```
In [1]: import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        import seaborn as sb
        from sklearn.calibration import calibration_curve
        from sklearn.calibration import CalibratedClassifierCV
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import roc auc score
        from sklearn.metrics import classification report
        from sklearn.metrics import make scorer
        from sklearn.model_selection import cross_val_score as cv_score
        from sklearn.model selection import GridSearchCV
        from sklearn.model selection import learning curve
        from sklearn.model selection import StratifiedKFold
        from sklearn.model_selection import train_test_split
        from sklearn.impute import SimpleImputer
        from sklearn.preprocessing import OneHotEncoder
```

Executive Summary

 Performance These performance estimates are generated from cross validation, which should be a reasonable approximation of the expected test set performance.
 Looking at ROC AUC alone, the calibrated logistic regression model did reasonably well.

Model	Regression	
ROC AUC	0.662	

- Method The trained model is a calibrated logistic regression model with a ridge (L2) penalty and Platt scaling for calibration of probabilities. Performances were compared using 5 fold cross validation.
- Caveat There was no column denoting the relative time of each row. There is a concern that the cross validation results are biased as time series cross validation was not used. There was no way to ensure that there is no temporal data leakage across validation splits or between the train and test data.

Data Exploration

```
In [3]: data_tr = data.loc[data["sample"] == "Train", ].copy().reset_index()
    data_te = data.loc[data["sample"] == "Holdout", ].copy().reset_index()
    data_tr.describe()
```

Out[3]:

	index	Unnamed: 0	plcy_id	curnt_bi_low	curnt_bi_upp	С
count	40000.00000	40000.00000	40000.00000	40000.000000	40000.000000	4(
mean	19999.50000	19999.50000	20000.50000	98707.500000	193905.000000	7:
std	11547.14972	11547.14972	11547.14972	92506.822081	138671.218058	7!
min	0.00000	0.00000	1.00000	25000.000000	50000.000000	20
25%	9999.75000	9999.75000	10000.75000	25000.000000	50000.000000	2!
50%	19999.50000	19999.50000	20000.50000	50000.000000	100000.000000	5(
75%	29999.25000	29999.25000	30000.25000	100000.000000	300000.000000	10(
max	39999.00000	39999.00000	40000.00000	750000.000000	1000000.000000	300

8 rows × 52 columns

```
In [4]: data_tr.dtypes, data_te.dtypes
```

Out[4]:	(index	int64
	Unnamed: 0	int64
	plcy_id	int64
	sample	object
	curnt_bi_low	int64
	curnt_bi_upp	int64
	curnt_pd_lmt	int64
	curnt_coll_ded	float64
	curnt_comp_ded	float64
	hh_veh_cnt	int64
	hh_cnt_auto	int64
	hh_cnt_mtrcyc	int64
	hh_veh_w_coll_cnt	int64
	<pre>hh_veh_w_comp_cnt hh_veh_lien_cnt</pre>	int64 float64
	hh_veh_lease_cnt	float64
	hh_veh_own_cnt	float64
	veh_ownership	object
	annual_mileage	float64
	veh_make	object
	veh_model	object
	veh_age	float64
	min_hh_veh_age	float64
	max_hh_veh_age	float64
	avg_hh_veh_age	float64
	hh_drvr_cnt	float64
	hh_min_age	float64
	hh_max_age	float64
	hh_avg_age	float64
	hh_min_mon_lic	float64
	<pre>hh_max_mon_lic</pre>	float64
	hh_avg_mon_lic	float64
	hh_cnt_yth	float64
	hh_cnt_female	float64
	hh_cnt_male	float64
	hoh_married	float64
	hh_cnt_majr_viol	int64
	hh_cnt_minr_viol	int64
	hh_cnt_lic_susp	int64
	prior_insurer	object
	time_w_carr	float64
	inforce_ind	int64
	multiline_ind	int64
	homeowner_ind	int64
	monthly_pay_ind	int64
	<pre>credit_score hh_atf_clm_cnt_py1</pre>	int64
	hh_atf_clm_cnt_py1	int64 int64
	hh_atf_clm_cnt_py3	int64
	hh_atf_clm_cnt_py4	int64
	hh_atf_clm_cnt_py5	int64
	hh_naf_clm_cnt_py1	int64
	hh_naf_clm_cnt_py2	int64
	hh_naf_clm_cnt_py3	int64
	hh_naf_clm_cnt_py4	int64
	hh_naf_clm_cnt_py5	int64

