Домашняя работа 4 (на 10.03).

Во всех задачах t — целое, не являющееся полным квадратом, а в первой и второй задачах $\nu(z)=|z|^2.$ Так же напоминаю, что задача 2 сложная и ее стоит решать последней.

ALG 1. Пусть t < 0, докажите, что $\mathbb{Z}[\sqrt{t}]$ — евклидово кольцо относительно нормы ν , если и только если $t \in \{-1, -2\}$ (подсказка: подсказка: нарисуйте элементы этого кольца на комплексной плоскости и используйте переформулировку условия евклидовости, полученную в классе).

ALG 2. Пусть t < 0 и $t \equiv 1 \pmod 4$. Докажите, что $\mathbb{Z}[\frac{1+\sqrt{t}}{2}]$ — евклидово кольцо относительно нормы ν , если и только если $t \in \{-3, -7, -11\}$ (подсказка: подсказка: нарисуйте элементы этого кольца на комплексной плоскости и используйте переформулировку условия евклидовости, полученную классе).

ALG 3. Докажите, что 2 не является простым элементом кольца $\mathbb{Z}[\sqrt{t}]$.

[ALG 4.] Пусть R — факториальное кольцо и r — неприводимый элемент кольца R. Докажите, что r — простой элемент кольца R.

ALG 5. Пусть n — натуральное число. Разложите в сумму простейших над полем $\mathbb C$ дробь $\frac{n!}{x(x-1)...(x-n)}$.