PatBase Results Seite 1 von 1

1) Family number: 30560223 (US2002165341A)

© PatBase

Title: Process for the preparation of polymers having a reduced content of volatile components

Abstract:

Source: US2002165341A The invention relates to a process for the preparation of polymers stabilized with protective colloids in the form of water-redispersible powders or aqueous dispersions thereof having a reduced content of volatile components, by a) polymerizing by emulsion or suspension polymerization, one or more monomers from the group consisting of vinyl esters, (meth)acrylates, vinyl aromatics, olefins, 1,3-dienes and vinyl halides and optionally further monomers copolymerizable therewith, b) aftertreating the polymer dispersion thus obtained by means of postpolymerization, distillation, and/or introduction of steam or inert gas to obtain a residual content of volatile, nonaqueous components of lt;2000 ppm, and c) spray drying of aftertreated polymer dispersion to a residual content of volatile, nonaqueous components of lt;400 ppm, the dispersion being adjusted prior to spray drying to a solids content of 120 Degrees Centigrade, and optimally d) redispersing of the resulting powder in water.

International class (IPC 8): C04B24/26 C04B40/00 C08F18/08 C08F2/20 C08F2/22 C08F218/08 C08F6/00 C08F6/16 C08F6/24 C08J3/02 C08J3/12 C08L101/00 C08L29/04 C09J201/00 (Advanced/Invention); C04B24/00 C04B40/00 C08F18/00 C08F2/12 C08F218/00 C08F6/00 C08J3/02 C08J3/12 C08L101/00 C08L29/00 C09J201/00 (Core/Invention)

International class (IPC 1-7): C04B24/26 C04B40/00 C08F10/00 C08F12/00 C08F14/00 C08F18/04 C08F18/08 C08F2/16 C08F2/20 C08F2/22 C08F20/18 C08F210/00 C08F214/06 C08F218/08 C08F36/04 C08F6/00 C08F6/14 C08F6/16 C08F6/24 C08G2/00 C08G64/00 C08J3/00 C08J3/02 C08J3/05 C08J3/12 C08L101/00 C08L29/04 C09D131/04 C09D157/00 C09J131/04 C09J157/00 C09J201/00

European class: C04B24/26K C04B40/00D4B C08F6/00B2 C08F6/00D C08J3/12A

US class: 524/460 524/502 524/503 524/513 524/514 524/803 524/820 524/823 524/825 525/57 526/202 526/209 526/210 526/303.1 526/317 528/500 528/502

Publication number Publication date Application number Application date

Locarno class: 52/85

Family:

	Fublication number	r ublication date	Application number	Application date	
	AT305481 E	20051015	AT20010128478T	20011206	
	BRPI0106055 A	20020806	BR2001PI06055	20011212	
	CN1252105 C	20060419	CN20011044324	20011214	
	CN1358778 A	20020717	CN20011044324	20011214	
	DE10062177 A1	20020704	DE20001062177	20001214	
	DE50107562 D1	20060209	DE20015007562	20011206	
	EP1215218 A1	20020619	EP20010128478	20011206	
	EP1215218 B1	20050928	EP20010128478	20011206	
	JP2002241427 A2	20020828	JP20010377734	20011211	
	US2002165341 AA	20021107	US20010046320	20011109	
	US6639049 BB	20031028	US20010046320	20011109	
Priority:	DE20001062177 20001	214 DE200	15007562 20011206		
Cited documents:	DE19629948, DE19741189, DE4118526, EP0693501, DE19526759, DE19745580, US4532295, DE19711741, EP0134451, DE19741185, US5767231, EP0505959, US6300403, DE19837856, EP1065225, DE19828183, EP0465964, EP0650977,				
Assignee(s): (std):	WACKER POLYMER SYSTEMS AND CO KG; WACKER POLYMERIZING SYSTEM AG; WACKER POLYMER SYSTEMS GMBH AND; WACKER POLYMER SYSTEMS GMBH; WACKER POLYMERIZING SYSTEM AND CO AG				
Assignee(s):	WACKER POLYMER SYSTEMS GMBH AND CO KG ; WACKER POLYMERIZING SYSTEM AG AND CO				
Inventor(s): (std):	WEITZEL HANS PETER DR; WEITZEL HANS PETER; WEICHER HANS PETER; HANS PETER WEICHER; WEITZEL DR				
Inventor(s):	HANS PETER WEITZEL				
Designated states:	AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR				

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-241427 (P2002-241427A)

(43)公開日 平成14年8月28日(2002.8.28)

(51) Int.Cl. ⁷	識別記号	F I デーマコート*(参考)
C08F 6/1	16	C 0 8 F 6/16 4 F 0 7 0
2/2		2/20 4 J 0 0 2
2/2		2/22 4 J 0 1 1
6/:		6/24 4 J 0 4 0
18/0		18/08 4 J 1 0 0
107		審査請求 有 請求項の数11 OL (全 10 頁) 最終頁に続く
(21)出願番号	特願2001-377734(P2001-377	734) (71) 出願人 300006412
() = 40,712		ワッカー ポリマー システムズ ゲゼル
(22)出願日	平成13年12月11日(2001.12.11)	シャフト ミット ペシュレンクテル ハ
		フツング ウント コンパニー コマンデ
(31)優先権主張都	持 10062177.5	ィトゲゼルシャフト
(32)優先日	平成12年12月14日(2000.12.14	ドイツ連邦共和国 ブルクハウゼン ヨハ
(33)優先権主張	国 ドイツ(DE)	ネスーヘスーシュトラーセ 24
		(72)発明者 ハンスーペーター ヴァイツェル
		ドイツ連邦共和国 ライシャッハ ゾンネ
		ンシュトラーセ 8
		(74)代理人 100061815
		弁理士 矢野 敏雄 (外4名)
		最終頁に続く

(54) 【発明の名称】 保護コロイドで安定化されたポリマーの製法、そのようにして得られたポリマー粉末と水性ポリ マー分散液並びにその使用

(57)【要約】

【課題】 揮発性成分の含有率が減じられ、水中に再分散可能な粉末又は水性分散液の形の、保護コロイドで安定化されたポリマーの経済的な製法。

【解決手段】 モノマー1種以上及び場合によりこれらと共重合可能な他のモノマーを乳化重合又は懸濁重合させ、得られたポリマー分散液を後重合及び/又は蒸留し、また、揮発性非水性成分の残分が<2000pmになるまで蒸気又は不活性ガスを導入し、引き続き、揮発性非水性成分の残分が<400pmになるまでポリマー分散液をスプレー乾燥させ、但しスプレー前の分散液の固体含有率は、<45質量%に調整し、スプレー乾燥は、入口温度が>120℃の空気を用いて実施し、かつ場合により、得られた粉末を水中に再分散させる。

