

Trabalho Filtros FIR

PSD129005 - PROCESSAMENTO DE SINAIS DIGITAIS (2025 .1-T01) Prof. Elen Macedo Lobato

Sumário

1.	Exercício 1	3
	1.1. Código Matlab	3
	1.2. Gráficos	5
	1.2.1. M=10	5
	1.2.2. M=100	6
	1.2.3. M=1000	7
	1.3. Comentários	7
2.	. Exercício 2	8
	2.1. Exercício 2.1	8
	2.1.1. Código Matlab	8
	2.1.2. Gráficos	9
	2.1.3. Comentários	9
	2.2. Exercício 2.2	9
	2.2.1. Código Matlab	10
	2.2.2. Gráficos	11
	2.2.3. Comentários	11
	2.3. Exercício 2.3	11
	2.3.1. Código Matlab	12
	2.3.2. Gráficos	13
	2.3.3. Comentários	13
3.	. Exercício 3	13
	3.1. Filtro com frequência central em 770 Hz	14
	3.1.1. Código Matlab	14
	3.1.2. Gráficos	16
	3.2. Filtro com frequência central em 852 Hz	20
	3.2.1. Código Matlab	20
	3.2.2. Gráficos	22
	3.3. Filtro com frequência central em 941 Hz	26
	3.3.1. Código Matlab	26
	3.3.2. Gráficos	28
	3.4. Comentários	32
1	Conclusão	22

1. Exercício 1

Projete um filtro passa-faixa usando a janela de Hamming, a janela de Hanning e janela de Blackman que satisfaça a especificação a seguir.

```
M = 10, 100, 1000
Ωc1 = 10 rad/s
Ωc2 = 35 rad/s
Ωs = 100 rad/s
```

1.1. Código Matlab

```
clear all
% numero de amostras
M = 10;
% M = 100;
% M = 1000;
0mega c1 = 2000;
0mega_c2 = 4000;
0mega_s = 10000;
wc1 = 0mega_c1*2*pi/0mega_s;
wc2 = 0mega_c2*2*pi/0mega_s;
n = 1:M/2;
% filtro passa faixa para n=0
h0 = (wc2 - wc1)/pi;
% filtro passa faixa para n#0
haux = (\sin(wc2.*n) - \sin(wc1.*n))./(pi.*n);
h ideal = [fliplr(haux) h0 haux];
h ret=h ideal;
[H_ret,w]=freqz(h_ret,1,2048,0mega_s);
figure(1)
plot(w,20*log10(abs(H_ret)))
axis([0 Omega_s/2 -90 10])
ylabel('Resposta de Módulo (dB)');
xlabel('Frequência (rad/s)');
title('Resposta em Frequência - Janela Retangular');
h_aux=hamming(M+1);
h_ham=h_ideal.*h_aux';
[H_ham,w]=freqz(h_ham,1,2048,0mega_s);
figure(2)
plot(w,20*log10(abs(H ham)))
axis([0 Omega_s/2 -90 10])
```

```
ylabel('Resposta de Módulo (dB)');
xlabel('Frequência (rad/s)');
title('Resposta em Frequência - Janela de Hamming');
h_aux=hanning(M+1);
h_han=h_ideal.*h_aux';
[H_han,w]=freqz(h_han,1,2048,0mega_s);
figure(3)
plot(w,20*log10(abs(H_han)))
axis([0 Omega_s/2 -150 10])
ylabel('Resposta de Módulo (dB)');
xlabel('Frequência (rad/s)');
title('Resposta em Frequência - Janela de Hanning')
h aux=blackman(M+1);
h black=h ideal.*h aux';
[H_black,w]=freqz(h_black,1,2048,0mega_s);
figure(4)
plot(w,20*log10(abs(H black)))
axis([0 Omega_s/2 -150 10])
ylabel('Resposta de Módulo (dB)');
xlabel('Frequência (rad/s)');
title('Resposta em Frequência - Janela de Blackman')
```

1.2. Gráficos

1.2.1. M=10

Figure 1: Plot Matlab com M = 10

1.2.2. M=100

Figure 2: Plot Matlab com M = 100

1.2.3. M=1000

Figure 3: Plot Matlab com M = 1000

1.3. Comentários

A janela retangular proporciona uma transição espectral mais estreita, mas apresenta elevada interferência fora da banda, devido à presença de lobos laterais mais intensos. As janelas de Hamming e Hanning atenuam esses lobos laterais, sendo que a janela de Hamming oferece uma rejeição fora da faixa ligeiramente superior.

