Math 435 08/27/2025 Notes

August 27, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Definition 1. We define the discrete metric to be

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y. \end{cases}$$
 (1)

.

Definition 2. We define the taxical metric on \mathbb{R}^n to be

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
 (2)

Proposition 1. The Taxicab Metric satisfies the triangle inequality.

Proof:

$$d(x,z) = \sum_{i=1}^{n} |x_i - z_i|$$
 (3)

$$= \sum_{i=1}^{n} |x_i - y_i + y_i - z_i| \le \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i|$$
(4)

$$= d(x,y) + d(y,z), \tag{5}$$

as desired.

Definition 3. We define the Chebychev (Max) metric on \mathbb{R}^n to be:

$$d(x,y) = \max\{|x_i - y_i| : i \in 0 \dots n\}$$
(6)

.

Definition 4. We define the edit distance on strings of characters to be the number of pointwise differences between letters in the word. A special version of this is called the Hamming distance.

Definition 5. We define the Hamming distance on polynomials in $\mathbb{Z}_2[x]$ to be

$$d(f,g) = \sum_{i=1}^{n} (f \oplus g)i \tag{7}$$

where \oplus denotes the 'XOR' operator.

defined as

Definition 6. We define the sup metric on the set of functions $f:[a,b] \to \mathbb{R}$ to be

$$d(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)| \tag{8}$$

Definition 7. Given a metric space (X,d), the open ball of radius r centered at $x_0 \in X$ is

$$B(x_0; r) = \{ y \in X | d(x_0, y) < r \}.$$
(9)

Definition 8. Given a metric space (X,d), the closed ball of radius r centered at $x_0 \in X$ is defined as

$$\overline{B(x_0; r)} = \{ y \in X | d(x_0, y) \le r \}.$$
(10)

Examples of Closed Balls Under These Metrics

 L_2 Norm on \mathbb{R}^2 , $\overline{B((0,0),1)}$:

Figure 1: Euclidean Closed Ball

Taxicab Metric on \mathbb{R}^2 , $\overline{B((0,0),1)}$:

Figure 2: Taxicab Closed Ball

Max Metric on \mathbb{R}^2 , $\overline{B((0,0),1)}$:

Figure 3: Chebychev Open & Closed Ball