Lógica Proposicional

TAD0201 - RACIOCÍNIO LÓGICO Prof^a Dr^a Carla Fernandes carla.fernandes@ufrn.br

01 Lógica Computacional

O que é? Quando usar?

LÓGICA COMPUTACIONAL

É a forma de **organização de ideias, comandos e ações** que
deve ser adotada ao programar
um produto tecnológico]

Com isso podemos **executar todos os passos** esperados e **obter o resultado desejado**.

A lógica estuda a forma como estruturar uma linha de pensamento adequadamente

Precisamos ensinar a máquina sobre como executar os comandos da forma correta

LÓGICA COMPUTACIONAL

COMO CRIAR ESSAS PROPOSIÇÕES?

Vamos pensar em uma questão simples: uma solução capaz de lançar automaticamente a aprovação ou reprovação de um aluno em um curso. A nota mínima é 7.

ALGORITMO

Se Fulano tiver nota > ou = 7, a condição é: **aprovado**; se Fulano tiver nota < 7, a condição é: **reprovado**.

LÓGICA COMPUTACIONAL

Proposições

Sentenças que podem ser verdadeiras (*true*) ou falsas (*false*).

Exemplo: "A árvore é verde." (pode ser true ou false.)

Conectivos Lógicos

Operadores que ligam proposições:

&& (E): Verdadeiro apenas se todas as condições forem verdadeiras.

|| (OU): Verdadeiro se pelo menos uma condição for verdadeira.

! (NÃO): Inverte o valor lógico (de true para false, e vice-versa).

EXEMPLO

Exemplo Prático 1: Conectivos Lógicos na Vida Real

Se eu tiver dinheiro E tempo, irei ao cinema.

```
boolean dinheiro = true;

boolean tempo = true;

if (dinheiro && tempo) {
    System.out.println("Vou ao cinema!");
} else {
    System.out.println("Não irei ao cinema.");
}
```

Resultado: Vou ao cinema!

EXEMPLO

Exemplo Prático 1: Conectivos Lógicos na Vida Real

Se eu tiver dinheiro E tempo, irei ao cinema.

```
boolean dinheiro = true;
boolean tempo = true;

if (dinheiro && tempo) {
    System.out.println("Vou ao cinema!");
} else {
    System.out.println("Não irei ao cinema.");
}
```

Resultado: Vou ao cinema!

02 Lógica Proposicional

LÓGICA PROPOSICIONAL

- Formalismo matemático
- Eliminar a ambiguidade existente na linguagem natural
- Composto por uma linguagem formal e por um conjunto de regras de inferencia

UM ARGUMENTO É UM SEQUÊNCIA DE PREMISSAS SEGUIDA DE UMA CONCLUSÃO

LÓGICA PROPOSICIONAL

UM ARGUMENTO É UM SEQUÊNCIA DE PREMISSAS SEGUIDA DE UMA CONCLUSÃO

UM ARGUMENTO É VÁLIDO QUANDO SUA CONCLUSÃO É UMA CONSEQUÊNCIA NECESSÁRIA DE SUAS PREMISSAS

Sempre que chove, o trânsito fica congestionado.

Está chovendo muito.

Logo, o trânsito deve estar congestionado.

PROPOSIÇÃO

O Brasil fica na América -> Verdadeiro

A lua é de queijo -> Falso

- Os símbolos proposicionais são condições de valor V ou F
 - Normalmente são representados por letras minúsculas do alfabeto latino
 - Usamos o alfabeto grego para fórmulas genéricas

PROPOSIÇÃO

- Quais das sentenças a seguir são proposições?
 - Abra a porta.
 - Excelente apresentação!
 - Esta semana tem oito dias.
 - Em que continente fica o Brasil?
 - A Lua é um satélite da Terra.

PROPOSIÇÃO

- Quais das sentenças a seguir são proposições?
 - Abra a porta.
 - Excelente apresentação!
 - Esta semana tem oito dias.
 - Em que continente fica o Brasil?
 - A Lua é um satélite da Terra.

CONECTIVOS

- A partir das sentenças (proposições atômicas):
 - Está chovendo
 - A rua está molhada
- Podemos construir as sentenças (proposições compostas):
 - Não está chovendo
 - Se está chovendo, então a rua está molhada

CONECTIVO LÓGICO NÃO (NEGAÇÃO)

Exemplo:

- A = porta do carro está fechada
- X = alarme tocando

0	Se A for falso, ou seja, a porta estiver aberta, o alarme tocará,
	e, portanto X será verdadeiro.

 Se A for verdadeiro, ou seja, a porta estiver fechada, o alarme não tocará, e, portanto X será falso.

CONECTIVO LÓGICO OU (DISJUNÇÃO)

 A saída será verdadeira se pelo menos uma das entradas for verdadeira

Exemplo:

- A compra será concluída se for realizado o pagamento com dinheiro OU cartão
- A = pagamento com dinheiro
- B = pagamento com cartão
- S = conclusão da compra

|--|

CONECTIVO LÓGICO E (CONJUNÇÃO)

 A saída será verdadeira se todas as entradas forem verdadeiras

Exemplo:

- Para a construção de uma parede é necessária a utilização de tijolos e cimento
- A = utilização de tijolos
- B = utilização de cimento
- S = construção da parede

CONECTIVO LÓGICO ENTÃO (IMPLICAÇÃO)

- Se a antecedente for verdadeira, a consequente será verdadeira
- Não se sabe o que acontecerá se a antecedente for falsa

• Exemplo:

- Se chover, então a aula é cancelada
- A = está chovento
- B = a aula foi cancelada

|--|

CONECTIVOS LÓGICOS

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$
T	1	T			T
\perp	T	Т	1	T	Т
T	1	1	1	T	1
T	T	1	T	T	T

PRECEDÊNCIA DE OPERADORES

- NÃO: a primeira operação que deve ser feita é o NÃO, exceto quando há outra operação dentro do NÃO
- E: a segunda operação que deve ser feita é a E, exceto quando há operações separadas por parênteses
- **OU:** a terceira operação que deve ser feita é a OU, exceto quando há operações separadas por parênteses
- ENTÃO: a terceira operação que deve ser feita é o ENTÃO

EXEMPLO

- $\bullet \quad \neg \alpha \lor \beta \lor \gamma$
- $\neg(\alpha \land \beta) \lor \beta \lor \gamma$
- $\alpha \wedge \beta \vee \gamma$
- $\alpha \wedge (\beta \vee \gamma)$
- $\bullet \quad \alpha \vee \beta \vee \gamma$

Formalização do argumento

• (1) Se o time joga bem, ganha o campeonato.

• (2) Se o time não joga bem, o técnico é culpado.

• (3) Se o time ganha o campeonato, os torcedores ficam contentes.

• (4) Os torcedores não estão contentes.

• (5) Logo, o técnico é culpado.

• (1) Se o time joga bem, ganha o campeonato.

• (2) Se o time não joga bem, o técnico é culpado.

• (3) Se o time ganha o campeonato, os torcedores ficam contentes.

• (4) Os torcedores não estão contentes.

• (5) Logo, o técnico é culpado.

Cada proposição vai ganhar um símbolo distinto

p: "o time joga bem"

q: "o time ganha campeonato"

r: "o técnico é culpado"

s: "os torcedores ficam contentes"

$$p \rightarrow q$$

• (2) Se o time não joga bem, o técnico é culpado.

$$\neg p \rightarrow r$$

• (3) Se o time ganha o campeonato, os torcedores ficam contentes.

$$q \rightarrow s$$

• (4) Os torcedores não estão contentes.

¬s

• (5) Logo, o técnico é culpado

Cada proposição vai ganhar um símbolo distinto

p: "o time joga bem"

q: "o time ganha campeonato"

r: "o técnico é culpado"

s: "os torcedores ficam contentes"

COMO REPRESENTAR OS ARGUMENTOS?

Base de conhecimento

$$\circ \Delta = \{c, c \rightarrow m, m \rightarrow e\}$$

Consequência lógica

$$\circ$$
 {n \rightarrow f, n} \models f

$$p \rightarrow q$$

• (2) Se o time não joga bem, o técnico é culpado.

$$\neg p \rightarrow r$$

• (3) Se o time ganha o campeonato, os torcedores ficam contentes.

$$q \rightarrow s$$

• (4) Os torcedores não estão contentes.

