Charles ODEND'HAL Groupe 4

Je déclare sur l'honneur que ce mémoire a été écrit de ma main, sans aide extérieure non autorisée, qu'il n'a pas été présenté auparavant pour évaluation et qu'il n'a jamais été publié, dans sa totalité ou en partie. Toutes parties, groupes de mots ou idées, aussi limités soient-ils, y compris des tableaux, graphiques, cartes etc. qui sont empruntés ou qui font référence à d'autres sources bibliographiques sont présentés comme tels, sans exception aucune

Sujet : Le pourcentage de réussite au tir à 3 points des joueurs de NBA

2^{nde} partie

Table des matières :

- I. Sélection du modèle optimal
- II. Tests de détection d'autocorrélation des erreurs
- III. Tests de détection de l'hétéroscédasticité des erreurs
- IV. Corrections
- V. Conclusion

I. Sélection du modèle optimal

La $6^{\text{ème}}$ hypothèse des moindres carrés ordinaires implique une absence de colinéarité entre les variables explicatives du modèle, signifiant que (X'X) est régulière et que la matrice inverse $(X'X)^{-1}$ existe. Lorsque les colonnes de X sont très corrélées, cela pose un problème de multicolinéarité qui voit cette hypothèse violée. Celui-ci a pour conséquences une augmentation de la variance estimée de certains coefficients. Si on décide alors d'ajouter une variable ou d'augmenter la taille de l'échantillon, on s'expose à l'instabilité des coefficients des MCO.

Pour remédier à ce problème, une des méthodes consiste à spécifier un nouveau modèle dans lequel les variables fortement corrélées entre elles ont été éliminées.

a) Méthode toutes les régressions possibles

Dans un premier temps, nous créons 7 modèles des MCO en testant toutes les combinaisons des variables explicatives possibles.

Modèle	X1	X2	Х3	AIC
1	9,262			8908,944
2		11,88		8857,932
3			-2,956	8899,551
4	11,13	13,44		8741,263
5	8,556		-0,9263	8830,146
6		11,81	-1,764	8768,571
7	10,79	13,6	0,9185	8658,585

Tableau récapitulatif des t de Student et critères d'Akaike

Parmi les modèles ci-dessus, on retient ceux dont toutes les variables sont significatives. On compare chaque t de Student à une statistique de test

On compare chaque statistique de test à une loi de Student à n-k-1 degrés de liberté au seuil de 5%. On a n=1322 et k compris entre 1 et 3 donc on considère la valeur dans la table de Student correspondant au nombre maximal de degrés de liberté soit : 1,95996

D'après cette règle de décision, on retient les modèles 1, 2, 3 et 4. On remarque que la variable X3 n'est pas significative dans les modèles de régression multiple.

Parmi cet ensemble restreint, on retient le modèle qui minimise le critère d'Akaike. Il s'agit du modèle 4.

b) Méthode de sélection par étage

Etape 1

On calcule les coefficients de corrélation simple entre toutes les variables explicatives potentielles et Y.

Coefficients de corrélation, utilisant les observations 1 - 1325 (sans prendre en compte les valeurs manquantes)

Two-tailed critical values for n = 1322: 5% 0,0539, 1% 0,0708

Y X1 X2 X3 1,0000 0,2468 0,3104 -0,0811 Y 1,0000 -0,0971 -0,2365 X1 1,0000 -0,1121 X2 1,0000 X3 On retient la variable Xi dont le coefficient de corrélation simple avec Y est le plus élevé, soit X2 (0,3104 > 0,2468 > -0,0811). Avant d'estimer le modèle, on vérifie que le coefficient de corrélation $r_{Y,X2}$ est significativement différent de 0. On effectue un test de significativité du paramètre a2. D'après les résultats précédemment obtenus, on a $\left|t_{\hat{a}_2}\right|^* = 11,88 > t_{n-k-1} = 1,96$, donc a2 est significative. Ainsi $r_{Y,X2}$ est significativement différent de 0.

