1 Some examples

- 1. The functions below are examples of inner products:
 - (a). $V = \mathbb{C}([0,1]) = \{f : [0,1] \to \mathbb{C} \text{ continuous}\}.$ $< f, g >= \int_0^1 f\overline{g}$
 - (b). $V = M_n(\mathbb{C}), \langle A, B \rangle = \operatorname{tr}(AB^*), \text{ where } B^* = \overline{B^t}.$

Proof: The conditions of the inner products can be established as below:

- $\bullet < A + B, C > = \operatorname{tr}((A + B)C^*) = \operatorname{tr}(AC^* + BC^*) = \operatorname{tr}(AC^*) + \operatorname{tr}(BC^*) = < A + C, B + C > .$
- for any constant $c, \langle cA, B \rangle = \operatorname{tr}(c(AB^*)) = c\operatorname{tr}(AB^*) = c \langle A, B \rangle$.
- $< A, B> = \operatorname{tr}(AB^*) = \operatorname{tr}(A\overline{B^t}) = \sum (A\overline{B^t})_{ii} = \sum A_{ij}\overline{B^t_{ji}} = \sum A_{ij}\overline{B_{ij}}, \ \forall 1 \leq i,j \leq n.$ Similarly, $< B, A> = \sum B_{ij}\overline{A_{ij}}.$ Now for $a,b \in \mathbb{C}$ we have $\overline{a} + \overline{b} = \overline{a+b}, \ \overline{ab} = \overline{ab} \ \overline{ad} = \overline{a}.$ Therefore $\overline{ab} = \overline{ab} = \overline{ab}.$ This gives $A_{ij}\overline{B_{ij}} = \overline{B_{ij}}\overline{A_{ij}}$ and therefore $< A, B> = A_{ij}\overline{B_{ij}} = \overline{B_{ij}}\overline{A_{ij}} = \overline{B_{ij}}\overline{A_{ij}}.$
- From above, $\langle A, A \rangle = \sum A_{ij} \overline{A_{ij}} = \sum ||A_{ij}||^2$. This is obviously nonnegative, and it is zero if and only if all $||A_{ij}||$'s are zero, meaning that A_{ij} must be itself a zero (i.e. a zero vector).
- 2. In assignment 1 problem 1, we have seen that the pairing isn't an inner product because there exists nonzero vector \boldsymbol{x} satisfying $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$. We now show that the pairing $\boldsymbol{x}^t \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \overline{\boldsymbol{y}}$ satisfies all other properties.

Notice that, if $\boldsymbol{x}=\left(\begin{array}{c}x_1\\x_2\end{array}\right)$ and $\boldsymbol{y}=\left(\begin{array}{c}y_1\\y_2\end{array}\right)$ then

$$\langle \boldsymbol{x},\boldsymbol{y}\rangle = \boldsymbol{x}^t A \overline{\boldsymbol{y}} = \left(\begin{array}{cc} x_1 & x_2 \end{array}\right) \left(\begin{array}{cc} 1 & i \\ -i & 1 \end{array}\right) \left(\begin{array}{cc} \overline{y_1} \\ \overline{y_2} \end{array}\right) = \left(\begin{array}{cc} x_1 & x_2 \end{array}\right) \left(\begin{array}{cc} \overline{y_1} + i \overline{y_2} \\ -i \overline{y_1} + \overline{y_2} \end{array}\right) = \left(\begin{array}{cc} x_1 (\overline{y_1} + i \overline{y_2}) + x_2 (-i \overline{y_1} + \overline{y_2}) \end{array}\right).$$

We establish the following:

- $\bullet \ \langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = \boldsymbol{x} + \boldsymbol{y}^t A \overline{\boldsymbol{z}} = (\boldsymbol{x}^t + \boldsymbol{y}^t) A \overline{\boldsymbol{z}} = \boldsymbol{x}^t A \overline{\boldsymbol{z}} + \boldsymbol{y}^t A \overline{\boldsymbol{z}} = \langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle.$
- For any constant c, $\langle \boldsymbol{c}\boldsymbol{x}, \boldsymbol{y} \rangle = (c\boldsymbol{x}^t)A\overline{\boldsymbol{y}} = c(\boldsymbol{x}^tA\overline{\boldsymbol{y}}) = c\langle \boldsymbol{x}, \boldsymbol{y} \rangle$.
- Before proving $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \overline{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}$, we need the following properties about complex numbers: for any complex numbers a and b, we have $\overline{a} + \overline{b} = \overline{a+b}$; for any complex numbers a and b, $\overline{a} \cdot \overline{b} = \overline{ab}$. Therefore,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = (x_1(\overline{y_1} + i\overline{y_2}) + x_2(-i\overline{y_1} + \overline{y_2})), \langle \boldsymbol{y}, \boldsymbol{x} \rangle = (y_1(\overline{x_1} + i\overline{x_2}) + y_2(-i\overline{x_1} + \overline{x_2})).$$

