

Fundamentos de Redes

Tema 4 Seguridad en Redes

Antonio M. Mora García

Bibliografía

Básica

- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
 CAPÍTULO 2 (2.1, 2.2, 2.4, 2.5)
- P. García-Teodoro, J.E. Díaz-Verdejo, J.M. López-Soler.
 Transmisión de datos y redes de computadores, 2ª Edición.
 Editorial Pearson, 2014. CAPÍTULOS 11 y 12.3

Complementaria

James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
CAPÍTULOS 7 y 8

Índice

- 4.1. Introducción a la seguridad en redes
- 4.2. Mecanismos de seguridad:
- Cifrado
- Autenticación
- Clave secreta
- Funciones Hash
- Firma digital
- Certificados digitales
- 4.3. Implementación de mecanismos de seguridad

TEMA 4. Seguridad en Redes

- 4.1. Introducción a la seguridad en redes
- 4.2. Mecanismos de seguridad:
- Cifrado
- Autenticación
- Clave secreta
- Funciones Hash
- Firma digital
- Certificados digitales
- 4.3. Implementación de mecanismos de seguridad

- Una **red de comunicaciones** es **segura** cuando se **garantizan todos los aspectos** de la misma ⇔ no hay protocolos ni redes 100% seguros.
- ¿Qué es la seguridad? → múltiples aspectos:
 - **Confidencialidad/privacidad**: el contenido de la información es comprensible sólo para entidades autorizadas.
 - Autenticación: las entidades son quienes dicen ser.
 - Control de accesos: los servicios son accesibles sólo para entidades autorizadas.
 - **No repudio o irrenunciabilidad**: el sistema impide la renuncia de la autoría de una determinada acción.
 - Integridad: el sistema detecta todas las alteraciones (intencionadas o no) de la información.
 - **Disponibilidad**: el sistema mantiene las prestaciones de los servicios con independencia de la demanda.

- ¿En qué **nivel/capa** se debe situar la **seguridad**? en **TODOS**... el grado de *seguridad lo determina el punto más débil*.
- Ataque de seguridad: cualquier acción intencionada o no que menoscaba cualquiera de los aspectos de la seguridad.

- Ejemplos de Tipos de ataques:
 - **Sniffing** → vulneración a la confidencialidad, escuchar (husmear). [Intercepción]
 - **Poofing (phishing)** → suplantación de la identidad de entidades. **[Fabricación]**
 - Man in the Middle (MitM) → hombre/máquina en medio. [Intercepción/Modificación]
 - **Distributed Denial of Service (DDoS)** → denegación de servicio distribuido,

Ej: Flooding (inundación) [Interrupción]

- Malware → troyano (software oculto con la apariencia de otro programa), gusano (virus que se replica), spyware (programa que captura datos privados), backdoor (punto desconocido de acceso a nuestra máquina), rootkit (software que proporciona acceso remoto), ransomware (captura o modificación de datos), keylogger (captura las pulsaciones de teclas que hacemos y las envían).

EJEMPLOS DE ATAQUES

MECANISMOS DE SEGURIDAD

- De prevención:
 - mecanismos de autenticación e identificación.
 - mecanismos de control de acceso.
 - mecanismos de separación (física, temporal, lógica, criptográfica y fragmentación).
 - mecanismos de seguridad en las comunicaciones (cifrado de la información).
- De detección:
 - IDS (Intrusion Detection System)
- De **recuperación**:
 - copias de seguridad (backup).
 - mecanismos de análisis forense: averiguar alcance, las actividades del intruso en el sistema y cómo entró.

TEMA 4. Seguridad en Redes

- 4.1. Introducción a la seguridad en redes
- 4.2. Mecanismos de seguridad:
- Cifrado
- Autenticación
- Clave secreta
- Funciones Hash
- Firma digital
- Certificados digitales
- 4.3. Implementación de mecanismos de seguridad

Mecanismos de seguridad

• Mecanismos más utilizados:

- Cifrado (simétrico y asimétrico)
- Autenticación con clave secreta (reto-respuesta)
- Intercambio de Diffie-Hellman (establecimiento de clave secreta)
- Funciones Compendio o Hash. Hash Message Authentication Code (HMAC).
- Firma Digital.
- Certificados digitales.

