Esercizi su relazioni e funzioni

Esercizio 1.

Siano $X = \{a,b,c,d\}$ e $\rho \subseteq X \times X$ la relazione definita dalla seguente matrice di incidenza:

$$M_{\rho} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1. Di che proprietà gode ρ ?
- 2. Costruire la chiusura riflessiva e la chiusura simmetrica di ρ .
- 3. Costruire la chiusura di equivalenza di ρ e determinare le classi d'equivalenza.

Traccia di soluzione

- Poiché in ogni riga della matrice di incidenza di ρ c'è almeno un 1 ρ è seriale, inoltre è
 antisimmetrica perché ogni volta che l'elemento di posto (i.k) della matrice di incidenza è 1
 l'elemento di posto (k,i) è 0.
- 2. La chiusura riflessiva e simmetrica R di ρ ha matrice di incidenza $M_R = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$,

 $quindi \ R = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c),(c,d),(d,c),(d,d)\}.$

3. La chiusura d'equivalenza di ρ è la chiusura transitiva di R e pertanto è la relazione universale, infatti $(a,c) \in R, (c,d) \in R$ implicano $(a,d) \in R^2, (b,c) \in R, (c,d) \in R$ implicano $(b,d) \in R^2, (d,c) \in R, (c,a) \in R$ implicano $(d,a) \in R^2, (d,c) \in R, (c,b) \in R$ implicano $(d,b) \in R^2$. Quindi la chiusura transitiva di R è $R \cup R^2 = \omega_X$; c'è pertanto una sola classe di equivalenza formata dall'intero X.

Esercizio 2

Siano $X = \{a, b, c, d, e, f\}$ e $\rho \subseteq X \times X$ così definita:

$$\rho = \{(a,a),(a,b),(a,c),(b,d),(c,d),(d,e),(e,f)\}$$

- 1. Determinare la chiusura transitiva di ρ .
- 2. Costruire la chiusura simmetrica della chiusura riflessiva e transitiva di ρ .

Traccia di soluzione.

1. Il grafo di incidenza di ρ è

per cui nella chiusura transitiva di ρ devono stare le coppie (a,d),(b,e),(d,f),(c,e) che stanno in ρ^2 , (a,e),(b,f),(c,f) che stanno in ρ^3 , (a,f) che sta in ρ^4 . Nessuna coppia nuova sta in ρ^5 e dunque la chiusura transitiva di ρ è la relazione

 $R = \{(a,a),(a,b),(a,c),(a,d),(a,e),(a,f),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)\}.$

2. La chiusura riflessiva di R è $\{(a,a),(a,b),(a,c),(a,d),(a,e),(a,f),(b,b),(b,d),(b,e),(b,f),(c,c),(c,d),(c,e),(c,f),(d,d),(d,e),(d,f),(e,e),(e,f),(f,f)\}$ e la chiusura simmetrica di questa relazione è

 $\{(a,a),(a,b),(b,a),(a,c),(c,a),(a,d),(d,a),(a,e),(e,a),(a,f),(f,a),(b,b),(b,d),(d,b),(b,e),(e,b),(b,f),(f,b),(c,c),(c,d),(d,c),(c,e),(e,c),(c,f),(f,c),(d,d),(d,e),(d,f),(f,d),(e,e),(e,f),(f,e),(f,f)\}$ (ovvero la relazione ottenuta eliminando dalla relazione universale le due coppie (b,c),(c,b)).

Esercizio 3

Siano $X = \{a, b, c, d, e, f\}$ e $\rho \subseteq X \times X$ una relazione rappresentata dal seguente grafo di incidenza:

- 1. Di che proprietà gode ρ ?
- 2. Costruire la relazione d'equivalenza $\overline{\rho}$ generata da ρ .
- 3. Determinare l'insieme quoziente $X / \overline{\rho}$.

Traccia di soluzione

- La relazione ρ non ha alcuna delle proprietà che abbiamo considerato nel corso (non è seriale perché nessuna freccia esce da b e da e e quindi non è neppure riflessiva, non è simmetrica perché ad esempio (a,b)∈ρ ma (b,a)∉ρ, non è antisimmetrica perché (c,d)∈ρ, (d,c)∈ρ e d≠c, non è transitiva perché ad esempio (c,d)∈ρ, (d,e)∈ρ ma (c,e)∉ρ.
- 2. La chiusura riflessiva e simmetrica di ρ è la relazione $\{(a,a),(a,b),(b,a),(b,b),(c,c),(c,d),(d,c),(d,d),(d,e),(e,d),(e,e)\}$, la cui chiusura transitiva è $\{(a,a),(a,b),(b,b),(b,a),(c,c),(c,d),(d,c),(d,d),(d,e),(e,d),(e,e),(c,e),(e,c)\}$ come si può vedere facilmente dal grafo. Per definizione tale relazione è la chiusura riflessiva, simmetrica e transitiva di ρ e quindi è la relazione d'equivalenza $\overline{\rho}$ generata da ρ .
- 3. L'insieme quoziente $X / \overline{\rho}$ è formato dalle $\overline{\rho}$ -classi di X. Si ha $\overline{\rho}_a = \{a,b\} = \overline{\rho}_b$ e $\overline{\rho}_c$ = $\{c,d,e\} = \overline{\rho}_d = \overline{\rho}_c$, quindi $X / \overline{\rho} = \{\overline{\rho}_a, \overline{\rho}_c\}$.

Esercizio 4

Sia $\mathbf{R}[x]$ l'insieme dei polinomi a coefficienti reali nell'indeterminata x e sia $\mathbf{R} \subseteq \mathbf{R}[x] \times \mathbf{R}[x]$ la relazione definita nel seguente modo:

 $\forall f(x), g(x) \in \mathbf{R}[x] \ (f(x), g(x)) \in \mathbf{R} \ \text{se e solo se } \exists b \in \mathbf{R} \ \text{tale che } f(b) = g(b) = 0$

- a) Di che proprietà gode R?
- b) Sia ρ la chiusura di equivalenza di R. Dimostrare che due polinomi che ammettono una radice reale sono sempre associati rispetto a ρ .

