Assessment Schedule – 2023

Scholarship Calculus (93202)

Evidence Statement

Q	Solution			
ONE (a)(i)	$QR: \frac{y-}{x-(-x)}$	rdinates (-6,8) and R (10,0). $\frac{8}{-6} = \frac{0-8}{10-(-6)}$ $= -8x - 48$		
(ii)	The hyperbola and the circle have a common axis of symmetry, $y = -x$. As such, the line $y = -x$ is a normal to both RT and PQ, hence RT PQ.			
(b)	Label the	equations as shown:		
	$4\log_2(8x^3)$	$) + \log_5(y^6) = 17$	A	
	$\log_2(x^5) +$	$-\log_5(y^2) = 3$	В	
	From A:	$4\log_2(8x^3) + \log_5((y^2)^3) = 17 \Rightarrow$		
		$4\log_2(8x^3) + 3\log_5(y^2) = 17 \Rightarrow$		
		$12 + 12\log_2 x + 3\log_5(y^2) = 17$	C	
	From B:	$5\log_2 x + \log_5(y^2) = 3$	D	
		$12 + 12\log_2 x + 3\log_5(y^2) = 17$		
		$5\log_2(x) + \log_5(y^2) = 3$		
	⇒ The system is now:			
		$12\log_2 x + 3\log_5(y^2) = 5$	E	
		$5\log_2(x) + \log_5(y^2) = 3$	F	
	Make the substitution: $a = \log_2 x$ and $b = \log_5(y^2)$ The system can be written as: $12a + 3b = 5$			
	The system	5a+b=3		
		s solutions: $a = \frac{4}{3}$ and $b = -\frac{11}{3}$		
	Substituting back: $\log_2 x = \frac{4}{3} \Rightarrow x = 2^{\frac{4}{3}}$			
	$\log_5(y^2) =$	$= -\frac{11}{3} \Rightarrow y = \pm 5^{-\frac{11}{6}}$		

(c) Let the point A have the coordinates
$$(x_1, y_1)$$
 and B (x_2, y_2) .

$$G_{\text{OA}} = \frac{y_1 - 0}{x_1 - 0}$$
 and $G_{\text{OB}} = \frac{y_2 - 0}{x_2 - 0}$

Since OA ⊥ OB

$$\frac{y_1}{x_1} \times \frac{y_2}{x_2} = -1$$

$$y_1 y_2 = -\frac{{y_1}^2}{k} \times \frac{{y_2}^2}{k} \Rightarrow y_1 y_2 = -k^2 \text{ (since } x = \frac{y^2}{k}\text{)}$$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_2)$$

For
$$y = 0$$
, $-y_1 = \frac{y_2 - y_1}{\frac{1}{L}(y_2^2 - y_1^2)}(x - x_1)$

$$-y_1 = \frac{k}{y_2 + y_1}(x - x_1)$$

$$x = \frac{-y_1 y_2 - y_1^2}{k} + x_1$$

$$x = k - \frac{{y_1}^2}{k} + x_1 = k$$

The *x*-intercept is (k,0).

Alternate solution:

Let
$$A = (a,b) \Rightarrow k = \frac{b^2}{a}$$

grad
$$OA = \frac{b}{a} \Rightarrow grad OB = -\frac{a}{b}$$

$$OB \Rightarrow y = \frac{-a}{b}x \Rightarrow x = \frac{-b}{a}y$$

Solving for B
$$y^2 = \frac{-kb}{a}y$$

so B has coordinates
$$\left(\frac{kb^2}{a^2}, -\frac{kb}{a}\right)$$

Now AB
$$\Rightarrow y - b = \frac{-\frac{kb}{a} - b}{\frac{kb^2}{a^2} - a} (x - a)$$

