Лабораторная работа 2. Задача о погоне

Вариант 30

Асеинова Елизавета Валерьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	ç
5	Выводы	15
6	Список литературы	16

List of Tables

List of Figures

4.1	Задание расстояния, разницы в скорости и угла fi	10
4.2	Начальные условия для случая 1 и уравнение	11
4.3	Начальные условия для случая 2 и уравнение	11
4.4	Функция движения катера береговой охраны	11
4.5	Функция движения браконьерской лодки	12
4.6	График для первого случая	12
4.7	График для второго случая	12
	Первый случай	
4.9	Второй случай	14

1 Цель работы

Построить математическую модель для выбора правильной стратегии при решении задач поиска на примере задачи о преследовании браконьеров береговой охраной.

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 12,2 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,1 раза больше скорости браконьерской лодки. 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени). 2. Построить траекторию движения катера и лодки для двух случаев. 3. Найти точку пересечения траектории катера и лодки

3 Теоретическое введение

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса, только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или x-x/v0 (во втором случае x-x/v0). Так как время одно и то же, то эти величины одинаковы. [1]

Тогда неизвестное расстояние х можно найти из следующего уравнения:

В первом случае:

$$\frac{x}{v} = \frac{k-x}{nv}$$

Во втором случае:

$$\frac{x}{v} = \frac{x+k}{nv},$$

где n - во сколько раз скорость катера больше скорости лодки.

После того, как катер береговой охраны окажется на одном расстоянии от по-

люса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: радиальная скорость и тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса. Нам нужно, чтобы эта скорость была равна скорости лодки. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости на радиус.

Учитывая, что радиальная скорость равна v, то получим следующую формулу для тангенциальной скорости:

$$v_t = \sqrt(n^2 * v^2 - v^2)$$

где n - во сколько раз скорость катера больше скорости лодки.

Решение задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ \frac{d\theta}{dt} = \sqrt{(n^2 - 1) * v} \end{cases}$$

с начальными условиями:

В первом случае:

$$\left\{ \begin{array}{l} \theta_0 = 0 \\ r_0 = x_1 \end{array} \right.$$

Во втором случае:

$$\left\{ \begin{array}{l} \theta_0 = -\pi \\ r_0 = x_2 \end{array} \right.$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{(n^2 - 1)}}$$

Решив это уравнение, мы получим траекторию движения катера в полярных координатах [1]

4 Выполнение лабораторной работы

1. Проведем вывод дифференциальных уравнений, если скорость катера больше скорости лодки в 4,1 раза, а лодка обнаруживается на расстоянии 12,2 км от катера.

Тогда получим следующие начальные условия:

Для первого случая:

$$\frac{x}{v} = \frac{12, 2 - x}{4, 1v}$$

Домножив на 4,1 и получаем:

$$4.1x = 12.2 - x$$

Отсюда

$$x_1 = \frac{12, 2}{5, 1}$$

Для второго случая:

$$\frac{x}{v} = \frac{12, 2+x}{4, 1v}$$

Домножив на 4,1 и получаем:

$$3, 1x = 12, 2 - x$$

Отсюда

$$x_1 = \frac{12, 2}{3, 1}$$

Тангенциальная скорость будет равна:

$$v_t = \sqrt(4, 1^2 * v^2 - v^2) = \sqrt(15, 81) * v$$

Решение задачи сводится к решению системы из двух следующих дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ \frac{d\theta}{dt} = \sqrt{(4, 1^2 - 1) * v} \end{cases}$$

с начальными условиями:

В первом случае:

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{12,2}{5,1} \end{cases}$$

Во втором случае:

$$\left\{ \begin{array}{l} \theta_0 = -\pi \\ r_0 = \frac{12,2}{3,1} \end{array} \right.$$

Исключая из полученной системы производную по t, переходим к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{(15,81)}}$$

2. Построим траекторию движения катера и лодки для двух случаев.

Для построения траекторий испольвалась система SciLab.

2.1. Зададим некоторые общие значения (рис.4.1)

```
| s == .12.2; -//- начальное - расстояние - от - лодки - до - катера | v == .4.1; -//- во - сколько - раз - скорость - катера - больше - скорости - браконьерской - лодки | fi == %pi/4;
```

Figure 4.1: Задание расстояния, разницы в скорости и угла fi

2.2 Зададим начальные условия и уравнение для случая 1 (рис.4.2)

```
//начальные - условия - в - случае - 1
r0 -= -s/(v+1);
tetha0 -= -0;
tetha=0:0.01:2*%pi
r=ode(r0,tetha0,tetha,<u>f</u>);
```

Figure 4.2: Начальные условия для случая 1 и уравнение

2.3 Зададим начальные условия и уравнение для случая 2 (рис.4.3)

```
//-начальные-условия-в-случае-2
r0-=-s/(v-1);
tetha0-=-%pi;
tetha=0:0.01:2*%pi
r=ode(r0,tetha0,tetha,<u>f</u>);
figure();
```

Figure 4.3: Начальные условия для случая 2 и уравнение

2.4 Опишем функцию для движения катера береговой охраны (рис.4.4)

```
//функция, описывающая движение катера береговой охраны function ber=<u>f(tetha,r)</u>
...ber = r/sqrt(v*v-1);
endfunction;
```

Figure 4.4: Функция движения катера береговой охраны

2.5 Опишем функцию для движения лодки браконьеров (рис.4.5)

```
//-функция, -описывающая-движение-лодки-браконьеров function-brack=<u>f2</u>(t)
---brack-=-tan(fi)*t;
endfunction
```

Figure 4.5: Функция движения браконьерской лодки

2.6 Построим график для первого случая (рис.4.6)

```
polarplot(tetha, r, style = color('green'));
plot2d(t, f2(t), style = color('red'));
```

Figure 4.6: График для первого случая

2.7 Построим график для второго случая (рис.4.7)

```
polarplot(tetha, r, style = color('green'));
plot2d(t, f2(t), style = color('red'));
```

Figure 4.7: График для второго случая

3. Определим по графику точки пересечения катера и лодки

График для первого случая (красным - движение браконьерской лодки, зелёным - движение катера): (рис.4.8)

Figure 4.8: Первый случай

При увеличении графика координаты точки пересечения : X = 2,061, Y = 2,061 График для второго случая (красным - движение браконьерской лодки, зелёным - движение катера): (рис.4.9)

Figure 4.9: Второй случай

При увеличении графика координаты точки пересечения : X = 7,471, Y = 7,471

5 Выводы

В результате данной лабораторной работы мы построили математическую модель для выбора правильной стратегии при решении задач поиска на примере задачи о преследовании браконьеров береговой охраной.

Мы вывели необходимые дифференциальные уравнения для решения данной задачи, построили графики для определения траекторий движения лодки и катера, а также определили точки пересечения траекторий для двух случаев.

6 Список литературы

1. Кулябов, Д.С. Задача о погоне [Текст] / Д.С.Кулябов. - Москва: - 4 с.