Лабораторная работа№1

Операционные системы

Курилко-Рюмин Евгений Михайлович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	7 7 9
4	Выводы	18
5	Ответы на контрольные вопросы	19
Сп	исок литературы	21

Список иллюстраций

3.1	Oкно Virtualbox	7
3.2	Создание виртуальной машины	
3.3	Указание объема памяти	
3.4	Размер жесткого диска	
3.5	Работа в терминале	
3.6	Установка tmux	
3.7	Установка программного обеспечения для автоматического	
	обновления	10
3.8	Поиск файла	10
3.9	Изменение файла	
3.10	Перезагрузка виртуальной машины	11
3.11	Запуск терминального мультиплексора	11
3.12	Переключение на роль супер-пользователя	12
3.13	Установка пакета dkms	12
3.14	Установка пакета dkms	13
3.15	Примонтирование диска, установка драйверов	13
3.16	Поиск файла, вход в тс	14
3.17	Редактирование файла	14
3.18	Перезагрузка виртуальной машины	14
3.19	Переключение на роль супер-пользователя, установка pandoc	15
3.20	Установка texlive	
3.21	Анализ системы	15
3.22	Поиск версии ядра	16
3.23	Поиск частоты процессора	16
3.24	Поиск модели процессора	16
3.25	Поиск объема доступной оперативной памяти	
3.26	Поиск типа обнаруженного гипервизора	17

Список таблиц

1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Первичное ознакомление с заданием.
- 2. Создание виртуальной машины.
- 3. Установка операционной системы.
- 4. Работа с операционной системой после установки.
- 5. Установка программного обеспечения для создания документации.
- 6. Выполнение доп. задания

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Virtualbox я устанавливал и настраивал при выполнении лабораторной работы в курсе "Архитектура компьютера", поэтому сразу открываю окно приложения (рис.1).

Рис. 3.1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис.2).

Рис. 3.2: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины размером 4096MБ (рис. fig. 3.3).

Рис. 3.3: Указание объема памяти

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает (рис.4).

Рис. 3.4: Размер жесткого диска

3.2 Установка операционной системы

Данный этап лабораторной работы я пропускаю по причине уже установленной операционной системы из предыдущего курса "Архитектура компьютера" ##Работа с операционной системой после установки

Вхожу в ОС под заданной мной при установке учетной записью, запускаю терминал и переключаюсь на роль супер-пользователя, обновляю все пакеты (рис.5).

Рис. 3.5: Работа в терминале

Устанавливаю программы для удобства работы в консоли: tmux для открытия нескольких вкладок в одном терминале (рис.6).

Рис. 3.6: Установка tmux

Устанавливаю программы для автоматического обновления (рис.7).

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr/lib/systemd/system/dnf-automatic.timer.
```

Рис. 3.7: Установка программного обеспечения для автоматического обновления

Перемещаюсь в директорию /etc/selinux, открываю mc, ищу нужный файл (рис.8).

Рис. 3.8: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive

(рис.9)

```
mc[root@fedora]:/etc/selinux

Q = x

config [----] 0 L:[ 9+21 30/ 30] *(1188/1188b) <EOF> [*][X]

# NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
# fully disable SELinux during boot. If you need a system with SELinux
# fully disabled instead of SELinux running with no policy loaded, you
# need to pass selinux=0 to the kernel command line. You can use grubby
# to persistently set the bootloader to boot with selinux=0:
#
# grubby --update-kernel ALL --args selinux=0

#
# To revert back to SELinux enabled:
# grubby --update-kernel ALL --remove-args selinux
#

SELINUX=permissive
# SELINUXTYPE= can take one of these three values:
# targeted - Targeted processes are protected,
# minimum - Modification of targeted policy. Only selected processes are pro
# mls - Multi Level Security protection.

SELINUXTYPE=targeted

1ПОМОЩЬ 2СОХ~ТЬ ЗБЛОК 4ЗАМЕНА 5КОПИЯ 6ПЕР~ТЬ 7ПОИСК 8УДа~ТЬ 9МЕНЮМС 10ВЫХОД
```

Рис. 3.9: Изменение файла

Перезагружаю виртуальную машину (рис.10).

```
[root@fedora selinux]# reboot
```

Рис. 3.10: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускаю терминальный мультиплексор (рис.11).

Рис. 3.11: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис.12).

Рис. 3.12: Переключение на роль супер-пользователя

Устанавливаю пакет DevelopmentTools (рис.13).

```
\equiv
   \blacksquare
                                           emkurilkoryumin@fedora:~ — tmux
                                                                                                                 Q
                                             x86_64 5.0~pre16958465gca71442b-1.fc38 updates 4.0 M

        tent
        x86_64
        5.0~pre16958465j

        vel
        x86_64
        5.0~pre16958465j

        ntime
        x86_64
        5.0~pre16958465j

        x86_64
        2020.3-16.fc38

        x86_64
        2.7.0-4.fc38

        x86_64
        1.4.23-1.fc38

        x86_64
        5.4.1-1.fc38

        x86_64
        1.2.13-2.fc38

 systemtap-devel
                                             x86_64 5.0~pre16958465gca71442b-1.fc38 updates 2.5 M
 systemtap-runtime
                                             x86_64 5.0~pre16958465gca71442b-1.fc38 updates 456 k
                                                                                                            fedora 169 k
                                                                                                              fedora 80 k
updates 771 k
                                                                                                               fedora 65 k
fedora 45 k
 xz-devel
                                             x86_64 1.2.13-3.fc38
Установка слабых зависимостей:
                                           x86_64 0.190-2.fc38
                                                                                                               updates 19 k
                                            x86_64 6.7.5-100.fc38
                                                                                                                updates 20 M
 Установка групп:
 Development Tools
Результат транзакции
Установка 38 Пакетов
Обновление 6 Пакетов
Объем загрузки: 156 М
Загрузка пакетов:
```

Рис. 3.13: Установка пакета dkms

Устанавливаю пакет dkms (рис.14).

