CE208-Database Management Systems $_{\rm Intro}$

Author: Asst. Prof. Dr. Yıldıran YILMAZ

Contents

0.1	CE208-Database Management Systems
	0.1.1 Week-1 (Intro)
	0.1.2 Outline
	0.1.3 Outline
	0.1.4 Outline
0.2	What is Database?
0.3	Database Examples
0.4	Database
0.5	What is Database Management System?
0.6	Classification of Database Management Systems
	0.6.1 Hierarchical databases
	0.6.2 Network databases
	0.6.3 Relational databases
	0.6.4 Relational databases
	0.6.5 Object Oriented databases
0.7	Why use a database?
	Advantages of the Database Approach
	Advantages of the Database Approach
0.10	Database Management Systems
0.11	Database Management Systems
0.12	Database Structure
	Table
0.14	Table
0.15	Table
0.16	Table
	Data Types
	0.17.1 MYSQL Data Types
	0.17.2 MYSQL Data Types
	0.17.3 MYSQL Data Types
	0.17.4 MYSQL Data Types
	0.17.5 MYSQL Data Types
	0.17.6 MYSQL Data Types
	0.17.7 MYSQL Data Types
	0.17.8 MYSQL Data Types
	0.17.9 MYSQL Data Types
	0.17.10 MYSQL Data Types
	0.17.11 MYSQL Data Types
	0.17.12MYSQL Data Types
	0.17.13 MYSQL Data Types
	0.17.14MYSQL Data Types
	0.17.15MYSQL Data Types
	0.17.16 MYSQL Data Types
	0.17.17.MVCOL Data Types

0.	18 Key	11
0.	19 Primary key	11
0.	20 Foreign key	11
0.	21 Foreign key	11
0.	22 Foreign key	11
0.	23 Foreign key	12
0.	24 Database Design	12
0.	25 Designing a database	12
0.	26 Designing a database	12
0.	27 Designing a database	12
0.	28 Designing a database	12
0.	29 Designing a database	13
0.	30 Designing a database	13
0.	31 Resources	13

List of Figures

List of Tables

0.1 CE208-Database Management Systems

0.1.1 Week-1 (Intro)

0.1.1.1 Spring Semester, 2021-2022 Instructor: Yıldıran Yılmaz **Email:** yildiran.yilmaz@erdogan.edu.tr **Office Hours:** Thursday

Download PDF-MS¹, PDF-MD², DOCX-MD³, PPTX-MD⁴, PPTX-MS⁵

0.1.2 Outline

- What is Database?
- Database Examples
- Database
- What is Database Management System?
- Classification of Database Management Systems

0.1.3 Outline

- Hierarchical databases
 - Network databases
 - Relational databases
 - Object Oriented databases
- Why use a database?
- Advantages of the Database Approach
- Database Management Systems

^{1../}files/week-1.pdf

²week-1.tr.md_slide.pdf

 $^{^{3}} week\text{-}1.tr.md_word.docx$

 $^{^4}$ week-1.tr.md_slide.pptx

⁵../files/week-1.pptx

0.1.4 Outline

- Database Structure
- Table
- Data Types
 - MYSQL Data Types
- Key
- Primary key
- Foreign key
- Database Design

0.2 What is Database?

- It is an information repository where data that is related to each other is kept.
- The collection of data arranged in accordance with the purpose of use
- They are information stores with their logical and physical definitions.

0.3 Database Examples

- University Student Affairs Information System
- Hospital Patient, doctor, treatment, equipment, financial information
- A commercial company Customer, Product, Sales, Payment, Delivery information
- Bank Customer, deposit, credit card, credit information

0.4 Database

- The database concept was first introduced in the 1980s.
- It is used in everywhere from a simple web application up to large and complex data of international organizations
- Database applications are needed in many areas.

0.5 What is Database Management System?

It is a software system in which various complex following operations are performed.

- Creating a new database,
- Editing the database
- To use,
- Develop
- to take care of (maintanance)

0.6 Classification of Database Management Systems

- By Data Model
 - Hierarchical
 - Network
 - relational
 - Object Oriented

- By Number of Users
 - single user
 - multi-user

0.6.1 Hierarchical databases

- It is the first model used for databases.
- Hierarchical databases store information in a tree structure.

0.6.2 Network databases

• When hierarchical databases were insufficient, a structure in which data was stored in the form of graphs, which is a more advanced version of trees, emerged at the end of the 1960s.

