Introduction to data-parallelism and OpenCL

Sylvain Lefebvre - INRIA

Sorting

Sort is everywhere

- Sequential sorts:
 - Selection sort O(N²)
 - Heapsort O(N log N)
 - QuicksortO(N log N)
- Known best complexity: O(N log N)

Parallel sort

- How can we sort in parallel?
 - For now, not concerned about performance
- Most sorting algorithms:
 - Number of comparisons depends on data
 - Example: Quicksort
 - Average O(N log N)
 - Worst case O(N²)
- Data dependency makes parallelism complex

Sorting networks

- Data-independent sorting algorithms
 - Whatever the data, the same operations occur

- There are several such algorithms:
 - Odd-even sort
 - Bitonic merge sort
 - **–** ...

Odd-even sort

• Simple, first approach:

Bitonic merge sort

Better complexity: O(N log²N)

- Based on *bitonic* sequences
 - Let's consider we only have values in {0,1}

Bitonic merge sort

Bitonic sequences of numbers:

0-1 principle

Theorem:

If a sorting network sorts every sequence of 0's and 1's, then it sorts every arbitrary sequence of values.

[Knuth 73]

Comparator

Compares two halves of a bitonic 0-1 sequence

Comparator

- The two sub-sequence are bitonic
- The first is less-or-equal to the second

Bitonic merge

Bitonic sort

- Divide and conquer approach (recursive)
 - Two operations: Sort and Merge

Implementation

- Trivial cases:
 - Sort and Merge on N = 1

• Recursion (CPU):

```
Sort( T, L,R, d) {
   if ( R-L+1 > 1 ) {
      Sort( T, L,(R+L)/2, ASC )
      Sort( T, (R+L)/2+1,R, DESC )
      Merge( T , L,R, d)
   }
}
```

```
Merge( T, L,R, d) {
   if ( R-L+1 > 1 ) {
      Compare( T, L,R,d)
      Merge( T , L,(L+R)/2 ,d)
      Merge( T , (L+R)/2+1,R,d)
   }
}
```

Implementation

```
Compare( T, R,L, d )
  k = (R-L+1)/2
  for (i = 0 ; i < k ; i++) {
    if (d == ASC) {
        if ( T[L+i] < T[L+i+k] )
            swap(T,L+i,L+i+k)
        } else {
        if ( T[L+i] > T[L+i+k] )
            swap(T,L+i,L+i+k)
        }
    }
}
```

```
Sort( T, L,R, d) {
   if ( R-L+1 > 1 ) {
      Sort( T, L,(R+L)/2, ASC )
      Sort( T, (R+L)/2+1,R, DESC )
      Merge( T , L,R, d)
   }
}
```

```
Merge( T, L,R, d) {
   if ( R-L+1 > 1 ) {
      Compare( T, L,R,d)
      Merge( T , L,(L+R)/2 ,d)
      Merge( T , (L+R)/2+1,R,d)
   }
}
```

Implementation in OpenCL

Consider global comparison pattern

Implementation in OpenCL

Log(N) stages

Number of comparisons

- log(N) stages
- Stage i has i columns
- Number of columns:

$$Sum(i=0...log N)(i) = log N(log N + 1)/2$$

Number of comparisons:

$$N/2 * (log N (log N + 1) / 2)$$
 \rightarrow $O(N log^2 N)$

Let's practice

- Odd-even sort
 - Global memory

- Bitonic sort
 - First, recursive on CPU
 - Second, on the GPU (global memory)

Credits

• http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter46.html

http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm