

ARTIFICIAL INTELLIGENCE (CSE3013)

Topic: Intelligent Stock Trading J COMPONENT

Vrishab V Srivatsa (18BCI0074)

Pratyush Kumar (19BCE0506)

Vishnu Shetty B (19BCE2116)

SLOT: C1+TC1

Submitted to

SANTHI K (SCOPE)

Objective:

The task of making an accurate prediction is an intricate as well as a highly difficult task. At the same time, the highly rewarding nature of stock prediction makes it an ideal challenge for AI Models. Our objective is to provide an AI-assisted platform with a highly accurate stock predicting system that combines multiple prediction models.

Abstract:

In recent times the stock market has proved to be an extremely volatile but high-rewarding field. The enormous amount of past data of each stock makes it an ideal environment to test and train our AI models. Our project aims to deliver an intelligent stock trading assistant which can give suggestions to the user regarding which stocks to buy and sell, so as to make the maximum profit. In order to maximize the profit, our AI Algorithms should give accurate predictions. In our project, we will be making use of a combination of multiple AI models to come up with an accurate prediction. This prediction will be displayed in the form of a simple percentage, thereby understood by a common man. By using multiple algorithms, the results provided by each will make up for the deficiencies of each other.

Literature Survey:

S. No.	Title of the Paper and year	Algorithms used	Dataset used	Performance measures	Gap identified	Scope for future work
1.	Machine Learning Approach in Stock Market Prediction (2017)	Support vector Machine (SVM) along with RBF Kernel Algorithm	Live data from Yahoo finance Url and stored data of 2014-2016	Graph is plotted showing prediction accuracy for four different feature lists. Results showed that the accuracy upto 89% is achieved	Feature list can be further expanded and improvised with different classifiers	Use of unsupervised preprocessor along with the supervise classifier
2.	A Machine Learning Model for Stock Market Prediction (2013)	Least Square Support Vector Machine (LS-SVM), Particle Swarm Optimizatio n Algorithm	Datasets form Jan 2009 to Jan 2012 taken from Yahoo finance. All datasets are divided into training part (70%) and testing	Indicators such as relative strength index, money flow index, exponential moving average, stochastic	Better algorithms can be used	Implementation of various other algorithms to gain more accurate results.

			part (30%)	oscillator and moving average convergence/ divergence.		
3.	A Time Series Analysis- Based Stock Price Prediction Using Machine Learning and Deep Learning Models (2020)	Logistic Regression, K-Nearest neighbor, Decision tree, Bagging, Boosting, Random Forest, ANN, SVM, Multivariate Regression	Stock data of Godrej Consumer Products Ltd. using Metastock tool for collecting data on the short-term price movement of stocks.	Sensitivity, Specificity, PPV, NPV, CA, F1 Score for Classification methods. Correlation coefficient, RMSE/ Mean of Absolute Values of Actuals, Percentage of Mismatched Cases for Regression Models	Deep learning models have a much higher capability of extracting and learning the features from a time series data than their machine learning counterpart. However, in order to exploit the power of deep learning models, the volume of data should be very large	Use of generalized adversarial networks (GAN) in forecasting price movements and values. An integrated approach to building deep learning models that combines the power of LSTM, CNN and GAN.
4.	Stock Market Prediction Using Machine Learning (ML) Algorithm s (2019)	Linear Regression, 3-month average, Exponential Smoothing, Time Series Forecasting,	Data obtained from Yahoo finance for Amazon, Google and AAPL	Close Price, CMA(3), Forecasting	The stock prediction is only for a month and therefore cannot be used for long-term analysis	Various other Machine Learning Algorithms can be used, such as, LSTM and ARIMA
5.	Integrated Long-Ter m Stock Selection Models Based on Feature Selection and Machine Learning	SVM, Random Forest (RF) and ANN for Stock Price Prediction. SVM-RFE (recursive elimination feature),	The data set is from January 1, 2010 to January 1, 2018	Total Return, Annualized Return,Sharpe Ratio, Max Drawdown	No test in overseas markets such as the US and UK. The feature selection algorithm still needs to be optimized, such as how	Continually explore more new features which have more predictability

