

PES University, Bengaluru

(Established under Karnataka Act No. 16 of 2013)

OCTOBER 2020: IN SEMESTER ASSESSMENT B Tech FIFTH SEMESTER TEST – 1

UE18CS312 (4 credit subject) - Data Analytics Scheme and Solutions

Time: 2 Hrs	Answer All Questions	Max Marks: 60

1. a) An online certification course has been offered to students in the fifth and seventh semesters of Computer Science and Engineering. The number of registrations and number of successful certifications across the country at the end of each month as recorded by the course is provided below:

4 (2+2)

Month	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Number of registrations	44	101	386	4,904	12,106	74,696	1,02,458	12,524
Successful certifications	6	59	174	359	18,036	72,599	96,239	6,980

- (i) If we use a Cox-comb plot to visualize this data, how many sectors would this plot have and how would we represent the data provided in the table?
- (ii) A potential registrant wants to answer the question: "Is the increase in the number of certifications between the fifth and seventh semester students statistically significant?" Assuming the detailed data for fifth and seventh semesters is available, suggest an approach one might take to answer this question.

2 marks each

- (i) (Either a schematic diagram or an explanation in words) Eight sectors for the eight months for which data is available. The size of the sector would be proportional to number of registrations. We would use different shades for registrations versus certifications (or a band in one color (with the area proportionate to the number of certifications) around each sector representing the registrations for that month)
- (ii) Design a t-test or a z-test (since the number is rather large)

For the t test:

- Calculate t
 - by finding the difference between mean certifications of one semester and the other (let us call this num)
 - for each group calculate the variance divided by the number of observations-1 (let us call the variance divided by degrees of freedom, σ^2_1 and σ^2_{21})
 - compute $\operatorname{sqrt}(\sigma^2_{1+}\sigma^2_{2})$ (let us call this denom)
 - compute num/denom
 - calculate degrees of freedom (add the number of observations from each group
 -2)
 - look up the value in the table and interpret the value of t

Similarly for the z-score (the p-value compared to the value in the table for a given significance will determine whether the difference is statistically significant or not)

b) In the data shown in Question 1(a) above,

(i) Is there any anomaly? Briefly explain your answer.

3

		(ii) The organizers of the course have realized that data has not been recorded during weekends in April. Suggest a method to fill in the missing values.									
		1.5 marks each (i) In the month of July, the number of certifications seems to exceed the number of registrations. This appears anomalous. (It cannot be argued as not anomalous because it includes registrants from previous months, given the numbers do not tally.) (ii) [open ended] Data for weekends can be modeled based on weekend data in March and May as a function of the data during the week and that can be used to predict values for weekends in April based on the cases during the week in April (any other reasonable approach that is suitably justified can be considered)									
	c)	The range of scores of students for various components of their project submission is (3,8). How much will a student who has scored 7 on this scale get, if the marks are rescaled to a new range, (16,25)?									
		(((7-3)/(8-3))*(25-16)) + 16 = 23.2 (rounded to 23)									
2.	a)	Briefly explain the sampling technique(s) used in each of the following cases: (i) A Kitkat factory produces ten different flavours of the chocolates and has twenty assembly lines (two for each flavour). A taste tester selects a random chocolate bar from every other line. (ii) A restaurant has placed a feedback card on every table and allows diners to choose whether they would like to provide a feedback on behalf of their group or not.	4								
		Solution (2+2):									
		 (i) Systematic sampling (every other line) followed by simple random sampling (ii) Convenience (cluster) sampling, since the customers can choose to give feedback or not and the feedback, if given, would be of the entire table (including elders, adults, youth and children) 									
		(Convenience sampling – can be given complete credit; cluster based sampling can be given 1 mark)									
	b)	For the following examples, identify the datatypes as numeric/ categorical, ordinal/ interval/ ratio and discrete/ continuous (as applicable)	3								
		 (i) Movie rating on a scale of 1 to 5 (ii) When booking a flight ticket, response to whether the wheelchair service would be required for the passenger (yes/ no) 									
		(iii) Temperature (recorded in Centigrade from various regions around the world)									
		Solution (1 mark each): (i) Numeric, Ordinal, Discrete									
		 (ii) Numeric, Discrete, Binary (or nominal, discrete) (iii) Numeric, interval, continuous (considered interval as temperature can be negative and holds no true zero) 									
	c)	Twenty engineers and twenty pilots were subject to tests and scores were measured for the following six features: (i) Intelligence (ii) Conformance to procedure (iii) Eyesight (iv) Hearing (v) Sensory motor coordination and (vi) Perseverance. Briefly outline the steps to extract two principal components from this data to visualize the two groups of twenty points in the 2-dimensional rectangular plane.	3 (2+1)								
		Solution (1 mark for each step): (i) Subtract the mean of each feature (or subtract the mean and divide by the standard deviation for each feature). Compute the outer product for each mean adjusted feature vector and add this to obtain the the covariance matrix for the 40 points (or two separate covariance matrices for each of the 20 points)									
		(ii) Perform eigen analysis to obtain the Eigen values; select the two Eigen vectors corresponding to the largest two Eigen values									

