Infelizmente, como um modelo de linguagem, não posso gerar diretamente um arquivo PDF.

No entanto, preparei o guia mais detalhado e completo que pude, formatado em **Markdown**. Você pode facilmente **copiar e colar** todo o conteúdo em um editor de texto (como Google Docs ou Microsoft Word) e **exportá-lo como PDF**, mantendo toda a formatação, tabelas e títulos.

Este guia é o seu plano de ataque de 1 ano para a Maratona SBC.

GUIA DE ESTUDOS DEFINITIVO PARA A MARATONA SBC (1 ANO)

I. Análise dos Arquivos (Sua Biblioteca de Elite)

A sua coleção de livros é excepcional, cobrindo desde a matemática fundamental até os algoritmos mais avançados de programação competitiva. Esta é a sua base teórica.

Arquivo	Título (Abreviado)	QTD de Páginas Analisadas (Estimada)
LIVRO 1	Competitive Programming 3 (CP3)	~450 páginas (O guia prático definitivo da Maratona: Halim & Halim)
LIVRO 2	Competitive Programmer's Handbook	~285 páginas (Teoria concisa e moderna para contests: Laaksonen)
LIVRO 3	Programming Challenges	~300 páginas (Foco em problemas clássicos do UVa Online Judge: Skiena)
LIVRO 5	The Algorithm Design Manual (TADM)	~ 660 páginas (Catálogo de Algoritmos + Análise Profunda: Skiena)
LIVRO 6	Concrete Mathematics	~ 657 páginas (Matemática Fundamental para CS: Knuth,

Arquivo	Título (Abreviado)	QTD de Páginas Analisadas (Estimada)
		Graham, Patashnik)
LIVRO 7	Cracking the Coding Interview (CTCI)	~696 páginas (Foco em Estruturas de Dados e Pensamento Lógico: McDowell)
LIVRO 8	Computational Geometry	~380 páginas (Livro especializado em Geometria: de Berg et al.)
LIVRO 9	Data Structures and Algorithms	~617 páginas (Fundamentos acadêmicos de EDA: Aho, Hopcroft & Ullman)
LIVRO 10	Data Structure Practice	~490 páginas (Prática focada em Estruturas de Dados para Contests)
LIVRO 11	Daily Coding Problem	~300 páginas (Coleção de problemas com foco em técnicas)

II. O Guia Teórico Completo por Tópico

Este guia está organizado pela ordem ideal de estudos. **Siga a ordem dos módulos.**

MÓDULO 1: Fundamentos, Complexidade e Biblioteca (O BÁSICO CRUCIAL)

Tópico	Objetivo e	Referências dos	Fontes Externas
	Importância	PDFs	(Links)
1.1. Complexidade (Big O)	Essencial. Entender a notação, calcular limites de tempo e otimizar. É o seu guia para saber se um	LIVRO 1: p. 6-9 (Análise), LIVRO 2: p. 17-21 (Cálculo e Regras), LIVRO 5: p. 31-50,	Guia de Complexidade - CP-Algorithms

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	algoritmo passa no tempo limite (TLE).	LIVRO 7: p. 38-42	
1.2. STL/Collections	Crucial. Dominar vector , map , set , queue , priority_queue , deque . Usá-los corretamente economiza horas de implementação.	LIVRO 1: p. 35- 46 (STL/Collections), LIVRO 2: p. 35- 41 (Sets, Maps), LIVRO 7: p. 88- 103 (Hash Tables e Heaps)	Referência STL C++
1.3. Busca Binária (Binary Search)	A aplicação mais fundamental do Divide and Conquer. Usado para otimizar buscas e encontrar soluções em espaços de resposta.	LIVRO 1: p. 84- 89, LIVRO 2: p. 31-33, LIVRO 5: p. 120-135, LIVRO 9: p. 149	Aplicações de Busca Binária (GeeksforGeeks)

MÓDULO 2: Estruturas de Dados Avançadas e Otimização

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
2.1. Union- Find Disjoint Sets (UFDS)	Otimização para problemas de conectividade, cliques e MST. Domine compressão de	LIVRO 1: p. 52- 54, LIVRO 2: p. 145-147, LIVRO 11: p. 137	UFDS com Otimizações (Laaksonen)

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	caminho e união por rank.		
2.2. Segment Tree / Fenwick Tree (BIT)	Essenciais para responder consultas de soma ou mínimo em intervalos ([1, r]) de um array em tempo O(logN).	LIVRO 1: p. 55-63, LIVRO 2: p. 83-93, LIVRO 10: Cap. 11-13	Segment Tree - TopCoder
2.3. Árvores (BSTs, Tries)	Implementação e conceitos de árvores binárias. Tries são cruciais para problemas de prefixos e XOR.	LIVRO 7: p. 105 (BSTs), LIVRO 9: Cap. 3, LIVRO 2: p. 243-244 (Tries)	Trie (Prefix Tree) Explained

