

Título completo

Nome

Instituto de Matemática e Estatística (IME-USP)

MÊS / ANO

Estrutura da apresentação

- 1 Texto
- 2 Equações e imagens
- 3 Código
- 4 Caixas coloridas
- 6 Conclusão

Texto corrido

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ipsum velit, cursus quis ligula eu, malesuada aliquet massa. Quisque non convallis felis, a auctor eros. Etiam sit amet turpis a sapien pulvinar malesuada quis quis nisi. Quisque scelerisque volutpat ligula vel mollis. Nam sit amet tristique erat, sit amet cursus mi.

Texto em tópicos numerados

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- 1 Lorem ipsum dolor sit amet.
- 2 Lorem ipsum dolor sit amet.

Texto em tópicos

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- Lorem ipsum dolor sit amet.
- Lorem ipsum dolor sit amet.

Uma imagem

Figure: Legenda da imagem

Duas imagens

(a) Legenda 1

(b) Legenda 2

Equações

Equações de Navier-Stokes Forma expandida (3D):

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f_x$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + f_y$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + f_z$$

onde $\mathbf{v} = (u, v, w)$ é o campo de velocidade, p é a pressão, ρ é a densidade, μ é a viscosidade dinâmica e \mathbf{f} representa forças externas.

```
def calcular_dobro(x):
    """Retorna o dobro do número"""
    return 2 * x

# Testando a função
numero = 5
resultado = calcular_dobro(numero)
print(f"O dobro de {numero} é {resultado}")
```

C

```
#include <stdio.h>

int main() {
    int numero = 5;
    int dobro = 2 * numero;

printf("O dobro de %d eh %d\n", numero, dobro);
    return 0;
}
```

C++

```
1 #include <iostream>
2 using namespace std;
4 int main() {
      int numero = 5;
      int dobro = 2 * numero;
6
      cout << "O dobro de " << numero;</pre>
8
9
      cout << " eh " << dobro << endl;
      return 0;
10
11 }
12
```

R

```
# Função para calcular o dobro
calcular_dobro <- function(x) {
   return(2 * x)
}

# Testando a função
numero <- 5
resultado <- calcular_dobro(numero)
print(paste("O dobro de", numero, "é", resultado))</pre>
```

Teorema: Teorema Fundamental da Aritmética

Todo inteiro n > 1 pode ser escrito de forma única como um produto de primos, a menos da ordem dos fatores.

Definição: Número Primo

Um número natural p > 1 é primo se seus únicos divisores positivos são 1 e p.

Proposição: Divisibilidade

Se $a \mid b \in b \mid c$, então $a \mid c$.

Lema: Lema de Euclides

Se um primo *p* divide o produto *ab*, então *p* divide *a* ou *p* divide *b*.

Corolário: Infinidade de Primos

Existem infinitos números primos.

Observação: Máximo Divisor Comum

O máximo divisor comum de dois inteiros pode ser calculado pelo Algoritmo de Euclides.

Caixas: Exemplo e Nota

Exemplo: MDC com Algoritmo de Euclides

Para calcular gcd(48, 18):

$$48 = 2 \cdot 18 + 12$$
, $18 = 1 \cdot 12 + 6$, $12 = 2 \cdot 6 + 0$.

Logo, gcd(48, 18) = 6.

Observação: Fato curioso

O número 26 é o único número natural que está entre um cubo perfeito e um quadrado perfeito.

Referências

- [Lor63] Edward N. Lorenz. "Deterministic Nonperiodic Flow". In: Journal of the Atmospheric Sciences 20.2 (1963), pp. 130–141.
- [Rud76] Walter Rudin. *Principles of Mathematical Analysis*. 3rd ed. New York: McGraw-Hill, 1976. ISBN: 007054235X.
- [Tao06] Terence Tao. "Nonlinear Evolution Equations". Ph.D. Thesis. Princeton, New Jersey: Princeton University, 2006.