

## Übung 7

## **RANS - Herleitung Menter BSL Modell**

## Aufgabe 1: Transformierte $\varepsilon$ Gleichung

In dem baseline Modell (BSL) des  $k-\omega$  SST Modells wird mittels einer Funktion zwischen der Formulierung der  $\omega$  Gleichung des standard  $k-\omega$  Modells und der  $\varepsilon$  Gleichung des standard  $k-\varepsilon$  Modells übergeblendet. Dafür wird die  $\varepsilon$  Gleichung verwendet, um eine Gleichung für  $\omega$  herzuleiten.

Die Transportgleichungen des Standard  $k - \varepsilon$ -Modells sind gegeben als

$$\begin{split} &\frac{\partial k}{\partial t} + \langle u_j \rangle \frac{\partial k}{\partial x_j} = P_k - \varepsilon + \frac{\partial}{\partial x_j} \bigg[ \left( \nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \bigg] \\ &\frac{\partial \varepsilon}{\partial t} + \langle u_j \rangle \frac{\partial \varepsilon}{\partial x_j} = \frac{\varepsilon}{k} (c_{\varepsilon 1} P_k - c_{\varepsilon 2} \varepsilon) + \frac{\partial}{\partial x_j} \bigg[ \left( \nu + \frac{\nu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \bigg] \end{split}$$

Leiten Sie die aus der  $\varepsilon$  Gleichung hervorgehende  $\omega$  Gleichung her. Dabei ist wie folgt vorzugehen:

1. Einsetzen der Definition

$$\omega = \frac{\varepsilon}{C_u k} \tag{1}$$

in die substantielle Ableitung  $D\omega/Dt$ 

2. Ersetzen von  $\varepsilon$  in der entstehenden Gleichung mittels

$$\varepsilon = C_{\mu}\omega k \tag{2}$$

3. Umformulierung der Terme, um eine Gleichung analog der standard  $\omega$  Gleichung zu erhalten

Die  $\omega$ -Gleichung des Wilcox k- $\omega$ -Modell ist gegeben als:

$$\frac{D\omega}{Dt} = \gamma_1 \frac{\omega}{k} P_k - \beta_1 \omega^2 + \frac{\partial}{\partial x_i} \left[ \left( \nu + \nu_t \sigma_{\omega_1} \right) \frac{\partial \omega}{\partial x_i} \right]$$
 (3)

Worin unterscheidet sich die aus der Transformation hergeleitete  $\omega$ -Gleichung von der des Wilcox-Modells?