ТВиМС - Коллоквиум 1

Цирк Максимус | telegram

Версия от 22.10.2020 14:02

Содержание

Boi	просы	4
1.1	Дискретное вероятностное пространство. Свойства вероятностной меры на конечных и счётных множе-	
	ствах. Вероятностный алгоритм проверки числа на простоту.	2
1.2	Формула включений-исключений. Парадокс распределения подарков. Задача про конференцию	2
1.3	Условная вероятность. Формула полной вероятности. Формула Байеса. Независимые события. Отличие	
	попарной независимости от независимости в совокупности. Задача о билетах к экзамену	2
1.4	Задача о сумасшедшей старушке. Парадокс Байеса. Парадокс Монти Холла	2
1.5	Случайные величины на дискретном вероятностном пространстве, их распределение. Примеры дискрет-	
	ных распределений. Совместное распределение случайных величин. Независимые случайные величины.	
	Эквивалентное определение независимости случайных величин	2
1.6	Математическое ожидание случайной величины на дискретном вероятностном пространстве, эквива-	
	лентный способ вычисления математического ожидания. Математическое ожидание функции от случай-	
	ной величины. Свойства математического ожидания: линейность, ожидание неотрицательной случайной	
	величины, неотрицательная случайная величина с нулевым математическим ожиданием, связь модуля	
	ожидания и ожидания модуля случайной величины, математическое ожидание произведения независи-	
	мых случайных величин. Балансировка векторов.	2
1.7	Дисперсия, ковариация и коэффициент корреляции. Их связь и основные свойства: билинейность ко-	
	вариации, случайная величина с нулевой дисперсией, дисперсия линейного образа случайной величины,	
	дисперсия суммы независимых случайных величин. Неравенство Коши-Буняковского и геометрическая	
	интерпретация ковариации, дисперсии и коэффициент корреляции. Вычисление ожидания и дисперсии	
	у биномиального распределения	2
1.8	Неравенство Чебышёва. Закон больших чисел в слабой форме.	2
1.9	Теорема Муавра-Лапласа (формулировка локальной и интегральной теорем, доказательство локальной	
	теоремы в симметричном случае, идея доказательства интегральной теоремы)	2

1 Вопросы

1. Дискретное вероятностное пространство. Свойства вероятностной меры на конечных и счётных множествах. Вероятностный алгоритм проверки числа на простоту.

Определение. Пусть задано некоторое множество возможных исходов (эксперимента) $\Omega = \{1, 2, \dots, n\}$. Это множество называют множеством элементарных исходов. Всякое подмножество $A \subset \Omega$ называют событием. Функцию $P: 2^{\Omega} \to [0, 1]$, удовлетворяющую следующим свойствам:

- $(1) P(\Omega) = 1,$
- (2) $A \cap B = P(A \cup B) = P(A) + P(B)$ (правило суммы или аддитивность), называют вероятностной мерой, а значение P(A) вероятностью события A.

Тест Ферма проверки числа на простоту.

Пусть дано некоторое натуральное число N > 1. Мы хотим проверить является ли это число простым. Можно перебирать все простые делители до \sqrt{N} , но это очень долго. Хотелось бы иметь более быстрый способ проверки.

Если N простое число, то по малой теореме Ферма для всякого натурального числа b такого, что $\mathrm{HOД}(b,N)=1$, число $b^{N-1}-1$ делится на N. Следовательно, если для некоторого b, удовлетворяющего условию $\mathrm{HOД}(b,N)=1$, число $b^{N-1}-1$ не делится на N, то N не является простым. В этом случае будем говорить, что N не проходит тест Ферма по основанию b. Это наблюдение используют для построения простейшего алгоритма проверки числа на простоту: выберем случайное число b из промежутка b, то b составное; если b, но b но b но b но b не делится на b, то b составное. В ином случае b - скорее простое.

Предположим, что существует хотя бы одно число a: $\mathrm{HOД}(a,N)=1$ и $a^{N-1}-1$ не делится на N. Посмотрим, с какой вероятностью алгоритм выдаст ответ, что N - скорее простое. Пусть Z_N^* - группа всех чисел из промежутка $1,\ldots,N-1$, взаимно простых с N. Если N проходит тест для основания $b\in Z_N^*$, то для основания ab число N уже тест не проходит. В противном случае $(ab)^{N-1}\equiv 1 (mod\ N)$ и $(b^{-1})^{N-1}\equiv 1 (mod\ N)$. Следовательно, $a^{N-1}\equiv (b^{-1})^{N-1}(ab)^{N-1}\equiv 1$, что противоречит предположению. Таким образом, каждому основанию b, для которого N проходит тест, можно сопоставить основание ab, для которого N тест не проходит. Значит, оснований, для которых N не проходит тест, не меньше, чем оснований, для которых N проходит тест на простоту. Поэтому в данной ситуации вероятность получить ответ, что N скорее простое, не более $\frac{1}{2}$. Если независимым образом

повторять описанную процедуру k раз, то вероятность получить неверный ответ не более $\left(\frac{1}{2}\right)^k$. Отметим, что бывают числа, которые проходят тест для всех оснований b. Это числа Кармайкла, например 561. Для них описанный алгоритм по понятным причинам не применим.

- 2. Формула включений-исключений. Парадокс распределения подарков. Задача про конференцию.
- 3. Условная вероятность. Формула полной вероятности. Формула Байеса. Независимые события. Отличие попарной независимости от независимости в совокупности. Задача о билетах к экзамену.
- 4. Задача о сумасшедшей старушке. Парадокс Байеса. Парадокс Монти Холла.
- 5. Случайные величины на дискретном вероятностном пространстве, их распределение. Примеры дискретных распределений. Совместное распределение случайных величин. Независимые случайные величины. Эквивалентное определение независимости случайных величин.
- 6. Математическое ожидание случайной величины на дискретном вероятностном пространстве, эквивалентный способ вычисления математического ожидания. Математическое ожидание функции от случайной величины. Свойства математического ожидания: линейность, ожидание неотрицательной случайной величины, неотрицательная случайная величина с нулевым математическим ожиданием, связь модуля ожидания и ожидания модуля случайной величины, математическое ожидание произведения независимых случайных величин. Балансировка векторов.
- 7. Дисперсия, ковариация и коэффициент корреляции. Их связь и основные свойства: билинейность ковариации, случайная величина с нулевой дисперсией, дисперсия линейного образа случайной величины, дисперсия суммы независимых случайных величин. Неравенство Коши-Буняковского и геометрическая интерпретация ковариации, дисперсии и коэффициент корреляции. Вычисление ожидания и дисперсии у биномиального распределения.
- 8. Неравенство Чебышёва. Закон больших чисел в слабой форме.
- 9. Теорема Муавра-Лапласа (формулировка локальной и интегральной теорем, доказательство локальной теоремы в симметричном случае, идея доказательства интегральной теоремы).