Gradient descent dynamics

Theoretical Deep Learning course

Eugene Golikov

MIPT, spring 2019

Neural Networks and Deep Learning Lab., MIPT

Brief overview

Objective:

$$\mathcal{L}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} L(y, \hat{y}(x, W)) \to \min_{W},$$

where W – network weights, \hat{y} – network response, \mathcal{D} – true data distribution, L – loss function.

Dimension of $W > 10^4$ (typically $10^6 \div 10^8$).

- **Previous lecture:** Study critical points of $\mathcal{L}(W)$
- This lecture: Study dynamics of gradient descent on $\mathcal{L}(W)$

1

Brief overview

Previous lecture:

In some cases (linear nets, wide non-linear nets) all local minima are guaranteed to be global.

Questions:

- 1. Why don't we converge to saddle points?
- 2. How fast do we converge to minima?
- 3. Even if there are non-global minima, how often do we converge to them?

Plan

- 1. General convergence guarantees:
 - 1.1 Gradient descent
 - 1.2 Gradient descent with random init
 - 1.3 Noisy gradient descent
- 2. Linear nets
- 3. Non-linear nets:
 - 3.1 Shallow ReLU-nets
 - 3.2 Extensions to deep nets

Let $f: \mathbb{R}^d \to \mathbb{R}$.

Definition:

We write $f \in \mathcal{C}_L^{k,q}$ for $q \leq k$, if:

- $f \in \mathcal{C}^k(\mathbb{R}^d)$;
- $\|\nabla^q f(x) \nabla^q f(y)\|_2 \le L\|x y\|_2 \quad \forall x, y.$

Stationary points:

• For $f \in C^1 \times x^*$ is a 1st-order stationary point if:

$$\|\nabla f(x^*)\|_2=0;$$

• For $f \in \mathcal{C}^{2,2}_{\rho}$ x^* is a 2nd-order stationary point if:

$$\|\nabla f(x^*)\|_2 = 0, \qquad \lambda_{min}(\nabla^2 f(x^*)) \geq 0.$$

Let $f: \mathbb{R}^d \to \mathbb{R}$.

Definition:

We write $f \in \mathcal{C}_L^{k,q}$ for $q \leq k$, if:

- $f \in \mathcal{C}^k(\mathbb{R}^d)$;
- $\|\nabla^q f(x) \nabla^q f(y)\|_2 \le L\|x y\|_2 \quad \forall x, y.$

Stationary points:

• For $f \in \mathcal{C}^1$ x^* is an ϵ -1st-order stationary point if:

$$\|\nabla f(x^*)\|_2 \le \epsilon;$$

• For $f \in \mathcal{C}^{2,2}_{\rho}$ x^* is an ϵ -2nd-order stationary point if:

$$\|\nabla f(x^*)\|_2 \le \epsilon, \qquad \lambda_{min}(\nabla^2 f(x^*)) \ge -\sqrt{\rho\epsilon}.$$

Suppose $f \in C^1$, $f \ge 0$.

Gradient descent:

$$x_{t+1} = x_t - \alpha \nabla f(x_t).$$

Guarantees:

Given $f \in C_L^{1,1}$, $\alpha \in (0,2/L)$ and any x_0 :

- $f(x_t) \searrow (\text{hence } f(x_t) \rightarrow f^*);$
- GD achieves an ϵ -1st-order stationary point in

$$T_{\epsilon} = \epsilon^{-2} \frac{L}{\omega(\alpha)} (f(x_0) - f^*)$$
 iterations.

No guarantees to converge to ϵ -2nd-order stationary point in non-convex case!

Ways to guarantee convergence to 2nd-order stationary point:

1. Introduce random initialization (Lee et al., 2016¹):

$$x_0 \sim P_{init}(x_0);$$

2. Introduce noise to gradients (Ge et al., 2015², Jin et al., 2017³):

$$x_{t+1} = x_t - \alpha(\nabla f(x_t) + \xi_t), \quad \xi_t \sim P_{noise}(\xi).$$

¹https://arxiv.org/abs/1602.04915

²https://arxiv.org/abs/1503.02101

³https://arxiv.org/abs/1703.00887

Suppose $f \in C_L^{2,1}$, $f \ge 0$.

Theorem (Lee et al., 2016):

Let $x_0 \sim P_{init}(x_0)$. Assume P_{init} is absolutely continuous wrt Lebesgue measure μ .

