CS232: Database System	
Principles	
INDEXING	
INDEAINO	
1	
Indexing	
Given condition on attribute find qualified records Qualified records	
Attr = value ? value value	
Condition may also be	
Attr>value	
• Attr>=value	
Indexing	
Data Stuctures used for quickly locating tuples that meet a specific type of condition	
 Equality condition: find Movie tuples where Director=X Other conditions possible, eg, range conditions: find Employee tuples where Salary>40 AND Salary<50 	
Many types of indexes. Evaluate them on – Access time	
- Insertion time - Deletion time Disk Conserved of (conserved to second time)	
 Disk Space needed (esp. as it effects access time) 	

Topics · Conventional indexes • B-trees · Hashing schemes **Terms and Distinctions** • Primary index A Dense Primary Index - the index on the attribute (a.k.a. search key) that determines the sequencing of the table 10 20 30 40 • Secondary index 40 - index on any other 50 attribute 70 • Dense index 80 100 90 every value of the 100 indexed attribute appears 120 in the index Sequential 140 · Sparse index 150 File many values do not appear Dense and Sparse Primary Indexes Dense Primary Index Sparse Primary Index 10 30 40 30 50 50 50 70 100 140 80 90 100 200 100 120 Find the index record with largest 140 value that is less or equal to the

150

 + can tell if a value exists without accessing file (consider projection)
 + better access to overflow records value we are looking. + less index space

more + and - in a while

Sparse vs. Dense Tradeoff

- Sparse: Less index space per record can keep more of index in memory
- Dense: Can tell if any record exists without accessing file

(Later:

- sparse better for insertionsdense needed for secondary indexes)

Multi-Level Indexes

- Treat the index as a file and build an index on it
- "Two levels are usually sufficient. More than three levels are rare."
- Q: Can we build a dense second level index for a dense index?

		·	10	
	10 -		20	
10	30 -	_		
100	50 \	_	30	
250	80		40	
400		\ \ \	50	
	100	//	70	
600 \	140	/ /	80	
750	160		90	
920		_ \	100	
1000	200	ļ	120	
1000	250		120	
\	270			
\	300			
\	350			
7		1		
`	400			
	460			
	500			
	550	1		
		-		

A Note on Pointers

- Record pointers consist of block pointer and position of record in the block
- Using the block pointer only, saves space at no extra accesses cost
- But a block pointer cannot serve as record identifier

Representation of Duplicate Values in Primary Indexes

 Index may point to first instance of each value only

Deletion from Dense Index

- Deletion from dense primary index file with no duplicate values is handled in the same way with deletion from a sequential file
- Q: What about deletion from dense primary index with duplicates

Deletion from Sparse Index

• if the deleted entry does not appear in the index do nothing

Deletion from Sparse Index (cont'd)

- if the deleted entry does not appear in the index do nothing
- if the deleted entry appears in the index replace it with the next search-key value
 - comment: we could leave the deleted value in the index assuming that no part of the system may assume it still exists without checking the block

Deletion from Sparse Index (cont'd)

- if the deleted entry does not appear in the index do nothing
- if the deleted entry appears in the index replace it with the next search-key value
- unless the next search key value has its own index entry. In this case delete the entry

Insertion in Sparse Index

 if no new block is created then do nothing

Insertion in Sparse Index

- if no new block is created then do nothing
- else create overflow recordReorganize periodically
 - Could we claim space of next block?How often do we
 - reorganize and how much expensive it is?
 - B-trees offer convincing answers

Insert 1	.5		Head	ler
10	-		10 20	
30 50	_	<u></u>	30	
80		_		1
100	\mapsto	\ `	50 70	-/
140		//	80	
160		//	90	
200		/,	100	1
		`		ļ

16

Secondary indexes

File not sorted on secondary search key

17

Secondary indexes

Secondary indexes		
• Dense index	Sequence field \	
10 50 90 50 60	30 50 20 70 80 40	
Spaise (is	100 10	
	90 60	
next levels are sparse (as usual)	19	
Dunibarta valura 0 arasında	to day a	
<u>Duplicate values & seconda</u>		
	20 10 20	
	20 40 10 40	
	10 40	
	30 40	
	20	
Duplicate values & seconda	ary indexes	
one ontion	20 10	
Problem:	10 20 40	
excess overhead! 20 30 disk space 40	10 40	
• search time	10 40	
40	30 40	
	21	

<u>Duplicate values & secondary indexes</u> another option: lists of pointers

Problem: variable size records in index!

