ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC VÀ KỸ THUẬT MÁY TÍNH

KIẾN TRÚC MÁY TÍNH (CO2008)

Báo cáo

BÀI TẬP CÁ NHÂN

GVHD: Nguyễn Xuân Minh

Lớp: L07

MSSV: 2311xxx

Sinh viên: Nguyễn Văn A

Thành phố Hồ Chí Minh, 20 tháng 11 năm 2024

Trường Đại học Bách khoa, Đại học Quốc gia TP.HCM Khoa Khoa học và Kỹ thuật Máy tính

Mục lục

1	Đề	bài	2
2	Bài	làm	2
	2.1	Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1	
		word. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index	
		lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất	
		trên	2
	2.2	Làm lại câu a. với bộ nhớ cache Direct-mapped có 16 block, mỗi block	
		chứa 2 word.	4
	2.3	Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache	
		trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các	
		bit tag và dữ liệu	5
		2.3.1 Câu a	5
		2.3.2 Câu h	5

1 Đề bài

$$(2311572 + 3) \% 4 + 1 = 4$$

Đề 4:

Câu 2: Cho danh sách địa chỉ 32-bit truy xuất theo địa chỉ word như sau:

$$5, 189, 45, 6, 253, 88, 173, 14, 89, 189, 186, 252$$

- a. Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa **1 word**. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất trên.
- b. Làm lại câu a. với bộ nhớ cache Direct-mapped có 16 block, mỗi block chứa 2 word.
- c. Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các bit tag và dữ liệu.

2 Bài làm

2.1 Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất trên.

Phân tích địa chỉ:

- Số block: $32 (2^5)$, do đó index = 5
- Số word mỗi block: $1 = (2^0)$ word, nên word offset = 0
- Tag(theo không gian word 8 bits) = 8 index word offset = 8 5 0 = 3

Xác định các vùng tag, index lưu trữ vào cache và trạng thái Hit/Miss của chuỗi truy xuất trên:

Địa chỉ	Địa chỉ theo bit	Tag	Index	Hit/Miss
5	0000 0101	0	5(1)	Miss
189	1011 1101	5	29(1)	Miss
45	0010 1101	1	13(1)	Miss
6	0000 0110	0	6(1)	Miss
253	1111 1101	7	29(2)	Miss
88	0101 1000	2	24(1)	Miss
173	1010 1101	5	13(2)	Miss
14	0000 1110	0	14(1)	Miss
89	0101 1001	2	25(1)	Miss
189	1011 1101	5	29(3)	Miss
186	1011 1010	5	26(1)	Miss
252	1111 1100	7	28(1)	Miss

2.2 Làm lại câu a. với bộ nhớ cache Direct-mapped có 16 block, mỗi block chứa 2 word.

Phân tích địa chỉ:

- Số block: $16 (2^4)$, do đó index = 4
- \bullet Số word mỗi block: $2=(2^1)$ word, nên word offset =1
- Tag = 32 index word offset 2 = 32 4 1 2 = 25
- Tag(theo không gian word 8 bits) = 8 index word offset = 8 4 1 = 3

Xác định các vùng tag, index lưu trữ vào cache và trạng thái Hit/Miss của chuỗi truy xuất trên:

Địa chỉ	Địa chỉ theo bit	Tag	Index	Hit/Miss
5	0000 0101	0	2(1)	Miss
189	1011 1101	5	14(1)	Miss
45	0010 1101	1	6(1)	Miss
6	0000 0110	0	3(1)	Miss
253	1111 1101	7	14(2)	Miss
88	0101 1000	2	12(1)	Miss
173	1010 1101	5	6(2)	Miss
14	0000 1110	0	7(1)	Miss
89	0101 1001	2	12	Hit
189	1011 1101	5	14(3)	Miss
186	1011 1010	5	13(1)	Miss
252	1111 1100	7	14(4)	Miss

2.3 Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các bit tag và dữ liệu.

Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache Direct-mapped với n block tính theo công thức:

Tổng số bit =
$$n \cdot (block size + tag size + valid field size)$$

2.3.1 Câu a.

Với 32 blocks, valid field size là 1 bit, tag size là 27 bit, block size là 32 bit (1 word). Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache

Tổng số bit =
$$n \cdot (\text{block size} + \text{tag size} + \text{valid field size})$$

= $32 \cdot (32 + 27 + 1)$
= 1920 (bit)

2.3.2 Câu b.

Với 16 blocks, valid field size là 1 bit, tag size là 27 bit, block size là 64 bit (2 word). Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache

```
Tổng số bit = n \cdot (\text{block size} + \text{tag size} + \text{valid field size})
= 16 \cdot (64 + 27 + 1)
= 1472 \text{ (bit)}
```