Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$a_9 = a_4 + 5r \Rightarrow r = 3$	2 p
	$a_{14} = a_9 + 5r = 37$	3p
2.	A este punctul de intersecție a graficelor funcțiilor f și g ; $f(x) = g(x) \Rightarrow x - 3 = 5 - x$	1p
	$x-3=5-x \Rightarrow x_A=4$	2 p
	$y_A = 1$	2p
3.	$2^{3-x} = 2^{-2}$	2p
	$3 - x = -2 \Rightarrow x = 5$	3 p
4.	Numărul tripletelor (a,b,c) , cu a , b , c distincte din M este A_4^3	2 p
	Numărul tripletelor $(0,b,c)$, cu b , c distincte nenule din M este A_3^2	2 p
	$A_4^3 - A_3^2 = 18$ numere	1p
5.	Fie C simetricul lui A față de $B \Rightarrow B$ este mijlocul segmentului (AC)	1p
	$x_B = \frac{x_A + x_C}{2} \Longrightarrow x_C = 5$	2p
	$y_B = \frac{y_A + y_C}{2} \Rightarrow y_C = -2$	2p
6.	$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A$	2 p
	$BC = \sqrt{31}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$ \Delta = \begin{vmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & a \end{vmatrix} = = -2a - 4 $	2p 3p
b)	Matricea asociată sistemului este inversabilă $\Leftrightarrow \Delta \neq 0$	3 p
	$a \in \mathbb{R} \setminus \{-2\}$	2 p
c)	$\int x + y - 2z = 0$	
	$\begin{cases} x + y - 2z = 0 \\ x - y + z = 1 \\ x + y = 2 \end{cases}$	2 p
	x = 1, y = 1, z = 1	3 p
2.a)	x*1 = x+1-1 =	4 p
	$= x$, pentru orice $x \in \mathbb{R}$	1p
b)	x * x = 2x - 1	2p

Probă scrisă la Matematică

Varianta 7

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

	(x*x)*x=3x-2	2p
	x = 2	1p
c)	$C_n^1 = n, C_n^2 = \frac{n(n-1)}{2}$	2 p
	$n^2 + n - 30 = 0$	2 p
	Finalizare: $n = 5$	1p

SUBIECTUL al III-lea

(30 de puncte)

	-	
1.a)	$f'(x) = \frac{(x+1)' \cdot e^x - (x+1) \cdot (e^x)'}{e^{2x}} = -\frac{x}{e^x}, \ \forall x \in (0, +\infty)$	3 p
	Finalizare	2 p
b)	$f'(x) = -\frac{x}{e^x} \Rightarrow f'(x) < 0$, oricare ar fi $x > 0$	3p
	Finalizare	2 p
c)	$g(x) = \frac{x^2 + 2x + 1}{x}$	1p
	$m = \lim_{x \to +\infty} \frac{g(x)}{x} = 1$	1p
	$n = \lim_{x \to +\infty} \left(g\left(x\right) - mx \right) = 2$	1p
	y = x + 2 este ecuația asimptotei oblice la graficul funcției g	2 p
2.a)	$\int f(x)dx = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + C$	2p
	$F(x) = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + c \text{ si } F(0) = 1 \Rightarrow c = 1$	2 p
	$F: \mathbb{R} \to \mathbb{R}, \ F(x) = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + 1$	1p
b)	$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} \left(x^{2011} + x\right) dx =$	2 p
	$= \left(\frac{x^{2012}}{2012} + \frac{x^2}{2}\right) \Big _0^1 = \frac{1}{2012} + \frac{1}{2} = \frac{1007}{2012}$	3 p
c)	$g(x) = x^2 + x$	1p
	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(x^{4} + 2x^{3} + x^{2}\right) dx = \pi \left(\frac{x^{5}}{5} + 2\frac{x^{4}}{4} + \frac{x^{3}}{3}\right) \Big _{1}^{2} =$	3 p
	$=\frac{481\pi}{30}$	1p

Probă scrisă la **Matematică**

Varianta 7

Barem de evaluare și de notare

 $Filiera\ teoretic\ \ \ \ profilul\ real,\ specializarea\ \ \ \ stiințele\ naturii$