Contents

	eface			ge xvii	
4 <i>c</i> .	knowl	edgeme	nts	xix	
1	Intro	Introduction			
	1.1	The ro	ole of MHD in fusion energy	1	
		1.1.1	The plasma pressure in a fusion reactor	1	
		1.1.2	The dimensionless pressure, β	4	
		1.1.3	A variety of fusion concepts	4	
		1.1.4	Structure of the textbook	5	
	1.2	Units		5	
	Refe	erences		6	
	Furt	her reac	ling	6	
2	The	ideal M	IHD model	7	
	2.1 Introduction				
	2.2	Descri	ption of the model	8	
	2.3	Deriva	ation of the ideal MHD model	12	
		2.3.1	Starting equations	12	
		2.3.2	Two-fluid equations	15	
		2.3.3	Low-frequency, long-wavelength, asymptotic expansions	18	
		2.3.4	The single-fluid equations	19	
		2.3.5	The ideal MHD limit	22	
	2.4	Region	n of validity	28	
		2.4.1	Overall criteria	28	
		2.4.2	Conservation of mass	30	
		2.4.3	Momentum equation	30	
		2.4.4	Energy equation	32	
		2.4.5	Ohm's law	33	
		2.4.6	Summary of validity conditions	34	

vii

viii Contents

	2.5	Overall summary	35			
	Refe	References				
	Furt	ther reading	35			
	Prob	plems	36			
3	Gen	eral properties of ideal MHD	39			
	3.1	Introduction	39			
	3.2	Boundary conditions	39			
		3.2.1 Perfectly conducting wall	40			
		3.2.2 Insulating vacuum region	40			
		3.2.3 Plasma surrounded by external coils	43			
	3.3	•	45			
		3.3.1 Conservation of mass	45			
		3.3.2 Conservation of momentum	45			
		3.3.3 Conservation of energy	46			
	3.4	Global conservation laws	47			
		3.4.1 Perfectly conducting wall	48			
		3.4.2 Insulating vacuum region	49			
		3.4.3 Plasma surrounded by external coils	51			
	3.5	Conservation of flux: the "frozen-in field line" concept	51			
	3.6	3.6 Summary				
	Furt	her reading	54			
	Prob	plems	55			
4	MH	D equilibrium: general considerations	58			
	4.1	4.1 Introduction				
	4.2	Basic equilibrium equations				
	4.3	The virial theorem	59			
	4.4	The need for toroidicity	61			
	4.5	Flux surfaces	62			
	4.6	Surface quantities: basic plasma parameters and figures of merit	66			
		4.6.1 Fluxes and currents	66			
		4.6.2 Normalized plasma pressure, β	68			
		4.6.3 Kink safety factor, q_*	70			
		4.6.4 Rotational transform, ι , and the MHD safety factor, q	70			
		4.6.5 Summary	72			
	4.7	Equilibrium degrees of freedom	72			
	4.8	The basic problem of toroidal equilibrium	73			
	4.9	A single particle picture of toroidal equilibrium	78			
	4.10	Summary	80			

Contents	ix
	81
	92

	Refe	erences		81		
	Furt	her reac	ling	82		
	Prob	Problems				
5	Equilibrium: one-dimensional configurations					
	5.1					
	5.2	5.2 The θ -pinch		85		
	5.3	The Z	-pinch	90		
	5.4	The g	eneral screw pinch	94		
		_	General properties	94		
		5.4.2	The parallel pinch	98		
		5.4.3	The perpendicular pinch	100		
	5.5	Inhere	ently 1-D fusion configurations	102		
		5.5.1	The reversed field pinch	102		
		5.5.2	The low β ohmic tokamak	108		
	5.6	Summ	nary	116		
	References					
	Further reading					
	Prob	olems		117		
6	Equ	ilibrium	: two-dimensional configurations	123		
	6.1 Introduction					
	6.2	Deriva	ation of the Grad–Shafranov equation	124		
		6.2.1	The $\nabla \cdot \mathbf{B} = 0$ equation	124		
		6.2.2	Ampere's law	126		
		6.2.3	Momentum equation	126		
	6.3	Plasm	a parameters and figures of merit	128		
		6.3.1	Simple flux coordinates	128		
		6.3.2	The volume of a flux surface	130		
		6.3.3	The plasma beta	130		
		6.3.4	The kink safety factor	131		
		6.3.5	Rotational transform and the MHD safety factor	131		
		6.3.6	The MHD safety factor on axis	132		
		6.3.7	Alternate choices for $F(\psi)$	134		
	6.4	Analy	tic solution in the limit $\varepsilon \ll 1$ and $\beta_p \sim 1$	136		
		6.4.1	The coordinate transformation	137		
		6.4.2	The asymptotic expansion	138		
		6.4.3	The ε^0 equation: radial pressure balance	139		
		6.4.4	The ε^1 equation: toroidal force balance	140		
		6.4.5	Application to early reversed field pinches (RFP)	142		

