ECOLOGICAL DETERMINANTS OF PLAGUE IN MADAGASCAR Modelling for better understanding – E2M2

RAKOTOARIMANANA Feno M. Jacob-MD-MPH Epidemiological and Clinical Research Unit Institut Pasteur de Madagascar

Background

More than 200 reported cases /years in Madagascar + high and unpredictable risk of epidemic

Table 3 Risk factors of human plague: RR (95% CI)

Risk factor	Unit of comparison	RR (95% CI)	P-value
Flea index	>1 vs ≤1	1.93 (1.61, 2.33)	< 0.0001
Rodent density	Per 3% increase	1.23 (1.15, 1.32)	<0.0001
Rainfall	<10 vs ≥10 mm	1.44 (1.17, 1.77)	< 0.0001
Months ^a	Dry vs wet months	2.07 (1.64, 2.62)	< 0.0001

^aDry season was from December through April.

Research questions

- → What are the main environnemental factors influencing incidence of human plague in Madagascar?

 (retrospective analysis)
- → How pneumonic plague will spread out in cities of Madagascar?

 (outbreak scenario modelling)

Hau V Pham et al., 2009-Vietnam

STATISTICAL MODEL:

1-What are the main environnemental factors influencing incidence of human plague in Madagascar ? (retrospective analysis)

Dependant variable (source CLP-IPM database):

- All reported cases
 - Bubonic plague
 - Pneumonic plague

Potential predictors:

- Flea index (sentinel site)
- Rodent density (sentinel site)
- Temperature
- Rainfall
- Normalized Difference Vegetation Index (NDVI)
- Altitude
- → Poisson/negative binomial regression (link log) mixed effet
- → **Hypothesis**: The number of cases is associated with ecological factors

m1=glmer(cases~temp+rainfall+NDVI #as factor# +altitude + rodent + flea + (1| boundaries.limits), family = 'poisson', data=plague.data)

source Entomology&Plague-Unit IPM

source Entomology&Plague Unit IPM

MECHANISTIC MODEL

How pneumonic plague will spread out in cities of Madagascar? (outbreak scenario)

Approaches: a SEIR model mixed to a spatial analysis

Hypothesis: Pneumonic plague spreading depends on population

Assumptions: SEIR analysis by cell + no return from Recovery to Susceptible Geography unit (district/commune boundaries) = shapefiles (vector data)→ divided to cell (raster)

Time <-seq(0,365, by=1)

NEXT STEPS

- 1-Mechanistic model of retrospective data outbreak
- 2-How do interactions between human, rodent and flea hosts maintain bubonic plague endemically in Madagascar?
- 3-Molecular epidemiology of resistant strains of Yersinia pestis

THANKS TO E2M2 STAFF (INSTRUCTORS-MENTORS)& ALL STUDENTS