

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS CURSO DE CIÊNCIA DA COMPUTAÇÃO

MATERIAL DIDÁTICO OPERAÇÕES ELEMENTARES

Osmir Custódio Mariano

Orientador: Prof.^a Dr.^a Hellena Christina Fernandes Apolinário

> Palmas Março de 2018

Sumário

1	Sistemas de Equações Lineares 1.1 Introdução		1
	1.1.1	Equação Linear	1
	1.1.2	Sistemas de equações lineares]
2		es Elementares com matrizes Operações Elementares	2
Re	eferências	Bibliográficas	4

1 Sistemas de Equações Lineares

1.1 Introdução

Na matemática, provavelmente um dos problemas considerados mais importantes é a resolução de sistemas de equações lineares. Leon (1) destaca a importância desse conteúdo na Álgebra Linear, visto que muitos dos problemas matemáticos que são encontrados em aplicações científicas e industriais abordam em alguma etapa do processo a resolução de um sistema linear. Usando os métodos matemáticos modernos, em muitos dos casos é possível minimizar o problema a um único sistema de equações lineares. E as aplicações e utilização de sistemas de equações lineares está presente em várias áreas como administração, sociologia, economia, ecologia, demografia, engenharia, física, genética, entre outras.

1.1.1 Equação Linear

Por definição uma equação linear é uma equação da forma:

$$a_1x_1 + a_2x_2 + a_3x + \dots + a_nx_n = b$$

onde $a_1, a_2, ..., a_n$ são os coeficientes, $x_1, x_2, ..., x_n$ são incógnitas e b é o termo independente.

1.1.2 Sistemas de equações lineares

Um sistema de equações lineares refere-se a um conjunto de equações do tipo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{cases}$$

2 Operações Elementares com matrizes

Para o estudo de sistemas de equações lineares a primeira parte que deve-se atentar são as operações elementares que são aplicadas sobre matrizes, a qual através delas é possível resolver problemas de Álgebra Linear em sistemas de equações lineares, tais como escalonamento (matriz forma escada), resolução de sistemas de equações lineares, etc.

2.0.1 Operações Elementares

As operações elementares sobre as linhas de uma matriz são um total de três:

• Permutação de duas linhas $(L_i \to L_j)$: Exemplo: $L_2 \to L_3$

$$\begin{bmatrix} 1 & 1 \\ 5 & 0 \\ -3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ -3 & 4 \\ 5 & 0 \end{bmatrix}$$

Na permutação simplesmente é trocada a linha por outra de acordo com a especificação. No exemplo acima, foi trocada a posição da linha 2 pela a linha 3, onde antes a linha 2 seus valores eram 5 e 0 com a troca ficou -3 e 4.

• Multiplicação de uma linha por um escalar k, não nulo. $(L_i \to k \cdot L_i)$: Exemplo:

$$L_2 \to 2 \cdot L_2$$

$$\begin{bmatrix} 1 & 1 \\ 5 & 0 \\ -3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 2 \times 5 & 2 \times 0 \\ -3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 10 & 0 \\ -3 & 4 \end{bmatrix}$$

• Substituição de uma linha por sua soma com outra equação previamente multiplicada por um escalar k não nulo $(L_i \to L_i + k \cdot L_j)$: Exemplo:

$$L_2 \to L_2 + 2 \cdot L_1$$

$$\begin{bmatrix} 1 & 1 \\ 5 & 0 \\ -3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 5+2\times1 & 0+2\times1 \\ -3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 7 & 2 \\ -3 & 4 \end{bmatrix}$$

Referências Bibliográficas

1 LEON, S. J. Álgebra linear com aplicações. [S.l.]: Editora Prentice Hall, 1998.