

AMIR BECK AND MARC TEBOULLE

Optimization II – Final Project Presented by Royi Avital

AGENDA

- Motivation
- The Total Variation Operator
- The Problem Model
- Previous Methods
 - Sub Gradient Descent
 - Dual Form (Chambolle's Formalization)
- The Suggested Method
 - Innovations
- Results
- Remarks & Conclusions

MOTIVATION

Denoising

Deblurring

THE TOTAL VARIATION OPERATOR

• Math Operator which operates on Function. Intuitively, for 1D Functions, measures the Arc Length – $||f'(t)||_{TV} = \int |f'(t)|dt$.

Wikipedia

• Due to its "Edge Preserving" Property, gained popularity as a Regularization Operator in the Image Processing World (Rudin, Osher & Fatemi 1992).

THE TOTAL VARIATION OPERATOR

• The Discrete Form (Isotropic) $||x||_{TV} = \sum_{i,j} \sqrt{(x_{i+1,j} - x_{i,j})^2 + (x_{i,j+1} - x_{i,j})^2}$

• The Discrete Form (Anisotropic)
$$||x||_{TV} = \sum_{i,j} \sqrt{(x_{i+1,j} - x_{i,j})^2 + \sqrt{(x_{i,j+1} - x_{i,j})^2}} = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|$$

- The Matrix Form (Isotropic) $||x||_{TV} = ||\nabla x||_{2,1}, \qquad \nabla x \colon \mathbb{R}^{m \times n} \to \mathbb{R}^{2 \times mn}$
- The Matrix Form (Anisotropic)

$$||x||_{TV} = ||Dx||_{1}, \qquad D = \begin{bmatrix} -1 & 1 & 0 \\ & & & \end{bmatrix}$$

THE PROBLEM MODEL

Degradation Model -x = Ab + n.

THE PROBLEM MODEL

Degradation Operators

• Denoising -A = I.

• Deblurring – A Block Toeplitz Matrix of LPF.

THE PROBLEM MODEL

The Optimization Problem

$$x^* = \arg\min_{x} ||Ax - b||_2^2 + \lambda g(x) = \arg\min_{x} f(x) + \lambda g(x)$$

- The function g(x) is the Regularization Term
 - Gaussian Distribution (Tikhonov Regularization) $g(x) = ||x||_2$.
 - Gaussian Distribution of Derivatives $g(x) = ||Dx||_2$.
 - Lasso Regularization $g(x) = ||x||_1$.
 - Exponential Distribution of Derivatives $g(x) = ||Dx||_1$.
 - Sparse Model $g(x) = ||x||_0$.
 - Total Variation $g(x) = ||x||_{TV}$. For this presentation the Anisotropic Model is used.

• The Anisotropic TV Denoising Model in Matrix Form:

$$x^* = \arg\min_{x} H(x) = \arg\min_{x} \frac{1}{2} ||x - b||_{2}^{2} + \lambda ||Dx||_{1}$$

The Sub Gradient Method

$$\mathbf{x} - \mathbf{b} + \lambda \mathbf{D}^{\mathsf{T}} \operatorname{sgn}(Dx) \in \partial \left(\frac{1}{2} \|x - b\|^2 + \lambda \|Dx\|_1\right)$$

- Sub Linear Rate $(\frac{1}{\sqrt{k}})$ -> Inadequate for Image Processing.
- Could it be done using Proximal Gradient Method (For Linear Convergence Rate)? No!
 - No Closed Form Solution for $Prox_{t||D\cdot||_1}(x)$ (Mind the Linear Operator D Not a Tight Frame).

Antonin Chambolle – An Algorithm for Total Variation Minimization and Algorithm

- Duality Based Algorithm The problem becomes "Smooth" in its Dual Form.
- Duality comes from a "Trick" (Dual Norm, Support Function) $\|\nabla x\|_1 = \max_{p} \{p^T \nabla x \mid \|p\|_\infty \leq 1\}$
- In Matrix Form

$$||Dx||_1 = \max_p \{p^T Dx \mid ||p||_{\infty} \le 1\}$$

• Intuition tells that the expected p^* should be given by $p^* = sgn(Dx)$. Namely the solution given by Extreme Points of the Set. Some remarks on that later on.

