Serie 8 Problemi ai limiti e ai valori iniziali

©2021 - Questo testo (compresi i quesiti ed il loro svolgimento) è coperto da diritto d'autore. Non può essere sfruttato a fini commerciali o di pubblicazione editoriale. Non possono essere ricavati lavori derivati. Ogni abuso sarà punito a termine di legge dal titolare del diritto. This text is licensed to the public under the Creative Commons Attribution-NonCommercial-NoDerivs2.5 License (http://creativecommons.org/licenses/by-nc-nd/2.5/)

1 Differenze finite per problemi ai limiti

Consideriamo il seguente problema ai limiti di diffusione (problema di Poisson monodimensionale) con condizioni al contorno di Dirichlet:

$$\begin{cases}
-\mu u''(x) = f(x) & x \in (a, b), \\
u(a) = \alpha, & \\
u(b) = \beta,
\end{cases}$$
(1)

dove $\Omega = (a,b) \subset \mathbb{R}$, $\mu \in \mathbb{R}$, $\mu > 0$, $\alpha, \beta \in \mathbb{R}$. Consideriamo inoltre il seguente problema ai limiti di diffusione—reazione con condizioni al contorno di Dirichlet:

$$\begin{cases}
-\mu u''(x) + \sigma(x) u(x) = f(x) & x \in (a, b), \\
u(a) = \alpha, \\
u(b) = \beta,
\end{cases} \tag{2}$$

dove $\sigma(x) \ge 0$ per ogni $x \in (a, b)$.

Consideriamo l'approssimazione numerica dei precedenti problemi usando il metodo delle differenze finite centrate. A questo scopo, partizioniamo l'intervallo [a,b] in N+1 sottointervalli di uguale ampiezza $h=\frac{b-a}{N+1}$ delimitati da N+2 nodi $x_j=a+j\,h$ per $j=0,1,\ldots,N,N+1$. Ricordiamo che l'approssimazione di u''(x) nel nodo x_j secondo le differenze finite centrate si scrive come:

$$u''(x_j) \simeq \frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2}$$
 per $j = 1, 2, \dots, N$.

Tale approssimazione dà luogo a un sistema lineare nella forma:

$$\widetilde{A}\widetilde{\mathbf{u}}_h = \widetilde{\mathbf{b}},$$

dove $\widetilde{A} \in \mathbb{R}^{(N+2)\times(N+2)}$, $\widetilde{\mathbf{u}}_h$, $\widetilde{\mathbf{b}} \in \mathbb{R}^{N+2}$, essendo $\widetilde{\mathbf{u}}_h = (u_0, u_1, \dots, u_N, u_{N+1})^T$, con u_j l'approssimazione di $u(x_j)$. Sfruttando il fatto che il problema ai limiti prevede condizioni al contorno di Dirichlet, si può scrivere un sistema lineare in forma condensata:

$$A\mathbf{u}_h = \mathbf{b},\tag{3}$$

dove $A \in \mathbb{R}^{N \times N}$, $\mathbf{u}_h, \mathbf{b} \in \mathbb{R}^N$, essendo $\mathbf{u}_h = (u_1, \dots, u_N)^T$.

Esercizio 1.1

Si considerino per il problema di diffusione (1) i seguenti dati: $a=0, b=1, \alpha=1, \beta=-2, \mu=1$ e $f(x)=e^{3x} \left(-4+3x+9x^2\right)$. La soluzione esatta (analitica) del problema è:

$$u_{ex}(x) = e^{3x}(x - x^2) + 1 - 3x.$$

- 1. Si verifichi che $u_{ex}(x)$ è la soluzione esatta del problema di diffusione con i dati indicati.
- 2. Si ricavino le espressioni generali della matrice A e del vettore \mathbf{b} che compaiono nel sistema lineare condensato (6) e ottenuto mediante approssimazione con le differenze finite centrate.
- 3. Si scriva uno script o funzione Matlab® per risolvere il problema ai limiti ponendo (N+1)=20. Confrontare in un grafico la soluzione approssimata con quella esatta u_{ex} .
- 4. Si risolva ora il problema per $(N+1)=10,20,40,80,\ldots,160$. Si rappresenti graficamente, in funzione di h, l'andamento dell'errore

$$e_h = \max_{j=0,\dots,N+1} |u_{ex}(x_j) - u_j|. \tag{4}$$

Si confronti il risultato ottenuto con quanto previsto dalla teoria.