We have $x_1\overline{y_1} = \overline{\overline{x_1}y_1} = \overline{\overline{x_1}y_1}$, and similarly $x_2\overline{y_2} = \overline{\overline{x_2}y_2} = \overline{\overline{x_2}y_2}$. In addition, $i(x_1\overline{y_2} - x_2\overline{y_1}) = i(\overline{\overline{x_1}y_2} - \overline{x_2}y_1) = -i(\overline{\overline{x_2}y_1} - \overline{x_1}y_2) = i(\overline{\overline{x_2}y_1} - \overline{x_1}y_2) = i(\overline{\overline{x_2}y_1} - \overline{x_1}y_2)$. Therefore,

$$x_1(\overline{y_1} + i\overline{y_2}) + x_2(-i\overline{y_1} + \overline{y_2}) = x_1\overline{y_1} + x_2\overline{y_2} + i(x_1\overline{y_2} - x_2\overline{y_1}) = \overline{x_1}\overline{y_1} + \overline{x_2}\overline{y_2} + \overline{i(\overline{x_2}y_1 - \overline{x_1}y_2)} = \overline{x_1}\overline{y_1} + \overline{x_2}\overline{y_2} + i(\overline{x_2}y_1 - \overline{x_1}y_2) = \overline{x_1}\overline{y_1} + \overline{x_2}\overline{y_2} + i(\overline{x_1}y_1 - \overline{x_1}y_2) = \overline{x_1}\overline{y_1} + \overline{x_2}\overline{y_2} + i(\overline{x_1}y_1 - \overline{x_1}y_2) = \overline{x_1}\overline{y_1} + x_2\overline{y_2} +$$

 $=\overline{y_1(\overline{x_1}+i\overline{x_2})+y_2(-i\overline{x_1}+\overline{x_2}}, \text{ establishing the claim}.$

• Now $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = (x_1(\overline{x_1} + i\overline{x_2}) + x_2(-i\overline{x_1} + \overline{x_2})) = (x_1\overline{x_1} + x_2\overline{x_2} + i(x_1\overline{x_2} - x_2\overline{x_1}) = |x_1|^2 + |x_2|^2 + ix_1\overline{x_2} + (-i)\overline{x_1}x_2 = |x_1|^2 + |x_2|^2 + ix_1\overline{x_2} + i\overline{x_1}\overline{x_2} = |x_1|^2 + |x_2|^2 + ix_1\overline{x_2} + i\overline{x_1}\overline{x_2} = |x_1|^2 + |x_2|^2 + 2Re(ix_1\overline{x_2}),$ because $a + \overline{a} = 2Re(a)$. Now, $|2Re(ix_1\overline{x_2})| \le |2(ix_1\overline{x_2})| \le 2|x_1x_2|$ so $-2|x_1x_2| \le |2Re(ix_1\overline{x_2})| \le 2|x_1x_2|$, so $|x_1|^2 + |x_2|^2 + 2Re(ix_1\overline{x_2}) \ge |x_1|^2 + |x_2|^2 - 2|x_1||x_2| = (|x_1| - |x_2|)^2$, so the pairing is always nonnegative. Notice, however, it could happen that this quantity is indeed 0 even with both x_1, x_2 nonzero.

2 Proofs of identities

1. Given basis $\{\vec{w_1}, \dots, \vec{w_n}\}$ of an inner product space, prove that the set of vectors $\{\vec{v_1}, \dots, \vec{v_n}\}$ defined as $\vec{v_1} = \vec{w_1}$ and

1

$$\vec{v_k} = \vec{w_k} - \sum_{i=1}^{k-1} \frac{\langle \vec{w_k}, \vec{v_i} \rangle}{||\vec{v_i}||^2} \vec{v_i}, \qquad \forall k \in [2, n]$$

is an orthogonal basis.

Proof: (Credits to textbook and prof). First, we prove that $\langle \vec{i}, \vec{j} = 0, \forall i \neq j$. We also proved by inducting on n. Base case where n = 1 is trivial. Suppose the claim holds for $n = 1, 2, \dots k - 1$ for some k, we have: for any j < k,

