Local ("Arena") Memory Allocators

John Lakos

Thursday, April 27, 2017

This version is for ACCU'17

Copyright Notice

© 2017 Bloomberg L.P. Permission is granted to copy, distribute, and display this material, and to make derivative works and commercial use of it. The information in this material is provided "AS IS", without warranty of any kind. Neither Bloomberg nor any employee guarantees the correctness or completeness of such information. Bloomberg, its employees, and its affiliated entities and persons shall not be liable, directly or indirectly, in any way, for any inaccuracies, errors or omissions in such information. Nothing herein should be interpreted as stating the opinions, policies, recommendations, or positions of Bloomberg.

Abstract

The runtime implications of the physical location of allocated memory are sometimes overlooked—even in the most performance-critical code. In this talk, we will examine how the performance of long-running systems can degrade when using just one global allocator (e.g., via new/delete). We will contrast the use of global allocators with various kinds of *local* allocators—allocators that allocate memory for a welldefined subset of objects in the system. We will also demonstrate how local allocators can reduce, if not entirely prevent, degradation seen in systems that rely solely on the global allocator. Six dimensions fragmentability, allocation density, variation, utilization, locality, and contention—will be introduced to help characterize a given subsystem, assess the potential for accelerating its runtime performance, and where appropriate—aid in determining the best local allocator to do so **Empirical evidence** will be presented to demonstrate that introducing an appropriate local allocator can often result in substantial reductions in run times (compared with a similar system relying solely on just a single, global allocator).

Important Recurring Questions

Are memory allocators really worth the trouble?

■ What situations merit their use?

- ☐ How are they applied effectively?
- ☐ What's the performance impact?

Outline

- 1. Introduction and Background
 - What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 - What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 - When and how do you use which allocator, and why?
- 4. Conclusions
 - What must we remember about memory allocators?

Outline

1. Introduction and Background

What are memory allocators, and why are they useful?

2. Understanding the Problem

What aspects of software affect allocation strategy?

3. Analyzing the Benchmark Data

When and how do you use which allocator, and why?

4. Conclusions

What <u>must</u> we remember about memory allocators?

Important Questions

Why do we like the C++ language?

☐ It enables us to "fine-tune" at a low level when needed.

☐ It can deliver very high runtime performance.

Important Questions

Why do (should) we care about memory allocators?

☐ They enable us to "fine-tune" at a low level when needed.

☐ They can help to improve runtime performance.

Important Questions

What are the benefits?

- Not all memory is alike:
 - ✓ Fast, Shared, Protected, Mapped
- ☐ Other qualitative benefits:
 - ✓ Testing, Debugging, Measuring
- ☐ Enhanced runtime performance:
 - ✓ Better Locality, Less Contention

Important Questions

What are the benefits?

(anecdotal)

Bear Stearns

(c. 1997)

System's (coalescing) allocator optimized for allocation, not deallocation.

Important Questions

What are the benefits?

(anecdotal)

Bloomberg

(c. 2002)

Process (static) memory saved/restored via memory-mapped IO.

Important Questions

What are the benefits?

(anecdotal)

Bloomberg

(c. 2006)

User interfaces observed to be "zippier" when using local allocator.

Important Questions

What are the common arguments against?

- Requires more up-front design effort
- Complicates user interfaces
- May actually degrade performance:
 - No special allocator needed
 - Poorly chosen allocator supplied

Addressing Allocator Concerns

These are valid concerns!

- Requires more up-front design effort
- Complicates user interfaces
- May actually degrade performance:
 - No special allocator needed
 - Poorly chosen allocator supplied

They can be addressed only with:

- Well-supported facts
- □ Careful measurement

Review of Computer Memory

Main Memory

Review of Computer Memory

Cache Memory

Review of Computer Memory

(Main) Memory Segments

Review of Computer Memory

Main Memory

Executable Program

Static Data Segment

Code Segment

Important Questions

What is a *Memory Allocator?*

Review of Computer Memory

Main Memory

Review of Computer Memory

Main Memory

Special-Purpose Local Allocator:

```
// alloca.h
void *alloca(size_t nBytes);
```

FFFFFFE8: FFFFFFE8: FFFFFFE0: FFFFFFD8: FFFFFFC8: FFFFFFC8: FFFFFC8:

General-Purpose Global Allocator:

```
// malloc.h
void *malloc(size_t nBytes);
void free(void *address);
```

C-Language Memory-Allocation Utilities

Memory Allocator Definition (take 1)

A memory allocator organizes at region of computer memory, dispensing and reclaiming authorized access to suitable sub-regions on demand.

^{*}possibly non-contiguous

General versus Special Allocator

A General-Purpose Allocator

- Is designed to work reasonably well for all use cases.
- Satisfies all requirements for memory allocators.

A Special-Purpose Allocator

- (Typically) works especially well for some use cases.
- Need not satisfy all requirements for allocators E.g.:
 - May not be safe to use in a multi-threaded program.
 - May not reuse individually freed memory.
- Requires specific knowledge of the context of use.

Global versus Local Allocator

A Global Allocator

- Operates on a single ubiquitous region of memory.
- Exists throughout the lifetime of a program.
- Is inherently accessible from all parts of a program.

A Local Allocator

- Operates on a local sub-region ("arena") of memory.
- May exist for less than the lifetime of a program.
- Is (typically) supplied for client use via a "reference".
- Can (typically) be used to free memory unilaterally.

Global, General Allocator Utility

```
C:
// <malloc.h>
void *malloc(size_t nbytes);
void free(void *address);
```

```
C++:
// <new>
namespace std {
void *operator new(size_t nbytes);
void operator delete(void *address);
...
```

General/Special × Global/Local

Global

Local

General

Special

malloc/free new/delete tcmalloc jemalloc

An unsynchronized tcmalloc allocator "plugged into" (i.e., used to implement) malloc/free

multipool allocator

Any general algorithm applied to a physically (and temporally) local region of memory.

alloca

monotonic allocator

An unsynchronized version of a multipool allocator

Memory Allocator Definition (take 2)

A memory allocator is a stateful utility or mechanism that organizes a* region of computer memory, dispensing and reclaiming authorized access to suitable sub-regions on demand. *possibly non-contiguous

What is a local memory allocator?


```
class LocalAllocator {
    // internal data structure
  public:
    LocalAllocator(const LocalAllocator&) = delete;
    LocalAllocator& operator=(const LocalAllocator&)
                                        = delete;
    // CREATORS
    LocalAllocator(/* ... */);
    // MANIPULATORS
    void *allocate(std::size t nBytes);
    void deallocate(void *address);
};
```

```
class LocalAllocator {
    // internal data structure
  public:
    LocalAllocator(const LocalAllocator&) = delete;
    LocalAllocator& operator=(const LocalAllocator&)
                                        = delete;
    // CREATORS
    LocalAllocator(/* ... */);
    // MANIPULATORS
    void *allocate(std::size t nBytes);
    void deallocate(void *address);
};
```

```
class LocalAllocator {
    // internal data structure
  public:
    LocalAllocator(const LocalAllocator&) = delete;
    LocalAllocator& operator=(const LocalAllocator&)
                                       = delete;
    // CREATORS
    LocalAllocator(void *begin, void *end);
    // MANIPULATORS
    void *allocate(std::size t nBytes);
    void deallocate(void *address);
};
```

```
class LocalAllocator {
    // internal data structure
  public:
    LocalAllocator(const LocalAllocator&) = delete;
    LocalAllocator& operator=(const LocalAllocator&)
                                       = delete;
    // CREATORS
    LocalAllocator (void *begin, void *end);
    // MANIPULATORS
    void *allocate(std::size t nBytes);
    void deallocate(void *address);
};
```

```
class LocalAllocator {
    // internal data structure
  public:
    LocalAllocator(const LocalAllocator&) = delete;
    LocalAllocator& operator=(const LocalAllocator&)
                                       = delete;
    // CREATORS
    LocalAllocator (void *begin, void *end);
    // MANIPULATORS
    void *allocate(std::size t nBytes);
    void deallocate(void *address);
    void release(); // local allocators only
```

Memory Allocator Definition (take 3)

A memory allocator is (the client-facing interface for) a stateful utility or mechanism that organizes a* region of computer memory, dispensing and reclaiming authorized access to suitable sub-regions on demand. *possibly non-contiguous

Memory Allocator Interfaces

Allocators can be supplied for use in multiple ways:

- 1. As (stateful) utility functions.
 - Doesn't support allocator objects.
- 2. As a "reference wrapper" template parameter.
 - ✓ Concrete allocator type is available for use by client's compiler.
 - Forces a client to be a template in order to hold the allocator reference.
 - ❖ Allocator type affects the C++ type of the client object.
- 3. As the address of a pure abstract base class.
 - ✓ Allocator can be held via a base-class reference by a non-template class.
 - ✓ The choice of allocator does not affect the C++ type of the client object.
 - Allocator must be accessed via its virtual-function interface.
 - Object must somehow hold an extra address even for the default case.

Outline

- 1. Introduction and Background
 What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 When and how do you use which allocator, and why?
- 4. Conclusions

What must we remember about memory allocators?

Outline

1. Introduction and Background

What are memory allocators, and why are they useful?

2. Understanding the Problem

What aspects of software affect allocation strategy?

3. Analyzing the Benchmark Data

When and how do you use which allocator, and why?

4. Conclusions

What <u>must</u> we remember about memory allocators?

Our Tool Chest of Allocation Strategies

Our Tool Chest of Allocation Strategies

1

Global Allocator

Our Tool Chest of Allocation Strategies

Our Tool Chest of Allocation Strategies

Our Tool Chest of Allocation Strategies

14 Allocation Strategies (AS)

Label	Allocator Type	Allocator Binding	Destruction of
	/ •		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Our Tool Chest of Allocation Strategies

Allocation Strategies: AS1-AS2


```
Standard Allocator
class allocator {
    // no data members
 public:
    // CREATORS
    allocator() { }
    allocator(const allocator& ) { }
    ~allocator() { }
    // MANIPULATORS
    allocator operator=() = delete;
    void *allocate(std::size t nBytes) {
                        return ::operator new(nBytes); }
    void deallocate(void *address) {
                           ::operator delete(address); }
};
  FREE OPERATORS
bool operator == (const allocator &, const allocator &) {
                                                           82
                                           return true;
```

```
Standard Allocator
class allocator {
    // no data members
 public:
    // CREATORS
    allocator() { }
    allocator(const allocator& ) { }
    ~allocator() { }
    // MANIPULATORS
    allocator operator=() = delete;
    void *allocate(std::size t nBytes) {
                        return ::operator new(nBytes); }
    void deallocate(void *address) {
                           ::operator delete(address); }
};
  FREE OPERATORS
bool operator == (const allocator &, const allocator &) {
                                                           83
                                           return true;
```

```
AS1: Standard Allocator
class allocator {
   // no data members
                      Default Global Allocator
 public:
   // CREATORS
   allocator() { }
   allocator(const allocator& ) { }
   ~allocator() { }
   // MANIPULATORS
   allocator operator=() = delete;
   void *allocate(std::size t nBytes) {
                       return ::operator new(nBytes); }
   void deallocate(void *address) {
                          ::operator delete(address); }
};
  FREE OPERATORS
bool operator==(const allocator&, const allocator&) {
                                                        84
                                        return true;
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
myFunction()
  std::vector<int> v;
```

Our Tool Chest of Allocation Strategies

```
myFunction()
{
   std::vector<int> v;
}
```

