Versuch 5: Synchrone Schaltwerke und Automaten

a. Synchroner Modulo-7-Zähler als Medwedew-Automat Zustandsgraph und Notation

Zustände: 0, 1, 2, 3, 4, 5, 6

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0$$

${\bf Zustands folgetabelle}$

Zustand (Z)	D2	D1	D0
000	0	0	1
001	0	1	0
010	0	1	1
011	1	0	0
100	1	0	1
101	1	1	0
110	0	0	0

KV-Diagramme und Minimierung

Für D2:

	00	01	11	10
0	0	0	1	1
1	x	X	X	x

$$D2 = Z1 \cdot Z0$$

Für	D1:

	00	01	11	10
0	0	1	1	0
1	X	X	X	x

$$D1 = \overline{Z1} \cdot Z0 + Z1 \cdot \overline{Z0}$$

Für
$$D0$$
:

	00	01	11	10
0	1	0	1	0
1	x	X	X	x

$$D0 = \overline{Z0}$$

b. Steuerbarer, synchroner Zähler mit einstellbarer Zählfolge ${\bf Zustands folgetabelle}$

Für S = 0:

ш	S=0:			
	Zustand (Z)	JK-FF Q2	JK-FF Q1	JK-FF Q0
	000	0	0	1
	001	0	1	0
	010	0	1	1
	011	1	0	0
	100	1	0	1

Für $S=1$:			
Zustand (Z)	JK-FF Q2	JK-FF Q1	JK-FF Q0
000	0	0	1
001	0	1	1
011	1	0	0
100	1	0	1
010	0	0	0

KV-Diagramme und Minimierung

Die KV-Diagramme für die Ansteuersignale der JK-Flipflops werden erstellt und minimiert.

$$JK$$
-FF $Q0$ — Logik für $Q0$

c. Steuerung einer Straßen-Baustellen-Absicherung als Moore-Automat

${\bf Zustands folgetabelle}$

Zustand (Z)	JK-FF A3	JK-FF A2	JK-FF A1	JK-FF A0
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	1	0	0	0
4	0	0	0	0

KV-Diagramme und Minimierung

Die KV-Diagramme für die Übergangs- und Ausgangsfunktionen werden erstellt und minimiert.

Versuch 6: Programmzähler und Serienaddierwerk

a. 3-Bit-Befehlszähler

 ${\bf Zustands folgetabelle\ ohne\ Lade funktion}$

Zustand (Z)	D2	D1	D0
000	0	0	1
001	0	1	0
010	0	1	1
011	1	0	0
100	1	0	1
101	1	1	0
110	1	1	1
111	0	0	0

KV-Diagramme und Minimierung

Die KV-Diagramme für die Flipflop-Ansteuersignale werden erstellt und minimiert.

b. Serienaddierwerk

Logikplan

Der Logikplan für das Serienaddierwerk wird erstellt.

${\bf Funktions\"{u}berpr\"{u}fung}$

Die Funktion der Schaltung wird überprüft.