(11) EP 0 458 398 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:26.03.1997 Bulletin 1997/13
- (51) int Cl.6: C11D 3/395, C11D 3/39

- (21) Application number: 91201172.3
- (22) Date of filing: 15.05.1991
- (54) Bleach activation

Bleichmittelaktivierung
Activation du blanchiment

- (84) Designated Contracting States: CH DE ES FR GB IT LI NL SE
- (30) Priority: 21.05.1990 GB 9011338 18.12.1990 GB 9027415
- (43) Date of publication of application: 27.11.1991 Bulletin 1991/48
- (73) Proprietors:
 - UNILEVER N.V.
 3013 AL Rotterdam (NL)
 Designated Contracting States:
 CH DE ES FR IT LI NL SE
 - UNILEVER PLC
 London EC4P 4BQ (GB)
 Designated Contracting States:
 GB
- (72) Inventors:
 - Favre, Thomas Louise F.
 NL-3133 AT Vlaardingen (NL)

- Hage, Ronald
 NL-3133 AT Vlaardingen (NL)
- Helm-Rademaker, Karin van der NL-3133 AT Vlaardingen (NL)
- Koek, Hypolites
 NL-3133 AT Vlaardingen (NL)
- Martens, Rudolf Johan
 NL-3133 AT Vlaardingen (NL)
- Swarthoff, Ton NL-3133 AT Vlaardingen (NL)
- Vliet, Marten Robert P. van NL-3133 AT Vlaardingen (NL)
- (74) Representative: Kan, Jacob Hendrik, Dr. et al Unilever N.V.
 Patent Division
 P.O. Box 137
 3130 AC Vlaardingen (NL)
- (56) References cited: EP-A- 0 443 651

P 0 458 398 B

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

35

50

This invention relates to activation of bleaches employing peroxy compounds, including hydrogen peroxide or a hydrogen peroxide adduct, which liberate hydrogen peroxide in aqueous solution, as well as peroxy acids; to compounds that activate or catalyse peroxy compounds; to bleach compositions including detergent bleach compositions which contain a catalyst for peroxy compounds; and to processes for bleaching and/or washing of substrates employing the aforementioned types of compositions.

In particular, the present invention is concerned with the novel use of manganese compounds as improved catalyst for the bleach activation of peroxy compound bleaches.

Peroxide bleaching agents for use in laundering have been known for many years. Such agents are effective in removing stains, such as tea, fruit and wine stains, from clothing at or near boiling temperatures. The efficacy of peroxide bleaching agents drops off sharply at temperatures below 60°C.

It is known that many transition metal ions catalyse the decomposition of H_2O_2 and H_2O_2 -liberating percompounds, such as sodium perborate. It has also been suggested that transition metal salts together with a chelating agent can be used to activate peroxide compounds so as to make them usable for satisfactory bleaching at lower temperatures.

For a transition metal to be useful as a bleach catalyst in a detergent bleach composition, the transition metal compound must not unduly promote peroxide decomposition by non-bleaching pathways and must be hydrolytically and oxidatively stable.

Hitherto the most effective peroxide bleach catalysts are based on cobalt as the transition metal.

The addition of catalysts based on the transition metal cobalt to detergent formulations is, however, a less acceptable route as judged from an environmental point of view.

In a number of patents the use of the environmentally acceptable transition metal manganese is described. All these applications are, however, based on the catalysing action of the free manganese ion and do not fulfil the requirement of hydrolytic stability. US Patent N° 4,728,455 discusses the use of Mn(III)-gluconate as peroxide bleach catalyst with high hydrolytic and oxidative stability; relatively high ratios of ligand (gluconate) to Mn are, however, needed to obtain the desired catalytic system. Moreover, the performance of these Mn-based catalysts is inadequate when used for bleaching in the low-temperature region of about 20-40°C, and they are restricted in their efficacy to remove a wide class of stains.

We have now discovered a certain class of manganese-based co-ordination complexes which fulfil the demands of stability (both during the washing process and in the dispenser of the washing machine), and which are extremely active, even in the low-temperature region, for catalyzing the bleaching action of peroxy compounds on a wide variety of stains.

It is therefore an object of the present invention to provide a manganese-based co-ordination complex, or a precursor therefor as an improved catalyst for the bleach activation of peroxy compounds, including hydrogen peroxide and hydrogen peroxide-liberating or -generating compounds, as well as peroxyacid compounds including peroxyacid precursors, over a wide class of stains at lower temperatures.

Another object of the invention is to provide an improved bleaching composition which is effective at low to medium temperatures of e.g. 10-40°C.

Still another object of the invention is to provide new, improved detergent bleach formulations, which are especially effective for washing at lower temperatures.

Yet another object of the invention is to provide aqueous laundry wash media containing new, improved detergent bleach formulations.

A further object of the invention is to provide an improved bleaching system comprising a peroxy compound bleach and a manganese-based co-ordination complex (or a precursor therefor) for the effective use in the washing and bleaching of substrates, including laundry and hard surfaces (such as in mechanical diswashing and general cleaning) and in the textile, paper and woodpulp industries and other related industries.

The present catalysts of the invention may also be applied in the peroxide oxidation of a broad range of organic molecules such as olefins, alcohols, aromatic ethers, sulphoxides and various dyes, and also for inhibiting dye transfer in the laundering of fabrics.

These and other objects of the invention, as well as further understandings of the features and advantages thereof, can be had from the following description.

The active catalyst according to the invention is a well-defined manganese (IV)-based co-ordination complex, consisting of a number of manganese atoms and a number of ligands, wherein the manganese centers are in the oxidation state IV and the Mn(IV)-centers are coupled anti-ferromagnetically. The extent of anti-ferromagnetic coupling is usually expressed as the exchange coupling parameter J. This parameter is negative for an anti-ferromagnetic interaction. (Anti-ferromagnetic coupling of transition metal ions is described, e.g., by R.S. Drago in "Physical Methods in Chemistry", 1977, Chapter 11, page 427 et seq. and for manganese in oxidation state (IV) by K. Wieghardt et al in "The Journal of the American Chemical Society", 1988, Vol. 110, pages 7398-7411).

The present invention provides the use of a manganese-based coordination complex of the general formula (A), as a bleaching an oxidation catalyst, formula (A) being:

$$[L_n M n_m X_p]^z Y_q \tag{A}$$

in which

5

10

15

20

25

30

35

40

45

50

55

Mn is manganese in the IV-oxidation state and wherein n and m are independent integers from 2-8; X represents a co-ordinating or bridging species such as H_2O , OH^* , $O_2^{2^*}$, O^{2^*} , HO_2^* , SH^* , S^{2^*} , SO, NR_2^* , $RCOO^*$, NR_3 , with R being H, alkyl, aryl (optionally substituted), CI^* , N_3^* , SCN^* , N^3^* or a combination thereof; p is an integer from 0-32, preferably from 3-6; Y is a counter-ion, the type of which is dependent on the charge z of the complex; z denotes the charge of the complex and is an integer which can be positive or negative. If z is positive, Y is an anion such as CI^* , RCO_3^* , RCO_3^* , RSO_3^*

The extent of anti-ferromagnetic coupling IJI is preferably greater than 200 cm⁻¹, most preferably greater than 400 cm⁻¹.

As explained hereinbefore, the invention relates to the above-defined use of an active manganese(IV)-based coordination complex including the precursors therefor.

A precursor for the class of active catalysts described can be any manganese co-ordination complex which, in the presence of a peroxy compound, is transformed into the active manganese complex of general formula A as defined above. The precursor molecule does not necessarily contain manganese in the oxidation state IV and the manganese centers are not necessarily anti-ferromagnetically coupled.

A preferred class of catalysts are the manganese complexes in which m=2, n=2, and p=3, in which the manganese (IV)-centers are anti-ferromagnetically coupled. These are dinuclear manganese(IV)-complex compounds having the following general formula (B):

$$[LMn^{IV}-X-Mn^{IV} L]^2 Y_q$$
 (B)

in which each X individually represents any of the bridging species described as co-ordinating ions in formula A above; and L, Y, q, and z are as described above. Suitable bridging species or co-ordinating ions normally have a donor atom and preferably are small-size molecules.

A more preferred class of catalysts are dinuclear manganese(IV)-complexes in which X= O2- of formula (C):

$$[LMn^{IV}(\mu-O)_3Mn^{IV}L]^z Y_q$$
 (C)

wherein L, Y, q, and z are as described above.

The ligand L:

L is an organic molecule with a number of hetero-atoms (like N, P, O, and S) which co-ordinates via all or some of its hetero-atoms and/or carbon atoms to the Mn(IV) -center.

A preferred class of ligands L are the multi-dentate ligands which co-ordinate via three hetero-atoms to the manganese(IV)-centers which are anti-ferromagnetically coupled, preferably those which co-ordinate via three nitrogen atoms to each one of the manganese(IV)-centers. The nitrogen atoms can be part of tertiary, secondary, or primary amine groups, but also part of aromatic ring systems, e.g. pyridines, pyrazoles, or combinations thereof.

Not all ligands which co-ordinate via three N-atoms to one of the Mn(IV)-centers, however, will give rise to (LMnIV

 $(\mu-O)_3Mn^{IV}L]^2$ Y_q complexes: some give rise to complexes containing more or less than two manganese(IV)-centers. Only those ligands which have specific space-filling properties will give rise to the class of effective dinuclear Mn(IV)-complexes. This implies that by the definition of the more preferred catalyst $[LMn^{IV}(\mu-O)_3Mn^{IV}L]^2$ also the space-filling properties of the ligands Lare important. Space-filling properties of the ligands can be derived by well-known techniques like molecular modelling and/or molecular graphics.

