

Rec'd PCT/PTO 06 FEB 2006
10/516803

SEQUENCE LISTING

<110> Allan, Bernard
Lavan, Brian
Moodie, Shonna
Waters, Steve
Wong, Chi-Wai
Metabolex, Inc.

<120> Methods of Diagnosing & Treating Diabetes and Insulin Resistance

<130> 016325-013800US

<140> US 10/516,803
<141> 2004-12-02

<150> US 60/385,996
<151> 2002-06-04

<150> US 60/386,113
<151> 2002-06-04

<150> US 60/386,812
<151> 2002-06-06

<150> US 60/386,935
<151> 2002-06-06

<150> US 60/386,956
<151> 2002-06-06

<150> US 60/386,958
<151> 2002-06-06

<150> US 60/387,038
<151> 2002-06-06

<150> WO PCT/US03/17941
<151> 2003-06-04

<160> 36

<170> PatentIn Ver. 2.1

<210> 1
<211> 1426
<212> DNA
<213> Homo sapiens

<220>
<223> human purinergic receptor P2Y, G-protein coupled 1
(P2RY1) cDNA

<220>
<221> CDS
<222> (47)..(1168)
<223> P2RY1

<400> 1
ccgcctccta cccctcgag ccggcgctta agtcgaggag gagagaatga ccgaggtgct 60

gtggccggct gtccccaaacg ggacggacgc tgccttcctg gccggtccgg gttcgtcctg 120
 gggaaacagc acggtcgcct ccactgccgc cgctcctcg tcgttcaaatt gcgccttgcac 180
 caagacgggc ttccagttt actacctgcc ggctgtctac atcttggtat tcatcatcg 240
 cttcctgggc aacagcgtgg ccatctggat gttcgtctc cacatgaagc cctggagcgg 300
 catctccgtg tacatgttca atttggtctt ggccgacttc ttgtacgtgc tgactctgcc 360
 agccctgatc ttctactact tcaataaaaac agactggatc ttccgggatg ccatgtgtaa 420
 actgcagagg ttcatcttc atgtgaacct ctatggcage atcttggttc tgacatgcat 480
 cagtgcaccc cgg tacagcg gtgtgggtga ccccccctcaag tccctgggccc ggctcaaaaa 540
 gaagaatgcg atctgtatca gcgtgctggt gtggctcatt gtgggtgtgg cgatctcccc 600
 catcctcttc tactcaggtt ccgggggtccg caaaaacaaa accatcacct gttacgacac 660
 cacctcagac gagtacactgc gaagttattt catctacagc atgtgcacga ccgtggccat 720
 gttctgtgtc cccttgggtgc tgattctggg ctgttacggta ttaatttgta gagctttgat 780
 ttacaaagat ctggacaact ctcctctgag gagaaaatcg atttacactgg taatcattgt 840
 actgactgtt tttgcgtgtt ottacatccc ttccatgtg atgaaaacga tgaacttgag 900
 ggcggcgtt gatttcaga ccccaagcaat gtgtgcttc aatgacaggg ttatgccac 960
 gtatcagggtg acaagaggc tagcaagtct caacagttgt gtggacccca ttctcttattt 1020
 ctggcggga gatacttca gaaggagact ctcggagcc acaagggaaag cttctagaag 1080
 aagtgggca aatttgcata ccaagagtgta agacatgacc ctcacatattt tacctgagtt 1140
 caagcagaat ggagatacaa gcctgtgaag gcacaagaat ctccaaacac ctctctgttg 1200
 taatatggta ggtgtttaaa cagaatcaag tactttccc ctctttaact ttcttagttt 1260
 gaaaaaaaaatc aaacccaagaa aatagtgtt taaaaaaaaata atagaagtag aaatgcccac 1320
 atccacactt agcttggttt ggtttgcattt cacagtctctt cttcctctg actagaagta 1380
 tgtataataa aacaatacta cctagttaaa aaaaaaaaaa aaaaaaa 1426

<210> 2
 <211> 373
 <212> PRT
 <213> Homo sapiens

<220>
 <223> human purinergic receptor P2Y, G-protein coupled 1
 (P2RY1)

<400> 2
 Met Thr Glu Val Leu Trp Pro Ala Val Pro Asn Gly Thr Asp Ala Ala
 1 5 10 15

Phe Leu Ala Gly Pro Gly Ser Ser Trp Gly Asn Ser Thr Val Ala Ser
 20 25 30

Thr Ala Ala Val Ser Ser Ser Phe Lys Cys Ala Leu Thr Lys Thr Gly
 35 40 45

Phe Gln Phe Tyr Tyr Leu Pro Ala Val Tyr Ile Leu Val Phe Ile Ile
 50 55 60

Gly Phe Leu Gly Asn Ser Val Ala Ile Trp Met Phe Val Phe His Met
 65 70 75 80

Lys Pro Trp Ser Gly Ile Ser Val Tyr Met Phe Asn Leu Ala Leu Ala
 85 90 95

Asp Phe Leu Tyr Val Leu Thr Leu Pro Ala Leu Ile Phe Tyr Tyr Phe
 100 105 110

Asn Lys Thr Asp Trp Ile Phe Gly Asp Ala Met Cys Lys Leu Gln Arg
 115 120 125

Phe Ile Phe His Val Asn Leu Tyr Gly Ser Ile Leu Phe Leu Thr Cys
 130 135 140

Ile Ser Ala His Arg Tyr Ser Gly Val Val Tyr Pro Leu Lys Ser Leu
 145 150 155 160
 Gly Arg Leu Lys Lys Asn Ala Ile Cys Ile Ser Val Leu Val Trp
 165 170 175
 Leu Ile Val Val Ala Ile Ser Pro Ile Leu Phe Tyr Ser Gly Thr
 180 185 190
 Gly Val Arg Lys Asn Lys Thr Ile Thr Cys Tyr Asp Thr Thr Ser Asp
 195 200 205
 Glu Tyr Leu Arg Ser Tyr Phe Ile Tyr Ser Met Cys Thr Thr Val Ala
 210 215 220
 Met Phe Cys Val Pro Leu Val Leu Ile Leu Gly Cys Tyr Gly Leu Ile
 225 230 235 240
 Val Arg Ala Leu Ile Tyr Lys Asp Leu Asp Asn Ser Pro Leu Arg Arg
 245 250 255
 Lys Ser Ile Tyr Leu Val Ile Val Leu Thr Val Phe Ala Val Ser
 260 265 270
 Tyr Ile Pro Phe His Val Met Lys Thr Met Asn Leu Arg Ala Arg Leu
 275 280 285
 Asp Phe Gln Thr Pro Ala Met Cys Ala Phe Asn Asp Arg Val Tyr Ala
 290 295 300
 Thr Tyr Gln Val Thr Arg Gly Leu Ala Ser Leu Asn Ser Cys Val Asp
 305 310 315 320
 Pro Ile Leu Tyr Phe Leu Ala Gly Asp Thr Phe Arg Arg Arg Leu Ser
 325 330 335
 Arg Ala Thr Arg Lys Ala Ser Arg Arg Ser Glu Ala Asn Leu Gln Ser
 340 345 350
 Lys Ser Glu Asp Met Thr Leu Asn Ile Leu Pro Glu Phe Lys Gln Asn
 355 360 365
 Gly Asp Thr Ser Leu
 370

```

<210> 3
<211> 1293
<212> DNA
<213> Mus musculus

<220>
<223> mouse purinergic receptor P2Y, G-protein coupled 1
      (P2RY1) cDNA

<220>
<221> CDS
<222> (32)..(1153)
<223> P2RY1
  
```

<400> 3
tcttagtagct gcctgagttt gaaagaagag gatgaccgag gtgccttggt cggttgtccc 60
caacgggacg gatgctgcct ttctggcgaa cctgggctcg ctttggggaa acagtactgt 120
cgcctcaact gcagcagttt cctcttcatt ccaatgtgcc ctgaccaaga ccggtttcca 180
gttctactac ctgcccggctg tctacatttt agtgttcatc ataggcttcc taggcaacag 240
cgtggctatc tgatgttcg tttccacat gaagccttgg agccgcattt ccgtgtacat 300
gttcaatttgc gctctggctg actttttgtt tttttttttt tttttttttt tttttttttt 360
ctacttcaac aagactgact ggatcttcgg ggatgctatg tgcacatgttgc agagattcat 420
cttccacgtt aatctctatg gtagcatctt gttcctcacc tgcacatgttgc cacacaggta 480
cagtgccgtg gtgtaccctt tcaagtctctt gggcaggctc aagaagaaga atgcccattt 540
tgtcagcgtg ctgggtgtggc tcattgtggt ggtggccatc tccccctattt tcttctactc 600
tggcactggg actcggaaaa acaaaaactgt cacctgttat gacaccacgt ccaatgatta 660
cctgcgaagt tatttcatct acagttatgtg cacgactgtg gccatgttctt gcatcccttt 720
ggtgcgtatc ttgggtgtttt atggattttt tttttttttt tttttttttt tttttttttt 780
caactctccg ctccggagga aatccatttta cctgggtata attgtcctga cgggttttc 840
tgtgtcttat atcccctttcc atgtgtatgaa aacgtatgtt ttgcgagcac ggttgattt 900
ccagacccca gaaatgtgtg atttcaacga cagggtttat gccacttata aggttaacaag 960
aggtctagca agtctcaaca gctgtgtggc ccccatctt tatttcttgg ctggagatac 1020
attcagaagg agactgtccc gagccaccag gaaagctcc aggaggagtg aggccaattt 1080
acaatccaag agtgaagaaa tgactctcaa tttttgtctt gagttcaagc agaatggaga 1140
cacgagtttgc tgaaggcaccg agatccttagc tcctgagttt tgtaacatgg tcacaagaca 1200
tccctgagat gatctatgca tacacaggta aagaagaagc aacactctat tgacccaaaag 1260
accagtgtgtt gcccacccgt tgagggtttt cct . 1293

<210> 4

<211> 373

<212> PRT

<213> Mus musculus

<220>

<223> mouse purinergic receptor P2Y, G-protein coupled 1
(P2RY1)

<400> 4

Met Thr Glu Val Pro Trp Ser Val Val Pro Asn Gly Thr Asp Ala Ala
1 5 10 15

Phe Leu Ala Gly Leu Gly Ser Leu Trp Gly Asn Ser Thr Val Ala Ser
20 25 30

Thr Ala Ala Val Ser Ser Ser Phe Gin Cys Ala Leu Thr Lys Thr Gly
35 40 45

Phe Gln Phe Tyr Tyr Leu Pro Ala Val Tyr Ile Leu Val Phe Ile Ile
50 55 60

Gly Phe Leu Gly Asn Ser Val Ala Ile Itp Met Phe Val Phe His Met
65 70 75 80

Lys Pro Trp Ser Gly Ile Ser Val Tyr Met Phe Asn Leu Ala Leu Ala
85 90 95

Asp Phe Leu Tyr Val Leu Thr Leu Pro Ala Leu Ile Phe Tyr Tyr Phe
100 105 110

Asn Lys Thr Asp Itp Ile Phe Gly Asp Ala Met Cys Lys Leu Glu Arg
115 120 125

Ile Ser Ala His Arg Tyr Ser Gly Val Val Tyr Pro Leu Lys Ser Leu
 145 150 155 160
 Gly Arg Leu Lys Lys Asn Ala Ile Tyr Val Ser Val Leu Val Trp
 165 170 175
 Leu Ile Val Val Ala Ile Ser Pro Ile Leu Phe Tyr Ser Gly Thr
 180 185 190
 Gly Thr Arg Lys Asn Lys Thr Val Thr Cys Tyr Asp Thr Thr Ser Asn
 195 200 205
 Asp Tyr Leu Arg Ser Tyr Phe Ile Tyr Ser Met Cys Thr Thr Val Ala
 210 215 220
 Met Phe Cys Ile Pro Leu Val Leu Ile Leu Gly Cys Tyr Gly Leu Ile
 225 230 235 240
 Val Lys Ala Leu Ile Tyr Asn Asp Leu Asp Asn Ser Pro Leu Arg Arg
 245 250 255
 Lys Ser Ile Tyr Leu Val Ile Val Leu Thr Val Phe Ala Val Ser
 260 265 270
 Tyr Ile Pro Phe His Val Met Lys Thr Met Asn Leu Arg Ala Arg Leu
 275 280 285
 Asp Phe Gln Thr Pro Glu Met Cys Asp Phe Asn Asp Arg Val Tyr Ala
 290 295 300
 Thr Tyr Gln Val Thr Arg Gly Leu Ala Ser Leu Asn Ser Cys Val Asp
 305 310 315 320
 Pro Ile Leu Tyr Phe Leu Ala Gly Asp Thr Phe Arg Arg Arg Leu Ser
 325 330 335
 Arg Ala Thr Arg Lys Ala Ser Arg Arg Ser Glu Ala Asn Leu Gln Ser
 340 345 350
 Lys Ser Glu Glu Met Thr Leu Asn Ile Leu Ser Glu Phe Lys Gln Asn
 355 360 365
 Gly Asp Thr Ser Leu
 370

<210> 5
 <211> 3204
 <212> DNA
 <213> Rattus norvegicus

<220>
 <223> rat purinergic receptor P2Y, G-protein coupled 1
 (P2RY1) cDNA

 <220>
 <221> CDS
 <222> (620)..(1741)
 <223> P2RY1

<400> 5

gaattcgccg ccgcctgact tcatggactg cgagcgggtt gaaggtagc tccagggtcc 60
gcccccaaga gctctccaa ggctgagtc gggctgagaa tgcggccgga agaagagtgc 120
cgcgcccccc ggtgacggtc cggagttgca agtagggag taggcagatg gccaggcaaa 180
gttgatcgga gcgaggaggt ggttggctg cgccttcggc cgctgagaac cgccggagcta 240
cttggacttg accctactcg ccccagcgct ttgagcagcg cctatctgtc gccctggcg 300
gagcgcactt gcaaacttgg tggaggtgcc ctgcgcgtcc tgggtgtaa cctccgtgcc 360
gccagctgga cccggaaagt gcccggccgt ccttcagctt ggatcggtcg cagccccggg 420
cgaatttcat ggccccgcga caaacgcgcg gccagagccg gtgtggcga gcccccgcgc 480
gctccgaccg gtaggaaact cccgcacgcg gtcctgcgg ctggcccgcc cctccgatgc 540
gchgctgagcc tctcccccagc agctgcctc tcgtcgccgt ctgtcccttc gagtagctgc 600
ctgagttgga aagaagagga tgaccgaggt gccttggtcg gctgtcccca acgggacaga 660
tgctgccttc ctggctggcc tggctccct ttggggaaac agtacaatcg cctcgactgc 720
agcagttcc tcttcattcc gatgtgcctt gatcaagacc ggcttcagg tctactaccc 780
gcctgcggtc tacatcttag tggcatcat aggcttcctt ggcaacagcg tggcaatctg 840
gatgttttgtt ttccacatga agccttggag cggcatctcg gtgtacatgt tcaatttggc 900
tctggccgac ttttgtatg tgctcacccctt accagcttc atcttctact acttcaacaa 960
gactgactgg atcttcgggg atgttatgtg caagctgcag aggttcatct tccatgtaaa 1020
cctctatggc agcatcttg tccctcacctg catcagtgcga cacaggata gttggctgg 1080
gtaccctctc aagtctctgg gcaggctcaa gaagaagaat gccattatg tcagtggtct 1140
ggatggctc attgtgggtt tggccatctc cccattctc ttctactctg gcaactggat 1200
tcggaaaaac aaaactgtca cctgctacga ctccacgtca gatgatggatc tgcaaggtta 1260
ttcatctac agtatgtgcg cgactgtggc catgttctgc atccccctgg tgctgatctt 1320
ggctgttat ggattaattt ttagagcttt gatctacaaa gatctggaca actctccctc 1380
ccggaggaaa tccatttacc tgggtataat tggctgcacg gtgtttgtg tgcgttacat 1440
ccctttccat gtgatgaaaaa gatgatgtt gagggcacgg ctggatttcc agaccccaga 1500
aatgtgtgat ttcaacgaca gggtttatgc caccatctcgtca gtaacaagag gtctagcaag 1560
tctcaacagc tgggtggacc ccattctta tttttggctt ggagatacat tcagaaggag 1620
actgtccccga gccaccaggaa aagcttccag gaggagttag gccaattttac aatccaagag 1680
tgaagaaatg actctcaaca ttttgtctga gttcaaggacg aacggagacaa caagtttg 1740
aaggcaggag atccaagctc ctcagtttgc aacatggtca caagaagtcc ctgagatgac 1800
ctgatgcaca ggtcaagaag aagcaacatt ctatggcca aaagaccagt ttgtgccaca 1860
tgagtaggtt tttcatata atgacagttt tggacatt ttgttggaaag acacctgaaa 1920
ctgtaagatg tagcaagtga ctcttcacac tacaagatg tcttcattcc aagctcaagg 1980
gtttgttttc cttgtgtcta tctgtgtttt attccttaca aagtactgtc tcggactctt 2040
tgatgggtgc tttgaacctg tattgaacgg aaatgataaa ttaagaagaa acttagcaca 2100
caagacagaa ttcaaaattt aaaccgtgtat gtgaccactg agaagacatt tggaagccca 2160
ttcttcattga acagaaaaaa ggcacaggac accaactgtt gatgccatag gtgtgtgg 2220
aagtctgaa aagcaagtgg aactgtttgg aatctgttcc tggcttcctt aggtctctcc 2280
agtcttagtcc ttggagaaaag ttctcaatct ccaccgactg tggacggac aagttgaaaac 2340
ctgttaatct ctgctcaccc aaccaggaca ctaatccatc ttgatatgac aaatatcagt 2400
actcagtagc aactagaattt caatttagtga caggacatag acagtgtgtat acttagaaat 2460
gtgtattgaa gctttcttc cattggtcga atgtaattt tggaaatagta ttatttagaa 2520
gaggtttata ggccttcaga tgtacagatt gtaaaaacttc cttgaagata caacatactg 2580
gtgttaaactc tatttatttga ccagtgcata atgcttcaaa tgatcacatg tatattttac 2640
agtatataata gctagataaa aatgagaattt atatttaaga gtttttttc cagatattag 2700
tatctttgaa cctttaggac cagttgtat ttgaatctga aaagatggaaa atgtgttttc 2760
taacaagggt tttatatttcc ccttagattt aatttgcattt cttcccttgc tgggggttta 2820
ttgcttacccca gatatgattt ggctgtttaga ccatggtaag atttataaca agcataggat 2880
atttttagaca ggttatgtat atgtacattt tattatgtttt tacaatagaa agtttgg 2940
gtcttttcag aaagttttaga gtattgcctt aactatgtat cagcttccac tgccaaaggc 3000
taatggctta tctccatttcc aaaatttattt tagatgtctt gttgggttgg gttagttaga 3060
tacaatgtga gaatgtaaaaa gacaatctt agtgcgtcag ggtgataaaag atgcagctga 3120
tagttttctg ccagatcttgc aagctttaca atgtatattttt ttcttaaggc cacatagttac 3180
aatcttctttt gccccccgcga attc 3204