Etape 2 $\mbox{On estime Y en fonction de X2. On calcule le résidu } e_2=y-\hat{\bf a}_0-\hat{\bf a}_2x_2.$

Modèle 2: MCO, utilisant les observations 1-1325 Variable dépendante: Y

coe	efficient	éc. ty	e t de Student	p. critique	
const 25	,3078	0,7108	7 35,60	2,73e-195	***
X2 0	,555379	0,0467	76 11,88	5,45e-031	***
Moyenne var. dép	33,45	5019 1	c. type var. dép.	7,193725	
Somme carrés rés	idus 61914	1,14	c. type régression	6,840928	
R2	0,096	5363	2 ajusté	0,095680	
F(1, 1323)	141,0	0828	critique (F)	5,45e-31	
Log de vraisembl	ance -4426,	966	ritère d'Akaike	8857,932	
Critère de Schwa	rz 8868,	311	lannan-Quinn	8861,823	

Coefficients de corrélation, utilisant les observations 1 - 1325 (sans prendre en compte les valeurs manquantes)

Two-tailed critical values for n = 1322: 5% 0,0539, 1% 0,0708

On a donc:

$$|\rho_{e,X1}| = 0.2913$$

$$|\rho_{e,X3}| = 0.0479$$

En valeur absolue, $\rho_{e,X1}$ est donc le coefficient le plus élevé. On vérifie si ce coefficient est significativement différent de 0.

Test de Student

i) Hypothèses

$$H_0: r_{e,X_1} = 0$$

$$H_1: r_{e,X1} \neq 0$$

ii) Statistique de test

$$t^* = \frac{\rho_{e,X1}}{\sqrt{\frac{1 - \rho_{e,X1}^2}{n - 2}}} = \frac{0,2913}{0,0263} = 11,076$$

iii) Règle de décision

On compare la statistique de test (en valeur absolue) à la valeur critique $t_{n-k-1}=1,96$. H_0 est rejetée. $\rho_{e,X1}$ est significativement différent de 0. Le modèle optimal contient donc 2 variables explicatives X1 et X2.

II. Tests de détection d'autocorrélation des erreurs

On commence par modifier la structure de notre jeu de données en le transformant en séries temporelles. On construit ensuite le nuage de points e(t) en fonction de e(t-1).

On observe une très faible autocorrélation négative des erreurs. Le signe des résidus a plutôt tendance à alterner d'une période à l'autre.

Test de Durbin-Watson

Le test de Durbin-Watson permet de détecter une autocorrélation des erreurs d'ordre 1 telle que $\varepsilon_t = \rho \varepsilon_t + v_t$ avec $v_t \to N(0, {\delta_v}^2)$.

On vérifie si les condition d'utilisation sont satisfaites.

- *n* = 1325 > 15
- Y_{t-1} n'est pas parmi les variables explicatives
- On trie les données avec Y de façon croissante
- i) Hypothèses

$$H_0: \rho = 0$$

 $H_1: \rho \neq 0$

ii) Statistique de test

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=2}^{n} e_t^2} = \frac{129649}{61914,1} = 2,094$$

iii) Règle de décision

On cherche les valeurs d1 et d2 dans la table de Durbin-Watson. On a n = 1325 et k = 3.

On obtient au seuil de 5%:

$$d_1 = 1,61$$

$$d_2 = 1,74$$

Ainsi $d_2 < DW < 4 - d_2$. H_0 est acceptée. On peut donc dire que $\rho = 0$, il n'y a pas d'autocorrélation des erreurs.

Test de Breush-Godfrey

On commence par calculer e_t en estimant le modèle par les MCO. On estime ensuite par les MCO l'équation auxiliaire :

$$e_t = a_0 + a_1 x_{1t} + a_2 x_{2t} + a_3 x_{3t} + \rho_1 e_{t-1} + \dots + \rho_p e_{t-p} + v_t$$

L'équation auxiliaire s'estime pour n=1322-1=1321 observations car e_0 n'existe pas.

