Assignment 1

ECS 220 — Prof. Rogaway — Winter 2006

Mark Gondree

gondree@cs.ucdavis.edu

January 17, 2006

Problem 1

Since these machines compute a function f, and do not accept or reject, we do not need a set of accepting states F. We define the computation to be done, in both cases, when the entire input has been read. Each machine has the form $M = (Q, \Sigma_1, \Sigma_2, \delta, v, q_0)$, where

Q is a finite set of states

 $q_0 \in Q$ is the machine's start state

 Σ_1 is the input alphabet

 Σ_2 is the output alphabet

 $\delta: Q \times \Sigma_1 \to Q$ is the transition function, defined as in a normal DFA

v is defined below, for each case.

A) Let $M=(Q,\Sigma_1,\Sigma_2,\delta,v,q_0)$ be a *Moore Machine*. $Q,\Sigma_1,\Sigma_2,\delta,q_0$ are defined as above, and $v:Q\to\Sigma_2$ is a function to annotate states with characters from Σ_2

v(q) gives the symbol annotating state q.

The function $f: \Sigma_1^* \to \Sigma_2^*$ computed by M is the following:

$$f(x_1 \dots x_n) = y$$
 if $y = v(q_1) \dots v(q_n)$ where, for $0 < i \le n$, $\delta(q_{i-1}, x_i) = q_i$

B) Let $M=(Q,\Sigma_1,\Sigma_2,\delta,v,q_0)$ be a *Mealey Machine*. $Q,\Sigma_1,\Sigma_2,\delta,q_0$ are defined as above, and $v:Q\times\Sigma_1\to\Sigma_2$ is a function to annotate transitions with characters from Σ_2

v(q, x) gives the symbol annotating the transition out of q upon reading character x.

The function $f: \Sigma_1^* \to \Sigma_2^*$ computed by M is the following:

$$f(x_1...x_n) = y$$
 if $y = v(q_0, x_1)...v(q_{n-1}, x_n)$ where, for $0 < i \le n$, $\delta(q_{i-1}, x_i) = q_i$

C) f is computable by a Mealey machine iff f is computable by a Moore machine.

Proof.

 \Leftarrow Given a Moore machine $A=(Q,\Sigma_1,\Sigma_2,\delta,v,q_0)$ computing f, we can build a Mealey machine $B=(Q,\Sigma_1,\Sigma_2,\delta,v'q_0)$ that computes f by defining:

$$v'(q_i, a) = v(q_i)$$
 when $\delta(q_i, a) = q_i$

 \implies Given a Mealey machine $A=(Q,\Sigma_1,\Sigma_2,\delta,v,q_0)$ computing f, we can build a Moore machine $B=(Q',\Sigma_1,\Sigma_2,\delta',v',q'_0)$ that computes f by defining:

$$Q' \subseteq \{ \langle q_j, b \rangle \mid q_j \in Q, b \in \Sigma_2 \}$$

$$q'_0 = \langle q_0, \varepsilon \rangle$$

$$v'(\langle q_j, b \rangle) = b$$

$$\delta'(\langle q_j, b \rangle, a) = \langle \delta(q_j, a), v(q_j, a) \rangle$$

Problem 2

No – there are minimal machines with equal numbers of states that accept the same language that cannot be transformed into each other via renaming. Here is an example:

Figure 1: Two NFAs with equivalent languages. This is easiest to see by building their regular expressions: $L(M_1) = \{a^*a, a^*b, a^*bb\}$ and $L(M_2) = \{aa^*, aa^*b, aa^*bb, b, bb\}$; its clear these are the same.

Each compute the same language. Each is minimal: four states is minimal since $b \not\approx_L bb$ (append b), $a \not\approx_L b, bb$ (append a), $\varepsilon \not\approx_L a, b, bb$ (append ε). Its clear there is no renaming function which can transform M_1 into M_2 or vice-versa: M_2 has an ε -move to the final state, where M_1 has no such move.