Same object code generated as

```
myFunction()
{
   std::vector<int, allocator> v;
}
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
myBenchmark()
{
    const int N = 1000;
    std::vector<std::list<int> *> system(N);
```

```
} // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark()
{
    const int N = 1000;
    std::vector<std::list<int> *> system(N);
```

```
} // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark()
{
    const int N = 1000;
    std::vector<std::list<int> *> system(N);

    for (int i = 0; i < N; ++i) {
        system[i] = new std::list<int>;
        // build up list of elements
}
```

```
} // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark()
{
    const int N = 1000;
    std::vector<std::list<int> *> system(N);

    for (int i = 0; i < N; ++i) {
        system[i] = new std::list<int>;
        // build up list of elements
    }

// Do benchmark (e.g., access links).
```

```
} // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::list<int> *> system(N);
    for (int i = 0; i < N; ++i) {
        system[i] = new std::list<int>;
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                           Normal Destruction
   // 'system' goes out of scope (and is destroyed).
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
class Allocator {
    // no data members
public:
    // CREATORS
    virtual ~allocator(); // Defined empty in '.cpp' file.

    // MANIPULATORS
    virtual void *allocate(std::size_t nBytes) = 0;
I virtual void deallocate(void *address) = 0;
};
```

```
class Allocator {
    // no data members
public:
    // CREATORS
    virtual ~allocator(); // Defined empty in '.cpp' file.

    // MANIPULATORS
    virtual void *allocate(std::size_t nBytes) = 0;
I virtual void deallocate(void *address) = 0;
};
```

```
class NewDeleteAllocator : public Allocator {
    // no data members
 public:
                         Concrete Derived Class
   // CREATORS
   NewDeleteAllocator() = default;
    ~NewDeleteAllocator() = default;
   NewDeleteAllocator(const NewDeleteAllocator&) = delete;
    // MANIPULATORS
   NewDeleteAllocator& operator=(const NewDeleteAllocator&)
    inline void *allocate(std::size t nBytes) override {
                            return ::operator new(nBytes); }
    inline void deallocate(void *address) override {
                               ::operator delete(address); }
};
```

```
AS2
class NewDeleteAllocator : public Allocator {
   // no data members
 public:
                         Concrete Derived Class
   // CREATORS
   NewDeleteAllocator() = default;
   ~NewDeleteAllocator() = default;
   NewDeleteAllocator(const NewDeleteAllocator&) = delete;
    // MANIPULATORS
   NewDeleteAllocator& operator=(const NewDeleteAllocator&)
   inline void *allocate(std::size t nBytes) override {
                            return ::operator new(nBytes); }
   inline void deallocate(void *address) override {
                               ::operator delete(address); }
};
```

```
AS2
class NewDeleteAllocator : public Allocator {
   // no data members
 public:
                         Concrete Derived Class
   // CREATORS
   NewDeleteAllocator() = default;
   ~NewDeleteAllocator() = default;
   NewDeleteAllocator(const NewDeleteAllocator&) = delete;
    // MANIPULATORS
   NewDeleteAllocator& operator=(const NewDeleteAllocator&)
   inline void *allocate(std::size t nBytes) override {
                            return ::operator new(nBytes); }
   inline void deallocate(void *address) override {
                               ::operator delete(address); }
};
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

LabelAllocator TypeAllocator BindingDestruction of Allocated ObjectsAS1Default Global AllocatorType ParameterNormal DestructionAS2New/Delete AllocatorAbstract BaseNormal DestructionAS3MonotonicType ParameterNormal DestructionAS4MonotonicAbstract BaseNormal DestructionAS5MonotonicAbstract BaseNormal DestructionAS6MonotonicType ParameterNormal DestructionAS7MultipoolType ParameterNormal DestructionAS8MultipoolAbstract BaseNormal DestructionAS9MultipoolAbstract BaseNormal DestructionAS10MultipoolAbstract Base(magically) "Winked Out"AS11MultipoolMonotonic>Type ParameterNormal DestructionAS12MultipoolType Parameter(magically) "Winked Out"AS13MultipoolAbstract BaseNormal Destruction				
AS1 Default Global Allocator Abstract Base Normal Destruction Normal Destruction Normal Destruction AS3 Monotonic AS4 Monotonic AS5 Monotonic Abstract Base Normal Destruction AS5 Monotonic Abstract Base Normal Destruction AS6 Monotonic Abstract Base Normal Destruction AS7 Multipool Abstract Base Normal Destruction AS8 Multipool Type Parameter AS9 Multipool Abstract Base Normal Destruction As9 Multipool Abstract Base Normal Destruction	Label	Allocator Type	Allocator Binding	Destruction of
AS2 New/Delete Allocator Abstract Base Normal Destruction Normal Destruction Normal Destruction Normal Destruction Normal Destruction Normal Destruction (magically) "Winked Out" AS5 Monotonic Abstract Base Normal Destruction Normal Destruction (magically) "Winked Out" Normal Destruction Normal Destruction (magically) "Winked Out" Normal Destruction AS8 Multipool Abstract Base Normal Destruction (magically) "Winked Out" Normal Destruction AS10 Multipool Abstract Base Normal Destruction (magically) "Winked Out" Normal Destruction (magically) "Winked Out" Normal Destruction Normal Destruction (magically) "Winked Out" Normal Destruction Normal Destruction				Allocated Objects
AS3 Monotonic Type Parameter Normal Destruction AS4 Monotonic Type Parameter (magically) "Winked Out" AS5 Monotonic Abstract Base Normal Destruction AS6 Monotonic Abstract Base (magically) "Winked Out" AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool AS11 Multipool AS12 Multipool Type Parameter Normal Destruction AS12 Multipool Type Parameter Normal Destruction (magically) "Winked Out"	AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS4 Monotonic Type Parameter (magically) "Winked Out" AS5 Monotonic Abstract Base Normal Destruction AS6 Monotonic Abstract Base (magically) "Winked Out" AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <anotonic> Type Parameter Normal Destruction AS12 Multipool<anotonic> Type Parameter (magically) "Winked Out"</anotonic></anotonic>	AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS4 Monotonic Type Parameter (magically) "Winked Out" AS5 Monotonic Abstract Base Normal Destruction AS6 Monotonic Abstract Base (magically) "Winked Out" AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <anotonic> Type Parameter Normal Destruction AS12 Multipool<anotonic> Type Parameter (magically) "Winked Out"</anotonic></anotonic>				
AS5 Monotonic Abstract Base Normal Destruction AS6 Monotonic Abstract Base (magically) "Winked Out" AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool AS11 Multipool AS12 Multipool AS12 Multipool AS32 Multipool	AS3	Monotonic	Type Parameter	Normal Destruction
AS6 Monotonic Abstract Base (magically) "Winked Out" AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool AS11 Multipool AS12 Multipool AD8 Parameter Normal Destruction AS12 Multipool AD8 Parameter Normal Destruction Type Parameter (magically) "Winked Out"	AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS7 Multipool Type Parameter Normal Destruction AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool AS11 Multipool AS12 Multipool AS12 Multipool Type Parameter Normal Destruction Type Parameter (magically) "Winked Out"	AS5	Monotonic	Abstract Base	Normal Destruction
AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <monotonic> Type Parameter Normal Destruction AS12 Multipool<monotonic> Type Parameter (magically) "Winked Out"</monotonic></monotonic>	AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS8 Multipool Type Parameter (magically) "Winked Out" AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <monotonic> Type Parameter Normal Destruction AS12 Multipool<monotonic> Type Parameter (magically) "Winked Out"</monotonic></monotonic>				
AS9 Multipool Abstract Base Normal Destruction AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <monotonic> Type Parameter Normal Destruction AS12 Multipool<monotonic> Type Parameter (magically) "Winked Out"</monotonic></monotonic>	AS7	Multipool	Type Parameter	Normal Destruction
AS10 Multipool Abstract Base (magically) "Winked Out" AS11 Multipool <monotonic> Type Parameter Normal Destruction AS12 Multipool<monotonic> Type Parameter (magically) "Winked Out"</monotonic></monotonic>	AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS11 Multipool <monotonic> Type Parameter Normal Destruction AS12 Multipool<monotonic> Type Parameter (magically) "Winked Out"</monotonic></monotonic>	AS9	Multipool	Abstract Base	Normal Destruction
AS12 Multipool <monotonic> Type Parameter (magically) "Winked Out"</monotonic>	AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS12 Multipool <monotonic> Type Parameter (magically) "Winked Out"</monotonic>				
	AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS13 Multipool <monotonic> Abstract Base Normal Destruction</monotonic>	AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
	AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14 Multipool <monotonic> Abstract Base (magically) "Winked Out"</monotonic>	AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
MyFunction()
{
   NewDeleteAllocator a;
   std::pmr::vector<int> v(&a);

   // ...
}
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a:
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                              Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          111
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a;
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                              Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          112
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a:
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                              Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          113
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a;
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                              Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          114
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a:
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                               Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          115
```

```
myBenchmark()
    const int N = 1000;
    std::vector<std::pmr::list<int> *> system(N);
    NewDeleteAllocator a:
    for (int i = 0; i < N; ++i) {
        system[i] = new std::pmr::list<int>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        delete system[i];
                               Normal Destruction
   // 'system' goes out of scope (and is destroyed).
                                                          116
```

Label	Allocator Type	Allocator Binding	Destruction of
Label	Allocator Type	Allocator billaling	
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Our Tool Chest of Allocation Strategies

Allocation Strategies: AS3-AS6

Monotonic Allocator

Global Allocator

Our Tool Chest of Allocation Strategies

bdlma::BufferedSequentialAllocator local Allocator(buffer, sizeof buffer); bsl::vector(&local Allocator);

Note that deallocate is a No-Op!

Label	Allocator Type	Allocator Binding	Destruction of
	, ,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
        system[i] ->~std::list<int, wrapper>();
        a.deallocate(system[i]);
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                              Normal
        system[i] ->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
                                                           128
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i] ->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i] ->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i] ->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i] ->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
                                                           132
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i]->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                          Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i]->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
                                                          134
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                             Normal
        system[i]->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                           Destruction
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                          (magically)
        system[1] >~std:.list<int, wra
        a.deallocate(system[i]);
                                         "Winked Out"
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
```

