Investigating TCP Internals

Anthony E. Nocentino
ENTERPRISE ARCHITECT @ CENTINO SYSTEMS
@nocentino www.centinosystems.com

Course Overview

Network Topologies and the OSI Model

Internet Protocol – Addressing and Subnetting Fundamentals

Internet Protocol – ARP and DNS Fundamentals

Internet Protocol - Routing Packets

Routing Packets with Linux

Investigating TCP Internals

Troubleshooting Network Issues

Module Overview

Transmission Control Protocol

Connection Establishment/Termination

Data Transfer

Ports

Flow and Congestion Control

Error Detection and Retransmission

UDP

Transmission Control Protocol

Connection oriented

Reliable Delivery

Maintains Order

Error Checking

Transmission Control Protocol

OSI Layer 4

Segments

Provides reliability by requiring positive acknowledgements of delivery

Guarantees order with sequence numbers

Provides error checking with checksums

TCP Header

Source port

Destination Port

Sequence Number

Acknowledgement Number

Flags

Window Size

Checksum

Options

Data Transfer in TCP

Application data is divided into segments, a header is added

The TCP segment is placed into an IP packet then send to the destination

If a segment is not acknowledged in a period of time it's retransmitted

If a segment is received out of order, it's buffered on the receiver then ordered

Full Duplex - two independent streams

TCP Segment Encapsulation

Connection Establishment - Three Way Handshake

Establishes Initial Sequence Numbers Critical to ordered delivery in both directions

Connection Termination

Ports

Used to identify who is talking to whom Allocated by an internal data structure Only one process can one a port on an IP

Port Conflict

For an open connection there are two ports, one on the sender and one on the receiver

A connection consists of:

Sender IP+Port: Receiver IP+Port

Ports

16 bit value

0 - 65,535

Well Know Ports

0 - 1024

root only

Ephemeral Ports

32,768 - 61,000

Demo

- Examine a connection establishment in wireshark
- Examine a connection termination in wireshark
- Reserved and Ephemeral Ports
- Examining TCP state

Flow Control

Sending one ACK for every segment is slow

Sliding Window - ability to have more than one segment in transport at a point in time

Maintained by the receiver

Fully realize the bandwidth of the link

Congestion Control

In response to network conditions
Reduce congestion window size
The sender slows down
Various techniques exist
Back off, then add load

Error Detection and Retransmission

Unacknowledged transmission

Based on a sample of RTT (how long)

Result in retransmission of the segment

Reduction in congestion window size

User Datagram Protocol (UDP)

Send it and forget it...

Application handles reliable transmission

High performance networking

DNS

VoIP

Demo

- Sliding Window
- Congestion Control
- User Datagram Protocol

Module Overview

Transmission Control Protocol

TCP Header

Connection Establishment/Termination

Data Transfer

Ports

Flow and Congestion Control

Error Detection and Retransmission

UDP

What's Next!

Troubleshooting Network Issues

References

& Further Reading

- Internetworking with TCP/IP Vol. 1 by Douglas Comer http://amzn.to/29X7dyT
- UNIX Network Programming by W. Richard Stevens- http://amzn.to/2atUjsx
- TCP State Diagram http://bit.ly/28Lgq2u