Chamoblle's Dual Method

- 1. Problem formulation $\arg\min_{x} \{\frac{1}{2} ||x b||^2 + \lambda ||Dx||_1\} = \arg\min_{x} \max_{\|p\|_{\infty} \le 1} \{\frac{1}{2} ||x b||^2 + \lambda p^T Dx\}$
- 2. By the Min Max Theorem (The objective is Convex in x and Concave in p) one could switch the order of the Maximum and Minimum $\arg\max_{\|p\|_{\infty} \le 1} \min_{x} \{\frac{1}{2} \|x b\|^2 + \lambda p^T Dx\}$
- 3. Given $x^* = b \lambda D^T p$ the problem becomes $\arg\max_{\|p\|_{\infty} \le 1} \{\frac{1}{2} \|x^* b\|^2 + \lambda p^T D x^*\} = \arg\min_{\|p\|_{\infty} \le 1} \{\frac{1}{2} \lambda^2 p^T D D^T p \lambda b^T D^T p\}$
- 4. Strong Duality holds for this problem hence x^* can be extracted from p^* .

Chamoblle's Dual Method

5. This is a Minimization of a Convex Function over a Convex Set. The Gradient is given by

$$\nabla \left(\frac{1}{2}\lambda^2 p^T D D^T p - \lambda b^T D^T p\right) = \lambda^2 D D^T p - \lambda D b$$

6. Solution using Projected Gradient Method

$$p^{k+1} = P_{\parallel p \parallel_{\infty} \le 1} \left(p^k - t_k \left(\lambda^2 D D^T p^k - \lambda D b \right) \right)$$

7. Where the projection is given by (Per Element)

$$P_{\|\cdot\|_{\infty} \le 1}(x)_i = \frac{x_i}{\max(1, x_i)}$$

Chamoblle's Dual Method – Projection onto the ℓ_{∞} Ball

• By Moreau Decomposition

$$prox_f(x) + prox_{f^*}(x) = x$$

• In case of f(x) = ||x|| then $f^*(x) = P_{B_{||\cdot||_*}}(x)$ then

$$Prox_{\|\cdot\|_1}(x) = x - P_{B_{\|\cdot\|_{\infty}}}(x)$$

• It's known that $Prox_{\|\cdot\|_1}(x)$ is given by Soft Thresholding

$$Prox_{\|\cdot\|_{1}}(x)_{i} = \begin{cases} x_{i} - 1 & if \quad x_{i} \geq 1 \\ x_{i} - x_{i} & if \quad |x_{i}| < 1 \Rightarrow P_{B_{\|\cdot\|_{\infty}}}(x)_{i} = \begin{cases} 1 & if \quad x_{i} \geq 1 \\ x_{i} & if \quad |x_{i}| < 1 \\ x_{i} + 1 & if \quad x_{i} \leq -1 \end{cases}$$

Chamoblle's Dual Method – Step Size

• The Minimization problem had Quadratic Form

$$h(p) = \frac{1}{2}\lambda^2 p^T D D^T p - \lambda b^T D^T p$$

• The Lipschitz Constant is given by $\lambda_{max}(DD^T)$. The article showed $\lambda_{max}(DD^T) \leq 8$. Could a Tighter Bound be found? Yes!

Chamoblle's Dual Method – Step Size

- The <u>Gershgorin Circle Theorem</u> states that all Eigen Values of a given Matrix $A \in \mathbb{R}^{n \times n}$ are within Discs defined by $D(a_{ii}, R_i)$ where $R_i = \sum_{j \neq i} |a_{ij}|$.
- All elements on the diagonal of DD^T equal to 2, Hence $a_{ii}=2$.
- All off diagonal elements of are either 1 or -1 and there are not more than 2 on each row, Hence $R_i \le 2$.
- Applying the Circle Theorem $\lambda_{max}(DD^T) \leq \max_i \{a_{ii} + R_i\} \leq 4$.
- The Step Size t_k must obey $t_k \leq \frac{1}{4\lambda^2}$.
- Can we get even better? Yes!