For example, less suitable ligands will give rise to L₂Mn mononuclar compounds (because of their insufficient space-filling properties, i.e. these ligands are too small) or will give rise to LMnX₃ mononuclear compounds (because of their overly sufficient space-filling properties - these ligands are too big). Other less suitable ligands, though being tri-N-dentate ligands, will give rise to tetranuclear L₄Mn₄O₆ clusters (because of their not entirely sufficient space-filling properties - a little too small).

Accordingly, those ligands having effective space-filling properties to give rise to LMnIV(μ -O)₃MnIVL clusters are most preferred.

Therefore, the most preferred class of catalysts are dinuclear manganese(IV)-complexes of formula (C), in which the manganese IV-centers are anti-ferromagnetically coupled, and wherein L contains at least three nitrogen atoms, three of which co-ordinate to each Mn(IV)-center. Representative for this class of catalysts are complexes of the formula (D):

$$[(L'N_3)Mn^{IV}(\mu-O)_3Mn^{IV}(N_3L')]^z Y_q$$
 (D)

20

in which L'N3 (and N3L') represent ligands containing at least three nitrogen atoms.

Though Y can be any counter-ion as defined hereinbefore, the more preferred counter-ions Y are those which give rise to the formation of stable (with respect to hygroscopicity) solids. This means that their lattice-filling properties are compatible with the lattice-filling properties of the manganese cluster.

Combinations of the more preferred manganese cluster with the counter-ion Y usually involve bigger counter-ions, such as ClO₄*, PF₆*, RSO₃*, RSO₄*, BPh₄*, OOCR* (R= alkyl, aryl, optionally substituted).

Examples of suitable ligands L in their simplest forms are:

(i)

1,4,7-trimethyl-1,4,7-triazacyclononane;

1,4,7-trimethyl-1,4,7-triazacyclodecane;

1,4,8-trimethyl-1,4,8-triazacycloundecane:

1,5,9-trimethyl-1,5,9-triazacyclododecane.

(ii)

35

40

45

Tris(pyridin-2-yl)methane;

Tris(pyrazol-1-yl)methane;

Tris(imidazol-2-yl)methane.

Tris(triazol-1-yl) methane;

(iii)

Tris(pyridin-2-yl)borate;

Tris(triazol)-1-yl)borate:

Tris(pyrazol-I-yI)borate;

Tris(imidazol-2-yl)phosphine;

Tris(imidazol-2-yl)borate.

50

55

(iv)

1,3,5-trisamino-cyclohexane;

1,1,1-tris(methylamino)ethane.

(v)

Bis(pyridin-2-yl-methyl)amine;

Bis(pyrazol-1-yl-methyl)amine:

Bis(triazol-1-yl-methyl)amine:

Bis(imidazol-2-yl-methyl)amine,

all optionally substituted on amine N-atom and/or CH₂ carbon atom and/or aromatic ring. Examples of preferred ligands are :

wherein R is a C₁-C₄ alkyl group.

20

5

10

15

(ii) RC N

 $RC + \left(\bigcap_{N=-N}^{R} \right)_{3}$

30

35

RB N N

P R N

(iv)

40

45

50

CH₂- NR₂
H₃C-C-CH₂- NR₂
CH₂- NR₂

wherein R can each be H, alkyl, or aryl, optionally substituted. Examples of the most preferred catalysts are:

(1)

47

2+ 5 Me Мe 10 -MnIV Me-N N-Me $(PF_6^-)_2$ 15 N Me i Me

20 abbreviated as $[Mn^{IV}_2(\mu-O)_3(Me-TACN)_2](PF_6)_2$.

abbreviated as $[Mn^{IV}_2(\mu-O)_3(Me/Me-TACN)_2](PF_6)_2$. The anti-ferromagnetic coupling J value for these catalysts is \sim -780 cm⁻¹.

45

50

55

Examples of precursors for the active catalysts are:

Both precursors, in the presence of a peroxy compound, will transform and give rise to the formation of the following active catalyst cation (1):

Me

OAc

Me

*3*5

40

Any of these complexes, either preformed or formed in situ during the washing or bleaching process, are useful catalysts for the bleach activation of peroxy compounds over a wide class of stains at lower temperatures in a surpris-

ingly much more effective way than any maganese- and cobalt-based catalysts hitherto known in the art. Furthermore, these catalysts exhibit a high stability against hydrolysis and oxidation. It should be noted that the catalytic activity is determined only by the $[L_n Mn_m \ Xp]^z$ core complex and the presence of Y_a has hardly any effect on the catalytic activity.

Some of the complexes described in this invention have been prepared previously as scientific and laboratory curiosities, e.g. as models for naturally occurring Mn-protein complexes without bearing any practical function in mind (K. Wieghardt et al., Journal of American Chemical Society, 1988, 110, page 7398 and references cited therein, and K. Wieghardt et al., Journal of the Chemical Society - Chemical Communications, 1988, page 1145).

The manganese co-ordination complexes usable as new bleach catalysts of the invention may be prepared and synthesized in manners as described in literature for several manganese complexes illustrated below:

SYNTHESIS OF $[Mn^{III}_2(\mu-O)_1(\mu-OAc)_2(Me-TACN)_2]$ (CIO₄)₂·(H₂O) (a catalyst precursor)

All solvents were degassed (first a vacuum was applied over the solvent for 5 minutes and subsequently argon gas was introduced; this was repeated three times) prior to use (to exclude all oxygen, which oxidizes Mn^{II} to Mn^{IV} and causes the formation of Mn^{IV}O₂).

The reaction was carried out at room temperature, under argon atmosphere, unless otherwise stated

In a 25 ml round-bottomed flask, equipped with a magnetic stirrer, 500 mg (2.91 mmol) 1,4,7-trimethyl-1,4,7-tri-azacyclononane was dissolved in 15 ml ethanol/water (85/15). This gave a clear, colourless solution (pH >11). Then 0.45 g (1.80 mmol) Mn^{III}OAc₃.2aq was added and a cloudy, dark-brown solution was obtained. After the addition of 1.00 g (7.29 mmol) NaOAc.3aq, the pH fell to 8 and with about 15 drops of 70% HClO₄ solution, the pH of the reaction mixture was adjusted to 5.0. After the addition of 1.50 g (12.24 mmol) NaClO₄, the colour of the reaction mixture changed from brown to red within about 30 minutes. After allowing the reaction mixture to stand for one week at room temperature, the product precipitated in the form of red crystals. Then the precipitate was filtered over a glass filter, washed with ethanol/water (85/15) and dried in a dessicator over KOH.

 ${\rm SYNTHESIS~OF~[Mn^{III}Mn^{IV}(\mu-O)_1(\mu-OAc)_2(Me-TACN)_2](CIO_4)_3~(a~catalyst~precursor)}$

All solvents were degassed as described above, prior to use (to exclude all oxygen, which oxidizes Mn^{II} to Mn^{IV} and causes the formation of $Mn^{IV}O_2$). The reaction was carried out at room temperature, under argon atmosphere, unless otherwise stated.

In a 50 ml round-bottomed flask, equipped with a magnetic stirrer, 500 mg (2.90 mmol) 1,4,7-trimethyl-1.4,7-tri-azacyclononane was dissolved in 9 ml ethanol. This gave a clear, colourless solution (pH >11). Then 0.75 g (3.23 mmol) Mn^{III}OAc₃.2aq was added and a cloudy dark-brown solution was obtained. After the addition of 0.50 g (6.00 mmol) NaOAc.3aq and 10 ml water, the pH fell to 8. Then 1.0 ml 70% HClO₄ was added (pH 1), which started the precipitation of a brown powder that formed the product. The reaction mixture was allowed to stand for several hours at room temperature. Then the precipitate was filtered over a glass filter, washed with ethanol/water (60/40) and dried in a dessicator over KOH. In the filtrate no further precipitation was observed. The colour of the filtrate changed from green-brown to colourless in two weeks' time. Mn(III,IV)MeTACN is a green-brown microcrystalline product.

SYNTHESIS OF [Mn^{IV}₂(μ-O)₃(Me-TACN)₂](PF₆)₂ H₂O

10

25

30

40

In a 50 ml round-bottomed flask, equipped with a magnetic stirrer, 661.4 mg of (4), i.e. $[Mn^{|I|}_2(\mu-O)_1(\mu.OAc)_2(Me-TACN)_2](ClO_4)_2$ (0.823 mmol crystals were pulverized, giving a purple powder) was dissolved in 40 ml of an ethanol/water mixture (1/1). After a five-minute ultrasonic treatment and stirring at room temperature for 15 minutes, all powder was dissolved, giving a dark-red-coloured neutral solution. 4 ml of triethylamine was added and the reaction mixture turned to dark-brown colour (pH >11). Immediately 3.55 g of sodium hexafluorophosphate (21.12 mmol, NaPF₆) was added. After stirring for 15 minutes at room temperature, in the presence of air, the mixture was filtered to remove some manganese dioxide, and the filtrate was allowed to stand overnight. A mixture of MnO₂ and red crystals was formed. The solids were collected by filtration and washed with ethanol). The red crystals (needles) were isolated by adding a few ml of acetonitrile to the filter. The crystals easily dissolved, while MnO₂, insoluble in acetonitrile, remained on the filter. Evaporation of the acetonitrile solution resulted in the product as red flocks.

An advantage of the bleach catalysts useful in the invention is that they are hydrolytically and oxidatively stable, and that the complexes themselves are catalytically active, and function in a variety of detergent formulations.

Another advantage is that the instant catalysts are surprisingly much better than any other manganese complexes hitherto proposed in the art. They are furthermore not only effective in enhancing the bleaching action of hydrogen peroxide but also of organic and inorganic peroxyacid compounds.

A surprising feature of the bleach systems according to the invention is that they are effective on a wide range of stains including both hydrophilic and hydrophobic stains. This is in contrast with all previously proposed Mn-based

catalysts, which are only effective on hydrophilic stains.

10

20

25

40

50

A further surprising feature is that they are compatible with detergent enzymes, such as proteases, cellulases, lipases, amylases and oxidases.

Accordingly, in one aspect, the invention provides a bleaching or cleaning process employing a bleaching agent selected from the group of peroxy compound bleaches including hydrogen peroxide, hydrogen peroxide-liberating or -generating compounds, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof, which process is characterized in that said bleaching agent is activated by a catalytic amount of a Mn-complex as defined hereinbefore.

The use of the Mn-complex as a bleaching and oxidation catalyst is a novel feature of the invention. The effective level of the Mn-complex catalyst, expressed in terms of parts per million (ppm) of manganese in the aqueous bleaching solution, will normally range from 0.001 ppm to 100 ppm, preferably from 0.01 ppm to 10 ppm, most preferably from 0.05 ppm to 5 ppm. Higher levels may be desired and applied in industrial bleaching processes, such as textile and paper pulp-bleaching. The lower range levels are primarily destined and preferably used in domestic laundry operations.

In another aspect, the invention provides an improved bleaching composition comprising a peroxy compound bleach as defined above and a catalyst for the bleaching action of the peroxy compound bleach, said catalyst comprising the aforesaid Mn-complex.

As indicated above, the improved bleaching composition has particular application in detergent formulations to form a new and improved detergent bleach composition within the purview of the invention, comprising said peroxy compound bleach, the aforesaid Mn-complex catalyst, a surface-active material, and usually also detergency builders and other known ingredients of such formulations, as well as in the industrial bleaching of yarns, textiles, paper and woodpulp.

The Mn-complex catalyst or precursor thereof will be present in the detergent formulations in amounts so as to provide the required level in the wash liquor. When the dosage of the detergent bleach composition is relatively low e.g. about 1 and 2 g/l by consumers in Japan and the USA, respectively, the Mn content in the formulation is 0.001 to 1.0%, preferably 0.005 to 0.50%. At higher product dosage as used e.g. by European consumers, the Mn content in the formulation is 0.0005 to 0.25%, preferably from 0.001 to 0.1%.

Compositions comprising a peroxy compound bleach and the aforesaid bleach catalyst are effective over a wide pH range of between 7 and 13, with optimal pH range lying between 8 and 11.

The peroxy compound bleaches which can be utilized in the present invention include hydrogen peroxide, hydrogen peroxide-liberating compounds, hydrogen peroxide-generating systems, peroxyacids and their salts, and peroxyacid bleach precursors and mixtures thereof. It is of note, however, that the invention is of particular interest in the bleach activation of hydrogen peroxide and hydrogen peroxide adducts, in which the effect is most outstanding.

Hydrogen peroxide sources are well known in the art. They include the alkali metal peroxides, organic peroxide bleaching compounds such as urea peroxide, and inorganic persalt bleaching compounds, such as the alkali metal perborates, percarbonates, perphosphates and persulphates. Mixtures of two or more such compounds may also be suitable. Particularly preferred are sodium percarbonate and sodium perborate and, especially, sodium perborate monohydrate. Sodium perborate monohydrate is preferred to tetrahydrate because of its excellent storage stability while also dissolving very quickly in aqueous bleaching solutions. Sodium percarbonate may be preferred for environmental reasons. These bleaching compounds may be utilized alone or in conjunction with a peroxyacid bleach precursor.

Peroxyacid bleach precursors are known and amply described in literature, such as in the GB Patents 836,988; 864,798; 907,356; 1,003,310 and 1,519,351; German Patent 3,337,921; EP-A-0185522; EP-A-0174132; EP-A-0120591; and US Patents 1,246,339; 3,332,882; 4,128,494; 4,412,934 and 4,675,393.

Another useful class of peroxyacid bleach precursors is that of the quaternary ammonium substituted peroxyacid precursors as disclosed in US Patents 4,751,015 and 4,397,757, in EP-A-284292, EP-A-331,229 and EP-A-0303520. Examples of peroxyacid bleach precursors of this class are:

2-(N,N,N-trimethyl ammonium) ethyl-4-sulphophenyl carbonate - (SPCC); N-octyl,N,N-dimethyl-N10-carbophenoxy decyl ammonium chloride - (ODC); 3-(N,N,N-trimethyl ammonium) propyl sodium-4-sulphophenyl carboxylate; and N,N,N-trimethyl ammonium toluyloxy benzene sulphonate.

.

Of the above classes of bleach precursors, the preferred classes are the esters, including acyl phenol sulphonates and acyl alkyl phenol sulphonates; acyl-amides; and the quaternary ammonium substituted peroxyacid precursors.

Highly preferred activators include sodium-4-benzoyloxy benzene sulphonate; N,N,N',N'-tetraacetyl ethylene diamine; sodium-1-methyl-2-benzoyloxy benzene-4-sulphonate; sodium-4-methyl-3-benzoyloxy benzene; SPCC trimethyl ammonium toluyloxy benzene sulphonate; sodium nonanoyloxybenzene sulphonate; sodium 3,5,5,-trimethyl hexanoyloxybenzene sulphonate; glucose pentaacetate and tetraacetyl xylose.

Organic peroxyacids are also suitable as the peroxy compound. Such materials normally have a general formula:

0 # HO-O-C-R-Y

wherein R is an alkylene or substituted alkylene group containing from 1 to about 22 carbon atoms or a phenylene or substituted phenylene group, and Y is hydrogen, halogen, alkyl, aryl or

The organic peroxy acids usable in the present invention can contain either or two peroxy groups and can be either aliphatic or aromatic. When the organic peroxy acid is aliphatic, the unsubstituted acid has the general formula:

 $_{\text{HO-O-C-(CH}_2)_{n}-Y}^{\text{O}}$

where Y can be, for example, H, CH₃, CH₂CI, COOH, or COOOH; and n is an integer from 1 to 20. When the organic peroxy acid is aromatic, the unsubstituted acid has the general formula:

0 HO-O-C-C₆H₄-Y

wherein Y is hydrogen, alkyl, alkylhalogen, halogen, or COOH or COOH.

Typical monoperoxy acids useful herein include alkyl peroxy acids and aryl peroxy acids such as:

- (i) peroxybenzoic acid and ring-substituted peroxybenzoic acids, e.g. peroxy- α -naphthoic acid;
- (ii) aliphatic, substituted aliphatic and arylalkyl monoperoxy acids, e.g. peroxylauric acid, peroxystearic acid, and N,N-phthaloylaminoperoxycaproic acid.

Typical diperoxy acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as:

- (iii) 1,12-diperoxydodecanedioic acid;
- (iv) 1,9-diperoxyazelaic acid:

5

15

20

25

30

35

40

45

- (v) diperoxybrassylic acid; diperoxysebacic acid and diperoxyisophthalic acid;
- (vi) 2-decyldiperoxybutane-1,4-dioic acid;

(vii) 4,4'-sulfonylbisperoxybenzoic acid.

An inorganic peroxyacid salt usable herein is, for example, potassium monopersulphate.

A detergent bleach composition of the invention can be formulated by combining effective amounts of the components. The term "effective amounts" as used herein means that the ingredients are present in quantities such that each of them is operative for its intended purpose when the resulting mixture is combined with water to form an aqueous medium which can be used to wash and clean clothes, fabrics and other articles.

In particular, the detergent bleach composition can be formulated to contain, for example, from about 2% to 30%

by weight, preferably from 5 to 25% by weight, of hydrogen peroxide or a hydrogen peroxide-liberating compound. Peroxyacids may be utilized in somewhat lower amounts, for example from 1% to about 15% by weight, preferably from 2% to 10% by weight.

Peroxyacid precursors may be utilized in combination with a peroxide compound in approximately the same level as peroxyacids, i.e. 1% to 15%, preferably from 2% to 10% by weight.

The manganese complex catalyst will be present in such formulations in amounts so as to provide the required level of Mn in the wash liquor. Normally, an amount of manganese complex catalyst is incorporated in the formulation which corresponds to a Mn content of from 0.0005% to about 1.0% by weight, preferably 0.001% to 0.5% by weight.

The bleach catalyst of the invention is compatible with substantially any known and common surface-active agents and detergency builder materials.

The surface-active material may be naturally derived, such as soap, or a synthetic material selected from anionic, nonionic, amphoteric, zwitterionic, cationic actives and mixtures thereof. Many suitable actives are commercially available and are amply described in literature, for example in "Surface Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch. The total level of the surface-active material may range up to 50% by weight, preferably being from about 1% to 40% by weight of the composition, most preferably 4 to 25%.

Synthetic anionic surface-actives are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl groups containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher aryl groups.

Examples of suitable synthetic anionic detergent compounds are sodium and ammonium alkyl sulphates, especially those obtained by sulphating higher (C_8 - C_{18}) alcohols produced, for example, from tallow or coconut oil; sodium and ammonium alkyl (C_9 - C_{20}) benzene sulphonates, particularly sodium linear secondary alkyl (C_{10} - C_{15}) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those esters of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty acid monoglyceride sulphates and sulphonates; sodium and ammonium salts of sulphuric acid esters of higher (C_9 - C_{18}) fatty alcohol alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralized with sodium hydroxide; sodium and ammonium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alpha-olefins (C_8 - C_{20}) with sodium bisulphite and those derived by reacting paraffins with SO₂ and Cl₂ and then hydrolyzing with a base to produce a random sulphonate; sodium and ammonium C_7 - C_{12} dialkyl sulfosuccinates; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C_{10} - C_{20} alpha-olefins, with SO₃ and then neutralizing and hydrolyzing the reaction product. The preferred anionic detergent compounds are sodium (C_{11} - C_{15}) alkylbenzene sulphonates, sodium (C_{16} - C_{18}) alkyl sulphates and sodium (C_{16} - C_{18}) alkyl ether sulphates.

