

Recitation Min, Max of x+y such that $x^2+y^2=1$ $\nabla f = (1, 1) = \lambda \nabla g = \lambda(2x, 2y)$

2) Min./Max. of x^2+y^2 such that $x+y \le 1$ $\Rightarrow (2x, 2y) = 0$

=> (x, y)=(0,0) i) Cheek the boundary: Min/Max. f(x,y) such that x+y=1=> x=1-y

Min/Max. $g(y) = x^2 + y^2 = (1 - y)^2 + y^2$ $g'(y) = 0 \Rightarrow -2(1 - y) + 1y = 0 \Rightarrow y = \frac{1}{2} \Rightarrow (\frac{1}{2} + \frac{1}{2})$ So $x^2 + y^2 = \frac{1}{2}$ is max $= \frac{1}{2} (1 + y) = 0$ is min. No min. along boundary $= \frac{1}{2} (1 + y) = \frac{1$ one way: 01 3) SS(X+Y) dxdy in bounded region x=0, y=0, y=1-x X_1-x $X_2=0$, Y=0, Y=0, Y=1-x $X_3=0$, Y=0, Y=1-x $X_3=0$, $X_3=0$, X $=\frac{X^{2}}{7}-\frac{X^{3}}{3}-\frac{(1-X)^{3}}{5}$ other parametrization: ((xxxx) dx dy (6, 12, 8) (1, 12, 8) · ((x, y,z) - (4,0,0)) = 0 (x-4) + (2y+8z=0) = 12-3x-14 0=y=-2X+27 $\int = \int_{-2}^{4} \left(\frac{12-5x}{4} \right) dy dx$ $= \int_{-2}^{4} \left(\frac{3}{2} + \frac{3x^{2}}{4} \right) \left(\frac{12-5x^{2}}{4} \right) dx$ $= \int_{-2}^{4} \left(\frac{3}{2} + \frac{3x^{2}}{4} \right) \left(\frac{3x^{2}}{4} + \frac{3x^{2}}{4} \right) dx$ $= \int_{-2}^{4} \left(\frac{3x^{2}}{4} + \frac{3x^{2}}{4} +$ Check: Area of tetrahedron= = (2bwh) = = 6(3)(4)(2) Area by double integration: SSI dxdy = SS dxdy (f(x,y)=1)

MATH 2605-62

Find the area of the region bounded by $y=\ln x$, $y=2\ln x$, and x=e. Ex.) Area (R)= $\int_{\ln x} dy dx = \int_{\ln x} (2\ln x - \ln x) dx = \int_{\ln x} (2\ln x$

Average of flx, y) over a region R is ArealR) Sflx, y) dxdy. Intuitively, this can be thought of as the total value of all the points in the region divided by the number of points in the region.

Ex) Average of $f(x,y) = x \cos(x,y)$ over $0 \le x \le \pi$, $0 \le y \le 1$: $V = S \sum_{x \in S} (x,y) = x \cos(x,y) dx dy$ $F \sum_{x \in S} (x \cos(x,y)) dx dx$ $F \sum_{x \in S} (x$

Polar coordinates: (x,y) $X=r\cos\theta \Rightarrow f(x,y)=f(r\cos\theta, r\sin\theta)=f(r,\theta)$ $y=r\sin\theta \Rightarrow f(r,y)=f(r\cos\theta, r\sin\theta)=f(r,\theta)$ $Y=r\sin\theta \Rightarrow f(r,y)=f(r,\theta)=f$

Ex.) Evaluate SSXY dXdY. SSXY dXDY.