КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ КОМП'ЮТЕРНИХ НАУК ТА КІБЕРНЕТИКИ КАФЕДРА МАТЕМАТИЧНОЇ ІНФОРМАТИКИ

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ БАЗИ ДАНИХ ТА ІНФОРМАЦІЙНІ СИСТЕМИ

для студентів

галузь знань 12 «Інформаційні технології» спеціальність 121 «Комп'ютерні науки»

освітній рівень бакалавр

освітня програма «Інформатика»

вид дисципліни обов'язкова

Форма навчання	денна
Навчальний рік	2020/2021
Семестр	4
Кількість кредитів ECTS	5
Мова викладання, навчання та	українська
оцінювання	
Форма заключного контролю	іспит

Викладачі: к.ф.-м.н., доцент Кулябко П.П. (лекції, лабораторні заняття), асистент Федорус О.М. (лабораторні заняття)

Пролонговано: на 20 $\ \ /20$ н.р. () « » 20 р. на 20 $\ \ /20$ н.р. () « » 20 р.

Розробник: Кулябко Петро Петрович, кандидат фіз.-мат. наук, доцент кафедри

математичної інформатики
Робоча програма дисципліни «Інформаційні системи та бази даних» затверджена на засіданні кафедри математичної інформатики

ЗАТВЕРДЖЕНО						
	Зав. кафедри «Математичної інформатики»					
	Терещенко В.М.					
	Протокол № <u>Л</u> від « <u>Ш</u> » <u>Ø</u> 20 <u>№</u> р.					
Схвалено гарантом освітньо-професійної п	погизми «Інформатика»					
« <u>28</u> » <u>08</u> 20 <u>20</u> р	омельчук Л.Л.					
Схвалено науково-методичною комісією ф	акультету комп'ютерних наук та кібернетики					
Протокол від « <u></u> <u>28</u> » <u> </u>	року № 1					
Голова науково-методичної комісії	Омельчук Л.Л. (прізвище та ініціали)					
	7					

1.Мета дисципліни "Бази даних та інформаційні системи" є важливою дисципліною в сенсі набуття теоретичних та практичних знань в одній з найактуальніших на сьогодні галузей інформаційних технологій, що стосується баз даних та баз знань.

2.Попередні вимоги до опанування або вибору навчальної дисципліни:

- 1. Успішне опанування курсів «Основи програмування», «Програмування» та «Основи об'єктно-орієнтованого програмування».
- 2. Знати теоретичні основи дискретної математики, алгебри, теорії алгоритмів та математичної логіки.
- 3. Володіння технологіями програмування у частині роботи з файлами.

3. Анотація навчальної дисципіни:

Навчальна дисципліна «Інформаційні системи та бази даних» є складовою освітньо-професійної програми підготовки фахівців за освітньо-кваліфікаційним рівнем «бакалавр» галузі знань 12 «Інформаційні технології» спеціальності 122 «Комп'ютерні науки» «Інформатика». Метою і завданням навчальної дисципліни є ознайомлення з одним із основних науково-технологічних напрямків у галузі комп'ютерних технологій «Бази даних та інформаційні системи» та оволодіння технологіями обробки великих об'ємів даних.

4. Завдання (навчальні цілі):

набуття знань, умінь та навичок (компетентностей) на рівні новітніх досягнень у програмуванні та обробці великих об'ємом даних, відповідно освітньої кваліфікації «Бакалавр з комп'ютерних наук». Зокрема, розвивати:

- здатність до побудови логічних висновків, використання формальних мов і моделей алгоритмічних обчислень, проектування, розроблення й аналізу алгоритмів, оцінювання їх ефективності та складності, розв'язності та нерозв'язності алгоритмічних проблем для адекватного моделювання предметних областей і створення програмних та інформаційних систем.;
- здатність реалізувати багаторівневу обчислювальну модель на основі архітектури клієнтсервер, включаючи бази даних, сховища даних і бази знань, для забезпечення обчислювальних потреб багатьох користувачів, обробки транзакцій, у тому числі на хмарних сервісах;
- здатність забезпечити організацію обчислювальних процесів в інформаційних системах різного призначення з урахуванням архітектури, конфігурування, показників результативності функціонування операційних систем і системного програмного забезпечення:
- здатність до аналізу та функціонального моделювання бізнеспроцесів, побудови та практичного застосування функціональних моделей організаційно-економічних і виробничотехнічних систем, методів оцінювання ризиків проектування ІС, синтезу складних систем на засадах використання її комп'ютерної моделі.

