ELLENŐRZŐ KÉRDÉSEK

- 1. Mit hívunk statikus, és mit dinamikus adatbázisnak? (1 pont)
 - Az adatbázis-alkalmazások alapján az adatbázis lehet:
 - Statikus: ritkán módosul, a lekérdezések gyorsasága a fontosabb
 - o Dinamikus: gyakran módosul, ritkán végzünk lekérdezést
- 2. Fogalmazzunk meg 3 célt, amire az indexelés kiválasztásánál figyelni kell! (3 pont)
 - Célok:
 - o gyors lekérdezés
 - o gyors adatmódosítás
 - minél kisebb tárolási terület
 - Nincs általánosan legjobb optimalizáció
 - o az egyik cél a másik rovására javítható
 - o pl.: indexek használtaával csökken a keresési idő, nő a tárméret és nő a módosítási idő
- 3. Mit tételezünk fel, mivel arányos a beolvasás, kiírás költsége? (1 pont)
 - Feltételezzük, hogy a beolvasás, kiírás költsége arányos a háttértároló és memória között mozgatott blokkok számával.
 - o ezáltal mérjük a költségeket
 - o az író-olvasó fej nagyobb adategységeket, blokkokat olvas be
 - o a blokkméret függhet az operációs rendszertől, hardvertől, adabáziskezelőtől
 - o Oracle esetén 8K az alapértelmezés
- 4. Adjuk meg az alábbi paraméterek jelentését! l, b, B, T, bf, M, I(A) (7 pont)
 - A költségek méréséhez bevezetett paraméterek
 - o 1 (lenght): rekordméret bájtokban
 - o b: blokkméret bájtokban
 - o T (tuple): rekordok száma
 - o B: a fájl mérete blokkokban
 - \blacksquare B = [T/bf]
 - o bf: blokkolási faktor
 - mennyi rekord fér el egy blokkban
 - bf = |b/l| (alsó egészrész)
 - o M: memória mérete blokkokban
 - I(A): képméret
 - az A oszlopban szereplő különböző értékek száma képméret, melyet I(A)-val jelölünk
 - $I(A) = |\Pi_A(R)|$
 - o Példa: RxS mérete mekkora?
 - l(RxS) = l(R) + l(S)
 - T(RxS) = T(R) * T(S)
 - bf(RxS) = b / (l(R) + l(S))
 - B(RxS) = (T(R) * T(S)) * (I(R) * I(S)) / b
- 5. Adjuk meg RxS méretét blokkokban kifejezve! (2 pont)
 - B(RxS) = (T(R) * T(S)) * (I(R) * I(S)) / b =
 - = (T(R) * T(S) * l(R) / b) + (T(R) * T(S) * l(S) / b) =
 - = T(S) * B(R) + T(R) * B(S)

