Nom	$egin{aligned} ext{point(s)} \ ext{d'expres-} \ ext{sion} \end{aligned}$	ddl	Représentation plane	Représentation 3D	Torseur cinématique $\{\mathcal{V}(2/1)\}$	Torseur des AM $\{\mathcal{T}(1 \to 2)\}$
Encastrement	tout point de l'espace	0				$ \begin{cases} X_{12} & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_{\mathcal{R}} $
$\begin{array}{c} \textbf{Pivot} \\ \textbf{d'axe} \ (A, \overrightarrow{x}) \end{array}$	tout point de l'axe	1	\vec{y}	\vec{z}	$ \begin{pmatrix} \omega_{x21} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{R}} $	$ \begin{cases} X_{12} & 0 \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_{\mathcal{R}} $
Glissière de direction \overrightarrow{x}	tout point de l'espace	1	<i>y</i> , <i>z</i> , <i>y</i> , <i>z</i> , <i>z</i> , <i>y</i> , <i>z</i>	$\vec{y}_{\vec{x}}$	$ \begin{pmatrix} 0 & V_{x21} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{R}} $	$ \begin{cases} 0 & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_{\mathcal{R}} $
Hélicoïdale d'axe (A, \overrightarrow{x}) et de pas p	tout point de l'axe	1	filet à droite	TV vi	$ \begin{cases} \omega_{x21} & h\omega_{x21} \\ 0 & 0 \\ 0 & 0 \end{cases}_{\mathcal{R}} $ $ \operatorname{avec} h = \pm \frac{p}{2\pi} $	$ \begin{cases} X_{12} & -hX_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \\ \text{avec } h = \pm \frac{p}{2\pi} \end{cases}_{\mathcal{R}} $
Pivot glissant d'axe (A, \overrightarrow{x})	tout point de l'axe	2	1 1 1 1 1 1 1 1 1 1	$\bigvee_{\vec{z}}^{\vec{y}}\vec{x}$	$ \begin{pmatrix} \omega_{x21} & V_{x21} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{R}} $	
Rotule à doigt de centre A bloquée en \overrightarrow{x}	centre de la liaison	2	\overrightarrow{y}	$\bigvee_{z}^{\vec{y}}\vec{x}$	$ \begin{cases} 0 & 0 \\ \omega_{y21} & 0 \\ \omega_{z21} & 0 \end{cases}_{\mathcal{R}} $	
$\begin{array}{c} \textbf{Rotule} \\ \text{de centre } A \end{array}$	centre de la liaison	3	\vec{y}	$\int_{\vec{z}}^{\vec{y}} \vec{x}'$	$ \begin{pmatrix} \omega_{x21} & 0 \\ \omega_{y21} & 0 \\ \omega_{z21} & 0 \end{pmatrix}_{\mathcal{R}} $	
Appui plan de normale \overrightarrow{y}	tout point de l'espace	3	\vec{y}	$\bigvee_{\vec{z}}^{\vec{y}}\vec{x}$	$ \begin{pmatrix} 0 & V_{x21} \\ \omega_{y21} & 0 \\ 0 & V_{z21} \end{pmatrix}_{\mathcal{R}} $	$ \begin{cases} 0 & L_{12} \\ Y_{12} & 0 \\ 0 & N_{12} \end{pmatrix}_{\mathcal{R}} $
Linéique annulaire de centre A et de direction \overrightarrow{x}	centre de la liaison	4		\vec{z}	$ \begin{pmatrix} \omega_{x21} & V_{x21} \\ \omega_{y21} & 0 \\ \omega_{z21} & 0 \end{pmatrix}_{\mathcal{R}} $	
Linéique rectiligne de ligne (A, \overrightarrow{x}) et de normale \overrightarrow{y}	tout point du plan $(A, \overrightarrow{x}, \overrightarrow{y})$	4	$\overrightarrow{\vec{y}}_{\uparrow} \overrightarrow{\vec{x}}, \qquad \overrightarrow{\vec{y}}_{\uparrow} \overrightarrow{\vec{z}}$	$\bigvee_{\vec{z}}^{\vec{y}}\vec{x}$	$ \begin{cases} \omega_{x21} & V_{x21} \\ \omega_{y21} & 0 \\ 0 & V_{z21} \end{cases}_{\mathcal{R}} $	$ \left\{ \begin{cases} 0 & 0 \\ Y_{12} & 0 \\ 0 & N_{12} \end{cases} \right\}_{\mathcal{R}} $
Ponctuelle en A de normale \overrightarrow{y}	tout point de (A, \overrightarrow{y})	5	\vec{y}_{\uparrow}	$\sum_{i=1}^{\vec{y}} \vec{x}^i$	$ \left\{ \begin{array}{ll} \omega_{x21} & V_{x21} \\ \omega_{y21} & 0 \\ \omega_{z21} & V_{z21} \end{array} \right\}_{\mathcal{R}} $	$ \begin{cases} 0 & 0 \\ Y_{12} & 0 \\ 0 & 0 \end{cases}_{\mathcal{R}} $

Etapes pour dessiner le schéma cinématique (2D ou 3D) :

- 1. dessiner le repère absolu
- 2. placer les points et les axes des liaisons
- 3. dessiner les liaisons indépendamment et en couleur
- 4. relier les liaisons en respectant les axes des repères des ensembles cinématiques