Cifrado

- Se basa en la criptografía y en la definición de un criptosistema:
 - Alfabeto de partida
 - Espacio de claves
 - Conjunto de transformaciones de cifrado
 - Conjunto de transformaciones de descifrado

- Tipos de criptosistema:
 - **Simétricos** o de clave privada (DES, *Data Encryption Standard*)
 - **Asimétricos** o de clave pública (RSA, *Rivest-Shamir-Adleman*)

Ejemplo ASCII

Α	01000001
В	01000010
С	01000011
D	01000100
E	01000101
F	01000110
G	01000111
Н	01001000
I	01001001
J	01001010

Cifrado

- El cifrado es un procedimiento para garantizar la confidencialidad:
 - Se parte de un *Texto llano/claro* (*plain text*)
 - Se aplica un **algoritmo de cifrado** conocido como $E_K($)
 - Y un **algoritmo de descifrado** llamado $D_{K'}()$
 - Ambos dependen respectivamente de una clave de cifrado K y de una clave de descifrado K'.

- El texto plano P se cifra y se convierte en C, se transmite y posteriormente se descifra C para obtener P de nuevo.

ALGORITMOS DE CLAVE SECRETA

- Emisor y receptor comparten la misma clave.
- La clave sólo es conocida por ellos (privada/secreta).
- Emisor encripta con ella y receptor desencripta con ella.
- La clave deben compartirla por un canal seguro.

ALGORITMOS DE CLAVE SECRETA

- Algoritmo DES (Data Encryption Standard, IBM 1975):
 - 1) Se hace una transposición al bloque inicial de bits P
 - 2) 16 iteraciones aplicando la clave K de 56 bits [ver transparencia siguiente]
 - 3) Intercambio de 32 bits de orden más alto por los más bajos
 - 4) Transposición inversa de 1)

http://en.wikipedia.org/wiki/Data_Encryption_Standard

ALGORITMOS DE CLAVE SECRETA

- Algoritmo DES (Data Encryption Standard, IBM 1975):
 - 2) 16 iteraciones aplicando la clave K de 56 bits (cada iteración (b))
 - a) 32 bits de la derecha pasan a ser los de la izquierda para la iteración siguiente
 - b) 32 bits de la derecha se obtienen haciendo XOR con los de la izquierda, junto con la aplicación de una función de transposición y duplicación de bits sobre R y K de la iteración actual, i.
 En dicha función también se utilizan módulos de sustitución para cada grupo de 6 bits (8 grupos) y se obtienen 4 bits por cada bloque.
 Por último se hace una nueva transposición del resultado.

http://en.wikipedia.org/wiki/Data_Encryption_Standard

(b)

ALGORITMOS DE CLAVE SECRETA

- Encadenamiento DES:
 - Se realizan varios encriptamientos consecutivos y se combinan los resultados.
 - Con cada encriptamiento se aumenta en **2**⁵⁶ la dificultad para descubrir la clave.

ALGORITMOS DE CLAVE SECRETA

• 3DES:

- Se hacen dos fases de encriptado y una de desencriptado entre ellas, usando cada vez una clave diferente.

ALGORITMOS DE CLAVE SECRETA

- **IDEA** (International Data Encryption Algorithm):
 - Utiliza claves de 128 bits.
 - Puede operar en tiempo real.
 - Fácil de implementar en hardware.
 - 8 iteraciones
 - Aplica operaciones:

XOR

Suma módulo 2¹⁶

Multiplicaciones módulo 216+1

https://es.wikipedia.org/wiki/International_Data_Encryption_Algorithm

ALGORITMOS DE CLAVE PÚBLICA

- El **receptor** tiene una **clave pública** y una **clave privada** (de la que deriva la pública).
- Envía la clave pública a los emisores potenciales (por cualquier medio).
- Emisor encripta con la clave pública del receptor.
- Receptor desencripta con su clave privada.

