of a semigroup on a Hilbert space $\,\mathrm{H}\,$, then it is shown in A-III, $\,\mathrm{Cor.}\,7.11\,$ that

$$(1.10) \qquad \omega(A) = \inf\{w : ||R(\lambda,A)|| \le M_{_{\mathbf{W}}} \text{ for } Re \ \lambda > w\} \ .$$

Unfortunately, the identity (1.10) does not hold on arbitrary Banach spaces, but we will see in Section 1 of C-IV that for every positive semigroup on a Banach lattice the identity

(1.11)
$$s(A) = \omega_1(A) = \inf\{w : ||R(\lambda, A)|| \le M_w \text{ for } Re \lambda > w\}$$

is valid. Therefore, for positive semigroups with $s(A) = \omega_1(A) < \omega(A)$ (see Ex.1.2.(2)) the equation (1.10) is not true. However, we can prove the following theorem.

Theorem 1.9. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space E . If there are constants $a\geq 0$ and $q\geq s(A)$ and if there are $C\in\mathbb{R}_+$, $n\in\mathbb{N}$ such that, for every $\lambda\in\mathbb{C}$ with $\text{Re }\lambda>q$ and $|\text{Im }\lambda|>a$ we have $\|R(\lambda,A)\|\leq C|\lambda|^{n-2}$, then $\sup\{\omega(f),\ f\in D(A^n)\}\leq q$.

<u>Proof.</u> The hypothesis $\|R(\lambda,A)\| \le C|\lambda|^{n-2}$ is invariant under rescaling; i.e., the resolvent $R(\lambda,-b+A)$ of the generator -b+A of the rescaled semigroup e^{-bt} T(t) satisfies $\|R(\lambda,-b+A)\| \le \tilde{C}|\lambda|^{n-2}$ for every $\lambda \in \mathbb{C}$ with Re $\lambda > q-b$ and $|\text{Im }\lambda| > a+2b$ and a suitable constant \tilde{C} . Therefore we may assume that $b:=\max(\omega(A),q)<0$. Let $\omega(A)< p<0$. Then, by the inversion formula for the Laplace transform for every $f\in D(A)$ and $p'=\max\{p,q\}<0$,

(1.12)
$$T(t) f = \frac{1}{2\pi i} \cdot \int_{D'-i\infty}^{D'+i\infty} e^{\lambda t} R(\lambda, A) f d\lambda .$$

(For a proof of the vector valued version of the inversion formula one may follow [Widder(1946),p.66]; also see the notes to this section.)

By the resolvent equation we obtain

$$R(\lambda,A)R(0,A)^{n} = \sum_{k=1}^{n} (-1)^{k+1} \cdot \lambda^{-k} R(0,A)^{n+1-k} + (-1)^{n} \cdot \lambda^{-n} R(\lambda,A) .$$

Using that $\frac{1}{2\pi i} \cdot \int_{p'-i\infty}^{p'+i\infty} e^{\lambda t} \cdot \lambda^{-k} d\lambda = 0$ for $k \ge 1$, p' < 0 and t > 0 we obtain

(1.13)
$$T(t)R(0,A)^{n}f = (-1)^{n} \cdot \frac{1}{2\pi i} \cdot \int_{p'-i\infty}^{p'+i\infty} e^{\lambda t} \cdot \lambda^{-n} R(\lambda,A) f d\lambda$$

for every $f \in E$ and t > 0.

If q < p' , then, by Cauchy's Integral Theorem and since $\left\|R\left(\lambda,A\right)\right\| \leqq C \cdot \left|\lambda\right|^{n-2}$ we see that the path of integration can be shifted to $\text{Re}\lambda = q$;

i.e.,
$$T(t)R(0,A)^n f = (-1)^n \cdot \frac{1}{2\pi i} \cdot \int_{q-i\infty}^{q+i\infty} e^{\lambda t} \cdot \lambda^{-n} R(\lambda,A) f d\lambda$$
.