Conditional Poisson MCMC

September 2023

Contents

1	Dat	a Generation	2
	1.1	Fixed spatial effect area-level, assuming all births are observed	2
	1.2	IID spatial effect area-level, assuming all births are observed	2
	1.3	BYM2 spatial effect area-level, assuming all births are observed	
	1.4	IID spatial effect stratified cluster-level, assuming all births are observed	2
	1.5	Sample observed births using 1-stage SRS	
	1.6	Sample observed births using 2-stage stratified cluster sampling	3
2	Algorithms assuming all births observed		4
	2.1	Estimating $P(\tilde{r} \tilde{Y})$, fixed spatial effects, admin level model	4
	2.2	Estimating $P(\tilde{r} \tilde{Y},Y_+)$, fixed spatial effects, admin level model	
	2.3	Estimating $P(\tilde{\eta}, \alpha, \phi, \tau \tilde{Y})$ with random spatial effects, admin level model	5
		2.3.1 (Alg 2.3a) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau \tilde{Y})$, IID spatial effects, admin level model	5
		2.3.2 (Alg 2.3) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau Y)$, BYM2 spatial effects, admin level model	6
	2.4	Estimating $P(\tilde{\eta}, \alpha, \phi, \tau \tilde{Y}, Y_+)$ with random spatial effects, admin level model	7
		2.4.1 (Alg 2.4a) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau \tilde{Y}, Y_+)$, IID spatial effects	7
		2.4.2 (Alg 2.4) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau Y, Y_+)$, BYM2 spatial effects	7
	2.5	Estimating $P(\alpha_U, \alpha_R, \tilde{b}, \tau, d \tilde{Y})$, IID spatial model accounting for stratification and clustering	8
3	Admin 1 level models with 1-stage SRS sampling		9
	3.1	Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau \tilde{Z})$ (not conditioning on total deaths) BYM2	9
	3.2	Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau \tilde{Z}, Y_+)$ (assuming we know total deaths) BYM2	9
	3.3	Estimating $P(\tilde{Y}, Y_+, \alpha, \tilde{\eta}, \phi, \tau \tilde{Z}, \hat{Y}_+)$ (assuming we have an estimate of total deaths) BYM2	10
4	Adı	min 2 level models with 1-stage SRS sampling	11
_		Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau \tilde{Z}, \tilde{Y}_{+})$ (assuming we know total deaths in each admin 1 area) BYM2 .	11
_	ъл.	d-1	10
5		dels with two-stage stratified cluster sampling Estimating $P(\alpha_U, \alpha_R, \tilde{b}, \tilde{r}, \phi, \tau, \sigma^2 \tilde{Z}, \tilde{R})$ BYM2, admin level model	12 12
	9.1	Defined in G ($GU, GK, V, I, \psi, I, V \mid Z, IU)$ D 1 in Z , admin level model	14
6		nputations for PC priors in stan	13
	6.1	τ , spatial precision	13
	6.2	φ. spatial variance	13

1 Data Generation

1.1 Fixed spatial effect area-level, assuming all births are observed

Population settings: number of areas, m; number of clusters in each area i, C_i ; average number of births per cluster, N_{births}

Parameter settings: fixed effect in each area i, b_i

- 1. Draw number of births, N_{ic} , for each cluster c in area i from $Pois(N_births)$
- 2. Draw number of deaths, Y_{ic} , for each cluster c in area i from $Pois(N_{ic}exp(b_i + \epsilon_{ic}))$ where $\epsilon_{ic} \sim \mathcal{N}(0, 0.05)$

Assumptions: (1) each cluster contains similar number of births, (2) all births (and deaths) are observed

1.2 IID spatial effect area-level, assuming all births are observed

Population settings: number of areas, m; number of clusters in each area i, C_i ; average number of births per cluster, N_{births}

Parameter settings: intercept a, hyperparameters μ_{τ} and σ_{τ}^2

- 1. Draw τ_b from $Gamma(a_{\tau}, b_{\tau})$
- 2. Draw \tilde{b} from $\mathcal{N}(0, \frac{1}{\tau}\mathbf{I})$
- 3. Draw number of births, N_{ic} , for each cluster c in area i from $Pois(N_{births})$
- 4. Draw number of deaths, Y_{ic} , for each cluster c in area i from $Pois(N_{ic}exp(a+b_i+\epsilon_{ic}))$ where $\epsilon_{ic} \sim \mathcal{N}(0,0.05)$

Assumptions: Same as 1.1

1.3 BYM2 spatial effect area-level, assuming all births are observed

Population settings: number of areas, m; number of clusters in each area i, C_i ; average number of births per cluster, N_{births}

Parameter settings: intercept a, neighborhood matrix Q, and hyperparameters, $\mu_{\tau}, \sigma_{\tau}^2, a_{\phi}, b_{\phi}$

- 1. Draw τ_b from $Gamma(a_{\tau}, b_{\tau})$
- 2. Draw ϕ from $Beta(a_{\phi}, b_{\phi})$
- 3. Calculate $\Sigma_b = \frac{1}{\tau}((1-\phi)\mathbf{I} + \phi Q^{-*})$ where Q^* is the scaled neighborhood matrix (via inla.scale.model)
- 4. Draw \tilde{b} from $\mathcal{N}(0, \Sigma_b)$
- 5. Draw number of births, N_{ic} , for each cluster c in area i from $Pois(N_{births})$
- 6. Draw number of deaths, Y_{ic} , for each cluster c in area i from $Pois(N_{ic}exp(a+b_i+\epsilon_{ic}))$ where $\epsilon_{ic} \sim \mathcal{N}(0,0.05)$