When
$$y = 0$$

$$\frac{kb^2}{a^2} - a$$

$$\frac{k+a}{a} = x - a$$

$$\frac{\frac{k - a}{a^2}}{\frac{k + a}{k + a}} = x - a$$

$$\frac{a}{(k-a)(k+a)} = x - a$$

$$x = k$$

TWO (a)	Since $\frac{3\pi}{2} < x < 2\pi, \frac{3\pi}{4} < \frac{x}{2} < \pi$, so $\left(\frac{x}{2}\right)$ lies in the second quadrant and $\sin\left(\frac{x}{2}\right)$ is positive.		
	Since $\sin x = \sqrt{\frac{1 - \cos(2x)}{2}}$, $\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$		
	From $\cot x = -\frac{5}{12}$, we have 5, 12, 13 triangle, and since x lies in the fourth quadrant,		
	12 is negative, which gives: $\cos x = \frac{5}{13}$		
	$\sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \frac{5}{13}}{2}} = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}}$		
(b)	$(\overline{z})^4 = \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^4 = \left[\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^2\right]^2$		
	$= \left[\frac{1}{4} - \frac{\sqrt{3}}{2}i + \frac{3}{4}i^2\right]^2 = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^2 = \frac{1}{4} - \frac{\sqrt{3}}{2}i + \frac{3}{4}i^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$		
	Or $\overline{z} = \operatorname{cis} \frac{4\pi}{3} \text{ and } (\overline{z})^4 = \left(\operatorname{cis} \frac{4\pi}{3}\right)^4 = \operatorname{cis} \frac{16\pi}{3} = \operatorname{cis} \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$		
(c)(i)	Since $i = e^{i\frac{\pi}{2}}$, we have $\left(\left(e^{i\frac{\pi}{2}}\right)^i\right)^2 = \left(e^{-\frac{\pi}{2}}\right)^2 = e^{-\pi}$ which is real.		
(ii)	$\ln\left(-25e^{i^{i}}\right) = \ln(-1) + \ln 25 + i^{i} \ln e$		
	Now $-1 = e^{i\pi}$ so we have		
	$\ln e^{i\pi} + \ln 25 + e^{-\frac{\pi}{2}} = \left(\ln 25 + e^{-\frac{\pi}{2}}\right) + i\pi$		
(d)	$x^2 + y^2 = z\overline{z}$		
	$x = \frac{z + \overline{z}}{2}$		
	$y = \frac{z - \overline{z}}{2i}$		
	Substituting into the xy plane circle: $z(z+\overline{z}) = (z-\overline{z})$		
	$Az\overline{z} + B\left(\frac{z+\overline{z}}{2}\right) + C\left(\frac{z-\overline{z}}{2i}\right) + D = 0 \text{ and}$		
	$Az\overline{z} + \left(\frac{B}{2} + \frac{C}{2i}\right)z + \left(\frac{B}{2} - \frac{C}{2i}\right)\overline{z} + D = 0$		
	Let $\alpha = A$, $\gamma = D$, and $\beta = \frac{B}{2} + \frac{C}{2i}$		

THREE (a)	$x = 2t - 3t^3$		
	$y = te^t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - 9t^2$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^t + t\mathrm{e}^t$, so		
	$\frac{dy}{dx} = \frac{e^t + te^t}{2 - 9t^2}$. Turning points when $\frac{dy}{dx} = 0$		
	Let $\frac{e^t + te^t}{2 - 9t^2} = \frac{e^t(1 + t)}{2 - 9t^2} = 0 \Rightarrow t = -1$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{e}^t + t\mathrm{e}^t}{2 - 9t^2} \right) \times \frac{\mathrm{d}t}{\mathrm{d}x}$		
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{e}^t + t\mathrm{e}^t}{2 - 9t^2} \right) = \frac{\left[\mathrm{e}^t + \mathrm{e}^t + t\mathrm{e}^t \right] \left(2 - 9t^2 \right) - \left[\mathrm{e}^t + t\mathrm{e}^t \right] \left(-18t \right)}{\left(2 - 9t^2 \right)^2} \mathrm{so}$		
	$\frac{d^2 y}{dx^2} = \frac{\left[e^t + e^t + te^t\right] \left(2 - 9t^2\right) - \left[e^t + te^t\right] \left(-18t\right)}{\left(2 - 9t^2\right)^2} \times \frac{1}{2 - 9t^2} = \frac{e^t \left[4 + 20t - 18t^2 - 9t^3\right]}{\left(2 - 9t^2\right)^3} \text{ and }$		
	$\frac{d^2 y}{dx^2}\Big _{t=-1} = \frac{e^{-1} \left[4 - 20 - 18 + 9 \right]}{\left(2 - 9 \right)^3} > 0$		
	So the curve has a minimum when $t = -1$, which gives the coordinates $(1, -e^{-1})$		
(b)(i)	Let the distance of the player from second base be $27.4 - x$, and the distance between the player and third base represented by l . Then $l^2 = 27.4^2 + (27.4 - x)^2$		
	Differentiating implicitly gives: $2l\frac{dl}{dt} = 2(27.4 - x)(-1)\frac{dx}{dt}$		
	When $x = 10$, $l = \sqrt{27.4^2 + 17.4^2} = 32.46$ m, so		
	$\frac{\mathrm{d}l}{\mathrm{d}t}\Big _{x=10} = \frac{1}{2 \times 32.46} \Big[2 \Big[27.4 - 10 \Big] (-1) \times 5 \Big] = -2.68 \mathrm{m s^{-1}}$		
(ii)	$\tan \theta_1 = \frac{27.4 - x}{27.4} = 1 - \frac{x}{27.4}$ and differentiating implicitly gives:		
	$\sec^2 \theta_1 \frac{d\theta_1}{dt} = \frac{-1}{27.4} \frac{dx}{dt} \Rightarrow \frac{d\theta_1}{dt} = \frac{-1}{27.4} \frac{dx}{dt} \times \cos^2 \theta_1$		
	As the player touches base 2, $\theta_1 = 0$.		
	So $\frac{d\theta_1}{dt}\Big _{x=27.4} = \frac{-1}{27.4} \frac{dx}{dt} \times \cos^2 0 = \frac{-1}{27.4} = -0.18 \text{ rad s}^{-1}$		
	And $\frac{d\theta_2}{dt}\Big _{x=27.4} = +0.18 \text{ rad s}^{-1}$		