【特許請求の範囲】

【請求項1】 揮発性成分の含有量が減じられた、水中 に再分散可能な粉末又は水性分散液の形の保護コロイド で安定化されたポリマーの製法であって、

- a) ビニルエステル、(メタ) アクリル酸エステル、ビニル芳香族化合物、オレフィン、1、3 ージエン及びハロゲン化ビニルを包含する群からのモノマー1種以上及び場合によりこれらと共重合可能な他のモノマーを乳化重合又は懸濁重合させ、
- b) そうして得られたポリマー分散液に、後重合及び/ 又は蒸留並びに蒸気又は不活性ガスの導通による後処理 を、揮発性非水性成分の残分が<2000ppmになる まで行い、引き続き、
- c)後処理されたポリマー分散液を、揮発性非水性成分の残分が<400ppmになるまでスプレー乾燥させ、その際、スプレー前の分散液は、固体含有率が<45質量%に調整されており、かつスプレー乾燥を、入口温度が>120℃の空気を用いて実施し、場合により
- d) そうして得られた粉末を水中に再分散させることによる、ポリマーの製法。

【請求項2】 酢酸ビニル、 $C-原子9\sim11$ 個を有する $\alpha-分枝モノカルボン酸のビニルエステル、塩化ビニル、エチレン、メチルアクリレート、メチルメタクリレート、エチルアクリレート、プロピルアクリレート、プロピルメタクリレート、カーブチルアクリレート、<math>n-$ ブチルペキシルアクリレート、スチレンの群からのモノマー1種以上を含有するモノマー又はモノマー混合物を重合させることを特徴とする、請求項1記載の方法。

【請求項3】 保護コロイドとして、加水分解度80~95モル%及びヘプラー粘度1~30mPasを有する部分けん化されたポリビニルアルコール又は加水分解度80~95モル%及びヘプラー粘度1~30mPasを有する部分けん化され、疎水性に変性されたポリビニルアルコールを使用することを特徴とする、請求項1又は2記載の方法。

【請求項4】 段階b)での後処理は、揮発性の非水性成分の残分が≤1000ppmになるまで実施することを特徴とする、請求項1から3までのいずれか1項記載の方法。

【請求項5】 段階b)での後処理のために、後重合を 実施し、場合により、引き続き不活性搬送ガスを導通又 は導入することを特徴とする、請求項1から4までのい ずれか1項記載の方法。

【請求項6】 段階c)で、スプレー乾燥を用いて、粉末中の揮発性成分の含有量を1~250ppmにまで減少させることを特徴とする、請求項1から5までのいずれか1項記載の方法。

【請求項7】 請求項1から6までのいずれか1項記載の方法により得られ、揮発性成分の含有量が1~250

ppmである、水中に再分散可能なポリマー粉末及び水性ポリマー分散液。

【請求項8】 場合により水硬性結合剤と組み合わせて、建築用接着剤、漆喰剤、パテ材料、床パテ材料、流展材料、シールスラリ、目塗りモルタル及び着色剤を製造するための建築化学的生成物への、請求項1から6までのいずれか1項記載の工程生成物の使用。

【請求項9】 被覆剤及び接着剤のための結合剤としての、請求項1から6までのいずれか1項記載の工程生成物の使用。

【請求項10】 織物、繊維、木材及び紙用の被覆剤及び結合剤としての、請求項1から6までのいずれか1項記載の工程生成物の使用。

【請求項11】 タイル接着剤及び完全熱絶縁接着剤中への、請求項8記載の使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、揮発性成分含有量 が減じられた、水中に再分散可能な粉末又は水性分散液 の形の保護コロイドで安定化されたポリマーを、製造す る方法に関する。

[0002]

【従来の技術】生物環境学的意識の高まりにより、市場 に、残留モノマー不含及び溶剤不含に対する要望が増加 している。これらの要求は、「VOC不含」としてまと めて名づけられている(VOC=揮発性有機化合物)。 VOC不含ポリマー分散液は、既に広範囲に普及するに 至っているが、このことは、再分散粉末については、ま だあてはまらない。固体化合物中の揮発性成分を除去す るのは、液体生成物よりも困難であり、また、再分散粉 末を水性調剤中に使用する際に、揮発性成分は、全ての 規則で拘束されていることが、その原因であるようだ。 残留酢酸ビニルは、例えば、再分散粉末の主使用分野で ある、セメント環境での使用では、けん化されて、直接 に酢酸カルシウム及びアセトアルデヒドになり、その 際、後者は、直ちにアルドール縮合を受ける。同様のこ とが、他のエステル、例えば、酢酸メチル又は酢酸エチ ル又はアセトンに起こる(アルドール縮合)。

【0003】しかしながら、つい最近の研究では、揮発性成分による著しい負荷が生じ得るにも拘らず、例えば、酢酸ビニルを基礎とする再分散粉末を流展材料又はセメント床へ使用する際に、アセトアルデヒドが遊離することが示されている。アセトアルデヒドは、粉末中にそれ自体として存在するか、又は粉末中に存在する残留酢酸ビニルからけん化により形成される。

【0004】公知技術水準から、ボリマーから揮発性成分を除去する一連の方法が公知である。その際、脱臭のための化学的方法と物理的方法は異なる。化学的方法は、残留モノマーを反応させて含分を減らす物質の添加により優れている。物理的方法は、蒸気又は不活性ガ

ス、例えば窒素を搬送物として用いる蒸留現象に主に基 づく。更に、両方法の組み合わせが記載されている。

【0005】DE-A19741185に、ポリマー分散液の残留モノマー含分を、カルボン酸と過酸化物化合物からなる特殊なレドックス系を用いて後重合させて、減少させることが記載されている。ポリビニルエステル分散液から残留モノマーを除去する他の化学的方法は、EP-B505959から公知である。その場合、ポリビニルエステル分散液に、弱アルカリ性pHでけん化処理を施し、引き続き酸化処理を施す。DE-A19741189では、残留モノマー除去のために、求核性試薬を、特別寸法の反応器に、一定の混合時間で配量する化学的方法が記載されている。

【0006】蒸気を導入して、ポリマー分散液から揮発性残留物質を物理的に除去することは、DE-A19745580から公知であり、また、不活性ガス、例えば空気又は窒素を用いるのは、DE-A411826から公知である。先ず、レドックス開始剤を用いて後重合させ、引き続き不活性ガス処理を実施する、揮発性成分を除去するための組み合わせ方法は、DE-A19828183から公知である。EP-A650977による方法では、残留モノマーは、先ず、後重合により、引き続いて蒸気掃気(Dampfstrippen)により除去される。EP-A465964には、エマルジョンポリマーから揮発性成分を除去する方法が記載されており、その場合には、先ず、これらをスプレー乾燥させ、引き続き、この粉末を不活性ガスで後処理する。

