Beat the Bookies With Machine Learning

T. Bidewell, J. Brett, N. Evans, J. McInerney

Introduction

• Horse Racing

Betting

Introduction

- Textual Data (Predictions)
- Numerical Data

Data

Clean text data Fill missing data with mean of column Normalize Columns

	Horse Age	Horse Top Speed	Horse RPRS Ranking	Horse ORS Ranking	Horse Weight	Prediction	Jockey Last 14	Trainer Last 14	horse_race_id	Position	Race_Id
0	-0.997221	-2.905166	-0.004418	0.215331	-0.189955	22 over 7f both wins on aw remains open to fur	0.873726	0.699002	18-04-2023_1:50_Newmarket_Think Climate	9.0	18-04-2023_1:50_Newmarket
1	-0.997221	0.079789	-0.297183	0.170249	-0.389579	ran well in france on final 2yo start more is	-1.149677	-0.956598	18-04-2023_1:50_Newmarket_Awtaad Prince	7.0	18-04-2023_1:50_Newmarket
2	-0.997221	0.463569	0.037405	0.000000	-0.389579	one of two runners for charlie appleby made al	-0.340316	2.189043	18-04-2023_1:50_Newmarket_City Of Kings	6.0	18-04-2023_1:50_Newmarket
3	-0.997221	0.207716	-0.088065	0.000000	-0.389579	solid third in the convivial maiden then won w	0.974896	-0.128798	18-04-2023_1:50_Newmarket_Hi Royal	4.0	18-04-2023_1:50_Newmarket
4	-0.997221	0.548854	0.204699	0.440739	-0.389579	major player on rprs and looks likely to give	-0.542656	0.616222	18-04-2023_1:50_Newmarket_Holguin	2.0	18-04-2023_1:50_Newmarket

Web Scraping

- Static Website Results Page:
 - Beautiful Soup

- Dynamic Website Predictions: (Website's content changes for each user the odds of from the betting site)
 - Selenium

Embeddings

• TF-IDF

- BERT
 - Fine-Tune
 - Frozen

TF-IDF: Models

Pointwise

Pairwise

Pointwise (Regression)

- Predict Position of horse
- MLP (Multi-Layered Perceptron)
- 1 Hidden Layer
- Activation Function: ReLU
- Loss function MSE
- Sort based off predicted score

Loss Function - Mean Squared Error (MSE) - Regression

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y_i})^2$$

Pairwise (Classification)

- For pairs of horses, predict the winner
- MLP
- 1 Hidden Layer with ReLU activation
- Softmax
- 2 outputs
- Sum the log probabilities to get final score and sort horses based off these
- (ELO)

Loss Function - Negative Log Likelihood (NLL) - Classification

```
\begin{array}{ll} \theta^* & = \mathop{\mathrm{argmax}} P(X|\theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(obj = x^{(t)}, class = y^{(t)}|\theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(obj = x^{(t)}) P(class = y^{(t)}|object = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y^{(t)}|obj = x^{(t)}, \theta) \\ & = \mathop{\mathrm{argmax}} \prod_{t=1}^T P(class = y
```

BERT

• Fine Tune

• Frozen

Process

• Tokenize sentence using AutoTokenizer from transformers - add [CLS] token at start of sentence

• Extract input_ids and attention_masks

• Feed into Pre-Trained: bert-base-uncased

Pointwise

• Regression to predict position of horse

 Concatenate numerical data with CLS token in last hidden state.

Fully connected layers with one output neuron

Mean Squared Error

Pairwise

- For pairs of horses in same race, predict winner
- Concatenate numerical data with CLS token in last hidden state
- Fully connected layers with ReLU activation and Softmax
- 2 output neurons
- NLLLoss
- Sum log probabilities to get score for each horse
- Sort on these

Other Methods: embed race with 2d tensor (custom collate function)

• Using 2d embeddings for a race allowed for further deep learning models.

CNN Regression

emb_size x N

 \bowtie

N x emb_size

Emb_size x emb_size

- CNN Regression:
 - Predict index of winning horse
 - transpose(M) * M has shape (emb_size x emb_size)
 - Initial no. channels = 1, 2 convolutional layers with max pooling before flattening and fully connected layers with one output neuron
 - MSE Loss

Listwise

N x emb_

```
class NDCGLoss(nn.Module):
    def _init_ (self, k):
       super(NDCGLoss, self). init ()
       self.k = k
   def forward(self, y true, y pred):
       batch_size = y_true.size(0) # Get the batch size
       all ndcgs = []
       for i in range(batch_size):
           true sample = y true[i].squeeze().float() # Remove the last dimension (size 1) from true tensor
           pred_sample = y_pred[i].squeeze().float() # Remove the last dimension (size 1) from pred tensor
           mask true = true sample != -1
           true_sample = true_sample[mask_true]
           pred sample = pred sample[mask true]
           true_sample = 1/true_sample
           # Convert continuous values to discrete relevance labels
           labels pred = pred sample.argsort(descending=True) + 1
           labels true = true sample.argsort(descending=True) + 1
           ndcg_individual = ndcg_score([labele_true.detach().cpu().numpy()], labels_pred.detach().cpu().numpy()], k=self.k)
           all ndcgs.append(ndcg individual.itemt)
       # Compute the average NDCG for the batch
       average_ndcg = torch.tensor(all_rdcgs, requires_grad=True).mean(
       # Return the negative NDCG as the loss
       loss = 1 - average ndcg
       return loss
```

nDCG

- Normalized Discounted Cumulative Gain
- Evaluation metric commonly used to compare the effectiveness of ranking algorithms.
- Compares the similarity of the predicted list and the true list.
- Basic principle is that you want the more relevant documents to have the lower ranks.

Results

We used these NDCG score to evaluate 3 different types of language embeddings:

- TF-IDF
- BERT fine-tuned
- BERT frozen

In combination with two different types of ranking models:

- PairWise
- PointWise

Pointwise vs Pairwise

- We can see the difference in the performance of the pairwise and pointwise ranking models.
- We can also see the difference in the performance of the models in combination with the embedding technique used.

nDCCG Using a Cut Off Point p

- This displays the difference in nDCG scores depending on the amount of horses we take into consideration per race.
- 'P not set': all horses taken into consideration (default)
- 'P set': p horse taken into consideration. (p = 3 in the graph displayed)

Conclusions

- Success
 - Proof of Concept
 - Compare our approaches
- Potential Improvements
 - More data
 - Listwise approach

