Lauren Fromm 404751250

Lab 5 Log

First, I need to create the tr2b.c file \$ touch tr2b.c

Inside this file, I first check that there is a correct amount of arguments inputted (3). Then, I make sure that the 'from' argument and the 'to' argument are the same length. Then, I need to make sure that none of the characters in the 'from' argument are repeated, so I go through every character and check that it has not already been listed. After all my checks, I can go through every character of the input file using getchar(), and if it matches one of the characters in the 'from' argument, I replace it with the character that it correlates to in the 'to' argument. I output the everything with putchar().

Next, I create my tr2u.c file:
\$ touch tr2u.c

I use the same logic when creating this file, except I need to use read and write.

I go through every character of the input file using a while loop that reads a character every time. When I go through every character of the input file, I put each character in an array and then test it to see if it needs to be replaced. If it does needd to be replaced, I use write to write it out to output.

To get a big file, I use: \$ head --bytes=5000000 /dev/urandom > output.txt which puts a 5,000,000 byte file into output.txt

I want to use the strace command to find out what system call each file uses. I use the -c flag to show time, calls, and errors for each system call and report a summary on program exit. I first copy one file to another by outputting the final result into files called outputtr2u and outputtr2b.

My strace command then looks like:
\$ strace -c ./tr2b 'ab' 'yz' < output.txt > outputtr2b

1. 1. 1.		
which	Authute	
WIIICII	outputs	

% time	seconds	usecs/call	calls	errors	syscall
0.00	0.000000	0			read
0.00	0.000000	0	1		write
0.00	0.000000	0	2		open
0.00	0.000000	0	2		close
0.00	0.000000	0	4		fstat
0.00	0.000000	0	9		mmap
0.00	0.000000	0	4		mprotect
0.00	0.000000	0	1		munmap
0.00	0.000000	0	1		brk
0.00	0.000000	0	1	1	access
0.00	0.000000	0	1		execve
0.00	0.000000	0	1		arch_prctl
100.00	0.000000			1	total

I then run the command with the unbuffered file:

\$ strace -c ./tr2u 'ab' 'yz' < output.txt > outputtr2u
which outputs:

% time	seconds	usecs/call	calls	errors	syscall
54 . 96	21.183129	4	5000000		write
45.03	17.356050	3	5000002		read
0.00	0.000059	8	7		mmap
0.00	0.000027	7	4		mprotect
0.00	0.000014	7	2		open
0.00	0.000010	10	1		munmap
0.00	0.000007	4	2		close
0.00	0.000007	7	1	1	access
0.00	0.000007	7	1		execve
0.00	0.000006	3	2		fstat
0.00	0.000004	4	1		brk
0.00	0.000003	3	1		arch_prctl
100.00	38.539323		10000024	1	total

The unbuffered version that uses read and write has a lot more system calls than the buffered putchar and getchar file. Because of this, tr2u uses a lot more time.

If i want the output to be directly copied into terminal,
I delete the > outputtr2b and > outputtr2u:
\$ strace -c ./tr2b 'ab' 'yz' < output.txt</pre>

Which gives:

time	seconds	usecs/call	calls	errors	syscall
0.00	0.000000	0	2		read

100.00	0.000000		30	1 total
0.00	0.000000 	0 	1 	arch_prctl
0.00	0.000000	0	1	execve
0.00	0.000000	0	1	1 access
0.00	0.000000	0	1	brk
0.00	0.000000	0	1	munmap
0.00	0.000000	0	4	mprotect
0.00	0.000000	0	9	mmap
0.00	0.000000	0	4	fstat
0.00	0.000000	0	2	close
0.00	0.000000	0	2	open
0.00	0.000000	0	2	write

Then I do the same for the tr2u: \$ strace -c ./tr2u 'ab' 'yz' < output.txt

There is a very long list of random characters outputted and then the final summary:

time	seconds	usecs/call	calls	errors	syscall
54.41	22.161857	4	 5000000		write
45.59	18.569249	4	5000002		read
0.00	0.000000	0	2		open
0.00	0.000000	0	2		close
0.00	0.000000	0	2		fstat
0.00	0.000000	0	7		mmap
0.00	0.000000	0	4		mprotect
0.00	0.000000	0	1		munmap
0.00	0.000000	0	1		brk
0.00	0.000000	0	1	1	access
0.00	0.000000	0	1		execve
0.00	0.000000	0	1		arch_prctl
100.00	40.731106		10000024	1	total

Again, the unbuffered file has a significantly more amount of system calls than the buffered file. The reason for this is that the unbuffered file is making a system call everytime it has to read or write a byte, and since the file is so huge, theres an obvious discrepency between the two files.

```
I then use the time command to see the different times each file has. $ time ./tr2b 'ab' 'yz' < output.txt which outputs: real 0m0.002s user 0m0.000s sys 0m0.001s
```

```
$time ./tr2u 'ab' 'yz' < output.txt
which outputs a long list of random characters and then:
real 0m5.167s
user 0m0.317s
sys 0m4.814s</pre>
```

The unbuffered version again takes a lot longer than the buffered version to execute.