- 6. Mit jelent az egyenletességi feltétel? (1 pont)
 - Egyenletességi feltétel: feltesszük, hogy az A = a feltételnek eleget tevő rekordokból nagyjából egyforma számú rekord szerepel.
 - o A: egy keresési mező
 - o a : egy konstans
 - o az esetek vizsgálatánál az is számít, hogy az A=a feltételnek megfelelő rekordokból lehet-e több, vagy biztos, hogy csak egy lehet.
- 7. Mekkora adategységet olvas az író-olvasó fej? (1 pont)
 - Az író-olvasó fej nagyobb adategységeket, blokkokat olvas be.
- 8. Mitől függhet a blokkméret? (1 pont)
 - A blokkméret függhet
 - o az operációs rendszertől
 - o a hardvertől
 - o az adatbáziskezelőtől
- 9. Egyenletességi feltétel esetén hány blokkból áll a $\sigma_{A=a}(R)$ lekérdezés eredménye? (1 pont)
 - $B(\sigma_{A=a}(R)) = B(R)/I(A)$
- 10. Soroljunk fel legalább 7 különböző fájlszervezési módszert? (7 pont)
 - Kupac (heap)
 - Hasító index (hash)
 - Rendezett állomány
 - Elsődleges index (=ritka index)
 - Másodlagos index (=sűrű index)
 - Többszintű index
 - B⁺-fa, B^{*}-fa
- 11. Kupac szervezés esetén mennyi a keresés költsége legrosszabb esetben? (1 pont)
 - A=a keresési idő a legrosszabb esetben: B (tárméret, avagy a fájl mérete blokkokban)
 - Megjegyzések:
 - o A=a keresési idő B/2 átlagos esetben
 - Kupac szervezés: a rekordokat a blokk első üres helyére tesszük a beérkezés sorrendjében
- 12. Kupac szervezés esetén mennyi a beszúrás költsége? (1 pont)
 - Beszúrás:
 - o utolsó blokkba tesszük a rekordot: 1 olvasás + 1 írás
 - o módosítás: 1 keresés + 1 írás
 - o törlés: 1 keresés + 1 írás (üres heléy marad, vagy a törlési bitet állítják át)
- 13. Mit mond meg a h(x) hasító függvény értéke? (1 pont)
 - Egy h(x) ∈ {1,.., K} hasító függvény értéke mondja meg, hogy melyik kosárba tartozik a rekord, ha x volt az indexmező értéke a rekordban.
 - Megjegyzés: Hasítóindex-szervezés (Hashelés)
 - o a rekordokat blokkláncokba (bucket kosár) soroljuk és a blokklánc utolsó blokkjának első üres helyére tesszük a rekordot a beérkezés sorrendjében.
 - o a blokkláncok száma
 - előre adott: K (statikus hasítás)

- a tárolt adatok alapján változhat (dinamikus hasítás)
- o a besorolás az indexmező értékei alapján történik
- o a hasító függvény általában maradékos osztáson alapul, pl. mod(K)
- 14. Mikor jó egy hasító függvény és ilyenkor milyen hosszúak a blokkláncok? (2 pont)
 - Akkor jó egy hasító függvény, ha nagyjából egyforma hosszú blokkláncok keletkeznek, azaz egyenletesen sorolja be a rekordokat.
 - Jó hasítófüggvény esetén a blokklánc B/K blokkból áll. (összes blokk/blokkláncok száma)
- 15. Mennyi a $\sigma_{A=a}(R)$ lekérdezés keresési költsége jó hasító index esetén? (1 pont)
 - Keresés (A=a)
 - o ha az indexmező és a keresési mező eltér, akkor kupac szervezést jelent
 - o ha az indexmező és a keresési mező megegyezik, akkor csak elég a h(a) sorszámú kosarat végignézni, amely B/K blokkból álló kupacnak felel meg (jó hasító index esetén), azaz B/K legrosszabb esetben
 → a keresés K-szorosára gyorsul
- 16. Ha túl nagynak választjuk a K-t hasításkor, akkor ez milyen problémát okozhat? (1 pont)
 - Nagy K esetén sok olyan blokklánc lehet, amely egy blokkból fog állni, és a blokkban is csak egy rekord lesz.
 - Ekkor a keresési idő: 1 blokkbeolvasás, de B helyett T számú blokkban tároljuk az adatokat.
 - o B << T
 - T: rekordok száma egy fájlban
 - B: blokkok száma egy fájlban (egy blokk rekordokat tartalmaz)
- 17. Milyen keresésre nem jó a hasító indexelés? (1 pont)
 - Intervallumos (a < A < b) típusú keresésre nem jó.
- 18. Mit jelent a dinamikus hasító indexelés és milyen két fajtáját ismerjük? (3 pont)
 - Előre nem rögzítjük a kosarak számát, a kosarak száma beszúráskor, törléskor változhat.
 - Dinamikus hasító indexek:
 - kiterjeszthető (expendable)
 - o lineáris
- 19. Kiterjeszthető hasítás esetén a h(K) érték alapján melyik kosárba kerül a rekord? (2 pont)
 - Megjegyzés: Kiterjeszthető hasító index
 - o Minden kosár 1 blokkból áll. Keresési költség: 1.
 - Legyen k > log(a rekordok várható számának felső korlátja)
 - → azaz k hosszú bináris sorozatból több van, mint ahány rekord
 - A h hasító függvény értéke egy k hosszú bináris sorozat (kódszó).
 - A kosarakhoz rendelt kód prefix kód. A maximális kód hossza legyen i.
 - A h(K) k hosszú kódnak vegyük az i hosszú elejét, és azt a kosarat, amelynek kódja a h(K) kezdő szelete.
 - o Ha van hely a kosárban: tegyük bele a rekordot.
 - Ha nincs hely a kosárban: nyissunk meg egy új kosarat, és a következő bit alapján osszuk ketté a telített kosár rekordjait.
 - ha ez a bit mindegyike megegyezik, akkor a következő bitet vesszük a szétosztáshoz, és így tovább

