

2022학년도 3-2 기말고사 대비

DATE NAME GRADE

중급 3회

1. 그림과 같이 간격이 $30 \,\mathrm{m}$ 인 두 건물 A, B가 있다. A 건물 옥상의 ${\sf C}$ 지점에서 ${\sf B}$ 건물을 올려다본 각도는 30° , 내려다본 각도는 45° 일 때, B 건물의 높이는? (단, 두 건물은 지면에 대해 수직이다.)

- ① $10(1+\sqrt{3})m$ ② $10(3+\sqrt{3})m$
- $3 5(1+\sqrt{3})$ m

- $4 5(3+\sqrt{3})$ m
- ⑤ $20(1+\sqrt{2})$ m
- **2.** 다음 그림과 같은 △ABC의 넓이를 구하면?

- ① $10(\sqrt{3}-1)$ cm² ② $10(\sqrt{3}+1)$ cm² ③ $20(\sqrt{3}-1)$ cm²

- $4 20(\sqrt{3}+1) \text{ cm}^2$ $5 25(\sqrt{3}-1) \text{ cm}^2$

3. 다음 그림과 같이 두 대각선이 이루는 각이 120° 이고 $\overline{AC}=4$ 인 등변사다리꼴 ABCD의 넓이는?

- ① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $4\sqrt{3}$ ④ $8\sqrt{3}$
- ⑤ $16\sqrt{3}$

4. 다음 그림에서 $\angle BAC = 90^{\circ}$, $\overline{AH} \perp \overline{BC}$ 이고 $\angle HAC = x$ 라 할 때 tan x의 값은?

- ① $\frac{4}{5}$ ② $\frac{3}{5}$ ③ $\frac{3}{4}$ ④ $\frac{4}{\sqrt{41}}$ ⑤ $\frac{5}{\sqrt{41}}$
- **5.** 그림과 같이 간격이 $30 \,\mathrm{m}$ 인 두 건물 A, B가 있다. A 건물 옥상의 \mathbb{C} 지점에서 \mathbb{B} 건물을 올려다본 각도는 30° , 내려다본 각도는 45° 일 때, B 건물의 높이는? (단, 두 건물은 지면에 대해 수직이다.)

- ① $10(1+\sqrt{3})$ m
- ② $10(3+\sqrt{3})$ m
- $3 5(1+\sqrt{3})$ m

- $4 5(3+\sqrt{3})$ m
- ⑤ $20(1+\sqrt{2})$ m
- **6.** 다음 그림과 같은 △ABC의 넓이를 구하면?

- ① $10(\sqrt{3}-1)$ cm² ② $10(\sqrt{3}+1)$ cm² ③ $20(\sqrt{3}-1)$ cm²

- $4 20(\sqrt{3}+1)$ cm² $5 25(\sqrt{3}-1)$ cm²

7. 다음 그림과 같이 두 대각선이 이루는 각이 120° 이고 $\overline{AC}=40$ 등변사다리꼴 ABCD의 넓이는?

- ① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $4\sqrt{3}$
- $4 8\sqrt{3}$
- ⑤ $16\sqrt{3}$

8. 다음 그림은 원 O의 일부분이다. $\overline{AB} = 12$, $\overline{CM} = 4$, $\overline{AM} = \overline{BM}$ 일 때, 원 이의 반지름의 길이는?

- ① 5
- 2 6
- $3 \frac{13}{2}$
- $4 7 5 \frac{15}{2}$

9. 다음 그림에서 두 원 O, O'의 반지름의 길이는 각각 5 cm, $2~\mathrm{cm}$ 이고 두 원의 중심 사이의 거리인 $\overline{\mathrm{OO}'}$ 의 길이는 $10~\mathrm{cm}$ 일 때, 두 원 공통의 접선인 \overline{PQ} 의 길이는?

- ① $\sqrt{29}$ cm
- $2\sqrt{26}$ cm
- $3 ext{ } 5\sqrt{3} ext{ cm}$

- $4 \sqrt{91} \text{ cm}$
- ⑤ $\sqrt{109}$ cm

10. 그림과 같은 직각삼각형 ABC에서 내접원 O의 넓이를 구하면 $a\pi \, \mathrm{cm}^2$ 이다. 이때 상수 a의 값은?

- ① 5
- ② 25
- 3 4
- **4** 16
- ⑤ 9

11. 다음 그림에서 \overrightarrow{BC} 는 반원 O의 지름이고 \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{CD} 는 각각 원 O의 접선이다. $\overline{\mathrm{BC}} = 6\sqrt{5}$, $\overline{\mathrm{CD}} = 9$ 일 때 $\overline{\mathrm{AB}}$ 의 길이는?

- ① 4
- ② $4\sqrt{5}$
- 3 5
- $4.5\sqrt{5}$
 - ⑤ 6

12. 그림과 같이 사각형 ABCD가 원에 내접하고 \angle BPC= 40° , $\angle AQB = 50$ °일 때 $\angle x$ 의 크기를 구하면?

- ① 40°
- ② 45°
- 350°
- ⑤ 60°

 $\widehat{\mathbf{13}}$. 그림에서 $\widehat{\mathrm{BD}}$ 의 길이는 원의 둘레의 길이의 $\frac{1}{5}$ 이고 $\widehat{AC}:\widehat{BD}=5:3$ 일 때 $\angle APC$ 의 크기는?

 395°

- ① 93°
- ② 94°
- 4 96°
- ⑤ 97°

14. 그림에서 \overline{AB} 는 원 O의 지름이고 \overline{AB} # \overline{CD} , \angle BOC = 30°, $\widehat{\mathrm{BC}} = 2 \; \mathrm{cm}$ 일 때 $\widehat{\mathrm{CD}}$ 의 길이는?