5. Come varia il numero di condizionamento $K_2(A)$ per $(N+1)=10,20,40,80,\ldots,160,$ ovvero per $h\to 0$? Con quale metodo numerico è computazionalmente conveniente risolvere il sistema lineare condensato (6)? Posto (N+1)=160, come si confronta l'errore computazionale associato alla soluzione del sistema lineare tramite metodo diretto con l'errore di troncamento e_h (7) associato allo schema alle differenze finite?

Esercizio 1.2

Si considerino per il problema di diffusione–reazione (2) i seguenti dati: $a=0, b=1, \alpha=1, \beta=e^3, \mu=1, \sigma(x)=1+\sin(2\pi x)$ e $f(x)=e^{3x}$ ($\sin(2\pi x)-8$). La soluzione esatta (analitica) del problema è:

$$u_{ex}(x) = e^{3x}.$$

- 1. Si verifichi che $u_{ex}(x)$ è la soluzione esatta del problema di diffusione—reazione con i dati indicati.
- 2. Si ricavino le espressioni generali della matrice A e del vettore \mathbf{b} che compaiono nel sistema lineare condensato (6) e ottenuto mediante approssimazione con le differenze finite centrate.
- 3. Si scriva uno script o funzione Matlab[®] per risolvere il problema ai limiti ponendo (N+1)=20. Confrontare in un grafico la soluzione approssimata con quella esatta u_{ex} .
- 4. Si risolva ora il problema per $h = 0.04, 0.02, 0.01, \dots, 0.0025$. Si rappresenti graficamente, in funzione di h, l'andamento dell'errore e_h (7). Si confronti il risultato ottenuto con quanto previsto dalla teoria.

Esercizio 1.3

Lo spostamento verticale u(x) di un filo elastico può essere descritto tramite il problema di diffusione (1), dove μ è la costante elastica e f(x) la forza verticale per unità di lunghezza del filo. La deformazione del filo elastico è $\varepsilon(x) = u'(x)$, mentre lo sforzo $\sigma(x) = \mu \varepsilon(x) = \mu u'(x)$. Per il filo elastico con spostamento imposto ai bordi (condizioni di Dirichlet), è dunque possibile determinare le reazioni vincolari $q_a = -\sigma(a)$ e $q_b = +\sigma(b)$, rispettivamente in x = a e x = b, che garantiscono l'equilibrio statico del filo; infatti:

$$\int_{a}^{b} f(x) dx = -\int_{a}^{b} (\mu u'(x))' dx = -\int_{a}^{b} \sigma'(x) dx = -(q_b + q_a).$$

Si pongano $a=0,\,b=1,\,\alpha=\beta=0$ e $\mu=1.$

- 1. Posto $f(x) = -\sin\left(\frac{\pi}{2}x\right)$, si approssimi il problema tramite lo schema alle differenze finite centrate con un passo h = 0.05 e si rappresenti la soluzione approssimata. Inoltre, si determini opportunamente lo sforzo approssimato $\sigma(x)$ e si determinio i valori delle reazioni vincolari q_a e q_b .
- 2. Si ripeta il punto 1) con f(x) = -(2x-1) $H\left(x-\frac{1}{2}\right)$, dove H(x) è la funzione scalino (funzione Heaviside) tale che $H(x) = \left\{ \begin{array}{ll} 0 & \text{se } x < 0 \\ 1 & \text{se } x \geq 0 \end{array} \right.$

2 Problemi di diffusione e trasporto

Consideriamo il seguente problema ai limiti di diffusione—trasporto con condizioni al contorno di Dirichlet:

$$\begin{cases}
-\mu u''(x) + \eta u'(x) = f(x) & x \in (a, b), \\
u(a) = \alpha, \\
u(b) = \beta,
\end{cases} (5)$$

dove $\Omega = (a, b) \subset \mathbb{R}, \, \mu \in \mathbb{R}, \, \mu > 0, \, \eta \in \mathbb{R}, \, \alpha, \, \beta \in \mathbb{R}.$

Consideriamo l'approssimazione numerica del precedente problema usando il metodo delle differenze finite centrate. A questo scopo, partizioniamo l'intervallo [a,b] in N+1 sottointervalli di uguale ampiezza $h=\frac{b-a}{N+1}$ delimitati da N+2 nodi $x_j=a+j\,h$ per $j=0,1,\ldots,N,N+1$. Ricordiamo che l'approssimazione di u''(x) nel nodo x_j secondo le differenze finite centrate si scrive come:

$$u''(x_j) \simeq \frac{u(x_{j+1}) - 2u(x_j) + u(x_{j-1})}{h^2}$$
 per $j = 1, 2, \dots, N$,

mentre l'approssimazione u'(x) nel nodo x_i secondo le differenze finite centrate è:

$$u'(x_j) \simeq \frac{u(x_{j+1}) - u(x_{j-1})}{2h}$$
 per $j = 1, 2, ..., N$.