	using	s that	t are a	appro ent co	ximat olors (ions i	for eaccolor i	ch point.	Plot this venty poin	on a 2D g	graph	
a)	Taste testers Aman and Mani have rated the quality of food at a restaurant on six days in the week as follows:									4		
	Day	M	Tu	W	Th	F	Sa					
	Aman's rating	4	2	3	5	1	3					
	Mani's rating	3	3	2	5	2	2					
	 (i) What are β₀ and β₁ if we must predict Aman's rating in terms of Mani's rating using simple linear regression with the following model? Rating(Aman) = β₀ + β₁Rating(Mani) (ii) What is the coefficient of determination for this model? 									rating		
	(iii) How can we measure the influence Mani's rating of the food on Thursday has on the model? (Suggest the test or statistic that can be used for this.) Solution:									y has		
	(i) $\beta_1 = \text{rRating}(\text{Aman})/\text{Rating}(\text{Mani}) = 0.8830$											
$\beta_0 = \mu_{Aman} - \beta_1 \mu_{Mani} = 3 - 0.8830 * 2.833 = 0.45433$												
	(ii) Coefficient of determination = $r*r = 0.5267$											
	(iii) Cook's distance or DFBeta can be used to measure the influence that Mani's rating of Thursday's food has on the regression model									lani's		
b)	The correlation between two variables (#views for a video and average #videos posted per month) is found to be positively correlated. Answer the following questions with a line to justify your answer: (i) Is it necessarily true that the Pearson's correlation coefficient between #postings/month and #views on a video would to be closer to 1 than it is to 0 for this data? (ii) Can we assume there is no cause-effect relationship between #postings per month and #views on a channel because correlation does not imply causation? 1.5 marks each (i) No, the relationship can be nonlinear and still positively correlated									3		
	(ii) No, just because correlation does not imply causation does not mean there cannot be positive correlation when there is causation! We must do further tests to infer causation (Scheme 1 marks each, even if the answer is Yes, if the justification is a plausible one.)								ot be			
c)	For each of the folloand, if not, what traregression. (i)	owing	scatte	rplots	sugge	st who	ether th	ne data is s	uitable for	linear regre		3

- (i) Not suitable x needs to be transformed to ln(x), sqrt(x), etc., and y to ln(y), sqrt(y) etc.
- (ii) Not suitable x could be transformed to x^2 , x^3 , etc., and y to y^2 , y^3 , etc.
- 4. a) Write the linear algebraic expression for computing an estimate of the Beta vector in a multiple linear regression system to predict 4 dependent variables using 5 independent variables.

