CS 224S / LINGUIST 281 Speech Recognition, Synthesis, and Dialogue

Dan Jurafsky

Lecture 10: Acoustic Modeling

IP Notice:

Outline for Today

- Speech Recognition Architectural Overview
- Hidden Markov Models in general and for speech
 - Forward
 - Viterbi Decoding
- How this fits into the ASR component of course
 - Jan 27 HMMs, Forward, Viterbi,
 - Jan 29 Baum-Welch (Forward-Backward)
 - Feb 3: Feature Extraction, MFCCs, start of AM (VQ)
 - Feb 5: Acoustic Modeling: GMMs
 - Feb 10: N-grams and Language Modeling
 - Feb 24: Search and Advanced Decoding
 - Feb 26: Dealing with Variation
 - Mar 3: Dealing with Disfluencies

Outline for Today

- Acoustic Model
 - Increasingly sophisticated models
 - Acoustic Likelihood for each state:
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of Multivariate Gaussians
 - Where a state is progressively:
 - CI Subphone (3ish per phone)
 - CD phone (=triphones)
 - State-tying of CD phone
- If Time: Evaluation
 - Word Error Rate

Reminder: VQ

- To compute p(o_t|q_i)
 - Compute distance between feature vector o_t
 - and each codeword (prototype vector)
 - in a preclustered codebook
 - where distance is either
 - Euclidean
 - Mahalanobis
 - Choose the vector that is the closest to o_t
 - and take its codeword v_k
 - And then look up the likelihood of v_k given HMM state j in the B matrix
- B_j(o_t)=b_j(v_k) s.t. v_k is codeword of closest vector to o_t
- Using Baum-Welch as above

Computing by (V_k) Computing by (V_k)

feature value 1 for state j

•
$$b_j(v_k) = \frac{\text{number of vectors with codebook index } k \text{ in state } j}{\text{number of vectors in state } j} = \frac{14}{56} = \frac{1}{4}$$

Summary: VQ

- Training:
 - Do VQ and then use Baum-Welch to assign probabilities to each symbol
- Decoding:
 - Do VQ and then use the symbol probabilities in decoding

Directly Modeling Continuous Observations

- Gaussians
 - Univariate Gaussians
 - Baum-Welch for univariate Gaussians
 - Multivariate Gaussians
 - Baum-Welch for multivariate Gausians
 - Gaussian Mixture Models (GMMs)
 - Baum-Welch for GMMs

Better than VQ

- VQ is insufficient for real ASR
- Instead: Assume the possible values of the observation feature vector o_t are normally distributed.
- Represent the observation likelihood function $b_j(o_t)$ as a Gaussian with mean μ_j and variance σ_i^2

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

Gaussians are parameters by mean and variance

Reminder: means and variances

- For a discrete random variable X
- Mean is the expected value of X
 - Weighted sum over the values of X

$$\mu = E(X) = \sum_{i=1}^{N} p(X_i)X_i$$

$$\sigma^2 = E(X_i - E(X))^2 = \sum_{i=1}^N p(X_i)(X_i - E(X))^2$$

Gaussian as Probability Density Function

Gaussian PDFs

- A Gaussian is a probability density function; probability is area under curve.
- To make it a probability, we constrain area under curve = 1.
- BUT...
 - We will be using "point estimates"; value of Gaussian at point.
- Technically these are not probabilities, since a pdf gives a probability over a interval, needs to be multiplied by dx
- As we will see later, this is ok since the same value is omitted from all Gaussians, so argmax is still correct.

Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

Using a (univariate Gaussian) as an acoustic likelihood estimator

- Let's suppose our observation was a single real-valued feature (instead of 39D vector)
- Then if we had learned a Gaussian over the distribution of values of this feature
- We could compute the likelihood of any given observation o_t as follows:

$$b_j(o_t) = \frac{1}{\sqrt{2\pi\sigma_j^2}} exp\left(-\frac{(o_t - \mu_j)^2}{2\sigma_j^2}\right)$$

Training a Univariate Gaussian

- A (single) Gaussian is characterized by a mean and a variance
- Imagine that we had some training data in which each state was labeled
- We could just compute the mean and variance from the data:

$$\mu_i = \frac{1}{T} \sum_{t=1}^{T} o_t \quad s.t. \quad o_t \quad is \quad state \quad i$$

$$\sigma_i^2 = \frac{1}{T} \sum_{t=1}^{T} (o_t - \mu_i)^2 \quad s.t. \ q_t \quad is \quad state \ i$$

Training Univariate Gaussians

- But we don't know which observation was produced by which state!
- What we want: to assign each observation vector ot to every possible state i, prorated by the probability the the HMM was in state i at time t.
- The probability of being in state i at time t is ξ_t(i)!!

$$\overline{\mu}_{i} = \frac{\sum_{t=1}^{T} \xi_{t}(i) o_{t}}{\sum_{t=1}^{T} \xi_{t}(i)} \qquad \overline{\sigma}^{2}_{i} = \frac{\sum_{t=1}^{T} \xi_{t}(i) (o_{t} - \mu_{i})^{2}}{\sum_{t=1}^{T} \xi_{t}(i)}$$

Multivariate Gaussians

• Instead of a single mean μ and variance σ :

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

• Vector of observations x modeled by vector of means μ and covariance matrix Σ

$$f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} \mid \Sigma \mid^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Multivariate Gaussians

• Defining μ and Σ

$$\mu = E(x)$$

$$\Sigma = E[(x - \mu)(x - \mu)^T]$$

So the i-jth element of Σ is:

$$\sigma_{ij}^2 = E[(x_i - \mu_i)(x_j - \mu_j)]$$

Gaussian Intuitions: Size of Σ

•
$$\mu = [0 \ 0]$$

•
$$\Sigma = I$$

$$\mu = [0 \ 0]$$

$$\Sigma = 0.6I$$

$$\mu = [0 \ 0]$$

$$\Sigma = 2I$$

• As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed Text and figures from Andrew Ng's lecture notes for CS229

 O_1 and O_2 are uncorrelated – knowing O_1 tells you nothing about O_2

 O_1 and O_2 can be uncorrelated without having equal variances

[1 0] [.6 0] [0 1] [0 2]

Different variances in different dimensions

Gaussian Intuitions: Off-diagonal

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

 As we increase the off-diagonal entries, more correlation between value of x and value of y

Gaussian Intuitions: off-diagonal

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad .\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

 As we increase the off-diagonal entries, more correlation between value of x and value of y

Gaussian Intuitions: off-diagonal and diagonal

$$\Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 3 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

- Decreasing non-diagonal entries (#1-2)
- Increasing variance of one dimension in diagonal (#3)

In two dimensions

 O_1 and O_2 are correlated – knowing O_1 tells you something about O_2

But: assume diagonal covariance

- I.e., assume that the features in the feature vector are uncorrelated
- This isn't true for FFT features, but is true for MFCC features, as we saw las time
- Computation and storage much cheaper if diagonal covariance.
- I.e. only diagonal entries are non-zero
- Diagonal contains the variance of each dimension $\sigma_{\rm ii}{}^2$
- So this means we consider the variance of each acoustic feature (dimension) separately

Diagonal covariance

- Diagonal contains the variance of each dimension $\sigma_{\rm ii}{}^2$
- So this means we consider the variance of each acoustic feature (dimension)

separately_D

$$b_{j}(o_{t}) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi\sigma_{jd}^{2}}} \exp\left(-\frac{1}{2} \left(\frac{o_{td} - \mu_{jd}}{\sigma_{jd}}\right)^{2}\right)$$

$$b_{j}(o_{t}) = \frac{1}{2\pi^{D/2} \prod_{jd}^{D} \sigma_{jd}^{2}} \exp\left(-\frac{1}{2} \sum_{d=1}^{D} \frac{(o_{td} - \mu_{jd})^{2}}{\sigma_{jd}^{2}}\right)$$

