Math Formulas: Conic Sections

The Parabola Formulas

The standard formula of a parabola

 $1. y^2 = 2 p x$

Parametric equations of the parabola:

 $\begin{aligned}
x &= 2 p t^2 \\
y &= 2 p t
\end{aligned}$

Tangent line in a point $D(x_0, y_0)$ of a parabola $y^2 = 2px$ is :

3. $y_0 y = p(x + x_0)$

Tangent line with a given slope m:

 $4. y = m x + \frac{p}{2m}$

Tangent lines from a given point

Take a fixed point $P(x_0, y_0)$. The equations of the tangent lines are:

 $y - y_0 = m_1(x - x_0)$ $y - y_0 = m_2(x - x_0)$ 5. $m_1 = \frac{y_0 + \sqrt{y_0^2 - 2px_0}}{2x_0}$ $m_2 = \frac{y_0 - \sqrt{y_0^2 - 2px_0}}{2x_0}$

The Ellipse Formulas

The set of all points in the plane, the sum of whose distances from two fixed points, called the foci, is a constant.

The standard formula of a ellipse:

6. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Parametric equations of the ellipse:

7. $x = a \cos t$ $y = b \sin t$

Tangent line in a point $D(x_0, y_0)$ of a ellipse:

 $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$

Eccentricity of the ellipse:

 $e = \frac{\sqrt{a^2 - b^2}}{a}$

Foci of the ellipse:

10. if
$$a \ge b \Longrightarrow F_1\left(-\sqrt{a^2 - b^2}, 0\right)$$
 $F_2\left(\sqrt{a^2 - b^2}, 0\right)$ if $a < b \Longrightarrow F_1\left(0, -\sqrt{b^2 - a^2}\right)$ $F_2\left(0, \sqrt{b^2 - a^2}\right)$

Area of the ellipse:

11.
$$A = \pi \cdot a \cdot b$$

The Hyperbola Formulas

The set of all points in the plane, the difference of whose distances from two fixed points, called the foci, remains constant.

The standard formula of a hyperbola:

12.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Parametric equations of the Hyperbola:

13.
$$x = \frac{a}{\sin t}$$
$$y = \frac{b \sin t}{\cos t}$$

Tangent line in a point $D(x_0, y_0)$ of a Hyperbola:

14.
$$\frac{x_0 x}{a^2} - \frac{y_0 y}{b^2} = 1$$

Foci:

15. if
$$a \ge b \Longrightarrow F_1\left(-\sqrt{a^2 + b^2}, 0\right)$$
 $F_2\left(\sqrt{a^2 + b^2}, 0\right)$ if $a < b \Longrightarrow F_1\left(0, -\sqrt{a^2 + b^2}\right)$ $F_2\left(0, \sqrt{a^2 + b^2}\right)$

Asymptotes:

16. if
$$a \ge b \Longrightarrow y = \frac{b}{a}x$$
 and $y = -\frac{b}{a}x$ if $a < b \Longrightarrow y = \frac{a}{b}x$ and $y = -\frac{a}{b}x$