Reflection Coefficient

In this section, we will derive the equation for the reflection coefficient. The reflection coefficient relates the forward-going voltage with reflected voltage.

Reflection coefficient at the load

Equations 1-2 represent the voltage and current on a lossless transmission line shown in Figure 1.

$$\tilde{V}(z) = \tilde{V}_0^+ e^{-j\beta z} + \tilde{V}_0^- e^{j\beta z} \tag{1}$$

$$I(z) = \frac{\tilde{V}_0^+}{Z_0} e^{-j\beta z} - \frac{\tilde{V}_0^-}{Z_0} e^{j\beta z}$$
 (2)

Figure 1: Transmission Line connects generator and the load.

We set up the z-axis so that the z=0 is at the load, and the generator is at z=-l. At z=0, the load impedance is connected. The definition of impedance is Z=V/I, therefore at the z=0 end of the transmission line, the voltage and current on the transmission line at that point have to obey boundary condition that the load impedance imposes.

$$Z_L = \frac{V(0)}{I(0)}$$

Substituting z=0, the boundary condition, in Equations 1-2, we get Equations 3-4.

Author(s): Milica Markovic

Learning outcomes: Derive and calculate the transmission line impedance and reflection coefficient. Relate reflection coefficient to impedance.

$$\tilde{V}(0) = \tilde{V}_0^+ e^{-j\beta 0} + \tilde{V}_0^- e^{j\beta 0} = \tilde{V}_0^+ + \tilde{V}_0^- \tag{3}$$

$$I(0) = \frac{\tilde{V}_0^+}{Z_0} e^{-j\beta 0} - \frac{\tilde{V}_0^-}{Z_0} e^{j\beta 0} = \frac{\tilde{V}_0^+}{Z_0} - \frac{\tilde{V}_0^-}{Z_0}$$

$$\tag{4}$$

Dividing the two above equations, we get the impedance at the load.

$$Z_L = Z_0 \frac{\tilde{V}_0^+ + \tilde{V}_0^-}{\tilde{V}_0^+ - \tilde{V}_0^-} \tag{5}$$

We can now solve the above equation for \tilde{V}_0^-

$$\frac{Z_L}{Z_0}(\tilde{V}_0^+ - \tilde{V}_0^-) = \tilde{V}_0^+ + \tilde{V}_0^-
(\frac{Z_L}{Z_0} - 1)\tilde{V}_0^+ = (\frac{Z_L}{Z_0} + 1)\tilde{V}_0^-
\frac{\tilde{V}_0^-}{\tilde{V}_0^+} = \frac{\frac{Z_L}{Z_0} - 1}{\frac{Z_L}{Z_0} + 1} = \frac{z_L - 1}{z_L + 1}
\Gamma_L = \frac{\tilde{V}_0^-}{\tilde{V}_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$
(6)

Lowercase z_L is called the "normalized load impedance". It is the actual impedance divided by the transmission line impedance $z_L = \frac{Z_L}{Z_0}$. For example, if the load impedance is $Z_L = 100\Omega$, and the transmission-line impedance is $Z) = 50\Omega$, then the normalized impedance is $z_L = \frac{100\Omega}{50\Omega} = 2$. Normalized impedance is a unitless quantity.

Definition 1. $\Gamma_L = \frac{\tilde{V}_0^-}{\tilde{V}_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$ is the voltage reflection coefficient at the load. Γ_L relates the reflected and incident voltage phasor and the load Z_L and transmission line impedance Z_0 . The voltage reflection coefficient at the load is, in general, a complex number, it has a magnitude and a phase $\Gamma_L = |\Gamma_L|e^{j \angle \Gamma_L}$.

Example

- (a) $100\,\Omega$ transmission line is terminated in a series connection of a $50\,\Omega$ resistor and $10\,\mathrm{pF}$ capacitor. The frequency of operation is $100\,\mathrm{MHz}$. Find the voltage reflection coefficient.
- (b) For purely reactive load $Z_L = j50\Omega$, find the reflection coefficient.

