

SOCIAL RECOMMENDATION ACROSS MULTIPLE RELATIONAL DOMAINS

Meng Jiang

Joint work with Peng Cui, Fei Wang, Qiang Yang, Wenwu Zhu and Shiqiang Yang November 1, 2012 – Maui, HI, USA

Recommender Systems

Predict missing "user-item" links

Challenge:

Cold-start and extremely high sparsity

cold-start cold-start
web posts new item new user
high sparsity

OUTLINE

1. Background

2. The Framework

3. HRW Algorithm

4. Experiments

5. Insights

Multiple Domains

User label domain

Peng Cui Haidian, Beijing Company: Tsinghua

Meng Jiang Haidian, Beijing University: Tsinghua

Choose < 10 from 200+ labels like 'iPhone fan'

User labels (5)
Tsinghua, Ph.D., World Wide Web,
Social Network, Social Media

User labels (9)

Chinese food, World Wide Web, Social Network, Data Mining, Liverpool Football Club, NBA, Humors, Sports, Ph.D. Candidates

Multiple Domains

Interest group domain

Interest Groups (2)

Tsinghua University

I love sing!

Interest Groups (3)

Tsinghua University

Social Media & Reputation

World Wide Web Team

Our Goals

- Given: Links on social networks
- Find: A framework that use auxiliary knowledge in multiple domains to best predict "user-item" (target) links when the training set is too small.

Goals:

- G1. Understand link formations on social networks
- G2. A social network framework with multiple domains
- G3. Solve the cold-start problem

Challenges: Multiple Domains

- Relational
 - Within-domain links and cross-domain links
- Heterogeneous
 - Different types of item domains
- Sparse
 - Different sparsity levels

OUTLINE

1. Background

2. The Framework

3. HRW Algorithm

4. Experiments

5. Insights

 We have user-user, post-post and labellabel links (social relation + item similarity).

We have user-post and user-label links.

- No relations between item domains.
- No post-label links in nature.

 Stronger social relations help collaborate user-item links.

 More collaborating in user-item links strengthen the social relations.

Star-structured Graph

Key idea: use "social relation" domain as bridge

OUTLINE

1. Background

2. The Framework

3. HRW Algorithm

4. Experiments

5. Insights

Star-structured Graph

Method: Transfer learning + Random walk with restarts

Hybrid Random Walk

On <u>second-order</u> star-structured graph

Update cross-domain links

$$p_{ij}^{(\mathcal{UP})^{+}} = \delta \sum_{u_{k} \in \mathcal{U}} r_{ik}^{(\mathcal{U})} p_{kj}^{(\mathcal{UP})^{+}} + (1 - \delta) \sum_{p_{k} \in \mathcal{P}} p_{ik}^{(\mathcal{UP})^{+}} r_{kj}^{(\mathcal{P})}$$

$$p_{ij}^{(\mathcal{UP})^{-}} = \delta \sum_{u_{k} \in \mathcal{U}} r_{ik}^{(\mathcal{U})} p_{kj}^{(\mathcal{UP})^{-}} + (1 - \delta) \sum_{p_{k} \in \mathcal{P}} p_{ik}^{(\mathcal{UP})^{-}} r_{kj}^{(\mathcal{P})}$$

$$\mathbf{P}^{(\mathcal{UP})^{+}}(t+1) = \delta \mathbf{R}^{(\mathcal{U})}(t) \mathbf{P}^{(\mathcal{UP})^{+}}(t) + (1 - \delta) \mathbf{P}^{(\mathcal{UP})^{+}}(t) \mathbf{R}^{(\mathcal{P})}$$

$$\mathbf{P}^{(\mathcal{UP})^{-}}(t+1) = \delta \mathbf{R}^{(\mathcal{U})}(t) \mathbf{P}^{(\mathcal{UP})^{-}}(t) + (1 - \delta) \mathbf{P}^{(\mathcal{UP})^{-}}(t) \mathbf{R}^{(\mathcal{P})}$$

Hybrid Random Walk

Update within-domain links

Hybrid Random Walk

On <u>high-order</u> star-structured graph

$$\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t+1) = \delta_{i}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t) + (1-\delta_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)\mathbf{R}^{(\mathcal{D}_{i})}$$

$$\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t+1) = \delta_{i}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t) + (1-\delta_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)\mathbf{R}^{(\mathcal{D}_{i})}$$

$$\mathbf{R}^{(\mathcal{U})}(t+1) = \sum_{\mathcal{D}_{i}\in\mathcal{D}} \tau_{i}\mu_{i}\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)^{T}$$

$$+ \sum_{\mathcal{D}_{i}\in\mathcal{D}} \tau_{i}(1-\mu_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)^{T}$$

$$+\tau^{(\mathcal{U})}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{R}^{(\mathcal{U})}(t)^{T}$$

