Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών

Εργασία στο μάθημα της Κρυπτογραφίας

Όνομα 1 ΑΕΜ:

Όνομα 2 ΑΕΜ:

18 Φεβρουαρίου 2020

Περιεχόμενα

Περίληψη	1
Θέμα 1	2
Θέμα 2	3

Περίληψη

.....

Θέμα 1

(i). Παράδειγμα ενός πίνακα,

A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

	T	U	V	\overline{W}	X	Y	\overline{Z}
ĺ	20	21	22	23	24	25	0

Παράδειγμα πως είσαγουμε μια φωτογραφια,

(ii.) Για την υλοποίηση του One Time Pad ...

Παρακάτω φαίνεται και η υλοποίηση.

••••

Θέμα 2

Auxiliary results

Proposition 0.1 Let n, q and A_i be positive integers with A_i such that

$$A_{j} \in I_{j} = \left(\frac{q^{j/(n+1)+f_{q}(n)}}{2}, \frac{q^{j/(n+1)+f_{q}(n)}}{1.5}\right), \tag{0.1}$$

with $1 \le j \le n$. The sequence $f_q(n) : \mathbb{N} \to (0, 1)$ is such that,

$$f_q(n) + \frac{n}{n+1} < 1 \tag{0.2}$$

and

$$\frac{q^{1+2f(n)}}{1.5} < q - \frac{1}{2}q^{n/(n+1)+f_q(n)}. (0.3)$$

With L we denote the full rank lattice of rank n+1 generated by the vectors $\mathbf{b}_0 = (-1, A_1, ..., A_n)$, $\mathbf{b}_j = (0, 0, ..., q, ..., 0)$, where q is in the position j+1 for j=1, ..., n. Then, for all non-zero $\mathbf{v} \in L$ we have

$$\|\mathbf{v}\| > \frac{q^{n/(n+1)+f_q(n)}}{2}.$$

Θέμα 3

Παράδειγμα κώδικα σε tex

```
from itertools import imap

def KSA(key):

S = range(256)

j = 0

for i in range(256):

j = (j + S[i] + key[i % len(key)]) % 256

S[i], S[j] = S[j], S[i]

return S
```

Παράδειγμα ενός πίνακα της γραμμικής άλγεβρας,

```
      1
      1
      0
      0
      1
      0
      1
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

Παράδειγματα μαθηματικών όρων,

$$x \equiv 9 \pmod{17}$$
$$x \equiv 9 \mod{12}$$
$$x^2 + y^2$$
$$\gcd(x, y) = d$$

$$x^n + y^n = z^n (0.4)$$

Το θεώρημα του Fermat λέει ότι δεν υπάρχουν μη τετριμμένες ακέραιες λύσεις στην εξίσωση (0.4) για $n \geq 3$. Αποδείχτηκε από τον Andrew Wiles και δημοσιεύτηκε στο περιοδικό Annals of Mathematics.