EOPSY MEMORY MANAGEMENT

SEBASTIAN GRZELAK

General idea:

The aim of the laboratory task was to configure and run a memory management simulator. We had to edit two files "commands" and "memory.conf" by setting a proper configuration. We observed the results in a file named "traceline" and on a graphical simulator which allowed to watched memory mapping in real time.

The task was to map any 8 pages of physical memory to the first 8 pages of virtual memory. In real world physical memory addresses are not mapped in the same addresses as in virtual memory it means that such a simulation gives as more realistic scenario. Then the case was to read each of the 64 virutal pages from one vifrual memory address and try to find out which virtual memory addresses will cause page faults. Additional question was, which kind of replacement algorithm was used in this simulation.

Files configuration:

memory.conf
memset 0 1 0 0 0 0
memset 1 5 0 0 0 0
memset 2 8 0 0 0 0
memset 3 14 0 0 0 0
memset 4 17 0 0 0 0
memset 5 23 0 0 0 0
memset 6 26 0 0 0 0
memset 7 27 0 0 0 0
enable_logging true
log_file//tracefile
pagesize 16384
addressradix 10
numpages 64

Parameters description:

Keyword	Description
memset	peforms mapping between virtual page and physical page
enable_logging	'true' or 'false' turn on / off logs
log_file	path to log file and name
pagesize	Page size, default 2^14 and cannot be greater than 2^26
addressradix	Sets the radix in which numerical values are displayed
numpages	Sets number of pages (physical and virtual)

In my case the **pagesize** is **16384** and this is important information for proper configuration "commands" file.

In "commands" file we set addresses of each virtual page that we will be read. Because the size of page is **16384** address of each page will be (**16384** *i) where i = 0,1,2...63.

commands					
READ 0	READ 360448	READ 720896			
READ 16384	READ 376832	READ 737280			
READ 32768	READ 393216	READ 753664			
READ 49152	READ 409600	READ 770048			
READ 65536	READ 425984	READ 786432			
READ 81920	READ 442368	READ 802816			
READ 98304	READ 458752	READ 819200			
READ 114688	READ 475136	READ 835584			
READ 131072	READ 491520	READ 851968			
READ 147456	READ 507904	READ 868352			
READ 163840	READ 524288	READ 884736			
READ 180224	READ 540672	READ 901120			
READ 196608	READ 557056	READ 917504			
READ 212992	READ 573440	READ 933888			
READ 229376	READ 589824	READ 950272			
READ 245760	READ 606208	READ 966656			
READ 262144	READ 622592	READ 983040			
READ 278528	READ 638976	READ 999424			
READ 294912	READ 655360	READ 1015808			
READ 311296	READ 671744	READ 1032192			
READ 327680	READ 688128				
READ 344064	READ 704512				

My mapping:

Virutal Page	PhysicalPage
0	1
1	5
2	8
3	14
4	17
5	23
6	26
7	27

Because of the number of physical pages in simulation was 32 and the number of virtual memory pages was set by me to 64 the page fault can be observed. In case when the number of virtual memory pages and physical pages is equal the page fault would not be observe.

Predict page faults:

First page fault occurs when want to map virutal memory address to physical memory address but there is no more avaliable space in physical memory. It means that some of memoery address have to be swap to our external memory to make space for currently need it memory.

tracefile						
READ 0 okay	READ 344064 okay	READ 704512 page fault				
READ 16384 okay	READ 360448 okay	READ 720896 page fault				
READ 32768 okay	READ 376832 okay	READ 737280 page fault				
READ 49152 okay	READ 393216 okay	READ 753664 page fault				
READ 65536 okay	READ 409600 okay	READ 770048 page fault				
READ 81920 okay	READ 425984 okay	READ 786432 page fault				
READ 98304 okay	READ 442368 okay	READ 802816 page fault				
READ 114688 okay	READ 458752 okay	READ 819200 page fault				
READ 131072 okay	READ 475136 okay	READ 835584 page fault				
READ 147456 okay	READ 491520 okay	READ 851968 page fault				
READ 163840 okay	READ 507904 okay	READ 868352 page fault				
READ 180224 okay	READ 524288 page fault	READ 884736 page fault				
READ 196608 okay	READ 540672 page fault	READ 901120 page fault				
READ 212992 okay	READ 557056 page fault	READ 917504 page fault				
READ 229376 okay	READ 573440 page fault	READ 933888 page fault				
READ 245760 okay	READ 589824 page fault	READ 950272 page fault				
READ 262144 okay	READ 606208 page fault	READ 966656 page fault				
READ 278528 okay	READ 622592 page fault	READ 983040 page fault				
READ 294912 okay	READ 638976 page fault	READ 999424 page fault				
READ 311296 okay	READ 655360 page fault	READ 1015808 page fault				
READ 327680 okay	READ 671744 page fault	READ 1032192 page fault				
	READ 688128 page fault					

Finished simulation:

In this simulation was used FIFO algorithm which represents below image:

As the picture shows the FIFO algorithm work in such a way that the first added element to the queue is also the first element which is remove when it is necessary.

FIFO algorithm is not very efficient because it does not make a difference between pages frequently. Much better algorithm might be e.g. LRU or priority queue.