Notes for Time-Series and Machine Learning Methods Part A: Exponential Smoothing and SARIMAX

Natarajan Gautam

EECS, Syracuse University

Time-Series Data

- We collect data from observations over time
- ▶ We denote the observation numbers (i.e., index) as 1, 2, ..., T
- ▶ What we observe is denoted as $y_1, y_2, ..., y_T$ (see below)
- ▶ So y_t for $t \in \{1, ..., T\}$ is the t^{th} observation

- ► For example, the monthly average number of calls, daily average sales per store across locations, amount of solar <u>power ge</u>nerated, etc.
- We wish to forecast y_{T+h} for some pre-defined horizon h which is a positive integer
- ► That *h*-step ahead forecast for observation T + h given we have observed vales from time 1 to T is represented as $\hat{v}_{T+h|T}$
- Below is a 15-minute average solar irradiance dataset sample

Index	Date	Time	Avg. Irradiance
1	Apr-5-2023	11:00-11:14	632 - 1
2	Apr-5-2023	11:15-11:29	641 🗻 🤧
3	Apr-5-2023	11:30-11:44	579 🗢 🤧
:	:	• •	:
T	Apr-12-2023	11:15-11:29	645 🔹 🦮
- And			

Time-Series Forecast: Exponential Smoothing (ES)

- Why at all exponential smoothing?
 - Handles seasonal data well
 - Unlike SARIMAX, ES very rarely throws errors
 - A special case is indeed persistent forecast

- YTHIT = YT forecast
- ▶ We begin with the simple time series without any trend or seasonality
- \triangleright A one-step ahead forecast for time T+1 given we have observed vales from time 1 to T is represented as $\hat{y}_{T+1|T}$
 - ▶ The most fundamental exponential smoothing method uses

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots$$

$$\in [0,1] \text{ is called the smoothing parameter}$$

where $\alpha \in [0,1]$ is called the smoothing parameter

- Note that larger weights are given to most recent observations
- The weights attached to the observations decrease exponentially as we go back in time, hence the name ES

We do not know of when

ES: Component Form for Simple Time Series

$$\hat{y}_{t+1} = \alpha y_1 + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \cdots$$

$$\hat{y}_{t+1} = (1-\alpha)^2 y_{t-1} + \alpha (1-\alpha)^2 y_{t-2} + \cdots$$

We can show that for any t,

$$\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}$$

- ► The above is written in component form as
 - Forecast equation: $\hat{y}_{t+1|t} = \ell_t$
 - Smoothing equation: $\ell_t = \alpha y_t + (1 \alpha)\ell_{t-1}$
- We call $y_1, y_2, ..., y_T$ as the training data
- ▶ There are two unknowns α and ℓ_0
- We select α and ℓ_0 by minimizing the sum of squared errors (SSE)

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

► The minimization is usually done with an optimization tool

Forecasting Methods Gautam 4/17

ES: Component Form for Time Series with Trend but no Seasonality

- ► Holt's linear trend method
 - Forecast equation: $\hat{y}_{t+1|t} = \ell_t + b_t$
 - Level equation: $\ell_t = \alpha y_t + (1 \alpha)(\ell_{t-1} + b_{t-1})$
 - ► Trend equation: $b_t = \beta^* (\ell_t \ell_{t-1}) + (1 \beta^*) b_{t-1}$

 ℓ_t is an estimate of the level of the series at time t, b_t is an estimate of the trend of the series at time t, α the smoothing parameter for level, and β^* the smoothing parameter for trend

- ► We could consider other aspects such as damped trend and multiplicative trend (above is additive)
- See Hyndman and Athanasopoulos' FPP3 book for details (Sauce nothin)

- We will not use damping in this course but is an effective tool that prevents extremely high forecast values
- In fact, this case of no seasonality itself is something we do not consider in this course