Assumptions: Same as 1.1

1.4 IID spatial effect stratified cluster-level, assuming all births are observed

Population settings: number of areas, m; number of urban and rural clusters in each area i, C_{Ui} and C_{Ri} ; average number of births per urban and rural cluster, $N_{Ubirths}$ and $N_{Rbirths}$ Parameter settings:

- 1. Draw precision, τ , from $Gamma(a_{\tau}, b_{\tau})$
- 2. Draw intercepts, α_U and α_R , from $N(\mu_U, \sigma_U^2)$ and $N(\mu_R, \sigma_R^2)$, respectively
- 3. Draw overdispersion parameter, d, from $HalfNormal(\sigma = 5)$
- 4. Draw \tilde{b} from $\mathcal{N}(0, \frac{1}{\tau}\mathbf{I})$

- 5. Draw number of births, N_{ic} , for each cluster c in area i from $Pois(N_{Ubirths})$ or $Pois(N_{Rbirths})$ depending on the cluster
- 6. Draw number of deaths, Y_{ic} , for each cluster c in area i from $NegBin(\frac{1}{d}N_{ic}exp(\alpha_{UR[c]} + b_i + \epsilon_{ic}), \frac{1}{1+d})$ where $\epsilon_{ic} \sim \mathcal{N}(0, 0.05)$ and $\alpha_{UR[c]}$ is the intercept for the strata which the cluster belongs to

Assumptions: Same as 1.1

1.5 Sample observed births using 1-stage SRS

Define: number of births sampled per area i, n_i

- 1. Use one of above procedures to generate underlying truth, (Y_{ic}, N_{ic})
- 2. Draw observed number of deaths, Z_i , for each area from $Hypergeom(\sum_{c \in \delta(i)} N_{ic}, \sum_{c \in \delta(i)} Y_{ic}, n_i)$

1.6 Sample observed births using 2-stage stratified cluster sampling

TBD

2 Algorithms assuming all births observed

2.1 Estimating $P(\tilde{r}|\tilde{Y})$, fixed spatial effects, admin level model

Setting:

 $log(r_j) = b_j$ Priors: $b_j \sim \mathcal{N}(\mu_b, \sigma_b^2)$ $Y_j | r_j \sim Pois(N_j r_j)$ Likelihood:

$$\mathcal{L}(\tilde{r}|\tilde{Y}) \propto P(\tilde{Y}|\tilde{r})P(r) = \prod_{i=1}^{m} P(Y_i|r_i) \times P(r_i)$$

$$= \prod_{i=1}^{m} P(Y_i|r_i) \times |\frac{\partial b_i}{\partial r_i}|P(b_i)$$

where m is the number of areas.

One iteration of MCMC Algorithm:

For each area j,

- 1. Draw b_j^P from $\tilde{\pi}(b_j^P|b_j^C) = N(b_j^C, \sigma_{prop,b}^2)$
- 2. Accept proposal with probability

$$\frac{\mathcal{L}(\tilde{r}_j^P|\tilde{Y})}{\mathcal{L}(\tilde{r}_j^C|\tilde{Y})} \times \frac{\tilde{\pi}(b_j^C|b_j^P)}{\tilde{\pi}(b_j^P|b_j^C)}$$

Note: There is also code for a single block update algorithm that is nearly the same (because the parameters are independent).

2.2 Estimating $P(\tilde{r}|\tilde{Y},Y_+)$, fixed spatial effects, admin level model

Setting:

long, $log(r_j) = b_j$ Priors: $b_j \sim \mathcal{N}(\mu_r, \sigma_b^2)$ $Y_j | r_j \sim Pois(N_j r_j)$ $Y_+ | \tilde{r} \sim Pois(\sum_j N_j r_j) \text{ where } Y_+ = \sum_j Y_j$ $\tilde{Y} | Y_+, \tilde{r} \sim Multinom(Y_+, \frac{N_j r_j}{\sum_j N_j r_j})$

Likelihood:

$$\mathcal{L}(\tilde{r}, |\tilde{Y}, Y_{+}) \propto P(\tilde{Y}|Y_{+}, \tilde{r}) \times P(Y_{+}|\tilde{r}) \times \Pi_{i}^{m} |\frac{\partial b_{i}}{\partial r_{i}}|P(b_{i})$$

where m is the number of areas.

