

Чепарухин Сергей Data Scientist@Mail.Ru

Содержание

- 1. Знакомимся с решающими деревьями
- 2. Учимся их строить
- 3. Разбираем задачу оттока клиентов

Деревья решений

Пример

Вы приходите в банк за кредитом, подаете анкету со всеми необходимыми документами Сотрудник банка проверяет вашу анкету:

- 1.Если возраст меньше 18, то отказываем, иначе шаг 2.
- 2. Если стаж больше года дать кредит, иначе шаг 3.
- 3. Если зарплата меньше 30 тысяч рублей, то отказать, иначе шаг 4.
- 4. Если есть другие кредиты, то выдаем, иначе отказываем.

Определение бинарного решающего дерева

Рассмотрим бинарное дерево, в котором:

- ullet каждой внутренней вершине $oldsymbol{v}$ приписана функция $eta_v: \mathbb{X} o \{0,1\};$
- ullet каждой терминальной(листовой) вершине v приписана метка класса $c_v \in Y$.

Процесс предсказания - обход дерева из вершины v_0 до терминальных вершин с последовательным вычислением соответствующих функций β_v

Дерево из примера

Варианты разделяющих функций

Что можно взять в качестве $\beta_v : \mathbb{X} \to \{0,1\};$:

- одномерные предикаты(пороговая функция)
- многомерные предикаты:
 - \circ линейные $eta_v(x) = [\langle w, x
 angle]$
 - \circ метрические $eta_v(x) = [
 ho(x,x_0) < s]$, где точка $oldsymbol{x}_0$ любая точка признакового пространства

Как строить деревья

Конкретный алгоритм построения задается:

- 1. видом предикатов;
- 2. критерием информативности $Q(X, \beta_v)$;
- 3. критерием останова;
- 4. методом обработки пропущенных значений

Критерии информативности для классификации

Определим общее число объектов, пришедших в вершину v_m как R_{v_m} . $p_{v_m k}$ - это доля класса c_k в вершине v_m .

• Ошибка классификации:

$$F_E(R_{v_m}) = 1 - \max_k p_{v_m k} \quad Q_E(R_{v_m}, eta) = F_E(R_{v_m}) - rac{N_{v_l}}{N_{v_m}} F_E(R_{v_l}) - rac{N_{v_r}}{N_{v_m}} F_E(R_{v_r})$$

• Индекс Джини(Gini):

$$egin{aligned} F_G(R_{v_m}) &= 1 - \sum\limits_k (p_{v_m k})^2 = \sum\limits_{k'
eq k} p_{v_m k'} p_{v_m k} \ Q_G(R_{v_m},eta) &= F_G(R_{v_m}) - rac{N_{v_l}}{N_{v_m}} F_G(R_{v_l}) - rac{N_{v_r}}{N_{v_m}} F_G(R_{v_r}) \end{aligned}$$

• Энтропийный критерий:

$$egin{aligned} F_H(R_{v_m}) &= H(p_{v_m}) = -\sum_k p_{v_m k} \log(p_{v_m k}) \ Q_H(R_{v_m},eta) &= F_H(R_{v_m}) - rac{N_{v_l}}{N_{v_m}} F_H(R_{v_l}) - rac{N_{v_r}}{N_{v_m}} F_H(R_{v_r}) \end{aligned}$$

Как выглядят меры неопределенности

Критерии информативности для регрессии

• Дисперсия ответов:

$$F(R_{v_m}) = rac{1}{N_{v_m}} \sum_{x_i \in R_{v_m}} \Big(y_i - mean(y_i)\Big)^2$$

• Среднее абсолютное отклонение от медианы:

$$F(R_{v_m}) = rac{1}{N_{v_m}} \sum_{x_i \in R_{v_m}} \left| y_i - median(y_i)
ight|$$

Критерии останова

- Пока не закончится не разделенная выборка
- Ограничение максимальной глубины
- Ограничение минимального числа объектов в вершине
- Ограничение максимального количества терминальных вершин(листьев)
- В листе находятся объекты одного класса
- Ограничение на относительное изменение критерия информативности

Обработка пропущенных значений

- 1. Удалить объекты/признаки с пропусками
- 2. Пропуск отдельное значение
- 3. Вычисление критерия информативности без учета объектов с пропусками
- 4. Суррогатные предикаты
- 5. Заполнение средними значениями/нулями

Как предсказывать

$$c = \max_k p_{v_m k}$$
 - классификация

$$p_k = p_{v_m k}$$
 - если необходима вероятность

$$y_k = mean_{v_m}(y_i)$$
 - регрессия

Обработка категориальных признаков

- Разбиение на все возможные значения категориального признака
- Разбиение значений на два подмножества, подбираем подмножества по критерию информативности
- Подбираем по встречаемости:

$$rac{1}{N_{v_m}(k_{(1)})}\sum_{x_i\in R_{v_m}(k_{(1)})}[y_i=+1]\leq\ldots\leqrac{1}{N_{v_m}(k_{(n)})}\sum_{x_i\in R_{v_m}(k_{(n)})}[y_i=+1]$$
 Если ищем по Джини или энтропийному,

Если ищем по Джини или энтропийному, эквивалентно разбиению на два подмножества

$$rac{1}{N_{v_m}(k_{(1)})} \sum_{x_i \in R_{v_m}(k_{(1)})} y_i \leq \ldots \leq rac{1}{N_{v_m}(k_{(n)})} \sum_{x_i \in R_{v_m}(k_{(n)})} y_i$$

Специальные алгоритмы построения деревьев

ID 3

- Использует энтропийный критерий
- Только категориальные признаки
- Количество потомков = количеству значений признака
- Строится до тех пор пока в каждом листе не окажутся объекты одного класса или пока разбиение дает уменьшение критерия

• C 4.5

- Использует нормированный энтропийный критерий
- Поддержка вещественных признаков
- Категориальные как в ID3
- Критерия останова ограничение на число объектов в листе
- При пропуске значения переход по всем потомкам
- CART(реализован в scikit-learn)
 - Использует критерий Джини
 - Поддержка разных типов признаков
 - При пропусках значений строит суррогатные предикаты

Преимущества и недостатки

- Преимущества
 - Простота построения
 - Интерпретируемость (при небольшой глубине)
 - Требуются минимальная предобработка признаков
 - Встроенный отбор признаков
- Недостатки
 - Склонность к переобучению
 - При добавлении новых объектов надо полностью перестраивать и результат может получится совершенно иным
 - Жадность построения
 - Сложность построения модели в случае разделяющей полосы, не параллельной осям координат

Примеры гиперплоскостей

Примеры гиперплоскостей

Пример построения деревьев для регрессии

Сыграем в угадайку

Задача регрессии:

Какая высота у Эйфелевой башни?

Задача классификации: На какой картинке леопард?

Композиции деревьев. Бэггинг

Деревья переобучаются, поэтому поодиночке их использовать плохо из-за низкой обобщающей способности.

Можно обучить множество разных деревьев и усреднять их ответ!

Бэггинг(Bagging=Bootstrap Aggregating)

- Обучаем N базовых моделей на n объектах
- Каждая модель обучается на своей подвыборке из I объектов, взятых случайно с возвращением(Bootstrap)
- Ответ композиции равен среднему ответу базовых алгоритмов

Random Forest

Строим N деревьев. Каждое дерево строится следующим образом:

- 1. Генерируем подвыборку \hat{X}_n ;
- 2. В каждом узле дерева сперва выбираем m случайных признаков, и ищем оптимальное разбиение только среди них;
- 3. Дерево строится до тех пор, пока в каждом сплите окажется не более n_{min} объектов

Предсказание осуществляется путем усреднения результатов предсказаний каждого из построенных деревьев.

Extra Trees(Extremely Randomized Trees)

- Все также сэмплируем выборку;
- Не сэмплируем признаки;
- Для каждого признака сэмплируем порог и строим разбиение по нему, без подбора по критерию информативности.

Дополнительные материалы

- Как работают деревья "на пальцах"
- Про визуализацию деревьев решений
- Гайд про энтропию
- Гайд про энтропию 2
- Hastie T., Tibshirani R., Friedman J.(2009). The Elements of Statistical Learning. Ch9.2
- Random Forests

Вопросы?