Lecture Module - Numerical Integration and Curve Fitting

ME3001 - Mechanical Engineering Analysis

Mechanical Engineering

Tennessee Technological University

Module 5 - Numerical Integration and Curve Fitting

Module 5 - Numerical Integration and Curve Fitting

- Topic 1 Overview and Motivation
- Topic 2 Linear Regression
- Topic 3 Interpolation and Splines
- Topic 4 Lagrange Polynomials

Topic 1 - Overview and Motivation

- Problem Definition
- Engineering Applications
- •
- •

Problem Definition

What is curve fitting?

- various techniques to fit a curve or function to discrete data
- "Data is often given for discrete values along a continuum. However, you may require estimates at points between the discrete values" -Numerical Methods for Engineers, Chapra and Canale
- additional problem is to find a simpler form of a complicated function by fitting function to data sampled from original function

Problem Definition

Two General Approaches

- 1) Given data with random error, find a single curve that represents the overall trend of the data.
 - "Because any individual data point may be incorrect, we make no effort to intersect every point" Numerical Methods for Engineers, Chapra and Canale
 - Common method is regression (LSR)
- 2) Given data assumed to be precise or specified, find a curve that directly passes through each data point
 - Known as interpolation, extrapolation

Engineering Applications

Example Applications in Engineering

- Calibration Curves, Sensors and Instrumentation
- Table Interpolation, Mechanics, Thermo, Statistics
- Velocity Profile Generation, Dynamics of Machinery, Robotics

Two General Problems

- Trend Analysis predictions from dataset using interpolation polynomial or LSR
- Hypothesis Testing compare predicted to measured data for model performance or selection

Topic 2 - Linear Regression

- Overview
- Fit Criteria
- Linear Least Squares
- MATLAB Example

Overview

Consider fitting a straight line to a dataset

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

with a function

$$y = a_o + a_1$$

A value y can be defined in terms of the function with an error term e

$$y = a_0 + a_1 + e$$

This can be rearranged to show the error as

$$e = v - a_0 - a_1 x$$

The goal is to find the coefficients of a function that minimizes the error

Fit Criteria

To find the coefficents of the fit line, the minimization objective must be considered carefully. You might consider fitting a model that mimizes the error directly, but this will not work. The absolute value approach is also problematic.

To solve these issues, the common technique is to ______ the error.

Linear Least Squares

To fit a straight line to the data, we must find the values a_o and a_1 that minimize the square of the error. First find the partial derivatives of the squared error and set these equal to zero

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = (y_{i} - a_{0} - a_{1}x_{i})^{2}$$

$$\frac{\delta S_{r}}{\delta a_{0}} = -2\Sigma (y_{i} - a_{0} - a_{1}x_{i})$$

$$\frac{\delta S_{r}}{\delta a_{1}} = -2\Sigma [(y_{i} - a_{0} - a_{1}x_{i})x_{i}]$$

$$0 = \sum y_{i} - \sum a_{0} - \sum a_{1}x_{i}$$

$$0 = \sum y_{i}x_{i} - \sum a_{0}x_{i} - \sum a_{i}x_{i}^{2}$$

Linear Least Squares

Use $\Sigma a_0 = na_0$ and the resulting equations can be solved as a linear system in terms of the coefficients a_0 , a_1 , and number of data points n.

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum y_i x_i - \sum a_0 x_i - \sum a_i x_i^2$$

This leads to the standard equations

$$a_{1} = \frac{n\Sigma x_{i}y_{i} - \Sigma x_{i}\Sigma y_{i}}{n\Sigma x_{i}^{2} - (\Sigma x_{i}^{2})}$$
$$a_{0} = \bar{y} - a_{1}\bar{x}$$

This alternate form can be found by multipying by $1=\frac{-1}{-1}$

$$a_{1} = \frac{\sum x_{i} \sum y_{i} - n \sum x_{i} y_{i}}{(\sum x_{i})^{2} - n \sum x_{i}^{2}}$$
$$a_{0} = \frac{\sum x_{i} \sum x_{i} y_{i} - \sum x_{i}^{2} \sum y_{i}}{(\sum x_{i})^{2} - n \sum x_{i}^{2}}$$

This standard technique is built into the MATLAB function *polyfit*. This function can also be used for higher order regression lines.

- % ME3001, TNTech, Tristan Hill, October 29, 2024
- % Curve fitting with Linear Regression
- % this program will
- % 1) generate dataset with random noise
- % 2) find best fit using 'linear least sqaures regression' from eqs in notes
- % 3) find best fit using LSR with MATLAB polyfit() clear; clc; close all

```
% step 1) - generate dataset
m=-3; b=1.5;
error_scale=5;

xdata=-5:.5:5;
n=length(xdata);
ydata=m*xdata+b+rand(1,n)*error_scale;

figure(1); hold on
plot(xdata,ydata,'o')
grid on
```

```
% step 2) - fit line with LSR equations
a1=(n*sum(xdata.*ydata)-sum(xdata)*sum(ydata))/...
    (n*sum(xdata.^2)-sum(xdata.^2))
a0=sum(ydata)/n

% compare with equations from ME3023
a1=(sum(xdata)*sum(ydata)-n*sum(xdata.*ydata))/...
    (sum(xdata)^2-n*sum(xdata.^2))
a0=(sum(xdata)*sum(xdata.*ydata)-sum(xdata.^2)*sum(ydata))/...
    (sum(xdata)^2-n*sum(xdata.^2))
```

```
% compute and plot values on the best fit line
xfit=-5:.1:5;
yfit=a1*xfit+a0;

plot(xfit,yfit,'-')
% step 3) - fit line with LSR in MATLAB
A=polyfit(xdata,ydata,1) % get second the coefficients

pfit=A(2)+A(1)*xfit; % calculate points on curve
plot(xfit,pfit,':g','LineWidth',5)
```

Download linear regression example1.m for the complete program.

