

IMS projekt - simulační studie **Logistika na depu hypotetické přepravní společnosti zásilek HYPSOZ**

(zadání 13: SHO v logistice)

Obsah

Obsah	1
Úvod	2
Autoři	2
Zdroje	2
Postup	2
Rozbor tématu	3
Model	3
Důležité pojmy	4
Vstupní data	4
Zásilkovna (statistika 2020)	4
Doplněná data	4
Odvozená data (zprůměrovaná a zaokrouhlená)	5
Výsledný hypotetický model	7
Diagram Petriho sítě modelu	8
Implementace simulačního programu	10
Experimenty	11
Postup experimentování	11
Experimenty	11
Shrnutí experimentů	13
Závěr	14
Literatura	15

Úvod

Práce se zabývá vytvořením hypotetické přepravní společnosti zásilek HYPSOZ na základě dat z reálných společností, vytvořením simulačního modelu a provedením simulací nad ním pro ověření reálné funkčnosti hypotetického modelu. Při zkoumání tématu logistika a přeprava kusových zásilek jsme se zaměřili na běžné i nové/zajímavé způsoby svozu a doručení. Smyslem experimentu je zjistit, které prvky/konstanty v logistice zásilek jak ovlivňují efektivnost a rychlost přepravy ke spokojenosti zákazníka.

Autoři

Na projektu spolupracovali Karel Jirgl (xjirgl01) a Thanh Quang Tran (xtrant02) z FIT VUT v Brně.

Zdroje

Jako zdroj dat sloužil internet a nejvíce webové stránky známých přepravních společností (Zásilkovna, Česká pošta, ...) i internetových obchodů (Alza, CZC, ...).

Postup

Začali jsme rešerší tématu logistika a přepravní společnosti pomocí internetu. Jako materiály nám posloužily vysokoškolské práce^[1,2], informace z webových stránek přepravních společností nebo články spojené s tématem přepravy zásilek. Postupně jsme získali povědomí o tom, jak logistika v přepravě kusových zásilek funguje a začali jsme sbírat obecná statistická data o přepravních společnostech a informace o jejich fungování. Chybějící data naší hypotetické společnosti jsme vypočítali a odvodili pomocí rovnic na základě nasbíraných dat a informací. Ze získaných dat jsme vytvořili simulační model, který je zaměřen na fungování na jednom z dep naší hypotetické společnosti. Model je vizualizován pomocí Petriho sítě. Pro vytvoření simulačního modelu byla použita multiplatformní open-source simulační knihovna SIMLIB^[3] a multiplatformní programovací jazyk C++. Poté bylo nad výsledným modelem provedeno několik experimentů k dokázání nebo vyvrácení stanovených hypotéz.

¹ URL: https://dspace.cvut.cz/bitstream/handle/10467/66546/MU-DP-2016-Belikova-Petra-DP%20Bc.%20Petra%20Belikova.pdf?sequence=1&isAllowed=y

² URL: https://theses.cz/id/mq5sw8/BP_Rihova.pdf

³ URL: https://www.fit.vutbr.cz/~peringer/SIMLIB/

Rozbor tématu

Od doby covidové výrazně vzrostl zájem o online nákupy a s tím i počet odeslaných zásilek přepravními společnostmi. V post-covidové době sílí obliba různých jiných způsobů doručení, než je běžné doručení na adresu. Velký zájem je o osobní odběr nebo doručení na výdejní místo, u kterého zákazník nemusí doma čekat na kurýra. [4] Roste také počet samoobslužných výdejních boxů, které člověk otevře pouze pomocí bluetooth a aplikace v mobilním zařízení. [5] Zákazník u něj může zásilku i zaplatit kartou a vyzvednutí trvá v rámci desítek sekund. [6] Jako velmi zajímavý nový způsob doručení je například doručení do kufru auta. [7] Robotické a autonomní způsoby doručení se většinou nachází dnes ještě ve fázi testování.

Model

V simulačním modelu jsme se zaměřili na činnosti rozvozu a svozu odehrávající se na jednom z dep naší hypotetické přepravní společnosti HYPSOZ. Simulační model je založen na konkrétních datech statistiky společnosti Zásilkovna (viz kapitola *Vstupní data*). Další potřebná data jsou doplněna nebo dopočítána a zprůměrovaná pomocí odvozených rovnic vytvořených na základě nasbíraných dat a informací. Pro vypočítání těchto údajů byl vytvořen zvlášť program, který ze základních údajů dopočítá potřebná data pro vytvoření modelu. Z výsledných hodnot vznikl model fungování naší hypotetické společnosti. K modelu byl vytvořen diagram Petriho sítě pro daná vstupní data.

