

DATOS MASIVOS

Shamir Alejandro Rodriguez Ojeda

Matricula: 1423061

Herramienta: Colab

Instalación Librerias

```
[ ] 1 !pip install --q https://github.com/pandas-profiling/pandas-profiling/archive/master.zip
     2 !pip install --q pyod # Detección de atipicos +30 algoritmos
     3 !pip install --q catboost # Catboost
     4 !pip install --q imblearn # Balanceo de clases
₹
         - 17.8 MB 26.6 MB/s 0:00:01
      Preparing metadata (setup.py) ... done
                                               - 104.8/104.8 kB 1.4 MB/s eta 0:00:00
      Preparing metadata (setup.py) ... done
                                               - 686.1/686.1 kB 7.5 MB/s eta 0:00:00
                                               - 296.5/296.5 kB 5.4 MB/s eta 0:00:00
      Building wheel for ydata-profiling (setup.py) ... done
      Building wheel for htmlmin (setup.py) ... done
                                               - 165.0/165.0 kB 4.1 MB/s eta 0:00:00
      Preparing metadata (setup.py) ... done
      Building wheel for pyod (setup.py) ... done
                                               - 98.2/98.2 MB 8.7 MB/s eta 0:00:00
[ ] 1 from google.colab import drive
      2 from pathlib import Path
[ ] 1 import numpy as np
     2 import pandas as pd
     3 from pandas_profiling import ProfileReport
```



```
[ ] I from google.colab import drive
2 from pathilb import Path
[ ] I import manpy so op-
         2 Import pendas of pd
         1 from pandas_profiling import ProfileMeport

    clpython-input-3-c83a34ba5f380:3: DeprecationNarming: 'import pandas_profiling' is going to be deprecated by April ist. Please use 'import ydata_profiling' instead, from pundas_profiling import ProfileReport

[ ] : drive.wount('/content/drive', force_remount-True)
To Mounted at /contest/drive:
       i from pyod.models.lof import LOF
I from sklearn.utils.class_weight import compute_class_weight
            from sklearn.metric class_weight import compute_class
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_warrix
from sklearn.metrics import average precision_acore
from sklearn.metrics import average precision_acore
from sklearn.medel_selection import dridsearchCV
       11 from sklearn.model_selection import train_test_split
13 from cathoost import CathoostClassifier
13 from implearn.over_sampling import AGASYN
        14 from collections import Counter
       from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from cathoost import CathoostClassifier, Pool
       20
21 import seabore as sns
22 import matplotlib.pyplot as plt
21 from string import maciliations
     [] 20
                21 import seaborn as sns
                22 import matplotlib.pyplot as plt
                23
                         from string import ascii_letters
                24
                25 import warnings
                26 warnings.filterwarnings("ignore")
     [ ] 1 SEED=111
```

Funciones

```
[ ] 1 def grafica_correla(df, paleta="Greens"):
     2
          import seaborn as sns
     3
          import matplotlib.pyplot as plt
          from string import ascii letters
     5
         fig, ax = plt.subplots(figsize=(6, 6))
         mask = np.zeros_like(df.corr())
     6
           mask[np.triu_indices_from(mask)] = 1
         sns.heatmap(df.corr(), mask= mask, cmap=paleta)
     8
[ ] 1 def refusion_dimension(df, umbral=0.95):
         corr_df = df.corr().abs()
     3
          mask = np.triu(np.ones_like(corr_df, dtype=bool))
     4
          correlacion = df.corr()
          tri_df = correlacion.mask(mask)
          to_drop = [c for c in tri_df.columns if any(tri_df[c] > umbral)]
     6
     7
         return to_drop
```


Para poder realizar la entraga siguiendo el formato del archivo TRAIN, se requiere saber las variables iniciales dadas para el caso de uso.

[] 1 train.isnull().sum() → X_Minimum X Maximum 0 Y Minimum 0 Y_Maximum 0 Pixels_Areas 0 X_Perimeter Y Perimeter 0 Sum_of_Luminosity 0 Minimum_of_Luminosity Maximum_of_Luminosity 0 0 Length_of_Conveyer 0 TypeOfSteel A300 0 TypeOfSteel A400 0 Steel_Plate_Thickness 0 Edges_Index 0 Empty_Index 0 Square_Index 0 Outside X Index 0 Edges_X_Index Edges_Y_Index 0 Outside_Global_Index a LogOfAreas 0 Log_X_Index Log_Y_Index Orientation_Index 0 Luminosity_Index 0 SigmoidOfAreas 0 Pastry 0 Z_Scratch 0 K_Scatch Stains 0 Dirtiness 0 0 Bumps Other_Faults 0 dtype: int64