- ① 4 cm
- ② 6 cm
- ③ 8 cm
- ④ 10 cm
- ⑤ 12 cm

15. 그림과 같이 오각형 ABCDE가 원 O에 내접하고 $\angle A = 80^{\circ}$, \angle D=150°이다. 이때 $\angle x$ 의 크기는?

- ① 100° ② 110°
- ③ 120°
- 4 130°
- ⑤ 140°

16. 그림에서 직선 l이 원 O의 접선일 때, $\angle x + \angle y - \angle z$ 의 크기는?

- ① 60°
- ② 65°
- 370°
- 4 75°
- ⑤ 80°

17. 그림에서 $\overrightarrow{\mathrm{PT}}$ 는 원 O의 접선이고 $\angle \mathrm{ATC} = 67^{\circ}$ 일 때 $\angle x$ 의 크기는?

- ① 44°
- $② 46^{\circ}$
- ③ 48°
- 4 50°
- ⑤ 54°

18. 그림에서 직선 PQ는 두 원의 공통접선이고 점 T는 접점이다. \angle TBA = 65°, \angle TCD = 35°일 때, \angle ATB의 크기는?

- ① 60°
- ② 65°
- 370°
- 4 75°
- ⑤ 80°

19. 다음 〈보기〉에서 한 원에 내접하는 □ABCD를 모두 고른 것은?

- (1) 7, L, E (4) 7, L, 2, B
- ② 7, 2, 0 ⑤ 7, c, 2, 0
- **20.** 그림에서 $\widehat{AD} = \widehat{BD}$ 이고 $\angle ADB = 40^{\circ}$ 일 때 $\angle BCD$ 의 크기는?

- ① 110°
- ② 112°
- ③ 114°
- 4 116°
- ⑤ 118°

21. 그림에서 두 원 O, O'의 두 교점을 P, Q라 하고 ∠PAC=95°, 일 때 ∠PBD의 크기는?

- ① 75°
- ② 80°
- ③ 85°
- 4 95°
- ⑤ 100°

서술형 주관식

22. 다음 그림과 같이 달을 같은 시각에 두 관측소 A, B에서 올려다본 각의 크기가 각각 30°, 45°이었다. 두 관측소의 거리가 10 km일 때, 관측소 A에서 달의 위치 C까지의 거리를 구하여라.

- (1) 위 그림에서 $\overline{\text{CH}} = x \text{ (km)}$ 일 때 $\overline{\text{BH}}$ 의 길이를 x에 관한 식으로 나타내어라.
- (2) 위 그림에서 $\overline{AH} = \bigcirc \times x \text{ (km)}$ 로 나타낼 수 있다. 안에 들어갈 수를 구하여라.
- (3) 앞의 문제 (1), (2) 의 내용과 $\overline{\rm AH} \overline{\rm BH} = 10 \ ({\rm km})$ 임을 이용하여 x의 값을 구하여라.
- 23. 다음은 원의 성질 중 어떤 내용을 증명한 것이다. 안의 가)와 (나)에 들어갈 단어를 각각 답하여라.

위 그림과 같이 원 O의 현 AB의 중점을 M이라 할 때 $\overline{AB} \perp \overline{OM}$ 임을 보이자. 두 삼각형 OAM과 OBM에서

 $\overline{OA} = \overline{OB}$ (원의 반지름), \overline{OM} 은 공통, $\overline{AM} = \overline{BM}$ 이므로 $\triangle OAM = \triangle OBM$ (SSS 합동)

 $\therefore \angle OMA = \angle OMB$

이때 \angle OMA + \angle OMB = 180°이므로 \angle OMA = \angle OMB = 90°, 즉 $\overline{AB} \bot \overline{OM}$ 이다.

따라서 원에서 현의 (가)은 그 원의 (나)을 지난다.

24. 그림에서 \overline{AB} 는 원 O의 지름이고 $\angle COD = 50^{\circ}$ 일 때 $\angle CPD$ 의 크기를 구하여라.

25. 그림에서 $\overline{\rm OM}=\overline{\rm ON}$, $\angle {\rm A}=36^\circ$, $\widehat{\rm BC}=2\pi$ 일 때, 다음의 각 물음에 답하여라.

- (1) ∠B의 크기를 구하여라.
- (2) \widehat{AC} 의 길이를 구하여라.
- (3) 원의 둘레의 길이를 구하여라.

23) (가) 수직이등분선 (나) 중심
22) (1) $x \text{ (km)}$ (2) $\sqrt{3}$ (3) $5(\sqrt{3}+1)$
21) ③
20) ①
19) ⑤
18) ⑤
17) ①
16) ③
15) ①
14) ③
13) ④
11) ③12) ②
10) ⑤ 11) ③
9) ④
8) ③
7) ③
6) ⑤
5) ②
4) ③
3) ③
2) ⑤
1) ②

A B

위 그림과 같이 원 O의 현 AB의 중점을 M 이라 할 때 $\overline{\mathrm{AB}} \perp \overline{\mathrm{OM}}$ 임을 보이자. 두 삼각형 OAM 과 OBM 에서

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ (원의 반지름), $\overline{\mathrm{OM}}$ 은 공통, $\overline{\mathrm{AM}} = \overline{\mathrm{BM}}$

이므로 △OAM = △OBM (SSS 합동)

 $\therefore \angle OMA = \angle OMB$

이때 \angle OMA + \angle OMB = 180°이므로 \angle OMA = \angle OMB = 90°, 즉 $\overline{\rm AB} \bot \overline{\rm OM}$ 이다.

따라서 원에서 현의 수직이등분선은 그 원의 중심을 지난다.

24) 65°

25) (1) 72° (2) 4π (3) 10π