Matrikel-Nr: 12181407

Aufgabe 1

- a) <u>Vorteile & Nachteile von DBS die mit/ohne die Mengen Operationen INTERSECT & EXCEPT:</u>
 - Mit den Mengen Operationen kann eine Tabelle als Mathematisches Objekt betrachtet. (Vorteil)
 - INTERSECT verändert manchmal die Reihenfolge der Tabelle man kann es mit ORDER BY Lösen (Nachteil)
 - Mengen Operationen anders als JOIN brauchen keine vergleich Operationen. (Vorteil)
 - EXCEPT Operationen anders als NOT IN gibt keine Duplikaten zurück nur DISTINCT Ergebnisse (Nachteil wenn man die Duplikaten braucht)

Bsp. Mit EXCEPT: (Tabelle Kunde mit attribute Kund_nr)

SELECT kund nr FROM Kunde

EXCEPT SELECT kund nr FROM Verkauf;

Simulation – Mit NOT IN:

SELECT kund nr FROM Kunde

WHERE kund_nr NOT IN (SELECT kund_nr FROM Verkauf);

Bsp. Mit INTERSECT:

(2 Einfache Tabellen Hicking und Traveling Mit SerialNummer und Name – siehe unten)

SELECT * FROM Hiking INTERSECT SELECT * FROM	Traveling;	
Simulation – Mit NATRUAL JOIN		SSN FullName 683809234 Francis Forster 339500391 Thomas Trump 730990231 David Drew 578389982 Jacqueline Jackson
SELECT * FROM Hiking NATURAL JOIN Traveling;		979385894 Christopher Cummings 988233885 Andrea Atkins
	FullName Famous Forster	988233885 Andrea Akins 447743821 Yuunna York SSN FullName 683809234 Francis Forster 339500391 Thomas Trump 730990231 David Drew 578389982 Jacqueline Jackson 979385894 Christopher Cumming: 988233885 Andrea Akins 447743821 Yvonne York 343438829 William Winston 399038820 Vincent Volt 238902930 Catherine Cross

b)i) in Worten:

Wir suchen ein Produkt b, dessen <u>Preis größer 209</u> ist. Falls dieser b eine <u>kleinere Größe</u> und <u>kleineres Gewicht</u> als ein beliebiges anderes Produkt (c) dann muss auch gelten, dass der <u>Preis kleiner</u> ist jedoch die <u>Menge größer</u> ist.

- ii) Wir wissen von der Mengenlehre dass A=>B ist äqualent zu ¬A ∨ B In dem Fall definieren wir:
 - A = $(c.Gr\ddot{o}\beta e > b.Gr\ddot{o}\beta e)$ \land (c.Gewicht > b.Gewicht)

- ¬A = ¬ ((c.Größe > b.Größe) ∧ (c.Gewicht > b. Gewicht)) = = ¬(c.Größe > b.Größe) ∨ ¬ (c.Gewicht > b. Gewicht)
- $B = (c.Preis > b. Preis) \land (c.Menge > b. Menge)$

Daraus erfolgt ¬A ∨ B = (¬(c.Größe > b.Größe) ∨¬ (c.Gewicht > b. Gewicht)) ∧ ((c.Preis > b. Preis) ∧ (c.Menge > b. Menge))

Aufgabe 2: ER Diagramm


```
Aufgabe 3:
```

a)

```
CREATE TABLE Teilnehmer(
    TNr INTEGER PRIMARY KEY,
    Vorname VARCHAR(100),
   Nachname VARCHAR(100) NOT NULL,
    Geburtsdatun CHAR(10),
    Wohnort VARCHAR(100)
);
CREATE TABLE Gruppe(
    GNr INTEGER PRIMARY KEY,
    Gruppenname VARCHAR(100) NOT NULL,
    Leiter INTEGER REFERENCES Teilnehmer(TNr);
);
CREATE TABLE Mitglied (
    Teilnehmer INTEGER REFERENCES Teilnehmer (TNr),
    Gruppe INTEGER REFERENCES Gruppe (GNr)
);
```

b) Da TNr eine PrimaryKey ist, können wir die Einträge nicht ändern.