count 145 mean 17 and 51	70.08662	X_Recitors 1455 000000	T_finime 1.455000e-00	V_Rections	Firels, Arres										
mean (7 and 51	70.08682		1.455000e+00			W bearingter.	V_Perimoter	tim of tuninesity	Minimum_of_Luminosity	Section of Lucinosity	triest	office Index Local	entity_Index : 1	ignot/Offeren	- 0.5
and 5	Settion.	Est SERVICE.		1.455000e+05	1456,000000	1466.000000	1455.000000	1.800000+03	1415 000000	1469.000000		1455 000000	1465.000000	1455.000000	1455.0
	S1E-621175	E163001111	16768546+05	1.6709000+06	1908.096282	172 684674	66.914080	2.0689936+00	\$4,661988	130,001968		11.007981	0.100914	3.562273	. 00
min.		490 040009	1.6962628+06	1.000279++06	5546 549256	321,232000	467.996742	8.302203+05	32,375864	18.461903		0.499967	0.101790	8.540529	302
	E 000000	4.000000	8.712000e+03	E.7240006+03	2.000000	2.000000	1.000000	2.500000e+02	0.000000	37.000000		-0.973900	-0.998900	0.115000	9.0
28% 1	96,000090	194 000000	5.0200404+05	5.0200/06+00	82.500000	15.000000	13.000000	9.374000e+03	63 000000	134 000000		-0.295200	-0.198000	0.245200	0.0
80% 41	135.000000	468.000000	1.2298906+08	1-22/0006108	172,000000	26.000000	25.000000	1.8888000+04	90 000000	137.000000		0.000000	-0.130900	0.494300	0.0
78% 104	49.500000	1070.000000	I 103653e+06	2.103638e+06	.194,000000	HZ 500000	81.000000	8.166950e+04	106.000000	140,000000		0.506600	-0.066100	2.99800	0.0
max 171	165.000000	1713.0000EE	1.2507984+67	1.290769e+07	152935 000000	10449-000000	18152-000000	1.1591456+07	213 000008	347.000000		0.991700	0.642106	1.000008	1.0
	n.feed()			- Note to	an Theist				Limitestry Section of	turionite	addise Tarker	Contractive Sub-	Name of the least	a faire 7	Samula
1008	1341	1303		1729	or building the second	11 1	appearance of the second	1729	30	117	0.2727	-0.000		(Application problems)	
1122	254							12174	10	126	-0.000	4.00			-
1228	1056		964066 AN			M 2		10747	89	116	0.0256	4307			
780	816			655	10			2360	127	141	D 00000	1.004			
1762	79.		523381 1533					62210	110	141	0.6000	0.004			-

Se va a proceder a eliminar las clases individuales del DF train para despues concadenar la columna target

	train.drop(s train	was, axis-	i, implace-	frue)										
	X.Minimon	X_Plantimum	Y_Sinbour	v_Racime	Pixels_Areas	%_Perimeter	Y_Perimeter	Sum_of_Lundrocity	Minimum_of_Luminosity	Maximum_of_Lundmosity	111	Outside_X_Index	Edges_X_Index	Edges_Y_Index
1309	1343	1351	46714	46725	56	- 11	- 11	5729	90	.117	-	0.0059	0.7270	1.0000
1132	254	370	409908	409916	115	19	10	12174	82	126		0.0118	0.8421	1.0000
1230	1096	1077	4364066	4364076	106	35	32	10747	89	116		0.0154	0.6000	0.4545
783	816	022	899659	899665	18	9	- 6	2384	127	141		0.0044	0.7500	1.0000
1762	78	94	1523361	1023431	463	69	54	60018	118	141		0.0116	0.2019	0.9259
-														
956	677	686	3379334	3379544	69	12	10	7774	95	152		0.0054	9.7500	1.0000
1702	114	134	115356	115410	532	75	73	54451	94	111		0.0144	0.2567	0.6490
194	109	121	560425	560445	124	18	20	13549	97	124		0.0089	0.6667	1.0000
1335	373	356	1058240	1058279	308	29	39	37264	113	132		0.0095	0.4463	1.0000
827	39	178	2027229	2627391	7998	550	343	689727	49	540		0.0995	0.2491	0.4723

1455 rows × 27 columns

· Reversa de One-Hot Encoding

Se crea la columna target que toma el one-hot encoding y se hace el proceso de revensa.

