Aproksymacja rozwiązań układów równań metodą Jacobiego i Seidla

Bartosz Zasieczny

21 stycznia 2014

Spis treści

1	Treść zadania Algorytmy			
2				
	2.1	Metod	da Jacobiego	. 2
			da Gaussa-Seidla	
3	Przykładowe rozwiązania			
	3.1	Macie	erz Pei	. 2
		3.1.1	Metoda Jacobiego	. 2
			Metoda Seidla	
	3.2	Macie	erz Hillberta	. 2
		3.2.1	Metoda Jacobiego	. 2
		3.2.2	Metoda Seidla	. 2

1 Treść zadania

Za pomocą metod Jacobiego i Siedla wyznaczyć przybliżone rozwiązanie \tilde{x} układu równań liniowych Ax = b $(A = [a_{i,j}] \in \mathbb{R}^{n \times n})$, przyjmując że $\tilde{x} = x^{(k)}$, gdzie k jest najmniejszą liczbą naturalną dla której zachodzi nierówność:

$$\frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} < \epsilon.$$

Wykonać obliczenia kontrolne m. in. dla macierzy Pei i Hillberta i omówić wyniki, podając wartość $\|b-A\tilde{x}\|_{\infty}$, gdzie \tilde{x} jest obliczonym rozwiązaniem, jak również przyjmując różne wartości parametrów n i d. Można założyć, że rozwiązaniem dokładnym jest wektor $e:=[1,1,...,1]^T$ lub, inaczej mówiąc, że b:=Ae.

2 Algorytmy

2.1 Metoda Jacobiego

Metoda Jacobiego jest metodą iteracyjną, gdzie kolejne przybliżenia rozwiązania układu równań Ax = b znajdujemy poprzez rozwiązanie poniższego równania na macierzach:

$$x^{k+1} = Mx^k + Nb$$

gdzie:

$$N = D^{-1}$$

$$M = -N(L + U)$$

$$D[i, j] = \begin{cases} A[i, j] & i = j \\ 0 & \text{w p. p.} \end{cases}$$

$$L[i, j] = \begin{cases} A[i, j] & i < j \\ 0 & \text{w p. p.} \end{cases}$$

$$U[i, j] = \begin{cases} A[i, j] & i > j \\ 0 & \text{w p. p.} \end{cases}$$

Natomiast x^0 jest wektorem zerowym.

2.2 Metoda Gaussa-Seidla

Metoda Gaussa-Seidla różni się od poprzedniej tylko wzorem, za pomocą którego wyznaczamy następne iteracje:

$$x^{k+1} = Nb + -NLx^k - NUx^k$$

3 Przykładowe rozwiązania

- 3.1 Macierz Pei
- 3.1.1 Metoda Jacobiego
- 3.1.2 Metoda Seidla
- 3.2 Macierz Hillberta
- 3.2.1 Metoda Jacobiego
- 3.2.2 Metoda Seidla