3/1/2019 Reaction Mechanisms Most mus don't occur in a single step - there is a series of simpler, elementary steps -> The Mechanism. ex: Overall run: 203(g) -> 302(g) mechanism: (1) $O_3(g) \longrightarrow O_2(g) + O(g)$ elementary (2) O(g) + O3(g) -> O2(g) + O2(g) the achial collisions that happen! collisions that happen.

Sum of

203(g) - O(g) - 302(g) + O(g) } elem. steps

overall run Rate laws for elementary steps - Can not write / deduce rate law for overall ran - But, we can write rate laws for individual, ELEMENTARY STEPS! Classify elementary steps according to # moleculus colliding
- Molecularity

© 2017 Pearson Education, Inc.

A -> Product UNIMOLECULAR		
A+A -> Product BIMOLECULAR		
A+B -> "		
A + B+C -> Products TERMOLECULAR		
2A+B -> "		
$3A \longrightarrow 11$		
rate & conc. of each reactant		
ex: A+B->P, rate=K[A][B]		
$2A \rightarrow P$, $at = K[A][A] = K[A]$		
A+A = KEA32		
Rate Determining Step (RDS) + Overall rach law		
- often, one elementary step is SLOW		
+ it determines overall or rate. A		
Rate Determining Step.		
Rate Determining Step. (bottleneck)		

TABLE 14.3 Rate Laws for Elementary Steps			
Elementary Step	Molecularity	Rate Law	
A → products	1	Rate = $k[A]$	
$A + A \longrightarrow products$	2	Rate = $k[A]^2$	
$A + B \longrightarrow products$	2	Rate = $k[A][B]$	
$A + A + A \longrightarrow products$	3 (rare)	Rate = $k[A]^3$	
$A + A + B \longrightarrow products$	3 (rare)	Rate = $k[A]^2[B]$	
$A + B + C \longrightarrow products$	3 (rare)	Rate = k[A][B][C]	

^{© 2017} Pearson Education, Inc.

Energy Diagram for a Two-Step Mechanism

Because E_a for Step 1 > E_a for Step 2, Step 1 has the smaller rate constant and is rate limiting.

© 2017 Pearson Education, Inc.

uncatalyzed EA 203 302 cat ven budren

Energy Diagram for Catalyzed and Uncatalyzed Pathways

Reaction progress