We claim:-

5 ·

20

1. A process for removing horny substances from hides of dead animals, wherein the hides of dead animals are treated with at least one substance of the formula I

 $X^{4} \xrightarrow{R^{4}} X^{3} R^{2}$ $R^{3} X^{2} X^{2} \xrightarrow{R^{1}} R^{1}$

or at least one corresponding alkali metal, alkaline earth metal, ammonium or phosphonium salt,

- 10 where
 - R^1 and R^4 are identical or different and are selected from hydrogen, C_6 - C_{14} -aryl and C_1 - C_{12} -alkyl, unsubstituted or substituted by one or more SH or OH groups,
- R² and R³ are identical or different and are selected from hydrogen, C₆-C₁₄-aryl and C₁-C₁₂-alkyl, unsubstituted or substituted by one or more SH or OH groups, at least one radical R² or R³ not being hydrogen or R¹ and R⁴ not being hydrogen.
 - and it being possible in each case for two vicinal radicals R¹ to R⁴ together to be alkylene,
 - R^5 is selected from hydrogen, C_1 - C_{12} -alkyl, H-C=O or C_1 - C_4 -alkyl-C=O,
- X¹, X², X³ and X⁴ are selected from OH, SH and NHR⁵, where, if R¹ to R⁴ contain at least one sulfur atom, at least one radical X¹ to X⁴ is SH, and, if R¹ to R⁴ contain no sulfur atom, at least two radicals X¹ to X⁴ are SH.
 - 2. A process according to claim 1, which is carried out in aqueous liquor.
- 30 3. A process according to claim 1 or 2, which is carried out in the presence of basic alkali metal salts.

- 4. A process according to any of claims 1 to 3, wherein X¹ and X⁴ are each SH.
- 5. A process according to any of claims 1 to 4, wherein
- 5 R¹ and R⁴ are hydrogen,

R² is methyl,

R³ is selected from hydrogen and methyl,

X1 and X4 are each SH and

X² and X³ are each OH.

10

- 6. A process according to any of claims 1 to 5, which is carried out in the presence of at least one enzyme.
- 7. A pelt obtainable by a process according to any of claims 1 to 6.

15

8. A compound of the formula I

and its corresponding alkali metal, alkaline earth metal, ammonium and phosphonium salts,

where

25

20

 R^1 and R^4 are identical or different and are selected from hydrogen, C_6 - C_{14} -aryl and C_1 - C_{12} -alkyl, unsubstituted or substituted by one or more SH or OH groups,

 R^2 and R^3 are identical or different and are selected from hydrogen, C_6 - C_{14} -aryl and C_1 - C_{12} -alkyl, unsubstituted or substituted by one or more SH or OH groups.

30

at least one radical R² or R³ not being hydrogen or R¹ and R⁴ not being hydrogen, and it being possible in each case for two vicinal radicals R¹ to R⁴ together to be alkylene,

 R^5 is selected from hydrogen, C_1 - C_{12} -alkyl, H-C=O or C_1 - C_4 -alkyl-C=O,

35

X¹, X², X³ and X⁴ are selected from OH, SH and NHR⁵, where, if R¹ to R⁴ contain at least one sulfur atom, at least one radical X¹ to X⁴ is SH,

and, if R^1 to R^4 contain no sulfur atom, at least two radicals X^1 to X^4 are SH.

- 9. A compound according to claim 8, wherein X¹ and X⁴ are each SH.
- 5 10. A compound according to claim 8 or 9, wherein

R¹ and R⁴ are hydrogen,

R² is methyl,

R³ is hydrogen or methyl,

10 X1 and X4 are each SH and

X² and X³ are each OH.

- 11. A process for the preparation of compounds of the formula I, wherein
- 15 (a) in a first stage, a diene of the formula II

$$\mathbb{R}^4$$
 \mathbb{R}^2

is reacted in the presence of a catalyst which is obtainable by bringing into contact

at least one manganese compound, selected from $A_2Mn(Y^1)_4$, $AMn(Y^1)_3$, MnY^2 , $Mn(Y^1)_2$ and $Mn(Y^1)_3$ with at least one ligand L of the formula III

25

20

$$\mathbb{R}^6$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{R}^6

where

30 Y¹ are identical or different and are selected from monovalent anions,

Y² is a divalent anion,

A is selected from alkali metal and ammonium, which may be alkylated,

R⁶ are identical or different and are selected from C₁-C₂₀-alkyl,

25

and with at least one coligand which is derived from monocarboxylic acid, dibasic or polybasic carboxylic acids or diamines, with at least one peroxide to give the bisepoxide,

- 5 (b) which is reacted in the presence of at least one basic catalyst with at least one nucleophile.
 - 12. A process according to claim 11, wherein the coligand is oxalate.
- 10 13. A process according to either of claims 11 and 12, wherein the nucleophile chosen is H₂S or H₂N-R⁵.
- 14. A process according to any of claims 11 to 13, wherein at least one basic catalyst in stage (b) is selected from alkali metal hydrogen sulfide, alkali metal hydroxide and benzyltri(C₁-C₁₀-alkyl)ammonium hydroxide.
 - 15. A process according to any of claims 11 to 14, wherein X¹ and X⁴ are each SH.
- 16. A process according to any of claims 11 to 15, wherein, in formula I, the variables are chosen as follows:

R¹ and R⁴ are hydrogen,
R² is methyl,
R³ is hydrogen or methyl,
X¹ and X⁴ are each SH and
X² and X³ are each OH,
and wherein H₂S is chosen as the nucleophile.