

《环境影响评价技术导则 大气环境》 (HJ22-2018)

修订要点 与 条款解读

丁峰

环境保护部环境工程评估中心 国家环境保护环境影响评价数值模拟重点实验室

2006年 - 2018年

	ACEE 2018版大气导则修订机构和任务分工						
序号	单位 名称	分工 性质	研究内容	课题组成员			
1	环境保护部环境工程评估中心	主持	总体修编评价技术体系与方法更新完善排污许可证制度衔接	丁李 易 于 梁 一			
2	中国环境科学研究院	协作	 区域尺度模型及模拟 PM_{2.5}、0₃等二次污染物 模拟方法规范 	孟 凡 唐 伟 党鸿雁			
3	中国环境监测总站	协作	环境质量现状(背景) 浓度的获取、现状监测 方案	王 帅宫正宇			

大气导则宣贯课程设计					
培训内容安排	主讲				
修订背景与政策要求	梁 鹏				
大气导则修订详解	丁峰				
推荐模型标准化及典型项目案例	易爱华				
推荐模型应用与技巧	于华通				
导则在城市污染防治中的应用	李时蓓				
技术答疑	丁峰/陈陆霞				

ACE	ACEE 大气导则修订同步试点单位(2016-2018)					
序号	単位名称	环评资质	试点方向			
1	北京国环清华环境工程设计研究院有限公司	甲级	规划环评			
2	广州市环境保护科学研究院	甲级	规划环评			
3	北京中环博宏环境资源科技有限公司	甲级	项目环评			
4	中环联新 (北京) 环境保护有限公司	甲级	项目环评			
5	北京京诚嘉宇环境科技有限公司	甲级	项目环评			
6	江苏南大环保科技有限公司	甲级	项目环评			
7	山西晋环科源环境资源科技有限公司	甲级	项目环评			

修订背景

- ➤ 2016年12月, 《建设项目环境影响评价技术导则 总 纲HJ2.1-2016》发布
 - 进一步优化环境影响评价文件编制内容,把环境影响评价关注的重点聚焦在建设项目的环境影响和环保措施上。
 - 进一步强化环境影响预测, 在环评文件编制过程中, 准确选取科学合理的预测模式、 方法、参数等, 提高环境影响预测的科学性。

修订背景

- > 2016年,环保部提出《污染物排放许可证实施方案》
 - 提出排污许可制度主要以固定源为管理对象,排污许可应以环境质量改善为根本,整合固定源环境管理的相关制度,将排污许可制度建设成固定源环境管理的核心制度......。
 - 在相关许可制度顶层设计方案中,即已提出"环境影响评价的对接" 按照规定需要编制环境影响评价报告书和报告表的固定源建设项目均 纳入排污许可管理;
 - 排污许可内容与环评管理内容全面对接;
 - 排污许可管理流程与环评"无缝"对接。<mark>环境影响评价是颁发许可证的先决条件</mark>,环评批复是合法许可证的重要判据与时间节点。

- 修订要求
- 召开专家研讨会,制 定详细工作方案

形成征求意见稿 (2017.1-2017.7)

- ✓ 7家环评单位200多个 案例测算对比分析
- 函调、专家咨询、讨 论会形式征求意见
- ✓ 8月7日环保部发布征 求意见稿

开题论证会 (2016.3-2016.4)

- ✓ 召开导则开题论证会
- ✓ 明确标准修订的方向
- ✓ 确定技术路线及重点

送审稿修改 (2017.8-2017.11)

- ✓ 征求113家部委、环保 部门、科研机构、环 评单位意见
- ✓ 反复修改完善导则和 补充核算、试算

编制导则初稿 (2016.5-2016.12)

- ✓ 编制导则修订初稿
- ✓ 广泛征求试点单位意见
- ✓ 修订完善导则初稿
- ✓ 建立模型技术支持体系

- ✓ 评估中心技术审查、修 改
- ✓ 环评司组织专家审查
- ✓ 环保部各司会签, 反复 沟通(大气司、规财司、 法规司)

