- HAI503I: Algorithmique 4 -

## $Chap.\ 5-Algorithmes\ d'approximation$

L3 informatique Université de Montpellier

#### 1. Premiers exemples

- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1~ Borne sur  $\mathrm{OPT}:$  l'équilibrage de charge
- 3.2 Approximation probabiliste :  ${
  m MAXSAT}$
- 3.3 Approximation du Voyageur de Commerce

- 1. Premiers exemples
- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste: MAXSAT
- 3.3 Approximation du Voyageur de Commerce

#### 1. Premiers exemples

- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste: MAXSAT
- 3.3 Approximation du Voyageur de Commerce

# Définition du problème

#### COUVERTURE-PAR-SOMMETS

Entrée : Un graphe G = (V, E)

Sortie : Une couverture par sommets de G, c-à-d un

sous-ensemble  $C \subset V$  de sommets, qui **couvre** toutes les

arêtes : pour tout  $\{u,v\} \in E$ ,  $u \in C$  ou  $v \in C$ 

Objectif: Trouver C le plus petit possible









# Définition du problème

#### COUVERTURE-PAR-SOMMETS

Entrée : Un graphe G = (V, E)

Sortie : Une couverture par sommets de G, c-à-d un

sous-ensemble  $C \subset V$  de sommets, qui **couvre** toutes les

arêtes : pour tout  $\{u,v\} \in E$ ,  $u \in C$  ou  $v \in C$ 

Objectif: Trouver C le plus petit possible









### Solution exacte

### Algorithme par recherche exhaustive

- ► Tester tous les sous-ensembles possibles, par taille croissante
- Complexité :  $O(2^n n^2)$  où n est le nombre de sommets
  - $\triangleright$   $O(2^k n^2)$  si la couverture minimale est de taille k

## A priori pas d'algorithme polynomial

► fait partie des problèmes NP-complets

HA16021

Meilleurs algorithmes connus en  $O(2^k n)$ , voire  $O(1,2738^k + kn)$  difficile

Que peut-on faire en temps polynomial?

# Un algorithme d'approximation

#### Réduisons nos ambitions...

On ne cherche plus la couverture la plus petite possible mais *une* couverture assez petite

# CouvApprox(G):

- 1.  $C \leftarrow \emptyset$
- **2.** Tant que G est non vide :
- 3. Choisir une arête  $\{u, v\}$  dans G
- Ajouter u et v dans C
- 5. Supprimer u et v (et les arêtes incidentes) de G
- 6. Renvoyer C

### Résultat de l'algorithme COUVAPPROX

L'algorithme retourne une couverture du graphe G donné en paramètre et a une complexité en  $O(n^2)$  (où n est le nombre de sommets de G).

# Exemples

▶ Déroulement de CouvApprox sur certains graphes suivants :



## Exemples

▶ Déroulement de CouvApprox sur certains graphes suivants :









► Taille d'une couverture par sommets minimum :

5

3

6

7

## **Exemples**

▶ Déroulement de CouvApprox sur certains graphes suivants :









► Taille d'une couverture par sommets minimum :

5

3

b

(

Théorème, garantie de l'algorithme d'approximation

Soit OPT la taille d'une couverture de taille minimale de G, et C l'ensemble retourné par l'appel COUVAPPROX(G). Alors

$$|C| \leq 2.0$$
PT

#### 1. Premiers exemples

- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste: MAXSAT
- 3.3 Approximation du Voyageur de Commerce

## Définition du problème

#### SOMME PARTIELLE

Entrée : Un ensemble E d'entiers strictement positifs, un entier

cible t

Sortie : Un sous-ensemble  $S \subset E$  dont la somme est  $\leq t$ 

Objectif : Trouver S de somme la plus grande possible (la plus

proche possible de t)

#### **Notations**

▶ Pour  $S \subset E$ ,  $\Sigma S = \sum_{x \in S} x$ 

▶ Objectif : trouver S tel que  $\Sigma S \leq t$  et est maximale

▶ OPT : valeur de la solution maximale (la meilleure possible)

## Exemple

Entrée :  $E = \{12, 4, 17, 9, 6\}$  et t = 28



## Définition du problème

#### SOMME PARTIELLE

Entrée : Un ensemble E d'entiers strictement positifs, un entier

cible t

Sortie : Un sous-ensemble  $S \subset E$  dont la somme est  $\leq t$ 

Objectif: Trouver S de somme la plus grande possible (la plus

proche possible de t)

