

Regression Tutorial

Regression is a fundamental technique in **Machine Learning** used to model relationships between variables. It is widely applied to predict outcomes based on input data.

Regression can be broadly categorized into:

- 1. Linear Regression: Assumes a linear relationship between variables.
- 2. **Polynomial Regression**: Captures non-linear relationships by introducing polynomial terms.

1. Linear Regression

Linear regression assumes a **straight-line relationship** between the independent variable(s) and the target variable.

Linear Regression Model

The general equation for a linear regression model is:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Where:

- \hat{y} : The predicted value.
- n: The number of features.
- x_i : The i-th feature value.
- θ_j : The j-th model parameter (including the bias term θ_0 and the feature weights $\theta_1, \theta_2, \dots, \theta_n$).

Simple Linear Regression

When there is only one feature (n = 1), the equation simplifies to:

$$\hat{y} = \theta_0 + \theta_1 x_1$$

• Practical Example:

A company uses **experience** as the independent variable to predict **salary**.

- x_1 : Experience
- \hat{y} : Predicted Salary
- **Goal**: Understand how experience impacts salary.

Salary vs Expereience (Training Dataset)

Multiple Linear Regression

When there are multiple features (n > 1), the equation becomes:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• Practical Example:

A real estate agency uses **property features** to predict the **house price**.

- x_1 : Square footage
- x_2 : Number of bedrooms
- x_3 : Location rating
- \hat{y} : Predicted House Price
- Goal: Analyze how multiple factors affect housing prices.

2. Polynomial Regression

Polynomial regression extends linear regression to model **non-linear relationships** between variables. It transforms the features into polynomial terms.

The equation for Polynomial Regression can be like:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^3 + \dots + \theta_n x_1^n$$

Where:

- \hat{y} : Predicted Value.
- $x_1, x_1^2, x_1^3, \ldots$: Polynomial terms.
- $\theta_0, \theta_1, \theta_2, \ldots$: Model parameters.
- Practical Example:

Predicting the **salary** based on **position level**.

- x_1 : Position Level
- \hat{y} : Salary
- **Goal**: Use a polynomial regression model to predict the non-linear growth pattern.

Comparison of Linear and Polynomial Regression

Aspect	Linear Regression	Polynomial Regression
Nature of Relationship	Assumes a straight-line relationship	Models non-linear relationships (curved)
Complexity	Simple and interpretable	More complex due to polynomial terms
Use Cases	When data follows a linear trend	When data shows curves or non- linear trends

- **Linear Regression** is suitable for data with a linear relationship, like predicting sales based on advertising.
- **Polynomial Regression** is ideal when the relationship is non-linear, such as growth patterns over time.

Understanding the type of relationship in the data helps choose the correct regression technique to make accurate predictions. \cancel{A}

Methods for Finding Optimal Model Parameters

When training a machine learning model, there are two primary approaches to find the model parameters that minimize the cost function over the training set:

1. Closed-Form Solution

- Directly computes the model parameters that best fit the training set.
- Finds the parameters that minimize the cost function using a mathematical formula.

2. Iterative Optimization

An optimization approach that **gradually tweaks the model parameters** to minimize the cost function:

Gradient Descent (GD)

- Iteratively adjusts the model parameters in the direction that reduces the cost function.
- Goal: Minimize the cost function over the training set.

Variants of Gradient Descent

Gradient Descent has three main variants based on the amount of data used in each step:

- 1. Batch Gradient Descent
 - Uses the **entire training set** to compute the gradient at each step.
- 2. Mini-Batch Gradient Descent
 - Splits the training set into small batches and computes the gradient for each batch.
- 3. Stochastic Gradient Descent (SGD)
 - Uses **one training example** at a time to compute the gradient.

Derivation of the Simple Linear Regression Formula

Simple Linear Regression (SLR) aims to model the relationship between one independent variable x and one dependent variable y. The relationship is represented as:

$$\hat{y} = heta_0 + heta_1 x$$

Where:

- \hat{y} : Predicted value (dependent variable)
- x: Independent variable (predictor)
- $heta_0$: Intercept (value of \hat{y} when x=0)

• θ_1 : Slope (rate of change of \hat{y} with respect to x)

The goal is to determine the values of the slope θ_1 and intercept θ_0 that minimize the **sum of squared residuals (errors)**. Let's derive the formula step by step.

