

United States Military Academy West Point, New York 10996

Optimal Mix of **Army Aviation Assets**

Captain Jon L. Shupenus

Department of Mathematical Sciences

Colonel James Armstrong Department of Systems Engineering

Operations Research Center Technical Report

October 1998

19990325

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE October 1998 3. REPORT TYPE AND DATES COVERED Technical Report 4. TITLE AND SUBTITLE Optimal Mix of Army Aviation Assets 5. FUNDING NUMBERS 6. AUTHOR(S) CPT Jon Shupenus COL James Armstrong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USMA Operations Research Center West Point, New York 10996 8. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Distribution Statement A	
Optimal Mix of Army Aviation Assets 6. AUTHOR(S) CPT Jon Shupenus COL James Armstrong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USMA Operations Research Center West Point, New York 10996 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE	
CPT Jon Shupenus COL James Armstrong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USMA Operations Research Center West Point, New York 10996 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE	
USMA Operations Research Center West Point, New York 10996 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES	
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE	ON
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE	
TEST STOTMES THOSE COSE	
Distribution Statement A	
Approved for public Release; distribution unlimited.	
13. ABSTRACT (Maximum 200 words) The Army plan for future heavy division attack helicopter battalion organization calls for a similar organization which exits today: three attack companies consisting of three scout helicopters and five attack helicopters each, for of nine scouts and 15 attack helicopters per battalion. The scout to attack helicopter ratio has been fairly consisten last thirty years. With the current fielding of AH-64D Longbow Apache and development of RAH-66 Comanche helicopters, it seems worthwhile to evaluate the number and types of helicopters that should be assigned to the atta helicopter battalion. This project investigated the predicted combat effectiveness of a variety of attack helicopter battalion force struct Both the AH-64D and theRAH-66 were investigated in scout attack roles at three or five helicopters per platoon, we focus on survivability, lethality and detection capabilities. The analysis contained in this technical report uses experimental design, multiple scenarios, multiple replication confidence intervals to robustly investigate various battalion designs in an attempt to determine the best attack helicopter in the battalion force structure to meet the demands of the Force XXI and Army After Next. This project required analysis of each of 16 design points in three high resolutions scenarios. These scenarios were developed in Janus 6.0 and an associated database was edited and refined to create advanced vehicles and aircraft winght be expected for a 2010 combat engagement. A full 2^4 factorial design of experiments, plus a base case, reseventeen design points requiring evaluation. Ten replications of each design point in each scenario, along with a detailed refinement of two missions, required over 600 combat simulation runs. Analysis of output data revealed that Army development plans for future attack helicopter battalion force struct seem to be on track.	ca total at over the ck ctures. with a ans and copter were which sulted in more ures
Optimal Mix of Army Aviation Assets 15. NOMBER OF PAGE 63 16. PRICE CODE	iES
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF A DESCRIPTION OF ABSTRACT UNCLASSIFIED	ABSTRACT

Preface

This report provides the results of a study conducted at the United States Military Academy's Operations Research Center (ORCEN) which investigated various design proposals for an attack helicopter battalion. This unclassified research was conducted to enhance and support cadet education in the study of systems engineering at the United States Military Academy (USMA). A team of six cadets and one instructor from the Department of Systems Engineering assisted by performing combat simulation runs and preliminary analysis. Special thanks to Major Dave Briggs, and his SE402/403 Systems Design team of Cadets Ben Ambrose, Josh Glendening, Michael J. Hahn, Paul Schaffer, Jacob W. Shaver, and Abelardo Terpin.

The enclosed technical report is a product of the USMA Operations Research Center and does not represent official US Army data, results, policy positions or recommendations.

The Operations Research Center

The United States Military Academy's Operations Research Center provides a small, full-time analytical capability in support of the Academy's purpose and mission, the goals of the academic program and the disciplines of systems engineering, operations research and engineering management. The ORCEN is organized under the Office of the Dean as an Academy Center of Excellence. It typically employs about five full-time Army analysts; at any point in time, about a half-dozen Department of Systems Engineering and Department of Mathematical Sciences military and civilian faculty, together with students of the Military Academy, are working on a part-time basis on ORCEN projects. The ORCEN is co-located with the Department of Systems Engineering in Mahan Hall, West Point, NY and is sponsored by the Assistant Secretary of the Army (Financial Management).

The goals of the Operations Research Center include: enrich cadet education; enhance the professional development opportunities of Academy faculty by providing opportunities to engage in current issues and areas of importance to the Army; establish and maintain strong ties between the Academy and the Army; and remain abreast of and integrate new technologies into academic programs. Fully staffed and funded since Academic Year 1991, the ORCEN has made significant contributions to the Army's analytical efforts.

Contents

Section	Page
Executive Summary	iii
1. Introduction	1
1-1. Purpose	1
1-2. Problem Statement	1
1-3. Related Study	2
1-4. Assumptions	2
1-5. Scope	2
2. Methodology	4
2-1. Study Methodology	4
2-2. Alternatives	5
2-3. Measures of Effectiveness	7
2-4. Janus Model	8
3. Analysis	12
3-1. Performance Analysis	12
3-2. Helicopter Role Analysis	13
3-3. Scout/Attack Force Level Analysis	20
3-4. DOE Analysis	24
4. Findings and Conclusions	25
4-1. Findings	25
4-2. Conclusion	26
Appendices	
A. Aircraft Role Analysis	27
B. Force Level Analysis	30
C. Experimental Design Analysis	33
D. Scenario Force Structures	52
E. Janus Modeling of AH-64D and RAH-66	54
F. 66th MORS Presentation	55
References	61
Distribution list	63

Executive Summary

The Army plan for future heavy division attack helicopter battalion organization calls for a similar organization to that which exists today: three attack companies consisting of three scout helicopters and five attack helicopters each, for a total of nine scouts and 15 attack helicopters per battalion. The scout to attack helicopter ratio has been fairly consistent over the last thirty years. With the current fielding of AH-64D Longbow Apache and development of RAH-66 Comanche helicopters, it seems worthwhile to evaluate the number and types of helicopters that should be assigned to the attack helicopter battalion.

This project investigated the predicted combat effectiveness of a variety of attack helicopter battalion force structures. Both the AH-64D and the RAH-66 were investigated in scout and attack roles at three or five helicopters per platoon, with a focus on survivability, lethality, and detection capabilities.

The analysis contained in this technical report uses experimental design, multiple scenarios, multiple replications, and confidence intervals to robustly investigate various battalion designs in an attempt to determine the best attack helicopter battalion force structure to meet the demands of the Force XXI and Army After Next.

This project required analysis of each of 16 design points in three high resolution scenarios. These scenarios were developed in Janus 6.0, and an associated database was edited and refined to create advanced vehicles and aircraft which might be expected for a 2010 combat engagement. A full 2⁴ factorial design of experiments, plus a base case, resulted in seventeen design points requiring evaluation. Ten replications of each design point in each scenario, along with a more detailed refinement of two missions, required over 600 combat simulation runs.

Analysis of output data revealed that Army development plans for future attack helicopter battalion force structures seem to be on track.

Chapter 1: Introduction

1-1. Purpose

This unclassified study explores the operational performance of several different heavy division attack helicopter battalion force structures in three scenarios. The goal of this study is to attempt to identify an optimal design by: (1) evaluating the relative effectiveness of alternative *types* of scout and attack helicopters, and (2) investigating relative performance differences by varying the *number* of a company's scout and attack helicopters.

1-2. Problem Statement

a. Army plans for the future heavy divisional attack helicopter battalion force structure (circa 2010) call for it to be similar to that used today; three attack helicopter companies, consisting of one scout platoon and one attack platoon each. Historically, we can see that the ratio of scout to attack helicopters has been fairly consistent (companies made up of approximately 36-40% scouts). As the Army is currently investigating some major changes in divisional force structure for Force XXI and Army After Next, in addition to incorporating advanced technology and capabilities, it seems like now is a good time to evaluate whether the historical ratio makes sense.

Reference	Scout Attack		Systems
FM 1-100 <u>Army Aviation</u> (April 1959)		k helicopters. Helicopters nmand, control, and	H-13, H-23, HU-1, etc.
FM 1-15 Aviation Battalion Infantry, Airborne, Mechanized, and Armored Divisions (December 1961)	acquisition.	e airlift, aerial naissance, and target	Airmobile company, Aviation General Support Company
FM 1-110 <u>Armed Helicopter</u> <u>Employment</u> (July 1966)	helicopters are still in "The number of armed particular mission will	helicopters used on a depend upon the airmobile the ground commander and	7.62 mm (750m max. eff. rg.) 2.75 inch FFAR (2500m) AGM-22B (3500m) 40mm (1200m)
FM 1-100 Army Aviation Utilization (October 1971)	Offensive missions include: tactical escort, reconnaissance, fire support, economy of force, security missions, collecting information, engaging counterattacking forces, penetration, exploitation, counterattack, and pursuit.		2.75 inch FFAR 40mm grenade launcher ATGM 7.62mm 20-/30-mm
ARCSA III: FM 1-15 <u>Aviation Reference</u> Data (September 1977)	4x OH-58C 7x AH-1S		TOW 2.75 inch FFAR 20mm
AOE	4x OH-58C 6x AH-64A		SAL Hellfire 2.75 inch FFAR 30mm Stinger
ARI: Aviation Attack Battalion Study Final Report (October 1993)	3x AH-64A 5x AH-64A		SAL Hellfire 2.75 inch FFAR 30mm
ARI Interim: Aviation Force Structure (January 1997)	3x AH-64D	5x AH-64D	RF Hellfire 2.75 inch FFAR 30mm Stinger
ARI Objective: Force XXI Heavy Division Conservative Heavy Design (FY2010 Objective as of 14 May 1997)	3x RAH66	5x AH-64D	RF Hellfire 2.75 inch FFAR 20mm 30mm Stinger

Table 1-1: Evolution of the Attack Helicopter Company

b. Comanche's role as "quarterback of the digital battlefield" is still up in the air. The <u>Army Times</u> reported in its April 13, 1998 issue that the 1997 Quadrennial Defense Review recommended that the Army cannot afford to develop all of its advanced technology programs ("Comanche faces cloudy future", page 28). A review of Comanche's added value to the attack helicopter battalion mission could help decision makers determine whether to continue to allocate resources towards this project.

1-3. Related Study

Technical Report TRAC-TR-0993, "Aviation Attack Battalion Study Final Report," October 1993, TRADOC Analysis Center – Operations Analysis Center, Production Analysis Directorate, Fort Leavenworth, Kansas. This study identifies, as part of the Aviation Restructuring Initiative (ARI), the benefits and liabilities involved in replacing the OH-58C (Kiowa) with the AH-64A (Apache) as the scout helicopter in the heavy division attack helicopter battalion.

1-4. Assumptions

- a. The scenarios used in the study are representative of likely situations for employment of attack helicopter battalions.
 - b. Threat doctrine and equipment projections are representative of future enemies.
- c. Projected capabilities of advanced aircraft being studied can be modeled by making appropriate database changes relative to current aircraft. Surrogate data substituted for identified data deficiencies sufficiently represent the systems involved.
- d. Future attack helicopter battalion organization (three attack companies, one each scout and attack platoon per company) and roles will not change from current organization and roles.

1-5. Scope

a. Limitations

- (1) This was an unclassified study. As such, it allowed cadets at the United States Military Academy to participate in this project without regard to classification restrictions. Much effort was placed in accurately replicating these scenarios without using classified data. While the system databases used were not classified, we believe they closely replicated the combat systems specifications.
- (2) The effectiveness analysis focused on evaluating the attack helicopter battalion in its primary role -- attack. The study did not attempt to measure the value of reconnaissance or any other roles planned for the AH-64D Longbow Apache or RAH-66 Comanche.
- (3) The focus of the study was limited to performance and effectiveness analysis, and did not attempt to identify sustainment or personnel issues associated with the alternative force structures. Furthermore, many aspects of the technology found in the advanced aircraft cannot be modeled with current software packages. This fact limits the study to the named measures of effectiveness, and does not allow investigation of such improvements as information sharing, target hand-off, and situational awareness.

b. Constraints

(1) The basis for performance and effectiveness comparison is the current heavy division attack helicopter battalion. The force structure for this unit consists of a pure AH-64A Apache battalion, composed of three scouts and five attack helicopters in each of three companies.

Figure 1-1: Base case

- (2) This study considers only AH-64D Longbow Apache and RAH-66 Comanche helicopters as possible candidates for inclusion in future attack helicopter battalions. The direction of Army Aviation is towards advanced aircraft which will rely heavily upon digitization. This rules out consideration in this study of older technology, such as AH-64A (other than for comparison purposes), OH-58D(I) Kiowa Warrior, and AH-1 Cobra.
- (3) Only attack helicopter battalions for heavy (i.e., armor or mechanized infantry) divisions are evaluated. This narrows the focus of the study which does not consider other types of attack helicopter units, such as light or airborne division attack helicopter battalions or cavalry units.
- (4) The high-resolution scenarios (HRS) are derived from the TRADOC Analysis Center's Gist Book. Because of the unclassified nature of the study, we used the gist book's basic approach and war game summary, along with sketches provided by the Air Maneuver Battle Lab at Ft. Rucker to create the scenarios on representative terrain in Janus 6.0 software. We used HRS 59.0 (Army Aviation Artillery Air Force Attack (SWA)) and HRS 37.0 (Mechanized Brigade Attack (EUR)) to represent a range of potential missions that a heavy division attack helicopter battalion may be called upon to perform. These scenarios are further described in section 3-2.

Chapter 2: Methodology

2-1. Study Methodology

The analytical tools used to compare the various alternatives included static comparisons, combat modeling, experimental design, and statistical significance. Each analytical tool focused on providing measures of performance and effectiveness which could provided insights into the effectiveness of the base case and alternative designs.

a. Study plan: The following figure shows the systems design process used during the study:

Figure 2-1: Systems Engineering Design Process

This process is the basis for the study of systems engineering at the United States Military Academy, West Point, New York. It serves as a guide to show students studying systems engineering the many factors that must be taken into account when designing large, complex systems. The top line of the chart, "Formulation of Alternatives," was applied during our development of the experimental design which covered a large range of possible attack helicopter battalion force structures. The next step, "Analysis of Alternatives," was represented in this study by the application of each alternative to appropriate scenarios. Finally, this report represents the culmination of the "Interpretation of Alternatives" phase.

