Notes - Commutative Rings

George McNinch

2025-01-15

See [Stewart, chapter 16] 1 for general results about commutative rings.

¹As noted in the course syllabus, Tisch library has an entry for this item here; click to find online access to the text *Galois Theory*, Ian Stewart. (CRC Press, 4th edition 2022).

In the lecture today, we define the notion of a ring:

Definition A ring R is an additive abelian group together with an operation of multiplication $R \times R \to R$ given by $(a,b) \mapsto a \cdot b$ such that the following axioms hold:

multiplication is associative

We say that the ring R is *commutative* if the operation of multiplication is commutative; i.e. if ab = ba for all $a, b \in R$.

In the lecture today, we define the notion of a ring:

Definition A ring R is an additive abelian group together with an operation of multiplication $R \times R \to R$ given by $(a,b) \mapsto a \cdot b$ such that the following axioms hold:

- multiplication is associative
- multiplication $\emph{distributes}$ over addition: for every $a,b,c \in R$ we have 2

$$a(b+c) = ab + ac$$

and

$$(b+c)a = ba + ca$$

We say that the ring R is *commutative* if the operation of multiplication is commutative; i.e. if ab = ba for all $a, b \in R$.

In the lecture today, we define the notion of a ring:

Definition A ring R is an additive abelian group together with an operation of multiplication $R \times R \to R$ given by $(a,b) \mapsto a \cdot b$ such that the following axioms hold:

- multiplication is associative
- multiplication $\emph{distributes}$ over addition: for every $a,b,c \in R$ we have 2

$$a(b+c) = ab + ac$$

and

$$(b+c)a = ba + ca$$

We say that the ring R is *commutative* if the operation of multiplication is commutative; i.e. if ab = ba for all $a, b \in R$.

In the lecture today, we define the notion of a ring:

Definition A ring R is an additive abelian group together with an operation of multiplication $R \times R \to R$ given by $(a,b) \mapsto a \cdot b$ such that the following axioms hold:

- multiplication is associative
- multiplication $\emph{distributes}$ over addition: for every $a,b,c \in R$ we have 2

$$a(b+c) = ab + ac$$

and

$$(b+c)a = ba + ca$$

We say that the ring R is *commutative* if the operation of multiplication is commutative; i.e. if ab = ba for all $a, b \in R$.

Polynomial rings

If R is a commutative ring, the collection of all polynomials in the variable T having coefficients in R is denoted R[T].

Notice that the set of monomials $S = \{T^i \mid i \in \mathbb{N}\}$ has the following properties:

• every element of R[T] is an R-linear combination of elements of S. This just amounts to the statement that every polynomial $f(T) \in R[T]$ has the form

$$f(T) = \sum_{i=0}^{N} a_i T^i$$

for a suitable $N \geq 0$ and suitable coefficients $a_i \in R$.

Polynomial rings

If R is a commutative ring, the collection of all polynomials in the variable T having coefficients in R is denoted R[T].

Notice that the set of monomials $S = \{T^i \mid i \in \mathbb{N}\}$ has the following properties:

• every element of R[T] is an R-linear combination of elements of S. This just amounts to the statement that every polynomial $f(T) \in R[T]$ has the form

$$f(T) = \sum_{i=0}^{N} a_i T^i$$

for a suitable $N \geq 0$ and suitable coefficients $a_i \in R$.

ullet the elements of S are linearly independent i.e. if

$$\sum_{i=1}^{N} a_i T^i = 0 \quad \text{for} \quad a_i \in R,$$