תוכן העניינים

2	מטרת הניסוי
3	רקע תיאורטי
4	מערכת הניסוי
5	מהלך הניסוי
6	תוצאות הניסוי
7	עיבוד וניתוח ותוצאות

מטרת הניסוי

רקע תיאורטי

משוואת כוחות עבור ירח שמסתו m שנע במסלול מעגלי סביב גוף מסיבי שמסתו m (במקרה זה הוא צדק):

$$\frac{GmM}{R^2} = m\frac{4\pi^2}{T^2}R$$

$$\frac{GM}{4\pi^2} = \frac{R^3}{T^2} \tag{1}$$

משוואת כוחות עבור כדור הארץ שמקיף את השמש שמסתה M_S במסלול שרידוסו בזמן הקפה משוואת כוחות עבור כדור הארץ המקיף את השמש המסתה T_E

$$\frac{GM_S}{4\pi^2} = \frac{R_E^3}{T_E^2}$$
 (2)

נחלק משוואה 1 ב- 2:

$$\frac{\frac{GM}{4\pi^{2}}}{\frac{GM_{S}}{GM_{S}}} = \frac{\frac{R^{3}}{T^{2}}}{\frac{R_{E}^{3}}{T_{E}^{2}}} \quad \Rightarrow \quad \frac{M}{M_{S}} = \frac{R^{3}}{T^{2}} \times \frac{T_{E}^{2}}{R_{E}^{3}}$$

$$\frac{M}{M_{S}} = \frac{R^{3}}{R_{E}^{3}} \times \frac{T_{E}^{2}}{T^{2}}$$

$$\frac{M}{M_{S}} = \frac{\frac{R^{3}}{R_{E}^{3}}}{\frac{R_{E}^{3}}{T_{E}^{2}}}$$

$$\frac{M}{M_S} = \frac{\left(\frac{R}{R_E}\right)^3}{\left(\frac{T}{T_E}\right)^2} \tag{3}$$

קיבלנו משוואה שמתארת את הקשר בין מסת גוף מסיבי (ביחידות מסת שמש) לבין היחס של רדיוס מסלולו (ביחידות אסטרונומיות AU) לזמן המחזור של הקפתו (בשנים).

מערכת הניסוי

מהלך הניסוי

תוצאות הניסוי

עיבוד וניתוח ותוצאות