### **Notations**

- ▶ Pour  $S \subset E$ ,  $\Sigma S = \sum_{x \in S} x$
- ▶ Objectif : trouver S tel que  $\Sigma S \leq t$  et est maximale
- ▶ OPT : valeur de la solution maximale (la meilleure possible)

## Exemple

Entrée :  $E = \{12, 4, 17, 9, 6\}$  et t = 28Solution : OPT= 27 pour  $S = \{17, 6, 4\}$ 



### Solution exacte

### Recherche exhaustive et backtrack

TD2 Ex. 1

- ▶ Parcours de tous les sous-ensembles  $S \subset E$ 
  - Complexité  $O(n2^n)$  où n = |E|
- Backtrack si entiers tous positifs
  - Complexité O(2<sup>n</sup>)

## A priori pas d'algorithme polynomial

▶ fait partie des problèmes NP-complets

HA16021

▶ Meilleur algorithme connu en  $O(2^{\frac{n}{2}}) = O(1,414^n)$ 

difficile

Que peut-on faire en temps polynomial?

# Un algorithme d'approximation

# SOMMEPARTAPPROX(E, t):

- 1. Trier E par ordre décroissant
- 2.  $S \leftarrow \emptyset$
- 3. Pour i = 0 à |E| 1:
- 4. Si  $E_{[i]} \le t$ :
- 5. Ajouter  $E_{[i]}$  à S
- 6.  $t \leftarrow t E_{[i]}$ 
  - 7. Renvoyer S

# Un algorithme d'approximation

# SOMMEPARTAPPROX(E, t):

- 1. Trier E par ordre décroissant
- 2. S ←  $\emptyset$
- 3. Pour i = 0 à |E| 1:
- 4. Si  $E_{[i]} \le t$ :
- 5. Ajouter  $E_{[i]}$  à S
- 6.  $t \leftarrow t E_{[i]}$
- 7. Renvoyer S

### Analyse de SOMMEPARTAPPROX

En temps  $O(n \log n)$ , l'appel SOMMEPARTAPPROX(E, t) retourne une solution S vérifiant

$$\Sigma S \geq rac{1}{2} \; ext{opt}$$

Où OPT est la valeur d'une solution optimale au problème  $\operatorname{SOMME}$  Partielle pour (E,t)



#### 1. Premiers exemples

- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste: MAXSAT
- 3.3 Approximation du Voyageur de Commerce

## Problèmes d'optimisation

### Cadre général

- Problème de maximisation : sur une entrée, trouver une solution qui maximise une certaine fonction
- Problème de minimisation : sur une entrée, trouver une solution qui minimise une certaine fonction

### Exemples

- ▶ Max : Somme Partielle, Sac-A-Dos, Choix Cours...
- ▶ Min : Couverture, Voyageur de Commerce...

### **Formalisation**

### Définition

- Ingrédients :
  - Ensemble / des instances (entrées)
  - Pour chaque  $x \in I$ , l'ensemble S des solutions acceptables (sorties possibles)
  - ▶ Une **fonction de coût**  $c: S \to \mathbb{R}$  (valeur d'une solution)
- Objectifs :
  - Maximisation: trouver  $s \in S$  telle que c(s) soit maximale, c'est-à-dire, telle que :  $\forall s' \in S, c(s') < c(s)$
  - Minimisation: trouver  $s \in S$  telle que c(s) soit minimale, c'est-à-dire, telle que :  $\forall s' \in S, c(s') \ge c(s)$
- ▶ Valeur optimale : on note OPT la valeur de la solution optimale
  - ▶ maximisation :  $OPT = \max_{s \in S} c(s)$
  - ightharpoonup minimisation : OPT = min<sub>s∈S</sub> c(s)

### Résolution exacte

Comment résoudre un problème d'optimisation de manière exacte?

### Recherche exhaustive et backtrack

Chap. 2

- ▶ Parcours (intelligent) de toutes les solutions, en gardant la meilleure
- Fonctionne toujours ; complexité (en général) exponentielle

### Résolution exacte

Comment résoudre un problème d'optimisation de manière exacte?