Tale approssimazione dà luogo a un sistema lineare nella forma:

$$\widetilde{A}\widetilde{\mathbf{u}}_h = \widetilde{\mathbf{b}},$$

dove $\widetilde{A} \in \mathbb{R}^{(N+2)\times(N+2)}$, $\widetilde{\mathbf{u}}_h$, $\widetilde{\mathbf{b}} \in \mathbb{R}^{N+2}$, essendo $\widetilde{\mathbf{u}}_h = (u_0, u_1, \dots, u_N, u_{N+1})^T$, con u_j l'approssimazione di $u(x_j)$. Sfruttando il fatto che il problema ai limiti prevede condizioni al contorno di Dirichlet, si può scrivere un sistema lineare in forma condensata:

$$A\mathbf{u}_h = \mathbf{b},\tag{6}$$

dove $A \in \mathbb{R}^{N \times N}$, $\mathbf{u}_h, \mathbf{b} \in \mathbb{R}^N$, essendo $\mathbf{u}_h = (u_1, \dots, u_N)^T$.

Esercizio 2.1

Si considerino per il problema di diffusione (5) i seguenti dati: $a=0, b=1, \alpha=0, \beta=1$ e $f(x)=0; \mu, \eta \in \mathbb{R}$. La soluzione esatta (analitica) del problema è:

$$u_{ex}(x) = \frac{e^{\eta/\mu x} - 1}{e^{\eta/\mu} - 1}.$$

- 1. Si verifichi che $u_{ex}(x)$ è la soluzione esatta del problema di diffusione—trasporto con i dati indicati e per ogni $\mu, \eta \in \mathbb{R}$.
- 2. Si ricavino le espressioni generali della matrice A e del vettore \mathbf{b} che compaiono nel sistema lineare condensato (6) e ottenuto mediante approssimazione con le differenze finite centrate.
- 3. Si scriva uno script o funzione Matlab® per risolvere il problema ai limiti ponendo $\mu = 1, \eta = 1, (N+1) = 20$. Confrontare in un grafico la soluzione approssimata con quella esatta u_{ex} .
- 4. Posto ora $\mu = 10^{-2}$, si ripeta il punto 3). Si commenti il risultato ottenuto. Come è possibile garantire l'assenza di oscillazioni numeriche con lo schema alle differenze finite centrate agendo sul valore di h?
- 5. Si risolva ora il problema con i dati di cui al punto 4) per (N+1) = 30, 60, 120, 240, 480. Si rappresenti graficamente, in funzione di h, l'andamento dell'errore

$$e_h = \max_{j=0,\dots,N+1} |u_{ex}(x_j) - u_j|. \tag{7}$$

Si confronti il risultato ottenuto con quanto previsto dalla teoria.

6. Si ricavino le espressioni generali della matrice A e del vettore \mathbf{b} che compaiono nel sistema lineare condensato (6) considerando l'uso della tecnica *upwind*. Per il caso $\eta > 0$, ciò corrisponde ad approssimare $u'(x_j)$ tramite le differenze finite all'indietro, ovvero:

$$u'(x_j) \simeq \frac{u(x_j) - u(x_{j-1})}{h}$$
 per $j = 1, 2, \dots, N$.

Se invece $\eta < 0$, ciò corrisponde ad approssimare $u'(x_j)$ tramite le differenze finite in avanti, ovvero:

$$u'(x_j) \simeq \frac{u(x_{j+1}) - u(x_j)}{h}$$
 per $j = 1, 2, \dots, N$.

Si mostri che tale tecnica coincide con l'uso delle differenze finite centrate con viscosità artificiale $\mu_h = \mu \ (1 + \mathbb{P}e_h)$, dove $\mathbb{P}e_h = \frac{|\eta| h}{2\mu}$ è il numero di Péclet locale.

