Правила вывода

Если идет дождь, земля мокрая Сейчас идет дождь

∴ Сейчас земля мокрая

Если идет дождь, земля мокрая Земля не мокрая

∴ Дождь не идет

Если идет дождь, земля мокрая Дождь не идет

∴ Земля не мокрая

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница! II Лучше выбрать другую комнату. Если в первой комнате тигр, то утверждение I ложно. Тогда во второй тоже тигр. Тогда утверждение II истинно. Приходим к противоречию. Если в первой комнате принцессе, то утверждение I истинно. Тогда во второй комнате тигр. Тогда утверждение II истинно. Противоречий нет.

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

I Что выбрать большая разница!

II Лучше выбрать другую комнату.

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$

 $P_1 \rightarrow$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$

$$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

І Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$\neg P_1 \rightarrow$	

Если в первой комнате принцесса, то табличка на ней истинна, если тигр ложна. Во второй комнате наоборот.

> Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 \rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land \neg P_2)$	P_2)

$$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$

$$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow E$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land \neg P_2) \lor (\neg P_1$	P_2)
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \rightarrow$	

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow$
Верно и А, и В	$A \wedge E$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor E$
$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge \neg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

| Что выбрать большая разница!

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge eg$	ŕ
$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land P_2)$	$\neg r_2)$
$\neg P_2 \rightarrow P_1 \land \neg P_2$	
$P_2 ightarrow$	

Если в первой комнате принцесса, то табличка на ней истинна, если тигр – ложна. Во второй комнате наоборот.

I Что выбрать большая разница!

	В первой комнате принцесса	P_1
	В первой комнате тигр	$\neg P_1$
	Во второй комнате принцесса	P_2
	Во второй комнате тигр	$\neg P_2$
Ī	Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
	Верно и А, и В	$A \wedge B$
	Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
	$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge \neg P_2)$	P_2)
$ eg P_1 ightarrow (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$		$\neg P_2)$
	$\neg P_2 \to P_1 \land \neg P_2$	
	$P_2 \to \neg P_1 \vee P_2)$	

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge eg P_2)$	P_2)
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	

 $P_2 \rightarrow \neg P_1 \vee P_2$

$$A, A \rightarrow B \Rightarrow B$$
 $A \wedge B \Rightarrow A$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) \lor (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$$

$$\neg P_1, P_1 \wedge P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$$

$$\neg P_1, P_1 \wedge P_2 \Rightarrow P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$$

$$\neg P_1, P_1 \wedge P_2 \Rightarrow P_1 \Rightarrow \times$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \vee B$
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \to B \Rightarrow B$$

$$A \land B \Rightarrow A, A \land B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	A o B
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \to B \Rightarrow B$$

$$A \land B \Rightarrow A, A \land B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	A o B
Верно и А, и В	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \to B \Rightarrow B$$

$$A \land B \Rightarrow A, A \land B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \to B \Rightarrow B$$

$$A \land B \Rightarrow A, A \land B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно <i>А</i> , или <i>В</i> , или оба	$A \lor B$
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \to B \Rightarrow B$$

$$A \land B \Rightarrow A, A \land B \Rightarrow B$$

$$\neg P_1 \Rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$

$$\neg P_1, P_1 \land P_2 \Rightarrow P_1 \Rightarrow \times$$

$$\neg P_1, \neg P_1 \land \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

$$\Rightarrow P_1 \land \neg P_2 \Rightarrow P_1 \Rightarrow \times$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightharpoonup eg P_1 \lor P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \lor B$
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$	
$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 \to \neg P_1 \vee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>A</i> , то <i>B</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 ightarrow \left(P_1 \wedge eg P_2 ight) ee \left(eg P_1 \wedge eg P_2 ight)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow \neg P_1 \lor P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \Rightarrow$$

$$\Rightarrow P_1 \wedge \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \Rightarrow$$

$$\Rightarrow P_1 \wedge \neg P_2 \Rightarrow \neg P_2 \Rightarrow$$

В первой комнате принцесса	P_1
В первой комнате тигр	$\neg P_1$
Во второй комнате принцесса	P_2
Во второй комнате тигр	$\neg P_2$
Если <i>А</i> , то <i>В</i>	$A \rightarrow B$
Верно и <i>А</i> , и <i>В</i>	$A \wedge B$
Верно A , или B , или оба	$A \vee B$
$P_1 ightarrow (P_1 \wedge eg P_2) \lor (eg P_1 \wedge eg P_2)$	P_2)
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge P_2)$	$\neg P_2)$
$\neg P_2 \to P_1 \land \neg P_2$	
$P_2 ightarrow eg P_1 ee P_2$	