22

<u>Duplicate values & secondary indexes</u>

Problems:

- Need to add fields to records, messes up maintenance
- · Need to follow chain to know records

23

Duplicate values & secondary indexes

Why "bucket" + record pointers is useful

- Enables the processing of queries working with pointers only.
- Very common technique in Information Retrieval

<u>Indexes</u> Records

Name: primary EMP (name,dept,year,...)

Dept: secondary Year: secondary

25

Advantage of Buckets: Process Queries Using Pointers Only

Find employees of the Toys dept with 4 years in the company SELECT Name FROM Employee WHERE Dept="Toys" AND Year=4

This idea used in text information retrieval

Summary of Indexing So Far Basic topics in conventional indexes - multiple levels - sparse/dense - duplicate keys and buckets - deletion/insertion similar to sequential files Advantages - simple algorithms - index is sequential file Disadvantages - eventually sequentiality is lost because of overflows, reorganizations are needed	
Example Index (sequential) continuous 39 31 35 36 36 50 50 50 32 38 34 34 50 50 50 50 50 50 50 50 50 50 50 50 50	
Outline: • Conventional indexes • B-Trees ⇒ NEXT • Hashing schemes	

- NEXT: Another type of index
 - Give up on sequentiality of index
 - Try to get "balance"

B+Tree Example

n=3

32

Sample non-leaf

Sample leaf node: From non-leaf node Leaf of the following the following product of the follow	
In textbook's notation n=3 Leaf: Non-leaf:	
$\frac{\text{Size of nodes:}}{\text{n keys}} \begin{cases} \text{n+1 pointers} \\ \text{n keys} \end{cases}$	

Non-root no	des have to be at least		
<u>half-full</u>			
• Use at least			
Non-leaf:	$\lceil (n+1)/2 \rceil$ pointers		
Leaf:	└(n+1)/2 pointers to data		
	37		
n=3			
	Full node min. node		
Non loof			
Non-leaf	30		
Leaf	33		
	38		
B+tree rules	tree of order <i>n</i>		
(1) All leaves at same lowest level (balanced tree)			
(2) Pointers in leaves point to records except for "sequence pointer"			
CAC	ept for sequence pointer		
	39		

-	۲٦)	Number	Ωf	nointers	/kevs	for	R+tree
	. •	, italiibci	O.	pon ico 3	/ INC 9 3	101	י מככ

	Max ptrs	Max keys	Min ptrs→data	Min keys
Non-leaf (non-root)	n+1	n	「(n+1)/2 े	「(n+1)/2 - 1
Leaf (non-root)	n+1	n	[(n+1)/2]	[(n+1)/2]
Root	n+1	n	1	1

41

Insert into B+tree

- (a) simple case
 - space available in leaf
- (b) leaf overflow
- (c) non-leaf overflow
- (d) new root

(a) Insert key = 32 n=3

<u>Deletion from B+tree</u>	
(a) Simple case - no example	
(b) Coalesce with neighbor (sibling)(c) Re-distribute keys	
(d) Cases (b) or (c) at non-leaf	
46	
~	
(b) Coalesce with sibling – Delete 50	
Delete 30	
/	
100	
90 00 00 00 00 00 00 00 00 00 00 00 00 0	
47	
(c) Redistribute keys	
- Delete 50	
/	
100	
20 2 3 3 3 5 4 4 9 4 9 5 4 9 5 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	
48	

(d) Non-leaf coalese – Delete 37	1	
new root		
	74	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49	
B+tree deletions in practice		
 Often, coalescing is <u>not</u> implemented Too hard and not worth it! 		
	50	
Is LRU a good policy for B+tree buffers?		
→ Of course not!→ Should try to keep root in memory		
at all times (and perhaps some nodes from second level)		
	51	

Haudinana Lindanina mualdana.	
<u>Hardware+ indexing problem:</u>	
For B+tree, how large should <i>n</i> be?	
/// \	
111	
n is number of keys / node	
52	
Assumptions	
You have the right to set the block size for	
the disk where a B-tree will reside.	
 Compute the optimum page size n assuming that 	
 The items are 4 bytes long and the pointers are also 4 bytes long. 	
 Time to read a node from disk is 12+.003n Time to process a block in memory is unimportant 	
B+tree is full (I.e., every page has the maximum number of items and pointers	
number of items and pointers	
∆Can get:	
f(n) = time to find a record	
+	
f(n) /	
n _{opt}	
54	

