Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 10: Introduction to Cryptography" Date and time: 2020/09/04 10:44 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others

NOTES

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	4		
DES & AES	15		
Fields and Modular Arithmetics	25		
Hash Functions, Digital Signature and Cryptographic Protocols	9		
Public Key Cryptography	29		
Quantum Cryptography	8		
Sum	90		
Grade: .			
Date of the review of the exam: .			

uestion 1: Basics							
(a) [4 Points] Explain	the known plair	ntext attack wit	h a picture.				

Question	2:	DES	&	AES
Oucsuon			•	

[15 Points]

stio	on 2: DE	ES & AES					[15 Points]
.)	[5 Points]	Compute the nur	nber of perm	utation func	tions $f: \{1,$	$\ldots, n\} \mapsto$	$\{1,\ldots,n\}!$

[10 Points]	[10 Points] Describe the Cipher-Block Chaining Mode Encryption and Decryption.					

On	estion	3.	Fields	and	Modular	· A	rithm	etics
Vu	COUUII	J.	ricius	anu	Muuuiai		1111111	CUUS

[25 Points]

(a)	(a) [5 Points] How is the addition defined in a finite field $GF[2^n]$?							

<i>Points</i>] For $\mathbb{Z}_n^* = \{x_1, \dots, x_{\varphi(n)}\}$, prove that $\left(\prod_{i=1}^{\varphi(n)} x_i\right)^2 \equiv 1 \pmod{n}$ t: Consider the mapping $x_i \mapsto x_i^{-1} \mod n$ like in the proof of the Euler theorem.							

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [9 Points]

Present a digital signature scheme based on RSA.						

0	uestion	5:	Public	Kev	Cryptogi	aphy
~					~ <i>,</i>	

[29 Points]

(h)	[6 Points]	Consider the	ellintic curve
(U)	[O Foinis]	Consider the	empue curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the points $P=(-1,\sqrt{2}), Q=(\infty,\infty)$ compute (P+Q).

(c)	[4 Points]	Consider the elliptic curve
(c)	[4 Foinis]	Consider the emptic curve

$$y^2 = x^3 - 3x$$

for $E(\mathbb{R})$. For the points $P=(-1,\sqrt{2}),$ $Q=(-1,-\sqrt{2})$ compute $P\star Q$.

Give a graphical definition of the Star-operator $P \star P$ for $P = (x_p, y_p)$.			

Question 6: Quantum Cryptography

[8 Points]

(a) [8 Points] Prove that the Hadamard matrix

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

is a unitary matrix.