Kompleksne mreže

7. predavanje

Učenje u mrežama (Bayesian & DeGroot model, mudrost masa)

Dijeljenje informacija i stvaranje mišljenja

- Otvorena pitanja:
 - da li pojedinci u društvu imaju zajedničko uvjerenje ili ostaju podijeljeni u mišljenjima?
 - koji pojedinci imaju najveći utjecaj na uvjerenja u društvu?
 - koliko brzo pojedinci uče?
 - mogu li se u početku raznolike informacije razasute po društvu agregirati na točan način?

Koji pojedinci imaju najveći utjecaj na uvjerenja u društvu u današnje vrijeme?

cristiano 💝 Follow Message 🗘 …

3,593 posts 614M followers 577 following

Cristiano Ronaldo

Join my NFT journey on @Binance. Click the link below to get started. ter.li/CR7ForeverZone

Followed by mhdsdj, foxsports, roccolibroccoli + 21 more

founder of stuff

therock.komi.io

Followed by mhdsdj, foxsports, hrvoje3101 + 26 more

selenagomez Follow Message +2

1,946 posts 429M followers 277 following

Selena Gomez

G selenagomez

Musician/Band

Personal faith

By grace, through faith.
Founder @rarebeauty
Founder/CIO @officialwondermind
② linktr.ee/selenagomez

Followed by kateupton, rozgajelenaofficial, iamdaniela88 + 15 more

∂ linkin.bio/nike + 1

506 Following 166.2M Followers 136 Subscriptions

Followed by Angler, Vanja Smailovic, and 563 others you follow

Followed by Nastaran Naseri, Paul Kennedy, and 580 others you follow

@BarackObama

Joined March 2007

Dad, husband, President, citizen.

546.9K Following 131.9M Followers

X (formerly Twitter) accounts with the most followers worldwide as of August 2023 (in millions)

Justin Bieber 🧇

JUSTICE the album out now

@justinbieber

Justin Bieber 🤣

Followed by THE INTERESTING NETWORK, Getty Images Sport, and 75 others you follow

← Cristiano Ronaldo ❖ 4,006 posts

Cristiano Ronaldo

@Cristiano

This Privacy Policy addresses the collection and use of personal information - cristianoronaldo.com/terms

68 Following 110.4M Followers

Followed by Marc Waters, The Sir Bobby Charlton Foundation, and 46 others you follow

Lideri mišljenja (opinion leaders)

 Lideri mišljenja su pojedinci u društvu koji se informiraju kroz razne medije i druge interakcije, te koji zatim oblikuju mišljenja i prenose informacije i utječu na druge pojedince koji su manje izravno informirani [Lazarsfeld, Berelson & Gaudet]

kako su pojedinci donosili odluke o glasovanju Ohiju u predsjedničkoj kampanji u SAD-u 1940. godine?

Što su otkrila rana istraživanja [Katz & Lazarsfeld]?

- lako su ponekad su lideri mišljenja imali viši društveni status, bilo je mnogo slučajeva u kojima su lideri bili na istom društvenom statusu kao i oni na koje su utjecali, posebno kad su bile u pitanju razne kućanske odluke
- Lideri mišljenja su se često isticali njihovom društvenošću i veličinom njihovih obitelji (što je u korelaciji s njihovom dobi i iskustvom)

Što još utječe na stvaranje mišljenja?

- Obitelj
- Obrazovanje
- Religija
- Različite organizacije

Na koji način vi danas stvarate vaše mišljenje?

Kako kompleksne mreže mogu objasniti proces stvaranja mišljenja?

Bayesian model učenja

- ponovljene akcije, međusobno promatranje
- racionalno učenje
- pojedinci promatraju akcije i rezultate koje su doživjeli njihovi susjedi i informacije na sofisticiran način
- pruža uvjete pod kojim pojedinci s vremenom počinju djelovati slično

DeGroot model učenja

- ponovljenja komunikacija, "naivno" ažuriranje
- "kratkovidno" učenje
- model se temelji na mnogo naivnijem, ali još uvijek prirodnom obliku ažuriranja, gdje pojedinci razmjenjuju informacije sa svojim susjedima tijekom vremena, te zatim ažuriraju uzimajući težinski prosjek onoga što čuju