1. Sum of Squared Residuals

The **residual (error)** for each data point is the difference between the observed value y_i and the predicted value \hat{y}_i :

$$e_i = y_i - \hat{y}_i$$

The predicted value \hat{y}_i is given as:

$$\hat{y}_i = \theta_0 + \theta_1 x_i$$

Thus, the residual becomes:

$$e_i = y_i - (heta_0 + heta_1 x_i)$$

The objective is to minimize the Sum of Squared Errors (SSE):

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(y_i - (heta_0 + heta_1 x_i)
ight)^2$$

2. Deriving the Slope (θ_1)

To minimize **SSE**, we differentiate the **SSE** with respect to θ_0 and θ_1 , and set the derivatives to zero.

$$\int_{0}^{\infty} f(x) = x^{2}$$

Step 1: Partial Derivative with Respect to $heta_0$

Taking the derivative of SSE with respect to θ_0 :

$$rac{\partial SSE}{\partial heta_0} = -2 \sum_{i=1}^n \left(y_i - heta_0 - heta_1 x_i
ight)$$

Set this derivative to zero:

$$\sum_{i=1}^n (y_i - heta_0 - heta_1 x_i) = 0$$

Rearranging, we get:

$$\sum y_i = n heta_0 + heta_1 \sum x_i$$

Step 2: Partial Derivative with Respect to $heta_1$

Taking the derivative of SSE with respect to θ_1 :

$$rac{\partial SSE}{\partial heta_1} = -2 \sum_{i=1}^n x_i \left(y_i - heta_0 - heta_1 x_i
ight)$$

Set this derivative to zero:

$$\sum_{i=1}^n x_i(y_i- heta_0- heta_1x_i)=0$$

Expanding and rearranging:

$$\sum x_i y_i = heta_0 \sum x_i + heta_1 \sum x_i^2$$

3. Solving for $heta_0$ and $heta_1$

We now have two equations:

1.
$$\sum y_i = n heta_0 + heta_1 \sum x_i$$

2. $\sum x_i y_i = heta_0 \sum x_i + heta_1 \sum x_i^2$

Solving for θ_1 (Slope)

First, substitute θ_0 from the first equation into the second equation.

From the first equation, we can express $heta_0$ as:

$$heta_0 = rac{\sum y_i - heta_1 \sum x_i}{n}$$

Substitute this expression for θ_0 into the second equation:

$$\sum x_i y_i = \left(rac{\sum y_i - heta_1 \sum x_i}{n}
ight) \sum x_i + heta_1 \sum x_i^2$$

Multiply through by n to eliminate the denominator:

$$n\sum x_iy_i = \left(\sum y_i - heta_1\sum x_i
ight)\sum x_i + n heta_1\sum x_i^2$$

Expand the right-hand side:

$$n\sum x_iy_i = \sum y_i\sum x_i - heta_1(\sum x_i)^2 + n heta_1\sum x_i^2$$

Rearrange terms to isolate θ_1 :

$$n\sum x_iy_i - \sum y_i\sum x_i = heta_1\left(n\sum x_i^2 - (\sum x_i)^2
ight)$$

Solve for θ_1 :

$$heta_1 = rac{n\sum x_i y_i - \sum y_i \sum x_i}{n\sum x_i^2 - (\sum x_i)^2}$$

This can be rewritten in terms of the covariance and variance:

$$heta_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$

Where:

- \bar{x} : Mean of x values
- \bar{y} : Mean of y values

The numerator represents the **covariance** between x and y, and the denominator represents the **variance** of x.

Solving for θ_0 (Intercept)

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

4. Final SLR Formula

The final Simple Linear Regression equation is:

$$\hat{y} = \theta_0 + \theta_1 x$$

Where:

• θ_1 (Slope):

$$heta_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$

• θ_0 (Intercept):

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

Summary

- 1. **Slope** θ_1 measures the rate of change of \hat{y} with respect to x (calculated as **covariance** of x and y divided by the **variance** of x).
- 2. Intercept θ_0 determines the value of \hat{y} when x=0.
- 3. Together, θ_0 and θ_1 define the best-fit line that minimizes the sum of squared residuals.

The derived formulas allow us to find the optimal regression line for any given set of data. \mathscr{A}

Example of Simple Linear Regression

Let's consider a real-world example of predicting a student's **exam score** based on the number of hours they study.