Chamoblle's Dual Method – Step Size

- Look at the Optimizing Step of p^{k+1} and examine it (Neglecting λ) $p^{k+1} \cong p^k t_k (DD^T p^k Db) = (I t_k DD^T) p^k + t_k Db$
- This iteration converges if $\lambda_{max}(I t_k DD^T) \leq 1$.
- Defining $\lambda_{DD^T} = \lambda_{max}(DD^T)$ suggests that $\lambda_{max}(I t_k\lambda^2DD^T) = 1 t_k\lambda_{DD^T}$.
- Since DD^T is PD Matrix hence $\lambda_{max}(DD^T) > 0$.
- Limiting $-1 \le 1 t_k \lambda_{DD^T} \le 1$ results in $t_k \le \frac{2}{\lambda_{DD^T}}$.
- Since it is shown that $\lambda_{DD^T} \leq 4$ and plugging in the λ factor yields $t_k \leq \frac{1}{2\lambda^2}$.

Chamoble's Dual Method – Practical Notes

- The Derivative Operator D is applied using Convolution.
 Once for the Horizontal Derivative and Once for Vertical Derivative (The Operator and its Adjoint). Both images are vectorized into one long Vector.
- The Operator DD^T is basically the <u>Divergence</u> / <u>Discrete Laplace Operator</u>. Again, should be applied using Convolution.
- The term Db, The Gradient of b, can be calculated once.
- Initialization of p should be made by $p^0 = P_{\|p\|_{\infty} \le 1} \left(\frac{1}{\lambda} (DD^T)^{-1} D(b x^0) \right)$.
- One could calculate x^* only once at the end of the iterations.
- The Step Size t_k must obey $t_k \leq \frac{1}{4\lambda}$.

Innovations

- Using FISTA to accelerate the convergence.
- Adding constrain on the value of the output image.
- Using Denoising Operator for Deblurring.
- Monotonic FISTA.

Innovations – Using FISTA to accelerate the convergence

- Apply FISTA on the Projected Gradient Descent problem
 - Set $p^0 = P_{\|p\|_{\infty} \le 1} \left(\frac{1}{\lambda} (DD^T)^{-1} D(b x^0) \right)$ and $y^0 = p^0$.
 - For k = 0, 1, 2, ... do the following (Until Convergence Criterion is met)
 - 1. Set $p^{k+1} = P_{\parallel p \parallel_{\infty} \le 1} \left(y^k t_k \left(\left(\lambda^2 D D^T p^k \right) (\lambda D b) \right) \right)$.
 - 2. Set $y^{k+1} = p^{k+1} + \frac{k}{k+2} (p^{k+1} p^k)$.
 - 3. Set $x^{k+1} = b \lambda D^T p^{k+1}$.
 - Set $x^* = b \lambda D^T p^*$.
- Where step 3 is not mandatory.

Innovations – Using FISTA to accelerate the convergence

To match the Article one should note

$$(\lambda^2 D D^T p^k) - (\lambda D b) = -\lambda D (b - \lambda D^T p^k) = -\lambda D x^k$$

- Set $p^0 = P_{\|p\|_{\infty} \le 1} \left(\frac{1}{\lambda} (DD^T)^{-1} D(b x^0) \right)$ and $y^0 = p^0$, $x^0 = x_{Init}$.
- For k = 0, 1, 2, ... do the following (Until Convergence Criterion is met)
 - 1. Set $p^{k+1} = P_{\|p\|_{\infty} \le 1} (y^k + t_k \lambda D x^k)$.
 - 2. Set $y^{k+1} = p^{k+1} + \frac{k+1}{k+2} (p^{k+1} p^k)$.
 - 3. Set $x^{k+1} = b \lambda D^T p^{k+1}$.
- Set $x^* = b \lambda D^T p^*$.
- Where step 3 is not mandatory.