### Recherche exhaustive et backtrack

Chap. 2

- Parcours (intelligent) de toutes les solutions, en gardant la meilleure
- Fonctionne toujours ; complexité (en général) exponentielle

## Algorithmes gloutons

Cours L2

- Construction d'une solution en optimisant localement à chaque étape
- Fonctionne parfois...; complexité souvent assez bonne

### Résolution exacte

Comment résoudre un problème d'optimisation de manière exacte?

#### Recherche exhaustive et backtrack

Chap. 2

- Parcours (intelligent) de toutes les solutions, en gardant la meilleure
- Fonctionne toujours; complexité (en général) exponentielle

## Algorithmes gloutons

Cours L2

- Construction d'une solution en optimisant localement à chaque étape
- Fonctionne parfois...; complexité souvent assez bonne

## Programmation dynamique

Cours L2

- Décomposition du problème en sous-problèmes, et résolution par tailles croissantes
- Fonctionne souvent; complexité (en général) exponentielle mais meilleure qu'en recherche exhaustive

UP 1 1 1 1 2 P 1 = P 9 9 9

# Algorithmes d'approximation

### Algorithmes de compromis

- ► Algorithmes efficaces → complexité polynomiale, voire linéaire
- ► Algorithmes non exacts → solution de valeur proche de l'optimal

## Définition : algorithme d'approximation

Un algorithme d' $\alpha$ -approximation est un algorithme qui *pour tout* entrée x renvoie une solution  $s \in S$  telle que

▶ maximisation : 
$$\alpha \cdot \text{OPT} \le c(s) \le \text{OPT}$$

$$0 < \alpha < 1$$

▶ minimisation : OPT 
$$\leq c(s) \leq \alpha \cdot \text{OPT}$$

$$\alpha > 1$$

Le réel  $\alpha$  est appelé facteur d'approximation de l'algorithme.

# Algorithmes d'approximation

## Algorithmes de compromis

- ► Algorithmes efficaces → complexité polynomiale, voire linéaire
- ► Algorithmes non exacts → solution de valeur proche de l'optimal

## Définition : algorithme d'approximation

Un algorithme d' $\alpha$ -approximation est un algorithme qui *pour tout* entrée x renvoie une solution  $s \in S$  telle que

▶ maximisation : 
$$\alpha \cdot \text{OPT} \le c(s) \le \text{OPT}$$

$$0 < \alpha < 1$$

▶ minimisation : OPT 
$$\leq c(s) \leq \alpha \cdot \text{OPT}$$

$$\alpha > 1$$

Le réel  $\alpha$  est appelé facteur d'approximation de l'algorithme.

## Exemples

- COUVERTURE-PAR-SOMMETS: c(s) = # sommets renvoyés COUVAPPROX est une 2-approximation
- SOMME PARTIELLE : c(s) = la somme retournée SOMMEPARTAPPROX est une  $\frac{1}{2}$ -approximation

# Comment concevoir des algorithmes d'approximation?

## Une technique fructueuse : algorithmes glouton

- ▶ Approche gloutonne souvent rapide → efficacité
- Pas toujours la meilleure solution → non exact
- ► Solution souvent *pas trop mauvaise* → compromis

### Remarque

- ▶ On ne cherche pas une solution *optimale*, mais *pas trop mauvaise*
- Parfois intéressant de faire des choix un peu bêtes mais pas loin de l'optimal (exemple de COUVAPPROX...)

## Objectif du cours

- Concevoir et analyser des algorithmes d'approximation simples.
- ► Construire des algorithmes d'approximation est un domaine de recherche riche, et certains sont très techniques...

# Comment analyser un algorithme d'approximation?

## Objectif

Montrer que pour tout entrée, l'algorithme renvoie une solution s vérifiant

- $ightharpoonup c(s) \ge \alpha \cdot \text{OPT (si maximisation)}$
- ▶  $c(s) \le \alpha \cdot \text{OPT}$  (si minimisation)

## Deux bornes à trouver (cas max.)

(cas min.)

▶ Trouver une borne  $c_1$  telle que  $c(s) \ge c_1$ 

 $c(s) \leq c_1$ 

▶ Trouver une borne  $c_2$  telle que OPT  $\leq c_2$ 

OPT  $\geq c_2$ 

 $\leadsto$  On peut prendre  $\alpha = c_1/c_2$ 

 $\alpha = c_1/c_2$ 

## Exemple sur CouvApprox

Problème de minimisation. On avait :  $c(G) \le |C|$  (=  $c_1$ ) et OPT  $\ge |C|/2$  (=  $c_2$ ) donc  $\alpha = c_1/c_2 = |C|/(|C|/2) = 2$  convient.

