

Reguły asocjacyjne - nieformalnie

- Załóżmy, że pozycja {ryba} występuje w 5% transakcji sprzedaży, a zbiór pozycji {ryba, białe wino} występuje w 4% transakcji. Ta informacja umożliwia wyprowadzenie reguły asocjacyjnej, mówiącej, że w 80% transakcji sprzedaży, klienci którzy kupili rybę, kupili także białe wino.
- Do wyprowadzania takich reguł potrzebna jest informacja o tym, ile transakcji wspiera stosowne zbiory pozycji (ang. itemsets).

3

Wsparcie zbioru pozycji

- Niech D będzie zbiorem transakcji.
- Wsparcie zbioru pozycji X, oznaczane jako sup(X), jest liczbą transakcji w D, które zawierają wszystkie pozycje z X, to jest:

 $sup(X) = |\{T \in D \mid X \subseteq D\}|.$

4

Przykład: Wsparcia zbiorów pozycji

• sup(ABC) = 3, sup(EH) = 2.

Przykładowy zbiór transakcji D

- Id Transakcja T₁ ABCDEG
- T_1 ABCDEG T_2 ABCDEF
- T_3 ABCDEH T_4 ABDE
- T_4 ABDE T_5 ACDEH
- T_6 BCE

Względne wsparcie zbioru pozycji

 Względne wsparcie zbioru pozycji X, oznaczane jako rSup(X), jest stosunkiem transakcji w D, które zawierają wszystkie pozycje z X, do liczby wszystkich transakcji w D:

rSup(X) = sup(X) / |D|.

 Uwaga: rSup(X) może być traktowane jako oszacowanie prawdopodobieństwa wystąpienia zbioru pozycji X w D.

6

Częste zbiory pozycji

• X jest definiowany jako częsty zbiór pozycji (ang. frequent itemset), ieżeli

sup(X) > minSup,

gdzie minSup jest wartościa progową wsparcia, zadaną przez użytkownika.

• Podstawowa własność zbiorów pozycji: Wsparcia nadzbiorów zbioru X nie są większe od sup(X).

Przykład: Wsparcia zbiorów pozycji

Przykładowy zbiór transakcji D

- Id Transakcja T_1 ABCDEG T_2 ABCDEF T_3 ABCDEH
- T_4 ABDE T₅ ACDEH T_6 BCE
- sup(ABC) = 3, sup(EH) = 2.
- Niech minSup = 2. Wtedy: ABC jest częsty, EH nie jest częsty (czyli jest rzadki).
- Wsparcia wszystkich nadzbiorów zbioru EH także nie są większe niż 2, stąd nadzbiory zbioru EH nie są częste.
- Jednakże wsparcia podzbiorów zbioru EH mogą być większe niż 2. Zatem może się zdarzyć, że (niektóre) podzbiory zbioru EH są

Reguly asocjacyjne (ARs)

• Reguła asocjacyjna jest wyrażeniem wiążącym dwa rozłączne zbiory

$$X \rightarrow Y$$
,

 $\mathsf{gdzie} \ \varnothing \neq \mathsf{Y} \subseteq \mathsf{Ii} \ \mathsf{X} \subseteq \mathsf{I} \setminus \mathsf{Y}.$

- O regule $X \to Y$ mówi się, że jest oparta na zbiorze pozycji $X \cup Y$, przy czym:
 - zbiór X ∪ Y jest nazywany bazą reguły X → Y,
 - X jej poprzednikiem,
 - Y jej następnikiem.

Wsparcie reguly asocjacyjnej

• Wsparcie reguły $X \rightarrow Y$ jest definiowane jako liczba transakcji zawierających bazę tej reguły, czyli:

$$sup(X \rightarrow Y) = sup(X \cup Y).$$

• Względne wsparcie reguły $X \rightarrow Y$ jest definiowane jako względne wsparcie jej bazy:

$$rSup(X \to Y) = rSup(X \cup Y).$$

10

Przykład: Reguły asocjacyjne

Zbiór transakcji D

sup(ABC) = 3,sup(A) = 5.

- Id Transakcja T_1 ABCDEG
- T_2 ABCDEF
- T_3 ABCDEH T_4 ABDE
- T₅ ACDEH
- T_6 BCE

Stąd:

• $sup(\{A\} \rightarrow \{BC\}) =$

 $sup(\{ABC\}) = 3.$

11

Zaufanie reguły asocjacyjnej

 Zaufanie reguły X → Y jest definiowane jako stosunek liczby transakcji, które zawierają bazę $X \cup Y$, do liczby transakcji zawierających jej poprzednik X:

$$conf(X \to Y) = sup(X \to Y) / sup(X)$$

Uwaga: $conf(X \rightarrow Y)$ może być traktowane jako oszacowanie prawdopodobieństwa warunkowego, że Y występuje w transakcji T pod warunkiem, że X występuje w T.

12

Odkrywanie reguł asocjacyjnych z użyciem algorytmu AprioriRuleGen...

- Kandydujące reguły budowane są z każdego niepustego zbioru
- Niech Z będzie danym niepustym zbiorem częstym. W iteracji i tworzone są reguły kandydujące postaci:

 $Z \setminus Y \rightarrow Y$

 $\mathsf{gdzie}\ Y\!\subset\! Z\,\mathsf{i}\ |Y|=i.$

Odkrywanie reguł asocjacyjnych z użyciem algorytmu AprioriRuleGen

- Własność. Niech r_1 : $Z \setminus Y \rightarrow Y$ i r_2 : $Z \setminus Y' \rightarrow Y'$, gdzie $Y \subset Y'$, będą regułami asocjacyjnymi.
 - $conf(r_1) \ge conf(r_2)$,
 - Jeśli conf(r₁) ≤ minConf, to conf(r₂) ≤ minConf.
- ullet Aby zredukować liczbę reguł kandydujących, następniki o długości i+1są budowane wyłącznie z następników o długości \emph{i} silnych reguł asocjacyjnych.