	Algorithm s for China Stock Market (2020)	Feature selection based on RF for feature selection.			to determine the number of features selected.	
6.	Predict Stock Market Behavior: Role of Machine Learning Algorithm s (2017)	Models: Six Sigma (SS) and Time-series based Mathematica I models which include ARIMA and Exponential Smoothing	This research paper talks about the various models and ML Algorithms that can be used for Stock Market prediction and hence, there is no actual dataset used.	No actual calculations, instead, comparison different ML Algorithms.	No actual prediction or analysis is carried.	Design of the functional prototype, the design of EML algorithms, comparative analysis of EML algorithms on the common benchmark platform based on the certain technical indicators and performance evaluation
7.	Stock Market Prediction using Machine Learning (2017)	Different Regression models: Linear, Logistic, Polynomial, Stepwise, Ridge, Lasso and Elastic Net Different Classificatio n Models: Support Vector Machine (SVM), Bayesian's Classifier and Decision Tree	Dataset is provided by Bombay Stock Exchange (BSE)	This paper summarizes the different ML models and Algorithms, and the tool for implementation. No actual calculation has been done. In general, results are given on the basis of accuracy and estimation.	No graphs or observation tables to support the conclusion.	Implementation of Linear and logistic regression to carry out stock market analysis and SBM for accurate results
8.	Stock Market	SVM and ANN	Data fetched	Adjacent Open,	Outputs and results can be	Implementation of other Machine

	Prediction Using Machine Learning (2020)		from quandl	Adjacent High, Adjacent Low, Adjacent Close, Adjacent Volume, HL_PCT, PCT_Change,	given in graph or tabular form for better comparison.	learning models and extending the time period of analysis.
9.	Stock Market Analysis using Supervise d Machine Learning (2019)	Linear Regression	Dataset provided by quandl.com (WIKI/GO OGL)	Adjacent Open, Adjacent High, Adjacent Low, Adjacent Close, Adjacent Volume, HL_PCT, PCT_Change.	Paper is limited to only supervised machine learning, and tries to explain only the fundamentals of this complex process.	Shifting to SVM, trying and testing different models, looking for new and improved features, changing the entire data model to suit the model entirely etc.
10.	Stock market prediction using machine learning technique s (2016)	SLP, MLP, RBF, SVM	NEWS and twitter data was available in the form of feed which was processed using text mining techniques. The library OpinionFin der was used for this purpose.	Covariance, Correlation	Lack of resources and unavailability of data for the market.	Implementing the used ML Algorithms on various other countries' stock exchanges and for an extended time-period.

S.No.	Title of the Paper	Algorithm s used	Data set being			Scope for future work
	And year		used			

11	Forecasting stock prices with long-short term memory neural network based on attention mechanism(2019)	Long short-term memory neural networks (LSTM)	Stock indices(stock price and volume)	Mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The smaller the MSE, RMSE, and MAE, the closer the predicted value to the true value; the closer the coefficient R2to 1, the better the fit of the model.	Due to the nonstationary, nonlinear, high-noise characteristics of financial time series, [7] traditional statistical models have difficulty predicting them with high precision. A time-weighted function was added to an LSTM neural network, and the results surpassed those of other models.	Our work has found that an attention-based LSTM has more predictive outcomes for price prediction than other methods. However, simply considering the impact of historical data on price trends is too singular and may not be able to fully and accurately forecast the price on a given day. Therefore, we can add data predictions related to stock-related news and basic information, so as to enhance the stability and accuracy of the model in the case of a major event.
12	An innovative neural network approach for stock market prediction (2018)	Deep long short-term memory neural network (LSTM) with embedded layer	Stock-relate d data tables	Accuracy between trained data and tested data	Traditional neural network algorithms may incorrectly predict the stock market, since the initial weight of the random selection problem can be easily prone to incorrect predictions	The text information in the stock market such as news is not fully utilized. So in the next step, we will consider adding text information factor to the model to further improve the performance.
13	Adaptive Stock Trading Strategies with Deep Reinforcement Learning Method (2020)	Reinforcement learning	Price open, close, high, low and volume of stocks	Technical indicator	Previous studies did not fully exploit the properties of financial data and had unstable returns in a volatile market. The financial data contains a large amount of noise, jump, and movement leading to the highly non stationary results	They haven't included the idea of portfolio management. Investment in a single stock has a limited profit margin and comparatively high risk. A good quantitative stock trading strategy needs to build portfolios of multiple stocks. Hence, our future work will focus on utilizing deep reinforcement learning methods in the portfolio management