2008版导则	2018版导则	主要变化
1 适用范围	1 适用范围	内容一致
2 规范性引用文件	2 规范性引用文件	新增近年新发布规范文件
3 术语和定义	3 术语和定义	新增、调整部分术语
4 总则	4 总则	体现新的管理 (排污许可) 要求
5 评价工作等级及评价范围	5 评价等级及评价范围确定	评价等级更新估算模型;考虑复 杂地形影响的估算
6 污染源调查与分析	6 环境空气质量现状调查与评价	强化环境质量现状调查内容,简 化现状监测内容 新增二次污染物评价因子
7 环境空气质量现状调查与评价	7 污染源调查	预测二次污染物需调查污染源清 单
8 气象观测资料要求	8 大气环境影响预测与评价	增加二次污染物预测模型、与评价方法及要求
9 大气环境影响预测与评价	O DC 100 OCON COLONIA DE LA CO	改进大气环境防护距离确定方法, 调整作为影响预测的一部分;增
10 大气环境防护距离	9 环境监测计划	量控制 区别考虑达标区和不达标区
11 大气环境影响评价结论 与建议	10 大气环境影响评价结论与建议	新增污染物排放量核算结果
附录A 推荐模式清单 附录B 估算模式所需参数及 说明 附录C 报告书附图、附表及 附件要求	附录A 推荐模型清单 附录B 推荐模型参数及说明 附录C 大气环境影响评价基本内容与图表 附录D 其他污染物空气质量浓度参考限值 附录E 建设项目大气环境影响评价自查表	推荐模型新增网格模型 (CMAQ等), 新增各模型的参数使用规范 新增污染物核算规范表格 新增推荐其他污染物空气质量浓度 参考限值 新增 建设项目大气环境影响评价 自查表

▶ 评价等级和评价范围变化:

- 估算模型升级为AERSCREEN模型,并考虑复杂地形对结果的影响
- 原一级、二级评价合并为"一级评价",原"三级评价"等效"二级评价",新增最大影响<1%直接判定为影响很小,作为"三级评价"。

估算结果	2008版导则	2018版导则
$P_{\max} \geqslant 10\%$	一级	一级评价
max / 10/	二级	(需进一步预测、评价)
P _{max} < 10%	— (n	二级评价
D /10/	三级	(不进行进一步预测, 只核算排放量)
P_{\max} <1%		三级评价(不进行预测、监测、评价)

- > 规范环境质量背景浓度的获取途径和计算方法:
 - 参考国家发布的环境空气质量评价方法: HJ 663 环境空气质量评价技术 规范(试行)、HJ 664 环境空气质量监测点位布设技术规范(试行)
 - 六种基本污染物(基本上)取消现状环评现场监测,以国家或地方环境主管部门公开发布的环境质量现状数据,作为区域环境质量背景。
 - 项目排放的其它污染物,没有例行监测数据的,补充监测。监测点位 缩减为1-2个监测点,至少应取得7天有效数据。

说明

例行监测数据一般来源: 近三年内**《中国环境质量报告》**

主要修订内容

- ▶ 对大气环境影响评价模型和预测方法进行修订:
 - 推荐适合PM_{2.5}、O₃环境影响评价的预测模型、评价方法等相关技术方法。
 - 推荐模型新增 网格模型 (CMAQ等,用于区域尺度 PM_{2.5}、O₃ 预测模拟)和特殊污染源适用模型 (Austal 2000、EDMS/AEDT)
 - 对环评中的环境影响预测从模型的筛选、参数的获取、计算方法和评价内容、评价方法进行更为细致、系统和规范的规定。
 - 重新规定了"大气环境防护距离"的确定方法。

> 大气环境影响评价方法进行修订

- 评价结论的判定,以环境质量改善为导向,调整、优化。
- 强调在达标区、不达标区的不同评价要求和评价技术方法
- 非达标区: 大气环境质量限期达标规划
- 新增环境空气质量增量控制要求:基本污染物长期浓度增量(贡献值)
 最大占标率小于30%(其中一类区小于10%)。