One iteration of MCMC Algorithm:

For each area j,

- 1. Draw b_j^P from $\tilde{\pi}(b_j^P|b_j^C) = N(b_j^C, \sigma_{prop,b}^2)$
- 2. Accept proposal with probability

$$\frac{\mathcal{L}(r_j^P, \tilde{r}_{-j}^C, |\tilde{Y}, Y_+)}{\mathcal{L}(\tilde{r}^C, |\tilde{Y}, Y_+)} \times \frac{\tilde{\pi}(b_j^C | b_j^P)}{\tilde{\pi}(b_j^P | b_j^C)}$$

4

2.3 Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y})$ with random spatial effects, admin level model

2.3.1 (Alg 2.3a) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y})$, IID spatial effects, admin level model

Setting:

 $log(r_j) = \eta_j = \alpha + b_j$ Priors: $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^2), b_j \sim N(0, 1/\tau)$ Hyperpriors: $\tau \sim Gamma(0.01, 0.01)$ $Y_j | r_j \sim Pois(N_j r_j)$

Likelihood:

$$\mathcal{L}(\tilde{\eta}, \alpha, \tau | \tilde{Y}) \propto P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \tau) \times P(\alpha) \times P(\tau)$$

$$= P(\tilde{Y} | \tilde{\eta}) P(\tilde{\eta} | \alpha, \tau) \times P(\alpha) \times P(\tau)$$

$$= P(\tilde{Y} | \tilde{\eta}) P_b(\tilde{\eta} - \alpha | \tau) \times P(\alpha) \times P(\tau)$$

One iteration of MCMC Algorithm

- 1. Draw τ from its full conditional, $Gamma(0.01 + \frac{m}{2}, 0.01 + \frac{1}{2}\sum_{i}(\eta_i \alpha)^2)$
- 2. Draw α from its full conditional, a Normal distribution with mean $\frac{\mu_{\alpha} + \sigma_{\alpha}^{2} \tau \sum_{i} \eta_{i}}{1 + \sigma_{\alpha}^{2} \tau m}$, and precision $m\tau + \frac{1}{\sigma_{\alpha}^{2}}$.
- 3. Draw a proposal for $\tilde{\eta}$ from a Taylor approximation to its full conditional, centered on the current state, $\tilde{\pi}(\tilde{\eta}^P|\tilde{\eta}^C,\alpha^C,\tau^C)$, a normal distribution with

• mean =
$$\frac{\tau a + Y_i - N_i (1 - \eta_i^C) e^{\eta_i^C}}{\tau + N_i e^{\eta_i^C}}$$

- precision = $\tau + N_i e^{\eta_i^C}$
- 4. Accept proposal for $\tilde{\eta}$ with probability

$$\frac{P(\tilde{Y}|\tilde{\eta}^P) \times P_b(\tilde{\eta}^P - \alpha^C|\tau^C)}{P(\tilde{Y}|\tilde{\eta}^C) \times P_b(\tilde{\eta}^C - \alpha^C|\tau^C)} \times \frac{\tilde{\pi}(\tilde{\eta}^C|\tilde{\eta}^P, \alpha^C, \tau^C)}{\tilde{\pi}(\tilde{\eta}^P|\tilde{\eta}^C, \alpha^C, \tau^C)}$$

2.3.2 (Alg 2.3) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y})$, BYM2 spatial effects, admin level model

Setting:

$$log(r_j) = \eta_j = \alpha + b_j$$

Priors: $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^2), b \sim BYM2(\tau, \phi)$
Hyperpriors: $\tau \sim Gamma(a_{\tau}, b_{\tau}), \phi \sim Beta(a_{\phi}, b_{\phi})$
 $Y_j | r_j \sim Pois(N_j r_j)$

Likelihood:

$$\mathcal{L}(\tilde{\eta}, a, \phi, \tau | \tilde{Y}) \propto P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | a, \phi, \tau) \times P(a) \times P(\phi) P(\tau)$$

$$= \mathcal{L}(\tilde{\eta}, a, \phi, \tau | \tilde{Y}) \propto P(\tilde{Y} | \tilde{\eta}) P_b(\tilde{\eta} - a | \phi, \tau) \times P(a) \times P(\phi) P(\tau)$$

One iteration of MCMC Algorithm:

- 1. Draw a proposal for $logit(\phi)$ from $N(logit(\phi^C), \sigma_{\phi}^2)$ Note: This implies the proposal distribution, $\pi(\phi^P|\phi^C) = \frac{1}{\phi^P(1-\phi^P)} \times \mathcal{N}(logit(\phi^C), \sigma_{\phi}^2)$
- 2. Draw a proposal for τ from $logNormal(log(\tau^C), \sigma_{\tau}^C)$
- 3. Draw proposal for $\tilde{\eta}$ from a Taylor approximation to its full conditional, centered on the the current state of η , $\tilde{\pi}(\tilde{\eta}^P|\tilde{\eta}^C,\phi^P,\tau^P,Y)$, which is a multivariate Gaussian distribution with
 - mean vector, $[Y^T + a\tau \mathbf{1}^T W^{-1}(\phi) C(\eta^C)](D(\eta^C) + \tau W^{-1}(\phi))^{-1}$
 - precision matrix, $D(\eta^C) + \tau W^{-1}(\phi)$

where $C(\eta^*)$ is a $1 \times m$ vector with i^{th} entry, $N_i e^{\eta_i^*} (1 - \eta_i^*)$ and $D(\eta^*)$ is a $m \times m$ diagonal matrix with i^{th} diagonal element, $N_i e^{\eta_i^*}$

