DM LM 121

Encadrez bien vos résultats.

A rendre le 8 Novembre.

- 1. Pour quelle(s) valeur(s) de $x \in \mathbb{R}$ les vecteurs $u = \begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $w = \begin{pmatrix} x \\ 1 \\ -1 \end{pmatrix}$ sont-ils libres?
- 2. Soit \mathcal{P} le plan passant par A=(1,2,-1) et engendré par les vecteurs $u=\begin{pmatrix}1\\1\\-1\end{pmatrix}$ et $v=\begin{pmatrix}2\\-3\\-1\end{pmatrix}$. Soit \mathcal{D} la droite passant par B=(1,1,1) et de vecteur directeur $w=\begin{pmatrix}1\\2\\1\end{pmatrix}$. Déterminer $\mathcal{P}\cap\mathcal{D}$.
- 3. Trouver u, v et w tels que $\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} u & 3 & 0 \\ v & -1 & -1 \\ w & 1 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 5 & 3 \\ -2 & 8 & 5 \\ -5 & 6 & 5 \end{pmatrix}$
- 4. Résoudre le système

$$\begin{array}{cccccc} x & +2y & +z & =0 \\ 2x & -y & +z & =4 \\ 3x & +y & +2z & =4 \\ 5x & & +3z & =8 \end{array}$$

5. (a) Soit $M=\begin{pmatrix} 3 & -30 \\ 0 & 2 \end{pmatrix}$. Pour $n\in\mathbb{N}^*$, on note $M^n=M.M\ldots M$ (n fois).

Trouver une formule simple pour M^n .

(indication :
$$3^n + 2.3^{n-1} + 2^2.3^{n-2} + \ldots + 2^{n-1}.3 + 2^n = \sum_{i=0}^n 3^{n-i}2^i = 3^n(\sum_{i=0}^n (\frac{2}{3})^i)$$
 et reconnaître alors une série géométrique).

- (b) On considère une population de poules et de renards. Au temps $n \in \mathbb{N}$
 - on a p_n poules et r_n renards. Leur population évolue ainsi : (1) Au temps n+1 on a trois fois plus de poules qu'au temps n ,

mais entre temps chaque renard a mangé 30 poules.

(2) Au temps n+1 on a deux fois plus de renards qu'au temps n. Cela se traduit par les relations :

$$(1) \ p_{n+1} = 3p_n - 30r_n$$

(2)
$$r_{n+1} = 2r_n$$

Initialement il y a 59 poules et 2 renards ($p_0 = 59$ et $r_0 = 2$).

Question : existe-t-il un moment où les renards auront mangé toutes les poules? (dit autrement, existe-t-il un $n\in\mathbb{N}$ tel que $p_n\leq 0$).

indication : considérer la multiplication matricielle $M. \binom{p_n}{r_n}$ et la question précédente.

Pour info :

n=	p_n	r_n
0	59	2
1	117	4
2	231	8
3	453	16
4	879	32