C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Algoritmica grafurilor - Seminar 1

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Table of contents

Exerciții pentru primul seminar ithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercise 1.

Un profesor a scris p exerciții și dorește să le propună unui grup de n students.

- a) În câte moduri poate să facă acest lucru? (Câte un exercițiu fiecărui student, dar nu neapărat diferite.)
- b) Aceeași întrebare dacă dorește să le propună exerciții diferite ($p\geqslant n$).
- c) Dar dacă dorește să ofere câte două exerciții diferite fiecărui student? (Studenți diferiți pot primi cel mult un exercițiu în comun, $p \geqslant n$.)

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Exercise 2. Fie $f: \mathbb{N}^* \to \mathbb{N}^*$ o funcție. Definim clasa de complexitate a lui f

$$\mathcal{O}(f(n))=\{g:\mathbb{N}^* o\mathbb{N}^*:\exists a,b,n_0\in\mathbb{N}^* ext{ a. î. }g(n)\leqslant a{\cdot}f(n){+}b,orall n\geqslant n_0\}$$

(Observăm că $a=a_g, b=b_g, n_0=n_{0,g}$.) Printr-un abuz de notație scriem $g(n)=\mathcal{O}(f(n)$ în loc de $g(n)\in\mathcal{O}(f(n))$.

- (a) Arătați că ne putem lipsi de b în definiția de mai sus.
- (b) Arătați că dacă $\lim_{n o \infty} rac{g(n)}{f(n)} \in \mathbb{R}$, atunci $g(n) = \mathcal{O}(f(n))$

Exercise 3. Arătați că

(a)
$$\sum_{k=1}^{n} k = \mathcal{O}(n^2)$$
 și $\sum_{k=1}^{n} k^2 = \mathcal{O}(n^3)$;

(b)
$$\log_a n = \mathcal{O}(\log_b n)$$
 și $\sum_{k=1}^n \frac{1}{k} = \mathcal{O}(\log n)$;

Exercise 4. Legenda spune că (Titus Flavius Josephus) nu ar fi devenit faimos fără talentul său de matematician. În timpul primului război iudeo-roman, a făcut parte dintr-un grup de 41 de rebeli iudei blocați într-o peșteră de către romani. Preferând să se sinucidă decât să fie capturați, rebelii au decis să se așeze în cerc și, într-un sens fixat, fiecare a treia persoană să se sinucidă. Josephus, împreună cu un prieten, considerând sinuciderea fără sens a calculat în ce poziții trebuie să stea așa încât el și prietenul să supraviețuiască.

În varianta noastră n persoane sunt așezate în cerc (numerotate de la 1 la n) și eliminăm fiecare a a doua persoană până când rămâne una singură. Fie j_n numărul supraviețuitorului.

- a) Determinați j_1, j_2, \ldots, j_{10} .
- b) Scrieți (în pseudocod) o funcție recursivă pentru a calcula j_n .
- (c) Care este formula pentru j_n ? (Indicaţie: ce se întâmplă când n devine o putere a lui 2?)

Exercise 5.

Care este numărul maxim, r_n , de regiuni obținute prin trasarea a n linii în plan?

Exercise 6. Dată o mulţime M cu $n \geqslant 1$ elemente, o partiţgie a lui M este o familie de submulţimi ale lui M, $\mathcal{P} = \{M_1, M_2, \ldots, M_k\}$, astfel încât $M_i \neq \varnothing$, $\forall i$, $M_i \cap M_j = \varnothing$, $\forall i \neq j$ şi $\bigcup_{i=1}^n M_i = M$. Dacă \mathcal{P} şi \mathcal{P}' sunt două partiţi spunem că \mathcal{P} este mai fină decât \mathcal{P}' dacă pentru orice submulţime $M_i \in \mathcal{P}$ există o submulţime $M'_j \in \mathcal{P}'$ astfel încât $M_i \subseteq M'_j$. Considerăm următoarea problemă de decizie.

PARTITION

Instanță: $M, |M| = n \in \mathbb{N}^*$ și două partiții $\mathcal{P}, \mathcal{P}'$ ale lui M.

Întrebare: Este ${\cal P}$ mai fină decât ${\cal P}'$?

- (a) Arătați că $PARTITION \in P$.
- (b) Descrieți o procedură recursivă care să decidă, pentru două partiții date, dacă una dintre ele este mai fină decât cealaltă.