

Analyse musculo-squelettique

Charles Pontonnier, Franck Multon

Ecole d'automne sportia : Sport, activité physique et intelligence artificielle

github.com/cpontonn/SPORT_ET_IA

Analyse musculo-squelettique

Obtenir des données biomécaniques à partir du mouvement humain

Analyse musculo-squelettique

Obtenir des données biomécaniques à partir du mouvement humain

Les équations du mouvement

Quantités d'accélération d'un ensemble de solides = {Efforts connus et inconnus qui agissent sur cet ensemble }

Solide simple

$$m\ddot{x} = F$$

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} = f_e + RF$$

 $f(q, \dot{q}, \ddot{q})$ Issu de la cinématique inverse

Pesanteur 🗸

Forces de réaction au sol

Efforts musculaires
Efforts ligamentaires
Efforts inter-segmentaires

Modélisation du contrôle

moteur

Modélisation musculaire

 $\min f(\mathbf{F})$ F, λ

s.t.

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} = f_e + RF + K^t\dot{\lambda}$$

$$h(F) \neq 0$$

Redondance len(F) > len(q)

Personnalisation des modèles

Modélisation des forces d'interaction

Modélisation de la topologie musculaire

Modélisation ostéo-articulaire

Acteurs du domaine

Académique, Open Source Releases régulières depuis 2007

- + Communauté internationale
- + Equipe support active
- + Applications multiples
- Cœur de simulation limité
- Prise en main complexe

Industriel, licence payante Releases régulières depuis 2006

- + Cœur de simulation performant
- + Développement professionnel
- + Applications industrielles
- Code fermé
- Prise en main très complexe

Académique, Open Source Releases régulières depuis 2019

- + Cœur de simulation performant
- + Prise en main facile
- + Produit local
- Matlab
- Bcp de développements parallèles

7

Verrous d'usage

Editer, assembler des modèles

Logiciels experts, complexes à prendre en main

Dépendance aux entrées

Mise à l'échelle et personnalisation des modèles

Données expérimentales: mouvement

Capture opto-électronique

Données expérimentales: mouvement

Markerless

Kinect Azur

Theia

OpenPose, V-NET,...

Données expérimentales: forces

Capteurs de force

Plateformes de force

Données expérimentales: activité musculaire

Electromyographie

- Activité électrique (ou mécanique) des muscles
- Classiquement voltage entre 2 points de mesure sur le chef musculaire

SENIAM, recommandations pour le placement d'électromyogrammes

Mise à l'echelle des modèles

Géométrique

Longueurs segmentaires, Axes d'articulations

Inertielle

Masse et inertie des segments

Musculaire

Paramètres de génération d'effort des muscles

Mesure de force

Imagerie médicale

Capture de mouvement

Analyse par dynamique inverse

Fil rouge

Estimation de la performance de lancer et comparaison aux critères entraineur (coordination, direction de poussée, alignement articulaire)

1 sujet (1m85, 111kg, niveau national)

Mocap in situ (site de lancer)
Prédiction des efforts au sol
cinématique
dynamique inverse sous CusToM
3 essais

angle_sortie (°)	vitesse_sortie (m/s)	hauteur (m)	indicateurPerformance (m)	exercice	essai
40,10	23,67	1,76	58,30	exercice5	1
37,91	23,56	1,68	56,94	exercice5	2
36,55	24,43	1,80 SPOR	60,55	exercice5	3 ¹⁵

Analyse par dynamique inverse

Focus: calibration géométrique

Modèle osteo-articulaire

Repérage des solides aux centres articulaires

Paramétrage articulaire

Paramètres géométriques

- Marqueurs expérimentaux
- Marqueurs du modèle
 - Vecteur des coordonnées articulaires

Pleins d'autres repérages/paramétrages possibles!