<210> 6

<211> 373

<212> PRT

<213> Rattus norvegicus

<220>

<223> rat purinergic receptor P2Y, G-protein coupled 1
(P2RY1)

<400> 6

Met Thr Glu Val Pro Trp Ser Ala Val Pro Asn Gly Thr Asp Ala Ala
1 5 10 15

Phe Leu Ala Gly Leu Gly Ser Leu Trp Gly Asn Ser Thr Ile Ala Ser
20 25 30

Thr Ala Ala Val Ser Ser Ser Phe Arg Cys Ala Leu Ile Lys Thr Gly
35 40 45

Phe Gln Phe Tyr Tyr Leu Pro Ala Val Tyr Ile Leu Val Phe Ile Ile
50 55 60

Gly Phe Leu Gly Asn Ser Val Ala Ile Trp Met Phe Val Phe His Met
65 70 75 80

Lys Pro Trp Ser Gly Ile Ser Val Tyr Met Phe Asn Leu Ala Leu Ala
85 90 95

Asp Phe Leu Tyr Val Leu Thr Leu Pro Ala Leu Ile Phe Tyr Tyr Phe
100 105 110

Asn Lys Thr Asp Trp Ile Phe Gly Asp Val Met Cys Lys Leu Gln Arg
115 120 125

Phe Ile Phe His Val Asn Leu Tyr Gly Ser Ile Leu Phe Leu Thr Cys
130 135 140

Ile Ser Ala His Arg Tyr Ser Gly Val Val Tyr Pro Leu Lys Ser Leu
145 150 155 160

Gly Arg Leu Lys Lys Lys Asn Ala Ile Tyr Val Ser Val Leu Val Trp
165 170 175

Leu Ile Val Val Val Ala Ile Ser Pro Ile Leu Phe Tyr Ser Gly Thr
180 185 190

Gly Ile Arg Lys Asn Lys Thr Val Thr Cys Tyr Asp Ser Thr Ser Asp
195 200 205

Glu Tyr Leu Arg Ser Tyr Phe Ile Tyr Ser Met Cys Thr Thr Val Ala
210 215 220

Met Phe Cys Ile Pro Leu Val Leu Ile Leu Gly Cys Tyr Gly Leu Ile
225 230 235 240

Val Arg Ala Leu Ile Tyr Lys Asp Leu Asp Asn Ser Pro Leu Arg Arg
245 250 255

Lys Ser Ile Tyr Leu Val Ile Ile Val Leu Thr Val Phe Ala Val Ser
260 265 270

Tyr Ile Pro Phe His Val Met Lys Thr Met Asn Leu Arg Ala Arg Leu
275 280 285

Asp Phe Gln Thr Pro Glu Met Cys Asp Phe Asn Asp Arg Val Tyr Ala
290 295 300

Thr Tyr Gln Val Thr Arg Gly Leu Ala Ser Leu Asn Ser Cys Val Asp
 305 310 315 320

Pro Ile Leu Tyr Phe Leu Ala Gly Asp Thr Phe Arg Arg Arg Leu Ser
 325 330 335

Arg Ala Thr Arg Lys Ala Ser Arg Arg Ser Glu Ala Asn Leu Gln Ser
 340 345 350

Lys Ser Glu Glu Met Thr Leu Asn Ile Leu Ser Glu Phe Lys Gln Asn
 355 360 365

Gly Asp Thr Ser Leu
 370

<210> 7
 <211> 1003
 <212> DNA
 <213> Homo sapiens

<220>
 <223> human putative tyrosine phosphatase-like, member a
 (PTPLA) cDNA

<220>
 <221> CDS
 <222> (49)..(915)
 <223> PTPLA

<400> 7
 tatacacacgc ccagccagca cccaggtcct tccatccttc tgctgcacat ggggcgcctg 60
 acggaagcgg cggcagcggg cagcggctct cgggctgcag gctgggcagg gtcccctccc 120
 acgctcctgc cgctgtctcc cacgtcccc aggtgcgcgg ccaccatggc gtccagcgac 180
 gaggacggca ccaacggcgg cgcctcggag gccggcgagg accgggaggc tcccgcaag 240
 cggaggcgc c tgggttgtt ggccaccgcc tggctcacct tctacaacat cgccatgacc 300
 gcgggggtggt tggttcttagc tattgccatg gtacgtttt atatggaaaa gggAACACAC 360
 agagggttat ataaaagtat tcagaagaca cttaaatttt tccaaacatt tgccttgctt 420
 gagatagttc actgtttaat tggattgtt cctacttctg tgattgtgac tgggttccaa 480
 gtgagctcaa gaatctttat ggtgtggctc attactcaca gtataaaacc aatccagaat 540
 gaagagatgt tggtgcttt tctggtcgcg tggactgtga cagagatcac tcgctattcc 600
 ttctacacat tcagccttct tgaccacttgc ccatacttca ttaaatggc cagatataat 660
 ttttttatca tcttatatcc tggggagtt gctggtaac ttcttacaat atacgctgcc 720
 ttggcgtagt tgaagaaaac aggaatgtt tcaataagac ttccataacaa atacaatgtc 780
 tcttttgact actattattt tcttcttata accatggcat catataacc tttgttcca 840
 caactctatt ttcatatgtt acgtcaaaga agaaagggtgc ttcatggaga ggtgattgtt 900
 gaaaaggatg attaaatgtat ctctgcaaacc aaggtgttt ttccagaata accaagatta 960
 cctgagtcca agtttaata acaagaataa acaactttgt gaa 1003

<210> 8
 <211> 288
 <212> PRT
 <213> Homo sapiens

<220>
 <223> human putative tyrosine phosphatase-like, member a
 (PTPLA)

<400> 8
 Met Gly Arg Leu Thr Glu Ala Ala Ala Ala Gly Ser Gly Ser Arg Ala
 1 5 10 15
 Ala Gly Trp Ala Gly Ser Pro Pro Thr Leu Leu Pro Leu Ser Pro Thr
 20 25 30
 Ser Pro Arg Cys Ala Ala Thr Met Ala Ser Ser Asp Glu Asp Gly Thr
 35 40 45
 Asn Gly Gly Ala Ser Glu Ala Gly Glu Asp Arg Glu Ala Pro Gly Lys
 50 55 60
 Arg Arg Arg Leu Gly Leu Leu Ala Thr Ala Trp Leu Thr Phe Tyr Asn
 65 70 75 80
 Ile Ala Met Thr Ala Gly Trp Leu Val Leu Ala Ile Ala Met Val Arg
 85 90 95
 Phe Tyr Met Glu Lys Gly Thr His Arg Gly Leu Tyr Lys Ser Ile Gln
 100 105 110
 Lys Thr Leu Lys Phe Phe Gln Thr Phe Ala Leu Leu Glu Ile Val His
 115 120 125
 Cys Leu Ile Gly Ile Val Pro Thr Ser Val Ile Val Thr Gly Val Gln
 130 135 140
 Val Ser Ser Arg Ile Phe Met Val Trp Leu Ile Thr His Ser Ile Lys
 145 150 155 160
 Pro Ile Gln Asn Glu Glu Ser Val Val Leu Phe Leu Val Ala Trp Thr
 165 170 175
 Val Thr Glu Ile Thr Arg Tyr Ser Phe Tyr Thr Phe Ser Leu Leu Asp
 180 185 190
 His Leu Pro Tyr Phe Ile Lys Trp Ala Arg Tyr Asn Phe Phe Ile Ile
 195 200 205
 Leu Tyr Pro Val Gly Val Ala Gly Glu Leu Leu Thr Ile Tyr Ala Ala
 210 215 220
 Leu Pro Tyr Val Lys Lys Thr Gly Met Phe Ser Ile Arg Leu Pro Asn
 225 230 235 240
 Lys Tyr Asn Val Ser Phe Asp Tyr Tyr Tyr Phe Leu Leu Ile Thr Met
 245 250 255
 Ala Ser Tyr Ile Pro Leu Phe Pro Gln Leu Tyr Phe His Met Leu Arg
 260 265 270
 Gln Arg Arg Lys Val Leu His Gly Glu Val Ile Val Glu Lys Asp Asp
 275 280 285

<210> 9

<211> 1079

<212> DNA

<213> Mus musculus

<220>
<223> mouse putative tyrosine phosphatase-like, member a
 (PTPLA) cDNA

<220>
<221> CDS
<222> (117)..(962)
<223> PTPLA

```

<400> 9
ggactttatt caaacccgttg ccaaatgtga ggcggagggg ggtctcaactc tccaataggc 60
atcaaggaca gagtttaagg atgtttggg gacaaagaag acaactgccct tgaggtatgg 120
ggaaagggtga ttggaggcag ggcagagtag agatgccttgc tgcacacgtg agcagacttc 180
ataagacatg cgtagcggttgc cgcgtgcgc tcaccatggc gtccagtgag gaggacggca 240
ccaaacggcgc ctccggaggcc agcgacgaga aggaagccgc cggcaagcgg agacgcctag 300
gcttactggc caccgcctgg ctcacccctt acaatatcgc catgacggcc gggtggttgg 360
ttcttgcata tgctatggta cgctttata tggaaaaagg aacacacaga ggtttatata 420
aaagcattca gaagacactt aagttttcc aaacatttcgc tttgcttgag gtatccatt 480
gtctgatcgg aattgtaccc acttctgtgc ttgtgactgg ggtccaagtg agctcaagaa 540
tcttcatggt gtggctcatt actcacagta taaaaccat ccagaatgaa gagagcgtgg 600
tgcttttctt ggtctcctgg actgtgaccg agatcactcg ctattccttc tacacattca 660
gtctcctcga ccacttgcgg cacttcatta aatggggccag atacaatttgc tttatcatct 720
tatatcccgt tggagttgtc ggggaacttc tcacaatata cgccgccttgc ccttacgtaa 780
agaagtcagg aatgttctca gtacggcttc ccaacaagta caatgtttctt tttgactact 840
actattttctt ttcataaacc atggccttgc atataaccgtt gtttcctcag ctctattttc 900
atatgttacg tcagagaaga aagggtgtcc acggggaggt gatcgccggag aaggacgatt 960
aagtgggtcc cacacacacaag gtgctttttc cagaaaaaacc ggattacttg agtccaagtt 1020
ttaataataa gaataaacga cttcatgaaa taccaaaaaaaaaaaaaaa aaaaaaaaaaa 1079

```

```
<210> 10  
<211> 281  
<212> PRT  
<213> Mus musculus
```

<220>
<223> mouse putative tyrosine phosphatase-like, member a
 (PTPLA)

<400> 10
Met Gly Lys Gly Asp Trp Arg Gln Gly Arg Val Glu Met Pro Cys Ala
1 5 10 15

His Val Ser Arg Leu His Lys Thr Cys Val Gln Val Arg Val Arg Val
20 25 30

Thr Met Ala Ser Ser Glu Glu Asp Gly Thr Asn Gly Ala Ser Glu Ala
35 40 45

Ser Asp Glu Lys Glu Ala Ala Gly Lys Arg Arg Arg Leu Gly Leu Leu
50 55 60

Ala Thr Ala Trp Leu Thr Phe Tyr Asn Ile Ala Met Thr Ala Gly Trp
65 70 75 80

Leu Val Leu Ala Ile Ala Met Val Arg Phe Tyr Met Glu Lys Gly Thr
85 90 95

His Arg Gly Leu Tyr Lys Ser Ile Gln Lys Thr Leu Lys Phe Phe Gln
100 105 110

Thr	Phe	Ala	Leu	Leu	Glu	Val	Val	His	Cys	Leu	Ile	Gly	Ile	Val	Pro
115						120							125		
Thr	Ser	Val	Leu	Val	Thr	Gly	Val	Gln	Val	Ser	Ser	Arg	Ile	Phe	Met
130					135							140			
Val	Trp	Leu	Ile	Thr	His	Ser	Ile	Lys	Pro	Ile	Gln	Asn	Glu	Glu	Ser
145						150				155				160	
Val	Val	Leu	Phe	Leu	Val	Ser	Trp	Thr	Val	Thr	Glu	Ile	Thr	Arg	Tyr
					165				170				175		
Ser	Phe	Tyr	Thr	Phe	Ser	Leu	Leu	Asp	His	Leu	Pro	His	Phe	Ile	Lys
					180			185				190			
Trp	Ala	Arg	Tyr	Asn	Leu	Phe	Ile	Ile	Leu	Tyr	Pro	Val	Gly	Val	Ala
						195		200				205			
Gly	Glu	Leu	Leu	Thr	Ile	Tyr	Ala	Ala	Leu	Pro	Tyr	Val	Lys	Lys	Ser
					210		215				220				
Gly	Met	Phe	Ser	Val	Arg	Leu	Pro	Asn	Lys	Tyr	Asn	Val	Ser	Phe	Asp
					225		230			235			240		
Tyr	Tyr	Tyr	Phe	Leu	Leu	Ile	Thr	Met	Ala	Ser	Tyr	Ile	Pro	Leu	Phe
					245				250			255			
Pro	Gln	Leu	Tyr	Phe	His	Met	Leu	Arg	Gln	Arg	Arg	Lys	Val	Leu	His
					260			265			270				
Gly	Glu	Val	Ile	Ala	Glu	Lys	Asp	Asp							
					275		280								

<210> 11
<211> 5601
<212> DNA
<213> Homo sapiens

<220>
<223> human cysteine-rich repeat-containing protein S52
precursor, cysteine-rich motorneuron 1 (CRIM1)
cDNA

<220>
<221> CDS
<222> (40)..(3150)
<223> CRIM1

<400> 11
ggccccggctg cgaggaggag gcggcgccgg cgcaggagga tgtacttggt ggcgggggac 60
agggggttgg ccggctgcgg gcacacctcg gtctcgctgc tggggctgct gctgctgctg 120
gcgcgctccg gcacccgggc gctggctcgc ctgccctgtg acgagtccaa gtgcgaggag 180
cccaggaact gccccgggag catcgtgcag ggcgtctgcg gctgctgcta cacgtgcgcc 240
agccagagaga acgagagctg cggcggcacc ttccggattt acggaacctg cgaccggggg 300
ctgcgttctg tcatccgccc cccgctcaat ggcaactccc tcaccgagta cgaagcgggc 360
gtttgcgaag atgagaactg gactgatgac caactgcttg gttttaaacc atgcaatgaa 420
aaccttattg ctggctgcaa tataatcaat gggaaatgtg aatgtAACAC cattcgaacc 480
tgcagcaatc cctttgagtt tccaagtcag gatatgtgcc tttcagcttt aaagagaatt 540
gaagaagaga agccagattg ctccaaggcc cgctgtgaag tccagttctc tccacgttgc 600
cctgaagatt ctgttctgat cgagggttat gctccctctg gggagtgctg tcccttaccc 660

agccgctgcg tgcgtcaaccc cgcaggcgtgt ctgcgcaaaag tctgccagcc gggaaacctg 720
 aacatactag tgcgtaaaagc ctcaggaaag ccgggagagt gctgtgacct ctatgagtgc 780
 aaaccagtt tcggcggtga ctgcaggact gtggaatgcc ctcctgttca gcagaccgcg 840
 tgtcccccg acagctatga aactcaagtc agactaactg cagatggttc ctgtactttg 900
 ccaacaagat gcgagtgtct ctctggctt tgggtttcc cctgtgtga ggtgggatcc 960
 actccccgca tagtctctcg tggcgatggg acacctggaa agtgcgtga tgcgtttgaa 1020
 tgtgttaatg atacaaaagcc agcctgcgtt ttacaatgc tggaatatta tgatggagac 1080
 atgttcgaa tggacaactg tcgggtctgt cgatgccaag ggggcgttgc catctgcttc 1140
 actgcccagt gtggtgagat aaactgcgag aggtactacg tgcccaagg agagtgcgtc 1200
 ccagtgtgtg aagatccagt gtatccttt aataatcccg ctggctgcta tgccaatggc 1260
 ctgatcctt cccacggaga ccgggtggcg gaagacgact gcacattctg ccagtcgtc 1320
 aacgggtgaac gccactgcgt tgcgaccgtc tgccgacaga cctgcacaaa ccctgtgaaa 1380
 gtgcctgggg agtgttgcct tgcgtgcgaa gaaccaacca tcatcacagt tgatccacct 1440
 gcatgtgggg agttatcaa ctgcactctg acagggaaagg actgcattaa tggttcaaa 1500
 cgcgatcaca atgggtgtcg gacctgtcag tgcataaaaa ccgaggaact atgttcagaa 1560
 cgtaaacaag gctgcacctt gaactgtccc ttgggtttcc ttactgatgc cccaaactgt 1620
 gagatctgtg agtgcgcccc aaggcccaag aagtgcagac ccataatctg tgacaagtat 1680
 tgtccacttg gattgtgaa gaataagac ggctgtgaca tctgtcgtg taagaaatgt 1740
 ccagagctt catgcagtaa gatctgcctt ttgggtttcc agcaggacag tcacggctgt 1800
 cttatctgca agtgcagaga ggcctctgt tcagctggc caccatctt gtcgggact 1860
 tgtctcaccc tggatggtca tcatcataaa aatgaggaga gctggcacga tgggtgcgg 1920
 gaatgtact gtctcaatgg acgggaatgt tgcgtccatgc tcacctgccc ggtgcctgcc 1980
 tgtggcaacc ccaccattca ccctggacag tgctgcccatt catgtcaga tgactttgtg 2040
 gtgcagaagc cagagctcag tactccctcc atttgccacg cccctggagg agaataacttt 2100
 gtggaaaggag aaacgtggaa cattgactcc tgcgtactcgt gcacctgcca cagcggacgg 2160
 gtgctgtgtg agacagaggt gtgcccaccc ctgtctgtcc agaaccctc aegcaccac 2220
 gattcctgtc gcccacagtg tacagatcaa cctttcgcc cttcctgtc ccccaataac 2280
 agcgtaacta attactgcaaa aatgatgaa gggatataat tcctggcage tgacttctgg 2340
 aagcctgacg ttgttaccag ctgcacatgc attgatagcgt taattagctg tttctctgag 2400
 tcctgcccct ctgtatcctg taaaagaccc tgcgttggaa aaggccagtg ttgtccctac 2460
 tgcataagaag acacaattcc aaagaagggt gtgtgccact tcagtggaa ggcctatgcc 2520
 gacgaggagc ggtgggaccc tgacagctgc acccaactgtc actgcctgca gggccagacc 2580
 ctctgctcga ccgtcagctg ccccccctcg ccctgtgtt agcccatcaa cgtggaaagg 2640
 agttgctgcc caatgtgtcc agaaatgtat gtcccagaac caaccaatat acccatttag 2700
 aagacaacc atcgaggaga ggttgcaccc gaggttcccc tgcgttggcc accttagtggaa 2760
 aatgatatcg tccatctccc tagagatatg ggtcacccctt aggtagatta cagagataac 2820
 aggctgcacc caagtgaaga ttcttcactg gactccattt cctcagttgt ggttcccata 2880
 attatatgcc tctctattat aatagcatc ctattcatca atcagaagaa acagtggata 2940
 ccactgcttt gctggtatcg aacaccaact aacccatttt ccttaaataa tcagcttagta 3000
 tctgtggact gcaagaaagg aaccagagtc cagtgccaca gttcccagag aatgctaaga 3060
 attgcagaac cagatgcaag attcagtgcc ttctacagca tgcaaaaaca gaaccatcta 3120
 caggcagaca atttctacca aacagtgtga agaaaggca cttagatgag gttcaaaag 3180
 acggaagacg actaaatctg ctctaaaaag taaactagaa tttgtgcact tgcttagtgg 3240
 attgtattgg attgtgactt gatgtacagc gctaaagaccc tactggatg ggctctgtct 3300
 acagcaatgt gcagaacaag cattccact ttccctcaag ataactgacc aagtgtttc 3360
 ttagaaccaa agttttaaa gttgctaaga tatatttgc tgtaagatag ctgttagagat 3420
 atttggggtg gggacagtga gtttggatgg gaaatgggt gggagggtgg ttttgggaaag 3480
 aaaaattggt cagcttggct cggggagaaa cctgttaaca taaaagcagt tcagtggccc 3540
 agaggttatt ttttccat tgctctgaag actgcactgg ttgctgaaa gtcaggcct 3600
 gaatgagcag gaaacaaaaa aggccttgcg acccagctgc cataaccacc ttagaactac 3660
 cagacgagca catcagaacc ctttgacagc catcccaggt ctaaagccac aagtttctt 3720
 tctatacagt cacaactgca gtaggcagtg aggaagccag agaaatgcga tagcggcatt 3780
 tctctaaagc gggttattaa ggatataatac agttacactt tttgctgctt ttatttctt 3840
 ccaagccaat caatcagcca gttccttagca gagtcagcac atgaacaaga tctaagtcat 3900
 ttcttgatgt gagcactgga gctttttttt ttttacaacg tgacaggaag aggagggaga 3960
 ggggtgacgaa caccaggcat ttccaggggc tatatttac tgtttggatg tgctttgttc 4020
 tgtttatattt ttgggtgttc atagttttt gttgaagctt agcttaagaa gaaactttt 4080
 ttaaaaagac tgtttgggaa ttcttttcc ttattatata ctgattctac aaaatagaaa 4140
 ctacttcatt ttaattgtat attattcaag caccttggt gaagctcaa aaaaatgt 4200
 cctcttaaaa cttagcaat tataggagta ttatgtaac tatcttatgc ttcaaaaaac 4260
 aaaagtattt gtgtcatgt gtatataata tatatatata catatatatt tatacacata 4320

