Digital Logic Design Assignment - 1

1. F	Express each decimal number in binary as an 8-bit sign-magnitude number: (a) -83 (b) +101 (c) -103
2. F	Express each decimal number as an 8-bit number in the 1's complement form: (a) - 69 (b) +116 (c) -99
3. I	Express each decimal number as an 8-bit number in the 2's complement form: (a) -59 (b) +102 (c) -116
	Determine the decimal value of each signed binary number in the gnitude form: (a) 10011101 (b) 01110100 (c) 10111011
	Determine the decimal value of each signed binary number in the 1's ment form: (a) 10111001 (b) 01100100 (c) 10111101
	Determine the decimal value of each signed binary number in the 2's ment form:
	(a) 10111011 (b) 01010100 (c) 10011000
	nvert each pair of decimal numbers to binary and add using the 2's complement bit representation):
	(a) -38 and -27 (b) 59 and -39 (c) - 58 and 65 (d) -102 and -85 (e) 29 and -72
8. Con	vert each hexadecimal number to decimal: (a) 4226 (b) 6426 (c) 2B26 (d) ABC26 (e) 6F226
9 Conv	vert each decimal number to hexadecimal: (a) 3654 (b) 7824 (c) 8926 (d) 551 (e) 3682
10. Con	vert each binary number to Gray code:
	(a)11011 (b) 1001010 (c) 1111011101110

11 . Convert each Gray code to binary:

(a) 1010 (b) 00010 (c) 11000010001

12. Add the following BCD numbers: