Project 2 - Kayelin Santa Elena

```
In [1]: import warnings
        warnings.filterwarnings('ignore')
        import pandas as pd
        import numpy as np
        from plotnine import *
        from sklearn.neighbors import KNeighborsClassifier # KNN
        from sklearn.model_selection import GridSearchCV
        from sklearn.tree import DecisionTreeClassifier # Decision Tree
        from sklearn.linear model import LogisticRegression # Logistic Regressio
        n Model
        from sklearn.cluster import KMeans
        from sklearn.mixture import GaussianMixture
        from sklearn.metrics import silhouette_score
        from sklearn import metrics
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        from sklearn.model selection import KFold # k-fold cv
        from matplotlib import pyplot as plt
        from sklearn.metrics import accuracy score, confusion matrix
        from sklearn.metrics import plot confusion matrix
        %precision %.7g
        %matplotlib inline
```

Part I

Use the dataset *burgersOrPizza.csv* to build 3 models that predict whether a food is a burger or pizza (you can use any of the predictive models we've learned).

For each model:

- 1. Explore data (with ggplot)
- 2. Explain which variables you're using to predict the outcome.
- 3. Explain which model validation technique you're using and why.
- 4. Explain why you did or did not choose to standardize your continuous variables.
- 5. Evaluate how the model performed. Explain.

At the end:

1. Compare the performance of the 3 models using the accuracy, and the confusion matrix (consider things like how many it got correct, which errors it was most likely to make...etc).

I droppped some columns in the burgersorpizza dataset that had many NAs

```
In [67]: pizza = pd.read_csv("https://raw.githubusercontent.com/cmparlettpellerit
    i/CPSC392ParlettPelleriti/master/Data/burgersOrPizza.csv")

pizza = pizza.drop("Potassium",axis = 1)
    pizza = pizza.drop("Potassium_100g",axis = 1)
    pizza = pizza.dropna()

pizza = pizza.reset_index()
```

Out[67]:

	index	Item_Name	Item_Description	Food_Category	Calories	Total_Fat	Saturated_Fat	Trans_
0	0	Chicken n Cheese Slider	Chicken n Cheese Slider on Mini Bun w/ Chicken	Burgers	290.0	12.0	3.5	
1	1	Corned Beef n Cheese Slider	Corned Beef n Cheese Slider on Mini Bun w/ Cor	Burgers	220.0	9.0	3.5	
2	2	Ham n Cheese Slider	Ham n Cheese Slider on Mini Bun w/ Roast Ham &	Burgers	230.0	9.0	3.5	
3	3	Jalapeno Roast Beef n Cheese Slider	Jalapeno Roast Beef n Cheese Slider on Mini Bu	Burgers	240.0	11.0	4.5	
4	4	Roast Beef n Cheese Slider	Roast Beef n Cheese Slider on Mini Bun w/ Roas	Burgers	240.0	11.0	4.5	

5 rows × 24 columns

```
In [25]: pizza.shape
Out[25]: (865, 24)
```

Model 1 - KNN

0) Explore data (with ggplot)

Out[5]: <ggplot: (7545786005)>

In [8]: (ggplot(pizza, aes('Total_Fat_100g'))) + geom_histogram()

Out[8]: <ggplot: (7546313465)>

```
In [9]: (ggplot(pizza, aes('Total_Fat'))) + geom_histogram()
```


Out[9]: <ggplot: (7546715593)>

```
In [101]: predictors = ['Calories',
                  'Total_Fat', 'Saturated_Fat', 'Trans_Fat', 'Cholesterol', 'Sodiu
          m',
                  'Carbohydrates', 'Protein', 'Sugar', 'Dietary_Fiber', 'Calories_1
          00g',
                  'Total_Fat_100g', 'Saturated_Fat_100g', 'Trans_Fat_100g',
                  'Cholesterol_100g', 'Sodium_100g', 'Carbohydrates_100g', 'Protein
          _100g',
                  'Sugar 100g', 'Dietary Fiber 100g']
          X = pizza[predictors]
          y = pizza["Food_Category"]
          # split into training and test
          X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2
          #z score data
          z = StandardScaler()
          z.fit(X train)
          Xz train = z.transform(X train)
          Xz_test = z.transform(X_test)
          # create model
          knn = KNeighborsClassifier()
          # choose potential values of k
          ks = {"n neighbors": range(1,20)}
          # use grid search to find best parameters
          grid = GridSearchCV(knn,ks, scoring = "accuracy", cv = 10)
          knnmod = grid.fit(Xz train, y train)
```

1) Explain which variables you're using to predict the outcome.