【0007】公知のように、残留モノマーを減じる化学的措置は、他の揮発性要素、例えばtert・ーブタノール及びアセトンを分散液中にもち込むことに寄与する。従って、これらの措置を残留モノマー値が極めて低くなるまで実施するのは無意味かつ不経済である。それというのも、同時に、他の揮発性要素の含有量を過剰な割合で増加させるからである。他方、物理的脱臭が分散液の損傷(斑点から凝集まで)をもたらし得るのは公知である。従って、高すぎる負荷により、最良の工程水準でも、生成物の損傷が見込まれるので、引き続く物理的脱臭は、無意味でもある。物理的脱臭の他の著しい欠点は、有機成分で汚染された著しい量(使用分散液に対して約10~20%)の凝結物であり、これは、組成に応じて費用をかけて廃棄されねばならない。

【0008】再分散粉末の製造時の、付加的な問題は、メタノール含有ポリビニルアルコールを微粒化保護コロイド(Verduesungsschutzkolloid)として使用することである。この保護コロイドは、分散液に、その化学的及び物理的脱臭後に初めて添加するので、メタノール含分が、そっくり装入されてしまう。

[0009]

【発明が解決しようとする課題】従って、本発明の課題 は、揮発性成分の含有率が減じられた、水中に再分散可 能な粉末又は水性分散液の形の、保護コロイドで安定化されたポリマーの経済的で、公知技術水準の欠点を回避する製法を提供することである。

[0010]

【課題を解決するための手段】本発明の対象は、揮発性成分の含有率が減じられた、水中に再分散可能な粉末又は水性分散液の形の保護コロイドで安定化されたポリマーの製法であって、これは、

- a) ビニルエステル、(メタ)アクリル酸エステル、ビニル芳香族化合物、オレフィン、1,3ージエン及びハロゲン化ビニルを包含する群からのモノマー1種以上及び場合によりこれらと共重合可能な他のモノマーを乳化重合又は懸濁重合させ、
- b) そうして得られたポリマー分散液に、後重合及び/ 又は蒸留並びに蒸気又は不活性ガスの導入による後処理 を、揮発性、非水性成分の残分が<2000ppmにな るまで行い、引き続き、
- c) 揮発性非水性成分の残分が<400ppmになるまで、後処理されたポリマー分散液をスプレー乾燥させ、その際、スプレー前の分散液は、固体含有率が<45質量%に調整されており、かつスプレー乾燥は、入口温度が>120℃の空気を用いて実施し、場合により
- d) そうして得られた粉末を水中に再分散させることよりなる。

【〇〇11】揮発性成分(VOC)は、非水性化合物、例えば残留モノマー、モノマー及び開始剤の分解生成物、重合補助剤中の不純物と理解される。例えば、残留モノマー、例えば酢酸ビニル、アルキル(メタ)アクリレート及びスチレン;分解生成物又は不純物、例えばアセトアルデヒド、メタノール、エタノール、tert.一ブタノール、アセトン、酢酸メチルエステル及び酢酸エチルエステルである。

【0012】好適なビニルエステルは、 $C-原子1\sim12$ 個を有するカルボン酸のビニルエステルである。酢酸ビニル、ビニルプロピオネート、ビニルブチレート、ビニルー2-エチルへキサノエート、ビニルラウレート、1-メチルビニルアセテート、ビニルピバレート及びC-原子 $9\sim11$ 個の α -分枝モノカルボン酸のビニルエステル、例えばVeoVa9又はVeoVa10(両方ともFirma Shellの登録商標名)が有利である。特に有利なのは、酢酸ビニルである。

【0013】アクリル酸エステル又はメタクリル酸エステルの群からの好適なモノマーは、C-原子1~15個を有する非分枝又は分枝のアルコールのエステルである。有利なメタクリル酸エステル又はアクリル酸エステルは、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、ローブチルアクリレート、ローブチルメタクリレート、セーブチルアクリレート、tーブチルメタクリレート、2-エチルへキ

シルアクリレートである。メチルアクリレート、メチル メタクリレート、nーブチルアクリレート、tーブチル アクリレート及び2-エチルヘキシルアクリレートが特 に有利である。

【0014】ビニル芳香族化合物としては、スチレン、メチルスチレン及びビニルトルエンが有利である。有利なハロゲン化ビニルは、塩化ビニルである。有利なオレフィンは、エチレン、プロピレンであり、有利なジエンは、1、3-ブタジエン及びイソプレンである。

【0015】場合により、モノマー混合物の全質量に対 して、0.1~5質量%の補助モノマーを更に共重合さ せてもよい。有利には、0.5~2.5質量%の補助モ ノマーを使用する。補助モノマーの例は、エチレン性不 飽和モノカルボン酸及びジカルボン酸、有利にアクリル 酸、メタクリル酸、フマル酸及びマレイン酸;エチレン 性不飽和カルボン酸アミド及びエチレン性不飽和カルボ ン酸ニトリル、有利にアクリルアミド及びアクリルニト リル:フマル酸及びマレイン酸のモノー及びジエステ ル、例えばジエチルー及びジイソプロピルエステル並び に無水マレイン酸、エチレン性不飽和スルホン酸もしく はその塩、有利にはビニルスルホン酸、2-アクリルア ミドー2-メチループロパンスルホン酸である。他の例 は、予架橋性コモノマー、例えば多重エチレン性不飽和 コモノマー、例えばジビニルアジペート、ジアリルマレ エート、アリルメタクリレート又はトリアリルシアヌレ ートであり、又は後架橋性コモノマー、例えばアクリル アミドグリコール酸(AGA)、メチルアクリルアミド グリコール酸メチルエステル (MAGME)、N-メチ ロールアクリルアミド (NMA)、N-メチロールメタ クリルアミド、Nーメチロールアリルカルバメート、ア ルキルエーテル、例えばイソブトキシエーテル、又はN -メチロールアクリルアミド、N-メチロールメタクリ ルアミド及びN-メチロールアリルカルバメートのエス テルである。エポキシド官能性コモノマー、例えばグリ シジルメタクリレート及びグリシジルアクリレートも好 適である。他の例は、珪素官能性コモノマー、例えばア クリルオキシプロピルトリ(アルコキシ)-及びメタク リルオキシプロピルトリ (アルコキシ) -シラン、ビニ ルトリアルコキシシラン及びビニルメチルジアルコキシ シランであり、その際、アルコキシ基として、例えばエ トキシー及びエトキシプロピレングリコールエーテルー 基を含有してよい。ヒドロキシー又はCO-基を有する モノマー、例えばメタクリル酸-及びアクリル酸ヒドロ キシアルキルエステル、例えばヒドロキシエチルー、ヒ ドロキシプロピルー又はヒドロキシブチルアクリレート 又は一メタクリレート並びにジアセトンアクリルアミド 及びアセチルアセトキシエチルアクリレート又は一メタ クリレートのような化合物も挙げられる。

