Probabilidade e estatística - Aula 18

Continuação - Intervalos de confiança

Dr. Giannini Italino Alves Vieira

Universidade Federal do Ceará - Campus de Crateús

2024

2 IC para a variância de dados normais

2 / 20

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais

3/20

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais.

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais

- Na aula passada iniciamos um estudo sobre intervalos de confiança.
- Vimos dois tipos de intervalos:
 - (i) Intervalo para a média de dados normais com variância conhecida;
 - (ii) Intervalo de confiança para a média de uma população com variância desconhecida e n (tamanho da amostra) grande.
- Veremos, na aula de hoje, mais dois importantes IC, a saber:
 - (iii) Intervalo t para a média de dados normais com variância desconhecida;
 - (iv) Intervalo de confiança para a variância de dados normais.

- Recorde que, na aula passada, estudamos um IC para a média de uma população quando a variância é desconhecida e a amostra é grade.
- Contudo, se n for pequeno e a variância for desconhecida, então teremos um outro
- Vimos que se X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n de uma
- Se n for grande, a troca de σ por S tem pouco efeito na distribuição de $T = \frac{X \mu}{s}$
- Contudo, se n for pequeno, uma distribuição deferente tem que ser empregada na

- Recorde que, na aula passada, estudamos um IC para a média de uma população quando a variância é desconhecida e a amostra é grade.
- Contudo, se n for pequeno e a variância for desconhecida, então teremos um outro tipo de intervalo.
- Vimos que se X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n de uma
- Se n for grande, a troca de σ por S tem pouco efeito na distribuição de $T = \frac{X \mu}{s}$
- Contudo, se n for pequeno, uma distribuição deferente tem que ser empregada na

- Recorde que, na aula passada, estudamos um IC para a média de uma população quando a variância é desconhecida e a amostra é grade.
- Contudo, se n for pequeno e a variância for desconhecida, então teremos um outro tipo de intervalo.
- Vimos que se X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n de uma população normal de média μ e variância σ^2 desconhecida, então um procedimento lógico, na obtenção do IC, é trocar σ por S.
- Se n for grande, a troca de σ por S tem pouco efeito na distribuição de $T = \frac{X \mu}{s}$
- Contudo, se n for pequeno, uma distribuição deferente tem que ser empregada na

- Recorde que, na aula passada, estudamos um IC para a média de uma população quando a variância é desconhecida e a amostra é grade.
- Contudo, se n for pequeno e a variância for desconhecida, então teremos um outro tipo de intervalo.
- Vimos que se X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n de uma população normal de média μ e variância σ^2 desconhecida, então um procedimento lógico, na obtenção do IC, é trocar σ por S.
- Se n for grande, a troca de σ por S tem pouco efeito na distribuição de $T = \frac{X \mu}{\frac{S}{2}}$.
- Contudo, se n for pequeno, uma distribuição deferente tem que ser empregada na

- Recorde que, na aula passada, estudamos um IC para a média de uma população quando a variância é desconhecida e a amostra é grade.
- Contudo, se n for pequeno e a variância for desconhecida, então teremos um outro tipo de intervalo.
- Vimos que se X_1, X_2, \ldots, X_n é uma amostra aleatória de tamanho n de uma população normal de média μ e variância σ^2 desconhecida, então um procedimento lógico, na obtenção do IC, é trocar σ por S.
- Se n for grande, a troca de σ por S tem pouco efeito na distribuição de $T=\frac{X-\mu}{\frac{S}{2}}$.
- Contudo, se n for pequeno, uma distribuição deferente tem que ser empregada na construção do IC para a média.

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

ullet A função de densidade de probabilidade da distribuição t com k graus de liberdade $\acute{\mathrm{e}}$

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r)=\int_0^\infty x^{r-1}e^{-x}dx$, para r>0.

◆ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

 A função de densidade de probabilidade da distribuição t com k graus de liberdade é

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, para r > 0.

