Aula 04 Materiais de Ferramentas

Aula 04

Tópicos

- Materias de ferramentas:
 - Requisitos
 - Evolução
 - Tipos
 - Características
 - Emprego
 - Custos, etc
- Considerações gerais sobre ferramentas de corte

Consequência dos esforços na de Ferramenta

- · Requisitos desejados em uma ferramentas de corte
 - → Resistência à compressão
 - → Dureza
 - → Resistência à flexão e tenacidade
 - → Resistência do gume
 - → Resistência interna de ligação
 - → Resistência a quente
 - → Resistência à oxidação
 - → Pequena tendência à fusão e caldeamento
 - → Resistência à abrasão
 - → Condutibilidade térmica, calor específico e expansão térmica

Nenhum material de ferramenta possui todas estas características

Evolução dos materiais de ferramenta

- 50 mil anos atrás (Paleolítico Pedra Lascada):
 - Emprego de <u>ferramentas de pedra</u> com gumes afiados por lascamento, adaptando a geometria de corte à tarefa a ser realizada.

Evolução dos materiais de ferramenta

- Aço ferramenta (1868)
- Aço rápido (1900)
- Stellite (1910)
- Metal duro (1926)
- Cerâmicas (1938)
- Nitreto de boro cúbico (década de 50)
- Diamante mono e policristalino (década de 70)

Classificação dos materiais de ferramentas

Propriedades dos materiais de ferramentas

Tenacidade, resistência à flexão

Propriedades dos materiais de ferramentas

Resistência a quente dos principais materiais de ferramentas

Dureza e condutividade de alguns materiais de corte

Aplicação de materiais de ferramenta na indústria

automobilística CBN+PKD 2

Aços ferramenta

Características

- Aços carbono (0,8 a 1,5 % de C)
- sem ou com mínimos teores de elementos de liga
- Principal material utilizado ate 1900
- Baixo custo
- Facilidade de afiação obtençãcao de gumes vivos
- Tratamento térmico relativamente simples ⇒ elevada dureza e resistência ao desgaste
 - Resistem a temperatura de até aproximadamente 250°C

Aços ferramenta

Áreas de aplicação dos aços-ferramentas

- Materiais de baixa velocidade de corte
- Usinagem de aços doces com Vc < 25m/min
- Brocas para uso doméstico hobby
- Ferramentas para carpintaria

Características

- Principais elementos constituintes (W, Mo, Co, V), elementos que conferem alta tenacidade às ferramentas.
- Dureza de 60 a 67 HRC
- Resistem a temperatura de até aproximadamente 520 a 600°C
 - Clássico 18 (%W) 4 (%Cr) 1 (%V)
 - Aço super rápido adição de Co
 - Tratamento térmico complexo
 - preço elevado

Características

- Composição química usual (5 a 7% formam carbonetos):
 - 0,6 a 1,6% C
 - 4% Cr
 - 7 a 10% W
 - 85 a 89% Fe
 - 4 a 5% Mo
 - 0,9 a 3% V
- Designação: HS + % W Mo V Co (ex.: HS 10-4-3-10).

- Subdivisão em 4 grupos, segundo o teor de W e Mo

		Para usinagem de aço				
Grupo	Nomenclatura W Mo V Co	de médio esforço < 850 N/mm ² / > 850 N/mm ²		desbaste /		
18%W	HS18 - 0 - 1	+	-	-	-	
	HS18 – 1 - 2 -5	-	-	+	-	
12%W	HS12- 1 - 4 -5	-	-	(+)	+	
	HS10 - 4 - 3 -10	-	-	(+)	+	
6% W + 5% Mo	HS 6 - 5 - 2	-	+	-	-	
	HS 6 - 5 - 3 -5	-	-	(+)	+	
	HS 6 - 5 - 2 -5	-	-	+	-	
2% W + 9% Mo	HS 2 – 9 - 1	+	-	-	-	
	HS 2 – 9 - 2	-	+	_	-	
	HS 2 – 10 - 1 8	-	_	+	-	

Aços rápidos – Subdivisão

Grupo 1

- alto teor de W (até 18%)
- bom revenimento
- empregado para desbaste de aço e ferro fundido

