Graph Search

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Why graphs?

- Graphs have many applications!
 - Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links), and many problems that don't even look like graph problems.
- Fundamental objects in CS, optimization, combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep branch of mathematics

Why graphs?

Real life applications

Shortest Path

Search & Rescue

Route Planning

Game Playing

Introduction

What is a Graph?

- A graph is a collection of nodes and edges.
- The dots are called vertices or nodes.
- The connections between nodes are called edges
- An edge typically represented as a set $\{i,j\}$ of two vertices.

Eg: The edge between 2 and 5 is $\{2,5\} = \{5,2\}$

Notational convention

What is a Graph?

An edge in an undirected graph is an *unordered pair* of nodes and hence it is a set. We reserve the use of (u, v) (ordered pair) for the case of *directed* graphs.

- Generalizations
 - Multi-graphs allow

- loops which are edges with the same node appearing as both end points
- multi-edges: different edges between same pairs of nodes
- In this class we will assume that a graph is a simple graph unless explicitly stated otherwise.

Introduction

Defintion

An undirected (simple) graph G = (V, E) is a 2-tuple:

- ullet V is a set of vertices (also referred to as nodes/points)
- E is a set of edges where each edge $e \in E$ is a set of the form $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example:

Graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and

$$E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,5\}, \{3,7\}, \{3,8\}, \{4,5\}, \{5,6\}, \{7,8\}\}$$

Basic notions

Degree

- Vertices connected by an edge are called adjacent.
- The *neighborhood* of a node v is the set of all vertices adjacent to v. It's denoted $N_G(v)$.

•
$$N_G(2) = \{1,3,5\}$$

- A vertex v is *incident* with an edge e when $v \in e$.
 - Vertex 2 is incident with edges $\{1,2\}$, $\{2,5\}$ and $\{2,3\}$

Basic notions

Degree

 The degree of a vertex is the number of edges incident to it:

$$d(1) = 1$$
 $d(2) = 3$ $d(3) = 3$ $d(4) = 2$ $d(5) = 3$

• The *degree sequence* is to list the degrees listed in descending order:

- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$
- The *maximum degree* is denoted $\Delta(G)$. Here $\Delta(G)=3$

Handshaking lemma

$$\sum d(v) = 2|E|$$

Sum of Degrees = 12 Number of Edges = 6

Graph representations

Adjacency matrix

Graph representation I

Represent G = (V, E) with n vertices and m edges using a $n \times n$ adjacency matrix $A = (a_{ij})$ where

- $a_{ij} = a_{ji} = 1$ if $\{i, j\} \in E$ and $a_{ij} = a_{ji} = 0$ if $\{i, j\} \notin E$.
- Advantage: can check if $\{i,j\} \in E$ in O(1) time
- Disadvantage: needs $\Omega(n^2)$ space even when $m \ll n^2$

Graph adjacency matrix

Example

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	1	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0
4	0	1	0	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0	0	1	0
6	1	0	1	0	1	0	0	0	0	0
7	0	0	1	0	0	0	0	1	0	0
8	0	0	0	1	0	0	1	0	0	0
9	0	0	0	0	1	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0

Adjacency list

Graph representation II

Represent G = (V, E) with n vertices and m edges using *adjacency lists:*

- For each $u \in V$, $adj(u) := N_G(u)$, that is neighbors of u.
- Advantage: space is O(m + n).
- Disadvantage: cannot "easily" determine in O(1) time whether $\{i,j\} \in E$

Note: In this class we will assume that by default, graphs are represented using plain vanilla (*unsorted*) adjacency lists.

Graph adjacency list Example

Vertex	Adjacency List
1	2, 6
2	1, 4, 5
3	6, 7
4	2, 5, 8
5	2, 4, 6, 9
6	1, 3, 5
7	3, 8
8	4, 7
9	5, 10
10	9

Adjacency matrix vs. list

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	1	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0
4	0	7	0	0	1	0	0	1	0	0
5	0	7	0	7	0	1	0	0	1	0
6	1	0	1	0	1	0	0	0	0	0
7	0	0	1	0	0	0	0	1	0	0
8	0	0	0	1	0	0	1	0	0	0
9	0	0	0	0	1	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0

Vertex	Adjacency List				
1	2, 6				
2	1, 4, 5				
3	6, 7				
4	2, 5, 8				
5	2, 4, 6, 9				
6	1, 3, 5				
7	3, 8				
8	4, 7				
9	5, 10				
10	9				

How might we represent this in a language?