? ols residu2 const X1 X2 X3 residu2retarde

Modèle 1: MCO, utilisant les observations 1-1325 (n = 1321) Suppression d'observations manquantes ou incomplètes: 4 Variable dépendante: residu2

	coefficient	éc. type	t de Stude	nt p. critique	
const	-4,80850	1,41139	-3,407	0,0007	***
X1	0,00253680	0,000235615	10,77	5,75e-026	***
X2	0,0486508	0,0443863	1,096	0,2732	
X3	0,0113459	0,0118785	0,9552	0,3397	
residu2retarde	-0,0366350	0,0257267	-1,424	0,1547	
Moyenne var. dép.	0,072528	Éc. type va	ar. dép.	6,666454	
Somme carrés résid	dus 53692,03	Éc. type re	égression	6,387442	
R2	0,084736	R2 ajusté		0,081954	
F(4, 1316)	30,45929	P. critique	(F)	2,83e-24	
Log de vraisemblan	nce -4321,488	Critère d'A	Akaike	8652,976	
Critère de Schwarz	8678,907	Hannan-Quir	nn	8662,698	

Constante mise à part, la probabilité critique est la plus élevée pour la variable 3 (X3)

On procède ensuite à un test du multiplicateur de Lagrange sur l'équation auxiliaire.

i) Hypothèses

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

ii) Statistique de test

$$LM = n \times R^2 = 1321 \times 0.0847 = 111.889$$

iii) Règle de decision

On compare la valeur de la statistique de test à celle obtenue dans la table du Chi-Deux à p=1321 degrés de liberté au seuil de 5%, soit 2665.13. H_0 n'est pas rejetée donc les erreurs ne subissent pas un processus autorégressif d'ordre 1. On observe une absence d'autocorrélation des erreurs.

III. Tests de détection de l'hétéroscédasticité des erreurs

Test de Goldfeld-Quandt

Le nombre d'observations est important (n=1322>30). On soupçonne la variable X1 d'être la cause de l'hétéroscédasticité.

On commence donc par ordonner les observations en fonction de X1 (ordre croissant).

On dispose de 1322 observations. On omet donc $\mathcal{C}=\frac{1322}{4}\approx 330$ observations centrales C. On estime ensuite le modèle sur 2 sous-échantillons.

L'échantillon 1 comporte les 496 premières observations. L'échantillon 2 comporte les 496 dernières observations.

? ols Y const X1 X2 X3

Modèle 6: MCO, utilisant les observations 1-496 (n = 494) Suppression d'observations manquantes ou incomplètes: 2 Variable dépendante: Y

ruzzunze uep									
	coefficie	nt	éc.	type	t de	e Student	p.	critique	
const	23,0123		3,029	94	7	7,595	1,	57e-013	***
X1	0,004239	69	0,001	53525	2	2,762	0,	0060	***
X2	0,470697		0,089	8027		5,241	2,	37e-07	***
X3	-0,007012	39	0,027	0166	-(0,2596	0,	7953	
Moyenne var. Somme carrés R2 F(3, 490) Log de vrais Critère de So	résidus emblance -	31,34 34414 0,060 10,47 1749,	,01 294 995 145	Éc. t R2 aj P. ci Crité	type ré justé ritique	Akaike	8,3 0,0 1,0 350	18829 80494 54541 8e-06 6,291 2,891	

SCR1 = 34414,01

? ols Y const X1 X2 X3

Modèle 7: MCO, utilisant les observations 827-1322 (n = 496) Variable dépendante: Y

	coefficient	éc. ty	/pe t de	Student	p. critique	
	20,2037	2,06038		,806	7,47e-021	***
X1	0,000881581	0,00062	27639 1	,405	0,1608	
X2	0,848703	0,05350	075 15	,86	4,63e-046	***
ХЗ	0,0117046	0,01207	793 0	,9690	0,3330	
Moyenne var.	dép. 35,2	21512	Éc. type v	ar. dép.	5,461790	
Somme carrés	résidus 9733	3,956	Éc. type r	égression	4,447973	
R2	0,34	10804	R2 ajusté		0,336785	
F(3, 492)	84,7	78810	P. critiqu	ie (F)	3,12e-44	
Log de vrais	emblance -1442	2,040	Critère d'	Akaike	2892,080	
Critère de S	chwarz 2908	3,906	Hannan-Qui	.nn	2898,685	

SCR2 = 9733,956

i) Hypothèses

$$H_0: E(e_t^2) = \sigma_{e_t}^2$$

$$H_1: E(e_t^2) \neq \sigma_{e_t}^2$$

ii) Statistique de test

$$F^* = \frac{SCR1/ddl_2}{SCR2/ddl_1} = \frac{34414,01/492}{9733,956/492} = 3,535$$

On place toujours la SCR la plus grande au numérateur.

iii) Règle de decision

On compare F^* à la valeur obtenue dans la table de Fisher à (492,492) degrés de libertés, soit 1.

 $F^* = 3,535 > 1$ donc H_0 est rejetée. L'hypothèse d'homoscédasticité est rejetée au seuil de 5%.

Test de White

Dans un premier temps, on teste Y en fonction de X et on extrait les résidus e.

On teste l'hypothèse nulle d'homoscédasticité des erreurs :

$$H_0$$
: $a_1 = a_2 = b_1 = \cdots = a_k = b_k$

Modèle 11: MCO, utilisant les observations 1-1325 (n = 1322) Suppression d'observations manquantes ou incomplètes: 3 Variable dépendante: esq

	coefficie	nt éc.	type	t de Student	p. critique	
const	378,170	38,98	09	9,701	1,54e-021	***
Xl	-0,119474	0,01	15223	-10,37	2,87e-024	***
Xlsq	3,40481e	-05 4,23	541e-06	8,039	2,00e-015	***
X2	-28,9941	3,15	282	-9,196	1,41e-019	***
X2sq	0,818876	0,10	9716	7,464	1,53e-013	***
X3	-0,920921	0,93	6815	-0,9830	0,3258	
X3sq	0,006974	60 0,00	628508	1,110	0,2673	
Moyenne var.	dép.	40,67776	Éc. type	var. dép.	92,56932	
Somme carrés	résidus	9010858	Éc. type	régression	82,77901	
R2		0,203970	R2 ajust	;é	0,200338	
F(6, 1315)		56,15811	P. criti	ique (F)	6,64e-62	
Log de vrais	semblance -	7710,510	Critère	d'Akaike	15435,02	
Critère de S	Schwarz	15471,33	Hannan-C	Quinn	15448,63	

La statistique de test est la suivante :

$$LM = n \times R^2 = 1322 \times 0.204 = 269.688$$

On la compare à la valeur lue dans la table du Chi-Deux à p=6 degrés de liberté, soit 12,5916.

269,688 > 12,5916 donc l'hypothèse d'homoscédasticité est rejetée.

IV. Corrections

Correction de l'autocorrélation des erreurs

Considérons le modèle initial à 3 variables explicatives :

$$Y_t = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \varepsilon_t$$

Modèle 3: MCO, utilisant les observations 1-1325 (n = 1318) Suppression d'observations manquantes ou incomplètes: 7 Variable dépendante: res0

C	oefficient	éc. ty	mpe to	de Student	p. critique
res0_1	0,0321169	0,0273	968	1,172	0,2413
Moyenne var. d	ép. 0,00	4658	Éc. type	var. dép.	6,348971
Somme carrés r	ésidus 5303	2,21	Éc. type	régression	6,345662
R2 non-centré	0,00	1042	R2 centré	4	0,001042
F(1, 1317)	1,37	4257	P. critiq	rue (F)	0,241294
Log de vraisemb	blance -4305	,024	Critère d	l'Akaike	8612,047
Critère de Sch	warz 8617	,231	Hannan-Qu	inn	8613,991

A l'observation t-1, le modèle s'écrit :

$$Y_{t-1} = a_0 + a_1 X_{1_{t-1}} + a_2 X_{2_{t-1}} + a_3 X_{3_{t-1}} + \varepsilon_{t-1}$$

$$Y_t - \rho Y_{t-1} = a_0 (1 - p) + a_1 \left(X_1 - \rho X_{1_{t-1}} \right) + a_2 \left(X_2 - \rho X_{2_{t-1}} \right) + a_3 \left(X_3 - \rho X_{3_{t-1}} \right) + \varepsilon_t - \varepsilon_{t-1}$$

Le modèle transformé s'écrit :

$$Y_t^* = b_0 + a_1 X_{1_t}^* + a_2 X_{2_t}^* + a_3 X_{3_t}^* + v_t$$

On estime le modèle en quasi-différences, en prenant

$$\hat{\rho} = \hat{\rho}^0$$

Modèle 4: MCO, utilisant les observations 1-1325 (n = 1318) Suppression d'observations manquantes ou incomplètes: 7 Variable dépendante: dOY

	coefficient	éc. t	ype .	t de Student	p. critique
const	19,7563	1,3560	1	14,57	1,10e-044
d0X1	0,00253646	0,0002	41922	10,48	9,34e-025
d0X2	0,606312	0,0442	438	13,70	4,74e-040
d0X3	0,0120208	0,0117	368	1,024	0,3059
Moyenne var.	dép. 32,4	5295	Éc. type	var. dép.	6,980866
Somme carrés	résidus 5303	1,56	Éc. type	régression	6,352863
R2	0,17	3715	R2 ajust	é	0,171828
F(3, 1314)	92,0	8325	P. criti	que (F)	4,34e-54
Log de vraise	mblance -4305	,016	Critère	d'Akaike	8618,031
Critère de So	hwarz 8638	,767	Hannan-Q	uinn	8625,806

On obtient ensuite les résidus e^1 .

Modèle 5: MCO, utilisant les observations 1-1325 (n = 1318) Suppression d'observations manquantes ou incomplètes: 7 Variable dépendante: resl

	coefficient	éc. typ	e t de Student	p. critique
resl_l	0,0321003	0,02739	65 1,172	0,2415
Moyenne var.	dép0,0	02630 É	c. type var. dép.	6,348931
Somme carrés	résidus 530	31,58 É	c. type régression	6,345625
R2 non-centre	é 0,(001041 F	R2 centré	0,001041
F(1, 1317)	1,3	372863 I	critique (F)	0,241533
Log de vraise	emblance -430	5,016	ritère d'Akaike	8612,032
Critère de So	chwarz 861	17,215 H	Mannan-Quinn	8613,975

On estime ensuite le modèle en quasi-différences après avoir actualisé la valeur :

$$\hat{\rho} = \hat{\rho}^1$$

Modèle 6: MCO, utilisant les observations 1-1325 (n = 1318) Suppression d'observations manquantes ou incomplètes: 7 Variable dépendante: dlY

co	efficient	éc. t	ype t	de Student	p. critique
const 19	,7563	1,3560	1	14,57	1,10e-044
dlX1 0	,00253646	0,0002	41922	10,48	9,34e-025
d1X2 0	,606312	0,0442	438	13,70	4,74e-040
dlX3 0	,0120208	0,0117	368	1,024	0,3059
Moyenne var. dé	p. 32,45	294	Éc. type v	var. dép.	6,980866
Somme carrés ré	sidus 53031	,56	Éc. type 1	régression	6,352863
R2	0,173	715	R2 ajusté		0,171828
F(3, 1314)	92,08	324	P. critiqu	ie (F)	4,34e-54
Log de vraisemb	lance -4305,	016	Critère d'	Akaike	8618,031
Critère de Schw	arz 8638,	767	Hannan-Qui	inn	8625,806

On observe une stabilité des estimateurs â issus de 2 itérations successives. Le modèle transformé est le suivant :

$$Y_t^* = 19,7563 + 0,00254 X_{1_t}^* + 0,606312 X_{2_t}^* + 0,01202 X_{3_t}^* + v_t$$

Toutes les relations observées sont positives. La constante a le t de Student le plus élevé et est donc la variable la plus significative. La probabilité critique de X3 est élevée. Cette variable n'est pas significative au seuil de 5%.

