Bakalářské zkoušky (příklady otázek z matematiky)

léto 2022

1 Vlastní čísla (3 body)

Buď $A \in \mathbb{R}^{n \times n}$ symetrická matice.

- 1. Ukažte, že matice A^2 má nezáporná vlastní čísla.
- 2. Ukažte, že hodnost matice A je rovna počtu jejích nenulových vlastních čísel (počítáno včetně násobností).

2 Charakteristický polynom (3 body)

- 1. Definujte charkteristický polynom $p_A(\lambda)$ matice $A \in \mathbb{R}^{n \times n}$.
- 2. Spočtěte charakteristický polynom reálné matice $\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$.
- 3. Najděte všechny symetrické reálné matice A s charakteristickým polynomem $p_A(\lambda) = \lambda^2 4\lambda + 4$.

3 Projekce (3 body)

Najděte směrnici $p \in \mathbb{R}^3$ přímky, která prochází počátkem a víme, že všechny tři body $u = (1,2,3)^T$, $v = (0,3,1)^T$, $w = (8,1,2)^T$ se při projekci na tuto přímku zobrazí na stejný bod.

4 Částečná uspořádání (3 body)

- 1. Definujte pojmy řetězec a antiřetězec (nezávislá množina) v částečném uspořádání.
- 2. Zformulujte větu o vztahu velikosti nosné množiny částečného uspořádání vzhledem k délkám jejich řetězců a antiřetězců.
- 3. Kolik nejdelších řetězců a antiřetězců má částečné uspořádání (\mathcal{X}, \subseteq) , kde $\mathcal{X} = \{A \subseteq \{1, \dots, 10\} : |A| \in \{2, 3, 7\}\}$?

5 Grafy (3 body)

- 1. Definujte pojmy cesta, tah, sled, hamiltonovská cesta a eulerovký tah.
- 2. Vyslovte větu o nutné a postačující podmínce pro existenci eulerovského tahu v orientovaných grafech.
- 3. Pro každý ze tří grafů na obrázku určete počet různých Eulerovských tahů takových, že tah začíná vyznačenou dvojicí vrcholů v_1, v_2 .

6 Posloupnosti (3 body)

Nechť $(a_n) = (a_1, a_2, \ldots)$ je posloupnost reálných čísel.

- 1. Definujte, co znamená, že (a_n) konverguje.
- 2. Definujte, co znamená, že (a_n) je Cauchyova.
- 3. Jaký je vztah mezi posloupnostmi v 1 a ve 2? Odpověď zdůvodněte.
- 4. Definujte, co znamená, že (a_n) je omezená.
- 5. Dokažte, že když (a_n) je Cauchyova, pak je omezená.

7 Řady (3 body)

Nechť $R := \sum_{n=1}^{\infty} a_n$ je (nekonečná) řada reálných čísel.

- 1. Definujte její n-tý částečný součet s_n .
- 2. Definujte její součet s.
- 3. Dokažte, že když řada R konverguje (tj. R má konečný součet), pak $\lim_{n\to\infty}a_n=0$.
- 4. Uveď te příklad řady R, pro kterou $\lim_{n\to\infty} a_n = 0$, ale R má součet $+\infty$. Odpověď zdůvodněte.

8 Derivace (3 body)

Nechť $\delta > 0$ a $f: (a - \delta, a + \delta) \to \mathbb{R}$ je reálná funkce (definovaná na δ -okolí bodu $a \in \mathbb{R}$).

- 1. Definujte derivaci f'(a).
- 2. Řekněme, že tato derivace existuje a $f'(a) \in \mathbb{R}$. Čemu se potom rovná $(f(x)^2)'(a)$?
- 3. Řekněme, že tato derivace existuje, $f'(a) \in \mathbb{R}$ a $f(a) \neq 0$. Čemu se potom rovná (1/f(x))'(a)?
- 4. Spočtěte $(x^x)'(1)$.

Své odpovědi samozřejmě zdůvodněte.

9 Logika (3 body)

- 1. Uveď te definici pojmu model teorie a znění věty o kompaktnosti ve výrokové logice.
- 2. Nechť $S = \{S_i \subseteq \mathbb{N} \mid i \in \mathbb{N}\}$ je spočetně nekonečný systém konečných množin. Označme si jejich prvky $S_i = \{a_1^i, \dots, a_{s_i}^i\}$, kde $s_i = |S_i| \in \mathbb{N}$. Nechť prvovýrok p_j^i znamená, že "číslo j bylo vybráno z množiny S_i ". Ukažte, jak pro S sestrojit výrokovou teorii T_S nad $\mathbb{P} = \{p_j^i \mid i, j \in \mathbb{N}\}$ takovou, že T_S má model, právě když S má systém různých reprezentantů (tedy z každé množiny lze vybrat nějaký prvek tak, že vybrané prvky budou navzájem různé).

3.	$Hallova\ věta$ pro konečný systém $\mathcal S$ konečných množin říká, že $\mathcal S$ má systém různých reprezentantů, právě když pro každý konečný podsystém $\mathcal T\subseteq\mathcal S$ platí, že $ \mathcal T \leq \bigcup_{S\in\mathcal T}S $. Pomocí věty o kompaktnosti dokažte, že stejná věta platí i pro spočetně nekonečný systém $\mathcal S$ konečných množin.