WEEK EIGHT

Acknowledgements: Slides created based off material provided by Dr. Travis Doom

THE ARRAY

- Data structure
 - Contain groups of related items under one variable name
- Arrays
 - Simplest and most prevalent data structure
 - Object that contains items of the same data type
 - Each item is indexed by their order in the list (starting at 0)
 - Can hold primitive data types or objects
- String is essentially an array of characters

CREATING AN ARRAY

- An array is an object thus it needs an object reference
 - The reference is stored in a variable and refers to the place in memory that the object is stored
 - int[] accounts;
- When creating an array, we must define it with a permanent size
 - We can never directly change the size of this array after it is created
 - accounts = new int[6];
 - int[] accounts = new int[6];

ACCESSING AND MODIFYING ARRAYS

- Say we want to update the value of the first index
 - accounts[0] = 500;

- We can also reference an existing array value when modifying another
 - accounts[3] = accounts[0] + 250;

MORE ABOUT ACCESSING ARRAYS

reference		500	0	0	750	0	0
accounts		index 0	index 1	index 2	index 3	index 4	index 5

- What happens if we try:
 - int num = accounts[6];
 - ArrayIndexOutOfBoundsException
- What if we try:
 - int index = 3;
 - int value = accounts[index];
 - value will equal 750

CREATING AN ARRAY WITH DEFAULT VALUES

- If you want your array to have some default values other than zero,
 - double[] $gpas = \{2.7, 3.4, 4.0, 3.6\};$
 - gpas[2] is equal to 4.0
- Remember, arrays are objects
 - What happens if we do:
 - System.out.println(gpas);
 - [D@7b23ec81
 - What if we do:
 - double[] moreGPAs = gpas;
 - moreGPAs now referenes the same place in memory as gpas
 - If one changes, they both change

ADDITIONAL ARRAY FUNCTIONALITY

- String[] weekDays = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
- Because arrays are objects, they have some built in fields and methods
 - The length *field*:
 - int size = weekDays.length; // 7
 - Useful methods:
 - Arrays.toString();
 - Arrays.equals();
 - Arrays.sort();
 - weekDays.clone();
- Array objects have access to all the methods of that object
 - String allCapsMon = weekDays[0].toUpperCase();

ACTIVITY

- Write a method that uses an array to keep track of a certain number of doubles
- The method will be provided with a starting value, and a number of doubles
- The method should then store each double in an index in the array and then return the array
- For example,
 - If the method is given 5 as a starting value and 4 as the number of doubles,
 - The array should look like this: [5, 10, 20, 40]

FOR-EACH LOOPS

- Enhanced for-loops for arrays or array-like structures
- Simplify code

```
int[] ages = new int[15];
int[] ages = new int[15];
for (int age : ages) {
                                     for (int i=0; i < ages.length; <math>i++) {
      System.out.println(age);
                                           System.out.println(ages[i]);
```

• Versus:

9

ACTIVITY

- Write a method that finds and returns the maximum value in an array of integers
- Write a method to find the first location of a specified value in an array

FILES

- Sequence of binary digits
 - May represent integers, text characters, etc.
- Files have many different types that define how to read the information inside
 - Text file: ASCII/UNICODE characters
 - Binary file: pretty much everything else

FILE I/O AND THE OS

- Operating System (OS) handles file operations for programs
 - Interacts with the storage device
 - Polices who can access/write to a file
 - Handles file properties (size, permissions, name)
- OS must open files so a program can use them
 - Programs use method calls to invoke OS routines
 - Create and open a new file to write to it (output)
 - Open an existing file to read it (input)
 - Open an existing file and write/append information to it (output)
 - Destroy an existing file
 - If the OS runs into a problem, it throws (creates) an exception

EXCEPTIONS

- Describes a problem that occurs in the code (or in this case with the OS)
- This allows the program to respond accordingly to an unexpected issue
- Some exceptions, (particularly file I/O exceptions) are **checked exceptions**
 - We must deal with these in some way, otherwise we will get an error
 - EX: IOException, FileNotFoundException
- When we encounter an exception, we must either:
 - Handle the exception (try/catch: we will discuss this later) OR
 - Pass the exception up a level
- To pass it up a level, we need to add a throw clause to the method header

```
public static void main (String[] args) throws Exception {
```

