Linear Classifiers

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

A supervised problem

- ▶ Our goal is to learn a function $h: \mathcal{X} \to \mathcal{Y}$
- h(x) should be a good predictor for the corresponding y
- ▶ *h* is called a **hypothesis**

Classification problem

- ▶ The values *y* takes on only a small number of discrete values.
 - A spam classifier for emails (0, 1)
 - Handwritten digit recognition

Classification problem

- Given: Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - ▶ $y \in \{1, ..., K\}$
 - ▶ Two classes (binary): $y \in \{0, 1\}$
 - Multi classes: representing outputs by one-hot vectors,

$$y = [0, 1, 0, 0, 0]$$

- \blacktriangleright Goal: Given an input x, assign it to one of K classes
- Discriminant function: takes an input vector x and directly assigns it to one of K classes, denoted C_k .

Linear classifiers

- The hypothesis space:
 - ▶ The input space is divided into *decision regions* whose boundaries are called *decision boundaries* or *decision surfaces*.
 - ightharpoonup Decision surfaces are linear functions of the input vector $oldsymbol{x}$
 - ▶ Defined by (d-1)-dimensional hyperplanes within the *d*-dimensional input space.
- Linearly separable data: data points that can be exactly classified by a linear decision surface.
- Even when they are not optimal, we can use the simplicity of linear classifiers
 - Easy to compute
 - In the absence of information suggesting otherwise, linear classifiers are an attractive candidates for initial, trial classifiers.

Binary classification

- $h(x; w) = w^T x + w_0 = w_0 + w_1 x_1 + ... + w_d x_d$
 - $x = [x_1 \ x_2 \ ... x_d]$
 - $\mathbf{w} = [w_1 \ w_2 \ ... \ w_d]$
 - $\rightarrow w_0$: bias
- The linear discriminant function:
 - if $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \ge 0$ then \mathcal{C}_1 else \mathcal{C}_2
- ▶ Decision surface (boundary): $\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = 0$

Linear boundary: geometry

Linear classifier: Two classes

- Decision boundary is a (d-1)-dimensional hyperplane H in the d-dimensional feature space
 - The orientation of H is determined by the normal vector $[w_1, ..., w_d]$
 - \blacktriangleright w_0 determines the location of the surface.
 - ▶ The normal distance from the origin to the decision surface

is
$$\frac{w_0}{\|w\|}$$

$$x = x_{\perp} + r \frac{w}{\|w\|}$$

$$w^{T}x_{\parallel} + w_{0} = r\|w\| \Rightarrow r = \frac{w^{T}x + w_{0}}{\|w\|}$$

gives a signed measure of the perpendicular distance r of the point x from the decision surface

Cost Function for linear classifiers

- Finding linear classifiers can be formulated as an optimization problem:
 - Select how to measure the prediction loss
 - ▶ Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$, a cost function J(w) is defined
 - Solve the resulting optimization problem to find best parameters:
 - Find optimal $\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$
- Criterion or cost functions for classification:
 - We will investigate several cost functions for the classification problem

Cost Function for linear classifiers

- SSE as the linear regression
 - Is not suitable for classification
 - Penalizes 'too correct' predictions (that they lie a long way on the correct side of the decision)

SSE cost function for classification

$$K = 2$$

Cost Function for linear classifiers

Is it more suitable if we set $h(x) = g(w^T x)$?

$$J(w) = \sum_{i=1}^{N} \left(sign(w^{T} x^{(i)}) - y^{(i)} \right)^{2}$$

$$sign(z) = \begin{cases} -1, & z < 0 \\ 1, & z \ge 0 \end{cases}$$

$$(sign(w^{T} x) - y)^{2}$$

$$y = 1$$

 $J(\mathbf{w})$

J(w) is a piecewise constant function shows the number of misclassifications

Perceptron criterion

$$J_P(\mathbf{w}) = -\sum_{i \in \mathcal{M}} \mathbf{w}^T \mathbf{x}^{(i)} y^{(i)}$$

 $m{\mathcal{M}}$: subset of training data that are misclassified

Batch Perceptron

"Gradient Descent" to solve the optimization problem:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} J_P(\mathbf{w}^t)$$
$$\nabla_{\mathbf{w}} J_P(\mathbf{w}) = -\sum_{i \in \mathcal{M}} \mathbf{x}^{(i)} y^{(i)}$$

Batch Perceptron converges in finite number of steps for linearly separable data:

Stochastic gradient descent for Perceptron

- Single-sample perceptron:
 - If $x^{(i)}$ is misclassified:

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \mathbf{x}^{(i)} \mathbf{y}^{(i)}$$

- Perceptron convergence theorem: for linearly separable data
 - If training data are linearly separable, the single-sample perceptron is also guaranteed to find a solution in a finite number of steps

Stochastic gradient descent for Perceptron

Convergence of Perceptron

▶ For data sets that are not linearly separable, the single-sample perceptron learning algorithm will never converge

Pocket algorithm

- For the data that are not linearly separable due to noise:
 - Keeps in its pocket the best w encountered up to now.

```
Initialize w for t = 1, ..., T i \leftarrow t \mod N if x^{(i)} is misclassified then  w^{new} = w + x^{(i)}y^{(i)}  if E_{train}(w^{new}) < E_{train}(w) then  w = w^{new}  end
```

$$E_{train}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left[sign(\mathbf{w}^{T} \mathbf{x}^{(n)}) \neq y^{(n)} \right]$$

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space

Good Projection for Classification

- What is a good criterion?
 - Separating different classes in the projected space

LDA Problem

- Fisher's Linear Discriminant Analysis
- Problem definition:
 - K = 2 classes
 - $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$ training samples with N_1 samples from the first class (C_1) and N_2 samples from the second class (C_2)
 - lacktriangle Goal: finding the best direction $oldsymbol{w}$ that we hope to enable accurate classification
- ▶ The projection of sample x onto a line in direction w is $w^T x$
- What is the measure of the separation between the projected points of different classes?