Obecný harmonogram pracovní směny na depu:

- 8:00 16:00 h rozvoz a svoz zásilek z výdejních míst pomocí dodávek
- vyložení zásilek z dodávek na depu
- naložení zásilek do kamionů
- přeprava zásilek kamiony mezi depy
- vyložení zásilek z kamionů
- naložení zásilek do dodávek

(vše se musí stihnout do 8:00 dalšího dne - do další pracovní směny)

Kapacity výdejních míst, skladů, dodávek a kamionů jsou v modelu zanedbány. Dopočítaná data jsou zprůměrována a zaokrouhlena.

Během směny by nikdy nemělo dojít k porušení zákonem daných přestávek a maximální doby řízení.

Řidič kamionu^[8]

- maximálně 9 hodin řízení denně
- přestávka po 4,5 hodinách řízení v kuse (minimálně 45 minut)
- běžná denní doba odpočinku řidiče 11 h (lze rozdělit na 3 h a 9 h)

⁴ URL: https://www.podnikatel.cz/clanky/posta-nebo-kuryr-kdo-je-horsi-dorucovatel-baliku-z-eshopu/

⁵ URL: https://www.zasilkovna.cz/zbox

⁶ URL: https://www.voutube.com/watch?v=cpLCCbp683U

⁷ URL: https://doauta.zasilkovna.cz/

⁸ URL: https://www.tirbazar.cz/aktualitv/povinne-prestavky-ridicu-kamionu

Důležité pojmy

Dodávka	Slouží k rozvozu a svozu zásilek z dep na výdejní místa a naopak.
Kamion	Kamion rozváží zásilky mezi depy. 1 kamion = 6 dodávek (objemově) ^[9]
Depo	Sklad/překladiště z dodávek na kamiony a naopak.
Výdejní místo	Jakékoliv místo kde se vydávají zásilky.
Výdejna	Kamenné výdejní místo. Místo kde se vydávají i přijímají zásilky.
Výdejní box	Samoobslužný výdejní box. Místo kde se zásilky pouze vydávají.

Vstupní data

Vytvořený pomocný program dopočítá potřebné hodnoty (viz kapitola *Odvozená data*) pro model ze vstupních konstantních údajů (viz kapitoly *Zásilkovna* (statistika 2020) a *Doplněná data*). Pomocný program v závěru také vypíše popis výsledného hypotetického modelu doplněný o přepočítaná data (viz kapitola Výsledný hypotetický model). Pomocný program se nachází ve složce *zadani* a je spustitelný příkazem *make run*.

Zásilkovna (statistika 2020)[10,11]

- 27 dep (skladů)
- 110 kamionů mezi depy
- 350 dodávek do výdejen
- 5843 výdejních míst
- 107 Z-Boxů
- 1500 zaměstnanců
- 40 500 000 rozvezených zásilek
- 2 500 000 000 Kč obrat
- REKORD: 506 000 zásilek přepravených za jeden den (14. 12. 2020)

Doplněná data

- 255 dnů v roce je pracovních (přibližně)[12]
- 0.666000 ze všech zaměstnanců je na depech ve skladech (koeficient)
- 30 sekund trvá naložení jedné zásilky jedním zaměstnancem
- 45 sekund trvá vyložení jedné zásilky jedním zaměstnancem (vyložení trvá déle, protože je nutné zásilku správně zařadit/roztřídit)
- +-10 minut je rozptyl pro čas na nakládání nebo vykládání zásilek z dodávky nebo kamionu
- 1 kamion = 6 dodávek (objemově)[13]

⁹ URL: https://www.denik.cz/auto/svet-ridice-kamionu-neni-to-jednoducha-prace.html

¹⁰ URL: https://www.zasilkovna.cz/blog/packeta-v-roce-2020-zdvojnasobila-svuj-obrat

