Level: 3

Task -1: Restaurant Reviews

Analyze the text reviews to identify the most common positive and negative keywords.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [28]: from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from collections import Counter

In [29]: from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from collections import Counter
In [30]: data_set = pd.read_csv(r"C:\Users\Shree\OneDrive\Desktop\FSDS_omkar sir\Datafiles\r
data_set
```

Out[30]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Mi
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Le
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City	Eds
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	S
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	S I (
•••							
9546	5915730	Namll Gurme	208	� � stanbul	Kemanke�� Karamustafa Pa��a Mahallesi, Rìhtìm	Karak ∳ _y	
9547	5908749	Ceviz A��acl	208	�� stanbul	Ko��uyolu Mahallesi, Muhittin ��st�_nda�� Cadd	Ko��uyolu	
9548	5915807	Huqqa	208	�� stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me	Kur
9549	5916112	A���k Kahve	208	�� stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru � _e��me	Kur
9550	5927402	Walter's Coffee Roastery	208	♦ ♦ stanbul	Cafea��a Mahallesi, Bademaltl	Moda	

Restaurant Restaurant Country City Address Locality
ID Name Code

Sokak, No 21/B,

...

9551 rows × 21 columns

```
In [39]: cuisine_mode = data_set['Cuisines'].mode()[0]
         print(cuisine_mode)
         data_set['Cuisines'].fillna(cuisine_mode,inplace=True)
         data_set.isnull().sum()
        North Indian
Out[39]: Restaurant ID
          Restaurant Name
                                  0
         Country Code
                                  0
         City
                                  0
         Address
                                  0
          Locality
                                  0
          Locality Verbose
                                  0
                                  0
         Longitude
         Latitude
                                  0
         Cuisines
                                  0
         Average Cost for two
                                  0
         Currency
                                  0
         Has Table booking
                                  0
         Has Online delivery
         Is delivering now
                                  0
          Switch to order menu
                                  0
         Price range
                                  0
         Aggregate rating
         Rating color
                                  0
                                  0
         Rating text
                                  0
         Votes
         dtype: int64
         rating_texts=data_set['Rating text'].value_counts().reset_index()
In [65]:
```

```
In [65]: rating_texts=data_set['Rating text'].value_counts().reset_index()
    rating_texts.columns = ["Rating-Type","Count"]
    rating_texts
```

```
Out[65]:
             Rating-Type Count
          0
                 Average
                           3737
          1
               Not rated
                          2148
          2
                   Good
                          2100
          3
               Very Good
                          1079
          4
                Excellent
                            301
                            186
          5
                    Poor
          sia=SentimentIntensityAnalyzer()
In [66]:
          stop_words=set(stopwords.words('english'))
          positive_review=[]
          negative_review=[]
In [67]: rating_texts=data_set['Rating text']
          rating_texts
                  Excellent
Out[67]: 0
          1
                  Excellent
          2
                  Very Good
          3
                  Excellent
                  Excellent
          4
                    . . .
          9546
                  Very Good
          9547
                  Very Good
          9548
                       Good
          9549
                  Very Good
          9550
                  Very Good
          Name: Rating text, Length: 9551, dtype: object
In [68]: # import nltk
          # nltk.download('punkt')
          for rating_text in rating_texts:
              tokens= word_tokenize(rating_text.lower())
              tokens=[token for token in tokens if token.isalpha() and token not in stop_word
              sentiment_score=sia.polarity_scores(rating_text)['compound']
              if sentiment score>=0.05:
                  positive_review.extend(tokens)
              elif sentiment_score<0.05:</pre>
                  negative review.extend(tokens)
In [69]: # import nltk
          # nltk.download('stopwords')
          # sia=SentimentIntensityAnalyzer()
          # stop_words=set(stopwords.words('english'))
          positive_counts=Counter(positive_review)
          negative_counts=Counter(negative_review)
```

```
num_top_keywords = 10
print('Top positive Review Keywords:')
for keyword, count in positive_counts.most_common(num_top_keywords):
    print(f"{keyword}:{count} times")

print()
print('Top Negative Review Keywords:')
for keyword, count in negative_counts.most_common(num_top_keywords):
    print(f"{keyword}:{count} times")

Top positive Review Keywords:
good:3179 times
excellent:301 times

Top Negative Review Keywords:
average:3737 times
rated:2148 times
```

Observation:

poor:186 times

- positive Keywords Good and Excellent
- Negative Keywords Average , raated , poor
- Calculate the average length of reviews and explore if there is a relationship between review length and rating.

```
In [70]: data_set['Review Length']=data_set['Rating text'].apply(lambda x: len(str(x)))
    avg_rev_len=data_set.groupby('Aggregate rating')['Review Length'].mean()
    avg_rev_df = pd.DataFrame(avg_rev_len).reset_index()

In [71]: plt.figure(figsize=(10,10))
    avg_rev_df.plot(kind='bar',color='green')
    plt.title('Average Review Length For Each Rating Category')
    plt.xlabel('Aggregate Rating')
    plt.ylabel('Average review length')
    plt.show()
```

<Figure size 1000x1000 with 0 Axes>

Observations

- Relation between Agg Rating vs Avg Review Text length
 - 1. Agg Rating 1.8 to 2.4 Avg Review text length 4
 - 2. Avg Rating 2.5 to 3.4 Avg Review text length 7
 - 3. Avg Rating 3.5 to 3.9 Avg Review text length 4
 - 4. Avg Rating 4.0 to 4.9 Avg Review text length 9

Task - 2 : Votes Analysis

• Identify the restaurants with the highest and lowest number of votes.