Já a janela de Blackman proporciona a melhor rejeição fora da banda entre as mencionadas, embora à custa de uma transição mais larga na região de corte.

Independentemente da janela utilizada, o aumento do parâmetro M melhora a resolução espectral e a definição do filtro, permitindo uma aproximação mais precisa da resposta ideal.

2. Exercício 2

Projete um filtro que satisfaça as especificações a seguir, usando a janela de Kaiser:

2.1. Exercício 2.1

```
    Ap = 1,0 dB
    Ar = 40 dB
    Ωp = 1000 rad/s
    Ωr = 1200 rad/s
    Ωs = 5000 rad/s
```

2.1.1. Código Matlab

```
% Exercício 2.1 — Filtro Passa-Baixa usando Janela de Kaiser
clear all:
Ap = 1;
Ar = 40;
Omega p = 1000;
0 \text{mega r} = 1200;
0mega_s = 5000;
% Cálculo dos ripples
delta p = (10^{\circ}(0.05*Ap) - 1)/(10^{\circ}(0.05*Ap) + 1);
delta r = 10^{(-0.05*Ar)};
% Vetores de frequência e resposta desejada
F = [Omega_p Omega_r];
A = [1 \ 0];
ripples = [delta_p delta_r];
% Projeto do filtro
[M,Wn,beta,FILTYPE] = kaiserord(F,A,ripples,Omega_s);
kaiser_win = kaiser(M+1,beta);
h = fir1(M,Wn,FILTYPE,kaiser_win,'noscale');
% Resposta ao impulso
figure(1); clf;
stem(0:M,h,'filled');
xlabel('n');
ylabel('h[n]');
title('Resposta ao Impulso - Passa-Baixa');
% Resposta em frequência
[H,w] = freqz(h,1,2048,0mega s);
figure(2); clf;
plot(w,20*log10(abs(H)+le-6),'LineWidth',1.5);
```

```
grid on;
axis([0 Omega_s/2 -90 10]);
xlabel('Frequência (rad/s)');
ylabel('Resposta de Módulo (dB)');
title('Resposta em Frequência - Passa-Baixa');
```

2.1.2. Gráficos

Figure 4: Plot Matlab Exercício 2.1

2.1.3. Comentários

O filtro projetado é do tipo passa-baixas, com uma largura de transição de 200 rad/s.

A utilização da janela de Kaiser permitiu satisfazer simultaneamente os requisitos de ripple na banda passante e de atenuação na banda de rejeição, graças à sua flexibilidade de parametrização.

A resposta em frequência apresenta uma transição suave e uma atenuação eficaz fora da banda passante, conforme esperado.

Além disso, a simetria observada na resposta ao impulso confirma que o filtro possui fase linear, característica importante para preservar a forma dos sinais filtrados.

2.2. Exercício 2.2

- Ap = 1,0 dB
- Ar = 40 dB
- $\Omega r = 1000 \text{ rad/s}$
- $\Omega p = 1200 \text{ rad/s}$
- $\Omega s = 5000 \text{ rad/s}$