- Grupo 2

- teores de W de até 12%
- crescente teor de V
- revenimento um pouco pior que grupo 1
- empregado para acabamento de materiais ferrosos e na usinagem de materiais não-ferrosos
- para ferramentas com forma complexa (boa maleabilidade e tenacidade)

Grupos 3 e 4

- W + Mo (Mo substitui W)
- possui tenacidade muito boa
- empregado para todos tipos de ferramentas

- → Influência dos elementos de liga
 - Aumento no teor de elementos de liga:
 - Maior produtividade destes materiais;
 - Aumento na resistência ao desgaste;
 - Aumento na vida das ferramenta;
 - Porém torna-se mais difícil a fabricação deste material;
 - Maiores custos de produção

→ Influência dos elementos de liga

Tungstênio (W)

- formador de carbonetos
- melhora revenimento
- melhora resistência ao desgaste

Vanádio (V)

- Formador de carbonetos
- melhora resistência ao desgaste (resist. a quente)
- usado para acabamento

Molibdênio (Mo)

- melhora temperabilidade
- melhora tenacidade
- substitui W

Cobalto (Co)

- eleva temperatura de sensibilização a quente
- melhora dureza a quente
- melhor solubilidade de carbonetos

- Aço-rápido com revestimento (TiC, TiN):
 - Menor atrito;
 - Redução no desgaste;
 - Maior estabilidade química;
 - Proteção térmica do substrato

Áreas de aplicação dos aços-rápidos

- Ferramentas para todas as operações de usinagem
- Ferramentas para desbaste e acabamento
- Machos e cossinetes de roscas
- Brocas helicoidais
- Alargadores
- Fresas de todos os tipos
- Ferramentas de plainar
- Escareadores
- Ferramentas para trabalho a frio
- Ferramentas para trabalho em madeira
- outras.

Ligas Fundidas

Características

- Composição típica:
 - → 3% Fe
 - → 17% W
 - → 33% Cr
 - → 44% Co
- Resistem a temperatura entre aproximadamente 700 a 800°C
 - W ⇒ Mn, Mo, V, Ti e Ta
 - Tratamento térmico complexo
 - Preço elevado

Ligas Fundidas

Nomes comerciais: Stellite, Tantung, Rexalloy e Chromalloy

Áreas de aplicação das Ligas Fundidas

- Raro em ferramentas para usinagem de geometria definida
- Material para abrasivos
- Isoladores térmicos, isoladores elétricos
- Fundição de materiais cerâmicos
- outros

Metal Duro – WIDIA

Características

- Desenvolvimento 1926 Leipzig
- Material de ferramenta mais utilizado na indústria
- Indústria automobilística consome cerca de 50% das ferramentas de metal duro produzidas no mundo
- Resistem a temperatura de até aproximadamente 1000°C (mesma dureza que o aço rápido à temperatura ambiente)
- Maiores Vc com relação as ligas fundidas, aços rápidos e aços ferramenta
- Aumento na vida útil das ferramentas na ordem de 200 a 400%

Duro – WIDIA

- Composição típica: 81% W, 6% C e 13% Co (WC-Co)
- Algumas razões do sucesso deste material:
 - Grande variedade de tipos de metal duro (adição de elementos de liga);
 - Propriedades adequadas às solicitações em diferentes condições
 - Possibilidade de utilização de insertos intercambiáveis
 - Estrutura homogênea (processo de fabricação)
 - Dureza elevada;
 - Resistência à compressão;
 - Resistência ao desgaste a quente.

Metal Duro – WIDIA

Características

- Boa distribuição da estrutura
- Boa resistência à compressão
- Boa resistência ao desgaste a quente
- Possibilidade de se obter propriedades específicas
- A princípio utilizado para a usinagem de materiais fundidos
- Anos 70 (seculo XX)- surgimento de metais duros revestidos
- Primeiros Cermets ® (metais duros à base de TiC)- ↑ v_C's -1973 Japão

Fabricação do Metal Duro

Metal Duro – Fabricação

Estrutura do Metal Duro

- Carbonetos:
 - fornecem dureza a quente e resistência ao desgaste (WC, TiC, TaC, NbC, ...)
- Ligante metálico:
 - Atua na ligação dos carbonetos frágeis (Co ou Ni);
- Obtido por sinterização (ligante + carbonetos)

