UMTS

UMTS

- Universal Mobile Telecommunications System
- **3**G
- Design goals:
 - Different services (speech, data, multimedia,...)
 - Different carrier services (packet, circuit,...)
 - Roaming also between GSM and satellite networks
 - Packet-switched data rates: up to several Mbit/s
 - Release 99: Use same core network as GSM/GPRS
- Smaller cells (= more resources per MS, less interferences)

GSM/UMTS network (Release 99)

UMTS radio interface

Drawbacks of GPRS:

- Based on GSM: FDMA with large number of carrier frequencies with 200kHz bandwidth + TDMA
- Even with EDGE too slow for modern IP traffic: typically 150-200kbit/s
- High latency: MS has to request access to PDTCH, resulting in latencies up to 700ms

UMTS' solution:

 UMTS: FDMA with a few carrier frequencies with 5 MHz bandwidth + CDMA (+optional TDMA)

CDMA

- CDMA with code length n encodes a data symbol in n "chips"
 - "1" with code 010011 -> (-1 +1 -1 -1 +1 +1)
- Typically, systems that use CDMA have a constant chip rate (determined by the hardware)
 - UMTS: 3.84 MChips/s
- Large n means:
 - Many senders can send simultaneously
 - Transmission errors can be detected easier
 - Effective data rate is low (with constant chip rate)

CDMA in UMTS

- Unlike GPRS, the UE (=User Equipment = MS) does not have to request time slots on PDTCH to send data: With CDMA all UE can send simultaneously
- However, to save unused bandwidth, the base station assigns a longer CDMA code to an idle UE
 - Longer code -> more bits ("chips") on the radio interface needed -> lower effective transmission rate (with identical radio transmission rate)
 - When the UE becomes active, it is slow at the beginning (until it gets a shorter code) but it can still send/receive immediately (unlike GPRS)
 - Same for UE that send low-bandwidth traffic (=voice)

Cell planning

- CDMA: many MS can use same frequency. Base station only uses one frequency.
- Planning frequencies for cells much easier: Neighbor cells can use same frequency
- Control of transmission power becomes more important
 - CDMA requires that the base station receives the signals of all MSs with more or less same power
 - -> base station can send power control instructions to MS up to 1500 times per second
 - When adding a new cell: decrease transmission power of neighbor cells

UMTS radio interface: FDD

- UMTS supports two modes of operation: FDD and TDD
- FDD (Frequency Division Duplex)
 - 12 carriers assigned to different operators
 - Separate carriers for uplink and downlink
 - 5 MHz per carrier, ~384 kBit/s
 - UE on same carrier use (Wide-)CDMA

UMTS radio interface: TDD

- TDD (Time Division Duplex)
 - Same 5MHz carrier used for sending and receiving
 - Carrier is divided into 15 timeslots (total: 10ms)
 - UE in same timeslot use (Wide-)CDMA
 - Less popular than FDD because timing is more complex

Source: Alexander Schill. TU Dresden

Channels

- Similar to GSM, UTMS also defines different signaling and data channels for broadcasting, for dedicated transport, etc.
- UMTS has three channel layers:
 - Physical channels (UE <-> BS)
 - Logical channels (UE <-> RNC)
 - Transport channels (UE <-> RNC): between logical and physical channel layer. Prepare data frames for physical channels.

The horror...

http://www.umtsworld.com/technology/UMTSChannels.htm

Radio Access Bearer (RAB)

- UMTS is used for many different kinds of services: voice, video streaming, background data transfers, etc.
- The UE does not directly request a channel. Instead, it requests a bearer with certain properties
 - Maximum speed
 - Guaranteed speed
 - Delay
 - Error probability
 - Type of traffic (voice, streaming, interactive,...)
- UTRAN is responsible for establishing a connection that fits the description

Handover

- Hard Handover
 - Similar to handover in GSM
 - Takes around 100ms
- Soft Handover
 - Data streams not only sent to/received from current cell, but also to/from up to 6 neighbor cells
 - Handover decision can be made for each frame
 - Advantage: Smooth handover with very small delay
 - Disadvantage: More processing power required, traffic duplicated

Security in UMTS

- GSM authentication extended:
 - AuC generates an authentication token that is checked by the MS -> network is authenticated
- Encryption of calls/data:
 - GSM: between MS and BTS
 - GPRS: between MS and SGSN
 - UTMS: between MS and RNC, 128-bit keys

HSPA and **HSPA**+

- High-speed Packet Access: extension for UMTS
 - Up to 14.4 Mbit/s
 - Carrier bundling
 - Improved coding
- HSPA+
 - Up to 28 Mbit/s
 - Improved coding
 - MIMO (Multiple Input, Multiple output)
 - Multiple antennas on sender and receiver side
 - Increased data rate and transmission quality
- Improved latency: GPRS = 700ms, UMTS = 200-300ms, HSPA = 100ms

MIMO

 Idea: Receiver can reconstruct original signal even if interferences because of obstacles, reflections, etc.

CDMA2000

• Another 3G network using CDMA in North America. Not compatible with Europe!

```
IS-95A (CDMAOne) <-> GSM (2G)
IS-95B <-> GPRS
CDMA2000 <-> UMTS (3G)
1xEV-DO <-> HSPA
```

 A 4G successor for CDMA2000 was planned (UMB; Ultra Mobile Broadband), but never deployed. Replaced by LTE.