Aufgabe 2.1. 1:

L1: NAND, weil es immer eine 1 ausgibt wenn die Eingänge nicht alle an sind (mindestens 1 aus ist)

L2: AND: es müssen beide 1 sein, sodass am Ausgang eine 1 ausgegeben wird

Aufgabe 2.1.2:

(S3, S2, S1, S0 sind die Speicher, die für dieses Schaltwerk nötig sind)

Aufgabe 2.1.3:

Man braucht 4 Leitungen, da man 4 Speicher benötigt. ($log_2(12) = 3,58 \rightarrow 4$)

	t				t + 1				
Zustan d	S ₃	S ₂	S ₁	S ₀	S ₃	S ₂	S ₁	S ₀	Folgezustand
Z ₀	0	0	0	0	0	0	0	1	Z ₁
Z ₁	0	0	0	1	0	0	1	0	Z_2
Z ₂	0	0	1	0	0	0	1	1	Z ₃
Z ₃	0	0	1	1	0	1	0	0	Z ₄
Z ₄	0	1	0	0	0	1	0	1	Z ₅
Z ₅	0	1	0	1	0	1	1	0	Z ₆
Z ₆	0	1	1	0	0	1	1	1	Z ₇
Z ₇	0	1	1	1	1	0	0	0	Z ₈
Z ₈	1	0	0	0	1	0	0	1	Z ₉
Z ₉	1	0	0	1	1	0	1	0	Z ₁₀
Z ₁₀	1	0	1	0	1	0	1	1	Z ₁₁
Z ₁₁	1	0	1	1	1	1	0	0	Z ₁₂
Z ₁₂	1	1	0	0					

Aufgabe 2.1.4:

Zustand	S ₃	S ₂	S ₁	S ₀	А	L
Z ₀	0	0	0	0	0	0
Z ₁	0	0	0	1	0	0
Z ₂	0	0	1	0	1	0
Z ₃	0	0	1	1	1	0
Z ₄	0	1	0	0	0	0
Z ₅	0	1	0	1	0	0
Z ₆	0	1	1	0	1	0
Z ₇	0	1	1	1	0	0
Z ₈	1	0	0	0	0	0
Z ₉	1	0	0	1	1	0
Z ₁₀	1	0	1	0	1	0
Z ₁₁	1	0	1	1	1	0
Z ₁₂	1	1	0	0	0	1

Aufgabe 2.2.1:

Ich würde es mit Hilfe von verschachtelten Zählschleifen realisieren.

Bei Assembler ist dies leichter zu berechnen, da Befehle eine bestimmte Zeit zur Ausführung benötigen. In C ist dies komplizierter, da es sich bei C um eine Hochsprache handelt und nicht ganz so hardwarenah wie Assembler ist. Das heißt in C muss man die Verzögerung, wenn man Zählschleifen verwendet, mit probieren finden. In C wäre eine Verzögerung mit Hilfe eines Interrupts empfehlenswert.

Aufgabe 2.2.2:

