Session 7 Quantitative Analysis of Financial Markets Volatility: GARCH

Christopher Ting

http://www.mysmu.edu/faculty/christophert/

a: 6828 0364 **G:** LKCSB 5036

November 14 2018

Christopher Ting QF 603 November 14, 2018 1/51

Lesson Plan

- 1 Introduction
- 2 VaR
- 3 Estimating Volatility
- 4 EWMA
- 5 **GARCH(1,1)**
- 6 MLE
- 7 Volatility Term Structures
- 8 Takeaways

Christopher Ting QF 603 November 14, 2018 2/51

Introduction

- Applications that motivate this module:
 - VaR
 - Valuation of derivatives
- riangledown Three important models:
 - EWMA: Exponentially Weighted Moving Average
 - ARCH: Autoregressive Conditional Heteroscedasticity
 - GARCH: Generalized Autoregressive Conditional Heteroscedasticity

Christopher Ting QF 603 November 14, 2018

Learning Outcomes of QA14

Chapter 10.

John C. Hull, Risk Management and Financial Institutions, 4th Edition (Hoboken, NJ: John Wiley & Sons, 2015).

 $reve{oxtime}$ Describe the power law.

implied volatility.

Explain how various weighting schemes can be used in estimating volatility.

Apply the exponentially weighted moving average (EWMA) model to estimate volatility.

Describe the generalized autoregressive conditional heteroskedasticity (GARCH(p,q)) model for estimating volatility and its properties.

Learning Outcomes of QA14 (cont'd)

- Explain mean reversion and how it is captured in the GARCH(1,1) model.
- Explain the weights in the EWMA and GARCH(1,1) models.
- imes Explain how GARCH models perform in volatility forecasting.
- Describe the volatility term structure and the impact of volatility changes.

Christopher Ting QF 603 November 14, 2018 **5/51**

Lesson Plan

- Define value a risk (VaR).
- Describe the essential idea behind maximum likelihood estimation (MLE).
- Gain a deeper insights into GARCH processes.
- Apply GARCH processes to forecast VaR.

Risks and Risk Management

Major Risks

- § Market risks
- § Credit risks
- § Operational risks
- § Liquidity risks
- § Legal risks
- § Political risks
- § Model risks

✓ Industry Practices

- § Regulatory capital adequacy
- § Bank's internal risk control
- § Corporations' investments
- § Firm's hedging of transactions
- § Exchanges' margining rules and practices

Introduction: Risk Measure

- Despite some serious shortcomings, Value-at-Risk, or VaR, is the most popular portfolio risk measure used by risk management practitioners.
- VaR is a number constructed on day t such that the portfolio losses on day t+1 will only be larger than the VaR forecast with probability p, e.g. 5%.
- The main objective of this lesson is to see how GARCH model is applied in forecasting VaR.
 - ✓ Question: What risk does VaR address?

Christopher Ting QF 603 November 14, 2018

Value at Risk

- □ VaR was popularized by J.P. Morgan in the 1990s. The executives at J.P. Morgan wanted their risk managers to generate one number at the end of each day to summarize the risk of the firm's entire portfolio.
- ☐ What they came up with was VaR.
- If the 95% VaR of a portfolio is \$400, then we expect the portfolio will lose \$400 or less in 95% of the scenarios, and lose more than \$400 in 5% of the scenarios.
- We can define VaR for any confidence level, but 95% has become an extremely popular choice.
- □ VaR is a one-tailed confidence interval.

Christopher Ting QF 603 November 14, 2018

Definition of Value at Risk and Example

Definition of VaR

VaR is the maximum loss over a specified horizon at a given confidence level (e.g. 95%).

 \square Example: Suppose log return $\widetilde{r} \stackrel{d}{\sim} N(\mu, \sigma^2)$. Suppose daily volatility $\sigma = 2\%$ and daily mean $\mu = 0$.