```
myBenchmark() {
    const int N = 1000;
    std::vector<std::list<int, wrapper> *> system(N);
    bdlma::BufferedSequentialAllocator a; // monotonic
    for (int i = 0; i < N; ++i) {
        void *p = a.allocate(sizeof std::list<int, wrapper>);
        system[i] = new(p) std::list<int, wrapper>(&a);
        // build up list of elements
    // Do benchmark (e.g., access links).
    for (int i = 0; i < N; ++i) {
                                           (magically)
        system[i]->~std::list<int, wra</pre>
        a.deallocate(system[i]);
                                         "Winked Out"
     // 'a' goes out of scope (and is destroyed).
     // 'system' goes out of scope (and is destroyed).
                                                          139
```

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Our Tool Chest of Allocation Strategies

Allocation Strategies: AS7-AS10

Multipool Allocator

Global Allocator

4. Bloomberg Development Environment

Label	Allocator Type	Allocator Binding	Destruction of
	, , , , , , , , , , , , , , , , , , ,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	,		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

		- 11	
Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	, .		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Our Tool Chest of Allocation Strategies

Allocation Strategies: AS11-AS14

Multipool Allocator

Monotonic Allocator

Global Allocator

Label	Allocator Type	Allocator Binding	Destruction of
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
Label	/ mocator type	/ mocator binding	
			Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Label	Allocator Type	Allocator Binding	Destruction of
	7		Allocated Objects
AS1	Default Global Allocator	Type Parameter	Normal Destruction
AS2	New/Delete Allocator	Abstract Base	Normal Destruction
AS3	Monotonic	Type Parameter	Normal Destruction
AS4	Monotonic	Type Parameter	(magically) "Winked Out"
AS5	Monotonic	Abstract Base	Normal Destruction
AS6	Monotonic	Abstract Base	(magically) "Winked Out"
AS7	Multipool	Type Parameter	Normal Destruction
AS8	Multipool	Type Parameter	(magically) "Winked Out"
AS9	Multipool	Abstract Base	Normal Destruction
AS10	Multipool	Abstract Base	(magically) "Winked Out"
AS11	Multipool <monotonic></monotonic>	Type Parameter	Normal Destruction
AS12	Multipool <monotonic></monotonic>	Type Parameter	(magically) "Winked Out"
AS13	Multipool <monotonic></monotonic>	Abstract Base	Normal Destruction
AS14	Multipool <monotonic></monotonic>	Abstract Base	(magically) "Winked Out"

Characterizing Usage Scenarios

What basic "size" parameters characterize software usage?

Characterizing Usage Scenarios

Two fundamental (architectural) "size" parameters spring to mind:

Characterizing Usage Scenarios

Two fundamental (architectural) "size" parameters spring to mind:

N: number of **instructions** executed

Characterizing Usage Scenarios

Two fundamental (architectural) "size" parameters spring to mind:

N: number of **instructions** executed

W: number of active threads

Characterizing Usage Scenarios

Two fundamental (architectural*) "size" parameters spring to mind:

N: number of **instructions** executed

W: number of active threads

*Note that these parameters are deliberately chosen to be platform independent.

Characterizing Usage Scenarios

What "aspects" of software affect optimal allocation strategy?

Characterizing Usage Scenarios

We initially proposed five "dimensions" to help us characterize aspects software usage:

D	
V	2
L	3
U	4
C	5

Characterizing Usage Scenarios

We initially proposed five "dimensions" to help us characterize aspects software usage:

- **D**ENSITY of allocation operations
- **V** VARATION of allocated sizes
- L LOCALITY of accessed memory
- **U**TILIZATION of allocated memory
- C CONTENTION of concurrent allocations

Characterizing Usage Scenarios

These "dimensions" are intended to be rough indications, not precise measures:

Characterizing Usage Scenarios

These "dimensions" are intended to be rough indications, not precise measures:

- They are indented to be scaled (somehow) to fit the range [0 .. 1].

Characterizing Usage Scenarios

These "dimensions" are intended to be rough indications, not precise measures:

- They are indented to be scaled (somehow) to fit the range [0 .. 1].
- 0 implies the *minimum* for the *aspect*, whereas 1 implies the *maximum*.

Characterizing Usage Scenarios

These "dimensions" are intended to be rough indications, not precise measures:

- They are indented to be scaled (somehow) to fit the range [0 .. 1].
- 0 implies the *minimum* for the *aspect*, whereas 1 implies the *maximum*.
- Note that these "dimensions" are far from independent.

Characterizing Usage Scenarios

DENSITY of *allocation operations*

$$\mathbf{D} = \frac{numAllocDeallocOps}{\mathbf{N}}$$

Characterizing Usage Scenarios

DENSITY of *allocation operations*

$$\mathbf{D} = \frac{numAllocDeallocOps}{\mathbf{N}}$$

- 0.0: No allocation instructions occur.
- 1.0: Every instruction is either allocate or deallocate.

Characterizing Usage Scenarios

DENSITY of *allocation operations*

$$\mathbf{D} = \frac{numAllocDeallocOps}{\mathbf{N}}$$

- 0.0: No allocation instructions occur.
- 1.0: Every instruction is either allocate or deallocate.

Consider: std::vector<int>

Characterizing Usage Scenarios

VARIATION of *allocated sizes*

$$\mathbf{v} = \frac{numUniqueAllocSizes}{numAllocOps}$$

Characterizing Usage Scenarios

VARIATION of *allocated sizes*

$$\mathbf{v} = \frac{numUniqueAllocSizes}{numAllocOps}$$

0.0: All allocated sizes are the same.

1.0: Every allocated size is different.

Characterizing Usage Scenarios

VARIATION of *allocated sizes*

$$\mathbf{v} = \frac{numUniqueAllocSizes}{numAllocOps}$$

0.0: All allocated sizes are the same.

1.0: Every allocated size is different.

Consider: std::set<int>

std::string

Characterizing Usage Scenarios

LOCALITY of accessed memory

I = num access instructions on subregion over duration

M = num bytes of memory in subregion

T = num transitions out of subregion over duration

Characterizing Usage Scenarios

Note that **L**OCALITY (**L**) can play a critical role in long-running programs even when the allocation **D**ENSITY (**D**) is negligible!

$$\mathbf{L}_{physical} = \frac{\mathbf{I}}{\mathbf{M} * \mathbf{T}} \qquad \mathbf{L} = \frac{\mathbf{I}}{\mathbf{M} * \mathbf{T}} \qquad \mathbf{L}_{temporal} = \frac{\mathbf{I}}{\mathbf{M} * \mathbf{T}}$$

- 0.0: Subregion is large or not accessed repeatedly.
- 1.0: Subregion is small and accessed repeatedly.

Characterizing Usage Scenarios

UTILIZATION of *allocated memory*

$$\mathbf{U} = \frac{maxMemoryInUse}{totalMemoryAllocated}$$

Characterizing Usage Scenarios

UTILIZATION of *allocated memory*

$$\mathbf{U} = \frac{maxMemoryInUse}{totalMemoryAllocated}$$

0.0: Memory is repeatedly freed/reallocated.

1.0: All allocations precede deallocations.

Characterizing Usage Scenarios

UTILIZATION of *allocated memory*

$$\mathbf{U} = \frac{maxMemoryInUse}{totalMemoryAllocated}$$

0.0: Memory is repeatedly freed/reallocated.

1.0: All allocations precede deallocations.

Characterizing Usage Scenarios

CONTENTION of concurrent allocations

W

Characterizing Usage Scenarios

CONTENTION of concurrent allocations

$$\mathbf{c} = \frac{expectedNumConcurrentAllocations}{\mathbf{W}}$$

0.0: At most one thread has non-zero (**D**).

1.0: The allocation **D**ENSITY **(D)** per thread is 1.

Characterizing Usage Scenarios

CONTENTION of concurrent allocations

$$\mathbf{c} = \frac{expectedNumConcurrentAllocations}{\mathbf{W}}$$

0.0: At most one thread has non-zero (**D**).

1.0: The allocation **D**ENSITY (**D**) per thread is 1.

Note that thread **C**ONTENTION (**C**) is strongly correlated with allocation **D**ENSITY (**D**).

Characterizing Usage Scenarios

Summary

- **D**ENSITY of allocation operations
- **V** VARATION of *allocated sizes*
- L LOCALITY of accessed memory
- **U**TILIZATION of allocated memory
- C CONTENTION of concurrent allocations

Characterizing Usage Scenarios

Mnemonic: ?

- **D**ENSITY of allocation operations
- V VARATION of allocated sizes
- L LOCALITY of accessed memory
- **U** UTILIZATION of allocated memory
- **C** CONTENTION of concurrent allocations

Characterizing Usage Scenarios

Mnemonic: D.V.L.U.C. the DUCK

- D DENSITY of allocation operations
 V VARATION of allocated sizes
 L LOCALITY of accessed memory

 - UTILIZATION of allocated memory
 - C CONTENTION of concurrent allocations

Outline

- 1. Introduction and Background
 What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 When and how do you use which allocator, and why?
- 4. Conclusions

What <u>must</u> we remember about memory allocators?

Outline

- 1. Introduction and Background
 - What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 When and how do you use which allocator, and why?
- 4. Conclusions
 - What <u>must</u> we remember about memory allocators?

Roadmapping the Benchmarks

Considerations:

- We wanted to explore each dimension to observe its effects on optimal memory allocation.
- Our first thought was to create a single benchmark that spanned all five dimensions.
 - Find the centroid.
 - Vary the arguments along each dimension separately
 - Such a single benchmark is not at all easy.
- We finally settled on four separate benchmarks.
 - Benchmark I addresses the first two dimensions.

Tested Across Many Problem Sizes

Considerations:

- We tried not to assume the answers we expected.
 - Explored a wide range of problem sizes, N.
- Used successive powers of two.
 - We often show just the exponent in tables: 5 versus 2^{5.}
- Contrasted results across disparate physical sizes.
 - E.g., by holding overall problem size N constant.
- Traded-off comparable parameters E.g.,
 - Subsystem size versus number of subsystems
 - Subsystem iterations versus experiment repetitions

Platforms Used For These Benchmarks

All of results presented here are from a server having *dual* Intel Xeon E5-2620v2 processors.

Each processor:

- Ivy Bridge EP "Sandy Bridge" architecture (c. 2013)
- 6 cores (for a total of 12 cores)
- 15 MB of L3 cache
- running at a fixed clock rate of 2.1 GHz
- 16GB of DDR3-1600 RAM (13G available to processes)

See: http://ark.intel.com/products/75789

Platforms Used For These Benchmarks

All benchmark programs were

- compiled using gcc-5.1,
- using optimizing "-O3 –march=native",
- and run under Linux 3.18.

All experiments used <u>only one core at a time</u>

Except, that is, for Benchmark IV, which measures

Contention (C) and used more of the available cores.

Alternative Global Allocators

We investigate alternative global allocators:

- >tcmalloc
- > jemalloc

"We determined that the native allocators (e.g., the one currently shipped with GCC on Linux) performed as well or better."

Benchmark Road Map

- I. Short Running: Build Up, Use, Tear Down
 - > Allocation DENSITY and VARIATION in Allocated Sizes
- II. Long Running: Time-Multiplexed Subsystems
 - > Access LOCALITY both Physical and Temporal
- III. Short Running: Varying Memory Reusability
 - ➤ Memory **U**TILIZATION
- IV. Multithreaded: Varying Numbers of Threads
 - > Allocator **C**ONTENTION

Benchmark I: Density, Variation

- I. Short Running: Build Up, Use, Tear Down
 - > Allocation DENSITY and VARIATION in Allocated Sizes
- II. Long Running: Time-Multiplexed Subsystems
 - > Access LOCALITY both Physical and Temporal
- III. Short Running: Varying Memory Reusability
 - > Memory **U**TILIZATION
- IV. Multithreaded: Varying Numbers of Threads
 - > Allocator **C**ONTENTION

Benchmark I: Density, Variation

Considerations:

- Initially we wanted to investigate allocation Density.
 - Focused on allocation/deallocation costs themselves.
- Chose a variety of common data structures.
 - Used int, string, vector, and unordered_set.
- Didn't want access Locality to dominate results.
 - Wrote to <u>just</u> the first byte of each newly allocated element.
- Later Incorporated **V**ARIATION into allocated memory.
 - vector objects' capacities were reserved up front.
 - string lengths were 33-1000 (uniformly distributed).

Benchmark I: Density, Variation

Simple Data Structures

Label	Data Structure
DS1	vector <int></int>
DS2	vector <string></string>
DS3	unordered_set <int></int>
DS4	unordered_set <string></string>

Benchmark I: Density, Variation

Benchmark I: Density, Variation

- For each data structure in a thoughtfully chosen set:
 - Create the data structure.
 - Access it lightly.
 - Destroy it.
 - Repeat (until the problem size N is reached).

Benchmark I: Density, Variation

- For each data structure in a thoughtfully chosen set:
 - Create the data structure.
 - Access it lightly.
 - Destroy it.
 - Repeat (until the problem size N is reached).
- We chose the overall problem size to be $N = 2^{27}$.
 - The container *size* (S) varies from 2^8 to 2^{16} .
 - The number of experiment repetitions (R) = N/S.

Benchmark I: Density, Variation

Contrasting access times across system sizes

Overall Problem Size = 2^{27}

 $log_2 N = 27$

These

are all

exponents of **2**.

Container Size (S)	Experiment Repititions (R)
8	19
9	18
10	17
° 11	16
12	15
13	14
14	13
15	12
16	11

Benchmark I: Density, Variation

- For each data structure in a thoughtfully chosen set:
 - Create the data structure.
 - Access it lightly.
 - Destroy it.
 - Repeat (until the problem size N is reached).
- We chose the overall problem size to be $N = 2^{27}$.
 - The container *size* (S) varies from 2^8 to 2^{16} .
 - The number of repetitions (R) = N/S.
- Each result entry is absolute RUNTIME (in seconds).

Benchmark I: DENSITY, VARIATION

DS1

Each result entry represents absolute runtime in seconds.

Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40

Benchmark I: Density, Variation

DS1

	Glo	Global Monotonic						Multi	pool		Muli	tipoo	ool <mono></mono>		
		Virtual			Virt	ual			Vir	tual			Virt	ual	
				(wink)		(wink)									
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14	
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70	
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50	
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50	
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40	
