Unit 2: EDA Paradigms & Complexity

Course contents:

EDA paradigms:Algorithms,Frameworks,Methodology

Appendix

ComputationalComplexity &NP-completeness(self reading)

Readings

— W&C&C: Chapter 4

S&Y: Appendix A

Complexity Classes

- Class P: class of problems that can be solved in polynomial time in the size of input.
 - Size of input: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
- Class NP (Nondeterministic Polynomial): class of problems that can be **verified** in polynomial time in the size of input.
 - P = NP?
- Class NP-complete (NPC): Any NPC problem can be solved in polynomial time => All problems in NP can be solved in polynomial time (i.e., P = NP).

Coping with NP-Complete Problems

Approximation algorithms

- Guarantee to be a fixed percentage away from the optimum.
- E.g., Minimum spanning trees (MST's) for the minimum Steiner tree problem

Pseudo-polynomial time algorithms

- Has the form of a polynomial function for the complexity, but is not to the **problem size**.
- E.g., O(nW) for the 0-1 knapsack problem (n: # items, W: weight)

Restriction

- Work on some subset of the original (general) problem.
- E.g., the maximum independent set on a tree.

Exhaustive search/Branch and bound

 Feasible when the problem size is small (e.g., Integer Linear Programming, ILP).

Nondeterministic approaches:

 Simulated annealing (hill climbing), genetic algorithms, machine learning, ant colony optimization, etc.

Heuristics: No guarantee of performance.

3

Spanning Tree vs. Steiner Tree

- Manhattan distance: If two nodes are located at coordinates (x_1, y_1) and (x_2, y_2) , their Manhattan distance is $d_{12} = |x_1 x_2| + |y_1 y_2|$ (a.k.a. λ_1 metric)
- Rectilinear spanning tree: a spanning tree that connects its nodes using Manhattan paths.
- Steiner tree: a tree that connects its nodes, permitting additional points (Steiner points) to be used for the connections.
- The minimum rectilinear spanning tree problem is in **P**, while the minimum rectilinear **Steiner** tree problem is **NP-complete**.
 - The spanning tree algorithm can be a 1.5-approximation to the Steiner tree one (at most 50% away from the optimum).

Knapsack Problem

- **Knapsack Problem:** Given n items, with ith item worth v_i dollars and weighing w_i pounds, a thief wants to take as valuable a load as possible, but can carry at most W pounds in his knapsack.
- The 0-1 knapsack problem: Each item is either taken or not taken (0-1 decision).
- The fractional knapsack problem: Allow to take fraction of items.

• Exp: \vec{v} = (60, 100, 120), \vec{w} = (10, 20, 30), W = 50

Item 1 has greatest value per pound

For the 0-1 version, any solution with item 1 is not optimal!

Greedy algorithm is optimal for the fractional version.

The 0-1 knapsack problem is NP-complete, but can be solved in O(nW)
pseudo polynomial time by dynamic programming (DP), while the
fractional one can be solved by a greedy algorithm in O(n lg n) time.

Maximum Independent Set (MIS)

- An **independent set** of G = (V, E) is a subset $V \subseteq V$ such that G has no edge between any pair of vertices in V
- The Maximum Independent Set Problem (MIS) is to find an independent set with the maximum cardinality
- MIS in general is NP-complete, but is efficiently solvable for many cases such as trees, bipartite graphs, etc.

A = {1, 3} A is an independent set (IS)

The Traveling Salesman Problem (TSP)

- **Instance:** a set of *n* cities, a distance between each pair of cities, and a bound *B*.
- Question (Decision Problem): Is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?
- TSP is NP-complete.

Exhaustive Search vs. Branch and Bound for TSP

• TSP example

Backtracking/exhaustive search

Branch and bound

Popular Algorithmic Paradigms

- Exhaustive search: Search the entire solution space.
- Branch and bound: A search technique with pruning.
- Greedy method: Pick a locally optimal solution at each step.
- **Dynamic programming:** Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions.
 - Work best when the sub-problems are NOT independent & the # of sub-problems is polynomial, and their objects are linearly ordered & cannot be rearranged.
- Hierarchical approach: Divide-and-conquer.
- Mathematical programming: A system of solving an objective function under constraints.
- **Simulated annealing:** An adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima.

