Wissenschaftliches Rechnen mit Matlab/Python

Jochen Schulz Einheit 2

Aufgabe 1
Geben Sie die folgende Zeile ein:
x=1e-15; $((1+x)-1)/x$
Wie interpretieren Sie das Ergebnis? (Testen Sie auch $x=1e-16!$)
Aufgabe 2
Differenzieren Sie $f(x) = exp(x)$ in $x = 0$ durch den zentralen Differenzen- quotienten. Plotten Sie den Approximationsfehler für die Approximation der ersten Ableitung durch den zentralen Differenzenquotienten für die Exponentialfunktion an der Stelle $x = 0$ mit doppelt logarithmischen Achsen und interpetieren sie das Ergebnis. Tips:
1. Bauen Sie sich einen Vektor, der eine passende Anzahl von positiven h –Werten $h_1\dots h_n$ enthält.
2. Daraus bauen Sie sich Vektoren, die die Werte $\exp(h_j)$ bzw. $\exp(-h_j)$ enthalten, und dann
3. einen Vektor, der alle zentralen Differenzenquotienten enthält.
4. Berechnen Sie dann den Vektor, der die absoluten Fehler enthält,
5. und plotten Sie ihn gegen den Vektor der h -Werte.
6. Schauen Sie in der Doku nach, wie man einen doppelt logarithmischen Plot macht.
7. Vermutlich werden Sie Gründe haben, Ihre Wahl der h_j noch einmal zu revidieren, um den Effekt klarer herauskommen zu lassen.
Aufgabe 3
Lösen Sie näherungsweise die Fixpunktgleichung
$x_f = e^{(-x_f)}.$
Aufgabe 4
Berechnen Sie eine Nullstelle von $f(x) = \cos^2(x) - x.$
Aufgabe 5

Schreiben Sie eine Funktion, die für $n \in \mathbb{N}$ die Hilbert-Matrix $H = (h_{ij})_{i,j=1}^n$ mit $h_{ij} = \frac{1}{i+j-1}$ berechnet. Berechnen Sie H^{-1} für n = 4.

Aufgabe 6

Berechnen Sie die Nullstellen von

$$x^2 - 2$$
, $x^2 - 2x + 1$, $x^2 - 4x + 10$.

A C 1 📂

Aufgabe 7

Die Fibonacci-Folge ist definiert durch

$$f_1 := 1$$
, $f_2 := 1$, $f_{k+2} := f_{k+1} + f_k$, $k \in \mathbb{N}$.

Schreiben Sie ein Programm, das

$$g_k := \frac{f_{k+1}}{f_k}, \quad k \in \mathbb{N}$$

berechnet. Stoppen Sie, falls $|g_k-g_{k+1}| \leq TOL$. Geben Sie für $TOL=10^{-3}$ und $TOL=10^{-4}$ das entsprechende k und das entsprechende g_k an.

Hinweis: Benutzen Sie eine while-Schleife.

.....

Aufgabe 8

Schreiben Sie eine Funktion, die einen String 'invertiert' (D.h. die Reihenfolge der Buchstaben umkehrt).

.....

Aufgabe 9

Schreiben Sie eine Funktion, die als Input-Parameter einen String und ein Zeichen erhält und berechnet wie oft das gegebene Zeichen (char) in dem String auftritt.

A--f--h - 10

Aufgabe 10

Speichern sie die folgende Tabelle in Matlab mithilfe eines Cell-Arrays oder in Python mithilfe eines Dictionaries.

Index	Wert
1	ln(1)
2	ln(2)
3	ln(3)
÷	
10	ln(10)

Erstellen Sie aus der gespeicherten Tabelle eine Liste aller Indizes und eine Liste aller Werte und geben diese mit Hilfe der print-Befehle aus.

Speichern sie alternativ in Matlab die Tabelle in structures oder in Python mit strukturierten Arrays.