

第二章数据的机器层次表示

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.1 数值数据的表示

- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.1.1 计算机中的数值数据

• 在计算机中常用后缀字母来表示不同的数制。

十进制数(D)

二进制数(B)

八进制数(Q)

十六进制数(H)

• 在C语言中,八进制常数以前缀0开始,十六进制常数以前缀0x开始。

2.1.2 无符号数和带符号数

• 所谓无符号数,就是整个机器字长的全部二进制位均表示数值位

(没有符号位),相当于数的绝对值。

 $N_1 = 01001$

表示无符号数9

 $N_2 = 11001$

表示无符号数25

• 对于字长为n+1位的无符号数的表示范围是

```
00000000 2<sup>n</sup> 11111111
```

• 例如: 大为84,无符号数的表示范围是 0~255。

- 所谓带符号数,即正、负数。在日常生活中,我们用"+"、"-学号加绝对值来表示数值的大小,用这种形式表示的数值在计算机技术中称为"真值"。
- 所谓机器数,就是将真值的符号数码化,约定二进制数的最高位为符号位,"0"表示正号,"1"表示负号,计算机能够识别和使用的表示形式。

- •对于带符号数,最高位用来表示符号位,而不再表示数值位了前例中的 N_1 、 N_2 在这里变为:
- N₁ = 01001 表示带符号数+9
- $N_2 = 11001$
 - -根据不同的机器数表示不同的值,如:
 - ¤原码时表示带符号数-9,
 - x 补码则表示-7,
 - x 反码则表示-6。

2.1.3 原码

原码表示法

- 最简单的机器数表示法
- 用最高位表示符号位
 - -符号位为"0"表示该数为正
 - -符号位为"1"表示该数为负
- 数值部分与真值相同

2.1.3 原码表示法

• 若真值为纯小数,原码形式为 X_s . X_1X_2 ... X_n (X_s 表示符号位)

例1:
$$X_1=0.0110$$
, $X_2=-0.0110$
$$[X_1]_{\bar{\mathbb{R}}}= 0.0110, \quad [X_2]_{\bar{\mathbb{R}}}= 1.0110$$

• 若真值为纯整数,原码形式为 $X_sX_1X_2...X_n$ (X_s 表示符号位)

例2:
$$X_1=1101$$
, $X_2=-1101$ $[X_1]_{\bar{\mathbb{R}}}=0$, 1101, $[X_2]_{\bar{\mathbb{R}}}=1$, 1101

• 在原码表示中,真值0有两种不同的表示形式:

$$[+0]_{\bar{\mathbb{R}}} = 00000;$$
 $[-0]_{\bar{\mathbb{R}}} = 10000$

2.1.3 原

原码表示法

- 原码表示法优点
 - -直观易懂
 - 机器数和真值相互转换很容易
 - 用原码实现乘、除运算的规则很简单
- 原码表示法缺点
 - -实现加、减运算的规则较复杂

2.1.4 补码表示法

- 使符号位参加运算,从而简化加减法的规则;使减法运算转化成加法运算,从而简化机器的运算器电路。
- 补码表示
 - -符号位表示方法与原码相同
 - -数值部分的表示与数的符号有关
 - x 对于正数,数值部分与真值形式相同。
 - x 对于负数,其数值部分为真值形式按位取反,且在最低位加1。

2.1.4 补码表示法

· 若真值为纯小数,补码形式为X_s.X₁X₂...X_n(X_s表示符号位)

例1:
$$X_1 = 0.0110$$
, $X_2 = -0.0110$
$$[X_1]_{\frac{1}{2}h} = 0.0110$$
, $[X_2]_{\frac{1}{2}h} = 1.1010$

•若真值为纯整数,补码形式为X_sX₁X₂...X_n(X_s表示符号位)

例2:
$$X_1=1101$$
, $X_2=-1101$
$$[X_1]_{\stackrel{.}{\downarrow}h}=0,\ 1101,\quad [X_2]_{\stackrel{.}{\downarrow}h}=1,\ 0011$$

