COSC 290 Discrete Structures

Lecture 17: Structural induction on logic

Prof. Michael Hay

Friday, Mar. 9, 2018

Colgate University

Plan for today

- 1. Practice with structural induction on trees
- 2. Structural induction on propositions

Practice with structural induction

on trees

Recall: structural induction

If you have a recursively defined structure – a structure defined in terms of one or more base cases and one or more inductive cases – you can prove properties about it using structural induction.

With structural induction, proof components should align with components of recursive definition.

Height of a tree, defined recursively

We can also define height recursively: let h(T) denote the height of tree T.

- Base case: tree T is empty, h(T) = -1.
- Inductive case: T is non-empty, thus it consists a root node x, a left subtree T_ℓ , and a right subtree T_r . Then, $h(T) = 1 + \max\{h(T_\ell), h(T_r)\}$.

Recall: exercise from last class

Claim: $nodes(T) \le 2^{h(T)+1} - 1$

For reference: let h(T) denote the height of tree T.

- Base case: tree T is empty, h(T) = -1.
- Inductive case: T is non-empty, thus it consists a root node x, a left subtree T_ℓ, and a right subtree T_r. Then, h(T) = 1 + max { h(T_ℓ), h(T_r) }.

Proof of base case

Claim: $nodes(T) \le 2^{h(T)+1} - 1$

Base case: T is empty so nodes(T) = 0 and h(T) = -1.

Indeed $nodes(T) \le 2^{h(T)+1} - 1 = 2^{-1+1} - 1 = 0$.

5

Claim: $nodes(T) \le 2^{h(T)+1} - 1$

Inductive case: T is a non-empty tree of height h(T), consisting of node x and left and right subtrees T_{ℓ} and T_{r} .

$$nodes(T) = 1 + nodes(T_{\ell}) + nodes(T_r)$$
 (b. +1 for root)
 $\leq 1 + (2^{h(T_{\ell})+1} - 1) + (2^{h(T_r)+1} - 1)$ (c. ind. hypothesis)
 $\leq 1 + (2^{(h(T)-1)+1} - 1) + (2^{(h(T)-1)+1} - 1)$ (d. why?)
 $= 2^{h+1} - 1 = 2^{h(T)+1} - 1$ (e. algebra)

Explanation for line d:

Recall definition of height: $h(T) := 1 + \max\{h(T_{\ell}), h(T_r)\}.$

So
$$h(T_{\ell}) \leq h(T) - 1$$
 and $2^{h(T_{\ell})+1} \leq 2^{(h(T)-1)+1}$.

Same idea for T_r .

Lower bound?

• False Claim: $nodes(T) \ge 2^{h(T)+1} - 1$

Lower bound?

- False Claim: $nodes(T) \ge 2^{h(T)+1} 1$
- Faulty proof by structural induction:
 - Base cases: T is empty, height is -1 and $nodes(T) \ge 2^{-1+1} 1 = 0$.

7

Lower bound?

- False Claim: $nodes(T) \ge 2^{h(T)+1} 1$
- Faulty proof by structural induction:
 - Base cases: T is empty, height is -1 and $nodes(T) \ge 2^{-1+1} 1 = 0$.
 - Inductive case: T is a non-empty tree of height h(T), consisting of node x and left and right subtrees T_ℓ and T_r.

$$nodes(T) = 1 + nodes(T_{\ell}) + nodes(T_r)$$
 (b. +1 for root)
 $\geq 1 + (2^{h(T_{\ell})+1} - 1) + (2^{h(T_r)+1} - 1)$ (c. ind. hypothesis)
 $\geq 1 + (2^{(h(T)-1)+1} - 1) + (2^{(h(T)-1)+1} - 1)$ (d. subtree heights)
 $= 2^{h+1} - 1 = 2^{h(T)+1} - 1$ (e. algebra)

7

Poll: Lower bound?

