

Lecture#1:

Overview of Micro/Nano Fabrication Process

Overview

Semiconductor Supply Chain

Introduction

Intel, Samsung, TSMC, SK Hynix, Micron, Qualcomm

Semiconductor Equipment Manufacturers

Lam Research, Applied Materials, ASML, KLA-Tencor

What is Nanotechnology?

Introduction

Nanotechnology is the study of manipulating matter on an <u>atomic</u> and <u>molecular</u> scale. Generally, nanotechnology deals with structures sized between 1 to 100 <u>nanometre</u> in at least one dimension, and involves developing materials or devices within that size. (Wikipedia)

How can you make it?

Introduction

Fabrication of structure

The statue is carved by chisel or hammer

Growth of flowers

Traditional method

Traditional Method (Top-down approach: old)

Introduction

How did build up dolmens?

Traditional Method (Top-down approach: current)

Introduction

Deposition

- CVD
- Coating
- Sputtering
- Evaporation
- Bonding
- Plating

Patterning

- UV lithography
 - Stepper
 - Contact aligner (Double side)
- · E-beam lithography
- · X-ray lithography

Etching

- Dry etching
 - Anisotropic
 - Isotropic
- Wet etching
 - Anisotropic
 - Isotropic

Traditional Method (Top-down approach: current)

Target device

Fabrication Process

Innovation

Syllabus

Introduction

Evaluation

- Class participation (10%) / Homework (15%) / Mid-term exam (30%) / Final exam (45%)

Plan

- 1. Overview of Micro/Nano fabrication process
- 2. Essential electrical concepts & basic structure of transistor
- 3. Lithography process
- 4. Oxidation process
- 5. Diffusion process
- 6. Etching (I)
- 7. Etching (II)
- 8. Mid-term exam
- 9. Thin film deposition (I)
- 10. Thin film deposition (II)
- 11. Ion implantation
- 12. Process integration (I)
- 13. Process integration (II)
- 14. Other processes
- 15. Applications
- 16. Final exam

Text book

- Main: "Fundamentals of Semiconductor Fabrication," Gray S. May & Simon M. Sze
- Sub:

"VLSI Technology," Simon M. Sze

"Handbook of thin film deposition process and technology,"
Krishna Seshan

"Micro-machined Transducers: Source Book," Kovacs

"Introduction to Microelectronic fabrication," R. C. Jaeger

"Fundamental of Micro-fabrication," Madou

TA

Jieun Lee (Integrated Ph.D. Student) / leeje1203@dgist.ac.kr

No class

- 3/1 Tue (Independence Movement Day)
- 5/5 Thu (Children's Day)