

14. Les solutions de l'équation $3^{2x+1} = 4 \cdot 3^x - 1$ sont :

1. 0 et -1
2. 1 et $\frac{1}{3}$
3. 0
4. 0 et 1
5. 3 et -1

(MB -80)

15. On donne $a \in \mathbf{R}_o^+$ et $b \in \mathbf{R}_o^+$ tels que $ab = 1$; quel que soit $x \in \mathbf{R}_o^+$ on a :

1. $\log_a x \cdot \log_b x = 0$
2. $\log_a x + \log_b x = 0$
3. $\log_a x = \frac{1}{\log_b x}$
4. $\log_a x + 1/\log_b x = 0$
5. $\log_a x = \log_b x$

(M. 80)

16. On donne la fonction $f: x \rightarrow \log_{10} x$. La proposition fausse est :

1. $\lim_{x \rightarrow 0} f(x) = -\infty$
2. $\lim_{x \rightarrow 0} f(x) = 0$
3. $\lim_{x \rightarrow -\infty} f(x) = -\infty$
4. $\lim_{x \rightarrow +\infty} xf(x) = +\infty$
5. $\lim_{x \rightarrow \infty} \frac{f(x)}{x} \neq 0$

(M. 81)

17. La propriété valable pour tous y et x réels est :

1. $\ln x^y = y \cdot \ln x$
2. $\ln e^x = x$
3. $\ln \frac{x}{y} = \ln x - \ln y$
4. $e^{\ln x} = x$
5. $\ln xy = \ln x + \ln y$

(MB. 76)

18. Résolvez l'équation $\ln(e^{2x} + 6) = x + \ln 5$

~~1. $\ln 5$~~ 2. $x = 1$ 3. $x = \log_6 5$ 4. $x_1 = \ln 2; x_2 = \ln 3$ 5. $x = 0$ (MB-76)

19. L'égalité $\ln(2x - 3)(x + 1) = \ln(2x - 3) + \ln(x + 1)$ est vérifiée si et seulement si x appartient à :

1. $]-1; 3/2[$
2. $]3/2; +\infty[$
3. $]-\infty; +\infty[$
4. $]-\infty; -1[\cup]3/2; +\infty[$
5. $]-\infty, -3/2[\cup]-1; +\infty[$

(MB. 80)

20. L'ensemble des solutions de l'équation $2e^x - 3e^{-x} - 5 = 0$ est

1. $\{\ln 3\}$
2. $\{\ln 1/2\}$
3. $\{\ln 5/2\}$
4. $\{\ln 1/2; -\ln 3\}$
5. $\{-\ln 1/2; \ln 3\}$

(M. 80)

21. $\lim_{x \rightarrow \infty} \left[\frac{x}{x-2} \right]^{-2x} =$ www.ecoles-rdc.net

1. e^{-2}
2. e^4
3. e^2
4. e^{-4}
5. 1

(M.-80)