modelo-estadistico

September 2, 2023

1 Construcción de un modelo estadístico base

- 1. De acuerdo con la pregunta base, contempla la herramienta estadística necesaria para contestarla.
- 2. Selecciona al menos dos de las herramientas estadísticas que hemos analizado en el curso: regresión lineal simple y múltiple, anova o pruebas de hipótesis (medias o proporción). Justifica la elección de la herramienta estadística.
- 3. Valida el modelo obtenido analizando los supuestos requeridos por el modelo.
- 4. Haz uso de toda la herramienta estadística que creas necesaria. En caso de que requieras herramienta estadística no contemplada aún en el curso, consulta con tu profesora.
- 5. Grafica tus resultados para una mejor visualización de tus resultados
- 6. Interpreta en el contexto del problema toda la herramienta estadística que uses (no sólo coloques gráficos y tablas: indica cómo te ayudan al análisis)
- 7. Emite una conclusión del análisis que realizaste

NOTA IMPORTANTE: Perdón maestra, no pude avanzar más porque no supe qué herramienta de las que vimos utilizar. También creo que no hice bien la selección de variables debido a que nada más las seleccioné en base a un criterio, la correlación. En este fin de semana voy a tratar de corregir la primera evidencia y terminar esta. Muchas gracias por entender, que tenga bonito día.

1.1 Importar módulos

```
[1]: # Importación de librerías
import pandas as pd
import numpy as np
import random as rnd
import math
import seaborn as sns
import statsmodels.api as sm
import scipy.stats as stats
import matplotlib.pyplot as plt
```

1.2 Cargar datos

```
[2]: # Este bloque de codigo no es necesario si el archivo esta guardado localmente from google.colab import drive drive.mount('/content/drive')
```

```
[3]: # Dataframe del conjunto de datos
autos_df = pd.read_csv('/content/drive/MyDrive/TC3006C101_A00828096/Estadistica/

⇔precios_autos.csv')

selected_columns = autos_df[['enginesize', 'curbweight', 'horsepower',

⇔'carwidth', 'highwaympg', 'citympg', 'price']]
selected_columns
```

[3]:	enginesiz	e curbweight	horsepower	carwidth	${\tt highwaympg}$	${ t citympg}$	\
(130	2548	111	64.1	27	21	
1	1 13	2548	111	64.1	27	21	
2	2 15:	2 2823	154	65.5	26	19	
3	3 109	9 2337	102	66.2	30	24	
4	130	5 2824	115	66.4	22	18	
		•••	•••	•••			
2	200 14	1 2952	114	68.9	28	23	
2	201 14	1 3049	160	68.8	25	19	
2	202 173	3012	134	68.9	23	18	
2	203 14	3217	106	68.9	27	26	
2	204 14	1 3062	114	68.9	25	19	

```
price
0
     13495.0
1
     16500.0
2
     16500.0
     13950.0
4
     17450.0
. .
200 16845.0
201 19045.0
202 21485.0
203 22470.0
204 22625.0
```

[205 rows x 7 columns]

- 1.3 Análisis de datos y Pregunta base
- 1.3.1 1. De acuerdo a la pregunta base, contempla la herramienta estadística necesaria para contestarla.
- 1.3.2 2. Selecciona al menos dos de las herramientas estadísticas que hemos analizado en el curso: regresión lineal simple y múltiple, anova o pruebas de hipótesis (medias o proporción). Justifica la elección de la herramienta estadística.

Condiciones para la regresión lineal múltiple

```
[4]: correlation_matrix = autos_df[['enginesize', 'curbweight', 'horsepower',

carwidth', 'highwaympg', 'citympg', 'price']].corr()

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

plt.title('Matriz de Correlación')

plt.show()
```


Modelo de regresión lineal múltiple

1.3.3 3. Valida el modelo obtenido analizando los supuestos requeridos por el modelo.