イロト イ部ト イミト イミト ミー かくぐ

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

ullet A função de densidade de probabilidade da distribuição t com k graus de liberdade $\acute{ ext{e}}$

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, para r > 0.

◆ロ ト ← 回 ト ← 直 ト ← 直 ・ 夕 へ ○ ...

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

ullet A função de densidade de probabilidade da distribuição t com k graus de liberdade $\acute{ ext{e}}$

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r)=\int_0^\infty x^{r-1}e^{-x}dx,\;\;$ para $\;\;r>0$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

 A função de densidade de probabilidade da distribuição t com k graus de liberdade é

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, para r > 0.

4□ > 4□ > 4 = > 4 = > = 90

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 desconhecidas. Então a variável aleatória

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

tem uma distribuição t com n-1 graus de liberdade.

ullet A função de densidade de probabilidade da distribuição t com k graus de liberdade $\hat{\mathbf{e}}$

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{k\pi\Gamma(k/2)}} \frac{1}{[(x^2/k)+1]^{\frac{(k+1)}{2}}}, -\infty < x < \infty$$

A função Γ é a função gama, ou seja, $\Gamma(r)=\int_0^\infty x^{r-1}e^{-x}dx$, para r>0.

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・釣りで

- A média e a variância de uma t são zero e $\frac{k}{k-2}$, respectivamente.
- A aparência da densidade da t é similar a da normal padrão. Ambas são simétricas e o valor máximo é encontrado em quando $\mu=0$.
- Contudo, a distribuição t tem as "caudas mais pesadas" que a normal padrão, ou seja, ela tem mais probabilidade nas extremidades (caudas) do que a normal padrão.
- Além disso, a medida que $k \to \infty$, a forma limite da distribuição t é uma normal padrão.

7 / 20

- A média e a variância de uma t são zero e $\frac{k}{k-2}$, respectivamente.
- A aparência da densidade da t é similar a da normal padrão. Ambas são simétricas e o valor máximo é encontrado em quando $\mu=0$.
- Contudo, a distribuição t tem as "caudas mais pesadas" que a normal padrão, ou seja, ela tem mais probabilidade nas extremidades (caudas) do que a normal padrão
- Além disso, a medida que $k \to \infty$, a forma limite da distribuição t é uma normal padrão.

- A média e a variância de uma t são zero e $\frac{k}{k-2}$, respectivamente.
- A aparência da densidade da t é similar a da normal padrão. Ambas são simétricas e o valor máximo é encontrado em quando $\mu=0$.
- Contudo, a distribuição t tem as "caudas mais pesadas" que a normal padrão, ou seja, ela tem mais probabilidade nas extremidades (caudas) do que a normal padrão.
- Além disso, a medida que $k \to \infty$, a forma limite da distribuição t é uma normal

- A média e a variância de uma t são zero e $\frac{k}{k-2}$, respectivamente.
- A aparência da densidade da t é similar a da normal padrão. Ambas são simétricas e o valor máximo é encontrado em quando $\mu=0$.
- Contudo, a distribuição t tem as "caudas mais pesadas" que a normal padrão, ou seja, ela tem mais probabilidade nas extremidades (caudas) do que a normal padrão.
- ullet Além disso, a medida que $k o\infty$, a forma limite da distribuição t é uma normal padrão.

- ullet Como visto acima, sabemos que $T=rac{ar{X}-\mu}{rac{S}{\sqrt{n}}}$ é uma t com n-1 graus de liberdade.
- Então podemos proceder, de maneira análoga ao que fizemos nos intervalos estudados na aula passada, para obter um IC com $100(1-\alpha)\%$ de confiança para μ , ou seja,

$$P\left(-t_{rac{lpha}{2},n-1} \leq rac{ar{X}-\mu}{rac{S}{\sqrt{n}}} \leq t_{rac{lpha}{2},n-1}
ight) = 1-lpha.$$

Rearranjando essa última equação, temos que

$$P\left(\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

8 / 20

- ullet Como visto acima, sabemos que $T=rac{ar{X}-\mu}{rac{S}{\sqrt{n}}}$ é uma t com n-1 graus de liberdade.
- Então podemos proceder, de maneira análoga ao que fizemos nos intervalos estudados na aula passada, para obter um IC com $100(1-\alpha)\%$ de confiança para μ , ou seja,

$$P\left(-t_{\frac{\alpha}{2},n-1} \leq \frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \leq t_{\frac{\alpha}{2},n-1}\right) = 1-\alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right) = 1 - \epsilon$$

◆ロ ト ← 回 ト ← 直 ト ← 直 ・ 夕 へ ○ ...

