```
• NAME: UTKARSH GUPTA
```

• EMAIL:

utkarsh.gupta2021b@vitstuden
 t.ac.in

Branch: CSE CORE

• Campus: VIT Vellore

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import warnings
# Ignore FutureWarnings
warnings.simplefilter(action='ignore', category=FutureWarning)
print(sns.get_dataset_names())
['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri
df = pd.read_csv('car_crashes.csv')
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 51 entries, 0 to 50
     Data columns (total 8 columns):
     # Column
                         Non-Null Count Dtype
     ----
     0 total
                         51 non-null
                                         float64
         speeding
                         51 non-null
                                         float64
          alcohol
                         51 non-null
                                         float64
         not_distracted 51 non-null
                                         float64
         no_previous
                         51 non-null
                                         float64
         ins_premium
                         51 non-null
                                         float64
     6 ins_losses
7 abbrev
                         51 non-null
                                         float64
                         51 non-null
                                         object
     dtypes: float64(7), object(1)
     memory usage: 3.3+ KB
```

Inferences

We have No Null values, and all the columns are Floating Number

df.describe()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.

df.head()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	ab
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	

▼ Inference

• Since we have all the of the data as Numerical vs Numerical we may use Scatter Plot

sns.lineplot(y='total',x='speeding',data=df)

sns.scatterplot(y='total',x='speeding',data=df)

▼ Infrences From Above Plot:

• Here we Can see as the Speeding is increased the total number of Crashes is also increasing

sns.scatterplot(y='total',x='alcohol',data=df)

<Axes: xlabel='alcohol', ylabel='total'>

▼ Infrences From Above Plot:(+ve Correlation)

• Here we Can see as the Speeding is increased the total number of Crashes is also increasing

sns.lineplot(y='total',x='alcohol',data=df)

<Axes: xlabel='alcohol', ylabel='total'>

sns.scatterplot(y='alcohol',x='speeding',data=df)

sns.lineplot(y='alcohol',x='speeding',data=df)

▼ Inferences From Above Graphs:

- here we see that generally, as we drink more alchohol more chances of speeding $\,$

-p------

sns.pairplot(df[['total','alcohol','not_distracted','no_previous','speeding']])
plt.show()

Inferences

From the Above Plots we can see that:

Indented block

-Realations According to the Total:(Positively related)

1:- total vs Alcohol

2:- total vs not_distracted

3:- total vs no_previous

This Symbolises that the number of acident increasing as the Y-axis values increases;

-Relations According to the Speeding:

1:- speeding vs alcohol

This shows that speeding is done by the ones who drank more alcohol.

-Relations According to the Alcohol:

1:- Alcohol vs no_previous

2:- Alcholo vs no_distracted

From the Graphs we can see a relationship that persons who drank the most are less likely to be distracted.

The persons who drinks more had no_previous crashes

-Relations According to the not_distracted:

1:- not_distracted vs no_previous

This says that persons who are not distracted , have had no previous accident.

Realtionship between other plot are hard to draw because of does not follow any Good pattern.

correlation_matrix = df.corr(numeric_only=True)
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

sns.histplot(df['speeding'], kde=True)
plt.show()

▼ Inference

- Most of the people drive in range of 2-5 speeding

sns.histplot(df['alcohol'], kde=True)
plt.show()

→ inference

- most of the driver consume alchols between 3-6

sns.histplot(df['ins_premium'], kde=True)
plt.show()

→ inference

- most of the driver have insurance from 700-900

sns.histplot(df['no_previous'], kde=True)
plt.show()

→ inference

- most of the driver had no_previous accidents

sns.jointplot(data=df, x='alcohol', y='not_distracted')
plt.show()

sns.jointplot(data=df, x='ins_premium', y='ins_losses')
plt.show()

INFERENCE

- Insurances Losses are more for the ones who have more Insurance Premiums.

Colab paid products - Cancel contracts here

0s completed at 12:29 PM