elisempel Et fyrtårn sender ut en roterende 1455trele. Stribn brutur 2 sek per omderny. 2 km A X(t) B lyset treffer en Wippergy Zhan borte. Hor fort hereger hystraten seg bortover klippenessen nir Wholen B miller Wypergye og hysstelle a 6? La &(t) betegne violates mollom hysstriles og Injen for fyrtemet til A. VI order i finne x'(t) noir 0= 1. VI vet at strates brule 2 selv per omdreshing, og vi vet andremyny's histiflet = straining andrewing stretuning = IT radional seh. Altsi d'(t) = ATT (rod/sel). Finner first summer honger mellon &(t) of x(t).

Q

AHSi

Add
$$t_{\text{an}} \alpha(t) = \frac{x(t)}{2}$$

$$\left(\tan \alpha(t)\right)' = \left(\frac{x(t)}{2}\right)'$$

$$\frac{1}{\cos^2 \alpha(t)} = \frac{x'(t)}{2}$$

far

$$y'(t) = \frac{2\alpha'(t)}{\cos^2\alpha(t)}$$

$$A(H) = \overline{11} - \overline{\frac{1}{2}} - \overline{\frac{1}{6}} = \frac{6\overline{1} - 3\overline{11} - \overline{1}}{6} = \frac{2\overline{1}}{6}$$

$$= \overline{\frac{1}{3}}.$$

Detk gyr oss
$$\chi'(t) = \frac{2\alpha'(t)}{\cos^2(\frac{\pi}{3})} = \frac{2\pi}{4} = \frac{2\pi}{4} = 8\pi$$

$$\cos^2(\frac{\pi}{3}) = (\frac{1}{2})^2 = \frac{2\pi}{4} = 8\pi$$

$$\approx 25.1$$

Hun vot is on x(t) og y(t)? $x(t)^{2} + y(t)^{2} = 5^{2}$ $x(t)^{2} + y(t)^{2} = 25.$ Deriverer pri begge siler (nhp. variabel t) [xH2+y(+12)) = [25) 2x(t)x'(t) + 2y(t)y'(t) = 0Luser who. y'(t) os for 2y(t)y'(t) = -2x(t)x'(t)y'(t) = -x(t)x'(t)

Vi ligener ingen av funksjonene elisplisits men i vær situasjon har vi x(t)=4m og x'(t)=2m/sNår x(t)=4 vet vi også far $x(t)^2+y(t)^2=25$ at $y(t)=\sqrt{25-42^2}=\sqrt{25-16}=\sqrt{9}=3$.

No for V $V'(t) = \frac{-4.2}{3} = \frac{-8}{3}$. Svaret er altsi : $|\det V'|$ trebber nedre ende votover med farten 2 m/s og når nedre ende er 4 m fra hungmy, da giv æve enden nedover husvegn med en fart an 4 m 4

Now far vi whyth volumet val

$$\frac{1}{3} (2h - \frac{11}{3} (\frac{hR}{(h^2 - 2hR})^2 h - \frac{11}{3} \frac{h^2R^2}{h^2 - 2hR} h)$$
 $= \frac{17}{3} (h - 2R)$

Althory $V(h) = \frac{17}{3} (h^2 - 2hR)$

Finner min. punkt:

 $V'(h) = \frac{17}{3} (\frac{h^2 - 4hR}{(h - 2R)^2} - \frac{17}{3} (\frac{h^2 - 4hR}{(h - 2R)^2})$
 $V'(h) = 0$
 $h^2 - 4hR = 0$
 $h(h - 4R) = 0$
 $h = 0$ eller $h = 4R$.

 $2R - 4R$
 $V(h)$
 $h = 4R = et$ min. punkt. Detk $yr = \frac{hR}{(h^2 - 2hR)}$
 $V'(h) = \frac{4R^2}{4R^2 - 24R^2} = \frac{4R^2}{18R^2 - 24R} = \frac{4R^2}{18R^2 - 24$

Svar: Kjesten mod hvyde h=4R og grunnflakeradius r=72R er den minste Kjesten som kan omstutte en læde av radius R. Volumet av denne lýglen er $V(4R)=\frac{\pi R^2(4R)^2}{3(4R-2R)}=\frac{\pi R^2(6R)^2}{6R}=\frac{\pi}{3}R^3$.

No. for vi whyth volumet val

$$\frac{1}{3} r^2 h = \frac{11}{3} \left(\frac{hR}{(h^2 - 2hR)^2} \right)^2 h = \frac{11}{3} \frac{h^2 R^2}{h^2 - 2hR} h$$
 $= \frac{17}{3} R^2 h^2$
 $3(h - 2R)$
Althor V(h) = $\frac{17}{3} R^2 h^2$
 $(2R_7 co)$
So toping.

