BAREM DE CORECTARE

EXAMEN DE CALCUL DIFERENȚIAL SI INTEGRAL

SERIA 13

SUBIECTUL 1

VARIANTA 1

- calculul limitei $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$: 0,75 puncte
- discuție în funcție de un parametru cu specificarea naturii seriei sau aplicarea criteriului Raabe-Duhamel: 1,25 puncte

VARIANTA 2

- prelucrarea termenului general al seriei x_n și alegerea termenului general al seriei cu care se compară seria inițială y_n : 0,75 puncte
- aplicarea criteriului de comparație cu inegalități sau al criteriului de comparație cu limite pentru serii cu termeni pozitivi: 0,75 puncte
- -finalizare: 0,50 puncte

SUBIECTUL 2

- justificarea afirmației că f funcție de clasă C²: 0,25 puncte
- determinarea punctelor critice ale funcției f: 0.50 puncte
- descrierea hessianei funcției în punctele critice, calculul minorilor Δ_1 și Δ_2 : 0,75 puncte
- finalizare: 0,50 puncte

SUBIECTUL 3

EXERCIȚIUL CU LIMITA INFERIOARĂ ȘI LIMITA SUPERIOARĂ

- identificarea subșirurilor importante ale șirului $(x_n)_{n\in\mathbb{N}}$: 0,75 puncte
- determinarea punctelor limită ale șirului $(x_n)_{n\in\mathbb{N}}$: 0,75 puncte
- finalizare: 0,50 puncte

EXERCIȚIUL CU ȘIRURI DE FUNCȚII

- calculul limitei $\lim_{n\to\infty} f_n(x) = f(x)$ și studierea convergenței simple a șirului de funcții: 1 punct
- evaluarea $\sup_{x \in D} |f_n(x) f(x)|$: 0,75 puncte
- concluzia despre convergența uniformă a șirului de funcții: 0,25 puncte

EXERCIȚIUL CU INEGALITATE DE FUNCȚII

- invocarea formulei lui Taylor cu restul sub forma lui Lagrange și descompunerea funcției întru-un polinom de gradul n și un rest de forma $\frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$: 1,25 puncte
- verificarea semnului restului $\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$: 0,50 puncte
- finalizare: 0,25 puncte

EXERCIȚIUL CU CALCULUL INTEGRALEI IMPROPRII

- transformarea integralei improprii printr-o schimbarea de variabilă: 0,50 puncte
- descrierea integralei improprii transformate după schimbarea de variabilă sub forma B(p,q): 0,75 puncte
- calculul funcției lui Euler B(p,q): 0,75 puncte

EXERCIȚIUL CU INTEGRALA DEFINITĂ/INTEGRALĂ IMPROPRIE

- descrierea integralei definite sub forma B(p, q): 1 punct
- calculul funcției lui Euler B(p,q): 1 punct

SUBIECTUL 4

a) VARIANTA 1

- descrierea mulțimii sub forma $D = \{(x,y)|x \in [a,b], g(x) \le y \le h(x)\}$ sau $D = \{(x,y)|y \in [a,b], g(y) \le x \le h(y)\}$: 0,75 puncte
- descrierea integralei duble sub forma $\iint_D f(x,y) dx dy = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx \text{ sau}$ $\iint_D f(x,y) dx dy = \int_a^b \left(\int_{g(y)}^{h(y)} f(x,y) dx \right) dy \text{: 0,25 puncte}$
- finalizarea calculului: 1 punct

VARIANTA 2

- utilizarea trecerii la coordonate polare $\varphi: [0, +\infty) \times [0, 2\pi] \to \mathbb{R}^2$, $\varphi(R, \alpha) = (R\cos\alpha, R\sin\alpha)$ sau $\varphi: [0, +\infty) \times [-\pi, \pi] \to \mathbb{R}^2$, $\varphi(R, \alpha) = (R\cos\alpha, R\sin\alpha)$: 0,25 puncte
- transformarea integralei duble $\iint_D f(x,y) dx dy$ în integrala dublă $\iint_A f(R\cos\alpha,R\sin\alpha) |J_{\varphi}(R,\alpha)| dR d\alpha$: 0,75 puncte
- calculul integralei duble $\iint_A f(R\cos\alpha,R\sin\alpha) \big| J_\varphi(R,\alpha) \big| dRd\alpha$: 1 punct
- b) rezolarea corectă a exercițiului propus: 1 punct