

Quick Reference Manual /ersion 0.7

Amlogic, Ltd.

COPYRIGHT

© 2017 Amlogic, Ltd.

All rights reserved. No part of this document may be reproduced. Transmitted, transcribed, or translated into any language in any form or by any means with the written permission of Amlogic, Ltd.

TRADEMARKS

AMLOGIC is a trademark of Amlogic, Ltd. All other trademarks and registered trademarks are property of their respective companies.

DISCLAIMER

Amlogic Ltd. may make improvements and/or changes in this document or in the product described in this document at any time.

This product is not intended for use in medical, life saving, or life sustaining applications.

Circuit diagrams and other information relating to products of Amlogic Ltd. are included as the case in least or illustrating typical applications. Consequently, complete information sufficient for production design is not not seen as given. Amlogic makes no representations or warranties with respect to the accuracy or completeness of the content of the content of the content.

REVISION HISTORY

Revision Number	Revision Date	Changes
0.1	2017/11/2	Draft version release
0.2	2017/11/10	Update 3.1, 3.2, 3.3 and 3.4, pdate 4.4.1, 4.4.2 and 4.9, update 5.
0.3	2017/12/1	Update 4.9
0.4	2018/1/18	Update VDDQ current to 00 mA, update VDD0V8_AO to VDDAO_0V8, update VDD_DDR, update CIE in description, add PCIE IO multifunction information, update PWM Update Signal Description, optimize the figure quality in 4.6, update 4.3, update AVSS_AMPLL to DVSS, update 4.9, updated Feature Summary
0.5	2018/1/26	Update T p 10.
0.6	2018/3/6	Upda, 4. 2, 4.4.1, 4.4.2, 4.8.
0.7	2018/4/3	Add RDN iming information

Application Scope

TBD

CONTACT INFORM TON

Amlogic, Ltd.
2518 Mission College Brvd, Suite 120
Santa Clara, CA 95054
U.S.A.
www.amlogic.com

Contents

1.	Ge	nera	l Description	4
2.	Fea	ature	es Summary	5
3.	Pin	o Out	Specification	9
	3.1	Pin	-Out Diagram (top view)	9
	3.1	Pin	Order	10
	3.2	Pin	Description	13
	3.3	Pin	Multiplexing Tables	19
	3.4	Sig	nal Descriptions	22
4.	Ор	erati	ing Conditions	27
	4.1	Abs	solute Maximum Ratings	27
	4.2		commended Operating Conditions	27
	4.3	The	ermal Operating Specifications	28
	4.4	DC	Electrical Characteristics	28
	4.4	1.1	Normal GPIO Specifications (For DIO)	28
	4.4	1.2	Open Drain GPIO Specifications (For DIO_OD)	28
	4.4	1.3	DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications	28
	4.5	Rec	commended Oscillator Electrical Characteria	29
	4.6	Tim	ning Information	31
	4.6	5.1	I2C Timing Specification	31
	4.6	5.2	EMMC/SD Timing Specificat op	
	4.6	5.3	NAND Timing Specification	35
	4.6	5.4	SPICC Timing Specification	37
	4.6	5.5	SPIFC Timing Specification	37
	4.6	5.6	Ethernet Time g specification	39
	4.6	5.7	Au to Tinking Specification	41
	4.6	8.8	PDM riming Specification	42
	4.7	Pov	ver On Config	44
	4.8	Rec	commended Power on Sequence	45
	4.9	Pov	ver Consumption	46
	4.10	S	torage and Baking Conditions	46
5.	Me	echai	nical Dimensions	47

1. General Description

S905Y2 is an advanced application processor designed for Dongle/OTT/IP Set Top Box(STB) applications. It integrates a powerful CPU/GPU subsystem, a secured 4K video CODEC engine and a best-in-class HDR image processing pipeline with all major peripherals to form the ultimate low power multimedia AP.

The main system CPU is a quad-core ARM Cortex-A53 CPU with unified L2 cache to improve system performance. In addition, the Cortex-A53 CPU includes the NEON SIMD co-processor to improve software media processing capability.

The graphic subsystem consists of two graphic engines and a flexible video/graphic output pipeline. The ARM G31 MP2 GPU handles all OpenGL ES 3.2 Vulkan 1.0 and OpenCL 2.0 graphic programs, while the 2.5D graphics processor handles additional scaling, alpha, rotation and color space conversion operations. Together, the CPU and GPU handle all operating system, networking, user-interface and gaming related tasks. The video output pipeline includes Dolby Vision Optional, Dynamic HDR10, HDR10, HLG and PRIME HDR processing, REC709/BT2020 processing, motion adaptive edge enhancing of the lacing, flexible programmable scalar, and many picture enhancement filters before passing the enhanced image to the video output ports.

Amlogic Video Engine (AVE-10) offloads the Cortex-A53 CPUs from all video CODEC processing to have sedicated hardware video decoder and encoder. AVE-10 is capable of decoding 4Kx2K resolution video at 75fpc of the applete Trusted Video Path (TVP) for secure applications and supports full formats including MVC, MPEG-1/2/4 17 17 AVS, AVS+, AVS2, RealVideo, MJPEG streams, H.264, H265-10, VP9 and also JPEG pictures with no size limitation. The appendent encoder is able to encode in JPEG or H.265/H.264 up to 1080p at 60fps.

S905Y2 integrates all standard audio/video input/output interfaces including a IDMI2.1 transmitter with 3D, Dynamic HDR, CEC and HDCP 2.2 support, multiple TDM, PCM, I2S and SPDIF digital aud b in put/output interfaces, and 8 channel far-field PDM digital microphone (DMIC) inputs.

S905Y2 also integrates a set of functional blocks for digital TV brockcasting streams. The built-in two demux can process the TV streams from the serial transport stream input interface where the stream is connect to external tuner/demodulator.

The processor has rich advanced network and peripher (int. faces, including, dual USB 2.0 high-speed ports (one OTG and one HOST), one USB3.0 and PCIE 2.0 combo interface and pulliple SDIO/SD card controllers, UART, I2C, high-speed SPI and PWMs.

Standard development environment utilizing Android tool chain is supported. Please contact your AMLOGIC sales representative for more information.

2. Features Summary

CPU Sub-system

- Quad core ARM Cortex-A53 CPU
- ARMv8-A architecture with Nec an Crypto extensions
- 8-stage in-order full dual submittee
- Unified system L2 cache
- Build-in Cortex-M4 ce for always on processing
- Build-in Cortex-Notate or system control processing
- Advanced TustZ ecurity system
- Application based traffic optimization using internal QoS-based switching fabrics

3D Graphics Processing Unit

- ARM G31 MP2 GPU
- 4-wide warps, dual texture pipe, 2x 4-wide execution engines (EE)
- Concurrent multi-core processing
- OpenGL ES 3.2, Vulkan 1.0 and OpenCL 2.0 support

2.5D Graphics Processor

- Fast bitblt engine with dual inputs and single output
- Programmable raster operations (ROP)
- Programmable polyphase scaling filter

- Supports multiple video formats 4:2:0, 4:2:2 and 4:4:4 and multiple pixel formats (8/16/24/32 bits graphics layer)
- Fast color space conversion
- Advanced anti-flickering filter

Crypto Engine

- AES/ block cipher with 128/256 bits keys, standard 16 bytes block size and streaming ECB, CBC and CTR modes
- TDES block cipher with ECB and CBC modes supporting 64 bits key for DES and 192 bits key for 3DES
- Hardware crypto key-ladder operation and DVB-CSA for transport stream encryption
- Built-in hardware True Random Number Generator (TRNG), CRC and SHA-1/SHA-2/HMAC SHA engine

Video/Picture CODEC

- Amlogic Video Engine (AVE) with dedicated hardware decoders and encoders
- Support multi-video decoder up to 4Kx2K@60fps+1x1080P@60fps
- Supports multiple "secured" video decoding sessions and simultaneous decoding and encoding and encoding sessions and simultaneous decoding sessions are sessions as sessions are sessions.
- Video/Picture Decoding
 - 0 VP9 Profile-2 up to 4Kx2K@60fps
 - H.265 HEVC MP-10@L5.1 up to 4Kx2K@60fps 0
 - AVS2-P2 Profile up to 4Kx2K@60fps
 - H.264 AVC HP@L5.1 up to 4Kx2K@30fps \circ
 - H.264 MVC up to 1080P@60fps 0
 - MPEG-4 ASP@L5 up to 1080P@60fps (ISO-14496) 0
 - WMV/VC-1 SP/MP/AP up to 1080P@60fps 0
 - AVS-P16(AVS+) /AVS-P2 JiZhun Profile up to 1080P 0
 - MPEG-2 MP/HL up to 1080P@60fps (ISO-138 0
 - MPEG-1 MP/HL up to 1080P@60fps (ISO-14 0
 - RealVideo 8/9/10 up to 1080P@60fps 0
 - Multiple language and multiple form subtitle video support 0
 - 0
 - Supports JPEG thumbnail, scaling otation and transition effects
 - ppeg, *.dat, *.avi, *.mov, *.iso, *.mp4, *.rm and *.jpg file formats Supports *.mkv, *.wmv m
- Video/Picture Encoding
 - 5/H.264 encoder with configurable performance/bit-rate Independent JP
 - JPEG image enco 0
 - encoding up to 1080P@60fps with low latency H.265/H.26 VIL.

8th Generation Advaged milgic TruLife Image Engine

- Supports olby dision optional, Dynamic HDR10, HDR10, HLG and Technicolor HDR processing
- sated noise reduction and 3D digital noise reduction for random noise
- Block noise, mosquito noise, spatial noise, contour noise reduction
- Motion compensated and motion adaptive de-interlacer
- Edge interpolation with low angle protection and processing
- 3:2/2:2 pulldown and Video on Film (VOF) detection and processing
- Smart sharpness with SuperScaler technology including de-contouring, de-ring, LTI, CTI, de-jaggy, peaking
- Dynamic non-Linear contrast enhancement
- All dimension multiple regions smart color management including blue/green extension, flesh-tone correction, wider gamut for video
- 2 video planes and 3 graphics planes
- Independent HDR re-mapping of video and graphic layer

Video Output

 Built-in HDMI 2.1 transmitter including both controller and PHY with CEC, Dynamic HDR and HDCP 2.2, 4Kx2K@75 max resolution output

Audio Decoder and Input/Output

- Supports MP3, AAC, WMA, RM, FLAC, Ogg, Dolby Digital Optional, Dolby Digital Plus Optional, DTS Optional and programmable with 7.1/5.1 down-mixing
- Built-in serial digital audio SPDIF/IEC958 input and output
- 2 built-in TDM/PCM/I2S ports with TDM/PCM mode up to 384kHz x32bits x 8ch or 96kHz x 32bits x 32ch and I2S mode up to 384kHz x 32bits x 8ch
- Digital microphone PDM input with programmable CIC, LPF & HPF, support up to 8 DMICs

Memory and Storage Interface

- 32-bit DRAM memory interface with dual ranks and max 4GB total address space
- Compatible with JEDEC standard DDR3-2133 /DDR3L-2133 /DDR4-2666 /LPDDR3-2133 PDD 4-3200 SDRAM
- Supports SLC/MLC/TLC NAND Flash with 60-bit ECC, compatible to Toshiba toggle mode in addition to ONFI 2.2.
- SDSC/SDHC/SDXC card and SDIO interface with 1-bit and 4-bit data bus width sur 70 ting spec version 2.x/3.x/4.x DS/HS modes up to UHS-I SDR104
- eMMC and MMC card interface with 1/4/8-bit data bus width fully support spec version 5.0 HS400
- Supports serial 1, 2 or 4-bit NOR Flash via SPI interface
- · Built-in 4k bits One-Time-Programming memory for key storage

