

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

40-4136 161

INTEGRATING MULTI-OBJECTIVE OPTIMIZATION METHODOLOGIES IN BMD TECHNOLOGY

SUBMITTED TO

BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER
P.O. BOX 1500
HUNTSVILLE, ALABAMA 35807

UNDER CONTRACT DASG60-81-C-0008

SUBMITTED BY

THE DEPARTMENT OF MANAGEMENT SCIENCE AND STATISTICS
THE UNIVERSITY OF ALABAMA
P.O. BOX J
UNIVERSITY, ALABAMA 35486

DTIC ELECTE DEC 2 1 1983

D

OCTOBER 15, 1983

IC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

8

29

INTEGRATING MULTI-OBJECTIVE OPTIMIZATION METHODOLOGIES IN BMD TECHNOLOGY

BY

JOSEPH M. MELLICHAMP PROFESSOR OF MANAGEMENT SCIENCE THE UNIVERSITY OF ALABAMA

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

FOREWORD

This report represents work performed by the Management Science and Statistics Department of the University of Alabama, University, Alabama, while under contract to the Ballistic Missile Defense Advanced Technology Center. Technical contact for this effort was Mr. Walter L. Dixon, Jr.

ABSTRACT

This technical report describes a microprocessor version of a threat allocation model based on simple decision heuristics. Model capability is demonstrated by allocating a threat composed of four recently related r.v. systems over four categories of assets using different asset defense schemes. Allocations obtained with the heuristic model compare favorably with allocations obtained with a much more sophisticated model.

The report also describes a generalized R&D project network simulation model which provides reliable estimates for project start and completion times, project duration times, and failure statistics. The simulation model is demonstrated with a complex network composed of six individual, interdependent projects.

The report includes as an appendix a paper describing a mathematical optimization approach to threat allocation decisions that was presented at the national ORSA/TIMS meetings in October 1982.

TABLE OF CONTENTS

Section	<u>Title</u>	Page
	FOREWARD	i
	ABSTRACT	ii
I	INTRODUCTION	1
II	THREAT ALLOCATION MODEL	2
	2.1 Threat Allocation Decision	2
	2.2 Allocation Heuristics	3
	2.2.1 Threat Strategy	3
	2.2.1.1 Kill Priorities	3
	2.2.1.2 Kill Criteria	3
	2.2.1.3 Kill Objectives	3
	2.2.2 Allocation Rule	4
	2.2.3 Allocation Procedure	4
	2.3 Model Applications	4
	2.3.1 No Defense Scenario	5
	2.3.2 Defense Scenarios	5
	2.4 Model Critique	6
III	R&D PROJECT PLANNING NETWORK SIMULATION	8
	3.1 R&D Project Planning	8
	3.2 R&D Project Networks	9
	3.2.1 Individual Project Representation	9
	3.2.2 A Generalized Network	11
	3.3 Network Simulator	11
	3.3.1 GPSS Program	13

<u>Section</u>	<u>Title</u>	<u>Page</u>
	3.3.2 Simulator Output	13
	3.4 Model Critique	14
IV	A THREAT ALLOCATION MODEL FOR TACTICAL WARFARE	15
<u>Appendix</u>	<u>Title</u>	Page
I	TERMINOLOGY AND NOTATION USED IN THREAT ALLOCATION PROGRAM	16
II	THREAT ALLOCATION LOGIC	19
III	THREAT ALLOCATION PROGRAM FLOWCHART	23
IV	THREAT ALLOCATION PROGRAM LISTING	30
V	THREAT ALLOCATION PROGRAM OUTPUT	35
VI	TERMINOLOGY AND NOTATION USED IN R&D PROJECT PLANNING NETWORK SIMULATION	40
VII	R&D PROJECT PLANNING NETWORK SIMULATION LOGIC	42
VIII	R&D PROJECT PLANNING NETWORK SIMULATION MODEL FLOWCHART	46
IX	R&D PROJECT PLANNING NETWORK SIMULATION PROGRAM LISTING	52
Y	A THREAT ALLOCATION MODEL FOR TACTICAL WARFARE	66

SECTION I

INTRODUCTION

The research described in this report was conducted as three separate projects and is reported here in separate sections. A major emphasis of the research was to develop a simple, heuristic algorithm for the threat allocation decision which could be executed on a microprocessor; the results of this effort are described in Section II. A secondary emphasis of the research was to develop a generalized R&D network simulator for use in project planning and management; results of this phase of the effort are described in Section III. Finally, a part of the research effort was expended in documenting an earlier version of the threat allocation model for presentation at the national ORSA/TIMS meetings; the resulting paper is discussed in Section IV.

SECTION II

THREAT ALLOCATION MODEL

2.1 Threat Allocation Decision

One of the major tasks faced by the military planner in specifying defense mission requirements is assessing the nature of the threat which must be countered. With respect to BMD mission analysis, the analyst must determine how an assumed threat would likely be targeted against assets of importance and what the resulting damage would be. This problem has been treated with threat allocation models which "allocate" the threat over the assets in such a way as to achieve some explicitly stated objective, e.g., maximization of value of assets destroyed. An example of this type of threat allocation model is shown in Appendix X.

This research had as one of its objectives the development of a threat allocation model which would differ from existing models in two major respects. First, the allocation logic would be based on simple decision heuristics rather than optimization or enumeration algorithms. Second, the procedure would be developed for running on a microprocessor rather than a large mainframe computer. The resulting model incorporates rather straightforward logic which closely replicates military strategy and it has been run on an Apple II using Apple BASIC.

The research is presented in three parts. The first part describes the heuristics upon which the program is based. Some examples of the application of the model are described in the second part of the discussion. The final part of the discussion is a critique of the model.

2.2 Allocation Heuristics

In attempting to more realistically model the threat allocation decision, consideration was given to incorporating a "threat strategy" into the decision logic. Once the threat strategy has been defined, allocations are made on the basis of a simple allocation rule.

2.2.1 Threat Strategy

The threat strategy defines military objectives of the threatening force which are to be achieved in actual operations. Included are kill priorities, kill criteria, and kill objectives.

- 2.2.1.1 Kill Priorities. Each asset is assigned a priority corresponding to the importance attached to it by military planners of the threatening force. For example, if a major objective of the strike is to achieve air superiority, air bases would be assigned a kill priority of 1.
- 2.2.1.2 Kill Criteria. Each asset is assigned a kill criterion corresponding to the degree of certainty the threatening force wishes to achieve in destroying the asset. For example, the threatening force might wish to be 99 percent certain that air bases are destroyed, whereas a 90 percent assurance may be acceptable for other assets. Then, in making allocations, sufficient r.v.'s must be targeted to airbases to assure that the combined kill probability equals or exceeds .99.
- 2.2.1.3 Kill Objectives. Each class of assets is assigned a kill objective corresponding to the percentage of assets in the class which

the threat should successfully destroy. For example, it may be necessary to destroy 95 percent of the airbases to achieve air superiority.

2.2.2 Allocation Rule

Once the threat strategy is defined, it is a relatively simple matter to search the asset list in kill priority sequence assigning r.v.'s to each asset in a particular asset category until the required percent of assets in that category is destroyed with probability equal to or greater than the required kill criterion for the asset. All that remains to completely define the allocation procedure is to specify the rule for assigning r.v.'s to assets. The rule followed in the procedure described here is to assign from available r.v.'s the one having the minimum $P_{\rm SSK}$ for the asset being considered.

2.2.3 Allocation Procedure

A complete description of terminology and notation used in the allocation model is contained in Appendix I. A detailed narrative of the allocation logic is presented in Appendix II with a flowchart of the logic in Appendix III. A listing of the BASIC computer program developed appears in Appendix IV.

2.3 Model Applications

To demonstrate the use of the model in threat allocation decisions, a hypothetical problem described in a paper presented at the national ORSA/TIMS meeting is used. The paper which is included as Appendix X describes a tactical situation involving four asset types and four r.v. systems. The threat definition for this problem is shown in Table 1 of

the Appendix, the asset structure is given in Table 2, and single shot kill probabilities are from Table 3.

2.3.1 No Defense Scenario

The first scenario assessed with the heuristic model was a no defense case in which all assets in each of the four categories were unprotected. Sample output for the no defense case is given in Ar andix V. From the echo report of input data, it may be seen that the a are ranked in descending order by kill priority with type 1 asset ranked first and type 4 assets ranked last. Notice also that the criterion for type 1 assets is .99 while .90 is specified for other assets. Furthermore, the kill objective for each asset category is .95. Each of the r.v. systems in the illustration has a reliability/availability factor of .90.

The allocation model commits a total of 75 type 1 r.v.'s to type 1 assets destroying all 15 assets. The remaining type 1 r.v.'s are targeted to type 2 assets as are all of the type 3 and 4 r.v.'s, thus destroying 15 of the 45 type 2 assets. Note from the output that no assets of type 3 or 4 are killed and that none of the type 2 r.v.'s are allocated. This is obviously a shortcoming of the allocation heuristic and will be mentioned subsequently.

2.3.2 Defense Scenarios

Several scenarios were assessed varying the defense assigned to each of the assets. In all cases, interceptors were assigned uniformly to the assets and the probability of successful intercept was assumed to be .90. From Appendix V it may be seen that when one interceptor is assigned to each asset, all available type 1 r.v.'s must be committed to

type 1 assets in order to destroy all 15 of the assets. All available type 3 and 4 r.v.'s are allocated to type 2 assets destroying 13 of the 45 assets. Table 2.1 shows the effect of the number of interceptors committed to each asset on the number of assets destroyed. Assigning one interceptor to each asset essentially buys two type 2 assets. Assigning two interceptors to each asset buys one type 1 asset (rather than allocating r.v.'s to all 15 type 1 assets, the model targets only 14 which satisfies the kill objective for that category). When four interceptors are assigned to each asset, the model begins to target type 2 r.v.'s to type 2 assets. The last defense scenario considered was to assign eight interceptors to each asset; from Table 2.1 it may be seen that the results are the same as when four interceptors are assigned -- the only difference is that a greater number of type 2 r.v.'s is required.

2.4 Model Critique

Limited experience with the heuristic model to date suggests that results compare favorably with results obtained using more sophisticated algorithms. For example, if the no defense allocation results in terms of assets destroyed are valued using the asset values reflected in Table 2 of Appendix X, approximately 49 percent of the total value of the assets would be destroyed. Referring to Figure 4 of Appendix X, it may be seen that roughly the same percentage value of assets would be destroyed by the allocation model used in that study (at the 1.0 Threat Level).

Table 2.1. Effect of Defense Options on Number of Assets Destroyed

から 自然では、 しょ 自同的なに対称し

Number of	Number of Assets Destroyed			
Interceptors Per Asset	Type 1	Type 2	Type 3	Type 4
0	15	15	0	0
1	15	13	0	0
2	14	13	0	0
4	14	13	0	0
8	14	13	0	0

The model appears to have enough potential to warrant further examination with a view toward enhancement. For instance, integrating second order heuristics may overcome the shortcoming mentioned earlier. If r.v.'s remained unused after the first allocation pass, perhaps a second pass with adjusted $P_{\rm SSK}$ values could yield an improved allocation. Or perhaps a procedure similar to Vogel's Approximation Method used in transportation problems could be used to locate efficient allocations. A number of simple heuristics appear to have application in this regard.

SECTION III

R&D PROJECT PLANNING I TWORK SIMULATION

3.1 R&D Project Planning

One of the most difficult tasks in project management in an R&D environment is activity scheduling including the related task of estimating duration, start, and completion times for individual activities and entire projects. The task is complicated by the inherent uncertainty associated with R&D activity and by the interdependencies which exist between activities and projects. Project scheduling problems have traditionally been treated with PERT/CPM techniques; however because of the high levels of inherent uncertainty, attention has been focussed on simulation models as a way of providing the time estimates needed to effectively manage R&D efforts.

Unfortunately, one of the frequently cited limitations of simulation is that it is not sufficiently flexible (or general) to be of much use in a dynamic environment. There does appear to be a legitimate need for a project network simulator that is sufficiently general to be applicable to the majority of R&D cases. Thus, one of the emphases of this research was to develop a generalized project network simulator which could be easily adapted to model a variety of R&D network situations.

The research is discussed in three parts. The first part presents a general R&D network representation. The network simulation model is described in the second part of the discussion along with data inputs required and outputs generated by the model. The final part of the discussion is a critique of the network simulator.