¹¹ URL: https://www.zasilkovna.cz/o-nas

¹² URL: https://vimjakna.cz/dny/pracovni-dny/

¹³ URL: https://www.denik.cz/auto/svet-ridice-kamionu-neni-to-jednoducha-prace.html

- min 45 minut trvá cesta kamionu na další depo
- max 120 minut trvá cesta kamionu na další depo
- až 5 dep může kamion navštívit na trase
- min 10 minut trvá cesta na další výdejní místo
- max 15 minut trvá cesta na další výdejní místo
- min 15 minut trvá vynucený návrat na depo z důvodu konce směny v 16:00
- max 45 minut trvá vynucený návrat na depo z důvodu konce směny v 16:00
- 5 minut je čas na režii na výdejním místě (papírování, svačina, záchod, povinná 30 minutová přestávka na oběd)

Odvozená data (zprůměrovaná a zaokrouhlená)

- 4.074 kamionů na jedno depo = 110 kamionů / 27 dep
- 12.963 dodávek na jedno depo = 350 dodávek / 27 dep
- 17.000 výdejních míst na jednu dodávku = (5843 výdejen + 107 boxů) / 350 dodávek
- 61.728 Kč obrat na zásilku = 2500000000 Kč obrat / 40500000 zásilek

Zásilky

- 158 823.529 rozvezených zásilek za den = 40 500 000 zásilek za rok / 365 dní v roce
- 157.251 zásilek na dodávku na den = 158 823.529 zásilek na den / (350 dodávek + 6 dodávek na kamion * 110 kamionů)
- 943.506 zásilek na kamion na den = 6 dodávek na kamion * 157.251 zásilek na dodávku na den
- 9.250 zásilek na výdejní místo na den (vyložení nebo naložení) = 157.251 zásilek na dodávku na den / 17.000 výdejních míst na jednu dodávku

Rozvoz/svoz na výdejní místa

- 30.571 % šance, že dodávka bude vykládat na boxu = 107 boxů / 350 dodávek * 100 %
- 69.429 % šance, že dodávka nebude vykládat na boxu = 100 % (107 boxů / 350 dodávek * 100 %)
- 16.563 minut stráví dodávka na výdejně = 9.250 zásilek na výdejní místo * (45 sekund vyložení zásilky + 30 sekund naložení zásilky) / 60 sekund + 5 minut režie
- 11.938 minut stráví dodávka na Z-Boxu = 9.250 zásilek na výdejní místo * (45 sekund vyložení zásilky) / 60 sekund + 5 minut režie
- 10 15 minut trvá cesta mezi výdejními místy
- 15 45 trvá vynucený návrat na depo z důvodu konce směny v 16:00
- 452 537 minut trvá dodávce trasa bez boxu
- 447 532 minut trvá dodávce trasa s boxem

Zaměstnanci

- 1040.000 zaměstnanců bez řidičů = 1500 zaměstnanců celkem 350 dodávek 110 kamionů
- 692.640 zaměstnanců na depech ve skladech = 1040.000 zaměstnanců bez řidičů * 0.666 koeficient zaměstnanců na depech ve skladech
- 25.653 zaměstnanců na jednom depu ve skladu = 692.640 zaměstnanců na depech ve skladech / 27 dep

Dodávka (jeden zaměstnanec)

- 78.626 (+-10) minut trvá naložení jedné dodávky jedním zaměstnancem = 157.251 zásilek na dodávku na den * 30 sekund trvá naložení jedné zásilky jedním zaměstnancem / 60 sekund
- 117.938 (+-10) minut trvá vyložení jedné dodávky jedním zaměstnancem = 157.251 zásilek na dodávku na den * 45 sekund trvá vyložení jedné zásilky jedním zaměstnancem / 60 sekund

Dodávka/y (všichni zaměstnanci depa)

- 1.979 zaměstnanců na jednu dodávku na depu = 25.653 zaměstnanců na depu / 12.963 dodávek na depu
- 39.730 (+-10) minut trvá naložení všech dodávek na depu = 78.626 minut naložení dodávky / 1.979 zaměstnanců na jednu dodávku na depu
- 59.596 (+-10) minut trvá vyložení všech dodávek na depu = 117.938 minut vyložení dodávky / 1.979 zaměstnanců na jednu dodávku na depu

Kamion (jeden zaměstnanec)

