Aprendizaje por refuerzo

Clase 17: Control óptimo

Antes de empezar

- Dudas
 - Tarea 3
 - Examen
 - Proyecto

Tarea 4

• Implementación de

- (40 puntos) A3C
- (20 puntos) Optimización de parámetros con SMAC3 (https://github.com/automl/SMAC3)
- (50 puntos extra) Alguno de los métodos Bayesianos
- (50 puntos extra) I2A
- (50 puntos extra) Colonia de hormigas + TSP
- (100 puntos extra) Deep RL + TSP

Problemas

- (40 puntos) SpaceInvaders
- (25 puntos extra) Flappy bird https://github.com/markub3327/flappy-bird-gymnasium
- (25 puntos extra) Connect 4 con self play https://pettingzoo.farama.org/environments/classic/connect_four/
- (25 puntos extra) Vehículos autónomos https://aws.amazon.com/es/deepracer/
- (25 puntos extra) Trading https://github.com/tensortrade-org/tensortrade

Para el día de hoy...

- Control óptimo
- LQR
- Conducción automática

¿Ayuda saber la dinámica del sistema?

- A menudo si conocemos la dinámica del sistema
 - Juegos
 - Sistemas sencillos de modelar
 - Simulaciones de ambientes
- También podemos aprender la dinámica
 - Identificación de sistemas
 - Aprendizaje

El caso determinista y el estocastico

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{a}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

$$p_{\theta}(\mathbf{s}_1, \dots, \mathbf{s}_T | \mathbf{a}_1, \dots, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} E\left[\sum_t r(\mathbf{s}_t, \mathbf{a}_t) | \mathbf{a}_1, \dots, \mathbf{a}_T\right]$$

Las opciones

Empecemos con planeación de lazo abierto

• Optimización estocástica

$$a_1, \dots, a_T = \arg \max_{a_1, \dots, a_T} J(a_1, \dots, a_T)$$

$$A = \arg \max_{A} J(A)$$

- Solución ingenua
 - Elegir $A_1, ..., A_N$ de alguna distribución
 - Elegir A_i basado en arg $\max J(A_i)$

Otras alternativas

Métodos

- Método de entropía cruzada
- CMA-ES
- Evolución diferencial
- Algoritmo evolutivos

Ventajas

- Muy rápido si es posible paralelizar
- Métodos muy simples

Desventajas

- Sufren de la maldición de la dimensionalidad
- Solo para planeación de lazo abierto

Optimización de trayectorias con derivadas

- $\min_{u_1,\dots,u_T} \sum_{t=1}^T c(x_t, u_t) \ s.t. x_t = f(x_{t-1}, u_{t-1})$
- Diferenciar usando via backpropagation y optimizar
- Es necesario $\frac{df}{dx_t}$, $\frac{df}{du_t}$, $\frac{dc}{dx_t}$, $\frac{dc}{du_t}$
- En la practica, ayuda usar métodos de segundo orden

 \mathbf{s}_t – state

 \mathbf{a}_t – action

 \mathbf{u}_t – action

Método de shooting: optimizar acciones

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2))$$

Método de colocación: optimizar acciones y estados

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T,\mathbf{x}_1,\dots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

Caso lineal: LQR (1)

$$\min_{\mathbf{u}_{1},...,\mathbf{u}_{T}} c(\mathbf{x}_{1},\mathbf{u}_{1}) + c(f(\mathbf{x}_{1},\mathbf{u}_{1}),\mathbf{u}_{2}) + \cdots + c(f(f(\mathbf{x}_{1},\mathbf{u}_{1}),\mathbf{u}_{T}))$$

$$f(\mathbf{x}_{t},\mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t} \qquad c(\mathbf{x}_{t},\mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t}$$