$$A, A \rightarrow B \Rightarrow B$$

$$A \wedge B \Rightarrow A, A \wedge B \Rightarrow B$$

$$\neg P_1 \Rightarrow \times$$

$$P_1 \Rightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \Rightarrow$$

$$\Rightarrow P_1 \wedge \neg P_2 \Rightarrow \neg P_2 \Rightarrow P_1 \wedge \neg P_2$$

$$P_1 \rightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \rightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \rightarrow P_1 \land \neg P_2$$
$$P_2 \rightarrow \neg P_1 \lor P_2$$

$$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1 o (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2 o P_1 \wedge \neg P_2$
 $P_2 o \neg P_1 \vee P_2$
 $P_1 o 0 o 1 o 1$
 $P_2 o 0 o 1 o 1$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2
ightarrow P_1 \wedge \neg P_2$
 $P_2
ightarrow \neg P_1 \vee P_2$

$$P_1
ightarrow 0
ightarrow 1
ightarrow 1$$
 $P_2
ightarrow 0
ightarrow 1
ightarrow 0
ightarrow 0$

1 0 1 0

 $\neg P_2$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \
abla P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2) \
abla P_2
ightarrow P_1 \wedge \neg P_2 \
P_2
ightarrow \neg P_1 \vee P_2 \
egin{array}{c} P_1 & 0 & 0 & 1 & 1 \ P_2 & 0 & 1 & 0 & 1 \
\hline
abla P_1 & 1 & 1 & 0 & 0 \
\hline
abla P_2 & 1 & 0 & 1 & 0 \
\end{array}$$

 $P_1 \wedge P_2 = 0 \quad 0 \quad 0 \quad 1$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2
ightarrow P_1 \wedge \neg P_2$
 $P_2
ightarrow \neg P_1 \vee P_2$
 $P_1
ightarrow 0
ightarrow 1
ightarrow 1$
 $P_2
ightarrow 0
ightarrow 1
ightarrow 1$

$$P_1
ightarrow (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2) \
abla P_1
ightarrow (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2) \
abla P_2
ightarrow P_1 \wedge \neg P_2 \
P_2
ightarrow \neg P_1 \vee P_2 \
egin{array}{c} P_1 & 0 & 0 & 1 & 1 \ P_2 & 0 & 1 & 0 & 1 \
\hline
abla P_1 & 1 & 1 & 0 & 0 \
abla P_2 & 1 & 0 & 1 & 0 \
end{array}$$

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$
$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$
$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$
$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$egin{array}{c} P_1 \ P_2 \end{array}$			1 0	
$P_1 \wedge P_2$	0	0	0	1

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

P_1	0	0	1	1	
P_2	0	1	0	1	
$P_1 \wedge P_2$	0	0	0	1	
$P_1 \wedge \neg P_2$					

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

P_1	0	0	1	1	
P_2	0	1	0	1	
$P_1 \wedge P_2$	0	0	0	1	

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$				

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0

$$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
$$\neg P_1 \to (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$$
$$\neg P_2 \to P_1 \land \neg P_2$$
$$P_2 \to \neg P_1 \lor P_2$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$
$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$
$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$
$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

P_1	0	0	1	1	
P_2	0	1	0	1	
$P_1 \wedge P_2$	0	0	0	1	
$P_1 \wedge \neg P_2$	0	0	1	0	
$\neg P_1 \wedge P_2$	0	1	0	0	
$\neg P_1 \wedge \neg P_2$	1	0	0	0	

$$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1 o (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2 o P_1 \wedge \neg P_2$
 $P_2 o \neg P_1 \vee P_2$
 $P_1 o 0 o 1 o 1$
 $P_2 o 1 o 1 o 0$
 $\neg P_1 o 1 o 1 o 0$
 $P_1 \wedge P_2 o 0 o 0 o 1$

 $P_1 \lor P_2 \quad 0 \quad 1 \quad 1 \quad 1$ $P_1 \to P_2 \quad 1 \quad 1 \quad 0 \quad 1$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$				

$$P_1
ightarrow (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$
 $\neg P_1
ightarrow (P_1 \land P_2) \lor (\neg P_1 \land \neg P_2)$
 $\neg P_2
ightarrow P_1 \land \neg P_2$
 $P_2
ightarrow \neg P_1 \lor P_2$
 $P_1
ightarrow 0
ightarrow 1
ightarrow 1$
 $P_2
ightarrow 0
ightarrow 1
ightarrow 0
ightarrow 1$
 $\neg P_1
ightarrow 1
ightarrow 0
ightarrow 0
ightarrow 1$
 $\neg P_2
ightarrow 1
ightarrow 0
ightarrow 0
ightarrow 1$