0.6.3 Relational databases

- It was developed in the early 1970s.
- In this system, data is stored in tabular form.
- Connections between tables are represented by mathematical relationships.
- Almost all database programs today have this structure.

0.6.4 Relational databases

0.6.5 Object Oriented databases

- Objects used in many word processor and spreadsheet programs today are also used in databases.
- Object-oriented database means a database created and used in an object-oriented language such as
 - C++,
 - C#,
 - java,
 - Visual Basic.

0.7 Why use a database?

- The traditional approach to holding, storing and accessing data uses the approach of grouping data into separate files.
- With the increase in data and the need to access and edit data at the same time, the traditional approach has been inadequate.

0.8 Advantages of the Database Approach

- Preventing duplication of common data;
- Ensuring centralized control and consistency of data

- Ensuring data sharing
- Hiding physical structure and access method complexities from the user with multi-layered architectures,
- Presenting only the data that is of interest to each user in easy, understandable structures

0.9 Advantages of the Database Approach

- Ease of application software development with the analysis, design and development tools provided.
- Providing the necessary facilities for data integrity,
- Ensuring the desired level of security and confidentiality
- Solving operational problems such as backup, reboot, repair

0.10 Database Management Systems

- Oracle database
- IBM DB/2
- Adaptive Server Enterprise
- Informix
- Microsoft Access
- Microsoft SQL Server
- Microsoft Visual FoxPro
- MySQL

0.11 Database Management Systems

- PostgreSQL
- Progress
- SQLite
- Teradata
- CSQL
- OpenLink Virtuoso

0.12 Database Structure

0.13 Table

- A database consists of data stored in tables.
- Tables are a group of data that is formed by arranging data in rows and columns.
- For example, 2 tables are created to store the course content and student information in the database:
 - Student information
 - contents

0.14 Table

- ullet Each piece of information in the table is called a ${f record}$, and the columns are called a ${f field}$.
- For example, in the student information table, following information is included.
 - Student number,
 - Name and surname,
 - date of birth,
 - Place of birth,
 - E mail address

0.15 Table

${\rm Ogr_no}$	Ad_soyad	d_{tarih}	d_yeri	e-mail
1	Ayşe Öztürk	01.11.1979	Konya	ayse@gazi.edu.tr

Ogr_no	Ad_soyad	d_tarih	d_yeri	e-mail
2	Sema Özdemir	24.05.1975	Ankara	sema@gazi.edu.tr
3	Serdar Gülpınar	06.06.1983	Adana	serdar@gazi.edu.tr
4	Mehmet Efe	11.02.1978	$Nireve{g}de$	mehmet@gazi.edu.tr
5	Zerrin Polat	22.08.1980	Antalya	zerrin@gazi.edu.tr
6	Ulviye Kubalı	12.12.1984	İstanbul	ulviye@gazi.edu.tr

0.16 Table

Fields

|--|

Record

1	Ayşe Öztürk	01.11.1979	Konya	ayse@gazi.edu.tr
2	Sema Özdemir	24.05.1975	Ankara	sema@gazi.edu.tr

0.17 Data Types

- In order to have information about the structure of the records kept in the database, some properties of the fields must be defined beforehand.
- For example, the personnel registration number must be made up of integers, names and surnames must be words.

0.17.1 MYSQL Data Types

- Numeric
- Date and Time
- Textual (String)
- Spatial

0.17.2 MYSQL Data Types

0.17.2.1 TINYINT:

- For very small integer values
- \bullet When Signed is defined, the values are between -128 and 127.
- $\bullet\,$ Unsigned defined range is between 0 and 255.

0.17.3 MYSQL Data Types

0.17.3.1 SMALLINT:

- For small integer values
- When Signed is defined, the values are between -32768 and 32767.
- Unsigned defined range is 0 to 65535.

0.17.4 MYSQL Data Types

0.17.4.1 MEDIUMINT:

- For medium-sized integer values.
- When Signed is defined, the values are between -8388608 and 8388607.
- Unsigned defined range is between 0 and 16777215.

0.17.5 MYSQL Data Types

0.17.5.1 INT(n):Interger

- For normal-sized integer values.
- When Signed is defined, the values are between -2147483648 and 2147483647.
- Unsigned defined range is between 0 and 4294967295.

