Introduction to Computational Logic

Homework 1

DUE DATE: OCTOBER 4, 2017 學號: **b03902129** 系級: 資工四 姓名: 陳鵬宇

Name: 陳鵬宇

(1) Show $q \Rightarrow r \vdash (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ is valid.

$1 q \Rightarrow r$	premise
$p \Rightarrow q$	assumption
3 p	assumption
4 q	\Rightarrow e 3, 2
5 r	\Rightarrow e 4, 1
$6 p \Rightarrow r$	\Rightarrow i $3-5$
$7 (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$	\Rightarrow i 2 - 6

(2) Show $\vdash \neg p \Rightarrow (p \Rightarrow (p \Rightarrow q))$ is valid.

1	$\neg p$	assumption
2	p	assumption
3	p	assumption
4	\perp	$\neg e 3, 1$
5	q	⊥e 4
6	$p \Rightarrow q$	\Rightarrow i $3-5$
7	$p \Rightarrow (p \Rightarrow q)$	\Rightarrow i $2-6$
8	$\neg p \Rightarrow (p \Rightarrow (p \Rightarrow q))$	\Rightarrow i 1 - 7

(3) Show $p \Rightarrow q \vdash \neg p \lor q$ is valid.

1	$p \Rightarrow q$	premise
2	$\neg(\neg p\vee q)$	assumption
3	p	assumption
4	q	\Rightarrow e 3, 1
5	$\neg p \vee q$	$\forall i_2 \ 4$
6	\perp	$\neg e 5, 2$
7	$\neg p$	$\neg i \ 3-6$
8	$\neg p \vee q$	$\vee i_1$ 7
9	\perp	$\neg e 8, 2$
10	$\neg\neg(\neg p\vee q)$	$\neg i \ 2-9$
11	$\neg p \lor q$	¬¬e 10

(4) Show $(s \Rightarrow p) \lor (t \Rightarrow q) \vdash (s \Rightarrow q) \lor (t \Rightarrow p)$ is valid.

```
1 (s \Rightarrow p) \lor (t \Rightarrow q)
                                                                                     premise
 2 \quad s \Rightarrow p
                                                                               {\it assumption}
 3 \quad p \lor \neg p
                                                                                         LEM
 4 p
                                                                                assumption
 5 \quad t \Rightarrow p
                                                                                         \Rightarrow i 4
 6 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                                         \forall i_2 5
                                                                               {\it assumption}
 8 s
                                                                               assumption
 9 p
                                                                                    \Rightarrow e 8, 2
10 \quad \bot
                                                                                      \neg e 9, 7
11 \quad q
                                                                                       ⊥e 10
12 s \Rightarrow q
                                                                                 \Rightarrow i~8-11
13 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                                       Vi₁ 12
14 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                     \forall e 3, 4-6, 7-13
15 t \Rightarrow q
                                                                               {\it assumption}
                                                                                        _{
m LEM}
16 q \vee \neg q
                                                                               {\it assumption}
17 \quad q
18 s \Rightarrow q
                                                                                      \Rightarrowi 17
19 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                                       Vi₁ 18
20 \neg q
                                                                               assumption
21 	 t
                                                                               assumption
22 \quad q
                                                                                 \Rightarrow e 21, 15
23 \perp
                                                                                   \neg e 22, 20
24 p
                                                                                        \pm e 23
25 \quad t \Rightarrow p
                                                                               \Rightarrow i\ 21-24
26 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                                       ∨i<sub>2</sub> 25
27 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                            \veee 16, 17 - 19, 20 - 26
28 (s \Rightarrow q) \lor (t \Rightarrow p)
                                                                \forall e 1, 2-14, 15-27
```

(5) Show $(p \land q) \Rightarrow r, r \Rightarrow s, q \land \neg s \vdash \neg p$ is valid.

1	$p \wedge q \Rightarrow r$	premise
2	$r \Rightarrow s$	premise
3	$q \wedge \neg s$	premise
4	q	$\wedge e_1 \ 3$
5	$\neg s$	$\wedge e_2$ 3
6	$\neg r$	MT 2, 5
7	$\neg (p \land q)$	MT 1, 6
8	p	assumption
9	$p \wedge q$	$\wedge i \ 8, 4$
10	\perp	$\neg e 9, 7$
11	$\neg p$	¬i 8 − 10