Network Interface

- WiFi/IEEE802.11 & Bluetooth supporting via PCIE/SDIO USB/UART/PCM
- Network interface optimized for mixed WIFI and BT / City

Digital Television Interface

- Two serial Transport stream (TS) input into racy with built-in demux processor for connecting to external digital TV tuner/demodulator
- Built-in PWM, I2C and SPI interfaces to trol tuner and demodulator
- Integrated ISO 7816 smart card ontaller

Integrated I/O Controllers and Interaces

- Dual USB 2.0 high-sp d USB I/O, one USB Host and one USB OTG
- One USB SS and Control of the Configurations:
 - o # 1 USB 2.0 Host + 1 PCle
 - USB OTG + 1 USB3.0 (No PCIe)
- Multiple PWM, UART, I2C and SPI interface with slave select
- Programmable IR remote input/output controllers
- Built-in 10bit SAR ADC with 2 input channels
- A set of General Purpose IOs with built-in pull up and pull down

System, Peripherals and Misc. Interfaces

- Integrated general purpose timers, counters, DMA controllers
- 24 MHz crystal input
- Embedded debug interface using ICE/JTAG

Power Management

- Multiple internal power domains controlled by software
- Multiple sleep modes for CPU, system, DRAM, etc.
- Multiple internal PLLs for DVFS operation
- Multi-voltage I/O design for 1.8V and 3.3V
- Power management auxiliary processor in a dedicated always-on (AO) power domain for system standby

Security

- Trustzone based Trusted Execution Environment (TEE)
- Secured boot, encrypted OTP, encrypted DRAM with memory integrity checker, hardware key ladder and internal control buses and storage
- Separated secure/non-secure Entropy true RNG
- Pre-region/ID memory security control and electric fence
- Hardware based Trusted Video Path (TVP), video watermarking and secured contents (needs SecureOS software)
- Secured IO and secured clock

Package

FCBGA, 10.9mm*10.9mm, 0.5mm pitch, RoHS compliant

3. Pin Out Specification

3.1 Pin-Out Diagram (top view)

3.1 Pin Order

Table 1. Pin Order

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
A1	DDR_DQSN2	E25	DVSS	L4	DVSS
A3	DDR_DQSP2	E40	DVSS	L19	DVSS
A8	DDR_DQ19	E42	HDMITX_2P	L25	AVDD33_HDMI
A12	DVSS	F7	AC_38	L39	DVSS
A16	DDR_DQ28	F10	DVSS	L41	HDMITX_OP
A20	GPIOC_3	F13	DDR_DQ29	N1	AC_34
A25	GPIOC_0	F16	DDR_DQM3	N3	AC_35
A29	DVSS	F22	GPIOC_7	N6	AC_22
A33	PCIE_RXN	F28	GPIOA_14	N8	AU_//
A37	PCIE_TXP	F31	HCSL_REXT	N10	C 372
A40	USBHOST_A_DP	G2	DDR_DQ23	N12	VSS
A42	USBHOST_A_DM	G4	DDR_DQ22	N14	VDDQ
B6	DVSS	G19	DDR_DQ25	6	DVSS
B10	DDR_DQ17	G25	DVSS	(P)	VDD_EE
B14	DDR_DQSN3	G33	DVSS	1.78	AVDD0V8_PCIE
B18	DVSS	G35	USBOTG_B_ID	N30	AVDD18_PCIE
B23	GPIOC_4	G37	USBOTG_B_VBU	N33	AVDD18_USB
B27	GPIOC_6	G39	HDMITX_2N	N35	GPIOH_8
B31	PCIE_CLK_p	G41	DVSS	N37	GPIOH_4
B35	DVSS	H7	AC_31	N40	HDMITX_0N
C2	DDR_DQ20	H10	UNR_O 1	N42	DVSS
C4	DVSS	H13	DK 2030	P18	VDD_EE
C8	DDR_DQ18	H16	DLR_DQ27	P20	DVSS
C12	DDR_DQ16	H22	VDDIO_C	P24	DVSS
C20	GPIOC_2		USB_TXRTUNE	P26	AVSS_HCSL
C25	GPIOC_1	?1	PCIE_REXT	R2	AC_29
C29	PCIE_CLK_n	1	AC_20	R4	DVSS
C33	PCIE_RXP	J3	AC_21	R30	AVDD18_HCSL
C37	DVSS	J19	DDR_DQ24	R39	HDMITX_CKP
C39	USBOT _b_ \P	J25	AVDD33_USB	R41	HDMITX_CKN
C41	DOTO DOM	J40	HDMITX_1P	Т6	AC_5
D6	QR_LQM2	J42	HDMITX_1N	Т8	AC_4
D10	DVSS	К7	AC_30	T10	PVREF
D14	DDR_DQSP3	K10	DDR_RSTn	T12	DVSS
D16	DVSS	K13	DVSS	T14	VDDQ
D18	DDR_DQ26	K16	DVSS	T16	DVSS
D23	GPIOC_5	K22	DVSS	T22	VDD_EE
D27	GPIOA_15	K28	AVDD0V8_USB	T28	AVDD0V8_HDMI
D31	DVSS	K31	GPIOE_0	T33	AVDD18_HDMI
D35	PCIE_TXN	K33	AVSS_HPLL	T35	GPIOH_5
E1	DVSS	K35	HDMI_CEXT	T37	GPIOH_6
E3	DDR_DQ21	K37	HDMI_REXT	U1	DVSS
E20	DVSS	L2	DVSS	U3	AC_33

BALL#	NET NAME	BALL#	NET NAME	BALL#	NET NAME
U18	VDD_DDR	AB36	GPIOAO_0	AJ18	VDDCPU
U20	DVSS	AC23	DVSS	AJ20	VDDCPU
U24	DVSS	AD2	AC_14	AJ24	DVSS
U26	DVSS	AD4	DVSS	AJ26	AVSS_PLL
U30	DVSS	AD13	VDDQ	AJ30	DVSS
U40	DVSS	AD15	DVSS	AK1	AC_2
U42	GPIOH_3	AD17	VDD_DDR	AK3	AC_36
W2	AC_24	AD20	DVSS	AK12	DVSS
W4	AC_25	AD25	DVSS	AK14	DVSS
W6	AC_23	AD28	DVSS	AK16	DVSS
W8	DVSS	AD30	VDD_EE	AK22	VDDCPU
W10	PZQ	AD39	GPIOAO_9	AK28	PE
W12	DVSS	AD41	GPIOAO_6	AK40 🔺 🚄	PIOX_6
W14	VDDQ	AE7	AC_12	AK42	VSS
W16	DVSS	AE9	AC_13	AL6	AC_18
W22	VDD_EE	AE11	DVSS	7.8	AC_3
W28	VDD_EE	AE22	VDDCPU	P	DVSS
W30	DVSS	AE32	VDDAO_0V8	7 24	DVSS
W33	GPIOH_7	AE34	VDDIO_AO	AL30	DVSS
W35	SARADC_CH1	AE36	AVDD18_SARAD	AL33	DVSS
W37	GPIOAO_10	AF1	DVSS	AL35	GPIOX_13
W39	GPIOH_1	AF3	AC_15	AL37	GPIOE_1
W41	GPIOH_0	AF5	AC_10	AM2	DVSS
Y18	VDD_DDR	AF18	ADO O	AM4	AC_0
Y20	DVSS	AF20	(DL PU	AM19	VDDCPU
Y24	DVSS	AF24	AV-D18_DPLL	AM26	DVSS
Y26	DVSS	AF24	DVSS	AM39	GPIOX_2
AA1	AC_28	73	GPIOAO_7	AM41	GPIOX_7
AA3	AC_26	, 40	DVSS	AN7	DVSS
AA5	DVSS	AF42	GPIOAO_8	AN10	AC_1
AA22	DVSS	AG12	DVSS	AN13	DVSS
AA38	DVSS	AG14	VDDQ	AN16	DVSS
AA40	GPIOH	AG16	DVSS	AN22	VDDCPU
AA42	AKADU_C'_2	AG22	VDDCPU	AN28	DVSS
AB7	C_6	AG28	VDD_EE	AN31	DVSS
AB9	AC_/	AG30	VDD_EE	AP1	AC_8
AB11	DVSS	AH2	AC_11	AP3	DVSS
AB13	AVDD_DDRPLL	AH4	DVSS	AP19	GPIOAO_5
AB15	DVSS	AH6	AC_17	AP25	VDDIO_X
AB17	DVSS	AH8	AC_16	AP33	GPIOX_12
AB20	VDD_EE	AH10	AC_9	AP35	GPIOX_14
AB25	VDD_EE	AH33	GPIOAO_2	AP37	TEST_N
AB28	DVSS	AH35	VDD18_AO_XTAL	AP40	DVSS
AB30	DVSS	AH37	RESET_N	AP42	GPIOX_3
AB32	VDDIO_H	AH39	SYS_OSCOUT	AR7	DDR_DQ7
AB34	GPIOAO_1	AH41	SYS_OSCIN	AR10	DDR_DQ5

	NET NAME	BALL#	NET NAME	BALL#	NET NAME
AR13	DDR_DQM0	AV18	BOOT_1	AY39	DVSS
AR16	DDR_DQ0	AY37	GPIOX_11	AY41	GPIOX_1
AR22	GPIOAO_3	AV20	BOOT_3	BA6	DVSS
AR28	BOOT_10	AV25	BOOT_11	BA10	DDR_DQ9
AR31	GPIOX_18	AV40	GPIOX_0	BA14	DDR_DQSP0
AT2	DDR_DQ15	AV42	DVSS	BA18	BOOT_0
AT4	DDR_DQ12	AW6	DDR_DQSN1	BA23	DVSS
AT19	VDDIO_BOOT	AW10	DVSS	BA27	BOOT_6
AT25	GPIOAO_4	AW14	DDR_DQSN0	BA31	BOOT_14
AT39	GPIOX_4	AW23	BOOT_4	BA35	DVSS
AT41	GPIOX_5	AW27	BOOT_7	BB1	DDP_DQM1
AU7	DDR_DQ6	AW31	DVSS	BB3	D.S
AU10	DDR_DQ4	AW35	GPIOX_10	BB8	DR_DQ11
AU13	DDR_DQ3	AY2	DDR_DQ14	BB12	VSS
AU16	DDR_DQ1	AY4	DDR_DQSP1	BB16	DDR_DQ2
AU22	GPIOAO_11	AY8	DDR_DQ10	PP20	DVSS
AU28	BOOT_15	AY12	DDR_DQ8	P'_	BOOT_5
AU31	BOOT_9	AY16	DVSS	129	DVSS
AU33	GPIOX_19	AY20	BOOT_2	BB33	BOOT_12
AU35	GPIOX_17	AY25	DVSS	BB37	GPIOX_9
AU37	GPIOX_15	AY29	BOOT_13	BB40	GPIOX_8
AV1	DVSS	AY33	BOOT_	BB42	GPIOX_16
AV3	DDR_DQ13				
				BB37 BB40	GPIOX_9 GPIOX_8

3.2 Pin Description

The S905Y2 application processor pin assignment is described in the following table.

