METODY NUMERYCZNE – WYNIKI, LABORATORIUM NR 9, GRUPA 6

Aproksymacja wielomianowa

Ad 3.2.

Rysunek 1: Aproksymacja funkcji g(x), parametr $\alpha=0,\,N=11$ węzłów aproksymacji

	Analityczne		Numeryczne
a_0	-0.125	b_0	-0.125
a_1	0.125	$ b_1 $	0.125
a_2	-0.03125	b_2	-0.03125
		$ b_3 $	3.0227e - 16

Tabela 1: Współczynniki a_i (dokładne) oraz odpowiadające im przybliżone współczynniki b_i dla funkcji g(x)

Ad 3.3.

Rysunek 2: Aproksymacja funkcji g(x), parametr $\alpha = 0.5$

	Analityczne		Numeryczne, $N = 11$	Numeryczne, $N = 101$
a_0	-0.125	b_0	-0.196534	-0.107257
a_1	0.125	b_1	0.120442	0.125546
a_2	-0.03125	b_2	-0.0312563	-0.0314931
		b_3	6.70096e - 05	-4.22421e-06

Tabela 2: Współczynniki a_i (dokładne) oraz odpowiadające im przybliżone współczynniki b_i dla funkcji g(x) z losowym szumem dla przykładowego wywołania programu (ze względu na losowość otrzymane współczynniki b_i będą się różnić).

Wyniki pośrednie

ullet Położenia i wartości obu funkcji w węzłach dla przypadku N=11 bez losowego szumu (tj. $\alpha=0$):

j	x_j	g_{j}	f_j
0	-10	0.011109	-4.5
1	-7.6	0.0561348	-2.88
2	-5.2	0.197899	-1.62
3	-2.8	0.486752	-0.72
4	-0.4	0.83527	-0.18
5	2	1	0
6	4.4	0.83527	-0.18
7	6.8	0.486752	-0.72
8	9.2	0.197899	-1.62
9	11.6	0.0561348	-2.88
10	14	0.011109	-4.5

Tabela 3: Równoodległe węzły aproksymacji dla N=11 oraz $\alpha=0$

• Macierz układu równań dla N=11 oraz $\alpha=0$:

$$\mathbf{G} = \begin{pmatrix} 11 & 22 & 677.6 & 3889.6 \\ 22 & 677.6 & 3889.6 & 80344.1 \\ 677.6 & 3889.6 & 80344.1 & 700657 \\ 3889.6 & 80344.1 & 700657 & 1.18914e+07 \end{pmatrix}$$

...oraz wektor wyrazów wolnych dla tego samego przypadku:

$$\vec{r} = \begin{pmatrix} -19.8 \\ -39.6 \\ -2109.25 \\ -12338.7 \end{pmatrix}$$

- \bullet Po wprowadzeniu **zaburzenia** poprzez ustawienie parametru $\alpha=0.5$ dla tej samej liczby węzłów N=11:
 - $-\,$ macierz ${\bf G}$ musi być identyczna do powyższej,
 - -wartości funkcji w węzłach oraz wektor \vec{r} powinny się różnić, ale **niedrastycznie**.

W razie problemów przy losowym szumie proszę się upewnić, że losowe U (wzór (15) z treści) faktycznie jest pseudolosową wartością z przedziału [0,1).