First Hit

Previous Doc

Next Doc

Go to Doc#

End of Result Set

Generate Collection ?

Print

L4: Entry 1 of 1

File: JPAB

Feb 4, 1987

PUB-NO: JP362026104A

DOCUMENT-IDENTIFIER: JP 62026104 A

TITLE: PNEUMATIC RADIAL TIRE FOR PASSENGER CAR

PUBN-DATE: February 4, 1987

INVENTOR-INFORMATION:

NAME

COUNTRY

KABE, KAZUYUKI TAKEI, TEIICHI SUZUKI, SHINGO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

YOKOHAMA RUBBER CO LTD: THE

APPL-NO: JP60163938 APPL-DATE: July 26, 1985

US-CL-CURRENT: 152/209.12

INT-CL (IPC): B60C 11/04; B60C 11/06; B60C 11/08

ABSTRACT:

PURPOSE: To improve a wet skid characteristic, by forming a center rib and circumferential main grooves in a tire tread, while connecting an interval between these main grooves with curved subgrooves where an angle to the circumferential direction is gradually decreased toward the tread center, and setting a groove ratio as specified.

CONSTITUTION: A center rib 12 is formed on a tire tread center line (m), main grooves $11A\sim11C$ are annularly installed in a tire circumferential direction EE' at both sides of the center rib. And, the main groove 11A is formed in a curved form proximate to straightness, connecting intervals between these main grooves $11A\sim11C$, and a curved subgroove 13 extending to a tire breadthwise grounding end 14 is installed there. And, an angle θ with the tire circumferential direction of this subgroove 13 is gradually decreased from an angle θ ' of the tire breadthwise grounding end 14 up to a central part angle θ . In this connection, a groove ratio of the tire tread should be set to $40\%\pm5\%$. With this constitution, a wet skid characteristic is improvable without entailing any damage to steering stability.

COPYRIGHT: (C) 1987, JPO&Japio

Previous Doc Next Doc Go to Doc#

19日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-26104

@Int Cl.4

識別記号

庁内整理番号

43公開 昭和62年(1987)2月4日

B 60 C 11/04

11/06 11/08 6772-3D 6772-3D 6772-3D

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称

乗用車用空気入りラジアルタイヤ

頤 昭60-163938 到特

29出 願 昭60(1985)7月26日

⑫発 明 者 部 加

和 幸

平塚市南原1-28-1

勿発 明者 ケケ # 禎 伸 悟 平塚市達上ケ丘4-50

勿発 明 者 鉿 木 平塚市南原1-28-1

创出 頣 人 横浜ゴム株式会社 東京都港区新橋5丁目36番11号

30代 理 弁理士 小川 信一 外2名

明細醬

1. 発明の名称

乗用車用空気入りラジアルタイヤ

2. 特許請求の範囲

タイヤ踏面の中心部にセンターリブをタイヤ 周方向に環状に設け、前記センターリブの左右 に複数の主海をタイヤ周方向に環状に配置する と共にこれらの主講のうちで前記センターリブ に隣接する主溝をストレートに近い曲線状に形 成し、これらの主講間を曲線状のサブ遊で播断 的に連結し、該サブ溝のタイヤ周方向に対する 角度をタイヤ踏面の中心部に近づくにつれて順 次小さくなし、さらに、タイヤ踏面の溝比率を 40% ± 5% としたことを特徴とする乗用車用空 気入りラジアルタイヤ。

3. 発明の詳細な説明

(発明の技術分野)

本発明は、操縦安定性を損なうことなくウェ ットスキッド特性を向上させた乗用車用空気入 りラジアルタイヤに関する。

(従来技術)

近年、車両、特に乗用車の高性能化に伴い、 タイヤもバイアスタイヤからラジアルタイヤヘ とその構造形態を変えると共に、ラジアルタイ ヤにおいてもタイヤ形状が偏平化されてきてい る。このタイヤの偏平化により、タイヤ路面の 接地幅が広くなり、このため、コーナリングフ ォースが大きくなり、その結果、車両の操縦安 定性が向上するようになった。しかしながら、 一方、タイヤの偏平化に伴ってタイヤ接地長さ が漸次短くなる傾向にあり、これによりウェッ トスキッド特性が低下してしまう。

一般に、ウエットスキッド特性に影響を与え るタイヤ設計上の要因としては、タイヤ路面に 形成されたトレッドパターン、トレッド部のト レッドゴムの材質、タイヤ構造、およびタイヤ の形状等が考えられる。なかでも、タイヤの高 性能化、特に高速性および操縦安定性の向上を はかること、すなわち高速走行用として使用さ れるタイヤでは、トレッドパターンの影響がウ