Correction de l'hétéroscédasticité des erreurs

Pour corriger de l'hétéroscédasticité, on utilise la régression pondérée. On transforme les variables initiales pour estimer le modèle des MCO en utilisant les variables transformées.

D'après le test de White, X1 est la variable qui a le t de Student le plus élevé (en valeur absolue). C'est donc la variable la plus significative. On divise les variables de notre modèle initial par $\sqrt{X_1}$.

Notre modèle devient :

$$\frac{Y}{\sqrt{X_1}} = \frac{a_0}{\sqrt{X_1}} + \frac{a_1 X_1}{\sqrt{X_1}} + \frac{a_2 X_2}{\sqrt{X_1}} + \frac{a_3 X_3}{\sqrt{X_1}} + \frac{\varepsilon_t}{\sqrt{X_1}}$$

On l'estime par les MCO:

Suppression o Variable dépe			quante	s ou inco	omplètes:	3	
	coeffici	ent éc	. type	t de	Student	p. critique	
const	0,79034	8 0,0	859133		9,199	1,37e-019	**
XlT	-0,01016	11 0,0	017111	1 -5	5,938	3,68e-09	**
X2T	0,99591	9 0,0	478352	20	0,82	1,85e-083	**
X3T	0,06217	0,0	123313	ţ	5,042	5,26e-07	**
Moyenne var.	dép.	1,220358	Éc.	type var	r. dép.	0,789533	
Somme carrés	résidus	221,4571	Éc.	type rég	gression	0,409909	
R2		0,731066	R2	ajusté		0,730454	
F(3, 1318)		1194,277	P.	critique	(F)	0,000000	
Log de vraise	emblance	-694,8464	Cri	tère d'Al	kaike	1397,693	
Critère de So	chwarz	1418,440	Han	nan-Ouin	1	1405,471	

$$\frac{Y}{\sqrt{X_1}} = 0.79 - \frac{0.01X_1}{\sqrt{X_1}} + \frac{0.996X_2}{\sqrt{X_1}} + \frac{0.062X_3}{\sqrt{X_1}} + \frac{\varepsilon_t}{\sqrt{X_1}}$$

On peut écrire le modèle estimé en utilisant les données initiales, soit :

$$Y = 0.79 - 0.01X_1 + 0.996X_2 + 0.062X_3 + \varepsilon_t$$

Dans ce modèle, X2 est la variable la plus significative. La distance des tirs (X2) et la fréquence de ceux-ci réalisés dans le corner (X3) influencent positivement le pourcentage de réussite à 3 points. Le nombre de minutes jouées (X1) l'influence négativement de manière très légère.

V. Conclusion

Dans un premier temps, cette étude a permis de sélectionner le modèle optimal d'explication du pourcentage de réussite à 3 points des joueurs de NBA. Celui-ci a pour variables explicatives le nombres de minutes jouées (X1) et la distance moyenne des tirs tentés (X2). L'observation du nuage de points entre e(t) et e(t-1), ainsi que les tests de Durbin-Watson et Breusch Godfrey permettent de conclure une absence d'autocorrélation des erreurs. Néanmoins, les tests de Goldfeld-Quandt et White rejettent l'hypothèse d'homoscédasticité. Dans un dernier temps, nous avons élaboré un modèle optimal permettant de répondre à cette problématique en stabilisant les variances des perturbations. Pour améliorer la capacité explicative de notre modèle, nous pourrions intégrer de nouvelles variables à celui-ci. On pense notamment au poste du joueur sur le terrain ou à son nombre d'années d'expérience en NBA.