Calibration géométrique

Calibrer les longueurs de segments, les positions des marqueurs, les axes de rotation

A partir d'imagerie

Kainz et al., 2016

A partir de modèles cadavériques

Horsmann et al., 2007

Carbone et al., 2015

A partir de capture de mouvement

Mise à l'échelle par optimisation

Van den Bogert et al. 1994 Andersen et al. 2010; Lund et al. 2015

Minimisation des distances entre les marqueurs des modèles et les marqueurs expérimentaux

Limite les erreurs dues aux placements de marqueurs et aux artefacts de tissus mous

Mise à l'échelle individuelle des segments

Sur une unique pose

Delp et al. 2007 Ding et al. 2019; Nolte et al. 2020

Calibration des longueurs segmentaires

Modèle

$$egin{aligned} \Phi &= \sum_{f}^{N_f} \sum_{m}^{N_m} ||\mathbf{X}_{exp,m}(t_f) - \mathbf{X}_{mod,m}^{R_{global}}(\mathbf{q}(t_f),\mathbf{k},oldsymbol{lpha},oldsymbol{\Delta}\mathbf{p})||^2 \ &\min_{\mathbf{k},oldsymbol{lpha},oldsymbol{\Delta}\mathbf{p}} \Phiig(\mathbf{q}ig(t_fig),\mathbf{k},oldsymbol{lpha},oldsymbol{\Delta}\mathbf{p}ig) \end{aligned}$$

Calibration des positions anatomiques des marqueurs

Modèle

Modèle Calibré + correction des positions de marqueurs

$$egin{aligned} \Phi &= \sum_{f}^{N_f} \sum_{m}^{N_m} ||\mathbf{X}_{exp,m}(t_f) - \mathbf{X}_{mod,m}^{R_{global}}(\mathbf{q}(t_f), \mathbf{k}, oldsymbol{lpha}, oldsymbol{\Delta} \mathbf{p})||^2 \ &\min_{\mathbf{k}, oldsymbol{lpha}, oldsymbol{\Delta}, oldsymbol{\Delta}} \Phiig(\mathbf{q}ig(t_fig), \mathbf{k}, oldsymbol{lpha}, oldsymbol{\Delta} \mathbf{p}ig) \end{aligned}$$

Analyse par dynamique inverse

Focus: optimisation cinématique multicorps

Modèle osteo-articulaire

Repérage des solides aux centres articulaires

Paramétrage articulaire

Paramètres géométriques

- Marqueurs expérimentaux
- Marqueurs du modèle
 - Vecteur des coordonnées articulaires

Pleins d'autres repérages/paramétrages possibles!

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} \left(\left| \boldsymbol{x}_{exp}^{i} - \boldsymbol{x}_{mod}^{i}(\boldsymbol{q}) \right| \right)^{2}$$
tel que $\boldsymbol{h}(\boldsymbol{q}) = \boldsymbol{0}$

Avec un algorithme d'optimisation adapté (SQP, Levenberg-Marquardt)

De nombreuses méthodes concurrentes (estimateur type Kalman étendu, machine learning...)

Fil rouge

Performance (m)	essai	
58,30	1	
56,94	2	
60,55	3	

Begon, M., Andersen, M. S., & Dumas, R. (2018). Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological review. Journal of biomechanical engineering, 140(3), 030801.

Bonnet, V., Richard, V., Camomilla, V., Venture, G., Cappozzo, A., & Dumas, R. (2017). Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. *Journal of biomechanics*, 62, 148-155.

Fohanno, V., Begon, M., Lacouture, P., & Colloud, F. (2014). Estimating joint kinematics of a whole body chain model with closed-loop constraints. *Multibody System Dynamics*, *31*(4), 433-449.

Livet, C., Rouvier, T., Sauret, C., Pillet, H., Dumont, G., & Pontonnier, C. (2022). A penalty method for constrained Multibody kinematics optimisation using a Levenberg-Marquardt algorithm. *Computer Methods in Biomechanics and Biomedical Engineering*.

Analyse par dynamique inverse

Focus: algorithme de Newton-Euler

Dynamique d'un système de solides rigides polyarticulés (sans contrainte)

Soit un système de n_b solides polyarticulés avec n_a liaisons

Paramètres inertiels (m_i, CoM_i, I_i)

Les n_q équations peuvent prendre cette forme matricielle

Newton-Euler

Au temps t_k

Angles, vitesses, accélérations

Equilibre d'un solide S

{Quantités d'accélération}={Forces extérieures}

{Quantités d'accélération}

"Pour un solide en translation..."