3.2 R&D Project Networks

In order to develop a generalized R&D network simulator, it is first necessary to specify a framework which can be used to represent a variety of R&D projects. The framework devised in this research is a generalized project activity representation which can itself be networked to represent complex R&D projects.

3.2.1 Individual Project Representation

Figure 3.1 shows the individual project network representation. In developing this framework, an attempt was made to include every activity which could occur in an R&D project. The main activity sequence is from left to right and includes the following distinct activities:

- System Study. Activities related to definition of project objectives/requirements.
- RFP. Preparation and distribution of requests for proposal.
- Contractor Proposal. Activities undertaken by contractors in response to the RFP.
- Award. Assessment and evaluation of various contractor proposals and award of contract.
- Contractor Activity. Actual research and development effort by contractor as required by contract.
- Evaluation. Evaluation of contractor effort with respect to project objectives/requirements.

In addition to these major activities, the network contains four restart loops which correspond to unsuccessful activity of one form or another. The four loops are:

 Redefine Project. A redefinition of the project might be required for a variety of reasons including: budget considerations, technology limitations, etc.

PRODUCED AND PRODUCED BORDERS SERVICES SERVICES

THE PROPERTY

- Proposals Unacceptable. The RFP phase may have to be repeated due to inadequate project specification, budget considerations, contractor problems, etc.
- Additional Activity. After the contract evaluation, the contractor may be required to undertake additional activity to complete the contract.
- Solution Unacceptable. Alternatively, the evaluation may show that the effort failed with respect to objectives and that a new effort is required.

3.2.2 A Generalized Network

Figure 3.2 shows a complex network composed of six individual project networks of the form described in the previous paragraph.

The particular network shown includes individual interceptor, data processing, and sensor projects which must be integrated in follow-on projects in order to complete the complex development represented by the composite network.

It should be noted that individual project networks can be combined in whatever way is necessary in order to represent the interdependencies inherent in a complex R&D effort. Such complex efforts routinely involve literally scores of individual projects.

3.3 Network Simulator

A UNIVAC 1100 GPSS simulation model of the network shown in Figure 3.2 was written and run to produce 1,000 replications of the complex project. Terminology and notation incorporated in the model are shown in Appendix VI, program logic is detailed in Appendix VII, and a flowchart of model logic appears in Appendix VIII.

DEVELOPMENT
DEVELOPMENT DEVELOPMENT SENSOR INTERCEPTOR DEVELOPMENT

Figure 3.2. A Generalized Complex Network of R&D Projects.

3.3.1 GPSS Program

The GPSS program includes three major sections. The first section is primarily definitional and includes a matrix named VAL(I,J) which is used to input mean activity times and modifiers, probability values for unsuccessful activities, and precedence relationships. Each row in the matrix represents an individual project; columns are as defined in statement numbers 41-63 of the program listing. The second section of the program models the actual sequence of activities from system study through contract evaluation -- statement numbers 83-152. The last segment of the program is used for collecting statistics of interest to project management.

Use of a matrix for inputting project descriptive data makes it extremely easy to change these values for "what if" analysis. It is not necessary to make changes to statements within the program. All that is required is to make appropriate changes to the matrix INITIAL statements, statement numbers 65-77.

3.3.2 Simulator Output

Standard GPSS output for this model is fairly extensive amounting to about eight pages; furthermore the output is difficult to understand without a thorough knowledge of GPSS. For this reason a FORTRAN report generator was linked to the simulator via the GPSS HELP statement.

Important GPSS output is summarized in a report which should communicate to project managers having little familiarity with simulation; an example is shown on page 57. The report gives project start and completion times, project durations, and statistics on failures. For example, for the six project network depicted in Figure 3.2, the final

project (project six) would commence 1,493 time units from the start date and would be completed 2,167 time units from the start date. Out of 1,000 replications of project 6, the system study phase had to be redone 4 times, the contractor had to perform additional work 9 times, and the entire project failed once.

3.4 Model Critique

The value to project managers of the kind of information available from the simulator should be obvious. Project scheduling could be done with greater accuracy because of the availability of reliable time estimates. Various scenarios could easily be assessed by changing input data and rerunning the simulation. The simulator is limited in at least two respects. First, the output will only be as good as the input data; some of the probability estimates and activity duration times may be difficult to obtain especially when no prior R&D experience exists. Second, to change the network formats presented in Figure 3.1 and 3.2 would require changing the GPSS program, a task which would require expert programming capability.

SECTION IV

A THREAT ALLOCATION MODEL FOR TACTICAL WARFARE

A final task of the research was to document an earlier version of the threat allocation model for presentation at the ORSA/TIMS Joint National Meeting in San Diego, California, October 25-27, 1982. The paper presented at the conference is included in its entirety in Appendix X.

TERMINOLOGY AND NOTATION USED IN THREAT ALLOCATION PROGRAM

APPENDIX I
TERMINOLOGY AND NOTATION USED IN THREAT ALLOCATION PROGRAM

Program Notation	Standard BMD Notation	Definition
т	I	The number of asset types, i=1, 2,, m
Н	J	The number of reentry vehicle types, j=1, 2,, n
P(T,H)	P _{ij}	The probability of killing a type i asset with a single reentry vehicle of type j
A(T)	A _i	The number of type i assets available
Y(T)	Yi	The kill criteria for asset type i
R(T)	R _i	The kill priority for asset type i
O(T)	0;	The kill objective for asset type i
B(H)	${\tt B_j}$	The number of type j reentry vehicles available
Q(H)	$\mathtt{Q}_{\mathbf{j}}$	The name of asset type i
U\$(T)		The name of asset type i
NN(T)	N _i	The number of interceptors available to defend asset type i
II(T)	P _{ki}	The probability that a terminal interceptor kills a reentry vehicle attacking asset i
V	X _{ij}	The number of type j reentry vehicles that must be allocated to each asset of type i
Ε		For a selected asset, E is the highest single shot kill probability given the j type reentry vehicle available
W		A counter which indicates the number of complete allocations made
R		Index number used as a starting point in the search for the asset type with the highest kill priority

(CONTINUED)

Program Notation	Standard BMD Notation	<u>Definition</u>
С		An intermediate index used to arrive at the final reentry vehicle allocation
U		The intermediate probability of survival for the selected asset type
X		The aggregate kill probability for asset type i given the allocation of C number of j type reentry vehicles
S		The number of random variables to be allocated to each asset of type i if the number of reentry vehicles is not sufficient to lead to a complete destruction of that asset

THREAT ALLOCATION LOGIC

THREAT ALLOCATION LOGIC

1. Block 1. Read input data:

NN(T), II(T), U\$(T), P(T,H), A(T), Y(T), R(T), O(T),
B(H) and Q(H) for
$$T=1, 2, ..., I$$
 and $H=1, 2, ..., J$

Blocks 2-4. Compute desired kill objective for each asset type and integerize the result

$$A(T) = Int[A(T) * O(T) + .99]$$
 for $T=1, 2, ..., I$

3. Blocks 5-9. Adjust the single shot kill probabilities for each reentry vehicle type to reflect the reliability/availability factor of that random variable

$$P(T,H) = P(T,H) * Q(J)$$
 for $T=1, 2, ..., I$ and $H=1, 2, ..., J$

- 4. Block 10. Set W = 1 marking the start of the allocation algorithm. W will be incremented by one whenever an asset is chosen for an allocation. Set R = 999 which will serve as a starting search point for the next step.
- Blocks 11-14. Select the asset with the highest kill priority
 (where I indicates the highest kill priority).
- 6. Block 15. Set E = -999 which will serve as a starting search point for the next step.
- 7. Blocks 16-19. For the asset selected in step 5, select the reentry vehicle that has the highest single shot kill probability.

(CONTINUED)

8. Block 20. For defended assets, the single shot kill probability is adjusted to account for the interceptor's defense.

$$TR = E * (1 - II(A))$$

9. Blocks 21-29. Determine min C for which

$$1 - [(1 - TR)^{NN(A)} * (1 - E)^{C-NN(A)}] \ge Y(A)$$

- 10. Block 30. Set V = C where V is the minimum number of reentry vehicles to be allocated to the selected asset.
- 11. Block 31. Determine if there is a sufficient number of the selected reentry vehicle to destroy the selected asset.
- 12. Blocks 32, 44-54. If there is a sufficient number of the selected reentry vehicles then that number should be reduced by the number needed to destroy the selected asset (Block 32). Then the allocations determined in steps 9 and 10 are printed (Blocks 44-47) and the asset single shot kill probabilities are deleted (Blocks 48-50) since no more allocations will be made to that asset. The asset is then given an extremely low kill priority (R(A) = 999) so that it will not be considered for any further allocations (Block 51). If the number of complete allocations (those allocations that lead to the total destruction of a selected asset) is equal to the number of asset types available the program stops, otherwise the program goes back to step 5 (Blocks 52-54).

(CONTINUED)

13. Blocks 33-35, 40-43. If the number of reentry vehicles is not sufficient to destroy the selected asset then the available number of reentry vehicles is exhausted to destroy as many as possible of the selected asset type (Blocks 33, 34). The number of assets available is then reduced by the number that has been destroyed, the number of reentry vehicles is set equal to zero, and the allocations are then printed (Blocks 35, 40). The reentry vehicle single shot kill probabilities are then set to zero. Since this reentry vehicle can not be used for any further allocations (Blocks 41, 42, 43), the program then returns to step 6.