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	

Benchmark I: Density, Variation

DS1

	Glo	Global Mond				C	Multipool Multipo					tipoo	ool <mono></mono>		
		Virtual			Virt	tual			Virt	tual			Virt	ual	
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)	
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14	
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70	
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50	
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50	
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40	
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	

Benchmark I: DENSITY, VARIATION

DS1

	Glo	bal	I	lono	toni	C		Multi	pool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual			Virt	ual			Vir	tual			Virt	ual
				(wink)		(wink)								
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40

Benchmark I: Density, Variation

DS1

	Glo	bal	N	<i>l</i> lono	toni	C		Multi	pool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual			Virt	ual			Virt	tual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40

Benchmark I: DENSITY, VARIATION

DS1

	Global Mond		toni	C	Multipool				Muli	ıltipoo <mark>l<mono></mono></mark>				
		Virtual			Virt	ual			Virt	tual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	1.20	1.90	0.30	0.40	0.40	0.40	0.80	1.00	0.90	1.10	0.60	0.70	0.80	0.70
₂ 7	0.90	1.60	0.30	0.40	0.40	0.40	0.50	0.70	0.60	0.70	0.50	0.50	0.60	0.50
₂ 8	0.80	1.00	0.20	0.40	0.40	0.30	0.40	0.60	0.50	0.60	0.30	0.50	0.50	0.50
₂ 9	0.80	1.00	0.20	0.40	0.40	0.40	0.30	0.50	0.50	0.50	0.30	0.40	0.40	0.40
₂ 10	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 11	0.70	0.90	0.20	0.30	0.40	0.30	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 12	0.70	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 13	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 14	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 15	0.80	0.90	0.20	0.30	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40
₂ 16	0.80	0.90	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40	0.20	0.40	0.40	0.40

Benchmark I: Density, Variation

DS2

vector<string>

	Glo	bal	I	Monot				Multipo			Mult	tipoc	I <mc< th=""><th>no></th></mc<>	no>
		Virtual			Virt	ual			Virt	ual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	68.90	67.30	12.90	12.80	13.30	12.90	18.10	17.80	18.20	17.70	15.50	14.80	15.60	14.80
₂ 7	68.80	68.20	12.80	12.90	13.20	12.90	20.60	20.20	20.60	20.40	15.10	14.30	15.00	14.40
₂ 8	70.80	68.90	13.20	12.80	13.60	12.90	30.80	30.40	30.70	30.30	15.30	14.60	15.40	14.70
₂ 9	73.10	71.20	13.50	13.50	13.90	13.50	38.20	37.60	38.00	37.30	15.90	15.10	15.90	15.10
₂ 10	75.40	74.30	13.60	13.50	14.00	13.70	41.10	40.30	41.60	40.90	16.00	15.10	15.90	15.00
₂ 11	76.90	74.50	13.60	13.50	14.10	13.60	43.90	43.20	43.70	42.60	16.00	15.00	16.00	15.10
₂ 12	76.10	74.80	13.70	13.50	14.00	13.60	41.20	38.80	40.60	39.40	15.90	14.90	15.80	15.00
₂ 13	76.10	74.80	13.60	13.60	14.00	13.60	41.40	39.20	41.30	39.90	15.90	15.00	15.80	14.90
₂ 14	78.30	76.50	13.60	13.60	14.00	13.60	45.80	42.30	44.80	44.00	16.10	15.20	16.20	15.40
₂ 15	90.40	91.00	20.20	20.10	20.50	20.10	62.20	58.70	62.20	58.20	26.00	25.00	26.00	24.90
₂ 16	103.0	103.0	21.50	21.30	21.80	21.30	66.50	59.20	65.10	59.90	27.00	25.30	27.10	25.20

Benchmark I: Density, Variation

DS3

unordered set<int>

	Glo	bal	N	Monotonic Virtual				Multi	pool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual			Virt	ual			Vir	tual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	10.20	11.00	5.08	4.88	5.62	5.34	7.16	7.12	7.50	7.20	6.19	5.73	6.40	5.81
₂ 7	12.50	13.30	5.04	4.81	5.68	5.24	6.37	6.22	6.71	6.31	5.80	5.46	6.08	5.50
₂ 8	15.80	16.40	4.99	4.79	5.54	5.22	5.95	5.81	6.21	5.92	5.65	5.32	5.82	5.40
₂ 9	18.30	19.00	5.01	4.80	5.53	5.18	5.78	5.56	6.01	5.70	5.56	5.20	5.76	5.21
₂ 10	21.40	22.30	4.99	4.83	5.55	5.20	5.72	5.46	5.95	5.55	5.52	5.27	5.68	5.24
₂ 11	25.50	26.10	4.98	4.81	5.56	5.16	5.67	5.44	5.86	5.65	5.53	5.23	5.69	5.26
₂ 12	27.10	28.00	5.02	4.81	5.55	5.20	6.42	6.10	6.57	6.25	5.51	5.12	5.68	5.27
₂ 13	27.90	28.80	5.03	4.81	5.59	5.21	7.34	6.91	7.46	7.03	5.61	5.16	5.71	5.24
₂ 14	28.50	29.00	5.03	4.80	5.58	5.26	7.03	6.59	7.18	6.68	5.64	5.19	5.80	5.34
- ₂ 15	28.30	29.20	5.03	4.78	5.56	5.28	7.11	6.65	7.20	6.83	5.68	5.17	5.78	5.24
₂ 16	31.60	31.80	5.02	4.76	5.60	5.22	6.79	6.37	6.93	6.46	5.68	5.17	5.79	5.24

Benchmark I: Density, Variation

DS4 unordered set<string>

	Glo	bal	_		otonic		Multipod		pool		Multipool<		I <mc< th=""><th>no></th></mc<>	no>
		Virtual			Virt	ual			Virt	ual			Virt	tual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	103.0	120.0	52.20	51.90	52.40	51.20	58.40	57.60	59.70	58.90	55.10	54.10	56.90	55.30
₂ 7	103.0	122.0	52.50	52.10	52.90	51.80	63.30	61.90	64.40	63.80	55.30	54.00	56.80	55.70
₂ 8	109.0	128.0	53.60	53.00	53.70	52.60	76.30	74.70	77.40	75.90	56.50	54.90	57.90	56.70
₂ 9	113.0	134.0	54.50	53.40	54.90	53.00	83.10	81.70	82.80	81.40	57.30	56.70	58.00	56.40
₂ 10	119.0	143.0	56.60	54.90	56.90	54.60	87.60	85.90	88.10	86.50	58.80	56.90	59.20	57.30
₂ 11	122.0	144.0	57.00	55.30	57.70	54.90	90.70	89.20	90.70	88.40	59.40	57.60	60.00	57.80
₂ 12	122.0	146.0	57.90	55.90	58.40	55.70	93.20	90.70	93.20	90.70	60.50	58.30	60.70	58.40
₂ 13	124.0	148.0	58.20	56.30	58.50	55.90	95.10	91.50	94.30	92.00	60.50	58.20	60.70	58.70
₂ 14	139.0	166.0	59.10	57.30	59.60	56.80	98.50	94.10	97.80	95.80	61.80	59.60	62.20	60.00
₂ 15	176.0	211.0	66.00	62.70	66.20	62.40	121.0	115.0	122.0	115.0	76.50	73.30	76.80	74.00
₂ 16	196.0	232.0	78.50	72.00	79.10	71.00	137.0	127.0	136.0	127.0	87.10	82.40	87.80	82.90

Benchmark I: Density, Variation

Questions and/or Discussion?

Benchmark I: Density, Variation

Composite Data Structures

Label	Data Structure
DS5	vector <vector<int>></vector<int>
DS6	vector <vector<string>></vector<string>
DS7	<pre>vector<unordered_set<int>></unordered_set<int></pre>
DS8	<pre>vector<unordered_set<string>></unordered_set<string></pre>
DS9	unordered_set <vector<int>></vector<int>
DS10	unordered_set <vector<string>></vector<string>
DS11	unordered_set <unordered_set<int>></unordered_set<int>
DS12	<pre>unordered_set<unordered_set<string>></unordered_set<string></pre>

Benchmark I: Density, Variation

Composite Data Structures:

- The composite data elements were much larger.
- We wanted runtimes to be roughly comparable.
- We kept the overall problem size $N = 2^{27}$.
 - The outer container *size* (S) *still* varies from 2^8 to 2^{16} .
 - The inner container size (K) was fixed at 2^7 .
 - Now, the number of repetitions $(R) = N/(K \cdot S)$.

Benchmark I: Density, Variation

Contrasting access times across system sizes

Overall Problem Size = 2²⁷

These are all <u>exponents</u> of **2**.

$$log_2 N = 27$$

Outer Container Size (S)	Inner Container Size (fixed)	Experiment Repetitions (R)				
8	7	12				
9	7	11				
10	O 7	10				
11	7	9				
12	∘ 7	8				
13	7	7				
14	7	6				
15	7	5				
16	7	4				

Benchmark I: Density, Variation

Composite Data Structures:

- The composite data elements were much larger.
- We wanted runtimes to be roughly comparable.
- We kept the overall problem size $N = 2^{27}$.
 - The outer container *size* (S) still varies from 2^8 to 2^{16} .
 - The inner container size (K) was fixed at 2^7 .
 - Now, the number of repetitions $(R) = N/(K \cdot S)$.
- These adjustment kept runtimes manageable.
 - The number of leaf elements remained comparable.

Benchmark I: Density, Variation

DS5

vector<vector<int>>

	Glo	bal		l lono	toni	C		Multi	pool		Multipool <mono></mono>			
		Virtual			Virtual			Virtual		tual			Virtual	
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	0.97	1.00	0.19	0.13	0.20	0.17	0.24	0.20	0.20	0.21	0.21	0.19	0.20	0.21
₂ 7	0.96	0.96	0.22	0.16	0.18	0.14	0.21	0.20	0.19	0.20	0.16	0.20	0.21	0.19
₂ 8	0.99	1.00	0.19	0.13	0.18	0.17	0.27	0.30	0.27	0.29	0.19	0.19	0.20	0.21
₂ 9	0.99	1.02	0.19	0.13	0.18	0.14	0.36	0.33	0.33	0.36	0.19	0.15	0.20	0.20
₂ 10	1.01	1.04	0.19	0.18	0.19	0.14	0.37	0.36	0.36	0.38	0.22	0.19	0.20	0.22
₂ 11	1.02	1.05	0.19	0.13	0.19	0.14	0.36	0.35	0.36	0.36	0.20	0.15	0.20	0.22
₂ 12	1.03	1.05	0.19	0.19	0.22	0.18	0.33	0.36	0.32	0.32	0.20	0.21	0.20	0.19
₂ 13	1.02	1.05	0.19	0.13	0.22	0.19	0.35	0.35	0.34	0.33	0.20	0.21	0.22	0.19
₂ 14	1.05	1.10	0.19	0.17	0.19	0.16	0.38	0.36	0.38	0.37	0.17	0.19	0.20	0.19
₂ 15	1.13	1.18	0.22	0.19	0.19	0.16	0.50	0.45	0.47	0.45	0.21	0.21	0.17	0.18
₂ 16	1.29	1.32	0.22	0.19	0.20	0.17	0.54	0.47	0.52	0.50	0.22	0.21	0.22	0.21

Benchmark I: Density, Variation

DS6

vector<vector<string>>

	Glo	bal	N	/lond	toni	c		Multi	ipool		Multipool <mono></mono>			
		Virtual			Virtual				Virtual				Virtual	
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	72.60	72.70	9.06	9.06	9.36	8.98	41.70	40.00	41.20	39.20	11.20	10.30	11.20	10.30
₂ 7	74.90	76.00	8.92	8.98	9.29	8.89	46.50	44.80	46.00	43.00	11.40	11.00	12.70	10.30
₂ 8	85.50	85.20	17.10	17.40	17.30	16.90	62.90	58.40	61.30	58.40	22.80	22.50	23.30	22.00
₂ 9	96.40	96.30	18.40	18.70	19.00	18.40	66.20	59.00	64.70	59.30	24.20	22.70	24.50	22.30
₂ 10	102.0	102.0	18.70	18.60	19.10	18.60	67.00	59.60	65.90	59.00	24.80	22.50	24.80	22.50
₂ 11	102.0	101.0	18.40	18.70	19.20	18.20	62.40	55.00	61.30	54.20	24.80	22.60	25.10	22.30
₂ 12	104.0	103.0	18.50	18.70	19.40	18.30	61.60	54.20	60.50	53.40	24.90	22.70	25.10	22.30
₂ 13	103.0	104.0	18.80	18.40	19.00	18.60	61.80	53.40	59.90	53.50	25.30	22.60	25.10	22.60
₂ 14	97.10	96.30	19.20	19.60	20.10	19.20	60.60	53.70	60.20	52.90	29.00	26.70	29.20	26.30
₂ 15	88.10	88.70	23.40	23.20	23.70	23.40	62.60	54.40	60.90	53.90	33.40	30.60	33.20	30.70
₂ 16	76.70	76.70	25.00	25.30	25.80	25.00	63.40	54.80	62.90	54.30	35.00	32.80	35.50	32.40

Benchmark I: Density, Variation

DS7

vector<unordered set<int>>

	Global		I	l lono	toni	C		Multi	pool		Multipool <mono></mono>			
		Virtual				ual			Virt	tual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	28.80	28.70	2.97	2.69	3.43	2.98	4.89	4.37	5.33	4.73	3.21	2.65	3.64	3.05
₂ 7	28.30	28.50	2.97	2.66	3.36	2.95	4.99	4.44	5.43	4.91	3.20	2.62	3.61	2.97
₂ 8	28.20	28.10	2.94	2.62	3.33	2.92	5.02	4.53	5.53	4.97	3.23	2.60	3.60	3.01
₂ 9	31.80	31.70	2.92	2.61	3.33	2.93	5.08	4.54	5.52	4.92	3.16	2.58	3.58	2.96
₂ 10	46.60	47.20	2.92	2.61	3.33	2.89	5.07	4.49	5.48	4.93	3.15	2.58	3.57	2.98
₂ 11	54.30	54.10	2.92	2.61	3.33	2.89	5.63	4.75	5.88	5.37	3.16	2.60	3.61	2.98
₂ 12	54.70	54.80	2.96	2.66	3.34	2.91	6.90	5.79	7.28	6.23	4.15	3.05	4.58	3.40
₂ 13	55.10	56.00	3.51	2.95	3.77	3.21	7.01	6.03	7.47	6.35	4.27	3.08	4.65	3.48
₂ 14	51.00	50.90	3.53	2.99	3.81	3.25	7.08	6.00	7.47	6.46	4.29	3.14	4.71	3.47
₂ 15	44.80	45.40	3.58	3.01	3.83	3.26	7.07	6.04	7.55	6.52	4.35	3.14	4.75	3.53
₂ 16	38.20	38.20	3.58	3.06	3.86	3.30	7.14	6.11	7.58	6.47	4.37	3.18	4.80	3.54

Benchmark I: Density, Variation

DS8 vector<unordered_set<string>>

	Global			<i>l</i> lono	tonic	C		Multi	ipool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual				ual			Virt	ual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	114.0	116.0	26.00	23.80	26.30	24.00	56.20	54.70	56.90	54.60	27.50	25.80	27.90	26.00
₂ 7	123.0	130.0	26.50	24.40	25.70	23.50	62.70	60.10	62.70	60.50	27.50	26.30	28.20	26.10
₂ 8	162.0	171.0	31.70	27.30	32.20	27.80	78.00	74.20	79.20	73.90	35.00	32.00	35.50	32.50
₂ 9	175.0	181.0	36.80	28.00	38.10	28.00	81.70	74.10	81.20	74.90	36.30	32.10	37.20	32.10
₂ 10	176.0	183.0	40.00	28.90	37.40	28.20	82.10	74.50	82.10	74.70	36.90	32.00	37.40	32.20
₂ 11	176.0	183.0	39.30	28.00	37.30	28.00	81.40	74.40	82.00	74.30	36.90	32.10	37.80	32.10
₂ 12	179.0	185.0	39.40	28.00	37.10	28.00	81.80	74.10	81.60	74.40	37.00	32.00	37.80	32.20
₂ 13	173.0	178.0	39.60	27.90	36.90	28.20	81.80	73.60	81.50	74.30	37.20	32.00	37.80	32.40
₂ 14	157.0	160.0	41.00	29.90	38.80	29.90	81.50	74.10	82.20	74.00	44.00	39.30	45.10	39.20
₂ 15	122.0	131.0	47.60	35.80	44.80	36.20	85.20	75.50	83.70	76.10	50.50	45.20	51.00	45.50
₂ 16	95.40	106.0	51.40	40.50	48.10	38.90	84.80	76.20	88.70	75.90	53.10	48.50	54.80	48.20

Benchmark I: Density, Variation

DS9

unordered set<vector<int>>

	Glo	bal		Mono	toni	C		Multi	pool		Mul	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual				ual			Vir	tual			Virt	tual
				(wink)		(wink)								
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	0.97	0.94	0.23	0.19	0.24	0.21	0.26	0.27	0.30	0.26	0.25	0.26	0.25	0.24
₂ 7	1.40	1.43	0.22	0.21	0.22	0.19	0.24	0.26	0.25	0.27	0.24	0.26	0.24	0.24
₂ 8	1.35	1.39	0.25	0.22	0.24	0.23	0.30	0.35	0.34	0.33	0.24	0.23	0.25	0.24
₂ 9	1.29	1.32	0.22	0.18	0.22	0.17	0.37	0.38	0.37	0.36	0.23	0.22	0.19	0.22
₂ 10	1.32	1.38	0.24	0.22	0.22	0.19	0.41	0.39	0.42	0.39	0.23	0.24	0.23	0.22
₂ 11	1.34	1.36	0.23	0.21	0.22	0.17	0.44	0.42	0.43	0.41	0.23	0.23	0.25	0.22
₂ 12	1.34	1.41	0.22	0.20	0.22	0.16	0.46	0.42	0.45	0.43	0.23	0.17	0.27	0.22
₂ 13	1.46	1.54	0.22	0.18	0.22	0.16	0.48	0.49	0.49	0.48	0.23	0.21	0.25	0.21
₂ 14	1.53	1.61	0.22	0.17	0.22	0.18	0.43	0.42	0.45	0.41	0.24	0.22	0.24	0.22
- ₂ 15	1.61	1.76	0.25	0.21	0.24	0.19	0.50	0.49	0.50	0.49	0.24	0.18	0.23	0.21
₂ 16	1.79	1.92	0.28	0.25	0.29	0.24	0.55	0.51	0.56	0.55	0.30	0.23	0.32	0.24

Benchmark I: Density, Variation

DS10

unordered set<vector<string>>

	Glo	bal	N	/lono	toni	C		Multi	pool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual				ual			Virt	ual			Virt	ual
				(wink)		(wink)								
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	73.00	73.20	9.41	9.39	9.34	8.97	41.70	39.70	41.10	39.30	11.20	10.40	11.20	10.30
₂ 7	74.70	75.30	9.32	9.34	9.24	8.87	46.20	43.70	45.30	44.20	12.70	10.60	11.40	10.80
₂ 8	83.10	85.40	18.00	17.30	16.90	17.20	62.20	58.90	61.90	57.60	23.20	22.30	23.10	22.40
₂ 9	91.40	94.90	19.00	19.00	18.80	18.60	65.00	59.90	64.40	58.90	24.30	22.60	24.10	22.60
₂ 10	98.20	101.0	19.20	18.90	19.10	18.60	66.50	59.70	65.40	59.10	24.80	22.60	24.60	22.70
₂ 11	99.50	101.0	19.00	19.10	19.30	18.40	66.90	59.50	66.10	58.70	24.90	22.70	25.10	22.50
₂ 12	102.0	105.0	19.40	19.00	19.20	18.80	67.00	58.90	65.80	59.40	25.30	22.60	25.10	22.70
₂ 13	103.0	104.0	19.00	19.20	19.40	18.40	66.70	59.20	66.20	58.20	25.30	22.90	25.50	22.60
₂ 14	95.80	97.20	19.80	20.00	20.30	19.30	62.80	55.60	61.90	54.30	29.20	26.80	29.60	26.50
₂ 15	87.10	89.80	24.00	23.70	24.00	23.50	64.30	55.00	61.90	54.90	33.60	30.80	33.50	31.00
₂ 16	77.10	78.20	25.60	25.70	26.00	25.10	63.90	55.50	63.30	54.50	35.30	33.00	35.70	32.60

Benchmark I: Density, Variation

