

Vrije Universiteit Brussel

Faculteit Ingenieurswetenschappen

Formules Fysica

Egon Geerardyn

revisie 0.1 (28 oktober 2008)

Voorwoord

Referenties

- 1. PROF. R. WILLEM, *Chemie: Structuur en Transformaties van de materie*, Dienst Uitgaven VUB 2006.
- 2. PROF. M. BIESEMANS en PROF. R. WILLEM , *Chemie: Oefeningen*, Dienst Uitgaven VUB 2006.
- 3. Brown, LeMay en Bursten, *Chemistry: the Central Science (10th Edition)*, Pearson Education 2006.

Inhoudsopgave

1	Golven1.1Staande Golven1.2Zwevingen	3 3
2	Geluid	4
3	Elektromagnetisme	4
4	Kernfysica	7
5	Quantumfysica	8
Α	Het SI-stelselA.1 SI-prefixen	9
В	Conversies	10
C	Constantes	11
D	Grootte-ordes en referentiewaardes	12

1 Golven

Golfbetrekking Vlakke monochromatisch golf

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2} = 0$$

Vectorvorm

$$\Delta\Psi(\vec{r},t) - \frac{1}{v^2} \frac{\partial^2 \Psi(\vec{r},t)}{\partial x^2}$$

Algemene vorm van een golf:

$$\Psi(x,t) = \Psi_1(x - vt) + \Psi_2(x + vt)$$

Harmonische oscillator

$$H(x,t) = A\sin(\kappa x - \omega t + \phi_0)$$
$$\omega = \kappa \cdot v$$
$$v = \frac{\omega}{\kappa}$$

Bij mechanische lin. HO:

$$\omega = \sqrt(\frac{\kappa}{m})$$

1.1 Staande Golven

$$\begin{array}{ll} {\sf Knoop} & x_K = 2n\frac{\lambda}{4} \\ {\sf Buik} & x_B = (2n+1)\frac{\lambda}{4} \end{array}$$

Resonante staande golven (beide uiteinden vast)

$$\lambda_n = \frac{2l}{n}$$

Voor n=1: grondtoon.

1.2 Zwevingen

$$\begin{split} &\Psi_1 = A \sin(\kappa_1 x - \omega_1 t) \\ &\Psi_2 = A \sin(\kappa_2 x - \omega_2 t) \\ &\left\{ \begin{array}{l} \kappa_1 = K + \delta \kappa \\ \kappa_2 = K - \delta \kappa \end{array} \right. \left. \left\{ \begin{array}{l} \omega_1 = \Omega + \delta \omega \\ \omega_2 = \Omega - \delta \omega \end{array} \right. \\ &\Psi = \Psi_1 + \Psi_2 = 2A \cos\left(\delta \kappa x - \delta \omega t\right) \sin\left(Kx - \Omega t\right) \end{split}$$

Bij een transversale mechnisch golf:

$$v = k \sqrt{\frac{T}{\mu}} = k \sqrt{\frac{\text{terugroepingskracht}}{\text{inertiefactor}}}$$

2 Geluid

$$I=$$

$$\beta=10~\log_{10}\frac{I}{I_0}~~\mathrm{met}~I_0=10^{-12}\,\mathrm{W~m^{-2}}$$

3 Elektromagnetisme

Samenvatting: 4 Maxwelbetrekkingen

$$\begin{split} \operatorname{div} \vec{E} &= \frac{\rho_{alle}}{\epsilon_0} &\quad \text{Gauss} \\ c^2 \operatorname{rot} \vec{B} &= \frac{\vec{J}_{alle}}{\epsilon_0} + \frac{\partial \vec{E}}{\partial t} &\quad \text{Ampère-Maxwell} \\ \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} &\quad \text{Faraday-Lenz} \\ \operatorname{div} \vec{B} &= 0 \end{split}$$

Coulomb

$$\vec{F}_{q(tot)} = \frac{q}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i (\vec{r} - \vec{r}_i)}{\|\vec{r} - \vec{r}_i\|^3}$$

Gauss/Maxwell 1

$$\Phi_E = \iint_{\partial V} \vec{E}(\vec{r}) \cdot \vec{n}_u \, dS = \frac{Q_{in}}{\epsilon_0}$$
$$\operatorname{div} \vec{E} = \frac{\rho_{elek}}{\epsilon_0}$$

Elektrostatische potentiaal

$$U_{elek} = E_{p(elek)} = qV$$

$$\vec{E} = - \operatorname{grad} V$$

$$\Delta V = - \int_{\ell} \vec{E} \cdot d\vec{\ell}$$

Dipoolmoment

$$ec{\mu}_{el} = |q| ec{\ell}$$
 met $ec{\ell}$ gericht van negatief naar positief

