Arborii de decizie (Decision trees)

Ce ne așteaptă?

- 1. Impuritatea Gini
- 2. Divizarea caracteristicilor categoriale binare
- 3. Divizarea caracteristicilor numerice
- 4. Divizarea caracteristicilor categoriale multiclass
- 5. Crearea arborelui de decizii
- 6. Instrumente Scikit-Learn

1. Impuritatea Gini

Impuritatea Gini un instrument matematic ce permite aprecierea gradului de uniformitatea a datelor unui grup

$$G(Q) = \sum_{c} p_c (1 - p_c)$$

- unde: c o clasa a datelor, p_c probabilitatea clasei c
- Impuritatea Gini se utilizează pentru determinarea caracteristicilor ce asigură ce mai bună divizare a datelor în procesul de elaborare a arborelui de decizie
- Impuritatea Gini a nodurilor finale trebuie să fie minim posibilă ceea ce ar însemna o divizare efectivă a claselor

Determinarea impurității Gini pentru un grup de date

$$G(rosu) = p_{rosu}(1 - p_{rosu}) = \frac{2}{4}\left(1 - \frac{2}{4}\right) = 0.25$$

$$G(albastru) = p_{albastru}(1 - p_{albastru}) = \frac{2}{4}\left(1 - \frac{2}{4}\right) = 0.25$$

$$G(grup) = G(rosu) + G(albastru) = 0.5$$

$$G(rosu) = p_{rosu}(1 - p_{rosu}) = \frac{1}{4} \left(1 - \frac{1}{4} \right) = 0.1875$$

$$G(albastru) = p_{albastru}(1 - p_{albastru}) = \frac{3}{4}\left(1 - \frac{3}{4}\right) = 0,1875$$

$$G(grup) = 0.3755$$

$$G(rosu) = p_{rosu}(1 - p_{rosu}) = \frac{0}{4} \left(1 - \frac{0}{4}\right) = 0$$

$$G(albastru) = p_{albastru}(1 - p_{albastru}) = \frac{4}{4}\left(1 - \frac{4}{4}\right) = 0$$

$$G(grup) = 0$$

2. Divizarea caracteristicilor categoriale binare

- Primul pas în algoritmul Decision Trees este determinarea caracteristicii nod rădăcină
- Pentru determinarea nodului rădăcină se determina caracteristica cu cea mai mică impuritate Gini
- Pentru determinarea impurității Ginii se va considera cazurile:
 - Caracteristici categoriale binare
 - Caracteristici numerice
 - Caracteristici categoriale cu clase multiple

Impuritatea Gini pentru caracteristicile categoriale binare

Χ	у	
Da	Da	
Da	Da	
Nu	Nu	
Nu	Nu	
Nu	Da	
Nu	Nu	
Da	Nu	

Impuritatea Gini pentru nodul final din stânga (când X=Da)

$$G(st\hat{a}nga) = p_{y=Da}(1 - p_{y=Da}) + p_{y=Nu}(1 - p_{y=Nu}) = \frac{2}{3}\left(1 - \frac{2}{3}\right) + \frac{1}{3}\left(1 - \frac{1}{3}\right) = 0,44$$

Impuritatea Gini pentru nodul final din dreapta(când $X \neq Da$)

$$\begin{split} G(dreapta) &= p_{y=Da} \Big(1 - p_{y=Da} \Big) + p_{y=Nu} \Big(1 - p_{y=Nu} \Big) = \\ &= \frac{1}{4} \left(1 - \frac{1}{4} \right) + \frac{3}{4} \left(1 - \frac{3}{4} \right) = 0,375 \end{split}$$

Impuritatea Gini pentru caracteristica X – media ponderată a impurității nodurilor rezultate din această caracteristică

$$G(X) = p_{x=Da} * G(stânga) + p_{x=Nu} * G(dreapta) = \frac{3}{7} * 0.44 + \frac{4}{7} * 0.375 = 0.403$$

