Problem §2 Consider the following list of vectors in \mathbb{R}^3 . From left to right, remove each vector if it is in the span of the vectors to the left of it. What list of vectors remains?

$$(1,1,0), (-2,-2,0), (0,0,0), (0,0,4), (1,1,1), (4,0,0), (0,1,1), (4,-5,3), (7,2,2).$$

Solution: (1,1,0) remains. (-2,-2,0), (0,0,0) are removed. (0,0,4) remains. (1,1,1) is removed. (4,0,0) remains. (0,1,1), (4,-5,3), (7,2,2) are removed. Thus, the final list is

Problem §3 Let V be a finite-dimensional vector space over a field \mathbb{F} . Prove the following statements briefly.

- (a) If $\dim V > 0$, then V has a non-zero vector.
- (b) If dim V = 0, then $V = \{0\}$.
- (c) If U is a subspace of V, then $\dim U \leq \dim V$.
- (d) If $T:V\to W$ is injective, then $\dim V=\dim \mathrm{range}\, T$. Then, conclude that if W is finite-dimensional, $\dim V\leq \dim W$.
- (e) If $T: V \to W$ is surjective, then $\dim V \ge \dim W$.
- (f) If $T: V \to W$ is bijective, then dim $V = \dim W$.

Solution:

- (a) If dim V = n > 0, then V has a length-n basis with non-zero vectors v_1, \ldots, v_n (if $v_i = 0$, then the list would be linearly dependent and thus not a basis). Thus there exists a non-zero $v \in \text{span}(v_1, \ldots, v_n) = V$.
- (b) If $\dim V = 0$, then V only has basis () (the empty basis). Since the span of the empty basis is just $\{0\}$, we have $V = \{0\}$.
- (c) If U is a subspace of V, then the basis of U is a linearly independent (not necessarily spanning) list of vectors in V. Thus the basis of V has at least as many elements as the basis of U, and so $\dim U \leq \dim V$.
- (d) If $T:V\to W$ is injective, then T has a trivial kernel (that is, null $T=\{0\}$, and so $\dim \operatorname{null} T=0$); by the rank-nullity theorem, we have $\dim V=\dim \operatorname{null} T+\dim \operatorname{range} T=0+\dim \operatorname{range} T=\dim \operatorname{range} T$, as required. Moreover, since range T is a subspace of W, by part (c), we have $\dim \operatorname{range} T=\dim V\leq \dim W$.
- (e) If $T:V\to W$ is surjective, then $W=\mathrm{range}\,T$; by the rank-nullity theorem, we have $\dim V=\dim \mathrm{null}\,T+\dim \mathrm{range}\,T\geq \dim \mathrm{range}\,T=\dim W$, as required.
- (f) By part (c), $\dim V = \dim \operatorname{range} T$; and by surjectivity, $\operatorname{range} T = W$. Hence $\dim V = \dim \operatorname{range} T = \dim W$, as required.