Synaptic Learning Rules

Section 10

Binxu Wang

Brief Conceptual Review

Types of Learning in ML

- Supervised
 - You get a set of $\{x_i, y_i\}$
 - Learn a mapping $\hat{y} = f(x)$
 - E.g. regression, LNP model,
- Unsupervised
 - You get a set of $\{x_i\}$
 - Try to learn its distribution p(x).
 - Or to learn a useful representation z = f(x).
 - E.g. Dimension reduction
- Reinforcement learning
 - Get an environment.
 - Find out the best way to act in it. Maximize reward.
 - E.g. AlphaGO, AlphaStar

This is classic and general division. No clear boundary ...

- Unsupervised → Self-supervised learning
- Reinforcement → Imitation / Supervised learning
- Supervised learning → RL to maximize some reward for correct prediction

Synaptic Learning Rules

Learning Rules

Linear neuronal model

$$v = w^T u$$

- *u*: pre-synaptic activity
- *v*: post-synaptic activity
- Learning rule: How synapses change their strength based on pre-, post- activity?
 - Δw or dw/dt as function of u,v time course $\frac{dw}{dt} = \mathcal{F}(u,v)$

Why learning rules are hard to study experimentally?

Timescale of learning

Months or years.

Phase of learning

• Early in life.

Spatial scale (synapse, neuronal processes)

- Accessible to electron microscopy and other high precision imaging.
- Usually need to sacrifice animal first.

Different rules can come to same behavior/weights

Hard to analyze data or associate it to behavior.

Better theories are required to produce hypothesis to test.

Synaptic Weight as Seen through Electron Microscopy

• Synapses are much smaller than neurons...

Hebbian Learning

• Simple notion: Fire together, wire together.

$$\tau \frac{dw}{dt} = uv$$

- Intuition:
 - All synapse gets stronger. (LTP)
 - Pre-synaptic neuron that fires more grows stronger synapse.

Weight Dynamics as Linear Dynamic System

$$\tau \frac{dw}{dt} = (w^T u)u = (uu^T)w$$

• We transform the equation to a linear dynamic system.

$$\frac{dx}{dt} = Ax$$

- Stability criterion for a linear dynamic system?
 - Real part of A eigenvalues are less than (or equal to) o.

What are the eigenvectors and eigenvalues of uu^T

- $||u||^2$, 0.
- *u*, all others.

Original Hebbian learning rule is not stable!

Weight Norm Analysis

Hebbian Learning rule

$$\tau \frac{dw}{dt} = uv$$

• Since
$$u = w^T v$$

$$\tau \frac{dw}{dt} = (w^T u)u = (uu^T)w$$

• Dynamics of weight norm

$$\tau w^{T} \frac{dw}{dt} = w^{T} (uu^{T})w = (u^{T}w)^{2}$$
$$\frac{1}{2} \tau \frac{d\|w\|^{2}}{dt} = (u^{T}w)^{2} \ge 0$$

• Either no learning or explode in long term.

This general philosophy is to reduce a high dim dynamic system into a low dimensional one, easier to analyze.

$$w \rightarrow ||w||$$

What if $w^T u = 0$ at first?

- What will happen to the weight w?
 - Nothing change.
 - Hebbian learning needs postsynaptic activity.

Extended Hebb's Rule / Covariance Rule

$$\tau \frac{dw}{dt} = u(v - \bar{v})$$

- Intuition
 - The u patterns evoking higher than average activity are strengthen. (preferred u patterns)
 - Other *u* patterns are suppressed.

Top preferred stimuli

Deriving the Covariance Rule

$$\tau \frac{dw}{dt} = u(v - \bar{v})$$

• Derive the covariance, $v = u^T w$ $\tau \frac{dw}{dt} = u(u - \bar{u})^T w$

$$\mathbb{E}[u(u-\bar{u})^T] = \mathbb{E}[(u-\bar{u})(u-\bar{u})^T] + \mathbb{E}[\bar{u}(u-\bar{u})]$$
$$= \mathbb{E}[(u-\bar{u})(u-\bar{u})^T] = \text{cov}[u]$$

• Covariance based learning $\tau \frac{dw}{dt} = \text{cov}[u]w$

This derivation is approximated, u change faster than w, so we assume w stays the same in the averaging period.

