

3.4矩阵的秩与行最简形相关 MATLAB应用

数

一、矩阵输入及特殊矩阵

逗号,空格	列分隔符
分号	行分隔符 或者在表达式后不显示结果
eye(3)	构造3阶单位阵
ones(2,3)	构造2x3阶元素全为1的矩阵
zeros(2,3)	构造2x3阶零矩阵
rand(2,3)	构造2x3阶随机矩阵
round(rand(2,3)*10)	构造元素为0-10的2x3阶 随机矩阵
rot90(vander([3,4,5,6]))	构造3,4,5,6的范德蒙矩阵

二、矩阵的运算

A'	矩阵A的转置
det(A)	方阵A的行列式
rank(A)	矩阵A的秩
rref(B)	化矩阵B为行最简型

利用初等变换求线性方程组

$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = 1 \\ 3x_1 + 4x_2 + 2x_3 - 3x_4 = 2 \\ -x_1 - 5x_2 + 4x_3 + x_4 = 3 \\ 2x_1 + 7x_2 + x_3 - 6x_4 = 4 \end{cases}$$

>> rref(B)

线

性

代

数

例2 生成元素为 0 到 1 间的随机矩阵 $A_{3\times 3}$, 生成元素 为 0 到 100 并且元素全是随机整数的矩阵 $B_{3\times 3}$.

- (1) 求出矩阵 A 与 B 的行列式.
 - (2) 求出矩阵A的秩.

 \rightarrow A=rand(3,3)

>>rank(A)

- >> B=round(rand(3,3)*100)
- >> det(A)
- >> det(B)

