Fonctions usuelles

1.1 Logarithme et exponentielle

Logarithme Le *logarithme néperien* ln : $]0, +\infty[\rightarrow \mathbb{R}.$

Proposition. 1. $\ln(a \times b) = \ln a + \ln b$ (pour tout a, b > 0),

- 2. $\ln(\frac{1}{a}) = -\ln a$,
- 3. $\ln(a^n) = n \ln a$, (pour tout $n \in \mathbb{N}$)
- 4. In est une fonction continue, strictement croissante et définit une bijection de $]0,+\infty[$ sur $\mathbb{R},$
- 5. $\ln'(x) = \frac{1}{x}$ pour tout x > 0,
- 6. ln(1) = 0, ln(e) = 1,
- 7. $\lim_{x \to +\infty} \frac{\ln x}{x} = 0,$
- 8. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$,
- 9. la fonction ln est concave et $\ln x \le x 1$ (pour tout x > 0).

- Le logarithme en base $a \log_a(x) = \frac{\ln(x)}{\ln(a)}$. De sorte que $\log_a(a) = 1$. Pour a = 10 on obtient le logarithme décimal \log_{10} qui vérifie
- $\log_{10}(10) = 1$ (et donc $\log_{10}(10^n) = n$).

$$x = 10^y \iff y = \log_{10}(x)$$

— En informatique intervient le logarithme en base $2 : \log_2(2^n) = n$.

Exponentielle

La fonction *exponentielle*, notée exp : $\mathbb{R} \to]0, +\infty[$ est la bijection réciproque de ln : $]0, +\infty[\to \mathbb{R}$. Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition. La fonction exponentielle vérifie les propriétés suivantes :

- 1. $\exp(a+b) = \exp(a) \times \exp(b)$
- 2. $\exp(nx) = (\exp x)^n$
- 3. $\exp: \mathbb{R} \to]0, +\infty[$ est une fonction continue, strictement croissante $v\acute{e}rifiant \lim_{x\to -\infty} \exp x = 0 \ et \lim_{x\to +\infty} \exp = +\infty.$
- 4. $\exp(1) = e \simeq 2,718...$
- 5. $\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty$,
- 6. La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$. Elle est convexe et $\exp x \ge 1 + x$.

Lien logarithme/exponentielle:

$$\left[\exp(\ln x) = x \text{ pour tout } x > 0\right] \text{ et } \left[\ln(\exp x) = x \text{ pour tout } x \in \mathbb{R} \right]$$
Pour $x \in \mathbb{R}$ et $y > 0$:

$$y = \exp(x) \iff x = \ln(y)$$

Puissance

Par définition, pour a > 0 et $b \in \mathbb{R}$,

$$a^b = \exp(b \ln a)$$

Remarque.

- $\sqrt{a} = a^{\frac{1}{2}} = \exp\left(\frac{1}{2}\ln a\right)$
- $\sqrt[n]{a} = a^{\frac{1}{n}} = \exp(\frac{1}{n} \ln a)$ (la *racine n-ième* de *a*) Les fonctions $x \mapsto a^x$ s'appellent aussi des fonctions exponentielles et se ramènent systématiquement à la fonction exponentielle classique par l'égalité $a^x = \exp(x \ln a)$. Il ne faut surtout pas les confondre avec les fonctions puissances $x \mapsto x^a$

Soit x, y > 0 et $a, b \in \mathbb{R}$.

$$x^{a+b} = x^a x^b$$
 $x^{-a} = \frac{1}{x^a}$ $(xy)^a = x^a y^a$ $(x^a)^b = x^{ab}$
$$\ln(x^a) = a \ln x$$

1.2 Fonctions circulaires inverses

Arccosinus

La restriction $\cos_{|}:[0,\pi]\to[-1,1]$ est une bijection. Sa bijection réciproque est la fonction arccosinus:

$$\arccos: [-1,1] \rightarrow [0,\pi]$$

$$\cos(\arccos(x)) = x \quad \forall x \in [-1, 1]$$

 $\arccos(\cos(x)) = x \quad \forall x \in [0, \pi]$

Si
$$x \in [0, \pi]$$
 $\cos(x) = y \iff x = \arccos y$

$$\arccos'(x) = \frac{-1}{\sqrt{1 - x^2}} \quad \forall x \in]-1,1[$$

Arcsinus

La restriction $\sin_{\parallel}: [-\frac{\pi}{2}, +\frac{\pi}{2}] \to [-1, 1]$ est une bijection. Sa bijection réciproque est la fonction arcsinus:

$$\arcsin: [-1,1] \to [-\frac{\pi}{2},+\frac{\pi}{2}]$$

$$\sin(\arcsin(x)) = x \quad \forall x \in [-1, 1]$$

$$\arcsin(\sin(x)) = x \quad \forall x \in [-\frac{\pi}{2}, +\frac{\pi}{2}]$$

Si
$$x \in \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$$
 $\sin(x) = y \iff x = \arcsin y$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \quad \forall x \in]-1, 1[$$

Arctangente

La restriction $\tan_{|}:]-\frac{\pi}{2},+\frac{\pi}{2}[\to\mathbb{R}$ est une bijection. Sa bijection réciproque est la fonction arctangente:

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}, +\frac{\pi}{2}[$$

$$\tan\left(\arctan(x)\right) = x \quad \forall x \in \mathbb{R}$$
$$\arctan\left(\tan(x)\right) = x \quad \forall x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$$

Si
$$x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$$
 $\tan(x) = y \iff x = \arctan y$

$$\arctan'(x) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R}$$

1.3 Fonctions hyperboliques et hyperboliques inverses

Pour $x \in \mathbb{R}$, le *cosinus hyperbolique* est :

$$ch x = \frac{e^x + e^{-x}}{2}$$

La restriction $ch_1: [0, +\infty[\to [1, +\infty[$ est une bijection. Sa bijection réciproque est Argch: $[1, +\infty[\rightarrow [0, +\infty[$.

Pour $x \in \mathbb{R}$, le *sinus hyperbolique* est :

$$sh x = \frac{e^x - e^{-x}}{2}$$

 $sh:\mathbb{R}\to\mathbb{R}$ est une fonction continue, dérivable, strictement croissante vérifiant $\lim_{x\to-\infty} \sinh x = -\infty$ et $\lim_{x\to+\infty} \sinh x = +\infty$, c'est donc une bijection. Sa bijection réciproque est Argsh : $\mathbb{R} \to \mathbb{R}$.

Proposition.

- $-- \cosh^2 x \sinh^2 x = 1$
- Cli $x = \sin x 1$ ch' $x = \sin x$, sh' $x = \cot x$ Argsh: $\mathbb{R} \to \mathbb{R}$ est strictement croissante et continue. Argsh est dérivable et Argsh' $x = \frac{1}{\sqrt{x^2 + 1}}$.
- $--\operatorname{Argsh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$

Par définition la *tangente hyperbolique* est :

$$th x = \frac{sh x}{ch x}$$

La fonction th : $\mathbb{R} \to]-1,1[$ est une bijection, on note Argth : $]-1,1[\to \mathbb{R}$ sa bijection réciproque.