The Army's doctrinal manual for attack helicopter operations (FM 1-112) states that employment options for attack helicopter battalions include attacking massed armored forces, attacking in depth, dominating avenues of approach, reinforcing ground forces by fire, defeating enemy penetrations, and protecting flanks. In order to ensure that our analysis covered a range of possible attack helicopter battalion missions, we evaluated performance for multiple battalion designs in three scenarios – Corps Artillery Group (CAG) attack, 2nd Echelon attack, and Close Battle / Hasty Attack. These scenarios are discussed in detail in Section 3-2 (Effectiveness Analysis). This mix of scenarios permits insight into the best overall battalion force structure, and does not rely on the results from just one scenario.

- b. Analytic tools: We used static comparisons, combat modeling with multiple replications, experimental design, and measured statistical significance to help gain insights into the strengths and weaknesses of the battalion designs.
- (1) Static comparison allows a side-by-side look at the major equipment and performance characteristics for the helicopter types under consideration.
- (2) Multiple replications of stochastic combat simulation software (Janus 6.0) output allows analysis of a range of results. By performing a number of replications of the software run, we can gain insights about the mean and variance of our measures of effectiveness, rather than relying on only one replication. Controlling random number seeds used during the replications reduces a source of external variability.
- (3) Experimental design allows comparison of output response when purposeful changes are made to the input variables [Montgomery]. In our case, there are four input changes (described later) which we desired to investigate over a variety of measures of performance and effectiveness (also described later). Analysis of all possible combinations of the factors leads to more complete interpretation of the results.
- (4) Statistical significance. In order to compare the results from multiple replications, we want to investigate more than just the average results of multiple replications. Statistical significance allows us to state whether there is a difference in the observations based on the number of runs and the standard deviation of the results. This procedure allows us to create confidence intervals around the sample average where we would expect to find the mean value for a very large number of replications. Overlapping confidence intervals implies that we cannot definitively state that there is a difference between the mean values we observed during the experiment.
- c. Performance analysis: Performance analysis focused on looking at specific characteristics of the helicopters. These capabilities were evaluated through static comparisons. The mission equipment, weapons loads, aircraft survivability equipment (ASE), average age, cruise speed, weight capacity, and observability characteristics of the aircraft were examined.
- d. Effectiveness analysis: This area of analysis used simulation output to measure the lethality and survivability for the various battalion designs in each scenario. Because the nature of computer simulation relies heavily on the input database assumptions, one should keep in mind when interpreting the output that the analysis is representative of differences between systems. Simulation results help identify whether one system is better than the next, but only for specific areas of interest. By its character, simulation "is not an emulation tool with which the modeler attempts to create an exact replica of a system. Even if a computer were available which could handle every possible detail affecting every element of the system under study, the time and cost required to build the model would not justify the results." [Harrell]

2-2. Alternatives

a. Base case. The base case consisted of a battalion of 24 AH-64A helicopters formed into three identical companies of three scout and five attack helicopters each. This formed a basis for comparison to evaluate the modeling and effectiveness of the advanced aircraft types described below.

b. Aircraft types. Two types of advanced helicopters (AH-64D Longbow Apache, and RAH-66 Comanche) were evaluated for performance in both the scout and attack roles. Since there were two aircraft types and two roles, this led to an evaluation of the following battalion designs:

Scout platoon	Attack platoon
AH-64D	AH-64D
RAH-66	AH-64D
AH-64D	RAH-66
RAH-66	RAH-66

Table 2-1: Aircraft Types

It may be argued that the AH-64D scout / RAH-66 attack combination is not a logical force structure. The low-observable capabilities of RAH-66 seem best suited to the scout role; however, the AH-64D scout / RAH-66 attack combination is included in order to best evaluate all possible combinations in an experimental design. Helicopter role effectiveness is discussed in paragraph 3-2.

c. Platoon force levels. Two force levels (3 or 5 helicopters) were studied for each platoon. This allowed us to evaluate four combinations of helicopter types per company, and presented the opportunity to look at the effects of alternative ratios of scout to attack helicopters.

Scout platoon	Attack platoon	Note
3	3	a
3	5	b
5	3	С
5	5	d

Table 2-2: Platoon force levels

Notes

- a: Fewer aircraft per company than current design
- b: Current force level design
- c: Reversed scout / attack force levels
- d: More aircraft per company than current design

d. Experimental Design. The combinations of two aircraft types and two force levels per platoon led to the following experimental design. Base case runs were conducted separately (for comparison purposes only) and not included in the experimental design.

Scout platoon	Attack platoon
3 AH-64D	3 AH-64D
3 RAH-66	3 AH-64D
3 AH-64D	3 RAH-66
3 RAH-66	3 RAH-66
3 AH-64D	5 AH-64D
3 RAH-66	5 AH-64D
3 AH-64D	5 RAH-66
3 RAH-66	5 RAH-66
5 AH-64D	3 AH-64D
5 RAH-66	3 AH-64D
5 AH-64D	3 RAH-66
5 RAH-66	3 RAH-66
5 AH-64D	5 AH-64D
5 RAH-66	5 AH-64D
5 AH-64D	5 RAH-66
5 RAH-66	5 RAH-66

ARI Interim design
ARI Objective design

RAH-66 pure design (current force levels)

Table 2-3: Experimental Design

This is a full 2⁴ factorial design which offers the benefits of experimental design described in paragraph 2-1b(3). Analysis of this design can be found in Appendix C.

2-3. Measures of Effectiveness

Measures of effectiveness (MOE) and performance used during this study are listed below. A discussion of the performance and effectiveness of the force structures is in Chapter 3, and more detailed discussions of confidence intervals and analysis of variance associated with each MOE are found in Appendices A through C. Instead of combining and weighting measures of effectiveness to determine the best force structure, each MOE is examined individually.

- a. How do alternatives differ in the scout helicopter's ability to detect and acquire the enemy?
 - (1) Helicopter system capabilities; navigation, pilotage, and target acquisition capabilities.
- (2) Detections over time; indicates the number of detections by helicopters during specific time intervals. The slope of the plotted results indicates the detection rate at which red vehicles are being discovered. Higher peaks on the graph indicate more detections taking place during a time interval.
- (3) Number of detections made; indicates the total number of detections of red vehicles by helicopters during the scenario.
 - (4) Average and maximum distance from helicopters at which threat units are detected.
- (5) Detections per blue helicopter loss; calculated by dividing the number of detections by helicopters divided by the number of helicopters killed, measuring cost of information gain. A larger number indicates that more enemy vehicles were detected for each helicopter killed.

- b. How do the alternatives differ in firepower and ability to destroy enemy vehicles?
 - (1) Helicopter system capabilities; weapon types, maximum loads.
- (2) Blue helicopter kills of threat systems over time; the number of kills of red vehicles made during a specific time interval. The slope of the plotted results indicates the rate at which red vehicles are being destroyed. Higher peaks on the graph indicate more enemy vehicles being killed during a time interval.
 - (3) Total blue helicopter kills of threat systems. The total number of kills of red vehicle types.
 - c. What are the differences in contributions of each alternative to survivability?
- (1) Helicopter system capabilities; aircraft survivability equipment (ASE), radar cross section, infrared signature.
- (2) Blue helicopter status over time; indicates the number of helicopters destroyed during a specific time interval. The slope of the graph indicates the casualty rate at which blue helicopters are being lost; a steeper slope indicates that helicopters are dying faster.
- (3) Loss exchange ratio (LER). The number of red systems killed by helicopters divided by the number of helicopters dead at the end of the scenario. A larger number indicates that more enemy vehicles are destroyed for each blue helicopter lost.

$$LER = \frac{\#red\ vehicles\ killed\ by\ blue\ helicopters}{\#blue\ helicopters\ killed\ by\ red\ systems} x 100\%$$

2-4. Janus 6.0 Model

The Janus model is an interactive, high-resolution, force-on-force, brigade-level, stochastic combat simulation. The principal focus of Janus is on ground maneuver and artillery units, but Janus also models rotary and fixed wing aircraft, engineer support, minefield employment and breaching, resupply, weather and its effects, and day and night visibility. The following list contains important capabilities and assumptions that allowed us to conduct the study:

- a. Random number starting seeds were controlled to allow direct comparison of simulation runs with different configurations.
- b. Automatic replication capability (using AutoJan) allowed scenario replication with events such as movement orders and artillery firing taking place at exactly the same time. AutoJan is a feature of Janus 6.0 which records controller commands and allows a "replay" feature following changes, for example, in random numbers or force definition. This reduced one source of variation by removing human interaction after the first replication, causing output differences based only on changed factors.
- c. Janus allows programming of target priorities, so that if more than one type of enemy vehicle is detected, the simulated helicopter will engage the highest priority target first.
- d. Assumptions. As mentioned in paragraph 2-1d, no simulation can cover all aspects of a system (especially a battle!), so the following assumptions helped overcome database limitations and model the future battlefield in Janus:

- (1) Anti-helicopter threat is extremely high. This assumption allowed us to identify differences between advanced force structures because current anti-helicopter threat sometimes resulted in no losses for some design points in some scenarios.
- (2) All scout and no attack helicopters have FCR. This assumption let us ignore the current fielding plan for FCR which calls for only 1/3 of each type aircraft to have FCR. In some design points, there were more scouts than attack aircraft, and it would have been difficult to model which aircraft had this capability.
- (3) 20 km detection capability of FCR. Since unclassified FCR data was not available, it seemed reasonable to assume that FCR would have a significant advantage over current target detection systems. A sensor was created in the Janus database that has a high probability of detection at 20 km, assuming that the sensor has line-of-sight to the target.
- (4) Same FCR used on AH-64D and RAH-66. Although the RAH-66 is supposed to have a miniaturized version of the AH-64D FCR, we assumed that its capabilities would be exactly the same.
- (5) Increased sensor height for attack helicopters simulates info sharing. Since Janus does not simulate the passing of digital information, we compensated for this by increasing the sensor height on the attack helicopters. This increased height made it possible for the attack helicopters to fire from a masked position, simulating the relay of battlefield data from scout helicopters.
- (6) Comanche IR detectability is 4 times smaller than Apache; cross section of Comanche-scout is 1/600 of Apache's. A big advantage of the RAH-66 is its low observability. We reduced the radar cross section of RAH-66 by reducing its physical dimensions in Janus to approximately 1/600th of Apache's physical cross section. IR detection was changed by altering the thermal contrast field in Janus. These changes affected enemy probability of detection of Comanche.
- e. Runs. Janus runs used to create data for the helicopter role analysis were made separately from the data used in the scout/attack force level analysis and the experimental design. This was done to derive more fidelity for the helicopter role analysis. Longer runs allowed better routes and movement techniques, resulting in more robust analysis of how specific helicopters performed in the scout and attack roles. Time and resource constraints prevented running long scenarios for all replications of each design point. However, the observed characteristics adequately represent the true performance differences between the alternatives.
- f. Scenarios. Two high-resolution scenarios from TRADOC's Gist Book were used to examine three missions: deep attack against stationary targets, deep attack against moving targets, and close battle. These scenarios took place on vastly different terrain against a variety of target types.

Figure 2-2: High Resolution Scenario 59.0

- (1) HRS 59.0 Southwest Asia Corps Artillery Group (CAG) Destruction and 2nd Echelon Attack: A prepositioned brigade combat team conducts a delay against a Red corps (minus). Army aviation conducts cross-FLOT operations approximately 12 km deep on long-range fire support systems positions with the enemy artillery group. A second deep attack mission engages a moving second echelon division approximately 20 km deep into red territory. Environmental factors key to this scenario: Southwest Asia summer, rolling terrain, 0200 hours local time. The CAG attack and 2nd echelon attack missions were evaluated as separate scenarios and were not run simultaneously. The size of the Janus terrain database was approximately 1600 square kilometers.
 - (a) CAG Destruction mission target priorities ADA, FA, other vehicles.
 - (b) Second Echelon Attack mission target priorities ADA, tanks, other vehicles.

Figure 2-3: High Resolution Scenario 37.0

- (2) HRS 37.0 Europe Hasty Attack / Close Battle mission: Red first echelon division penetrates Blue brigade combat team defensive positions. Red calls forward second echelon tank division to continue attack. Blue commander orders counterattack against first and second echelons. Attack helicopters engage Red first and second echelons in the close battle. Environmental factors key to this scenario: European winter, mountainous terrain, 0100 hours local time. The size of the Janus terrain database was approximately 100 square kilometers.
- (3) Tactical events: We began each Janus replication with 100% operational readiness for each attack helicopter battalion. Suppression of enemy air defense (SEAD) missions by Blue artillery targeted known and suspected air defense locations along all routes. Artillery was also used to prepare the battle position (BP). Target priorities ADA, tanks, personnel carriers, other vehicles.

Scenarios based in HRS 59.0 (i.e., CAG Destruction and 2nd Echelon Attack) begin with the attack helicopter battalion on the friendly side of the forward line of own troops (FLOT), with the scout platoon leading the attack platoon and one minute separation between companies. Routes are flown at 15 meters altitude and 130 knots airspeed. Scouts engage air defense threats along the route. Upon arrival at holding area (HA) approximately 5 km from BP, aircraft transition to 5 meters altitude and 70 knots. The attack helicopters stop at the HA while the scouts reconnoiter the BP. Scouts take positions forward in the BP and call forward attack helicopters until they are within Hellfire range of the targets. Hover altitude is 3 meters. After servicing the targets, attack platoons follow the scouts on a different route back to friendly territory. The scenario ends when all surviving aircraft cross the FLOT, for a total game time run length of approximately 35 minutes.

The Hasty Attack / Close Battle mission likewise had the attack platoons following the scouts, but preplanned SEAD did not take place due to the nature of the mission. In this scenario, the Blue brigade has set up a hasty defense after encountering a Red tank division in a meeting engagement. Three Blue battalion task forces go online along the two natural avenues of approach from the north. The attack helicopter battalion is called upon to directly reinforce the western task force into a battle position adjacent to, and approximately 1 km behind the FLOT. Engagements are very heavy from both sides for the first 20 minutes after the lead regiments are destroyed. One attack company moves north adjacent to the western avenue of approach and engages the 2d echelon regiment. The scenario takes approximately 25 minutes of game time.