エットスキッド特性に顕著に現れることが判っ ている

つまり、高速域では、トレッドゴムの材質或いは外的要因(例えば、路面の状態、すなわち路面の摩擦係数の違い)などよりも、 純粋にクィヤの排水性のみがそのタイヤのウエットスキッド特性を支配することになる。 そして、タイヤの排水性に直接影響を与えるのがトレッドパターンであることは明らかである。

そこで、従来、空気入りラジアルタイヤのトクイヤのでは、ではないで、数多くの研究がなされてきた。例えば、特開昭55-140604号公報に示されるように、タイヤトレッドに関する発明がなされているが、しかしたセンターリンに隣接する海が断続した直線を連結した形でのもので曲線状に形成されていないため、その海に進入した水をサブ海に送り出せるのでは、非対称タイヤに関する考案が記載さ

れているが、この考案では、タイヤ踏面の中心 部にセンターリブがなくしかもパターンが在方 非対称であるので、走行中にタイヤ踏面のけける で水をタイヤ幅方向左右に速やかには時間昭60ー 45404 号公報に示されるウエットスキッド抵抗 性の高いタイヤ・パターンに関する発明では、イ センターリブに隣接する海に進入した水がタイヤ幅方向に設けられたサブ溝内にスムースに導 入されにくいという欠点がある。

(発明の目的)

本発明は、トレッドパターンを工夫することにより、操縦安定性を損なうことなくウェットスキッド特性を向上させた乗用車用空気入りラジアルタイヤを提供することを目的とする。

(発明の構成)

このため、本発明は、タイヤ路面の中心部に センターリブをタイヤ周方向に環状に設け、前 記センターリブの左右に複数の主海をタイヤ周 方向に環状に配置すると共にこれらの主溝のう

ちで前記センターリブに隣接する主みをストレートに近い曲線状に形成し、これらの主識間を曲線状のサブ海で横断的に連結し、該サブ海のタイヤ周方向に対する角度をタイヤ路面の中心部に近づくにつれて順次小さくなし、さらに、タイヤ路面の溝比率を40%±5%としたことを特徴とする乗用車用空気入りラジアルタイヤを要旨とするものである。

以下、図面を参照して本発明の構成について詳しく説明する。

第1図は、踏面のトレッドパターンを省略のトレッドパターンを省略のトレッドパターンを省略のトレッドパターンを省略の東用車用空気入りラジアルタはにかりのである。この図にイヤのでなった。1間に、タールのであるカーカス層4が配置されている。なりにはでいる。ないよりででいる。さらに、このベルト層5がトレッド部3のほぼ、ベルトカバー層6がトレッド部3のほどに、ベルトカバー層6がトレッド部3のほどに、ベルトカバー層6がトレッドが3のほどに、ベルトカバー層6がトレッドが3のほどを当時である。

全域に亘って配設されている。このベルトカバー層 6 は、高速耐久性を向上させるためのもので、必ずしも配置されなくともよい。なお、 2 はサイドウオール部、 7 はショルダー部、 8 はタイヤ路面を毀わす。なお、タイヤ路面 8 に形成されているトレッドパターンは、第1図では省略されている。

カーカス層 4 は少なくとも 1 層配置されており、そのコードとしては、ナイロン、ポリエステル、アラミッド (芳香族ポリアミド繊維) 等の化学繊維が一般に使用される。

ベルト層 5 を構成するコードとしては、通常 タイヤ用として使用されるものを用いればよく、 ナイロン、ポリエステルのコードが好ましく、 また、スチール、アラミッド、レーヨン等のコ ードが使用可能である。

ベルトカバー層6のコードとしては、一般にナイロンが用いられる。そのコード角度は、タイヤ周方向EE'に対して実質的に0 (平行)である。

本発明においては、第1図に示す空気入りラジアルタイヤのタイヤ踏面8に、第2図に示されるようなトレッドパターンを形成している。

第2図は、本発明の乗用車用空気入りラジアルタイヤのタイヤ踏面の一例を示した平面図のタイヤ間面の一例を示した平路面のタイヤ間方向中心線を示し、11A、11B、11Cは、タイヤ間方向EEに環状に設けた主とタイヤ踏面の中心部には、タイヤ踏面の中心部からタイヤ間方向接地端14に伸びるサブ海で、これらのサブ流13のタイヤ間方向に対する角度は、タイヤ踏面の中心部でθ、タイヤ幅方向接地端14でθになっている。

