

La présentation et la rigueur des solutions seront deux éléments importants dans l'appréciation des copies. En particulier, les candidats sont priés d'énoncer avec précision les hypothèses des théorèmes utilisés.

Notations

On désigne par E l'espace vectoriel des suites complexes bornées .C'est-à-dire :

$$\mathbf{E} = \{ (u_n)_{n \in \mathbb{N}} / \exists M > 0, \ \forall \ n \in \mathbb{N} \ , \ \left| u_n \right| \le M \}$$

Pour tout entier naturel n et pour tout $u = (u_n)_{n \in \mathbb{N}}$ on pose :

$$S_n(u) = \sum_{k=0}^n u_k.$$

On note F l'ensemble des suites complexes $u=(u_n)_{n\in\mathbb{N}}$ pour lesquelles la série $\sum_{k\geq 0} |u_k|$ converge.

On note alors, pour tout $u \in F$, $S(u) = \sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} S_n(u)$.

On considère un nombre complexe z = a + ib de module inférieur ou égal à 1, avec a et b deux réels qui vérifient donc $a^2 + b^2 \le 1$.

On désigne alors par v, dans tout le problème, l'élément de E défini par $v = (z^n)_{n \in \mathbb{N}}$.

Première partie

- 1. a) Montrer que F est un sous espace vectoriel de E.
 - b) Calculer $S_n(v) = \sum_{k=0}^n z^k$ suivant les valeurs de z.
- 2. Soit $u \in E$. Montrer que pour tout réel x la série $\sum_{n\geq 0} u_n \frac{x^n}{n!} e^{-x}$ converge. On notera $\Phi_u(x)$ sa somme.
- 3. Calculer $\Phi_{\nu}(x)$ suivant les valeurs de z.
- 4. Soit $u \in E$. Montrer que la série entière $\sum_{n\geq 0} S_n(u) \frac{x^n}{n!}$ a un rayon de convergence infini.

On notera Ψ_u la fonction définie pour tout réel x par :

$$\Psi_u(x) = \sum_{n=0}^{+\infty} S_n(u) \frac{x^n}{n!} e^{-x}.$$

- 5. Calculer $\Psi_{\nu}(x)$ suivant les valeurs de z.
- 6. Montrer que Φ_u et Ψ_u sont des fonctions indéfiniment dérivables sur \mathbb{R} .

Deuxième partie

Le but de cette partie est de prouver que, si $u \in F$:

$$\lim_{x\to+\infty}\Psi_u(x)=\int_0^{+\infty}\Phi_u(x)\,dx=S(u)$$

7. On suppose dans cette question que z est de module strictement inférieur à 1 et par conséquent que $v \in F$.

Vérifier que : $\lim_{x \to +\infty} \Psi_{\nu}(x) = \int_{0}^{+\infty} \Phi_{\nu}(x) dx = S(\nu)$

- 8. Soit $u \in F$.
 - a) Calculer $\int_{0}^{+\infty} e^{-x} x^{n} dx$ pour tout $n \in \mathbb{N}$.

- b) Montrer que Φ_u est intégrable sur $[0,+\infty[$ et prouver que $\int_0^+ \Phi_u(x) dx = S(u)$ (Citer avec précision le théorème utilisé).
- 9. Soit $u \in F$.
 - a) Etudier la convergence normale de la série de fonctions $\sum_{n\geq 0} u_n \frac{x^n}{n!} e^{-x} \sup \left[0,+\infty\right[$.
 - b) En déduire que : $\lim_{x\to +\infty} \Phi_u(x) = 0$. (Citer avec précision le théorème utilisé).
- 10. On considère $u \in E$.
 - a) En justifiant convenablement les dérivations montrer que :

$$\forall x \in \mathbb{R} \quad e^{-x} \sum_{n=1}^{+\infty} S_n(u) \frac{x^{n-1}}{(n-1)!} = \Psi_u(x) + e^{-x} \frac{d}{dx} \left[\Phi_u(x) e^x \right].$$

b) En écrivant:

$$\Psi_{u}(x) = e^{-x} \sum_{n=0}^{+\infty} S_{n}(u) \frac{x^{n}}{n!}$$

établir que :

$$\forall x \in \mathbb{R} \quad \Psi_u(x) = \Phi_u(x) + \Phi_u(x).$$

c) En déduire que :

$$\forall t \in \mathbb{R} \quad \Psi_{u}(t) = \int_{0}^{t} \Phi_{u}(x) dx + \Phi_{u}(t).$$

11. Conclure que si $u \in F$:

$$\lim_{x\to+\infty}\Psi_u(x)=\int_0^{+\infty}\Phi_u(x)\,dx=S(u)$$

Troisième partie

On considère la suite u définie par $u_n = \frac{\left(-1\right)^n}{n+1}$. Le but de cette partie est de comparer $\lim_{x \to +\infty} \Psi_u(x)$ et $\int_{x}^{+\infty} \Phi_u(x) dx$

- 12. a) Calculer $S(u) = \sum_{k=0}^{+\infty} u_k$ en écrivant : $\int_0^1 \frac{1}{1+x} dx = \sum_{k=0}^n \frac{(-1)^k}{k+1} + (-1)^{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$
 - b) On notera $r_n = \sum_{k=n+1}^{+\infty} \frac{\left(-1\right)^k}{k+1}$.

Montrer que $|r_n| \le \frac{1}{n+1}$ (Citer avec précision le théorème utilisé).

- c) En remarquant que $S_n(u) = \ln 2 r_n$ montrer que $\lim_{x \to \infty} \Psi_u(x) = \ln 2$.
- 13. a) Déterminer $\Phi_u(x)$ et montrer que $\Phi_u(x)$ est intégrable sur \mathbb{R}^+ .
 - b) On pose pour a > 0 et $x \in [a, +\infty[$ $F(x) = \int_0^{+\infty} \frac{e^{-at} e^{-xt}}{t} dt$ Montrer que F est de classe C^1 sur $[a, +\infty[$ et en déduire la valeur de F(x).

 (Citer avec précision le théorème utilisé).
- 14. En déduire que $\lim_{x\to +\infty} \Psi_u(x) = \int_0^{+\infty} \Phi_u(x) dx$

TO: 1 11/	
Fin de l'énoncé	