2.2.1. Código Matlab

```
% Exercício 2.2 - Filtro Passa-Alta usando Janela de Kaiser
clear all:
Ap = 1;
Ar = 40;
Omega_r = 1000; % Rejeição até 1000 rad/s
Omega_p = 1200; % Passa a partir de 1200 rad/s
0mega_s = 5000;
% Cálculo dos ripples
delta_p = (10^{(0.05*Ap)} - 1)/(10^{(0.05*Ap)} + 1);
delta_r = 10^{(-0.05*Ar)};
% Vetores de frequência e resposta desejada
F = [Omega r Omega p];
A = [0 1];
ripples = [delta r delta p];
% Projeto do filtro
[M,Wn,beta,FILTYPE] = kaiserord(F,A,ripples,Omega_s);
kaiser_win = kaiser(M+1,beta);
h = fir1(M,Wn,FILTYPE,kaiser_win,'noscale');
% Resposta ao impulso
figure(1); clf;
stem(0:M,h,'filled');
xlabel('n');
ylabel('h[n]');
title('Resposta ao Impulso - Passa-Alta');
% Resposta em frequência
[H,w] = freqz(h,1,2048,0mega_s);
figure(2); clf;
plot(w, 20*log10(abs(H)+le-6), 'LineWidth', 1.5);
grid on;
axis([0 \text{ Omega } s/2 -90 \text{ } 10]);
xlabel('Frequência (rad/s)');
ylabel('Resposta de Módulo (dB)');
title('Resposta em Frequência - Passa-Alta');
```

2.2.2. Gráficos

Figure 5: Plot Matlab Exercício 2.2

2.2.3. Comentários

A inversão entre as frequências Omega_p e Omega_r transforma o filtro em um passaaltas, em vez de um passa-baixas.

A largura de transição permanece em 200 rad/s, apresentando desempenho simétrico ao observado no exercício 2.1.

A resposta em frequência mostra forte atenuação para componentes abaixo de 1000 rad/s, com boa passagem a partir de 1200 rad/s.

Mais uma vez, a janela de Kaiser se destaca pelo controle preciso da atenuação e pela capacidade de atender aos requisitos do projeto com eficiência.

2.3. Exercício 2.3

- Ap = 1,0 dB
- Ar = 80 dB
- $\Omega r1 = 800 \text{ rad/s}$
- Ω p1 = 1000 rad/s
- $\Omega p2 = 1400 \text{ rad/s}$
- $\Omega r2 = 1600 \text{ rad/s}$
- $\Omega s = 10000 \text{ rad/ss}$

2.3.1. Código Matlab

```
% Exercício 2.3 — Filtro Passa-Faixa usando Janela de Kaiser
clear all:
Ap = 1;
Ar = 45;
0mega r1 = 800;
0mega_p1 = 1000;
0mega_p2 = 1400;
0mega_r2 = 1600;
Omega_s = 10000;
% Cálculo dos ripples
delta p = (10^{\circ}(0.05*Ap) - 1)/(10^{\circ}(0.05*Ap) + 1);
delta r = 10^{(-0.05*Ar)};
% Vetores de frequência e resposta desejada
F = [Omega r1 Omega p1 Omega p2 Omega r2];
A = [0 \ 1 \ 0];
ripples = [delta_r delta_p delta_r];
% Projeto do filtro
[M,Wn,beta,FILTYPE] = kaiserord(F,A,ripples,Omega_s);
kaiser win = kaiser(M+1,beta);
h = fir1(M,Wn,FILTYPE,kaiser_win,'noscale');
% Resposta ao impulso
figure(1); clf;
stem(0:M,h,'filled');
xlabel('n');
ylabel('h[n]');
title('Resposta ao Impulso - Passa-Faixa');
% Resposta em frequência
[H,w] = freqz(h,1,2048,0mega s);
figure(2); clf;
plot(w,20*log10(abs(H)+1e-6),'LineWidth',1.5);
grid on;
axis([0 \text{ Omega } s/2 -90 \text{ } 10]);
xlabel('Frequência (rad/s)');
ylabel('Resposta de Módulo (dB)');
title('Resposta em Frequência - Passa-Faixa');
```

2.3.2. Gráficos

Figure 6: Plot Matlab Exercício 2.3

2.3.3. Comentários

Trata-se de um filtro do tipo passa-faixa, caracterizado por duas regiões de transição.