- 471.753 (+-10) minut trvá naložení jednoho kamionu jedním zaměstnancem = 6 dodávek rovná se jeden kamion * 157.251 zásilek na dodávku na den * 30 sekund trvá naložení jedné zásilky jedním zaměstnancem / 60 sekund
- 707.630 (+-10) minut trvá vyložení jednoho kamionu jedním zaměstnancem = 6 dodávek rovná se jeden kamion * 157.251 zásilek na dodávku na den * 45 sekund trvá vyložení jedné zásilky jedním zaměstnancem / 60 sekund

Kamion/y (všichni zaměstnanci depa)

- 6.297 zaměstnanců na jeden kamion na depu = 25.653 zaměstnanců na depu / 4.074 kamionů na depu
- 74.920 (+-10) minut trvá naložení všech kamionů na depu = 471.753 minut naložení kamionu / 6.297 zaměstnanců na jeden kamion na depu
- 112.381 (+-10) minut trvá vyložení všech kamionů na depu = 707.630 minut vyložení kamionu / 6.297 zaměstnanců na jeden kamion na depu

Přeprava mezi depy

- 45 480 minut trvá cesta kamionu přes až 5 dep (4 cesty)
- 0 562 minut trvá překlad kamionu na až 5 depech (3 překlady)

Výsledný hypotetický model

Hypotetická přepravní společnost zásilek HYPSOZ

Logistická firma HYPSOZ sváží a rozváží kusové zásilky po celé České republice. Každý pracovní den začíná v 8:00 rozvozem a svozem zásilek dodávkami do a z výdejních míst. Dodávky jsou naplněny zásilkami k doručení již z předchozí pracovní směny. Firma s 1500 zaměstnanci operuje se 110 kamiony pro převoz zásilek mezi 27 depy a s 350 dodávkami na svoz a rozvoz z dep na výdejní místa. Na každé depo připadá průměrně 13 dodávek. Každá dodávka průměrně rozveze 157 zásilek a má na starosti 17 výdejen a H-boxů. To vychází 9 zásilek na výdejní místo. Šance, že dodávka při své cestě navštíví i H-box je 30.571 % a 69.429 % je šance, že její trasa je pouze přes výdejny. Na pobočce dodávka stráví přibližně 17 minut, kde je započítáno i 5 minut na režii (do režie se např. počítá i povinná 30 minutová přestávka na oběd). U H-boxů dochází pouze k vyložení zásilek a dodávka zde stráví pouze 12 minut i s režií. Cesta mezi výdejními místy trvá 10 - 15 minut. Trasa dodávky k výdejním místům tak trvá 452 - 537 minut nebo 447 - 532 minut pokud se na trase nachází H-box. Dodávky se musí vrátit do 16:00 zpět do dep, kde dochází k vyložení svezených zásilek a řidičům dodávek končí směna. Pokud není dodávka v 16:00 zpět ve svém depu, řidič zanechá všeho a ihned se vrací zpět do svého depa, kam mu cesta trvá 15 - 45 minut.

Na depo připadá 26 zaměstnanců, kteří po příjezdu všech dodávek z nich začínají vykládat a třídit zásilky. Vyložení jedné zásilky jedním zaměstnancem trvá 45 - 50 sekund. Po vyložení všech dodávek začnou zaměstnanci nakládat roztříděné zásilky do kamionů. Naložení jedné zásilky jedním zaměstnancem trvá 30 - 35 sekund. Na jedno depo připadá 4 kamionů a jeden uveze 944 zásilek.

Naložené kamiony na své trasu mohou jet až přes 5 dep, kde složí nebo naloží část zásilek. Tato cesta může trvat 45 - 480 minut. Překlad na depech na trase může trvat 0 - 562 minut.

V posledním depu dojde k vyložení kamionu, které trvá 112 (+- 10) minut. Poté dochází k nakládání dodávek pro další pracovní den, což trvá 79 (+- 10) minut. Vše se musí stihnout do začátku další pracovní směny v 8:00 hodin.

Během směny by nikdy nemělo dojít k porušení zákonem daných přestávek a maximální doby řízení.

Diagram Petriho sítě modelu

Diagram je vytvořen pomocí online nástroje *draw.io*. Pracovní den můžeme rozdělit do 5 částí. Práce dodávky, vykládání z dodávek, nakládání do kamionu, práce (jízda) kamionů a nakládání do dodávek.

