Dynamic Difference Learning With Spatio-Temporal Correlation for Deepfake Video Detection

23年 TIFS (开源)

- 1. 目标:视频,伪造检测
- 2. 核心思想:动态定位由视频伪造方法引起的帧间不一致性,并建模连续帧中的时空不一致性,而不受面部运动的干扰。
- 3. 方法: Xception骨干网络+两个模块(即插即用):
 - ①动态细粒度差异捕获模块 (DFDC) 用于精确挖掘假视频中的空间信息,包括局部运动不一致和人脸纹理不一致。
 - ②多尺度时空聚合模块 (MSA) 多尺度池化操作融合了长距离和短距离时间信息,以增强时空不一致性。
- 4. 网络分为两个阶段:
 - ①下采样阶段; ②特征提取阶段。
- 5. DFDC 模块和 MSA 模块分别完成:
 - ①在空间域中跨不同帧捕获帧间差异;
 - ②在时间域中跨不同帧聚合帧间差异的任务。 这两个模块以串联方式添加到每个网络阶段。
- 6. 密集采样策略,视频分为n个片段,以T帧为单位

Dynamic Difference Learning With Spatio-Temporal Correlation for Deepfake Video Detection

23年 TIFS (开源)

- 7. 动态细粒度差异捕获模块 (DFDC):
 - ①HxWxCxT, HxW看作空间信息, CxT即以帧T为单位去观察通道C;
 - ②负余弦相似度的计算 $sim(x_{h,w,i}, x_{h,w,j}) = -\frac{x_{h,w,i}}{|x_{h,w,i}|_2} \cdot \frac{x_{h,w,j}}{|x_{h,w,j}|_2}$
 - ③对每个块对应的T个负余弦值求和,生成全局不一致性图 M^{\wedge}
 - ④面部运动引起大量帧间差异信息,提出一种细粒度去噪操作:
 - 核心思想: 伪造差异的强度波动大, 而运动差异的强度波动小
 - 帧间差异强度波动图M~通过计算中每个位置的T个分数的方差来获得
 - 对方差排序,使k=H作为阈值,小于阈值的 M^{Λ} 相应位置更新为-T
- 8. 多尺度时空聚合模块 (MSA):
 - ①以对连续帧进行双向切片,应用条带池化操作和卷积来压缩时间维度
 - ②过程可定义为:

$$\begin{aligned} \mathbf{D}^{V} &= \mathrm{Conv}_{1\times 1}(\frac{1}{3} \cdot (\mathrm{Sconv}_{1\times 3}(\widehat{\mathbf{F}}^{V}))) & \mathbf{D}^{H} &= \mathrm{Conv}_{1\times 1}(\frac{1}{3} \cdot (\mathrm{Sconv}_{3\times 1}(\widehat{\mathbf{F}}^{H}))) \\ &+ \frac{1}{3} \cdot (\mathrm{Sconv}_{1\times 3}(\mathrm{Sap}_{1\times 2}(\widehat{\mathbf{F}}^{V}))) & + \frac{1}{3} \cdot (\mathrm{Sconv}_{3\times 1}(\mathrm{Sap}_{2\times 1}(\widehat{\mathbf{F}}^{H}))) \\ &+ \frac{1}{3} \cdot (\mathrm{Sconv}_{1\times 3}(\mathrm{Sap}_{1\times 4}(\widehat{\mathbf{F}}^{V})))), & + \frac{1}{3} \cdot (\mathrm{Sconv}_{3\times 1}(\mathrm{Sap}_{4\times 1}(\widehat{\mathbf{F}}^{H}))), \end{aligned}$$

③统一的时空不一致性可以建模为: $\widetilde{\mathbf{F}} = \widehat{\mathbf{F}} + \alpha \cdot \widehat{\mathbf{F}} \cdot (\frac{1}{2} \cdot (\operatorname{sigmoid}(\mathbf{D}^V) - \frac{1}{2}) + \frac{1}{2} \cdot (\operatorname{sigmoid}(\mathbf{D}^H) - \frac{1}{2}))),$

