Ordenação externa

Slides do livro Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke, McGrow-Hill, 2003

Atividade A9

1) Ordene o seguinte arquivo usando um algoritmo de ordenação externa

Pag size=2 (cada página armazena 2 valores)

Buffer size=3 (a memória pode armazenar até 3 páginas)

20,19,18,17, até o número 5

2) No exemplo acima, calcule o número de operações no caso de Buffer=5 de I/O.

Ordenamento

- Um problema clássico em CC
- Ordenar representa o primeiro passo para Bulk Loading B++;
- Importante para eliminar duplicatas;
- Problema: ordenar 1 TB de dados em 1 GB de ram

Merge-sort em duas vias

 Passada 0: leia a página, ordene, e a escreva.

Somente um buffer é usado

Passada 1, 2, ..., etc.:

Demanda de 3 buffers

Junta os pares

Merge-sort em duas vias

- N número de páginas
- Cada passada lê e escreve uma vez (2N)
- Número passagens = (log₂ N)+1
- Custo final: $2N(\log_2 N + 1)$

Merge sort B buffers

•Mais que 3 buffers de página

- Para ordenar um arquivo com N páginas usando B buffer pages
 - Passo 0: usar B buffer pages. Produce N/B páginas ordenadas;
 - Passo 1,2..: merge de B-1 execuções

Merge-sort em 4 vias

3,4 | 6,2 | 9,4 | 8,7 | 5,6 | 3,1 | 0

Custo

- Número de passes: $1+\Gamma \log_{B-1} N/B$ 1
- Custo= 2N * (# of passes)
- E.g., com 5 páginas de buffer, e um arquivo de 108 páginas:
 - Pass 0: 108/5= 22 páginas ordenadas

Agora, fazemos o merge com B-1 páginas:

- Pass 1: 22/4
- Pass 2: 6/4
- Pass 3: ordenado o arquivo

Number of Passes of External Sort

(I/O cost is 2N times number of passes)

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1,000	10	5	$\mid 4 \mid$	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	$oxed{4}$
1,000,000,000	30	15	10	8	5	$oxed{4}$

B+ agrupada para ordenamento

B+ não-agrupada para ordenamento

one I/O per data record!

Data Records