$$\begin{split} \langle \vec{v_k}, \vec{v_j} \rangle &= \langle \vec{w_k} - \sum_{i=1}^{k-1} \frac{\langle \vec{w_k}, \vec{v_i} \rangle}{||\vec{v_i}||^2} \vec{v_i}, \vec{v_j} \rangle = \langle \vec{w_k}, \vec{v_j} \rangle - \langle \sum_{i=1}^{k-1} \frac{\langle \vec{w_k}, \vec{v_i} \rangle}{||\vec{v_i}||^2} \vec{v_i}, \vec{v_j} \rangle = \langle \vec{w_k}, \vec{v_j} \rangle - \sum_{i=1}^{k-1} \frac{\langle \vec{w_k}, \vec{v_i} \rangle}{||\vec{v_i}||^2} \langle \vec{v_i}, \vec{v_j} \rangle \\ &= \langle \vec{w_k}, \vec{v_j} \rangle - \frac{\langle \vec{w_k}, \vec{v_j} \rangle}{||\vec{v_i}||^2} \langle \vec{v_j}, \vec{v_j} \rangle = \langle \vec{w_k}, \vec{v_j} \rangle - \langle \vec{w_k}, \vec{v_j} \rangle = 0, \end{split}$$

justifying the claim. (By induction hypothesis, $\langle \vec{i}, \vec{j} \rangle = 0$ for any i < j < k.

Next, notice that none of the vectors $\vec{v_i}$ can be zero; each of the vectors $\vec{v_k}$ can be written as the linear combination of $\vec{w_1}, \dots, \vec{w_k}$, with the coefficient of $\vec{w_k}$ being 1. Since $\vec{w_1}, \dots, \vec{w_k}$ are linearly independent, the claim follows.

Finally, in class we have seen that a set of nonzero orthogonal vectors must be linearly independent. Since the set of vectors $\{\vec{v_1}, \cdots, \vec{v_n}\}$ has n elements and are linearly independent, this set is also a basis. The conclusion follows.

2. Given a finite dimensional inner-product space V and let W be its subspace with orthonormal basis $\{\vec{w_1}, \cdots, \vec{w_k}\}$. Then for each $\vec{v} \in V$ there exists a unique $\vec{w} \in W$ and $\vec{w'} \in W^{\perp}$ satisfying $\vec{w} + \vec{w'} = \vec{v}$, given by the following formula:

$$\vec{w} = \sum_{i=1}^{k} \frac{\langle \vec{v}, \vec{w_i} \rangle}{||\vec{w_i}||^2} \vec{w_i}, \vec{w'} = \vec{v} - \vec{w}.$$

Proof: since a subspace (or a vector space, in general) is closed under addition, \vec{w} described above is in W. To show that $\vec{w'} \in W^{\perp}$, we notice the following for all $j \in [1, n]$:

$$\langle \vec{w'}, \vec{w_j} \rangle = \langle \vec{v} - \sum_{i=1}^k \frac{\langle \vec{v}, \vec{w_i} \rangle}{||\vec{w_i}||^2} \vec{w_i}, \vec{w_j} \rangle = \langle \vec{v}, \vec{w_j} \rangle - \langle \sum_{i=1}^k \frac{\langle \vec{v}, \vec{w_i} \rangle}{||\vec{w_i}||^2} \vec{w_i}, \vec{w_j} \rangle = \langle \vec{v}, \vec{w_j} \rangle - \sum_{i=1}^k \frac{\langle \vec{v}, \vec{w_i} \rangle}{||\vec{w_i}||^2} \langle \vec{w_i}, \vec{w_j} \rangle = \langle \vec{v}, \vec{w_j} \rangle - \langle \vec{v}, \vec{w_j} \rangle = 0,$$

because $\langle \vec{w_i}, \vec{w_j} \rangle$ vanishes whenever $i \neq j$, and $\frac{\langle \vec{v}, \vec{w_j} \rangle}{||\vec{w_i}||^2} \langle \vec{w_j}, \vec{w_j} \rangle = \langle \vec{v}, \vec{w_j} \rangle$.

To show that the numbers \vec{w} and $\vec{w'}$ are unique, suppose that there exists $\vec{w_1}, \vec{w_2} \in W$ and $\vec{w'_1}, \vec{w'_2} \in W^{\perp}$ satisfying $\vec{w_1} + \vec{w'_1} = \vec{w_2} + \vec{w'_2}$. Now, $\vec{w_1} - \vec{w_2} \in W$ and $\vec{w'_1} - \vec{w'_2} = -(\vec{w_1} - \vec{w_2}) \in W^{\perp}$, which means the vector $\vec{w_1} - \vec{w_2}$ is in both W and W^{\perp} (the product of any vector in W and any scalar constant is also in W). Notice, however, that this means $||\vec{w_1} - \vec{w_2}|| = 0$ by the definition of W and W^{\perp} , so $\vec{w_1} - \vec{w_2} = 0$ or $\vec{w_1} = \vec{w_2}$, showing that such pair of numbers must be unique.

3. Let V be a finite dimensional transformation. Then for each transformation $T: V \to V$ there is a unique transformation T^* satisfying $\langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, T^*(\vec{y}) \rangle$ for all $\vec{x}, \vec{y} \in V$.