DS11 unordered set<unordered set<int>>

	Glo	bal		l lono	toni	C		Multi	pool		Mult	tipoo	I <mc< th=""><th>no></th></mc<>	no>
		Virtual				ual			Vir	tual			Virt	ual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	28.70	29.10	3.06	2.75	3.55	3.14	4.96	4.40	5.41	4.84	3.24	2.73	3.73	3.15
₂ 7	29.10	29.00	3.02	2.71	3.47	3.06	5.03	4.52	5.49	4.89	3.23	2.66	3.68	3.08
₂ 8	28.80	29.10	3.00	2.68	3.45	3.04	5.18	4.55	5.57	4.98	3.24	2.66	3.65	3.06
₂ 9	31.80	32.30	2.99	2.64	3.43	2.98	5.12	4.54	5.55	4.95	3.22	2.60	3.65	2.99
₂ 10	46.50	47.10	2.95	2.65	3.40	2.99	5.13	4.57	5.62	4.96	3.21	2.58	3.62	2.97
₂ 11	53.30	53.50	2.94	2.64	3.43	2.96	5.58	4.84	5.75	5.39	3.20	2.63	3.67	3.01
₂ 12	54.60	55.00	3.02	2.66	3.43	2.98	6.47	5.94	6.99	6.28	3.83	3.00	4.21	3.38
₂ 13	56.50	56.50	3.38	2.98	3.72	3.26	7.04	6.04	7.48	6.45	4.15	3.03	4.58	3.39
₂ 14	52.10	52.20	3.50	2.99	3.88	3.25	7.35	6.07	7.83	6.59	4.33	3.05	4.76	3.38
₂ 15	45.70	46.20	3.62	2.99	3.95	3.27	7.70	6.39	8.11	6.83	4.43	3.06	4.81	3.44
₂ 16	39.30	39.30	3.72	3.05	4.03	3.31	7.57	6.30	8.09	6.61	4.52	3.10	4.92	3.45

Benchmark I: Density, Variation

DS12unordered_set<unordered_set<string>>

	Global		N	<i>l</i> lono	tonic			Multi	pool		Mult	tipod	ol <mono></mono>	
		Virtual				ual			Virt	ual			Virt	tual
				(wink)		(wink)		(wink)		(wink)		(wink)		(wink)
Size	AS1	AS2	AS3	AS4	AS5	AS6	AS7	AS8	AS9	AS10	AS11	AS12	AS13	AS14
₂ 6	121.0	125.0	25.90	23.70	26.10	23.90	56.30	54.50	56.70	54.70	27.40	25.80	27.80	26.00
₂ 7	141.0	145.0	26.40	24.30	25.60	23.40	62.10	59.60	62.50	60.00	27.90	25.80	28.30	25.80
₂ 8	165.0	173.0	31.50	27.30	32.20	27.70	77.40	73.70	77.80	74.20	34.80	31.90	35.60	32.20
₂ 9	171.0	178.0	35.90	27.60	34.40	27.80	80.00	73.70	79.70	74.60	35.70	32.00	36.50	31.90
₂ 10	177.0	182.0	38.70	28.60	35.60	27.90	81.10	74.30	81.30	74.30	36.70	31.80	37.10	32.00
₂ 11	177.0	183.0	38.20	27.60	36.20	27.70	81.30	74.30	82.20	74.10	37.00	32.00	37.80	31.90
₂ 12	179.0	186.0	39.10	27.70	36.50	28.00	81.60	73.50	81.50	74.10	37.30	31.80	37.90	32.10
₂ 13	165.0	169.0	39.00	27.80	36.70	27.80	81.30	73.90	82.80	73.50	37.30	32.10	38.30	32.10
₂ 14	153.0	156.0	40.90	29.60	38.70	29.60	81.50	74.10	82.40	73.70	44.40	39.20	45.40	39.10
₂ 15	122.0	131.0	47.60	35.70	44.80	36.10	85.70	75.20	83.90	75.40	51.00	45.10	51.40	45.50
₂ 16	100.0	111.0	51.40	40.40	48.00	38.80	85.10	75.50	86.20	75.60	53.60	48.40	54.60	48.20

Benchmark I: Density, Variation

Questions and/or Discussion?

Benchmark II: Locality

- I. Short Running: Build Up, Use, Tear Down
 - > Allocation DENSITY and VARIATION in Allocated Sizes
- II. Long Running: Time-Multiplexed Subsystems
 - > Access LOCALITY both *Physica*l and *Temporal*
- III. Short Running: Varying Memory Reusability
 - ➤ Memory **U**TILIZATION
- IV. Multithreaded: Varying Numbers of Threads
 - > Allocator CONTENTION

Benchmark II: Locality

Considerations:

- Investigate access Locality.
 - Observe its effects both physically and temporally.
- Simulate concurrent subsystems.
 - Vary both their sizes and time slices independently.
- Access Locality should dominate results.
 - Time accessing data should be substantial (hours).
 - Time to set-up/tear-down should be negligible (seconds).
- Simulate use of local allocator using global allocator.
 - Measure runtime affects of memory diffusion using ASO.

Benchmark II: Locality

Creation Plan:

- Build up a data structure G: vector<list<int>>
 - of K subsystems: G.size()
 - each of size |S|: S.length()
- Tear down data structure G.
 - Occurs automatically at the end of the program.
- The result is an initialized data structure G.
 - Also used to measure the Build-up + Tear-down runtime.

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: Locality

Benchmark II: LOCALITY

list<int> list<int> list<int> list<int> list<int>

Benchmark II: LOCALITY

Access Plan:

- Visit each of the subsystems S_j of G in turn.
 - Traverse S_j I times before moving to the next.
 - lacktriangle Increment the int value of each link of the list in lacktriangle
 - Repeat (until the problem size N is reached).
 - We chose the overall problem size $\mathbf{N} >> 2^{30}$ (very c large).
- The result of this experiment is its (wall) RUNTIME.
 - No memory is allocated or deallocated.

Benchmark II: Locality

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Problem Size: $N = |G| \cdot I \cdot R$ Physical System Size $|G| = K \cdot |S|$

Number of Subsystems: K

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: Locality

Shuffle Plan:

- Build up a data structure G: vector<list<int>>
- Visit each of the subsystems S_i of G in turn.
 - Pop the last element of **S**_i after saving its int value.
 - Push that value onto the front of a random S_i.
 - Repeat until the number of moves reaches $\mathbf{sf} \cdot |\mathbf{G}|$.
 - The non-negative integer **sf** represents the **s**huffle **f**actor.
- The result of this experiment is a shuffled system G.
 - There is also the added runtime to do the shuffle.
- Additional consideration: The shuffle is heuristic ...
 - This to keep the time to shuffle as small as possible.

Benchmark II: LOCALITY

Benchmark II: LOCALITY

Benchmark II: Locality

Overall (Multiprogram) Plan:

- A. Create and Access **After** Shuffle:
- B. Create and Access **Before** Shuffle.
- C. Create and Shuffle **Only**

The result of each program is its (wall) **RUNTIME**.

- \Box Shuffled-Memory Access Time: A C
- \Box Unshuffled-Memory Access Time: B-C
- ☐ Degradation Ratio due to memory diffusion (DR):

Degredation Ratio
$$(DR) = \frac{A - C}{B - C}$$

Benchmark II: LOCALITY

Contrasting access times across (sub)system size

Overall System Size = 10^7

These are all exponents of **10**.

$$\log_{10} |G| = 7$$

Number of Subsystems
7
6
5
4
3
2
1
0

Benchmark II: LOCALITY

Benchmark II: Locality

$$I = 10$$

Temporal Locality

|--|

Defusion

Number of Complete Shuffles (107 mayo exerctions)

	number of Complete Shuffles (10' move operations)											
	0	1	2	3	4	5	6	7	8	9		
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
$\frac{9}{5} \frac{10^6}{10^5}$	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2		
50° 10°	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2		
$\Xi 10^4$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2		
$\frac{9}{2}$ 10^3	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4		
$\int 10^2$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2		
$\frac{10^2}{10^0}$	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6		
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6		

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

	Number of Complete Shuffles (10 ⁷ move operations)												
	0	1				5		7	8	9			
10^{7} 0.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
ტ 10 ⁶	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
$55 10^5$	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
$\lesssim 10^4$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
कु 10 ³	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
$ \widetilde{g} 10^2 $	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
skgnS 10 ²	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

	Numl	ber of	Com	plete	Shuff	fles (1	$0^7 \mathrm{m}$	ove o	perati	ions)
	0	1	2	3	4	5	6	7	8	9
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$ ag{10^6} $	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2
$\frac{N}{S}$ 10^5	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2
$\frac{10^4}{10^4}$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2
कु 10 ³	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4
$\frac{10^2}{10^0}$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2
$\frac{3}{6}$ 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6
		4	7							

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

	Number of Complete Shuffles (10 ⁷ move operations) 0 1 2 3 4 5 6 7 8 9												
										9			
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
ტ 10 ⁶	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
$\frac{N}{N}$ 10^5	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
$E \ 10^4$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
$\frac{10^3}{2}$	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
80° 10^2	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
Stant	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

Number of Complete Shuffles (10⁷ move operations) 6 8 10^{7} 1.0 1.0 1.0 10^{6} 16.2 16.0 15.8 15.6 15.7 15.8 16.2 10^{5} 1.0 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2 10^{4} Subsystem 8.1 8.1 7.9 8.2 8.3 8.2 1.0 8.2 8.0 8.1 10^3 1.0 5.3 5.3 5.4 5.4 5.4 5.7 5.4 10^2 3.8 4.0 4.2 4.3 4.2 4.2 1.0 4.1 10^1 3.6 3.4 3.6 3.6 1.0 3.6 3.9 3.6 3.6 3.6 10^{0} 5.8 5.8 5.6 1.0 5.7 5.5

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

Number of Complete Shuffles (10 ⁷ move operations) 0 1 2 3 4 5 6 7 8 9												
	0	1	2	3	41	5	6	7	8	9		
10^{7}		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
$\frac{9}{5} \frac{10^6}{10^5}$	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2		
50° 10°	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2		
$\frac{10^4}{10^4}$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2		
ψ 10 ³	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4		
\$\frac{10^2}{10^1}\$ \$\frac{10^0}{10^0}\$	1.0		4.0					4.3		4.2		
$\frac{3}{6}$ 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6		
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6		

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

	Number of Complete Shuffles (10 ⁷ move operations)												
	0	1	2	3	4	5	6	7	8	9			
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
$\frac{9}{N} \frac{10^6}{10^5}$	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
50° 10°	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
E 10 ⁴	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
कु 10 ³	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
$\frac{10^2}{10^0}$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
$\frac{3}{6}$ 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

We'll use *shuffle factor* **sf** = 5 from now on.

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

Number of Complete Shuffles (10⁷ move operations) 10^{6} 15.8 15.6 15.6 16.2 16.0 15.8 10^{5} 7.7 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2 1.0 10^{4} Subsystem 8.1 8.2 8.3 8.2 1.0 8.0 8.1 8.1 7.9 8.2 10^3 5.7 1.0 5.3 5.3 5.4 5.4 5.4 5.4 5.4 5.4 10^2 4.2 4.2 4.2 3.8 1.0 4.0 4.1 4.2 4.1 4.3 10^1 1.0 3.6 3.4 3.6 3.6 3.6 3.6 3.6 3.9 3.6 10^{0} 4.7 5.6 1.0 5.7 5.8 5.7 5.8 5.8 5.7 5.5

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

	Number of Complete Shuffles (10 ⁷ move operations)											
	0	1	2	3	4	5	6	7	8	9		
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
စု 10^6	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2		
5 10^5	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2		
$\frac{10^4}{5}$ $\frac{10^3}{10^3}$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2		
$\frac{5}{8}$ 10^3	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4		
$ \hat{S} 10^2 $	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2		
skgnS 10 ²	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6		
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6		

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

		Num	Number of Complete Shuffles (10 ⁷ move operations)											
		0	1	2	3	4	5	6	7	8	9			
	10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
9	10^{6}	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
Sizi	10^{5}	1.0	7.7_	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
Щ	10^{4}	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
Ste	10^4 10^3	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
Sy	10^2	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
Suk	10^2 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
0)	10^0	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Diffusion

		Numl	Number of Complete Shuffles (10 ⁷ move operations)											
		0	1	2	3	4	5	6	7	8	9			
•	10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
<u> </u>	10^{6}	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
	10^{5}	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
E	10^4 10^3	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
ste	10^{3}	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
Sy	10^2	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
Suk	10^{2} 10^{1}	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
	10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

	Num	Number of Complete Shuffles (10 ⁷ move operations)											
	0	1	2	3	4	5	6	7	8	9			
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
$\frac{9}{5} \frac{10^6}{10^5}$	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2			
	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2			
£ 10 ⁴	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2			
Subsyster 10 ³ 10 ² 10 ¹ 10 ¹	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4			
$\lesssim 10^2$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2			
$\frac{3}{6}$ 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6			
10^{0}	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6			

Benchmark II: Locality

I = 10

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

Number of Complete Shuffles (10⁷ move operations) 3 6 8 10^{7} 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10^{6} 15.8 15.6 16.2 16.0 15.6 15.8 15.7 1.0 7.7 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2 10^{4} 8.2 8.0 <u>8.1</u> 8.1 8.1 7.9 8.2 8.2 <u>8.3</u> 1.0 5.4 5.4 5.4 5.3 5.4 5.3 5.4 5.7 10^2 4.3 3.8 4.1 4.2 4.2 1.0 4.0 1.0 3.4 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.6 10^{0} 4.7 5.6 1.0 5.7 5.8 5.7 5.8 5.8 5.7 5.5

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

		Num	ber of	^f Com	plete	Shuff	fles (1	$10^7 \mathrm{m}$	o evc	perati	ions)
		0	1	2	3	4	5	6	7	8	9
10		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Size 10)6	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2
් ග් 10) ⁵	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2
E 10	$)^4$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2
ste 10)3	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4
ഗ 1 ($)^2$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2
qns 10	$)^{1}$	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6