Traccia di soluzione

- a) R non è seriale e quindi neppure riflessiva perché, ad esempio, il polinomio x²+1 non ha radici reali e quindi non è associato ad alcun polinomio. R è ovviamente simmetrica. R non è antisimmetrica perché ad esempio (x²+x, x²-1), (x²-1, x²+x)∈R e x²-1≠x²+x. R non è transitiva in quanto ad esempio (x²-1, x²+x)∈R, (x²+x,x)∈R, ma (x²-1, x)∉R.
- b) Siano ora f(x) e g(x) due polinomi che ammettono una radice reale e siano a una radice reale di f(x) e b una radice reale di g(x), il polinomio $(x-a)(x-b)=x^2-(a+b)x+ab$ è tale che $(f(x), x^2-(a+b)x+ab) \in R \subseteq \rho$, $(x^2-(a+b)x+ab,g) \in R \subseteq \rho$, quindi per la transitività di ρ , $(f(x),g(x)) \in \rho$.

Esercizio 5

Sia $X=\{a,b,c,d,e,f\}$ e sia $R\subseteq X\times X$ una relazione su X con la seguente matrice di incidenza

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Di che proprietà gode R?

Provare che esiste la minima relazione d'ordine \leq su X che contiene R. Trovare gli elementi minimali e massimali di X rispetto a \leq . Sono essi massimi o minimi per X? Sia Y={a,b,c,f} trovare sup Y e inf Y e dire se sono massimo e minimo per Y. Dire se X è un reticolo rispetto alla relazione \leq . Mostrare che esiste un sottoinsieme Z di X che è un reticolo rispetto alla stessa relazione \leq (ristretta a Z).

Costruire la chiusura simmetrica e riflessiva $S \subseteq X \times X$ di \leq e dire se è una relazione di equivalenza. In caso affermativo dire se è la relazione di equivalenza generata da R. Costruire tale chiusura d'equivalenza ρ e l'insieme quoziente X/ρ .

Dire se esistono funzioni da X a X contenute in R ed in caso affermativo indicarne il numero. Alcune di queste funzioni ammettono una funzione inversa o un'inversa sinistra o un'inversa destra? Fare le stesse considerazioni per le funzioni da X ad X contenute in ρ . Può esistere una funzione da X ad X con un'inversa sinistra che non è inversa destra?

Traccia di soluzione

R è seriale ma non riflessiva in quanto $(a,a) \notin R$. Non è simmetrica in quanto la matrice di incidenza non è simmetrica, è antisimmetrica in quanto per ogni i,k con $1 \le i \le 6$, $1 \le k \le 6$, se l'elemento di posto (i,k) è 1 l'elemento di posto (k,i) è 0. Non è transitiva perché, ad esempio, $(a,b) \in R$, $(b,c) \in R$ ma

$$(a,c) \not\in R. \ \ La \ chiusura \ riflessiva \ R^r \ di \ R \ ha \ matrice \ di incidenza \ M= \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}. \ \ Per$$

$$\text{determinare la chiusura transitiva di } R^{r} \text{ calcoliamo } M^{2} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \text{ e poiché in } M^{2} \text{ ci}$$

antisimmetrica. Dunque è una relazione d'ordine \leq ed è la minima relazione d'ordine contenente R essendo la chiusura riflessiva e transitiva di R. L'insieme X rispetto alla relazione d'ordine \leq ha il seguente diagramma di Hasse

Gli elementi massimali di X rispetto alla relazione \leq sono c ed e ed i minimali f e d e non c i sono massimi e minimi.

Dato Y={a,b,c,f}, si ha sup Y=c e inf Y=f; c ed f sono rispettivamente massimo e minimo per Y, in quanto appartengono ad Y.

 \hat{X} non è reticolo rispetto alla relazione \leq in quanto, ad esempio, non esiste sup{e,f}, invece Y è un reticolo rispetto a \leq in quanto Y è un insieme totalmente ordinato e quindi ogni coppia di elemnti di Y ha sempre sup e inf.

La chiusura simmetrica e riflessiva S di ≤ coincide con la chiusura simmetrica di ≤, essendo ≤ già

riflessiva, ed ha matrice di incidenza
$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$
 Si verifica facilmente che facendo il

quadrato di tale matrice non si introducono nuovi 1 e quindi S è una relazione di equivalenza. E' anche la relazione d'equivalenza generata da R in quanto S contiene R, S è una relazione di equivalenza ed inoltre \leq essendo la chiusura riflessiva e transitiva di R è contenuta nella relazione d'equivalenza ρ generata da R, che è una relazione riflessiva e transitiva contenente R. Da $\leq \subseteq \rho$ si ricava $\leq ^{-1} \subseteq \rho^{-1}$ ma, per la simmetria di ρ , si ha $\rho^{-1} \subseteq \rho$ e quindi $S = \leq \cup \leq ^{1} \subseteq \rho$. Poiché ρ contiene ogni relazione d'equivalenza contenente R si ha $S = \rho$.

L'insieme quoziente X/ ρ è allora $\{\rho_a, \rho_d\}$ con $\rho_a = \{a,b,c,f\} = \rho_b = \rho_c = \rho_f$ e $\rho_d = \{d,e\} = \rho_e$.

In ogni riga della matrice di incidenza di R c'è almeno un 1 e più precisamente in ogni riga eccetto l'ultima c'è un solo 1, mentre nell'ultima riga si hanno due 1. Ci sono pertanto due funzioni da X ad X contenute in R. Poiché nella matrice di incidenza di R c'è una colonna di tutti 0 non esistono funzioni suriettive da X ad X contenute in R e quindi neppure funzioni iniettive in quanto una funzione da un insieme finito X ad un insieme finito Y con la stessa cardinalità di X è iniettiva se e solo se è suriettiva. Non esistono pertanto funzioni contenute in R che ammettano inversa destra o sinistra. Esistono $4^42^2=4^5$ funzioni da X ad X contenute in ρ ; tra di esse c'è la funzione identica che ammette banalmente inversa. Precisamente esistono 4!2! funzioni invertibili da X ad X, infatti le funzioni che hanno inversa sono funzioni biunivoche e quindi bisogna eliminare degli 1 nelle righe della matrice di incidenza di p in modo da lasciare su ogni riga e ogni colonna della matrice uno ed un solo 1, per la prima riga questo può essere fatto in 4 modi, per ogni scelta della prima riga abbiamo 3 scelte sulla seconda, per ogni scelta sulla prima e seconda riga abbiamo 2 scelte sulla terza e per ogni scelta di queste tre righe 1 sola scelta sulla sesta. Sulla quarta riga abbiamo due scelte e per ogni scelta di questa una sola scelta sulla quinta riga. Abbiamo già detto che nessuna funzione da X ad X, essendo X finito, può essere suriettiva senza essere iniettiva e quindi ogni funzione da X ad X che ammette inversa sinistra deve avere inversa destra ed allora le due inverse coincidono.

