Introduction à la cryptographie

Louiza Khati

4A-Partie 1

ANSSI

- Création juillet 2009
- Acteur majeur de la cyber sécurité en France
- Rôles:
 - Favorise le développement de la cyber sécurité en France
 - Apporte son expertise et son assistance aux administrations et aux industriels
 - Encadre et délivre des « visas de sécurité » (via CCN)
 - Forme les citoyens et entreprises (guides)
 - Etc.

Laboratoire cryptographie

- Favorise la recherche dans ce domaine
- Echange sur les différents sujets auprès des acteurs internationaux
- Participe à la mise en place des bonnes pratiques crypto (guides)
- Apporte son expertise (certifications)

Ce cours

- Introduction à la cryptographie
 - Cryptographie : domaine riche été complexe
- Objectifs:
 - Découvrir la cryptographie
 - Donner des intuitions
 - Connaitre des exemples de constructions
 - Dépend de vous ☺
- Méthodes :
 - Cours +TD

Ce cours

- Ne pas hésitez à poser des questions
 - Notions inconnues/floues
- Si c'est trop lent, trop rapide
- Répondre aux questions
 - Cours plus interactif → plus agréable!
 - Apprentissage plus rapide!
 - Trouver les réponses sur internet n'apporte rien.

Règles à suivre

Absences:

- Récupérer le cours et les notes
- Attention : questionnaires en début de cours généralement

Retards:

- Cours à 8h : 15 min de retard tolérées (qrcode à la pause)
- Les autres cours : 5 minutes de retard tolérées
- Si j'arrive après cet horaire, ne pas déranger le cours svp.

Respect :

- Pas de nourriture, ni de boissons en classe (trop bruyant)
- Attention au bavardage!
- Intervenant et camarades de classe.

Notation

- Note CC (contrôle continu)
 - Participation en classe,
 - TD : je fais mon TD moi-même (je pourrais en discuter avec les camarades par la suite)
 - Questionnaire en ligne
 - Tester vos comptes wooclap et savoir utiliser l'application.
- Examen final
 - Examen papier sur l'ensemble du cours (tout le programme de cryptographie)

Sondage Cryptographie - Louiza Khati 29/09/2024

Cours précédents

- Mécanismes symétriques
 - Primitives de chiffrement par bloc (AES, 3DES, Camellia, etc.)
 - Modes opératoires pour le chiffrement (ECB, CBC)
 - Chiffrement symétrique : mode + primitive de chiffrement par bloc
 - Ex: AES-128-CBC, Camellia-ECB, AES-256-CTR, etc...
- Dans ce cours : Intégrité symétrique
 - A base de primitive de chiffrement par bloc
 - A base de fonctions de hachage

« Message Authentication Code » (MAC)

- Chiffrement symétrique « souvent » malléable
 - Vulnérables aux attaques CCA (chiffrés choisis)
 - Modifications contrôlées par l'adversaire dans le chiffré (CBC/CTR)
- Les MACs :
 - Assure qu'une donnée transmise n'a pas été modifiée sur le canal/ donnée stockée
 - Notion : intégrité/authenticité des messages ≠ confidentialité
- Confidentialité et intégrité : besoins de sécurité complémentaires

MAC

- «Signature» utilisant de la cryptographie symétrique
 - Garantit l'intégrité d'une donnée (avec une clé secrète)
 - Seules les personnes d'un groupe peuvent vérifiées la validité d'un MAC
 - Pas de non-répudiation (car clé partagée dans un groupe)
 - Plus rapide qu'une signature (pratique pour les réseaux)
- Utilise une clé symétrique
- Peut-être construit avec un chiffrement par bloc ou une fonction de hachage

MAC

- Clé K de taille k > 128
- Message M de taille <u>n quelconque</u>
- ValeurT:
 - Appelé tag ou MAC
 - Taille constante t > 128 (recommandée)
- MAC:
 - K ← keygen(k), k taille de la clé
 - T ← MAC_generation(K, M) déterministe (en général)
 - Valide/Invalide ←Mac_verification(K, M,T) déterministe

MAC : authenticité de la donnée

 $MAC_generation(K, M) = T$

MAC_verification(K, M,T) = Valide/Invalide

MAC : authenticité de la donnée

But de l'attaquant : construire une contrefaçon (M*, t*)

 $MAC_generation(K, M) = T$

MAC : Modèles d'attaquants

- À messages connus : l'adversaire a accès à des couples (M, T) de messages déjà authentifiés (interception de MACs)
- À messages choisis : l'adversaire demande le MAC de messages qu'il choisit (accès à un oracle de génération de MACs)
 - Attaque non adaptative : l'ensemble des messages est choisi a priori
 - Attaque adaptative : l'adversaire choisit les messages en fonction des réponses de l'oracle

Retrouver la clé

- Retrouver la clé
- Forger un MAC pour n'importe quel message

- Retrouver la clé
- Forger un MAC pour n'importe quel message
- Forger un MAC pour un message M choisi
- Forger un MAC pour un message M non choisi

- Retrouver la clé
- Forger un MAC pour n'importe quel message
- Forger un MAC pour un message M choisi
- Forger un MAC pour un message M non choisi
- Distinguer un MAC d'une sortie aléatoire

- Retrouver la clé
- Forger un MAC pour n'importe quel message
- Forger un MAC pour un message M choisi
- Forger un MAC pour un message M non choisi
 Attaque de plus
 - Distinguer un MAC d'une sortie aléatoire

Attaquant de plus en plus fort!

Sécurité maximale

en plus simple •

(MAC : Sécurité)

Sans connaître K, A peut-il distinguer MAC_K et $F_{\$}$?