4. Accept proposal for (ϕ, τ, η) with probability

$$\frac{P(\tilde{Y}|\tilde{\eta}^P)P_b(\tilde{\eta}^P - a^C|\phi^P, \tau^P)P(\tau^P)P(\phi^P)}{P(\tilde{Y}|\tilde{\eta}^C)P_b(\tilde{\eta}^C - a^C|\phi^C, \tau^C)P(\tau^C)P(\phi^C)} \times \frac{\tilde{\pi}(\tilde{\eta}^C|\tilde{\eta}^P, \phi^C, \tau^C)\pi(\tau^C|\tau^C)\pi(\phi^C|\phi^P)}{\tilde{\pi}(\tilde{\eta}^P|\tilde{\eta}^C, \phi^P, \tau^P)\pi(\tau^P|\tau^C)\pi(\phi^P|\phi^C)}$$

5. Draw a from its full conditional, a normal distribution with mean, $\frac{\mu_a + \sigma_a^2 \tau \tilde{\eta}^T W^{-1}(\phi) \mathbf{1}}{1 + \sigma_a^2 \tau \mathbf{1}^T W^{-1}(\phi) \mathbf{1}}$, and precision, $\frac{1}{\sigma_a^2} + \tau \mathbf{1}^T W^{-1}(\phi) \mathbf{1}$, where $W(\phi) = (1 - \phi)I + \phi Q^-$

2.4 Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y}, Y_+)$ with random spatial effects, admin level model

2.4.1 (Alg 2.4a) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y}, Y_+)$, IID spatial effects

Setting:

 $log(r_j) = \eta_j = \alpha + b_j$ Priors: $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^2), b_j \sim N(0, 1/\tau)$ Hyperpriors: $\tau \sim Gamma(0.01, 0.01)$ $Y_+ | \tilde{r} \sim Pois(\sum_j N_j r_j) \text{ where } Y_+ = \sum_j Y_j$ $\tilde{Y} | Y_+, \tilde{r} \sim Multinom(Y_+, \frac{N_j r_j}{\sum_j N_j r_j})$

Likelihood:

$$\mathcal{L}(\tilde{\eta}, \alpha, \tau | \tilde{Y}, Y_+) \propto P(\tilde{Y} | Y_+, \tilde{\eta}) \times P(Y_+ | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \tau) \times P(\alpha) \times P(\tau)$$

$$= P(\tilde{Y}|Y_+, \tilde{\eta})P(Y_+|\tilde{\eta})P_b(\tilde{\eta} - \alpha|\tau) \times P(\alpha) \times P(\tau)$$

Note: MCMC Algorithm works out to be the same as Alg 2.3a.

2.4.2 (Alg 2.4) Estimating $P(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y}, Y_+)$, BYM2 spatial effects

Setting:

Fing. $log(r_j) = \eta_j = \alpha + b_j$ Priors: $\alpha \sim \mathcal{N}(\mu_\alpha, \sigma_\alpha^2), b \sim BYM2(\tau, \phi)$ Hyperpriors: $\tau \sim Gamma(0.01, 0.01), \phi \sim Beta(2, 3)$ $Y_+|\tilde{r} \sim Pois(\sum_j N_j r_j) \text{ where } Y_+ = \sum_j Y_j$ $\tilde{Y}|Y_+, \tilde{r} \sim Multinom(Y_+, \frac{N_j r_j}{\sum_j N_j r_j})$

Likelihood:

$$\mathcal{L}(\tilde{\eta}, \alpha, \phi, \tau | \tilde{Y}, Y_{+}) \propto P(\tilde{Y} | Y_{+}, \tilde{\eta}) \times P(Y_{+} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times P(\alpha) \times P(\phi) P(\tau)$$

$$= P(\tilde{Y}|Y_{+}, \tilde{\eta})P(Y_{+}|\tilde{\eta}) \times P_{b}(\tilde{\eta} - \alpha|\phi, \tau) \times P(\alpha) \times P(\phi)P(\tau)$$

Note: MCMC Algorithm works out to be the same as Alg 2.3.

2.5 Estimating $P(\alpha_U, \alpha_R, \tilde{b}, \tau, d | \tilde{Y})$, IID spatial model accounting for stratification and clustering

Some notation:

- i indexes admin 2 areas, j indexes clusters within admin 2 areas
- N_{ij} and Y_{ij} denotes total births and deaths in admin area i, cluster j, respectively

Setting:

```
log(r_{ij}) = \eta_{ij} = \alpha_U I(j \in urban) + \alpha_R I(j \in rural) + b_i

Priors: \alpha_U \sim \mathcal{N}(\mu_U, \sigma_U^2), \alpha_R \sim \mathcal{N}(\mu_R, \sigma_R^2), b \sim^{IID} N(0, 1/\tau)

Hyperpriors: \tau \sim Gamma(a_\tau, b_\tau)

Y_{ij}|r_{ij}, d \sim Negbin(\frac{1}{d}N_{ij}r_{ij}, \frac{1}{1+d}) where d \sim Half \mathcal{N}(0, \sigma_d^2)
```

Likelihood:

$$\mathcal{L}(\alpha_U, \alpha_R, \tilde{b}, \tau, d|\tilde{Y}) \propto P(\tilde{Y}|\alpha_U, \alpha_R, \tilde{b}, d) P(\tilde{b}|\tau) \pi(\alpha_U, \alpha_R, \tau, d)$$

One iteration of MCMC Algorithm:

- 1. Draw τ from its full conditional, $Gamma(m/2 + a_{\tau}, \frac{1}{2} \sum_{i}^{m} b_{i}^{2} + b_{\tau})$
- 2. Draw proposal for \tilde{b} from $\mathcal{N}(\tilde{b}^C, diag(\sigma_b^2))$
- 3. Draw proposal d from $logNormal(log(d^C), \sigma_d^2)$
- 4. Draw proposals for α_U and α_R from $\mathcal{N}(\alpha_U^C, \sigma_U^2)$ and $\mathcal{N}(\alpha_R^C, \sigma_R^2)$, respectively
- 5. Accept proposal for $(\tilde{b}, d, \alpha_U, \alpha_R)$ with probability

$$\frac{P(\tilde{Y}|\alpha_U^P,\alpha_R^P,\tilde{b}^P,d^P)P(\tilde{b}^P|\tau^C)\pi(\alpha_U^P,\alpha_R^P,d^P)}{P(\tilde{Y}|\alpha_U^P,\alpha_R^P,\tilde{b}^C,d^C)P(\tilde{b}^C|\tau^C)\pi(\alpha_U^P,\alpha_R^P,d^C)} \times \frac{\pi(d^C|d^P)}{\pi(d^P|d^C)}$$

3 Admin 1 level models with 1-stage SRS sampling

3.1 Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau | \tilde{Z})$ (not conditioning on total deaths) BYM2

Setting:

$$\begin{split} \log(r_j) &= \eta_j = \alpha + b_j \\ \text{Priors: } \alpha \sim \mathcal{N}(\mu_\alpha, \sigma_\alpha^2), \ b \sim BYM2(\tau, \phi) \\ \text{Hyperpriors: } \tau \sim Gamma(0.01, 0.01), \ \phi \sim Beta(2, 3) \\ Y_j | r_j \sim Pois(N_j r_j) \\ Z_j | Y_j \sim Hypergeom(N_j, Y_j, n_j) \\ \text{Likelihood:} \\ \mathcal{L}(\tilde{Y}, \tilde{\eta}, \alpha, \phi, \tau | \tilde{Z}) \propto P(\tilde{Z} | \tilde{Y}, \tilde{\eta}, \alpha, \phi, \tau) \times P(\tilde{Y}, \tilde{r}, \alpha, \phi, \tau) \\ &= P(\tilde{Z} | \tilde{Y}) \times P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \pi(\alpha) \pi(\phi) \pi(\tau) \\ &= \Pi_i^m \{ P(Z_i | Y_i) P(Y_i | \eta_i) \} \times P_b(\tilde{\eta} - \alpha | \phi, \tau) \pi(\alpha) \pi(\phi) \pi(\tau) \end{split}$$

One iteration of MCMC Algorithm:

Steps 1-5 are the same as Alg 2.3, except that we use Y^C instead of Y given by the data.

- 6. Draw proposal for each Y_i from discrete uniform distribution with minimum $Y_i^C f_Y$ and maximum $Y_i^C + f_Y$, where f_Y is some natural number.
- 7. Accept proposal for \tilde{Y} with probability

$$\frac{\prod_{i} P(Z_i | Y_i^P) P(Y_i^P | \eta_i^C)}{\prod_{i} P(Z_i | Y_i^C) P(Y_i^C | \eta_i^C)}$$

3.2 Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau | \tilde{Z}, Y_+)$ (assuming we know total deaths) BYM2

Setting:

log
$$(r_j) = \eta_j = \alpha + b_j$$

Priors: $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^2), b \sim BYM2(\tau, \phi)$
Hyperpriors: $\tau \sim Gamma(0.01, 0.01), \phi \sim Beta(2, 3)$
 $Y_+ | \tilde{r} \sim Pois(\sum_j N_j r_j) \text{ where } Y_+ = \sum_j Y_j$
 $\tilde{Y} | Y_+, \tilde{r} \sim Multinom(Y_+, \frac{\tilde{N}\tilde{r}}{\sum_j N_j r_j})$
 $Z_j | Y_j \sim Hypergeom(N_j, Y_j, n_j)$

Likelihood:

$$\mathcal{L}(\tilde{Y}, \tilde{\eta}, \alpha, \phi, \tau | \tilde{Z}, Y_{+}) \propto P(\tilde{Z}, Y_{+} | \tilde{Y}, \tilde{\eta}) \times P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | Y_{+}, \tilde{Y}, \tilde{\eta}) \times P(Y_{+} | \tilde{Y}, \tilde{\eta}) \times P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}) \times P(Y_{+}, \tilde{Y} | \tilde{\eta}) \times P(\eta | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}) \times P(\tilde{Y} | Y_{+}, \tilde{\eta}) \times P(Y_{+} | \tilde{\eta}) \times P_{b}(\tilde{\eta} - \alpha | \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

One iteration of MCMC Algorithm:

Steps 1-5 are the same as Alg 3.1.

