УТВЕРЖДЕНО Проректор по учебной работе и довузовской подготовке А. А. Воронов 25 июня 2019 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Введение в математический анализ

по направлению

подготовки: 01.03.02 «Прикладная математика и информатика».

03.03.01 «Прикладные математика и физика»,

09.03.01 «Информатика и вычислительная техника»,

16.03.01 «Техническая физика»,

19.03.01 «Биотехнология»,

27.03.03 «Системный анализ и управление»

кафедра:

физтех-школы: для всех физтех-школ высшей математики

курс: 1 1 семестр:

Трудоёмкость:

Базовая часть — 6 зач. ед.:

лекции — 60 часов <u> Экзамен — 1 семестр</u>

практические занятия — 60 часов лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 120Самостоятельная работа:

120 часов

Программу составили:

д. ф.-м. н., профессор О. В. Бесов д. ф.-м. н., профессор Б. И. Голубов д. ф.-м. н., профессор А. Л. Лукашов к. ф.-м. н., доцент А. Ю. Петрович д. ф.-м. н., профессор В. Ж. Сакбаев к. ф.-м. н., доцент В. П. Ковалев к. ф.-м. н., доцент А. И. Тюленев

Программа принята на заседании кафедры высшей математики 22 мая 2019 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Действительные числа. Отношения неравенства между действительными числами. Свойство Архимеда. Плотность множества рациональных чисел во множестве действительных чисел. Теорема о существовании и единственности точной верхней (нижней) грани числового множества, ограниченного сверху (снизу). Арифметические операции с действительными числами. Представление действительных чисел бесконечными десятичными дробями. Счетность множества рациональных чисел, несчетность множества действительных чисел.
- 2. Предел числовой последовательности. Единственность предела. Бесконечно малые последовательности и их свойства. Свойства пределов, связанные с неравенствами. Арифметические операции со сходящимися последовательностями. Теорема Вейерштрасса о пределе монотонной последовательности. Число е. Теорема Кантора о вложенных отрезках. Бесконечно большие последовательности и их свойства.
- 3. Подпоследовательности, частичные пределы. Верхний и нижний пределы числовой последовательности. Теорема Больцано-Вейерштрасса. Критерий Коши сходимости числовой последовательности.
- 4. Предел функции одной переменной. Определения по Гейне (в терминах последовательностей) и по Коши (в терминах окрестностей), их эквивалентность. Свойства пределов функции. Различные типы пределов. Критерий Коши существования конечного предела функции. Теорема о замене переменной под знаком предела. Существование односторонних пределов у монотонной функции.
- 5. Непрерывность функции в точке. Свойства непрерывных функций. Односторонняя непрерывность. Теорема о переходе к пределу под знаком непрерывной функции. Непрерывность сложной функции. Точки разрыва, их классификация. Разрывы монотонных функций.
- 6. Свойства функций, непрерывных на отрезке, ограниченность, достижение точных верхней и нижней граней, равномерная непрерывность. Теорема о промежуточных значениях непрерывной функции. Теорема об обратной функции.
- 7. Непрерывность элементарных функций. Определение показательной функции. Свойства показательной функции. Замечательные пределы, следствия из них.
- 8. Сравнение величин (символы o, O, \sim). Вычисление пределов при помощи выделения главной части в числителе и знаменателе дроби.
- 9. Производная функции одной переменной. Односторонние производные. Непрерывность функции, имеющей производную. Дифференцируемость функции в точке, дифференциал. Геометрический смысл производной

