DS 8: énoncé

Les calculatrices ne sont pas autorisées.

Exercice 1:

Calculer un développement limité de $f(x) = \sqrt{x + \sqrt{x}}$ au voisinage de 1 à l'ordre $o((x-1)^2)$.

Exercice 2:

Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général $a_n = \frac{1}{n^{\alpha}}((n+1)^{1+\frac{1}{n}} - (n-1)^{1-\frac{1}{n}}).$

Problème : restes de Cauchy des séries de Riemann

L'objet de ce problème est de donner une approximation de la somme des séries de Riemann convergentes $S(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ où α est un réel strictement supérieur à 1. Pour cela, on étudie le reste : $R_n(\alpha) = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$.

Partie I : Formule de Taylor

Dans cette partie, I désigne un intervalle de \mathbb{R} contenant au moins deux éléments et f désigne une application de classe C^{∞} de I dans \mathbb{C} .

1°) Soit $a, b \in I$ avec a < b et $n \in \mathbb{N}$. Démontrer la formule de Taylor avec reste intégral à l'ordre n:

$$f(b) = f(a) + \sum_{k=1}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

 $\mathbf{2}^{\circ})$ Soit $n\in\mathbb{N}.$ En posant $f(t)=e^{-t},$ déduire de la question précédente

que, pour tout
$$x \in \mathbb{R}_+^*$$
, $\int_0^x t^n e^{-t} dt = n! \left(1 - \sum_{k=0}^n \frac{x^k}{k!} e^{-x}\right)$.
En déduire que $\int_0^{+\infty} t^n e^{-t} dt = n!$.

3°) Soit
$$k \in \mathbb{N}$$
. On suppose que $[k, k+1] \subset I$. Montrer que, pour tout $n \in \mathbb{N}$,
$$f(k+1) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(k) + \frac{1}{n!} \int_{0}^{1} f^{(n+1)}(t+k) (1-t)^{n} dt.$$

Partie II : Convergence des séries de Riemann

- **4°)** Soit f une fonction réelle, définie continue et décroissante sur $[a, +\infty[$, où $a \in \mathbb{R}$. Montrer, que pour tout entier $k \in [a+1, +\infty[$, on a $\int_{k}^{k+1} f(x) dx \leqslant f(k) \leqslant \int_{k-1}^{k} f(x) dx$
- 5°) En déduire la nature de la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ selon la valeur de $\alpha\in\mathbb{R}$.

En cas de convergence, on pose
$$S(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$
.

6°) Pour tout réel
$$\alpha > 1$$
, montrer que $1 \leqslant S(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$.

Partie III : Première étude asymptotique du reste

Dans la suite du problème, on fixe un réel α strictement supérieur à 1 et pour tout entier naturel non nul n, on pose $R_n(\alpha) = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$.

- **7°)** En utilisant l'encadrement de la question 4, montrer que lorsque n tend vers $+\infty$, $R_n(\alpha) = \frac{1}{(\alpha 1)n^{\alpha 1}} + O\left(\frac{1}{n^{\alpha}}\right)$.
- 8°) Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$. Montrer que, pour tout $k \in \mathbb{N}^*$: $f(k+1) - f(k) = \frac{1}{k^{\alpha}} - \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} + A_k$ où A_k est un réel vérifiant $0 \leqslant A_k \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}}$.
- 9°) En déduire que lorsque n tend vers $+\infty$, $R_n(\alpha) = \frac{1}{(\alpha 1)n^{\alpha 1}} + \frac{1}{2n^{\alpha}} + O\left(\frac{1}{n^{\alpha + 1}}\right)$

On pourrait répéter le procédé pour obtenir un développement asymptotique plus précis de $R_n(\alpha)$, mais la partie suivante va nous donner une méthode plus rapide.

Partie IV: Nombres de Bernoulli

On fixe un intervalle I de $\mathbb R$ contenant au moins deux éléments.