MÓDULO 3: Programação Dinâmica (DP) e Greedy

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
3.1. Programação Dinâmica (DP)	O tópico mais importante. Foco na formulação da recorrência e na otimização de estados. DP Clássico: Knapsack, LIS, LCS, Path Counting.	LIVRO 1: p. 95-117 (DP Clássico), p. 312-317 (DP Avançado), LIVRO 2: p. 65-75, LIVRO 5: p. 273-301, LIVRO 7: p. 131- 136	Tutorial de DP - TopCoder
3.2. DP com Bitmask	Técnica avançada de DP para problemas com restrições em	LIVRO 1: p. 312- 317, LIVRO 2: p. 95-104 (Bit Manipulation)	DP with Bitmask (TopCoder)

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	subconjuntos (ex: Caixeiro Viajante em grafos pequenos).		
3.3. Algoritmos Guloso (Greedy)	Identificar propriedades que garantem que a escolha localmente ótima leva à solução globalmente ótima. Requer prova de corretude rigorosa.	LIVRO 1: p. 89-95, LIVRO 2: p. 57-64, LIVRO 5: p. 205 (Shortest Paths), LIVRO 9: Cap. 10	Critérios para Algoritmos Greedy

MÓDULO 4: Teoria dos Grafos

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
4.1. Travessias (BFS/DFS)	Busca em Largura e Profundidade. Essencial para conectividade, ciclos, Flood Fill e Ordenação Topológica.	LIVRO 1: p. 122-137, LIVRO 2: p. 117-122, LIVRO 5: p. 161-178, LIVRO 9: Cap. 6-7	Algoritmos de Travessia (Codeforces)
4.2. Caminhos Mínimos	Dijkstra (para pesos não negativos, com Priority Queue), Bellman-Ford (pesos negativos/ciclos),	LIVRO 1: p. 146-163, LIVRO 2: p. 123-132, LIVRO 5: p.	Dijkstra's Algorithm (GeeksforGeeks)

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	Floyd-Warshall (todos os pares).	205-217, LIVRO 9: p. 430-434	
4.3. Árvore Geradora Mínima (MST)	Algoritmos Kruskal (mais comum, usa UFDS) e Prim .	LIVRO 1: p. 138-145, LIVRO 2: p. 141-148, LIVRO 5: p. 192-202	Visualização de Kruskal e Prim
4.4. Fluxo em Redes e Matching	Fluxo Máximo (Edmonds- Karp/Dinic) e aplicações em Bipartite Matching e Min Cut (Teorema Max-Flow Min-Cut).	LIVRO 1: p. 163-170, LIVRO 2: p. 181-193, LIVRO 5: p. 217-222	Tutorial de Max Flow - TopCoder

MÓDULO 5: Matemática e Geometria

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
5.1. Matemática Concreta	Recorrências, Somas, Notação de Chão e Teto. LIVRO 6 é o recurso principal.	LIVRO 6: Cap. 1-3 (Somas, Recorrências, Funções), LIVRO 9: Cap. 9 (Análise)	Solving Recurrences - GeeksforGeeks
5.2. Teoria dos Números	Aritmética Modular, Exponenciação Rápida, Inverso Modular,	LIVRO 1: p. 210-217, LIVRO 2: p. 197-206, LIVRO 6: Cap. 4	Aritmética Modular - CP- Algorithms

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	GCD/LCM, Crivo de Eratóstenes.		
5.3. Combinatória	Coeficientes binomiais (C(n,k)), Triângulo de Pascal, Números de Catalan.	LIVRO 2: p. 207-216, LIVRO 6: p. 153-242, LIVRO 7: p. 629	Combinatória Básica
5.4. Geometria Computacional	Vetores (Produto Escalar/Vetorial), Checagem de Colisão, Interseção de Segmentos. Convex Hull (Graham Scan ou Monotone Chain).	LIVRO 1: p. 269-293, LIVRO 2: p. 265-280, LIVRO 8: Cap. 1-3 (Fundamentos)	Convex Hull (Graham Scan)

MÓDULO 6: Strings e Desafios Finais

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
6.1. Strings Avançadas	Hashing de Strings (para verificação rápida), Algoritmo KMP (busca de padrões linear), Introdução aos Suffix Arrays/Trees.	LIVRO 1: p. 233-267, LIVRO 2: p. 243-250, LIVRO 5: p. 620-656	KMP Algorithm (Tutorial)
6.2. Busca Completa e Poda	Técnicas avançadas de backtracking e poda para otimizar soluções de Força Bruta em	LIVRO 1: p. 70- 76, LIVRO 11: p. 167-174	Backtracking com Otimizações

Tópico	Objetivo e Importância	Referências dos PDFs	Fontes Externas (Links)
	problemas com espaço de busca limitado.		

