

Distribuição Lognormal:

Propriedades e aplicações na Engenharia de Avaliações

Autores:Luiz F. P. Droubi | SPU/SC | Ifpdroubi@gmail.com Willian Zonato | SPU/SC | will.zonato@gmail.com Norberto Hoccheim | UFSC | hochheim@gmail.com

1) INTRODUÇÃO

Certas amostras de dados apresentam distribuição consideravelmente diferente da distribuição normal. Um dos pressupostos da inferência estatística clássica é o da normalidade dos resíduos. Outro é a homoscedasticidade dos mesmos. Estas duas hipóteses dificilmente são atingidos se a distribuição da variável dependente não for ao menos próximada distribuição normal. Para contornar este problema, pode-se:

- a)Transformar a variável resposta de maneira que a sua distribuição torne- se aproximadamente normal
- b)Utilizar o método dos mínimos quadrados ponderados, de forma a remover a heteroscedasticidade do modelo
- c) Calcular erros heteroscedásticos consistentes, com o método de Eicker-White, por exemplo.

2) DISTRIBUIÇÃO LOGNORMAL

Características

Na distribuição lognormal, diferentemente do que ocorre nas distribuições simétricas, como a distribuição normal, moda, média e mediana tem valores distintos, o que pode ser observado na figura 1.

Na figura 2 observa-se o efeito do desvio-padrão sobre a forma da distribuição.

Figura 1: Medidas de tendência central. FONTE: Autor.

Figura 2: Diversas distribuições com μ=0. FONTE: Autor.

Formulação

Função Densidade de Probabilidade $\begin{cases} f(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp(-\frac{(\log(x)-\mu)^2}{2\sigma^2}) & \forall x>0 \\ 0 & \text{se } x=0 \end{cases}$ Valor Esperado (média) $\mathbb{E}(X) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ Moda $Mo = \exp\left(\mu - \sigma^2\right)$ Mediana $\nu = \exp\left(\mu\right)$ Variância $\text{Var}(X) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$ Var $(X) = \mathbb{E}^2(X)(\exp(\sigma^2) - 1)$ Coeficiente de Variação

 $CV=\sqrt{\mathrm{e}^{\sigma^2}-1}$ Parâmetros na escala anti-logarítmica $\mu^*=\mathrm{e}^\mu$ $\sigma^*=\mathrm{e}^\sigma$

Estimação dos Parâmetros

A melhor maneira de estimar os parâmetros de dados lognormais é através do cálculo dos parâmetros na escala logarítmica.

Por exemplo, seja X uma variável aleatória com distribuição aproximadamente lognormal. Para estimar o parâmetro $\mu(X)$, primeiro estima-se o valor da média da variável $x^- = \ln(X)$, e depois retorna-

se para a estimava do parâmetro μ na escala original através da transformação inversa ($\mu = \exp(x^{-})$).

3) RESULTADOS

No que tange à Engenharia de Avaliações, um dos aspectos mais importantes é o de qual seria a melhor medida de tendência central a se adotar para estimar o valor do bem.

Na tabela 1 mostramos que a adoção da média, moda ou mediana é praticamente irrelevante quando o erropadrão (σ) da regressão é pequeno. Porém, para altos valores de σ ,

percebe-se uma discrepância muito grande entre os valores obtidos com a média, moda ou mediana. Para efeito de comparação, a tabela 1 mostra os valores da moda e da média em função do desvio-padrão σ , quando a mediana da distribuição tem valor fixado em μ * = 1.000.000.

Em suma, como pode ser visto na figura 3, fixado µ*, à medida que o desviopadrão aumenta, a moda da distribuição tende a zero, enquanto a média da distribuição tende a +∞.

Figura 3: Variação das tendências centrais. FONTE: Autor.

	rigara et variação das terrasmentos. Ferrasmentos						
Medida / σ	0,1	0,25	0,5	0,75	1	1,5	2
Moda	990.050	939.413	778.801	569.783	367.879	105.399	18.316
%	-1,0%	-6,1%	-22,1%	-43,0%	-63,2%	-89,5%	-98,2%
Média	1.005.013	1.031.743	1.133.148	1.324.785	1.648.721	3.080.217	7.389.056
%	+0,5%	+3,2%	+13,3%	+32,5%	+64,9%	+208,0%	+638,9%

Tabela 1: Moda e Média em função do desvio-padrão, quando μ=1.000.000. FONTE: Autor.