caatttatgt ttccctgttg aatgtatTTT tatgagattt taaccagaac aaaggcagat 4380
aaacaggcat tccatagcag tgctttgat cacttacaaa tttttgaat aacacaaaaat 4440
ctcattctac ctgcagttt attggaaaaga tgtgtgtgtg agagtatgt a tgtgtgtgt 4500
tgtgtgtgtg tgtgtgcgcg cgcacgcacg cctttagcag tcagcattgc acctgctatg 4560
gagaagggtta ttcccttatt aaaatcttc tcatttgat ttgcttcag ttggtttca 4620
atttgctcac tgccagaga cattgatggc agttcttac tgcataacta atcagctct 4680
ggatTTTTT ttttttttt tcaaacaatg gtttgaaca actactggaa tattgtccac 4740
aataagctgg aagtttggtagtgcct caaatataac tgactgtata ctatagtgg 4800
aactttcaa acagccctta gcactttat actaattaac ccatttgc attgagttt 4860
cttttaaaaa tgcttgggtt gaaagacaca gataccagt atgcttaacg tgaaaagaaa 4920
atgtgtctg ttttgtaaag gaacttcaa gtattgtgtt aaatacttgg acagaggtt 4980
ctgaacctta aaaaaaatta atttattatt ataatgcct aatttattaa tctgaagatt 5040
aaccatTTTT ttgtcttaga atatcaaaaa gaaaaagaaa aaggtgttct agctgtttgc 5100
atcaaaggaa aaaaagattt attatcaagg ggcaatattt ttatctttc caaaataaat 5160
ttgttaatga tacattacaa aaatagattt acatcagcct gattagtata aattttgtt 5220
gtaattaatc cattcctggc ataaaaagtc tttatcaaaa aaaattgtag atgcttgctt 5280
tttggTTTTT caatcatggc catattatga aaatactaac aggatataagg acaagggtta 5340
aattttttta ttattatTTT aaagatatga ttatcctga gtgtgtatc tattactctt 5400
ttactttggc tcctgtgttgc ctcttgtaaa agaaaaatataatttcctga agaataaaaat 5460
agatataatgg cacttggagt gcatcatagt tctacagttt gttttgttt tcttcaaaaa 5520
agctgtaaaga gaattatctg caacttgatt cttggcagga aataaacatt ttgagttgaa 5580
atcaaaaaaaaaaaaaaaa a 5601

```
<210> 12  
<211> 1036  
<212> PRT  
<213> Homo sapiens
```

<220>
<223> human cysteine-rich repeat-containing protein S52
precursor, cysteine-rich motorneuron 1 (CRIM1)

<400> 12
Met Tyr Leu Val Ala Gly Asp Arg Gly Leu Ala Gly Cys Gly His Leu
1 5 10 15

Leu Val Ser Leu Leu Gly Leu Leu Leu Leu Leu Ala Arg Ser Gly Thr
 20 25 30

Arg Ala Leu Val Cys Leu Pro Cys Asp Glu Ser Lys Cys Glu Glu Pro
35 40 45

Arg Asn Cys Pro Gly Ser Ile Val Gln Gly Val Cys Gly Cys Cys Tyr
50 55 60

Thr Cys Ala Ser Gln Arg Asn Glu Ser Cys Gly Gly Thr Phe Gly Ile
65 70 75 80

Tyr Gly Thr Cys Asp Arg Gly Leu Arg Cys Val Ile Arg Pro Pro Leu
85 90 95

Asn	Gly	Asp	Ser	Leu	Thr	Glu	Tyr	Glu	Ala	Gly	Val	Cys	Glu	Asp	Glu
			100					105					110		

Leu Ile Ala Gly Cys Asn Ile Ile Asn Gly Lys Cys Glu Cys Asn Thr
130 135 140

Ile Arg Thr Cys Ser Asn Pro Phe Glu Phe Pro Ser Gln Asp Met Cys
 145 150 155 160
 Leu Ser Ala Leu Lys Arg Ile Glu Glu Glu Lys Pro Asp Cys Ser Lys
 165 170 175
 Ala Arg Cys Glu Val Gln Phe Ser Pro Arg Cys Pro Glu Asp Ser Val
 180 185 190
 Leu Ile Glu Gly Tyr Ala Pro Pro Gly Glu Cys Cys Pro Leu Pro Ser
 195 200 205
 Arg Cys Val Cys Asn Pro Ala Gly Cys Leu Arg Lys Val Cys Gln Pro
 210 215 220
 Gly Asn Leu Asn Ile Leu Val Ser Lys Ala Ser Gly Lys Pro Gly Glu
 225 230 235 240
 Cys Cys Asp Leu Tyr Glu Cys Lys Pro Val Phe Gly Val Asp Cys Arg
 245 250 255
 Thr Val Glu Cys Pro Pro Val Gln Gln Thr Ala Cys Pro Pro Asp Ser
 260 265 270
 Tyr Glu Thr Gln Val Arg Leu Thr Ala Asp Gly Cys Cys Thr Leu Pro
 275 280 285
 Thr Arg Cys Glu Cys Leu Ser Gly Leu Cys Gly Phe Pro Val Cys Glu
 290 295 300
 Val Gly Ser Thr Pro Arg Ile Val Ser Arg Gly Asp Gly Thr Pro Gly
 305 310 315 320
 Lys Cys Cys Asp Val Phe Glu Cys Val Asn Asp Thr Lys Pro Ala Cys
 325 330 335
 Val Phe Asn Asn Val Glu Tyr Tyr Asp Gly Asp Met Phe Arg Met Asp
 340 345 350
 Asn Cys Arg Phe Cys Arg Cys Gln Gly Val Ala Ile Cys Phe Thr
 355 360 365
 Ala Gln Cys Gly Glu Ile Asn Cys Glu Arg Tyr Tyr Val Pro Glu Gly
 370 375 380
 Glu Cys Cys Pro Val Cys Glu Asp Pro Val Tyr Pro Phe Asn Asn Pro
 385 390 395 400
 Ala Gly Cys Tyr Ala Asn Gly Leu Ile Leu Ala His Gly Asp Arg Trp
 405 410 415
 Arg Glu Asp Asp Cys Thr Phe Cys Gln Cys Val Asn Gly Glu Arg His
 420 425 430
 Cys Val Ala Thr Val Cys Gly Gln Thr Cys Thr Asn Pro Val Lys Val
 435 440 445
 Pro Gly Glu Cys Cys Pro Val Cys Glu Glu Pro Thr Ile Ile Thr Val
 450 455 460

Asp Pro Pro Ala Cys Gly Glu Leu Ser Asn Cys Thr Leu Thr Gly Lys
 465 470 475 480

Asp Cys Ile Asn Gly Phe Lys Arg Asp His Asn Gly Cys Arg Thr Cys
 485 490 495

Gln Cys Ile Asn Thr Glu Glu Leu Cys Ser Glu Arg Lys Gln Gly Cys
 500 505 510

Thr Leu Asn Cys Pro Phe Gly Phe Leu Thr Asp Ala Gln Asn Cys Glu
 515 520 525

Ile Cys Glu Cys Arg Pro Arg Pro Lys Lys Cys Arg Pro Ile Ile Cys
 530 535 540

Asp Lys Tyr Cys Pro Leu Gly Leu Leu Lys Asn Lys His Gly Cys Asp
 545 550 555 560

Ile Cys Arg Cys Lys Lys Cys Pro Glu Leu Ser Cys Ser Lys Ile Cys
 565 570 575

Pro Leu Gly Phe Gln Gln Asp Ser His Gly Cys Leu Ile Cys Lys Cys
 580 585 590

Arg Glu Ala Ser Ala Ser Ala Gly Pro Pro Ile Leu Ser Gly Thr Cys
 595 600 605

Leu Thr Val Asp Gly His His Lys Asn Glu Glu Ser Trp His Asp
 610 615 620

Gly Cys Arg Glu Cys Tyr Cys Leu Asn Gly Arg Glu Met Cys Ala Leu
 625 630 635 640

Ile Thr Cys Pro Val Pro Ala Cys Gly Asn Pro Thr Ile His Pro Gly
 645 650 655

Gln Cys Cys Pro Ser Cys Ala Asp Asp Phe Val Val Gln Lys Pro Glu
 660 665 670

Leu Ser Thr Pro Ser Ile Cys His Ala Pro Gly Gly Glu Tyr Phe Val
 675 680 685

Glu Gly Glu Thr Trp Asn Ile Asp Ser Cys Thr Gln Cys Thr Cys His
 690 695 700

Ser Gly Arg Val Leu Cys Glu Thr Glu Val Cys Pro Pro Leu Leu Cys
 705 710 715 720

Gln Asn Pro Ser Arg Thr Gln Asp Ser Cys Cys Pro Gln Cys Thr Asp
 725 730 735

Gln Pro Phe Arg Pro Ser Leu Ser Arg Asn Asn Ser Val Pro Asn Tyr
 740 745 750

Cys Lys Asn Asp Glu Gly Asp Ile Phe Leu Ala Ala Glu Ser Trp Lys
 755 760 765

Pro Asp Val Cys Thr Ser Cys Ile Cys Ile Asp Ser Val Ile Ser Cys
 770 775 780

Phe Ser Glu Ser Cys Pro Ser Val Ser Cys Glu Arg Pro Val Leu Arg
 785 790 795 800
 Lys Gly Gln Cys Cys Pro Tyr Cys Ile Glu Asp Thr Ile Pro Lys Lys
 805 810 815
 Val Val Cys His Phe Ser Gly Lys Ala Tyr Ala Asp Glu Glu Arg Trp
 820 825 830
 Asp Leu Asp Ser Cys Thr His Cys Tyr Cys Leu Gln Gly Gln Thr Leu
 835 840 845
 Cys Ser Thr Val Ser Cys Pro Pro Leu Pro Cys Val Glu Pro Ile Asn
 850 855 860
 Val Glu Gly Ser Cys Cys Pro Met Cys Pro Glu Met Tyr Val Pro Glu
 865 870 875 880
 Pro Thr Asn Ile Pro Ile Glu Lys Thr Asn His Arg Gly Glu Val Asp
 885 890 895
 Leu Glu Val Pro Leu Trp Pro Thr Pro Ser Glu Asn Asp Ile Val His
 900 905 910
 Leu Pro Arg Asp Met Gly His Leu Gln Val Asp Tyr Arg Asp Asn Arg
 915 920 925
 Leu His Pro Ser Glu Asp Ser Ser Leu Asp Ser Ile Ala Ser Val Val
 930 935 940
 Val Pro Ile Ile Ile Cys Leu Ser Ile Ile Ile Ala Phe Leu Phe Ile
 945 950 955 960
 Asn Gln Lys Lys Gln Trp Ile Pro Leu Leu Cys Trp Tyr Arg Thr Pro
 965 970 975
 Thr Lys Pro Ser Ser Leu Asn Asn Gln Leu Val Ser Val Asp Cys Lys
 980 985 990
 Lys Gly Thr Arg Val Gln Val Asp Ser Ser Gln Arg Met Leu Arg Ile
 995 1000 1005
 Ala Glu Pro Asp Ala Arg Phe Ser Gly Phe Tyr Ser Met Gln Lys Gln
 1010 1015 1020
 Asn His Leu Gln Ala Asp Asn Phe Tyr Gln Thr Val
 1025 1030 1035

<210> 13

<211> 4012

<212> DNA

<213> Mus musculus

<220>

<223> mouse cysteine-rich repeat-containing protein,
cysteine-rich motorneuron 1 (CRIM1) partial cDNA

```

<220>
<221> CDS
<222> (1)..(3087)
<223> CRIM1

<220>
<221> modified_base
<222> (3515)
<223> n = g, a, c or t

<400> 13
ctggccggct gcgggcaccc ctgggtctcg ctgctggggc tgctgctgct gctggcgcc 60
tcaggcaccc gggcgctggt ctgcctgccc tggacgagt ccaagtgcga ggagcctcg 120
agctgcccag gaagcatcggt gcagggcggtc tgccgtctgct gctacatgtg cgccccccag 180
aggaacgaga gctgcgggtgg agcctatggg ctccatggag cctgcgaccg ggggctgcgc 240
tgtgtcatcc gccccccgtc caatggcgac tccatcaccg agtacgaagt gggcgtctgc 300
gaagatgagg actggatgttg tgaccagacta ataggtttg aaccctgcaa taaaaacctc 360
atctccggct gcaacataat caatggggaa tgcaatgtg gtaccatccg aacctgcaac 420
aatccctttg agtttccaag gaaggacatg tgcccttcag cattaaagag gatcgaagaa 480
gagaagccag attgcagcaa ggcccgctgt gaagtgccgt tctctccacg ttgcctgaa 540
gattccattc tgatcgaggg ctatgtccc cccggggagt gctgtcctt acccagccgc 600
tgcgtgtgcg accctgcggg ctgtctgcgc aaagtctgcg acggagata cctgaacatt 660
ctagtgtcca aagcctcagg gaagccggga gagttgtgtg acctctatga gtgtaaacca 720
gttttcagcg tggactgcag caccgtggag tgccccctgt tccagcaggc cgtgtcccc 780
ctggacagct acgaaacgca agtgcggcgc acagcggatg gctgctgtac cctgccagca 840
agatgcgagt gtctctctgg cttatgtggt tttcccggtt gtgagggtgg atctactccc 900
cgaatagtct ctcgtggaga tggacaccc gaaaagtgtc gtgatgtct tgaatgtgtt 960
aatgaaacaa agccagcctg cgtgttcaac agcgtggagt attacgacgg agacatgttt 1020
cgaatggaca actgtcggtt ctgcccgtgc caggggggtg tctccatctg cttcacggc 1080
cagtgtgggg aactgaactg cgaaagatac tatgtgcctg agggggagtg ttgcctgtg 1140
tgtgaagatc ccatctatcc tcttaacaac cctgctggct gctatgcca tggccagatc 1200
cgcccccacg gggaccgggtg gcgggaagat gactgtaccc tctgcccgtg tatcaacgg 1260
gaacctact gcgtggccac ggcctgcggg cagagctgca tgcaccctgt gaaagtgc 1320
ggggaggttt gccccgtgtg tgaagaacca acctacatca cgattgatcc acctgcatgc 1380
ggggaggtgtt caaaactgttc tctgaaggag aagactgcg tttatggctt caaactggat 1440
cacaatggct gtcgaacctg tcagtcaaa atcagggagg aactctgtt aggctcaaa 1500
agggcctgca ccctggactg tccctttggc ttccctcaccg atgtgcacaa ctgtgaactc 1560
tgtcaagtgcg gcccacggcc caagaagtgc agaccaacaa tgtgcacaa gttttgtccg 1620
cttggattcc tgaagaataa gcatggctgt gacatctgtc ggtgtaagaa atgtccagag 1680
ctgcccattc gcaagatctg ccccttggc ttccagcagg acagtcatgg ctgtcttac 1740
tgcaagtgcg gagaggtccc tccttcagcc gggccacctg tcctgtcagg cacatgtctg 1800
tccatggatg gccatcatca taagaacagag gagagctggc atgatgggtg cccggaaatgc 1860
tactgtcaca acggaaagga aatgtgcgt ctcacatcacct gtccctgcgc tgcctgcggc 1920
aaccggccatca ttccgtccgg acagtgcgtc ccgtctgca cagatgactt tgttagtgcag 1980
aagccggagc tcagcaccccc ttcttattgc caccggggcc gaggagagta ctttgtggaa 2040
ggggaaacctt ggaacattga ctccctgtaca cagtgcaccc gtcacagtgg tcgagtgtctg 2100
tgtgagacgg aggtgtgccc accattgtct tgccagaacc cctcccgac ccaggactcc 2160
tgctgcccac agtgtacaga tgacccttcc cagccttcca catcccataa tgagagcgtg 2220
cctagctact gcaggaatga tgaaggagat atcttcctgg cggctgagtc ctggaaagccc 2280
gacgcctgca ccagctgcgt gtgcgtggat agcgcaatta gctgctactc tgagtcttgc 2340
cctccgtgg cctgtgaaag acctgttttgg agggaaaggcc agtgttgcgg ctactgttta 2400
gaagacacaa ttccaaagaa agtgggtgtt cacttcagtg ggaagaccta tgctgacgag 2460
gaacgggtgg atattgacag ctgcacrcac tgctactgcc tgcaaggcca gaccctctgc 2520
tcgaccgtca gctgcccacc gttaccctgt gccgagccca tcaagggtgg aaggagttgc 2580
tgcccaatgt gcccagaaat gtatgtgcca gagccaacca atgtacccat tgagaagaaa 2640
aatcatcggt gcgagattga cctggagggtc cccatgtggc ccaccccaag taaaaatgac 2700
atcatccatc tcccttagaga tatgggtcac ctccaggttag attacagaga taataacagg 2760
ctgcatccag gcgaagactc atcaactggac tccattgtct ccgttgcggg tccctataata 2820
atatgcctgt ccacatcatcat agctttcctg ctcatcaacc agaagaagca gtgggtacca 2880
ctgctgtgtt ggtaccggac accaaccac gcttcttccct tgaataatca gctggtatct 2940
gtggactgca agaaaggcac tcgagttccag gtggatggtc cccagagaat gctaagaatt 3000

