A Generalized Framework for Applications of DDPG in Portfolio Optimization

Ramsundar Govindarajan

Technische Universität München

April 18, 2023

Agenda

Portfolio optimization problem

DDPG - Custom Functions

DDPG

DDPGFunctions

DDPGShockBuffer

DDPG Estimates

Architecture

Results

Conclusion

Portfolio optimization problem

Assume, market model with 2 assets - $risky(P_1)$ and $riskless(P_0)$ - which follow the SDEs:

$$\mathrm{dP_1(t)} = \mathrm{P_1(t)}(\mu\mathrm{dt} + \sigma\mathrm{dW(t)}),$$

$$dP_0(t) = P_0(t)(r_c dt).$$

The portfolio optimization problem is defined as

$$(P) \left\{ \Phi(v_0) = \sup_{\pi \in \Lambda} \mathbb{E}[U(V^{v_0, \pi}(T))] \right\}$$

where the wealth update is defined by,

$$V^{v_{0},\pi}(t) = v_{0} \exp \left(\int_{0}^{t} r_{c} + (\mu - r_{c})\pi(s, V^{v_{0},\pi}(s)) - \frac{1}{2} (\sigma\pi(s, V^{v_{0},\pi}(s)))^{2} ds + \int_{0}^{t} \pi(s, V^{v_{0},\pi}(s))\sigma dW(s) \right)$$

Maximize terminal value of utility function of wealth in a portfolio consisting of risky and riskless asset.

Portfolio optimization problem - Reinforcement learning

Traditional approaches are model specific and cannot be generalized

RL can be an alternative towards solving these problems

Figure: Reinforcement learning

Advantages of using RL based solution

- ► Flexibility: No assumptions on utility functions
- ▶ Model free: No specification for models such as Black-Scholes or Heston needed. Real market data can be used.

Solving Portfolio Optimization using RL - Q Learning

Discretize problem
Restrict set of admissible portfolio processes π to

$$\boldsymbol{\Lambda}^{\Delta t} = \Big\{\boldsymbol{\pi}^{\Delta t} = (\boldsymbol{\pi}_i)_{i=0,...,(n-1)} | \boldsymbol{\pi}_i = \boldsymbol{\pi}(t_i,\cdot) : (0,\infty) \rightarrow \mathbb{R}, \boldsymbol{\pi}^{\Delta t} \in \boldsymbol{\Lambda}, i=0,...,(n-1) \Big\}.$$

 $\text{Define discretize version as } (P_{t_i}^{\Delta t}) \left\{ \begin{matrix} \Phi^{\Delta t}(t_i,v) = \sup_{\pi \in \mathsf{A}^{\Delta t}} \mathbb{E}[U(V^{v_0,\pi}(T))|V^{v_0,\pi}(t_i) = v] \end{matrix} \right.$

- ▶ Define Q value function in the portfolio optimization context
 - Q value function represents expected future reward starting from state s, taking action a and acting optimally afterward
 - In portfolio optimization context, State s - wealth v_i at time t_i Action a - discretized relative portfolio processes $\Lambda^{\Delta t}$

Solving Portfolio Optimization using RL - Q Learning

▶ Use Bellman optimality equation and iteratively update Q value function by

$$Q(s,a) = \underset{s' \sim P}{\mathbb{E}} \left[r(s,a,s') + (1-d) \max_{a'} Q(s',a') \right]$$

► Compute optimal allocations by

$$a^*(s) = \underset{a \in A}{\operatorname{argmax}} Q(s, a).$$

'Parametrized' Actor-Critic version of Q Learning

► Critic

For a mini-batch of transitions (si,ai,ri,s'i)) from the replay buffer, the critic is updated by minimizing the loss function

$$L = \frac{1}{N} \sum_{i=1}^{N} (Q(s_i, a_i; \theta) - (r_i + \gamma * \max_{a} (Q'(s_i', a; \theta')))^2$$