Problem Statement

We want to model the relationship between:

- Independent Variable (x): Hours of study
- **Dependent Variable** (y): Exam score

The goal is to find the equation of the best-fit line:

$$\hat{y} = \theta_0 + \theta_1 x$$

Where:

- \hat{y} : Predicted exam score
- x: Hours of study (independent variable)
- θ_0 : Intercept
- θ_1 : Slope (rate of change of \hat{y} with respect to x)

Data

Hours of Study (x)	Exam Score (y)
1	50
2	55
3	65
4	70
5	80

Step 1: Calculate the Mean

1. Mean of x (Hours of Study):

$$ar{x} = rac{\sum x_i}{n} = rac{1+2+3+4+5}{5} = 3$$

2. Mean of y (Exam Score):

$$ar{y} = rac{\sum y_i}{n} = rac{50 + 55 + 65 + 70 + 80}{5} = 64$$

Step 2: Calculate the Slope (θ_1)

The formula for slope θ_1 is:

$$heta_1 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}$$

$$x_i$$
 y_i
 $x_i - \bar{x}$
 $y_i - \bar{y}$
 $(x_i - \bar{x})(y_i - \bar{y})$
 $(x_i - \bar{x})^2$

 1
 50
 -2
 -14
 28
 4

 2
 55
 -1
 -9
 9
 1

 3
 65
 0
 1
 0
 0

 4
 70
 1
 6
 6
 1

 5
 80
 2
 16
 32
 4

1. Sum of $(x_i - \bar{x})(y_i - \bar{y})$:

$$\sum (x_i - \bar{x})(y_i - \bar{y}) = 28 + 9 + 0 + 6 + 32 = 75$$

2 c... = 12.

26/02/2025, 16:31

$$\sum (x_i - \bar{x})^2 = 4 + 1 + 0 + 1 + 4 = 10$$

Thus, the slope θ_1 is:

$$\theta_1 = \frac{75}{10} = 7.5$$

Step 3: Calculate the Intercept (θ_0)

The formula for the intercept $heta_0$ is:

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

Substitute the values:

$$\theta_0 = 64 - (7.5 \times 3) = 64 - 22.5 = 41.5$$

Step 4: Final Equation

The equation of the regression line is:

$$\hat{y} = 41.5 + 7.5x$$

Interpretation

- Slope ($\theta_1=7.5$): For every additional hour of study, the exam score increases by 7.5 points.
- Intercept ($\theta_0=41.5$): If a student studies for 0 hours, their predicted exam score is 41.5.

Prediction Example

If a student studies for 6 hours (x=6), the predicted score is:

$$\hat{y} = 41.5 + 7.5(6) = 41.5 + 45 = 86.5$$

Thus, the predicted exam score is 86.5.

Summary

- The relationship between study hours and exam scores was modeled using Simple Linear Regression.
- 2. The final regression equation is:

$$\hat{y} = 41.5 + 7.5x$$

Implementation of SLR with formula

```
In [ ]:
         # Input Data: Hours of Study (X) and Exam Scores (Y)
         X = [1, 2, 3, 4, 5] # Independent Variable
         Y = [50, 55, 65, 70, 80] # Dependent Variable
         # Step 1: Calculate Mean of X and Y
         n = len(X)
         mean X = sum(X) / n
         mean Y = sum(Y) / n
         # Step 2: Calculate Slope (b) and Intercept (a)
         numerator = sum((X[i] - mean X) * (Y[i] - mean Y) for i in range(n))
         denominator = sum((X[i] - mean_X) ** 2 for i in range(n))
         b = numerator / denominator # Slope
         a = mean_Y - b * mean_X
                                   # Intercept
         # Step 3: Display the Results
         print(f"Mean of X: {mean X}")
         print(f"Mean of Y: {mean Y}")
         print(f"Slope (b): {b}")
         print(f"Intercept (a): {a}")
         # Final Regression Line Equation
         print(f"Regression Line: Y = \{a:.2f\} + \{b:.2f\}X")
         # Step 4: Prediction
         def predict(x):
             return a + b * x
         # Predict Y for a new value of X
         X \text{ new} = 6
         Y pred = predict(X new)
         print(f"Predicted Y for X = {X_new}: {Y_pred:.2f}")
       Mean of X: 3.0
```

```
Mean of X: 3.0

Mean of Y: 64.0

Slope (b): 7.5

Intercept (a): 41.5

Regression Line: Y = 41.50 + 7.50X

Predicted Y for X = 6: 86.50
```

Plotting

```
import matplotlib.pyplot as plt
# Generate Predicted Y values for the regression line
Y_regression = [predict(x) for x in X]

# Plotting the data points and regression line
plt.figure(figsize=(8, 5))
plt.scatter(X, Y, color="blue", label="Actual Data", marker="o") # [
plt.plot(X, Y_regression, color="red", label="Regression Line") # Re
plt.scatter(X, Y_regression, color="orange", label="Regression Points")

# Styling the plot
plt.title("Simple Linear Regression: Study Hours vs Exam Scores")
plt.xlabel("Hours of Study")
```

```
plt.ylabel("Exam Score")
plt.legend()
plt.grid(True)
plt.show()
```


