2.5Zadania

2.5.1 Sprawdzić, że operacja przeciwobrazu zbioru przez funkcję zachowuje podstawowe operacje mnogościowe. Zauważyć, że

$$f\left[\bigcup_{n} A_{n}\right] = \bigcup_{n} f[A_{n}],$$

dla dowolnych zbiorów A_n z dziedziny funkcji f. Sprawdzić, że inkluzja

$$f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2]$$

może być właściwa.

- **2.5.2** Niech $f_n:X\to\mathbb{R}$ będzie ciągiem funkcji mierzalnych względem σ -ciała Σ . Sprawdzić, że następujące zbiory należą do Σ :
- (i) zbiór x, dla których ciąg $f_n(x)$ jest rosnący;
- (ii) zbiór x, dla których $f_n(x) < 2$ dla wszystkich n;
- (iii) zbiór x, dla których $f_n(x) < 2$ dla prawie wszystkich n;
- (iv) zbiór x, dla których $f_n(x) < 2$ dla nieskończenie wielu n;
- (v) zbiór x, dla których $\sup_n f_n(x) < 2$;
- (vi) zbiór x, dla których $\sup_n f_n(x) \leq 2$;
- (vii) zbiór x, dla których $f_n(x)$ jest zbieżny;
- (viii) zbiór x, dla których $\limsup f_n(x) > \liminf f_n(x)$.
- 2.5.3 Wykazać, że suma zbieżnego szeregu funkcji mierzalnych jest mierzalna.
- **2.5.4** Niech $f: \mathbb{R} \to \mathbb{R}$ będzie **dowolną** funkcją. Niech $F_{\varepsilon} = \{x \in \mathbb{R} : osc_x(f) \geq \varepsilon\},$ gdzie $osc_x(f) \ge \varepsilon$ oznacza, że dla każdego $\delta > 0$ istnieją $x', x'' \in (x - \delta, x + \delta)$ takie że $|f(x') - f(x'')| \ge \varepsilon.$

Sprawdzić, że zbiór F_{ε} jest domknięty. Wywnioskować stąd, że zbiór punktów ciągłości funkcji jest borelowski.

- **2.5.5** Niech dla każdego t z pewnego zbioru T dana będzie funkcja ciągła $f_t: \mathbb{R} \to \mathbb{R}$. Rozważmy funkcję $h = \sup_{t \in T} f_t$. Wykazać, że h jest funkcją borelowską (nawet jeśli T jest nieprzeliczalny). W tym celu rozważyć zbiór postaci $\{x:h(x)>a\}$.
- **2.5.6** Sprawdzić, że każdą funkcję prostą, mierzalną względem σ -ciała $\Sigma \subseteq P(X)$ można zapisać w postaci
- (i) $\sum_{i \leq n} a_i \chi_{A_i}$, gdzie $A_i \in \Sigma$, $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n$, oraz
- (ii) $\sum_{i \leq n} b_i \chi_{B_i}$, gdzie $B_i \in \Sigma$, a B_1, \ldots, B_n są parami rozłączne.

Jakie warunki trzeba dopisać, aby takie przedstawienia były jednoznaczne?

- 2.5.7 Sprawdzić, że rodzina funkcji prostych jest zamknieta na kombinacje liniowe, branie modułu i mnożenie.
- **2.5.8** Niech $f: \mathbb{R} \to \mathbb{R}$ spełnia warunek Lipschitza, tzn. $|f(x) f(y)| \leq L|x-y|$ dla pewnej stałej L. Pokazać, że f[A] jest miary Lebesgue'a zero dla każdego A miary zero.
- 2.5.9 Wywnioskować z poprzedniego zadania, że obraz zbioru mierzalnego przez funkcję spełniającą warunek Lipschitza jest mierzalny.

WSKAZÓWKA: f[F] jest zwarty gdy f jest ciągła i $F \subseteq \mathbb{R}$ jest zwarty; zastosować Wniosek 1.6.3.

- 2.5.10 Wykazać, że w zadaniach 8 i 9 wystarczy zakładać, że funkcja f spełnia warunek Lipschitza lokalnie, na każdym odcinku postaci [-n, n], a więc w szczególności gdy f ma ciągłą pochodną.
- **2.5.11** Zauważyć, że dowolna funkcja niemalejąca $f: \mathbb{R} \to \mathbb{R}$ jest borelowska.
- **2.5.12** Skonstruować niemalejącą funkcję ciągłą $g:[0,1] \rightarrow [0,1]$, taką że g[C] =[0,1], gdzie $C \subseteq [0,1]$ jest zbiorem Cantora.

WKAZÓWKA: niech g(x) = 1/2 dla $x \in (1/3, 2/3)$; g(x) = 1/4 dla $x \in (1/9, 2/9)$ itd.

