Undecidability

Sections 21.1 – 21.3

Problems / Languages

The Problem View	The Language View
Does TM M halt on w?	$H = \{ \langle M, w \rangle :$
	M halts on w }
Does TM M not halt on w?	$\neg \mathbf{H} = \{ \langle M, w \rangle :$
	M does not halt on w}
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ < M > : M \text{ halts on } \varepsilon \}$
Is there any string on which TM <i>M</i> halts?	$H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts } \}$
Does TM M accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$
Do TMs M_a and M_b accept the same languages?	$EqTMs = \begin{cases} (M M > : I(M) = I(M)) \end{cases}$
	$\{ < M_{a}, M_{b} > : L(M_{a}) = L(M_{b}) \}$
Is the language that TM M accepts regular?	$TMreg = {< M>: L(M) is regular}$

Reduction

• **Example:** Computing a function

```
multiply(x, y) =
1. answer := 0.
2. For i := 1 to y do:
answer = sum(answer + x).
3. Return answer.
```

- Computing multiply reduces to computing sum.
 or
- If we can do sum then we can do multiply.

Using Reduction for Undecidability

Theorem: There exists no general procedure to solve the following problem:

Given an angle A, divide A into sixths using only a straightedge and a compass.

Proof: Suppose that there were such a procedure, which we'll call sixth. Then we could trisect an arbitrary angle:

trisect(a: angle) =

- 1. Divide a into six equal parts by invoking sixth(a).
- 2. Ignore every other line, thus dividing a into thirds.

sixth exists → *trisect* exists.

But we know that trisect does not exist. So, sixth cannot exist either.

Turing Reduction

A **reduction** R from L_1 to L_2 is one or more Turing machines such that:

If there exists a Turing machine *Oracle* that decides (or semidecides) L_2 , then the Turing machines in R can be composed with *Oracle* to build a deciding (or a semideciding) Turing machine for L_1 .

 $L_1 \leq L_2$ means that L_1 is **reducible** to L_2 .

Using Reduction for Undecidability

Assume:

```
(L_1 \leq L_2) \land (L_2 \text{ is in D}) \rightarrow (L_1 \text{ is in D})
```

If $(L_1 \text{ is in D})$ is false, then at least one of the two antecedents of that implication must be false. So:

```
If (L_1 \le L_2) is true,
then (L_2 \text{ is in D}) must be false.
```

Using Reduction for Undecidability

Showing that L_2 is not in D:

 L_2 (a new language whose if L_2 in D decidability we are trying to determine)

So L₂ not in D

To Use Reduction for Undecidability

- 0. Assume *Oracle* that decides L_2 exists
- 1. Choose a language L_1 :
 - that is already known not to be in D, and
 - that can be reduced to L_2 .
- 2. Define the reduction R.
- 3. Describe the composition *C* of *R* with *Oracle*:

$$C(x) = Oracle(R(x))$$

- 4. Show that C does correctly decide L_1 if *Oracle* exists. We do this by showing:
 - R can be implemented by Turing machines,
 - C is correct:
 - If $x \in L_1$, then C(x) accepts, and
 - If $x \notin L_1$, then C(x) rejects.

To Use Reduction for Undecidability

The Overall Strategy to show L_2 is undecidable:

- Assume that L_2 is decidable (*Oracle* exists).
- Pick an undecidable L_1 and reduce L_1 to L_2 (prove $L_1 \leq L_2$).
- Use *Oracle* and the reduction from L_1 to L_2 to show that L_1 is decidable.
- Conclude that L₂ is undecidable.

Mapping Reductions

 L_1 is *mapping reducible* to L_2 ($L_1 \leq_M L_2$) iff there exists some computable function f such that:

$$\forall x \in \Sigma^* \ (x \in L_1 \leftrightarrow f(x) \in L_2).$$

To decide whether x is in L_1 , we transform it, using f, into a new object and ask whether that object is in L_2 .

Note: mapping reduction is a particular case of Turing reduction.

