

iSCALARE

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

Общие вопросы моделирования: требования, терминология

Евгений Юлюгин

yulyugin@gmail.com

На прошлой лекции:

Симуляторы изменили принципы проектирования вычислительных систем

Они стали незаменимы при совместной разработке аппаратуры и ПО

Вопросы:

Зачем нужна симуляция?

Чем симуляция отличается от эмуляции?

Что нужно моделировать?

Компьютеры позволили нам решать многие проблемы, которых до момента их создания не существовало

Главная «фишка» моделирования – частичное устранение сложности изучаемой системы, связанной с теми её аспектами функционирования, которые нас не интересуют

Однако, сами симуляторы как программы обладают своими особенностями, которые приходится преодолевать

Требования к симуляторным решениям

Точность

Скорость

Совместимость со сторонними системами

Способность решать задачу пользователя

Точность

- Точность должна быть достаточной для выполнения целей, поставленной перед моделью
- Излишняя точность => медленная работа, дольше разработка, больше ошибок

Точность

- Функциональная точность модель отвечает на внешние воздействия так же, как и реальная система
- Точность предсказаний получаемые качественные/количественные характеристики адекватны реальности

Откуда берутся данные для создания модели

- Есть спецификации => создаётся модель, удовлетворяющая им
- Есть модель для «предыдущего» устройства => она модифицируется под новую спецификацию
- Иногда приходится писать модель устройства с помощью «reverse engineering» анализа

Как проверить корректность модели?

- Функциональная корректность программа бежит и не падает
 - «Только в наших мечтах, мистер Вигглз»
- Сравнение с другой моделью того же устройства
 - Функциональная модель vs потактовая
 - Разные поколения одной модели
- Сравнение с реальной аппаратурой
 - Если она уже существует

На чём проверять корректность модели

- Полноплатформенный симулятор на загрузке ОС
- Симулятор уровня приложения на работе приложений
- Оба варианта (или неполные модели) на трассах приложения (историях событий: чтение/запись в память, внешние прерывания и т.д.). При этом ищутся отличия в эволюции состояния модели

Как **верифицировать** корректность модели?

- Формальная верификация строгое доказательство, что система функционирует согласно спецификации
- Требует исследования всех сценариев функционирования системы
- Пример: инструкция IA-32 длиной до 15 байт => требуется перебрать 2^120 комбинаций входных последовательностей

1. Относительная скорость симуляции относительно реального исполнения системы

- Применима, если есть реальная система, с которой проводится сравнение
- Специальный случай «целевая архитектура == хозяйская» (target == host)
- Чаще всего модель исполняется медленнее реальной аппаратуры

1. Относительная скорость симуляции относительно реального исполнения системы

Относительное замедление	Тип модели
15	Функциональная, использующая аппаратное ускорение
1100	Функциональная, с двоичной трансляцией
1001000	Функциональная, с интерпретацией
10000100000	Потактовая

- 2. MIPS mega instructions per second
- Под инструкциями понимаются моделируемые инструкции
- Позволяет сравнивать исполнение симулятора на различных этапах его работы
- Позволяет сравнивать симуляторы между собой

Пример: загрузка Linux

OC Red Hat Enterprise Linux 5 (64 бит)

Симулятор Wind River Simics 4.6

Как повысить скорость симулятора?

Это мы будем обсуждать на многих последующих занятиях ©

Эффективная симуляция, эффективные простои, аппаратная поддержка, параллельное исполнение...

Совместимость

- Существует множество утилит, программ и форматов, знакомых пользователям, и которыми они хотели бы продолжать пользоваться в дальнейшем
 - Отладчики, среды разработки, анализаторы трасс, ...
 - Форматы: образы дисков, трасс, содержимого памяти...
- Ожидаемые от симулятора возможности
 - Автоматизация/расширяемость с помощью динамических языков: Perl, Python, ...
 - Автоматическая/фоновая работа без человеческого вмешательства: без GUI, регулярное тестирование, ...

Итоги

Точность

Скорость

Расширяемост ь

Совместимость

Все материалы курса выкладываются на сайте лаборатории: http://iscalare.mipt.ru/material/course_materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, являются собственностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

малоразмерных структур