- 1. Premiers exemples
- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur  $\mathrm{OPT}:$  l'équilibrage de charge
- 3.2 Approximation probabiliste :  ${\rm MaxSat}$
- 3.3 Approximation du Voyageur de Commerce

- 1. Premiers exemples
- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste : MAXS.
- 3.3 Approximation du Voyageur de Commerce

# Définition du problème

#### Informellement

- Ensemble de *n tâches* à exécuter, chacune ayant une *durée*
- ▶ À disposition : *m processeurs*
- Objectif : répartir les tâches sur les processeurs, pour minimiser le temps total de calcul

## ÉQUILIBRAGE

### LOAD BALANCING

Entrée : D, tableau d'entiers positifs de taille *n* correspondant aux *durées* des tâches à répartir

m entier correspondant aux nombres de processeurs

Sortie : Tableau A : affectation de chaque tâche à un processeur (tâche i affectée au processeur j : A[i] = j)

Objectif: Minimiser le temps total, calculé comme :

 $t(A) = \max_{1 \le j \le m} \left( \sum_{i: A[i]=j} D[i] \right)$ 

# Algorithme glouton à la volée

## Scénario/modèle 1

Les tâches arrivent les unes après les autres, on doit les traiter dans l'ordre.

- ► Traduction : on ne peut pas trier le tableau *D*
- ▶ Idée d'un algorithme glouton : on affecte la prochaine tâche au processeur le moins occupé

# Algorithme glouton à la volée

## Scénario/modèle 1

Les tâches arrivent les unes après les autres, on doit les traiter dans l'ordre.

- ► Traduction : on ne peut pas trier le tableau D
- Idée d'un algorithme glouton : on affecte la prochaine tâche au processeur le moins occupé

# ÉQUILIBRAGEGLOUTON(D, m):

- 1.  $T \leftarrow \text{tableau de taille } m$ , intialisé à 0 (temps total par processeur)
- **2.** Pour i = 1 à n:
- 3.  $j \leftarrow \text{indice du minimum de } T$
- 4.  $A_{[i]} \leftarrow j$
- $\mathbf{5.} \qquad T_{[j]} \leftarrow T_{[j]} + D_{[i]}$
- 6. Renvoyer A

# Algorithme glouton à la volée

# ÉQUILIBRAGEGLOUTON(D, m):

- 1.  $T \leftarrow \text{tableau de taille } m$ , intialisé à 0 (temps total par processeur)
- **2.** Pour i = 1 à n:
- 3.  $j \leftarrow \text{indice du minimum de } T$
- 4.  $A_{[i]} \leftarrow j$
- 5.  $T_{[j]} \leftarrow T_{[j]} + D_{[i]}$
- 6. Renvoyer A

#### Théorème

L'algorithme ÉQUILIBRAGE GLOUTON est une 2-approximation pour le problème ÉQUILIBRAGE et a une complexité O(nm) (ou  $O(n\log m)$  avec un tas)

# Algorithme glouton avec tri

## Scénario/modèle 2

On connaît toutes les tâches à l'avance  $\rightsquigarrow$  fait-on mieux?

▶ **Idée** : On peut trier les tâches par durée décroissante et les affecter comme précédemment selon cet ordre.

## Algorithme et complexité

- ▶ Même algorithme avec tri de *D* initialement
- ► Complexité :  $O(n \log n)$  pour le tri, puis pareil
  - $ightharpoonup O(n(m + \log n))$  avec recherche *naïve* de minimum
  - ▶  $O(n(\log n + \log m))$  avec un tas $\rightsquigarrow O(n \log n)$  car  $n \ge m$

#### Théorème

Si D est trié par ordre décroissant, le facteur d'approximation  $\alpha$  de ÉQUILIBRAGEGLOUTON vérifie  $\alpha \leq \frac{3}{2}$ 



# Bilan sur l'équilibrage de charge

#### Cas non trié

- L'algorithme glouton est une 2-approximation
- ▶ Analyse plus fine de l'algo glouton :  $(2 \frac{1}{m})$ -approximation
- Facteur d'approximation atteint

#### Cas trié

- ▶ L'algorithme glouton fournit une  $\frac{3}{2}$ -approximation
- ▶ Analyse plus fine de l'algo glouton :  $(\frac{4}{3} \frac{1}{m})$ -approximation meilleure borne sur OPT