• 在补码表示中,真值0的表示形式是唯一的

$$[+0]_{\frac{1}{2}} = [-0]_{\frac{1}{2}} = 00000$$

2.1.4 补码表示法

- 由真值、原码转换为补码
- 当X为正数时, [X]_补=[X]_原=X。
- 当X为负数时,由[X]_原转换为[X]_补的方法:
 - -①[X]原除掉符号位外的各位取反加"1"。
 - -②自低位向高位,尾数的第一个"1"及其右部的"0"保持不变,左部的各位取反,符号位保持不变。
- 例如:[X]_原 =1.1110011000

2.1.5 反码表示法

W

- 符号位表示方法与原码相同
- 数值部分的表示与数的符号有关
 - -对于正数,数值部分与真值形式相同。
 - -对于负数,数值部分为真值形式按位取反。

2.1.5 反码表示法

• 若真值为纯小数,反码形式为 X_s . X_1X_2 ... X_n (X_s 表示符号位)

例1:
$$X_1=0.0110$$
, $X_2=-0.0110$
$$[X_1]_{\overline{\mathbb{D}}}= 0.0110, \ [X_2]_{\overline{\mathbb{D}}}= 1.1001$$

• 若真值为纯整数,反码形式为 $X_sX_1X_2...X_n$ (X_s 表示符号位)

例2:
$$X_1=1101$$
, $X_2=-1101$ $[X_1]_{\overline{\boxtimes}}=0$, 1101, $[X_2]_{\overline{\boxtimes}}=1$, 0010

• 在反码表示中,真值0也有两种不同的表示形式:

$$[+0]_{\overline{\boxtimes}} = 00000$$
 $[-0]_{\overline{\boxtimes}} = 11111$

2.1.6

3种机器数的比较

- (1) 正数都等于真值本身,负数表示方法不同。
- (2) 最高位都表示符号位,补码和反码的符号位可和数值位一起参加运算;但原码的符号位必须分开进行处理。
- (3) 对于真值0,原码和反码各有两种不同的表示形式,而补码只有唯一的一种表示形式。
- (4) 原码、反码表示的正、负数范围是对称的;但补码负数能多表示一个最负的数(绝对值最大的负数),其值等于-2ⁿ(纯整数)或-1(纯小数)。

- 设机器字长4位(含1位符号位),以纯整数为例:
- 原码或反码可表示的数

• 补码可表示的数(多表示一个负数)

• 真值与3种机器数间的对照

真值 X		[X] _原 [X] _补 [X] _反	真值 X		[X] _原	[X] _*	[X] _反
十进制	二进制		十进制	二进制			
+0	+000	0000	-0	-000	1000	0000	1111
+1	+001	0001	-1	-001	1001	1111	1110
+2	+010	0010	-2	-010	1010	1110	1101
+3	+011	0011	-3	-011	1011	1101	1100
+4	+100	0100	-4	-100	1100	1100	1011
+5	+101	0101	-5	-101	1101	1011	1010
+6	+110	0110	- 6	-110	1110	1010	1001
+7	+111	0111	-7	-111	1111	1001	1000
+8	_		-8	-1000	_	1000	_

• 1. 四位机器内的数值代码1001,它所表示的十进制真值为

- B. -1 C. -7 D. 以上三者均有可能
- 2. 在机器数(B)中,零的表示形式是唯一的。

- A. 原码 B. 补码 C.反码 D. 原码和反码
- 3. 设寄存器内容为111111111,若它等于+127,则为(D)。
 - A. 原码

- B. 反码 C. 补码 D. 移码

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.2.1 定

- 在定点表示法中约定:所有数据的小数点位置固定不变。通常, 把小数点固定在有效数位的最前面或末尾,这就形成了两类定点 数。
- 1. 定点小数
 - -小数点的位置固定在最高有效数位之前,符号位之后,记作 X_s . X_1X_2 ... X_n
 - 这个数是一个纯小数。定点小数的小数点位置是隐含约定的,小数点并不需要真正地占据一个二进制位。