5. Результати навчання за дисципліною:

Результат навчання (РН)	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання та пороговий критерій оцінювання (за необхідності)		Відсоток у підсумковій оцінці з
Код	Результат навчання	neoo	дисципліни	
PH 1.1	Знати основні мови опису даних та маніпулювання даним реляційного підходу та їх математичне підґрунтя.	Лекції, лабораторні заняття	Контрольна робота 1 (60%	200/
PH 1.2	Знати основні засоби мови SQL/SEQUEL та відповідну частину теорії відображень.	Лекція, лабораторні заняття	балів), усне опитування іспит	20%

PH 1.3	Знати основні фрагменти теорії логічного проектування реляційних баз даних: нормальні форми (НФ), аксіоми Армстронга, мінімальна структура функціональних залежностей.	Лекція, лабораторні заняття	Контрольна робота 2 (60% балів), усне опитування, іспит	20%
PH 1.4	Знати основні застосування баз даних та деякі особливості: бази знань, розподілені б/д, об'єктно-орієнтовані б/д, б/д NoSQL.	Лекція, лабораторні заняття,	Контрольна робота 3 (60% балів), усне опитування, іспит	20/8
PH 2.1	Вміти будувати запити різного рівня складності в термінах реляційної алгебри, мови ALPHA, QBE.	Лабораторн і заняття		10%
PH 2.2	Вміти будувати запити різного рівня складності в термінах мови SQL/SEQUEL.	Лабораторн а робота, самостійна робота	Захист лабораторної роботи,	20%
PH 2.3	Вміти виконувати мінімізацію структури функціональних залежностей та декомпозицію реляцій до 3 НФ	Лабораторн а робота, самостійна робота	перевірка самостійної роботи	20%
PH 2.4	Вміти провести розробку інформаційно- пошукової системи та розробити документацію до неї	Лабораторн а робота, самостійна робота		10%

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання

Результати навчання дисципліни	PH							
Програмні результати навчання	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4
(з опису освітньої програми)								
ПРН9. Використовувати інструментальні засоби розробки клієнтсерверних застосувань, проектувати концептуальні, логічні та фізичні моделі баз даних, розробляти та оптимізувати запити до них.	+	+	+	+				
ПРН10. Створювати розподілені бази даних, сховища та вітрини даних, бази знань, у тому числі на хмарних сервісах, із застосуванням мов веб-програмування.					+	+	+	+

7. Схема формування оцінки.

7.1. Форми оцінювання студентів:

- семестрове оцінювання:

- 1. Активна робота на лекції, усні відпові: PH1.1, PH1.2, PH1.3, PH1.4 3 бали/1,8 бали;
- 2. Виконання завдань, винесених на самостійну роботу: PH2.1, PH2.2, PH2.3, PH2.4 2 бали/1, 2 бали;
- 3. Контрольна робота 1: PH1.1, PH1.2 12 балів/7,2 бали;
- 4. Контрольна робота 2: PH1.3 15 балів/9 балів;
- 5. Контрольна робота 3: PH1.4 13 балів/7,8 бали;
- 6. Виконання лабораторної роботи: PH2.1, PH2.2, PH2.3, PH2.4 15 балів/9 балів.

- підсумкове оцінювання(у формі іспиту)

- максимальна кількість балів які можуть бути отримані студентом: 40 балів;
- результати навчання які будуть оцінюватись: РН1.1, РН1.2, РН1.3, РН1.4;
- форма проведення і види завдань: письмова робота.

7.2. Організація оцінювання:

 $\hat{\mathbf{y}}$ частину 1 входять теми 1 - 7, у частину 2 – теми 8 – 10 у частину 3 – теми 11 – 13,.

Обов'язковим для іспиту ε виконання усіх контрольних робіт та лабораторної роботи до вказаної викладачем дати, перед початком екзаменаційної сесії, згідно навчального плану. Переписування чи перескладання тем не практикується. Дозволяється здача окремих завдань тем у проміжках між написанням контрольних робіт (наприклад, перша тема здається до здачі наступної контрольної роботи у будь-який зручний для викладача та студента час).

