Experimento 1

Yan Tavares de Oliveira 202014323

Questão 1

a)

O teorema de De Morgan diz que $\overline{x+y}=\overline{x}\cdot\overline{y}$. Por outro lado, sabemos que $\overline{x}=x$. Portanto, $\overline{x+y}=x\cdot y$.

Expressão

Circuito

x	y	z
0	0	0
0	1	0
1	0	0
1	1	1

b)

O teorema de De Morgan diz que $\overline{a \cdot b} = \overline{a} + \overline{b}$. Por outro lado, sabemos que $\overline{a} = a$. Portanto, $\overline{a \cdot b} = a + b$.

Expressão

Circuito

a	b	X
0	0	0
0	1	1
1	0	1
1	1	1

Questão 2

a)

Expressão

Circuito

a	b	c	t
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
		,	•

b)

Circuito

Expressão

0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1	0 0 1	
0 1	1	
0	1	
	. 0	
	0 0	$ \begin{array}{c cccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} $

Questão 3

Sabemos que, graças ao Teorema de Morgan, é possível escrever qualquer circuito lógico utilizando portas NAND ou NOR. Portanto, podemos escrever os circuitos do item 2 como

a)

Expressão

Circuito

		t
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 1 1 0 0	0 1 1 0 1 1 0 0 0 1 1 0

b)

Circuito

Expressão

Tabela verdade

a	b	c	s
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Questão 4

Expressão

Circuito

Tabela verdade

A tabela verdade será apresentada nas próximas páginas devido à sua grande extensão

d0	d1	d2	d3	s0	s1	y
0	0	0	0	0	0	0
0	0	0	0	0	1	0
0	0	0	0	1	0	0
0	0	0	0	1	1	0
0	0	0	1	0	0	0
0	0	0	1	0	1	0
0	0	0	1	1	0	0
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	0	0	1	1
0	0	1	0	1	0	0
0	0 0	1 1	0 1	1 0	1 0	0
0	0	1	1	0	1	0
0	0	1	1	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	0	0	1	0
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	0	0
0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	0	1	1
0	1	1	0	1	0	1
0	1	1	0	1	1	0
0	1	1	1	0	0	0
0	1	1	1	0	1	1
0	1	1	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1 1	0 0	0 0	0 0	0 1	1 0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	1
1	0	0	1	0	1	0
1	0	0	1	1	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	1
1	0	1	0	0	1	1
1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	1
1	0	1	1	0	1	1

1	0	1	1	1	0	0
1	0	1	1	1	1	1
1	1	0	0	0	0	1
1	1	0	0	0	1	0
1	1	0	0	1	0	1
1	1	0	0	1	1	0
1	1	0	1	0	0	1
1	1	0	1	0	1	0
1	1	0	1	1	0	1
1	1	0	1	1	1	1
1	1	1	0	0	0	1
1	1	1	0	0	1	1
1	1	1	0	1	0	1
1	1	1	0	1	1	0
1	1	1	1	0	0	1
1	1	1	1	0	1	1
1	1	1	1	1	0	1
1	1	1	1	1	1	1