Unit 15 Pythagoras Theorem

THEOREM 15.1.1 PYTHAGORAS THEOREM

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

Given:

 $\triangle ACB$ is a right angle triangle in which $m \angle C = 9.0^{\circ}$ and $m \overline{BC} = a$, $m\overline{AC} = b$ and $m \overline{AB} = c$

To Prove:

$$c^2 = a^2 + b^2$$

Construction:

Draw \overline{CD} perpendicular from C on \overline{AB} . Let $m\overline{CD} = h$, $m\overline{AD} = x$ and $m\overline{BD} = y$. Line segment \overline{CD} splits ΔABC into two triangles ADC and BDC which are separately shown in figure ii (a) and ii (b) respectively.

Proof:

•								
	- Statements	Reasons						
٠	In the correspondence							
	$\triangle ADC \leftrightarrow \triangle ACB$							
	$\angle A \cong \angle A$	Refer to figure ii (a) and (i)						
		common-self congruent						
	$\angle ADC \cong \angle ACB$	Construction given both measure 90°						
	$\angle C \cong \angle B$	$\angle C$ and $\angle B$, complements of $\angle A$						
	$\therefore \ \Delta ADC \cong \Delta ACB$	Congruency of three angles						
	$\therefore \frac{x}{b} = \frac{b}{c}$	Measure of corresponding sides						
•	b — c	of similar triangles is similar.						
	Again in the	Refer to figure li(b) and (i)						
	correspondence	"WO"						
	$\triangle BDC \leftrightarrow \triangle BCA$	1/1,						
1	$\angle B \cong \angle B$	Common self congruent						
	∠BDC ≅ ∠BCA	Construction given, both						
	"IVIII".	measure 90°						
1	$\angle C \cong \angle A$ $\triangle BDC \cong \triangle BCA$	$\angle C$ and $\angle A$, complements of $\angle B$						
-	$\Delta BDC \cong \Delta BCA$	Congruency of three angles.						
	$\therefore \frac{y}{a} = \frac{a}{c}$	Sides of similar triangles are						
ł		proportional. (Theorem 6)						
C	or $y = \frac{a}{c^2}$ (ii)							
E	But $y + x = c$	Supposition						
	$\frac{a^2}{c} + \frac{b^2}{c} = c$ or $a^2 + b^2 = c^2$	By (i) and (ii)						
	or $a^2 + b^2 = c^2$	Multiplying both sides with c.						
0	$c^2 = a^2 + b^2$							

In a triangle if the sum of the squares of the I measures of two sides is equal to the square of the measure of the third side, the triangle is a right angled triangle.

Given:

In a $\triangle ABC$, $m\overline{AB} = c$, $m\overline{BC} = a$ and $m\overline{AC} = b$ such that $a^2 + b^2 = c^2$

To Prove:

 $m\angle ACB = 90^{\circ}$, $\triangle ACB$ is a right angled triangle.

Construction:

Draw \overline{CD} Perpendicular to \overline{BC} such that $\overline{CD} = \overline{CA}$. Join B and D.

Proof:

Statements	Reasons
ΔDCB is a right angled	Construction
triangle	
$\left(m\overline{BD}\right)^2 = a^2 + b^2$	Pythagoras theorem
But $a^2 + b^2 = c^2$	Given
$\therefore \qquad (m\;\overline{BD})^2 = c^2$	
or $m \overline{BD} = c$	Taking square root of both sides.

	` <u>`</u>
ΔD	$CB \leftrightarrow \Delta ACB$
\overline{CD}	$\cong \overline{CA}$
\overline{BC}	$\cong \overline{BC}$
ł	$\cong \overline{AB}$
\therefore	$\Delta DCB \cong \Delta ACB$
∴	∠DCB ≅ ∠ACB

But
$$m \angle DCB = 90^{\circ}$$
.
 $m \angle ACB = 90^{\circ}$
and the ΔACB is a right angled triangle.

Construction Common

Each is equal to c

 $SSS \cong SSS$

Corresponding angles of congruent triangles.

Construction

EXERCISE 15.1

- Q1. Verify that the \triangle s having the following measures of sides are right angled.
- (i) a = 5cm, b = 12cm, c = 13

Solution:

By Pythagoras theorem

$$a^2 + b^2 = (5)^2 + (12)^2$$

$$= 25 + 144 = 169$$

$$c^2 = (13)^2 = 169$$

 $a^2 + b^2 = c^2$

Thus the triangle is right angled triangle.

(ii) a = 1.5 cm, b = 2 cm, 2.5 cm

Solution:

By Pythagoras theorem

$$a^{2} + b^{2} = (1.5) + (2)$$

= 2.25 + 4 = 6.25
 $c^{2} = (2.5)^{2} = 6.25$
 $a^{2} + b^{2} = c^{2}$

Thus the triangle is right angled triangle.