Esercizio 6

Siano Z l'insieme dei numeri interi relativi ed $f:Z\to Z$ una funzione. Si consideri la relazione $R\subseteq Z\times Z$ così definita: $(n,m)\in R$ se e solo se n ed m sono entrambi pari ed f(n)=f(m) oppure n ed m sono entrambi dispari.

Stabilire se $R \subseteq \ker f$ e se puo' valere l'uguaglianza $R = \ker f$.

Dire di che proprietà gode R.

Verificare che R e' una relazione di equivalenza.

Nel caso in cui f sia così definita:

f(n)=n+1 se n è dispari

f(n)=|n+1| se n è pari,

determinare le classi di equivalenza di R.

Traccia di soluzione

La relazione R non è sempre contenuta in ker f come si può facilmente notare prendendo come funzione f la funzione identica: in tal caso $(1,3) \in R$ ma $(1,3) \notin ker$ f.

L'uguaglianza R=ker f vale se f manda tutti i numeri dispari in uno stesso elemento, e non manda mai un numero pari in quell'elemento.

R è una relazione riflessiva e quindi seriale, in quanto per ogni n o n è dispari e quindi $(n,n) \in R$ o n è pari e quindi banalmente f(n)=f(n) da cui ancora $(n,n) \in R$. R è simmetrica in quanto nella definizione di R n ed m hanno lo stesso ruolo. R non è antisimmetrica in quanto ad esempio sia (1,3) sia (3,1) appartengono ad R. R è transitiva perchè se $(n,m) \in R$ e $(m,t) \in R$ allora n,m,t sono tutti pari o tutti dispari, inoltre se n,m,t sono pari, $(n,m) \in R$ implica f(n)=f(m) e $(m,t) \in R$ implica f(m)=f(t) da cui f(n)=f(t); in ogni caso si ha dunque $(n,t) \in R$.

Abbiamo quindi già provato che R è una relazione d'equivalenza.

Supponiamo ora che sia f(n)=n+1 se n è dispari e f(n)=|n+1| se n è pari. Si ha allora che la R-classe $[2h+1]_R$ di un qualsiasi numero dispari è formato da tutti i numeri dispari e la R-classe $[2h]_R$ di un numero pari è formato da 2h e dal suo opposto -2h-2.

Esercizio 7

Sia $f : A \rightarrow B$ un'applicazione.

- Sia ρ una relazione di equivalenza su B, provare che la relazione σ definita su A ponendo $(a_1,a_2) \in \sigma$ se e solo se $(f(a_1),f(a_2)) \in \rho$ è una relazione di equivalenza su A

- Nel caso particolare in cui A=R, B=Z, f associa ad ogni numero reale la sua parte intera e ρ
 è la relazione di congruenza modulo 4, descrivere la classe di equivalenza di ½ rispetto a σ.
- Data una relazione di equivalenza τ su A la relazione κ definita su B ponendo $(b_1,b_2) \in \kappa$ se e solo se esistono $a_1,a_2 \in A$ tali che $f(a_1)=b_1,f(a_2)=b_2$ e $(a_1,a_2)\in \tau$ è una relazione di equivalenza su B? Sempre o talvolta?

Traccia di soluzione

Verifichiamo che σ è una relazione d'equivalenza su A.

 σ è riflessiva in quanto per ogni $a \in A$ si ha $(f(a),f(a)) \in \rho$ in quanto ρ è una relazione d'equivalenza e quindi riflessiva.

 σ è simmetrica in quanto per ogni $(a_1,a_2) \in \sigma$ si ha $(f(a_1),f(a_2)) \in \rho$ e, essendo ρ una relazione d'equivalenza e quindi simmetrica, $(f(a_2),f(a_1)) \in \rho$ da cui $(a_2,a_1) \in \sigma$.

 σ è transitiva in quanto da $(a_1,a_2) \in \sigma$ e $(a_2,a_3) \in \sigma$ si ha $(f(a_1),f(a_2)) \in \rho$ e $(f(a_2),f(a_3)) \in \rho$ e, essendo ρ una relazione d'equivalenza e quindi transitiva, $(f(a_1),f(a_3)) \in \rho$ da cui $(a_1,a_3) \in \sigma$.

La classe di equivalenza di ½ rispetto a σ , $[\frac{1}{2}]_{\sigma}$, è formata da tutti e soli i numeri reali x tali che $(\frac{1}{2},x) \in \sigma$ ovvero da tutti e soli i numeri reali x tali che $f(\frac{1}{2}) \equiv f(x) \pmod{4}$ ovvero $0 = \frac{1}{2} = \frac{1}{2} x \pmod{4}$. Ne segue che $[\frac{1}{2}]_{\sigma} = \{4h + r|h \in Z, r \in R \text{ con } 0 \le r < 1\}$.

Se f non è suriettiva la relazione κ non è riflessiva, infatti se b non ha controimmagini mediante f $(b,b)\notin\kappa$.

Se f non è iniettiva la relazione κ potrebbe non essere transitiva, infatti supponiamo $A=\{a_1,a_2,a_3,a_4\}$ con $\tau=\{(a_1,a_1),(a_1,a_2),(a_2,a_2),(a_2,a_1),(a_3,a_3),(a_3,a_4),(a_4,a_3),(a_4,a_4)\}$ e $B=\{b_1,b_2,b_3\}$ con $f(a_1)=b_1,f(a_2)=f(a_3)=b_2,$ $f(a_4)=b_3,$ allora $(b_1,b_2)\in\kappa$, $(b_2,b_3)\in\kappa$ ma $(b_1,b_3)\notin\kappa$.

