LECTURE 11

Inverse Functions

To find f^{-1} swap and solve.

$$(f^{-1} \circ f)(x) = x$$
 and $(f \circ f^{-1})(x) = x$.

 $Dom(f) = Range(f^{-1})$ and $Range(f) = Dom(f^{-1})$

The graph of f^{-1} is the graph of f reflected in the line y = x.

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

The concept of a function is all about transformation. For example the incredibly simple function y = f(x) = 2x + 5 transforms x = 1 to y = 7 and x = 4 to y = 13. Whenever there is change however, we are also interested in undoing that change. This is accomplished through the use of the inverse function f^{-1} whose sole job is to undo whatever f did. That is $f^{-1}(7) = 1$ and $f^{-1}(13) = 4$. We can find the equation for f^{-1} by swapping f and f and solving for f. Note that in general $f^{-1} \neq \frac{1}{f}$!!.

Example 1: Find a formula for f^{-1} for the function y = f(x) = 2x + 5 defined above. Check that $f^{-1}(7) = 1$ and $f^{-1}(13) = 4$.

Fact: $(f^{-1} \circ f)(x) = x$ for all $x \in \text{Dom}(f)$.

Discussion:

Example 2: Check that $(f^{-1} \circ f)(x) = x$ for f in example 1.

*

Example 3: Find a formula for f^{-1} for the function $y = f(x) = 3e^{2x}$ and check that $(f^{-1} \circ f)(x) = x$.

$$\star$$
 $f^{-1}(x) = \frac{1}{2}\ln(\frac{x}{3})$ \star

We do however have a technical problem when it comes to inverses. Consider the function $y = g(x) = x^2$. Then g(-3) = 9 and g(3) = 9.

What is $g^{-1}(9)$? Is it 3 or -3. Clearly its both and a function must never give us such a choice! What this means is that for $y = g(x) = x^2$, g^{-1} is a relation rather than a function. This is not the end of the world but we would prefer that this didn't happen.

Definition: A function f is said to be 1-1 if

$$f(a) = f(b) \to a = b.$$

We will see later that if f is 1-1 then it will always have a unique inverse function f^{-1} .

 \star

1-1 functions may also be identified graphically via the horizontal line test. Recall that the vertical line test established whether or not a relation was a function. The horizontal line test works in much the same way and tests whether or not a function has an inverse:

The Horizontal Line Test: A function f is 1-1 if and only if every horizontal line cuts the graph of f at most once.

Consider the functions graphed below.

f is not one-to-one because the dotted horizontal line passing through the point A cuts the graph of f more than once;

g is one-to-one (in fact, since g is increasing, every horizontal line can cut the graph of g graph no more than once);

h is also one-to-one (even though it is not always increasing).

Fact: A 1-1 function f (that is a function which passes the horizontal line test) will have a unique inverse function f^{-1} .

Some other facts regarding inverse functions:

- $Dom(f) = Range(f^{-1})$ and $Range(f) = Dom(f^{-1})$
- The graph of f^{-1} is the graph of f reflected in the line y = x.
- $(f^{-1} \circ f)(x) = x$ for all $x \in \text{Dom}(f)$.

Example 5: Consider the function $y = f(x) = x^2 + 5$.

- a) Explain why the function f^{-1} does not exist.
- b) Restrict Dom(f) so that f becomes a 1-1 function g which has an inverse.
- c) If f = g?
- d) Sketch the restricted function g and its inverse g^{-1} on the same set of axes.
- e) Write down Dom(g), Range(g), $Dom(g^{-1})$ and $Range(g^{-1})$ in interval notation.
- f) Find g^{-1} .
- g) Show that $(g^{-1} \circ g)(x) = x$.

Example 6: Let $f(x) = 2x^5 + x^3 + x - 10$. Prove that f has an inverse function.

We have a problem here! The sketch is unclear and it is difficult to prove algebraically that f is 1-1. But we have one extra trick:

Fact: An increasing or decreasing function is 1-1.

Discussion:

Now
$$f'(x) =$$

*

We close with the an important result which helps us to find the derivative of the inverse:

Fact: If f is differentiable and has an inverse f^{-1} then the derivative of the inverse $(f^{-1})'$ is given by

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

In other words the derivative of the inverse is one over the derivative of the original function evaluated at the inverse.

Proof: We start with $f(f^{-1}(x)) = x$. Differentiating both sides and using the chain rule yields:

Example 7: Let $f(x) = 3x + \cos(x)$. Show that f^{-1} exists on \mathbb{R} and without actually finding f^{-1} evaluate $(f^{-1})'(1)$.

Since $f'(x) = 3 - \sin(x)$ we have f'(x) > 0 for all $x \in \mathbb{R}$ and hence f is an increasing function implying that f has an inverse.

Note also that the Range of f is \mathbb{R} which is in turn the Domain of f^{-1} .

Now
$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))}$$

What is
$$f^{-1}(1)$$
 ?????