

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 03-153601

(43)Date of publication of application : 01.07.1991

(51)Int.CI.
A01N 37/10
A01N 25/10
C08L101/00
C09K 3/00
E04B 1/72

(21)Application number : 01-291483

(22)Date of filing : 09.11.1989

(71)Applicant : MITSUBISHI PETROCHEM CO LTD

(72)Inventor : ONOGAKI KIMIHO
ONISHI AKIYOSHI
MORI TAKASHI

(54) MITEPROOF THERMOPLASTIC RESIN COMPOSITION

(57)Abstract:

PURPOSE: To obtain the title composition good in hue, weatherability and heat deterioration resistance, high in safety, effective when processed and formed into clothes, etc., by incorporating a thermoplastic resin with, as active ingredients, a specific compound and hindered amine-based light stabilizer at each specified proportion.

CONSTITUTION: The objective composition can be obtained by incorporating (A) 100 pts.wt. of a thermoplastic resin with (B) 0.1-10 pts.wt. of a compound of the formula (n R₁ are same or different groups selected from hydroxyl group and 1-9C hydrocarbon groups; R₂ is H or 1-30C hydrocarbon group; where the hydrocarbon groups for both R₁ and R₂ may contain hetero atoms; X is H or hydroxyl group; n is 0-4) (pref. p-t-butylphenylsalicylate or p-t-octylphenylsalicylate) and (C) 0.001-1 pt.wt. of a hindered amine-based light stabilizer ≥ 500 in molecular weight, e.g. a polycondensate of dimethyl succinate and 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑫ 公開特許公報 (A) 平3-153601

⑩ Int. Cl.⁵

A 01 N 37/10
25/10
C 08 L 101/00
C 09 K 3/00
E 04 B 1/72

識別記号

K A S
1 0 4

序内整理番号

8930-4H
6742-4H
8016-4J
9049-4H
2118-2E

④公開 平成3年(1991)7月1日

審査請求 未請求 請求項の数 1 (全6頁)

⑤発明の名称 抗ダニ性熱可塑性樹脂組成物

⑥特願 平1-291483

⑦出願 平1(1989)11月9日

⑧発明者 小瀬垣 公穂 三重県四日市市東邦町1番地 三菱油化株式会社四日市総合研究所内
⑨発明者 大西 章義 三重県四日市市東邦町1番地 三菱油化株式会社四日市総合研究所内
⑩発明者 森 隆 三重県四日市市東邦町1番地 三菱油化株式会社四日市総合研究所内
⑪出願人 三菱油化株式会社 東京都千代田区丸の内2丁目5番2号
⑫代理人 弁理士 佐藤 一雄 外2名

明細書

は水酸基である。nは0~4の整数を表わす。)

1. 発明の名称

抗ダニ性熱可塑性樹脂組成物

2. 特許請求の範囲

熱可塑性樹脂100重量部と、下記式(I)で表わされる化合物0.1~10重量部と、分子量500以上のヒンダードアミン系光安定剤0.001~1重量部とからなることを特徴とする、抗ダニ性熱可塑性樹脂組成物。

(式中のR¹は水酸基および炭素数1~9の炭化水素基から選ばれた単一または異種の基であり、R²は水素原子または炭素数1~30の炭化水素基である。ただし、R¹およびR²の炭化水素基はヘテロ原子を含んでいてもよい。Xは水素また

3. 発明の詳細な説明

〔発明の背景〕

<産業上の利用分野>

本発明は、抗ダニ性、詳しくは忌避ダニ性を有効に発揮させ、しかも、色相、耐候性、耐熱老化性に優れた安全性の高い熱可塑性樹脂組成物に関する。

<従来の技術>

従来、熱可塑性樹脂は、優れた力学的特性や優れた成形性等を有していることから各々の優れた特性を利用して、広く一般に用いられるようになり、今日では我々が生活する上でなくてはならない材料となっている。

具体的には、これら熱可塑性樹脂は、衣類や住宅用品、例えば、壁、ジュータン、カーペット、毛布などに成形加工されて、快適な現代生活を営むのに必須のものとなっている。

しかしながら、近年、住宅にも冷暖房が整備さ

れるようになり、快適な生活空間を作っている反面、ダニが繁殖し易い状態も作り出されている。従って、冬期においてもダニの発生が問題となり、種々のダニ対策が実施されている。