In generale quindi la relazione κ non è di equivalenza, ma risulta esserlo se f è biettiva. In tal caso infatti per ogni $b \in B$ esiste un $a \in A$ tale che f(a)=b e dunque $(b,b) \in \kappa$ perchè $(a,a) \in \tau$, quindi κ è riflessiva. κ è poi simmetrica in quanto se $(b_1,b_2) \in \kappa$ esistono $a_1,a_2 \in A$ tali che $f(a_1)=b_1,f(a_2)=b_2$ e $(a_1,a_2) \in \tau$, e per la simmetria di τ $(a_2,a_1) \in \tau$, quindi $(b_2,b_1) \in \kappa$. Infine κ è transitiva in quanto se $(b_1,b_2) \in \kappa$ e $(b_2,b_3) \in \kappa$ e esistono $a_1,a_2,a_3,a_4 \in A$ tali che $f(a_1)=b_1,f(a_2)=b_2$ e $(a_1,a_2) \in \tau$, $f(a_3)=b_2,f(a_4)=b_3$ e $(a_3,a_4) \in \tau$, ma per l'iniettività di f $a_2=a_3$ e allora per la transitività di τ $(a_1,a_3) \in \tau$, quindi $(b_1,b_3) \in \kappa$.

Esercizio 8

Siano $A = \{2,3,4\}$, $B = \{6,7,9\}$ e sia $\tau \subseteq A \times B$ la relazione così definita:

$$\forall a \in A, b \in B$$
 $a \tau b :\Leftrightarrow b - a \in P$,

dove *P* è l'insieme dei numeri primi.

- 1. Rappresentare la relazione τ tramite la sua matrice di incidenza e il suo grafo di incidenza.
- 2. Sia $\rho \subseteq A \times B$ un'altra relazione definita nel seguente modo:

$$\forall a \in A, b \in B$$
 $a \rho b :\Leftrightarrow mcd(a,b) = 1$

dove mcd(a,b) è il massimo comun divisore di a e b.

Determinare le matrici di incidenza di $\tau \cap \rho$ e di $\tau \cup \rho$.

3. Siano $C = \{12,18\}$ e $\sigma \subseteq B \times C$ la relazione così definita:

$$\forall \ b \in B, \ c \in C \qquad b \ \sigma \ c \ :\Leftrightarrow \ b \mid c,$$

dove "l" significa "divide".

Determinare la relazione $\tau \cdot \sigma$, il suo grafo di incidenza e la sua matrice di incidenza.

4. Determinare τ^{-1} e $\tau \cdot \tau^{-1}$.

Traccia di soluzione

1. Si verifica facilmente che $\tau = \{(2,7),(2,9),(3,6),(4,6),(4,7),(4,9)\}$ quindi la matrice di

incidenza di
$$\tau$$
 è $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ ed il suo grafo di incidenza è

$$\begin{array}{c|c}
2 & 6 \\
3 & 7 \\
4 & 9
\end{array}$$

2. Essendo $\rho = \{(2,7),(2,9),(3,7),(4,7),(4,9)\}$, si ottiene subito che la matrice di incidenza di

$$\tau \cap \rho \ \dot{e} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} e \ che \ quella \ di \ \tau \cup \rho \ \dot{e} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

3. Risulta $\sigma = \{(6,12),(6,18),(9,18)\}$. La matrice di incidenza di σ è $\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$ e quindi la matrice

di incidenza di
$$\tau \cdot \sigma$$
 è
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, quindi $\tau \cdot \sigma = \{(3,12), (3,18), (4,12), (4,18)\}$, infatti

 $(2,9) \in \tau$, $(9,18) \in \sigma$ e dunque $(9,18) \in \tau \cdot \sigma$; $(3,6) \in \tau$, $(6,12) \in \sigma$ e dunque $(3,12) \in \tau \cdot \sigma$;

 $(3,6) \in \tau$, $(6,18) \in \sigma$ e dunque $(3,18) \in \tau \cdot \sigma$; $(4,6) \in \tau$, $(6,12) \in \sigma$ e dunque $(4,12) \in \tau \cdot \sigma$;

 $(4,6) \in \tau$, $(6,18) \in \sigma$ e dunque $(4,18) \in \tau \cdot \sigma$; infine $(2,12) \notin \tau \cdot \sigma$ perché solamente $(6,12) \in \sigma$ e $(2,6) \notin \sigma$.

Il grafo di incidenza di $\tau \cdot \sigma$ è

4. $\tau^{-1} = \{(7,2),(9,2),(6,3),(6,4),(7,4),(9,4)\}$ da cui $\tau \cdot \tau^{-1} = \{(2,2),(2,4),(3,3),(3,4),(4,3),(4,4),(4,2)\}$.

Esercizio 9

Sia $X = \{a, b, c, d, e\}$ e si consideri la relazione binaria R su X così definita:

$$R = \{(a,b), (a,d), (b,c), (c,d), (d,e)\}.$$

- 1. Rappresentare la relazione R tramite la sua matrice di incidenza e il suo grafo d'incidenza.
- 2. Dire quali proprietà soddisfa R utilizzando sia la matrice che il grafo incidenza.
- 3. Determinare la chiusura riflessiva, la chiusura simmetrica e la chiusura transitiva di R.
- 4. Costruire la chiusura d'equivalenza ρ di R^2 e scrivere l'insieme quoziente X/ρ .
- 5. Sia δ la chiusura simmetrica di R^2 . δ è una funzione? Quante funzioni contiene δ ? Quante di queste sono iniettive? Quante suriettive?

Traccia di soluzione

1. La matrice di incidenza di R è $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, il suo grafo di incidenza è

2. R è antisimmetrica (la sua matrice di incidenza è triangolare alta, tutti gli 1 stanno in posti (i,k) con i<k e tutti gli elementi di posto (k,i) in tal caso sono nulli). Dal grafo si vede infatti che nessun arco ha doppia freccia.

