TITLE₁

TITLE 2

by

EDUARD SZÖCS

from zărnesti / romania

Submitted Dissertation thesis for the partial fulfillment of the requirements for a Doctor of Natural Sciences
Fachbereich 7: Natur- und Umweltwissenschaften
Universität Koblenz-Landau

August 24, 2016

CONTENTS

A	SUPPLEMENTAL MATERIAL FOR: TAXIZE: TAXONOMIC SEARCH AND	
	RETRIEVAL	1
	A.1 A complete reproducible workflow	1

LIST OF F	IGURES	
Figure A.1 Figure A.2	1, 0,	
LIST OF T	ABLES	

SUPPLEMENTAL MATERIAL FOR: TAXIZE: TAXONOMIC SEARCH AND RETRIEVAL

A.1 A COMPLETE REPRODUCIBLE WORKFLOW, FROM A SPECIES LIST TO A PHYLOGENY, AND DISTRIBUTION MAP.

If you aren't familiar with a complete workflow in R, it may be difficult to visualize the process. In R, everything is programmatic, so the whole workflow can be in one place, and be repeated whenever necessary. The following is a workflow for taxize, going from a species list to a phylogeny.

First, install taxize

```
install.packages("taxize")
```

Then load it into R

```
library(taxize)
```

Most of us will start out with a species list, something like the one below. Note that each of the names is spelled incorrectly.

There are many ways to resolve taxonomic names in taxize. Of course, the ideal name resolver will do the work behind the scenes for you so that you don't have to do things like fuzzy matching. There are a few services in taxize like this we can choose from: the Global Names Resolver service from EOL (see function *gnr_resolve*) and the Taxonomic Name Resolution Service from iPlant (see function *tnrs*). In this case let's use the function *tnrs*.

```
#
                                  acceptedName sourceId score
            submittedName
# 5
         Helanthus annuus
                             Helianthus annuus iPlant TNRS 0.98
# 1
           Pinos contorta
                                Pinus contorta iPlant_TNRS 0.96
# 7 Collomia grandiflorra Collomia grandiflora iPlant_TNRS 0.99
# 6
         Rosa california
                              Rosa californica iPlant_TNRS 0.99
# 4
         Mimulus bicolour
                               Mimulus bicolor iPlant TNRS 0.98
                              Nicotiana glauca iPlant_TNRS
# 3
         Nicotiana glauca
                                                              1
# 2
           Maddia sativa
                                  Madia sativa iPlant_TNRS 0.97
# Note the scores. They suggest that there were no perfect matches,
# but they were all very close, ranging from 0.77 to 0.99
# (1 is the highest).
# Let's assume the names in the 'acceptedName' column
# are correct (and they should
# be).
# So here's our updated species list
(splist <- as.character(splist_tnrs$acceptedName))</pre>
# [1] "Helianthus annuus" "Pinus contorta"
                                             "Collomia grandiflora"
# [4] "Rosa californica" "Mimulus bicolor"
                                             "Nicotiana glauca"
# [7] "Madia sativa"
```

Another thing we may want to do is collect common names for our taxa.

```
tsns <- get_tsn(searchterm = splist, searchtype = "sciname",</pre>
        verbose = FALSE)
comnames <- lapply(tsns, getcommonnamesfromtsn)</pre>
# Unfortunately, common names are not standardized like species
# names, so there are multiple common names for each taxon
sapply(comnames, length)
# [1] 3 3 3 3 3 3 3
# So let's just take the first common name for each species
comnames_vec <- do.call(c, lapply(comnames,</pre>
     function(x) as.character(x[1, "comname"])))
# And we can make a data.frame of our scientific and common names
(allnames <- data.frame(spname = splist, comname = comnames_vec))</pre>
#
                  spname
                                                comname
# 1
       Helianthus annuus
                                       common sunflower
# 2
          Pinus contorta
                                         lodgepole pine
# 3 Collomia grandiflora
                                largeflowered collomia
# 4
                                    California wildrose
        Rosa californica
# 5
         Mimulus bicolor yellow and white monkeyflower
# 6
        Nicotiana glauca
                                           tree tobacco
# 7
       Madia sativa
                                  coast tarweed
```

Another common task is getting the taxonomic tree upstream from your study taxa. We often know what family or order our taxa are in, but it we often don't know the tribes, subclasses, and superfamilies. taxize provides many avenues to getting classifications. Two of them are accessible via a single function (*classification*): the Integrated Taxonomic Information System (ITIS) and National Center for Biotechnology Information (NCBI); and via the Catalogue of Life (see function *col_classification*):

```
# As we already have Taxonomic Serial Numbers from ITIS, let's just
# get classifications from ITIS. Note that we could use uBio instead.
class list <- classification(tsns)</pre>
sapply(class_list, nrow)
# [1] 12 11 12 12 12 12 12
# And we can attach these names to our allnames data.frame
library(plyr)
gethiernames <- function(x) {</pre>
    temp <- x[, c("rankName", "taxonName")]</pre>
    values <- data.frame(t(temp[, 2]))</pre>
    names(values) <- temp[, 1]</pre>
    return(values)
}
class_df <- ldply(class_list, gethiernames)</pre>
allnames_df <- merge(allnames, class_df, by.x = "spname",
         by.y = "Species")
# Now that we have allnames_df, we can start to see some
# relationships among species simply by their shared taxonomic names
allnames_df[1:2, ]
                                       comname Kingdom
                                                          Subkingdom
                 spname
# 1 Collomia grandiflora largeflowered collomia Plantae Viridaeplantae
      Helianthus annuus common sunflower Plantae Viridaeplantae
                                Subdivision Infradivision
   Infrakingdom
                    Division
# 1 Streptophyta Tracheophyta Spermatophytina Angiospermae
# 2 Streptophyta Tracheophyta Spermatophytina Angiospermae
    Class
                 Superorder Order
                                            Family
# 1 Magnoliopsida Asteranae Ericales Polemoniaceae
# 2 Magnoliopsida Asteranae Asterales
                                        Asteraceae Helianthus
# Ah, so Abies and Bartlettia are in different infradivisions, but
# share taxonomic names above that point.
```

However, taxonomy can only get you so far. Shared ancestry can be reconstructed from molecular data, and phylogenies created. Phylomatic is a web service with an API that we can use to get a phylogeny.

```
# Fetch phylogeny from phylomatic
phylogeny <- phylomatic_tree(taxa = as.character(allnames$spname),
    taxnames = TRUE,
    get = "POST", informat = "newick", method = "phylomatic",
    storedtree = "R20120829",
    taxaformat = "slashpath", outformat = "newick", clean = "true",
    parallel = TRUE)
# Format teeth-labels
phylogeny$tip.label <- capwords(phylogeny$tip.label,
    onlyfirst = TRUE)
# plot phylogeny
plot(phylogeny)</pre>
```


Figure A.1.: A phylogeny created using taxize.

Using the species list, with the corrected names, we can now search for occurrence data. The Global Biodiversity Information Facility (GBIF) has the largest collection of records data, and has a API that we can interact with programmatically from R. First, we need to install rgbif.

```
# Install rgbif from github.com
install.packages("devtools")
library(devtools)
install_github("rgbif", "ropensci")
```

Now we can search for occurrences for our species list and make a map.

Figure A.2.: A map created using taxize.