Analisi I

Marco Macherelli

Dicembre 2024

Contenuti

1	Defi	inizione Assiomatica di $\mathbb R$	3		
2	Prin 2.1 2.2	ncipio di Induzione Disuguaglianza di Bernoulli	3 4 4		
3	Numeri Complessi				
	$\frac{3.1}{3.2}$	Forma Algebrica e Coniugato	4 5		
	3.2 3.3	Forma Trigonometrica ed Esponenziale	5		
	3.4	Prodotto tra Numeri Complessi	5		
	$\frac{3.4}{3.5}$	Formula di De Moivre	5		
	3.6	Radici N-Esime di Numeri Complessi	5		
	3.7	Teorema Fondamentale Algebrico	6		
	9.1	Teorema Pondamentale Algebrico	U		
4	Fun	zione	6		
	4.1	Funzione Composta	6		
	4.2	Funzione Inversa	6		
	4.3	Funzioni Simmetriche	6		
	4.4	Funzioni Periodiche	6		
	4.5	Funzioni Parte Intera e Mantissa	6		
	4.6	Funzioni Iperboliche	7		
5	Suc	cessione Numerica	7		
	5.1	Teorema dei 2 Carabinieri	7		
	5.2	Teorema di Monotonia	7		
	5.3	Teorema del Numero di Nepero	8		
	5.4	Confronti e Stime Asintotiche	8		
	5.5	Successioni Asintotiche	8		
		5.5.1 Criterio del Rapporto	8		
		5.5.2 Gerarchia degli Infiniti	8		
c	Con:	ie Numeriche	9		
6	6.1	Teorema: Condizione necessaria alla convergenza	9		
	6.2	Teorema della linearità	9		
	6.3	Serie Geometrica	9		
	6.4		10		
	6.5	•	10 10		
	0.0		10 10		
			$10 \\ 10$		
	6.6		10 11		
	0.0	~	11 11		

		6.6.2 Criterio del Confronto Asintotico	11 11 11		

	6.7	Serie a termini di segno definito		
		6.7.1 Teorema della convergenza assoluta		
	6.8	Serie a termini di segno alterno		
		6.8.1 Corollario: errore	1	3
7	T :	niti di Funzioni	1	9
1			1	
	7.1	Successionale del limite		
		7.1.1 Teorema di Unicità del Limite		
	7.2	Topologia del Limite		
	7.3	Intorno di un punto $c \in \mathbb{R}$		
		7.3.1 Intervallo Generale		3
	7.4	Punto di Accumulazione	1	4
	7.5	Teorema del Confronto (2 carabinieri)	1	4
	7.6	Teorema di Permanenza del Segno	1	4
	7.7	Teorema dell'Algebra dei Limiti		4
	7.8	Limite Destro e Sinistro		
8	Fun	nzioni Continue	1	4
	8.1	Teorema di Continuità delle Funzioni Elementari	1	5
	8.2	Teorema dell'Algebra delle Funzioni Continue	1	5
	8.3	Teorema della continuità composta		5
	8.4	Punti di Discontinuità		
		8.4.1 Prolungamento per continuità		
		8.4.2 Asintoti		
	8.5	Teorema degli Zeri		
	8.6	Punti di Massimo e Minimo		
	8.7			
		Teorema di Weierstrass		
	8.8	Teorema dei Valori Intermedi		
	8.9	Teorema di Permanenza del Segno	1	. (
9	Der	rivata di Una Funzione	1	7
9		rivata di Una Funzione Teorema della Continuità	1	
9	9.1	Teorema della Continuità	1	7
9	9.1 9.2	Teorema della Continuità	1 1	7.8
9	9.1	Teorema della Continuità	1 1 1	8 8
9	9.1 9.2	Teorema della Continuità	1 1 1 1	.7 .8 .8
9	9.1 9.2	Teorema della Continuità	1 1 1 1	.7 .8 .8 .8
9	9.1 9.2	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto	1 1 1 1	7 8 8 8 8
9	9.1 9.2 9.3	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente	1 1 1 1	7 8 8 8 8 8
9	9.1 9.2 9.3	Teorema della Continuità	1 1 1 1	7 8 8 8 8 8
9	9.1 9.2 9.3	$ \begin{array}{c} \text{Teorema della Continuità} \\ \text{Derivate Destra e Sinistra} \\ \text{Calcolo delle Derivate} \\ \text{9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare} \\ \text{9.3.2 Teorema della Derivata della Composizione} \\ \text{9.3.3 Teorema della Derivata del Prodotto} \\ \text{9.3.4 Teorema della Derivata del Quoziente} \\ \text{Teorema di Monotonia per } f \\ \text{Relazione tra Funzione Derivata e Inversa} \\ \end{array} $	1 1 1 1	7 8 8 8 8 8
9	9.1 9.2 9.3	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I	1 1 1 1	.7 .8 .8 .8 .8 .8
9	9.1 9.2 9.3	Teorema della Continuità	1 1 1 1	7 8 8 8 8 8 8 8
9	9.1 9.2 9.3	Teorema della Continuità	1 1 1 1	7 8 8 8 8 8 8 8 9
9	9.1 9.2 9.3	Teorema della Continuità	1 1 1 1	7 8 8 8 8 8 8 9 9
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità	1 1 1 1	7 8 8 8 8 8 8 9 9 9 9
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$	1 1 1 1	7 8 8 8 8 8 8 8 9 9 9
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari	1 1 1 1	7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat	1 1 1 1	77 88 88 88 88 88 89 99 99 99
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso	1 1 1 1	77 88 88 88 88 88 88 88 89 99 99 99 90 90
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità $ \begin{array}{c} \text{Derivate Destra e Sinistra} \\ \text{Calcolo delle Derivate} \\ 9.3.1 \text{Teorema della Derivata della Somma e Prodotto per uno Scalare} \\ 9.3.2 \text{Teorema della Derivata della Composizione} \\ 9.3.3 \text{Teorema della Derivata del Prodotto} \\ 9.3.4 \text{Teorema della Derivata del Quoziente} \\ \text{Teorema di Monotonia per } f \\ \text{Relazione tra Funzione Derivata e Inversa} \\ 9.5.1 \text{Teorema di Invertibilità II} \\ 9.5.2 \text{Teorema di Invertibilità II} \\ 9.5.3 \text{Teorema della Derivata dell'Inversa} \\ \text{Teorema della Derivata di } f(x)^{g(x)} \\ \text{Punti di Estremo Relativo} \\ \text{Punti Stazionari} \\ 9.8.1 \text{Teorema di Fermat} \\ 9.8.2 \text{Punto di Flesso} \\ 9.8.3 \text{Teorema di Rolle} \\ \hline \end{array}$	1 1 1 1	77888888888888889999999999999999999999
9	9.1 9.2 9.3 9.4 9.5	Teorema della Continuità Derivate Destra e Sinistra	1 1 1 1	77888888888888888888888888888888888888
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Lagrange 9.8.5 Teorema di Cauchy	1 1 1 1	78888888888999999999999999999999999999
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Cauchy Test di Monotonia I	1 1 1 1	77 88 88 88 88 88 88 89 99 99 99 90 90 90 90 90 90 90 90 90 90
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità II 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Rolle 9.8.5 Teorema di Cauchy Test di Monotonia I		77888888888888888888888888888888888888
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Rolle 9.8.5 Teorema di Cauchy Test di Monotonia I 1 Teorema di De l'Hôpital		77888888888888899999999999999999999999
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Lagrange 9.8.5 Teorema di Cauchy Test di Monotonia I 1 Teorema di De l'Hôpital 2 Teorema del Limite della Derivata		788888888889999900000000000000000000000
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.10 9.11 9.12 9.13	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Lagrange 9.8.5 Teorema di Cauchy Test di Monotonia I 1 Teorema di De l'Hôpital 2 Teorema del Limite della Derivata 3 Derivate di Ordini Successivi	1 1 1 1	778888888888899999000000000000000000000
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.10 9.11 9.12 9.13 9.14	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità II 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Lagrange 9.8.5 Teorema di Cauchy Test di Monotonia I 1 Teorema di De l'Hôpital 2 Teorema del Limite della Derivata 3 Derivate di Ordini Successivi 4 Teorema di Darboux		778888888888899999000000000000000000000
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.10 9.11 9.12 9.13 9.14	Teorema della Continuità Derivate Destra e Sinistra Calcolo delle Derivate 9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare 9.3.2 Teorema della Derivata della Composizione 9.3.3 Teorema della Derivata del Prodotto 9.3.4 Teorema della Derivata del Quoziente Teorema di Monotonia per f Relazione tra Funzione Derivata e Inversa 9.5.1 Teorema di Invertibilità I 9.5.2 Teorema di Invertibilità II 9.5.3 Teorema della Derivata dell'Inversa Teorema della Derivata di $f(x)^{g(x)}$ Punti di Estremo Relativo Punti Stazionari 9.8.1 Teorema di Fermat 9.8.2 Punto di Flesso 9.8.3 Teorema di Rolle 9.8.4 Teorema di Lagrange 9.8.5 Teorema di Cauchy Test di Monotonia I 1 Teorema di De l'Hôpital 2 Teorema del Limite della Derivata 3 Derivate di Ordini Successivi		78888888888888888888888888888888888888

9.15.2 Teorema della Relazione tra Tangente e Convessità	
vlor	23
l Algebra o-piccolo	23
10.1.1 Proprietà o-piccolo	
10.1.2 Teorema della Relazione tra o-piccolo e Asintotico	23
10.3.3 Criterio della Derivata n-esima	
egrali	25
	$\frac{-5}{25}$
· ·	
· ·	
	-1
	9.15.3 Punto di Cambio Concavità

1 Definizione Assiomatica di \mathbb{R}

Sia E un insieme contenuto in \mathbb{R} :

- **Def.** E è limitato superiormente se $\exists M : x < M \ \forall x \in E$
- **Def.** E è limitato inferiormente se $\exists m: x > m \ \forall x \in E$
- **Def.** E è limitato se $\exists M, m : m < x < M \ \forall x \in E$
- **Def.** \bar{x} è massimo se $\bar{x} \in E \land x \leq \bar{x} \ \forall x \in E$ (esiste se E è limitato superiormente)
- **Def.** \bar{x} è minimo se $\bar{x} \in E \land x \geq \bar{x} \ \forall x \in E$ (esiste se E è limitato inferiormente)

Sia $E \subseteq K, k \in K$:

- \bullet Def. Si dice maggiorante di E se $k \geq x \; \forall x \in E$
- **Def.** Si dice *minorante* di E se $k \leq x \ \forall x \in E$
- ullet Def. Si dice estremo superiore di E il minimo dei maggioranti
- ullet Def. Si dice estremo inferiore di E il massimo dei minoranti

2 Principio di Induzione

Sia $n_0 \in \mathbb{N}$. Se vale la proprietà P(n) per ogni $n \geq n_0$, allora:

- 1. Dimostro che $P(n_0)$ è vera
- 2. Assumo come ipotesi che P(n) sia vera e cerco di dimostrare che P(n+1) sia vera

2.1 Disuguaglianza di Bernoulli

Teorema. Per ogni intero $n \ge 0$ e $x \in \mathbb{R}$ tale che $x \ge -1$, vale:

$$(1+x)^n \ge 1 + nx$$

Dimostrazione (per induzione):

- Base. Per n = 0, $P(n) \to (1+x)^0 \ge 1 + 0x \to 1 \ge 1$ (vera)
- Induzione. Supponiamo che $(1+x)^n \ge 1 + nx$ sia vera.

