

Scopo della tesi

Architetture 2G-4G

Schema architettura UMTS (3G)

Schema architettura LTE (4G)

Architettura 5G

Schema architettura 5G

Network slicing

Attacco di tipo Denial Of Service

Botnet

Classiche vulnerabilità

Autenticazione

Autenticazione 2G-4G

Schema autenticazione 2G

Schema autenticazione 3G e 4G

Autenticazione 5G

Schema autenticazione 5G

Attacco all'autenticazione 2G-4G

Attacco botnet in 2G/3G

Un attacco *botnet* al sistema di autenticazione permette di ottenere una degradazione delle prestazioni della HLR di oltre il 90% utilizzando più di 11k dispositivi infettati.

Attacco all'autenticazione 2G-4G

Air interface nello UMTS

Attacco SIM-LESS

Nelle reti UMTS la capacità più stringente è nel canale FACH con 28 TPS.

Quindi bastano 446 dispositivi per effettuare una degradazione del sistema.

Attacco alle reti 5G e conclusioni

Vantaggi

- IMSI criptato: SUCI
- SDN per il monitoraggio della rete

Svantaggi

- Retrocompatibilità
- Autenticazione consuma più risorse
- TPS maggiori nei canali di comunicazione
- Più dispositivi collegati (IOT massivo)

Composizione SUCI

Servizi nel 5G

