1. NOTATION. Soient **K** un corps et $n \ge 1$ un entier. On considère un **K**-espace vectoriel E de dimension n et un endomorphisme $f \in \mathcal{L}(E)$.

1. Outils de réduction

1.1. Valeurs propres et vecteurs propres

- [3] 2. DÉFINITION. Un scalaire $\lambda \in \mathbf{K}$ est une valeur propre de l'endomorphisme f si l'endomorphisme $f \lambda \operatorname{Id}_E$ n'est pas injectif. L'ensemble de ses valeurs propres est son spectre et on le note $\operatorname{Sp}(f)$.
 - 3. DÉFINITION. Un vecteur propre associée à une valeur propre $\lambda \in \operatorname{Sp}(f)$ est un vecteur non nul du noyau $\operatorname{Ker}(f \lambda \operatorname{Id}_E)$.
 - 4. Remarque. On définit, de même, les notions de vecteurs et valeurs propres pour des matrices de $\mathcal{M}_n(\mathbf{K})$: ce sont ceux de l'endomorphisme induit par la matrice.
 - 5. EXEMPLE. La matrice identité I_n vérifie $\mathrm{Sp}(I_n)=\{0\}$ et tout vecteur de \mathbf{K}^n est propre pour la valeur propre 0. La matrice

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \in \mathcal{M}_4(\mathbf{R})$$

admet 1 comme valeur propre et un vecteur propre associé est (1,0). Dans \mathbf{R}^2 , la rotation d'angle $\theta \in \mathbf{R} \setminus \pi \mathbf{Z}$ n'a pas de valeur propre.

- [3] 6. Proposition. Soit $\lambda \in \operatorname{Sp}(f)$. Alors le noyau $\operatorname{Ker}(f \lambda \operatorname{Id}_E)$ est stable par l'endomorphisme f. On l'appelle le sous-espace propre de l'endomorphisme f associé à la valeur propre λ .
 - 7. Proposition. Les espaces propres de l'endomorphisme f sont en somme directe.
 - 8. DÉFINITION. L'endomorphisme f est diagonalisable s'il existe une base de E dans laquelle sa matrice est diagonale.
 - 9. Exemple. Les matrices diagonales sont diagonalisables.
 - 10. Proposition. L'endomorphisme f est diagonalisable si et seulement s'il existe une base de E constitué de vecteurs propres de l'endomorphisme f.

1.2. Polynômes d'endomorphismes et polynôme caractéristique

[3] 11. DÉFINITION. Soit $P = \sum_{i=0}^d a_i X^i \in \mathbf{K}[X]$. On définit l'endomorphisme

$$P(f) := \sum_{i=0}^{d} a^{i} f^{i} \in \mathcal{L}(E).$$

- 12. PROPOSITION. L'ensemble $I := \{P \in \mathbf{K}[X] \mid P(f) = 0\}$ est un idéal de l'anneau principal $\mathbf{K}[X]$. On note $\pi_f \in \mathbf{K}[X]$ l'unique polynôme unitaire tel que $I = \pi_f \mathbf{K}[X]$. Ce polynôme π_f est le polynôme minimal de l'endomorphisme f.
- 13. DÉFINITION. Le polynôme caractéristique de l'endomorphisme f est le polynôme

$$\chi_f := \det(f - X \operatorname{Id}_E) \in \mathbf{K}[X].$$

14. THÉORÈME. Un scalaire de K est une valeur propre de l'endomorphisme f si et seulement s'il est racine du polynôme χ_f .

- 15. Remarque. Si le corps ${\bf K}$ est algébriquement clos, alors l'endomorphisme f admet au moins une valeur propre.
- 16. Exemple. La matrice

$$A := \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \in \mathscr{M}_4(\mathbf{R})$$

est de polynôme caractéristique $\chi_A = X(X - 5)$, donc $Sp(A) = \{0, 5\}$.

