{j \in S} a_j\right) = E(S, V \setminus S)$$

K-Connectivity

- Graph is k-connected is every cut has size $\geq k$
- Thm: There is a $O(nk \log^3 n)$ -size linear sketch for k-connectivity
- Generalization: There is an $O(n \log^5 n / \epsilon^2)$ size linear sketch which allows to approximate
 all cuts in a graph up to error $(1 \pm \epsilon)$

K-connectivity Algorithm

- Algorithm for k-connectivity:
 - Let F_1 be a spanning forest of G(V, E)
 - For i = 2, ..., k
 - Let F_i be a spanning forest of $G(V, E \setminus F_1 \setminus \cdots \setminus F_{i-1})$
- Lem: $G(V, F_1 + \cdots + F_k)$ is k-connected iff G(V, E) is.
- ⇒ Trivial
- \leftarrow Consider a cut in $G(V, \sum_{i=1}^k F_i)$ of size < k
- $\Rightarrow \exists i^*$: this cut didn't grow in step i^*
- \Rightarrow there is a cut in G(V, E) of size < k
- ⇒ contradiction

K-connectivity Algorithm

- Construct k independent linear sketches $\{M_1A_G, M_2A_G \dots, M_kA_G\}$ for connectivity
- Run k-connectivity algorithm on sketches:
 - Use M_1A_G to get a spanning forest F_1 of G
 - Use $M_2A_G M_2A_{F_1} = M_2(A_{G-F_1})$ to find F_2
 - Use $M_3A_G-M_3A_{F_1}-M_3A_{F_2}=M_3(A_{G-F_1-F_2})$ to find F_3

— ...

Bipartiteness

• Reduction: Given G define G' where vertices $v \to (v_1, v_2)$; edges $(u, v) \to (u_1, v_2) \& (u_2, v_1)$

- Lem: # connected components doubles iff the graph is bipartite.
- Thm: $O(n \log^3 n)$ -size linear sketch for k-connectivity (sketch G' (implicitly).)

Minimum Spanning Tree

• If $n_i = \#$ connected components in a subgraph induced by edges of weight $\leq (1 + \epsilon)^i$:

$$w(MST) \leq n - (1+\epsilon)^r + \sum_{i=0\dots r-1} \lambda_i n_i \leq (1+\epsilon)w(MST)$$
 where $\lambda_i = ((1+\epsilon)^{i+1} - (1+\epsilon)^i$

- cc(G) = #connected components of G
- Round weights up to the nearest power of $1 + \epsilon$
- $G_i \equiv \text{subgraph with edges of weight} \leq (1+\epsilon)^i$
- Edges taken by the Kruskal's algorithm:
 - $n cc(G_0)$ edges of weight 1
 - $-cc(G_0)-cc(G_1)$ edges of weight $(1+\epsilon)$
 - **–** ...
 - $-\operatorname{cc}(G_{i-1})-\operatorname{cc}(G_i)$ edges of weight $(1+\epsilon)^i$

Minimum Spanning Tree

- Let $r = \log_{1+\epsilon} W$ where $W = \max$ edge weight
- Overall weight:

$$n - cc(G_0) + \sum_{1}^{r} (1 + \epsilon)^i \left(cc(G_{i-1}) - cc(G_i) \right)$$

$$= n - (1 + \epsilon)^r + \sum_{1}^{r-1} \left((1 + \epsilon)^{i+1} - (1 + \epsilon)^i \right) cc(G_i)$$

• Thm: $(1 + \epsilon)$ -approx. MST weight can be computed with $\tilde{O}(n)$ linear sketch for W = poly(n)

MST: Single Linkage Clustering

• [Zahn'71] **Clustering** via MST (Single-linkage):

k clusters: remove k-1 longest edges from MST

Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Cut Sparsification

- Two problems:
 - Approximating Min-Cut in the graph (up to $1 \pm \epsilon$)
 - Preserving all cuts in the graph (up to $1 \pm \epsilon$)
- General cut sparsification framework:
 - Sample each edge e with probability p_e
 - Assign sampled edges weights $1/p_e$
- Expected weight of each cut is preserved, but too many cuts — can't take union bound

Cut Sparsification

- For an edge e let λ_e = weight of the minimum cut that contains e
- λ = size of the Min-Cut in G
- Thm [Fung et al.]: If G is an undirected weighted graph then if $p_e \geq \min\left(\frac{c\log^2 n}{\lambda_e\,\epsilon^2},1\right)$ then the cut sparsification alg. preserves weights of all cuts up to $(1\pm\epsilon)$
- Thm [Karger]: $p_e \ge \min\left(\frac{C\log n}{\lambda\,\epsilon^2},1\right)$ preserves Min-Cut up to $(1\pm\epsilon)$

Minimum Cut

Algorithm:

- For $i = \{0,1,...,2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, ..., F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log n\right)$ and F_i are forests constructed by the k-connectivity alg.
- Return $2^{j}\lambda(H_{j})$ where $j = \min\{i : \lambda(H_{i}) < k\}$

Space:
$$O\left(\frac{n\log^4 n}{\epsilon^2}\right)$$
, works for dynamic graph streams

Minimum Cut: Analysis

- Key property: If G_i has $\leq k$ edges across a cut then H_i contains all such edges
- $i^* = \left[\log \max\left\{1, \frac{\lambda \epsilon^2}{6 \log n}\right\}\right]$
- $i \le i^* \Rightarrow p_e \ge \min\left(\frac{6\log n}{\lambda\epsilon^2}, 1\right) \Rightarrow \min \text{ cut in } G_i$ is approximating min-cut in G up to $(1 \pm \epsilon)$
- $i=i^*$: By Chernoff bound # edges in G_{i^*} that crosses min-cut in G is $O\left(\frac{1}{\epsilon^2}\log n\right) \leq k$ w.h.p.

Cut Sparsification

Algorithm:

- For $i = \{0,1,...,2 \log n\}$:
 - Let G_i be the subgraph of G where each edge is sampled with probability $1/2^i$
 - Let $H_i = F_1, ..., F_k$ where $k = O\left(\frac{1}{\epsilon^2} \cdot \log^2 n\right)$ and F_i are forests constructed by the k-connectivity alg.
- For each edge e let $j_e = \min \{i: \lambda_e(H_i) < k\}$.
- If $e \in H_{j_e}$ then add e to the sparsifier with weight 2^{j_e}
- Space: $O\left(\frac{n\log^5 n}{\epsilon^2}\right)$, works for dynamic graph streams
- Analysis similar to the Min-Cut using [Fung et al.]