$H_ε = {< M> : TM M halts on ε}$

H_ε is in SD. T semidecides it:

$$T(< M>) =$$

- 1. Run M on ε .
- 2. Accept.

T accepts M iff M halts on ε , so T semidecides H_{ε}.

$H_{\varepsilon} = \{ \langle M \rangle : TM M \text{ halts on } \varepsilon \}$

Theorem: $H_{\varepsilon} = \{ < M > : TM M \text{ halts on } \varepsilon \} \text{ is not in D.}$

Proof: by reduction from H:

H = {<
$$M$$
, w > : TM M halts on input string w }

R

H_s = {< M > : TM M halts on ε }

R is a mapping reduction from H to H_{ϵ}:

$$R(< M, w>) =$$

(?Oracle)

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape (ignore its input)
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return < *M*#>.

Proof, Continued

R(< M, w>) =

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write w on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

If Oracle exists, C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - <*M*, $w> \in H$: *M* halts on w, so M# halts on everything. In particular, it halts on ε . *Oracle* accepts.
 - <*M*, *w*> ∉ *H*: *M* does not halt on *w*, so *M*# halts on nothing and thus not on ε. *Oracle* rejects.

A Block Diagram of C

R Can Be Implemented as a Turing Machine

R must construct < M # > from < M, w >. Suppose w = aba.

M# will be:

So the procedure for constructing *M*# is:

1. Write:

- 2. For each character x in w do:
 - 2.1. Write *x*.
 - 2.2. If *x* is not the last character in *w*, write R.
- 3. Write $L_{\square} M$.

Conclusion

R can be implemented as a Turing machine.

C is correct.

So, if Oracle exists:

 $C = Oracle(R(\langle M, w \rangle))$ decides H.

But no machine to decide H can exist.

So neither does Oracle.

This Result is Somewhat Surprising

If we could decide whether M halts on the specific string ε , we could solve the more general problem of deciding whether M halts on an arbitrary input.

Clearly, the other way around is true: If we could solve H we could decide whether *M* halts on any one particular string.

But doing a reduction in that direction would tell us nothing about whether H_s was decidable.

The significant thing that we just saw in this proof is that there also exists a reduction in the direction that does tell us that H_{ϵ} is not decidable.

Important Elements in a Reduction Proof

- A clear declaration of the reduction "from" and "to" languages.
- A clear description of R.
- If R is doing anything nontrivial, argue that it can be implemented as a TM.
- Run through the logic that demonstrates how the "from" language is being decided by the composition of R and Oracle. You must do both accepting and rejecting cases.
- Declare that the reduction proves that your "to" language is not in D.

The Most Common Mistake: Doing the Reduction Backwards

- Right way: to show that L_2 is not in D:
- 1. Reduce a known hard one, L_1 to L_2 : $L_1 \longrightarrow L_2$
- 2. Given that L_1 is not in D,
- 3. Reduce L_1 to L_2 , i.e., show how to solve L_1 (the known one) in terms of L_2 (the unknown one)

• Wrong way: reduce L_2 (the unknown one) to L_1 (the known hard):

Example (wrong):

If there exists a machine M_H that solves H, then we could build a machine that solves H_{ϵ} as follows:

1. Return $(M_{H}(\langle M, \varepsilon \rangle))$.

This proves nothing. It's an argument of the form:

If False then ...

H_{ANY} = {<*M*> : there exists at least one string on which TM *M* halts}

Theorem: H_{ANY} is in SD.

Proof: by exhibiting a TM T that semidecides it.

What about simply trying all the strings in Σ^* one at a time until one halts?

H_{ANY} is in SD

$$T(< M>) =$$

1. Use dovetailing to try M on all of the elements of Σ^* :

```
\epsilon [1] \epsilon [2] a [1] \epsilon [3] a [2] b [1] \epsilon [4] a [3] b [2] aa [1] \epsilon [5] a [4] <u>b</u> [3] aa [2] ab [1]
```

2. If any instance of *M* halts, halt and accept.

T will accept iff M halts on at least one string. So T semidecides H_{ANY} .