Przykład: Odkrywanie ARs...

Częste zbiory pozycji (minSup = 1): \emptyset_8 $a_6 b_5 c_4 e_4 f_4 h_3$ ab_4 ac_4 ae_3 af_3 ah_2 bc_3 be_4 bf_2 ce_2 cf_2 ch_2 ef_2 $abc_3 abe_3 ace_2 acf_2 ach_2 bce_2 bef_2$

Niech minConf = 60%, Z = abce.

Iteracja 1:

- Następniki reguł kandydujących: Y₁ = {a, b, c, e}.
- Kandydujace reguły:
 - bce→a [2, 2/2];
 - ace→b [2, 2/2];
 - *abe*→*c* [2, 2/3];

bce→a [2, 2/2]: ace→b [2, 2/2];

abe→c [2, 2/3];

abc→e [2, 2/3].

Silne reguly asocjacyjne:

27

Przykład: Odkrywanie ARs...

Częste zbiory pozycji (minSup = 1): \emptyset_8

 $a_6 b_5 c_4 e_4 f_4 h_3$ ab_4 ac_4 ae_3 af_3 ah_2 bc_3 be_4 bf_2 ce_2 cf_2 ch_2 ef_2 $abc_3 \ abe_3 \ ace_2 \ acf_2 \ ach_2 \ bce_2 \ bef_2$

Iteracja 2 (minConf = 60%, Z = abce):

- Następniki dla ARs, znalezione w iteracji 1: Y₁ = {a, b, c, e}.
- Następniki reguł kandydujących: $\mathbf{Y}_2 = \{ab, ac, ae, bc, be, ce\}$.
- Kandydujące reguły: Silne reguly asocjacyjne:
 - *ce*→*ab* [2, 2/2]; *ae*→*bc* [2, 2/3];
- *ce*→ab [2, 2/2];
- be→ac [2, 2/4]; ac→be [2, 2/4]; bc→ae [2, 2/3]; bc→ae [2, 2/3]; ab→ce [2, 2/4];
 - ae→bc [2, 2/3].

28

Przykład: Odkrywanie ARs

Częste zbiory pozycji (minSup = 1): \emptyset_8

 $a_6 b_5 c_4 e_4 f_4 h_3$ $ab_4\,ac_4\,ae_3\,af_3\,ah_2\,bc_3\,be_4\,bf_2\,ce_2\,cf_2\,ch_2\,ef_2$ $abc_3 \ abe_3 \ ace_2 \ acf_2 \ ach_2 \ bce_2 \ bef_2$

Iteracja 3 (*minConf* = 60%, *Z* = *abce*):

- Następniki dla **AR**s, znalezione w iteracji 2: **Y**₂ = {*ab*, *ae*, *bc*}.
- Następniki reguł kandydujących: **Y**₃ = {abe}.
- Kandydujące reguły:
 - *c*→abe [2, 2/4]

Silne reguly asocjacyjne:

29

Przykład: Odkryte ARs

Częste zbiory pozycji (minSup = 1): ∅₈

 $a_6 b_5 c_4 e_4 f_4 h_3$

 $ab_4\ ac_4\ ae_3\ af_3\ ah_2\ bc_3\ be_4\ bf_2\ ce_2\ cf_2\ ch_2\ ef_2$ $abc_3 abe_3 ace_2 acf_2 ach_2 bce_2 bef_2$

Strong association rules (minConf = 60%, Z = abce):

- bce→a [2, 2/2];
- ace→b [2, 2/2];
- abe→c [2, 2/3];
- abc→e [2, 2/3];
- ce→ab [2, 2/2];
- bc→ae [2, 2/3];

ae→bc [2, 2/3].

30

Literatura dodatkowa - odkrywanie zbiorów częstych

- Ferenc Bodon: A fast APRIORI implementation. FIMI 2003
- Mohammed Javeed Zaki: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng. 12(3): 372-390 (2000)
- Frequent Itemset Mining Implementations Repository: http://fimi.ua.ac.be/src/

45

Ćwiczenia...

- Za pomocą algorytmu Apriori wyznacz zbiory częste na podstawie zbioru danych z tabeli na slajdzie 18. Przyjmij, że wartość progowa wsparcia minSup wynosi 2.
- Za pomocą algorytmu AprioriRuleGen wyznacz reguły asocjacyjne o bazie {acf} na podstawie informacji o zbiorach częstych przedstawionych na slajdzie 27. Przyjmij, że wartość progowa zaufania minConf wynosi 50%.
- Korzystając ze slajdu 37 (lub slajdu 38), wyznacz wsparcie i zaufanie hierarchicznych reguł asocjacyjnych: {O}→{M}, {M}→{O}, {M}→{cO}.

Ćwiczenia

- Korzystając ze slajdu 39, wyznacz wsparcie i zaufanie reguły asocjacyjnej z negacją: {a}→{ch}.
- Wyznacz zbiory częste i reguły asocjacyjne z tabeli na slajdzie 42.
 Przyjmij, że wartość progowa wsparcia minSup wynosi 1, a wartość
 progowa zaufania minConf wynosi 50%.