ИНСТРУКЦИОННО-ТЕХНОЛОГИЧЕСКАЯ КАРТА № 7						
Тема	Тема Изучение почвенных грунтов, компонентов почвенных грунтов, органических и минеральных субстратов.					
Цель	Сформировать умение характеризовать почвенные грунты и субстраты.					
Материалы и оборудование	Компоненты почвенных грунтов, органические и минеральные субстраты, ИТК.					

Ход работы. *Теоретическая часть*.

В ряде тепличных комбинатов овощи выращивают на почвенных грунтах. Почвенные грунты должны отвечать следующим требованиям:

- быть плодородными, содержать 20—30% органических веществ и 12—15% гумуса;
- иметь устойчивую структуру (соотношение жидкой, твердой и газообразной фазы 1:1:1);
- обладать хорошей воздухо- и влагоемкостью, воздухопроницаемостью;
- обладать оптимальной реакцией почвенного раствора;
- не содержать вредителей и возбудителей болезней;
- обладать длительным сроком службы.

Для приготовления почвенных смесей используют дерновую или полевую землю, перегной, торф, опилки и другие компоненты. Состав и соотношение компонентов может быть разным.

Рекомендуемые почвенные смеси приведены в таблице 1.

Таблица №1. Почвосмеси для выращивания рассады овощных культур, % от объема.

	Почвосмесь, варианты											
Компонент	Капуста (ранняя, цветная, поздняя)			Томат, перец, баклажан				Огурец, кабачок, тыква				
	1	2	3	1	2	3	4	1	2	3	4	5
Торф низинный.	75	70	60	60	70	-	-	-	60	-	70	25
Торф верховой.	-	-	-	-	-	-	-	90	-	-	-	-
Земля полевая или огородная.	5	10	10	15	7	30	50	-	10	30	-	20
Навоз конский.	-	-	-	20	-	•	•	•	-	60	-	•
Перегной.	10	10	-	-	33	-	-	10	20	-	-	-
Биогумус.	-	-	20	-	-	60	45	-	10	-	10	45
Опилки.	10	5	10	5	-	10	5	-	-	10	20	10

Органические субстраты

Солома. В качестве субстрата для выращивания овощей можно использовать прессованную пшеничную солому с полей, не обработанных гербицидами. Обычно ее используют в пленочных теплицах.

За две недели до посадки завозят тюки и укладывают плотно торцами друг к другу. После этого солому поливают горячей водой (50...70°С) и вносят минеральные удобрения. Сначала вносят половинную дозу аммиачной селитры и суперфосфата, а через 2—3 дня — вторую половину селитры и суперфосфата, калийные, магниевые удобрения, известь. После такой обработки солома оседает и начинает разлагаться, «гореть». Когда температура снизится до 30°С, поверх соломы насыпают 5—10 см почвенного грунта и высаживают рассаду. В процессе разложения солома служит источником тепла, питательных веществ и углекислого газа. Это фунт с хорошей воздухо- и _ влагопроницаемостью, плодородный.

Верховой торф (сфагнум). Среди органических субстратов чаще всего используется верховой сфагновый торф. Он имеет небольшой объем твердой фазы и малую плотность в сравнении с минеральными почвами, но имеет высокую кислотность (рН 2,6—4) и довольно низкое содержание доступных питательных веществ. После заготовки такой торф измельчают до частиц размером 1—3 см и известкуют, вносят минеральные удобрения и микроэлементы, увлажняют. Особенность выращивания растений — частые жидкие подкормки полным минеральным удобрением с микроэлементами. Торфяной субстрат быстро теряет свои свойства: торф минерализуется, уплотняется, поэтому его используют не более 2—3 лет. В некоторых хозяйствах накоплен опыт по использованию в качестве грунта опилок и древесной коры. Их предварительно компостируют в течение 3—6 месяцев, вносят азот, фосфор, добавляют известь. Применение коры и опилок ограничено из-за больших затрат.

Верховой торф с низкой степенью разложения (20—30%) используют в качестве субстрата при гидропонном методе выращивания овощей. В этом случае его раскисляют, т.е. добавляют известковые материалы, оставляют на 20—30 дней и наполняют торфом полиэтиленовые пакеты. Для стабилизации процесса минерализации, улучшения аэрации субстрата ученые БелНИИ

овощеводства рекомендуют вносить в качестве добавки лузгу гречихи, костру льна. Минеральные вещества, необходимые для питания растений, подают в виде раствора.