THREAT ALLOCATION PROGRAM FLOWCHART

APPENDIX III
THREAT ALLOCATION PROGRAM FLOWCHART

APPENDIX IV

THREAT ALLOCATION PROGRAM LISTING

```
JLIST
2 HOME : PRINT " ": PRINT "
                                                     ** THREAT ALLOCATION
     DEL **": PRINT " ": PRINT " "
4 I = 10:J = 4
  PRINT : PRINT : PRINT " RUN DESCRIPTION:": PRINT " "
               ORSA/TIMS: NO DEFENSE ": PRINT " ": PRINT " "
   PRINT "
    PRINT : PRINT : PRINT " INPUTS: ": PRINT " "
25
    PRINT : PRINT : PRINT " 1. KILL PROBABILITIES"
26
                                                REENTRY VEHICLE": PRINT "
    PRINT : PRINT "
27
    PRINT " ASSET/ZONE
                                              2
28
                              1
    PIM P(I,J): DIM A(I): DIM Y(I): DIM R(I): DIM O(I): DIM B(J): DIM Q(I)
30
     : DIM U$(I): DIM NN(I): DIM II(I)
32
    FOR T = 1 TO I: READ NN(T): NEXT
33
    FOR T = 1 TO I: READ II(T): NEXT
35
    FOR T = 1 TO I: READ U$(T): NEXT
40
    FOR T = 1 TO I
42
    FOR H = 1 TO J
44
    READ P(T,H)
46
    NEXT
48
    NEXT
5 C
    FOR T = 1 TO I
    PRINT "
                ";U$(T);" ",
51
52
    FOR H = 1 TO J
53
    PRINT P(T,H),
54
    NEXT
55
    PRINT
56
    NEXT
    PRINT " "
58
. 90
    FOR T = 1 TO I
100
     READ A(T)
110
     NEXT
     FOR T = 1 TO I
 120
130
      READ Y(T)
 140
      NEXT
      FOR T = 1 TO I
 150
 153
     READ R(T)
 157
      NEXT
 160
     FOR T = 1 TO I
.170
      READ D(T)
 180
      NEXT
 190
      FOR H = 1 TO J
 200
      READ B(H)
 210
      NEXT
 220
      FOR H = 1 TO J
 230
      READ Q(H)
 240
      NEXT
      PRINT " 2. ASSET CHARACTERISTICS": FRINT " "
 250
      PRINT "
                                                            KILL
                                            KILL
 251
                 ASSET/
      LL"
                                                            CRITERIA
      PRINT "
                              NUMBER
                                            PRIORITY
 253
                  ZONE
      JECTIVES"
 257
      FOR T = 1 TO I
                    ";U$(T)," ";A(T),R(T),Y(T),O(T)
      PRINT "
 258
```

```
260
     NEXT
262
     PRINT " "
     PRINT " 3. THREAT CHARACTERISTICS": PRINT " "
264
     PRINT "
267
                                         RELIABILITY/ "
               REENTRY
     PRINT "
269
                             NUMBER
               VEHICLE
                                         AVAILABILITY"
275
     FOR H = 1 TO J
     PRINT "
                  ":H." ":B(H),Q(H)
277
279
     NEXT
282
     PRINT " "
     PRINT " 4. INTERCEPTOR CHARACTERISTICS": PRINT " "
285
     PRINT "
287
                              NUMBER OF"
290
     PRINT "
                ASSET/
                             INTERCEPTORS
                                             PROBABILITY OF"
     PRINT "
291
                ZONE
                             PER ASSET
                                               INTERCEPT"
     FOR T = 1 TO I
292
     PRINT "
                ";U$(T),"
                                 ";NN(T),"
.294
                                                ";II(T)
298
     NEXT
     PRINT " "
299
300
     REM STEP TWO
310
     FOR T = 1 TO I
320 A(T) = INT ((A(T) \times O(T)) + .9999)
330
     NEXT
340
     FOR H = 1 TO J
345 FOR T = 1 TO I
350 P(T,H) = P(T,H) * Q(H)
355
     NEXT
360
     NEXT
361
     PRINT "OUTFUT:": PRINT " "
     PRINT " ASSET/
                                                           R.V.'S PER
365
                          · ASSETS
                                             REENTRY
       TOTAL R.V.'S "
     PRINT "
                                       VEHICLE
. 366
                  ZONE
                               KILLED
                                                               ASSET
        ALLOCATED"
500
     REM STEP 3-FIND THE HIGHEST PRIORITY
505 W = 1
510 R = 99999
    FOR T = 1 TO I
 520
 530
     IF R(T) < R GOTO 550
 540
     GOTO 560
550 R = R(T):A = T
560
     NEXT
     REM 'STEP 4-FIND THE HIGHEST PROBABILITY WITHIN ONE ROW
 580
 590 E = -99999
 600
     FOR H = 1 TO J
-610
     IF P(A,H) > E GOTO 630
 620
     GOTO 640
 630 E = P(A,H) : B = H
 640
    NEXT
 650
     IF E = 0 GOTO 955
    REM STEP 5-START THE ALGORITHM
700 \text{ TR} = E \times (1 - II(A))
 710
    FOR C = 1 TO 100
 715 IF C > NN(A) GOTO 721
 716 U = (1 - TR) ^ C
 717 X = 1 - U
 719 LL = U
```

```
720
     GOTO 730
     IF C = 1.60T0 723
721
722
     GOTO 724
723 LL = 1
724 U = LL * ((1 - E) ^ (C - NN(A)))
725 X = (1 - U)
     IF X > = Y(A) GOTO 760
730
750
     NEXT
760 V = C
770 IF A(A) * V < = B(B) GOTO 880
780 S = B(B) / V
782 S = .INT (S + .999999999)
783 A(A) = A(A) - S
785 B(B) = B(B) - S \times V
     IF B(B) < 0 THEN
787
                        GOTO 790
     IF S = 0 GOTO 800
788
789
     GOTO 795
790 S = S - 1
     IF S = 0 GOTO 800
791
                                ";5,"
795
     PRINT "
                   ";U$(A),"
                                         ":B."
                                                  ": "
     FOR T = 1 TO I
800
810 P(T,B) = 0
     NEXT
820
825 B(B) = B(B) - S \times V
830
     GOTO 590
880 B(B) = B(B) - (A(A) \times V)
885
     IF B(B) < 0 GOTO 890
886
     IF A(A) = 0 GOTO 900
887
     GOTO 895
890 \ A(A) = A(A) - 1
     IF A(A) = 0 GOTO 900
891
     PRINT "
                                 ";A(A),"
                                             ":8."
895
                   ";U$(A),"
                                                              ";A(A) * V
900
     FOR H = 1 TO J
910 P(A,H) = 0
     NEXT
920
930 \text{ R(A)} = 9999
955 W = W + 1: IF W > I GOTO 998
960
    GOTO 510
998 · END
             0,0,0,0,0,0,0,0,0,0
1970 DATA
      DATA
1980
              0.0,0,0,0,0,0,0,0,0
1990
      DATA
             1/1,1/2,2/1,2/2,2/3,3/1,3/2,3/3,4/1,4/2
2000
      DATA
             .7,.30,.5,.65
             .7,.3,.0,.65
2010
      DATA
2020
      DATA .11,.05,.08,.1
2030
      DATA .11,.00,.08,.1
2040
      DATA .11,.00,.00,.1
2050
      DATA .06,.06,.04,.04
2060
      DATA .06,.00,.04,.04
2070
       DATA .06,.00,.00,.04
2080
       DATA .07,.15,.15,.06
2090
       DATA .07,.00,.15,.06
3100
       DATA 5,10,15,15,15,20,10,5,10,15
```

BOOK STATE OF THE STATE OF THE

```
3110 DATA .99,.99,.9,.9,.9,.9,.9,.9,.9

3120 DATA 1,2,3,4,5,6,7,8,9,10

3130 DATA .95,.95,.95,.95,.95,.95,.95,.95

3140 DATA 100,500,200,200

3150 DATA .9,.9,.9
```

THREAT ALLOCATION PROGRAM OUTPUT

NURE

** THREAT ALLOCATION MODEL **

RUN DESCRIPTION:

ORSA/TIMS: NO DEFENSE

INPUTS:

1. KILL PROBABILITIES

REENTRY VEHICLE

ASSET/ZONE	1 -	2	3	4
1/1	•7	•3	•5	. 65
1/2	•7	•3	0	. 65
2/1	.11	• 05	•08	. 1
2/2	.11	0	•08	. 1
2/3	•11	0	0	• 1
3/1	۵۵.	• 0 6	+ 0 4	•04
3/2	∙Ò6	0	• 0.4	.04
3/3	.06	0	0	+04
4/1	•07	.15	•15	• 06
4/2	•07	0	.15	.06

2. ASSET CHARACTERISTICS

ASSET/		KILL	KILL	KILL
ZONE	NUMBER	PRIORITY	CRITERIA	OBJECTIVES
1/1	5	1	•99	•95
1/2	10	2	•99	•95
2/1	15	3	• 9	•95
2/2	15	4	• 9	•95
2/3	15 .	5	• 9	•95
3/1	20	ó	• 9	• 95
3/2	10	7	• 9	•95
3/3	5	8	• 9	• 95
4/1	10	9	•9	.95
4/2	15	10	• 9	•95

3. THREAT CHARACTERISTICS

REENTRY VEHICLE	NUMBER	RELIABILITY/ AVAILABILITY
1	100	•9
2	500	•9
3	200	• 9
4	200	• 9

4. INTERCEPTOR CHARACTERISTICS

	NUMBER OF	
ASSET/	INTERCEPTORS	PROBABILITY OF
ZONE	PER ASSET	INTERCEPT
1/1	0	0
1/2	; o	0
2/1	0	0
2/2	0	0
2/3	O	0
3/1	0	0
3/2	0 .	0
3/3	0	, 0
4/1	0	0
4/2	0	0

OUTPUT:

ASSET/ ZONE	ASSETS KILLED	REENTRY VEHICLE	R.V.'S PER ASSET	TOTAL R.V.' ALLOCATED
1/1	5	1	5	25
1/2	10	1	5	50
2/1	1	· 1	23	23
2/1	8	- 4	25	200
2/1	5	3	31	155
2/2	1	3	31	31

ב

NURE

** THREAT ALLOCATION MODEL **

RUN DESCRIPTION:

ORSA/TIMS: DEFENDED

INPUTS:

1. KILL PROBABILITIES

REENTRY VEHICLE

ASSET/ZONE	1	2	3	4
1/1	•7	•3	₊ 5	•65
1/2	•7	•3	0	.65
2/1	.11	• 05	•08	.1
2/2	.11	0	• 08	.1
2/3	.11	0	0	.1
3/1	• D6	• 06	• 0 4	.04
3/2	• 86	0 .	• 0 4	• 0 4
3/3	•06	0	0	.04
4/1	• 0 <i>7</i>	.15	.15	.06
4/2	•07	0	.15	.06

2. ASSET CHARACTERISTICS

ASSET/		KILL	KILL	KILL
ZONE	NUMBER	PRIORITY	CRITERIA	OBJECTIVES
1/1	5	Í	•99	.95
1/2	. 10	2	• 99	• 95
2/1	15	3	• 9	• 95
2/2	15	4	• 9	•95
2/3	15	5	•9	•95
3/1	20	6	•9	•95
3/2	10	7	• 9	. 95
3/3	5	8	• 9	•95
4/1	10	, 9	• 9	•95
4/2	15	10	• 9	• 95

3. THREAT CHARACTERISTICS

REENTRY VEHICLE	NUMBER	RELIABILITY/ AVAILABILITY
1	100	• 9
2	500	• 9
3	200	• 9
4	2.00	• 9

4. INTERCEPTOR CHARACTERISTICS

ASSET/ INTERCEPTORS PROBABILITY OF
ZONE PER ASSET INTERCEPT
1/1 1 ,9
1/2 1 .9
2/1 1 .9
2/2 1 .9
2/3 1 .9
3/1 1 .9
3/2 1 .9
3/3 1 ,9
4/1 1 .9
4/2 1 .9

OUTPUT:

ASSE.	T/ ASSETS	REENTRY	R.V.'S PER	TOTAL R.V
ZONE	KILLED	VEHICLE	ASSET	ALLOCATE
1/1	5	· 1	6	30
1/2	10	1	6	60
2/1	7	4	26	182
2/1	6	3	32	192
7				ı

TERMINOLOGY AND NOTATION USED IN R&D PROJECT PLANNING NETWORK SIMULATION

TERMINOLOGY AND NOTATION USED IN R&D PROJECT PLANNING NETWORK SIMULATION

Notation	<u>Definition</u>
P ₁	Probability of an unacceptable problem definition
P ₂	Probability of a successful evaluation
P ₃	Probability of a washout given that the project has been unsuccessfully evaluated
P ₄	Probability of an unacceptable problem definition given that the project has been unsuccessfully evaluated and that it did not washout
P ₅	Probability of an unsuccessful prototype development

R&D PROJECT PLANNING NETWORK SIMULATION LOGIC

R&D PROJECT PLANNING NETWORK SIMULATION LOGIC

- 1. Generate five projects (Block 1) and number them sequentially (Block 2).
- 2. Place the projects in a queue (Block 3) and set X\$FLAG = 1 (Block 4) which acts as a flag that allows a project to start if its value is not equal to zero.
- 3. Test whether X\$FLAG = 0 (Block 5); if yes then place the next project in a wait file (Block 6) and increment time (Block 7) until X\$FLAG ≠ 0.
- 4. Subtract 1 from the value of X\$FLAG (Block 8) and select the next project in the queue (Block 9).
- 5. Read the mean processing time and modifier for stage 1 (Block 10) which is the problem definition stage.
- 6. Start stage 1 activity (Block 11) and increment time by one day (Block 12) until the duration of stage 1 activity equals V\$ACT.TIME which is the random number that was selected from an exponential distribution with the mean and modifier assigned in step 5.
- Select a random number. If the number selected is less than P₁
 then go to step 5, otherwise go to step 8.
- 8. Read the mean processing time and modifier for stage 2 (Block 15) which is the Research Activity Stage.

(CONTINUED)

- 9. Start stage 2 activity (Block 16) and increment time by one day (Block 17) until the duration of stage 2 activity equals V\$ACT.TIME which is the random number that was selected from an exponential distribution with the mean and modifier assigned in step 8.
- 10. Read the mean processing time and modifier for stage 3 (Block 19) which is the solution proposal stage.
- 11. Start stage 3 activity (Block 20) and increment time by one day (Block 21) until the duration of stage 3 activity equals V\$ACT.TIME which is the random number that was selected from an exponential distribution with the mean and modifier assigned in step 10.
- 12. Select a random number. If the number selected is less than P_2 go to step 16, otherwise go to step 13.
- 13. Select a random number. If the number selected is less than P_3 go to step 14, otherwise go to step 15.
- 14. Collect statistics for the duration of a project washout and check to see if that was the last project in the R&D network (i.e., project 5). If it is project number 5 then terminate the network, otherwise start a new project by incrementing X\$FLAG by one and go to step 3 (Blocks 25-28).