しかし、このようなダニは、住宅や病院等の床面、特に畳、ジュータン、カーペット、衣類、毛布などの様々な場所に住みついて生育することから住宅全体を不衛生なものにし、また、子供のゼンソクを引き起す原因の一つとして嫌われている。

従って、ダニのいない住宅環境を作り出すことは、我々が生活する上で衛生上極めて重要なことである。

従来、ダニを駆除するために用いられる殺ダニ剤としては、ビレスロイド系、有機リン系、カーバメート系などの化合物を用いた薬剤が知られており、これら薬剤をスプレー等の手法で散布し、使用している。しかし、これらの薬剤は毒性が強く安全性の点において問題があったり、また効果も一時的なものであった。

特開昭61-87603号公報には、サリチル

酸ベンジルまたはフェニチルベンゾエートをポリプロピレンやアクリル樹脂に含有させてカーペットのバイルや一次基布に成形したダニ防除材が提案されている。

<発明が解決しようとする課題>

しかし、このサリチル酸ベンジルまたはフェニチルベンゾエートのみを含有したポリプロピレンやアクリル樹脂を用いた該提案のものは、殺ダニ特性の効果であり忌避ダニ性については定かでない。また、忌避ダニ性についても効果的な方法とは言えない。

【発明の概要】

<要旨>

本発明者は、上記課題に鑑みて継続研究を重ねた結果、特定な化合物と特定な光安定剤を組み合わせて特定量熱可塑性樹脂に配合させた組成物は、耐候性が顕著に向上了るものとなると共に、色相、耐熱老化性も良好であり、忌避ダニ性を發揮させることができるとの知見を得て本発明を完成するに至った。

すなわち、本発明による抗ダニ性熱可塑性樹脂組成物は、熱可塑性樹脂100重量部と、下記式(I)で表わされる化合物0.1~10重量部と、分子量500以上のヒンダードアミン系光安定剤0.001~1重量部とからなること

を特徴とするものである。

(式中のR¹は水酸基および炭素数1~9の炭化水素基から選ばれた單一または複数の基であり、R²は水素原子または炭素数1~30の炭化水素基である。ただし、R¹およびR²の炭化水素基はヘテロ原子を含んでいてもよい。Xは水素または水酸基である。nは0~4の整数を表わす。)

<効果>

本発明の抗ダニ性熱可塑性樹脂組成物は、特定な化合物と特定な光安定剤とを包含させることによって、危険性が少なく、長きにわたって忌避ダニ

性を保持することができ、しかも、耐候性、色相、耐熱老化性に優れたものであることから、各種住宅用品等に成形加工して使用すればダニの発生の無い健康で快適な生活を営むことができる。

【発明の具体的説明】

(1) 抗ダニ性熱可塑性樹脂組成物

(1) 組成成分

(a) 热可塑性樹脂

本発明の抗ダニ性熱可塑性樹脂組成物において用いられる熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ-4-メチルベンテン-1、ポリブテン-1、等のポリオレフィン樹脂類、ポリスチレン、アクリルニトリル・ステレン(ABS)樹脂；アクリルニトリル・ブタジエン・ステレン(ABS)樹脂、ポリフェニレンエーテル(PPO)樹脂、ポリアクリロニトリル、フッ素樹脂、ポリメタクリルステレン、メタクリル樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート樹脂、ポリビニルアルコール、ポリアセタール、

ヒドロキシ安息香酸ポリエステルなどを含げることができる。

これら熱可塑性樹脂の中で好ましいものは、ポリオレフィン樹脂であって、具体的には、低密度ポリエチレン、超低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、プロピレン単独重合体、プロピレン・エチレンランダム及びブロック共重合体、プロピレン・エチレン・1・ブテン共重合体、プロピレン・1・ブテン共重合体、ポリ・4・メチルベンゼン・1などであり、最も好ましくは、プロピレン単独重合体、プロピレン・エチレンランダム及びブロック共重合体である。これら樹脂のメルトフローレート(MFR) (JIS K7210、230℃、2.16kg) は0.1~100g/10分のものが好ましく、特に0.5~80g/10分が成形性が良好で好ましい。