14	Applying Long Short Term Memory Neural Networks for Predicting Stock Closing Price (2018)	Recurrent Neural Networks (RNN),Long short-term memory neural networks (LSTM)	Stock market historical trading data	Mean absolute error (MAE),root mean square error (RMSE), mean absolute percentage error (MAPE), average mean absolute percentage error (AMAPE)	Mining stock market trend is generally considered to be a both interesting and challenging task due to its uncertainty, nonlinear, dynamic, nonparametric, inherent noisy environment and nonlinear characteristics.	To achieve higher accuracy by using multiple ai models
15	A graph-based convolutional neural network stock price prediction with leading indicators (2020)	Stock sequence array convolutional neural network. (SSACNN)	Historical data of prices and two leading indexes, futures and options of stock	Plotting accuracy graphs and comparing results with other algorithms	Making an accurate prediction becomes a highly difficult task. A new convolutional novel neural network that can improve the prediction accuracy	The LSTM model might have more potential to get better performance than the CNN model.
16	A New Approach to Neural Network Based Stock Trading Strategy(2019)	Multilayer Perceptrons Neural Network(MLP NN)	Price open, close, high, low and volume of stocks	Technical indicator, as well as the profit earned.	In our approach we try to take into account the best features of all the three sources (machine learning, technical analysis and human factor) together to build a robust trading system.	Even the best model is only as good as the data it is trained on. In stock price prediction selection of the right input variables is a much more difficult problem than building and training the predictive model itself.
17	A Deep Neural-Networ k Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Parameters	Multilayer Perceptron (MLP)	Stock price between a given period	Moving Average Convergence and Divergence (MACD), Relative Strength Index (RSI), , Simple Moving Average (SMA)	Combining evolutionary optimized technical analysis indicators as features for a neural network based stock trading model has not been studied extensively.	We plan on combining more technical parameters and utilize Convolutional Neural Networks (CNN) or other deep neural network models.

	(2017)					
18	An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return (2019)	GNP (Genetic network programming)	Daily Final price, the maximum price, minimum price, and trading Volume	Technical analysis indicators	To increase the accuracy of prediction	Using a combination of technical indicators with more effective configuration
19	An Empirical Study on Importance of Modeling Parameters and Trading Volume-Based Features in Daily Stock Trading Using Neural Networks(201 8)	Multilayer Perceptron (MLP)	Price and volume information	Accuracy of prediction and the trading profit.	Studies attempted to extract input features mostly from the price information with little focus on the trading volume information. We generated input variables by considering both price and volume information with even weight.	Investigation of more complicated indicators that can be derived from either price of volume data. In addition, we will apply our method to the prediction of other financial markets such as interest rate, exchange rate and cryptocurrency.
20	A Comparative Study of A Recurrent Neural Network and Support Vector Machine for Predicting Price Movements of Stocks of Different Volatilities (2019)	Long short-term memory (LSTM) and support vector machines (SVM)	Basic stock trading information, i.e. daily open, close, high, low prices, volume, amount and daily change	Accuracy between trained data and tested data	Existing systems focus on improving the ai modesl. In this paper various data pre-processing techniques including the principal component analysis are utilized to enhance their overall performance.	LSTM has proven to be more accurate than SVM.Scope for future work would be o improve upon the existing LSTM model

	8			•	Scope for future
Paper and vear	Used	being used	Measure		work
year					

The application research of Neural Network and BP Algorithm in Stock Price Pattern Classification and Prediction (2020)	neural network	data for 5 consecutive days)	deep learning fuzzy algorithm and under the prediction of the BP algorithm	deviation between the stock price and the price, which is mainly affected by the relationship between supply and demand.	In the next step, research of more stock technical indicators are improved and find out the relationship between indicators and prediction accuracy. Further, improve the prediction accuracy of the law. In the process of forecasting the stock price with the help of a neural network system, this study is only in an ideal state. It does not consider other external factors such as economic development momentum, government policy factors, other emergencies and so on. In fact, in a certain period, these external factors have a great impact on the stock price
automated trading in equity stock markets	algorithm of Reinforcement Learning to find optimal dynamic	from the Indian and American	Drawdown (%) Standard Deviation (%) Sharpe Ratio (%)	Indian and the American Equity	In future, these models can use for other frequency datasets such as hourly dataset.

