Feuille 2 - Corrigé

Exercice 1:

1.
$$\forall n \in \mathbb{N}$$
, on pose $P(n)$: " $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$ "

Initialisation:

On a
$$\sum_{k=0}^{0} k = 0 = \frac{0 \times (0+1)}{2}$$

Donc P(0) est vraie.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N} , tel que P(n) soit vraie.

Hérédité:

On a
$$\sum_{k=0}^{n+1} k = (n+1) + \sum_{k=0}^{n} k = (n+1) + \frac{n(n+1)}{2} = \frac{2(n+1) + n(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Ainsi $P(n) \Rightarrow P(n+1)$, donc la proposition est héréditaire

Donc par principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

2. Soit
$$q \neq 1$$
. $\forall n \in \mathbb{N}$, on pose $P(n)$: " $\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$ "

Initialisation:

On a
$$\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$$

Donc P(0) est vraie.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N} , tel que P(n) soit vraie.

Hérédité:

On a
$$\sum_{k=0}^{n+1} q^k = q^{n+1} + \sum_{k=0}^n q^k = q^{n+1} + \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1}(1 - q) + 1 - q^{n+1}}{1 - q}$$
$$= \frac{q^{n+1} - q^{n+2} + 1 - q^{n+1}}{1 - q}$$
$$= \frac{1 - q^{n+2}}{1 - q}$$

Ainsi $P(n) \Rightarrow P(n+1)$, donc la proposition est héréditaire

Donc par principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice 2:

Soit $a \in \mathbb{N}$. On va raisonner par contraposée. La contraposée de la question est : « si a est divisible par 3, alors a^2 est divisible par 3.

Ainsi,
$$\exists k \in \mathbb{N}, a = 3k \Rightarrow a^2 = (3k)^2 = 3 \times (3k^2)$$

Ainsi a^2 est aussi divisible par 3, donc par contraposée, si a^2 n'est pas divisible par 3, alors a ne l'est pas non plus.

Exercice 3:

1) On va raisonner par l'absurde. Supposons que $\sqrt{2} \in \mathbb{Q}$, c'est-à-dire que :

$$\exists (p,q) \in \mathbb{N} \times \mathbb{Z}^*, \sqrt{2} = \frac{p}{q}, \text{avec pgcd}(p,q) = 1.$$

Alors on a $p = q\sqrt{2} \Rightarrow p^2 = 2q^2$.

Ainsi p^2 est pair, donc p l'est aussi. Ainsi $\exists k \in \mathbb{N}, p = 2k$

Donc en remplaçant, on a $(2k)^2 = 2q^2 \Rightarrow 2k^2 = q^2$

Ainsi q^2 est lui aussi pair, ce qui implique que q est pair.

Or cela contredit pgcd(p,q) = 1, donc $\sqrt{2} \notin \mathbb{Q}$

2) Supposons b=0. Alors $a+b\sqrt{2}=0 \Leftrightarrow a=0$. Donc le couple (0,0) est bien solution. Supposons maintenant $b\neq 0$. Alors $a+b\sqrt{2}=0 \Leftrightarrow \sqrt{2}=\frac{a}{-b}$

Quitte à diviser par leur pgcd, on peut considérer que a et b sont premiers entre eux. Or d'après la question 1, dans ce cas-là, il n'existe aucun couple qui satisfait l'équation précédente. Donc le seul couple solution est (0,0).

3) On a $m + n\sqrt{2} = p + q\sqrt{2} \Leftrightarrow (m - p) + (n - q)\sqrt{2} = 0$ $\Leftrightarrow (m - p, n - q) = (0,0)$ $\Leftrightarrow m = p \text{ et } n = q$

Exercice 4:

On va procéder par récurrence :

Soit $x \in]-1$; $+\infty[, \forall n \in \mathbb{N}^*, posons P(n) : "(1+x)^n \ge 1+nx"]$

Initialisation:

On a
$$(1 + x)^1 = 1 + x = 1 + 1 \times x$$

Donc P(1) est vraie.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N} * tel que P(n) soit vraie.

<u>Hérédité</u>:

$$\overline{\text{On a } (1+x)^{n+1}} = (1+x)^n (1+x) = \underbrace{(1+nx)}_{HR} (1+x) = 1 + (n+1)x + nx^2$$

Or
$$nx^2 \ge 0$$
, donc $(1+x)^{n+1} \ge 1 + (n+1)x$

Donc $P(n) \Rightarrow P(n+1)$, la propriété est héréditaire.

Ainsi par principe de récurrence, pour tout $n \in \mathbb{N}^*$, P(n) est vraie.

Exercice 5:

On va procéder par récurrence double :

 $\forall n \in \mathbb{N}$, on pose P(n): " $u_n = 1 + 2^n$ "

Initialisation:

On a
$$u_0 = 2 = 1 + 2^0$$
 et $u_1 = 3 = 1 + 2^n$

Donc P(0) et P(1) sont vraies.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N} tel que P(n) et P(n+1) soient vraies.

