# A. Informacje o zespole realizującym ćwiczenie

| Nazwa przedmiotu:             | Automatyka pojazdowa                                                                                           |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Nazwa ćwiczenia:              | Sieci wymiany danych                                                                                           |  |
| Data ćwiczenia:               | 2019-03-27                                                                                                     |  |
| Czas ćwiczenia:               | 09:30 - 11:00                                                                                                  |  |
| Zespół realizujący ćwiczenie: | <ul> <li>Sonia Wittek</li> <li>Anna Gęca</li> <li>Barbara Kaczorowska</li> <li>Małgorzata Śliwińska</li> </ul> |  |









### B. Sformułowanie problemu

Celem zadania było znalezienie funkcji, która wylicza kąt pomiędzy wektorem przyspieszenia grawitacyjnego, a wektorem osią Y w układzie współrzędnych związanym z pojazdem. Jako dane wejściowe do funkcji służyć miały składowe przyspieszenia ziemskiego -  $a_x$ , czyli składowa równoległa (przyspieszenie wzdłuż osi X) oraz  $a_{
m v}$ , czyli składowa prostopadła (przyspieszenie wzdłuż osi Y). Oprócz tego trzeba było stworzyć zestaw danych, które umożliwią weryfikację systemu realizującego naszą funkcję. Dane należało wyznaczyć za pomocą metody wartości brzegowych oraz partycji równoważnych.

## C. Sposób rozwiązania problemu

Aby rozwiązać powyższe zagadnienie stworzyłyśmy w Excelu tabelę, w której na podstawie danych wejściowych  $a_x$  oraz  $a_y$  obliczałyśmy oczekiwaną wartość wyjścia (metoda analizy wartości brzegowych) lub określałyśmy status – błędne lub prawidłowe dane (metoda partycji równoważnych). Stworzyłyśmy do tego dwa zestawy testowe: 1. wartości brzegowe leżące na okręgu  $a_x^2 + a_y^2 = g^2$  oraz 2. wartości niespełniające równania okręgu. Poniżej przedstawiony został fragment tabeli i formuła służąca do obliczania oczekiwanego kąta.

| C2 | C2 • JEŻELI(A2^2 + B2^2 =9,81^2; JEŻELI(B2=0;A2*PI()/19,62;ATAN(A2/B2)); "Bledne wartosci wejsciowe") |             |                    |                           |   |   |   |  |
|----|-------------------------------------------------------------------------------------------------------|-------------|--------------------|---------------------------|---|---|---|--|
|    | Α                                                                                                     | В           | С                  | D                         | Е | F | G |  |
| 1  | ах                                                                                                    | ay          | oczekiwane a [rad] | oczekiwane alfa [stopnie] |   |   |   |  |
| 2  | -9,81                                                                                                 | 0           | -1,570796327       | -90                       |   |   |   |  |
| 3  | -9,31                                                                                                 | 3,091924967 | -1,250149027       | -71,62826302              |   |   |   |  |
| 4  | -8,81                                                                                                 | 4,315089802 | -1,115346376       | -63,90464004              |   |   |   |  |
| 5  | -8,31                                                                                                 | 5,213444159 | -1,010494604       | -57,897076                |   |   |   |  |
| 6  | -7,81                                                                                                 | 5,936328832 | -0,920866727       | -52,76177693              |   |   |   |  |
| 7  | -7,31                                                                                                 | 6,542170894 | -0,840771734       | -48,1726719               |   |   |   |  |

### D. Wyniki

#### 1. Metoda analizy wartości brzegowych - fragmenty tabeli wynikowej:

| ax    | ay           | oczekiwane a [rad]        | oczekiwane alfa [stopnie] |  |  |
|-------|--------------|---------------------------|---------------------------|--|--|
| -9,81 | 0            | -1,570796327              | -90                       |  |  |
| -9,31 | 3,091924967  | -1,250149027              | -71,62826302              |  |  |
| 9,69  | 1,529705854  | 1,414224067               | 81,02907034               |  |  |
| 9,81  | 0            | 1,570796327               | 90                        |  |  |
| 9,69  | -1,529705854 | -1,414224067              | -81,02907034              |  |  |
| -9,81 | 0            | 1,570796327               | 90                        |  |  |
| -9,81 | 0,01         | Bledne wartosci wejsciowe |                           |  |  |
| -9,31 | 3,101924967  | Bledne wartosci wejsciowe |                           |  |  |

#### 2. Metoda partycji równoważnych – fragmenty tabeli wynikowej:

| ax |      | ay          | oczekiwane wyjscie        |
|----|------|-------------|---------------------------|
| -  | 9,81 | 0           | Poprawne wartosci         |
| _  | 9,81 | 0           | Poprawne wartosci         |
| -  | 9,81 | 0,01        | Bledne wartosci wejsciowe |
| -  | 9,31 | 3,101924967 | Bledne wartosci wejsciowe |
| _  | 8,81 | 4,325089802 | Bledne wartosci wejsciowe |

#### E. Wnioski

Podczas laboratorium udało nam się stworzyć zestaw przypadków testowych, dzięki którym sprawdzić, jak testowany system powinien zareagować na różne zestawy danych oraz dowiedzieć się czy system działa poprawnie. Nauczyłyśmy się projektować przypadki testowe metodą analizy wartości brzegowych oraz metodą partycji równoważnych. Dowiedziałyśmy się dzięki temu, w jaki sposób prosto przygotować zestaw danych testowych, który uwzględnia punkty mogace powodować nieprawidłowe działanie systemu.