Table 2. Pin Name assignments

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
GPIOX- Refer to Tab	ole 3 for functional mu	ıltiplex informat	ion.		
GPIOX_0	DIO	UP	General purpose input/output bank X signal 0	VDDIO_X	-
GPIOX_1	DIO	UP	General purpose input/output bank X signal 1	VDDIO_X	-
GPIOX_2	DIO	UP	General purpose input/output bank X signal 2	VDDIO_X	-
GPIOX_3	DIO	UP	General purpose input/output bank X signal 3	VDDIO_X	-
GPIOX_4	DIO	UP	General purpose input/output bank X signal 4	VDDIO_X	-
GPIOX_5	DIO	UP	General purpose input/output bank X signal 5	VDDIO_X	-
GPIOX_6	DIO	DOWN	General purpose input/output bank X signal 6	VDDIO	-
GPIOX_7	DIO	UP	General purpose input/output bank X signal 7	V⊾ 'O_X	-
GPIOX_8	DIO	UP	General purpose input/output bank X signal 8	DDIC X	-
GPIOX_9	DIO	UP	General purpose input/output bank X signal 9	(DDIO_X	-
GPIOX_10	DIO	UP	General purpose input/output bank X signal 10	VDDIO_X	-
GPIOX_11	DIO	UP	General purpose input/output bank X signt 1	VDDIO_X	-
GPIOX_12	DIO	UP	General purpose input/output bank signal 12	VDDIO_X	-
GPIOX_13	DIO	UP	General purpose input/output lank x ignal 13	VDDIO_X	-
GPIOX_14	DIO	UP	General purpose input, that bank signal 14	VDDIO_X	-
GPIOX_15	DIO	UP	General purpose input/out, t bank X signal 15	VDDIO_X	-
GPIOX_16	DIO	UP	General purpose in t/output bank X signal 16	VDDIO_X	-
GPIOX_17	DIO	DOWN	General purp e ut output bank X signal 17	VDDIO_X	-
GPIOX_18	DIO	UP	General purpose put/output bank X signal 18	VDDIO_X	-
GPIOX_19	DIO	Z	General parose input/output bank X signal 19	VDDIO_X	-
VDDIO_X			ver pply for GPIO bank X	VDDIO_X	-
GPIOA- Refer to Tab	ole 4 for functional mu	ıltiplex inform			
GPIOA_14	DIO	UP	eneral purpose input/output bank A signal 14	VDDIO_AO	-
GPIOA_15	DIO	IIP V	General purpose input/output bank A signal 15	VDDIO_AO	-
VDDIO_AO	Р		Power supply for GPIO bank A and AO	-	-
GPIOC- Refer to Tab	le 5 for function	tiplex informati	ion.		
GPIOC_0	DIO	UP	General purpose input/output bank C signal 0	VDDIO_C	-
GPIOC_1		UP	General purpose input/output bank C signal 1	VDDIO_C	-
GPIOC_2	10	UP	General purpose input/output bank C signal 2	VDDIO_C	-
GPIOC_3	JIO	UP	General purpose input/output bank C signal 3	VDDIO_C	-
GPIOC_4	DIO	UP	General purpose input/output bank C signal 4	VDDIO_C	-
GPIOC_5	DIO	UP	General purpose input/output bank C signal 5	VDDIO_C	-
GPIOC_6	DIO	UP	General purpose input/output bank C signal 6	VDDIO_C	-
GPIOC_7	OD3.3V	Z	General purpose input/output bank C signal 7	VDDIO_C	-
VDDIO_C	Р	-	Power supply for GPIO bank C	-	-
BOOT - Refer to Tab	le 6 for functional mu	Iltiplex informati	on.	•	•
BOOT_0	DIO	UP	General purpose input/output bank BOOT signal 0	VDDIO_BOOT	-
BOOT_1	DIO	UP	General purpose input/output bank BOOT signal 1	VDDIO_BOOT	-
BOOT_2	DIO	UP	General purpose input/output bank BOOT signal 2	VDDIO_BOOT	-
BOOT_3	DIO	UP	General purpose input/output bank BOOT signal 3	VDDIO_BOOT	-

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
BOOT_4	DIO	UP	General purpose input/output bank BOOT signal 4	VDDIO_BOOT	-
BOOT_5	DIO	UP	General purpose input/output bank BOOT signal 5	VDDIO_BOOT	-
BOOT_6	DIO	UP	General purpose input/output bank BOOT signal 6	VDDIO_BOOT	-
BOOT_7	DIO	UP	General purpose input/output bank BOOT signal 7	VDDIO_BOOT	-
BOOT_8	DIO	UP	General purpose input/output bank BOOT signal 8	VDDIO_BOOT	-
BOOT_9	DIO	UP	General purpose input/output bank BOOT signal 9	VDDIO_BOOT	-
BOOT_10	DIO	UP	General purpose input/output bank BOOT signal 10	VDDIO_BOOT	-
BOOT_11	DIO	UP	General purpose input/output bank BOOT signal 11	VDDIO_BOOT	-
BOOT_12	DIO	DOWN	General purpose input/output bank BOOT signal 12	VDDIO_BOOT	-
BOOT_13	DIO	DOWN	General purpose input/output bank BOOT signal 13	VDDIO_BOOT	-
BOOT_14	DIO	UP	General purpose input/output bank BOOT signal 14	VDDIO_BOO	-
BOOT_15	DIO	UP	General purpose input/output bank BOOT signal 15	VDDIO_LOOT	-
VDDIO_BOOT	Р	-	Power supply for GPIO bank BOOT	-	-
GPIOH - Refer to		L			
Table 7 for functional	l multiplex informa	tion.			
GPIOH_0	OD5V	Z	General purpose input/output bank H signaro	VDDIO_H	-
GPIOH_1	OD5V	Z	General purpose input/output bank H sign	VDDIO_H	-
GPIOH_2	OD5V	Z	General purpose input/output bank signal 2	VDDIO_H	-
GPIOH_3	OD5V	Z	General purpose input/output bank . signal 3	VDDIO_H	-
GPIOH_4	DIO	DOWN	General purpose input/ atpu bank I signal 4	VDDIO_H	-
GPIOH_5	DIO	DOWN	General purpose input/ou. ht bank H signal 5	VDDIO_H	-
GPIOH_6	DIO	DOWN	General purpose in t/output bank H signal 6	VDDIO_H	-
GPIOH_7	DIO	DOWN	General purpose ut Sutput bank H signal 7	VDDIO_H	-
GPIOH_8	OD5V	Z	General pt. lostut/output bank H signal 8	VDDIO_H	-
VDDIO_H	P	-	Power's alvior GPIO bank H	-	-
GPIOAO - Refer to Tal	l ble 8 for functional	multiplex informa			
GPIOAO_0	DIO	UP .	pen al purpose input/output bank AO signal 0	VDDIO_AO	-
GPIOAO_1	DIO	UP	eneral purpose input/output bank AO signal 1	VDDIO_AO	-
GPIOAO_2	DIO	PONT	General purpose input/output bank AO signal 2	VDDIO_AO	-
GPIOAO_3	DIO	UP	General purpose input/output bank AO signal 3	VDDIO_AO	-
GPIOAO 4	DIO	DWN	General purpose input/output bank AO signal 4	VDDIO_AO	_
GPIOAO_5	DIO		General purpose input/output bank AO signal 5	VDDIO_AO	_
GPIOAO_5 GPIOAO_6	010	UP	General purpose input/output bank AO signal 6	VDDIO_AO	-
	PIO	DOWN	General purpose input/output bank AO signal 7		-
GPIOAO_7	0	UP	1 1 1 1	VDDIO_AO	-
GPIOAO_8		UP	General purpose input/output bank AO signal 8	VDDIO_AO	-
GPIOAO_9	DIO	DOWN	General purpose input/output bank AO signal 9	VDDIO_AO	- -
GPIOAO_10	DIO	UP	General purpose input/output bank AO signal 10	VDDIO_AO	-
GPIOAO_11	DIO	DOWN	General purpose input/output bank AO signal 11	VDDIO_AO	
TEST_N	DIO	UP	SOC test pin and general purpose input/output bank AO signal 12. Should be pulled up during normal power-on.	VDDIO_AO	-
RESET_N	DI	DOWN	System reset input	VDDIO_AO	-
VDDIO_AO	P	-	Power supply for GPIO bank A and AO	VDDIO_AO	-
GPIOE - Refer to Table		ultiplex informati	1.,,	122.0_7.0	
GPIOE_0		Z	General purpose input/output bank E signal 0	VDD18_AO_XTAL	-
		_		+	+
GPIOE_1		Z	General purpose input/output bank E signal 1	VDD18_AO_XTAL	I

Net Name	let Name Type Default Pull UP/DN Description		Power Domain	If Unused	
VDD18_AO_XTAL	Р	-	Power supply for Always On domain	-	-
SARADC		•			
SARADC_CH1	Al	-	ADC channel 1 input	AVDD18_SARADC	NC
SARADC_CH2	Al	-	ADC channel 2 input	AVDD18_SARADC	NC
AVDD18_SARADC	VDD18_SARADC P - Analog power supply for SARADC -		-	To 1.8V	
HDMI TX		•			•
HDMITX_0P	AO	-	HDMI TMDS data0 positive output	HDMITX_AVDD33	NC
HDMITX_0N	AO	-	HDMI TMDS data0 negative output	HDMITX_AVDD33	NC
HDMITX_1P	AO	-	HDMI TMDS data1 positive output	HDMITX_AVDD33	NC
HDMITX_1N	AO	-	HDMI TMDS data1 negative output	HDMITX_AVDD33	NC
HDMITX_2P	AO	-	HDMI TMDS data1 positive output	HDMITX_AV D	NC
HDMITX_2N	AO	-	HDMI TMDS data1 negative output	HDMITX VDL	NC
HDMITX_CKP	AO	-	HDMI TMDS clock positive output	HI VITX_ VDD33	NC
HDMITX_CKN	AO	-	HDMI TMDS clock negative output	DMI x_AVDD33	NC
HDMI_REXT	Α	-	HDMI output strength setting resistor	HDMI_AVDD18	NC
HDMI CEXT	Α	-	HDMI TX external filter cap	HDMI_AVDD18	NC
AVDD33_HDMI	Р	-	Analog power supply 3.3V for HDMI	-	To 3.3V
AVDD18_HDMI	Р	-	Analog power supply 1.8V for HDM	-	To 1.8V
AVDD0V8_HDMI	Р	-	Power supply 0.8V for HDMI	-	To VDD_EE
DRAM		<u> </u>	(1)	l	
AC_0	DO	-	DDR PHY address/comman_Ycontrol signal bit 0	VDDQ	-
AC_1	DO	-	DDR PHY address/command/control signal bit 1	VDDQ	-
AC_2	DO	-	DDR PHY add ss min and/control signal bit 2	VDDQ	-
AC_3	DO	-	DDR PHY at tres command/control signal bit 3	VDDQ	-
AC_4	DO	-	DDR PHI Adress/command/control signal bit 4	VDDQ	-
AC_5	DO	-	R Pr. address/command/control signal bit 5	VDDQ	-
AC_6	DO	-	DR HY address/command/control signal bit 6	VDDQ	-
AC_7	DO	-	R PHY address/command/control signal bit 7	VDDQ	-
AC_8	DO		DDR PHY address/command/control signal bit 8	VDDQ	-
AC_9	DO	-	DDR PHY address/command/control signal bit 9	VDDQ	-
AC_10	DO	-	DDR PHY address/command/control signal bit 10	VDDQ	-
AC_11	DO	-	DDR PHY address/command/control signal bit 11	VDDQ	-
AC_12		-	DDR PHY address/command/control signal bit 12	VDDQ	-
AC_13	Po	-	DDR PHY address/command/control signal bit 13	VDDQ	-
AC_14	1	-	DDR PHY address/command/control signal bit 14	VDDQ	-
AC_15	DO	-	DDR PHY address/command/control signal bit 15	VDDQ	-
AC_16	DO	-	DDR PHY address/command/control signal bit 16	VDDQ	-
AC_17	DO	-	DDR PHY address/command/control signal bit 17	VDDQ	-
AC_18	DO	-	DDR PHY address/command/control signal bit 18	VDDQ	-
AC_20	DO	-	DDR PHY address/command/control signal bit 20	VDDQ	-
AC_21	DO	-	DDR PHY address/command/control signal bit 21	VDDQ	-
AC_22	DO	-	DDR PHY address/command/control signal bit 22	VDDQ	-
AC_23	DO	-	DDR PHY address/command/control signal bit 23	VDDQ	-
AC_24	DO	-	DDR PHY address/command/control signal bit 24	VDDQ	-
AC_25	DO	<u> </u>	DDR PHY address/command/control signal bit 25	VDDQ	-

Net Name	Name Type Default Pull UP/DN Description		Power Domain	If Unused	
AC_26	DO	-	DDR PHY address/command/control signal bit 26	VDDQ	-
AC_28	DO	-	DDR PHY address/command/control signal bit 28	VDDQ	-
AC_29	DO	-	DDR PHY address/command/control signal bit 29	VDDQ	-
AC_30	DO	-	DDR PHY address/command/control signal bit 30	VDDQ	-
AC_31	DO	-	DDR PHY address/command/control signal bit 31	VDDQ	=
AC_32	DO	-	DDR PHY address/command/control signal bit 32	VDDQ	-
AC_33	DO	-	DDR PHY address/command/control signal bit 33	VDDQ	-
AC_34	DO	-	DDR PHY address/command/control signal bit 34	VDDQ	-
AC_35	DO	-	DDR PHY address/command/control signal bit 35	VDDQ	-
AC_36	DO	-	DDR PHY address/command/control signal bit 36	VDDQ	-
AC_37	DO	-	DDR PHY address/command/control signal bit 37	VDDQ	-
AC_38	DO	-	DDR PHY address/command/control signal bit 38	VDDQ	=
DDR_RSTn	DO	-	DDR3/DDR4/LPDDR4 RSTn	N 70	
DDR_DQ0	DIO	-	DRAM data bus bit 0	DDQ	-
DDR_DQ1	DIO	-	DRAM data bus bit 1	Vbpd	-
DDR_DQ2	DIO	-	DRAM data bus bit 2	/DDQ	-
DDR_DQ3	DIO	-	DRAM data bus bit 3	VDDQ	-
DDR_DQ4	DIO	-	DRAM data bus bit 4	VDDQ	-
DDR_DQ5	DIO	-	DRAM data bus bit 5	VDDQ	-
DDR_DQ6	DIO	-	DRAM data bus bit 6	VDDQ	-
DDR_DQ7	DIO	-	DRAM data bus bit 7	VDDQ	-
DDR_DQ8	DIO	-	DRAM data bus bit	VDDQ	-
DDR_DQ9	DIO	-	DRAM data by th	VDDQ	-
DDR_DQ10	DIO	-	DRAM data us 10	VDDQ	-
DDR_DQ11	DIO	-	DRAM ds. bus bit 11	VDDQ	-
DDR_DQ12	DIO	-	AM ta bus bit 12	VDDQ	-
DDR_DQ13	DIO	-	RAM data bus bit 13	VDDQ	-
DDR_DQ14	DIO	-	AM data bus bit 14	VDDQ	-
DDR_DQ15	DIO		DRAM data bus bit 15	VDDQ	-
DDR_DQ16	DIO	X	DRAM data bus bit 16	VDDQ	-
DDR_DQ17	DIO	-	DRAM data bus bit 17	VDDQ	-
DDR_DQ18	DIO	-	DRAM data bus bit 18	VDDQ	-
DDR_DQ19		-	DRAM data bus bit 19	VDDQ	-
DDR_DQ20	Po	-	DRAM data bus bit 20	VDDQ	-
DDR_DQ21	0	-	DRAM data bus bit 21	VDDQ	-
DDR_DQ22	DIO	-	DRAM data bus bit 22	VDDQ	-
DDR_DQ23	DIO	-	DRAM data bus bit 23	VDDQ	-
DDR_DQ24	DIO	-	DRAM data bus bit 24	VDDQ	-
DDR_DQ25	DIO	-	DRAM data bus bit 25	VDDQ	-
DDR_DQ26	DIO	-	DRAM data bus bit 26	VDDQ	-
DDR_DQ27	DIO	-	DRAM data bus bit 27	VDDQ	-
DDR_DQ28	DIO	=	DRAM data bus bit 28	VDDQ	-
DDR_DQ29	DIO	=	DRAM data bus bit 29	VDDQ	-
DDR_DQ30	DIO	-	DRAM data bus bit 30	VDDQ	-
DDR_DQ31	DIO	-	DRAM data bus bit 31	VDDQ	-

Net Name	/' Pull UP/DN '		Power Domain	If Unused	
DDR_DQM0	DO	-	DRAM data mask 0	VDDQ	-
DDR_DQM1	DO	-	DRAM data mask 1	VDDQ	-
DDR_DQM2	DO	-	DRAM data mask 2	VDDQ	-
DDR_DQM3	DO	-	DRAM data mask 3	VDDQ	-
DDR_DQSP0	DIO	-	DRAM data strobe 0	VDDQ	-
DDR_DQSN0	DIO	-	DRAM data strobe 0 complementary	VDDQ	-
DDR_DQSP1	DIO	-	DRAM data strobe 1	VDDQ	-
DDR_DQSN1	DIO	-	DRAM data strobe 1 complementary	VDDQ	-
DDR_DQSP2	DIO	-	DRAM data strobe 2	VDDQ	-
DDR_DQSN2	DIO	-	DRAM data strobe 2 complementary	VDDQ	-
DDR_DQSP3	DIO	-	DRAM data strobe 3	VDDQ	-
DDR_DQSN3	DIO	-	DRAM data strobe 3 complementary	VDDQ	-
PZQ	Α	-	DRAM reference pin for ZQ calibration	N DQ	-
PVREF	Α	-	DRAM reference voltage	DDQ	-
AVDD18_DPLL	Р	-	Analog 1.8V power supply for system PLL	<u> </u>	-
AVDD_DDRPLL	Р		Analog power supply for DDRPLL		-
USB					
USBHOST_A_DP	AIO	-	USB 2.0 Port A positive data signal (lost only)	AVDD33_USB	NC
USBHOST_A_DM	AIO	-	USB 2.0 Port A negative data signal (i.e. st only)	AVDD33_USB	NC
USBOTG_B_DP	AIO	-	USB 2.0 Port B positive state (nal.) TG)	AVDD33_USB	NC
USBOTG_B_DM	AIO	-	USB 2.0 Port B negative day signal (OTG)	AVDD33_USB	NC
			USB OTG mini-recel tacle identifier (Internal 12.8K Ω	AVDD18_USB	NC
USBOTG_B_ID	AIO	-	pull-up resistor (VL 18)		
USBOTG_B_VBUS	AIO	-	USB OTC coble ow A detection	AVDD18_USB	NC
USB_TXRTUNE	AIO	-	USB 2 Port 18 host output strength setting region	AVDD18_USB	NC
AVDD33_USB	Р	-	V Power supply for USB	-	To 3.3V
AVDD18_USB	Р	-	2.8V Power supply for USB	-	To 1.8V
AVDD0V8_USB	Р	-	malog 0.8V power supply for USB	-	To VDD_EE
PCIE			-		
PCIE_CLK_n	AO	X	PCIE reference clock negative signal	AVDD18_PCIE	NC
PCIE_CLK_p	AO	-	PCIE reference clock positive signal	AVDD18_PCIE	NC
PCIE_REXT	AIC	-	PCIE output strength setting resistor	AVDD18_PCIE	NC
PCIE_RXN		-	PCIE or USB3.0 input negative signal	AVDD18_PCIE	NC
PCIE_RXP		-	PCIE or USB3.0 input positive signal	AVDD18_PCIE	NC
PCIE_TXN		-	PCIE or USB3.0 output negative signal	AVDD18 PCIE	NC
PCIE_TXP	AO	-	PCIE or USB3.0 output positive signal	AVDD18 PCIE	NC
AVDD0V8_PCIE	AP	-	Analog 0.8V power supply for PCIE	-	To VDD_EE
AVDD18_PCIE	AP	-	Analog 1.8V power supply for PCIE	-	To 1.8V
HCSL_REXT	AIO	-	PCIE reference clock output strength setting resistor	-	NC
AVDD18_HCSL	AP	-	Analog 1.8V power supply for PCIE reference module clock	-	To 1.8V
AVSS_HCSL	AP	-	Analog ground for PCIE reference module clock		
System Clock & PLL			-0 0 S.Z. (S.Z. S.S. Modale clock	l	
SYS_OSCIN	Al	-	24MHz crystal oscillator input	VDD18_AO_XTAL	-
SYS_OSCOUT	AO	-	24MHz crystal oscillator output	VDD18_AO_XTAL	-
Analog Power	AU		Z-11-11 IZ G y-star G-scillator output		

Net Name	Туре	Default Pull UP/DN	Description	Power Domain	If Unused
AVSS_HPLL	AP	-	Ground of HDMI PLL	-	-
AVSS_PLL	AP	-	Ground of System PLL	-	-
Digital Power					
VDDCPU	Р	-	Power supply for CPU (Cortex A53)	-	-
VDD_DDR	Р	-	Core Power supply for DDR PHY	-	-
VDDQ	Р	-	DDR IO Power supply for DDR PHY	-	-
VDD_EE	Р	-	Power supply for GPU and core logic	-	-
VDD18_AO_XTAL	Р	-	1.8V Power supply for AO	-	-
VDDAO_0V8	Р	-	0.8V power supply for AO for XTAL and M3/M4 CPU	-	-
Digital Ground		1			•
DVSS	Р	-	Digital power ground	-	-

Abbreviations:

- DIO = Digital input/output pin

 OD3.3V = 3.3V input tolerant open drain (OD) output pin, need external put up

 OD5V = 5V input tolerant open drain (OD) output pin, need external pull up

 A = Analog setting or filtering pin

 AI = Analog input pin

 AO = Analog CO tern ternal p

- AO = Analog output pin
- AIO = Analog input/output pin
- P = Power pin
- AP = Analog power pin
- NC = No connection
- UP = Pull-Up
- DOWN = Pull-down
- Z = Tri-State

3.3 Pin Multiplexing Tables

Multiple usage pins are used to conserve pin consumption for different features. The S905Y2 devices can be used in many different applications but each application will not utilize all the on chip features. As a result, some of the features share the same pin. Most of the multiple usage pins can be used as a GPIO pin as well.

