Algorithms

Kiho Choi

Fall, 2022

4. Greedy Algorithms I

Contents

- Intro. to Greedy Algorithms
- Activity selection problem
- Knapsack problem
- Huffman codes

Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment.
- That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

Optimization problems

- In optimization problems, there are many possible solutions.
- Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value.
- We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value.

Greedy algorithms

- When solving an optimization problem, we typically make a choice at each step.
- A greedy algorithm always makes the choice that looks best at the moment, without depending on any future choices.
- That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

Activity-selection problem

- S = {1, 2,..., n}is a set of *activities*.
- *i* takes place during time period $[s_i, f_i), s_i \le f_i$.
- activities are compatible if they have disjoint time periods.

Activity-selection problem: select a largest set of mutually compatible activities.

Greedy strategy

GREEDY-ACTIVITY-SELECTOR (s, f)

```
n \leftarrow length[s]
A \leftarrow \{1\}
j \leftarrow 1
for i \leftarrow 2 to n do
if s_i \geq f_j then
A \leftarrow A \cup \{i\}
```


return A

- sort the activities in non-decreasing order of finishing times.
- scan the sorted list and select current activity if it is compatible with the current selection.
- Running time: time to sort $+ \Theta(n)$.

Activity selection

Example: S sorted by finish time:

Maximum-size mutually compatible set: {a1, a4, a8, a11}.

Not unique: also {*a*2, *a*4, *a*9, *a*11}.

Example: The operation of RECURSIVE-ACTIVITY-SELECTOR

An Iterative Greedy Algorithm

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n \leftarrow length[s]

2 A \leftarrow \{a_1\}

3 i \leftarrow 1

4 for m \leftarrow 2 to n

5 do if s_m \geq f_i

6 then A \leftarrow A \cup \{a_m\}

7 i \leftarrow m

8 return A
```

$$F_i = \max\{f_x : a_k \in A\}$$

Go through example given earlier. $\Rightarrow \{a_1, a_4, a_8, a_{11}\}$.

Time: Θ(n)

Proof of correctness

Theorem. GREEDY-ACTIVITY-SELECTOR produces optimum solutions for the activity selection problem.

Proof:

• Let $A \subseteq S$ be an optimal solution whose first activity to finish is k.

If k = 1, then A begins with a greedy choice. Otherwise, since $f_1 \le f_k$, we can replace k by 1 to get an optimal solution $B = A - \{k\} \cup \{1\}$ which starts with activity 1.

Proof of correctness

- Next, once the greedy choice of activity 1 has been made, the problem reduces to the an activity-selection problem on the set $S' = \{i \in S : s_i \ge f_1\}$ of activities compatible with 1, whose optimal solution A' is such that $A' \cup \{1\}$ is an optimal solution to the original problem.
- By induction on the number of choices made, we conclude that a greedy choice at each step produces an optimal solution.

Elements of the greedy strategy

- greedy-choice property: a global optimum can be arrived at by choosing a local optimum.
- optimal substructure: an optimal solution to a problem contains an optimal solution to its sub-problems.

Greedy algorithms are easy to understand and implement. For some problems without the greedy-choice property, a greedy algorithm may provide a *heuristic* that works well in practice.

Greedy-choice property

- 1. Show that a global optimum can be modified so that a greedy choice is made as the first step.
- 2.Demonstrate that the greedy choice reduces the problem to a similar but smaller problem whose optimal solution can be combined with the greedy choice to obtain an optimal solution to the original problem.
- 3. Apply induction to show that a greedy choice can be made at each step.

Knapsack problem

Knapsack problem

A thief robbing a store finds n items: the i-th item has value v_i pesos and weighs w_i kilos. He wants to take as valuable a load as possible, but he can carry at most W kilos in his knapsack.

Assuming that v_i , w_i and W are positive integers, which items should he take?

0-1: Take an item (1) or leave it (0). Cannot take a fractional amount nor take more than one.

Fractional: Can take a fractional amount.

Each problem has an optimal substructure.

Knapsack problem

Figure 16.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

Greedy strategy

Sort the items in non-increasing *value density,* take whole items in that order until some item *j* does not fit, then pack a fraction of *j* to fill.

works for fractional but not for 0-1 problem:

item	1	2	3	
value (pesos)	60	100	120	
weight (kilos)	10	20	30	W
value density	6	5	4	

$$W = 50$$

Greedy: items 1 and 2, value 160, weight 30.

Optimal: items 2 and 3, value 220, weight 50.

O-1 knapsack is harder!

- 0-1 knapsack cannot be solved by the greedy strategy
 - Unable to fill the knapsack to capacity, and the empty space lowers the effective value per pound of the packing
 - We must compare the solution to the sub-problem in which the item is included with the solution to the sub-problem in which the item is excluded before we can make the choice
 - Dynamic Programming

Huffman codes

Storage space for text files can be saved by *compressing* them if we are given the frequency of each character.

Assume compression is lossless.

Idea: instead of using a *fixed-length binary* character code, use a *variable-length* code where

- frequent characters have shorter codes, and
- rarer characters have longer codes.

To simplify decoding, we use *prefix codes* — *no* codeword is a prefix of any other.

Prefix codes

e	00
a	010
S	011
t	10
n	110
0	111

- represent by a full binary tree.
- encode by following the root to a leaf.

Character coding problem

Given a text file represented by a frequency function *f* defined on an alphabet *C*, find a prefix code determined by a tree *T* which minimizes the number of bits

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

required to encode the file.

Greedy strategy: Huffman code.

Idea: repeatedly pick two characters with the lowest frequencies and make them children of a new node whose frequency is their frequency sum.

```
HUFFMAN(C)

n \leftarrow |C|
Q \leftarrow C

for i \leftarrow 1 to n-1 do

allocate a new node z

left[z] \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)

right[z] \leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)

f[z] \leftarrow f[x] + f[y]

INSERT(Q, z)

return EXTRACT-MIN(Q)
```


Running time: depends on min-priority queue implementation.

O(n lg n) with a binary min-heap.

```
HUFFMAN(C)

n \leftarrow |C|
Q \leftarrow C

for i \leftarrow 1 to n-1 do

allocate a new node z
left[z] \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)
right[z] \leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)
f[z] \leftarrow f[x] + f[y]
INSERT(Q, z)

return EXTRACT-MIN(Q)
```


Huffman code

Optimal prefix code

Proof of correctness

Outline: Let *T* be an optimal tree whose deepest leaves are *a* and *b*. We can replace *a* and *b* by the greedy choices *x* and *y* to obtain another optimal tree.

Once these greedy choices have been made, the remaining problem reduces to a similar problem on $C' = C - \{x, y\} \cup \{z\}$ whose optimal tree T' produces an optimal tree for C after replacing Z by an internal node with X and Y as children.

THANK YOU_