Probability Theory

August 6, 2021

Acknowledgment of Sources

Slides based on content from:

Introduction To Probability, 2nd edition, by Dimitri P. Bertsekas and John N. Tsitsiklis

Prof. Mitesh's course on LARP

Google Images

Wikipedia

Learning objectives

- Why do we need probability theory in PRML class?
- Probability basics:
 - Counting
 - Probability axioms
 - Conditional probability
 - Multiplication rule
 - Bayes' theorem
 - Random variable
 - Probability Distributions
- Pointers to the topics not covered today

Why do we need Probability Theory?

Statistics (from sample)

- Mean sugar level
- Variance in fertility rate
- Mean height or weight

Q: What is the probability that a statistic computed from a sample is close to that computed from a population?

Why do we need Probability Theory?

Cat? Dog? Owl? Lion?

Machine Learning

P(label = cat | image)

Predict a distribution over class

A simple example

What is the probability of getting a heads?

½ or 0.5 or 50%

How did you compute this?

1/n

2 possible outcomes: each equally likely

Another simple example

What is the probability of getting a five?

% or 0.1667 or 16.67%

How did you compute this?

1/n

6 possible outcomes: each equally likely

Another example

What is the probability of getting 4 aces?

1/n

But what is n?

n is the number of possible outcomes, i.e., all possible combinations of 4 cards

How do you count n?

[1.6] Introduction To Probability, 2nd edition, by Dimitri P. Bertsekas and John N. Tsitsiklis

Definitions alert!

 Ω : Sample space (all outcomes)

Event: subsets of Ω

What is the chance of an event?

<u>Goal</u>: Assign a number to each event such that this number reflects the chance of the experiment resulting that event

Probability

What are the conditions that such a probability function must satisfy?

(Axioms of Probability)

Axiom 1 (non-negativity)

$$P(A) \ge 0 \forall A$$

Axiom 2 (normalisation)

$$P(\Omega) = 1$$

Axiom 3 (finite additivity)

$$P(A_1 \cup A_2 \cup \dots A_n) = \sum_{i=1}^n P(A_i)$$

Properties of a Probability Function: [1.2] Introduction To Probability Book

Change in belief

Before start of play: What is the chance of India winning?

0.5

India scores 395 batting first: What is the chance of India winning?

> 0.5

What exactly happened?

Change in belief

A: event that India will win

B: India scores 395 runs

P(A) changes once we know that event B has occurred

$$P(A|B) \neq P(A)$$

Question: What is the probability that a randomly selected person is healthy (not infected)?

A: event that person is healthy P(A) = 0.9

B: event that the person has COVID-19 symptoms

10% population is infected

The definition of P(A|B)

What is the probability that the sum is 8?

$$P(A) = 5/36$$

(1,1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

(1 , 1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

The definition of P(A|B)

What is the probability that the sum is 8 given that the first dice shows a 4?

A: sum is 8

B: first dice shows a 4

$$P(A|B) = 1/6$$

(1,1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

(1 , 1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Conditional Probability

To do: Do conditional probabilities satisfy the axioms of probability?

A: sum is 8

B: first dice shows a 4

$$P(B) = 6/36$$

$$P(A \cap B) = 1/36$$

$$P(A|B) = P(A \cap B) / P(B)$$

Conditional Probability

Regular Probabilities

The multiplication principle

The chain rule of probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$\therefore P(A \cap B) = P(A|B).P(B)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
$$\therefore P(B \cap A) = P(B|A).P(A)$$

A: event that person is infected

B: event that the test result is +ve

The chain rule of probability (for n events)

$$P(A \cap B \cap C) = P((A \cap B) \cap C)$$

$$Let(A \cap B) = X$$

$$\therefore P(A \cap B \cap C) = P(X \cap C)$$

$$\therefore P(A \cap B \cap C) = P(X).P(C|X)$$

$$\therefore P(A \cap B \cap C) = P(A \cap B).P(C|A \cap B)$$

$$\therefore P(A \cap B \cap C) = P(A).P(B|A).P(C|A \cap B)$$

for n events

$$P(A \cap B \cap C \cap D) = P(A).P(B|A).P(C|A \cap B).P(D|A \cap B \cap C)$$

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \prod_{i=2} P(A_i | A_1, \dots, A_{i-1})$$

Total Probability Theorem

$$A_1, A_2, \dots A_n$$
 partition Ω
 $A_1 \cup A_2 \cup \dots \cup A_n = \Omega$ and $A_i \cap A_j = \phi \forall i \neq j$

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n)$$

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \cdots + P(B \cap A_n)$$

$$P(B) = P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_2) + \cdots + P(A_n) \cdot P(B|A_n)$$

$$P(B) = \sum_{i=1}^{n} P(A_i).P(B|A_i)$$

Example

$$P(B^c) = ?$$

$$= P(A_1)P(B^c|A_1) + P(A_2)P(B^c|A_2) + P(A_3)P(B^c|A_3)$$

= $\frac{1}{3} \times 0.7 + \frac{1}{3} \times 0.4 + \frac{1}{3} \times 0.25$

Can we find $P(A_1|B)$?