Non è seriale (e quindi neppure riflessiva) perché sulla riga di e non ci sono 1, infatti dal vertice e non escono archi

Non è simmetrica perché la matrice di incidenza non è simmetrica, infatti nel grafo c'è ad esempio l'arco (a,b) ma non l'arco (b,a)

Non è transitiva perché nel grafo c'è ad esempio un cammino di lunghezza 2 fra a e c ma non c'è l'arco (a,c). Calcolando il quadrato della matrice di incidenza (che è la matrice di

3. La chiusura riflessiva di R ha matrice di incidenza $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ e quindi è la

relazione $\{(a,a),(a,b),(a,d),(b,b),(b,c),(c,c),(c,d),(d,d),(d,e),(e,e)\}$, la chiusura simmetrica di

R ha matrice di incidenza $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \text{ e quindi è la relazione } \{(a,b),(b,a),(a,d),(d,a),(d$

(b,c),(c,b),(c,d),(d,c),(d,e),(e,d),

Usando il grafo di incidenza di R si vede subito che la chiusura transitiva di R è la relazione $\{(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)\}.$

4. Dalla matrice di incidenza di R² calcolata al punto predente si vede che il grafo di incidenza di R² è

e dunque la sua chiusura di equivalenza ρ è la relazione $\{(a,a),(a,c),(a,e),(c,a),(c,c),(c,e),(e,a),(e,c),(e,e),(b,b),(b,d),(d,b),(d,d)\}$ e si ha $X/\rho=\{\rho_a,\rho_b\}$ con $\rho_a=\{a,c,e\}=\rho_c=\rho_e,\rho_b=\{b,e\}=\rho_d$.

5. La chiusura simmetrica δ di R^2 ha matrice di incidenza $\begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ e non è una

funzione perché ci sono righe che contengono più di un 1. δ contiene 8 funzioni. Vediamo quante di esse sono iniettive. Ogni funzione contenuta in δ porta b in d e d in b, perché sulla seconda e quarta riga c'è un solo 1. Se una funzione iniettiva contenuta in δ porta a in c deve portare e in a e quindi c in e. Se porta a in e allora deve portare c in a ed e in c. Ci sono quindi 2 sole funzioni iniettive da X ad X contenute in δ . Poichè ogni funzione da X ad X è iniettiva se e solo se è suriettiva, tali funzioni sono suriettive e sono le sole funzioni suriettive da X in X contenute in δ .

Esercizio 10

Sia $A = R^2 \setminus \{(0,0)\}$ con R insieme dei numeri reali e sia $\rho \subseteq A \times A$ la relazione definita nel seguente modo:

 $\forall (a,b), (c,d) \in A \qquad (a,b) \; \rho \; (c,d) \; \iff \; \exists \, t \in R \setminus \{0\} \quad c = at, \, d = bt.$

Dimostrare che ρ è una relazione d'equivalenza e descrivere la generica classe di equivalenza rispetto a ρ .

Traccia di soluzione

Per ogni $(a,b) \in A$ abbiamo $(a,b)\rho(a,b)$ in quanto a=a1 e b=b1, dunque ρ è riflessiva

Se $(a,b)\rho(c,d)$ esiste un $t \in R\setminus\{0\}$ tale che c=at, d=bt, ma allora a=c(1/t), b=d(1/t) con 1/t $\in R\setminus\{0\}$ quindi $(c,d)\rho(a,b)$, dunque ρ è simmetrica

Se $(a,b)\rho(c,d)$ e $(c,d)\rho(e,f)$ esistono $t,s\in R\setminus\{0\}$ tale che c=at, d=bt, e=cs,f=ds ma allora e=a(ts), b=f(ts) con ts $\in R\setminus\{0\}$ quindi $(a,b)\rho(e,f)$, dunque ρ è transitiva. Pertanto ρ è una relazione di equivalenza.

La ρ -classe di (a,b) è formata da tutte e sole le coppie di numeri reali (x,y) tali che a=xr,b=yr per qualche r \in R\{0}, ma questo equivale a dire che ay=bx.

Quindi $\rho_{(a,b)} = \{(x,y) \in A | ay = bx \}.$

Esercizio 11

Sia E un insieme e sia ρ una relazione riflessiva e transitiva su E.

- 1. Definiamo su E una relazione σ tale che $a\sigma b \Leftrightarrow a\rho b, b\rho a$.
 - Mostrare che σ è una relazione d'equivalenza.
- 2. Sull'insieme E/σ definiamo una relazione τ tale che:

 $[a]_{\sigma} \tau[b]_{\sigma} \Leftrightarrow a\rho b.$

Mostrare che τ è una relazione d'ordine.

Traccia di soluzione

- Per ogni a∈E abbiamo aσa infatti essendo ρ riflessiva sappiamo che aρa, dunque σ è riflessiva; σ è simmetrica perché per ogni a,b∈E se aσb si ha aρb e bρa e dunque bσa. Supponiamo ora che aσb e bσc, dalla prima abbiamo aρb e bρa, dalla seconda bρc e cρb, ora per la trensitività di r da aρb e bρc otteniamo aρc , da bρa e cρb otteniamo cρa e dunque aσc , pertanto σ è transitiva e quindi è una relazione d'equivalenza.
- 2. Poiché la relazione τ è una relazione fra classi dobbiamo per prima cosa far vedere che è ben posta, ovvero che non dipende dalla scelta dei rappresentanti delle classi. Supponiamo allora che sia [a]_στ[b]_σ e [a]_σ=[a']_σ, [b]_σ=[b']_σ, mostriamo che allora [a']_στ[b']_σ. Infatti [a]_στ[b]_σ implica che apb, [a]_σ=[a']_σ implica apa' e a'pa, [b]_σ=[b']_σ implica bpb' e b'pb. Ora a'pa e apb, per la transitività di ρ implicano a'pb che a sua volta assieme a bpb' implica a'pb' e quindi [a']_στ[b']_σ. Ora mostriamo che τ è una relazione d'ordine su E/ρ. Per ogni [a]_σ∈ E/ρ si ha [a]_στ[a]_σ perché ρ è riflessiva e dunque apa. Se [a]_στ[b]_σ e [b]_στ[a]_σ allora apb e bpa e dunque aσb da cui [a]_σ=[b]_σ. Infine se [a]_στ[b]_σ e [b]_στ[c]_σ allora apb e bρc e per la transitività di ρ, aρc e dunque [a]_στ[c]_σ. Pertanto τ è riflessiva, antisimmetrica e transitiva, dunque è una relazione d'ordine.

