1 Обобщённые координаты

$$\vec{r}$$
 – радиус-вектор

$$\vec{v} = \dot{\vec{r}} = \frac{d\vec{r}}{dt} -$$
скорость

$$ec{a}=\dot{ec{v}}=\ddot{ec{r}}=rac{d^2ec{r}}{dt^2}$$
 — ускорение

 $\vec{r} = (x, y, z)$ – координатная форма для радиус-вектора

 $\vec{v} = (\dot{x}, \dot{y}, \dot{z})$ – координатная форма для скорости

 $ec{a}=(\ddot{x},\ddot{y},\ddot{z})$ – координатная форма для ускорения

Координаты для системы точек:

$$\vec{r_1} = (x_1, y_1, z_1)$$

$$\vec{r_2} = (x_2, y_2, z_2)$$

. . .

$$\vec{r_n} = (x_n, y_n, z_n)$$

Таким образом для задания системы из n точек необходимо 3n координат. Тогда почему бы не перейти от строго порядка к нестрогому и задавать систему просто 3n координат:

$$(x_1, y_1, z_1, x_2, y_2, z_2, \dots, x_n, y_n, z_n) \to (q_1, q_2, \dots, q_{3n})$$

 $q = (q_1, q_2, \dots q_{3n})$ – физики ленивые. Очень.

$$\dot{q} = (\dot{q}_1, \dot{q}_2, \dots, \dot{q}_{3n})$$

$$\ddot{q} = (\ddot{q_1}, \ddot{q_2}, \dots, \ddot{q_{3n}})$$

 $\ddot{q} = f(q, \dot{q}, t)$ – закон мира(оно работает, попытка избежать этого закона провальна)

2 Принцип наименьшего действия

2.1 Формулировка

$$S = \int_{t_1}^{t_2} L(q,\dot{q},t) dt$$
 , где S – действие

Механическая система двигается так, чтобы до S было минимальным

2.2 Объяснение необходимости

(По Ландау) Пусть A и B – начальная и конечная точки движения с q_1, t_1 и $q_2, t_2,$ тогда существуют какие-то возможные траектории движения $S, S', \dots, S^{(n)}$

$$\bar{S} = min(S, S', \dots, S^{(n)})$$
где \bar{S} является идеальным действием для данной системы

(По Фейману) Пусть каждый путь из A в B определяется не S, а $e^{i\frac{S}{\hbar}}$. (\hbar – постоянная Планка) Тогда $\rho=|\sum e^{i\frac{S}{\hbar}}|^2$

$$e^{i\frac{S}{\hbar}} = \cos(\frac{S}{\hbar}) + i\sin(\frac{S}{\hbar})$$

Таким образом, каждая из наших функций при больших S при сложении гасят друг друга.

Рассмотрим функцию $y=x^2$: заметим, что при достаточно больших x $\Delta y \sim \Delta x$, а при малых x $\Delta y \sim (\Delta x)^2$.

Тогда S влияющие на ρ это такие S, что $|S-S_min|<\varepsilon$, где величина ε показывает уровень квантовости мира.

2.3 Вариационное исчисление

$$y(x): I = \int_{x_1}^{x_2} F(y(x), y'(x), x) dx$$

Представим функциональное одномерное пространство такое, что $\forall \varepsilon \; \exists y(x) \; \text{и} \; \exists \bar{y}(x) \; \text{для} \; \varepsilon = 0$

$$y(x) = \bar{y}(x) + \psi(x) \cdot \varepsilon$$

 ε – искомое отклонение

$$F(y(x)) = \int_{x_1}^{x_2} F(\bar{y}(x) + \psi(x) \cdot \varepsilon, \bar{y}'(x) + \psi'(x) \cdot \varepsilon, x) dx$$

$$\frac{dI}{d\varepsilon} = \int_{x_1}^{x_2} \left(\frac{\partial F}{\partial y}\psi(x) + \frac{\partial F}{\partial y'}\psi'(x)\right) dx$$

 x_1 и x_2 — начальная и конечная точки

$$y(x_1) = y_1$$

$$y(x_2) = y_2$$

$$\psi(x_1) = \psi(x_2) = 0$$

$$\int_{x_1}^{x_2} \underbrace{\frac{\partial F}{\partial y'}}_{u} \underbrace{\psi'(x) dx}_{dv} = \underbrace{\frac{\partial F}{\partial y} \psi(x)|_{x_1}^{x_2}}_{a} - \int_{x_1}^{x^2} \psi(x) \frac{dF}{dx} dx = //\int u \cdot dv = u \cdot v - \int du \cdot v$$

$$\psi|_{x_1}^{x_2} = 0 \to a = 0$$

$$= \int_{x_1}^{x_2} \left(\frac{\partial F}{\partial y} \psi - \psi \frac{d}{dx} \frac{\partial F}{\partial y'} \right) dx =$$

$$=\int_{x_1}^{x_2}$$

- 3 Принцип относительности Галилея
- 4 Функция Лангранжа свободной материальной точки