Белгородский Государственный Технологический Университет им. В. Г. Шухова

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4 по теме: «Метод принятия решения на основе аналитико-сетевого процесса»

Выполнил:

студент группы ПВ-41 Адаменко И. И.

Проверил:

профессор Синюк В. Г. Цель работы: изучение основных этапов и алгоритмов метода анализа сетей.

Постановка задачи: провести оценку альтернатив при рассмотрении проблемы в виде сетевой структуры в выбранной предметной области. Количество кластеров – не менее 4, элементов – не менее 3. Представить суперматрицу, взвешенную суперматрицу и предельные приоритеты.

Ход работы

Принцип идентификации и декомпозиции

Принцип дискриминации и сравнительных суждений

Макроуровень

Определим степень влияния кластеров друг на друга путём заполнения матрицы парных сравнений для каждого кластера.

Для первого кластера:

1	2	3	4	Собств.
2	1	7	3	0.66941687
3	0.14285714	1	0.33333333	0.08794621
4	0.33333333	3	1	0.24263692

Для второго кластера:

2	3	4	Собств.
3	1	5	0.83333333
4	0.2	1	0.16666667

Согласно полученным результатам составим матрицу, показывающую степень влияния кластеров друг на друга:

	1	2	3	4
1	0	0	0	1
2	0.66941687	0	0	0
3	0.08794621	0.83333333	0	0
4	0.24263692	0.16666667	1	0

Микроуровень

Сформируем МПС для элементов кластеров и вычислим их приоритеры.

Кластер «Альтернативы»:

1.1	2.1	2.2	2.3	Собств.
2.1	1	2	0.2	0.19630686
2.2	0.5	1	0.33333333	0.14662175
2.3	5	3	1	0.65707139

1.2	2.1	2.2	2.3	Собств.
2.1	1	2	0.25	0.23182801
2.2	0.5	1	0.5	0.18400201
2.3	4	2	1	0.58416998

1.3	2.1	2.2	2.3	Собств.
2.1	1	0.33333333	2	0.23848712
2.2	3	1	4	0.62501307
2.3	0.5	0.25	1	0.1364998

1.1	3.1	3.2	3.3	Собств.
3.1	1	0.33333333	0.33333333	0.13964794
3.2	3	1	0.5	0.33251593
3.3	3	2	1	0.52783613

1.2	3.1	3.2	3.3	Собств.
3.1	1	0.33333333	0.5	0.16765631
3.2	3	1	0.5	0.34873919
3.3	2	2	1	0.4836045

1.3	3.1	3.2	3.3	Собств.
3.1	1	0.2	0.5	0.13106737
3.2	5	1	0.25	0.30418043
3.3	2	4	1	0.5647522

1.1	4.1	4.2	4.3	Собств.
4.1	1	3	2	0.50760259
4.2	0.33333333	1	0.2	0.11326863
4.3	0.5	5	1	0.37912878

1.2	4.1	4.2	4.3	Собств.
4.1	1	5	3	0.60924769
4.2	0.2	1	0.16666667	0.07950414
4.3	0.33333333	6	1	0.31124817

1.3	4.1	4.2	4.3	Собств.
4.1	1	4	0.5	0.32338586
4.2	0.25	1	0.16666667	0.08898305
4.3	2	6	1	0.5876311

Кластер «Общие свойства»:

2.1	3.1	3.2	3.3	Собств.
3.1	1	0.2	0.14285714	0.07192743
3.2	5	1	0.33333333	0.27895457
3.3	7	3	1	0.649118

2.2	3.1	3.2	3.3	Собств.
3.1	1	0.33333333	0.14285714	0.08414415
3.2	3	1	0.25	0.21091984
3.3	7	4	1	0.70493601

2.3	3.1	3.2	3.3	Собств.
3.1	1	0.2	0.14285714	0.06917288
3.2	5	1	0.25	0.24374097
3.3	7	4	1	0.68708616

2.1	4.1	4.2	4.3	Собств.
4.1	1	3	3	0.59363369
4.2	0.333333	1	0.5	0.15705579
4.3	0.333333	2	1	0.24931053

2.2	4.1	4.2	4.3	Собств.
4.1	1	0.2	0.33333333	0.10472943
4.2	5	1	3	0.63698557
4.3	3	0.33333333	1	0.25828499

2.3	4.1	4.2	4.3	Собств.
4.1	1	0.25	0.14285714	0.07271774
4.2	4	1	0.2	0.20498544
4.3	7	5	1	0.72229682

Кластер «Недостатки»:

	3.1	4.1	4.2	4.3	Собств.
	4.1	1	5	3	0.6175042
Ī	4.2	0.2	1	0.2	0.0856307
	4.3	0.333333	5	1	0.2968650

3.2	4.1	4.2	4.3	Собств.
4.1	1	0.5	5	0.3332158
4.2	2	1	7	0.5917274
4.3	0.2	0.14285714	1	0.0750567

3.3	4.1	4.2	4.3	Собств.
4.1	1	0.33333333	0.2	0.1047294
4.2	3	1	0.33333333	0.2582849
4.3	5	3	1	0.6369855

Кластер «Первое впечатление»:

4.1	1.1	1.2	1.3	Собств.
1.1	1	0.33333333	3	0.24263692
1.2	3	1	7	0.66941687
1.3	0.33333333	0.14285714	1	0.08794621

4.2	1.1	1.2	1.3	Собств.
1.1	1	0.5	3	0.30899564
1.2	2	1	5	0.58155207
1.3	0.33333333	0.2	1	0.10945229