future_clm_ind	float64
dtype: object,	
index	int64
Unnamed: 0	int64
plcy_id	int64
sample	object
curnt_bi_low	int64
curnt_bi_upp	int64
curnt_pd_lmt	
—· —	int64
curnt_coll_ded	float64
curnt_comp_ded	float64
hh_veh_cnt	int64
hh_cnt_auto	int64
hh_cnt_mtrcyc	int64
hh_veh_w_coll_cnt	int64
hh_veh_w_comp_cnt	int64
hh_veh_lien_cnt	float64
hh_veh_lease_cnt	float64
hh_veh_own_cnt	float64
veh_ownership	object
annual_mileage	float64
veh_make	object
veh_model	object
veh_age	float64
min_hh_veh_age	float64
max_hh_veh_age	float64
avg_hh_veh_age	float64
hh_drvr_cnt	float64
hh_min_age	float64
hh_max_age	float64
hh_avg_age	float64
hh_min_mon_lic	float64
hh_max_mon_lic	float64
hh_avg_mon_lic	float64
hh_cnt_yth	float64
hh_cnt_female	float64
hh_cnt_male	float64
hoh_married	float64
hh_cnt_majr_viol	int64
hh_cnt_minr_viol	int64
hh_cnt_lic_susp	int64
prior_insurer	object
time_w_carr	float64
inforce_ind	int64
multiline_ind	int64
homeowner_ind	int64
monthly_pay_ind	int64
credit_score	int64
hh_atf_clm_cnt_py1	int64
hh_atf_clm_cnt_py2	int64
hh_atf_clm_cnt_py3	int64
hh_atf_clm_cnt_py4	int64
hh atf clm cnt pys	int64
hh_atf_clm_cnt_py5	int64
hh_naf_clm_cnt_py1	int64
hh_naf_clm_cnt_py2	
hh_naf_clm_cnt_py3	int64

```
hh_naf_clm_cnt_py4 int64
hh_naf_clm_cnt_py5 int64
future_clm_ind float64
dtype: object)
```

In [5]: # Check if data is missing.
data_tr.isnull().sum(), data_te.isnull().sum()

Out[5]:	(index Unnamed: 0	0
	plcy_id	0
	sample	0
	curnt_bi_low	0
	curnt_bi_upp	0
	curnt_pd_lmt	0
	curnt_coll_ded	9688
	curnt_comp_ded	12375
	hh_veh_cnt	0
	hh_cnt_auto	0
	hh_cnt_mtrcyc	0
	hh_veh_w_coll_cnt	0
	hh_veh_w_comp_cnt	0
	hh_veh_lien_cnt	5184
	hh_veh_lease_cnt	5184
	hh_veh_own_cnt	5184
	veh_ownership	4578
	annual_mileage	1293
	veh_make	0
	veh_model veh_age	0 0
	min_hh_veh_age	0
	max_hh_veh_age	0
	avg_hh_veh_age	0
	hh_drvr_cnt	0
	hh_min_age	0
	hh_max_age	0
	hh_avg_age	0
	hh_min_mon_lic	0
	hh_max_mon_lic	0 0
	<pre>hh_avg_mon_lic hh_cnt_yth</pre>	0
	hh_cnt_female	0
	hh_cnt_male	0
	 hoh_married	0
	hh_cnt_majr_viol	0
	hh_cnt_minr_viol	0
	hh_cnt_lic_susp	0
	prior_insurer	0
	<pre>time_w_carr inforce_ind</pre>	0 0
	multiline_ind	0
	homeowner_ind	0
	monthly_pay_ind	0
	credit_score	0
	hh_atf_clm_cnt_py1	0
	hh_atf_clm_cnt_py2	0
	hh_atf_clm_cnt_py3	0
	hh_atf_clm_cnt_py4	0
	hh_atf_clm_cnt_py5	0
	hh_naf_clm_cnt_py1 hh_naf_clm_cnt_py2	0 0
	hh_naf_clm_cnt_py3	0
	hh_naf_clm_cnt_py4	0
	hh_naf_clm_cnt_py5	0