O filtro apresenta rejeição efetiva para frequências abaixo de 800 rad/s, uma banda de passagem bem definida entre 1000 e 1400 rad/s, e nova rejeição acima de 1600 rad/s.

A janela de Kaiser foi eficaz em atender ao requisito mais rigoroso de atenuação, alcançando 45 dB nas bandas de rejeição.

A resposta em frequência evidencia uma banda de passagem nítida, acompanhada de forte atenuação nas regiões laterais, confirmando o bom desempenho do projeto.

3. Exercício 3

Crie um sinal de entrada composto de três componentes senoidais, nas frequências 770 Hz, 852 Hz e 941 Hz, com Ωs = 8 kHz. Projete três filtros passa-faixa digitais, o primeiro com frequência central em 770 Hz, o segundo em 852 Hz e o terceiro em 941 Hz. Para o primeiro filtro, as extremidades das faixas de rejeição estão nas frequências 697 e 852; para o segundo, em 770 e 941 Hz; para o terceiro. Em 852 e 1209 Hz. Nos três filtros, a atenuação mínima na faixa de rejeição é 60 dB.

3.1. Filtro com frequência central em 770 Hz

3.1.1. Código Matlab

```
% Filtro FIR passa-faixa - Central em 770 Hz (Exercício 4)
clear all
Omega s = 8000; % Hz
Fs = Omega_s;
0mega c1 = 697;
0mega_c2 = 852;
Ap = 1;
Ar = 60;
% Cálculo do ripple
delta p = (10^{\circ}(0.05*Ap) - 1)/(10^{\circ}(0.05*Ap) + 1);
delta r = 10^{(-0.05*Ar)};
ripples = [delta_p delta_r];
% Estima M, beta, tipo de filtro com Kaiserord
[M, Wn, beta, FILTYPE] = kaiserord([Omega_c1 Omega_c2], [0 1], ripples,
Omega s);
M = M + mod(M+1,2); % garante M impar
fprintf('Melhor M encontrado: %d\n', M);
% Frequências normalizadas
wc1 = 0mega_c1*2*pi/0mega_s;
wc2 = 0mega c2*2*pi/0mega s;
n = [-(M-1)/2:(M-1)/2];
% Resposta ao impulso ideal
h n = ((\sin(wc2.*n) - \sin(wc1.*n))./(pi.*n));
h_n((M+1)/2) = (wc2 - wc1)/pi;
% Janelas teóricas
w hamm = 0.54 - 0.46*\cos(2*pi*(n+(M-1)/2)/(M-1));
w_hann = 0.5 - 0.5*cos(2*pi*(n+(M-1)/2)/(M-1));
w_black = 0.42 - 0.5*cos(2*pi*(n+(M-1)/2)/(M-1)) + 0.08*cos(4*pi*(n+(M-1)/2)/(M-1))
(M-1));
w_kaiser = kaiser(M,beta)';
% Filtros
h_hamm = w_hamm.*h_n;
h_hann = w_hann.*h_n;
h black = w black.*h n;
h kaiser = w kaiser.*h n;
% Sinal
Ts=1/Fs;
t=0:Ts:2-Ts;
s = sin(2*pi*770*t) + sin(2*pi*852*t) + sin(2*pi*941*t);
```

```
L = length(t);
freq = Fs*(-L/2:(L/2)-1)/L;
S = fftshift(abs(2*fft(s)/L));
s_f = filter(h_hamm,1,s);
S_F = fftshift(abs(2*fft(s_f)/L));
figure(1)
subplot(3,1,1),plot(t,s)
title('Sinal')
xlabel('t'), ylabel('s(t)')
subplot(3,1,2),plot(freq,S)
title('Espectro de Amplitude de s(t)')
xlabel('f (Hz)'), ylabel('|S(f)|')
subplot(3,1,3),plot(freq,S_F)
title('Espectro de Amplitude do sinal Filtrado (Hamming)')
xlabel('f (Hz)'), ylabel('|S(f)|')
figure(2)
freqz(h hamm,1)
title('Filtro FIR passa-faixa - Janela de Hamming')
figure(3)
freqz(h hann,1)
title('Filtro FIR passa-faixa - Janela de Hanning')
figure(4)
freqz(h black,1)
title('Filtro FIR passa-faixa - Janela de Blackman')
figure(5)
freqz(h kaiser,1)
title('Filtro FIR passa-faixa - Janela de Kaiser')
```