- Como visto acima, sabemos que $T=\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ é uma t com n-1 graus de liberdade.
- Então podemos proceder, de maneira análoga ao que fizemos nos intervalos estudados na aula passada, para obter um IC com $100(1-\alpha)\%$ de confiança para μ , ou seja,

$$P\left(-t_{\frac{\alpha}{2},n-1} \leq \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \leq t_{\frac{\alpha}{2},n-1}\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

◆ロト ◆部ト ◆意ト ◆意ト ・意 ・ 夕久(で)

- Como visto acima, sabemos que $T=\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ é uma t com n-1 graus de liberdade.
- Então podemos proceder, de maneira análoga ao que fizemos nos intervalos estudados na aula passada, para obter um IC com $100(1-\alpha)\%$ de confiança para μ , ou seja,

$$P\left(-t_{\frac{\alpha}{2},n-1} \leq \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \leq t_{\frac{\alpha}{2},n-1}\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- ullet Como visto acima, sabemos que $T=rac{ar{x}-\mu}{\underline{s}}$ é uma t com n-1 graus de liberdade.
- Então podemos proceder, de maneira análoga ao que fizemos nos intervalos estudados na aula passada, para obter um IC com 100(1-lpha)% de confiança para μ , ou seja,

$$P\left(-t_{\frac{\alpha}{2},n-1} \leq \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \leq t_{\frac{\alpha}{2},n-1}\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

Se $ar{x}$ e s forem a média e o desvio-padrão de uma amostra aleatória proveniente de uma população normal de média μ e variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para μ é

$$\bar{x} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$$

Se $ar{x}$ e s forem a média e o desvio-padrão de uma amostra aleatória proveniente de uma população normal de média μ e variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para μ é

$$\bar{x} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$$

em que $t_{rac{lpha}{2},n-1}$ é obtido da tabela da distribuição t com n-1 graus de liberdade de modo que $P(T > t_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2}$.

Exemplo: Um artigo na revista *Nuclear Engineering International* (1988, p. 33) descreve várias características de bastões combustíveis usados em um reator pertencente a uma utilidade elétrica na Noruega. Medidas da percentagem de enriquecimento de 12 bastões foram reportadas como segue

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

• Como estamos no caso de dados normais com variância desconhecida, então sabemos que o IC para μ com $1-\alpha$ de coeficiente de confiança é

$$[ar{x}-t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}},ar{x}+t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}}]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

Exemplo: Um artigo na revista *Nuclear Engineering International* (1988, p. 33) descreve várias características de bastões combustíveis usados em um reator pertencente a uma utilidade elétrica na Noruega. Medidas da percentagem de enriquecimento de 12 bastões foram reportadas como segue

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

• Como estamos no caso de dados normais com variância desconhecida, então sabemos que o IC para μ com $1-\alpha$ de coeficiente de confiança é

$$\left[\bar{x}-t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}},ar{x}+t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}}
ight]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

Exemplo: Um artigo na revista *Nuclear Engineering International* (1988, p. 33) descreve várias características de bastões combustíveis usados em um reator pertencente a uma utilidade elétrica na Noruega. Medidas da percentagem de enriquecimento de 12 bastões foram reportadas como segue

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

• Como estamos no caso de dados normais com variância desconhecida, então sabemos que o IC para μ com $1-\alpha$ de coeficiente de confiança é

$$\left[\bar{x}-t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}},ar{x}+t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}}
ight]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$\left[\bar{x}-t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}},ar{x}+t_{rac{lpha}{2},n-1}rac{s}{\sqrt{n}}
ight]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{n},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{3},n-1}=t_{0.005,11}=3.106$.
- ullet Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- ullet Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- ullet Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106) \frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

$$\left[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}\right]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106)\frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106)\frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

Construa um IC com 99% de confiança para o percentual médio de enriquecimento. Considere normalidade dos dados.

