Submitting Jobs to the Supercomputer

Shelley Knuth

shelley.knuth@colorado.edu

www.rc.colorado.edu

Slides:

https://github.com/ResearchComputing/Basics_Supercomputing

General Info

Outline

- Submit specific jobs to the supercomputer!
 - Batch job
 - Interactive job
 - Running external scripts

RC Access

- For this tutorial, we will be using accounts on RC resources
- In a terminal or Git Bash window, type the following:

ssh <username>@tutorial-login.rc.colorado.edu

Password:

Clone the repo

 Once you are logged in, run the following command (all on one line):

```
Git clone
https://github.com/ResearchComputing/Basics_Superco
mputing.git
```

Maintenance!

- RC resources need maintenance
- Instead of Summit, running jobs on Crestone
- Made appropriate comments on slides
- Have two sets of scripts on Github Crestone and Summit

Useful Slurm Commands - sbatch

- sbatch: submit a batch script to slurm
- You can use a bunch of flag options in a batch script or on the command line
- Useful to put in script so have for future use

Example:

```
sbatch test.sh
```

OR

```
sbatch --partition=shas test.sh
```

http://slurm.schedmd.com/sbatch.html

SBATCH Options

http://slurm.schedmd.com/sbatch.html

#SBATCH <options> sbatch <options>

- Allocation: --account=<account no>
- Partition: --partition=<partition name>
- Sending emails: --mail-type=<type>
- Email address: --mail-user=<user>
- Number of nodes: --nodes=<nodes>
- Quality of service: --qos=<qos>
- Reservation: --reservation=<name>
- Wall time: --time=<wall time>
- Job Name: --job-name=<jobname>
- FYI: You do NOT actually type <> above this designates something specific you as a user must enter about your job

Working on RC Resources

 After today, if you are submitting jobs from the login nodes, you'll need to run the following command to load the slurm module:

module load slurm/summit

Maintenance today means you will run

module load slurm

 After you run this command you can run sbatch to submit jobs

Practice Examples

Submit Your First Job!

- Submit a slurm job with the following instructions:
- 1. The job should run the Unix "hostname" command
- 2. The job will be submitted from a bash script named hostname_summit.sh
- 3. The job will run on 1 node
- 4. We will request 1 minute wall time
- 5. Run from the crestone (debug) QOS
- 6. Run on the crc-serial (shas) partition
- 7. Use the basics17 reservation
 - This is only for this workshop

Hostname_summit.sh

```
#!/bin/bash
#SBATCH --nodes=1  # Number of requested nodes
#SBATCH --time=0:01:00  # Max wall time
#SBATCH --qos=crestone  # Specify crestone QOS
#SBATCH --partition=crc-serial  # Specify crestone nodes
#SBATCH --output=hostname_%j.out  # Rename standard output file
#SBATCH --reservation=basics17  # Reservation name

# purge all existing modules
module purge
```

hostname

Running the script

Load up the slurm module

```
module load slurm
(module load slurm/summit)
```

Submit the job:

```
sbatch hostname summit.sh
```

Check output

Another slurm command

squeue

 View information about jobs located in the slurm scheduling queue

OPTIONS:

- User: -u <user list>
- Queues: -q <qos_list> or --qos=<qos_list>

EXAMPLE:

http://slurm.schedmd.com/squeue.html

Your turn

- Submit a slurm job with the following instructions:
- 1. The job should run first the whoami command, then the Unix "sleep" command for 30 seconds, then the hostname command
 - Syntax for these Unix commands are below:

whoami sleep 30 hostname

http://slurm.schedmd.com/squeue.html

Your turn

- Submit a slurm job with the following instructions:
- 1. The job will be submitted from a bash script named sleep.sh
- 2. The job will run on 1 node
- 3. Request a 1 minute wall time
- 4. Run from the crestone (debug) QOS
- 5. Run on the crc-serial (shas) partition
- 6. Name your job sleep
- 7. Email yourself the results at the end of the job run
 - Hint: Requires two SBATCH options to do this see link at top of this slide
- 8. Use the basics17 reservation