 A_i : i-th path taken

B: monster encountered

$$P(B|A_1) = 0.3$$

$$P(B|A_2) = 0.6$$

$$P(B|A_3) = 0.75$$

Breaking it down

$$P(A_1|B) = ?$$

$$P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)}$$

$$P(A_1|B) = \frac{P(A_1 \cap B)}{P(A_1).P(B|A_1) + P(A_2).P(B|A_2) + P(A_3).P(B|A_3)}$$

Total Probability Theorem

$$P(A_1|B) = \frac{P(A_1).P(B|A_1) \quad \boxed{\text{Multiplication rule}}}{P(A_1).P(B|A_1) + P(A_2).P(B|A_2) + P(A_3).P(B|A_3)}$$

$$P(A_1|B) = \frac{P(A_1).P(B|A_1)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$
 Bayes' Theorem

Independence and more...

Probability of Compound Events

Independent Events

$$P(A \text{ and } B) = P(A) \times P(B)$$

Dependent Events

$$P(A \text{ and } B) = P(A) \times P(B \mid A)$$

Mutually Exclusive

$$P(A \text{ or } B) = P(A) + P(B)$$

Mutually Inclusive

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Conditional Independence: P(A|B,C) = P(A|C)

Random Variable

Focus on numerical quantities associated with the outcomes of experiments.

In board games, we care about the sums and not the numbers that led to the sum.

```
(1,1)
(1,2)(2,1)
(1,3) (2,2) (3,1)
(1,4) (2,3) (3,2) (4,1)
(1,5) (2,4) (3,3) (4,2) (5,1)
(1,6) (2,5) (3,4) (4,3) (5,2) (6,1)
(2,6) (3,5) (4,4) (5,3) (6,2)
(3,6) (4,5) (5,4) (6,3)
(4,6) (5,5) (6,4)
(5,6)(6,5)
```

Question of interest: What is the probability that the sum will be 10?

Experiment: Randomly select an employee

 Ω : All employees of the organisation

R: Number of years of experience, number of projects, salary, income tax, num. children

What are the values a random variable can take?

- Discrete
- Continuous

Qs of Interest:

What is the probability that an employee has 2 children?

What is the probability that an employee's monthly salary is greater than 50K

What are the probabilities of the values that a <u>discrete random variable</u> can take?

Probability Mass Function (PMF)

What is the probability that the value of the random variable

will be x? $X:\Omega o \mathbb{R}$

	\boldsymbol{x}	P(X=x)
	1	$\frac{1}{6}$
	2	$\frac{1}{6}$
D(V-v) = [0, 1]	3	$\frac{1}{6}$
P(X=x)=[0,1]	4	$\frac{1}{6}$
	5	$\frac{1}{6}$
	6	$\frac{1}{6}$

$Etetit \cdot A = x$	d	$I(\Lambda - x)$
(1,1)	2	$\frac{1}{36}$
(1,2)(2,1)	3	$\frac{2}{36}$
(1,3) (2,2) (3,1)	4	$\frac{3}{36}$
$(1,4)\ (2,3)\ (3,2)\ (4,1)$	5	$\frac{4}{36}$
(1,5) (2,4) (3,3) (4,2) (5,1)	6	$\frac{5}{36}$
(1,6) (2,5) (3,4) (4,3) (5,2) (6,1)	7	$\frac{6}{36}$
(2,6) (3,5) (4,4) (5,3) (6,2)	8	$\frac{5}{36}$
(3,6) (4,5) (5,4) (6,3)	9	$\frac{4}{36}$
(4,6) (5,5) (6,4)	10	$\frac{3}{36}$
(5,6)(6,5)	11	$\frac{2}{36}$
(6,6)	12	$\frac{1}{2c}$

Probability Mass Function

Think of the event corresponding to X = x

Once we know this event (subset of sample space) we know how to compute P(X=x)

PMF:
$$p_{X}(x) = P(X = x)$$

Properties of PMF: [2.1 and 2.2] Introduction To Probability Book

How can we describe distributions compactly?

An assignment of probabilities to all possible values that a discrete RV take can be tedious.

Can PMF be specified compactly?

X: random variable indicating the number of tosses after which you observe the first heads

$$p^x * (1-p)^{1-x}$$

Probability distributions

Bernoulli Distribution (experiments with only two outcomes)

Binomial Distribution (Repeat a Bernoulli trial *n* times)

More on Random Variables

Expectation of a RV:
$$E[X] = \sum_{\text{all possible } x} xP(X = x)$$

Variance of a RV:
$$\sigma_X^2 = E[(X - \mu_X)^2]$$

Exercise: Find the expectation and variance of the distributions discussed in the previous slide.

Other topics

Markov inequality

Chebyshev inequality

Law of large numbers

Central Limit Theorem

Cross Entropy

KL Divergence

StatQuest with Josh Starmer •

533K subscribers