H_{ANY} is not in D

$$H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$$

$$R \int_{-\infty}^{\infty} | w \rangle = R \int_{-\infty}^{\infty} | w \rangle | w \rangle = R \int_{-\infty}^{\infty} | w \rangle |$$

(?Oracle) $H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts} \}$

$$R(< M, w>) =$$

- 1. Construct $\langle M\# \rangle$, where M#(x) operates as follows:
 - 1.1. Examine *x*.
 - 1.2. If x = w, run M on w, else loop.
- 2. Return <*M*#>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

- R can be implemented as a Turing machine.
- *C* is correct: The only string on which *M*# can halt is *w*. So:
 - <M, $w> \in H$: M halts on w. So M# halts on w. There exists at least one string on which M# halts. Oracle accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*, so neither does *M*#. So there exists no string on which *M*# halts. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

H_{ANY} is not in D: another reduction

Proof: We show that H_{ANY} is not in D by reduction from H:

$$H = \{ \langle M, w \rangle : TM M \text{ halts on input string } w \}$$

(?Oracle) $H_{ANY} = \{ < M > : \text{ there exists at least one string on which TM } M \text{ halts} \}$

$$R(< M, w>) =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
- 2. Return <*M*#>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- C is correct: M# ignores its own input. It halts on everything or nothing. So:
 - < M, w $> \in H$: M halts on w, so M# halts on everything. So it halts on at least one string. O racle accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*, so *M*# halts on nothing. So it does not halt on at least one string. *Oracle* rejects.

But no machine to decide H can exist, so neither does *Oracle*.

The Steps in a Reduction Proof

- 1. Assume Oracle exists.
- 2. Choose an undecidable language to reduce from.
- 3. Define the reduction R.
- 4. Show that *C* (the composition of *R* with *Oracle*) is correct.

$H_{ALL} = \{ \langle M \rangle : TM M \text{ halts on all inputs} \}$

We show that H_{ALL} is not in D by reduction from H_{ϵ} .

$$H_{\varepsilon} = \{ \langle M \rangle : TM \ M \text{ halts on } \varepsilon \}$$

(?Oracle)

 $H_{ALL} = \{ \langle M \rangle : TM M \text{ halts on all inputs } \}$

$$R() =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Run *M*.
- 2. Return < *M*#>.

If Oracle exists, then C = Oracle(R(< M>)) decides H_{ϵ} :

- *R* can be implemented as a Turing machine.
- C is correct: M# halts on everything or nothing, depending on whether M halts on ε. So:
 - <*M* $> \in H_{\epsilon}$: *M* halts on ϵ , so *M*# halts on all inputs. *Oracle* accepts.
 - < $M> \notin H_{\epsilon}$: M does not halt on ϵ , so M# halts on nothing. *Oracle* rejects.

But no machine to decide H_s can exist, so neither does *Oracle*.

The Membership Question for TMs

We next define a new language:

$$A = \{ < M, w > : M \text{ accepts } w \}.$$

Note that A is different from H since it is possible that *M* halts but does not accept. An alternative definition of A is:

$$A = \{ < M, w > : w \in L(M) \}.$$

$A = \{ < M, w > : w \in L(M) \}$

We show that A is not in D by reduction from H.

$$H = \{ < M, w > : TM M \text{ halts on input string } w \}$$

$$R \downarrow$$

$$(?Oracle) \qquad A = \{ < M, w > : w \in L(M) \}$$

$$R(< M, w>) =$$

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept
- 2. Return <*M*#, *w*>.

If Oracle exists, then C = Oracle(R(< M, w>)) decides H:

- *R* can be implemented as a Turing machine.
- *C* is correct: *M*# accepts everything or nothing. So:
 - <M, w> ∈ H: M halts on w, so M# accepts everything. In particular, it accepts w. Oracle accepts.
 - <*M*, *w* > ∉ H: *M* does not halt on *w*. *M*# gets stuck in step 1.3 and so accepts nothing. *Oracle* rejects.