V první části diagramu (trasa dodávky na výdejní místa) se nám nepovedlo diagram vytvořit tak, aby v něm bylo zobrazeno i vykládání jednotlivých balíků na jednotlivých výdejních místech jednotlivými dodávkami. Systém byl příliš paralelní a nevěděli jsme, zda je vůbec možné tuto část takto v diagramu zobrazit.

Implementace simulačního programu

Hypotetický model je implementovaný objektově v jazyce C++. Jednotlivé fáze pracovního dne jsou implementovány individuálně do tříd, konkrétně delivery.h/cpp (práce dodávek), depo.h/cpp (výklad dodávek a náklad kamionů), truck_work.h/cpp (práce kamionů) a van_load.h/cpp (nákládání do dodávek). Časovač definující konec směny dodávek v Petriho síti je implementován v delivery timer.h/cpp.

Architektura jednotlivých tříd vychází z knihovny SIMLIB. Jednotlivé třídy reprezentující fáze jsou odvozené a dědí z třídy Process, která je dostupná v knihovně. Časovač v Petriho síti je v programu implementován jako událost (třída Event), která naplánuje ukončení procesů práce dodávek.

Všechny třídy implementující fáze pracovního dne používají sklady (třída Store). Nachází se zde sklad dodávek (delivery.h/cpp, depo.h/cpp a van_load.h/cpp), sklad zaměstnanců (delivery.h/cpp, depo.h/cpp a van_load.h/cpp) a sklad kamionů (truck_work.h/cpp) pro přístup a práci s jednotlivými zdroji.

Kroky provedení procesů a časovačů v rámci simulace jednoho pracovního dne jsou ekvivalentní s Petriho sítí. Diagram ukazuje sekvenci provádění procesů pracovního dne.

Pokud sekvence provádění trvala déle než modelový čas reprezentující 24 hodin, tak se simulace považuje za neúspěšnou.

Experimenty

Experimenty mají dokázat nebo vyvrátit možnost spolehlivého fungování hypotetické přepravní společnosti s danými zdroji a poptávkou po její službách.

Postup experimentování

Proběhlo celkem 5 experimentů spuštěním simulace se zvolenými vstupními hodnotami. Výsledné hodnoty byly zapsány do tabulky a zprůměrovány. Pokud se nepovedlo směnu dokončit před další směnou (do 8:00 dalšího dne), považovala se simulace za neúspěšnou. Pokud nebyla úspěšnost experimentu 100 %, považoval se celý experiment za neúspěšný a nevalidní.

Experimenty

1. Statistiky o rozvozu a svozu zásilek dodávkami

Číslo experiment u	Stihly se vrátit všechny dodávky do 16:00 h	Konečná délka směny dodávek [minut]	Průměrná doba cesty s boxem na trase (počet dodávek)	Průměrná doba cesty bez boxu na trase (počet dodávek)	Průměrná doba potřebná pro dokončení rozvážky dodávkou (počet dodávek, které nestihly rozvést zásilky do 16:00 h)	Průměrná doba návratu na depo z posledního výdejního místa [minut]
1	ne	521.62	522.227 (2)	494.535 (11)	24.5377 (11)	28.3718
2	ne	523.357	493.247 (7)	493.468 (6)	27.1283 (9)	23.8519
3	ne	521.532	488.246 (5)	487.315 (8)	20.3398 (8)	24.7584
4	ne	521.519	474.235 (5)	497.646 (8)	20.3436 (9)	26.7659
5	ne	521.705	481.961 (4)	495.045 (9)	32.2356 (8)	21.8072

2. Statistiky o nakládání dodávek a vykládání kamionů

Depo - doba nakládání a vykládání (minuty)			
Číslo experimentu	Vykládání dodávky	Nakládání kamionu	
1	37.5507	47.3158	
2	37.5079	47.2443	
3	37.5178	47.2707	
4	37.4685	47.2489	
5	37.491	47.2493	

3. Statistiky o cestě kamionů až mezi 5 depy

Kamiony – doba cesty s překladem zboží (minuty)			
Číslo experimentu	Min	Průměrná	Max
1	689.072	791.769	829.654
2	234.34	594.178	896.558
3	425.505	601.925	868.494
4	568.02	738.938	997.512
5	333.685	555.508	647.982

4. Stihne se veškerá práce před začátkem další směny (délka směny 24 h)?

Číslo experimentu	Stihla se směna	Délka směny	Čas přes/do
1	ne	25.333 h	79.9815 min
2	ne	26.4089 h	144.535 min
3	ne	26.0076 h	120.456 min
4	ne	27.9945 h	239.671 min

Shrnutí experimentů

Spuštění simulace proběhlo celkem 5-krát po sobě. Každá simulace se dá považovat za 1 den/1 pracovní směnu v realitě na hypotetickém depu zásilkové společnosti. Obecně z výsledných dat vyplývá, že by naše hypotetická přepravní společnost na modelu s aktuálními vstupními daty fungovat nemohla, protože z pěti pracovních směn se povedla dokončit včas pouze jedna. Při jiném nastavení vstupních hodnot zdrojů a poptávky by tato teoretická společnost založená na rovnicích, teoreticky fungovat mohla.

- Z prvního experimentu experimentu vychází, že více jak ¾ dodávek v každé směně nestihly dokončit rozvážku včas. K úspěšnému dokončení směny by průměrně potřebovali přibližně půl hodiny času navíc.
- Ze statistik o době vykládání a nakládání vozidel vyplývá, že rozdíly mezi jednotlivými směnami jsou minimální a dá se u těchto úkonů jejich délka určit velmi přesně.
- 3. Doba potřebná pro rozvoz mezi ostatními depy je velmi rozptýlená. Rozdíl mezi nejrychlejší a nejdelší cestou kamionu je přes 10 hodin. Jeden z důvodů je, že každou směnu jezdí kamiony přes jiná a jiný počet dep.
- 4. Pouze jedna pracovní směna z 5 byla dokončena úspěšně a včas. Nedokončené směny až 4 hodiny času navíc. Hypotetická společnost by při aktuálně dostupných materiálních a lidských zdrojích by nestíhal pokrýt aktuální poptávku trhu.

Závěr

Dokázali jsme demonstrovat funkcionalitu a validitu hypotetické zásilkové služby v České republice v rámci jednoho depa v jednom pracovním dni. Využili jsme dat z již existujících firem s dlouholetou praxí zabývající se rozvozem zboží a objevili hlubší kontext této problematiky. Při experimentování se současným modelem jsme dospěli k výsledku, že nelze stihnout všechny zásilky doručit včas všem zákazníkům, kvůli argumentům zmiňované v *Shrnutí experimentu*. Abychom mohli takový cíl splnit, tak musíme získat podrobnější data o rozvozu zboží např. délka cesty mezi jednotlivými výdejními místy nebo změnit požadavky zainteresovaným stranám.

I přes nesplnění některých požadovaných cílů se nám podařilo vytvořit program, který dokáže určit, jestli zásilková firma s omezeným počtem dodávek, kamionů, zaměstnanců a zásilek, dokáže stihnout připravit, rozvézt a předat všechny zásilky v daný den.

Literatura

- [1] Bělíková, P.: Racionalizace logistiky v přepravní společnosti. [online], 2016, [vid. 2022-12-04]. Dostupné z: https://dspace.cvut.cz/bitstream/handle/10467/66546/MU-DP-2016-Belikova-Petra-DP%20Bc.%20Petra%20Belikova.pdf?sequence=1&isAllowed=y
- [2] Říhová, M.: Moderní trendy v logistice kusových zásilek. [online], 2022, [vid. 2022-12-04]. Dostupné z: https://theses.cz/id/mq5sw8/BP Rihova.pdf
- [3] Peringer, P.; Leska, D.; Martinek, D.: SIMLIB/C++ (SIMulation LIBrary for C++). [online], 1. listopadu 2022, [vid. 2022-12-04]. Dostupné z: https://www.fit.vutbr.cz/~peringer/SIMLIB/
- [10] Zásilkovna: Packeta v roce 2020 zdvojnásobila svůj obrat. [online], 26. ledna 2021, [vid. 2022-12-04]. Dostupné z: https://www.zasilkovna.cz/blog/packeta-v-roce-2020-zdvojnasobila-svuj-obrat
- [11] Zásilkovna: Co je Zásilkovna?. [online], 2022, [vid. 2022-12-04]. Dostupné z: https://www.zasilkovna.cz/o-nas