Instructor's Solutions Manual to accompany

INTRODUCTORY CIRCUIT ANALYSIS

Tenth Edition

Robert L. Boylestad

Upper Saddle River, New Jersey Columbus, Ohio

Copyright © 2003 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Instructors of classes using Boylestad, *Introductory Circuit Analysis, Tenth Edition*, may reproduce material from the instructor's solutions manual for classroom use.

Contents

CHAPTER 1 (Odd)	1
CHAPTER 1 (Even)	4
CHAPTER 2 (Odd)	8
CHAPTER 2 (Even)	11
CHAPTER 3 (Odd)	13
CHAPTER 3 (Even)	17
CHAPTER 4 (Odd)	21
CHAPTER 4 (Even)	24
CHAPTER 5 (Odd)	27
CHAPTER 5 (Even)	31
CHAPTER 6 (Odd)	35
CHAPTER 6 (Even)	41
CHAPTER 7 (Odd)	46
CHAPTER 7 (Even)	52
CHAPTER 8 (Odd)	58
CHAPTER 8 (Even)	67
CHAPTER 9 (Odd)	77
CHAPTER 9 (Even)	87
CHAPTER 10 (Odd)	99
CHAPTER 10 (Even)	108
CHAPTER 11 (Odd)	116
CHAPTER 11 (Even)	119
CHAPTER 12 (Odd)	123
CHAPTER 12 (Even)	130
CHAPTER 13 (Odd)	139
CHAPTER 13 (Even)	143
CHAPTER 14 (Odd)	146
CHAPTER 14 (Even)	152

CHAPTER 15	(Odd)	157
CHAPTER 15		168
CHADTED 16	(Odd)	181
CHAPTER 16		184
CHAPTER 16	(Even)	104
CHAPTER 17	(Odd)	188
CHAPTER 17		196
CHAPTER 18	(Odd)	207
CHAPTER 18		221
CHAPTER 19	(Odd)	236
CHAPTER 19		242
CIIIII ILIK 15	(2102)	
CHAPTER 20	(Odd)	248
CHAPTER 20		256
CHAI ILK 20	(Even)	
CHAPTER 21	(Odd)	263
CHAPTER 21		267
CHAI ILK 21	(Even)	
CHAPTER 22	(Odd)	270
CHAPTER 22	·	278
OIII 121 22	(_ , , _ ,	
CHAPTER 23	(Odd)	285
CHAPTER 23		301
CHAPTER 24	(Odd)	316
CHAPTER 24	·	320
	(- · 7	
CHAPTER 25	(Odd)	324
CHAPTER 25		329
	<u></u>	
CHAPTER 26	(Odd)	334
CHAPTER 26	•	340
	\ '	

CHAPTER 1 (Odd)

5.
$$12 \text{ min} \left[\frac{15 \text{ min}}{\text{min}} \right] \left[\frac{1 \text{ h}}{60 \text{ min}} \right] = 3 \text{ h}$$

7. CGS

9. MKS, CGS:
$$^{\circ}C = \frac{5}{9}(^{\circ}F - 32) = \frac{5}{9}(68 - 32) = \frac{5}{9}(36) = 20^{\circ}$$

K: $K = 273.15 + ^{\circ}C = 273.15 + 20 = 293.15$

11.
$$0.5 \text{ yd} \left[\frac{3 \text{ fd}}{1 \text{ yd}} \right] \left[\frac{12 \text{ inf.}}{1 \text{ ft}} \right] \left[\frac{2.54 \text{ cm}}{1 \text{ inf.}} \right] = 45.72 \text{ cm}$$

13. a.
$$15 \times 10^3$$

b.
$$30 \times 10^{-3}$$
 c. 7.4×10^{6}

c.
$$7.4 \times 10^6$$

d.
$$6.8 \times 10^{-6}$$

e.
$$402 \times 10^{-6}$$

e.
$$402 \times 10^{-6}$$
 f. 200×10^{-12}

15. a.
$$(10^2)(10^2) = 10^4$$

a.
$$(10^2)(10^2) = 10^4$$
 b. $(10^{-2})(10^3) = 10$ c. 10^9

d.
$$(10^3)(10^{-5}) = 10^{-2}$$

$$(10^{-6})(10 \times 10^6) = 10$$

d.
$$(10^3)(10^{-5}) = 10^{-2}$$
 e. $(10^{-6})(10 \times 10^6) = 10$ f. $(10^4)(10^{-8})(10^{35}) = 10^{31}$

