

Lecture 8-5: BERT

Pilsung Kang
School of Industrial Management Engineering
Korea University

Devlin et. al (2018)

BERT

- ✓ Designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers
 - Masked language model (MLM): bidirectional pre-training for language representations
 - Next sentence prediction (NSP)

Pre-trained BERT model can be fine-tunes with just one additional output layer to create
 SOTA models for a wide range of NLP tasks (QA, NER, Sentiment Analysis, etc.)

Devlin et. al (2018)

BERT: Model Architecture

- √ Multi-layer bidirectional Transformer encoder
 - L: number of layers (Transformer block)
 - H: hidden size
 - A: number of self attention heads

✓ BERT_{BASE}

- \blacksquare L = 12, H=768, A = 12
- Total parameters = 110M
- Same model size as OpenAl GPT

✓ BERT_{LARGE}

- L = 24, H=1,024, A = 16
- Total parameters = 340M

- BERT: Input/Output Representations
 - ✓ To make BERT handle a variety of down-stream tasks, the input representation is able to unambiguously represent both <u>a single sentence</u> and <u>a pair of sentences</u> (ex: Question-Answer)
 - Sentence: an arbitrary span of contiguous text, rather than an actual linguistic sentence
 - Sequence: the input token sequences to BERT, which may be a single sentence or two sentences packed together

Devlin et. al (2018)

BERT: Input/Output Representations

- BERT: Input/Output Representations
 - √ Input representation is the sum of
 - (1) Token embedding: WordPiece embeddings with a 30,000 token vocabulary
 - (2) Segment embedding
 - (3) Position embedding: same as in the Transformer

Devlin et. al (2018)

• BERT: Input/Output Representations

√ (2) Segment embedding

https://medium.com/@_init_/why-bert-has-3-embedding-layers-and-their-implementation-details-9c261108e28a

Layer-wise accounting:

Going through layers from top to bottom, we can see following:

- 1. Inputs Token and segment do not have any trainable parameters, as expected.
- 2. Token embeddings parameters= 23040000 (H * T) because each of 30k (T) tokens needs a representation in dimension 768 (H)
- 3. Segment Embeddings parameters = 1536 (2*H) because we need two vectors each of length (H). The vectors represent Segment A and Segment B respectively
- 4. Token embeddings and segment embeddings are added to Position Embedding. Parameters = 393216 (H*P). This is because it needs to generate P vectors, each of length H, for the tokens starting 1 to 512 (P). The position embeddings in BERT are trained and not fixed as in Attention is all you need; There's a dropout applied, and then Layer Normalization is done
- Layer Normalization parameters = 1536 (2*H). Normalization has two parameters to learn mean and standard deviation of each of the embedding position, hence 2*H
- 6. Encoder: MultiheadSelfAttention: MultiHeadAttention = 2362368

https://mc.ai/understanding-bert-architecture/

Devlin et. al (2018)

- Pre-training BERT
 - √ Task I: Masked Language Model (MLM)
 - 15% of each sequence are replaced with a [MASK] token
 - Predict the masked words rather tan reconstructing the entire input in denoising encoder

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

- Pre-training BERT
 - √ Task I: Masked Language Model (MLM)
 - (Caution!) A mismatch occurs between pre-training and fine-tuning, since the [MASK]
 token does not appear during fine-tuning
 - (Solution) If the i-th token is chosen to be masked, it is replaced by the [MASK] token 80% of the time, a random toke 10% of the time, and unchanged 10% of the time
 - (80%) my dog is hairy \rightarrow my dog is [MASK]
 - (10%) my dog is hairy \rightarrow my dog is apple
 - (10%) my dog is hairy → my dog is hairy

- Pre-training BERT
 - √ Task I: Masked Language Model (MLM)
 - (Caution!) A mismatch occurs between pre-training and fine-tuning, since the [MASK]
 token does not appear during fine-tuning
 - (Solution) If the i-th token is chosen to be masked, it is replaced by the [MASK] token 80% of the time, a random toke 10% of the time, and unchanged 10% of the time

Ma	sking Ra	ates	Dev Set Results				
MASK	SAME	RND	MNLI Fine-tune		NER Feature-based		
80%	10%	10%	84.2	95.4	94.9		
100%	0%	0%	84.3	94.9	94.0		
80%	0%	20%	84.1	95.2	94.6		
80%	20%	0%	84.4	95.2	94.7		
0%	20%	80%	83.7	94.8	94.6		
0%	0%	100%	83.6	94.9	94.6		

- Pre-training BERT
 - √ Task 2: Next Sentence Prediction (NSP)
 - Many important downstream tasks such as QA and NLI are based on understanding the relationship between two sentences, which is not directly captured by language modeling
 - A Binarized next sentence prediction task that can be trivially generated from any monolingual corpus is trained
 - 50% of the time B is the actual next sentence that follows A (IsNext)
 - 50% of the time it is a random sentence from the corpus (NotNext)
 - C is used for next sentence prediction
 - Despite its simplicity, pre-training towards this task is very beneficial both QA and NLI

Devlin et. al (2018)

Pre-training BERT

√ Task 2: Next Sentence Prediction (NSP)

Monica: This is harder than I thought it would be.