0.17.6 MYSQL Data Types

0.17.6.1 BIGINT:

- For large integer values.
- \bullet Can take integer value -9223372036854775808 to 9223372036854775807

0.17.7 MYSQL Data Types

0.17.7.1 FLOAT:

- Keeps numbers with their fractions.
- Max. character width is taken as a parameter. (up to 23 digits)

0.17.8 MYSQL Data Types

0.17.8.1 **DOUBLE**:

- Keeps numbers with their fractions.
- Max. character width is taken as a parameter. (24 to 53 digits)

0.17.9 MYSQL Data Types

0.17.9.1 **DECIMAL**:

- Keeps numbers with their fractions.
- The integer part can have a maximum 64 digits, and the fractional part a maximum 30 digits.

0.17.10 MYSQL Data Types

0.17.10.1 DATETIME:

• Datetime information in Year+Month+Day+Hour+Minute+Second format

YYYY-MM-DD HH:MM:SS

0.17.11 MYSQL Data Types

0.17.11.1 TIMESTAMP:

• Time information from January 1, 1970 to January 18, 2038, in the format Year+Month+Day+Hour+Minute+Second.
YYYYMMDDHHMMSS

0.17.12 MYSQL Data Types

0.17.12.1 DATE:

• Date field that can change from 1000-01-01 to 9999-12-31.

YYYY-MM-DD

0.17.13 MYSQL Data Types

0.17.13.1 CHAR(n):

• Fixed-length data with n characters.

0.17.14 MYSQL Data Types

0.17.14.1 TEXT:

• A text field that can hold up to 65535 characters.

0.17.15 MYSQL Data Types

0.17.15.1 MEDIUMTEXT:

 $\bullet~$ Text field up to 16777215 characters

0.17.16 MYSQL Data Types

0.17.16.1 VARCHAR(n):

• Characters of varying size, not exceeding n

0.17.17 MYSQL Data Types

0.17.17.1 BOOL:

• A data type that takes the value 0 or 1. or True/ False

0.18 Key

- A key forces one or more fields to be entered as qualifiers for a row.
- There are 2 types of keys:
 - Primary Key
 - Foreign Key

0.19 Primary key

- It is the key data that will enable access to a record.
- For example, there are two Ahmet among the students. Each student must have a unique number in order to find the Ahmet we want while searching.
- For example student number could be a primary key
- Multiple fields can have primary keys together

0.20 Foreign key

• A foreign key is a set of attributes in a table that refers to the primary key of another table. The foreign key links these two tables.

0.21 Foreign key

Persons Table

PersonID	LastName	FirstName	Age
1	Hansen	Ola	30
2	Svendson	Tove	23
3	Pettersen	Kari	20

0.22 Foreign key

Orders Table

${\rm Order ID}$	${\bf Order Number}$	PersonID
1	77895	3

OrderID	OrderNumber	PersonID
2	44678	3
3	22456	2
4	24562	1

0.23 Foreign key

- Notice that the "PersonID" column in the "Orders" table points to the "PersonID" column in the "Persons" table.
- The "PersonID" column in the "Persons" table is the **PRIMARY KEY** in the "Persons" table.
- The "PersonID" column in the "Orders" table is a **FOREIGN KEY** in the "Orders" table.
- The **FOREIGN KEY** constraint prevents invalid data from being inserted into the foreign key column, because it has to be one of he values contained in the parent table.

0.24 Database Design

- Objects are defined
 - Library system: books, members, types, loan movements

0.25 Designing a database

- A table is created for each object:
 - book,
 - members,
 - types,
 - woodc movements

0.26 Designing a database

- A key field is selected for each table
 - book table: book no
 - Members table: Userno

0.27 Designing a database

- A column is added to the table for each property of the objects
 - Book table: book number, year, author, name, related field

0.28 Designing a database

- Additional tables are created for recurring object properties.
 - request table:

userno	request_date	Book_name	Book_date	Book_author	Related_field
		•			
•		•	•	•	•

0.29 Designing a database

- Fields that are not directly related to the table are determined.
 - The address of the member who borrowed the book in the loan transactions table is not directly related to this table.
 - This data should be included in the **members table** where member information is kept.

0.30 Designing a database

- Relationships between tables should be defined.
 - The relationship between the **fields** in a **table** is defined.
 - For example, the **userno** field in the **members table** should be associated with the **userno** field in the **request table**.

0.31 Resources

- Köseoğlu, K. (2005). Veri Tabanı Mantığı. Şefik Matbaası. İstanbul
- Alokoç Burma, Z. (2005). Veritabanı Yönetim Sistemleri ve SQL / PL SQL / T SQL. Seçkin Yayıncılık. Ankara

End-Of-Week-1-Module