GENERAL RELATIVITY

A Quick Guide

Huan Bui

Colby College Department of Physics and Astronomy Class of 2021

December 15, 2018

Contents

1	Overview and Review	2
	1.1 Review of Special Relativity	2
	1.2 The Equivalence Principle	2
	1.3 Versions of the Equivalence Principle	2
	1.3.1 The Strong Equivalence Principle	2
	1.3.2 The Weak Equivalence Principle	2
2	Review of Multivariable and Vector Calculus	2
3	Flat 3-D space	2
4	Flat spacetime	2
5	Curved spaces	2
6	Gravitation and Curvature	2
7	Einstein's field equations	2
8	Predictions and tests of general relativity	2
9	Cosmoslogy	2

1 Overview and Review

What is general relativity? It's a theory of gravity.

Replaces Newton's law of gravity, for heavy masses and high precision.

Keep in mind, GR is not compatible with Quantum Mechanics.

Question in Physics: how to reconcile GR and QM?

- 1.1 Review of Special Relativity
- 1.2 The Equivalence Principle
- 1.3 Versions of the Equivalence Principle
- 1.3.1 The Strong Equivalence Principle
- 1.3.2 The Weak Equivalence Principle
- 2 Review of Multivariable and Vector Calculus
- 3 Flat 3-D space
- 4 Flat spacetime
- 5 Curved spaces
- 6 Gravitation and Curvature
- 7 Einstein's field equations
- 8 Predictions and tests of general relativity
- 9 Cosmoslogy