Dynamic Difference Learning With Spatio-Temporal Correlation for Deepfake Video Detection

23年 TIFS (开源)

	Frame-level					Video-level						
Methods	Celeb-DF			DFDC			Celeb-DF			DFDC		
	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC	F1	ACC	AUC	F1
ShallowNet [22]	0.8303	0.9056	0.8792	0.7931	0.8577	0.8403	0.8552	0.8281	0.8987	0.8047	0.8042	0.8493
Mesonet [62]	0.9464	0.9852	0.9595	0.8621	0.9261	0.8946	0.9768	0.9774	0.9826	0.8750	0.8749	0.9047
Xception [25]	0.9780	0.9981	0.9833	0.8891	0.9601	0.9144	0.9923	0.9901	0.9941	0.8984	0.8978	0.9226
F3Net [27]	0.9876	0.9939	0.9904	0.9245	0.9778	0.9421	0.9942	0.9916	0.9956	0.9375	0.9245	0.9526
Multi-att [29]	0.9863	0.9952	0.9894	0.9102	0.9753	0.9394	0.9903	0.9887	0.9927	0.9219	0.9396	0.9535
GFF [32]	0.9859	0.9956	0.9874	0.9233	0.9651	0.9407	0.9865	0.9901	0.9912	0.9219	0.9223	0.9408
CNN+LSTM [13]	0.8620	0.9337	0.8953	0.8509	0.9122	0.8827	0.8994	0.9546	0.9248	0.8789	0.9129	0.9057
DBiRNN [14]	0.9629	0.9948	0.9718	0.8780	0.9470	0.9007	0.9788	0.9942	0.984	0.8828	0.9483	0.9056
CLRNet [39]	0.8951	0.9536	0.9220	0.8208	0.9094	0.8498	0.9402	0.9671	0.9564	0.8281	0.9182	0.8534
ConvLSTM [49]	0.9610	0.9902	0.9701	0.8785	0.9474	0.9010	0.9729	0.9892	0.9796	0.8633	0.9543	0.8895
DIL [36]	0.7705	0.8279	0.8296	0.7319	0.8006	0.7861	0.8085	0.8349	0.8611	0.7070	0.8011	0.7648
Ours	0.9907	0.9998	0.9933	0.9217	0.9797	0.9407	0.9961	0.9970	0.9985	0.9414	0.9586	0.9589

T								
	Video-level							
Methods	FaceForensics++		Cele	b-DF	DFDC			
	ACC	AUC	ACC	AUC	ACC	AUC		
ResNet18	0.9536	0.9594	0.9884	0.9872	0.8594	0.8575		
ResNet18+DFDC	0.9679	0.9873	0.9923	0.9967	0.8906	0.9248		
ResNet18+MSA	0.9643	0.9788	0.9891	0.9955	0.8783	0.9457		
ResNet18+DFDC+MSA	0.9714	0.9893	0.9981	0.9982	0.8945	0.9387		
Xception	0.9679	0.9764	0.9923	0.9901	0.8984	0.8978		
Xception+DFDC	0.9821	0.9927	0.9942	0.9962	0.9336	0.9480		
Xception+MSA	0.9786	0.9815	0.9942	0.9952	0.9142	0.9223		
Xception+DFDC+MSA	0.9893	0.9929	0.9961	0.9970	0.9414	0.9586		

- 9. 在 Celeb DF 和 DFDC 上的比较结果 (上表)
- 10. 消融实验 (下左表+下右表)

DFDC	MSA	DF	F2F	FS	NT
		0.9458	0.8935	0.9242	0.7435
\checkmark		0.9668	0.9193	0.9506	0.7828
	\checkmark	0.9673	0.9136	0.9453	0.7724
\checkmark	\checkmark	0.9743	0.9228	0.9601	0.7935