Examples of suitable nonionic surface-active compounds which may be used, include in particular the reaction products of alkylene oxides, usually ethylene oxide, with alkyl (C_6 - C_{22}) phenols, generally 5-25 EO, i.e. 5-25 units of ethylene oxides per molecule; the condensation products of aliphatic (C_8 - C_{18}) primary or secondary linear or branched alcohols with ethylene oxide, generally 3-30 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylene diamine. Other so-called nonionic surface-actives include alkyl polyglycosides, long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.

Amounts of amphoteric or zwitterionic surface-active compounds can also be used in the compositions of the invention but this is not normally desired owing to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used, it is generally in small amounts in compositions based on the much more commonly used synthetic anionic and nonionic actives.

40

As stated above, soaps may also be incorporated in the compositions of the invention, preferably at a level of less than 25% by weight. They are particularly useful at low levels in binary (soap/anionic) or ternary mixtures together with nonionic or mixed synthetic anionic and nonionic compounds. Soaps which are used, are preferably the sodium, or, less desirably, potassium salts of saturated or unsaturated C₁₀-C₂₄ fatty acids or mixtures thereof. The amount of such soaps can be varied between about 0.5% and about 25% by weight, with lower amounts of about 0.5% to about 5% being generally sufficient for lather control. Amounts of soap between about 2% and about 20%, especially between about 5% and about 10%, are used to give a beneficial effect on detergency. This is particularly valuable in compositions used in hard water when the soap acts as a supplementary builder.

The detergent compositions of the invention will normally also contain a detergency builder. Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.

Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate; nitrilotriacetic acid and its water-soluble salts; the akali metal salts of ether polycarboxylates, such as carboxymethyloxy succinic acid, oxydisuccinic acid, mellitic acid; ethylene diamine tetraacetic acid; benzene polycarboxylic acids; citric acid; and polyacetal carboxylates as disclosed in US Patents 4,144,226 and 4,146,495.

Examples of precipitating builder materials include sodium orthophosphate, sodium carbonate and sodium car-

bonate/calcite

10

20

30

45

Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives.

In particular, the compositions of the invention may contain any one of the organic or inorganic builder materials, such as sodium or potassium tripolyphosphate, sodium or potassium pyrophosphate, sodium or potassium orthophosphate, sodium carbonate or sodium carbonate/calcite mixtures, the sodium salt of nitrilotriacetic acid, sodium citrate, carboxymethyl malonate, carboxymethyloxy succinate and the water-insoluble crystalline or amorphous aluminosilicate builder materials, or mixtures thereof.

These builder materials may be present at a level of, for example, from 5 to 80% by weight, preferably from 10 to 60% by weight.

Apart from the components already mentioned, the detergent compositions of the invention can contain any of the conventional additives in the amounts in which such materials are normally employed in fabric washing detergent compositions. Examples of these additives include lather boosters, such as alkanolamides, particularly the monoethanol amides derived from palmkernel fatty acids and coconut fatty acids, lather depressants, such as alkyl phosphates and silicones, anti-redeposition agents, such as sodium carboxymethyl cellulose and alkyl or substituted alkyl cellulose ethers, other stabilizers, such as ethylene diamine tetraacetic acid and the phosphonic acid derivatives (i.e. Dequest (R) types), fabric softening agents, inorganic salts, such as sodium sulphate, and, usually present in very small amounts, fluorescent agents, perfumes, enzymes, such as proteases, cellulases, lipases, amylases and oxidases, germicides and colourants.

Another optional but highly desirable additive ingredient with multi-functional characteristics in detergent compositions is from 0.1% to about 5% by weight of a polymeric material having a molecular weight of from 1,000 to 2,000,000 and which can be a homo- or co-polymer of acrylic acid, maleic acid, or salt or anhydride thereof, vinyl pyrrolidone, methyl- or ethyl-vinyl ethers, and other polymerizable vinyl monomers. Preferred examples of such polymeric materials are polyacrylic acid or polyacrylate; polymaleic acid/acrylic acid copolymer; 70:30 acrylic acid/hydroxyethyl maleate copolymer; 1:1 styrene/maleic acid copolymer; isobutylene/maleic acid and diisobutylene/maleic acid copolymers; methyl- and ethyl-vinylether/maleic acid copolymers: ethylene/maleic acid copolymer; polyvinyl pyrrolidone; and vinyl pyrrolidone/maleic acid copolymer.

Detergent bleach compositions of the invention formulated as free-flowing particles, e.g. in powdered or granulated form, can be produced by any of the conventional techniques employed in the manufacture of detergent compositions, for instance by slurry-making, followed by spray-drying to form a detergent base powder to which the heat-sensitive ingredients including the peroxy compound bleach and optionally some other ingredients as desired, and the bleach catalyst, can be added as dry substances.

It will be appreciated, however, that the detergent base powder compositions, to which the bleach catalyst is added, can itself be made in a variety of other ways, such as the so-called part-part processing, non-tower route processing, dry-mixing, agglomeration, granulation, extrusion, compacting and densifying processes etc., such ways being well known to those skilled in the art and not forming the essential part of the present invention.

Alternatively, the bleach catalyst can be added separately to a wash/bleach water containing the peroxy compound bleaching agent.

In that case, the bleach catalyst is presented as a detergent additive product. Such additive products are intended to supplement or boost the performance of conventional detergent compositions and may contain any of the components of such compositions, although they will not comprise all of the components as present in a fully formulated detergent composition. Additive products in accordance with this aspect of the invention will normally be added to an aqueous liquor containing a source of (alkaline) hydrogen peroxide, although in certain circumstances the additive product may be used as separate treatment in a pre-wash or in the rinse.

Additive products in accordance with this aspect of the invention may comprise the compound alone or, preferably, in combination with a carrier, such as a compatible aqueous or non-aqueous liquid medium or a particulate substrate or a flexible non-particulate substrate.

Examples of compatible particulate substrates include inert materials, such as clays and other aluminosilicates, including zeolites, both natural and synthetic of origin. Other compatible particulate carrier materials include hydratable inorganic salts, such as carbonates and sulphates.

The instant bleach catalyst can also be formulated in detergent bleach compositions of other product forms, such as flakes, tablets, bars and liquids, particularly non-aqueous liquid detergent compositions.

Such non-aqueous liquid detergent compositions in which the instant bleach catalyst can be incorporated are known in the art and various formulations have been proposed, e.g. in US Patents 2,864,770; 3,368,977; 4,772,412; GB Patents 1,205,711; 1,370,377; 2,194,536; DE-A-2,233,771 and EP-A-0,028,849.

These are compositions which normally comprise a non-aqueous liquid medium, with or without a solid phase dispersed therein. The non-aqueous liquid medium may be a liquid surfactant, preferably a liquid nonionic surfactant; a polar solvent, e.g. polyols, such as glycerol, sorbitol, ethylene glycol, optionally combined with low-molecular mono-

hydric alcohols, e.g. ethanol or isopropanol; or mixtures thereof.

The solid phase can be builders, alkalis, abrasives, polymers, clays, other solid ionic surfactants, bleaches, fluorescent agents and other usual solid detergent ingredients.

The invention will now be further illustrated by way of the following non-limiting Examples.

EXAMPLES

5

10

20

25

30

35

40

The experiments were either carried out in a temperature-controlled glass beaker equipped with a magnetic stirrer, thermocouple and a pH electrode, or under real washing machine conditions.

Glass-vessel experimental conditions

Most of the experiments were carried out at a constant temperature of 40°C.

In the experiments, demineralised water, hardened-up demineralised or tap water (16°FH) was applied. A Ca/Mg stock solution Ca:Mg= 4:1 (weight ratio) was used to adjust water hardness.

In Examples, when formulations were used, the dosage amounted to about 6 g/l total formulation. The compositions of the base detergent formulations without bleach used are described below.

The amount of sodium perborate monohydrate was about 15%, yielding 8.6 mmol/l H_2O_2 , calculated on 6 g/l dosage.

In most cases the catalysts were dosed at a concentration of between 10⁻⁵ to 10⁻⁵ mol Mn/l.

In experiments at 40°C the initial pH was adjusted to 10.5.

Tea-stained cotton test cloth was used as bleach monitor. After rinsing in tap water, the cloths were dried in a tumble drier. The reflectance (R₄₆₀₊) was measured before and after washing on a Zeiss Elrephometer. The average was taken of 2 values/test cloth.

DETERGENT FORMULATIONS WITHOUT BLEACH (%) С D Ε Anionic surfactant 13 12 13 8 7 Nonionic surfactant 5 13 5 13 8 Sodium triphosphate 40 Zeolite 39 35 27 Polymer 6 5 3 Sodium carbonate 15 36 16 11 Calcite 24 Sodium silicate 8 7 1 1 Na₂SO₄ 20 27 Savinase® granule (proteolytic enzyme) 1 1 Water and minors 14 15 15 22 15

EXAMPLE I

The bleach performance of some manganese catalysts and precursors useful in the invention is compared with that of other Co- and Mn-based catalysts.