future alm ded	0
future_clm_ind	0
<pre>dtype: int64, index</pre>	0
Unnamed: 0	0
plcy_id	0
sample	0
curnt_bi_low	0
curnt_bi_upp	0
curnt_pd_lmt	0
curnt_coll_ded	4928
curnt_comp_ded	6189
hh_veh_cnt	0
hh_cnt_auto	0
hh_cnt_mtrcyc	0
hh_veh_w_coll_cnt	0
hh_veh_w_comp_cnt	0
hh_veh_lien_cnt	2562
hh_veh_lease_cnt	2562
hh_veh_own_cnt	2562
veh_ownership	2272
annual_mileage	635
veh_make	0
_ veh_model	0
veh_age	0
min_hh_veh_age	0
max_hh_veh_age	0
avg_hh_veh_age	0
hh_drvr_cnt	0
hh_min_age	0
hh_max_age	0
hh_avg_age	0
hh_min_mon_lic	0
hh_max_mon_lic	0
hh_avg_mon_lic	0
hh_cnt_yth	0
hh_cnt_female	0
hh_cnt_male	0
hoh_married	0
hh_cnt_majr_viol	0
hh_cnt_minr_viol	0
hh_cnt_lic_susp	0
prior_insurer	0
time_w_carr	0
inforce_ind	0
multiline_ind	0
homeowner_ind	0
monthly_pay_ind	0
<pre>credit_score hh_atf_clm_cnt_py1</pre>	0
hh_atf_clm_cnt_py1	0
hh_atf_clm_cnt_py2	0
hh_atf_clm_cnt_py4	0
hh_atf_clm_cnt_py5	0
hh_naf_clm_cnt_py1	0
hh_naf_clm_cnt_py2	0
hh_naf_clm_cnt_py3	0
	3

```
hh_naf_clm_cnt_py4
                                    0
                                    0
         hh_naf_clm_cnt_py5
                                20000
         future clm ind
         dtype: int64)
In [6]: # Check class balance of the binary classification problem.
        data_tr.future_clm_ind.value_counts()
Out[6]: future_clm_ind
        0.0
               37532
        1.0
                 2468
        Name: count, dtype: int64
In [7]: data_tr.shape, data_te.shape
Out[7]: ((40000, 57), (20000, 57))
In [8]: print(f"The positive class frequency is {round(data_tr.future_clm_ind.sum()
       The positive class frequency is 0.1%.
```

There is missing data and it isn't clear if it is MNAR or missing completely at random. To be safe, a dummy variable will be created to account for missingness. For missing values where the feature column is a float, median imputation will be used to fill in the missing data. Given the massive class imbalance, it's important to check the calibration of the model's probability estimates. It isn't clear if there is any temporal dependence in the data. If there is, it is important to use time series cross validation to respect the order of the data over time. Using k-fold cross validation and shuffling the data could lead to data leakage and biased performance estimates.

```
In [9]: TARGET_COL = "future_clm_ind"
         DROP\ COLS = [
             "index",
             "sample",
             "plcy_id",
             "future_clm_ind",
             "Unnamed: 0",
             "veh model"
         1
         CAT_COLS = data_tr.select_dtypes(include = "object").columns
         data_tr[CAT_COLS].isnull().sum()
Out[9]: sample
                              0
                           4578
         veh_ownership
         veh_make
                              0
         veh_model
                              0
         prior insurer
         dtype: int64
In [10]: sb.countplot(
             data = data tr,
             x = "veh_ownership",
```

```
hue = "veh_ownership",
palette = "husl"
)
```

Out[10]: <Axes: xlabel='veh_ownership', ylabel='count'>


```
In [11]: sb.countplot(
    data = data_tr,
    x = "veh_make",
    hue = "veh_make",
    palette = "husl"
)
```

Out[11]: <Axes: xlabel='veh_make', ylabel='count'>


```
In [12]:
    sb.countplot(
        data = data_tr,
        x = "veh_model",
        hue = "veh_model",
        palette = "husl"
)
```

Out[12]: <Axes: xlabel='veh_model', ylabel='count'>


```
data_tr["veh_model"].value_counts()
In [13]:
Out[13]:
          veh_model
          Α1
                804
          C1
                 580
          В1
                560
          M1
                 531
          Α2
                 522
          Z9
                   4
          Υ9
                   4
          Z8
                   3
                   2
          X7
          X8
          Name: count, Length: 233, dtype: int64
```

There are 233 different vehicle models. One hot encoding these categorical features can become massive in memory. Given how sparse this would become and the low number of positive class examples, we can exclude this feature from the baseline model. Alternatively, we can include this feature in the model while using an L2 penalty, which is preferable for sparse training data.

