UNIVERSIDADE DE ÉVORA CURSO DE ENGENHARIA INFORMÁTICA SISTEMAS DIGITAIS 2018/2019

CONTROLE DE SEMÁFOROS

Dinis Matos nº 42738

Nuno Sousa nº 43014

Miguel Carvalho nº 43108

Após uma boa interpretação do trabalho proposto, começou-se por analisar individualmente cada um dos controladores do sistema: o semáforo dos veículos e do semáforo dos peões (cores e contagem). Em particular os estados de cada um, as suas entradas e saídas. Tendo isto em conta, foi possível construir mais facilmente os modelos ASM de cada um, representados nas figuras seguintes:

Semáforo dos Carros

Entradas: Sensor de excesso de velocidade (**S**), Botão da passadeira de peões (**B**),

Saídas: Verde, Amarelo, Vermelho;

Semáforo dos Peões (Peões);

Modelo ASM (Semáforo dos Carros):

Semáforo dos Peões (Cores)

Entradas: Sensor de excesso de velocidade (S),

Botão da passadeira de peões (B);

Saídas: Verde, Amarelo, Vermelho;

Modelo ASM (Semáforo dos Peões):

Semáforo dos Peões (Contagem)

Entradas: Sensor de excesso de velocidade (S),

Botão da passadeira de peões (B);

Saídas: 0, 1, 2, 3, 4, 5, 6, 7, 8;

Modelo ASM (Semáforo dos Peões (Contagem))

Com os modelos ASM criados foi possível conceber as tabelas de transição de estados e das saídas, e também os mapas de Karnaugh correspondentes:

Tabela do Semáforo dos Carros

				a	'n	$ a_n$	+1	Saídas			Flip-flop T	
a_n	a_{n+1}	S+B	Peões	X1	X0	X1	X0	Vermelho	Amarelo	Verde	T1	T0
Α	Α	0	-	0	0	0	0	0	0	1	0	0
Α	В	1	_	0	0	0	1	0	0	1	0	1
В	С	_	_	0	1	1	0	0	1	0	1	1
С	D	_	_	1	0	1	1	0	1	0	0	1
D	D	_	1	1	1	1	1	1	0	0	0	0
D	Α	_	0	1	1	0	0	1	0	0	1	1

F	ˈlip-flop ˈ	Γ
a_n	a_{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

Vermelho

X1 X0									
S+B Peões	00	01	11	10					
00	0	0	1	0					
01	0	0	1	0					
11	0	0	1	0					
10	0	0	1	0					
VERMELHO = X1X0									

Amarelo

X1 X0									
S+B Peões	00	01	11	10					
00	0	1	0	1					
01	0	1	0	1					
11	0	1	0	1					
10	0	1	0	1					
$AMARELO = \overline{X1}X0 + \overline{X1}\overline{X0}$									

Verde

X1 X0										
S+B Peões	00	01	11	10						
00	1	0	0	0						
01	1	0	0	0						
11	1	0	0	0						
10	1	0	0	0						
$VERDE = \overline{X1} \overline{X0}$										

Flip-flop T1

X1 X0	F	- F	_	
S+B Peões	00	01	11	10
00	0	1	1	0
01	0	1	0	0
11	0	1	0	0
10	0	1	1	0

 $T1 = \overline{X1}X0 + \overline{Pe\tilde{o}es}X0$

Com as funções simplificadas pelos mapas de Karnaugh foi possível criar os logigramas do controlador dos semáforos dos carros:

Tabela do Semáforo dos Peões (Contagem)

				a_n				a_{n+1}			Saídas					Flip-flop T						
	a_n	a_{n+1}	Verde Peões	Х3	X2	X1	XO	Х3	X2	X1	XO	а	b	С	d	е	f	g	Х3	X2	X1	X0
0	Α	В	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1
8	В	С	-	0	0	0	1	0	0	1	0	1	1	1	1	1	1	1	0	0	1	1
7	С	D	-	0	0	1	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1
6	D	Ε	_	0	0	1	1	0	1	0	0	1	0	1	1	1	1	1	0	1	1	1
5	Ε	F	-	0	1	0	0	0	1	0	1	1	0	1	1	0	1	1	0	0	0	1
4	F	G	-	0	1	0	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
3	G	Н	-	0	1	1	0	0	1	1	1	1	1	1	1	0	0	1	0	0	0	1
2	Н	1	-	0	1	1	1	1	0	0	0	1	1	0	1	1	0	1	1	1	1	1
1	I	Α	-	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0
0	Α	Α	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0

