MATH 3240 March 4

Let $I = [0, \Pi]$. A path in a space X it a continuous map $\alpha: I \longrightarrow X$.

Def: A space X is path connected if for every two points $x,y \in X$ \exists a path α with $\alpha(0) = x$ and $\alpha(1) = y$.

Remark. We don't need to use I in this definition, it could be any interval [a, b] = [0,1].

Example: \mathbb{R}^n is connected, because \vec{v} , $\vec{w} \in \mathbb{R}^n$ are connected by a straight line: $\alpha(t) = \vec{V} + t(\vec{w} - \vec{v})$, $\alpha(0) = \vec{v}$, $\alpha(1) = \vec{w}$.

Example: Recall the space

 $X = \{(x, y) | y = h, n \in \mathbb{N}\} \cup \{(0, y) | y > 0\} \cup \{(x, 0) | x \in \mathbb{R}\}.$

we saw last day that removing any subset of $\{(x,0) \mid x \in \mathbb{R}^n\}$ leaves the space connected, contradicting our intuition.

Set A = (a,0), a > 0 $a \in \mathbb{R}$. We'll see that $X \mid A$ is not path connected, by contradiction. So let $\alpha: I \longrightarrow X \mid A$ be a path with $\alpha(0) = (0,0)$ and $\alpha(1) = (a+1,0)$.

We consider two cases. Case I) $\alpha(I)$ contains finitely many points $(a, \frac{1}{n})$, $n \in \mathbb{N}$. Let $N = \max\{n \in |N| (a, \frac{1}{n}) \in \alpha(I)\}$, and $M = \frac{1}{N} + \frac{1}{N+1}$. Set $U=(a,\infty)\times(-\infty, -\infty) \subset \mathbb{R}^2$ and $V=\operatorname{int}(U^c)$. Claim: {a-1(U), a-1(V)} separate I. Proof of claim: Both sets are open, and nonempty since $\mathcal{D}=\alpha^{-1}((0,0))\in \alpha^{-1}(V)$, and $1=\alpha^{-1}((a+1,0))\in \alpha^{-1}(V)$. Since $U \cap V = \emptyset$, so too we have $\alpha'(V) \cap \alpha'(u) = \emptyset$. Last, since $X \setminus (U \cup V) = \{(a, \frac{1}{N+i})\}_{i=1}^{\infty} \cup \{(a,0)\},$ the image $\alpha(I)$ lies entirely in UUV. Thus. $\alpha^{-1}(U) \cup \alpha^{-1}(V) = I$; so we have a contradiction.

Case 2) $\propto (I)$ contains infinitely many of the parets $(a, \pm h)$, $n \in \mathbb{N}$.

Then $\{ \mathbf{x}^{(1)}(a, \pm h) \}_{n \in \mathbb{N}}$ is an infinite subset of I,

go it has an accumulation point $x \in I$ by Bolzano- Weierstrass. But then $\alpha(x) \in X$ is an accumulation point of $\{\alpha(\alpha'(a, \frac{1}{n}))\}_{n \in IN} \subset X$, Since α is continuous. However, $\{(a, \frac{1}{n})\}_{n \in IN} \subset X$ has no accumulation points in X, contradiction.

Thus:

Connectedness does not imply path connectedness.

Proposition: If X is a path-connected topological space, then it is connected.

Proof: Suppose X is not connected, say $\{A,B\}$ is a separation of X. Choose a $\{A,b\}$ and let $\{\alpha:I\to X\}$ be a path connecting a and b. Then $\{\alpha'(A),\alpha'(B)\}$ is a separation of $\{A,C\}$ contradiction.

Definition: Suppose that $\alpha: I \longrightarrow X$ and $\beta: I \longrightarrow X$ are two paths with $\alpha(\Delta) = \beta(0)$. Define $\alpha * \beta: I \longrightarrow X$ by $\alpha * \beta(\pounds) = \begin{cases} \alpha(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$

In general, path connectedness is stronger than connectedness. However.

Proposition: Every connected open subset of R" is path connected.

Lemma: Let $A_i \subset X$ be path connected subsets for $i \in IN$. If $A_i \cap A_{i+1} \neq \emptyset$ $\forall i$, then $\bigcup_{i=1}^{\infty} A_i \cap B_i$ path connected.

Let {ai} be a family of points with ai Ain Air Vi. Let $\alpha_i: I \longrightarrow X$ be a path with $\alpha_i(0) = a_i$, $\alpha_i(1) = a_{i+1}$, and let x, y \(\text{U} A \(i \) be given. Suppose \(\text{X} \is A \) and yeAr, WLOG j<k. Choose B, , B2: I -> X satisfying $\beta_1(0) = x$, $\beta_1(1) = a_j$, $\beta_2(0) = a_k$, $\beta_2(1) = y$. Then

β, * α; * αj+1 * ... * α * β2 is a path connecting x and y. Proof of proposition:

Let ACR" be a connected subset, and choose PigeA. Let O= {B=R"|Bis an open ball in A}. Define a sequence of open sets li as follows.

