Содержание

Введение	5
1 Постановка задачи	6
2 Анализ устойчивости неизменяемой части системы	7
3 Синтез регулятора	8
3.1 Построение желаемой логарифмической амплитудно-частотной	
характеристики	8
3.2 Составление передаточной функции регулятора	11
3.3 Получение передаточной функции регулятора	12
4 Моделирование полученной системы	13
5 Реализация регулятора	15
Заключение	17
Список использованных источников	18

Изм.	Лист	№ докум.	Подп.	Дата	КСУИ.118.Р334	0.001	ПЗ	
Раз _і Про		Уткин И.И. Григорьев В.А.			Синтез последовательного регулятора для замкнутой	/lum.	/lucm 4	Nucmob 18
Н.ка Утв		Николаев Н.А Бобцов А.А			следящей системы методом желаемой ЛАЧХ	Университет ИТМО Кафедра СУиИ		

KCVN.118.P3340.001 FI3

Введение

Синтез системы автоматического управления (САУ) - это расчет, конечная цель которого - установление оптимальных значений величин параметров ее отдельных звеньев. Для Корректной работы САУ расчитываются регуляторы, для расширения границ применения системы и качества, с которыми САУ выполняет поставленные задачи.

В данной работе мы синтезируем регулятор методом ЛАЧХ. Выполняется построение желаемой ЛАЧХ разомкнутой системы на основе ЛАЧХ неизменяемой части и заданных данных. Сущность метода заключается в построении желаемой ЛАЧХ исходя из заданных показателей качества.

Затем, по построенной ЛАЧХ, строится желаемая передаточная функция, по котором можно определить передаточную функцию регулятора

Ли	Изм.	№ докум.	Подп.	Дат

1 Постановка задачи

Задан объект управления, описание которого определяется передаточной функцией неизменяемой части $W_{\rm H}$. Структурная схема следящей системы представлена на рисунке 1.

Рисунок 1 – Структурная схема проектируемой следящей системы

Требуется спроектировать регулятор, включённый параллельно с неизменяемой частью системы в контуре ошибки с передаточной функцией $W_p(s)$, который обеспечивает в замкнутой следящей системе с единичной обратной связью набор показателей качества, приведённый в таблице 1 вместе с исходными данными системы.

Таблица 1 – Исходные данные для проектирования системы

$W_H(s)$	K	T_1, c	T_2, c	M	\dot{g}_{max}, c^{-1}	\ddot{g}_{max}, c^{-2}	e_{max}
$\frac{K}{(T_1s+1)(T_2s+1)s}$	195	0.018	0.18	1.55	1.1	0.25	0.029

Ли	Изм.	№ докум.	Подп.	Дат

2 Анализ устойчивости неизменяемой части системы

Использовав данные из таблицы 1, получим передаточную функцию неизменяемой части системы:

$$W_H(s) = \frac{195}{(0.00324s^3 + 0.198s^2 + s)s}. (1)$$

Схема моделирование представлена на рисунке 2.

Рисунок 2 – Схема моделирования замкнутой системы

При симуляции был получен график, приведённый на рисунке 3. По графику переходного процесса видно, что система неустойчива. Также это можно определить по корням функции.

Рисунок 3 – Реакция замкнутой системы на единичное входное воздействие

Так как система неустойчива то требуется синтез регулятора.

Ли	Изм.	№ докум.	Подп.	Дат

3 Синтез регулятора

Для заданной системы, обладающей астатизмом первого порядка, произведём синтез регулятора по заданному значению максимальной ошибки при фиксированных максимальных значениях ускорения и скорости. Для построения желаемой ЛАЧХ будем использовать метод запретной зоны

3.1 Построение желаемой логарифмической амплитудночастотной характеристики

3.1.1 Построение низкочастотной асимптоты

На основании требования по точности формируется низкочастотная часть желаемой ЛАЧХ следящей системы. Построим систему с астатизмом второго порядка.

Найдем контрольную точку:

$$\omega_k = \frac{\ddot{g}_{max}}{\dot{g}_{max}} = 0.227c^{-1} \tag{2}$$

$$L_k = 20lg \frac{\dot{g}_{max}^2}{\ddot{g}_{max}e_{max}} = 44.44$$
дБ (3)

Так как наша система обладает астатизмом второго порядка, то график ЛАЧХ будет проходить через контрольную точку с наклоном в -40 дБ/дек и его продолжение пересечёт ось абсцисс при частоте $\omega_0 = \sqrt{K_\varepsilon}$, где $K_\varepsilon = \frac{\ddot{g}_{max}}{e_{max}} = 8.62$ — добротность по ускорению. Подставив полученное значение, получим

$$\omega_0 = \sqrt{8.62} = 2.9361 \text{ c}^{-1}.$$
 (4)

3.1.2 Построение средне-частотной части ЛАЧХ

Построим средне-частотную часть ЛАЧХ исходя из условия необходимого запаса устойчивости системы. Для оценки запаса устойчивости воспользуемся показателем колебательности M, который характеризует склонность системы к колебаниям.

Ли	Изм.	№ докум.	Подп.	Дат

Для обеспечения достаточного запаса устойчивости построим две прямые, параллельные оси абсцисс и соответствующие значениям

$$L_1 = 20lg \frac{M}{M-1} = 20lg \frac{1,55}{0,55} = 8,99 \text{ дБ},$$
 (5)

$$L_2 = 20lg \frac{M}{M+1} = 20lg \frac{1,55}{2,55} = -4,32 \text{ дБ}.$$
 (6)

Между построенными прямыми угол наклона ЛАЧХ должен составлять -20 дБ/дек. Для обеспечения этого условия найдём частоту ω_3 , при которой низкочастотная асимптота пересекается с прямой L_1 :

$$\omega_3 = \omega_0 \sqrt{\frac{M-1}{M}} = 1.74 \text{ c}^{-1}.$$
 (7)

3.1.3 Построение высокочастотной части ЛАЧХ

Для построения высокочастотной части ЛАЧХ найдём частоту ω_4 пересечения средне-частотной части ЛАЧХ с прямой L_2 .

$$\omega_4 = \omega_0 \frac{M+1}{\sqrt{M(M-1)}} = 8.1 \text{ c}^{-1}.$$
 (8)

После частоты ω_4 система будет иметь наклон -60 д $\mathrm{B}/\mathrm{дек}$ для соблюдения условия запаса устойчивости.

Полученная в итоге логарифмическая амплитудно-частотная характеристика представлена на рисунке 4.

Ли	Изм.	№ докум.	Подп.	Дат

Рисунок 4 — Желаемая логарифмическая амплитудно-частотная характеристика разомкнутой системы

Ли	Изм.	№ докум.	Подп.	Дат

Составление передаточной функции регулятора

По выбранной ЛАЧХ составим желаемую передаточную функцию разомкнутого контура, которая в общем виде будет иметь вид

$$W_{\mathbb{X}}(s) = \frac{(K_v + \sqrt{2})(T_3 s + 1)}{s(T_k s + 1)(T_4 s + 1)^2},\tag{9}$$

где
$$T_3=rac{1}{\omega_3},\,T_4=rac{1}{\omega_4}$$
 и $T_k=rac{1}{\omega_k}.$

где $T_3=\frac{1}{\omega_3},\,T_4=\frac{1}{\omega_4}$ и $T_k=\frac{1}{\omega_k}.$ Для проверки правильности составленной желаемой передаточной функции составим ее ЛАЧХ и ЛФЧХ. Полученные данные представлены на рисунке 5

Рисунок 5 – ЛАЧХ и ЛФЧХ желаемой передаточной функции

Ли	Изм.	№ докум.	Подп.	Дат

3.3 Получение передаточной функции регулятора

Так как регулятор и неизменяемая часть системы соединены последовательно можно найти передаточную функцию регулятора.

$$W_{\mathsf{x}}(s) = W_p(s) \cdot W_H(s), \tag{10}$$

$$W_p(s) = \frac{W_{\mathcal{K}}(s)}{W_H(s)}. (11)$$

Подставив значения передаточных функций разомкнутого контура и неизменяемой части и приведение их к нормальному виду получим передаточную функцию регулятора:

$$W_p(s) = \frac{0.07289s^4 + 4.582s^3 + 30.29s^2 + 39.35s}{13.05s^4 + 214.6s^3 + 906.1s^2 + 195s}$$
(12)

4 Моделирование полученной системы

Произведем поделирование системы с соединенными последовательно неизменяемой частью и регулятором, охваченных отрицательной обратной связью. Схема моделирование представлена на рисунке 6.