```

```

ggccgaaccag atgctcgatt cagtggcttc tacagcatgc agaaaacagaa ccatctacag 3060
gcagacaact tctaccaaac ggtgtgaaca cgggcagcag cgccgatgag gtccccgaaag 3120
acggagaaaag acgaaaaatct gctctttaaa gtaaacttagg atttgcgcac ttgcttagtg 3180
tcttgttca gattgcgact tggtgtccag cgcttagggc tggactggga tgggctctgt 3240
ctacagcaact gtgcagaaca agcattccca ctggcctca agataactga ccacatgttt 3300
tcatagaacc aaagttttaa aacttgctaa agtatattg ctgttaagat agctgttagag 3360
acatttgggg gagggggagaaa agagtttggt gggggaaatg gggtgggagg gtatgttgg 3420
gaagaaaaaaaaaa aaatggtcag ctggctcg ggagaaaagcc agaaaaaaaaaa taaaagcaat 3480
ttatggccca gaggaatttc ttttcctgt tactntcaag actgttgggt gctgcaaagg 3540
tagggcctga atgagcagga tcacaaaagg ccttgcAACc gagctgccc accacaccag 3600
acaagcgcata cagaactctc gatagccatc ccaggtctaa agccacaagt ttctatagag 3660
tcacagccgc agtaggcagt gaggaagcca gggagatgga aagcaacagt tctcgaaagg 3720
gggttcttga ggtatgtattc acttttttg ctgctgtctgt tttcttccgt gccaaccaggc 3780
cagttccttag gagacacagc aggttgagta ggaacgaggt caccttcttga cctgaccact 3840
ggagcttgc tcgtctacgtg acagggaaaggg caacggcggaa ggacaccagg cattttccagg 3900
ggctacactt cattgttcct tgggttttc ttctgtgtca tcattggttt ttcatagttt 3960
tgtttaaagct ctagcttaag aagaaaacttt tgagaaaaaaaaaa aa 4012

```

```
<210> 14  
<211> 1028  
<212> PRT  
<213> Mus musculus
```

<220>
<223> mouse cysteine-rich repeat-containing protein,
cysteine-rich motorneuron 1 (CRIM1), partial

Leu Leu Ala Arg Ser Gly Thr Arg Ala Leu Val Cys Leu Pro Cys Asp
20 25 30

Glu Ser Lys Cys Glu Glu Pro Arg Ser Cys Pro Gly Ser Ile Val Gln
35 40 45

Gly Val Cys Gly Cys Cys Tyr Met Cys Ala Arg Gln Arg Asn Glu Ser
50 55 60

Cys Gly Gly Ala Tyr Gly Leu His Gly Ala Cys Asp Arg Gly Leu Arg
 65 70 75 80

Cys Val Ile Arg Pro Pro Leu Asn Gly Asp Ser Ile Thr Glu Tyr Glu
85 90 95

Val Gly Val Cys Glu Asp Glu Asp Trp Asp Asp Asp Gln Leu Ile Gly
 100 105 110

Phe Glu Pro Cys Asn Glu Asn Leu Ile Ser Gly Cys Asn Ile Ile Asn
115 120 125

Gly Lys Cys Glu Cys Gly Thr Ile Arg Thr Cys Asn Asn Pro Phe Glu
 130 135 140

Phe	Pro	Arg	Lys	Asp	Met	Cys	Leu	Ser	Ala	Leu	Lys	Arg	Ile	Glu	Glu
145					150					155					160

Glu Lys Pro Asp Cys Ser Lys Ala Arg Cys Glu Val Arg Phe Ser Pro
165 170 175

Arg Cys Pro Glu Asp Ser Ile Leu Ile Glu Gly Tyr Ala Pro Pro Gly
 180 185 190
 Glu Cys Cys Pro Leu Pro Ser Arg Cys Val Cys Asp Pro Ala Gly Cys
 195 200 205
 Leu Arg Lys Val Cys Gln Pro Gly Tyr Leu Asn Ile Leu Val Ser Lys
 210 215 220
 Ala Ser Gly Lys Pro Gly Glu Cys Cys Asp Leu Tyr Glu Cys Lys Pro
 225 230 235 240
 Val Phe Ser Val Asp Cys Ser Thr Val Glu Cys Pro Pro Val Gln Gln
 245 250 255
 Ala Val Cys Pro Leu Asp Ser Tyr Glu Thr Gln Val Arg Leu Thr Ala
 260 265 270
 Asp Gly Cys Cys Thr Leu Pro Ala Arg Cys Glu Cys Leu Ser Gly Leu
 275 280 285
 Cys Gly Phe Pro Val Cys Glu Val Gly Ser Thr Pro Arg Ile Val Ser
 290 295 300
 Arg Gly Asp Gly Thr Pro Gly Lys Cys Cys Asp Val Phe Glu Cys Val
 305 310 315 320
 Asn Glu Thr Lys Pro Ala Cys Val Phe Asn Ser Val Glu Tyr Tyr Asp
 325 330 335
 Gly Asp Met Phe Arg Met Asp Asn Cys Arg Phe Cys Arg Cys Gln Gly
 340 345 350
 Gly Val Ser Ile Cys Phe Thr Ala Gln Cys Gly Glu Leu Asn Cys Glu
 355 360 365
 Arg Tyr Tyr Val Pro Glu Gly Glu Cys Cys Pro Val Cys Glu Asp Pro
 370 375 380
 Ile Tyr Pro Leu Asn Asn Pro Ala Gly Cys Tyr Ala Asn Gly Gln Ile
 385 390 395 400
 Arg Ala His Gly Asp Arg Trp Arg Glu Asp Asp Cys Thr Phe Cys Gln
 405 410 415
 Cys Ile Asn Gly Glu Pro His Cys Val Ala Thr Ala Cys Gly Gln Ser
 420 425 430
 Cys Met His Pro Val Lys Val Pro Gly Glu Cys Cys Pro Val Cys Glu
 435 440 445
 Glu Pro Thr Tyr Ile Thr Ile Asp Pro Pro Ala Cys Gly Glu Leu Ser
 450 455 460
 Asn Cys Ser Leu Lys Glu Lys Asp Cys Val Tyr Gly Phe Lys Leu Asp
 465 470 475 480
 His Asn Gly Cys Arg Thr Cys Gln Cys Lys Ile Arg Glu Glu Leu Cys
 485 490 495

Leu Gly Leu Lys Arg Ala Cys Thr Leu Asp Cys Pro Phe Gly Phe Leu
 500 505 510

Thr Asp Val His Asn Cys Glu Leu Cys Gln Cys Arg Pro Arg Pro Lys
 515 520 525

Lys Cys Arg Pro Thr Met Cys Asp Lys Phe Cys Pro Leu Gly Phe Leu
 530 535 540

Lys Asn Lys His Gly Cys Asp Ile Cys Arg Cys Lys Lys Cys Pro Glu
 545 550 555 560

Leu Pro Cys Ser Lys Ile Cys Pro Leu Gly Phe Gln Gln Asp Ser His
 565 570 575

Gly Cys Leu Ile Cys Lys Cys Arg Glu Val Pro Pro Ser Ala Gly Pro
 580 585 590

Pro Val Leu Ser Gly Thr Cys Leu Ser Met Asp Gly His His His Lys
 595 600 605

Asn Glu Glu Ser Trp His Asp Gly Cys Arg Glu Cys Tyr Cys His Asn
 610 615 620

Gly Lys Glu Met Cys Ala Leu Ile Thr Cys Pro Val Pro Ala Cys Gly
 625 630 635 640

Asn Pro Thr Ile Arg Ser Gly Gln Cys Cys Pro Ser Cys Thr Asp Asp
 645 650 655

Phe Val Val Gln Lys Pro Glu Leu Ser Thr Pro Ser Ile Cys His Ala
 660 665 670

Pro Gly Gly Glu Tyr Phe Val Glu Gly Glu Thr Trp Asn Ile Asp Ser
 675 680 685

Cys Thr Gln Cys Thr Cys His Ser Gly Arg Val Leu Cys Glu Thr Glu
 690 695 700

Val Cys Pro Pro Leu Leu Cys Gln Asn Pro Ser Arg Thr Gln Asp Ser
 705 710 715 720

Cys Cys Pro Gln Cys Thr Asp Asp Pro Pro Gln Pro Ser Thr Ser His
 725 730 735

Asn Glu Ser Val Pro Ser Tyr Cys Arg Asn Asp Glu Gly Asp Ile Phe
 740 745 750

Leu Ala Ala Glu Ser Trp Lys Pro Asp Ala Cys Thr Ser Cys Val Cys
 755 760 765

Val Asp Ser Ala Ile Ser Cys Tyr Ser Glu Ser Cys Pro Ser Val Ala
 770 775 780

Cys Glu Arg Pro Val Leu Arg Lys Gly Gln Cys Cys Pro Tyr Cys Leu
 785 790 795 800

Glu Asp Thr Ile Pro Lys Lys Val Val Cys His Phe Ser Gly Lys Thr
 805 810 815

Tyr Ala Asp Glu Glu Arg Trp Asp Ile Asp Ser Cys Thr His Cys Tyr
 820 825 830

 Cys Leu Gln Gly Gln Thr Leu Cys Ser Thr Val Ser Cys Pro Pro Leu
 835 840 845

 Pro Cys Ala Glu Pro Ile Lys Val Glu Gly Ser Cys Cys Pro Met Cys
 850 855 860

 Pro Glu Met Tyr Val Pro Glu Pro Thr Asn Val Pro Ile Glu Lys Lys
 865 870 875 880

 Asn His Arg Gly Glu Ile Asp Leu Glu Val Pro Met Trp Pro Thr Pro
 885 890 895

 Ser Glu Asn Asp Ile Ile His Leu Pro Arg Asp Met Gly His Leu Gln
 900 905 910

 Val Asp Tyr Arg Asp Asn Asn Arg Leu His Pro Gly Glu Asp Ser Ser
 915 920 925

 Leu Asp Ser Ile Val Ser Val Val Val Pro Ile Ile Cys Leu Ser
 930 935 940

 Ile Ile Ile Ala Phe Leu Leu Ile Asn Gln Lys Lys Gln Trp Val Pro
 945 950 955 960

 Leu Leu Cys Trp Tyr Arg Thr Pro Thr Lys Pro Ser Ser Leu Asn Asn
 965 970 975

 Gln Leu Val Ser Val Asp Cys Lys Lys Gly Thr Arg Val Gln Val Asp
 980 985 990

 Gly Pro Gln Arg Met Leu Arg Ile Ala Glu Pro Asp Ala Arg Phe Ser
 995 1000 1005

 Gly Phe Tyr Ser Met Gln Lys Gln Asn His Leu Gln Ala Asp Asn Phe
 1010 1015 1020

 Tyr Gln Thr Val
 1025

<210> 15
 <211> 2276
 <212> DNA
 <213> Homo sapiens

<220>
 <223> human calmodulin-dependent phosphoprotein
 phosphatase catalytic subunit, calcineurin A alpha
 (PPP3CA) cDNA

<220>
 <221> CDS
 <222> (148)..(1713)
 <223> PPP3CA

<400> 15
 ccagctcaga gcctagaccc ctccggcggc gggttgcagg cgccggcgcc ggcggcgccg 60
 gccccgttga gtgtctggcc cggccgggtccg gtcgggggtgt gcagtccggac ggacgagcag 120

cgcgtcgtcg tcctccggca gctggagatg tccgagccca aggcaattga tcccaagttg 180
tcgacgaccg acagggtggt gaaagctgtt ccatttcctc caagtcaccg gcttacagca 240
aaagaagtgt ttgataatga tggaaaacct cgtgtggata tcttaaaggc gcatcttagt 300
aaggaggaa ggcttggaaaga gagtggtgca ttgagaataa taacagaggg tgcatcaatt 360
cttcgacagg aaaaaaattt gctggatatt gatgcgcag tcactgtttg tggggacatt 420
catggacaat tcttgattt gatgaagctc tttgaagtcg gggatctcc tgccaaact 480
cgctacctct tcttagggga ctatgttgac agagggtact tcagtattga atgtgtgctg 540
tatttgggg ccttggaaaat tctctacccc aaaacactgt ttttacttcg tggaaatcat 600
gaatgttagac atctaacaga gtatttcaca tttaaacaag aatgtaaaat aaagtattca 660
gaacgagttat atgatgcctg tatggatgcc tttgactgcc ttccccctggc tgccctgatg 720
aaccaacagt tcctgtgtgt gcatgggtt ttgtctccag agattaacac ttttagatgt 780
atcagaaaaat tagaccgatt caaagaacca cctgcataatg gacttatgtg tgatatcctg 840
tggtcgacc cccttggaaaga ttttggaaaat gagaagactc aggaacattt cactcacaac 900
acagtcaggg ggtgttcata cttctacagt taccctggctg tatgtgaatt cttacagcac 960
aataacttgt tatctatact ccgagcccac gaagcccaag atgcagggtt ccgcattgtac 1020
aggaaaagcc aaacaacacgg cttcccttct ctaattacaa tttttcage accaaattac 1080
tttagatgtat acaaataacaa agctgcagta ttgaagtatg agaacaatgt tatgaatatc 1140
aggcaattca actgttctcc tcattccatac tggcttccaa atttcatggg tggttttact 1200
tggcccttc catttgggggg ggaaaaaagtg actgagatgc tggtaaatgt cctcaacatc 1260
tgctcagatg atgaacttagg gtcagaagaa gatggatgg atggtgcac agctgcagcc 1320
cgaaaaagg tgataaggaa caagatccga gcaataggca aatggccag agtgttctca 1380
gtgctcagag aagagagtga gagtggctg acgctgaaag gctgacccc aactggcatg 1440
ctccccagcg gactactttc tggagggaaag caaaccctgc aaagcgctac tggtagggct 1500
attgaggctg atgaagctat caaaggattt tcaccacaa ataaagatcac tagcttcgag 1560
gaagccaagg gcttagaccg aattaatgag aggatgcgcg ctcgcagaga tgccatgccc 1620
tctgacgcca accttaactc catcaacaag gctctcacct cagagactaa cggcacggac 1680
agcaatggca gtaatagcag caatattcag tgaccaccc ctgttccacat tttttttttt 1740
tttttttttt tttttttttt tgagctgcgg ggcatgtgg ggattgtgc atatcagcag 1800
ttggatgttc ttgcctctga cagtagctt tttgctctgg gggccaggaa ttggatttcag 1860
tttacactat cattaaaaaa gagggagaga gataataaac tatattttgg tggggatgg 1920
gattaaacac ctcttttggg tatgcctttt aaaaatgtt atagagaaaa aaaattttaa 1980
aaaaagaaaa ctaatgttag tatatactgc aatgttaggg gaatgaacat gttttctac 2040
tgcattgggg acttcttagat aggttaatga aaggcctttt attctgttac tggacatgaa 2100
aactttgtct aatttcttac tctattgtac gtttacagtc gcagcactaa aatggatga 2160
catcaaacat tttaacaaa atgatgtatc acaaactaag gacttattt tgataatgtt 2220
ttgctactct tgctcagacaa tggctataaa ctgaatttagg cagtcctaaa aaaaaaa 2276

<210> 16
<211> 521
<212> PRT
<213> Homo sapiens

<220>
<223> human calmodulin-dependent phosphoprotein
phosphatase catalytic subunit, calcineurin A alpha
(PPP3CA)

<400> 16
Met Ser Glu Pro Lys Ala Ile Asp Pro Lys Leu Ser Thr Thr Asp Arg
1 5 10 15

Val Val Lys Ala Val Pro Phe Pro Pro Ser His Arg Leu Thr Ala Lys
20 25 30

Glu Val Phe Asp Asn Asp Gly Lys Pro Arg Val Asp Ile Leu Lys Ala
35 40 45

His Leu Met Lys Glu Gly Arg Leu Glu Glu Ser Val Ala Leu Arg Ile
50 55 60

Ile Thr Glu Gly Ala Ser Ile Leu Arg Gln Glu Lys Asn Leu Leu Asp
 65 70 75 80
 Ile Asp Ala Pro Val Thr Val Cys Gly Asp Ile His Gly Gln Phe Phe
 85 90 95
 Asp Leu Met Lys Leu Phe Glu Val Gly Gly Ser Pro Ala Asn Thr Arg
 100 105 110
 Tyr Leu Phe Leu Gly Asp Tyr Val Asp Arg Gly Tyr Phe Ser Ile Glu
 115 120 125
 Cys Val Leu Tyr Leu Trp Ala Leu Lys Ile Leu Tyr Pro Lys Thr Leu
 130 135 140
 Phe Leu Leu Arg Gly Asn His Glu Cys Arg His Leu Thr Glu Tyr Phe
 145 150 155 160
 Thr Phe Lys Gln Glu Cys Lys Ile Lys Tyr Ser Glu Arg Val Tyr Asp
 165 170 175
 Ala Cys Met Asp Ala Phe Asp Cys Leu Pro Leu Ala Ala Leu Met Asn
 180 185 190
 Gln Gln Phe Leu Cys Val His Gly Gly Leu Ser Pro Glu Ile Asn Thr
 195 200 205
 Leu Asp Asp Ile Arg Lys Leu Asp Arg Phe Lys Glu Pro Pro Ala Tyr
 210 215 220
 Gly Pro Met Cys Asp Ile Leu Trp Ser Asp Pro Leu Glu Asp Phe Gly
 225 230 235 240
 Asn Glu Lys Thr Gln Glu His Phe Thr His Asn Thr Val Arg Gly Cys
 245 250 255
 Ser Tyr Phe Tyr Ser Tyr Pro Ala Val Cys Glu Phe Leu Gln His Asn
 260 265 270
 Asn Leu Leu Ser Ile Leu Arg Ala His Glu Ala Gln Asp Ala Gly Tyr
 275 280 285
 Arg Met Tyr Arg Lys Ser Gln Thr Thr Gly Phe Pro Ser Leu Ile Thr
 290 295 300
 Ile Phe Ser Ala Pro Asn Tyr Leu Asp Val Tyr Asn Asn Lys Ala Ala
 305 310 315 320
 Val Leu Lys Tyr Glu Asn Asn Val Met Asn Ile Arg Gln Phe Asn Cys
 325 330 335
 Ser Pro His Pro Tyr Trp Leu Pro Asn Phe Met Asp Val Phe Thr Trp
 340 345 350
 Ser Leu Pro Phe Val Gly Glu Lys Val Thr Glu Met Leu Val Asn Val
 355 360 365
 Leu Asn Ile Cys Ser Asp Asp Glu Leu Gly Ser Glu Glu Asp Gly Phe
 370 375 380

