Clustering (Unsupervised learning)

Oliver W. Layton

CS251: Data analysis and visualization

Lecture 18, Spring 2020

Monday March 30

Clustering (Unsupervised learning)

Iris data in PCA space

Identifying clusters in data

- Goal: Assign each data point to "groups" based on similarity to other data points (clusters).
 - Grouping means "tagging" or "coloring" each point. Like adding another feature (dimension) with an int that represents group membership (e.g. group 1, group 2, etc.).
- Algorithms differ in:
 - how **similarity** defined.
 - whether group membership is exclusive (1 group per point) or **fuzzy** (point belongs to multiple groups, to varying degrees).
 - how many groups/clusters to use.
 - whether grouping happens top-down (big picture first) or bottom-up (data point level).

Input: Iris data

Output: Iris data assigned to 2 clusters

Iris data assigned to 2 clusters

- How do we define similarity (closeness) between two samples affects the clusters that get.
- Often controlled by **distance metric** how do we measure distance between any 2 samples?

Distance metric (1/2)

- What's the most common way to measure distance?
 - Euclidean distance. But there are other ways...
- **Distance metric:** assign a *scalar value* between 2 pts \vec{x} and \vec{y} that represents how far they are from one another.
- Function that yields this scalar value: $d(\vec{x}, \vec{y})$.

Let's discuss distance metric properties and examples on the board...