(iii) a = 9cm, b = 12cm, c = 15cm

Solution:

By Pythagoras theorem

$$a^{2} + b^{2} = (9)^{2} + (12)^{2}$$

= 81 + 144 = 225

$$c^2 = (15) = 225$$

$$a^2 + b^2 = c^2$$

Hence the triangle is right angled triangle.

a = 16cm, b = 30cm, c = 34cm(iv) Solution:

By Pythagoras theorem

$$a^{2} + b^{2} = (16)^{2} + (2)^{2}$$

= 256 + 900 = 1156
 $c^{2} = (34)^{2} = 1156$
 $\therefore a^{2} + b^{2} = c^{2}$

Hence the triangle is right angled triangle.

Verify that $a^2 + b^2$, $a^2 - b^2$ and 2ab are the **Q2.** measures of the sides of a right angled triangle where a and b are any two real numbers (a > b)NOWPK.COM

Solution:

and

Let ABC be triangle such that

$$\overline{AB} = a^2 + b^2$$

$$\overline{BC} = a^2 - b^2$$

$$\overline{AC} = 2ab$$

By Pythagoras theorem

$$|\overline{AB}|^2 = (a^2 + b^2)^2 = a^4 + b^4 + 2a^2b^2$$

$$|\overline{AC}|^2 + |\overline{BC}|^2 = (2ab)^2 + (a^2 - b^2)^2$$

$$= 4a^4 + a^4 + b^4 - 2a^2b^2$$

$$= a^4 + b^4 + 2a^2b^2$$

$$|\overline{AB}|^2 - |\overline{AC}|^2 + |\overline{BC}|^2$$

 $|\overline{AB}|^2 = |\overline{AC}|^2 + |\overline{BC}|^2$

Hence ABC is a right angled triangle.

The three sides of a triangle are of **Q3.** measure 8, x and 17 respectively. For what value of xwill it become base of a right angled triangle? Solution:

If x is the base of right angled triangle then -17 is the measure of hypotenuse.

By Pythagoras Theorem

$$(hypotenus)^{2} = (base)^{2} + (perpendicular)^{2}$$

$$(17)^{2} = (x)^{2} + (8)^{2}$$

$$289 = x^{2} + 64$$

$$x^{2} = 289 - 64 = 225$$

$$x = \sqrt{225} = 15$$

- In an isosceles Δ , the base $\overline{BC} = 28 \ cm$, and Q4. $\overline{AB} = \overline{AC} = 50 \ cm$. If $\overline{AD} \perp \overline{BC}$, then find
- (i) length of \overline{AD}
- (ii) Area of $\triangle ABC$

Solution:

- (i) $\overline{AD} \perp \overline{BC}$
- D is mid point for \overline{BC} :.
- $m\overline{BD} = \frac{1}{2}(28) = 14$ cm So From right angled ΔABD

$$(m\overline{AB})^2 = (m\overline{BD})^2 + (m\overline{AD})^2$$

$$(50)^2 = (14)^2 + (m\overline{AD})^2$$

$$(m\overline{AD})^2 = (50)^2 + (14)^2$$

$$(m\overline{AD})^2 = (50)^2 - (14)^2 = 2500 - 196 = 2304$$

 $m\overline{AD} = \sqrt{2304} = 48cm$

Area of \(\Delta ABC \) (ii)

$$= (m\overline{BC}) (m\overline{AD})$$

= (28)(48) = 672cm²

In a quadrilateral ABCD, the diagonals \overline{AC} and \overline{BD} **Q5.** are perpendicular to each other. Prove that

$$m\overline{AB}^2 + m\overline{CD}^2 = m\overline{AD}^2 + m\overline{BC}^2$$

Solution:

The diagram AC and BD of the quadrilateral ABCD meet at O perpendicularly in the right triangles ΔAOB

$$m\overline{A}\overline{B}^2 = m\overline{A}\overline{O}^2 + m\overline{O}\overline{B}^2 \tag{i}$$

In the right triangle ΔBOC

$$m\overline{BC}^2 = m\overline{OB}^2 + m\overline{OC}^2$$
 (ii)

In the right triangle DOC

$$m\overline{DC}^2 = m\overline{OC}^2 + m\overline{OD}^2$$
 (iii)

Adding (i) and (ii)

$$m\overline{AB}^2 + m\overline{CD}^2 = m\overline{OA}^2 + m\overline{OB}^2 + m\overline{OC}^2 + m\overline{OD}^2$$

Adding (i) and (iv)

$$m\overline{A}\overline{D}^{2} + m\overline{B}\overline{C}^{2} = m\overline{O}\overline{A}^{2} + m\overline{O}\overline{B}^{2} + m\overline{O}\overline{C}^{2} + m\overline{O}\overline{D}^{2}$$
Hence
$$m\overline{A}\overline{B}^{2} + m\overline{C}\overline{D}^{2} = m\overline{A}\overline{D}^{2} + m\overline{B}\overline{C}^{2}$$

Q6. (i) In the $\triangle ABC$ as shown in the figure, $m \angle ACB = 90^{\circ}$ and $\overline{CD} \perp \overline{AB}$. Find the lengths a, h and b if $m\overline{BD} = 5$ units and $m\overline{AD} = 7$ units