ALGORITMOS DE CLAVE PÚBLICA

- Dos claves por usuario (B): una pública $K_{PUB_{\mathbf{R}}}$ y otra privada $K_{PRI_{\mathbf{R}}}$ distintas
- Conocida $K_{PUB_{\mathbf{R}}}$ es **imposible conocer** $K_{PRI_{\mathbf{R}}}$
- Claves diferentes para cifrar y descifrar:

Cifrar
$$\rightarrow$$
 C = E_{KpubB} (P)

Descifrar: $P = D_{KpriB}(C)$

Y si enviamos $C=E_{KprivA}(P)$? \rightarrow autenticación

ALGORITMOS DE CLAVE PÚBLICA

- **RSA** (Rivest, Shamir, Adleman)
 - 1) Elegimos p y q primos grandes (>10¹⁰⁰)

2)
$$n = (p \cdot q)$$
 y $z = (p-1) \cdot (q-1)$ (función de Euler)

- 3) Elegimos d coprimo con z (no tienen factores primos en común)
- 4) Calculamos e tal que $e \cdot d \mod z = 1$ (algoritmo de Euclides)

5)
$$K_{pub}=(e,n)$$
 y $K_{pri}=(d,n)$, de modo que:

*
$$C = P^e \mod n$$

*
$$P = C^d \mod n$$

https://es.wikipedia.org/wiki/RSA

ALGORITMOS DE CLAVE PÚBLICA

EJEMPLO RSA

```
p = 3, q = 11

n = p \cdot q = 33, z = (n-1) \cdot (p-1) = 20 (= 5 \cdot 2 \cdot 2 en factores primos)

d = 7, coprimo respecto a z

e = 3, e \cdot d \mod z = 1

Kpub=(3,33) y Kpri=(7,33)
```


Simbólico	Numérico	$\underline{\mathbf{P}^3}$	$P^3 \mod 33$	$\underline{\mathbf{C}}^7$	$C^7 \mod 33$	Simbólico
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
A	01	1	1) 1	01	A
N	14	2744	5	78125	14	N
N	14	2744	5	v 78125	14	N
E	05	125	26	8031810176	05	E
Υ		Y				Y
• P	•	C				r

Autenticación

AUTENTICACIÓN Y CIFRADO DE CLAVE SECRETA

Esquema reto-respuesta (criptográfica):

- A desea autenticarse en B
- B le plantea un "reto" a A
- A responde al reto encriptándolo con la clave privada/secreta compartida entre A y B
- B comprueba si la respuesta es correcta y si lo es A se autentica
- El proceso se puede repetir para autenticar a B.

Variante no criptográfica:

- La respuesta es la contraseña → ataque replay
- Contraseña con identificador -> ataque replay con id
- Contraseña de un solo uso

Clave secreta

ESTABLECIMIENTO DE CLAVE SECRETA

• Intercambio de Diffie-Hellman: permite establecer una clave secreta entre dos entidades a través de un canal no seguro.
EJEMPLO:

$$g=7, n=23$$

- 1. A elige x = 3 y calcula $R1 = 7^3 \mod 23 = 21$.
- 2. A envía el número 21 a B.
- 3. B elige y = 6 y calcula $R2 = 7^6 \mod 23 = 4$.
- 4. B envía el número 4 a A.
- 5. A calcula la clave privada/simétrica $K = 4^3 \mod 23 = 18$.
- 6. B calcula la clave privada/simétrica $K = 21^6 \mod 23 = 18$.

El valor de K es el mismo para A y B:

 $g^{xy} \mod n = 7^{18} \mod 23 = 18.$

Usando números grandes no es vulnerable a escucha del canal

Clave secreta

ESTABLECIMIENTO DE CLAVE SECRETA

• Intercambio de Diffie-Hellman: permite establecer una clave secreta entre dos entidades a través de un canal no seguro.

Vunerable a ataque MitM

FUNCIONES COMPENDIO (RESUMEN O DIGEST)

- Funciones unidireccionales (irreversibles) de cálculo sencillo.
- Texto de entrada (M) de longitud variable.
- M → H(M) siendo H(M) de longitud fija (256 ó 512 bits)
- Imposible obtener M a partir de su resumen H(M).
- Invulnerables a ataques de colisión, dado M es imposible encontrar M´ tal que M ≠ M´ y H(M) = H(M´)
- Ejemplos de funciones Compendio/Digest/Hash: MD5, SHA-1, SHA-512
- Las funciones Hash se pueden usan para garantizar integridad + autenticación (clave K):

Hash Message Authentication Code (HMAC): M + H(K|M) pero para evitar ataques de extensión se usa M + H(K|M))

MD5 (Message Digest 5, RFC 1321)

- Relleno bits "100..0" por la derecha, de longitud máxima 448 bits
- Adición de campo de longitud de 64 bits
- División del mensaje en bloques de 512 bits
- Procesamiento secuencial por bloques.
- De cada bloque se obtiene un digest de 128 bits.

