Binary Heap: Definition

Binary heap.

- Almost complete binary tree.
 - filled on all levels, except last, where filled from left to right
- Min-heap ordered.
 - every child greater than (or equal to) parent

Binary Heap: Properties

Properties.

- . Min element is in root.
- . Heap with N elements has height = $\lfloor \log_2 N \rfloor$.

Binary Heaps: Array Implementation

Implementing binary heaps.

- Use an array: no need for explicit parent or child pointers.
 - Parent(i) = \[i/2 \]
 - Left(i) = 2i
 - -Right(i) = 2i + 1

- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence

- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence

- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence

- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence
- O(log N) operations.

Binary Heap: Decrease Key

Decrease key of element x to k.

- Bubble up until it's heap ordered.
- O(log N) operations.

- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted

- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted

- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted

- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted

- Exchange root with rightmost leaf.
- Bubble root down until it's heap ordered.
 - power struggle principle: better subordinate is promoted
- O(log N) operations.

Binary Heap: Heapsort

Heapsort.

- Insert N items into binary heap.
- Perform N delete-min operations.
- O(N log N) sort.
- . No extra storage.

Binary Heap: Union

Union.

- . Combine two binary heaps H_1 and H_2 into a single heap.
- No easy solution.
 - $-\Omega(N)$ operations apparently required
- Can support fast union with fancier heaps.

