Pledge: I pledge my honor that I have abided by the Stevens Honor System. -Eric Altenburg

1: Prove that if two sets A and B have the same cardinality, then for any set C, the sets $A \times C$ and $B \times C$ have the same cardinality as well.

Proof. Since |A| = |B|, there must exist a bijective function f such that $f: A \to B$, and it is defined as $f(a) \to b$ where $a \in A$ and $b \in B$. Now to show that $|A \times C| = |B \times C|$, we can create another bijective function g such that $g: A \times C \to B \times C$, and it is defined as $g(a, c) \to (f(a), c)$ where $c \in C$. Because this bijective function exists, it is proven that $|A \times C| = |B \times C|$.

2: Is it true that a set A is countable if and only if there exists a surjection $f: \mathbb{N} \to A$? (Recall that a surjection is an onto function.) If so, prove it. If not, state and prove a closely related theorem.

The way the theorem is currently written cannot be proven because it is possible for A to be an empty set. Therefore, the theorem should be rewritten to account for this.

Theorem 1. The set A is countable if and only if A is empty or there exists a surjection $f: \mathbb{N} \to A$.

Proof. (\Longrightarrow)

Suppose A is countable. Then this means A is either finite or infinitely countable.

Case 1: A is infinitely countable.

If A is infinitely countable, then there exists a bijective function from \mathbb{N} to A. And since it is bijective, then the function from \mathbb{N} to A is also surjective.

Case 2: A is finite and is empty.

The empty set is countable.

Case 3: A is finite and not empty.

Since A is finite and countable, then there is a bijective function for some n where $f:[n] \to A$ such that $n \ge 1$ and $0 \in [n]$. We can create a surjection between \mathbb{N} and A by defining $g: \mathbb{N} \to A$ as,

$$g(x) \to \begin{cases} f(x) & \text{if } x < n \\ f(0) & \text{else} \end{cases}$$
.

The function g simply returns each element in the set A, and then it will repeat f(0). This is surjective.

 (\Longleftrightarrow)

Case 1: A is finite.

If A is finite, then it is countable.

Case 2: A is infinite.

If A is infinite, then it is not empty, and there is a surjection $f: \mathbb{N} \to A$. To make f bijective, we need to account for the issue of an element in A being enumerated more than once because if it does, then it is not injective. To fix this, we can create another function g that will enumerate f's output and does not include the output that has been repeated. Define g as g(0) = f(0) and for every i, g(i+1) = f(j) such that j is the least number in \mathbb{N} and $f(j) \notin \{g(0), g(1), \dots, g(j)\}$. The

function g is a bijection because for every $i, g(i+1) \notin \{g(0), g(1), \dots, g(i)\}$ which makes it injective, and since f is surjective, g is as well. This means A countable.

3: Prove that the infinite strip $S = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{R} \text{ and } 0 \leq y \leq 1\}$ and the Cartesian plane \mathbb{R}^2 have the same cardinality. *Hint:* You may assume the Schröder-Bernstein theorem.

Proof. Assuming the Schröder-Bernstein theorem, we can create an injective function $f: S \to \mathbb{R}^2$ by defining f as $f(x,y) \to (x,y)$ where any pair $(x,y) \in S$ will give itself in \mathbb{R}^2 . This shows that $|S| \leq |\mathbb{R}^2|$. To create an injective function $g: \mathbb{R}^2 \to S$, we can define g as,

$$g(x,y) \to \begin{cases} \left(x, \left(\frac{1}{2} + 2^{-y-1}\right)\right), & y > 0\\ \left(x, \frac{1}{2}\right), & y = 0\\ \left(x, 2^{y-1}\right), & y < 0 \end{cases}$$

This shows that $|\mathbb{R}^2| \leq |S|$, and because of the Schröder-Bernstein theorem, we must have that $|S| = |\mathbb{R}^2|$.

4: Prove the theorem whose proof we didn't complete in class: For any set A, we have $|A| < |2^A|$.

Proof. (Contradiction) First we can construct a surjective function $f:A\to 2^A$ such that $f(a)\to a$ where $a\in A$. This implies that $|A|\le |2^A|$, however, to prove that the cardinality of A is strictly less than the cardinality of 2^A we must show that a bijection does not exist from A to 2^A . Assuming the opposite and that such a function exists, let the function be $g:A\to 2^A$. Using this, we can construct the set $S=\{x\in A\mid x\not\in g(x)\}$, note that $S\subseteq A$. Because $S\subseteq 2^A$ and our function g is also surjective, this must mean that $g(y)\in S$ for some $y\in A$. This is a contradiction because if we have some $y\in S$, then that means $y\not\in g(y)$ but like we stated earlier, $g(y)\in S$. Additionally, if $y\not\in S$, then this means $y\in g(y)$ but $g(y)\in S$. So regardless of y's membership with S there is a contradiction which must mean that no bijective function g exists. Therefore, $|A|<|2^A|$.