Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2019

EYP 2405/EYP 2114 Métodos Estadísticos / Inferencia Estadística Clase de Ejercicios 2

- 1. Sea X_1, X_2, \ldots, X_n una muestra aleatoria de una población Bernoulli (θ) , y sea $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ la media muestral.
 - a) Obtenga la cota de Cramér-Rao e indique si \bar{X} es un EIVUM. Justifique.
 - b) Obtenga un EIVUM para $\theta(1-\theta)$.
- 2. Sea X una variable aleatoria con densidad

$$f(x \mid \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1 - |x|}, \quad x = -1, 0, 1, \quad 0 \le \theta \le 1.$$

a) Sea T(x) un estimador de θ tal que

$$T(x) = \begin{cases} 2, & \text{si } x = 1; \\ 0, & \text{si } x \neq 1 \end{cases}$$

Muestre que T(x) es un estimador insesgado de θ

- b) Encuentre un estimador mejor que T(x) y demuestre que es mejor.
- c) Verifique si el estimador en b) alcanza la cota de Cramér-Rao.
- 3. Sean X_1, \ldots, X_n i.i.d con densidad $f(x \mid \theta) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta; \\ 0, & \text{e.o.c.} \end{cases}$
 - a)Muestre que $\frac{X_{(n)}}{\theta}$ es una cantidad pivotal.
 - b) Utilizando a) construya un IC para θ con probabilidad de cubrimiento $1 \alpha_L \alpha_U$ en donde α_L y α_U son los niveles de significación inferior y superior, respectivamente.
- 4. Sean Y_1, \ldots, Y_n i.i.d con distribución $Gamma(\alpha, \beta)$ con α conocido.
 - a) Si $p(\beta) \propto \frac{1}{\beta}$, encuentre el estimador de Bayes de β .
 - b) Si $\beta \sim \text{Gamma}(a, b)$, encuentre el estimador de Bayes de β .