Терміни проведення форм оцінювання:

- 1. Активна робота на лекції, усні відповіді: протягом семестру;
- 2. Виконання завдань, винесених на самостійну роботу: протягом семестру;
- 3. Контрольна робота 1: до 7 тижня семестру;
- 4. Контрольна робота 2: до 10 тижня семестру;
- 5. Контрольна робота 3: до 13 тижня семестру;
- 6. Виконання лабораторної роботи: до 10 тижня семестру.

Для студентів, які набрали сумарно меншу кількість балів ніж *критично-розрахунковий мінімум* — 21 бал для одержання іспиту за рішенням кафедри не допустити до складання іспиту із рекомендацією здати контрольну роботу та лабораторну роботу до повторного складання іспиту.

У випадку відсутності студента з поважних причин відпрацювання та перездачі контрольних робіт здійснюються у відповідності до "Положення про організацію освітнього процесу у Київському національному університеті імені Тараса Шевченка".

При визначені оцінки визначальною є робота в семестрі.

Протягом семестру кожен студент повинен виконати лабораторну роботу та звіт за нею. Всі роботи мають однакову складність і відрізняються лише предметною областю, яку студент обирає на власний смак і узгоджує з викладачем. На кожного студента одна лабораторна робота. Сумарна оцінка за практичний модуль складає 15 балів (4 бали – інтерфейс; 8 балів – запити; 3 бали – звіт).

Практична частина

Вимоги до лабораторних робіт:

Таблиці

Потрібно не менше 5 взаємно зв'язаних та заповнених даними таблиць. У периферійних таблицях не менше 4-5 рядків, а у зв'язкових не менше 10 рядків.

Форми

- 1) Всі дані повинні вводитись, переглядатись та редагуватись лише через форми користувача.
- 2) При вводі чи редагуванні даних необхідно здійснювати контроль коректності (формату) вводу.

Наприклад, при спробі користувача ввести текст у числове поле (чи поле дати) потрібно блокувати таку дію з відповідним повідомленням від вашої системи, а не від базової СУБД. Інший варіант – блокувати ввід некоректних даних в індикативне поле форми, тоді потрібні підказки на формі (постійні чи такі, які з'являються при необхідності) про бажаний формат вводу.

3) При відкритті бази даних повинна виводитись головна форма-меню, на якій присутні посилання на всі інші форми, запити, ввід, редагування, перегляд. На всіх інших формах повинна бути кнопка "Повернутись до меню", або "Згорнути".

Запити

1) Повинно бути не менше 5 простих параметризованих запитів, що використовують більше однієї таблиці. Наприклад "Міста, в яких знаходиться принаймні один постачальник, що постачає принаймні одну деталь, вага котрої перевищує вказану користувачем величину". Вказана користувачем величина є параметром і в запиті позначається довільним ідентифікатором, наприклад, Х. При виконанні запиту користувачеві буде запропоновано ввести значення параметру.

2) Повинно бути не менше 3 параметризованих запитів із множинними порівняннями. Наприклад, "Імена постачальників, що постачають точно такі ж деталі, як і постачальник S1", "Імена постачальників всіх деталей", "Пари номерів постачальників, що постачають однакову множину деталей".

<u>Звіт</u>

Звіт має бути у вигляді керівництва користувача по вашій системі. Роздруковувати не потрібно. В звіті мають бути наступні розділи:

Ідентифікаційний — призначення системи, коротка назва, автор, специфікація комп'ютера, операційної системи та базової СУБД;

Onuc інтерфейсу — для кожної існуючої форми потрібно описати, що означають ті чи інші елементи керування та які значення можна вводити в індикативні поля (кожна форма має бути описана окремо, незважаючи на можливу схожість);

Таблиці – опис таблиць та зв'язків між ними;

Запити - тексти запитів українською мовою та SQL;

Вимоги до користувача – кваліфікація: оператор Windows; знання української мови для інтерфейсу.

Робота здається в робочому стані, всі складові мають нормально працювати; окрім цього, викладач буде пропонувати 1 чи 2 запити (з множинними порівняннями) по вашій предметній області для реалізації протягом 10 хвилин на запит.

