(Sharp?) left turn:

Embeddings, Manifold Learning, and Autoencoders

Generative Modeling

Generative Adversarial Networks

Diffusion Models

Some other good visuals: https://www.chenyang.co/diffusion.html

UNet - a more detailed picture

Stable Diffusion (without the conditioning)

Vision and Language

Case study: CLIP

"Attention"

unCLIP aka DALL-E 2

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Stable Diffusion (with the conditioning)