MCT and MOAB coupling in E3SM

Rob Jacob, Iulian Grindeanu, Vijay Mahadevan, Jason Sarich

6th Workshop on Coupling Technologies for Earth System Models

Toulouse, France, Jan 20, 2023

Earth System Model

The U.S. National Lab System

Energy Exascale Earth System Model

Exascale Computing

Earth System Modeling

The E3SM Mission: Use exascale computing to carry out high-resolution Earth system modeling of natural, managed and man-made systems, to answer pressing problems for the U.S. DOE.

3 more years of funding approved! Jan 2023-2026

E3SM hardware landscape

Upcoming DOE machines are all GPU based:

- 2021: NERSC Perlmutter 8 MW
 - 6000 NVIDIA GPUs.
 - 3000 CPU-only nodes (AMD)
- 2022: OLCF Frontier 30 MW (#1 on top500)
 - 9400 nodes
 - 1 64-core AMD EPYC CPU + 4 AMD MI250x GPUs per node.
- 2023: ALCF Aurora ~40 MW
 - 9000 nodes
 - 2 Intel Saphire Rapids CPUS and 6 Intel Ponte Vechio GPUs

E3SM dedicated CPU resources:

- Anvil, Compy, Chrysalis
- 1200 CPU-only nodes, ~0.6 MW

(slide from Mark Taylor)

E3SM (coupler-related) developments since CW2020

- Sept, 2021: v2.0 released
 - Introduced "physics grid" in atmosphere.
 - Regionally refined meshes possible in atm, ocn, Ind, sea-ice.
 - Coupler: cpl7/MCT
- Jan, 2023: V2.1 released
 - New parameterizations in ocean improved AMOC.
 - Additional components (experimental)
 - Coupler: cpl7/MCT

github.com/E3SM-Project/E3SM

E3SM v1 and v2 performance

- V3: Still mostly Fortran/CPU based. June 2023
- V4: Exascale-capable. C++ components. June 2026

What exactly is cpl7/MCT?

MCT just provides "plumbing and wiring" for a coupler.

Cpl7 is the driver and additional data types (built on MCT) for a coupled system

- seq_comm_mct.F90 lay out models on mpi tasks and build MPI communicators according to namelist input.
 - Initialize MCT_World
- component_type_mod.F90 one instance per model which has most of the MCT data for the model itself and its representation in the coupler.
 - Model: MCT_GSMap, MCT_AttributeVector for send, AV for receive. MCT_GeneralGrid for lats,lons, GlobalID
 - Model-in-coupler: MCT_GSMap, MCT_AttributeVector for send, AV for receive, MCT_GeneralGrid.
 - Model sets its parts of the component, coupler sets its parts.
- seq_map_mod.F90 one method to do either a copy of 2 AVs, a rearrange (with MCT_Rearrange) or an interpolation (with MCT_SparseMatrixPlus and MCT_MatAttrVectMul)
 - Plus a method to read in mapping weights from a file and load them in the SparseMatrix.

What exactly is cpl7/MCT?

- seq_fld_mod.F90 Describe all the fields going between components and coupler.
 - seq_flds_a2x_states= Sa_z:Sa_topo:Sa_u:Sa_v:Sa_tbot:Sa_ptem:Sa_shum:Sa_pbot:Sa_dens:Sa_uovern:Sa_pslv:Sa_co2prog:Sa_co2diag
 - Colon-delimited strings used to define Attributes in MCT.
- cime_comp_mod.F90, cime_driver.F90 The top-level "main" and init, run and finalize of the coupler.
- Cpl7/MCT is the coupler in CCSM4, CESM1, CESM2.0-2.2, E3SM1, E3SM2

Craig, Vertenstein, Jacob, 2012, "A new flexible coupler for earth system modeling developed for CCSM4 and CESM1", *Int. J. High Perf. Comp. App.*, 26(1), 31-42 (cpl6/MCT was the coupler in CCSM3 (circ. 2005).

Nov, 2022 marked 20 years of MCT!

Change Log at https://www.mcs.anl.gov/research/projects/mct/changes.html OR shorturl.at/bhiR8

Versions and Release Dates

10/18/00: Initial prototype

02/09/01: working MxN transfer

04/27/01: parallel SparseMatrix multiply

03/29/02: Rearranger for transposes

11/14/02: Version 1.0.0 released.

04/23/04: Version 2.0.0 released.

05/24/04: Version 2.0.1 released.

07/11/04: Version 2.0.2 released.

02/11/05: Version 2.1.0 released. (Also part of CCSM3) Released June 16, 2004

12/01/05: Version 2.2.0 released.

Wasn't cpl7/MCT part of "Common Infrastructure for Modeling the Earth (CIME)"?

Cpl7/MCT was part of CIME developed jointly by CESM/E3SM

We realized different science/computation goals made it better to each have our own copy of this code.

E3SM/driver-mct (cpl7/mct)
E3SM/components/data_comps
E3SM/externals/mct

E3SM/CESM are still collaborating on the CIME Case Control System for configure, build, run, test.

