Seminar Presentation

-Vindhya Singh (M.Sc Informatics) TUM

Content

- ➤ Hidden Physics Models
- Analysis
- ➤ Alternative Approaches

Sample-Efficient Learning

Sample-Efficient Learning

> Error Prone

Complexity of the system

Partial Differential Equations

In the general case, a second-order nonlinear partial differential equation with two independent variables has the form

$$F\left(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial^2 w}{\partial x^2}, \frac{\partial^2 w}{\partial x \partial y}, \frac{\partial^2 w}{\partial y^2}\right) = 0.$$

Laplace Equation

Navier-Stokes Equation

Hidden Physics Model

- Data-efficient Learning Machines
- > Capable of leveraging the laws of Physics

Hidden Physics Model

- ➤ Data-efficient Learning Machines
- Capable of leveraging the laws of Physics

Laws of Physics?

Time Dependent and non-linear partial differential Equations

Gaussian Process

A GP can be *completely* defined by a mean function $\mu(t)$ and a variance/kernel function $K(s, t) := Var(X_s, X_t)$, i.e., $X_t \sim GP(\mu(\cdot), K(\cdot, \cdot))$

Usually $\mu(t)=0$;

$$K(s, t) = \exp(-\Theta \mid |x_s - X_t|),$$

$$k(x, x'; \theta) = \gamma^2 \exp\left(-\frac{1}{2} \sum_{d=1}^{D} w_d^2 (x_d - x_d')^2\right),$$

Applications in Real World

- Learning
- > System Identification
- > Data-driven discovery of Partial Differential Equations

Problem Setup

$$h_t + \mathcal{N}_x^{\lambda} h = 0, \ x \in \Omega, \ t \in [0, T],$$

(1) — Find the Parameters
$$\lambda$$

Problem Setup

$$h_t + \mathcal{N}_x^{\lambda} h = 0, \ x \in \Omega, \ t \in [0, T],$$

(1)
$$\longrightarrow$$
 Find the Parameters λ

$$h^n + \Delta t \mathcal{N}_x^{\lambda} h^n = h^{n-1}. \tag{2}$$

Non-Linear Operator

$$\mathcal{N}_x^{\lambda} h = \lambda_1 h h_x - \lambda_2 h_{xx}$$

1D Burgers Equation

Problem Setup

$$h_t + \mathcal{N}_x^{\lambda} h = 0, \ x \in \Omega, \ t \in [0, T],$$

(1)
$$\longrightarrow$$
 Find the Parameters λ

$$h^n + \Delta t \mathcal{N}_x^{\lambda} h^n = h^{n-1}. \tag{2}$$

Non-Linear Operator

$$\mathcal{L}_x^{\lambda} h^n = h^{n-1}. \tag{3}$$

Linear Operator

Euler Time Stepping Scheme

$$u^n = u^{n-1} + \Delta t \ \mathcal{L}_x u^{n-1}.$$

Forward Euler	$u^n = u^{n-1} + \Delta t \mathcal{L}_x u^{n-1}$
Backward Euler	$u^n = u^{n-1} + \Delta t \mathcal{L}_x u^n$
Trapezoidal Rule	$u^n = u^{n-1} + \frac{1}{2}\Delta t \mathcal{L}_x u^{n-1} + \frac{1}{2}\Delta t \mathcal{L}_x u^n$

The Basic Model

Placing a Gaussian Process Prior,

$$h^n(x) \sim \mathcal{GP}(0, k(x, x', \theta)).$$
 (4)

Entire structure of the linear operator can be captured in the multi-output Gaussian Process,

$$\begin{bmatrix} h^n \\ h^{n-1} \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} k^{n,n} & k^{n,n-1} \\ k^{n-1,n} & k^{n-1,n-1} \end{bmatrix} \right). \tag{5}$$
 Hidden physics model

Learning

The parameters λ of the operators (both Linear and Non-Linear) can be learned via

$$-\log p(\boldsymbol{h}|\theta,\lambda,\sigma^2) = \frac{1}{2}\boldsymbol{h}^T \boldsymbol{K}^{-1}\boldsymbol{h} + \frac{1}{2}\log|\boldsymbol{K}| + \frac{N}{2}\log(2\pi),$$
 (6)

$$m{K} = egin{bmatrix} k^{n,n}(m{x}^n, m{x}^n) & k^{n,n-1}(m{x}^n, m{x}^{n-1}) \\ k^{n-1,n}(m{x}^{n-1}, m{x}^n) & k^{n-1,n-1}(m{x}^{n-1}, m{x}^{n-1}) \end{bmatrix} + \sigma^2 m{I}.$$