この第2図に示されるトレッドパターンを有するタイヤは、下記の(1)~(5)の要件を満足するものである。

(1) タイヤ踏面の中心部にセンターリブ12を タイヤ周方向EE に環状に設けたこと。

(3) これらの主溝11A , 11B , 11C 間を曲線 状のサブ溝13で横断的に連結したこと。

これにより、走行時にタイヤ路面前方から主 満114、11B、11C に進入した水がサブ溝13を 通ってタイヤの両ショルダー部(タイヤ幅方向 接地端14)に容易に排水されることになるから である。

また、サブ溝13を曲線状に形成することにより、主溝11A , 11B , 11C とサブ溝13とが交差するクロス域での水の流れ、特にタイヤ幅方向外側への水の流れをよくすることが可能となるのである。

このサブ调13は、タイヤ踏面のタイヤ周方向中心線mを基準として、左右対称に配置されるのが好ましい。これにより、走行時にセンターリブ12によってタイヤ幅方向左右にはき分けられた水をタイヤ幅方向接地端14の方向、すなわちショルダー部方向に速やかにはき出す効果が発揮されるからである。

なお、サブ溝13は、主溝11A , 11B , 11C と

これにより、走行中にクイヤ路面の前方で水 をタイヤ幅方向左右に速やかにはき分けること ができるようになるからである。

(2) センターリブ12の左右に複数の主路11A . 11B . 11C をタイヤ周方向EE'に環状に配置すると共にこれらの主海のうちでセンターリブ12に隣接する主海11A をストレートに近い曲線状に形成したこと。

主満118 、11C は、ストレート満とする。このように、ストレートな主満を複数本設けることにより、タイヤ路面でのシースルー効果、すなわちタイヤ路面前方からタイヤ路面後方をこれらのストレート満を通して見わたせるという効果によって、走行時にタイヤ路面前方から進入した水がタイヤ路面後方に抜け易くなるからである。

また、センターリブ12に隣接する主溝11A をストレートに近い曲線状に形成することにより、主溝11A に進入した水をサブ溝13に送り易くすることができるからである。

ほぼ同一溝深さであるとよい。これにより、サブ溝13にも十分な排水性能が与えられ、特に進入した水を両ショルダー部方向へ排水し易くなるからである。

(4) サブ溝13のタイヤ周方向EE に対する 角度をタイヤ踏面の中心部に近づくにつれて順 次小さくしたこと。

センターリプ12付近の主海、例えば主海11Aから進入した水をより速やかにショルダー部方向にはき出すために、センターリプ12付近のサブ海13は、タイヤ周方向EE」に対して小さな角度、例えば θ = 20 ~ 45 ° とした。しかし、サブ海13のタイヤ周方向EE」に対する角度を全てこの角度 θ とすると、トレッドゴムの機関性が低下してしまう。そこで、サブ海13の角度をショルダー部に近づくにつれて順次大きくし、例えば θ ' = 50 ° ~80 ° としたのである。

(5) タイヤ踏面の溝比率を40% ± 5 %としたこと。

タイヤ踏面にトレッドパターンが形成されて

いない場合には、選比率はゼロである。この場合、進行中における水のタイヤ踏面への進入による海の排水効果はゼロとなる。

したがって、一般に海比率が高くなれば水の 排水効果は高まる。すなわち、水の進入路が大 きくなり、或いは水の進入路が多くなるからで ある。

しかし、海比率を高くすると、トレッドパターンを構成する各プロックの大きさが小さくなってしまう。これにより、各プロックの断面二次モーメントも小さくなり、ドライの操縦安定性が悪化してしまう。

そこで、このように二律背反する条件をそれぞれ満足させるには、試験の結果、満比率を40%±5%とするのが良いことが判ったのである。これは、排水性をよくするには満比率を45%とするとよく、また、各プロックの断面二次モーメントを大きくするため、すなわち操縦安定性をよくするためには、溝比率を35%とするのがよいという試験上の確認による。

このため、本発明では、満比率を40%±5% としたのである。

なお、タイヤ周方向に並んだ各プロックの大きさは、バクーンノイズの低減のために、それぞれ異なっている。

次に、下記の仕様の本発明タイヤ、比較タイヤ1、および比較タイヤ2について、実車による操縦安定性能試験およびウェットスキッド特性試験を行った結果を示す。なお、タイヤサイズは、それぞれ、205 / 60 R15である。