Equilibre d'un solide S

Au centre de masse

$$\begin{cases} f = m\ddot{c} \\ \tau^{(c)} = I\dot{\omega} + \omega \times I\omega \end{cases}$$
 (1)

- **f** actions extérieures
- *m* masse du solide
- c Centre de masse du solide dans R_0 (repère fixe)
- ω vitesse angulaire du solide / R_0 et exprimée dans R_0
- I Matrice d'inertie du solide exprimée dans R_0
- $oldsymbol{ au}^{(c)}$ couple associé aux actions extérieures, exprimé au centre de masse dans R_0

Equilibre d'un solide S

Au centre de masse

$$\begin{cases} f = m\ddot{c} \\ \tau^{(c)} = I\dot{\omega} + \omega \times I\omega \end{cases}$$
 (1)

```
f actions extérieures \rightarrow connu (mesuré/modélisé)

m masse du solide \rightarrow connu (mesuré/modélisé)

c Centre de masse du solide dans R_0 (repère fixe) \rightarrow connu (calculé grâce à q)

\omega vitesse angulaire du solide / R_0 et exprimée dans R_0 \rightarrow connu (calculé grâce à q)

Matrice d'inertie du solide exprimée dans R_0 \rightarrow connu (mesuré/modélisé)
```

couple associé aux actions extérieures, exprimé au centre de masse dans R_0

SPORTS ET IA 37

→ connu (mesuré/modélisé)

Equilibre d'une chaine de solides

Equilibre d'une chaine de solides

Newton-Euler

Newton-Euler

Dynamique d'un système de solides rigides polyarticulés (avec contraintes)

Soit un système de n_b solides polyarticulés avec n_a liaisons

Paramètres inertiels (m_i, CoM_i, I_i)

$$H(q)\ddot{q}+C(q,\dot{q})\dot{q}=f_e+ au+K^t\lambda$$
 Newton Euler Friendly

Actions de contraintes

(pour des contraintes de la forme)

$$\varphi(q) = 0$$

$$K\dot{q} = 0$$

$$K\ddot{q} = k$$

Newton-Euler

Featherstone, R. (2014). Rigid body dynamics algorithms. Springer.

Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. *Clinical biomechanics*, *22*(2), 131-154.

Van Den Bogert, A. J., & Su, A. (2008). A weighted least squares method for inverse dynamic analysis. *Computer methods in biomechanics and biomedical engineering*, 11(1), 3-9.

Mes cours en vidéo https://youtu.be/VThk5yo-zOo

Analyse par dynamique inverse

Méthodes expérimentales: aucune vraiment performante

Segment

Solide rigide (indéformable) défini par une géométrie, un ou plusieurs repères et des propriétés inertielles (masse, centre de masse, inertie)

Un Cylindre...

Repère associé $R_S(O_S, \vec{x}_S, \vec{y}_S, \vec{z}_S)$

Paramètres géométriques l_S , r_S

Paramètres inertiels

 C_S centre de masse du solide m_S masse du solide

$$\bar{\bar{I}}(C_S,S) = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} \text{Matrice d'inertie du solide définie au centre de masse exprimée dans la base associée au solide }_{(\vec{x}_S,\vec{y}_S,\vec{z}_S)}$$

Pour un cylindre

$$\int \overline{I}(C_S, S) = m_S \begin{bmatrix} \frac{r_S^2}{4} + \frac{l_S^2}{12} & 0 & 0 \\ 0 & \frac{r_S^2}{4} + \frac{l_S^2}{12} & 0 \\ 0 & 0 & \frac{r_S^2}{2} \end{bmatrix}_{(\vec{x}_S, \vec{y}_S, \vec{z}_S)}$$