Example

- \Box Suppose the portfolio value is $P_0 = \$100$ million.
- The daily log return is

$$\widetilde{r} = \ln\left(\frac{\widetilde{P}_1}{P_0}\right)$$

 \Box Since $\widetilde{r} = -2.33 \times 0.02 = -0.0466$, we have

$$-0.0466 = \ln\left(\frac{\widetilde{P}_1}{\$100\text{m}}\right)$$
 or $\widetilde{P}_1 = \$100\text{m} \times e^{-0.0466}$

The VaR is, at the 99% confidence level

$$100m \times (1 - e^{-0.0466}) = 4.553m.$$

11/51

Christopher Ting QF 603 November 14, 2018

Introduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

Value at Risk Time Horizon

- The time horizon needs to be specified for VaR.
- On trading desks, with liquid portfolios, it is common to measure the one-day 95% VaR.
- in other settings, in which less liquid assets may be involved, time frames of up to one year are not uncommon.

Introduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

VaR Exceedance

- If an actual loss equals or exceeds the predicted VaR, that event is known as an **exceedance**.
- in For a one-day 95% VaR, the probability of an exceedance event on any given day is 5%.
- Let the random variable *L* represent the loss to your portfolio. *L* is simply the negative of the return to your portfolio. If the return of your portfolio is -\$600, then the loss, *L*, is +\$600.
- $\ \, \Box$ For a given confidence level, α , then, we can define value at risk as

$$\mathbb{P}\left(\mathbf{L} \ge \mathrm{VaR}_{\alpha}\right) = 1 - \alpha.$$

If a risk manager says that the one-day 95% VaR of a portfolio is \$400, it means that there is a 5% probability that the portfolio will lose \$400 or more on any given day (that *L* will be more than \$400).

Christopher Ting QF 603 November 14, 2018

Remarks

 \Box We can also define VaR directly in terms of returns. If we multiply both sides of the inequality in by -1, and replace -L with R, we come up with

$$\mathbb{P}\left(\mathbf{R} \le -\mathrm{VaR}_{\alpha}\right) = 1 - \alpha.$$

- A loss of \$400 or more and a return of -\$400 or less are exactly the same.
- Notice that the definition does not invoke the assumption that the distribution is normal.

Absolute Versus Relative VaR

- \Box Absolute VaR is measured with respect to the current marked-to-market portfolio value regardless of μ
- \Box Relative VaR is computed taking into account the loss also of the expected profit μP_0 .
- $\ \ \, \Box$ Suppose $\mu=1\%.$ At the 99% confidence level, the critical value is -2.33.

$$\mathbb{P}(\widetilde{r} < \mu - 2.33\sigma) = \mathbb{P}(\widetilde{r} < 0.01 - 2.33 \times 0.02) = \mathbb{P}(\widetilde{r} < -0.0366) = 1\%$$

The loss is

$$P_0(1 - e^r) = \$100 \text{m} \times (1 - e^{-0.0366}) = \$3.594 \text{m}$$

15/51

Christopher Ting QF 603 November 14, 2018

Illustration

Christopher Ting OF 603

Definition of Volatility and Variance Rate

- The square of the volatility, σ_n^2 , on day n is the variance rate.
- \bigcirc Denote S_i as the value of a variable at the end of day i.
 - Define the log return as $u_i := \ln \frac{S_i}{S_{i-1}}$.
 - An unbiased estimate of the mean of u_i , using the most recent m observations with respect to "today" n is

$$\overline{u} = \frac{1}{m} \sum_{i=1}^{m} u_{n-i}.$$

■ An unbiased estimate of the variance rate per day, σ_n^2 , is

$$\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \overline{u})^2.$$

17/51

Christopher Ting 0F 603 November 14, 2018

Introduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

Really, what is volatility?

- Intuitively, volatility is a measure of a financial asset's readiness to move from one price to another price, in such a way that leaves the market participants unsure about the next quantum of price change.
- The more ready the asset's price is to move, the more uncertain its price in the future will be. The resulting price uncertainty makes the asset risky to the investors, as the price may move in the direction contrary to what they expect, and they become exposed to the consequent losses.
- Just like there are many different definitions of returns, volatility is defined differently for different purposes and from different sources.