(b) 化合物

本発明の抗ダニ性熱可塑性樹脂組成物においては、下記式〔1〕の化合物を配合することが重要

である。

(式中の R^1 は水酸基および炭素数 1 ~ 9 の炭化水素基から選ばれた单一または異性の基であり、 R^2 は水素原子または炭素数 1 ~ 30 の炭化水素基である。たゞし、 R^1 および R^2 の炭化水素基はヘテロ原子を含んでいてもよい。X は水素または水酸基である。n は 0 ~ 4 の整数を表わす。)

上記化合物を具体的に示せば安息香酸メチル、安息香酸エチル、安息香酸フェニル、安息香酸ベンジル、フェネチルベンゾエート、サリチル酸、サリチル酸メチル、サリチル酸エチル、サリチル酸フェニル、サリチル酸ベンジル、p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレートなどを挙げることができる。これらの中で好ましい化合物は、サリチル酸エステル類の化合物であり、さらに好ましくは、p-t-ブチ

ルフェニルサリシレート、p-*i*-オクチルフェニルサリシレートである。

このような化合物の添加量は、前記熱可塑性樹脂100重量部に対し、0.1～10重量部、好ましくは0.2～5重量部、最も好ましくは0.3～3重量部、である。上記範囲未満では抗ダニ性、耐候性が不十分であり、上記範囲を超えると、不経済であるのみならず、ブリード等の問題を生じて好ましくない。

(c) ヒンダードアミン系光安定剤

本発明の抗ダニ性然可塑性樹脂組成物において
は分子量500以上、好ましくは700以上のヒ
ンダードアミン系光安定剤を配合することが重要
である。

具体的には、以下に示すヒンダードアミン系光安定剤を挙げることができるが、これらに限定されるものではない。

(1) コハク酸ジメチルと 1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルビペリジンとの重結合物

(2) ポリ [[6 - (1, 1, 3, 3 - テトラ
メチルブチル) イミノ - 1, 3, 5 - トリアジン
- 2, 4 - ジイル] [(2, 2, 6, 6 - テトラ
メチル - 4 - ピペリジル) イミノ] ヘキサメチレ
ン [[2, 2, 6, 6 - テトラメチル - 4 - ピペ
リジル) イミノ]]

(3) 2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸のビス(1,2,2,6,6-ペンタメチル-4-ヒペリジル)エステル

(4) テトラキス(2, 2, 6, 6-テトラメチル-4-ビペリジル) 1, 2, 3, 4-ブタンテトラカルボキシレート

(5) ピス(2, 2, 6, 6-テトラメチル-4-ピペリジル)セバケート

(6) N, N' - ピス(2, 2, 6, 6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミンと1, 2-ジプロモエタンとの重合物

(7) ポリ [2-N, N'-ビス(2, 2, 6, 6-テトラメチル-4-ヒペリジル)ヘキサメチ

レンジアミン・4-(N-モルホリノ)シムトリアジン】

(8) 1, 1'-(1, 2-エタンジイル)-ビス(3, 3, 5, 5-テトラメチルピベラジン)