• Como estamos no caso de dados normais com variância desconhecida, então sabemos que o IC para μ com $1-\alpha$ de coeficiente de confiança é

$$\left[\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}\right]$$

- Temos que $\bar{x}=2.90167$, $s^2=0.0099$, n=12 e $100(1-\alpha)\%=99\%$. Logo, temos ainda $\alpha=1\%$ e $t_{\frac{\alpha}{2},n-1}=t_{0.005,11}=3.106$.
- Dessa forma, temos que o IC para μ , 99% de confiança, é

$$[2.90167 - (3.106)\frac{\sqrt{(0.0099)}}{\sqrt{12}}, 2.90167 + (3.106)\frac{\sqrt{(0.0099)}}{\sqrt{12}}] \Leftrightarrow [2.813, 2.991].$$

2024

Table of the Student's t-distribution

The table gives the values of $t_{\alpha:v}$ where $Pr(T_v > t_{cc,v}) = \alpha$, with v degrees of freedom

\ u	0.1	0.05	0.025	0.01	0.005	0.001	0.0005	
v								
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620	
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598	
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924	
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
8	1.397	1.860	2,306	2.896	3,355	4,501	5.041	
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	1,363	1.796	2,201	2,718	3,106	4.025	4,437	
12	1,356	1.782	2,179	2.681	3.055	3,930	4,318	
13	1,350	1.771	2.160	2.650	3.012	3.852	4.221	
14	1,345	1.761	2,145	2.624	2.977	3.787	4,140	
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	1.337	1.746	2,120	2,583	2,921	3,686	4.015	
17	1,333	1.740	2,110	2.567	2.898	3,646	3,965	
18	1,330	1.734	2.101	2.552	2.878	3.610	3.922	
19	1.328	1.729	2.093	2.539	2.861	3,579	3.883	
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	1.323	1.721	2.080	2,518	2.831	3,527	3.819	
22	1,321	1.717	2.074	2.508	2.819	3,505	3,792	
23	1,319	1.714	2.069	2,500	2.807	3,485	3,767	
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
27	1.314	1.703	2.052	2,473	2.771	3,421	3,690	
28	1,313	1.701	2.032	2.467	2.763	3,408	3.674	
29	1,311	1.699	2.045	2.462	2.756	3,396	3,659	
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
40	1,303	1.684	2.021	2,423	2.704	3,307	3,551	
60	1.296	1.671	2.000	2.390	2.660	3.232	3,460	
120	1,289	1.658	1.980	2,358	2.617	3,160	3,373	
00	1.282	1.645	1.960	2.326	2.576	3.090	3,291	

- Em algumas situações, podemos estar interessados em construir um IC para a variância.
- Quando a população de interesse for modelada por uma normal, o intervalo que veremos a seguir poderá ser aplicado.
- Para entender o intervalo a seguir, precisamos de uma outra distribuição.

- Em algumas situações, podemos estar interessados em construir um IC para a variância.
- Quando a população de interesse for modelada por uma normal, o intervalo que veremos a seguir poderá ser aplicado.
- Para entender o intervalo a seguir, precisamos de uma outra distribuição.

- Em algumas situações, podemos estar interessados em construir um IC para a variância.
- Quando a população de interesse for modelada por uma normal, o intervalo que veremos a seguir poderá ser aplicado.
- Para entender o intervalo a seguir, precisamos de uma outra distribuição.

Sejam X_1, X_2, \dots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

• A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando

Sejam X_1, X_2, \dots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

• A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2) - 1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando

Sejam X_1, X_2, \dots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

• A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando

2024

14 / 20

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

ullet A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é deslocada para a direita.
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando $k \to \infty$, a forma limite da distribuição χ^2 é uma normal.

