СТЕПЕНЬ ОКИСЛЕНИЯ И ВАЛЕНТНОСТЬ

Для начала в качестве вступления рассмотрим образование молекулы воды:

У атома кислорода есть неспаренных электрона, а у каждого атома водорода только по

Подходят два таких атома водорода к атому кислорода и образуют с ним хим связи:

теперь у них есть ОБЩИЕ электронные пары (как мило). Только вот кислород оказался не таким, каким казался сначала. Из-за высокого значения своей он просто взял и нагло перетянул на себя, казалось бы, их ОБЩИЕ электрончики...

В итоге у кислорода, который жадно перетянул на себя ПО ОДНОМУ электрончику от каждого водорода, степень окисления каждого из обманутых водородов

неспаренные электроны, "готовые" к движу

Итак, СТЕПЕНЬ ОКИСЛЕНИЯ - это атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют

ЧТО ЖЕ ЭТО ЗНАЧИТ?

Степень окисления показывает нам, сколько

атом элемента.

CL : CL

C 110

Na :CL

СТЕПЕНЬ ОКИСЛЕНИЯ БЫВАЕТ.. **ВЫСШАЯ НИЗШАЯ** промежуточная! Me: неМе: Искл: Примеры: постоянные с.о. НЕПОСТОЯННЫЕ С.О. *Почти постоянные: C: H: Si: 0: N: P: E S: Me IA: CL: Me IIA: Fe, Cr: Al: Cu: ЗАПОМНИТЕ, ДЕТИ! 熟记于心

Очень часто: если элемент находится в чётной группе, то проявляет _____ с.о., если в нечётной -

КАК ОПРЕДЕЛИТЬ С.О. В СЛОЖНОМ ВЕЩЕСТВЕ?

р.s. суммарная с.о. в любом соединении (как и суммарный заряд соединения, как и заряд любого атома) РАВНА

Составляем	уравнение и	решаем	его:
------------	-------------	--------	------

ПРАКТИКА! 🔀

H₂SO₄ K₂O HNO₃ HNO₂ CO₂ C₂H₂ Cr₂O₃ H₂CrO₄ NaOH N₂O₅ HClO₄ H₃PO₄ HClO H₂SiO₃ CO K₂CO₃

КАК САМОМУ СОСТАВЛЯТЬ ФОРМУЛЫ? **МЕТОД "КРЕСТ-НАКРЕСТ"**

Нам говорят: "А составь-ка формулу оксида хрома (III)"

римская цифра в скобках обозначает (естественно, её не пишут для атомов элементов с ПОСТОЯННОЙ

ПРАКТИКА!

Составляем формулы:

оксида алюминия -

оксида углерода (IV) -

гидроксида железа (II) -

сульфата хрома (III) -

дигидрофосфата кальция -

КАК ОПРЕДЕЛИТЬ ЗАРЯД КИСЛОТНОГО ОСТАТКА?

КИСЛОТА ИМЕЕТ ВИД: Н А, где А - кислотный остаток

ЗАРЯД КИСЛОТНОГО ОСТАТКА РАВЕН ЧИСЛУ "ОТОРВАННЫХ" АТОМОВ ВОДОРОДА.

ортофосфорная кислота Н₃РО₄ → дигидрофосфат Н₂РО₄

гидрофосфат НРО,

ортофосфат РО

ЧТО ТАКОЕ "ВАЛЕНТНОСТЬ"?

Валентность - число ______, которые образует атом элемента в каком-либо соединении. Она обозначается римскими цифрами.

ХИМИЧЕСКАЯ СВЯЗЬ = ОДНА ЧЁРТОЧКА, т.е. валентность - именно число ОДИНАРНЫХ связей.

Определяем валентность:

В 99% случаев валентность по числовому значению гаст равна

Наиболее частые исключения из "правила":

- азот имеет высшую с.о. +5, но его максимальная валентнось -
- у фтора валентность всегда равна
- у кислорода -
- углерод в органике всегда

Порисуем структурные формулы? :)

LiOH, K_2O_1 , Al_2O_3 , H_2SO_2 , HCl_1 , Na_2SO_2 , $CaSO_2$, Cl_2O_5

химического элемента	. Они зависят от
	н
	H
	2p 2p
	N 2s
	1s ↑↓
	<u> </u>
	→ NH,*
ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ВОДО	РОДА
1s Валентность, так как	
ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА УГЛЕ	РОДА
Валентность , так как	
Валентность , так как	HO

ОН

СВЯЗИ В МОЛЕКУЛЕ УГАРНОГО ГАЗА СО:

1-2) Связи за счёт

образованы по

механизму.

3) Связь за счёт

образована по

механизму.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА АЗОТА

	*	*	*
1		2 p	al .
2s	,	- P	

Валентность ____, так как _____

СВЯЗИ В ИОНЕ АММОНИЯ NH, ::

1-3) Связи за счёт

ваны по ____

4) Связь за счёт

вана по _____

В молекулах азотной кислоты и оксида азота (V)

НЕСМОТРЯ НА С.О. АЗОТА +5, валентность всё равно
равна _____!!! А всё потому, что в этих молекулах
есть так называемые СВЯЗИ.

образо-

образо-

меха-

меха-

ВАЛЕНТНЫЕ ФОЗМОЖНОСТИ ФОСФОРА

Валентности , так как

Валентности ___, так как ____

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА КИСЛОРОДА

О 1 2 Bалентности ___, так как ____

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА СЕРЫ

Валентность ___, так как ____

Валентность , так как

Валентность , так как

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ФТОРА

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ АТОМА ХЛОРА

Валентность ____, так как

Валентность ____, так как

Валентность ____, так как ____

					***	1	1	
-	***						3d	
		t	Ť	1				
	3s		3 p)				

Валентность , так как