Caso lineal: LQR (2)

$$\min_{\mathbf{u}_{1},...,\mathbf{u}_{T}} c(\mathbf{x}_{1}, \mathbf{u}_{1}) + c(f(\mathbf{x}_{1}, \mathbf{u}_{1}), \mathbf{u}_{2}) + \cdots + c(f(f(\mathbf{x}_{1}, \mathbf{u}_{1}), \mathbf{u}_{T})) \\
c(\mathbf{x}_{t}, \mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t} \qquad \text{only term that depends on } \mathbf{u}_{T} \\
f(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t} \\
\text{Base case: solve for } \mathbf{u}_{T} \text{ only} \qquad \mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} & \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \end{bmatrix} \\
Q(\mathbf{x}_{T}, \mathbf{u}_{T}) = \mathbf{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{c}_{T} \qquad \mathbf{c}_{T} = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_{T}} \\ \mathbf{c}_{\mathbf{u}_{T}} \end{bmatrix} \\
\nabla_{\mathbf{u}_{T}} Q(\mathbf{x}_{T}, \mathbf{u}_{T}) = \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} \mathbf{x}_{T} + \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{u}_{T} + \mathbf{c}_{\mathbf{u}_{T}}^{T} = 0 \\
\mathbf{K}_{T} = -\mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}}^{-1} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} \\
\mathbf{u}_{T} = -\mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}}^{-1} \mathbf{c}_{\mathbf{u}_{T}} \mathbf{c}_{\mathbf{u}_{T}} \mathbf{c}_{\mathbf{u}_{T}} \\
\mathbf{u}_{T} = -\mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}}^{-1} \mathbf{c}_{\mathbf{u}_{T}} \mathbf{c}_{\mathbf{u}_$$

14

Caso lineal: LQR (3)

$$Q(\mathbf{x}_{T}, \mathbf{u}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$
Since \mathbf{u}_{T} is fully determined by \mathbf{x}_{T} , we can eliminate it via substitution!
$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

$$V(\mathbf{x}_{T}) = \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{c}_{\mathbf{u}_{T}} + \mathbf{const}$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{V}_{T} \mathbf{x}_{T} + \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{k}_{T} + \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T}$$

$$\mathbf{V}_{T} = \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} + \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T} + \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{x}_{T}} + \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{K}_{T}$$

$$\mathbf{v}_{T} = \mathbf{c}_{\mathbf{x}_{T}} + \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \mathbf{k}_{T} + \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \mathbf{k}_{T}$$

 $\mathbf{u}_T = \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \qquad \qquad \mathbf{K}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1} \mathbf{C}_{\mathbf{u}_T,\mathbf{x}_T} \qquad \qquad \mathbf{k}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1} \mathbf{c}_{\mathbf{u}_T}$

Caso lineal: LQR (4)

Solve for
$$\mathbf{u}_{T-1}$$
 in terms of \mathbf{x}_{T-1}
$$\mathbf{u}_{T-1}$$
 affects \mathbf{x}_{T} !
$$f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{x}_{T} = \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \mathbf{f}_{T-1}$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{V}_{T} \mathbf{x}_{T} + \mathbf{x}_{T}^{T} \mathbf{v}_{T}$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{f}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{v}_{T}$$

$$quadratic$$

Caso lineal: LQR (5)

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$$

$$V(\mathbf{x}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \underbrace{\mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1}}_{\mathbf{quadratic}} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \underbrace{\mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1}}_{\mathbf{linear}} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \underbrace{\mathbf{F}_{T-1}^T \mathbf{v}_T \mathbf{f}_{T-1}}_{\mathbf{linear}} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \underbrace{\mathbf{F}_{T-1}^T \mathbf{v}_T \mathbf{f}_{T-1}}_{\mathbf{linear}} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$Q_{T-1} = \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1}$$

$$\mathbf{q}_{T-1} = \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{v}_T$$

$$\nabla_{\mathbf{u}_{T-1}} Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} \mathbf{x}_{T-1} + \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{q}_{T-1}$$

$$\mathbf{k}_{T-1} = -\mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}}^{-1} \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}}$$

$$\mathbf{k}_{T-1} = -\mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}}^{-1} \mathbf{q}_{\mathbf{u}_{T-1}}$$