Then for any critical point x^* only one of two holds:

- x^* is a 2nd-order stationary point;
- $\bullet \ \mathbb{P}(\lim x_t = x^*) = 0.$

Equivalently, if x^* is a *strict saddle*, i.e. $\lambda_{min}(\nabla^2 f(x^*)) < 0$, then $\mathbb{P}(\lim x_t = x^*) = 0$.

Global stable set:

We call $W^s(x^*)$ a global stable set of a critical point x^* if

$$W^{s}(x^{*}) = \{x_{0} : \lim_{t \to \infty} x_{t} = x^{*}\}.$$

Trivial fact:

If $P_{init}(W^s(x^*)) = 0$ then GD almost surely doesn't converge to x^* .

Rewrite GD dynamics as:

$$x_{t+1} = x_t - \alpha \nabla f(x_t) = g(x_t) = g^{t+1}(x_0).$$

Local stable set:

We call $W_{loc}^s(x^*)$ a local stable set of a critical point x^* if

$$\exists U$$
 – vicinity of x^* : $W^s_{loc}(x^*) = U \cap W^s(x^*)$.

We can reconstruct global stable set from the local one:

$$W^{s}(x^{*}) = \bigcup_{t=0}^{\infty} g^{-t}(W_{loc}^{s}(x^{*})).$$

9

$$W^{s}(x^{*}) = \bigcup_{t=0}^{\infty} g^{-t}(W_{loc}^{s}(x^{*})).$$

 P_{init} is absolutely continuous wrt Lebesgue measure μ on \mathbb{R}^d :

$$\mu(W) = 0 \Rightarrow P_{init}(W) = 0 \quad \forall W.$$

We want to prove that $\mu(W^s(x^*)) = 0$ for any strict saddle x^* . For this, it is sufficient to have:

- 1. $\mu(W_{loc}^s(x^*)) = 0;$
- 2. g is a diffeomorphism.

Proposition (Lee et al., 2016):

For $f \in \mathcal{C}^{2,1}_{\ell}$ the gradient mapping g with step size $\alpha \in (0,1/L)$ is a diffeomorphism.

Theorem⁴⁵:

Informally: for every stable point x^* of a diffemorphism g there exist an embedded disk W_{loc}^s , which is a local stable set of x^* ;

 $\dim W_{loc}^s = \#$ eigenvalues of $Jg(x^*)$ less or equal to 1 in absolute value.

⁴https://en.wikipedia.org/wiki/Stable_manifold_theorem

⁵https://en.wikipedia.org/wiki/Center_manifold

Corollary (Lee et al., 2016):

Let x^* be a strict saddle, i.e. $\lambda_{\mathit{min}}(\nabla^2 f(x^*)) < 0$. Then,

 $\operatorname{codim} W^s_{loc} = \# \text{ eigenvalues of } Jg(x^*) \text{ greater than 1 in abs. value} = \# \text{ eigenvalues of } \nabla^2 f(x^*) \text{ less than 0} > 0.$

Hence $\mu(W^s_{loc}(x^*)) = 0$. Consequently, $\mu(W^s(x^*)) = 0$ and GD almost surely doesn't converge to x^* .

Theorem (Lee et al., 2016):

Let $x_0 \sim P_{init}(x_0)$. Assume P_{init} is absolutely continuous wrt Lebesgue measure μ .

Then, for any strict saddle x^* , $\mathbb{P}(\lim x_t = x^*) = 0$.

Question:

Suppose GD is guaranteed to converge to a 1st-order stationary point:

$$\forall x_0 \ \exists x^* : \quad \lim x_t = x^*, \ \nabla f(x^*) = 0.$$

Let all saddles of f be strict, and there are no maxima (*strict saddle property*).

Does the theorem guarantee that GD converges to a local minimum?

Convergence time guarantees for randomly initialized GD?

1st-order stationary point:

GD finds an ϵ -1st-order stationary point of $f \in \mathcal{C}_L^{1,1}$ in time T_{ϵ} , independent from d:

$$T_{\epsilon} \propto \epsilon^{-2} L$$

2nd-order stationary point:

Generally, good guarantee is impossible:

Du et al. $(2017)^6$ constructed $f \in \mathcal{C}_L^{2,1}$ with strict saddle property, for which GD with random initialization almost surely finds an ϵ -2nd-order stationary point in time exponential wrt d.

