Errata

(Mathematische Einführung in Data Science von Sven-Ake Wegner)

8. August 2024

- Seite 15, Zeile -3 und Seite 16, Zeile 2: $V_{\text{err}}(x\mathcal{E})^{(n)}$
- Seite 17, Zeile 11: r_{xy}
- Seite 24, Zeile −11: $f = \langle (a_1, \dots, a_d), \cdot \rangle + a_0$
- Seite 26, Zeile 18: $f(z) = \operatorname{sig}(\langle w, \cdot \rangle)$
- Seite 31, Zeile 12: ... und $\langle w, \widehat{w}_{k} \rangle < 0$ gelten.
- Seite 38, Zeile 13: ... und $x_1, \ldots, x_k \in D_1 := \{x \mid (x, y) \in D\}$ gelten.
- Seite 38, Zeile 14: $x_1 \in \underset{z \in D_1}{\operatorname{argmin}} \rho(x, z)$ sowie $x_j \in \underset{z \in D_1}{\operatorname{argmin}} \rho(x, z)$ für $j \geqslant 2$
- Seite 38, Zeile 20: $f(x) \in \underset{y \in Y}{\operatorname{argmax}} N(y)$
- Seite 39, Zeile 4: $z^* \leftarrow \operatorname{argmin}_{z \in D'_1} \rho(x, z)$
- Seite 39, Zeile 5: $D_1' \leftarrow D_1' \setminus \{(z^*, y^*)\}$
- Seite 39, Zeile 10–11: Hierbei bezeichnet $\pi_2(x,y) = x$ die Projektion auf den zweiten Eintrag von $(x,y) \in D$ und y^* das Label von z^* .
- Seite 39, Zeile -2: ... vorgenannten grauen Punkt x mit ...
- Seite 41, Zeile 6–7: ... Trainingsdaten D_{Train} und $Testdaten\ D_{\text{Test}}$. Dann bestimmt man einen Klassifizierer $f \colon X \to Y$ anhand von D_{Train} , und stellt fest, welcher Anteil der Punkte aus D_{Test} durch f korrekt klassifiziert wird.
- Seite 48, Zeile 5–6: ..., dass sich die Texte 1 und 2 deutlich kosinusähnlicher sind als 1 und 3 bzw. 2 und 3.
- Seite 52, Zeile -14: Text D
- Seite 55, Zeile 21–23: ... bevor der minimale Abstand zwischen den Clustern in der nächsten Runde erstmalig über einen einzugebenden Wert $\delta > 0$ wachsen würde.
- Seite 55, Zeile −15: *D*
- Zeile −12: while $\min_{i \neq j} \rho(C_i, C_j) \leq \delta$ do
- Seite 56, Zeile 4: ..., wie in Definition 4.2, ...
- Seite 56, Zeile 8: Aufgabe 4.2
- Seite 58, Zeile −16: Der folgende Pseudocode approximiert einen Minimierer der k-means-Kostenfunktion.
- Seite 62, Zeile 5: $\operatorname{argmin}_{i=1,2} \|x \mu_i\|$
- Seite 70, Zeile 3–4: Wir wählen $v_1 = 1$ als Eigenvektor zum Eigenwert λ_1 . Dann gelten für Eigenwert und Eigenvektor λ_2 bzw. v_2 ...
- Seite 70, Zeile 7: $v_2 \in \cdots$
- Seite 70, Zeile -3: Sei G = (V, E) ein Graph mit $\deg(v) > 0$ für alle $v \in V$.
- Seite 71, Zeile 5: $\emptyset \neq S \subset V$
- Seite 72, Zeilen 6 und 8: $\emptyset \neq S \subset V$
- Seite 73, Zeile 10: Ist G d-regulär (d.h., es gilt $\deg(v) = d$ für alle Vertices $v \in V$ mit einem $d \in \mathbb{N}$), so gilt . . .
- Seite 74, Zeile 15: $\emptyset \neq S \subset V$
- Seite 74, Zeile 16: Cheeg(G) = $\frac{\#\partial S}{\text{vol }S}$
- Seite 87, Zeilen 11 und 14: *AX*
- Seite 91, Zeile 12: ... Singulärwert von A, ...
- Seite 95, Zeile 6: Ist $1 \leq k < p$ und haben wir $\sigma_{k+1} = \cdots = \sigma_p = 0, \ldots$
- Seite 102, Zeile 17: $r = \operatorname{rk}(A)$