Esercizio 12

a) Si consideri l'insieme $\overline{N} = N \setminus \{0\}$ dei numeri naturali non nulli e la relazione $R \subseteq \overline{N} \times \overline{N}$ così definita

$$(n,m) \in R$$
 se e solo se $n=2^{\alpha}h$, $m=2^{\alpha}k$

con h, k interi positivi dispari ed $\alpha \in N$ (ricordare che N include lo 0).

Si mostri che R è una relazione di equivalenza su \overline{N} e si determinino le classi di equivalenza di R.

b) In \overline{N} si consideri ora la relazione S così definita

$$(n,m) \in S$$
 se e solo se $n=2^{\alpha}h$, $m=2^{\beta}k$ con $\alpha \leq \beta$

ove \leq è l'usuale relazione d'ordine su \overline{N} , h, k sono interi positivi dispari ed $\alpha,\beta \in N$.

Si dica se S è una relazione d'ordine su \overline{N} .

c) Si consideri da ultimo l'insieme quoziente $\frac{\overline{N}}{R}$ e la relazione T su $\frac{\overline{N}}{R}$ così definita

$$([n],[m]) \in T$$
 se e solo se $n=2^{\alpha}h$, $m=2^{\beta}k$ con $\alpha \leq \beta$

ove [n] indica la R-classe di n ed h, k, α , β sono definiti come sopra.

Si verifichi che T è una relazione d'ordine su $\frac{N}{R}$ e si determinino , se esistono, elementi massimali

e minimali, massimo e minimo di $\frac{\overline{N}}{R}$ rispetto a T.

Traccia di soluzione

- a) Per ogni $n \in \overline{N}$ si ha $(n,n) \in R$ in quanto, detto α il piu grande intero naturale tale che 2^{α} divida n, si ha $n=2^{\alpha}h$ con n dispari, quindi n è riflessiva. Se $(n,m) \in R$ allora $n=2^{\alpha}h$, $m=2^{\alpha}k$ con n, n dispari e dunque $(m,n) \in R$, cioè n è simmetrica. Se $(n,m) \in R$ $n=2^{\alpha}h$, $n=2^{\alpha}k$ con n e n dispari, se n grande intero naturale tale che n grande n grande intero naturale tale che n grande n grande intero naturale tale che n grande n grande
- b) La S non è una relazione d'ordine perché ad esempio $(2,6) \in S$ e $(6,2) \in S$.
- c) Per prima cosa mostriamo che T è una relazione ben posta, ovvero che da $([n],[m]) \in T$, [n]=[r], [m]=[s] segue $([r],[s]) \in T$. Infatti $([n],[m]) \in T$ implica che $n=2^{\alpha}h$, $m=2^{\beta}k$ con $\alpha \le \beta$ ed h,k interi positivi dispari, essendo $n=2^{\alpha}h$ [n]=[r] implica che $r=2^{\alpha}j$ con j intero positivo dispari, analogamente essendo $m=2^{\beta}k$ [m]=[s] implica che $s=2^{\beta}i$ con i intero positivo dispari. Ora da $r=2^{\alpha}j$ con j intero positivo dispari, $s=2^{\beta}i$ con i intero positivo dispari e da $\alpha \le \beta$ si ottiene $([r],[s]) \in T$.

T è una relazione riflessiva in quanto, per ogni $[n] \in \frac{\overline{N}}{R}$ si ha $([n],[n]) \in T$ poiché ogni $n \in \overline{N}$

si scrive in uno ed un sol modo come $n=2^\alpha h$ con $n=2^\alpha h$ con $n=2^\alpha h$ con $n=2^\alpha h$, $n=2^\beta k$ con $n=2^\alpha h$, $n=2^\alpha h$, $n=2^\alpha h$, $n=2^\beta h$ con $n=2^\alpha h$, $n=2^\alpha h$, n=

 $\alpha \leq \gamma$ e ([n],[r]) \in T. Dunque T è transitiva. La R-classe [1] è il minimo dell'insieme $\frac{N}{R}$

rispetto alla relazione T, mentre $\frac{N}{R}$ non ha né elementi massimali né massimi rispetto alla relazione T, infatti per ogni intero naturale α si ha $([2^{\alpha}],[2^{\alpha+1}]) \in T$.

Esercizio 13

Si consideri l'insieme N={0,1,2,3,....} dei numeri naturali e la relazione R su N così definita:

 $n R m \Leftrightarrow n \stackrel{.}{e} dispari ed esiste t naturale pari tale che <math>n = m + t$.

Si consideri inoltre la relazione T su N così definita:

 $n T m \Leftrightarrow n R m \quad o \quad n = m \quad pari$

- a) Si dica di quali proprietà gode R.
- b) Si dimostri che T è una relazione d'ordine su N.
- c) Tè la chiusura d'ordine di R?
- d) Si determinino gli elementi minimali, massimali, minimo e massimo di T.

- e) Posto A = { 5, 9, 11, 23 }, si determinino gli eventuali minoranti, maggioranti, estremo superiore ed estremo inferiore di A rispetto a T.
- f) Si stabilisca se A rispetto a T è un reticolo.

