

Сопромат и КЭ анализ в снегоходостроении

ДАВЛЕНИЕ

-это нормальная сила, деленная на площадь приложения: p=F/S

- это реакция на попытку изменить объем

Во сколько раз изменится давление воздуха в цилиндре (рис), если поршень переместить на L/3 влево?

• Не изменится

• Увеличится в 1,5 раза

• Уменьшится в 1,5 раза

Закон Бойля-Мариотта (изотермический процесс)

$$\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} = const$$

Для газа ланной массы произведение давления газа его объем постоянно, температура газа

НАПРЯЖЕНИЕ, мпа

- это реакция на изменение формы

Главные площадки – площадки, на которых касательные напряжения отсутствуют.

Главные напряжения – нормальные напряжения, действующие по главным площадкам.

Главные напряжения — нормальные напряжения, принимающие экстремальные значения.

Рис. 3.4. Виды напряженного состояния: а – линейное (одноосное); б – плоское (двухосное); в – объемное (трехосное)

Рис. 3.3. Ориентация элементарного параллелепипеда, при которой по граням действуют только нормальные напряжения

Главные напряжения нумеруют в порядке убывания $\sigma_1 \ge \sigma_2 \ge \sigma_3$.

НАПРЯЖЕНИЕ, мпа

- это реакция на изменение формы

Закон Гука

Сила упругости, возникающая при упругой деформации тела, прямо пропорциональна величине деформации (Δl) и направлена в сторону противоположную перемещению частиц тела при деформации.

$$F_{ynp} = k \cdot \Delta l$$

 Δl – удлинение, м k – коэффициент жесткости,

Переход к удельным параметрам – отвязываемся от габаритов образца:

$$F = k \cdot \Delta 1$$

$$(F/S) \cdot S = k \cdot (\Delta 1/1) \cdot 1$$

$$\sigma \cdot S = k \cdot \epsilon \cdot 1$$

$$\sigma = (k \cdot 1/S) \cdot \varepsilon$$

$$\sigma = E \cdot \epsilon$$

и так в трех направлениях (реально), где:

S [м2] – площадь поперечного сечения образца,

- σ [H/м2] возникающее напряжение,
- ε [раз] относительная деформация образца,
- Е [Н/м2] модуль упругости (Юнга) материала образца

КРИТЕРИИ

Максвелла-

Губера-

Мизеса-

Генки

формоизменение

Выражение для деформации сдвига в октаэдрических плоскостях имеет вид $\gamma_{\text{окт}}\!=\!\frac{2}{3}\,\sqrt{(\epsilon_1-\epsilon_2)^2+(\epsilon_2-\epsilon_3)^2+(\epsilon_3-\epsilon_1)^2}, \qquad (1.68)$

«Основа для применимости результатов математической теории вероятностей к реальным *случайным явлениям* должна зависеть от некоторой формы частотной концепции понятия вероятности, неизбежная природа которой была весьма <u>вдохновенно</u> установлена фон Мизесом»

А. Н. Колмогоров

ДИАГРАММА

напряжение от деформации

Испытания на разрыв ной машине

ДИАГРАММА

напряжение от деформации

Многоразовая упругая до Опп – усталостной прочности: планер Редкая упругая до Обл.2 текучести: реактивный двигатель Однократная пластическая до **О**в – прочности: ПЭ лента Опотери устойчивости – обшивка **г** крыла, ластик, линейка

ПАРАМЕТРЫ материала (≈Ст3

по умолчанию)

премальные режимы (напряжения от предела усталостно

тф	прочности до предела текучести)					
	Аваряйные режимы (напр	от врефия опш ан о и предели	текучести)			
	Точка прешожения, х,у,х,					
	ми					
Νe	Нахвание	Нагрузка от льгин,	Нагрузка от руливой			
		Н, Н*т	тяк я, И, И *м			
		Ex;Ex;Ez;Mx;My;Mz	Ex:Ex:Ez:Mx:My:Mz.			
	Определение ставических					
1	реакций для снаряжённой					
	MATCH					
	Определение ставических					
2	реакций для полной					
	MATCH					
	Определение ступических					
3	реакций для полной					
	мясся с прицепом					
4	Разгон на рожной					
7	недеформируемой ОП					
5	Торможение на рожной					
	недеформируемой ОП					
6	Переездрамны заданным					
0	уг пом подъема и спуска					