#### Encore mieux?

Pour tout  $\varepsilon > 0$ , il existe un algorithme de complexité polynomiale qui est une  $(1+\varepsilon)$ -approximation



- 1. Premiers exemples
- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste :  ${\rm MaxSat}$
- 3.3 Approximation du Voyageur de Commerce

## Rappel du Chapitre 2 : le problème SAT

#### Le problème SAT

#### Définition

Entrée : une formule logique  $\varphi$  à n variables booléennes, sous forme normale conjonctive (CNF)

Sortie : une affectation des variables qui satisfasse  $\varphi$  ; « insatisfiable » sinon

Formule logique CNF: conjonction de disjonction de littéraux

- Littéraux :  $x_1, \neg x_1, \dots, x_n, \neg x_n$
- ▶ Disjonction :  $C = x_1 \lor \neg x_3 \lor \neg x_4$  (clause)
- ▶ Conjonction :  $C_1 \land C_2 \land \cdots \land C_k$

$$\varphi(x_1, x_2, x_3) = (\neg x_1 \lor x_2) \land (x_1 \lor x_2 \lor \neg x_3) \land \neg x_2$$

#### Affectation satisfaisante ou non

- $(x_1, x_2, x_3) = (FAUX, FAUX, FAUX)$  satisfait  $\varphi$
- $(x_1, x_2, x_3) = (VRAI, FAUX, VRAI)$  ne satisfait pas  $\varphi$

144

#### Le problème MAXSAT

#### Définition: MAXSAT

Entrée : un ensemble  $C_1, \ldots C_m$  de m clauses disjonctives sur n

variables booléennes

Sortie: une affectation des variables

Objectif: maximiser le nombre de clauses satisfaites

#### Exemple

$$(x_1 \vee \neg x_2 \vee x_3), (\neg x_1 \vee x_3), (\neg x_3), (x_2 \vee x_3)$$

- ► (VRAI, VRAI, VRAI) → clause n° 3 non satisfaite 3/4
- ► (VRAI, VRAI, FAUX) → clause n° 2 non satisfaite 3/4
- ►  $(VRAI, FAUX, FAUX) \leftrightarrow clauses n^{os} 2 et 4 non satisfaites$  2/4

On voit facilement qu'on ne peut pas satisfaire plus de 3 clauses sur les 4

#### Algorithmes exacts

Modification des algorithmes exhaustifs et *backtrack* pour trouver la *meilleure* solution



## L'algorithme MAXSATRAND

## $MaxSatRand(C_1, ..., C_m)$ :

Affectation aléatoire des variables :

- 1. Pour i = 0 à n 1:
- 2.  $b \leftarrow \text{bit al\'eatoire}$
- 3. Si  $b = 1 : A_{[i]} \leftarrow VRAI$
- 4. Sinon :  $A_{[i]} \leftarrow \text{FAUX}$
- 5. Renvoyer A

#### Analyse de MAXSATRAND

L'algorithme MAXSATRAND a une complexité de O(n) et l'espérance du nombre de clauses qu'il satisfait est  $\geq \frac{1}{2}$  OPT, où OPT est le nombre maximum de clauses qui peuvent être satisfaites par une affectation.

#### Bilan sur MAXSAT

#### Un algorithme d'approximation

- MAXSATRAND est un algorithme de  $\frac{1}{2}$ -approximation pour de type *Monte Carlo*
- ► Il existe une version *Las Vegas* → tirer des affectations tant qu'elles ne satisfont pas suffisamment de clauses

#### Mieux?

- ▶ Si la plus petite clause est de taille  $k \rightsquigarrow (1-1/2^k)$ -approximation
- ▶ Il existe un algorithme de  $\frac{3}{4}$ -approximation, quelque soit k
- ► On peut *dérandomiser* MAXSATRAND

#### Remarque : exemple de la méthode probabiliste en combinatoire

Si l'espérance du nombre de clauses satisfaites est  $\geq \frac{1}{2}$  OPT, alors il existe *au moins une affectation* satisfaisant  $\geq \frac{1}{2}$  OPT clauses!