Innovations – Adding constrain on the value of the output image

- Real World images have known bounded values ([0, 1], {0, 1, ..., 255}).
- This prior knowledge should be used as a constraint.
- The proper way to use it is the apply Orthogonal Projection (Basically projecting onto a box) on Step 3 (Which becomes a must!).

$$\mathbf{x}^{k+1} = P_{B_{[u,l]}}(b - \lambda D^T p^{k+1})$$

The Projection Operator is given by

$$P_{B_{[u,l]}}(x)_i = \max\{\min\{x_i, u\}, l\}$$

Innovations – Using Denoising Operator for Deblurring

Given the Deblurring Model

$$x^* = \arg\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||Dx||_{1}$$

- Using the same "Trick" yields $\arg\max_{\|p\|_{\infty} \le 1} \min_{x} \left\{ \frac{1}{2} \|Ax b\|^2 + \lambda p^T Dx \right\} \to x^* = (A^T A)^{-1} (A^T b \lambda D^T p)$
- Yet the term A^TA might be singular which makes this solution not viable.
- If one would be given the $Prox_{tg}(x)$ of the given problem, the PGM would be

$$x^{k+1} = Prox_{t_k g} \left(x^k - t_k A^T (Ax^k - b) \right)$$

Innovations – Using Denoising Operator for Deblurring

• If one would be given the $Prox_{tg}(x)$ of the given problem, the PGM would be

$$x^{k+1} = Prox_{t_k g} \left(x^k - t_k A^T (Ax^k - b) \right)$$

Writing it explicitly yields

$$x^{k+1} = \arg\min_{y} \left\{ t_k g(y) + \frac{1}{2} \left\| y - \left(x^k + t_k A^T (A x^k - b) \right) \right\|^2 \right\}$$

• Which is exactly the Denoising Problem solved earlier with $\lambda_{Den} = t_k \lambda_{Deb}$ and $b_{Den} = x^k + t_k A^T (Ax^k - b_{Deb})$.

Innovations – Using Denoising Operator for Deblurring

- Practical Notes
 - Keep of the previous Denoising iteration as initialization for the next.
 This will reduce the needed Denoising Internal Iterations.
 - The Step Size for the Deblurring is again by Quadratic Form. Namely $t_k \leq \frac{1}{\lambda_{max}(A^TA)}$. Can we do better? Maybe! But not this time...

Innovations – Monotonic FISTA

• For the Deblurring Process "Jumps" in the minmization process might cause issues of convergence (The Denoising Solution isn't accurate).

Monotonic Property of the Solver would improve results greatly.

FISTA

- Set $y_0 = x_0$ and $t_0 = 1$.
- Step k=0,1,2,...Set $x_{k+1}=Prox_{Lg}(y_k)$. Set $t_{k+1}=\frac{1+\sqrt{1+4t_k^2}}{2}$ or $t_{k+1}=\frac{k+1}{2}$. Set $y_{k+1}=x_k+\left(\frac{t_k-1}{t_{k+1}}\right)(x_{k+1}-x_k)$.

Monotone FISTA (MFISTA)

- Set $y_0 = x_0$ and $t_0 = 1$.
- Step k = 0, 1, 2, ...Set $z_k = Prox_{Lg}(y_k)$.

Set
$$t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$$
 or $t_{k+1} = \frac{k+1}{2}$.
Set $x_{k+1} = \arg\min_{x} \{H(x_k), H(z_k)\}.$
Set $y_{k+1} = x_{k+1} + \left(\frac{t_k}{t_{k+1}}\right)(z_k - x_{k+1})$
 $+ \left(\frac{t_{k-1}}{t_{k+1}}\right)(x_{k+1} - x_k).$

Innovations – Monotonic FISTA

What happens for any case of evaluation?

Monotone FISTA (MFISTA)

- Set $y_0 = x_0$.
- Step k = 0, 1, 2, ...

Set
$$z_k = Prox_{Lg}(y_k)$$
.

Set
$$t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$$
 or $t_{k+1} = \frac{k+1}{2}$.

Set
$$x_{k+1} = x_k$$
.

Set
$$y_{k+1} = x_k + \left(\frac{t_k}{t_{k+1}}\right)(z_k - x_k)$$
.

