EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Capacitor filter circuit:

Smoothing circuit or filter →

to convert series of +ve/-ve half-cycles to dc voltage.

When D_1 is forward biased, C_1 is charged to Input waveform Peak capacitor voltage \rightarrow

$$V_C = V_{pi} - V_F$$

When D_1 is reverse biased, C_1 is discharged slowly through R_L .

(a) Half-wave rectifier circuit with a reservoir capacitor

Charge and discharge of C_1 cause small increase and decrease in V_C =

Output is direct voltage with small ripple.

Vi falls below Vpi

Quantities of circuit output voltage waveform →

 $E_{o(ave)}$ = average dc output voltage

 $E_{o(max)}$ = maximum output voltage

 $E_{o(min)}$ = minimum output voltage

 V_r = ripple voltage peak-to-peak amplitude

T = time period of ac input waveform

 t_1 = capacitor discharge time

 t_2 = capacitor charge time

 θ_1 = phase angle of input wave from zero to $E_{o(min)}$

 θ_2 = phase angle of input wave from $E_{o(min)}$ to $E_{o(max)}$

Assumption $\rightarrow t_1 >> t_2$

Reservoir capacitor value →

 $C_1 = I_L t_1 / V_r$ $I_I = \text{load current}$

Problem-7:

Determine the peak-to-peak ripple voltage for a half-wave rectifier and filter circuit which has a 680 μ F reservoir capacitor, an average output of 28 V, and a 200 Ω load resistance. Frequency of the ac input waveform is assumed to be 60 Hz.

Load current, $I_L = E_{o(ave)}/R_L = 28/200 = 140$ mA Time period of ac input waveform, T = 1/f = 1/60 = 16.7 ms Capacitor discharge time, $t_1 \approx T = 16.7$ ms Peak-to-peak ripple voltage, $V_r = I_L t_1/C_1 = (140\times10^{-3}\times16.7\times10^{-3})/680\times10^{-6} \approx 3.4$ V

Problem-8:

A half-wave rectifier dc power supply is to provide 20 V to a 500 Ω load as shown in Fig. 8. The peak-to-peak ripple voltage is not to exceed 10% of the average output voltage, and the ac input frequency is 60 Hz. Calculate the required reservoir capacitance.

Time period of ac input waveform, T = 1/f = 1/60 = 16.7 ms Capacitor discharge time, $t_1 \approx T = 16.7$ ms Peak-to-peak ripple voltage, $V_r = 10\%$ of $E_{o(ave)}$ $= 20 \times 10/100 = 2 \text{ V}$ Load current, $I_L = E_{o(ave)}/R_L = 20/500 = 40 \text{ mA}$ Reservoir capacitor value $C_1 = I_L t_1/V_r = (40 \times 10^{-3} \times 16.7 \times 10^{-3})/2$

= 334 μ F (use 330 μ F standard value)

Input waveform

Surge-limiting

resistor

Convert output waveform to dc voltage.

Reservoir capacitor smooth output voltage.

Surge-limiting resistor protects

diodes.

Reservoir capacitance, $C_1 = I_L t_1/V_r$ Repetitive current, $I_{FRM} = I_L (t_1 + t_2)/t_2$

Each pair of diodes conducts during alternate half-cycle.

Average forward current for each diode, $I_{F(ave)} = I_L/2$

Assumption $\rightarrow t_1 >> t_2$ $t_1 = T/2 - t_2 \approx T/2$

Output waveform

Current

pulse

Direct voltage

with ripple

Rectified

wave

Problem-9:

The full-wave rectifier dc power supply in Fig. 9 is to supply 20 V to a 500 Ω load. The peak-to-peak ripple voltage is not to exceed 10% of the average output voltage, and the ac input frequency is 60 Hz. Calculate the required reservoir capacitor value.

Time period of ac input waveform, T = 1/f = 1/60 = 16.7 ms Capacitor discharge time, $t_1 \approx T/2 = 16.7/2 = 8.35$ ms Peak-to-peak ripple voltage, $V_r = 10\%$ of $E_{o(ave)}$ = $20 \times 10/100 = 2$ V

Load current, $I_L = E_{o(ave)}/R_L = 20/500 = 40 \text{ mA}$ Reservoir capacitor value

$$C_1 = I_L t_1 / V_r = (40 \times 10^{-3} \times 8.35 \times 10^{-3}) / 2$$

= 167 µF (use 150 µF standard value)

