

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT IV - ANALYTIC FUNCTIONS

Part – A

1.	The critical point of the transformation $w = z^2$ is (A) $z = 0$ (B) $z = -i$ (C) $z = 1$ (D) $z = -1$	ANS A	(CLO-4, Apply)
2.	If $w = f(z) = u + iv$ is analytic, then the family of curves $u = C_1$ and $v = C_2$ (A) cut orthogonally (B) intersect each other (C) are parallel (D) coincide	ANS A	(CLO-4, Remember)
3.	If a function $u(x, y)$ satisfies the equation $u_{xx} + u_{yy} = 0$, then u is called (A) analytic function (B) harmonic function (C) differential function (D) continuous function	ANS B	(CLO-4, Remember)
4.	Cauchy-Riemann equations in Polar co-ordinates are $ (A) \ u_r = \frac{1}{r} \ v_\theta, \ v_r = -\frac{1}{r} \ u_\theta \qquad (B) \ u_r = -\frac{1}{r} \ v_\theta, \ v_r = \frac{1}{r} \ u_\theta $ $ (C) \ u_r = -\frac{1}{r} \ v_\theta, \ v_r = -\frac{1}{r} \ u_\theta \qquad (D) \ u_r = \frac{1}{r} \ v_\theta, \ v_r = \frac{1}{r} \ u_\theta $	ANS A	(CLO-4, Remember)
5.	The critical point of the transformation $w = z^4$ is (A) $z = 2$ (B) $z = -2$ (C) $z = 0$ (D) $z = 1$	ANS C	(CLO-4, Apply)
6.	If $w = f(z) = u + i v$ is an analytic function of z , then (A) u and v are not harmonic (B) u is not harmonic (C) both u and v are harmonic (D) u and v are constants	ANS C	(CLO-4, Remember)

	An analytic function with constant modulus is		
7.		B) analytic D) constant D	(CLO-4, Remember)
8.	Cauchy – Riemann equation in Cartesian co-o (A) $u_x = v_y$, $u_y = -v_x$ (B) $u_x = v_y$, $u_y = v_x$ (C) $u_x = v_y$, $u_y = v_x$ (D) $u_x = v_y$	$=-v_y, u_y=v_x$ ANS	(CLO-4, Remember)
9.	` '	$\frac{1}{z-2i} \text{ is}$ B) $z = 1$ D) $z = i$ Ans	(CLO-4, Apply)
10.	, , ,	constant represents B) rotation D) inversion ANS A	(CLO-4, Apply)
11.		$\frac{-1}{+1}$ are B) ± 1 D) ± 3 ANS A	G (CLO-4, Apply)
12.		B) analytic D) constant ANS D	(CLO-4, Remember)
13.		part is B) analytic D) constant ANS D	(CLO-4, Remember)
14.	1 , , ,	B) reflection D) inversion	Remember)
15.		ytic function stant function	(CLO-4, Remember)

	$f(z) = \frac{1}{z^2 + 1}$ is analytic everywhere except at		
16.	$(A) z = \pm i$ $(C) z = \pm 2$ $(B) z = \pm 1$ $(D) z = \pm 3$	ANS A	(CLO-4, Apply)
17.	The invariant points of the transformation $w = \frac{2z+6}{z+7}$ are (A) 6, -1 (B) 3, 2 (C) -3, 2 (D) -6, 1	ANS D	(CLO-4, Apply)
18.	The fixed points of the transformation $w = \frac{z-1}{z+1}$ are (A) $\pm i$ (B) ± 1 (C) ± 2 (D) ± 3	ANS A	(CLO-4, Apply)
19.	The image of $ z - 2i = 2$ under the transformation $w = \frac{1}{z}$ is (A) $x^2 + y^2 = 0$ (B) $x^2 + y^2 + 4y = 0$ (C) $x^2 + y^2 - 4y = 0$ (D) $x^2 + y^2 + y = 0$	ANS C	(CLO-4, Apply)
20.	The image of $ z = 2$ under the transformation $w = 3z$ is (A) $x^2 + y^2 = 0$ (B) $x^2 + y^2 = 4$ (C) $x^2 - y^2 = 0$ (D) $x^2 - y^2 = 4$	ANS B	(CLO-4, Apply)
21.	The image of $ z + 1 = 1$ under the transformation $w = \frac{1}{z}$ is (A) $x^2 + y^2 + 2x = 0$ (B) $x^2 + y^2 + 2y = 0$ (C) $x^2 + y^2 - 2x = 0$ (D) $x^2 - y^2 - 2y = 0$	ANS A	(CLO-4, Apply)
22.	The transformation $w = \frac{1}{z}$ is known as (A) magnification (B) reflection (C) rotation (D) inversion	ANS D	(CLO-4, Remember)
23.	If the image of a point z under the transformation $w = f(z)$ is itself, then the point is called (A) fixed point (C) singular point (D) regular point	ANS A	(CLO-4, Remember)
24.	The function $f(z) = \bar{z}$ is (A) nowhere differentiable (B) analytic (C) constant (D) singular	ANS A	(CLO-4, Apply)

	The function $f(z) = \sin z$ is		
25.		analytic ANS B	(CLO-4, Apply)
26.	, , ,		(CLO-4, Remember)
27.	1	* 1	(CLO-4, Remember)
28.		$e^x \sin y$ ANS \mathbf{C}	(CLO-4, Apply)
29.		anils to be analytic $z = \pm 1$ $z = \pm 3$ ANS \mathbf{B}	(CLO-4, Apply)
30.	1	reflection o inversion	(CLO-4, Remember)
31.		$\frac{4}{5}$ are 0 ± 1 ANS \mathbf{C}	(CLO-4, Apply)
32.		$e^{2x} \sin y$ $e^{2x} \sin 2y$ Ans A	(CLO-4, Apply)
33.		$\frac{1-iz}{z-i} \text{ are}$ 0 ± 1 0 ± 3 ANS \mathbf{B}	(CLO-4, Apply)

34.	The real part of $f(z) = \log z$ is (A) $u = \log r$ (B) $u = \log x$ (C) $u = \log y$ (D) $u = \log \theta$	ANS A	(CLO-4, Apply)
35.	If $f(z) = x + y + i$ ($cy - x$) is analytic, then the value of c : (A) $\pm i$ (B) 1 (C) 2 (D) -1	ANS B	(CLO-4, Apply)
36.	The critical points of the transformation $w = z + \frac{1}{z}$ are (A) $\pm i$ (B) ± 1 (C) ± 2 (D) ± 3	ANS B	(CLO-4, Apply)

* * * * *