	Точка припожения, х.;у;а, мм		
Νe	Нахвание	Harpy sica of history, H, H*m Ex;Ex;Ez;Mx;My;Mz.	Нагрукка от рупевой тяки, И, И*м Ех:Вх:Ех:Мх:Му:Мх
8	Переездрамиы заданным углом подъема и спуска под углом и продольной оси		
9	Переездрампы заданным углом подъема и спуска под углом к продольной оси с прицепом		
10	Джижние снегоходало нерожной ОП со спучайным профилем		
11	Преодоление единичной нерожности		
12	Преодоление единичной неровности под углом к продольной оси		
13	снегоходна косогоре при полной массе		
14	снегоходналосогоре при полной массе с низком ЦМгруза		
15	снегоходириволинейное движние с минимальным радиусомитерёди		

	Точка припожения, х.;у;х, мм		
Νe	Нахвание	Harpy sica of heaver, H, H*m Ex;Ex;Ez;Mx;My;Mz.	Harpy sica of py mesod raine, H, H*m Fx:Fx:Fz:Mx:My:Mz
	заданной скоростью		
	(кнутрь інфужу)		
	снегоходириволинейное		
	движение с заданным		
16	радиусом и заданной		
	скоростью		
	(внутра энфужу)		
17	Вуксировка застрявшего		
17	снегоходатяга спереди		
_	Вуксировка застрявшего		
18	снегоходатягана		
	фотоколе.		
19	снегоходповоротна		
19	подъеме		
20	снегоходповоротна		
20	атуаж		
21	снегоход экстренное		
	торможение на спуске		
22	снегоход экстренное		
	торможение на спуске с		
	поворотом		
23	Проездкоридора		
24	Удор в труднопреодолимое		

	Точка припожения, х.у;2, мм		
Νe	нахвание Нахвание	Нагрузка от льгжи, И, Н*м	Напрузка от ружевой тякж, Н, Н*м
		Ex:Ex:Ez:Mx:My:Mz	Ex.Ex.Ez.Mx.My:Mz
	препятствие (пень,		
	кличень)		
25	Удар в бордвер боковой		
	поверхностью льгжи		
26	Вывецичение пыск		
	Джижние по нерожной		
27	дороге 4 или 5 илгегории		
27	экспиллатия с прицепом		
	и без		
	Преодоление		
28	бульдозерного		
20	сопротивления на		
	горизонгальной ОП		
30	Приземпение поспе		
	прытию		
31			
32			
34	Заездна стенку		
35	Людинальске		

РАЗВИТЕ Консорциум разработчиков инженерного программного обеспечения

АНАЛИЗ результатов

Напряжения до Опп не вызывают никаких проблем Напряжения от Опп до Оо.2 допустимы считаное число раз Напряжения от Оолг до Ов приводят к ремонту Напряжения выше Ов или потери устойчивости – недопустимы!

Численные методы, КЭ сетка

Типы КЭ и их применение для моделирования конструкций

Базовые принципы

- 1. Для проведения расчетов машиностроительной или строительной конструкции: напряженно деформированного состояния (НДС), теплопроводности и других непрерывная конструкция заменяется ее моделью, состоящей из конечных элементов (КЭ), которые соединяются друг с другом с помощью узлов.
- 2. КЭ представляют собой дискретные области конструкции, на которые разделяется непрерывная реальная конструкция. В пределах этих областей их свойства (поперечное сечение, толщина, свойства материала и т.п.), как правило, остаются постоянными.
- 3. Узел в зависимости от своих свойств (степеней свободы) передает силовые факторы от одного КЭ другому(им), с которыми он является общим. Наличие промежуточных узлов в модели конструкцию не ослабляет.
- 4. КЭ принципиально бывают нескольких основных типов:
 - Объемные (солидные, твердотельные);
 - Пластинчатые (оболочечные, поверхностные);
 - Стержневые;
 - Узлы и специальные.
- 5. Одна из задач расчетчика минимизировать объем вычислений ~ число степеней свободы, сохраняя адекватность модели, в частности, за счет использования разных типов КЭ.

ЗАДАЧИ

для проработки

Рады сотрудничеству!

Научно-технический центр «АПМ»

Московская область, г. Королев, Октябрьский бульвар, д. 14, офис 6

Тел.: (495) 120-58-10

Internet: www. apm.ru

E-mail: com@apm.ru

