

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071.

Professor: Henrique Marra Taira Menegaz e-mail: henriquemenegaz@unb.br

EXPERIMENTO DE VHDL 3

1 REGRAS DE APRESENTAÇÃO

Os grupos deverão apresentar o experimento de forma presencial, **na sala de aul**a, **durante o horário de aula**, **até a aula seguinte** à designada a este experimento. A apresentação consiste em mostrar ao professor **o projeto implementado na Basys 3 e explicar os códigos** escritos.

2 Nота

O experimento receberá nota entre 0 e 10 pontos.

3 Projeto

Projete uma ULA programável de acordo com o esquema da Figura 1 e a Tabela 1. As variáveis \mathbf{A} e \mathbf{B} são entradas de dados de 4 bits, $\mathbf{S} = \mathbf{S_1S_0}$ é a entrada de seleção, $\mathbf{F} = \mathbf{F_3F_2F_1F_0}$ é a saída de dados, **over** é uma saída de 1 bit que indica a ocorrência de um *overflow*, e **c_out** é uma saída de *carry out*. As variáveis \mathbf{A} , \mathbf{B} e \mathbf{F} devem ser consideradas como representadas em <u>complemento de 2</u>. Utilize chaves (*switches*) da Basys 3 para serem os bits de entrada e <u>LEDs</u> para os bits de saída (não há necessidade de usar os displays de 7 segmentos).

A operação realizada pela ULA será escolhida por $\bf S$ de acordo com a Tabela 1. Modos aritméticos serão realizados para $\bf S=00$ e $\bf S=01$, e modos lógicos para $\bf S=10$ e $\bf S=11$.

De fato, caso $\mathbf{S} = 00$, a ULA deverá efetuar a soma (em complemento de 2) de \mathbf{A} com \mathbf{B} e, caso $\mathbf{S} = 01$, a subtração (em complemento de 2) de \mathbf{A} por \mathbf{B} . Caso a operação de soma ou de subtração resulte em *overflow*, então **over** deverá ter o valor 1 e, em caso contrário, o valor 0. De modo semelhante, caso alguma dessas operações resulte em *carry out*, então \mathbf{c} _out deverá ter o valor 1 e, em caso contrário, o valor 0.

Por outro lado, caso $\mathbf{S} = 10$, a ULA deverá efetuar a operação lógica \mathbf{A} and \mathbf{B} <u>bit-a-bit</u> e, caso $\mathbf{S} = 11$, a operação lógica \mathbf{A} or \mathbf{B} <u>bit-a-bit</u>. Nesses dois casos, **over** e **c_out** não fornecem informação alguma, logo poderão ter qualquer valor (*don't care*).

Utilize o seguinte:

- como entradas, as chaves (switches);
- como saídas, LEDs.

Para implementar esse projeto, a única biblioteca que poderá ser importada é a ieee.std_logic_1164; caso o grupo utilize outra biblioteca, como as consideradas aritméticas (por exemplo, numeric_std, std_logic_arith, std_logic_unsigned e std_logic_signed) o experimento receberá nota 0. Também não poderá ser usado o comando PROCESS. O código deve ser todo concorrencial. Basta seguir a aula disponibilizada pelo professor.

Critérios de pontuação. Este projeto será pontuado de acordo com os seguintes critérios:

- Código correto da soma (**S** = 00): 1,5 ponto.
- Código correto da subtração (**S** = 01): 1,5 ponto.
- Código correto da operação lógica *and* (**S** = 10): 1,5 ponto.
- Código correto da operação lógica *or* (**S** = 11): 1,5 ponto.
- Funcionamento na Basys 3: 4 pontos.

Tabela 1. Tabela Verdade a ser implementada no projeto.

Operação	S ₁ S ₀	$F_3F_2F_1F_0$	over	c_out
SOMA(A,B)	00	A+B	overflow	carry out
SUBT(A,B)	01	A-B	overflow	carry out
AND(A,B)	10	A and B	Χ	Χ
OR(A,B)	11	A or B	Χ	Χ

Figura 1. Esquemático da ULA a ser implementada no projeto.

Tabelas de Verdades: há mais de uma possível tabela de verdade, dependendo do modo como o somador foi feito. Seguem, abaixo, algumas posições dessas tabelas, para rápido conferência.

Tabelas de Verdade 1

		A+B		
Α	В	R	over	c_out
0000	0000	0000	0	0
0001	0010	0011	0	0
0001	0111	1000	1	0
0001	1111	0000	0	1
1000	1010	0010	1	1

			,,,,		
	Α	В	R	over	c_out
	0000	0000	0000	0	0
	0001	0001	0000	0	1
	0111	1111	1000	1	0
	1000	0001	0111	1	1
Ī					

A-B

Tabelas de Verdade 2

		A+B		
Α	В	R	over	c_out
0000	0000	0000	0	0
0001	0010	0011	0	0
0001	0111	1000	1	0
0001	1111	0000	0	1
1000	1010	0010	1	1

		A-B		
Α	В	R	over	c_out
0000	0000	0000	0	1
0001	0001	0000	0	1
0111	1111	1000	1	0
1000	0001	0111	1	1