Wintersemester 2017/18 Einführung in die Modellierung

Till Francke und Maik Heistermann *Universität Potsdam*

Seminar Einführung in die Modellierung im Modul Versuchsplanung und Geoökologische Modellierung

Wintersemester 2017/18 Einführung in die Modellierung

In diesem Semester

R als Werkzeug in der Modellierung Ökologische Modelle

Hydrologische Modelle

(Ökohydrologische Modelle)

Rekapitulation: Modelldiagnose

Was ist ein "gutes" Modell?

Abfluss

Zeit

Rekapitulation: Modelldiagnose

Was ist ein "besseres" Modell?

Abfluss

Zeit

Parameter des abcd-Modells

- a. Neigung zur Direktabflussbildung
- b. Effektive Speicherkapazität des Bodens
- c. Aufteilung zwischen GW-Neubildung und Direktabfluss
- d. Rezessionskonstante für Basisabfluss

Kann man die Parameter im Feld messen?

Modellkalibrierung

Parameter des abcd-Modells sind alle "konzeptionell"

- Physikalisch interpretierbar, aber nicht direkt messbar
- Wie kann ich dann aber die Parameterwerte wählen?

Suche eine Kombination von Parametern (param), so dass Beobachtung und Simulation möglichst gut übereinstimmen.

Beobachtung : gemessener Abfluss obs am Gebietsauslass

simulation : simulierter Abfluss sim(param) am Gebietsauslass

Übereinstimmung: ein quantitatives Fehlermaß/Gütemaß x (obs, sim (param))

Suchalgorithmus, der x (param) maximiert /minimiert

Modellkalibrierung

Maße für Übereinstimmung / Fehler / Güte

- unendliche Vielfalt
- objektives Maß für Deine Anforderung an das Modell

Beispiele (in R-Schreibweise)

- obs sei ein Vektor mit Beobachtungen
- sim sei ein Vektor mit Simulationsergebnissen

```
Sum of Squared Errors SSE = sum((obs - sim)^2)

Root Mean Squared Error RMSE = sqrt( mean((obs - sim)^2) )

Nash-Sutcliffe Effizienz NSE = 1 - SSE / sum((obs - mean(obs))^2)

Mean Error ME = mean((obs-sim))
```


Modellkalibrierung

Suchverfahren und -algorithmen

- Ausprobieren
- Rohe Gewalt (Brute Force)
- "Intelligente" Suchalgorithmen

Beispielhafte Oberfläche einer Zielfunktion mit zwei Modellparametern a und b

Modellvalidierung

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, Mathematiker

Mit anderen Worten

Wie kann ich beurteilen, dass mein kalibriertes Modell auch außerhalb der verwendeten Beobachtungen funktioniert?

Mayer et al. (2010), Amer. J. Phys.

Modellvalidierung

Split Sampling

- Kalibriere das Modell an einer Teilmenge der Beobachtungen;
- überprüfe anhand der verbleibenden Teilmenge die Güte des Modells.

