Algoritmus pro hledání maximálních nezávislých množin

Milan Munzar Jakub Sochor

xmunza00, xsocho06

- 1 Úvod
- 2 Maximální nezávislé množiny
- 2.1 Co to je
- 2.2 Algoritmus
- 3 Implementace

Úprava algoritmu pro paralelizaci, využité prostředky pro paralelizaci A

4 Vyhodnocení

Pro účely vyhodnocení zrychlení paralelní verze algoritmu oproti sekvenční byly vytvořeny skripty, které generují náhodné grafy se zadaným počtem vrcholů a hran ve formátu GraphML.

Jednotlivé grafy jsou rozděleny do skupin podle toho, kolik procent maximálního možného počtu hran obsahují. K tomuto rozdělení jsme přistoupili zejména proto, aby čas běhu algoritmu v jedné skupině grafů byl rostoucí s počtem vrcholů daného zpracovávaného grafu, jelikož počet hran grafu významně ovlivňuje také počet maximálních nezávislých množin v daném grafu a tudíž i dobu běhu.

Celé vyhodnocování bylo prováděno na třech skupinách grafů po 31 grafech ve skupině. Program byl vždy puštěn sekvenčně a změřen čas běhu t_S a následně byl puštěn paralelně a určen čas t_P , po který pracovala paralelní verze algoritmu. Do změřených časů není započteno načítání grafu ani případný výpis maximálních nezávislých množin, ale pouze čistý čas běhu algoritmu pro určení těchto množin. Pro každý graf bylo určeno zrychlení s podle vzorce 1.

$$s = \frac{t_S}{t_P} \tag{1}$$

Testování bylo prováděno na počítači s procesorem AMD Phenom X4 945, který má 4 fyzická jádra běžící na frekvenci 3 GHz a 4 GB RAM. Během běhu programu nebyl na počítači puštěn žádný další výpočetně náročný proces a pro měření času bylo využito high_resolution_clock ze standardu C++11. [[TODO: přidat přesnost???]]

Grafy vytvořené z naměřených výsledků lze vidět na obrázku 1 a všechny naměřené časy a určené zrychlení jsou obsaženy v příloze B.

Maximální teoreticky možné dosažitelné zrychlení na procesoru se čtyřmi jádry je 4,0. Jak lze vidět z uvedených grafů, tak nám se podařilo dosáhnout zrychlení kolem 3,5. Toto považujeme

Obrázek 1: Naměřené výsledky rychlosti hledání maximálních nezávislých množin a zrychlení oproti sekvenčnímu algoritmu. Grafy obsažené v jednom grafu obsahují stejné procento všech hran.

za solidní výsledek, protože v rámci programu je též nutné řešit synchronizaci přístupu do struktury obsahující výsledné maximální nezávislé množiny.

Ovšem jak si lze z grafů všimnout, tak s narůstajícím počtem vrcholů se zrychlení snižuje. Tento fakt je dle našeho zkoumání způsoben především tím, že velmi zásadně roste počet maximálních nezávislých množin a jejich reprezentace v paměti již není triviální a program celkově využije velkého množství paměti (více než 1GB).

Kvůli tomuto problému jsme také experimentovali s tím, že se maximální nezávislé množiny nebudou ukládat do paměti, ale rovnou vypisovat. S tímto přístupem jsme ovšem dosahovali ještě horších výsledků, jelikož program trávil podstatně další čas v kritické sekci výpisu výsledku a tímto byla paralelní verze programu velmi zpomalena.