Actor

Updated as maximizer of the average Q-value

$$L = \frac{1}{N} \sum_{i=1}^{N} Q(s_i, a^{\phi}(s_i); \theta)$$

Target networks

Updated by a soft update

$$\theta' = \tau * \theta + (1 - \tau) * \theta'$$

Note: Q(s,a) action-value function, approximated by neural network with parameters θ . Q'(s,a) target action-value function

 a^{ϕ} is the policy, approximated by neural network with parameters ϕ $s_i = (V_i, t_i)$ is the current state, defined as a tuple of Wealth V at time t

$$r_i = \begin{cases} 0 & \text{when } t_{i+1} \neq T \\ U(V_{i+1}) & \text{Utility function of the evolution of wealth_over_time when } t_{i+1} = T \end{cases}$$

Problems with original implementation

- ▶ Model free or model generic approach leads to exploding runtimes
- Numerical instabilities
- ► Not scalable to complex problems

DDPGFunctions

Key Idea

Replace the neural networks in Critic and Actor function with general parametrized functions.

Example for power utility function,

▶ Critic function: Paramater $\theta = (\theta_0, \theta_1, \theta_2, \theta_T) \in \mathbb{R}^4$ and

$$Q(t_i,v,a;\boldsymbol{\theta}) = \tfrac{1}{b} v^b \exp\big((\boldsymbol{\theta}_0 + \boldsymbol{\theta}_1 a + \boldsymbol{\theta}_2 a^2) \Delta t + \boldsymbol{\theta}_T (T - t_{i+1})\big),$$

► Actor function:

$$a(t, v; \phi) = \pi^* = \phi$$
 for some $\phi \in \mathbb{R}$

- ▶ Giving the functions a known structure and exploiting characteristics of final solution
- ► Faster convergence
- ► Appropriate proxies for Critic and Actor functions

DDPGFunction -Performance problems

Bellman optimality equation - Loss Minimization

For all states s.

$$\begin{split} 0 &= \left(\mathbb{E}[(r + \gamma \underset{a'}{\text{max}} Q(s', a') - Q(s, a))]\right)^2, \\ 0 &= \mathbb{E}[(r + \gamma \underset{a'}{\text{max}} Q(s', a') - Q(s, a))^2]. \end{split}$$

In classic DDPG setting.

$$L = \frac{1}{|B|} \sum_{(s,a,r,s') \sim B} [(r + \gamma \underset{a'}{\text{max}} Q(s',a') - Q(s,a))^2].$$

- Q(s',a') is only one realization among the many probable returns of the portfolio
- Unstable and can lead to incorrect results
- Exploding gradients problem

Key Idea

Consider a mini-batch B - log return of shocks. Instead of one realization of s', consider pool of possible s' in minimizing the loss function

- Better approximation of Bellman loss
- ► Leads to stable updates

DDPG Shock Buffer

- 1. Consider $S = (V_i, t_i)$ take action $a = a(V_i, t_i)$
- 2. Observe log return of shock

$$\Delta P = (\mu - \frac{1}{2}\sigma^2)\Delta t + \sigma \Delta W$$

- 3. Store (V_i,t_i) in replay buffer R_a and ΔP in replay buffer R_p
- 4. Define the wealth update function

$$V^{U}(V_{i},a,\Delta P) = V_{i}((1-a)r\Delta t + a\Delta P + \frac{1}{2}\sigma^{2}a(1-a)\Delta t$$

5. For batches $B_a \subset R_a$ and $B_p \subset R_p$, (size m) update parameters θ of critic and action ϕ as

$$\theta \leftarrow \mathrm{argmin}_{\theta'} \frac{1}{|B_a|} \Sigma (Q^{\theta'}(V_i, t_i, a) - \frac{1}{|B_p|} \Sigma (r(V^u, t_i) + \mathbf{1}_{(i \neq n)} Q^{\theta_{tgt}}(V^u, t_{i+1}, a_{tgt}^{\phi}(V^u, t_{i+1}))^2$$

$$\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{|B_{\mathbf{a}}|} \Sigma \big(Q^{\theta'} \big(V_i, t_i, \mathbf{a}^{\phi'} \big(v_i, t_i \big)$$