4.3	1.1	1.2	1.3	Собств.
1.1	1	0.5	2	0.29696133
1.2	2	1	3	0.53961455
1.3	0.5	0.33333333	1	0.16342412

Синтез

На основе результатов второго этапа составляется невзвешенная суперматрица:

	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3	4.1	4.2	4.3
1.1	0	0	0	0	0	0	0	0	0	0.242636	0.3089956	0.2969613
1.2	0	0	0	0	0	0	0	0	0	0.6694168	0.5815520	0.5396145
1.3	0	0	0	0	0	0	0	0	0	0.0879462	0.1094522	0.1634241
2.1	0.19630	0.23182	0.238487	0	0	0	0	0	0	0	0	0
2.2	0.14662	0.18400	0.625013	0	0	0	0	0	0	0	0	0
2.3	0.65707	0.58416	0.136499	0	0	0	0	0	0	0	0	0
3.1	0.13964	0.16765	0.131067	0.0719274	0.0841441	0.0691728	0	0	0	0	0	0
3.2	0.33251	0.34873	0.304180	0.2789545	0.2109198	0.2437409	0	0	0	0	0	0
3.3	0.52783	0.48360	0.564752	0.649118	0.7049360	0.6870861	0	0	0	0	0	0
4.1	0.50760	0.60924	0.323385	0.5936336	0.1047294	0.0727177	0.6175042	0.3332158	0.1047294	0	0	0
4.2	0.11326	0.07950	0.088983	0.1570557	0.6369855	0.2049854	0.0856307	0.5917274	0.2582849	0	0	0
4.3	0.37912	0.31124	0.587631	0.2493105	0.2582849	0.7222968	0.2968650	0.0750567	0.6369855	0	0	0

Далее получаем взвешенную матрицу W, путём умножения каждой блочной матрицы W_{ij} на V_{ij} полученной при рассмотрении задачи влияния кластеров.

	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3	4.1	4.2	4.3
1.1	0	0	0	0	0	0	0	0	0	0.242636	0.308995	0.2969613
1.2	0	0	0	0	0	0	0	0	0	0.669416	0.581552	0.5396145
1.3	0	0	0	0	0	0	0	0	0	0.087946	0.109452	0.1634241
2.1	0.131411	0.155189	0.159647	0	0	0	0	0	0	0	0	0
2.2	0.098151	0.123174	0.418394	0	0	0	0	0	0	0	0	0
2.3	0.439854	0.391053	0.091375	0	0	0	0	0	0	0	0	0
3.1	0.012281	0.014744	0.011526	0.0599395	0.0701201	0.0576440	0	0	0	0	0	0
3.2	0.029243	0.030670	0.026751	0.2324621	0.1757665	0.2031174	0	0	0	0	0	0
3.3	0.046421	0.042531	0.049667	0.5409316	0.5874466	0.5725718	0	0	0	0	0	0
4.1	0.123163	0.147825	0.078465	0.0989389	0.0174549	0.0121196	0.6175042	0.3332158	0.1047294	0	0	0
4.2	0.027483	0.019290	0.021590	0.0261759	0.1061642	0.0341642	0.0856307	0.5917274	0.2582849	0	0	0
4.3	0.091990	0.07552	0.14258	0.0415517	0.043047	0.1203828	0.2968650	0.0750567	0.6369855	0	0	0
Пр.	1	1	1	1	1	1	1	1	1	1	1	1

Предельная матрица при k = 58:

	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2	3.3	4.1	4.2	4.3
1.1	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838	0.085838
1.2	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401	0.177401
1.3	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401	0.038401
2.1	0.044941	0.044941	0.044941	0.044942	0.044942	0.044942	0.044941	0.044941	0.044941	0.044942	0.044942	0.044942
2.2	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343	0.046343
2.3	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638	0.110638
3.1	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434	0.016434
3.2	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044	0.050044
3.3	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320	0.128320
4.1	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668	0.086668
4.2	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649	0.080649
4.3	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323	0.134323

Абсолютные приоритеты:

	1. Meizu MX4	0.08583783		0.28457029	
1. Альтернативы	2. Xiaomi Mi4	0.17740137	0.30163981	0.58812250	
	3. OnePlus One	0.03840097		0.12730720	
	1. Разрешение экрана	0.04494144		0.14899023	
2. Общие свойства	2. Ёмкость аккумулятора	0.04634300	0.20192274	0.15363671	
	3. Мощность	0.11063830		0.36678901	
	1. Стоимость ремонта	0.01643360		0.05448080	
3. Недостатки	2. Громозкость	0.05004379	0.05004379 0.19479729		
	3. Энергозатраты	0.12831990		0.42540720	
4 Попос	1. Внешний вид	0.08666798		0.28732240	
4. Первое впечатление	2. Компактность	0.08064914	0.30164017	0.26736869	
ысчатление	3. Стоимость	0.13432269		0.44530772	

Согласно результатам, наиболее предпочтительной альтернативой стал телефон марки Xiaomi Mi4, а кластером — «Первое впечатление».

Результаты, полученные с использованием программы Super Decisions

Cluster Node Labels	Alternatives	Disadvantages	First impression	General properties		
Alternati ves	0.000000	0.000000	1.000000	0.000000		
Disadva ntages	0.087946	0.000000	0.000000	0.833333		
First impression	0.242637	1.000000	0.000000	0.166667		
General properties	0.669417	0.000000	0.000000	0.000000		

Вывод

В ходе выполнения этой лабораторной работы я изучил метод принятия решений на основе аналитико-сетевого процесса.