I used all variables except 'Item_Name' and 'Item_Description' because it made the model score INCREDIBLY high. I ran the model multiple times, each time changing the variables, to test how the model would score. It scored best when including all but the 2.

2) Explain which model validation technique you're using and why.

I am using k nearest neighbors (using grid search to find best hyper parameter) because it's a simple predictive model that can be used for classification. I decided to go with k fold cv because LOO is computationally expensive.

3) Explain why you did or did not choose to standardize your continuous variables.

After figuring out which variables I wanted to use I ran the model with z scored and non z scored data and the knnmod.bestscore rose by about 7% when I standardized my continuous variables.

4) Evaluate how the model performed. Explain.

My model did better than I expected. The best fit model scored a 97% and the out of sample prediction scored a 95%. However, I am a little suspicious of how well my model did.

```
In [105]: knnmod.best_estimator_.get_params()["n_neighbors"]
Out[105]: 1
In [103]:
           knnmod.best score
Out[103]: 0.9710973084886128
In [104]: knnmod.score(Xz_test,y_test)
Out[104]: 0.953757225433526
In [106]: plot confusion matrix(knnmod, Xz test, y test)
Out[106]: <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x1c1
           c21b810>
                                                    100
              Burgers
           Frue label
                                      1.1e+02
               Pizza ·
                                       Pizza
                        Burgers
```

Model 2 - Decision Trees

Predicted label

0) Explore data (with ggplot)

Out[120]: <ggplot: (7545485713)>

```
predictors = ['Calories','Total_Fat', 'Saturated_Fat', 'Trans_Fat', 'Cho
In [74]:
         lesterol', 'Sodium',
                 'Carbohydrates', 'Protein', 'Sugar', 'Dietary_Fiber', 'Calories_1
         00g',
                 'Total_Fat_100g', 'Saturated_Fat_100g', 'Trans_Fat_100g',
                 'Cholesterol_100g', 'Sodium_100g', 'Carbohydrates_100g', 'Protein
         _100g',
                 'Sugar 100g', 'Dietary Fiber 100g']
         X = pizza[predictors]
         y = pizza["Food_Category"]
         kf = KFold(5, shuffle = True)
         acc = []
         depth = []
         for train, test in kf.split(X):
             X_train = X.iloc[train,]
             X_test = X.iloc[test,]
             y train = y[train]
             y_test = y[test]
             z = StandardScaler()
             z.fit(X_train)
             Xz_train = z.transform(X_train)
             Xz_test = z.transform(X_test)
             tree = DecisionTreeClassifier()
             tree.fit(Xz train,y train)
             acc.append(tree.score(Xz_test,y_test))
             depth.append(tree.get depth())
             plot confusion matrix(tree, Xz test, y test)
```


1) Explain which variables you're using to predict the outcome.

I used all variables except 'Item_Name' and 'Item_Description' because it made the model score INCREDIBLY high. I ran the model multiple times, each time changing the variables, to test how the model would score. It scored best when including all but the 2.

2) Explain which model validation technique you're using and why.

I used decision trees because you can use them with continuous variables. I decided to go with k fold cv because LOO is computationally expensive.

3) Explain why you did or did not choose to standardize your continuous variables.

After figuring out which variables I wanted to use I ran the model with z scored and non z scored data and the model did better when I standardized my continuous variables.

4) Evaluate how the model performed. Explain.

My model did very good. From the accuracy scores of the k fold models the mean is 97%. This means that my model is about 97% accurate when it comes to predicting whether a food is a burger or pizza.

```
In [76]: print(acc)
          [0.9595375722543352, 0.9595375722543352, 0.976878612716763, 0.971098265
          8959537, 0.97109826589595371
In [77]:
          print(np.mean(acc))
          0.9676300578034681
In [78]:
          print(depth)
          [12, 13, 14, 13, 16]
          plot_confusion_matrix(tree, Xz_test, y_test)
In [79]:
Out[79]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1c2
          0cc5210>
                                                     100
             Burgers -
                                                     80
           Frue label
                                      1.2e+02
               Pizza
                        Burgers
                                       Pizza
                            Predicted label
```

