Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning

Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, Gao Huang Tsinghua University, Beijing, China

MOTIVATION

- Sample inefficiency remains a major limitation of RL for problems with continuous and high dimensional state spaces.
- Sample inefficiency makes learning in real physical systems impractical and severely prohibits the applicability of RL approaches in challenging scenarios.

Existing methods

- To learn the model of system dynamics.
- Applying off-policy training scheme to reuse past experience.

Our method

- RL is closely linked to fixed-point iteration: the optimal policy can be found by solving a fixed-point problem of Bellman operator.
- Anderson acceleration is a method capable of speeding up the computation of fixed point iterations.

METHOD

Anderson Acceleration for Policy Iteration

For a policy iteration, suppose that estimates have been computed up to iteration k, and that in addition to the current estimate Q^{π_k} , the m-1 previous estimates $Q^{\pi_{k-1}},..., Q^{\pi_{k-m+1}}$ are also known. Then, a linear combination of estimates Q^{π_i} with coefficients a_i reads

$$Q_{\alpha}^k = \sum_{i=1}^m \alpha_i Q^{\pi_{k-m+i}} \text{ with } \sum_{i=1}^m \alpha_i = 1.$$

We define combined Bellman operator \mathcal{T}_c as follows

$$\mathcal{T}_c Q_{\alpha}^k = \sum_{i=1}^m \alpha_i \mathcal{T} Q^{\pi_{k-m+i}}.$$

Then, one searches a vector α^k that minimizes the objective function defined as the combined Bellman residuals among the entire state-action space $\mathcal{S} \times \mathcal{T}$,

$$\alpha^{k} = \underset{\alpha \in \mathbb{R}^{m}}{\operatorname{argmin}} J(\alpha) = \underset{\alpha \in \mathbb{R}^{m}}{\operatorname{argmin}} \left\| \sum_{i=1}^{m} \alpha_{i} (\mathcal{T}Q^{\pi_{k-m+i}} - Q^{\pi_{k-m+i}}) \right\|, \text{ s.t. } \sum_{i=1}^{m} \alpha_{i} = 1.$$

Regularized variant with function approximation

Challenges

- Sweeping entire state-action space is intractable.
- Function approximation errors are unavoidable.
- The solution may suffer from ill-conditioning when the squared Bellman residuals matrix is rank-deficient.

Adding a regularization term to the objective function,

$$\widetilde{\alpha}^{k} = \underset{\alpha \in \mathbb{R}^{m}}{\operatorname{argmin}} \left\| \sum_{i=1}^{m} \alpha_{i} (\mathcal{T}Q^{\pi_{k-m+i}} - Q^{\pi_{k-m+i}} + e_{k-m+i}) \right\| + \lambda \|\alpha\|^{2}, \text{ s.t. } \sum_{i=1}^{m} \alpha_{i} = 1,$$

where e_{k-m+i} represents the perturbation induced by function approximation errors, λ controls the scale of regularization. The solution can be obtained analytically

$$\widetilde{\alpha}^{k} = \frac{(\widetilde{\Delta}_{k}^{T} \widetilde{\Delta}_{k} + \lambda I)^{-1} \mathbf{1}}{\mathbf{1}^{T} (\widetilde{\Delta}_{k}^{T} \widetilde{\Delta}_{k} + \lambda I)^{-1} \mathbf{1}}, \qquad \widetilde{\Delta}_{k} = [\widetilde{\delta}_{k-m+1}, ..., \widetilde{\delta}_{k}] \in \mathbb{R}^{N_{A} \times m}$$

$$\widetilde{\delta}_{i} = \mathcal{T} Q^{\pi_{i}} - Q^{\pi_{i}} + e_{i} \in \mathbb{R}^{N_{A}}$$

Proposition 1: Consider two identical PIs \mathcal{I}_1 and \mathcal{I}_2 with function approximation. \mathcal{I}_2 is implemented with RAA and takes into account approximation errors, whereas \mathcal{I}_1 is only implemented with vanilla Anderson acceleration. Let α^k and $\tilde{\alpha}^k$ be the coefficient vectors of \mathcal{I}_1 and \mathcal{I}_2 respectively. Then, we have the following bounds

$$\|\widetilde{\alpha}^k\| \leq \sqrt{\frac{\lambda + \|\widetilde{\Delta}_k\|^2}{m\lambda}}, \quad \|\widetilde{\alpha}^k - \alpha^k\| \leq \frac{\|\widetilde{\Delta}_k^T \widetilde{\Delta}_k - \Delta_k^T \Delta_k\| + \lambda}{\lambda} \|\alpha^k\|.$$

Regularized Anderson acceleration for actor-critic

Under the paradigm of off-policy deep RL (actor-critic), RAA variant of policy iteration degrades into the Bellman equation

RAA-Dueling-DQN:
$$Q_{\theta}(s_t, a_t) = \mathbb{E}_{s_{t+1}, r_t} \left[r_t + \gamma \sum_{i=1}^m \widetilde{\alpha}_i \max_{a_{t+1}} Q_{\theta^i}(s_{t+1}, a_{t+1}) \right],$$

RAA-TD3:
$$Q_{\theta}(s_t, a_t) = \mathbb{E}_{s_{t+1}, r_t} \left[r_t + \gamma \sum_{i=1}^m \widetilde{\alpha}_i \widehat{Q}_{\theta^i}(s_{t+1}, \pi_{\phi'}(s_{t+1}) + \epsilon) \right], \ \widehat{Q}_{\theta^i}(s_t, a_t) = \min_{j=1,2} Q_{\theta^i_j}(s_t, a_t).$$

EXPERIMENTS

Figure 1: Learning Curves of Dueling-DQN, TD3 and their RAA variants on discrete and continuous control tasks.

Figure 2: Sensitivity of RAA-Dueling-DQN to the scaling of regularization on discrete control tasks.

Figure 3: Learning Curves of RAA-TD3 on Walker2d-v2 with different m.

Performance comparison on Walker2d-v2 with different learning rates.