Estrutura do Metal Duro

onde:

 α = carbonetos de tungstênio

 β = cobalto

 γ = carbonetos de titânio, tântalo e nióbio

Propriedades dos componentes do Metal Duro

Carboneto de tungstênio (WC)

- Solúvel em Co ⇒ alta resistência de ligação interna e de gume
- Boa resistência ao desgaste abrasivo (melhor que TiC e TaC)
- Limitações de v_C's devido à tendência à difusão em temperaturas elevadas

Carboneto de Titânio (TiC)

- Baixa tendência à difusão
- Boa resistência à quente
- Pequena resistência de ligação interna ⇒ baixa reistência de gume
- Os metais duros com alto teor de TiC são frágeis

Propriedades dos componentes do Metal Duro

Carboneto de Nióbio (NbC)

- Em pequenas quantidades ⇒ refino do grão ⇒ proporciona um aumento de tenacidade e de resistência do gume
- A resistência interna do metal duro cai menos do que quando é utilizado TiC

Carboneto de Tântalo (TaC)

- Em pequenas quantidades ⇒ refino do grão ⇒ proporciona um aumento de tenacidade e de resistência do gume
- A resistência interna do metal duro cai menos do que quando é utilizado TiC

Propriedades dos componentes do Metal Duro

Nitreto de titânio (TiN)

- Componente de maior influência nas propriedades dos Cermets
- Menor solubilidade no aço
- Maior resistência à difusão que o TiC
- Alta resistência ao desgaste
- Estrutura de grãos finos

Cobalto (Co)

- Melhor metal de ligação para metais duros com base em WC
- Boa solubilidade do WC
- Bom ancoramento dos cristais de WC

Metal Duro - Grandezas de influência sobre a resistência

Classificação dos Metais Duros

 Divididos em três grupos (P,K e M) e classificados de acordo com à tenacidade e resistência ao desgaste, de acordo com uma numeração (p. ex. P01, P10,..., K10, ...)

Cor	Classe	Velocidade	Avanço	Resistência	Tenacidade
Azul	P-01	×			Also of
	P-10			1	
	P-20				
	P-30		1		
	P-40		V	0.1400	V
	P-50				
Amarelo	M-01		1,000	- A	
	M-10				
	M-20				
	M-30		1		
	M-40		W.		
Vermelho	K-01	<u> </u>	72.00		
	K-10			1	
	K-20				
	K-30				
	K-40				

Grupo P

- Alta resistência a quente
- Pequeno desgaste abrasivo
- Empregado para usinagem de aços com cavacos longos

Grupo M

- Média resistência a quente
- Média resistência à abrasão
- Para aços resistentes a altas temperaturas, aço inoxidável, aços resistentes à corrosão, F^of^o...

Grupo K

- Pouca resistência a quente
- Alta resistência ao desgaste
- Usinagem de materiais com cavacos curtos, Fofo, metais não ferrosos, materiais não metálicos (pedra, madeira, ...) materiais com boa resistência a quente, ...
- Compostos praticamente somente por WC e Co (pequenas quantidades de TiC, TaC e NbC)

- Metal Duro Polivalente
 - Melhores características (material com maior pureza e maior controle na sinterização)
 - Redução da quantidade de insertos diferentes
 - Mais homogêneos, com melhor distribuição dos carbonetos e tamanho dos carbonetos mais uniforme

Metais duros à base de WC-Co

- Alta resistência à compressão
- Aconselháveis para a usinagem de aço mole, materiais de cavaco curto, fundidos, não ferrosos, materiais resistentes ao calor e não metálicos como pedra e madeira

Metais duro à base de WC- (Ti, Ta, Nb)C-Co

- Comparados aos metais duros WC-Co possuem melhores propriedades sob altas temperaturas
- Aconselháveis para usinagem de aços de cavacos longos

Metais duro à base de TiC-TiN-Co, Ni (Cermets)

- Grande dureza, baixa tendência à difusão e à adesão, boa resistência a quente
- Apropriados para o acabamento de aços (torneamento e fresamento)

