Public Key Encryption

Gianluca Dini
Dept. Ingegneria dell'Informazione
University of Pisa
Email: gianluca.dini@unipi.it

Version: 11/03/2025

1

Public Key Cryptography

INTRODUCTION

Mar-25

Public Key Encryption

Public key encryption - Definition

- A public key encryption scheme is a triple of algs (G, E, D) s.t.
 - G is a randomized alg. for key generation (pk, sk)
 - y = E(pk, x) is a (randomized) alg. that takes x ∈ \mathcal{M} and outputs y ∈ \mathcal{C}
 - -x = D(sk, y) is deterministic alg. that takes $y \in C$ and outputs $x \in \mathcal{M}$
 - fulfills the Consistency Property
 - \forall (pk, sk), \forall x \in \mathcal{M} , D(sk, E(pk, x)) = x

Public Key Encryption

4

Mar-25

Security of PKE: informal

- Known $pk \in \mathcal{K}$ and $y \in C$, it is computationally infeasible to find the message $x \in \mathcal{M}$ such that $E_{nk}(x) = y$
- Known the public key pk $\in \mathcal{K}$, it is computationally infeasible to determine the corresponding secret key $sk \in \mathcal{K}$
- Constructions generally rely on hard problems from number theory and algebra

Mar-25 Public Kev Encryption

5

Non-randomized PKE is not

- PK encryption scheme is not perfect

 Where a parket grhn exist, same the UNIVERSITA DI PIS.

 PK scheme Cannot
 - Proof
 - Let y = E(pk, x)
 - Adversary
 - intercepts y over the channel
 - selects x' s.t. $Pr[M = x'] \neq 0$ (a priori)
 - computes $y' = E_{pk}(x')$ Adversary common decrypt, but can encrypt
 - If y' == y then x' = x and $Pr[M=x' \mid C=y] = 1$ else Pr[M=x' | C=y] = 0 (a posteriori)

I a postenion prob. is differed from the a priving one.

Mar-25

Public Key Encryption

/

Digital envelope

- Public key cryptography is 2-3 orders of magnitude slower than symmetric key cryptography Unconfement from performances por
 - Public-key performance can be a more serious bottleneck in constrained devices, e.g., mobile phones or smart cards, or on network servers that have to compute many publickey operations per second
- A digital envelope uses two layers for encryption:
 - Symmetric key encryption is used for message encryption and decryption.
 - Public key encryption is used to send symmetric key to the receiving party

Mar-25

Public Key Encryption

8

Public Key Encryption

9 This method doesn't use should secrets.

Public Key Encryption

PUBLIC KEY CRYPTOGRAPHY

Mar-25

Public Key Encryption

11

11

Families of pub key algs

- Built on the common principle of one-way function
- A function f() is a one-way function if:
 - -y = f(x) is computationally easy, and
 - $-x = f^{-1}(y)$ is computationally infeasible

- Two popular one-way functions
 - Integer factorization
 - Discrete logarithm [log & a subset of Ns]

Mar-25

Public Key Encryption

12

Families of PK Cryptography

- Integer factorization schemes (mid 70s)
 - Most prominent scheme: RSA
- Discrete Logarithm Schemes (mid 70s)

 Mulled algorythm for DS

- Most prominent schemes: DHKE, ElGamal, DSA

- Elliptic Curves Schemes (mid 80s)
 - EC schemes are a generalization of the Discrete Logarithm algorithm
 - Most prominent schemes: ECDH, ECDSA

Completely broken by quillen allactis

13

Families of PK Cryptography

- Other schemes
- > PK schones based on lathius seen Vo be resistant to quartum compring Multivariate Quadratic, Lattice
 - They lack maturity
 - Poor performance characteristics
 - Hyperelliptic curve cryptosystems
 - · Secure and efficient
 - · They have not gained widespread adoption

Mar-25

Public Key Encryption

14

Main security mechanisms

- Encryption
 - RSA and ElGamal
- Key establishment
 - Establishing keys over an insecure channel
 - DHKE, RSA key transport
- Non repudiation and message integrity
 - Digital signatures
 - RSA, DSA, ECDSA
- Identification
 - Challenge-response protocol together digital signatures

Mar-25 Public Key Encryption

15

Key Lenghts and Security Level

- An algorithm has security level of n bit, if the best known algorithm requires 2ⁿ steps
- Symmetric algorithms with security level of n have a key of length of n bits
- In asymmetric algorithms, the relationship between security level and cryptographic strengh is no as straightforward

Mar-25

Public Key Encryption

16

Key Lenghts and Security Level

18

Algorithm Family	Cryptosystem	Security Level			
		80	128	192	256
Integer Factorization	RSA	1024 bit	3072 bit	7680 bit	15360 bit
Discrete Logarithm	DH, DSA, ElGamal	1024 bit	3072 bit	7680 bit	15360 bit
Elliptic curves	ECDH, ECDSA	160 bit	256 bit	384 bit	512 bit
Symmetric key	AES, 3DES	80 bit	128 bit	192 bit	256 bit

RULE OF THUMB - The computational complexity of the three public key algorithm families grows roughly with the cube of bit length

Mar-25 Public Key Encryption

17

Public Key Cryptography

THE NEED FOR ENCRYPTION RANDOMIZATION

Mar-25 Public Key Encryption

Attack against a small plaintex space

- Attack complexity
 - If bid x is an integer, then up to 2³² attempts
 - If bid x ∈ [x_{min} , x_{max}], then #attempts $\ll 2^{32}$

Mar-25

Public Key Encryption

20

Attack against a small plaintex space

- · Countermeasure: salting
 - Bidder side
 - Salt $s \leftarrow random()|_{r-bit}$
 - Bid b \leftarrow (s, x)
 - $y = E_{pubK}(b)$
 - Auctioneer side
 - $(s, x) \leftarrow D_{privK}(b)$ and retain x
 - Adversary
 - Try alle the possible pairs (bid, salt)
 - · Attack complexits gets multiplied by 2^r

Mar-25

Public Key Encryption

21

21

Public Key Cryptography

KEY AUTHENTICATION

Mar-25

Public Key Encryption

22

MiM attack vs key authentication

- MIM attack is an active attack
- Lack of key authentication makes MIM possible
- Certificates are a solution

Mar-25

Public Key Encryption

28