Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses
Répondre par Vrai ou Faux : si la proposition q est la	1.:
négation de la proposition p 1. $(p): n \in \mathbb{N}$ est pair. $(q): n \in \mathbb{N}$ est impair. 2. $(p): f$ est paire. $(q): f$ est impaire.	2. :
 3. (p): Ali est Meknassi. (q): Ali est Casablancais. 4. (p): Mohammed ne voyage jamais sans bagages. (q): Mohammed voyage toujours avec des bagages. 	4. :
Résoudre le système : $ \begin{cases} x^2 - y^2 &= 12 \\ \ln x - \ln y &= \ln 2 \end{cases} $	$S = \cdots $
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$S = \cdots$
Déterminer l'ensemble des $x \in IR$ tels que : $\sin{(\sin{x})} = 1$	S =
Trouver un polynôme P de degré minimum tel que $P(-1) = -2$, $P(0) = 1$, $P(1) = 0$ et $P(2) = 4$	$P(x) = \cdots$
Déterminer l'ensemble des réels x vérifiant : $\frac{2x+1}{x+1} \leq \frac{2-3x}{2-x}$	$S = \cdots$
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i, j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2} \text{ et } \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \cdots$
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \cdots$
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	

Questions	Réponses
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	$L = \cdots \cdots$
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g\circ f(x)=$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \leq x$. (d) f n'est pas bijective	
Soit f la fonction de variable réelle telle que $f(x) = \frac{3x+2}{x^2+3x+2}$. Déterminer $f(D_f)$ où D_f est le domaine de définition de f	$f(D_f) = \cdots$
Soit a un paramètre réel et f_a la fonction définie par $f_a(x) = e^{-x} + ax$. On désigne par C_a la représentation graphique de f_a dans un plan rapporté au repère (O, i, j) . Déterminer le point d'intersection $M(x_0, y_0)$ de la tangente de f_a au point d'abscisse x_0 avec l'axe (O, j) .	$M(x_0, y_0) = \cdots$
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
$\forall x \in]0, +\infty[f(x) = \int_{1}^{x} \frac{\ln t}{1+t^{2}} dt.$ Soit $g(x) = f(x) - f\left(\frac{1}{x}\right)$ avec $x > 0$. Calculer $g'(x)$	$g'\left(x ight) = \cdots$
Calculer $I = \int_0^x (t-1) \exp(-t) dt$ avec $x \in \mathbb{R}$	<i>I</i> = · · · · · · · · · · · · · · · · · ·
Calculer $J = \int_0^{11} x^2 - 5x + 6 dx$	$J = \cdots$
Déterminer le minimum de l'expression $x^2 + y^2$ dans le cas suivant $x + 2y = 5$	S =
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de 25cm de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour?	Moy/j =
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite?	$P = \cdots$
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\dots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 =

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	1. :
Résoudre le système : $ \begin{cases} x^2 - y^2 &= 12 \\ \ln x - \ln y &= \ln 2 \end{cases} $	S = f. (.2, 4)
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$s = -4 \cdot (-1, 3, 5)$
Déterminer l'ensemble des $x \in I\!\!R$ tels que : $\sin{(\sin{x})} = 1$	$S = -\sqrt{2}$
Trouver un polynôme P de degré minimum tel que $P(-1) = -2$, $P(0) = 1$, $P(1) = 0$ et $P(2) = 4$	$P(x) = (x-1) \left(\frac{(x+1)(x-2)}{2} - \frac{x(x-2)}{3} + \frac{9x(x-2)}{3} \right)$
Déterminer l'ensemble des réels x vérifiant : $\frac{2x+1}{x+1} \leq \frac{2-3x}{2-x}$	$s = \dots $
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i, j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2} \text{ et } \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \frac{n(n+1)(4n-1)}{6}$
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \frac{20(n-1)}{(n+2)(n+3)}$
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	D1 = -[-1.7.28-1743.
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	Ses fon Vions constantes

Questions	Réponses
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	$L = \dots 2$.
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g \circ f(x) = \begin{cases} 2\pi^2 + 1 & \text{if } 0 \\ 2\pi^2 + 1 & \text{of } 1 \\ \text{if } 1 & \text{if } 3 \end{cases}$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \le x$. (d) f n'est pas bijective	-> y=x
Soit f la fonction de variable réelle telle que $f(x) = \frac{3x+2}{x^2+3x+2}$. Déterminer $f(D_f)$ où D_f est le domaine de définition de f	$f(D_f) = \dots] \dots \infty, \Lambda] \dots \cup [\S, \dots, \infty]$
Soit a un paramètre réel et f_a la fonction définie par $f_a(x) = e^{-x} + ax$. On désigne par C_a la représentation graphique de f_a dans un plan rapporté au repère (O, i, j) . Déterminer le point d'intersection $M(x_0, y_0)$ de la tangente de f_a au point d'abscisse x_0 avec l'axe (O, j) .	$M(x_0, y_0) = \left(x_0 - \frac{e^{-x_0}}{a - e^{-x_0}} , \alpha \right)$
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \frac{\lambda}{2 + \sqrt{\lambda + \chi^2}} + \frac{\chi}{2 + \sqrt{\lambda^2 + 1}} + \frac{\chi}{2 + \sqrt{\lambda^2 + 1}}$
$\forall x \in]0, +\infty[f(x) = \int_1^x \frac{\ln t}{1+t^2} dt.$ Soit $g(x) = f(x) - f\left(\frac{1}{x}\right)$ avec $x > 0$. Calculer $g'(x)$	$g'\left(x ight)=\cdots$ 0
Calculer $I = \int_0^x (t-1) \exp(-t) dt$ avec $x \in \mathbb{R}$	$I = \cdots \sim \mathcal{K} \cdot \mathcal{C}^{-\mathcal{K}}$
Calculer $J = \int_0^{11} x^2 - 5x + 6 dx$	$J = \int_{0}^{2} (x^{2} \sin x + 6) dx + \int_{0}^{3} -(x^{2} - ix + 6) dx + \int_{0}^{3} (x^{2} - ix + 6) dx$
Déterminer le minimum de l'expression x^2+y^2 dans le cas suivant $x+2y=5$	s =5
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de 25cm de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour ?	Moy/j = la. mouchoils./ Jour
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite ?	P =50.g
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\dots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 = 29 + 9.9 / .99