

Document Clustering using improved K-means Algorithm

ARYAN BATRA 21114019

TUSHAR RAJU CHINCHOLE 21114032

MANOJ KUMAR SIAL 21114059

SACHIN JANGID 21114086

Abstract:

- Clustering is an efficient technique that organizes a large quantity of unordered text documents into a small number of significant and coherent clusters.
- k-means clustering tries to group similar kinds of items in form of clusters. It finds the similarity between the items and groups them into the clusters by using centroid.
- But K-means have some limitation
- This paper describe a new algorithm improved k-means clustering which is developed to overcome these limitations.

Stages of Document Clustering:

 Getting relevant data from a collection of documents include following stages:-

Collection of text data includes the processes like filtering etc. which are used to collect the documents that need to be clustered.

Pre-Processing of data is done to represent the data in a form that can be used for clustering. There are many ways of representing the documents like, Vector-Model.

Document clustering is the main focus of this thesis work and will be discussed further.

Post-Processing of data includes the major applications in which the document clustering is used, for.

Limitations in k-means algorithm:

- Sensitive to Initial Centroid Selection: K-means is sensitive to the initial placement of cluster centroids. Different initializations can lead to different final clusters, and it may converge to a local minimum rather than the global minimum.
- It takes nonexclusive words also and do not match the words by semantic basis.
- Requires Euclidean Distance Metric: It relies on the Euclidean distance metric, which may not be suitable for all types of data. For example, categorical or binary data may require a different distance metric.

System Architecture of Proposed System

K-mean disadvantage

It is sensitive to initial condition. Different initial condition may produce different result of clusters. The algorithm may be trapped in the *local optimum*.

Improved K-means

- Cosine similarity is a measure of similarity between two vectors of an inner product space that measures the cosine of the angle between them.
- To compute cosine Similarity matrix, we use term frequency vector of the documents.

• Similarity =>
$$\cos(\theta) = \frac{A.B}{||A|| ||B||}$$

 These matrices are then used as input to K-means and proposed algorithm and clustering is done. Finally results are compared for different parameters like F-measure, time complexity.

Algorithm for Improved K-means

- Input: Dataset set D = {d1, d2 . . . dn}
- Output: Set of Cluster Numbers C along with documents associated.

We will apply improved K- means algorithm on every partition iteratively till we get the same clusters ie until there is insignificant movement of documents across clusters.

- 1.) Input the number of clusters from user i.e. K (no of clusters).
- 2.1) Sort the Vector Space Model (VSM) and generate the K parts.
- 2.2) Take mean of every column (i.e. mean of every part)
- 2.3) The mean calculated is center of prediction.
- 3.) Calculate the similarity of the documents using cosine similarity measure.
- 4.) Assign the nearest (similar) document to the new clusters.
- 5.) If the clusters are not matched then go to step 3.
- 6.) If clusters are matched then stop.

Results and Discussion:

Dataset

- Used "20 Newsgroup" English dataset with 20,000 documents.
- Modified version with duplicates and cross-posts removed.
- Details:
- 1. Number of unique documents: 18,828
 - 2. Number of categories: 20

Result

- Proposed algorithm is faster and uses exclusive words.
- Existing algorithm is slower and lacks semantic matching.
- Precision (P): Ratio of relevant documents to the total documents retrieved for a query.
- Recall: Ratio of relevant documents retrieved for a query to the total relevant documents in the collection.
- F1 Score: Combines precision and recall, providing a balanced measure of performance.

Table 5.1: Quality Comparison of Existing and Proposed System

Results of Existing System				
	CLASS 1	CLASS 2		
Cluster 0	54	63		
Cluster 1	46	37		
Results of Proposed System				
	CLASS 1	CLASS 2		
Cluster 0	53	0		
Cluster 1	47	100		

Table 5.2: Performance Comparison of Existing and Proposed System

Results of Existing System					
	Precision	Recall	F-Measure		
Class 1	0.538462	0.63	0.580645		
Class 2	0.554217	0.46	0.504732		
Results of Proposed System					
	Precision	Recall	F-Measure		
Class 1	1	0.53	0.69281		
Class 2	0.6802	1	0.8097		

Table 5.3: Time Comparison of Existing and Proposed System

	~)	
	Existing	Proposed
Time (ms)	109	62

Figure 6: Time comparison between existing k-means and improved k-means

Figure 3: Precision Comparison between K-Means and Improved K-Means

Figure 4: Recall Comparison between Existing K-Means and Improved K-Means

Figure 5: Fmeasure Comparison between Existing K-Means and Improved K-Means

Comparision

Value	K-Means	Improved K-Means
Precision	0.38	0.70
Recall	0.45	0.73
F-measure	0.412	0.714

Conclusions

- Document clustering is crucial for selecting relevant documents from vast collections.
- The proposed clustering process enhances data clusters, providing valuable insights into document content.
- Frequent term-based clustering improves system performance and clustering quality.
- Existing algorithms were investigated, and an improved one was proposed.
- The existing algorithm is slower due to its use of non-exclusive words and lack of semantic document matching.
- The proposed algorithm is faster, using only exclusive words and semantic matching.

Future Scope

- Incorporating keyword searching with document clustering can improve grouping and retrieval efficiency.
- Performance comparisons of similarity measures using various clustering algorithms are potential future research.
- The algorithm presented in this thesis represents an initial improvement; many additional enhancements are possible.

Thanks