Dynamic Programming (DP) vs. Divide-and-Conquer

- Both solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - Partition a problem into **independent** subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
- Dynamic programming (DP)
 - Applicable when the subproblems are dependent & the # of subproblems is "small."
 - DP solves each subproblem just once.
 - DP works best on objects that are linearly ordered and cannot be rearranged.
 - Matrices in a chain, characters in a string, points around the boundary of a polygon, points on a circle, left-to-right leaves in a search tree, etc.

Classifications of Popular EDA Algorithms

Example: Bin Packing

- The Bin-Packing Problem Π : Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integral size s_i ; set B of bins, each with capacity b.
- Goal: Pack all items, minimizing # of bins used.
 (NP-hard!)

Y.-W. Chang

12

Algorithms for Bin Packing

- Greedy approximation alg.: First-Fit Decreasing (FFD)
 - *FFD*(Π) ≤ 110PT(Π)/9 + 4
- Dynamic Programming? Hierarchical Approach?
 Simulated annealing? ...
- Mathematical Programming: Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|.

ILP Formulation for Bin Packing

• 0-1 variable: x_{ij} =1 if item u_i is placed in bin b_i ; 0 otherwise.

max
$$\sum_{(i,j)\in E} w_{ij}x_{ij}$$
 objective function subject to
$$\sum_{\forall i\in U} w_{ij}x_{ij} \leq b_j, \forall j\in B \ /* \ capacity \ constraint*/\ \ (1)$$
 constraints
$$\sum_{\forall j\in B} x_{ij} = 1, \forall i\in U \ /* \ assignment \ constraint*/\ \ (2)$$

$$\sum_{ij} x_{ij} = n \ /* \ completeness \ constraint*/\ \ (3)$$

$$x_{ij} \in \{0,1\} \ /*0, \ 1 \ constraint*/\ \ \ (4)$$

- **Step 1**: Set |B| to the lower bound of the # of bins.
- **Step 2:** Use the ILP to find a feasible solution.
- **Step 3:** If the solution exists, the # of bins required is |B|. Then exit.
- Step 4: Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.

Framework Evolution

- Billions of transistors can be fabricated in a single chip for nanometer technology.
- Need frameworks for very large-scale designs.
- Framework evolution for EDA tools:

Flat → Hierarchical → Multilevel

Source: Intel (ISSCC-03)

Y.-W. Chang

Flat Framework for 2D Bin Packing (Floorplanning)

- Process the circuit components in the whole chip
- Limitation: Good for small-scale designs, but hard to handle larger problems directly

Hierarchical Framework

- The hierarchical approach recursively divides a circuit region into a set of subregions and solve those subproblems *independently*.
- Good for scalability, but lack the global information for the interaction among subregions.

Multilevel Floorplanning

- Lee, Hsu, Chang, Yang, "Multilevel floorplanning/placement for large-scale modules using B*-trees," DAC-03 (TCAD-07)
- Bottom-up Coarsening (clustering): Iteratively groups a set of circuit components and collects global information.
- Top-down Uncoarsening (declustering): Iteratively ungroups clustered components and refines the solution.
- Good for scalability and quality trade-off

Power-Aware Floorplanning

Design Methodology Evolution

Pyramid for Solving an EDA Problem

Physical Design Related Conferences/Journals

- PD Conferences:
 - ACM/IEEE Design Automation Conference (DAC)
 - IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 - ACM Int'l Symposium on Physical Design (ISPD)
 - ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
 - ACM/IEEE Design, Automation, and Test in Europe (DATE)
 - IEEE Int'l Conference on Computer Design (ICCD)
 - IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 - Others: GLSVLSI, ISLPED, ISQED, VLSI-DAT, VLSI Design/CAD Symp.
- PD Journals/magazine:
 - IEEE Transactions on Computer-Aided Design (TCAD)
 - ACM Transactions on Design Automation of Electronic Systems (TODAES)
 - IEEE Transactions on VLSI Systems (TVLSI)
 - IEEE Design and Test of Computers (magazine)
 - IEEE Transactions on Computers (TC)
 - Others: INTEGRATION, IET journals/proceedings, IEICE transactions
- EDA Societies
 - IEEE Council on Electronic Design Automation (CEDA)
 - ACM Special Interest Group on Design Automation (SIGDA)
 - Others: IEEE CAS, CS, SSCS, etc.