```
In [72]: cols = ['Votes','Restaurant Name']
    df_votes_restaurants=data_set[cols]
    print()
    print('Restaurant with highest Votes:')
    print(df_votes_restaurants.sort_values(by="Votes").tail(1))

print()
    print('Restaurant with lowest Votes:')
    print(df_votes_restaurants.sort_values(by="Votes").head(90))
```

```
Restaurant with highest Votes:
Votes Restaurant Name
728 10934 Toit
```

Restaurant with lowest Votes:

Restaurant Name	Votes	
Anjali Resaturant	0	7797
Annapoorna Bhojanalya	0	7798
Anupam Eating Point	0	7799
Bikaner Rasoi	0	7800
Cake Knighter	0	7804
Paras Corner	0	5806
Punjabi Tadka	0	5807
Sardar A Pure Meat Shop	0	5808
Brahm Point Fast Food	0	5791
Curry Man	0	5793

[90 rows x 2 columns]

Observations

- Restaurant with highest Votes
 - 1. Toit with 10934 Votes
- Restaurant with lowest Votes
 - 1. Many Restaurants have 0 Votes

Analyze if there is a correlation between the number of votes and the rating of a restaurant.

```
In [73]: cols = ['Votes', 'Aggregate rating']
    df_corr_analysis = data_set[cols]
    df_corr_analysis
```

Out[73]:		Votes	Aggregate rating
	0	314	4.8
	1	591	4.5
	2	270	4.4
	3	365	4.9
	4	229	4.8
	•••		
	9546	788	4.1
	9547	1034	4.2
	9548	661	3.7
	9549	901	4.0
	9550	591	4.0

9551 rows × 2 columns

```
In [74]: corr=df_corr_analysis.corr()
    corr
```

Out[74]:

Votes Aggregate rating Votes 1.000000 0.313691 Aggregate rating 0.313691 1.000000

```
In [75]: plt.figure(figsize=(8,8))
    sns.scatterplot(x='Votes',y='Aggregate rating',data=df_corr_analysis)
    plt.title('Relation between Number of Votes and Restaurant Rating')
    plt.xlabel("Number of Votes")
    plt.ylabel('Aggregate Rating')
    plt.show()
```

Relation between Number of Votes and Restaurant Rating

Observations

• Correlation between the number of votes and the rating of a restaurant is 0.31

Task: 3 = Price Range vs. Online Delivery and Table Bookin

- Analyze if there is a relationship between the price range and the availability of online delivery and table booking.

In [76]: data_set.head()

Out[76]:

٠		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose
_	0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak
	1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma
	2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City	Edsa Shangri- La, Ortigas, Mandaluyong City, Ma
	3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal
	4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal

5 rows × 22 columns

```
In [77]: cols = ['Price range','Has Online delivery','Has Table booking']
    df_analysis=data_set[cols].copy()
    df_analysis['Has Online delivery']=df_analysis['Has Online delivery'].map({'Yes':Tr
    df_analysis['Has Table booking']=df_analysis['Has Table booking'].map({'Yes':True,'
    df_analysis
```

Out[77]:		Price range	Has Online delivery	Has Table booking
	0	3	False	True
	1	3	False	True
	2	4	False	True
	3	4	False	False
	4	4	False	True
	•••			
	9546	3	False	False
	9547	3	False	False
	9548	4	False	False
	9549	4	False	False
	9550	2	False	False

9551 rows × 3 columns

```
In [78]: summary_table=pd.pivot_table(df_analysis,index='Price range',values=['Has Online de
    print('Summary Table:')
    summary_table
```

Summary Table:

C:\Users\Shree\AppData\Local\Temp\ipykernel_22976\948226973.py:1: FutureWarning: The provided callable <built-in function sum> is currently using DataFrameGroupBy.sum. I n a future version of pandas, the provided callable will be used directly. To keep c urrent behavior pass the string "sum" instead.

summary_table=pd.pivot_table(df_analysis,index='Price range',values=['Has Online d
elivery','Has Table booking'],aggfunc=sum)

Out[78]:

Has Online delivery Has Table booking

Price range		
1	701	1
2	1286	239
3	411	644
4	53	274

```
In [79]: plt.figure(figsize=(10,8))
    summary_table.plot(kind='bar',stacked=True,colormap='viridis')
    plt.title('Relationship between price Range and Availibility')
    plt.xlabel('Price range')
    plt.ylabel('Count')
    plt.legend(title='Feature',loc='upper right')
    plt.show()
```

<Figure size 1000x800 with 0 Axes>

• Determine if higher-priced restaurants are more likely to offer these services.

```
In [80]: plt.figure(figsize=(10,6))

plt.subplot(1,2,1)

sns.countplot(x='Price range' , hue='Has Online delivery' , data=df_analysis)
plt.title('Online Delivery Avalibility by Price Range')

plt.subplot(1,2,2)
sns.countplot(x='Price range', hue='Has Table booking', data=df_analysis)
plt.title('Table Booking Availibility by Price range')

plt.tight_layout()
plt.show()
```


Observations

• The statement "higher-priced restaurants are more likely to offer these services" is not valid