Notion d'indistinguabilité

MAC : Sécurité

• Probabilité minimale qu'un adversaire produise une contrefaçon : 1/2^t

MAC : Sécurité

Probabilité minimale qu'un adversaire produise une contrefaçon : 1/2^t

Alice

Probabilité de forger un MAC doit être proche de o!

Bob

MACs part 1 Basés sur une primitive de chiffrement par bloc

Cryptographie - Louiza Khati

20

MAC : Exemples

- CBC-MAC
 - Basé sur le chiffrement CBC sans IV
- EMAC
 - CBC-MAC surchiffré
 - Utilisations de deux clés : deux clés dérivées de la même clé maitresse
 - Prouvé sûr pour des messages de tailles variables sous des hypothèses raisonnables
- HMAC
 - Très utilisé!
 - Utilise une fonction de hachage
 - Prouvé sûr pour des messages de tailles variables sous des hypothèses raisonnables

MAC : CBC-MAC

- CBC
 - Pas d'IV
 - T = C_m
 - Valeurs C_i non publiques
 - o<i<m

MAC : CBC-MAC

- CBC
 - Pas d'IV
 - $-T = C_m$
 - Valeurs C_i non publiques
 - o<i<m

T = C_m et dépend de tous les blocs

CBC-MAC : IV

- Si présence d'un IV
 - T = (IV, v)

- Possibilité d'utiliser l'IV pour forger
 - Si l'attaquant possède (M,(IV,v)) avec $M = M_1$ (message composé d'un bloc)
 - Contrefaçon (M*,T*) tel que IV' = M_1 + IV+ M'_1 , M*= M_1 , T* = (IV',v)

CBC-MAC : Pas d'IV

Pas d'IV dans le cadre de CBC-MAC!

MAC : CBC-MAC

- CBC
 - Pas d'IV
 - T = C_m
 - Valeurs C_i non publiques
 - o<i<m

Sécurité?

MAC : CBC-MAC

Message $M = M_1 || M_2$ Tag T

Message $M' = M'_1 || M'_2 || M'_3$ Tag T'

Message
$$M^* = M_1 || M_2 || T + M'_1 || M'_2 || M'_3$$

Tag $T^* = T'$

MAC : CBC-MAC

Message $M^* = M_1 || M_2 || T + M'_1 || M'_2 || M'_3$ Tag $T^* = T'$ MAC : CBC-MAC

- Pas d'IV
- CBC-MAC sûr pour des messages de taille fixe seulement

Message $M^* = M_1 || M_2 || T + M'_1 || M'_2 || M'_3$ Tag $T^* = T'$

MAC : EMAC

- CBC-MAC surchiffré sûr pour des messages de taille variable.
 - Sécurité prouvée : q << 2^{n/2}
 - Attaque pour $q = 2^{n/2}$

Fonctions de hachage

Fonction de hachage

• Une fonction de hachage H est une fonction :

$$H : \{0,1\}^* --> \{0,1\}^n$$
 $M --> H(M)$

M est un message de taille quelconque

H(M) est appelé « hash », « haché » ou encore « empreinte » de taille n.

Fonction de hachage : Propriétés

- Pas de clé
- Pas d'algorithme inverse
- Rapidité du traitement des données
- Répartition des images sur l'ensemble de sortie
- Compression des données

Fonction de hachage

 Une fonction de hachage cryptographique est une fonction de hachage qui compresse de manière sécurisée une entrée de longueur arbitraire et une sortie de taille fixe.

Fonction de hachage : Utilisations

- MACs (dans la suite)
- Stockage de mots de passe
 - Quelle propriété intéressante des fonctions de hachage?
- Générateur d'aléa
- Signature (dans la suite)
- Dérivation de clé
 - Quelle propriété intéressante des fonctions de hachage ?

Fonctions de hachage

- Se comporte comme un « oracle aléatoire »
 - «Comme une fonction aléatoire »
- Pas de clé utilisée --> la fonction est totalement publique
- Propriétés spécifiques aux fonctions de hachage :
 - Résistance en collisions
 - Résistance en préimages
 - Résistance en seconde préimage

Propriété de sécurité : préimage

• Etant donné $h \in \{0,1\}^n$, trouver M tel que H(M) = h

Propriété de sécurité : préimage

■ Etant donné $h \in \{0,1\}^n$, trouver M tel que H(M) = h

Complexité attaque générique : de l'ordre de 2ⁿ

Propriété de sécurité : préimage

- Entrée h
- Meilleure attaque générique : recherche exhaustive
- Probabilité de trouver une préimage : 1/2ⁿ
- Calculer H(M) pour des messages aléatoires
- Après 2ⁿ messages on s'attend à trouver M tel que H(M) = h
- Complexité recherche probabiliste : O(2ⁿ)

Propriété de sécurité : seconde préimage

■ Etant donné $M \in \{0,1\}^*$, trouver $M' \neq M$ tel que H(M) = H(M')

Propriété de sécurité : seconde préimage

■ Etant donné $M \in \{0,1\}^*$, trouver $M' \neq M$ tel que H(M) = H(M')

Complexité attaque générique : de l'ordre de 2ⁿ

Propriété de sécurité : collisions

Trouver M' ≠ M tel que H(M) = H(M')

- Complexité attaque générique : de l'ordre de 2^{n/2}
 - Paradoxe des anniversaires

Fonction de hachage : Sécurité

- Cryptanalyse:
 - Trouver une attaque plus efficace qu'une attaque générique
 - 2^{n/2} calculs de hachés pour les collisions
 - 2ⁿ calculs pour les (secondes) préimages
- En pratique : la résistance aux collisions est la plus difficile à obtenir
- La taille de la sortie est déterminante!
 - Recommandation guide crypto ANSSI : n ≥ 200