(CONTINUED)

- 15. Select a random number. If the number selected is less than P_4 go to step 5, otherwise go to step 8.
- 16. Read the mean processing time and modifier for stage 4 (Block 30) which is the prototype development stage.
- 17. Start stage 4 activity (Block 31) and increment time by one day (Block 32) until the duration of stage 4 activity equals V\$ACT.TIME which is the random number that was selected from an exponential distribution with the mean and modifier assigned in step 16.
- 18. Read the mean processing time and modifier for stage 5 (Block 34) which is the solution implementation stage.
- 19. Start stage 5 activity (Block 35) and increment time by one day (Block 36) until the duration of stage 5 activity equals V\$ACT.TIME which is the random number that was selected from an exponential distribution with the mean and modifier assigned in step 18.
- 20. Check to see if the project completed was the last project in the R&D network (i.e., project 5). If it is project number 5 then collect statistics for the duration of the 5th project successful completion and terminate the network, otherwise collect statistics, start a new project by incrementing X\$FLAG by one and go to step 3 (Blocks 38-42).

R&D PROJECT PLANNING NETWORK SIMULATION MODEL FLOWCHART

APPENDIX VIII

R&D PROJECT PLANNING NETWORK SIMULATION MODEL FLOWCHART

THE RESERVE OF THE PROPERTY OF

APPENDIX IX

R&D PROJECT PLANNING NETWORK SIMULATION PROGRAM LISTING

```
OMODL1 . A
 GPSS 4.1
             -11/20-10:51-(000)
    1
                           JOB
    2
    3
                           ORDER, FN
                           OKDER . X
    4
                                            6
    5
                           ORDER, T
                                            40
    6
            SYS.STUDY
                           CAPACITY
            RFP.PREP
                                            6
    7
                           CAPACITY
    8
            CON.PROP
                           CAPACITY
                                            6
                           CAPACITY
    9
            EVAL.AWD
                                            6
                                            6
   10
            CON. WORK
                            CAPACITY
   11
            CON.EVAL
                            CAFACITY
                                            6
   12
                NETWORK SIMULATOR: MULTIPLE R&D PROJECT
   13
   14
   15
            PROJ. TIME
                            TABLE
                                            V$PRO.TIME,1400,100,10
   16
            T(1)
                            TABLE
                                            V$PRO.TIME.500.50.8
            T(2)
   17
                                            V$PRO.TIME.500.50.8
                            TABLE
   18
            T(3)
                            TABLE
                                            V$PRO.TIME,500,50,8
   19
            T(4)
                                            V$PRO.TIME,1000,70,8
                            TABLE
   20
            T(5)
                                            V$PRO.TIME,1000,70,8
                            TABLE
   21
            T(6)
                                            V$PRO.TIME, 1500, 70,8
                            TABLE
   22
            T(31)
                                            M$1.100,100,10
                            TABLE
   23
            T(32)
                                            M$1,100,100,10
                            TABLE
    24
            T(35)
                                            M$1,100,100,10
                            TABLE
    25
            T(34)
                            TABLE
                                            M$1,100,100,10
            T(35)
                                             M$1,100,100,10
    26
                            TABLE
    27
            T(36)
                                             M$1.100.100.10
                            TABLE
    28
             T(21)
                            TABLE
                                             V$PRO.TIME:500:50:8
    29
             T(22)
                            TABLE
                                             V$PRO.TIME.500.50.8
    30
                                             V$PRO.TIME,500,50,8
            T(23)
                            TABLE
    31
            T(24)
                                             V$PRO.TIME, 1000, 70,8
                            TABLE
    32
            T(25)
                            TABLE
                                             V$PRO.TIME, 1000, 70,8
                                             V&PRO.TIME, 1500, 70,8
    33
            T(26)
                            TABLE
    34
            FAIL.STUDY
                                             P$PROJ.110:0,1.7
                            TABLE
    35
            FAIL.RFP
                                             P$PROJ.110.0,1.7
                            TABLE
                                             P$PROJ.NO.U.1.7
    36
            FAIL.WORK
                            TABLE
    37
             FAIL.PROJ
                                             P&PROJ.110.0.1.7
                            TABLE
    38
             TAB. VAR
                            VARIABLE
                                             P$PROJ.NO+30
                                             C$1-X$NET.START
    39
             PRO.TIME
                            VARIABLE
             S.POINT
                                             P$PROJ.NO+20
                            VARIABLE
    40
    41
                       MATRIX VAL(I,J) STORES PROJECT DATA AS FOLLOWS:
    42
    43
    44
                            CUL
                                       PROJECT NO.
                                  1:
                                        SYSTEMS STUDY ACTIVITY TIME. MEAN
    45
                            COL
                                  2:
    46
                            COL
                                        SYSTEMS STUDY ACTIVITY TIME, MODIFIER
                                  3:
    47
                            COL
                                  4:
                                       RFP ACTIVITY TIME, MEAN
                                       REP ACTIVITY TIME. MODIFIER
    48
                            COL
                                  5:
    49
                                       PROPOSAL DEVELOPMENT ACTIVITY TIME, MEAN
                            COL
                                  6:
   •50
                            CUL
                                  7:
                                       PROPOSAL DEVELOPMENT ACTIVITY TIME, MODIFIER
    51
52
                            COL
                                  8:
                                        PROPOSAL EVALUATION ACTIVITY TIME, MEAN
                                  9:
                                        PROPOSAL EVALUATION ACTIVITY TIME, MODIFIER
                            COL
    53
                            COL 10:
                                        CONTRACTOR EFFORT ACTIVITY TIME. MEAN
                                        CONTRACTOR EFFORT ACTIVITY TIME, MODIFIER
                            COL 11:
```

```
55
                        COL 12:
                                   EVALUATION ACTIVITY TIME, MEAN
56
                        COL 13:
                                   EVALUATION ACTIVITY TIME, MODIFIER
57
                        COL 14:
                                   PROBABILITY OF ACCEPTABLE INITIAL DEFINITION
 58
                                   PROBABILITY OF UNACCEPTABLE PROPOSALS
                        COL 15:
 59
                        COL 16:
                                   PROBABILITY THAT ADDITIONAL EFFORT IS REQUIRED
 60
                        COL 17:
                                   PROBABILITY THAT SOLUTION IS UNACCEPTABLE
 61
                                   NUMBER OF DIRECT PRECEDENT PROJECTS
                        COL 18:
                                   NUMBER OF DIRECT ANTECEDENT PROJECTS
 62
                        COL 19:
 63
                        COL 20-25: PROJECT NUMBERS OF AMTECEDENT PROJECTS
 64
 65
                        MATRIX
                                        VAL (6, 25)
 66
                        INITIAL
                                        VAL(1,1-11),1,84,1,32,1,58,0,24,0,360,0
 67
                        INITIAL
                                        VAL(1,12-20),63,1,925,005,014,065,0,1,4
 68
                        INITIAL
                                        VAL(2,1-11),2,92,1,31,1,68,0,35,0,348,0
 69
                        INITIAL
                                        VAL(2,12-21),52,1,945,020,050,010,0,2,4,5
 70
                        INITIAL
                                        VAL(3,1-11),3,95,1,26,1,53,0,33,0,380,0
 71
                        INITIAL
                                        VAL(3,12-20),61,1,999,070,038,070,0,1,5
 72
                        INITIAL
                                        VAL(4,1-11),4,80,1,24,1,62,0,26,0,325,0
 73
                                        VAL(4.12-20).57,1,900,050,045,030,2,1,6
                        INITIAL
 74
                        INITIAL
                                        VAL(5,1-11),5,85,1,20,1,49,0,39,0,392,0
 75
                        INITIAL
                                        VAL(5,12-20),47,1,972,020,004,055,2,1,6
 76
                        INITIAL
                                        VAL(6,1-11),6,99,1,22,1,67,0,35,0,358,0
 77
                        INITIAL
                                        VAL(6,12-19),69,1,942,002,070,024,2,0
 78
                        MATRIX
                                        FAIL.DATA(6,4)
 79
 80
                   EXPONENTIAL FUNCTION F(1) USED TO MODIFY ACTIVITY TIMES
 81
          FN(1)
                        FUNCTION, EXP
                                        RF$2,1,1
 82
 83
                   R&D PROJECT NETWORK
 84
                                        0,1
                        GENERATE
 85
         PROJ.START
                        AUVANCE
 86
                        SAVEX
                                        NET.START.C%1
 87
                        SPLIT
 88
       5
         TIME.ADJ
                        AUVANCE
 89
                        ASSIGN
                                        PROJ.NO. V$NO. PROJ
 90
         NO.PROJ
                                         (N$TIME.ADJ-1)//6+1
                        VARIABLE
 91
                        ADVANCE
                                         GOTO (PRED.1, INITIAL.)
 92
         PRED.1
       8
                        COMPARE
                                        MX$VAL(P$PROJ.NO.18) NE 0
 93
       9
                        CUMPARE
                                        X$*PROJ.NO E MX$VAL(P$PROJ.NO,18)
 94
      10
                        ASSIGN
                                        POINT.START, V$S.POINT
 95
      11
                        TABULATE
                                         *POINT.START
 96
                     SYSTEM STUDY
 97
         INITIAL.
      12
                        MARK
 98
      13
                        ASSIGN
                                         PROJ.SET.CS1
 99
      14 STUDY.1
                        ASSIGN
                                        PROC. TIME, MXSVAL (PSPROJ. NO. 2)
100
      15
                        ASSIGN
                                        PROC.MOD.MX5VAL (PSPROJ.NO.3)
101
      16
                                         SYS.STUDY TIME(V$ACT.TIME)
                        STORE
102
         ACT.TIME
                        VARIABLE
                                         P$PROC.TIME+(FN$*PROC.MOD)
      17
103
                        AUVANCE
                                         GOTO(MX&VAL(P&PROJ.NO.14):STUDY.2.RFP.1)
104
      18 STUUY.2
                        SAVEX
                                         RE.STUDY.X&RE.STUDY+1
105
                                         FAIL.DATA(P&PROJ.NO,1), MX&FAIL.DATA(P&PROJ.
                        MSAVEX
:106
      19 +NO.11+1
107
      20
                                         GOTO(STUDY.1)
                         AUVANCE
108
                     RFP PREPARATION
109
      21 RFP.1
                        ASSIGN
                                         PROC. TIME, MXSVAL (PSPROJ. 110, 4)
110
      22
                         ASSIGN
                                         PROC.MOD.MX&VAL (PSPROJ.NO.5)
111
      23
                        STORE
                                         RFP.PREP TIME (VSACT.TIME)
```

```
CONTRACTOR PROPOSAL PREPARATION
112
113
                                         PROC.TIME + MYSVAL (PSPROJ. NO + 6)
      24
                         ASSIGN
114
      25
                                          CON. PROP TIME (PSPROC. TIME)
                         SIORE
115
                      PROPOSAL EVALUATION AND AWARD
116
      26
                         ASSIGN
                                         PROC.TIME : MXSVAL (PSPROJ.NO.8)
                                          EVAL.AWD TIME (PSPROC.TIME)
      27
117
                         STORE
                                          GOTO(MX$VAL(P$PROJ.NO.15):CON.1.RFP.2)
118
      28
                         AUVANCE
                                          RE.RFP.XSRE.RFP+1
119
      29 RFP.2
                         SAVEX
                         MSAVEX
                                          FAIL.DATA(PSPROJ.NO,2), MXSFAIL.DATA(PSPROJ.
120
121
      30 +NO.21+1
                                          GOTO(RFP.1)
122
                         ADVANCE
      31
123
                      CONTRACTOR ACTIVITY
                                          PROC.TIME, MXSVAL (PSPROJ.NO, 10)
124
      32 CON-1
                         ASSIGN
125
                                          CON. WORK TIME (PSPROC.TIME)
      33
                         STORE
126
                      CONTRACT EVALUATION
127
       34
                         ASSIGN
                                          PROC.TIME, MX $VAL (PSPROJ.NO, 12)
      35
128
                                          PROC.MOD.MX5VAL (PSPROJ.NO.13)
                         ASSIGN
129
      36
                         STORE
                                          CON.EVAL TIME(VSACT, TIME)
                         AUVANCE
130
      37
                                          GOTO(MX%VAL(P%PROJ.NO,16):EVAL.1,CON.2)
131
       38 CON-2
                         SAVEX
                                          RE.WORK, X$RE.WORK+1
132
                         MSAVEX
                                          FAIL.DATA(PSPROJ.NO.3), MXSFAIL.DATA(PSPROJ.
133
      39 +110+3)+1
134
      40
                                          GOTO(CON.1)
                         AUVANCE
      41 EVAL.1
135
                         ADVANCE
                                          GOTO(MX$VAL(P$PROJ.NO.17):EVAL.3.EVAL.2)
136
      42 EVAL.2
                         SAVEX
                                          PROJ.FAIL,X&PROJ.FAIL+1
137
                         MSAVEX
                                          FAIL.DATA(PSPROJ.NO,4), MXSFAIL.DATA(PSPROJ.
138
       43 +110+4)+1
139
                                          GOTO(STUDY.1)
       44
                         ADVANCE
140
       45 EVAL.3
                         ADVANCE
                                          GOTO (NEXT.PROJ.LAST.PROJ)
141
                                          MX$VAL(P$PROJ.NO.19) NE 0
       46 NEXT.PRO.
                         COMPARE
                                          NO.PROJS.MX&VAL (P&PROJ.NO.19)
142
       47
                          ASSIGN
143
       48
                          ASSIGN
                                          COL.NO.19
144
       49
          LOOP.START
                                          COL.NO.PSCOL.NO+1
                         ASSIGN
145
       50
                          ASSIGN
                                          PROJ. NEXT. MXSVAL (PSPROJ. NO. PSCOL. NO.)
146
                                          *PROJ.NEXT.X$*PROJ.NEXT+1
       51
                          SAVEX
                         LOOP
147
                                          NO.PROJS.LOOP.START
       52
148
       53
                          TABULATE
                                          *PROJ.NO
                                          PROJ.DUR.VSTAB.VAR
149
       54
                          ASSIGN
150
       55
                                          PROJ. END, C$1
                          ASSIGN
151
       56
                          TABULATE
                                           *PROJ.DUR
152
       57
                          TERMINATE
153
       58 LAST.PROJ
                                          PROJ.TIME
                          TABULATE
154
                                          NO.PROJS.6
                          ASSIGN
155
       60 START.LOOP
                          SAVEX
                                           *NO.PROJS.O
156
       61
                          LOOP
                                           NO.PROJS, START.LOOP
                                           1.PROJ.START
157
                          SPLIT
       62
158
       63
                                           *PROJ.NO
                          TABULATE
159
       64
                          ASSIGN
                                           PROJ.DUR, VSTAB. VAR
                                           PROJ.END.C$1
160
       65
                          ASSIGN
                                           *PROJ.DUR
161
                          TABULATE
       66
       67
          TERM. CHT
                          TERMINATE
162
163
       68
                          GEHERATE
                                           0.1
       69
                          COMPARE
                                           NSTERM. CNT E 100
 164,
                                           PROJ.NO.P&PROJ.NO+1
 165
       70 COMP.2
                          ASSIGN
166
       71
                          ASSIGN
                                           POINT.START, VSS.POINT
 167
       72
                          ASSIGN
                                           PROJ.DUR, VSTAB. VAR
                          HELP
                                           PSPROJ.NO,T95+POINT.START,TD5+POINT.START,T
 168
```

```
73 +H5+PROJ.DUR.TDS+PROJ.DUR.TBS+PROJ.NO.TDS+PROJ.NO
 169
  170
                                                                                                                        GOTO(COMP.1,COMP.2)
                     74
                                                                         ADVANCE
  171
                     75 COMP.1
                                                                                                                        PSPROJ.110 E 6
                                                                         COMPARE
  172
                     76
                                                                         ASSIGN
                                                                                                                        PROJ. NO. 0
                                                                                                                        PROJ.NO.P$PROJ.NO+1
   173
                     77 COMP.4
                                                                          ASSIGN
   174
                                                                                                                        PSPROJ.NO.MXSFAIL.DATA(PSPROJ.NO.1).MXSFAIL
                                                                         HELP
   175
                               +.OA.T.O.P. O.P. O. P. O
   176
                     78 + , , 1
   177
                     79
                                                                                                                        GOTO (COMP.3, COMP.4)
                                                                          AUVANCE
                     80 COMP.3
                                                                                                                        P$PROJ.110 E 6
   178
                                                                          COMPARE
   179
                                                                             TERMINATE , R
                     81
   180
                                                                             START
                                                                                                                               1
STORAGES:
SYS.STUDY
                                        REP.PREP
                                                                                 CON. PROP
                                                                                                                         EVAL.AWD
                                                                                                                                                                 CON. WORK
CON. EVAL
PARAMETERS:
PROJ.NO
                                        POINT.START
                                                                                 PROJ.SET
                                                                                                                         PROC.TIME
                                                                                                                                                                 PROC . MOD
NO.PROJS
                                                                                                                         PROJ.DUR
                                                                                                                                                                  PROJ. END
                                         COL.NO
                                                                                 PROJ.NEXT
 TABLES:
 PROJ. TIME
                                         FAIL.STUCY
                                                                                                                         FAIL.WORK
                                                                                                                                                                  FAIL.PROJ
                                                                                 FAIL.RFP
 SAVEXS:
 HET.START
                                         RE.STUDY
                                                                                 RE.RFP
                                                                                                                          RE.WORK
                                                                                                                                                                  PROJ.FAIL
 MATRIX SAJEXS:
 VAL
                                         FAIL . DATA
 VARIABLES:
 TAB. VAR
                                          PRO.TIME
                                                                                                                          NO.PROJ
                                                                                                                                                                   ACT.TIME
                                                                                  S.POINT
 BLOCKS:
           2 PRO.J.START
                                                                                                                                    8 PRED.1
                                                                         5 TIME . ADJ
          12 IHITIAL.
                                                                      14 STUDY.1
                                                                                                                                 18 STUDY.2
          21 RFP.1
                                                                                                                                 32 CON.1
                                                                      29 RFP.2
                                                                                                                                 42 EVAL.2
           38 CON. 2
                                                                      41 EVAL.1
           45 EVAL.3
                                                                      46 NEXT.PROJ
                                                                                                                                 49 LOOP.START
           58 LAST.PROJ
                                                                      60 START.LOOP
                                                                                                                                 67 TERM. CNT
           70 COMp.2
                                                                      75 COMP.1
                                                                                                                                 77 COMP.4
           80 COMp. 3
```