ABCD son 4 registros de 32 bits con valores constantes hexadecimales

MD5 (Message Digest 5, RFC 1321)

- Cada bloque se procesa:
 - Se usan varias funciones (F, G, H, I) de operadores binarios (XOR, AND, OR, NOT) combinadas.
 - Se aplican los valores de los registros A, B, C, D.
 - Se hacen desplazamientos de bits.
 - Se hacen varias pasadas.
 - Se hace una suma final módulo 2³².
 - La salida de un bloque será la entrada del siguiente.

SHA-1 (Secure Hash Algorithm 1, RFC 3174)

- Relleno bits "100..0" por la derecha, de longitud máxima 448 bits
- Adición de campo de longitud de 64 bits
- División del mensaje en bloques de 512 bits
- Procesamiento secuencial por bloques.
- De cada bloque se obtiene un digest de 160 bits.

ABCDE son 5 registros de 32 bits con valores constantes hexadecimales (diferentes de los de MD5)

SHA-1 (Secure Hash Algorithm 1, RFC 3174)

- Cada bloque se procesa:
 - Se divide el bloque en palabras de 32 bits.
 - Se extienden las palabras combinándolas hasta tener 80.
 - Se agrupan de 20 en 20 y se combinan usando funciones.
 - Se usan varias funciones de operadores binarios (XOR, AND, OR, NOT) combinadas entre sí.
 - Se aplican los valores de los registros A, B, C, D, E.
 - Se hacen 4 pasadas de este proceso.
 - Se hace una suma final módulo 232.
 - La salida de un bloque será la entrada del siguiente.

Firma Digital

 Una firma digital es un conjunto de datos que, consignados junto a otros o asociados con ellos, pueden ser utilizados como medio de identificación del firmante.

OBJETIVOS

- Que el receptor pueda autenticar al emisor.
- Que **no** haya **repudio** (que el emisor no pueda alegar que él no envió el mensaje).
- Que el emisor tenga garantías de no falsificación de su mensaje (integridad).

Firma Digital

FIRMA DIGITAL. BIG BROTHER

- Entidad central (BB) que interviene en el proceso de firma digital para la transmisión de un mensaje P entre A y B.
- A envía el mensaje cifrado con una clave que comparte con BB, K_A, incluyendo además el propio destino del mensaje, B, y una marca de tiempo t.
- BB envía a B el mensaje cifrado con la clave que comparte con él, K_B, la identidad de A, el mensaje P, su propia marca de tiempo t y su firma digital. La firma serán estos mismos valores encriptados con su propia clave K_{BB.}

Firma Digital

FIRMA DIGITAL CON CLAVE ASIMÉTRICA. DOBLE CIFRADO

- Un cifrado para autenticación, con K_{priA}
- Otro, para proporcionar privacidad, con K_{pubB}
- Para firmar, enviar K_{pubB}(K_{priA}(P))
- En el receptor se desencripta: K_{pubA}(K_{priB}(K_{pubB}(K_{priA}(P))))=P

Certificados digitales

- Un certificado digital sirve para garantizar la asociación identidad-clave.
- Para que un usuario no pueda **corromper una clave pública** (de otro) y decir que es suya.

AUTORIDADES DE CERTIFICACIÓN (AC)

- Entidad para garantizar la asociación entre identidad y claves.
- Funcionamiento:
 - El usuario obtiene sus claves pública y privada
 - Éste envía una solicitud, firmada digitalmente, a la AC indicando su identidad y su clave pública
 - AC comprueba la firma y emite el certificado solicitado:
 - * Identidad de AC, identidad del usuario, clave pública del usuario y otros datos como, por ejemplo, el período de validez del certificado.
 - * Todo ello se firma digitalmente con la clave privada de AC con objeto de que el certificado no pueda falsificarse .
- **Formato** de certificados: principalmente **X.509**.