Finner min. punkt:

 $V'(h) = \frac{17}{3} R^2 \left(\frac{h^2 - 4hR}{(h - 2R)^2} \right) = \frac{17}{3} \left(\frac{h^2 - 4hR}{(h - 2R)^2} \right)$
 $V'(h) = 0 \Leftrightarrow h^2 - 4hR = 0$
 $h(h - 4R) = 0$
 $h = 0$ eller $h = 4R$.

 $V'(h) = \frac{2R}{4R^2 - 2hR} = \frac{4R^2}{16R^2 - 2hR} = \frac{4R^2$

Svav: Kjeslen mod hvyde h=4R og grunnflateradius r=72R er den minste kjeglen som kan omslutte en læle av radius R. Volumet av denne løglen er $V(4R)=\frac{\pi R^2(4R)^2}{3(4R-2R)}=\frac{\pi R^2(6R)^2}{6R}=\frac{\pi}{3}R^3$.

Dete or V= 3 r2h = 3 8h2h = 47h3 Volumet Al vannstander ved tideputet t a V(t) = 49 h(t). Daiverer og får V'(t) = 40 3.h(t). h'(t). Lyse whp. h'(t) og fer h'(t) = 25 V'(t) V'(t) = 0.1 on h(t) = 3. Var situasjon er Dette gir $h'(t) = \frac{25 \cdot 0.1}{4\pi \cdot 9} = \frac{2.5}{36\pi} \approx 0.020$ vier vannstanden er 3m, der vannstaden

0,022 m/min. (alts: 2,2 cm/min) ellsempel En kjegleformet tank står med Spissen ned. Huyden til tanken er 5 m, og radion per topper or 2 m. Vann fylles ihn i trade ned on fart ar 0.1 m3 per mithet. 3 5 -Vi ser på tanken ner Vannet stir 3m hoyt, on promye Vannstaden ober ved dette tidspunletot. (Ved Allypools t) La V(t) betegre volumet av vannet. Da vet vi at $V'(t) = 0.1 \text{ m}^3/\text{min}$. La h(t) betegne vannstanden (huyden) ved tidsputet t. Vi stal finne bi(t) nor h(t) = 3. Mai price à fine en forbitelle mellon h(t), V(t), La oss utylde V(t) vha. h(0: hi(t), Vi(t). 5 Box Whythe r who. h. High volum an leggle on riddes it og hegde his DABC og DADE er formlike, si

 $\frac{bC}{AB} = \frac{DE}{AD} \iff \frac{\Gamma}{h} = \frac{2}{5}$

=) r= =h

(7)

7.2 Kobbele hastighoter

elisempel En 5 meter lang stige star lent mot en husvegg.

Vi drar den nedre enden av stigen utover med en fart på 2 m/s, slik at den ævre enden av stigen glir vedover husvegen.

Hover fort glir den øvre enden vedover nær den nedre enden er 4 meter fra husvegen?

Nelter ander er x(t) meter fan husigger ved hilspinkt t.

Ohn ander er y(t) meter over bakken red -u.

Vi Shal finne ut hvor mye y(t) endrer seg når x(t) = 4.

Altso: Vi Shal finne y'(t) når x(t) = 4.

(6)

elisempel En kule med radius R plasseres inni en kjegle. Hva er det minste volumet en slike kjegle kan ha? Volumet av en kjegle Prover a Utylle r ved hjelp av h og R (ludes radio), ship at in fir an volumentarion V(h). Do Trellantene DABC og DADO er formlike, som gir at $\frac{AB}{BC} = \frac{AD}{DD}$ Finner first AD vha. Pytagons: A02+ R2 = (h-R)2 dvs. AD = \((h-R)^2-R2\) = \(h^2-2hR+R^2-R^2\) = 1/h2 - 2hR. $S_{\alpha}^{\circ} \frac{AB}{Bc} = \frac{AD}{DO} \Leftrightarrow \frac{h}{r} = \frac{\Gamma h^2 - 2hR^2}{R}$ $r = \frac{hK}{(h^2 - 2hR)}$

Ner vinkelen mellon khippeveggen og 145strelan er 6, beveger hysstrelan seg mod en hastylet av 25.1 km/s las lelpperson. I at gift ayellikh gjelder: elisempel Bil A er 3 km for lengs X, on lyener 1897 Des vestorer and i histighot 80 km/t Bil Ber 4 km nord for legges X og kjører nordover i hastighet 50 km/t. Er avstanden mellom bibne (i huffigm) volusende elle ontragende, og hvor mye endres notstanden? Z(t)2= 32+52= 9+25= 34. Ved delk tilgulatet t er Z(E)= 134, x1(+) = -80 Pytagons igner giv $z(t)^2 = x(t)^2 + y(t)^2$. Deriverer begge siker og får

elisempel Hva er det største avedet til et reltangel som Kan innshrives i en sirkel med radius r 3.