Appendix: Computational Complexity & NP-Completeness

23

O: Upper Bounding Function

- **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n)$ $\leq cg(n)$ for all $n \geq n_0$.
 - Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \lg n = O(n^2)$
- Intuition: $f(n) \leq g(n)$ when we ignore constant multiples and small values of *n*.

Big-O Notation

How to show O (Big-Oh) relationships?

$$- f(n) = O(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ for some } c \ge 0.$$

• "An algorithm has worst-case running time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n)

time.

Ω : Lower Bounding Function

- **Def**: $f(n) = \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
 - = Examples: $2n^2 + 3n = Ω(n^2)$, $2n^3 = Ω(n^2)$, $3n \lg n ≠ Ω(n^2)$
- Intuition: $f(n) " \ge " g(n)$ when we ignore constant multiples and small values of n.
- How to show Ω (Big-Omega) relationships?

_ $f(n) = \Omega(g(n))$ if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ for some $c \ge 0$.

θ: Tightly Bounding Function

- **Def**: $f(n) = \theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
 - = Examples: $2n^2 + 3n = \theta(n^2)$, $2n^3 \neq \theta(n^2)$, $3n \lg n \neq \theta(n)$
- Intuition: f(n) " = " g(n) when we ignore constant multiples and small values of n.
- How to show θ relationships?
 - Show both "big Oh" (O) and "Big Omega" (Ω) relationships.

 $= f(n) = \theta(g(n)) \text{ if } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ for some } c > 0.$

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as functions of its "input size".
- Input size: size of encoded "binary" strings.
 - sort *n* words of bounded length input size: *n*
 - the input is the integer n input size: Ig n
 - the input is the graph G(V, E) input size: | V| and | E|
- Runtime comparison: assume 1 BIPS,1 instruction/op.

Time	Big-Oh	<i>n</i> = 10	n = 100	n = 10 ⁴	n = 10 ⁶	n = 10 ⁸
500	O(1)	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec
3 <i>n</i>	O(<i>n</i>)	3*10 ⁻⁸ sec	3*10 ⁻⁷ sec	3*10 ⁻⁵ sec	0.003 sec	0.3 sec
<i>n</i> lg <i>n</i>	O(<i>n</i> lg <i>n</i>)	3*10 ⁻⁸ sec	6*10 ⁻⁷ sec	1*10 ⁻⁴ sec	0.018 sec	2.5 sec
n ²	O(<i>n</i> ²)	1*10 ⁻⁷ sec	1*10 ⁻⁵ sec	0. 1 sec	16.7 min	116 days
n ³	O(<i>n</i> ³)	1*10 ⁻⁶ sec	0.001 sec	16.7 min	31.7 yr	∞
2 ⁿ	O(2 ⁿ)	1*10 ⁻⁶ sec	4 *10 ¹¹ cent.	∞	∞	∞
<i>n</i> !	O(<i>n</i> !)	0.003 sec	∞	∞	∞	∞

Asymptotic Functions

- Polynomial-time complexity: O(p(n)), where n is the input size and p(n) is a polynomial function of n $(p(n) = n^{O(1)})$.
- Example polynomial functions:
 - _ 999: constant
 - ─ Ig n: logarithmic
 - $-\sqrt{n}$: sublinear
 - _ n: linear
 - n lg n: loglinear
 - n^2 : quadratic
 - n^3 : cubic
- Example non-polynomial functions
 - 2ⁿ, 3ⁿ: exponential
 - _ n!: factorial

Complexity Classes

- Developed by S. Cook and R. Karp in early 1970.
- Class P: class of problems that can be solved in polynomial time in the size of input.
 - Size of input: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
- Class NP (Nondeterministic Polynomial): class of problems that can be **verified** in polynomial time in the size of input.
 - P = NP?
- Class NP-complete (NPC): Any NPC problem can be solved in polynomial time All problems in NP can be solved in polynomial time (i.e., P = NP).

The Traveling Salesman Problem (TSP)

- **Instance:** a set of *n* cities, a distance between each pair of cities, and a bound *B*.
- Question: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?

NP vs. P

- TSP \in NP.
 - Need to check a solution (tour) in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once, returns to the start, and total distance $\leq B$.
- TSP ∈ P?
 - Need to solve (find a tour) in polynomial time.
 - Still unknown if TSP ∈ P.