El algoritmo

Backward recursion

for
$$t = T$$
 to 1:

$$\mathbf{Q}_{t} = \mathbf{C}_{t} + \mathbf{F}_{t}^{T} \mathbf{V}_{t+1} \mathbf{F}_{t}$$

$$\mathbf{q}_{t} = \mathbf{c}_{t} + \mathbf{F}_{t}^{T} \mathbf{V}_{t+1} \mathbf{f}_{t} + \mathbf{F}_{t}^{T} \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_{t}, \mathbf{u}_{t}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{Q}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{q}_{t}$$

$$\mathbf{u}_{t} \leftarrow \operatorname{arg min}_{\mathbf{u}_{t}} Q(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{K}_{t} \mathbf{x}_{t} + \mathbf{k}_{t}$$

$$\mathbf{K}_{t} = -\mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}}^{-1} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{x}_{t}}$$

$$\mathbf{k}_{t} = -\mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}}^{-1} \mathbf{Q}_{\mathbf{u}_{t}}$$

$$\mathbf{V}_{t} = \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{u}_{t}} \mathbf{K}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{x}_{t}} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}} \mathbf{K}_{t}$$

$$\mathbf{v}_{t} = \mathbf{q}_{\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{u}_{t}} \mathbf{k}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}} \mathbf{k}_{t}$$

$$\mathbf{V}(\mathbf{x}_{t}) = \operatorname{const} + \frac{1}{2} \mathbf{x}_{t}^{T} \mathbf{V}_{t} \mathbf{x}_{t} + \mathbf{x}_{t}^{T} \mathbf{v}_{t}$$

Forward recursion

for
$$t = 1$$
 to T :

$$\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

Dinámica estocástica

$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}$$

$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t})$$

$$p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t}) = \mathcal{N} \left(\mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}, \Sigma_{t} \right)$$

- Solución: elegir las acciones de acuerdo con $u_t = K_t x_t + k_t$
- $x_t \sim p(x_t)$

Caso no lineal: LQR iterativo (1)

Linear-quadratic assumptions:

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t \qquad c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Can we approximate a nonlinear system as a linear-quadratic system?

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$c(\mathbf{x}_t, \mathbf{u}_t) \approx c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

Caso no lineal: LQR iterativo (2)

$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$c(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}^{T} \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}}^{2} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$\bar{f}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} \qquad \bar{c}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t}$$

$$\nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t})$$

$$\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$$
$$\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$$

Caso no lineal: LQR iterativo (3)

until convergence:

$$\mathbf{F}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{c}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{C}_t = \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$

Run forward pass with real nonlinear dynamics and $\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Un ejemplo

Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov University of Washington

```
every time step:
observe the state \mathbf{x}_t
use iLQR to plan \mathbf{u}_t, \dots, \mathbf{u}_T to minimize \sum_{t'=t}^{t+T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'})
execute action \mathbf{u}_t, discard \mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+T}
```

Otro ejemplo

Modelemos

Segundo intento

Ya casi...

¡Listo!

¡Listo!

- Donde $x = (p_1, p_2, \Theta, v_y, r)^T$ es el estado que consiste:
 - p_1, p_2 , la posición
 - ullet Θ , el ángulo entre el eje horizontal y longitudinal
 - v_y , la velocidad lateral
 - r, la relación de giro

Optimización dinámica

- En cada momento las condiciones iniciales cambian
- Para eso usamos modelo predictivo basado en modelo explicito (MPC)
- El problema se resuelve para un horizonte de predicción de tiempo finito $t_{\it p}$
- Se hace $t_e=t_0+t_p$. Se aplica una parte $t_c \leq t_p$ al sistema y se resuelve de nuevo para un nuevo horizonte de tiempo
- La nueva solución debe ser encontrada en t_c

La formulación completa

- Los objetivos del problema son:
 - distancia *d* al centro del carril
 - distancia recorrida en la pista γ
- Los parámetros son $x_0 = (v_y, r, \xi, d, \kappa)^T$
- $\min_{u \in \mathcal{X}} \sup_{\alpha \in \mathcal{U}} \hat{J}(u, x_0 + \alpha)$
- s.a.
 - $\sup_{\alpha \in \mathcal{U}} d + \alpha \le d_{max}$

El modelo propuesto

- El marco de trabajo se divide en dos partes
 - Fase fuera de línea
 - Fase en línea

Optimización fuera de línea

Algorithm 1 Offline phase

Require: Lower and upper bounds $x_{0,\min}, x_{0,\max} \in \mathbb{R}^{n_x}$.