Certificados digitales

AUTORIDADES DE CERTIFICACIÓN (AC)

- Las AC son responsables de:
 - emitir los certificados
 - asignarles una fecha de validez
 - revocarlos antes de esta fecha (en casos determinados)
- AC reconocidas:
 - ☐ ACE (www.ace.es)
 - ☐ VeriSign (<u>www.verisign.com</u>)
 - ☐ CAMERFIRMA (<u>www.camerfirma.es</u>)
 - ☐ CERES (<u>www.cert.fnmt.es</u>)

I No es lo mismo Firma Digital I (un uso en una transmisión) I que Certificado Digital (muchos usos, I

Certificados digitales

TIPOS DE CERTIFICADOS

Certificados firmados localmente:

- Firmados por un servidor local.
- De uso interno en una red privada (intranet).
- Para garantizar los intercambios confidenciales y para autenticar usuarios.

Certificados firmados por una autoridad de certificación:

- Válidos en todo Internet.
- Para garantizar los intercambios seguros con usuarios anónimos.
- Para acreditar la identidad de un usuario.

Certificados digitales

CERTIFICADO X.509

Field	Explanation	
Version	Version number of X.509	
Serial number	The unique identifier used by the CA	
Signature	The certificate signature	
Issuer	The name of the CA defined by X.509	
Validity period	Start and end period that certificate is valid	
Subject name	The entity whose public key is being certified	
Public key	The subject public key and the algorithms that use it	

Certificados digitales

Certificate: Data:

68:9f

CERTIFICADO X.509

```
Version: 1 (0x0)
   Serial Number: 7829 (0x1e95)
   Signature Algorithm: md5WithRSAEncryption
   Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
                                                                             Autoridad
           OU=Certification Services Division,
                                                                           Certificadora
           CN=Thawte Server CA/Email=server-certs@thawte.com
   Validity
       Not Before: Jul 9 16:04:02 1998 GMT
       Not After: Jul 9 16:04:02 1999 GMT
   Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
                                                                               Datos de
            OU=FreeSoft, CN=www.freesoft.org/Email=baccala@freesoft.org
   Subject Public Key Info:
        Public Key Algorithm: rsaEncryption
       RSA Public Key: (1024 bit)
            Modulus (1024 bit):
                00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
                33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
                                                                     Algoritmo y
                66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
                                                                    clave pública
                70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
                16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
                                                                     del usuario
                c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
                8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
               d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
                e8:35:1c:9e:27:52:7e:41:8f
            Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
   93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
                                                                   Algoritmo y
    92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
                                                                  clave privada
    ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
    d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
                                                                     de la AC
    0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
    5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
```

8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:

TEMA 4. Seguridad en Redes

- 4.1. Introducción a la seguridad en redes
- 4.2. Mecanismos de seguridad:
- Cifrado
- Autenticación
- Clave secreta
- Funciones Hash
- Firma digital
- Certificados digitales
- 4.3. Implementación de mecanismos de seguridad

- Seguridad perimetral
 - Firewalls, IDS (sistemas detección intrusiones), IRS (sistemas respuesta intrusiones)

PROTOCOLOS DE SEGURIDAD

- Capa de Aplicación
 - Pretty Good Privacy (PGP)
 - Secure Shell (**SSH**)
- Capa de Transporte
 - Secure Socket Layer (**SSL**) → HTTPS, IMAPS, SSL-POP
 - Transport Layer Security (*TLS*)
- Capa de Red → IPSec (VPN)
- Capas inferiores → PAP, CHAP, MS_CHAP, EAP...

CORTAFUEGOS (FIREWALL)

- Es una combinación de técnicas, políticas de seguridad y tecnologías (hardware y software).
- Proporciona seguridad en la red, controlando el tráfico que entra y sale (normalmente entre una red privada e Internet).

CORTAFUEGOS (FIREWALL) – FUNCIONES

- Controlar (permitiendo o denegando) los accesos desde la red local hacia el exterior y los accesos desde el exterior hacia la red local.
- Filtrar los paquetes que circulan, de modo que sólo los servicios permitidos puedan pasar.
- Monitorizar el tráfico, supervisando destino, origen y cantidad de información recibida y/o enviada.
- Almacenar total o parcialmente los paquetes que circulan a través de él para analizarlos en caso de problemas.
- Establecer un punto de cifrado de la información si se pretende comunicar dos redes locales a través de Internet.

CORTAFUEGOS (FIREWALL) – TÉCNICAS APLICADAS

Filtrado de paquetes:

- Reglas que especifican qué tipos de paquetes pueden circular en cada sentido y cuáles se bloquearán.
- Las reglas se basan en las cabeceras de los paquetes.