Tables inertielles

Journal of Biomechanics

Volume 29, Issue 9, September 1996, Pages 1223-1230

JOURNAL OF BIOMECHANICS

Journal of Biomechanics 40 (2007) 543-553

www.elsevier.com/locate/jbiomech www.JBiomech.com

Technical note

Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters

Paolo de Leva *

Adjustments to McConville et al. and Young et al. body segment inertial parameters

R. Dumas*, L. Chèze, J.-P. Verriest

Laboratoire de Biomécanique et Modélisation Humaine, Université Claude Bernard Lyon 1 – INRETS, Bâtiment Omega, 43 Boulevard du 11 novembre 1918, 69 622 Villeurbanne cedex, France

Accepted 21 February 2006

Mise en œuvre (Dumas et al. 2006)

Fil Rouge

Focus: Prédiction des efforts d'interaction

Modèle de contact

Points anatomiques définis sur le pied comme des « points de contact »

On limite la force max par point de contact

On définit des seuils pour la détection du contact (position et vitesse)

Généralisable à toutes les parties du corps potentiellement en contact

Méthode

$$\min_{\boldsymbol{f_e}} \sum_{i=1}^{2N_f} \|\boldsymbol{F_i}\|^2$$

On minimise la somme de la norme des forces au carré en chaque point de contact

s. t.
$$\begin{cases} M_S(q)\ddot{q} + C_S(q,\dot{q}) + G_S(q) + f_e = \mathbf{0} \\ \forall i \in [1,2(N_f + N_h)], F_i < F_{i_{max}} \end{cases}$$
 En respectant l'équilibre dynamique et les forces maximales disponibles p

et les forces maximales disponibles par point de contact

Des méthodes concurrentes (machine learning, répartitions analytiques)

Méthodes « aidées » (semelles de pression etc...)

Fil rouge

Ō	Throwing cycle (%)	
indicateurPerformance (m)	exercice	essai
58,30	exercice5	1
56,94	exercice5	2
60,55	exercice5	3

Encore mieux

Demestre, L., Morin, P., May, F., Bideau, N., Nicolas, G., Pontonnier, C., & Dumont, G. (2022). Motion-based ground reaction forces and moments prediction method for interaction with a moving and/or non-horizontal structure. *Journal of Biomechanical Engineering*.

Prédiction des forces de réaction

R. Fluit, M. S. Andersen, S. Kolk, N. Verdonschot, and H. F. Koopman, "Prediction of ground reaction forces and moments during various activities of daily living," Journal of biomechanics vol. 47, no. 10, pp. 2321–2329, 2014

S. Skals, M. K. Jung, M. Damsgaard, and M. S. Andersen, "Prediction of ground reaction forces and moments during sports-related movements," Multibody system dynamics, vol. 39, no. 3,pp. 175–195, 2017

Muller, A., Pontonnier, C., & Dumont, G. (2019). Motion-based prediction of hands and feet contact efforts during asymmetric handling tasks. *IEEE Transactions on Biomedical Engineering*, 67(2), 344-352.

Muller, A., Pontonnier, C., Robert-Lachaine, X., Dumont, G., & Plamondon, A. (2020). Motion-based prediction of external forces and moments and back loading during manual material handling tasks. *Applied ergonomics*, 82, 102935.

Demestre, L., Morin, P., May, F., Bideau, N., Nicolas, G., Pontonnier, C., & Dumont, G. (2022). Motion-based ground reaction forces and moments prediction method for interaction with a moving and/or non-horizontal structure. *Journal of Biomechanical Engineering*.

Analyse par dynamique inverse

Focus: Estimation des efforts musculaires

Dynamique d'un système de solides rigides polyarticulés (avec contraintes)

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} = f_e + \tau + K^t\lambda$$

SPORTS ET IA 57

Conséquence de l'action musculaire

Topologie musculaire

Action globale des muscles sur le modèle

Modèle de génération d'effort

Modèle de génération d'effort

Hill model [Hill1938]

$$F_{m,j} = \left[f_p\left(\overline{l}_{m,j}\right) + f_a\left(a_j, \overline{l}_{m,j}, \dot{\overline{l}}_{m,j}\right) \right] F_{o,j}$$