- 2.5.13 Stosując funkcję g z poprzedniego zadania zauważyć, że obraz zbioru mierzalnego przez funkcję ciągłą nie musi być mierzalny oraz że przeciwobraz zbioru mierzalnego przez funkcję ciągłą nie musi być mierzalny.
- **2.5.14** Zauważyć, że jeśli $\mu(X) < \infty$, a $f: X \to \mathbb{R}$ jest funkcją mierzalną, to dla każdego $\varepsilon > 0$ istnieje zbiór A, taki że $\mu(A) < \varepsilon$ i f jest ograniczona na $X \setminus A$.
- **2.5.15** Niech $|f_n| \leq M$, gdzie $f_n \stackrel{\mu}{\longrightarrow} f$. Sprawdzić, że $|f| \leq M$ prawie wszędzie.
- **2.5.16** Niech f_n będzie niemalejącym ciągiem funkcji mierzalnych, zbieżnych do fwedług miary. Udowodnić, że wtedy $f_n \to f$ prawie wszędzie.
- **2.5.17** Sprawdzić, że jeśli $f_n \stackrel{\mu}{\longrightarrow} f$ i $g_n \stackrel{\mu}{\longrightarrow} g$ to $f_n + g_n \stackrel{\mu}{\longrightarrow} f + g$. Pokazać, że $f_n g_n \xrightarrow{\mu} fg$ przy dodatkowym założeniu, że f_n i g_n są wspólnie ograniczone przez stała.
- **2.5.18** Niech μ będzie miarą skończoną. Wykazać, że jeśli $f_n \stackrel{\mu}{\longrightarrow} f$ oraz $f(x) \neq 0$ dla każdego x, to $1/f_n \xrightarrow{\mu} 1/f$.
- **2.5.19** Niech $\mu(X) < \infty$. Udowodnić, że jeśli $f_n \xrightarrow{\mu} f$ i $g_n \xrightarrow{\mu} g$ to $f_n g_n \xrightarrow{\mu} f g$ (por. Zadanie 15). Pokazać, że założenie skończoności miary jest istotne.

Problemy 2.6

2.6.A Niech $A \subseteq \mathbb{R}$ będzie zbiorem mierzalnym miary Lebesgue'a skończonej. Zbadać, czy funkcja

$$g: \mathbb{R} \to \mathbb{R}, \quad g(x) = \lambda(A \cap (x+A)),$$

jest ciągła (tutaj λ oznacza miarę Lebesgue'a, x + A oznacza przesunięcie zbioru).

2.6.B Wykazać, że każda mierzalna w sensie Lebesgue'a funkcja $f: \mathbb{R} \to \mathbb{R}$ jest granicą prawie wszędzie ciągu funkcji ciągłych (f_n) . W istocie można takie f_n wybrać klasy C^{∞} .

Wskazówka: Zacząć od przypadku $f = \chi_A$, gdzie A jest skończoną sumą przedziałów.

2.6.C Wykazać, że nie istnieje ciąg funkcji ciągłych $f_n: \mathbb{R} \to \mathbb{R}$, zbieżny punktowo do funkcji $\chi_{\mathbb{Q}}$ (czyli funkcji charakterystycznej zbioru \mathbb{Q}).

WSKAZÓWKA: I sposób: można przeprowadzić dowód nie wprost, wykorzystując jedynie własność Darboux. II sposób: udowodnić, że granica ciągu funkcji ciągłych musi mieć punkt ciągłości.

2.6.D Niech $f: \mathbb{R} \to \mathbb{R}$ będzie **dowolną** funkcją, spełniającą warunek f(x+y) =f(x) + f(y). Sprawdzić, że wtedy f(x) = ax dla wszystkich $x \in \mathbb{Q}$ (a = f(1)).

Udowodnić, że jeśli funkcja f jest mierzalna to f(x) = ax dla wszystkich $x \in \mathbb{R}$.

2.7 DODATEK: Granice dolne i górne ciągów liczbowych

Niech (a_n) bedzie ciagiem liczb rzeczywistych. Liczbe a nazywamy punktem skupienia ciągu jeśli istnieje podciąg ciągu (a_n) zbieżny do a. Podobnie definiujemy fakt, że ∞ lub $-\infty$ jest punktem skupienia ciągu.

- 2.7.1 Pokazać, że zawsze istnieje najmniejszy punkt skupienia danego ciągu (będący liczbą bądź $-\infty, \infty$). Tę wielkość oznaczamy $\liminf_{n\to\infty} a_n$.
- **2.7.2** Zauważyć, że $\liminf_{n\to\infty}a_n=-\infty$ wtedy i tylko wtedy gdy ciąg (a_n) jest nieograniczony z dołu.
- **2.7.3** Udowodnić, że $a = \liminf_{n \to \infty} a_n$ (gdzie a jest liczbą) wtedy i tylko wtedy gdy dla każdego $\varepsilon>0$ mamy $a_n>a-\varepsilon$ dla prawie wszystkich n i $a_n< a+\varepsilon$ dla nieskończenie wielu n.
- **2.7.4** Udowodnić, że $\liminf_{n\to\infty} a_n = \lim_{n\to\infty} \inf_{k\geq n} a_k$.
- **2.7.5** Sprawdzić, że $\liminf_{n\to\infty} (a_n + b_n) \geqslant \liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n$.
- 2.7.6 Zdefiniować analogiczne pojęcie lim sup i zapisać jego podstawowe własności.
- 2.7.7 Zauważyć, że ciąg jest zbieżny wtedy i tylko wtedy gdy jego granica górna jest równa dolnej i jest liczbą rzeczywistą.
- **2.7.8** $\lim \inf_{n\to\infty} (a_n b_n) = a \lim \sup_{n\to\infty} b_n$ gdy $\lim a_n = a$.