- 20. Milyen probléma keletkezhet kiterjeszthető hasító index esetén és mi rá a megoldás? (2 pont)
 - Megjegyzés:
 - A bináris fa levelei a kosárblokkok kódszavai. A hasító függvény értékéből annyi bitet használunk, ahányadik szinten szerepel a levél.
 - o A gráfot a memóriában tároljuk.
 - Probléma: Ha az új sorok hasító értékének eleje sok bitben megegyezik, akkor hosszú ágak keletkezhetnek.
 nincs kiegyensúlyozva a fa
 - Megoldás:
 - A bináris gráfot teljessé is tehetjük.
 - o A gráfot egy tömbbel ábrázoljuk.
 - Ekkor minden kosár azonos szinten lesz, de közös blokkjai is lehetnek a kosaraknak.
 - Túlcsordulás esetén a kosarak száma duplázódik.
 - Legyen például h(k) 4 bites és 2 rekord férjen el egy blokkba. Az i jelzi, hogy hány bitet használunk fel.

0001

00

- Példa: 14-16. dia (fizika.ppt)
- 21. Lineáris hasító index esetén mikor nyitunk meg új kosarat? (1 pont)
 - Lineáris hasító index:
 - A kosarak 1 vagy több blokkból is állhatnak.
 - o Új kosarat akkor nyitunk meg, ha egy előre megadott értéket elér a kosarakra jutó átlagos rekordszám.

$$\Rightarrow \left(\frac{\text{rekordok száma}}{\text{kosarak száma}} > \text{küszöb}\right)$$

- o A kosarakat 0-tól kezdve sorszámozzuk, és a sorszámot binárisan ábrázoljuk.
- 22. Lineáris hasító index esetén a h(K) érték alapján melyik kosárba kerül a rekord? (2 pont)
 - Ha n kosarunk van, akkor a hasító függvény értékének utolsó log(n) bitjével megegyező sorszámú kosárba tesszük, ha van benne hely.
 Ha nincs benne hely, akkor hozzáláncolunk egy új blokkot, és abba tesszük.
 - Ha nincs megfelelő sorszámú kosár, akkor abba a sorszámú kosárba tesszük, amely csak az első bitjáben különbözik a keresett sorszámtól.

- 23. Rendezett állomány esetén adjuk meg a bináris (logaritmikus) keresés lépéseit! (4 pont)
 - 1. Beolvassuk a középső blokkot.
 - 2. Ha nincs benne az A=a értékű rekord, akkor eldöntjük, hogy a blokklánc második felében, vagy az első felében szerepelhet-e egyáltalán
 - 3. Beolvassuk a felezett blokklánc középső blokkját
 - 4. Addig folytatjuk, amíg megtaláljuk a rekordot, vagy a vizsgálandó maradék blokklánc már csak 1 blokkból áll.
- 24. Mennyi a keresési költség rendezett mező esetében? (1 pont)
 - Keresési idő: $log_2(B)$