- Seite 106, Zeile 3: $\forall i, j \in \{1, ..., n\}$: $\left| \|T_{V_k} a_i T_{V_k} a_j\| \|a_i a_j\| \right| \leq 2 \left(\sum_{\ell=k+1}^r \sigma_\ell\right)^{1/2}$
- Seite 107, Zeile −1 bis Seite 108, Zeile 1:

$$A = \begin{bmatrix} 0.07 & 0.29 & 0.32 & 0.51 & 0.66 & 0.18 & -0.23 \\ 0.13 & -0.02 & -0.01 & -0.79 & 0.59 & -0.02 & -0.06 \\ 0.68 & -0.11 & -0.05 & -0.05 & -0.24 & 0.56 & -0.35 \\ 0.15 & 0.59 & 0.65 & -0.25 & -0.33 & -0.09 & 0.11 \\ 0.41 & -0.07 & -0.03 & 0.10 & -0.02 & -0.78 & -0.43 \\ 0.07 & 0.73 & -0.67 & 0.00 & -0.00 & 0.00 \\ 0.55 & -0.09 & -0.04 & 0.17 & -0.11 & 0.78 \end{bmatrix} \begin{bmatrix} 12.4 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 9.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.$$

■ Seite 108, Zeile 5:

$$\check{A} = \begin{bmatrix} 0.15 & 1.97 & 0.15 & 1.97 & 0.56 \\ 0.92 & 0.01 & 0.92 & 0.01 & 0.94 \\ 4.84 & 0.03 & 4.84 & 0.03 & 4.95 \\ 0.36 & 4.03 & 0.36 & 4.03 & 1.20 \\ 2.92 & -0.00 & 2.92 & -0.00 & 2.98 \\ -0.34 & 4.86 & -0.34 & 4.86 & 0.65 \\ 3.92 & 0.02 & 3.92 & 0.02 & 4.00 \end{bmatrix} = \begin{bmatrix} 0.07 & 0.29 \\ 0.13 & -0.02 \\ 0.68 & -0.11 \\ 0.15 & 0.59 \\ 0.41 & -0.07 \\ 0.07 & 0.73 \\ 0.55 & -0.09 \end{bmatrix} \begin{bmatrix} 12.4 \\ 9.5 \end{bmatrix} \begin{bmatrix} 0.56 & 0.09 & 0.56 & 0.09 & 0.59 \\ -0.12 & 0.69 & -0.12 & 0.69 & 0.02 \end{bmatrix}$$

■ Seite 109, Zeile 16:

$$= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0.07 & 0.29 & \cdots & -0.23 \\ 0.13 & -0.02 & & -0.06 \\ 0.68 & -0.11 & & -0.35 \\ 0.15 & 0.59 & & 0.11 \\ 0.41 & -0.07 & & -0.43 \\ 0.07 & 0.73 & & 0.00 \\ 0.55 & -0.09 & \cdots & 0.78 \end{bmatrix} \begin{bmatrix} 12.4 \\ 9.5 \\ 1.3 \\ \dots \end{bmatrix} \begin{bmatrix} 0.56 & 0.09 & 0.56 & 0.09 & 0.59 \\ -0.12 & 0.69 & -0.12 & 0.69 & 0.02 \\ \vdots & & & & \vdots \\ 0.48 & -0.51 & -0.48 & 0.51 & 0.00 \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

■ Seite 109, Zeile -2:

$$u_2 = 0.29 \cdot \text{Antje} - 0.02 \cdot \text{Birgit} + \cdots - 0.09 \cdot \text{G\"{u}},$$

■ Seite 111, Zeile 12:

- Seite 110, Zeile 7: $\mathbb{R}^5_{\mathfrak{F}}$
- Seite 112, Zeile 5: (Film)_f $\mathbb{R}_{f} \xrightarrow{A} \mathbb{R}_{g}$ (Bewerterin)_g
- Seite 111, Zeile 4: R (statt R)
- Seite 112, Zeilen 14 und 25: R (statt R)
- Seite 112, Zeile −3: ...die Daten erst einem geeigneten Pre- oder Postprocessing zu unterziehen ...
- Seite 125, Zeile -3: $H_d(1)$
- Seite 129, Zeile -1: $0 < \varepsilon < 1$
- Seite 131, Zeile 9: $H_{\delta,x_1} = \{(x_2,\ldots,x_d \in \mathbb{R}^{d-1} \mid (x_1,x_2,\ldots,x_d) \in H_{\delta}\}$
- Seite 134, Zeile 9: Für solche Zufallsvektoren erhält man ...
- Seite 139, Zeile -1: $||X^{(i)}|| \approx 1$
- Seite 146, Zeile 5: $P[||X|| \sqrt{d}| \ge \varepsilon]$
- \blacksquare Seite 164, Zeile -17: . . . der Abstand der Mittelpunkte, . . .
- Seite 167, Zeile 5–7: Im Fall der Varianz sind diese eher technisch, und wir formulieren daher im Satz für die Varianz nur die sich ergebende qualitative asymptotische Aussage.
- Seite 183, Zeile -1: Wenn D linear trennbar ist, ...

- Seite 186, Zeile 8: ___return $w^{(j)}$
- Seite 189, Zeile -5: $(x,y) \in D$
- Seite 190, Zeile 14–15: ... die Worte "Bonus", "Vertrag", "das" und "Mensa" ...
- Seite 193, Zeile 6: $\cdots = \langle w', x_0 (\langle w', x_0 \rangle + b')w' \rangle + b'$
- Seite 193, Zeile 12: $\geq ||x_0 x_1||^2 + 2\langle (\langle w', x_0 \rangle + b')w', x_1 x \rangle$
- Seite 193, Zeile 13: = $||x_0 x_1||^2 + 2(\langle w', x_0 \rangle + b')\langle w', x_1 x \rangle$
- Seite 194, Zeilen -2 und -1: $\mathcal{R}(D)$, $\mathcal{K}(D)$
- Seite 194, Zeile -1: $h: \mathbb{R}^d \to \mathbb{R}^d$
- Seite 195, Zeilen 2, 4, 5, 9, 10, 12, 15 und 20: $\Re(D)$, $\Re(D)$
- Seite 196, Zeilen 6–8, 12 und 13: $\mathcal{R}(D)$, $\mathcal{K}(D)$
- Seite 198, Zeile 6: $(w^*, b^*) \in M$
- Seite 198, Zeile 11–16: Es folgt also nach Proposition 17.14, dass $w_1^* = w_2^* =: w^*$ ist. Gelte ohne Einschränkung $b_1^* < b_2^*$. Dann wählen wir für (w^*, b_1^*) und (w^*, b_2^*) jeweils i_1 und einen Index i wie in Teil (2) und erhalten

$$y_i(\langle w^*, x_i \rangle + b_1^*) = \langle w^*, x_i \rangle + b_1^* < \langle w^*, x_i \rangle + b_2^* = 1$$

im Widerspruch dazu, dass (w^*, b_1^*) in M liegt. Ist $b_1^* > b_2^*$, so vertauschen wir die Rollen von i_1 und i_2 .