sidene i reletangelet. I den lik La x og y betegne

trebenter har vi

of Pytagorns' solning gir:

$$\left(\frac{x}{2}\right)^{2} + \left(\frac{x}{2}\right)^{2} = 1^{2}$$

$$\frac{x^2}{4} + \frac{y^2}{4} = r^2$$

X.y = X (4/2-x2), som funkgu Aren't Al relitarylet er Definisjonsnoughe (0,2r). : A(x) = x /4/2-x21

Finner males punlet.

$$A(x) = x \sqrt{4x^{2} - x^{2}}$$

$$A'(x) = \sqrt{4x^{2} - x^{2}} + x \cdot 1 \cdot -2x$$

$$= \sqrt{4x^{2} - x^{2}} - \frac{x^{2}}{\sqrt{4x^{2} - x^{2}}} = \sqrt{4x^{2} - x^{2}} \sqrt{4x^{2} - x^{2}}$$

$$= \sqrt{4x^{2} - x^{2}} - \frac{x^{2}}{\sqrt{4x^{2} - x^{2}}} = \sqrt{4x^{2} - x^{2}} \sqrt{4x^{2} - x^{2}}$$

$$= \frac{4r^2 - x^2 - x^2}{\sqrt{4r^2 - x^2}} = \frac{4r^2 - 2x^2}{\sqrt{4r^2 - x^2}}$$

Lyser
$$A'(x) = 0$$

$$\frac{4^{2}-2x^{2}}{\sqrt{4^{2}-x^{2}}}=0 \quad (\Rightarrow) \quad 4^{2}-2x^{2}=0$$

$$2x^{2}=4$$

$$4r^{2}-4r^{2} = 0$$

$$2x^{2} = 4r^{2}$$

$$x^{2} = 2r^{2}$$

Sw. Oppselft
$$(r)$$
 or starst and,
 $A(r) = r \cdot r = 2r^{2}$.

7.1 Maksimums - og minimumsproblemer
Motivasjon: Vi deal gjerde inn et relitangulært
Hoordan dent vi sette opp gjerdet slik at pet aventet som innestates blir strist mulig?
slike problemer er det lurt a uttylde arealet som
en funksjon f(x) (der x kan betæge en sicklant, f.eles. Vi søker da et mallsimumspunket for funksjonen ("nær er
arealet f(x) starst). The cott gav vi brule on folgende
Setting (6.2.1) Anta at da deriverbare funkcyoner $f: [a_1b] \rightarrow \mathbb{R}$ har at maksimum/minimum $f: [a_1b] \rightarrow \mathbb{R}$ har at maksimum/minimum $f: et$ punkt $c \in (a_1b)$. Da gjelda $f'(e) = 0$.
f(:)

Alts: Muline knowledger for maks. (min. - punkter for f(x) er gift ved punkter c som er slik at f'(c) = 0.

Vi Ital bevege oss fra holmen til hytta: man kan med en fit av 3 km/t og gå med an fat Hillen reiselenbihassen (Nor lenge del man ro/ga) tur Vortest tid? Setter opp en funkson T(x) som gv tide som reisen for derson man nor til punktet x og ger derfin videre til hyth. Huster tid = Strelining $T(x) = \frac{y}{2} + \frac{9-x}{5}$ Y2 = x2 + 62 => Y = Tx+62 = Tx2+36 $T(x) = \frac{(x^2+36)^2}{3} + \frac{9-x}{5}$. Def. nonje [0,9].

Og minimumsverdren er da $T(\frac{9}{2}) = \frac{\sqrt{(\frac{9}{2})^2 + 36}}{3} + \frac{9 - \frac{9}{2}}{5} = ... = 3.4$ Svar: Oppsettet hame

tor must reiselid.

$$2z(t)z'(t) = 2x(t)x'(t) + 2y(t)y'(t).$$

$$2\sqrt{34}z'(t) = 2\cdot3\cdot(-80) + 2\cdot5\cdot50 = -480 + 500$$

$$2\sqrt{34}z'(t) = 20$$

$$z'(t) = \frac{20}{2\sqrt{34}} = \frac{10}{34} = 1.715.$$

word: Avstunden Z(t) mellom bil A og bil B er alts: dende, og glær med 1.715 km/t.