Warm-up!

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix} \\
\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$$

$$\begin{bmatrix} i \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{?}{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{?}{1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Note: All slides are available: https://github.com/ndattani/Lecture_Notes

Introduction to Quantum Computing Lecture 1

Nike Dattani

<u>Outline</u>

- A bizarre experiment!
- Qubits and quantum gates
- Your first quantum computation

(demystifying the above experiment)

- Your second quantum computation
 (2 x more efficient than the best classical algorithm)
- Your third quantum computation
 (exponentially more efficient than the best classical algorithm)

Ein neuer Interferenzrefraktor.

Von

Dr. L. Zehnder in Basel.

Die Brewster'sche Entdeckung der Farben dicker Platten¹) wurde von Herrn Jamin in glücklichster Weise zur Konstruktion seiner Interferenzrefraktoren²)

Ein neuer Interferenzrefraktor.

Von

Dr. L. Zehnder in Basel.

Die Brewster'sche Entdeckung der Farben dicker Platten¹) wurde von Herrn Jamin in glücklichster Weise zur Konstruktion seiner Interferenzrefraktoren²)

Mach-Zehnder Experiment

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad , \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad , \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad , \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$X|0\rangle = ? \qquad X|1\rangle = ?$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad , \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$X|0\rangle = |1\rangle \qquad X|1\rangle = |0\rangle$$

Classical Computer Bits

0 and 1 represent any distinct classical states!

```
    CPU processing
    0 = Low voltage (0 mV)
    1 = High voltage (5 mV)
```

Classical Computer Bits

0 and 1 represent any distinct classical states!

```
    CPU processing
```

```
0 = Low voltage (0 mV)
```

1 = High voltage (5 mV)

Barcodes

0 = Thin line

1 = Thick line

Classical Computer Bits

0 and 1 represent any distinct classical states!

- CPU processing
 - 0 = Low voltage (0 mV)
 - 1 = High voltage (5 mV)
- Barcodes
 - 0 = Thin line
 - 1 = Thick line
- Optical disks
 - 0 = Absence of pit
 - 1 = Presence of pit

Hard Drive

01101010101001010010101

DNA Storage

0: CG

1: AT

Quantum computer bits (qubits)

0 and 1: two quantum mechanically allowed states

- Atomic levels
 - 0 = Ground state
 - 1 = Excited state

Quantum computer bits (qubits)

0 and 1: two quantum mechanically allowed states

- Atomic levels0 = Ground state1 = Excited state
- Spin

Quantum computer bits (qubits)

0 and 1: two quantum mechanically allowed states

- Atomic levels
 0 = Ground state
 1 = Excited state
- Spin

 $1 = \overline{Down}$

- Photons
 - 0 = Horizontal Polarization
 - 1 = Vertical Polarization
- Many more possibilities!

Schrödinger tells us:

$$e^{-\frac{\mathrm{i}}{\hbar}Ht}|\psi\rangle = |\psi_t\rangle$$

Schrödinger tells us:

$$e^{-\frac{1}{\hbar}Ht}|\psi\rangle = |\psi_t\rangle$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = e^{-\frac{i}{\hbar}Ht}$$

$$X|0\rangle = |1\rangle$$
 $X|1\rangle = |0\rangle$

More logic gates than classical computers!

$$e^{-\frac{1}{\hbar}Ht}|\psi\rangle = |\psi_t\rangle$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad M = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix} = \frac{i}{\sqrt{2}} |\mathbf{0}\rangle + \frac{1}{\sqrt{2}} |\mathbf{1}\rangle$$

$$\left|\begin{array}{c}1\\\overline{\sqrt{2}}\begin{bmatrix}1&i\\i&1\end{bmatrix}\right|$$

The Deutsch Problem (1985)

$$x = 0 \text{ or } 1.$$

How many times do we need to evaluate f(x) in order to know if f(0) + f(1) = 1?

