

Q: Who has office hours on Wed. April 16 at 9am?

- A. Ola
- B. Sam
- C. Kate
- D. Kelly
- E. Abby

CPSC 100

Computational Thinking

Course Wrap Up

Instructor: Parsa Rajabi

Department of Computer Science

University of British Columbia

Agenda

- Course Admin
- Final Exam details
- Course reflection / feedback
- AMA
- Wrap up

Course Admin

Course Admin

- Project Milestone 3 (you should be ~99% done by now!)
 - Due Monday, April 7, 11:59pm
 - Make sure to submit your <u>Al Disclosure</u> via qualtrics form!

Final Exam

Tuesday, April 22, 7pm; Location: SWING 121

Final Exam

Final Exam Details

Tuesday, April 22, 🕴 SWING 121 7-9:30pm

by 6:30, doors ~6:45-6:50 Arrive open

- Do not enter room until instructed to do so - Account for possible delays (transit, weather, etc.)
 - Late arrivals will not be provided extra time
- Emergency? Email Parsa (instructor) & your faculty advisor.

Registered with CFA?

Contact CFA office to book exam (your responsibility)

Final Exam Details

- All content covered throughout the course
 - Lecture Notes, Labs, PC Quizzes, In-class/ take-home activities/discussions, etc.
 - TA lectures (Parsa/Kate) will <u>NOT</u> be on the exam.
- Closed book, paper-based exam
 - One double-sided letter-size cheat sheet (can be handwritten or typed/with screenshots)
- No electronics allowed

Final Exam Details

- What to bring to exam?
 - UBC Student ID
 - Pencil (recommended), pen, eraser
 - Practice your handwriting / speed
 - Illegible answers (bad writing) will be marked as 0
 - A smile

Practice Final Exam

Practice Final Exam

 The focus of the practice exam is to provide you with a sample of how questions are worded/presented. The difficulty level, # of questions and content could be different.

Practice Final Exam

 The focus of the practice exam is to provide you with a sample of how questions are worded/presented. The difficulty level, # of questions and content could be different.

- To be released by Sunday, April 13 (at the latest)
 - Alongside iClicker solutions
- Answer key will not initially be posted
 - You're encouraged to recreate the exam environment.
 - Attend final exam office hours to receive help!
 - Answer key to be released Friday, April 18

Exam Advice

Final Exam Advice

- Studying:
 - Start with a plan, breakdown the course into "chunks".
 - Do not "cram" the night before, learning takes time.
 - Do not underestimate sleep, esp. for problem solving.
 - Unsure of a concept? Visit final exam office hours.

Final Exam Advice

Studying:

- Start with a plan, breakdown the course into "chunks".
- Do not "cram" the night before, learning takes time.
- Do not underestimate sleep, esp. for problem solving.
- Unsure of a concept? Visit final exam office hours.

During the exam:

- Read the question carefully. Underline important parts.
- Scan through the exam, start with what you know.
- Use question points to determine answer depth/detail.

Course Review

Computational Thinking

What is Computational Thinking?

"Computational thinking is the **thought processes** involved in formulating problems and their **solutions** so that the solutions are in a form that can be **effectively** carried out by an information-processing agent" [Cuny, Snyder, Wing]

22

Computational Thinking Skills

Course Review [Pre-Midterm]

- Algorithms •••••
 - Classification, Trees and Entropy
 - Sequential, Breaking Bad
- Artificial Intelligence •••••
 - Generative Al
 - Natural Language Processing (NLP)
 - Ethical dilemmas

Hardware / Software

Social Implications

- Snap Programming

 - Conditionals
 - Mod Operator
 - Loops
 - Logic Functions
 - Code Tracing

Course Review [Post-Midterm]

- - Binary, Hexadecimal, ASCII, etc.

Data Representations •••••

- Conversion Algorithms
- RGB Colours
- - Visualizations •••••
 - Pixels
 - Static Graphs
 - Interactive Graphs

- Principles
- Gestalt Principles
- Storytelling
- ➤ HCI ●●●●
 - Usability Heuristics

Where to next?

- Intro to Programming
 - CPSC 103 + 107
 - o CPSC 110
- Intro to Al
 - o CPSC 322
- Algorithms
 - o CPSC 221
 - o CPSC 320
- Computers & Society
 - CPSC 430

- Hardware & OS
 - o CPSC 313
- Machine learning
 - o CPSC 340
- Visualizations
 - CPSC 447
- HCI
 - o CPSC 344
 - CPSC 444

Want to learn more?

- Free resources to learn programming
 - CS50 @ Harvard
 - Code in Place @ Stanford
 - Scrimba
 - FreeCodeCamp
 - CodecAdemy
- Other resources
 - Google Education Intro to Python
 - Khan Academy Basics of Programming

Course Reflection

Course Reflection Activity

- Suppose our course was a baking experience, in groups of 2-3, reflection on the course experience:
 - The Best Bites
 - Recipe Flops
 - Magic Ingredients
 - Next Bake Plans

- Write your answers on this board, in your designated #
 - Link to Miro Board

Discussion

ASK Me Anything

* within reason

Wrap up

Generated by ChatGPT

What was your main takeaway from today's session?

