CNN-Layers

February 26, 2021

0.1 Convolutional neural network layers

In this notebook, we will build the convolutional neural network layers. This will be followed by a spatial batchnorm, and then in the final notebook of this assignment, we will train a CNN to further improve the validation accuracy on CIFAR-10.

CS231n has built a solid API for building these modular frameworks and training them, and we will use their very well implemented framework as opposed to "reinventing the wheel." This includes using their Solver, various utility functions, their layer structure, and their implementation of fast CNN layers. This also includes nndl.fc_net, nndl.layers, and nndl.layer_utils. As in prior assignments, we thank Serena Yeung & Justin Johnson for permission to use code written for the CS 231n class (cs231n.stanford.edu).

```
[11]: ## Import and setups
      import time
      import numpy as np
      import matplotlib.pyplot as plt
      from nndl.conv_layers import *
      from cs231n.data utils import get CIFAR10 data
      from cs231n.gradient_check import eval_numerical_gradient,__
       →eval numerical gradient array
      from cs231n.solver import Solver
      %matplotlib inline
      plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
      plt.rcParams['image.interpolation'] = 'nearest'
      plt.rcParams['image.cmap'] = 'gray'
      # for auto-reloading external modules
      # see http://stackoverflow.com/questions/1907993/
       \rightarrow autoreload-of-modules-in-ipython
      %load ext autoreload
      %autoreload 2
      def rel_error(x, y):
        """ returns relative error """
        return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload

0.2 Implementing CNN layers

Just as we implemented modular layers for fully connected networks, batch normalization, and dropout, we'll want to implement modular layers for convolutional neural networks. These layers are in nndl/conv_layers.py.

0.2.1 Convolutional forward pass

Begin by implementing a naive version of the forward pass of the CNN that uses for loops. This function is conv_forward_naive in nndl/conv_layers.py. Don't worry about efficiency of implementation. Later on, we provide a fast implementation of these layers. This version ought to test your understanding of convolution. In our implementation, there is a triple for loop.

After you implement conv forward naive, test your implementation by running the cell below.

```
[12]: x_{shape} = (2, 3, 4, 4)
      w_{shape} = (3, 3, 4, 4)
      x = np.linspace(-0.1, 0.5, num=np.prod(x_shape)).reshape(x_shape)
      w = np.linspace(-0.2, 0.3, num=np.prod(w_shape)).reshape(w_shape)
      b = np.linspace(-0.1, 0.2, num=3)
      conv_param = {'stride': 2, 'pad': 1}
      out, = conv forward naive(x, w, b, conv param)
      correct_out = np.array([[[[-0.08759809, -0.10987781],
                                 [-0.18387192, -0.2109216]].
                                [[ 0.21027089, 0.21661097],
                                 [ 0.22847626, 0.23004637]],
                                [[ 0.50813986, 0.54309974],
                                 [0.64082444, 0.67101435]],
                               [[-0.98053589, -1.03143541],
                                 [-1.19128892, -1.24695841]],
                                [[ 0.69108355, 0.66880383],
                                 [ 0.59480972, 0.56776003]],
                                [[ 2.36270298, 2.36904306],
                                 [ 2.38090835, 2.38247847]]]])
      # Compare your output to ours; difference should be around 1e-8
      print('Testing conv forward naive')
      print('difference: ', rel_error(out, correct_out))
```

Testing conv_forward_naive difference: 2.2121476417505994e-08

0.2.2 Convolutional backward pass

Now, implement a naive version of the backward pass of the CNN. The function is conv_backward_naive in nndl/conv_layers.py. Don't worry about efficiency of implementa-

tion. Later on, we provide a fast implementation of these layers. This version ought to test your understanding of convolution. In our implementation, there is a quadruple for loop.

After you implement conv_backward_naive, test your implementation by running the cell below.

```
[13]: x = np.random.randn(4, 3, 5, 5)
     w = np.random.randn(2, 3, 3, 3)
     b = np.random.randn(2,)
     dout = np.random.randn(4, 2, 5, 5)
     conv_param = {'stride': 1, 'pad': 1}
     out, cache = conv forward naive(x,w,b,conv param)
     dx_num = eval_numerical_gradient_array(lambda x: conv_forward_naive(x, w, b,_

→conv_param)[0], x, dout)
     dw_num = eval_numerical_gradient_array(lambda w: conv_forward_naive(x, w, b,_
      db_num = eval_numerical_gradient_array(lambda b: conv_forward_naive(x, w, b,_

→conv_param)[0], b, dout)
     out, cache = conv_forward_naive(x, w, b, conv_param)
     dx, dw, db = conv_backward_naive(dout, cache)
      # Your errors should be around 1e-9'
     print('Testing conv_backward_naive function')
     print('dx error: ', rel_error(dx, dx_num))
     print('dw error: ', rel_error(dw, dw_num))
     print('db error: ', rel_error(db, db_num))
```

Testing conv_backward_naive function dx error: 3.801783242035844e-09 dw error: 9.088563042487922e-10 db error: 1.8130670355181153e-11

0.2.3 Max pool forward pass

In this section, we will implement the forward pass of the max pool. The function is max_pool_forward_naive in nndl/conv_layers.py. Do not worry about the efficiency of implementation.

After you implement max_pool_forward_naive, test your implementation by running the cell below.