Metais Duros Revestidos

- Substrato tenaz com revestimento duro (TiC, TiN, Ti(C,N), Al₂O₃, ...),
 combinando-se assim uma alta resistência a choques com alta resistência a desgaste (maior vida de ferramenta).
- É freqüente a deposição de várias camadas
- Processos de revestimento
 - CVD (chemical vapour deposition)
 - PVD (physical vapour deposition)
- Exigências aos revestimentos
 - Espessura regular da camada sobre a face e flancos
 - Composição química definida
 - Possibilidade de fabricação em grandes lotes

Metais Duros Revestidos

Metais Duros Revestidos

- → Principais revestimentos
 - Carboneto de Titânio (TiC)
 - Nitreto de titânio (TiN)
 - Carbonitreto de titânio (Ti(C,1)
 - Nitreto de alumínio-titânio ((Ti, Al)N)
 - Óxido de Alumínio (Al₂O₃)
 - Camadas de diamante

Áreas de aplicação dos Metais Duros

- Ferramentas para quase todas as operações de usinagem (sob a forma de insertos)
- Ferramentas para desbaste e acabamento
- Brocas helicoidais
- Brocas para furação profunda
- Fresas de topo
- Brochas
- Alargadores
- outros

Classificação das cerâmicas de corte

→ Generalidades

- Alta resistência à compressão
- Alta estabilidade química
- Limitações na aplicação devido ao comportamento frágil e à dispersão das propriedades de resistência mecânica
- Indispensável em áreas como fabricação de discos de freio

→ Generalidades

- Materiais de importância crescente
- Melhoria constante na qualidade
- Empregada na usinagem de aços e ferros fundidos
- Altas velocidades de corte, altas potências de acionamento
- Exigem máquinas rígidas e proteção ao operador

- → Propriedades e características de cerâmicas
 - Resistentes à corrosão e às altas temperaturas
 - Elevada estabilidade química (boa resistência ao desgaste)
 - Resistência à compressão
 - Materiais não-metálicos e inorgânicos
 - Ligação química de metais com não metais
 - Podem ser óxidas ou não óxidas

→ Cerâmicas à base de Al₂ O₃

- → Cerâmicas à base de Al₂ O₃
 - Surgiram a partir do final dos anos 30
 - Tradicional cerâmica branca
 - Percentual de Al₂O₃ maior que 90% (cor branca)
 - Al₂ O₃ + óxido de zircônio finamente distribuído
 - Torneamento de desbaste e acabamento de FoFo cinzento,
 aços cementados, aços temperados e extrudados
 - Apresentam alta dureza a quente
 - Têm pouca resistência à flexão
 - Extremamente sensíveis a choques térmicos (usinagem a seco)
 - Empregadas em ferros fundidos e aços de alta resistência

→ Cerâmicas mistas

- Teor de Al₂O₃ menor que 90% (cor escura)
- Contém de 5 a 40% de TiC e/ou TiN
- Mais tenaz que cerâmica óxida e com maior resistência de canto e gume
- Mais dura e mais resistente à abrasão que cerâmica óxida
- Mais resiste a variações de temperatura que cerâmica óxida
- Grãos finos => melhor tenacide, resistência ao desgaste e resistência de quina
- Maior dureza que as óxidas, maior resistência a choques térmicos
- Torneamento e fresamento leves de FoFo cinzento
- Usinagem de aços cementados e temperados

- → Cerâmicas de corte reforçadas com whiskers
- Whiskers cristais unitários em forma de agulhas com baixo grau de imperfeição no retículo cristalino
- A base de Al₂O₃ com aproximadamente 20 até 40% de whiskers de carboneto de silício (SiC)
 - Objetivo de melhorar as propriedades de tenacidade (aumento de 60%).
 - Boa resistência a choques térmicos corte com fluidos

Dureza a Quente de Diversos Materias de Ferramentas

Cerâmicas não Óxidas

Definição: São cerâmicas a base de carbonetos, nitretos, boretos, silicatos, etc.

