Strategy for Evaluating $\int \sin^m x \cos^n x \, dx$

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining factors in terms of sine:

$$\int \sin^m x \cos^{2k+1} x \, dx = \int \sin^m x (\cos^2 x)^k \cos x \, dx$$
$$= \int \sin^m x (1 - \sin^2 x)^k \cos x \, dx$$

Then substitute $u = \sin x$.

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use $\sin^2 x = 1 - \cos^2 x$ to express the remaining factors in terms of cosine:

$$\int \sin^{2k+1} x \cos^n x \, dx = \int (\sin^2 x)^k \cos^n x \sin x \, dx$$
$$= \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx$$

Then substitute $u = \cos x$. [Note that if the powers of both sine and cosine are odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x) \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

It is sometimes helpful to use the identity

$$\sin x \cos x = \frac{1}{2}\sin 2x$$

Use a similar strategy to evaluate integrals of the form $\int \tan^m x \sec^n x \, dx$.

Strategy for Evaluating $\int \tan^m x \sec^n x \, dx$

(a) If the power of secant is even $(n = 2k, k \ge 2)$, save a factor of $\sec^2 x$ and use $\sec^2 x = 1 + \tan^2 x$ to express the remaining factors in terms of $\tan x$:

$$\int \tan^m x \, \sec^{2k} x \, dx = \int \tan^m x \, (\sec^2 x)^{k-1} \sec^2 x \, dx$$
$$= \int \tan^m x \, (1 + \tan^2 x)^{k-1} \sec^2 x \, dx$$

Then substitute $u = \tan x$.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec $x \tan x$ and use $\tan^2 x = \sec^2 x - 1$ to express the remaining factors in terms of sec x:

$$\int \tan^{2k+1} x \sec^n x \, dx = \int (\tan^2 x)^k \sec^{n-1} x \sec x \tan x \, dx$$
$$= \int (\sec^2 x - 1)^k \sec^{n-1} x \sec x \tan x \, dx$$

Then substitute $u = \sec x$.

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

Example

Find $\int \tan^3 x \, dx$.

- To evaluate the integrals (a) $\int \sin mx \cos nx \, dx$, (b) $\int \sin mx \sin nx \, dx$, or (c) $\int \cos mx \cos nx \, dx$, use the corresponding identity:
 - (a) $\sin A \cos B = \frac{1}{2} [\sin(A B) + \sin(A + B)]$
 - (b) $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
 - (c) $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

Example 9

Evaluate $\int \sin 4x \cos 5x \, dx$.