Local labor markets, population density and the gender gap

César Garro-Marín

October 8, 2020

Boston University

Introduction

Summary

In the next slides I document three main facts about the **gender gap** in the US for the period of 1970 and 2020:

- 1. There is a large dispersion in the **level** of the gender wage gap across labor markets in the US. The dispersion persists despite the general decrease in the level of the gap since 1970.
- 2. There are differences in the **change** of the gender wage gap. The largest reductions happened in densest labor markets.
- The relationship between the level of gender wage gap and population density has inverted over the period. Today, the densest labor markets have a lower gender wage gap.

1

Data

Data

Source: IPUMS data for:

- 1950-2000 Decennial censuses.
- 5-year ACS for the years 2011 and 2018. For ease of presentation I label these datasets as 2010 and 2020 respectively.

Sample includes all full-time year-round workers whom:

- Aged 18-64.
- Not attending school.
- Not living in group quarters.
- For all graphs I limit the sample to people living in CZ with a population density of at least 1 person per-square kilometer in 1950.

Empirical facts

Fact 1: there is substantial variation in the gender gap across CZ

Figure 1: The gender gap in the US in 2020

Note: darker colors denote higher relative wages for men. Figure restricts to czones with population densities above 1 person per km^2 and full-time year-round workers.

Fact 1: Cross-CZ variation persists despite general decline at the national level

Figure 2: Evolution of raw gender gap across CZ

Note: figure restricts to CZ with more than people per km² and full-time year-round workers..

Cross-CZ gender gap differences are persistent

Regression specification:
$$w_{rt}^{men} - w_{rt}^{women} = \alpha_{rt} + \beta_t (w_{rt-j}^{men} - w_{rt-j}^{women})$$

Note: figure restricts to CZ with more than people per $\rm km^2$ and full-time year-round workers.. Bars show 95% robust confidence intervals. Standard errors are clustered at the CZ level. Dependent and independent variables are standardized

Fact 2: Denser CZ have faster declines in the gender wage gap

Figure 3: Change in male wage advantage in US CZ

Fact 3: The gender gap - density relation has inverted

Regression specification: $w_{rt}^{men} - w_{rt}^{women} = \alpha_{rt} + \beta_t \ln(density)_{rt}$

Figure 4: Coefficient on population density β_t

Note: figure restricts to CZ with more than 1 people per km². Bars show 95% confidence intervals. Standard errors clustered at the CZ level. Figure generated on 7 Oct 2020 at 10:48:28. Figure generated using the dofile 2_analysis/code_files/write_regression_coefplots.do.

Distribution illustration

How big are these coefficients?

Table 1: Male advantange changes implied by estimated elasticities

	1970	1980	1990	2000	2010	2020
Density elasticity (β) s.d. wage gap β/sd	0.020	0.013	0.008	0.001	-0.001	-0.007
	0.073	0.077	0.060	0.049	0.049	0.050
	0.278	0.173	0.141	0.022	-0.023	-0.146
IC range	0.029	0.019	0.013	0.002	-0.002	-0.012
(% mean gap)	0.065	0.047	0.040	0.007	-0.009	-0.064
90 - 10 pctile range	0.061	0.040	0.027	0.004	-0.004	-0.025
(% mean gap)	0.137	0.097	0.082	0.014	-0.018	-0.133

Note: changes based on unweighted estimated elasticities. Sample restricted to full-time year-round workers. Table generated on 28 Sep 2020 at 15:15:18.

What can account for the change in the density-gradient?

Regression specification: $w_{rt}^{men} - w_{rt}^{women} = \alpha_{rt} + \beta_t \ln(density)_t$

Figure 5: Coefficient on population density β_t controlling for worker characteristics

 $\textbf{Note:} \ \ \text{figure restricts to CZ with more than 1 people per km}^2. \ \ \text{The regressions are done on data aggregated at the CZ level.} \ \ \text{Bars show}$

95% robust confidence intervals. Standard errors clustered at the CZ level. Figure generated on 7 Oct 2020 at 10:48:33. Figure generated

Residualization procedure

1. Run the regression on individual level data:

$$\textit{wage}_{\textit{igrt}} = \textit{X}_{\textit{igrt}} \gamma_t + \lambda_{\textit{grt}} + \varepsilon_{\textit{igrt}}$$

where i, g, r, t index individual, sex, CZ and decade respectively. I impose the same return on individual level characteristics across sex and CZ.

2. Run the following regression at the CZ level:

$$\lambda_{mrt} - \lambda_{frt} = \alpha_t + \beta_t \ln(density)_{rt}$$

no weight is imposed on the CZ-level regressions (Solon et al., 2015).

Low vs high density CZ

Note: figure restricts to CZ with more than 1 people per $\rm km^2$. Figure generated on 28 Sep 2020 at 15:56:45. Figure generated using the dofile code_files/kernel_density_movement.do.

References

Solon, G., Haider, S. J., and Wooldridge, J. M. (2015). What are we weighting for? *Journal of Human Resources*, 50(2):301–316.