1.3.4 4. Conclusión del análisis

OLS Regression Results

old regression results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	autos_df['price'] OL Least Square Sat, 02 Sep 202 05:16:5 20 20 nonrobus	S Adj. s F-sta 3 Prob 4 Log-I 5 AIC: 1 BIC:	nared: R-squared: utistic: (F-statistic) uikelihood:	:	0.801 0.798 270.1 3.06e-70 -1966.9 3942. 3955.		
0.975]	coef	std err	t	P> t	[0.025		
Intercept -3.26e+04 autos_df['enginesize 171.233	'] 156.7447	6326.572 7.348	-7.131 21.333	0.000	-5.76e+04 142.257		
<pre>autos_df['wheelbase' 338.916 autos_df['peakrpm'] 4.103</pre>	2.9883	0.565	4.445 5.286	0.000	1.873		
Omnibus: Prob(Omnibus): Skew: Kurtosis:	23.28 0.00 0.67 4.48	0 Durbi 0 Jarqu 5 Prob(n-Watson: ne-Bera (JB): (JB): No.		0.827 34.414 3.37e-08 1.30e+05		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.3e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
[7]: formula2 = "autos_df['price'] ~ autos_df['enginesize'] + autos_df['wheelbase']"

# Fit the linear regression model

model2 = sm.OLS.from_formula(formula2, data=autos_df)

result2 = model2.fit()

print(result2.summary())
```

OLS Regression Results

=======================================		_ =======			
Dep. Variable:	autos_df['pric	e'] R-s	quared:		0.774
Model:		OLS Adj	Adj. R-squared:		0.771
Method:	Least Squa	res F-s	tatistic:		345.2
Date:	Sat, 02 Sep 2	023 Pro	b (F-statistic)	:	6.86e-66
Time:	05:19	:02 Log	-Likelihood:		-1980.2
No. Observations:	:	205 AIC	:		3966.
Df Residuals:		202 BIC	:		3976.
Df Model:		2			
Covariance Type:	nonrob	ust			
=======================================	========		========	======	=======
=======	_			- 1 . 1	F
0.075]	coef	std er	r t	P> t	[0.025
0.975]					
Intercept	-2.19e+04	4846.97	6 -4.518	0.000	-3.15e+04
-1.23e+04	2.130.01	1010.07	1.010	0.000	0.100.01
autos_df['enginesize	'] 154.7476	7.81	2 19.810	0.000	139.345
170.151] 101.,1,0	1.01	2 10.010	0.000	100.010
autos_df['wheelbase'] 157.3072	54.02	1 2.912	0.004	50.790
263.824					
Omnibus:	38.	962 Dur	bin-Watson:		0.777
<pre>Prob(Omnibus):</pre>	0.0	000 Jar	que-Bera (JB):		70.509
Skew:	0.9	963 Pro	b(JB):		4.89e-16
Kurtosis:	5	132 Con	d. No.		2.99e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.99e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[9]: formula3 = "autos_df['price'] ~ autos_df['enginesize']"

# Fit the linear regression model

model3 = sm.OLS.from_formula(formula3, data=autos_df)

result3 = model3.fit()

print(result3.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	autos_df['price']	Adj. F-sta Prob Log-L AIC:	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0.764 0.763 657.6 1.35e-65 -1984.4 3973. 3979.
Df Model: Covariance Type:	1 nonrobust				
======================================	1011 05u50	======		======	
0.975]	coef	std err	t	P> t	[0.025
Intercept -6283.700	-8005.4455	873.221	-9.168	0.000	-9727.191
autos_df['enginesize	e'] 167.6984	6.539	25.645	0.000	154.805
Omnibus:	 23.788	Durbi	n-Watson:		0.768
Prob(Omnibus): 0.000		Jarqu	e-Bera (JB):	33.092	
Skew: 0.71		Prob(JB):			6.52e-08
Kurtosis:	4.348 	Cond.	Cond. No.		429. ======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.