Linear algebra, Exercise 2

叶卢庆*

August 1, 2014

Exercise. a Let $T: V \to W$ be a linear transformation from one vector space V to another vector space W.Let v_1, \dots, v_n be vectors in V.Assume the span of v_1, \dots, v_n contains the null space N(T)of T, and assume that the vectors $T(v_1), \dots, T(v_n)$ span W. Prove that the vectors v_1, \dots, v_n span V.

 a This exercise is from www.math.ucla.edu/ tao/resource/general/115a.3.02f/practice.pdf

Proof. Prove by contradiction. Otherwise, there exists $v_{n+1} \in V$, such that $v_{n+1} \notin Span(v_1, \dots, v_n)$. From have $T(v_{n+1}) = a_1 T(v_1) + \dots + a_n T(v_n),$ $T(v_{n+1} - a_1 v_1 - \dots - a_n v_n) = 0_w,$ $Span(T(v_1), \dots, T(v_n)) = W$, we have

$$T(v_{n+1}) = a_1 T(v_1) + \dots + a_n T(v_n)$$

so

$$T(v_{n+1} - a_1v_1 - \cdots - a_nv_n) = 0_w,$$

which means that $v_{n+1}-a_1v_1-\cdots-a_nv_n\in N(T)$. From $N(T)\subset Span(v_1,\cdots,v_n)$, we have

$$v_{n+1} - a_1 v_1 - \dots - a_n v_n = b_1 v_1 + \dots + b_n v_n$$

$$v_{n+1}-a_1v_1-\cdots-a_nv_n=b_1v_1+\cdots+b_n$$
 so
$$v_{n+1}=(a_1+b_1)v_1+\cdots+(a_n+b_n)v_n.$$
 This contradicts $v_{n+1}\not\in Span(v_1,\cdots,v_n).$

^{*}Luqing Ye(1992—),E-mail:yeluqingmathematics@gmail.com