Examen Parţial

Algebră liniară, geometrie analitică și diferențială

12.12.2018 grupa ELA

- 1 Operatori simetrici (definiție, exemple, 3 proprietăți, 1 dem.) (1+2+1+3+3p)
- **2** Fie $f \in End(\mathbb{R}^3)$ care are, relativ la baza canonică, matricea $A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & -1 \\ 1 & -3 & 5 \end{pmatrix}$.
- a) Determinați câte o bază și dimensiunea pentru $Ker\ f$ și $Im\ f$.
- b) Are loc $Ker\ f\oplus Im\ f=I\!\!R^3$? Justificați răspunsul.
- c) Dacă $V = \mathcal{L}(2\bar{e}_1 \bar{e}_2 + 3\bar{e}_3, \bar{e}_1 + \bar{e}_2 \bar{e}_3)$, atunci să se determine f(V) și $(f(V))^{\perp}$.
- 3 Dacă $A=\begin{pmatrix}3&1&1\\1&3&1\\1&1&3\end{pmatrix}$ este matricea aplicației liniare $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ relativ la baza canonică, atunci se cer:
- a) Valorile proprii pentru f.
- b) Vectorii proprii pentru f.
- c) Este f diagonalizabil? Justificați răspunsul.
- **4** Fie forma pătratică $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $f(\bar{x}) = 3(x^1)^2 + 2x^1x^2 + 3(x^2)^2 + 2x^2x^3 + 3(x^3)^2 + 2x^1x^3$, $(\forall)(x^1, x^2, x^2) \in \mathbb{R}^3$.
- a) Determinați o formă canonică pentru f.
- b) Determinați baza coresunzătoare formei canonice găsite la a).
- c) Determinați o bază ortonormată în spațiul euclidian canonic \mathbb{R}^3 față de care f are forma canonică găsită la punctul a).