23	Genetic	a hybrid	Korea Stock	The derived result	First, we did not	To prevent these
	Algorithm-Opt	1 *			take into	problems, learning
	imized Long	integrating	(KOSPI)		consideration the	r · · ·
	Short-Term	long	data.	LSTM network is		neural network
	Memory	short-term			~	should be properly
	Network for	memory		,	the analysis, and	selected, thus, further
		(LSTM)			•	research can be
	Prediction	network and		error (MSE),	the value of stock	
	(2018)	genetic		\ //		optimize various
	(2018)	algorithm		error (MAE), and		other
		(GA)		the mean absolute		hyperparameters in
		(3/1)		percentage error		LSTM networks. In
				(MAPE) of the		addition, when it also
				` ′	is necessary to	comes to setting
				_	consider the	control parameters of
				1	trading	GA, like the
				· ·		crossover rate and
				*	higher returns,	mutation rate, many
				model. One form	•	suitable
				of statistical	good topic for	combinations can be
					further	derived that can
				,	discussion.	improve the
				been conducted to		performance of
				investigate	study is	research
				whether	conducted using	1 0 0 0 W 1 0 11
				GA-LSTM	only Korean	
				outperforms the	stock market	
				benchmark	data. Therefore,	
				significantly	further research	
				8	can include data	
					from various	
					stock markets.	
					Third, as	
					mentioned earlier,	
					the decision	
					output of LSTM	
					network is not	
					easy to	
					comprehend	
					Tompronona	

	_		_		l	
24		1	uses the	A self-developed		A future study can be
	_	_		program was used		enriched by the
	-			for the analysis in		studies presented in
	•	(PMTS) based		Phase 2 with daily	efficient	this paper. An
		,	data.	10-min time	investment	interesting extension
	Dynamic Time	time warping		series data. For	strategies with the	to the current study
	Warping	algorithm that		pattern matching	PMTS, the	would include
	Algorithm	recognizes		of daily market	financial markets	empirical studies
	(2018)	patterns of		data by the	are less likely to	using a more
		market data		dynamic time	be efficient.	sophisticated DWP
		movement in		warping		algorithm, such as
		the morning		algorithm, two		the deepening
		and determines		sets of 27 fixed		dynamic time
		the afternoon's		patterns and 13		warping (DDTW)
		clearing		fixed patterns are		algorithm or the
		strategy		used as input data		segmented dynamic
						time warping
						(SDTW) algorithm or
						the cluster generative
						statistical dynamic
						time warping
						(CSDTW) algorithm,
						from which better
						results a

25	Predict Stock	ML algorithms	Data from	Time series-based	The problem here	The analysis part can
23	L	_			is that prediction	
	Behavior: Role	(LIC, LOSIC,	realtime			EML which is a
	of Machine	D1 cic)				correct combination
	Learning					of all predictive
	Algorithms					models in order to
	(2019)					make a good decision
	(2019)				1 * *	better. This forms the
				*	_	basis for subsequent
					tells us the move	
						research stages
				to study how a		would be the design
				time series moves		of the functional
						prototype, the design
				application of	_	of EML algorithms,
						comparative analysis
					ľ	of EML algorithms
				models to predict		on the common
				_		benchmark platform
				_		based on the certain
					r	technical indicators
						and performance
					l *	evaluation, which
					long-term	can be done in near
					investments, but	future.
					every 1% of	
					precision	
					improvement in	
					prediction is very	
					difficult to predict	
26	Stock price	ANN,SVM,RF	The data	The closing price	Due to the use of	Researchers are
	prediction	,		of iShares MSCI		
	using DEEP		study			consider the role of
	learning					other factors in future
	algorithm and					studies and compare
	its comparison		_	2015 to June 2018		the results obtained
	with machine				<u> </u>	with the results of
	learning		MSCI	_	<u> </u>	this study.
	algorithms			on the	nice in Congued,	Julio Staaj.
	(2019)			Jarque–Bera test,		
			_	these data do not		
				have a normal		
				distribution		
Ь						

27	Predicting the	time series	Various	Waatudy	A commorative	In the future this
	-			•		In the future, this
	Unpredictable:		1.1		_	research would help
	An Application			technical analysis		to improve the
			•	•	~	efficiency and
	•	algorithms		•	1 2	accuracy of
	U	such as the	methodologi		future stock	prediction. Deep
						learning classifiers
	Market	network	and	analysis starts	found that Long	would also be
	(2019)	(ANN)	efficiency	with stock charts,	short Memory	analysed in the future
	, ,		with the help	as all relevant	Neural network	to predict and gain
			of	information is	(LSTM NN)	the maximum benefit
			visualisation.	included in stock	producing better	from the stock
				prices In	results as	market.
				fundamental	compared to other	
				analysis, analysis	techniques.	
				starts with the		
				company's		
				financial		
				statements like		
				income, balance		
				sheet, and cash		
				flow statement		