On souhaite construire par récurrence sur p une suite de réels $(a_p)_{p\in\mathbb{N}}$ et une famille de réels $(b_{\ell,p})_{\substack{p\geq 2\\1\leq \ell\leq p-1}}$ telles que, pour tout $p\in\mathbb{N}^*$, on dispose de la propriété R(p) suivante : pour toute fonction f de I dans \mathbb{C} de classe C^{∞} , la fonction g définie par

$$g = a_0 f + a_1 f' + \ldots + a_{p-1} f^{(p-1)} \text{ v\'erifie} : g' + \frac{1}{2!} g'' + \frac{1}{3!} g^{(3)} + \ldots + \frac{1}{p!} g^{(p)} = f' + \sum_{\ell=1}^{p-1} b_{\ell,p} f^{(p+\ell)},$$

de sorte que la quantité $g' + \frac{1}{2!}g'' + \frac{1}{3!}g^{(3)} + \ldots + \frac{1}{p!}g^{(p)}$ ne dépend pas de $f'', f^{(3)}, \ldots, f^{(p)}$.

- 10°) Déterminer des réels a_0 , a_1 et $b_{1,2}$ pour lesquels R(1) et R(2) sont vraies.
- **11**°) Soit $p \geq 2$. On suppose construits (a_0, \ldots, a_{p-1}) et $(b_{\ell,k})_{\substack{2 \leq k \leq p \\ 1 \leq \ell \leq k-1}}$ pour lesquels $R(1), \ldots, R(p)$ sont vraies. Déterminer a_p et $(b_{\ell,p+1})_{1 \leq \ell \leq p}$ pour lesquels R(p+1) est vraie.
- 12°) En utilisant $f(t)=e^{xt}$, où x est un réel quelconque, montrer que pour tout $p\in\mathbb{N}$ tel que $p\geq 2,$ $a_p=-\sum_{i=2}^{p+1}\frac{a_{p+1-i}}{i!}.$
- 13°) Calculer a_2 , a_3 et a_4 .
- **14°)** En déduire que, pour tout $p \in \mathbb{N}$, $|a_p| \leq 1$.
- 15°) Pour tout $z \in \mathbb{C}$ tel que |z| < 1, montrer que la série $\sum_{p \in \mathbb{N}} a_p z^p$ est convergente.

Pour tout $z \in \mathbb{C}$ tel que |z| < 1, on note $\varphi(z) = \sum_{p=0}^{+\infty} a_p z^p$.

16°) Soit $z \in \mathbb{C}$ tel que |z| < 1.

Montrer qu'on peut écrire $\left(\sum_{n=1}^{N} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{N} a_n z^p\right) = z + r_N$, où $r_N \underset{N \to +\infty}{\longrightarrow} 0$.

- 17°) En déduire que, pour tout $z \in \mathbb{C}^*$ vérifiant |z| < 1, on a $\varphi(z) = \frac{z}{e^z 1}$.
- 18°) Pour tout $n \in \mathbb{N}$, montrer que $\varphi(t)$ admet au voisinage de 0 le développement limité à l'ordre n suivant : $\varphi(t) = \sum_{k=0}^{n} a_k t^k + o(t^n)$.
- **19**°) Montrer que $a_{2k+1} = 0$ pour tout entier $k \geqslant 1$.

Les nombres $b_n = n!a_n$ sont appelés nombres de Bernoulli.

Partie V : Seconde étude asymptotique du reste

Soit f la fonction défnie sur \mathbb{R}_+^* par $f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$, où α est un réel strictement supérieur à 1.

Dans cette partie, on fixe un entier naturel p tel que $p \geq 2$ et on note :

$$g = a_0 f + a_1 f' + \dots + a_{2p-1} f^{(2p-1)}$$
.

Pour tout $k \in \mathbb{N}^*$, on pose R(k) = g(k+1) - g(k) - f'(k).

20°) En utilisant la question 3, montrer qu'il existe un réel A tel que, pour tout $k \in \mathbb{N}^*$, $|R(k)| \leq Ak^{-(2p+\alpha)}$.

 21°) En déduire que $R_n(\alpha)$ admet le développement asymptotique suivant :

$$\sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}} = -\left(a_0 f(n) + a_1 f'(n) + a_2 f''(n) + \dots + a_{2p-2} f^{(2p-2)}(n)\right) + \mathcal{O}\left(\frac{1}{n^{2p+\alpha-1}}\right)$$

22°) Donner le développement asymptotique de $R_n(3)$ correspondant au cas $\alpha = 3$ et p = 3.