Loi visco-élastique

Dynamique d'activation

$$\dot{e}_j = (u_j - e_j)/\tau_{ne}$$

$$\dot{a}_j = \begin{cases} (e_j - a_j)/\tau_{act} &, e_j \ge a_j \\ \\ (e_j - a_j)/\tau_{deact} &, e_j < a_j \end{cases}$$

Délai électromécanique (10 à 100ms)

Résolution

Redondance musculaire len(F) > len(q)

Minimiser une fonction de cout représentant un principe moteur

$$\min f(F) \xrightarrow{\text{classiquement}} f(F) = \sum_{n} \left(\frac{F_{m_i}}{F_{max_i}}\right)^p$$
 s.t. $\pmb{\tau} = \pmb{RF}$
$$F_{min_i} < F_{m_i} < F_{max_i}$$

Plus p est grand, plus les muscles agissent en synergie Plus p est petit, plus les muscles les plus puissants sont recrutés en priorité

Résolution

Redondance musculaire

$$\min_{\pmb{F}} f(\pmb{F})$$
 s.t. $\pmb{\tau} = \pmb{R}\pmb{F}$
$$F_{min_i} < F_{m_i} < F_{max_i}$$

Peut être couplé avec la dynamique inverse

s.t.
$$\begin{aligned} & \underset{F,\lambda}{\min}_{f(F,\lambda)} \\ & H(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = f_e + RF + K^t\lambda \\ & F_{min_i} < F_{m_i} < F_{max_i} \end{aligned}$$

Newton euler friendly

Thorax Forearm Hand

Forcément par optimisation

Fil rouge

indicateurPerformance (m)	exercice	essai
58,30	exercice5	1
56,94	exercice5	2
60,55	exercice5	3

333

Fil rouge

1,85m 111kg

Vs

1,70m 65kg

indicateurPerformance (m)	exercice	essai
58,30	exercice5	1
56,94	exercice5	2
60,55	exercice5	3

Analyse par dynamique inverse

Mesure de capacité de génération d'efforts

Sujets: 43

26 civils

17 militaires

Matériels : Ergomètre isocinétique

Tâches: Efforts maximaux

3 articulations

2 mouvements Flexion / Extension

5 essais isométriques

3 essais isocinétiques

Cheville

Genou

Hanche

Caractérisation musculo-squelettique du membre inférieur

CPP SOOM I, France no. 2018-A00484-51

Mesure de capacité de génération d'efforts

Captures de mouvement

Sujets: 43

26 civils

17 militaires

Matériels:

22 Caméras Optoélectroniques (200 Hz)

50 marqueurs

16 électrodes EMG (8/jambe)

2 plateformes de forces

Matériels:

Ergomètre isocinétique

Locomotion

Marche

Course

Changement de direction

Saut

Port de charge (10, 20, 30 kg)

Tâches:

Efforts maximaux

3 articulations

2 mouvements Flexion / Extension

5 essais isométriques

3 essais isocinétiques

Caractérisation musculo-squelettique du membre inférieur

CPP SOOM I, France no. 2018-A00484-51

Mesure de capacité de génération d'efforts

50 points par courbe 300 points Correspondant à 300

configurations articulaires

Captures de mouvement

18 segments17 articulations41 muscles / jambe

Lund et al., 2018

Modèle musculaire

SPORTS ET IA 70

 $l_{\rm s}^t$ la longueur de détente du tendon

 F_0^m

 l_0^m

Modèle initial

init

 $F_{0,init}^m = F_0^m \left(rac{h_{subject}}{h_{model}}
ight)^2$ Steele et al., 2012

 $\frac{l_0^m}{l_S^t} = cste \qquad \text{Delp et al., 2007}$

Modèle mis à l'échelle

scaled

 $c^m = \frac{\max(\mathbf{\Gamma}^{exp})}{\max(\mathbf{\Gamma}^{sim})}$

 $\frac{l_0^m}{l_s^t} = cste$

 $F_{0,scaled}^{m}=c^{m}F_{0,init}^{m}$

Modèle optimisé

opt

Optimisation

$$l_0^m = \frac{l_{max}^{mt} - l_{min}^{mt}}{\tilde{l}_{max}^m - \tilde{l}_{min}^m}$$