28	Automated	trading	These raw	studies of	As financial	In future, for the
	trading systems	systems built	data may	technical	market is heavily	purpose of data
	statistical and	using various	include	analysis-based	correlated with	safety, techniques
	machine	methods and	fine-grained	trading systems,	various sources of	such as network
	learning	empirically	data that	and we consider	information, a	encryption security
	methods and	evaluate the	contain	classical methods	research direction	should therefore be
	hardware	methods by	extremely	based on recent	lies on the system	further explored and
	implementation	grouping them	detailed	findings and	fusion for	exploited.
	: a survey	into three	information	highlight the	multi-information	
	(2018)	types:	about orders	application of	processing. An	
		technical	being	machine learning	integrated EIS is	
		analyses,	handled by	algorithms.	aimed at fulfilling	
			the exchange		the intelligent	
		analyses and	(Kearns and	fundamental	decision-making	
		high-frequency		•	with as much as	
		trading.	/ /	<i>C</i> 3	possible useful	
			these data	and we emphasize	information taken	
				3	into	
					consideration. In	
			· ·	analysis since	order to meet the	
			1 0,		real-time trade	
			J 27	influential news	demand,	
			highest, and	information is	dedicated	
			lowest prices	transmitted in the	hardware is to be	
			and	form of a text	implemented to	
			transaction	data stream.	ensure	
			volumes		accelerated	
			over a		computation and	
			certain time		secure	
			window.		communication in	
					a real-time	
					manner.	

29	Evaluation of	There are two	This article	First is for	it can be easily	It is concluded that
	Pattern Based	common	learns the	Next-Day model	seen that fewer,	stock technical
	Customized	methods to	model from	in which 50%	more appropriate	indicators are very
	Approach for	predict stock	Indian	accuracy was	and stable	effective and
	Stock Market	market prices,	National	obtained and	indicators are	efficient features
	Trend	first one is	Stock	second was a	obtained, and	without any
	Prediction	technical	Exchange	Long-term model	they produce	sentiment data in
	With Big Data	analysis and	(NSE) data	in which 79%	better prediction	predicting short-term
	and Machine	the second one	obtained	accuracy was	accuracy than the	stock trend as per
	Learning	is fundamental	from Yahoo	obtained overall.	full feature space	trend Deterministic
	Techniques	value analysis.	API to	Logistic	(Pehliyanit et al.,	Data Preparation
	(2019)		forecast	Regression, SVM,	2016). By	Layer proposed by
		are introduced	stock prices	Gaussian	considering	(Patel et al., 2015)
		as part of the	and targets	Discriminant	various patterns	paper exploits
		research. First		, ,	like continuous	inherent opinion of
		1 -	profit over	Quadratic	up/down, volume	each of the technical
		r -	time.	Discriminant	traded per day	indicators About
		model		Analysis were	and also	stock price
		considers both		* *	including	movement.
		sentiment and		of the data was	sentiment of the	
		historical data		used as a training	company a model	
		which		data and	has been built and	
		forecasts the			tested with	
		trend for next		\mathcal{L}	different stock	
		day. The		· · · · · · · · · · · · · · · · · · ·	market data	
		second model			available open	
		is monthly		was obtained by	source as shown	
		prediction			in (Nayak et al.,	
		model			2016).	
		considers only				
		historical data				
		(Nayak et al.,				
		2016).				