Table 3. GPIOX_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6	Func7
				i dile-i	runes	Tunco	
GPIOX_0	SDIO_D0	PDM_DIN0	TSIN_A_DIN0				
GPIOX_1	SDIO_D1	PDM_DIN1	TSIN_A_SOP				
GPIOX_2	SDIO_D2	PDM_DIN2	TSIN_A_VALID				
GPIOX_3	SDIO_D3	PDM_DIN3	TSIN_A_CLK	PWM_D			
GPIOX_4	SDIO_CLK	PDM_DCLK					
GPIOX_5	SDIO_CMD	MCLK_1		PWM_C			
GPIOX_6	PWM_A	UART_EE_B_TX		PWM_D		, 52	
GPIOX_7	PWM_F	UART_EE_B_RX		PWM_B			
GPIOX_8	TDMA_D1	TDMA_DIN1	TSIN_B_SOP	SPI_A_MOSI	PWM_C	IS 7816_ IN	
GPIOX_9	TDMA_D0	TDMA_DIN0	TSIN_B_VALID	SPI_A_MISO		O78 DATA	
GPIOX_10	TDMA_FS	TDMA_SLV_FS	TSIN_B_DIN0	SPI_A_SS0	I2C_EE_M1_SD/		
GPIOX_11	TDMA_SCLK	TDMA_SLV_SCLK	TSIN_B_CLK	SPI_A_SCLK	I2C_EE		
GPIOX_12	UART_EE_A_TX						
GPIOX_13	UART_EE_A_RX						
GPIOX_14	UART_EE_A_CTS						
GPIOX_15	UART_EE_A_RTS						
GPIOX_16	PWM_E						
GPIOX_17	I2C_EE_M2_SDA						
GPIOX_18	I2C_EE_M2_SCL						
GPIOX_19	PWM_B	WORLD_SYNC					GEN_CLK_EE

Table 4 GPWA Multi-Function Pin

Pin Name	nc1	Func2	
GPIOA_	WORLD_SYNC	I2C_EE_M3_SDA	
GF OF 15 IR_REMOTE_IN		I2C_EE_M3_SCL	

abe 5. GPIOC_x Multi-Function Pin

Pin Name	Fun	Func2	Func3	Func4	Func5
GPIOC_0	DCALD0	JTAG_B_TDO		PDM_DIN0	SPI_A_MOSI
GPIOC_1	SDCARD_D1	JTAG_B_TDI		PDM_DIN1	SPI_A_MISO
GP JC_1	DCARD_D2	UART_AO_A_RX		PDM_DIN2	SPI_A_SS0
GPI	SDCARD_D3	UART_AO_A_TX		PDM_DIN3	SPI_A_SCLK
GPDC_4	SDCARD_CLK	JTAG_B_CLK		PDM_DCLK	PWM_C
IOC_5	SDCARD_CMD	JTAG_B_TMS	I2C_EE_M0_SDA		ISO7816_CLK
GPIOC_6			I2C_EE_M0_SCL		ISO7816_DATA
GPIOC_7	PCIECK_REQN	WORLD_SYNC			

Table 6. BOOT_x Multi-Function Pin

Pin Name	Func1	Func2	Func3
BOOT_0	EMMC_D0		
BOOT_1	EMMC_D1		
BOOT_2	EMMC_D2		
BOOT_3	EMMC_D3		NOR_HOLD
BOOT_4	EMMC_D4		NOR_D
BOOT_5	EMMC_D5		NOR_Q
BOOT_6	EMMC_D6		NOR_C

Pin Name	Func1	Func2	Func3
BOOT_7	EMMC_D7		NOR_WP
BOOT_8	EMMC_CLK	NAND_WEN_CLK	
BOOT_9		NAND_ALE	
BOOT_10	EMMC_CMD	NAND_CLE	
BOOT_11		NAND_CE0	
BOOT_12		NAND_REN_WR	
BOOT_13	EMMC_NAND_DQS		
BOOT_14		NAND_RB0	NOR_CS
BOOT_15		NAND_CE1	

Table 7. GPIOH_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4	Func5	Func6
GPIOH_0	HDMITX_SDA	I2C_EE_M3_SDA	_			
GPIOH_1	HDMITX_SCL	I2C_EE_M3_SCL	_			1
GPIOH_2	HDMITX_HPD_IN	I2C_EE_M1_SDA	_			
GPIOH_3	_	I2C_EE_M1_SCL	_	AO_CEC_A	AO_CE _B	
GPIOH_4	SPDIF_OUT	UART_EE_C_RTS	SPI_B_MOSI			
GPIOH_5	SPDIF_IN	UART_EE_C_CTS	SPI_B_MISO	PWM_F	1) 6 3	TDMB_DIN3
GPIOH_6	ISO7816_CLK	UART_EE_C_RX	SPI_B_SS0	I2C_EE_M1 JDA		
GPIOH_7	ISO7816_DATA	UART_EE_C_TX	SPI_B_SCLK	I2C_EE_M1_3		
GPIOH_8	_	-				

Table 8. GPIOAO_x Multi-F inc on Pin

Pin Name	Func1	Func2	Func3	Tunc	Func5	Func6	Func7
GPIOAO_0	UART_AO_A_TX						
GPIOAO_1	UART_AO_A_RX						
GPIOAO_2	I2C_AO_M0_SCL	UART_AO_B_TX	12C_AS0_50_				
GPIOAO_3	I2C_AO_M0_SDA	UART_AO_B_RX	120 49 5				
GPIOAO_4	IR_REMOTE_OUT	CLK_32K_IN	PWM> C	PWMAO_C_HIZ	TDMB_D0	TDMB_DIN0	
GPIOAO_5	IR_REMOTE_IN		√Wi \O_D				
GPIOAO_6	JTAG_A_CLK	_	F 'MAO_C	TSIN_A_SOP	TDMB_D2	TDMB_DIN2	
GPIOAO_7	JTAG_A_TMS	_		TSIN_A_DIN0	TDMB_FS	TDMB_SLV_FS	
GPIOAO_8	JTAG_A_TDI		UART_AO_B_TX	TSIN_A_CLK	TDMB_SCLK	TDMB_SLV_SCLK	
GPIOAO_9	JTAG_A_TDO		UART_AO_B_RX	TSIN_A_VALID	MCLK_0		
GPIOAO_10	AO_CEC_A	2_CB	PWMAO_D	SPDIF_OUT	TDMB_D1	TDMB_DIN1	CLK12_24
GPIOAO_11		PW AO_A_HIZ	PWMAO_A	GEN_CLK_EE	GEN_CLK_AO		

Table 9 GPIOE_x Multi-Function Pin

Pin Name	Func1	Func2	Func3	Func4
GPIOE_0	UART_AO_A_CTS	UART_AO_B_CTS	PWMAO_B	I2C_AO_M0_SCL
GPIOE_1	UART_AO_A_RTS	UART_AO_B_RTS	PWMAO_D	I2C_AO_MO_SDA

Table 10 DDR AC Multi-Function Pin

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4		
AC_0	CKEA0	CKEA0	CKE0	CKE0		
AC_1	CKEA1	CKEA1	CKE1	CKE1		
AC_2	CSA0	CSA0	CS_N0	CS_N0		
AC_3	CSA1	CSA1	NC	NC		
AC_4	CLKA_T	CLKA_T	CAS_N	A6		
AC_5	CLKA_C	CLKA_C	BA2	A8		

Pin Name	LPDDR3	LPDDR4	DDR3	DDR4
AC_6	NC	NC	A7	A2
AC_7	NC	NC	A5	A11
AC_8	CAA2	CAA2	A10	A10
AC_9	CAA7	CAA3	WE_N	BG1
AC_10	CAA1	CAA1	A0	A3
AC_11	CAA4	CAA0	A2	A12
AC_12	CAA5	CAA5	A9	A0
AC_13	CAA6	CAA4	A13	A4
AC_14	CAA0	NC	A14	A13
AC_15	CAA3	NC	A11	А9
AC_16	CAA9	NC	CLKO_T	CLKO_T
AC_17	CAA8	NC	CLKO_C	СГКОС
AC_18	ODTA	NC	NC	NC
AC_20	NC	CKEB0	CLK1_T	CLK1_
AC_21	NC	CKEB1	CLK1_C	48
AC_22	NC	CSB1	NC	NC
AC_23	NC	CSB0	NC	NC
AC_24	NC	CLKB_T	A6	A5
AC_25	NC	CLKB_C		BA1
AC_26	NC	NC		A1
AC_28	NC	CAB1	18	A7
AC_29	NC	CAB3	BA1	RAS_N/A16
AC_30	NC	CAL	A15	ACT_N
AC_31	NC	CA.	RAS_N	WE_N/A14
AC_32	NC	C64	NC	NC
AC_33	NC	CAB0	A12	CAS_N/A15
AC_34		NC	A3	BA0
AC_35	NC	NC	BA0	BG0
AC_36	NC	NC	ODT0	ODT0
AC_37	NC	NC	ODT1	ODT1
AC 28	NC	NC	CS_N1	CS_N1
L R_R n	NC	RESET_N	RESET_N	RESET_N
REF	PVREF	PVREF	PVREF	PVREF
. zq	PZQ	PZQ	PZQ	PZQ

Table 11. PCIE_IO Multi-Function Pin

Pin Name	Func1	Func2
PCIE_RXP	PCIE_RXP	USB3.0_RXP
PCIE_RXN	PCIE_RXN	USB3.0_RXN
PCIE_TXN	PCIE_TXN	USB3.0_TXN

3.4 Signal Descriptions

Table 12. SD Card Interface Signal Description

Signal Name	Туре	Description
SDCARD_D0	DIO	SD Card data bus bit 0 signal
SDCARD_D1	DIO	SD Card data bus bit 1 signal
SDCARD_D2	DIO	SD Card data bus bit 2 signal
SDCARD_D3	DIO	SD Card data bus bit 3 signal
SDCARD_CLK	DO	SD Card clock signal
SDCARD_CMD	DIO	SD Card command signal

Table 13. SDIO Interface Signal Description

Signal Name	Туре	Description
SDIO_D0	DIO	SDIO data bus bit 0 signal
SDIO_D1	DIO	SDIO data bus bit 1 signal
SDIO_D2	DIO	SDIO data bus bit 2 signal
SDIO_D3	DIO	SDIO data bus bit 3 signal
SDIO_CLK	DO	SDIO clock signal
SDIO_CMD	DIO	SDIO command sign

Table 14. Clock Interface Signal Description

Signal Name	Туре		Description
CLK_32K_IN	DI	32 (z cl. sk in)	t
CLK12_24	DO	12Mh. 24MHZ c	lock output

Table 15. UART Interp. e Signal Description

Signal Name	Te Te	Description
UART_AO_A_TX	DO	UART Port A data output in AO domain
UART_AO_A_RX	DI	UART Port A data input in AO domain
UART_AO_A_CTS	DI	UART Port A Clear To Send Signal in AO domain
UART_AO_A_RTS	DO	UART Port A Ready To Send Signal in AO domain
UART_AO_B_TX	DO	UART Port B data output in AO domain
UART_AO_B_RX	DI	UART Port B data input in AO domain
UART_AO_B_CTS	DI	UART Port B Clear To Send Signal in AO domain
UART_AO_P (TS	DO	UART Port B Ready To Send Signal in AO domain
UART 574	DO	UART Port A data output in EE domain
HART EE RX	DI	UART Port A data input in EE domain
UART EE_A_CTS	DI	UART Port A Clear To Send Signal in EE domain
EE_A_RTS	DO	UART Port A Ready To Send Signal in EE domain
UART_EE_B_TX	DO	UART Port B data output in EE domain
UART_EE_B_RX	DI	UART Port B data input in EE domain
UART_EE_C_TX	DO	UART Port C data output in EE domain
UART_EE_C_RX	DI	UART Port C data input in EE domain
UART_EE_C_CTS	DI	UART Port C Clear To Send Signal in EE domain
UART_EE_C_RTS	DO	UART Port C Ready To Send Signal in EE domain

