Functions (F)

	Chapter	Lecture	Assignment
Functions	7	5	3

3. (6 pts) Let the t	wo functions $f: \mathbb{Z} \to \mathbb{Z}$	and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:
	$f(n) = (-1)^n \cdot n$ $g(n) = 2n$	$ ext{for all } n \in \mathbb{Z} \ ext{for all } n \in \mathbb{Z} \ ext{}$
Which of the fol	llowing statements is fals	se?
☐ The range of	g is $\{n \in \mathbb{Z} \mid n \text{ is even}\}.$	
$\Box f$ is onto.		
$\Box f \circ g$ is one-to	o-one.	
☐ The range of	$g \circ f$ is $\{n \in \mathbb{Z} \mid n \text{ is even}\}$	en and $n \geq 0$.
2. (6 pts) Let the f	function $f: \mathbb{Z} \to \mathbb{Z}$ be de	fined as follows:
	f(n)=3n+2	for all $n \in \mathbb{Z}$
Which of the fol	llowing statements is \mathbf{tru}	ıe?
$\Box f$ is onto.		
$\Box f$ is one-to-or	ne.	
$\square \; (f \circ f)(n) =$	9n + 4.	
\Box The range of	f is a finite set.	
2. (6 pts) Let the tw	vo functions $f: \mathbb{N} \to \mathbb{N}$ an	ad $g: \mathbb{N} \to \mathbb{N}$ be defined as follows
	f(n) = n + 1 $g(n) = 2 \cdot n$	for all $n \in \mathbb{N}$ for all $n \in \mathbb{N}$
where \mathbb{N} is the se	et $\{0, 1, 2,\}$. Which of	the following statements is true ?
☐ The range of j	$f \circ g \text{ is } \{n \in \mathbb{N} \mid n \text{ is odd}\}$	·.
☐ The range of j	$f \circ g$ is $\{n \in \mathbb{N} \mid n \text{ is even}\}$	}.
☐ The range of j	$f \circ g$ is $\{n \in \mathbb{N} \mid n > 0\}$.	
$\Box f \circ g$ is onto.		

3. (6 pts) Let the two functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = (-1)^n \cdot n$$
 for all $n \in \mathbb{Z}$
 $g(n) = 2n$ for all $n \in \mathbb{Z}$

Which of the following statements is **false**?

 $\overline{\mathbf{A}}$ The range of g is $\{n \in \mathbb{Z} \mid n \text{ is even}\}.$

 \mathbf{B} f is onto.

Solution: The range of $g \circ f$ is $\{n \in \mathbb{Z} \mid n \text{ is even}\}.$

2. (6 pts) Let the function $f: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = 3n + 2$$
 for all $n \in \mathbb{Z}$

Which of the following statements is **true**?

 $\overline{\mathbf{A}}$ f is onto.

 \mathbf{F} f is one-to-one.

 $\boxed{C} (f \circ f)(n) = 9n + 4.$

 $\overline{\mathbb{D}}$ The range of f is a finite set.

Solution: Let n, m such that f(m) = f(n), that is, 3m + 2 = 3n + 2. By subtracting 2 on both sides of the equation we obtain 3m = 3n, and by dividing by 3 on both sides of this new equation we obtain m = n.

2. (6 pts) Let the two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ be defined as follows:

$$f(n) = n + 1$$
 for all $n \in \mathbb{N}$
 $g(n) = 2 \cdot n$ for all $n \in \mathbb{N}$

where \mathbb{N} is the set $\{0, 1, 2, \dots\}$. Which of the following statements is **true**?

 \square The range of $f \circ g$ is $\{n \in \mathbb{N} \mid n \text{ is odd}\}$.

 $\overline{\mathbb{C}}$ The range of $f \circ g$ is $\{n \in \mathbb{N} \mid n > 0\}$.

 $D f \circ g$ is onto.

2. (6 pts) Let the two functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = n^2$$

for all $n \in \mathbb{Z}$

$$g(n) = n + 1$$

for all $n \in \mathbb{Z}$

where \mathbb{Z} is the set of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Which of the following statements is **true**?

- \Box f is onto.
- $\square g$ is a one-to-one correspondence.
- $\Box f$ is one-to-one.
- $\square (f \circ g)(n) = n^2 + 1 \text{ for all } n \in \mathbb{Z}.$
- **2.** (6 pts) Let the two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ be defined as follows:

$$f(n) = n + 1$$

for all $n \in \mathbb{N}$

$$q(n) = 2 \cdot n$$

for all $n \in \mathbb{N}$

where \mathbb{N} is the set $\{0, 1, 2, \dots\}$. Which of the following statements is **true**?