Topic 3 - Interpolation and Splines

- Polynomial Interpolation Functions
- Polynomial Splines
- Linear Splines
- Cubic Splines

Polynomial Interpolation Functions Polynomial Splines Linear Splines Cubic Splines

Polynomial Interpolation Functions

Polynomial Interpolation Functions Polynomial Splines Linear Splines Cubic Splines

Polynomial Interpolation Functions

Polynomial Splines

Polynomial Splines

Linear Splines

Fit a spline function consisting of multiple linear functions to a set of data.

- the spline must pass through n data points $(x_i, f_i)_{i=1,2,...,n}$
- n-1 intervals are defined by spline functions $s_i(x)_{i=1,2,\ldots,n-1}$

$$s_i(x) = a_i + b_i(x - x_i)$$

$$a_i = f_i$$

$$b_i = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$$

- the $(x x_i)$ term handles the shift to the i^{th} spline function
- substitute b_i into $s_i(x)$ to get the following description of the spline

$$s_i(x) = f_i + \left(\frac{f_{i+1} - f_i}{x_{i+1} - x_i}\right)(x - x_i)$$

Linear Splines

"Cubic splines are most commonly used in practice"

Fit a spline function consisting of multiple cubic functions to the data

- the spline must pass through n data points $(x_i, f_i)_{i=1,2,...,n}$
- n-1 intervals are defined by spline functions $s_i(x)_{i=1,2,\ldots,n-1}$

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

- coeficients a_i, b_i, c_i, d_i must be found $\implies 4(n-1)$ unknowns
- the slope at each point must match for a smooth spline
- two additional conditions are required due to no slope match at ends

$$2*(n-1) + 2*(n-1) - 2 + 2 = 4(n-1)$$

The functions passes through all the data points

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

$$s_i(x_i) = f_i$$

$$f_i = a_i + b_i (x_i - x_i) + c_i (x_i - x_i)^2 + d_i (x_i - x_i)^3 = a_i$$

The a_i coeficients can be replaced with the function values f_i

$$f_i = a_i$$

$$s_i(x) = f_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Define the *i*th stepsize for convenience

$$h_i = x_{i+1} - x_i$$

The function values are equal at each point

$$f_i + b_i(h_i) + c_i(h_i)^2 + d_i(h_i)^3 = f_{i+1}$$

The slope (first derivative) matches at each point between intervals

$$s'_{i}(x) = b_{i} + 2c_{i}(x - x_{i}) + 3d_{i}(x - x_{i})^{2}$$

$$b_{i} + 2c_{i}(x_{i+1} - x_{i}) + 3d_{i}(x_{i+1} - x_{i})^{2}$$

$$= b_{i+1} + 2c_{i+1}(x_{i+1} - x_{i+1}) + d_{i+1}(x_{i+1} - x_{i+1})$$

$$\implies b_{i} + 2c_{i}h_{i} + 3d_{i}h_{i}^{2} = b_{i+1}$$

The second derivative is also matches at the nodes for a natural spline

$$s_{i}''(x) = 2c_{i} + 6d_{i}(x - x_{i})$$

$$2c_{i} + 6d_{i}h_{i} = 2c_{i+1} + 6d_{i}(x_{i+1} - x_{i+1}) \implies d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}}$$

Substitute d_i and solve for b_i

$$f_{i} + b_{i}h_{i} + c_{i}h_{i}^{2} + \left(\frac{c_{i+1} - c_{i}}{3h_{i}}\right)h_{i}^{3} = f_{i+1}$$

$$f_{i} + b_{i}h_{i} + \frac{h_{i}^{2}}{3}(2c_{i} + c_{i+1}) = f_{i+1}$$

$$\implies b_{i} = \frac{f_{i+1} - f_{i}}{h_{i}} - \frac{h_{i}}{3}(2c_{i} + c_{i+1})$$

repeat for derivative condition equation

$$b_i + 2c_ih_i + 3\left(\frac{c_{i+1} - c_i}{3h_i}\right)h_i^2 = b_{i+1} \implies b_{i+1} = b_i + h_i(c_i + c_{i+1})$$

Use the result from above

$$b_i = \frac{f_{i+1} - f_i}{h_i} - \frac{h_i}{3} (2c_i + c_{i+1})$$

this should hold for all nodes ..., i-1, i, i+1,... reduce the index by 1

$$b_{i-1} = \frac{f_i - f_{i-1}}{h_{i-1}} - \frac{h_{i-1}}{3} \left(2c_{i-1} + c_i \right)$$

repeat for the result from the derivative condition to get

$$b_i = b_{i+1} + h_{i-1} (c_{i-1} + c_i)$$

Use the result from above

$$b_i = \frac{f_{i+1} - f_i}{h_i} - \frac{h_i}{3} (2c_i + c_{i+1})$$

this should hold for all nodes ..., i-1, i, i+1,... reduce the index by 1

$$b_{i-1} = \frac{f_i - f_{i-1}}{h_{i-1}} - \frac{h_{i-1}}{3} \left(2c_{i-1} + c_i \right)$$

repeat for the result from the derivative condition to get

$$b_i = b_{i+1} + h_{i-1} (c_{i-1} + c_i)$$

Combine to find final equation

$$\frac{f_{i+1}-f_i}{h_i}-\frac{h_i}{3}\left(2c_i+c_{i+1}\right)=\frac{f_i-f_{i-1}}{h_{i-1}}-\frac{h_{i-1}}{3}\left(2c_{i+1+c_i}\right)+h_{i-1}\left(c_{i-1}+c_i\right)$$

Topic 3 - Lagrange Polynomials

•

•

•

•