 \neg_{S}

• (5) Logo, o técnico é culpado

Cada proposição vai ganhar um símbolo distinto

p: "o time joga bem"

q: "o time ganha campeonato"

r: "o técnico é culpado"

s: "os torcedores ficam contentes"

$$\{p \rightarrow q,\, \neg p \rightarrow r,\, q \rightarrow s,\, \neg s\} \, \models \, r$$

r é uma consequência do conjunto de fórmulas.

- 1. Se Ana é alta e magra, então ela é elegante.
- 2. Se Beto é rico, então ele não precisa de empréstimos.
- 3. Se Caio ama a natureza, então ele ama as plantas e os animais.
- 4. Se Denis jogar na loteria, então ele ficará rico ou desiludido.
- 5. Se faz frio ou chove, então Eva fica em casa e vê televisão.

- 1. Se Ana é alta e magra, então ela é elegante.
 a → b
- 2. Se Beto é rico, então ele não precisa de empréstimos.
 - $c \rightarrow d$
- 3. Se Caio ama a natureza, então ele ama as plantas e os animais.
 - $e \rightarrow f$
- 4. Se Denis jogar na loteria, então ele ficará rico ou desiludido.
 - $g \rightarrow (h \lor i)$
- 5. Se faz frio ou chove, então Eva fica em casa e vê televisão.
 - $(j \lor k) \rightarrow (l \land m)$

Cada proposição vai ganhar um símbolo distinto

- a: "Ana é alta e magra"
- b: "Ana é elegante"
- c: "Beto é rico"
- d: "Beto não precisa de empréstimos"
- e: "Caio ama a natureza"
- f: "Caio ama as plantas e os animais"
- g: "Denis joga na latoria"
- h: "Denis ficará rico"
- i: "Denis ficará desiludido"
- j: "faz frio"
- k: "chove"
- l: "Eva fica em casa"
- m: "Eva vê televisão"

- +
- Quando o filme é bom, o cinema fica lotado. Como a crítica diz que esse filme é muito bom, podemos imaginar que não encontraremos lugares livres.
- Sempre que chove à tarde, à noite o trânsito na marginal do rio Tietê fica congestionado. Como agora à noite o trânsito na marginal está fluindo bem, concluímos que não choveu à tarde.
- Se existisse ETs, eles já nos teriam enviado algum sinal. Se nos tivessem enviado um sinal, teríamos feito contato. Portanto, se existisse ETs, já teríamos feito contato com eles.

FORMA NORMAL CONJUNTIVA

$$\circ \quad \alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$$

- Reduza o escopo da negação:
 - $\circ \neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$
 - $\circ \neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
- Reduza o escopo da disjunção:
 - $\circ \quad \alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

EXEMPLO - FORMA NORMAL CONJUNTIVA

 $p\ V\ q\to r\ \Lambda\ s$

EXEMPLO - FORMA NORMAL CONJUNTIVA

$$p \lor q \rightarrow r \land s$$

$$\equiv \neg (p \lor q) \lor (r \land s)$$

$$\equiv (\neg p \land \neg q) \lor (r \land s)$$

$$\equiv ((\neg p \land \neg q) \lor r) \land ((\neg p \land \neg q) \lor s)$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r) \land (\neg p \lor s) \land (\neg q \lor s)$$

Fórmulas normais: $\{\neg p \lor r, \neg q \lor r, \neg p \lor s, \neg q \lor s\}$

04 Validação de argumentos

SEMÂNTICA DA LÓGICA PROPOSICIONAL

- Toda fórmula lógica tem um conjunto de proposições que a compõe
 - Essas proposições podem ser verdadeiras ou falsas
- Como provar esses argumentos?
 - Tabela-verdade (semântico)
 - Prova por dedução (sintático)
 - Prova por refutação (sintático)
 - Métodos semânticos são baseados em interpretações
 - Métodos sintáticos são baseados em regras de inferência (raciocínio)

SEMÂNTICA DA LÓGICA PROPOSICIONAL

- Exemplo: Intuitivamente, qual dos argumentos a seguir é válido?
 - Argumento 1
 - Se eu fosse artista, então eu seria famoso.
 - Não sou famoso.
 - Logo, não sou artista.
 - Argumento 2
 - Se eu fosse artista, então eu seria famoso.
 - Sou famoso.
 - Logo, sou artista.

