LMO3D

XD-LAB-IMG-010

Lab10: 图像处理算法模块实

验 2: 伽马矫正

Joseph Xu

2018-7-2

修改记录

版本号.	作者	描述	修改日期
1.0	Joseph Xu	初稿	2018-4-1

Lab10:图像处理算法模块实验2

审核记录

姓名	职务	签字	日期

	标题	文档编号	版本	页
vinence	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	1 of 31
XINGDENG	作者	修改目期	,	·/^
	Joseph Xu	2018/7/2	/	公开

目录

修改记录	1
审核记录	1
1. 实验简介	5
1. 1 概述	
1.2 实验目标	
1.3 实验条件	
1.4 实验原理	6
2. PARTA: 算法仿真实验流程	
2.1 操作步骤	
3. PARTB: 算法模块硬件部署流程	
3.1 操作步骤	13
4. 实验结果	31

	标题	文档编号	版本	页
vinence	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	2 of 31
XINGDENG	作者	修改日期		<i>(</i> /
	Joseph Xu	2018/7/2	/2	公廾

F海里机	T智能科技有	日八日
口冶车以	1谷形件仅4	コルムンハロー

Lab10:图像处理算法模块实验 2	海星灯智能科技有限公司	
5	算法仿真流程图	图 1-1
6	实验连接示意图	图 1-2
13	Vivado 下创建新工程	图 3-1
13	创建新工程向导窗口	图 3-2
28	硬件连接对应位置	图 3-3
20	守际 福 供 连接	图 2₋/1

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	3 of 31
	作者	修改日期	<i>N</i>	
	Joseph Xu	2018/7/2	/2	公廾

表目录

Lab10:图像处理算法模块实验 2

未找到图形项目表。

	标题	文档编号	版本	页
vincecoc	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	4 of 31
XINGDENG	作者	修改日期		/\
	Joseph Xu	2018/7/2	公开	

1. 实验简介

该实验通过 MATLAB 搭建一个伽马矫正算法模型,并通过 MATLAB 的 HDL Coder 将模型自动生成为硬件模块,并在 SWORD4.0 上和视频接口集成,实现一个快速的伽马矫正算法模块设计。

Lab10: 图像处理算法模块实验 2

5 of 31

公开

- > 对于初学者,整个实验预计耗时 1.5 小时。
- > 对于熟练者,整个实验预计耗时40分钟。

1.1 概述

图 1-1 算法仿真流程图

1.2 实验目标

本实验的目标为 SWORD4.0 能够正常地在 HDMI 显示器上输出边缘检测的视频图像。

1.3 实验条件

XİNGDENG

			视频机顶盒 ^{文档编号} 版本
吹什			机 HDMI 输出/带 HDMI 输出的
硬件	HDMI 信号源	1	如笔记本 HDMI 输出/台式计算
	SWORD4.0	1	
类别	名称	数量	说明

修改日期

2018/7/2

Joseph Xu
Copyright © 2018 XingDeng, Inc. All rights reserved.

	带 HDMI 接口的显示器	1	
	HDMI 视频线	2	
	Vivado Design Suite	1	版本: 2014.4
软件	MALTAB	1	版本: R2016a
	视频接□ IP 库	1	FPGA-Image-Library.zip*

*注:FPGA-Image-Library 为戴天宇开发的一个开源图像处理 IP 库,该 IP 库遵循 LGPL,

详情请见:http://fil.dtysky.moe

1.4 实验原理

该实验的连接方式如下图所示:

说明:本实验中HDMI输入视频的分辨率和输出视频的分辨率相同

图 1-2 实验连接示意图

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	6 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公开

2. PARTA: 算法仿真实验流程

本节将详细描述如何在 MATLAB 的环境下完成实验。请耐心阅读,仔细按照图示和文字说明进行操作。

Lab10: 图像处理算法模块实验 2

2.1 操作步骤

1. 首先启动 MATLAB,本文选用版本为 Windows 版 R2016a。

接着我们要设定工作目录,即我们常用来作为存放自己的 MATLAB 文件和图片素材的目录。本文为 D:\ImageLabs\source\lab13\matlab(如果没有自己创建一个):

Lab10:图像处理算法模块实验 2

然后我们将伽马矫正的模型文件和视频素材放进这个目录:

双击这个 slx 类型的文件,可以看到该模型文件如下图所示:

从上图可以看出,该图像算法模型包括了一个视频输入源,其分辨率为 1280x720,帧速为 0.0fps,经过了 2 路处理,其中上面一路为基于完整帧 (Full-Frame)的行为模型(即软件处理),下面一路为基于像素流(Pixel-Stream)的 HDL 模型(即硬件处理)。

下面我们先来看看 Full-Frame Gamma Compensation,双击该模块,如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	8 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公廾

该模型为 Simulink 内置的图像处理工具包 (Image Processing Toolbox) 所包含的模块(Block),所以我们可以看到该模块的参数设置。包括运算的类型为 Gamma , Gamma 运算的值为 gamma Value。关闭对话框。

接着点击运行按钮,开始算法模拟运行,如下图所示:

在该模型中,已经内置了算法模拟的运行时间,即1650*750*10,即运行10帧 图像的处理计算。运行后,我们能看到如下结果:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	9 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	公力	公廾

接着我们来看看基于像素流的模型,由于该模型后面要转为硬件处理,所以图像数据的处理方式从完整帧转为了像素流,亦即将一幅完整的图像按照一定数量的行像素进行采样-处理。双击 Frame to Pixels 模块,如下图所示:

从该模块能很直观的看到一幅视频图像画面的各种说明,包括了:视频分辨率格式,一行包含的像素值与1帧包含的行数,以及前沿(Front Porch),后延

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	10 of 31
	作者	修改日期	<i>1</i> 1 	
	Joseph Xu	2018/7/2	/	公开

(Back Porch)等时序信息。

注意:这里的设置需要和输入的视频或图像分辨率对应。

接着双击 **Pixel-Stream HDL Model**,可以看到该模型同之前的类似,是 Simulink 内置的视觉 HDL 工具包(Vision HDL Toolbox)所包含的模块(Block),如下图 所示:

Lab10: 图像处理算法模块实验 2

双击 Gamma Corrector 模块查看更多细节,如下图所示:

在参数设置上,可以看到该模块的参数设置和之前的一样。

然后我们返回最上层的模型视图 ,开始验证该算法的硬件处理部分 ,在 MATLAB 的命令行窗口输入如下命令 :

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	11 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	公州	公廾

Copyright © 2018 XingDeng, Inc. All rights reserved.

gammaValue=2.2

上述参数设定了伽马矫正的伽马值,一般来说,该值为2.2。

接着我们来生成 HDL 代码,鼠标右键单击 Pixel-Stream HDL Model,然后选择 HDL Code →Generate HDL for Subsystem,如下图所示:

之后我们就能看到 MATLAB 开始生成 **Pixel-Stream HDL Model** 模型的 HDL 代码,如下图所示:

该 HDL 代码存放于当前工作目录下的 hdl_proj 目录,如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	12 of 31
	作者	修改日期	/\ T*	
	Joseph Xu	2018/7/2	公井	公廾

3. PARTB: 算法模块硬件部署流程

3.1 操作步骤

前面我们通过 MATLAB 生成了 1 个伽马矫正的算法模型的 HDL 代码,现在我们将该代码部署到 SWORD4.0 上。

Lab10: 图像处理算法模块实验 2

1.首先启动 Vivado 2014.4,然后在主界面点击"Create New Project",创建工程,如下图所示:

图 3-1 Vivado 下创建新工程

2. 在弹出的向导窗口点击 Next 继续,如下图所示:

图 3-2 创建新工程向导窗口

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	13 of 31
	作者	修改日期	,	·/^
	Joseph Xu	2018/7/2	/2	公开

Lab10: 图像处理算法模块实验 2 接着在窗口页面输入工程名,工程路径和相关选项,按如下信息填写(注意: 3 .

为保证整个实验的流畅性,请严格按照以下信息填写):

Project name: lab13

Project location: D:/ImageLabs Create project subdirectory: 勾选

提示:如果本地没有 ImageLabs 这个目录,请自行创建一个

填写完成后如下图所示,点击 Next 继续;

接着选择工程类型,选择 RTL Project,并勾选 Do not specify sources at this time,点 击 Next 继续,如下图所示:

在 Default Part 页面按照如下信息选择目标器件:

Product category: General Purpose

Family: Kintex-7 Sub-Family: Kintex-7 Package: ffg676 Speed grade: -2

此时在器件列表中剩下的 3 个型号中选择 xc7k325tffg676-2 这个型号, 然后点击

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	14 of 31
	作者	修改日期	<i>//</i> **	
	Joseph Xu	2018/7/2	/2	公廾