For a delivery every x days, 5x units must be ordered to have enough steel for that delivery cycle. The average amount in storage between deliveries is $\frac{5x-0}{2} = \frac{5x}{2}$. So, the cost of delivery and storage for each cycle is given by:

Cost per cycle = delivery costs + storage costs, i.e

Cost per cycle =
$$\$5000 + \frac{5x}{2} \times x \times \$10$$

For daily cost – divide through by number of days in the cycle.

$$c(x) = \frac{5000}{x} + 25x$$
 where $x > 0$.

Since $\lim_{x\to 0} c(x) = +\infty$ and $\lim_{x\to +\infty} c(x) = +\infty$, a minimum must exist between these two limits.

$$\frac{dc}{dx} = -5000x^{-2} + 25$$

For minimum, set $0 = -5000x^{-2} + 25 \Rightarrow x = \pm\sqrt{200}$ days. We use $\sqrt{200}$.

$$c\left(\sqrt{200}\right) = \frac{5000}{\sqrt{200}} + 25\sqrt{200} = 500\sqrt{2} \approx $707.11$$

Note $C''(x) = 10000x^{-3}$ and $C''(\sqrt{200}) > 0$, we do have a minimum.

The gate maker should receive a delivery every $\sqrt{200} \approx 14$ days of $14 \times 5 = 70$ units of steel.

Other rounding arguments:

$$\sqrt{200} \times 5 \approx 71$$

A delivery every 14 days of 71 units. This will not incur any further charge for delivery since the transport costs are fixed. However, the extra 1 unit delivered will cost \$130 to store if used at the very end of the cycle. On the other hand, there is a manufacturing bottleneck of 5 units per day. Therefore a multiple of 5 is required.