Learning

The parameters λ of the operators (both Linear and Non-Linear) can be learned via

targets fitting the training data penalizes model complexity

$$-\log p(\boldsymbol{h}|\theta,\lambda,\sigma^2) = \frac{1}{2}\boldsymbol{h}^T \boldsymbol{K}^{-1} \boldsymbol{h} + \frac{1}{2}\log|\boldsymbol{K}| + \frac{N}{2}\log(2\pi), \tag{6}$$

$$K = \begin{bmatrix} k^{n,n}(\mathbf{x}^n, \mathbf{x}^n) & k^{n,n-1}(\mathbf{x}^n, \mathbf{x}^{n-1}) \\ k^{n-1,n}(\mathbf{x}^{n-1}, \mathbf{x}^n) & k^{n-1,n-1}(\mathbf{x}^{n-1}, \mathbf{x}^{n-1}) \end{bmatrix} + \sigma^2 \mathbf{I}.$$

Burgers' Equation

(Fluid mechanics, non-linear acoustics, traffic flow)

Burgers' Equation

$$u_t + \lambda_1 u u_x - \lambda_2 u_{xx} = 0, (7)$$

	Clean Data		1% I	Voise	5% Noise	
	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
First Quartile	1.0247	0.0942	0.9168	0.0784	0.3135	0.0027
Median	1.0379	0.0976	1.0274	0.0919	0.8294	0.0981
Third Quartile	1.0555	0.0987	1.1161	0.1166	1.2488	0.1543

Table 1: Burgers' equation: Resulting statistics for the learned parameter values.

		$\Delta t = 0.1$	$\Delta t = 0.5$	$\Delta t = 1.0$	$\Delta t = 1.5$
Clean Data	λ_1	1.0283	1.1438	1.2500	1.2960
Clean Data	λ_2	0.1009	0.0934	0.0694	0.0431
1% Noise	λ_1	1.0170	1.1470	1.2584	1.3063
170 Noise	λ_2	0.0935	0.0939	0.0711	0.0428

Table 2: Burgers' equation: Effect of increasing the gap Δt between the pair of snapshots.

KdV Equation (Waves on shallow water surfaces)

$$u_t + \lambda_1 u u_x + \lambda_2 u_{xxx} = 0,$$

KdV Equation

$$u_t + \lambda_1 u u_x + \lambda_2 u_{xxx} = 0, (8)$$

	Clean Data		1% Noise		5% Noise	
	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
First Quartile	5.7783	0.9299	5.3358	0.7885	3.7435	0.2280
Median	5.8920	0.9656	5.5757	0.8777	4.5911	0.6060
Third Quartile	6.0358	1.0083	5.7840	0.9491	5.5106	0.8407

Table 3: The KdV equation: Resulting statistics for the learned parameter values.

		$\Delta t = 0.1$	$\Delta t = 0.2$	$\Delta t = 0.3$	$\Delta t = 0.4$	$\Delta t = 0.5$	
Clean Data	λ_1	6.1145	5.8948	5.4014	4.1779	3.5058	
Clean Data	λ_2	1.0470	0.9943	0.8535	0.4475	0.1816	
1% Noise	λ_1	5.7224	5.8288	5.4054	4.1479	3.4747	
170 Noise	λ_2	0.9578	0.9801	0.8563	0.4351	0.1622	

Table 4: The KdV equation: Effect of increasing the gap Δt between the pair of snapshots.