#### 1. Premiers exemples

- 1.1 Problème de la couverture par sommets
- 1.2 Problème de la somme partielle

#### 2. Les algorithmes d'approximation

- 3. Exemples plus avancés
- 3.1 Borne sur OPT : l'équilibrage de charge
- 3.2 Approximation probabiliste : MAXSAT
- 3.3 Approximation du Voyageur de Commerce

#### Rappel du chapitre 2 : le voyageur de commerce



#### Rappel du chapitre 2 : le voyageur de commerce



#### Formalisation du problème en terme de graphes

#### Définition du problème VOYAGEURDECOMMERCE (ou VDC)

Entrée : Graphe G = (S, A) avec une longueur  $\ell(u, v)$  pour chaque

arête vérifiant l'inégalité triangulaire :

 $\ell(u,w) \le \ell(u,v) + \ell(v,w)$  pour tous u, v, w si les arêtes

correspondantes existent

Sortie : Une numérotation  $u_0, \ldots, u_{n-1}$  des sommets

Objectif: Minimiser la longueur totale  $\sum_{k=0}^{n-1} \ell(u_i, u_{i+1}) + \ell(u_{n-1}, u_0)$ 

#### Remarque

▶ Dans la version de VDC étudiée dans le cours, *G* contient toutes les arêtes possibles...

#### Algorithmes exacts

▶ Recherche exhaustive :  $O(n \times n!)$ 

Chap. 2

Programmation dynamique :  $O(n^22^n)$ 

HAI403I - Chap. 5

Pour un graphe G = (V, E),

- ▶ un **chemin** de G est une suite  $v_1, v_2, \ldots, v_k$  de sommets de G telle que  $v_i v_{i+1}$  est une arête de G pour tout  $i = 1, \ldots, k-1$ .
- ▶ un **cycle** de G est une suite  $v_1, v_2, \ldots, v_k$  de sommets de G telle que  $v_i v_{i+1}$  est une arête de G pour tout  $i = 1, \ldots, k-1$  **et** que  $v_k v_1$  soit aussi une arête de G.
- G est connexe si pour tous sommets u et v de G, il existe un chemin de u à v.



Pour un graphe G = (V, E),

- ▶ un **chemin** de G est une suite  $v_1, v_2, \ldots, v_k$  de sommets de G telle que  $v_i v_{i+1}$  est une arête de G pour tout  $i = 1, \ldots, k-1$ .
- ▶ un **cycle** de G est une suite  $v_1, v_2, \ldots, v_k$  de sommets de G telle que  $v_i v_{i+1}$  est une arête de G pour tout  $i = 1, \ldots, k-1$  **et** que  $v_k v_1$  soit aussi une arête de G.
- ► *G* est **connexe** si pour tous sommets *u* et *v* de *G*, il existe un chemin de *u* à *v*.
- un arbre est un graphe connexe sans cycle.
- ▶ un arbre couvrant de *G* est un sous-graphe de *G*, contenant tous ses sommets et qui est un arbre.





#### Théorèmes : connexité et arbre couvrant

- Un graphe G est connexe si, et seulement si, il admet un arbre couvrant.
- Un arbre sur n sommets contient n-1 arêtes.

#### Théorèmes : connexité et arbre couvrant

- Un graphe G est connexe si, et seulement si, il admet un arbre couvrant.
- Un arbre sur n sommets contient n-1 arêtes.
  - ▶ On ajoute maintenant une fonction de poids (ou de distance)  $\ell: E \to \mathbb{R}$  sur les arêtes de G.



#### Théorèmes : connexité et arbre couvrant

- Un graphe G est connexe si, et seulement si, il admet un arbre couvrant.
- Un arbre sur n sommets contient n-1 arêtes.
  - On ajoute maintenant une fonction de poids (ou de distance)
    ℓ : E → R sur les arêtes de G.
  - ▶ Le poids d'un arbre couvrant T de G est la somme des poids des arêtes de T :

$$\ell(T) = \sum_{e \text{ arête de } T} \ell(e)$$





## Arbre couvrant de poids minimum

#### Définition: ArbreCouvrantPoidsMin

Entrée : un graphe G = (V, E) connexe avec une fonction de poids

 $\ell$  sur ses arêtes.

Sortie : un arbre couvrant de T de poids minimal parmi tous les

arbres couvrants de G.

#### Arbre couvrant de poids minimum

#### Définition: ArbreCouvrantPoidsMin

Entrée : un graphe G = (V, E) connexe avec une fonction de poids

 $\ell$  sur ses arêtes.

Sortie : un arbre couvrant de T de poids minimal parmi tous les

arbres couvrants de G.