OUTLINE

- 1. Background
- 2. The Framework
- 3. HRW Algorithm
- 4. Experiments
- 5. Insights

Data Set

Tencent Weibo (January 2011)

Domain	Size	Cross-do	Cross-domain links		
		Accept	Refuse		
User	53.4K		_		
Web post	142K	1.47M (0.02%)	3.40M (0.04%)		
User label	111	330K (5.57%)	_		

Good to Transfer?

- Comparative Algorithms (RWR)
 - W^(P): Use web post similarity?
 - **W**^(U): Use social relation?
 - **R**^(U): Update tie strength?
 - W^(T): Use user label similarity?

Algorithm	$\mathbf{R}^{(\mathcal{U})}$	$\mathbf{W}^{(\mathcal{U})}$	$\mathbf{W}^{(\mathcal{P})}$	$\mathbf{W}^{(\mathcal{T})}$
HRW				
BRW- R_U -P (TrustWalker)	\checkmark	\checkmark	\checkmark	×
$BRW-R_U$			×	×
BRW- W_U -P	×			×
$\frac{\text{BRW-}W_U}{(\text{ItemRank})}$	×	√	×	×
BRW-P	×	×		×

Good to Transfer!

Compare with RWR models

Algorithm	MAE	Precision	Recall	F1	Kendall's $\hat{\tau}$
HRW	$0.227{\pm}1.5\text{e-}3$	$0.711 \pm 1.3 e-3$	$0.921\pm1.4e-3$	$0.802{\pm}1.1\text{e-}3$	$0.792 \pm 2.5 \text{e-}3$
BRW- R_U -P (TrustWalker)	0.276±1.1e-3	0.657±7.6e-4	$0.935 \pm 9.8 \text{e-}4$	0.772±7.6e-4	0.774±1.6e-3
$BRW-R_U$	0.282±5.3e-3	$0.655 \pm 4.0 \text{e-}3$	0.921±1.2e-2	$0.765 \pm 7.7 e-3$	$0.725 \pm 2.8 \text{e-}3$
$BRW-W_U-P$	0.292±1.1e-3	0.666±7.0e-4	$0.900 \pm 5.2 \text{e-}4$	$0.765\pm6.6e-4$	$0.725\pm 8.5 e-4$
BRW- W_U (ItemRank)	0.318±1.4e-3	0.671±1.5e-3	$0.713\pm2.4e-3$	$0.691\pm1.2e-3$	0.661±2.2e-3
BRW-P	0.438±2.6e-4	$0.571\pm3.4\text{e-}4$	$0.499 \pm 4.2 e-4$	$0.532\pm3.2\text{e-}4$	$0.606\pm2.3\text{e-}4$

Compare with Baselines

Algorithm	MAE	Precision	Recall	F1	Kendall's $\hat{\tau}$
HRW	$0.227{\pm}1.5\text{e-}3$	$0.711 \pm 1.3 \text{e-}3$	0.921±1.4e-3	$0.802{\pm}1.1\text{e-}3$	$0.792 \pm 2.5 \text{e-}3$
BRW- R_U -P (TrustWalker) [10]	0.276±1.1e-3	0.657±7.6e-4	$0.935 \pm 9.8 \text{e-}4$	0.772±7.6e-4	0.774±1.6e-3
BRW- W_U (ItemRank) [8]	0.318±1.4e-3	0.671±1.5e-3	$0.713\pm2.4e-3$	0.691±1.2e-3	0.661±2.2e-3
MCF [5]	0.352±2.3e-4	$0.592 \pm 1.8 e-3$	$0.951 \pm 6.0 \text{e-}4$	0.730±1.3e-3	0.582±4.3e-4
CF [22]	$0.506\pm3.4\text{e-}4$	$0.552 \pm 1.5 e-3$	$0.589 \pm 7.2 \text{e-}4$	$0.570\pm1.0e-3$	$0.540\pm5.2\text{e-}4$

OUTLINE

1. Background

2. The Framework

3. HRW Algorithm

4. Experiments

5. Insights

Insights

- If we do transfer (from user-label domain), we need only ~30% to reach the same performance.
- Advice: build more apps for new users to give more info.

Questions?

Meng Jiang mjiang89@gmail.com http://www.meng-jiang.com