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

ullet A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é deslocada para a direita.
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando $k \to \infty$, a forma limite da distribuição χ^2 é uma normal.

14 / 20

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

• A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando

Sejam X_1,X_2,\ldots,X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

ullet A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)}x^{(k/2)-1}e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- \bullet Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é deslocada para a direita.
- Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando $k \to \infty$, a forma limite da distribuição χ^2 é uma normal.

14 / 20

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória proveniente de uma distribuição normal de média μ e variância σ^2 e seja S^2 a variância da amostra. Então a variável aleatória

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

tem uma distribuição qui-quadrado, denotado por χ^2 , com n-1 graus de liberdade.

• A função de densidade de um χ^2 com k graus de liberdade é

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \quad x > 0$$

- A média e a variância de uma χ^2 são k e 2k, respectivamente.
- Note que uma variável χ^2 é não negativa e que a distribuição de probabilidade é deslocada para a direita.
- ullet Quando k aumenta, a distribuição χ^2 se torna mais simétrica, sendo que quando $k \to \infty$, a forma limite da distribuição χ^2 é uma normal.

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

é uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^{2}}{(n-1)S^{2}} \le \frac{1}{\sigma^{2}} \le \frac{\chi_{\frac{\alpha}{2},n-1}^{2}}{(n-1)S^{2}}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

é uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^2}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{\chi_{\frac{\alpha}{2},n-1}^2}{(n-1)S^2}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

4□ > 4ⓓ > 4Ē > 4Ē > Ē 99

16 / 20

Dr. Giannini Italino Probabilidade e estatística 2024

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

é uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^2}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{\chi_{\frac{\alpha}{2},n-1}^2}{(n-1)S^2}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

4 D > 4 B > 4 B > 4 B > 9 Q C

16 / 20

Dr. Giannini Italino Probabilidade e estatística 2024

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

é uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^2}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{\chi_{\frac{\alpha}{2},n-1}^2}{(n-1)S^2}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

4 D > 4 D > 4 E > 4 E > E 990

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

é uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^2}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{\chi_{\frac{\alpha}{2},n-1}^2}{(n-1)S^2}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \sigma^2$$

ullet Logo, podemos construir um IC de 100(1-lpha)% para σ^2 usando o fato de que

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

 $\acute{ ext{e}}$ uma qui-quadrado com n-1 graus de liberdade, ou seja,

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = 1 - \alpha.$$

Rearranjando essa última equação, temos que

$$P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^2}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{\chi_{\frac{\alpha}{2},n-1}^2}{(n-1)S^2}\right) = 1 - \alpha$$

ou seja,

$$P\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) = 1 - \alpha$$

4□ > 4個 > 4 種 > 4 種 > 種 9 9 0

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{rac{lpha}{2},n-1}$ e $\chi^2_{1-rac{lpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

•
$$P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2};$$

•
$$P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 - \frac{\alpha}{2};$$

Um IC para σ tem limites inferior e superior que são raízes quadradas dos limites correspondentes no IC para σ^2 .

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{rac{\alpha}{2},n-1}$ e $\chi^2_{1-rac{lpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

•
$$P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2};$$

•
$$P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 - \frac{\alpha}{2};$$

Um IC para σ tem limites inferior e superior que são raízes quadradas dos limites correspondentes no IC para σ^2 .

◆ロ ト ← 回 ト ← 直 ト ← 直 ・ 夕 へ ○ ...

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{\frac{\alpha}{2},n-1}$ e $\chi^2_{1-\frac{\alpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

•
$$P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2};$$

•
$$P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 - \frac{\alpha}{2};$$

Um IC para σ tem limites inferior e superior que são raízes quadradas dos limites correspondentes no IC para σ^2 .

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{\frac{\alpha}{2},n-1}$ e $\chi^2_{1-\frac{\alpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

•
$$P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2}$$
;

•
$$P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 - \frac{\alpha}{2};$$

Um IC para σ tem limites inferior e superior que são raízes quadradas dos limites correspondentes no IC para σ^2 .