> 与排污许可证制度对接

规范大气环境影响评价结果及结论,满足排污许可证制度与环境影响 评价有效衔接的管理需求

ACEE	具体修订内容
修订导则章节	主要修订内容
1 适用范围	• 在相关环境影响预测评价章节中体现对规划环评的技术要求。
2 规范性引用文件	增加: HJ 130 规划环境影响评价技术导则 总纲 HJ 663 环境空气质量评价技术规范 (试行) HJ 664 环境空气质量监测点位布设技术规范 (试行) HJ 819 排污单位自行检测技术指南 (总则) HJ 942 排污许可证申请与核发技术规范 (总则) 删除: TJ 36-79
3 术语和定义	 增加:短期浓度、长期浓度、空气质量模型 调整:常规污染物/基本污染物、特征污染物/其他污染物 删除:长期气象条件、特殊风场、复杂地形、复杂风场、大气环境防护距离
4 总则	• 增加: 新的管理政策(排污许可,自行监测)的管理要求
5 评价等级与评价 范围	• 修改: 估算模型更新; 评价因子; 增加地形参数要求

ACEE	具体修订内	容	
修订导则章节	修订导则章节 主要修订内容		
5 评价等级及评价范围确定	 评价因子增加二次污染物(二次PM_{2.5}和O₃) 引入AerScreen替代ISCScreen3估算模式 报告书项目考虑地形参数 调整等级分级,(环境影响)小微项目进一步简化 		
表 二次污染物评价因子筛选			
污染物排放量(吨/年) 二次污染物评价因子			
硫氧化物+氮氧化物≥500		二次PM _{2.5}	
氮氧化物+挥发性有机物≥2000		O ₃ (规划环评)	

不同评价等级工作量					
	一级评价	二级评价	三级评价		
评价范围	5~50km	5km	/		
敏感点调查	√	√	/		
环境质量现状	达标情况 现状监测数据	达标情况 现状监测结果	达标情况		
补充监测	√	√	/		
污染源调查	现有、新增、替代、 区域、外部交通源	现有、新增、替代	现有、新增、替代		
预测与评价	进一步预测	/	/		
环境防护距离	√	/	/		
排放量核算	√	√	/		
环境监测	污染源监测 + 环境质量	污染源监测	参照简化		

具体修订内容				
修订导则章节	主要修订内容			
• 6 环境空气质量现状 调查与评价 (原第7章)	 区域达标评价:以总站或地方发布城市环境质量公报或城市环境质量报告为依据 6种基本污染物取消现状环评现场监测,采用县级以上环境质量例行监测数据作为代表区域环境质量现状背景; 其它污染物进行现状监测。监测点位参考HJ 664技术要求,缩减为1-2个监测点,至少应取得7天有效数据。 监测布点主要选择在厂址附近及下风向5km,1-2个点。 			
环境空气质量现状调查内容: • 所在区域环境质量达标情况 • 各评价因子环境质量现状浓度数据(逐日日均浓度数据)				

ACEE 条款解读						
> 环境质量现状调查	▶ 环境质量现状调查要求:					
	一级评价	二级评价	三级评价			
达标区判定	√	√	√			
环境质量现状数据 (统计结果)	√	√	/			
计算点现状数据 (逐日数据)	V	/	/			
补充监测	√	√	/			

ACEE	具体修订内容
修订导则章节	主要修订内容
• 7 污染源调查 (原第6章)	 建设项目环评污染源调查:源强核算指南、排污许可(从严) 采用网格模型预测二次污染物的:区域污染源排放清单 編制报告书的工业项目调查:受影响新增交通运输移动源 不需进一步预测的项目:只调查本项目新增、替代污染源 新建城市快速路、主干路:交通流量和污染物排放量
原:8气象观测资 料要求	正文中取消对气象观测资料的要求内容列入到附录中各模型对气象资料的要求