Baum-Welch reestimation equations for multivariate Gaussians

• Natural extension of univariate case, where now μ_i is mean vector for state i:

$$\hat{\mu}_i = \frac{\sum_{t=1}^T \xi_t(i)o_t}{\sum_{t=1}^T \xi_t(i)}$$

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{t=1}^{T} \xi_{t}(i)(o_{t} - \mu_{i})(o_{t} - \mu_{i})^{T}}{\sum_{t=1}^{T} \xi_{t}(i)}$$

But we're not there yet

 Single Gaussian may do a bad job of modeling distribution in any dimension:

Solution: Mixtures of Gaussians

Mixture of Gaussians to model a function

Mixtures of Gaussians

M mixtures of Gaussians:

$$f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} \frac{1}{(2\pi)^{D/2} \mid \Sigma_{jk} \mid^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_{jk})^{T} \Sigma^{-1} (x - \mu_{jk})\right)$$

For diagonal covariance:

$$b_{j}(o_{t}) = \sum_{k=1}^{M} c_{jk} \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi\sigma_{jkd}^{2}}} \exp\left(-\frac{1}{2} \left(\frac{o_{td} - \mu_{jkd}}{\sigma_{jkd}}\right)^{2}\right)$$

$$b_{j}(o_{t}) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{D/2} \prod_{jkd}^{D} \sigma_{jkd}^{2}} \exp\left(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^{2}}{\sigma_{jkd}^{2}}\right)$$

GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Either
 - M Covariance Matrices of DxD
 - Or more likely
 - M Diagonal Covariance Matrices of DxD
 - which is equivalent to
 - M Variance Vectors of dimensionality D

Training a GMM

- Problem: how do we train a GMM if we don't know what component is accounting for aspects of any particular observation?
- Intuition: we use Baum-Welch to find it for us, just as we did for finding hidden states that accounted for the observation

Baum-Welch for Mixture Models

 By analogy with ξ earlier, let's define the probability of being in state j at time t with the kth mixture component accounting for o_t:

Now,
$$\xi_{tm}(j) = \frac{\sum_{i=1}^{N} \alpha_{t-1}(j) a_{ij} c_{jm} b_{jm}(o_t) \beta_j(t)}{\alpha_F(T)}$$

$$\overline{\mu}_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j) o_{t}}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tk}(j)} \qquad \overline{\Sigma}_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tk}(j)} \qquad \overline{\Sigma}_{jm} = \frac{\sum_{t=1}^{T} \xi_{tm}(j) (o_{t} - \mu_{j})^{T}}{\sum_{t=1}^{T} \sum_{k=1}^{M} \xi_{tm}(j)}$$

How to train mixtures?

- Choose M (often 16; or can tune M dependent on amount of training observations)
- Then can do various splitting or clustering algorithms
- One simple method for "splitting":
- 1) Compute global mean μ and global variance
- 2) Split into two Gaussians, with means $\mu \pm \epsilon$ (sometimes ϵ is 0.2σ)
- 3) Run Forward-Backward to retrain
- 4) Go to 2 until we have 16 mixtures

2/4/09

Embedded Training

- Components of a speech recognizer:
 - Feature extraction: not statistical
 - Language model: word transition probabilities, trained on some other corpus
 - Acoustic model:
 - Pronunciation lexicon: the HMM structure for each word, built by hand
 - Observation likelihoods bj(ot)
 - Transition probabilities aij

CS 224S Winter 2007

Embedded training of acoustic model

- If we had hand-segmented and hand-labeled training data
- With word and phone boundaries
- We could just compute the
 - B: means and variances of all our triphone gaussians
 - A: transition probabilities
- And we'd be done!
- But we don't have word and phone boundaries, nor phone labeling

Embedded training

Instead:

- We'll train each phone HMM embedded in an entire sentence
- We'll do word/phone segmentation and alignment automatically as part of training process

CS 224S Winter 2007

Embedded Training

2/4/09 CS 224S Winter 2007

Initialization: "Flat start"

