Cálculo Numérico Lista de Exercícios nº2

1. Localizar, graficamente, as raízes das equações abaixo e isolá-las em intervalos.

(a) $e^x - x^2 + 3x - 2 = 0$ (b) $2^x - 3x = 0$ (c) $x^2 - 1 - \sec x = 0$; (d) $x^2 - 1 - \sec x = 0$; (e) $1/x - 2^x = 0$

- (c) $2 \ln(x) + 0.4x 2 = 0$.
- 2. Justifique que a função:

$$f(x) = \cos\frac{\pi(x+1)}{8} + 0.148x - 0.9062 = 0$$

possui uma raiz no intervalo (-1,0) e outra no intervalo (0,1).

- 3. Seja $x_{i+1} = \phi(x_i)$ um método iterativo para obter aproximações para uma raiz da equação f(x) = 0.
 - (a) Sabendo-se que f(x) = 0 tem uma raiz no intervalo (1.5, 2.5), quais dos métodos iterativos abaixo convergirão para essa raiz? Justifique analiticamente sua resposta.
 - $x_{i+1} = x_i^2 2$;
 - $x_{i+1} = \sqrt{2 + x_i}$;
 - $x_{i+1} = 1 + \frac{2}{x_i}$.
 - (b) Dado $x_0 > 2$, escolha um dos métodos dados acima e determine, graficamente, x_1 e x_2 .
- 4. Sabe-se que a equação $cos(x) e^{-x} = 0$ tem uma raiz ζ no intervalo (1.1, 1.5).
 - (a) Verifique este fato graficamente.
 - (b) Use o Método da Bissecção e determine um intervalo de comprimento ≤ 0.1 que contenha ζ .
 - (c) Tome o centro deste intervalo como aproximação inicial para o Método de Newton e calcule uma aproximação para a raiz ζ com erro $< 10^{-3}$. Use, pelo menos, 06 dígitos significativos.
- 5. Dada a função $f(x) = 2^{x} 5x + 2$,
 - (a) determine um intervalo que contenha um zero desta função;
 - (b) determine este zero, pelo método da bissecção, até que o erro absoluto seja menor que 10^{-1} .
- 6. Seja $p(x) = x^3 2x 1 = 0$.
 - a) Determine um intervalo que contenha a raiz positiva de p(x);
 - b) Use o método bissecção para calcular uma aproximação inicial para o método de Newton com precisão $\varepsilon < 0.1$.

1

c) Calcule a raiz positiva de p(x), pelo método de Newton com $\varepsilon \leq 10^{-3}$.

- 7. A função $f(x) = e^{-x^2}$ possui um ponto fixo (isto é, existe \bar{x} tal que $f(\bar{x}) = \bar{x}$). Determine uma aproximação deste ponto, pelo método de Newton, com $\varepsilon < 10^{-3}$.
- 8. Calcule o zero de $f(x) = x^3 5$ que está no intervalo [1.5, 2], pelo método de Newton, até que $|f(x_i)| < 10^{-2}$.
- 9. Seja $f(x) = e^x 4x^2$ e \bar{x} sua raiz no intervalo (0,1). Tomando $x_0 = 0.5$, encontre \bar{x} com erro relativo $< 10^{-3}$, usando:
 - (a) o MPF com a função de iteração $\varphi(x) = \frac{1}{2} e^{x/2}$;
 - (b) o método de Newton.

Compare a rapidez de convergência.

10. (a) Usando o método de Newton, mostre que a raiz p-ésima de $a,\,a\geq 0$, pode ser calculada pela fórmula de recorrência

$$x_{k+1} = \frac{1}{p} \left((p-1)x_k + \frac{a}{x_k^{p-1}} \right), \text{ com } x_0 > 0.$$

- (b) Calcule uma aproximação de $\sqrt{5}$, usando a fórmula do item (a), com $x_0 = 2$.
- 11. Dada a equação $x \log x 1 = 0$ que possui uma raiz p no intervalo [2,3] e tomando $\varepsilon = 10^{-7}$:
 - (a) Calcule o número de iterações necessárias para se obter uma aproximação para p, com a precisão dada, pelo método da bissecção ;
 - (b) Calcule uma aproximação pelo MPF tomando a função de iteração

$$g(x) = x - 1.3(x \log(x - 1))$$
 e $x_0 = 2.5$;

- (c) Idem pelo método de Newton com $x_0 = 2.5$;
- 12. A equação $f(x) = e^x 3x^2 = 0$ tem tres raízes reais. Considere o método iterativo definido por:

$$x = \pm \sqrt{\frac{e^x}{3}}.$$

- (a) Verifique que, começando com $x_0 = 0$, haverá convergência:
 - i. para a raiz próxima de -0.5, se o valor negativo for usado, e
 - ii. para a raiz próxima de 1.0, se o valor positivo for usado.