Problem 1

(a) (i) Procedure for $\text{HEAVY}(i, j)^1$:

Algorithm 1 Heavy, returns the set of heavy elements within a range i, j, inclusive.

```
1: procedure HEAVY(i, j)
         if i = j then
 2:
3:
             return \{A[i]\}
                                           ▶ Base case of a single element, which is heavy on its own.
 4:
         end if
         m \leftarrow \left| \frac{i+j}{2} \right|
                                                                              \triangleright Take the midpoint of i and j.
 5:
         L \leftarrow \text{HEAVY}(i, m)
                                                                                          6:
 7:
         R \leftarrow \text{HEAVY}(m+1,j)
                                                                                        Create Set S
                                                                   ▶ Initialise an empty set, to be returned.
8:
9:
         for all e \in L \cup R do
                                                        \triangleright For each (distinct) element in the both L and R
              c \leftarrow \text{count of } e \text{ in } A[i \dots j]
                                                                \triangleright O(j-i+1), linear w.r.t. size of A[i \dots j]
10:
             if c > \frac{3}{20}(j-i+1) then
11:
                  S \leftarrow S \cup \{e\}
                                                                                   \triangleright e is (still) heavy, O(2|S|)
12:
              end if
13:
         end for
14:
15:
         return S
                                                                  \triangleright Return the heavy elements for A[i \dots j]
16: end procedure
```

(ii) The algorithm HEAVY first checks the base case, input where i = j. For any base case, the set of heavy items is a singleton of the element A[i] itself (since $1 \ge 1 = \left\lceil \frac{3}{20} \right\rceil$).

Next, we divide the problem into two subproblems HEAVY(i, m) and HEAVY(m + 1, j), each of which return a set of heavy numbers from the respective subarrays $A[i \dots m]$ and $A[m+1 \dots j]$.

We take the union of these sets $(L \cup R)$ to ensure no duplicated elements, then walk through the set. For each distinct element, we count the occurrences in $A[i \dots j]$ (1.10) and check if the count c satisfies the heaviness condition (1.11). Note that the counting needs to make one pass through the array and is hence O(j-i+1). If the condition is satisfied, the element is added (1.12) to a separate set (1.8).

(b) Let's do some induction!

¹Algorithm construction assisted by *redacted*.

Let the inductive proposition be I(n): for some i, j, such that i < j, n = j - i + 1, HEAVY(i, j) returns a set S such that e is heavy for all $e \in S$.

Base case (n = 1). By the proposition, for I(1), we have i = j and we correctly return the set of heavy elements, which is the singleton set $\{A[i]\}$.

General case (n > 1). Assume I(k) is true for all k < n. Now we have $m = \left\lfloor \frac{i+j}{2} \right\rfloor$ and we split into subcases with sizes $m - i + 1 = \left\lfloor \frac{j-i}{2} \right\rfloor + 1$ and $j - (m+1) + 1 = \left\lceil \frac{j-i}{2} \right\rceil$.

Since $\left\lfloor \frac{j-i}{2} \right\rfloor + 1 < n$ and $\left\lceil \frac{j-i}{2} \right\rceil < n$, we know by assumption that I is true and that HEAVY correctly returns the set of heavy elements of $A[i \dots m]$ and $A[m+1 \dots j]$ respectively.

We then check each element e of the union of the subresults and ensure that the element is still heavy based on the condition that e occurs at least 15% of the time.

Note that non-heavy elements are correctly discarded. If some array element e isn't heavy (occurs less than 15%) on the left and isn't heavy on the right, then e isn't heavy on the combined array.

(c) **Base Case** (n = 1). T(1) = 1. This is the cost of constructing $\{A[i]\}$.

General Case (n > 1). $T(n) = T(\lfloor \frac{n-1}{2} \rfloor + 1) + T(\lceil \frac{n-1}{2} \rceil) + c_1 n$. For the subcases, we are reusing the derivations $\lfloor \frac{n}{2} \rfloor + 1$ and $\lceil \frac{n}{2} \rceil$ from part (b) by substituting n - 1 = j - i.

Note that |L|, |R|, and thus $|L \cup R|$ are bounded by a constant. The maximum amount of heavy numbers for any HEAVY(i,j) for some n=j-i+1 is 6. Why? We prove by contradiction. Suppose the set returned contains 7 or more distinct heavy elements. Each element would have to appear more than 15% of the set, accounting for 105% (of n). This is a contradiction since the set should only contain up to 100% of items. This result allows us simplify the complexity of lines 9 to 14 to c_1n where the n comes from line 10 and the c_1 comes from summing the constant operations (set union $L \cup R$, $S \cup \{e\}$, etc.).

We then have $T(n) \leq T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + c_1 n \leq 2T \leq 2T(\lceil \frac{n}{2} \rceil) + c_1 n$. By the master theorem for inequalities, we have $c = \log_2 2 = 1$ and thus $T(n) = O(n \log n)$.

Problem 2

(a) (i) Let
$$X_i = \begin{cases} 1 & \text{if } A[i] \text{ is a local minimum} \\ 0 & \text{otherwise} \end{cases}$$
.

For end cases, we have $P(X_1 = 1) = P(X_n = 1) = \frac{1}{2}$. (Why?²) For middle cases X_i , we consider A[i-1], A[i], A[i+1]. There are 3! permutations and exactly 2 of these permutations situate A[i] as a local minimum. Thus we have $P(X_i = 1) = \frac{2}{3!} = \frac{1}{3}$.

