

ENGR 544, Life Cycle Assessment and Management School of Engineering, Faculty of Applied Science The University of British Columbia (Okanagan)

How Time and Interest Affect Money

- 1. F/P and P/F Factors
- 2. P/A and A/P Factors
- F/A and A/F Factors
- 4. Factor Values

Okanagan Campus

F/P and P/F Factors

Single Amount Factors (F/P and P/F)

Single payment factors involve only P and F Cash flow diagrams show amounts in opposite directions

Terms in parentheses or brackets are called factors. Values are in tables for i and n values

Factors are represented in *standard notation format such as* (F/P,i,n), where letter to left of slash is what is sought; letter to right represents what is given

Spreadsheets Functions for F/P and P/F Factors

Future value F is displayed using FV function:

$$= FV(i\%, n, P)$$

Present value *P* is calculated using PV function:

$$= PV(i\%, n, F)$$

- Notes: 1. Double commas in each function indicate that no *A* series is present
 - 2. Spreadsheet functions display opposite sign on result. Place minus sign (–) immediately prior to function name to maintain same sign as entries, e.g., = -FV(i%, n, P)

TABLE 2-1	F/P and P/F Factors: Notation and Equations
	177 dild 177 1 detois. Notation dild Equations

	Factor		Standard Notation	Equation with Factor	Spreadsheet
Notation	Name	Find/Given	Equation	Formula	Function
(F/P,i,n)	Single-payment compound amount	F/P	$F = P\left(F/P, i, n\right)$	$F = P(1+i)^n$	= FV(i%,n,,P)
(P/F,i,n)	Single-payment present worth	P/F	P = F(P/F, i, n)	$P = F(1+i)^{-n}$	$=PV\left(i\%,n,,F\right)$

Example

(P/F,5%,10)

$$(P/F, 5\%, 10) = \frac{1}{(1+i)^n}$$

$$= \frac{1}{(1.05)^{10}}$$

$$= \frac{1}{1.6289} = 0.6139$$

5%			TABLE 10 Discrete Cash Flow: Compound Interest Factors					5%
	Single Pa	yments		Uniform Serie	s Payments		Arithmetic	Gradients
		Present			Capital	Present	Gradient	Gradient
	Compound	Worth	Sinking	Compound	Recovery	Worth	Present	Uniform
n	Amount <i>F/P</i>	P/F	Fund A/F	Amount <i>F/A</i>	A/P	P/A	Worth <i>P/G</i>	Series <i>A/G</i>
1	1.0500	0.9524	1.00000	1.0000	1.05000	0.9524		
2	1.1025	0.9070	0.48780	2.0500	0.53780	1.8594	0.9070	0.4878
3	1.1576	0.8638	0.31721	3.1525	0.36721	2.7232	2.6347	0.9675
4	1.2155	0.8227	0.23201	4.3101	0.28201	3.5460	5.1028	1.4391
5	1.2763	0.7835	0.18097	5.5256	0.23097	4.3295	8.2369	1.9025
6	1.3401	0.7462	0.14702	6.8019	0.19702	5.0757	11.9680	2.3579
7	1.4071	0.7107	0.12282	8.1420	0.17282	5.7864	16.2321	2.8052
8	1.4775	0.6768	0.10472	9.5491	0.15472	6.4632	20.9700	3.2445
9	1.5513	0.6446	0.09069	11.0266	0.14069	7.1078	26.1268	3.6758
10	1.6289	0.6139	0.07950	12.5779	0.12950	7.7217	31.6520	4.0991

Example: Finding Future Value

You deposit \$5000 into an investment account which pays interest at a rate of 8% per year. The amount in the account after 10 years is closest to:

Solution

$$F = P(F/P, i, n)$$

$$= 5000(F/P, 8\%, 10)$$

$$= 5000(2.1589)$$

$$= $10,794.50$$

$$(1+i)^n = (1+0.08)^{10} = 2.1589$$

8%	TABLE 13 Discrete Cash Flow: Compound Interest Factors 8%									
	Single Pay	ments		Uniform Serie	s Payments		Arithmetic	Gradients		
		Present			Capital	Present	Gradient	Gradient		
	Compound	Worth	Sinking	Compound	Recovery	Worth	Present	Uniform		
n	Amount <i>F/P</i>	P/F	Fund A/F	Amount <i>F/A</i>	A/P	P/A	Worth <i>P/G</i>	Series <i>A/G</i>		
1	1.0800	0.9259	1.00000	1.0000	1.08000	0.9259				
2	1.1664	0.8573	0.48077	2.0800	0.56077	1.7833	0.8573	0.4808		
3	1.2597	0.7938	0.30803	3.2464	0.38803	2.5771	2.4450	0.9487		
4	1.3605	0.7350	0.22192	4.5061	0.30192	3.3121	4.6501	1.4040		
5	1.4693	0.6806	0.17046	5.8666	0.25046	3.9927	7.3724	1.8465		
6	1.5869	0.6302	0.13632	7.3359	0.21632	4.6229	10.5233	2.2763		
7	1.7138	0.5835	0.11207	8.9228	0.19207	5.2064	14.0242	2.6937		
8	1.8509	0.5403	0.09401	10.6366	0.17401	5.7466	17.8061	3.0985		
9	1.9990	0.5002	0.08008	12.4876	0.16008	6.2469	21.8081	3.4910		
10	2.1589	0.4632	0.06903	14.4866	0.14903	6.7101	25.9768	3.8713		

Example: Finding Future Value

You deposit \$5000 into an investment account which pays interest at a rate of 8% per year. The amount in the account after 10 years is closest to:

Solution

Spreadsheet := FV(8%,10,,-5000) displays \$10,794.62

Example: Finding Present Value

A small company wants to make a single deposit now to have enough money to purchase a backhoe costing \$50,000 five years from now. If the account will earn interest of 10% per year, the amount that must be deposited now is closest to:

Class Participation 22: Finding Present Value

A small company wants to make a single deposit now to have enough money to purchase a backhoe costing \$50,000 five years from now. If the account will earn interest of 10% per year, the amount that must be deposited now is closest to:

P/A and A/P Factors

Uniform Series Involving P/A and A/P Factors

Uniform series factors that involve an A series and P assume that:

- (1) Cash flows occur in *consecutive* periods starting *one year after P*
- (2) Cash flow amount is *same* in each period

The equivalent present worth P of a uniform series A of end-of-period cash flows (investments) is shown in the following figures. An expression for the present worth can be determined by considering each A value as a future worth F, calculating its present worth with the P/F factor, and summing the results.

IMPORTANT: *P* is always one period *ahead* of first *A* value

Uniform Series Involving P/A and A/P Factors

$$P = A \left[\frac{1}{(1+i)^{1}} \right] + A \left[\frac{1}{(1+i)^{2}} \right] + A \left[\frac{1}{(1+i)^{3}} \right] + \dots$$
$$+ A \left[\frac{1}{(1+i)^{n-1}} \right] + A \left[\frac{1}{(1+i)^{n}} \right]$$

$$P = A \left[\frac{1}{(1+i)^1} + \frac{1}{(1+i)^2} + \frac{1}{(1+i)^3} + \dots + \frac{1}{(1+i)^{n-1}} + \frac{1}{(1+i)^n} \right]$$

$$P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \qquad i \neq 0$$

(a) P, given a uniform series A,

$$A = P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]$$

TABLE 2-	2 P/A and A/P Factors: Not	tation and Equation	ons		
	Factor		Factor	Standard Notation	Spreadsheet
Notation	Name	Find/Given	Formula	Equation	Function
(P/A,i,n)	Uniform series present worth	P/A	$\frac{(1+i)^n - 1}{i(1+i)^n}$	P = A (P/A, i, n)	$= \text{PV}\left(i\%, n, A\right)$
(A/P,i,n)	Capital recovery	A/P	$\frac{i(1+i)^n}{(1+i)^n-1}$	$A = P\left(A/P, i, n\right)$	$= \mathrm{PMT}\left(i\%,n,P\right)$

Example: Uniform Series Involving P/A

A chemical engineer believes that by modifying the structure of a certain water treatment polymer, the company would earn an extra \$5000 per year. At an interest rate of 10% per year, how much could the company **afford to spend** *now* to just break even over a 5 year project period?