Chapter 3: Analysis

3-1. Performance Analysis

a. Helicopter characteristics. This table represents some of the significant differences in the navigation, pilotage, target acquisition, survivability, age, speed and weight of the aircraft considered in this study. Refer to Appendix E for a discussion of specific techniques used to model AH-64D and RAH-66 in the Janus database for this study.

	AH-64A	AH-64D	RAH-66	
Navigation	Doppler radar Global positioning system	Dual global positioning system and inertial nav Tactical situation display	Moving digital map	
Pilotage	Pilotage FLIR Enhanced fa Image intensification Improve Multifuncti		Wide-field of view helmet-mounted display Triple redundant fly-by- wire flight control system	
Target Acquisition	FLIR/DTV/DVO FCR		2 nd gen. FLIR Low-light TV FCR	
Aircraft Survivability Equipment	Radar jammer Radar frequency		Low observables	
Year, First Unit	1985 1997		2007?	
Cruise Speed	155 kt	139 kt	161 kt	
Max Weight	17,650 lb	23,000 lb	17,174 lb	

Table 3-1: Mission Equipment

b. Weapons load. This table represents the respective weapons load used in the scenarios for each type helicopter in the scout and attack roles:

	AH-64A	AH-64D	RAH-66	
38x FFAR		38x FFAR	6x RF Hellfire on fully	
C4	8x SAL Hellfire	8x RF Hellfire	retractable internal missile	
Scout	4x Stinger	4x Stinger	armament system.	
	1200x 30mm	1200x 30mm	500x 20mm	
	16x SAL Hellfire	16x RF Hellfire	14x RF Hellfire	
Attack	4x Stinger	4x Stinger	(6 internal, 8 external)	
	1200x 30mm	1200x 30mm	500x 20mm	

Table 3-2: Weapon configuration

3-2. Helicopter Role Analysis

The performance of AH-64D pure, RAH-66 scout / AH-64D attack (i.e., the ARI objective), and RAH-66 pure force structures, each with 9 scouts and 15 attack helicopters, are compared with the ARI base case. The following charts represent confidence intervals based on ten simulation replications. Additional graphs associated with these results are found in Appendix A.

a. Detections, Our assumption that only scouts have FCR allows us to limit our analysis of detections. For the base case, we used detections by all scout and attack helicopters; for all other cases only detections by scouts were used. This is a result of the increased sensor range and performance of FCR, as well as a means of reducing "artificial" detections by the attack helicopters; recall that it was necessary to place FCR sensors on attack helicopters in order to model information sharing. Any detections made by attack helicopter sensors were removed from the analysis.

We notice a large spike of detections at the beginning of each scenario for the three proposed battalion types. This is due to the excellent performance of the fire control radar on the scout helicopters. The number of detections generally decreases over time as targets are destroyed. Since the radar performance is considered identical for AH-64D and RAH-66, the differences in the graphs are mainly due to helicopter survivability; as scouts are killed, the number of detections decreases.

Number of detections made

These charts represent the total number of detections by scouts. All three scenarios show the same trend; addition of fire control radar greatly increases the number of detections, and the best performing units are those with Comanche scouts. Analysis of the confidence intervals shows that we do not expect a statistical difference for this MOE between the ARI objective and Comanche pure designs.

Distance at which threat units are detected

CAG Destruction				
Force Structure	Avg. Range	Max Range		
Base case	7.07	11.93		
Longbow pure	12.64	19.98		
ARI Objective	12.30	19.98		
Comanche pure	12.34	19.98		

2 nd Echelon				
Force Structure	Avg. Range	Max Range		
Base case	7.19	12.74		
Longbow pure	14.38	19.90		
ARI Objective	13.15	19.96		
Comanche pure	13.16	19.96		

Hasty Attack					
Force Structure	Avg. Range	Max Range			
Base case	3.15	6.29			
Longbow pure	5.22	10.56			
ARI Objective	4.82	10.61			
Comanche pure	4.84	10.65			

The maximum detection range was limited to 20 km, and this is represented in the first two scenarios (southeast Asia, generally flat terrain, good visibility). The max range of the FCR is consistent among the proposed battalions, and appreciably better than the sensors on AH-64A.

In two of the scenarios, the Longbow pure battalion makes significantly fewer but longer range detections, and there is no significant difference between ARI objective and Comanche pure ranges. This may be a result of the timing of Blue helicopter deaths in the scenarios. Initially, detections are made at longer ranges since the helicopters begin the scenarios on the friendly side of the FLOT. As the scenarios progress, the two designs with the best survivability make more short-range detections as they conduct the battle and engage enemy vehicles. The Longbow pure design loses significantly more helicopters enroute to the battle position, resulting in fewer short-range detections, but also resulting in raising its average detection range.

We notice a generalized pattern for each scenario: increasing detection-to-loss ratio as we move progressively through the base case, Longbow pure, ARI objective, and Comanche pure designs. This can be mainly attributed to survivability, since loss of fewer aircraft increases the ratio. Analysis of confidence intervals suggests that the Comanche pure design always has a better ratio than the Longbow pure design. The ARI objective confidence interval sometimes overlaps the intervals from the pure designs, implying that there is no statistical difference between the mean values for some missions.

b. Kills

In these charts, higher peaks corresponds to killing targets more quickly. The largest peaks in the first two scenarios represent the main engagement shots fired by the attack platoon. The smaller peaks just prior to the large peaks represent target engagements by the scout platoons in their attempt to clear the battle position while the attack platoons are moving forward from the holding area. Any kills prior to, or after, these two main peaks represent engagements along the routes, mostly against air defense units. This is especially noticeable in the second scenario, where there are many target engagements on the way to the battle position, and only a few on the way back to the friendly side.

Engagements in the hasty attack mission are represented by a spike early in the scenario. As seen in the analysis of detections, there are many enemy targets immediately observed. When the helicopters are within range, shots are immediately fired and vehicles are destroyed. The second main peak in this scenario represents the short-range cross FLOT engagements from one of the attack companies.

Performance in this MOE correlates to detections and survivability; undetected targets cannot be engaged, and lost helicopters cannot destroy enemy vehicles.

Total Kills

For the first two scenarios, the ARI objective force structure kills the most targets; the third scenario has the best performance by the Comanche pure design. For the CAG Destruction mission, the Longbow pure and Comanche pure force structures performed almost equally as well. In the 2nd Echelon mission, the Comanche pure design greatly outperformed the Longbow pure design; analysis of target types that were destroyed implies a problem with target priorities. In this scenario, the Longbow pure design killed ADA exclusivley. (This was noticed during preliminary analyis, and the design point was re-run with the same outcome. This result is surprising since it used the same database as the other scenarios, and this problem is not evident in those. We would expect that the kills would be similar to those for the Comanche pure design, as in the CAG Destruction mission.)

Another non-intuitive result concerns the base case in the first scenario. For this design point, the number of detections is greater than the number of kills. Recall that the detections shown in the graphs correspond only to those made by the scouts. Due to comparatively limited sensor performance, AH-64A base case attack helicopters may have a tendency to fire more autonomously-designated missiles than the FCR-equipped force structures.

Kills of enemy weapon systems appear to be correlated to survivability and weapons load. The largest weapons loads are carried by the base case and Longbow pure designs; the smallest number of missiles is carried by the Comanche pure design.

c. Survivability

Losses over time

In these graphs, we observe that the Comanche pure design is the most survivable during all phases of the battle, followed by ARI objective, Longbow pure, and the base case. The steepest declines in the graphs show the most deadly portions of the missions; generally these occur as the unit approaches its battle position. For the base case, movement along the routes is especially deadly. For the first two scenarios, the ARI objective design performs almost as well as the Comanche pure design.

Statistically, the Comanche pure design always survives better than the Longbow pure design. In two of three missions (both deep attacks), there is not a statistical difference between the survivability of ARI objective and Comanche pure designs. In the hasty attack mission, the Comanche pure design stands alone as the most survivable.

Again, there is no statistical difference between the results for the ARI objective and Comanche pure designs for the deep attack missions, and again, both have better results than the Longbow pure design. The differences between the average results in the hasty attack mission are all statistically significant.

3-3. Scout/Attack Force Level Analysis

A review of the results found in section 3-2 implies that the ARI objective design performed as well or better than the Longbow pure and Comanche pure designs for most of the measures of effectiveness in the three scenarios. Therefore, all battalion designs in this section of the analysis use RAH-66 scout and AH-64D attack helicopters. (Section 3-4 contains analysis of the full factorial experimental design.) The following discussions compare the relative performance differences observed when altering the total number of scout and attack helicopters between 9 and 15 for the battalion: 9 scouts / 9 attack (9/9), 9 scouts / 15 attack (9/15), 15 scouts / 9 attack (15/9), or 15 scouts / 15 attack (15/15). Recall from section 2-4 that a different set of Janus runs was used to create this data, so some of the results presented in this section will differ from those shown in Section 3-2 (helicopter role analysis). However, we would expect a similar amount of difference in performance if the replications had been run for the same length as those in the helicopter role analysis. Additional graphs associated with these results are found in Appendix B.

a. Detections.

Number of detections made.

There are no large significant differences in the number of detections observed during any of the three scenarios when altering the number of helicopters in the platoons. In the first two scenarios, it seems as if the designs with 9 attack helicopters make fewer detections than the 15 / 15 design. This fact seems correlated to: (1) the lower quantity of point target weapon systems (Hellfire missiles) carried by the 9 / 9 and 9 / 15 designs, and (2) lower scout survivability because fewer threat weapons are destroyed as a result.

* * * * *

Detections per helicopter loss

In two of three scenarios, the 15/15 design performed significantly worse than both the 9/9 and 15/9 designs. This phenomenon may be attributed to the lower survivability of AH-64D compared with RAH-66; more Longbow Apaches on the battlefield increases the chances that more helicopters will be lost, increasing the denominator and lowering the ratio. In the other scenario, there were no statistical differences.

b. Kills

Total kills of threat systems

The general trend shows that more attack helicopters allows the battalion to kill a larger number of enemy vehicles; this is especially true for the two deep attack scenarios. Also, in general, a larger number of scouts tends to increase the number of kills, but not as significantly as the increase due to a similar number of attack helicopters. This is an intuitive result—attack helicopters carry more missles than scouts. It follows that the battalion which kills the most enemy vehicles is the 15/15 design.

c. Survivability

Percent surviving

There are no large significant differences in the percentage of helicopters that survive during any of the three scenarios when altering the number of helicopters in the battalion.

There are no significant differences in the loss exchange ratio for any of the three scenarios when altering the number of helicopters in the battalion.

3-4. DOE Analysis

All combinations of AH-64D and RAH-66 force structures, each with 9 or 15 scouts, and 9 or 15 attack helicopters were analyzed using standard experimental design techniques. Pareto charts, estimated effects, and analysis of variance tables associated with these results are found in Appendix C. Summarized below are the major observations from an analysis of the experimental design:

- a. Detections. Increasing the number of scouts generally leads to more detections. This is due to the fact that having more scouts means that there is a better chance for more detections to take place after a scout loss has occurred. Also, in the two deep attack missions, an increase in the number of attack helicopters also significantly increased the number of detections, perhaps because the increased missile carrying capacity resulted in more lethality to enemy threat systems.
- b. Average detection range. In all three missions, we observe that AH-64D scouts make significantly longer-range detections. The cause for this phenomenon seems to lie in the combination of survivability and timing of detections, as mentioned in section 3-2. Further findings concerning average detection range are mixed and inconclusive.
- c. Detections per loss. A common factor for increasing the detections per loss ratio during the three missions is scout type; RAH-66 in the scout role significantly increases the ratio. Furthermore, Comanche in the attack role was a significant factor for two of three missions.
- d. Kills. Having more attack helicopters allows the battalion to kill more enemy vehicles. AH-64D was the better attack helicopter for two of the missions. The type of scout that gave the best performance for this MOE varied: Longbow Apache was better for one mission, Comanche was a better scout for another mission, and scout type was not significant in the third mission.
- e. Survivability. Comanche survives best in either the scout or attack role. However, the number of attack helicopters also was significant for all three missions—it seems that having a higher proportion of attack-to-scout helicopters may tend to increase the percentage of helicopters that survive a given mission. [This result was not reflected in the analysis in section 3-3.] This suggests that the current and proposed designs with 3 scouts and 5 attack helicopters may be the most survivable. However, helicopter type is a much more significant factor than the number of helicopters in a platoon.
- f. Loss exchange ratio. Scout type is significant in all three missions; Comanche in the scout role leads to increased LER. For two missions, Comanche in the attack role also had a significant impact.

Chapter 4: Findings and Conclusions

- 4-1. Findings. The purpose of this study was to explore the operational performance of different heavy division attack helicopter battalion force structures in three scenarios. The goal of this study was to attempt to identify an optimal design by: (1) evaluating the relative effectiveness of alternative types of scout and attack helicopters, and (2) investigating relative performance differences by varying the number of a company's scout and attack helicopters. The following findings review the insights gained during the analysis of the performance and effectiveness of the designs.
- a. The following chart lists the best battalion design for each mission type. When more than one type of force structure is listed, then there was no significant difference in performance for that mission. The designs listed in this chart are all based on 9 scouts and 15 attack helicopters per battalion.