Out[14]: <Axes: xlabel='prior_insurer', ylabel='count'>

In [15]: data_tr["prior_insurer"].value_counts()

```
Out[15]: prior_insurer
         Alpha
                    6464
         Beta
                    5603
                    4581
         Gamma
         Delta
                    4146
         Epsilon
                    3226
         Zeta
                    2401
                    2366
         Eta
         Theta
                    1617
                    1217
         Iota
         Lamda
                   836
         Kappa
                     789
                     776
         Mu
         Nu
                     727
         Χi
                     692
                     591
         Omicron
         Ρi
                     583
         Rho
                     532
         Sigma
                     520
                     476
         Tau
         Upsilon
                     459
         Phi
                     448
                     348
         Chi
         Psi
                     319
         0mega
                     283
         Name: count, dtype: int64
```

Data Preprocess

Split into training and validation sets. The validation set is for plotting the calibration curves of the models. The final models used for estimating test set probabilities will use all of the available data for training. Categorical columns are one hot encoded. Missing floating point values are filled in using median imputation and a dummy variable column is created to account for the missingness incase the data is MNAR.

```
In [16]: TARGET_COL = "future_clm_ind"

DROP_COLS = [
         "index",
          "sample",
          "plcy_id",
          "future_clm_ind",
          "Unnamed: 0"
]

Ytr = data_tr[TARGET_COL]
Yte = pd.DataFrame(data_te["plcy_id"].copy())
Xtr = data_tr.drop(columns = DROP_COLS)
Xte = data_te.drop(columns = DROP_COLS)

# Categorical column names after drop columns are excluded.
CAT_COLS = Xtr.select_dtypes(include = "object").columns

# Replace any missing categories.
```

```
Xtr_cat = Xtr[CAT_COLS].copy().fillna(value = "missing")
Xte_cat = Xte[CAT_COLS].copy().fillna(value = "missing")
# Fit one hot encoder to categorical columns.
enc = OneHotEncoder().fit(Xtr_cat)
col_names = enc.get_feature_names_out()
Xtr cat = enc.transform(Xtr cat).toarray()
Xte_cat = enc.transform(Xte_cat).toarray()
Xtr = pd.concat([Xtr.drop(columns = CAT COLS),
                 pd.DataFrame(Xtr_cat, columns = col_names)],
                axis = 1
Xte = pd.concat([Xte.drop(columns = CAT_COLS),
                 pd.DataFrame(Xte_cat, columns = col_names)],
                axis = 1
# Use median imputation for missing floating point values.
imp = SimpleImputer(
   missing values = np.nan,
   strategy = "median",
   add_indicator = True
imp.fit(Xtr)
Xtr = imp.transform(Xtr)
Xte = imp.transform(Xte)
column_names = imp.get_feature_names_out()
# Given the class imbalance, use stratified split.
skf = StratifiedKFold(n_splits = 5)
Xtr, Xva, Ytr, Yva = train_test_split(
   Xtr,
   Ytr,
   test_size = 0.2,
   stratify = Ytr
del Xtr_cat, Xte_cat
Xtr.shape, Xte.shape
```

Out[16]: ((32000, 341), (20000, 341))

Baseline Logistic Regression Model

Use a logistic regression with an L2 (ridge) penalty. As an aside, using an L2 penalty is preferable when the inputs are sparse. Stratified k-fold cross validation is used for model hyper parameter selection. Given the class imbalance, it is important to stratify on the binary target class so that the positive class is equally represented across the cv folds.

```
In [17]: # Grid of potential inverse L2 penalty parameters.
L2_grid = {"C": [1e-04, 1e-03, 1e-02, 1e-01, 1]}
```

```
penalty = "l2",
             solver = "liblinear",
             max_iter = 100000,
             verbose = 0
         gscv = GridSearchCV(
             reg model,
             scoring = make_scorer(
                 roc_auc_score,
                 needs_proba = True
             ),
             param_grid = L2_grid,
             n_{jobs} = 1,
             cv = skf.split(Xtr, Ytr)
         # Run grid search cross validation.
         gscv.fit(Xtr, np.array(Ytr).ravel())
Out[17]: | >
                    GridSearchCV
          ▶ estimator: LogisticRegression
                ▶ LogisticRegression
In [18]: gscv.best_score_
Out[18]: 0.663667953730841
In [19]: gscv.best_params_
Out[19]: {'C': 0.001}
         Feature Importances
In [21]: column_names = imp.get_feature_names_out()
         fi = abs(gscv.best estimator .coef )[0] # Absolute value of coefficient esti
         fi = (fi / fi.max()) * 100.0 # Scale by largest value.
         idx = np.argsort(fi)[-10:] # Sort by relative importance and subset top 10.
         pos = np.arange(idx.shape[0]) + .5
         fig = plt.figure()
         fig.set_size_inches(11, 7)
         ax = fig.add_subplot(1, 1, 1)
         ax.barh(pos, fi[idx], align = "center")
         ax.set_yticks(pos)
         ax.set_yticklabels(np.array(column_names)[idx], fontsize = 11)
```