3. Divizarea caracteristicilor numerice

- Selectarea criteriului de divizare
- Se reorganizează datele în ordinea crescătoarea a valorilor caracteristicii X
- Se determina valorile medii dintre datele vecine ale caracteristicii X

X	у		X	у		X	у
10	Da		10	Da		10	Da
40	Nu		20	Da		15 20	Da
20	Da		30	Nu		25 30	Nu
50	Nu		40	Nu		<mark>35</mark> 40 <mark>45</mark>	Nu
30	Nu		50	Nu		50	Nu @

 Se utilizează valorile medii (N) în calitatea de criterii de divizarea

Determinarea criteriului de divizare cu cea mai mică valoarea a impurității Gini

Se selectează criteriul de divizare cu cea mai mică valoarea a impurității Gini, iar această valoarea a impurității se va considera impuritatea Gini a caracteristicii X

4. Divizarea caracteristicilor categoriale multiclass

- Selectarea criteriilor de divizare
 - Criterii de divizare se vor considera valorile claselor dar şi combinaţii dintre acestea

X	у
Α	Da
В	Da
С	Nu
Α	Nu
В	Nu

X==A

X==A or B

X==B

X==A or C

X==C

X==B or C

Determinarea criteriului de divizare cu cea mai mică valoarea a impurității Gini

у
Da
Da
Nu
Nu
Nu

Se selectează criteriul de divizare cu cea mai mică valoarea a impurității Gini, iar această valoarea a impurității se va considera impuritatea Gini a caracteristicii X

5. Crearea arborelui de decizii

- Etapele de crearea a arborelui
- Determinarea impurității Gini a tuturor caracteristicilor
- 2. Selectarea caracteristicii cu cea mai mică valoarea a impurității Gini drept nodul rădăcină
- 3. Pe baze criteriului selectat a caracteristicii nodului rădăcină se divizează datele și se crearea nodurile copii ai nodului rădăcină
- 4. Se repetă etapele 1 3 pentru fiecare dintre nodurile create
- 5. Procesul de divizarea se va opri atunci când:
 - Se va obține valoarea nulă a impurității Gini
 - Se va atinge valoarea numărul de divizări dacă se fixează valoarea acestuia
 - Se va atinge valoarea limită a impurității gini dacă se fixează această valoarea
 - Se atinge numărul maxim de noduri terminale dacă se fixează numărul acestora

Clasificare a datelor noi

În cazul datelor noi se va parcurge arborele de decizie începând cu nodul rădăcină spre nodul terminal corespunzător clasei

Exemplu:

- O persoana cu înălțimea 183 cm și masa 77 kg va fi clasificată ca bărbat
- O persoana cu înălțimea 177 cm și masa 73 kg va fi clasificată ca femeie
- O persoana cu înălțimea 177 cm și masa 83 kg va fi clasificată ca bărbat

6. Instrumente Scikit-Learn

Se importa clasa algoritmului DecisionTreeClassifier

from sklearn.tree import DecisionTreeClassifier

- Se creează un model cu fixarea valorilor hiper-parametrilor:
- criterion criteriul de determinarea a uniformității grupului de date (valori posibile = {'gini', 'entropy'}, implicit ='gini')
- max_depth numărul maxim de divizări la crearea arborelui (valori posibile = int, implicit =None)
- max leaf node numărul maxim al nodurilor terminale ale arborelui (valori posibile =int; implicit=None)
- min impurity decrease valoarea minima de descrestere a impuritătii datelor la divizarea datelor (valori posibile = float, implicit=0,0)

```
model = DecisionTreeClassifier()
```

Se realizează trainingul modelului pe datele de training

```
model.fit(X_train, y_train)
```

Se vizualizează grafic arborele

```
from sklearn.tree import plot_tree
plt.figure(figsize=(12,8),dpi=250)
plot_tree(model,filled=True,feature_names=X.columns);
```

Se realizează predicția pe datele de test

```
y_pred = model.predict(X_test)
```

Se realizează predicția pe datele de test cu afișarea probabilitaților

```
y_pred = model.predict_proba(X_test)
```