- Principalmente a base de Si₃N₄
- Maior tenacidade e resistência a choques térmicos quando comparadas às cerâmicas óxidas;
- Elevada dureza a quente e resistência ao calor

Cerâmicas não Óxidas

- → Campos de aplicação de cerâmicas de corte não-óxidas
 - usinagem do Ferro Fundido Cinzento
 - torneamento de discos de freio
 - desbaste de ligas à base de níquel (grupos II e III)
 - Possuem alta afinidade com ferro e oxigênio (desgastam-se rapidamente na usinagem de aço - sem aplicações);
 - Desgaste na superfície de saída;
 - Gume de corte com tendência ao arredondamento

Cerâmicas de Corte Não Óxidas

→ Divisão em relação à composição química

I: Nitreto de silício + materiais de sinterização;

II: Nitreto de Silício + fases cristalinas + materiais de sinterização;

- Sialone - o Si₃N₄ pode conter até 60 % de Al₂ O₃ na mistura sólida

III: Nitreto de silício + materiais duros + materiais de sinterização.

- Si₃N₄ com propriedades influenciadas por materiais como TiN,

TiC, óxido de zircônio e whisker - SiC

Materiais de corte superduros não-metálicos

- Nitreto de Boro Cúbico CBN
- Diamante
- Nitrero de Boro

→ Caracterísiticas

- Forma mole hexagonal (mesma estrutura cristalina do grafite)
- Forma dura cúbica (mesma estrutura do diamante)
- Wurtzita simetria hexagonal (arranjo atômico diferente do grafite)
- Fabricação de Nitreto de boro hexagonal através de reação de halogêneos de boro com amoníaco
- Transformação em nitreto de boro cúbico através de altas pressões (50 a 90 kbar) e temperaturas 1800 a 2200 K

→ Caracterísiticas

- Segundo material de maior dureza conhecido
- Obtido sinteticamente (primeira síntese em 1957), com transformação de estrutura hexagonal para cúbica (pressão + temperatura)
- Quimicamente mais estável que o diamante (até 2000 graus)
- Grupos de ferramentas:
 - CBN + fase ligante (PCBN com alto teor de CBN);
 - CBN + carbonetos (TiC + fase ligante);
 - CBN + HBN + fase ligante (maior tenacidade).

→ Campo de aplicações

- Aços temperados com dureza > 45 HRC:
 - Torneamento, fresamento, furação;
- Aço-rápido (ferramentas de corte);
- Aços resistentes a altas temperaturas;
- Ligas duras (Ni, Co, ...);
- Emprego em operações severas (corte interrompido), tanto quanto em operações de desbaste e acabamento.
- Usinagem com ferramentas de geometria não-definida:
 - Possibilidade de usinagem de aços e ferros fundidos, que não são usinados com diamante em função da afinidade química.

Diamante

→ Caracterísiticas

- Material de maior dureza encontrado na natureza
- Pode ser natural ou sintético
- Monocristalino (anisotrópico) ou policristalino (isotrópico)

Diamante policristalino

- Primeira síntese em 1954 (GE)
- Síntese sob 60 a 70 kbar, 1400 a 2000 graus C
- Cobalto é usado como ligante
- Substitui metal-duro e diamante monocristalino, em alguns casos

Diamante

- → Formas de utilização
 - policirstalino PKD aglomerado de diamantes
 - monocristalino
 - revestimento

Diamante

→ Campo de aplicação

- Usinagem de ferro e aço não é possível (afinidade Fe-C);
- Usinagem de metais não ferrosos, plásticos, madeira, pedra, borracha, etc.
- Usinagem de precisão e ultraprecisão
- Pequenas a_p e f, tolerâncias estreitas (baixa resistência a flexão das ferramentas)
- Emprego de altas velocidades de corte;
- Tempos de vida de até 80 vezes maior que os das ferramentas de metal duro;

Considerações gerais sobre Ferramentas de corte

Ferramentas inteiriças

- São produzidas por fundição, forjamento, barras laminadas ou por processos de metalurgia do pó
- Seus materiais incluem aços carbono e baixas ligas, aços rápidos, ligas de cobalto fundidas e metais duros
- Ferramentas de ponta arredondada permitem a aplicação de grandes avanços, em peças de grande diâmetro

L

Ferramentas com insertos soldados

- Ferramentas de gume único
- Corpo de material de baixo custo
- Parte cortante com material de corte de melhor qualidade soldado ou montado sobre a base
- Materiais cortantes usados: aços rápidos, ligas fundidas à base de cobalto, metal-duro, cerâmica, diamante mono e policristalino e nitreto de boro cúbico