Mostriamo che: $(1+x)^{n+1} \ge 1 + (n+1)x$

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) =$$

$$1+nx+x+nx^2 = 1+(n+1)x+x^2 \ge 1+(n+1)x+0$$

2.2 Disuguaglianza Triangolare

$$\forall x, y \in \mathbb{R}, \quad |x+y| \le |x| + |y|$$

Dimostrazione:

$$-|x| \le x \le |x| \text{ e } -|y| \le y \le |y| \to -|x| - |y| \le x + y \le |x| + |y| \to -(|x| + |y|) \le x + y \le |x| + |y|$$

$$\Rightarrow |x + y| \le |x| + |y|$$

3 Numeri Complessi

Definizione: Identifichiamo il campo $\mathbb C$ come ampliamento di $\mathbb R$ che soddisfa le seguenti proprietà:

- Somma: (a, b) + (c, d) = (a + c, b + d)
- Elemento Neutro: (0,0)
- Elemento Opposto: (-a, -b)
- **Prodotto:** (a, b)(c, d) = (ac bd, ad + bc)
- Elemento Neutro: (1,0)
- Inverso: $\left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right)$

3.1 Forma Algebrica e Coniugato

$$z=(a,b)\to a+ib \mbox{ dove } i^2=-1$$

$$\bar{z}=(a,b)\to a-ib \mbox{ dove } i^2=-1 \mbox{ (coniugato di } z)$$

Proprietà:

- Somma: $z + \bar{z} = 2a \rightarrow 2\text{Re}(z), \ \forall z \in \mathbb{C}$
- Prodotto: $z \bar{z} = 2ib \rightarrow 2\mathrm{Im}(z), \ \forall z \in \mathbb{C}$
- Conjugato: $\bar{z} = z, \ \forall z \in \mathbb{C}$
- $\bullet \ \overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$
- $\bullet \ \overline{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
- $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\bar{z}}$

3.2 Modulo di z

Definizione: Modulo di $z=a+ib \rightarrow |z|=\sqrt{a^2+b^2} \in \mathbb{R}$ Proprietà:

- $|z| \ge 0$ perché $\sqrt{a^2 + b^2} \ge 0 \ \forall a, b \in \mathbb{R}$
- $|z| = 0 \Leftrightarrow z = 0$ perché $\sqrt{a^2 + b^2} = 0 \Leftrightarrow a = b = 0$
- $|z| = |\bar{z}|$ perché $\sqrt{a^2 + b^2} = \sqrt{a^2 + (-b)^2}$
- $|\text{Re}(z)| \le |z|$, $|\text{Im}(z)| \le |z|$, $|\text{Re}(z)| + |\text{Im}(z)| \ge |z|$
- $|z_1 + z_2| \le |z_1| + |z_2|$

Significato geometrico: distanza di z dall'origine.

3.3 Forma Trigonometrica ed Esponenziale

Dato z = a + ib, abbiamo:

$$z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta} \text{ dove:}$$

$$\rho = |z| = \sqrt{a^2 + b^2}, \ \theta = \arg(z) = \arctan\left(\frac{b}{a}\right)$$

$$\cos\theta = \frac{a}{\sqrt{a^2 + b^2}}, \ \sin\theta = \frac{b}{\sqrt{a^2 + b^2}}, \ \tan\theta = \frac{b}{a}, \ \theta \in [-\pi, \pi]$$

3.4 Prodotto tra Numeri Complessi

Dati $z = \rho(\cos \theta + i \sin \theta)$ e $w = r(\cos \phi + i \sin \phi)$, abbiamo:

$$zw = \rho r \left(\cos(\theta + \phi) + i\sin(\theta + \phi)\right)$$

Dimostrazione:

$$\rho r (\cos \theta + i \sin \theta) (\cos \phi + i \sin \phi) = \rho r (\cos \theta \cos \phi + i \sin \phi \cos \theta + i \sin \theta \cos \phi + i^2 \sin \theta \sin \phi)$$
$$= \rho r (\cos \theta \cos \phi + i (\sin \phi \cos \theta + \sin \theta \cos \phi) - \sin \theta \sin \phi)$$
$$= \rho r (\cos(\theta + \phi) + i \sin(\theta + \phi))$$

Moltiplicare z per w significa effettuare su z una contrazione/dilatazione del modulo di r e una rotazione di angolo ϕ .

3.5 Formula di De Moivre

Sia $z = \rho(\cos \theta + i \sin \theta) \in \mathbb{C}$ e sia $n \ge 1 \in \mathbb{N}$, allora:

$$z^{n} = \rho^{n} \left(\cos(n\theta) + i \sin(n\theta) \right)$$

Si dimostra utilizzando la dimostrazione precedente ponendo w=z.

3.6 Radici N-Esime di Numeri Complessi

Definizione: Dato $w \in \mathbb{C}$, con $n \geq 2 \in \mathbb{N}$, una radice n-esima di w è un numero complesso z tale che:

$$z^n = w$$

Teorema: Le radici n-esime di w sono tutti e soli i numeri complessi del tipo:

$$z_k = \rho e^{in\theta}$$
 con $\rho = \sqrt[n]{|w|}$ dove $0 \le k < n$
$$\theta_k = \frac{\phi + 2k\pi}{n}$$

Significato geometrico: Nel campo complesso, le radici sono i vertici di un poligono regolare di n lati, inscritto in un cerchio di centro O e raggio $\rho = \sqrt[n]{|w|}$. Ogni radice si ottiene dalla precedente moltiplicando per $e^{i\frac{2\pi}{n}}$, quindi ruotando la precedente di un angolo $\phi = \frac{2\pi}{r}$, dove r = |z|.

3.7 Teorema Fondamentale Algebrico

Un'equazione polinomiale nella forma:

$$a_n z^n + \ldots + a_1 z + a_0 = 0$$
 con $a_n \neq 0$ e $a_0, \ldots, a_n \in \mathbb{C}$

ha precisamente n radici.

Proprietà: Se p(z) ha coefficienti reali $a_0, \ldots, a_n \in \mathbb{N}$ e se w è una radice non reale, allora \bar{w} è una radice con la stessa molteplicità.

Osservazione: Se p(z) ha grado dispari, almeno una radice è reale.

4 Funzione

Dati due insiemi A e B (non vuoti), una funzione è una qualsiasi legge che ad ogni elemento di A associa uno e un solo elemento di B:

$$f:A\to B$$

Definizioni:

- Immagine di f: è un sottoinsieme di B, $Im(f) = f(A) = \{b \in B : f(a) = b\}$
- Controimmagine di f: dato $C \subseteq B$, $f^{-1}(C) = \{a \in A : f(a) \in C\}$
- f è iniettiva se $\forall a_1, a_2 \in A, \ a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2); \ \forall b \in B, \ f^{-1}(b)$ contiene al più un elemento
- f è suriettiva se $\forall b \in B, f^{-1}(b)$ contiene almeno un elemento
- f è biunivoca se $\forall b \in B, f^{-1}(b)$ contiene esattamente un elemento

4.1 Funzione Composta

Data $f: A \to B \in g: A' \to B'$, si definisce h la funzione composta:

$$h = g \circ f : A \to B'$$
 dove $h(x) = g(f(x))$

4.2 Funzione Inversa

Data $f: A \to B$ funzione biunivoca, allora:

$$\forall b \in B, \ \exists! a \in A : f(a) = b$$

Si definisce funzione inversa $f^{-1}: B \to A$, $\forall b \in B \ b \to a \ \text{se} \ f(a) = b$. Diremo identità quella funzione $\mathbb{I}_A: A \to A \ \text{dove} \ f^{-1} \circ f = \mathbb{I}_A$.

4.3 Funzioni Simmetriche

Data $f: D \to \mathbb{R}$, dove D = [-a, a]:

- f è pari se $f(x) = f(-x) \ \forall x \in D \Rightarrow$ Grafico simmetrico rispetto all'asse x
- $f \in \mathbf{dispari}$ se $f(x) = -f(-x) \ \forall x \in D \Rightarrow \mathbf{Grafico}$ simmetrico rispetto all'origine

4.4 Funzioni Periodiche

La funzione f si dice **periodica** in periodo T > 0 se T è il più piccolo numero reale positivo tale che:

$$f(x+T) = f(x) \ \forall x \in D$$

4.5 Funzioni Parte Intera e Mantissa

Definizione: Dato $x \in \mathbb{R}$, si definisce **parte intera** di x ([x]), il più grande numero intero $n \le x$. Si definisce **mantissa** la parte decimale di $x \in \mathbb{R}$:

$$((x)) = x - [x]$$

4.6 Funzioni Iperboliche

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\tanh(x) = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Proprietà:

- $\bullet \cosh^2 x \sinh^2 x = 1$
- $\sinh(x+y) = \sinh(x)\cosh(y) + \sinh(y)\cosh(x)$
- $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$
- $\sinh(2x) = 2\sinh(x)\cosh(x)$
- $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$

5 Successione Numerica

Si definisce successione numerica $f: \mathbb{N} \to \mathbb{R} \Rightarrow \{a_n\} \subseteq \mathbb{R}$. Il numero $l \in \mathbb{R}$ si dice limite di $\{a_n\}$ se:

$$\lim_{n \to \infty} a_n = l$$

Teorema di unicità del limite: Se $a_n \to l$ e $a_n \to l' \Rightarrow l = l'$. Definizioni:

- a_n è convergente a $l \in \mathbb{R}$ se $\forall \epsilon > 0, \exists N \in \mathbb{N} : |a_n l| < \epsilon \ \forall n \geq N$
- a_n è divergente se $\forall n > 0, \exists N \in \mathbb{N} : |a_n| > M \ \forall n \geq N$
- a_n è oscillante se $\nexists \lim a_n$
- a_n è infinitesima se $a_n \to 0$ per $n \to +\infty$
- a_n è infinita se $a_n \to \pm \infty$ per $n \to +\infty$

Proposizioni:

- Sia $\{a_n\}$ limitata e $\{b_n\}$ infinitesima $\Rightarrow \{a_nb_n\}$ infinitesima
- Sia $\{a_n\}$ limitata e $\{b_n\}$ divergente $\Rightarrow \{a_nb_n\}$ divergente

5.1 Teorema dei 2 Carabinieri

Dati $a_n \leq b_n \leq c_n$, se $a_n \to l$ e $c_n \to l$ si ha che $b_n \to l$. Conseguentemente si ha che:

- Se $a_n \leq b_n \ \forall n \geq N$ e $a_n \to +\infty$ si ha che $b_n \to +\infty$
- Se $a_n \leq b_n \ \forall n \geq N$ e $b_n \to -\infty$ si ha che $a_n \to -\infty$

5.2 Teorema di Monotonia

Se $\{a_n\}$ è una successione monotona crescente allora:

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}\$$

Se $\{a_n\}$ è una successione monotona decrescente allora:

$$\lim_{n \to \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}\$$

7

Teorema del Numero di Nepero

La successione $a_n = \left(a + \frac{1}{n}\right)^n$ è convergente. In generale:

$$\lim_{n\to\infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e \quad \text{(limite notevole)}$$

5.4 Confronti e Stime Asintotiche

Considerando $\{a_n\}$ e $\{b_n\}$ infinite si ha:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\begin{cases} 0 & \text{se }\{a_n\} \text{ è infinita di ordine inferiore rispetto a }\{b_n\}\\ l\in\mathbb{R} & \text{se }\{a_n\} \text{ è infinita dello stesso ordine di }\{b_n\}\\ +\infty & \text{se }\{a_n\} \text{ è infinita di ordine superiore rispetto a }\{b_n\}\\ \text{non confrontabili} & \text{se }\#\{a_n\} \text{ e }\{b_n\} \text{ infiniti non confrontabili} \end{cases}$$

Considerando $\{a_n\}$ e $\{b_n\}$ infinitesime si ha:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\begin{cases} 0 & \text{se }\{a_n\} \text{ è infinitesimo di ordine superiore rispetto a }\{b_n\}\\ l\in\mathbb{R} & \text{se }\{a_n\} \text{ è infinitesimo dello stesso ordine di }\{b_n\}\\ +\infty & \text{se }\{a_n\} \text{ è infinitesimo di ordine inferiore rispetto a }\{b_n\}\\ & \text{non confrontabili} & \text{se } \nexists\{a_n\} \text{ e }\{b_n\} \text{ infinitesimi non confrontabili} \end{cases}$$

5.5 Successioni Asintotiche

Se:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1\quad \text{allora }\{a_n\} \text{ e }\{b_n\} \text{ sono as into tiche }$$

dato che hanno lo stesso comportamento per $n \to +\infty$ e si denotano con $\{a_n\} \sim \{b_n\}$.

