# ASSIGNMENT 2

## KESHAV BANSAL(170335)

#### CS335

# Question

1. For the following grammar, design a predictive parser and show the predictive parsing table. Remove left-recursion (if any), left-factor your grammar.

$$S \to (L) \mid a$$
  
$$L \to L, S \mid LS \mid b$$

Solution

Grammar after removing left recursion:

$$S \to (L) \mid a$$

$$L \to bX$$

$$X \to ,SX \mid SX \mid \epsilon$$

First and follow set computation:

$$First(L) = \{ b \}$$

$$First(S) = \{ ( , a \}$$

$$First(X) = \{ `, `, ( , a , \epsilon \}$$

$$Follow(L) = \{ ) \}$$

$$Follow(S) = \{ `, `, ( , a , \$, ) \}$$

$$Follow(X) = \{ ) \}$$

Note: ',' is used to denote the terminal comma (,) in the grammar  $\,$ 

## Predictive parsing table:

| Nonterminal  | (           | )                | ٠, '         | a                 | b          | \$ |
|--------------|-------------|------------------|--------------|-------------------|------------|----|
| $\mathbf{S}$ | $S \to (L)$ |                  |              | $S \rightarrow a$ |            |    |
| L            |             |                  |              |                   | $L \to bX$ |    |
| X            | $X \to SX$  | $X \to \epsilon$ | $X \to , SX$ | $X \to SX$        |            |    |

# Question

2. Show that the given grammar is LALR(1) but not SLR(1).

Adding a dummy start state S' we get the following rules :

1) 
$$S^{'} \rightarrow S$$

2) 
$$S \rightarrow Lp$$

3) 
$$S \rightarrow qLr$$

5) 
$$S \rightarrow qsp$$

6) 
$$L \rightarrow s$$

#### Canonical states:

$$I_0 = \left| \begin{array}{ccc} \textbf{S}^{'} & \rightarrow & . \, \textbf{S} \\ \textbf{S} & \rightarrow & . \, \textbf{Lp} \\ \textbf{S} & \rightarrow & . \, \textbf{qLr} \\ \textbf{S} & \rightarrow & . \, \textbf{sr} \\ \textbf{S} & \rightarrow & . \, \textbf{qsp} \\ \textbf{L} & \rightarrow & . \, \textbf{s} \end{array} \right|$$

$$I_1 = goto(I_0,S) =$$
 $\mid S' \rightarrow S.$ 

$$I_2 = goto(I_0, L) =$$

$$\mid S \rightarrow L \cdot p$$

$$I_3 = \operatorname{goto}(I_0, q) =$$

$$\begin{vmatrix} \mathbf{S} \to \mathbf{q} \cdot \mathbf{Lr} \\ \mathbf{S} \to \mathbf{q} \cdot \mathbf{sp} \\ \mathbf{I} \to \mathbf{s} \end{vmatrix}$$

$$I_4 = \operatorname{goto}(I_0, s) =$$

$$\begin{vmatrix} s \to s \cdot r \\ L \to s \cdot \end{vmatrix}$$

$$I_5 = goto(I_2, p) =$$

$$\mid S \to Lp.$$

$$I_6 = goto(I_3, L) =$$

$$S \rightarrow qL.r$$

$$I_6 = \operatorname{goto}(I_3, L) =$$

$$\mid \mathtt{S} \rightarrow \mathtt{qL.r}$$

$$I_7 = \operatorname{goto}(I_3, s) =$$

$$\left|\begin{array}{l} \mathbb{S} \to \mathtt{qs.p} \\ \mathbb{L} \to \mathtt{s.} \end{array}\right|$$