- 6. Draw proposal for each Y_i
 - Randomly pair all areas with another area (without replacement)
 - For each pair (Y_{k1}, Y_{k2}) , draw a natural number J from $\{0, ..., f_Y\}$ and then increase and decrease Y_{k1} and Y_{k2} by that J, respectively
- 7. Accept proposal for \tilde{Y} with probability

$$\frac{\prod_{i} P(Z_i|Y_i^P) P(\tilde{Y}^P|Y_+, \eta^C)}{\prod_{i} P(Z_i|Y_i^C) P(\tilde{Y}^C|Y_+, \eta^C)}$$

Estimating $P(\tilde{Y}, Y_+, \alpha, \tilde{\eta}, \phi, \tau | \tilde{Z}, \hat{Y}_+)$ (assuming we have an estimate of total 3.3 deaths) BYM2

Setting:

$$log(r_{j}) = \eta_{j} = \alpha + b_{j}$$
Priors: $\alpha \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^{2}), b \sim BYM2(\tau, \phi)$
Hyperpriors: $\tau \sim Gamma(0.01, 0.01), \phi \sim Beta(2, 3)$

$$Y_{+}|\tilde{r} \sim Pois(\sum_{j} N_{j}r_{j}) \text{ where } Y_{+} = \sum_{j} Y_{j}$$

$$\tilde{Y}|Y_{+}, \tilde{r} \sim Multinom(Y_{+}, \frac{\tilde{N}\tilde{r}}{\sum_{j} N_{j}r_{j}})$$

$$Z_{j}|Y_{j} \sim Hypergeom(N_{j}, Y_{j}, n_{j})$$

$$\hat{Y}_{+}|Y_{+} \sim \mathcal{N}(Y_{+}, \hat{\sigma}_{Y_{+}}^{2})$$

Calculation of HT estimator, \hat{Y}_+ , and estimated variance, $\hat{\sigma}^2_{Y_+}$ Note the inclusion probability of an individual in area i is $\pi_i = \frac{n_i}{N_i}$ and the inclusion probability of two individuals in area i is $\pi_{ii} = \frac{n_i(n_i-1)}{N_i(N_i-1)}.$ Then it follows,

$$\begin{split} \hat{Y}_{+} &= \sum_{i}^{m} \sum_{j}^{n_{i}} \frac{Z_{ij}}{\pi_{ij}} = \sum_{i}^{m} \frac{N_{i}}{n_{i}} Z_{i} \\ \hat{\sigma}_{Y_{+}}^{2} &= \sum_{i}^{m} \sum_{j}^{n_{i}} \frac{1 - \pi_{i}}{\pi_{i}^{2}} Z_{ij}^{2} + 2 \sum_{i}^{m} \sum_{j}^{n_{i}} \sum_{k>j}^{n_{i}} \frac{\pi_{ii} - \pi_{i}^{2}}{\pi_{i}^{2} \pi_{ii}} Z_{ij} Z_{ik} \\ &= \sum_{i}^{m} \left\{ \frac{1 - \pi_{i}}{\pi_{i}^{2}} Z_{i} + 2 \frac{\pi_{ii} - \pi_{i}^{2}}{\pi_{i}^{2} \pi_{ii}} \sum_{j}^{n_{i}} \sum_{k>j}^{n_{i}} Z_{ij} Z_{ik} \right\} = \sum_{i}^{m} \left\{ \frac{1 - \pi_{i}}{\pi_{i}^{2}} Z_{i} + \frac{\pi_{ii} - \pi_{i}^{2}}{\pi_{i}^{2} \pi_{ii}} Z_{i} (Z_{i} - 1) \right\} \\ &= \sum_{i}^{m} \frac{N_{i} (N_{i} - n_{i})}{n_{i}^{2} (n_{i} - 1)} Z_{i} (n_{i} - Z_{i}) \end{split}$$

Likelihood:

$$\mathcal{L}(\tilde{Y}, Y_{+}, \tilde{\eta}, \alpha, \phi, \tau | \tilde{Z}, \hat{Y}_{+}) \propto P(\tilde{Z}, \hat{Y}_{+} | \tilde{Y}, Y_{+}) \times P(\tilde{Y}, Y_{+} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}) \times P(\hat{Y}_{+} | Y_{+}) \times P(\tilde{Y} | Y_{+}, \tilde{\eta}) \times P(Y_{+} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}) \times P(\hat{Y}_{+} | Y_{+}) \times P(\tilde{Y} | Y_{+}, \tilde{\eta}) \times P(Y_{+} | \tilde{\eta}) \times P_{b}(\tilde{\eta} - \alpha | \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

One iteration of MCMC Algorithm:

Steps 1-5 are the same as Alg 3.1.

- 6. Draw Y_+ from its full conditional, which is simply $\mathcal{N}(\hat{Y}_+, \hat{\sigma}^2_{Y_+})$
- 7. Draw proposal for each Y_i
 - \bullet Randomly choose m numbers which add up to the difference between the previous and current Y_{+} and add those amounts to the respective Y_i s so that they add up to the newly drawn Y_+
 - Randomly pair all areas with another area (without replacement)
 - For each pair (Y_{k1}, Y_{k2}) , draw a natural number J from $\{0, ..., f_Y\}$ and then increase and decrease Y_{k1} and Y_{k2} by that J, respectively
- 8. Accept proposal for \tilde{Y} with probability

$$\frac{\prod_{i} P(Z_i|Y_i^P) P(\tilde{Y}^P|Y_+, \eta^C)}{\prod_{i} P(Z_i|Y_i^C) P(\tilde{Y}^C|Y_+, \eta^C)}$$