Um argumento da forma $\{\alpha_1,...,\alpha_n\} \models \beta$ é válido se e somente se a fórmula correspondente $\alpha_1 \land ... \land \alpha_n \rightarrow \beta$ é válida (tautológica)

- A tabela verdade nos ajuda a analisar quais proposições são verdadeiras ou falsas
- A quantidade de linhas da tabela verdade é 2ⁿ, onde n=número de símbolos proposicionais

SEMÂNTICA DA LÓGICA PROPOSICIONAL

FÓRMULA LÓGICA SATISFAZÍVEL

- Pode ter um valor verdadeiro
- Se apenas algumas são verdadeiras, ela é CONTINGENTE
- Se todos forem verdadeiro, ela é uma TAUTOLOGIA

FÓRMULA LÓGICA INSATISFAZÍVEL

- Nunca pode ter um valor verdadeiro
- Ela é uma **CONTRADIÇÃO**

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

Representando a proposição "chove" pelo símbolo proposicional p e a proposição "pista escorregadia" pelo símbolo q, podemos formalizar o argumento como:

$$\{p \rightarrow q, \, p\} \, \models \, q$$

$$(p \rightarrow q) \, \bigwedge \, p \rightarrow q$$

p	q	p o q	$(p \rightarrow q) \wedge p$	$(p o q)\wedge p o q$
I	T	T	T	T
1	T	T	1	T
Т	1		1	Т
Т	T	Т	Т	Т

- (1) Se eu fosse artista, seria famoso.
- (2) Não sou famoso.
- (3) Logo, não sou artista.

a: "artista"

f: "famoso"

$$\{\alpha \to f,\, \neg f\} \, \models \, \neg \alpha$$

$$(a \rightarrow f) \land \neg f \rightarrow \neg a$$

а	f	$a \rightarrow f$	¬f	$(a \rightarrow f) \land \neg f$	¬a	$(a \rightarrow f) \land \neg f \rightarrow \neg a$
F	F	V	V	V	V	V
F	V	V	F	F	V	V
V	F	F	V	F	F	V
V	V	V	F	F	F	V

- (1) Se eu fosse artista, seria famoso.
- (2) Sou famoso.
- (3) Logo, sou artista.

a: "artista"

f: "famoso"

$$\{a \to f,\, \neg f\} \, \models \, a$$

$$(a \rightarrow f) \land \neg f \rightarrow a$$

а	f	$a \rightarrow f$	¬f	$(a \rightarrow f) \land \neg f$	$(a \rightarrow f) \land \neg f \rightarrow a$
F	F	V	V	V	F
F	V	V	F	F	V
V	F	F	V	F	V
V	V	V	F	F	V

Usando tabela-verdade, verifique a validade dos argumentos:

- 1. **p V** ¬**p** é uma tautologia.
- 2. **p** ∧ ¬**p** é uma contradição.
- 3. Se neva, então faz frio. Não está nevando. Logo, não está frio.
- 4. Se eu durmo tarde, não acordo cedo. Acordo cedo. Logo, não durmo tarde.
- 5. Gosto de dançar ou cantar. Não gosto de dançar. Logo, gosto de cantar.
- 6. Se chove, a rua fica molhada. A rua não está molhada. Logo, não choveu.
- 7. Se chove, a rua fica molhada. A rua está molhada. Logo, choveu.

Usando tabela-verdade, verifique a validade dos argumentos:

- Se o time joga bem, então ganha o campeonato.
- Se o time não joga bem, então o técnico é culpado.
- Se o time ganha o campeonato, então os torcedores ficam contentes.
- Os torcedores n\u00e3o est\u00e3o contentes.
- Logo, o técnico é culpado.

