Concept	1-Categorical construction	∞ -Categorical construction	Intuition
F-Cartesian edge		$F: X \to S$ an inner fibration of simplicial sets, $f: x \to y$ an edge in X is F -cartesian if the induced map $X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)}$ is a trivial Kan fibration. ([Lur09], Def 2.4.1.1)	??
Category	Collection of objects C , set $\operatorname{Hom}(X,Y)$ for every $X,Y\in C$, associative composition and identity morphisms	Simplicial set $C: \Delta^{\text{op}} \to \mathbf{Set}$ satisfying the inner horn filling condition. ([Lur09], Def 1.1.2.4)	Category with objects C_0 , morphisms C_1 , morphisms between morphisms C_2 , etc. Inner horn filling defines a non-unique composition.
Colimit	A colimit for $F: J \to \mathcal{C}$ is an initial cone on F .	A colimit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is an initial object of $\mathcal{C}_{F/}$. ([Lur09], Def 1.2.13.4)	??
Essentially surjective functor	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every $D \in \mathcal{D}$, there exists some $C \in \mathcal{C}$ with $FC \cong D$.	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if $hF: hC \to h\mathcal{D}$ is essentially surjective. ([Lur09], Def 1.2.10.1)	Essentially surjective up to homotopy.
Faithful functor	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is faithful if $hF: h\mathcal{C} \to h\mathcal{D}$ is faithful. ([Lur09], Def 1.2.10.1)	Faithful up to homotopy.
Final object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C' \to C$.	Object $C \in \mathcal{C}$ such that C is final in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C' \to C$.
Full functor	$F: \mathcal{C} \to \mathcal{D}$ is full if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is surjective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is full if $hF: h\mathcal{C} \to h\mathcal{D}$ is full. ([Lur09], Def 1.2.10.1)	Full up to homotopy.
Functor	Functor.	Natural transformation of simplicial sets. ([Lur09], 1.2.7)	
Groupoid	Category whose morphisms are all invertible.	Kan complex.	Not only can you find (non-unique) 'composites', but you can also fill in diagrams like $C \xrightarrow{\mathrm{id}} C C \xrightarrow{\mathrm{id}} D$ $f \downarrow \qquad \qquad \downarrow \qquad f$ $D \qquad \qquad C$
Initial object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C \to C'$.	Object $C \in \mathcal{C}$ such that C is initial in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C \to C'$.
Join	$ \mathcal{C} \star \mathcal{D} \text{ has objects ob } \mathcal{C} \sqcup \text{ob } \mathcal{D}, \\ \text{and } \operatorname{Hom}_{\mathcal{C}\star\mathcal{D}}(X,Y) \text{ is given by:} \\ \begin{cases} \operatorname{Hom}_{\mathcal{C}}(X,Y) & X,Y \in \mathcal{C}, \\ \operatorname{Hom}_{\mathcal{D}}(X,Y) & X,Y \in \mathcal{D}, \\ \end{cases} \\ \emptyset & X \in \mathcal{D},Y \in \mathcal{C}, \\ * & X \in \mathcal{C},Y \in \mathcal{D}. \end{cases} \\ ([\operatorname{Lur09}], 1.2.8) $	$\mathcal{C} \star \mathcal{D}$ has <i>n</i> -simplicies $(\mathcal{C} \star \mathcal{D}) = \mathcal{C}_n \cup \mathcal{D}_n \cup \bigcup_{i+j=n-1} \mathcal{C}_i \times \mathcal{D}_j$. ([Lur09], Def 1.2.8.1)	??
Left cone	$\mathcal{C}^{\triangleleft} := [0] \star \mathcal{C}.$	$\mathcal{C}^{\triangleleft} := \Delta^0 \star \mathcal{C}.$ ([Lur09], Not 1.2.8.4)	??
Limit	A limit for $F: J \to \mathcal{C}$ is a terminal cone on F .	A limit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is a final object of $\mathcal{C}_{/F}$. ([Lur09], Def 1.2.13.4)	??

