SCC0221 Introdução à Ciência da Computação I

Trabalho 2

Ano/Semestre: 2020/02

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

Sobre o trabalho

- Você recebeu um arquivo de texto com as seguintes informações:
 - Número de linhas: 150
 - Número de colunas: 3
- As linhas representam 50 amostras de três espécies de Flores Iris (Iris setosa, Iris virginica, Iris versicolor)
- As colunas representam:
 - Largura da pétala
 - Altura da pétala
 - Espécie da flor

Sobre o trabalho

- O objetivo geral é escrever um programa que leia o arquivo de dados para organizar as flores em k grupos, em que flores similares (altura e largura da pétala) devem ser alocadas no mesmo grupo.
 - A terceira coluna (espécie) não deve ser utilizada para a geração dos grupos. É uma informação que usaremos apenas para verificar a "qualidade" dos grupos obtidos.

Arquivo de dados

 O arquivo de dados fornecido é um arquivo texto, em que as colunas são separadas por vírgulas.

Vamos ver o arquivo iris_petalas.csv

- Implementar o seguinte pseudocódigo para gerar os grupos:
 - 1. Ler o arquivo de dados
 - 2. Ler o valor de k do usuário, com k > 1 (número de grupos)
 - 3. Escolher aleatoriamente k flores do conjunto de dados para serem representantes iniciais de cada um dos k grupos
 - 4. Para cada flor do conjunto de dados, alocar ao grupo mais próximo
 - 4.1. A proximidade de uma flor a um grupo é dada pela distância euclidiana da flor ao representante do grupo
 - 5. Atualizar o representante de cada grupo.
 - 5.1. Agora o representante de um grupo é formado pelo ponto médio das flores daquele grupo
 - 6. Repetir os passos 4 e 5 uma quantidade \underline{x} de vezes.
 - 7. Gerar um novo arquivo de dados adicionando uma quarta coluna. Esta coluna indica o número do grupo em que a flor foi alocada.

Explicação visual do método:

Usuário informa k=3 grupos. Escolher 3 representantes iniciais. OBS: cada cor indica um grupo. (Linhas 1 a 3 do pseudocódigo)

Explicação visual do método:

Usuário informa k=3 grupos. Escolher 3 representantes iniciais. OBS: cada cor indica um grupo. (Linhas 1 a 3 do pseudocódigo)

Cada ponto (flor) é associado ao cluster via representante mais próximo (distância euclidiana). Em seguida, os representantes são atualizados para um ponto médio do cluster. (Linhas 4 e 5 do pseudocódigo)

Explicação visual do método:

Usuário informa k=3 grupos.

Escolher 3 representantes iniciais.

OBS: cada cor indica um grupo.

Cada ponto (flor) é associado ao cluster via representante mais próximo (distância euclidiana). Em seguida, os representantes são atualizados para um ponto médio do cluster.

(Linhas 4 e 5 do pseudocódigo)

Essa etapa é repetida um número \underline{x} de vezes, em que \underline{x} é definido pelo usuário.

Requisitos do trabalho

- O código deve ser organizado de forma modular, usando funções. Exemplo de funções:
 - Ler conjunto de dados
 - Inicializar representantes
 - Alocar ao grupo mais próximo
 - Atualizar representantes
 - Escrever resultados
- Todos os vetores/matrizes utilizados no trabalho devem ser alocados dinamicamente!
- Trabalho individual ou em duplas.
 - Em caso de dupla, ambos devem saber explicar o código durante a entrevista.