Kuramoto-Sivashinsky Equation

(Pattern forming system with spatio-temporal behaviour)

$$u_t + \lambda_1 u u_x + \lambda_2 u_{xx} + \lambda_3 u_{xxxx} = 0, \tag{9}$$

Kuramoto-Sivashinsky Equation

$$u_t + \lambda_1 u u_x + \lambda_2 u_{xx} + \lambda_3 u_{xxxx} = 0,$$

	Clean Data			1% Noise			5% Noise		
	λ_1	λ_2	λ_3	λ_1	λ_2	λ_3	λ_1	λ_2	λ_3
First Quartile	0.9603	0.9829	0.9711	0.7871	0.8095	0.5891	-0.0768	0.0834	-0.0887
Median	0.9885	1.0157	0.9970	0.8746	0.9124	0.8798	0.4758	0.5539	0.4086
Third Quartile	1.0187	1.0550	1.0314	0.9565	0.9948	0.9553	0.6991	0.7644	0.7009

Table 5: Kuramoto-Sivashinsky equation: Resulting statistics for the learned parameter values.

		$\Delta t = 0.4$	$\Delta t = 0.8$	$\Delta t = 1.2$
Clean Data	λ_1	0.9515	0.5299	0.1757
Clean Data	λ_2	1.0052	0.5614	0.1609
	λ_3	0.9803	0.5438	0.1647
	λ_1	0.9081	0.5124	0.1616
1% Noise	λ_2	0.9511	0.5387	0.1436
	λ_3	0.9266	0.5213	0.1483

Table 6: Kuramoto-Sivashinsky equation: Effect of increasing the gap Δt between the pair of snapshots.

Nonlinear Schrödinger Equation

(Wave propagation in optical fibres)

$$ih_t + \lambda_1 h_{xx} + \lambda_2 |h|^2 h = 0, \tag{10}$$

$$u^{n} + \Delta t \lambda_{1} v_{xx}^{n} + \Delta t \lambda_{2} [(u^{n-1})^{2} + (v^{n-1})^{2}] v^{n} = u^{n-1},$$

$$v^{n} - \Delta t \lambda_{1} u_{xx}^{n} - \Delta t \lambda_{2} [(u^{n-1})^{2} + (v^{n-1})^{2}] u^{n} = v^{n-1},$$

$$\begin{bmatrix} u^{n} \\ v^{n} \\ u^{n-1} \\ v^{n-1} \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} k_{u,u}^{n,n} & k_{u,v}^{n,n} & k_{u,u}^{n,n-1} & k_{u,v}^{n,n-1} \\ k_{v,u}^{n,n} & k_{v,v}^{n,n} & k_{v,u}^{n,n-1} & k_{v,v}^{n,n-1} \\ k_{u,u}^{n-1,n} & k_{u,v}^{n-1,n} & k_{u,u}^{n-1,n-1} & k_{u,v}^{n-1,n-1} \\ k_{v,u}^{n-1,n} & k_{v,v}^{n-1,n} & k_{v,u}^{n-1,n-1} & k_{v,v}^{n-1,n-1} \end{bmatrix} \right)$$

Nonlinear Schrödinger Equation

$$ih_t + \lambda_1 h_{xx} + \lambda_2 |h|^2 h = 0, \tag{10}$$

	Clean Data		1% Noise		5% Noise	
	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
First Quartile	0.4950	0.9960	0.3714	0.9250	-0.1186	0.6993
Median	0.5009	1.0001	0.4713	0.9946	0.4259	0.9651
Third Quartile	0.5072	1.0039	0.5918	1.0670	0.9730	1.2730

Table 7: Nonlinear Schrödinger equation: Resulting statistics for the learned parameter values.

		$\Delta t = 0.0063$	$\Delta t = 0.0628$	$\Delta t = 0.1257$	$\Delta t = 0.1885$
Clean Data	λ_1	0.5062	0.4981	0.3887	0.3097
Clean Data	λ_2	0.9949	0.8987	0.7936	0.7221
1% Noise	λ_1	0.4758	0.4976	0.3928	0.3128
170 Noise	λ_2	0.9992	0.9011	0.7975	0.7255

Table 8: Nonlinear Schrödinger equation: Effect of increasing the gap Δt between the pair of snapshots.