Table 16. ISO7816 Interface Signal Description

Signal Name	Туре	Description
ISO7816_DATA	DIO	ISO7816 data signal

Signal Name	Туре	Description
ISO7816_CLK	DO	ISO7816 clock signal

Table 17. TS In Interface Signal Description

Signal Name	Туре	Description
TSIN_A _DIN0	DI	Serial TS input port A data
TSIN_A _CLK	DI	TS input port A clock
TSIN_A _SOP	DI	TS input port A start of stream signal
TSIN_A _VALID	DI	TS input port A date valid signal
TSIN_B _DIN0	DI	Serial TS input port B data
TSIN_B _CLK	DI	TS input port B clock
TSIN_B _SOP	DI	TS input port B start of stream signal
TSIN_B_VALID	DI	TS input port B date valid signal

Table 18. PWM Interface Signal Description

Signal Name	Туре	Des (pt. n
PWM_A	DO	PWM channel A output signal
PWM_B	DO	PWM channel B output signal
PWM_C	DO	PWM channel C out at six
PWM_D	DO	PWM channel D output Ignal
PWM_E	DO	PWM channel Foutput signal
PWM_F	DO	PWM channel Fortput signal
PWMAO_A / PWMAO_A_HIZ	DO	PW 1 A (tput lignal in Always On domain, or extended HiZ function of PW 02.
PWMAO_B	DO 🖠	PWM B Letput signal in Always On domain
PWMAO_C / PWMAO_C_HIZ	DO	VM C output signal in Always On domain, or extended HiZ function of PWMAO_C
PWMAO_D	1	PWM D output signal in Always On domain

Table 19. Conterface Signal Description

Signal Name	Туре	Description
I2C_AO_MO_SCL	DO	I2C bus port 0 clock output, Master mode, in AO domain
I2C_AO_M0_SDA	DIO	I2C bus port 0 data input/output, Master mode, in AO domain
I2C_AO_SO_SCL	DI	I2C bus port 0 clock input, Slave mode, in AO domain
I2C_AO_SO_SDA	DIO	I2C bus port 0 data input/output, Slave mode, in AO domain
I2C_EE_MC CL	DO	I2C bus port 0 clock output, Master mode, in EE domain
I2C_EF SD.	DIO	I2C bus port 0 data input/output, Master mode, in EE domain
E M1 SCL	DO	I2C bus port 1 clock output, Master mode, in EE domain
I2C_I M1_SDA	DIO	I2C bus port 1 data input/output, Master mode, in EE domain
_cE_M2_SCL	DO	I2C bus port 2 clock output, Master mode, in EE domain
I2C_EE_M2_SDA	DIO	I2C bus port 2 data input/output, Master mode, in EE domain
I2C_EE_M3_SCL	DO	I2C bus port 3 clock output, Master mode, in EE domain
I2C_EE_M3_SDA	DIO	I2C bus port 3 data input/output, Master mode, in EE domain

Table 20. eMMC Interface Signal Description

Signal Name	Туре	Description
EMMC_D0	DIO	eMMC/NAND data bus bit 0 signal
EMMC_D1	DIO	eMMC/NAND data bus bit 1 signal
EMMC_D2	DIO	eMMC/NAND data bus bit 2 signal
EMMC_D3	DIO	eMMC/NAND data bus bit 3 signal
EMMC_D4	DIO	eMMC/NAND data bus bit 4 signal

Signal Name	Туре	Description
EMMC_D5	DIO	eMMC/NAND data bus bit 5 signal
EMMC_D6	DIO	eMMC/NAND data bus bit 6 signal
EMMC_D7	DIO	eMMC/NAND data bus bit 7 signal
EMMC_CLK	DO	eMMC clock signal
EMMC_CMD	DIO	eMMC command signal
EMMC_NAND_DQS	DIO	eMMC/NAND data strobe

Table 21. NAND Signal Description

Signal Name	Туре	Description
NAND_RB0	DI	NAND ready/busy
NAND_ALE	DO	NAND address latch enable
NAND_CE0	DO	NAND chip enable 0
NAND_CE1	DO	NAND chip enable 1
NAND_CLE	DO	NAND command latch enable
NAND_REN_WR	DO	NAND read enable or write/read
NAND_WEN_CLK	DO	NAND write enable or clock

Table 22. NOR Interface Signal Description

Signal Name	Туре	Description
NOR_CS	DO	SPI NOR chip so tct
NOR_C	DO	SPI NOR Sorial C. sk
NOR_D	DIO	SPINOR bit n de Output, 2/4 bit mode data I/O 0
NOR_Q	DIO	SPI 2 1bit mode Input, 2/4 bit mode data I/O 1
NOR_WP	DIO	SPI NOR Write protection output, 4 bit mode data I/O 2
NOR_HOLD	DIO	She bus hold output, 4 bit mode data I/O 3

Table 23. HDM ate face Signal Description

Signal Name	Туре	Description
HDMITX_SDA	DIO	HDMI TX DDC_I2C interface data signal
HDMITX_SCL	DO	HDMI TX DDC_I2C interface clock signal
HDMITX_HPD_IN	DI	HDMI TX hot plug in signal input
AO_CEC_A	DIO	Customer Electronics Control signal in AO domain
AO_CEC_B	DIO	2nd module of Customer Electronics Control signal in AO domain

Table 24. SPDIF Interface Signal Description

Signa No ne		Туре	Description	
	SIDIF_IN		DI	SPDIF input signal
	JIF_OU	Т	DO	SPDIF output signal

Table 25. PCIE Interface Signal Description

Signal Name	Туре	Description
PCIECK_REQN	DI	PCIE clock request input

Table 26. SPI Interface Signal Description

Signal Name		Description
SPI_A _MOSI		SPI master output, slave input A
SPI_A _MISO	DIO	SPI master input, slave output A
SPI_A_SCLK	DIO	SPI clock A

Signal Name	Туре	Description
SPI_A_SS0	DIO	SPI slave select 0 A
SPI_B _MOSI	DIO	SPI master output, slave input B
SPI_B _MISO	DIO	SPI master input, slave output B
SPI_B_SCLK	DIO	SPI clock B
SPI B SSO	DIO	SPI slave select 0 B

Table 27. Remote Interface Signal Description

Signal Name	Туре	Description
IR_REMOTE_IN	DI	IR remote control input
IR_REMOTE_OUT	DO	IR remote control output

Table 28. Time Division Multiplexing Signal Description

Signal Name	Туре	Description		
MCLK_0	DO	Master clock output 0 , for I2S master m		
MCLK_1	DO	Master clock output 1, for I2S master ande		
TDMA_DIN0	DI	Data input 0 of TDM port A		
TDMA_DIN1	DI	Data input 1 of TDM port A		
TDMA_D0	DIO	Data input/output 0 of 14 pc 1		
TDMA_D1	DIO	Data input/output of T/ ort A		
TDMA_SCLK		Bit clock output of TDI port A		
TDMA_FS		Frame sync out at of TDM port A (Word clock of I2S)		
TDMA_SLV_SCLK	DI	Bit clock input & TDM port A		
TDMA_SLV_FS	DI	Frame salic in at of TDM port A (Word clock of I2S)		
TDMB_DIN0	DI	Date ipu TDM port B		
TDMB_DIN1	DI 👍	Data in t 1 of TDM port B		
TDMB_DIN2	DI	ata input 2 of TDM port B		
TDMB_DIN3	DI	Da. a input 3 of TDM port B		
TDMB_D0	70	Data input/output 0 of TDM port B		
TDMB_D1	Di	Data input/output 1 of TDM port B		
TDMB_D2	C	Data input/output 2 of TDM port B		
TDMB_D3	DIO	Data input/output 3 of TDM port B		
TDMB_SCLK	DO	Bit clock output of TDM port B		
TDMB_FS	DO	Frame sync output of TDM port B (Word clock of I2S)		
TDMB_SLV_SCLK	DI	Bit clock input of TDM port B		
TDMB_SLV_FS	DI	Frame sync input of TDM port B (Word clock of I2S)		

Table 29. PDM Signal Description

Signal		Description	
PD DIN	DI	Pulse-Density Modulation input data 0 signal	
PDM1	DI	Pulse-Density Modulation input data 1 signal	
PD LDIN2	DI	Pulse-Density Modulation input data 2 signal	
M_DIN3	DI	Pulse-Density Modulation input data 3 signal	
PDM_DCLK	DO	Pulse-Density Modulation output clock signal	

Table 30. JTAG Interface Signal Description

Signal Name	Туре	Description
JTAG_A_TDO	DO	JTAG data output channel A
JTAG_A _TDI		JTAG data input channel A
JTAG_A_TMS		JTAG Test mode select input channel A
JTAG_A_CLK		JTAG Test clock input channel A
JTAG_B_TDO	DO	JTAG data output channel B
JTAG_B _TDI	DI	JTAG data input channel B
JTAG_B_TMS	DI	JTAG Test mode select input channel B

Signal Name	Signal Name Type Description	
JTAG_B _CLK	DI	JTAG Test clock input channel B

Table 31. Other Signal Description

Signal Name T		Description
WORLD_SYNC		World clock sync input, to sync clock of multi devices
GEN_CLK_EE	DO	General clock output for EE domain clock, for debug
GEN_CLK_AO		General clock output for AO domain clock, for debug

4. Operating Conditions

4.1 Absolute Maximum Ratings

The table below gives the absolute maximum ratings. Exposure to stresses beyond those listed in this table may result in permanent device damage, unreliability or both.

Characteristic	Value	Unit
VDDCPU Supply Voltage	1.1	V
VDD_EE Supply Voltage	1.0	V
VDDQ Supply Voltage	1.7	V
1.8V Supply Voltage	1.98	V
3.3V Supply Voltage	3.63	V
Input voltage, V _I	-0.3 ~ VP DIO 0 B	V
Junction Temperature	12	°C

4.2 Recommended Operating Conditions

Symbol	Parameter	l 'n.	Тур.	Max.	Unit
VDDCPU	Voltage for Cortex A53 CPU	0.68 ¹		1.03 ²	٧
VDD_EE and other	Voltage for GPU & core logic	0.68 ¹	0.8	0.92	٧
0.8V domain	X				
VDDQ	DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 Supply litage	1.05		1.6	٧
AVDD18	1.8V AVDD for HDMI, SARADC, USB pt. PUS. PLL	1.71	1.80	1.89	٧
AVDD10	module				
AVDD18_AO_XTAL	1.8V VDD for GPIOE, XTAL, and VVI TE	1.71	1.80	1.89	٧
AVDD_DDRPLL	Analog power supply for DI	1.05		1.89	٧
AVDD33	3.3V AVDD for USB and HD, YTX module	3.15	3.3	3.45	٧
VDDIO	LV mode	1.71	1.80	1.89	٧
VUUIO	HV mode	2.9/3.2 ³	3.3	3.45	٧
Tj	Operating unition imperature	0		105 ⁴	°C
T _A	Operating A. bient Temperature	0		70	°C

Note:

- 1) Minimal VDDC: Who F voltage is for sleep mode while system runs at very low speed. Higher clock will need higher voltage. Considering the power supply may have 2% deviation, the minimal voltage in actual application should not be set to lower than 0. (min spec + 0.02V).
- 2) Likewise, maximum VDDCPU/VDD_EE voltage in actual application should not be higher than (max spec -0.02V). Voltage of VDDCPU will affect CPU speed. Use lower voltage when CPU runs on lower speed to save power. Recommend to use +/-1.5% or higher precision DCDC.
- GPIO cannot work if VDDIO voltage is out of the spec of LV / HV mode. GPIO output at HV mode will be weaker & max operating speed will be lower if VDDIO are design to 3.0V. Do not design VDDIO to lower than 3.0V in HV mode, recommend to use +/-1.5% or higher precision DCDC to supply power for VDDIO, actual voltage supplies to VDDIO (HV mode) should not be lower than 2.9V.
- 4) For operating temperature, good heat sink may be needed to guarantee Tj < max spec.