NUMBER OF TRANSACTIONS ALLOWED: 2487

NETWORK SIMULATION MODEL PROGRAM OUTPUT

Appendiction and appropriate the property of the second se

STATE STREET STATES AND STREET AND STREET AND STREET

PROJECT TIMES							
	PROJECT	START TIMES	PROJECT	PROJECT ACTIVITY TIME	PROJECT	PROJECT COMPLETION TIME	
PROJ _E CT NUMBFR	MEAN	STANDARD DEVIATION	MEAN	STANDARD DEVIATION	MEAN	STANDARD DEVIATION	
	0	0	929	180	676	180	
		c	999	671	999	149	
	· c	» c	705	197	705	197	
	74.1	178	574	102	1315	200	
	775	199	663	179	1438	252	
	1493	252	429	205	2167	326	
FAILURE FHEQUENCIES							
			FAI	FAILURES PER STAGE			
PROJECT NUMBER	SYSTEM STUDY	REGUE!	REGUEST FOR PROPOSAL	CONTRACTOR ACTIVITY	~	OVERALL PROJECT	
	^		0	kO i		ec e	
	m c		m a	20 P7		- v o	
	15		. ~	0		.	
	N .		~ ~ •	6			
	J		0	.		•	

PELATIV	TIV			TLRMINATION	7											
CLOCK 11.4E 210772	11.4E 107.72	CLUCK 11ME 210772		1												
BLOCK	CULK	TUTAL	BLOCK		TOTAL	BLOCK		TOTAL	BLOCK	CURR 1	TOTAL	·Lock	CURR	TOTAL		
8	2 C	2 . 2 .	; =	Z	36.	, 2	۲ د د	24.	.	2	247	.	۲ ر د	200		
→ 4	3 5	7 007	v r	ə :	100	n a	> <	007	ra	> =	004	<u>.</u>	> c	000		
21	0	000	15	0	000	13.0	• •	909	14	9	651	12	: 0	651		
16	c	651	17	0	651	18	0	28	19	0	28	20	c	28		
21	9	639	25	0	639	23	0	639	24	9	639	25	C	639		
56	9	639	77	0	679	28	0	639	53	0	91	30	0	91		
31	0	16	32	0	949	33	0	646	36	0	949	32	c (646		
3 6	0	9#0	37	0	949	38	0	23	6 :	o :	23	9 4	۰ د	23.3		
7	= :		÷ :	0	523	en o	0 0	10 C	ar 0	ə c	523	t d	5 C	200		
ş ;	≎ ⊂	000	- c	> c	200	0 r	ə c	000	, 1	-	ט פר ט פר	n G	e c	905		
90	. 0	200	2 7	9 0	200	9 60	9 0	100	6,	,	100	9	: c	009		
61	0	900	62	•	100	63	0	100	79	-	100	65	0	100		
99	0	0n t	67	0	100	68	0	-	69	0	-	20	0	9		
7.1	0	٥	72	0	9	73	0	ç	74	0	٥	75	٥			
20	0	-	77	0	٥	78	0	9	79	0	9	80	0	-		
æ	0	-		,												
CAVEX	>	CAVEY		J	CAVEX	SAVEX		140	CAVEX	CAVEX	*	J	CAVEX	SAVEX		
MAME	ξ 	VALUE		ìŽ	NAME	VALUE		AN	ָּ בּ	VALUE	K LLI	Ì	WE :	VALUE		
. ×	١.		0	_	2)		0	× (3)	3)			×	£		c	
×	_		0	×	(9		0	NET.S	TART		214823	ů	STUDY		28	
RE . RFP		•	16	ш	. WORK		23	PROJ, FAIL	FAIL		23					
MATRIX	NAE:	: VAL														
COLUMN			~		'n	-	-			9		_		œ	6 (2
	17		21		2.5	\$ i	.			16		17		18	Ď.	20
	V		77		2	Ň	•	62								
	_		D.A.		-	ř	•	••		30		c		24	c	360
	• =		63		٠ ٦	925		• ග		14		ž.		0	-	*
	9		0		0	·	_	0								
KOW 2	,		ç		•	•		•		9		c		, , , , , , , , , , , , , , , , , , ,	c	940
	u c		2 6		- ۲	10 840	10	→ C		0 G		o 0		3 -	> ~	•
	רט פ		10		• •		. ~	0		1		•		•	ı	
ROW 3																
	Ю.		95		 4 ·	56				S S		٥		33	o •	380
	ې د	.	19		-	666	~ ~	0 °		200		.		-	-	r
ROM	•		•		>	_		•								
	3		80		~	₹	•	-		62		0		26	c	325
	J (9	57		→ <	006	01	20		e S		0 2		ત્ય	F	٥
3700		-	>		3		-	-			•					
			85		-	7	0			64		0		39	0	392
	<u> </u>	0.0	£4.		-	972	~ .	20		ŧ		55		N.	-	9
ROW 6	_		>		>	•	_	>								

6 0 0 0 MATRIX NA .E:	FAIL DATA	66 69	440	N 5	o, o, ∈	- % C	79		o \$	ନ୍ଦ	cc	358 0
CULUMN 1 7 1 10 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		u o m o u u o			1 1 6 0 3 4							
STORAGE NAME SYS.STUDY HFP.PREP CUN.PROP EVAL.AWD CON.WORK CUN.EVAL	MAXIMUM CONTENTS 3 3 3 3 3	AVERAGE CONTENTS .24 .07 .17 .19 1.08	MAXIMUM CAPACITY 6 6 6 6 6 6	AVERAGE CAPACITY 6.00 6.00 6.00 6.00 6.00	AVERAGE UTILIZATION .0394 .0123 .0291 .0157 .0157	E · TOTAL ION ENTRIES 639 639 639 646 646	TOTAL TRANS 639 639 639 646	AVERAGE ENT/TRANS 1.00 1.00 1.00 1.00 1.00	(VERAGE TIME/ENT 78.78 25.08 59.24 32.01 350.86	CURRENT CONTENTS 0 0 0 0 0 0		
TABLE NAME 1 (2) 1 (4) 1 (5) 1 (6) 1 (6) 1 (7) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (10) 1 (20)	NON-WEIGHTEL NO. OF ENTRIE 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0	75 S	MON-WEIGHTED 67638.0000 606628.0000 70518.0000 131580.0000 143869.0000 216772.0000 0000 0000 0000 0000 0000 0000 0	25	6HTED 800 800 800 800 800 800 800 80	NON-WEIGHTE STD. DEV. 149.377 197.446 200.250 252.573 326.547 .000 .00	NO. OF	MEIGHTED OF ENTRIES 100 100 100 100 0 0 0 0 0 100 100 100 100 100	WEIGHTED 67638.0000 66628.0000 70518.0000 131580.0000 143869.0000 216772.0000 0000 0000 0000 0000 0000 0000 0	EED 00000 00000 00000 00000 00000 00000 0000	WEIGHTED MEAN ARGUMENT 676.380 666.280 705.180 1315.800 1438.690 2167.720 000 000 000 000 000 000 000 000 000	WEIGHTED STD, DEV. 180.762 149.377 197.446 200.250 252.573 326.547 000 000 000 000 000 000 000 000 178.076 199.352 252.950