Forecasting Methods Gautam 5/17

ES: Component Form for Time Series with Trend and Seasonality

- Results for any horizon h (earlier we had h = 1)
- ► The seasonality period is m and define $k = \lfloor (h-1)/m \rfloor$
- ► Holt-Winters' seasonal method uses the iteration
 - Forecast equation: $\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$
 - ► Level equation: $\ell_t = \alpha(y_t s_{t-m}) + (1 \alpha)(\ell_{t-1} + b_{t-1})$
 - ► Trend equation: $b_t = \beta^* (\ell_t \ell_{t-1}) + (1 \beta^*) b_{t-1}$
 - Seasonal equation: $s_t = \gamma(y_t \ell_{t-1} b_{t-1}) + (1 \gamma)s_{t-m}$
- Multiplicative seasonality (useful for solar forecast)
 - Forecast equation: $\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$
 - Level equation: $\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1-\alpha)(\ell_{t-1} + b_{t-1})$
 - ► Trend equation: $b_t = \beta^* (\ell_t \ell_{t-1}) + (1 \beta^*) b_{t-1}$
 - Seasonal equation: $s_t = \gamma \frac{y_t}{\ell_{t-1} + h_{t-1}} + (1 \gamma) s_{t-m}$
- We select α , β^* , γ , s_0 , s_{-1} ..., s_{-m+1} , b_0 and ℓ_0 by minimizing the RMSE or maximizing the likelihood
- Software also allows for a Box-Cox transformation

Walus data roomal

Forecasting Methods Gautam 6/17

ES: Python Code

- 1 2 3 4 ··· 7/191 143 142··· j
- We use statsmodels.tsa.api for ES by importing ExponentialSmoothing
- ▶ Refer to the documentation to see what all parameters can be set
- Check what the default values are for them
- ▶ In our case we may have historical data that is much larger than *T*
- We select T, train the model, and predict for T + h
- Next time we use data from index 2 to T+1, again train the model, and predict for T+1+h
- We continue this process of sliding window
 - We let the model choose α , β^* , γ , s_0 , s_{-1} ..., s_{-m+1} , b_0 and ℓ_0 by the default optimization method
 - ► Technically speaking we may already know some of them as we are considering a sliding window
 - ▶ We ignore that aspect but note that these can be provided to the function
 - ▶ For point forecasts we will not do a Box-Cox transformation
 - Let us use the code provided in the course

Forecasting Methods Gautam

Time-Series Forecasts: SARIMAX

- We begin by explaining ARIMA (Auto-Regressive Integrated Moving Average), i.e., without seasonality and exogenous data
- ▶ The approach taken in ARIMA is to first remove the effects of seasonality and trend using a process called differencing
- ► Then ARIMA simply uses recency to make the forecasts, and then re-introduce the seasonality and trend
- ▶ Hence, as an initial step, we try to create a stationary time-series
- A stationary time-series in an ideal condition is independent of the time stamp (index)
- Both trend and seasonality would render a time-series to be non-stationary and they would have to be removed
- ► ARIMA assumes the time-series to be stationary
- The approach used to create a "nearly" stationary time-series is called differencing

Forecasting Methods Gautam 9/17

Differencing

- ▶ Recall that we have observations $y_1, y_2, ..., y_T$ that we use for making the forecasts
- ▶ We denote the time series as $\{y_t : 1 \le t \le T\}$
- Now consider the time-series $\{y'_t : 2 \le t \le T\}$ which is called the first-order differencing term defined as

$$y_t' = y_t - y_{t-1}$$

for all $t \in \{2, 3, ..., T\}$

- ▶ The differenced series has one fewer term than the original time-series
- Sometimes the series $\{y'_t: 1 \le t \le T\}$ may not be adequately stationary, and it may be required to do one more round of differencing
- ▶ For that, consider the time series $\{y_t'': 2 \le t \le T\}$ defined as

$$y_t'' = y_t' - y_{t-1}'$$

for all $t \in \{3, 4, ..., T\}$

▶ Note that the second order differenced series has one fewer term than the first-order time-series and two fewer than the original time series

