物理组件高级知识

2.6 关节

现实生活中,大部分的运动物体并不是单独的一个简单基本体,对象要和其他对象进行交互,必须在其所谓的内在联系。

Unity3D中,关节包括以下五种:

铰链关节(Hinge Joint)

固定关节(Fixed Joint)

弹簧关节(Spring Joint)

角色关节(Character Joint)

可配置关节(Configurable Joint)

通过关节组装可以轻松地实现人体、机车等游戏模型的模拟。

大多数关节属性都差不多,这里只详细介绍其中一种。

2.6.1 铰链关节

Unity3D中铰链关节不仅可以做门、风车的模型,甚至可以做机动车的模型。铰链关节的功能是将两个刚体束缚在一起,在两者之间产生一个铰链的效果。

页码: 1/6

因此,运用铰链关节的两个游戏对象必须挂载有刚体组件才行。大 多数关节的属性基本相同,如下所示。

属性	含义
Connected Body	连接目标,指与主体构成铰链组合的目标刚体
Anchor	本体的锚点,连接目标旋转时围绕的中心点
Connected Anchor	连接的目标锚点,本体旋转时围绕的中心点
Axis	锚点和目标锚点的方向,即指定了本体和连接目标的旋转 方向
Auto Configure Connected Anchor	当勾选该属性值时,仅给出锚点的坐标,系统将自动计算 出目标锚点的坐标
Use Spring	关节组件中是否使用弹簧,指该属性被勾选时,弹簧属性 才会有效
Spring	弹簧力,表示维持对象移动到一定位置的力
Damper	阻尼,指物体运动所受到的阻碍的大小,此值越大,对象 移动越缓慢
Target Position	目标位置,表示的是弹簧旋转的目标角度,弹簧负责将对 象拉到这个目标角度
Use Motor	使用电动机,规定了在关节中是否需要使用电动机
Target Velocity	目标速率,表示对象试图达到此速度,在过程中可能会加 速或减速
Force	此属性表示用于达到目标速率的力
Force Spin	受控对象是否能够被破坏,启用后,马达将永远不会破坏 旋转,只会加速
Use Limits	规定了关节下的旋转是否受限
Min	规定了该刚体旋转所能达到的最小角度
Max	规定了该刚体旋转所能达到的最大角度
Min Bounce	规定了刚体达到最小限制时的弹跳值
Max Bounce	规定了刚体达到最大限制时的弹跳值
Breack Bounce	给出一个力的限值,关节受到的力超过此值关节会被破坏
Breack Torque	给出一个力矩的限值,当关节受到的力矩超过此值关节会 损坏

上图中,Connected Body参数是关节另一端连接的对象,该对象带有一个刚体对象。以下是铰链关节具体属性说明。

页码: 2/6

2.6.2 其他关节

固定关节、弹簧关节其属性值大体与铰链关节类似,在实际开发中,应灵活应用。角色关节一般与Ragdoll使用,Ragdoll各个骨骼参数拼接完成后即可使用该关节。可配置关节是物理引擎中最强大最灵活的组件,但是造就了其复杂性,有兴趣的同学可以研究研究。

2.7 碰撞器高级知识一车轮碰撞器

Unity中车轮碰撞器可以控制车轮运动,由此可以带动车子的行驶。

2.7.1 车轮碰撞器的添加

车轮碰撞器的添加方法与其他碰撞器的添加方法有所区别,车轮碰撞器一般不直接添加到车轮游戏对象上,而是添加到交通工具游戏对象的 子对象目录中新建的空对象上,然后将此空对象的位置调整到与车轮位置相同即可。

添加方法为:选中车轮创建的空对象,按照步骤Component->Physics->Wheel Collider添加车轮碰撞器。添加完毕后可以在该对象的属性界面中查看车轮碰撞器的属性。

2.7.2 车轮碰撞器的特性

车轮碰撞其属性比较多,如下所示。

属性名	含义
Mass	车轮的重力
Radius	车轮的半径
Wheel Damping Rate	车轮旋转阻尼
Suspension Distance	悬挂高度
Force App Point Distance	悬挂力应用点
Center	基于模型坐标系的车轮碰撞器的中心点