Conditions:

Glass-vessel experiments; no detergent formulation; demineralised water;

T = 40°C; t = 60 minutes; pH = 10.5; $[H_2O_2] = 8.6 \times 10^{-3}$ mol/l.

Catalyst/precursor	Metal concentration mol/l	ΔR460* (15 min)	ΔR460* (60 min)
		1	7
CoCo* 1)	12x10 ⁻⁶	9	22

¹⁾ comparative catalyst

^{*} CoCo is an abbreviation for 11.23-dimethyl-3.7.15,19-tetraazatricylo [19.3.1.1.9.13] hexacosa - 2.7,9,11,13 (26), 14,19,21 (25), 22,24-decaene-25.26-diolate-Co₂ Cl₂ (described in EP-A-0408131).

(continued)

Catalyst/precursor Metal concentration mol/l ΔR460* (15 min) ΔR460* (60 min) Mn^{II}(CF₃SO₃)₂ 1) 6x10-6 4 16 Mn^{III} gluconate¹⁾ 5x10-6 4 16 ${\rm Mn^{III}}_2(\mu\text{-O})_1(\mu\text{-OAc})_2({\rm Me\text{-TACN}})_2\text{-}({\rm CIO}_4)_2$ 2.5x10-6 14 29 $Mn^{III}Mn^{IV}(\mu$ -O)₁(μ -OAc)₂(Me-TACN)₂-(CIO₄)₃ 3.4x10-6 16 31 $Mn^{IV}_{2}(\mu-O)_{3}(Me-TACN)_{2}-(PF_{6})_{2}$ 3.7x10⁻⁶ 19 33 $\mathsf{Mn^{IV}_2}(\mu\text{-O})_3(\mathsf{Me/Me\text{-TACN}})_2\text{-}(\mathsf{PF}_6)_2$ 6x10-6 17 30

The results clearly demonstrate the superior performance of the Mn-catalysts and precursors useful the invention over the system without catalysts and other Mn- and Co-based catalysts.

EXAMPLE II

In this Example the bleach performance of a manganese catalyst useful in the invention is compared with that of other manganese catalysts at the same concentration.

Conditions:

Glass-vessel experiments; no detergent formulation:

Demin. water, t = 30 min., $T = 40^{\circ}\text{C}$, $pH = 10.5 \text{ and } [H_2O_2] = 8.6 \times 10^{-3} \text{ mol/l.}$

25

30

Catalyst	Mn-concentration mol/l	∆R460
-	-	4
Mn ^{II} CI ₂	1.10-5	9
Mn ^{III} gluconate	1.10-5	10
Mn-sorbitol ₃	1.10-5	11
$Mn^{IV}_2(\mu-O)_3(Me-TACN)_2-(PF_6)_2$	1.10 ⁻⁵	29

These results show the clearly superior bleach catalysis of the $[Mn^{IV}_2(\mu-O)_3(Me-TACN)_2]-(PF_6)_2$ catalyst over the previously known Mn-based catalyst at the same manganese concentration.

EXAMPLE III

This Example shows the effect of $[Mn^{III}_2(\mu-O)_1(\mu-OAc)_2(Me-TACN)_2](CIO_4)_2$ catalyst precursor concentration on the bleach performance.

Conditions:

Glass-vessel experiments: no detergent formulation;

T = 40° C, t = 30 minutes, pH = 10.5, demin. water, and [H₂O₂] = 8.6 x 10^{-3} moVI.

45

40

Mn-concentration in mol/l	ΔR460*
•	4
10 ⁻⁷	8
10 ⁻⁶	17
2x10 ⁻⁶	21
5x10 ⁻⁶	26
10 ⁻⁵	29

55

50

The results show the strong catalytic effect already at a very low concentration and over a broad concentration range.

¹⁾ comparative catalys

^{*} CoCo is an abbreviation for 11.23-dimethyl-3.7.15.19-tetraazatricylo [19.3.1.1.9.13] hexacosa - 2.7.9.11.13 (26). 14.19.21 (25). 22.24-decaene-25.26-diolate-Co₂ Cl₂ (described in EP-A-0408131).

EXAMPLE IV

The bleach performance of different catalysts at 20°C are compared.

5 Conditions:

Glass-vessel experiments; no detergent formulation;

Demin. water, T = 20°C, t = 60 minutes; pH 10.5; $[H_2O_2] = 8.6 \times 10^{-3}$ mol/l, $[metal] = 10^{-5}$ mol/l.

15

10

The above results show that the present catalyst still performs quite well at 20°C, at which temperature other known catalysts do not seem to be particularly effective.

EXAMPLE V

The bleach of the $\mathrm{Mn^{III}_2(\mu\text{-O})_1(\mu\text{-OAc})_2(Me\text{-TACN})_2}$ catalyst precursor is shown as a function of temperature.

Conditions:

Glass-vessel experiments; no detergent formulation;

Demin. water, pH = 10, t = 20 minutes, [Mn] = 10^{-5} mol/l, $[H_2O_2] = 8.6x10^{-3}$ mol/l.

30

25

35

40

Temperature °C	Catalyst	
	-	+
	ΔR	460*
20	1	9
30	2	15
40	3	23
50	5	28
60	7	30

The results show that this catalyst precursor is effective over a broad temperature range.

EXAMPLE VI

This Example shows the bleach catalysis of $\mathrm{Mn^{III}}_2(\mu\text{-O})_1(\mu\text{-OAc})_2(\mathrm{Me\text{-TACN}})_2$ catalyst precursor in different powder formulations.

Conditions:

Glass-vessel experiments;

50

45

T = 40°C; t = 30 minutes; pH = 10.5; demin. water; dosage 6 g/l of detergent formulation incl. 14.3% perborate monohydrate; [Mn] = $2.3x10^{-6}$ mol/l.

¹⁾ comparative catalyst

CoCo* - for description see Example I.

Coll (NH₃)₅ Cl** - Cobalt catalyst described in EP-A-0272030 (Interox).

Product Formulation	Catalyst	
,	-	+
	ΔR	460*
-	4	21
(A)	4	13
(B)	4	22
(C)	3 18	

10

25

From the above it is clear that the bleach catalysis can be obtained in very different types of formulations, e.g. with zeolite, carbonate and sodium triphosphate as builders.

15 EXAMPLE VII

The effect of $[Mn^{IV}_2(\mu-O)_3(Me-TACN)_2]$ catalyst on the stability of various detergent enzymes during the wash was examined.

20 Conditions:

Glass-vessel experiments;

40°C; 65 min.; 16°FH tap water; 5 g/l total dosage (detergent formulation D without or with 17.2% Na-perborate monohydrate (yielding 8.6x10⁻³ mol/l H_2O_2); - or + catalyst at concentration 2.5x10⁻⁶ mol/l; - or + enzyme, activity proteases ~ 95 GU/ml*, lipase ~ 3 LU/ml**.

The change of enzyme activity during the experiments is expressed as time-integrated activity fraction (t.i.a.f.), i. e. the ratio of the surfaces under the curve enzyme activity vs time (i.e. 65 min.) and under the theoretical curve enzyme activity vs time (i.e. 65 min.) if no enzyme deactivation would occur.

30		Bleaching performance ∆R 460*		Enzyme stability t.i.a.f.			
30		No bleach	Perborate	Perborate + cat.	No bleach	Perborate	Perborate + cat.
	Savinase***	0	6	24	0.80	0.69	0.72
	Durazym***	0	7	25	0.88	0.85	0.77
35	Esperase***	0	7	23	0.92	0.79	0.74
	Primase***	0	6	22	0.91	0.83	0.77
	Lipolase***	0	7	26	0.99	0.63	0.66

These figures show that the strong bleaching system of perborate + catalyst has no deleterious effect on the enzyme stability during the wash.

EXAMPLE VIII

The effect of $[Mn^{IV}_2 (\mu-O)_3 (Me-TACN)_2]$ on the bleaching performance of peracids and precursor/perborate systems. The precursors used in the experiments are N,N,N'N'-tetraacetyl ethylene diamine (TAED) and SPCC.

VIII A

Conditions:

Glass-vessel experiments; no detergent formulation present;

40°c; 30 min.; pH 10.5; demin. water; [cat] = 2.5x10⁻⁶ mol/l; [peracid] = 8x10⁻³ mol/l.

55

45

^{*} This specification of glycine units (GU) is defined in EP 0 405 901 (Unilever).

^{**} This specification of lipase units (LU) is defined in EP 0 258 068 (NOVO).

^{***} Commercially available enzymes from NOVO NORDISK.

	Catalyst + -	
	ΔR	460*
Peracetic acid	9	20
Sodium monopersulphate	13	22

From these data it is clear that bleach catalysis is obtained with organic and inorganic peracid compounds. 10

VIII B

5

Conditions:

Glass-vessel experiments;

15

40°C; 30 min.; pH 10.0; 16°FH tap water; 6 g/l total dosage (detergent formulation D with 7.5/2.3/0.07% Na-perborate monohydrate/TAED/Dequest*® 2041; - or + $[Mn^{IV}_{2}(\mu-O)_{3}(Me-TACN)_{2}]$,

 $[cat] = 2.5x10^{-6} \text{ mol/l}.$

Catalyst ∆R 460* 6 20

This Example shows that the performance of a TAED/perborate bleaching system is also significantly improved by employing the catalyst.

VIII C

Conditions:

Glass-vessel experiments:

20°C; 30 min.; pH 10; 16°FH tap water; 6 g/l total dosage (detergent formulation D with 7.5/6.1% Naperborate monohydrate/SPCC; - or + $[Mn^{IV}_{2} (\mu-O)_{3} (Me-TACN)_{2}]$; $[cat] = 2.5x10^{-6} mol/L$

Catalyst		+
R 460*	14	17

35

20

25

30

From these data it is clear that, even at 20°C, with a precursor (SPCC)/perborate bleaching system, a significant improvement of the bleach performance can be obtained.