Where V^{u} is the updated wealth generated from (V_i,a, $\!\Delta P$)

- 6. Update target network
- 7. Transition to $S = (V^U, t_i)$

DDPG Estimates

Key Idea

$$\mathbb{E}[(r + \gamma \underset{a'}{\mathsf{max}} \operatorname{Q}(s', a') - \operatorname{Q}(s, a))^2]$$

In Bellman optimality equation, observe Q(s',a') is function of a standard normal variate. Then we can discretize the integral and use numerical methods such as computing Riemann sum which can capture the expectation better.

- ► Leads to faster and better convergence
- ▶ Variance problem can be reduced.

DDPG Estimate - Algorithm

Replace "inner sum" in DDPG Shock Buffer by the following procedure

Finding better estimate of expectation

$$\begin{split} Q(v,t,a) &= \mathbb{E}[r(V^u(v,a,z),t)] + \mathbf{1}_{\{t+\Delta t \neq T\}} \mathbb{E}[\mathsf{max}_{a' \in A} \ Q(V^u(v,a,z),t + \Delta t,a')] \\ &= \int_{\mathbb{R}} r(V^u(v,a,z),t) \phi(z) dz + \mathbf{1}_{\{t+\Delta t \neq T\}} \int_{\mathbb{R}} \mathsf{max}_{a' \in A} \ Q(V^u(v,a,z),t + \Delta t,a') \phi(z) dz \\ &\approx \Sigma_{i=-(m-1)}^m [r(V^u(v,a,z_i),t) + \mathbf{1}_{\{t+\Delta t \neq T\}} \mathsf{max}_{a' \in A} \ Q(V^u(v,a,z_i),t + \Delta t,a')] \phi(z_i) (z_i - z_{i-1}) \end{split}$$

- 1. For the mini-batch $B_a \subset R_a$, consider a sample $S = (V_i, t_i)$ and action a_i
- Generate log return of shocks for "2m" standard normal variates z using the following equation.

$$\Delta P = (\mu - \frac{1}{2}\sigma^2)\Delta t + \sigma z \sqrt{\Delta t}$$

Define the wealth update function

$$V^{U}(V_{i}, a_{i}, \Delta P) = V_{i}((1-a).r.\Delta t + a_{i}\Delta P + \frac{1}{2}\sigma^{2}a_{i}(1-a_{i})\Delta t$$

4. Update parameters θ of critic and action ϕ as

$$\theta \leftarrow \mathrm{argmin}_{\theta'} \frac{1}{|B_a|} \Sigma(Q^{\theta'}(V_i, t_i, a) - \mathbf{1}_{i \neq n} Q(V^u, t_{i+1}, a^{\phi}_{tgt}V^u, t_{i+1}))^2$$

$$\phi \leftarrow \operatorname{argmin}_{\phi} \frac{1}{|B_{\mathbf{a}}|} \Sigma(Q^{\theta'}(V_i, t_i, \mathbf{a}^{\phi'}(v_i, t_i))$$

Architecture - Data flow diagram

Figure: Data flow diagram

Architecture - Class diagrams

record(obs dict)


```
O DDPG Update
Т
cf₂
dt
m
г
variables: dict
get all variables()
get trainable variables()
g mu(arr, network)
```

```
O Custom Update
custom weight: bool
network : dict
tan
get all variables()
get model(cfg)
get trainable variables()
q mu(X, network str)
update weight()
```

