Hyperparameter tuning, Batch Normalization, Programming Frameworks Quiz, 10 questions

1 point
1. If searching among a large number of hyperparameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and not rely on chance. True or False?
True
False
1 point 2. Every hyperparameter, if set poorly, can have a huge negative impact on training, and so all hyperparameters are about equally important to tune well. True or False?
True
False
1 point
3. During hyperparameter search, whether you try to babysit one model ("Panda" strategy) or train a lot of models in parallel ("Caviar") is largely determined by:
Whether you use batch or mini-batch optimization
The presence of local minima (and saddle points) in your neural network
The amount of computational power you can access
The number of hyperparameters you have to tune
1 point 4.

https://www.coursera.org/learn/deep-neural-network/exam/CzYDo/hyperparameter-tuning-batch-normalization-programming-frameworks

is the recommended way to sample a value for beta?

If you think β (hyperparameter for momentum) is between on 0.9 and 0.99, which of the following

	1 r = np.random.rand()
	eter tuning, Batch Normalization, Programming Frameworl
10 questions	
	1 r = np.random.rand()
	2 beta = $1-10**(-r-1)$
	1 r = np.random.rand()
	2 beta = 1-10**(- r + 1)
	1 r = np.random.rand()
	2 beta = r*0.9 + 0.09
1	
point	
5.	
	of the project, and try to find very good hyperparameters so that you don't ever have to uning them again. True or false?
	True
	False
	raise
1	
point	
_	
6.	
	normalization as presented in the videos, if you apply it on the \emph{l} th layer of your neural
network	, what are you normalizing?
	$W^[l]$
_	
	$z^[l]$
	۵·۰۰]
	[n
\bigcirc	$a^[l]$
	$b^[l]$
	· · · · · · · · · · · · · · · · · · ·
1	
1 point	

Hyperparameter tuning, Batch $\overline{N}_{\text{OFM}}^{z^{(i)}}$ all zation, Programming Frameworks Quiz, 10 questions

\bigcirc	In case μ is too small
\bigcirc	To speed up convergence
\bigcirc	To have a more accurate normalization
	To avoid division by zero
1 point	
8. Which (of the following statements about γ and eta in Batch Norm are true?
	They can be learned using Adam, Gradient descent with momentum, or RMSprop, not just with gradient descent.
	The optimal values are $\gamma=\sqrt{\sigma^2+arepsilon}$, and $eta=\mu$.
	They set the mean and variance of the linear variable $z^{[l]}$ of a given layer.
	There is one global value of $\gamma\in\Re$ and one global value of $\beta\in\Re$ for each layer, and applies to all the hidden units in that layer.
	eta and γ are hyperparameters of the algorithm, which we tune via random sampling.
1	
point 9.	
After tr	aining a neural network with Batch Norm, at test time, to evaluate the neural network on a ample you should:
	Perform the needed normalizations, use μ and σ^2 estimated using an exponentially weighted average across mini-batches seen during training.
	Use the most recent mini-batch's value of μ and σ^2 to perform the needed normalizations.
	Skip the step where you normalize using μ and σ^2 since a single test example cannot be normalized.
	If you implemented Batch Norm on mini-batches of (say) 256 examples, then to evaluate on one test example, duplicate that example 256 times so that you're working with a mini-batch the same size as during training.