7. Si ripetano i punti 4) e 5) tramite l'uso della tecnica di upwind.

3 Differenze finite per problemi ai limiti con condizioni al contorno miste

Consideriamo il seguente problema ai limiti di diffusione—trasporto—reazione con condizioni al contorno miste di Dirichlet—Neumann:

$$\begin{cases}
-\mu u''(x) + \eta u'(x) + \sigma(x) u(x) = f(x) & x \in (a, b), \\
u(a) = \alpha, \\
\mu u'(b) = \gamma,
\end{cases}$$
(8)

dove $\Omega = (a, b) \subset \mathbb{R}, \ \mu \in \mathbb{R}, \ \mu > 0, \ \eta \in \mathbb{R}, \ \sigma(x) \ge 0, \ \alpha, \ \gamma \in \mathbb{R}.$

Consideriamo l'approssimazione numerica del precedente problema usando il metodo delle differenze finite centrate. A questo scopo, partizioniamo l'intervallo [a,b] in N+1 sottointervalli di uguale ampiezza $h=\frac{b-a}{N+1}$ delimitati da N+2 nodi $x_j=a+j\,h$ per $j=0,1,\ldots,N,N+1$. Ricordiamo che il valore $u(x_{N+1})$ è incognito. La condizione di Neumann in x=b richiede un'approssimazione del tipo:

$$u'(x_{N+1}) \simeq \frac{u(x_{N+1}) - u(x_N)}{h},$$
 (9)

usando le differenze finite all'indietro (uno schema accurato di ordine 1). È possibile usare in alternativa il seguente schema accurato di ordine 2:

$$u'(x_{N+1}) \simeq \frac{3u(x_{N+1}) - 4u(x_N) + u(x_{N-1})}{2h}.$$
 (10)

Tali approssimazioni danno luogo a un sistema lineare nella forma:

$$\widetilde{A}\widetilde{\mathbf{u}}_h = \widetilde{\mathbf{b}},$$

dove $\widetilde{A} \in \mathbb{R}^{(N+2)\times(N+2)}$, $\widetilde{\mathbf{u}}_h$, $\widetilde{\mathbf{b}} \in \mathbb{R}^{N+2}$, essendo $\widetilde{\mathbf{u}}_h = (u_0, u_1, \dots, u_N, u_{N+1})^T$, con u_j l'approssimazione di $u(x_j)$. Sfruttando il fatto che il problema ai limiti prevede una condizione al contorno di Dirichlet per x = a, si può scrivere un sistema lineare in forma condensata:

$$A\mathbf{u}_h = \mathbf{b},\tag{11}$$

dove $A \in \mathbb{R}^{(N+1)\times(N+1)}$, $\mathbf{u}_h, \mathbf{b} \in \mathbb{R}^{N+1}$, essendo $\mathbf{u}_h = (u_1, \dots, u_N, u_{N+1})^T$.

Esercizio 3.1

Si consideri il problema (8) con condizioni al contorno miste e con i seguenti dati: $\mu = 1$, $\eta = \sigma = 0$, $f(x) = e^{3x} \left(-4 + 3x + 9x^2\right)$, a = 0, b = 1, $\alpha = 1$, e $\gamma = -e^3$. La soluzione esatta del problema è:

$$u_{ex}(x) = e^{3x}(x - x^2) + 1.$$

- 1. Si verifichi che $u_{ex}(x)$ è la soluzione esatta del problema con i dati indicati.
- 2. Si ricavino le espressioni generali della matrice A e del vettore \mathbf{b} che compaiono nel sistema lineare condensato (11) ottenuto mediante approssimazione con le differenze finite centrate e lo schema (9) per l'approssimazione di $u'(x_{N+1})$.

- 3. Si scriva uno script o funzione Matlab® per risolvere il problema ai limiti di cui al punto 2) con (N+1)=100. Confrontare in un grafico la soluzione approssimata con quella esatta u_{ex} .
- 4. Si risolva ora il problema con lo schema di cui al punto 2) per (N+1) = 50, 100, 200, 400, 800. Si rappresenti graficamente, in funzione di h, l'andamento dell'errore (7). Si confronti il risultato ottenuto con quanto previsto dalla teoria.
- 5. Si ripetano i punti 2), 3) e 4) usando ora lo schema (10) per l'approssimazione di $u'(x_{N+1})$.