Solution

P = 5000(P/A,10%,5)

= 5000(3.7908)

= \$18,954

10%	TABLE 15 Discrete Cash Flow: Compound Interest Factors 10%										
	Single Pay	ments		Uniform Serie	s Payments		Arithmetic	Arithmetic Gradients			
		Present			Capital	Present	Gradient	Gradient			
	Compound	Worth	Sinking	Compound	Recovery	Worth	Present	Uniform			
n	Amount <i>F/P</i>	P/F	Fund A/F	Amount <i>F/A</i>	A/P	P/A	Worth <i>P/G</i>	Series <i>A/G</i>			
1	1.1000	0.9091	1.00000	1.0000	1.10000	0.9091					
2	1.2100	0.8264	0.47619	2.1000	0.57619	1.7355	0.8264	0.4762			
3	1.3310	0.7513	0.30211	3.3100	0.40211	2.4869	2.3291	0.9366			
4	1.4641	0.6830	0.21547	4.641 0	0.31547	3.1699	4.3781	1.3812			
5	1.6105	0.6209	0.16380	6.1051	0.26380	3.7908	6.8618	1.8101			

$$(P/A10\%, 5) = \frac{(1+i)^n - 1}{i(1+i)^n} = \frac{(1.10)^5 - 1}{0.10(1.10)^5} = 3.7908$$

Example: Uniform Series Involving P/A

A chemical engineer believes that by modifying the structure of a certain water treatment polymer, the company would earn an extra \$5000 per year. At an interest rate of 10% per year, how much could the company **afford to spend** *now* to just break even over a 5 year project period?

Spreadsheet: = PV(10%, 5,5000) displays - \$18,953.93

Class Participation 23: Uniform Series Involving P/A

How much money should you be willing to pay now for a guaranteed \$600 per year for 9 years starting next year, at a rate of return of 8% per year?

F/A and A/F Factors

Uniform Series Involving F/A and A/F Factors

Uniform series factors involving an A series and F assume that:

- (1) Cash flows occur in *consecutive* periods ending in *same* period as F
- (2) Cash flow amount is *same* in each period

Cash flow diagrams to (a) find A, given F, and (b) find F, given A.

IMPORTANT: F always occurs in same period as last A

Uniform Series Involving F/A and A/F Factors

$$A = F\left[\frac{i}{(1+i)^n - 1}\right]$$

$$F = A\left[\frac{(1+i)^n - 1}{i}\right]$$

TABLE 2–3 F/A and A/F Factors: Notation and Equations									
	Factor	_	Factor	Standard Notation	Spreadsheet				
Notation	Name	Find/Given	Formula	Equation	Functions				
(F/A,i,n)	Uniform series compound amount	F/A	$\frac{(1+i)^n-1}{i}$	$F = A\left(F/A, i, n\right)$	$= \mathrm{FV}\left(i\%, n, A\right)$				
(A/F,i,n)	Sinking fund	A/F	$\frac{i}{(1+i)^n-1}$	A = F(A/F, i, n)	$= \mathrm{PMT}\left(i\%, n, F\right)$				

Example: Uniform Series Involving F/A (1)

An industrial engineer made a modification to a chip manufacturing process that will save the employer \$10,000 per year. At an interest rate of 8% per year, how much will the savings amount to in 7 years?