4□ > 4□ > 4 = > 4 = > = 90

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{\frac{\alpha}{2},n-1}$ e $\chi^2_{1-\frac{\alpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

- $P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2}$;
- $P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 \frac{\alpha}{2}$;

Se s^2 for a variância amostral de uma amostra aleatória proveniente de uma população normal com variância desconhecida σ^2 , então um IC com $100(1-\alpha)\%$ de confiança para σ^2 é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

em que $\chi^2_{\frac{\alpha}{2},n-1}$ e $\chi^2_{1-\frac{\alpha}{2},n-1}$ são obtidos da tabela da distribuição qui-quadrado com n-1 graus de liberdade de modo que

- $P(X^2 > \chi^2_{\frac{\alpha}{2}, n-1}) = \frac{\alpha}{2};$
- $P(X^2 > \chi^2_{1-\frac{\alpha}{2},n-1}) = 1 \frac{\alpha}{2};$

Um IC para σ tem limites inferior e superior que são raízes quadradas dos limites correspondentes no IC para σ^2 .

18 / 20

Exemplo: A percentagem de titânio em uma liga usada na fabricação de aeronaves é medida em 51 peças selecionadas aleatoriamente. O desvio-padrão amostral é s=0.37.

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

- Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que
 - $\chi^{2}_{\frac{\alpha}{2},n-1} = \chi^{2}_{0.025,50} = 71.42.$
 - $\chi^2_{1-\frac{\alpha}{2},n-1} = \chi^2_{0.975,50} = 32.36$
- ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, e

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^{\alpha}_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^{2}_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$$

$$\chi^2_{1-\frac{\alpha}{2},n-1} = \chi^2_{0.975,50} = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, e

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$$

$$\chi_{1-\frac{\alpha}{2},n-1}^2 = \chi_{0.975,50}^2 = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi^{2}_{\frac{\alpha}{2},n-1} = \chi^{2}_{0.025,50} = 71.42.$$

$$\chi^{2}_{1-\alpha} = \chi^{2}_{0.075,50} = 32.3$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$$

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.075,50}^2 = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$$

$$\chi_{1-\frac{\alpha}{2},n-1}^2 = \chi_{0.975,50}^2 = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$$

$$\chi_{1-\frac{\alpha}{2},n-1}^2 = \chi_{0.975,50}^2 = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confianca, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

• Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 - \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que

$$\chi^2_{\frac{\alpha}{2},n-1} = \chi^2_{0.025,50} = 71.42.$$

$$\chi_{1-\frac{\alpha}{2},n-1}^{2} = \chi_{0.975,50}^{2} = 32.36$$

ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confianca, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

- Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que
 - $\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.025,50}^2 = 71.42.$
 - $\chi_{1-\frac{\alpha}{2},n-1}^{2} = \chi_{0.975,50}^{2} = 32.36$
- ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confianca, é

ullet Sol.: Sabemos que o IC para σ^2 com 100(1-lpha)% de coeficiente de confiança é

$$\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

- Temos que $s^2 = (0.37)^2$, n = 51 e $100(1 \alpha)\% = 95\%$. Logo, temos ainda $\alpha = 5\%$. Além disso, temos que
 - $\chi^2_{\frac{\alpha}{2},n-1} = \chi^2_{0.025,50} = 71.42.$
 - $\chi^2_{1-\frac{\alpha}{2},n-1} = \chi^2_{0.975,50} = 32.36$
- ullet Dessa forma, temos que o IC para σ^2 , 95% de confiança, é

$$\left[\frac{50(0.37)^2}{71.42}, \frac{50(0.37)^2}{32.36}\right] \approx [0.095841, 0.211526]$$

Portanto, um IC para σ , com 95% de confiança, é

$$[\sqrt{0.095841}, \sqrt{0.211526}] \approx [0.31, 0.46].$$

Chi-Square Distribution Table

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215