4 Admin 2 level models with 1-stage SRS sampling

4.1 Estimating $P(\tilde{Y}, \alpha, \tilde{\eta}, \phi, \tau | \tilde{Z}, \tilde{Y}_+)$ (assuming we know total deaths in each admin 1 area) BYM2

Setting:

$$log(r_j) = \eta_j = \alpha + b_j$$
Priors: $\alpha \sim \mathcal{N}(\mu_\alpha, \sigma_\alpha^2)$, $b \sim BYM2(\tau, \phi)$
Hyperpriors: $\tau \sim Gamma(0.01, 0.01)$, $\phi \sim Beta(2, 3)$
 $Y_{+i}|\tilde{r}_i \sim Pois(\sum_{j \in \delta(i)} N_j r_j)$ where $Y_{+i} = \sum_{j \in \delta(i)} Y_j$
 $\tilde{Y}_i|Y_{+i}, \tilde{r}_i \sim Multinom(Y_{+i}, \frac{N_j r_j}{\sum_{j \in \delta(i)} N_j r_j})$
 $Z_j|Y_j \sim Hypergeom(N_j, Y_j, n_j)$

where i indexes admin1, j indexes admin2, and \tilde{Y}_i is the vector of counts for each admin2 region in admin1 region i.

Likelihood:

$$\mathcal{L}(\tilde{Y}, \tilde{\eta}, \alpha, \phi, \tau | \tilde{Z}, \tilde{Y}_{+}) \propto P(\tilde{Z}, \tilde{Y}_{+} | \tilde{Y}, \tilde{\eta}) \times P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}_{+}, \tilde{Y}, \tilde{\eta}) \times P(\tilde{Y}_{+} | \tilde{Y}, \tilde{\eta}) \times P(\tilde{Y} | \tilde{\eta}) \times P(\tilde{\eta} | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= P(\tilde{Z} | \tilde{Y}) \times P(\tilde{Y}_{+}, \tilde{Y} | \tilde{\eta}) \times P(\eta | \alpha, \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

$$= \Pi_{j} \{ P(Z_{j} | Y_{j}) \} \times \Pi_{i} \{ P(\tilde{Y}_{i} | Y_{+i}, \tilde{\eta}_{i}) \times P(Y_{+i} | \tilde{\eta}_{i}) \} \times P_{b}(\tilde{\eta} - \alpha | \phi, \tau) \times \pi(\alpha) \pi(\phi) \pi(\tau)$$

One iteration of MCMC Algorithm:

Steps 1-5 are the same as Alg 3.1.

- 6. For each admin1 area, indexed by i,
 - Draw J from $\{1,..., |m_i/2|\}$ where m_i is the number of admin2 areas in admin1 area i
 - Randomly choose, without replacement, J admin2 areas to decrease by f_Y and J admin2 areas to increase by f_Y , where f_Y is some natural number
- 7. Accept proposal for \tilde{Y} with probability

$$\frac{\Pi_j P(Z_j|Y_j^P)\Pi_i P(\tilde{Y}_i^P|Y_{+i},\eta_i^C)}{\Pi_j P(Z_j|Y_j^C)\Pi_i P(\tilde{Y}_i^C|Y_{+i},\eta_i^C)}$$

5 Models with two-stage stratified cluster sampling

Sampling Scheme (DHS): The population is split into strata: admin 2 area crossed with urban/rural

Stage 1: For each strata h, a_h clusters are selected, each with probability $\frac{a_h M_{h_i}}{\sum M_{h_i}}$, where M_{h_i} is the total number of households in cluster h_i and a_h is different fixed number for each strata.

Stage 2: For each urban cluster h_{Ui} , g_U households are selected with equal probability, and for each rural cluster h_{Ri} , g_R households are selected with equal probability.

Note: It is unclear how g_U , g_R , and a_h s are chosen exactly, but it is loosely related to the total number of households/clusters in sampling frame.

5.1 Estimating $P(\alpha_U, \alpha_R, \tilde{b}, \tilde{r}, \phi, \tau, \sigma^2 | \tilde{Z}, \tilde{R})$ BYM2, admin level model

Some notation:

- i indexes admin 2 areas, j indexes clusters within admin 2 areas
- N_{ij} and Y_{ij} denotes total births and deaths in admin area i, cluster j, respectively
- n_{ij} and Z_{ij} denotes sampled births and deaths in admin area i, cluster j, respectively
- R_{ij} is an indicator variable denoting whether cluster j in admin area i is sampled

Setting:

$$\begin{aligned} log(r_{ij}) &= \eta_{ij} = \alpha_U I(j \in urban) + \alpha_R I(j \in rural) + b_i + e_{ij} \\ \text{Priors: } &\alpha_U \sim \mathcal{N}(\mu_U, \sigma_U^2), \alpha_R \sim \mathcal{N}(\mu_R, \sigma_R^2), b \sim BYM2(\tau, \phi), e \sim^{IID} \mathcal{N}(0, \sigma^2) \\ \text{Hyperpriors: } &\tau \sim Gamma(0.01, 0.01), \ \phi \sim Beta(2, 3), \ \sigma^2 \sim InvGamma(0.01, 0.01) \\ &Y_{ij}|r_{ij} \sim Pois(N_{ij}r_{ij}) \\ &Z_{ij}|Y_{ij}, R_{ij} = 1 \sim Hypergeom(N_{ij}, Y_{ij}, n_{ij}) \\ &P(Z_{ij}|Y_{ij}, R_{ij} = 0) = I(Z_{ij} = 0) \end{aligned}$$

