CS Bridge Module 7 Algorithm Analysis

1. Module 7 Algorithm Analysis

1.1 Title Slide

2. The Primality Testing Problem

2.1 Primality Testing

2.2 Primality Testing: Solution 1

```
Primality Testing: Solution 1

bool isPrime(int num) {
   int countDivs;
   countDivs = 0;
   for(int i=1; i <= num; i++) {
      if (num % i == 0)
            countDivs++;
    }

   if(countDivs == 2)
      return true;
   else
      return false;
}</pre>
```

2.3 Primality Testing: Solution 2

2.4 Primality Testing: Solution 3

2.5 Runtime Analysis Part 1

2.6 Runtime Analysis Part 2

2.7 Runtime Analysis Part 3

2.8 Runtime Analysis Part 4

Runtime Analysis

Let
$$n$$
 be the size of the input $(n = \text{num})$
 $T_1(n) = 5n + 4 = \theta(n) \longrightarrow T_1(n) = \theta(n)$
 $T_2(n) = 3n + 4 = \theta(n) \longrightarrow T_2(n) = \theta(n)$
 $T_3(n) = 6\sqrt{n} + 4 = \theta(\sqrt{n}) \longrightarrow T_3(n) = \theta(\sqrt{n})$

Conclusions:

• $T_1(n)$ and $T_2(n)$ are asymptotically equivalent

• $T_3(n)$ is asymptotically better than $T_1(n)$ and $T_2(n)$

3. Asymptotic Analysis

3.1 Order of Growth: Formal Definition

3.2 Asymptotic Analysis Example

Notes:

4. Runtime Analysis

4.1 Runtime Analysis: Example 1

4.2 Runtime Analysis: Example 2

4.3 Knowledge Check

(Fill-in-the-Blank, 10 points, unlimited attempts permitted)

Choice	
3, 5, 7, 11, 13, 17	, 19
3,5,7,11,13,17,19	
3 5 7 9 11 13 17 1	19

Feedback when correct:

That's right! You selected the correct response.

Correct (Slide Layer)

Try Again (Slide Layer)

4.4 Knowledge Check

(Multiple Choice, 10 points, 4 attempts permitted)

Knowledge Check	NYU TANDON ONLINE
The output of an algorithm $T(n)$ can be described by the where the input is n. What is this algorithms running time $T(n) = 5n^2 + 2n - 3$	
 ○ O(n) ○ O(5n²) ○ O(n²) ○ O(5n² +2n) 	

Correct	Choice
	O(n)
	O(5n²)
Х	O(n²)
	O(5n² +2n)

Feedback when correct:

That's right! You selected the correct response.

Correct (Slide Layer)

Try Again (Slide Layer)

4.5 Results Slide

(Results Slide, O points, 1 attempt permitted)

Resul	lt s	lide	pro	perties
-------	------	------	-----	---------

Passing 80%

Score

Notes:

Success (Slide Layer)

Failure (Slide Layer)

4.6 End of Module

