CS 321

Quiz 7 (15 min., 5 pts)

NOVEMBER 23, 2015

Last Name = _____, First Name = ____

ONID login = = _____@oregonstate.edu

1. (1 pt) Convert the following grammar G into CNF. Hint: you only need to binarize.

 $S \to TBCA$ $T \to CBCA$ $A \to a$ $B \to b$ $C \to c$

- 2. (1 pt) Assume n is the length of the input string:
 - (a) What is the time complexity of applying a CKY-style parsing algorithm to the above non-CNF grammar G?
 - (b) What is the time complexity of applying CKY to the converted grammar in CNF?
- 3. (1 pt) As shown in class (and slides and textbook), here is a PDA for the language $\{a^nb^n \mid n \geq 0\}$.

Run aabb on this PDA that leads to acceptance. I have drawn the first three steps for you. You can add more steps.

step	0	1	2	3	4	5	6
state input	$q \\ aabb$	$r \\ aabb$	r ¢abb				
stack	ϵ	\$	a				

4. (1 pt) Now based on the above PDA, draw a PDA for the language $\{w\#w^R \mid w \in \{a,b\}^*\}$, i.e., $\Sigma = \{a,b,\#\}$.

- 5. (1 pt) Observe that the PDA in Problem 4 is deterministic (like DFA, only one path for each input string) while the one in Problem 3 is non-deterministic (like NFA, due to the $(r) \xrightarrow{\epsilon, \epsilon \to \epsilon} (s)$ transition).
 - (a) Can we make a deterministic PDA for $\{a^nb^n \mid n \geq 0\}$ (Problem 3)? Briefly justify.
 - (b) Can we make a deterministic PDA for $\{ww^R \mid w \in \{a,b\}^*\}$? Briefly justify.