- 1: Dimension reduction: decrease dimension of the parameter $x_0 \in \mathbb{R}^{n_x}$, to $\tilde{x}_0 \in \mathbb{R}^{\tilde{n}_x}$ by exploiting the symmetry group G.
- 2: Construction of library: create an \tilde{n}_x -dimensional grid \mathcal{L} for the parameter \tilde{x}_0 between $\tilde{x}_{0,\min}$ and $\tilde{x}_{0,\max}$ with δ_i points in the i^{th} direction. This results in $N = \prod_{i=1}^{\tilde{n}_x} \delta_i$ parameters.
- 3: Compute the efficient sets $\mathcal{R}_{\tilde{n}_x}$ for all $\tilde{n}_x \in \mathcal{L}$

Algorithm 2 $A := ArchiveUpdate\mathcal{R} (P, A_0)$

```
Require: population P, archive A_0

Ensure: updated archive A

1: A := A_0

2: for all p \in P do

3: if \not\exists a \in A : \hat{J}_{\mathcal{Z}}(\tilde{x}_0, a) \subseteq \hat{J}_{\mathcal{Z}}(\tilde{x}_0, p) - \mathbb{R}^k_{\succeq} then

4: A := A \cup \{p\}

5: end if

6: for all a \in A do

7: if \hat{J}_{\mathcal{Z}}(\tilde{x}_0, p) \subseteq \hat{J}_{\mathcal{Z}}(\tilde{x}_0, a) - \mathbb{R}^k_{\succeq} then

8: A := A \setminus \{a\}

9: end if

10: end for
```

Optimización en línea

• Método de punto de referencia para uMOPs $\min_{x \in \mathcal{X}} d_H \left(\max_{\xi \in \mathcal{U}} \{F(x,\xi)\}, R \right)$

Donde $R \in \mathbb{R}^k$ y d_H es la distancia de Hausdorff

Parámetros del estudio

- Se resolvió una familia de 223,587 MOPs resultante de la discretización de x_0 utilizando cómputo paralelo
- Se utilizaron seis pistas inspiradas por el mundo real
- Se comparó el enfoque con otros del estado del arte

Un experimento

Comparación I

- 1. Online/offline: no considera incertidumbre
- 2. SBR Online/offline: incertidumbre e interpolación
- 3. SBR d_H -RPM: resuelve el problema en cada paso
- 4. Hybrid: combina 2 y 3

Comparación II

Señal de control.

Distancia al centro del carril.

Distancia recorrida.

Resultados

Method	Test	Alastaro	Abudhabi	Catalunya	Melburne	Mexico
Opt Off/on	88.05	50.25	119.4	128.7	141.75	85.2
SBR Off/on	91.95	47.25	121.8	133.2	145.5	84.6
$SBR-d_H-RPM$	88.95	45.75	118.5	129.6	141.45	82.05
Hybrid	88.95	45.6	117.6	129.15	141.45	81.9

Figura 1: tiempo por vuelta en segundos.

Method	Test	Alastaro	Abudhabi	Catalunya	Melburne	Mexico
Opt Off/on	5484.4	2357.1	5903	6625.7	8131.8	3617.3
SBR Off/on	1231.6	832.55	1953.2	2068.9	2067.7	1430.1
$SBR-d_H-RPM$	307.42	320.42	715.08	783.38	635.91	546.54
Hybrid	284.39	308.56	672.42	644.01	660.96	514.7

Figura 2: distancia al centro del carril.

Para saber más...

INTERNATIONAL JOURNAL OF

Robust and Nonlinear Control

RESEARCH ARTICLE

Explicit multiobjective model predictive control for nonlinear systems under uncertainty

Carlos I. Hernández Castellanos ⋈, Sina Ober-Blöbaum, Sebastian Peitz

First published: 16 September 2020 | https://doi.org/10.1002/rnc.5197

Funding information: Consejo Nacional de Ciencia y Tecnología, 711172; Deutsche Forschungsgemeinschaft, 1962

Para la otra vez...

- Examen
- Vacaciones
- •
- Teoría