#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- 2.  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T*;

#### Remarque

▷ C'est un algo glouton!



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- 2.  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T*;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T*;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T*;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- **2.**  $T \leftarrow \emptyset$ ;
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- 2.  $T \leftarrow \emptyset$ :
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\};$
- **6.** Renvoyer *T* ;



## $Kruskal(G, \ell)$

- 1. Trier les arêtes de G par poids croissant selon  $\ell$ ;
- 2.  $T \leftarrow \emptyset$ :
- 3. Pour toute arête uv de G selon l'ordre calculé :
- 4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
- 5.  $T \leftarrow T \cup \{uv\}$ ;
- **6.** Renvoyer *T* ;



#### Kruskal $(G, \ell)$

```
    Trier les arêtes de G par poids croissant selon ℓ;
    T ← ∅;
    Pour toute arête uv de G selon l'ordre calculé :
    Si uv ne forme pas un cycle avec les arêtes de T déjà choisies
    T ← T ∪ {uv};
    Renvoyer T;
```

#### Théorème : validité de l'algorithme de Kruskal

L'algorithme de Kruskal retourne un arbre couvrant minimum du graphe connexe  ${\cal G}$  donné en instance.

#### Tester les cycles

Comment implémenter :

4. Si uv ne forme pas un cycle avec les arêtes de T déjà choisie

#### Tester les cycles

Comment implémenter :

**4.** Si *uv* ne forme pas un cycle avec les arêtes de *T* déjà choisie

On va attribuer à chaque sommet x de G un numéro de composante comp(x), qui va vérifier à tout moment de l'algo : 'comp(x) = comp(y) ssi il existe un chemin dans T de x à y' (ie. x et y sont dans la même composante connexe de T)

#### Tester les cycles

#### Comment implémenter :

**4.** Si *uv* ne forme pas un cycle avec les arêtes de *T* déjà choisie

- On va attribuer à chaque sommet x de G un numéro de composante comp(x), qui va vérifier à tout moment de l'algo : 'comp(x) = comp(y) ssi il existe un chemin dans T de x à y' (ie. x et y sont dans la même composante connexe de T)
- Au début, chaque sommet de G reçoit un numéro de composante différent
- Lors de l'examen de l'arête uv :
  - Si comp(u) = comp(v), on fait rien, u et v sont déjà reliés par un chemin dans T, si on ajoute uv, on va créer un cycle!
  - Si comp(u) ≠ comp(v), on ajoute uv à T et on met à jour tous les sommets de numéro comp(u) en leur attribuant un nouveau numéro de composante valant comp(v).





# 

# Exemple $g_{\bigcirc}$ f6















# Exemple



#### Remarque:

- ➤ A la fin de l'algorithme, tous les sommets ont le même numéro de composante...
- Une implémentation possible :

12. Retourner T:

```
KRUSKAL(G, \ell)
  1. Trier les arêtes de G par poids croissant selon \ell;
  2. T \leftarrow \emptyset;
  3. i \leftarrow 1;
  4. Pour tout x \in V
  5. comp(x) \leftarrow i; i \leftarrow i+1;
  6. Pour toute arête uv de G selon l'ordre calculé :
  7. Si comp(u) \neq comp(v)
  8. T \leftarrow T \cup \{uv\};
  9.
     aux \leftarrow comp(u);
10. Pour tout w \in V
                Si comp(w) = aux alors comp(w) \leftarrow comp(v);
11.
```

# Kruskal $(G, \ell)$

```
    Trier les arêtes de G par poids croissant selon ℓ;
    T ← ∅;
    i ← 1;
    Pour tout x ∈ V
    comp(x) ← i; i ← i + 1;
    Pour toute arête uv de G selon l'ordre calculé:
    Si comp(u) ≠ comp(v)
    T ← T ∪ {uv};
    aux ← comp(u);
    Pour tout w ∈ V
    Si comp(w) = aux alors comp(w) ← comp(v);
    Retourner T;
```