c)

```
SELECT GNr, Gruppenname
FROM Gruppe NATURAL JOIN Hackathon
WHERE Hackathon.Ort = "Hannover" AND Hackathon.Kapazität > 15

-- Zusätzlich Namen der entsprechenden Hackathon

SELECT Name
FROM Hackathon
WHERE Hackathon.Ort = "Hannover" AND Hackathon.Kapazität > 15
```

d)

```
CREATE VIEW JAD1 AS

SELECT Datum, COUNT(DISTINCT HNr) AS anzahlHack

FROM Hackathon

GROUP BY Datum;

SELECT Datum FROM JAD1

WHERE anzahlHack = (SELECT MAX(anzahlHack) FROM JAD1);
```

e)

```
Create VIEW Jad2 AS
SELECT Gruppe, SUM(Punkte) AS allPunkte
FROM Teilnahme
```

```
GROUP BY Gruppe;

SELECT Gruppe, IF(allPunkte = NULL, 0, allPunkte) FROM Jad2
```

f) Rationale Algebra:

πGNr, Gruppenname(**O**_{Teilnahme. Hackathon = 17 ∨ Teilnahme. Hackathon = 94} (Teilnahme⊳Gruppe))

Tupelkalkül:

```
Schema(gr) = Schema(Gruppe); 
 { [gr.GNr, gr.Gruppenname] | Gruppe(gr) \land (\exists t \in Teilnahme) \land (gr.GNr = t.Gruppe) \land (t. Hackathon = 17 V t. Hackathon = 94)
}
```

Aufgabe 4:

- a) {F, G} einzige Schlüsselkandidat!
 - S 2.ter NormalForm?

Die Bedingungen der zweiten Normalform sind:

- Jedes Attribut ist prim oder
- voll funktional abhängig von jedem Schlüssel Kandidaten!

Wir betrachte die Attribute in S die unter verdacht sind: (A,B,C,D,E)

- A voll funktional abhängig von E (E \rightarrow A, H) aber E von F,G (F, G \rightarrow E, C) \rightarrow auch von (F,G)
- B voll funktional abhängig von F,G $(F, G, A \rightarrow B)$
- C voll funktional abhängig von B,A (BA sind abhängig von F,G)
- D voll funktional abhängig von F,G (F, G \rightarrow D)
- E voll funktional abhängig von F,G (F, $G \rightarrow E$, C)
- F Prim
- G Prim

Da Alle Fälle entweder Prim oder voll funktional abhängig von F,G sind, erfüllt S die Eigenschaften von dem 2ter Normalform.

b) Relationsschema R(A, B, C, D, E, F, G, H, I)

Nur auf der linken Seite?

$$\{H\}^+ = \{H, C, A, B, I, E, F, D, G\} = \{A, B, C, D, E, F, G, H; I\}$$

H bestimmt ganz R → H ist ein Superschlüssel

Noch zu beweisen wäre, dass dieser Minimal ist.

- Sei $K \subseteq R$, und K ein Schlüsselkandidat für R wenn $K \rightarrow R$ also $R \subseteq K^+$ und K Minimal ist, also $\forall \alpha \in K$: $\alpha \rightarrow R$ (Keine Teilmenge von K bestimmt R)

In unserem Fall es existiert überhaupt kein Teilmenge von {H} "eine Menge mit einem einzigen Element H"!!

→ Damit ist {H} minimal aber auch eindeutig (+ es gibt keinen anderen) ② → Es handelt sich hier um einen Schlüsselkandidat!

Aufgabe 5:

a) Das einzige Objekt, auf dem 2 verschiedenen Transaktionen gescheht ist w. r2(w) - r1(W) - w2(W) Keine Anamolie!

```
b)
S2 = (w 1(w), r 2 (v), r 1 (y), w 1 (v), r 1 (v), w 2 (v), w 1 (y), r 2 (w), r 2 (y), r 1 (v), w 1 (y), w 2 (w))
```

- R2(v) w1(v) w2(v) Lost Update
- R1(v)- w2(v)-r1(v). Non Repeatable Read
- w 1 (y), r 2 (y), w 1 (y) Dirty Read

c)

$$S3 = (r2(y), r2(x), w1(x), r1(x), w1(y), r2(w), w2(x), r1(x), r2(y), w2(y), w2(w), w2(w))$$

- r 2 (y), w 1 (y), r 2 (y) – NON Repeatable Read