Voltage and Current on a transmission line

Now that we related forward and reflected voltage on a transmission line with the reflection coefficient at the load, we can re-write the equations for the current and voltage on a transmission line as:

$$\tilde{V}(z) = \tilde{V}_0^+ (e^{-j\beta z} + \Gamma_L e^{j\beta z}) \tag{7}$$

$$I(z) = \frac{\tilde{V}_0^+}{Z_0} (e^{-j\beta z} - \Gamma e^{j\beta z}) \tag{8}$$

We see that if we know the length of the line, line type, the load impedance, and the transmission line impedance, we can calculate all variables above, except for \tilde{V}_0^+ . In the following chapters, we will derive the equation for the forward going voltage at the load, but first, we will look at little more at the various reflection coefficients on a transmission line.

Reflection coefficient anywhere on the line

Equations 1-2 can be concisely written as

$$\tilde{V}(z) = \tilde{V}(z)^{+} + \tilde{V}(z)^{-} \tag{9}$$

$$\tilde{I}(z) = \tilde{I}(z)^{+} + \tilde{I}(z)^{-} \tag{10}$$

Where $\tilde{V}(z)^+$ is the forward voltage anywhere on the line, $\tilde{V}(z)^-$ is reflected voltage anywhere on the line, $\tilde{I}(z)^+$ is the forward current anywhere on the line, and $\tilde{I}(z)^-$ is the reflected current anywhere on the line.

We can then define a reflection coefficient anywhere on the line as

Definition 2. $\Gamma(z) = \frac{\tilde{V}(z)^-}{\tilde{V}(z)^+} = \frac{\tilde{V}_0^- e^{j\beta z}}{\tilde{V}_0^+ e^{-j\beta z}} = \frac{\tilde{V}_0^-}{\tilde{V}_0^+} e^{2j\beta z}$ is a voltage reflection coefficient anywhere on the line. $\Gamma(z)$ relates the reflected and incident voltage phasor at any z.

Since we already defined $\Gamma_L = \frac{\tilde{V}_0^-}{\tilde{V}_0^+}$ as the reflection coefficient at the load, we can now simplify the general reflection coefficient as

$$\Gamma(z) = \Gamma_L e^{2j\beta z} \tag{11}$$

It is important to remember that we defined points between the generator and the load as the negative z-axis. If the line length is, for example, $lm \ long$, the

generator is then at z=-lm, and the load at z=0. To find the reflection coefficient at some distance l/2 m away from the load, at z = -l/2 m, the equation for the reflection coefficient will be

$$\Gamma(z = -l/2) = \Gamma_L e^{-2j\beta l/2} \tag{12}$$

Since we already defined the reflection coefficient at the load, the reflection at any point on the line z = -l is

$$\Gamma(z = -l) = \Gamma_L e^{-2j\beta l} \tag{13}$$

$$\Gamma(z = -l) = \Gamma_L e^{-2j\beta l}$$

$$\Gamma(z = -l) = |\Gamma_L| e^{j(\angle \Gamma_L - 2\beta l)}$$
(13)
(14)

Reflection coefficient at the input of the transmission line

Using the reasoning above, the reflection coefficient at the input of the line whose length is l is

$$\Gamma(z=-l) = \Gamma_{in} = \Gamma_L e^{-2j\beta l} \tag{15}$$

Example 1. The reflection coefficient at the load is $\Gamma_L = 0.5e^{j60^0}$. Find the input reflection coefficient if the electrical length of the line is $\beta l = 45^{\circ}$.

Explanation. The reflection coefficient at the input of the line is $\Gamma(z=-l) = \Gamma_{in} = |\Gamma_L|e^{j(\angle\Gamma_L - 2\beta l)}$.

We substitute the expression for $\Gamma_L = 0.5e^{j60^0}$ and $\beta l = 90^0$, we get the reflection coefficient at the input of the line $\Gamma_{in} = 0.5e^{-j30}$.