Forecasting Methods Gautam 10/17

Differencing Example

Differencing: Some Comments and Seasonal Differencing

- In the previous figure, the automated code using pmdarima picks first order
- Usually first order differencing is enough, rarely second order
- ▶ It is not recommended to go beyond second order differencing, although the series may not be stationary
- ▶ Sometimes that is because of lingering seasonal effects
- When there are seasonal effects, it may be worthwhile (although not guaranteed to remove) to perform seasonal differencing
- ▶ Let $\{y_t^s : m \le t \le T\}$ be lag-m differences, where m is the period of seasonality
- ► The seasonal differencing term is defined as

$$y_t^s = y_t - y_{t-m}$$

for all
$$t \in \{m+1, m+2, ..., T\}$$

 If needed, we could perform a second-differences (one against season and one against consecutive terms)

Forecasting Methods Gautam 12/17

- We begin with ARIMA with no seasonal effects.
- ▶ We stationarize the time series using differencing
- ▶ The ARIMA(p, d, q) model has p as the autoregressive part, d the degree of differencing and q the moving average part
- ▶ This gives rise to the model (in terms of the differenced series y'_t)

$$y_t' = c + \phi_1 y_{t-1}' + \ldots + \phi_p y_{t-p}' + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} + \epsilon_t$$

where ϵ_t is from the original series

$$y_t = c + \phi_1 y_{t-1} \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \epsilon_t$$

- ▶ Also, the ϵ_t terms are a function of c, ϕ_1 , ..., ϕ_p as well as the time series
- Note that $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ are all unknown

Forecasting Methods Gautam 13/17

Time-Series Forecasts: Estimating the ARIMA Unknowns

- In the ARIMA model we can use MLE (default in the python library we use) to estimate $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ which are all unknown
- ▶ For the MLE, we maximize the likelihood of obtaining the series y'_t for all t assuming it is Gaussian and so are the ϵ_t values
- ightharpoonup Another approach is to minimize the sum of squares of ϵ_t
- Either case would result in a complicated non-linear optimization problem that cannot be written in closed-form
- ▶ There are numerous software packages that produce the results

- ► The key idea of seasonal-ARIMA is to add seasonal terms
- Extend the ARIMA(p, d, q) model to the seasonal-ARIMA(p, d, q)(P, D, Q) with m seasons
- ▶ Although we do not present the equation, it is worthwile understanding that we add seasonality AR terms $y_{t-m}, \ldots, y_{t-Pm}$ with coefficients Φ_1, \ldots, Φ_P , as well as seasonality MA terms $\epsilon_{t-m}, \ldots, \epsilon_{t-Qm}$ with coefficients $\Theta_1, \ldots, \Theta_D$
- Now, if we were to add exogenous variables, say $x_1, x_2, ..., x_r$, then we essentially get the form

$$y'_t = c + b_1 x_1 + b_2 x_2 + \ldots + b_r x_r + \phi_1 y'_{t-1} + \ldots$$

Forecasting Methods Gautam 15/17

Selecting Model Parameters for SARIMAX

- ightharpoonup Next we need to determine how to get p, q, P, and Q
- They can be selected by searching through the space of values and find the one that minimizes an information cretrion
- The common choice of information criteria are AIC (Akaike's Information Criterion), AICc (i.e. AIC corrected), and BIC (Bayesian Information Criterion), see Hyndman and Athanasopoulos' FPP3 book
- We do not present the expressions here but they are typically functions of likelihood of obtain the data (that was used in MLE), T, p, q, P, Q, and whether or not c was used
- There is also an automated way (although many do not recommend) to do this using pmdarima

SARIMAX Forecasts: Python Code

- ► Import various python tools and libraries
- ► Select params viz. test data, sample size, etc.
- ► Get data and aggregate, if necessary
- Clean up data by imputing
- ▶ Merge with exogenous data (if we use them) to get required dataset
- Visualize the data for a few days
- Fit auto-arima model, or other methods for (p, d, q) and (P, D, Q)
- Use sliding window for predictions
- ► Test predictions using various metrics