Opposite category	\mathcal{C}^{op} has the same objects as \mathcal{C} , and $\operatorname{Hom}_{\mathcal{C}^{\text{op}}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(Y,X)$.	$C_n^{\text{op}} = C([n]^{\text{op}}), \text{ where } \{0 < 1 < < n\}^{\text{op}} = \{0 > 1 > > n\}.$ ([Lur09], 1.2.1)	A map $x \to y$ is an edge $\Delta^1 \to \mathcal{C}$ where $0 \mapsto x$ and $1 \mapsto y$. In \mathcal{C}^{op} 0 and 1 swap roles, so we instead get a map $y \to x$.
Overcategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{/C}$ satisfies the following universal property: for any category \mathcal{D} , there is a bijection $\operatorname{Hom}(\mathcal{D},\mathcal{C}_{/C}) \simeq \operatorname{Hom}_C(\mathcal{D} \star [0],\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $\mathcal{D} \star [0] \to \mathcal{C}$ whose restriction to $[0]$ consides with C . ([Lur09], 1.2.9)	For $f: S \to \mathcal{C}$, S a simplicial set and \mathcal{C} an ∞ -category, the ∞ -category $\mathcal{C}_{/f}$ satisfies the following universal property: for any simplicial set X , there is a bijection $\operatorname{Hom}(X,\mathcal{C}_{/f}) \simeq \operatorname{Hom}_f(X \star S,\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $X \star S \to \mathcal{C}$ whose restriction to S consides with f . ([Lur09], Prop 1.2.9.2)	??
Right cone	$\mathcal{C}^{\rhd} := \mathcal{C} \star [0].$	$\mathcal{C}^{\triangleright} := \mathcal{C} \star \Delta^{0}.$ ([Lur09], Not 1.2.8.4)	??
Subcategory	Subcategory $C' \subseteq C$.	Subsimplicial set $\mathcal{C}' \subseteq \mathcal{C}$ arising as $\begin{array}{ccc} \mathcal{C}' & \longrightarrow \mathcal{C} \\ \text{a pullback} & \downarrow & \downarrow \\ & N(\text{h}\mathcal{C})' & \longrightarrow N(\text{h}\mathcal{C}) \\ \text{where } (\text{h}\mathcal{C})' \subseteq \text{h}\mathcal{C} \text{ is a subcategory.} \\ ([\text{Lur09}], 1.2.11) \end{array}$??
Undercategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{C/}$ satisfies the following universal property: for any category \mathcal{D} , there is a bijection $\operatorname{Hom}(\mathcal{D},\mathcal{C}_{C/}) \simeq \operatorname{Hom}_C([0] \star \mathcal{D},\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $[0] \star \mathcal{D} \to \mathcal{C}$ whose restriction to $[0]$ consides with C . $([\operatorname{Lur}09], 1.2.9)$	For $f: S \to \mathcal{C}$, S a simplicial set and \mathcal{C} an ∞ -category, the ∞ -category $\mathcal{C}_{f/}$ satisfies the following universal property: for any simplicial set X , there is a bijection $\operatorname{Hom}(X,\mathcal{C}_{f/}) \simeq \operatorname{Hom}_f(S \star X,\mathcal{C}),$ where the subscript on the right indicates that we consider only those functors $S \star X \to \mathcal{C}$ whose restriction to S consides with f . ([Lur09], Prop 1.2.9.2)	??

Equivalences		
Name	Between	Definition
Strong equivalence	Topological categories \mathcal{C}, \mathcal{D}	$\mathcal{C} \to \mathcal{D}$ is an equivalnce in the sense of enriched category theory. ([Lur09], Def 1.1.3.1)
(Weak) equivalence	Topological categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.3.6)
Categorical equivalence	Simplicial sets X, S	The induced functor $hX \to hS$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.5.14)
Weak homotopy equivalence	Simplicial sets X, S	The induced map $ X \rightarrow S $ is a weak homotopy equivalence of topological spaces. ([Lur09], 1.1.4)
Equivalence	Simplicial categories \mathcal{C}, \mathcal{D}	The induced functor $hC \to hD$ is an equivalence of \mathcal{H} -enriched categories. ([Lur09], Def 1.1.4.4)

