Genetics of Global Gene Expression

Matthew Rockman, Leonid Kruglyak 2006

Megan Zerez

How can we study evolution?

Genome:

~23,000 genes

Genotype

criptome & latory mechanisms

Est. Proteome: >1,000,000

From genome to proteome

An estimated 2 orders of magnitude increase in complexity—how?

27%

Phenotype: global gene expression

• Method: quantify mRNA transcripts, correlate with genome data

Measuring Gene Expression

- Quantitative Trait Locus: Section of the genome influencing some quantifiable phenotype
- Only linked to 27-29% of phenotypic effects
 - Fisher (1930): Infinite genes each contributing a tiny (often undetectable)
 effect to phenotype
 - Orr (1998): Genes influence phenotype on an exponential scale
 - QTLs themselves encode genes which can also have variant expression
 - Non-additive interactions between QTLs may account for other effects
 - Distal acting QTLs are more difficult to identify than local QTLs

Distal QTLs vs Local

a Local regulatory variation

Neighbouring gene

Cis-regulatory (allele-specific)

Autoregulatory

Feedback

Distal QTLs vs Local

Distant QTL 'hotspots' for yeast

Experimental Design to compare expression of wine yeast vs laboratory yeast

Note: microarrays can be used to compare two samples of cDNA, each dot corresponding to a gene.

Red indicates the gene is strongly expressed, yellow indicates no change, green indicates strong repression

Most genes affected by fewer loci

Examples of Complex inheritance of transcript level phenotype

Where have we left off?

Where are we today?

- Improved technologies:
 - Faster/more accessible sequencing (RNA-seq, ~2005)
 - Large scale ChIP-seq: analysis of protein/DNA interaction
 - Increased sensitivity for transcriptome
 - Larger databases to reference (ENCyclopedia of DNA Elements
 ENCODE database)
- New challenges
 - Growth stage of cells have different expression profiles
 - Trans-QTLs (distal) might rather act upon transcription factors from cis-QTLs

Mapping QTLs to disease

Disease/trait study	Implicated eQTL genes	Expression source	Refs
Asthma	ORMDL3	EBV-transformed LCLs	24
Blood lipid levels	SORT1, PPP1R3B, TTC39B	Liver	<u>53,5</u>
Body mass index	NEGR1, ZC3H4, TMEM160, MTCH2, NDUFS3, GTF3A, ADCY3, APOB48R, SH2B1, TUFM, GPRC5B, IQCK, SLC39A8, SULT1A1, SULT1A2	Blood, brain, liver, lymphocytes, subcutaneous and visceral adipose tissue	<u>48</u>
Breast cancer	RRP1B	PyMT-induced primary tumours	<u>55</u>
Coeliac disease	MMEL1, NSF, PARK7, PLEK, TAGAP, RRP1, UBE2L3, ZMIZ1	Blood	<u>47</u>
Crohn's disease	PTGER4, CARD9, ERAP2, TNFSF11	EBV-transformed LCLs	<u>56</u>
Fat distribution	GRB14, TBX15, PIGC, ZNRF3, STAB1, AA553656	Blood, lymphocytes, omental fat, subcutaneous adipose tissue	<u>57</u>
Height	Multiple genes implicated	EBV-transformed LCLs, lymphocytes	<u>58,5</u>
Kidney-ageing	MMP20	Kidney	<u>60</u>
Migraine	MTDH	EBV-transformed LCLs	<u>49</u>
Multiple diseases	CDKN2A , CDKN2B, CDKN2B-AS1	Blood	<u>61</u>
Osteoporosis-related	WLS, MEF2C, FOXC2, IBSP, TBC1D8, OSBPL1A, RAP1A, TNFRSF11B	Liver, lymphocytes, primary osteoblasts	62,6
Parkinson's disease	MAPT, LRRC37A, HLA-DRA, HLA-DQA2, HLA-DRB5	EBV-transformed LCLs, frontal cortex	64,6
Psoriasis	SDC4, SYS1, DBNDD2, PIGT, RPS26*	Lesional psoriatic skin	<u>66</u>
QRS duration and cardiac ventricular conduction	TKT, CDKN1A, C6orf204	Blood	<u>67</u>
Type 2 diabetes	FADS1, FADS2, KLF14, CCNE2, IRS1, JAZF1, CAMK1D	Blood, EBV-transformed LCLs, liver, subcutaneous adipose tissue	<u>68,6</u>

Addendum: Bentolab - \$1200

Portable sequencers!

Min**ION**

- Pocket-sized, portable device for biological analysis
- Up to 512 nanopore channels
- Simple 10-minute sample prep available
- · Real-time analysis for rapid, efficient workflows
- Adaptable to direct DNA or RNA sequencing

About MinION

Start using MinION

Choose MinION if you:

- would like access to sequencing for \$1,000
- want to sequence immediately, not wait
- want to sequence outside a lab
- need 10-20Gb per 48 hours
- want to avoid CapEx investments.