Esercizio 3.2

Si consideri ora il seguente problema con condizioni miste di Neumann-Dirichlet:

$$\begin{cases} -\mu u''(x) + \eta u'(x) + \sigma(x) u(x) = f(x) & x \in (a, b), \\ \mu u'(a) = \delta, \\ u(b) = \beta, \end{cases}$$

dove β , $\delta \in \mathbb{R}$. Osserviamo che il valore $u(x_0)$ è incognito. La condizione di Neumann in x = a richiede un'approssimazione tramite differenze finite in avanti:

$$u'(x_0) \simeq \frac{u(x_1) - u(x_0)}{h},$$

oppure, in alternativa, possiamo usare uno schema accurato di ordine 2:

$$u'(x_0) \simeq \frac{-3u(x_0) + 4u(x_1) - u(x_2)}{2h}.$$

Si ripeta l'Esercizio 3.1 con $\mu = \frac{1}{2}$, $\eta = 2$, $\sigma(x) = x$, $f(x) = 2e^{2x} + x(e^{2x} - 1)$, a = 0, b = 1, $\beta = e^2 - 1$ e $\delta = 1$. La soluzione esatta è $u_{ex}(x) = e^{2x} - 1$.

4 Differenze finite per il problema di Poisson in 2D

Si consideri il seguente problema di Poisson con condizioni di Dirichlet in 2D:

$$\begin{cases} -\mu \, \Delta u(\mathbf{x}) = f(\mathbf{x}) & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}) & \mathbf{x} \in \partial \Omega, \end{cases}$$
(12)

dove $\mathbf{x} = (x,y) \in \mathbb{R}^2$, $\Omega \subset \mathbb{R}^2$ e $\partial \Omega$ è il suo bordo, $f(\mathbf{x})$ è la forzante assegnata e $g(\mathbf{x})$ è il dato di Dirichlet; $\mu \in \mathbb{R}$ con $\mu > 0$. Ricordiamo che $\Delta = \nabla^2$ è l'operatore differenziale Laplaciano del secondo ordine, ovvero tale che

$$\Delta u = \frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y).$$

Il modello matematico può essere usato ad esempio per rappresentare lo spostamento verticale u di una membrana elastica in Ω con spostamento g imposto al bordo $\partial\Omega$ (dato di Dirichlet) e soggetta a una forza per unità di area f agente in Ω .

Se $\Omega = (a,b) \times (c,d)$ è un rettangolo, l'approssimazione del problema (12) può essere realizzata tramite uno schema alle differenze finite centrate, detto schema a cinque punti. Partizioniamo [a,b] in $N_x + 1$ sottointervalli di ampiezza h_x , delimitati dai nodi $\{x_i\}_{i=0}^{N_x+1}$; in maniera simile, partizioniamo [c,d] in N_y+1 sottointervalli di ampiezza h_y , delimitati dai nodi $\{y_j\}_{j=0}^{N_y+1}$. Otteniamo dunque una griglia computazionale $\mathcal{T}_h = \{x_0, x_1, \dots, x_{N_x}, x_{N_x+1}\} \times \{y_0, y_1, \dots, y_{N_y}, y_{N_y+1}\}$, con elementi di ampiezza caratteristica $h = \max\{h_x, h_y\}$. Indichiamo il generico nodo $\mathbf{x}_{i,j} = (x_i, y_j)$, da cui l'approssimazione con le differenze finite centrate di $\Delta u(\mathbf{x}_{i,j})$ è:

$$\Delta u(\mathbf{x}_{i,j}) \approx \frac{u(x_{i-1},y_j) - 2u(x_i,y_j) + u(x_{i+1},y_j)}{h_x^2} + \frac{u(x_i,y_{j-1}) - 2u(x_i,y_j) + u(x_i,y_{j+1})}{h_y^2} \quad \text{per } i = 1,\dots,N_x, \quad j = i = 1,\dots,N_y.$$

Ciò porta allo schema a cinque punti seguente, dove $u_{i,j}$ rappresenta l'approssimazione di $u(x_i, y_j)$:

$$\begin{cases}
-\mu \left[\frac{u_{i-1,j} - 2u_{i,j}u_{i+1,j}}{h_x^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h_y^2} \right] = f(x_i, y_j) & i = 1, \dots, N_x, \ j = 1, \dots, N_y, \\
u_{i,j} = g(x_i, y_j) & i = 0, \dots, N_x + 1, \ j = 0, \\
i = 0, \dots, N_x + 1, \ j = N_y + 1, \\
i = 0, \ j = 1, \dots, N_y, \\
i = N_x + 1, \ j = 1, \dots, N_y.
\end{cases}$$

Lo schema numerico è accurato di ordine 2, se $u \in C^4(\overline{\Omega})$.

