# Biopolymers: Protein Analysis by Mass Spectrometry

Ruedi Aebersold

Methoden der Biologischen Analytik

December 8th, 2017

## Disclaimer

I assume that you have studied and understood the tutorial related to mass spectrometry that was posted on the Moodle.

## Outline

- About DNA and proteins
- Proteins and proteomes

- Likely muddiest points
  - Why does a pure peptide generate more than one signal in a mass spectrometer and why can the same signal represent different peptides?
  - How do peptides fragment and how do we read the sequence out of fragment ion spectra

## Nucleic acids



- 4 types of monomers
- Complementarity through base pairing
- Enzymatic synthesis of complementary strand from template
- Amplification of sequences
- Modified bases??

## **Proteins**



- 20 types of monomers (amino acids)
- Functional only if folded
- No amplification method known
- Amino acids are frequently modified (post translational modification, PTM)

## Nucleic acids vs. proteins

#### Nucleic Acids

- We sequence a synthetic complement to a template sequence
- The synthetic template can be extensively amplified
- We can sequence minute amounts of nucleic acids. E.g. single cells

#### Proteins

- We directly sequence the proteins extracted from biological samples
- No amplification
- We **cannot** sequence minute amounts of protein e.g. from single cells
- It is a lot easier to sequence a gene than a protein

## The Central Dogma of Biology



"once (sequential) information has passed into protein it cannot get out again", Crick (1958)

## So why do we bother analyzing proteins?

#### • If:

- We can predict the sequence of proteins from DNA/RNA
- Protein analysis is harder than DNA analysis

#### Because:

- Protein quantities cannot be predicted from DNA/RNA
- Proteins are frequently modified and modifications are important for the function of a protein

## Outline

- About DNA and proteins
- Proteins and proteomes

- Likely muddiest points
  - Why does a pure peptide generate more than one signal in a mass spectrometer and why can the same signal represent different peptides?
  - How do peptides fragment and how do we read the sequence out of fragment ion spectra

# Classical biopolymer analysis (single protein)

- We need a method to purify a specific protein activity to purity
- We need to sequence the corresponding protein, at least partially
- We then generate a probe to isolate the corresponding gene and sequence the gene

# Classical biopolymer analysis (single, purified protein)

- We need a method to purify a specific protein activity very hard
- We need to sequence the corresponding protein, at least partially
- We then generate a probe to isolate the corresponding gene and sequence the gene trivial part

What would you consider the most significant challenges with this strategy?

### Proteome: The ensemble of all proteins of a cell or organism



Human: ~20.000 ORF's; potentially a million proteoforms (splicing, modifications)

## The position of the proteome in experimental biology



# Consequences for biopolymer analysis Proteome scale

- To know all proteins means to know all functions?
- The technology needs to be able to identify hundreds of thousands of peptides reliably
- High throughput and high precision
- Shotgun mass spectrometry for proteins
- The data from mass spectrometric analysis are searched against nucleic acid sequences

# The amazing complexity of the proteome: fission yeast (Schizosaccharomyces pombe)



- unicellular eukaryote (fungus)
- genome: 14 Mb, ~5000 genes
- 7-14 micrometer in length



## The amazing complexity of the proteome



## Consequences for biopolymer analysis Proteome scale

- To know all proteins means to know all functions?
- The technology needs to be able to identify hundreds of thousands of peptides reliably
- High throughput and high precision
- Shotgun mass spectrometry for proteins
- The data from mass spectrometric analysis are searched against nucleic acid sequences

- Do we now all functions if we know all proteins?
- Why do we not purify all proteins and sequence each one separately?
- Why do we need nucleic acid sequences to search fragment ion spectra?
- Why do we sequence peptides and not proteins?

## Outline

- About DNA and proteins
- Proteins and proteomes

- Likely muddiest points
  - Why does a pure peptide generate more than one signal in a mass spectrometer and why can the same signal represent different peptides?
  - How do peptides fragment and how do we read the sequence out of fragment ion spectra

## Single stage mass spectrometer

#### The basic principles of a time-of-flight mass spectrometer

(c) doc brown



• The single stage mass spectrometer generates a mass spectrum of molecular ions

#### Questions around peptide mass spectra

- How would a mass spectrum look like if you analyzed a digest of a single, purified protein?
- How would a mass spectrum look like if you analyzed a digest of a proteome?
- Is the mass of a peptide sufficient to determine the sequence of a peptide?
- Is the mass of several peptides of a protein sufficient to identify the protein?

## The relationship between peaks detected in a mass spectrum and the corresponding analyte peptide

We inject a pure peptide into the mass spectrometer. Why do we see more than one peak?



## The relationship between peaks detected in a mass spectrum and the corresponding analyte peptide

We zoom a specific peak with a high resolution mass spectrometer. Why does the peak now appear serrated?



## Basics of mass spectrometry

### **Multiply Charged Ions**



### **Isotope Distribution**



| Atom     | Mass   | Rel. Abund. |
|----------|--------|-------------|
| Hydrogen | 1.008  | 99.985      |
|          | 2.001  | 0.015       |
| Carbon   | 12.000 | 98.90       |
|          | 13.003 | 1.10        |
| Nitrogen | 14.003 | 99.63       |
|          | 15.000 | 0.37        |
| Oxygen   | 15.995 | 99.76       |
|          | 17.999 | 0.20        |
| Sulfur   | 31.972 | 95.02       |
|          | 33.968 | 4.21        |

### **Outline**

- About DNA and proteins
- Proteins and proteomes
- Likely muddiest points
  - Why does a pure peptide generate more than one signal in a mass spectrometer and why can the same signal represent different peptides?
  - How do peptides fragment and how do we read the sequence out of fragment ion spectra

# Tandem mass spectrometry: From mass to sequence



- Molecular ions of a peptide are isolated and further fragmented to generate a fragment ion or MS2 spectrum.
- The fragment ion spectrum records the mass and intensity of the fragment ions generated from the isolated molecular ion (precursor ion)

## Fragmenting a peptide

## Peptide sequencing by MS/MS



ä

## Nomenclature of fragment ions

b- and y-ions are typically formed using collision-induced dissociation, the most common fragmentation technique

- Typically, only one bond is cleaved in a given molecule
- For an ensemble of molecules, different ions of a series are formed and generate the MS/MS spectrum

### Questions around fragment ion mass spectra

- Is a single sequenced peptide sufficient to identify a protein?
- How long would a peptide need to be to be unique to a proteome?
- Are all fragment ion peaks of the same intensity? If not how does this affect your ability to read a sequence?
- If you detect two ion series, how do you know which one is the b- and which one the y-ion series?
- What happens to a tandem mass spectrometer if we inject the digest of a single, purified protein (assume 20 peptides)?
- What happens to a tandem mass spectrometer if we inject the digest of a proteome (assume 500.000 peptides)?