	A Alicinae	X Maximum	v statem	V Maximus	Pixels Areas	X Perimeter	V Perimeter	has of instructly	Histonic of Latinesday	Hostimum_of_Luminosity	 Edges_X_Index	Edges_Y_Index	Outside Global Index	LogOffrees	tog X Tale
1900	1543	1361	46754	46725	36	11	11	5729	90	917	0.7273	1,0000	1.0	17482	0.903
1132	384	370	409908	405518	516	19	10	12174	82	126	0.8421	1.0000	8.0	2.0845	1.204
1330	1086	9077	4364096	4364076	106	36	22	10747	89	116	0.6000	0.4545	0.0	2.0253	1 322
783	216	822	500600	315065	18	R		2004	127	141	0.7500	1.0000	0.0	1.2553	0.7782
1762	78	54	1523391	1823431	463	69	54	60518	118	141	0.2319	0.5059	1.0	2.6650	1.204
-															
955	677	686	3079334	3379346	89	120	10	7774	95	132	0.7500	1.0000	5.0	1.6369	0.9942
1792	114	154	115356	115418	592	39	78	54451	94	111	0.2667	0.6493	10	2.7259	1.3010
194	109	121	560425	360465	124	16	211	13549	97	124	0.6867	1.0001	1.0	2 (3934)	1079
1005	373	386	1058240	1058279	500	29	39	37264	110	132	11.4480	1.0000	1.0	2.4000	1.1131
627	39	170	2627229	2627391	7998	150	343	886717	49	140	0.2491	0.4723	3.0	3,9030	2.1430

Nulos

En celdas anteriores como previo a la carga de los datos se exploro rapidamente los valores nulos ahora se procederá a revisar si existe al menos 1 en todo el DF.

```
[] 1 train.isnull().sum().sum()

3 0
```

Uno de los problemas típicos al trábajar con datos es que los datos vengan en otro formato, es decir cuando uno ve el dato es un numero 1 pero el sistema lo ha leido como texto "1" causando complicaciones en los modelos.

formato de las variables (tipo)

```
O 1 train.dtypes
Tr X_Minimum
                                                             int64
                                                            int64
int64
         K_Heximum
        V_Minisus
V_Maxisus
                                                             int64
       V_Mostmum
Pixels_Areas
K_Perimeter
V_Parimeter
Sum_of_Luminosity
Minimum_of_Luminosity
Maximum_of_Luminosity
Length_of_Conveyer
TypeOfSteel_A488
TypeOfSteel_A488
Steel_Plate_Thickness
Edges_Index
                                                             int64
                                                             int64
                                                             1nt64
                                                             int64
                                                             int64
                                                             int64
                                                             int64
                                                             int64
                                                            1nt64
                                                        into4
float64
        Edges_Index
         impty_Index
                                                         float64
       Square_Index
Outside_X_Index
Edges_X_Index
                                                         float64
                                                         float64
                                                        float64
```

Duplicados

Validación de los duplicados en el DF

Al parecer no existe duplicados en el DF, dado que la cantidad de columnas antes y despues de hacer la operación sigue siendo la misma

Atipicos

Local Outlier Factor

```
[ ] clf - LOF(contamination=0.1)
2 clf.fit(train.drop('target',axis=1))
3 atipicos - clf.predict(train.drop('target',axis=1)) ## etiquetas binarias (8: No atipicos, 1: atipicos)
4
5 atipicos-atipicos|=]
6 train-train.lloc(atipicos,:)
7 train.shape

3 (1122, 28)
```

Alta Correlación

```
[ ] i correlacion = train.drop("target",axis=1).corr().unstack()
2 correla_ordena= correlacion.sort_values(kind="quicksort")
```


Alta Correlación

```
correlacion = train.drop('target',axis=1).corr().unstack()
correla_ordena= correlacion.sort_values(kind="quicksort")

correla_ordena=correla_ordena[(correla_ordena > 0.90) &( correla_ordena<0.999)]
correla_ordena</pre>
```

