Algorithms Analysis and Design

Week 11 - Diary

Ayan Agrawal (2020101034)

Lecture 16: More examples of completeness

Problems for the class:

- Vertex cover and subset sum problem
- Proving vertex cover in NP-complete using 3-SAT
- Proving subset sum problem is NP- Complete using 3- SAT.

Vertex cover problem:

The vertex cover problem is one of the few NP problems that can be shown to be NP Complete using the well known 3 SAT Problem. The problem statement :

If we have an un-directed graph G, then vertex cover of G is a subset of nodes where every edge of G touches at least one of those nodes.

Vertex cover also deals with the optimization question of "Is it possible to have a vertex cover for G, given a number k".

Vertex cover = $\{ \langle G, k \rangle \mid G \text{ is an un-directed graph that has a k-node vertex cover} \}$

Proof that Vertex cover problem is NP-complete:

We'll try to make reduction from the 3-SAT problem to Vertex Cover problem in polynomial complexity.

We will map a boolean formula ϕ to the graph G and the value k .

- We create an edge linking two nodes for each variable x in ϕ and label the two nodes as x and x'. Now we map x to **true** meaning it corresponds to selecting the left node for the vertex cover while x' to **false** meaning it corresponds to the right node .
- Consider a triple of 3 nodes, each labelled with one of the clause's three literals. These 3 nodes are linked to each other as well as to the nodes in the variable gadgets with the same labels. As a result, the total number of nodes in G is 2m+3l, with ϕ having m variables and l clauses. Now we assume that k is m+2l.

Now, we'll prove that this reduction will work only if G has a vertex cover with k nodes.

- In the vertex cover,
 - We begin by placing the variable gadget nodes that correspond to the assignment's **true** literals.

- Then, for each phrase, we select one true literal and insert the remaining two clause gadget nodes into the vertex cover.
- o There are now k nodes in total. Because every variable gadget edge is clearly covered, all 3 edges within each clause gadget are covered, and all edges between variable and clause gadgets are covered, they cover all edges. As a result, G has a k-node vertex cover.
- The vertex cover should contain 1 node in each variable gadget and 2 in each clause gadget to cover the edges of the variable gadgets and the three edges within the clause gadgets. There are no more nodes to be found.
- Assign **True** to the nodes of the variable gadgets that are in the vertex cover. This assignment fulfils the requirements of ϕ .
- As a result, one of the edges must be covered by a variable node, and we may reduce the vertex cover problem to 3-SAT.

Subset Sum Problem:

This a simplified problem to undestand, the problem statement is:

"Given an array of integers, determine if it is possible to have as sum of T using a subset of array "

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
 and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$.

A 3-CNF formula is to be used to build an instance of the subset sum problem contains a sub-set of the set, which sums to target t only if the boolean formula ϕ is satisfiable. We will call this sub collection as T.

Suppose ϕ has l variables $x_1, x_2 \dots x_l$ and k clauses $c_1, c_2, \dots c_k$.

The table is partially filled in to illustrate sample clauses, c_1 , c_2 , and c_k :

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots).$$

Table filling:

	1	2	3	4	• • •	l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0		0	0	0		0
y_2		1	0	0	• • •	0	0	1	• • •	0
z_2		1	0	0	• • •	0	1	0	• • •	0
y_3			1	0	• • •	0	1	1	• • •	0
z_3			1	0	• • •	0	0	0	• • •	1
:					٠.	:	:		:	:
y_l						1	0	0	• • • •	0
z_l						1	0	0	• • • •	0
g_1							1	0	• • •	0
h_1							1	0	• • •	0
g_2								1	• • •	0
h_2								1	• • •	0
:									٠.	:
g_k										1
h_k										1
\overline{t}	1	1	1	1		1	3	3		3

- For every boolean $\phi's$ formula variable x_i , we will have 2 special variables y_i and z_i . The y_i goes to 1 for clause c_j if it has x_i , z_i goes to 1, if clause c_j has x_i' . Both stay zero for that clause if variable is not present in that clause.
- We can quickly realise that every column we will have three 1s, now we will do the selection, for every column(clause) we take y_i only if x_i is **true** and we only take z_i only if the x_i' is true.
- The left side of the top half in the picture ensures that we only pick y_i or z_i for every clause and not both as that is not valid, in case we pick both, we will get a sum of 2 in that column, and that would not match the expected answer of 1 in that column.
- Our **target sum** is: first *l* digits are 1, and the next *k* digits are 3. The bottom right digits are to ensure that we at least choose 1 to 3 variables which are **true** for each column to get a sum of 3 in that column, if we do not choose any **true** variable for a column, we can never ensure its sum is 3, as max sum possible would be only 2.
- Depending on how many variables we pick (**true** literals for y_i and **false** for z_i) for every column, we choose which rows are to be picked in the bottom right table for every column.
- Thus, this is a straightforward mapping to the 3-SAT Problem, because only by determining a specific solution to the boolean expression can we decide which rows should be chosen to ensure that the desired sum is met.

Thus, *Subset Sum problem is an NP-Complete problem* as well. The rows that we finally picked is the subset to be picked in the subset problem.

• Summary : Both Set cover and subset sum problems are NP-complete probelms.