30	Dynamic	A dynamic	The input	Representative	According to the	The empirical results
30	1 *	1 *	1 ^	_ ^	_	prove that XGBoost
		1 2 2		selected in seven	1	μ Ι
					· · · · · · · · · · · · · · · · · · ·	model is effective in
	Stock Selection			categories:	weights of factors	r – 1
	Strategy Based			Ť -	1	coefficients and the
				quality, size,	1 -	dynamic weighting
			of factors	growth, liquidity,	, ,	based on XGBoost
	Learning		and market	valuation,	_	model can improve
	Algorithm				I	the performance of
	(2018)		1 1 /	reversal.	·	multi-factor stock
				Illiquidity factor	invalid factor will	selection strategy.
		method is used	alternative	is average value	be given a lower	
		to predict the	stock pools	of the absolute	weight.	
		IC coefficients	are	value of the daily		
		of factors	constituent	price change		
			stocks of	divided by the		
			CSI 300	amount of the		
			Index and	trading during a		
			CSI 500	period of time.		
			Index. The	ILLIQ reflects the		
			in-sample	volatility of the		
			training data	securities price		
			is the	under the unit		
			historical	turnover. If the		
			data from	ILLIQ is small,		
			January	the impact of		
			2007 to	securities trading		
			December	on the price is		
			2013, and	small, and the		
			the	liquidity of stock		
				is good. On the		
			_	contrary, if the		
				ILLIQ is large,		
			data from	the liquidity is		
			January	worse.		
			2014 to			
			August			
			2018.			
<u></u>						

Existing Systems:

The accuracy of most existing systems is around 60 percent. The existing systems that are used to predict and forecast the stock market rely solely on one Machine-Learning Algorithm. The same algorithm is used for short-term and long-term prediction. The existing systems only cater to those who have good in-depth knowledge about the working of the stock market. They display the predictions in terms of technical indicators, which are not understood by a common man. Most of

the existing systems are paid.

Gap identified:

- 1. The accuracy of most existing systems is around 60 percent. Our project aims to increase this accuracy by using an aggregation of multiple algorithms.
- 2. Relying on a single algorithm can give wrong results depending on the scenario. This occurs as each algorithm has its own pros and cons. Our project relies on multiple algorithms, thereby making up for the deficiencies of each other.
- 3. Most of the existing works have used the same algorithm for all scenarios (both long-term and short-term). This is a big flaw as short-term prediction requires you to see the recent trends, and long-term prediction requires you to see the past trends. Thus our project will be using different algorithms for long-term and short-term.
- 4. Existing systems cater only to those who have a good knowledge about the working of the stock market, by using technical indicators. Our project can be used by anyone as it gives a simple percentage of success of a stock, which can be understood by anyone, thereby being very user-friendly.
- 5. The need for an easy to use, free and AI assisted stock trading platform to increase successful trades, in both long-term and short-term perspectives.

Analysis of models:

In our project, we will be using multiple AI models, so that the predictions are more accurate and less reliant on one single algorithm. We will be using different algorithms depending on whether the customer would prefer making long-term or short-term investments.

1. LSTM:

Neural network: information processing paradigm inspired by biological nervous systems, such as our brain.

Humans don't start their thinking from scratch every second. Your thoughts have persistence. Traditional neural networks can't do this.

Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.

An unrolled recurrent neural network.

One of the appeals of RNNs is the idea that they might be able to connect previous information to the present task.But although RNNs are able to use past information,they are incapable of handling "long-term dependencies."RNN is very useful for short term dependencies.

Long Short Term Memory networks:

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information for long periods of time is their default behavior.

LSTMs also have this chain-like structure, but the repeating module has a different structure. Instead of having a single neural network layer, there are four, interacting in a very special way.

The repeating module in an LSTM contains four interacting layers.

The LSTM does have the ability to remove or add information to the cell state, carefully regulated by structures called gates. Thus we are able to select the information that is required for the particular scenario.

The first step in our LSTM is to decide what information we're going to throw away from the cell state. This decision is made by a sigmoid layer called the "forget gate layer." It looks at ht-1 and xt, and outputs a number between 0 and 1 for each number in the cell state Ct-1. A 1 represents "completely keep this" while a 0 represents "completely get rid of this."

The next step is to decide what new information we're going to store in the cell state. This has two parts. First, a sigmoid layer called the "input gate layer" decides which values we'll update. Next, a tanh layer creates a vector of new candidate values, C~t, that could be added to the state. In the next step, we'll combine these two to create an update to the state

We multiply the old state by ft, forgetting the things we decided to forget earlier. Then we add it*C~t. This is the new candidate values, scaled by how much we decided to update each state value.

Finally, we need to decide what we're going to output. This output will be based on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell state we're going to output. Then, we put the cell state through tanh (to push the

values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

2. SVR:

Support vector Regression (SVR) is the combination of a Support Vector Machine and regression. SVR is used for working with continuous values instead of Classification which is used in SVMs.