Likelihood:

$$\mathcal{L}(\alpha_{U}, \alpha_{R}, \tilde{b}, \tilde{\eta}, \phi, \tau, \sigma^{2} | \tilde{Z}, \tilde{R}) \propto P(\tilde{Z}, \tilde{R} | \tilde{\eta}) P(\tilde{\eta} | \alpha_{U}, \alpha_{R}, \tilde{b}, \sigma^{2}) P(\tilde{b} | \phi, \tau) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

$$\propto \Pi_{i}^{m} \Pi_{j \in C_{i}} P(Z_{ij} | R_{ij}, \eta_{ij}) \times P(\tilde{\eta} | \alpha_{U}, \alpha_{R}, \tilde{b}, \sigma^{2}) P(\tilde{b} | \tau, \phi) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

$$= \Pi_{i}^{m} \Pi_{j \in C_{i}: R_{ij} = 1} P(Z_{ij} | R_{ij} = 1, \eta_{ij}) \times P_{e}(\tilde{\eta} - \alpha_{UR} - \tilde{b} | \sigma^{2}) P(\tilde{b} | \tau, \phi) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

$$= \Pi_{i}^{m} \Pi_{j \in C_{i}: R_{ij} = 1} \sum_{y = Z_{ij}}^{N_{ij}} P(Z_{ij}, y | R_{ij} = 1, \eta_{ij}) \times P_{e}(\tilde{\eta} - \alpha_{UR} - \tilde{b} | \sigma^{2}) P(\tilde{b} | \tau, \phi) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

$$= \Pi_{i}^{m} \Pi_{j \in C_{i}: R_{ij} = 1} \sum_{y = Z_{ij}}^{N_{ij}} P(Z_{ij}, y | R_{ij} = 1, \eta_{ij}) \times P_{e}(\tilde{\eta} - \alpha_{UR} - \tilde{b} | \sigma^{2}) P(\tilde{b} | \tau, \phi) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

$$= \Pi_{i}^{m} \Pi_{j \in C_{i}: R_{ij} = 1} \sum_{y = Z_{ij}}^{N_{ij}} P(Z_{ij} | R_{ij} = 1, y) P(y | \eta_{ij}) \times P_{e}(\tilde{\eta} - \alpha_{UR} - \tilde{b} | \sigma^{2}) P(\tilde{b} | \tau, \phi) \pi(\alpha_{U}, \alpha_{R}, \tau, \phi, \sigma^{2})$$

6 Computations for PC priors in stan

6.1 τ , spatial precision

Gumbell II distribution where a = 1/2 and $b = -ln(\alpha)/U$

6.2 ϕ , spatial variance

From Simpson, we have

$$\pi(\phi) = \lambda e^{-\lambda d(\phi)} \left| \frac{\partial d(\phi)}{\partial \phi} \right|$$

, where

$$d(\phi) = \sqrt{2KLD(\phi)} = \sqrt{\phi tr(Q^{-1}) - \phi m - ln|(1-\phi)I + \phi Q^{-1}|}$$

So it follows that

$$\frac{\partial d(\phi)}{\partial \phi} = \frac{1}{2} (2KLD(\phi))^{-1/2} \times \frac{\partial}{\partial \phi} [2KLD(\phi)]$$

$$= \frac{1}{2} (2KLD(\phi))^{-1/2} \times \{tr(Q^{-1}) - m - \frac{\partial}{\partial \phi} ln|(1 - \phi)I + \phi Q^{-1}|\}$$

$$= (8KLD(\phi))^{-1/2} \times \{tr(Q^{-1}) - m - tr\{((1 - \phi)I + \phi Q^{-1})^{-1}(Q^{-1} - I)\}\}$$

$$= (8KLD(\phi))^{-1/2} \times \{tr(Q^{-1} - I) - tr\{((1 - \phi)I + \phi Q^{-1})^{-1}(Q^{-1} - I)\}\}$$

$$= (8KLD(\phi))^{-1/2} \times tr\{(I - ((1 - \phi)I + \phi Q^{-1})^{-1})(Q^{-1} - I)\}$$

This implies the log pdf of the prior on ϕ is given by

$$log\pi(\phi) = log\lambda - \lambda\sqrt{2KLD(\phi)} - \frac{1}{2}log(8KLD(\phi)) + log|tr(W_{\phi,Q})|$$

where $W_{\phi,Q} = (I - ((1 - \phi)I + \phi Q^{-1})^{-1})(Q^{-1} - I)$ or, equivalently,

$$\pi(\phi) = \frac{\lambda}{2\sqrt{2KLD(\phi)}} e^{-\lambda\sqrt{2KLD(\phi)}} |tr(W_{\phi,Q})|$$

Now we need to choose λ to calibrate the distribution s.t. $P(\phi < U) = \alpha$ (find λ which minimizes difference between closed form and output from inla.pc.bym.phi)