Ferramentas com insertos soldados

Ferramentas com insertos intercambiáveis

- Ferramentas mais largamente utilizadas em operações de torneamento
- Insertos de metal-duro predominam, mas insertos de aços rápidos, cerâmicas, diamante e CBN são também usados para muitas aplicações
- Sistema de identificação normalizado, com base nas caracterís-ticas mecânicas e geométricas dos insertos

Ferramentas com insertos intercambiáveis

Forma dos insertos

- → A geometria da peça, suas tolerâncias, seu material e qualidade superficial definem o formato do inserto
- → Há seis formas comuns, com benefícios e limitações, em relação à resistência a tensão

Geometria dos insertos

Insertos com ângulo de saída negativo:

- dobro de superfície de corte e maior resistência,
- avanço e profundidade de corte maiores
- gera um aumento nas forças de corte
- exigem maior potência e rigidez do torno

Insertos com ângulo de saída positivo:

- bons para trabalho em material mais dúctil, como aços de baixo carbono, ligas de alta temperatura e materiais que endurecem durante a usinagem

Geometria dos insertos

Insertos positivo-negativos:

- combinam a ação de corte dos positivos com a resistência dos negativos
- possuem gumes realçados ou sulcos na face
- em insertos revestidos, são capazes de remover material a altas velocidades e avanços, com aumento do volume de cavacos.
- há diversos modelos, de diferentes fabricantes, com diferentes formas de sulcos

Tamanho dos insertos

- → Na maioria das formas padrão de insertos, o tamanho é especificado pelo diâmetro do maior círculo que pode ser inscrito no perímetro do inserto (chamado IC)
- → Por razões econômicas, deve ser selecionado o menor inserto possível, com o qual possa ser empregada a profundidade de corte requerida na operação
- → De modo geral o comprimento do gume deve ser no mínimo o dobro da profundidade de corte

Espessura dos insertos

- → Depende basicamente da profundidade de corte e do avanço utilizados
- → Com base nestes fatores, a espessura do inserto é selecionada em tabelas de fabricantes, ou através de dados da literatura

Raio de quina dos insertos

- Determinado pela configuração da peça e pelos requisitos de qualidade superficial
- Raios de quina muito pequenos
 - quinas fracas, quebra ou lascamento
 - melhor controle dos cavacos e menos ruídos
- Raios de quina muito grandes:
 - ruídos ou vibrações (pequena espessura dos cavacos e aumento Fp)
 - máquina-ferramenta e dispositivos devem ter rigidez suficiente
- Raio de quina apropriado é um dos mais importantes fatores relacionados ao acabamento superficial
- De modo geral raios de quina maiores produzem melhores superfícies usinadas

Tolerância dos insertos

Define a precisão de acoplamento

Insertos padrão estão disponíveis em 3 classes de tolerância:

- usual: ± 0,1 a 0,3 mm
- precisão: ± 0,03 a 0,05mm
- alta precisão: ± 0,013 mm

Ferramenta de torneamento com inserto intercambiável

Sistema de fixação para insertos intercambiáveis

Escolha da geometria da ferramenta

- → Material da ferramenta
- → Material da peça
- → Condições de corte
- → Geometria da peça

Geometrias usuais de ferramentas de corte

Geometria da Ferramenta Material da Ferramenta	Ângulo de saída Y	Ângulo de Incidência C C	Ângulo de Inclinação	Ângulo de Posição X	Ângulo de Quina E	Raio da Quina " E
Aço Rápido (HSS)	-6" até + 20"	6" até 8"	-6°	10°	60°	0,4
Metal Duro	-6" até + 15"	6" até 12"	– até +6°	até 100°	até 120°	até 2mm

Cuidados com ferramentas de corte

- → Manuseio e manutenção de ferramentas de corte
- → Evitar o contato entre ferramentas
- → Cuidados no armazenamento
- → Danificações no manuseio (quebras)

Manutenção e gerenciamento das ferramentas de corte

- Limpeza
- Prevenção contra oxidação

Aplicação de tecnologia de grupo e manutenção de ferramentas de corte

- Ferramentas adequadas aos processos
- Cuidados no preparo e instalação
- Condições de corte adequadas