O+15 MODONO

Monotone FISTA (MFISTA)

- Set $y_0 = x_0$.
- Step k = 0, 1, 2, ...

Set
$$z_k = Prox_{Lg}(y_k)$$
.

Set
$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$
 or $t_{k+1} = \frac{k+1}{2}$.

Set
$$x_{k+1} = z_k$$
.

Set
$$y_{k+1} = z_k + \left(\frac{t_{k-1}}{t_{k+1}}\right)(z_k - x_k).$$

15/A/

RESULTS

Denoising

Reference Image

CVX

Dual Chambolle

Dual FISTA Ref

Noisy Image

Sub Gradient

Dual FISTA

Reference Image

RESULTS

Deblurring

Reference Image

CVX

Blurred Image

FISTA By Denoising

Convergence Analysis

• The PGM suggest Sub Linear Convergence Rate $f\left(x^{k}\right) - f\left(x^{*}\right) \leq \frac{L\left\|x^{0} - x^{*}\right\|^{2}}{2k}$

$$f(x^k) - f(x^*) \le \frac{L\|x^0 - x^*\|}{2k}$$

- Yet, in practice the convergence rate is faster. This is due to f(x) being Strongly Convex.
- Define (As in Lecture Notes)

$$H(x) = f(x) + g(x)$$

Using Gradient Inequality

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$$

Using Strongly Convex Property

$$f(y) \ge g(x) + \langle \nabla f(x), y - x \rangle + \frac{s}{2} ||y - x||^2$$

• Combining them at
$$y=x-\frac{1}{L}G_L(x)$$
 yields
$$\frac{s}{2L^2}\|G_L(x)\|^2 \leq f\left(x-\frac{1}{L}G_L(x)\right)-f(x)+\frac{1}{L}\langle \nabla f(x),G_L(x)\rangle \leq \frac{1}{2L}\|G_L(x)\|^2$$

Convergence Analysis

- In similar way to lecture notes what would see that $H(x^{k+1}) \le H(y) + \langle G_L(x), x y \rangle \frac{1}{2L} ||G_L(x)||^2 \frac{s}{2} ||x y||^2$
- Same derivation as in Lecture Notes 007 Page 010 yields

$$H(x^{k+1}) - H(x^*) \le \frac{1}{2L} \left(\left(1 - \frac{s}{L} \right) \|x^* - x^{k+1}\|^2 - \|x^* - x^k\|^2 \right)$$

- Since one $H(x^{k+1}) \ge H(x^*)$ could see that $||x^* x^k||^2 \le (1 \frac{s}{L}) ||x^* x^{k+1}||^2$
- Yet this holds for k hence

$$||x^* - x^k||^2 \le (1 - \frac{s}{L})^k ||x^* - x^0||^2$$

Min Max Switching

Have a second look at

$$\arg\min_{x} \max_{\|p\|_{\infty} \le 1} \{ \frac{1}{2} \|x - b\|^2 + \lambda p^T Dx \}$$

- It is clear that sgn(Dx) maximizes the function and obeys the constraints. Yet, by switching (Min Max Theorem) the result is different.
 - Why isn't the result the same using Min Max Theorem? The solution isn't unique (Basically it is the Support Function $\sigma_{\|p\|_{\infty} \le 1}(Dx)$ and this is not guaranteed to be unique).
 - Can we solve the problem using this step instead? Better to still switch (No one wants to deal with the Sign Function). Then, have $p^* = sgn(Dx^*)$.

Min Max Switching Let's Try It...

CONCLUSIONS

- The article added Value Constraints (Box Constraints) to the TV Denoising / Deblurring Problem which improves results with negligible computational cost (Projection into a Box).
- The article suggest a framework to accelerate the TV Denoising method without any change of the "Cost Function".
- The article suggests a framework which enables solving the TV Deblurring problem.
- The article derived a Monotone version of FISTA which greatly improves the Deblurring results with negligible computational cost (2 Calculations of the Cost Function).
- Idea One might be able to us the same "Deblurring" trick to solve the Inpainting Problem as Inpainting can also be described by A.