Chandler: Oh, it is gonna be okay.

Rachel: Do you guys have to go to the new house

right away, or do you have some time?

Monica: We got some time.

Rachel: Okay, should we get some coffee?

Chandler: Sure. Where?

https://fangj.github.io/friends/season/1017-1018.html

Devlin et. al (2018)

Pre-training BERT

√ Task 2: Next Sentence Prediction (NSP)

Monica: This is harder than I thought it would be.

Chandler: Oh, it is gonna be okay.

Rachel: Do you guys have to go to the new house

right away, or do you have some time?

Monica: We got some time.

Rachel: Okay, should we get some coffee?

Chandler: Sure. Where?

[CLS] This is harder than I thought it would be. [SEP] Oh, it is gonna be okay

Devlin et. al (2018)

- Pre-training BERT
 - √ Task 2: Next Sentence Prediction (NSP)

Monica: This is harder than I thought it would be.

Chandler: Oh, it is gonna be okay.

Rachel: Do you guys have to go to the new house right away, or do you have some time?

Monica: We got some time.

Rachel: Okay, should we get some coffee?

Chandler: Sure. Where?

[CLS] Oh, it is gonna be okay

[SEP] We got some time

Devlin et. al (2018)

• Differences in pre-training model architectures

Devlin et. al (2018)

- Pre-training BERT
 - √ Datasets for pre-training

BooksCorpus (800M words) (Zhu et al., 2015)

Devlin et. al (2018)

- Pre-training BERT
 - √ Datasets for pre-training
 - English Wikipedia (2,500M words)

https://github.com/attardi/wikiextractor

Devlin et. al (2018)

Pre-training BERT

- √ Hyper-parameter settings
 - Maximum token length: 512
 - Batch size: 256
 - Adam with learning rate of le-4, beta l = 0.9 beta 2 = 0.999
 - L2 weight decay of 0.01
 - Learning rate warmup over the first 10,000 steps, linear decay of the learning rate
 - Dropout probability of 0.1 on all layers
 - GeLU activation function rather than standard ReLU
 - BERT_{BASE} took 4 days with 16 TPUs and BERT_{LARGE} took 4 days with 64 TPUs
 - Pre-train the model with sequence length of 128 for 90% of the steps
 - The rest 10% of the steps are trained with sequence length of 512

Devlin et. al (2018)

Fine-tuning BERT

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Devlin et. al (2018)

Experiments

✓ A collection of diverse NLU tasks

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m MN	ILI-mm	QNLI	RTE	WNLI	АХ
	1	ERNIE Team - Baidu	ERNIE	♂	90.2	72.2	97.5	93.0/90.7	92.9/92.5	75.2/90.8	91.2	90.6	98.0	90.9	94.5	49.4
+	2	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)	Z	90.1	73.2	97.1	93.9/91.9	93.0/92.5	74.8/91.0	90.8	90.6	99.2	87.4	94.5	48.7
	3	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART	Z	89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
	4	T5 Team - Google	Т5	Z	89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0	91.7	96.7	92.5	93.2	53.1
	5	XLNet Team	XLNet (ensemble)	Z	89.5	70.2	97.1	92.9/90.5	93.0/92.6	74.7/90.4	90.9	90.9	99.0	88.5	92.5	48.4
	6	ALBERT-Team Google Language	ALBERT (Ensemble)	Z	89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	91.8	50.2
	7	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)	Z	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	89.0	50.1
	8	Facebook AI	RoBERTa	Z	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0	48.7
	9	Junjie Yang	HIRE-RoBERTa	♂	88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
+	10	Microsoft D365 AI & MSR AI	MT-DNN-ensemble	♂	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8

https://gluebenchmark.com/leaderboard

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Devlin et. al (2018)

• Experiments

√ Ablation study 1: Effect of Pre-training Tasks

	Dev Set						
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD		
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)		
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP	82.1	84.3	77.5	92.1	77.8		
+ BiLSTM	82.1	84.1	75.7	91.6	84.9		

√ Ablation study 2: Effect of Model Size

Ну	perpar	ams	Dev Set Accuracy					
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Devlin et. al (2018)

Experiments

- ✓ Ablation study 3: Feature-based Approach with BERT
 - CoNLL-2003 NER task

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	_
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	_
Concat Last Four Hidden	96.1	_
Weighted Sum All 12 Layers	95.5	-