 $P_1 \lor P_2 \quad 0 \quad 1 \quad 1 \quad 1$ $P_1 \to P_2 \quad 1 \quad 1 \quad 0 \quad 1$

$egin{array}{c} P_1 \ P_2 \end{array}$	•	0 1	_	_
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

$$P_{1} \rightarrow P_{2} \quad 1 \quad 1 \quad 0 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$ eg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

$$P_{1} \rightarrow P_{2} \quad 1 \quad 1 \quad 0 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$\overline{(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)}$	0	1	1	0

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	•	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$\overline{(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)}$	0	1	1	0
$ (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2) $				

$$P_1 o (P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$$
 $\neg P_1 o (P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$
 $\neg P_2 o P_1 \wedge \neg P_2$
 $P_2 o \neg P_1 \vee P_2$

$$P_1 0 0 1 1$$
 $P_2 0 1 0 1$
 $\neg P_1 1 1 0 0$
 $\neg P_2 1 0 1 0$
 $P_1 \wedge P_2 0 0 1 1$
 $P_1 \vee P_2 0 1 1 1$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$(P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

$$P_{1} \rightarrow P_{2} \quad 1 \quad 1 \quad 0 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0		1
$P_1 \wedge \neg P_2$	0		1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$ eg P_1 \lor P_2$	1	1	0	1
$P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$(P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 \to (P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 ightarrow (P_1 \wedge eg P_2) \vee (eg P_1 \wedge P_2)$	1	1	1	0

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$(P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) \vee (eg P_1 \wedge eg P_2)$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$(P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 o (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	1	0	1	1

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$(P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	1	0	1	1
$\neg P_2 \to P_1 \land \neg P_2$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) \vee (eg P_1 \wedge eg P_2)$	1	0	1	1
$\neg P_2 \to P_1 \land \neg P_2$	0	1	1	1

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

$$P_{1} \rightarrow P_{2} \quad 1 \quad 1 \quad 0 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$\overline{(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)}$	0	1	1	0
$P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$\overline{P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)}$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	1	0	1	1
$\neg P_2 \to P_1 \land \neg P_2$	0	1	1	1
$P_2 ightarrow eg P_1 ee P_2$				

$$P_{1} \rightarrow (P_{1} \land \neg P_{2}) \lor (\neg P_{1} \land P_{2})$$

$$\neg P_{1} \rightarrow (P_{1} \land P_{2}) \lor (\neg P_{1} \land \neg P_{2})$$

$$\neg P_{2} \rightarrow P_{1} \land \neg P_{2}$$

$$P_{2} \rightarrow \neg P_{1} \lor P_{2}$$

$$P_{1} \quad 0 \quad 0 \quad 1 \quad 1$$

$$P_{2} \quad 0 \quad 1 \quad 0 \quad 1$$

$$\neg P_{1} \quad 1 \quad 1 \quad 0 \quad 0$$

$$\neg P_{2} \quad 1 \quad 0 \quad 1 \quad 0$$

$$P_{1} \land P_{2} \quad 0 \quad 0 \quad 0 \quad 1$$

$$P_{1} \lor P_{2} \quad 0 \quad 1 \quad 1 \quad 1$$

$$P_{1} \rightarrow P_{2} \quad 1 \quad 1 \quad 0 \quad 1$$

P_1	0	0	1	1
P_2	0	1	0	1
$P_1 \wedge P_2$	0	0	0	1
$P_1 \wedge \neg P_2$	0	0	1	0
$\neg P_1 \wedge P_2$	0	1	0	0
$\neg P_1 \wedge \neg P_2$	1	0	0	0
$\neg P_1 \lor P_2$	1	1	0	1
$(P_1 \wedge \neg P_2) \vee (\neg P_1 \wedge P_2)$	0	1	1	0
$P_1 \wedge P_2) \vee (\neg P_1 \wedge \neg P_2)$	1	0	0	1
$P_1 ightarrow (P_1 \wedge eg P_2) ee (eg P_1 \wedge P_2)$	1	1	1	0
$ eg P_1 o (P_1 \wedge P_2) ee (eg P_1 \wedge eg P_2)$	1	0	1	1
$\neg P_2 \to P_1 \land \neg P_2$	0	1	1	1
$P_2 ightarrow eg P_1 ee P_2$	1	1	1	1