- и дифференциала. Производная суммы, произведения и частного двух функций. Производная сложной функции. Производная обратной функции. Производные элементарных функций. Инвариантность формы дифференциала относительно замены переменной.
- 10. Производные высших порядков. Формула Лейбница для *п*-й производной произведения. Дифференциал второго порядка. Отсутствие инвариантности его формы относительно замены переменной. Дифференциалы высших порядков.
- 11. Теорема Ферма (необходимое условие локального экстремума). Теоремы о среднем Ролля, Лагранжа, Коши. Формула Тейлора с остаточным членом в формах Пеано и Лагранжа. Правило Лопиталя для раскрытия неопределенностей вида $\frac{0}{0}$. Правило Лопиталя для раскрытия неопределенностей вида $\frac{\infty}{\infty}$.
- 12. Применение производной к исследованию функций. Необходимые и достаточные условия монотонности, достаточные условия локального экстремума в терминах первой производной. Достаточные условия локального экстремума в терминах второй и высших производных. Выпуклость, точки перегиба. Построение графиков функций асимптоты, исследование интервалов монотонности и точек локального экстремума, интервалов выпуклости и точек перегиба.
- 13. Первообразная и неопределенный интеграл. Линейность неопределенного интеграла, интегрирование подстановкой и по частям. Интегрирование рациональных функций. Основные приемы интегрирования иррациональных и трансцендентных функций.
- 14. Элементы дифференциальной геометрии. Кривые на плоскости и в пространстве. Гладкие кривые, касательная к гладкой кривой. Оценка приращения вектор-функции через производную. Длина кривой. Производная переменной длины дуги. Натуральный параметр. Кривизна кривой, формулы для ее вычисления. Сопровождающий трехгранник пространственной кривой.
- 15. Комплексные числа. Модуль и аргумент, тригонометрическая форма. Арифметические операции с комплексными числами. Извлечение корня. Экспонента с комплексным показателем. Формула Эйлера. Информация об основной теореме алгебры. Разложение многочлена с комплексными коэффициентами на линейные множители. Разложение многочлена с действительными коэффициентами на линейные и неприводимые квадратичные множители. Разложение правильной рациональной дроби в сумму простейших дробей.

Литература

Основная

- 1. Бесов О. В. Лекции по математическому анализу. Москва: Физматлит, 2014.
- 2. Иванов Г. Е. Лекции по математическому анализу. Ч. 1. Москва : МФТИ, 2011.
- 3. *Петрович А.Ю.* Лекции по математическому анализу. Ч.1. Введение в математический анализ. Москва: МФТИ, 2017.
- 4. *Тер-Крикоров А. М., Шабунин М. И.* Курс математического анализа. Москва : МФ-ТИ, 2007.
- 5. Яковлев Г. Н. Лекции по математическому анализу. Ч. 1. Москва: Физматлит, 2004.

Дополнительная

- 6. Кудрявцев Л. Д. Курс математического анализа. 5-е изд. Москва : Дрофа, 2004.
- 7. $Ky\partial pявцев Л. Д.$ Краткий курс математического анализа. Т. 1. Москва : Наука, 2004.
- 8. *Никольский С. М.* Курс математического анализа. Т. 1. Москва: Наука, 2000.
- 9. Ильин В. А., Позняк Э. Г. Основы математического анализа. Т 1, 2.— Москва : Наука-Физматлит, 1998.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т.1.— 8-е изд. — Москва : Физматлит, 2007.
- 11. Зорич В. А. Математический анализ. Т. 1. Москва: Наука, 1981.
- 12. Рудин У. Основы математического анализа. Москва : Мир, 1976.

ЗАДАНИЯ

Литература

- 1. Сборник задач по математическому анализу. Предел, непрерывность, дифференцируемость: учебное пособие/под ред. Л.Д. Кудрявцева. Москва: Физматлит, 2003. (цитируется C1)
- 2. Сборник задач по математическому анализу. Т.2. Интегралы. Ряды: учебное пособие / под ред. Л.Д. Кудрявцева. Москва: Физматлит, 2003. (цитируется C2)

Замечания

- 1. Задачи с подчёркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные *, являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 14–19 октября)

І. Действительные числа

C1, §4: 1(2); 2*.

Т.1. Доказать
$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}_{n} = 2\cos\frac{\pi}{2^{n+1}}.$$

Т.2. Доказать для
$$x \ge 0, n \in \mathbb{N} \ (1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2$$
.

