1. Curvas

1.1. Curvas parametrizadas regulares

Definición:

Una curva parametrizada (diferenciable) es una aplicación difrenciable C^{∞} , $\alpha:(a,b)\subset\mathbb{R}\longrightarrow\mathbb{R}^n$ (donde a y b pueden ser $-\infty$ y $+\infty$ respectivamente). Decimos que $\alpha(t)=(x_1(t),\cdots,x_n(t))$ es C^{∞} si x_i es C^{∞} $\forall i$.

Definición:

Al vector $\alpha'(t) = (x_1'(t), \dots, x_n'(t))$ se le llama vector tangente (o velocidad) de α en $t \in (a, b)$.

Ejemplo1:

Ejemplo 2:

https://www.geogebra.org/calculator/vjehmjyh

Punto singular en t=0 ya que $\alpha'(0)=(0,0)$

Ejemplo 3:

https://www.geogebra.org/calculator/une2dbyd

$$\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$$

$$t \longmapsto (t^3 - 4t, t^2 - 4) \qquad \alpha'(t) = 3t^2 - 4, 3t$$

Como $\alpha(2) = \alpha(-2) = (0,0)$ no es inyectiva, pero $\alpha'(2) = (8,4) \neq \alpha'(-2) = (8,-4)$

Ejemplo 4:

https://www.geogebra.org/calculator/hc2fvbne

Ejemplo 5:

https://www.geogebra.org/calculator/tbb8nj9u

Definición:

Sea $\alpha:(a,b)\longrightarrow\mathbb{R}^n$ una curva parametrizada $\in\mathcal{C}^{\infty}$ (se asume) para cada $t\in(a,b)$ tal que $\alpha'(t)\neq 0$, existe una recta bien definida, que pasa por t y tiene dirección $\alpha'(t)$, se llama recta tangente a α en t (respectivamente $\alpha(t)$).

Proposición:

Sea $\alpha:(a,b)\longrightarrow\mathbb{R}^n$ una curva parametrizada, para cada $t_0\in(a,b)$ la tecta tangente en t_0 es el límite de las rectas secantes que pasan por $\alpha(t)$ y $\alpha(t_0)$ cuando $t\to t_0$

https://www.geogebra.org/calculator/hgbhfd2r

Dem: $\alpha'(t_0) = \lim_{t \to t_0} \frac{\alpha(t) - \alpha(t_0)}{t - t_0}$.

Definición:

Sea $\alpha:(a,b)\longrightarrow\mathbb{R}^n$ una curva parametrizada. α se dice regular si $\alpha'(t)\neq 0 \ \forall t\in(a,b)$.

Definición:

Sean $\alpha:(a,b)\longrightarrow\mathbb{R}^n$ $\beta:(a,b)\longrightarrow\mathbb{R}^n$ curvas parametrizadas. β es una reparametrización de α si existe $h:(c,d)\longrightarrow(a,b)\in\mathcal{C}^\infty$ tal que $h'(s)\neq0$ $\forall s\in(c,d)$ y $\beta=\alpha\circ h$.

2

Nota:

El vector tangente no es geometrico en el sentido de que cambia con la reparametrización.

Lema:

Sea β reparametrización de α , entonces $\beta'(u) = h'(u)\alpha'(h(u)) \ \forall u \in (c,d)$.

Dem:

Regla de la cadena.

Proposición:

En los puntos regulares de la curva la recta tangente es geométrica (no cambia con la reparametrización). Dem:

Vemos que el vector tangente de β es proporcional al de α en cada punto (posiblemente con diferente proporcionalidad en cada punto) por el lema anterior.

Definición:

Se dice que un objeto es *geométrico* si es invariante respecto a reparametrizaciones o movimientos euclideos (translaciones y rotaciones).

Definición:

Sea $\alpha:[a,b]\longrightarrow\mathbb{R}^n$ una curva parametrizada. Definimos longitud de α en el intervalo [a,b] como

$$L_{[a,b]}(\alpha) = \int_a^b \|\alpha'(t)\| dt$$

Proposición:

La longitud es invariante respecto a movimientos euclídeos.