具体修订内容

修订导则章节

主要修订内容

- 增加了推荐适合PM_{2.5}、O₃环境影响评价的预测模 8 大气环境影响预测与评价型、评价方法等相关技术方法
 - 推荐模型清单以附录A和B的形式列出

二次污染物预测模型选择

环评 类别	污染物排放量(吨/年)	预测污染物	模型选择与分析方法
建设项目/	500≤硫氧化物+氮氧化物	PM _{2.5}	AERMOD/ADMS (系数法)
规划项目	200 - NIDTVICID XVTVICID	2.5	或Calpuff
+m.b.u.= co	硫氧化物+氮氧化物≥2000	PM _{2.5}	网格模型,如CMAQ
规划项目	氮氧化物+挥发性有机物 ≥ 2000	\mathbf{O}_3	网格模型,如CMAQ

ACEE	具体修订内容
修订导则章节 8 大气环境影响预测与评价 8.1 一般性要求 8.2 预测因子 8.3 预测范围 8.4 预测周期 8.5 预测模型 8.6 预测方法 8.7 预测与评价内容 8.8 评价方法 8.9 评价结果表达	主要修订内容 分别针对达标区域的新增污染源项目、不达标区域的新增污染源项目、以新带老改建项目、区域规划、新源排放量核算和大气环境防护距离进行了评价内容、评价方法、结果表达和预测结果的规定 叠加现状环境质量后,分析年均值和保证率下日均浓度的达标情况 新增源排放量按分达标区和非达标区对新源进行环境影响评价。
原 10 大气环境防护距离	• 正文取消该章节,相关内容合并到第8章。

> 与排污许可证制度无缝对接

- 结合排污许可证制度的进一步推广实施,规范大气环境影响评价结果 及结论,满足排污许可证制度与环境影响评价有效衔接的管理需求
- 强调"达标排放"、"措施可行";包括排放浓度和排放总量!
- 强调"排放量"核算符合环境改善目标,环境影响评价结论为"环境 影响可以接受"。

$$E_{\pm i \pm i \pm i \pm i} = \sum_{i=1}^{n} \left(M_{i = 100} \times H_{i = 100} \right) / 1000 + \sum_{j=1}^{m} \left(M_{j = 100} \times H_{j = 100} \right) / 1000$$

式中: E = 项目年排放量, t/a:

 $M_{i, \hat{\eta}$ 越級 ——第 i 个有组织排放源排放速率,kg/h;

 $H_{i \hat{\pi}}$ = 二第 i 个有组织排放源年有效排放小时数,h/a;

 M_{j 无地版 ——第j 个无组织排放源排放速率,kg/h; H_{j} 无组织排放源全年有效排放小时数,h/a。

附录C. 6 污染源排放量核算

表C.31 大气污染物有组织排放申核算表

表C.32 大气污染物无组织排放量核算表

表C.30 大气污染物有组织排放核算表

表C.33 大气污染物年排放量核算表

表C. 33 污染源非正常排放量核算表

排污许可证申请与核发技术规范 总则 (HJ 942-2018)

5.2 许可排放限值

5.2.1 一般原则

2015 年1 月1 日及以后取得环境影 响评价审批意见的排污单位,许可 排放量还应同时满足环境影响评价 文件和审批意见确定的排放量的要 求。

종	州以口納寸	17500	(μg/m³)	(kg/h)	(t/a)					
			主要排放口							
	•		SO ₂	\$O ₂						
			NO _s							
主	要排放口合计		颗粒物							
			一般排放口							
					I					
					1					
-	投排放口合计									
			有组织排放总计							
	SO:									
	NO,									
有	有组织排放总计 颗粒物									
VOCs										
					THE RESERVE OF THE PARTY OF THE					

具体修订内容							
导则章节	主要修订内容						
9 环境监测计划 (新增)	一级评价: HJ819污染源监测+环境质量监测二级评价: HJ819污染源监测三级评价: 适当简化						
10 大气环境影响评价结论与建议	规范输出结果与评价结论新增新源排放量核算的内容和输出结果要求						
附录A(规范性附录)推荐模式清单 附录B(规范性附录)估算模式所需 参数及说明 附录C(规范性附录)报告书附图、 附表及附件要求	 ・ 附录A 推荐模型清单 ・ 附录B 推荐模型参数及说明 ・ 附录C 大气环境影响评价基本内容与图表 ・ 附录D 其他污染物空气质量浓度参考限值 ・ 附录E 建设项目环境影响评价自查表 						

