CMPT 409: Theoretical Computer Science

Summer 2017

Lecture 6: Incompleteness (13 July - 4 Aug)

Lecturer: Ternovska, Eugenia Scribe: Lily Li

6.1 Gödel Incompleteness Theorem

Definition 6.1 True Arithmetic (TA) is the set of all sentence in

$$\delta_A = [0, s, +, \cdot, =]$$

that are true in the standard model N.

Notation: $s_0 = 0$ and $s_{k+1} = ss_k$ for all k = 0, 1... so $s_3 = 3$. s_k is a syntactic object which represent semantic object (the number k). Further $A(s_{\vec{a}})$ means $A(s_{a_1}, ..., s_{a_n})$.

Definition 6.2 If R is an n-ary relation $A(\vec{x})$ is a formula such that all free variables among $x_1, ..., x_n$. Then $A(\vec{x})$ represents R if and only if $\forall \vec{a} \in \mathbb{N}^n$

$$R(\vec{a}) \iff \underline{\mathbb{N}} \vdash A(s_{\vec{a}})$$

Definition 6.3 A relation R is arithmetical if and only if R is representable by some formula (in the vocabulary of δ_A).

Consider some arithmetical relations

1.

Definition 6.4 Let Δ_0 be the set of all bounded formulas.

 $R(\vec{x})$ is a Δ_0 relation if and only if some Δ_0 formula A represents R. This implies what about Δ_0 relations and arithmetical?

Lemma 6.5 The Δ_0 relations are closed under \wedge, \vee, \neg and bounded $\forall \leq, \exists \leq$.

Proof:

Theorem 6.6 TA is not a recursive set (not even RE) and does not have a recursive set of axioms.

Proof:

Since TA is so unwieldy, we will consider instead the subset of Peano Arithmetics (PA).

Theorem 6.7 (Gödel's Second Incompleteness Theorem) the consistency of PA cannot be proved in PA.

Proof:

Even though Peano arithmetics is incomplete, a simpler arithmetics (Presburger Arithmetics, containing only the + operation) is decidable.