Глава 5

58 Глава 5 **5. Матричные и векторные вычисления**

Среда Maple позволяет выполнять все стандартные операции, определенные в линейной алгебре. Они становятся доступны при подключении библиотеки linalg:

> with(linalg):

Для определения матрицы (вектора) используются команды matrix (vector).

$$A := \begin{bmatrix} 1 & 1 & 1 \\ 4 & 1 & 6 \\ 7 & 1 & 9 \end{bmatrix}$$

$$a := [2, x^2, 4, 5.3, \alpha]$$

Известно, что в Maple (как и во многих других программных продуктах) под матрицей понимается двумерный массив, индекс которого изменяется от единицы до любого целого числа. Следовательно, матрицу также можно задать следующим образом:

Но массив вида array(1..2,0..3) матрицей не является, т. к. второй индекс изменяется от нуля.

Имеются богатые возможности для формирования матриц специального вида. Например, сформировать единичную матрицу можно следующим образом:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Для получения диагональной матрицы используют команду diag (vec), где **vec** - вектор, расположенный на главной диагонали. Заметим, что если **vec** - единичный вектор, то полученная матрица так же будет единичной.

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

При перепечатке ссылка на первоисточник обязательна.

> De:=diag(1,2,3);

$$De := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Матрица из случайных чисел генерируется командой randmatrix(n,m,opt), где n,m-размерность матрицы, а opt - параметр, определяющий тип матрицы (symmetric, antisymmetric, unimodular и др.).

> randmatrix(4,4,symmetric);

Команда **blockmatrix** определяет блочную, а команда **hilbert** - гильбертову матрицы.

Чтобы узнать количество строк или столбцов необходимо выполнить следующие операции:

В библиотеке "linalg" предусмотрены различные преобразования над матрицами: транспонирование, вычисление обратной матрицы, сопряженной матрицы, взятие минора, вычисление ядра и др. Для этого используются соответствующие команды: transpose(A), inverse(A), adjoint(A), minor(A,n,m), kernel(A).

> AT:=transpose(A); minor(A, 2,1);

$$AT := \begin{bmatrix} 1 & 4 & 7 \\ 1 & 1 & 1 \\ 1 & 6 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 9 \end{bmatrix}$$

Для того, чтобы выделить часть матрицы (вектора) существуют команды

© Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998

«Математический пакет Maple V Release 4».

submatrix(A,i1..i2,j1..j2) и **subvector(a,i1..i2)**, а если необходимо выделить і-тую строчку или і-ый столбец используют **row(A,i)** или **col(A,i)** соответственно.

Строки или столбцы удаляются командами delcols(A,i1..i2) или delrows(A,i1..i2) соответственно.

Склеить несколько матриц горизонтально можно используя функцию concat (A1,..,A2);

> S:=concat(A,E,De);

$$S := \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 4 & 1 & 6 & 0 & 1 & 0 & 0 & 2 & 0 \\ 7 & 1 & 9 & 0 & 0 & 1 & 0 & 0 & 3 \end{bmatrix}$$

Для вычисления определителя, ранга, числа обусловленности, следа матрицы используются следующие команды соответственно:

> det(A); rank(S); cond(A); trace(A);

Результат будет иметь следующий вид:

6; 3;

136/3:

11

Команда **multiply(A1,..,An)** служит для перемножения матриц (векторов). Следует заметить, что операции "+", "-", "*" можно выполнить и традиционным способом, при этом знак "*" используется при умножении скалярной функции или числа на матрицу, а когда в произведении участвуют только вектора или матрицы, то он заменяется на "&*":

> Su:=evalm(A&*De+E-x*multiply(A,E));

$$Su := \begin{bmatrix} 2-x & 2-x & 3-x \\ 4-4x & 3-x & 18-6x \\ 7-7x & 2-x & 28-9x \end{bmatrix}$$

Команды addrow(A,i,j,m) и addcol(A,i,j,m) служат для ум-

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

При перепечатке ссылка на первоисточник обязательна.

ножения і-той строки (столбца) на скалярный множитель m и прибавления к ј-той строке (столбцу).

> addrow(Su,1,2,10);

$$\begin{bmatrix} 2-x & 2-x & 3-x \\ 24-14x & 23-11x & 48-16x \\ 7-7x & 2-x & 28-9x \end{bmatrix}$$

Т.е. первая и третья строки остаются без изменений, а на место второй строки записывается выражение m*row(A,i)+row(A,j).