Bijhorende potentieële energie

$$U(\theta) = -\vec{\mu}_{el} \cdot \vec{E}$$

Stromen

$$I = \iint\limits_{S} \vec{J}_{el} \cdot \, \mathrm{d}\vec{S} = \iint\limits_{S} \vec{J}_{el} \cdot \vec{n}_{+} \, \, \mathrm{d}s$$

Lorentzkracht

$$\vec{F}_{Lo} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

Laplacekracht

$$\vec{F}_{La} = I \int_{\ell} d\vec{\ell} \times \vec{B}$$

Definitie magnetisch inductieveld

$$\vec{B} = \frac{\mu_0}{4\pi} \sum_i \frac{q_i \vec{v_i} \times (\vec{r} - \vec{r_i})}{\left\| \vec{r} - \vec{r_i} \right\|^3}$$

Biot en Savart

$$\mathrm{d}\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \frac{\mathrm{d}\vec{\ell} \times \vec{r}_\Delta}{\left\|\vec{r}_\Delta\right\|^3}$$
 met $\vec{r}_\Delta = \vec{r} - \vec{r}_i$ en ℓ de (booglengte van) geleider

$$\vec{B}_{tot} = \frac{I\mu_0}{4\pi} \int_{\ell} \frac{d\vec{\ell} \times \vec{r}_{\Delta}}{\|\vec{r}_{\Delta}\|^3}$$

Cyclotron

$$f = \frac{qB}{2\pi m}$$

$$\omega_c = \frac{m}{qB}$$

Larmorstraal

$$r_L = \frac{v_\perp}{\omega_c} = \frac{m v_{\{perp}}{qB}$$

Driftsnelheid

$$v_D = \frac{I}{Sn_e |q_e|} = \frac{I}{S\rho_{el}}$$

Potentiële energie in een magnetisch veld

$$U_{magn} = E_{p(magn)} = -\vec{\mu}_{magn} \cdot \vec{B}$$

Ampère2 (enkel bij een constante stroom!)

$$c^2 \operatorname{rot} \vec{B} = \frac{1}{\epsilon_0} \vec{J}_{alle}$$

$$c^2 \iint_{S} \vec{\operatorname{rot}} \vec{B} \cdot \vec{n}_u \, dS = c^2 \oint_{\partial S} \vec{B} \cdot \, d\vec{\ell} = \frac{1}{\epsilon_0} \iint_{S} \vec{J}_{alle} \cdot \vec{n}_u \, dS = \frac{I_{alle}}{\epsilon_0}$$

$$\epsilon_0 \mu_0 c^2 = 1$$

Ampère-Maxwell

$$c^2 \operatorname{rot} \vec{B} = \frac{1}{\epsilon_0} \vec{J}_{alle} + \frac{\partial \vec{E}}{\partial t}$$

Faraday-Lenz

$$\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} \vec{E} \cdot \vec{n}_{u} \, \mathrm{d}S = -\oint_{\partial S} \vec{E} \cdot \, \mathrm{d}\vec{\ell}$$

$$\frac{\partial \vec{B}}{\partial t} = -\vec{\operatorname{rot}} \, \vec{E}$$

Wet van Pouillet

$$R = \frac{\rho_R \ell}{A} \qquad \text{met } \rho_R \text{ de resistiviteit}$$

Poynting

$$\vec{S} \stackrel{\Delta}{=} \epsilon_0 c^2 \left(\vec{E} \times \vec{B} \right)$$

$$\rho_{EM} = \frac{\epsilon_0}{2} \left\| \vec{E} \right\|^2 + \frac{\epsilon_0 c^2}{2} \left\| \vec{B} \right\|^2$$

Bilanvergelijking:

$$\frac{\partial \rho_{EM}}{\partial t} = - \; \mathrm{div} \, \vec{S} \; - \vec{E} \cdot \vec{J}_{alle} \label{eq:delta_energy}$$

Irradiantie

$$I_{RR} = \left\| \vec{S} \right\|$$

$$\langle I_{RR} \rangle = \frac{\epsilon_0 c}{2} \left\| \vec{E} \right\|^2$$

$$\langle \rho_{EM} \rangle = \frac{\epsilon_0}{2} \left\| \vec{E} \right\|^2$$

4 Kernfysica

notaties

$${}_{z}^{A}X$$

 $m\binom{A}{Z}X$ kernmassa

 $M\binom{A}{Z}X$) atoommassa

Massadefect

$$m_{\Delta} = Z \cdot m_p + N \cdot m_n + Z \cdot m_e - M \begin{pmatrix} A \\ Z \end{pmatrix}$$

