Lecture 4: Model-Free Reinforcement Learning: Monte-Carlo, SARSA, Q-Learning

Anton Plaksin

Пример: Frozen Lake

Frozen Lake World (OpenAl GYM)

Example: Breakout Atari Game

- States: pixels
- Actions: \rightarrow , \leftarrow , <0»
- Rewards: points
- Final states: when the ball falls down

Markov Decision Process

Markov Property

•

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = \mathbf{1}$$

Mcrkov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- S is a finite (|S| = n) state space
- S_F is a set of final states

 \mathcal{A} is a finite $(|\mathcal{A}| = m)$ action space

 \mathcal{P} is an uknown transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

 \mathcal{P}_0 is an uknown initial state probability function

 \mathcal{R} is an uknown reward function

$$\mathcal{R}(s, a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

 $\gamma \in [0,1]$ is a discount coefficient

Model-Free Algorithms

- Monte-Carlo Algorithm
- SARSA Algorithm
- Q-Learning Algorithm

Policy Iteration

Let π^0 and $L, K \in \mathbb{N}$ Fo\(\text{each} \) $k \in \overline{0, K}$, do

(Policy evaluation) Iterative Policy Evaluation:

$$v^{l+1}(s) = \sum_{a} \pi(a|s) \Big(\frac{\mathcal{R}(s,a)}{\mathcal{R}(s,a)} + \gamma \sum_{s'} \frac{\mathcal{P}(s'|s,a)}{\mathcal{V}(s')} \Big), \ l \in \overline{0,L-1}.$$

• Define $q^L(s, a)$ by $v^L(s)$ (Policy improvement) Greedy Policy Improvement:

$$\pi^{k+1}(a|s) = \begin{cases} 1, & \text{if } a \in \operatorname{argmax}_{a' \in \mathcal{A}} q^L(s, a') \\ 0, & \text{otherwise} \end{cases}$$

$$q^L(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) v^L(s')$$

Поскольку мы не знаем функцию наград и вероятности перехода в следующее состояние в данной интерпретации посчитать q-функцию невозможно. Воспользуемся методом Монте-Карло.

Trajectory. Deterministic Case

- Set π
- Agent starts from an initial state S_0
- acts $A_0 = \pi(S_0)$ $q_{\pi}(S_0, A_0) = G_0$
- ullet gets a reward R_0 and goes to a next state S_1
- \bullet acts $A_1 = \pi(S_1)$ $q_{\pi}(S_1, A_1) = G_1$
- ...
- acts $A_{T-2} = \pi(S_{T-2}), \quad q_{\pi}(S_{T-2}, A_{T-2}) = G_{T-2}$
- gets a reward R_{T-2} and goes to a next state S_{T-1}
- acts $A_{T-1} = \pi(S_{T-1}), \quad q_{\pi}(S_{T-1}, A_{T-1}) = G_{T-1}$
- ullet gets a reward R_{T-1} and goes to a next state $S_T \in \mathcal{S}_F$
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Problem

to find
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G \,|\, S_0 = s, A_0 = a]$$

Trajectory. General Case

- Set $\pi(a|s)$. Initialize W(s,a)=0 and N(s,a)=0
- Agent starts from an initial state S_0 ,
- acts $A_0 \sim \pi(\cdot|S_0)$ $W(S_0, A_0) \leftarrow W(S_0, A_0) + G_0, \ N(S_0, A_0) \leftarrow N(S_0, A_0) + 1$ $Q(S_0, A_0) \leftarrow W(S_0, A_0)/N(S_0, A_0)$
- gets a reward R_0 and goes to a next state S_1
- acts $A_1 \sim \pi(\cdot|S_1)$ $W(S_1, A_1) \leftarrow W(S_1, A_1) + G_1, \ N(S_1, A_1) \leftarrow N(S_1, A_1) + 1$ $Q(S_1, A_1) \leftarrow W(S_1, A_1)/N(S_1, A_1)$
- ...
- acts $A_{T-1} \sim \pi(\cdot|S_{T-1}), \ W(S_{T-1}, A_{T-1}) \leftarrow W(S_{T-1}, A_{T-1}) + G_{T-1}, \ N(S_{T-1}, A_{T-1}) \leftarrow N(S_{T-1}, A_{T-1}) + 1 \ Q(S_{T-1}, A_{T-1}) \leftarrow W(S_{T-1}, A_{T-1})/N(S_{T-1}, A_{T-1})$
- ullet gets a reward R_{T-1} and goes to a next state $S_T \in \mathcal{S}_F$
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Problem

to find
$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G \mid S_0 = s, A_0 = a] \approx Q(s,a)$$

