Sustavi za upravljanje heterogenom flotom ljudi i robota u logističkim centrima

Herman Zvonimir Došilović Voditelj: *prof. dr. sc. Domagoj Jakobović*

> Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

> > Zagreb, lipanj 2019.

Sadržaj

- Uvod
- 2 Formalan opis problema raspoređivanja heterogene flote
 - Definicija heterogene flote
 - Definicija artikala i narudžbe
 - Opis stanja skladišta
 - Ulazni podaci
 - Očekivani izlazni podaci
 - Ocjena kvalitete
- Raspoređivanje
 - Metode rješavanja problema raspoređivanja
- Raspoređivanje heterogene flote
- 5 Zaključak

Uvod (1)

Slika 1: Logistički centar [1].

3/17

Uvod (2)

Slika 2: Autonomni mobilni robot hrvatske tvrtke Gideon Brothers [2].

Formalan opis problema raspoređivanja heterogene flote

Slika 3: Robot s praznom paletom, koji može započeti izvršavati narudžbu. [3

Formalan opis problema raspoređivanja heterogene flote Definicija heterogene flote

Heterogena flota sastoji se od N_p ($1 \le N_p \le 25$) ljudi i N_r ($1 \le N_r \le 50$) robota, koji se mogu kretati u po skladištu širine W ($W \in \mathbb{N}, \ 1 \le W \le 4500$) i dužine L ($L \in \mathbb{N}, \ 1 \le L \le 4500$). Skladište se može prikazati kao skup točaka:

$$S = \{(x, y) \mid x, y \in \mathbb{N} \ \land \ 1 \le x \le W \ \land \ 1 \le y \le L\}, \tag{1}$$

- M_i $(0 \le i < N_p)$ označava poziciju i-tog čovjeka,
- R_i $(0 \le i < N_r)$ označava poziciju i-tog robota,
- $d_m(A,B)$ označava vrijeme koje je potrebno čovjeku da od točke A dođe do točke B i obrnuto,
- $d_r(A,B)$ označava vrijeme koje je potrebno robotu da od točke A dođe do točke B i obrnuto.

Formalan opis problema raspoređivanja heterogene flote Definicija artikala i narudžbe

Skup svih artikala *I* zapravo je skup svih pozicija na kojima se artikli nalaze:

$$I = \{A, A \in S\}. \tag{2}$$

 $I_i \ (0 \le i < |I|)$ označava i-ti artikl u skupu I.

Narudžba O_k definirana je kao skup dvojki (i, t_i) , gdje je t_i vrijeme koje je potrebno da čovjek stavi artikl I_i na robota kada robot izvršava narudžbu O_k :

$$O_{k} = \left\{ (i, t_{i}) \mid i \in 2^{\{0, 1, \dots, |I| - 1\}} \setminus \{\emptyset\}, \ t_{i} \in \mathbb{R}_{\geq 0} \right\}.$$
 (3)

Formalan opis problema raspoređivanja heterogene flote

Opis stanja skladišta

Slika 4: Vizualni primjer stanja skladišta.

Formalan opis problema raspoređivanja heterogene flote Ulazni podaci

- Formatirano stanje skladišta.
- Sustav će na ulaz dobiti novo stanje skladišta nakon svake nove pristigle narudžbe.
- Budući da narudžbe pristižu stohastički onda se ne zna niti koliko često će sustav dobivati novo stanje skladišta na temelju kojega treba donesti nove odluke.

Formalan opis problema raspoređivanja heterogene flote Očekivani izlazni podaci

- Od sustava se očekuje da za svakog robota odredi narudžbe koje će izvršiti.
- Od sustava se očekuje da za svaki artikl odredi koji čovjek će ga staviti na pripadajućeg robota.

Formalan opis problema raspoređivanja heterogene flote Ocjena kvalitete

Na temelju odluke sustava gradi se raspored čija kvaliteta (engl. fitness) je tim veća što je prosječno vrijeme izvršavanje narudžbe manje. Ako s $t_{s,i}$ označimo vrijeme početka izvršavanja narudžbe i, a s $t_{e,i}$ vrijeme završetka izvršavanja narudžbe i, onda je prosječno vrijeme izvršavanja narudžbe jednako:

$$\overline{T} = \sum_{i=0}^{|O|-1} t_{e,i} - t_{s,i}, \tag{4}$$

a kvaliteta rasporeda f jednaka je $f=\overline{T}^{-1}$. Cilj je pronaći takav raspored koji će minimizirati \overline{T} , odnosno maksimizirati f.

Raspoređivanje (2)

Raspoređivanje određuje raspodjelu resursa zadacima u zadanom vremenskom intervalu s ciljem optimizacije jednog ili više kriterija [4].

Resursi i zadaci su opisani različitim karakteristikama koje su bitne za raspoređivanje.

- resursi, strojevi ili sredstva
- zadaci, poslovi ili aktivnosti
- online i offline
- statički (deterministički) i dinamički (stohastički)

Raspoređivanje (2)

U svim problemima raspoređivanja pretpostavlja se da je broj poslova n i broj strojeva m konačan. Oznakom j najčešće se označava posao, a s i stroj. Poslovi su najčešće opisani sljedećim informacijama:

- p_{ij} vrijeme izvršavanja posla j na stroju i,
- ullet r_j vrijeme u kojem posao j postane raspoloživ za raspoređivanje,
- d_j vrijeme željenog završetka i
- w_j prioritet posla.

Raspoređivanje

Metode rješavanja problema raspoređivanja

- NP-teški problemi.
- Heurističke metode koje ne pronalaze nužno optimalno rješenje.
- Algoritmi koji pretražuju prostor stanja (statička offline okruženja)
 - genetski algoritmi, simulirano kaljenje, optimizacija rojem čestica, mravlja algoritam, itd.
- Algoritmi koji grade rješenje izravno (dinamička online okruženja)
 - Na temelju stanja sustava određuju kako raspodijeliti pojedini posao.

Raspoređivanje heterogene flote

U DRCFJSP problemu na raspolaganju je skup od n nezavisnih poslova $J = \{J_1, J_2, ..., J_n\}$, zatim skup od m strojeva $M = \{M_1, M_2, ..., M_m\}$, i skup od I radnika $W = \{W_1, W_2, ..., W_I\}$. Svaki posao ima r operacija $\{O_{i,1}, O_{i,2}, ..., O_{i,r}\}$ Svakim strojem M_i mora upravljati neki radnik iz skupa W.

- Narudžbe prikazujemo kao ljude.
- Operacije prikazujemo poslova kao artikle.
- Strojeve prikazujemo kao mjesta gdje se artikli nalaze.
- Ljude prikazujemo kao radnike.

Zaključak

- NP-teški problemi.
- Ovisno o vrsti problema odabrat će se željena metoda raspoređivanja.
- Opisan je i formalno definiran novi problem koji je povezan s DRCFJSP problemom.

Literatura

- [1] Smart & Simply d.o.o. Dacar logistički centar Smart & Simply Inteligentna rješenja za inteligentne domove, 2019. URL https://www.smartsimply.hr/logisticki-centar. Pristupano: 03.06.2019.
- [2] Gideon Brothers. Logistics robot lingo, 2019. URL https://www.gideonbros.ai/strategy/glossary-of-logistics-robotics. Pristupano: 09.05.2019.
- [3] Gideon Brothers. Poll debunks the myth of job-destroying robot, 2019. URL https://www.gideonbros.ai/trending/poll-debunks-the-myth-of-job-destroying-robot. Pristupano: 09.05.2019.
- [4] Michael L. Pinedo. *Scheduling: Theory, Algorithms, and Systems*. Springer, 2016.