Bindingsenergie

$$E_b = m_{\Delta}c^2$$

Druppelmodel Formule van vonc Weiszäcker

$$m\left(_{Z}^{A}X\right) = \left(Zm_{p} + (A-Z)m_{n}\right) - a_{v}A + a_{s}A^{2/3} + a_{c}\frac{Z^{2}}{A^{1/3}} + a_{A}\frac{(A-2Z)^{2}}{A} + \Delta$$

- $(Zm_p + (A-Z)m_n)$: massaterm
- $-a_vA$: volumeterm, interacties binnenin de kern
- $a_s A^{2/3}$: oppervlakteterm, interacties aan de rand
- $a_c \frac{Z^2}{A^{1/3}}$: Coulombterm: afstoting tussen verschillende protonen
- $a_A \frac{(A-2Z)^2}{4}$: correctieterm, stabiliteit bij N=Z, mindere invloed bij hogere A
- \bullet Δ : symmetrieterm:

$$\begin{array}{ccc} N|Z & \text{even} & \text{oneven} \\ \text{even} & \Delta = -\frac{a_p}{\sqrt{A}} & \Delta = 0 \\ \text{oneven} & \Delta = 0 & \Delta = \frac{a_p}{\sqrt{A}} \end{array}$$

Activiteit

$$A(t) = \left| \frac{\mathrm{d}N}{\mathrm{d}t} \right| = \lambda N(t) = \lambda N_0 e^{-\lambda t}$$

lpha-verval

$$_{Z}^{A}X \longrightarrow_{Z-2}^{A-4} Y +_{2}^{4} He$$

 β^- -verval

$$_Z^A X \longrightarrow_{Z+1}^A Y + e^- + \overline{\nu}$$
 waarbij $n \longrightarrow p^+ + e^- + \overline{\nu}$

 β^+ -verval

$$_{Z}^{A}X \longrightarrow_{Z-1}^{A}Y + e^{+} + \nu$$
 waarbij $n \longrightarrow p^{+} + e^{+} + \nu$

Elektronenvangst

$$e^- + ^A_{Z+1} \, X \longrightarrow ^A_Z Y + + \nu$$
 waarbij $e^- + n \longrightarrow p^+ + \nu$

 $\gamma\text{-verval}$

5 Quantumfysica

 $X\widehat{\mathbf{H}}Y$

1.

A Het SI-stelsel

A.1 SI-prefixen

Decim	ale Prefix	Waarde	Binaiı	e Prefix	Waarde
yotta	Y	10^{24}	yobi	Yi	2^{80}
zetta	Z	10^{21}	zebi	Zi	2^{70}
exa	Е	10^{18}	exbi	Ei	2^{60}
peta	P	10^{15}	pebi	Pi	2^{50}
tera	Т	10^{12}	tebi	Ti	2^{40}
giga	G	10^{9}	gibi	Gi	2^{30}
mega	M	10^{6}	mebi	Mi	2^{20}
kilo	k	10^{3}	kibi	Ki	2^{10}
hecto	h	10^{2}			
deca	da	10^{1}			
deci	d	10^{-1}			
centi	c	10^{-2}			
milli	m	10^{-3}			
micro	μ	10^{-6}			
nano	n	10^{-9}			
pico	p	10^{-12}			
femto	f	10^{-15}			
atto	a	10^{-18}			
zepto	z	10^{-21}			
yocto	У	10^{-24}			

Opmerking: Bij binaire eenheden worden vaak de decimale prefixen gebruikt met de waarde van hun binaire tegenhanger.

B Conversies

Energie

• •		> omzetting >	Eenheid
Elektronvolt	x = [eV]	$y = x \cdot q_e $	y = [J]

Temperatuur

Beschrijving	Eenheid	> omzetting >	Eenheid
Celsius	$x = [^{\circ} C]$	y = x + 273, 15	y = [K]
Fahrenheit	x = [°F]	$y = (x + 459, 67) \cdot \frac{5}{9}$	y = [K]
Réaumur	$x = [{}^{\circ}\operatorname{R\'{e}}]$	$y = \frac{5}{4}x + 273, 15$	y = [K]
Rømer	$x = [{}^{\circ}\operatorname{R}\emptyset]$	$y = (x - 7, 5) \frac{40}{21} + 273, 15$	y = [K]
Rankine	$x = [^{\circ} \text{Ra}]$	$y = \frac{5}{9}x$	y = [K]