17. a.
$$\frac{10^2}{10^3} = 10^{-1}$$
 b. $\frac{10^{-2}}{10^2} = 10^{-4}$ c. $\frac{10^4}{10^{-5}} = 10^9$

b.
$$\frac{10^{-2}}{10^2} = 10^{-2}$$

c.
$$\frac{10^4}{10^{-5}} = 10^9$$

d.
$$\frac{10^{-7}}{10^2} = 10^{-9}$$

e.
$$\frac{10^{38}}{10^{-4}} = 1042$$

d.
$$\frac{10^{-7}}{10^2} = 10^{-9}$$
 e. $\frac{10^{38}}{10^{-4}} = 1042$ f. $\frac{(10^2)^{1/2}}{10^{-2}} = \frac{10^1}{10^{-2}} = 10^3$

19. a.
$$(10^2)^3 = 10^6$$

b.
$$(10^{-4})^{1/2} = 10^{-2}$$

c.
$$(10^4)^8 = 10^{32}$$

c.
$$(10^4)^8 = 10^{32}$$
 d. $(10^{-7})^9 = 10^{-63}$

21. a.
$$(-10^{-3})^2 = 10-6$$

b.
$$\frac{(10^2)(10^{-4})}{10} = \frac{10^{-2}}{10} = 10^{-3}$$

c.
$$\frac{(10^{-3})^2(10^2)}{10^4} = \frac{(10^{-6})(10^2)}{10^4} = \frac{10^{-4}}{10^4} = 10^{-8}$$
 d.
$$\frac{(10^2)(10^4)}{10^{-3}} = \frac{10^6}{10^{-3}} = 10^9$$

d.
$$\frac{(10^2)(10^4)}{10^{-3}} = \frac{10^6}{10^{-3}} = 10^9$$

e.
$$\frac{(10^{-4})^3(10^2)}{10^6} = \frac{(10^{-12})(10^2)}{10^6} = \frac{10^{-10}}{10^6} = \mathbf{10^{-16}}$$

f.
$$\frac{\left[(10^2)(10^{-2}) \right]^{-3}}{\left[(10^2)^2 \right] [10^{-3}]} = \frac{1}{(10^4)(10^{-3})} = \frac{1}{10} = 10^{-1}$$

23. a.
$$6 \times 10^3 = 0.006 \times 10^{+6}$$

b.
$$4 \times 10^{-4} = 400 \times 10^{-6}$$

c.
$$50 \times 10^5 = \underline{5000} \times 10^3 = \underline{5} \times 10^6 = \underline{0.005} \times 10^9$$

d.
$$30 \times 10^{-8} = 0.0003 \times 10^{-3} = 0.3 \times 10^{-6} = 300 \times 10^{-9}$$

25. a.
$$1.5 \text{ min} \left[\frac{60 \text{ s}}{1 \text{ min}} \right] = 90 \text{ s}$$

b.
$$0.04 \text{ M} \left[\frac{60 \text{ pain}}{1 \text{ M}} \right] \left[\frac{60 \text{ s}}{1 \text{ pain}} \right] = 144 \text{ s}$$

c.
$$0.05 \text{ s} \left[\frac{1 \mu \text{s}}{10^{-6} \text{ s}} \right] = 0.05 \times 10^6 \mu \text{s} = 50 \times 10^3 \mu \text{s}$$

d.
$$0.16 \text{ pf} \left[\frac{1 \text{ mm}}{10^{-3} \text{ pf}} \right] = 0.16 \times 10^3 \text{ mm} = 160 \text{ mm}$$

e.
$$1.2 \times 10^{-7} \text{ s} \left[\frac{1 \text{ ns}}{10^{-9} \text{ s}'} \right] = 1.2 \times 10^2 \text{ ns} = 120 \text{ ns}$$

f.
$$3.62 \times 10^6 \text{ s} \left[\frac{1 \text{ min}}{60 \text{ s}} \right] \left[\frac{1 \text{ M}}{60 \text{ min}} \right] \left[\frac{1 \text{ day}}{24 \text{ M}} \right] = 41.898 \text{ days}$$

g.
$$1020 \text{ pm} \left[\frac{10^{-3} \text{ m}}{1 \text{ pm}} \right] = 1.02 \text{ m}$$