Mission	Number of Detections	Detections per loss	Kills	Survivability	LER
CAG Attack	ARI objective Comanche pure	ARI objective Comanche pure	ARI objective	ARI objective Comanche pure	ARI objective Comanche pure
2 nd Echelon	ARI objective Comanche pure	Comanche pure	ARI objective	ARI objective Comanche pure	ARI objective Comanche pure
Hasty Attack	Longbow pure ARI objective Comanche pure	ARI objective Comanche pure	Comanche pure	Comanche pure	Comanche pure

Figure 4-1: Combined results

- b. Changing the size of an attack helicopter battalion does not affect the number of detections of enemy vehicles by the helicopters. Scout helicopters with FCR were very good at identifying targets, and having more scouts did not necessarily increase the number of enemy vehicles found.
- c. The number of enemy vehicles killed during a battle was directly related to the number of missiles engaging them. Attack helicopters carry more missiles than scouts, so attack helicopter type (AH-64D attack helicopters carried 16 missiles each; RAH-66 attack helicopters carried 14 missiles each) and platoon size were the biggest factors for killing targets.
- d. Comanche helicopters were much more survivable on a high threat battlefield than Apaches. This is reflected in the survival rate for RAH-66 overall, and especially by the Comanche pure design during the hasty attack mission. The attack helicopter battalion's overall survival rate increased significantly when there were more helicopters in the attack platoons than in the scout platoons.
- d. A synergistic effect took place when combining AH-64D attack platoons and RAH-66 scout platoons for deep attack missions. It seems that the Comanche scouts were very effective at surviving the anti-helicopter threat, and were successful in destroying that threat before it was able to engage the Apache helicopters. The AH-64D attack helicopters survived better, thus causing more missiles to be available for battle position operations.
- e. Survivability of Comanche is the most important factor for high-threat missions, such as in the close battle / hasty attack scenario. The low-observable characteristics of RAH-66 seem to make it well suited for this

type of mission. Survivability in a helicopter-hostile environment ultimately makes an impact on mission success (i.e., enemy destruction) and the ability to fight the next battle.

4-2. Conclusion

While the results in this study may not be identical to those done in a classified environment, we are confident that the differences between the alternatives are truly indicative of actual performance differences.

It seems as if the Army is on the right track in force structure development for the heavy division attack helicopter battalion. The transition from the current AH-64A pure battalion to a Longbow pure design represents a great leap in mission effectiveness for the attack helicopter battalion.

The ARI objective combination of nine Comanche scouts and fifteen Longbow Apache attack helicopters should cause another leap in mission effectiveness. Depending upon the scenario, the performance of a Comanche pure battalion could closely match or exceed the performance of the ARI objective battalion.

Appendix A. Aircraft Role Analysis

a. Detections: total detections by all helicopters for base case; only detections by scouts for all other cases.

Number of Detections [CI]

Average Range of Detections

Detections per lost blue helicopter

b. Kills

Blue helicopter kills of threat major systems [CI]

c. Survivability Blue helicopter losses [CI]

LER

Appendix B. Force Level Analysis

a. Detections by scouts.

Number of Detections

Detections per helicopter loss

b. Kills

Blue helicopter kills of threat major systems

c. Survivability

Threat kills of blue helicopters [CI]

LER

Appendix C. Experimental Design Analysis

Minitab results:

Pareto charts, Estimated effects and coefficients, ANOVA tables.

100=CAG Destruction, 200=2nd Echelon, 300=Hasty Attack.

Term	Low	High
AtkType	AH64D	RAH66
SctType	AH64D	RAH66
NumAtk	9	15
NumSct	9	15

- (1) Number of detections.
- (2) Average detection distance.
- (3) Detections per Blue helicopter loss.
- (4) Total Blue helicopter kills of threat systems.
- (5) Scout / Attack lethality range
- (6) Blue helicopter survivability percentage.
- (7) Loss exchange ratio.

Fractional Factorial Fit: CAG Destruction

Pareto Chart of the Standardized Effects

(response is Det100, Alpha = .05)

Estimated Effects and Coefficients for Det100

Term Constant AtkType SctType NumAtk NumSct AtkType*SctType AtkType*NumAtk AtkType*NumSct SctType*NumSct NumAtk*NumSct AtkType*SctType*NumAtk SctType*SctType*NumAtk AtkType*SctType*NumAtk*NumSct AtkType*SctType*NumAtk*Num SctType*NumAtk*Num SctType*NumAtk*Num AtkType*SctType*NumAtk*Num AtkType*SctType*NumAtk*Num AtkType*SctType*NumAtk*Num AtkType*SctType*NumAtk*Num AtkType*SctType*NumAtkType*SctType*NumSct Analysis of Varian	umset nset nset umatk*	Effect -1.750 1.250 3.400 1.225 0.275 -0.625 0.300 -0.525 -0.050 0.650 -0.100 -0.025 0.525 0.575 -0.700	Coef 113.188 -0.875 0.625 1.700 0.612 0.137 -0.312 0.150 -0.262 -0.025 0.325 -0.050 -0.013 0.263 0.288	StDev Coef 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606 0.3606	T313.86 -2.43 1.73 4.71 1.70 0.38 -0.87 -0.97 0.90 -0.14 -0.03 0.73 0.80 -0.97	0.000 0.016 0.085 0.000 0.704 0.388 0.678 0.468 0.945 0.369 0.890 0.972 0.468
Source Main Effects 2-Way Interactions 3-Way Interactions 4-Way Interactions Residual Error Pure Error Total Unusual Observation	3 4 5 1 144 144 159	Seq SS 707.43 50.28 24.68 19.60 2996.40 2996.40 3798.38	Adj SS 707.43 50.28 24.68 19.60 2996.40	Adj MS 176.856 8.379 6.169 19.600 20.808 20.808	0.40 0.30	P 0.000 0.876 0.880 0.333
Obs Det100 6 121.000 21 126.000 30 126.000 117 102.000 125 105.000 126 105.000	Fit 111.800 115.900 114.700 109.700 115.900 115.700 114.700	StDev Fit 1.443 1.443 1.443 1.443 1.443 1.443	Residual 9.200 10.100 11.300 10.300 -13.900 -10.700 -9.700	St Resid 2.13R 2.33R 2.61R 2.38R -3.21R -2.47R -2.24R		

(response is AvgDetRg, Alpha = .05)

Estimated Effects and Coefficients for AvgDetRg

Term Constant AtkType SctType	Effect -0.00450 -0.04200	Coef 6.56637 -0.00225 -0.02100	StDev Coef 0.006304 0.006304 0.006304	T 1041.68 -0.36 -3.33	P 0.000 0.722 0.001
NumAtk	0.03000	0.01500	0.006304	2.38	0.019
NumSct	0.01100	0.00550	0.006304	0.87	0.384
AtkType*SctType	-0.00075	-0.00037	0.006304	-0.06	0.953
AtkType*NumAtk	0.00775	0.00387	0.006304	0.61	0.540
AtkType*NumSct	0.00025	0.00012	0.006304	0.02	0.984
SctType*NumAtk	0.00925	0.00462	0.006304	0.73	0.464
SctType*NumSct	0.01175	0.00587	0.006304	0.93	0.353
NumAtk*NumSct	-0.00975	-0.00488	0.006304	-0.77	0.441
AtkType*SctType*NumAtk	-0.00850	-0.00425	0.006304	-0.67	0.501
AtkType*SctType*NumSct	0.00550	0.00275	0.006304	0.44	0.663
AtkType*NumAtk*NumSct	-0.00550	-0.00275	0.006304	-0.44	0.663
SctType*NumAtk*NumSct AtkType*SctType*NumAtk*	-0.00300	-0.00150	0.006304	-0.24	0.812
NumSct	0.01175	0.00587	0.006304	0.93	0.353

Analysis of Variance for AvgDetRg

Source Main Effects	DF 4	Seq SS 0.11221	Adj ss 0.112210	Adj Ms 0.028053	F 4.41	P 0.002
2-Way Interactions	6	0.01517	0.015175	0.002529	0.40	0.879
3-Way Interactions	4	0.00567	0.005670	0.001418	0.22	0.925
4-Way Interactions	1	0.00552	0.005522	0.005522	0.87	0.353
Residual Error	144	0.91552	0.915520	0.006358		
Pure Error	144	0.91552	0.915520	0.006358		
Total	159	1.05410				

Unusual Observations for AvgDetRg

AvgDetRg	Fit	StDev Fit	Residual	St Resid
6.41000	6.58400	0.02521	-0.17400	-2.30R
6.79000	6.61900	0.02521	0.17100	2.26R
6.75000	6.59000	0.02521	0.16000	2.12R
6.36000	6.55800	0.02521	-0.19800	-2.62R
6.75000	6.58400	0.02521	0.16600	2.19R
6.77000	6.59000	0.02521	0.18000	2.38R
6.77000	6.55800	0.02521	0.21200	2.80R
6.31000	6.58400	0.02521	-0.27400	-3.62R
	6.41000 6.79000 6.75000 6.36000 6.75000 6.77000	6.41000 6.58400 6.79000 6.61900 6.75000 6.59000 6.36000 6.55800 6.75000 6.58400 6.77000 6.59000 6.77000 6.55800	6.41000 6.58400 0.02521 6.79000 6.61900 0.02521 6.75000 6.59000 0.02521 6.36000 6.55800 0.02521 6.75000 6.58400 0.02521 6.77000 6.59000 0.02521 6.77000 6.59000 0.02521 6.77000 6.55800 0.02521	6.41000 6.58400 0.02521 -0.17400 6.79000 6.61900 0.02521 0.17100 6.75000 6.59000 0.02521 0.16000 6.36000 6.55800 0.02521 -0.19800 6.75000 6.58400 0.02521 0.16600 6.77000 6.59000 0.02521 0.18000 6.77000 6.55800 0.02521 0.21200

(response is Det/Loss, Alpha = .05)

Estimated Effects and Coefficients for Det/Loss

Term Constant	Effect	Coef 30.716	StDev Coef 6.907	Т 4.45	P 0.000
AtkType	37.679	18.839	6.907	2.73	0.007
SctType	33.344	16.672	6.907	2.41	0.017
NumAtk	9.088	4.544	6.907	0.66	0.512
NumSct	-16.092	-8.046	6.907	-1.16	0.246
AtkType*SctType	27.953	13.977	6.907	2.02	0.045
AtkType*NumAtk	12.391	6.195	6.907	0.90	0.371
AtkType*NumSct	-15.105	-7.552	6.907	-1.09	0.276
SctType*NumAtk	9.210	4.605	6.907	0.67	0.506
SctType*NumSct	-11.967	-5.984	6.907	-0.87	0.388
NumAtk*NumSct	-16.540	-8.270	6.907	-1.20	0.233
AtkType*SctType*NumAtk	11.094	5.547	6.907	0.80	0.423
AtkType*SctType*NumSct	-13.044	-6.522	6.907	-0.94	0.347
AtkType*NumAtk*NumSct	-15.401	-7.701	6.907	-1.11	0.267
SctType*NumAtk*NumSct AtkType*SctType*NumAtk*	-16.367	-8.183	6.907	-1.18	0.238
NumSct	-15.192	-7.596	6.907	-1.10	0.273

Analysis of Variance for Det/Loss

Source	DF	Seq SS	Adj ss	Adj MS	F	P
Main Effects	4	114923	114923	28731	3.76	0.006
2-Way Interactions	6	66587	66587	11098	1.45	0.198
3-Way Interactions	4	31932	31932	7983	1.05	0.386
4-Way Interactions	1	9232	9232	9232	1.21	0.273
Residual Error	144	1099301	1099301	7634		
Pure Error	144	1099301	1099301	7634		
Total	159	1321975				

Unusual Observations for Det/Loss

Obs	Det/Loss	Fit	StDev Fit	Residual	St Resid
8	1140.00	160.95	27.63	979.05	11.81R

(response is TotalKil, Alpha = .05)

Estimated Effects and Coefficients for TotalKil

Term Constant AtkType SctType NumAtk	Effect 14.200 -3.500 11.025	Coef 57.925 7.100 -1.750 5.513	StDev Coef 0.4579 0.4579 0.4579 0.4579	T 126.49 15.50 -3.82 12.04	P 0.000 0.000 0.000
NumSct	5.450	2.725	0.4579	5.95	0.000
AtkType*SctType	-0.300	-0.150	0.4579	-0.33	0.744
AtkType*NumAtk	-1.375	-0.687	0.4579	-1.50	0.135
AtkType*NumSct	0.200	0.100	0.4579	0.22	0.827
SctType*NumAtk	0.075	0.037	0.4579	0.08	0.935
SctType*NumSct	-1.350	-0.675	0.4579	-1.47	0.143
NumAtk*NumSct	0.425	0.213	0.4579	0.46	0.643
AtkType*SctType*NumAtk	-0.075	-0.038	0.4579	-0.08	0.935
AtkType*SctType*NumSct	-0.450	-0.225	0.4579	-0.49	0.624
AtkType*NumAtk*NumSct	-0.175	-0.087	0.4579	-0.19	0.849
SctType*NumAtk*NumSct AtkType*SctType*NumAtk*	-0.175	-0.088	0.4579	-0.19	0.849
NumSct	-1.025	-0.513	0.4579	-1.12	0.265

Analysis of Variance for TotalKil

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	14605.7	14605.7	3651.43	108.83	0.000
2-Way Interactions	6	161.2	161.2	26.86	0.80	0.571
3-Way Interactions	4	10.8	10.8	2.69	0.08	0.988
4-Way Interactions	1	42.0	42.0	42.03	1.25	0.265
Residual Error	144	4831.4	4831.4	33.55		
Pure Error	144	4831.4	4831.4	33.55		
Total	159	19651 1				

Unusual Observations for TotalKil

Obs	TotalKil	Fit	StDev Fit	Residual	St Resid
1	27.0000	43.1000	1.8317	-16.1000	-2.93R
49	30.0000	43.1000	1.8317	-13.1000	-2.38R
59	26.0000	44.4000	1.8317	-18.4000	-3.35R
60	49.0000	60.7000	1.8317	-11.7000	-2.13R
103	67.0000	52.6000	1.8317	14.4000	2.62R

(response is Surv100, Alpha = .05)

