21-640

Functional Analysis

Spring 2013

Take-Home Midterm Exam Due on Friday, March 29 at 5:00 PM

- 1. Let $\mathbb{K} = \mathbb{R}$ for definiteness. Determine whether or not $\mathcal{L}(l^2; l^2)$ is separable.
- 2. Prove or Disprove: Assume that X and Y are normed linear spaces and let a linear mapping $T: X \to Y$ be given. Assume further that for every sequence $\{x_n\}_{n=1}^{\infty}$ in X with $x_n \to 0$ as $n \to \infty$, the sequence $\{Tx_n\}_{n=1}^{\infty}$ is bounded in Y. Then T is continuous.
- 3. Let X be a Banach space and Y, Z be closed subspaces of X. Assume that for every $x \in X$ there is a unique pair $(y, z) \in Y \times Z$ such that x = y + z. Define $T, L: X \to X$ by

$$\forall x \in X, \ x = Tx + Lx, \ Tx \in Y, \ Lx \in Z.$$

Show that $T, L \in \mathcal{L}(X; X)$.

- 4. Let X be a Banach space with dual space X^* , $\{x_n\}_{n=1}^{\infty}$ and $\{x_n^*\}_{n=1}^{\infty}$ be sequences in X and X^* , respectively, and let $x \in X$, $x^* \in X^*$ be given.
 - (a) Show that if $x_n^* \to x^*$ (strongly) as $n \to \infty$ and $x_n \rightharpoonup x$ (weakly) as $n \to \infty$, then $\langle x_n^*, x_n \rangle \to \langle x^*, x \rangle$ as $n \to \infty$.
 - (b) Show that if $x_n^* \stackrel{*}{\rightharpoonup} x^*$ (weakly*) as $n \to \infty$, and $x_n \to x$ (strongly) as $n \to \infty$, then $\langle x_n^*, x_n \rangle \to \langle x^*, x \rangle$ as $n \to \infty$.
- 5. Let X be a Banach space and $T: X \to X$ be a linear mapping such that $T^2 = T$. Show that T is continuous if and only if $\mathcal{N}(T)$ and $\mathcal{R}(T)$ both are closed.
- 6. Let $(X, ||\cdot||)$ be a Banach space and let $|||\cdot|||$ be a norm on X such that there exists $K \in \mathbb{R}$ for which

$$|||x||| \le K||x||$$
 for all $x \in X$.

(Notice that $(X, |||\cdot|||)$ may be incomplete.) Let M>0 be given, put

$$Z = \{x \in X : ||x|| \le M\}$$

and define the metric ρ on Z by

$$\rho(x,y) = |||x - y||| \text{ for all } x, y \in Z.$$

- (a) Show that if X is reflexive then (Z, ρ) is complete.
- (b) Show, by giving an example, that (Z, ρ) can be incomplete if X is not reflexive.
- 7. Give an example of a Banach space X and a sequence $\{K_n\}_{n=1}^{\infty}$ of bounded subsets of X satisfying the following conditions
 - (i) $\forall n \in \mathbb{N}, K_n \neq \emptyset, K_n \text{ is closed}, K_n \text{ is convex},$
 - (ii) $\forall n \in \mathbb{N}, K_{n+1} \subset K_n$,

(iii)
$$\bigcap_{n=1}^{\infty} K_n = \emptyset.$$

8. Let X and Y be Banach spaces and assume that $T: X \to Y$ is a continuous linear surjection. Show that there exists $M \in \mathbb{R}$ with the following property: For every convergent sequence $\{y_n\}_{n=1}^{\infty}$ in Y there is a convergent sequence $\{x_n\}_{n=1}^{\infty}$ in X such that

$$\forall n \in \mathbb{N}$$
, we have $y_n = Tx_n$ and $||x_n|| \le M||y_n||$.

- 9. Let X be a normed linear space and K be a convex absorbing subset of X. Show that the Minkowski functional p^K is continuous if and only if 0 is an interior point of K.
- 10. Prove or Disprove: Let X be a Banach space and $x^{**} \in X^{**}$ be given. Let $\{x_n^*\}_{n=1}^{\infty}$ be a sequence in X^* and $x^* \in X^*$ be given. Assume that $x_n^* \stackrel{*}{\rightharpoonup} x^*$ (weakly*) as $n \to \infty$. Then $x^{**}(x_n^*) \to x^{**}(x^*)$ as $n \to \infty$.