Bounds on the size of identifying codes for graphs of maximum degree Δ

Florent Foucaud

joint work with Ralf Klasing, Adrian Kosowski, André Raspaud

Université Bordeaux 1

September 2009

simple, undirected graph: models a building

simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire

simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire

fire in room f

simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire

fire in room f

the identifying sets of all vertices must be distinct

	а	Ь	С	d
а	•	•		
Ь	•	•	•	
С		•	•	•
d			•	•
е		•		
f		•	•	

Identifying codes: definition

Definition : identifying code of a graph G = (V, E) (Karpovsky et al. 1998 [2])

subset C of V such that:

- \bullet C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets : $N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Definition : identifying code of a graph G = (V, E) (Karpovsky et al. 1998 [2])

subset C of V such that :

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets : $N[u] \cap C \neq N[v] \cap C$

Remark

Note: close to *locating-dominating sets* (Slater, Rall 84 [4])

Identifying codes: definition

Definition : identifying code of a graph G = (V, E) (Karpovsky et al. 1998 [2])

subset C of V such that:

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets : $N[u] \cap C \neq N[v] \cap C$

Remark

Note: close to locating-dominating sets (Slater, Rall 84 [4])

Notation

 $\gamma_{id}(G)$: minimum cardinality of an identifying code in a graph G

Identifiable graphs

Remark: not all graphs admit an identifying code

u and v are twin vertices if N[u] = N[v].

A graph is identifiable iff it has no twin vertices.

Identifiable graphs

Remark: not all graphs admit an identifying code

u and v are twin vertices if N[u] = N[v].

A graph is identifiable iff it has no twin vertices.

Non-identifiable graphs

Identifiable graphs

Remark: not all graphs admit an identifying code

u and v are twin vertices if N[u] = N[v].

A graph is identifiable iff it has no twin vertices.

Non-identifiable graphs

Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then

$$\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$$
.

Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then

$$\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$$
.

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [3])

Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then $\gamma_{id}(G) \geq \lceil \log_2(n+1) \rceil$.

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [3])

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices and maximum degree Δ .

Then
$$\gamma_{id}(G) \geq \frac{2n}{\Delta + 2}$$
.

Graphs reaching the lower bound

Characterization

- n vertices
- independent set C of size $\frac{2n}{\Delta+2}$ (id. code)
- ullet every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta + 2}$ vertices connected to exactly 2 code vertices each

Graphs reaching the lower bound - example

Graphs reaching the lower bound - example

Graphs reaching the lower bound - example

A general upper bound

Thm (Gravier, Moncel 07 [1])

Let G be an identifiable connected graph with $n \ge 3$ vertices.

Then $\gamma_{id}(G) \leq n-1$.

A general upper bound

Thm (Gravier, Moncel 07 [1])

Let *G* be an identifiable connected graph with $n \ge 3$ vertices. Then $\gamma_{id}(G) \le n-1$.

Thm (Gravier, Moncel 07 [1])

For all $n \ge 3$, there exist identifiable graphs with n vertices with $\gamma_{id}(G) = n - 1$.

Upper bound - example

Upper bound - example

Upper bound and maximum degree

Remark

All these graphs have a high maximum degree $\Delta(G)$: n-1 or n-2.

Result - general case

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected identifiable graph of maximum degree Δ .

Then
$$\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$$
.

If G is regular,
$$\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$$
.

Result - general case

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected identifiable graph of maximum degree Δ .

Then
$$\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$$
.
If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$.

Sketch of the proof

- Greedily construct a 4-independant (resp. 2-independent) set S:
 distance between two vertices is at least 5 (resp. 3)
- take $C = V \setminus S$ as a code
- C must be modified locally

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

Example : $H = K_4$

- Take any Δ -regular graph H with m vertices
- ullet Replace any vertex of H by a clique of Δ vertices

Exemple : $H = K_4$

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

Exemple : $H = K_4$

For every clique, at least $\Delta-1$ vertices in the code

$$\Rightarrow \gamma_{id}(G) \geq m \cdot (\Delta - 1) = n - \frac{n}{\Delta}$$

Large codes in triangle-free graphs

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n=2m vertices.

$$id(K_{m,m})=2m-2=n-\frac{n}{\Delta}.$$

Large codes in triangle-free graphs

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n=2m vertices.

$$id(K_{m,m})=2m-2=n-\frac{n}{\Delta}.$$

Thm (Bertrand et al. 05)

Let T_k^h be the k-ary tree with h levels and n vertices.

$$id(T_k^h) = \left\lceil \frac{k^2 n}{k^2 + k + 1} \right\rceil = n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}.$$

Triangle-free graphs - Result

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ .

Then
$$\gamma_{id}(G) \leq n - \frac{n}{3\Delta + 3}$$
.
If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta + 2}$.

Triangle-free graphs - Result

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ .

Then
$$\gamma_{id}(G) \leq n - \frac{n}{3\Delta + 3}$$
.
If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta + 2}$.

Sketch of the proof

- Greedily construct an independent set S with special properties : $|S| \ge \frac{n}{\Delta + 1}$
- Take $C = V \setminus S$ as a code
- Some vertices may not be identified correctly
- ullet \to locally modify C. It is possible to add not too much vertices to C

Graphs of girth at least 5

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$.

Then $\gamma_{id}(G) \leq \frac{7n}{8} + 1$.

Graphs of girth at least 5

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$.

Then $\gamma_{id}(G) \leq \frac{7n}{8} + 1$.

Sketch of the proof

- Construct a DFS spanning tree T of G
- Partition the vertices into 4 classes V_0 , V_1 , V_2 , V_3 depending on their level in T
- Take $C = V \setminus V_i$ as a code, $|V_i| \ge \frac{n}{4}$: $|V_i| \le \frac{3n}{4}$
- C must be modified locally; the size of C might increase

Graphs of girth at least 5

Summary

	arbitrary graphs	Δ -regular graphs
arbitrary graphs	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n}{\Theta(\Delta^4)}\right\rangle$	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n-1}{\Delta^2}\right\rangle$
triangle-free graphs	$\left\langle n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}, \ n - \frac{n}{3\Delta + 3} \right\rangle$	$\left\langle n-\frac{n}{\frac{2\Delta}{3}},\ n-\frac{n}{2\Delta+2}\right\rangle$

Summary

	arbitrary graphs	Δ-regular graphs
arbitrary graphs	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n}{\Theta(\Delta^4)}\right\rangle$	$\left\langle n-\frac{n}{\Delta},\ n-\frac{n-1}{\Delta^2}\right\rangle$
triangle-free graphs	$\left\langle n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}, \ n - \frac{n}{3\Delta + 3} \right\rangle$	$\left\langle n - \frac{n}{\frac{2\Delta}{3}}, \ n - \frac{n}{2\Delta + 2} \right\rangle$

	minimum degree $\delta \geq 2$
graphs of girth at least 5	$\left\langle \frac{3n}{5}, \frac{7n}{8} + 1 \right\rangle$

Bibliography I

On graphs having a $V \setminus \{x\}$ set as an identifying code.

Discrete Mathematics, 307(3-5):432 - 434, 2007.

Algebraic and Topological Methods in Graph Theory.

Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin.

On a new class of codes for identifying vertices in graphs.

IEEE Transactions on Information Theory, 44:599–611, 1998.

Julien Moncel.

On graphs on n vertices having an identifying code of cardinality $log_2(n+1)$.

Discrete Applied Mathematics, 154(14):2032–2039, 2006.

P. J. Slater and D. F. Rall.

On location-domination numbers for certain classes of graphs.

Congressus Numerantium, 45:97-106, 1984.