 ${f B}$

a

b

Solution:

$$m\overline{AB} = 5 + 7 = 12$$

In right angled ΔBDC

$$a^2 = 25 + h^2 \dots (1)$$

In right angled AADC

$$b^2 = 49 + h^2 \dots (2)$$

In right angled $\triangle ABC$

$$a^2 + b^2 = 144 \dots (3)$$

Adding (1) and (2)

$$a^2 + b^2 = 74 + 2h^2 \dots (4)$$

From (3) and (4)

$$74 + 2h^2 = 144$$

$$2h^2 = 144 - 74 = 70$$

$$h^2 = 35$$

$$h = \sqrt{35}$$
 units

Put $h^2 = 35 \text{ in (1)}$

$$a^2 = 25 + 35 = 60$$

$$a = \sqrt{60} = 2\sqrt{15} \text{ units}$$

Put $h^2 = 35 \text{ in } (2)$

$$b^2 = 49 + 35$$

$$b^2 = 84$$

$$b = \sqrt{84} = 2\sqrt{21} \text{ units}$$
So $a = 2\sqrt{15} \text{ units}$

$$h = \sqrt{35} \text{ units}$$

$$b = 2\sqrt{21} \text{ units}$$

(ii) Find the value of x in the shown figure. Solution:

From $\triangle ADC$

$$(m\overline{AC})^2 = (m\overline{AD})^2 + (m\overline{DC})^2$$

 $(13)^2 = (m\overline{AD})^2 + (5)^2$
 $169 = (m\overline{AD})^2 + 25$
 $(m\overline{AD})^2 = 169 - 25 = 144$
 $m\overline{AD} = 12cm$

From $\triangle ABD$

$$(m\overline{AB})^2 = (m\overline{AD})^2 + (m\overline{BD})^2$$

 $(15)^2 = (12)^2 + (x)^2$
 $225 = 144 + x^2$
 $x^2 = 225 - 144 = 81$

$$x = 9 cm$$

Q7. A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance

How much distance will it travel to land at the airport?

Solution:

$$m\overline{BC} = 500 \ m$$
; $m\overline{AC} = 300 \ m$
By Pythagoras theorem
 $m\overline{AB}^2 = m\overline{BC}^2 + m\overline{AC}^2$
 $m\overline{AB}^2 = (500)^2 + (300)^2$
 $= 250000 + 90000$
 $= 340000 = \sqrt{34 \times 10000}$

$$m\overline{AB} = 100\sqrt{34} m$$

Q8. A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8 m away from the base of the wall. How high up

the wall will the ladder reach?

Solution:

By Pythagoras Theorem

$$(m\overline{AB})^{2} = (m\overline{AC})^{2} + (m\overline{BC})^{2}$$

$$(17)^{2} = (m\overline{AC})^{2} + (8)^{2}$$

$$(m\overline{AC})^{2} = (17)^{2} - (8)^{2}$$

$$= 289 - 64 = 225$$

A student travels to his school by the route as Q9. shown in the figure. Find $m \overline{AD}$, the direct distance from his house to school.

Solution:

A is house, B is bus stop and D is school. Produce \overline{AB} and draw $\overline{DL} \parallel \overline{BC}$ to meet AB produced at L.

We have to find AD.

$$m\overline{LD} = m\overline{BC} = 6 \text{ km}$$

$$m\overline{BL} = m\overline{CD} = 3km$$

$$m\overline{AL} = m\overline{AB} + m\overline{BL} = 2 + 3 = 5 \text{ km}$$

 ΔALD is a right angled Δ

By Pythagoras theorem

$$m\overline{AD}^2 = m\overline{AL}^2 + m\overline{LD}^2$$

= $(5)^2 + (6)^2 = 25 + 36 = 61$
 $m\overline{AD} = \sqrt{61} \ km$

REVIEW EXERCISE 15

- Q1. Which of the following is true and which are false?
- (i) In a right angled triangle greater angle is of 90° .
- (ii) In a right angled triangle right angle is of 60° .
- (iii) In a right triangle hypotenuse is a side opposite to right angle.
- (iv) If a, b, c are sides of right angled triangle with c as longer side then $c^2 = a^2 + b^2$
- (v) If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm.
- (vi) If hypotenuse of an isosceles right triangle is $\sqrt{2}$ cm then each of other side is of length 2 cm.

Answers:

-												
	(i)	T	(ii)	F	(iii)	T	(iv)	T	(v)	/T((vi) F	
											 . . 	. 1

Q2. Find the unknown value in each of the following figures.

(i)

By Pythagoras Theorem

$$x^2 = 4^2 + 3^2 = 16 + 9 = 25$$

$$x^2 = \sqrt{25} = 5 cm$$

(ii)

By Pythagoras Theorem

$$(10)^2 = (6)^2 + (x)^2$$

 $100 = 36 + x^2$
 $x^2 = 100 - 36 = 64$
 $x^2 = \sqrt{64} = 8 \text{ cm}$

(iii)

By Pythagoras Theorem

$$(13)^2 = (x)^2 + (5)^2$$

$$169 = x^2 + 25$$

$$x^2 = 169 - 25$$

$$x = \sqrt{144} = 12 \text{ cm}$$

(iv)

By Pythagoras Theorem

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$
$$2 = x^2 + 1$$

$$x^2 = \sqrt{1} = 1 cm$$