Коректност на итеративни алгоритми

Тодор Дуков

Какво имаме предвид под коректност?

За целите на този курс един алгоритъм ще наричаме коректен, ако завършва при всякакви входни данни и връща правилен резултат при всякакви входни данни

Забележка. Въпреки че ние ще имаме това разбиране в курса, на практика тези изисквания невинаги са изпълнени:

- разглеждат се алгоритми, които могат и да не завършват за някои входни данни от теоретична гледна точка са интересни за хората, които се занимават с теорията на изчислимостта
- разглеждат се алгоритми, които много често (но не винаги) връщат правилния резултат обикновено това се прави с цел бързодействие

Едно "ново" понятие

Специално за итеративните алгоритми се въвежда ново понятие - **инвариант**. Това са специални твърдения, свързани с цикъла. В най-общият случай се формулират по следния начин:

"При k-тото достигане на ред l (ако има няколко инструкции казваме преди/след коя се намираме) в алгоритъма alg е изпълнено uякакво mвърдение, зависещо от k и променливите, използвани в alg"

Доказателството на такива твърдения протича с добре познатата индукция. Първо доказваме базата т.е. какво се случва при първото достигане на цикъла. Индуктивното предположение и индуктивната стъпка се обединяват в "нова" фаза, наречена поддръжка. Довършителните разсъждения, които по принцип се намират след доказването на твърдението чрез индукция, ще наричаме терминация. Накрая показваме, че винаги ще излезнем от цикъла. Обикновено това ще го смятаме за очевидно (най-вече за for-цикли).

Внимание. Това, за което се използват инвариантите, е да се докаже коректността на ЕДИН цикъл, не на цял алгоритъм. Когато в алгоритъма ни има няколко цикъла, на всеки от тях трябва да съответства по една инвариант.

Пример

Нека разгледаме следния алгоритъм за степенуване на 2:

```
int pow2(int n) // мук п ще бъде положително
{
    int result = 1;

    for (int i = 0; i < n; ++i)
    {
        result *= 2;
    }
}
return result;
}</pre>
```

Инвариант. При всяко достигане на проверката за край на цикъла (на ред 5) имаме, че result = 2ⁱ.

База. Наистина при първото достигане имаме, че i=0 и от там $result=1=2^i$.

Поддръжка. Нека при някое непоследно достигане твърдението е изпълнено. Тогава преди следващото достигане на проверката на result присвояваме result * 2, като знаем, че преди result е бил 2^i , и след това на і присвояваме i+1. Така е ясно, че при новото достигане на проверката result ще стане $2^{i_{old}+1}=2^i$.

Терминация. Ако е изпълнено условието за край на цикъла, то тогава i=n, откъдето ще върнем $result=2^n$. Величината n-i започва с n, и намалява с 1, докато не стигне 0, когато ще излезнем от цикъла.

С инвариантите трябва да се внимава

Един от често срещаните капани, в които попадат хората, е да не си формулират инвариантът добре. Много е важно инвариант да дава достатъчна информация за това което наистина се случва в алгоритъма. За целта ще разгледаме един пример:

```
int selection_sort(int *arr, int n)
   {
        for (int i = 0; i < n - 1; ++i)
            int min_index = i;
            for (int j = i + 1; j < n; ++j)
                 if (arr[j] < arr[min_index])</pre>
                     min_index = j;
            }
12
            int temp = arr[i];
13
            arr[i] = arr[min_index];
            arr[min_index] = temp;
15
        }
16
   }
17
```

На интуитивно ниво е ясно какво прави кода. Намира най-малкия елемент, и го слага на първо място. След това намира втория най-малък елемент, и го слага на второ място, и т.н.

Нещо, което някои биха се пробвали да направят за първия цикъл, е следното:

 Π ри всяко достигане на проверката за край на цикъла на ред 3 подмасив π $arr[0 \dots i-1]$ е сортиран.

Проблемът с това твърдение, е че може много лесно да се измисли алгоритъм, за който това твърдение е изпълнено, и изобщо не сортира елементите в масива:

```
int trust_me_it_sorts(int *arr, int n)
{
    for (int i = 0; i < n; ++i)
        {
        arr[i] = i;
    }
}</pre>
```

Очевидно този за този алгоритъм горната инвариант е изпълнена, но той е безсмислен. Получаваме сортиран масив, но за сметка на това губим цялата информация, която сме имали за него.

Нещо друго, което е важно да се направи, е първо да се формулира инвариант за вътрешния цикъл, и после за външния, като тънкият момент тук е, че ще ни трябват допускания за първият инвариант. Идеята е, че външния цикъл разчита на вътрешния да си свърши работата, и обратно вътрешния разчита (не винаги) на външния преди това да си е свършил работата. Ще покажем как трябва да станат инвариантите, като доказателството оставяме за упражнение на читателя. Нека arr* е първоначалната стойност на входния масив.

Инвариант (вътрешен цикъл). При всяко достигане на проверката за край на цикъла на ред 7 имаме, че $\min_index\ e\ undercom$ на най-малкия елемент в масива arr[i...j-1].

Инвариант (външен цикъл). При всяко достигане на проверката за край на цикъла на ред 3 имаме, че масивът arr[0...i-1] съдържа сортирани първите i по големина елементи на arr^* , като останалите са arr[i...n-1].

Обикновено в доказателството на коректност на алгоритми най-трудното е да се формулира инвариантът. Ако човек има добре формулирана инвариант, доказателството е на първо място възможно, а на второ – по-лесно.

Задачи

Задача 1. Да се:

- 1. напише алгоритъм, който сумира числата в един масив
- 2. докаже неговата коректност
- 3. изследва сложността му по време и памет

```
Задача 2. Даден е следният алгоритъм:
```

```
bool alg(int *arr, int n)
   {
        for (int i = 0; i < n - 1; ++i)
            for (int j = i + 1; j < n; ++j)
                if (arr[i] == arr[j])
                    return true;
        }
10
11
        return false;
12
   }
13
      1. Какво връща той? Отговорът да се обоснове.
      2. Каква е неговата сложност по време и памет?
   Задача 3. Даден е следният алгоритъм:
   int fib(int n) // n ще бъде поне 0
   {
        if (n < 2)
            return n;
        int a = 0, b = 1;
        for (int i = 1; i < n; ++i)
            int temp = a;
10
            a = b;
11
            b = temp + b;
12
        return b;
15
   }
16
   Да се докаже, че fib(n) връща n-тото число на Фибоначи.
   Задача 4. Даден е следният: алгоритъм:
   void mult(int **A, int **B, int **C, int n)
   {
        for (int i = 0; i < n; ++i)
            for (int j = 0; j < n; ++j)
            {
                int cell_sum = 0;
                for (int k = 0; k < n; ++k)
                     cell_sum += A[i][k] * B[k][j];
12
                C[i][j] = cell_sum;
            }
        }
16
```

17 }

Да се докаже че при вход $n \times n$ матрици A, B и C, функцията <math>mult(A, B, C, n) записва в C произведението на A и B. Да се намери сложността му по време и памет.