10	$)^0$	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6

Benchmark II: Locality

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

	Num	ber of				•				,
	0	1	2	3	4	5	6	7	8	9
10^{7}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$\frac{9}{5} \frac{10^6}{10^5}$	1.0	11.4	15.6	16.2	16.0	15.8	15.6	15.8	15.7	16.2
5 10^5	1.0	7.7	7.8	7.8	7.8	8.0	8.0	8.0	8.0	8.2
$\Xi 10^4$	1.0	8.0	8.1	8.1	8.1	7.9	8.2	8.2	8.3	8.2
कु 10 ³	1.0	5.4	5.4	5.4	5.4	5.7	5.3	5.4	5.3	5.4
$\lesssim 10^2$	1.0	3.8	4.0	4.1	4.2	4.1	4.2	4.3	4.2	4.2
$\frac{3}{5}$ 10^1	1.0	3.4	3.6	3.6	3.6	3.6	3.6	3.9	3.6	3.6
$ \begin{array}{c} $	1.0	4.7	5.7	5.8	5.7	5.8	5.8	5.7	5.5	5.6

Benchmark II: LOCALITY

$$I = 10$$

Physical System Size $|G| = K \cdot |S| = 10^7$

Temporal Locality

Defusion

Number of Complete Shuffles (10 ⁷ move	operat	ions)
0 1 2 3 4 5 6	7 8	9
10^7 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0	1.0
$\frac{0}{100} \frac{10^6}{100} \frac{1.0}{100} \frac{11.4}{15.6} \frac{15.6}{16.2} \frac{16.0}{16.0} \frac{15.8}{15.8} \frac{15.6}{15.8} \frac{15.8}{100} $	3 15.7	16.2
5 10^5 1.0 7.7 7.8 7.8 7.8 8.0 8.0 8.0	0.8	8.2
	2 8.3	8.2
	4 5.3	5.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 4.2	4.2
$\frac{3}{10}$ 1.0 3.4 3.6 3.6 3.6 3.6 3.6 3.9	3.6	3.6
10 ⁰ 1.0 4.7 5.7 5.8 5.7 5.8 5.3	7 5.5	5.6

Subsystem size Is just one link!

Benchmark II: LOCALITY

Benchmark II: Locality

Questions and/or Discussion?

Benchmark II: LOCALITY

Which <u>local</u> Allocation Strategy should we use?

Benchmark II: LOCALITY

Which local Allocation Strategy should we use? AS7, AS9, AS11, or AS13

Benchmark II: LOCALITY

Contrasting access times across (sub)system size

Overall System Size = 2²¹

These are all exponents of 2.

$$\log_2 | G | = 21$$

Subsystem Size	Number of Subsystems
0	21
1	20
2	19
° 3	18
4	17
5	16
6	15
:	:

Benchmark II: Locality

Contrasting access times across access rates

Overall Access Size = 2³²

These are all exponents of 2.

 $\log_2 \mathbf{N} = 32$

Number of Iterations (I)	Number of Repitions (R)
. 8	24
7	25
6	26
5	27
4	28
3	29
2	30
1	31
0	32

Benchmark II: LOCALITY

Benchmark II: LOCALITY

System Size = 2^{21}

Without Local Allocators

sf = 5

Physical Locality

	₂ -0	2 -1	2 -2	2 -3	2 -4	₂ -5	₂ -6	2 -7	2 -8
21	1.00	1.06	1.01	1.09	1.04	0.96	0.98	0.97	0.99
20	11.30	11.50	11.30	11.40	11.20	11.30	11.30	11.00	11.60
19	14.80	15.00	14.70	14.80	14.70	14.80	14.30	13.10	13.80
18	18.00	18.00	18.00	17.90	17.70	18.40	16.70	16.60	15.40
17	6.04	6.17	6.30	6.51	8.64	9.95	9.17	11.50	15.00
16	5.07	5.07	5.13	5.19	7.16	7.24	7.52	10.80	14.90
15	6.08	6.08	6.15	6.05	5.37	7.30	7.72	10.40	15.20
14	6.77	6.81	6.78	6.67	6.25	7.23	7.73	10.90	15.20
13	7.55	7.59	7.46	7.36	6.92	7.51	7.99	10.80	14.90
12	4.82	4.79	7.70	7.60	7.08	7.26	7.55	11.40	14.90
11	5.05	4.99	3.21	6.66	6.23	5.85	6.27	9.83	14.90
10	4.65	4.87	4.93	2.92	5.71	5.99	6.15	10.70	15.00
9	2.01	2.23	2.38	4.15	3.03	6.14	6.18	9.67	14.80
8	2.32	2.40	2.60	2.08	3.63	4.86	6.01	9.25	14.60
7	1.68	1.75	1.92	2.36	2.30	3.51	6.12	10.50	14.20
6	1.22	1.31	1.44	2.06	2.76	4.18	6.16	9.93	13.20
5	1.15	1.24	1.39	1.75	2.40	3.45	6.35	9.50	10.90
4	1.13	1.23	1.37	1.72	2.53	4.05	6.60	11.00	9.77
3	1.10	1.19	1.37	1.72	2.55	3.66	6.42	11.60	10.50
2	1.04	1.14	1.36	1.79	2.43	4.61	8.51	11.70	8.91
1	0.93	1.06	1.26	1.66	2.55	4.86	11.60	12.90	10.00
0	0.78	0.90	1.10	1.61	2.88	7.75	16.20	17.20	4.06

Degradation Ratio (DR)

Max *Temporal Locality* = 256

Temporal Locality

Benchmark II: LOCALITY

System Size = 2^{21}

Without Local Allocators

sf = 5

Physical Locality

	₂ -0	2 -1	2 -2	2 -3	2 -4	2 -5	₂ -6	₂ -7	2 -8
21	1.00	1.06	1.01	1.09	1.04	0.96	0.98	0.97	0.99
20	11.30	11.50	11.30	11.40	11.20	11.30	11.30	11.00	11.60
19	14.80	15.00	14.70	14.80	14.70	14.80	14.30	13.10	13.80
18	18.00	18.00	18.00	17.90	17.70	18.40	16.70	16.60	15.40
17	6.04	6.17	6.30	6.51	8.64	9.95	9.17	11.50	15.00
16	5.07	5.07	5.13	5.19	7.16	7.24	7.52	10.80	14.90
15	6.08	6.08	6.15	6.05	5.37	7.30	7.72	10.40	15.20
14	6.77	6.81	6.78	6.67	6.25	7.23	7.73	10.90	15.20
13	7.55	7.59	7.46	7.36	6.92	7.51	7.99	10.80	14.90
12	4.82	4.79	7.70	7.60	7.08	7.26	7.55	11.40	14.90
11	5.05	4.99	3.21	6.66	6.23	5.85	6.27	9.83	14.90
10	4.65	4.87	4.93	2.92	5.71	5.99	6.15	10.70	15.00
9	2.01	2.23	2.38	4.15	3.03	6.14	6.18	9.67	14.80
8	2.32	2.40	2.60	2.08	3.63	4.86	6.01	9.25	14.60
7	1.68	1.75	1.92	2.36	2.30	3.51	6.12	10.50	14.20
6	1.22	1.31	1.44	2.06	2.76	4.18	6.16	9.93	13.20
5	1.15	1.24	1.39	1.75	2.40	3.45	6.35	9.50	10.90
4	1.13	1.23	1.37	1.72	2.53	4.05	6.60	11.00	9.77
3	1.10	1.19	1.37	1.72	2.55	3.66	6.42	11.60	10.50
2	1.04	1.14	1.36	1.79	2.43	4.61	8.51	11.70	8.91
1	0.93	1.06	1.26	1.66	2.55	4.86	ma	sk	10.00
0	0.78	0.90	1.10	1.61	2.88	7.75			4.06

Degradation Ratio (DR)

Max *Temporal Locality* = 256

Temporal Locality

Benchmark II: LOCALITY

Benchmark II: Locality

System Size = 2^{25}

Without Local Allocators

sf = 5

Physical Locality

0.50 12.71 12.81 13.02 13.08 13.02 13.01 12.95 13.11 14.20 14.03 14.10 14.07 14.14 14.05 14.07 14.13 14.14 16.70 16.71 16.50 16.55 16.49 16.62 16.55 16.56 16.53 17.80 17.90 17.87 17.72 17.85 17.83 17.83 17.76 17.89 18.60 18.60 18.52 18.54 18.45 18.64 18.43 18.62 18.66 20.10 20.16 19.96 19.85 19.80 19.64 19.25 19.12 18.93 18 23.40 23.54 23.51 23.20 23.13 22.72 21.85 20.45 19.34 17 9.81 10.00 10.06 10.29 10.69 11.53 13.01 15.53 19.30 16 6.87 7.21 7.70 8.64 10.41 13.75 19.33 15 6.80 6.88 7.66 8.63 10.38 13.66 19.32 14 6.82 6.86 7.66 8.56 10.39 13.66 19.18 13 7.03 7.08 7.85 8.79 10.56 13.77 19.15 12 7.62 8.52 10.21 13.62 19.30 11 4.86 4.92 5.07 5.35 5.88 6.92 9.01 13.00 19.16 10 3.36 3.49 3.71 4.07 4.69 5.91 8.25 12.32 18.43 3.29 3.51 3.86 4.54 5.87 8.25 12.37 18.28 2.89 8.12 12.43 18.16 3.13 3.54 4.33 5.66 2.52 2.66 2.96 3.45 4.25 5.67 8.16 12.65 18.10 1.94 2.14 2.49 3.03 3.91 5.45 8.02 12.72 17.64 1.49 2.33 3.24 1.78 4.79 7.54 12.41 15.84 1.28 1.51 1.96 2.83 4.39 7.39 13.22 16.25 2.73 4.30 7.85 14.74 17.32 1.89 2.71 4.70 9.98 18.32 20.54 1.90 5.68 13.74 22.91 24.73 1.78 2.91 8.30 18.92 30.99 0.97 1.88

Degradation Ratio (DR)

Max Temporal Locality = 256

Temporal Locality

Benchmark II: LOCALITY

System Size = 2^{25}

Without Local Allocators

sf = 5

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ - 5	₂ -6	₂ -7	2 -8
25	0.97	1.72	0.98	1.02	1.04	1.00	1.00	1.00	1.01
24	0.50	12.71	12.81	13.02	13.08	13.02	13.01	12.95	13.11
23	14.20	14.03	14.10	14.07	14.14	14.05	14.07	14.13	14.14
22	16.70	16.71	16.50	16.55	16.49	16.62	16.55	16.56	16.53
21	17.80	17.90	17.87	17.72	17.85	17.83	17.83	17.76	17.89
20	18.60	18.60	18.52	18.54	18.45	18.64	18.43	18.62	18.66
19	20.10	20.16	19.96	19.85	19.80	19.64	19.25	19.12	18.93
18	23.40	23.54	23.51	23.20	23.13	22.72	21.85	20.45	19.34
17	9.81	10.00	10.06	10.29	10.69	11.53	13.01	15.53	19.30
16	6.81	6.87	6.98	7.21	7.70	8.64	10.41	13.75	19.33
15	6.80	6.88	7.00	7.17	7.66	8.63	10.38	13.66	19.32
14	6.82	6.86	7.00	7.20	7.66	8.56	10.39	13.66	19.18
13	7.03	7.08	7.19	7.39	7.85	8.79	10.56	13.77	19.15
12	6.72	6.75	6.90	7.12	7.62	8.52	10.21	13.62	19.30
11	4.86	4.92	5.07	5.35	5.88	6.92	9.01	13.00	19.16
10	3.36	3.49	3.71	4.07	4.69	5.91	8.25	12.32	18.43
9	3.15	3.29	3.51	3.86	4.54	5.87	8.25	12.37	18.28
8	2.76	2.89	3.13	3.54	4.33	5.66	8.12	12.43	18.16
7	2.52	2.66	2.96	3.45	4.25	5.67	8.16	12.65	18.10
6	1.94	2.14	2.49	3.03	3.91	5.45	8.02	12.72	17.64
5	1.34	1.49	1.78	2.33	3.24	4.79	7.54	12.41	15.84
4	1.17	1.28	1.51	1.96	2.83	4.39	7.39	13.22	16.25
3	1.12	1.24	1.45	1.89	2.73	4.30	7.85	14.74	17.32
2	1.06	1.19	1.43	1.90	2.71	4.70	9.98	18.32	20.54
1	0.97	1.11	1.36	1.78	2.91	5.68	ma	sk	24.73
0	0.82	0.97	1.22	1.88	3.50	8.30			5.68

Benchmark II: LOCALITY

Benchmark II: LOCALITY

System Size = 2^{21}

With Local Allocators

sf = 5

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	2 -5	₂ -6	₂ -7	2 -8
21	1.06	1.02	0.98	1.02	1.02	1.04	1.00	1.11	1.01
20	1.53	1.52	1.62	1.63	1.55	1.63	1.58	1.54	1.53
19	1.65	1.75	1.65	1.65	1.65	1.66	1.66	1.68	1.69
18	1.51	1.49	1.46	1.42	1.43	1.47	1.52	1.66	1.75
17	1.48	1.48	1.48	1.51	1.48	1.54	1.59	1.65	1.81
16	1.48	1.52	1.49	1.50	1.55	1.56	1.56	1.67	1.82
15	1.48	1.48	1.48	1.49	1.51	1.55	1.60	1.69	1.88
14	1.47	1.48	1.48	1.49	1.50	1.54	1.61	1.72	1.90
13	1.48	1.49	1.50	1.50	1.53	1.58	1.66	1.79	1.99
12	1.54	1.51	1.54	1.55	1.57	1.65	1.72	1.91	2.11
11	1.48	1.53	1.53	1.55	1.60	1.65	1.82	2.00	2.42
10	1.47	1.49	1.51	1.54	1.57	1.70	1.88	2.11	2.49
9	1.02	1.04	1.06	1.13	1.22	1.39	1.69	2.14	2.67
8	1.03	1.05	1.08	1.13	1.22	1.42	1.73	2.18	2.62
7	1.03	1.05	1.09	1.14	1.24	1.43	1.75	2.22	2.59
6	1.03	1.06	1.09	1.12	1.24	1.44	1.72	2.08	2.23
5	1.05	1.03	1.08	1.13	1.22	1.38	1.61	1.84	1.94
4	1.02	1.04	1.06	1.11	1.21	1.35	1.53	1.63	1.43
3	1.01	1.01	1.03	1.07	1.15	1.21	1.29	1.25	1.17
2	0.95	0.95	0.97	1.01	1.00	1.04	1.04	0.99	1.10
1	0.85	0.86	0.89	0.90	0.93	0.97	0.89	1.10	1.04
0	0.68	0.71	0.71	0.75	0.83	0.91	0.97	0.77	0.74

Benchmark II: LOCALITY

Benchmark II: LOCALITY

System Size = 2^{25}

With Local Allocators

sf = 5

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ -5	₂ -6	₂ -7	₂ -8
25	1.00	0.97	1.01	1.00	1.00	1.01	1.04	0.99	1.01
24	1.00	1.54	1.57	1.55	1.55	1.53	1.55	1.56	1.53
23	1.71	1.67	1.70	1.69	1.68	1.68	1.68	1.69	1.67
22	1.75	1.75	1.76	1.76	1.75	1.72	1.76	1.76	1.83
21	1.79	1.78	1.78	1.80	1.79	1.74	1.80	1.80	1.80
20	1.80	1.80	1.80	1.81	1.81	1.82	1.81	1.81	1.82
19	1.79	1.78	1.79	1.80	1.79	1.80	1.80	1.82	1.82
18	1.47	1.47	1.47	1.49	1.50	1.53	1.58	1.67	1.83
17	1.49	1.49	1.49	1.50	1.51	1.54	1.59	1.67	1.84
16	1.50	1.50	1.53	1.51	1.53	1.55	1.61	1.70	1.88
15	1.51	1.51	1.51	1.52	1.53	1.56	1.63	1.74	1.92
14	1.51	1.51	1.52	1.52	1.54	1.58	1.65	1.78	1.97
13	1.51	1.52	1.52	1.53	1.55	1.60	1.67	1.82	2.05
12	1.53	1.54	1.54	1.56	1.59	1.64	1.74	1.92	2.20
11	1.54	1.54	1.55	1.57	1.60	1.67	1.84	2.08	2.43
10	1.54	1.55	1.56	1.58	1.61	1.74	1.93	2.25	2.63
9	1.07	1.08	1.11	1.16	1.26	1.44	1.87	2.22	2.76
8	1.06	1.10	1.12	1.18	1.27	1.47	1.85	2.29	2.80
7	1.07	1.06	1.12	1.17	1.28	1.48	1.82	2.32	2.67
6	1.07	1.08	1.10	1.16	1.26	1.46	1.75	2.13	2.31
5	1.05	1.06	1.09	1.14	1.23	1.40	1.62	1.86	1.93
4	1.04	1.05	1.07	1.12	1.22	1.38	1.54	1.65	1.44
3	1.02	1.03	1.05	1.08	1.15	1.23	1.30	1.29	1.20
2	0.96	0.97	0.99	1.02	1.02	1.04	1.05	1.00	1.12
1	0.85	0.86	0.89	0.90	0.94	0.99	0.90	1.08	1.06
0	0.69	0.70	0.72	0.75	0.84	0.92	0.98	0.79	0.74

Benchmark II: LOCALITY

System Size = 2²¹ Without/With Local Allocators $\mathbf{sf} = 5$ Diffusion 20.0 **Physical** Locality 15.0 10.0 5.0 Max Temporal Locality = 256 Degradation Ratio (DR) **Temporal** Locality 309

Benchmark II: Locality

System Size = 2²¹ Without/With Local Allocators

sf = 5

Diffusion

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ -5	₂ -6	₂ -7	₂ -8
21	0.95	1.03	1.03	1.07	1.02	0.92	0.97	0.87	0.98
20	7.40	7.56	6.97	6.96	7.27	6.94	7.15	7.10	7.56
19	9.02	8.56	8.95	8.99	8.92	8.92	8.61	7.82	8.17
18	11.90	12.10	12.30	12.60	12.40	12.50	10.90	10.00	8.80
17	4.07	4.16	4.26	4.31	5.85	6.48	5.78	6.97	8.27
16	3.43	3.34	3.45	3.45	4.61	4.63	4.82	6.49	8.19
15	4.11	4.11	4.16	4.06	3.56	4.71	4.84	6.14	8.09
14	4.59	4.61	4.59	4.47	4.15	4.69	4.81	6.34	8.02
13	5.11	5.08	4.96	4.90	4.52	4.76	4.82	6.03	7.47
12	3.12	3.16	5.01	4.89	4.51	4.41	4.40	5.96	7.08
11	3.41	3.27	2.09	4.31	3.90	3.54	3.45	4.91	6.15
10	3.16	3.26	3.27	1.89	3.63	3.53	3.28	5.08	6.04
9	1.98	2.15	2.24	3.68	2.48	4.43	3.66	4.51	5.56
8	2.24	2.29	2.42	1.83	2.97	3.43	3.48	4.24	5.59
7	1.64	1.67	1.77	2.07	1.85	2.45	3.49	4.70	5.49
6	1.19	1.24	1.32	1.83	2.23	2.91	3.59	4.78	5.91
5	1.10	1.20	1.29	1.55	1.97	2.50	3.96	5.17	5.61
4	1.11	1.18	1.30	1.55	2.09	3.00	4.31	6.73	6.82
3	1.09	1.18	1.33	1.60	2.23	3.02	4.99	9.30	9.03
2	1.10	1.21	1.40	1.76	2.42	4.43	8.19	11.80	8.09
1	1.09	1.24	1.41	1.85	2.73	5.00	13.00	11.70	9.70
0	1.14	1.26	1.56	2.14	3.47	8.54	16.70	22.40	5.46

Degradation Ratio (DR)

Temporal Locality

Benchmark II: LOCALITY

System Size = 2²¹ Without/With Local Allocators

sf = 5

Diffusion

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ -5	₂ -6	₂ -7	2 -8
21	0.95	1.03	1.03	1.07	1.02	0.92	0.97	0.87	0.98
20	7.40	7.56	6.97	6.96	7.27	6.94	7.15	7.10	7.56
19	9.02	8.56	8.95	8.99	8.92	8.92	8.61	7.82	8.17
18	11.90	12.10	12.30	12.60	12.40	12.50	10.90	10.00	8.80
17	4.07	4.16	4.26	4.31	5.85	6.48	5.78	6.97	8.27
16	3.43	3.34	3.45	3.45	4.61	4.63	4.82	6.49	8.19
15	4.11	4.11	4.16	4.06	3.56	4.71	4.84	6.14	8.09
14	4.59	4.61	4.59	4.47	4.15	4.69	4.81	6.34	8.02
13	5.11	5.08	4.96	4.90	4.52	4.76	4.82	6.03	7.47
12	3.12	3.16	5.01	4.89	4.51	4.41	4.40	5.96	7.08
11	3.41	3.27	2.09	4.31	3.90	3.54	3.45	4.91	6.15
10	3.16	3.26	3.27	1.89	3.63	3.53	3.28	5.08	6.04
9	1.98	2.15	2.24	3.68	2.48	4.43	3.66	4.51	5.56
8	2.24	2.29	2.42	1.83	2.97	3.43	3.48	4.24	5.59
7	1.64	1.67	1.77	2.07	1.85	2.45	3.49	4.70	5.49
6	1.19	1.24	1.32	1.83	2.23	2.91	3.59	4.78	5.91
5	1.10	1.20	1.29	1.55	1.97	2.50	3.96	5.17	5.61
4	1.11	1.18	1.30	1.55	2.09	3.00	4.31	6.73	6.82
3	1.09	1.18	1.33	1.60	2.23	3.02	4.99	9.30	9.03
2	1.10	1.21	1.40	1.76	2.42	4.43	8.19	11.80	8.09
1	1.09	1.24	1.41	1.85	2.73	5.00	ma	sk	9.70
0	1.14	1.26	1.56	2.14	3.47	8.54			5.46

Degradation Ratio (DR)

Temporal Locality

Benchmark II: LOCALITY

System Size = 2²⁵ **Without**/With Local Allocators $\mathbf{sf} = 5$ Diffusion 30.0 **Physical** Locality 25.0 20.0 15.0 10.0 5.0 Max Temporal Locality = 256 Degradation Ratio (DR) **Temporal** Locality

312

Benchmark II: LOCALITY

System Size = 2²⁵ Without/With Local Allocators

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ - 5	₂ -6	₂ -7	₂ -8
25	0.97	1.77	0.97	1.02	1.04	0.99	0.96	1.01	1.00
24	0.50	8.26	8.17	8.38	8.43	8.52	8.40	8.30	8.57
23	8.30	8.41	8.30	8.35	8.40	8.36	8.36	8.37	8.44
22	9.53	9.57	9.40	9.43	9.41	9.65	9.42	9.41	9.04
21	9.99	10.00	10.00	9.87	9.98	10.20	9.90	9.88	9.93
20	10.40	10.30	10.30	10.20	10.20	10.20	10.20	10.30	10.30
19	11.20	11.30	11.20	11.00	11.00	10.90	10.70	10.50	10.40
18	15.90	16.00	16.00	15.60	15.40	14.80	13.90	12.30	10.60
17	6.58	6.70	6.73	6.87	7.06	7.50	8.19	9.30	10.50
16	4.53	4.57	4.56	4.76	5.04	5.56	6.47	8.11	10.30
15	4.51	4.56	4.62	4.73	4.99	5.52	6.38	7.86	10.10
14	4.51	4.54	4.62	4.72	4.98	5.43	6.28	7.70	9.75
13	4.64	4.67	4.73	4.82	5.07	5.49	6.31	7.56	9.34
12	4.38	4.38	4.48	4.58	4.80	5.18	5.86	7.10	8.78
11	3.16	3.19	3.27		3.67	4.15	4.90	6.25	7.88
10	2.18	2.25	2.37	2.58	2.91	3.39		5.48	7.00
9	2.95	3.04	3.17	3.32	3.59	4.08	4.42	5.57	6.63
8	2.60	2.62	2.80	3.00	3.40	3.84	4.40	5.42	6.50
7	2.36	2.51	2.65	2.95	3.31	3.83	4.49	5.45	