(9) トリス(2, 2, 6, 6-テトラメチル-4-ペビリジル)-ドデシル-1, 2, 3, 4-ブタンテトラカルボキシレート

(10) トリス(1, 2, 2, 6, 6-ペタンメチル-4-ペビリジル)-ドデシル-1, 2, 3, 4-ブタンテトラカルボキシレート
等が挙げられる。

これらの中で最も適した化合物は、上記(1), (2), (4), 及び(7)の化合物である。

この(C)成分のヒンダードアミン系光安定剤の配合量は、前記熱可塑性樹脂100重量部あたり0.001~1重量部、好ましくは0.02~0.5重量部である。

上記(C)成分の配合量が上記範囲未満では、本樹脂組成物の耐熱老化性、色相が充分でなく、

また、上記範囲を超えると不経済ばかりでなく、変色の問題、ブリードの問題を発生し好ましくない。

また、分子量が500未満のものはブリード白体の問題の外、ブリードによる表面特性の変化により本発明の効果を發揮させることができない。

(d) その他の配合成分

本発明の抗ダニ性熱可塑性樹脂組成物中には、これら成分の他に、発明の効果を著しく損なわない範囲内で他の付加的成分を配合することができる。例えば、フェノール系、リン系、イオウ系などの酸化防止剤、有機系または無機系の増強剤、紫外線吸収剤、ニッケル系またはベンゾエート系等の光安定剤、アミド系またはシリコンオイル系等の滑剤、グリセリンの脂肪酸エステル系、アミン系、アミド系などの帯電防止剤、過酸化物等の分子量調整剤、発泡剤有機系または無機系の顕料、分散剤、金属塩系中和剤、制酸剤、螢光増白剤、無機系または有機系の抗菌剤・防カビ剤、有機または無機系の充填材、吸着剤、難燃剤などを挙げ

ることができる。これら配合剤の中で特に帯電防止剤を併用することは色相の向上の点で好ましい。

また、殺ダニ剤、抗ダニ剤の併用も、可能であり、相乗効果も期待することができる。

(2) 組成物の製造

本発明の抗ダニ性樹脂組成物は上記構成成分を通常の方法により配合することによって製造することができる。

具体的には、熱可塑性樹脂のパウダーに上記の各成分および必要に応じて他の成分を添加して、ヘンシェル型ミキサーなどにて攪拌混合した後、押出機などにて溶融混練して押出し、ペレット状の抗ダニ性熱可塑性樹脂組成物とする。

(3) 成形加工

その後、このペレットを射出成形、圧縮成形、シート、ヤーン成形、フィルム成形、ブロー成形、真空成形、紡糸、不織布成形等の成形機にて目的とする容器や繊維などに加工するのが一般的であるが、上記配合成分を高濃度に配合したマスター パッチを作り、これを成形加工時に希釈して本発

明の抗ダニ性組成物の濃度範囲にする方法でもよい。

(4) 成形加工品

前記成形加工法によって得られる成形品の例としては、電気掃除機部品、エアコン・クーラーの部品、車、電車等の乗物内用成形品、コンテナ、衣類などの収納箱、押入れ内の下敷き、カーペット、ソファー、寝具、タタミ、フィルターネット類、食品収納庫、食器収納庫、戸棚、衣類、農業用器具部品などを挙げることができる。特に家庭内、乗物内の成形品にすることが好適である。

特に好ましい成形品としては、収納用などの射出成形品、シート、カーペット基布用のヤーン成形品、カーペットなどの幼糸、不織布成形品がある。最も好ましいのは、射出成形品である。

【実験例】

実施例1~5および比較例1~5

MFR=9g/10分、エチレン含量5重量パーセントのプロピレン・エチレンブロックコポリマー100重量部に、下記の化合物を配合し、ヘ

ンシェルミキサーにて搅拌した後、30mmφ押出機（230℃設定）にて混練して、ペレットとした。

次いで、このペレットを射出成形機（240℃設定）にかけ、120mm×90mm×2mmの試験片を製作した。そして、この試験片を用いて、以下の評価を行なった。

その結果を第1表に示す。

<耐候性>

射出試験片をキセノン型耐候試験機（ブラックパネル温度63℃、降雨12分／6分サイクル）にかけ、60倍顕微鏡でのクラック発生時間を判定した。

<色相>

上記試験機にかけた試料を48時間、100時間にて取り出し、色相の変化を目視にて観察した。

目視基準を以下に示す。

- ◎ ほとんど無変化
- やや変色するが使用可能
- △ 変色あり

× かなり変色

<耐熱老化性>

射出試験片を120℃に設定したギャーオーブンに入れ、脱化するまでの時間を測定した。

<抗ダニ性テスト>

(検体)

9cm×12cmの2mmの射出シートを用いた。

(使用ダニ)

コナヒョウヒダニ

(実験方法)

高さ11cm、横40cm、縦30cmのポリバットの底にダニ繁殖中の粉末飼料（マウス、ラッテ飼育用、CE-2、日本クレア（株）製）150gを出来るだけ均一にひろげ、この上に9cm×12cmの大きさに切った検体を左右に1枚づつ置いた。左右の検体はいずれか一方が防虫検体で他は対照検体とした。