Saídas - a

a = $\overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X0}} + \overline{\text{Verde Peões}} \, \overline{\text{X1}} + \overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X2}} + \overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X2}}$ Verde Peões $\overline{\text{X3}} \, \overline{\text{X0}} + \overline{\text{Verde Peões}} \, \overline{\text{X1}} + \overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X2}}$

Saídas - b

X1 X0					X1 X0				
X3 X2	00	01,	11	10	X3 X2	00	01,	11	10
00	1_	_1	0	1	00	1_	1	0	1
01	0	1	1	1	01	0	1	1	1
11	-	Ŀ	J	-	11	-	-		-
10	1	-	-	<u> </u>	10	1	-	ı	-
•	V	erde	Peõ	es = (7	Verd	e Peõ	ies =	1

b = $\overline{\text{Verde Peões}} \ \overline{\text{X2}} \ \overline{\text{X1}} \ \overline{\text{X0}} + \overline{\text{Verde Peões}} \ \overline{\text{X1}} \ \text{X0} + \overline{\text{Verde Peões}} \ \text{X2 X1} + \overline{\text{Verde Peões}} \ \text{X1} \ \overline{\text{X0}} + \overline{\text{Verde Peões}} \ \overline{\text{X1}} \$

Saídas - c

c = $\overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X1}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X2}} + \overline{\text{Verde Peões}} \overline{\text{X3}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X1}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X2}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X2}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X2}} + \overline{\text{Verde Peões}} \overline{\text{X3}} + \overline{\text{Verde Peões}} \overline{\text{X3}} \overline{\text{X2}}$

Saídas - d

X1 X0					X1 X0				
X3 X2	00	01	11	10	X3 X2	00	01	11	10
00	1	1	1	0	00	1	1	1	0
01	1	0	1	1	01	1	0	1	1
11	-	-	T-T	-	11	-	-	-	-
10	0	-	-	-	10	0	-	Ŀ	-
·	Ver	de Pe	eões	= 0		Verd	de Pe	eões :	= 1

d = $\overline{\text{Verde Peões}}$ $\overline{\text{X3}}$ $\overline{\text{X2}}$ $\overline{\text{X1}}$ + $\overline{\text{Verde Peões}}$ $\overline{\text{X3}}$ $\overline{\text{X2}}$ $\overline{\text{X0}}$ + $\overline{\text{Verde Peões}}$ $\overline{\text{X1}}$ X0 + $\overline{\text{Verde Peões}}$ X2 X1 + $\overline{\text{Verde Peões}}$ $\overline{\text{X3}}$ $\overline{\text{X2}}$ $\overline{\text{X1}}$ + $\overline{\text{Verde Peões}}$ $\overline{\text{X3}}$ X2 $\overline{\text{X0}}$ + $\overline{\text{Verde Peões}}$ X1 X0 + $\overline{\text{Verde Peões}}$ X2 X1

Saídas - e

X1 X0					X1 X0				
X3 X2	00	01	11	10	X3 X2	00	01	11	10
00	1	1	1	0	00	1	1	1	0
01	0	0	1	0	01	0	0	1	0
11	-	-	-	-	11	-	-	-	-
10	0	-	·	-	10	0	-		-
	Ver	de Pe	eões	= 0	V	erde	Peõe	es = 1	

e = $\overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X2}} + \overline{\text{Verde Peões}} \, \text{X1 X0} + \text{Verde Peões} \, \overline{\text{X3}} \, \overline{\text{X2}} + \text{Verde Peões X1 X0}$