- 17. Théorème. Les points suivants sont équivalents :
 - l'endomorphisme f est diagonalisable;
 - le polynôme χ_f est scindé sur **K** et les ordres de chacune de ses racines coïncident avec les dimensions des sous-espaces propres associés;
 - il existe des valeurs propres $\lambda_1, \ldots, \lambda_p \in \operatorname{Sp}(f)$ telle que

$$E = \bigoplus_{i=1}^{p} \operatorname{Ker}(f - \lambda_{i} \operatorname{Id}_{E}).$$

- 18. THÉORÈME (Cayley-Hamilton). Le polynôme minimal π_f divise le polynôme caractéristique χ_f . En particulier, on a $\chi_f(f) = 0$.
- 19. Théorème (lemme des noyaux). Soient $P_1, \ldots, P_r \in \mathbf{K}[X]$ des polynômes premiers entre eux deux à deux. En notant $P := P_1 \cdots P_r$, on a

$$\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f).$$

- 20. Théorème. Les points suivants sont équivalents :
 - l'endomorphisme f est diagonalisable;
 - il admet un polynôme annulateur scindé simple sur **K**;
 - le polynôme π_f est scindé simple sur **K**.
- 21. COROLLAIRE. On suppose que l'endomorphisme f est diagonalisable. Soit F un sous-espace vectoriel stable par f. Alors l'endomorphisme induit $f|_F \in \mathcal{L}(F)$ est diagonalisable.
- 22. LEMME. Un endomorphisme f d'un \mathbf{F}_q -espace vectoriel de dimension finie est diagonalisable si et seulement s'il est annulé par le polynôme $X^q X \in \mathbf{F}_q[X]$.
- 23. Théorème. Le nombre de matrices inversibles et diagonalisables de taille n et à coefficients dans le corps fini \mathbf{F}_q à q éléments vaut

$$\sum_{\substack{(n_1,\dots,n_{q-1})\in\mathbf{N}^{q-1}\\n_1+\dots+n_{q-1}=n}}\frac{|\mathrm{GL}_n(\mathbf{F}_q)|}{|\mathrm{GL}_{n_1}(\mathbf{F}_q)|\dots|\mathrm{GL}_{n_{q-1}}(\mathbf{F}_q)|}$$

οù

$$|GL_k(\mathbf{F}_q)| = (q^k - 1)(q^k - q) \cdots (q^k - q^{k-1}), \quad k \ge 1.$$

2. Familles d'endomorphismes diagonalisable

2.1. Codiagonalisation

24. DÉFINITION. Une famille $\mathscr{F} \subset \mathscr{L}(E)$ d'endomorphismes est codiagonalisable s'il [3] existe une base de E dans laquelle les matrices de chaque endomorphisme $f \in \mathscr{F}$ sont

[3]

25. Théorème. Soient $f,g\in\mathcal{L}(E)$ deux endomorphismes diagonalisables et commutant entre eux. Alors la famille $\{f,g\}$ est codiagonalisable.

26. COROLLAIRE. Une famille de $\mathcal{L}(E)$ est codiagonalisable si et seulement si ses éléments sont diagonalisables et commutent entre eux.

2.2. Les endomorphismes normaux

- [3] 27. Définition. L'endomorphisme f est normal s'il commute avec son adjoint f^* .
 - 28. THÉORÈME. Soit E un espace hermitien et $f \in \mathcal{L}(E)$ un endomorphisme. Alors les points suivants sont équivalents :
 - l'endomorphisme f est normal;
 - il se diagonalise dans une base orthonormée de E;
 - lui et son adjoint sont codiagonalisables.
 - 29. LEMME. Soit E un espace euclidien de dimension 2. Soit $f \in \mathcal{L}(E)$ un endomorphisme normal n'admettant pas de valeurs propres réelles. Alors dans toute base orthonormée de E, la matrice de l'endomorphisme f est de la forme

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 avec $a, b \in \mathbf{R}, b \neq 0$.