- Transition probabilities:
 - set to zero any that you want to be "structurally zero"
 - The γ probability computation includes previous value of a_{ii} , so if it's zero it will never change
 - Set the rest to identical values
- Likelihoods:
 - initialize μ and σ of each state to global mean and variance of all training data

2/4/09

Embedded Training

- Given: phoneset, pron lexicon, transcribed wavefiles
 - Build a whole sentence HMM for each sentence
 - Initialize A probs to 0.5, or to zero
 - Initialize B probs to global mean and variance
 - Run multiple iteractions of Baum Welch
 - During each iteration, we compute forward and backward probabilities
 - Use them to re-estimate A and B
 - Run Baum-Welch til converge

2/4/09

Viterbi training

- Baum-Welch training says:
 - We need to know what state we were in, to accumulate counts of a given output symbol o_t
 - We'll compute $\xi_I(t)$, the probability of being in state i at time t, by using forward-backward to sum over all possible paths that might have been in state i and output o_t .
- Viterbi training says:
 - Instead of summing over all possible paths, just take the single most likely path
 - Use the Viterbi algorithm to compute this "Viterbi" path
 - Via "forced alignment"

Forced Alignment

- Computing the "Viterbi path" over the training data is called "forced alignment"
- Because we know which word string to assign to each observation sequence.
- We just don't know the state sequence.
- So we use a_{ij} to constrain the path to go through the correct words
- And otherwise do normal Viterbi
- Result: state sequence!

CS 224S Winter 2007

Viterbi training equations

Viterbi

Baum-Welch

$$\hat{a}_{ij} = \frac{n_{ij}}{n_i}$$
For all pairs of emitting states,
$$1 <= i, j <= N$$

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \gamma_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \gamma_t(i, j)}$$

$$\hat{b}_{j}(v_{k}) = \frac{n_{j}(s.t.o_{t} = v_{k})}{n_{j}} \qquad \hat{b}_{j}(v_{k}) = \frac{\sum_{t=1}^{T} s.t.o_{t} = v_{k}}{\sum_{t=1}^{T} \xi_{j}(t)}$$

Where n_{ij} is number of frames with transition from i to j in best path And n_i is number of frames where state j is occupied

Viterbi Training

- Much faster than Baum-Welch
- But doesn't work quite as well
- But the tradeoff is often worth it.

CS 224S Winter 2007

2/4/09

Viterbi training (II)

Equations for non-mixture Gaussians

$$\overline{\mu}_i = \frac{1}{N_i} \sum_{t=1}^T o_t \quad s.t. \ q_t = i$$

$$\overline{\sigma}_i^2 = \frac{1}{N_i} \sum_{t=1}^T (o_t - \mu_i)^2 \quad s.t. \ q_t = i$$
 • Viterbi training for mixture Gaussians is

 Viterbi training for mixture Gaussians is more complex, generally just assign each observation to 1 mixture

Log domain

- In practice, do all computation in log domain
- Avoids underflow
 - Instead of multiplying lots of very small probabilities, we add numbers that are not so small.
- Single multivariate Gaussian (diagonal Σ) compute:

$$b_j(o_t) = \prod_{d=1}^D \frac{1}{\sqrt{2\pi\sigma_{jd}^2}} exp\left(-\frac{1}{2}\frac{(o_{td}-\mu_{jd})^2}{\sigma_{jd}^2}\right)$$
 In log space:

$$\log b_{j}(o_{t}) = -\frac{1}{2} \sum_{d=1}^{D} \left[log(2\pi) + \sigma_{jd}^{2} + \frac{(o_{td} - \mu_{jd})^{2}}{\sigma_{jd}^{2}} \right]$$

Log domain

Repeating:

$$\log b_j(o_t) = -\frac{1}{2} \sum_{d=1}^{D} \left[log(2\pi) + \sigma_{jd}^2 + \frac{(o_{td} - \mu_{jd})^2}{\sigma_{jd}^2} \right]$$

With some rearrangement of terms

$$\log b_j(o_t) = C - \frac{1}{2} \sum_{d=1}^{D} \frac{(o_{td} - \mu_{jd})^2}{\sigma_{jd}^2}$$

Where:

$$C = -\frac{1}{2} \sum_{d=1}^{D} (\log(2\pi) + \sigma_{jd}^{2})$$

- Note that this looks like a weighted Mahalanobis distance!!!
- Also may justify why we these aren't really probabilities (point estimates); these are really just distances.