5 Závěr

Reference

[1] TODO demel

A Použití programu

B Naměřené výsledky

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
200	9950	4.806	1.379	3.484
205	10455	5.457	1.583	3.446
210	10972	6.417	1.862	3.447
215	11502	7.905	2.233	3.539
220	12045	8.834	2.486	3.554
225	12600	10.320	2.926	3.528
230	13167	11.675	3.307	3.531
235	13747	13.686	3.897	3.512
240	14340	15.704	4.519	3.475
245	14945	18.481	5.391	3.428
250	15562	20.852	6.254	3.334
255	16192	23.675	7.085	3.341
260	16835	26.377	8.003	3.296
265	17490	30.030	9.123	3.292
270	18157	35.272	11.169	3.158
275	18837	39.345	12.627	3.116
280	19530	43.736	13.849	3.158
285	20235	49.988	15.907	3.142
290	20952	56.912	18.233	3.121
295	21682	61.219	20.003	3.060
300	22425	71.425	23.343	3.060
305	23180	80.738	26.021	3.103
310	23947	88.890	29.152	3.049
315	24727	101.445	33.761	3.005
320	25520	108.687	36.410	2.985
325	26325	124.581	42.150	2.956
330	27142	138.036	47.123	2.929
335	27972	154.214	51.808	2.977
340	28815	174.083	59.911	2.906
345	29670	189.836	65.013	2.920
350	30537	206.761	71.886	2.876

Tabulka 1: Naměřené výsledky pro grafy s $50\,\%$ hran

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
300	26910	6.805	1.938	3.511
305	27816	7.280	2.169	3.356
310	28737	8.192	2.413	3.396
315	29673	9.049	2.624	3.448
320	30624	10.111	2.942	3.437
325	31590	11.002	3.167	3.474
330	32571	11.819	3.395	3.481
335	33567	13.254	3.878	3.418
340	34578	14.360	4.213	3.408
345	35604	15.617	4.960	3.149
350	36645	16.846	5.182	3.251
355	37701	18.513	5.536	3.344
360	38772	20.369	6.360	3.202
365	39858	21.536	6.546	3.290
370	40959	23.727	7.260	3.268
375	42075	25.338	7.765	3.263
380	43206	27.552	8.358	3.297
385	44352	29.760	9.326	3.191
390	45513	32.013	10.009	3.198
395	46689	35.218	10.803	3.260
400	47880	37.397	11.926	3.136
405	49086	40.661	13.008	3.126
410	50307	43.336	13.655	3.174
415	51543	47.390	15.475	3.062
420	52794	50.443	16.103	3.133
425	54060	55.128	17.948	3.072
430	55341	58.416	18.720	3.121
435	56637	64.123	20.668	3.103
440	57948	69.349	22.250	3.117
445	59274	72.653	23.972	3.031
450	60615	76.661	25.176	3.045

Tabulka 2: Naměřené výsledky pro grafy s $60\,\%$ hran

Vrcholů	Hran	Sekvenční [s]	Parelelní [s]	Zrychlení
400	55860	4.118	1.156	3.561
405	57267	4.361	1.258	3.466
410	58691	4.567	1.275	3.583
415	60133	4.875	1.393	3.500
420	61592	5.169	1.457	3.547
425	63069	5.538	1.572	3.522
430	64564	5.929	1.729	3.430
435	66076	6.263	1.731	3.617
440	67606	6.720	1.862	3.610
445	69153	7.085	1.956	3.623
450	70717	7.570	2.081	3.638
455	72299	7.977	2.185	3.650
460	73899	8.391	2.299	3.650
465	75516	8.952	2.478	3.613
470	77150	9.362	2.589	3.616
475	78802	9.900	2.819	3.511
480	80472	10.345	2.936	3.523
485	82159	11.172	3.143	3.555
490	83863	11.838	3.417	3.465
495	85585	12.301	3.552	3.463
500	87325	13.155	3.888	3.383
505	89082	13.664	3.806	3.590
510	90856	14.445	4.222	3.421
515	92648	15.364	4.538	3.386
520	94458	16.111	4.790	3.363
525	96285	16.770	5.069	3.308
530	98129	17.903	5.243	3.415
535	99991	18.835	5.486	3.433
540	101871	19.660	5.838	3.368
545	103768	20.578	6.180	3.330
550	105682	21.710	6.519	3.330

Tabulka 3: Naměřené výsledky pro grafy s $70\,\%$ hran