Christopher Ting QF 603 November 14, 2018

Alternative Estimation

 igoplus For monitoring daily volatility, we define u_i as a percentage change in the market variable instead:

$$u_i = \frac{S_i - S_{i-1}}{S_{i-1}}.$$

 $\ \ \$ Assume \overline{u} to be zero.

Replace m-1 by m to obtain a maximum likelihood estimate:

$$\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2.$$

Christopher Tina OF 603 November 14, 2018 19/51

Implied Volatilities

Definition

The implied volatility of an option is the volatility that gives the market price of the option when it is substituted into the pricing model.

Christopher Ting QF 603 November 14, 2018 20/51

Power Law

An alternative to assuming normal distributions.

For many variables that are encountered in practice, it is approximately true that the value of the variable, v, has the property that when x is large

$$\mathbb{P}\left(\mathbf{v} > x\right) = Kx^{-\alpha},$$

where K and α are constants.

Weighting Scheme

To estimate the *current* level of volatility, give more weight α_i to recent data.

$$\sigma_n^2 = \sum_{i=1}^m \alpha_i u_{n-i}^2. \tag{1}$$

- **positive**: $\alpha_i > 0$.
- lesser weight for older observations: $\alpha_i < \alpha_j$ when i > j.
- summed to unity: $\sum_{i=1}^{m} \alpha_i = 1$.

Christopher Ting QF 603 November 14, 2018 **22/51**

Model for Estimating the Variance Rate: ARCH

$$\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2.$$

The weights must sum to one.

$$\gamma + \sum_{i=1}^{m} \alpha_i = 1.$$

$$\sigma_n^2 = \omega + \sum_{i=1}^m \alpha_i u_{n-i}^2.$$

Christopher Ting QF 603 November 14, 2018 23/51

ntroduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

Model for Estimating the Variance Rate: ARCH

 $\[\]$ The EMWA model is a special case of (1) where the weights α_i decrease exponentially as we move back through time.

$$\[\]$$
 Specifically, with $0 < \lambda < 1$,

$$\alpha_{i+1} = \lambda \alpha_i,$$

the EMWA model is

$$\sigma_n^2 = \lambda \sigma_{n-1}^2 + (1 - \lambda)u_{n-1}^2.$$

- Only the current estimate of the variance rate and the most recent observation on the value of the market variable are needed.
- ${\color{red}\mathbb{A}}$ The RiskMetrics database uses the EWMA model with $\lambda=0.94$ for updating daily volatility estimates.

Christopher Ting QF 603 November 14, 2018

Exponential Decline

$$\sigma_n^2 = \lambda \sigma_n^2 + (1 - \lambda)u_{n-1}^2$$

$$= \lambda \left(\lambda \sigma_{n-2}^2 + (1 - \lambda)u_{n-2}^2\right) + (1 - \lambda)u_{n-1}^2$$

$$= (1 - \lambda)u_{n-1}^2 + \lambda (1 - \lambda)u_{n-2}^2 + \lambda^2 \sigma_{n-2}^2$$

A Substituting for σ_{n-2}^2 , then for σ_{n-3}^2 , then for σ_{n-4}^2 , and so on:

$$\sigma_n^2 = (1 - \lambda)u_{n-1}^2 + \lambda(1 - \lambda)u_{n-2}^2 + \lambda^2(1 - \lambda)u_{n-3}^2 + \cdots$$
$$\cdots + \lambda^{m-1}(1 - \lambda)u_{n-m}^2 + \lambda^m \sigma_{n-m}^2.$$

25/51

 ${\color{red}\mathbb{A}}$ Weights start at $1-\lambda$ and decline at rate λ .