Estimated Effects and Coefficients for Surv100

Term	Effect	Coef	StDev Coef	Т	P
Constant		67.566	0.5967	113.24	0.000
AtkType	26.271	13.135	0.5967	22.01	0.000
SctType	16.410	8.205	0.5967	13.75	0.000
NumAtk	2.597	1.299	0.5967	2.18	0.031
NumSct	2.597	1.298	0.5967	2.18	0.031
AtkType*SctType	-0.729	-0.365	0.5967	-0.61	0.542
AtkType*NumAtk	2.833	1.417	0.5967	2.37	0.019
AtkType*NumSct	-1.750	-0.875	0.5967	-1.47	0.145
SctType*NumAtk	-2.305	-1.153	0.5967	-1.93	0.055
SctType*NumSct	2.278	1.139	0.5967	1.91	0.058
NumAtk*NumSct	-2.993	-1.497	0.5967	-2.51	0.013
AtkType*SctType*NumAtk	0.209	0.104	0.5967	0.17	0.861
AtkType*SctType*NumSct	0.209	0.104	0.5967	0.18	0.861
AtkType*NumAtk*NumSct	0.646	0.323	0.5967	0.54	0.589
SctType*NumAtk*NumSct	-1.715	-0.857	0.5967	-1.44	0.153
AtkType*SctType*NumAtk*					
NumSct	0.312	0.156	0.5967	0.26	0.794

Analysis of Variance for Surv100

Source	DF	Seq SS	Adi ss	Adj Ms	F	P
Main Effects	4	38916.4	38916.4	9729.10	170.80	0.000
2-Way Interactions	6	1243.4	1243.4	207.23	3.64	0.002
3-Way Interactions	4	137.8	137.8	34.44		0.660
4-Way Interactions	1	3.9	3.9	3.90	0.07	0.794
Residual Error	144	8202.5	8202.5	56.96		
Pure Error	144	8202.5	8202.5	56.96		
Total	159	48503.9				

Unusual Observations for Surv100

Obs	Surv100	Fit	StDev Fit	Residual	St Resid
31	80.000	62.000	2.387	18.000	2.51R
37	66.670	46.667	2.387	20.003	2.79R
81	27.780	42.777	2.387	-14.997	-2.09R
85	62.500	46.667	2.387	15.833	2.21R
132	66.670	83.333	2.387	-16.663	-2.33R
139	87.500	70.416	2.387	17.084	2.39R
157	63.330	47.333	2.387	15.997	2.23R

(response is LER100, Alpha = .05)

Estimated Effects and Coefficients for LER100

Term		Effect	Coef	StDev Coef	T	P
Constant			16.712	4.051	4.13	0.000
AtkType		23.066	11.533	4.051	2.85	0.005
SctType		18.006	9.003	4.051	2.22	0.028
NumAtk		7.447	3.723	4.051	0.92	0.360
NumSct		-8.594	-4.297	4.051	-1.06	0.291
AtkType*SctType		16.028	8.014	4.051	1.98	
AtkType*NumAtk		7.865	3.932	4.051	0.97	
AtkType*NumSct		-8.602	-4.301	4.051	-1.06	
SctType*NumAtk		6.382	3.191	4.051	0.79	
SctType*NumSct		-6.992	-3.496	4.051	-0.86	
NumAtk*NumSct		-9.857	-4.928	4.051	-1.22	
AtkType*SctType*NumA	.tk	6.949	3.475	4.051	0.86	
AtkType*SctType*NumS	ct	-7.528	-3.764	4.051	-0.93	
AtkType*NumAtk*NumSc	t	-9.246	-4.623	4.051		–
SctType*NumAtk*NumSc	t	-9.566	-4.783	4.051	-1.18	0.240
AtkType*SctType*NumA	.tk*					
NumSct		-9.048	-4.524	4.051	-1.12	0.266
Analysis of Variance	for	LER100				
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	39422	39422	9856	3.75	0.006
2-Way Interactions	6	23181	23181	3864	1.47	0.192
3-Way Interactions	4	11278	11278	2820	1.07	0.372
4-Way Interactions	1	3274	3274	3274	1.25	0.266
Residual Error	144	378024	378024	2625		
' Pure Error	144	378024	378024	2625		
Total	159	455181				

Unusual Observations for LER100

Obs	LER100	Fit	StDev Fit	Residual	St Resid
8	670.000	94.300	16.202	575.700	11.84R

Fractional Factorial Fit: 2nd Echelon

Pareto Chart of the Standardized Effects

(response is Det200, Alpha = .05)

Estimated Effects and Coefficients for Det200

Term	Effect	Coef 72.912	StDev Coef 0.3350	т 217.67	P 0.000
Constant	0.125	0.063	0.3350	0.19	0.852
AtkType SctType	18.800	9.400	0.3350	28.06	0.000
NumAtk	3.500	1.750	0.3350	5.22	0.000
NumSct	4.025	2.012	0.3350	6.01	0.000
AtkType*SctType	-0.600	-0.300	0.3350	-0.90	0.372
AtkType*NumAtk	-0.150	-0.075	0.3350	-0.22	0.823
AtkType*NumSct	-0.375	-0.188	0.3350	-0.56	0.577
SctType*NumAtk	-1.275	-0.637	0.3350	-1.90	0.059
SctType*NumSct	-3.350	-1.675	0.3350	-5.00	0.000
NumAtk*NumSct	0.150	0.075	0.3350	0.22	0.823
AtkType*SctType*NumAtk	-0.125	-0.062	0.3350	-0.19	0.852
AtkType*SctType*NumSct	-0.050	-0.025	0.3350	-0.07	0.941
AtkType*NumAtk*NumSct	-0.700	-0.350	0.3350	-1.04	0.298
SctType*NumAtk*NumSct	0.025	0.013	0.3350	0.04	0.970
AtkType*SctType*NumAtk*	0.175	0.088	0.3350	0.26	0.794
NumSct	0.175	0.088	0.3350	0.20	0./94

Analysis of Variance for Det200

Source Main Effects 2-Way Interactions	DF 4 6	Seq SS 15276.3 535.7	Adj SS 15276.3 535.7	Adj MS 3819.06 89.29	F 212.73 4.97	P 0.000 0.000
3-Way Interactions	4	20.4	20.4	5.09	0.28	0.888
4-Way Interactions	1	1.2	1.2	1.23	0.07	0.794
Residual Error	144	2585.2	2585.2	17.95		
Pure Error	144	2585.2	2585.2	17.95		
Total	159	18418.8				

Unusual Observations for Det200

Obs	Det200	Fit	StDev Fit	Residual	St Resid
29	61.0000	69.9000	1.3399	-8.9000	-2.21R
30	61.0000	69.4000	1.3399	-8.4000	-2.09R
37	73.0000	61.2000	1.3399	11.8000	2.94R
41	74.0000	64.1000	1.3399	9.9000	2.46R
42	75.0000	65.4000	1.3399	9.6000	2.39R
53	51.0000	61.2000	1.3399	-10.2000	-2.54R
54	54.0000	63.1000	1.3399	-9.1000	-2.26R
101	53.0000	61.2000	1.3399	-8.2000	-2.04R
106	55.0000	65.4000	1.3399	-10.4000	-2.59R
117	73.0000	61.2000	1.3399	11.8000	2.94R
118	72.0000	63.1000	1.3399	8.9000	2.21R
134	78.0000	63.1000	1.3399	14.9000	3.71R

(response is AvgDetRg, Alpha = .05)

Estimated Effects and Coefficients for AvgDetRg

Term Constant AtkType SctType NumAtk NumSct AtkType*SctType	Effect -0.00225 -0.03400 -0.01200 -0.03300 0.00675	Coef 5.21400 -0.00113 -0.01700 -0.00600 -0.01650 0.00338	StDev Coef 0.004928 0.004928 0.004928 0.004928 0.004928 0.004928	T 1058.05 -0.23 -3.45 -1.22 -3.35 0.68	P 0.000 0.820 0.001 0.225 0.001 0.495
AtkType*NumAtk	0.00325	0.00162	0.004928	0.33	0.742
AtkType*NumSct	-0.00525	-0.00263	0.004928	-0.53	0.595
SctType*NumAtk	0.01150	0.00575	0.004928	1.17 4.01	0.245
SctType*NumSct	0.03950 0.01000	0.01975 0.00500	0.004928	1.01	0.312
NumAtk*NumSct AtkType*SctType*NumAtk	0.01000	0.00187	0.004928	0.38	0.704
AtkType*SctType*NumSct	-0.00075	-0.00038	0.004928	-0.08	0.939
AtkType*NumAtk*NumSct	0.00125	0.00063	0.004928	0.13	0.899
SctType*NumAtk*NumSct	-0.01000	-0.00500	0.004928	-1.01	0.312
AtkType*SctType*NumAtk*	0.00125	0.00062	0.004928	0.13	0.899
NumSct	0.00125	0.00062	0.004320	0.13	0.055

Analysis of Variance for AvgDetRg

Unusual Observations for AvgDetRg

Obs	AvaDetRa	Fit	StDev Fit	Residual	St Resid
CDS					
2	5. 4 1000	5.28700	0.01971	0.12300	2.08R
21	5.12000	5.24800	0.01971	-0.12800	-2.16R
53	5.39000	5.24800	0.01971	0.14200	2.40R
54	5.37000	5.24300	0.01971	0.12700	2.15R
61	5.06000	5.20000	0.01971	-0.14000	-2.37R
106	5.33000	5.19000	0.01971	0.14000	2.37R
121	5.33000	5.20300	0.01971	0.12700	2.15R
122	5.31000	5.19000	0.01971	0.12000	2.03R
125	5.32000	5.20000	0.01971	0.12000	2.03R
150	5.10000	5.24300	0.01971	-0.14300	-2.42R

(response is Det/Loss, Alpha = .05)

Estimated Effects and Coefficients for Det/Loss

Term Constant AtkType SctType NumAtk NumSct AtkType*SctType	Effect -1.503 49.306 19.733 21.915 -1.990	Coef 30.092 -0.752 24.653 9.866 10.957 -0.995	StDev Coef 7.192 7.192 7.192 7.192 7.192 7.192 7.192	T 4.18 -0.10 3.43 1.37 1.52 -0.14	P 0.000 0.917 0.001 0.172 0.130 0.890
AtkType*NumAtk AtkType*NumSct SctType*NumSct SctType*NumSct NumAtk*NumSct AtkType*SctType*NumAtk AtkType*SctType*NumSct AtkType*SctType*NumSct AtkType*NumAtk*NumSct	0.808 -0.769 19.345 22.809 17.339 0.595 -0.650 -2.464	0.404 -0.384 9.672 11.404 8.669 0.298 -0.325 -1.232	7.192 7.192 7.192 7.192 7.192 7.192 7.192 7.192	0.06 -0.05 1.34 1.59 1.21 0.04 -0.05	0.955 0.957 0.181 0.115 0.230 0.967 0.964 0.864
SctType*NumAtk*NumSct AtkType*SctType*NumAtk* NumSct	17.554 -2.225	8.777 -1.113	7.192 7.192	1.22	0.224

Analysis of Variance for Det/Loss

Source	DF	Seq SS	Adj ss	Adj MS	F	P
Main Effects	4	132118	132118	33029.4	3.99	0.004
2-Way Interactions	6	48011	48011	8001.9	0.97	0.450
3-Way Interactions	4	12599	12599	3149.8	0.38	0.822
4-Way Interactions	1	198	198	198.1	0.02	0.877
Residual Error	144	1191793	1191793	8276.3		
Pure Error	144	1191793	1191793	8276.3		
Total	159	1384719				

Unusual Observations for Det/Loss

Obs	Det/Loss	Fit	StDev Fit	Residual	St Resid
32	830.000	109.992	28.769	720.008	8.34R
95	850.000	118.191	28.769	731.809	8.48R

(response is TotalKil, Alpha = .05)

Estimated Effects and Coefficients for TotalKil

Term Constant AtkType SctType SctType NumAtk NumSct AtkType*SctType AtkType*NumAtk AtkType*NumSct SctType*NumAtk SctType*NumSct NumAtk*NumSct	Effect -7.725 0.125 23.675 13.000 -1.550 -1.750 -1.225 2.850 -3.175 -0.375	Coef 98.300 -3.863 0.063 11.838 6.500 -0.775 -0.875 -0.613 1.425 -1.587 -0.188	StDev Coef 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446 0.6446	T 152.49 -5.99 0.10 18.36 10.08 -1.20 -1.36 -0.95 2.21 -2.46 -0.29	0.000 0.000 0.923 0.000 0.231 0.177 0.344 0.029 0.015 0.772
NumAtk*NumSct AtkType*SctType*NumAtk AtkType*SctType*NumSct AtkType*NumAtk*NumSct SctType*NumAtk*NumSct AtkType*SctType*NumAtk*	-0.375 0.175 -0.250 -1.600 0.100	-0.188 0.088 -0.125 -0.800 0.050	0.6446 0.6446 0.6446 0.6446 0.6446	-0.29 0.14 -0.19 -1.24 0.08	0.772 0.892 0.847 0.217 0.938
NumSct	-0.075	-0.038	0.6446	-0.06	0.954

Analysis of Variance for TotalKil

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	31567.9	31567.9	7891.97	118.69	0.000
2-Way Interactions	6	1012.4	1012.4	168.73	2.54	0.023
3-Way Interactions	4	106.5	106.5	26.63	0.40	0.808
4-Way Interactions	1	0.2	0.2	0.23	0.00	0.954
Residual Error	144	9574.6	9574.6	66.49		
Pure Error	144	9574.6	9574.6	66.49		
Total	159	42261.6				

Unusual Observations for TotalKil

Obs	TotalKil	Fit	StDev Fit	Residual	St Resid
31	140.000	123.400	2.579	16.600	2.15R
40	120.000	103.000	2.579	17.000	2.20R
48	128.000	109.400	2.579	18.600	2.40R
55	90.000	110.700	2.579	-20.700	-2.68R
71	93.000	110.700	2.579	-17.700	-2.29R
78	95.000	111.200	2.579	-16.200	-2.09R
111	106.000	123.400	2.579	-17.400	-2.25R
112	89.000	109.400	2.579	-20.400	-2.64R
149	121.000	103.600	2.579	17.400	2.25R

(response is Surv200, Alpha = .05)

