

United International University

School of Science and Engineering

CT Assignment#04; Year 2021; Semester: Spring Course: PHY 105; Title: Physics Full Marks: ; Section: B; Time: 30 minutes

Name:	ID:	Date:

- 1. In open heart surgery, a much smaller amount of energy will defibrillate the heart. A heart defibrillator delivers certain amount of energy by discharging a capacitor initially at 1.00×10^4 V. If the capacitance of the capacitor is 81 μ F, determine (i) the stored energy by a heart defibrillator and (ii) the amount of stored charge.
- **2.** A circular parallel plate capacitor has diameter 10 cm. Capacitance between parallel plate capacitor is 400 μ F. Calculate the distance between two parallel plate capacitor. [Given, $\epsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{Nm}^2$]
- **3.** A storage capacitor on a RAM chip has many excess electrons on its negative plate and the maximum no of electrons are 1.8×10^8 electrons. If the capacitor is charged to 7.3 V, calculate the capacitance involved into the capacitor. [Given, $e^-=1.6 \times 10^{-19}$ C]
- **4.** Determine the equivalent capacitance C_{eq} of the below circuit. Given V=9V, C_1 = C_2 =24 pF, and C_3 = C_4 = C_5 =10 pF.

5. Suppose you have a 9.00 V battery, a 5.00 μ F capacitor, and a 9.40 μ F capacitor. (i) Find the equivalent charge and (ii) energy stored, if the capacitors are connected to the battery in series.