- 25. Mennyi a keresési költség rendezett mező esetében, ha gyűjtő blokkokat is használunk? (1 pont)
 - Megjegyzés:
 - Beszúrás: keresés + üres hely készítése miatt a rekordok eltolása az összes blokkban, az adott találati blokktól kezdve (B/2 blokkot be kell olvasni, majd az eltolások után visszaírni = B művelet)
 - Szokásos megoldások:
 - Gyűjtő (túlcsordulási) blokk
 - Üres helyeket hagyunk a blokkokban
 - Gyűjtő (túlcsordulási blokk) használata:
 - az új rekordok számára nyitunk egy blokkot, ha betelik, hozzáláncolunk egy újabb blokkot
 - o keresést 2 helyen végezzük:
 - $log_2(B-G)$ költséggel keresünk a rendezett részben
 - ha nem találjuk, akkor a gyűjtőben is megnézzük (G blokkművelet, ahol G a gyűjtő mérete)
 - azaz az ÖSSZKÖLTSÉG: $log_2(B-G)+G$
 - o ha a G túl nagy a $log_2(B)$ -hez képest, akkor újrarendezzük a teljes fájlt (a rendezés költsége $B \cdot log_2(B)$)
- 26. Mennyi a keresési költség rendezett mező esetében, ha minden blokkot félig üresen hagyunk? (1 pont)
 - Üres helyeket hagyunk a blokkokban:
 - o például félig üresek a blokkok
 - o a keresés után 1 blokkművelettel visszaírjuk a blokkot, amibe beírtuk az új rekordot
 - o tárméret 2 · B lesz
 - o keresési idő: $log_2(2 \cdot B) = \mathbf{1} + log_2(B)$
 - o ha betelik egy blokk, vagy elér egy határt a telítettsége, akkor 2 blokkba osztjuk szét a rekordjait, a rendezettség fenntartásával
- 27. Milyen mindig az indexrekord szerkezete? (1 pont)
 - Az indexrekordok szerkezete:
 - o (a,p) ahol
 - a: egy érték az indexelt oszlopban
 - P: egy blokkmutató arra a blokkra mutat, amelyben az A=a értékű rekordot tároljuk
 - o az index mindig rendezett az indexértékek szerint
- 28. Adjuk meg az elsődleges index 5 jellemzőjét! (5 pont)
 - főfájl is rendezett
 - csak 1 elsődleges indexet lehet megadni (mert csak egyik mező szerint lehet rendezett a főfájl)
 - elég a főfájl minden blokkjának legkisebb rekordjához készíteni indexrekordot
 - indexrekordok száma: T(I) = B (ritka index)
 - indexrekordokból mindig sokkal több fér el egy blokkba, mint a főfájl rekordjaiból
 - o bf(I) >> bf azaz az indexfájl sokkal kisebb rendezett fájl, mint a főfájl
 - \circ B(I) = B / bf(I) << B = T / bf
- 29. Mit hívunk fedőértéknek? (1 pont)
 - Az indexfájlban nem szerepel minden érték, ezért csak fedő értékeket kereshetünk
 - Fedő érték: a legnagyobb olyan indexérték, amely a keresett értéknél kisebb vagy egyenlő
- 30. Mennyi a keresési költség elsődleges index esetén? (1 pont)
 - fedő érték keresése az index rendezettsége miatt bináris kereséssel történik: $log_2(B(I))$
 - a fedő indexrekordban szereplő blokkmutatónak megfelelő blokkot még be kell olvasni: $1 + log_2(B(I))$

