Section 6.1: Areas Between Curves

We have seen how to calculate the area below a curve on a given interval. In this section, we expand that idea to calculate the area of more complex regions.

Area of a Region between Two Curves

Finding the Area between Two Curves

Let f(x) and g(x) be continuous functions such that $f(x) \ge g(x)$ over an interval [a,b].

Let R denote the region bounded above the graph of f(x), below by the graph of g(x), and on the left and right by the lines x=a and x=b, respectively. Then, the area of R is given by

$$A = \int_a^b [f(x) - g(x)] dx.$$

Media: Watch these video1 and video2 examples on finding areas between curves.

Examples

1) Determine the area of the region between the two curves in the given figure by integrating over the x-axis.

graphs intersect at x = -2 and x = 2, so integrate from -2 to 2 $A = \int_{-2}^{2} [g(x) - f(x)] dx$ $= \int_{-2}^{2} [1 - (x^{2} - 3)] dx$ $= \int_{-2}^{2} [-x^{2} + 4] dx = -\frac{x^{3}}{3} + 4x|^{2}$ $= \left[\frac{32}{3}\right]$

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

$$= \int_{1}^{4} [(x+4) - (3-\frac{x}{2})] dx$$

$$= \int_{1}^{4} [\frac{3x}{2} + 1] dx$$

$$= \frac{3x^{2}}{4} + x \Big|_{1}^{4} = \boxed{\frac{57}{4}}$$

3) If R is the region bounded above by the graph of the function $f(x) = 9 - \left(\frac{x}{2}\right)^2$ and below by the graph of the function g(x) = 6 - x, find the area of region R.

sketch

 $f(x) = 9 - \left(\frac{x}{2}\right)^2$

$$f(x) \ge g(x)$$

Find points of intersection. $9 - (\frac{x}{2})^2 = 6 - x$ $9 - \frac{x^2}{4} = 6 - x$ $36 - x^2 = 24 - 4x$ $x^2 - 4x - 12 = 0$ (x - 6)(x + 2) = 0 $x = 6 \quad x = -2$ A = $5^6 \left[f(x) - g(x) \right] dx = 5^6 \left[(9 - (\frac{x}{2})^2) - (6 - x)^2 \right] dx$

$$A = \int_{-2}^{6} \left[f(x) - g(x) \right] dx = \int_{-2}^{6} \left[(q - \left(\frac{x}{2}\right)^{2}) - (6 - x) \right] dx$$

$$= \int_{-2}^{6} \left[3 - \frac{x^{2}}{4} + x \right] dx = 3x - \frac{x^{3}}{12} + \frac{x^{2}}{2} \Big|_{-2}^{6}$$

$$= \left[\frac{64}{3} \right]$$

Areas of Compound Regions

So far, we have required $f(x) \ge g(x)$ over the entire interval of interest, but often times the regions of interest are not simple.

Finding the Area of a Region between Curves That Cross

Let f(x) and g(x) be continuous functions over an interval [a,b]. Let R denote the region between the graphs of f(x) and g(x), and be bounded on the left and right by the lines x=a and x=b, respectively. Then, the area of R is given by

$$A = \int_a^b |f(x) - g(x)| \, dx.$$

Media: Watch this video example on finding areas with multiple regions.

Examples

1) If R is the region between the graphs of the functions $f(x) = \sin x$ and $g(x) = \cos x$ over the interval $[0, \pi]$, find the area of region R.

sketch: intersect of x = 174

g(x) = cosx

f(x) = sinx

A=

For
$$[74,\pi]$$
: $|f(x)-g(x)| = |s(nx-cosx)|$

$$A = \int_0^{\pi} |s(nx-cosx)| dx = s(nx-cosx)$$

$$= \int_0^{\pi/4} (cosx-s(nx)) dx + \int_0^{\pi/4} (s(nx-cosx)) dx$$

$$= (s(nx+cosx))_0^{\pi/4} + (-cosx-s(nx))_{\pi/4}^{\pi/4} = \frac{1}{2}\sqrt{2}$$

For $[0,\pi/4]$: |f(x)-g(x)|=|sinx-cosx|

2 Subregions:
2) Co

[174,17]

Consider the region shown below. Find the area of R.

Interest at $X=1 \implies two interests [0,1]$ and [1,2]

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4^{x}$$

$$g(x) = 2 - x$$

$$A_{1} = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$

$$A_{2} = \int_{1}^{2} (2 - x) dx = \left(2x - \frac{x^{2}}{2}\right) \Big|_{1}^{2} = \frac{1}{2}$$

$$A = A_{1} + A_{2}$$

$$A = A_1 + A_2$$

$$A = \frac{1}{3} + \frac{1}{2} = \frac{5}{6} \text{ units}^2$$

Regions Defined with Respect to y

We can also find the area between two graphs with respect to y. Sometimes this method is easier to evaluate rather than evaluating multiple integrals to calculate the area of a region.

Finding the Area between Two Curves, Integrating along the y-axis

Let u(y) and v(y) be continuous functions such that $u(y) \ge v(y)$ for all $y \in [c,d]$. Let R denote the region bounded on the right by the graph of u(y), on the left by the graph of v(y), and above and below by the lines y=d and y=c, respectively.

Then, the area of R is given by

$$A = \int_{c}^{d} [u(y) - v(y)] dy.$$

Media: Watch this video example on finding areas with respect to y.

Example: Consider the region shown below. Integrate with respect to y to find the area of R.