Measure of Separation in the Projected Direction

- The direction of the line jointing the class means is the solution of the following problem:
 - Maximizes the separation of the projected class means

$$\max_{\mathbf{w}} J(\mathbf{w}) = (\mu_1' - \mu_2')^2$$
s.t. $\|\mathbf{w}\| = 1$

$$\mu_1' = \mathbf{w}^T \ \mu_1 \qquad \qquad \mu_1 = \frac{\sum_{x^{(i)} \in \mathcal{C}_1} x^{(i)}}{N_1}$$

$$\mu_2' = \mathbf{w}^T \ \mu_2 \qquad \qquad \mu_2 = \frac{\sum_{x^{(i)} \in \mathcal{C}_2} x^{(i)}}{N_2}$$

- What is the problem with the criteria considering only $|\mu_1' \mu_2'|$?
 - It does not consider the variances of the classes in the projected direction

Measure of Separation in the Projected Direction

Is the direction of the line jointing the class means a good candidate for w?

- Fisher idea: maximize a function that will give
 - large separation between the projected class means
 - while also achieving a small variance within each class, thereby minimizing the class overlap.

$$J(\mathbf{w}) = \frac{|\mu_1' - \mu_2'|^2}{s_1'^2 + s_2'^2}$$

▶ The scatters of projected data are:

$$s_1'^2 = \sum_{x^{(i)} \in \mathcal{C}_1} (w^T x^{(i)} - w^T \mu_1)^2$$

$$s_2'^2 = \sum_{x^{(i)} \in \mathcal{C}_2} (w^T x^{(i)} - w^T \mu_1)^2$$

$$J(\mathbf{w}) = \frac{|\mu_1' - \mu_2'|^2}{s_1'^2 + s_2'^2}$$

$$|\mu_1' - \mu_2'|^2 = |\mathbf{w}^T \boldsymbol{\mu}_1 - \mathbf{w}^T \boldsymbol{\mu}_2|^2 = \mathbf{w}^T (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \mathbf{w}$$

$$s_1'^2 = \sum_{x^{(i)} \in \mathcal{C}_1} (w^T x^{(i)} - w^T \mu_1)^2 = w^T \left(\sum_{x^{(i)} \in \mathcal{C}_1} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T \right) w$$

$$J(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}}$$

Between-class
$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

$$S_1 = \sum_{x^{(i)} \in \mathcal{C}_1} (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

$$S_2 = \sum_{x^{(i)} \in C} (x^{(i)} - \mu_2) (x^{(i)} - \mu_2)^T$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{\frac{\partial \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\partial \mathbf{w}} \times \mathbf{w}^T \mathbf{S}_W \mathbf{w} - \frac{\partial \mathbf{w}^T \mathbf{S}_W \mathbf{w}}{\partial \mathbf{w}} \times \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\left(\mathbf{w}^T \mathbf{S}_W \mathbf{w}\right)^2} = \frac{\left(2\mathbf{S}_B \mathbf{w}\right) \mathbf{w}^T \mathbf{S}_W \mathbf{w} - \left(2\mathbf{S}_W \mathbf{w}\right) \mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\left(\mathbf{w}^T \mathbf{S}_W \mathbf{w}\right)^2}$$

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0 \Longrightarrow \mathbf{S}_{B} \mathbf{w} = \lambda \mathbf{S}_{W} \mathbf{w}$$

LDA Derivation

$$S_B w = \lambda S_W w$$
 If S_W is full-rank
$$S_W^{-1} S_B w = \lambda w$$

▶ $S_B w$ (for any vector w) points in the same direction as μ_1 $-\mu_2$:

$$S_B w = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w \propto (\mu_1 - \mu_2)$$

 $w \propto S_W^{-1}(\mu_1 - \mu_2)$

Thus, we can solve the eigenvalue problem immediately

LDA Algorithm

- lacksquare Find $oldsymbol{\mu}_1$ and $oldsymbol{\mu}_2$ as the mean of class 1 and 2 respectively
- Find $m{S}_1$ and $m{S}_2$ as scatter matrix of class 1 and 2 respectively
- Classification
 - $\mathbf{w} = \mathbf{S}_w^{-1}(\boldsymbol{\mu}_1 \boldsymbol{\mu}_2)$
 - Vising a threshold on $w^T x$, we can classify x

References

- ▶ [1]: C. Bishop, "Pattern Recognition and Machine Learning", Chapter 4.1.
- [2]: Mahdieh Soleymani, Machine learning, Sharif university of technology
- ▶ [3]: Pattern classification, Duda, Hart & Stork, 2002