```
[root@fedora ~]# dnf -y install dkms
Последняя проверка окончания срока действия метаданных: 0:13:25 назад, Пт 23 фев
2024 17:53:08.
Зависимости разрешены.
Архитектура Версия
                                                        Репозиторий Размер
Установка:

    noarch
    3.0.12-1.fc38
    updates
    80 k

    x86_64
    6.7.5-100.fc38
    updates
    16 M

    x86_64
    6.7.5-100.fc38
    updates
    33 M

kernel-modutes-core
Установка зависимостей:
karnel-devel-matched x86_64 6.7.5-100.fc38 updates
                                                                      161 k
Установка слабых зависимостей:
                         x86_64
                                    1:3.0.9-2.fc38
                                                       updates
                                                                      1.0 M
Удаление:
                        x86_64
                                   6.5.12-200.fc38
                                                         @updates
                                                                       65 M
                                     6.5.12-200.fc38
                         x86 64
                                                         @updates
                                                                       30 M
Удаление зависимых пакетов:
                                   6.5.12-200.fc38
                        x86_64
                                                         @updates
                         x86_64
                                    6.5.12-200.fc38
                                                         @updates
                                                                       56 M
                         x86_64
                                   6.5.12-200.fc38
                                                         @updates
                                                                      2.4 M
Результат транзакции
Установка 5 Пакетов
Удаление 5 Пакетов
Объем загрузки: 51 М
Загрузка пакетов:
(1/5): dkms-3.0.12-1.fc38.noarch.rpm 2.0 MB/s | 80 kB
(2/5): kernel-devel-matched-6.7.5-100.fc38.x86_ 1.3 MB/s | 161 kB (3-4/5): kernel-modu 1% [ ] 2.4 MB/s | 813 kB
                                                                   00:20 ETA
```

Рис. 3.14: Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount, устанавливаю драйвера (рис.15).

Рис. 3.15: Примонтирование диска, установка драйверов

В очередной раз перезагружаю виртуальную машину

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис.16).

Рис. 3.16: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис.17).

```
mc[root@fedora]:/etc/X11/xorg.conf.d Q = x

30-keyboard.conf [-M--] 30 L:[ 1+ 7 8/ 11] *(333 / 404b) 0119 0x077 [*][X]
# Written by systemd-localed(8), read by systemd-localed and Xorg. It's
# probably wise not to edit this file manually. Use localectl(1) to
# instruct systemd-localed to update it.

Section "InputClass"

Identifier "system-keyboard"
MatchIsKeyboard "on"
Option "XkbLayout" "us,ru"
Option "XkbLayout" "us,ru"
Option "XkbVariant" ", winkeys"
Option "XkbOptions" "grp:alt_shift_toggle"

EndSection

1Помощь 2Сох-ть 35лок 4Вамена 5Копия 6Пер-ть 7Поиск 8Уда-ть 9МенюМС10Выход
```

Рис. 3.17: Редактирование файла

Перезагружаю виртуальную машину (рис.18).

Рис. 3.18: Перезагрузка виртуальной машины

##Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Устанавливаю pandoc с помощью утилиты dnf (рис.19).

Рис. 3.19: Переключение на роль супер-пользователя, установка pandoc

Устанавливаю дистрибутив texlive (рис.20).

```
Установлен:
  pandoc-2.19.2-21.fc38.x86_64 pandoc-common-2.19.2-21.fc38.noarch

Выполнено!
[root@fedora ~] # dnf -y install texlive-scheme-full

[1] 0:bash* "fedora" 18:33 23-фев-24
```

Рис. 3.20: Установка texlive

##Доп.задания

Ввожу в терминал команду dmesg,чтобы провести анализ моей системы (рис.21)

```
$ 50000) Limit or and Table 1.0 and East 1.0
```

Рис. 3.21: Анализ системы

С помощью команды "dmesg | grep -i " нахожу информацию которою требует от меня задание (рис.22)

```
referritary/montploters | 13 min -1
| United prices pare multi-reporters|
| Consistency | Fare | Pare | Tricks version*
| Consistency | Fare | Tricks version* | Consistency | Consisten
```

Рис. 3.22: Поиск версии ядра

В задании нужно узнать частоту процессора,однако если вводить в поиск "Detected Mhz processor",то тогда программа ничего не выводит.Поэтому в запросе оставляю только ключевое слово "processor" и это работает и мы полчаем результат (рис.23)

```
[root@fedora ~] # dmesg | grep -i "processor"
[    0.000009] tsc: Detected 3110.396 MHz processor
[    0.223873] smpboot: Total of 1 processors activated (6220.79 BogoMIPS)
[    0.272999] ACPI: Added _OSI(Processor Device)
[    0.273001] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 3.23: Поиск частоты процессора

Далее нахожу модель процессора (рис.24)

```
[root@fedora ~]# dmesg | grep -i "CPUO"
[ 0.223257] smpboot: CPUB: 12th Gen Intel(R) Core(TM) i5-12500H (family: 0x6, model: 0x9a, stepping: 0x3)
```

Рис. 3.24: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и с частатой процессора (рис. 25).

Рис. 3.25: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. 26).

[root@fedora ~]# dmesg | grep -i "Hypervisor detected" [0.000000] Hypervisor detected: KVM

Рис. 3.26: Поиск типа обнаруженного гипервизора

4 Выводы

В ходе выполнения данной лабораторной работы я приобрел практические навыки установки операционной системы на виртуальную машину.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

Список литературы

Архитектура компьютеров и ОС/Электронный ресурс