Tracking

CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington

What Is Tracking?

What Is Tracking?

- We are given:
 - the state of one or more objects in the previous frame.
- We want to estimate:
 - the *state* of those objects in the current frame.

What Is Tracking?

- We are given:
 - the state of one or more objects in the previous frame.
- We want to estimate:
 - the *state* of those objects in the current frame.
- State can be:
 - Location.
 - Velocity.
 - Shape.
 - Orientation, scale, 3D orientation, 3D position, ...

Why Do We Care About Tracking?

Why Do We Care About Tracking?

- Improves speed.
 - We do not have to run detection at all locations, all scales, all orientations.

Why Do We Care About Tracking?

- Improves speed.
 - We do not have to run detection at all locations, all scales, all orientations.
- Allows us to establish correspondences across frames.
 - Provides representations such as "the person moved left", as opposed to "there is a person at (i1, j1) at frame 1, and there is a person at (i2, j2) at frame 2".
 - Needed in order to recognize gestures, actions, activity.

Example Applications

- Activity recognition/surveillance.
 - Figure out if people are coming out of a car, or loading a truck.
- Gesture recognition.
 - Respond to commands given via gestures.
 - Recognize sign language.
- Traffic monitoring.
 - Figure out if any car is approaching a traffic light.
 - Figure out if a street/highway is congested.
- In all these cases, we must track objects across multiple frames.

Related Problem: Motion Estimation

- Different versions:
 - For every pixel in frame t, what is the corresponding pixel in frame t+1?
 - For every object in frame t, what is the corresponding region in frame t+1?
 - How did a specific pixel, region, or object, move?
- If we know the answers to the above questions, tracking is easy.
- Tracking is inextricably connected with motion estimation.

Estimating Motion of a Block

- What is a block?
 - A rectangular region in the image.
 - In other words, an image window.
- Given a block at frame t, how can we figure out where the block moved to at frame t+1?

Estimating Motion of a Block

- What is a block?
 - A rectangular region in the image.
 - In other words, an image window.
- Given a block at frame t, how can we figure out where the block moved to at frame t+1?
- Simplest method: normalized correlation.

Tracking Main Loop

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- What is missing to make this framework fully automatic?

Initialization

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- What is missing to make this framework fully automatic?
- Detection/initialization:
 - find the object, obtain an initial object description.

Initialization

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- Tracking methods ignore the initialization problem.
- Any detection method can be used to address that problem.

Source of Efficiency

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- Why exactly is tracking more efficient than detection? In what lines is that used?

Source of Efficiency

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- Why exactly is tracking more efficient than detection? In what lines is that used?
 - Line 2. Finding best match is faster because:
 - We can use simpler detection methods.
 - We know very precisely what the object looks like.
 - We search few locations, few scales, few orientations.

Updating Object Description

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- How can we change our implementation to update the object description?

Updating Object Description

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- How can we change our implementation to update the object description?
 - Update the block variable, based on the match found at the current frame.

Drifting

- 1. read current frame.
- 2. find best match of object in current frame.
- 3. (optional) update object description.
- 4. advance frame counter.
- 5 goto 1.
- The estimate can be off by a pixel or so at each frame.
 - Sometimes larger errors occur.
- If we update the appearance, errors can accumulate.

Changing Appearance

- Sometimes the appearance of an object changes from frame to frame.
 - Example: left foot and right foot in walkstraight sequence.
- If we do not update the object description, at some point the description is not good enough.
- Avoiding drift while updating the appearance are conflicting goals.

Occlusion

- The object we track can temporarily be occluded (fully or partially) by other objects.
- If appearance is updated at each frame, when the object is occluded it is unlikely to be found again.

Improving Tracking Stability

- Check every match using a detector.
 - If we track a face, then the best match, in addition to matching the correlation score, should also have a good detection score using a general face detector.
 - If the face is occluded, the tracker can figure that out, because no face is detected.
 - When the face reappears, the detector will find it again.

Improving Tracking Stability

- Remembering appearance history.
 - An object may have a small number of possible appearances.
 - The appearance of the head depends on the viewing angle.
 - If we remember each appearance, we minimize drifting.
 - When the current appearance is similar to a stored appearance, we do not need to make any updates.

Improving Tracking Stability

- Multiple hypothesis tracking.
 - Real-world systems almost always maintain multiple hypotheses.
 - This way, when the right answer is not clear (e.g., because of occlusions), the system does not have to commit to a single answer.