DIGITAL CIRCUITS

Week-12, Lecture-1 Sequential Circuits

Sneh Saurabh 30th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Registers and Counters

Binary Counter with Parallel Load: Operation

 Parallel Load: used for transferring an initial binary number into the counter prior to the count operation.

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

- When Clear = 0, the counter is cleared regardless of the presence other inputs (it is asynchronous)
- When *Load* = 1, data from *Data_in* is transferred to *A_count*
- When Count = 1, circuit behaves as counter
- If both control inputs are 0, clock pulses do not change the state of the register.

Binary Counter with Parallel Load: Implementation

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	1	1	X	Load inputs
1	1	0	1	Count next binary state
1	1	0	0	No change

- The carry output becomes a 1 if all the flip-flops are equal to 1 while the count input is enabled.
- This is the condition for complementing the flip-flop that holds the next significant bit.
- The carry output is useful for expanding the counter to more than four bits.

Binary Counter with Parallel Load: Application

Problem:

Implement a *BCD counter* by modifying the counter with a parallel load shown alongside.

BCD Counter: counts from 0000 to 1001 and then back to 0000.

- When the output reaches the count of 1001, both A0 and A3 become 1, making the output of the AND gate equal to 1.
- This condition activates loads 0000 on the next clock edge

Ring Counter: Functionality

- A ring counter is a circular shift register with only one flip-flop being set at any particular time; all others are cleared.
- The single bit is shifted from one flip-flop to the next to produce the sequence of timing signals.

■ For a four-bit ring counter, the states would be 1000, 0100, 0010 and 0001.

Ring Counter: Four bit

 Modulus of a counter: Number of the states that the counter counts before repeating itself

 Ring counter: Can be used to implement counter of any modulus

Ring Counter: Using decoder

Johnson Counter: Functionality

Ring Counter:

- N-flip flops have N states (mod N counter)
- For a four-bit ring counter, the states would be 1000, 0100, 0010 and 0001.

Johnson Counter:

- N-flip flops have 2N states (mod 2N counter)
- Obtained by switch-tail ring counter configuration
- Shift register with the complemented output of the last flip-flop connected to the input of the first flip-flop
- For four flip-flop Johnson counter there will be eight states

Johnson Counter: Four bits

 Each gate is enabled during one particular state sequence

Sequence number	Flip-flop outputs				AND gate required
	A	В	C	E	for output
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	0	1	1	B'C
8	0	0	0	1	C'E

 An N-bit Johnson counter can be used to provide outputs for 2N timing signal (using 2N decoding gates)

Johnson Counter: Problem-1

Problem:

Starting with the state {0,0,0} at 0th clock cycle, find the states in subsequent clock cycles.

QC
0
0
0
1
1
1
0
0
0
1
1
1
0

Johnson Counter: Frequency divider

QA	QB	QC
0	0	0
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	0	0
1	0	0
1	1	0
1	1	1
0	1	1
0	0	1
0	0	0
		13