ECE 344L Microprocessors

Computer Types & the MIPS Microcontroller

By Dr. Edward Nava

Computer Configurations

- Mainframe
- Minicomputer
- Microprocessor
- Microcontroller
- Embedded Systems

Mainframe Computer

DEC Minicomputer

Data General Minicomputer

Personal Computer

Sun Workstation

Vintage Supercomputers

The first Cray computer ever delivered – to Los Alamos National Laboratory in 1976.

Supercomputers

Principle Components

- Memory (Data, Instructions, ...)
- Computation Engine
- Registers
- Control System
- I/O System
- Communication (wires, buses)

Modern Microprocessors

Integrated circuit version of a general purpose processor

- Moderate-to-fast execution speed
- ALU/FPALU processing on chip
- Memory systems off chip
- Peripherals off chip and system dependent
- On-board caches for faster operation

8080 Microprocessor (1974 Vintage)

8086 Microprocessor (1979 Vintage)

Execution Unit

(EU)

Bus Interface Unit

(BIU)

IA-32 Microprocessor (2001 Vintage)

IA-32 Microprocessor (2001 Vintage)

Microprocessor Heat Management System

Microcontroller

- Microprocessor with peripherals
 - On chip memory
 - On chip peripherals (UART/PWM/SPI ...)
 - Low power modes
 - Minimal IC systems

Typical PIC32 Microcontroller

Embedded Systems

- A Microprocessor or microcontroller with potentially a mix of other components
 - Found in control, communication,
 - Interface with user may be non-traditional
 - Operating system is special purpose RTOS

How Do We Do Work in a Processor?

- The instruction set defines what's possible
- Work is accomplished by repeating instructions on data until the desired result has been obtained

The **Instruction Set Architecture** (ISA) is the part of the processor that is visible to the programmer or compiler writer.

Calculator Example

The objective is to calculate the area of a circle whose radius = 5.45

$$5.45 \times 5.45 \times \pi = 93.31316$$

Department of Electrical & Computer Engineering Calculator Example –Instructions that will be used

Calculator Example – Instruction Execution

Calculator – Revised Instruction Set

Computer Architecture

- The instruction set identifies the work (movement, transformation) that can be done in a particular architecture
- Any work to be done in a machine must be accomplished by a series of individual instructions
- The complexity of the instruction set determines how much work can be done by a single instruction Recall: CISC vs RISC

Computer Architecture

- Work is done in computers by moving information from one place to another, sometimes with a transformation
 - Register to register
 - Register to memory
 - Memory to register
 - Memory to memory

Common Registers in Processors

- Program counter (PC) where is the program is executing
- Memory Address Register (MAR) location of interest in memory
- Accumulator (ACC) for a single address machine
- General purpose registers (Rn) for data and addresses

More Common Registers in Processors

- Address registers (An) point to location in memory
- Instruction Register (IR) holds the instruction to be executed
- Status Register (SR) holds information about the status of system
- System Control Registers hold information about overall system operation

Basic operation in all computers

MIPS R8000 (TFP IU)

MIPS

2.6 million transistors 17.2 × 17.3 mm First silicon: May 1994

Department of Electrical & Computer Engineering Why is the MIPS processor of interest to us?

- Going to the web site http://www.mips.com/ you will find that the MIPS processor is used in:
 - Cisco Routers
 - Laser Printers built by HP and Fuji Xerox
 - PDA's
 - Set-Top Boxes
 - Sony AIBO™ Entertainment Robot
 - Minolta Digital Camera
 - Sony PlayStation

MIPS R8000 (TFP IU)

MIPS Data Path Diagram

A Register Transfer Description of

MISTRE DESCRIPTION OF TRANSFER DESCRIPTION

Registers in MIPS

- Rn General Purpose registers (GPR)
 - 32 bit values
 - 32 registers total
 - Special assignment of function
 - R0 = 0
- Control Registers
 - 32 bit values
 - Variety of functions (SFR)

Register File

Nun	nber	Value	N	ame
0			\$zero	
1			\$at	
2			\$v0	
3			\$v1	
4			\$a0	
5			\$a1	
6			\$a2	
7			\$a3	
8			\$t0	
9			\$t1	
10			\$t2	
11			\$t3	
12			\$t4	
13			\$t5	
14			\$t6	
15			\$t7	
16			\$s0	
17			\$s1	
18			\$s2	
19			\$s3	
20			\$s4	
21			\$s5	
22			\$s6	
23			\$s7	
24			\$t8	

Return values from functions

Pass parameters to functions

Caller Saved Registers – Use these registers in functions

Callee-Saved Registers – Use these registers for values that must be maintained across function calls.

Number	Value	Name	
25		\$t9	
26		\$k0	
27		\$k1	
28		\$gp	
29		\$sp	
30		\$fp	
31		\$ra	

System Memory

Used to hold Instructions, Data, and Operating System info

- Organized by byte (8 bits), half word (16 bits), or word (32 bits)
- Instructions can move bytes, half words, or words to or from memory
- Registers identify location in memory (either PC or Rn)
- MIPS enforces word address alignment

Memory Organization - Bytes

	00	01	02	03	04	05	06	07
0000	00	01	02	03	04	05	06	07
0008	80	09	0A	0B	0C	0 D	0E	0F
0010	10	11	12	13	14	15	16	17
0018	18	19	1A	1B	1C	1D	1E	1F

Memory Organization – Half words

	00	02	04	06
0000	0001	0203	0405	0607
0008	0809	0A0B	0C0D	0E0F
0010	1011	1213	1415	1617
0018	1819	1A1B	1C1D	1E1F

Memory Organization - Words

	00	04
0000	00010203	04050607
0008	08090A0B	0C0D0E0F
0010	10111213	14151617
0018	18191A1B	1C1D1E1F

MIPS Instruction Formats

The MIPS instruction set has three basic formats:

- Register
- Immediate
- Jump instructions

Register Format

Used for work instructions which perform operations using data registers

- 3 address format for ADD, SUB, etc.
- 2 address format for some instructions
- some formats can have constant value for one of the arguments
- Instructions must provide bits to identify function (op code) and bits to identify target register(s)

Register Format

Immediate Format

Movement Instructions

- Simple movement : register to register
- Load: memory to register
- Load: constant to register
- Store: register to memory
- Dual mode instructions: movement and work

Data Movement

Data Movement - Addressing

Data Movement - Addressing (2)

Jump Instruction

opcode	target				
0001f	ttttttttttttttttttttttt				