Algorithmics	Student information	Date	Number of session
	UO: 301022	06/02/2025	1
	Surname: Canga		
	Name: Martín		

Activity 1. [Iterative models, different complexity]

Java loops with different complexity

N	tLoop1	tLoop2	tLoop3	tLoop4
100	0.0088	0.37	1.28	1.38
200	0.019	1.23	4.88	9.49
400	0.042	5.64	21.65	71.75
800	0.0984	26.38	91.54	546.00
1600	0.2094	100.40	398.00	4284.00
3200	0.439	466.00	1625.00	34075.00
6400	0.9368	1875.00	7022.00	ОоТ
12800	2.1994	8461.00	29861.00	ОоТ
25600	4.991	37275.00	OoT	ОоТ
51200	9.3598	OoT	OoT	ОоТ

All the loops seem to match their respective complexities:

- Loop1 = O(n*log(n))
- Loop2 = $O(n^2 * log(n))$
- Loop3 = $O(n^2 * log(n))$
- $Loop4 = O(n^3)$

Algorithmics	Student information	Date	Number of session
	UO: 301022	06/02/2025	1
	Surname: Canga		
	Name: Martín		

Activity 2. [Developing algorithms]

Java $O(n^2 * log^2(n))$, $O(n^3 * log(n))$ and $O(n^4)$ respective loops without optimization:

N	tLoop5	tLoop6	tLoop7
100	2.07	10.50	39.00
200	22.13	83.20	499.00
400	62.40	742.00	7182.00
800	218.44	6991.00	OoT
1600	1663.95	ОоТ	ОоТ
3200	5344.00	OoT	ОоТ
6400	24054.00	ОоТ	ОоТ

We can see that the times match their respective growth rate.

Activity 3. [Comparing algorithms]

Comparing algorithms without optimization

N	tLoop1	tLoop2	T1/T2
100	0.0088	0.37	0.023
200	0.019	1.23	0.015
400	0.042	5.64	0.007
800	0.0984	26.38	0.003
1600	0.2094	100.40	0.002
3200	0.439	466.00	0.0009
6400	0.9368	1875.00	0.0004
12800	2.1994	8461.00	0.0002
25600	4.991	37275.00	0.0001

Algorithmics UO: 301022 06/02/2025 1 Surname: Canga		Student information	Date	Number of session
Surname: Canga		UO: 301022	06/02/2025	1
	Algorithmics	Surname: Canga		
Name: Martin		Name: Martín		

51200	9.3598	OoT	OoT

If we divide the complexities, we'll get the rate at which T1/T2 will differ. In this particular case is 1/n. Since we know that the closer, we are to zero the better T1 is with respect to T2, the efficiency of T1 will follow a linear trend getting better as n tends to infinity.

N	tLoop3	tLoop2	T3/T2
100	1.28	0.37	3.45
200	4.88	1.23	3.96
400	21.65	5.64	3.83
800	91.54	26.38	3.47
1600	398.00	100.40	3.96
3200	1625.00	466.00	3.48
6400	7022.00	1875.00	3.74
12800	29861.00	8461.00	3.52
25600	OoT	37275.00	ОоТ
51200	OoT	ОоТ	ОоТ

In this case we can see that relationships are always the same as we increase n. This is due to the complexity of the two algorithms being the same. Although both have the same complexity, we can argue that Loop2 is more efficient because it completes any Niteration in a lower time.

Algorithmics	Student information	Date	Number of session
	UO: 301022	06/02/2025	1
	Surname: Canga		
	Name: Martín		

Activity 4. [Algorithms in different environments]

N	tLoop4 (t41)	tLoop4 (t42)	tLoop4 (t43)	t42/t41	t43/t42
	python	Java NonOpt.	Java Opt.		
100	10	1.38	0.14	0.138	0.101
200	64	9.49	0.23	0.148	0.024
400	625	71.75	1.37	0.114	0.019
800	10212	546.00	9.42	0.05	0.017
1600	ОоТ	4284.00	32.36	ОоТ	0.007
3200	ОоТ	34075.00	345.90	ОоТ	0.010

We can see that the proportion of each execution is the same for all N values. One thing that stands out is that java is consistently faster than python no matter if this one uses optimization techniques or not.