5.5.1 Criterio del Rapporto

Sia $a_n > 0$ definitivamente (per $\forall n > N$). Se esiste:

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$$

- $\bullet\,$ Se l<1 allora la successione è infinitesima
- $\bullet\,$ Se l>1 allora la successione è infinita

5.5.2 Gerarchia degli Infiniti

In generale vale:

$$(\log_{\alpha} n)^{\beta} < n^{\alpha} < b^n < n! < n^n$$

Per determinare la gerarchia si usa il criterio del rapporto:

$$\lim_{n \to \infty} \frac{n^{\alpha}}{a^n} = 0 \quad \text{date } \alpha > 0 \text{ e } a > 1$$

Da criterio del rapporto abbiamo:

$$\lim_{n\to\infty}\frac{b_{n+1}}{b_n}\to\lim_{n\to\infty}\frac{(n+1)^\alpha}{a^{n+1}}\cdot\frac{1}{\frac{n^\alpha}{a^n}}=\lim_{n\to\infty}\frac{n^\alpha}{a^na}\cdot\frac{a^n}{n^\alpha}=\lim_{n\to\infty}\frac{n^\alpha}{a^na}=\frac{1}{a}\to$$

Dato che a>1, si ha $\frac{1}{a}<1$ e che $\frac{n^{\alpha}}{a^n}\to 0$ per $n\to +\infty$. **Definizione:** Date due successioni a_n e b_n , diremo che: a_n è **o-piccolo** di b_n e scriviamo $a_n=o(b_n)$ se:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0\quad\Rightarrow\quad \text{Da gerarchia degli infiniti infatti }n^\alpha=o(a^n)$$

6 Serie Numeriche

Definizione: Sia $\{a_n\}$ una successione di numeri reali. Definiamo la successione $\{s_k\}$ ponendo:

$$s_k = \sum_{n=0}^k a_n$$

Si dice che la somma della serie è il limite di $\{s_k\}$:

$$\lim_{k\to\infty} s_k$$

Se tale limite esiste e finito, esso è la somma della serie. Inoltre, la serie $\sum_{n=0}^{\infty} a_n$ è detta convergente, divergente o irregolare se $\{s_k\}$ è convergente, divergente o irregolare.

6.1 Teorema: Condizione necessaria alla convergenza

Se la serie $\sum_{n=0}^{\infty}a_n$ converge, allora $\lim_{n\to\infty}a_n=0.$

Dimostrazione:

$$\sum_{n=0}^{\infty} a_n = \bar{s} < +\infty \implies \lim_{k \to \infty} s_k = \bar{s} \in \mathbb{R}$$

Si ha quindi:

$$s_k = \sum_{n=0}^k a_n$$
 e $s_{k+1} = \sum_{n=0}^{k+1} a_n = \sum_{n=0}^k a_n + a_{k+1} = s_k + a_{k+1}$

Per $k \to \infty$, otteniamo:

$$\bar{s} = \bar{s} + \lim_{k \to \infty} a_{k+1} \implies \lim_{k \to \infty} a_{k+1} = 0$$

6.2 Teorema della linearità

Se le serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ sono regolari e la somma $\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$ ha significato, allora:

$$\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} (a_n + b_n)$$

$$\sum_{n=0}^{\infty} (ca_n) = c \sum_{n=0}^{\infty} a_n \quad \forall c \in \mathbb{R}$$

6.3 Serie Geometrica

Sia $a_n = q^n$, quindi:

$$\sum_{n=0}^{k} q^n \quad e \quad \lim_{k \to \infty} \sum_{n=0}^{k} q^n$$

- Se q=1,allora $\sum_{n=0}^k 1=+\infty.$ - Se $q\neq 1,$ abbiamo:

$$s_k = \sum_{n=0}^k q^n = 1 + q^1 + q^2 + \dots + q^k$$

Moltiplicando per q, otteniamo:

$$qs_k = q^1 + q^2 + \ldots + q^{k+1}$$

Calcolando la differenza:

$$s_k - qs_k = 1 - q^{k+1} \implies s_k(1-q) = 1 - q^{k+1}$$

Quindi:

$$s_k = \frac{1 - q^{k+1}}{1 - q}$$

E quindi il limite:

$$\lim_{k \to \infty} s_k = \begin{cases} \frac{1}{1-q} & \text{se } |q| < 1 \text{ (convergente)} \\ +\infty & \text{se } q > 1 \text{ (divergente)} \\ \text{irregolare} & \text{se } q \leq 1 \end{cases}$$

6.4 Serie Telescopica

Sia $a_n = b_n - b_{n+1}$, quindi:

$$\sum_{n=0}^{\infty} (b_n - b_{n+1})$$

La serie è:

$$\sum_{n=0}^{\infty} a_n = b_0 - \lim_{k \to \infty} b_k$$

Dimostrazione:

$$\sum_{n=0}^{k} (b_n - b_{n+1}) = b_0 - b_{k+1} \implies \lim_{k \to \infty} (b_0 - b_{k+1}) = b_0 - \lim_{k \to \infty} b_{k+1}$$

6.5 Serie Armonica

$$\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Condizione necessaria:

$$\lim_{k \to \infty} \frac{1}{n} = 0$$

Dimostrazione:

$$\log(x+1) < x \quad \forall x > 0 \implies x = \frac{1}{n} \implies 0 < \log(1+\frac{1}{n}) \le \frac{1}{n} \quad \forall n \in \mathbb{N}^+$$

Abbiamo:

$$\sum_{n=1}^{k} \frac{1}{n} = \sum_{n=1}^{k} \log(1 + \frac{1}{n}) = \sum_{n=1}^{k} (\log(n+1) - \log(n)) = \sum_{n=1}^{\infty} \log(1 + \frac{1}{n}) = -[\log(n) - \log(k)] \to +\infty$$

Inoltre:

$$\sum_{n=1}^{k} \frac{1}{n} \sim \log(k) \quad \text{per } k \to +\infty$$

e quindi:

$$\sum_{n=1}^{k} \frac{1}{n} = \log(k) + \gamma + o(1) \quad \text{con } \gamma = 0.57721...$$

6.5.1 Serie Armonica Generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = \begin{cases} diverge & \text{se } \alpha \leq 1\\ converge & \text{se } \alpha > 1 \end{cases}$$

6.5.2 Serie Armonica Modificata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} \ln (n)^{\beta}} = \begin{cases} diverge & \text{se } \begin{cases} \alpha \le 1 \text{ e } \forall \beta \\ \alpha = 1 \text{ e } \beta \le 1 \end{cases} \\ converge & \text{se } \begin{cases} \alpha \le 1 \text{ e } \forall \beta \\ \alpha = 1 \text{ e } \beta \le 1 \end{cases} \\ \alpha > 1 \text{ e } \forall \beta \\ \alpha = 1 \text{ e } \beta > 1 \end{cases}$$

6.6 Serie a Termini Non Negativi

Definizione: La $\sum_{n=0}^{+\infty} a_n$ si dice a termini non negativi se:

- $a_n \ge 0 \quad \forall n \in \mathbb{N}$
- Definitivamente, $a_n \ge 0 \quad \forall n \ge N$

Non può essere irregolare, infatti s_k è crescente, quindi $\lim_{k\to\infty} s_k = \sup\{a_n\}$.

6.6.1 Criterio del Confronto

Siano $\{a_n\}$ e $\{b_n\}$ tali che $0 \le a_n \le b_n$ definitivamente. Allora:

- Se $\sum_{n=0}^{+\infty} b_n < +\infty$, allora $\sum_{n=0}^{+\infty} a_n < +\infty$.
- Se $\sum_{n=0}^{+\infty} a_n > +\infty$, allora $\sum_{n=0}^{+\infty} b_n > +\infty$.

Dimostrazione: Considero $s_k = \sum_{n=0}^k a_n$ e $t_k = \sum_{n=0}^k b_n$ (con $\exists \lim s_k$ e $\exists \lim t_k$):

- $s_k \leq t_k$ definitivamente.
- $0 \le a_n \le b_n$.

Se $\lim_{k\to\infty} t_k = l \in \mathbb{R}$:

- Da teorema del confronto, $s \le t < +\infty \Rightarrow s = \lim_{k \to \infty} s_k = \sum_{n=0}^{+\infty} a_n < +\infty$.
- Se $\lim_{k\to\infty} s_k = +\infty$, allora $+\infty = s_k \le t_k \Rightarrow s < t \Rightarrow t = +\infty$.

6.6.2 Criterio del Confronto Asintotico

Siano $\{a_n\}$ e $\{b_n\}$ due successioni non negative definitivamente, con $b_n > 0$ tali che $a_n \sim b_n$. Allora:

$$\sum_{n=0}^{+\infty} a_n = +\infty \iff \sum_{n=0}^{+\infty} b_n = +\infty,$$

ovvero $\{a_n\}$ e $\{b_n\}$ hanno lo stesso comportamento per $n \to +\infty$.

Dimostrazione: Poiché $a_n \sim b_n$, allora:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1\Rightarrow \forall \epsilon>0: \left|\frac{a_n}{b_n}-1\right|<\epsilon \text{ definitivamente}.$$

Questo implica:

$$1 - \epsilon < \frac{a_n}{b_n} < 1 + \epsilon \quad \text{con } b_n > 0 \Rightarrow (1 - \epsilon)b_n < a_n < (1 + \epsilon)b_n.$$

Applicando il criterio del confronto:

- Se $\sum_{n=0}^{+\infty} a_n < +\infty$, allora $\sum_{n=0}^{+\infty} b_n < +\infty$.
- Se $\sum_{n=0}^{+\infty} a_n = +\infty$, allora $\sum_{n=0}^{+\infty} b_n = +\infty$.

6.6.3 Criterio del Rapporto

Sia $\{a_n\}$ una successione tale che $a_n > 0$ definitivamente. Se $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, allora:

- Se < 1, allora $\sum_{n=0}^{+\infty} a_n < +\infty$.
- Se > 1, allora $\sum_{n=0}^{+\infty} a_n = +\infty$.

Dimostrazione:

• Se l < 1: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$. Per ogni $\epsilon > 0$:

$$\left| \frac{a_{n+1}}{a_n} - 1 \right| < \epsilon$$
 definitivamente.

Scegliendo ϵ tale che $l + \epsilon < 1$, otteniamo:

$$a_{N+1} < (l+\epsilon)a_N$$
 e quindi $\sum_{n=0}^{+\infty} a_n < +\infty$.

• Se l>1: $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$. Scegliendo $\epsilon=l-1>0$, abbiamo:

$$a_{n+1} > a_n$$
 per $n \ge N \Rightarrow a_n \nrightarrow 0$ per $n \to +\infty$.

6.6.4 Criterio della Radice

Sia $\{a_n\}$ una successione tale che $a_n \geq 0$ definitivamente. Se $\exists \lim_{n \to \infty} \sqrt[n]{a_n}$, allora:

- Se < 1, allora $\sum_{n=0}^{+\infty} a_n < +\infty$.
- Se > 1, allora $\sum_{n=0}^{+\infty} a_n = +\infty$.

6.7 Serie a termini di segno definito

Definizione: una serie $\sum_{n=0}^{+\infty} a_n$ si dice assolutamente convergente se converge $\sum_{n=0}^{+\infty} |a_n|$.

6.7.1 Teorema della convergenza assoluta

Se $\sum_{n=0}^{+\infty} a_n$ converge assolutamente, allora $\sum_{n=0}^{+\infty} a_n$ converge semplicemente. Quindi vale:

$$\sum_{n=0}^{+\infty} |a_n| < +\infty \implies 0 \le \left| \sum_{n=0}^{+\infty} a_n \right| \le \sum_{n=0}^{+\infty} |a_n| < +\infty$$

6.8 Serie a termini di segno alterno

Criterio di Leibniz: Sia data la serie $\sum_{n=0}^{+\infty} (-1)^n a_n$ con $a_n \ge 0$, $a_n \to 0$, $a_{n+1} \le a_n$ per ogni $n \in \mathbb{N}$ o per $n \ge N$. Allora:

$$\sum_{n=0}^{+\infty} (-1)^n a_n < +\infty \text{ (La serie converge semplicemente)}$$

Dimostrazione: Sia $s_k = \sum_{n=0}^k (-1)^n a_n$.

