

Targeted register analyses

PhD short course

An Introduction to SuperLearner

Andrew Mertens

University of California, Berkeley, Division of Biostatistics

1

Figure 1: The Causal Roadmap

Better (more precise) answers to causal (actionable) questions with accurate quantification of uncertainty (signal from noise)

Targeted Learning Schematic

Outcome Mechanism Estimated using SuperLearner and TMLE

Superlearner: the algorithm steps

- 1. Pick the learners
- 2. Split data into cross-validation folds
- Fit learners on cross-validation folds.
- 4. Obtain predictions from each fitted model within folds
- 5. Use a metalearner to combine predictions across learners
- 6. Repeat for the full dataset
- 7. Predict on new data

Superlearner is a type of "ensemble machine learning"

 The word "ensemble" from the arts. It means a collection of musicians or performers.

Superlearner is a type of "ensemble machine learning"

• Ensemble strengths:

7

Superlearner is a type of "ensemble machine learning"

- Ensemble strengths:
 - Diversity

Superlearner is a type of "ensemble machine learning"

- Ensemble strengths:
 - Diversity
 - Redundancy

Superlearner is a type of "ensemble machine learning"

- Ensemble strengths:
 - Diversity
 - Redundancy
 - Synergy

W. bancrofti Bm14 Luminex Response

Model / algorithm

CV MSE

_

Mean

1.67

10⁵

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

10³

10¹

Super Learning: Building a winning team!

W. bancrofti Bm14 Luminex Response

Superlearner: the algorithm steps

- 1. Pick the learners
- 2. Split data into cross-validation folds
- 3. Fit learners on cross-validation folds
- 4. Obtain predictions from each fitted model within folds
- 5. Use a metalearner to combine predictions across learners
- 6. Fit base learners on the full dataset
- Use metalearner fit to weight base learners and get SuperLearner prediction
- 8. Predict on new data

- Better to pick a variety of different learners
- Can be guided by what's normally used in your field + flexible ML algorithms
- You we learn more about individual algorithms tomorrow
- The only downside to using more learners is computation time

Step 2: Split data into cross-validation folds

Example data

- ID variable identifying observation, individual or cluster
- Set of X predictors
- Y outcome

Simulated data set					
id	x1	x2	x3	x4	Υ
1.000	2.287	1.000	1.000	1.385	5.270
2.000	-1.197	0.000	0.000	0.000	-1.197
3.000	-0.694	0.000	0.000	0.000	-0.694
4.000	-0.412	0.000	1.000	-0.541	-0.928
5.000	-0.971	0.000	0.000	0.000	-0.971
6.000	-0.947	0.000	1.000	-0.160	-1.107

Step 2: Split data into cross-validation folds

Create indices for each of the K folds of size N/K

https://www.khstats.com/blog/sl/superlearning

V-Fold Cross Validation

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10

Step 3: Fit learners on first cross-validation folds

Fit model for each learner on the training data.

Here, in the first CV fold, data fold 10 is held out and 3 learners are fit to folds 1-9.

Step 4: Obtain predictions from each fitted model within folds Get the predictions for each held out fold.

$$\widehat{Y_1}$$
 \cong \hookrightarrow predict(fit_1a, newdata = \cong)

 $\widehat{Y_2}$ \cong \hookrightarrow predict(fit_1b, newdata = \cong)

 $\widehat{Y_3}$ \cong \hookrightarrow predict(fit_1c, newdata = \cong)

Step 4: Obtain predictions from each fitted model within folds

Repeat for the entire dataset, so now there are outcome predictions for every row of data

Step 5: Use a metalearner to combine predictions across learners

- This is a function combining predictions across learners to minimize the loss function.
 - Example: CV-MSE
- Could use something as simple as a linear regression, predicting the true outcome from the set of learner-specific prediction.
 - Coefficients become the weights of each algorithm
- Non-negative least squares is the R package default, but variety of options.

Step 5: Use a metalearner to combine predictions across learners

 You can compare the risk of different learners and the weights chosen by the metalearners using the SuperLearner R package

```
Call:
SuperLearner(Y = obs$y, X = x_df, family = gaussian(),
SL.library = c("SL.ranger",
    "SL.glmnet", "SL.earth"))
```

	Risk (MSE)	Coef (weight)
SL.ranger_All	0.013672503	0.1606329
SL.glmnet_All	0.097257031	0
SL.earth_All	0.003181357	0.8393671

Step 6: Fit base learners on the full dataset and get predictions

- A. Get a single model fit (not cross-validated) for each learner on the full data
- B. Get full-data predictions

Step 7: Use metalearner fit to weight base learners and get SuperLearner prediction

Combine the learner-specific predictions with the estimated weights to get a single predicted outcome per observation

$$\widehat{Y_{SL}} = \beta_1 \widehat{Y_1} + \beta_2 \widehat{Y_2} + \beta_3 \widehat{Y_3}$$

$$\leftarrow \text{predict(SL_fit, newdata =)}$$

Step 8: (Optional) Evaluate SuperLearner fit

- Repeat steps 5 and 6 on any new data
- This is how to use SuperLearner as a clinical screening/prediction tool

Results: removing bias compared to regression approach

GLM did not learn the correct outcome mechanism, so its estimate is very biased

SuperLearner does a better job of estimating the outcome mechanism, but does not allow valid inference

Questions?