当
$$X_s=0$$
, $X_1 \sim X_n=1$ 时, X为最大正数,

当
$$X_n=1$$
 , $X_s\sim X_{n-1}=0$ 时 , X 为最小正数 , 即:
$$X_{\text{最小正数}}=\ 2^{-n}$$

2.2.1

定点表示法

• 当 $X_s=1$,表示X为负数,原码与补码所能表示的绝对值最大的负数不同,所以原码和补码的表示范围有一些差别。

定点表示法

原码表示的绝对值最大负数

补码表示的绝对值最大负数

2^0	2^{-1}	2^{-2}	• • •	$2^{-(n-1)}2^{-n}$			
1	0	0	•••	0	0		

X_{绝对值最大负数(补码表示时)} = -1

2.2.1

- 综上所述:
- 若机器字长有n+1位,则:
 - 原码定点小数表示范围为: -(1-2-n) ~ (1-2-n)
 - 补码定点小数表示范围为: -1~(1-2-n)
- 若机器字长有8位,则:
 - 原码定点小数表示范围为:-(1-2⁻⁷)~(1-2⁻⁷)
 - 补码定点小数表示范围为: -1~(1-2⁻⁷)

- 2. 定点整数
- -小数点位置隐含固定在最低有效数位之后,记作X_sX₁X₂...X_n,这个数是一个纯整数。

2.2.1

定点表示法

最小正数

$$X_{\text{最小正数}} = 1$$

原码表示的绝对值 最大负数

$$X_{$$
绝对值最大负数(原码表示时) $=$ - $(2^n$ - $1)$

补码表示的绝 对值最大负数

2.2.1

- 综上所述:
- 若机器字长有n+1位,则:
 - 原码定点整数的表示范围为:-(2n-1)~(2n-1)
 - 补码定点整数的表示范围为: -2ⁿ ~ (2ⁿ-1)
- 若机器字长有8位,则:
 - 原码定点整数表示范围为: -127~127
 - -补码定点整数表示范围为:-128~127

习题

• 1. 某机器字长为32位, 其中1位表示符号位。若用定点整数原码

表示,则最小负整数为(A)。

A.
$$-(2^{31}-1)$$

B.
$$-(2^{30}-1)$$

C.
$$-(2^{31}+1)$$

D.
$$-(2^{30}+1)$$

2.2.2 浮点表示法

• 小数点的位置根据需要而浮动,这就是浮点数。 例如:

$$N=M\times r^E = M\times 2^E$$

- 式中:r为浮点数阶码的底,与尾数的基数相同,通常r=2。E和M都是带符号数,E叫做阶码,M叫做尾数。
- 在大多数计算机中,尾数为纯小数,常用原码或补码表示;阶码为纯整数,常用移码或补码表示。

浮点表示法

• 浮点数的一般格式

- 浮点数的底是隐含的,在整个机器数中不出现。阶码的符号位为e_s,阶码的大小反映了在数N中小数点的实际位置;尾数的符号位为m_s,它是整个浮点数的符号位,反映了该浮点数的正负。
- 假设阶码和尾数部分均用补码表示。

2.2.2

浮点表示法

- 1.浮点数的表示范围
- -当 e_s =0, m_s =0,阶码和尾数的数值位各位全为1(即阶码和尾数都为最大正数)时,该浮点数为最大正数。

$$X$$
最大正数= $(1-2^{-n}) \times 2^{2^{k}-1}$

2.2.2 浮点表

- 1.浮点数的表示范围
- $-3e_s=1$, $m_s=0$, 尾数的最低位 $m_n=1$, 其余各位为0(即阶码为绝对值最大负数,尾数为最小正数)时,该浮点数为最小正数。

$$X$$
最小正数= $2^{-n} \times 2^{-2^k}$

2.2.2 浮点表示

- 1.浮点数的表示范围
- $-3e_s=0$,阶码的数值位为全1; $m_s=1$,尾数的数值位为全0(即阶码为最大正数,尾数为绝对值最大的负数)时,该浮点数为绝对值最大负数。