 Python-like (nested lists can be of different sizes)

Vertex	Adjacency List
1	2, 6
2	1, 4, 5
3	6, 7
4	2, 5, 8
5	2, 4, 6, 9
6	1, 3, 5
7	3, 8
8	4, 7
9	5, 10
10	9

C-like: Can use pointers

Array of pointers to adjacency lists

C-like: Can use pointers

 V_5

Array of pointers to adjacency lists

List of vertices that are neighbors of v_i

1

4

How about using plain arrays?

How about using plain arrays?

$$\mathcal{V} = [0, 2, 5, 8, 10]$$

$$\mathscr{E} = [2,5,1,3,5,2,4,5,3,5,1,2,3,4]$$

Connectivity

Paths on a graph

Given a graph G = (V, E):

- A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k-1$. The length of the path is k-1.
 - Note: A single vertex u is a path of length 0.
- We say a vertex u is connected to a vertex v if there is a path from u to v.
- Example: *D*, *B*, *A*, *C*, *F*, *E*

Connectivity Cycle

Given a graph G = (V, E):

• A *cycle* is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \geq 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k-1$ and $\{v_1, v_k\} \in E$.

• Example: A, B, D, C, A

Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.

Note: A single vertex or an edge are not cycles according to this definition

Connectivity

Connected components

Define a relation C on $V \times V$ as uCv if u is connected to v

- **Proposition:** In undirected graphs, connectivity is a *reflexive*, *symmetric*, and *transitive* relation.
- We say that the *connected components* of a graph are the *equivalence* classes of C.
 - "Analogous to ε -reach"
- Graph is said to be connected if there is only one connected component.
 - In English: starting from any node can reach any other node.

Connectivity problems

Algorithmic problems

- Given graph G and nodes u and v, is u connected to v?
- Given G and node u, find all nodes that are connected to u.
- Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is good to understand on its own.

Search on graph

Basic search

- BFS and DFS are special case of the following algorithm.
 - BFS maintains ToExplore using a queue data structure
 - DFS maintains
 ToExplore using a
 stack data
 structure

```
Explore(G,u):
 Initialize: Set Visited[I] \leftarrow FALSE for 1 \le i \le n
 Lists: ToExplore, S
 Add u to ToExplore and to S,
 Visited[u] \leftarrow TRUE
 while (ToExplore is non-empty) do
       Remove node x from ToExplore
       for each vertex y in Adj(x) do
          if (Visited[y] = FALSE)
               Visited[y] \leftarrow TRUE
               Add y to ToExplore
               Add y to S
 Output S
```

Search on graph Example

Definition

A directed graph G = (V, E) consists of

- A set of vertices/nodes V and
- A set of edges $E \subseteq V \times V$.

An edge is an **ordered pair** of vertices: (u, v) different from (v, u)

Examples

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- Web-link graph where vertices are web-pages and there is an edge from page p to page p' if p has a link to p'.
- **Dependency graphs** in variety of applications: link from x to y if y depends on x. E.g. Make files for compiling programs.
- Program analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

Representation

Graph G = (V, E) with n vertices and m edges:

- Adjacency matrix: $n \times n$ asymmetric matrix A. $a_{ij} = 1$ if $(i,j) \in E$ and $a_{ij} = 0$ if $(i,j) \notin E$.
- Adjacency lists: For each node u, Out(u) (also referred to as Adj(u) by default) stores out-going edges from u
 - Can also have In(u) and storing in-coming edges to u.

Default representation is adjacency lists (Adj(u)).