Let U, be an open ball in O containing p. Then ti>1, set Ui to be the union of balls BCO satisfying Bn Ui-, # 4.

Set $V=UU_i$, and suppose $\exists B \in O$ that is not used in the construction of some Ui. Then the union W of all such balls is open, and $WnV=\emptyset$ by construction of the Ui's. Moreover, WuV=A since every $B \in O$ is used in the construction of either V or W, and UB=A since A is open.

Thus IV, WI II a separation of A, contradicting connectedness. Thus every BCO is used in some Ui. In particular, qEV and I a sequence {Bi}i=1 of balls with BinBin ≠ Ø s.t. PEB, and qEBn. The proof now follows from the lemma.

Definition: A path component of a space X is a maximal (with respect to inclusion) path connected subset of X.

Proposition: If a space X is path connected and $f: X \longrightarrow Y$ is continuous, then f(X) is a path connected subset of Y.

Proof: Given $x, y \in f(X)$, choose $p, q \in X$ s.t. f(p) = x and f(q) = y. Then choose $\alpha: I \longrightarrow X$ satisfying $\alpha(0) = p$, $\alpha(1) = q$. Then $f \circ \alpha: I \longrightarrow Y$ satisfies $f \circ \alpha(0) = x$ and $f \circ \alpha(1) = y$.

Proportion: If $\{X_i\}_{i\in I}$ are path connected, so is $\prod_{i\in I} X_i$.

Proof: Denote the projections by $p_i: \prod_{i\in I} X_i \longrightarrow X_j$.

Choose $X_i, y \in \prod_{i\in I} X_i$. For all $j \in I$, let $\alpha_j: I \longrightarrow X_j$.

be a path connecting $p_j(x)$ to $p_j(y)$. Define a new path $\alpha: I \longrightarrow \prod_{i\in I} X_i$ by $\alpha(t) = (\alpha_j(t)) \in \prod_{i\in I} X_i$.

Since each component of α is a continuous map, it is continuous. Moreover, $\alpha(0) = (\alpha_j(0)) = (x_j) = x$ and $\alpha(1) = (\alpha_j(1)) = (y_j) \cdot y$ by construction. Thus $\prod_{i\in I} X_i$ is path connected.

Note: We omit all book material on S-connectedness and S'-connectedness.

MATH 3240 March 6.

Local properties

Connectedness/path connectedness are useful properties, but sometimes it is sufficient if they hold "locally".

Definition: A space X is locally (path connected) connected if for every neighbourhood U of x, there is a (pth) connected nighbourhood V of x s.t. XEV = U.

If X is locally (path) connected at every point, then X is connected.

(connected)

Examples: An interval (a,b) = R is connected and locally connected. The subspace [-1,0) u(0,1] is not connected, but it is locally connected.

The space

 $X = \{(x, +) \mid x \in \mathbb{R}, n \in \mathbb{N}\} \cup \{(0, y) \mid y \in \mathbb{R}\} \cup \{(x, 0) \mid x \in \mathbb{R}\}$ is connected, but not locally connected: Given $(a, 0) \in X$, $a \neq 0$, any open neighbourhood U satisfying $U \cap \{(0, y) \mid y \in \mathbb{R}\} = \emptyset$ intersects X in infinitely many disjoint segments:

The subspace Q = R is neither connected nor locally connected.

Path connected examples:

The space \mathbb{R}^n is both path connected (straybet lines) and locally path connected, since every basis element $(a_1, b_1) \times (a_2, b_2) \times \dots \times (a_n, b_n)$ is path connected (straight lines suffice).

The space X from the previous example II path connected, but not locally path connected, by the same reasoning. As before, [-1,0), (0,1] is not path connected but is locally path connected.

Examples showing local path connectedness and local connectedness are different;

The space $X\setminus\{(\frac{1}{n},0)\mid n\in\mathbb{Z}_i\}$ is locally connected at (0,0), but not locally path connected:

The most important fact about these local' concepts is:

Theorem: A connected, locally path connected space is path connected.

Proof: Let X be a locally path connected space which is not path connected. We'll show X is not connected.

Fix peX. Let C be the set of all points in X that can be joined to p by a path. Since C+Ø et's enough to show C is clopen.

First, to see open: Let CEC and choose an open path connected nobld U of c. Then uell can be connected to c by a path V, and c is connected to p by a. Thus ax & connects p to u. Thus UCC and Cisopen.

To see C is closed: let $c \in \overline{C}$ and choose U an open path connected nobble of c. Then $C \cap U \neq O$, so choose us $C \cap U$. Join u to p by Y, and e to u by α . Then $Y \neq \alpha$ joins p to C, so $\overline{C} \subset C$ and C is closed.

So I a nonempty clopen set in X, C. Unless X is path connected, $C^c \neq \emptyset$. Thuy X is not connected.