Proof: Let n be the dimension of V, and denote $\{\vec{v}_1, \dots, \vec{v}_n\}$ by an orthonormal basis of V. We use the fact that each linear transformation is uniquely determined by the values of $T(\vec{v}_1), \dots, T(\vec{v})n$. That is, for each n-tuples of vectors $\{\vec{w}_1, \dots, \vec{w}_n\}$ there is a unique linear transformation T such that $T(\vec{v}_i) = \vec{w}_i$. Suppose

that numbers
$$a_{ij} \in \mathbb{C}, 1 \leq i, j \leq n$$
 are such that $T(\vec{v_i}) = \sum_{i=1}^n a_{ij}\vec{v_j}$, we have, for each $i, k, \langle T(\vec{v_i}), \vec{v_k} \rangle =$

$$\langle \sum_{i=1}^n a_{ij} \vec{v}_j, \vec{v}_k \rangle = a_{ik}$$
. Suppose that there is a linear transformation T^* such that $\langle T(\vec{x}), \vec{y} \rangle = \langle \vec{x}, T^*(\vec{y}) \rangle$ for all

$$\vec{x}, \vec{y} \in V$$
. Let b_{ij} be numbers such that $T^*(\vec{v}_i) = \sum_{i=1}^n b_{ij}\vec{v}_j$ then we have $a_{ik} = \langle T(\vec{v}_i), \vec{v}_k \rangle = \langle (\vec{v}_i), T^*(\vec{v}_k) \rangle = \langle (\vec{v}_i), T^*(\vec{v}_k) \rangle$

$$\overline{\langle T^*(\vec{v}_k), \vec{v}_i \rangle} = \overline{\langle \sum_{i=1}^n b_{kj} \vec{v}_j, \vec{v}_i \rangle} = \overline{a_{ki}}, \text{ therefore we must have } T^*(\vec{v}_i) = \sum_{i=1}^n b_{ij} \vec{v}_j = T^*(\vec{v}_i) = \sum_{i=1}^n \overline{b_{ji}} \vec{v}_j. \text{ This uniquely defines } T^*.$$

Conversely, let T^* be as defined, given T. From above we already have the relation $\langle T(\vec{v}_i), \vec{v}_k \rangle = \langle (\vec{v}_i), T^*(\vec{v}_k) \rangle$ for each pair of orthonormal basis. Let $\vec{x} = \sum_{i=1}^n x_i \vec{v}_i$ and $\vec{y} = \sum_{i=1}^n y_i \vec{v}_i$ then we have

$$\langle T(\vec{x}), \vec{y} \rangle = \langle T(\sum_{i=1}^{n} x_i \vec{v}_i), \sum_{i=1}^{n} y_i \vec{v}_i \rangle = \langle \sum_{i=1}^{n} x_i T(\vec{v}_i), \sum_{i=1}^{n} y_i \vec{v}_i \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle T(\vec{v}_i), \vec{v}_j \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_j} \langle \vec{v}_i, T^*(\vec{v}_j) \rangle = \langle \sum_{i=1}^{n} x_i \vec{v}_i, \sum_{j=1}^{n} y_j T^*(\vec{v}_j) \rangle = \langle \sum_{i=1}^{n} x_i \vec{v}_i, T^*(\sum_{j=1}^{n} y_j \vec{v}_j) \rangle = \langle \vec{x}, T^*(\vec{y}) \rangle$$

4. Let $A = [T]_{\beta}$ for some orthonormal basis β is a finite dimensional space V. Then $[T]_{\beta}^* = [T^*]_{\beta}$. **Proof:** Let our orthonormal basis be $\{\vec{v}_1, \dots, \vec{v}_n\}$. This proof relies on the following fact: $A_{ij} = \langle T(\vec{v}_j), \vec{v}_i \rangle$.

This is because for each j, $[T\vec{v}_j]_{\beta} = [T]_{\beta}[\vec{v}_j]_{\beta} = \operatorname{Col}_j(A)$ so $\langle T(\vec{v}_j), \vec{v}_i \rangle = \sum_{i=1}^n A_{kj} \langle \vec{v}_k, \vec{v}_i \rangle = A_{ij}$, as desired. Thus for each i, j we have $([T]_{\beta}^*)_{ij} = (A^*)_{ij} = \overline{A_{ij}^t} = \overline{A_{ji}} = \overline{\langle T(\vec{v}_i), \vec{v}_j \rangle} = \overline{\langle \vec{v}_i, T^*(\vec{v}_j) \rangle} = \langle T^*(\vec{v}_j), \vec{v}_i \rangle = \langle T^*(\vec{v}_j), \vec{v}_i \rangle$