- False Claim: $nodes(T) \ge 2^{h(T)+1} 1$
- Faulty proof by structural induction:
 - Base cases: T is empty, height is -1 and $nodes(T) \ge 2^{-1+1} 1 = 0$.
 - Inductive case: T is a non-empty tree of height h(T), consisting of node x and left and right subtrees T_ℓ and T_r.

$$nodes(T) = 1 + nodes(T_{\ell}) + nodes(T_r)$$
 (b. +1 for root)
 $\geq 1 + (2^{h(T_{\ell})+1} - 1) + (2^{h(T_r)+1} - 1)$ (c. ind. hypothesis)
 $\geq 1 + (2^{(h(T)-1)+1} - 1) + (2^{(h(T)-1)+1} - 1)$ (d. subtree heights)
 $= 2^{h+1} - 1 = 2^{h(T)+1} - 1$ (e. algebra)

Where's the flaw? A) first sentence of inductive case; B) line b; C) line c; D) line d; E) line e.

Structural induction on

propositions

Propositions, recursively defined

A proposition φ is a well-formed formula (wff) over the variables in the set $P := \{p_1, \dots, p_n\}$, is one of the following:

- (base case) $\varphi := p$ for some $p \in P$
- · (inductive cases)
 - $\varphi := \alpha \vee \beta$
 - $\varphi \coloneqq \alpha \wedge \beta$
 - $\varphi := \alpha \implies \beta$
 - $\varphi := \neg \alpha$

where α and β are well-formed formulas.

Negation Normal Form

Definition (Negation Normal Form (NNF))

A proposition φ is in negation normal form if the negation connective is applied only to variables and not to more complex expressions, and furthermore, the only connectives allowed are in the set $\{\land,\lor,\lnot\}$.

Exercise: Negation Normal Form

Given

$$\varphi := \neg (p \land (\neg q \lor r)) \lor \mathsf{s}$$

let's write an equivalent proposition that is in NNF by "pushing negations down."

Hint: double negation and De Morgan's laws are useful.

$$\begin{array}{lll} \neg(\neg\alpha) & \equiv & \alpha & \text{double-negation elimination} \\ \neg(\alpha \wedge \beta) & \equiv & (\neg\alpha \vee \neg\beta) & \text{De Morgan's law #1} \\ \neg(\alpha \vee \beta) & \equiv & (\neg\alpha \wedge \neg\beta) & \text{De Morgan's law #2} \end{array}$$

All propositions can be expressed in NNF

Claim: For any wff φ , there exists a proposition φ' that is in NNF and is logically equivalent to φ .

Restating claim

Claim: For any well-formed formula φ , there exists a proposition φ' that is in negation normal form and is logically equivalent to φ .

Notation:

- $isNNF(\varphi)$ denotes the predicate: φ is in NNF.
- $hasNNF(\varphi)$ denotes the predicate: there exists a proposition φ' that is in NNF and $\varphi' \equiv \varphi$.
- ${\cal W}$ denotes the set of all well-formed formulas.

Thus, our claim can be restated as $\forall \varphi \in \mathcal{W} : hasNNF(\varphi)$.

Proof

Claim A: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi)$.

We will instead prove the stronger claim:

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

How is this "stronger?" How does this help?

(See also book discussion on p. 540.)

Poll: what is the base case?

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

We will do a proof by structural induction.

How should we structure the base case(s)?

- A) Two base cases: $\varphi \coloneqq p$ and $\varphi \coloneqq \neg p$. In each, want to show $hasNNF(\varphi)$.
- B) One base cases: $\varphi := p$, want to show: $hasNNF(p) \wedge hasNNF(\neg p)$
- C) Either of above is acceptable.
- D) Structural induction proofs do not have base cases

Inductive cases

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

We will do a proof by structural induction. How many inductive cases?

Inductive cases

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

We will do a proof by structural induction. How many inductive cases? One case for each case in the recursive definition of WFF:

- 1. AND: $\varphi := \alpha \wedge \beta$
- 2. OR: $\varphi \coloneqq \alpha \vee \beta$
- 3. NOT: $\varphi \coloneqq \neg \alpha$
- 4. IMPLIES: $\varphi := \alpha \implies \beta$.

