

Introducción

Las pantallas LCD son dispositivos diseñados para mostrar información en forma gráfica. LCD significa Liquid Crystal Display (Display de cristal líquido). La mayoría de las pantallas LCD vienen unidas a una placa de circuito y poseen pines de entrada/salida de datos.

Características

- Tamaño: en pulgadas o por numero de líneas
- Resolución: cantidad de pixeles
- Brillo: cantidad de iluminación
- Contraste: diferencia entre obscuro y brillante
- · Angulo de visión: desde donde puede verse
- Número de caracteres: cantidad desplegable

¿Cómo identifico mi Icd?

LiquidCrystal

Para poder enviar datos a nuestro display es necesario ocupar la biblioteca LiquidCrystal, para importarla desde el menú se elige:

sketch → import library → liquidCrystal.

#include <LiquidCrystal.h>

Luego debemos declarar, como si de variables fuera, nuestra pantalla LCD y debemos asignarle un nombre. Además debemos especificar los pines que vamos a usar para comunicar Arduino con la LCD.

Diagrama de conexiones

Pin LCD		
1	VSS	0 V
2	VDD	5 V
3	V0	Potenciómetro (de 0 V a 5 V) para controlar el contraste de la pantalla, o una resistencia de 2,2K a 0 V.
4	RS	Register select
5	R/W	0 V (solo vamos a escribir, no a leer datos)
6	E	enable
7	DB0	(sólo para transmitir datos a 8 bits, cosa que no será necesaria nunca)
8	DB1	
9	DB2	
10	DB3	
11	DB4	BUS de transmisión de datos a 4 bits
12	DB5	
13	DB6	
14	DB7	
15	LED+	5 V con una resistencia de 220 Ω (para LCD con retroiluminación)
16	LED-	0 V (para LCD con retroiluminación)

Descripción detallada de cada pin

- VSS que es el pin de negativo, tierra, 0 volts o GND.
- VDD es la alimentación principal de la pantalla y el chip, lleva 5 volts (recomendable ponerle en serie una resistencia para evitar daños, con una de 220 ohm es suficiente).
- VO es el contraste de la pantalla, debe conectarse con un potenciómetro de unos 10k ohm o una resistencia fija una vez que encontremos el valor deseado de contraste. Tengan en cuenta que si no conectan esto, no verán nada.
- RS es el selector de registro (el microcontrolador le comunica a la LCD si quiere mostrar caracteres o si lo que quiere es enviar comandos de control, como cambiar posición del cursor o borrar la pantalla, por ejemplo).
- RW es el pin que comanda la lectura/escritura. En nuestro caso siempre estará en 0 (conectado a GND) para que escriba en todo momento.
- E es enable, habilita la pantalla para recibir información.
- D0~D3 no los vamos a utilizar. Como pueden ver la pantalla tiene un bus de datos de 8 bits, de D0 a D7. Nosotros solamente utilizaremos 4 bits, de D4 a D7, que nos servirán para establecer las líneas de comunicación por donde se transfieren los datos.
- A y K son los pines del led de la luz de fondo de la pantalla. A se conectará a 4 o 5 volts y K a gnd.

¿Qué podemos usar de LiquidCrystal?

Declaración de nuestra LCD

LiquidCrystal nombreLcd(rs,e,db4,db5,db6,db7);

Dentro del void setup() debemos iniciar la librería para nuestra LCD, utilizando la

función begin() y especificando el tamaño, que en nuestro caso es de 16x2

caracteres:

nombreLcd.begin(16,2);

Probando el LCD

Caracteres preestablecidos

Caracteres propios

Custom Character Generator for HD44780 LCD Modules

Click pixels to generate output.

Pixels

Clear

Invert

Output

