TRANSPORTATION:

ENHANCING ROAD SAFETY THROUGH A DRIVER FATIGUE DETECTION SYSTEM

Track A. Design Track Check Off 3

Team 6

Mubaraquali Muhammed Sufyanali (1006394) Sean Phay Wei Xiang (1005969) Stefanie Tan Hui Zhen (1006073) Ong Zheng Han (1005867)

01 PROBLEM

Background Information

The Big Read: To tackle rising fatal traffic accidents and worsening road culture, we need to first understand the problem

Driver fatigue impairs reaction time and decision-making, increasing accident risks.

Traffic fatalities **rose** from 104 (2022) to 131 (2023) in Singapore.

32.9% of Singaporean taxi drivers report fatigue while driving.

Problem Statement

Drivers often underestimate their fatigue levels, increasing accident risks. This project aims to create a real-time fatigue detection system to alert drivers, preventing incidents and improving road safety.

02 SYSTEM DESIGN & METHODOLOGY

CNN Model Architecture

Dataset Pre-Processing

Sample of original images from Kaggle with their respective labels

Source: Kaggle's MRL Eye Dataset

Content: 84,00 images (grayscale, 8-bit)

- Categorized as "Open-Eyes" and "Closed-Eyes"
- Labels indicate drowsy (1) or non-drowsy (0) states

Challenges: Variations in lighting, eye positions, and individual differences

Dataset Pre-Processing

Sample of original images compared to augmented images

Resizing: Images standardized to 224x224 pixels

Dataset Split:

- 70% training
- 15% validation
- 15% testing

Data Augmentation:

- Rotations
- Flips
- Shifts
- Zooms
- Shearing

MobileNetV2 Model

Transfer Learning

Prototype (OpenCV) Architecture

Real time detection using live webcam

Fatigue Detection – Eye State Classification

Model Overview:

- Utilizes the **pre-trained MobileNetV2** model.
- Fine-tuned on the MRL Eye Dataset for accurate eye state classification.

Classification Process:

- Eye images are classified as "open" or "closed".
- Analysis is performed separately for each eye.

Eyes Closed Threshold: 2.0s
Head Tilt Threshold: 1.5s
Yawning Threshold: 3.0s

Eyes: Closed
Eyes Closed: 0.5s
Head Tilt: 0.0s
Yawning: 0.0s

Closed

Fatigue Detection - Yawning

Eyes Closed Threshold: 1.5s
Head Tilt Threshold: 1.0s
Yawning Threshold: 2.0s

Eyes: Open
Eyes Closed: 0.0s
Head Tilt: 0.3s
Yawning: 0.0s

Eyes Closed Threshold: 1.5s
thad Tilt Threshold: 1.0s
Yawning Threshold: 2.0s

Eyes: Closed
Eyes Closed: 0.3s
Head Tilt: 0.0s
Yawning: 5.5s

Mouth Open

Model Overview:

Mouth Closed

- Uses Google's Mediapipe FaceMesh model to detect facial landmarks, focusing on points around the mouth.
- Extracts Mouth Aspect Ratio (MAR) to measure mouth openness.

$MAR = \frac{(verticle1 + verticle2)}{2 \times horizontal}$

Classification Process:

- MAR is calculated using distances between vertical and horizontal mouth landmarks
- High MAR Value -> Yawning -> Fatigue

Fatigue Detection - Head Tilt

Head tilt

Model Overview:

No Head tilt

- Uses Haar Cascade for detecting the face and nose in the grayscale frame
- Calculates y-coordinate of the nose tip to determine head tilt angle

Classification Process:

A significant change in the y-coordinate of the nose tip indicates a Head Tilt -> Fatigue

03 PROTOTYPE DEMOSTRATION

04 EXPERIMENT RESULTS

Training Results

Epoch 1	Training Accuracy: 87.24% Validation Accuracy: 91.52% Validation Loss: 0.2021
Epochs 2–7	Minimal improvements on the validation dataset; early stopping triggered at epoch 7.
Final Evaluation	Test Accuracy: 91.24%, shows robust generalization. Benefits: Balanced performance and computational efficiency while minimizing overfitting.

Conclusion

This systematic approach ensures reliable performance on unseen data with optimized training efficiency.

05 FUTURE WORKS

Future Work: Enhancing the Drowsiness Detection System

Mobile and Embedded Device Deployment

- Optimize the system for portable platforms (e.g., Raspberry Pi) to enable in-vehicle integration.
- Focus on reducing computational overhead while maintaining accuracy for real-world use.

Real-Time Alert System Enhancements

- Develop a more adaptive alert system:
- Yawning Timeframe: If the user yawns for a repeated number of times withing the timeframe → Activates the alarm
- **Verbal warnings**: Provide prompts like "Please pull over and rest."
- Driver feedback: Recommend breaks at regular intervals.

Goal: Improve system functionality, portability, and real-world impact for safer and more reliable driver monitoring.

THANK YOU!

