The Singular Value Decomposition

The Singular Values of a Matrix

Let A be any real $m \times n$ matrix. Then $A^T A$ is a symmetric $n \times n$ matrix since

$$(\mathbf{A}^T \mathbf{A})^T = \mathbf{A}^T \mathbf{A}^{TT} = \mathbf{A}^T \mathbf{A}$$

There is a theorem which says that all square matrices that are symmetric have an orthonormal set of eigenvectors that span \mathbb{R}^n (in fact only square matrices that are symmetric have this property, but that's beside the point). Let $\{v_1, \ldots, v_n\}$ be an orthonormal set of eigenvectors of A^TA and let the corresponding eigenvalues be $\sigma_1^2, \ldots, \sigma_n^2$. Then

$$|\mathbf{A}\mathbf{v}_i|^2 = (\mathbf{A}\mathbf{v}_i)^T \mathbf{A}\mathbf{v}_i = \mathbf{v}_i^T \mathbf{A}^T \mathbf{A}\mathbf{v}_i = \mathbf{v}_i^T \sigma_i^2 \mathbf{v}_i = \sigma_i^2 |\mathbf{v}_i|^2 = \sigma_i^2$$
$$|\mathbf{A}\mathbf{v}_i| = \sigma_i$$

Definition: The singular values of an $m \times n$ matrix A are the square roots σ_i of the eigenvalues σ_i^2 of $A^T A$, which is also the length of the vectors $A \mathbf{v}_i$ where \mathbf{v}_i are the eigenvectors of $A^T A$.

The singular values are arranged in descending order, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$.

The Singular Value Decomposition

Let A be any real $m \times n$ matrix with rank r (the rank being the maximum number of independent columns of A OR the maximum number of independent rows of A). A can be written on the form

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$$

where Σ is an $m \times n$ matrix on the form

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{bmatrix}$$

V is an $n \times n$ orthogonal matrix with the orthonormal set of eigenvectors of $\mathbf{A}^T \mathbf{A}$ as columns

$$V = [v_1, ..., v_n]$$

and U is an $m \times m$ orthogonal matrix with an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ of \mathbb{R}^m as columns

$$U = [u_1, ..., u_m]$$

where the first r columns are given by

$$\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{A} \mathbf{v}_i. \ i = 1, \dots, r$$

while the last m-r columns are arbitrary (although it is convenient to choose the last columns such that the full set is an orthonormal basis of \mathbb{R}^m so that U is unitary).

The Reduced Singular Value Decomposition and the Pseudoinverse

We can write U and V as

$$\mathbf{U} = \left[\begin{array}{cc} \mathbf{U}_r & \mathbf{U}_{m-r} \end{array} \right]$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_r & \mathbf{V}_{n-r} \end{bmatrix}$$

where the columns of e.g U_r are the first r columns of U while the columns of U_{m-r} are the last m-r columns of U. Then, because the last m-r rows and the last n-r columns of Σ contain only zeros, we have

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$$

$$= [\mathbf{U}_r \ \mathbf{U}_{m-r}] \mathbf{\Sigma} \begin{bmatrix} \mathbf{V}_r^T \\ \mathbf{V}_{n-r}^T \end{bmatrix} = \mathbf{U}_r \mathbf{D} \mathbf{V}_r^T$$

where D is an $r \times r$ diagonal matrix containing the singular values of A.

$$\mathbf{D} = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{bmatrix}$$

 $\mathbf{A} = \mathbf{U}_r \mathbf{D} \mathbf{V}_r^T$ is called the reduced singular value decomposition of \mathbf{A} . Note that even though \mathbf{U}_r and \mathbf{V}_r have orthogonal columns they are not orthogonal matrices since they are not square; they have shape $m \times r$ and $n \times r$ respectively. If they were orthogonal matrices then the inverse of \mathbf{A} would be $\mathbf{V}_r \mathbf{D}^{-1} \mathbf{U}_r^T$. We define the pseudoinverse \mathbf{A}^+ of \mathbf{A} to be

$$\mathbf{A}^+ \equiv \mathbf{V}_r \mathbf{D}^{-1} \mathbf{U}_r^T$$

Application to Ordinary Least Squares regression

The OLE solution can be written as

$$\widetilde{\mathbf{y}} = \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$$

Suppose we have an SVD of $X = U \Sigma V^T$.

$$\mathbf{X}^T \mathbf{X} = \left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T \right)^T \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$$

$$= \mathbf{V} \Sigma^T \mathbf{U}^T \mathbf{U} \Sigma \mathbf{V}^T = \mathbf{V} \Sigma^T \Sigma \mathbf{V}^T$$

Inserting this into the expression for the OLE solution

$$\begin{split} \widetilde{\mathbf{y}} &= \mathbf{X} \big(\mathbf{X}^{\mathrm{T}} \mathbf{X} \big)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y} \\ &= \mathbf{U} \boldsymbol{\varSigma} \mathbf{V}^{T} \big(\mathbf{V} \boldsymbol{\varSigma}^{T} \boldsymbol{\varSigma} \mathbf{V}^{T} \big)^{-1} \big(\mathbf{U} \boldsymbol{\varSigma} \mathbf{V}^{T} \big)^{\mathrm{T}} \mathbf{y} = \mathbf{U} \boldsymbol{\varSigma} \mathbf{V}^{T} \big(\mathbf{V} \boldsymbol{\varSigma}^{T} \boldsymbol{\varSigma} \mathbf{V}^{T} \big)^{-1} \mathbf{V} \boldsymbol{\varSigma}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{y} \\ &= \mathbf{U} \boldsymbol{\varSigma} \mathbf{V}^{T} \big(\mathbf{V}^{T} \big)^{-1} \boldsymbol{\varSigma}^{-1} \big(\boldsymbol{\varSigma}^{\mathrm{T}} \big)^{-1} \mathbf{V}^{-1} \mathbf{V} \boldsymbol{\varSigma}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{y} = \mathbf{U} \boldsymbol{\varSigma} \boldsymbol{\varSigma}^{-1} \big(\boldsymbol{\varSigma}^{\mathrm{T}} \big)^{-1} \boldsymbol{\varSigma}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{y} \end{split}$$

$$= UU^Ty$$

(mfw i just realized \varSigma is not invertible ._.)