Problem 3

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a 2-way finite automaton (2WFA), where $\delta : Q \times (\Sigma \cup \{\triangleright, \triangleleft\}) \to Q \times \{L, R\}$, and Q, Σ, q_0, F are defined as in a normal DFA.

I will follow the convention established in class, namely that $x \in L(M)$ when M accepts input $\triangleright x \triangleleft$, and M accepts an input when its head reads the right-marker \triangleleft when the machine is in a final state $q \in F$. If the machine never does this, it rejects the input.

Definition 1 (right-left transcript). Let $T_M^i(x) \in (Q \times \{L,R\})^*$ be the right-left transcript of M under the ith character of x on input $\triangleright x \lhd$. $T_M^i(x)$ is a list of moves. The jth move is (q,L) if M's head was pointing at the i+1th input character, is now pointing at the ith input character, is in state q, and has pointed at this character j-1 times before. Alternately, it is (q,R) if its head was pointing at the i-1th input character, etc. In short, $T_M^i(x)$ lists the values of δ that caused M to point to x's ith position, in the order of M's execution on x.

Definition 2 (right-only transcript). Let $Right(T_M^i(x)) \in (Q \times \{R\})^*$ be those moves of $T_M^i(x)$ of the form (q,R) for any $q \in Q$. It is an edited right-left transcript, dropping all moves that came from the right. This is the the right-only transcript of M under i on input x.

Figure 2: The trace of a 2WFA M on input $x = x_1 \dots x_n z_1 \dots z_m$. The right-left transcript $T_M^{n+1}(x)$ is given by reading down the relevant data in the column below character z_1 . The right-only transcript $Right(T_M^{n+1}(x))$ is given by reading down the data about the circled states in this column.

Lemma 1. \mathcal{L} is regular iff $\mathcal{L} = L(M)$ for some 2WFA M.

Proof.

- \implies If \mathcal{L} is regular, then it is accepted by some DFA, and every DFA is (essentially) a 2WFA.
- \longleftarrow If M is a 2WFA, then $\mathcal{L} = L(M)$ is regular: Lemma 2 claims that every 2WFA partitions Σ^* into a finite number of equivalence classes that respect the equivalence $\approx_{\mathcal{L}}$, and (by the Myhill-Nerode theorem) if $\Sigma^*/\approx_{\mathcal{L}}$ is finite, then \mathcal{L} is regular.

Lemma 2. Any 2WFA partitions Σ^* into a finite number of equivalence classes, that each respect the equivalence $\approx_{\mathcal{L}}$.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a 2WFA.

Consider $x,y\in \Sigma^*$. Let [x]=[y] (their classes are the same) if, for all $z\in \Sigma^*$, either M enters an infinite loop on xz and yz, or $Right(T_M^{|x|+1}(xz))=Right(T_M^{|y|+1}(yz))$.

For any z, if the right-only transcript is ε then M has entered an infinite loop before reading the first character of z. For any z, if the right-only transcript is infinitely long, then M has entered an infinite loop. Infinitely long transcripts can be considered 0-length transcripts, a special finite-length transcript. So, we only need to consider finite-length right-only transcripts.

So, $[x] \neq [y]$ in the case that some z causes two finite, unequal, right-only transcripts. If $q \in Q$ appears twice in any right-transcript, then M will enter an infinite loop and the transcript will not be finite. The number of finite right-only transcripts is bound by $(|Q|+1)! \geq \sum_{i=0}^{|Q|} |Q|!/i!$, the sum of the ways to order |Q|-i objects drawn from a set of size |Q|. This is finite, thus there are a finite number of different classes.