Implementation of SLR with sklearn

```
In [ ]:
         # Import necessary libraries
         import numpy as np
         import pandas as pd
         from sklearn.linear_model import LinearRegression
         # Input Data: Hours of Study (X) and Exam Scores (Y)
         X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # Independent Variable
         Y = np.array([50, 55, 65, 70, 80]) # Dependent Variable
         # Step 1: Initialize and Train the Model
         model = LinearRegression()
         model.fit(X, Y)
         # Step 2: Extract Slope (b) and Intercept (a)
         a = model.intercept_ # Intercept
         b = model.coef [0]
                               # Slope
         # Step 3: Display Results
         print(f"Slope (b): {b}")
         print(f"Intercept (a): {a}")
         print(f"Regression Line: Y = \{a:.2f\} + \{b:.2f\}X")
         # Step 4: Make Predictions
         X_new = np.array([[6]]) # New value for prediction
         Y_pred = model.predict(X_new)
         print(f"Predicted Y for X = 6: {Y_pred[0]:.2f}")
```

```
Slope (b): 7.500000000000001
```

Intercept (a): 41.5

Regression Line: Y = 41.50 + 7.50X

Predicted Y for X = 6: 86.50

Multiple Linear Regression

Input Data

Independent Variables (Size, Bedrooms, Age) and Dependent Variable (Price)

Size (sq ft)	Bedrooms	Age (years)	Price (Y)
1500	3	15	400,000
1800	4	20	460,000
2400	3	10	560,000
3000	4	8	600,000
3500	5	5	720,000

```
In [ ]:
         # Import necessary libraries
         import numpy as np
         import pandas as pd
         from sklearn.linear_model import LinearRegression
         # Step 1: Input Data
         # Independent variables (Size, Bedrooms, Age)
         X = np.array([
             [1500, 3, 15],
             [1800, 4, 20],
             [2400, 3, 10],
             [3000, 4, 8],
             [3500, 5, 5]
         1)
         # Dependent variable (Price of houses)
         Y = np.array([400000, 460000, 560000, 600000, 720000])
         # Step 2: Initialize and Train the Model
         model = LinearRegression()
         model.fit(X, Y)
         # Step 3: Extract Model Coefficients
         intercept = model.intercept
         coefficients = model.coef
         print("Intercept (a):", intercept)
         print("Coefficients (b1, b2, b3):", coefficients)
         # Step 4: Predict House Price for New Features
         new_house = np.array([[2500, 4, 12]]) # New house: 2500 sq ft, 4 bed
         predicted_price = model.predict(new_house)
```

```
print(f"Predicted Price for the house {new_house[0]}: ${predicted_pri

# Step 5: Display Results
print("\nFinal Regression Equation:")
print(f"Y = {intercept:.2f} + ({coefficients[0]:.2f})X1 +
```

The Normal Equation

The **Normal Equation** is a mathematical method used to find the parameters (θ) of a linear regression model that minimize the cost function. Unlike iterative methods like Gradient Descent, the Normal Equation provides a direct, closed-form solution.

Normal Equation Formula

The Normal Equation is expressed as:

$$\theta = (X^T X)^{-1} X^T y$$

Explanation of Terms

- θ : The vector of parameters, including the intercept (θ_0) and coefficients $(\theta_1, \theta_2, \dots, \theta_n)$.
- X: The matrix of input features, where each row represents a data point and the first column is all 1s for the intercept.
- y: The vector of target values (y_1, y_2, \dots, y_m) .
- X^T : The transpose of the matrix X.
- $(X^TX)^{-1}$: The inverse of the matrix X^TX .

Deriving the Normal Equation for Linear Regression

In linear regression, we model the relationship between the input features \boldsymbol{x} and the target variable \boldsymbol{y} using a linear equation:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Where:

- \hat{y} is the predicted output,
- x_1, x_2, \ldots, x_n are the input features,

• $\theta_0, \theta_1, \dots, \theta_n$ are the parameters (weights) to be learned.

Matrix Notation

To simplify the equations, we express the linear regression model in **matrix notation**. The model equation becomes:

$$\hat{y} = X\theta$$

Where:

- y is an $m \times 1$ vector of target values (where m is the number of training instances),
- X is an m imes (n+1) matrix of input features (with 1 added as the first feature for the bias term $heta_0$),
- heta is an (n+1) imes 1 vector of model parameters.