Model 3 - Logistic Regression

0) Explore data (with ggplot)

Out[121]: <ggplot: (7545493337)>

```
In [68]:
         predictors = ['Calories','Total_Fat', 'Saturated_Fat', 'Trans_Fat', 'Cho
         lesterol', 'Sodium',
                 'Carbohydrates', 'Protein', 'Sugar', 'Dietary Fiber', 'Calories 1
         00g',
                 'Total_Fat_100g', 'Saturated_Fat_100g', 'Trans_Fat_100g',
                 'Cholesterol_100g', 'Sodium_100g', 'Carbohydrates_100g', 'Protein
         _100g',
                 'Sugar 100g', 'Dietary Fiber 100g']
         X = pizza[predictors]
         y = pizza["Food_Category"]
         kf = KFold(n splits = 5)
         kf.split(X)
         lr = LogisticRegression()
         acc = [] #empty list to store accuracy for each fold
         matrix = [] #empty list to store confusion matrix of each fold
```

```
In [69]: # Use a for loop to loop through each fold and train a model, then add t
         he accuracy to acc.
         for train_indices, test_indices in kf.split(X):
             # Get your train/test for this fold
             X train = X.iloc[train indices]
             X_test = X.iloc[test_indices]
             y train = y[train indices]
             y_test = y[test_indices]
             #standardize
             zscore = StandardScaler()
             zscore.fit(X_train)
             Xz_train = zscore.transform(X_train)
             Xz_test = zscore.transform(X_test)
             # model
             model = lr.fit(Xz_train, y_train)
             # record accuracy
             acc.append(accuracy_score(y_test, model.predict(Xz_test)))
             # confusion matrix
             matrix.append(confusion_matrix(y_test, model.predict(Xz_test)))
```

1) Explain which variables you're using to predict the outcome.

I used all variables except 'Item_Name' and 'Item_Description' because it made the model score INCREDIBLY high. I ran the model multiple times, each time changing the variables, to test how the model would score. It scored best when including all but the 2.

2) Explain which model validation technique you're using and why.

I used logistic regression because it is an appropriate model to use when predicting categorical data. I decided to go with k fold cv because LOO is computationally expensive.

3) Explain why you did or did not choose to standardize your continuous variables.

After figuring out which variables I wanted to use I ran the model with z scored and non z scored data and the model did better when I standardized my continuous variables.

4) Evaluate how the model performed. Explain.

My model did very good. From the accuracy scores of the k fold models the mean is 97%. This means that my model is about 97% accurate when it comes to predicting whether a food is a burger or pizza.

```
In [22]: print(acc)
          [0.9653179190751445, 0.9710982658959537, 0.9826589595375722, 0.97109826
          58959537, 0.9710982658959537, 0.9710982658959537, 0.976878612716763, 0.
          9421965317919075, 0.9826589595375722, 0.9942196531791907
In [23]:
         print(np.mean(acc))
          0.9728323699421966
         plot confusion_matrix(lr, Xz_test, y_test)
In [72]:
Out[72]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1c2
          363fc10>
                        91
                                      18
            Burgers
          True labe
              Pizza
                       Burgers
                                     Pizza
                           Predicted label
In [71]:
         print(matrix)
          [array([[97, 15],
                 [ 0, 61]]), array([[ 41,
                    9, 117]]), array([[ 6,
                                                01,
                    1, 166]]), array([[ 0,
                    1, 172]]), array([[91, 18],
                 [ 0, 64]])]
```

5) Compare the performance of the 3 models using the accuracy, and the confusion matrix (consider things like how many it got correct, which errors it was most likely to make...etc).

Model 1 (KNN) scored an accuracy score of 97%, model 2 (decision tree) accuracy scores of the k fold models the mean is 97%, and model 3 (logistic regression) accuracy scores of the k fold models the mean is 97%. There are many variables in all 3 models and I think that is why they performed so well.

As for the confusion matrix, model 3 hdad the largest amount of false positives and model 2 had the largest amount of false negatives. All 3 models were more likely to make an error when predicting it was a pizza when it was actually a burger.

Part II

Use the dataset *KrispyKreme.csv* to build 2 clustering models (you can use any of the clustering models we've learned).

