DEL 1 Uten hjelpemidler

Oppgave 1 (12 poeng)

a) Deriver funksjonene gitt ved

1)
$$f(x) = 5x^3 + x - 4$$

2)
$$g(x) = 5e^{3x}$$

b) Skriv så enkelt som mulig

$$2\ln\left(\frac{a^2}{b}\right) + \ln(ab) - 3\ln a$$

- c) Funksjonen f er gitt ved $f(x) = x^3 3x$
 - 1) Bestem nullpunktene til f.
 - 2) Bestem eventuelle topp- og bunnpunkter til grafen til f.
 - 3) Tegn grafen til f.
- d) Polynomet $P(x) = x^3 3x^2 x + 3$ er gitt. Heltallige løsninger av likningen P(x) = 0 går opp i konstantleddet.

Bruk dette til å finne en løsning av P(x) = 0 og polynomdivisjon til å finne de andre løsningene.

e) Posisjonsvektoren til en ball er gitt ved $\vec{r}(t) = \left[3.0t , -4.9t^2 \right]$ Bestem fartsvektoren og akselerasjonsvektoren.

Oppgave 2 (7 poeng)

Likningen for en rett linje er på formen y = ax + b

- a) Forklar at $\begin{bmatrix} 1, a \end{bmatrix}$ er en retningsvektor for linjen
- b) To rette linjer med stigningstall $\ a_{\scriptscriptstyle 1}$ og $\ a_{\scriptscriptstyle 2}$ står vinkelrett på hverandre. Vis at da er

$$a_1 \cdot a_2 = -1$$

- c) Bestem likningen for en rett linje som står vinkelrett på y = 2x 1 og som skjærer y-aksen i y = 5.
- d) Tegn de to linjene fra c) inn i samme koordinatsystem.

Oppgave 3 (5 poeng)

Skissen ovenfor viser grafen til funksjonen $f(x) = \frac{1}{x}$ og en tangent i punktet (a, f(a)).

a) Vis at likningen for tangenten er

$$y = -\frac{1}{a^2} \cdot x + \frac{2}{a}$$

Tangenten skjærer koordinataksene i A og B.

- b) Bestem koordinatene til A og B.
- c) Bestem arealet av $\triangle OAB$. Kommenter svaret.

DEL 2

Med hjelpemidler

Oppgave 4 (4 poeng)

Vi har gitt punktene A(-3, -2), B(6, 3) og C(2, 4)

- a) Bestem ∠BAC ved å bruke vektorregning.
- b) Bestem koordinatene til et punkt D slik at $\square ABCD$ blir et parallellogram.

Oppgave 5 (2 poeng)

Punktene A(2,4) og B(4,2) ligger på en sirkel slik at AB er diameter til sirkelen.

Vis ved regning at likningen til sirkelen er $(x-3)^2 + (y-3)^2 = 2$

Oppgave 6 (5 poeng)

- a) Bestem en parameterframstilling for en rett linje I som går gjennom punktene E(2,4) og F(7,-1).
- b) Bestem skjæringspunktene mellom I og koordinataksene.
- c) Bestem ved regning avstanden fra punktet G(6, 3) til 1.

Oppgave 7 (6 poeng)

Figuren viser en del av grafen til funksjonen f gitt ved

$$f(x) = \frac{5}{2}e^{-\frac{x}{2}}$$
 , $x > 0$

a) Vis at arealet av △OAB er gitt ved

$$g(x) = \frac{5}{4}x \cdot e^{-\frac{x}{2}}$$

- b) Bestem det største arealet som $\triangle OAB$ kan ha.
- c) Bruk digitalt verktøy til å bestemme $\,x\,$ slik at trekanten er likebeint.

Hvor stort er arealet da?

Oppgave 8 (5 poeng)

På skissen ovenfor er □ABCD innskrevet i en sirkel.

 $\angle A = \alpha$, og nabovinkelen til $\angle C$ kalles β . Buen BCD = x

- a) Forklar at $\alpha = \frac{x}{2}$
- b) Forklar at $180^{\circ} \beta = \frac{1}{2}(360^{\circ} x)$
- c) Vis at $\alpha = \beta$

Oppgave 9 (6 poeng)

a) Tegn grafen til funksjonen f gitt ved

$$f(x) = 2(x+1)(x-1)(x-3)$$

b) På figur 1 er det tegnet en skisse av grafen til en annen funksjon g. Skriv funksjonsuttrykket g(x) på samme form som i a).

c) På figur 2 er det tegnet en skisse av grafen til en tredje funksjon h. Skriv funksjonsuttrykket h(x) på samme form som ovenfor.

Oppgave 10 (3 poeng)

På skissen ovenfor er det tegnet en kvartsirkel med radius 3. $\square OABC$ er et kvadrat der A ligger på x-aksen, B på kvartsirkelen og C på y-aksen.

- a) Bestem lengden til diagonalen AC.
- b) Bestem arealet av det skraverte området.

Oppgave 11 (5 poeng)

En skole vil arrangere aktivitetsdag. Det pleier å regne 8 % av dagene på denne tiden av året. Værmeldingen har vært korrekt 90 % av de dagene det faktisk regner. Når det har vært oppholdsvær, har meteorologene meldt regn 10 % av dagene.

Vi definerer hendelsene:

A: Det regner på aktivitetsdagen

B: Det er meldt regn på aktivitetsdagen

- a) Bestem P(A) og $P(\overline{A})$
- b) Bestem $P(B|A), P(B|\overline{A})$ og P(B)

Det er meldt regn den dagen skolen ønsker å arrangere aktivitetsdag.

c) Bestem sannsynligheten for at det ikke regner denne dagen selv om det altså er meldt regn.