

Laureate International Universities®

CIRCUITOS LÓGICOS DIGITALES SEMANA 7

EJERCICIOS DE REPASO PARA EL PARCIAL

Ejercicio 1: Dada la siguiente función lógica:

$$F(A,B,C,D) = \bar{A}\bar{B}CD + \bar{A}BCD + A\bar{B}CD + ABCD + AB\bar{C}D + \bar{A}B\bar{C}\bar{D}$$

- a. Obtenga su expresión simplificada usando las propiedades y teoremas del algebra de Boole.
- b. Obtenga el circuito lógico mediante compuertas NAND de dos entradas.
- c. Obtenga el circuito lógico mediante compuertas NOR de dos entradas.

Ejercicio 2: Se desea implementar el circuito de una función lógica utilizando un decodificador y el mínimo número de puertas lógicas. Para ello, el sistema cuenta con 3 sensores: A, B y C; los cuales controlan el estado de 3 indicadores X, Y y Z mediante las siguientes condiciones:

- Cuando se active únicamente el sensor A, no habrá indicación alguna.
- Cuando se active únicamente el sensor *B*, se activará el indicador *Z*.
- Cuando se active únicamente el sensor C, se activarán los indicadores X e Y.
- Cuando se activen únicamente A y B, se activará X.
- Cuando se activen únicamente B y C, se activarán X y Z.
- Cuando se activen únicamente A y C, se activará Y.
- Cuando se activen simultáneamente A, B y C, los 3 indicadores estarán a 0.
- En caso exista inactividad de los 3 sensores, la indicación será nula.
 - a. Obtenga la tabla de verdad.
 - b. Obtenga las funciones de salida.
 - c. Obtenga el circuito lógico del sistema descrito de acuerdo con las condiciones indicadas en el enunciado.

Ejercicio 3: Dado el siguiente circuito lógico de la fig.1:

Laureate International Universities®

- a. Obtenga la función de salida.
- b. Obtenga la tabla de verdad.
- c. Obtenga el circuito lógico usando el decodificador que se muestra en la fig.2 y también puertas lógicas de hasta 2 entradas.

Ejercicio 4: Dada la siguiente función de salida:

$$F = a'.b'.c'.d' + a'.b'.c'.d + a'.b.c.d + a.b'.c'.d' + a.b'.c'.d + a.b'.c.d + a.b.c'.d + a.b.c.d + a'.b'.c.d$$

- a. Obtenga la tabla de verdad
- b. Obtenga el circuito lógico usando un IC 74LS151 y el menor número de puertas lógicas de 2 entradas

Ejercicio 5: Diseñar un circuito combinacional cuya entrada acepte números menores o iguales a 15 y cuyas salidas codificadas representen la parte entera de la raíz cuadrada de dichos números. El circuito deberá tener una salida adicional que se activará si el número ingresado es o no un cuadrado perfecto.

- a. Obtenga su tabla de verdad e identifique claramente las entradas y las funciones de salida.
- b. Obtenga las funciones simplificadas mediante el uso de K-MAPS.
- c. Obtenga el circuito lógico empleando el menor número de puertas lógicas de 2 entradas.

Ejercicio 6: Coloque V o F, según corresponda, en cada una de las siguientes sentencias:

100010001110 es la representación BCD del número 8814	
El código Gray de 10101111 es 11111100	
63 en exceso a 3 es 1001 0110	
-205 en complemento a 2 es 100110010	
La inmunidad al ruido es una propiedad exclusiva en ICs construidos bajo la tecnología CMOS.	
Los ICs construidos bajo la tecnología TTL consumen mucha menos energía que aquellos	
construidos bajo la tecnología CMOS.	
Para utilizar ICs cuyas salidas son a colector abierto es necesario conectar una resistencia en	
modo pull-up.	
Los ICs bajo la tecnología ECL son más rápido que los ICs TTL pero consumen menos energía	
que estos.	