Usando tabela-verdade, verifique a validade dos argumentos:

Sócrates está disposto a visitar Platão ou não?

- Se Platão está disposto a visitar Sócrates, então Sócrates está disposto a visitar Platão.
- Por outro lado, se Sócrates está disposto a visitar Platão, então
 Platão não está disposto a visitar Sócrates
- Mas se Sócrates não está disposto a visitar Platão, então Platão está disposto a visitar Sócrates.

- Este método tem a vantagem de ser conceitualmente simples; mas, como o número de linhas na tabela-verdade cresce exponencialmente em função do número de proposições na fórmula, seu uso nem sempre é viável.
- OUTRAS FORMAS DE VALIDAÇÃO: prova e refutação

PROVA POR DEDUÇÃO

$$\Delta \, \cup \, \{\gamma_1, \ldots, \gamma_{i-1}\}$$

$$\Delta \models \phi$$

- Analisamos separadamente cada proposição usando as regras de inferência clássicas
- Modus Ponens (MP): de $\alpha \rightarrow \beta$ e α , conclui-se β .

$$\circ$$
 { $\alpha \rightarrow \beta, \alpha$ } $\models \beta$

• Modus Tollens (MT): de $\alpha \to \beta$ e $\neg \beta$, conclui-se $\neg \alpha$.

$$\circ \{\alpha \to \beta, \neg \beta\} \models \neg \alpha$$

• Silogismo Hipotético (SH): de $\alpha \rightarrow \beta$ e $\beta \rightarrow \gamma$, conclui-se $\alpha \rightarrow \gamma$

$$\circ \quad \{\alpha \to \beta, \, \beta \to \gamma\} \, \models \alpha \to \gamma$$

EXEMPLO DO USO DO MÉTODO DE PROVA

$$\{p \rightarrow q, \neg p \rightarrow r, q \rightarrow s, \neg s\} \models r$$

- (1) $p \rightarrow q$ Δ
- (2) $\neg p \rightarrow r \quad \Delta$
- (3) $q \rightarrow s$ Δ
- (4) ¬s △
- (5) $p \to s$ SH(1, 3)
- (6) ¬p MT(4, 5)
- (7) r MP(2, 6)

EXEMPLO DO USO DO MÉTODO DE PROVA

- $\{p \rightarrow q, \neg q, \neg p \rightarrow r\} \models r$
- $\{\neg p \rightarrow \neg q, q, p \rightarrow \neg r\} \models \neg r$
- $\{p \rightarrow q, q \rightarrow r, \neg r, \neg p \rightarrow s\} \models s$

PROVA POR REFUTAÇÃO

- O mecanismo de PROVA é mais eficiente do que a tabela verdade
- No entanto, é difícil de aplicá-lo em forma de algoritmo para serem adicionado em computadores
- O mecanismo de refutação pode ser útil nesse caso
 - Para provar que Δ ⊧ γ
 - \circ Provamos que $\Delta \cup \{\neg\gamma\}$ é inconsistente

 - ¬γ -> hipótese

- Se o time joga bem, ganha o campeonato. (P1)
- Se o time não joga bem, o técnico é culpado. (P2)
- Se o time ganha o campeonato, os torcedores ficam contentes. (P3)
- Os torcedores n\u00e3o est\u00e3o contentes. (P4)
- Logo, o técnico é culpado.

Tese: O técnico é culpado

Hipótese: O técnico não é culpado

Queremos mostrar que essa hipótese leva a uma contradição

- Se o time joga bem, ganha o campeonato. (P1)
- Se o time não joga bem, o técnico é culpado. (P2)
- Se o time ganha o campeonato, os torcedores ficam contentes. (P3)
- Os torcedores não estão contentes. (P4)
- Logo, o técnico é culpado.

(a) O técnico não é culpado.

(b) O time joga bem.

(c) O time ganha o campeonato.

(d) O torcedores ficam contentes.

(e) contradição!

hipótese

MT(a, P2)

MP(b, P1)

MP(c, P3)

confrontando (d) e P4

• $(1) j \rightarrow g$

Δ

• (2) $\neg j \rightarrow t$

• (3) $g \rightarrow c$

• (4) ¬c

● (5) ¬t

• (6) j

• (7) g

• (8) c

• (9) contradição!