1)
$$s_{2k} = \sum_{n=0}^{2k} (-1)^n a_n$$

$$s_{2k+2} = \sum_{n=0}^{2k+2} (-1)^n a_n = \sum_{n=0}^{2k} (-1)^n a_n + (-1)^{2k+1} a_{2k+1} + (-1)^{2k+2} a_{2k+2} = 0$$

 $s_{2k} + (-1)^{2k+1}a_{2k+1} + (-1)^{2k+2}a_{2k+2} \to \text{per ipotesi } a_{n+1} \le a_n \text{ quindi se}$ $n = 2k+1 \to a_{2k+2} - a_{2k+1} \le 0 \to s_{2k+2} \le s_{2k} \to s_{2k} \text{ decrescente, } s_{2k} \le s_0 \, \forall k \ge 0$

$$2) \ s_{2k+1} = \sum_{n=0}^{2k+1} (-1)^n a_n$$

$$s_{2k+3} = \sum_{n=0}^{2k+3} (-1)^n a_n = \sum_{n=0}^{2k+1} (-1)^n a_n + (-1)^{2k+2} a_{2k+2} + (-1)^{2k+3} a_{2k+3} =$$

 $s_{2k+1} + a_{2k+2} - a_{2k+3} \to \text{per ipotesi } a_{n+1} \le a_n \text{ quindi se}$

$$n = 2k + 2 \rightarrow a_{2k+3} \le a_{2k+2} \rightarrow s_{2k+3} \ge s_{2k+1} \rightarrow s_{2k+1}$$

3)
$$s_{2k+1} = s_{2k} + (-1)^{2k+1} a_{2k+1} \to s_1 \le \dots \le s_{2k+1} = s_{2k} - a_{2k+1} \le s_{2k} \le \dots \le s_0$$

 $\{s_{2k+1}\} \in \{s_{2k}\} \text{ sono } \{Monotone, Limitate\} \implies convergenti.$

$$s_{2k+1} = s_{2k} - a_{2k+1}$$

$$\lim_{k\to\infty} s_{2k+1} = \lim_{k\to\infty} s_{2k} - \lim_{k\to\infty} a_{2k+1} \text{ (per ipotesi } a_n \to 0) = \lim_{k\to\infty} s_{2k} = \bar{s} \in \mathbb{R} < +\infty$$

6.8.1 Corollario: errore

L'errore che si commette approssimando la serie con la somma parziale s_k è tale che $|Err| = |\bar{s} - s_k| \le a_{k+1}$. Dimostrazione:

$$s_{2k} \le \bar{s} \to s_{2k} + (-1)^{2k+1} a_{2k+1} \le \bar{s} \to s_{2k} - \bar{s} \le a_{2k+1}$$
$$s_{2k} \ge \bar{s} \to s_{2k-1} + (-1)^{2k} a_{2k} \ge \bar{s} \to a_{2k} - \bar{s} \le s_{2k-1}$$

7 Limiti di Funzioni

Data:
$$f: \mathbb{D} \to \mathbb{R}, x \to c \in \mathbb{R}$$

7.1 Successionale del limite

Si dice che $\lim_{x\to c} f(x) = l$ con $c, l \in \mathbb{R}$ se, per ogni successione (k_n) di punti $k_n \neq c$ tale che $k_n \to c$ (con $n \to \infty$), si ha:

$$\lim_{n \to \infty} f(k_n) = l.$$

7.1.1 Teorema di Unicità del Limite

Definizione: Se $\exists \lim_{x \to c} f(x) = l \implies l$ è unico

Dimostrazione: Supponiamo $\lim_{x\to c} f(x) = l_1 \text{ e } \lim_{x\to c} f(x) = l_2 \text{ con } l_1 \neq l_2.$

- \rightarrow Dalla definizione di limite, esiste una successione $(x_n) \rightarrow c$ tale che $f(x_n) \rightarrow l_1$ e $f(x_n) \rightarrow l_2$.
- \rightarrow Contraddice il Teorema di unicità del limite per le successioni $\implies l_1 \neq l_2$

7.2 Topologia del Limite

Si considera $\lim_{x\to c} = l$

- Se $c, l \in \mathbb{R} : \forall \epsilon > 0 \ \exists \delta : |f(x) l| < \epsilon, \ \forall x \neq c : |x c| < \delta$
- Se $c \in \mathbb{R}$, $l = +\infty : \forall M > 0 \; \exists \delta > 0 : f(x) > M$, $\forall x \neq c : |x c| < \delta$
- Se $c = +\infty$, $l \in \mathbb{R}$: $\forall \epsilon > 0 \exists H > 0$: $|f(x) l| < \epsilon$, $\forall x > H$
- Se $c = +\infty$, $l = +\infty$: $\forall M > 0 \exists H > 0$: f(x) > M, $\forall x > M$

7.3 Intorno di un punto $c \in \mathbb{R}$

Si dice intervallo di un punto $c \in \mathbb{R}$:

- Un intervallo aperto che contiene c: $(c \delta, c + \delta)$
- Un intervallo aperto che "contiene" $\pm \infty$: $(H, +\infty)$ o $(-\infty, H)$

7.3.1 Intervallo Generale

 $\lim_{x\to c} f(x) = l: \ c, l \in \mathbb{R} \iff \forall \text{ intorno di } l \ (J_l) \ \exists \text{ intorno di } c \ (\mathbb{I}_c) \text{ tale che } f(x) \in J_l, \ \forall x \neq c \in \mathbb{I}_c$

7.4 Punto di Accumulazione

Sia $A \subseteq \mathbb{R}$, $c \in \mathbb{R}$ è un punto di accumulazione per A se $\forall \mathbb{I}_c$ si ha $\mathbb{I}_c \cap A \setminus \{c\} \neq \emptyset$ Si dice **Punto Isolato** è un punto non di accumulazione

7.5 Teorema del Confronto (2 carabinieri)

Definizione:

Sia $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = l$, se $f(x) \le h(x) \le g(x)$ in un intorno di $c, c \in \mathbb{R}$, $\Longrightarrow \lim_{x\to c} h(x) = l$.

Dimostrazione:

Usando la definizione successionale del limite, scelgo $x_n \neq c, x_n \rightarrow c, c \in \mathbb{R}$.

Se
$$\lim_{x \to c} f(x) = l \implies f(x_n) = l \text{ per } n \to +\infty$$

Se
$$\lim_{x \to c} g(x) = l \implies g(x_n) = l \text{ per } n \to +\infty$$

Se $x_n \to c$. avremo: $f(x_n) \le h(x_n) \le g(x_n) \ \forall n > N \implies$ Da Teorema dei 2 carabinieri $h(x_n) \to l$ per $n \to +\infty$

Corollario:

Se
$$g(x) \to 0$$
 per $x \to c$ e $0 \le |h(x)| \le g(c)$ in un intorno di c $\implies h(x) \to 0$ per $x \to c$

7.6 Teorema di Permanenza del Segno

Se
$$\lim_{x \to c} f(x) = l > 0 \implies \exists \mathbb{I}_c \text{ tale che } f(x) > 0 \ \forall x > 0 \in \mathbb{I}_c \setminus \{c\}$$

Se $\lim_{x \to c} f(x) = l, \ f(x) \ge 0 \implies \forall x \in \mathbb{I}_c \setminus \{c\}, \ l \ge 0$

7.7 Teorema dell'Algebra dei Limiti

Se
$$f(x) \to l_1$$
, $g(x) \to l_2$ per $x \to c$, $c \in \overline{\mathbb{R}}$, l_1 , $l_2 \in \mathbb{R}$. Allora:

- $f(x) \pm g(x) \rightarrow l_1 + l_2 \text{ per } x \rightarrow c$
- $f(x)g(x) \to l_1l_2 \text{ per } x \to c$
- $\frac{f(x)}{g(x)} \to \frac{l_1}{l_2} \text{ per } x \to c$

7.8 Limite Destro e Sinistro

Se $c \in \mathbb{R}$ e $l \in \overline{\mathbb{R}}$ si dice :

$$\lim_{x \to c^{\pm}} f(x) = l \to \text{ limite } \begin{cases} destro & \text{di } f(x) \text{ per } x \to c \text{, se } \forall \{x_n\} \text{ tale che } \begin{cases} x_n \to x^+ \\ x_n \to x^- \end{cases}$$
$$\text{con } x_n \neq c \text{ si ha } f(x_n) = l \text{ per } n \to +\infty$$

Nota Bene:
$$\exists \lim_{x \to c} f(x) \iff \lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$$

8 Funzioni Continue

Sia
$$f: \mathbb{I} \to \mathbb{R}, c \in \mathbb{I}, f$$
 è continua in c se $\lim_{x \to c} f(x) = f(c) \ \forall c \in \mathbb{I}$

8.1 Teorema di Continuità delle Funzioni Elementari

Enunciato: le funzioni elementari (potenze ad esponente reale, esponenziali, logaritmiche, goniometriche) sono continue nel loro dominio.

Dimostrazione: $\sin x$ continuo $\forall x \in \mathbb{R}$

So che sin x è continuo in c = 0, voglio provarlo $\forall c \in \mathbb{R} \setminus \{0\}$

$$\lim_{h \to 0} \sin(c+h) = \sin c = f(c)$$

 $\sin(c+h) - \sin c = \sin c \cos h + \cos c \sin h - \sin c = \sin c (\cos h - 1) + \cos c \sin h \rightarrow$

 $0 \leq |\sin{(c+h)} - \sin{c}| \leq |\sin{c}| |(\cos{h} - 1)| + |\cos{c}| |\sin{h}| \rightarrow \text{Dove } \cos{h} - 1 \rightarrow 0 \text{ per } h \rightarrow 0 \text{ e } \sin{h} \rightarrow 0 \text{ per } h \rightarrow 0$

8.2 Teorema dell'Algebra delle Funzioni Continue

Enunciato: Siano $f \in g$ definite in $I_c, c \in \mathbb{R}$ e continue in c. Allora:

- $f(x) + g(x) \implies \text{Continua in } c$
- $f(x)g(x) \implies \text{Continua in } c$
- $\frac{f(x)}{g(x)}$ \Longrightarrow Continua in c, purché $g(c) \neq 0$

Ne discende che $\tan x$, $\cot x$, polinomi, quozienti di polinomi, ..., sono continue in tutto il loro dominio.

8.3 Teorema della continuità composta

Enunciato: Siano g una funzione definita in I_c e continua in c, f una funzione definita in I_d con d = g(c) e continua in $d \implies f \circ g \begin{cases} \grave{\mathbf{E}} \text{ definita almeno in } I_c \\ \grave{\mathbf{E}} \text{ continua in } \mathbf{C} \end{cases}$

Dimostrazione: $f \circ g = f(g(x))$

Se
$$g$$
 è continua in c $\implies \lim_{x \to c} g(x) = g(c)$ *

Se
$$f$$
 è continua in c $\implies \lim_{t \to d} f(t) = f(d)$ **

Calcolo la composta: $\lim_{x \to c} f(g(c))$

Quindi: Pongo t = g(x) da precedente se $x \to c \implies t \to g(c), t = g(x) \to g(c) = d$

$$\lim_{x \to c} f(g(x)) = \lim_{t \to d} f(t) \stackrel{**}{=} f(d) = f(g(x))$$

8.4 Punti di Discontinuità

I punti di discontinuità si suddividono in 3 specie:

• Discontinuità eliminabile:

Se
$$\lim_{x \to c} f(x) = l \neq f(c), l \in \mathbb{R}$$

• Discontinuità di salto:

Se
$$\lim_{x \to c_+} f(x) = l^+ \neq \lim_{x \to c_-} f(x) = l^-, l^+, l^- \in \mathbb{R}$$

• Discontinuità di seconda specie: Se non esiste almeno 1 dei 2 limiti

8.4.1 Prolungamento per continuità

Se f(x) non è definita in c
 ma $\exists \lim_{x \to c} f(x) = l$ f può essere prolungata per continuità:

$$\overline{f}(\mathbf{x}) = \begin{cases} f(x) \text{ se } x \neq c \\ l \text{ se } x \neq c \end{cases}$$

8.4.2 Asintoti

Si dice che f ha u asintoto:

- Verticale: di equazione x = c se $\lim_{x\to c} f(x) = \pm \infty$
- Orizzontale: di equazione y = l se $\lim_{x \to \pm \infty} f(x) = l$
- Obliquo: di equazione $y = mc + q, m \neq 0, q \in \mathbb{R}$ se $\lim_{x \to \pm \infty} f(x) mx q = 0$. Per $x \to \pm \infty$ f(x) ammette asintoto obliquo se:
 - $-\exists$ finito $m = \lim_{x \to \infty} \frac{f(x)}{x} \neq 0$, ossia f(x) asintotica ad una retta per $x \to \infty$
 - $\exists \text{ finito } q = \lim_{x \to \infty} f(x) mx$

8.5 Teorema degli Zeri

Enunciato: Sia $f:[a,b]\to\mathbb{R}, f$ continua su [a,b] e $f(a)f(b)<0 \implies \exists c\in(a,b): f(c)=0$ **Dimostrazione** (Tramite il metodo di bisezione): Pongo $c_1=\frac{a+b}{2}$:

- Se $f(c_1) = 0 \implies$ Teorema dimostrato
- Se $f(c_1) \neq 0 \rightarrow$ Guardo il segno
 - Se $f(c_1)f(a) > 0$ Intervallo [a, c_1]
 - Se $f(c_1)f(a) < 0$ Intervallo $[c_1, b]$

Iterando trovo una successione di Intervalli $[a_n, b_n]$ tali che:

- $a_n \leq a_{n+1}$ e $b_n \geq b_{n+1}$, $\{a_n\}$ successione crescente e $\{b_n\}$ successione decrescente
- $\bullet \ b_n a_n = \frac{b-a}{2^n}$
- $f(a_n)f(b_n) < 0$

 $\{a_n\},\,\{b_n\} \text{ monotone illimitate} \in [a,b] \implies convergenti \begin{cases} a_n \to l_1 \\ b_n \to l_2 \end{cases} \text{ per } n \to +\infty$

- Dalla seconda proprietà ho: $\lim_{n\to +\infty} b_n a_n = \lim_{n\to +\inf} \frac{b-a}{2^n} = 0 \to \lim_{n\to +\infty} b_n a_n = l_1 l_2 = 0 \to l_1 = l_2 = l$. Visto che f è continua $\implies f(a_n)f(b_n) \to f(l)f(l) = f(l)^2$ per $n \to +\infty$
- Dalla terza proprietà ho: $f(a_n)f(b_n) < 0$ e $f(a_n)(b_n) \to f(l)^2 \implies$ Teorema di permanenza del segno $f(l)^2 \le 0 \to f(l)^2 = 0 \implies f(l) = 0 \implies 1$ è lo zero cercato.

8.6 Punti di Massimo e Minimo

Massimo: Si definisce massimo di una funzione f il max valore di f(x): $\max_{x \in \mathbb{D}} f = \max\{f(x) : x \in \mathbb{D}\}$

Minimo: Si definisce minimo di una funzione f il min valore di $f(x): \min_{x \in \mathbb{D}} f(x): x \in \mathbb{D}$

Pto di Massimo: Un punto $x_0 \in \mathbb{D}$ in $f(x_0) = maxf$ si dice punto di max e vale: $f(x_0) \ge f(x) \ \forall x \in \mathbb{D}$ **Pto di Minimo:** Un punto $x_0 \in \mathbb{D}$ in $f(x_0) = minf$ si dice punto di min e vale: $f(x_0) \le f(x) \ \forall x \in \mathbb{D}$

8.7 Teorema di Weierstrass

Enunciato: Sia $f:[a,b] \to \mathbb{R}$, continua su $[a,b] \implies f$ ammette max e min su [a,b], ossia $\exists x_M, x_m \in [a,b]$ punto di max e min rispettivamente tali che:

$$f(x_m) \le f(x) \le f(x_M), \forall x \in [a, b]$$

Dimostrazione: Data $f:[a,b] \to \mathbb{R}$ e $\Lambda = \sup_{x \in [a,b]} f(x)$

- Suddivido [a,b] in 2 Intervalli uguali: $\sup_{x \in [a_1,b_1]} \sup_{x \in [a_2,b_2]} \sup_$
 - ... Iterando

- $[a_n, b_n]$ con $\{a_n\}\{b_n\}$ sono monotone e limitate \implies convergenti
 - Avendo $b_n a_n = \frac{b-a}{2^n} \to a_n, b_n \implies \text{convergono a } x_0 \in [a, b]$
 - $sup f(x) = \Lambda$ $x \in [a_n, b_n]$
- Se $\Lambda < +\infty$:
 - $\forall n \exists t_n \in [a_n, b_n] : \Lambda \frac{1}{t_n} < f(t_n) \leq \Lambda$
 - Se $a_n \to x_0$ e $b_n \to x_0$ per $n \to +\infty$: $a_n \le t_n \le b_n \implies t_n \to x_0$ per $n \to +\infty \to t_n$
 - Ma f è continua in $[a,b] \implies \lim_{n\to+\infty} f(t_n) = f(x_0) \implies \Lambda = f(x_0)$
 - Dove $\Lambda = supf(x) = f(x_0) \implies f(x_0) = maxf(x)$
- Se $\Lambda = +\infty$
 - $\forall n \; \exists t_n \in [a_n, b_n] : f(t_n) \ge n$
 - Se $a_n \to x_0$ e $b_n \to x_0$ per $n \to +\infty$: $a_n \le t_n \le b_n \implies t_n \to x_0$ per $n \to +\infty \to t_n$ $\lim_{n\to+\infty} f(t_n) = +\infty$
 - Ma f è continua in $[a,b] \implies \lim_{n\to+\infty} f(t_n) = f(x_0) \implies f(x_0) = +\infty$, è assurdo $\implies \Lambda < +\infty$

8.8 Teorema dei Valori Intermedi

Enunciato: Sia \mathbb{I} un intervallo e $f: \mathbb{I} \to \mathbb{R}$, continua $\forall x \in \mathbb{I}$, allora Imf(x) è un intervallo.

Dimostrazione: Siamo $y_1, y_2 \in f(\mathbb{I})$ e $y_1 < z < y_2 \to z \in f(\mathbb{I})$, siamo poi $c, d \in \mathbb{I}$ tale che $f(c) = y_1$ e $f(d) = y_2 \implies y_1 < z < y_2$

Considero: g(x) = f(x) - z (Traslazione della funzione verso il basso)

 $\rightarrow g(x)$ è continua su $[a,b] = [min\{c,d\}, max\{c,d\}] = \mathbb{I} \in g(a)g(b) < 0$

 $\implies \exists x \in [a,b] : g(x) = 0$

 $\implies f(x) = z \implies x \in \mathbb{I} \implies z \in f(\mathbb{I})$

Osservazione: Funzioni continue su [a,b] chiuso e limitato hanno immagine [m,M] chiuso e limitato

Teorema di Permanenza del Segno

Enunciato: Sia f continua in c e $f(c) = l > 0 \implies \exists \mathbb{I}_c : f(x) > 0 \ \forall x \in \mathbb{I}_c \cap \mathbb{D}$

Dimostrazione: Essendo f continua in c si ha $\lim_{x\to c} f(x) = f(c) = l > 0 \implies$ Appendice del teorema di permanenza del segno

9 Derivata di Una Funzione

Sia $f:(a,b)\to\mathbb{R}$, f è derivabile in $x_0\in(a,b)$ se \exists finito

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Tale limite è la derivata prima di f in x_0 e la indichiamo: $f'(x_0), \frac{df}{dx}|_{x=x_0}, \dot{f}(x_0)$. Il significato geometrico è il coefficiente angolare della retta tangente a $x_0 \to y = y_0 + f'(x_0)(x - x_0)$

Sia $f:(a,b)\to\mathbb{R}$ una funzione tale che $\mathbb{I}'=\{x\in(a,b):f\text{ derivabile in }x\}$. Allora si chiama funzione derivata di f, la funzione $f': \mathbb{I}' \to \mathbb{R}$

Teorema della Continuità 9.1

Enunciato: Se f è derivabile in in punto $x_0 \Longrightarrow f$ è continua in x_0 **Dimostrazione:** $f(x_0 + h) - f(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} h \sim f'(x_0) h = 0 \Longrightarrow \lim_{h \to 0} f'(x_0) h = 0 \Longrightarrow$

 $\lim_{h\to 0} f(x_0+h) = f(x_0)$

Osservazione: Se f non continua in x_0 , non è derivabile in x_0

Derivate Destra e Sinistra

Sia $f:(a,b)\to\mathbb{R}, x_0\in(a,b)$ se \exists finito $\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$. Allora f si dice derivabile a $\begin{cases} destra\\ sinistra \end{cases}$

e il limite si dice derivata $\begin{cases} destra\ f'_+(x_0) \\ sinistra\ f'_-(x_0) \end{cases}$ s Se f è derivabile in x_0 allora $f'(x_0) = f'_+(x_0) = f'_-(x_0)$

Se f non è derivabile in x_0 allora:

- Punto Angoloso: \exists limiti $f'_{+}(x_0), f'_{-}(x_0) \in \overline{\mathbb{R}}$ con almeno uno dei due limiti finiti $f'_{+}(x_0) \neq f'_{-}(x_0)$
- Punto a Tangente Verticale: \exists limite $f'(x_0) = \pm \infty$
- Punto di Cuspide: \exists limiti $f'_{+}(x_0), f'_{-}(x_0) \in \{-\infty + \infty\}$ e hanno segno opposto

Osservazione: Nel caso di funzione definita per $x \ge x_0$ se $f'_+(x_0) = +\infty$ si ha un punto a tangente verticale. Nel caso $f'_{+}(x_0), f'_{-}(x_0)$ non esistono si ha un punto di non derivabilità

Calcolo delle Derivate 9.3

Da Teorema sull'algebra dei limiti

9.3.1 Teorema della Derivata della Somma e Prodotto per uno Scalare

Enunciato: Sia I intervallo, x interno a I se $f, g : (\mathbb{I} \to \mathbb{R})$ sono derivabili in x e $\lambda \in \mathbb{R}$ allora anche f + ge λf sono derivabili in x e vale (f+g)'(x) = f'(x) + g'(x) e $(\lambda f(x))' = \lambda f'(x)$

9.3.2 Teorema della Derivata della Composizione

Enunciato: Sia $g \circ f$ la composizione di due funzioni $f \in g$, se f è derivabile in $x \in g$ derivabile in y = f(x), Allora $g \circ f$ è derivabile in x e vale $(f \circ f)'(x) = g'(x) \circ f'(x)$

9.3.3 Teorema della Derivata del Prodotto

Enunciato: Siano $f,g:\mathbb{I}\to\mathbb{R}$ derivabili in x allora anche fg è derivabile in x e vale (fg)'(x)=f'(x)g(x) + f(x)g'(x)

9.3.4 Teorema della Derivata del Quoziente

Enunciato: Siano $f,g:\mathbb{I}\to\mathbb{R}$ derivabili in x e $g(x)\neq 0$ allora $\frac{f}{g}$ è derivabile in x e vale $(\frac{f}{g})'(x)=$

Teorema di Monotonia per f 9.4

Enunciato: Sia $f:(a,b)\to\mathbb{R}$ una funzione monotona crescente allora $\forall c\in(a,b)$ \exists finiti:

- $\lim_{x \to c^{-}} f(x) = \sup\{f(x) : x \in (a, b), x < c\}$
- $\lim_{x \to c^+} f(x) = \inf\{f(x) : x \in (a, b), x > c\}$

Ai due estremi a,b esistono i limiti eventualmente infiniti

Conseguenza: le funzioni monotone hanno al più punti di discontinuità di salto

Relazione tra Funzione Derivata e Inversa

Sia $f:A\to B$ iniettiva $(a_1\neq a_2\implies f(a_1)\neq f(a_2))$ allora è possibile definire la sua inversa $f^{-1}: f(a) \to A$.

