Se nos pidió realizar una máquina de Moore y una de Mealy que puedan detectar la secuencia 1-1-0-1 y avise en la salida al detectarla. Para esto tuvimos en cuenta que cuando termina la secuencia y es detectada se toma el último 1 de la secuencia como el primero de la siguiente secuencia en caso de que ocurran 2 secuencias seguidas, la cual sería 1-1-0-1-1-0-1. Primero diseñamos un diagrama de estados basándonos en la máquina de Moore, donde tendremos 5 estados. El estado A es el caso base donde se recibió un 0 fuera de la secuencia pedida, el estado B es el caso donde se recibió el primer 1, el estado C es el caso donde se recibe el segundo 1, el estado D donde se recibe la secuencia 1-1-0 y el estado E es cuando se recibe la secuencia completa. El diagrama queda de la siguiente manera:

Figura 1: Diagrama de Estados - Máquina de Moore

Se le otorgó a cada estado un valor representativo en binario, siendo el estado A un 0 y el estado E un 4 (el cual al estar en binario se representara como 1-0-0). Como el estado E es un número que necesita 3 bits de memoria, se utilizarán 3 flip flop para almacenar el número del estado actual, cada flip flop se representará en este ejercicio como Q_n , siendo entonces cada uno representación de un bit del estado en el cual se encuentra el circuito. El flip flop Q_0 representa el bit menos significativo, y el Q_2 el bit más significativo. Cada estado podrá pasar a otro según la entrada que reciba, como se mostró en el diagrama anterior, ahora pasamos a representar el esquema en una tabla con las variaciones de los estados:

	W = 0	W = 1	\mathbf{Z}
\mathbf{A}_{000}	A	В	0
\mathbf{B}_{001}	A	C	0
\mathbf{C}_{010}	D	A	0
\mathbf{D}_{011}	A	\mathbf{E}	0
\mathbf{E}_{100}	A	\mathbf{C}	1

Figura 2: Transiciones con Estados - Máquina de Moore

Si ahora representamos a cada estado con sus respectivos valores Q_n para ver las transiciones la tabla quedará con valores 1 y 0 que representarán una salida High o Low respectivamente. Así podremos analizar cada flip flop por separado y llegar a un circuito combinacional que los alimente, para esto tenemos que discriminar entre los estados actuales Qn_t y los estados siguientes Qn_{t+1} . La tabla dicha es la siguiente:

Estado Actual		Estado						Salida	
Estado Actual			W = 0			W = 1			Sanda
Q_{2_t}	Q_{1_t}	Q_{0_t}	$Q_{2_{t+1}}$	$Q_{1_{t+1}}$	$Q_{0_{t+1}}$	$Q_{2_{t+1}}$	$Q_{1_{t+1}}$	$Q_{0_{t+1}}$	\mathbf{Z}
0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	1	0	0
0	1	0	0	1	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	1
1	0	1	X	X	X	X	X	X	X
1	1	0	X	X	X	X	X	X	X
1	1	1	X	X	X	X	X	X	X

Figura 3: Transiciones con Flip Flop - Máquina de Moore

Para analizar esta tabla debemos tener en cuenta que para la máquina de Moore los estados son dependientes de las entradas y de ellos mismos, por lo que cada estado Q_{n_t} dependerá tanto de la entrada W como de los estados Q_{2_t}, Q_{1_t} y Q_{0_t} . Mientras que la salida Z depende solo de los estados Q_{2_t}, Q_{1_t} y Q_{0_t} . Por lo que pasaremos a analizar cada columna $Q_{n_{t+1}}$ dependiendo de cada combinación Q_{n_t} y la entrada W, y luego analizaremos la columna Z para cada combinación de los Q_{n_t} . Para analizar las columnas las resolvimos con mapas de Karnaugh para simplificar más rápido los minitérminos quedando los estados y la salida de las siguientes maneras:

Figura 4: $Q_{0_{t+1}}$ Máq. de Moore

Figura 5: $Q_{1_{t+1}}$ Máq. de Moore

Figura 6: $Q_{2_{t+1}}$ Máq. de Moore

Q_1Q_0									
W	00	01	11	10					
0	0	0	0	0					
1	1	X	X	X					

Figura 7: Z: Salida - Máq. de Moore

Estado Actual	Est Sigu	ado iente	Salida: Z		
Actual	W = 0	W = 1	W = 0	W = 1	
\mathbf{A}_{000}	A	В	0	0	
\mathbf{B}_{001}	A	\mathbf{C}	0	0	
\mathbf{C}_{010}	D	A	0	0	
${f D}_{011}$	A	В	0	1	

Figura 8: Transiciones - Máquina de Mealy

Est	ado	Estado Siguiente Salida: Z			la. 7		
Act	tual	$\mathbf{W} = 0$		W = 0 $W = 1$		Salida, Z	
Q_{1_t}	Q_{0_t}	$Q_{1_{t+1}}$	$Q_{0_{t+1}}$	$Q_{1_{t+1}}$	$Q_{0_{t+1}}$	W = 0	W = 1
0	0	0	0	0	1	0	0
0	1	0	0	1	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	1	0	1

Figura 9: Máquina de Mealy

Utilizaremos Flip Flops tipo D debido a su comportamiento de almacenar el mismo dato que ingresa cuando se activa la señal del clock.

Figura 10: $Q_{0_{t+1}}$ Máq. de Mealy

Q_1	Q_0	01	11	10
$W \setminus 0$	0	0	0	1
1	0	1	0	0

Figura 11: $Q_{\mathbf{1}_{t+1}}$ Máq. de Mealy

Q_1Q_0									
W	00	01	11	10					
0	0	0	0	0					
1	0	0	1	0					

Figura 12: Z: Salida - Máq. de Mealy