4 (2+2)

In the table given below, identify the features that are significant (for an alpha = 0.01) and if there is insufficient data to do this, list out what other data is necessary to determine the significance of regression coefficients.

Term	Coef	SE Coef	Т	Р	
Constant	389.166	66.0937	5.8881	0.000	
X_1	2.125	1.2145	1.7495	0.092	
X_2	5.318	0.9629	5.5232	0.000	
X_3	4.22	0.3	14.06	0.043	
X_4	-24.132	1.8685	-12.9153	0.000	
X_5	-17.201	1.333	-12.9039	0.004	

Solution (2 marks each):

$$\beta$$
_hat = $(X^TX)^{-1}X^TY$

(Either form is acceptable)

Variables X_1 and X_3 are not statistically significant; all others are statistically significant.

b) Rajesh has designed a logistic regression classifier to predict the likelihood of stars being visible in the night sky based on the humidity reported on any day:

logit (p) = $\log(p/(1-p)) = \beta_0 + \beta_1*$ humidity, where p is the probability of a power cut. Given that $\beta_0 = 1.8185$ and $\beta_1 = -0.0665$, answer the following questions:

- (i) What does the value of β_0 mean?
- (ii) If humidity on a day = 25, what is the probability with which stars are visible in the night sky according to this model?

3 (1+2)

		Solution:																	
		 (i) When humidity = 0, the ln(odds) of sighting stars in the night sky = 1.8185 (OR the probability of stars being visible in the night sky = 0.86) (ii) When humidity = 25, the probability with which stars are visible in the night 																	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	aidity = 25, to		_	with	which s	tars are v	isible in the nigh	nt									
		•	(-p) = -1.818																
		* '	-p)) = exp(0)																
		p = 1.17/2.17 = 0.539 (about 53% chance stars are visible)																	
	In a collection of 1000 small rocks collected on a river bed, 100 happen to be precious stones. All those 100 precious stones along with 100 other rocks have been determined to be precious stones by a logistic regression classifier. What does the confusion matrix look like for this classifier? What should be done to obtain a receiver operator characteristics (RoC) plot for this logistic regression model?																		
		Solution:																	
]	Precious stor	nes O	ther ro	cks													
		Precious stones	100		0														
		Rocks	100		800														
		If we vary the thre we can compute th						-	-	,									
5.	a)	With a schematic level, trend and se not accounted for i	easonality. V	Vhat ar	e cycli	ic con													
		(1 mark each (inc (OE))	cluding the s	chema	tic dia	gram	for what	the com	(1 mark each (including the schematic diagram for what the component looks like										
		` ' '	ere the trend	begins))														
		- Trend (upward or downward)																	
		- Trend (upw	varu or down	ward)						e									
		- Seasonality	(repetitions	within	a cale	•													
		- Seasonality - Cyclic (ma	(repetitions acro-econom	within ic chan	a cale	patte	rns that v	-	decade or sever	մ									
		- Seasonality - Cyclic (ma	(repetitions acro-econom	within ic chan	a cale	patte	rns that v	-	decade or severa most time serie	մ									
	b)	SeasonalityCyclic (mayears and a	en below, thing (SES) e = 3 for time	within ic chan odic an use M with a se point	a cale ages or d so c APE t lpha = ts t=5,6	patte annot o cor 0.7 v 5,7. [Y	be predi	recast acole movin	curacy of single g average (SMA) ues of y available	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size	en below, thing (SES) e = 3 for timests for SMA	within ic chan odic an use M with a se point	a cale ages or d so c APE t lpha = ts t=5,6	patte annot o cor 0.7 v 5,7. [Y	be predi	recast acole movin	curacy of single g average (SMA) ues of y available	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size to make the foreca	en below, thing (SES) e = 3 for timests for SMA	within ic chan odic an use M with a le point and fo	a cale ages or d so c APE t lpha = ts t=5,6 r SES a	patte annot o cor 0.7 v 6,7. [Y	mpare for vith simple you can up the fore	cted with precast acole moving use the value ecast, F ₄ =	curacy of single g average (SMA ues of y available y4]	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size to make the foreca	en below, thing (SES) e = 3 for timests for SMA	within ic chan odic and use May with a le point and for a le point a le poi	a cale ages or d so c APE t lpha = ts t=5,6 r SES a	patte annot o cor 0.7 v 5,7. [Y assum	mpare for vith simple the fore	recast acole moving se the value cast, F ₄ =	curacy of single g average (SMA ues of y available y4]	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size to make the foreca	en below, thing (SES) e = 3 for time sts for SMA	within ic chan odic and use May with a le point and for a le point a le poi	a cale ages or d so c APE t lpha = ts t=5,6 r SES a	patte annot o cor 0.7 v 5,7. [Y assum	mpare for vith simply ou can upe the fore	recast acole movings the value cast, F ₄ =1	curacy of single g average (SMA ues of y available y4]	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size to make the foreca	en below, thing (SES) e = 3 for timests for SMA	within ic chan odic and use May with a le point and for a le point a le poi	a cale ages or d so c APE t lpha = ts t=5,6 r SES a	patte annot o cor 0.7 v 5,7. [Y assum	mpare for vith simply ou can upe the force 5 17 13	recast acole moving se the value cast, F ₄ = 100 15 4/19	curacy of single g average (SMA) ues of y available y4]	e 3									
	b)	- Seasonality - Cyclic (mayears and amodels) For the data give exponential smoot with a window size to make the foreca	en below, thing (SES) e = 3 for timests for SMA	within ic chan odic and use May with a le point and for a le point a le poi	a cale ages or d so c APE t lpha = ts t=5,6 r SES a	patte annot o cor 0.7 v 5,7. [Y assum	mpare for vith simply ou can up the forest	recast acole movings the value cast, F ₄ =1	curacy of single g average (SMA ues of y available y4] 7 20 17.33 2.64/20	e 3									