この検体上、中央に高さ1.4cm、直徑2.8cmの容器にダニの全く入っていない粉末飼料（水分15%）2.5gを入れたものを置き、1日後

返し実験を行なった結果の平均である。

ここで、忌避効果は、以下の基準によった。

◎ : > 60%

○ : 60 ~ 40%

△ : 40 ~ 20%

× : < 20%

<化合物名>

(忌避ダニ性化合物)

(A) : サリチル酸フェニル

(B) : p-t-ブチル-フェニルサリシレート

(C) : p-オクチルフェニルサリシレート

(D) : サリチル酸ベンジル

(ヒニダードアミン系光安定剤)

(1) コハク酸ジメチルと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピベリジンとの重縮合物、分子量：3000以上

(2) ポリ[[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル] [(2,2,6,6-テトラ

に、この飼料中に導入したダニ数を食塩水浮遊法でかぞえた。食塩水浮遊法は、ダニ導入の飼料をよく搅拌した後、その0.5gをとり出し、これをワイルドマンフラスコに入れ、20%食塩水を用いてダニを浮遊させ、この上層の水を吸引装置を付けたろ紙上に移し、ろ過して、ぼろ紙を0.1%メチレンブルー水溶液で染色した。この操作によって、ろ紙のみが青く染まり、ダニは染まらず黄白色に浮きあがってみえるので、その全数を実体顕微鏡下で数えた。

忌避効果は同一ポリバット内の防虫検体と対照検体で各々観察されたダニ数より、次に示す式を用いて忌避率(%)を求めた。

$$\text{忌避率} (\%) = \frac{\text{対照区のダニ数 - 防虫処理区ダニ数}}{\text{対照区のダニ数}} \times 100$$

(実験結果)

テストは室温25℃±2℃、関係湿度70~80%の範囲内で行なった。

各検体のコナヒョウヒダニに対する忌避効果を観察した結果を第1表に示す。いずれも3回の操

メチル・4・ビペリジル)イミノ】ヘキサメチレン【[2, 2, 6, 6-テトラメチル・4・ビペリジル)イミノ】]、分子量：2500以上

(3) テトラキス(2, 2, 6, 6-テトラメチル・4・ビペリジル)1, 2, 3, 4-ブタンテトラカルボキシレート、分子量：790

(4) ポリ[2-N, N'-ビス(2, 2, 6, 6-テトラメチル・4・ビペリジル)ヘキサメチレンジアミン・4-(N-モルホリノ)シムトリアジン]、分子量：1500以上

(5) LS770: 2, 2, 6, 6-テトラメチルビペリジルセバケート、分子量=480.7
(その他の添加剤)

M329: トリス(ミックストド、モノおよびジノニルフェニル)フォスファイト

IR1010: テトラキス(メチレン・3-(3', 5'-ジ-*t*-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン

CAST: ステアリン酸カルシウム

TSS: グリセリルモノステアレート

第1表

		遮光性化合物 (<i>b</i> 成分)				ヒンダートアミン系光安定剤 (<i>c</i> 成分)					その他添加剂 (<i>d</i> 成分)			物 性				
		(A)	(B)	(C)	(D)	(1)	(2)	(3)	(4)	LS770	M329	CAST	他	色 相 55 Br	相 100Br	耐候性	耐 熱 老化性	抗 ダニ性 (殺虫性)
実 施 例	1	1				0.1					0.1	0.05	○	○	>1500	>500	○	
	2		1				0.1				0.1	0.05	○	○	"	"	◎	
	3			1		0.15					0.1	0.05	○	○	"	"	○	
	4				1		0.1				0.1	0.05	○	○	"	"	○	
	5		1.5				0.1				0.1	0.05	○	○	"	"	◎	
	6			1			0.1		0.05		0.1	0.05	○	○	"	"	○	
	7	1.5				0.15			0.05		0.1	0.05	TSS(0.5)	○-◎	○	"	○	
	8		1				0.15				0.1	0.05	" (")	○-◎	○-◎	"	"	◎
比 較 例	1	1									0.1	0.05	×	△	1050	<48	△	
	2		1								0.1	0.05 IR1010(0.1)	×	△	400	>500	×	
	3			1							0.1	0.05	△	△	>1500	96	×	
	4					0.1					0.1	0.05	○	○	>1500	>500	×	