EL PROBLEMA DE CONJUGACIÓN PARA MATRICES ENTERAS

GUIDO ARNONE

Teorema 1 ([1, Theorem]). Sea α un entero algebraico y $\mathcal{O} = \mathbb{Z}[\alpha]$. Existe una correspondencia biyectiva entre ideales fraccionarios de \mathcal{O} y clases de conjugación de matrices enteras con polinomio característico $m(\alpha, \mathbb{Q})$.

ÓRDENES E IDEALES FRACCIONARIOS

Sea K una extensión finita de \mathbb{Q} y \mathcal{O}_K su anillo de enteros. Un *orden* de K es un subanillo que como \mathbb{Z} -módulo tiene rango $[K:\mathbb{Q}]$. Notar que $Frac(\mathcal{O}) = K$, ya que el primer cuerpo está contenido en el segundo y ambos tienen la misma \mathbb{Q} -dimensión. Un \mathcal{O} -ideal fraccionario es un \mathcal{O} -módulo $I \subset K$; siempre existe $x \in \mathcal{O}$ y un ideal $J \subseteq \mathcal{O}$ tal que $I = \frac{1}{x}J$.

Ejemplo 1. Si α es un entero algebraico y $K = \mathbb{Q}(\alpha)$, entonces $\mathbb{Z}[\alpha]$ es un orden de \mathcal{O}_K . En particular $\mathbb{Z}[\sqrt{-5}]$ es un orden de $\mathbb{Q}(\sqrt{-5})$ que está contenido propiamente en su anillo de enteros $\mathbb{Z}[\frac{1+\sqrt{-5}}{2}]$.

Dos \mathcal{O} -ideales fraccionarios I y J se dicen *equivalentes* si I = xJ para algún $x \in K \setminus \{o\}$. Esta es una relación de equivalencia; notamos ICM(\mathcal{O}) al conjunto de clases de equivalencia de ideales fraccionarios. La multiplicación de ideales define una estructura de monoide en este conjunto; notamos Pic(\mathcal{O}) al grupo de elementos inversibles de ICM(\mathcal{O}). En general, si $\mathcal{O} \neq \mathcal{O}_K$, no todo ideal fraccionario es inversible.

Precisaremos los siguientes lemas sobre ideales fraccionarios más adelante.

Lema 2. Sea K una extensión finita de $\mathbb Q$ y O un orden de K. Dos O-ideales fraccionarios I y J son equivalentes si y sólo si son isomorfos como O-módulos. Más aún, isomorfismo O-lineal I \rightarrow J está dado por la multiplicación por un elemento de K \ {0}.

Demostración. Si I = xJ para cierto x ∈ K \ {o}, el morfismo $j ∈ J \mapsto xj ∈ I$ resulta un isomorfismo \mathcal{O} -lineal. Recíprocamente, supongamos que tenemos un isomorfismo \mathcal{O} -lineal ϕ : I → J. Por la implicación ya demostrada, podemos suponer que I, J ⊂ \mathcal{O} , es decir que I y J son ideales de \mathcal{O} . Ahora, dado x ∈ I no nulo, para cada i ∈ I es

$$\varphi(x)i = \varphi(xi) = x\varphi(i).$$

Esto implica que φ coincide con el morfismo dado por la multiplicación por $\varphi(x)/x$. En particular tomando imágenes es $J = \frac{\varphi(x)}{x}I$.

Lema 3. Sea K una extensión finita de \mathbb{Q} . Si \mathcal{O} es un orden de K, todo \mathcal{O} -ideal fraccionario no nulo tiene rango $[K:\mathbb{Q}]$ como \mathbb{Z} -módulo.

Demostración. Sea I un \mathcal{O} -ideal fraccionario, que salvo isomorfismo \mathcal{O} -lineal (en particular, \mathbb{Z} -lineal) podemos suponer contenido en \mathcal{O} . Tensorizando por \mathbb{Q} a la sucesión exacta o → I \hookrightarrow $\mathcal{O} \twoheadrightarrow \mathcal{O}/I \longrightarrow$ o vemos que rk I = rk \mathcal{O} si y sólo si rk \mathcal{O}/I = o. Para ver esto último probaremos que \mathcal{O}/I es finito: dado $x \in I$ no nulo tenemos un epimorfismo $\mathcal{O}/x\mathcal{O} \longrightarrow \mathcal{O}/I$; podemos asumir entonces que I = (x). Finalmente, el mismo argumento que en el caso $\mathcal{O} = \mathcal{O}_K$ prueba que el cociente $\mathcal{O}/x\mathcal{O}$ tiene cardinal $N_{K/\mathbb{Q}}(x)$. \divideontimes

2. EL TEOREMA DE LATIMER-MACDUFFEE

En esta sección probamos el Teorema 1. Fijemos α un entero algebraico con polinomio minimal f de grado n y notemos $\mathcal{O} = \mathbb{Z}[\alpha]$ y $K = \mathbb{Q}(\alpha)$.

