Магистратура ВШЭ. Домашнее задание от 4 сентября.

Определение 1. Пусть V – векторное пространство над полем K. Линейная комбинация векторов (т.е., элементов V) v_1, v_2, \ldots, v_n – это любое выражение вида

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n, \quad \alpha_i \in K$$

 v_1, v_2, \ldots, v_n называется линейно зависимыми, если существует их нетривиальная (т.е., такая, что не все α_i равны 0) линейная комбинация, равная $0 \in V$. Если такой линейной комбинации нет, v_1, v_2, \ldots, v_n называется линейно независимыми.

Множество всех линейных комбинаций v_1, v_2, \ldots, v_n называется их линейной оболочкой и обозначается $\langle v_1, v_2, \ldots, v_n \rangle$.

Определение 2. $\{v_1, v_2, \dots, v_n\}$ – множество образующих V, если $\langle v_1, v_2, \dots, v_n \rangle = V$. Линейно независимое множество образующих называется *базисом*. Все базисы векторного пространства V имеют равное число элементов, которое называется *размерностью* пространства.

Т.е., пусть V конечномерно, (v_1, v_2, \ldots, v_n) – его базис. Тогда любой вектор $w \in V$ представляется в виде

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$

 $(\lambda_1, \lambda_2, \dots, \lambda_n)$ называются координатами вектора w относительно базиса (v_1, v_2, \dots, v_n) .

Задача 1 (1 балл). Найти базис пространства \mathbb{R}^3 , в котором векторы x, y, z имеют координатные столбцы [x], [y], [z].

$$x = (9, 2, 0), \quad y = (6, 3, 4), \quad z = (3, 1, 2),$$

 $[x] = (1, 2, 1)^T, \quad [y] = (1, -1, 2)^T, \quad [z] = (-2, -1, 3)^T$

Определение 3. *Прямое произведение* $U \times V$ векторных пространств U и V над полем K– это множество пар (u,v), где $u \in U, v \in V$, с операциями

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2);$$

 $\alpha(u,v) = (\alpha u, \alpha v),$

которые превращают его также в векторное пространство над K.

Аналогично определяется прямое произведение n векторных пространств $V_1, \dots V_n$.

Задача 2 (1 балл). Докажите, что размерность $U \times V$ равна m+n.

Определение 4. $U \subseteq V$ называется подпространством V (обозначение: $U \leqslant V$), если

- 1) $u_1 + u_2 \in U$ для любых $u_1, u_2 \in U$;
- 2) $\lambda u \in U$ для любых $u \in U, \lambda \in K$;

Задача 3 (1 балл). Пусть $V_1,V_2\leq V$. Докажите, что если $V_1\cup V_2\leq V$, то $V_1\leq V_2$ или $V_2\leq V_1$.

Задача 4. Найдите размерность пространства:

- а) (1 балл) кососимметричных матриц (т. е., таких, что $A = A^T$) размера $n \times n$;
- б) (1 балл) матриц размера $n \times n$, коммутирующих с e_{12} (e_{ij} матрица с единицей на позиции (i,j) и нулями на остальных), т.е., таких, что $Ae_{12} = e_{12}A$

Задача 5. Пусть $V = \{ f \in K[x] \mid \deg f \le n \} = \{ a_0 + a_1 t + \ldots + a_n t^n, a_i \in K \}$ (многочлены с коэффициентами из поля k степени не выше n).

- а) (1 балл) Покажите, что любой набор многочленов $p_0(x), p_1(x), \ldots, p_n(x)$, такой, что $\deg p_i(x) = i$, является базисом V.
- б) (2 балла) Пусть даны различные элементы $\lambda_0, \dots, \lambda_n \in K$. Покажите, что набор многочленов $p_i(x) = \prod_{j \neq i} (x \lambda_j)$ является базисом V.

Задача 6 (1 балл). Пусть

$$A = \begin{pmatrix} 3 & 5 & -4 & 2 \\ 2 & 4 & -6 & 3 \\ 11 & 17 & -8 & 4 \end{pmatrix}$$

Найдите базис пространства решений однородного уравнения Ax = 0.

Задача 7. а) [1 балл] Покажите, что множество решений уравнения $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$, $a_i \in K$, имеет размерность n-1 над K. б) [2 балла] Покажите, что все подпространства размерности n-1 в K^n имеют такой вид.