Binary Search Trees

Performance

By the end of this video you will be able to...

- Explain the running time performance of isWord() in a BST
- Compare the performance of linked lists and BSTs

Storing a dictionary as a BST

{ am, at, ate, ear, eat, east }

BST?

{ am, at, ate, ear, eat, east }

isWord(String wordToFind)

- Start at root
- Compare word to current node
 - If current node is null, return false
 - If wordToFind is less than word at current node, continue searching in left subtree
 - If wordToFind is greater than word at current node, continue searching in right subtree
 - If wordToFind is equal to word at current node, return true

isWord(east)

isWord(east)

isWord(east)

Best case: O(1)

Compared with 3 out of 7 words

Worst case is O(??)

am

isWord(String wordToFind)

- Start at root
- Compare word to current node
 - If current node is null, return false
 - If wordToFind is less than word at current node, continue searching in left subtree
 - If wordToFind is greater than word at current node, continue searching in right subtree
 - If wordToFind is equal to word at current node, return true

Max distance until leaf?