$$X$$
绝对值最大负数=-1 \times 2^{2k}-1

2.2.2 浮点表示法

- 2.规格化的浮点数
 - 为了提高运算的精度,需要充分地利用尾数的有效数位,通常采取规格化的浮点数形式,即规定尾数的最高数位必须是一个有效值。

$$1/r \le |M| < 1$$

如果r=2,则有1/2≤|M|<1。

2.2.2 浮点表示法

- 在尾数用原码表示时,规格化浮点数的尾数的最高数位总等于1。 在尾数用补码表示时,规格化浮点数应满足<mark>尾数最高数位与符号位不同($m_s \oplus m_1 = 1$),即当 $1/2 \le M < 1$ 时,应有0.1xx...x形式,当 $-1 \le M < -1/2$ 时,应有1.0xx...x形式。</mark>
- 需要注意的是当M=-1/2,对于原码来说,是规格化数,而对于补码来说,不是规格化数;当M=-1时,对于原码来说,这将无法表示,而对于补码来说,这是一个规格化数。

2.2.2 浮点表示法

$$X$$
规格化的最小正数 $= 2^{-1} \times 2^{-2^k}$

$$X$$
规格化的绝对值最小负数= -(2-1+2-n) \times 2-2k

2.2 浮点表示法

	, ,
<	/
~	

	浮点	数代码	
	阶码	尾数	真值
最大正数	01…1	0.11…11	$(1-2^{-n})\times 2^{2^{k}-1}$
绝对值最大负数	01…1	1.00…00	-1×2 ^{2*-1}
最小正数	10…0	0.00…01	$2^{-n} \times 2^{-2^k}$
规格化的最小正数	10…0	0.10…00	$2^{-1} \times 2^{-2^{\star}}$
绝对值最小负数	10…0	1.1111	-2-n×2 ^{-2*}
规格化的绝对值最小负数	10…0	1.01…11	$(-2^{-1}-2^{-n}) \times 2^{-2^k}$

2.2.3

浮点数阶码的移码表示法

- 移码就是在真值X上加一个常数(偏置值),相当于X在数轴上向正方向平移了一段距离。
- 移码也可称为增码或偏码。

字长n+1位定点整数的移码形式为 $X_0X_1X_2...X_n$ 。

2.2.3

浮点数阶码的移码表示法

• 最常见的移码的偏置值为2°。当字长8位时,偏置值为2°。

例1: X=1011101
$$[X]_{\overline{8}} = 2^7 + X = 100000000 + 1011101 = 11011101 \\ [X]_{\overline{1}} = 01011101 \\ [X]_{\overline{2}} = 2^7 + X = 100000000 - 1011101 = 00100011 \\ [X]_{\overline{1}} = 10100011$$

浮点数阶码的移码表示法

真值X(十进制)	真值X(二进制)	[X]*	[X]&
-128	-10000000	10000000	00000000
-127	-1111111	10000001	00000001
1	1	i i	1
-1	-0000001	11111111	01111111
0	0000000	00000000	10000000
1	0000001	00000001	10000001
127	1111111	01111111	11111111

浮点数阶码的移码表示法

• 偏置值为2n的移码具有以下特点:

- -(1) 在移码中, 最高位为"0"表示负数, 最高位为"1"表示正数。
- -(2) 移码为全0时,它所对应的真值最小,为全1时,它所对应的真值最大。
- -(3) 真值0在移码中的表示形式是唯一的,即[+0]₈=[-0]₈=100...0。
- -(4) 移码把真值映射到一个正数域,所以可将移码视为无符号数,直接按无符号数规则比较大小。
- (5) 同一数值的移码和补码除最高位相反外,其他各位相同。

浮点数阶码的移码表示法

- 浮点数的阶码常采用移码表示最主要的原因有:
- 便于比较浮点数的大小。阶码大的,其对应的真值就大,阶码小的,对应的真值就小。
- 简化机器中的判零电路。当阶码全为0, 尾数也全为0时, 表示机器零。

习题

- 1.设浮点数的格式为:
- 第15位: 符号位;
- 第14位到第8位: 阶码, 采用补码表示;
- 第7位到第0位: 尾数,与符号位一起采用规格化的补码表示,基数为2。
- 问:
 - 它能表示的数值范围是什么
 - 它能表示的最接近于0的正数和负数分别是什么?
 - 它共能表示多少个数值?