Key terms used in the implementation of SVR:

- a. **Kernel**: The function used to map a lower dimensional data into a higher dimensional data.
- a. **Hyper Plane**: In SVM this is basically the separation line between the data classes. Although in SVR we are going to define it as the line that will will help us predict the continuous value or target value
- b. **Boundary line**: In SVM there are two lines other than Hyper Plane which creates a margin . The support vectors can be on the Boundary lines or outside it. This boundary line separates the two classes. In SVR the concept is the same.
- c. **Support vectors**: These are the data points which are closest to the boundary. The distance of the points is minimum or least.

blue line->hyperplane, red lines-> boundary lines

Let's suppose the red lines are at a distance +epsilon and -epsilon (+e and -e for ease).

Equation of hyperplane is wx+b=f(x)

where w->weight vector, c->bias, f(x)->SVR function

Equations of the boundary lines are:

$$wx+b=(+)e+y$$

$$wx+b=(-)e+y$$

which gives us the constraints

y-wx-b≲e

wx+b-y≲e

Here, y is the target value

· Solution:

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$

$$y_i - wx_i - b \le \varepsilon$$

$$wx_i + b - y_i \le \varepsilon$$

This is possible only when $|f(x)-y| \le e$

But, when the training data is not linearly separable, slack variables ξ + and ξ -.

Thus the decision boundary is our Margin of tolerance that is We are going to take only those points who are within this boundary.

Or in simple terms that we are going to take only those points which have the least error rate. Thus giving us a better fitting model.

Proposed Methodology:

In the scenario of stocks, trends of the stocks can repeat but the stock price may never repeat itself. In our algorithm, rather than predicting the stock price itself based on past values, we take into consideration the stock trends of the past and use it to predict the future. This stock trend is obtained by using the <u>delta function</u>. We take the delta of everyday and input it into our data-set. Therefore, the output given by our algorithm is also in terms of delta. To obtain the final result we add this delta value to the existing stock price of the previous day.

We have found this method to be far more superior than taking previous stock values as input to predict future values. The reason being, the future stock values depend only on the trends and not the past value itself. With this innovation we were able to increase the accuracy of our prediction significantly.

```
for i in range(len(stk_data)):
    if(i>0):
        stk_data['delta'][i] = (stk_data['VWAP'][i] - stk_data['VWAP'][i-1])/stk_data['VWAP'][i-1]
    else:
        stk_data['delta'][i] = 0
```

In our project, after taking the delta as inputs, we train two different models: SVR and LSTM. By training two different models, we get results based on two different approaches which further enhances the likeliness of an outcome. The drawbacks of one model are made up by the other. Thus, we don't rely heavily on a single model, which increases the safety of our predictions.

The results of multiple researchers show that nonlinear systems performed better than linear ones, and two-model systems performed better than single-model ones. Generally, models that relied on predictions from more than one algorithm had better accuracy in predicting the future stock prices. Hence, we have come up with a two-model prediction system for predicting stock price movements.

Screenshots:

HOME PAGE

TCS STOCK PREDICTION:

INFY STOCK PREDICTION:

DEPOSIT PAGE:

TRADES PAGE:

PORTFOLIO PAGE:

Code:

LSTM MODEL:

```
sc = StandardScaler()
training set scaled = sc.fit transform(train set)
X train = []
y train = []
   X train.append(training set scaled[i-input days:i, 0])
   y train.append(training set scaled[i, 0])
X train, y train = np.array(X train), np.array(y train)
X train = np.reshape(X train, (X train.shape[0], X train.shape[1], 1))
regressor = Sequential()
regressor.add(LSTM(units = 50, return sequences = True, input shape =
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
regressor.add(Dense(units = 1))
checkpoint filepath = 'LSTM Pickled/checkpoint/'+symbol + '/'+symbol +' lstm'
regressor.compile(optimizer = 'adam', loss = 'mean squared error',
model checkpoint callback = tf.keras.callbacks.ModelCheckpoint(
regressor.fit(X train, y train, epochs =
print("Modelf it")
regressor.load weights(checkpoint filepath)
print("Model save")
```

SVR MODEL:

```
sc = StandardScaler()
training_set_scaled = sc.fit_transform(train_set)
X_train = []
y_train = []

for i in range(input_days, len(training_set_scaled)):
    X_train.append(training_set_scaled[i - input_days:i, 0])
    y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)

# Defining the LSTM Recurrent Model
regressor = svm.SVR(kernel='rbf', C=1000.0, gamma=0.1) # svm.SVR()
regressor.fit(X_train, y_train)
filename = 'finalized_model_' + symbol + '.sav'
pickle.dump(regressor, open(filename, 'wb'))
```