Christopher Ting QF 603 November 14, 2018

Attractions of EWMA

- ${\Bbb A}$ Relatively little data needs to be stored
- We need only remember the current estimate of the variance rate and the most recent observation on the market variable
- Tracks volatility changes

ARCH

$$\mathbb{V}(u_t) = \alpha_0 + \alpha_1 u_{t-1}^2$$

 $\ \ \,$ More generally, with $e_t \stackrel{d}{\sim} N(0,1)$,

$$u_t = e_t \sqrt{\alpha_0 + \alpha_1 u_{t-1}^2}$$

 \bigcirc The process u_t is unconditionally not a normal distribution. However, conditional on u_{t-1} , u_t is normally distributed.

Christopher Ting QF 603 November 14, 2018

ARCH Simulation Code

```
from future import division, print function
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import jargue bera
alpha0, alpha1, n = 0.1, 0.4, 20000
np.random.seed(137)
e = np.random.normal(size=n)
plt.plot(e)
plt.show()
u = np.zeros(n)
u[0] = e[0]
for t in range(1,n):
   u[t] = e[t]*np.sqrt(alpha0 + alpha1 * u[t-1]**2)
plt.plot(u)
plt.show()
JBstat e, JBstat u = jarque bera(e), jarque bera(u)
print(JBstat e)
print (JBstat u)
he, hu = plt.hist(e, 200, alpha=0.5), plt.hist(u, 200, facecolor='g', alpha=0.5)
plt.savefig('ARCH Simulate.png')
plt.show()
```

ntroduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

Histogram of Simulated ARCH(1) Process

- The Jarque-Bera test statistic of 1.74 does not reject the null hypothesis of normal distribution for the noise e_t in blue.
- But at 7,732, the Jarque-Bera test strongly rejects the null hypothesis for the ARCH(1) process u_t in green.

Christopher Ting QF 603 November 14, 2018

GARCH (1,1)

- Bollerslev in 1986 proposed the GARCH(1, 1) model.
- In GARCH(1,1), σ_n^2 is calculated from a long-run average variance rate, V_L , as well as from σ_{n-1}^2 and u_{n-1}^2 .

$$\sigma_n^2 = \gamma V_L + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2.$$

Since the weights must sum to unity, it follows that

$$\gamma + \alpha + \beta = 1.$$

30/51

The EWMA model is a particular case of GARCH(1,1) where $\gamma=0,\,\alpha=1-\lambda$ and $\beta=\lambda.$

Christopher Ting QF 603 November 14, 2018

Parameters of GARCH (1,1)

 \triangle Let $\omega := \gamma V_L$. The GARCH (1,1) is rewritten as

$$\sigma_n^2 = \omega + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2.$$

- $\ \ \ \ \ \ \ \ \ \ \$ Once the parameters ω , α , and β have been estimated, we can calculate γ as $1-\alpha-\beta$.
- riangle The long-term variance V_L can then be calculated as

$$V_L = \frac{\omega}{\gamma} = \frac{\omega}{1 - \alpha - \beta}.$$

For a stable GARCH(1,1) process, we require $\alpha+\beta<1$, and obviously $\omega>0$.

Christopher Ting QF 603 November 14, 2018 **31/51**

Unconditional Stationarity

While GARCH processes are conditionally nonstationary with changing variances, they are still unconditionally stationary processes.

$$\begin{split} \sigma_n^2 &= \omega + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2 \\ &= \omega + \alpha u_{n-1}^2 + \beta \left(\omega + \alpha u_{n-2}^2 + \beta \sigma_{n-2}^2 \right) \\ &= \omega \left(1 + \beta \right) + \alpha \left(u_{n-2}^2 + \beta u_{n-2} \right) + \beta^2 \left(\omega + \alpha u_{n-3}^2 + \beta \sigma_{n-3}^2 \right) \\ &= \omega \left(1 + \beta + \beta^2 + \cdots \right) + \alpha \left(u_{n-1}^2 + \beta u_{n-2}^2 + \beta^2 u_{n-3}^2 + \cdots \right) \end{split}$$

Taking unconditional expectation on both sides, so that $\sigma^2 := \mathbb{E}(u_n^2) = \mathbb{E}(u_{n-1}^2) = \mathbb{E}(u_{n-2}^2) = \cdots$.

