V<sub>CE</sub> = 0.7 V is known as *onset of saturation* (OS)

## • Saturation:

- $\triangleright$  For  $V_{CE} < 0.7 V$
- > CB junction becomes *forward biased*
- > Collector also starts to *inject* electrons to base
- > Two effects:
  - > Net electrons reaching collector  $\downarrow \Rightarrow I_C \downarrow$
  - ➤ Base gets flooded with electrons
    - $\Rightarrow$  Recombination increases manyfold  $\Rightarrow$   $I_B \uparrow$
  - $\triangleright$  Thus,  $\beta \downarrow \Rightarrow$  Defined as  $\beta_{sat}$  (=  $I_{C,sat}/I_{B,sat}$ )

- Noting that  $V_{\gamma} = 0.6 \text{ V}$ , for  $V_{BC} \leq 0.5 \text{ V}$ , injection of electrons from collector to base will be negligible
  - Fig. It can be assumed that FA operation is maintained till this point, with β retaining its nominal (FA) value
  - $ightharpoonup V_{CE} = 0.2 \text{ V}$  at this point, and is known as the point of soft saturation (SS)
- Beyond this point, BJT enters the *operating* domain known as hard saturation (HS)

- In *hard saturation*,  $V_{BC} \approx 0.7 \text{ V}$ , and collector *injects* electrons *vigorously* into the base
- To *counter* this effect, V<sub>BE</sub> automatically *increases* to about 0.8 V
- At this point,  $V_{CE} = 0.1 \text{ V}$ , and is known as the *point of hard saturation* (HS)
- Note that all these numbers are for *quick* estimates, and actual values can be a little different from these

- Degree of Saturation (DoS):
  - $\triangleright$  DoS =  $\beta/\beta_{sat}$  ( $\ge 1$ )
  - ➤ Portrays how *deeply* the BJT is driven into *saturation*
- Commonly used values of parameters for quick estimate:

$$\triangleright$$
 V<sub>BE</sub>(FA) = V<sub>BE</sub>(SS) = 0.7 V

$$\triangleright$$
 V<sub>BE</sub>(HS) = 0.8 V

$$V_{CE}(OS) = 0.7 \text{ V}, V_{CE}(SS) = 0.2 \text{ V}$$

$$\triangleright$$
 DoS(FA,OS,SS) = 1, DoS(HS) > 1

- BJTs in *analog circuits* are used as *amplifiers*, and should *never* be pushed to *hard saturation* (β *drops significantly*)
  - $\succ$  Lowest limit of  $V_{CE} = 0.2 \text{ V } (soft \ saturation)$
- On the other hand, BJTs used in *digital circuits*, while *on*, are always pushed to *hard saturation*, since they act basically as *switches* 
  - $\gt V_{CE} = 0.1 \text{ V } (hard \ saturation)$

## Finding the Operating Point: Load Line Analysis

• Quick estimate in FA mode:

$$\triangleright I_{\rm B} = (V_{\rm B} - V_{\rm BE})/R_{\rm B}$$

$$> V_{BE} = 0.7 \text{ V}$$

$$> I_C = \beta I_B$$

➤ Independent of R<sub>C</sub>, so long as FA operation is maintained