习题

(1)范围:实际上是求绝对值最大的正数和负数(规格化)

最大: 0,0111111,11111111

$$(1-2^{-8})*2^{2^6-1}$$
 (阶码和尾数都最大)

最小: 1,0111111,00000000

$$-1*2^{2^6-1}$$
 (阶码最大,尾数最小)

(2)本质是求绝对值最小的正数和负数(规格化)

最小的正数(最接近于0的正数): 0,1000000,10000000

$$2^{-1}*2^{-2^6}$$

最大的负数(最接近于0的负数):

$$-(2^{-1}+2^{-8})*2^{-2^6}$$

(3)可以表示 216个数值

实用浮点数举例

• 大多数计算机的浮点数采用IEEE 754标准,其格式如下,IEEE 754标准中有三种形式的浮点数。

\mathbf{m}_{s}	E	m

类型	数符 ms	阶码 E	尾数m	总位数	偏置值	
短浮点数	1	8	23	32	7FH	127
长浮点数	1	11	52	64	3FFH	1023
临时浮点数	1	15	64	80	3FFFH	16383

实用浮点数举例

- 以短浮点数为例讨论浮点代码与其真值之间的关系
 - 最高位为数符位;其后是8位阶码,以2为底,阶码的偏置值为**127**;其余23位是尾数。
 - 为了使尾数部分能表示更多一位的有效值, IEEE754采用<mark>隐含尾数最高数位1</mark>的方法, 因此尾数实际上是24位。
 - x 注意,隐含的1是一位整数(即位权为2°),在浮点格式中表示出来的23位尾数是纯小数,并用原码表示。

2.2.4

实用浮点数举例

- 例1:将(100.25)10转换成短浮点数格式。
 - (1) 十进制数→二进制数 (100.25)₁₀=(1100100.01)₂
 - (2) 非规格化数→规格化数 1100100.01=1.10010001×2⁶
 - (3) 计算移码表示的阶码(偏置值+阶码真值) 1111111+110=10000101

2.2.4

实用浮点数举例

- · 例2:把短浮点数C1C90000H转换成为十进制数。

 - (2) 计算出阶码真值(移码-偏置值) 10000011-1111111=100
 - (3) 以规格化二进制数形式写出此数 1.1001001×24
 - (4) 写成非规格化二进制数形式 11001.001
 - (5) 转换成十进制数,并加上符号位 该浮点数=-25.125

例1 某浮点数格式如图示,字长32其中阶码8位,含一位阶符,补码表示,以2为底;尾数24位,含一位数符,补码表示,规格化。若浮点数代码为(A3680000)_{16,}求其真值。

$$(A3680000)_{16} = (10100011, 01101000000...0)_{2}$$

 $E = -(1011101)_{2} = -(93)_{10}$
 $M = (0.11010...0)_{2} = (0.8125)_{10}$
 $N = 2^{-93} \times 0.8125$

练三

例2按上述浮点格式将 - (1011.11010...0)2写成浮点数代码。

$$N = - (1011.11010...0)_2 = - (0.101111010...0)_2 \times 2^4$$

$$E = (4)_{10} = (0000100)_{2}$$

$$E_{\lambda h} = 00000100$$

$$M_{k} = (1.010000110...0)_{2}$$

浮点数代码为(00000100,1010000110...0)₂=(04A18000)₁₆

例3 按上述浮点格式将 - 26×0.4375写成浮点数代码。

$$N = (-2^{6} \times 0.4375)_{10} = -(0.011100000000)_{2} \times 2^{6}$$

$$= -(0.111000000000)_{2} \times 2^{5}$$

$$E = (5)_{10} = (0101)_{2}$$

$$E_{8} = 1000 + E = (1101)_{2}$$

$$M_{1} = (1.00100000000)_{2}$$

EDU

浮点数代码为(1101,100100000000)₂=(D900)₁₆

例4 某浮点数格式如图示,字长32,其中阶码8位,含一位阶符,移码表示,以2为底;尾数24位,含一位数符,补码表示,规格化。若浮点数代码为(BDB40000)₁₆求其真值。