3.1.2. Gráficos

Figure 7: Plot Matlab - Central em 770 MHz - Sinal, Espectro de Amplitude de s(t) e do sinal Filtrado (Hamming)

Figure 8: Plot Matlab - Central em 770 MHz - Filtro FIR passa-faixa - Janela de Hamming

Figure 9: Plot Matlab - Central em 770 MHz - Filtro FIR passa-faixa - Janela de Hanning

Figure 10: Plot Matlab - Central em 770 MHz - Filtro FIR passa-faixa - Janela de Blackman

Figure 11: Plot Matlab - Central em 770 MHz - Filtro FIR passa-faixa - Janela de Kaiser

3.2. Filtro com frequência central em 852 Hz

3.2.1. Código Matlab

```
% Filtro FIR passa-faixa - Central em 852 Hz (Exercício 4)
clear all

Omega_s = 8000; % Hz
Fs = Omega_s;
Omega_c1 = 770;
Omega_c2 = 941;
Ap = 1;
Ar = 60;

% Cálculo do ripple
delta_p = (10^(0.05*Ap) - 1)/(10^(0.05*Ap) + 1);
delta_r = 10^(-0.05*Ar);
ripples = [delta_p delta_r];

% Estima M, beta, tipo de filtro com Kaiserord
[M, Wn, beta, FILTYPE] = kaiserord([Omega_c1 Omega_c2], [0 1], ripples,
Omega_s);
```

```
M = M + mod(M+1,2); % garante M impar
fprintf('Melhor M encontrado: %d\n', M);
% Frequências normalizadas
wc1 = 0mega_c1*2*pi/0mega_s;
wc2 = 0mega c2*2*pi/0mega s;
n = [-(M-1)/2:(M-1)/2];
% Resposta ao impulso ideal
h_n = ((\sin(wc2.*n) - \sin(wc1.*n))./(pi.*n));
h n((M+1)/2) = (wc2 - wc1)/pi;
% Janelas teóricas
w_hamm = 0.54 - 0.46*cos(2*pi*(n+(M-1)/2)/(M-1));
w hann = 0.5 - 0.5*\cos(2*pi*(n+(M-1)/2)/(M-1));
w black = 0.42 - 0.5*\cos(2*pi*(n+(M-1)/2)/(M-1)) + 0.08*\cos(4*pi*(n+(M-1)/2)/(M-1))
(M-1));
w_kaiser = kaiser(M,beta)';
% Filtros
h_hamm = w_hamm.*h_n;
h_hann = w_hann.*h_n;
h black = w black.*h n;
h_kaiser = w_kaiser.*h_n;
% Sinal
Ts=1/Fs;
t=0:Ts:2-Ts;
s = sin(2*pi*770*t) + sin(2*pi*852*t) + sin(2*pi*941*t);
L = length(t);
freq = Fs*(-L/2:(L/2)-1)/L;
S = fftshift(abs(2*fft(s)/L));
s f = filter(h hamm,1,s);
S_F = fftshift(abs(2*fft(s_f)/L));
figure(1)
subplot(3,1,1),plot(t,s)
title('Sinal')
xlabel('t'), ylabel('s(t)')
subplot(3,1,2),plot(freq,S)
title('Espectro de Amplitude de s(t)')
xlabel('f (Hz)'), ylabel('|S(f)|')
subplot(3,1,3),plot(freq,S F)
title('Espectro de Amplitude do sinal Filtrado (Hamming)')
xlabel('f (Hz)'), ylabel('|S(f)|')
figure(2)
freqz(h hamm,1)
title('Filtro FIR passa-faixa - Janela de Hamming')
```

```
figure(3)
freqz(h_hann,1)
title('Filtro FIR passa-faixa - Janela de Hanning')
figure(4)
freqz(h_black,1)
title('Filtro FIR passa-faixa - Janela de Blackman')
figure(5)
freqz(h_kaiser,1)
title('Filtro FIR passa-faixa - Janela de Kaiser')
```