Saídas - f

 $f = \overline{\text{Verde Peões}} \, \overline{\text{X3}} \, \overline{\text{X1}} + \overline{\text{Verde Peões}} \, \overline{\text{X2}} \, \text{X1 X0} + \text{Verde Peões} \, \overline{\text{X3}} \, \overline{\text{X1}} + \text{Verde Peões} \, \overline{\text{X2}} \, \text{X1 X0}$

Saídas - g

X1 X0					X1 X0				
X3 X2	00	01	11	10	X3 X2	00	01	11	10
00	0	1	1	0	00	0	1	1	1
01	1	1	1	1	01	1	1	1	1
11	-	-	-]	11	ك	-	-	
10	0	_		-	10	0	(-		-
	Verd	de Pe	ões =	= 0	Verde Peões = 1				

g = Verde Peões X2 + Verde Peões X0 + Verde Peões X2 + Verde Peões X0

Flip-flop T – X3

X1 X0					X1 X0				
X3 X2	00	01	11	10	X3 X2	00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	0	0	1	0	01	0	0	1	0
11	-	-		-	11	-	-	-	-
10	1	-	-	-]	10	1	-	-	-]
	Ver	de Pe	eões :	= 0	•	Verd	e Peĉ	ies =	1

X3 = Verde Peões X2 X1 X0 + Verde Peões X3 + Verde Peões X2 X1 X0 + Verde Peões X3

Flip-flop T - X2

X2 = Verde Peões X1 X0 + Verde Peões X1 X0

Flip-flop T – X1

X1 X0					X1 X0					
X3 X2	00	01	11	10	X3 X2	00	01	11	10	
00	0	1	1	0	00	0	1	1	0	
01	0	1	1	0	01	0	1	1	0	
11	-	-	-	-	11	-	_	-	-	
10	0	Ĺ.	J	-	10	0	Ĺ.		-	
	Ver	de Pe	ões =	: 0	Verde Peões = 1					

X1 = Verde Peões X0 + Verde Peões X0

Flip-flop T - X0

 $X0 = \overline{\text{Verde Peões}} \ X2 + \overline{\text{Verde Peões}} \ \overline{X3} \ X0 + \overline{\text{Verde Peões}} \ \overline{X3} \ X1 + \overline{\text{Verde Peões}} \ \overline{X3}$

Com as funções simplificadas pelos mapas de Karnaugh foi possível criar os logigramas do controlador do cronómetro, sendo a única entrada o VerdePeões e as saídas a, b, c, d, e, f, g:

Semáforo dos Peões (Cores)

		a_n				a_{n+1}				Flip-flop T							
a_n	a_{n+1}	Х3	X2	X1	X0	Х3	X2	X1	X0	S+B	Х3	X2	X1	X0	Verde	Amarelo	Vermelho
Α	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Α	В	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1
В	С	0	0	0	1	0	0	1	0	-	0	0	1	1	0	0	1
C	D	0	0	1	0	0	0	1	1	-	0	0	0	1	0	0	1
D	Ε	0	0	1	1	0	1	0	0	-	0	1	1	1	1	0	0
Ε	F	0	1	0	0	0	1	0	1	-	0	0	0	1	1	0	0
F	G	0	1	0	1	0	1	1	0	-	0	0	1	1	1	0	0
G	Н	0	1	1	0	0	1	1	1	-	0	0	0	1	1	0	0
Н	1	0	1	1	1	1	0	0	0	-	1	1	1	1	1	0	0
1	J	1	0	0	0	1	0	0	1	-	0	0	0	1	1	0	0
J	K	1	0	0	1	1	0	1	0	-	0	0	1	1	1	0	0
K	L	1	0	1	0	1	0	1	1	-	0	0	0	1	1	0	0
L	M	1	0	1	1	1	1	0	0	-	0	1	1	1	0	1	0
M	Ν	1	1	0	0	1	1	0	1	-	0	0	0	1	0	1	0
Ν	Α	1	1	0	1	0	0	0	0	-	1	1	0	1	0	0	1

Flip-flop T – X3

X1 X0					X1 X0					
X3 X2	00	01	11	10	X3 X2	00	01	11	10	
00	0	0	0	0	00	0	0	0	0	
01	0	0	1	0	01	0	0	1	0	
11	0	1	-	-	11	0	1		-	
10	0	0	0	0	10	0	0	0	0	
		S+B	= 0		S+B=1					

