Approximation Algorithms for Set Cover -> Greedy algorithm & analysis $U = \left\{ e_1 e_2 \dots e_n \right\}$ $S = \{S_1, S_2, \dots S_m\}$ Jod: pick min # subsets from I Greedy Myo for Set Cover Instally $Y = \overline{U}$ While $T \neq \overline{Q}$ chook 5 & J with warman 15071

Set Y & Y \ S Theorem [Johnson 1971]: Greedy is (1+lnn)approximation for set lover. Independent of # of sets N, = # un wovered elements after 1st set The = 10PT |, i.e I be not to cover

Ut [= 10PT], i.e] to retements 1st we pick covers ? It elements. 52 ... Sk S Cover V together at least bot ? in elements from U $\implies \qquad N_1 \leq N\left(1 - \frac{N}{K}\right)$ Using same argument @ time & greedy set works of the elements from uncovered the $= N_2 \leq N_1 \left(1 - \frac{1}{K}\right) \leq N_1 \left(1 - \frac{1}{K}\right)$ $v_{\pm} \leq \sqrt{1-\frac{1}{k}}$ At what value of t will by < 1 $N\left(1-\frac{1}{N}\right)^{\frac{1}{2}}$ $\left(1-\frac{1}{n}\right)^{\frac{1}{n}}$ / t = klnn+1 $\left(\left(1-\frac{1}{k}\right)^{k}\right)^{lnn} = \frac{1}{n}$ 1. Pale - lon+1

Opt = le Us = kenn+1 } Apx Rako = lon+1 < determination (- LP band f- approximation (- determinated)

- LP band O(ln n) - approximation (- determination)

- Greedy In n - approx (determination) there a 2-approx for let lover? in fact, any polytime lan (1-E) approx P=NP (Hardner of Approx. Related guerson: Etrivien (U, L) & a parameter 'le',

Choose k nts to maximize # elements

covered Can implement some greedy algorithm. I just stop after k rounds Proof (can use same odeas) to show that we will cover at least $OPI \left(\frac{1 - \left(1 - \frac{1}{K}\right)^{k}}{1 - \left(1 - \frac{1}{K}\right)^{k}} \right)$ ~ of (1-1) (0.63 allbax for) ~ 0.63.0PT -) D-KIP Hardness 1

/ Max & laverage Theorem Any (0.63-E) - approx =) P=NP Hardness of Defour Submodular functions U= { 1 2 3 4 5} $f: 2^g \rightarrow N$ J= S5= 81233. eg +({s,}) = 3 53 - {1 35} 54 = }4} $f(\{s_1,s_2\}) = 4$ $f'(\{s_1, s_2\}) = 5$ S= {45}} f({s, s,) < f((s, 2 2)) LD monotone Junction f(x) > f(y) \(\frac{1}{2}\) \(\frac{1}{2}\) Diminishing returns property Y C 2 \times \leq 7X = 23 $S; \notin X \& S; \notin Y$ f(xusi) - f(x) > f(yus) - f(y)Any function over a domain 21) which satisfies diministring returns property colled a Submodular function Game theory, MI, economics, Computer

0	p	- 1 a l · 4	both (P) & (P2) then its	
17			MONOTONE SUBMODUAR 7	^
		called	MO100 10100	

Coverage fr -> Movolove & Submodular

$$G = (V, \xi)$$

HW: Sum that I is Submodular !!

$$f(si) = 3$$

$$f(\{1,2,3\})=3$$

For monotone submodular fre,

Greedy Algo = (1-1) - approximation

Given Monotone Sulmodular fre & a target

k, pick that X of |X| = k to maximize

Also the best-possible algorithm!!

MIN SUM SET GUER PROBLEM

given U. S

Find an ordering of sits to minimize

U= \$ {1234562}910) J= { { 1 2343, } 5678910}, {12345678910} St 6 ver = (51,52) size (2) 0 = S, S2 S3 S4 S5 Aci / O, Cover (1) = (1) $\frac{2}{3} = \frac{1}{1}$ $\frac{1}{10} = \frac{2}{5}$ $\frac{1}{10} = \frac{2}{5}$ Obj Value - 4x1 + 6x2 = 16) - Sz S, S3 S4 S5 6×1+4×2 = 14 S3 S4 S5 S1 S2 $= 8 \times 1 + 2 + 3 = 13$ S3 S2 S1 S4 S5 8×1 + 2×2 = 12

Turns out,
greedy is very good for MSSC

LD 4- approximation !!

ordering to max com (e) Any (4-E) - affrox in =) P=NP phytone (will show o(1) - approx, 4 is A, = # unwered elts after time! / # ur covered ells in opt after time t 11 1 2 At ? Area under red couve 2B, 7, My

2 A . 2) (A) = fluntovered; elb (2 time 2) Groad (5 A). 2 < 0(1) 70 . 2) > ,0 One attempt Sit Hj, A = O(1).00 ?? $A^{j} \leq \frac{100^{j}}{3} \begin{pmatrix} 6v \end{pmatrix}$ $\frac{1}{3}$ A^{3-1} + 10.0 (22) (22) (23) (23) (23) (23) (23) (23) (23) (23) $\frac{2}{3} + 1000$ Mg < 30.0PT. Die Urwrend ets

A = uncovered erry OJ= Unwrend ets 7, 7 of els of eithe of som A) by 2^{j-1} (R) A) un averd > 10 8 leaves - A) < 100 the 2 has covered ? 7 to of my unwrend ells @ hur 2) y 2^{j-1}≤ t ≤ 2 , els of cores in which Hy still $\chi = \overline{0^{j-1}} \cap A^j = \text{set } g$ has concertainty at $\frac{9}{10} \quad A^{3}$ >, 1x1

$\frac{19}{10}A^{\frac{1}{3}} \leq A^{\frac{1}{3}-1}$ $\Rightarrow A^{\frac{1}{3}} \leq \frac{10}{19}A^{\frac{1}{3}-1}$
different parameters with give me A) (1 A) 4, completing The proof
Rocay In Set Coverage Greedy To 1-1 for Mar & Coverage 1-1 for Mar & Coverage 1-1 to Submodular Mary 11 extends to Submodular Mary 11 extends to MSSC problems 11) approx for MSSC problems
Primal Dual Technique J algus are combinatorial analysis will set use 10 alengively
rakri. github. io 5 www.cs.cmu.edu/~ravishan (2018)