EXAMPLE IX 40

This Example shows the bleach performance on different stains, i.e. under practical machine washing conditions as compared with the current commercial bleach system containing TAED (tetraacetyl ethylene diamine).

Conditions:

Miele W 736 washing machine; 40°C (nominal) extended wash (120 min.) cycle, 56 min. at 36°C max; 16°FH tap water; 3 kg medium-soiled cotton load including the bleach monitors; 100 g/run total dosage (detergent formulation E, either with 14.3% Na-perborate monohydrate + 0.04% Mn^{IV}₂(μ-O)₃ (Me-TACN)₂ or the current bleach system 7.5/2.3/0.24% Na-perborate monohydrate/TAED/Dequest 2041.

"Dequest" is a Trademark for polyphosphonates ex Monsanto.

STAIN	Reflectance Values (ΔR 460*)		
	Current	Mn-cat	
EMPA 116 (blood/milk)	18	23	
EMPA 114 (wine)	29	36	

55

(continued)

STAIN	Reflectance Va	Reflectance Values (ΔR 460*)		
	Current	Mn-cat		
BC-1 (tea)	7	20		
AS-10 (casein)	31	30		

 Stain removal (lower figure is better result)

 Current
 Mn

 Ketchup
 28
 19

 Curry
 25
 10

 Black currant
 39
 18

The results show that the catalyst useful in the invention performs better than the current TAED system on different test cloths and stains and that protease activity is not negatively affected (vide AS10 results).

EXAMPLE X

5

10

15

20

30

35

40

45

50

Hydrolytic stability of the catalysts of the invention is defined in terms of the water-solubility of the manganese at a pH of 10-11, in the presence of hydrogen peroxide, at a concentration of 1.7x10⁻² mol/l. A 10⁻³ molar solution of the Mn-complex is prepared, the pH is raised to 11 with 1N NaOH, and hydrogen peroxide is added. The transparency at 800 nm is monitored for the next 2 hours by a UV/VIS spectrophotometer (Shimadzu). If no significant decrease of transparency (or increase of adsorption) is observed, the complex is defined as hydrolytically stable.

Sample	Hydrolytic stability
$Mn^{III}_2(\mu-O)_1(\mu-OAc)_2(Me-TACN)_2$ (precursor) (3) $Mn^{III}Mn^{IV}(\mu-O)_1(\mu-OAc)_2(Me-TACN)_2$ (precursor) (4)	Yes Yes
$\begin{array}{cc} \operatorname{Mn^{IV}}_{2}(\mu\text{-O})_{3}(\operatorname{Me-TACN})_{2} & (1) \\ \operatorname{Mn^{IV}}_{2}(\mu\text{-O})_{3}(\operatorname{Me/Me-TACN})_{2} & (2) \end{array}$	Yes Yes

From these data it can be seen that the new manganese catalysts meet the requirement of hydrolytic stability and are suitable for use according to the present invention.

EXAMPLE XI

Oxidative stability of the catalysts of the invention is defined in terms of water-solubility and homogeneity at a pH of 10 to 11, in the presence of strongly oxidizing agents such as hypochlorite. Oxidative stability tests are run with a 5.10⁻⁵ molar solution of the Mn-complex at a pH of 10 to 11. After addition of a similar volume of 10⁻³ molar hypochlorite, the transparency was measured as described hereinbefore (see Example X).

Sample		Oxidative stability
Mn ^{IV} ₂ (μ-O) ₃ (Me-TACN) ₂	(1)	Yes
Mn ^{IV} ₂ (μ-O) ₃ (Me/Me-TACN) ₂	(2)	Yes

From the above data, it can be seen that both MnIV-complexes of the invention meet the requirements of oxidative stability as can happen in the presence of hypochlorite.

EXAMPLE XII

Dispenser stability of the catalysts of the invention is defined as stability against coloured manganese (hydr)oxide formation in a wetted powder detergent formulation.

An amount of 3 mg of the catalyst is carefully mixed with 0.2 g of a product composed of 18 g detergent formulation

B, 2.48 g Na-sulphate and 3.52 g Na-perborate monohydrate. Finally, 0.2 ml water is added to the mixture. After 10 minutes, the remaining slurry is observed upon discolourization.

Sample	Stability
Mn ^{IV} ₂ (μ-O) ₃ (Me-TACN) ₂ (1)	Yes
$Mn^{IV}_2(\mu-O)_3(Me/Me-TACN)_2$ (2)	Yes

EXAMPLE XIII

10

20

30

*3*5

40

45

This Example demonstrates again that it is possible to use a dinuclear anti-ferromagnetically coupled Mn^{IV} catalyst as described in the patent, or a precursor therefor, i.e. a manganese complex that is transformed into the described catalysts during the first period of the wash process.

15 Conditions:

Glass-vessel experiments; no detergent formulation;

Demin. water, t = 30 minutes, T = 40°C; pH = 10.5 and $[H_2O_2] = 8.6 \times 10^{-3}$ mol/l.

Catalyst/Precursor –	Concentration Mn mol/l	ΔR ₄₆₀
$Mn^{IV}_{2}(\mu-O)_{3}(Me-TACN)_{2}$ (1) $Mn^{III}_{2}(\mu-O)_{1}(\mu-OAc)_{2}(Me-TACN)_{2}(precursor)$ (3)	10-5	30
$Mn^{III}_{2}(\mu-O)_{1}(\mu-OAc)_{2}(Me-TACN)_{2}(precursor)$ (3) $Mn^{IV}Mn^{III}(\mu-O)_{1}(\mu-OAc)_{2}(Me-TACN)_{2}(precursor)$ (4)	10 ⁻⁵	29 30

25 EXAMPLE XIV

The bleach performance some manganese dinuclears of lying outside the scope of the invention, containing a tetra-N-dentate or bi-N-dentate ligands, is compared with the performance of a tri-N-dentate containing manganese (IV) dinuclear compound useful in the invention.

Conditions:

Glass-vessel experiments; no detergent formulation;

Demin. water, t = 30 minutes, $T = 40^{\circ}$ C; pH = 10.5 and $[H_2O_2] = 8.6 \times 10^{-3}$ mol/l.

Catalyst	Mn-concentration mol/l	ΔR ₄₆₀
[N ₄ Mn ^{III} (μ-O) ₂ Mn ^{IV} N ₄]+(ClO ₄) ¹⁾	10-5	17
[Bipy ₂ Mn ^{III} (μ-O) ₂ Mn ^{IV} bipy ₂](ClO ₄) ₃ ¹⁾	10.5	16
[Mn ^{IV} ₂ (μ-O) ₃ (Me-TACN) ₂](PF ₆) ₂	10-5	30

1) Comparative catalyst

N₄ ligand is

50

These results demonstrate the superior performance of the class of catalysts described, i.e. dinuclear Mn^{IV} complexes (anti-ferromagnetically coupled) with N₃ ligands over dinuclear manganese complexes containing ligands coordinating via 2x2 or 4 N-atoms, which are not the Mn^{IV} complexes (nor precursors therefor) according to the invention.

EXAMPLE XV

25 Conditions:

30

35

40

45

50

Glass-vessel experiments; no detergent formulation;

Demin. water, t = 60 minutes, $T = 40^{\circ}$ C; pH = 10.5, $[H_2O_2] = 8.6 \times 10^{-3}$ mol/l.

The bleach performance of a tetra-nuclear, ferromagnetically coupled MnIV catalyst is compared with that of a dinuclear anti-ferromagnetically coupled manganese (IV) catalyst as described in this patent.

Catalyst	Metal concentration	ΔR ₄₆₀
[Mn ^{IV} ₄ (μ-O) ₆ (TACN) ₄] ^{4+ 1)}	10x10 ⁻⁶	19
[Mn ^{IV} ₂ (μ-O) ₃ (Me-TACN) ₂] ²⁺	6.4x10 ⁻⁶	29

1) comparative catalyst

These results demonstrate the superior performance of the dinuclear anti-ferromagnetically coupled Mn^(IV) clusters over the tetranuclear ferromagnetically coupled manganese (IV) cluster.

Claims

1. Use of a manganese-based co-ordination complex of the general formula:

$$[L_nMn_mX_p]^{z}Y_q$$

wherein Mn is manganese in the IV-oxidation state; n and m are independent integers from 2-8; X represents a co-ordination or bridging species; p is an integer from 0-32; Y is a counter-ion, the type of which is dependent on the charge z of the complex which can be positive, zero or negative; q = z/(charge Y); and L is a ligand which is an organic molecule containing a number of hetero-atoms selected from N, P, O, and S, which co-ordinates via all or some of its hetero-atoms and/or carbon atoms to the $Mn^{(IV)}$ -center(s), which latter are anti-ferromagnetically coupled, as a bleaching and oxidation catalyst.

- 55 2. Use according to Claim 1, characterized in that the extent of anti-ferromagnetic coupling IJI is greater than 200 cm⁻¹.
 - 3. Use according to Claim 2, characterized in that the extent of anti-ferromagnetic coupling IJI is greater than 400 cm⁻¹.

