# Complejidad Computacional MLG521

Cristobal Rojas Pamela Alvarez

Departamento de Ciencias de de la Ingeniería Departamento de Ingeniería Matemática Universidad Andrés Bello

MLG521

### Motivación

- ¿ Cómo medir la dificultad de un problema ?
- ¿ En qué sentido podemos decir que un problema es más difícil que otro ?
- Si sabemos que un problema tiene solución, ¿ podemos siempre calcularla?
- Si sabemos como calcular una solución, ¿ podemos siempre calcularla ?

# Ejemplo

### Problema 1

Sean  $\{a_1, a_2, \dots, a_n\}$  n números naturales. Ordenarlos de manera creciente

#### Problema 2

Sean  $\{a_1, a_2, \ldots, a_n\}$ , *n* ciudades . Encontrar un tour que las recorra todas a costo mínimo.

# Ejemplo

### Problema 1

Sean  $\{a_1, a_2, \ldots, a_n\}$  n números naturales. Ordenarlos de manera creciente

### Problema 2

Sean  $\{a_1, a_2, \ldots, a_n\}$ , n ciudades . Encontrar un tour que las recorra todas a costo mínimo.

## Problemas Decidibles

#### Problema

Un problema esta formado por una instancia o input y una pregunta sobre la instancia(Podemos pensar con respuesta sí o no).

#### Decidible

Un problema es decidible si existe un algoritmo que, dada cualquier instancia, responde la pregunta en tiempo finito.

Existen problemas que no son decidibles (Ej: saber si un programa se va a "quedar pegado").

## Problemas Decidibles

#### Problema

Un problema esta formado por una instancia o input y una pregunta sobre la instancia(Podemos pensar con respuesta sí o no).

#### Decidible

Un problema es decidible si existe un algoritmo que, dada cualquier instancia, responde la pregunta en tiempo finito.

Existen problemas que no son decidibles (Ej: saber si un programa se va a "quedar pegado").

### Notación Asintótica

La calidad de un algoritmo (para resolver un cierto problema) se refleja en su **tiempo de ejecución**, que mide el tiempo máximo que tarda el algoritmo en resolver una instancia, como función del *tamaño* de la instancia. Para expresar esto se usa la **notación asintótica**:

### Big O

Sean T(n) el tiempo de ejecución de un cierto algoritmo. Decimos que T es de orden g(n), denotado por T(n) = O(g(n)) si existe una constante C tal que

$$T(n) \leq C \cdot g(n) \quad \forall n$$

Ex: si  $T(n) = 5n^3 + 4n^2 + 4n + 10$ , entonces  $T(n) = O(n^3)$ .

# Análisis de Algortimos

Para un problema existen varios algoritmos, con distintos tiempos de ejecución. El tiempo de ejecución de un algoritmo dado entrega una cota superior a la complejidad computacional del problema.

- ▶ Ordenar una lista tiene complejidad  $O(n^2)$  (porque sabemos como hacerlo en ese tiempo podría tomar menos con otro algoritmo).
- ▶ El vendedor viajero tiene complejidad O(n!) (porque usando fuerza bruta toma ese tiempo podría tomar menos)

# Comparación

Comparemos el tiempo que tomaría ejecutar algoritmos con distintos tiempos de ejecución, en instancias de distintos tamaños (en un computador de 2.5 GH)

| $T(n)\setminus tam.$ | 30          | 40          | 50                     | 60                              |
|----------------------|-------------|-------------|------------------------|---------------------------------|
| O(n)                 | 0.00003 seg | 0.00004 seg | 0.00005 seg            | 0.00006 seg                     |
| $O(n^2)$             | 0.0009 seg. | 0.0016 seg. | 0.0025 seg.            | 0.0036 seg.                     |
| $O(n^5)$             | 24.3 seg    | 1.7 min.    | 5.2 min                | 13 min.                         |
| $O(2^n)$             | 17.9 min    | 12.7 dias   | 35.7 años              | 366 siglos                      |
| $O(3^n)$             | 6.5 años    | 3855 siglos | $2 \times 10^8$ siglos | $1.3 	imes 10^13 	ext{ siglos}$ |

# Las clases P y NP

#### Definición

Un problema pertenece a la clase P si su complejidad computacional es  $O(n^k)$ .

Ej: Decidir si existe un tour euleriano (visita todas las aristas una única vez)

#### Definición

Un problema pertenece a la clase NP si existe un algoritmo que tarda a lo mas tiempo  $O(n^k)$  en verificar si una respuesta es correcta o no.

### Ej:

- Decidir si existe un tour euleriano
- Decidir si existe un tour hamiltoniano (visita todos los nodos una única vez)

# P v/s NP



# Reducciones polinomiales

#### Reducciones

Un problema A es reducible a un problema B si existe un algoritmo polinomial que transforma una instancia de A en una de B y si x es una solución para A si y sólo si su transfromación es una solución para B.

Esto quiere decir que el problema B es al menos tán dificil como el problema A.

# NP-completo

### NP-completitud

Un problema es NP-completo si todo problema en NP se puede reducir a él.

Ej: Vendedor Viajero, tour Hamiltoneano (son teoremas difíciles )

# ¿Qué hacemos?

- Existe una amplia literatura sobre este tipo de problemas.
- ▶ Buscamos soluciones para nuestro problema particular.
- Algoritmos de aproximación.
- Heurísticas.

# Algoritmos de Aproximación

#### Definición

Para un problema de optimización A un algoritmo de  $\alpha$ -aprox. es un algoritmo que encuentra una solución x' para A en tiempo polinomial tal que:

$$x' \leq \alpha x \; (Min)$$

$$x' \ge \alpha x \; (Max)$$

### Heurísticas

En computación, dos objetivos fundamentales son encontrar algoritmos con buenos tiempos de ejecución y buenas soluciones, usualmente las óptimas. Una heurística es un algoritmo que abandona uno o ambos objetivos; por ejemplo, normalmente encuentran buenas soluciones, aunque en ocasiones no hay pruebas de que la solución no pueda ser arbitrariamente errónea; o se ejecuta razonablemente rápido, aunque no existe tampoco prueba de que deba ser así.