x Contents

7

	6.4.6	Application to early ohmic tokamaks and modern	
		reversed field pinches	144
	6.4.7	Summary	151
6.5	Analy	tic solution in the limit $\varepsilon \ll 1$ and $\beta_p \sim 1/\varepsilon$ (the high	
	β to	kamak)	152
	6.5.1	The high β tokamak expansion	153
	6.5.2	The circular high β tokamak	154
	6.5.3	The flux conserving tokamak – avoiding the	
		equilibrium β limit	164
	6.5.4	The elliptic high β tokamak	171
6.6	Exact	solutions to the Grad-Shafranov equation	
	(sta	ndard and spherical tokamaks)	176
	6.6.1	Mathematical formulation	177
	6.6.2	Examples: TFTR and JET	182
	6.6.3	Example: the spherical tokamak (ST)	183
	6.6.4	The equilibrium β limit	187
	6.6.5	Up-down asymmetric solutions	189
	6.6.6	Example: the International Thermonuclear	
		Experimental Reactor (ITER)	192
	6.6.7	Example: the National Spherical Torus Experiment	
		(NSTX)	194
	6.6.8	Summary	195
6.7	The h	elical Grad–Shafranov equation (the straight stellarator)	196
	6.7.1	Overview	196
	6.7.2	The helical Grad–Shafranov equation	197
	6.7.3	Low β analytic solution	199
	6.7.4	The rotational transform	207
	6.7.5	Summary	209
6.8	Overa	ll summary	210
	erences		213
Furt	her reac	ling	213
Prob	olems		215
Equ	ilibrium	: three-dimensional configurations	223
7.1	Introd	uction	223
7.2	The h	igh β stellarator expansion	226
	7.2.1	- /	226
	7.2.2	The basic equations	227
	7.2.3	The high β stellarator expansion	228
	7.2.4	Reduction of the equations	230

Contents xi

7.3	Relation	on of the high β stellarator expansion to other models	236	
	7.3.1	The high β tokamak	237	
	7.3.2	The straight stellarator	237	
7.4	The G	reene–Johnson limit	240	
	7.4.1	Comparison of expansions	240	
	7.4.2	The Greene-Johnson limit of the HBS model	241	
	7.4.3	The Greene–Johnson model	243	
	7.4.4	Summary	244	
7.5	Vacuu	m flux surfaces	244	
	7.5.1	Single helicity – the limiting helical field amplitude	244	
	7.5.2	Multiple helicity stellarators	249	
7.6	Effects	s of finite β	251	
	7.6.1	Low β single helicity solutions	253	
	7.6.2	Toroidal force balance in a current-free stellarator	257	
	7.6.3	How does a vertical field shift a stellarator with no		
		net current?	262	
	7.6.4	The equilibrium β limit in a stellarator	269	
	7.6.5	The flux conserving stellarator	273	
	7.6.6	Multiple helicity, finite β stellarators	275	
7.7	Neocla	assical transport in stellarators	277	
	7.7.1	Review of transport in a tokamak	278	
	7.7.2	The problem with neoclassical transport in a stellarator	282	
	7.7.3	One solution – the omnigenous stellarator	287	
	7.7.4	The isodynamic stellarator	292	
	7.7.5	The symmetric stellarator	297	
	7.7.6	Boozer coordinates	307	
	7.7.7	Summary of neoclassical transport in a		
		stellarator	318	
7.8	Mode	n stellarators	319	
	7.8.1	The Large Helical Device (LHD)	319	
	7.8.2	The Wendelstein 7-X (W7-X) stellarator	321	
7.9	Overa	ll summary	323	
Refe	rences		324	
Furth	ner read	ling	325	
Prob	lems		325	
MHI) stabil	ity – general considerations	327	
8.1	Introd	•	327	
8.2	Defini	tion of MHD stability	328	
8.3	Waves in an infinite homogeneous plasma 3			