Bayesian model učenja: učenje promatranjem

- Središnji zaključak kod učenja promatranjem je da ako agenti mogu promatrati međusobne radnje i rezultate tijekom vremena, a svi agenti imaju iste preferencije i suočavaju se s istim oblikom neizvjesnosti, onda završavaju sa sličnim nagradama tijekom vremena
- Ideja je da agent koji radi znatno lošije od susjeda to mora shvatiti tijekom vremena, i na kraju će promijeniti postupke i početi raditi kao i susjed
- To onda implicira da svi povezani agenti završavaju s istim ograničenim nagradama
- To ne znači da svi oni nauče raditi najbolje moguće akcije
 - može se dogoditi da svi završe sa sub-optimalnim nagradama
- Međutim, ako uz to, agenti počinju s dovoljnom raznolikošću mišljenja tako da imaju poticaj za eksperimentiranje s različitim radnjama, tada će imati veliku vjerojatnost približavanja pravoj akciji
- Naravno, ova teorija se oslanja na veliku količinu stacionarnosti u okruženju, te sličnosti u preferencijama i situacijama među agentima; ali u isto vrijeme pruža početno mjerilo

Bayesian model učenja [Bala & Goyal]

- ullet n igrača u neusmjerenoj komponenti g
- Odabiranje akcije A ili B svaku rundu

• A nagrađuje 1 (sigurno), dok B nagrađuje 2 s vjerojatnošću p i 0 s vjerojatnošću 1-p

Bayesian model učenja: proces učenja

• Igrač dobiva nagradu svaku rundu na temelju svog odabira

• Igrač također promatra odabire svojih susjeda

• Igrač maksimizira diskontirani niz očekivanih nagrada $E\left[\sum_t \delta^t \pi_{it}\right]$

ullet p je nepoznat i može poprimiti konačan skup vrijednosti

Izazovi Bayesian model učenja

• Strategije različitih igrača

Eksperimentiranje

Bayesian model učenja: pretpostavka

• Ako p nije točno 1/2, tada s vjerojatnosti 1 postoji vrijeme takvo da svi agenti u datoj komponenti igraju samo jednu radnju (i svi igraju istu radnja) od tog vremena nadalje

Bayesian model učenja: dokaz pretpostavke

- Pretpostavimo suprotno
- Neki agent u nekoj komponenti igra B beskonačno često
- Taj agent će konvergirati pravom uvjerenju prema zakonu velikih brojeva
- Mora biti da uvjerenje konvergira prema p>1/2, ili bi taj agent prestao igrati B
- Uz vjerojatnost 1, svi agenti koji vide B igrano beskonačno često konvergiraju do uvjerenja da B nadgrađuje 2 s vjerojatnošću p>1/2
- Susjedi agenta moraju igrati B, nakon nekog vremena, i tako dalje
- ullet Svi agenti moraju igrati B od nekog vremena

Bayesian model učenja: igranje ispravne akcije?

- ullet Ako je B ispravna akcija, onda igrač igra ispravnu akciju ako konvergira k tome, ali možda ne konvergira
- ullet Ako je A ispravna akcija, tada mora konvergirati ispravnoj akciji

- Vjerojatnost konvergencije "ispravnoj" akciji?
 - proizvoljno visoka ako svaka akcija ima nekog agenta koji u početku ima proizvoljno visoko inicijalno vjerovanje da je upravo ta akcija najbolja

Bayesian model učenja: ograničenja

- Homogenost akcija i nagrada među igračima
- Što ako imamo heterogenost akcija i nagrada?
- Ponavljane radnje tijekom vremena
 - Što ako imamo samo jedan pokušaj?
- Stacionarnost
- Mreže ovdje ne igraju bitnu ulogu

DeGroot model: imitacija i društveni utjecaj

- Ponovljena komunikacija
- Informacije dolaze samo jednom
- Kako se informacije šire?
- Tko ima utjecaj, brzina konvergencije, utjecaj strukture mreže

DeGroot model: model ograničene racionalnosti

- Opetovano uprosječenje uvjerenja o sebi kroz komunikaciju sa susjedima
- Non-Bayesian ako se težine ne prilagođavaju tijekom vremena
- Moguće je podcijeniti "težinu" susjeda (baš kao u eksperimentima)
 - "Tvrdoglavi igrači"

DeGroot model društvene interakcije [DeGroot]

- Igrači $\{1, ..., n\}$
- T težinska usmjerena mreža, stohastička matrica
- Počinjemo s uvjerenjima $b_i(0)$ u [0,1]
 - to također mogu biti vektori
- Ažuriranje: $b_i(t) = \sum_j T_{ij} b_j(t-1)$

DeGroot model: primjer (1)

DeGroot model: ažuriranje (1)

DeGroot model: ažuriranje (2)

DeGroot model: ažuriranje (3)

DeGroot model: primjer (2)

DeGroot model: ažuriranje (1)

DeGroot model: ažuriranje (2)

Pitanje:

Kolike će biti vrijednosti uvjerenja svakog igrača nakon sljedećeg ažuriranja?