【0016】酢酸ビニル、C-原子9~11個を有する α-分枝モノカルボン酸のビニルエステル、塩化ビニ ル、エチレン、メチルアクリレート、メチルメタクリレ ート、エチルアクリレート、エチルメタクリレート、プ ロピルアクリレート、プロピルメタクリレート、nーブ チルアクリレート、n-ブチルメタクリレート、2-エ チルヘキシルアクリレート、スチレンの群からのモノマ -1種以上を含有するモノマー又はモノマー混合物が、 特に有利である。 酢酸ビニルとエチレンとの混合物; 酢 酸ビニルと、エチレンと、C-原子9~11個を有する α-分枝モノカルボン酸のビニルエステルとの混合物; n-ブチルアクリレートと、2-エチルヘキシルアクリ レート及び/又はメチルメタクリレートとの混合物;ス チレンと、群:メチルアクリレート、エチルアクリレー ト、プロピルアクリレート、nーブチルアクリレート、 2-エチルヘキシルアクリレートからのモノマー1種以 上との混合物;酢酸ビニルと、群:メチルアクリレー ト、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート からのモノマー1種以上と、場合によりエチレンとの混 合物;1,3-ブタジエンと、スチレン及び/又はメチ ルメタクリレートと、場合により他のアクリル酸エステ ルとの混合物が、最も好ましく、その場合、前記混合物 は、場合により更に前記補助モノマーの1種以上を含有 しても良い。

【0017】その場合、モノマーの選択もしくはコモノ マーの質量の割合の選択は、一般に、ガラス転移温度T gが-50℃~+50℃、有利に-30℃~+40℃に なるように行う。ポリマーのガラス転移温度Tgは、公 知の方法で、示差走査熱量測定(DSC)を用いてもと めることができる。Tgは、Fox等式により、近似的 に予測することもできる。Fox T.G., Bul 1. Am. Physics Soc. <u>1</u>, 3, 123頁 (1956)により、以下の式が適用される:1/Tg $= x_1 / T g_1 + x_2 / T g_2 + \dots + x_n / T g$ $_{n}$ [式中、 x_{n} は、モノマーnの質量分数(Massebruc h:質量%/100)を表し、Tgnは、モノマーnのホ モポリマーのガラス転移温度 (ケルビン)である]。ホ モポリマーに関するTg値は、Polymer Han dbook、第2版、J. Wiley&Sons, Ne w York (1975) に記載されている。

【0018】ポリマーの製造は、乳化重合法又は懸濁重合法、有利には乳化重合法により、公知の方法で行い、その際、重合温度は、一般に40℃~100℃、有利に60℃~90℃である。気体コモノマー、例えばエチレン、1,3-ブタジエン又は塩化ビニルとの共重合は、圧力下、一般に5bar~100barで、実施してもよい。

【0019】重合の開始は、乳化重合又は懸濁重合に慣用である水溶性もしくはモノマー可溶性の開始剤又はレドックス開始剤-組み合わせ物を用いて行う。水溶性開始剤の例は、ペルオキソ二硫酸のナトリウム塩、カリウ

ム塩及びアンモニウム塩、過酸化水素、t-ブチルペル オキシド、セーブチルヒドロペルオキシド、ペルオキソ ニリン酸カリウム、t-ブチルペルオキソピバレート、 クメンヒドロペルオキシド、イソプロピルベンゾールモ ノヒドロペルオキシド及びアゾビスイソブチロニトリル である。モノマー可溶性開始剤の例は、ジセチルペルオ キシジカルボネート、ジシクロヘキシルペルオキシジカ ルボネート、ジベンゾイルペルオキシドである。前記開 始剤は、一般に、モノマーの全質量に対して、〇.〇1 ~0.5質量%の量で使用する。レドックス開始剤とし て、前記開始剤と還元剤とを組み合わせた組み合わせ物 を使用する。好適な還元剤は、アルカリ金属及びアンモ ニウムの亜硫酸塩及び重亜硫酸塩、例えば亜硫酸ナトリ ウム、スルホキシル酸の誘導体、例えば亜鉛-又はアル カリホルムアルデヒドスルホキシレート、例えばヒドロ キシメタンスルフィン酸ナトリウム及びアスコルビン酸 である。還元剤量は、モノマーの全質量に対して、有利 に0.01~0.5質量%である。

【0020】分子量の制御のために、重合の間に、調整 物質を挿入することができる。調整剤を使用する場合 は、これらは、通常、重合すべきモノマーに対して、 0.01~5.0質量%の量で使用し、反応成分と別々 に又はこれと予混合して配量する。そのような物質の例 は、nードデシルメルカプタン、tertードデシルメ ルカプタン、メルカプトプロピオン酸、メルカプトプロ ピオン酸メチルエステル、イソプロパノール及びアセト アルデヒドである。有利には、調整物質を使用しない。 【0021】好適な保護コロイドは、部分けん化された ポリビニルアルコール; ポリビニルピロリドン; ポリビ ニルアセタール;水溶液の形の多糖類、例えば澱粉(ア ミロース及びアミロペクチン)、セルロース及びそのカ ルボキシメチルー、メチルー、ヒドロキシエチルー、ヒ ドロキシプロピルー誘導体;プロテイン、例えばカゼイ ン又はカゼイネート、大豆プロテイン、ゼラチン;リグ ニンスルホネート;合成ポリマー、例えばポリ(メタ) アクリル酸、(メタ)アクリレートとカルボキシル官能 性コモノマー単位とのコポリマー、ポリ(メタ)アクリ ルアミド、ポリビニルスルホン酸及びその水溶性コポリ マー:メラミンホルムアルデヒドスルホネート、ナフタ リンホルムアルデヒドスルホネート、スチレンマレイン 酸-及びビニルエーテルマレイン酸-コポリマーであ る。

【0022】部分けん化された又は完全けん化されたポリビニルアルコールが有利である。特に有利なのは、加水分解度80~95モル%、及び4%水溶液中のヘプラー粘度1~30mPas(20℃でのヘプラー(Hoeppler)による方法、DIN53015)を有する部分けん化されたポリビニルアルコールである。加水分解度80~95モル%、及び4%水溶液中のヘプラー粘度1~30mPasを有する部分けん化され、疎水性に変性され