27. a.
$$100 \text{ inf.} \left[\frac{1 \text{ m}}{39.37 \text{ inf.}} \right] = 2.54 \text{ m}$$
 b. $4 \text{ fr.} \left[\frac{12 \text{ inf.}}{1 \text{ fr.}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ inf.}} \right] = 1.219 \text{ m}$

b.
$$4 \text{ ft} \left[\frac{12 \text{ jd.}}{1 \text{ ft}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ jgc.}} \right] = 1.219 \text{ m}$$

c.
$$6 \text{ pb} \left[\frac{4.45 \text{ N}}{1 \text{ pb}} \right] = 26.7 \text{ N}$$

d.
$$60 \times 10^3$$
 dynes $\left[\frac{1 \text{ N}}{10^5 \text{ dynes}}\right] \left[\frac{1 \text{ lb}}{4.45 \text{ N}}\right] = 0.1348 \text{ lb}$

e.
$$150,000 \text{ cm} \left[\frac{1 \text{ jm}}{2.54 \text{ cm}} \right] \left[\frac{1 \text{ ft}}{12 \text{ jm}} \right] = 4921.26 \text{ ft}$$

f.
$$0.002 \text{ par} \left[\frac{5280 \text{ ft}}{1 \text{ par}} \right] \left[\frac{12 \text{ jar}}{1 \text{ ft}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ jar}} \right] = 3.2187 \text{ m}$$

g.
$$7800 \text{ pr} \left[\frac{39.37 \text{ jnr.}}{1 \text{ pr}} \right] \left[\frac{1 \text{ yd}}{12 \text{ jnr.}} \right] \left[\frac{1 \text{ yd}}{3 \text{ fr}} \right] = 8530.17 \text{ yds}$$

29. 299,792,458
$$\underset{s}{\text{pr}} \left[\frac{39.37 \text{ jm}}{1 \text{ pr}} \right] \left[\frac{1 \text{ fir}}{12 \text{ jm}} \right] \left[\frac{1 \text{ mi}}{5280 \text{ fir}} \right] \left[\frac{60 \text{ sr}}{1 \text{ min}} \right] \left[\frac{60 \text{ min}}{1 \text{ h}} \right]$$

$$= 670,615,288.1 \text{ mph} \cong 670.62 \times 10^6 \text{ mph}$$

31.
$$100 \text{ yels } \left[\frac{3 \text{ ft}}{1 \text{ yell}}\right] \left[\frac{1 \text{ mi}}{5280 \text{ ft}}\right] = 0.0568 \text{ mi}$$

$$t = \frac{d}{v} = \frac{0.0568 \text{ yell}}{\frac{100 \text{ yell}}{h}} = 0.0568 \times 10^{-2} \text{ yell} \left[\frac{60 \text{ yell}}{1 \text{ yell}}\right] \left[\frac{60 \text{ s}}{1 \text{ yell}}\right] = 2.045 \text{ s}$$

33.
$$\frac{50 \text{ min}}{\text{min}} \left[\frac{60 \text{ min}}{1 \text{ h}} \right] \left[\frac{39.37 \text{ inf.}}{1 \text{ min}} \right] \left[\frac{1 \text{ mi}}{12 \text{ inf.}} \right] \left[\frac{1 \text{ mi}}{5280 \text{ fr.}} \right] = 1.86 \text{ mi/h}$$

$$t = \frac{d}{v} = \frac{3000 \text{ min}}{1.86 \text{ min}} = 1612.9 \text{ h} = 67.2 \text{ days}$$

35.
$$100 \text{ yds} \left[\frac{3 \text{ ft}}{1 \text{ yd}} \right] \left[\frac{12 \text{ in.}}{1 \text{ ft}} \right] = 3600 \text{ in.} \Rightarrow 3600 \text{ quarters} = $900$$

37.
$$d = vt = \left[600 \frac{\text{cm}^2}{\text{s}^2}\right] \left[0.016 \text{ h}\right] \left[\frac{60 \text{ min}}{1 \text{ h}^2}\right] \left[\frac{60 \text{ s}}{1 \text{ min}}\right] \left[\frac{1 \text{ m}}{100 \text{ cm}}\right] = 345.6 \text{ m}$$

39.
$$d = (86 \text{ stories}) \left(\frac{14 \text{ ft}}{\text{story}}\right) = 1204 \text{ ft} \left[\frac{1 \text{ mile}}{5,280 \text{ ft}}\right] = 0.228 \text{ miles}$$

$$\frac{\min}{\text{mile}} = \frac{10.7833 \text{ min}}{0.228 \text{ miles}} = 47.30 \text{ min/mile}$$