Lab10:图像处理算法模块实验 2

Next 继续,如下图所示:

在 New Project Summary 页面直接点击 Finish 完成新工程的创建,如下图所示:

接着要为新的工程添加一个 IP 库 (repo), 为此我们在 Vivado 主界面的左侧边栏点击 Project Settings, 然后在弹出的设置窗口中选择 IP 项,接着点击 Add Repository,整个过程如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	15 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公廾

在对话框中找到 D:\ImageLabs 目录,首先选择 FPGA-Image-Library-Pubulish,然后按住 Ctrl 键,同时选择 repo,点击 Select,整个过程如下图所示:

添加好 IP 库后,能看到 Vivado 会自动扫描库中的 IP,如果能看到如下图所示的一些 IP,则表示 IP 库添加成功,此时点击 OK 继续:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	16 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公廾

接着在 Vivado 主界面点击 Add Sources 图标,在弹出的窗口中选择 Add or create design sources,点击 Next 继续,过程如下图所示:

在对话框中点击 Add Files 按钮,如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	17 of 31
	作者	修改日期	/\ TT	
	Joseph Xu	2018/7/2	/2	公开

在文件选择窗口,找到 D:\ImagesLabs\source\lab13 文件夹,将如图示的 3 个文件选中,直接点回车完成添加:

然后在文件添加窗口可以看到 3 个文件被添加,然后勾选 Copy sources into project,点击 Finish 完成文件添加,过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	18 of 31
	作者	修改日期	,	
	Joseph Xu	2018/7/2	公	公开

回到 Vivado 主界面,可以看到刚刚添加的是一个顶层设计文件,其中包含了一些 IP 和设计模块,有一些模块前面显示的是带问号的图标,表明该模块或 IP 未添加 到工程中。下面我们就来补全,点击 Vivado 主界面的 IP Catalog,然后在弹出的搜索栏中,输入 dvi2rgb,在搜索结果会显示 DVI to RGB Video Decoder,过程如下图 所示:

双击这个 IP, Vivado 会弹出该 IP 的配置对话框,按照如下图所示进行配置,并点击 OK 完成:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	19 of 31
	作者	修改日期	,	
	Joseph Xu	2018/7/2	/2	公廾

接着会弹出一个 IP 生成文件的窗口,点击 Generate 继续,如下图所示:

在随之弹出的提示窗口,点击 OK,如下图所示:

接着按同样的方法,在 IP Catalog 的搜索栏输入 rgb2dvi , 并双击搜索结果 RGB to DVI Video Encoder , 进行配置 , 过程如下图所示:

在配置窗口中,按如下图示进行配置,点击 OK 完成:

接着会弹出一个 IP 生成文件的窗口,点击 Generate 继续,如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	21 of 31
	作者	修改日期	,	·/^
	Joseph Xu	2018/7/2	/2	公开

在随之弹出的提示窗口,点击 OK,如下图所示:

Lab10:图像处理算法模块实验 2

在 IP Catalog 的搜索栏输入 Graying,并双击搜索结果,过程如下图所示:

在配置对话框中,按如下图示进行配置,点击 OK 完成:

接着会弹出一个 IP 生成文件的窗口,点击 Generate 继续,如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	22 of 31
	作者	修改日期	,	
	Joseph Xu	2018/7/2	2	公廾

至此,我们已经完成了整个设计的大部分文件导入或添加,但还有一个模块是空着的:Pixel_Stream_HDL_Model,如下图所示:

下面我们就将之前在 MATLAB 中仿真的算法模型生成的 HDL 模块代码添加进来,在 Vivado 主界面点击 Add Sources 图标,在弹出的窗口中选择 Add or create design sources,点击 Next 继续,过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	23 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公开

在对话框中点击 Add Files 按钮,如下图所示:

在文件选择窗口,找到 MATLAB 生成的 HDL 代码所在的文件夹,即: D:\ImagesLabs\source\matlab\lab13\hdlsrc\GammaCorrectionHDLExample 将如图示的文件选中,直接点回车完成添加:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	24 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公开

在文件添加窗口,能看到添加的文件,一共有 33 个文件添加进来了,然后勾选 Copy sources into project,之后点击 Finish 完成文件的添加,过程如下图所示:

文件添加后,在 Vivado 主界面的 Source 窗口能看到 Pixel_Stream_HDL_Model 也被添加进来了,如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	25 of 31
	作者	修改日期		
	Joseph Xu	2018/7/2	/2	公廾

```
Sources

Design Sources (4)

HDMI_ProcessPipe (HDMI_ProcessPipe.v) (6)

H-J-U1 - dvi2rgb_0 (dvi2rgb_0.xci)

H-J-U3 - Graying_0 (Graying_0.xci)

H-J-U5 - Pixel_Stream_HDL_Model - rtl (Pixel_Stream_HDL_Model.vhd) (3)

H-J-U2 - rgb2dvi_0 (rgb2dvi_0.xci)

H-J-U2 - rgb2dvi_0 (rgb2dvi_0.xci)

H-J-U1 - Rudate Log (3)

H-J-U2 - Simulation Sources (1)
```

Lab10:图像处理算法模块实验 2

接着我们要添加约束文件,在 Vivado 主界面点击 Add Sources 图标,在弹出的窗口中选择 Add or create constrains,点击 Next 继续,过程如下图所示:

在文件选择窗口,找到约束所在的文件夹,即:

D:\ImagesLabs\source\lab13\

将如图示的文件选中,直接点回车完成添加(要补图!!!):

在文件添加窗口,检查添加的文件名和文件路径,无误后,勾选 Copy constrains files into project,然后点击 Finish 完成添加,过程如下图所示:

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	26 of 31
	作者	修改日期		<i>(</i> /
	Joseph Xu	2018/7/2	/	公廾

至此,伽马矫正算法模块的 HDL 代码已经部署完毕,在 Vivado 主界面点击 Generate Bitstream,并在随后弹出的提示对话框中点击 Yes 继续,整个过程如下图 所示:

大约经过 10 分钟后, Vivado 会弹出 Bitstream Generation Completed 的提示框,表示 bit 文件完成,选择 Open Hardware Manager,然后点击 OK,如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	27 of 31
	作者	修改日期	,	·\
	Joseph Xu	2018/7/2	/2	公廾

接着我们需要对 SWORD4.0 硬件平台进行连接,根据下图示意依次进行如下操作:

- 1) 将电源线接上 SWORD4.0, 注意此时 SWORD4.0 的开关不要打开;
- 2) 将下载器模块插到 SWORD4.0 的 CN7-JTAG 处 , 并将下载器的 USB 端口连 到电脑 ;
- 3) 用一根 HDMI 线将 SWORD4.0 和 HDMI 信号源连接上;
- 4) 用一根 HDMI 线将 SWORD4.0 和 HDMI 显示器连接上;
- 5) 打开电源开关

图 3-3 硬件连接对应位置

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	28 of 31
	作者	修改日期	,	
	Joseph Xu	2018/7/2	/	公廾

连接好后的效果如下图所示:

Lab10:图像处理算法模块实验 2

图 3-4 实际硬件连接

接着在 Hardware Manager 界面下,点击 Open target,在随之弹出的菜单中选择 Auto Connect,整个过程如下图所示:

接着 Hardware Manager 会自动连接下载器并扫描 JTAG , 一切正常的话 , 会显示出扫描到的目标器件:xc7k325t , 鼠标右键单击目标器件 , 在弹出的窗口中选择 Program Device , 整个过程如下图所示:

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	29 of 31
	作者	修改日期	,	
	Joseph Xu	2018/7/2	/	公廾

在弹出的对话框中,保持默认设置,直接点击 Program,如下图所示:

提示:如果 Debug probe file 这一栏有输入,可忽略之。

随着如下图所示进度条显示 100%,即表示目标器件烧写完毕。即可进入实验现象观察阶段。

	标题	文档编号	版本	页
xingdeng	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	30 of 31
	作者	修改日期	,	\ TT
	Joseph Xu	2018/7/2	2	公计

4. 实验结果

此时我们可以将连接 HDMI 输入端口的 HDMI 线在信号源端重新插拔一次,以便让信号源设备重新检测(Detect)一下接收设备,一切正常的话,我们即可在 HDMI 显示器上看到显示画面。

Lab10: 图像处理算法模块实验 2

	标题	文档编号	版本	页
XINGDENG	Lab10: 算法模块实验 2	XD-LAB-IMG-010	1.0	31 of 31
	作者	修改目期	,	
	Joseph Xu	2018/7/2	2	公廾