たポリビニルアルコールも好適である。このための例は、酢酸ビニルと、疎水性コモノマー、例えばイソプロペニルアセテート、ビニルピバレート、ビニルエチルへキサノエート、C-原子5又は9~11個を有する飽和 α -分枝モノカルボン酸のビニルエステル、ジアルキルマレイネート及びジアルキルフマレート、例えばジイソプロピルマレイネート及びジイソプロピルフマレート、塩化ビニル、ビニルアルキルエーテル、例えばビニルブチルエーテル、オレフィン、例えばエーテン及びデセンとの部分けん化されたコポリマーである。疎水性単位の割合は、部分けん化されたポリビニルアルコールの全質量に対して、有利に、0.1~10質量%である。前記ポリビニルアルコールの混合物も使用することができる。

【0023】他の好適なポリビニルアルコールは、部分けん化され、疎水性にされたポリビニルアルコールであり、これは、重合類似の変換、例えば、 $C_1 - C_4 - C_4 - C_4$ でルデヒド、例えばブチルアルデヒドを用いるビニルアルコール単位のアセタール化により得られる。疎水性単位の割合は、部分けん化されたポリビニルアセテートの全質量に対して、有利に0.1 - 10質量%である。加水分解度は、80 - 95 モル%、有利に85 - 94 モル%であり、0.1 - 10 の 0.1 の 0.1

【0024】加水分解度85~94モル%、及び4%水 溶液中のヘプラー粘度3~15mPas (20℃でのヘ プラーによる方法、DIN53015)を有するポリビ ニルアルコールが、最も有利である。前記保護コロイド は、当業者に公知の方法を用いて得られる。

【0025】本発明による方法では、乳化剤を添加せず に重合させるのが有利である。例外的には、更に補足的 に少量の乳化剤を、場合により、モノマー量に対して、 1~5質量%で使用するのが有利であることもある。好 適な乳化剤は、アニオン性、カチオン性乳化剤並びに非 イオン性乳化剤である。例えば、アニオン性界面活性 剤、例えばC-原子8~18個の鎖長のアルキルスルフ ェート、疎水基にC-原子8~18個を有し、また、4 〇個までのエチレンー又はプロピレンオキシド単位を有 するアルキルー又はアルキルアリールエーテルスルフェ ト、C-原子8~18個のアルキル-又はアルキルア リールスルホネート、スルホ琥珀酸と1価アルコール又 はアルキルフェノールとのエステル及び半エステルであ り、又は非イオン性界面活性剤、例えばエチレンオキシ ド単位8~40個を有するアルキルポリグリコールエー テル又はアルキルアリールポリグリコールエーテルであ る。

【0026】保護コロイドは、一般に、モノマーの全質量に対して、合計1~20質量%の量で重合時に添加される。保護コロイド分は、全てを装入してもよいし、部

分的に装入し、かつ部分的に供給することができる。有利には、保護コロイドの少なくとも5質量%を装入し、特に有利には保護コロイド分を完全に装入する。

【0027】モノマーは、全部装入する、全部供給する、又は一部を装入し、残分を重合開始後に供給することもできる。モノマーの全質量に対して50~100質量%を装入し、残分を供給する様に行うのが有利である。配量は、別々に(空間的及び時間的)実施できるか又は配量すべき成分を全部又は部分的に予乳化させて配量することができる。

【0028】保護コロイドとしてのポリビニルアルコー ルで安定化されたポリマーを基礎とする、VOCの乏し い再分散粉末を製造する際に、使用ポリビニルアルコー ルのメタノール含有量が大きな意味を持つ。ポリビニル アルコールは、製造条件により、著しい量のメタノール を含有する。ポリビニルアルコールのメタノール分は、 一方で、ポリビニルアルコールが、その中で、重合時に 保護コロイドとして働く、分散液を介してもたらされ、 他方で、ポリビニルアルコールは、微粒化保護コロイド として、微粒化の前に初めて添加され、この立場で、メ タノールを系にもたらす。メタノールは、不活性物質と して、物理的方法、例えば蒸留によってのみ、分離する ことができる。このことは、重合バッチもしくは完成分 散液に微粒化の前に添加されるポリビニルアルコール溶 液を製造する際に、直接に実施するのが、有利である。 大工業的に製造された商品は、約3質量%のメタノール を有したまま販売される。本発明の枠内では、メタノー ル残分が、有利には<2質量%、特に有利には<1質量 %であるポリビニルアルコールを使用する。

【0029】ポリビニルアルコール溶液の製造時に選択的に分離するために、メタノールを、分散液の水蒸気蒸留によっても分離できるのは、当然のことである。もっとも、一連の工程の正確な場所で蒸留を行う、即ち、理想的には、微粒化保護コロイドとして使用されるボリビニルアルコールが既に添加されている時に初めて行うことに注意すべきである。このことは、実際には、確かに、大抵は実現不可能である。それというのも、物理的脱臭は、他の装置でスプレー乾燥として行われるからで、そのため、溶解段階の際のメタノール分離が優先される。他の変法として、スプレー乾燥の前にカラムを介する連続的蒸留を行うことを考慮できるが、このことは、付加的な著しい工程技術的出費を必要とする。

【0030】重合終了後、得られた分散液中の揮発性、非水性成分の割合は、≦2000ppm、有利に≦1000ppm、最も有利に≦500ppmまで減じられる。このことは、後重合を用いて、蒸留、不活性ガス、例えば蒸気の導通又は導入により、又はこれらの措置の組み合わせにより行うことができる。

【0031】後重合のために、レドックス開始剤系、例 えば前記酸化剤及び還元剤を有する系が使用される。一 【0032】揮発性成分は、蒸留により、有利には減圧下で、又は不活性搬送ガス、例えば空気、窒素又は水蒸気の導通(Durchleiten)又は導入(Ueberleiten)によっても除去することができる。水蒸気を用いる後処理の際に、分散液に対して、5~10質量%未満の凝縮物を運び込まないように行うのが有利である。一般に、後処理を、50~80℃で、200~500mPasの真空下に、3時間までの間にわたり実施する。特に有利には、揮発性成分を除去する第1段階で、後重合を不活性ガス処理と組み合わせる。

【0033】水に再分散可能なポリマー粉末の製造のために、水分散液は、保護コロイドを微粒化補助剤として添加後に、スプレー乾燥させる。分散液の固体分は、スプレー乾燥前に、45質量%以下、有利に30~40質量%の値に調整する。その場合、スプレー乾燥は、慣用のスプレー乾燥装置で行い、噴霧は、1成分、2成分又は多成分ノズル(Mehrstoffduesen)又は回転板を用いて行うことができる。ガス流の入口温度が>120℃であるのが主要である。スプレー乾燥により、非水性揮発性成分の粉末中の含有量は、<400ppm、有利に1~250ppm、特に1~50ppmの値まで減じられる。

【0034】一般に、微粒化補助剤は、分散液のポリマー成分に対して、少なくとも3~30質量%の総質量で使用する。即ち、乾燥工程の前の保護コロイドの総質量は、ポリマー成分に対して、3~30質量%である。有利には、ポリマー成分に対して、5~20質量%で使用する。