- $\Box f$ is onto.
- \square q is a one-to-one correspondence.
- \Box f is one-to-one.
- $\square (q \circ f)(n) = 2 \cdot n + 1 \text{ for all } n \in \mathbb{N}.$
- 5. (2 pts) Let $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ be recursively defined by

$$f(1) = 1,$$

$$f(n) = nf(n-1).$$

What expression does the function calculate?

- $f(n) = \frac{n(n+1)}{2}$
- $\bigcap f(n) = n!$
- $f(n) = 2^n$
- $\Box f(n) = n^n$

2. (6 pts) Let the two functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = n^2$$

for all $n \in \mathbb{Z}$

$$g(n) = n + 1$$

for all $n \in \mathbb{Z}$

where \mathbb{Z} is the set of integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Which of the following statements is **true**?

- \mathbf{A} f is onto.
- \mathbf{P} q is a one-to-one correspondence.
- $\overline{\mathbf{C}}$ f is one-to-one.
- $\mathbb{D}(f \circ g)(n) = n^2 + 1 \text{ for all } n \in \mathbb{Z}.$

Solution: To show that g is a one-to-one correspondence, we show that it is both one-to-one and onto: If g(n) = g(m), then n+1=m+1. By subtracting 1 from both sides of the latter equation we obtain that n=m. Hence, g is one-to-one. Moreover, given any $n \in \mathbb{Z}$, we have that g(n-1) = (n-1) + 1 = n. Hence, g is onto.

2. (6 pts) Let the two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ be defined as follows:

$$f(n) = n + 1$$

for all $n \in \mathbb{N}$

$$g(n) = 2 \cdot n$$

for all $n \in \mathbb{N}$

where \mathbb{N} is the set $\{0, 1, 2, \dots\}$. Which of the following statements is **true**?

- $\mathbf{A} f$ is onto.
- \mathbf{B} g is a one-to-one correspondence.
- $\mathbb{D}(g \circ f)(n) = 2 \cdot n + 1 \text{ for all } n \in \mathbb{N}.$

Solution: If f(n) = f(m), then n + 1 = m + 1. By subtracting 1 from both sides of the latter equation we obtain that n = m. Hence, f is one-to-one.

5. Let $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ be recursively defined by

$$f(1) = 1,$$

$$f(n) = nf(n-1).$$

What expression does the function calculate?

$$\underline{\mathbf{A}} f(n) = \frac{n(n+1)}{2}$$

$$\mathbf{P} f(n) = n!$$

$$C | f(n) = 2^n$$

2. (6 pts) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:	2. (6 pts) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:
$f(n) = 2 \cdot (n \mod 12)$ for all $n \in$	$f(n) = 2 \cdot (n \bmod 12) \qquad \text{for all } n \in \mathbb{Z}$
where $\mathbb Z$ is the set of integers. Which of the following statements	is \mathbf{true} ? where $\mathbb Z$ is the set of integers. Which of the following statements is \mathbf{true} ?
\Box f is not a function because 12 and 24 have the same image.	$\boxed{\mathbf{A}}$ f is not a function because 12 and 24 have the same image.
$\Box f$ is one-to-one.	$\boxed{\mathrm{B}} f$ is one-to-one.
\Box The range of f is has cardinality 12.	$ \mathfrak{C} $ The range of f is has cardinality 12.
$\Box f$ is onto.	$\boxed{\mathbb{D}} f$ is onto.
3. (6 pts) Let $f: \mathbb{N} \to \mathbb{N}$ be the function from the set of natural numbers to to natural numbers defined as follows:	he set of 3. (6 pts) Let $f: \mathbb{N} \to \mathbb{N}$ be the function from the set of natural numbers to the set of natural numbers defined as follows:
$f(n) = n \bmod 3$	$f(n) = n \bmod 3$
How many elements are there in the range of f ?	How many elements are there in the range of f ?
\square 6	old A 6
☐ Infinite number of elements	B Infinite number of elements
\square 3	☑ 3
\square None; The range of f is the empty set	$\boxed{\mathbb{D}}$ None; The range of f is the empty set Solution: The range of f is the set $\{0,1,2\}$.
4. (6 pts) How many one-to-one functions are there from the set $\{1,2,3\}$ t $\{a,b,c,d\}$?	so the set 4. (6 pts) How many one-to-one functions are there from the set $\{1,2,3\}$ to the set $\{a,b,c,d\}$?
\square 12	A 12
\square 24	№ 24
\square 36	C 36
☐ 48	D 48
	Solution: A one-to-one function from $\{1,2,3\}$ to $\{a,b,c,d\}$ is a 3-permutation of the set $\{a,b,c,d\}$. Hence, there are $P(n,r)$ such functions, with $n=4$ and $r=3$:
	$P(4,3) = \frac{4!}{(4-3)!} = \frac{24}{1} = 24$