Il metodo è implementato nella funzione Matlab[®] Poisson_Dirichlet_diff_finite_5punti.m, che può essere chiamata come segue:

La funzione prende in ingresso: $\mu \in \mathbb{R}$; la forzante definita come anonymous function (si noti che f(x,y) è una funzione di due variabili); il dato al bordo di Dirichlet definito come anonymous function (si noti che g(x,y) è una funzione di due variabili); il dominio computazionale Ω passato come un vettore di quattro elementi contente gli estremi del dominio: Omega = [a, b, c, d]; ampiezza degli intervalli equispaziati lungo x ed y (h_x e h_y). La funzione restituisce: matrici contenenti i nodi della griglia computazionale (X, Y); una matrice U contenente la soluzione approssimata u nei nodi della griglia.

Esercizio 4.1

Si consideri il problema di Poisson (12) con $\Omega=(0,1)^2,\,\mu=1,\,f(x,y)=5\pi^2\,\sin(\pi x)\,\sin(2\pi y)$ e g=0.

1. Si mostri che $u_{ex}(x,y) = \sin(\pi x) \sin(2\pi y)$ è la soluzione esatta del problema di Poisson (12).

- 2. Si rappresenti in Matlab[®] la soluzione esatta del problema (si utilizzi opportunamente il comando surf) su una griglia con $h_x = h_y = 0.1$.
- 3. Si approssimi il problema di Poisson (12) con i dati precedenti tramite lo schema alle differenze finite centrate a cinque punti. In particolare, si utilizzi la funzione Matlab[®] Poisson-Dirichlet-diff_finite_5punti.m con $h = h_x = h_y = 0.1$. Si rappresenti la soluzione approssimata ottenuta.
- 4. Si risolva ora il problema con lo schema al punto 3) per

$$h = h_x = h_y = 0.1, 0.05, 0.025, 0.0125, 0.00625.$$

Si rappresenti graficamente, in funzione di $h = h_x = h_y$, l'andamento dell'errore:

$$e_h = \max_{i,j} |u(x_i, y_j) - u_{ij}|.$$

Si confronti il risultato ottenuto con quanto previsto dalla teoria.

5 Differenze finite e θ -metodo per l'equazione del calore

Si consideri l'equazione del calore:

$$\begin{cases} \frac{\partial}{\partial t}u(x,t) - \mu \frac{\partial^2}{\partial x^2}u(x,t) = f(x,t) & x \in (a,b), \ t \in (0,T], \\ u(x,0) = g_0(x) & x \in [a,b], \\ u(a,t) = u_s(t), \ u(b,t) = u_d(t) & t \in (0,T]. \end{cases}$$
(13)

Per la discretizzazione della derivata spaziale è possibile utilizzare le differenze finite centrate come nel caso del problema stazionario. Partizioniamo l'intervallo [a,b] in N+1 sottointervalli di ampiezza $h=\frac{b-a}{N+1}$ tramite i nodi $x_0=a,x_1,\ldots,x_N,x_{N+1}=b$. Indicando con $u_i(t)$ l'approssimazione di $u(x_i,t)$ e con $f_i(t)=f(x_i,t)$, si ottiene il sistema di equazioni differenziali ordinarie del primo ordine:

$$\begin{cases} \frac{d}{dt}\mathbf{u}(t) + A\mathbf{u}(t) = \mathbf{F}(t) & t \in (0, T], \\ \mathbf{u}(0) = \mathbf{g}_0, \end{cases}$$
 (14)

in cui

$$\mathbf{u}(t) = (u_1(t), u_2(t), \dots, u_N(t))^T \in \mathbb{R}^N,$$

$$\mathbf{g}_0 = (g(x_1), g(x_2), \dots, g(x_N))^T \in \mathbb{R}^N,$$

$$\mathbf{F}(t) = (f_1(t) + (\mu u_s(t))/h^2, f_2(t), \dots, f_{N-1}(t), f_N(t) + (\mu u_d(t))/h^2)^T \in \mathbb{R}^N,$$

e $A \in \mathbb{R}^{N \times N}$ è la matrice ottenuta dalla discretizzazione della derivata seconda come nel problema ai limiti; osserviamo che ci stiamo riferendo al caso del sistema lineare condensato.