$ ≤ FIND n_{opt} by f'(n) = 0$	
Answer should be $n_{opt} = \text{``few hundred''}$	
, alswer should be nopt	
Disk gets faster?CPU get faster?	
55	
Outline / summers	
<u>Outline/summary</u>	
Conventional Indexes Sparse vs. dense	
Primary vs. secondary	
B+ treesHashing schemes> Next	
Bitmap indices	
56	
Hashing	
hash function <i>h</i> (key)	
returns address of bucket	
if the keys for a	
specific hash value do not fit into one key $\rightarrow h(\text{key}) \rightarrow \text{key}$	
page the bucket is a linked list of pages	
1	

Example hash function		
 Key = 'x₁ x₂ x_n' n byte character strin Have b buckets 	9	
h: add x₁ + x₂ + x_ncompute sum modulo b		
- compute sum modulo <i>b</i>		
	58	
☑ This may not be best function☑ Read Knuth Vol. 3 if you really		
need to select a good function.		
Good hash Sexpected number of		
function: keys/bucket is the same for all buckets		
Same for all packets		
	59	
Within a bucket:		
Within a bucket.		
• Do we keep keys sorted?		
Yes, if CPU time critical		
& Inserts/Deletes not too frequent		
	60	

Next:	example to illustrate	
	inserts, overflows,	deletes

EXAMPLE 2 records/bucket

$$h(a) = 1$$

$$h(b) = 2$$

$$h(c) = 1$$

$$h(d) = 0$$

62

EXAMPLE: deletion

Delete:

e f c

Rule of thumb:	
Try to keep space utilization	
between 50% and 80%	
Utilization = # keys used total # keys that fit	
·	
 If < 50%, wasting space If > 80%, overflows significant	
depends on how good hash	
function is & on # keys/bucket	
64	
How do we cope with growth?	
Overflows and reorganizations	
Dynamic hashing	
• Extensible	
• Linear	
65	
Extensible hashing: two ideas	
(a) Use <i>i</i> of <i>b</i> bits output by hash function	
<i>← b →</i>	
$h(K) \rightarrow \begin{bmatrix} 00110101 \end{bmatrix}$	
use $i \rightarrow$ grows over time	
"	
66	

/h\	Use	dira	~+~	m 1
w	USE	une	בנט	ıν

Example: h(k) is 4 bits; 2 keys/bucket

"slide" conventions:
• slide shows h(k), while actual directory has key+pointer

Example: h(k) is 4 bits; 2 keys/bucket

Extensible hashing: deletion

No merging of blocks
 Merge blocks
 and cut directory if possible
 (Reverse insert procedure)

Deletion example:	
• Run thru insert example in reverse!	
•	
73	
Summary Extensible hashing • Can handle growing files	
- with less wasted space	
- with no full reorganizations - Indirection	
(Not bad if directory in memory)	
Directory doubles in size (Now it fits, now it does not)	
74	
Linear hashing	
Another dynamic hashing scheme The ideas:	
Two ideas: (a) Use <i>i</i> low order bits of hash □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
01110101 grows — //	
(b) File grows linearly	
75	

Example Continued: How to grow beyond this?

i = 23

When do we expand file?		
• Keep track of: #used slots (incl. overflow) #total slots in primary buckets equiv, #(indexed key ptr pairs)	= U	
#total slots in primary buckets		
• If U > threshold then increase m (and i, when m reaches 2 ⁱ)		
	79	
Summary Linear Hashing		
⊕ Can handle growing files		
- with less wasted space		
- with no full reorganizations		
No indirection like extensible hashing		
 Can still have overflow chains 		
	80	
Example: BAD CASE		
Example. BAD CASE		
Very full		
Very empty Need to mov	<i>i</i> e	
m here Would waste	e	
	81	

Summary		
Hashing		
How it works		
Dynamic hashingExtensible		
- Linear		
	82	
Next:		
• Indexing vs Hashing		
 Index definition in SQL 		
Multiple key access		
	83	
Indexing ve Hacking		
Indexing vs HashingHashing good for probes given key		
e.g., SELECT		
FROM R WHERE R.A = 5		
WITHING INA - J		