For each model:

- 1. Explore data (with ggplot)
- 2. Explain which variables you're using to predict the outcome.
- 3. Evaluate how the model performed using sihouette scores. Look at different numbers of cluseters (like k = 3,5..etc). Which number of clusters is the best fit?
- 4. Describe the clusters (what are they like? how are they different)

At the end:

1. Compare the clusters obtained by the two models. Overall are they similar? or really different (i.e. do they contain mostly the same members?)

I droppped some columns in the KrispyKreme dataset that had many NAs

```
In [2]: donut = pd.read_csv("https://raw.githubusercontent.com/cmparlettpellerit
i/CPSC392ParlettPelleriti/master/Data/KrispyKreme.csv")

donut = donut.drop("Serving_Size_text",axis = 1)
    donut = donut.drop("Serving_Size_household",axis = 1)
    donut = donut.drop('Potassium_100g',axis = 1)
    donut = donut.drop('Potassium',axis = 1)
    donut = donut.dropna()

donut = donut.reset_index()
```

Out[2]:

	index	Restaurant_Item_Name	restaurant	Restaurant_ID	Item_Name	Item_Description	Food_(
0	0	Krispy Kreme Apple Fritter	Krispy Kreme	49	Apple Fritter	Apple Fritter, Doughnuts	Bak€
1	2	Krispy Kreme Chocolate Iced Custard Filled Dou	Krispy Kreme	49	Chocolate Iced Custard Filled Doughnut	Chocolate Iced Custard Filled Doughnut, Doughnuts	Bake
2	5	Krispy Kreme Football Doughnut	Krispy Kreme	49	Football Doughnut	Football Doughnut, Doughnuts	Bake
3	6	Krispy Kreme Chocolate Iced w/ Kreme Filling	Krispy Kreme	49	Chocolate Iced w/ Kreme Filling	Chocolate Iced w/ Kreme Filling, Doughnuts	Bake
4	8	Krispy Kreme Chocolate Iced Raspberry Filled D	Krispy Kreme	49	Chocolate Iced Raspberry Filled Doughnut	Chocolate Iced Raspberry Filled Doughnut w/ Tw	Bake

5 rows × 29 columns

```
In [3]: donut.shape
Out[3]: (174, 29)
```

Model 1 - K Means

0) Explore data (with ggplot)

Out[79]: <ggplot: (7547604505)>

Out[87]: <ggplot: (7547580341)>

```
In [88]:
         donut.columns
Out[88]: Index(['index', 'Restaurant Item Name', 'restaurant', 'Restaurant ID',
                 'Item_Name', 'Item_Description', 'Food_Category', 'Serving_Siz
         e',
                 'Serving Size Unit', 'Calories', 'Total_Fat', 'Saturated_Fat',
                 'Trans Fat', 'Cholesterol', 'Sodium', 'Carbohydrates', 'Protei
         n',
                 'Sugar', 'Dietary_Fiber', 'Calories_100g', 'Total_Fat_100g',
                 'Saturated_Fat_100g', 'Trans_Fat_100g', 'Cholesterol_100g',
                 'Sodium_100g', 'Carbohydrates_100g', 'Protein_100g', 'Sugar_100
         g',
                 'Dietary Fiber 100g'],
               dtype='object')
         features = ['Restaurant_ID','Serving_Size','Calories', 'Total_Fat', 'Sat
In [48]:
         urated Fat',
                 'Trans_Fat', 'Cholesterol', 'Sodium', 'Carbohydrates', 'Protein',
                 'Sugar', 'Dietary_Fiber', 'Calories_100g', 'Total_Fat 100g',
                 'Saturated_Fat_100g', 'Trans_Fat_100g', 'Cholesterol_100g',
                 'Sodium_100g', 'Carbohydrates_100g', 'Protein_100g', 'Sugar_100g'
                 'Dietary_Fiber_100g']
         X = donut[features]
         #no z score because it scored higher without
         num k = [2]
         sil_score = {}
         for k in num k:
             km = KMeans(n clusters = k)
             km.fit(X)
             membership = km.predict(X)
             XALL = X
             XALL["clust"] = membership
             sil score[k] = silhouette_score(X, membership)
         print(sil score)
```

{2: 0.5960680542952679}

1) Explain which variables you're using to predict the outcome.

I used all of the variables except for 'index', 'Restaurant_Item_Name', 'restaurant', 'Item_Name', 'Item_Name', 'Item_Description', 'Food Category', and 'Serving Size Unit' because they're qualitative and just not necessary.