There are 2 end cases and n-2 middle cases. The expected number of local minima in A is hence $E(\sum_{i=1}^{n} X_i) = 2 \times \frac{1}{2} + (n-2) \times \frac{1}{3} = \frac{n+1}{3}$. (Source.³)

(ii) Generalising from the array end case and middle case, let S be the data structure under inspection, n be the number of nodes of S, i be some index $1 \le i \le n$, and m be the number of neighbours of S[i] (the ith node of S). Let X_i be the indicator random variable, indicating if S[i] is a local minimum. Then $P(X_i = 1) = \frac{m!}{(m+1)!} = \frac{1}{m+1}$ (we fix the ith node and take the permutations of the m neighbours).

The nodes and expected values are broken down as follows: Firstly, the root. There is only one; with $P(X_1 = 1) = \frac{1}{3}$. Secondly, the leaves, each with one neighbour. There are $\frac{n+1}{2}$. For $n \ge 2$, we have $P(X_i = 1) = \frac{1}{2}$, where S[i] are leaves.

This leaves⁴ the nodes in the middle levels, each of which have three neighbours. Theare are $n-1-\frac{n+1}{2}=\frac{n-3}{2}$. For $n \ge 3$, we have $P(X_i=1)=\frac{1}{4}$, where S(i) are middle nodes.

 P_n can be pictured as inserting a new larger element n into the random permutation of $\langle 1, \dots, n-1 \rangle$. We retain the local minimum by inserting n into the second index (corresponding to $\frac{1}{n}$) or inserting in the third index or beyond (corresponding to the recursive $\frac{n-2}{n}P_{n-1}$).

²We can prove this by induction. Let P_n denote the probability that the first element (left end) is a local minimum. Given an array A with random permutation of $\langle 1, ..., n \rangle$ $(n \ge 2)$, we have a base case of $P_2 = \frac{1}{2}$. Assume $P_{n-1} = \frac{1}{2}$. We formulate $P_n = \frac{1}{n} + \frac{n-2}{n} P_{n-1}$, which by solving gives $\frac{1}{2}$.

 $^{^3}$ Solution inspired from: https://math.stackexchange.com/q/680660/615376

⁴haha

The total expected value of local minima in a tree is then

$$E(\sum_{i=1}^{n} X_i) = \begin{cases} 0 & \text{if } n = 0\\ \frac{1}{3} & \text{if } n = 1\\ \frac{1}{3} + \frac{n+1}{2} \cdot \frac{1}{2} + \frac{n-3}{2} \cdot \frac{1}{4} = \frac{9n+5}{24} & \text{if } n \ge 3 \end{cases}$$

(Note that the n = 2 case doesn't exist by assumption.)

(iii) We treat (i, j) elements as nodes and use similar methodologies. Let $n = m^2$ be the number of elements of the matrix.

For each node, if M(i, j) has

• 2 neighbours (corners):

$$X_{(i,j)} = \begin{cases} 0 & \text{if } m = 1\\ 4 & \text{if } m \ge 2 \end{cases}$$

• 3 neighbours (edges, non-corners):

$$X_{(i,j)} = \begin{cases} 0 & \text{if } m = 1\\ 4m - 8 & \text{if } m \ge 2 \end{cases}$$

• 4 neighbours:

$$X_{(i,j)} = \begin{cases} 0 & \text{if } m = 1\\ (m-2)^2 & \text{if } m \ge 2 \end{cases}$$

The expected value of local minima is then

$$\begin{cases} 0 & \text{if } m = 1 \\ 4 \cdot \frac{1}{3} + (4m - 8) \cdot \frac{1}{4} + (m - 2)^2 \cdot \frac{1}{5} = m - \frac{2}{3} + \frac{1}{5}(m - 2)^2 & \text{if } m \ge 2 \end{cases}$$

(b) (i) Similar to the array case, but without the end points. For each middle element, fix the middle element and permute the other two: two cases per X_i . Let X_i be the indicator random variable indicating if A[i] is a saddle point.

$$E\left(\sum_{i=1}^n X_i\right) = \frac{n-2}{3}.$$

(ii) We only consider the elements in the middle level. So $P(X_i) = 0$ for i where T[i] is a root or leaf.

From a.ii, we know there are $\frac{n-3}{2}$. Each of these nodes have 4 neighbours, strictly ordered. For some T[i], we consider its parent, T[i], and its two children. Fixing the parent and T[i], we deduce that there are two permutations (with T[i] as a saddle point) out of 4!. Thus, $P(X_i = 1) = \frac{1}{12}$, and $E(\sum_{i=0}^{n} X_i) = \frac{n-2}{12}$.

(iii) We split this problem into multiple cases. For corners, there is 1 out of 3! permutations satisfying the constraint. For non-corner edges, 2 out of 4! permutations. For inner cells, 4 out of 5! permutations. The expected value is then

$$E\left(\sum_{i=0}^{n}\right) = \begin{cases} 0 & \text{if } m = 1\\ 4 \cdot \frac{1}{3!} + (4m-8) \cdot \frac{2}{4!} + (m-2)^{2} \cdot \frac{4}{5!} & \text{if } m \ge 2 \end{cases}$$

$$= \begin{cases} 0 & \text{if } m = 1\\ \frac{2}{3} + \frac{m-2}{3} + \frac{(m-2)^{2}}{30} & \text{if } m \ge 2 \end{cases}$$

Problem 3

(a) (i) There is at least one minimum, and it is not at infinity, since x_i are defined to be real numbers. Thus, there exists z_1 such that f(x) is monotonically decreasing.

(ii)

Problem 4

- (a) $T(n) = O(n^{5/2})$
- (b) $T(n) = O(n^{\log_2 9})$
- (c) $T(n) = O(n^2 \log n)$
- (d) $T(n) = O(n^{\log_4 3})$
- (e) $T(n) = O(n^{\log_7 2} \log n)$
- (f) $T(n) = O(n \log n)$