-	LogOfAreas Log_X_Index Maximum_of_Luminosity Luminosity_Index Y_Perimeter Pixels_Areas Y_Perimeter Sum_of_Luminosity X_Perimeter Pixels_Areas Sum_of_Luminosity X_Perimeter Y_Perimeter Y_Perimeter X_Perimeter X_Perimeter X_Maximum X_Minimum Sum_of_Luminosity Pixels_Areas	Log_X_Index LogOfAreas Luminosity_Index Maximum_of_Luminosity Pixels_Areas Y_Perimeter Sum_of_Luminosity Y_Perimeter Pixels_Areas X_Perimeter X_Perimeter Sum_of_Luminosity X_Perimeter Y_Perimeter Y_Perimeter Y_Perimeter X_Minimum X_Maximum Pixels_Areas	0.901216 0.901216 0.913880 0.913880 0.954729 0.954729 0.958623 0.974513 0.974513 0.976020 0.977837 0.977837 0.991427 0.991427
	Pixels_Areas	Pixels_Areas Sum_of_Luminosity	0.997331 0.997331
	dtype: float64		


```
[ ] 1 to_drop = refusion_dimension(train.drop('target',axis=1))
2 to_drop

[ 'X_Minimum', 'Y_Minimum', 'Pixels_Areas', 'X_Perimeter', 'Y_Perimeter']

[ ] 1 train = train.drop(to_drop, axis=1)
2 train.shape

[ ] 1 X=train.drop('target', axis=1).values
2 y=train['target'].values
3 4 X.shape, y.shape

[ ] (1322, 22), (1322,))
```

Transformación de datos

Para poder trabajar con algumos modelos de ML se quiere hacer un encoding para las variables, normalización/estadarización segun corresponda.

Catboost

Se usará una estrategia para que Catboost sea la proporción que tienen las clases

```
[ ] 1 classes - np.unique(y_train)
         weights - compute_class_weight(class_weight-'balanced', classes-classes, y-y_train)
         class_weights = dict(zip(classes, weights))
[ ] 1 train_dataset = Pool(X_train, y_train)
         rscv = StratifiedKFold(n_splits*), shuffle*True, random_state*SEEO)
         model = CatBoostClassifier(
                                   learning_rate=0.01
                                   ,depth=6
                                    ,n_estimators=100
                                    ,loss_function='Multiclass'
                                   ,train_dir= 'crossentropy
    11
                                    ,early_stopping_rounds=200
    12
                                   ,bagging_temperature - 1
                                    ,metric_period = 100
    13
    14
                                    ,langevin-True
                                    _random_seed -SEED
    15
                                    _class_weights -class_weights
    16
    17
    10
         model.fit(train_dataset, verbose=False, plot=True)

<catboost.core.CatBoostClassifier at 0x79932acf3880>
```

Datos de Entrenamiento

```
[ ] 1 y_pred = model.predict(X_train)
      print(classification_report(y_train,y_pred))
precision
                              recall f1-score support
               0
                                0.71
                                                     235
                       0.62
                                          0.66
               1
                       0.39
                                1.00
                                          0.56
                                                     28
               2
                       0.95
                                0.89
                                          0.92
                                                     199
               3
                       0.77
                                0.37
                                          0.50
                                                     362
               4
                       0.39
                                0.80
                                          0.53
                                                     85
               5
                       0.76
                                0.91
                                          0.83
                                                     43
               6
                       0.71
                                0.90
                                                    105
                                          0.79
        accuracy
                                          0.67
                                                   1057
                                0.80
       macro avg
                       0.66
                                          0.68
                                                   1057
    weighted avg
                       0.72
                                0.67
                                          0.66
                                                   1057
```

Datos de test

```
[ ] 1 y_pred = model.predict(X_test)
      print(classification_report(y_test,y_pred))
₹
                  precision
                              recall f1-score support
                       0.55
                                 0.71
               Θ
                                          0.62
                                                      59
                                 1.00
                                                       7
               1
                       0.35
                                          0.52
               2
                       1.00
                                 0.82
                                          0.90
                                                      50
                       0.75
                                 0.30
                                          0.43
                                                      91
               4
                       0.36
                                 0.62
                                          0.46
                                                      21
                       0.73
                                 1.00
               5
                                          0.85
                                                      11
               6
                       0.60
                                 0.92
                                          0.73
                                                      26
        accuracy
                                          0.62
                                                     265
       macro avg
                       0.62
                                 0.77
                                          0.64
                                                     265
    weighted avg
                                 0.62
                       0.69
                                          0.61
```