2) Evaluate how the model performed using silhouette scores. Look at different numbers of clusters (like k = 3,5...etc). Which number of clusters is the best fit?

I tried clusters of 2 through 5 and the number of clusters that fit the best is 2. It scored a silhouette score of 59.6%

{2: 0.5960680542952679, 3: 0.45346163041796134, 4: 0.4043417914516611, 5: 0.41149175279515054}

3) Describe the clusters (what are they like? how are they different)

Cluster 1 has a lot more data points than cluster 0. From the scatter plots below you can see that cluster 0 contains a lot of products that are pretty low in sugar but high in total fat compared to cluster 1. The boxplot shows that cluster 0 has a bigger spread when it comes to calories.

Out[50]: <ggplot: (7554838701)>

```
In [49]: (ggplot(XALL, aes(x = "Calories", y = "Sugar", color = "factor(membershi
p)")) + geom_point())
```


Out[49]: <ggplot: (7554556497)>

```
In [60]: (ggplot(XALL, aes(x = "Calories", y = "Total_Fat", color = "factor(membe rship)")) + geom_point())
```


Out[60]: <ggplot: (7552949845)>

Out[52]: <ggplot: (7554555117)>

Model 2 - GM

0) Explore data (with ggplot)

In [111]: (ggplot(donut, aes('Sugar'))) + geom_histogram()

Out[111]: <ggplot: (7550102361)>

Out[126]: <ggplot: (7548987373)>

```
In [53]: features = ['Restaurant_ID', 'Serving_Size', 'Calories', 'Total_Fat', 'Sat
         urated Fat',
                 'Trans_Fat', 'Cholesterol', 'Sodium', 'Carbohydrates', 'Protein',
                 'Sugar', 'Dietary_Fiber', 'Calories_100g', 'Total_Fat_100g',
                 'Saturated_Fat_100g', 'Trans_Fat_100g', 'Cholesterol_100g',
                 'Sodium 100g', 'Carbohydrates 100g', 'Protein 100g', 'Sugar 100g'
                 'Dietary Fiber 100g']
         X = donut[features]
         n components = [2]
         sils = \{\}
         for n in n components:
             gmm = GaussianMixture(n_components = n)
             gmm.fit(X)
             membership = km.predict(X)
             Xdf = X
             Xdf["clust"] = clusters
             sil_score[k] = silhouette_score(X, clusters)
             sils[n] = silhouette_score(X, clusters)
         print(sils)
```

{2: 0.5960680542952679}

1) Explain which variables you're using to predict the outcome.

I used all of the variables except for 'index', 'Restaurant_Item_Name', 'restaurant', 'Item_Name', 'Item_Description', 'Food_Category', and 'Serving_Size_Unit' because they're qualitative and just not necessary.

2) Evaluate how the model performed using silhouette scores. Look at different numbers of clusters (like k = 3,5...etc). Which number of clusters is the best fit?

I tried clusters of 2 through 5 and the number of clusters that fit the best is 2. It scored a silhouette score of 59.6%. I am suspicous and confused as to how my GM model of 2 clusters scored the same silhouette score as my k means model of 2 clusters.

{2: 0.5960680542952679, 3: 0.39920606824182314, 4: 0.33943570922222954, 5: 0.3506574311697758}

3) Describe the clusters (what are they like? how are they different)

Cluster 0 has a lot more data points than cluster 1. From the scatter plots below you can see that cluster 1 contains a lot of products that are pretty low in sugar and low in total fat compared to cluster 0. The boxplot shows that cluster 0 has a bigger spread when it comes to calories.

Out[55]: <ggplot: (7553296633)>

Out[54]: <ggplot: (7554693637)>

```
In [63]: (ggplot(Xdf,aes(x = "Calories", y = "Total_Fat", color = "factor(members
hip)")) + geom_point())
```


Out[63]: <ggplot: (7553302345)>

Out[56]: <ggplot: (7554842253)>

4) Compare the clusters obtained by the two models. Overall are they similar? or really different (i.e. do they contain mostly the same members?)

The clusters from k means and GM are kind of similar. They are only similar in the fact that both of their cluster 0 has a bigger spread in calories and is low in total fat. The size of Cluster 0 in k means is much smaller and higher in sugar than cluster 0 in GM.