

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-I

SÍLABO DOSIFICADO DEL CURSO INTRODUCCION A LOS PROCESOS ESTOCASTICOS

Semana	1ra Sesión	2da Sesión	Práctica
1	1. Integración:	Funciones uniformemente continuas e	
	Variación de una función.	integración. Teorema de intercambio	
12-16	Propiedades. Integral de Riemann.	entre series e integración.	Prueba de entrada
Abril			60 minutos
-	(Entrega de la Práctica Dirigida 1)		
	Temas: Semana 1-semana 3.1.		
2	Teoría de la medida. Integración de	Lema de Fatou. Teorema de	Práctica dirigida 1
19-23	Lebesgue. Relación entre integración	convergencia dominada. Teorema de	
Abril	de Lebesgue y la integración de	Fubini. Teorema con respecto a	
	Riemann.	funciones paramétricas.	
3	Teorema intercambio entre	2. Concepto de la teoría de la	Laboratorio 1
26-30	derivada e integral.	probabilidad.	Semana 1 y semana 2
Abril		Modelos discretos y continuos.	
	(Entrega de la Práctica Dirigida 2)	Modelos mixtos. Esperanza. Varianza.	
	Temas: Semana 3.2 - semana 5.	Teorema de transformaciones: caso	
		escalar y vectorial.	
4	Tipos de convergencia.	Independencia y covarianza.	Práctica dirigida 2
3-7	Teoremas de convergencia caso	Teoremas relativos a independencia y	
Mayo	escalar y vectorial.	covarianza.	
5	Distribución normal. Variable	Esperanza condicional y teoremas.	Laboratorio 2
10-14	aleatoria vectorial gaussiana.		Semana 3 y semana 4
Mayo	Teoremas relativos.		
6	3. Procesos estocásticos básicos:	Cadenas de Markov. Tiempo de	Práctica dirigida 3
17-21	Procesos estocásticos en tiempo	parada. Aplicaciones.	
Mayo	discreto. Cadenas de Markov.		
•	Matriz de transición.		
	(Entrega de la Práctica Dirigida 3)		
	Temas: Semana 6 – semana 10		
7			Laboratorio 3
24-28	Cadenas de Markov. Medidas	Cadenas de Markov. Recurrentes y	Semana 5 y semana 6
Mayo	invariantes. Irreductibilidad.	transitorios. Aplicaciones.	
8		I DADGIAL	
31-Mayo	EXAMEN PARCIAL (Somenas 1, 2, 2, 4, 5, 4, 6)		
4-Junio	(Semanas 1, 2, 3, 4, 5 y 6)		
9	Cadenas de Markov. Ergodicidad.	Cadenas de Markov. Algoritmos	Práctica dirigida 3
7-11	Aplicación. Convergencia.	estocásticos.	· ·
Junio			
10			Laboratorio 4
14-18	Martingalas. Teoremas relativos a	Procesos estocásticos en tiempo	Semana 7 y semana 9
Junio	Martingalas.	continuo. Movimiento Browniano.	Jemana / y Jemana J
Juillo	iviai arigalas.	Continuo. Movimiento biowinano.	

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-I

11 21-25 Junio	Propiedades del movimiento Browniano. Movimiento Browniano visto como martingala.	Propiedad de Markov del movimiento Browniano. Máximos y mínimos esperados en el movimiento Browniano.	Práctica dirigida 4
28-Junio 02-Julio	Distribución del tiempo de parada. Principio de reflexión y distribución común. Feriado	Ceros del movimiento Browniano. Ley arco seno. Incremento lineal y cuadrático del movimiento Browniano.	Laboratorio 5 Semana 10 y semana 11 sesión 1
13 05-09 Julio	4. Cálculo de Ito: Definición de la integral de Ito. La integral de Ito. (Entrega de la Práctica Dirigida 4) Temas: Semanas 11 y 13.1.	Proceso gaussiano. Formula de Ito para el movimiento Browniano. El proceso de Ito. Ecuaciones diferenciales estocásticas.	Prácticas dirigidas todas
14 12-16 Julio	Formula de Ito para el proceso de Ito.	Modelo de Black-Scholes discreto.	Prácticas dirigidas todas
15 19-23 Julio	Relación entre las ecuaciones en derivadas parciales y las ecuaciones diferenciales estocásticas.	Ecuaciones diferenciales retrógradas.	Laboratorio 6 Semana 1 hasta semana 11 sesión 1
16 26-Julio 04- Agosto	EXAMEN FINAL (Semanas 7 (Sesión 1), 9, 10, 11, 12, 13, 14 y 15)		
17 05-11 Agosto	EXAMEN SUSTITUTORIO (Semana 1 a la semana 15)		

Observaciones:

- Las prácticas dirigidas presentarán problemas de tipo:
 - o Teórico (demostraciones)
 - o Cálculo (aplicativos)
- La evaluación consiste en:
 - o 6 evaluaciones calificadas denominadas laboratorios(L).
 - o 1 examen parcial (EP), 1 examen final (EF) y 1 examen sustitutorio (ES).
 - O Nota: P1,P2,P3, P4, P5 y P6 son las notas de las prácticas calificadas.
- La nota final esta promediada por:
 - O NOTA FINAL = (PP + EP + EF) / 3
 - o Donde: PP = (P1+P2+P3+P4+P5+P6 min (P1, P2, P3, P4,P5,P6)) / 5
 - o P1= 0.2*PE +0.8*L1
 - o P2= L2, P3= L3, P4=L4, P5=L5, P6=L6.
 - o EP= Examen parcial
 - EF= Examen final