HyperTunning para Catboost

Balanceo de clases

Se usara una libreria para hacer el balanceo de clases, se probo una estrategia de decirle al algoritmo la proporción de las clases y se esperaba que este resultado fuera bueno. Dado que el supuesto es falso se procedio a hacer un balanceo de clases con estrategia más robustas.

```
oversample - ADASYN(n_neighbors-6, random_state-SEED)
         X_balance, y_balance = oversample.fit_resample(X_test, y_test)
         clases_balance= pd.DataFrame.from_dict(Counter(y_balance), orient='index').reset_index()
         clases_balance.columns=['defectos','porcentaje']
         clases_balance['porcentaje']-nound((clases_balance['porcentaje']/len(X_balance))*180;2)
         clases_balance
Ŧ
        defectos porcentaje
     0
              2
                       14.37
                       14.22
     1
               3
     2
                       15.62
     3
                       14.37
     5
                       14.05
               5
                       14.22
```

Cuando se entreno el modelo baseline usando CatBoost se uso una estrategia para decirle al algoritmo como estaban distribuidas las clases. Para hacer el hypertunning no vamos a usar está estrategia sino que por el contrario usaremos una estrategia de balanceo de clases por lo cual es conveniente que el modelo base no tenga está opción impuesta.

```
model - CatBoostClassifier(#iterations~500,
                                   learning_rate=0.81
                                    ,depth=6
                                    ,n_estimators=100
                                    ,loss_function='MultiClass'
                                    ,train_dir= 'crossentropy
                                    ,early_stopping_rounds=200
                                    ,metric_period - 100
                                    ,random_seed -SEED
    10
                                    #,task_type="GPU"
    11
    12
    23
         model.fit(train_dataset, verbose=False, plot=True)
    14
         parameters = {'depth'
    15
                                      : [5,6,7,9, 10],
                        'learning_rate' : [8.81,8.82,8.83,8.84],
    16
                       'n estimators'
    17
                                       1 [75,188,128]
    18
    19
    20
         Grid_CBC_balance - GridSearchCV(estimator-model
    21
                                         ,param_grid - parameters
    22
                                         , CV = rscv
                                         ,scoring="accuracy"
    23
    24
                                         ,n_jobs=-1)
    25
    26
         Grid_CBC_balance.fit(X_balance, y_balance)
∓+ 0:
            learn: 1.8742584
                                    total: 48.8ms remaining: 5.8s
    100:
                                                   remaining: 1.28s
            learn: 0.4070332
                                    total: 6.79s
            learn: 0.3480472
                                                  remaining: Ous
    119:
                                    total: 7,59s
               GridSearchCV
      » estimator: CatBoostClassifier
           + CatBoostClassifier
```



```
[ ] 1 from google.colab import output
     2 output.enable_custom_widget_manager()
Support for third party widgets will remain active for the duration of the session. To disable support:
[ ] 1 from google.colab import output
     2 output.disable_custom_widget_manager()

    Datos de Test

[ ] 1 Grid_CBC_balance.best_params_,Grid_CBC_balance.best_estimator_
# ({'depth': 10, 'learning_rate': 0.04, 'n_estimators': 120},
     <catboost.core.CatBoostClassifier at 8x7f2af28cd658>)
Ð
                precision recall f1-score support
              8
                     8.96
                             8.99
                                      8.97
                     0.85
                             1.00
                                      8.92
                                                 11
                     1.88
                             1.86
                                      1.00
                                                 75
                     1.00
                             0.94
                                      8.97
                                                135
                     0.94
                             1.00
                                      0.97
                                                 32
                     1.00
                             1.00
                                      1.00
                     0.97
                             1.00
                                      0.99
                                                39
                                      0.98
                                                397
        accuracy
                     8.96
                             0.99
                                      0.97
                                                397
       macro avg
    weighted avg
                    8.98
                           0.98
                                      8.98
```

Validación del modelo

Ahora que se tiene el modelo entrenado, se usarán el otro conjunto de datos suministrados para validarlo.

Se coloca un procedimiento para garantizar que el nombre de las columnas en los dos archivos entregados por la empresa sean similares, excluyendo de DF de train la variable objetivo.

I I		test- test[etiquetas] test
[]		XX_test-test.values XX_test.shape
£ 1	1	XX_test=preprocessing.scale(XX_test)
0	1 2 3	<pre>yy_pred = Grid_CBC_balance.best_estimatorpredict(XX_test) defectos= label_encoder.inverse_transform(yy_pred) defectos</pre>
[]	1 2	test['target']-defectos test
[1	1	test.to_csv(link_lectura+name_user+"/"+name_file_exist)