Image Classification In Python

-by Kanishk Varshney _____varskann1993@gmail.com

Agenda

- Image Classification: What, Why and How?
- Dataset Details
- ☐ Tools and Libraries
- Supervised classification
- Demo
- **□** Q/A

WHAT is Image Classification?

Assigning pixels in the image to categories or classes of interest.

WHY Image Classification?

- 1. Automated Image Organization Google Photos, Facebook Tag suggestion
- 2. Image search Myntra Image shopping, etc.
- 3. Face Recognition Phone locks, Login systems
- 4. Healthcare Industry Cancer cell recognition, etc.
- 5. Automobile Industry First steps towards Self Driven Cars

^{*}https://analyticsindiamag.com/8-uses-cases-of-image-recognition-that-we-see-in-our-daily-lives/

^{*}https://indatalabs.com/blog/uses-image-recognition

HOW to do Image Classification?

Image Classification Task can be broadly divided into 4 steps:

- 1. Loading and Preprocessing Data
 - a. Train-Validation-Test Split (60%-20%-20%)
 - b. Data Augmentation, Class balancing, etc.
- 2. Defining Model architecture
 - a. Feature Definition and Extraction
- 3. Training the model
 - a. Loss functions, Weight Update rules, Training iterations, etc.
- 4. Estimation of performance
 - a. Test Prediction
 - b. Benchmarking / KPIs

HOW to do Image Classification?

Dataset: Who's that Pokemon?

Dataset

Kaggle Pokemon Classification Dataset:

https://www.kaggle.com/rounakbanik/pokemon

Randomly picked 10 pokemons - 60%-40% split into train-val:

Horsea, Mankey, Mew, Scyther, Snorlax, Spearow, Tauros, Vaporeon, Venusaur, Vileplume

Data Intro and Visualization

Supervised Classification: SVM

- Maximum Margin Classifier
- Find linearly separable hyperplane - Decision Boundary
 - Soft Margins
- Linear Binary Classifier:
 - Use OvA, OvO combinations

^{*}https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496

Supervised Classification: SVM - Kernels

- · Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

• Linear Kernel: K(x, xi) = sum(x * xi)

Polynomial Kernel: K(x,xi) = 1 + sum(x * xi)^d

Radial Kernel: $K(x,xi) = \exp(-gamma * sum((x - xi^2)))$

The kernel defines the similarity or a distance measure between new data and the support vectors.

*https://towardsdatascience.com/support-vector-machines-a-brief-overview-37e018ae310f

Supervised Classification: SVM

Histogram of Oriented Gradients (HOG) features:

Dark (low) to Light(high) pixel -> Positive gradient

20 x 100

50

Horizontal Gradient: 100 - 20 = 80 Vertical Gradient: 110 - 50 = 60

Gradient Magnitude = $\sqrt{(80)^2 + (60)^2}$ = 100

Gradient Angle = $tan^{-1}(60/80) = 36.86^{\circ}$

64 vectors into 9 bins (standard from HoG paper)

^{*}https://medium.com/analytics-vidhya/a-take-on-h-o-g-feature-descriptor-e839ebba1e52

SVM Demo

Convolutional Neural Networks

The convolutional neural network (CNN) is a class of **deep learning neural networks**.

^{*}https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/

Convolutional Neural Networks: Continued

Feature Engineering part is automated (What part, not how)

^{*}https://towardsdatascience.com/convolutional-neural-networks-for-beginners-practical-guide-with-python-and-keras-dc688ea90dca

Convolutional Neural Networks: Continued

Convolutions

1x1	1 x 0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

ReLU: f(x) = max(0, x).

 Activation function to introduce non-linearity

CNN Demo

Image Processing In Python

- Object Detection
- Image Segmentation
- Clustering Unsupervised

Adios Pythonistas!!