FILE BUFFERS

- Program calls a method to ask the OS to open the file
 - OS creates an area in memory (a buffer) that the program can access
 - OS provides the program with a reference to the buffer (a file handle)
 - OS checks if the program is permitted to receive the file handle
 - Permissions, is the file already open?
- Buffer improves performance
 - Memory is faster than accessing storage device where the file is stored
 - If file is opened, OS copies file contents into buffer
 - If file write occurs, change occurs in buffer
 - Eventually, OS will copy buffer back into the file
 - OS will flush the buffer and close the file
 - Open files are closed when program exits, thus we need to explicitly close files that are open

FILE POINTERS

- File pointer indicates where the next read or write operation will take place
- Each file is treated as a one-dimensional sequence of characters
 - Non-printing characters for newlines
- Read position indicates what characters are returned on the next read operation
 - Read position is updated to the next character each time a character is read
 - Most languages also provide methods to move the read pointer
 - EX: '1501 245'
 - nextInt() would read in '1501'
 - Read pointer is now on the white space between the two numbers
 - nextLine() would read in '245'

FILENAME CONVENTIONS

- Dependent on the OS
- Two different ways to reference file locations
 - Relative reference: specified from a default working directory (no absolute path)
 - String filename = "Data.txt";
 - Absolute reference: entire path specified from the root directory
 - String filename = "C:\\Users\\ClarissaMilligan\\Documents\\FA24\\data.txt";
 - Since '\' is the escape character in ASCII/UNICODE, we must use '\\'
 - Unix-type OSs use forward slash '/'

THE PRINTWRITER CLASS

- Under the java.io library
- PrintWriter class allows for writing to files using print and println methods, like we use for the console
- Constructor takes in a filename (String) or file handle (FileWriter)
 - WARNING: If PrintWriter is just given a filename, it will always overwrite that file completely

THE FILEWRITER CLASS

- Also, in the java.io library
- FileWriter is used to avoid erasing an existing file
 - FileWriter fwriter = new FileWriter("filename.txt", true);
 - Boolean argument indicates whether or not we will be appending data to the file
 - If we choose true, buffer will be created in a way so output will be appended to the end of the file
- FileWriter object can be passed into a PrintWriter

THE FILE CLASS

- Also in the java.io library
- Used to create a file handle
 - File fileHandle = new File("filename.txt");
- Scanner object can be used to parse the associated buffer (read the contents)
 - Scanner inputFile = new Scanner(fileHandle);
- Data can then be read with the same methods we use for the console:
 - nextLine(), nextInt(), nextDouble(), etc.
 - hasNextLine(), hasNextInt(), hasNextDouble(), etc.

FILE CLASS METHODS

- Sanity checking methods
 - exists(), canWrite(), canRead(), canExecute()
- Other useful methods
 - createNewFile(), delete(), getPath(), getAbsolutePath()
- Set OS properties
 - setExecutable(), setReadable(), setWritable(), setLastModificationDate()

HANDLING EXCEPTIONS

- Using a try/catch block allows us to handle issues without our program crashes
- Try block
 - Should surround any of the code that could generate an exception
 - Any code that is dependent on the code above also needs to be in the try block
 - Once an exception is thrown from the try block the execution halts and jumps to the corresponding catch block
- Catch block
 - Can be more than one for different exceptions
- Finally block
 - Executes last regardless of whether an exception is thrown

TRY/CATCH/FINALLY

```
try {
    // code that can cause an exception
} catch (Exception e) {
    // code that happens if that exception occurs
} finally {
    // code that happens regardless of what happens above
}
```

ACTIVITY

- Write code that:
 - Reads in 5 numbers from a file
 - Stores them in an array
 - Prints out the sum of the numbers
- File will look like this:

4

23

17

16.5

-8.3