Hérédité:

On a
$$u_{n+2} = 3u_{n+1} - 2u_n = 3(1+2^{n+1}) - 2(1+2^n) = 3-2+3\times 2^{n+1} - 2\times 2^n$$

= $1+3\times 2^{n+1} - 2^{n+1}$
= $1+2\times 2^{n+1}$

Donc $(P(n) \text{ et } P(n+1)) \Longrightarrow P(n+2)$

Donc par principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice 6:

On a
$$v_0 = 0$$
, $v_1 = \frac{1}{2}$, $v_2 = \frac{2}{3}$, $v_3 = \frac{3}{4}$, $v_4 = \frac{4}{5}$

On pose donc pour tout $n \in \mathbb{N}$, P(n): " $v_n = \frac{n}{n+1}$ ", qu'on va démontrer par récurrence sur n.

<u>Initialisation</u>: $v_0 = 0 = \frac{0}{1}$, donc P(1) est vraie.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N} tel que P(n) soit vraie.

Hérédité:

On a
$$v_{n+1} = \frac{1}{2 - v_n} = \frac{1}{2 - \frac{n}{n+1}} = \frac{1}{\frac{2(n+1) - n}{n+1}} = \frac{n+1}{2n+2-n} = \frac{n+1}{n+2}$$

Ainsi
$$P(n) \Longrightarrow P(n+1)$$

Donc par principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice 7: On va raisonner par l'absurde, supposons $x \neq y$:

$$\frac{x}{1+y} = \frac{y}{1+x} \Leftrightarrow x(1+x) = y(1+y) \Leftrightarrow x^2 + x = y^2 + y \Leftrightarrow x^2 - y^2 = y - x$$
$$\Leftrightarrow (x-y)(x+y) = -(x-y)$$
$$\Leftrightarrow x+y=-1$$

Or *x* et *y* sont tous deux positifs, donc leur somme ne peut pas faire -1.

Ainsi,
$$\frac{x}{1+y} = \frac{y}{1+x} \Longrightarrow x = y$$
.

Exercice 8:

On va raisonner par l'absurde : supposons que n premier, et supposons qu'il n'admet aucun diviseur inférieur ou égal à \sqrt{n} .

Alors comme n est premier, alors il existe $d, d' \in \mathbb{N}, 1 < d \le d' < n$, tels que n = dd'Or par hypothèse, tout diviseur de n est strictement supérieur à \sqrt{n} , donc on a :

$$n = dd' < \sqrt{n}\sqrt{n} = \sqrt{n}^2 = n$$

Ce qui est bien évidemment absurde.

Ainsi n admet au moins un diviseur inférieur ou égal à \sqrt{n} .

Exercice 9:

On va raisonner par récurrence sur n.

Posons P(n): " $S_n = 1 - \frac{1}{n+1}$ " pour tout $n \in \mathbb{N}^*$

Initialisation:

On a
$$S_1 = \frac{1}{1 \times 2} = \frac{1}{2} = 1 - \frac{1}{1+1}$$

Donc P(1) est vraie.

<u>Hypothèse</u>: Soit n ∈ \mathbb{N}^* tel que P(n) soit vraie.

<u>Hérédité</u>:

On a
$$S_{n+1} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{(n+1)(n+2)}$$

$$= S_n + \frac{1}{(n+1)(n+2)}$$

$$= \underbrace{1 - \frac{1}{n+1}}_{HR} + \frac{1}{(n+1)(n+2)}$$

$$= 1 + \frac{(-(n+2)+1)}{(n+1)(n+2)}$$

$$= 1 - \frac{n+1}{(n+1)(n+2)}$$

$$= 1 - \frac{1}{n+2}$$
Aircri $R(n) \to R(n) \to 1$ denote the convertible of the set

Ainsi $P(n) \Rightarrow P(n+1)$, donc la propriété est héréditaire.

Donc par principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}^*$.

Exercice 10:

On pose j = 2n - k

On obtient alors:

$$\sum_{k=n+1}^{2n-1} \ln\left(\sin\left(\frac{k\pi}{2n}\right)\right) = \sum_{j=n-1}^{1} \ln\left(\sin\left(\frac{(2n-j)\pi}{2n}\right)\right) = \sum_{j=1}^{n-1} \ln\left(\sin\left(\pi - \frac{j\pi}{2n}\right)\right)$$

Or $\forall x \in \mathbb{R}$, $\sin(\pi - x) = \sin(x)$, donc:

$$\sum_{j=1}^{n-1} \ln\left(\sin\left(\pi - \frac{j\pi}{2n}\right)\right) = \sum_{j=1}^{n-1} \ln\left(\sin\left(\frac{j\pi}{2n}\right)\right) = \sum_{k=1}^{n-1} \ln\left(\sin\left(\frac{k\pi}{2n}\right)\right)$$