Christopher Ting QF 603 November 14, 2018

Unconditional Stationarity (cont'd)

Then

$$\sigma^{2} = \frac{\omega}{1 - \beta} + \alpha(\sigma^{2} + \beta\sigma^{2} + \beta^{2}\sigma^{2} + \cdots)$$
$$= \frac{\omega}{1 - \beta} + \frac{\alpha\sigma^{2}}{1 - \beta}$$

 \bigcirc The unconditional variance σ^2 is constant!

$$\sigma^2 = \frac{\omega}{1 - \alpha - \beta} = V_L,$$

provided $\omega > 0$, and $|\alpha + \beta| < 1$.

 Christopher Ting
 QF 603
 November 14, 2018
 33/51

Simulated GARCH Process

$$\sigma_n^2 = 0.50 + 0.25u_{n-1}^2 + 0.70\sigma_{n-1}^2$$

Christopher Ting QF 603 t November 14, 2018

Example

- $\text{Suppose } \sigma_n^2 = 0.000002 + 0.13 u_{n-1}^2 + 0.86 \sigma_{n-1}^2.$
- The long-run variance rate is 0.0002 so that the long-run volatility per day is 1.41%.
- Suppose that the current estimate of the volatility is 1.6% per day and the most recent percentage change in the market variable is 1%.
- The new variance rate is

$$0.000002 + 0.13 \times 0.01^2 + 0.86 \times 0.016^2$$
.

35/51

Consequently, the new volatility is 1.53% per day.

Christopher Ting QF 603 November 14, 2018

Mean Reversion

- The GARCH (1,1) model recognizes that over time the variance tends to get pulled back to a long-run average level of V_L .
- \bigcirc Stochastic differential equation for the variance V:

$$dV = a(V_L - V)dt + \xi V dz,$$

where time is measured in days, $a = 1 - \alpha - \beta$, and $\xi = \alpha \sqrt{2}$.

Mean reversion: The variance has a drift that pulls it back to V_L at rate a. When $V > V_L$, the variance has a negative drift; when $V < V_L$, it has a positive drift.

Christopher Ting QF 603 November 14, 2018 **36/51**

Introduction VaR Estimating Volatility EWMA GARCH(1,1) MLE Volatility Term Structures Takeaways

Estimating a Constant Variance

- Maximum likelihood method involves choosing values for the parameters that maximize the chance (or likelihood) of observations occurring.
- \square Example 1: We observe that a certain event happens one time in 10 trials. What is our estimate of the proportion of the time, p, that it happens?
- The probability of the event happening on one particular trial and not on the others is $p(1-p)^9$.
- We maximize this probability to obtain a maximum likelihood estimate. Result: p=0.1 (as expected)

Christopher Ting QF 603 November 14, 2018

37/51

Example 2

$$\prod_{i=1}^{m} \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{u_i^2}{2v}\right)$$

 $\ddot{\mathbb{I}}$ Taking logarithm of the function is equivalent to maximizing

$$\sum_{i=1}^{m} \left(-\ln(v) - \frac{u_i^2}{v} \right)$$

Result:

$$v = \frac{1}{m} \sum_{i=1}^{m} u_i^2.$$

38/51

Christopher Ting QF 603 November 14, 2018

Application to GARCH

We choose parameters that maximize

$$\prod_{i=1}^{m} \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{u_i^2}{2v}\right)$$

or

$$\sum_{i=1}^{m} \left(-\ln(v_i) - \frac{u_i^2}{v_i} \right)$$

S&P 500 Excel Application

- \square Start with trial values of ω , α , and β .
- Update variances.
- Calculate the likelihood as an objective function:

$$\sum_{i=1}^{m} \left(-\ln(v_i) - \frac{u_i^2}{v_i} \right)$$

- Use solver to search for values of ω , α , and β that maximize the likelihood.
- For efficient operation of Solver, set up spreadsheet so that three numbers that are the same order of magnitude are being searched for.