Cost Function

To find the best parameters, we minimize the error between the predicted values and the actual values using the **Sum of Squared Errors (SSE)** cost function:

$$SSE(heta) = \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Where:

- $oldsymbol{\hat{y}}_i$ is the predicted output for the i-th training example,
- y_i is the true target value for the i-th training example,
- *m* is the number of training examples.

Matrix Form of the Cost Function

The cost function can be rewritten in matrix form as:

$$SSE(\theta) = (y - X\theta)^T (y - X\theta)$$

Why is this the case?

- 1. The term $(y-X\theta)$ represents the error vector, where each element is the difference between the actual value y_i and the predicted value \hat{y}_i .
- 2. Transposing this vector $(y-X\theta)^T$ and multiplying it by itself $(y-X\theta)$ is equivalent to summing the squares of all the errors, which is exactly what the SSE does.

For example, if $y - X\theta$ is:

$$egin{bmatrix} e_1 \ e_2 \ dots \ e_m \end{bmatrix}$$

Then $(y - X\theta)^T (y - X\theta)$ is:

$$e_1^2 + e_2^2 + \dots + e_m^2$$

Which matches the definition of the SSE.

Step 1: Expand the SSE Expression

We begin with the cost function:

$$SSE(\theta) = (y - X\theta)^T (y - X\theta)$$

Expanding this expression:

$$SSE(\theta) = y^T y - y^T X \theta - \theta^T X^T y + \theta^T X^T X \theta$$

Since $y^TX\theta$ is a scalar, we can rewrite it as θ^TX^Ty , and the expression becomes:

$$SSE(\theta) = y^T y - 2\theta^T X^T y + \theta^T X^T X \theta$$

Step 2: Derivative of the SSE

Now, differentiate the cost function with respect to θ :

- The derivative of y^Ty with respect to θ is zero (constant).
- The derivative of $-2\theta^T X^T y$ with respect to θ is $-2X^T y$.
- The derivative of $\theta^T X^T X \theta$ with respect to θ is $2X^T X \theta$.

Thus, the derivative of the SSE is:

$$rac{\partial SSE(heta)}{\partial heta} = -2X^Ty + 2X^TX heta$$

Step 3: Set the Derivative Equal to Zero

To minimize the SSE, set the derivative equal to zero:

$$-2X^Ty + 2X^TX\theta = 0$$

Simplify this expression:

$$X^T X \theta = X^T y$$

Step 4: Solve for θ

Finally, solve for θ by multiplying both sides by $(X^TX)^{-1}$ (assuming X^TX is invertible):

$$\theta = (X^T X)^{-1} X^T y$$

This is the **Normal Equation**, which gives the closed-form solution for the optimal model parameters θ .

Steps to Solve Using the Normal Equation

1. Prepare the Data:

- Ensure X is a 2D array (add a column of 1s for the intercept).
- ullet Ensure y is a 1D array of target values.

2. Compute θ :

- Transpose the matrix X to get X^T .
- Multiply X^T by X.
- Compute the inverse of X^TX .
- Multiply the result by X^Ty to get heta.

Key Points

- The **Normal Equation** involves computing the inverse of the matrix X^TX . This can be computationally expensive for large datasets with many features.
- If X^TX is not invertible (i.e., the matrix is singular or non-invertible), we
 cannot use the Normal Equation. In such cases, we might need to regularize
 the model (e.g., using Ridge Regression) or use an iterative method like
 Gradient Descent.

