高性能计算系统期末考试

2021 年春季

2021年6月11日

- 1. 启动 MPI 程序时系统自动生成的是 1 维进程,如果采用 2 维方式表示进程,使得每个进程有一个行和一个列通讯子,则:
 - (a) 设 2 维进程网格为 $p \times q$,请写出一个子程序或函数生成行和列通讯子;
 - (b) 设 $A = (a_{ij})$ 是 $m \times n$ 阶单精度实数矩阵,并且 $a_{ij} = i + j$ 。进一步假设 A 是按卷帘方式存放 在 $p \times q$ 网格进程中,记在进程 P_{st} 上对应的矩阵亦为 $A = (a_{kl})$,请计算进程 P_{st} 上 a_{kl} 之值;
 - (c) 如果只使用每个进程所拥有的行和列通讯子,请用程序片段实现将 P_{00} 的数据 A 广播给 $p \times q$ 网格的所有进程。
- 2. 分块矩阵

$$A = \begin{pmatrix} A_{00} & A_{01} & \dots & \dots \\ A_{10} & A_{11} & \dots & \dots \\ A_{20} & A_{21} & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

其中 A_{ij} 是 $m \times m$ 阶矩阵,

- (a) 请写出构造一个数据类型的子程序,使得新数据类型可以发送和接收小块矩阵 A_{00} ,并且也可以一次性发送和接收 A_{00} 和 A_{20} ;
- (b) 如果只是发送 A_{00} 和 A_{20} ,是否还有其他构造数据类型的方法?如果有怎么构造?
- 3. 设结构 {int m[3]; float a[2]; char c[5];} 定义的数组为 x[10], 如果将进程 0 中数组 x 的 前 5 个元素发送给进程 1, 请出相应的程序片段。
- 4. 使用 MPI_Send 和 MPI_Recv 或者 MPI_Sendrecv 实现 MPI_Allgather,
 - (a) 请给出一个如何实现的方法;
 - (b) 使用上述方法写出实现 MPI_Allgather 的函数或子程序。