

University of Vavuniya

First Examination in Information and Communication Technology – 2020 Second Semester – December 2022

ICT 1243 Electronics and Digital Circuit Designs

Answer Four Questions only

Time: Two hours

- Q1. (a) Explain the difference between conductors, insulators and semi conductors on the basis of energy band. [20%]
 - (b) Name three acceptor and three donor materials used for doping semiconductor. [20%]
 - (c) Explain the formation of depletion region and barrier potential of a p-n junction. [30%]
 - (d) The intrinsic resistivity of germanium at 300K is 50Ω cm. The electron and hole mobilities are $\mu_e = 3600 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and $\mu_h = 1900 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ respectively. Find the intrinsic carrier concentration in the semiconductor? [30%]
- Q2. (a) Sketch and explain the forward and reverse characteristic of a p-n junction. [30%]
 - (b) What currents will flow through each of the three branches of the following circuit. The knee voltage of the silicon diodes is 0.7V. [40%]

12 V

(c) Explain the purpose of a rectifier circuit.

- Q3. (a) Give three different types of diodes and explain their applications.
 [30%]
 - (b) Sketch and explain the I V characteristic of a Zener diode. [30%]
 - (c) The Figure shows a regulated voltage supply circuit. The required output voltage is 7V. The minimum diode current is 10mA and the required load current is 100mA. [40%]

Answer the following questions:

- (i) calculate the voltage across R.
- (ii) find the ideal value of the resistor.
- (iii) if the input voltage now raises to 14V, calculate the new voltage across the R.
- Q4. (a) Explain the Transfer characteristics of a transistor in common emitter Configuration using I_c Vs I_B curve. [30%]
 - (b) What do you mean by transistor biasing? Explain how transistor should be biased in the following circuits.
 - (i) Transistor as an amplifier
 - (ii) Transistor as a switch

[30%]

(c) Compute the base, emitter and collector voltages for the voltage divider bias npn transistor circuit shown in the below figure. [40%]

- Q5. (A)
 - (a) List the advantages of using integrated circuits (ICs) compared to discrete circuits. [15%]
 - (b) What is the use of offset null connection in the operational amplifier? [10%]
 - (c) Show that the "closed loop gain" A and "open loop gain" A_0 of an operational amplifier which can be related as $A = \frac{A_o}{1 + \beta} \frac{1}{A_o}$ where β is the feedback factor. [15%]
 - (d) Find the closed loop gain of the inverting amplifier as shown in the figure below. [40%]

(B) A logic gate with the inputs A, B and output Q has the following truth Table.

A	В	Ų
0	0	0
0	1	1
1	0	1
1	1	0

(i) Name the type of the logic gate.

[10%]

(ii) Draw and label the symbol for this logic gate.

[10%]