Минеральные субстраты

Интенсивные технологии в защищенном грунте — это выращивание овощей без почвы, за счет питательного раствора Корнеобитаемой средой являются минеральные субстраты. Они должны отвечать следующим требованиям: быть инертными, химически нейтральными, не содержать каких-либо токсических веществ; обладать достаточной водоудерживающей способностью и хорошей аэрацией; быть достаточно прочными, не терять свои свойства в процессе использования.

Гравий используется давно в гидропонных теплицах. Он инертен, недорогой. Обычно используется кремниевый или кварцевый гравий, не содержащий углекислого кальция, в виде частиц 6—9 мм округлой формы. Он требует частой дезинфекции, так как заселяется грибной и бактериальной флорой.

Гранитный щебень используется в качестве субстрата довольно широко. Размер частиц 3—15 мм, а для рассады — 3—8 мм. Он обладает хорошей воздухо- и водопроницаемостью, капельки раствора хорошо удерживаются на поверхности частиц.

Вермикулит получают, подвергая тепловой обработке слюду, при температуре 900 — 1000°С порода вспучивается, увеличиваясь в размере в 15—25 раз. Рекомендуемый размер частиц при выращивании растений 5—15 мм. Однако он непрочный и чаще используется как добавка к другим субстратам.

Перлит — силикатный материал вулканического происхождения. После измельчения и сортировки его нагревают в печах при очень высокой температуре, при этом образуются мелкие белые агрегаты. Они обладают хорошей водопоглощающей способностью, теплоизоляционными свойствами, благодаря чему корни предохраняются от перегрева. Рекомендуемый размер частиц 5—15 мм. Перлит — субстрат непрочный, при многократном использовании крошится. Без замены можно использовать 3—4 года, после чего его вносят в почву для улучшения ее структуры.

Керамзит получают из глинистых пород путем вспучивания при температуре 1150—1250°С. Это зернистый субстрат пористого строения, обладает хорошими теплоизоляционными и водоудерживающими свойствами. Однако в процессе использования крошится, на его поверхности откладываются соли.

Цеолит — осадочная алюмосиликатная горная порода, содержит микро- и макроэлементы, обладает свойством избирательно адсорбировать вещества.

Минеральная вата. Минеральную вату получают из расплавленной каменной массы различных горных пород и отходов промышленности: базальта, диабозита, доменных шлаков с добавлением глины, известняка, фенольной смолы. Жидкий расплав (температура 1500—2000°С) попадает в центрифугу и при охлаждении превращается в тонкие волокна толщиной 0,005 мм. Для увеличения гигроскопичности к волокнам добавляют связывающее вещество (бакелит). Выпускаются следующие виды минеральной ваты: гродан, вилан, гравилен, базалан, «Агрос». Обычно это плиты (блоки) размером 100х20х7,5 см, 90х20х7,5 см, 100х15х7,5 см, которые упакованы в полиэтиленовую пленку (рис. 3.6). Минеральная вата имеет ряд достоинств: хорошая пористость, влагоёмкость, стерильность, долговечность, щелочная среда. Однако пока не разработаны эффективные приемы подготовки ваты для повторного использования или переработки.

В качестве субстрата используют высокомолекулярные синтетические соединения типа вспененного полистирола, пенополиуретана и др. Вспененный полистирол представляет собой шарики диаметром 4—12 мм. Материал химически нейтрален, не теряет свои свойства в процессе использования.

Ионитная смола — смесь катионов и анионов, которая содержит все необходимые растениям элементы питания. По мере роста и развития растений питательные вещества освобождаются из смол путем обмена на другие ионы, поступающие из поливной воды

Задания:

1. Охарактеризовать почвенные грунты и субстраты и сделать описание в виде таблицы.

Таблица №2.

No	Наименование субстрата	Краткая характеристика							
1	Гравий	Добывают из речных отложений. Используют кремневый или							
		кварцевый гравий, не содержащий карбоната кальция.							
2									

КОНТРОЛЬНЫЕ ВОПРОСЫ:

- 1. Почему в защищённом грунте необходимо готовить специальные субстраты?
- 2. Какие требования предъявляются к почвенным грунтам?
- 3. Для улучшения физических и водных свойств почвенных смесей что рекомендуется к ним добавить?
- 4. Какие заменители почвенных грунтов используют в овощеводстве?