【0035】好適な微粒化補助剤は、部分けん化されたポリビニルアルコール;ポリビニルピロリドン;水溶液の形の多糖類、例えば澱粉(アミロース及びアミロペクチン)、セルロース及びそのカルボキシメチルー、メチルー、ヒドロキシエチルー、ヒドロキシプロピルー誘導体;プロテイン、例えばカゼイン又はカゼイネート、大豆プロテイン、ゼラチン;リグニンスルホネート;合成ポリマー、例えばポリ(メタ)アクリル酸、(メタ)アクリレートとカルボキシル官能性コモノマー単位とのコポリマー、ポリ(メタ)アクリルアミド、ポリビニルスルホン酸及びその水溶性コポリマー;メラミンホルムア

ルデヒドスルホネート、ナフタリンホルムアルデヒドス ルホネート、スチレンマレイン酸-及びビニルエーテル マレイン酸-コポリマーである。

【0036】加水分解度80~95モル%、及び4%水溶液中のヘプラー粘度1~30mPas (20℃でのヘプラーによる方法、DIN53015)を有するポリビニルアルコールが好ましい。微粒化補助として、ポリビニルアルコールのほかに他の保護コロイドを使用しないのが、特に有利である。

【0037】微粒化に際しては、ベースポリマーに対して、1.5質量%までの消泡剤の含有が、極めて好都合であると判明している。ブロッキング安定性(Verblock ungsstabilitaet)の改良により貯蔵性を高めるために、特に低ガラス転移温度を有する粉末の場合は、得られた粉末に、ポリマー成分の全質量に対して有利に30質量%までの粘着防止剤(Antiblockmittel)(抗粘結剤(Antibackmittel))を装備させることができる。粘着防止剤の例は、好ましくは $10nm\sim10\mu$ mの範囲の粒径のCa-又はMg-カーボネート、タルク、石膏、珪酸、カオリン、珪酸塩である。

【0038】適用技術特性の改良のために、微粒化の際に、他の添加物を添加することができる。有利な実施形では含有される、分散粉末組成物の他の成分は、例えば顔料、充填剤、気泡安定剤、疎水性化剤である。

【0039】揮発性非水性成分の含分が減じられた水性ポリマー分散液は、スプレー乾燥させた粉末を、水中に再分散させることにより得られる。その場合、通常、固体含分は50~60質量%に調整する。50%再分散液の製造の際に、揮発性成分の割合は、粉末に比して、ppmでもう1度半分にまで減少する。

【0040】水性ポリマー分散液及び水中に再分散可能な、保護コロイドで安定にされたポリマー粉末は、これに典型的な用途範囲で使用することができる。例として、建築上化学生成物において、場合により水硬性結合剤、例えばセメント(ポルトランドー、アルミン酸塩ー、トラスー、スラグー、マグネシアー、ホスフェート

酢酸ビニル アセトアルデヒド メタノール tert.ーブタノール アセトン 酢酸メチル 酢酸エチル

例3

例1からの分散液は、残留VOC-含有量が1000ppm(酢酸ビニル<400ppm)になるまで、分散液に対して、1時間当たり2質量%の蒸気で、3時間掃気

酢酸ビニル アセトアルデヒド メタノール セメント)、石膏、水ガラスと組み合わせて、建築用接着剤、特にタイル接着剤及び完全熱絶縁接着剤、漆喰剤、パテ材料、床パテ材料、流展材料、シールスラリ、目塗りモルタル及び着色剤の製造に使用される。更に、被覆剤及び接着剤用の結合剤として、又は織物、繊維、木材及び紙用の被覆剤及び結合剤として使用される。 【0041】以下の実施例により本発明を詳説する。 【0042】

【実施例】例1(分散液及び粉末の製造のための一般的 処方)

酢酸ビニルーエチレンーコポリマーの水性分散液は、酢酸ビニル100質量部、及びエチレン12質量部を乳化重合させて製造した。重合は、酢酸ビニルに対して、10質量%の、加水分解度88モル%、ヘプラーの粘度4mPas及びメタノール含有率約2質量%のポリビニルアルコールの存在下で実施した。VOCー含有量6000ppm(その内5000ppmが酢酸ビニルである)の分散液が得られた。分散液に、加水分解度88モル%、ヘプラーの粘度4mPasのポリビニルアルコール5質量%(固体/固体)を添加し、水で希釈した。次いで、分散液を、2成分ノズルを用いてスプレーした。噴霧要素として、4バールまで予圧縮した空気を使用した。得られた乾燥粉末に、市販の粘着防止剤(カルシウムーマグネシウムーカーボネート及び珪酸水素マグネシウムからなる混合物)10質量%を添加した。

【0043】比較例2

例1からの分散液を、全モノマーに対して、それぞれ、 〇.1質量%のtーブチルヒドロペルオキシド(TBHP)及びO.1質量%の亜硫酸ナトリウムと、VOCー 含有量が1600ppm(その内1000ppmが酢酸 ビニルである)になるまで、温度45℃で1時間、後重 合させた。微粒化の前に、原料中の固体含有量を、45%に調整した。引き続いて、空気の入口温度117℃ で、スプレー乾燥させることにより、粉末中に以下の残 留VOCー値が達成された:

480ppm

32ppm

16ppm

62ppm

20ppm

34ppm

54ppm 合計:698ppm

した。分散液の固体含有率を40%に調整し、引き続き 入口温度125℃の空気を用いて微粒化することで異なって、例1と同様に、微粒化を実施した。粉末中に以下 の残留VOC-値が達成された:

82ppm

2ppm

10ppm

4		1000	
	rt. ーブタノール	10ppm	
アセ		10ppm	
	メチル	10ppm	合計:134ppm
	エチル	10ppm か 雅教VOC会	右副・134ppm 有量は、約200ppmであった(V
例4			·m)。例3と同様にして微粒化した。
	列2と同様にして、残留酢酸ビ		逐を40%に調整し、空気の入口温度1
ニルレベルが<1000ppmになるまで、TBHP及			一・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	重合させ、引き続き、例3と同の歴史の表表で3時間提供し	達成された:	和殊でもた。以下の成品でももに
	2質量%の蒸気で3時間掃気し	12ppm	
	ビニル		
	トアルデヒド	2 p p m	
	ノール	10ppm	
	rt. ーブタノール	10ppm	
	トン	10ppm	
	メチル	16ppm	合計:70ppm
	エチル	10ppm n 2所具のの芸/	『で5時間掃気した。50%分散液の以
比較例5) 本フ 同様に マー 1 Itt IEI V た	リン質量%の無X 下の残留VOC値	
	とのみ同様にして、1時間当た		国が刊みられいて :
	ドビニル	9 p p m	
	トアルデヒド	1 p p m	
	ノール	9 p p m	
	r t. ーブタノール	5 p p m	
	トン	5 p p m	
	ミメチル	5 p p m	Λ÷[2.0 m m
昨酸	ミエチル	5ppm	合計:39ppm
70μmの篩で沪過する際の篩残分は、289ppm		1 21 15/10/	へんしゅんけんてきが TPUP及び面
) O p p m になるまで、TBHP及び亜 - ※垂へさせ、引き結ぎ、1時間当たり
(掃気前)から427p」		硫酸ナトリウムと	と後重合させ、引き続き、1時間当たり
(掃気前) から427p1 【0044】比較例6	pmまで増加した。	硫酸ナトリウムと 2質量%の蒸気で	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pl 【0044】比較例6 例1からの分散液を例4	pmまで増加した。 と同様にして、残留酢酸ビニル	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427p1 【0044】比較例6 例1からの分散液を例4る 酢酸	p mまで増加した。 と同様にして、残留酢酸ビニル &ビニル	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4 酢酸 アセ	p mまで増加した。 と同様にして、残留酢酸ビニル &ビニル :トアルデヒド	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセ メタ	pmまで増加した。 と同様にして、残留酢酸ビニル gビニル トアルデヒド ソノール	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセ メタ te	pmまで増加した。 と同様にして、残留酢酸ビニル gビニル トアルデヒド ソノール ェ r t . ーブタノール	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセ メタ te アセ	pmまで増加した。 と同様にして、残留酢酸ビニル まビニル ・トアルデヒド ・ノール ・ r t . ーブタノール ・ トン	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm	と後重合させ、引き続き、1時間当たり で4時間掃気した。50%分散液は、以
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4 酢酸 アセ メタ te アセ	pmまで増加した。 と同様にして、残留酢酸ビニル &ビニル : トアルデヒド ソノール : rt. ーブタノール : トン はメチル	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm	と後重合させ、引き続き、1 時間当たり で4 時間掃気した。50%分散液は、以 した:
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4を 酢酸 アセ メタ te アセ で 酢酸	pmまで増加した。 と同様にして、残留酢酸ビニル gビニル cトアルデヒド ソノール crt. ーブタノール cトン gメチル gエチル	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4を 酢酸 アセ メタ te アセ 酢酸 酢酸	pmまで増加した。 と同様にして、残留酢酸ビニル ミドアルデヒド ソール ニトン とメチル 愛エチル 際の篩残分は、133ppm	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以 した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセメタ te アセ 酢酸 酢酸 1000 1000 1000 1000 1000 1000 100	pmまで増加した。 と同様にして、残留酢酸ビニル ミドアルデヒド ソール ニトン とメチル 愛エチル 際の篩残分は、133ppm	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4で 酢酸 アセメタ もe アセ 酢酸 酢酸 70μmの篩で沪過する (掃気前)から232p 【0045】比較例7	pmまで増加した。 と同様にして、残留酢酸ビニル ミビニル ・トアルデヒド ・ノール ・ r t . ーブタノール ・ トン ・ と メチル ・ g エチル 際の篩残分は、133ppm ・ pmまで増加した。	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5p	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4 酢酸 アセメタ te アを を で が で に で に で に で に で に の の の の の の の の の の	pmまで増加した。 と同様にして、残留酢酸ビニル はビニル ・トアルデヒド ・ノール ・ r t . ーブタノール ・ k ン はメチル とスチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6p	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセメタ te アンメタ でがある (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(Pmまで増加した。 と同様にして、残留酢酸ビニル をビニル とトアルデヒド ソール ・rt. ーブタノール さトン はメチル とエチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6p	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4。 酢酸 アセメタ セe アを でを が でに (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(酢酸	pmまで増加した。 と同様にして、残留酢酸ビニル ミドアルデヒド ソノール ミャt・ーブタノール はトン はメチル 酸エチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな まだにより	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6ppm 4を表現の固体で た。例1とせた。 された: 900ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4る 酢酸 アセメタ も e アを酸 酢酸 70μmの篩で沪過する (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(酢酸	と同様にして、残留酢酸ビニル きビニル とトアルデヒド ソノール に r t . ーブタノール は x チル と x チル と x チル と m まで増加した。 と 同様にして、残留VOC含有 VAc約4000ppm)にな まビニル こトアルデヒド	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6は、例1と同様に た。例1とせた。 された: 900ppm 28ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4る 酢酸 アセメタ も e アセ酸 酢酸 (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(酢酸 アセッション	pmまで増加した。 と同様にして、残留酢酸ビニル ミトアルデヒド ソノール ミトン ウンール ミトン ウンール ミトン ウンール といる から は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm) にな まビニル ミトアルデヒド タノール	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm な。、例1と対した。 さ、やした: 900ppm 28ppm 20ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4を 酢酸 アメセー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	pmまで増加した。 と同様にして、残留酢酸ビニル ミドアルデヒド ソノール ニドン・ステルル 選メチル 選エチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな ダビニル ニトアルデヒド タノール ニャナ・ブタノール	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6ppm 4c。例1とせた。 2nppm 28ppm 22ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例46 酢酸 アメタ セーンが でアンタ でアンタ (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(酢酸 アンタ	pmまで増加した。 と同様にして、残留酢酸ビニル をビニル とトアルデヒド ソノール ・ r t . ーブタノール とメチル 酸エチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな 変ピニル ニトアルデヒド タノール ニャン・	硫酸ナトリウムと 2質量%の蒸気で 下のを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6c。例1とさせた。 20ppm 28ppm 20ppm 20ppm 10ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4名 酢酸 アメタセン センター センター サールのののでにでいる。 (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm(酢酸 アンター でにいる。 でにいる。 でにいる。 では、 では、 では、 では、 では、 では、 では、 では、 では、 では、	pmまで増加した。 と同様にして、残留酢酸ビニル をドアルデヒド ノール ・ドンール ・ドン・ はメチル ととスチル との節残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな などニル ことアルデヒド タノール ・ドンノール ・ドンノール ・ドラノール	硫酸ナトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6ppm 2mpm 2mpm 2mpm 2mpm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ、粉末中に、以下の残留VOC値が達成
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4名 酢酸 アメセタ セア酢酸 70μmの篩で沪過する (掃気前)から232p 【0045】比較例7 例1からの分散液を例4 量が約5000ppm((酢でメタセンでである。) でいるの分散ででいる。 でいるの分散ででである。 でいるの分散ででである。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散である。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散である。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散ででいる。 でいるの分散でいる。 でいるの分散ででいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるの分散でいる。 でいるのかでいる。 でいるのかでいる。 でいるの分散でいる。 でいるのかでいる。 でいるの分散でいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのかでいる。 でいるのでいる。 でいるでいる。 でいるのでいる。 でいるでいる。 でいるでいる。 でいるで、 でいる。 でいるで、 でいる。 でいるでいる。 でいる。 でいる。 でいる。 でいる。 でいる。 で	pmまで増加した。 と同様にして、残留酢酸ビニル をビニル とトアルデヒド ソノール ・ r t . ーブタノール とメチル 酸エチル 際の篩残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな 変ピニル ニトアルデヒド タノール ニャン・	硫酸サトリウムと 2質量%の蒸気で 下のものを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6c, 例1とさ さんした: 900ppm 28ppm 20ppm 20ppm 20ppm 10ppm 16ppm 30ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ。粉末中に、以下の残留VOC値が達成合計:1026ppm
(掃気前)から427pg 【0044】比較例6 例1からの分散液を例4を でアメセット でアメロットをでによる。 では、10045】比較でででででででででででででいる。 では、10045】比較でででででででででででででいる。 でででででででいる。 でででででできます。 ででででできます。 ででででできます。 でででできます。 でででできます。 できます。 でき。 でき。 でき。 でき。 でき。 でき。 でき。 でき。 と。 でき。 と。 でき。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。	pmまで増加した。 と同様にして、残留酢酸ビニル をドアルデヒド ノール ・ドンール ・ドン・ はメチル ととスチル との節残分は、133ppm pmまで増加した。 と同様にして、残留VOC含有 VAc約4000ppm)にな などニル ことアルデヒド タノール ・ドンノール ・ドンノール ・ドラノール	硫酸サトリウムと 2質量%の蒸気で 下のを含有し 19ppm 1ppm 37ppm 5ppm 5ppm 5ppm 5ppm 5ppm 5ppm 6k レーれた。 900ppm 28ppm 20ppm 20ppm 10ppm 16ppm 16ppm 30ppm 30ppm	と後重合させ、引き続き、1時間当たりで4時間掃気した。50%分散液は、以した: 合計:77ppm P及び亜硫酸ナトリウムと後重合させ含有率を40質量%に調整し、引き続にして、空気入口温度125℃で、スプ、粉末中に、以下の残留VOC値が達成