Scholarship Calculus (93202) 2023 — page 6 of 7				
FOUR (a)	Points of intersection of the two parabolae are:			
	$6x - x^2 = x^2 - 2x \Rightarrow 2x^2 - 8x = 0 \Rightarrow x = 0 \text{ or } x = 4$ Intersection points: (0,0) and (4,8).			
	Area = $\int_0^4 \left[(6x - x^2) - (x^2 - 2x) \right] dx = \int_0^4 \left[8x - 2x^2 \right] dx$			
	$= \left[4x^2 - \frac{2}{3}x^3\right]_0^4 = 64 - \frac{128}{3} = \frac{64}{3} \text{ units}^2$			
(b)	$\int_{1}^{4} \frac{\mathrm{d}x}{(x-2)^{\frac{2}{3}}} = \int_{1}^{2} \frac{\mathrm{d}x}{(x-2)^{\frac{2}{3}}} + \int_{2}^{4} \frac{\mathrm{d}x}{(x-2)^{\frac{2}{3}}}$			
	$\int_{1}^{2} \frac{\mathrm{d}x}{\left(x-2\right)^{\frac{2}{3}}} = \lim_{k \to 2^{-}} \int_{1}^{k} \frac{\mathrm{d}x}{\left(x-2\right)^{\frac{2}{3}}} = \lim_{k \to 2^{-}} \left[3(k-2)^{\frac{1}{3}} - 3(1-2)^{\frac{1}{3}} \right] = 3$			
	$\int_{2}^{4} \frac{\mathrm{d}x}{\left(x-2\right)^{\frac{2}{3}}} = \lim_{k \to 2^{+}} \int_{k}^{4} \frac{\mathrm{d}x}{\left(x-2\right)^{\frac{2}{3}}} = \lim_{k \to 2^{+}} \left[3(4-2)^{\frac{1}{3}} - 3(k-2)^{\frac{1}{3}} \right] = 3\sqrt[3]{2}$			
	Putting this together: $\int_{1}^{4} \frac{dx}{(x-2)^{\frac{2}{3}}} = 3 + 3\sqrt[3]{2}$			
(c)	Noting the symmetry of the astroid and setting			
	$t_1 = 0$ and $t_2 = \frac{\pi}{2}$, as well as using			
	$\frac{dy}{dt} = 3\sin^2 t \cos t$ and $\frac{dx}{dx} = 3\cos^2 t(-\sin t)$, we have			
	$L = 4 \int_0^{\frac{\pi}{2}} \sqrt{(3\sin^2 t \cos t)^2 + ((3\cos^2 t)(-\sin t))^2} dt$			
	$L = 4 \int_0^{\frac{\pi}{2}} \sqrt{9 \sin^4 t \cos^2 t + 9 \cos^4 t \sin^2 t} dt$			
	$L = 4 \int_{0}^{\frac{\pi}{2}} 3\sin t \cos t dt$			
	$L = 12 \int_0^{\frac{\pi}{2}} \cos t \sin t dt$			
	$L = 6 \left[\sin^2 t \right]_0^{\frac{\pi}{2}} = 6$			
	OR T			
	$L = 6 \int_0^{\frac{\pi}{2}} \sin 2t \mathrm{d}t$			
	$L = 3\left[-\cos 2t\right]_0^{\frac{\pi}{2}} = 3(1 - 1) = 6$			

(d) Squaring both sides gives:

$$(f(x))^2 = \int_0^x (f^2(t) + f'(t)^2) dt + 2023 \text{ then}$$

$$\frac{d}{dx} (f(x))^2 = \frac{d}{dx} \left(\int_0^x (f(t)^2 + f'(t)^2) dt + 2023 \right)$$

$$2f(x)f'(x) = f(x)^2 + f'(x)^2$$

$$f(x)^2 - 2f(x)f'(x) + f'(x)^2 = 0$$

$$(f(x) - f'(x))^2 = 0 \text{ which gives}$$

$$f(x) = f'(x)$$

which has the solution $f(x) = Ce^x$

Substituting into the original equation gives:

$$Ce^{x} = \sqrt{\int_{0}^{x} \left((Ce^{t})^{2} + (Ce^{t})^{2} \right) dt + 2023}$$

$$Ce^{x} = \sqrt{C^{2} \int_{0}^{x} 2e^{2t} dt + 2023}$$

$$Ce^{x} = \sqrt{C^{2}e^{2x} - C^{2} + 2023}$$

Squaring both sides gives:

$$C^2e^{2x} = C^2e^{2x} - C^2 + 2023$$
 and

$$C^2 = 2023 \Rightarrow C = \sqrt{2023}$$

So the required function is $f(x) = \sqrt{2023} e^x$

Alternatively:

Substituting
$$x = 0$$
 into $Ce^x = \sqrt{C^2 e^{2x} - C^2 + 2023}$ gives $C = \sqrt{C^2 - C^2 + 2023} = \sqrt{2023}$

Sufficiency Statement

Score 1–4, no award	Score 5–6, Scholarship	Score 7–8, Oustanding Scholarship
Shows understanding of relevant mathematical concepts, and some progress towards solutions to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception, and insight / convincing communication shown in finding correct solutions to complex problems.

Cut Scores

Scholarship	Outstanding Scholarship
17 – 28	29 – 32