3.2.2. Gráficos

Figure 12: Plot Matlab - Central em 852 MHz - Sinal, Espectro de Amplitude de s(t) e do sinal Filtrado (Hamming)

Figure 13: Plot Matlab - Central em 852 MHz - Filtro FIR passa-faixa - Janela de Hamming

Figure 14: Plot Matlab - Central em 852 MHz - Filtro FIR passa-faixa - Janela de Hanning

Figure 15: Plot Matlab - Central em 852 MHz - Filtro FIR passa-faixa - Janela de Blackman

Figure 16: Plot Matlab - Central em 852 MHz - Filtro FIR passa-faixa - Janela de Kaiser

3.3. Filtro com frequência central em 941 Hz

3.3.1. Código Matlab

```
% Filtro FIR passa-faixa - Central em 941 Hz (Exercício 4)
clear all
Omega s = 8000; % Hz
Fs = Omega s;
0mega c1 = 852;
0mega c2 = 1209;
Ap = 1;
Ar = 60;
% Cálculo do ripple
delta p = (10^{\circ}(0.05*Ap) - 1)/(10^{\circ}(0.05*Ap) + 1);
delta_r = 10^{(-0.05*Ar)};
ripples = [delta_p delta_r];
% Estima M, beta, tipo de filtro com Kaiserord
[M, Wn, beta, FILTYPE] = kaiserord([Omega_c1 Omega_c2], [0 1], ripples,
Omega s);
M = M + mod(M+1,2); % garante M impar
```

```
fprintf('Melhor M encontrado: %d\n', M);
% Frequências normalizadas
wc1 = 0mega_c1*2*pi/0mega_s;
wc2 = 0mega_c2*2*pi/0mega_s;
n = [-(M-1)/2:(M-1)/2];
% Resposta ao impulso ideal
h_n = ((\sin(wc2.*n) - \sin(wc1.*n))./(pi.*n));
h_n((M+1)/2) = (wc2 - wc1)/pi;
% Janelas teóricas
w hamm = 0.54 - 0.46*\cos(2*pi*(n+(M-1)/2)/(M-1));
w hann = 0.5 - 0.5*\cos(2*pi*(n+(M-1)/2)/(M-1));
w_black = 0.42 - 0.5*cos(2*pi*(n+(M-1)/2)/(M-1)) + 0.08*cos(4*pi*(n+(M-1)/2)/(M-1))
(M-1));
w_kaiser = kaiser(M,beta)';
% Filtros
h hamm = w hamm.*h n;
h_hann = w_hann.*h_n;
h_black = w_black.*h_n;
h_kaiser = w_kaiser.*h_n;
% Sinal
Ts=1/Fs;
t=0:Ts:2-Ts;
s = \sin(2*pi*770*t) + \sin(2*pi*852*t) + \sin(2*pi*941*t);
L = length(t);
freq = Fs*(-L/2:(L/2)-1)/L;
S = fftshift(abs(2*fft(s)/L));
s f = filter(h hamm,1,s);
S F = fftshift(abs(2*fft(s f)/L));
figure(1)
subplot(3,1,1),plot(t,s)
title('Sinal')
xlabel('t'), ylabel('s(t)')
subplot(3,1,2),plot(freq,S)
title('Espectro de Amplitude de s(t)')
xlabel('f (Hz)'), ylabel('|S(f)|')
subplot(3,1,3),plot(freq,S_F)
title('Espectro de Amplitude do sinal Filtrado (Hamming)')
xlabel('f (Hz)'), ylabel('|S(f)|')
figure(2)
freqz(h_hamm,1)
title('Filtro FIR passa-faixa - Janela de Hamming')
figure(3)
freqz(h hann,1)
```

```
title('Filtro FIR passa-faixa - Janela de Hanning')
figure(4)
freqz(h_black,1)
title('Filtro FIR passa-faixa - Janela de Blackman')
figure(5)
freqz(h_kaiser,1)
title('Filtro FIR passa-faixa - Janela de Kaiser')
```