Decision Problems and NP-Completeness

- Decision problems: those having yes/no answers.
 - TSP: Given a set of cities, a distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum).
 - TSP: Given a set of cities and a distance between each pair of cities, find the distance of a "minimum route" that starts and ends at a given city and visits every city exactly once.
- Could apply binary search on decision problems to obtain solutions to optimization problems.
- NP-completeness is associated with decision problems.
- cf., Optimal solutions/costs, optimal (exact) algorithms (Attn: optimal ≠ exact in the theoretic computer science community).

Polynomial-time Reduction

- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
 - E.g., System of difference constraints (L_1) vs. SSSP (L_2)
- Polynomial-time reduction f from L_1 to L_2 : $L_1 \leq_P L_2$
 - f reduces any input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 .
 - $L_1 \le_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \to \{0, 1\}^*$ s.t. $\mathbf{x} \in L_1$ iff $f(\mathbf{x}) \in L_2$, $\forall \mathbf{x} \in \{0, 1\}^*$.
 - L_2 is at least as hard as L_1 .
- f is computable in polynomial time.

Significance of Reduction

- Significance of $L_1 \leq_{\mathbf{P}} L_2$:
 - = ∃ polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - \not ∃ polynomial-time algorithm for $L_1 \Rightarrow \not$ ∃ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).
- \leq_{P} is transitive, i.e., $L_1 \leq_{P} L_2$ and $L_2 \leq_{P} L_3 \Rightarrow L_1 \leq_{P} L_3$.

 A_1 : Algorithm for L_1

L₁: Bipartite cardinality matching vs. L₂: maximum flow

Example Reduction

- Example reduction from the matching problem to the max-flow one.
- Given a bipartite graph G = (V, E), $V = L \cup R$, construct a unit-capacity flow network G' = (V, E):

$$V' = V \cup \{s, t\}$$

 $E '= \{(s, u): u \in L\} \cup \{(u, v): u \in L, v \in R, (u, v) \in E\} \cup \{(v, t): v \in R\}.$

 The cardinality of a maximum matching in G = the value of a maximum flow in G' (i.e., |M| = |f|).

NP-Completeness

- A decision problem L is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{P} L$ for every $L' \in NP$.
- **NP-hard:** If *L* satisfies property 2, but not necessarily property 1, we say that *L* is **NP-hard**.
- Suppose $L \in NPC$.

Unit 2

- If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP).
- If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$).
- NP-completeness: worst-case analyse for a decision problem.

37

Proving NP-Completeness

- Five steps for proving that *L* is NP-complete:
 - 1. Prove $L \in NP$.
 - 2. Select a known NP-complete problem *L*'.
 - 3. Construct a reduction *f* transforming **every** instance of *L*' to an instance of *L*.
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 5. Prove that *f* is a polynomial-time transformation.

Here we intend to show how difficult L is!! Cf. matching \leq_P maximum flow to show how easy matching is!!

TSP Is NP-Complete

- TSP (The Traveling Salesman Problem) ∈ NP
- **TSP** is **NP**-hard: $HC \leq_P TSP$.
 - 1. Define a function *f* mapping any HC instance into a TSP instance, and show that *f* can be computed in polynomial time.
 - 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$).
- The Hamiltonian Circuit Problem (HC): known to be NP-complete
 - **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?

$HC \leq_P TSP$: Step 1

- 1. Define a reduction function f for $HC \leq_{P} TSP$.
 - Given an arbitrary HC instance G = (V, E) with n vertices
 - Create a set of n cities labeled with names in V.
 - Assign distance between two cities u and v

$$d(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \not\in E. \end{cases}$$

- Set bound B = n.
- f can be computed in $O(V^2)$ time.

HC: <1, 5, 2, 3, 4, 1> tour <1, 5, 2, 3, 4, 1> with distance bound B = 5

$HC \leq_P TSP$: Step 2

- 2. *G* has an HC iff the reduced instance has a TSP with distance ≤ *B*.
 - -x ∈ HC \Rightarrow f(x) ∈ TSP.
 - Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is n = B since there are n consecutive edges in E, and so has distance 1 in f(x).
 - Thus, f(x) ∈ TSP (f(x) has a TSP tour with distance $\leq B$).

$HC \leq_P TSP$: Step 2 (cont'd)

- 2. *G* has an HC iff the reduced instance has a TSP with distance ≤ *B*.
 - f(x) ∈ TSP \Rightarrow x ∈ HC.
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be $\langle v_1, v_2, ..., v_n, v_1 \rangle$..
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HC$).