Sleep.sh

```
#!/bin/bash
#SBATCH --nodes=1
                                              # Number of requested nodes
#SBATCH --time=0:01:00
                                              # Max walltime
                                              # Specify crestone QOS
#SBATCH --gos=crestone
#SBATCH --partition=crc-serial
                                              # Specify crc-serial nodes
#SBATCH --output=sleep %j.out
                                              # Rename standard output file
#SBATCH --job-name=sleep
                                              # Job submission name
#SBATCH --mail-type=end
                                              # Email you when the job ends
###SBATCH --mail-user=<user>@colorado.edu
                                              # Email address to send to
#SBATCH --reservation=basics17
                                              # Reservation name
# purge all existing modules
module purge
whoami
sleep 30
hostname
```

Running an external script

- Let's run a Matlab program
- We will run the batch script matlab.sh
- This script calls and runs matlab_tic.m

Running the script

Submit the job:

sbatch matlab.sh

Check output

Matlab.sh

```
#!/bin/bash
#SBATCH --nodes=1
                                        # Number of requested nodes
                                        # Max walltime
#SBATCH --time=0:02:00
#SBATCH --qos=crestone
                                        # Specify debug QOS
#SBATCH --partition=crc-serial
                                        # Specify Summit haswell nodes
#SBATCH --output=matlab %j.out
                                        # Output file name
#SBATCH --reservation=basics17
                                       # Reservation name
# purge all existing modules
module purge
# Load Matlab module
module load matlab
# Run matlab without a GUI
matlab -nodisplay -nodesktop -r "clear; matlab tic;"
```

Your turn

- Submit a slurm job with the following instructions:
- 1. Create an R program called R program. R that creates a vector called "planets" and then list the planets in the vector
 - Syntax: planets -> planets <- c("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", "Pluto")
- 2. Print off the vector
 - Syntax: planets
- 3. Create a bash script called R code.sh that runs the R script
 - Syntax: Rscript R code.sh
- 4. The job will run on 1 node
- 5. We will request a 1 minute wall time
- 6. Run from the crestone (debug) QOS
- 7. Run on the crc-serial (shas) partition
- 8. The output will be put in a file called R_code_%j.out
- 9. Use the basics17 reservation
- 10.Don't forget to load the R module!

Solution - R_code.sh

```
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --time=0:01:00
#SBATCH --qos=crestone
#SBATCH --partition=crc-serial
#SBATCH --output=R code %j.out
###SBATCH --reservation=basics17
# purge all existing modules
module purge
# Load the R module
module load R/3.3.0
# Run R Script
Rscript R program.R
```

```
# Number of requested nodes
# Max walltime
# Specify crestone QOS
# Specify crestone nodes
# Output file name
# Reservation name
```

Solution – R_program.R

```
#Simple R code example by Shelley Knuth
(shelley.knuth@colorado.edu)
# Create vector
planets <- c("Mercury", "Venus", "Earth", "Mars", "Jupiter",</pre>
"Saturn", "Uranus", "Neptune", "Pluto")
# Print off vector
planets
```

Interactive jobs!

- Sometimes we want our job to run in the background
- Sometimes we want to work in program in real time
- For example, Matlab
- Let's run an interactive Matlab job

Interactive job

- To do this, we are going to log out and log back in
 - Only necessary for demo
 - Need to add something to the sign in process
- For Mac Users:

```
ssh -X username@tutorial-login.rc.colorado.edu
```

- For Windows Users, must set up X-forwarding through your SSH client program
- Also must have an X-server package on your laptop
 - Xming for Windows or XQuartz for Mac

Basics of Supercomputing

7/18/17

Interactive job

- To work with Matlab interactively, we're going to request some time from the supercomputer
- When the resources become available then we will start up Matlab
- Commands to run:

Once we receive a prompt, then:

```
module load matlab
matlab
```

Once we finish we must exit!

Questions?

- Email <u>rc-help@colorado.edu</u>
- Link to survey on this topic:

http://tinyurl.com/curc-survey16

Speaker: Shelley Knuth

Title: Submitting Jobs to the Supercomputer July 2017

BSW

Slides:

https://github.com/ResearchComputing/Basics_Supercomputing