Project: closest pair problem vs data stream

劉承順

Simplify

If we can solve the closest pair problem, we can solve the problem "find minimum difference between any two elements in an unsorted array".

Method: just let the elements in the array have y-axis value 0. Then the distance of the closest pair is the minimum difference.

Hardness proof

Claim: A 1-pass deterministic algorithm to the minimum difference problem (and closest pair problem) can't have space complexity under $\Omega(n)$.

Proof:similar to the indexing problem.

Alice is the input, Bob is the program.

Alice send n distinct number + 1 repeat number to Bob.

Bob would answer the index (1^n) of the repeated number.

Bob must use at least $\Omega(n)$ space before he know the repeat number.

approximate of minimum difference problem

Find r points: $\frac{n}{r+1}$ -th, $\frac{2n}{r+1}$ -th,..., $\frac{rn}{r+1}$ -th largest number by using find k-th number in streaming model.

Then at least a difference of two point

less than $\frac{max-min}{r}$ can be found.

O(r) pass, $O(rn^{\frac{1}{r}}\log n)$ space.