6	1.82	1.99	2.26	2.62	3.10	3.74	4.59		7.62
5	1.27	1.40	1.64	2.05	2.64	3.42	4.65	6.67	8.21
4	1.13	1.22	1.42	1.76	2.32	3.18	4.79	8.02	11.30
3	1.09	1.21	1.39	1.75	2.37	3.49		11.40	14.50
2	1.11	1.22	1.45	1.86	2.66	4.51	9.49	18.30	18.40
1	1.14	1.29	1.54	1.98	3.10			21.20	23.40
0	1.19	1.38	1.70	2.50	4.18	8.99	19.30	39.20	7.66

Benchmark II: LOCALITY

System Size = 2²⁵ Without/With Local Allocators

sf = 5

Diffusion

Physical Locality

	₂ -0	₂ -1	2 -2	₂ -3	2 -4	₂ - 5	₂ -6	₂ -7	2 -8
25	0.97	1.77	0.97	1.02	1.04	0.99	0.96	1.01	1.00
24	0.50	8.26	8.17	8.38	8.43	8.52	8.40	8.30	8.57
23	8.30	8.41	8.30	8.35	8.40	8.36	8.36	8.37	8.44
22	9.53	9.57	9.40	9.43	9.41	9.65	9.42	9.41	9.04
21	9.99	10.00	10.00	9.87	9.98	10.20	9.90	9.88	9.93
20	10.40	10.30	10.30	10.20	10.20	10.20	10.20	10.30	10.30
19	11.20	11.30	11.20	11.00	11.00	10.90	10.70	10.50	10.40
18	15.90	16.00	16.00	15.60	15.40	14.80	13.90	12.30	10.60
17	6.58	6.70	6.73	6.87	7.06	7.50	8.19	9.30	10.50
16	4.53	4.57	4.56	4.76	5.04	5.56	6.47	8.11	10.30
15	4.51	4.56	4.62	4.73	4.99	5.52	6.38	7.86	10.10
14	4.51	4.54	4.62	4.72	4.98	5.43	6.28	7.70	9.75
13	4.64	4.67	4.73	4.82	5.07	5.49	6.31	7.56	9.34
12	4.38	4.38	4.48	4.58	4.80	5.18	5.86	7.10	8.78
11	3.16	3.19	3.27	3.42	3.67	4.15	4.90	6.25	7.88
10	2.18	2.25	2.37	2.58	2.91	3.39	4.28	5.48	7.00
9	2.95	3.04	3.17	3.32	3.59	4.08	4.42	5.57	6.63
8	2.60	2.62	2.80	3.00	3.40	3.84	4.40	5.42	6.50
7	2.36	2.51	2.65	2.95	3.31	3.83	4.49	5.45	6.79
6	1.82	1.99	2.26	2.62	3.10	3.74	4.59	5.97	7.62
5	1.27	1.40	1.64	2.05	2.64	3.42	4.65	6.67	8.21
4	1.13	1.22	1.42	1.76	2.32	3.18	4.79	8.02	11.30
3	1.09	1.21	1.39	1.75	2.37	3.49	6.03	11.40	14.50
2	1.11	1.22	1.45	1.86	2.66	4.51	9.49	18.30	18.40
1	1.14	1.29	1.54	1.98	3.10	5.76	ma	sk	23.40
0	1.19	1.38	1.70	2.50	4.18	8.99		JK	7.66

Benchmark II: LOCALITY

Questions and/or Discussion?

Benchmark III: UTILIZATION

- I. Short Running: Build Up, Use, Tear Down
 - > Allocation DENSITY and VARIATION in Allocated Sizes
- II. Long Running: Time-Multiplexed Subsystems
 - > Access LOCALITY both Physical and Temporal
- III. Short Running: Varying Memory Reusability
 - ➤ Memory **U**TILIZATION
- IV. Multithreaded: Varying Numbers of Threads
 - > Allocator CONTENTION

Benchmark III: UTILIZATION

Considerations:

- Investigate memory UTILIZATION.
 - Focus on allocation/deallocation costs themselves.
- Access Locality should <u>NOT</u> dominate results.
 - Write to just first byte of each newly allocated element.
- Identify sub-dimensions of U = M/T
 - **T** is the total memory allocated.
 - M is the maximum concurrently active memory.
 - **S** is the (atomic) memory "chunk" size.

Benchmark III: UTILIZATION

Plan:

- Allocate chunks of memory of size S until memory of size M is concurrently allocated.
- Deallocate <u>Least Recently Used chunk and reallocate</u> it until the total memory of size T has been allocated.
- Deallocate the remaining allocated memory (of size M), one chunk (of size S) at a time.
- The results of this experiment are absolute runtimes.
 - The entries in each row, other than AS1, are relative to AS1.

Benchmark III: UTILIZATION

Two more Considerations:

- We chose to omit ASs that "winking-out" memory.
 - I.e., we omitted **AS4**, **AS6**, **AS8**, **AS10**, **AS12**, and **AS14**.
 - Virtually all of the memory deallocated individually.
 - (No mathematical possibility of any noticeable effect.)
- We anticipated trouble with <u>any</u> use of monotonic.
 - Total memory allocated (T) is large (2³⁵ bytes).
 - Artificial limit of 2¹² for pooled memory chunks (AS6-AS14).
 - Memory larger than that passes through to the backing allocator.

These are all exponents of 2.

3. Analyzing the Benchmark Data

Benchmark III: UTILIZATION

Total Allocated Memory $(T) = 2^{30}$

	Inputs		Glo	bal Mond		otonic Mul		pool	Multi <mono></mono>	
				Virtual		Virtual		Virtual		Virtual
Т	М	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
30	15	10	0.063s	103	440	435	46	43	46	47
30	16	10	0.069s	102	401	395	42	42	41	45
30	17	10	0.064s	110	435	428	46	44	47	46
30	18	10	0.063s	102	440	434	46	39	54	47
30	19	10	0.063s	104	439	434	51	46	47	47
30	20	10	0.064s	110	433	430	46	42	46	52
30	20	11	0.035s	125	758	747	54	37	49	37
30	20	12	0.022s	101	1216	1206	51	31	52	32
30	20	13	0.013s	60	1985	1961	110	67	1996	1979
30	20	14	0.008s	77	3356	3304	110	58	3276	3314
30	20	15	0.004s	74	5985	6288	60	111	6016	6057

Maximum Active Memory (M)

Benchmark III: UTILIZATION

Total Allocated Memory (T) = 2^{31}

	Inputs		Glo	bal	Mono	tonic	Multi	pool	Multi<	Mono>
				Virtual		Virtual		Virtual		Virtual
Т	М	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
31	15	10	0.127s	104	428	434	39	38	39	41
31	16	10	0.123s	102	442	446	42	42	41	40
31	17	10	0.124s	102	439	442	45	45	42	45
31	18	10	0.123s	102	442	447	47	46	41	42
31	19	10	0.123s	107	441	446	42	41	46	43
31	20	10	0.127s	99	431	434	44	42	41	41
31	20	11	0.064s	102	815	824	48	40	52	48
31	20	12	0.038s	93	1369	1387	57	51	47	54
31	20	13	0.021s	102	2368	2392	108	80	2376	2401
31	20	14	0.013s	61	3787	3833	109	67	3797	3844
31	20	15	0.007s	54	6621	6706	112	59	6651	6708

Maximum Active Memory (M)

Benchmark III: UTILIZATION

Total Allocated Memory (T) = 2^{32}

	Inputs)	Glo	bal	Mond	tonic	Multi	ipool	Multi<	Mono>
				Virtual		Virtual		Virtual		Virtual
Т	М	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
32	15	10	0.248s	103	FAIL	FAIL	38	39	38	41
32	16	10	0.248s	102	FAIL	FAIL	38	41	38	39
32	17	10	0.246s	102	FAIL	FAIL	40	39	39	39
32	18	10	0.246s	102	FAIL	FAIL	40	40	39	40
32	19	10	0.246s	102	FAIL	FAIL	40	42	40	40
32	20	10	0.246s	102	FAIL	FAIL	40	41	41	41
32	20	11	0.124s	102	FAIL	FAIL	46	44	41	47
32	20	12	0.062s	102	FAIL	FAIL	44	45	46	56
32	20	13	0.034s	108	FAIL	FAIL	127	110	FAIL	FAIL
32	20	14	0.022s	72	FAIL	FAIL	105	78	FAIL	FAIL
32	20	15	0.015s	87	FAIL	FAIL	99	60	FAIL	FAIL

Maximum Active Memory (M)

Benchmark III: UTILIZATION

Total Allocated Memory (T) = 2^{33}

	Inputs	3	Glo	bal	Mono	tonic	Multi	pool	Multi<	Mono>
				Virtual		Virtual		Virtual		Virtual
Т	M	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
33	15	10	0.495s	102	FAIL	FAIL	41	39	39	39
33	16	10	0.493s	102	FAIL	FAIL	38	39	38	41
33	17	10	0.492s	102	FAIL	FAIL	38	41	38	40
33	18	10	0.492s	102	FAIL	FAIL	40	41	39	40
33	19	10	0.492s	102	FAIL	FAIL	40	41	40	41
33	20	10	0.492s	102	FAIL	FAIL	40	40	40	41
33	20	11	0.248s	102	FAIL	FAIL	42	43	41	42
33	20	12	0.122s	101	FAIL	FAIL	43	47	45	47
33	20	13	0.062s	102	FAIL	FAIL	112	112	FAIL	FAIL
33	20	14	0.040s	89	FAIL	FAIL	96	88	FAIL	FAIL
33	20	15	0.022s	102	FAIL	FAIL	107	80	FAIL	FAIL

Maximum Active Memory (M)

Benchmark III: UTILIZATION

Total Allocated Memory (T) = 2^{34}

	Inputs	3	Glo	bal	Mono	tonic	Multi	pool	Multi<	Mono>
				Virtual		Virtual		Virtual		Virtual
Т	M	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
34	15	10	0.990s	103	FAIL	FAIL	41	39	41	39
34	16	10	0.986s	102	FAIL	FAIL	38	39	38	40
34	17	10	0.985s	102	FAIL	FAIL	38	39	39	40
34	18	10	0.984s	102	FAIL	FAIL	40	40	39	40
34	19	10	0.983s	102	FAIL	FAIL	40	41	40	40
34	20	10	0.984s	102	FAIL	FAIL	40	41	40	41
34	20	11	0.494s	102	FAIL	FAIL	42	42	41	42
34	20	12	0.241s	102	FAIL	FAIL	43	42	47	44
34	20	13	0.120s	107	FAIL	FAIL	114	113	FAIL	FAIL
34	20	14	0.064s	102	FAIL	FAIL	117	112	FAIL	FAIL
34	20	15	0.038s	96	FAIL	FAIL	103	95	FAIL	FAIL

Maximum Active Memory (M)

Benchmark III: UTILIZATION

Total Allocated Memory (T) = 2^{35}

	Inputs		Global		Mond	otonic	Multipool		Multi <mono></mono>	
				Virtual		Virtual		Virtual		Virtual
Т	М	S	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
35	15	10	1.981s	102	FAIL	FAIL	38	41	39	39
35	16	10	1.975s	102	FAIL	FAIL	39	40	38	39
35	17	10	1.970s	102	FAIL	FAIL	39	40	39	40
35	18	10	1.967s	102	FAIL	FAIL	39	39	39	40
35	19	10	1.967s	102	FAIL	FAIL	39	41	40	41
35	20	10	1.968s	102	FAIL	FAIL	40	41	40	40
35	20	11	0.988s	102	FAIL	FAIL	41	42	41	41
35	20	12	0.481s	102	FAIL	FAIL	42	42	44	44
35	20	13	0.240s	102	FAIL	FAIL	113	113	FAIL	FAIL
35	20	14	0.125s	102	FAIL	FAIL	113	112	FAIL	FAIL
35	20	15	0.070s	94	FAIL	FAIL	103	110	FAIL	FAIL

Maximum Active Memory (M)

Size of Each Allocation (S)

Benchmark III: UTILIZATION

Questions and/or Discussion?

Benchmark IV: CONTENTION

- I. Short Running: Build Up, Use, Tear Down
 - > Allocation DENSITY and VARIATION in Allocated Sizes
- II. Long Running: Time-Multiplexed Subsystems
 - > Access LOCALITY both Physical and Temporal
- III. Short Running: Varying Memory Reusability
 - ➤ Memory **U**TILIZATION
- IV. Multithreaded: Varying Numbers of Threads
 - > Allocator CONTENTION

Benchmark IV: CONTENTION

Considerations:

- Investigate allocator Contension.
 - Focus on allocation/deallocation costs themselves.
- Access Locality should <u>NOT</u> dominate results.
 - Increment <u>just</u> first byte of each newly allocated element.
- Identify sub-dimensions of C:
 - C: Expected number of concurrent allocations per thread.
 - I: Number of alloc/access/dealloc sequences per thread.
 - **S:** Atomic memory "chunk" size (in bytes).
 - W: Number of active threads.

Benchmark IV: CONTENTION

Plan:

- For each of W threads:
 - Start the thread.
- For a total of I iterations.
 - Allocate a chunk of memory of size S bytes.
 - Increment the first byte of the allocated memory.
 - Deallocate the chunk of memory (of size S).
 - Join all threads.
- The results of this experiment are absolute runtimes.
 - The entries in each row, other than AS1, are relative to AS1.

Benchmark IV: CONTENTION

Additional Considerations:

- The allocation **D**ENSITY (**D**) is very high.
- Each thread has access to its own <u>private</u> <u>unsynchronized</u> allocator.
- No contention occurs unless the local allocator goes to its backing (e.g., global) allocator.
- Unlike other targeted benchmarks, this experiment doesn't vary **C**ONTENTION over the range from 0 to 1.
 - Contention was kept high (versus 0 for other benchmarks).
- # processors was greater than the max **W** = **8**.

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{15} Allocation Size (S) = 2^6

Inputs		Global		Monotonic		Multipool		Multi <mono></mono>		
				Virtual		Virtual		Virtual		Virtual
I	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
15	6	1	0.041s	91	40	39	26	26	24	24
15	6	2	0.037s	100	42	43	27	26	26	2 9
15	6	3	0.038s	105	41	43	15	16	17	16
15	6	4	0.032s	93	56	58	31	32	25	24
15	6	5	0.032s	91	46	52	26	23	22	24
15	6	6	0.030s	95	51	53	24	27	26	27
15	6	7	0.033s	96	47	49	23	28	21	26
15	6	8	0.029s	96	71	63	33	30	31	25

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{15} Allocation Size (S) = 2^7

	Inputs		Global		Mond	Monotonic		Multipool		Mono>
				Virtual		Virtual		Virtual		Virtual
ı	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
15	7	1	0.023s	100	114	116	44	47	47	48
15	7	2	0.043s	101	46	69	26	26	26	26
15	7	3	0.041s	103	51	68	25	25	22	25
15	7	4	0.033s	121	78	95	26	19	20	23
15	7	5	0.031s	102	81	86	20	26	26	25
15	7	6	0.032s	99	84	84	18	23	19	25
15	7	7	0.029s	114	111	110	23	27	21	31
15	7	8	0.029s	117	114	120	27	35	31	29

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{15} Allocation Size (S) = 2^8

	Inputs		Global		Mond	Monotonic		Multipool		Mono>
				Virtual		Virtual		Virtual		Virtual
ı	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
15	8	1	0.043s	101	87	89	23	23	22	23
15	8	2	0.042s	102	61	59	23	23	27	26
15	8	3	0.046s	90	85	111	23	25	24	25
15	8	4	0.040s	84	100	98	18	18	19	22
15	8	5	0.028s	136	190	200	30	30	30	38
15	8	6	0.024s	125	209	201	33	33	31	29
15	8	7	0.033s	108	162	162	24	29	26	26
15	8	8	0.031s	114	184	188	34	33	36	42

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{16} Allocation Size (S) = 2^{8}

Inputs		Global		Monotonic		Multipool		Multi <mono></mono>		
				Virtual		Virtual		Virtual		Virtual
I	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
16	8	1	0.085s	97	109	107	23	23	23	23
16	8	2	0.091s	101	104	106	22	21	22	21
16	8	3	0.093s	100	105	104	22	21	21	21
16	8	4	0.097s	94	93	121	20	20	18	17
16	8	5	0.078s	118	108	130	24	18	17	18
16	8	6	0.059s	87	138	136	21	26	22	26
16	8	7	0.063s	93	137	135	17	27	21	20
16	8	8	0.057s	109	162	164	29	28	28	26

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{17} Allocation Size (S) = 2^8

	Inputs		Global		Monotonic		Multipool		Multi <mono></mono>	
				Virtual		Virtual		Virtual		Virtual
I	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
17	8	1	0.090s	100	206	206	45	42	42	42
17	8	2	0.179s	101	107	106	22	22	22	22
17	8	3	0.179s	101	104	104	22	23	22	22
17	8	4	0.209s	109	89	70	16	15	11	11
17	8	5	0.177s	100	85	78	12	15	15	15
17	8	6	0.108s	142	147	178	27	28	25	25
17	8	7	0.140s	85	116	132	24	22	22	22
17	8	8	0.118s	100	142	150	22	21	25	26

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{18} Allocation Size (S) = 2^{8}

Inputs		Global		Monotonic		Multipool		Multi <mono></mono>		
				Virtual		Virtual		Virtual		Virtual
I	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
18	8	1	0.177s	109	177	177	45	45	45	46
18	8	2	0.339s	100	95	95	24	24	24	24
18	8	3	0.333s	102	99	95	24	25	24	25
18	8	4	0.304s	98	93	93	24	21	26	21
18	8	5	0.311s	94	97	86	22	24	25	20
18	8	6	0.276s	95	118	122	16	17	18	17
18	8	7	0.297s	79	109	108	18	18	21	18
18	8	8	0.219s	114	176	186	26	21	21	23

Benchmark IV: CONTENTION

Number of Iterations (I) = 2^{19} Allocation Size (S) = 2^8

	Inputs		Global		Mond	Monotonic		Multipool		Mono>
				Virtual		Virtual		Virtual		Virtual
ı	S	W	AS1	AS2	AS3	AS5	AS7	AS9	AS11	AS13
19	8	1	0.421s	89	134	134	28	23	21	25
19	8	2	0.615s	101	93	93	25	26	26	26
19	8	3	0.631s	99	93	93	25	25	25	25
19	8	4	0.565s	107	95	103	28	28	29	28
19	8	5	0.575s	119	106	101	27	28	27	27
19	8	6	0.499s	114	126	113	17	25	28	22
19	8	7	0.558s	100	113	115	18	18	15	16
19	8	8	0.460s	105	149	148	19	21	18	21

Benchmark III: UTILIZATION

Questions and/or Discussion?

Another Use For Local Allocators

http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206?pgno=1#

The Little Parallel Counter That Couldn't

Consider this sequential code to count the number of odd numbers in a matrix:

If our job is to parallelize existing code, this is just what the doctor ordered: An embarrassingly parallel problem where it should be trivial to achieve linear speedups simply by assigning 1/*P*-th of the independent workload to each of *P* parallel workers. Here's a simple way to do it:

Quick: How well would you expect Example 1 to scale as *P* increases from 1 to the available hardware parallelism on the machine?