Fibrations and anodyne morphisms		
Name	Describes	Definition
Cartesian fibration	$f: X \to S$ map of simplicial sets	F is an inner fibration such that for every edge $g: x \to y$ of S and every vertex \tilde{y} of X with $f(\tilde{y}) = y$, there exists an f -cartesian edge $\tilde{g}: \tilde{x} \to \tilde{y}$ with $f(\tilde{g}) = g$. ([Lur09], Def 2.4.2.1)
Cofibration	$f: X \to S$ map of simplicial sets	f is a monomorphism. ([Lur09], A.2.7)
Inner anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p:Y\to T$ an inner fibration, $\begin{matrix} X & \longrightarrow Y \\ f & & \downarrow p \\ S & \longrightarrow T \end{matrix}$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Inner Fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i < n$,
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
T (2)		there exists a dotted lift.
Isofibration	$F:\mathcal{C}\to\mathcal{D}$ map of ∞ -categories	F is an inner fibration such that for all $C \in \mathcal{C}$ and every isomorphism $u:D \to FC$ in \mathcal{D} (i.e. $[u]$ is an isomorphism in $h\mathcal{D}$) there exists an isomorphism $\overline{u}:\overline{D}\to C$ in \mathcal{C} such that $F(\overline{u})=u$. [Lur25, Def 01EN]
(Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i \le n$,
Left anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a left fibration,
Left fibration	$f: X \to S$ map of simplicial sets	$X \longrightarrow Y$ $f \downarrow \qquad \qquad \downarrow p$ $S \longrightarrow T$ there exists a dotted lift. ([Lur09], Def 2.0.0.3) For every solid arrow diagram as below, with
Lett Hotation	$f: A \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i < n$,
	II .	([=====], 2 ======

Right anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a right fibration,
		$ \begin{array}{ccc} X & \longrightarrow Y \\ \downarrow f & & \downarrow p \\ S & \longrightarrow T \end{array} $
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i \le n$,
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Serre fibration	$f: Y \to Z$ map of topological spaces	For every solid arrow diagram as below,
		$\{0\} \times \Delta^n \xrightarrow{\qquad} Y$ $\downarrow \qquad \qquad \downarrow^f$ $[0,1] \times \Delta^n \xrightarrow{\qquad} Z$
		there exists a dotted lift. [Lur25, Def 021R]
Trivial Kan fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 \le i \le n$,
		$ \begin{array}{ccc} \partial \Delta^n & \longrightarrow X \\ \downarrow & & \downarrow f \\ \Delta^n & \longrightarrow S \end{array} $
		there exists a dotted lift. [Lur25, Def 006W]

Nerves		
Name	Domain object	Definition
Nerve	Category \mathcal{C}	$(NC)_n = \{n\text{-composable strings of morphisms in } C\}.$
Simplicial nerve	Simplicial category $\mathcal C$	$(NC)_n = \operatorname{Hom}_{\mathbf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], \mathcal{C}), \text{ where } \mathfrak{C}[\Delta^n] \text{ is the category whose objects are the same as } [n], and \operatorname{Hom}_{\mathfrak{C}[\Delta^n]}(i,j) = \emptyset \text{ for } i < j \text{ and } N(P_{ij}) \text{ for } i \geq j \text{ (where } P_{ij} = \{I \subseteq [n] : (i,j \in I) \land (\forall k \in I, i \leq k \leq j)\}).$
Topological nerve	Topological category \mathcal{C}	The simplicial nerve of $\operatorname{Sing} \mathcal{C}$.

Homotopy categories		
Domain object	Definition	
∞ -Category \mathcal{C}	The objects of hC are the vertices of C , and	
	$\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(X,Y)$ is the set of homotopy classes of edges	
	$X \to Y \text{ in } \mathcal{C}. \ ([\text{Lur09}], \text{Prop } 1.2.3.9)$	
Simplicial category \mathcal{C}	h C . ([Lur09], 1.1.4)	
Topological category \mathcal{C}	$h\mathcal{C}$ has the same objects as \mathcal{C} , and $\operatorname{Hom}_{h\mathcal{C}}(X,Y) =$	
	$[\operatorname{Hom}_{\mathcal{C}}(X,Y)]. \ ([\operatorname{Lur}09], \ 1.1.3)$	

References

[Lur09] Jacob Lurie. Higher Topos Theory. 2009.[Lur25] Jacob Lurie. Kerodon. https://kerodon.net. 2025.