Meher Shrishti Nigam 20BRS1193

EDA LAB -2 (Q1) 6/1/23

```
# Meher Shrishti Nigam

# 20BRS1193

# EDA Lab 2

options(prompt="MEHERSHRISHTI>", continue =" ")

# options(prompt=">", continue =" ")

# EDA-LAB-EXPERIMENT-2 (Date-6/1/2023)

library(ISLR)

# Q1. This question involves the use of multiple linear regression on the Auto data set.

df <- Auto
```

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

pairs(df)

df <- na.omit(df)

(b) Compute the matrix of correlations between the variables using the function cor().

```
df_num <- subset(df, select = -name)
cor(df_num)</pre>
```

```
MEHERSHRISHTI>df_num <- subset(df, select = -name)</pre>
MEHERSHRISHTI>cor(df_num)
                         cylinders displacement horsepower
                    mpg
              1.0000000 -0.7776175
                                     -0.8051269 -0.7784268
mpg
cylinders
             -0.7776175
                         1.0000000
                                      0.9508233
                                                  0.8429834
displacement -0.8051269
                         0.9508233
                                      1.0000000
                                                  0.8972570
             -0.7784268
                         0.8429834
                                      0.8972570
                                                  1.0000000
horsepower
             -0.8322442
                                      0.9329944
weight
                         0.8975273
                                                  0.8645377
acceleration
              0.4233285 -0.5046834
                                     -0.5438005 -0.6891955
              0.5805410 -0.3456474
                                      -0.3698552 -0.4163615
year
origin
              0.5652088 -0.5689316
                                      -0.6145351 -0.4551715
                 weight acceleration
                                                     origin
                                            year
             -0.8322442
                           0.4233285
                                      0.5805410
                                                  0.5652088
mpg
cylinders
                          -0.5046834 -0.3456474 -0.5689316
              0.8975273
displacement
              0.9329944
                          -0.5438005 -0.3698552 -0.6145351
horsepower
              0.8645377
                          -0.6891955 -0.4163615 -0.4551715
weight
              1.0000000
                          -0.4168392 -0.3091199 -0.5850054
acceleration -0.4168392
                           1.0000000
                                      0.2903161
                                                  0.2127458
             -0.3091199
                           0.2903161
                                      1.0000000
                                                  0.1815277
year
origin
             -0.5850054
                           0.2127458
                                      0.1815277
                                                  1.0000000
MEHERSHRISHTI>
```

- # (c) Use the lm() function to perform a multiple linear regression with mpg as
- # the response and all other variables except name as the predictors.
- # Use the summary() function to print the results.
- # Comment on the output. For instance:

```
linear_model <- Im(mpg ~ ., data=df_num)
summary(linear_model)</pre>
```

```
MEHERSHRISHTI>linear_model <- lm(mpg ~ ., data=df_num)
MEHERSHRISHTI>summary(linear_model)
call:
lm(formula = mpg \sim ., data = df_num)
Residuals:
   Min
            10 Median
                            3Q
                                   Max
-9.5903 -2.1565 -0.1169
                        1.8690 13.0604
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -17.218435
                         4.644294
                                   -3.707 0.00024 ***
                         0.323282
cylinders
             -0.493376
                                   -1.526
                                           0.12780
displacement
             0.019896
                         0.007515
                                   2.647 0.00844 **
             -0.016951
                         0.013787
                                   -1.230 0.21963
horsepower
                                   -9.929 < 2e-16 ***
             -0.006474
                         0.000652
weight
acceleration
                                   0.815 0.41548
              0.080576
                         0.098845
year
              0.750773
                         0.050973
                                   14.729 < 2e-16 ***
              1.426141
                         0.278136 5.127 4.67e-07 ***
origin
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.328 on 384 degrees of freedom
Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
```

i. Is there a relationship between the predictors and the response?

- # We test whether the null hypothesis of all regression coefficients are zero.
- # This helps us test whether there is a relationship between predictors and response.

F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16

P-value is low and F-statistic is not close to 1, thus we can refute the null hypothesis.

ii. Which predictors appear to have a statistically significant relationship to the response?

- # Displacement, Weight, Year, Origin have statistically significant relationships with the response.
- # Whereas Cylinders, Horsepower, Acceleration do not have a statistically significant relationship.
- # This can be determined using their p-values of a predictor's t-statistic.

iii. What does the coefficient for the year variable suggest?

The coefficient for the year variable is 0.750773.

This tells us that every passing year, mpg (miles per gallon) increases by the coeffcient 0.75 approximately.

(d) Use the plot() function to produce diagnostic plots of the linear regression # fit. Comment on any problems you see with the fit.

Do the residual plots suggest any unusually large outliers?

Does the leverage plot identifies any observations with unusually high leverage?

par(mfrow = c(2, 2))
plot(linear_model)

The Residuals vs Fitted Plot suggests that a linear model is not the best fit for the given dataset.

The Residuals vs Fitted Plot does not suggest any unusually large outliers.