41. a.
$$5 \sqrt[3]{\frac{1 \text{ Btu}}{1054.35 \sqrt{3}}} = 4.74 \times 10^{-3} \text{ Btu}$$

b. 24 ounces
$$\left[\frac{1 \text{ gallon}}{128 \text{ ounces}}\right] \left[\frac{1 \text{ m}^3}{264.172 \text{ gallons}}\right] = 7.098 \times 10^{-4} \text{ m}^3$$

c.
$$1.4 \text{ days} \left[\frac{86,400 \text{ s}}{1 \text{ day}} \right] = 1.2096 \times 10^5 \text{ s}$$

d.
$$1 \text{ m}^3 \left[\frac{264.172 \text{ gallons}}{1 \text{ m}^3} \right] \left[\frac{8 \text{ pints}}{1 \text{ gallon}} \right] = 2113.38 \text{ pints}$$

43.
$$\left[2 \operatorname{nd} F\right] \sqrt{\left[3 \left[x^2\right] + \left[4 \left[x^2\right]\right]} \right] \text{ENTER} \Rightarrow 5.000$$

45.
$$2 \text{nd F} \sqrt{} (400 + 6 x^2 + 100) = 2.949$$

CHAPTER 1 (Even)

4.
$$50 \frac{\text{paf}}{\text{le}} \left[\frac{5280 \text{ ft}}{1 \text{ paf}} \right] \left[\frac{1 \text{ le}}{60 \text{ min}} \right] = 4400 \text{ ft/min}$$

$$d = vt = \left[\frac{4400 \text{ ft}}{\text{min}}\right] \left[1 \text{ min}\right] = 4400 \text{ ft}$$

8. MKS

10.
$$1000 \text{ y} \left[\frac{0.7378 \text{ ft-lb}}{1 \text{ y}} \right] = 737.8 \text{ ft-lbs}$$

- 12. a. 10^4 b. 10^{-4} c. 10^3 d. 10^6 e. 10^{-7} f. 10^{-5}
- 14. a. $4.2 \times 10^3 + 6,800 \times 10^3 = 6,804.2 \times 10^3 = 6.8042 \times 10^6$

b.
$$9 \times 10^4 + 0.36 \times 10^4 = 9.36 \times 10^4$$

c.
$$50 \times 10^{-5} - 6 \times 10^{-5} = 44 \times 10^{-5} = 4.4 \times 10^{-4}$$

d.
$$1.2 \times 10^3 + 0.05 \times 10^3 - 0.6 \times 10^3 = 0.65 \times 10^3 = 6.5 \times 10^2$$

16. a.
$$(50 \times 10^3)(3 \times 10^{-4}) = 150 \times 10^{-1} = 1.5 \times 10^1$$

b.
$$(2.2 \times 10^3)(8 \times 10^{-2}) = 17.6 \times 10^1 = 1.76 \times 10^2$$

c.
$$(82 \times 10^{-6})(7 \times 10^{-5}) = 574 \times 10^{-11} = 5.74 \times 10^{-9}$$

d.
$$(30 \times 10^{-4})(2 \times 10^{-4})(7 \times 10^{8}) = 420 \times 10^{0} = 4.2 \times 10^{2}$$

18. a.
$$\frac{2 \times 10^3}{8 \times 10^{-5}} = 0.25 \times 10^8 = 2.5 \times 10^7$$

b.
$$\frac{4.08 \times 10^{-3}}{60 \times 10^{3}} = 0.068 \times 10^{-6} = 6.8 \times 10^{-8}$$

c.
$$\frac{2.15 \times 10^{-4}}{5 \times 10^{-5}} = 0.43 \times 10^{1} = 4.3 \times 10^{0}$$

d.
$$\frac{78 \times 10^9}{4 \times 10^{-6}} = 19.5 \times 10^{15} = 1.95 \times 10^{16}$$

20. a.
$$(2.2 \times 10^3)^3 = (2.2)^3 \times (10^3)^3 = 10.65 \times 10^9 = 1.065 \times 10^{10}$$

b.
$$(6 \times 10^{-4} \times 10^2)^4 = (6 \times 10^{-2})^4 = (6)^4 \times (10^{-2})^4 = 1296 \times 10^{-8} = 1.296 \times 10^{-5}$$

c.
$$(4 \times 10^{-3} \times 6 \times 10^{2})^{2} = (24 \times 10^{-1})^{2} = (2.4)^{2} = 5.76$$

d.
$$((2 \times 10^{-3})(0.8 \times 10^{4})(0.003 \times 10^{5}))^{3} = (4.8 \times 10^{3})^{3} = (4.8)^{3} \times 10^{3})^{3}$$