Architecture - Modular components

```
"name": "Experiment - Decaying tau and batch size in DDFG Shock Buffer version",
"env": {
  "name": "BlackScholes-V2",
 "mu": 0.09,
 "sigma": 0.3
"general settings": {
  "max episodes": 5000.
 "max_steps": 100,
  "batch size": 1024,
  "batch size increase": "linear"
},
"ddpg": {
 "type":
    "name": "DDPGShockBufferEstimate".
     "m": 20
  "gamma": 1.
  "noise decay": 1
  "q": {
    "name": "q pow utparametric"
  },
    "name": "a_pow_ut1",
```

Architecture - Hypertuning framework

```
"tune": {
 "buffer.name": {
    "list": [ "DDPGShockBuffer", "DDPG"
  "env.dt":
    "list": [ 0.01,0.02,0.1,0.2]
  "ddpg.max episodes" :
    "low": 2000, "high": 20000, "step": 100
  },
 "group":
      "env.mu": 0.019536, "env.sigma": 0.377183
      "env.b": -8.381621,"env.sigma": 0.57196
  "group_2" :
    "ddpg.g.name" : "g log utparametric", "env.U 2" : "np.log"
     "ddpg.q.name" : "q_pow_utparametric", "env.U_2" : "pow"
    } ]}
```

Architecture - Other components

- 1. MLFlow
- 2. Dashboard https://ddpg-po-dash1.herokuapp.com/
- 3. Flask API deployment
- 4. Documentation service https://rl-fn.readthedocs.io/en/latest/

Results - Configuration - All

EnvironmentSampled values		DDPG	Values	DDPG	Values
Parame-		Parameter		Parameter	
ter					
$\mu \in [0, 1]$	[0.07,0.955]	Version	DDPG, Shock	Batch	1024
	, ,		Buffer, Estimates	Size	
$\sigma \in [0,1]$	[0.1,1.4]	Grid	[8,1024] (8 - base	Batch	None
[-,-]	[0.2,2.2]	Points	case)	Size	and
		1 011100	case)	Growth	Linear
				Growth	(Linear
					- base
	[0.01.0.0]		[0.1001] (0.1		case)
Δt	[0.01,0.2] (0.2 -	Shock	[8,1024] (8 - base		
	base case)	Buffer	case)		
		Size			
$v_0 \in (0,1]$	[0.1,1] (1 base	Noise	Linear and None		
	case)	Decay			
Utility	power and log	Noise	[0.1,5] (1 - base		
		Scale	case)		
b ∈	[-9.0,0.95]	τ	5.10^{-4}		
$[-10,1)\setminus\{0\}$					
T	1	τ decay	Linear and None		
			(Linear - base		
			case)		
rc	0	Buffer	[10 ⁴ , 10 ⁵] (10 ⁴ -		
		Length			
r_c	0	Buffer Length	$[10^4, 10^5] (10^4 -$ base case)		

Results - All (accuracy)

	25%	50%	75%	count	max	mean	min	std
DDPG	0.2705017919911987	0.8139643315095175	0.919626470577806	2278	1	0.6264779550229188	0	0.37804581820743255
Estimate	0.7127671413349081	0.8923287341451227	0.9426533015645605	1089	0.9971678571200332	0.7453510803262131	0	0.3086218198376786
ShockBuffer	0.7402616968297555	0.9339218505903728	0.9743309571024861	1483	1	0.7493961090812846	0	0.35886069370735263

Results - All

Accuracy - Environment

τ decay and episodes analysis

Episodes

Robust configuration

Key observation

Observed that accuracy and convergence improved considerably by building better estimates of the expectation in Bellman equation. Construct better estimates by increasing the "m" factor.

Robust configuration

Box plot Analysis M (timesteps - 0.01)

Conclusion

Parameter	Impact	DDPG Version
Stable estimate	High	Shock Buffer and Esti-
for expectation		mates
Number of grid	High	Estimates
points		
Batch size of log	High	Shock Buffer
returns		
Batch size of	Medium	All
state, action tu-		
ples		
τ	Medium	All
Noise scale	Low	All
Number of	Medium	All
episodes		
Model parame-	None	All
ters		
Time discretiza-	High	All
tion Δt		