Рисунок 6 – Схема моделирования системы с регулятором

Полученный график переходного процесса выходного сигнала представлен на рисунке 7

Рисунок 7 – График переходного процесса выходной переменной

Ли	Изм.	№ докум.	Подп.	Дат

По графику определим время переходного процесса и перерегулирование: $t_{\rm n}=5, \sigma=78\%$.

Также произведем моделирование системы с линейно возрастающим воздействием, тем самым определим ошибку системы с максимальной постоянной скоростью. График ошибки представлен на рисунке 8

Рисунок 8 – График переходного процесса ошибки

Из графика видно, что, при воздействии с максимальной скоростью $\dot{g}_{max}=1.1c^{-1},$ ошибка не превышает максимального значения e=0.029.

Ли	Изм.	№ докум.	Подп.	Дат

5 Реализация регулятора

Для реализации регулятора, необходимо представить передаточную функцию:

$$W_p(s) = \frac{(K_v + \sqrt{2})(T_3 s + 1)}{s(T_4 s + 1)^2 (T_k s + 1)}.$$
(13)

В виде произведения типовых динамических звеньев:

$$W_p(s) = \frac{T_3 s + 1}{T_0 s} \cdot \frac{K_v + \sqrt{2}}{T_k s + 1} \cdot \frac{1}{T_4 s + 1} \cdot \frac{1}{T_4 s + 1}.$$
 (14)

Тогда электрическая схема регулятора принет вид, представленный на рисунке 9.

Рисунок 9 – Электрическая схема реализации регулятора

На представленной схеме выполняются равенства

$$\begin{cases}
R_5 = R_7 \\
R_6 = R_8 \\
C_3 = C_4
\end{cases}$$
(15)

Рассчитаем значения элементов схемы.

$$\begin{cases}
T_0 = R_1 C_1 = 1 \\
T_2 = R_2 C_1 = 0.5717
\end{cases}$$

$$\begin{cases}
T_k = \frac{R_4}{C_2} = 4.4 \\
K_v + \sqrt{2} = \frac{R_4}{R_3} = 39.3452
\end{cases}$$

$$\begin{cases}
\frac{R_6}{R_5} = 1 \\
T_4 = \frac{R_6}{C_3} = 0.1233
\end{cases}$$
(16)

Ли	Изм.	№ докум.	Подп.	Дат

КСУИ.118.Р3340.001 ПЗ

При решении системы получаем следующие параметры:

$$\begin{cases}
R_2 = 1 \text{ OM} \\
C_1 = 0.5717 \Phi \\
R_1 = 1.7491 \text{ OM} \\
R_3 = 0.5 \text{ OM} \\
R_4 = 19.6726 \text{ OM} \\
C_2 = 4.4710 \Phi
\end{cases}
\begin{cases}
R_5 = R_6 = R_7 = R_8 = 1.254 \text{ OM} \\
C_3 = C_4 = 10.1703 \Phi
\end{cases}$$
(17)

Ли	Изм.	№ докум.	Подп.	Дат

KCVII.118.P3340.001 II3

Заключение

В результате работы методом желаемой ЛАЧХ был спроектирован последовательный регулятор для системы управления, который обеспечивает необходимые показатели качества на выходе замкнутой системы при воздействии на неё сигналом с ограниченной скоростью и ускорением.

Метод желаемой логарифмической амплитудно-частотной характеристики удобно применять для синтеза последовательно включённого регулятора. Также, в силу лёгкости составления ЛАЧХ звена, данный метод можно использовать для оценивания порядка полиномов в числителе и знаменателе регулятора, а вместе с тем и сложность его реализации.

При разбиении передаточной функции регулятора на элементарные звенья, можно составить рассчитать электрическую схему реализации регулятора.

Ли	Изм.	№ докум.	Подп.	Дат

КСУИ.118.Р3340.001 ПЗ

Список используемых источников

- 1 Бесекерский В.А., Попов Е.П. Теория систем автоматического управления СПб.: Профессия, 2003. 752 с.
- 2 Блинников А.А., Бойков В.И., Быстров С.В., Николаев Н.А., Нуйя О.С. Правила оформления пояснительной записки и конструкторской документации. СПб.: Университет ИТМО, 2014. 55с.
- 3 Воронов А.А., Теория автоматического управления, Ч 1. М.: Выс-шая школа, 1986. 376с.

Ли	Изм.	№ докум.	Подп.	Дат