8

xii Contents

	8.3.1	The shear Alfven wave	332
	8.3.2	The fast magnetosonic wave	332
	8.3.3	The slow magnetosonic wave	333
	8.3.4	Summary	334
8.4	Genera	al linearized stability equations	334
	8.4.1	Initial value formulation	334
	8.4.2	Normal mode formulation	336
8.5	Proper	ties of the force operator $\mathbf{F}(\boldsymbol{\xi})$	337
	8.5.1	Self-adjointness of $\mathbf{F}(\boldsymbol{\xi})$	337
	8.5.2	The "standard form" of δW	338
	8.5.3	The "intuitive form" of δW	340
	8.5.4	The "intuitive self-adjoint form" of δW	342
	8.5.5	Real ω^2	344
	8.5.6	Orthogonality of the normal modes	345
	8.5.7	Spectrum of $\mathbf{F}(\boldsymbol{\xi})$	345
8.6	Variati	onal formulation	347
8.7	The E	nergy Principle	349
	8.7.1	Statement of the Energy Principle	350
	8.7.2	Proof of the Energy Principle	351
	8.7.3	Advantages of the Energy Principle	354
8.8	The Ex	xtended Energy Principle	355
	8.8.1	Statement of the problem	356
	8.8.2	The boundary conditions	356
	8.8.3	The natural boundary condition	358
	8.8.4	The surface energy	359
	8.8.5	The vacuum energy	360
	8.8.6	Summary of the Extended Energy Principle	362
8.9	Incom	pressibility	363
	8.9.1	The general minimizing condition	363
	8.9.2	Ergodic systems	364
	8.9.3	Closed line systems	365
	8.9.4	Summary and discussion	366
8.10	Vacuu	m versus force-free plasma	367
	8.10.1	The nature of the problem	367
	8.10.2	Vacuum vs. force-free plasma: the same results	367
	8.10.3	Vacuum vs. force-free plasma: different results	368
	8.10.4	The real situation: a resistive region	368
8.11	Classif	fication of MHD instabilities	369
	8.11.1	Internal/fixed boundary modes	370
	8.11.2	External/free boundary modes	370

		Contents	xiii
		8.11.3 Pressure-driven modes 8.11.4 Current-driven modes Summary rences er reading ems	370 373 375 376 377 377
9	9.1 9.2 9.3 9.4 9.5 9.6	Introduction Transition from collision dominated to collisionless regimes General formulation Ideal MHD closure Kinetic MHD 9.5.1 Basic assumptions 9.5.2 Derivation of the kinetic MHD model The Chew, Goldberger, Low (CGL) double adiabatic model 9.6.1 Formulation of the problem 9.6.2 Derivation of the double adiabatic model 9.6.3 The modified double adiabatic model Summary 9.7.1 Ideal MHD 9.7.2 Kinetic MHD 9.7.3 The double adiabatic model rences er reading	381 381 382 384 385 385 385 391 392 393 395 396 396 396 397 398 398
10		O stability comparison theorems Introduction	400 400
	10.2	Ideal MHD equilibrium and stability Double adiabatic MHD equilibrium and stability 10.3.1 Relation between the perturbed quantities and ξ 10.3.2 The double adiabatic MHD Energy Principle 10.3.3 Summary of CGL stability	401 402 403 404 406
	10.4	Kinetic MHD equilibrium and stability 10.4.1 Equilibrium 10.4.2 Stability of a closed line cylindrical system 10.4.3 Stability of an ergodic cylindrical system 10.4.4 Stability of a general toroidal configuration	406 406 407 408 411 414
	10.5	Stability comparison theorems 10.5.1 Closed line cylindrical geometry	422 422

xiv Contents

		10.5.2	Ergodic cylindrical geometry	423
		10.5.3	Closed line toroidal geometry	424
		10.5.4	Ergodic toroidal geometry	425
	10.6	Summa	ary	426
	Refer	ences		427
	Furth	er readin	ng	427
	Probl	ems		427
11	Stabi	lity: one-	-dimensional configurations	428
	11.1	Introdu	ection	428
	11.2	The ba	sic stability equations	430
		11.2.1	The Energy Principle	430
		11.2.2	The normal mode eigenvalue equations	430
			Incompressible MHD	431
	11.3		y of the θ -pinch	431
		11.3.1	Application of the Energy Principle to the θ -pinch	432
		11.3.2		433
		11.3.3	Continuum damping in a "slab" θ -pinch	434
	11.4		y of the Z-pinch	443
		11.4.1	Energy Principle analysis of $m \neq 0$ modes	444
		11.4.2	Energy Principle analysis of the $m = 0$ mode	447
		11.4.3	Double adiabatic Energy Principle analysis of the	
			m = 0 mode	450
		11.4.4	The hard-core Z-pinch	452
	11.5		l stability properties of the screw pinch	458
		11.5.1		459
		11.5.2	Suydam's criterion	465
		11.5.3	Newcomb's procedure	470
		11.5.4	2	477
		11.5.5		482
		11.5.6	The resistive wall mode	486
	11.6		traight" tokamak	494
		11.6.1	Reduction of δW for the straight tokamak	495
		11.6.2	Sawtooth oscillations – the internal $m = 1$ mode	497
		11.6.3	Current-driven disruptions – external low <i>m</i> modes	500
		11.6.4	Density-driven disruptions – external low <i>m</i> modes	512
		11.6.5	Resistive wall modes – external low <i>m</i> modes	518
		11.6.6	Edge localized modes (ELMs) – external high	
			m modes	519
		11.6.7	Summary of the straight tokamak	527