Estimated Effects and Coefficients for Surv200

Term	Effect	Coef	StDev Coef	т	P
Constant		68.645	0.4410	155.66	0.000
AtkType	1.549	0.774	0.4410	1.76	0.081
SctType	39.208	19.604	0.4410	44.45	0.000
NumAtk	7.501	3.750	0.4410	8.50	0.000
NumSct	2.084	1.042	0.4410	2.36	0.019
AtkType*SctType	-2.271	-1.135	0.4410	-2.57	0.011
AtkType*NumAtk	1.410	0.705	0.4410	1.60	0.112
AtkType*NumSct	-0.049	-0.024	0.4410	-0.06	0.956
SctType*NumAtk	-4.542	-2.271	0.4410	-5.15	0.000
SctType*NumSct	2.125	1.062	0.4410	2.41	0.017
NumAtk*NumSct	-1.876	-0.938	0.4410	-2.13	0.035
AtkType*SctType*NumAtk	0.021	0.011	0.4410	0.02	0.981
AtkType*SctType*NumSct	0.229	0.115	0.4410	0.26	0.795
AtkType*NumAtk*NumSct	-1.577	-0.788	0.4410	-1.79	0.076
SctType*NumAtk*NumSct	0.876	0.438	0.4410	0.99	0.322
AtkType*SctType*NumAtk*					
NumSct	0.020	0.010	0.4410	0.02	0.981

Analysis of Variance for Surv200

Source Main Effects 2-Way Interactions 3-Way Interactions 4-Way Interactions Residual Error Pure Error	DF 4 6 4 1 144 144	Seq SS 64011.6 1432.4 132.2 0.0 4480.9 4480.9	Adj SS 64011.6 1432.4 132.2 0.0 4480.9 4480.9	Adj MS 16002.9 238.7 33.1 0.0 31.1 31.1	7.67 1.06	P 0.000 0.000 0.377 0.981
Total	159	70057.1				

Unusual Observations for Surv200

Obs	Surv200	Fit	StDev Fit	Residual	St Resid
2	55.560	42.221	1.764	13.339	2.52R
49	27.780	41.109	1.764	-13.329	-2.52R
82	27.780	42.221	1.764	-14.441	-2.73R
85	37.500	52.917	1.764	-15.417	-2.91R
89	29.170	42.500	1.764	-13.330	-2.52R
133	70.830	52.917	1.764	17.913	3.38R

(response is LER200, Alpha = .05)

Estimated Effects and Coefficients for LER200

	Effect	Coef	StDev Coef	т	P
Term	Filect	38.879	9.952	3.91	0.000
Constant					
AtkType	-3.377	-1.689	9.952	-0.17	0.866
SctType	61.034	30.517	9.952	3.07	0.003
NumAtk	32.993	16.497	9.952	1.66	0.100
NumSct	31.797	15.899	9.952	1.60	0.112
AtkType*SctType	-3.548	-1.774	9.952	-0.18	0.859
AtkType*NumAtk	0.433	0.217	9.952	0.02	0.983
AtkType*NumSct	-1.428	-0.714	9.952	-0.07	0.943
SctType*NumAtk	31.265	15.632	9.952	1.57	0.118
SctType*NumSct	32.757	16.379	9.952	1.65	0.102
NumAtk*NumSct	24.880	12.440	9.952	1.25	0.213
	0.200	0.100	9.952	0.01	0.992
AtkType*SctType*NumAtk			9.952	-0.06	0.949
AtkType*SctType*NumSct	-1.267	-0.634			
AtkType*NumAtk*NumSct	-2.915	-1.457	9.952	-0.15	0.884
SctType*NumAtk*NumSct	25.391	12.696	9.952	1.28	0.204
AtkType*SctType*NumAtk*					
NumSct	-2.556	-1.278	9.952	-0.13	0.898
	•				
Analysis of Variance for	LER200				

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	233449	233449	58362.2	3.68	0.007
2-Way Interactions	6	107373	107373	17895.5	1.13	0.348
3-Way Interactions	4	26194	26194	6548.5	0.41	0.799
4-Way Interactions	1	261	261	261.3	0.02	0.898
Residual Error	144	2282079	2282079	15847.8		
Pure Error	144	2282079	2282079	15847.8		
Total	159	2649356				

Unusual Observations for LER200

Obs	LER200	Fit	StDev Fit	Residual	St Resid
32	1160.00	151.71	39.81	1008.29	8.44R
95	1170.00	166.17	39.81	1003.83	8. 4 1R

Fractional Factorial Fit: Hasty Attack

Pareto Chart of the Standardized Effects

(response is Det300, Alpha = .05)

A: AtkType B: SctType C: NumAtk D: NumSct

Estimated Effects and Coefficients for Det300

Estimated Effects a	and Coeff	icients for	Decado			
Term		Effect	Coef	StDev Coef	т	P
Constant			324.212	2.824	114.80	0.000
AtkType		6.350	3.175	2.824	1.12	0.263
SctType		43.650	21.825	2.824	7.73	0.000
NumAtk		2.675	1.338	2.824	0.47	0.636
NumSct		12.950	6.475	2.824	2.29	
AtkType*SctType		-7.025	-3.512	2.824	-1.24	
		-4.150	-2.075	2.824	-0.73	
AtkType*NumAtk		-2.875	-1.438	2.824	-0.51	
AtkType*NumSct		-2.250	-1.125	2.824	-0.40	
SctType*NumAtk				2.824	0.51	
SctType*NumSct		2.875	1.438			
NumAtk*NumSct	_	-6.050	-3.025	2.824	-1.07	
AtkType*SctType*Nu		-0.875	-0.438	2.824	-0.15	
AtkType*SctType*Nu		-3.150	-1.575	2.824	-0.56	
AtkType*NumAtk*Num	Sct	-0.225	-0.113	2.824	-0.04	
SctType*NumAtk*Num	Sct	-3.275	-1.638	2.824	-0.58	0.563
AtkType*SctType*Nu	mAtk*					
NumSct		-1.250	-0.625	2.824	-0.22	0.825
Analysis of Varian	ce for De	t300				
Source	DF	Seg SS	Adj SS	Adi Ms	F	P
Main Effects	4	84820	84820	21205.0	16.62	0.000

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	84820	84820	21205.0	16.62	0.000
2-Way Interactions	6	4991	4991	831.8	0.65	0.689
3-Way Interactions	4	859	859	214.6	0.17	0.954
4-Way Interactions	1	63	63	62.5	0.05	0.825
Residual Error	144	183751	183751	1276.0		
Pure Error	144	183751	183751	1276.0		
mot a 1	159	274483				

Unusual Observations for Det300

Obs	Det300	Fit	StDev Fit	Residual	St Resid
4	247.000	337.700	11.296	-90.700	-2.68R
8	256.000	343.900	11.296	-87.900	-2.59R
15	284.000	356.100	11.296	-72.100	-2.13R
16	254.000	342.900	11.296	-88.900	-2.62R
70	388.000	305.600	11.296	82.400	2.43R
115	415.000	328.800	11.296	86.200	2.54R
125	380.000	302.800	11.296	77.200	2.28R

(response is AvgDetRg, Alpha = .05)

Estimated Effects and Coefficients for AvgDetRg

Term Constant AtkType SctType SctType NumAtk NumSct AtkType*SctType AtkType*NumAtk AtkType*NumSct SctType*NumAtk SctType*NumAtk SctType*NumSct NumAtk*NumSct AtkType*SctType*NumAtk AtkType*SctType*NumSct AtkType*SctType*NumSct AtkType*SctType*NumSct AtkType*SctType*NumSct	Effect -0.0455 -0.3712 -0.0073 -0.0393 0.0535 0.0270 -0.0045 0.0038 -0.0168 0.0247 0.0030 0.0180 -0.0030	Coef 5.0284 -0.0227 -0.1856 -0.0036 -0.0196 0.0267 0.0135 -0.0023 0.0019 -0.0084 0.0124 0.0015	StDev Coef 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527 0.01527	329.28 -1.49 -12.16 -0.24 -1.29 1.75 0.88 -0.15 0.12 -0.55 0.81 0.59 -0.10	P 0.000 0.138 0.000 0.813 0.201 0.082 0.378 0.902 0.584 0.419 0.922 0.557 0.922
AtkType*NumAtk*NumSct					
SctType*NumAtk*NumSct AtkType*SctType*NumAtk* NumSct	0.0213	-0.0012	0.01527	-0.08	0.488

Analysis of Variance for AvgDetRg

Source	\mathbf{DF}	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	5.6596	5.65960	1.41490	37.92	0.000
2-Way Interactions	6	0.1807	0.18075	0.03012	0.81	0.566
3-Way Interactions	4	0.0317	0.03174	0.00794	0.21	0.931
4-Way Interactions	1	0.0002	0.00025	0.00025	0.01	0.935
Residual Error	144	5.3730	5.37304	0.03731		
Pure Error	144	5.3730	5.37304	0.03731		
Total	159	11 2454				

Unusual Observations for AvgDetRg

Obs	AvgDetRg	Fit	StDev Fit	Residual	St Resid
4	5.30000	4.87500	0.06108	0.42500	2.32R
8	5.24000	4.86100	0.06108	0.37900	2.07R
37	4.87000	5.24400	0.06108	-0.37400	-2.04R
53	5.62000	5.24400	0.06108	0.37600	2.05R
69	4.85000	5.24400	0.06108	-0.39400	-2.15R
70	4.68000	5.19200	0.06108	-0.51200	-2.79R
115	4.52000	4.91600	0.06108	-0.39600	-2.16R
125	4.78000	5.24800	0.06108	-0.46800	-2.55R
131	4.54000	4.91600	0.06108	-0.37600	-2.05R
149	5.67000	5.24400	0.06108	0.42600	2.32R

(response is Det/Loss, Alpha = .05)

Estimated Effects and Coefficients for Det/Loss

_	Effect	Coef	StDev Coef	т	P
Term	Effect			_	_
Constant		21.737	0.4839	44.92	0.000
AtkType	3.318	1.659	0.4839	3.43	0.001
SctType	7.849	3.925	0.4839	8.11	0.000
NumAtk	-4.310	-2.155	0.4839	-4.45	0.000
NumSct	-5.000	-2.500	0.4839	-5.17	0.000
AtkType*SctType	1.135	0.567	0.4839	1.17	0.243
AtkType*NumAtk	0.416	0.208	0.4839	0.43	0.668
AtkType*NumSct	-1.281	-0.641	0.4839	-1.32	0.188
SctType*NumAtk	-1.417	-0.709	0.4839	-1.46	0.145
SctType*NumSct	-0.098	-0.049	0.4839	-0.10	0.919
NumAtk*NumSct	0.165	0.083	0.4839	0.17	0.865
AtkType*SctType*NumAtk	-0.148	-0.074	0.4839	-0.15	0.878
AtkType*SctType*NumSct	-0.755	-0.378	0.4839	-0.78	0.436
AtkType*NumAtk*NumSct	0.527	0.264	0.4839	0.55	0.587
SctType*NumAtk*NumSct	-0.449	-0.224	0.4839	-0.46	0.644
AtkType*SctType*NumAtk*					
NumSct	0.082	0.041	0.4839	0.08	0.933

Analysis of Variance for Det/Loss

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Main Effects	4	4648.0	4647.98	1161.99	31.02	0.000
2-Way Interactions	6	205.9	205.95	34.32	0.92	0.485
3-Way Interactions	4	42.9	42.88	10.72	0.29	0.887
4-Way Interactions	1	0.3	0.27	0.27	0.01	0.933
Residual Error	144	5394.8	5394.83	37.46		
Pure Error	144	5394.8	5394.83	37.46		
Total	159	10291.9				

Unusual Observations for Det/Loss

Obs	Det/Loss	Fit	StDev Fit	Residual	St Resid
4	19.0000	34.3480	1.9356	-15.3480	-2.64R
49	38.5000	20.7210	1.9356	17.7790	3.06R
115	41.5000	27.5170	1.9356	13.9830	2.41R
124	49.2500	26.8880	1.9356	22.3620	3.85R
131	39.4000	27.5170	1.9356	11.8830	2.05R
132	48.0000	34.3480	1.9356	13.6520	2.35R
160	39.3000	21.7540	1.9356	17.5460	3.02R

(response is TotalKil, Alpha = .05)

Estimated Effects and Coefficients for TotalKil

Term Constant	Effect	Coef 104.219	StDev Coef 1.014	T 102.76	P 0.000
AtkType	34.988	17.494	1.014	17.25	0.000
SctType	14.112	7.056	1.014	6.96	0.000
NumAtk	17.338	8.669	1.014	8.55	0.000
NumSct	10.113	5.056	1.014	4.99	0.000
AtkType*SctType	-11.987	-5.994	1.014	-5.91	0.000
AtkType*NumAtk	1.737	0.869	1.014	0.86	0.393
AtkType*NumSct	-0.688	-0.344	1.014	-0.34	0.735
SctType*NumAtk	-0.188	-0.094	1.014	-0.09	0.926
SctType*NumSct	0.387	0.194	1.014	0.19	0.849
NumAtk*NumSct	-0.338	-0.169	1.014	-0.17	0.868
AtkType*SctType*NumAtk	-3.937	-1.969	1.014	-1.94	0.054
AtkType*SctType*NumSct	-3.563	-1.781	1.014	-1.76	0.081
AtkType*NumAtk*NumSct	1.012	0.506	1.014	0.50	0.618
SctType*NumAtk*NumSct	-1.662	-0.831	1.014	-0.82	0.414
AtkType*SctType*NumAtk*					
NumSct	0.237	0.119	1.014	0.12	0.907

Analysis of Variance for TotalKil

Source	DF	Seq SS	Adj ss	Adj MS	F	P
Main Effects	4	73046	73045.6	18261.4	110.97	0.000
2-Way Interactions	6	5900	5899.6	983.3	5.98	0.000
3-Way Interactions	4	1279	1279.4	319.8	1.94	0.106
4-Way Interactions	1	2	2.3	2.3	0.01	0.907
Residual Error	144	23697	23696.5	164.6		
Pure Error	144	23696	23696.5	164.6		
motal	150	103923				

Unusual Observations for TotalKil

Obs	TotalKil	Fit	StDev Fit	Residual	St Resid
6	99.000	124.900	4.057	-25.900	-2.13R
8	102.000	127.500	4.057	-25.500	-2.10R
15	82.000	115.200	4.057	-33.200	-2.73R
35	55.000	81.100	4.057	-26.100	-2.14R
55	79.000	103.700	4.057	-24.700	-2.03R
75	128.000	99.100	4.057	28.900	2.37R
82	130.000	103.800	4.057	26.200	2.15R
91	67.000	99.100	4.057	-32.100	-2.64R
115	111.000	81.100	4.057	29.900	2.46R
130	75.000	103.800	4.057	-28.800	-2.37R
142	115.000	139.600	4.057	-24.600	-2.02R