Servicios de proxy:

- Son aplicaciones especializadas que funcionan en un cortafuegos.
- Hacen de intermediarios entre los servidores y los clientes reales.
- Reciben las peticiones de servicios de los usuarios, las analizan y en su caso modifican, y las transmiten a los servidores reales .
- Son transparentes al usuario.

CIFRADO EN REDES

Cifrado de enlace:

- Capa 2 de OSI
- Cifra todo el mensaje, incluidas las cabeceras de niveles superiores
- Requiere nodos intermedios con capacidades de cifrado/descifrado
- La información está protegida entre cada par de nodos consecutivos (distintas claves para cada par)
- Es necesario descifrarla, aunque sea parcialmente, para procesos de encaminamiento, control de errores, etc

CIFRADO EN REDES

Cifrado extremo a extremo:

- Capa 7 de OSI
- Sólo se cifran los datos, las cabeceras se añaden y se transmiten sin cifrar.

PRETTY GOOD PRIVACY (PGP) (Usado para correo electrónico seguro y otros documentos en Internet)

PRETTY GOOD PRIVACY (PGP) (Usado para correo electrónico seguro y otros documentos en Internet)

- I . Resumen/Hash (integridad)
- I . Firma Digital (identidad de A)
- I . Agrupar datos y comprimirlos
- Encriptar con clave aleat. K(seguridad)
- in Encriptar con clave publica de B (confidencialidad)
- . Codificación adicional B64

- $FD = Kpr_A(R)$
- -Z = ZIP(FD + P)
- $-C = IDEA_{K}(Z) + Kpu_{B}(K)$
- M = B64(C)

Receptor:

- $-C = B64^{-1}(M)$
- $K = Kpr_B(Kpu_B(K))$
- $-Z = IDEA_{K}^{-1}(IDEA_{K}(Z))$
- $FD + P = ZIP^{-1}(Z)$
- $-R = Kpu_A(FD)$
- -R' = MD5(P)
- -R' = R??

SSH (Secure Shell)

- SSH es un protocolo de **nivel de aplicación** para crear **conexiones seguras** entre dos sistemas sobre redes no seguras.
- Alternativa a programas de **acceso remoto** no seguros, como telnet, ftp, rlogin, rsh y rcp (slogin, ssh y scp).
- Proporciona un terminal de sesión cifrada con autenticación fuerte del servidor y el cliente, usando criptografía de clave pública.
- Incluye características como:
 - Variedad de mecanismos de autenticación de usuarios (incluyendo autenticación externa Kerberos).
 - Conexiones TCP arbitrarias de *tunneling* a través de la sesión SSH, protegiendo protocolos inseguros como IMAP y permitiendo el paso seguro a través de cortafuegos.
 - Transferencias seguras de ficheros.
 - Soporte para entorno gráfico.

Secuencia de eventos de una conexión SSH

- 1. Se crea una **capa de transporte segura** para que el cliente sepa que está efectivamente comunicándose con el servidor correcto. Luego **se cifra la comunicación** entre el cliente y el servidor por medio de una clave simétrica/privada.
- 2. Una vez conectado de forma segura, el **cliente se autentica ante el servidor** sin preocuparse de que la información de autenticación pudiese exponerse.
- 3. Con el cliente autentificado ante el servidor, se pueden **usar varios servicios diferentes** con seguridad a través de la conexión, como una sesión de terminal interactivo, aplicaciones y túneles TCP/IP.

TRANSPORT LAYER SECURITY (SSL/TLS)

- SSL (Secure Socket Layer) → Desarrollado por Netscape en 1994 y puesto en dominio público para la definición de canales seguros sobre TCP.
- TLS (Transport Layer Security) → Sucesor y mejora sobre SSL.
 - Corrige vulnerabilidades de SSL y permite la autenticación de emisor y receptor.
 - Se basa en el uso de **certificados digitales** para establecer la conexión.
 - Posteriormente emisor y receptor comparten una clave privada.
- Ambos son protocolos criptográficos que permiten realizar comunicaciones seguras sobre una red no segura.