- 4. Use according to Claim 1, 2 or 3, characterized in that p is from 3-6.
- 5. Use according to Claim 4, characterized in that p is 3; n is 2 and m is 2.
- 5 6. Use according to Claim 5, characterized in that the complex has the formula:

$$[L Mn^{IV} \xrightarrow{X} Mn^{IV} L]^{z} Y_{q}$$

- wherein X is a co-ordinating/bridging species selected from H_2O ; OH^+ ; $O_2^{2^+}$; O^{2^+} ; HO_2^+ ; SH^+ ; S^{2^+} ; SO; NR_2^+ ; $RCOO^+$; NR_3^+ , with R being H, alkyl, or aryl, optionally substituted; CI, N_3^+ , SCN_1^- , N^3 or mixtures thereof.
 - 7. Use according to Claim 6, characterized in that L is a multidentate ligand which co-ordinates via three heteroatoms to the manganese^(IV)-centers.
- 8. Use according to Claim 7, characterized in that L is a multidentate ligand which co-ordinates via three nitrogen atoms to each one of the manganese^(IV)-centers.
 - 9. Use according to Claim 6, 7 or 8, characterized in that X is O2-.

10

55

25 10. Use according to Claim 9, characterized in that the complex has the formula:

$$[(L'N_3)Mn^{IV}(\mu-O)_3Mn^{IV}(N_3L')]^z Y_a$$

- 30 wherein L'N₃ and N₃L' represent ligands containing at least three nitrogen atoms.
 - 11. Use according to Claim 9, characterized in that the complex has the following structural formula:

abbreviated as [MnIV₂(μ-O)₃(Me-TACN)₂](PF₆)₂.

12. Use of a manganese-based coordination complex as a bleach precursor, which, in the presence of a peroxy compound, is transformed into a Mn^(IV)-based co-ordination complex with anti-ferromagnetically coupled Mn^(IV)-centers used and defined according to Claims 1-11.

- 13. A bleaching or cleaning process employing a bleaching agent comprising a peroxy compound, characterized in that said bleaching agent is activated by a catalytic amount of a manganese-based coordination complex used and defined according to any of the preceding Claims 1-12.
- 5 14. A process according to Claim 13, characterized in that said coordination complex or precursor is used at a level of from 0.001 ppm to 100 ppm of manganese in the bleaching solution.
 - 15. A process according to Claim 14, characterized in that said level of manganese is from 0.01 to 20 ppm.
- 16. A process according to Claim 13, 14 or 15, characterized in that said bleaching agent is selected from the group consisting of hydrogen peroxide, hydrogen peroxide-liberating compounds, hydrogen peroxide-generating systems, peroxyacids and their salts, and peroxyacid bleach precursors, and mixtures thereof.
 - 17. A process according to Claim 16, characterized in that the coordination complex is [Mn^{IV}₂(μ-O)₃(Me-TACN)₂(PF₆)₂.
 - 18. A process according to Claim 16, characterized in that the coordination complex is $[Mn^{IV}_2(\mu-O)_3(Me/Me-TACN)_2]$ (PF₆)₂.
- 19. A bleaching composition comprising a peroxy compound and a manganese-based coordination complex used and defined according to any of the preceding Claims 1-12.
 - 20. A composition according to Claim 19, characterized in that it comprises said peroxy compound at a level of from 2 to 30% by weight and said complex at a level corresponding to a manganese content of from 0.0005% to 1.0% by weight.
 - 21. A composition according to Claim 20, characterized in that said manganese content is from 0.001% to 0.5% by weight.
- 22. A composition according to Claims 19-20, characterized in that said peroxy compound is selected from the group consisting of hydrogen peroxide, hydrogen peroxide-liberating compounds, hydrogen peroxide-generating systems, peroxyacids and their salts, and peroxyacid bleach precursors, and mixtures thereof.
 - 23. A composition according to Claim 22, characterized in that it further comprises a surface-active material in an amount up to 50% by weight.
 - 24. A composition according to Claim 23, characterized in that it further comprises a detergency builder in an amount of from 5 to 80% by weight.
- 25. A composition according to Claim 22, 23, or 24, characterized in that it further comprises an enzyme selected from the group consisting of proteases, cellulases, lipases, amylases, oxidases and mixtures thereof.
 - 26. A composition according to any of the preceding Claims 19-25, characterized in that the complex is $[Mn^{IV}_{2}(\mu-O)_{3} (Me-TACN)_{2}](PF_{6})_{2}$.
- 27. A composition according to any of the preceding Claims 19-25, characterized in that the complex is [Mn^{IV}₂(μ-O)₃ (Me/Me-TACN)₂](PF₆)₂.

Patentansprüche

15

25

35

50

55

1. Verwendung eines Koordinationskomplexes auf Mangan-Basis:

$$[L_nMn_mX_p]^{z}Y_q$$

worin Mn Mangan im Oxidationszustand IV ist; n und m unabhängig ganze Zahlen mit einem Wert von 2 bis 8 bedeuten; X eine Koordinations- oder Brückenspezies ist; p eine ganze Zahl mit einem Wert von 0 bis 32 bedeutet; Y ein Gegenion ist, dessen Typ von der Ladung z des Komplexes, die positiv, Null oder negativ sein kann, abhängig

ist; q = z/[Ladung Y]; und L einen Ligand bedeutet, welcher ein organisches Molekül ist, enthaltend eine Anzahl von Heteroatomen, ausgewählt aus N, P, O und S, welche über alle oder über einige seiner Heteroatome und/ oder Kohlenstoffatome zu den MnIV-Zentrum (Zentren) koordinieren, welche letztere antiferromagnetisch gekoppelt sind, als ein Bleich- und Oxidationskatalysator.

2. Die Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß das Ausmaß der anti-ferromagnetischen Kopplung [J] größer als 200 cm⁻¹ ist.

3. Die Verwendung gemäß Anspruch 2, dadurch gekennzeichnet, daß das Ausmaß der anti-ferromagnetischen Kopp-10 lung [J] größer als 400 cm-1 ist.

4. Die Verwendung gemäß einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß p einen Wert von 3 bis 6 aufweist.

5. Die Verwendung gemäß Anspruch 4, dadurch gekennzeichnet, daß p den Wert 3 aufweist, n den Wert 2 hat und m 2 bedeutet.

20

Die Verwendung gemäß Anspruch 5, dadurch gekennzeichnet, daß der Komplex die nachfolgende Formel auf-

25

$$[LMn^{IV} \underbrace{X}_{X} Mn^{IV}_{L}]^{z_{Y_{Q}}}$$

worin X eine koordinierende/ūberbrūckende Spezies ist, ausgewählt aus H₂O, OH⁻, O₂²⁻, O²⁻, HO₂⁻, SH⁻, S²⁻, >SO, NR₂*, RCOO*, NR₃, wobei R H, Alkyl oder Aryl, gegebenenfalls substituiert, Ct, N₃*, SCN*, N³*, oder Mischungen derselben, ist.

30

35

40

7. Die Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß L ein multiausgezackter Ligand ist, welcher über drei Heteroatome an die Mangan^{IV}-Zentren koordiniert ist.

8. Die Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, daß L ein multiausgezackter Ligand ist, welcher über drei Stickstoffatome zu einem jeden der ManganIV-Zentren koordiniert.

9. Die Verwendung gemäß einem der Ansprüche 6, 7 oder 8, dadurch gekennzeichnet, daß X O²⁻ ist.

(1) besitzt:

10. Die Verwendung gemäß Anspruch 9, dadurch gekennzeichnet, daß der Komplex die nachstehende Formel aufweist:

 $[(L'N_3)Mn^{IV}(\mu-O)_3Mn^{IV}(N_3L')]^{Z}Y_0$

11. Die Verwendung gemäß Anspruch 9, dadurch gekennzeichnet, daß der Komplex die nachfolgende Strukturformel

45

worin L'N3 und N3L' Liganden bedeuten, enthaltend zumindest drei Stickstoffatome.

50

abgekürzt als $[Mn^{IV}_2(\mu-O)_3(Me-TACN)_2](PF_6)_2$

30

- 20 12. Die Verwendung eines Koordinationskomplexes auf Mangan-Basis als einem Bleich-Prekursor, welcher in Gegenwart einer Peroxyverbindung in einen Koordinationskomplex auf Mn^{IV}-Basis transformiert wird, mit anti-ferromagnetisch gekoppelten Mn^{IV}-Zentren, verwendet und definiert gemäß den Ansprüchen 1 bis 11.
- 13. Ein Bleich- oder Reinigungsverfahren, verwendend ein Bleichmittel, enthaltend eine Peroxyverbindung, dadurch gekennzeichnet, daß das Bleichmittel durch eine katalytische Menge eines Koordinationskomplexes auf Mangan-Basis, verwendet und definiert gemäß einem der vorstehenden Ansprüche 1 bis 12, aktiviert ist.
 - 14. Ein Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß der erwähnte Koordinationskomplex oder Prekursor bei einem Gehalt im Bereich von 0,001 ppm bis 100 ppm Mangan in der Bleichlösung verwendet wird.
 - Ein Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, daß der erwähnte Gehalt an Mangan im Bereich von 0.01 bis 20 ppm liegt.
- 16. Ein Verfahren gemäß einem der Ansprüche 13, 14 oder 15, dadurch gekennzeichnet, daß das erwähnte Bleichmittel aus der Gruppe bestehend aus Wasserstoffperoxid, Wasserstoffperoxid-freisetzenden Verbindungen, Wasserstoffperoxid-erzeugenden Systemen, Peroxysäuren und deren Salzen, und Peroxysäure-Bleichprekursoren, und Mischungen derselben, ausgewählt ist.
- 17. Ein Verfahren gemäß Anspruch 16. dadurch gekennzeichnet, daß der Koordinationskomplex [Mn^{IV}₂(μ-O)₃(Me-TACN)₂](PF₆)₂ ist.
 - Ein Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, daß der Koordinationskomplex [Mn^{IV}₂(μ-O)₃(Me/Me-TACN)₂](PF₆)₂ ist.
- 45 19. Eine Bleichzusammensetzung, enthaltend eine Peroxyverbindung und einen Koordinationskomplex auf Mangan-Basis, verwendet und definiert gemäß einem der vorstehenden Ansprüche 1 bis 12.
 - 20. Eine Zusammensetzung gemäß Anspruch 19, dadurch gekennzeichnet, daß sie die erwähnte Peroxyverbindung bei einem Gehalt von 2 bis 30 Gewichtsprozent und den erwähnten Komplex bei einem Gehalt, entsprechend einem Mangan-Gehalt im Bereich von 0,0005 bis 1,0 Gewichtsprozent enthält.
 - 21. Eine Zusammensetzung gemäß Anspruch 20, dadurch gekennzeichnet, daß der erwähnte Mangan-Gehalt im Bereich von 0,001 bis 0,5 Gewichtsprozent liegt.
- 22. Eine Zusammensetzung gemäß den Ansprüchen 19 und 20, dadurch gekennzeichnet, daß die erwähnte Peroxyverbindung aus der Gruppe bestehend aus Wasserstoffperoxid, Wasserstoffperoxid-freisetzenden Verbindungen, Wasserstoffperoxid-erzeugenden Systemen, Peroxysäuren und deren Salzen, und Peroxysäure-Bleichprekursoren, und Mischungen derselben, ausgewählt ist.