Some E3SM developments in cpl7/MCT since CW2020

- Additional land-river coupling (irrigation, flooding)
- Allow biogeochemical coupling from river to ocean.
- Add "exclusive stride" option for GPU-exclusive configurations.
- Fixes for tri-grid merging (atm, Ind, ocn on 3 different grids)
- 2-way river-ocean coupling (SSH affects dynamic water stage boundary)
- Carbon budget calculation (with optional BGC fields)
- NOAA's WaveWatchIII added as a component
 - 2-way coupling with ocean, 1-way from atm, sea-ice
- GCAM integrated assessment model added as a component (still on a branch)
- MCT 2.11.0 (Released, Feb 2021. Fix occasional hang in Rearranger; autoconf update; ifx, gnu10 support (thanks to Andrea Piacentini))

Cpl7/MCT: mods to allow exclusive GPU access (1 of 2)

Cpl7/MCT: mods to allow exclusive GPU access (2 of 2)

Summit Node:

2 Power 9 (42 cores total) 6 NVIDIA V100 GPUs "Exclusive stride" specified in driver namelist, used in seq_comm_mod to adjust communicators. Exclusive access **reduces total memory** on atm tasks.

LND:

ROF:

30

38

 Ω

Motivations for MOAB-based coupler

- A complete mesh representation for:
 - Online mapping weight computation on arbitrary PE layouts
 - Smarter decompositions targeting better parallel performance of the coupler
 - Scalable topology and field data migration strategies that minimize communication bottlenecks
- Faster, less memory (array-based representations)
 - Mesh is distributed efficiently, and there are no global data structures
 - Eliminate the need for GSMap, which is replicated on each PE. In a worst case, GSMap can be 3*sizeof(int)*Total number of grid points)
- Correct mapping of high-order SE-FV (without a need for dual meshes)
- Ongoing developments to support GPU computations for map generation and field projection using C++ performance portable frameworks (e.g. Kokkos)

Changes needed to MOAB

- Support for non-collocated applications.
 - MOAB had assumed all coupled apps shared the same processors. No longer.
 - Mesh Migration: Method to send MOAB's complete mesh description from one set of processors to another.
- Expose more functions in iMOAB: a convenient subset of MOAB functions callable from Fortran/C/C++.
- Augment existing ParallelComm functions with ParCommGraph, roughly equivalent to MCT Router.
- Change string separator from semi-colon to colon (to match MCT)
- Link to TempestRemap to calculate mapping weights on sphere.

Converting cpl7/MCT to cpl7/MOAB

Introduce MOAB alongside existing MCT routines in cpl7

Relationship between MOAB and MCT functions/concepts

MCT

- Data accessed by strings called "attributes"
- A group of attributes is stored in an Attribute Vector ordered (varid, gridid)
- The grid is just another Av with extra Lists the keep the coordinate attribute names. Does not understand connectivity.
- A "stateless" library.
- "transparent" data types allow user to directly access values (eg. Av%rAttr(n,m))
- Relationship between data in Av and grid it corresponds to is implicit.
- Communicate between components with Avs

MOAB

- Data accessed by strings called "tags" (can use same strings: Sa_tbot)
- A group of tags is returned in an array ordered (gridid, varid).
- The mesh is a first-class object with full connectivity information.
- Keeps state of mesh and tag values internally.
- Opaque data types requires methods to get/set values.
- Tags are always associated with a specific mesh.
- Communicate between applications with groups of tags

Examples of MCT and MOAB functions

Examples of MCT and MOAB functions

```
MCTRearranger(SrcAV, TargetAV, Rearranger)

iMOAB_SendElementTag (sendmoabid, 'tag1:tag2', comm, context)

iMOAB_RecvElementTag (recvmoabid, 'tag1:tag2', comm, context)

iMOAB_FreeSendBuffers(sendmoabid, context)

MCTsMatAvMult(SrcAV, SparseMatrix, TrgAV)

iMOAB_ApplyScalarProjectionWeights(mbintxid, wtype, Srclist, Trglist)

Not in MCT

iMOAB_LoadMappingWeightsFromFile - read mapping weights in parallel

iMOAB_GetMeshInfo - return number of verticies, elements, other info

iMOAB_WriteMesh(moabid, filename, wopts) - write out mesh and all tags in h5m

(HDF5) format in parallel

iMOAB_ComputeMeshIntersectionOnSphere(sourceid, targetid, intxid)

iMOAB_ComputeScalarProjectionWeights(intxid,...)
```


Latest Status

- Basic coupled model (watercycle case) works!
 - Models and meshes:
 - EAM, ELM on spectral mesh
 - MPAS-Seaice, MPAS-Ocean on MPAS mesh
 - MOSART on RLL mesh
 - · Stub models for wave, land ice, iac
 - Atm-ocean, land-river, atm-river weights calculated online
 - River-ocean weights read from file.

shortwave down

Near future plans for cpl7/MOAB

- Hook up remaining models to MOAB coupler:
 - Data models, MPAS-land-ice, WW3.
- Additional online mapping options
 - (TempestRemap bilinear, others from SciDAC-CANGA)
- Remove MCT "scaffolding" from cpl7/MOAB
- Improve documentation
- Performance tuning
- Release with E3SM version 3 as an option.
- driver-mct will remain supported for bug fixes, porting

ELM decomposition from ELM MOAB instance