Traccia di soluzione

- a) R non è seriale in quanto ad esempio non esiste alcun intero n tale che (2,n)∈R, quindi R non è neppure riflessiva. R è antisimmmetrica in quanto se (n,m)∈R si ha n dispari e n=m+t con t intero naturale pari, se (m,n)∈R si ha m dispari e m=n+s con s intero naturale pari quindi si ottiene n=n+s+t da cui s+t=0, ovvero s=t=0 e quindi n=m. R è transitiva in quanto se (n,m)∈R si ha n dispari e n=m+t con t intero naturale pari, se (m,r)∈R si ha m dispari e m=r+s con s intero naturale pari quindi si ottiene n=r+s+t con s+t intero positivo pari ovvero (n,r)∈R.
- b) Si verifica facilmente che T è la chiusura riflessiva di R. Infatti per ogni (n,m)∈T se n è dispari si ha (n,m)∈R, se n è pari si ha (n,m)∈I_N, dove I_N è la relazione identica su N, e quindi T⊆R∪I_N. Se invece (n,m)∈R∪I_N, se (n,m)∈R allora n è dispari, se (n,m)∈I_N allora n=m ed inoltre se n è dispari si ha n=n+0 e dunque (n,n)∈R, dunque R∪I_N⊆T e tenuto conto della precedente inclusione T=R∪I_N. T è allora riflessiva, inoltre è antisimmetrica perché se (n,m)∈T ed n è dispari allora (n,m)∈R che è antisimmetrica, se n è pari allora n=m. Infine T è transitiva perché se (n,m)∈T e (m,r)∈T allora se n è dispari anche m è dispari e dunque (n,m)∈R e (m,r)∈R da cui (n,r)∈R per la transitività di R e di conseguenza (n,r)∈R∪I_N=T, se n è pari allora n=m ed essendo m pari m=r da cui n=r e pertanto (n,r)∈I_N⊆T.
- c) T= R∪I_N è la chiusura riflessiva di R ed è una relazione d'ordine che contiene R. Per definizione ogni relazione d'ordine che contenga R deve essere riflessiva e quindi contenere la relazione T. Pertanto T è la minima relazione d'ordine che contiene R ed è la chiusura d'ordine di R.
- d) Tutti i numeri pari sono associati solo a se stessi in T e quindi sono elementi sia massimali sia minimali di N rispetto a T. Anche 1 è un elemento massimale di N rispetto a T perché per ogni n dispari (n,1)∈ T in quanto n=1+(n-1) dove n-1 è un numero pari non negativo.
- e) A rispetto a T è un insieme totalmente ordinato di cui 5 e 23 sono rispettivamente il massimo e minimo e quindi il sup e l'inf. I maggioranti di A sono 1,3,5 ed i minoranti di A sono tutti i dispari maggiori di 23.
- f) A rispetto a T è un reticolo in quanto ogni coppia di elementi di A è costituita da elementi confrontabili e quindi ammette sup e inf.

Esercizio 14

Sia dato l'insieme $X = \{a,b,c,d,e,f\}$ e la relazione binaria R su X rappresentata dal seguente grafo

- a) Si provi che non esiste nessuna relazione d'ordine su X contenente. R.
- b) Si mostri che R è transitiva.
- c) Si trovi la relazione d'equivalenza ρ generata da R.
- d) Si stabilisca se ρ coincide con la chiusura riflessiva e simmetrica di R

Traccia di soluzione

a) Essendo R non antisimmetrica, ogni relazione che contiene R non è antisimmetrica, per cui non ci sono relazioni d'ordine che contengono R

- b) R non è transitiva in quanto, ad esempio, $(e,f) \in R$, $(f,e) \in R$ ma $(e,e) \notin R$.
- c) Dal grafo si vede subito che la relazione d'equivalenza generata da R è $\{(a,a),(a,b),(a,c),(a,d),(b,a),(c,a),(d,a),(b,c),(c,b),(b,d),(d,b),(c,d),(d,c),(b,b),(c,c).(d,d),(e,e),(e,f),(f,e),(f,f)\}.$
- d) La chiusura riflessiva e simmetrica di R è contenuta in ρ e non contiene ad esempio la coppia $(b,c) \in \rho$ per cui non coincide con ρ .

Esercizio 15

Siano Z l'insieme dei numeri interi e $f: Z \to Z$ la funzione definita nel seguente modo:

$$\forall n \in Z \qquad f(n) = \begin{cases} 2n^2 - n & \text{se } n \ge 0 \\ n^3 & \text{se } n < 0 \end{cases}$$

Discutere l'esistenza di possibili inverse e in caso affermativo esibirne un esempio.

Traccia di soluzione

La funzione f porta lo 0 in 0, tutti gli interi positivi in interi positivi e quelli negativi in interi negativi. Ora se n ed m sono entrambi positivi da f(n)=f(m) si ottiene $2n^2-n=2m^2-m$ da cui si ha $2(n^2-m^2)=n-m$ e quindi o n=m o 2(n+m)=1 che è un assurdo. Se n ed m sono entrambi negativi da f(n)=f(m) si ottiene $n^3=m^3$ e quindi n=m. In ogni caso pertanto f(n)=f(m) implica n=m e la f è iniettiva ed ammette inversa destra. La f non è suriettiva perché ad esempio -2 non ha controimmagini mediante f.

Una inversa destra di f è la seguente: g(m)=n se m è un intero positivo tale che $2n^2-n=m$, g(0)=0, g(m)=n se m è un intero negativo tale che $m=n^3$, g(m)=0 per ogni m positivo tale che non esista n per cui $2n^2-n=m$ e per ogni intero negativo che non sia un cubo perfetto.

Esercizio 16

Siano Σ un *alfabeto* (cioè un insieme finito non vuoto), Σ^* il *monoide libero su* Σ (cioè l'insieme di tutte le sequenze finite –anche vuote- di elementi di Σ , dette *parole*) e, per ogni $w \in \Sigma^*$, denotiamo con |w| la lunghezza di w (cioè il numero di elementi che costituiscono la parola w). Data la seguente funzione:

$$\phi: \Sigma^* \to N \cup \{0\}, \quad \forall w \in \Sigma^* \quad \phi(w) = |w|$$

discutere l'esistenza di possibili inverse e in caso affermativo esibirne un esempio.

Traccia di soluzione

 Φ è una funzione suriettiva, infatti per ogni n c'è sempre una sequenza di n caratteri di Σ e per n=0 c'è la parola vuota (senza caratteri) che ha lunghezza 0. Φ non è iniettiva se Σ contiene almeno due elementi, infatti se a,b Σ allora Φ (a)= Φ (b)=1. Se Σ ha un solo elemento a allora Φ è anche iniettiva perché la sola parola di lunghezza n per ogni n>0 è aⁿ, dove con aⁿ indichiamo la sequenza di n caratteri a, se n=0 è la parola vuota.

Quindi se Σ ha almeno due elmenti la Φ ha solo inversa sinistra, se ha un solo elemento la Φ ammette inversa. Un esempio è il seguente: sia $a \in \Sigma$ allora $\psi: \mathbb{N} \cup \{0\} \rightarrow \Sigma^*$ che manda 0 nella parola vuota ed n>0 in a^n è un'inversa sinistra di Φ che diventa l'inversa di Φ se $\Sigma=\{a\}$.

Esercizio 17

Sia dato l'insieme $X = \{a,b,c,d,e,f\}$.