(a) 本発明タイヤ。

第2図に示すトレッドパターンを有するタイヤ。曲線状サブ満13は、同一曲率を有する円弧状に配置。このサブ満13の接線がタイヤ周方向 EE!となす角度を、タイヤ路面の中心部に近づくにつれて順次小さくした(θ = 30 $^{\circ}$ ~ θ ! = 75 $^{\circ}$)。溝比率41%。

パターンの諸元は、下記衷1の通りである。 (本貿以下余白)

表 1

パターン諸元		海帽	溝深さ	满形状
主	第 1 主海(11A)	6 m as	8. 4 mm	ひ 満
	第2主海(118)	6 mm	8. 4 mm	ひ満
	第 3 主溝(11C)	6 m as	8. 4 mm	ひ 満
4	ナ ブ 満 (13)	5 mm	7.5 mm	じ 満

(b) 比較タイヤ1。

サブ潟13を主綱11A 11B 11C にほぼ直交する直線状としたことを除いて、上記本発明タイヤと同様である。

(c) 比較タイヤ2。

サブ為13を直線状とし、タイヤ周方向 E E となす角度を段階的に変化させ、タイヤ踏面の中心部からショルダー部に向って、それぞれ、

45°,60°,75°となるようにしたことを除いて、上記本発明クイヤと同様である。

操縦安定性能試験:

室内コーナリング試験機による試験を行った。 室内コーナリング試験とは、直径2500mmのドラム上で、タイヤにスリップ用2 を与えたとき に発生するコーナリングフォースを2で除した 値を操縦安定性の代用値とするものである。

試験条件は、リム 6J ×15、空気圧 P = 2.0kg / cd、荷重 W = 350kg (車重の約1 / 4 相当の値)、速度20km/brである。

この試験結果を第3図に指数表示した。第3 図から、本発明タイヤが比較タイヤ1および比較タイヤ2に比して操縦安定性において優れていることが判る。

ウエットスキッド特性試験:

半径100 mの乾燥した路面の一部に水液7~ 8 mmの湿潤路を設け、車両走行時の各速度毎に 定常円旋回時の湿潤路部での横加速度を測定し、 最大横加速度を発生するときの速度(臨界速度、

BEST AVAILABLE COPY

特開昭62-26104(5)

この速度が高い方がよく、つまり、ハイドロプレーニングを発生しにくいことになる) を求めることによった。

試験条件は、リム 6J ×15、空気圧 P = 2.0kg / cdである。

この試験結果を第4図に指数表示した。第4 図から、本発明タイヤが比較タイヤ1および比較タイヤ2に比してウエットスキッド特性において優れていることが判る。

なお、上記本発明タイヤでは、曲線状サブ溝13を同一曲率を有する円弧状に配置したが、センターリブ12に隣接するタイヤ周方向蛇行状主溝11Aを含めて、主溝間を連結する各々のサブ流13の平面的形状は、同一曲率の円弧状でなきる。何れにしても、タイヤ路面の中心部に最も近いサブ溝13にあっては、該サブ溝13にあっては、ショルダー部に最も近いサブ溝13にあっては、ショルダー部に最も近いサブ溝13にあっては、ショルダー部に最も近いサブ溝13にあっては、50・~80・であることが要求される。

部、3・・・トレッド部、4・・・カーカス層、5・・・ベルト層、6・・・ベルトカバー層、7・・・ショルダー部、8・・・タイヤ踏面、11A , 11B , 11C ・・・主溝、12・・・センターリプ、13・・・サブ溝、14・・・タイヤ幅方向接地端。

代理人 弁理士 小 川 信 一 弁理士 野 口 賢 照 弁理士 斎 下 和 彦 (発明の効果)

以上説明したように本発明によれば、トレッドパターンにおける複数の主講とこれら主渦間を連結するサブ海との形状および配列等を適切に定めたので、操縦安定性を損なうことなく、ウエットスキッド特性を向上うさせることが可能となった。この本発明のタイヤは、偏平比60以下の高性能乗用車用空気入りラジアルタイヤとして有利に利用可能である。

4. 図面の簡単な説明

第1図は踏面のトレッドパターンを省略した本発明の乗用車用空気入りラジアルタイヤの一例の半断面斜視説明図、第2図は本発明の乗用車用空気入りラジアルタイヤのタイヤ踏面の一例を示した平面図、第3図は本発明タイヤと比較タイヤとについて操縦安定性能の比較を示す説明図、第4図は本発明タイヤと比較タイヤとについてウエットスキッド性能の比較を示す説明図である。

1・・・ピード部、2:・・サイドウオール

第 3 図

45 / 57