$$I_8 = \text{goto}(I_4, r) =$$

$$\mid S \to \text{sr}.$$

$$S \rightarrow sr$$

$$I_9 = goto(I_6,r) =$$

$$S \rightarrow qLr$$

$$I_9 = \mathrm{goto}(I_6,r) =$$

$$\mid \mathtt{S} \to \mathtt{qLr} \; .$$

$$I_{10} = \mathrm{goto}(I_7,p) =$$

$$\mid \mathtt{S} \to \mathtt{qsp} \; .$$

$$| S \rightarrow qsp$$

| STATE | AC' | ГΙΟ |    | GOTO |        |    |   |        |
|-------|-----|-----|----|------|--------|----|---|--------|
|       | р   | q   | r  | s    | \$     | S' | S | $\Box$ |
| 0     |     | s3  |    | s4   |        |    | 1 | 2      |
| 1     |     |     |    |      | accept |    |   |        |
| 2     | s5  |     |    |      |        |    |   |        |
| 3     |     |     |    | s7   |        |    |   | 6      |
| 4     | r6  |     | r6 |      |        |    |   |        |
| 4     | 10  |     | s8 |      |        |    |   |        |
| 5     |     |     |    |      | r2     |    |   |        |
| 6     |     |     | s9 |      |        |    |   |        |
|       | r6  |     |    |      |        |    |   |        |
| 7     |     |     | r6 |      |        |    |   |        |
|       | s10 |     |    |      |        |    |   |        |
| 8     |     |     |    |      | r4     |    |   |        |
| 9     |     |     |    |      | r3     |    |   |        |
| 10    |     |     |    |      | r5     |    |   |        |

Table 1: Parse table for SLR(1)

Since there are 2 shift reduce conficts, the grammar is SLR(1) ambiguous. Canonical states for LALR(1):

$$I_{0} = \begin{bmatrix} s' \to .s , \$ \\ s \to .\text{Lp} , \$ \\ s \to .\text{qLr} , \$ \\ s \to .\text{qsp} , \$ \\ L \to .s , p \end{bmatrix} \qquad I_{7} = \text{goto}(I_{3}, S) = \begin{bmatrix} s \to \text{qsp} \\ L \to s , r \end{bmatrix}$$

$$I_{1} = \text{goto}(I_{0}, S) = \begin{bmatrix} s \to \text{qsp} \\ L \to s , r \end{bmatrix}$$

$$I_{2} = \text{goto}(I_{0}, L) = \begin{bmatrix} s \to \text{L.p} \\ s \to \text{L.p} \\ L \to s , r \end{bmatrix}$$

$$I_{3} = \text{goto}(I_{0}, q) = \begin{bmatrix} s \to \text{q.Lr} \\ s \to \text{q.sp} \\ L \to s , r \end{bmatrix}$$

$$I_{4} = \text{goto}(I_{0}, s) = \begin{bmatrix} s \to \text{q.sp} \\ L \to s , r \end{bmatrix}$$

$$I_{5} = \text{goto}(I_{2}, p) = \begin{bmatrix} s \to \text{q.sp} \\ L \to s , r \end{bmatrix}$$

$$I_{10} = \text{goto}(I_{7}, p) = \begin{bmatrix} s \to \text{q.sp} \\ s \to \text{q.sp} \\ s \to \text{q.sp} \end{bmatrix}$$

$$I_{10} = \text{goto}(I_{7}, p) = \begin{bmatrix} s \to \text{q.sp} \\ s \to \text{q.sp} \end{bmatrix}$$

$$I_{5} = \text{goto}(I_{2}, p) = \begin{bmatrix} s \to \text{q.sp} \\ s \to \text{q.sp} \end{bmatrix}$$



Figure 1: State diagram for SLR and LALR parser

| STATE | AC' | TIO | GOTO |    |        |    |   |   |
|-------|-----|-----|------|----|--------|----|---|---|
|       | р   | q   | r    | s  | \$     | S' | S | L |
| 0     |     | s3  |      | s4 |        |    | 1 | 2 |
| 1     |     |     |      |    | accept |    |   |   |
| 2     | s5  |     |      |    |        |    |   |   |
| 3     |     |     |      | s7 |        |    |   | 6 |
| 4     | r6  |     | s8   |    |        |    |   |   |
| 5     |     |     |      |    | r2     |    |   |   |
| 6     |     |     | s9   |    |        |    |   |   |
| 7     | s10 |     | r6   |    |        |    |   |   |
| 8     |     |     |      |    | r4     |    |   |   |
| 9     |     |     |      |    | r3     |    |   |   |
| 10    |     |     |      |    | r5     |    |   |   |

Table 2: Parse table for LALR(1)

Since each cell contains atmost one action, the grammar is LALR(1)

# Question

3. Construct an SLR parsing table for the given grammar. Resolve the parsing action conflicts in such a way that regular expressions will be parsed normally.

