

Conversores CA/CC (retificadores)

Montagens controladas

v1.2, outubro de 2017

Exercício 1

Considere a montagem P2 representada no circuito ao lado, em que $v_1 = -v_2 = 230\sqrt{2}\mathrm{sen}\left(100\pi t\right)$

- i) Assuma R = 10Ω , E = 0 e L = 0
- ii) Assuma R = 10Ω , E = 150 V e L = 0
- iii) Assuma R = 10 Ω , E = -50 V e corrente na carga constante

Para cada uma das condições atrás apresentadas e com um ângulo de disparo igual a $\frac{\pi}{2}$:

- a) Esboce as formas de onda de $v'_o(t)$ e $i'_o(t)$.
- b) Determine o valor médio da tensão e corrente na carga.
- c) Calcule a potência ativa fornecida pela fonte.

Soluções:

```
i)
b) v'_{o\_m\'edio} = 103,5 \text{ V}; i'_{o\_m\'edio} = 10,35 \text{ A}
c) P = 2644 \text{ W}
ii)
b) v'_{o\_m\'edio} = 189,7 \text{ V}; i'_{o\_m\'edio} = 3,97 \text{ A}
c) P = 1147 \text{ W}
iii)
b) v'_{o\_m\'edio} = 0 \text{ V}; i'_{o\_m\'edio} = 5 \text{ A}
c) P = 0 \text{ W}
```

Exercício 2

Considere a montagem P3 representada no circuito ao lado, alimentada por um sistema trifásico 230/400 V, 50 Hz.

- i) Assuma R = 100 Ω e que L é suficientemente grande para poder considerar
 - a corrente constante na carga. Os tiristores são disparados com $\,\alpha=\frac{\pi}{6}\,.$
 - a) Esboce as formas de onda de $v'_o(t)$, $i'_o(t)$ e $v_{\rm Tl}(t)$.
 - b) Determine o valor médio da tensão e corrente na carga.
 - c) Calcule a potência dissipada na carga.
 - d) Calcule o fator de potência na fonte.
- ii) Repita as alíneas anteriores considerando L = 0,1 H, R = 100 Ω e $\alpha = \frac{\pi}{3}$.

Soluções:

b)
$$v'_{o_m\'edio} = 233,0 \text{ V}$$
; $i'_{o_m\'edio} = 2,33 \text{ A}$

d)
$$FP = 0.585$$

b)
$$v'_{o_m\'edio} = 148,3 \text{ V}$$
; $i'_{o_m\'edio} = 1,48 \text{ A}$

d)
$$FP = 0.434$$

Exercício 3

Considere a montagem PD3 representada no circuito ao lado, alimentada pela rede elétrica nacional.

- i) Assuma L = 0 H, R = 10 Ω e que os tiristores são disparados com $\alpha = \frac{\pi}{2}$.
 - a) Esboce as formas de onda de $v'_o(t)$, $i'_o(t)$.
 - b) Determine o valor médio da tensão e corrente na carga.
- ii) Repita as alíneas anteriores considerando R = 10 Ω , corrente constante na carga e que os tiristores são disparados com $\alpha=\frac{\pi}{3}$.

- iii) Coloque um díodo de roda livre em anti-paralelo com a carga. Assuma R = 10 Ω , corrente constante na carga e que os tiristores são disparados com $\alpha = \frac{\pi}{2}$.
 - a) Esboce a forma de onda de $v'_o(t)$.
 - b) Determine o valor médio da tensão na carga.

Soluções:

```
b) v'_{o\_m\'edio} = 72,1 \text{ V}; i'_{o\_m\'edio} = 7,21 \text{ A}
```

b)
$$v'_{o_m\'edio} = 72,1 \text{ V}$$

Exercício 4

Considere a montagem PD2 mista representada no circuito ao lado, em que $v_1 = -v_2 = 230\sqrt{2} \mathrm{sen} \left(100\pi t\right)$. Assuma R = 10 Ω , E = 50 V e que L é suficientemente grande para poder considerar a corrente constante na carga. Os tiristores são disparados com $\alpha = \frac{\pi}{3}$.

- a) Determine o valor médio da tensão e da corrente na carga.
- b) Esboce as formas de onda de $v'_o(t)$, $i'_o(t)$, $i_{s1}(t)$, $i_{T1}(t)$ e $i_{D1}(t)$.
- c) Determine o valor médio e eficaz de $i_{s1}(t)$.
- d) Determine o ângulo de disparo dos tiristores para que o valor médio da corrente na carga seja igual a 15 A.

Soluções:

a)
$$v'_{o_m\'edio} = 310,6 \text{ V}$$
; $i'_{o_m\'edio} = 26,06 \text{ A}$

c)
$$i_{s1_m\'edio} = 0 \text{ A}$$
; $i_{s1_rms} = 21,2 \text{ A}$

d)
$$\alpha = 92^{\circ}$$

Exercício 5

Considere a montagem PD3 mista representada na figura, alimentada por um sistema trifásico 230/400 V, 50 Hz.

- i) Assuma R = 10 Ω e corrente constante na carga. Os tiristores são disparados com $\alpha = \frac{\pi}{6}$.
 - a) Determine o valor médio da tensão e corrente na carga.
 - b) Esboce as formas de onda de $v'_o(t)$ e $i_{s1}(t)$.
 - c) Determine o valor médio e eficaz de $i_{s1}(t)$.
- ii) Considere L = 5 mH, mantendo as restantes condições. Calcule o ângulo de condução dos semicondutores e verifique se a condução é contínua.

Soluções:

c)
$$i_{s1_m\acute{e}dio} = 0 \text{ A}$$
; $i_{s1_rms} = 41.0 \text{ A}$

ii) $\gamma = 120^{\circ}$; sim