Asp Gly Ala Thr Ala Ala Ala Arg Lys Glu Val Ile Arg Asn Lys Ile
 385 390 395 400
 Arg Ala Ile Gly Lys Met Ala Arg Val Phe Ser Val Leu Arg Glu Glu
 405 410 415
 Ser Glu Ser Val Leu Thr Leu Lys Gly Leu Thr Pro Thr Gly Met Leu
 420 425 430
 Pro Ser Gly Val Leu Ser Gly Gly Lys Gln Thr Leu Gln Ser Ala Thr
 435 440 445
 Val Glu Ala Ile Glu Ala Asp Glu Ala Ile Lys Gly Phe Ser Pro Gln
 450 455 460
 His Lys Ile Thr Ser Phe Glu Glu Ala Lys Gly Leu Asp Arg Ile Asn
 465 470 475 480
 Glu Arg Met Pro Pro Arg Arg Asp Ala Met Pro Ser Asp Ala Asn Leu
 485 490 495
 Asn Ser Ile Asn Lys Ala Leu Thr Ser Glu Thr Asn Gly Thr Asp Ser
 500 505 510
 Asn Gly Ser Asn Ser Asn Ile Gln
 515 520

<210> 17
 <211> 2194
 <212> DNA
 <213> Mus musculus

<220>
 <223> mouse calmodulin-dependent phosphoprotein
 phosphatase catalytic subunit, calcineurin A alpha
 (PPP3CA) cDNA

<220>
 <221> CDS
 <222> (76)..(1641)
 <223> CTGF

<400> 17
 ggcgggtgc ggtcggttg tgcagtcgga cgggacgagc agcgcgtcgc tgtccccccc 60
 tcccggtggc tggagatgtc cgagccaaag gcattgtc ccaagttgtc gacgaccgac 120
 aggggtgtga aagccgttcc atttccacca agtcaccggc tgacagcaaa ggaagtgttt 180
 gataatgatg ggaaacctcg tggatatac ttaaaagcac atctcatgaa ggagggcagg 240
 ctggaaagaaa gtgttcatt gagaataata acagagggtg cttcgattct ccgacaggaa 300
 aaaaacttgc tggatatacga cgcaccagtc acagtttgtg gggacatcca tggacaattc 360
 tttgacttgc tgaagcttt tgaagtggg gatatcctg ccaacactcg ctacctcttc 420
 tttagggact atgttgacag agggtacttc agtatcgaat gtgtgtgtta ttgtgtggcc 480
 ttgaaaattt ttaccccaa aacactgttt ttacttcgca gaaaccatga atgttaggcac 540
 ctcacagagt atttacgtt taaacaagaa tgtaaaataa agtattcaga acgcgttat 600
 gacgcctgta tggatgcctt cgactgcctt cccctggctg cgctaataa ccagcagtcc 660
 ctgtgtgtac acgggtgttt gtctccagag attaacactc tagatgacat cagaaaatta 720
 gaccgattca aagaaccacc tgcttatggg cccatgtgtg acatccatg gtcagacccc 780
 ctggaggact ttggaaatga gaagactcag gaacattca ctcacaacac agtcagagggc 840
 tggatgtact tctacagttt cccagctgtg tggacttcc tgcagcacaa taatttggcc 900
 tccatactcc gcgcccacga agcccagat gcagggtacc gcatgtacag gaaaagccaa 960
 acaaacaggct tcccgctct aattacaatc ttctcgac caaattactt agatgtgtac 1020

aataacaaag ctgcagtgtt gaagtacgag aacaatgtga tgaacatca gcatgtttcaac 1080
 tgctccccgc atccgtactg gctcccaa at ttcatggatg tttcacctg gtcgctgcca 1140
 tttgttgggg agaaagtgc tgagatgtc gtcaatgtt ctaacatctg ctccgacgat 1200
 gaactggggt cagaagaaga tggatttgac ggagccacgg ccgcagcccg gaaggaagtc 1260
 atcagaaaaca agatccgagc aataggcaaa atggccagag tggtctcagt tctcagagaa 1320
 gagagtgaga gtgtcctgac actgaaggc ctgacccaa ctggcatgct ccccagcgg 1380
 gtgtctctg gcgggaaaca gactctgca agcgctactg ttgaggctat tgaggctgat 1440
 gaagccatca aaggatttc accacaacat aagatacta gttcgagga gcccaagg 1500
 ttagaccgaa ttaacgagag gatgccacct cgccagagacg ccatgcctc tgacgccaac 1560
 ctaactcca tcaacaaggc tctcgctca gagactaacg gcacggacag caatggcagt 1620
 aataggcaca atatccagt accacttctt gttcactttt tttttttt gagctgcagg 1680
 gcatgatggg attgctgcat ctcagcagtt ggatgttctt gcctctgaa gtagcttgt 1740
 tgctctgggg gccaggaatt ggattcagtt tacactatca tgaaaaataa aaataaaaaa 1800
 agagggagag agataataaa ctatatttg gtgagggtgg tgattaaaca cctctttgg 1860
 gtatgcctt aaaaaatgct tctagggcaa aaaagttta aaaagaaagc taatgctagc 1920
 tatactgcaa tgtaggggaa atgaacgcgt tttctactg cactggggac ttttagatag 1980
 gttaatgaaa ggccttttatt ctgttactgg acacgaaaac tttgtctaatt ttcttataact 2040
 ctattgtacc ttacagtcg cagcaactaa atgaaagaca tcaaacattt ttaacagaaa 2100
 aaaaaaaaaa tgtaaaaaact aactaaggac tatttattaa tgatgttttgc ctactcctgt 2160
 cagacaatgg ctataaaactg aattaggcag tctt 2194

<210> 18
 <211> 521
 <212> PRT
 <213> Mus musculus

<220>

<223> mouse calmodulin-dependent phosphoprotein
 phosphatase catalytic subunit, calcineurin A alpha
 (PPP3CA)

<400> 18

Met	Ser	Glu	Pro	Lys	Ala	Ile	Asp	Pro	Lys	Leu	Ser	Thr	Thr	Asp	Arg
1															15

Val	Val	Lys	Ala	Val	Pro	Phe	Pro	Pro	Ser	His	Arg	Leu	Thr	Ala	Lys
															30

Glu	Val	Phe	Asp	Asn	Asp	Gly	Lys	Pro	Arg	Val	Asp	Ile	Leu	Lys	Ala
															45

His	Leu	Met	Lys	Glu	Gly	Arg	Leu	Glu	Ser	Val	Ala	Leu	Arg	Ile

Ile	Thr	Glu	Gly	Ala	Ser	Ile	Leu	Arg	Gln	Glu	Lys	Asn	Leu	Leu	Asp
															80

Ile	Asp	Ala	Pro	Val	Thr	Val	Cys	Gly	Asp	Ile	His	Gly	Gln	Phe	Phe
															95

Asp	Leu	Met	Lys	Leu	Phe	Glu	Val	Gly	Gly	Ser	Pro	Ala	Asn	Thr	Arg
															110

Tyr	Leu	Phe	Leu	Gly	Asp	Tyr	Val	Asp	Arg	Gly	Tyr	Phe	Ser	Ile	Glu
															125

Cys	Val	Leu	Tyr	Leu	Trp	Ala	Leu	Lys	Ile	Leu	Tyr	Pro	Lys	Thr	Leu
															140

Phe Leu Leu Arg Gly Asn His Glu Cys Arg His Leu Thr Glu Tyr Phe
 145 150 155 160
 Thr Phe Lys Gln Glu Cys Lys Ile Lys Tyr Ser Glu Arg Val Tyr Asp
 165 170 175
 Ala Cys Met Asp Ala Phe Asp Cys Leu Pro Leu Ala Ala Leu Met Asn
 180 185 190
 Gln Gln Phe Leu Cys Val His Gly Gly Leu Ser Pro Glu Ile Asn Thr
 195 200 205
 Leu Asp Asp Ile Arg Lys Leu Asp Arg Phe Lys Glu Pro Pro Ala Tyr
 210 215 220
 Gly Pro Met Cys Asp Ile Leu Trp Ser Asp Pro Leu Glu Asp Phe Gly
 225 230 235 240
 Asn Glu Lys Thr Gln Glu His Phe Thr His Asn Thr Val Arg Gly Cys
 245 250 255
 Ser Tyr Phe Tyr Ser Tyr Pro Ala Val Cys Asp Phe Leu Gln His Asn
 260 265 270
 Asn Leu Leu Ser Ile Leu Arg Ala His Glu Ala Gln Asp Ala Gly Tyr
 275 280 285
 Arg Met Tyr Arg Lys Ser Gln Thr Thr Gly Phe Pro Ser Leu Ile Thr
 290 295 300
 Ile Phe Ser Ala Pro Asn Tyr Leu Asp Val Tyr Asn Asn Lys Ala Ala
 305 310 315 320
 Val Leu Lys Tyr Glu Asn Asn Val Met Asn Ile Arg Gln Phe Asn Cys
 325 330 335
 Ser Pro His Pro Tyr Trp Leu Pro Asn Phe Met Asp Val Phe Thr Trp
 340 345 350
 Ser Leu Pro Phe Val Gly Glu Lys Val Thr Glu Met Leu Val Asn Val
 355 360 365
 Leu Asn Ile Cys Ser Asp Asp Glu Leu Gly Ser Glu Glu Asp Gly Phe
 370 375 380
 Asp Gly Ala Thr Ala Ala Ala Arg Lys Glu Val Ile Arg Asn Lys Ile
 385 390 395 400
 Arg Ala Ile Gly Lys Met Ala Arg Val Phe Ser Val Leu Arg Glu Glu
 405 410 415
 Ser Glu Ser Val Leu Thr Leu Lys Gly Leu Thr Pro Thr Gly Met Leu
 420 425 430
 Pro Ser Gly Val Leu Ser Gly Gly Lys Gln Thr Leu Gln Ser Ala Thr
 435 440 445
 Val Glu Ala Ile Glu Ala Asp Glu Ala Ile Lys Gly Phe Ser Pro Gln
 450 455 460

His Lys Ile Thr Ser Phe Glu Glu Ala Lys Gly Leu Asp Arg Ile Asn
465 470 475 480

Glu Arg Met Pro Pro Arg Arg Asp Ala Met Pro Ser Asp Ala Asn Leu
485 490 495

Asn Ser Ile Asn Lys Ala Leu Ala Ser Glu Thr Asn Gly Thr Asp Ser
500 505 510

Asn Gly Ser Asn Ser Ser Asn Ile Gln
515 520

<210> 19

<211> 2360

<212> DNA

<213> Rattus norvegicus

<220>

<223> rat calmodulin-dependent phosphoprotein
phosphatase catalytic subunit, calcineurin A alpha
(PPP3CA) cDNA

<220>

<221> CDS

<222> (271)..(1806)

<223> PPP3CA

<400> 19

agaaaataaa taaataacca gcacacacgc gcagccccga gcgaggcgcg gggctggtgg 60
cggcggagga ggagtgaagg cggcggccgc ggaggagggc cgccgcggagc cggcagtaac 120
tttcgagcca gcccagagcc cggagctcca gcccagcggt ttgcagcgcg gcggcggcgg 180
cgctgagtgt ctggcccgcc ggtgcggctg gggtgtgcag tcggacggga ccagcagcgc 240
gtcgctgtcc cccctcccg gtgactggag atgtccgagc ccaaggcgat tgatcccaag 300
ttgtcgacta cggacagggt ggtgaaagcc gttccatttc cgccaagtca ccggctgaca 360
gcaaaggaag tgtttgataa cgatggaaag cctcgtgtgg atatcttaaa agcacatctc 420
atgaaggaag gcaggctgga agaaaagtgtc gcgttgagaa taataacaga gggtgcttcg 480
attctccgac aggaaaaaaaaa cttgctgat attgatgccc cagtcacagt ttgcggggac 540
atccatggac aattcttta cttgatgaag ctctttagg tgggaggatc tcctgccaac 600
actcgctacc tcttcttagg ggactatgtt gacagagggt acttcagtat cgaatgttg 660
ctgtattttgt gggccttgaa aattcttac cccaaaacac tgttttact tcgtggaaac 720
catgaatgt a ggcaccta ac agatatttc acgtttaaac aagaatgtaa aataaagtat 780
tcagaacgcg tttatgacgc ctgtatggat gccttcgact gcctccct ggctgcgtg 840
atgaaccaac aattcctgtg tgtacacggt ggtttgcgtc cagagattaa cactcttagat 900
gacatcagaa aatttagaccg attcaaagaa ccacctgtt atgggcctat gtgtgacatc 960
ttgtggtcag accccctgga ggactttgaa aatgagaaga ctcaggaaca tttcactcac 1020
aacacagtca ggggttggc gtacttctac agtacccgg ctgtatgtga cttcctgcag 1080
cacaataatt tggttccat actccgagcc cacgaagccc aggacgcagg gtaccgcattg 1140
tacagggaaaa gccaaacaac tggctcccg tctctaatta cgatcttc ggcaccaaatt 1200
tacttagatg tgtacaataa taaagctgca gtgttgaagt acgagaacaa cgttatgaaac 1260
atcaggcagt tcaactgctc ccccatccg tactggctcc caaatttcat ggatgttttc 1320
acctggctgc tgccattttgt tggggagaaa gtgactgaga tgctggtaaa cgtcctgaaac 1380
atctgctcag atgatgaact ggggtcagaa gaagatggat ttgacggagc cacggctgca 1440
gcccggaaagg aggtcatcag gaacaagatc cgagcaatag gcaaaatggc cagagtattc 1500
tcagttctca gagaagagag tgagagcggt ctaactctga agggcctgac cccgactggc 1560
atgctccca gcggagtgct ctctggccgg aaacaaaactc tgcaaagcgc catcaaagga 1620
ttctcaccac aacataagat taccagttc gaggaggcca agggcttaga ccgaattaac 1680
gagaggatgc cgcctcgcag agacgccatg cttccgcacg ccaacctaa ctccatcaac 1740
aaggctctcg cctcagagac taacggcaca gacagcaacg gcagtaatag cagcaatatt 1800
cagtgaccac ttccctgttca cttttttttt ttgagctgca ggcatgatgg gtttgctgca 1860
tctcagcagt tgggtttctt gcctctgacg gtagctgtt tgctgctggg ggggcccaggaa 1920

attggattca	gtttacacta	tcataaaaaa	aaaaaaaaagag	ggagagagag	agagataata	1980
aaactatatt	tttgtgaggg	tggtgattaa	acacctcttt	tgggtatgcc	tttaaaaatg	2040
cttcttagaa	aaaaaaaaagtt	ttaaaaagaa	agctaataatgt	agtctatact	tcaatgttag	2100
ggaaatgaac	acgtttcct	agcgcactgg	ggacttttag	ataggtaat	gaaaggccctt	2160
ttattctgtt	actggacacg	aaaactttgt	ctaatttctt	atactctatt	gtacgtttac	2220
agtcgcagca	ctaaaaatgg	atgacatcaa	acatttttaa	acagaaaaaa	aaagatgtgc	2280
gggctaaata	accactattt	attgataatg	ttttgtctact	cttgcagac	aatggctata	2340
aactgaatta	ggccgaattc					2360

<210> 20
<211> 511
<212> PRT
<213> *Rattus norvegicus*

<220>
<223> rat calmodulin-dependent phosphoprotein
phosphatase catalytic subunit, calcineurin A alpha
(PPP3CA)

```

<400> 20
Met Ser Glu Pro Lys Ala Ile Asp Pro Lys Leu Ser Thr Thr Asp Arg
1 5 10 15

Val Val Lys Ala Val Pro Phe Pro Pro Ser His Arg Leu Thr Ala Lys
20 25 30

Glu Val Phe Asp Asn Asp Gly Lys Pro Arg Val Asp Ile Leu Lys Ala
35 40 45

His Leu Met Lys Glu Gly Arg Leu Glu Glu Ser Val Ala Leu Arg Ile
50 55 60

Ile Thr Glu Gly Ala Ser Ile Leu Arg Gln Glu Lys Asn Leu Leu Asp
65 70 75 80

Ile Asp Ala Pro Val Thr Val Cys Gly Asp Ile His Gly Gln Phe Phe
85 90 95

Asp Leu Met Lys Leu Phe Glu Val Gly Gly Ser Pro Ala Asn Thr Arg
100 105 110

Tyr Leu Phe Leu Gly Asp Tyr Val Asp Arg Gly Tyr Phe Ser Ile Glu
115 120 125

Cys Val Leu Tyr Leu Trp Ala Leu Lys Ile Leu Tyr Pro Lys Thr Leu
130 135 140

Phe Leu Leu Arg Gly Asn His Glu Cys Arg His Leu Thr Glu Tyr Phe
145 150 155 160

Thr Phe Lys Gln Glu Cys Lys Ile Lys Tyr Ser Glu Arg Val Tyr Asp
165 170 175

Ala Cys Met Asp Ala Phe Asp Cys Leu Pro Leu Ala Ala Leu Met Asn
180 185 190

Gln Gln Phe Leu Cys Val His Gly Gly Leu Ser Pro Glu Ile Asn Thr
195 200 205