9.5.1 Teorema di Invertibilità I

Enunciato: Sia $f: A \to \mathbb{R}$ strettamente monotona in $A \implies f$ è invertibile in A e la sua inversa è strettamente monotona

Dimostrazione: Se
$$a_1 \neq a_2$$
 $\begin{cases} a_1 > a_2 \implies f(a_1) > f(a_2) \\ a_1 < a_2 \implies f(a_1) < f(a_2) \end{cases} \implies f(a_1) \neq f(a_2), f \text{ è iniettiva e}$

Siano $y = f(x) \to x = f^{-1}(y)$, voglio dimostrare che $f^{-1}(y)$ è monotona crescente.

Sia $b_1 < b_2$ ossia $b_1 = f(a_1) < f(a_2) = b_2$, la nostra tesi: $a_1 < a_2$ ossia $a_1 = f^{-1}(b_1) < f^{-1}(b_2) = a_2$. Per Assurdo $a_1 \ge a_2$ ossia $a_1 = f^{-1}(b_1) \ge f^{-1}(b_2) = a_2$, essendo $a_1 \ge a_2 \implies f(a_1) \ge f(a_2)$ ossia che $b_1 \geq b_2$, il che è Assurdo rispetto alle ipotesi.

Osservazione: La monotonia stretta è condizione sufficiente all'invertibilità ma non necessaria

9.5.2 Teorema di Invertibilità II

Enunciato: Sia $f: \mathbb{I} \to \mathbb{R}$, \mathbb{I} intervallo, f continua su \mathbb{I} , allora f è invertibile su $\mathbb{I} \iff f$ è strettamente monotona. Inoltre f^{-1} è strettamente monotona e continua.

Dimostrazione: f strettamente monotona \implies f è invertibile. Se f è invertibile e continua su \mathbb{I} volgiamo dimostrare che f è strettamente monotona.

Per Assurdo f non strettamente monotona $\implies x_1 < x_2 < x_3$ in \mathbb{I} tale che $f(x_1) < f(x_2), f(x_2) > f(x_3)$ oppure $f(x_1) > f(x_2), f(x_2) < f(x_3)$.

$$f \text{ è invertibile} \implies f \text{ è iniettiva} \implies f(x_1) \neq f(x_3)$$

$$\begin{cases} f(x_1) < f(x_3) \\ f(x_1) > f(x_3) \end{cases} \implies x_1 < x_2 < x_3 \to f(x_1) < f(x_2) < f(x_2).$$

Visto che f è continua vale il teorema dei valori intermedi $\exists x_0 \in (x_1, x_2) : f(x_0) = f(x_3)$ ma poiché $x_0 < x_2 < x_3 \implies x_0 \neq x_3$ ne segue che f non può essere invertibile. Assurdo, va dimostrata f continua strettamente monotona invertibile $\implies q = f^{-1}$ continua strettamente monotona invertibile.

Dal teorema di monotonia si ha che q monotona \implies q continua o con punti di salto. In questo secondo caso l'immagine di q non è un intervallo (Unione di intervalli disgiunti), Assurdo perchè l'immagine di q è un intervallo, allora non ci possono essere punti di salto $\implies f$ continua.

Conseguenze: f elementare continua su intervallo $\implies f$ ha inversa continua.

9.5.3 Teorema della Derivata dell'Inversa

Enunciato: Sia $f:(a,b)\to\mathbb{R}$ continua e invertibile su (a,b) e $g=f^{-1}$ la sua inversa definita da f(a,b), supponiamo $\exists f'(x_0) \neq 0$ per un $x_0 \in (a,b) \implies g$ è derivabile in $y_0 = f(x_0)$ e $g'(y_0) = \frac{1}{f'(x_0)}$.

Dimostrazione: Definizione di derivata di
$$f$$
 in x_0 : $f'(x_0) = \lim_{h \to 0} \frac{f(x_0) + f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} \implies \text{per definizione} \begin{cases} y = f(x), y_0 = f(x_0) \\ x = f^{-1}(y), x_0 = f^{-1}(y_0) \end{cases}$ da teorema precedente $f^{-1}(y)$ è continua \implies se $y \to y_0 \implies f^{-1}(y) \to f^{-1}(y_0) \implies x \to x_0 \implies$ se $y \to y_0 \implies x \to x_0$, $\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$, se esiste finito, allora $\exists g'(y_0) = \frac{1}{f'(x_0)}$

Teorema della Derivata di $f(x)^{g(x)}$

$$(f(x)^{g(x)})' = (e^{\log f(x)^{g(x)}})' = (e^{g(x)\log f(x)})' = e^{g(x)\log f(x)}(g(x)\log f(x))'$$

9.7 Punti di Estremo Relativo

Definizione: Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}, x_0\in A, x_0$ si dice punto di massimo relativo/locale quando esiste un intorno \mathbb{I}_{x_0} tale che $f(x_0) > f(x), \forall x \in \mathbb{I}_{x_0} \cap A$.

Definizione: Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}, x_0 \in A, x_0$ si dice punto di minimo relativo/locale quando esiste un intorno \mathbb{I}_{x_0} tale che $f(x_0) < f(x), \forall x \in \mathbb{I}_{x_0} \cap A$.

Osservazione: Se un punto è di massimo/minimo per f su $A \implies$ è anche di massimo/minimo relativo e si distinguono le due cose parlando di massimo/minimo assoluto

Punti Stazionari

Definizione: x_0 è un punto stazionario per $f \iff f'(x_0) = 0$

9.8.1Teorema di Fermat

Enunciato: Sia $f: \mathbb{D} \to \mathbb{R}, x_0 \in (a,b)$ estremo relativo in cui f è derivabile, allora x_0 è un punto stazionario $(f'(x_0) = 0)$

Dimostrazione (per massimo relativo): Sia x_0 punto di massimo relativo per z in \mathbb{I}_{x_0} da definizione di punto di massimo relativo allora: $f(x_0) \ge f(z), \forall x \in \mathbb{I}_{x_0} \implies f(x_0) - f(z) \ge 0$:

- se $z < x_0$: $\frac{f(z) f(x_0)}{z x_0} \ge 0 \to f'(x_0) = \lim_{z \to x_0^+} \frac{f(z) f(x_0)}{z x_0} \ge 0$, da teorema di permanenza del segno
- se $z > x_0$: $\frac{f(z) f(x_0)}{z x_0} \le 0 \to f'(x_0) = \lim_{z \to x_0^-} \frac{f(z) f(x_0)}{z x_0} \le 0$, da teorema di permanenza del segno f derivabile in $x_0 \implies f'_-(x_0) = f'_+(x_0) \implies f'(x_0) = 0$

9.8.2 Punto di Flesso

Definizione: Sia f derivabile in $x_0, r(x_0)$ la retta tangente in $(x_0, f(x_0), x_0)$ è detto punto di flesso se

$$\exists \delta > 0 : f(x) - r_0(x) < \delta$$
, dove $r_0(x) : y = f(x_0) + f'(x_0)(x - x_0)$

è rispettivamente non negativa e non positiva in $(x_0 - \delta, x_0)$ e $(x_0, x_0 + \delta)$

9.8.3 Teorema di Rolle

Enunciato: Sia $f:[a,b]\to\mathbb{R}$ continua su [a,b] e derivabile in (a,b) e tale che $f(a)=f(b)\implies \exists \xi\in \mathbb{R}$ $(a,b): f'(\xi) = 0$

Dimostrazione:

- se f è costante \implies esistono infiniti $\xi \in (a,b)$ tale che $f'(\xi) = 0$
- se f non è costante \implies vale il teorema di Weierstrass $\implies \exists x_m, x_M \in [a, b]$:
 - se $x_m \neq a, b \implies x_m$ punto stazionario per il teorema di Fermat $(f'(x_m) = 0)$ con $\xi = x_m$
 - se $x_M \neq a, b \implies x_M$ punto stazionario per il teorema di Fermat $(f'(x_M) = 0)$ con $\xi = x_M$

9.8.4 Teorema di Lagrange

Enunciato: Sia $f:[a,b]\to\mathbb{R}$ continua su [a,b] e derivabile in $(a,b)\implies\exists\xi\in(a,b):f'(\xi)=\frac{f(b)-f(a)}{b-a}$ coefficiente angolare della retta secante (a, f(a)), (b, f(b))

Dimostrazione: $h(x) = f(x) - (x-a)\frac{f(b)-f(a)}{b-a}$

- h(x) continua su [a,b] e derivabile su (a,b)
- h(a) = h(b)?

$$-h(a) = f(a) - (a-a)\frac{f(b)-f(a)}{b-a} = f(a)$$

$$-h(b) = f(b) - (b-a)\frac{f(b)-f(a)}{b-a} = f(a)$$

$$-h(b) = f(b) - (b-a)\frac{f(b) - f(a)}{b-a} = f(a)$$
• $\exists \xi \in (a,b) : h'(\xi) = 0 \to h'(x) = f'(x) - \frac{f(b) - f(a)}{b-a} \to h'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b-a} = 0 \to f'(\xi) = \frac{f(b) - f(a)}{b-a}$

9.8.5 Teorema di Cauchy

Enunciato: Siano $f, g : [a, b] \to \mathbb{R}$, continue in [a, b] e derivabili in $(a, b) \implies \exists \xi \in (a, b) : f'(\xi)(g(b) - g(b)) = f'(\xi)(g(b))$ $g(a)) = g'(\xi)(f(b) - f(a))$

Osservazione: Se g(x) = x diventa teorema di Lagrange

Dimostrazione: h(x) = f'(x)(g(b) - g(a)) - g'(x)(f(b) - f(a))

Proposizione: Sia f' = 0 in un intervallo $\mathbb{I} \implies f$ è costante su \mathbb{I}

Dimostrazione: Se f non fosse costante $\implies \exists a,b \in \mathbb{I}$ tali che $a < b \implies f(a) \neq f(b) \implies dal$ teorema di Lagrange $\exists \xi \in (a,b)$ tale che $f'(\xi) = \frac{f(b) - f(a)}{b - a} \neq 0$, Assurdo, va contro le ipotesi

9.9 Test di Monotonia I

Enunciato: Sia $f[a,b] \to \mathbb{R}$ continua su [a,b] e derivabile in (a,b):

- f(x) è crescente in $[a,b] \implies f'(x) \ge 0 \ \forall x \in (a,b)$
- f(x) è decrescente in $[a,b] \implies f'(x) \le 0 \ \forall x \in (a,b)$

Dimostrazione: $x_0, z \in (a, b), z > x_0$:

- f(x) è crescente $f(z) > f(x) \implies \frac{f(z) f(x)}{z x} \ge 0 \rightarrow \lim_{z \to x} \frac{f(z) f(x)}{z x} \ge 0, \forall x \in (a, b)$
- f(x) è decrescente $f(z) < f(x) \implies \frac{f(z) f(x)}{z x} \le 0 \rightarrow \lim_{z \to x} \frac{f(z) f(x)}{z x} \le 0, \forall x \in (a, b)$

Osservazione: Se f è strettamente crescente/decrescente non è vero in generale che f'(x) > 0/f'(x) < 0 strettamente

9.10 Test di Monotonia II

Enunciato: Sia $f:[a,b] \to \mathbb{R}$ continua su [a,b] e derivabile in (a,b):

- se $f'(x) \ge 0 \ \forall x \in (a,b) \implies f$ crescente in [a,b]
- se $f'(x) \le 0 \ \forall x \in (a,b) \implies f$ decrescente in [a,b]
- se $f'(x) > 0 \ \forall x \in (a,b) \implies f$ strettamente crescente in [a,b]
- se $f'(x) < 0 \ \forall x \in (a,b) \implies f$ strettamente crescente in [a,b]

Dimostrazione: Sia $f' > 0 \ \forall x \in (a,b) \ e \ x.z \in [a,b] : x < z$ da teorema di Lagrange

$$\exists \xi \in (x,z) : f'(\xi) = \frac{f(z) - f(x)}{z - x} \iff f(z) - f(x) > + f'(\xi)(z - x) > 0 \implies f(z) > f(x)$$

 $\implies f$ strettamente crescente

Osservazione: Da test di Monotonia I e II:

- f è crescente in $[a,b] \iff f'(x) \ge 0 \ \forall x \in (a,b)$
- f è decrescente in $[a,b] \iff f'(x) \le 0 \ \forall x \in (a,b)$