页码: 3/6

Spring	达到目标中心的弹力
Damper	悬浮速度阻尼
Target Position	悬挂中心
Extremum Slip(F)	滑动摩擦极值(前向)
Extremum Value(F)	滑动摩擦曲线的极值点(前向)
Asymptote Slip(F)	渐进线的滑动值(前向)
Asymptote Value(F)	渐进线点(前向)
Stiffness(F)	刚度,控制前向摩擦曲线的倍数(前向)
Extremum Slip(S)	侧向摩擦曲线滑动极值(侧向)
Extremum Value(S)	滑动摩擦曲线的极值点(侧向)
Asymptote Slip(S)	渐进线的滑动值(侧向)
Asymptote Value(S)	渐进线点(侧向)
Stiffness(S)	刚度,控制侧向摩擦曲线的倍数(侧向)

2.7.3 车轮碰撞器的案例 见课上安排。

2.8 布料

在Unity5.0之后,为了提高布料的物理模拟效率,Unity废弃了之前版本中的Interactive Cloth和Cloth Render组件,转而使用Cloth和SkinnedMesh Renderer组件来代替,以实现布料功能,所有的参数属性也随之发生变化。

2.8.1 蒙皮网格

蒙皮网格是学习布料必须所了解的。该组件的属性如下所示。蒙皮 网格可以模拟出非常柔软的网格体,不但在布料中充当非常重要的角色, 同时还支撑了人形角色的蒙皮功能。(蒙皮是一个专业术语,蒙皮是将骨 骼控制模型的形态节点,达到合理的绑定效果,所谓的形态节点就是外部

页码: 4/6

轮廓。蒙皮分两种:柔性和刚性,效果不同,作用也不同。一般刚性绑定中也可直接**p**给骨骼,父子级关系,也能达到想要结果。)

Skinned Mesh Renderer组件属性列表

属性	含义
Cast Shadows	投影方式
Receive Shadows	是否接受其他对象对自身进行投射阴影
Materials	材质
Use Light Probes	是否使用灯光探头
Reflection Probes	反射探头模式
Anchor Override	网格锚点
LightMap Parameters	光照烘焙参数
Quality	影响任意一个顶点的骨骼数量
Update When Offscreen	在屏幕之外的是否随祯进行模拟计算
Mesh	网格
Root Bone	根骨头
Bounds(Center)	包围盒的中心点坐标,不可修改
Bounds(Extends)	包围盒的三个方向长度,不可修改

2.8.2 布料

Unity中任何一个物体,只要挂载了蒙皮网格和布料组件,就拥有布料的所有功能,即能够模拟出布料的所有效果。布料Cloth组件的属性如下表所示。

属性	含义
Stretching Stiffness	布料韧度,可控制布料拉伸程度
Bending Stiffness	布料硬度,可控制布料弯曲程度
Use Tethers	是否对布料约束,防止其出现过度不合理偏移
Use Gravity	是否使用重力
Damping	布料运动阻尼系数

页码: 5/6

External Acceleration	外部加速度,相当于给布料一个常量力,模拟随 风起飞效果
Random Acceleration	随机加速度,相当于给布料一个变量力,模拟大 风的效果
World Velocity Scale	世界坐标系下的速度缩放比例
Friction	布料相对于角色的摩擦力
Collision Mass Scale	粒子碰撞时的质量增量
Use Continuous Collision	是否使用连续碰撞模式
Use Virtual Particles	为每一个三角形施加一个虚拟粒子,可提高碰撞 的稳定性
Solve Frequency	计算频率
Sleep Threadhold	休眠阀值
Capsule Colliders(Size)	可与布料碰撞的胶囊碰撞体个数(可指定的)
Sphere Colliders(Size)	可与布料碰撞的球形碰撞体个数(可指定的)
Sphere Colliders(Size) First/Second	可与布料碰撞的球形碰撞体个数(可指定的) First和Second两个碰撞体相互连续组成胶囊碰撞

2.6.3 布料案例 案例见课上安排。

页码: 6/6