#### Remarques:

Si on n'utilise pas la variable aux, au moment où l'algo va traiter w = u, il va changer la valeur de comp(u) en comp(v) et la suite de la boucle '**pour tous les**  $w \in V$  faire' ne va plus renommer les numéros des sommets de numéros de composante comp(u)...



```
Kruskal(G, \ell)
```

```
    Trier les arêtes de G par poids croissant selon ℓ;
    T ← ∅;
    i ← 1;
    Pour tout x ∈ V
    comp(x) ← i; i ← i + 1;
    Pour toute arête uv de G selon l'ordre calculé :
    Si comp(u) ≠ comp(v)
    T ← T ∪ {uv};
    aux ← comp(u);
    Pour tout w ∈ V
    Si comp(w) = aux alors comp(w) ← comp(v);
    Retourner T;
```

### Complexité

L'algorithme de Kruskal peut s'implémenter en temps  $O(m \log n + n^2)$ , où n désigne le nombre de sommets du graphe G et m son nombre d'arêtes

**Remarque :** on verra en TP une implémentation en  $O(m \log n)$ ...



### Un algorithme de 2-approximation pour le m VDC

# VOYAGEUR DE COMMERCE<sub>2APPROX</sub> (G):

- 1.  $A \leftarrow$  arbre couvrant de poids minimum de G;
- 2.  $\mathcal{P} \leftarrow$  parcours en profondeur de  $\mathcal{A}$ ;
- 3.  $(u_0, \ldots, u_{n-1}) \leftarrow$  sommets de G, dans l'ordre de première apparition dans  $\mathcal{P}$ ;
- **4.** Renvoyer  $(u_0, \ldots, u_{n-1})$ ;

# Un algorithme de 2-approximation pour le $\mathrm{V}_\mathrm{D}\mathrm{C}$

# VOYAGEUR DE COMMERCE<sub>2APPROX</sub> (G):

- 1.  $A \leftarrow$  arbre couvrant de poids minimum de G;
- 2.  $\mathcal{P} \leftarrow \text{parcours en profondeur de } \mathcal{A}$ ;
- 3.  $(u_0, \ldots, u_{n-1}) \leftarrow$  sommets de G, dans l'ordre de première apparition dans  $\mathcal{P}$ ;
- **4.** Renvoyer  $(u_0, \ldots, u_{n-1})$ ;

#### Exemple...

# Un algorithme de 2-approximation pour le m VDC

### VOYAGEUR DE COMMERCE<sub>2APPROX</sub> (G):

- 1.  $A \leftarrow$  arbre couvrant de poids minimum de G;
- 2.  $\mathcal{P} \leftarrow$  parcours en profondeur de  $\mathcal{A}$ ;
- 3.  $(u_0, \ldots, u_{n-1}) \leftarrow$  sommets de G, dans l'ordre de première apparition dans  $\mathcal{P}$ ;
- **4.** Renvoyer  $(u_0, \ldots, u_{n-1})$ ;

#### Exemple...

### Analyse de VOYAGEURDECOMMERCE<sub>2APPROX</sub>

L'algorithme VOYAGEURDECOMMERCE $_{2APPROX}$  s'exécute en temps  $O(m \log n)$  et fournit une 2-approximation au problème du VOYAGEUR DE COMMERCE

### Bilan sur le voyageur de commerce

### Algorithmes d'approximation

#### Avec l'inégalité triangulaire :

- ▶ algorithme relativement simple de 2-approximation
- ▶ algorithme plus complexe de  $\frac{3}{2}$ -approximation Christofides (1976)
- ▶ algorithme très complexe de  $(\frac{3}{2} \frac{1}{10^{36}})$ -approximation *Karlin, Klein, Gharan* (2021)

### Algorithmes exacts

- ▶ Programmation dynamique en  $O(n^22^n)$  → nécessite l'inégalité triangulaire
- ► Algorithme exhaustif en  $O(n \times n!)$  marche même sans inégalité triangulaire

### Approximation sans inégalité triangulaire?

▶ Pas d'algorithme d'approximation polynomial, sauf si P ≠ NP



### Conclusion générale

### Beaucoup de problèmes sont difficiles

► Théorie de la NP-complétude

HA16021

- Deux solutions :
  - ▶ algorithme exponentiel → petites instances
  - ▶ algorithme d'approximation ~ résultat approché

### Conception d'un algorithme d'approximation

► Multitude de techniques → toutes celles des algorithmes *standard*, notamment les algorithmes gloutons, et d'autres...

### Analyse d'un algorithme d'approximation

- lacktriangle Montrer que l'algorithme n'est jamais pire qu'un facteur lpha
- Deux ingrédients :
  - borner la valeur optimale
  - borner la valeur renvoyée par l'algorithme

