FINAL CODE

DATE	13.11. 2022
TEAM ID	PNT2022TMID54425
PROJECT NAME	Smart solutions for Railways

CODE:

Import common libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Import the PyGeohydro libaray tools import pygeohydro as gh from pygeohydro import SSFR, plot

Use the smart solution for railways(SSFR)ssfr = SSFR() # Specify date range of interest dates = ("2020-01-01", "2020-12-31")

```
# Filter stations to have only those with proper dates
stations = info_box[(info_box.begin_date <= dates[0]) &
(info_box.end_date >= dates[1])].site_no.tolist()
# Remove duplicates by converting to a set
stations = set(stations)
# Specify characteristics of interest
select attributes = journey time, train announcement, waiting
arrangement, security in the station, seat condition
# Initialize a storage matrix
nldi_data = np.zeros((len(flow_data.columns), len(select_attributes)))
# Loop through all gages, and request NLDI data near each gage
for i, st in enumerate(flow_data.columns):
  # Navigate up all flowlines from gage
  flowlines = NLDI().navigate_byid(fsource = 'nwissite',
                    fid = f'\{st\}',
                    navigation="upstreamTributaries", source
                    = 'flowlines',
                    distance = 10
```

```
# Get the nearest comid
station_comid = flowlines.nhdplus_comid.to_list()[0]
```

Source NLDI local data

```
nldi_data[i,:] = NLDI().getcharacteristic_byid(station_comid, "local",
char_ids = select_attributes)
```