Indexing vs Hashing	
INDEXING (Including B Trees) good for Panga Sparehasi	
Range Searches: e.g., SELECT	
FROM R	
WHERE R.A > 5	
85	
Index definition in SOI	
<u>Index definition in SQL</u>	
• <u>Create index</u> name <u>on</u> rel (attr)	
• <u>Create unique index</u> name <u>on</u> rel (attr)	
defines candidate key	
• <u>Drop INDEX</u> name	
	
86	
Note CANNOT SPECIFY TYPE OF INDEX	
(e.g. B-tree, Hashing,)	
OR PARAMETERS	
(e.g. Load Factor, Size of Hash,)	
at least in SQL	
•	
87	

Strategy II:	
• Use 2 Indexes; Manipulate Pointers	
Toy → Sal > 50k	
91	
Strategy III:	
• Multiple Key Index	
One idea:	
92	
<u>Example</u>	
,	
Art 15k 15k Example Record	
Dept 12k 15k 15k 19k Name=Joe DEPT=Sales SAL=15k	
\ Salary \ Index	

For which queries is this index good?	
☐ Find RECs Dept = "Sales" SAL=20k	
□ Find RECs Dept = "Sales" \wedge SAL \geq 20k □ Find RECs Dept = "Sales"	
☐ Find RECs SAL = 20k	
94	
Interesting application:	
Geographic Data y	
• • DATA:	
<x1,y1, attributes=""> <x2,y2, attributes=""></x2,y2,></x1,y1,>	
<u>:</u>	
95	
Queries:	
• What city is at <xi,yi>?</xi,yi>	
• What is within 5 miles from <xi,yi>?</xi,yi>	
Which is closest point to <xi,yi>?</xi,yi>	
96	

Queries

- Find points with Yi > 20
- Find points with Xi < 5
- Find points "close" to $i = \langle 12,38 \rangle$
- Find points "close" to b = <7,24>

98

- Many types of geographic index structures have been suggested
 - Quad Trees
 - R Trees

						_						
•	٦.		ᆈ		_	/sı				_		
•	- 11		TΙ	ın	Ω.	/CI	ır	n	m	2	r١	,
•	.,	u	u	ш			11			а	ı١	,

- Conventional Indexes
 - Sparse vs. dense
 - · Primary vs. secondary
- B+ trees
- Hashing schemes
- Bitmap indices

--> Next

100

Revisit: Processing queries without accessing records until last step

Find employees of the Toys dept with 4 years in the company SELECT Name FROM Employee WHERE Dept="Toys" AND Year=4

Bitmap indices: Alternate structure, heavily used in OLAP

Assume the tuples of the Employees table are ordered.

Conceptually only!

	Dept Index						
I	Toys	00011010					
	PCs	00100100					
	Pens	01000001					
	Suits	10000000					

Aaron	Suits	4
Helen	Pens	3
Jack	PCs	4
Jim	Toys	4
Joe	Toys	3
Nick	PCs	2
Walt	Toys	1
Yannis	Pens	1

Year Index

00000011	1
00000100	2
01001000	3
10110000	4

+	Find	even	more	quickly	intersection	ns a	nd	unions	(e.g.,	Dept="	Toys"	AND	Year=	4)

Seems it needs too much space -> We'll do compression
 How do we deal with insertions and deletions -> Easier than you think

2nlog <i>m</i> Compression		
 Naive solution needs mn bits, where m is #distinct values and n is #tuples But there is just n 1's=> let's utilize this Bit encoding of sequence of runs (e.g. [3,0,1]) 		
Toys: 00011010 Third run says: The 3rd ace appears after 1 zero after the 2 First run says: The first recommend Second run says:	nd	
The first ace appears after 3 zeros 1011 00 01		
10 says: The binary encoding of the first number needs 1+1 digits. 11 says: The first number is 3	103	
2nlog m compression		
• Example		
Pens: 01000001Sequence [1,5]		
• Encoding: <i>0</i> 1 <i>110</i> 101		
	104	
Insertions and deletions &		
miscellaneous engineering		
Assume tuples are inserted in orderDeletions: Do nothing		
 Insertions: If tuple t with value v is inserted, add one more run in √s 		
sequence (compact bitmap)		
	105	

The BIG picture	
•	
 Chapters 2 & 3: Storage, records, blocks Chapter 4 & 5: Access Mechanisms Indexes 	
- B trees - Hashing	
- Multi key	
• Chapter 6 & 7: Query Processing NEXT	
106	