```
% Define the range of x values
x \text{ values} = 0:0.5:5;
% Define the constants C1 and C2
C1 = 1 + 1/999;
C2 = -1/999;
% Calculate the y values for the given x range
y values = (C1 * exp(-x values)) - (C2 * exp(-1000 *
x values));
% Plot the solution
figure;
plot(x values, y values, 'yellow', 'LineWidth', 3);
xlabel('x');
ylabel('y(x)');
arid on;
hold on
% Implicit Euler Method
% Define the step size and time span
h = 0.5;
x span = 0:h:5;
% Initialize arrays to store the results
y implicit = zeros(size(x span));
% Set initial conditions
y implicit(1) = 1;
% Define the parameters for the implicit Euler method
a = 1001;
b = 1000;
% Apply implicit Euler method
for n = 1:length(x span) - 1
   x n = x span(n);
   % Implicit Euler method
   y implicit(n+1) = (y implicit(n) + h * (y implicit(n+1))
- y implicit(n));
end
```

```
plot(x span, y implicit, 'r', 'LineWidth', 2);
grid on;
hold on
응응응응응응응응응
syms y1 y2 y z t t1 t2 h z1 z2
S1 = z;
S2 = -1001*z-1000*y;
SS1 = y2 - y1 - h*subs(S1, \{y z\}, [y2 z2]);
SS2 = z2 - z1 - h*subs(S2, \{y z\}, [y2 z2]);
EQN1 = SS1 == 0;
Y = solve(EQN1, y2);
EQN2 = SS2 == 0;
Z = solve(EQN2, z2);
H=0.5;
T=0:H:5;
YN(1) = 1;
ZN(1) = 0;
for i=2:length(T)
   EQ1=subs(EQN1, {y1 z1 h}, [YN(i-1) ZN(i-1) H]);
   EQ2=subs(EQN2, {y1 z1 h}, [YN(i-1) ZN(i-1) H]);
   [solx, soly] = solve(EQ1, EQ2);
   YN(i) = double(solx);
   ZN(i) = double(soly);
end
plot(T, YN, 'black', 'LineWidth', 2);
grid on;
hold on
% Define the ODE as a function
ode = @(x, Y) [Y(2); -1001 * Y(2) - 1000 * Y(1)];
% Define the initial conditions
```

```
initial conditions = [1; 0]; % y(0) = 1, and dy/dx(0) = 0
% Define the range of x values
x range = 0:0.5:5; % Adjust the range as needed
% Use ode23 to solve the ODE
[x, Y] = ode23(ode, x range, initial conditions);
% Extract the solutions for y and z
y = Y(:, 1);
y=y';
x=x';
% Plot the solution
plot(x, y, '--', 'LineWidth', 1);
legend ('Analytical Solution', 'Implicit Method', 'Explicit
Method','ode23 method')
% Print the results
fprintf('-----
----\n');
fprintf('Solutions with different methods with step
size, h=0.5 \n')
fprintf('-----
----\n');
fprintf('x-value\t y-analytical\t y-implicit\t y-
explicit\t y-ode\n');
fprintf('-----
----\n');
for i = 1:length(T)
   fprintf('%4.1f\t\t %4.4f\t\t %4.4f\t\t %4.4f\t\t
%4.4f\n', T(i), y values(i), y implicit(i), YN(i), y(i));
end
```

Solutions with different methods with step size, h=0.5

x-value	y-analytical	y-implicit	y-exp	licit y-ode
0.0	1.0020	1.0000	1.0000	1.0000
0.5	0.6071	0.5000	0.6673	0.6071
1.0	0.3682	0.2500	0.4449	0.3682
1.5	0.2234	0.1250	0.2966	0.2234
2.0	0.1355	0.0625	0.1977	0.1355
2.5	0.0822	0.0313	0.1318	0.0822
3.0	0.0498	0.0156	0.0879	0.0498
3.5	0.0302	0.0078	0.0586	0.0302
4.0	0.0183	0.0039	0.0391	0.0183
4.5	0.0111	0.0020	0.0260	0.0111
5.0	0.0067	0.0010	0.0174	0.0067