Coding Example

```
In [ ]:
        import numpy as np
         # Input Data: Hours of Study (X) and Exam Scores (Y)
         X = \text{np.array}([1, 2, 3, 4, 5]).\text{reshape}(-1, 1) # Independent Variable
         Y = np.array([50, 55, 65, 70, 80]) # Dependent Variable
         # Step 1: Add a column of 1s to X for the intercept
         X_b = np.c_{np.ones}((X.shape[0], 1)), X] # Add a column of 1s to X
         print(X b)
         print(Y)
         # Step 2: Compute theta using the Normal Equation
         theta = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ Y
         # Display the results
         print(f"Optimal parameters (theta): {theta}")
         print(f"Intercept (theta 0): {theta[0]}")
         print(f"Slope (theta_1): {theta[1]}")
         # Step 3: Prediction using the model
         def predict(x new):
             X new = np.c [np.ones((len(x new), 1)), x new] # Add intercept \alpha
             return X_new @ theta
         # Predict Y for a new value of X
         Y new - nn array/[[611] # Dradict for 6 hours of study
```

```
machine_learning/Class/2_Regression.ipynb at main · sujoysarkarcs/machine_learning
         A NEW - NP. allay([[U]]) # FIGUICE FOR O NOULS OF SEALY
         Y pred = predict(X new)
         print(f"Predicted Exam Score for X = 6: {Y pred[0]:.2f}")
       [[1. 1.]
        [1. 2.]
        [1. 3.]
        [1. 4.]
        [1. 5.]]
       [50 55 65 70 80]
       Optimal parameters (theta): [41.5 7.5]
       Intercept (theta 0): 41.50000000000006
       Slope (theta 1): 7.500000000000002
       Predicted Exam Score for X = 6: 86.50
In [ ]:
         import numpy as np
         # Input Data: Size (X1), Bedrooms (X2), Age (X3), Price (Y)
         X = np.array([[1, 1500, 3, 15],
                        [1, 1800, 4, 20],
                        [1, 2400, 3, 10],
                        [1, 3000, 4, 8],
                        [1, 3500, 5, 5]])
         Y = np.array([400000, 460000, 560000, 600000, 720000])
         # Step 1: Compute theta using the Normal Equation
         theta = np.linalq.inv(X.T @ X) @ X.T @ Y
         # Display the results
         print(f"Optimal parameters (theta): {theta}")
         print(f"Intercept (theta 0): {theta[0]}")
         print(f"Size coefficient (theta 1): {theta[1]}")
         print(f"Bedrooms coefficient (theta 2): {theta[2]}")
         print(f"Age coefficient (theta 3): {theta[3]}")
         # Step 2: Prediction using the model
         def predict(X new):
             X_{new} = np.c_{np.ones}((X_{new.shape}[0], 1)), X_{new}] # Add interce
             return X new @ theta
         # Predict price for a new house with size 2500 sq ft, 3 bedrooms, and
         X_{new} = np.array([[2500, 3, 10]])
         Y pred = predict(X new)
         print(f"Predicted Price for X = {X new[0]}: {Y pred[0]:.2f}")
       Optimal parameters (theta): [1.68499018e+05 1.50451866e+02 1.81139489e
       +03 4.75442043e+02]
       Intercept (theta 0): 168499.01768173705
       Size coefficient (theta_1): 150.45186640472224
       Bedrooms coefficient (theta_2): 1811.3948919454751
       Age coefficient (theta 3): 475.4420432218649
       Predicted Price for X = [2500]
                                         3
                                             101: 554817.29
```

Computational Complexity

The Normal Equation involves computing the inverse of X^TX , which is an

(n+1) imes (n+1) matrix. where n is the number of features. The **computational**

complexity of inverting such a matrix is typically about $O(n^{2.4})$ to $O(n^3)$, depending on the implementation.

In simpler terms, if you double the number of features, the computation time increases by approximately:

$$2^{2.4} \approx 5.3$$
 to $2^3 = 8$

Therefore, as the number of features grows, the **Normal Equation** becomes computationally expensive. When dealing with datasets having a large number of features (e.g., 100,000), this approach may not be feasible.

Gradient Descent: A Better Approach for Large Datasets

When the number of features is very large, or the dataset is too big to fit into memory, the **Normal Equation** method become inefficient. In such cases, **Gradient Descent** is a better option.

Polynomial Regession

Input Data with Polynomial Features

Hours of Study ((X))	Exam Scores ((Y))	(X^2) (Squared Hours)
1	50	1
2	55	4
3	65	9
4	70	16
5	85	25

```
In [ ]: | # Import libraries
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.linear_model import LinearRegression
         # Step 1: Input Data (Single Feature for Simplicity)
         X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # Hours of Study
         Y = np.array([50, 55, 65, 70, 85])
                                                      # Exam Scores
         # Step 2: Manually Create Polynomial Features (X^2)
         X_{poly} = np.hstack((X, X**2)) # Add X^2 as a new column
         # Step 3: Train the Linear Regression Model
         model = LinearRegression()
         model.fit(X_poly, Y)
         # Step 4: Generate Predictions for Smooth Curve
         X_{\text{range}} = \text{np.linspace}(\min(X), \max(X), 100).\text{reshape}(-1, 1) # Smooth i
                                                                     # Add X^2
         X range poly = np.hstack((X range, X range**2))
```

```
Y_range_pred = model.predict(X_range_poly)

# Step 5: Plot the Results
plt.scatter(X, Y, color='blue', label='Data Points')  # Original
plt.plot(X_range, Y_range_pred, color='red', label='Polynomial Regres

# Add labels and title
plt.title("Polynomial Regression: Hours of Study vs Exam Scores")
plt.xlabel("Hours of Study")
plt.ylabel("Exam Score")
plt.legend()
plt.grid(True)
plt.show()
```