1

Observemos que para todo \mathcal{O} -ideal fraccionario I la multiplicación por α define un morfismo \mathbb{Z} -lineal,

$$m_{\rm I} : {\rm I} \to {\rm I}, \qquad x \mapsto \alpha x.$$

Por el Lema $_3$, todo tal ideal I es \mathbb{Z} -libre de rango n; en paticular, dada una \mathbb{Z} -base B de I, podemos considerar la matriz $[L_I]_B \in M_n \mathbb{Z}$ de L_I en base B. Si cambiamos la base por otra, digamos B', entonces $[L_I]_B$ y $[L_I]_{B'}$ son conjugadas con matriz de conjugación la matriz de cambio de base $C_{B,B'}$.

Por otro lado, si J es un \mathcal{O} -ideal fraccionario equivalente a I, por el Lema 2 esto equivale a tener un isomorfismo \mathcal{O} -lineal $\varphi \colon I \to J$ dado por la multiplicación por cierto elemento $\beta \in K \setminus \{o\}$. Se sigue de aquí que $\varphi m_I = m_I \varphi$, pues

$$\varphi(m_{\mathrm{I}}(x)) = \varphi(\alpha x) = \beta \alpha x = \alpha \beta x = m_{\mathrm{I}}(\varphi(x))$$

para todo $x \in I$. En particular, dadas \mathbb{Z} -bases B de I y B' de J, las matrices $[L_I]_B$ y $[L_J]_{B'}$ serán conjugadas con matriz de conjugación $[\phi]_{B,B'}$. (También se puede observar que si J = xI para cierto $x \in K \setminus \{o\}$, entonces $[L_J]_{xB} = [L_I]_B$.)

Si I es un \mathcal{O} -ideal fraccionario, vamos a notar $[L_I]$ a la clase de conjugación de las matrices $[L_I]_B$ donde B es una \mathbb{Z} -base de I. El conjunto de matrices de $M_n\mathbb{Z}$ de polinomio característico f será denotado M_f ; recordemos que $GL_n(\mathbb{Z})$ actúa allí por conjugación. La discusión anterior prueba la siguiente proposición.

Proposición 4. Se tiene una función bien definida

(5)
$$\Lambda \colon \operatorname{ICM}(\mathcal{O}) \to \operatorname{M}_f/\operatorname{GL}_n(\mathbb{Z}), \qquad [I] \mapsto [L_I].$$

*

El Teorema 1 será una consecuencia de que la función Λ es biyectiva, como veremos a continuación.

Proposición 6. La función (5) es sobreyectiva.

Observemos que

$$n = \dim_{\mathbb{Q}} M = \dim_{\mathbb{K}} M \cdot \dim_{\mathbb{Q}} K = \dim_{\mathbb{K}} M \cdot n$$
,

así que $\dim_K M = 1$. En consecuencia, existe un isomorfismo K-lineal $\varphi \colon M \to K$, que se restringe entonces a un isomorfismo \mathcal{O} -lineal $\varphi \colon N \to \varphi(N)$. Por definición $I := \varphi(N)$ es un \mathcal{O} -ideal fraccionario y la multiplicación por α en I tiene matriz A en base $\{\varphi(e_1), \ldots, \varphi(e_n)\}$. En particular $\Lambda([I]) = [A]$.

Proposición 7. La función (5) es inyectiva.

Demostración. Supogamos que $[L_I] = [L_J]$, de forma que existen una matriz $U ∈ GL_n \mathbb{Z}$ y \mathbb{Z} -bases B de I y B' de J tal que $U[L_I]_B = [L_J]_{B'}U$. La matriz U define un isomorfismo \mathbb{Z} -lineal I → J que, al conmutar con la multiplicación por α , es además \mathcal{O} -lineal. Por el Lema 2, se tiene entonces que [I] = [J]. \divideontimes

3. EJEMPLOS

3.1. De matrices a ideales. Si \mathcal{O}_K es monogenerado y $\text{Cl}(\mathcal{O}_K)$ = 1, todo par de matrices con polinomio característico f son conjugadas. Hagamos un ejemplo no trivial.

Consideremos d=-5 y K = $\mathbb{Q}(\sqrt{-5})$, $\mathcal{O}=\mathcal{O}_K=\mathbb{Z}[\sqrt{-5}]$. Como consecuencia de la cota de Minkowski, el grupo de clases de \mathcal{O} es isomorfo a \mathbb{Z}_2 , generado por I = $(2,1+\sqrt{5})$. Tomemos como \mathbb{Z} -base de (1) a $\{1,\sqrt{-5}\}$. De esta forma, la multiplicación de $\sqrt{-5}$ tiene en esta base

matriz A =
$$\begin{pmatrix} 0 & -5 \\ 1 & 0 \end{pmatrix}$$
. Para I tomamos la \mathbb{Z} -base $\{2, 1 + \sqrt{5}\}$; como $2\sqrt{-5} = -2 + 2(1 + \sqrt{-5})$ y

 $\sqrt{-5}(1+\sqrt{-5}) = -5+\sqrt{-5} = -3\cdot 2 + (1+\sqrt{-5})$, la multiplicación por $\sqrt{-5}$ en esta base tiene matriz $B = \begin{pmatrix} -1 & -3 \\ 2 & 1 \end{pmatrix}$.