Contents	X

	11.7	The rever	sed field pinch (RFP)	529
		11.7.1 P	Physical parameters describing an RFP	530
		11.7.2 In	nstability of an RFP without a B_z reversal	532
		11.7.3 T	The $m = 0$ instability	534
		11.7.4 S	Suydam's criterion	535
		11.7.5 In	nternal modes	537
		11.7.6 T	Saylor's theory	538
		11.7.7 Id	deal external modes	552
		11.7.8 C	Overview of the RFP	557
	11.8	Summary		558
	Refer	ences		562
	Furth	er reading		562
	Probl	ems		563
12	Stabi	ity: multi-c	dimensional configurations	570
	12.1	Introducti		570
	12.2	Balloonin	g and interchange instabilities	572
		12.2.1 In	ntroduction	572
		12.2.2 S	Shear, periodicity, and localization	574
		12.2.3 C	General reduction of δW for ballooning modes	578
	12.3		oning mode equations for tokamaks	581
	12.4	The ballo	oning mode equation for stellarators	585
	12.5	•	of tokamaks – the Mercier criterion	588
			ntroduction	588
		12.5.2 C	Cylindrical limit: the Suydam criterion	589
		12.5.3 T	Coroidal geometry: the Mercier criterion	591
		12.5.4 A	Analytic limits of the Mercier criterion	596
		12.5.5 S	Summary	598
	12.6	•	of tokamaks – ballooning modes	598
		12.6.1 In	ntroduction	598
		12.6.2 T	The s - α model for ballooning modes	599
		12.6.3 β	limits due to ballooning modes	605
		12.6.4 S	Summary	608
	12.7	•	of tokamaks $-$ low n internal modes	608
		12.7.1 In	ntroduction	608
		12.7.2 L	Low <i>n</i> internal modes with finite shear	609
			Low n internal modes with small shear	610
			Summary	611
	12.8	Stability of	of tokamaks – low n external ballooning-kink modes	611
		12.8.1 In	ntroduction	611

xvi Contents

	12.8.2 Simplification of δW_F by the high β tokamak	
	expansion	613
	12.8.3 High β stability of the surface current model	615
	12.8.4 Numerical studies of ballooning-kink instabilities	627
12.9	Stability of tokamaks – advanced tokamak (AT) operation	630
	12.9.1 Introduction	630
	12.9.2 Bootstrap current profile – the β_N limit	632
	12.9.3 Wall stabilization in an advanced tokamak	635
	12.9.4 "Infernal" modes	636
12.10	Stability of tokamaks $-n = 0$ axisymmetric modes	637
	12.10.1 Introduction	637
	12.10.2 Vertical instabilities in a circular plasma	637
	12.10.3 Horizontal instabilities in a circular plasma	640
	12.10.4 Vertical instabilities in an elongated plasma	641
12.11	Overview of the tokamak	647
12.12	Stellarator stability	649
	12.12.1 High <i>n</i> modes in a stellarator	650
	12.12.2 The parallel current constraint	651
	12.12.3 The relation between average curvature and	
	magnetic well	652
	12.12.4 Average curvature of a straight helix	656
	12.12.5 Shear stabilization of a straight helix	658
	12.12.6 Stabilization of a toroidal stellarator	659
	12.12.7 Numerical results	665
12.13	Summary	666
12.14	The final word	669
Referen	nces	670
Further	reading	671
Problen	ns	672
Appendix A	Heuristic derivation of the kinetic equation	678
Appendix B	The Braginskii transport coefficients	688
Appendix C	Time derivatives in moving plasmas	691
Appendix D		695
Appendix E	Overlap limit of the high β and Greene–Johnson stellarator models	697
Appendix F		706
Appendix G	0 0 1177	707
Appendix H		711
Index	11 ZAMIY	718
		0