第二章复习要求及习题

2.7.1 本章要求掌握的概念和计算

- (1) 矩阵乘法(包括分块乘法)的定义,特别是要弄懂三种初等矩阵与按行分块矩阵的乘积。
- (2) 行初等变换和左乘初等矩阵的等价性,高斯消元法与 LU 分解的等价性。
- (3) 如何用单列 $m \times 1$ 向量乘单行 $1 \times n$ 向量构成 $m \times n$ 矩阵以简化矩阵赋值。
- (4) 弄清增广矩阵[A,I]经 rref 函数行化简后求逆矩阵的原理: 掌握矩阵求逆函数 inv(A)。
- (5) 掌握逆矩阵的定义及用逆矩阵求方程组解的方法,特别是左除和右除的概念和用法。
- (6) LU 分解将 A 分解为下三角矩阵 L 乘上三角矩阵 U, 弄清 L 和 U 的特点。
- (7) 矩阵乘积的逆与逆矩阵的乘积次序要颠倒, inv(A*B)=inv(B)*inv(A), 转置也是如此。
- (8) MATLAB 实践:矩阵的四则运算和元素群运算,分块运算,用矩阵乘法求解方程组,LU分解。
- (9) MATLAB 函数: eye、triu、tril、diag、lu、inv、sum 矩阵运算符: ^、\(左除)、/(右除)。

2.7.2 计算题

- 2.1 MATLAB 提供了上三角、下三角、对角矩阵的生成函数 triu,tril 和 diag,读者可试用它们及 randintr 函数来生成随机的特殊矩阵。
- (a) 生成两个 4×4 的上三角随机方阵 T1 和 T2, 求 T1*T2 及 T2*T1, 说明为何上三角矩阵的乘积仍为上三角矩阵;为什么矩阵乘法不满足交换律;其对角线元素的乘积为何等于乘积的对角线元素。并说明这些规则是否适用于下三角矩阵,是否适用于任意方阵。
- (b) 求上述两个上三角方阵 T1 和 T2 的转置 T3=T1 和 T4=T2; 说明其为何成为下三角矩阵; 验证 (T1*T2)'=T1'*T2'是否成立? 应该是什么关系式; 求 T1 和 T2 的逆阵 V1 和 V2,验证其乘积的逆阵与逆阵的乘积应满足何种关系。
 - 2.2 构建一个 4×4 的随机正整数矩阵 A, 取三次不同的 A, 检验下式是否满足:

$$(A+I)(A-I)=A^2-I$$

再生成三个 4×4 的随机正整数矩阵 B。然后检验下式是否满足:

$$(A+B)(A-B)=A^2-B^2$$

检验的方法可以靠读数比较。而更好的方法是列出"左端-右端"的语句,看结果是否为零。

2.3 试证明:
$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix} \begin{bmatrix} b_{11} & 0 & \cdots & 0 \\ b_{21} & b_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & 0 & \cdots & 0 \\ * & a_{22}b_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ * & * & \cdots & a_{mm}b_{mm} \end{bmatrix}, 即两下三角矩阵的乘$$

积仍为下三角矩阵,乘积的对角元素为两矩阵对应元素的乘积。消元初等矩阵 E 也有类似特性,设 E 为消元初等矩阵,说明 $L=\mathrm{inv}\big(E_3E_2E_1\big)$ 为什么为下三角矩阵。

- 2.4 用题 2.3 的结论说明消元回代时矩阵主对角线上的元素为何不变,即 U1=ref1(A)和 U2=ref2(A)的 对角元素相同。用 MATLAB 生成 5 阶随机方阵来验证这一点。
 - 2.5 设 $A = \begin{bmatrix} 8 & 7 & 6 \\ 8 & -8 & -9 \\ -2 & -3 & -7 \end{bmatrix}$,则什么样的 E_{21} 和 E_{31} 能使乘积 E_{21} A的(2,1)和 E_{31} A的(3,1)处生成零?

找出一个 $E=E_{21}E_{31}$, 使得EA能同时在第一列下方生成两个零。

2.6 用分块乘积法可把第一列的下方消元为零:
$$EA = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -c/a & \mathbf{I} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ \mathbf{0} & d-cb/a \end{bmatrix}$$
, 对于上题

所示矩阵 A,以及本题中的 c、d 和 d-cb/a 都是什么值? 试用 MATLAB 检验其正确性。

2.7 设方阵
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 4 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 3 & 0 \\ 1 & 2 & 1 \\ 5 & 3 & -2 \end{bmatrix}$, 用列乘行分块乘法 $AB = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ [3 3 0] + … 计算乘积 AB ,

并对结果进行检验。读者也可自行生成四阶随机方阵进行检验。

2.8 随机生成三个 3 × 3 同阶整数方阵 A , B , C , 验证公式: (a) A(B+C) = AB + AC ; (b) (AB)C = A(BC); (c) $(ABC)^{\mathrm{T}} = C^{\mathrm{T}}B^{\mathrm{T}}A^{\mathrm{T}}$; (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ 。

2.9
$$\[\[\] \] \mathcal{U}f(x) = x^5 + 4x^4 - 3x^3 + 2x - 7 \]$$
, $\[\] \[\] \[\] \[\] \mathcal{U}f(x) = x^5 + 4x^4 - 3x^3 + 2x - 7 \]$, $\[\] \[\] \[\]$

2.10 表 2-8 为某高校 2005 和 2006 年入学新生人数统计表。(1)求 2006 年与 2005 年相比,对应类别入学人数的增加情况。(2)若 2007 年与 2006 年入学相比,其增长人数比 2006 年相对于 2005 年入学的增长人数上再增加 10%,求 2007 年入学新生的人数分布情况。

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
2005 年新生人数统计表					
类别	一系	二系	三系	四系	五系
本科	200	200	150	150	180
硕士	25	20	30	20	18
2006 年新生人数统计表					
类别	一系	二系	三系	四系	五系
本科	220	210	200	160	200
硕士	35	28	30	26	28

表 2-8 题 2.10 的数据表

2.11 设 $\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{bmatrix}$,则用什么样的 \mathbf{E} 乘以 \mathbf{A} 能使 \mathbf{A} 变成三角形式 \mathbf{U} ? 将 \mathbf{A} 分解为 $\mathbf{L}\mathbf{U}$ 中的 \mathbf{L}

与E有何关系?

- 2.12 图 2-4 为五个城市之间的空运航线,用有向图表示。问:
- (1) 从城市 2 出发, 最多经过 4 次转机(最多坐 5 次航班), 到达城市 5, 有几种不同的方法?
- (2) 从城市 5 出发,想到达城市 3,最少经过几次转机。

图 2-4 航站分布

2.13 求矩阵的逆矩阵

(a)
$$\begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix}$$
, (b)
$$\begin{bmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{bmatrix}$$
;

2.14 (a) 计算图 2-5 所示网络的传输函数;

(b) 设
$$\mathbf{A} = \begin{bmatrix} 4/3 & -12 \\ -1/4 & 3 \end{bmatrix}$$
,设计一个三级梯形网络,使它的合成传输函数等于 \mathbf{A} 。

图 2-5 三级梯形网络

2.15 解矩阵方程:

(a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix};$$
 (b) $X \begin{bmatrix} 5 & 3 & 1 \\ 1 & -3 & -2 \\ -5 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & 15 & 0 \end{bmatrix};$

(c) 设
$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 4 \\ -4 & 2 & 6 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 4 & -1 \\ 1 & -1 & 2 \end{bmatrix}$, 且 $\mathbf{XB} = \mathbf{A} + \mathbf{X}$, 求矩阵 \mathbf{X} .