9.11 Teorema di De l'Hôpital

Enunciato: Siano $f \in g$ funzioni derivabili in (a,b) con $g \neq 0$ e $g' \neq 0$ in a,b, Allora se:

$$\lim_{x \to a^+} f(x) = g(x) = 0 \text{ oppure } \lim_{x \to a^+} f(x) = g(x) = \pm \infty$$

Allora se:

$$\exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l \in \overline{\mathbb{R}} \implies \exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$$

Dimostrazione: Siano $f(x) \to 0$ per $x \to a^+$ e $g(x) \to 0$ per $c \to a^+$:

- Prolungo per continuità f(x), g(x) in a ponendo f(a) = 0, g(a) = 0
- Considero $x_n \to a_+$ per $x \to +\infty$
- Considero $h(x) = f(x_n)g(x) g(x_n)f(x)$
- Osservo che $h(a) = f(x_n)g(a) g(x_n)f(a) = 0 = h(x_n) = f(x_n)g(x_n) g(x_n)f(x_n)$ $\implies h(a) = h(x_n) = 0$
- h(x) continua in $[a, x_n]$ ed è derivabile in (a, x_n)
- Dalle ultime due \implies ipotesi del teorema di Rolle $\implies \exists \xi_n \in (a, x_n) : h'(\xi_n) = 0$

$$-h'(x) = f(x_n)g'(x) - g(x_n)f'(x) \implies \exists \xi_n \in (a, x_n) : h'(\xi_n) = 0$$

- $\iff f(x_n)g'(\xi_n) g(x_n)f'(\xi_n) = 0$
- $\iff f(x_n)g'(\xi_n) = g(x_n)f'(\xi_n)$
- $-\frac{f(x_n)}{g(x_n)} = \frac{f'(x_n)}{g'(x_n)} \to \text{dato che } x_n \to a^+ \text{ per } n \to +\infty, \text{ dato che } a \leq \xi \leq x_n \implies a \leq \xi \leq a^+$
- $-\lim_{x\to+\infty} \frac{f'(\xi_n)}{g'(\xi_n)} = l \implies \lim_{x\to+\infty} \frac{f'(x_n)}{g'(x_n)} = l$

Osservazione: il teorema vale anche se $a = -\infty$ oppure ponendo b^- al posto di a^+ , con b^- che può essere anche: $b^- = +\infty$

9.12 Teorema del Limite della Derivata

Enunciato: Sia $f:[a,b]\to\mathbb{R}$ continua in a e derivabile in (a,b), Allora se:

$$\exists \lim_{x \to a^+} f'(x) \implies \exists f'_+(a) = \lim_{x \to a^+} f'(x)$$

Dimostrazione:

Sia
$$f'(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} = \lim_{h \to a^+} \frac{f(x) - f(a)}{x - a} = \frac{0}{0} = \lim_{x \to a^+} \frac{f'(x)}{1} = \lim_{x \to a^+} f'(x) = f'_+(a)$$

9.13 Derivate di Ordini Successivi

Definizione: Sia f derivabile in \mathbb{I} . Se esiste la derivata di f'(x) in $x \implies (f')'$ ed è la derivata seconda di f in x. Si nota con f'', $\frac{d^2f}{dx^2}$. Analogamente definisco le derivate di ordine k per induzione, fino alla derivata k-esima: $f^{(k)}$.

Definizione: Sia \mathbb{I} un intervallo, $\forall k \in \mathbb{N}$, l'insieme $C^k(\mathbb{I})$ è l'insieme delle funzioni k-volte derivabili su \mathbb{I} tali che la derivata k-esima sia continua.

Osservazione: L'esistenza della derivata k-esima implica la continuità della derivata (k-1)-esima.

Definizione: $C^{\infty}(\mathbb{I}) = \bigcap_{k \in \mathbb{N}} C^k \to \text{lo spazio delle funzioni la cui derivata k-esima esiste per ogni k: <math>e^x, \sin x...$

9.14 Teorema di Darboux

Enunciato: Sia $f : \mathbb{I} \to \mathbb{R}$, derivabile in \mathbb{I} , per ogni coppi adi punti $a < b \in \mathbb{I}$, f' assume nell'intervallo (a, b) tutti i valori strettamente compresi tra f'(a) e f'(b).

Conseguenza: f' sotto queste ipotesi o è continua o ha discontinuità di seconda specie

Osservazione: Se $f \in C^1(\mathbb{I})$ si applica il teorema dei valori intermedi

9.15 Derivata Seconda e Convessità

Definizione: Sia $f: \mathbb{D} \to \mathbb{R}$ è detta convessa se $\forall x, y \in (a, b)$ e $\forall \lambda \in (0, 1)$ vale:

$$(\lambda x + (a - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y)$$

Definizione: Sia $f: \mathbb{D} \to \mathbb{R}$ è detta concava se $\forall x, y \in (a, b)$ e $\forall \lambda \in (0, 1)$ vale:

$$(\lambda x + (a - \lambda)y \ge \lambda f(x) + (1 - \lambda)f(y)$$

9.15.1 Significato Geometrico

f convessa su [a, b] se per ogni intervallo chiuso [c, d] contenuto in [a, b]:

$$f(x) \leq r_{c,d} \ \forall x \in [c,d]$$
 (se la funzione sta sotto alla retta secante)

Osservazione: Dalla definizione se f è convessa in $[a,b] \implies f$ è continua su (a,b)

Definizione: Una funzione su un intervallo \mathbb{I} è detta convessa se lo è in ogni intervallo $[a,b] \subset \mathbb{I}$

9.15.2 Teorema della Relazione tra Tangente e Convessità

Enunciato: Sia f convessa in [a, b], se f è derivabile in $x_0 \in [a, b]$, allora: f giace sopra la retta tangente in x_0 , ossia: $f(x) \ge f(x_0) + f'(x_0)(x - x_0) \ \forall x \in [a, b]$

9.15.3 Punto di Cambio Concavità

Definizione: $x_0 \in (a, b)$ è un punto di cambio concavità se f è convessa in $[a, x_0)$ e concava in $(x_0, b]$ **Osservazione:** Da precedente teorema si deduce che un punto di cambio concavità in cui f sia derivabile risulta essere un particolare punto di flesso

Corollario: Se f è derivabile 2 volte in x_0 e x_0 è punto di cambio concavità $\implies f''(x_0) = 0$

Corollario: Sia f derivabile in [a,b] e 2 volte in (a,b) \Longrightarrow f convessa in [a,b] \Longleftrightarrow f''(x) > 0 $\forall x \in (a,b)$

Osservazione: Se f è derivabile 2 volte in (a,b) gli eventuali punti di concavità vanno cercati tra le soluzioni di f''(x) = 0, ma non tutti i punti dove la derivata seconda si annulla sono di cambio concavità

10 Taylor

10.1 Algebra o-piccolo

Definizione: Date 2 funzioni f e g si dice f = o(g) per $x \to x_0 \in \overline{\mathbb{R}} \iff \lim_{x \to x_0} \frac{f}{g} = 0$. Se g è infinitesima si dice che f è un infinitesimo di ordine superiore

10.1.1 Proprietà o-piccolo

- $o(f) \pm o(f) = o(f)$
- o(cf) = co(f) = o(f)
- $\bullet \ o(f+o(f)) = o(f)$
- o(o(f)) = o(f)
- $o(f) \rightarrow$ Qualsiasi quantità che tende a 0
- $[o(f)^n] = o(f)^n$
- fo(g) = o(fg)
 - Dimostrazione: $\lim_{x\to x_0} \frac{f \circ (g)}{fg} = \lim_{x\to x_0} \frac{o(g)}{g} = 0$

10.1.2 Teorema della Relazione tra o-piccolo e Asintotico

Enunciato: Per $x \to x_0$ abbiamo $f(x) \sim g(x) \iff f(x) = g(x) + o(g(x))$ Dimostrazione:

- Da definizione di asintotico: $\lim_{x\to x_0} \frac{f}{g} = 1$
- \bullet Da definizione di o-piccolo: $\lim_{x\to x_0}\frac{f-g}{g}=\lim_{x\to x_0}\frac{f}{g}-1=1-1=0$

10.2 Approssimazione di Funzioni

Linearizzazione di f ad un intorno di x_0 . **Definizione:** La funzione $f : \mathbb{A} \to \mathbb{R}$ si dice differenziabile in x_0 interno ad \mathbb{A} se:

$$\exists \lambda \in \mathbb{R} : f(x) = f(x_0) + \lambda(x - x_0) + o(x - x_0) \text{ per } x \to x_0$$

Teorema: f è differenziabile in $x_0 \iff f$ è derivabile in x_0 , in tal caso $\lambda = f'(x_0)$

10.3 Polinomi di Taylor

In generale:

- se f è continua in $x_0 \in \mathbb{R}$:
 - $f(x) = f(x_0) + o(1) \text{ per } x \to x_0$
 - $-f(x) f(x_0) = o(1)$
 - $-\lim_{x\to x_0} \frac{f(x)-f(x_0)}{1} = 0$
- se f è derivabile in $x_0 \in \mathbb{R}$:

$$-f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0) \text{ per } x \to x_0$$

$$-f(x)-f(x_0)-f'(x_0)(x-x_0)=o(x-x_0)$$

$$-\lim_{x\to x_0} \frac{f(x)-f(x_0)-f'(x_0)(x-x_0)}{x-x_0} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = 0$$

- Volgio generalizzare a funzioni n volte derivabili in $x_0 \in \mathbb{R}$:
 - Trovare un polinomio di grado n > 1 tale che
 - $-f(x) = T_n(x) + o(x x_0)^n \text{ per } x \to x_0$

10.3.1 Teorema Formula di Taylor

Enunciato: Sia f definita in un intorno di $x_0 \in \mathbb{R}$ derivabile n volte in x_0

$$\Rightarrow$$
 $\exists !$ polinomio T_n di grado $\leq n: f(x) = T_n + o(x - x_0)^n$ per $x \to x_0$ con $T_n^{(k)}(x_0) = f^{(k)}(x_0)$ per $k = 0, 1, ..., n$ e quindi:
$$T_n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Dimostrazione: A meno di una traslazione suppongo $x_0=0$ $T_n=\sum_{k=0}^n \frac{f^{(k)}(0)}{k!}x^k \to \text{Polinomio di McLaurin, vale che } T_n^{(k)}(0)=f^k(0) \; \forall k=0,...,n$ Si vuol dimostrare che: $f(x)-T_n(x)=o(x^n)$ per $x\to x_0$, ossia: $\lim_{x\to 0} \frac{f(x)-T_n(x)}{x^n}=0$, già dimostrata per k=0,1 si vuol dimostrare per $k\ge 2$:

$$\lim_{x \to 0} \frac{f(x) - T_n(x)}{x^n} = \frac{0}{0} \stackrel{H}{=} \lim_{x \to 0} \frac{f'(x) - T'_n(x)}{nx^{n-1}} = \frac{0}{0} \stackrel{H}{=} \lim_{x \to 0} \frac{f''(x) - T''_n(x)}{n(n-1)x^{n-2}} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{=} \lim_{x \to 0} \frac{f^{(n-1)}(x) - T^{(n-1)}(x)}{n!x} = \frac{0}{0} \stackrel{H}{=} \dots \stackrel{H}{$$

Osservazione: $f^{(n-1)}(x)$ è derivabile in 0, ma in generale non in un intorno di 0, quindi De l'Hopital ha bisogno della derivabilità in un intorno:

$$\lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0) + T_n^{(n-1)}(0) - T_n^{(n-1)}(x)}{n!x} = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{n!x} - \lim_{x \to 0} \frac{T_n^{(n-1)}(x) - T_n^{(n-1)}(0)}{n!x} = \lim_{x \to 0} \frac{T_n^{(n-1)}(x) - T_n^{(n-1)}(0$$

Corollario (unicità di $T_n(x)$): Suppongo per assurdo che $\exists P_n(x)$ di grado $\leq n$: $\lim_{x\to 0} \frac{f(x)-P_n(x)}{x^n}=0$, sottraggo $\lim_{x\to 0} \frac{f(x)-T_n(x)}{x^n}$ a $\lim_{x\to 0} \frac{f(x)-P_n(x)}{x^n}\to \lim_{x\to 0} \left[\frac{f(x)-P_n(x)}{x^n}-\frac{f(x)-T_n(x)}{x^n}\right]=1$ = $\lim_{x\to 0} \frac{T_n(x)-P_n(x)}{x^n}=0$, Assurdo! Solo quando $T_n-P_n=0\to T_n=P_n$

