

Feature Selection

Topics

- > Feature Selection
 - . What is it?
 - . How does it work?
- > Ranking techniques
- > Curse of Dimensionality
 - Combinatorial explosion
 - Distance concentration
- > Approaches
 - . Filter Methods
 - . Wrapper approaches
 - . Embedded approaches

Feature Selection

- > Why?
 - Simplify models
 - Shorten training time
 - Reduce overfitting
 - Avoid Curse of Dimensionality

Feature Selection

- > How?
 - Algorithms
 - Machine Learning
- > Standard approaches:
 - . Filter Methods
 - . Wrapper approaches
 - . Embedded approaches

Exploratory analysis

Scalable and efficient filter for further test

E.g: Eigenfaces pixels ranked by F statistic per variable classification performance

Ranking with variable interactions E.g. Relief algorithm

Unsupervised:

E.g. Density, reliability, smoothness

Unsupervised:

E.g. entropy

Unsupervised:

E.g. saliency

Unsupervised:

E.g. saliency

- High-dimensional spaces:
 - Images
 - Videos
 - Genes

- Analyzing/organizing data in high-dimensional spaces
- Data becomes sparse

- Data needed to support the result grows exponentially
- Organization strategies become inefficient

Combinatorial explosion

- Puzzles (sudoku, etc...)
- Factorial in arithmetics
- Boolean system

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1 6
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

N	N!
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5,040
8	40,320
9	362,880
10	3,628,800

A	В	С	D	Result
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Combinatorial explosion

- Each combination of possible values must be considered
- Each additional dimension increases
 exponentially the numbers of possibilities

Distance concentration

$$\frac{\frac{n}{2}r^n}{\frac{\Gamma(\frac{n}{2}+1)}{2r^n}} = \frac{\pi^{\frac{n}{2}}}{2^n\Gamma(\frac{n}{2}+1)}$$

- > Use
 - Intrinsic properties of the data
 - Statistic methods: chi-square, ANOVA, Correlation
- Calculate
 - Subset of the variables based on thoose methods
- > Rank
 - . The variables according to a certain result

ANOVA

```
The p-value of Age is: 0.16169995412816476
The p-value of Class is: 5.487184140399378e-20
The p-value of # of Siblings is: 0.46609165802064034
The p-value of # of Parents and children is: 0.017105880263189474
The p-value of Fare is: 1.0265102576807696e-11
```

CORRELATION

Entropy (Information Gain) Decision Trees

Approaches: Wrapper

Approaches: Wrapper

- > Require
 - state space: feature subsets
 - . initial state
 - termination condition
 - search engine
- > Search algorithm:
 - Exponential complexity
 - Forward selection/Backward elimination
- Machine learning algorithm:
 - Search criterion/-a of search
 - Feedback to search algorithm

Approaches: Embedded

"A learning algorithm that takes advantage of its own variable selection process and performs both feature selection as well as classification simultaneously."

Selecting the best subset

Example: Iterated Local Search

Algorithm: Genetic

Classifier: Support Vector Machine

Evaluation: Classification accuracy (tenfold)

Approaches: Embedded

Advantages

- > All-in-one method
- Less computationally expensive
- Less prone to overfitting

Disadvantages

- Needs multiple algorithms
- Less flexible with backtracking
- Specific to a learning machine

Questions

0|||00000|||000**00|||00000||**||00000|||00000|||