>
$$row2 := evalm(10*row(Su,1)+row(Su,2));$$

 $row2 := [24 - 14 x, 23 - 11 x, 48 - 16 x]$

Вычислим матрицу **B**, исходя из формулы: $B=A-E*\lambda$, используя команду **diag(1,1,1)** для создания единичной матрицы 3x3.

> B:=evalm(A-lambda*diag(1,1,1));

$$B := \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 4 & 1 - \lambda & 6 \\ 7 & 1 & 9 - \lambda \end{bmatrix}$$

Найдем определитель матрицы В:

> f:=det(B);

$$f := 6 - 2 \lambda + 11 \lambda^2 - \lambda^3$$

Это выражение будет являться характеристическим полиномом матрицы А. Его можно найти, выполнив всего одну команду:

> charpoly(A,lambda);

$$2\lambda - 11\lambda^2 + \lambda^3 - 6$$

Теперь найдем собственные значения матрицы A, решая ее характеристическое уравнение относительно λ .

> res:=evalf(solve(f,lambda),4);

$$res := 10.87, .066 + .7395 I, .066 - .7395 I$$

Последний результат можно найти, проделав лишь одну операцию над матрицей А:

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

> evalf(eigenvals(A),4);

$$10.87, .066 + .7395 I, .066 - .7395 I$$

Получим собственные векторы матрицы А:

> evalf(eigenvects(A,'radical'),4);

Здесь результат выдается в форме:

[num,r,{vect}],

где **num** — собственное значение матрицы;

кратность собственного значения;

vect – собственный вектор;

'radical' - ключ, определяющий режим нахождения всех собственных значений.

С помощью библиотеки **linalg** можно привести матрицу к различным специальным формам.

Komanдa gausselim (A) используется для приведения к треугольному виду.

Алгоритм гауссова исключения без деления реализуется функцией ffgausselim(A).

> ffgausselim(A);

$$\begin{bmatrix} 1 & 0 & -\frac{33}{7} - \frac{4}{7}x^2 + \frac{22}{7}x \\ 0 & 1 & -\frac{2}{7}x^2 + \frac{1}{7} + \frac{4}{7}x \\ 0 & 0 & x^3 - \frac{19}{3}x^2 + \frac{91}{6}x - \frac{85}{6} \end{bmatrix}$$

К треугольному виду привести матрицу можно так же при помощи алгоритма Гаусса-Жордана - gaussjord.

Команда jordan (M) приводит матрицу к жордановой форме, а hermite (A, x) - к эрмитовой форме, элементы которой зависят от переменной x.

© Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

> hermite(Su,x);

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 2 \\ 0 & 0 & 6 \end{bmatrix}$$

Можно воспользоваться так же дифференциальными операторами. Например, что бы вычислить градиент (дивергенцию) функции \mathbf{f} (\mathbf{F}), зависящей от переменных вектора \mathbf{x} , необходимо воспользоваться командами \mathbf{grad} (\mathbf{f} , \mathbf{x}) или $\mathbf{diverge}$ (\mathbf{F} , \mathbf{x}).

Функция **curl** (**v**, **x**) определяет ротор трехмерного вектора **v** по трем переменным вектора **x**.

Матрицу Якоби для вектора \mathbf{v} по переменным вектора \mathbf{x} вычисляют при помощи команды $\mathbf{jacobian}(\mathbf{v},\mathbf{x})$, а лапласиан функции \mathbf{f} по переменным вектора \mathbf{x} - $\mathbf{laplacian}(\mathbf{f},\mathbf{x})$. Например:

$$> f:=x^3+y^2+\cos(z+x);$$

$$f := x^{3} + y^{2} + \cos(z + x)$$
> gr:=grad(f,[x,y,z]); laplacian(f,[x,y,z]);
$$gr := [3x^{2} - \sin(z + x), 2y, -\sin(z + x)]$$

$$6x - 2\cos(z + x) + 2$$
> diverge(gr,[x,y,z]); jacobian(gr,[x,y,z]);
$$curl(gr,[x,y,z]);$$

$$6x - 2\cos(z + x) + 2$$

$$\begin{bmatrix} 6x - \cos(z + x) & 0 & -\cos(z + x) \\ 0 & 2 & 0 \\ -\cos(z + x) & 0 & -\cos(z + x) \end{bmatrix}$$

Для решения матричного уравнения AX=B используется команда linsolve (A,B), где A - матрица, X, B - матрицы или векторы.

