

Vout = Av. In Rin -yKVL at IIP side > Vin-InRin-KVout Vin = In Rin + KA, Rin In Rin (1+ KA) |--- Closed-loop 2/p impedance Ring = Rin (1+KAV) Rin - 1/p impedance of open holds to Is this good or bad! Ix=V-V2 - WAXIX
for its to Ilp resistance limpedance lypoith into, of Rive feedback Good thing for a voltage amply & overall system to sering vig Output impedance : (Rout & INDERJIT SINGH

Root - open -loop of Ix Root = 1x (HAVK) Roots

Vx = Root

Ix = Hout

It AvK

Olp inpedance

With re flb, Root gous down closed-loop Olp Impedance Good or Bad ?

Ret deliver a sty, so it shid have a low ofp resistance.

Better the ample since Root is lower. No As a result of regative Jeedback we sawifice some voltage gain (Av); but we gained two important benefits

1. Ilp impedance went up by (HKA) (Good for better vtg amp))

2. Olp impedance went down by (HKA) (-11-)

3. Bandwidth also gets up by (HKA) INDERNIT SINGH Improves performance of the system.

INDERJIT SINGH

Summary:- Voltage- (www.t feedback (shurt)

TIA -> (loxed-loop Gain (Rmf) = Pm | 1+ KRm |

-> (loxed-loop Input impedance (Rif) = Pin | 1+ KRm |

-> (losed-loop outpot impedance (Rootf) = Root |

-> Sonses a voltage at the olp |

-> xeturns a current at the IIP

INDERJIT SINGH

Closed-loop OIP impedance: Transconductance ampl Cut the olploop, plau a vtg source b V =- KIX - KCL at Olp 100p, HOURSTILBERAIT SINGH + Vx = Ix
Rout Vx = Ix (1+KGm) Vx = Rout (1+ K (rm)) - Routy. (bsed-loop olp inpedance The above cht wants to deliver a convert (ic wants to become a good current source, so Routs 1) means the above cht has become a good current source.

feedback topology: serves a current at olp -> (losed-loop olp impedance seturs a voltage at Ilp) Rout (1+ KGm)

Closed-loop Input impedance:
$$\begin{pmatrix} V_{in} = ? \\ A_{I} \end{pmatrix}$$

Vin

Vin

 $\begin{cases} V_{in}^{*} A_{I} \\ K_{in} \end{cases}$
 $\begin{cases} V_{in}^{*} A_{I} \\ K_{in} \end{cases}$

· Cut the of wire

& insert a test

sounce

· Deach vate all

· Aupendent sounce

· Find
$$\frac{v_1}{v_2} = \frac{v_1}{v_2}$$

ILABOUR
$$Ix = Ix (1 + KAI)$$

ie $\frac{V_X}{Root} = \frac{1}{2} (1 + KAI)$

$$\frac{1}{1} = Rout (1 + KAI)$$

Vx = Rout (1+ KAI) /--- Routy -> Closed-loop

wount feedback topology:

	Feed back Topologics	Sense (Sampling) mechanism	mechanism	wed	Closed loop gain	Closed loop Ilp impedance Rinf	Closed loop olp impedance Routs
_	Voltage - voltage (shunt - sevies)	sensing a voltage at othe old	returning a vollege at the old in suring	Voltage amplifier	Avg = Av 1+KAv	Rin (1+ KAV)	Root (1+KAV)
2.	(Voltage-sevies) Voltage-current (shunt-shunt)	sensing a voltage at the old	returning a current at the off	Frans-impedance	Rmf = Rm 1+KRm	Rin 1+ KRm	Root 1+K Pm
3.	(Voltage-shunt) (wovent-voltage (sevies -sevies)	Sensing a curount at the olp in scrib	at the Ilp	Trans-conductance	Gmz = Gm 1+KGm	Rin (1+ KGm)	Rout (1+ K(m)
+.	((wount-service) (world- (world) (services-shund)		returning a current at the IIP	Covert	Azz = Az 1+ K Az	Rin (HKAI)	Root (1+KAv)
	(current-shurt)						