Développements

Maxence Jauberty

August 12, 2024

Abstract

Ce document contient des développements mathématiques faits pour me faire réviser de nombreuses notions, dans un but de préparer une agrégation.

Contents

1 Demi-plan de Poincaré

1

2 Nombre moyen de points fixes

 $\mathbf{2}$

1 Demi-plan de Poincaré

Définition 1. On appelle demi-plan de Poincaré l'ensemble suivant

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Im(z) > 0 \} \cup \{ \infty \}. \tag{1}$$

Sur le demi-plan de Poincaré, les droites, ou plus exactement les géodésiques, sont définies comme les demi-cercles dont le centre est sur l'axe des réels et les droites verticales, i.e. les droites passant par ∞ . On notera \mathcal{D} l'ensemble de ces géodésiques. On considère l'ensemble des transformations projectives inversibles, soit l'ensemble $PGL_2(\mathbb{R})$. De telles transformations ont la propriété de "préserver" l'infini. Autrement dit, pour $f \in PGL_2(\mathbb{R})$, on a $f(\infty) = \infty$. Pour tout autre point de $\mathbb{P}_1(\mathbb{C})$, f peut être considérée comme une transformation linéaire. On parle alors de transformation de Moebius.

Lemme 1. Soient $z, w \in \mathcal{H}$, il existe une unique droite géodésique de \mathcal{H} passant par z et w.

Proposition 1. $PSL_2(\mathbb{R})$ agit sur \mathcal{H} . De plus, il agit transitivement.

Figure 1: Exemple de géodésiques sur le demi-plan de Poincaré, à noter que les points qui sont sur l'axe des réels sont exclus des géodésiques.

2 Nombre moyen de points fixes

On considère la variable aléatoire Σ sur les permutations de [n] qui suit une loi uniforme, i.e. $\forall \sigma \in \mathfrak{S}_n, \mathbb{P}(\Sigma = \sigma) = \frac{1}{n!}$. Notons $P(\Sigma)$ la variable aléatoire qui compte le nombre de points fixes de Σ . Nous souhaitons calculer l'espérance de $P(\Sigma)$, ainsi que sa variance.

Nous rappelons que \mathfrak{S}_n est un groupe agissant sur [n]. Dès lors, nous pouvons espérer utiliser la théorie des actions de groupes.

Si on considère un groupe fini G agissant sur un ensemble X, on note X/G l'ensemble des orbites de X sous l'action de G et Fix(g) l'ensemble $\{x \in X, g.x = x\}$. Nous rappelons la formule de Burnside.

Théorème 1. Soit G un groupe fini agissant sur un ensemble fini X. On a alors

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|. \tag{2}$$

On peut réécrire cette formule dans le cas où X = [n] et $G = \mathfrak{S}_n$. On a alors

$$|[n]/\mathfrak{S}_n| = \sum_{\sigma \in \mathfrak{S}_n} \frac{P(\sigma)}{n!} = \mathbb{E}(P(\Sigma)).$$
 (3)

Rappelons que l'action de \mathfrak{S}_n sur [n] est transitive, i.e. pour tout couple i, j il existe $\sigma \in \mathfrak{S}_n$ tel que $\sigma(x) = y$. Dès lors, on a $|[n]/\mathfrak{S}_n| = 1$. On en déduit alors que

$$\mathbb{E}(P(\Sigma)) = 1. \tag{4}$$