VOC値が達成された:

留VOC値が達成された:

の固体含有率を45質量%に調整した。引き続き、空気 入口温度126℃で、スプレー乾燥させて、以下の残留

340ppm 酢酸ビニル

24ppmアセトアルデヒド 10ppmメタノール 56ppm tert. -ブタノール 18ppm アセトン

酢酸メチル 24ppm合計:514ppm 42ppm酢酸エチル 前に約40質量%に調整した。引き続き、空気の入口温

例9

例1からの分散液を例4と同様にして、残留VOCレベ ルが約1000ppmになるまで、TBHP及び亜硫酸 ナトリウムと後重合させた。原料の固体含有率を微粒化

60ppm 酢酸ビニル アセトアルデヒド 2ppm メタノール 14ppm110ppm tert. -ブタノール 22ppm アセトン 20ppm酢酸メチル

合計: 250ppm 22ppm酢酸エチル た。原料の固体含有率を、微粒化前に、45質量%に調

比較例10

例1からの分散液を例4と同様にして、残留VOCレベ ルが約1600ppm (VAc約1000ppm) にな るまで、TBHP及び亜硫酸ナトリウムと後重合させ

値が達成された:

360ppm 酢酸ビニル アセトアルデヒド 26ppm メタノール tert. -ブタノール アセトン 酢酸メチル 酢酸エチル

比較例11

例1からの分散液を例4と同様にして、残留VOCレベ ルが約1600ppm (VAc<1000ppm) にな るまで、TBHP及び亜硫酸ナトリウムと後重合させ

> 酢酸ビニル アセトアルデヒド メタノール tert. ーブタノール アセトン 酢酸メチル 酢酸エチル

例3と比較例5との工程法の比較、又は例4と比較例6 との工程法の比較から、本発明の工程法により、おだや かなやり方で、VOCの有効な分離は可能であるが、蒸 気掃気及び/又は後重合による除去だけでは、分散液を 凝固物形成により損なうことが判明した。

【0046】比較例2と比較例11及び例9との比較か ら、VOC分離の有効性に、スプレー乾燥の限界条件が

10ppm54ppm

18ppm 24ppm

合計:536ppm 44ppm

た。原料の固体含有率を、微粒化前に、約40質量%に 調整した。引き続き、空気の入口温度103℃で、スプ レー乾燥させて、粉末中に以下の残留VOC値が達成さ れた:

度125℃で、スプレー乾燥させて、粉末中に以下の残

整した。引き続き、空気の入口温度135℃で、スプレ

-乾燥させて、粉末中に以下の残留VOC

240ppm

18ppm

18ppm

44ppm

12ppm

14ppm

合計: 374ppm 28ppm

決定的な意味を有することが見て取れる。比較例2で は、原料中の固体含有量は高すぎ、空気入口温度は低す ぎるが、他方、比較例11では、原料の固体含有量は正 しく選択されているが、入口温度は低すぎる。例9で は、本発明による条件下で、VOC除去が、著しく効果 的に進行する。

【0047】比較例7は、例9と比較して、スプレー乾

燥前にV○C除去の効果がない場合、本発明によるスプレー乾燥の構成だけでは、V○C除去が、あまり効果的ではないことを示す。

【0048】比較例8では、比較例2と比べて、スプレ

一乾燥の際に、より高温の入口温度を用いてより良い結果が得られるが、原料の固体含有量が高すぎる場合は、 精製効果はまだ不充分なままであることが示される。

フロントページの続き		
(51) Int. Cl. 7	FI	テーマコード(参考)
C O 8 J 3/02	C O 8 J 3/02	A
3/12 1 0 1	3/12	101
CER		CER
C O 8 L 29/04	COSL 29/04	C
101/00	101/00	
C 0 9 J 201/00	C O 9 J 201/00	
Fターム(参考) 4F070 AA06 AA13 AA18 AA26 AA27		
AA28 AA32 AA71 AB09 AB11		
AC80 AE28 AE30 BB05 BB08		
CA01 CB01 CB02 CB12 DA34		
DC11		
4J002 BB021 BB222 BC021 BD031		
BEO22 BF011 BF021 BG041		
BG051 GJ01 GK00 GL00		
4J011 AA00 DA01 DA03 JA07 JB26		
KA15 KB29		
4J040 CA031 DA031 DB021 DC021		
DD022 DD072 DE021 DF041		
DF051 JA03 KA38		
4J100 AA02P AB02P AG02P AG04P		
ALO2P ASO1P CAO1 CAO4		
EA05 FA20 FA21 GB01 GB03		
GB09 GC25 GC35 JA03 JA13		
JA67		