```
import pandas as pd
In [1]:
        import matplotlib.pyplot as plt
        import plotly.express as px
        import seaborn as sns
        file path = r'C:\Users\Asus\Effective Climate Factors.csv'
        df1 = pd.read csv(file path)
        df1['year'] = df1['year'].str.replace(',', '')
        df1['date'] = df1['year'].astype(str) + ',' + df1['month'] + '-' + df1['day'].astype(
        df1['date'] = pd.to datetime(df1['date'], format='%Y,%b-%d')
        df1=df1.set index(df1['date'])
        df1=df1[['t_mean','t_min','t_max','rain','snow','ww_max']]
        columns_to_convert=['t_mean','t_min','t_max','rain','snow','ww_max']
        df1[columns_to_convert] = df1[columns_to_convert].apply(pd.to_numeric, errors='coerce'
        new column names = {
             't mean': 'mean temperature',
             't_min': 'min_temperature',
             't_max': 'max_temperature',
             'rain': 'precipitation rain',
             'snow': 'precipitation_snow',
             'ww_max': 'max_wind_speed'
        }
        def detect outliers zscore(data, threshold=3):
            z_scores = np.abs((data - np.mean(data)) / np.std(data))
            return z scores > threshold
        df1 = df1.rename(columns=new column names)
        df1.head()
```

Out[1]: mean_temperature min_temperature max_temperature precipitation_rain precipitation_snow

date					
1951- 01-01	3.1	2.0	9.0	0.0	0.0
1951- 01-02	1.8	-3.0	8.0	0.0	0.0
1951- 01-03	2.4	-2.0	8.0	19.0	0.0
1951- 01-04	2.5	2.0	4.0	1.0	0.0
1951- 01-05	-0.1	0.0	2.0	5.0	0.0

```
In [2]: file_path = r'C:\Users\Asus\Urmia_Lake_Water_Level_Dataset.csv'
    df2 = pd.read_csv(file_path)
    df2['date'] = df2['Date\n(Gregorian callendar)']
    df2['date'] = pd.to_datetime(df2['date'], format='%m/%d/%Y')
    df2=df2.set_index(df2['date'])
    df2=df2[['Water Level\n(m above sea level)']]
    df2=df2.rename(columns={'Water Level\n(m above sea level)':'water_level'})
    df2.head()
```

Out[2]: water_level

date	
1965-11-24	1273.82
1965-11-25	1273.82
1965-11-26	1273.83
1965-11-27	1273.83
1965-11-28	1273.82

intersection_df = df1.merge(df2, on='date', how='inner')
intersection_df

Out[3]:		mean_temperature	min_temperature	max_temperature	precipitation_rain	precipitation_snow
	date					
	1965- 11-24	6.2	-1.0	13.0	0.0	0.0
	1965- 11-25	6.9	1.0	14.0	0.0	0.0
	1965- 11-26	7.5	-1.0	15.0	0.0	0.0
	1965- 11-27	6.3	8.0	10.0	2.0	0.0
	1965- 11-28	3.4	-2.0	8.0	0.0	0.0
	•••					
	2012- 03-15	7.0	5.2	11.0	3.0	0.0
	2012- 03-16	1.4	3.4	4.4	2.3	0.0
	2012- 03-17	-5.1	-7.8	-3.2	5.0	13.0
	2012- 03-18	-4.4	-12.4	1.4	0.0	2.0
	2012- 03-19	0.2	-6.4	6.8	0.0	1.0

16918 rows \times 7 columns

```
cols = ['mean_temperature','precipitation','water_level','min_temperature','max_temper
          fig, axs = plt.subplots(len(cols), len(cols), figsize=(12,12))
          for i in range(len(cols)):
              for j in range(len(cols)):
                   axs[i,j].scatter(groupped df[cols[j]], groupped df[cols[i]], s=5)
                   axs[i,j].get_xaxis().set_visible(False)
                   axs[i,j].get_yaxis().set_visible(False)
                   if i == len(cols) - 1:
                       axs[i,j].get_xaxis().set_visible(True)
                       axs[i,j].set_xlabel(cols[j])
                   if j == 0:
                       axs[i,j].get_yaxis().set_visible(True)
                       axs[i,j].set_ylabel(cols[i])
             15
           mean_temperature
             10
              5
            600
          precipitation
            400
            200
              0
           1278
         <u>9</u> 1276
          water
           1274
           1272
             -5
          min_temperature
            -10
            -15
            -20
            -25
           max_temperature
             40
                         10
                                            500
                                                       1272.5 1275.0 1277.5
                                                                            -20
                                                                                   -10
                                                                                              20
                                                                                                    30
                                      precipitation
                                                          water_level
                 mean_temperature
                                                                           min_temperature
                                                                                             max_temperature
         groupped_df['year'] = groupped_df['date'].dt.year
In [5]:
          groupped_df=groupped_df.iloc[1:-1]
          min_water_level = groupped_df['water_level'].min()
         max_water_level = groupped_df['water_level'].max()
          normalized_water_level = (
              10 + (groupped_df['water_level'] - min_water_level) * (100 - 10) / (max_water_leve
          )
```



```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
In [6]:
        ax1=groupped df.plot.scatter('year', 'water level', c='mean temperature',s=normalized
        colorbar=ax1.collections[0].colorbar
        colorbar.set_label('Mean Temperature')
        ax1.set_title('Water Level vs. Temperature')
        ax1.set_xlabel('Year')
        ax1.set_ylabel('Water Level')
        ax2=groupped_df.plot.scatter('year', 'water_level', c='precipitation',s=normalized_wat
        colorbar=ax2.collections[0].colorbar
        colorbar.set_label('Percipitation')
        ax2.set title('Water Level vs. Percipitation')
        ax2.set_xlabel('Year');
        ax2.set_ylabel('Water Level');
        plt.tight_layout()
        plt.show()
```