= $110.6 \times 10^{9} = 1.106 \times 10^{11}$

22. a.
$$\frac{(3 \times 10^2)^2(10^2)}{10^4} = \frac{(9 \times 10^4)(10^2)}{10^4} = \frac{9 \times 10^6}{10^4} = 9 \times 10^2 = 900$$

b.
$$\frac{(4 \times 10^4)^2}{(20)^3} = \frac{16 \times 10^8}{8 \times 10^3} = 9 \times 10^{12}$$

c.
$$\frac{(6 \times 10^4)^2}{(2 \times 10^{-2})^2} = \frac{36 \times 10^8}{4 \times 10^{-4}} = 9 \times 10^{12}$$

d.
$$\frac{(27 \times 10^{-6})^{1/3}}{21 \times 10^4} = \frac{3 \times 10^{-2}}{21 \times 10^4} = \frac{1}{7} \times 10^{-6}$$

e.
$$\frac{\left[(4 \times 10^{3})^{2}\right] \left[300\right]}{2 \times 10^{-2}} = \frac{\left(16 \times 10^{6}\right)\left(3 \times 10^{2}\right)}{2 \times 10^{-2}} = \frac{48 \times 10^{8}}{2 \times 10^{-2}} = 24 \times 10^{10} = 240 \times 10^{9}$$

f.
$$(16 \times 10^{-6})^{1/2} (10^{5)5} (2 \times 10^{-2}) = (4 \times 10^{-3})(10^{25})(2 \times 10^{-2}) = 8 \times 10^{20}$$

= 800×10^{18}

g.
$$\frac{\left[(3 \times 10^{-3})^{3}\right] 7 \times 10^{-5}\right]^{2} \left[8 \times 10^{2}\right]^{2}}{\left[(10^{2})(9 \times 10^{-4})\right]^{1/2}} = \frac{(27 \times 10^{-9})(49 \times 10^{-10})(64 \times 10^{4})}{(9 \times 10^{-2})^{1/2}}$$
$$= \frac{84,672 \times 10^{-15}}{3 \times 10^{-1}}$$
$$= 28,224 \times 10^{-14} = 282.24 \times 10^{-12}$$

24. a.
$$2000 \times 10^{-6}$$
 s = 2.0×10^{-3} s = 2 ms

b.
$$0.04 \times 10^{-3} \text{ s} \Rightarrow \underline{40} \times 10^{-6} \text{ s} = 40 \ \mu\text{s}$$

c.
$$0.06 \times 10^{-6} \text{ F} = \underline{60} \times 10^{-9} \text{ F} = 60 \text{ nF}$$

d.
$$8400 \times 10^{-12} \text{ s} \Rightarrow \underline{0.0084} \times 10^{-6} \text{ s} = 0.0084 \ \mu\text{s}$$

e.
$$0.006 \times 10^3 \text{ m} = \underline{6000} \times 10^{-3} \text{ m} = 6000 \text{ m}$$

f.
$$260 \times 10^{3} \times 10^{-3} \text{ m} \Rightarrow 0.26 \times 10^{3} \text{ m} = 0.26 \text{ km}$$

26. a.
$$0.1 \,\mu\text{F} \left[\frac{10^{-6} \,\text{F}}{1 \,\mu\text{F}}\right] \left[\frac{1 \,\text{pF}}{10^{-12} \,\text{F}}\right] = 0.1 \times 10^{-6} \times 10^{12} \,\text{pF} = 10^5 \,\text{pF}$$

b.
$$0.467 \, \text{km} \left[\frac{10^3 \, \text{m}}{1 \, \text{km}} \right] = 467 \, \text{m}$$

c.
$$63.9 \times 10^{-3} \text{ pri} \left[\frac{100 \text{ cm}}{1 \text{ pri}} \right] = 63.9 \times 10^{-1} \text{ cm} = 6.39 \text{ cm}$$

d.
$$69 \text{ cm} \left[\frac{1 \text{ pm}}{100 \text{ cm}} \right] \left[\frac{1 \text{ km}}{1000 \text{ pm}} \right] = 69 \times 10^{-5} \text{ km}$$