ax.set_xlabel("Relative Feature Importance")

plt.show()

reg_model = LogisticRegression(

Use the optimal L2 hyperparameter from grid search cross validation to train a calibrated classifier. Then use this trained classifier to visualize the learning curves across different data set sizes to help diagnose potential issues from bias or variance.

```
train_sizes, train_scores, valid_scores = learning_curve(
    reg_model_calibrated,
    Xtr,
    np.array(Ytr).ravel(),
    train_sizes = np.linspace(0.2, 1, 20),
    cv = skf.split(Xtr, Ytr),
    scoring = make_scorer(
        roc_auc_score,
        needs_proba = True
    )
)

# Average precision score across the cross validation folds.
train_scores = [np.mean(m) for m in train_scores]
valid_scores = [np.mean(m) for m in valid_scores]
```

Visualize Baseline Learning Curves

Baseline Regression ROC AUC Learning Curves

The variance gap doesn't seem too large but the average precision is really low. It seems like gathering more data would improve the performance slightly as the learning curves have not flattened out as the training set size is increased.

```
In [27]:
         reg_model_calibrated = CalibratedClassifierCV(
             estimator = reg_model,
             method = "sigmoid",
             ensemble = True,
             n_{jobs} = -1,
             cv = skf.split(Xtr, Ytr)
         reg_model_calibrated.fit(
             Xtr,
             np.array(Ytr).ravel()
         # Create a calibration plot to visualize probability calibration.
         Y_pred_c = reg_model_calibrated.predict_proba(Xva)[:, 1]
         cc_cal_y, cc_cal_x = calibration_curve(
             y_true = Yva,
             y_prob = Y_pred_c,
             n bins = 10
```

```
marker = "o",
    linewidth = 1,
    color = "orange",
    label = "uncalibrated model")

plt.plot(cc_cal_x,
    cc_cal_y,
    marker = "o",
    linewidth = 1,
    color = "aquamarine",
    label = "calibrated model")

fig.suptitle("Calibration Curves")
ax.set_xlabel("Average Probability Estimate")
ax.set_ylabel("True Fraction of Positives")
plt.legend()
plt.show()
```

Calibration Curves

Performance

Generate the performance metrics of the calibrated baseline logistic regression model using the average ROC AUC over the stratified cross validation folds. This should give a reasonable expectation of the test set performance. Use all of the available data for training.

```
In [29]: # Combine training and validation into a single data set.
         Xtr = np.vstack((Xtr, Xva))
         Ytr = pd.concat([Ytr, Yva])
         Xtr.shape, Ytr.shape
Out[29]: ((40000, 341), (40000,))
In [30]: reg_model_calibrated = CalibratedClassifierCV(
             estimator = reg_model,
             method = "sigmoid",
             ensemble = True
         cv_score_baseline = cv_score(
             reg_model_calibrated,
             Xtr,
             np.array(Ytr).ravel(),
             cv = skf.split(Xtr, Ytr),
             scoring = make_scorer(
                 roc_auc_score,
                 needs_proba = True
             ),
             n jobs = -1
```

In [31]: print(f"The expected ROC AUC from the baseline model is { round(np.mean(cv_s))

The expected ROC AUC from the baseline model is 0.662.

Test Set Predictions

```
In [32]: # Train models using all available data.
    reg_model_calibrated.fit(Xtr, np.array(Ytr).ravel())

    pred_baseline = reg_model_calibrated.predict_proba(Xte)[:, 1]
    Yte["glm_pred"] = np.round(pred_baseline, 4)

# Append the probabilities to the plcy_id in Yte and save as a csv.
    Yte.to_csv(
        DATA_PATH + "DS_Work_Sample_Scored.csv",
        index = False,
        header = True
)
```