4.3 Thermal Operating Specifications

Jedec 2P2S board 101.5mm*114.5mm, natural convection, ambient temperature 25 °C.

Symbol	Parameter	Value.	Unit
Θја	Package junction-to- ambiance thermal resistance in nature convection	18.90	°C/Watt
Θjb	Package junction-to-pcb thermal resistance in nature convection	9.97	°C/Watt
Θјс	Package junction-to-case thermal resistance in nature convection	5.58	°C/Watt

4.4 DC Electrical Characteristics

4.4.1 Normal GPIO Specifications (For DIO)

Symbol	Parameter	Min.	Тур.	74	Unit
V _{iH(VDDIO=3.3V)}	High-level input voltage	IOVREF+0.37	•	V DIO 0.3	V
V _{iL(VDDIO=3.3V)}	Low-level input voltage	-0.3		IC /REF-0.23	V
ViH(VDDIO=1.8V)	High-level input voltage	IOVREF/2+0.3		VDDIO+0.3	V
ViL(VDDIO=1.8V)	Low-level input voltage	-0.3		IOVREF/2-0.3	V
R _{PU/PD}	Built-in pull up/down resistor		JOK		ohm
IoL/IoH(DS=0)	GPIO driving capability	0.5		1	
IoL/IoH(DS=1)	GPIO driving capability	2.5		4	
IoL/IoH(DS=2)	GPIO driving capability	3		5	
IoL/IoH(DS=3)	GPIO driving capability	4		6 ²⁾	mA
VOH	Output high level with IoL/IoH loading	VDD0.5			V
VOL	Output low level with IoL/IoH loading			0.4	V

Note:

- 1) Minimal driving capability applies when VDDIO LV 171 0-VDDIO HV 3.0V, VOL<0.4V.
- 2) Maximal driving capability only applies to application such as driving LED when VOL<0.6V.
- 3) VDD18_AO_XTAL supplies power to IOVREF
- 4) PDM voltage requirement's should belon 57 GNO spec

4.4.2 Open Drain GPIO Spec Signions (For DIO_OD)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{iH(} OD5V)	High-level (p. vortage	1.5		5.5	٧
V _{iL} (OD5V)	Low-legatin, ut voltage	-0.3		0.8	V
V _{iH} (OD3.3V)	h- vel hput voltage	1.5		3.6	V
V _{iL} (OD3.3V)	Lowevel input voltage	-0.3		0.8	V
R _{PU/PD}	dilt-in pull up/down resistor on OD IO	-	-	-	ohm
lo	OD IO driving low capability	4		6	mA
VOL	Output low level with min Io loading			0.4	V

4.4.3 DDR3/DDR3L/DDR4/LPDDR3/LPDDR4 SDRAM Specifications

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDDQ	IO supply voltage(DDR3)	1.46	1.50	1.57	٧
VDDQ	IO supply voltage(DDR3L)	1.31	1.35	1.45	٧
VDDQ	IO supply voltage(DDR4)	1.14	1.20	1.30	٧
VDDQ	IO supply voltage(LPDDR3)	1.14	1.2	1.3	

VDDQ	IO supply voltage(LPDDR4)	1.06	1.1	1.17	
Vref	Input reference supply voltage	0.49*VDDQ	0.5*VDDQ	0.51*VDDQ	٧

Note: The minimal VDDQ voltage in sleep mode is defined by memory.

DC specifications - DDR3/DDR3L mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage high	Vref + 0.100		VDDQ	٧
VIL	DC input voltage low	VSSQ		Vref-0.100	٧
VOH	DC output logic high	0.8*VDDQ			V
VOL	DC output logic low			0.2*VDDQ	٧
RTT	Input termination resistance to VDDQ/2	100	120	140	ohm
		54	60	6	
		36	40	14	

DC specifications - DDR4 mode

Symbol	Parameter	Min.	Тур.	Мах.	Unit
VdIVW_total	Rx Mask voltage-p-p total			136	mv
VOH	DC output logic high	0.9*VDDQ			V
VOL	DC output logic low			0.1*VDDQ	V
RTT	Input termination resistance to VDDQ	200	240	280	ohm
		1 0	120	140	
		67	80	93	
		50	60	70	
		4.2	48	56	
		34	40	46	
		28	34	40	

DC Specifications - LPDDR3 mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
VIH	DC input voltage hig	Vref + 0.100		VDDQ	٧
VIL	DC input volta	VSSQ		Vref-0.100	٧
VOH	DC output laris high	0.9*VDDQ			٧
VOL	DC output gic low			0.1*VDDQ	٧
RTT	Input ern nation resistance to VDDQ	100	120	140	ohm
		200	240	280	

DC Specifications - LPDDR4 mode

Symbol	Parameter	Min.	Тур.	Мах.	Unit
VIH	DC input voltage high	TBD		TBD	٧
VIL	DC input voltage low	TBD		TBD	٧
VOH	DC output logic high	TBD			٧
VOL	DC output logic low			TBD	٧
RTT	Input termination resistance to VDDQ	TBD	TBD	TBD	ohm

4.5 Recommended Oscillator Electrical Characteristics

S905Y2 requires the 24MHz oscillator for generating the main clock source.

Table 32. 24MHz Oscillator Specification

Symbol	Description	Min.	Тур.	Мах.	Unit	Notes
Fo	Nominal Frequency		24		MHz	
Δ f/f _o	Frequency Tolerance	-30		+30	ppm	At 25 °C
Δ 1/10		-50		+50	ppm	At -20~85 °C
CL	Load Capacitance	8	12	12	pF	
ESR	Equivalent Series Resistance			100	oHm	

Note: 10ppm Tolerance is preferred if 24MHz XTAL is also driving WIFI module.

4.6 Timing Information

4.6.1 I2C Timing Specification

The I2C master interface Fast/Standard mode timing specifications are shown below.

Figure 1 I2C Interface Timing Diagram, FS mode

Table 33. I2C Interface Tuning Specification, SF mode

Symbol	nbol Parameter Standard-mode		rd-mode	Fast-	mode	Unit
		Min.	Max	Min	Max	
tR	Rise time of SDA and SCA pig. 25	_	1000	_	300	ns
tF	Fall time of SDA and SC signals	_	300	_	300	ns
fSCL	SCL clock frequer x	_	100	_	400	KHz
tLOW	LOW period of the CL wock	4.7	_	1.3	_	μs
tHIGH	HIGH period of the SCL clock	4.0	_	0.6	_	μs
tSu;STA	Setup time for TART	4.7	_	0.6	_	μs
tSu;DAT	Setup ti le fc SDA	250	_	100	_	ns
tSu;STO	\$ tup time for STOP	4.0	_	0.6	_	μs
tHd;STA	He diffree for START	4.0	_	0.6	_	μs
tHd;DAT	Hold time for SDA	0	3.45	0	0.9	μs
tBuf	Bus free time between stop and start	4.7	_	1.3	_	μs

4.6.2 EMMC/SD Timing Specification

Timing specification for EMMC and SD are shown as below.

VCCQ

CLOCK INPUT

VSS.

DAT[7-0] INPUT

VALID WINDOW

VSS.

VALID WINDOW

VSS.

VSS.

Figure 2. EMMC HS400 Data Output Timing

Table 34. HS400 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPERIOD	Cycle time data transfer mode		-	ns
SR	Slew rate	1.125	-	V/ns
tCKDCD	Duty cycle distortion	0	0.3	ns
tCKMPW	Minimum pulse width	2.2	=	ns
tISU	input set-up time	1.4	-	ns
tIH	input hold time	0.8	-	ns
tISUddr	input set-up time	0.4	-	ns
tIHddr	input hold time	0.4	-	ns
SR	Slew rate	1.125	-	V/ns
tPH	Device output motient by phote from CLK input to CMD of DAN new put	0	10.02	ns
ΔΤΡΗ	Delay variation du to temperature change	-350(ΔT=-20deg.C)	1550(ΔT=90deg.C)	ps
tVW	Valid Data (mp), window	2.88075	-	ns
tPERIOD	Cycle da transfer mode	5	=	ns
SR	new te	1.125	-	V/ns
tCKDCD	Dut cycle distortion	0	0.2	ns
tCKMPW	minimum pulse width	2	-	ns
tRQ	Output skew	-	0.4	ns
tRQH	Output hold skew	-	0.4	ns
SR	Slew rate	1.125	-	V/ns

Figure 3. EMMC HS200 Data Output Timing

Table 35 HS200 Timing Specification

Symbol	Parameter	Min	Мах	nit
tPERIOD	Cycle time data transfer mode	5		ns
tISU	output set-up time	1.4	-	ns
tIH	output hold time	0.8	-	ns

Figure 4. EMMC H 4 Data Input Timing

Table 36 HS400 Data Input Timing Specification

Symbol	Parameter	Min	Max	Unit
tPERIOD	Cycle time data transfer mode	5	-	ns
SR	Slew rate	1.125	-	V/ns
tCKDCD	Duty cycle distortion	0	0.2	ns
tCKMPW	Minimum pulse width	2	-	ns
tRQ	Input skew	-	0.4	ns
tRQH	input hold skew	-	0.4	ns

Figure 5. EMMC HS200 Data Input Timing

Table 3 HS200 Timing Specification

Symbol	Parameter	Min	Max	Unit
tPH	Device output morning fary phase from CLK input to CMD or DAT line of cput. Does not find the among term temperature drift.	0	2	UI
ΔТРН	Delay value for ove to temperature change after tuning. Total wab shift of output valid window (TVW) from last system Tuning procedure Δ TPH is 2600ps for ΔT from -25 °C 25.5° during operation.	-350(ΔT=-20deg.C)	1550(ΔT=90deg.C)	ps
tVW	Val Data Simple window	0.575	-	UI

Figure 6. SD Clock Signal Timing Diagram

Table 38 SD Clock Timing Specification

Symbol	Parameter (SDR104 Mode)	Min	Max	Unit
tCLK	clock period Data Transfer Mode(PP)	4.8	-	ns
Duty	Clock Duty	30	70	%
tCR	clock rise time	-	0.96	ns
tCF	clock fall time	-	0.96	ns

Figure 7. SD Card Output Timing Diagram

Table 39 SD Timing Specification

Inputs CMD, DAT (referenced to CLK)					
Symbol	Parameter	Min	Max	Unit	
tIS	input set-up time	3		ns	
tIH	input hold time	0.8	-	ns	

4.6.3 NAND Timing Specification

Nand timing specifications are shown as below

Figure 8 Async Water for Command/Address/Data Output Timing

Figure 9 Async Waveform for Address Output Cycle

Figure 10 Async Waveform for Sequential Data Lead Cycle (After Read)-EOD Mode

Table 40 Nand Timing Specifications

Symbol	Parameter(Asynchronous) (mode 5)	Min	Max	Unit
tCLS	CLE setup time	10	-	ns
tCLH	CLE hold time	5	-	ns
tALS	ALE setup	10	-	ns
tALH	ALE hold	5	-	ns
tDS	Data setup time	7	-	ns
tDH	Data hold time	5	-	ns

