Planing, Learning and Intelligent Decision Making - Homework 4

99326 - Sebastião Carvalho, 99331 - Tiago Antunes March 18, 2024

Contents

1	Question 1
	1 a)
	1 b)
	1 c)

1 Question 1

1 a)

To find the equilibrium points for the o.d.e (2), we need to solve the following equation:

$$\begin{split} \dot{J} &= 0 \Leftrightarrow \mathbb{E}_{\pi}[c_t + (\gamma - 1)J] = 0 \Leftrightarrow \mathbb{E}_{\pi}[c_t] + (\gamma - 1)\mathbb{E}_{\pi}[J] = 0 \\ \text{Since } \mathbb{E}_{\pi}[c_t] &= c_{\pi}, \\ c_{\pi} &= (1 - \gamma)\mathbb{E}_{\pi}[J] \Leftrightarrow \mathbb{E}_{\pi}[J] = \frac{c_{\pi}}{1 - \gamma} \\ \text{Since } J \text{ doesn't depend on } \pi, \, \mathbb{E}_{\pi}[J] = J, \text{ and } J^{\pi} = \frac{c_{\pi}}{1 - \gamma}, \text{ we have that} \end{split}$$

So the equilibrium point is J^{π} , since it's the only point that satisfies the equation.

1 b)

$$\begin{split} \dot{E}_t &= \frac{d}{dt} \frac{1}{2} \left(J^{(t)} - \mathbf{J}^{\pi} \right)^2 \\ &= \frac{1}{2} \frac{d}{dt} \left(J^{(t)} - \mathbf{J}^{\pi} \right)^2 \\ &= \frac{1}{2} 2 \left(J^{(t)} - \mathbf{J}^{\pi} \right) \frac{d}{dt} \left(J^{(t)} - \mathbf{J}^{\pi} \right) \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \dot{J}^{(t)} \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \mathbb{E}_{\pi} [c_t + (\gamma - 1) J^{(t)}] \end{split}$$

 $\mathbb{E}_{\pi}[J] = \frac{c_{\pi}}{1-\gamma} \Leftrightarrow J = J^{\pi}$

Since J^{π} is an equilibrium point, \dot{J}^{π} is 0, and we have that

$$= (J^{(t)} - J^{\pi}) (\mathbb{E}_{\pi}[c_{t} + (\gamma - 1)J^{(t)}] - \dot{J}^{\pi})$$

$$= (J^{(t)} - J^{\pi}) (\mathbb{E}_{\pi}[c_{t} + (\gamma - 1)J^{(t)}] - (c_{\pi} + (\gamma - 1)J^{\pi}))$$

$$= (J^{(t)} - J^{\pi}) (\mathbb{E}_{\pi}[c_{t}] + (\gamma - 1)\mathbb{E}_{\pi}[J^{(t)}] - c_{\pi} - (\gamma - 1)J^{\pi})$$

$$= (J^{(t)} - J^{\pi}) (c_{\pi} + (\gamma - 1)J^{(t)} - c_{\pi} - (\gamma - 1)J^{\pi})$$

$$= (\gamma - 1) (J^{(t)} - J^{\pi}) (J^{(t)} - J^{\pi})$$

$$= (\gamma - 1) (J^{(t)} - J^{\pi})^{2}$$

Since $(J^{(t)} - J^{\pi})^2$ is always positive, and $\gamma - 1$ is always negative, we have that \dot{E}_t is always negative, and a negative derivative means that the function is decreasing.

Hence, the energy is always decreasing as we move foward in time.

1 c)

The result obtained in (b) suggests that the energy is always decreasing as we move foward in time, unless $J^{(t)} = J^{\pi}$, at which point the derivative is 0, meaning that the value will not change. Given its equation and that the energy is only 0 if $J^{(t)} = J^{\pi}$, we conclude that $J^{(t)}$ converges to J^{π} until they're equal, and then it will permanently stay equal. Knowing that in this case, the state $\mathcal{X} = \{x\}$, we can conclude that if the states are visited infinitely often, the TD(0) algorithm converges to J^{π} , for any $\gamma \in [0, 1]$.