TRANSPORT LAYER SECURITY (SSL/TLS) - Capas

 SSL Record Protocol encapsula los protocolos y ofrece un canal seguro con privacidad, autenticación e integridad

SSL Handshake Protocol

- Negocia el algoritmo de cifrado
- Negocia la función Hash
- Autentica al servidor con X.509
- El cliente genera claves de sesión:
 - Aleatorias cifrada con K_{PUB_SERVER} ó
 - Diffie-Hellman

SSL Alert protocol

- Informa sobre errores en la sesión

Change Cipher Espec Protocol

- Para notificar cambios en el cifrado

TRANSPORT LAYER SECURITY (SSL/TLS) – Funcionamiento

- El cliente al hacer la conexión informa sobre los sistemas criptográficos que tiene disponibles, y el servidor responde con un identificador de la conexión, su clave certificada e información sobre los **sistemas criptográficos** que soporta.
- El cliente elegirá un sistema criptográfico y verificará la clave pública del servidor.
- Entonces se **generará** una **clave privada** (de uso único) cifrada con la clave del servidor. Si alguien pudiese descifrar la información, sólo conseguiría romper esa conexión/sesión, ya que una sesión posterior requeriría una clave privada diferente.
- Una vez finalizado este proceso, los protocolos toman el control de nivel de aplicación, de modo que SSL/TLS nos asegura que:
 - Los mensajes que enviamos o recibimos no han sido modificados (integridad).
 - Ninguna persona sin autorización puede leer la información transmitida (confidencialidad).
 - Efectivamente envía/recibe la información quien debe enviarla/recibirla (autenticación).

TRANSPORT LAYER SECURITY (SSL/TLS) - Arquitectura

TRANSPORT LAYER SECURITY (TLS/SSL)

TRANSPORT LAYER SECURITY (SSL/TLS)

- Versión actual SSL 3.0
- SSL es capaz de trabajar de forma transparente con todos los protocolos que trabajan sobre TCP
- Para ello el IANA tiene asignado un número de puerto por defecto a cada uno de ellos:

Identificador de protocolo	Puerto TCP	Descripción
https	443	HTTP sobre SSL
smtps	465	SMTP sobre SSL
nttps	563	NTTP sobre SSL
ladps	646	LDAP sobre SSL
telnets	992	TELNET sobre SSL
imaps	993	IMAP sobre SSL
ircs	994	IRC sobre SSL
pop3s	995	POP3 sobre SSL
ftps-data	989	FTP-Datos sobre SSL
ftps-control	990	FTP-Control sobre SSL

IPSec (IP Security)

- Proporciona **seguridad en la capa de red** y a las superiores que se apoyen en IP (RFC 2401).
- Su objetivo es garantizar autenticación, integridad y (opcionalmente) privacidad a nivel IP.
- IPSec consiste en 3 procedimientos:
 - 1) Establecimiento de una "**Asociación de seguridad**": IKE (Internet Key Exchange, RFC 2409)
 - Objetivo: establecimiento de clave secreta (**Diffie-Hellman**).
 - Incluye previamente autenticación (con certificados) para evitar el ataque de MitM.
 - Es **simplex**: la asociación de seguridad tiene un único sentido.
 - Se **identifica** con la IP origen + Security Parameter Index (32 bits). **Vulnera** el carácter NO orientado a conexión de IP.
 - 2) Garantizar la **autenticación** e **integridad** de los datos: protocolo de "Cabeceras de autenticación" (RFC 2401)
 - 3) (Opcional) Garantizar la **autenticación** e **integridad** y **privacidad** de los datos: protocolo de "Encapsulado de seguridad de la carga" (RFC 2411)

IPSec (IP Security)

- IPSec tiene 2 modos de operación:
- 1) **Modo Transporte**: la asociación se hace extremo a extremo entre en host origen y host destino.
 - se protege la carga útil IP (payload) (capa de transporte)
 - comunicación segura extremo a extremo
 - requiere implementación de IPSec en ambos hosts

IPSec

- IPSec tiene 2 modos de operación:
 - 2) **Modo Túnel**: la asociación se hace entre dos routers intermediarios.
 - se protegen paquetes IP (capa de red)
 - para la comunicación segura entre routers/gateways de seguridad sólo se puede usar este modo
 - permite incorporar IPSec sin afectar a los hosts
 - se integra fácilmente con VPNs

IPSec

- > IPSec tiene 2 modos de operación:
 - 1) Modo Transporte: la asociación se hace extremo a extremo entre en host origen y host destino
 - 2) Modo Túnel: la asociación se hace entre dos routers intermediarios

¿Preguntas?

O comentarios, sugerencias, inquietudes