7.3. Шкала відповідності (за умови іспиту)

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59

8. Структура навчальної дисципліни. Тематичний план лекцій і лабораторних занять

№	Назва лекції	Кількість годин		
лек-		Лекції	Лабор.	Самост.
ції			заняття	робота
	Частина І. Основні поняття бази даних та роди	ни мов ре	ляційної мод	делі
1	ТЕМА 1. Інформаційна модель концептуального	2	2	4
	рівня.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
2	Тема 2. Поняття бази даних. Основні	2	2	4
	властивості.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
3	ТЕМА 3. Основні критерії класифікації запитів та	2	2	4
	інформаційних систем.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			

	T.		1	
4	Тема 4. Реляційна алгебра Кодда.	4	2	8
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
5	Тема 5. Реляційне числення Кодда. Мова	4	2	4
	ALPHA.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
6	ТЕМА 6. Теорія відображень. Мови SQL та QBE.	6	9	10
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
	Контрольна робота 1		1	
	Частина II. Нормальні форми та з	застосува	Р	
7	Тема 7. Функціональні залежності. 1НФ, 2НФ та	2	2	6
	3НФ.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
8	Тема 8. Багатозначні залежності. 4НФ, 5НФ.	4	2	4
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
9	Тема 9. Структура функціональних залежностей.	2	1	10
	Аксіоми Армстронга. Мінімізація структури			
	функціональних залежностей. Алгоритм			
	перевірки з'єднання без втрат.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
	Контрольна робота 2		1	
	Частина III. Застосування	СУБД		
10	Тема 10. Огляд сучасних СУБД та їх	2	2	6
	застосувань. Об'єктно-орієнтовані СУБД.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
11	Тема 11. Бази знань, моделі представлення	2	2	6
	знань. Класифікаційний огляд експертних			
	систем.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
12	Тема 12. Розподілені бази даних та особливості	4		4
_	їх проектування. Транзакції.			
	Самостійна робота: опрацювання лекційного			
	матеріалу, виконання завдань практичної			
	частини.			
13	Тема 13. Організації файлів, характерні для	2	1	4
		<u> </u>	1	1

СУБД. Бази даних NoSQL. Самостійна робота: опрацювання лекційного матеріалу, виконання завдань практичної частини.			
Контрольна робота 3		1	
ВСЬОГО	38	34	76

Загальний обсяг 150 годин, в тому числі:

Лекцій – *38 год*.

Лабораторні заняття — *34 год*.

Консультації — $2 \, \text{год}$.

Самостійна робота – 76 год.

9. Рекомендовані джерела:

Основні:

- 1. Пасічник В.В., Резніченко В.А. Інформаційні системи та бази даних. К.: Видавнича група ВНV, 2006. 384 с.
 - 2. Дейт К. Введение в системы баз данных. "Диалектика". 1988, 1999.
 - 3. Ульман Дж. Основы системы баз данных. Финансы и статистика. 1983.
 - 4. Дрибас В.П. Реляционные модели баз данных. Изд-во БГУ. Минск. 1982.
 - 5. Інформаційні системи та бази даних. e-library (www.unicyb.kiev.ua, www.unicyb.kiev.ua/~kpp)
 - 6. Практикум для лабораторних робіт з курсу баз даних на основі MS Access 2003 .Упоряд. А.В. Анісімов, В.В. Зубенко, О.П. Кулябко. ВПЦ «Київський університет», 2007. 192 с.

Додаткові:

- 1. Системы управления базами данных и знаний, под ред. А.Н.Наумова. Финансы и статистика. 1991.
- 2. Чери С., Готлоб Г., Танке Л. Логическое программирование и базы данных. Мир. 1992.
- 3. Калиниченко Л.А., Рывкин В.М. Машины баз данных и знаний. Наука. 1990.
- 4. Кокорева Л.В., Перевозчикова О.Л., Ющенко Е.Л. Диалоговые системы и представление знаний. Наук. думка. К. 1992. 448с.
- 5. Т.Конноли, К.Бегг, А.Страчан. Базы данных. Проектирование, реализация и сопровождение. Теория и практика. Вильямс. 2000.
- 6. Михеева В.Д., Харитонова И.А. Microsoft Access 2003. СПб.: БХВ-Петербург, $2004-1072~{\rm c}.$
- 7. П. Литвин, К. Гетц, М. Гунделай. Разработка корпоративных приложений в Access 2002. Для профессионалов. СПб.: Питер; Киев. BHV, 2003. 848 с.
- 8. Мартин Дж. Организация баз данных в вычислительных системах. Мир. 1980.