Por el Teorema 1, toda matriz entera C de 2×2 que satisfaga $C^2 = -5I$ es conjugada a A ó B, y estas dos últimas no son conjugadas.

- 3.2. De ideales a matrices.
- 3.3. Una matriz que no es conjugada a su transpuesta.

4. CONJUGACIÓN POR
$$SL_n \mathbb{Z}$$

Refinamos ahora nuestra pregunta inicial. Si UA = BU para ciertas matrices A, B \in M_n \mathbb{Z} y U \in GL_n \mathbb{Z} , entonces det U = ± 1 .

¿Cuándo son dos matrices enteras conjugadas por una matriz de determinante 1?

Ejemplo 2.

Cuando n es impar, esta relación no es más estricta que la ya considerada: si det U = -1 entonces det -U = -1 y (-U)A = B(-U).

4.1. El narrow-class group. Un elemento $x \in K$ se dice positivo si $N_{K/\mathbb{Q}}(x) > 0$ y totalmente positivo si $\sigma(x) > 0$ para todo embedding real $\sigma \colon K \to \mathbb{R}$. Notamos $K^+ \subset K$ al conjunto de elementos totalmente positivos y $\mathcal{O}^+ = \mathcal{O} \cap K^+$. Se define el narrow-class group de \mathcal{O} como el grupo $\mathrm{Cl}^+(\mathcal{O})$ de \mathcal{O} -ideales fraccionarios inversibles módulo la relación de equivalencia $\mathrm{I} \sim \mathrm{J} \iff \mathrm{I} = x\mathrm{J}$ para cierto $x \in K$ totalmente positivo.

Observación 8. Observemos que $N_{K/\mathbb{Q}}(x)$ se puede ver como el producto de las imagenes de x a través de cada embedding $\sigma \colon K \to \mathbb{C}$. Algunos de ellos se pueden correstringir a \mathbb{R} . Si σ es un embedding complejo, también lo es $\overline{\sigma}$, y entonces $\sigma(x)\overline{\sigma}(x) = |\sigma(x)|^2 \ge 0$. El signo de la norma depende entonces únicamente de los embeddings reales; en particular, un elemento totalmente positivo es positivo.

Proposición 9. Se tiene una sucesión exacta corta

$$1 \to \mathcal{O}^{\times}/\mathcal{O}^{+} \to K^{\times}/K^{+} \to Cl^{+}(\mathcal{O}) \to Cl(\mathcal{O}) \to 1.$$

Demostración. Toda clase [I] de ideal fraccionario en Cl(\mathcal{O}) es imagen de la clase de igual representante en Cl⁺(\mathcal{O}); esto define un epimorfismo π: Cl⁺(\mathcal{O}) \rightarrow Cl(\mathcal{O}). El núcleo consiste de las clases [$x\mathcal{O}$] donde $x \in K^{\times}$. En particular se tiene un morfismo $x \in K^{\times}/K^{+} \mapsto [x\mathcal{O}] \in \text{Cl}^{+}(\mathcal{O})$. Su núcleo son las clases [x] ∈ K^{\times}/K^{+} que satisfacen [$x\mathcal{O}$] = [\mathcal{O}], esto es, que existe $y \in K_{+}$ tal que $x\mathcal{O} = y\mathcal{O}$; en particular $x/y \in \mathcal{O}$ y de forma simétrica $y/x \in \mathcal{O}$. Por lo tanto $x = y \cdot z$ con $z \in \mathcal{O}^{\times}$ y la clase de x en K^{\times}/K^{+} pertenece a \mathcal{O}^{\times} . Finalmente el núcleo del morfismo $\mathcal{O}^{\times} \rightarrow K^{\times}/K^{+}$ inducido por la inclusión $\mathcal{O}^{\times} \subset K^{\times}$ es $\mathcal{O}^{\times} \cap K^{+} = \mathcal{O}^{+}$. *

Observación 10. Observemos que si $x \in K^{\times}$, entonces $x^2 \in K^+$. En particular K^{\times}/K^+ y \mathcal{O}^{\times}/O^+ son 2-grupos.

4.2. Ejemplos en el caso cuadrático. Sea d un entero positivo libre de cuadrados y $d \not\equiv 1$ (mód 4). Tomando $K = \mathbb{Q}(\sqrt{d})$, es $\mathcal{O} = \mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$.

REFERENCIAS

[1] Claiborne G. Latimer and C. C. MacDuffee, *A correspondence between classes of ideals and classes of matrices*, Ann. of Math. (2) 34 (1933), no. 2, 313–316, DOI 10.2307/1968204. 1