Dem: Sea β una parametrización de α , entonces se verifica que $L(\beta) = L(\alpha)$.

$$L(\beta) = \int_{c}^{d} |h's| \cdot \|\alpha'(h(s))\| ds$$

Si h es creciente, $h'(s) > 0 \ \forall s \in (c, d)$

$$L(\beta) = \int_{c}^{d} h's \cdot \|\alpha'(h(s))\| ds$$

Tenemos que h(a) = c y h(b) = d.

$$= \int_a^b \|\alpha'(t)\| dt = L(\alpha)$$

Si h es decreciente, $h'(s) < 0 \,\forall s \in (c,d)$

$$L(\beta) = \int_{c}^{d} -h's \cdot \|\alpha'(h(s))\| ds$$

Tenemos que h(b) = c y h(a) = d.

$$= - \int_{b}^{a} \|\alpha'(t)\| dt = \int_{a}^{b} \|\alpha'(t)\| dt = L(\alpha)$$

Se tiene que la longitud es un objeto geometrico respecto a reparametrizaciones.

Sea A una matriz ortogonal y $b \in \mathbb{R}^n$ veamos que $L(\alpha) = L(A\alpha + b)$. Si $\beta(t) = A\alpha(t) + b$, entonces $\beta'(t) = A\alpha'(t)$, por ser A ortogonal.

$$||A\alpha'(t)\rangle|| = ||\alpha'(t)|| \Rightarrow L(\alpha) = L(\beta)$$

Proposición:

 $\|\alpha(a) - \alpha(b)\| \le L_{[a,b]}(\alpha).$

Dem:

Por la desigualdad de Schwarz.

$$\left\| \int_{a}^{b} \alpha'(t)dt \right\| \le \int_{a}^{b} \|\alpha'(t)\| dt$$
$$\left\| \int_{a}^{b} \alpha'(t)dt \right\| \le L_{[a,b]}$$

Por el teorema fundamental del cálculo,

$$\|\alpha(b) - \alpha(a)\| \le L_{[a,b]}$$

Además
$$\|\alpha(b) - \alpha(a)\| = |-1| \cdot \|\alpha(a) - \alpha(b)\| = \|\alpha(a) - \alpha(b)\|.$$

Definición:

Dada una curva parametrizada regular $\alpha:[a,b] \longrightarrow \mathbb{R}^n$ para $c \in (a,b)$ se define la longitud de arco (empezando en c) como la función

$$s_{\alpha}(t) = \int_{c}^{t} \|\alpha'(u)\| du \quad \forall t \in (a, b)$$

Nota:

$$s_{\alpha}(t) = L_{[c,t]}(\alpha).$$

Teorema:

Sea $\alpha:[a,b]\longrightarrow\mathbb{R}^n$ un curva parametrizada regular, entonces existe una repametrización β con velocidad unitaria, es decir, $\|\beta'(s)\|=1\ \forall s.$

Dem:

Por el teorema fundamental del cálculo,

$$s_{\alpha}(t) = \int_{c}^{t} \|\alpha'(u)\| du \quad \forall t \in (a, b) \quad \Rightarrow \quad \frac{ds}{dt}(t) = \|\alpha'(t)\| > 0$$

Como $\frac{ds}{dt} \neq 0$ por el teorema de la función inversa existe $t(s) \, : s(t) \rightarrow t$ y

$$\frac{dt}{ds}(s) = \frac{1}{\frac{ds}{dt}(t)}$$

Sea $\beta(s) = \alpha(t(s))$, se tiene

$$\beta'(s) = \alpha'(t(s))t'(s) \quad \|\beta'(s)\| = \|\alpha'(t(s))\| \frac{1}{s'(t(s))} = \|\alpha'(t(s))\| \frac{1}{\|\alpha'(t(s))\|} = 1$$

Ejemplo:

 $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^3 \text{ donde } \alpha(t) = (a\cos(t), a\sin(t), bt).$

$$\alpha'(t) = (-a\sin(t), a\cos(t), b) \quad \|\alpha'(t)\| = \sqrt{a^2\sin^2(t) + a^2\cos^2(t) + b^2} = \sqrt{a^2 + b^2} \neq 0$$

Por lo que α es regular.

$$s(t) = \int_0^t \|\alpha'(u)\| du = \sqrt{a^2 + b^2}t$$

Se tiene que $\bar{\alpha}(t) = \left(a\cos\left(\frac{s}{\sqrt{a^2+b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2+b^2}}\right), b\frac{s}{\sqrt{a^2+b^2}}\right)$.

