DARI DATA KE KEPUASAN: MEMPERKIRAKAN LAMA WAKTU DELIVERY DENGAN CERDAS

Luthfi Ridhoul Aziz

: https://www.linkedin.com/in/luthfiridhoul/

: https://github.com/luthfiridhoul

Profil

Saya Luthfi Ridhoul Aziz, lulusan S1 Akuntansi dari Universitas Brawijaya dengan IPK 3,58. Selama masa kuliah, saya aktif mengikuti berbagai kegiatan akademik maupun non-akademik yang mengasah kemampuan analisis, komunikasi, dan kerja sama tim.

Selain memiliki minat yang besar di bidang **finance**, saat ini saya juga mendalami dunia data, khususnya **Data Science** dan **Data Analysis**, untuk mengembangkan potensi saya di dunia kerja.

Untuk mendukung hal tersebut, saya mengikuti Bootcamp Data Science di Dibimbing.id selama kurang lebih 6 bulan, mempelajari berbagai keterampilan seperti pengolahan data, visualisasi, serta pengembangan model Machine Learning untuk pemecahan masalah bisnis.

PHONE NUMBER

+62-811-3776-663

EMAIL ADDRESS
luthfiridhoulz@gmail.com

Goals?

Prediksi tepat ∅ → pelanggan puas → operasional lebih lancar 🊴 🗗

Pertanyaan Utama

- Bagaimana memprediksi waktu pengantaran makanan dengan akurasi tinggi?
- Faktor apa saja yang paling berpengaruh terhadap lama pengantaran?

Tujuan Proyek

- Membangun model prediksi waktu pengantaran yang akurat & andal.
- Memberikan estimasi waktu yang lebih realistis kepada pelanggan.
- Menyediakan insight untuk meningkatkan efisiensi operasional kurir & restoran.

Dataset

Dataset yang digunakan berisi informasi pesanan makanan beserta faktor-faktor yang memengaruhi lama waktu pengantaran. Data ini menjadi landasan dalam pembangunan model prediksi.

Gambaran Umum

- Jumlah data: 455 observasi
- Jumlah variabel: 9 variabel
- Variabel target: Delivery_Time_min (lama pengantaran dalam menit)
- Sumber dataset: Kaggle Food Delivery Time Prediction

Variabel yang Digunakan

- Distance_km → jarak tempuh kurir
- Weather → kondisi cuaca saat pengantaran
- Traffic_Level → tingkat kepadatan lalu lintas
- Time_of_Day → waktu pengantaran (pagi, siang, sore, malam)
- Vehicle_Type → jenis kendaraan yang digunakan kurir
- Preparation_Time_min → lama waktu restoran menyiapkan pesanan
- Courier_Experience_yrs → pengalaman kurir dalam tahun
- Delivery_Time_min → variabel target yang diprediksi

Data Cleaning & Manipulation

Data perlu diproses terlebih dahulu agar bersih dan siap digunakan dalam pembangunan model prediksi. Proses preprocessing dibagi menjadi dua tahap utama: **Data Cleaning dan Data Manipulation**.

Data Cleaning

- Penanganan Missing Values
 - Variabel kategorikal (Weather, Traffic_Level, Time_of_Day, Vehicle_Type) diisi dengan modus.
 - Variabel numerik (Courier_Experience_yrs)
 diisi dengan median.
- Pemeriksaan Duplikasi
 - o Baris duplikat dihapus agar data tidak bias.

Data Manipulation

- Identifikasi Variabel
 - Kategorikal: Weather, Traffic_Level, Time_of_Day,
 Vehicle_Type.
 - Numerik: Distance_km, Preparation_Time_min,
 Courier_Experience_yrs, Delivery_Time_min (target).
- Transformasi Data
 - Variabel kategorkal dengan One-Hot Encoding.
 Variabel numerik dengan StandardScaler (standarisasi skala data).
- Pembagian Dataset
 - Training set: 80% & Testing set: 20%

Exploratory Data Analysis (Univariate)

Analisis univariat dilakukan untuk melihat **distribusi** masing-masing **variabel numerik**, termasuk variabel target.

Hasil Analisis

- Delivery_Time_min: distribusi agak condong ke kanan (right-skewed), sebagian besar pengantaran memakan waktu 40-70 menit.
- Distance_km: distribusi merata, jarak pesanan bervariasi hingga ±20 km.
- Courier_Experience_yrs: pengalaman kurir relatif seimbang, mayoritas 0–9 tahun.
- Preparation_Time_min: umumnya 5-30 menit, dengan penyebaran cukup merata.

Exploratory Data Analysis (Bivariate)

Analisis bivariat dilakukan untuk melihat **hubungan** antara variabel-variabel **independen** dengan variabel **target** (Delivery_Time_min).

Hasil Analisis

- Jarak (Distance_km) berhubungan paling kuat dengan waktu pengantaran. Scatterplot memperlihatkan pola linear: semakin jauh, semakin lama waktu antar.
- Preparation_Time_min juga berpengaruh, meski tidak sekuat jarak.
- Courier_Experience_yrs hampir tidak berkorelasi dengan waktu antar.
- Heatmap menunjukkan korelasi paling tinggi adalah antara Distance dan Delivery Time (r = 0.78).

Data Modeling and Machine Learning Tools (Random Forest)


```
best_rf = rf_randcv.best_estimator_
y_pred_best = best_rf.predict(X_test)
mae_b, rmse_b, r2_b = mean_absolute_error(
    y_test, y_pred_best), rmse_func(y_test, y_pred_best),
    r2_score(y_test, y_pred_best)
print("\n=== Random Forest (Tuned) - Test ===")
print(f"MAE : {mae_b:,.3f} | RMSE: {rmse_b:,.3f} | R²: {r2_b:,.3f}")

=== Random Forest (Tuned) - Test ===
MAE : 6.608 | RMSE: 9.519 | R²: 0.798
```

Model pertama yang digunakan adalah Random Forest, yaitu algoritma ensemble berbasis decision tree yang mampu menangani data kompleks dan variabel campuran.