```

Leu Asp Asp Ile Arg Lys Leu Asp Arg Phe Lys Glu Pro Pro Ala Tyr
 210 215 220

 Gly Pro Met Cys Asp Ile Leu Trp Ser Asp Pro Leu Glu Asp Phe Gly
 225 230 235 240

 Asn Glu Lys Thr Gln Glu His Phe Thr His Asn Thr Val Arg Gly Cys
 245 250 255

 Ser Tyr Phe Tyr Ser Tyr Pro Ala Val Cys Asp Phe Leu Gln His Asn
 260 265 270

 Asn Leu Leu Ser Ile Leu Arg Ala His Glu Ala Gln Asp Ala Gly Tyr
 275 280 285

 Arg Met Tyr Arg Lys Ser Gln Thr Thr Gly Phe Pro Ser Leu Ile Thr
 290 295 300

 Ile Phe Ser Ala Pro Asn Tyr Leu Asp Val Tyr Asn Asn Lys Ala Ala
 305 310 315 320

 Val Leu Lys Tyr Glu Asn Asn Val Met Asn Ile Arg Gln Phe Asn Cys
 325 330 335

 Ser Pro His Pro Tyr Trp Leu Pro Asn Phe Met Asp Val Phe Thr Trp
 340 345 350

 Ser Leu Pro Phe Val Gly Glu Lys Val Thr Glu Met Leu Val Asn Val
 355 360 365

 Leu Asn Ile Cys Ser Asp Asp Glu Leu Gly Ser Glu Glu Asp Gly Phe
 370 375 380

 Asp Gly Ala Thr Ala Ala Ala Arg Lys Glu Val Ile Arg Asn Lys Ile
 385 390 395 400

 Arg Ala Ile Gly Lys Met Ala Arg Val Phe Ser Val Leu Arg Glu Glu
 405 410 415

 Ser Glu Ser Val Leu Thr Leu Lys Gly Leu Thr Pro Thr Gly Met Leu
 420 425 430

 Pro Ser Gly Val Leu Ser Gly Gly Lys Gln Thr Leu Gln Ser Ala Ile
 435 440 445

 Lys Gly Phe Ser Pro Gln His Lys Ile Thr Ser Phe Glu Glu Ala Lys
 450 455 460

 Gly Leu Asp Arg Ile Asn Glu Arg Met Pro Pro Arg Arg Asp Ala Met
 465 470 475 480

 Pro Ser Asp Ala Asn Leu Asn Ser Ile Asn Lys Ala Leu Ala Ser Glu
 485 490 495

 Thr Asn Gly Thr Asp Ser Asn Gly Ser Asn Ser Ser Asn Ile Gln
 500 505 510

```

<210> 21
<211> 3984
<212> DNA
<213> Homo sapiens

<220>
<223> human protein tyrosine phosphatase, non-receptor
      type 3 (PTPN3a) cDNA

<220>
<221> CDS
<222> (24)..(2765)
<223> PTPN3a

<400> 21
ctgcaggta ttcagcgata gttatgacct cccgggtacg tgcgttgggt ggaagaatta 60
ataatatatacg cacctcgtag ttacccaaag agaaaaactcg atcagaagtc atttgcagca 120
tccactttt agatggcgtag gtacagaccc ttAAAGTTAC taaacaagac actggccagg 180
ttcttctgga tatgtgcac aaccacctgg gtgtgactga aaaggaatat ttgggttac 240
agcatgatga cgactccgtg gactctccta gatggctgga agcaagcaaa cccatcagga 300
agcagttaaa aggagggttc ccctgtaccc tgcatTTCG agtaagattt ttatacctg 360
atccccaacac actgcagcaa gaacaaacca ggcaattgttac tttcttacaa ctgaagatgg 420
atatttgcga aggaaggta acctgcctc ttaactcgc agtggttcta gcgtcctatg 480
ccgtacaatc tcattttgga gactataatt cttccatatac tcatccaggc tatcttccg 540
atagtcaatt tatacccgat caaaatgagg acttttaac aaaagtgcgaa tctctgcatt 600
agcagcacag tgggttaaaa caatcagaag cagaatctg ctatataaac atagcgcgg 660
ccctcgactt ctatggagta gaactgcaca gtggtaggaa tctgcacaat tttagacctaa 720
tgattggaat tgctcccgcg ggtgttgcgt tgtaccgaaa atacatttgc acaagtttct 780
atccttgggt gaacattctc aaaatttctt tcaaaaggaa aaagtttttc atacatcagc 840
gacagaaaca ggctgaatcc agggaaacata ttgtggcctt caacatgctg aattaccgat 900
cttgcaaaaa cttgtggaaa tcctgtgtt agcaccatac gttcttcag gcaaagaagc 960
tactacctca ggaaaagaat gttctgtctc agtactggac tatgggtctc cggAACACCA 1020
aaaagtgcgtt aaataaccaa tattgcaaaa aggtgattgg cggatggtg tggAACCCAG 1080
ccatgcggag atccttatca gtggagact tagaaaccaa gagtctgcct ttcgttccc 1140
ctcccattac tcccaactgg cgaagtctc ggctccggca cggaaatccga aagccacgcc 1200
actcttctgc agataacccct gcaaatgaaa tgacctacat cacggaaacg gaagatgtat 1260
tttacacgta caagggtctc ctggccccc aagacagcga ttctgaagtt ttcagaacc 1320
gaagccccca ccaagagagt ttatccgaga acaatccggc acaaagctac ctgaccacaga 1380
agtcatccag ttctgtgtct ccatcttcaa atgctccagg ctcctgctca cctgacggcg 1440
ttgatcagca gcttttagat gacttccaca gggtagccaa agggggctcc accgaggacg 1500
ccagccagta ctactgtgac aagaatgata atggtgacag ctacttagtc ttgatccgta 1560
tcacaccaga tgaagatgga aaatttggat ttaatcttaa gggaggagtg gatcaaaaga 1620
tgccttctgtt ggtatcaagg ataaacccag agtcacctgc ggacacctgc attcctaagc 1680
tgaacgaagg ggatcaaattc gtgttaatca atggccggga catctcagaa cacacgcatt 1740
accaagtggt gatgttcatc aaagccagcc gggagtccca ctcacgggg ctggccctgg 1800
tgatcaggag gagagctgtc cgctcatttgc ctgacttcaa gtctgaagat gaactgaacc 1860
agctttccc cgaagccatt ttccccatgt gtccggaggg tggggacact ttggagggat 1920
ccatggcaca gctaaagaag ggcctcgaaa gccccggacggt gctgatccag ttgagcaac 1980
tctacagaaaa aaagccaggt ttggccatca cgtttgcaaa gctgcctcaa aatttggaca 2040
aaaaccgata taaagatgtg ctgccttatg acaccacccg ggtattattg cagggaaatg 2100
aagattatat taatgcaagt tacgtgaaca tgaaaattcc tgctgtaac cttgtgaaca 2160
agtacatcgc cactcagggg cccctgccgc atacctgtgc acagtttgg caggttgcct 2220
gggatcagaa gttgtcaactc attgtcatgt tgacgactct cacagaacga gggcgacca 2280
aatgtcacca gtactggcca gatcccccg acgtcatgaa ccacggcggc tttcacatcc 2340
agtgtcagtc agaggactgc accatcgctt atgtgtcccg agaaatgctg gtcacaaaca 2400
cccagacccg ggaagaacac acagtgacac atctccagta cgtcgcattgg cctgaccacg 2460
gtatacccgta tgactcctcc gactttctgg aatttggaaa ctatgtgagg ttcgtgagag 2520
tggacagcga gcctgtccta gttcaactg gtgctggaaat aggtcaacc ggtgtgttgg 2580
tcactatgga aacagccatg tgcctaactg agaggaacct gcccattac ccaactggata 2640
ttgtccgaaa aatgcgagac cagcgcgcca tcatggcga gacatcaagc cagtcataagt 2700
ttgtgtgtga agcgattttt cgtgtgtatg aagaaggatg agtccaaatg ctggatccct 2760

```

gttaagacaa	ctgtaaaaaa	gttcattcct	ctttcccaag	ggcatcctcc	ttgaaagagg	2820
aggacagacc	tctctggaag	cagcaagagg	aaccagttagc	tgtgggaaag	aatgggcac	2880
ctctgaaccc	agcacttta	aacttctata	aaaaagatata	cgtgtacata	ggaactggtg	2940
tagataagca	tgcatttatg	gcattttta	ggcctgtatt	tctatggaaa	gataaaaaaa	3000
ggatctcagt	ttggggcctg	tcctaattgcc	ttctcccta	acatcaccac	acacacccct	3060
gtcgccatcc	tggagcaatt	gagaccggac	acccacagag	ctgttgcct	cccagcaaca	3120
agatgggtg	gttatcttgg	gtcatttgg	tgttttgg	gtttctgtgt	gtcagactgt	3180
aagggtctgag	ctttctgtgc	ttcttaggtgg	agctggaa	attcagattc	accgcgcctg	3240
atgctaagga	aaccctgacg	tatgtactag	atggcaggc	actgggggtc	aggctgaagg	3300
ctgagcaaca	cctctctgccc	ctccctccct	ttgtcccattc	tcccagcgcac	ttccaatatt	3360
catgtttctg	agaatttgt	ccctcttcag	ttccctcttg	gtgcctaacc	tggatttagta	3420
atgtgcattc	agtgaaattt	tcagctgagg	ctctgagaa	tggtaactctc	agtgtttct	3480
ggtcatcttgc	tggcttagtt	gtagaagcag	gtgtgtctct	tgcctctgtct	tgcctccat	3540
tgcacactca	gcacccagg	ctggaaatcac	cgactactga	atctcctaca	tgtattgtct	3600
ctacttcaag	ctccctccact	tgaaacctta	tgattttcca	aggggagatg	ggacagtgtc	3660
atctaataat	tccgaatgtt	tggcattctg	agaaaagagc	ttcttagtaat	tgaaccatgg	3720
gtttcccg	ttctggaggg	ttggccgtgg	gctgtgtaca	tgtgtgtgcc	caggggtgag	3780
tgtttctcag	gattccta	gattcaaatt	accgttgagt	atatataaag	aatcgagtct	3840
ctgtatggaa	gaacaaatgt	gtgcattcac	ccccagtcac	aatggtctcc	attgcatttc	3900
aaaggagagg	atcagactat	ctgaatataa	acacaatctg	atgttaattt	attctaagaa	3960
caccatcatt	ttgattgtcc	taaa				3984

<210> 22
<211> 913
<212> PRT
<213> *Homo sapiens*

<220>
<223> human protein tyrosine phosphatase, non-receptor
type 3 (PTPN3a)

<400> 22
 Met Thr Ser Arg Leu Arg Ala Leu Gly Gly Arg Ile Asn Asn Ile Arg
 1 5 10 15
 Thr Ser Glu Leu Pro Lys Glu Lys Thr Arg Ser Glu Val Ile Cys Ser
 20 25 30
 Ile His Phe Leu Asp Gly Val Val Gln Thr Phe Lys Val Thr Lys Gln
 35 40 45
 Asp Thr Gly Gln Val Leu Leu Asp Met Val His Asn His Leu Gly Val
 50 55 60
 Thr Glu Lys Glu Tyr Phe Gly Leu Gln His Asp Asp Asp Ser Val Asp
 65 70 75 80
 Ser Pro Arg Trp Leu Glu Ala Ser Lys Pro Ile Arg Lys Gln Leu Lys
 85 90 95
 Gly Gly Phe Pro Cys Thr Leu His Phe Arg Val Arg Phe Phe Ile Pro
 100 105 110
 Asp Pro Asn Thr Leu Gln Gln Glu Gln Thr Arg His Leu Tyr Phe Leu
 115 120 125
 Gln Leu Lys Met Asp Ile Cys Glu Gly Arg Leu Thr Cys Pro Leu Asn
 130 135 140

Ser Ala Val Val Leu Ala Ser Tyr Ala Val Gln Ser His Phe Gly Asp
 145 150 155 160
 Tyr Asn Ser Ser Ile His His Pro Gly Tyr Leu Ser Asp Ser His Phe
 165 170 175
 Ile Pro Asp Gln Asn Glu Asp Phe Leu Thr Lys Val Glu Ser Leu His
 180 185 190
 Glu Gln His Ser Gly Leu Lys Gln Ser Glu Ala Glu Ser Cys Tyr Ile
 195 200 205
 Asn Ile Ala Arg Thr Leu Asp Phe Tyr Gly Val Glu Leu His Ser Gly
 210 215 220
 Arg Asp Leu His Asn Leu Asp Leu Met Ile Gly Ile Ala Ser Ala Gly
 225 230 235 240
 Val Ala Val Tyr Arg Lys Tyr Ile Cys Thr Ser Phe Tyr Pro Trp Val
 245 250 255
 Asn Ile Leu Lys Ile Ser Phe Lys Arg Lys Lys Phe Phe Ile His Gln
 260 265 270
 Arg Gln Lys Gln Ala Glu Ser Arg Glu His Ile Val Ala Phe Asn Met
 275 280 285
 Leu Asn Tyr Arg Ser Cys Lys Asn Leu Trp Lys Ser Cys Val Glu His
 290 295 300
 His Thr Phe Phe Gln Ala Lys Lys Leu Leu Pro Gln Glu Lys Asn Val
 305 310 315 320
 Leu Ser Gln Tyr Trp Thr Met Gly Ser Arg Asn Thr Lys Lys Ser Val
 325 330 335
 Asn Asn Gln Tyr Cys Lys Lys Val Ile Gly Gly Met Val Trp Asn Pro
 340 345 350
 Ala Met Arg Arg Ser Leu Ser Val Glu His Leu Glu Thr Lys Ser Leu
 355 360 365
 Pro Ser Arg Ser Pro Pro Ile Thr Pro Asn Trp Arg Ser Pro Arg Leu
 370 375 380
 Arg His Glu Ile Arg Lys Pro Arg His Ser Ser Ala Asp Asn Leu Ala
 385 390 395 400
 Asn Glu Met Thr Tyr Ile Thr Glu Thr Glu Asp Val Phe Tyr Thr Tyr
 405 410 415
 Lys Gly Ser Leu Ala Pro Gln Asp Ser Asp Ser Glu Val Ser Gln Asn
 420 425 430
 Arg Ser Pro His Gln Glu Ser Leu Ser Glu Asn Asn Pro Ala Gln Ser
 435 440 445
 Tyr Leu Thr Gln Lys Ser Ser Ser Ser Val Ser Pro Ser Ser Asn Ala
 450 455 460

Pro Gly Ser Cys Ser Pro Asp Gly Val Asp Gln Gln Leu Leu Asp Asp
 465 470 475 480

Phe His Arg Val Thr Lys Gly Gly Ser Thr Glu Asp Ala Ser Gln Tyr
 485 490 495

Tyr Cys Asp Lys Asn Asp Asn Gly Asp Ser Tyr Leu Val Leu Ile Arg
 500 505 510

Ile Thr Pro Asp Glu Asp Gly Lys Phe Gly Phe Asn Leu Lys Gly Gly
 515 520 525

Val Asp Gln Lys Met Pro Leu Val Val Ser Arg Ile Asn Pro Glu Ser
 530 535 540

Pro Ala Asp Thr Cys Ile Pro Lys Leu Asn Glu Gly Asp Gln Ile Val
 545 550 555 560

Leu Ile Asn Gly Arg Asp Ile Ser Glu His Thr His Asp Gln Val Val
 565 570 575

Met Phe Ile Lys Ala Ser Arg Glu Ser His Ser Arg Glu Leu Ala Leu
 580 585 590

Val Ile Arg Arg Ala Val Arg Ser Phe Ala Asp Phe Lys Ser Glu
 595 600 605

Asp Glu Leu Asn Gln Leu Phe Pro Glu Ala Ile Phe Pro Met Cys Pro
 610 615 620

Glu Gly Gly Asp Thr Leu Glu Gly Ser Met Ala Gln Leu Lys Lys Gly
 625 630 635 640

Leu Glu Ser Gly Thr Val Leu Ile Gln Phe Glu Gln Leu Tyr Arg Lys
 645 650 655

Lys Pro Gly Leu Ala Ile Thr Phe Ala Lys Leu Pro Gln Asn Leu Asp
 660 665 670

Lys Asn Arg Tyr Lys Asp Val Leu Pro Tyr Asp Thr Thr Arg Val Leu
 675 680 685

Leu Gln Gly Asn Glu Asp Tyr Ile Asn Ala Ser Tyr Val Asn Met Glu
 690 695 700

Ile Pro Ala Ala Asn Leu Val Asn Lys Tyr Ile Ala Thr Gln Gly Pro
 705 710 715 720

Leu Pro His Thr Cys Ala Gln Phe Trp Gln Val Val Trp Asp Gln Lys
 725 730 735

Leu Ser Leu Ile Val Met Leu Thr Thr Leu Thr Glu Arg Gly Arg Thr
 740 745 750

Lys Cys His Gln Tyr Trp Pro Asp Pro Pro Asp Val Met Asn His Gly
 755 760 765

Gly Phe His Ile Gln Cys Gln Ser Glu Asp Cys Thr Ile Ala Tyr Val
 770 775 780

Ser Arg Glu Met Leu Val Thr Asn Thr Gln Thr Gly Glu Glu His Thr
 785 790 795 800
 Val Thr His Leu Gln Tyr Val Ala Trp Pro Asp His Gly Ile Pro Asp
 805 810 815
 Asp Ser Ser Asp Phe Leu Glu Phe Val Asn Tyr Val Arg Ser Leu Arg
 820 825 830
 Val Asp Ser Glu Pro Val Leu Val His Cys Ser Ala Gly Ile Gly Arg
 835 840 845
 Thr Gly Val Leu Val Thr Met Glu Thr Ala Met Cys Leu Thr Glu Arg
 850 855 860
 Asn Leu Pro Ile Tyr Pro Leu Asp Ile Val Arg Lys Met Arg Asp Gln
 865 870 875 880
 Arg Ala Met Met Val Gln Thr Ser Ser Gln Tyr Lys Phe Val Cys Glu
 885 890 895
 Ala Ile Leu Arg Val Tyr Glu Glu Gly Leu Val Gln Met Leu Asp Pro
 900 905 910

Ser

<210> 23
 <211> 3087
 <212> DNA
 <213> Mus musculus

 <220>
 <223> mouse protein tyrosine phosphatase, non-receptor
 type 3 (PTPN3) cDNA

 <220>
 <221> CDS
 <222> (1)..(3087)
 <223> PTPN3

 <400> 23
 atggtaata agccaaggga cccccccccc caacctggaa tccagggtat ctttcatccca 60
 gtcaggaaa caccaaccgg aattcctggg ctccagagaa ctgtaggatg ggaatatgaa 120
 gttaagcagc tgtttctgg gaagctggcc agaaaagtaca tccctgattc cagtgcattc 180
 tttattgaaa agggcatggg ggaggtggg ggttaactcg 240
 ttacgtgcgt tgggtgaaag aattaacaat acccgAACCT ctgaattgcc caaagagaaa 300
 actcgatccg aggtcatctg cagcatacgg ttttagatg gcttggtaca gacctttaaa 360
 gttaacaaac aagatttggg ccagtcgctt ctggatatgg cctatggcca cctgggtgtg 420
 acggagaagg aataacttcgg cttgcaacat ggcgacgacc cagtggactc tcctagatgg 480
 cttgaggcaa gcaaaccctt caggaagcag ctgaaagggtg agtatgctct tgcttcactt 540
 ggtcgctggg tgtacggcaa actgtcttct ccttatgggg gacttaaggt ggcgggaaaa 600
 cctaatttgtt ttttggaaaaa tggatggaa ggtttccctt gtaccctgca ttttcgagta 660
 agatattttt tacctgatcc caacacactg cagcaggagc aaaccaggca tctatatttc 720
 ttacaactga agatggatgt ttgcgaagga aggttaacctt gcccctctcaa ctcagcggtg 780
 gttctagctt cgtacgcagt acaatctcat ttggagact ttaattcttc aatacatcat 840
 ccaggctatc ttggccgacag ccagttcata ccagatcaaa atgatgactt tttagcaag 900
 gtggagtac tccatgaaca gcacagtggg ctaaaggcgtt cggaaagccga atcttgctac 960
 atcaacatag ctcgaaccctt tgacttctac ggagtggagc ttcatggagg cagagatctg 1020
 cacaaccttag atctaattgtt cgggattgcg tctgcaggca ttgcagtcta ccgaaaatac 1080
 atttgcacaa gtttctaccc ttggaaaaag ttcttcatac accagcggca aaaacaggaa 1140

