Wearable Technology & Mobile Perception for Monitoring Stability in IADLs in Older Adults with MCI

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Zhenhao Zhao¹, Victoria Pham², Leslie Davidson², Chung-Hyuk Park¹ and Keith Cole² ¹Department of Biomedical Engineering ²Department of Health, Human Function, and Rehabilitation Sciences The George Washington University, United States of America

Background

- Mild cognitive impairment (MCI) is a condition characterized by a decline in cognitive function greater than what would be expected for an individual's age and level of Education [1]
- MCI will increase the risk of falling: an odds ratio of 1.98 and a 95% confidence interval of 1.11-3.53 [2]
- Falls are a serious concern:
 - Lead to debilitating injuries: broken bones and head injuries [3]
 - Significant financial impact: average cost of \$62K~\$64K for a fall or fall with any injury [4]
- Current cognitive-motor dual-task tests is promising in predicting MCI and related falls but lacking real-world daily environment.[5]
- Deep learning (DL) methods have shown very promising result on the action recognition task. [6]
- Introducing DL methods into the previous doctor-led cognitive-motor dual-task test can greatly save doctors' energy and reduce clinical costs

Fig. 1: Research Motivation.

Research Purpose

- Hypothesis: The kinematic and visual data collected by the inertial measurement unity (IMU) and depth camera when the subject perform real-world cognitive-motor dual-task contain enough information to do the further behavior analysis.
- Aim: Develop and train a DL framework in the real-world daily environment and propose feature extraction algorithms to automatically recognizing and determining differences in naturalistic movements for older cognitively healthy adults and those with MCI.
- Significance: By identifying differences, we may identify possibly interventions that ultimately reduce their risk of falls

Fig. 2: The General Design for Our Research

Methods

❖ Data collection

- A simulated grocery store was constructed in order to collect IADL kinematic data for the human subjects.
 - Grocery shopping requires both cognitive abilities and motor skills. It is a good real-world daily environment cognitive-motor dualtask tests.
- Description of the subjects
 - Number of subjects:
 - 20 MCI subjects
 - 20 cognitively normal subjects
 - Diversity: The subjects include African, Caucasian, Asian, etc.
 - Age distribution: The subjects' ages range from 55 to 80 years old.

- Data modalities:
 - Kinematic data:
 - 4 IMUs for each subject: Head, lumbar region, left and right foot.
 - Each IMU housing three sensors: accelerometers, gyroscopes, and magnetometers
 - Visual data:
 - One first-person point-of- view action camera
 - Anti-shake function
 - Mounted on the subject's chest to capture ground truth actions
 - Two third-person point-of-view depth cameras
 - Depth sensor to capture 3D information
 - The scope of them covers the entire self-built grocery store

❖ Deep Learning IADL recognition Model

- Multimodal DL perception model:
 - Aim: Classify the instrumental activities of daily living (IADL)
- Video Data Processing for IADL Recognition
 - We will try both CNN and transformer-based architecture to find the best solution. The model's output will be a 1D feature vector
- IMU Data Processing for IADL Recognition
 - Signal denoise: Fourier transformation
 - We will employ either a CNN-based deep learning model [12] or a transformer-based deep learning model.
 - Output should be a feature matrix

Fig. 3: IMU Data Processing for IADL Recognition.

- Feature Fusion and Multi-Modal Recognition
 - Matrix concatenation and fully connect neural network as baseline
 - Explore more advanced feature fusion techniques such as transformer

Explainable AI

- Extract features from the healthy and MCI subjects' movement
- Temporal and frequency domain features of gait and non-gait movements will be analyzed.

Initial Results

Fig. 4: Top left: First-person point-of-view camera view; Bottom left: third-person point-ofview camera view; Top right: Frequecy domain of the original IMU signal; Bottom left: skeleton movement tracking for the subject shopping..

References

- S. Gauthier et al. Mild cognitive impairment. The Lancet, 367(9518):1262–1270, 2006.
- K. Delbaere et al. Mild cognitive impairment as a predictor of falls in community-dwelling older people. The American Journal of Geriatric Psychiatry, 20(10):845-853, 2012. D. A. Sterling et al. Geriatric falls: injury severity is high and disproportionate to mechanism. Journal of Trauma-Injury, Infection and Critical Care, 50(1):116-119, 2001 4. P. C. Dykes et al. Cost of Inpatient Falls and Cost-Benefit Analysis of Implementation of an Evidence-Based Fall Prevention Program. JAMA Health Forum, 4(1):e225125-e225125, 01 2023
- A. Bishnoi et al. Dual task walking costs in older adults with mild cognitive impairment: a systematic review and meta- analysis. Aging & Mental Health, 25(9):1618–1629, 2021.
- 6. C. Feichtenhofer et al. Slowfast networks for video recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.