3.3.2. Gráficos

Figure 17: Plot Matlab - Central em 941 MHz - Sinal, Espectro de Amplitude de s(t) e do sinal Filtrado (Hamming)

Figure 18: Plot Matlab - Central em 941 MHz - Filtro FIR passa-faixa - Janela de Hamming

Figure 19: Plot Matlab - Central em 941 MHz - Filtro FIR passa-faixa - Janela de Hanning

Figure 20: Plot Matlab - Central em 941 MHz - Filtro FIR passa-faixa - Janela de Blackman

Figure 21: Plot Matlab - Central em 941 MHz - Filtro FIR passa-faixa - Janela de Kaiser

3.4. Comentários

Foram desenvolvidos três códigos MATLAB independentes, cada um dedicado ao projeto de um filtro centrado em uma das frequências: 770 Hz, 852 Hz e 941 Hz.

A resposta ao impulso ideal foi calculada analiticamente para as janelas de Hamming, Hanning e Blackman. No caso da janela de Kaiser, o projeto foi realizado de forma automática utilizando a função kaiserord(), que também definiu o valor apropriado de M para cada filtro:

770 Hz: M = 189

852 Hz: M = 171

941 Hz: M = 83

A janela de Kaiser apresentou os melhores resultados, com atenuação superior a 60 dB nas faixas de rejeição. As janelas de Blackman e Hanning também demonstraram bom desempenho, com transições suaves e rejeições adequadas. A janela de Hamming, por sua vez, apresentou menor rejeição fora da banda de passagem e uma transição mais larga.

Em todos os casos, os filtros mantiveram com precisão a frequência central desejada, conforme verificado nas análises espectrais de amplitude.

A janela de Kaiser se destacou por permitir transições mais rápidas, o que favorece uma melhor seletividade. Já as janelas de Blackman e Hanning proporcionaram transições mais suaves, enquanto a janela de Hamming exibiu a maior largura de transição entre as quatro analisadas.

4. Conclusão

Os exercícios realizados ao longo do trabalho mostraram, na prática, como diferentes tipos de janelas influenciam diretamente o desempenho dos filtros digitais. Foram projetados filtros passa-baixas, passa-altas e passa-faixa, sempre comparando os efeitos das janelas de Hamming, Hanning, Blackman e Kaiser sobre a resposta em frequência.

Ficou evidente que a escolha da janela tem grande impacto no resultado final. A janela de Kaiser se destacou por oferecer maior controle sobre a rejeição fora da banda e permitir transições mais rápidas. As janelas de Blackman e Hanning apresentaram bom equilíbrio entre suavidade e desempenho em rejeição. Já a janela de Hamming, embora útil em situações menos exigentes, teve limitações quando foi necessário maior seletividade.

Vale destacar que a janela de Kaiser foi projetada com auxílio da função kaiserord(), o que pode ter favorecido seu desempenho por permitir ajustes automáticos tanto do parâmetro M quanto do fator de forma (beta). Ainda assim, sua flexibilidade é uma vantagem real em relação às janelas com formato fixo.

Também foi possível observar que o aumento do parâmetro M melhora a definição do filtro, independentemente da janela utilizada. Além disso, o método adotado baseado no cálculo da resposta ideal e posterior aplicação de uma janela se mostrou simples, eficaz e didático para atender às especificações de projeto.

No geral, os filtros implementados funcionaram bem e atenderam aos requisitos propostos. O estudo reforçou os conceitos teóricos e mostrou, de forma clara, como decisões aparentemente simples, como o tipo de janela ou o valor de M, impactam diretamente no desempenho de um filtro digital.