C Constantes

Beschrijving	Symbool	Waarde	Eenheid
Pi	π	3,141592	
Lichtsnelheid in het vacuüm	c	299792458	$\mathrm{m}\;\mathrm{s}^{-1}$
Permeabiliteit vacuüm	μ_0	$4\pi \cdot 10^{-7} \approx \dots$	
Permittiviteit vacuüm	ϵ_0	$8,85419 \cdot 10^{-12}$	F m ⁻¹
Gravitatieconstante	G	$6,67260 \cdot 10^{-11}$	$\begin{bmatrix} m^3 kg^{-1} s^{-2} \\ m s^{-2} \end{bmatrix}$
Valversnelling	g	9,81	
Gasconstante	R	8,31451	$ m J~mol^{-1}K^{-1}$
Constante van Avogadro	N_A	$6,0228 \cdot 10^{-23}$	\mod^{-1}
Constante van Boltzman	k_B	$1, 3 \cdot 10^{-23}$	J K ⁻¹
Constante van Planck	h	$6,6260693 \cdot 10^{-34}$	J s
Gereduceerde constante van Planck	\hbar	$1,0545717 \cdot 10^{-34}$	J s
Elementaire lading/Lading van het elektron	q_e	$-1,6021765 \cdot 10^{-19}$	C

$$\epsilon_0 \mu_0 c^2 = 1$$

$$k_B = \frac{R}{N_A}$$

$$\hbar = \frac{h}{2\pi}$$

D Grootte-ordes en referentiewaardes

Relatieve geluidsintensiteit

Beschrijving	Waarde	Eenheid
Onhoorbaar voor de mens	0	dB
Fluisteren, ritselende bladeren	10 - 20	dB
Gesprek	60	dB
Negende van Beethoven	100	dB
Pop/Rock-festival	110	dB
Pijngrens	130	dB

Voor de mens waarneembare spectra

Beschrijving	Waarde	Eenheid
Geluidsspectrum (frequentie)	20 - 20000	Hz

Elektromagnetisch Spectrum

Beschrijving	Waarde	Eenheid
Zichtbaar licht	350 - 750	nm
Zichtbaar licht (frequentie)	450 - 750	THz
Violet	380 - 450	nm
Blauw	450 - 495	nm
Groen	495 - 570	nm
Geel	570 - 590	nm
Oranje	590 - 620	nm
Rood	620 - 750	nm

Bulkmodulus

Beschrijving	Waarde	Eenheid
Vaste stoffen en vloeistoffen	$\approx 10^{10}$	$ m Nm^{-2}$
Water	$0,21 \cdot 10^{10}$	${ m N}m^{-2}$
Lucht	$1,41\cdot 10^5$	${ m N}m^{-2}$

Massadichtheden

Beschrijving	Waarde	Eenheid
Water	1000	${ m kg~m^{-3}}$
Lucht	1,21	$ m kg~m^{-3}$

Stroom

Beschrijving	Waarde	Eenheid
microchips	$10^{-12} - 10^{-16}$	A
Cathod Ray Tube	10^{-2}	A
gloeilamp	10^{0}	A
dodelijk voor de mens	100 - 200	mA

Resistiviteit

Beschrijving	Waarde	Eenheid
metalen	10^{-8}	$\Omega\mathrm{m}$
supergeleiders	≈ 0	$\Omega\mathrm{m}$
halfgeleiders	≈ 640	$\Omega\mathrm{m}$
isolatoren	$10^{10} - 10^{14}$	$\Omega\mathrm{m}$

Geluidssnelheden

Beschrijving	Waarde	Eenheid
v_s in lucht (20 $^{\circ}$ C op zeeniveau)	≈ 344	$\mathrm{m~s^{-1}}$
v_s in lucht (15 ° C op zeeniveau)	≈ 340	${ m m~s^{-1}}$
v_s in lucht (0 $^{\circ}$ C op zeeniveau)	≈ 331	${ m m~s^{-1}}$
v_s in water	≈ 1551	${ m m~s^{-1}}$
v_s in staal	≈ 5100	${ m m~s^{-1}}$

Energie

Beschrijving	Waarde	Eenheid
bindingsenergie	1	eV
ionisatieenergie	10	eV
elektrostatische afstotingsenergie i.e. atoom	10^{6}	eV
$\mid v_s \mid$ in staal	≈ 5100	$\mathrm{m\ s}^{-1}$