⁶https://arxiv.org/abs/1705.10412

Noisy gradient descent (NoisyGD):

$$X_{t+1} = X_t - \alpha(\nabla f(X_t) + \xi_t), \quad \xi_t \sim \text{Unif}(S^{d-1}(1)).$$

Theorem (Ge et al., 2015):

Suppose $f \in \mathcal{C}_L^{2,1} \cap \mathcal{C}_\rho^{2,2}$, $|f(x)| \leq B \ \forall x \in \mathbb{R}^d$. Then $\forall \ \epsilon > 0, \delta > 0 \ \exists \alpha_{\textit{max}}(\epsilon, \delta) : \ \forall \alpha < \alpha_{\textit{max}}$ NoisyGD achieves an ϵ -2nd-order stationary point in

$$T_{\epsilon} = O(poly(d/\epsilon))$$
 iterations w.p. $1 - \delta$.

Remark:

What is necessary is sufficient variance in every direction \Rightarrow can substitute gradient with stochastic gradient.

Perturbed gradient descent (PGD):

Very informally:

- If gradient is large, do a GD step;
- If gradient is small, inject noise, then do several GD steps;
- Stop, if *f* didn't decrease sufficiently after some GD steps after injecting noise.

Theorem (Jin et al., 2017):

Suppose $f \in \mathcal{C}_L^{2,1} \cap \mathcal{C}_{\rho}^{2,2}$, $|f(x)| \leq B \ \forall x \in \mathbb{R}^d$.

Then $\forall~\epsilon>0, \delta>0$ for appropriate choice of hyperparameters PGD achieves an ϵ -2nd-order stationary point in

$$T_{\epsilon} = O(\log^4(d)/\epsilon^2)$$
 iterations w.p. $1 - \delta$.

Let
$$f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$
.

Stochastic gradient descent (SGD):

$$x_{t+1} = x_t - \alpha \nabla f_i(x_t), \quad i \sim \text{Unif}(\{1..m\}).$$

Since $\mathbb{E}_i \nabla f_i(x_t) = \nabla f(x_t)$:

$$\nabla f_i(x_t) = \nabla f(x_t) + \xi_t, \quad \mathbb{E}\xi_t = 0.$$

Stochastic GD \approx Noisy GD?

If we want to apply theorem of Ge et al. (2015), we need to ensure ξ_t has variance bounded from below in every direction.

That's not true: see Chaudhari & Soatto (2018)⁷.

 $^{^{7} \}verb|https://openreview.net/forum?id=HyWrIgWOW¬eId=HyWrIgWOW|$

Stochastic gradient Langevin dynamics (SGLD):

$$x_{t+1} = x_t - \alpha_t(\nabla f(x_t) + \xi_t) + \beta_t W, \quad W \sim \mathcal{N}(0, 1),$$

where ξ_t is stochastic gradient noise, for which $\mathbb{E}\xi_t = 0$, $\mathbb{E}\xi_t^2 < Q$.

Theorem (Gelfand & Mitter, 19908):

 $\exists C_0$: for $\alpha_t = A/t$, $\beta_t = \sqrt{B/t \log \log t}$, where $B/A > C_0$, and tight initialization strategy P_{init} ,

$$x_t \stackrel{prob}{\to} x^*, \quad x^* \sim \pi,$$

where π is a weak limit of π^{ϵ} as $\epsilon \to 0$:

$$d\pi^{\epsilon}(x) = \frac{1}{Z^{\epsilon}} \exp\left(\frac{-2f(x)}{\epsilon^2}\right) dx.$$

⁸https://core.ac.uk/download/pdf/4380833.pdf

Local optimization: neural nets?

Are results all of these results applicable to neural nets?

- For ReLU nets $\mathcal{L}(W) \notin \mathcal{C}^2$;
- $\mathcal{L}(W)$ has non-strict saddles even for linear networks of depth ≥ 3 ;
- We cannot guarantee convergence to a global minimum in reasonable amount of steps;
- SGD is neither NoisyGD, nor PGD;
- Convergence in $\log^4 d$ is still too slow.

Desired result for neural nets:

Given number of weights is large enough and learning rate is small enough, GD (or SGD) quickly converges to global minimum of $\mathcal{L}(W)$ with high probability over random initialization.