#### Adding a dummy start state S we get the following rules :

- 2)  $R \rightarrow R \mid R$

- 3)  $R \rightarrow RR$ 4)  $R \rightarrow R^*$ 5)  $R \rightarrow (R)$

#### Canonical states

$$I_0 =$$

$$S \rightarrow R$$

$$I_1 = goto(I_0,R) =$$

$$S \rightarrow R$$

### $I_2 = goto(I_0,() =$

$$R \rightarrow (R)$$

- $R \rightarrow .R \mid R$

- $R \rightarrow .RR$   $R \rightarrow .R^*$   $R \rightarrow .(R)$   $R \rightarrow .a$

$$I_3 = goto(I_0,a) =$$

$$R \rightarrow a$$
.

$$I_4 = goto(I_0,b) =$$

$$\mathbb{R} \to \mathbf{b}$$
.

$$I_5 = goto(I_1, |) =$$

$$\begin{vmatrix} R \rightarrow R \mid . R \\ R \rightarrow . R \mid R \\ R \rightarrow . RR \end{vmatrix}$$

$$R \rightarrow R R$$

$$R \rightarrow .RR$$

$$R \rightarrow R^*$$

$$R \rightarrow . (R$$

$$R \rightarrow .a$$

$$\mbox{R} \rightarrow \mbox{.b}$$

$$I_6 = \operatorname{goto}(I_1, *) =$$
  
 $\mid R \to R^*.$ 

$$R \to R^*$$
.

$$I_7 = goto(I_1,R) =$$

$$R \rightarrow RR$$
.

$$R \rightarrow R . \mid R$$

$$R \rightarrow R \cdot R$$

$$R \rightarrow R.^*$$
  
 $R \rightarrow .R \mid R$ 

$$R \rightarrow .RR$$

$$R \rightarrow R^*$$

$$R \rightarrow .R^*$$
  
 $R \rightarrow .(R)$ 

$$R \rightarrow .b$$

$$I_8 = goto(I_2,R) =$$

$$R \rightarrow (R.)$$
  
 $R \rightarrow R. \mid R$ 

$$R \rightarrow R \cdot R$$

$$R \rightarrow R \mbox{ . }^*$$

- $R \rightarrow .R \mid R$
- $R \rightarrow .RR$
- $R \rightarrow .(R)$

$$I_9 = goto(I_5,R) =$$

$$R \rightarrow R \mid R$$
 .

- $R \rightarrow R$  . | R
- $\textbf{R} \rightarrow \textbf{R} \cdot \textbf{R}$
- $R \rightarrow R \, . \, ^*$
- $R \rightarrow .R \mid R$
- $R \rightarrow .RR$   $R \rightarrow .R^*$
- $R \rightarrow .(R)$

$$I_{10} = \operatorname{goto}(I_8,)) =$$
 | R \rightarrow (R).

