Introdução à Programação

Aula Prática 3

Licenciatura em Engenharia Informática FCT/UNL http://ctp.di.fct.unl.pt/lei/ip/ 2021/2022

Aula Prática #3

Problema Mooshak D Robots em Manhattan

Descrição

- Num projeto conjunto internacional, o Departamento de Engenharia Eletrotécnica e de Computadores (DEEC) e o Departamento de Informática (DI) da FCT estão a desenvolver robots capazes de navegar pelas ruas de Manhattan.
- Como as ruas de Manhattan estão dispostas numa grelha, é comum a navegação ser feita através das interseções das ruas (horizontais e verticais). Os robots irão seguir esse modelo de navegação.
- Assim sendo, numa dada interseção de 2 ruas, um robot pode deslocar-se para Norte, Sul, Este ou Oeste, uma certa distância D, até à próxima interseção.
- Um robot sabe sempre a sua posição na cidade e também sabe qual a distância total percorrida.

Descrição

- •Os robots estão equipados com um sistema de marcação de **pontos de interesse**, que armazena as coordenadas de uma localização (um cruzamento de duas ruas) e permite em qualquer instante saber a distância, de acordo com a forma de navegar em Manhattan, da posição atual do robot ao último ponto de interesse armazenado.
- A distância entre duas localizações, usando o modelo de navegação em grelha descrito, também conhecida como a distância de Manhattan (ou d₁), é a soma dos valores absolutos das diferenças entre as suas coordenadas (x e y):

$$d_1(p,q) = |p_x - q_x| + |p_y - q_y|$$

Descrição

 A distância entre duas localizações, usando o modelo de navegação em grelha descrito, também conhecida como a distância de Manhattan (ou d₁), é a soma dos valores absolutos das diferenças entre as suas coordenadas (x e y):

$$d_1(p,q) = |p_x - q_x| + |p_y - q_y|$$

Problema:

-Implementar uma aplicação de controlo de dois robots em Manhattan.

Input:

- –O input começa com duas linhas, cada uma com dois números inteiros positivos, x e y, que definem a posição inicial de cada robot. A posição inicial é um ponto de interesse do robot. Inicialmente, os robots estão orientados para Norte.
- –Seguem-se 5 linhas, cada uma com um comando. Um comando é constituído por uma palavra em maiúsculas, seguida dos argumentos do comando, separados por um espaço. A execução de um comando pode ou não produzir uma mensagem para o utilizador.
- Assuma que o input está bem formado.

Comandos

- MV N K (N é 1 ou 2, K é um valor inteiro positivo)
 Move o N-ésimo robot, K unidades na sua direção atual.
 Não produz qualquer mensagem.
- MD N D (N é 1 ou 2, D é um dos caracteres N, S, E, O)
 Muda a direção do N-ésimo robot para Norte, Sul, Este ou Oeste. Não produz qualquer mensagem.
- PIN (Né1ou2)
 - Marca a posição atual do N-ésimo robot como um ponto de interesse. Não produz qualquer mensagem.

Comandos

• LP N (N é 1 ou 2)

Imprime uma linha com dois números inteiros, P_x P_y, separados por um espaço, correspondendo às coordenadas da posição atual do N-ésimo robot.

• LDT N (N é 1 ou 2)

Imprime uma linha com um número inteiro D, a distância total percorrida pelo N-ésimo robot.

■ LDPI N (N é 1 ou 2)

Imprime uma linha com um número inteiro D, a distância do N-ésimo robot ao seu último ponto de interesse.

Comandos

DTMAX

Imprime a mensagem "ROBOT 1" (sem aspas) se o primeiro robot percorreu uma distância total superior à distância total percorrida pelo segundo robot, "ROBOT 2" (sem aspas) se o segundo robot percorreu uma distância total superior, ou "EMPATE" se ambos percorreram a mesma distância.

Exemplo

Input: 0 0 1 0 LP 1 LP 2 LDPI 1 LDPI 2 DTMAX

Output:

EMPATE

Os robots não se mexeram e o último ponto de interesse de cada robot é a sua posição inicial.

Exemplo

Input:

0 0

10 10

MV 1 10

LP 1

MD 1 E

MV 1 10

LP 1

Output:

0 10

10 10

O Robot 1 anda inicialmente para Norte (porque é a direção inicial dos robots).

Exemplo

Input: 2 2 2 0 MV 1 7 MD 1 0 MV 1 20 LDPI 1 LDT 1

Output:

27

27

A distância de Manhattan ao ponto de interesse é 27, que coincide com a distância total percorrida pelo Robot 1.

Exemplo

Input:

0 1

2 3

MV 1 5

MV 2 3

DTMAX

MV 2 2

DTMAX

Output:

ROBOT 1

EMPATE

Nos primeiros movimentos, os robots deslocam-se, respetivamente, 5 e 3 unidades. Portanto, o Robot 1 percorre uma maior distância. Depois, o Robot 2 anda 2 unidades adicionais e a distância total percorrida de ambos é a mesma.

Exemplos

Input:	Input:	Input:
0 1	100 23	100 23
2 3	99 1	99 1
MV 1 5	MD 2 S	MV 2 1
DTMAX	MV 2 1	PI 2
MV 2 6	PI 2	MV 2 10
DTMAX	LDPI 1	LDPI 1
LDT 1	LDPI 2	LDPI 2
Output:	Output:	Output:
ROBOT 1	0	0
ROBOT 2	0	10
5		

Esqueleto da Classe Robot

```
public class Robot {
   public static final String NORTH = "N";
    public static final String SOUTH = "S";
    //...
   private int currentX, currentY;
   private String currentHeading;
   private int totalDistance;
   private int markedX, markedY;
   public Robot(int initX, int initY) {...}
   public int getXPos() {...}
   public int getYPos() {...}
   public int getTotalDistance() {...}
   public int getPIDistance() {...}
   public void move(int distance) {...}
   public void setHeading(String heading) {...}
   public void mark() {...}
```

Robots em Manhattan - Desafio (E)

Duas formas de comando adicionais:

DR

Imprime uma linha com um número inteiro D, a distância de Manhattan entre os dois robots.

• LMV

Imprime a mensagem "ROBOT 1" (sem aspas) se o primeiro robot foi o que percorreu a maior distância num único movimento, "ROBOT 2" (sem aspas) se o segundo robot foi o que percorreu a maior distância num único movimento ou "EMPATE" (sem aspas) em caso de empate.

Robots em Manhattan - Desafio (E)

Exemplos

Input:

10 0

0 10

DR

MV 1 5

DR

MV 2 5

LMV

Output:

20

15

EMPATE

Inicialmente os robots estão a 20 unidades de distância entre si. O Robot 1 desloca-se 5 unidades para Norte, ficando os robots a 15 unidades de distância entre si. O Robot 2 desloca-se 5 unidades para Norte e, portanto, nenhum robot percorreu mais distância que o outro num único movimento.

Robots em Manhattan - Desafio (E)

Exemplos

Input: 0 250 0 0 DR MV 2 250 DR MV 1 100 DR	Input: 0 0 0 0 MV 1 5 MV 2 10 MV 1 5 LMV DTMAX
Output: 250 0 100	Output: ROBOT 2 EMPATE

Mooshak

- O exercício está aberto no Mooshak com a letra D.
- O desafio está aberto no Mooshak com a letra E.
- Ambos encerram às 10h do dia 28 de Outubro.
- Submeta um ZIP (por problema) que contém apenas os ficheiros .java que tiver definido para resolver o problema.
- Cada ZIP tem necessariamente de conter um ficheiro Main.java (com o método main).