Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Manuel Kunkel, Christopher Schwan

1. Übung zur Klassischen Mechanik

16. Oktober 2023

Newton'sche Bewegungsgleichungen

1.1 Eindimensionaler harmonischer Oszillator

Betrachten Sie den harmonischen Oszillator in einer Dimension, d. h. das Anfangswertproblem

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}(t) = F(x(t)) = -kx(t)$$
(1a)

$$x(t_0) = x_0 \in \mathbf{R} \tag{1b}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t_0) = v_0 \in \mathbf{R} \tag{1c}$$

- 1. Zeigen Sie, daß wenn eine komplexwertige Funktion $z: I \to \mathbb{C}$ mit $t_0 \in I \subseteq \mathbb{R}$ die Differentialgleichung (1a) löst, ihr Realteil $x(t) = \operatorname{Re} z(t)$ zur Lösung des reellen Anfangswertproblems (1) benutzt werden kann.
- 2. Was ist die allgemeinste Form der rechten Seite der Differentialgleichung (1a), für die der Realteil einer komplexen Lösung selbst eine Lösung ist? Geben Sie Gegenbeispiele an.
- 3. Machen Sie den üblichen Exponentialansatz für lineare Differentialgleichungen mit konstanten Koeffizienten

$$x(t) = \alpha e^{\lambda t}, \ (\alpha, \lambda \in \mathbf{C})$$
 (2)

und zeigen Sie, daß alle vier sich daraus ergebenden Lösungen der Differentialgleichung (1a)

$$z_1(t) = \alpha_{1,+} e^{-i\omega t} + \alpha_{1,-} e^{i\omega t}$$
 (3a)

$$x_2(t) = \alpha_{2,s} \sin(\omega t) + \alpha_{2,c} \cos(\omega t) \tag{3b}$$

$$x_3(t) = \alpha_3 \sin(\omega t + \delta_3) \tag{3c}$$

$$x_4(t) = \alpha_4 \cos(\omega t + \delta_4) \tag{3d}$$

mit geeigneten Parametern

$$\alpha_{1,+}, \alpha_{1,-} \in \mathbf{C}, \ \omega, \alpha_{2,s}, \alpha_{2,c}, \alpha_3, \alpha_4, \delta_3, \delta_4 \in \mathbf{R}$$
 (4)

zur gleichen Lösung des reellen Anfangswertproblems (1) führen und geben Sie diese Parameter als Funktionen von m, k, t_0 , x_0 und v_0 an.

1.2 Eindimensionaler harmonischer Oszillator Redux

Betrachten Sie den gedämpften und getriebenen harmonischen Oszillator in einer Dimension mit dem Anfangswertproblem

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}(t) = F(x(t), \dot{x}(t), t) = -kx(t) - 2m\gamma\frac{\mathrm{d}x}{\mathrm{d}t}(t) + F_{\mathrm{ext}}(t)$$
 (5a)

$$x(0) = x_0 \in \mathbf{R} \tag{5b}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t}(0) = v_0 \in \mathbf{R} \tag{5c}$$

1. Lösen sie das Anfangswertproblem (5) zunächst für verschwindende äußere Kraft $F_{\rm ext}\equiv 0$. Machen Sie dazu wieder den üblichen Exponentialansatz

$$x(t) = \alpha e^{\lambda t}, \ (\alpha, \lambda \in \mathbf{C})$$
 (6)

und behandeln Sie auch den Fall $\gamma^2 = k/m$.

2. Lösen sie das Anfangswertproblem (5) für eine harmonische äußere Kraft $F_{\text{ext}}(t) = F_0 \sin(\omega_0 t)$ indem Sie zur soeben gefundenen Lösung der homogenen Differentialgleichung noch eine Partikularlösung mit dem "Ansatz vom Typ der rechten Seite" $x(t) = A \sin(\omega_0 t) + B \cos(\omega_0 t)$ addieren. Auch hier empfiehlt es sich, Kraft und Ansatz zu komplexifizieren:

$$F_{\rm ext}(t) = F_0 \sin(\omega_0 t) \to F_0 e^{-i\omega_0 t}$$
 (7a)

$$x(t) = A\sin(\omega_0 t) \to Ae^{-i\omega_0 t}$$
 (7b)

3. Zeigen Sie anhand der Lösungen, daß die Energie

$$E(t) = \frac{m}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}(t)\right)^2 + \frac{k}{2}x^2(t) \tag{8}$$

für verschwindende Dämpfung $\gamma=0$ und äußere Kraft $F_{\rm ext}\equiv 0$ erhalten ist und diskutieren Sie die Zeitabhängigkeit von E(t) als Funktion von γ im allgemeinen Fall. Berücksichtigen Sie insbesondere eine harmonische äußere Kraft $F_{\rm ext}(t)=F_0\sin(\omega_0 t)$.