R	A	2	1						

COLLEGE OF ENGINEERING & TECHNOLOGY, SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Cycle Test – II

Academic Year: 2021-2022 (EVEN SEM)

Program offered: B.Tech

Year / Sem : I/II

Course Code and Title: 18EES101J/ BASIC ELECTRICAL

AND ELECTRONICS ENGINEERING

Maximum Marks: 50

Part A Duration: 20 mins [12.30-12.50 PM]

Learning Assessment (CLA 1)									
Levels	Level of	Weightage Required (%)	Weightage Provided(%)						
Thinking		Required (%)	Provided(%)						
1	Remember	40%	36%						
1	Understand	4070	3070						
	Apply								
2	Analyze	60%	64%						
	Create								

PART A (Answer all the questions)

10x1 MARK=10 MARKS

	PART A (Answer all the questions)		1011	MAKK=10 M		
Q. No.	Questions [BUBBLE (ROUND) THE CORRECT ANSWER, DO ROUGH WORK IN MAIN ANSWER SHEET]	Refe renc e to CO	Refer ence to PO	Bloom's Taxonomy	Marks Allotted	Marks Scored
1.	If current in a conductor increases then according to Lenz's law self-induced voltage will o aid the increasing current o tend to decrease the amount of current o produce current opposite to the increasing current o aid the applied voltage	CO2	1	Understand	1	
2.	The power factor of an AC circuit is equal to Cosine of the phase angle Sine of the phase angle Unity for a resistive circuit Unity for a reactive circuit	CO2	1,2	Understand	1	
3.	The function of pole shoes in the case of D.C. machine is o To reduce the reluctance of the magnetic path o To spread out the flux to achieve uniform flux density o To support the field coil o To discharge all the above functions	CO2	1,2	Understand	1	
4.	What is the working principle of a Transformer? O Transformer works on the principle of self-induction O Transformer works on the principle of mutual induction O Transformer works on the principle of ampere law O Transformer works on the principle of coulomb law	CO2	1,2	Understand	1	
5.	The current drawn by the armature of DC motor is directly proportional to One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Torque One of the current drawn by the armature of DC motor is directly proportional to Cannot be determined	CO2	1,2	Understand	1	

6.	The type of wiring that is highly suitable for a temporary shed is Cleat wiring Wooden capping and casing wiring Lead sheathed wiring Conduit wiring	CO3	1,2	Understand	1	
7.	damping method is common in moving coil instruments o Eddy current o Fluid o Spring o Air	CO3	1,2	Understand	1	
8.	As the temperature of a semiconductor increases its Conductivity increases Resistivity increases Atomic number decreases Temperature co-efficient becomes zero	CO3	1,2	Understand	1	
9.	In a C-E configuration, an emitter resistor is used for: o Stabilization o ac signal bypass o collector bias o higher gain	CO3	1,2	Understand	1	
10.	Which of the following can be used in series with a Zener diode so that combination has almost zero temperature coefficient? o Diode o Resistor o Transistor o MOSFET	CO3	1	Understand	1	

R A 2 1

COLLEGE OF ENGINEERING & TECHNOLOGY, SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Cycle Test – II

Date: 03-06-2022

Academic Year: 2021-2022 (EVEN SEM) SET-D

Program offered: B.Tech

Year / Sem : I/II

Course Code and Title: 18EES101J/ BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Maximum Marks: 50

Duration: 1 hr 45 mins [12.30-2.10 PM]

PART B(Answer all the questions)

4x4 MARKS=16 MARKS

Q. No.	Questions	Refer ence to CO	Refer ence to PO	Blooms Taxonomy	Mar ks Allot ted	Marks Scored
11.	Derive the average and RMS value of sinusoidal AC waveform.	CO2	1,2	Apply	4	
12.	Obtain the expression for the current through the pure inductor, with the voltage across it $V = V_m \sin \omega t$	CO2	1	Apply	4	
13.	Outline the operation of Clamper circuit along with circuit diagram	СОЗ	1	Understand	4	
14.	Using circuit diagram, Demonstrate the working of staircase wiring	СОЗ	1	Understand	4	

PART C(Answer all the questions)

2x12 MARKS=24 MARKS

Q. No.	Questions	Refer ence to CO	Refer ence to PO	Blooms Taxonomy	Marks Allotte d	Marks Scored
15. a	Develop a circuit to make the single-phase AC	CO2	1,2	Apply	12	
	induction motor self-starting with phasor diagram. (or)					
15. b	A ferromagnetic core with mean path length is 40cm. Cross sectional area of the core is 12cm ² , the relative permeability of the core is 4000, and the coil of wire on the core has 400 turns. There is a small gap of 0.05cm in the structure of the otherwise whole core. Assume that fringing effect is neglected. Utilize the above values and Find (a) The total reluctance of the flux path (iron plus air gap). (b) The current required to produce a flux density of 0.5T in the air gap.	CO2	1,2	Apply	12	
	With neat sketch, Explain the working principle of	CO3	1,2	Apply	12	
16. a	Permanent Magnet Moving Coil instrument (or)					
16. b	Describe the operation of Common Base configuration of BJT with necessary circuit diagram and characteristics.	CO3	1,2	Apply	12	

Total Marks Scored:

Signature of the Faculty