Per risolvere (14), è possibile utilizzare un θ -metodo. Fissato un passo di discretizzazione temporale Δt , suddividiamo l'intervallo [0,T] negli istanti $t^{(0)}=0$, $t^{(k)}=k\Delta t$, per k=0

 $0, 1, \ldots, N_t = \frac{T}{\Delta t}$. Indicando con $\mathbf{u}^{(k)}$ l'approssimazione di $\mathbf{u}(t^{(k)})$ e con $\mathbf{F}^{(k)} = \mathbf{F}(t^{(k)})$, si ottiene:

$$\begin{cases} \frac{\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)}}{\Delta t} + A(\theta \mathbf{u}^{(k+1)} + (1-\theta)\mathbf{u}^{(k)}) = \theta \mathbf{F}^{(k+1)} + (1-\theta)\mathbf{F}^{(k)} & k = 0, 1, \dots, N_t - 1, \\ \mathbf{u}^{(0)} = \mathbf{g}_0, & \end{cases}$$

che si può riscrivere in forma compatta come:

$$\begin{cases} A_{\theta} \mathbf{u}^{(k+1)} = \mathbf{b}^{(k+1)} & k = 0, 1, \dots, N_t - 1, \\ \mathbf{u}^{(0)} = \mathbf{g}_0, \end{cases}$$
 (15)

dove:

$$A_{\theta} = (I + \Delta t \theta A),$$

$$\mathbf{b}^{(k+1)} = (I - \Delta t (1 - \theta) A) \mathbf{u}^{(k)} + \Delta t \theta \mathbf{F}^{(k+1)} + \Delta t (1 - \theta) \mathbf{F}^{(k)}.$$

La soluzione numerica si ottiene risolvendo, per ogni $k = 0, \dots, N_t - 1$, il sistema lineare (15).

Esercizio 5.1

Si consideri il problema (13) e si assumano $a=0,\,b=1,\,T=1,\,\mu=1$ e

$$f(x,t) = \left(-\sin(t) + \frac{1}{4}\cos(t)\right)\sin\left(\frac{x}{2}\right),$$

$$u_s(t) = 0, \qquad u_d(t) = \sin\left(\frac{1}{2}\right)\cos(t),$$

$$g_0(x) = \sin\left(\frac{x}{2}\right),$$

così che la soluzione esatta del problema (13) è data da

$$u_{ex}(x,t) = \sin\left(\frac{x}{2}\right)\cos(t).$$

1. Si implementi la function Matlab®

[u, x, t] = EqCalore_DiffFin_Theta(mu, f, a, b, us, ud, g0, T, h, delta_t,
theta)

che risolve il problema con lo il metodo delle differenze finite centrate e il θ -metodo. La funzione prende in input:

- il coefficiente $\mu \in \mathbb{R}$;
- la forzante f(x,t);
- gli estremi a e b dell'intervallo;
- i dati ai limiti $u_s(t)$ e $u_d(t)$;
- il dato iniziale $g_0(x)$;
- il tempo finale T;
- il passo di discretizzazione spaziale h e quello di discretizzazione temporale Δt ;
- il parametro θ del θ -metodo;

- e restituisce la soluzione approssimata u (una matrice), i nodi di discretizzazione spaziale x e gli istanti di discretizzazione temporale t.
- 2. Si risolva il problema (13) con la funzione appena implementata utilizzando il metodo di Eulero implicito ($\theta = 1$), h = 0.01, $\Delta t = 0.1$, e si rappresentino in un grafico la soluzione esatta e la soluzione numerica al tempo finale T.
- 3. Si risolva il problema (13) utilizzando il metodo di Eulero esplicito ($\theta = 0$) prima con h = 0.01 e $\Delta t = 0.1$ e, poi, con h = 0.1 e $\Delta t = 0.001$. Si commenti il risultato ottenuto.
- 4. Indicando con $e_T = \max_{i=0,...,N+1} |u_{ex}(x_i,T) u_i(T)|$ l'errore di discretizzazione al tempo finale T, studiare l'andamento di e_T al variare di Δt per i metodi di Eulero implicito, Eulero esplicito, Crank-Nicolson ($\theta = 1/2$), usando come parametri
 - $h = 0.1, \ \Delta t = 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125$ per Eulero implicito e Crank-Nicolson;
 - $h = 0.1, \Delta t = 0.001, 0.005, 0.00025, 0.000125, 0.00003125$ per Eulero esplicito.