

Señales en tiempo y frecuencia

William Ricardo Rodríguez Dueñas Departamento de Ing. Electrónica

Señal continua Vs discreta

Diferencias entre AC y DC

CARACTERÍSTICA	AC	DC
Definición	La corriente eléctrica que fluye de un lado a otro periódicamente.	La corriente eléctrica que fluye solo en dirección hacia adelante.
Dirección de la corriente	Es bidireccional, es decir, puede fluir tanto hacia adelante como hacia atrás.	Es unidireccional y fluye en una sola dirección, es decir, hacia adelante.
Voltaje y corriente	La corriente y el voltaje varían continuamente.	La corriente y el voltaje son constantes.
Polaridad	No hay polaridad en CA porque fluctúa.	Hay una polaridad fija en CC marcadapor signos positivos (+) y negativos (-)
Intercambio de polaridades	Cambiar el terminal de la fuente no afectará el circuito	Cambiar el terminal de la fuente puededañar el circuito
Frecuencia	La frecuencia de la corriente alterna suele ser de 50 o 60 Hz.	La frecuencia de la corriente continua es 0
Forma de onda	El AC existe en forma de onda sinusoidal, cuadrada, triangular y de diente de sierra, etc.	Existe en una sola línea u onda de pulso
Almacenamiento	No se puede almacenar	Se puede almacenar directamente

Tipos de señales

Características de las señales

VALOR PICO

Distancia entre el punto más alejado de la señal y punto medio.

VALOR PICO-PICO

Distancia entre el punto más alto de la señal y punto más bajo.

VALOR MEDIO O PROMEDIO

Área bajo la curva de una onda o señal.

VALOR RMS O EFICAZ

Un valor RMS de una corriente es el valor, que produce la misma disipación de calor que una corriente continua de la misma magnitud.

Señal sinusoidal

Señal cuadrada

$$V_{max} = A$$

$$V_{min} = B$$

$$V_p = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC}$$

$$V_{pp} = 2V_p = V_{max} - V_{min}$$

$$V_{max} = A$$
 $V_{min} = B$
 $V_{DC} = \frac{V_{max} + V_{min}}{2}$
 $V_{p} = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC}$
 $V_{RMS} = \sqrt{\frac{V_{max}^2 + V_{min}^2}{2}} = \sqrt{V_p^2 + V_{DC}^2}$

Señal PWM (Pulse-Width Modulation)

Señal PWM (Pulse-Width Modulation)

 $V_1 \rightarrow \text{Nivel alto}$

 $V_2 \rightarrow \text{Nivel bajo}$

$$DutyCycle = \left(\frac{t_{on}}{T}\right)100$$

 $t_{on}
ightarrow ext{Tiempo encendido}$ $t_{off}
ightarrow ext{Tiempo apagado}$ $T
ightarrow ext{Periodo de la señal}$

$$V_{DC} = V_1 \left(\frac{t_{on}}{T}\right) + V_2 \left(1 - \frac{t_{on}}{T}\right)$$

$$V_{RMS} = \sqrt{V_1^2 \left(\frac{t_{on}}{T}\right) + V_2^2 \left(1 - \frac{t_{on}}{T}\right)} = \sqrt{V_p^2 + V_{DC}^2}$$

Señal triangular

$$V_{max} = A$$

$$V_{min} = B$$

$$V_p = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC}$$

$$V_{pp} = 2V_p = V_{max} - V_{min}$$

$$V_{DC} = \frac{V_{max} + V_{min}}{2}$$

$$V_{min} = B$$

$$V_{p} = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC}$$

$$V_{RMS} = \sqrt{\frac{V_{max}^{2} + V_{max}V_{min} + V_{min}^{2}}{3}} = \sqrt{\frac{V_{p}^{2}}{3} + V_{DC}^{2}}$$

