CS583 Assignment 1 Solutions

Question 1

- a. No, A and B are not independent.
- **b.** No, A and C are not independent. (If decimals rounded, the Yes is accepted)
- c. Yes, A and C independent given B
- d. Yes, A and D independent
- e. No, A and D are not independent given C. (If decimals rounded, the Yes is accepted)

Question 2

a.
$$2^{n-1}2^{m-1} - 1 = 2^{m+n-2} - 1$$

b.
$$3^{m-1}3^{m-1} - 1 = 3^{m+n-2} - 1$$

c. Every X_i has i values,

$$(2 \times 3 \times \ldots \times n \times 2 \times 3 \times \ldots \times m) - 1 = n!m! - 1$$

d.
$$2^{n-1}tables \times (2^m-1) \ values \ per \ table = 2^{n-1}(2^m-1)$$

e.
$$3^{n-1}tables \times (3^m - 1) \ values \ per \ table = 3^{n-1}(3^m - 1)$$

f. n! $tables \times (m! - 1)$ values per table = (m! - 1)n!

Question 3

Naïve Bayes' representation can be shown as:

$$P(Y)\prod_{i=1}^{n-1}P(X_i|Y)$$

where P(Y) is the target variable and $P(X_i)$ are the feature variables.

For each $P(X_i|Y)$, for binary variables, number of parameters $2 \ tables \times 1 \ value \ per \ table$

Hence, for n-1 product terms, 2(n-1) independent parameters.

P(Y) needs 1 independent variable, so total number =

$$2(n-1)+1 \implies 2n-1$$

Question 4

- **a.** $P(A) \ P(B) \ P(C|A,B) \ P(D|C) \ P(F|C) \ P(E) \ P(G|D,E,F) \ P(H|G)$
- b. We need to add-up the number of independent parameters for each of the above probabilities

$$(n-1)+(n-1)+(n^2 imes n-1)+(n-1 imes n)+(n-1 imes n)+(n-1)+(n^3 imes n-1)+(n-1 imes n)$$

- 1. True
- 2. False
- 3. False
- 4. False
- 5. True
- 6. False
- 7. False
- 8. False
- 9. True
- 10. False
- 11. True
- 12. True
- 13. False

Question 5

Part a

 $A\perp C|\phi$

 $B \perp C|A$

 $E\perp A|B,C$

 $D\perp A,C,E|B$

 $F\perp A,B,C,D|E$

Part b

 $B \not\perp D$

 $A \perp D|B$

 $E\perp A,D|B$

 $C\perp A, D|B, E$

 $F\perp D, B, A, C|E$

Part c

 $F \not\perp E$

 $D \perp F|E$

 $C \perp F|E,D$

 $B \perp F|D, E, C$

 $A \perp C, D, E, F|B$

Part d

 $F \not\perp A$

 $C \not\perp A, F$

 $E \not\perp F, A, C$

 $D \perp F|A,C,E$

 $B \perp F|A,C,D,E$

Question 6

There is 1 immorality in $B \to E \leftarrow C$. This should remain unchanged in the I-Equivalent Structures

The $E \to F$ cannot be changed as it will introduce a new immorality.

So on the relationship between A,B and B,D can be changed in a way where no new immoralities are introduced.

Question 7

- **a.** 0.725
- **b.** 0.725
- **c.** 0.4901
- **d.** 0.3419
- **e.** 0.95
- **f.** 0.95