Московский физико-технический институт

Лабораторная работа N 3.3.4

(Общая физика: электричество и магнетизм)

Эффект Холла в полупроводниках

Работу выполнили: Фитэль Алёна Попеску Полина Б06-103

г. Долгопрудный 2022 год

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование: электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

1 Теоретическая справка

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\scriptscriptstyle \rm I\hspace{-.1em}I} = -e\vec{E} - e\langle \vec{v}\rangle \times \vec{B},$$

где *е*- абсолютный заряд элек-

трона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$E_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок, b_e b_p - их подвижности.

2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла E_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

Таблица 1: Зависимость $B(I_{\scriptscriptstyle \rm M})$

$N_{ar{o}}$	$I_{\scriptscriptstyle \mathrm{M}},\ \mathrm{A}$	Ф ₀ , мВб	Ф, мВб
$\Delta\Phi$, мВб	B, Тл	'	
1	0,24	1,4	0,019
2	$0,\!48$	2,7	0,036
3	0,73	3,9	0,052
4	0,97	5,1	0,068
5	1,21	5,9	0,079
6	1,45	6,4	0,085

$$E_X = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку E_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

3 Ход работы

- 1. Запишем данные установки:
 - a=2,2 мм, $L_{35}=6,0$ мм, l=7,0 мм, $SN=75~{
 m cm}^2\cdot{
 m But}$ площадь сечения контура катушки на число витков в ней.
- 2. Настроим приборы согласно инструкции.
- 3. Запишем предельное значение тока через электромагнит:

$$I_{max} = 2,13 \text{ A}.$$

4. Исследуем зависимость потока Φ магнитного поля в зазоре электромагнита от тока через обмотки магнита. Данные занесём в табл. 1.

Индукцию B найдем по формуле

$$B = \frac{\Delta\Phi}{SN},\tag{3}$$

По этим данным построим график зависимости $B = B(I_M)$ (рис. 3).

Рис. 3: График зависимости $B(I_M)$

5. Снимем зависимость $U_{34}(I_{\rm M})$ различных токах через образец (табл. 2). А именно, он изменяется от 0,23 до 1,07 мА. При этом в отсутствие магнитного поля вольтметр покажет напряжение U_0 . Результаты занесём в таблицу 2, подписывая сверху I, U_0 в мА и мкВ соответственно. В последнем опыте изменим направление магнитного поля.

Рис. 4: График зависимости $U_{34}(I_{\scriptscriptstyle \rm M})$

6. Рассчитаем ЭДС Холла и построим на одном графике семейство характеристик $\mathcal{E}_x = f(B)$ при разных токах, определим угловые коэффициенты $k(I) = \Delta \mathcal{E}/\Delta B$. Построим график k = f(I), рассчитаем угловой коэффициент и по формуле $\mathcal{E}_x = -R_x \cdot \frac{IB}{a}$ рассчитаем постоянную Холла R_X

N	I_M, A	I, U_0							
		0,30,3	0,40,3	0,50,3	0,60, 4	0,70,5	0,80,5	0,90,6	0,90,-17
	<i>U</i> 34, мкВ								
1	0.20	50	63	73	88	100	110	131	-139
2	0.40	92	118	145	174	201	230	256	-256
3	0.60	137	177	219	260	301	345	387	-304
4	0.80	171	228	285	338	399	451	501	-512
5	1.00	209	274	341	406	476	542	605	-614
6	1.20	235	309	381	456	530	605	677	-685
7	1.40	0,252	331	409	489	570	649	725	-735

Таблица 2: Результаты измерений U_{34}

Рис. 5: График зависимости k(I)

k, м $B/Bб$	0.173	0.229	0.286	0.342	0.401	0.458	0.508
I, A	0.3	0.4	0.5	0.6	0.7	0.8	0.9

$$R_x = \frac{\varepsilon_x}{IB}a = \frac{\varepsilon_x}{I \cdot I_M} \frac{I_M}{B}a = \frac{k_2}{k_1}a = (750 \pm 50) \cdot 10^{-3} \frac{\text{B} \cdot \text{m}}{\text{Ta} \cdot \text{A}}$$

- 7. Определим, что наши частицы движутся к клемме №4 образца. Зная направление магнитного поля в электромагните и тока через образец, мы определяем, что наши частицы заряжены отрицательно, т.е. являются электронами.
- 8. Теперь определим концентрацию электронов:

$$n = \frac{1}{eR_x} = (8, 3 \pm 0, 6) \cdot 10^{18} \frac{1}{\text{M}^3}$$
 (4)

9. Для определения удельной проводимости выключим источник питания и измерим падение напряжения $U_{35}~(1~{\rm mA})=$ -4,036 мВ.

$$\sigma = \frac{IL}{U_{35}al} = 156, 6 \pm 3 \frac{1}{\text{OM} \cdot \text{M}}$$
 (5)

10. По формуле посчитаем подвижность электронов:

$$b = \frac{\sigma}{en} = \sigma R_x = (0, 12 \pm 0, 01) \cdot 10^{-3} \frac{M^2}{B \cdot c}$$
 (6)

4 Вывод

В ходе работы изучено явление Холла на основе образца. Также вычислена постоянная Холла для исследуемого образца $R_x = (750 \pm 50) \cdot 10^{-6} \frac{\text{B·M}}{\text{Тл·A}} \ (\varepsilon \approx 7\%)$, концентрация носителей заряда $n = (8, 3 \pm 0, 6) \cdot 10^{21} \frac{1}{\text{м}^3} \ (\varepsilon \approx 8\%)$, удельная проводимость $\sigma = 156, 6 \pm 3 \frac{1}{\text{Ом·м}} \ (\varepsilon \approx 2\%)$ и подвижность носителей заряда $b = 120 \pm 10 \frac{\text{см}^2}{\text{B·c}} \ (\varepsilon \approx 9\%)$. Полученные данные могут отличаться от табличных в связи с сильной чувствительностью используемого прибора к нагреву, происходящему при проходе через него тока, и большим количеством примесей в рассматриваемом образце.