CCF 全国信息学奥林匹克联赛(NOIP2014)复赛

提高组 day2

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	第一题	整数划分	观光旅行
英文题目与子目录名	eat	division	trip
可执行文件名	eat	division	trip
输入文件名	eat.in	division.in	trip.in
输出文件名	eat.out	division.out	trip.out
每个测试点时限	1 秒	1 秒	1 秒
测试点数目	10	20	20
每个测试点分值	10	5	5
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统
运行内存上限	128M	128M	128M

二. 提交源程序文件名

对于 C++语言	eat.cpp	division.cpp	trip.cpp
对于 C 语言	eat.c	division.c	trip.c
对于 pascal 语言	eat.pas	division.pas	trip.pas

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o eat eat.cpp -lm	g++ -o division	g++ -o trip trip.cpp –
		division.cpp -lm	lm
对于 C 语言	gcc -o eat eat.c -lm	gcc -o division division.c -lm	gcc -o trip trip.c -lm
对于 pascal 语言	fpc eat.pas	fpc division.pas	fpc trip.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) 64x2 Dual Core CPU 5200+, 2.71GHz, 内存 2G, 上述时限以此配置为准。
- 4、 只提供 Linux 格式附加样例文件。
- 5、特别提醒: 评测在 NOI Linux 下进行。

1.第一题

(eat.cpp/c/pas)

【问题描述】

凶猛的**出来吃人了!

每天早晨,**从大山里出来,到达一个城市,然后花费一整天的时间把这座城市里的人吃光。直到夜晚,**才回到山中去。当**经过一个城市时,不管是否吃人,它都会把这座城市彻底破坏,以至于下次不能再到这个城市吃人了。

显然,城市里的居民无法忍受这样的状况。所以,每天夜晚,每座城市里都会有一个人逃到乡下去,到了乡下以后**就永远吃不到他了。

城市之间有一些双向道路连接着。其中1号城市连接着大山,即**每天的旅途的起点。 当然,**只能沿着这些道路走。

**意识到必须抓紧时间吃人, 所以它每天都要认真选取要去的城市, 当然它不能选择已经被吃过或破坏过的城市。现在问题来了, 在所有城市没有人居住之前, **最多能吃掉多少人?

【输入】

输入文件名为 eat.in。

第一行两个整数n,m,用一个空格隔开,表示城市的个数和道路数。

第二行n个整数 a_i ,表示每座城市初始的人数。两个数之间用一个空格隔开。

接下来m行,每行两个整数 $u,v(1 \le u,v \le n,u \ne v)$,用一个空格隔开,表示城市u和城市v之间有一条双向道路。城市 1 和大山之间也有一条双向道路。

数据保证所有城市都存在到城市1的路径。

【输出】

输出文件名为 eat.out。

输出共一行一个整数,表示在所有城市没有人居住之前,**最多能吃掉的人数。

【输入输出样例】

eat.in	eat.out
5 5	11
1 3 2 4 7	
1 2	
1 3	
2 3	
2 4	
3 5	

【数据说明】

对于 10%的数据, $1 \le n \le 5$, $0 \le m \le 10$, $0 \le a_i \le 5$ 。

对于 30%的数据, $1 \le n \le 200$, $0 \le m \le 500$, $0 \le a_i \le 200$ 。

对于 60%的数据, $1 \le n \le 2,000$, $0 \le m \le 10,000$, $0 \le a_i \le 20,000$ 。

对于 100%的数据, $1 \le n \le 200,000$, $0 \le m \le 2,000,000$, $0 \le a_i \le 2,000,000$ 。

2.整数划分

(division.cpp/c/pas)

【问题描述】

BG 得到了一个整数N,他想要把N分解成若干个小整数的乘积。BG 给出了他的分解规则:

- 分解出的整数必须来自集合S;
- 分解出的整数必须互不相同,且两两互质。

现在给出整数N,集合大小M和集合S,求 BG 有多少种分解方法。

【输入】

输入文件名为 division.in。

第一行两个整数N, M,表示要分解的数和集合大小。

第二行包含M个互不相同的整数 a_i ,描述了集合S,即 $S = \{a_1, a_2, a_3, ..., a_M\}$ 。

【输出】

输出文件名为 division.out。

输出共一行一个整数,表示方案数。数据保证答案在 64 位带符号整数范围内。如果没有方案,输出一个 0。

【输入输出样例1】

division.in	division.out
12 5	1
2 3 4 5 6	

【输入输出样例说明】

共1种方案: 3×4。

【输入输出样例2】

division.in	division.out
42 8	10
1 2 3 6 7 14 21 42	

【输入输出样例说明】

共 10 种方案: 42, 1×42, 2×21, 3×14, 6×7, 1×2×21, 1×3×14, 1×6×7, 2×3×7和1×2×3×7。

【数据说明】

对于 10%的数据, $2 \le N \le 20$, $1 \le M \le 5$, $1 \le a_i \le 10$;

对于 20%的数据, $2 \le N \le 1,000$, $1 \le M \le 20$, $1 \le a_i \le 100$;

对于 40%的数据, $2 \le N \le 1,000,000$, $1 \le M \le 80$, $1 \le a_i \le 10,000$;

对于 70%的数据, $2 \le N \le 1,000,000,000$, $1 \le M \le 200$, $1 \le a_i \le 10,000,000$;

对于 100%的数据, $2 \le N \le 10^{18}$, $1 \le M \le 500$, $1 \le a_i \le 1,000,000,000$ 。

3. 观光旅行

(trip.cpp/c/pas)

【问题描述】

BG来到了一个美丽的风景区旅行,这个景区共有n个景点,编号从1到n。这n个景点之间共有m条双向的观光道路,每条观光道路都有一个魅力值,第i条观光道路的魅力值为 w_i 。

现在 BG 想从任意一个景点出发,沿着一条路径旅行其它景点。为了避免旅途的枯燥,BG 每次经过的道路的魅力值都要严格大于之前经过的任何道路。同时,他想让旅途尽可能长。

请问在满足他的要求的情况下,路径的最长长度是多少,并求出不同的最长路径共有多少条。路径的长度即它经过的道路数。两条路径被认为不同,当且仅当它们经过的景点序列不同。为了防止输出的数字过大,你只需输出路径数对1,000,000,007取模的结果。

【输入】

输入文件名为 trip.in。

输入文件的第一行有两个用一个空格隔开的整数n、m,表示该景区有n个景点和m条观光道路。

接下来m行每行三个整数 u_i, v_i, w_i ,每两个整数之间用一个空格隔开,表示第i条道路的魅力值为 w_i ,在景点 u_i 和 v_i 之间。

输入数据保证 $u_i \neq v_i$,两个景点之间最多只有一条观光道路,第一问的答案至少为 2。

【输出】

输出文件名为 trip.out。

输出的第一行一个整数,表示最长的路径长度。

输出的第二行一个整数,表示不同的最长路径数对1,000,000,007取模的结果。

【输入输出样例】

trip.in	trip.out
5 5	3
1 2 4	3
1 3 5	
2 4 3	
2 3 1	
2 5 2	

【输入输出样例说明】

共有3条长度为3的合法路径:

- 1. 3-2-1-3, 经过道路的魅力值为 1、4、5;
- 2. 4-2-1-3,经过道路的魅力值为3、4、5;
- 3. 5-2-1-3, 经过道路的魅力值为 2、4、5。

【数据说明】

对于 10%的数据, $1 \le n \le 10$, $1 \le m \le 20$;

对于 30%的数据, $1 \le n \le 100$, $1 \le m \le 500$;

对于 60%的数据, $1 \le n \le 1,000$, $1 \le m \le 3,000$;

对于 80%的数据, $1 \le n \le 2,000$, $1 \le m \le 100,000$;

对于 100%的数据, $1 \le n \le 50,000$, $1 \le m \le 200,000$, $0 \le w_i \le 10^9$ 。