Predictive Maintenance Project

Analyzing an industrial machinery dataset and predicting machine wear

Project objective

Use machine learning to predict when a machine needs maintenance.

Why?

This kind of data science project has the potential to save manufacturing companies money.

Problems to solve

1 Find a suitable data source

2 Analyse the data

3 Model the data

Host the data on the cloud

5 Visualise the data

Overview: Predictive maintenance of a CNC milling machine

In machine cutting processes, in order to ensure surface finish quality, it is imperative to keep the cutting tool used in top operative condition.

One approach to monitor the machine wear is to measure certain process parameters, such as cutting force, tool vibration and acoustic emissions and predict the wear of the cutter.

The dataset

We used the dataset from the 2010 PHM Society Conference Data Challenge

It has ~18 GBs of sensor data from a CNC cutting machine prepared for analysis and modeling.

Data source

The data set is available at Kaggle:

PHM data challenge 2010

The group

Daniel:

GitHub repo owner Dashboards Frontend

Dermot:

Scrum master Dashboards Python basics

Clement:

Cloud hosting Python basics

David:

Product owner
EDA
Feature engineering
Deep learning modeling
GitHub repo owner

Edina:

EDA Time Series analysis ML modeling

Our epics

- Setting up the environment
- Learning about tools
- Learning the domain knowledge
- Data exploration
- Data modeling
- Cloud storage
- Dashboarding

Workflow

Jira

Slack

Google docs

Google meet

Epic v
Search filters
☐ Issues without epic
□ Sprint 0 KAN-12
☐ Setting up environment KAN-39
Learning about tools KAN-40
☐ Learning the domain knowledge KAN-41
Exploration KAN-43
□ Modeling KAN-126
Show epic panel Press E to open and close

Local ML modeling learn Data analysis | pandas matpl&tlib DL modeling O PyTorch **Cloud** Cloud Storage Streamlit

Other tools

Sketch of the web app

Predictive maintenance

Problem and data

Exploratory data analysis

Machine learning modeling

Deep learning modeling

Machine learning modeling

About the model:

- * Features used
- * Multi smothing lasso something

$$y = Ax + B$$

Train with C1

Predicting the other datasets

Summary of the project experience

- Lots of learning
- Difficult to predict tasks' time-frame
- Hard to keep Jira up-to-date
- Planning could have been more flexible and inclusive
- Communication and workflow improved as project developed
- One-on-one meetings were crucial
- Project was challenging and ambitious

Possible next steps

- → Fine-tune the ML and DL models
 - use more of data to train
 - explore the parameter space further
- → Deploy models to the cloud
- → Simulate using the model for real-time monitoring
 - generate synthetic data in real-time
 - upload it to google drive
 - display it in the dashboard in real-time
 - run the model in real-time to add an estimate of the wear