(response is Surv300, Alpha = .05)

Estimated Effects and Coefficients for Surv300

Escimated Bilecos	una occii	TOTOHOD TOT	Du1 1000			
Term		Effect	Coef	StDev Coef	T	P
Constant			31.917	0.9241	34.54	0.000
AtkType		8.235	4.118	0.9241	4.46	0.000
SctType		13.624	6.812	0.9241	7.37	0.000
NumAtk		4.667	2.333	0.9241	2.53	0.013
NumSct		-1.166	-0.583	0.9241	-0.63	0.529
AtkType*SctType		1.584	0.792	0.9241	0.86	0.393
AtkType*NumAtk		2.889	1.444	0.9241	1.56	0.120
AtkType*NumSct		-2.112	-1.056	0.9241	-1.14	0.255
SctType *NumAtk		-1.999	-0.999	0.9241	-1.08	0.281
SctType NumSct		1.333	0.667	0.9241	0.72	0.472
NumAtk*NumSct		-2.000	-1.000	0.9241	-1.08	0.281
AtkType*SctType*Nu	ım A t- k	-0.500	-0.250	0.9241	-0.27	0.787
AtkType SctType No		-1.334	-0.667	0.9241	-0.72	0.472
AtkType NumAtk*Num		1.986	0.993	0.9241	1.07	0.284
SctType NumAtk*Num		-0.959	-0.479	0.9241	-0.52	0.605
AtkType*SctType*Nu		0.555	0.475	0.52.2		
NumSct	umck	-0.083	-0.042	0.9241	-0.05	0.964
Number		0.003	0.012	0.5211	0.00	
Analysis of Varian	nce for Su	ırv300				
Source	DF	Seq SS	Adj SS	Adj MS	F	P
		44000	44060 4	22CE 70	20 24 0	

Source Main Effects 2-Way Interactions 3-Way Interactions	DF 4 6 4	Seq SS 11063.1 1003.3 275.6	Adj SS 11063.1 1003.3 275.6	Adj MS 2765.78 167.22 68.90	F 20.24 1.22 0.50	P 0.000 0.297 0.733
4-Way Interactions Residual Error Pure Error	1 144 144	0.3 19673.2 19673.2	0.3 19673.2 19673.2	0.28 136.62 136.62	0.00	0.964
Total	159	32015.5	15075.2	150.02		

Unusual Observations for Surv300

Obs	Surv300	Fit	StDev Fit	Residual	St Resid
18	0.0000	25.5560	3.6962	-25.5560	-2.30R
35	5.5600	29.4440	3.6962	-23.8840	-2.15R
49	55.5600	19.4460	3.6962	36.1140	3.26R
83	5.5600	29.4440	3.6962	-23.8840	-2.15R
124	66.6700	39.9990	3.6962	26.6710	2.41R
160	66.6700	44.0000	3.6962	22.6700	2.04R

(response is LER300, Alpha = .05)

Estimated Effects and Coefficients for LER300

Term Constant	Effect	Coef 6.9683	StDev Coef 0.1562	T 44.62	P 0.000
AtkType	3.1496	1.5748	0.1562	10.08	0.000
SctType	2.5216	1.2608	0.1562	8.07	0.000
NumAtk	-0.2524	-0.1262	0.1562	-0.81	0.420
NumSct	-1.2454	-0.6227	0.1562	-3.99	0.000
AtkType*SctType	-0.0179	-0.0089	0.1562	-0.06	0.954
AtkType*NumAtk	0.1736	0.0868	0.1562	0.56	0.579
AtkType*NumSct	-0.7049	-0.3524	0.1562	-2.26	0.026
SctType*NumAtk	-0.3084	-0.1542	0.1562	-0.99	0.325
SctType*NumSct	-0.0554	-0.0277	0.1562	-0.18	0.860
NumAtk*NumSct	-0.0149	-0.0074	0.1562	-0.05	0.962
AtkType*SctType*NumAtk	-0.2219	-0.1109	0.1562	-0.71	0.479
AtkType*SctType*NumSct	-0.3124	-0.1562	0.1562	-1.00	0.319
AtkType*NumAtk*NumSct	0.2256	0.1128	0.1562	0.72	0.471
SctType*NumAtk*NumSct	-0.1909	-0.0954	0.1562	-0.61	0.542
AtkType*SctType*NumAtk*					
NumSct	0.0491	0.0246	0.1562	0.16	0.875

Analysis of Variance for LER300

Source Main Effects 2-Way Interactions 3-Way Interactions 4-Way Interactions Residual Error Pure Error	DF 4 6 4 1 144 144	Seq SS 715.74 25.03 9.37 0.10 562.02 562.02	Adj SS 715.735 25.028 9.366 0.097 562.021 562.021	Adj MS 178.934 4.171 2.341 0.097 3.903 3.903	F 45.85 1.07 0.60 0.02	P 0.000 0.384 0.663 0.875
Total	159	1312.25				

Unusual Observations for LER300

Obs	LER300	Fit	StDev Fit	Residual	St Resid
75	11.6400	7.0180	0.6247	4.6220	2.47R
82	11.8200	8.0330	0.6247	3.7870	2.02R
115	11.1000	6.8210	0.6247	4.2790	2.28R
123	11.1800	7.0180	0.6247	4.1620	2.22R
124	16.5000	8.9060	0.6247	7.5940	4.05R
132	16.4300	11.2930	0.6247	5.1370	2.74R
160	15.1000	8.3660	0.6247	6.7340	3.59R

Appendix D. Scenario Force Structures

	in D. Seema		ou actures				
SIDE 1	FORCE DESC	CRIPTION		SIDE 2		CRIPTION	_
Unit	System	System	Total	Unit	System	System	Total
Num	Name	Type	Elements	Num	<u>Name</u>	Type	<u>Elements</u>
1	(scout he)	licopter)	3 or 5	1	BTR-80	367	3
2	(scout he		11	2	BTR-80	367	17
3	(scout he)		#	3	BTR-80	367	11
4	(attack he	-	1 3 or 5	4	BTR-80	367	11
	-	_		5		367	11
5	(attack he	_			BTR-80		
6	(attack he	-		6	BTR-80	367	17
7	JAV DE	206	4	7	BMP-3	379	1
8	FSCV	143	9	8	T-80U	385	11
9	M1A2	107	14	9	T-80U	385	10
10	FSCV	143	2	10	T-80U	385	10
11	B120MM	16	6	11	2s1	100	6
12	M1A2	107	14	12	2S1	100	6
13	M1A2	107	14	13	251	100	6
		206	5	14	256	358	2
14	JAV DE						2
15	JAV DE	206	9	15	2S6	358	
16	BRAD M	127	14	16	256	358	2
17	FSCV	143	6	17	BMP-3	379	6
18	B120MM	16	6	18	BRDM-2	375	3
19	BRADFI	130	1	19	BMP-3	379	2
20	BRADFI	130	1	20	BRDM-2	375	4
21	BRADFI	130	1	21	BTR-80	367	17
22	JAV DE	206	5	22	BTR-80	367	11
		127	2	23	BTR-80	367	11
23	BRAD M			24	BTR-80	367	11
24	FSCV	143	6				
25	JAV DE	206	9	25	BTR-80	367	17
26	BRAD M	127	14	26	BTR-80	367	11
27	JAV DE	206	9	27	BTR-80	367	11
28	BRAD M	127	14	28	BTR-80	367	11
29	M1A2	107	14	29	BRDM-S	363	9
30	B120MM	16	6	30	SA-13	354	6
31	BRADFI	130	1	31	SA-13	354	6
32	BRADFI	130	1	32	SA-13	354	6
33	BRADFI	130	1	33	SA-13	354	6
			5	34	MT-12	309	2
34	JAV DE	206					
35	BRAD M	127	2	35	MT-12	309	2
36	FSCV	143	6	36.	MT-12	309	2
37	JAV DE	206	9	37	BTR-80	367	3
38	BRAD M	127	14	38	BTR-80	367	17
39	JAV DE	206	9	39	BTR-80	367	11
40	BRAD M	127	14	40	BTR-80	367	11
41	M1A2	107	14	41	BTR-80	367	11
42	B120MM	16	6	42	BTR-80	367	17
43	BRADFI	130	1	43	BMP-3	379	1
44	BRADFI	130	1	44	T-80U	385	11
45	BRADFI	130	1	45	T-80U	385	10
46	MLRS	9	9	46	T-80U	385	10
				47	2S1	100	6
47	AVENGE	154	2				
48	AVENGE	154	2	48	2S1	100	6
49	AVENGE	154	2	49	2S1	100	6
50	BUAV	179	1	50	2s6	358	2
51	BUAV	179	1	51	256	358	2
52	BUAV	179	1	52	256	358	2
53	BUAV	179	1	53	BMP-3	379	6
54	BUAV	179	1	54	BRDM-2	375	3
55	BUAV	179	1	55	BMP-3	379	2
56		217	2	56	BRDM-2	375	4
	A-10			57	BTR-80	367	17
57	A-10	217	2				
58	A-10	217	2	58	BTR-80	367	11
59	Linebk	124	2	59	BTR-80	367	11
60	Linebk	124	2	60	BTR-80	367	11
61	Linebk	124	2	61	BTR-80	367	17
62	Linebk	124	2	62	BTR-80	367	11
63	M109A6	3	6	63	BTR-80	367	11
64	M109A6	3	6	64	BTR-80	367	11
65	M109A6	3	6	65	BRDM-S	363	9

SIDE 2 FORCE DESCRIPTION

Unit Num	System Name	System Type	Total Elements	Unit Num	System Name	System Type	Total Elements
66	SA-13	354	6	126	2S1	100	6
67	SA-13	354	6	127	2S1	100	6
68	SA-13	354	6	128	2 s 1	100	6
69	SA-13	354	6	129	256	358	2
70	MT-12	309	2	130	256	358	2
71	MT-12	309	2	131	256	358	2
72	MT-12	309	2	132	BMP-3	379	6
73	BMP-3	379	1	133	BMP-3	379	2
74	BTR-80	367	2	134	BRDM-2	375	4
75	BMP-3	379	13	135	BRDM-2	375	3
76	BTR-80	367	2	136	SA-13	354	2
77	BMP-3	379	10	137	SA-13	354	2
78	BMP-3	379	10	138	SA-13	354	2
79	BMP-3	379	10	139	BTR-80	367	3
80	BMP-3	379	13	140	253	99	18
81	BTR-80	367	2	141	2S3	99	18
82	BMP-3	379	10	142	253	99	18
83	BMP-3	379	10	143	HOPLIT	70	1
84	BMP-3	379	10	144	HOPLIT	70	1
85	BMP-3	379	13	145	HOPLIT	70	1
86	BTR-80	367	2	146	HOPLIT	70	1
87	BMP-3	379	10	147	HOPLIT	70	1
88	BMP-3	379	10	148	HOPLIT	70	1
89	BMP-3	379	10	149	HIP E	75	1
90	T-80U	385	11	150	HIP E	75	1
91	T-80U	385	10	151	HIP E	75	1
92	T-80U	385	10	152	HIP E	75	1
93	251	100	6	153	ЙІР	71	1 .
94	2S1	100	6	154	HIP	71	1
95	251	100	6	155	HIND	77	1
96	256	358	2	156	HIND	77	1
97	256	358	2	157	HIND	77	1
98	286	358	2	158	HIND	77	1
99	BMP-3	379	6	159	HIND	77	1
100	BRDM-2	375	3	160	HIND	77	1
101	BMP-3	379	2	161	RUAV	304	1
102	BRDM-2	375	4	162	RUAV	304	1
103	BRDM-S	363	9	163	RUAV	304	1
104	SA-13	354	6	164	RUAV	304	1
105	SA-13	354	6	165	RUAV	304	1
106	SA-13	354	6	166	RUAV	304	1
107	SA-13	354	6	167	SA-13	354	2
108	MT-12	309	2	168	SA-8B	356	2
109	MT-12	309	2	169	256	358	2
110	MT-12	309	2	170	256	358	6
111	T-80U	385	1	171	SA-8B	356	7
112	BTR-80	367	2	172	SA-13	354	7
113	BMP-3	379	1	173	BRDM-S	363	4
114	BMP-3	379	1	174	BRDM-S	363	4
115	T-80U	385	11	175	BRDM-S	363	4
116	T-80U	385	10	176	MT-12	309	4
117	T-80U	385	10	177	MT-12	309	4
118	BMP-3	379	1	178	MT-12	309	4
119	T-80U	385	11	179	BMP-3	379	5
120	T-80U	385	10	180	BMP-3	379	5
121	T-80U	385	10	181	BMP-3	379	5
122	BMP-3	379	1	182	BRDM-2	375	2
123	T-80U	385	11	183	BRDM-2	375	2
124	T-80U	385	10	184	BRDM-2	375	2
125	T-80U	385	10	185	BTR-80	367	2
				186	BTR-80	367	2
				187	BTR-80	367	2
				188	BM-21	84	6
				189	BM-21	84	6
				190	BM-21	84	6

Appendix E. Janus Modeling of AH-64D and RAH-66

Following is a list of some of the major changes made to the JANUS database used by the Department of Systems Engineering at the United States Military Academy, West Point, NY. Minor changes to the database are not shown.