Directed connectivity

Given a graph G = (V, E):

- A *(directed) path* is a sequence of distinct vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. The length of the path is k-1 and the path is from v_1 to v_k . By convention, a single node u is a path of length 0.
- A *cycle* is a sequence of distinct vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- A vertex u can reach v if there is a path from u to v. Alternatively, we say v can be reached from u.
- We denote with rch(u) the set of all vertices reachable from u.

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D

Questions:

Is there a notion of connected components?

How do we understand connectivity in directed graphs?

Connectivity and Strongly Connected Components

Definition: Given a directed graph G, u is **strongly connected** to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Proposition: Define relation C where uCv if u is (strongly) connected to v. Then C is an equivalence relation, that is *reflexive*, *symmetric* & *transitive*.

Equivalence classes of C are the strongly connected components of G and they partition the vertices of G.

We denote with SCC(u) the strongly connected component containing u.

Connectivity and Strongly Connected ComponentsExample

 Partition vertices of given graph under strong connectivity.

Directed graph connectivity problems

- Given G and nodes u and v, can u reach v?
- Given G and u, compute rch(u).
- Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.
- Find the strongly connected component containing node u, that is SCC(u).
- Is G strongly connected (a single strong component)?
- ullet Compute all strongly connected components of G

Graph exploration in directed graphs

Graph search in directed graphs

Given G = (V, E)a directed graph and vertex $u \in V$. Let n = |V|.

We seek to find all nodes that can be reached from u (represented as a list or a *spanning* tree).

```
Explore(G,u):
 array Visited[1..n]
 Initialize: Set Visited[I] \leftarrow FALSE for 1 \le i \le n
 List: ToExplore, S
 Add u to ToExplore and to S, Visited[u] \leftarrow TRUE
 Make tree T with root as u
 while (ToExplore is non-empty) do
      Remove node x from ToExplore
       for each vertex y in Adj(x) do
          if (Visited[y] = FALSE)
               Visited[y] \leftarrow TRUE
               Add y to ToExplore
               Add y to S
               Add y to T with x as parent
 Output S, T
```

Graph search in directed graphs Example

Directed graph connectivity problems

- Given G and nodes u and v, can u reach v?
- Given G and u, compute rch(v).
- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
- Find the strongly connected component containing node u, that is SCC(u).
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

First five problems can be solved in O(n + m) time via Basic Search (or **BFS/DFS**). The last one can also be done in linear time but requires a rather clever **DFS** based algorithm (next lecture).

Algorithms via Basic Search - I

- Given G and nodes u and v, can u reach v?
- Given G and u, compute rch(u).

Use Explore(G, u) to compute rch(u) in O(n + m) time.

Algorithms via Basic Search - II

• Given G and u, compute all v, that can reach u, that is all v such that $u \in rch(u)$. Naive: O(n(n+m))

Definition (Reverse graph):

```
Given G = (V, E), G^{rev} is the graph with edge directions reversed G^{rev} = (V, E') where E' = \{(y, x) \mid (x, y) \in E\}
```

Compute rch(u) in G^{rev} .

Running time: O(n+m) to obtain G^{rev} from G and O(n+m) time to compute rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then no need to explicitly compute G^{rev} . Can do Explore(G, u) in G^{rev} implicitly

Algorithms via Basic Search - III

 $SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

Find the strongly connected component containing node u. That is, compute SCC(G, u).

$$SCC(G, u) = \operatorname{rch}(G, u) \cap \operatorname{rch}(G^{rev}, u)$$

Hence, SCC(G, u) can be computed with Explore(G, u) and $Explore(G^{rev}, u)$. Total O(n + m) time

Why can $rch(G, u) \cap rch(G^{rev}, u)$ be done in O(n) time?

Graph G and its reverse graph G^{rev}

Graph G

Reverse graph Grev

Graph G, a vertex F and its reachable set rch(G, F)

Graph G

Reachable set of vertices from F

Graph G a vertex F and the set of vertices that can reach it in G: $rch(G^{rev}, F)$

Graph G

Reverse graph Grev

Graph G a vertex F and its strongly connected component in G

$$SCC(G, F) = \operatorname{rch}(G, F) \cap \operatorname{rch}(G^{rev}, F)$$