PARA PROPERTY RESERVED TO PROPERTY PROPERTY OF THE PROPERTY OF THE PROPERTY PROPERTY

000	000.	000.	666.280	705.180	574.580	663.450	674.150	000	900		2167.720	000		000	000																															
0000	0000	0000.8575	66624.0000	70518.0000	57458.0000	66345.0000	67415.0000	0000	6000		0000.027210	0000	0000	0000	0000												-																			
0	c (0 0	100	001	100	100	100	0	- c	-	•	•	.	•	0																															
000	000	.000	77	94	05	85	32	000	000		27	•	000	000	000		DEVIATION	FROM MEAN	976-	559°-	724	151	407	,684	096.			DEVIATION	FROM MEAN	-1.113	8//:	1 1	226	560	268.	1.230			DEVIATION	FROM MEAN	-1.039	786	.533	- 200	766	
•	•	7.00	149.377	197.446	102.805	179.585	205.2	•	•		745 901	0.020	•	•	•		MILTIPLE	OF MEAN	.739	.813	180	1076	1.109	1.183	1.257			MULTIPLE	OF MEAN	.750	.825	106.	1,10	1.136	1.201	1.276			MULTIPLE	OF MEAN	.709	.780	.851	926	1.064	
000	000.	000.	660.280	705,180	574.580	663,450	674.150	000	000	000	000.	000		000	000		CUMULATIVE	REMAINDER	95.00	01.00	00.40	00.14	19,00	15.00		13		CUMULATIVE	REMAINDER	98.00	80.00	00.50	20.00	10,00	15.00	_	10		CUMULATIVE	REMAINDER	99.00	63.00	00.09	00.5	25.00	
0000	0000	0000	67628.0000	70518.0000	57458.0000	66345.0000	67415.0000	0000	0000	0000	0000 627.416	0000	0000	0000	0000		CURIULATIVE	PERCENTAGE	2.00	19.00	00.00	00.460	81.00	85.00	87.00			CUMULATIVE	PERCENTAGE	2.00	20.00	00.85	24.00	00.14	85.00	90.06	••		CUMULATIVE	PERCENTAGE	1.00	17.00	00°0 1	00.40	72.00	
		٧										7					i.i	OF TOTAL	2.00	14.00	00.72	13.00	14.00		2.00	FREQUENCY:		PERCENT	OF TOTAL	2.00	18.00	00.81	10.00	10.00		5.00	FREGIJENCY		PERCENT	OF TOTAL	1.00	16.00	23.00	15.00	7.00	
3	0	0 00		100	100	100	100	9	5			207				G .		FREGUENCY (ស ុ	14	7		2	3		· OBSERVED	(2)	OBSERVED		∾ ;	91	Σ ·	0 [3 3	*		OUSERVED	(6 3)	OHSERVED		-	10	23	15	7	
[(28)	(62)	(36)	32)	33)	(34)	(32)	- 3e)	(37)	(87)		1000		A11 .uco	AIL	A1L.PROJ	TAHLE NAM: T	UPPER	LIMI	500.00.00	550.00gg	0000000	700.00.00	750.00,0	800,00,0	850.0000	**OVERFLUM**	TAHLE NAM: T	UPPER	LIMIT	500.00,10	550.00 ₀ 0	0000.000	0.00.002	750.00.0	800.0000	850.000	***OVERFLU#**	TABLE NAM: T	UPPE	LIMI	200.00,10	550.0000	000.009	650.0000 300.000	750.00.0	

.000 180.762 149.377 102.865 179.585 205.232 205.232 000 000 326.547

D PERCENT CUMULATIVE CUMULATIVE MILTIPLE DEVIATION 1 00	PERCENT		27		•
PERCENT CUMULATIVE CUMULATIVE MILTIPLE 0F TOTAL PERCENTAGE REMAINDER OF MEAN 00	PERCENT		9		
OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM .00		PLATIVE	CUMULATIVE		DEVIAT
1.00 1.00 99.00 .813 13.00 14.00 86.00 .866 20.00 34.00 66.00 866 20.00 34.00 66.00 86.00 86.00 86.00 86.00 973 973 970 973 970 973 970 970 973 970		CENTAGE	REMAINDER 100-00	OF MEAN	FROM MEA
13.00 14.00 86.00 .866 20.00 34.00 65.00 .920 20.00 54.00 46.00 .973 17.00 71.00 29.00 1.026 7.00 86.00 14.00 1.132 D FREQUENCY: 14.00 1.132 PERCENT CUMULATIVE CUMULATIVE MULTIPLE DEVIA OF TOTAL PERCENTAGE REMAINDER OF MEAN 5.00 00 100.00 .744 5.00 5.00 95.00 .792 12.00 17.00 65.00 .891 17.00 60.00 40.00 .938 14.00 67.00 33.00 1.036	1 1.00	1.00	99.00	.813	-1.22
20.00 34.00 65.00 .920 .920 .973 .973 .973 .973 .973 .973 .973 .973	13 13.00	14.00	86.00	.866	87
## 50.00 54.00 46.00 .973 17.00 71.00 29.00 1.026 7.00 21.00 1.079 7.00 21.00 1.079 7.00 21.00 1.132 7.00 14.00 1.132 FREQUENCY:	20 20.00	34.00	00.40	.920	52
17.00 71.00 29.00 1.026 8.00 79.00 21.00 1.079 7.00 86.00 14.00 1.132 9.00 14.00 1.132 PERCENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MIND OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MIND OF TOTAL S.00 95.00 792 -1 5.00 17.00 83.00 84.1 12.00 17.00 83.00 84.1 12.00 40.00 96.7 14.00 60.00 40.00 98.7 7.00 67.00 33.00 1.036 7.00 67.00 33.00 1.036	20 20.00	24.00	46.00	.973	17
# 8.00	17 17.00	71.00	29.00	1.026	.17
7.00	8 8.00	79.00	21.00	1.079	.52
D FREQUENCY: 14 D FREQUENCY: 14 PERCENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM M00 -0 OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM M00 -0 .00 100.00 .744 .00 100.00 .774 .00 95.00 .774 .00 95.00 .774 .12.00 95.00 .841 .17.00 94.00 .849 .12.00 46.00 .40.00 .14.00 60.00 .40.00 .10 67.00 .33.00 .10 10.05 .356	7 7.00	86.00	14.00	1.132	. 67
PERCENT CUMULATIVE CUMULATIVE MILTIPLE DEVIAT OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM M .U0 .00 100.00 .744 -1 5.00 5.00 95.00 .744 -1 12.00 17.00 83.00 .841 -1 17.00 54.00 .66.00 .841 -1 14.00 60.00 40.00 .987 -1 7.00 67.00 33.00 1.036	OBSERVED FREQUENCY:		† 1		
PERCENT CUMULATIVE CUMULATIVE MILITIPLE DEVIATION TOTAL PERCENTAGE REMAINDER OF MEAN FROM MILITIPLE DEVIATION 100.00 100.00 .744 -1 5.00 5.00 95.00 .744 -1 12.00 17.00 83.00 .841 -1 17.00 54.00 54.00 .841 -1 17.00 54.00 .938 -1 14.00 60.00 40.00 .938 -1 14.00 67.00 33.00 1.036					
OF TOTAL PERCENTAGE REMAINDER OF MEAN FROW M .U0 .00 100.00 .695 -1 .U0 .00 100.00 .744 -1 5.U0 5.00 95.00 .792 -1 12.U0 17.00 95.00 .841 - 17.00 34.00 66.00 .841 - 12.00 46.00 54.00 .938 - 14.00 60.00 40.00 .987 - 7.00 67.00 33.00 1.036 -	_	IULATIVE	CUMULATIVE		DEVIATION
.00 100.00 .744 -1 5.00 95.00 .744 -1 17.00 83.00 .841 -1 54.00 66.00 .890 -1 60.00 40.00 .987 -1 67.00 33.00 1.036	_	CENTAGE	REMAINDER		FROM MEAN
5.00 100.00 .744 -1 5.00 95.00 .792 -1 17.00 83.00 .841 - 54.00 66.00 .889 46.00 54.00 .987 - 67.00 33.00 1.036	00.0	00.	100.00	.695	-1.73
5.00 95.00 .792 -1 17.00 83.00 .841 - 34.00 66.00 .849 - 46.00 54.00 .987 - 60.00 40.00 .987 -	00.0	00•	100.00	.744	-1.46
17.00 83.00 .841		5.00	95.00	.792	-1.18
54.00 66.00 .890		17.00	83.00	.841	06
+6.00 54.00 .938 60.00 40.00 .987 67.00 33.00 1.036		54.00	06.00	.890	628
60.00 40.00 .987 - 67.00 33.00 1.036		46.00	54.00	.938	35
67.00 33.00 1.036		00.00	40.00	.987	07
		67.00	33,00	1.036	.20

	DEVIATION FROM MEAN -2.045 -1.830 -1.616 -1.402 -1.187 -973 759
	MULTIPLE 5002 5724 5757 5789 6821 6853 6866
	CUMULATIVE N REMAINDER 100.00 100.00 98.00 93.00 72.00 66.00
	CUMULATIVE PERCENTAGE .00 .00 2.00 9.00 17.00 28.00 34.00
	PERCENT OF TOTAL .00 .00 .00 2.00 7.00 8.00 11.00 6.00
(o	CUSSERVED PREQUENCY 0 0 2 7 7 11 6 0 0 0 0 0 0 0 0 0 0 0 0
TABLE NAME: T (6)	UPPE.4 LIMI, 1500.0040 1570.0040 1640.0040 1710.0040 1780.0040 1920.0040

TABLE NAM :: T (7)

TABLE NAM: : f (8

TABLE NAML: T (9

TARLE NAME: T (10

TABLE NAME: T (11

TABLE NAME: T (12)

_
•
-
_
-
••
Ŧ
¥
MAS
NAM
L.
L.
ABLE NAME

TANLE NAM: T (14)

TABLE NAM: T (15)

TABLE NAM. : T ()

TABLE NAM: T (

TABLE NAME: T (

TANLE NAME: T (1

TABLE NAME: T (20)

TABLE NAM: T (21)

TABLE NAM: T (22)

TABLE NAME: T (23)

TAPLE MAM: T (24)

HE MAME T (25)

		_	ሙ	_		۸,	~	.	
DEVIATION	FROM MEAN	1.127	1.479	1.830	2.181	2.532	2.883	3.234	
MILTIPLE	OF MEAN	1.290	1,380	1.471	1.561	1.651	1.741	1.832	
CUMULATIVE	REMAINDER	16.00	11.00	00.9	6.00	3.00	1.00	00.	
MULATIVE	RCENTAGE	84.00	89.00	00.46	94.00	97.00	00.66	100.00	2
PERCENT	OF TOTAL	84.00	5.00	5.00	00.	3.00	2.00	1.00	RE ALL ZEF
OBSERVED	FREGUETICY	#9	3	s	9	ĸ	2	-	REQUENCIES A
UPPE,	LIMIS	1000.00,0	1070.00,0	1140,000,0	1210.00,0	1280.0000	1350.00,0	1420.00,0	REMAINING FR

AHLE NAM.: T (26)