AUTOMATED ASSISTANT:

```
def get_ltp(symbol):
    ticker = yf.Ticker(symbol + ".NS")
    todays_data = ticker.history(period='ld')
    return todays_data['Close'][0]

def execute_trade(user, stock, amount, quantity, type, is_open, open_price,
    target, trailing_sl):
    trade = Trade(user = user, stock = stock, amount = amount, quantity = quantity,
    type = type, is_open = is_open, open_price = open_price, target = target,
    trailing_sl = trailing_sl, date = datetime.now())
    trade.save()
    return True

def create_trade_for_users(symbol, type, cmp, target, trailing_sl):
    user_ids = User.objects.values_list('id', flat=True)
    for user in user_ids:
        user_instance = User.objects.filter(id=user).first()
        open_trade=

Trade.objects.filter(user=user_instance).filter(stock=symbol).filter(is_open=True)
.count()
    wallet = Wallet.objects.filter(user=user).first()
    if wallet is not None and wallet.balance >= 100 and not open_trade:
        execute_trade(user_instance, symbol, 100, 100/cmp, type, True, cmp,
target, trailing_sl)
    wallet.balance = wallet.balance - 100
```

```
def buy or sell(cmp, max1, max2, min1, min2, symbol):
  max percentage *= 100
  min percentage *= 100
       create trade for users(symbol, "buy", cmp, (max1 + max2)/2, 0.98*cmp)
  elif(min percentage >= 8 and max(min1, min2) <= 0.98*cmp): #Worthy of sell</pre>
       create trade for users(symbol, "sell", cmp, (min1 + min2)/2, 1.02*cmp)
def perform predictions():
      cmp = get ltp(symbol)
      lstm max = max(lstm pred)
def update trades():
      print("Updating " + symbol + " - all trades")
      cmp = get ltp(symbol)
       if stock.first() is not None:
       if trades.first() is not None:
                       trade.is open = False
```

Dataset Description and Sample Data:

In our project, we will be fetching data real-time from APIs such as NSE. Our dataset will include the description of each stock like symbol, date, open, high, low, close, volume and volume weighted average price (VWAP). For prediction purposes, we are only using VWAP.

Sample code to fetch the data:

Sample Data:

-										
	Symbol	Series	Prev Close	0pen	High	Low	Last	Close	VWAP	Volume
Date										
2021-03-01	RELIANCE	EQ	2085.80	2110.20	2112.00	2062.50	2103.00	2101.70	2092.87	8159670
2021-03-02	RELIANCE	EQ	2101.70	2122.00	2130.00	2089.10	2108.00	2106.00	2107.78	7915073
2021-03-03	RELIANCE	EQ	2106.00	2121.05	2219.90	2107.20	2207.10	2202.10	2161.54	14733134
2021-03-04	RELIANCE	EQ	2202.10	2180.00	2189.95	2157.70	2174.00	2175.85	2175.57	9892597
2021-03-05	RELIANCE	EQ	2175.85	2156.00	2211.95	2153.05	2174.55	2178.70	2184.35	11773630
2021-03-08	RELIANCE	EQ	2178.70	2168.50	2231.90	2168.00	2193.00	2191.10	2205.66	9002404
2021-03-09	RELIANCE	EQ	2191.10	2200.00	2213.80	2146.60	2190.55	2191.05	2181.47	6993792
2021-03-10	RELIANCE	EQ	2191.05	2207.00	2215.10	2170.25	2179.40	2181.95	2187.67	5316182

CONCLUSION:

Machine learning as we have seen till now, is a very powerful tool and as evitable, it has some great applications. We have seen till now that machine learning is very much dependent upon data. Thus it is important to understand that data is quite invaluable and as simple as it may sound, data analysis is not an easy task. Machine learning has found tremendous application and has evolved further into deep learning and neural networks, but the core idea is more or less the same for all of them.

We have successfully implemented a two model prediction algorithm, which accurately predicts the stock price for the majority of the stocks. In the future, the LSTM model can be further improved by increasing the number of epochs. Due to the time constraint, in our project, we have taken 200 epochs. As this is a neural network, more epochs will result in a better prediction. Further improvements, like the loading time (time taken for prediction is 10 seconds), can be reduced in the future. Our project currently predicts the next 30 days. This can be improved in the future.