Poll: Inductive case 1, what to show?

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Proof continued...

Inductive cases: We focus on case 1: $\varphi \coloneqq \alpha \wedge \beta$. What do we want to show?

- A) hasNNF(α)
- B) hasNNF($\alpha \wedge \beta$)
- C) hasNNF($\neg(\alpha \land \beta)$)
- D) hasNNF($\neg \alpha \lor \neg \beta$)
- E) More than one / None of the above

Poll: Inductive case 1, what can we assume?

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Proof continued...

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$. Which of the following can we assume is true (by the inductive hypothesis)?

- A) $hasNNF(\alpha)$... recall this means that α is logically equivalent to some NNF proposition.
- B) hasNNF($\neg \alpha$)
- C) $isNNF(\alpha)$... recall this means that α is an NNF.
- D) A and B
- E) A, B, and C

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\beta)$, $hasNNF(\neg \alpha)$, $hasNNF(\neg \beta)$

Part 1: Since $hasNNF(\alpha)$, there exists α' such that $\alpha' \equiv \alpha$ and $isNNF(\alpha')$. Similarly for β . Let $\varphi' := \alpha' \wedge \beta'$. We have $isNNF(\varphi')$ and $\varphi' \equiv \alpha \wedge \beta$. Thus $hasNNF(\alpha \wedge \beta)$.

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\beta)$, $hasNNF(\neg \alpha)$, $hasNNF(\neg \beta)$

Part 1: Since $hasNNF(\alpha)$, there exists α' such that $\alpha' \equiv \alpha$ and $isNNF(\alpha')$. Similarly for β . Let $\varphi' := \alpha' \wedge \beta'$. We have $isNNF(\varphi')$ and $\varphi' \equiv \alpha \wedge \beta$. Thus $hasNNF(\alpha \wedge \beta)$.

Part 2: $\neg \varphi = \neg (\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$ by DeMorgan's law. Since $hasNNF(\neg \alpha)$, there exists $\bar{\alpha}$ such that $\bar{\alpha} \equiv \neg \alpha$ and $isNNF(\bar{\alpha})$. Similarly for β . Thus, let $\bar{\varphi} := \bar{\alpha} \vee \bar{\beta}$. We have $isNNF(\bar{\varphi})$ and $\bar{\varphi} \equiv \neg (\alpha \wedge \beta)$. Thus $hasNNF(\neg (\alpha \wedge \beta))$.

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: Case 2: $\varphi := \alpha \vee \beta$.

Proof is identical to case 1, just replace ANDs with ORs and vice versa.

Poll: Inductive case 3, what to show?

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: Case 3: $\varphi := \neg \alpha$.

What do we want to show?

- A) hasNNF(α)
- B) hasNNF($\neg \alpha$)
- C) hasNNF($\neg\neg\alpha$)
- D) B and C
- E) A, B, and C

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: Case 3: $\varphi := \neg \alpha$.

Want to show: $hasNNF(\neg \alpha) \land hasNNF(\neg \neg \alpha)$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\neg \alpha)$

Still need to show: $hasNNF(\neg \neg \alpha)$.

Since $\neg\neg\alpha\equiv\alpha$ and $hasNNF(\alpha)$, then let α' be such that $\alpha'\equiv\alpha$ and $isNNF(\alpha')$. Let $\bar{\varphi}:=\alpha'$. Since $\bar{\varphi}\equiv\neg\neg\alpha$ and $isNNF(\bar{\varphi})$, thus $hasNNF(\neg\neg\alpha)$.

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi).$

Inductive cases: Case 2: $\varphi := \alpha \implies \beta$.

The cleanest way to handle this is to have a lemma that states for any φ there is an equivalent φ' that contains only the connectives $\{\neg, \lor, \land\}$. This lemma can be proven using structural induction.