 $X3 = \overline{(S+B)} X3 X2 X0 + \overline{(S+B)} X2 X1 X0 + (S+B) X3 X2 X0 + (S+B) X2 X1 X0$

Flip-flop T – X2

X1 X0					X1 X0					
X3 X2	00	01	11	10	X3 X2	00	01	11	10	
00	0	0	1	0	00	0	0	1	0	
01	0	0	1	0	01	0	0	1	0	
11	0	1	-	-	11	0	1	-	-	
10	0	0	1	0	10	0	0	1	0	
	S	+B =	0		S+B=1					

 $X2 = \overline{(S+B)} X3 X2 X0 + \overline{(S+B)} X1 X0 + (S+B) X3 X2 X0 + (S+B) X1 X0$

Flip-flop T – X1

 $X1 = \overline{(S+B)} X0 \overline{X3} + \overline{(S+B)} \overline{X2} X0 + (S+B) \overline{X3} X0 + (S+B) \overline{X2} X0$

Flip-flop T – X0

 $X0 = \overline{(S+B)} X3 + \overline{(S+B)} X2 + \overline{(S+B)} X1 + \overline{(S+B)} X0 + (S+B) \overline{X3} + (S+B)$

Verde

X1 X0					X1 X0					
X3 X2	00	01	11	10	X3 X2	00	01	11	10	
00	0	0	1	0	00	0	0	1	1	
01	1	1	1	1	01	1	1	1	1	
11	0	0	-	-	11	0	0	-	-	
10	1	1	0	1	10	1	1	0	1	
		S+B =	= 0		S+B=1					

Verde = $\overline{(S + B)} \overline{X3} X1 X0 + \overline{(S + B)} \overline{X3} X2 + \overline{(S + B)} X3 \overline{X2} \overline{X1} + \overline{(S + B)} X3 X1 \overline{X0} + \overline{(S + B)} \overline{X3} X1 X0 + \overline{(S + B)} \overline{X3} X2 + \overline{(S + B)} X3 \overline{X2} \overline{X1} + \overline{(S + B)} X3 X1 \overline{X0}$ $X1 \overline{X0}$

Amarelo

X1 X0					X1 X0						
X3 X2	00	01	11	10	X3 X2	00	01	11	10		
00	0	0	0	0	00	0	0	0	0		
01	0	0	0	0	01	0	0	0	0		
11	1	-	-	-		0	ı	-	-		
10	0	0	1	0	10	0	0	1	1		
		S+B	= 0			S+B = 1					

Amarelo = $\overline{(S + B)}$ X3 X1 $\overline{X0}$ + $\overline{(S + B)}$ X3 X1 X0 + $\overline{(S + B)}$ X3 X1 $\overline{X0}$ + $\overline{(S + B)}$ X3 X1 X0

Vermelho

Vermelho = $\overline{(S + B)} \overline{X3} \overline{X2} \overline{X0} + \overline{(S + B)} \overline{X3} \overline{X2} \overline{X1} + \overline{(S + B)} X3 X2 X0 + \overline{(S + B)} \overline{X3} \overline{X2} \overline{X0} + \overline{(S + B)} \overline{X3} \overline{X2} \overline{X1} + \overline{(S + B)} X3 X2 X0$

Com as funções simplificadas pelos mapas de Karnaugh foi possível criar os logigramas do controlador do semáforo, sendo as entradas o S+B (sensor ou botão) e as saídas o vermelho, o amarelo e o verde:

Tendo todos os conteúdos necessários para a construção do logigrama do sistema completo de semáforos, obtemos o seguinte:

Para o correto funcionamento do circuito, é preciso ter em conta que a entrada S+B apenas poderá estar ativa durante um ciclo de relogio.

Conclusão

Com a realização deste trabalho permitiu-nos aplicar os conceitos aprendidos na sala de aula bem como pesquisar novas práticas de trabalho enriquecendo os nossos conhecimentos de Sistemas Digitais.