	}					
UPPE		PERCENT	CUMULATIVE	CUMULATIVE	MULTIPLE	DEVIATION
LIMI		OF TOTAL	PERCENTAGE	REMA INDER	OF MEAN	FROM MEAN
1500.00,0		62.00	62.00	38.00	1.004	•05
1570.0000		6.00	08.00	32.00	1.051	.30
1640.0000	7 7.00	7.00	75.00	25.00	1.098	.576

.456 1.132 1.409 1.686 1.963
1.145 1.192 1.239 1.286 1.332
23.00 16.00 11.00 8.00 5.00
77.00 64.00 89.00 92.00 95.00
2.00 7.00 5.00 3.00 3.00 FREGUENCY:
2 7 5 3 0BSLRVED
1710.0000 1780.0000 1850.0000 1920.0000 1990.0000

PARAMETER STANDARD ST

TARLE NAM, : T (27)

TABLE NAM: T (26)

TABLE NAM: T (29)

TABLE HAM: T (30)

TAHLE NAM: T (31)

) JOBE	OUCEDVED	Tiendo	Contra state	1	1	
	STENSES		COMOLA I IVE	COMOLAIIVE	MIJCITPLE	DEVIATION
LIMI	FREGUENCY	OF TOTAL	PERCENTAGE	REMATANER	OF MFAN	FROM MEAN
100.001	0		2	100.00	2 -	. 001
200,000	•	95			•	101 • C
00000000	•		•	100.00	962	-2.635
300.000	9	00.	00.	100.00	777.	-2.082
000.00*	၁	00.	00.	100.00	.591	1.50
500.000	S	5.00	2.00	95,00	740	420
600,000	7	41.00	46.00			
0 000	•	000	0	22.4.0	180.	C2+.
0000000	7	21.00	67.00	33.00	1.035	.131
800.008	18	18.00	85.00	15.00	1.183	484
000°006	S	5.00	90.00	10.00	1,331	1.237
1000.0000	~	2.00	92.00	8.00	1.478	1.790
***OVERFLUW**	◆ OBSERVED	ш		8	•	•

TABLE NAM: T (32)

		.		FREGUENCY	OBSERVED	***0VERFLU#**
2.234	1.501	4.00	96•00		8	1000 3500
1.565	1.351	60.00	00.46	9.00	o	0 3.006
.895	1.201	15.00	85.00	14.00	14	800.00
• 226	1.051	29.00	71.00	33.00	33	700.007
444	.901	62.00	38.00	36.00	36	600.000
-1.113	.750	98.00	2.00	2.00	~	500.000
-1.783	.600	100.00	00.	00.	9	400.000
-2.452	• 450	100.00	00•	00.	၁	300.000
-3.121	.300	100.00	00.		0	200.000
-3.791	.150	100.00	00.		0	100.000
FROM MEAN	OF MEAN	REMAINDER	PERCENTAGE	OF TOTAL (FREGUENCY	LIMI
DEVIATION	MILTIPLE	CUMULATIVE	CUMULATIVE	PERCENT	OBSERVED	UPPER

TABLE NAM: T (33)

DEVIATION	FROM MEAN	-3.065	-2.559	-2.052	-1.546	-1.039	533
MULTIPLE	OF MEAN FRO	.142	.284	. 425	.567	.709	.851
CUMULATIVE	REMA I NDER	100.00	100.00	100.00	100.00	99.00	00.09
CUMULATIVE	PERCENTAGE	00.	00.	• 00	00.	1.00	40.00
PERCENT	OF TOTAL	00.	ეი.	00•	00•	1.00	39.00
OBSERVED	FREGUETICY	0	0	9	0	-	96
UPPEn	LIMI	100.000	200.000	300,0000	400,00,0	000°00¢	600.00 ₀ 0

TABLE NAML: T (38)

026 480 987 1. 493	DEVIATION FROM MEAN -4.616 -3.644 -2.671 -1.698 -725 -247 1.220 2.193 3.165 4.138	DEVIATION FROM MEAN -3.138 -2.581 -2.024 -1.467 -353 -353 -354 1.317	DEVIATION FROM MEAN -2.798 -2.310 -1.336 -1.336 -1.613 -1.26 1.588
.993 1.134 1.276 1.418	HILTIPLE DI OF MEAN FI 348 348 522 696 1044 1.218 1.566 1.740	MULTIPLE DE OF MEAN FI 151 301 452 603 754 754 1055 1.357 1.507	MULTIPLE DE
35.00 21.00 15.00 12.00	CUMULATIVE REMAINDER 100.00 100.00 100.00 76.00 32.00 13.00 1.00	CUMULATIVE REMAINDER 100.00 100.00 100.00 90.00 90.00 59.00 59.00 6.00 7.00	CUMULATIVE REMAINDER 100.00 100.00 100.00 100.00 52.00 52.00 52.00 18.00 13.00
65.00 79.00 85.00 68.00	CUMULATIVE PERCENTAGE 00 00 24.00 68.00 87.00 97.00 99.00	CUMULATIVE PERCENTAGE .00 .00 .00 2.00 41.00 77.00 91.00 93.00	CUMULATIVE PERCENTSE .73 .00 .00 .00 3.00 48.00 74.00 87.00 91.00
25.00 14.00 6.00 3.00 FREQUENCY	PERCENT C OF TOTAL P .00 .00 .00 24.00 44.00 19.00 10.00 2.00 2.00	PERCENT C OF TOTAL P .00 .00 .00 2.00 2.00 39.00 36.00 14.00 1.00 1.00	PERCENT OF TOTAL B . 00 . 00 . 00 . 00 . 00 . 00 . 00 .
25 14 6 3 0bserved	(34) OBSERVED O O O 24 44 19 10 0 0 24 24 24 20 0 0 0 0 0 20 0 0 0 0 0	35) OBSERVED 0 0 0 0 0 2 2 39 34 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36) 0BSERVED 00 00 00 00 00 00 00 00 00 00 00 00 00
700.00.0 800.00.0 900.00.0 1000.00.0	TABLE NAM: T OPPER LINI F LI	-	TABLE NAML: 1 C UPPE; LIMIT 100.00,0 200.00,0 300.00,0 400.00,0 500.00,0 600.00,0 700.00,0 1000.00,0 1000.00,0 1000.00,0

TABLE NAML: T (39)

TAHLE NAME: PROJ.TIME

100.00 .692 -2.045 100.00 .738 -1.739 98.00 .830 -1.432 89.00 .830 -1.126 74.00 .876820 63.00 .923214 49.00 .969207 43.00 1.015
2.00 100.00 .738 2.00 98.00 .788 11.00 89.00 .830 20.00 74.00 .876 57.00 63.00 .923 57.00 49.00 .969 57.00 43.00 1.015
96.00 89.00 74.00 63.00 43.00 34.00
89.00 .830 74.00 .876 63.00 .923 49.00 .969 43.00 1.015 34.00 1.061
74.00 .876 63.00 .923 49.00 .969 43.00 1.015 34.00 1.061
63.00 .923 49.00 .969 43.00 1.015 34.00 1.061
49.00 .969 43.00 1.015 34.00 1.061
43.00 1.015 34.00 1.061
34.00 1.061

TABLE NAME: FAIL.STUDY

TABLE NAME: FAIL.RFP

TABLE NAME: FAIL . WORK

TABLE NAME: FAIL.PROJ

RANDOM	KANDOM	RANDOM	RANDOM
GENERATOR	MULTIPLIER	INCREMENT	SEED
-	1220703125	0	30596069377
7	3141592653	2716281829	16371398781
~	2718281829	3141592653	2718281829
.	10604499373	7261067085	10604499373
3	17249876309	7261067085	17249876309
9	50517578125	7261067085	30517578125
7	25u5727293	35981228	2565727293
œ	107936437	4292354	107936437
6	22458762221	6891	22438762221
01	521444377	92111326	621444377

TABLE NAME: T (40)

APPENDIX X

A THREAT ALLOCATION MODEL FOR TACTICAL WARFARE

A THREAT ALLOCATION MODEL FOR TACTICAL WARFARE

ВҮ

WALTER L. DIXON, JR.
BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER
P.O. BOX 1500
HUNTSVILLE, ALABAMA 35805

JOSEPH M. MELLICHAMP THE UNIVERSITY OF ALABAMA P.O. BOX J UNIVERSITY, ALABAMA 35486

ORSA/TIMS JOINT NATIONAL MEETING SAN DIEGO, CALIFORNIA OCTOBER 25-27, 1982

INTRODUCTION

One of the key tasks facing the military planner in specifying defense mission requirements is assessing the nature of the threat which must be countered. In tactical situations, a significant component of the threat may be represented by the opposition's tactical ballistic missile stocks. Thus, a question of extreme importance to the tactical defense system planner is how the opposition might target a given force of tactical ballistic missiles against a specific set of military targets in such a way as to achieve desired military objectives.

The research described in this paper has as its major focus the development of a computer-based mathematical threat allocation model. The research is presented in four parts. The first part details the basic threat allocation decision, identifying and describing important elements of the decision. The mathematical and computer models developed to represent the threat allocation decision are presented in the second part of the paper. Examples of the different types of analysis which are possible with the model are described in the third part. The final part of the paper presents conclusions and identifies areas for future research.

THE THREAT ALLOCATION DECISION

A graphic representation of the mission analysis phase of tactical ballistic missile defense planning is shown in Figure 1. In accomplishing the mission analysis task, the analyst must specify mission requirements necessary to achieve specified military objectives for a given set of military assets for various assumed TBM threats. In order to make such a specification, the analyst must first determine how a specified threat would likely be targeted against the assets and what the resulting damage would be. From Figure 1 it may be seen that the inputs necessary to make threat allocation and damage assessment determinations are: the threat definition, the asset structure, damage assessment, and

DEFENSE MISSION REGTS EFFECT IVE-NESS ANALYSIS AGGREGATE DAMAGE ASSESSMENT THREAT ALLOCATION MODEL ASSET STRUCTURE DAMAGE ASSESSMENT DEFENSE SCENARIOS DEFINITION ATTACK/ THREAT

FIGURE 1. TBM MISSION REQUIREMENTS FLOW DIAGRAM

STABLES VANDALA DISTRIBUTION SELECTION

attack/defense scenarios. Each of these inputs will now be described as it relates to the allocation decision.

Threat Definition

A TBM threat may be defined by specifying several key characteristics of the threat: (1) the types of TBM's (weapons systems) composing the threat, (2) the types of warheads involved, (3) number and location of launchers, (4) number of boosters, (5) ranges, (6) reload time requirements, and (7) availability/ reliability estimates. An example threat definition based on hypothetical data is shown in Table 1. The threat depicted is composed of four weapons systems identified as RED-1 thru RED-4. The numbers of boosters and ranges (specified in terms of geographic zones) are given for each weapons system. Availability/ reliability estimates are also specified for each weapons system. For purposes of illustration, the number of launchers is assumed to be equal to the number of boosters, hence reload times need not be considered.

Asset Structure

The asset structure against which the TBM threat is targeted is defined in terms of four characteristics: (1) types of assets threatened, (2) number and geographic location (by zone) of each asset, (3) value of each asset, and (4) type of target pattern represented by each asset. An example asset structure based on hypothetical data is shown in Table 2. In the example there are four categories of assets designated as BLUE-1 thru BLUE-4. These categories might represent airbases, missile sites, supply points, command centers or other assets having military significance. Each type of asset is assigned a value from 0 to 1000 which reflects the military importance of that asset type relative to other asset types. Obviously, these values are subjectively determined and will vary depending on military objectives to be achieved. Procedures for assessing the

TABLE 1. THREAT DEFINITION

RED-1 100 1, 2, 3 .9 RED-2 500 1 .9 RED-3 200 1, 2 .9 RED-4 200 1, 2, 3 .9	WEAPONS SYSTEM	NUMBER OF BOOSTERS	RANGE (ZONES)	RELIABILITY/ AVAILABILITY
500 200 200	RED-1	100	1, 2, 3	סַ
200	RED-2	200	Н	6
200	RED-3	200	1, 2	ō.
	RED-4	200	1, 2, 3	<u>ه</u>

Source: HYPOTHETICAL DATA.

TABLE 2. ASSET STRUCTURE

	NUM GEOG	NUMBER OF ASSETS/ GEOGRAPHIC LOCATION	ETS/ ATION	H C C	VCCET
ASSET	ZONE 1	ZONE 2	ZONE 3	ASSE I VALUE	TYPE
BLUE-1	0	5	10	1,000	U
BLUE-2	15	15	15	200	S
BLUE-3	20	10	2	100	S
BLUE-4	10	, 15	0	200	S

Source: HYPOTHETICAL DATA.

impact of alternative value schemes are discussed later. Assets are
characterized as either simple (S) or complex (C) depending on whether one or
more aimpoints must be targeted in order to disable or destroy the asset.