Navier-Stokes Equation

(Weather, Ocean Currents, Blood flow)

$$u_t + \lambda_1(uu_x + vu_y) = -p_x + \lambda_2(u_{xx} + u_{yy}), v_t + \lambda_1(uv_x + vv_y) = -p_y + \lambda_2(v_{xx} + v_{yy}),$$

$$u^n = \psi_y^n, \quad v^n = -\psi_x^n,$$

$$\begin{bmatrix} u^n \\ v^n \end{bmatrix} \sim \mathcal{GP} \left(0, \begin{bmatrix} k_{u,u}^{n,n} & k_{u,v}^{n,n} \\ k_{v,u}^{n,n} & k_{v,v}^{n,n} \end{bmatrix} \right),$$

Navier-Stokes Equation

	Clean Data		1% ľ	Voise	5% Noise	
	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
First Quartile	0.9854	0.0069	0.8323	0.0057	0.5373	0.0026
Median	0.9928	0.0077	0.8717	0.0063	0.6498	0.0030
Third Quartile	1.0001	0.0086	0.9102	0.0070	0.7619	0.0046

Table 9: Navier-Stokes equations: Resulting statistics for the learned parameter values.

		$\Delta t = 0.02$	$\Delta t = 0.04$	$\Delta t = 0.06$	$\Delta t = 0.08$	$\Delta t = 1.0$
Clean Data	λ_1	0.9834	0.9925	0.9955	0.9976	1.0021
Clean Data	λ_2	0.0083	0.0072	0.0058	0.0040	0.0027
1% Noise	λ_1	0.8488	0.9298	0.9597	0.9726	0.9791
170 110156	λ_2	0.0140	0.0110	0.0088	0.0069	0.0053

 $u_t + \lambda_1(uu_x + vu_y) = -p_x + \lambda_2(u_{xx} + u_{yy}),$ $v_t + \lambda_1(uv_x + vv_y) = -p_y + \lambda_2(v_{xx} + v_{yy}),$

Table 10: Navier-Stokes equations: Effect of increasing the gap Δt between the pair of snapshots.

		$\Delta t = 0.02$	$\Delta t = 0.01$	$\Delta t = 0.005$
Clean Data	λ_1	0.9834	0.9688	0.9406
Clean Data	λ_2	0.0083	0.0091	0.0104
1% Noise	λ_1	0.8488	0.7384	0.6107
170 Noise	λ_2	0.0140	0.0159	0.0217

Table 11: Navier-Stokes equations: Effect of decreasing the gap Δt between the pair of snapshots.

Fractional Equation

$$u_t - \lambda_1 \mathcal{D}_{-\infty,x}^{\lambda_2} u = 0,$$

$$[1 - \Delta t \lambda_1 (-iw')^{\lambda_2}] \hat{k}(w, w'; \theta),$$

Fourier Transform of the kernel

Fractional Equation

$$u_t - \lambda_1 \mathcal{D}_{-\infty,x}^{\lambda_2} u = 0,$$

Patterns in the results?

More data, less noise, and a smaller gap between the two snapshots

More noise in the data leads to less confidence in the estimated parameter values.

Pros

No dictionary

Estimate parameters appearing anywhere

Kernels are obtained analytically

Regular lattice not essential

Scattered data

Cons

$$-\log p(\boldsymbol{h}|\theta,\lambda,\sigma^2) = \frac{1}{2}\boldsymbol{h}^T \boldsymbol{K}^{-1} \boldsymbol{h} + \frac{1}{2}\log|\boldsymbol{K}| + \frac{N}{2}\log(2\pi),$$
 (6)

Multiple Local Minima

Alternative Approaches

- \triangleright Assign priors on $(\lambda, \Theta, \{\sigma\}^2)$
- > For the limitation around cubic scaling with respect to the total number of training data points,
 - Kalman updates
 - Variational inference
 - Parametric Gaussian processes

Conclusion

- 1. Wide range application
- 2. Sample efficient learning
- 3. Works well in less noisy data and for smaller time steps

References

- [1] M. Raissi, P. Perdikaris, G. E. Karniadakis, Numerical gaussian processes for time-dependent and non-linear partial differential equations, arXiv preprint arXiv:1703.10230 (2017)
- [2] S. H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz, Data-driven discovery of partialdifferential equations,. Science Advances 3 (2017).
- [3] M. Ebden, Gaussian Processes for Regression: A Quick Introduction. August 2008
- [4] J. Hensman, N. Fusi, N. D. Lawrence, Gaussian processes for big data, in: Proceedings of the Twenty-Ninth Conference on Uncertainty in Articial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013.
- [5] M. Raissi, Parametric gaussian process regression for big data,. arXiv preprint arXiv:1704.03144 (2017).