- 1. Create FCR: Sensor 43. FCR is modeled as a highly sensitive (sensor type 4) thermal seeker. Change FOV to N-90, W-360, N→W-0.25.
- 2. Create DTV: Sensor 25. Change FOV to N-0.9, W-4.00, N→W-0.225, sensor type 2.
- 3. Create FLIR: Sensor 37. Change FOV to N-3.10, W-50.0, N→W-0.062, sensor type 4.
- 4. Change sensors on Apache to 37-25-37. Element Spacing 200 meters.
- 5. Change Fly Type 32 to Nap1-60, Nap2-120.
- 6. Create Longbow Apache by copying Apache. Element Spacing 100 meters. Fly type 32. Change sensors to 43-37-43.
- 7. Create Comanche by copying Longbow Apache. Change dimensions to L-0.60, W-0.20, H-0.17 meters. Change weight, fuel capacity, and fuel burn rates to half of Apache's. Chemical X factor to zero. Change 30mm gun to 20mm HEIT (weapon 12).
- 8. Create RF Hellfire by increasing PK and PH tables for Hellfire on Longbow / Comanche by 0.04 for each target type.
- 9. Increase mast height to 10m for attack helicopters (simulate target h/o info from scouts).
- 10. Change weapons loads to scout/attack parameters.
- 11. Comanche-atk dimensions = Comanche-sct plus:
 - W = 4 x msl width (4 x 0.178 = 0.712)
 - $H = 2 x \text{ msl height } (2 \times 0.178 = 0.356)$
 - L = msl length (1.727)
 - \Rightarrow L = 1.85, W = 0.91, H = 0.52
- 12. HF trigger pulls / reload = 16
- 13. Other changes to weapon selection / changeover range
- 14. Target priorities based on scenario

Optimal Mix of Army Aviation Assets

Operations Research Center

MAJ DAVID BRIGGS

Six USMA cadets / 403 Systems Design C

Study Team

- 8 CPT Jon Shupenus
 - Former AH-64 company commander
 - : MS Applied mathematics, MS OR&S (RPI '97)
- MAJ David Briggs
 - : USMA systems engineering instructor
 - : MS OR, MS Simulation Modeling and Analysis (UCF '95)
- § SE402 / 403
 - Design of real-world, large scale and complex systems; reinforces iterative nature of formulation, analysis, and interpretation of designs. Topics include needs analysis, quality function deployment, modeling, trade-off analysis, compatibility analysis and systems architecture.

Outline

- History of attack helicopter battalions
- Project description
- Modeling AH-64D Longbow Apache and RAH-66 Comanche in Janus
- Analysis of battalion designs

History

- Early 1960's: Logistics, C2 (H-13, H-23, HU-1)
- Mid 1960's: Armed helicopters still in the formative stage : UH-1B: 7.62mm, 2.75" FFAR, AGM-22B, 40mm
- Early 1970's: Offensive missions (Tactical escort, reconnaissance, fire support, security, penetration, exploitation, counterattack, pursuit) AH-1: 2.75" FFAR, 40mm, ATGM, 7.62mm, 20/30mm
- Mid 1970's: scout platoon 4x OH-58C, attack platoon 7x AH-1S
- ₹ 1985: 4x OH-58C, 6x AH-64A
- 🛚 1993: 3x AH-64A, 5x AH-64A (ARI)
- ₹ 1997: 3x AH-64D, 5x AH-64D
- 2010? 3x RAH-66, 5x AH-64D

Unabposition 68th MORS Symposium WG 28 Modeling Simulation & Wargan

Purpose

- Explore operational performance of heavy division attack helicopter battalion force structures in various scenarios
 - Investigate effects of combinations of different types of scout and attack helicopters
 - : Investigate effects of alternative force levels of scout and attack helicopters

Related Study

- Technical report TRAC-TR-0993, "Aviation Attack Battalion Study Final Report," October 1993, TRADOC Analysis Center -- Operations Analysis Center, Production Analysis Directorate, Fort Leavenworth, KS
 - Identifies the benefits and liabilities involved in replacing the OH-58C (Kiowa) with the AH-64A (Apache) as the scout helicopter in the heavy division attack helicopter battalion

66th MORE Symposium: WG 55 Misseship Striubdich & Walgarde

69h MORS Symposium WS 28 Modeling Stimulation & Weigening

Scope

Limitations

- - § Unclassified: aircraft, vehicle and weapon databases; Enemy force structure
 - ¿ Attack mission: not reconnaissance
 - 5 Performance / effectiveness analysis: not austainment, personnel levels, etc.
- **8 Constraints**
 - z Başe case: current ARI configuration
 - : Consider only AH64D and RAH66
 - ! Heavy division attack helicopter battalion

Methodology

- § Analytic tools
- 3 Replications of stochastic simulation
- Experimental design
- : Statistical significance
- Performance comparison
 - E Helicopter system capabilities
- # Effectiveness analysis
 - § Survivability, lethality, detections

Alternatives

- 8 Base case (current ARI)
- § Aircraft types
 - & AH-64D Longbow Apache
 - RAH-66 Comanche
- # Force levels
 - 3 or 5 scouts per platoon
 - 🗧 3 or 5 attack helicopters per platoon
 - § 18, 24, or 30 total aircraft per battalion

- # High-resolution interactive combat computer simulation model
- § Stochastic; random number seeds
- Auto script capability for replications
- 3 Janus Evaluator's Tool Set (JETS) post-processor
 - Experience of the property of the section of the se
 - ϵ ... by killer, coalition, side, task force, system, weapon, round type, sensor

RATE ACCUS CINETARING AS IN PROCESS SAMERS FOR SAMERS

: Demo

Understad den motte Gamponium Will in bestätigt genatigkeit bengen

Modeling in Janus

- § Signature characteristics
- § Sensor characteristics
- Weapons loads
- # High threat
- Same TTP

Assumptions

Among then	@flect
One much either and see	
All nevent and no attack helicopture have FCR	 Ignore distribution plan which calls for 1/3 of attempt to have FCR
Some FCR on AH64D & R	AM68; ** Unclearing comparison of Apoche and Compactus FGR not available
s filestly and every units	inve - Pludy 2018
7 And helicopter trees in extremely high	Allows the study to evaluate difference
7 20 km detaction republik	ty of Suchanifed detection capability not

Assumptions (cont.)

Accumption	<i>97</i> 64
Commercia SR detectability is 4	A Reduce themsel contrast to 1/4
Crops system of Commonship scoul.	 Reduce length, widtly, height to reduce P(detection)
y Attack fiel, great section increases by dissentant of external mission	→ Increases radar cross section to approx. 1/42, out 1/400
Comments stout corries only internal loads to reinfested radios algorithms	 Tuber adjustings of stantiley characteristics, but reduces till aspectation
2. Increased more beight for attack	* Handad to standed digital forward

ene la CFR Scott palett. WG Mt Medicing Strategier S. Wester

Weapon Loads

	September 1	-
t	Ber PPAR Be SAL Hellfiro 4m Stinger (200m Sümpa	28x, ex RF 4x S 1200

on RF Marides on full nt system. 500x 20mm

4x Stinger †200x 30rum

n with pilote

),4x RF Hallins in high 8 actorel) (6 in telfini, -500) x 20mm

Detections per loss **Detections** age Detection Range 9 Scout / 15 Attack Detections per loss 9 Scout / 15 Attack 95% Confidence Interval 95% Confidence Interval 13 12 Detection Range 8 10 10 4 per blue 60 ARI objective ARI objective CAG Attack CAG Attack Kills Kills Kills by Blue Helicopters Ove 9 Scout / 15 Attack CAG Destruction Kills of Red Systems 9 Scout / 15 Attack Average of 10 replications Number of Targets Destroyed ARI objective 665 WORS Gymposium: PFO 29 Modeling Stratistion & Walgachia 660 WCPS Symposium WS 29 Modeling Shmilerlon & Wargsmin **Loss Exchange Ratio** Kills Loss Exchange Ratio 9 Scout / 15 Attack 95% Confidence Interval Kills of Red Systems 9 Scout / 15 Attack 95% Confidence Interval base case AFII objective **CAG Destruction** CAG Destruction 66th MORE Symposium, NG 20 locading Simulating & Wargaran **Survivability Force Level Analysis** SURVIVABILITY RAH-66 scout / AH-64D attack RAH-66 Scout / AH-64D Attack 95% Confidence Interval § 9 Scout / 9 Attack § 9 Scout / 15 Attack 70 15 Scout / 9 Attack 65 15 Scout / 15 Attack 55

CAG Destruction

Findings

In general.

- ARI Objective force structure (9x RAH-66, 15x AH-64D) performs best for planned deep attacks
- Comanche-pure design (24x RAH-66) performs best during hasty attack / close battle
- Aircraft type is more important for survival than number of aircraft per company (Comanche survives best)
- Battalion size does not affect survival percentage or LER
- Synergistic effect of RAH-66 / AH-64D mix greatly increases performance over Longbow-pure design
- Comanche-pure design kills fewer vehicles than ARI Objective

24 June 1999

Undassities 60th MORS Bympotium, WC 29 Modeling Simulation 9, Wargaming

24 June 1999

Conclusion

- Army seems to be on the right track in force structure development for the heavy division attack helicopter battalion
- **® Older simulation models are still useful**

34 June 1990

Indostia

sa - 66th MCVSC Surema tiura bulk 90 kanadina Semilatura SeWaraansaa

4;

References

- 5th BN, 501st AVN REGT, Tactical Standing Operating Procedures. Camp Eagle, Korea, 1994.
- Aviation Warfighting Center, Aviation Force Structure. Fort Rucker, AL, 1997.
- Briggs, D., et al., Armor Battalion Force Structure in Force XXI. United States Military Academy, West Point, NY, 1998.
- Brooks, A., S. Bankes and B. Bennett. Weapon Mix and Exploratory Analysis: A Case Study. RAND, 1997.
- Dimmery, H. AH-64D Operational Employment and Effectiveness Modeling. McDonnell Douglas Helicopter Company, Mesa, AZ, 1993.
- Directorate of Combat Developments. Wartime Flying Hour Rate Study. U.S. Army Aviation Center, Fort Rucker, AL, 1996.
- FM 1-15, Aviation Battalion Infantry, Airborne, Mechanized, and Armored Divisions. Headquarters, Department of the Army, Washington, D.C., 1961.
- FM 1-15, Aviation Reference Data. Headquarters, Department of the Army, Washington, D.C., 1977.
- FM 1-100, Army Aviation Operations. Headquarters, Department of the Army, Washington, D.C., 1997.
- FM 1-100, Army Aviation Utilization. Headquarters, Department of the Army, Washington, D.C., 1971.
- FM 1-100, Army Aviation. Headquarters, Department of the Army, Washington, D.C., 1959.
- FM 1-110, Armed Helicopter Employment. Headquarters, Department of the Army, Washington, D.C., 1966.
- FM 1-112, Attack Helicopter Operations. Headquarters, Department of the Army, Washington, D.C., 1997.
- Harrell, Charles R., et al. *System Improvement Using Simulation, Third Edition*. JMI Consulting Group and PROMODEL Corporation, Orem, UT, 1995.
- *Inside the Army*, Vol. 7, No. 44, "OSD Testers Find Apache Longbow Substantially More Effective Than AH64A", November 6, 1995.
- Jane's Information Group, Jane's All The World's Aircraft. Jane's Information Group, Inc., Alexandria, VA, 1996.
- Law, A., and W. Kelton. Simulation Modeling and Analysis, Second Edition. McGraw-Hill, Inc., New York, NY, 1991.
- Marin, J., J. Armstrong and J. Kays. A Framework for an Optimal Experience in Engineering Capstone Design. United States Military Academy, West Point, NY, 1996.
- Montgomery, D. Design and Analysis of Experiments, Fourth Edition. John Wiley & Sons, New York, NY, 1997.
- Satterfield, J., and F. Morgan. *News Release: Boeing Sikorsky RAH-66 Comanche Fact Sheet*. Boeing Sikorsky RAH-66 Comanche Team, 1992.
- Swinsick, S., U.K. Attack Helicopter Programme Level 1 Task Descriptions and Level 2 Mission Descriptions. Westland Helicopters Limited / McDonnell Douglas Helicopter Company, Mesa, AZ, 1993.

- Technical Report TRAC-TR-0993. Aviation Attack Battalion Study Final Report. TRADOC Analysis Center Operations Analysis Center, Production Analysis Directorate, Fort Leavenworth, Kansas, 1993.
- TM 55-1520-238-10, *Operators Manual for Army AH-64A Helicopter*. Headquarters, Department of the Army, Washington, D.C., 1984.
- TRADOC Slide Presentation, Force XXI Heavy Division Conservative Heavy Design (FY2010 Objective). Fort Rucker, AL, 1997.
- Training and Doctrine Command. TRAC Scenario Gists. TRADOC Analysis Center, Fort Leavenworth, KS, 1997.

Distribution list

Name / Agency	<u>Address</u>	<u>Copies</u>
Mr. Walter Hollis	102 Army Pentagon	2
Deputy Under Secretary of the Army	Washington, DC 20301-0102	
(Operations Research)		
BG Fletcher Lamkin	U. S. Military Academy	1
Dean of the Academic Board	Bldg 600	
COL David C. Arney	U. S. Military Academy	1
D/Mathematical Sciences	Bldg 601	
COL James Armstrong	U. S. Military Academy	2
D/Systems Engineering	Bldg 752	
COL James Herberg	TSM-Comanche	1
_	Fort Rucker, AL 36362	
Commandant,	Attn: DCD	2
US Army Aviation Center	Fort Rucker, AL 36362	
Director	Air Maneuver Battle Lab	1
	Fort Rucker, AL 36362	
HQDA (DCSOPS)	DAMO-FDV	2
	Washington, DC 20301	
LTC Ed Donnelly	DAMO-FDF	2
Chief, Force Integration Team	Force Integration & Management Division	
,	Washington, DC 20301	
LTC William B. Carlton	Director	10
	U. S. Military Academy Operations Research Center	
Mr. George DeCecco	Information, Space & Defense Systems	1
Č	The Boeing Company	
	P.O. Box 16858 MC P31-78	
	Philadelphia, PA 19142-0858	
Mr. Jim Kolding	Combat Simulation and Systems Evaluation	1
· ·	The Boeing Company	
	5000 East McDowell Road MC M531-C240	
	Mesa, AZ 85215-9797	
Ms. Carol Eubanks	Aviation Warfighting Simulation Center	1
	Attn: ATZQ-BDE-T	
	Building 6010 Mission Way	^
	Fort Rucker, AL 36362	
Ms. Marilyn Rarick	Warfighting Futures Division	1
	Attn: ATZQ-TDW	
	Building 5000 Lucky Star	
	Fort Rucker, AL 36362	
Ms. Shirley Bonsell	USMA	1
Academic Research Division	Bldg 753	