```
int odds = 0;
for( int i = 0; i < DIM; ++i )
for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 )
++odds;</pre>
```

Another Use For Local Allocators

// Example 1: Simple parallel version (flawed) 1 2 int result[P]; 3 // Each of P parallel workers processes 1/P-th 4 // of the data; the p-th worker records its 6 // partial count in result[p] 7 for(int p = 0; p < P; ++p) 8 pool.run([&,p] { 9 result[p] = 0;int chunkSize = DIM/P + 1; 10 int myStart = p * chunkSize; 11 12 int myEnd = min(myStart+chunkSize, DIM); 13 for(int i = myStart; i < myEnd; ++i) 14 for(int j = 0; j < DIM; ++j) 15 if(matrix[i*DIM + i] % 2 != 0) ++result[p]; 16 17 }); // Wait for the parallel work to complete... 18 19 pool.join(); 20 // Finally, do the sequential "reduction" step // to combine the results 21 22 odds = 0;23 for(int p = 0; p < P; ++p) odds += result[p]; 24

Another Use For Local Allocators

Figure 1: Example 1 seems to be about how to use more cores to get less total work done.

Another Use For Local Allocators

```
// Example 2: Simple parallel version
// (de-flawed using a local variable)
int result[P];
// Each of P parallel workers processes 1/P-th
// of the data; the p-th worker records its
// partial count in result[p]
for( int p = 0; p < P; ++p)
  pool.run([&,p]{
 <font color="#FF0000">int count = 0;</font>
  int chunkSize = DIM/P + 1;
 int myStart = p * chunkSize;
  int myEnd = min( myStart+chunkSize, DIM );
 for(int i = myStart; i < myEnd; ++i)
   for(int j = 0; j < DIM; ++j)
    if( matrix[i*DIM + j] % 2 != 0 )
      <font color="#FF0000">++count;
  result[p] = count;</font>
});
// ... etc. as before ...
```

Another Use For Local Allocators

Figure 4: Removing cache line contention on the result array takes us from zero scaling to linear scaling, up to the available hardware parallelism (test run on a 24-core machine).

Houston, we have a problem!

But there was a problem...

- Some of the original data was unexplainable.
- We needed a strategy to understand why.
- More work was needed.
- We needed to "confirm" the data!
- How we solved the problem (next slide):
 - A revised paper: Doc No: P0089R1
 - A new paper: **Doc No:** P<u>0213</u>R0

The Solution: Graham Bleaney

Enter Graham as Co-Op at Bloomberg (May, 2014).

The Solution: Graham Bleaney

Enter Graham as Co-Op at Bloomberg (May, 2014).

From P0089R1:

The Solution: Graham Bleaney

Enter Graham as Co-Op at Bloomberg (May, 2014).

• From P0089R1:

"... a separate effort has recently been made to recreate our experiments in order to confirm these results (P0213 by Graham Bleaney). We anticipate that paper will appear at approximately the same time as this revision."

The Solution: Graham Bleaney

Enter Graham as Co-Op at Bloomberg (May, 2014).

• From P0089R1:

"... a separate effort has recently been made to recreate our experiments in order to confirm these results (P0213 by Graham Bleaney). We anticipate that paper will appear at approximately the same time as this revision."

• New allocator-use dimension, Fragmentability (F):

The Solution: Graham Bleaney

Enter Graham as Co-Op at Bloomberg (May, 2014).

- From P0089R1: Joins us as FTE (Summer, 2017)!
 - "... a separate effort has recently been made to recreate our experiments in order to confirm these results (P0213 by Graham Bleaney). We anticipate that paper will appear at approximately the same time as this revision."
- New allocator-use dimension, FRAGMENTABILITY (F): "A measure of the potential of a subsystem's allocated memory to become diffused throughout physical memory, as a result of the interference of other subsystems' memory allocation. If a subsystem is fragmentable (i.e., other subsystems are present in the process and the subsystem allocates more than one chunk of memory), (F) is greater than zero."

The C++ Standardization Process

C++ Standards Committee Meeting

- Jacksonville, Florida.
 - February 29 thru March 5, 2016.
- Graham presents his findings to the LEWG.
- Polymorphic Memory Resources (PMR) was adopted into C++17 on March 5, 2016!
 - Along with <u>both</u> of <u>our</u> local ("arena") allocators:
 - Monotonic
 - Multipool

References

References

- [1] The Bloomberg BDE Library <u>open source distribution</u>, <u>https://github.com/bloomberg/bde</u>
- [2] John Lakos, *Large Scale C++ Software Design*, Addison-Wesley, 1996.
- [3] Pablo Halpern, N3916: Polymorphic Memory Resources.
- [4] Memory Allocator Benchmark <u>Data</u>, <u>https://github.com/bloomberg/bde-allocator-benchmarks</u>
- [5] Graham Bleaney, P0213R0: Reexamining the Performance of Memory-Allocation Strategies.
- [6] John Lakos, Jeffrey Mendelsohn, Alisdair Meredith, Nathan Myers, *P0089R1: On Quantifying Memory-Allocation Strategies (Revision 2).*

References

References

- [1] The Bloomberg BDE Library <u>open source distribution</u>, <u>https://github.com/bloomberg/bde</u>
- [2] John Lakos, *Large Scale C++ Software Design*, Addison-Wesley, 1996.
- [3] Pablo Halpern, N3916: Polymorphic Memory Resources.
- [4] Memory Allocator Benchmark <u>Data</u>, <u>https://github.com/bloomberg/bde-allocator-benchmarks</u>
- [5] Graham Bleaney, P0213R0: Reexamining the Performance of Memory-Allocation Strategies.
- [6] John Lakos, Jeffrey Mendelsohn, Alisdair Meredith, Nathan Myers, *P0089R1: On Quantifying Memory-Allocation Strategies (Revision 2).*

Outline

- 1. Introduction and Background
 What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 When and how do you use which allocator, and why?
- 4. Conclusions

What <u>must</u> we remember about memory allocators?

Outline

- 1. Introduction and Background
 - What are memory allocators, and why are they useful?
- 2. Understanding the Problem
 - What aspects of software affect allocation strategy?
- 3. Analyzing the Benchmark Data
 - When and how do you use which allocator, and why?
- 4. Conclusions
 - What must we remember about memory allocators?

Important Recurring Questions

Are memory allocators really worth the trouble?

What situations merit their use?

There are a few qualitatively different use cases:

- A. To improve and/or preserve performance:
 - Ensure physical locality of allocated memory.
 - Avoid memory diffusion in long-running systems.
 - Obviate deallocation of individual objects.
 - Sidestep contention during concurrent allocations.
 - > Separate unrelated data to avoid false sharing.
 - Compose effective allocation strategies.

What situations merit their use?

There are a few qualitatively different use cases:

- B. To place objects in a specific kind of memory:
 - Static memory
 - Memory-mapped memory
 - Read/write protectable memory
 - Fast memory (special architectures)
 - Shared memory (special allocators)

What situations merit their use?

There are a few qualitatively different use cases:

- C. To measure, test, control, or debug memory:
 - Counting (auditing) allocator
 - > Test allocator
 - Limit allocator
 - Read/write protectable memory allocator

How are they applied effectively?

A: Program is large, long running.

B: Subsystems are accessed disproportionally often (L).

How are they applied effectively?

A: Program is large, long running.

B: Subsystems are accessed disproportionally often (L).

How are they applied effectively?

A: Program is large, long running.

B: Subsystems are accessed disproportionally often (L).

How are they applied effectively?

A: Program is large, long running.

B: Subsystems are accessed disproportionally often (L).

Use Global Allocator Use <u>Local</u> Allocators? Use **Local Allocators!**

How are they applied effectively?

A: Program is large, long running.

B: Subsystems are accessed disproportionally often (L).

A

Use Global Allocator

Find a new Job!

B

Use <u>Local</u> Allocators?

Use <u>Local</u> Allocators!

How are they applied effectively?

A: Program is large, long running.

B: Subsystems exhibit high memory utilization (U).

How are they applied effectively?

A: Program is large, long running.

B: Subsystems exhibit high memory utilization (U).

How are they applied effectively?

A: Program is large, long running.

B: Subsystems exhibit high memory utilization (U).

Use Global Allocator **Use Local** Monotonic Allocators!

366

How are they applied effectively?

A: Program is large, long running.

B: Subsystems exhibit high memory utilization (U).

Use Global Allocator Use <u>Local</u> *Monotonic*Allocators? **Use Local** Monotonic **Allocators!**

367

How are they applied effectively?

A: Program is large, long running.

B: Subsystems exhibit high memory utilization (U).

A

Use Global Allocator

Use <u>Local</u> *Monotonic*Allocators?

Use <u>Local</u> *Multipool*Allocators!

Use <u>Local</u> *Monotonic*Allocators!

B

How are they applied effectively?

A: Program is large, long running.

How are they applied effectively?

A: Program is large, long running.

How are they applied effectively?

A: Program is large, long running.

How are they applied effectively?

A: Program is large, long running.

How are they applied effectively?

A: Program is large, long running.

B: Subsystems run concurrently (C).

Use Global **Use Local** Allocator **Allocators!** Use <u>Local</u> Allocators? Use **Local Allocators!**

373

What's the performance impact?

The performance impact can be substantial:

- In every benchmark, use of some (if not all) of the local allocators performed <u>no worse</u>, and typically <u>much better</u> than the default allocator.
- 2. For long-running programs, improvements of as much as an *order of magnitude* were observed.
- 3. The overhead of using the virtual-function interface and (in the default case) holding an extra address was *minimal to non-existent*.

Final Thoughts

Object-level control over memory allocation is intrinsic to C++, and must always be so if we hope to maintain this language's supremacy as the best-performing high-level "systems" language.

Final Thoughts

Object-level control over memory allocation is intrinsic to C++, and must always be so if we hope to maintain this language's supremacy as the best-performing high-level "systems" language.

Supporting object-specific memory allocation is admittedly an added burden – exacerbated by an initially difficult-to-use model – which is finally being addressed in C++17 by *Polymorphic Memory Resources*.

Final Thoughts

Object-level control over memory allocation is intrinsic to C++, and must always be so if we hope to maintain this language's supremacy as the bestperforming high-level "systems" language. Supporting object-specific memory allocation is admittedly an added burden – exacerbated by an initially difficult-to-use model – which is finally being addressed in C++17 by *Polymorphic Memory* Resources. Any future incarnation of STL should incorporate the lessons elucidated here.

4. Conclusion The End

EMSITARIION CALITY ARTION ENTENTION

DV LUC

4. Conclusion The End

FARCINE INTEREST ARRIVATION OF THE PARTITION OF THE PARTI

^{*} Graham Bleaney

4. Conclusion The End

F* DVLUC

^{*} Graham Bleaney

But don't mess with the duck!