- 23. Eine Zusammensetzung gemäß Anspruch 22. dadurch gekennzeichnet, daß sie ferner ein oberflächenaktives Material in einer Menge von bis zu 50 Gewichtsprozent enthält.
- 24. Eine Zusammensetzung gemäß Anspruch 23, dadurch gekennzeichnet, daß sie ferner einen Waschkraftbuilder in einer Menge von 5 bis 80 Gewichtsprozent enthält.
- 25. Eine Zusammensetzung gemäß einem der Ansprüche 22, 23 oder 24, dadurch gekennzeichnet, daß sie ferner ein Enzym enthält, ausgewählt aus der Gruppe bestehend aus Proteasen, Cellulasen, Lipasen, Amylasen, Oxidasen und Mischungen derselben.
- Eine Zusammensetzung gemäß irgendeinem der vorstehenden Ansprüche 19 bis 25, dadurch gekennzeichnet, daß der Komplex [Mn^{IV}(μ-O)₃(Me-TACN)₂](PF₆)₂ ist.
- 27. Eine Zusammensetzung gemäß irgendeinem der vorstehenden Ansprüche 19 bis 25, dadurch gekennzeichnet, daß der Komplex [Mn^{IV}₂(μ-O)₃(Me/Me-TACN)₂](PF₆)₂ ist.

Revendications

5

10

45

Utilisation d'un complexe de coordination à base de manganèse de formule générale:

$$[L_nMn_mX_p]^{z}Y_q$$

- où Mn est le manganèse dans l'état d'oxydation IV; n et m sont des entiers indépendants valant de 2 à 8; X représente une espèce de coordination ou de pontage; p est un entier de 0 à 32; Y est un contre-ion, dont le type dépend de la charge z du complexe qui peut être positive, nulle ou négative; q = z/[charge Y]; et L est un ligand qui est une molécule organique contenant un certain nombre d'hétéroatomes choisis parmi N, P, O et S, qui se coordine via la totalité ou certains de ses hétéroatomes et/ou atomes de carbone au(x) centre(s) Mn^(IV), ce dernier étant couplé de manière anti-ferromagnétique, en tant que catalyseur de blanchiment et d'oxydation.
 - 2. Utilisation selon la revendication 1, caractérisée en ce que l'ampleur du couplage IJI anti-ferromagnétique est supérieure à 200 cm⁻¹.
- Utilisation selon la revendication 2, caractérisée en ce que l'ampleur du couplage IJI anti-ferromagnétique est supérieure à 400 cm⁻¹.
 - 4. Utilisation selon l'une quelconque des revendications 1, 2 ou 3, caractérisée en ce que p vaut 3-6.
- Utilisation selon la revendication 4, caractérisée en ce que p vaut 3: n vaut 2 et m vaut 2.
 - 6. Utilisation selon la revendication 5, caractérisée en ce que le complexe a la formule:

$$[L Mn^{IV} \underbrace{\begin{array}{c} X \\ X \end{array}}_{Mn^{IV}} L]^{z} Y_{q}$$

- où X est une espèce de coordination/pontage choisie parmi H₂O₂; OH⁻; O₂²⁻; O²⁻; HO₂⁻; SH⁻; S²⁻; >SO; NR₂⁻; RCOO⁻; NR₃, avec R désignant un radical H, alkyle ou aryle, éventuellement substitué; Ch, N₃⁻, SCN⁻; N³⁻ ou des mélanges de ceux-ci.
- 7. Utilisation selon la revendication 6, caractérisée en ce que L est un ligand multidenté qui se coordine via trois hétéroatomes aux centres manganèse^(IV).
 - 8. Utilisation selon la revendication 7, caractérisée en ce que L est un ligand multidenté qui se coordine via trois atomes d'azote à chacun des centres manganèse^(IV).

- 9. Utilisation selon l'une quelconque des revendications 6, 7 ou 8, caractérisée en ce que X est O2-
- 10. Utilisation selon la revendication 9, caractérisée en ce que le complexe a la formule:

$$[(L'N_3)Mn^{IV}(\mu-O)_3Mn^{IV}(N_3L')]^ZY_a$$

où L'N₃ et N₃L' représentent des ligands contenant au moins trois atomes d'azote.

10 11. Utilisation selon la revendication 9, caractérisée en ce que le complexe a la formule structurale suivante:

abrégée en $[Mn^{IV}_{2}(\mu-O)_{3}(Me-TAON)_{2}](PF_{6})_{2}$

5

40

- 12. Utilisation d'un complexe de coordination à base de manganèse comme précurseur de blanchiment qui, en présence d'un composé peroxydé, est transformé en un complexe de coordination à base de Mn^(IV), avec les centres Mn^(IV) couplés anti-ferromagnétiquement utilisés et définis selon l'une quelconque des revendications 1-11.
 - 13. Procédé de blanchiment ou de nettoyage employant un agent de blanchiment comprenant un composé peroxydé, caractérisé en ce que ledit agent de blanchiment est activé par une quantité catalytique d'un complexe de coordination à base de manganèse utilisé et défini selon l'une quelconque des revendications précédentes 1-12.
 - 14. Procédé selon la revendication 13, caractérisé en ce que ledit complexe de coordination ou précurseur est utilisé à une teneur de 0,001 ppm à 100 ppm dans la solution de blanchiment.
- 45 15. Procédé selon la revendication 14, caractérisé en ce que ladite teneur de manganèse est de 0.01 à 20 ppm.
 - 16. Procédé selon l'une quelconque des revendications 13, 14 ou 15, caractérisé en ce que ledit agent de blanchiment est choisi dans le groupe consistant en peroxyde d'hydrogène, composés libérant du peroxyde d'hydrogène, systèmes générant du peroxyde d'hydrogène, peroxyacides et leurs sels, et des précurseurs de blanchiment par peroxyacide, et leurs mélanges.
 - Procédé selon la revendication 16, caractérisé en ce que le complexe de coordination est [Mn^{IV}₂(μ-O)₃(Me-TACN)₂](PF₆)₂.
- 55 18. Procédé selon la revendication 16, caractérisé en ce que le complexe de coordination est [Mn^{IV}₂(μ-O)₃(Me/Me-TACN)₂](PF₆)₂.
 - 19. Composition de blanchiment comprenant un composé peroxydé et un complexe de coordsination à base de man-

ganèse utilisé et défini selon l'une quelconque des revendications précédentes 1-12.

5

20

30

35

40

45

50

55

- 20. Composition selon la revendication 19, caractérisée en ce qu'elle comprend ledit composé peroxydé à une teneur de 2 à 30% en poids et ledit complexe à une teneur correspondant à une teneur en manganèse de 0.0005% à 1,0% en poids.
- Composition selon la revendication 20, caractérisée en ce que ladite teneur en manganèse est de 0,001% à 0,5% en poids.
- 22. Composition selon l'une des revendications 19-20, caractérisée en ce que ledit composé peroxydé est choisi dans le groupe consistant en peroxyde d'hydrogène, composés libérant du peroxyde d'hydrogène, systèmes générant du peroxyde d'hydrogène, peroxyacides et leurs sels, et des précurseurs de blanchiment par peroxyacide, et leurs mélanges.
- 23. Composition selon la revendication 22, caractérisée en ce qu'elle comprend en outre une matière tensio-active en une quantité allant jusqu'à 50% en poids.
 - 24. Composition selon la revendication 23, caractérisée en ce qu'elle comprend en outre un adjuvant de détergence en une quantité de 5 à 80% en poids.
 - 25. Composition selon l'une quelconque des revendications 22, 23 ou 24, caractérisée en ce qu'elle comprend en outre une enzyme choisie dans le groupe consistant en des protéases, des cellulases, des lipases, des amylases, des oxydases et des mélanges de celles-ci.
- 25 26. Composition selon l'une quelconque des revendications précédentes 19-25, caractérisée en ce que le complexe est [Mn^{IV}₂(μ-O)₃(Me-TAON)₂](PF₆)₂.
 - 27. Composition selon l'une quelconque des revendications précédentes 19-25, caractérisée en ce que le complexe est [Mn^{IV}₂(μ-O)₃(Me/Me-TACN)₂](PF₆)₂.