

Contingency table

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs	
Brown	200	60	260
Ginger	100	10	110
	300	70	370

	Cats	Dogs
Brown	260 x 300 / 370	260 x 70 / 370
Ginger	110 x 300 / 370	110 x 70 / 370

Contingency table

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs	
Brown	200	60	260
Ginger	100	10	110
	300	70	370

	Cats	Dogs
Brown	210.8	49.19
Ginger	89.19	20.81

Probability

Divide by number of observations

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs	
Brown	0.541	0.162	0.703
Ginger	0.270	0.027	0.297
	0.811	0.189	370

	Cats	Dogs
Brown	?	?
Ginger	?	?

Marginal Probability

 $E = (Row \times Column) / Total$

Observed

Expected

	Cats	Dogs			Cats	Dogs
Brown	0.541	0.162	0.703	Brown	?	?
Ginger	0.270	0.027	0.297	Ginger	?	?
	0.811	0.189	370			

Marginals

- Probability that we take an animal from our population and it is a cat.
- Probability that we take an animal from our population and it is ginger.

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs
Brown	0.541	0.162
Ginger	0.270	0.027
	0.811	0.189

Expected

		Cats	Dogs
0.703	Brown	?	?
0.297	Ginger	Ş	?

The **joint probability**, is the probability of two events occurring together.

370

- P(brown, cat)
 P(brown, dog)

- P(ginger, cat) P(ginger, dog)

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs	
Brown	0.541	0.162	0.703
Ginger	0.270	0.027	0.297
	0.811	0.189	370

$P(A \cap B) = P(A) \times P(B)$

		Cats	Dogs
3	Brown	?	?
,	Ginger	?	?

 $E = (Row \times Column) / Total$

Expected

Observed

	Cats	Dogs			Cats	Dogs
Brown	0.541	0.162	0.703	Brown	p(cat) x p(Brown)	p(dog) x p(Brown)
Ginger	0.270	0.027	0.297	Ginger	p(cat) x p(ginger)	p(dog) x p(ginger)
	0.811	0.189	370			

$P(A \cap B) = P(A) \times P(B)$

 $E = (Row \times Column) / Total$

Observed

370

	Cats	Dogs
Brown	0.541	0.162
Ginger	0.270	0.027
	0.811	0.189

Expected

		Cats	Dogs
0.703	Brown	0.811 x 0.703	0.189 x 0.703
0.297	Ginger	0.811 x 0.297	0.189 x 0.297

 $P(A \cap B) = P(A) \times P(B)$

 $E = (Row \times Column) / Total$

Observed

370

	Cats	Dogs
Brown	0.541	0.162
Ginger	0.270	0.027
	0.811	0.189

Expected

		Cats	Dogs
0.703	Brown	0.570	0.133
0.297	Ginger	0.241	0.056

 $P(A \cap B) = P(A) \times P(B)$

 $E = (Row \times Column) / Total$

Observed

	Cats	Dogs	
Brown	0.541	0.162	0.703
Ginger	0.270	0.027	0.297
	0.811	0.189	370

Expected

	Cats	Dogs
Brown	210.8	49.19
Ginger	89.19	20.81

Multiply by number of observations

$$P(A \cap B) = P(A) \times P(B)$$

THANK YOU

www.trainindata.com