Si consideri la relazione R su X avente la seguente matrice d'incidenza

0	1	0	1	0	0
0	0	1	0	1	0
0	0	0 1 0 0 0	0	0	1
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

- a) Si costruisca la chiusura riflessiva e transitiva S di R.
- b) Si provi che S è una relazione d'ordine su X.
- c) Si stabilisca se X rispetto ad S è un reticolo e, nel caso in cui lo fosse, se è di Boole.
- d) Si costruisca la chiusura simmetrica T di S e si verifichi se è una relazione d'equivalenza.
- e) Se sì, se ne determinino le classi d'equivalenza. In caso contrario si determini la relazione d'equivalenza ρ generata da T e le relative classi di equivalenza.

Traccia di soluzione

a) Il grafo di incidenza di R è il seguente

La chiusura riflessiva e transitiva S di R è allora $\{(a,a),(a,b),(a,c),(a,d),(a,e),(a,f),(b,b),(b,c),(b,e),(b,f),(c,c),(c,f),(d,d),(d,e),(d,f),(e,e),(e,f),(f,f)\}.$

b) S è riflessiva e transitiva per costruzione ed è antisimmetrica per cui è una relazione d'ordine il cui diagramma di Hasse è

- c) Le uniche coppie di elementi non confrontabili sono b,d; b,e; c,e. Si vede subito che sup{b,d}=c, inf{b,d}=a, sup{b,e}=f, inf{b,e}=a, sup{c,e}=f, inf{c,e}=d. Le coppie di elementi confrontabili hanno sempre sup e inf e dunque X è un reticolo rispetto a S.
- d) La chiusura simmetrica T di S è $\{(a,a),(a,b),(a,c),(a,d),(a,e),(a,f),(b,a),(b,b),(b,c),(b,e),(b,f),(c,a),(c,b),(c,c),(c,f),(d,a),(d,d),(d,e),(d,f),(e,a),(e,b),(e,d),(e,e),(e,f),(f,a),(f,b),(f,c),(f,d),(f,e),(f,f)\}$ e non è di equivalenza perché ad esempio $(a,b),(a,d) \in \mathbb{R}$ e $(b,d) \notin \mathbb{R}$.
- e) Dal grafo si vede subito che la relazione d'equivalenza ρ generata da T è la relazione universale su X e quindi X/ρ ha una sola classe di congruenza formata da tutto X.

Esercizio 18

Sia N l'insieme dei numeri naturali (0 incluso) e sia f: N→N la funzione definita da

$$f(x) = \begin{cases} x/2 & \text{se } x \text{ è pari} \\ \lfloor x/2 \rfloor & \text{se } x \text{ è dispari} \end{cases}$$

(dove $\lfloor x \rfloor$ indica la parte intera di x).

Dire se f ammette inversa destra o sinistra, e in caso darne un esempio.

Calcolare le ker f classi di N.

Traccia di soluzione

La funzione f è suriettiva in quanto ogni intero n è immagine di 2n. Non è invece iniettiva perché ad esempio f(0)=0 e f(1)=0.La f ammette pertanto una inversa sinistra data da g(n)=2n. La ker f classe di n è formata da $\{2n,2n+1\}$.

Esercizio 19

Sia Z l'insieme dei numeri interi relativi e sia R la relazione binaria su Z così definita (a,b)∈R se e solo se a,b sono entrambi minori di 10 ed a≡b (mod 3), oppure uno almeno fra a e b è maggiore di 10

Dire di che proprietà gode R e costruirne la sua chiusura transitiva.

Traccia di soluzione

La relazione R è seriale perché per ogni $n \in \mathbb{Z}$ si ha $(n,11) \in \mathbb{R}$.

Non è riflessiva perché $(10,10)\notin R$. E' simmetrica perché se $(a,b)\in R$ e uno almeno fra a e b è maggiore di 10, allora $(b,a)\in R$, altrimenti a e b sono entrambi minori di 10 e $a\equiv b\pmod{3}$ da cui $b\equiv a\pmod{3}$ e ancora $(b,a)\in R$. Non è transitiva perché $(1,11)\in R$ e $(11,2)\in R$, ma $(1,2)\notin R$. Non è antisimmatrica perché $(11,12)\in R$ e $(12,11)\in R$.

La chiusura transitiva di R è la relazione universale, infatti siano $n,m \in \mathbb{Z}$, se uno di essi è maggiore di 10 si ha $(n,m) \in \mathbb{R}$, se sono entrambi minori o uguali a 10 allora si ha sempre $(n,11) \in \mathbb{R}$ e $(11,m) \in \mathbb{R}$ da cui $(n,m) \in \mathbb{R}^2$ e quindi (n,m) appartiene alla chiusura transitiva di R.

Esercizio 20

Si consideri l'applicazione f:N×N→N definita ponendo f((n,m))=m.c.m (n,m): La funzione è iniettiva, suriettiva, biunivoca? Ammette un'inversa destra, sinistra o bilatera? In caso affermativo costruirne un esempio. Determinare la ker f classe della coppia (4,3). Le ker-f classi sono tutte finite? Esistono ker f classi formate da un solo elemento? Se si quali sono? Quale è la cardinalità di N×N/ker f?

Traccia di soluzione

La f è suriettiva in quanto, per ogni $n \in \mathbb{N}$, m.c.m (n,1)=n e quindi f((n,1))=n. Non è iniettiva perchè f((1,6))=f((2,3))=6. La f ammette pertanto inversa sinistra. Un esempio di inversa sinistra di f è così definita: g(n)=(1,n).

La ker f classe di (4,3) è formata da tutte le coppie di numeri naturali il cui m.c.m è 12 e dunque {(1,12),(12,1),(2,12),(12,2),(3,12),(12,3),(4,12),(12,4),(6,12),(12,6),(12,12),(4,6),(6,4),(4,3),(3,4)}. L'unica ker f classe non finita è quella di (0,1), in quanto è formata da tutte le coppie con almeno un elemento uguale a 0. L'unica classe formata da un solo elemento è la ker f classe di (1,1). Poiche la f è una funzione suriettiva da N×N in N sappiamo dal teorema di fattorizzazione delle applicazioni che esiste una funzione biettiva da N×N/ker f in N e dunque N×N/ker f ha la cardinalità del numerabile.