Hipótese

MT(5,2)

MP(6,1)

MP(7,3)

confrontando (4) e (8)

Usando refutação, mostre que o argumento é válido

- (1) Se Ana sente dor de estômago ela fica irritada.
- (2) Se Ana toma remédio para dor de cabeça ela fica com dor de estômago.
- (3) Ana não está irritada.
- (4) Logo, Ana não tomou remédio para dor de cabeça.

Prove usando refutação

- $\{p \rightarrow q, \neg q, \neg p \rightarrow r\} \nmid r$
- $\bullet \quad \{ \neg \ p \rightarrow \neg \ q, \ q, \ p \rightarrow \neg \ r \} \ \models \neg \ r$
- $\{p\rightarrow q, q\rightarrow r, \neg r, \neg p\rightarrow s\} \models s$

INFERÊNCIA POR RESOLUÇÃO

- Permite automatizar o processo de refutação, descrevendo-o como um algoritmo computacional
 - As fórmulas precisam estar na Forma Normal Conjuntiva (FNC)
- Generaliza as regras de inferência clássicas

$$\circ$$
 MP($\alpha \rightarrow \beta, \alpha$) $\equiv \beta$

$$\circ$$
 MT($\alpha \rightarrow \beta, \neg \beta$) $\equiv \neg \alpha$

$$\circ \quad \mathsf{SH}(\alpha \to \beta, \, \beta \to \mathsf{V}) \equiv \alpha \to \mathsf{V}$$

RES(
$$\neg \alpha \lor \beta, \alpha$$
) $\equiv \beta$

RES(
$$\neg \alpha \lor \beta, \neg \beta$$
) $\equiv \neg \alpha$

$$\circ \quad \mathsf{SH}(\alpha \to \beta, \, \beta \to \gamma) \equiv \alpha \to \gamma \qquad \mathsf{RES}(\neg \alpha \, \vee \, \beta, \neg \beta \, \vee \, \gamma) \equiv \neg \alpha \, \vee \, \gamma$$

EXERCÍCIO - FNC

- Formalize as sentenças a seguir e normalize as fórmulas obtidas:
- Se não é noite e nem há lua cheia, então não há lobisomem.
- Se eu fosse rico ou famoso, n\u00e3o precisaria trabalhar tanto.
- Se o programa está correto, então o compilador não exibe mensagens de erro e gera um arquivo executável.
- Se o motorista é multado, então ele passou um sinal vermelho ou excedeu o limite de velocidade

$$\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \models t$$

(5) ¬t

Hipótese

(6) j

RES(5,2)

(7) g

RES(6,1)

(8) c

RES(7,3)

(9)contradição!

confrontando (4) e (8)

Prove o argumento a seguir, usando refutação e inferência por resolução.

- Se o programa possui erros de sintaxe, sua compilação produz mensagem de erro.
- Se o programa não possui erros de sintaxe, sua compilação produz um executável.
- Se tivermos um programa executável, podemos executá-lo para obter um resultado.
- Não temos como executar o programa para obter um resultado.
- Logo, a compilação do programa produz uma mensagem de erro.

Prove o argumento a seguir, usando refutação e inferência por resolução.

- O participante vai ao paredÃo se o líder o indica ou os colegas o escolhem.
- Se o participante vai ao paredão e chora, então ele conquista o público.
- Se o participante conquista o público, ele não é eliminado.
- O líder indicou um participante e ele foi eliminado.
- Logo, o participante n\u00e3o chorou.

Prove o argumento a seguir, usando refutação e inferência por resolução.

- Se o programa é bom ou passa no horário nobre, o público assiste.
- Se o público assiste e gosta, então a audiência é alta.
- Se a audiência é alta, a propaganda é cara.
- O programa, passa no horário nobre.
- A propaganda é barata.
- Logo, o público não gosta do programa.

TAD0201 - RACIOCÍNIO LÓGICO Profa Dra Carla Fernandes <u>carla.fernandes@ufrn.br</u>

