

Software-Engineering / Software Qualität

Softwareprozesse - Teil 1

Prof. Dr. Cathrin Möller Prof. Dr. Martine Herpers Jochen Hosenfeld

Lernziele

- Kennen der wichtigsten Softwareprozessmodelle
- Verständnis der einzelnen Aktivitäten und ihrer Bedeutung
- Kennen der Bedeutung von Änderungsprozessen in der Softwareentwicklung

Inhalte

- Vorgehensmodelle
- Prozessaktivitäten
- Umgang mit Änderungen
- Rational Unified Process

Erklärung

Vorgehensmodell/Prozessparadigma

Vorgehensmodelle des SE

Wasserfallmodell

• V-Modell (für IT-Projekte der öffentlichen Hand in Deutschland)

Inkrementelle Entwicklung

 Wiederverwendungsorientiertes Software-Engineering

SE und SQ 24.04.2025 5

Analyse und Definition der Anforderungen Funktionalität, Einschränkungen, Ziele zusammen mit Systembenutzern festlegen => Ergebnis: Systemspezifikation

Analyse und Definition der Anforderungen

System- und Softwareentwurf

Anforderungen werden Software oder Hardware zugeordnet, Software Struktur festgelegt => Ergebnis System- und Software-Architektur

Analyse und Definition der Anforderungen

> System- und Softwareentwurf

Implementierung der Module, Tests der einzelnen Module => Ergebnis: Code-Module und Testprotokolle

Implementierung und Modultests

24.04.2025 SE und SQ 8

Analyse und Definition der Anforderungen

System- und Softwareentwurf

Implementierung und Modultests

Teile werden integriert und als Ganzes getestet => Ergebnis: fertiges System/Software

Integration und Systemtest

Analyse und Definition der Anforderungen

System- und Softwareentwurf

Implementierung und Modultests

Integration und Systemtest

Betrieb und Wartung

Installation, zum Gebrauch freigegeben. Korrektur von Fehlern und Verbesserungen bei neuen Anforderungen.

Dokumentensicht

Analyse und Definition der Anforderungen

Spezifikation

System- und Softwareentwurf

Architektur

Implementierung und Modultests

Modul + Test

Integration und Systemtest

Integriertes
System +
Test

Betrieb und Wartung

24.04.2025

Update

SE und SQ

11

Plangesteuertes Modell

SE und SQ 24.04.2025 12

Wasserfallmodell-Varianten

- Formale Systementwicklung für sicherheitskritische System
 - B-Methode (Pariser Metro, Linie 14)
 - Clean-Room-Prozess (IBM Ziel: Null-Fehler-Software)

V-Modell - Phasenmodell

Ähnlich dem Wasserfallmodell

Erklärungsvideo: https://www.youtube.com/watch?v=5ahIznlqFyo

V-Modell - Dokumentensicht

SE und SQ 24.04.2025 15

V-Modell vs. Wasserfallmodell

- Treffen die Aussagen unten auch für das V-Modell zu?
 - Plangesteuert
 - dokumentenlastig: Erstellung und Abnahme
 - Wenige Rückkopplungen erlaubt
 - Eingefrorene Dokumente für die Planeinhaltung

V-Modell vs. Wasserfallmodell

- Treffen die Aussagen unten auch für das V-Modell zu?
 - Plangesteuert
 - dokumentenlastig: Erstellung und Abnahme
 - Wenige Rückkopplungen erlaubt
 - Eingefrorene Dokumente für die Planeinhaltung

Ja, kein Unterschied zum Wasserfallmodell

Unterschiede V- vs. Wasserfall

- Beides sind Phasenmodelle:
 - einzelne in sich abgeschlossene Stufen
 - Einmaliger Durchlauf
 - Plangesteuert
 - dokumentenlastig
- Zusätzlich im V-Modell
 - Augenmerk auf das Testen
 - Zwei Zweige: Konstruktion und Test
 - Frühzeitige Planung der Tests

Inkrementelle Entwicklung

- Erste Version
- Kommentare von Kunden/Kundinnen
- Schrittweise Weiterentwicklung

Inkrementelle Entwicklung

Quelle: Ian Sommerville, Software Engineering, PEARSON, 2012

Inkrementelle Entwicklung

- Überlegen Sie mögliche Vor- und Nachteile gegenüber den plangesteuerten Phasenmodellen.
- Kriterien für die Bewertung der Modelle:
 - Zuverlässigkeit der Planung
 - Stabilität der Kundenwünsche
 - Unwissenheit über technische Möglichkeiten
 - sich ändernde Kundenwünsche (z.B. durch neue Technologien)
 - Schnelle Nutzbarkeit für Kunden/Kundinnen
 - Kosten für die Dokumentation
 - Qualität des Produkts

Wiederverwendungsorientiertes Software-Engineering

Aktivitäten-Diagramm

Quelle: Ian Sommerville, Software Engineering, PEARSON, 2012

Wiederverwendungsorientiertes Software-Engineering

Vorteile:

- Reduktion von Kosten für Neuentwicklung
- Reduktion der Risiken

Nachteile:

 Eventuell k\u00f6nnen nicht alle Anforderungen umgesetzt werden

Wiederverwendung

Bsp: Komponenten / Software muss erweitert werden um optionale Felder

Changes for reusability

Extending data fields for addresses => optional / identifier for country

```
import jakarta.persistence.Entity;
import jakarta.persistence.GeneratedValue;
import jakarta.persistence.Id;
import jakarta.validation.constraints.NotBlank;
@Entity
                                                  @Entity
public class Address {
                                                  public class Address {
                                                      @Id
    @GeneratedValue
                                                      @GeneratedValue
    private int id;
                                                      private int id;
    @NotBlank
                                                      @NotBlank
    private String street;
                                                      private String street:
    @NotBlank
                                                      @NotBlank
    private String houseNumber;
                                                      private String houseNumber;
    @NotBlank
                                                      private String stiege;
    private String postalCode;
                                                      @NotBlank
    @NotBlank
                                                      private String postalCode;
    private String city;
                                                      @NotBlank
                                                      private String city;
                                                      @NotBlank
                                                      private String country;
```


Prof. Dr. Cathrin Möller - Angewandte Informatik

Wiederverwendung

Bsp: Konfigurierbarkeit

Industry example - CBSE with reuse

Car vs Bike Insurance Portal / Health vs Pet Insurance Portal

- base data handling of user, address, contract identical
- payment handling identical
- different "product" pages describing the specific insurance
- different fields / attributes as options for the contract to be selected

Prof. Dr. Cathrin Möller - Angewandte Informatik

Wiederverwendung

"Pool" an vorhandener (Firmen-privater) Software vs public / open source

Reuse from company Nexus

https://www.sonatype.com/products/sonatype-nexus-repository

Big companies usually host a Nexus repository where all packages can be shared within the same without publishing them to the public NPM / Maven / ... repo

Although e.g. NPM has "company private" package hosting solutions as well

Inhalte

- Vorgehensmodelle
- Prozessaktivitäten
- Umgang mit Änderungen
- Rational Unified Process