1.2. Teoría local de curvas planas

Nota:

$$\mathcal{J}(x,y) = (-y,x).$$

Definición:

Sea $\alpha:(a,b)\longrightarrow\mathbb{R}^2$ una curva parametrizada regular que está parametrizada por longitud de arco. El diedro de Frenet es una base ortonormal positivamente orientada ($\mathbb{T}(s), \mathbb{N}(s)$ tal que

$$\mathbb{T}(s) = \alpha'(s)$$

$$\begin{cases} \mathbb{T}(s)\mathbb{N}(s) = 0 \\ \|\mathbb{N}(s)\| \\ \det(\mathbb{T}(s), \mathbb{N}(s)) > 0 \end{cases} \mathbb{N}(s) = \mathcal{J}(\mathbb{T}(s))$$

https://www.geogebra.org/calculator/syjbfepp

Veamos que ocurre si intentamos escribir $\mathbb{T}'(s)$ y $\mathbb{N}'(s)$ en la base $\mathbb{T}(s)$, $\mathbb{N}(s)$. Observamos que

$$\|\mathbb{T}(s)\| = 1 \quad \Rightarrow \quad \mathbb{T}(s)\mathbb{T}(s) \quad \Rightarrow \qquad \qquad \underbrace{\mathbb{T}'(s)\mathbb{T}(s) = 0}_{}$$

componente de $\mathbb{T}'(s)$ en $\mathbb{T}(s)$

$$\|\mathbb{N}(s)\| = 1 \quad \Rightarrow \quad \mathbb{N}(s)\mathbb{N}(s) \quad \Rightarrow \quad \underbrace{\mathbb{N}'(s)\mathbb{N}(s) = 0}_{\text{componente de }\mathbb{N}'(s) \text{ en }\mathbb{N}(s)}$$

Por lo tanto,

$$\left\{ \begin{array}{l} \mathbb{T}'(s) = 0 \cdot \mathbb{T} + b(s) \cdot \mathbb{N} \\ \mathbb{N}'(s) = c(s) \cdot \mathbb{T} + 0 \cdot \mathbb{N} \end{array} \right.$$

Por otra parte,

$$\mathbb{T}(s)\cdot\mathbb{N}(s)=0 \quad \Rightarrow \quad \mathbb{T}'(s)\cdot\mathbb{N}(s)+\mathbb{N}'(s)\cdot\mathbb{T}(s)=0 \quad \Rightarrow \quad \mathbb{T}'(s)\cdot\mathbb{N}(s)=-\mathbb{T}(s)\cdot\mathbb{N}'(s)$$

Entonces tiene sentido definir

$$c(s) = -k_2(s) = -b(s)$$

Llamamos curvatura con signo a $k_2(s)$. También tenemos las fórmulas de Frenet

$$\left\{ \begin{array}{l} \mathbb{T}'(s) = k_2(s) \cdot \mathbb{N}(s) \\ \mathbb{N}'(s) = -k_2(s) \cdot \mathbb{T}(s) \end{array} \right.$$

Además,

$$\mathbb{T}(s) = \alpha'(s), \mathbb{N}(s) = \mathcal{J}\alpha'(s)$$

$$\mathbb{T}'(s) = \alpha''(s) = k_2(s)\mathcal{J}\alpha'(s)$$

$$\alpha''(s)\mathcal{J}\alpha'(s) = k_2(s)\mathcal{J}\alpha'(s)\mathcal{J}\alpha'(s) = k_2(s)$$

$$k_2(s) = \alpha''(s) \mathcal{J} \alpha'(s)$$

Nota:

 $|k_2(s)| = \|\alpha'(s)\|$ y $\alpha''(s)$ apunta en la dirección en la que se curva la curva. Cuando la curt
vatura es positiva se curva con $\mathbb{N}(s)$ y cuando la curvatura es negativa se curva contra $\mathbb{N}(s)$.

Ejemplo 1:

Ejemplo 2:

Definición:

Sea $\alpha:(a,b)\longrightarrow \mathbb{R}^2$ una curva parametrizada (no necesariamente parametrizada por longitud de arco). Si s(t) es la longitud de arco de α