Harmonic, Geometric Mean and Mode by using the method of Grouping

Prof S Roy, SAS Statistics for Engineers

Harmonic Mean

For Ungrouped Data	For Grouped Data
$H. M ext{ of } X = \overline{X} = \frac{n}{\sum \left(\frac{1}{x}\right)}$	$H.M ext{ of } X = \overline{X} = rac{\sum f}{\sum \left(rac{f}{x} ight)}$

Prof S Roy, SAS

Calculate the harmonic mean of the numbers 13.5, 14.5, 14.8, 15.2 and 16.1 **Solution:**

The harmonic mean is calculated as below:

x	$\frac{1}{x}$
13.2	0.0758
14.2	0.0704
14.8	0.0676
15.2	0.0658
16.1	0.0621
Total	$\sum \left(\frac{1}{x}\right) = 0.3417$

$$H. M ext{ of } X = \overline{X} = \frac{n}{\sum \left(\frac{1}{x}\right)}$$

$$H.M \text{ of } X = \overline{X} = \frac{5}{0.3417} = 14.63$$

Given the following frequency distribution of first year students of a particular college, calculate the harmonic mean.

Age (Years)	13	14	15	16	17
Number of Students	2	5	13	7	3

Solution:

Ages (Years) x	Number of Students f	$\frac{f}{x}$
13	2	0.1538
14	5	0.3571
15	13 Prof S Roy,	sas 0.8667
16	7	0.4375
17	3	0.1765
Total	$\sum f = 30$	$\sum \left(\frac{f}{x}\right) = 1.9916$

Now we will find the harmonic mean as

$$\overline{X}=rac{\sum f}{\sum\left(rac{f}{x}
ight)}=rac{30}{1.9916}=15.0631pprox15$$
 years.

Calculate the harmonic mean for the data given below:

Marks	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99
f	2	3	11	20	32	25	7

Solution:

The necessary calculations are given below:

Marks	x	f	$\frac{f}{x}$
30 - 39	34.5	2	0.0580
40 - 49	44.5	3	0.0674
50 - 59	54.5	11	0.2018
60 - 69	64.5	20 Prof S Ro	y, SAS 0.3101

70 - 79	74.5	32	0.4295
80 - 89	84.5	25	0.2959
90 - 99	94.5	7	0.0741
Total		$\sum f = 100$	$\sum \left(\frac{f}{x}\right) = 1.4368$

Now we will find the harmonic mean as

$$\overline{X} = \frac{\sum f}{\sum \left(\frac{f}{x}\right)} = \frac{100}{1.4368} = 69.60$$

Geometric Mean

the geometric mean for a value X containing n values such as $x_1, x_2, x_3, \ldots, x_n$ is denoted by G.M of X and given as:

$$G.M ext{ of } X = \overline{X} = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \cdots \cdot x_n}$$

(for ungrouped data)

If we have a series of n positive values with repeated values such as $x_1, x_2, x_3, \ldots, x_k$ which are repeated $f_1, f_2, f_3, \ldots, f_k$ times respectively, then the geometric mean will become:

$$G.\,M ext{ of }X=\overline{X}=\sqrt[n]{x_1^{\,f_1}\cdot x_2^{\,f_2}\cdot x_3^{\,f_3}\cdot \cdot \cdot \cdot \cdot x_k^{\,f_k}}$$

(For Grouped Data)

Where $n = f_1 + f_2 + f_3 + \cdots + f_k$

Find the geometric mean of the values 10, 5, 15, 8, 12.

Solution:

Here
$$x_1=10$$
, $x_2=5x_3=15x_4=8x_5=12$ and $n=5$

$$egin{aligned} G.\,M ext{ of } X &= \overline{X} = \sqrt[5]{10 imes 5 imes 15 imes 8 imes 12} \ \overline{X} &= \sqrt[5]{72000} = (72000)^{rac{1}{5}} = 9.36 \end{aligned}$$

Prof S Roy, SAS

Find the geometric mean of the following data:

X	13	14	15	16	17
f	2	5	13	7	3

Solution:

$$\overline{X} = \sqrt[30]{(13)^2 \cdot (14)^5 \cdot (15)^{13} \cdot (16)^7 \cdot (17)^3}$$
 $\overline{X} = \sqrt[30]{2.33292 \times 10^{35}} = (2.33292 \times 10^{35})^{\frac{1}{30}}$ $\overline{X} = 15.0984 \approx 15.10$

The method explained above to calculate the geometric mean is useful when the values in the given data are small in number and an electronic calculator is available. When a set of data contains a large number of values then we need an alternate way to compute the geometric mean. The modified or alternative way of computing the geometric mean is given as:

For Ungrouped Data	For Grouped Data
$G.M ext{ of } X = \overline{X} = Anti \log$	$G. M ext{ of } X = \overline{X} = Anti \log$
$\left(\frac{\sum \log x}{n}\right)$	$\left(\frac{\sum f \log x}{\sum f}\right)$

Prof S Roy, SAS

Example:

Find the geometric mean of the values 10, 5, 15, 8, 12

x	$\log x$
10	1.0000
5	0.6990
15	1.1761
8	0.9031
12	1.0792
Total	$\sum \log x$ = 4.8573

$$\overline{G.M ext{ of } X = \overline{X}} = Anti \log \left(\frac{\sum \log x}{n} \right)$$

$$\overline{X} = Anti\log\left(\frac{4.8573}{5}\right)$$

$$\overline{X} = Anti\log(0.9715)$$

$$\overline{X} = 9.36$$

Find the geometric mean for the following distribution of students' marks:

Marks	0 - 30	30 - 50	50 - 80	80 - 100
No. of Students	20	30	40	10

Marks	No. of Students f	$\begin{array}{c} \text{Mid Points} \\ x \end{array}$	$f \log x$
0 - 30	20	15	$20 \log 15$ $= 23.5218$
30 - 50	30 Prof S	40 Roy, SAS	$30 \log 40$ = 48.0168
50 - 80	40	65	$40 \log 65$ $= 72.5165$
80 - 100	10	90	$10 \log 90$ = 19.5424
Total	$\sum f = 100$		$\sum f \log x$ $= 163.6425$

$$G.M ext{ of } X = \overline{X} = Anti \log \left(rac{\sum f \log x}{\sum f}
ight)$$

$$\overline{X} = Anti\log\left(\frac{163.6425}{100}\right)$$

$$\overline{X} = Anti\log(1.6364)$$

$$\overline{X} = 43.29$$