Christopher Ting QF 603 November 14, 2018

40/51

How Good Is the Model?

- If a GARCH model is working well, it should remove the autocorrelation in u_i^2/σ_i^2 .
- We can test whether it has done so by considering the autocorrelation structure for the variables u_i^2 If these show very little autocorrelation, our model for σ_i^2 has succeeded in explaining the autocorrelations in u_i^2 .
- $\[\]$ Ljung-Box statistic for the u_i^2/σ_i^2 time series.
 - Chi-square

Variance Targeting

- One way of implementing GARCH(1,1) that increases stability is by using variance targeting.
- We set the long-run average volatility equal to the sample variance.
- \(\text{Only two other parameters then have to be estimated.} \)

Christopher Ting QF 603 November 14, 2018 **42/51**

Forecasting Future Volatility

The variance rate estimated at the end of day n-1 for day n, when GARCH(1,1) is used, is

$$\sigma_n^2 = (1 - \alpha - \beta)V_L + \alpha u_{n-1}^2 + \beta \sigma_{n-1}^2.$$

If follows that

$$\sigma_n^2 - V_L = \alpha (u_{n-1}^2 - V_L) + \beta (\sigma_{n-1}^2 - V_L)$$

 \square On day n+t in the future and with σ_n^2 ,

$$\sigma_{n+t}^2 - V_L = \alpha (u_{n+t-1}^2 - V_L) + \beta (\sigma_{n+t-1}^2 - V_L)$$

The expected value of u_{n+t-1}^2 is σ_{n+t-1}^2 . Hence

$$\mathbb{E}\left(\sigma_{n+t}^2 - V_L\right) = (\alpha + \beta) \,\mathbb{E}\left(\sigma_{n+t-1}^2 - V_L\right).$$

43/51

Christopher Ting QF 603 November 14, 2018

Forecasting Future Volatility (cont'd)

$$\mathbb{E}\left(\sigma_{n+t}^2 - V_L\right) = (\alpha + \beta)^t \left(\sigma_n^2 - V_L\right),\,$$

which is

$$\mathbb{E}\left(\sigma_{n+t}^2\right) = V_L + (\alpha + \beta)^t (\sigma_n^2 - V_L).$$

This equation allows you to forecast the volatility on day n + t using the information available at the end of day n.

TReal-World Application

The maintenance margin x is set as, given today's settlement price of F_n .

$$x \ge 1.645 \mathbb{E} \left(\sigma_{n+1}^2 \right) F_n$$

 Christopher Ting
 QF 603
 November 14, 2018
 44/51

Maximum Likelihood Estimators

With $e_t \stackrel{d}{\sim} N(0,1)$, consider a model $Y_t = f(X; \theta) + e_t$. Then $Y_t - f(X; \theta)$ is distributed as i.i.d. $N(0, \sigma_e^2)$. Its probability density function is

$$\frac{1}{\sqrt{2\pi\sigma_e^2}} \exp\left(-\frac{1}{2} \left(\frac{Y_t - f(\boldsymbol{X};\boldsymbol{\theta})}{\sigma_e}\right)^2\right)$$

Given a sample size N of $\{Y_1, Y_2, \dots, Y_N, \text{ and } \boldsymbol{X}\}$, the likelihood function is

$$L = \left(\frac{1}{\sqrt{2\pi\sigma_e^2}}\right)^N \exp\left(-\frac{1}{2}\sum_{t=1}^N \left(\frac{Y_t - f(\boldsymbol{X};\boldsymbol{\theta})}{\sigma_e}\right)^2\right)$$

Suppose we find estimate values θ and σ_e that maximizes this log-likelihood function $\log L$. Then the estimates are called Maximum Likelihood estimates.