- 31. Adjuk meg a másodlagos index 5 jellemzőjét! (5 pont)
 - főfájl rendezetlen (az indexfájl mindig rendezett)
 - több másodlagos indexet is meg lehet adni
 - a főfájl minden rekordjához kell készíteni indexrekordot
 - indexrekordok száma: T(I) = T (sűrű index)
 - indexrekordból sokkal több fér el egy blokkba, mint a főfájl rekordjaiból
 - o bf(I) >> bf − azaz az indexfájl sokkal kisebb rendezett fájl, mint a főfájl
 - \circ B(I) = T / bf(I) << B = T / bf
- 32. Hogyan keresünk a másodlagos indexben és mennyi a keresés költsége? (5 pont)
 - Az indexben keresés az index rendezettsége miatt bináris kereséssel történik: $log_2(B(I))$
 - A talált indexrekordban szereplő blokkmutatónak megfelelő blokkot még be kell olvasni, így : $1 + log_2(B(I))$
 - $1 + log_2(B(I)) \ll log_2(B)$ (rendezett eset)
 - Az elsődleges indexnél rosszabb a keresési idő, mert több az indexrekord
- 33. Mit hívunk klaszterszervezésű táblának? (1 pont)
 - Megjegyzés: Klaszter (nyaláb, fürt) → azonos indexű értékek (blokkok) fizikailag egymás után helyezkednek el
 - Klaszterszervezés egy tábla egy A oszlopra:
 - o az azonos A értékű sorok fizikailag egymás után blokkokban helyezkednek el
 - o Cél: az eslő találat után az összes találatot megkapjuk soros beolvasással
- 34. Mit hívunk klaszterindexnek? (1 pont)
 - Klaszterindex:
 - o klaszterszervezésű fájl esetén index az A oszlopra
- 35. Mikor mondjuk, hogy 2 tábla klaszterszervezésű? (1 pont)
 - Klaszterszervezés két tábla esetén az összes közös oszlopra:
 - o a közös oszlopokon egyező sorok egy blokkban, vagy fizikailag egymás utáni blokkokban helyezkednek el
 - o Cél: összekapcsolás esetén az összetartozó sorokat soros beolvasással megkaphatjuk
- 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont)
 - Megjegyzés: többindexű index
 - o az indexfájl (1. indexszint) is fájl, ráadásul rendezett, így ezt is meg lehet indexelni, elsődleges indexszel
 - o a főfájl lehet rendezett vagy rendezetlen (az indexfájl mindig rendezett)
 - o t-szintű index: az indexszinteket is indexeljük, összesen t szintig
 - Keresési idő:
 - o a t-edik szinten (I^(t)) bináris kereséssel keressük meg a fedő indexrekordot
 - o követjük a mutatót, minden szinten, és végül a főfájlban: $log_2(B(I^{(t)})) + t blokkolvas$ ás
 - o ha a megelelő szint 1 blokkból áll, akkor t+1 blokkolvasást jelent (t=?)
 - o minden szint blokkolási faktora megegyezik, mert egyforma hosszúak az indexrekordok
- 37. Ha t szintű indexet használunk, a legfelső szinten milyen keresést használunk? (1 pont)
 - A t-edik szinten $(I^{(t)})$ bináris kereséssel keressük meg a fedő indexrekordot.
- 38. Ha t szintű indexet használunk és a legfelső szint 1 blokkból áll, akkor mennyi a keresési költség? (1 pont)
 - ha a megelelő szint 1 blokkból áll, akkor **t+1** blokkolvasást jelent (t=?)
- 39. Ha t szintű indexet használunk, mennyi az indexszintek blokkolási faktora és miért? (2 pont)
 - minden szint blokkolási faktora megegyezik, mert egyforma hosszúak az indexrekordok

40. Ha t szintű indexet használunk, vezessük le, hogy hány blokkból áll a legfelső szint! (12 pont)

	FŐFÁJL	1. szint	2. szint	 t. szint
blokkok száma	В	B/bf(I)	B/bf(I) ²	 B/bf(I) ^t
rekordok száma	Т	В	B/bf(I)	 B/bf(I) ^(t-1)
blokkolási faktor	bf	bf(I)	bf(I)	 bf(I)

- t-ik szinten 1 blokk: 1=B/bf(I)t
- 41. Ha t szintű indexet használunk, és a legfelső szint 1 blokkból áll, abból milyen egyenlet következik és mi a megoldása t-re? (2 pont)
 - t-edik szinten 1 blokk: $\mathbf{1} = \mathbf{B}/\mathbf{bf}(\mathbf{I})^{\mathbf{t}}$
- 42. Mi a két legfontosabb jellemzője a **B**⁺-faindexnek? (2 pont)
 - Megjegyzés: a többszintű indexek közül az egyik legelterjedtebb
 - Minden blokk legalább 50%-ban telített
 - Telítettséget biztosító karbantartó algoritmusok
- 43. Egy példa alapján szemléltessük a köztes csúcs jellemzőit **B**⁺-fa index esetén! (8 pont)