Damage Assessment

The probability of destroying or neutralizing an asset by targeting a single booster on the asset is referred to as a single shot kill probability (P_{SSK}) . Table 3 gives hypothetical P_{SSK} values for the assumed threat and asset structure examples described in previous sections. The P_{SSK} values for an actual application are obtained from probability equations or simulation analysis and depend on specified damage criteria required for kill, target position and location error, reentry vehicle lethality, and delivery accuracy.

Attack/Defense Scenarios

In modeling the threat allocation decision, it is necessary to incorporate the capability to treat a variety of military objectives for the threatening force as the objective set is a major determinant in the allocation decision.

The allocation model should be flexible enough to permit a broad range of potential objectives represented by specific attack scenarios. Defense scenarios which are inputs to the allocation decision derive from the military objectives of the threatened force and from defensive tactics of interest. Specific attack and defense scenarios which may be addressed are described later in the analysis section of the paper.

In the parlance of decision modeling, the threat definition, the asset structure, damage assessment, and attack scenarios are uncontrollable factors, that is, the decision-maker accepts them as givens even though the values of these factors may be varied for assessment purposes. Defense scenarios are the

TABLE 3. SINGLE SHOT KILL PROBABILITIES

LIEADONIC		AS	ASSET	
SYSTEM	BLUE-1	BLUE-2	BLUE-3	BLUE-4
RED-1	.70	.11	90'	70'
RED-2	.30	.05	90'	.15
RED-3	.50	80'	ħ0 '	.15
RED-4	`£9'	.10	·04	90'

Source: HYPOTHETICAL DATA.

decision-maker's choice or controllable factors. The decision-maker is interested in discovering how the assumed threat will be targeted over the assets for attack/defense scenarios of interest. This is the essence of the threat allocation decision.

DECISION FORMULATION

The threat allocation decision described in the preceding section can be formulated in a relatively straightforward manner as a resource allocation decision and treated with conventional resource allocation techniques. The mathematical representation of the threat allocation decision will now be described followed by a discussion of the computer routine that was developed for obtaining allocation schemes.

Mathematical Model

The threat allocation decision is stated mathematically as: determine values for $X_{i,j}$ which maximize the function

$$Z = \sum_{i=1}^{n} \sum_{j=1}^{m} F(X_{ij})$$
 (1)

Subject to:

$$\sum_{j=1}^{m} X_{ij} \le A_{i} \text{ for } j=1, 2, ..., n$$
 (2)

Where

i = the number of TBM weapons systems in the
 threat, i=1, 2, ..., m.

 A_i = the number of type i boosters available.

j = the number of asset types, j=1, 2, ..., n.

 X_{ij} = the number of type i boosters targeted against each asset of type j. $F(X_{ij})$ = the expected value of type j assets destroyed by type i TBM's.

The optimization criterion used in making the TBM allocations is the incremental value $\Delta F(X_{ij})$ of type j assets destroyed by an additional booster of type i. For simple assets, those requiring a single aimpoint, the optimization criterion is

$$\Delta F(X_{ij}) = P_{ij} V_{j}^{m} {\atop i=1}^{m} (1-P_{ij})^{X_{ij}}$$
 (3)

Where

 P_{ij} = the probability of killing a type j asset with a single booster of type i. V_j = the value of type j assets.

For complex assets, those having physical characteristics which dictate that multiple aimpoints be targeted to neutralize or destroy the asset, the optimization criterion is

$$\Delta F(X_{ij}) = P_{ij}V_{j} \prod_{i=1}^{m} \left[1 - (1-P_{ij})^{X_{ij}/M} \right]^{M}$$
 (4)

Where

M = the number of aimpoints which must be targeted.

Equations 1 and 2 constitute a non-linear integer programming model; the objective function for simple assets is a convex function which greatly simplifies the task of obtaining an optimum solution. The procedure used is a modification of the "greedy" algorithm which allocates TBM's to assets one TBM at a time maximizing the incremental value criterion given in equation 3 for each allocation. For complex assets, the objective is not convex, however, a heuristic assignment algorithm was developed which essentially computes the

optimum allocation of TBM's to complex assets by sequential enumeration. Then, if no better allocation to simple assets is possible, the TBM's are allocated to complex assets.

The Computer Model

An interactive FORTRAN program was developed to perform computations necessary to generate optimum threat allocation schemes. The program includes approximately 650 lines of code; execution requires about 70 core blocks of memory and about 30 seconds of CPU time on a UNIVAC 1100/60 time sharing system. Current capacity of the program is 8 TBM types, 300 asset types, and 3 geographic zones. These values may be increased to some extent by judicious alteration of the input data; however, existing capacity is probably adequate to accommodate most situations which might arise.

Decision data required as input is entered either by means of a permanent data file or interactively. Much of the decision data is changed only infrequently during analysis, hence, it is convenient to input and store this data in a permanent file. Some of the data is changed routinely during analysis, so the program was developed to permit interactive input. Required inputs are:

Permanent Data File

- Number of TBM types
- Number of asset types
- Asset values
- Asset locations (number in each zone)
- Kill probabilities

Interactive Inputs

- Availability/Reliability factors
- Number of TBM's

Two types of information are available as output from the threat allocation program: booster-asset allocations and aggregate damage summaries. Booster-asset allocation information is provided in a detailed report for each asset type reflecting the number of boosters of each weapons system allocated to each asset by geographic zone. These reports also reflect damage estimates resulting from the given allocations. An aggregate damage summary shows damage assessments by asset type by zone and total damage and fraction of asset value surviving by asset type. Examples of program output are shown in Figure 2 and 3.

ANALYSIS

The computer-based allocation procedure described in the preceding section offers the defense system planner an extremely flexible tool for analysis. A wide variety of tactical situations can be analyzed with relative ease. To illustrate how the model may be used in analysis, three major types of analysis will be described and illustrated with the threat/asset structure example presented earlier.

Attack Scenarios

One question frequently asked by defense planners relating to various attack scenarios is, what is the impact of changing the TBM stock available to the opposing force? An analysis of the impact of the number of boosters on asset damage is accomplished by generating a series of allocations varying the booster quantities. Figure 4 shows such an analysis in which allocations were made with 20%, 40%, 60%, 80%, 100%, and 120% of the booster quantities given in Table 1. Thus Threat Level in percent of boosters available is the independent variable in Figure 4, while Surviving Fraction of Initial Value of the assets is the dependent variable. The figure shows that for the example situation being considered if 20% of the stock of boosters is targeted against the assets,

IGURE 2. BOOSTER-ASSET ALLOCATION SUMMARY

7	:
TYPE	8-2
ET 1	•
TARG	1.861

	V *LUE	V*LUE DESTRAYED			Ĭ	SSILE	MISSILES ISSIGNED	9
	-	2 ON 5	₽.	·	- -	201:E	m	T01AL
)	• (00000	.00000	000000-	***************************************	•	:	:	ċ
9-1 CHE*	000000	000000	000000		٥	•	٠	ċ
F-1 CONV	.242703	.148199	.188199	-188199	•0•	39.	36.	100.
8-c 4UC	<u> </u>	200000.	000000	************** 200000*		•	ن	ن
E CHE	000000*	.000000	.000000	•••••••••••••••••••••••••••••••••••••••	ė		.	ċ
4-2 CONV	.589419	.00000	000000	*000000 ***************	290.	6	;	290.
202	000000*	.000000	.000000	************************	•	•	;	٠
F F CHEM	•	.00000	• 000000	• * * * * * * * * * * * * * * * * * * *	ċ	0	ئ	ં
F-3	.311769	.311769	• 000000		75.	75.	•	156.
JON 7-3	•	*00000	• 6.0000		0	•	;	ن
R-4 CHE	000000	.00000	000000	************************	6	ċ	•	ċ
7-d	.118163	171930	.171900	.1719UC assessessesses 000171.	20.	30.	36.	8 C•
TOT LES VALUF T DESTRCYED T DESTROYED TARGETS IN 2 CNE	202.82 250.00 0.052 81129776 15.	174.33 250.00 537329.1 15.	250.94 250.00 32774756 15.		£	SSILE	MISSILES LSED	. • 55.6 • 5.5 • 5

FIGURE 3. AGGREGATE DAMAGE SUMMARY

	TOTAL SURVIVING		6286.3774 .441211			
ISSESSMENT	,	2347.5736	1229.0534	0006	0000*	
FGGREGATE DAMAGE ASSESSMENT	3 NO 2	1175,7868	2014.9838	0000	574.0931	
99/	•	90.0.	3642.3403	199,1253	848,2218	
		••• 1-1	••• •••	*** ***	• • • • • • • • • • • • • • • • • • • •	ı

FIGURE 4. THREAT LEVEL ANALYSIS

approximately 87 percent of the value of the assets would survive; whereas if 120% of the booster stock is targeted, only 50% of the value of assets would survive. Detailed booster-asset allocation schemes and damage summaries for the individual runs depicted in Figure 4 are available from the computer reports.

Parametric Analysis

A variety of "what if" questions may be investigated by performing parametric analysis on individual characteristics of the threat/asset structure system. Figures 5, 6, and 7 show the results of parametric analysis on P_{SSK} values, asset values, and reliability factors respectively; each of these parametric analyses is done in the context of the threat level variation described in the preceding paragraph. Figure 5 indicates that at the 120% threat level, a 20% increase in P_{SSK} values would cause a 10% decrease in the value of assets surviving. Figure 6 shows the impact of changing the value assigned to each of the asset types. The curve labeled "Uniform Values" was generated by assigning a value of 200 to each of the asset types. The figure suggests that the allocation model is relatively insensitive to asset values. Figure 7 presents results of parametric changes on the reliability/availability characteristic of TBM weapons systems.

Defense Scenarios

The model is flexible enough to permit analysis of a variety of defense scenarios. Figure 8 presents results which would be expected from defending the assets against the TBM threat. The curve labeled "Uniform Defense" represents a defense system which would uniformly protect all assets; the curve depicts a system having 60 percent efficiency, that is, only 40 percent of targeted boosters would penetrate the defense. The curve labeled "Preferential Defense" illustrates the impact of protecting "preferred" assets as opposed to uniformly

..8*Pssk NOMINAL Pssk ∞ FIGURE 5. PARAMETRIC ANALYSIS (PSSK). ∞ 7. 9 SURVIVING FRACTION OF INITIAL VALUE

FIGURE 6. PARAMETRIC ANALYSIS (ASSET VALUE).

Market Service

35.55

MANAZAK MANAZAKA

THE STATE OF THE S

FIGURE 7. PARAMETRIC ANALYSIS (RELIABILITY)

DEFENSE SCENARIO ANALYSIS ∞ و Figure 8. SURVIVING FRACTION OF INITIAL VALUE

defending all assets. This curve was generated by reducing the P_{SSK} values for the BLUE-2 asset by 50%, approximating the effect of deploying a defense system for this asset.

The examples presented in this section by no means exhaust the analysis potential of the allocation model; they do serve to illustrate the range and diversity of issues which can be investigated.

CONCLUSIONS

The threat allocation model described in this paper gives the defense system planner an extremely flexible tool for answering the kinds of questions which arise in tactical planning. Data requirements of the model are neither complicated nor elaborate; in fact, most of the input data required would normally be available to a system planner. The model is relatively simple to use and the outputs are largely self-explanatory.

Several revisions of the model have been accomplished in attempting to incorporate as much detail and accuracy as possible and practical. There are a few enhancements and extensions which could further improve the model's usefulness. One possibility for enhancing the model relates to asset valuation; currently assets are valued by subjectively assigning values from 0 to 1000 to each asset type. Presumably, the values assigned reflect the military worth of the asset types. This subjective valuation approach is the most obvious limitation of the model; more objective methods of valuing assets would improve the credibility of the model. With respect to model extensions, the model currently incudes only limited capability for assessing the impacts of threat system logistics, i.e., stockpile quantities, launcher capacities, and resupply and reload times. Clearly, the model's usefulness could be enhanced by incorporating a submodel which described relevant logistics considerations.

END

FILMED

1-84

DTIC