Garner and Pandy, 2003

$$l_s^t = \frac{l_{min}^{mt} \tilde{l}_{max}^m - l_{max}^{mt} \tilde{l}_{min}^m}{\tilde{l}_{max}^m - \tilde{l}_{min}^m}$$

$$J(\boldsymbol{c}_{opt}^{m}, \tilde{\boldsymbol{l}}_{min}^{m}, \tilde{\boldsymbol{l}}_{max}^{m}) = \sum_{j=1}^{N_{jt}} \sum_{c=1}^{N_{c}} \left(\Gamma_{jc}^{exp} - \Gamma_{jc}^{sim}(\boldsymbol{c}_{opt}^{m}, \tilde{\boldsymbol{l}}_{min}^{m}, \tilde{\boldsymbol{l}}_{max}^{m}) \right)^{2}$$

$$\min_{\boldsymbol{c}_{opt}^m, \tilde{\boldsymbol{l}}_{min}^m, \tilde{\boldsymbol{l}}_{max}^m} \quad J(\boldsymbol{c}_{opt}^m, \tilde{\boldsymbol{l}}_{min}^m, \tilde{\boldsymbol{l}}_{max}^m)$$

s.c.
$$0, 5 < c_{opt}^m < 1, 5$$

 $0 < \tilde{l}_{min}^m < 0, 8$
 $1, 2 < \tilde{l}_{max}^m < 2, 0$
 $l_s^t > 0$

Modèle optimisé

opt

Possible de faire la même chose avec

Xia et al. 2007

Prenez garde à l'overfitting!

Anderson et al. 2007

Estimation des efforts musculaires

Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion—a comparative numerical study. *Journal of biomechanics*, *34*(3), 409-415.

Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. *Journal of applied biomechanics*, *20*(4), 367.

Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. *Clinical biomechanics*, 22(2), 131-154.

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. *Journal of biomechanics*, 81, 1-11.

Muller, A., Pontonnier, C., & Dumont, G. (2018). The MuslC method: a fast and quasi-optimal solution to the muscle forces estimation problem. *Computer methods in biomechanics and biomedical engineering*, 21(2), 149-160.

Dao, T. T. (2019). From deep learning to transfer learning for the prediction of skeletal muscle forces. *Medical & biological engineering & computing*, *57*(5), 1049-1058.

Garner, B. A., & Pandy, M. G. (2003). Estimation of musculotendon properties in the human upper limb. *Annals of biomedical engineering*, 31(2), 207-220.

Modenese, L., Ceseracciu, E., Reggiani, M., & Lloyd, D. G. (2016). Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. *Journal of biomechanics*, 49(2), 141-148.

Muller, A., Haering, D., Pontonnier, C., & Dumont, G. (2017, August). Non-invasive techniques for musculoskeletal model calibration. In *Congrès Français de Mécanique*.

Haering, D., Pontonnier, C., Bideau, N., Nicolas, G., & Dumont, G. (2019). Using Torque-Angle and Torque-Velocity Models to Characterize Elbow Mechanical Function: Modeling and Applied Aspects. *Journal of Biomechanical Engineering*, 141(8).

Heinen, F., Sørensen, S. N., King, M., Lewis, M., Lund, M. E., Rasmussen, J., & de Zee, M. (2019). Muscle-tendon unit parameter estimation of a Hill-type musculoskeletal model based on experimentally obtained subject-specific torque profiles. *Journal of biomechanical engineering*, 141(6), 061005.

Conclusions

Une présentation riche et solide

De nombreux outils existants et exploitables

De nombreux challenges à relever:

- Nouveaux outils de capture
- Mise à l'échelle des modèles
- Sortir du laboratoire
- Accélérer les process
- Exploiter l'interaction avec l'environnement/le matériel (cosimulation)
- Valider les modèles

Mise en pratique: analyses de fentes en escrime

