Revealing interactive mechanism underlying brain activity in the visual cortex using a voxel-wise background connectivity analysis

Taehoon Kim¹ Kyuin Kim¹ Ghootae Kim¹

¹Deep Memory Lab, Cognitive Science Research Group, Korea Brain Research Institute

• Redundancy Gain Enhanced neural activity to a stimulus in retinotopic areas when identical stimuli appear far away in different visual quadrants • Experimental Condition • Results • The redundancy gain likely reflects feedback from higher visual areas Shim et al., 2013

Research Goal

Investigating whether feedback activity from higher visual areas modulates the activation of the early visual cortex

REFERENCE

- Shim, W. M., Jiang, Y. V., & Kanwisher, N. (2013). Redundancy gains in retinotopic cortex. *Journal of Neurophysiology*, *110*, 2227-2235.
- Al-Aidroos, N., Said, C. P., & Turk-Browne, N. B. (2012). Top-down attention switches coupling between low-level and high-level areas of human visual cortex. Proceedings of the National Academy of Sciences, 109, 14675-14680.

Conclusion

The current study provides direct evidence showing that higher visual areas feed global representation back to low-level visual areas and modulate their activation by using the novel voxel-wise background connectivity analysis.