Métodos da Potência

Na aula passada vimos o Método da Potência **Regular**, o objetivo desta aula é continuar a apresentação de métodos da mesma família:

- 1. Método da Potência Inverso.
- 2. Método da Potência com deslocamento.

Método da Potência Inverso

Dada uma matriz A, o método regular encontra o autovalor dominante, ou seja, com maior valor absoluto. No método inverso, queremos encontrar o autovalor com menor valor absoluto (diferente de zero).

Dado o espectro da matriz abaixo:

$$\lambda(A) = \{\lambda_0, \dots, \lambda_k\}$$

O método da potência inverso acha o par (λ_n, x_n) . Assim como no caso regular, a multiplicidade algébrica de λ_n é igual a 1. Se isso não é verdade para a matriz A, o método vai falhar.

Como encontrar esse autovalor?

É simples, veja o desenvolvimento abaixo:

$$Ax_i = \lambda_i x_i$$

Encontrando a inversa de A (sabemos que tem, já que só aplicaremos o método para matrizes que não possuem autovalores nulos).

Multiplicando os dois lados por A^{-1} e dividindo por λ_i :

$$rac{1}{\lambda_i}A^{-1}Ax_i = rac{\lambda_i}{\lambda_i}A^{-1}x_i \implies A^{-1}x_i = rac{1}{\lambda_i}x_i \implies A^{-1}x_i = ar{\lambda_i}x_i$$

Pela as equações acima, temos que x_i é autovetor de A^{-1} correspondente ao autovalor $\bar{\lambda_i}$ que é o inverso do autovalor λ_i . Como λ_i era o menor em valor absoluto, seu inverso é o maior em valor absoluto.

Assim, podemos afirmar que $\frac{1}{\lambda_n}$ é autovalor dominante de A^{-1}

Encontrando o par (λ_n, x_n)

Temos duas opções para proceder.

- 1. Usamos o método da Potência Regular para a matriz inversa (A^{-1})
- Seguimos com um método ligeiramente diferente, construído a partir de pequenas modificações do método da potência regular.

Como o caso 1 é trivial pelo que já demonstramos, vamos seguir apenas com o segundo.

Algoritmo

PS: Um pseudocódigo mais formalizado está nas **notas de aula do professor**, lembando em consideração normalização, erros e convergência.

- 1. Escolha um vetor v_0 qualquer como chute inicial.
- 2. No método passado, para calcular o novo v_k , apenas aplicaríamos a matriz A em v_{k-1} . Agora, chamaremos um método novo solverLU $(A,(v_{k-1}))$. Isso seria o mesmo que fazer $A^{-1}(v_{k-1})$

O resto se mantém igual.

Método da Potência com deslocamento

Dada uma matriz A, este método determina o autovalor que estiver **mais próximo** de um número real μ dado pelo usuário.

Dado o espectro da matriz abaixo:

$$\lambda(A) = \{\lambda_0, \dots, \lambda_k\}$$

O método da potência com deslocamento acha o par (λ_i, x_i) correspondente ao λ_i que estiver mais próximo de μ e seja diferente dos vizinhos. Para que o método funcione, o autovalor desejado precisa ser diferente dos demais, ou seja, possuir multiplicidade algébrica igual a 1.

Como encontrar esse autovalor?

Vamos escrever a relação entre o autovalor λ_i e seu autovetor correspondente:

$$Ax_i = \lambda_i x_i$$

Agora, vamos subtrair o vetor μx_i dos dois lados da equação e vamos por o vetor x_i em evidência.

$$[A-\mu I]x_i=(\lambda_i-\mu)x_i\equiv \hat{A}x_i=\hat{\lambda_i}x_i$$

Onde $\hat{A}=[A-\mu I]$ e $\hat{\lambda_i}=(\lambda_i-\mu).$

1. Se aplicarmos o método da potência inversa sobre a matriz \hat{A} , vamos encontrar o autovalor $\hat{\lambda}$ de menor valor absoluto, isso significa que $|\lambda-\mu|$ é o menor possível e logo nosso autovalor é o menos distante de μ .

Algoritmo

- 1. Escolha um vetor v_0 como chute inicial.
- 2. $\hat{A} \leftarrow A \mu I$
- 3. $(\hat{\lambda}, \hat{x}) \leftarrow potenciaInverso(\hat{A}, v_o, \epsilon)$
- 4. $\lambda_i \leftarrow \hat{\lambda} + \mu$
- 5. $x_i \leftarrow \bar{x}$

Novamente, um algoritmo mais detalhado pode ser encontrado nas **notas de aula do professor.**