e.
$$3.2 \text{ M} \left[\frac{60 \text{ min}}{1 \text{ M}} \right] \left[\frac{60 \text{ s}}{1 \text{ min}} \right] \left[\frac{1 \text{ ms}}{10^{-3} \text{ s}} \right] = 11.52 \times 10^6 \text{ ms}$$

f.
$$0.016 \text{ pmfi} \left[\frac{10^{-3} \text{ pm}}{1 \text{ pmfi}} \right] \left[\frac{1 \mu \text{m}}{10^{-6} \text{ pm}} \right] = 0.016 \times 10^{3} \mu \text{m} = 16 \mu \text{m}$$

g.
$$60 \text{ cm}^2 = 60 \text{ (cm) (cm)} \left[\frac{1 \text{ m}}{100 \text{ cm}} \right] \left[\frac{1 \text{ m}}{100 \text{ cm}} \right] = 60 \times 10^{-4} \text{ m}^2$$

28. 5280 ft, 5280 ft
$$\left[\frac{1 \text{ yd}}{3 \text{ ft}}\right] = 1760 \text{ yds}$$

5280
$$\Re \left[\frac{12 \text{ jrf.}}{1 \text{ fr}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ jrf.}} \right] = 1609.35 \text{ m}, 1.61 \text{ km}$$

30.
$$\frac{50 \text{ ff}}{20 \text{ s}} \left[\frac{1 \text{ mi}}{5280 \text{ ff}} \right] \left[\frac{60 \text{ s}}{1 \text{ min}} \right] \left[\frac{60 \text{ min}}{1 \text{ h}} \right] = 1.7 \text{ mph}$$

32.
$$\frac{6 \text{ m/n}}{\text{J/n}} \left[\frac{5280 \text{ M}}{1 \text{ m/n}} \right] \left[\frac{12 \text{ in/n}}{1 \text{ M}} \right] \left[\frac{1 \text{ m}}{39.37 \text{ jn/n}} \right] \left[\frac{1 \text{ J/n}}{60 \text{ min}} \right] \left[\frac{1 \text{ min}}{60 \text{ s}} \right] = 2.682 \text{ m/s}$$

34.
$$10 \text{ km} \left[\frac{1000 \text{ m}}{1 \text{ km}} \right] \left[\frac{39.37 \text{ jm}}{1 \text{ m}} \right] \left[\frac{1 \text{ ft}}{12 \text{ jm}} \right] \left[\frac{1 \text{ mi}}{5280 \text{ ft}} \right] = 6.214 \text{ mi}$$

$$v = \frac{1 \text{ mi}}{6.5 \text{ min}}, t = \frac{d}{v} = \frac{6.214 \text{ jm}}{\frac{1 \text{ jm}}{6.5 \text{ min}}} = 40.39 \text{ min}$$

36. 55 mph:
$$t = \frac{d}{v} = \frac{3000 \text{ mi}}{\frac{55 \text{ mi}}{\text{h}}} = 54.55 \text{ h}$$
65 mph: $t = \frac{d}{v} = \frac{3000 \text{ mi}}{\frac{65 \text{ mi}}{\text{h}}} = 46.15 \text{ h}$

38.
$$d = 86 \text{ stories} \left[\frac{14 \text{ ft}}{\text{story}} \right] \left[\frac{1 \text{ step}}{\frac{9}{12} \text{ ft}} \right] = 1605 \text{ steps}$$

$$v = \frac{d}{t} \Rightarrow t = \frac{d}{v} = \frac{1605 \text{ steps}}{\frac{2 \text{ steps}}{\text{second}}} = 802.5 \text{ seconds} \left[\frac{1 \text{ minute}}{60 \text{ seconds}} \right] = 13.38 \text{ minutes}$$

40.
$$\frac{5 \text{ min}}{\text{mile}} \Rightarrow \frac{1 \text{ mile}}{5 \text{ min}} \left[\frac{5,280 \text{ ft}}{1 \text{ mile}} \right] = \frac{1056 \text{ ft}}{\text{minute}}, \text{ distance} = 86 \text{ stories} \left[\frac{14 \text{ ft}}{\text{story}} \right] = 1204 \text{ ft}$$

$$v = \frac{d}{t} \Rightarrow t = \frac{d}{v} = \frac{1204 \text{ ft}}{1056 \frac{\text{ft}}{\text{min}}} = 1.14 \text{ minutes}$$

- 42. $6 \times (4 + 8) \times (72.000)$
- 44. $2nd \tan^{-1} \left(\begin{array}{c|c} 4 \\ \hline \end{array} \right) ENTER \Rightarrow 53.13$