Т.3. Найти сумму
$$1 - x + x^2 + \ldots + (-1)^n x^n$$
.

Т.4. Найти суммы

a)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)};$$

6)* $\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)\cdot (n+2)}.$

II. Комплексные числа

III. Производная

C1, §13: 33; 60; 108; 148.

Т.5. Найти производную функции (ответ можно не упрощать)

$$y = \left(\frac{\arccos\sqrt{1 - x^2} - \sqrt{1 - \arccos^2 x}}{\sinh(x^2 + 2e^{x^2})}\right)^{\ln x}.$$

IV. Последовательности. Предел последовательности

C1, §7: 275(4); 276(5); 279(1); 300(3).

С1, §8: 2(2) (по определению); 13(3); 18; 25(1); 27; 28^* ; 46; $\underline{49}$.

C1, §8: 91; 53(3); 74(1); 7; 71(1); 60(для всех a > 0); 67; 63(4).

C1, §8: $\underline{119}$; 120^* ; 116(2); 117(1); 141(1); 143(1); 147(4); 158; 164(1); 220; $246(1, 2^*)$.

V. Функции. Предел функции. Непрерывность

C1, §7: 218(5); 219(3).

C1, §9: 1(1); 7(2); 16; 18; 25(1); 26(1); 27(2); 30(2); 35(4); 61.

С1, §10: <u>5(7)</u> (по определению); 14; <u>22</u>; 23; 40(1); <u>41(1)</u>; 42; 46; 47*; 66*; 76; 49*.

Рекомендации по решению

первого домашнего задания по неделям

1 неделя	C1, §4: 1(2); 2*; T1; T2; T3; T4.
	C1, §5: $4(4)$; $13(4)$; $18(5)$; $15(4)$; $30(1)$; $31(2)$; $32(\underline{2}, 7)$.
2 неделя	C1, §13: 33; 60; 108; 148; T5.
	C1, §7: 275(4); 276(5); <u>279(1)</u> ; 300(3).
3 неделя	C1, §8: $2(2)$; $13(3)$; 18 ; $25(1)$; 27 ; 28^* ; 46 ; 49 .
	C1, §8: 91; 53(3); 74(1); 7; 71(1); 60; 67; 63(4).
4 неделя	C1 , §8: 119; 120*; 116(2); 117(1); 141(1).
	C1, §8: $143(1)$; $147(4)$; 158 ; $164(1)$; 220 ; $246(1, 2^*)$.
5 неделя	C1, §7: 218(5); 219(3).
	C1, §9: 1(1); 7(2); 16; 18; 25(1); 26(1); 27(2); 30(2); 35(4); 61.
6 неделя	С1 , §10: <u>5(7)</u> (по определению); 14; <u>22</u> ; 23; 40(1); <u>41(1)</u> ; 42; 46;
	$47^*; 66^*; 76; 49^*.$

 $74 + 9^*$

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 18–23 ноября)

І. Дифференцируемость. Дифференциал

C1, §13: 197(3); 201(2); 214(2); <u>173;</u> 179(4).

C1, §14: 10(1).

II. Производные и дифференциалы высших порядков

C1, §15: 1(5); 10(1); 13(4); 14(3); 22(1); $24(5, \underline{9}, 13)$; $25(2, 5, \underline{10})$; $26(2, 5^*)$.

III. Теоремы о среднем

C1, §16: $\underline{5}$; 15(2); $\underline{19}$; $\underline{33}$; 30; 20^* .

IV. Формула Тейлора

C1, §9: 50; 51.

- **Т.1.** Докажите, что если $f(x) = x \cdot o(x^n)$ при $x \to 0$, то $f(x) = o(x^{n+1})$ при $x \to 0$.
- **Т.2.** Докажите, что если при $x \to 0$ f(x) = o(g(x)) и $g(x) \sim h(x)$, то f(x) = o(h(x)) при $x \to 0$.
- **Т.3.** При каких $x_0 \in \mathbb{R}$ выполнено $x^2 4x + 4 = o(x^2 3x + 2)$ при $x \to x_0$?
- **Т.4.** Разложите по формуле Тейлора в точке x=0 с точностью до $o(x^5)$ функцию $(x+x^2-x^3+x^4)^3$.