Köztes (nem-levél) csúcs szerkezete

Ahol k a mutató által meghatározott részben (részgráfban) szereplő tetszőleges indexérték

44. Egy példa alapján szemléltessük a levél csúcs jellemzőit \mathbf{B}^+ -fa index esetén! (5 pont)

Levél csúcs szerkezete

- 45. Mutassunk példát, mikor beszúráskor egy levélcsúcsot kettéosztunk **B**⁺-fa index esetén! (5 pont)
 - A 7-es indexű rekord nem férne be alapból, mivel az adott kosár már tele van. 🕾
 - Tehát kb. fele-fele arányban kettéosztjuk azt a blokkot, ahová a 7-est kellene beszúrnunk, majd belerakjuk a 7-est
 - De ezt még a változást a szerkezetbe is bele kell integrálni: legkisebb indexet be kell tenni az egy szinte felette lévő indexek közé. (fedő érték)
 - Követelmény: mit szúrunk be és a beszúrás előtti, majd utáni két fát kell lerajzolni:

- 46. Mutassunk példát, mikor beszúráskor egy köztes csúcsot kettéosztunk **B**⁺-fa index esetén! (5 pont)
 - Amikor valamit be kell szúrni, az egyre feljebbi szintek módosításához vezethet
 - ha ketté kell osztani a gyökeret, kell új gyökér
 - o nő a fa magassága
 - Keresés nagyon gyors
 - DE: indexkarbantartás új rekord esetén nagyon költséges (akár nőhet is a fa magassága)
 - Követelmény: mit szúrunk be és a beszúrás előtti, majd utáni két fát kell lerajzolni:

150 150 150 150 179 180 180 180 180 180 180 180 180 200

Szúrjuk be a 160-as indexértékű rekordot!

47. Mutassunk példát, mikor beszúráskor nő a **B**⁺-fa index magassága! (5 pont) Szúrjuk be a 45-ös indexértékű rekordot!

- Követelmény: mit szúrunk be és a beszúrás előtti, majd utáni két fát kell lerajzolni
- 48. Mutassunk példát, mikor törléskor megszüntetünk egy levélcsúcsot **B**⁺-fa index esetén! (5 pont) Töröljük az 50-es indexértékű rekordot!

- Követelmény: mit szúrunk be és a beszúrás előtti, majd utáni két fát kell lerajzolni
- 49. Mutassunk példát, mikor törléskor csökken a **B**⁺-fa index magassága! (5 pont) Töröljük a 37-es indexértékű rekordot!

• Követelmény: mit szúrunk be és a beszúrás előtti, majd utáni két fát kell lerajzolni

50. Mutassunk példát arra, mikor egy kevés elemszámú oszlopra bitmap indexet készítünk! (2 pont)

Bittérkép (bitmap) indexek

·	CUSTOMER#	MARITAL	_STATUS	REGION	GENDER	INCOME_LEVEL	
	101	single		east	male	bracket_1	
	102	married		central	female	bracket_4	
	103	married		west	female	bracket_2	
	104	divorced		west	male	bracket_4	
	105	single		central	female	bracket_2	
	106	married		central	female	bracket_3	
	REGION='east	r	REGION='central' RE		REGI	REGION='west'	
	1	0			0		
	0	1	1		0	0	
	0	0	0		1	1	
						1	
	0	0			1		
		0			0		

- Bittérkép: 0-k és 1-ek reprezentálják, hogy a rekordban milyen érték van (true/false)
- 51. Mutassunk példát arra, mikor logikai feltételek kiértékelését bitmap vektorműveletekre vezetjük vissza! (7 pont)

- olyan táblát képez, melyekben azoknál a rekordoknál szerepel 1 egy adott oszlopban, melyre a rá vonatkozó feltétel teljesül
- pl.: 0-kat és 1-eseket "éselünk össze"