KNN Acceleration Peripheral

IOB-KNN User Guide, V1, Build a96eec8

December 29, 2020

KNN Acceleration Peripheral IOB-KNN USER GUIDE, V1, BUILD A96EEC8

Contents

•	mure	oduction	Э
2	Syn	nbol	5
3	Fea	tures	5
4	Ben	nefits	6
5	Deli	iverables	6
6	Blo	ck Diagram and Description	7
7	Inte	erface Signals	8
8	Reg	yisters	9
9	FPC	GA Results	10
L	ist (of Tables	
	1	Block descriptions	7
	2	General Interface Signals	8
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	9
	5	Software accessible registers	9
	5	· · · · · · · · · · · · · · · · · · ·	
	6	Implementation Resources for Xilinx Artix-7 Devices	10
L	6		10
L	6	Implementation Resources for Xilinx Artix-7 Devices	
L	6 ist (Implementation Resources for Xilinx Artix-7 Devices	5

www.iobundle.com

1 Introduction

The IObundle KNN core includes a configurable number of modules that can each solve the two most time consuming parts of the KNN algorithm: Distance calculation and neighbor sorting. It is written in Verilog and includes a C software driver. The IP is currently supported for use in FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- · Verilog 64-bit time counter in clock cycles.
- · C software driver.
- Reset, enable and time read functions.
- IOb-SoC native CPU interface.
- AXI4 Lite CPU interface (premium option).

4 Benefits

- Easy hardware and software integration
- Compact hardware implementation
- · Can fit many instances in low cost FPGAs
- · Can fit many instances in small ASICs
- Low power consumption

5 Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code
- · ASIC or FPGA synthesis and implementation scripts or
- · ASIC or FPGA verification environment
- · Software driver and example user software
- · User documentation for easy system integration
- Example integration in IOb-SoC (optional)

Block Diagram and Description

A high-level block diagram of the IOB-KNN core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block	Description
Register File	Configuration, control and status registers accessible by the sofware
64-bit time counter	Free-running 64-bit counter with enable and soft reset capabilities

Table 1: Block descriptions.

www.iobundle.com

7 Interface Signals

The interface signals of the KNN core are described in the following tables.

Name	Direction	Width	Description		
clk	input	1	System clock input		
rst	input	1	System reset asynchronous and active high		

Table 2: General Interface Signals

Name	Name Direction Width		Description
valid	input	1	Native CPU interface valid signal
address	input	ADDR_W	Native CPU interface address signal
wdata	input	WDATA_W	Native CPU interface data write signal
wstrb	input	DATA_W/8	Native CPU interface write strobe signal
rdata	output	DATA_W	Native CPU interface read data signal
ready	output	1	Native CPU interface ready signal

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description	
s_axil_awaddr	input	ADDR_W	Address write channel address	
s_axil_awcache	input	4	Address write channel memory type. Transactions set with	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_awprot	input	3	Address write channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_awvalid	input	1	Address write channel valid	
s_axil_awready	output	1	Address write channel ready	
s_axil_wdata	input	DATA_W	Write channel data	
s_axil_wstrb	input	DATA_W/8	Write channel write strobe	
s_axil_wvalid	input	1	Write channel valid	
s_axil_wready	output	1	Write channel ready	
s_axil_bresp	output	2	Write response channel response	
s_axil_bvalid	output	1	Write response channel valid	
s_axil_bready	input	1	Write response channel ready	
s_axil_araddr	input	ADDR_W	Address read channel address	
s_axil_arcache	input	4	Address read channel memory type. Transactions set with	
			Normal Non-cacheable Modifiable and Bufferable (0011).	
s_axil_arprot	input	3	Address read channel protection type. Transactions set with	
			Normal Secure and Data attributes (000).	
s_axil_arvalid	input	1	Address read channel valid	
s_axil_arready	output	1	Address read channel ready	
s_axil_rdata	output	DATA_W	Read channel data	
s_axil_rresp	output	2	Read channel response	
s_axil_rvalid	output	1	Read channel valid	
s_axil_rready	input	1	Read channel ready	

Table 4: CPU AXI4 Lite Slave Interface Signals

Registers

The software accessible registers of the KNN core are described in Table 5. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial Value	Description
DATA_1	W	0x00	DATA_W-1:0	0	Test point input register
DATA_2	W	0x04	DATA_W-1:0	0	Dataset point input register
DATA_OUT	R	0x08	15:0	0	Index output register
DONE	W	0x0c	0:0	1	Signal if all dataset points have been sent
SOLVER_SEL	W	0x10	15:0	0	Solver module select
SEL	W	0x14	15:0	0	Neighbor select
KNN_RESET	W	0x18	0:0	0	Soft reset

Table 5: Software accessible registers.

9 FPGA Results

The following are FPGA implementation results for the Xilinx family of FPGA devices.

Resource	Used
LUTs	17876
Registers	26435
DSPs	32
BRAM	0

Table 6: Implementation Resources for Xilinx Artix-7 Devices