PS Analysis 3 WS 2024/25

Übungszettel 7 (ODE)

Birgit Schörkhuber

ankreuzbar bis 19.11., 8:00

1. Exakte Differentialgleichung - Integrierender Faktor.

Gegeben sei eine Differentialgleichung der Form

$$F_1(t, u(t)) + F_2(t, u(t))u'(t) = 0, \quad u(t_0) = u_0$$

für $F_1, F_2 \in C(U, \mathbb{R}), U \subset \mathbb{R}^2$ offen und $(t_0, u_0) \in U$.

- (a) Angenommen es existiert ein integrierender Faktor, der nur von t abhängt, also $\mu = \mu(t)$. Finden Sie eine Formel zur Berechnung von μ unter geeigneten Bedingungen an F_1, F_2 .
- (b) Lösen Sie im Falle

$$F_1(t,u) = \frac{t^2 + u^2}{t+1}, \quad F_2(t,u) = 2u$$

 $u(0) = 1 \in \mathbb{R}$ und einem geeigneten $\mu = \mu(t)$.

- 2. Exakte Differentialgleichung und bekannte Probleme.
 - (a) Seien $t_0, u_0 \in \mathbb{R}$, $I, J \subset \mathbb{R}$ Intervalle mit $t_0 \in I$, $u_0 \in J$ und $g \in C^1(I)$, $f \in C^1(J)$. Zeigen Sie, dass das Anfangswertproblem (Typ getrennte Variable)

$$u'(t) = g(t)f(u(t)), \quad u(t_0) = u_0,$$

mit $f(u_0) \neq 0$, als exakte Differentialgleichung in einer hinreichend kleinen Umgebung um t_0 geschrieben werden kann. Finden Sie das zugehörige Potential.

(b) Gegeben Sei eine skalare, lineare, inhomogene Differentialgleichung der Form

$$u'(t) = a(t)u(t) + h(t)$$
 (1.1)

für $a, h \in C(\mathbb{R})$. Zeigen Sie, dass $\mu(t) := e^{-\int a(t)dt}$ ein integrierender Faktor ist. Finden Sie das zugehörige Potential und zeigen Sie, dass dies auf die bekannte Lösungsformel für Gl. (1.1) führt.

3. Picard-Iteration. Gegeben sei das Anfangswertproblem

$$u'(t) = 2tu(t), \quad u(0) = u_0 \in \mathbb{R}.$$

Sei für $n \in \mathbb{N}_0$,

$$u_{n+1}(t) = u_0 + \int_0^t 2su_n(s)ds$$

die zugehörige Picard-Iteration. Finden Sie eine explizite Formel für $u_n, n \in \mathbb{N}$ und beweisen Sie diese durch vollständige Induktion. Berechnen Sie $\lim_{n\to\infty} u_n(t)$.

4. Beweisen Sie den Fixpunktsatz von Weissinger 1 : Sei $(X, \|\cdot\|)$ ein Banachraum und $M \subset X$ abgeschlossen. Sei $K: M \to M$ eine Abbildung, so dass für jedes $n \in \mathbb{N}$ ein $c_n \geq 0$ existiert, so dass

$$||K^n(x) - K^n(y)|| \le c_n ||x - y||$$

für alle $x,y\in M$ gilt und $\sum_{n=1}^{\infty}c_n<\infty$. Dann hat K genau einen Fixpunkt $x^*\in M$ und es gilt die Fehlerabschätzung

$$||K^n(x) - x^*|| \le \left(\sum_{j=n}^{\infty} c_n\right) ||K(x) - x||, \quad x \in M.$$

Hinweis: Zeigen Sie für die Existenz zuerst, dass K^n eine Kontraktion ist für hinreichend großes n. Folgern Sie, dass der Fixpunkt von K^n auch ein Fixpunkt von K ist.

- 5. Lokale Lipschitz-Stetigkeit. Sei $U \subset \mathbb{R} \times \mathbb{R}^d$ offen und $f \in C(U, \mathbb{R}^d)$ lokal Lipschitz-stetig bezüglich des zweiten Arguments. Sei $K \subset U$ kompakt. Beweisen Sie, dass die Einschränkung $f|_K$ von f auf K global Lipschitz-stetig ist bezüglich des zweiten Arguments. Gehen Sie wie folgt vor:
 - (a) Angenommen, die Aussage gilt nicht, d.h., für alle $n \in \mathbb{N}$ existieren $(t_n, x_n), (t_n, y_n) \in K$ mit

$$|f(t_n, x_n) - f(t_n, y_n)| > n|x_n - y_n|.$$
 (1.2)

Folgern Sie die Existenz von Teilfolgen $(t_{n_k}, x_{n_k})_{k \in \mathbb{N}}, (t_{n_k}, y_{n_k})_{k \in \mathbb{N}}$ mit

$$(t_{n_k}, x_{n_k}) \to (t^*, x^*), \quad (t_{n_k}, x_{n_k}) \to (t^*, y^*)$$

wobei $(t^*, x^*), (t^*, y^*) \in K$ gilt. Verwenden Sie Gl. (1.2) und die Stetigkeit von f um $x^* = y^*$ zu schließen.

(b) Aus der lokalen Lipschitz-Stetigkeit von f folgt die Existenz von $\alpha, r > 0$ und L > 0, so dass

$$|f(t,x) - f(x,y)| \le L|x - y|$$

für alle $t \in [t^* - \alpha, t^* + \alpha]$ und alle $x, y \in \overline{B}_r(x^*)$ gilt. Verwenden das Resultat aus Aufgabe (a) und Gl. (1.2), um einen Widerspruch abzuleiten.

 $^{^1{\}rm Johannes}$ Weissinger 1913 - 1995