10.3.2 Teorema Formula di Taylor con Resto di Lagrange

Enunciato: Sia $f: \mathbb{I} \to \mathbb{R}$, derivabile n+1 volte in \mathbb{I} e sia $T_n(x)$ polinomio di Taylor di f centrato in $x_0 \in \mathbb{I}$ se:

$$x \in \mathbb{I} \implies \exists \xi \in (x_0, x) : f(x) = T_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

10.3.3 Criterio della Derivata n-esima

Sia f derivabile n-volte in x_0 e: $\begin{cases}
f'(x_0) = \cdots = f^{(n-1)}(x_0) = 0 \\
f^{(n)} \neq 0
\end{cases}$ $f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o(x - x_0)^n$

- n è pari e $f^{(n)}(x_0) < 0 \implies x_0$ punto di massimo relativo
- n è pari e $f^{(n)}(x_0) > 0 \implies x_0$ punto di minimo relativo
- n è dispari $\implies x_0$ punto a tangente orizzontale

11 Integrali

Data $f:[a,b]\to\mathbb{R}$, limitata e non negativa è possibile trovare l'area di:

$$B = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, o \le y \le f(x)\}? \to A(B)$$

Dato che f è limitata: $\exists m, M : m \le f(x) \le M \ \forall x \in [a, b]$. Proviamo ad approssimare l'area di A(B):

- Considero una porzione ρ di [a,b] in (n+1) punti ordinati: $a_0 = x_0 < x_1 < \cdots < x_n = b$ per qualche $n \in \mathbb{N}^+$
- In ogni sotto-intervallo $[x_{k-1}, x_k], k = 1, ..., n$ prendiamo l'estremo superiore e inferiore di f:

$$m_k = \inf(f(x)), M_k = \sup(f(x)), m < m_k \le M_k < M$$

$$[x_{k-1}, x_k]$$

• $\forall k = 1, ..., n$ calcolo l'area dei rettangoli approssimati:

$$A_m = m_k(x_k - x_{k-1}), A_M = M_k(x_k - x_{k-1})$$

Definizione: Chiamo somma superiore $S_f(\rho) = \sum_{k=1}^n M_k(x_k - x_{k-1})$ la somma dei rettangoli superiori **Definizione:** Chiamo somma inferiore $s_f(\rho) = \sum_{k=1}^n m_k(x_k - x_{k-1})$ la somma dei rettangoli inferiori

11.1 Integrazione Secondo Riemann

Definizione: Definiamo somma superiore di Riemann $S_f = \inf\{S_f(\rho) : \rho \text{ qualunque partizione di } [a, b]\}$ **Definizione:** Definiamo somma inferiore di Riemann $s_f = \sup\{s_f(\rho) : \rho \text{ qualunque partizione di } [a, b]\}$

Osservazione: Tutta la costruzione può essere replicata anche con f negativa

Definizione: Sia $f:[a,b]\to\mathbb{R}$, f limitata, diremo che f è integrabile secondo Riemann se:

$$s_f = S_f \to \int_a^b f(x) dx$$
 ed è detto integrale definito di f su [a,b]

Osservazione: Per costruzione se $f \ge 0$ si ottiene $A(B) = \int_a^b f(x) dx$

Definizione: Definiamo R(a,b) la classe di funzioni Riemann integrabili su (a,b)

11.1.1 Classi di Funzioni Riemann Integrabili

Teorema: Sia $f:[a,b]\to\mathbb{R}$, continua in $[a,b]\Longrightarrow f$ è integrabile su [a,b], $(f\in R(a,b))$

Teorema: Se f è monotona su $[a,b] \implies f \in R(a,b)$

Osservazione: Non è necessario che f sia continua per essere integrabile

Teorema: Sia $f:[a,b] \to \mathbb{R}$ limitata, se f ha un numero finito di punti di discontinuità $\Longrightarrow f \in R(a,b)$ **Osservazione:** Scrivo [a,b] come unione finita di intervalli chiusi consecutivi, ponendo agli estremi i punti di discontinuità:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c_{1}} f(x) dx + \int_{c_{1}}^{c_{2}} f(x) dx + \int_{c_{2}}^{b} f(x) dx, \text{ dove } c_{1} \in c_{2} \text{ punti di discontinuità}$$

11.2 Proprietà degli Integrali

Proposizione (linearità dell'integrale): Siano $f, g \in R(a, b)$ e $\alpha \in \mathbb{R} \implies f + g, \alpha f \in R(a, b)$, vale:

$$\int_{a}^{b} \left[\alpha f(x) + \beta g(x) \right] dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx \, \, \forall \alpha, \beta \in \mathbb{R}$$

Proposizione (additività dell'integrale): Sia a < c < b, sia $f \in R(a,b) \iff f \in R(a,c)$ e $f \in R(a,c)$, vale:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Teorema del Confronto Integrale

Enunciato: Siano $f,g \in R(a,b)$, allora se $f \leq g$ in $[a,b] \implies \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$. **Osservazione:** In particolare se $f \geq 0$ in $a,b \implies \int_a^b f(x) \, dx \geq 0$

Corollario (disuguaglianza del modulo): Sia $f \in R(a,b) \implies |\int_a^b f(x) \, dx| \le \int_a^b |f(x)| \, dx$ Dimostrazione: Vale $-|f(x)| \le f(x) \le |f(x)|$, applico il teorema del confronto integrale:

$$-\int_{a}^{b} |f(x)| \, dx \le \int_{a}^{b} |f(x)| \, dx \le \int_{a}^{b} |f(x)| \, dx \iff |\int_{a}^{b} |f(x)| \, dx | \le \int_{a}^{b} |f(x)| \, dx$$

11.2.2 Simmetrie:

Sia a > 0 e $f \in R(-a, a)$, allora:

- se f è pari $\implies \int_{-a}^{a} f(x) dx = 2 \int_{-a}^{a} f(x) dx$
- se f è dispari $\implies \int_{-a}^{a} f(x) dx = 0$

11.3 Teorema della Media Integrale

Enunciato: Sia $f:[a,b] \to \mathbb{R}$, $f \in C^0([a,b])$ allora:

$$\exists c \in [a, b] : \frac{1}{b - a} \int_{a}^{b} f(x) \, dx = f(c) = \int_{a}^{b} f(x) \, dx$$

11.3.1 Significato Geometrico

$$\int_{a}^{b} f(x) dx = (b - a)f(c)$$

Dimostrazione: se $f \in C^0([a,b]) \implies$ Weierstrass $\exists m, M : m \leq f(x) \leq M \ \forall x \in [a,b]$. Dal teorema del confronto integrale:

$$m(b-a) = \int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx = M(b-a)$$

$$m(b-a) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le M(b-a) \text{ essendo } b-a > 0$$

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le M \implies \int_{a}^{b} f(x) \, dx \in [m, M]$$

Dal teorema dei valori intermedi $\implies Im(f[a,b]) = [m,M] \implies \exists c \in [a,b]: f(c) = \int_a^b f(x) \, dx$

11.4 Primitiva di una Funzione

Definizione: Sia $f:[a,b]\to\mathbb{R}$, una funzione derivabile $\implies F:[a,b]\to\mathbb{R}$ è una primitiva di f se $F'(x) = f(x) \ \forall x \in [a, b]$

Osservazione: Non tutte le funzioni ammettono primitive, infatti avere una primitiva significa avere una derivata. Se f ha un punto di salto, allora non ha primitiva.

Osservazione: Se F è una primitiva allora sarà una primitiva anche $F + c, c \in \mathbb{R}$

11.5 Funzione Integrale

Definizione: Sia $f \in R(a,b)$ la funzione: $I(x): \int_a^x f(t) dt$ è detta funzione integrale Osservazione: Se I(x) e H(x) sono due funzioni integrali della stessa f, si ha che:

$$I(x) - H(x) = \int_{a}^{x} f(t) dt - \int_{a'}^{x} f(t) dt = \int_{a}^{x} f(t) dt + \int_{a}^{a'} f(t) dt = \int_{a}^{a'} f(t) dt = c$$

Ossia I e H differiscono per una costante.

Osservazione: $\forall x, y \in I$ si ha $I(x) - I(y) = \int_{u}^{x} f(t) dt$

11.6 Teorema Fondamentale del Calcolo Integrale I

Enunciato: Sia $f:[a,b] \to \mathbb{R}$, $f \in C^0([a,b])$, la sua funzione integrale $I(x) = \int_a^x f(t) dt$ è derivabile in [a,b] e I'(x) = f(x), ossia è una primitiva di f(x)

Dimostrazione: Sia $x_0 \in [a, b]$, scrivo il rapporto incrementale di I(x):

$$\frac{I(x) - I(x_0)}{x - x_0} = \frac{1}{x - x_0} \left[\int_a^x f(t) dt - \int_a^{x_0} f(t) dt \right] = \frac{1}{x - x_0} \left[\int_a^x f(t) dt + \int_{x_0}^a f(t) dt \right]$$
$$= \frac{1}{x - x_0} \left[\int_{x_0}^x f(t) dt \right] = \int_{x_0}^x f(t) dt$$

Da teorema della media integrale

$$\implies \exists c \in [x_0, x] : \int_{x_0}^x f(t) \, dt = f(c) \implies \frac{I(x) - I(x_0)}{x - x_0} = f(c) = f(x_0) \, c \in [x_0, x]$$

 $\lim_{x \to x_0} \frac{I(x) - I(x_0)}{x - x_0} = \lim_{x \to x_0} f(c) \text{ se } c \in [x, x_0] \text{ quando } x \to x_0 \implies c \to x_0 \lim_{x \to x_0} f(c) = f(x_0) \text{ è un valore finito}$ $\implies \text{ esiste finito } \lim_{x \to x_0} \frac{I(x) - I(x_0)}{x - x_0} = I'(x_0) \implies I(x) \text{ derivabile } \forall x_0 \in [a, b]$

Osservazione: Non è necessario che f sia continua affinché la funzione integrale sia primitiva

11.7 Teorema Fondamentale del Calcolo Integrale II

Enunciato: Sia $f:[a,b]\to\mathbb{R}, f\in C^0([a,b])$ e sia F una primitiva, allora:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = \left[F(x) \right]_{a}^{b}$$

Dimostrazione: Considero la funzione:

$$g(y) = \int_a^y f(x) \, dx - F(y) \, \forall y \in [a, b]. \text{ Da teorema precedente } g(y) \text{ è derivabile in } [a, b] \implies$$

$$g'(y) = f(y) - F'(y) = f(y) - f(y) = 0 \, \forall y \in [a, b]. \text{ Da proposizione su derivata nulla su } [a, b]$$

$$\implies g(y) \text{ costante } \forall y \in [a, b]. \text{ Calcolo: } \begin{cases} g(a) = \int_a^a f(x) \, dx - F(a) = -F(a) \\ g(b) = \int_a^b f(x) \, dx - F(b) \end{cases}$$

$$\implies g(a) = g(b) \implies \int_a^b f(x) \, dx = F(b) - F(a)$$

11.7.1 Estensione del Teorema Fondamentale del Calcolo Integrale

Enunciato: Sia $f \in C^0([a,b])$ e siano $g,h:[\alpha,\beta] \to [a,b]$ derivabili, la funzione:

$$J(x) = \int_{g(x)}^{h(x)} f(t) dt$$

è ben definita su $[\alpha, \beta]$ soddisfa: J(x) = F(h(x)) - F(g(x)), quindi J(x) è derivabile su $[\alpha, \beta]$ e

$$J'(x) = f(h(x))h'(x) - f(q(x))q'(x)$$

Definizione: Sia $f: \mathbb{I} \to \mathbb{R}, f \in C^0([a, b])$, l'insieme di tutte le primitive di f(x) viene chiamato integrale indefinito di f e si denota con:

$$\int f(x) \, dx$$

11.8 Tecniche di Integrazione