C1, §18: 2(8); 3(2, 5); 4(5); 5(5); 14(3); 20(7); 30(2); 39(4, 7).

Т.5. Представить формулой Маклорена до $o(x^6)$ функции:

a) $y = \operatorname{tg} x$; б) $y = \operatorname{arctg} x$; в) $y = \arcsin x$; г) $y = \operatorname{th} x$.

V. Вычисление пределов

C1, §17: 27; 63; 76; 80*.

C1, §19: 7(1); 8(4); 14(5); 21(4); 30(4); 47(3); 58*(2).

Рекомендации по решению

второго домашнего задания по неделям

1 неделя	C1 , §13: 197(3); 201(2); 214(2); <u>173</u> ; 179(4).
	C1 , §14 : 10(1).
2 неделя	C1, §15: $1(5)$; $10(1)$; $13(4)$; $14(3)$; $22(1)$; $24(5, 9, 13)$; $25(2, 5, 13)$;
	$10); 26(2, 5^*).$
	C1 , §16: 5 ; 15(2); 19 ; 33 ; 30; 20^* .
3 неделя	C1, §9: 50; 51; T1; T2; T3; T4.
	C1, §18: $2(8)$; $3(2, 5)$; $4(5)$; $5(5)$; $14(3)$; $20(7)$; $30(2)$; $39(4, 7)$;
	Т5.
4 неделя	C1, §17: 27; 63; <u>76;</u> 80*.
	C1, §19: $7(1)$; $8(4)$; $14(5)$; $21(4)$; $30(4)$; $47(3)$; $58*(2)$.
	40 + 4*

 $49 + 4^*$

ТРЕТЬЕ ЗАДАНИЕ

(срок сдачи 9-14 декабря)

І. Равномерная непрерывность

C1, $\S12: 2(1); 3(3, 5^*); 4(3, 4, 8^*); 7; 17; 23; 25; 28^*$.

- **Т.1.** Пусть функция f дифференцируема на множестве $I = [a, +\infty)$. Доказать следующие утверждения:
 - а) если f' ограничена на I, то f равномерно непрерывна на этом множестве;
 - б) если f' бесконечно большая при $x \to +\infty$, то f не является равномерно непрерывной;
 - в)* если f' неограничена, но не является бесконечно большой на I, то f может быть, а может и не быть равномерно непрерывной на I (привести примеры).

II. Исследование функций

C1, §20: 2(3); 20(4); 23(4); 33^* ; 39(5); 49(4); 69(2, 5); $71(5)^*$.

III. Построение графиков функций

C1, §21: 4(5); 5(2); 9(1); 10(3); 12(1, 10); 13(9); 15(4); $23(4)^*$; $31(2)^*$.

IV. Элементы дифференциальной геометрии

C1, §24: 48; 51; 78(3); 81(3); 85^* ; 109(2); 122(1); 14^* , 118^* ; 142^* .

Рекомендации по решению

третьего домашнего задания по неделям

1 неделя	C1, §12: $2(1)$; $3(3, 5^*)$; $4(3, 4, 8^*)$; 7 ; 17 ; 23 ; 25 ; 28^* ; T1.
	C1, §20: 2(3); 20(4); 23(4); 33*; 39(5); 49(4); 69(2, 5); 71(5)*.
2 неделя	C1 , §21: $4(5)$; $5(2)$; $9(1)$; $10(3)$; $12(1, 10)$; $13(9)$; $15(4)$; $23(4)$ *;
	$31(2)^*$.
3 неделя	C1, §24: $48; 51; 78(3); \underline{81(3)}; 85^*; 109(2); 122(1); 14^*, 118^*; 142^*.$
	$33 + 10^*$

Составитель задания

к. ф.-м. н., ассистент О. А. Загрядский