But no machine to decide H can exist, so neither does Oracle.

A_{ϵ} , A_{ANY} , and A_{ALL}

Theorem: $A_{\epsilon} = \{ < M > : TM \ M \text{ accepts } \epsilon \} \text{ is not in D.}$

Proof: Analogous to that for H_{ϵ} .

Theorem: $A_{ANY} = \{ < M > : TM M \text{ accepts at least one string} \}$ is not in D.

Proof: Analogous to that for H_{ANY} .

Theorem: $A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$ is not in D.

Proof: Analogous to that for H_{ALL}.

EqTMs= $\{\langle M_a, M_b \rangle : L(M_a) = L(M_b)\}$

$$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$$

$$R \downarrow$$

(Oracle) EqTMs =
$$\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$$

$$R() =$$

- 1. Construct the description of M#(x):
 - 1.1. Accept. (M# accepts everything)
- 2. Return <*M*, *M*#>.

If Oracle exists, then C = Oracle(R(< M>)) decides A_{ALL} :

- C is correct: M# accepts everything. So if L(M) = L(M#), M must also accept everything. So:
 - $\langle M \rangle \in A_{ALL}$: L(M) = L(M#). Oracle accepts.
 - $\langle M \rangle \notin A_{AII}$: $L(M) \neq L(M\#)$. Oracle rejects.

But no machine to decide A_{ALL} can exist, so neither does *Oracle*.

Sometimes Mapping Reducibility Isn't Right

Recall that a mapping reduction from L_1 to L_2 is a computable function f where:

$$\forall x \in \Sigma^* \ (x \in L_1 \leftrightarrow f(x) \in L_2).$$

When we use a mapping reduction, we return:

Sometimes we need a more general ability to use *Oracle* as a subroutine and then to do other computations after it returns.

{<M>: M accepts no even length strings}

$$H = \{ < M, w > : TM M \text{ halts on input string } w \}$$

$$\downarrow R$$

(?Oracle)

 $L_2 = \{ < M > : M \text{ accepts no even length strings} \}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return < M#>.

If Oracle exists, then $C = Oracle(R(\langle M, w \rangle))$ decides H:

- C is correct: M# ignores its own input. It accepts everything or nothing, depending on whether it makes it to step 1.4. So:
 - <*M*, $w> \in H$: *M* halts on w. *Oracle*:
 - < M, $w > \notin H$: M does not halt on w. Oracle:

Problem:

{<M>: M accepts no even length strings}

$$H = \{ < M, w > : TM M \text{ halts on input string } w \}$$

$$\downarrow R$$

(?Oracle)

 $L_2 = {< M> : M \text{ accepts no even length strings}}$

R(< M, w>) =

- 1. Construct the description < M#>, where M#(x) operates as follows:
 - 1.1. Erase the tape.
 - 1.2. Write *w* on the tape.
 - 1.3. Run *M* on *w*.
 - 1.4. Accept.
- 2. Return <*M*#>.

If *Oracle* exists, then $C = \neg Oracle(R(\langle M, w \rangle))$ decides H:

- R and ¬ can be implemented as Turing machines.
- C is correct:
 - <M, w> ∈ H: M halts on w. M# accepts everything, including some even length strings. Oracle rejects so C accepts.
 - <*M*, *w*> ∉ H: *M* does not halt on *w*. *M*# gets stuck. So it accepts nothing, so no even length strings. *Oracle* accepts. So *C* rejects.

But no machine to decide H can exist, so neither does *Oracle*.

Are All Questions about TMs Undecidable?

 $L = \{ < M > : TM M contains an even number of states \}$

 $L = \{ \langle M, w \rangle : M \text{ halts on } w \text{ within 3 steps} \}.$

 $L_q = \{ \langle M, q \rangle : \text{ there is some configuration } (p, u\underline{a}v) \text{ of } M,$ with $p \neq q$, that yields a configuration whose state is $q \}$.