(BDB40000) $_{16}$ = (1011 1101 , 1011 0100 0000...00) $_2$ (E) $_{86}$ = (1011 1101) $_2$ = 2^7 + E E= (111101) $_2$ = (61) $_{10}$ (M) $_{1/2}$ = 1.011010...0 M = - (0.100110...0) $_2$ = - (0.59375) $_{10}$ N = - (0.59375) $\times 2^{61}$

例5:写出下列十进制数的IEEE754短浮点数编码。

$$E_{8} = 127 - 3 = (124)_{10} = (01111100)_{2}$$

0 01111100 010000...00

例5:写出下列十进制数的IEEE754短浮点数编码。

解:
$$(2) - (5)_{10} = - (101)_2$$
,
- (1.01×2^2) ,

$$E_{8} = 127 + 2 = (129)_{10} = (10000001)_{2}$$

1 10000001 01000...00

例6:若短浮点数IEEE754编码为

其代表的十进制数为 -
$$(1.1) \times 2^{-1} = -(0.11)_2 = -(0.75)_{10}$$

1. (2011)float型数据通常用IEEE754单精度浮点数格式表示。若编

译器将float型变量x分配在一个32位浮点寄存器FR1中,且x=-8.25,

则FR1的内容是(A)

(A)C104 0000H

(B) C242 0000H

(C) C184 0000H

(D) C1C2 0000H

2. (2013)某数采用IEEE 754单精度浮点数格式表示为C640 0000H,

则该数的值是(A)

$$(A)-1.5\times2^{13}$$

(B)
$$-1.5 \times 2^{12}$$

(C)
$$-0.5x \times 2^{13}$$

(D)
$$-0.5 \times 2^{12}$$

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.3.1

字符和字符串的表示方法

- 1.ASCII字符编码
- 常见的ASCII码用七位二进制表示一个字符,它包括10个十进制数字(0~9)、52个英文大写和小写字母(A~Z,a~z)、34个专用符号和32个控制符号,共计128个字符。

非数值数据的表示

b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	- 8	р
0001	SOH	DC1	1	1	A	Q	a	q
0010	STX	DC2	11	2	В	R	ь	r
0011	ETX	DC3	#	3	С	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	E	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	х
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*		J	Z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	1	1	
1101	CR	GS	ij <u>a</u>	=	M	1	m	}
1110	RO	RS		>	N	1	n	~
1111	SI	US	1	?	0	50 <u>200</u>	0	DEI

非数值数据的表示

- 2.字符串的存放
- 2.3.2 汉字的表示
 - -1.汉字国标码
 - -2.汉字区位码
 - -3.汉字机内码
 - -4.汉字字形码

2.3.3

统一代码(Unicode)

随着国际间的交流与合作的扩大,信息处理应用对字符集提出了多文种、大字量、多用途的要求,解决问题的最佳方案是设计一种全新的编码方法,这种方法必须有足够的能力来表示任意一种语言里使用的所有符号,这就是统一代码(Unicode)。

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.4.1

十进制数的编码

- 十进制数的编码 (二 十进制编码)
- 用四位二进制数来表示一位十进制数,称为二进制编码的十进制数,简称

BCD码。

• 常见的BCD码

十进制数	8421码	2421码	余3码	Gray码
0	0000	0000	0011	0000
1	0001	0001	0100	0001
2	0010	0010	0101	0011
3	0011	0011	0110	0010
4	0100	0100	0111	0110
5	0101	1011	1000	1110
6	0110	1100	1001	1010
7	0111	1101	1010	1011
8	1000	1110	1011	1001
9	1001	1111	1100	1000