Señal diente de sierra

$$V_{max} = A$$

$$V_{min} = B$$

$$V_p = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC}$$

$$V_{pp} = 2V_p = V_{max} - V_{min}$$

$$V_{max} = A V_{DC} = \frac{V_{max} + V_{min}}{2}$$

$$V_{min} = B V_{p} = \frac{V_{max} - V_{min}}{2} = V_{max} - V_{DC} V_{RMS} = \sqrt{\frac{V_{max}^2 + V_{max}V_{min} + V_{min}^2}{3}} = \sqrt{\frac{V_p^2}{3} + V_{DC}^2}$$

Conversores análogo-digital y digital-análogo

Dominio de la frecuencia

$$y(t) = Asin(\omega_0 t)$$
$$\omega = 2\pi f$$

Señales en el dominio temporal

Dominio del tiempo	>	Dominio de la frecuencia
		•
		•

Dominio de la frecuencia

- Análisis de funciones o señales matemáticas con respecto a la frecuencia, en lugar del tiempo.
- Un gráfico en el dominio del tiempo muestra cómo cambia una señal con el tiempo.
- Un gráfico en el dominio de la frecuencia muestra qué parte de la señal se encuentra dentro de cada banda de frecuencia dada en un rango de frecuencias.

$$a_n \cos(nx) + b_n \sin(nx)$$

El espectro de frecuencia de una señal eléctrica es la distribución de las amplitudes de cada componente frecuencial.

Decibelios y su relación con el V_{RMS}

Unidad que se utiliza para expresar la relación entre dos valores de presión sonora, o tensión o potencia eléctrica (no es una unidad de medida).

Es una expresión que no es lineal, es logarítmica, y matemáticamente escalar.

Es la unidad con la que se suele medir la intensidad sonora, donde el nivel de referencia 0 dB corresponde al mínimo nivel de sonido que puede detectar un ser humano, y 120 dB el máximo (nocivo).

CURVAS DE AUDICIÓN HUMANAS

El valor en dB se puede relacionar con el valor RMS de voltaje mediante:

$$Valor(dB) = 20 \cdot log\left(\frac{V_{RMS} de \ la \ componente}{1 \ V_{RMS}}\right)$$

INTENSIDAD DEL SONIDO PERCIBIDA POR EL OÍDO HUMANO

Transformada de Fourier

Fourier y la suma de señales senoidales

El científico y matemático francés Jean Baptiste Fourier (1768-1830) demostró el hecho matemático de que cualquier forma de onda **periódica** puede expresarse como la suma de un conjunto infinito de ondas sinusoidales.

Las frecuencias de estas ondas sinusoidales deben ser múltiplos enteros de alguna frecuencia fundamental

Nº de Armónico	Frecuencia
1º armónico	66 Hz
2° armónico	132 Hz
3° armónico	198 Hz
4° armónico	264Hz
5° armónico	330 Hz

Fuente: https://musiclab.chromeexperiments.com/spectrogram/

Transformada de Fourier

Fourier y la suma de señales senoidales

$$y(t) = \sum A_n sin(n\omega_0 t)$$

$$V_n(t) = V_{n \, pico} \cdot seno(2\pi \cdot n \cdot f_{fundamental} \cdot t)$$

Transformada de Fourier

Fourier y la suma de señales senoidales

Espectro de señales conocidas - sinusoidal

Una onda senoidal con una frecuencia única tiene su espectro es un punto único.

Espectro de señales conocidas - cuadrada

- Una onda cuadrada ideal con una amplitud de 1 se puede representar como una suma infinita de ondas sinusoidales.
- La onda cuadrada ideal contiene solo componentes de frecuencias armónicas enteras impares.

Espectro de señales conocidas - triangular

 Es posible aproximar la señal onda triangular con síntesis aditiva sumando los armónicos impares de la fundamental mientras se multiplican cada otros armónicos singulares por -1.

$$y(t) = \sum_{i=0}^{N} (-1)^{i} A_n \sin(n\omega_0 t)$$
$$n = 2i + 1$$

Espectro de señales conocidas - diente de sierra

Su espectro contiene armónicos pares e impares de la frecuencia fundamental.

$$N = 0$$