	c)	SMA: $y_{t+1} = (y_t + y_{t-1} + y_{t-2})/3$ SES: $y_{t+1} = (alpha)^* y_t + (1-alpha) F_t$ (1 mark) MAPE (SMA) = 0.1931 (19.3%) (1 mark) MAPE (SES) = 0.088 (8.81%) (1 mark) Single Exponential Smoothing is more accurate Suggest an application for each of the following techniques to model time series data (i) Crostop's method											
		 (i) Croston's method (Open-ended) Forecasting the demand for any entity that has a sporadic demand (such as seasonal crops, fruits, etc., or winter (or summer) clothes, etc.) (ii) Holt-Winter's method (Open-ended) Forecasting a dependent variable where the underlying process has both trend and seasonality (such as the demand for flu medicine or a specific type of pesticide or school supplies or avionic parts or the price of stocks of companies that have seasonal highs or lows, with a general upward or downward trend) (iii) ARIMA (Open-ended) Forecasting the demand for any entity that has a sporadic demand (such 											
6	a)	as seasonal crops, fruits, etc., or winter (or summer) clothes, etc.) Equation for ARIMA models (2+2) (i) ARIMA(0,1,0) F _{t+1} = e _t OR ΔY _{t+1} = e _t + e _{t+1} (ii) ARIMA(1,0,1)											
	b)	Y _{t+1}	OR $1 = \beta y_t + \alpha e_t$ $0R$ $1 = \beta y_t + \alpha e_t + \epsilon$ 0 0 0 0 0 0 0 0 0 0	etter and why?	(3+3)			6					
	,		Statistic	Model A	Model B	A or B2	Why2						
		1	AIC	258.24	251.42	A or B? Model B	AIC is the negative log likelihood the sample will fit/ estimate future values – lower the better						
	2 R ² 0.98 0.91 Model A R ² is expected to be higher for a better model designed for time series data												
		3 RMSE 0.048 0.051 Model A RMSE is expected to be lower											