Recurrent Formula

$$Q_N = \frac{1}{N} \sum_{i=1}^{N} w_i$$

Then

$$Q_{N+1} = \frac{1}{N+1} \sum_{i=1}^{N+1} w_i = \frac{1}{N+1} \left(\sum_{i=1}^{N} w_i + w_{N+1} \right)$$
$$= \frac{1}{N+1} (NQ_N + w_{N+1}) = Q_N + \frac{1}{N+1} (w_{N+1} - Q_N)$$

$$Q_{N+1} = Q_N + \frac{1}{N+1}(w_{N+1} - Q_N)$$

Trajectory. General Case

- Set $\pi(a|s)$. Initialize Q(s,a)=0 and N(s,a)=0
- Agent starts from an initial state S_0 ,
- acts $A_0 \sim \pi(\cdot|S_0)$ $Q(S_0, A_0) \leftarrow Q(S_0, A_0) + \frac{1}{N(S_0, A_0) + 1} (G_0 Q(S_0, A_0)),$ $N(S_0, A_0) \leftarrow N(S_0, A_0) + 1$
- gets a reward R_0 and goes to a next state S_1
- acts $A_1 \sim \pi(\cdot|S_1) \ Q(S_1, A_1) \leftarrow Q(S_1, A_1) + \frac{1}{N(S_1, A_1) + 1} (G_1 Q(S_1, A_1)),$ $N(S_1, A_1) \leftarrow N(S_1, A_1) + 1$
- ...
- acts $A_{T-1} \sim \pi(\cdot|S_{T-1})$, $Q(S_{T-1}, A_{T-1}) \leftarrow Q(S_{T-1}, A_{T-1}) + \frac{1}{N(S_{T-1}, A_{T-1}) + 1} (G_{T-1} - Q(S_{T-1}, A_{T-1}))$, $N(S_{T-1}, A_{T-1}) \leftarrow N(S_{T-1}, A_{T-1}) + 1$
- ullet gets a reward R_{T-1} and goes to a next state S_T
- $\tau = \{S_0, A_0, S_1, A_1, \dots, S_T\}, \quad G(\tau) = \sum_{t=0}^{T-1} \gamma^t R_t, \quad G_t = \sum_{k=t}^{T-1} \gamma^{k-t} R_t$

Problem

to find
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G \mid S_0 = s, A_0 = a] \approx Q(s, a)$$

Monte-Carlo Policy Evaluation

Let π be fixed. Set Q(s,a)=0 and N(s,a)=0. For each $k\in\overline{1,K}$, do

• According to π , get a trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) . Define (G_0, \dots, G_{T-1}) .

For each $t \in \overline{0, T-1}$, update Q and N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$

 $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$

$$Q(s,a) \approx q_{\pi}(s,a)$$

Will it work?

Let π^0 be initialized and K > 0. For each $k \in \overline{1, K}$, do

• (Policy evaluation) Monte-Carlo Policy Evaluation. Obtain $Q^k(s,a) \approx q_{\pi^k}(s,a)$ (Policy improvement) Greedy Policy Improvement:

$$\pi^{k+1}(a|s) = \begin{cases} 1, & \text{if } a \in \operatorname{argmax}_{a' \in \mathcal{A}} Q^k(s, a') \\ 0, & \text{otherwise} \end{cases}$$

Данный подход будет работать плохо, поскольку получая детерминированную политику мы теряем возможность исследования (особенно плохо при плохой инициализации политики или при маленьком количестве итераций).

ε -Greedy Policy Improvement

$\pi = \varepsilon$ -greedy(Q)

$$\pi(a|s) = \begin{cases} 1 - \varepsilon + \varepsilon/m, & \text{if } a \in \operatorname{argmax}_{a' \in \mathcal{A}} Q(s, a'), \\ \varepsilon/m, & \text{otherwise} \end{cases}$$

Policy Improvement Theorem

Let Q(s, a) be defined.

