

Modul 8: Learning

02 Intro to Supervised Learning

Inteligensi Buatan (Artificial Intelligence)

KK IF – Teknik Informatika – STEI

Supervised Learning: Feedback I/O Pairs

Case	Age	Prescription	Astigmatism	Tear Production	Lens
1	young	myope	not astigmatic	reduced	none
2	young	myope	not a stigmatic	normal	soft
3	young	myope	astigmatic	reduced	none
4	young	myope	astigmatic	normal	hard
5	young	hypermetrope	not astigmatic	reduced	n one
6	young	hypermetrope	not a stigmatic	normal	soft
7	young	hypermetrope	a <i>s</i> tigmatic	reduced	none
8	young	hypermetrope	a <i>s</i> tigmatic	normal	hard
g	pre-presbyopic	myope	not a stig matic	reduced	√∫none
10	pre-presby opic	myope	not astigmatic	normal	soft
11	pre-presbyopic	myope	astigmatic	reduced	none
12	pre-presbyopic	myope	astigmatic	normal	hard
13	pre-pre-sby opic	hypermetrope	not astigmatic	reduced	none
14	pre-presbyopic	hypermetrope	not astigmatic	normal	soft
15	pre-presbyopic	hypermetrope	astigmatic	reduced	n one
16	pre-presby opic	hypermetrope	astigmatic	normal	none
17	presbyopic	myope	not astigmatic	reduced	none
18	presbyopic	myope	not astigmatic	normal	none
19	presbyopic	myope	astigmatic	reduced	none
20	presby opic	myope	astigmatic	normal	hard
21	presbyopic	hypermetrope	not astigmatic	reduced	n one
22	presbyopic	hypermetrope	not a stig matic	n ormal	soft
23	presbyopic	hypermetrope	astigmatic	reduced	none
24	presbyopic	hypermetrope	astigmatic	normal	none

agent aton menean hampiran output davi anta ya ada tem hisa aja ada info ya ga ada di data.

Supervised Learning

Learning a (possibly incorrect) general function from specific input-output pairs is called inductive learning —) helum tenth behar (dr khunu te umum)

Target function f: data 2 label

Classification: domain (label) is

a finite set of values

Regression: domain (label) is numeric (continuous value)

Fish Packing Plant

 Fish packing plant wants to automate the process of sorting incoming fish on a conveyor belt according to species.

- A: Conveyor belt for fish
- B: Conveyor belt for classified fish
- C : Robot arm for grabbing fish
- D: Machine vision system with CCD camera
- E : Computer that analyze fish image and control the robot arm

Dataset Construction

EDUNEX I

Duda dkk, 2001

Fish features

- Piksel
- Descriptor based on : color, shape, textures

Find physical differences between the two types of fish:

- Length
- Lightness
- Width
- Number and shape of fins
- Position of the mouth,

Tentative Model: Length Feature

Suppose somebody at the fish plant tells us that a sea bass is generally

longer than a salmon.

From histograms, sea bass are longer than salmon, on average, but it is clear that this single criterion is quite poor;

No matter how we choose I*, we cannot reliably separate sea bass from salmon by length alone.

The value I* marked will lead to the smallest number of errors, on average.

Tentative Model: Lightness Feature

Misclassification

salmon in "sea bass" cans vs sea bass in "salmon" cans?

Tentative Model: Lightness and Width Feature

Rule based on 2 Features

Y=a*width+b*lightness+c

Given decision boundary, the following rule for separating the fish: Classify the fish as sea bass if its feature vector falls above the decision boundary shown, and as salmon

Tentative Complex Model: Training Accuracy 100%

Optimal Model: Better Generalization

The decision boundary shown might represent the optimal tradeoff between performance on the training set and simplicity of classifier.

Modeling using Supervised Learning

(b) Conveyor belt (Salmon)

(c)

(b)

(conveyor belt (Salmon)

(b)

(conveyor belt (Sea Bass)

Automated Fish Classification System

EDUNEX I

Summary

Supervised learning: inductive learning, find hypothesis

Classification vs regression

Hypothesis to predict unseen data

Fish packing plant: case study

Intro to Data Science

Tentukan apakah pernyataan berikut benar atau salah; dan jika salah tuliskan pemyataan yang seharusnya. a. Pembelajaran induktif adalah proses pembelajaran yang menerima pasangan input dan output untuk

b. Hasil pembelajaran induktif yang menghasilkan klasifikasi sempurna untuk data training pasti memberikan 5 bolum tentu. hasil klasifikasi sempurna juga untuk prediksi 'unseen data'.

dommin continu, or terboates munatin ndak Cembuma

a. Terdapat hasil suatu algoritme pembelajaran induktif yang berupa formula batas keputusan (decision boundary). Jika hasil penerapan formula pada suatu data bernilai >= 0.5, maka data tersebut diberi label 1 yang menyatakan hate speech i jika bernilal < 0.5 maka data tersebut diberi label -1 yang menyatakan bukan

b. Hasil algoritme pembelajaran digunakan untuk memprediksi fluktuasi harga masker berdasarkan sejumlah atribut/ fitur yang berkaltan dengan tingkat viralitas penyakit Covid-19. Hubungan antara atribut/ fitur tersebut

c. Sebuah algoritme pembelajaran menerima ulasan mengeriai suatu produk, dan dipelajari untuk menentukan rating (1, 2, 3, 4, atau 5) dari aspek tertentu pada produk tersebut.

4 rahmanya CHIMONY

FIMIPIEMI

