ResNet50

 Model: ResNet50 used as the base model, with transfer learning and finetuning to classify coral images into Bleached and Healthy.

Below are the details for the training model

- **Test Accuracy**: Moderate Performance the accuracy was approximately **62.7%**,
- **Confusion Matrix**: Healthy class has a better recall (0.73) compared to the Bleached class (0.53).
- **Precision, Recall, and F1-Score**: Healthy class has a better Recall (0.73), but the Bleached class has better Precision(0.66). This model struggles with imbalance between the two categories and feature extraction.
- Model Accuracy: Validation accuracy is higher than training accuracy, indicating overfitting or insufficient training of the base model.

Challenges:

 Data Augmentation Issues: Because of noise caused by Aggressive augmentation, the model's ability to learn clear patterns is reduced. Horizontal flipping might not be applicable to coral images due to their natural orientation.

Improvements:

- Avoid using Shear function as the Shearing can impact corals structures as the corals are texture and colour sensitive data.
- Smaller rotation range(10-15) instead of 20 avoids and using mild zoom(0.1) instead of 0.2 prevents excessive distortion.

2. Training validation Problems: Validation accuracy is way more than the training accuracy, because of augmented noisy inputs during training (rotations, shifts, zooms, shears)

Improvements:

- Improve preprocessing by applying noise reduction (Gaussian Blur) to augmented data to reduce distortions.
- Use smaller batch sizes (16 instead of 32). Smaller batch reduce noise improving the stability.
- 3. **Impact of Freezing Layers:** As all layers of the ResNet50 model remain frozen, and no fine-tuning is actually performed.

Improvements:

- Unfreeze layers so that the model adapts gradually and fine tuning more layers.
- By adding L2 Regularization to the model, prevents overfitting of data.

Conclusion:

- Analyse the importance of Unfreezing Layers and by fine tuning of layers the model can improve the classification accuracy.
- Additionally the need for advanced preprocessing techniques like noise reduction, data augmentation to enhance the robustness of the model.
- Using Batch Normalization could resulted in more stable training, and better dealing with noisy data, generalization due to the regularizing effect.