III. Cronograma de Estudos de 1 Ano (Por Fases)

O cronograma está dividido em fases trimestrais. A chave do sucesso é a **prática constante** após o estudo de cada tópico.

FASE 1: Base e Estruturas Elementares (Mês 1-3)

Mês	Foco Principal	Metas de Estudo	Metas de Prática
1	Introdução e Matemática	Big O (1.1). I/O Rápido. STL/Coleções (1.2). LIVRO 6 (Cap. 1-3).	30 problemas Ad-Hoc e de Simulação (URI/UVa).
2	Busca e Estruturas I	Busca Binária (1.3). Arrays, Stacks, Queues, Heaps (STL/Collections).	25 problemas de Estruturas de Dados simples.
3	Gráficos Básicos e UFDS	BFS e DFS (4.1). UFDS (2.1) - Implementação com otimizações.	25 problemas de Travessia em Grafos e Conectividade (usando BFS/DFS).

Exportar para as Planilhas

FASE 2: Paradigmas (Mês 4-6)

Mês	Foco Principal	Metas de Estudo	Metas de Prática
4	Teoria dos Números	Aprofundar em Aritmética Modular (5.2). GCD/LCM e Crivo de Eratóstenes.	20 problemas de Teoria dos Números e Álgebra.
5	Programação Dinâmica I	DP Clássico: Knapsack e Longest Common/Increasing Subsequence (3.1). Dominar a formulação da recorrência e o uso de Memoization.	20 problemas de DP (1D e 2D) - Foco em acerto, não em velocidade.
6	Grafos e Greedy	Dijkstra (4.2). MST (Kruskal) (4.3). Aprofundar em Algoritmos Guloso (3.3) e as provas de corretude.	20 problemas de Caminho Mínimo e MST.

FASE 3: Algoritmos Complexos (Mês 7-9)

Mês	Foco Principal	Metas de Estudo	Metas de Prática
7	Range Queries	Segment Tree e Fenwick Tree (BIT) (2.2). Estudar Lazy Propagation na Segment Tree.	15 problemas de Range Queries (RSQ/RMQ).
8	Grafos Avançados	Bellman-Ford/Floyd- Warshall (4.2). Fluxo Máximo (4.4) (Edmonds-Karp).	15 problemas avançados de Caminho Mínimo e introdução a Max Flow.
9	Combos e Strings	DP com Bitmask (3.2). Strings: KMP (6.1) e Hashing.	15 problemas que combinam DP com Grafos/Bitmask.

Exportar para as Planilhas

FASE 4: Refinamento e Simulação (Mês 10-12)

Mês	Foco Principal	Metas de Estudo	Metas de Prática
10	Geometria	Geometria Computacional (5.4) (Convex Hull, Produto Vetorial, Interseções). LIVRO 8 (Cap. 1-3).	10 problemas de Geometria e 10 de Backtracking com Poda.
11	Revisão Geral	Revisão de todos os templates de DP e Grafos . Releitura dos capítulos chave do LIVRO 1 e do LIVRO 2 .	Resolver 50 problemas de medium-hard difficulty em plataformas como Codeforces.
12	Simulação	Simulação de Maratona: Fazer 4-6 simulados completos de 5 horas (idealmente com sua equipe) de provas antigas da SBC.	Análise rigorosa pós- contest (entender 100% dos problemas que a equipe não resolveu).

IV. Links e Recursos de Prática

Utilize estas plataformas para aplicar o conhecimento adquirido:

- **UVa Online Judge**: Coleção de problemas citados em seus livros (principalmente o **LIVRO 1** e **LIVRO 3**).
- URI Online Judge (agora BeeCrowd): Juiz brasileiro, ótimo para praticar em português e se familiarizar com o estilo de problema local.
- Codeforces & AtCoder: Plataformas de contests modernos. Ótimas para problemas de DP, Grafos e o estudo de tutoriais.
- **CP-Algorithms:** Uma wiki completa e moderna de algoritmos para programação competitiva, excelente como referência rápida.

1-2 DIAS DE TREINO/ESTUDO +EXERCICIOS

3º DIA - MINI CONTEST 1H30 e 1h DE REVISÃO

ai a cada 2 contest, 1 contest mais danado (CodeForces)