The Deutsch Problem (1985)

$$x = 0$$
 or 1.

How many times do we need to evaluate f(x) in order to know if f(0) + f(1) = 1?

If
$$f(0) = f(1) = 0$$
, $f(0) + f(1) = 0$

$$x = 0 \text{ or } 1.$$

How many times do we need to evaluate f(x) in order to know if f(0) + f(1) = 1?

If
$$f(0) = f(1) = 0$$
, $f(0) + f(1) = 0$
If $f(0) = 0$, $f(1) = 1$, $f(0) + f(1) = 1$

$$x = 0 \text{ or } 1.$$

How many times do we need to evaluate f(x) in order to know if f(0) + f(1) = 1?

If
$$f(0) = f(1) = 0$$
, $f(0) + f(1) = 0$
If $f(0) = 0$, $f(1) = 1$, $f(0) + f(1) = 1$
If $f(0) = f(1) = 1$, $f(0) + f(1) = 2$

These simple gates are enough to determine f(0) + f(1) with <u>one</u> evaluation of f(x):

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \underbrace{(-1)^{f(x)}}_{H}$$

These simple gates are enough to determine f(0) + f(1) with <u>one</u> evaluation of f(x):

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \sqrt{2} & 1 & -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix} \\
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix} \\
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

If
$$f(0) = f(1) = 0$$
, $\psi = ?$
If $f(0) = 0$, $f(1) = 1$, $\psi = ?$
If $f(0) = f(1) = 1$, $\psi = ?$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

If
$$f(0) = f(1) = 0$$
, $\psi = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$
If $f(0) = 0$, $f(1) = 1$, $\psi = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$
If $f(0) = f(1) = 1$, $\psi = -\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -|0\rangle$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

If
$$f(0) = f(1) = 0$$
, $\psi = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$
If $f(0) = 0$, $f(1) = 1$, $\psi = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$ $f(0) + f(1) = 1$
If $f(0) = f(1) = 1$, $\psi = -\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -|0\rangle$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1)^{f(0)} & 0 \\ 0 & (-1)^{f(1)} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \\ \frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \end{bmatrix}$$

If
$$f(0) = f(1) = 0$$
, $\psi = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$
If $f(0) = 0$, $f(1) = 1$, $\psi = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$
Done in a real experiment in 1998!

If f(0) = f(1) = 1, $\psi = -\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -\ket{0}$

$$x_i = 0 \text{ or } 1.$$

How many times do we need to evaluate $f(x_1, x_2, ..., x_n)$ in order to know if it's constant?

- 1992 algorithm by Deutsch-Jozsa required:
 2 function evaluations
- 1997 algorithm by Cleve et al. requires:
 1 function evaluation!

By R. Cleve¹, A. Ekert², C. Macchiavello^{2,3} and M. Mosca^{2,4}

- ² Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.
 - ¹ Department of Computer Science, University of Calgary Calgary, Alberta, Canada T2N 1N4.

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - (-1)^{f(x)} - H$$

Recap

- Classical vs Quantum bits and gates
- Mach-Zehnder Experiment
 - Explained using qubits and quantum gates
- Deutsch algorithm
 - \circ f(0) + f(1) by only evaluating f(x) once rather than twice!
- Deutsch-Jozsa algorithm
 - Obetermined if $f(x_1, x_2, ..., x_n)$ is constant by only evaluating it 1 time rather than 2^n times!
- Shor's algorithm preview
 - The most famous quantum algorithm

Thank you!

<u>Upcoming lectures</u>

- Quantum chemistry on a quantum computer (QC QC)
- BB84 protocol (quantum communication security)
- Grover's algorithm
- HHL algorithm
- Quantum decoherence
- How to actually implement quantum gates:
 - Superconducting qubits
 - Photonic qubits
 - Spin-based qubits (NMR / NV centres)
 - Ion traps, Rydberg atoms, ultracold molecules, etc.