Group law on an elliptic curve: Explicit addition formulas.

Elliptic curve E given over some field k by a general Weierstrass equation:

(*)
$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
.

As usual E(k) denotes the set of points on E that are defined over k. The set E(k) is endowed with a structure of an abelian group. We give here explicit formulas for the composition of points in E(k).

(I). When viewing (*) projectively we have 'the point at infinity' O := (0,1,0) in projective coordinates (x,y,z). This is the neutral element in the group structure on E(k).

Now let $P_i = (x_i, y_i)$, i = 1, 2 be 2 points in E(k).

(II). Notice, that if $x_1 = x_2$ then

$$y_1^2 + a_1x_1y_1 + a_3y_1 = y_2^2 + a_1x_1y_2 + a_3y_2$$
,

and hence either

$$y_1 = y_2$$

or

$$y_2 = -y_1 - a_1 x_1 - a_3$$
 .

(III). Define the inverse $-P_1$ of the point P_1 thus:

$$-P_1=(x_1,-y_1-a_1x_1-a_3)$$
 .

(IV). Now we give the coordinates (x_3, y_3) of the point $P_3 := P_1 + P_2$ in case $P_2 \neq -P_1$ (if $P_2 = -P_1$ then $P_1 + P_2 = O$).

Suppose first that $x_1 \neq x_2$. In that case define

$$\lambda := rac{y_2 - y_1}{x_2 - x_1} \; , \qquad
u := rac{y_1 x_2 - y_2 x_1}{x_2 - x_1} \; .$$

Suppose then that $x_1=x_2$. Since $P_2\neq -P_1$ it follows from (II) and (III) that we must have $P_2=P_1$. Then again from (II), and

because we now know that $P_1 \neq -P_1$, we have $y_1 \neq -y_1 - a_1x_1 - a_3$. We may then define:

$$\lambda := rac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} \; , \qquad
u := rac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3} \; .$$

One checks that $y = \lambda x + \nu$ is precisely the equation for the line through P_1 and P_2 , if $P_1 \neq P_2$, and is the equation for the tangent to E at the point P_1 , if $P_1 = P_2$.

In any case the formulas for x_3 and y_3 are:

$$x_3 := \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2$$
 , $y_3 := -(\lambda + a_1) x_3 -
u - a_3$.

If one takes the above as *definition* of the addition in E(k), one can in principle check by machine (Maple) that (E(k), +) thus becomes an abelian group.