

Higher order BVP:-

$$\frac{d^3y}{dx^2} + A(x) \frac{d^2y}{dx^2} + B(x) \frac{dy}{dx} = + C(x) y = D(x),$$

Well-posed BVP.

$$y_{i}^{"} = (y_{i}^{"})' = y_{i+1}^{"} - y_{i-1}^{"} = \frac{1}{2h^{3}} \left[y_{i} - 2y_{i+1} + y_{i-1} + 2y_{i-1} \right]$$

$$y_{i}^{"} = y_{i+1}^{"} - y_{i+1}^{"} + y_{i-1}^{"} +$$

$$y_{i}^{"} = \frac{1}{2h^{3}} \left[y_{i+2} - 2y_{i+1} + 2y_{i-1} - y_{i-2} \right] + O(h^{2}).$$

Disculative the ODE:

$$\frac{1}{2h^{3}} \left[y_{i+2} - 2y_{i+1} + 2y_{i-1} - y_{i-2} \right] + A_{i} \left(\frac{y_{i+1} - 2y_{i} + y_{i-1}}{2h^{2}} \right)$$

Unknown y! are y 1 y 31 - ... y -> n unknowns.

$$\frac{-3y_0 + 4y_1 - y_2}{2h} = y_a' - (i) \frac{3y_n - 4y_{m_1} + y_{n-2}}{2h} = y_b' - (ii)$$

$$(n-3)+2=n-1$$
 eqn. unvolving n unknowns.
(Not a compact system.)

System (x) is not a tridiagonal system. Very imp. property.

(it's very fast of compute)

Let
$$z = \frac{dy}{dx}$$
 (a)

$$\frac{d^{2}z}{dx^{2}} + A(x) dz + B(x) z + C(x) y = D(x) - (b)$$

Egn. (a) and (b) are compled egn.

Integrate (a) blu xi-1 to xi to get.

J dy - J 2 dx = 0

apply trapezoidal formula

 $y_{i} - y_{i-1} - \frac{S_{x}}{2} \left[z_{i} + z_{i-1} \right] + o(h^{3}) = 0$ $h = S_{x} = \chi_{i}$

which is the discretization of (a).

as no local derivatives are involved.

Use Central difference Schame to discustize (b).

 $\frac{Z_{i+1}-2z_i+Z_{i-1}}{h^2}$ + A; $\frac{Z_{i+1}-Z_{i-1}}{2h}$ + B; $\frac{Z_{i}+C_i}{J_i}$ = Di $\frac{L^2}{J_i}$

i=1,2,3,..., n-1

The eqn. (i) & (ii) are clinear algebraic eqn for y; and Z:

B.C.s. , yo= ya 1 70= ya 1 2n= yb

System of eqn. (i) & (ii) forms. (n-1) + (n-1) = 2n-2. = 2(n-1) egn. involving y 11/21 -- 1/2 n-1 & 21, 22, - 12 n-1 i.e. of

2(n-1) unknowns. Thus, the system is compact.

Let, Xi = (yi) is the vector of unknown at xi.

Find, Xi i=1,2,3,-..n-1.

Combine eqn. (i) & (ii) unto a matrix form as

Q; \$\bar{\alpha} \times \; + \bar{\alpha} \times \; + \bar{\alpha} \times \; \times \;

	classmate
	Date Page
	T [
	$X^{T} = \begin{bmatrix} X_1 & X_2 - \cdots & X_{n-1} \end{bmatrix}$
	A= [bi c 0 0] A le called block tri-diagonal
	as 62 C2 O matrix with that, the system of
	matrix eqn (x) can be expressed
·	
	$D = \frac{\omega_0 - \omega_1 x_0}{2}$
<u>-</u>	A is a buck m-alagonal matrix
·~	whose elements are matrices a; b1, c1.
^	Par the black As a Charky
,	For the block system, we apply an algo to reduce to the following
<u></u>	2 ci 0 0 0 X1 di
-	0 I C2 0 0 X2 d'2
	0 1
-	
	T Xm
	Block-elinination algorithm.
	agorithm.
9.7	y" + 4y" + y' - 6y = 1 0 < x < 1
- Different	b.c. y(0) = 0 y'(0) = 0 y'(1) = 0
Different - Hypes of - Cs.	b.c. $y'(0) = 0$ $y'(1), y(1) = \alpha$.
- B.C.	

$$\frac{dy}{dx} = \frac{z}{2} \qquad \text{(Fry to find a compact set of of size}$$

$$3i + \frac{1}{2} = \frac{1}$$

and,

We will vary $i = 1, 2, 3, \dots, m-1$. So, n-1 eq. $x_1 = \begin{pmatrix} y_1 \\ z_1 \end{pmatrix} + x_2 = \begin{pmatrix} y_2 \\ z_2 \end{pmatrix} + \dots + x_{n-1} = \begin{pmatrix} y_{n-1} \\ z_{n-1} \end{pmatrix}$

So, n-1 variables

	Class	smate	
0	Date	- wice	<u></u>
C	Page		0

We get a compact system.	n-1 eggs	and n-	t variables.
Block - tri-diagonal form,		1 x n -1)	natrix.
			TA I

ļ		\$2000 pt 12 1 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1
	A =	bi CI O O O Remark:
		to as, in Cn place of you
	Alam	us 0, we can take
		any bong arbitrary choice
	D, =	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

$$9.7 \quad y^{(4)} + 81y = 81x^2$$
 , $0 < 2 < 1$

$$z'' + 81y = 81x^2 - 2$$

$$\frac{a_i \times_{i+1} + b_i \times_i + c_i \times_{i+1} = d_i}{a_i \times_{i+1} = d_i} \times_{i=1} \times_{i=1}$$

$$a_{i} = \frac{1}{h^{2} \cdot (0)} \cdot 0 \quad b_{i} = \frac{-2}{h^{2}} \cdot \frac{-1}{h^{2}} \cdot \frac{-1}{h^{$$

$$\frac{C_1}{0} = \begin{pmatrix} \frac{1}{h^2} & 0 \\ 0 & \frac{1}{h^2} \end{pmatrix}$$

$$\frac{d_1}{d_1} = \begin{pmatrix} 0 \\ 81x^2 \end{pmatrix}$$

