Homework #8 MATH270

Luke Tollefson

Wednesday, April 10th

- 1. For function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x^2$, find
 - (a) f((0,1)) = (0,2)
 - (b) f((-1,3)) = (0,18)
 - (c) $f^{-1}((-2,1)) = (-\sqrt{1/2}, \sqrt{1/2})$
 - (d) $f^{-1}((0,2)) = (-1,1)$
 - (e)

$$f^{-1}((a,b)) = \begin{cases} (-\sqrt{\frac{b}{2}}, -\sqrt{\frac{a}{2}}) \cup (\sqrt{\frac{a}{2}}, \sqrt{\frac{b}{2}}) & a, b > 0\\ (-\sqrt{\frac{b}{2}}, \sqrt{\frac{b}{2}}) & a \le 0, b > 0\\ \emptyset & a, b < 0 \end{cases}$$

(Here (a, b) is the set defined by $(a, b) = \{x \in \mathbb{R} : a < x < b\}$)

- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4 + 1$.
 - (a) Make a graph of f.

(b) Using your graph, show how you can guess f([0,2]).

f([0,2]) = [1,17]

(c) Prove that your guess for f([0,2]) is correct.

Proof. First we will prove that $f([0,2]) \subseteq [1,17]$. Let $y \in f([0,2])$, then $y \in \{f(x): 0 \le x \le 2\}$. Hence $y \in \{x^4+1: 0 \le x \le 2\}$, $y = x^4+1$, where $x \le x \le 2$. The minimum of y is when x = 0, and the maximum is when x = 2. Therefore the range is $y \in [f(0), f(2)]$, or $y \in [1,17]$.

Now we will show $[1,17] \subseteq f([0,2])$. Let $y \in [1,17]$. If we define $x = \sqrt[4]{y-1}$. The smallest x is when y = 1, and the largest is when y = 2. When y = 1, x = 0; when y = 17, x = 2. Hence the interval for x is [0,2] and $y \in f([0,2])$.

Since containment was shown in both directions, equality is proven.

(d) Use your graph to find $f^{-1}([2, 17])$.

$$x^4 + 1$$

$$f^{-1}([2,17]) = [-2,-1] \cup [1,2]$$

(e) Prove that your guess for $f^{-1}([2, 17])$.

Proof. First we will prove that $f^{-1}([2,17]) \subseteq [-2,-1] \cup [1,2]$. Let $y \in f^{-1}([2,17])$. Hence $y \in \{x \in \mathbb{R} : f(x) \in [2,17]\}$. Hence $y \in \{x : x^4 + 1 \in [2,17]\}$. There are two valid intervals, one less than zero, one greater than zero. For the interval less than zero, the smallest x is -2 and the largest is -1. For the interval greater than zero, the smallest x is 1 and the largest is 2. Hence $y \in [-2,-1] \cup [1,2]$.

Next we will prove that $[-2,-1] \cup [1,2] \subseteq f^{-1}([2,17])$. Let $x \in [-2,-1] \cup [1,2]$. Let $y = x^4 + 1$, then the range of y is [2,17]. Hence $x \in f^{-1}([2,17])$.

Since containment was proved in both directions, equality is shown. \Box

3. Let $f: X \to Y$. Show that in general

$$f(X \setminus A) \neq Y \setminus f(A), \qquad A \subseteq X$$

.

(a) If f is one-to-one, then $f(X \setminus A) \subseteq Y \setminus f(A)$.

Proof. Let $y \in f(X \setminus A)$. Then y = f(a), where $a \in X \setminus A$. Hence $y \in Y$. Since f is one-to-one and $a \notin A$, then $f(a) \notin Y$. Thus $y \notin Y$, and $y \in Y \setminus f(A)$.

(b) If f is onto, then $Y \setminus f(A) \subseteq f(X \setminus A)$.

Proof. Let $y \in Y \setminus f(A)$, then $y \in Y$ and $y \notin f(A)$. Hence $y \neq f(a)$ where $a \in A$. Since f is onto, then $\operatorname{ran}(f) = Y$, hence $y \in \operatorname{ran}(f)$. Thus y = f(x), where $x \in X \setminus A$. So $y \in f(X \setminus A)$.

(c) If f is a bijection, then $f(X \setminus A) = Y \setminus f(A)$.

Proof. By a and b, f is a bijection, then containment in both directions is proved.

4. Show that for $f: \mathbb{R} \to \mathbb{R}$, $A, B \subseteq Y$

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Proof. First we will prove that $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$, then $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$.

Let $x \in f^{-1}(A \cap B)$. Then $x \in \{a \in \mathbb{R} : f(a) \in A \cap B\}$. Hence, x = a where $f(a) \in A \cap B$. In other words, $f(a) \in A$ and $f(a) \in B$. Thus $x \in f^{-1}(A)$ and $x \in f^{-1}(B)$, hence $x \in f^{-1}(A) \cap f^{-1}(B)$.

Now let $x \in f^{-1}(A) \cap f^{-1}(B)$. Thus $x \in f^{-1}(A)$ and $x \in f^{-1}(B)$. Then $x \in \{a \in \mathbb{R} : f(a) \in A\}$ and $x \in \{b \in \mathbb{R} : f(b) \in B\}$. Therefore $x \in \{a \in \mathbb{R} : f(a) \in A \cap B\}$. Hence $x \in f^{-1}(A \cap B)$.

Since containment was proved in both directions, hence equivalence is proven. \Box

5. Prove using mathematical induction that

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Proof. First we check the base step: P(1) is the statement that 1 = 1(1+1)/2.

Now we check the induction step. Let $n \in \mathbb{Z}^+$ and suppose P(n). Thus we suppose that for an $n \in \mathbb{Z}^+$ we have

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

We wish to show that P(n+1) holds

$$1 + 2 + \dots + (n+1) = \frac{(n+1)((n+1)+1)}{2}$$

Grouping the left side of P(n+1) and then

$$1 + 2 + \dots + n + (n+1)$$

$$= (1 + 2 + \dots + n) + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{n^2 + n + 2n + 2}{2}$$

$$= \frac{n^2 + 3n + 2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)((n+1) + 1)}{2}$$

By mathematical induction we conclude that assertion holds for all positive integers.

6. Prove using mathematical induction that $2^n \le n!$ for all integers with $n \ge 5$.

Proof. Using the definition of factional and exponentiation.

$$2 * 2 * 2 * 2 * 2 * \cdots < 1 * 2 * 3 * 4 * 5 * \cdots$$

Checking the base step: $2^5 \le 5!$, implies $32 \le 120$, which is true.

Now we verify the induction stop when $n \geq 5$. Suppose the following is true

$$2 * 2 * \cdots * 2 < 1 * 2 * \cdots * n$$

Now we will see if the following holds

$$2 * 2 * \cdots * 2 * 2$$
 (the nth two) $\leq 1 * 2 * \cdots * n * (n+1)$

Grouping together

$$(2 * 2 * \cdots * 2) * 2$$
 (the nth two) $\leq 1 * 2 * \cdots * n$) * $(n + 1)$

We know the left group is less than the right group, we also know $2 \le (n+1)$ when $n \ge 5$. Hence the left product is less than the right product and the assertion holds.