The Residuals vs Leverage plot shows data point 14 has a unusually high leverage. It's residual value is low however.

plot(predict(linear model), rstudent(linear model))

(e) Use the * and : symbols to fit linear regression models with interaction effects.

Do any interactions appear to be statistically significant?

```
linear model 2 <- Im(mpg ~ weight * cylinders + weight * displacement, data = Auto)
summary(linear model 2)
MEHERSHRISHTI>linear_model_2 <- lm(mpg ~ weight * cylinders + weight * displacement, data = Auto)</pre>
MEHERSHRISHTI>summary(linear_model_2)
Call:
lm(formula = mpg ~ weight * cylinders + weight * displacement,
    data = Auto)
Residuals:
               1Q
                    Median
                                  3Q
     Min
                                          Max
-13.3698
          -2.5514
                   -0.3861
                              1.7206
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 6.440e+00
                                             7.451 6.15e-13
                      4.798e+01
                     -7.232e-03
                                            -3.341 0.000916
weiaht
                                 2.165e-03
cylinders
                     1.993e+00
                                 2.055e+00
                                             0.970 0.332710
displacement
                     -1.065e-01
                                 3.066e-02
                                            -3.473 0.000573
weight:cylinders
                     -5.380e-04
                                 6.016e-04
                                            -0.894 0.371771
                                8.205e-06
                                             2.995 0.002924
weight:displacement
                     2.457e-05
                     ***
(Intercept)
weight
cylinders
displacement
weight:cylinders
weight:displacement **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.103 on 386 degrees of freedom
Multiple R-squared: 0.7273,
                                 Adjusted R-squared: 0.7237
F-statistic: 205.8 on 5 and 386 DF, p-value: < 2.2e-16
```

Interaction between weight and displacement is statistically significant, while the interaction between cylinders and weight is not.

(f) Try a few different transformations of the variables, such as log(X), VX, X2. Comment on your findings.

linear_model_3 <- lm(mpg ~ log2(weight) * cylinders + sqrt(weight) * displacement, data = Auto)

```
summary(linear model 3)
```

```
MEHERSHRISHTI>linear_model_3 <- lm(mpg ~ log2(weight) * cylinders + sqrt(weight) * displacement, data = Auto)</pre>
MEHERSHRISHTI>summary(linear_model_3)
lm(formula = mpg ~ log2(weight) * cylinders + sqrt(weight) *
    displacement, data = Auto)
Residuals:
             1Q Median
-13.1554 -2.5204 -0.4397 1.8150 17.9821
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                          -14.509751 190.908750 -0.076
(Intercept)
                            8.948125 23.034755
log2(weight)
                                                  0.388
                                                           0.6979
cylinders
                                                  1.057
                                                           0.2913
                           17.297328 16.368891
sqrt(weight)
                           -1.139997
                                        1.420925
                                                  -0.802
                                                           0.4229
displacement
                           -0.173802
                                       0.070006 -2.483
                                                           0.0135 *
log2(weight):cylinders
                           -1.473723
                                       1.402552
                                                  -1.051
                                                           0.2940
sqrt(weight):displacement 0.002617 0.001155
                                                  2.266 0.0240 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 4.105 on 385 degrees of freedom
Multiple R-squared: 0.7277, Adjusted R-squared: 0.7
F-statistic: 171.4 on 6 and 385 DF, p-value: < 2.2e-16
                               Adjusted R-squared: 0.7234
MEHERSHRISHTI>
```

Interaction between sqrt(weight) and displacement is statistically significant, while the interaction between cylinders and log2(weight) is not.

linear_model_4 <- Im(mpg ~ weight * displacement + sqrt(cylinders) * weight, data = Auto)
summary(linear model 4)</pre>

```
MEHERSHRISHTI>linear_model_4 <- lm(mpg ~ weight * displacement + sqrt(cylinders) * weight, data = Auto)

MEHERSHRISHTI>summary(linear_model_4)

Call:

lm(formula = mpg ~ weight * displacement + sqrt(cylinders) *

weight, data = Auto)

Residuals:

Min 1Q Median 3Q Max

-13.0073 -2.5501 -0.4074 1.7542 18.0704

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.37le+01 1.692e+01 1.992 0.047041 *

weight -3.303e-03 5.302e-03 -0.623 0.533653

displacement -1.123e-01 2.952e-02 -3.804 0.000165 ***

sqrt(cylinders) 1.135e+01 9.377e+00 1.210 0.226848

weight:displacement 2.609e-05 7.960e-06 3.278 0.001140 **

weight:sqrt(cylinders) -3.088e-03 2.804e-03 -1.101 0.271399

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.099 on 386 degrees of freedom

Multiple R-squared: 0.7277, Adjusted R-squared: 0.7242

F-statistic: 206.3 on 5 and 386 DF, p-value: < 2.2e-16
```

Interaction between weight and displacement is statistically significant, while the interaction between sqrt(cylinders) and weight is not.