<210> 24
<211> 1028
<212> PRT
<213> *Mus musculus*

<220>
<223> mouse protein tyrosine phosphatase, non-receptor
type 3 (PTPN3)

<400> 24
Met Val Asn Lys Pro Arg Asp Pro Pro Pro Gln Pro Gly Ile Gln Gly
1 5 10 15

Ile Phe His Pro Ala Gln Glu Thr Pro Thr Gly Ile Pro Gly Leu Gln
 20 25 30

Leu Ala Arg Lys Tyr Ile Pro Asp Ser Ser Asp Ile Phe Ile Glu Lys
50 55 60

Gly Met Val Glu Val Val Gly Tyr Ser Ala Ala Val Met Thr Ser Arg
65 70 75 80

Leu Arg Ala Leu Gly Gly Arg Ile Asn Asn Thr Arg Thr Ser Glu Leu
 85 90 95

 Pro Lys Glu Lys Thr Arg Ser Glu Val Ile Cys Ser Ile Arg Phe Leu
 100 105 110

 Asp Gly Leu Val Gln Thr Phe Lys Val Asn Lys Gln Asp Leu Gly Gln
 115 120 125

 Ser Leu Leu Asp Met Ala Tyr Gly His Leu Gly Val Thr Glu Lys Glu
 130 135 140

 Tyr Phe Gly Leu Gln His Gly Asp Asp Pro Val Asp Ser Pro Arg Trp
 145 150 155 160

 Leu Glu Ala Ser Lys Pro Leu Arg Lys Gln Leu Lys Gly Glu Tyr Ala
 165 170 175

 Leu Ala Ser Leu Gly Arg Trp Val Tyr Gly Lys Leu Ser Ser Pro Tyr
 180 185 190

 Gly Gly Leu Lys Val Ala Gly Lys Pro Asn Leu Phe Leu Lys Asn Val
 195 200 205

 Val Gly Gly Phe Pro Cys Thr Leu His Phe Arg Val Arg Tyr Phe Ile
 210 215 220

 Pro Asp Pro Asn Thr Leu Gln Gln Glu Gln Thr Arg His Leu Tyr Phe.
 225 230 235 240

 Leu Gln Leu Lys Met Asp Val Cys Glu Gly Arg Leu Thr Cys Pro Leu
 245 250 255

 Asn Ser Ala Val Val Leu Ala Ser Tyr Ala Val Gln Ser His Phe Gly
 260 265 270

 Asp Phe Asn Ser Ser Ile His His Pro Gly Tyr Leu Ala Asp Ser Gln
 275 280 285

 Phe Ile Pro Asp Gln Asn Asp Asp Phe Leu Ser Lys Val Glu Ser Leu
 290 295 300

 His Glu Gln His Ser Gly Leu Lys Gln Ser Glu Ala Glu Ser Cys Tyr
 305 310 315 320

 Ile Asn Ile Ala Arg Thr Leu Asp Phe Tyr Gly Val Glu Leu His Gly
 325 330 335

 Gly Arg Asp Leu His Asn Leu Asp Leu Met Ile Gly Ile Ala Ser Ala
 340 345 350

 Gly Ile Ala Val Tyr Arg Lys Tyr Ile Cys Thr Ser Phe Tyr Pro Trp
 355 360 365

 Lys Lys Phe Phe Ile His Gln Arg Gln Lys Glu Glu Lys Ile Val
 370 375 380

 Ala Val Arg Ser Ser Asp Pro Val Ala Ile Ser Ala Glu Ser Arg Glu
 385 390 395 400

His	Ile	Val	Ala	Phe	Asn	Met	Leu	Asn	Tyr	Arg	Ser	Cys	Lys	Asn	Leu
						405			410					415	
Trp	Lys	Ser	Cys	Val	Glu	His	His	Ser	Phe	Phe	Gln	Ala	Lys	Lys	Leu
						420			425				430		
Leu	Pro	Gln	Glu	Lys	Asn	Val	Leu	Ser	Gln	Tyr	Trp	Thr	Leu	Gly	Ser
						435			440			445			
Arg	Asn	Pro	Lys	Lys	Ser	Val	Asn	Asn	Gln	Tyr	Cys	Lys	Lys	Val	Ile
						450			455			460			
Gly	Gly	Met	Val	Trp	Asn	Pro	Val	Met	Arg	Arg	Ser	Leu	Ser	Val	Glu
						465			470			475			480
Arg	Leu	Glu	Thr	Lys	Ser	Leu	Pro	Ser	Arg	Ser	Pro	Pro	Ile	Thr	Pro
						485			490				495		
Asn	Trp	Arg	Ser	Pro	Arg	Leu	Arg	His	Glu	Ile	Arg	Lys	Pro	Arg	His
						500			505			510			
Ser	Ser	Ala	Asp	Asn	Leu	Ala	Asn	Glu	Met	Thr	Tyr	Ile	Thr	Glu	Thr
						515			520			525			
Glu	Asp	Val	Phe	Tyr	Thr	Tyr	Lys	Gly	Pro	Leu	Ser	Pro	Lys	Asp	Ser
						530			535			540			
Asp	Ser	Glu	Val	Ser	Gln	Asn	His	Ser	Pro	His	Arg	Glu	Ser	Leu	Ser
						545			550			555			560
Glu	Asn	Asn	Pro	Ala	Gln	Ser	Cys	Leu	Thr	Gln	Lys	Ser	Ser	Ser	Ser
						565			570			575			
Val	Ser	Pro	Ser	Ser	Asn	Ala	Pro	Gly	Ser	Cys	Ser	Pro	Asp	Gly	Val
						580			585			590			
Asp	Gln	Arg	Phe	Leu	Glu	Asp	Tyr	His	Lys	Val	Thr	Lys	Gly	Gly	Phe
						595			600			605			
Val	Glu	Asp	Ala	Ser	Gln	Tyr	Tyr	Cys	Asp	Lys	Ser	Asp	Asp	Gly	Asp
						610			615			620			
Gly	Tyr	Leu	Val	Leu	Ile	Arg	Ile	Thr	Pro	Asp	Glu	Glu	Gly	Arg	Phe
						625			630			635			640
Gly	Phe	Asn	Leu	Lys	Ala	Asp	Thr	Cys	Met	Pro	Lys	Leu	Asn	Glu	Gly
						645			650			655			
Asp	Gln	Ile	Val	Leu	Ile	Asn	Gly	Arg	Asp	Ile	Ser	Glu	His	Thr	His
						660			665			670			
Asp	Gln	Val	Val	Met	Phe	Ile	Lys	Ala	Ser	Arg	Glu	Ser	His	Ser	Arg
						675			680			685			
Glu	Leu	Ala	Leu	Val	Ile	Arg	Arg	Lys	Gly	Lys	Ala	Thr	Phe	Val	Gly
						690			695			700			
His	Glu	Gly	Leu	Val	Pro	Ala	Arg	Ala	Val	Arg	Ser	Leu	Ala	Glu	Ile
						705			710			715			720

Arg Ser Glu Asp Glu Leu Ser Gln Leu Phe Pro Glu Ala Met Phe Pro
 725 730 735
 Ala Cys Pro Glu Gly Gly Asp Ser Leu Glu Gly Ser Met Glu Leu Leu
 740 745 750
 Lys Lys Gly Leu Glu Ser Gly Thr Val Leu Ile Gln Phe Glu Gln Leu
 755 760 765
 Tyr Arg Lys Lys Pro Gly Leu Ala Val Ser Phe Ala Lys Leu Pro Gln
 770 775 780
 Asn Leu Asp Lys Asn Arg Tyr Lys Asp Val Leu Pro Tyr Asp Thr Thr
 785 790 795 800
 Arg Val Leu Leu Gln Gly Asn Glu Asp Tyr Ile Asn Ala Ser Tyr Val
 805 810 815
 Asn Met Glu Met Pro Ala Ala Asn Leu Val Asn Lys Tyr Ile Ala Thr
 820 825 830
 Gln Gly Pro Leu Pro Asn Thr Cys Ala Gln Phe Trp Gln Val Val Trp
 835 840 845
 Asp Gln Lys Leu Ser Leu Val Val Met Leu Thr Thr Leu Thr Glu Arg
 850 855 860
 Gly Arg Thr Lys Cys His Gln Tyr Trp Pro Asp Pro Pro Asp Ile Met
 865 870 875 880
 Asp His Gly Ile Phe His Ile Gln Cys Gln Thr Glu Asp Cys Thr Ile
 885 890 895
 Ala Tyr Val Ser Arg Glu Met Leu Val Thr Asn Thr Glu Thr Gly Glu
 900 905 910
 Glu His Thr Val Thr His Leu Gln Tyr Val Ala Trp Pro Asp His Gly
 915 920 925
 Val Pro Asp Asp Ser Ser Asp Phe Leu Glu Phe Val Lys Tyr Val Arg
 930 935 940
 Ser Leu Arg Val Asp Gly Glu Pro Ala Leu Val His Cys Ser Ala Gly
 945 950 955 960
 Ile Gly Arg Thr Gly Val Leu Val Thr Met Glu Thr Ala Met Cys Leu
 965 970 975
 Ile Glu Arg Asn Leu Pro Val Tyr Pro Leu Asp Ile Val Arg Lys Met
 980 985 990
 Arg Asp Gln Arg Ala Met Met Val Gln Thr Ser Ser Gln Tyr Lys Phe
 995 1000 1005
 Val Cys Glu Ala Ile Leu Arg Val Tyr Glu Glu Gly Leu Val Gln Arg
 1010 1015 1020
 Leu Asp Pro Ser
 1025

```

<210> 25
<211> 2607
<212> DNA
<213> Homo sapiens

<220>
<223> human protein tyrosine phosphatase, non-receptor
      type 3 (PTPN3b) splice variant cDNA

<220>
<221> CDS
<222> (1)..(2607)
<223> PTPN3b splice variant

<400> 25
atgacccccc ggtaacgtgc gttgggttga agaattaata atatacgcac ctcggagtt 60
cccaaagaga aaactcgatc agaagtcat tgcagcatcc acttttttaga tggcgtggta 120
cagaccttta aagttactaa acaagacact ggcagggttc ttctggatat ggtgcacaac 180
cacctgggtg tgactgaaaa ggaatatttt ggttacagc atgatgacga ctccgtggac 240
tctccttagat ggctggaagc aagcaaacc accatggaaatc agttaaaaagg aggtttcccc 300
tgtaccctgc attttcgagt aagattttt atacctgatc ccaacacact gcagcaagaa 360
caaaccaggc acttgttattt cttacaactg aagatggata tttgcgaagg aaggttaacc 420
tgcccttta actcagcagt ggttctagcg tcctatgccc tacaatctca ttttggagac 480
tataatttctt ccatacatca tccaggctat ctttccgata gtcactttat acccgatcaa 540
aatgaggact ttttaacaaa agtcgaatct ctgcatgagc agcacagtgg gctaaaacaa 600
tcagaagcag aatccgtcta tatcaacata gcgcggacc tcgacttcta tggagtagaa 660
ctgcacagtg gtagggatct gcacaattt gacctaatttga ttggaattgc ttccgcgggt 720
gttgctgtgt accgaaaata catttgacca agtttctatc cttgggtgaa cattctcaaa 780
atttcttca aaaggaaaaa gttcttcata catcagcgc agaaacaggc tgaatccagg 840
gaacatattt tggccttcaa catgctaat taccgatctt gcaaaaactt gtggaaatcc 900
tgtgttgagc accatacgat ctttcagca aagaagctac tacctcagga aaagaatgtt 960
ctgtctcagt actggactat gggctctcg aacaccaaaa agcgaagtcc tcggctccgg 1020
cacaaatcc gaaagccacg ccactcttgc gcaagataacc ttgcaaatga aatgacctac 1080
atcacggaaa cgaaagatgt attttacacg tacaagggtt ctctggcccc tcaagacagc 1140
gattctgaag tttctcagaa ccgaagcccg cacaagaga gtttatccga gaacaatccg 1200
gcacaaagct acctgaccca gaagtcatcc agttctgtgt ctccatcttca aatgctcca 1260
ggctcctgtt cacctgacgg cggtgatcag cagctcttag atgacttcca cagggtgacc 1320
aaagggggct ccaccgagga cgccagccag tactactgtg acaagaatga taatggtgc 1380
agctacttag tcttgatccg tatcacaatca gatgaagatg gaaaatttgg atttaatctt 1440
aaggggaggag tggatcaaaa gatgccttgc gtgttatcaa ggataaacc agagtcacct 1500
gcggacacact gcattcctaa gctgaaccaa ggggatcaa tcgtgttaat caatggccgg 1560
gacatctcag aacacacgc tgaccaagt gtgtatgtca tcaaagccag cccggagttcc 1620
cactcacggg agctggccct ggtgatcagg aggagagctg tccgctcatt tgctgacttc 1680
aagtctgaag atgaactgaa ccagctttc cccgaagcca ttttccccat gtgtccggag 1740
ggtggggaca ctttggaggg atccatggca cagctaaaga agggctcga aagcgggacg 1800
gtgctgatcc agtttgagca actctacaga aaaaagccag gtttggccat cacgtttgca 1860
aagctgcctc aaaatttggc caaaaaccga tataaaagatg tgctgcctt tgacaccacc 1920
cggttattat tgcagggaaa tgaagattat attaatgca gttacgtgaa catggaaatt 1980
cctgctgtca accttgcgaa caagtacatc gccactcagg ggcctgc gcatacctgt 2040
gcacagttt ggcagggtgt ctgggatcag aagttgtcact tcattgtcat gttgacgact 2100
ctcacagaaac gagggcggac caaatgtcact cagtaactggc cagatcccc cgacgtcatg 2160
aaccacggcg gcttcacat ccagtgtcag tcagaggact gcaccatcgc ctatgtgtcc 2220
cgagaaaatgc tggtcacaaa caccctgaccc ggggaaagaaac acacagtgc acatctccag 2280
tacgtcgat ggcctgacca cggtataaccc gatgactcct ccgactttct ggaatttggta 2340
aactatgtga ggtctctgag agtggacagc gagcctgtcc tagttactg cagtgctggta 2400
ataggtcgaa ccggtgtgtt ggtcactatg gaaacagcca tggccctaaac tggagggaaac 2460
ctgcccattt acccaactgga tattgtccga aaaatgcgag accagcgcgc catgtgggt 2520
cagacatcaa gccagtacaa gtttggatgtt gaaagcgattc ttcgtgtgt tgaagaaggt 2580
tttagtccaaa tgctggatcc tagttaa                                         2607

```

<210> 26
 <211> 868
 <212> PRT
 <213> Homo sapiens

<220>
 <223> human protein tyrosine phosphatase, non-receptor
 type 3 (PTPN3b) splice variant

<400> 26
 Met Thr Ser Arg Leu Arg Ala Leu Gly Gly Arg Ile Asn Asn Ile Arg
 1 5 10 15

Thr Ser Glu Leu Pro Lys Glu Lys Thr Arg Ser Glu Val Ile Cys Ser
 20 25 30

Ile His Phe Leu Asp Gly Val Val Gln Thr Phe Lys Val Thr Lys Gln
 35 40 45

Asp Thr Gly Gln Val Leu Leu Asp Met Val His Asn His Leu Gly Val
 50 55 60

Thr Glu Lys Glu Tyr Phe Gly Leu Gln His Asp Asp Asp Ser Val Asp
 65 70 75 80

Ser Pro Arg Trp Leu Glu Ala Ser Lys Pro Ile Arg Lys Gln Leu Lys
 85 90 95

Gly Gly Phe Pro Cys Thr Leu His Phe Arg Val Arg Phe Phe Ile Pro
 100 105 110

Asp Pro Asn Thr Leu Gln Gln Glu Gln Thr Arg His Leu Tyr Phe Leu
 115 120 125

Gln Leu Lys Met Asp Ile Cys Glu Gly Arg Leu Thr Cys Pro Leu Asn
 130 135 140

Ser Ala Val Val Leu Ala Ser Tyr Ala Val Gln Ser His Phe Gly Asp
 145 150 155 160

Tyr Asn Ser Ser Ile His His Pro Gly Tyr Leu Ser Asp Ser His Phe
 165 170 175

Ile Pro Asp Gln Asn Glu Asp Phe Leu Thr Lys Val Glu Ser Leu His
 180 185 190

Glu Gln His Ser Gly Leu Lys Gln Ser Glu Ala Glu Ser Cys Tyr Ile
 195 200 205

Asn Ile Ala Arg Thr Leu Asp Phe Tyr Gly Val Glu Leu His Ser Gly
 210 215 220

Arg Asp Leu His Asn Leu Asp Leu Met Ile Gly Ile Ala Ser Ala Gly
 225 230 235 240

Val Ala Val Tyr Arg Lys Tyr Ile Cys Thr Ser Phe Tyr Pro Trp Val
 245 250 255

Asn Ile Leu Lys Ile Ser Phe Lys Arg Lys Lys Phe Phe Ile His Gln
 260 265 270

Arg Gln Lys Gln Ala Glu Ser Arg Glu His Ile Val Ala Phe Asn Met
 275 280 285
 Leu Asn Tyr Arg Ser Cys Lys Asn Leu Trp Lys Ser Cys Val Glu His
 290 295 300
 His Thr Phe Phe Gln Ala Lys Lys Leu Leu Pro Gln Glu Lys Asn Val
 305 310 315 320
 Leu Ser Gln Tyr Trp Thr Met Gly Ser Arg Asn Thr Lys Lys Arg Ser
 325 330 335
 Pro Arg Leu Arg His Glu Ile Arg Lys Pro Arg His Ser Ser Ala Asp
 340 345 350
 Asn Leu Ala Asn Glu Met Thr Tyr Ile Thr Glu Thr Glu Asp Val Phe
 355 360 365
 Tyr Thr Tyr Lys Gly Ser Leu Ala Pro Gln Asp Ser Asp Ser Glu Val
 370 375 380
 Ser Gln Asn Arg Ser Pro His Gln Glu Ser Leu Ser Glu Asn Asn Pro
 385 390 395 400
 Ala Gln Ser Tyr Leu Thr Gln Lys Ser Ser Ser Ser Val Ser Pro Ser
 405 410 415
 Ser Asn Ala Pro Gly Ser Cys Ser Pro Asp Gly Val Asp Gln Gln Leu
 420 425 430
 Leu Asp Asp Phe His Arg Val Thr Lys Gly Ser Thr Glu Asp Ala
 435 440 445
 Ser Gln Tyr Tyr Cys Asp Lys Asn Asp Asn Gly Asp Ser Tyr Leu Val
 450 455 460
 Leu Ile Arg Ile Thr Pro Asp Glu Asp Gly Lys Phe Gly Phe Asn Leu
 465 470 475 480
 Lys Gly Val Asp Gln Lys Met Pro Leu Val Val Ser Arg Ile Asn
 485 490 495
 Pro Glu Ser Pro Ala Asp Thr Cys Ile Pro Lys Leu Asn Glu Gly Asp
 500 505 510
 Gln Ile Val Leu Ile Asn Gly Arg Asp Ile Ser Glu His Thr His Asp
 515 520 525
 Gln Val Val Met Phe Ile Lys Ala Ser Arg Glu Ser His Ser Arg Glu
 530 535 540
 Leu Ala Leu Val Ile Arg Arg Arg Ala Val Arg Ser Phe Ala Asp Phe
 545 550 555 560
 Lys Ser Glu Asp Glu Leu Asn Gln Leu Phe Pro Glu Ala Ile Phe Pro
 565 570 575
 Met Cys Pro Glu Gly Gly Asp Thr Leu Glu Gly Ser Met Ala Gln Leu
 580 585 590