```
[14]: x_shape = (2, 3, 4, 4)
x = np.linspace(-0.3, 0.4, num=np.prod(x_shape)).reshape(x_shape)
pool_param = {'pool_width': 2, 'pool_height': 2, 'stride': 2}
out, _ = max_pool_forward_naive(x, pool_param)
```

```
correct_out = np.array([[[-0.26315789, -0.24842105],
                          [-0.20421053, -0.18947368]],
                         [[-0.14526316, -0.13052632],
                          [-0.08631579, -0.07157895]],
                         [[-0.02736842, -0.01263158],
                          [ 0.03157895, 0.04631579]]],
                        [[[ 0.09052632, 0.10526316],
                          [ 0.14947368, 0.16421053]],
                         [[ 0.20842105, 0.22315789],
                          [ 0.26736842, 0.28210526]],
                         [[ 0.32631579, 0.34105263],
                          [ 0.38526316, 0.4
                                                   1111)
# Compare your output with ours. Difference should be around 1e-8.
print('Testing max_pool_forward_naive function:')
print('difference: ', rel_error(out, correct_out))
```

Testing max_pool_forward_naive function: difference: 4.1666665157267834e-08

0.2.4 Max pool backward pass

In this section, you will implement the backward pass of the max pool. The function is max_pool_backward_naive in nndl/conv_layers.py. Do not worry about the efficiency of implementation.

After you implement max_pool_backward_naive, test your implementation by running the cell below.

```
[15]: x = np.random.randn(3, 2, 8, 8)
dout = np.random.randn(3, 2, 4, 4)
pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}

dx_num = eval_numerical_gradient_array(lambda x: max_pool_forward_naive(x, pool_param)[0], x, dout)

out, cache = max_pool_forward_naive(x, pool_param)
dx = max_pool_backward_naive(dout, cache)

# Your error should be around 1e-12
print('Testing max_pool_backward_naive function:')
print('dx error: ', rel_error(dx, dx_num))
```

Testing max_pool_backward_naive function: dx error: 3.2756168565179485e-12

0.3 Fast implementation of the CNN layers

Implementing fast versions of the CNN layers can be difficult. We will provide you with the fast layers implemented by cs231n. They are provided in cs231n/fast_layers.py.

The fast convolution implementation depends on a Cython extension; to compile it you need to run the following from the cs231n directory:

```
python setup.py build_ext --inplace
```

NOTE: The fast implementation for pooling will only perform optimally if the pooling regions are non-overlapping and tile the input. If these conditions are not met then the fast pooling implementation will not be much faster than the naive implementation.

You can compare the performance of the naive and fast versions of these layers by running the cell below.

You should see pretty drastic speedups in the implementation of these layers. On our machine, the forward pass speeds up by 17x and the backward pass speeds up by 840x. Of course, these numbers will vary from machine to machine, as well as on your precise implementation of the naive layers.

```
[16]: from cs231n.fast_layers import conv_forward_fast, conv_backward_fast
      from time import time
      x = np.random.randn(100, 3, 31, 31)
      w = np.random.randn(25, 3, 3, 3)
      b = np.random.randn(25,)
      dout = np.random.randn(100, 25, 16, 16)
      conv_param = {'stride': 2, 'pad': 1}
      t0 = time()
      out_naive, cache_naive = conv_forward_naive(x, w, b, conv_param)
      t1 = time()
      out_fast, cache_fast = conv_forward_fast(x, w, b, conv_param)
      t2 = time()
      print('Testing conv_forward_fast:')
      print('Naive: %fs' % (t1 - t0))
      print('Fast: %fs' % (t2 - t1))
      print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
      print('Difference: ', rel_error(out_naive, out_fast))
      t0 = time()
      dx naive, dw_naive, db_naive = conv_backward_naive(dout, cache_naive)
      t1 = time()
      dx_fast, dw_fast, db_fast = conv_backward_fast(dout, cache_fast)
      t2 = time()
      print('\nTesting conv_backward_fast:')
      print('Naive: %fs' % (t1 - t0))
```

