Data Link Layer

Data Link Layer

Logical Link Control (LLC)

Send blocks of data (frames) between physical devices that share a medium

Perform error correction

Application

Presentation

Medium Access Control (MAC)

Regulate access to the (shared) physical media

Challenges:

Transport

Session

Network

Data Link

How to delineate frames?

How to detect errors?

How to recover from and avoid

How to perform media access control (MAC)?

collisions?

arunab, SBU // CSE 310, Spring 2019: Data Link

Physical

Example data link layer protocols

- Ethernet (IEEE 802.3)
- WIFI (IEEE 802.11)
- Bluetooth (IEEE 802.15)
- Zigbee

First order of business: How to delineate frames?

Use preambles for synchronizing the sender and the receiver

010101010 SF

Ethernet frame

preamble for byte level synchronization. Start of frame delimitor (SFD) after the

Dealing with Noise

- The physical world is inherently noisy
- Interference from electrical cables
- Cross-talk from radio transmissions, microwave ovens
- Solar storms
- How to detect bit-errors in transmissions?
- How to recover from errors?

Parity Bits

- Idea: add extra bits to keep the number of 1s even
- Example: 7-bit ASCII characters + 1 parity bit

- Detects 1-bit errors and some 2-bit errors
- Not reliable against bursty errors
- Adds 14% overhead

Checksums

- Idea:
- Add up the bytes in the data
- Include the sum in the frame

START

Data

Checksum

END END

- Use ones-complement arithmetic
- Lower overhead than parity: 16 bits per frame
- Used in UDP, TCP, and IP

Cyclic Redundancy Check (CRC)

- Uses field theory to compute a semi-unique value for a given message
- Much better performance than previous approaches
- Fixed size overhead per frame (usually 32-bits)
- Quick to implement in hardware
- No need to learn the details of CRC

802.3 Ethernet

- Ethernet frames begin with SFD and ends with CRC.
- Source and destination are MAC addresses
- Minimum packet length of 64 bytes, hence the pad

What happens if packet is corrupted?

- Drop it and let the higher layers take care of it
- Ethernet
- Retransmit
- WiFi

Pros and Cons of dropping versus retransmitting

• Cons:

- Error free transmission cannot be guaranteed
- Not all applications want this functionality
- Error checking adds CPU and packet size overhead
- Error recovery requires buffering

Pros:

- Potentially better performance than app-level error checking
- Most useful over lossy links. Ethernet does not do anything if there are errors.
- WiFi, cellular, satellite does use reliability at the link layer.

What is Medium Access?

- Ethernet and WiFi are both multi-access technologies
- Broadcast medium, shared by many hosts
- Simultaneous transmissions cause collisions
- Media Access Control (MAC) protocols are required
- Rules on how to share the medium
- Strategies for detecting, avoiding, and recovering from collisions

Strategies for Media Access

- Channel partitioning (aka, leave it to the physical layer)
- Divide the resource into small pieces
- Allocate each piece to one host
- Multi-Access (FDMA), Code Division Multi-Access (CDMA Time Division Multi-Access (TDMA), Frequency Division
- E.g., Cellular
- Taking turns
- Tightly coordinate shared access to avoid collisions
- Example: Token ring networks
- Contention
- Allow collisions, but use strategies to recover
- Examples: Ethernet, Wifi

WiFi and Ethernet do not use TDMA, CDMA, or FDMA.

- Low utilization
- TDMA and FDMA have low utilization
- Just like a circuit switched network
- CDMA is just too complex
- Not distributed
- Multiple hosts that cannot directly coordinate
- No fancy code distribution schemes
- No fancy (complicated) token-passing schemes

Instead, use random access MAC

Aloha (first protocol used)

CSMA/CD (Ethernet)

CSMA/CA (WiFi)

Randomized access: ALOHA

Wireless links between the Hawaiian islands in the 70s

- · Aloha protocol:
- Just send when you have data!
- There will be some collisions of course ...
- Detect error frames and retransmit a random time
- Simple, decentralized and works well for low

Problems with Aloha

Collisions time is twice the frame time

- Synchronizing senders to slots can reduce collisions

Slotted Aloha

- Divide time into slots
- Each transmission can start only at the beginning of the slot
- Thus, frames either collide completely, or not at all
- But, hosts must have synchronized clocks

detect collision and backoff CSMA/CD Ethernet: Use random access, but

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
- 1. Sense for carrier
- 2. If carrier is present, wait for it to end
- Sending would cause a collision and waste time
- 3. Send a frame and sense for collision
- If no collision, then frame has been delivered
- 5. If collision, abort immediately
- Why keep sending if the frame is already corrupted?
- 6. Try to retransmit again.

CSMA/CD is one slide

With exponential backoff, the wait->rand(16) is replaced by increasing random numbers 20

What if the Channel is Busy?

- 1-persistent CSMA
- Wait until idle then go for it
- Blocked senders can queue up and collide---too greedy
- Instead, use exponential backoff

Exponential Backoff

- When contention is detected, back off.
- Exponential backoff
- Select $k \in [0, 2^n 1]$, where n = number of collisions
- -n is capped at 10, frame dropped after 16 collisions
- Backoff time is divided into contention slots

Exponential backoff example

- Node sends first frame and senses for collision (n=1)
- If collision occurs, it chooses k = 1 or k = 0 each with probability 0.5
- IF k=1, it waits 512 bit times, and then senses the channel
- If k = 0, it immediately senses the channel
- If channel is free, node sends frame (n=2). If collision occurs again,
- K is chosen from {0,1,2,3}
- n is capped to 10, where n is the number of collisio