$$\bar{v} = \frac{1}{T} \int_{t-T}^{t} v(t')dt'$$

$$= \frac{1}{T} \int_{t-T}^{t} w(t')^{T} u(t')dt'$$

$$\approx w(t)^{T} \frac{1}{T} \int_{t-T}^{t} u(t')dt'$$

Covariance Matrix

$$cov[x] = \mathbb{E}[(x - \bar{x})(x - \bar{x})^T]$$

•
$$\operatorname{cov}[x]_{ij} = \mathbb{E}[(x_i - \bar{x}_i)(x_j - \bar{x}_j)^T]$$

•
$$\operatorname{cov}[x] = (X - \bar{x})(X - \bar{x})^T$$

- What do we know about its eigenvalue and eigenvectors?
 - Real Symmetric matrix
 - Real eigenvalues.
 - Orthogonal eigenvectors
 - Eigenvalues are non-negative
- What transform does this matrix represent ? $A = U\Lambda U^T$
 - Scaling the n eigen dimension based on the n eigenvalues

Covariance Matrix and PCA

- What's the connection between PCA and covariance matrix of data?
 - PCA correspond to eigenvectors of covariance matrix.

$$C = U\Lambda U^T$$

- P orthogonal, Λ diagonal.
- Columns of U are PC vectors, Λ_i is roughly explained variance

Eigenvalue and Power Iteration

Dynamics of the weight vector

$$\tau \frac{dw}{dt} = \text{cov}[u]w$$

$$\tau \frac{dw}{dt} = U\Lambda U^T w$$

- Intuition
 - cov[u] amplify different eigen patterns in w based on their eigenvalues.
 - Top eigen vector e_1 is amplified the most!

$$w(t) \propto \mathbf{e_1}, t \to \infty$$

$$w(t) = \sum_{i} c_{0,i} e^{\lambda_i t} \mathbf{e_i}$$

Explode but in a specific direction!

Hebbian Learning Extracts PC1

- Single neuronal output represent the best 1d representation of its input!
 - $w \propto e_1$, $v = w^T u \propto e_1^T u$
 - Projection losing as little information as possible.

Oja's Rule

$$\tau \frac{dw}{dt} = vu - \alpha v^2 w$$

- Interpretation
 - vu is the Hebbian term.
 - $-\alpha v^2 w$ term decay / scale down each synapse by the same ratio.
 - Vector direction of w stay the same.

Weight Norm Analysis for Oja's Rule

Weight norm analysis

$$\tau w^{T} \frac{dw}{dt} = w^{T} (vu - \alpha v^{2}w)$$

$$= v(w^{T}u) - \alpha v^{2}w^{T}w$$

$$= v^{2} - \alpha v^{2}||w||^{2}$$

$$= v^{2} (1 - \alpha ||w||^{2})$$

• Weight norm equation
$$\frac{\tau \, d\|w\|^2}{2 \, dt} = v^2 (1 - \alpha \|w\|^2)$$

Oja's Rule and Synaptic Competition.

• What's the dynamic of ||w||

$$\frac{\tau \frac{d||w||^2}{2}}{\frac{d||w||^2}{dt}} = v^2 (1 - \alpha ||w||^2)$$

$$v = w^T u$$

- Is it a 1d dynamic system?
- Is it a linear system?
- What's the flow on the line?
- What's the stability of the fixed point?

Oja's Rule and Synaptic Competition.

Weight norm stays around the stable attractor:

$$\|w\| \approx \frac{1}{\sqrt{\alpha}}$$

- Interpretation
 - If some weights strengthen, others weaken.
 - Known as synaptic competition.

Summary of learning rules

Hebb's rule	$ au_w rac{dar{w}}{dt} = var{u}$	Captures LTP	Weights explode
Covariance rule	$ au_w rac{dar{w}}{dt} = ar{u}(v - < v >)$	Captures LTP & LTD	Weights explode
Oja's rule	$ au_w rac{dar{w}}{dt} = var{u} - lpha v^2ar{w}$	Captures LTP & LTD	Weights stable

General Takeaway

- By learning, information about input distribution $\{u_i\}$ are encoded in their weights w
 - PCA is one example.
 - Some suggests deep learning is doing the same thing.
- Original Hebbian learning is unstable, to make it homeostatic, synaptic competition is necessary.