```
print('Fast: %fs' % (t2 - t1))
      print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
      print('dx difference: ', rel_error(dx_naive, dx_fast))
      print('dw difference: ', rel_error(dw_naive, dw_fast))
      print('db difference: ', rel_error(db_naive, db_fast))
     Testing conv_forward_fast:
     Naive: 0.248102s
     Fast: 0.011997s
     Speedup: 20.679948x
     Difference: 1.0262992048904317e-11
     Testing conv_backward_fast:
     Naive: 6.713672s
     Fast: 0.007012s
     Speedup: 957.502227x
     dx difference: 1.4274025743079024e-10
     dw difference: 2.1560290512203627e-12
     db difference: 0.0
[17]: from cs231n.fast_layers import max_pool_forward_fast, max_pool_backward_fast
      x = np.random.randn(100, 3, 32, 32)
      dout = np.random.randn(100, 3, 16, 16)
      pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
      t0 = time()
      out_naive, cache_naive = max_pool_forward_naive(x, pool_param)
      t1 = time()
      out_fast, cache_fast = max_pool_forward_fast(x, pool_param)
      t2 = time()
      print('Testing pool_forward_fast:')
      print('Naive: %fs' % (t1 - t0))
      print('fast: %fs' % (t2 - t1))
      print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
      print('difference: ', rel_error(out_naive, out_fast))
      t0 = time()
      dx_naive = max_pool_backward_naive(dout, cache_naive)
      t1 = time()
      dx_fast = max_pool_backward_fast(dout, cache_fast)
      t2 = time()
      print('\nTesting pool_backward_fast:')
      print('Naive: %fs' % (t1 - t0))
      print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
```

```
print('dx difference: ', rel_error(dx_naive, dx_fast))

Testing pool_forward_fast:
Naive: 0.308309s
fast: 0.001996s
speedup: 154.460225x
difference: 0.0

Testing pool_backward_fast:
Naive: 0.876657s
speedup: 97.679940x
dx difference: 0.0
```

0.4 Implementation of cascaded layers

We've provided the following functions in nndl/conv_layer_utils.py: - conv_relu_forward - conv_relu_backward - conv_relu_pool_forward - conv_relu_pool_backward

These use the fast implementations of the conv net layers. You can test them below:

```
[18]: from nndl.conv_layer_utils import conv_relu_pool_forward,__
      x = np.random.randn(2, 3, 16, 16)
     w = np.random.randn(3, 3, 3, 3)
     b = np.random.randn(3,)
     dout = np.random.randn(2, 3, 8, 8)
     conv_param = {'stride': 1, 'pad': 1}
     pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}
     out, cache = conv_relu_pool_forward(x, w, b, conv_param, pool_param)
     dx, dw, db = conv_relu_pool_backward(dout, cache)
     dx_num = eval_numerical_gradient_array(lambda x: conv_relu_pool_forward(x, w,_
      →b, conv_param, pool_param)[0], x, dout)
     dw num = eval numerical gradient array(lambda w: conv_relu_pool_forward(x, w,_

→b, conv_param, pool_param)[0], w, dout)
     db_num = eval_numerical_gradient_array(lambda b: conv_relu_pool_forward(x, w,_
      →b, conv_param, pool_param)[0], b, dout)
     print('Testing conv_relu_pool')
     print('dx error: ', rel_error(dx_num, dx))
     print('dw error: ', rel_error(dw_num, dw))
     print('db error: ', rel_error(db_num, db))
```

Testing conv_relu_pool

dx error: 1.6196038548041636e-07
dw error: 3.919849958777038e-10
db error: 6.9389056300997e-11

```
[19]: from nndl.conv_layer_utils import conv_relu_forward, conv_relu_backward
     x = np.random.randn(2, 3, 8, 8)
     w = np.random.randn(3, 3, 3, 3)
     b = np.random.randn(3,)
     dout = np.random.randn(2, 3, 8, 8)
     conv_param = {'stride': 1, 'pad': 1}
     out, cache = conv_relu_forward(x, w, b, conv_param)
     dx, dw, db = conv_relu_backward(dout, cache)
     dx_num = eval_numerical_gradient_array(lambda x: conv_relu_forward(x, w, b,_
      dw_num = eval_numerical_gradient_array(lambda w: conv_relu_forward(x, w, b,_
      db_num = eval_numerical_gradient_array(lambda b: conv_relu_forward(x, w, b,_
      →conv param)[0], b, dout)
     print('Testing conv_relu:')
     print('dx error: ', rel_error(dx_num, dx))
     print('dw error: ', rel_error(dw_num, dw))
     print('db error: ', rel_error(db_num, db))
```

Testing conv_relu:

dx error: 1.706921468200331e-09
dw error: 1.3094009802161628e-09
db error: 5.4773042527510045e-12

0.5 What next?

We saw how helpful batch normalization was for training FC nets. In the next notebook, we'll implement a batch normalization for convolutional neural networks, and then finish off by implementing a CNN to improve our validation accuracy on CIFAR-10.