Evaluation

 How to evaluate the word string output by a speech recognizer?

Word Error Rate

```
    Word Error Rate =
    100 (Insertions+Substitutions + Deletions)
    Total Word in Correct Transcript
    Aligment example:
    REF: portable **** PHONE UPSTAIRS last night so
    HYP: portable FORM OF STORES last night so
    Eval I S S
    WER = 100 (1+2+0)/6 = 50%
```

NIST sctk-1.3 scoring softare: Computing WER with sclite

- http://www.nist.gov/speech/tools/
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

```
id: (2347-b-013)
Scores: (#C #S #D #I) 9 3 1 2
REF: was an engineer SO I i was always with **** **** MEN UM and they
HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they
Eval: D S I I S S
```

Sclite output for error analysis

```
CONFUSION PAIRS
                             Total
                                                 (972)
                             With >= 1 occurances (972)
  1: 6 -> (%hesitation) ==> on
  2: 6 -> the ==> that
  3: 5 -> but ==> that
  4: 4 -> a ==> the
  5: 4 -> four ==> for
  6: 4 \rightarrow in ==> and
  7: 4 -> there ==> that
  8: 3 -> (%hesitation) ==> and
  9: 3 -> (%hesitation) ==> the
 10: 3 \rightarrow (a-) ==> i
 11: 3 -> and ==> i
 12: 3 -> and ==> in
 13: 3 -> are ==> there
 14: 3 -> as ==> is
 15: 3 -> have ==> that
 16: 3 -> is ==> this
```

Sclite output for error analysis

```
17:
        3 -> it ==> that
18:
      3 -> mouse ==> most
19: 3 -> was ==> is
20: 3 -> was ==> this
21: 3 -> you ==> we
22: 2 -> (%hesitation) ==> it
23: 2 \rightarrow (%hesitation) ==> that
24: 2 -> (%hesitation) ==> to
25: 2 -> (%hesitation) ==> yeah 26: 2 -> a ==> all
27: 2 -> a ==> know
28: 2 -> a ==> you
29: 2 -> along ==> well
30: 2 -> and ==> it
31: 2 -> and ==> we
32: 2 -> and ==> you
33: 2 -> are ==> i
34: 2 -> are ==> were
```

Better metrics than WER?

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on
 - Has been applied in dialogue systems, where desired semantic output is more clear

Summary: ASR Architecture

- Five easy pieces: ASR Noisy Channel architecture
 - 1) Feature Extraction: 39 "MFCC" features
 - 2) Acoustic Model:
 Gaussians for computing p(o|q)
 - 3) Lexicon/Pronunciation Model
 - HMM: what phones can follow each other
 - 4) Language Model
 - N-grams for computing p(w_i|w_{i-1})
 - 5) Decoder
 - Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech!

ASR Lexicon: Markov Models for pronunciation

Pronunciation Modeling

Generating surface forms:

i	can't				stay			words
ay	k	ae	n	t	S	t	ay	baseforms
ah	k	ae	n		S	t	ay	surface forms
#ah ^k	^{ay} k ^{ae}	$k_{ae}n$	ae ns		n_{S}^{t}	$s_t ay$	tay#	triphones
688	888	888	888-		888	888	888	HMM states

Fig. 4. Transforming from baseform pronunciations to surface pronunciations in ASR decoding.

Dynamic Pronunciation Modeling

Fig. 10. A schematic view of transformation-based pronunciation modeling

Slide from Eric Fosler-Lussier

Summary

- Speech Recognition Architectural Overview
- Hidden Markov Models in general
 - Forward
 - Viterbi Decoding
- Hidden Markov models for Speech
- Evaluation