Let $\pi = \varepsilon$ -greedy(Q) and $\pi' = \varepsilon$ -greedy(q_{π}).

Then $\pi' \geq \pi \ (v_{\pi'}(s) \geq v_{\pi}(s), \forall s)$

Эпсилон-жадный подход к улучшению политики решает эту проблему.

Learning with Monte-Carlo Policy Evaluation

Let π^0 be initialized and K > 0, $\varepsilon = 1$. For each $k \in \overline{1, K}$, do

(Policy evaluation) Monte-Carlo Policy Evaluation - obtain $Q^k(s,a) \approx q_{\pi^k}(s,a)$

(Policy improvement) ε -Greedy Policy Improvement - obtain π^{k+1} by Q^k . Define $\varepsilon = 1/k$

Theorem

$$Q^k \to q_*$$
 and $\pi^k \to \pi_*$ as $k \to \infty$.

Monte-Carlo Algorithm

Let Q(s, a) = 0, N(s, a) = 0 and $\varepsilon = 1$. For each $k \in \overline{1, K}$, do

• According to $\pi = \varepsilon$ -greedy(Q), get trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) . Define (G_0, \dots, G_{T-1}) .

For each $t \in \overline{0, T-1}$, update Q and N:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t) + 1} (G_t - Q(S_t, A_t)),$$
$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

Define $\varepsilon = 1/k$

Для сходимости алгоритма на каждом шаге достаточно использовать только одну траекторию!!!

Теорема

$$Q^k \to q_*$$
 and $\pi^k \to \pi_*$ as $k \to \infty$.

Using Bellman Equation

Bellman Expectation Equation для q_{π}

$$q_{\pi}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) \sum_{a'} \pi(a'|s') q_{\pi}(s', a')$$

 \Downarrow

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

 \Downarrow

Temporal-Difference

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Temporal-Difference Policy Evaluation

Let π be fixed and Q(s, a) = 0.

For each $k \in \overline{1, K}$, do

• According to π , get trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) .

For each $t \in \overline{0, T-1}$, update Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

$$Q(s,a) \approx q_{\pi}(s,a)$$

Другой подход к получению оценки Q: расчет оценки через уравнение Беллмана по формуле

Learning with Temporal-Difference Policy Evaluation

Let Q(s, a) = 0, K > 0, and $\varepsilon = 1$. For each $k \in \overline{1, K}$, do

• According to $\pi = \varepsilon$ -greedy(Q), get trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) . For each $t \in \overline{0, T-1}$, update Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Define $\varepsilon = 1/k$

SARSA Algorithm

Let Q(s, a) = 0, K > 0, and $\varepsilon = 1$.

For each $k \in \overline{1, K}$, do

During trajectory

From the state S_t , acting $A_t \sim \pi(\cdot|S_t)$,

where $\pi = \varepsilon$ -greedy(Q), get R_t , go to the next state S_{t+1} , and act $A_{t+1} \sim \pi(\cdot|S_{t+1})$

According to $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$, update Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

Put $\varepsilon = 1/k$

Theorem

 $Q^k \to q_*$ and $\pi^k \to \pi_*$ as $k \to \infty$.

Using Bellman Optimality Equation

Bellman Optimality Equation для q_*

$$q_*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{P}(s'|s, a) \max_{a'} q_*(s', a')$$

 $\downarrow \downarrow$

$$q_*(s, a) = \mathbb{E}[R_t + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

 \Downarrow

Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Q-Learning Algorithm

Let Q(s,a) = 0, K > 0, and $\varepsilon = 1$. For each $k \in \overline{1,K}$, do

During trajectory

• From the state S_t , acting $A_t \sim \pi(\cdot|S_t)$, where $\pi = \varepsilon$ -greedy(Q), get R_t , and go to the next state S_{t+1} According to (S_t, A_t, R_t, S_{t+1}) , update Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_t + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t))$$

Put $\varepsilon = 1/k$

Theorem

$$Q^k \to q_*$$
 and $\pi^k \to \pi_*$ as $k \to \infty$.

Comparison of SARSA и Q-Learning

Dynamic Programming and Reinforcement Learning

Q-Policy Iteration	Sarsa
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in A} Q(S',a')$