30. Théorème. Soit E un espace euclidien de dimension 2. Soit $f \in \mathcal{L}(E)$ un endomorphisme normal. Alors il existe une base orthonormée de E dans laquelle la matrice de l'endomorphisme f est de la forme

$$\begin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & \lambda_r & & & \\ & & a_1 & -b_1 & & \\ & & b_1 & a_1 & & \\ & & & \ddots & & \\ & & & a_s & -b_s \\ & & & b_s & a_s \end{pmatrix} \text{ avec } a_j, b_j \in \mathbf{R}$$

où les réels λ_i sont les valeurs propres réelles de l'endomorphisme f.

- 31. COROLLAIRE. Toute matrice symétrique réelle (ou hermitienne complexe) est diagonalisable dans une base orthonormée.
- [4] 32. Contre-exemple. Une matrice symétrique complexe n'est pas nécessairement diagonalisable : il suffit de considérer la matrice

$$\begin{pmatrix} 0 & 1 \\ 1 & 2i \end{pmatrix} \in \mathscr{M}_2(\mathbf{C}).$$

[3] 33. COROLLAIRE. Soit $A \in \mathscr{S}_n^{++}(\mathbf{R})$ une matrice symétrique réelle définie positive. Alors il existe une unique matrice $A \in \mathscr{S}_n^{++}(\mathbf{R})$ telle que $A = M^2$. Le même résultat est établit pour des matrices hermitiennes positives.

34. APPLICATION (décomposition polaire). L'application

$$O_n(\mathbf{R}) \times \mathscr{S}_n^{++}(\mathbf{R}) \longrightarrow \mathrm{GL}_n(\mathbf{R}),$$

 $(Q, S) \longmapsto QS$

est un homéomorphisme.

3. Décomposition de Dunford et résultats topologiques

3.1. Décomposition de Dunford et applications

- 35. THÉORÈME. On suppose que le polynôme χ_f est scindé sur **K**. Alors il existe un [3] unique couple $(d, n) \in \mathcal{L}(E)^2$ tel que
 - on ait f = d + n;
 - les endomorphismes d et n commutent et sont respectivement diagonalisable et nilpotent.
- 36. Remarque. On peut montrer que les endomorphismes d et n appartiennent à l'algèbre K[f]. De plus, dès que le corps K est de caractéristique nulle, un algorithme permet de les calculer sans avoir besoin de connaître les valeurs propres de l'endomorphisme f.
- 37. APPLICATION. Une fois la décomposition de Dunford obtenu, le calcul de l'endomorphisme $\exp f$ est très facile puisque $\exp f = (\exp n) \circ (\exp d)$. Il en va de même pour le calcul des puissances de l'endomorphisme f.
- 38. Exemple. Attention, la décomposition de Dunford de la matrice

$$A := \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

n'est pas

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$$

mais A = A + 0.

39. APPLICATION. On suppose que le polynôme χ_f est scindé sur K. Alors l'endomorphisme f est diagonalisable si et seulement si son exponentiel exp f l'est.

3.2. Résultats topologiques

- 40. NOTATION. On considère le corps K des réels ou des complexes. On note
 - $-\mathcal{D}_n(\mathbf{K})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbf{K})$;
 - $-\mathscr{T}_n(\mathbf{K})$ l'ensemble des matrices trigonalisables de $\mathscr{M}_n(\mathbf{K})$.
- 41. PROPOSITION. La partie $\mathcal{D}_n(\mathbf{K})$ est dans l'espace $\mathcal{T}_n(\mathbf{K})$.
- 42. COROLLAIRE. La partie $\mathcal{D}_n(\mathbf{C})$ est dans l'espace $\mathcal{M}_n(\mathbf{C})$.
- 43. APPLICATION. La fonction $\mathcal{M}_n(\mathbf{C}) \longrightarrow \mathcal{M}_n(\mathbf{C})$ qui à une matrice de $\mathcal{M}_n(\mathbf{C})$ associe la partie diagonalisable dans sa décomposition de Dunford n'est pas continue dès que $n \ge 2$.

[4]

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

Serge Francinou, Hervé Gianella et Serge Nicolas. Algebre 1. Cassini, 2001.

Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.

^[1] [2] [3] [4] Joseph Grifone. Algèbre linéaire. 4e édition. Cépadués, 2011.