

The Product and Quotient Rules

A-level Maths Topic Summaries - Calculus

Fill in the blanks below to complete the summary notes on the product and quotient rules.

The function y=u(x)v(x) is a $\begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c}$

$$rac{\mathrm{d}y}{\mathrm{d}x} = igcup v + u igcup$$

The function $y=\dfrac{u(x)}{v(x)}$ is a _____ of the functions of u(x) and v(x). To differentiate a function like this we use the _____ rule:

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{\int v - u \int v^2}{v^2}$$

Items:

Created for isaacphysics.org by Jonathan Waugh

Implicit Differentiation

A-level Maths Topic Summaries - Calculus

Fill in the blanks below to complete the summary notes on implicit differentiation.

Equations of the form y=f(x), such as y=2x+1 or $y=3\tan x$, give y as an function of x. Equations which are not in the form y=f(x), such as $\mathrm{e}^y+x^3y^2=2x$, give y as an function of x.

To find the gradient of an implicit function, we need to know how to differentiate functions of y with respect to x.

ullet e^y is a function of y. To differentiate a function of y with respect to x we use the ullet rule.

$$rac{\mathrm{d}(\mathrm{e}^y)}{\mathrm{d}x} = rac{\mathrm{d}(\mathrm{e}^y)}{\mathrm{d}x} rac{\mathrm{d}x}{}$$

$$=$$
 $\frac{\mathrm{d}y}{\mathrm{d}x}$

• x^3y^2 is a function of both x and y. To differentiate terms of this form with respect to x we first use the rule. Then, to differentiate the function of y, we use the chain rule.

$$rac{\mathrm{d}(x^3y^2)}{\mathrm{d}x} = rac{\mathrm{d}(x^3)}{\mathrm{d}x}y^2 + x^3rac{\mathrm{d}(y^2)}{\mathrm{d}x}$$

$$=rac{\mathrm{d}(x^3)}{\mathrm{d}x}y^2+x^3rac{\mathrm{d}(y^2)}{[]}rac{\mathrm{d}y}{\mathrm{d}x}$$

$$=$$
 $+$ $\frac{\mathrm{d}y}{\mathrm{d}x}$

Items:

Created for isaacphysics.org by Jonathan Waugh

Question deck:

Differentiation: Products 4ii

Subject & topics: Maths Stage & difficulty: A Level P2

Differentiate with respect to x, simplifying your answers where possible.

Part A

 $\sin x \tan x$

Differentiate $\sin x \tan x$.

The following symbols may be useful: x

Part B

 $x^2(x+1)^6$

Differentiate $x^2(x+1)^6$.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit

Differentiation

Differentiation: Products 2ii

Subject & topics: Maths Stage & difficulty: A Level P2

Given that $y=4x^2\ln x$, answer the following.

Part A

First Derivative

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B

Second Derivative

Find the value of $rac{\mathrm{d}^2 y}{\mathrm{d} x^2}$, when $x=e^2$.

The following symbols may be useful: Derivative(y, x, x), ln(), log(), x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit

Differentiation

Differentiation: Quotients 2ii

Subject & topics: Maths Stage & difficulty: A Level P2

Differentiate with respect to x, simplifying your answers where possible.

$$\frac{\ln x}{x}$$

$$y = \frac{\ln x}{x}$$

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B

$$\frac{x^2}{\ln x}$$

$$y = rac{x^2}{\ln x}$$

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part C

Stationary point of $y=rac{x^2}{\ln x}$

Determine the exact x-coordinate of the stationary point of the curve $y=rac{x^2}{\ln x}$.

The following symbols may be useful: e, ln(), x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit

Differentiation

Differentiation: Quotients 3i

Subject & topics: Maths Stage & difficulty: A Level P2

A curve has equation $y=rac{x^2+4}{x+2}$.

Part A

Derivative

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), x, y

Part B Normal

Find the equation of the normal to the curve at the point $(1, \frac{5}{3})$, giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit

<u>Differentiation</u>

Implicit Differentiation 1

Pre-Uni Maths for Sciences J6.7

Part A

Find
$$rac{\mathrm{d}y}{\mathrm{d}x}$$
 if $x^2+y^2=r^2$.

Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 if $x^2+y^2=r^2$, giving your answer as a simple function of x and y .

The following symbols may be useful: x, y

Part B

Find gradient of tangent to $x^2-xy+y^2=7$

Consider the curve $x^2 - xy + y^2 = 7$.

Find as a function of x and y the gradient of the tangent to the curve $x^2 - xy + y^2 = 7$.

The following symbols may be useful: x, y

Hence evaluate the slope at the point (-1,2).

Created for isaacphysics.org by Julia Riley

Question deck:

Differentiation: Products 4i

Subject & topics: Maths Stage & difficulty: A Level P2

The equation of a curve has the form $y=\mathrm{e}^{x^2}ig(ax^2+big)$, where a and b are non-zero constants.

Part A

First Derivative

Find an expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), a, b, e, ln(), log(), x, y

Part B

Second Derivative

Find an expression for $\frac{d^2y}{dx^2}$.

The following symbols may be useful: Derivative(y, x, x), a, b, e, ln(), log(), x, y

Part C a in terms of b

It is given that $\frac{d^2y}{dx^2}$ can be expressed in the form $e^{x^2}(cx^4+d)$, where c and d are non-zero constants. Find an expression for a in terms of b.

The following symbols may be useful: a, b

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit

Differentiation

Differentiation: Quotients 2i

Subject & topics: Maths Stage & difficulty: A Level P2

Part A Derivative

Given that $y=rac{4\ln(x)-3}{4\ln(x)+3}$, find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Gradient

Give the exact value of the gradient of the curve $y=rac{4\ln(x)-3}{4\ln(x)+3}$ at the point where it crosses the x-axis.

The following symbols may be useful: Derivative(y, x), e

Part C

Area

Figure 1 shows part of the curve with equation

$$y=rac{2}{x^{rac{1}{2}}(4\ln(x)+3)}\,.$$

The region shaded in the diagram is bounded by the curve and the lines $x=1, x=\mathrm{e}$, and y=0. Find the exact value of the integral I where

$$I=\int_{1}^{\mathrm{e}}\pi y^{2}\mathrm{d}x.$$

Figure 1: A diagram showing part of the curve with equation $y=rac{2}{x^{rac{1}{2}}(4\ln(x)+3)}$.

Give the exact value of I.

The following symbols may be useful: I, pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 33 - The Product Rule & Implicit Differentiation

Calculus: Inverse Trigonometry 2i

Subject & topics: Maths Stage & difficulty: Further A P2

Part A

Derivative of $\arcsin x$

Find the derivative of $\arcsin x$

The following symbols may be useful: x

Part B Implicit differentiation

Given that

$$rcsin 2x + rcsin y = rac{1}{2}\pi$$

find the exact value of $\frac{\mathrm{d}y}{\mathrm{d}x}$ when $x=\frac{1}{4}$.

Adapted with permission from UCLES, A Level, January 2009, Paper 4726, Question 3.