If $x_1 \in [x]$ and $x_2 \in [x]$, then $x_1 \approx_{\mathcal{L}} x_2$. By definition, any z causes x_1z and x_2z to produce the same right-transcripts. By definition, $x_1 \approx_{\mathcal{L}} x_2$ means, for any z, $x_1z \in \mathcal{L} \iff x_2z \in \mathcal{L}$. In fact, if the last moves in the two right-only transcripts agree, then x_1z and x_2z will either both be accepted or both be rejected (since, at this point, M never again moves far enough left to read the characters of x_1 or x_2 , so its accept/reject behavior is entirely based on the last state of the right-only transcript and z, which are identical for x_1z and x_2z).

Thus, $\#\{[x] \mid x \in \Sigma^*\}$ is finite and members of [x] respect the $\approx_{\mathcal{L}}$ equivalence.

Problem 4

If $L \subseteq 1^*$ then L^* is regular.

Proof.

- (1) If L is finite, then it is regular and L^* is regular.
- (2) By lemma 3, if L is infinite and contains two words of coprime lengths, then L^* is regular.
- (3) By lemma 4, if L is infinite and every word of L has a length that is divisible by some integer m > 1, then L^* is regular.
- (4) By lemma 5, no other cases exist.

Lemma 3. If $L \subseteq 1^*$ is infinite and contains two words of coprime lengths, then there is some sufficiently large c_0 such that all words of length at least c_0 are in L^* . So, any word in $1^* - L^*$ has a length less than c_0 . There are a finite number of such unary words. So, $1^* - L^*$ is finite, and therefore regular. The complement of any regular language is regular, so L^* is regular

Proof. Take $1^p, 1^q \in L$ such that $\gcd(p,q) = 1$. Thus, $\{p^i \mod q \mid 0 \le i < q\}$ contains all residues. Any c has some residue, $c \equiv x \mod q$. For some $i, p^i \equiv x \mod q$. Let c = x + nq and $p^i = x + mq$. For $c_0 = q + p^{q-1}$, any $c > c_0$ can be represented as $c = p^i + (n - m)q$.

Because $c = p^i + (n-m)q$, we can form 1^c by concatenating (n-m) copies of 1^q to p^{i-1} copies of p. Thus, for all $c > c_0, 1^c \in L^*$.

Lemma 4. If L is infinite and every word in L has a length that is divisible by some integer m > 1, then L^* is regular.

Proof. Let $S = \{x \in \mathbb{N} \mid 1^x \in L\}$, the set of lengths of words in L. Take a, b to be the smallest two elements in S. If gcd(a, b) = n then n|x for any $x \in S$, by the premise. Also, it is clear that if $1^y \in L^*$ then n|y.

Let $S_n = \{x/n \mid x \in S\}$. S_n has two coprime elements, a/n and b/n. Let $L_n = \{1^y \mid y \in S_n\}$. By lemma 3, L_n^* is regular.

Thus, $1^x \in L^*$ if $x \equiv 0 \mod n$ and $1^{x/n} \in L_n^*$. This is a regular language — simply take the DFA accepting L_n^* and add a chain of n-1 non-accepting states between every two states in the original machine.

Lemma 5. If L is not finite, then either there are two words $1^p, 1^q \in L$ such that gcd(p, q) = 1 or there is some integer m > 1 such that m | x for all $1^x \in L$.

Proof. Let $S = \{x \in \mathbb{N} \mid 1^x \in L\}$, the set of lengths of words in L. Assume that for any two $x, y \in S$, $\gcd(x,y) > 1$. Also assume that there is no integer m > 1 such that m|x for all $x \in S$.

Since there is no m that divides every element in S, there must be some $z \in S$ such that $\gcd(x,y)$ does not share any factor m with z (the only other option being that every z shares a factor with $\gcd(x,y)$ but none of these factors are the same, which means $\gcd(x,y)$ has an infinite number of factors which is impossible for any finite number). Thus, $\gcd(\gcd(x,y),z)=1$. So either $\gcd(x,z)=1$ or $\gcd(y,z)=1$, which is a contradiction.