- Seite 198, Zeile -11, -8 und -4: $\mathcal{R}(D)$, $\mathcal{K}(D)$
- Seite 200, Zeile 7: $L(x,\theta,\mu):=f(x)-\sum_{i=1}^q\theta_ig_i(x)+\frac{\mu}{\mu}\sum_{j=r}^q\mu_ih_j(x)$
- Seite 200, Zeile 18: ..., ist x^* ein Minimierer des oben angegebenen Optimierungsproblems ...
- Seite 203, Zeile 17: ... ist es möglich, i_0 mit $\lambda_{i_0} \neq 0$...
- Seite 206, Zeile 7: $D_1 = \{(x_i, y_i) \mid i = 1, 6, 7\}$ und $D_2 = \{(x_i, y_i) \mid i = 1, 6, 11\}$
- Seite 206, Zeile 8: Durch Streichen von Nullen in Beispiel 14.15(i) und Lösung des Optimierungsproblems für D_2 erhalten wir . . .
- Seite 206, Zeile 12: 0.349 0.439
- Seite 207, Zeile 4 (in den Bildern): $D_1 \cdots D_2$
- Seite 207, Zeilen 12 und 13: λ_i^{\star}
- Seite 208, Zeile 13: ... und Satz 14.12(ii) ist [GK02, Satz 2.46].
- Seite 209, Zeile -6:..., wenn man einen der Punkte x_6^* , x_7^* , oder x_{11}^* weglässt?
- Seite 216, Zeile $-14:\ldots$, sodass $y_i(\langle w, x_i \rangle + b) \ge 1$ für \ldots
- Seite 220, Zeile 16: ... mit $\lambda_{i_0}^* \neq 0$ ist ...
- Seite 220, Zeile 18: ... Wahl von λ^* und ...
- Seite 224, Zeile 6: Haben wir also $\langle f, f \rangle = 0$ für alle $x \in X$, so ist ...
- Seite 224, Zeile −10: ... positive Semidefinitheit der Gram-Matrix ...
- Seite 226, Zeile 12: Geben Sie an, welche $x \in \mathbb{R}$ vom zurückgezogenen Klassifizierer ...
- Seite 230, Zeile 15: die Rectified Linear Unit
- Seite 231, Zeile −4: ... Neuronen aus Proposition 16.2 zusammensetzen
- Seite 232, Zeile 3: ...sonst,
- \blacksquare Seite 232, Zeile 6 7: . . . ist es manchmal von Vorteil . . .
- Seite 236, Zeile 9: B ist die Matrix ohne das $(\cdot)^{-1}$.
- \blacksquare Seite 239, Zeile 15: $\mathfrak{F}(f_1 * f_2) = \mathfrak{F} f_1 \cdot \mathfrak{F} f_2$
- Seite 262, Zeile 1–4: Den Rieszschen Darstellungssatz in der Version 16.19 kann man in [Wer18, Theorem II.2.5] nachlesen, die andere Version 16.16, oft auch Riesz-Markov-Theorem genannt, findet man in [Rud87, Theorem 6.19].
- Seite 270, Zeile 14: Dann gilt $h'(t) = \langle \nabla f(y + t(x y)), x y \rangle \dots$

- Seite 270, Zeile 16: $\cdots = \int_0^1 \langle \nabla f(y + t(x y)), x y \rangle dt$
- Seite 270, Zeile 18: $\cdots = \int_0^1 \langle \nabla f(y + t(x y)), x y \rangle \langle f(y), x y \rangle dt$
- Seite 270, Zeile −1: ... mithilfe von Proposition 17.4 ...
- Seite 271, Zeile 14: Folgerung 17.10. Sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und konvex.
- Seite 271, Zeile 18–19: (i)⇒(ii): Aus der Konvexität folg die erste Ungleichung mit Proposition 17.4 und ...
- Seite 271, Zeile 20: (ii)⇒(i): Die erste Ungleichung impliziert Konvexität mit Propsition 17.4 und ...
- Seite 272, Zeile 16: Aus Lemma 17.9 und Proposition 17.4 folgern wir
- Seite 272, Zeile 20:
- Prop. 17.4

 Seite 273, Zeile 10:

 Prop. 17.4

 Prop. 17.4
- Seite 275, Zeile −2: Dann gilt wegen
- Seite 277, Zeile −10: mit Proposition 17.4
- Seite 278, Zeile 8: Dies ist nach Proposition 17.4 äquivalent zu
- Seite 278, Zeile 18: Ein Vergleich der Abschätzung in Proposition 17.4 zeigt nochmal ...
- Seite 279, Zeile 13: † Lem. 17.18 u. Prop. 17 4
- Seite 283, Zeile -9: 4: $x^{(k+1)} \leftarrow x^{(k)} \gamma_k \nabla f(x^{(k)})$.
- Seite 296, Zeile −14: S. Shalev-Shwartz und S. Ben-David, Understanding