$$\begin{aligned} & \text{FOLLOW(S)} = \{\$\} \\ & \text{FOLLOW(R)} = \{\$, *, |, ), a, b, *, \} \end{aligned}$$

| STATE | AC | CTIC | ON |     |    |    |        | G | GOTO |  |
|-------|----|------|----|-----|----|----|--------|---|------|--|
|       |    | *    | (  | )   | a  | b  | \$     | S | R    |  |
| 0     |    |      | s2 |     | s3 | s4 |        |   | 1    |  |
| 1     | s5 | s6   | s2 |     | s3 | s4 | accept |   | 7    |  |
| 2     |    |      | s2 |     | s3 | s4 |        |   | 8    |  |
| 3     | r6 | r6   | r6 | r6  | r6 | r6 | r6     |   |      |  |
| 4     | r7 | r7   | r7 | r7  | r7 | r7 | r7     |   |      |  |
| 5     |    |      | s2 |     | s3 | s4 |        |   | 9    |  |
| 6     | r4 | r4   | r4 | r4  | r4 | r4 | r4     |   |      |  |
| 7     | r3 | r3   | r3 | r3  | r3 | r3 | r3     |   | 7    |  |
|       | s5 | s6   | s2 | 10  | s3 | s4 | 10     |   | 1    |  |
| 8     | s5 | s6   | s2 | s10 | s3 | s4 |        |   | 7    |  |
| 9     | r2 | r2   | r2 | r2  | r2 | r2 | r2     |   | 7    |  |
|       | s5 | s6   | s2 | 14  | s3 | s4 | 12     |   | 1    |  |
| 10    | r5 | r5   | r5 | r5  | r5 | r5 | r5     |   |      |  |

Table 3: Parse table for SLR(1) before disambiguation

As we can see, there are 4 shift reduce conflicts. These arise due to undefined precedence and associativity of |, concatenation and \*. To solve the conflicts, we follow the following disambiguation rules -

- 1. Precedence of \* > precedence of concatenation > precedence of |
- 2. | and concatenation are left associative

The following steps are taken to disambiguate -

- Row 7 Terminal | : Precedence of concatenation > Precedence of | hence r3
- Row 7 Terminal \* : Precedence of \* > Precedence of concatenation hence s6
- Row 7 Terminal (: concatenation is left associative hence r3
- Row 7 Terminal a: concatenation is left associative hence r3
- Row 7 Terminal b: concatenation is left associative hence r3
- Row 9 Terminal | : | is left associative hence r2
- Row 9 Terminal \*: Precedence of \* > Precedence of | hence s6
- Row 9 Terminal (: Precedence of concatenation > Precedence of | hence s2
- Row 9 Terminal a: Precedence of concatenation > Precedence of | hence s3
- Row 9 Terminal b: Precedence of concatenation > Precedence of | hence s4



Figure 2: SLR Parsing table

### After disambiguation

| STATE | AC | ACTION |    |     |    |    |        |   |   |
|-------|----|--------|----|-----|----|----|--------|---|---|
|       |    | *      | (  | )   | a  | b  | \$     | S | R |
| 0     |    |        |    |     | s3 | s4 |        |   | 1 |
| 1     | s5 | s6     | s2 |     | s3 | s4 | accept |   | 7 |
| 2     |    |        | s2 |     | s3 | s4 |        |   | 8 |
| 3     | r6 | r6     | r6 | r6  | r6 | r6 | r6     |   |   |
| 4     | r7 | r7     | r7 | r7  | r7 | r7 | r7     |   |   |
| 5     |    |        | s2 |     | s3 | s4 |        |   | 9 |
| 6     | r4 | r4     | r4 | r4  | r4 | r4 | r4     |   |   |
| 7     | r3 | s6     | r3 | r3  | r3 | r3 | r3     |   | 7 |
| 8     | s5 | s6     | s2 | s10 | s3 | s4 |        |   | 7 |
| 9     | r2 | s6     | s2 | r2  | s3 | s4 | r2     |   | 7 |
| 10    | r5 | r5     | r5 | r5  | r5 | r5 | r5     |   |   |

Table 4: Parse table for SLR(1) after disambiguation

# Question

#### 4. Dissertation Parser

#### Tools used:

- flex 2.6.4
- bison (GNU Bison) 3.0.4
- g++7.4.0

To run the parser, run the following program :

bash run.sh <INPUT\_FILE>

### Example:

bash run.sh samplethesis.txt

The output shows in  ${f STDOU}$ 

The errors will be redirected to **STDERR**.