Symbol	Parameter(Asynchronous) (mode 5)	Min	Max	Unit
tWC	WE# cycle time	20	-	ns
tWP	WE# pulse width	10	-	ns
tWH	WE# high lold time	7	-	ns
tREA	RE# access time	-	16	ns
tOH	Data output hold time	15	-	ns
tRLOH	RE#-low to data hold time (EDO)	5	-	ns
tRP	RE# pulse width	10	-	ns
tREH	RE# high hold time	7	-	ns
tRC	RE# cycle time	20	-	ns

Table 41. SPIC Mater Timing Specification

Symbol	Description	Min.	Max.	Unit
fCLK	Clock Frequency	1	80	MHz
TCH	Clock high time	5		ns
TCL	Clock low time	5		ns
TLS1	CS fall to First Rising CLK Edge	50		ns
TSET	Data input Setup Time	4		ns
THOL	Data input Hold Time	4		ns
TLH	Minimum idling time week ransfers(minimum ss high time)	5		ns

4.6.5 SPIFC Timing specification

tSHSL -CS# tCHSL -tSLCH tCHSH-**↔** tSHCH SCLK tDVCH → · tCHCL tCLCH→ ⊢ tCHDX SI MSB High-Z SO Figure 13. SPIFC Out Timing Diagram CS# - tSHQZ **SCLK** tCLQ\ tCLQX tCLQX SO LSB SI Least significant address bit (LIB

Figure 12. SPIFC Serial Input Timing Diagram

Table 4 CHPC Master Timing Specification

Symbol	Parameter(Clock 41.7MHz)	Min	Max	Unit
fRSCLK	Clock Frequency for RE D in Sub-S		50	Mhz
tCH	Clock High Time	10		ns
tCL	Clock Low Time	10		ns
tCLCH	Clock Rise Tate (pask to peak)	0.1		V/ns
tCHCL	Clock Fall Time tpeak to peak)	0.1		V/ns
tSLCH	CS# etup Time (relative to SCLK)	4	-	ns
tCHSH	CS# Active Hold Time (relative to SCLK)	4	-	ns
tDVCH	Data In Setup Time	2	-	ns
tCHDX	Data In Hold Time	3	-	ns
tSHQZ	Output Disable Time (relative to CS#)		8	ns
tCLQV	Clock Low to Output Valid		6	ns
tCLQX	Output Hold Time	1		ns

4.6.6 Ethernet Timing Specification

Figure 14. Management Data Timing Diagram

Table 43. Management Data Timing Specification

Symbol	Description	Min.	Тур.	Max.	P	Notes
tMDC	MDC clock Period	400	500		S	From MAC
tMDCSU	Setup time to rising edge of MDC	10			ทุธ	
tMDCHD	Hold time to rising edge of MDC	10			hS	

Figure 15. RMII Timing Diagram

Table 44. RMII Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tREFCLK	RMII clock period		20		ns	50MHz from PHY
tOSU	TXD & TX_F setu time to rising edge of RMII clock	1.8	10		ns	To PHY
tOHD	TXD TX_E time to rising edge of RMII clock	1.4	10		ns	To PHY
tISU	RX & DV stup time to rising edge of RMII clock	1.0	10		ns	From PHY
tIHD	RXD cold time to rising edge of RMII clock	1.0	10		ns	From PHY

Figure 16. RGMII Receive Timing Diagram

Table 45. RGMII Receive Timing Specification

Symbol	Description	Min.	Тур),	4	ах	Unit	Notes
tRX_CLK	RGMII RX_CLK clock period		8		Y		ns	125MHz from PHY
tSETUP	RXD[3:0] & RX_DV setup time (PHY internal delay enabled)	1.2					ns	From PHY
tHOLD	RXD[3:0] & RX_DV hold time (PHY internal delay enabled)	1.2					ns	From PHY
tSKEW	RXD[3:0] & RX_DV skew between these 5 signals (PHY internal	-0.5			-	0.5	ns	From PHY
	delay disabled)							

When PHY internal delay is enabled, check setup/hold timing.

When PHY internal delay is disabled, check signal skew.

Figure 17. RGMI rammit Timing Diagram

Table 46. RGMII Transmit Timing Specification

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tTX_CLK	RGMII TX_CLK clock period		8		ns	125MHz to PHY
tOSU	TXD & TX_EN setup time to rising edge of RGMII clock (no clock delay added)	1			ns	From PHY
	TXD & TX_EN setup time to rising edge of RGMII clock (clock delay added)	-0.9			ns	From PHY

Symbol	Description	Min.	Тур.	Max	Unit	Notes
tOHD	RXD & DV hold time to rising edge of RGMII clock (no clock	0.8			ns	From PHY
	delay added)					
	RXD & DV hold time to rising edge of RGMII clock (clock delay	2.7			ns	From PHY
	added)					

4.6.7 Audio Timing Specification

There are two modes for the audio I2S/TDM interface: Master mode and Slave mode, as shown below.

SCLK (Output)

WS/Dout[3:0] (Output)

Din[3:0] (Input)

Figure 18 I2S/TDM Timing Diagram, Master Mode

Table 47 Audio I2S/TD Tining Specification, Transmitter, Master Mode

	Transmitter (master mode)								
Symbol	Parameter •	Min	Тур	Max	Unit				
Т	Clock period	10			ns				
tHC	High level of SC Y	0.4			Т				
tLC	Low level of SUK	0.4			T				
tRC	Edge time (SCLK			0.8	ns				
tdly	Dela from SCLK to WS	-2	3	5					
tsuin	Setup time of WS/Din	4			ns				
thdin	Hol time of WS/Din	4			ns				

Figure 19 I2S/TDM Timing Diagram, Slave Mode

Table 48 Audio I2S/TDM Timing Specification, Tansmitter, Slave Mode

	Transmitter (slave mod				
Symbol	Parameter	Min	Тур	Max	unit
T(out)	Clock period	40			ns
T(in)	Clock period	10			ns
tHC	High level of SCLK	0.4			T
tLC	Low level of SCLK	0.4			T
tRC	Edge time of SCLK			0.8	ns
tsu in	Setup time of WS/Din	4			ns
thd in	Hold time of WS/Din	4			ns
tdly	Delay between SCLK a d D ut	2	7	10	ns

4.6.8 PDM Timing Specification

S905D2 using a pdm_systex (configurable freq, typical 200Mhz, much higher than PDM freq.) to sampling PDM data in and PDM CLK, therefore S90 D2 don mave a requirement of setup time and hold time.

- 1. PDM data shoule be keeping stable not less than 2 periods of pdm_sysclk.
- 2. PDM data should be keep same delay to the edge of PDM clk (both rise and fall edge). See the following picture.

Confidential to Radixa

4.7 Power On Config

3 Boot pins are used as power on config (POC) pins, to set the booting sequence.

POC setting is latched at the rising edge of reset signal.

3 POC pins are all pull high internal, CPU will try to boot from NAND/eMMC first, if fails than try to boot from SD CARD, still fails then try to booting from USB (PC).

External 4.7K ohm pull down resistors can be used to change the POC setting. The resistors should be placed on right location, avoid stubs on high speed signals.

S905Y2's Power On Configuration is listed as following:

Table 49. Power On Configuration Pin Table

POC	Boot Pin	Name	Pull low	Pull high
POC0	Boot[4]	SPI NAND First	SPI NAND boot first	Default segue
POC1	Boot[5]	USB First	USB boot first	Default sque se
POC2	Boot[6]	SPI NOR First	SPI NOR first	Defa 10 equence

Table 50 Booting Sequence Dingram

No.	POC_0 (SPI_NAND)	POC_1 (USB_BOOT)	POC_2 (SPI_NOR, eMMC/NAND)	1st Boo' de l'e	2nd Boot device	3rd Boot device	4th Boot device
1	0	0	0	ISB(short	SPI_NOR	NAND/eMMC	SD Card
2	0	0	1	B(short delay)	NAND/eMMC	SD Card	-
3	0	1		SPI_NOR	NAND/eMMC	SD Card	USB
4	0	1	71	SPI_NAND	NAND/eMMC	USB	-
5	1	2	0	USB(short delay)	SPI_NOR	NAND/eMMC	SD Card
6	1	0	1	USB(short delay)	NAND/eMMC	SD Card	-
7	1	1	0	SPI_NOR	NAND/eMMC	SD Card	USB
8	1	1	1	NAND/eMMC	SD Card	USB	-

Note:

If GPIOC is not work as SDIO port, please do not pull CARD_DET(GPIOC_6) low when system booting up, to avoid romcode trying to boot from SD CARD.

4.8 Recommended Power on Sequence

Example power on sequence:

Note:

- 1) VDDAO_3.3V & VCC3.3V & VDDIO_AO18 should ramp u ... s later than VDD_EE.
- 2) All power sources should get stable within 20ms (except or DDR_VDDQ).
- 3) No sequence requirement between VDDCPU & DX VDQ and other power source.
- 4) VDDIO_AO18 should ramps up at the same tine ith VDDAO_3.3V & VCC3.3V, VDDAO_3.3V & VCC3.3V should never be 2.5V higher than VDDIO_AO18.
- 5) In some designs, VDDCPU & VDD_EE recorded to VCC_CORE, the power on sequence should be same as VDD_EE.
- 6) RESET_n should keep low for at lea 40 s after power up (except DDR_VDDQ).

Please refer to reference schematics

4.9 Power Consumption

Note: Values listed here are estimated typical max value tested. Enough margin in circuit needs to be reserved.

Symbol	Maximum Current	Note
VDDCPU	2 A	
VDD_EE	2 A	
VDD_DDR	300mA	Estimate
VDDQ	500mA	

Symbol	Typical current	Maximum current	Note
VDD18_AO_XTAL	1mA	-	EFUSE: Max 100 mA when programming EFUSE
VDDAO_0V8	22mA		
AVDD0V8_PCIE	50mA	-	At 5Gbps mode
AVDD0V8_USB	8mA	8mA	
AVDD0V8_HDMI	23mA		At 6Gbps mode
AVDD_DDRPLL	6mA		
AVDD18_HCSL	8mA	10mA	
AVDD18_PCIE	24mA		At 5Gbps mode
AVDD18_DPLL	19mA	25mA	
AVDD18_HDMI	3.3mA		
AVDD33_HDMI	0mA		Default no zur in
AVDD18_USB	13.8mA	17mA	X
AVDD33_USB	2mA	-	
AVDD18_SARADC	1.2mA		
			ated GPIO power consumption: a pad output continue
		*	100MHz clk (200Mbps) with 10pF loading is about 1.8mA @
VDDIO	-		1.8V, 3.3mA @ 3.3V. External capacitor loading, resistance
			loading, internal pull up/down will affect the power
			consumption.

4.10 Storage and Baking Conditions

The processor is no istural sensitive device of MSL level 3, defined by IPC/JEDEC J-STD-020. Please follow the storage and backing guidelines.

- 1) Calculated shelf life in sealed bag: 12 months at <40 °C and <90% relative humidity (RH).
- 2) After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - a) Mounted with 168 hours of factory conditions ≤30°C/60% RH, or
 - b) Stored per J-STD-033
- 3) Devices require bake, before mounting, if Humidity Indicator Card reads >10%.
- 4) If baking is required, refer IPC/JEDEC J-STB-033 for baking process.

5. Mechanical Dimensions

The S905Y2 processor comes in a 42x42 ball matrix FCBGA RoHS package. The mechanical dimensions are given in millimeters as below.