Christopher Ting QF 603 November 14, 2018

45/51

Cramer-Rao Inequality

 $\footnote{\mathbb{I}}$ The parameters to be estimated and data are assembled into vectors:

$$oldsymbol{arLambda} := egin{pmatrix} oldsymbol{ heta} \ \sigma_e \end{pmatrix} \quad ext{and} \quad oldsymbol{Z} := ig(oldsymbol{Y} \ oldsymbol{X} ig)$$

Probabilities add up to 1:

$$\int_{-\infty}^{\infty} L(\boldsymbol{Z}; \boldsymbol{\Lambda}) d\boldsymbol{Z} = 1; \qquad \int_{-\infty}^{\infty} \frac{\partial L(\boldsymbol{Z}; \boldsymbol{\Lambda})}{\partial \boldsymbol{\Lambda}} d\boldsymbol{Z} = 0$$

Tisher's information matrix

$$R(\Lambda) := -\mathbb{E}\left(\frac{\partial^2 \log L}{\partial \Lambda \partial \Lambda^{\top}}\right)$$

Let $h(\mathbf{Z})$ be an unbiased estimator of Λ . Then

$$\mathbb{C}(h(\boldsymbol{Z})) > \boldsymbol{R}^{-1}$$

46/51

Question: What's the interpretation of Cramer-Rao Inequality?

Christopher Tina OF 603 November 14, 2018

Volatility Term Structures

Suppose it is day n. Define

$$V(t) := \mathbb{E}\left(\sigma_{n+t}^2\right), \quad \text{and} \quad a := \ln \frac{1}{\alpha + \beta}.$$

The predictive equation becomes

$$V(t) = V_L + e^{-at} (V(0) - V_L).$$

Here, V(t) is an estimate of the instantaneous variance rate in t days.

Christopher Tina OF 603 November 14, 2018 47/51

Volatility Term Structures (cont'd)

The average variance rate per day between today and time T is aiven by

$$\frac{1}{T} \int_0^T V(t) dt = V_L + \frac{1 - e^{-aT}}{aT} (V(0) - V_L).$$

Then the volatility per annum for an option lasting T days is

$$\sigma(T) = \sqrt{252 \left(V_L + \frac{1 - e^{-aT}}{aT}(V(0) - V_L)\right)}.$$

So from GARCH(1,1), we have a volatility term structure, which is the relationship between the forward-looking volatilities and the maturities.

48/51

Christopher Tina OF 603 November 14, 2018

S&P Volatility Term Structure **Predicted from GARCH(1,1)**

Note that a is positive since $\alpha + \beta < 1$.

 $\omega = 0.0000013465$, $\alpha = 0.083394$, and $\beta = 0.910116$.

$$a = \ln\left(\frac{1}{0.083394 + 0.910116}\right) = 0.006511$$

Option Life (days)	10	30	50		
Volatility (% per annum)	27.4	27.1	26.9	26.4	24.3

Christopher Ting OF 603 November 14, 2018 49/51

Impact of Volatility Changes

We note that $V(0) = \sigma(0)^2/252$.

When instantaneous volatility $\sigma(0)$ changes by $\Delta \sigma(0)$, volatility for T-day maturity changes by approximately

$$\Delta \sigma(T) \approx \frac{1 - e^{-aT}}{aT} \frac{\sigma(0)}{\sigma(T)} \Delta \sigma(0).$$

Impact of 1% change in the instantaneous volatility predicted from **GARCH (1,1)**

Option Life (days)	10	30	50	100	500
Volatility increase (%)	0.97	0.92	0.87	0.77	0.33

50/51

Christopher Tina OF 603 November 14, 2018

Summary

- In the EWMA and the GARCH(1,1) models, the weights assigned to observations decrease exponentially as the observations become older.
- The GARCH(1,1) model differs from the EWMA model in that some weight is also assigned to the long-run average variance rate. It has a structure that enables forecasts of the future level of variance rate to be produced relatively easily.
- Maximum likelihood methods are usually used to estimate parameters from historical data in the EWMA, GARCH(1,1), and similar models.
- \Re Once its parameters have been determined, a GARCH(1,1) model can be judged by how well it removes autocorrelation from the u_i^2 .

51/51

Christopher Ting QF 603 November 14, 2018