	》 附录D 其他	污染物质量浓度	参考限值							
编号	污染物名称	标准值(mg/m³)								
2M C	75年70日初	1小时平均	8小时平均	24小时平均						
1	氨	200								
2	苯	110								
3	苯胺	100		30						
4	苯乙烯	10								
5	吡啶	80								
6	丙酮	800								
7	丙烯腈	50								
8	丙烯醛	100								
9	二甲苯	200								
10	二硫化碳	40								
11	环氧氯丙烷	200								
12	甲苯	200								
13	甲醇	3000		1000						
14	甲基对硫磷	50								
14	甲醛	10								
15	硫化氢	300		100						
16	硫酸	100		30						
17	氯	100								
18	氯丁二烯	50		15						
19	氯化氢			10						
20	锰及其化合物(换算成MnO ₂)	150		50						
21	五氧化二磷	10								
22	硝基苯	10								
23	乙醛		600							
24	总挥发性有机物(TVOC)	200								

▶ 附录D 其他污染物质量浓度参考限值

- 标准参考依据: TJ36-79、 GB/T18883 (《室内空气质量标准》)
- 《环境空气质量标准》(GB3095-2012)已有标准的,执行GB3095,相 关污染物限值不列入附录E。
- 《室内空气质量标准》(GB/T18883-2002)严于TJ36-79标准的,执行 GB/T18883,相关污染物限值列入附录D。
- 共筛选24种污染物短期浓度限值作为附录D

T作内容					自查项目				
评价等级与	评价等级		-級□			-級□		三級	
范围	评价范围	边长=50km□			边长 5~50km			边长=5	km□
	SO2+NOx排放量	≥ 2000t/a□			500 ~ 2000t/a□		<500 t/a□		
评价因子	评价因子	基本污染物(其他污染物() 7			包括二次 PM₂₃□ 不包括二次 PM₂₃□	
评价标准	评价标准	国家	示准□	地方	i标准 □	附录 D		其他	标准 🗆
	环境功能区	- - - - - - - - - - - - - -			=3	英区□ 一类区和二类区		类区口	
	评价基准年	765			()	年			
现状评价	环境空气质量 现状调查数据来源	长期例行监测数据□		居口	主管部门	主管部门发布的数据口		现状补充监测口	
	現状评价	达标区□					不达	₩区□	
污染源 调查	调查内容	本项目正常排放源 □ 本项目非正常排放源 □ 拟替付 现有污染源 □		□ 拟替代	的污染源口	污染源口 其他在建、拟 污染源口			
	预测模型	AERMOD	ADMS	AUSTAL:	2000 EDMS/	AEDT CALPU	JFF	网格模型	其他
	预测范围	边长≥ 50km□			边长 5~50km □			边长 = 5 km □	
	预测因子	预测因子(包括二次 PM₂ □不包括二次 PM₂ □				
	正常排放短期浓度 贡献值	C _{本項目} 最大占标室≤100			%□ C _{本項目} 最大占标率>100% □				
大气环境影 响预测与	正常排放年均浓度	—类区 C _{本項目} 最大占标率≤1			≤10%□	10%□ C _{本項目} 最大标率>109			
评价	贡献值	二类区			≤30%□	630%□ C _{本項目} 最大		大标车>30% □	
环境监测计划	非正常排放 1h 浓度 贡献值	非正常持续时长			00%□				
	保证室日平均浓度和 年平均浓度叠加值	c _{量加} 达标 □				C _{量加} 不达标 □			
	区域环境质量的整体 变化情况	k ≤-20% □			k >-20% □				
	污染源监测	监测因子:()			组织废气监测 🗆 组织废气监测 🗆		无	监测口	
	环境质量监测	监测因子:() 监测点位数()			无法	监测口			
	环境景响	可以接受 口 不可以接受 口							
评价结论	大气环境防护距离	距 () 厂界最远 () m							
1	污染源年排放量	SO ₂ : () t/a	SO:: () t/a NO:: () t/a 颗粒物: () t/a VOC:: () t/a) t/a