[0, 0, 0]

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

Глава 5

64 > linsolve(A, B);

$$X := \begin{bmatrix} 3 & -4 \\ 4 & -5 \end{bmatrix}$$

Приведем основные из доступных операций с кратким описанием:

команда	описание
addcol(A,i,j,m)	Умножение ј-го столбца матрицы А на ска-
	лярный множитель т и прибавление к і-му
	столбцу матрицы А
addrow(A,i,j,m)	Умножение ј-ой строки матрицы А на скаляр-
	ный множитель т и прибавление к і-ой строке
	матрицы А
adjoint(A)	Определение сопряженной матрицы А
blockmatrix	Определение блочной матрицы
charpoly(A,lambda)	Определение характеристического многочлена
	матрицы A относительно lambda
col(A,i)	Выделение і-го столбца матрицы А
coldim(A);	Определение числа столбцов матрицы А
concat(A1,,A2)	Склеивание нескольких матриц (с А1 по А2)
	горизонтально
cond(A)	Определение числа обусловленности матрицы
	A
curl(v,x)	Определение ротора трехмерного вектора у по
	трем переменным вектора х
delcols(A,i1i2)	Удаление строк с номерами і1 по і2
delrows(A,i1i2)	Удаление столбцов с номерами i1 по i2
det(A)	Нахождение определителя А
diag(vec)	Определение диагональной матрицы, где vec -
	вектор, расположенный на главной диагонали
diverge(F,x)	Определение дивергенции функции F, завися-
	щей от набора переменных вектора х
eigenvals(A)	Определение собственных значений матрицы
• (1)	A
eigenvects(A)	Определение собственных векторов матрицы
00 11 (1)	A
ffgausselim(A)	Применение алгоритма гауссова исключения
1' (4)	без деления матрицы А
gausselim(A)	Приведение матрицы А к треугольному виду
gaussjord(A)	Приведение матрицы А к треугольному виду
	при помощи алгоритма Гаусса-Жордана

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

команда	описание
grad(f,x)	Определение градиента функции f, зави-
	сящей от набора переменных вектора х
hermite(A,x)	Приведение матрицы А к эрмитовой
	форме, элементы которой зависят от пе-
	ременной х
hilbert(A)	Определение гильбертовой матрицы А
inverse(A)	Нахождение обратной матрицы А
jacobian(A,x)	Определение матрицы Якоби для вектора
	v по переменным вектора x
jordan(A)	Приведение матрицы А к жордановой
	форме
kernel(A)	Определение ядра матрицы А
laplacian(f,x)	Определение лапласиана функции f по
	переменным вектора х
linsolve(A,B)	Решение матричного уравнения АХ=В,
	где А - матрица, Х,В - матрица или век-
	Top.
matrix(A)	Определение матрицы А
minor(A, i, j)	Распечатка минора матрицы А, отве-
	чающего элементу, стоящему в і-ой стро-
moultimber(A1 A2)	ке, ј-ом столбце
multiply(A1,,A2)	Перемножение матриц с А1 по А2
randmatrix(n, m, opt)	Определение матрицы из случайных чи-
	сел, где n,m - размерность матрицы, а opt - параметр, определяющий тип матрицы
	(symmetric, antisymmetric, unimodular и др.)
rank(A)	Определение ранга матрицы А
row(A,i)	Выделение і-ой строчки матрицы А
rowdim(A)	Определение числа строк матрицы А
stack(A1,,A2)	Склеивание нескольких матриц (с А1 по
	А2) вертикально
submatrix(A,i1i2,j1j2)	Выделение части матрицы (с і1 по і2 эле-
	мента строки, с ј1 по ј2 элемента столбца)
subvector(a,i1 i2)	Выделение части вектора (с і1 по і2 эле-
` , ,	мента)
trace(A)	Определение следа матрицы А
transpose(A)	Транспонирование матрицы А
vector(B)	Определение вектора В

[©] Прохоров Г.В., Колбеев В.В., Желнов К.И., Леденев М.А., 1998 «Математический пакет Maple V Release 4».

При перепечатке ссылка на первоисточник обязательна.