Hasil Evaluasi (Tuned Model)

• MAE: 6.608 menit

• RMSE: 9.519 menit

• R²: 0.798

Cross Validation (5-Fold)

• Mean RMSE: 11.802

Std Dev: 0.895

Interpretasi

- Model cukup akurat, dengan rata-rata kesalahan prediksi sekitar 6-7 menit.
- Menjelaskan sekitar 80% variasi waktu pengantaran.
- Performa stabil berdasarkan hasil cross-validation.

Data Modeling and Machine Learning Tools (XGBoost)


```
best_xgb = xgb_randcv.best_estimator_
y_pred_best = best_xgb.predict(X_test)
mae_b, rmse_b, r2_b = mean_absolute_error(
    y_test, y_pred_best), rmse_func(y_test, y_pred_best),
    r2_score(y_test, y_pred_best)
print("\n=== XGBoost (Tuned) - Test ===")
print(f"MAE : {mae_b:,.3f} | RMSE: {rmse_b:,.3f} | R²: {r2_b:,.3f}")

=== XGBoost (Tuned) - Test ===
MAE : 6.596 | RMSE: 9.207 | R²: 0.811
```

Model kedua adalah XGBoost, algoritma boosting yang lebih kompleks dan sering unggul dalam prediksi dengan akurasi tinggi.

Hasil Evaluasi (Tuned Model)

• MAE: 6.596 menit

• RMSE: 9.207 menit

• R²: 0.811

Cross Validation (5-Fold)

• Mean RMSE: 11.949

Std Dev: 1.055

Interpretasi

- Hasil lebih baik dibanding Random Forest, dengan error yang lebih rendah.
- Menjelaskan sekitar 81% variasi waktu pengantaran.
- Cocok dipilih sebagai model utama karena memberikan prediksi yang lebih konsisten dan akurat.

Interpretasi Umum & Feature Importance

Akurasi Prediksi

- Model terbaik (XGBoost Tuned) menghasilkan:
 - MAE: 6.596 menit
 - o RMSE: 9.207 menit
 - R² : 0.811 → berarti 81% variasi waktu pengantaran dapat dijelaskan oleh model.
- Distance_km → faktor dominan, semakin jauh semakin lama.
- Time_of_Day → jam sibuk menambah waktu antar.
- Preparation_Time_min → semakin lama restoran menyiapkan, semakin lama total waktu.
- Traffic_Level → macet memperlambat waktu antar.
- Weather → hujan/cuaca buruk menambah keterlambatan.

Feature Importance (Distance)

MAE: 6.425 | RMSE: 9.336 | R²: 0.806 AME (Distance_km): ~3.34 menit per km (sekitar IQR)

- +1 km ≈ 5.65 menit
- +2 km ≈ 8.32 menit

- **Distance_km** adalah variabel terkuat di model ini. Artinya, variasi waktu antar paling banyak dijelaskan oleh jarak.
- Secara intuisi operasional, efek jarak terhadap waktu cenderung monoton naik: makin jauh → makin lama. Polanya bisa mendekati linear pada jarak pendek-menengah, lalu kadang melengkung (non-linear) di jarak panjang
- Terhitung juga setiap penambahan 1 km jarak, maka waktu tempuh pengantaran akan sebanyak
 5,56 menit. Sehingga semakin jauh maka waktu juga akan semakin bertambah.

Perbandingan & Kesimpulan

	Model	MAE ↓	RMSE ↓	R² ↑	
	Random Forest (Tuned)	6.608	9.519	0.798	
	XGBoost (Tuned)	6.596	9.207	0.811	

Kesimpulan

- Kedua model sudah cukup baik.
- XGBoost lebih unggul, karena prediksinya lebih dekat dengan kenyataan (MAE & RMSE lebih rendah, R² lebih tinggi).
- Dengan model ini, estimasi waktu antar bisa dibuat lebih akurat dan realistis.

Perbandingan Model (Setelah Tuning)

Random Forest

- MAE: 6.608 menit → rata-rata meleset sekitar 6-7 menit.
- RMSE: 9.519 menit → sebagian prediksi bisa meleset hingga ±9 menit.
- R²: 0.798 → mampu menjelaskan hampir 80% variasi waktu antar pesanan.

XGBoost

- MAE: 6.596 menit → rata-rata meleset sekitar 6 menit.
- RMSE: 9.207 menit → kesalahan lebih kecil dibanding Random Forest.
- R²: 0.811 → mampu menjelaskan lebih dari 80% variasi waktu antar pesanan.

Rekomendasi Bisnis

1. Tampilkan estimasi yang lebih realistis di aplikasi.

 Berdasarkan prediksi model, rata-rata error hanya ±6 menit.

2. Atur jumlah kurir sesuai kondisi.

 Hasil model menunjukkan jarak, lalu lintas, dan waktu sibuk sangat berpengaruh. Penambahan kurir di jam sibuk atau area macet akan mengurangi keterlambatan.

3. Bekerja sama dengan restoran.

 Karena preparation time berpengaruh, restoran perlu mempercepat proses masak agar pesanan tidak menumpuk.

4. Mitigasi saat cuaca buruk.

 Hujan menambah waktu antar, maka perlu strategi seperti armada khusus atau rute alternatif.

Thank You

Link Github