Polynomial Regression: Hours of Study vs Exam Scores

Using PolynomialFeatures from sklearn

```
In [1]: # Import libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

# Step 1: Input Data (Single Feature for Simplicity)
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # Hours of Study
y = np.array([50, 55, 65, 70, 85]) # Exam Scores

# Step 2: Transform the Data using Polynomial Features
degree = 4 # Degree of the polynomial
poly = PolynomialFeatures(degree=degree)
X_poly = poly.fit_transform(X)
```

```
# Step 3: Train the Polynomial Regression Model
model = LinearRegression()
model.fit(X poly, y)
# Step 4: Generate Predictions for a Smooth Curve
X_{\text{range}} = \text{np.linspace}(\min(X), \max(X), 100).\text{reshape}(-1, 1) # Generate
X range poly = poly.transform(X range)
                                                              # Transfor
                                                              # Predict
y range pred = model.predict(X range poly)
# Step 5: Plot the Results
plt.scatter(X, y, color='blue', label='Data Points')
                                                              # Original
plt.plot(X range, y range pred, color='red', label=f'Polynomial Regre
# Add labels and title
plt.title(f"Polynomial Regression (Degree {degree}): Hours of Study √
plt.xlabel("Hours of Study")
plt.ylabel("Exam Score")
plt.legend()
plt.grid(True)
plt.show()
```

Polynomial Regression (Degree 4): Hours of Study vs Exam Scores

Evaluation of Regression Fit

Evaluating the performance of a regression model is critical to understanding how well it predicts the dependent variable. This tutorial explains the key metrics, their formulas, and the advantages/disadvantages of each.

1. Key Metrics for Regression Evaluation

1.1 Mean Absolute Error (MAE)

Definition: The average absolute difference between predicted values (\hat{Y}_i) and actual values (Y_i) :

$$MAE = rac{\sum_{i=1}^{n}|Y_i - \hat{Y}_i|}{n}$$

- Interpretation: Smaller MAE indicates better model performance.
- Properties: Sensitive to individual errors but not to large outliers.

1.2 Mean Squared Error (MSE)

Definition: The average of the squared differences between predicted and actual values:

$$MSE = rac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n}$$

- Interpretation:
 - MSE penalizes larger errors more than smaller ones because of squaring.
 - Lower MSE indicates a better model.

1.3 Root Mean Squared Error (RMSE)

Definition: The square root of the mean squared error:

$$RMSE = \sqrt{rac{\sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2}{n}}$$

- Interpretation:
 - RMSE is in the same units as the target variable, making it easier to interpret.
 - Penalizes large errors more than MAE.

1.4 R-squared (Coefficient of Determination)

Definition: R-squared explains the proportion of variance in the dependent variable that can be explained by the independent variables:

$$R^2 = 1 - rac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

- Interpretation:
 - (R^2) ranges from 0 to 1.
 - (R^2 = 1): Perfect fit.
 - $(R^2 = 0)$: Model explains none of the variance.

1.5 Adjusted R-squared

Definition: Adjusted R-squared modifies the (R^2) value to account for the number of predictors in the model:

Adjusted
$$R^2 = 1 - \left(\frac{(1-R^2)(n-1)}{n-k-1}\right)$$

Where:

- (n): Number of observations
- (k): Number of predictors
- Interpretation:
 - Penalizes the addition of unnecessary predictors.
 - Useful for comparing models with different numbers of predictors.

Comparison of Metrics

Metric	Advantages	Disadvantages
MAE	Simple to interpret; less sensitive to outliers.	May not penalize large errors enough.
MSE	Penalizes large errors more heavily.	Difficult to interpret due to squared units.
RMSE	Same units as target variable; penalizes large errors.	More complex to calculate; sensitive to outliers.
R-squared	Indicates goodness of fit; easy to interpret.	Does not penalize overfitting or account for predictors.
Adjusted R- squared	Accounts for model complexity and overfitting.	Slightly more complex to calculate.

Using the appropriate metric depends on the specific regression task and the nature of your dataset. Combining multiple metrics often provides the most robust evaluation of your model's performance.

Model Selection Using Evaluation of Regression Fit

When training and evaluating multiple regression models (e.g., Linear, Polynomial, or others), we use **regression metrics** to determine which model performs the best.

1. WORKFLOW FOR MODEL SELECTION

1. Train Different Models:

• Example: Linear Regression, Polynomial Regression (degree 2 or 3), etc.

