INFO 310 Fall 2016

Week 5 – Lecture 2

HOUSEKEEPING

- Attendance
- Announcements

IPv4 Networking - Quick Review

- MAC addresses 48bit HEX
- IPv4 addresses 32bit, "dotted-quad"
- RFC 1918
- Sub-netting & Subnet Masks
- ARP
- TCP vs. UDP
 - 3-way handshake vs. connectionless
- ICMP & DHCP
- NAT

Network Packets

- A network packet is a formatted unit of data carried by a packet-switched network. When data is formatted into packets, the bandwidth of the communication medium can be better shared among users.
- A packet consists of control information and user data, which is also known as the payload. Control information provides data for delivering the payload, for example: source and destination network addresses, error detection codes, and sequencing information. Typically, control information is found in packet headers and trailers.

Typical IPv4 Packet (header + data)

IPv4 packets continued

- TCP & UDP packet headers are "special"
 - Contain source & destination port numbers
 - They are not the same as IP packet headers, but rather a subset thereof
- MTU Maximum Transmission Unit
 - Typically 1500 bytes
- Jumbo Frames
 - Up to 9000 bytes

IP Ports

Internet socket ports (IP Ports) are used by protocols of the transport layer of the Internet Protocol Suite for the establishment of host-to-host connectivity.

- 16 bit space (65535 possible 2¹⁶ minus 1 because 0 "counts")
- Source Ports vs. Destination Ports
- Both TCP and UDP use them, they are not the same

IP Ports, continued...

- Official (IANA controlled) & Unofficial
- "Well know ports": 0 to 1023
 - UNIX/LINUX requires SU/root to use
- "Registered Ports": 1024 to 49151
- Ephemeral (also called private / dynamic)
 - IANA 49152 to 65535
 - (Linux 32768 to 61000)

The OSI Model – Created by ISO

- The Open Systems Interconnection model (OSI model) is a conceptual model that characterizes and standardizes the communication functions of a telecommunication or computing system without regard to their underlying internal structure and technology.
- Its goal is the interoperability of diverse communication systems with standard protocols. The model partitions a communication system into abstraction layers. The original version of the model defined seven layers.

The Free Encyclopedia

 A layer serves the layer above it and is served by the layer below it. OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example Central Device Protocols			
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management User Applications SMTP			
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT		
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	Logical Ports RPC/SQL/NFS		A
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX	/UDP	E W A
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Route		Y Can be
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch		on all layers
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub Layers		

Internet vs. OSI Protocol Suite Model

TCP/IP model	Protocols and services	OSI model	
Application	HTTP, FTTP,	Application	
	Telnet, NTP,	Presentation	
	DHCP, PING	Session	
Transport	TCP, UDP (Transport	
Network) IP, ARP, ICMP, IGMP (Network	
Network Interface	Ethernet	Data Link	
		Physical	

IP Protocol Suite Number Examples

- IP Protocols are numbered
 - ICMP = 1
 - TCP = 6
 - UDP = 17
- Don't confuse with port numbers!

Common Application Layer Protocols

- HTTP
- HTTPS
- POP3 / POP3S
- IMAP / IMAPS
- SMTP / SMTPS
- SSH / SCP
- TELNET
- FTP / SFTP / FTPS

Also:

- NetBIOS
- AppleTalk
- IPS/SPX
- ..

Common Port Numbers

TCP (&UDP) Port(s)
21,20
22
23
25,465,587
53
80
110
123
135,137,138,139
143
443
445
993,585
995
3389

Different types of Networks

- LAN Local Area Network
 - Ethernet
 - 802.11 Wireless
- WAN Wide Area Network
 - MLPS (Multiprotocol Label Switching)
 - Serial Circuits (T1, T3, OC-48,...)
 - Cellular / LTE
- MAN Metropolitan Area Network
 - Interconnects geographical areas too large for LAN, but too small for WAN

(this page intentionally left blank)