Lys Lys Gly Leu Glu Ser Gly Thr Val Leu Ile Gln Phe Glu Gln Leu
 595 600 605
 Tyr Arg Lys Lys Pro Gly Leu Ala Ile Thr Phe Ala Lys Leu Pro Gln
 610 615 620
 Asn Leu Asp Lys Asn Arg Tyr Lys Asp Val Leu Pro Tyr Asp Thr Thr
 625 630 635 640
 Arg Val Leu Leu Gln Gly Asn Glu Asp Tyr Ile Asn Ala Ser Tyr Val
 645 650 655
 Asn Met Glu Ile Pro Ala Ala Asn Leu Val Asn Lys Tyr Ile Ala Thr
 660 665 670
 Gln Gly Pro Leu Pro His Thr Cys Ala Gln Phe Trp Gln Val Val Trp
 675 680 685
 Asp Gln Lys Leu Ser Leu Ile Val Met Leu Thr Thr Leu Thr Glu Arg
 690 695 700
 Gly Arg Thr Lys Cys His Gln Tyr Trp Pro Asp Pro Pro Asp Val Met
 705 710 715 720
 Asn His Gly Gly Phe His Ile Gln Cys Gln Ser Glu Asp Cys Thr Ile
 725 730 735
 Ala Tyr Val Ser Arg Glu Met Leu Val Thr Asn Thr Gln Thr Gly Glu
 740 745 750
 Glu His Thr Val Thr His Leu Gln Tyr Val Ala Trp Pro Asp His Gly
 755 760 765
 Ile Pro Asp Asp Ser Ser Asp Phe Leu Glu Phe Val Asn Tyr Val Arg
 770 775 780
 Ser Leu Arg Val Asp Ser Glu Pro Val Leu Val His Cys Ser Ala Gly
 785 790 795 800
 Ile Gly Arg Thr Gly Val Leu Val Thr Met Glu Thr Ala Met Cys Leu
 805 810 815
 Thr Glu Arg Asn Leu Pro Ile Tyr Pro Leu Asp Ile Val Arg Lys Met
 820 825 830
 Arg Asp Gln Arg Ala Met Met Val Gln Thr Ser Ser Gln Tyr Lys Phe
 835 840 845
 Val Cys Glu Ala Ile Leu Arg Val Tyr Glu Glu Gly Leu Val Gln Met
 850 855 860
 Leu Asp Pro Ser
 865

<210> 27
 <211> 861
 <212> DNA
 <213> Homo sapiens

<220>
<223> human dual specificity phosphatase
(tyrosine/serine), catalytic domain (DUSP3) cDNA

<220>
<221> CDS
<222> (29)..(586)
<223> DUSP3

<400> 27
gccccggcgtg cagggccccc ggcggccat gtcgggctcg ttcgagctct cgggtgcaggaa 60
tctcaacgac ctgcctctcg acggcagccgg ctgctacagc ctcccgagcc agccctgcaa 120
cgaggtcacc cccgcgatct acgtgggcaaa cggtctgtg gtcaggaca tccccaagct 180
gcagaaaacta ggcatcaccc atgtgctgaa cgccgctgag ggcaggctt tcacgtcacgt 240
caacaccaat gccaacttct acaaggactc cggcatcaca tacctggca tcaaggccaa 300
cgacacacag gagttcaacc tcagcgctta ctttggaaagg gctgccact tcattgacca 360
ggctttggct caaaaatg gccgggtgct cgtccactgc cgggaagggt atagccgctc 420
cccaaacgcta gttatcgctt acctcatgtat ggcgcagaag atggacgtca agtctgccct 480
gagcatcggtt aggcagaacc gtgagatcg ccccaacgat ggcttcctgg cccagctctg 540
ccagctcaat gacagactag ccaaggaggg gaagttgaaa cccttagggca ccccccacccgc 600
ctctgctcga gaggtccgtg ggggaggccc tggaaagggt gtccgagctg ccatgttttag 660
gaaacacact gtacctctgtt cccagcatca caaggcactt gtctacaagt gtgtcccaac 720
acagtcctgg gccacttcc ccaccctggg gagcacataa agaagcttgc caagggggggc 780
gtccttgctc cccagttgtc ctgtttctgt aacttatgtat gtctttccc tgagatgggg 840
gctcagaggg ggaaggcctg t 861

<210> 28
<211> 185
<212> PRT
<213> Homo sapiens

<220>
<223> human dual specificity phosphatase
(tyrosine/serine), catalytic domain (DUSP3)

<400> 28
Met Ser Gly Ser Phe Glu Leu Ser Val Gln Asp Leu Asn Asp Leu Leu
1 5 10 15

Ser Asp Gly Ser Gly Cys Tyr Ser Leu Pro Ser Gln Pro Cys Asn Glu
20 25 30

Val Thr Pro Arg Ile Tyr Val Gly Asn Ala Ser Val Ala Gln Asp Ile
35 40 45

Pro Lys Leu Gln Lys Leu Gly Ile Thr His Val Leu Asn Ala Ala Glu
50 55 60

Gly Arg Ser Phe Met His Val Asn Thr Asn Ala Asn Phe Tyr Lys Asp
65 70 75 80

Ser Gly Ile Thr Tyr Leu Gly Ile Lys Ala Asn Asp Thr Gln Glu Phe
85 90 95

Asn Leu Ser Ala Tyr Phe Glu Arg Ala Ala Asp Phe Ile Asp Gln Ala
100 105 110

Leu Ala Gln Lys Asn Gly Arg Val Leu Val His Cys Arg Glu Gly Tyr
115 120 125

Ser	Arg	Ser	Pro	Thr	Leu	Val	Ile	Ala	Tyr	Leu	Met	Met	Arg	Gln	Lys
130															140
Met	Asp	Val	Lys	Ser	Ala	Leu	Ser	Ile	Val	Arg	Gln	Asn	Arg	Glu	Ile
145															160
Gly	Pro	Asn	Asp	Gly	Phe	Leu	Ala	Gln	Leu	Cys	Gln	Leu	Asn	Asp	Arg
					165				170						175
Leu	Ala	Lys	Glu	Gly	Lys	Leu	Lys	Pro							
					180				185						

<210> 29
<211> 1196
<212> DNA
<213> Mus musculus

<220>
<223> mouse dual specificity phosphatase
(tyrosine/serine), catalytic domain (DUSP3) cDNA

<220>
<221> CDS
<222> (64)..(621)
<223> DUSP3

<400> 29
ccgctgaccc ggcttctccc cctcggtcgc tcctggccctg gcgtgcagcg ccccgccgcc 60
gccatgtcca gctcggtcga actctcggtg caagatctca acgacctgct ctcggatggc 120
agcggctgtc acaggcctgcc gagccagccc tgcaacgagg tctgcccgg ggtctacgtg 180
gcacacgcgt ctgtggctca ggacatcacc cagctgcaga aactgggcat cacccacgtc 240
ctgaatgtcg ccgagggcag gtccttcatg cacgtcaaca ccagtgcgtag cttctacgag 300
gattctggca tcacctactt gggcatcaag gccaatgata cgccaggagtt caacctcagt 360
gcttactttg aaaggccac agatttcatt gaccaggcgc tggccataa aaatggccgg 420
gtgcttgccc attggccgca gggctacagc cgctcccaa cgcttagttat cgcctacctc 480
atgatgcgca agaagatgga cgtcaagtct gctctggatgta ctgtgaggca gaatcgtgag 540
atcgccccca acgtatggctt cctggcccaa ctctgcccgc tcaatgacag actagccaaag 600
gagggcaagg tgaaactcta ggggtccccac agctctttt gcagagggtct gactgggagg 660
gccctggcag ccatgttttag gaaaacacagt atacccactc cctgcaccac cagacacgtg 720
cccacatctg tcccactctg gtcctcgcccc gccactccac ccttagggag cacatgaaga 780
agctccctaa gaagttctgc tccttagcca tccttcctg taatttatgt ctctccctga 840
ggtgagggttc aggttatgt ccctgtctgt ggcatacgata catctcagtgc acccagggtg 900
ggagggttat cagggtgcat gggccggac acgggcactc ttcatgaccc ctccccccacc 960
tgggttcttc ctgtgtggtc cagaaccacg agcctggtaa aggaactatg caaacacagg 1020
ccctgacctc cccatgtctg ttccctggtcc tcacagcccg acacgcccctg ctgaggcaga 1080
cgaatgacat taagttctga agcagagtg agatagatta gtgacttagat ttccaaaaaag 1140
aaggaaaaaa aaggctgcat tttaaaattt tttccctttaga attaaagata ctacat 1196

<210> 30
<211> 185
<212> PRT
<213> Mus musculus

<220>
<223> mouse dual specificity phosphatase
(tyrosine/serine), catalytic domain (DUSP3)

<400> 30
 Met Ser Ser Ser Phe Glu Leu Ser Val Gln Asp Leu Asn Asp Leu Leu
 1 5 10 15
 Ser Asp Gly Ser Gly Cys Tyr Ser Leu Pro Ser Gln Pro Cys Asn Glu
 20 25 30
 Val Val Pro Arg Val Tyr Val Gly Asn Ala Ser Val Ala Gln Asp Ile
 35 40 45
 Thr Gln Leu Gln Lys Leu Gly Ile Thr His Val Leu Asn Ala Ala Glu
 50 55 60
 Gly Arg Ser Phe Met His Val Asn Thr Ser Ala Ser Phe Tyr Glu Asp
 65 70 75 80
 Ser Gly Ile Thr Tyr Leu Gly Ile Lys Ala Asn Asp Thr Gln Glu Phe
 85 90 95
 Asn Leu Ser Ala Tyr Phe Glu Arg Ala Thr Asp Phe Ile Asp Gln Ala
 100 105 110
 Leu Ala His Lys Asn Gly Arg Val Leu Val His Cys Arg Glu Gly Tyr
 115 120 125
 Ser Arg Ser Pro Thr Leu Val Ile Ala Tyr Leu Met Met Arg Gln Lys
 130 135 140
 Met Asp Val Lys Ser Ala Leu Ser Thr Val Arg Gln Asn Arg Glu Ile
 145 150 155 160
 Gly Pro Asn Asp Gly Phe Leu Ala Gln Leu Cys Gln Leu Asn Asp Arg
 165 170 175
 Leu Ala Lys Glu Gly Lys Val Lys Leu
 180 185

<210> 31
 <211> 753
 <212> DNA
 <213> Homo sapiens

<220>
 <223> human regulator of G-protein signaling 10 (RGS10)
 cDNA

<220>
 <221> CDS
 <222> (133) .. (636)
 <223> RGS10

<400> 31
 taccgagctc ggatccacta gtaacggccg ccagtgtgct ggaattcgcc cttactca 60
 atagggctcg agcggccgccc cgggcaggtg gatttgtggc ctgcgtggaa cttctcagg 120
 ggacaccaga gcatggaaaca catccacgac agcgatggca gttccagcag cagccaccag 180
 agcctaaga gcacagccaa atgggcggca tccctggaga atctgctgga agacccagaa 240
 ggcgtaaaa gatttaggaa atttttaaaa aaggaattca gtgaagaaaa tgttttgtt 300
 tggctagcat gtgaagattt taagaaaatg caagataaga cgccagatgca gaaaaaggca 360
 aaggagatct acatgacctt tctgtccagc aaggcctcat cacagtcaa cgtggaggg 420
 cagtctcgcc tcaacgagaa gatcctggaa gaaccgcacc ctctgatgtt ccagaaactc 480

caggaccaga tcttaatct catgaagtac gacagctaca gccgcttct taagtctgac 540
ttgttttaa aacacaagcg aaccgaggaa gaggagaag atttgctga tgctcaaact 600
gcagctaaa gagctccag aatttataac acatgagccc ccaaaaagcc gggactggca 660
gctttaagaa gcaaaggaaat ttccctctcag gacgtgccgg gtttatcatt gctttgttat 720
ttgtaaggac tgaaatgtac aaaacccttc aat 753

<210> 32
<211> 167
<212> PRT
<213> Homo sapiens

<220>
<223> human regulator of G-protein signaling 10 (RGS10)

<400> 32
Met Glu His Ile His Asp Ser Asp Gly Ser Ser Ser Ser His Gln
1 5 10 15

Ser Leu Lys Ser Thr Ala Lys Trp Ala Ala Ser Leu Glu Asn Leu Leu
20 25 30

Glu Asp Pro Glu Gly Val Lys Arg Phe Arg Glu Phe Leu Lys Lys Glu
35 40 45

Phe Ser Glu Glu Asn Val Leu Phe Trp Leu Ala Cys Glu Asp Phe Lys
50 55 60

Lys Met Gln Asp Lys Thr Gln Met Gln Glu Lys Ala Lys Glu Ile Tyr
65 70 75 80

Met Thr Phe Leu Ser Ser Lys Ala Ser Ser Gln Val Asn Val Glu Gly
85 90 95

Gln Ser Arg Leu Asn Glu Lys Ile Leu Glu Glu Pro His Pro Leu Met
100 105 110

Phe Gln Lys Leu Gln Asp Gln Ile Phe Asn Leu Met Lys Tyr Asp Ser
115 120 125

Tyr Ser Arg Phe Leu Lys Ser Asp Leu Phe Leu Lys His Lys Arg Thr
130 135 140

Glu Glu Glu Glu Asp Leu Pro Asp Ala Gln Thr Ala Ala Lys Arg
145 150 155 160

Ala Ser Arg Ile Tyr Asn Thr
165

<210> 33
<211> 877
<212> DNA
<213> Mus musculus

<220>
<223> mouse regulator of G-protein signaling 10 (RGS10)
cDNA

<220>
 <221> CDS
 <222> (60)..(605)
 <223> RGS10

<400> 33
 gctcttcggg cttagccgcc gcgctgccc gctgctccgt cctctggacg cccgcggcga 60
 tgttcacccg cgccgtgagc cgactgagca ggaagcggcc gccgtctgat atccatgacg 120
 gagatgggag ctcaagcagc ggccaccaga gccttaagag cacagccaag tggcatcct 180
 ccctggagaa tcttctggaa gacccagaag gggtgagag attcaggag ttctgaaga 240
 aggaattcag cgaagagaat gtctgttt ggctagcgtg tgaagattc aagaaaacgg 300
 aggacaggaa gcagatgcag gaaaaggcca aggagatcta catgacccctc ctgtccaata 360
 aggccctcttc acaagtcaac gtggagggc agtctcggt cactgaaaag attctggaa 420
 agccacacccc tctgatgttc caaaagctcc aggaccagat cttcaatctc atgaagtatg 480
 acagctacag ccgcttcttg aagtctgact tgttctgaa acccaagcga actgaggaag 540
 aggaagaaga gccccccgat gctcagaccg cagctaagcg agcctccaga atttacaaca 600
 cataagctga gcccttcacc ccagcgaagg agagggatgg actcttagga ctgtacaggc 660
 tgtcattttt ttgttgtgtt tgaggactgg agtgtcttag accttcctc tgatatgtg 720
 tatttttata actgaacacgc aacctctgca tgatgctaattt cttccattaa aaacaaaagt 780
 agctttaaag tgtcagttca caaaaacaca tgagattctg ccaatactgg acactcagcc 840
 tttcaatcct gattaaagtg ttcgtgaagc tacaagc 877

<210> 34
 <211> 181
 <212> PRT
 <213> Mus musculus

<220>
 <223> mouse regulator of G-protein signaling 10 (RGS10)

<400> 34
 Met Phe Thr Arg Ala Val Ser Arg Leu Ser Arg Lys Arg Pro Pro Ser
 1 5 10 15

Asp	Ile	His	Asp	Gly	Asp	Gly	Ser	Ser	Ser	Gly	His	Gln	Ser	Leu
							20					30		

Lys	Ser	Thr	Ala	Lys	Trp	Ala	Ser	Ser	Ser	Glu	Asn	Leu	Leu	Glu	Asp
							35				40		45		

Pro	Glu	Gly	Val	Gln	Arg	Phe	Arg	Glu	Phe	Leu	Lys	Lys	Glu	Phe	Ser
						50		55			60				

Glu	Glu	Asn	Val	Leu	Phe	Trp	Leu	Ala	Cys	Glu	Asp	Phe	Lys	Thr
							65		70		75		80	

Glu	Asp	Arg	Lys	Gln	Met	Gln	Glu	Lys	Ala	Lys	Glu	Ile	Tyr	Met	Thr
							85			90			95		

Phe	Leu	Ser	Asn	Lys	Ala	Ser	Ser	Gln	Val	Asn	Val	Glu	Gly	Gln	Ser
								100		105		110			

Arg	Leu	Thr	Glu	Lys	Ile	Leu	Glu	Glu	Pro	His	Pro	Leu	Met	Phe	Gln
							115		120			125			

Lys	Leu	Gln	Asp	Gln	Ile	Phe	Asn	Leu	Met	Lys	Tyr	Asp	Ser	Tyr	Ser
							130		135		140				

Arg	Phe	Leu	Lys	Ser	Asp	Leu	Phe	Leu	Lys	Pro	Lys	Arg	Thr	Glu	Glu
							145		150		155		160		

```

Glu Glu Glu Glu Pro Pro Asp Ala Gln Thr Ala Ala Lys Arg Ala Ser
165 170 175
Arg Ile Tyr Asn Thr
180

<210> 35
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:hexahistidine
      (His) affinity tag

<400> 35
His His His His His His
1 5

<210> 36
<211> 200
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:poly-Gly
      flexible linker

<220>
<221> MOD_RES
<222> (6)..(200)
<223> Gly residues from position 6 to 200 may be present
      or absent

<400> 36
Gly Gly
1 5 10 15
Gly Gly
20 25 30
Gly Gly
35 40 45
Gly Gly
50 55 60
Gly Gly
65 70 75 80
Gly Gly
85 90 95
Gly Gly
100 105 110
Gly Gly
115 120 125

```

Gly
130 135 140

Gly
145 150 155 160

Gly
165 170 175

Gly
180 185 190

Gly Gly Gly Gly Gly Gly Gly
195 200