DeGroot model: ažuriranje (2)

DeGroot model: ažuriranje (3)

DeGroot model: utjecaj susjeda

DeGroot model: utjecaj susjedovog susjeda

DeGroot model: utjecaj mreže

DeGroot model: konvergencija

$$T = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} b(1) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 3/4 \\ 1/2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/4 \\ 3/4 \\ 1/2 \end{pmatrix} \dots + \begin{pmatrix} 2/5 \\ 2/5 \\ 2/5 \end{pmatrix}$$

DeGroot model: nekonvergencija

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad b(1) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \dots \rightarrow$$

DeGroot model: konsenzus

 Konvergencija prema (normaliziranom) eigenvektoru težinskih suma originalnih uvjerenja

$$T = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad T^2 = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix}$$

$$T^3 = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \end{pmatrix} \qquad T^4 = \begin{pmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

$$T^5 = \begin{pmatrix} 1/2 & 3/8 & 1/8 \\ 1/4 & 1/2 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{pmatrix} \qquad T^\infty = \begin{pmatrix} 2/5 & 2/5 & 1/5 \\ 2/5 & 2/5 & 1/5 \\ 2/5 & 2/5 & 1/5 \end{pmatrix}$$

DeGroot model: konsenzus

DeGroot model: utjecaj (influence)

 Centralnost eigenvektora

Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 & 1/3 \\
1/2 & 1/2 & 0 & 0 \\
0 & 1/4 & 3/4 & 0
\end{pmatrix} = \begin{pmatrix}
3/11 \\
3/11 \\
3/11
\end{pmatrix}$$
Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/2 & 1/2 & 0 \\
0 & 1/4 & 3/4
\end{pmatrix} = \begin{pmatrix}
4/11 \\
4/11 \\
4/11
\end{pmatrix}$$
Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/2 & 1/2 & 0 \\
0 & 1/4 & 3/4
\end{pmatrix} = \begin{pmatrix}
4/11 \\
4/11 \\
4/11
\end{pmatrix}$$

Mreža savjeta [Krackhardt]

label	_	11	36		.
	S	level	dept.	age	tenure
1	0.048	3	4	33	9.3
2	0.132	2	4	42	19.6
3	0.039	3	2	40	12.8
4	0.052	3	4	33	7.5
5	0.002	3	2	32	3.3
6	0.000	3	1	59	28
7	0.143	1	0	55	30
8	0.007	3	1	34	11.3
9	0.015	3	2	62	5.4
10	0.024	3	3	37	9.3
11	0.053	3	3	46	27
12	0.051	3	1	34	8.9
13	0.000	3	2	48	0.3
14	0.071	2	2	43	10.4
15	0.015	3	2	40	8.4
16	0.000	3	4	27	4.7
17	0.000	3	1	30	12.4
18	0.106	2	3	33	9.1
19	0.002	3	2	32	4.8
20	0.041	3	2	3 8	11.7
21	0.201	2	1	36	12.5

Mudrost masa (wisdom of crowds)

 Ukoliko ne postoji nitko u mreži tko ima značajan utjecaj, tada govorimo o scenariju "mudrosti masa"

- Mudrost masa je ideja da su velike grupe ljudi kolektivno pametnije od pojedinačnih stručnjaka kada je riječ o rješavanju problema, donošenju odluka, inovacijama i predviđanjima
 - ideja je da stajalište pojedinca može biti inherentno pristrano, dok uzimanje prosječnog znanja gomile može rezultirati uklanjanjem pristranosti ili buke kako bi se dobio jasniji i koherentniji rezultat

Želim znati više

- M. Jackson: "Social and Economic Networks" (2008)
 - Poglavlje 8 (Learning and Networks)