Solution

$$F = 10,000(F/A,8\%,7)$$

$$= 10,000(8.9228)$$

$$(F/A8\%, 7) = \frac{(1+i)^n - 1}{i} = \frac{(1.08)^7 - 1}{0.08} = 8.9228$$

8%			TABLE 13 D	8%				
	Single Pay			Uniform Serie	<u> </u>			Gradients
		Present			Capital	Present	Gradient	Gradient
	Compound	Worth	Sinking	Compound	Recovery	Worth	Present	Uniform
n	Amount <i>F/P</i>	P/F	Fund A/F	Amount <i>F/A</i>	A/P	P/A	Worth <i>P/G</i>	Series A/G
1	1.0800	0.9259	1.00000	1.0000	1.08000	0.9259		
2	1.1664	0.8573	0.48077	2.0800	0.56077	1.7833	0.8573	0.4808
3	1.2597	0.7938	0.30803	3.2464	0.38803	2.5771	2.4450	0.9487
4	1.3605	0.7350	0.22192	4.5061	0.30192	3.3121	4.6501	1.4040
_5	1.4693	0.6806	0.17046	5.8666	0.25046	3.9927	7.3724	1.8465
6	1.5869	0.6302	0.13632	7.3359	0.21632	4.6229	10.5233	2.2763
7	1.7138	0.5835	0.11207	▶ 8.9228	0.19207	5.2064	14.0242	2.6937
8	1.8509	0.5403	0.09401	10.6366	0.17401	5.7466	17.8061	3.0985
9	1.9990	0.5002	0.08008	12.4876	0.16008	6.2469	21.8081	3.4910
10	2.1589	0.4632	0.06903	14.4866	0.14903	6.7101	25.9768	3.8713

Example: Uniform Series Involving F/A (1)

An industrial engineer made a modification to a chip manufacturing process that will save the employer \$10,000 per year. At an interest rate of 8% per year, how much will the savings amount to in 7 years?

Spreadsheet : = -FV(8%,7,10000) displays \$89,228.03

F=?

Example: Uniform Series Involving F/A (2)

A new graduate has a position with a salary of \$125,000 per year. There is a plan to purchase a condo in 5 years using a down payment of \$50,000. At an anticipated 7% per year rate of return, how much must be invested in years **1 through 5** to have the \$50,000?

Solution

A = 50,000(A/F,7%,5)

= 50,000(0.17389)

= \$8,694.50 per year

7%	TABLE 12 Discrete Cash Flow: Compound Interest Factors 7%									
	Single Pay	ments		Uniform Serie	es Payments		Arithmetic Gradients			
		Present			Capital	Present	Gradient	Gradient		
	Compound	Worth	Sinking	Compound	Recovery	Worth	Present	Uniform		
n	Amount <i>F/P</i>	P/F	Fund A/F	Amount <i>F/A</i>	A/P	P/A	Worth <i>P/G</i>	Series <i>A/G</i>		
1	1.0700	0.9346	1.00000	1.0000	1.07000	0.9346				
2	1.1449	0.8734	0.48309	2.0700	0.55309	1.8080	0.8734	0.4831		
3	1.2250	0.8163	0.31105	3.2149	0.38105	2.6243	2.5060	0.9549		
4	1.3108	0.7629	0.22523	4.4399	0.29523	3.3872	4.7947	1.4155		
5	1.4026	0.7130	0.17389	5.7507	0.24389	4.1002	7.6467	1.8650		

$$(A/F7\%, 5) = \frac{i}{(1+i)^n - 1} = \frac{0.07}{(1.07)^5 - 1} = 0.17389$$

Example: Uniform Series Involving F/A (2)

A new graduate has a position with a salary of \$125,000 per year. There is a plan to purchase a condo in 5 years using a down payment of \$50,000. At an anticipated 7% per year rate of return, how much must be invested in years **1 through 5** to have the \$50,000?

Solution

Spreadsheet: = PMT(7%, 5, 50000) displays - \$8,694.53

Class Participation 24: Uniform Series Involving F/A

A vice president of Tesla Inc. an American electric vehicle (EV) and clean energy company, wants to know the equivalent future worth of a \$1 million capital investment each year for 8 years, starting 1 year from now. Tesla capital earns at a rate of 14% per year.

Because learning changes everything.®

www.mheducation.com