Agente IA Experto en Reglas de Voleibol

1. Introducción

El Agente IA especializado en reglas de voleibol es un sistema inteligente que combina capacidades de conversación natural con conocimiento experto sobre todas las reglas, normativas y aspectos técnicos del voleibol. Utiliza una base de datos vectorial alimentada con documentación oficial, manuales de federaciones y recursos acreditados sobre este deporte.

2. Arquitectura del Sistema

sección 1: Flujo principal de conversación con el agente IA

1.1 Disparador de conversación

El flujo comienza con el nodo **Chat Trigger**, que activa la ejecución cuando se recibe un mensaje.

1.2 Nodo Al Agent

El nodo **Al Agent** centraliza la lógica conversacional. Este actúa como un "agente de herramientas" que puede:

- Usar un modelo de lenguaje (LLM)
- Usar memoria (para contexto)
- Usar herramientas externas, como búsqueda vectorial

1.3 Modelo de lenguaje local con Ollama

El nodo **Ollama Chat Model** representa un modelo como **Llama3.2** ejecutado localmente a través de **Ollama**. Este se conecta al Al Agent como modelo principal de conversación.

1.4 Memoria simple

El nodo **Simple Memory** se conecta al Al Agent para permitir la retención de contexto entre mensajes de una misma sesión.

1.5 Herramienta: Responder con vector store

El nodo **Answer questions with a vector store** intenta buscar en la base de datos vectorial y responder basado en la información recuperada.

Este nodo depende de:

- Una vector store (como Qdrant)
- Un modelo para el RAG (Ollama Chat Model)

sección 2: Vectorización de documentos PDF desde Google Drive

Este flujo es independiente, pero carga y convierte documentos en vectores para alimentar la base de datos Qdrant.

2.1 Google Drive Trigger

El nodo Google Drive Trigger detecta cuando un archivo nuevo es creado.

2.2 Edición y descarga

Los nodos **Edit Fields** y **Google Drive (Download)** permiten manipular y descargar el archivo.

2.3 Extracción de texto

El nodo Extract from File extrae texto del archivo PDF.

2.4 División en fragmentos

El nodo **Recursive Character Text Splitter** divide el texto en fragmentos (chunks) útiles para embedding.

2.5 Embeddings y almacenamiento

- **Embeddings Ollama** genera representaciones vectoriales para cada fragmento de texto.
- Qdrant Vector Store guarda esos vectores y los asocia con los textos.

3. Base de Conocimiento Especializada

3.1 Contenido de la Base de Datos

- Reglamento oficial FIVB 2023-2024
- Manuales de arbitraje
- Casuística de situaciones de juego
- Normativas de competición

4.2 Ejemplos de Consultas Resueltas

Regla específica "¿Cuántos toques se permiten por equipo?" | "El reglamento establece un máximo de 3 toques por equipo antes de pasar el balón al campo contrario (Art. 9.1)" |

Casuística "¿Es válido un saque que toca la red pero pasa al campo contrario?" | "Sí, el saque que toca la red, pero cruza al campo contrario es válido (Regla 12.4.1)" |

Arbitraje "¿Cómo se señala un doble toque?" | "El árbitro extiende el brazo con dos dedos levantados "

5. Flujo de Operación

5.1 Proceso de Consulta

- 1. Recepción: Usuario pregunta sobre reglas
- 2. Clasificación: El agente identifica el ámbito reglamentario
- 3. **Búsqueda**: Consulta vectorial en documentos especializados
- 4. **Verificación**: Cruza información con múltiples fuentes
- 5. **Respuesta**: Devuelve artículo reglamentario + explicación

5.2 Ejemplo Detallado

Consulta: "¿Qué ocurre si un jugador toca la banda superior de la red durante un remate?"

Procesamiento:

1. Genera embedding de la consulta

- 2. Busca en Qdrant los fragmentos más relevantes
- 3. Encuentra:
- Artículo 11.3 del reglamento FIVB
- Comentarios de arbitraje sobre toques de red
- Diagramas explicativos
- 4. Sintetiza respuesta precisa con referencias