2. Evaluate Models:

• Use metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (\mathbb{R}^2).

3. Compare Performance:

• Select the model with the lowest error and highest \mathbb{R}^2 .

4. Choose the Best Model:

• Balance between accuracy and simplicity to avoid overfitting.

2. Example: Compare Linear vs Polynomial Regression

We have the following dataset:

Hours of Study (X)	Exam Scores (Y)
1	50
2	55
3	65
4	70
5	85

We will compare **Linear Regression** and **Polynomial Regression (degree 2)** using evaluation metrics.

```
In [5]:
        # Import libraries
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.metrics import mean_absolute_error, mean_squared_error,
         # Input Data
         X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) # Hours of Study
         Y = np.array([50, 55, 65, 70, 85])
                                                    # Exam Scores
         # ---- Linear Regression Model ----
         model linear = LinearRegression()
         model linear.fit(X, Y)
         Y_pred_linear = model_linear.predict(X)
         # ---- Polynomial Regression (Degree 2) ----
         degree 2 = 2
         poly2 = PolynomialFeatures(degree=degree 2)
         X_poly2 = poly2.fit_transform(X) # Transform X into polynomial featu
         model poly2 = LinearRegression()
         model_poly2.fit(X_poly2, Y)
         Y_pred_poly2 = model_poly2.predict(X_poly2)
```

```
# ---- Polynomial Regression (Degree 4) ----
 degree 4 = 4
  poly4 = PolynomialFeatures(degree=degree 4)
  X poly4 = poly4.fit transform(X) # Transform X into polynomial feate
  model poly4 = LinearRegression()
  model poly4.fit(X poly4, Y)
  Y pred poly4 = model poly4.predict(X poly4)
  # ---- Evaluation Metrics for Each Model ----
  def print metrics(model name, Y true, Y pred):
      mae = mean_absolute_error(Y_true, Y_pred)
      mse = mean squared error(Y true, Y pred)
      rmse = np.sqrt(mse)
      r2 = r2 \ score(Y \ true, Y \ pred)
      print(f"--- {model name} ---")
      print(f"MAE: {mae:.2f}")
      print(f"MSE: {mse:.2f}")
      print(f"RMSE: {rmse:.2f}")
      print(f"R-squared: {r2:.2f}\n")
  print_metrics("Linear Regression", Y, Y_pred_linear)
  print metrics("Polynomial Regression (Degree 2)", Y, Y pred poly2)
 print metrics("Polynomial Regression (Degree 4)", Y, Y pred poly4)
  # ---- Visualization ----
 X range = np.linspace(min(X), max(X), 100).reshape(-1, 1)
 X range poly2 = poly2.transform(X range)
 X range poly4 = poly4.transform(X range)
 Y range pred poly2 = model poly2.predict(X range poly2)
  Y range pred poly4 = model poly4.predict(X range poly4)
  plt.scatter(X, Y, color='blue', label='Data Points') # Original data
  plt.plot(X, Y pred linear, color='red', linestyle="dashed", label='Li
  plt.plot(X_range, Y_range_pred_poly2, color='green', label='Polynomia
  plt.plot(X range, Y range pred poly4, color='purple', label='Polynomi
  # Add labels and title
 plt.title("Model Comparison: Linear vs Polynomial Regression")
  plt.xlabel("Hours of Study")
 plt.ylabel("Exam Score")
 plt.legend()
 plt.grid(True)
 plt.show()
--- Linear Regression ---
MAE: 2.00
MSE: 5.50
RMSE: 2.35
R-squared: 0.96
--- Polynomial Regression (Degree 2) ---
MAE: 1.20
MSE: 2.29
RMSE: 1.51
R-squared: 0.98
--- Polynomial Regression (Degree 4) ---
MAE: 0.00
MSE: 0.00
```

RMSE: 0.00 R-squared: 1.00

Model Comparison: Linear vs Polynomial Regression

Step 1: Train the Models

We will train three different models:

- Model 1: Linear Regression
- Model 2: Polynomial Regression (Degree 2)
- Model 3: Polynomial Regression (Degree 4)

Each model will be evaluated to understand how well it fits the given dataset.

Step 2: Evaluate Metrics

The performance of each model is measured using key evaluation metrics:

Metric	Linear Regression	Polynomial Regression (Degree 2)	Polynomial Regression (Degree 4)
MAE	3.20	1.15	0.75
MSE	10.60	2.20	1.30
RMSE	3.25	1.48	1.14
R^2	0.90	0.98	0.99