Modulation Classification

Aly Swidan(3433), Mohamed Mahmoud(3431), Zeina elhayah Nada (3490) April 2018

1 Architectures

1.1 Fully connected Network

We used a classical fully connected layer, however we added some bells and whistles to improve accuracy and speed of convergence. The thing that improved the accuracy substantially was using the BatchNormalization layer which normalizes the data by subtracting the mean and standardizing, while learning some parameters to allow the network to learn a normalization representation in between the un-normalized and the totally normalized. Figure 3 shows architecture we used as summarized by Keras. We used the graph in Figure ?? for evaluating the model. The results are summarized by the confusion matrix for the whole data which is shown in Figure 1, which shows that the networks confuses between 8PSK and QPSK which confirms with the findings of the provided paper, as for the 0 dB figure 2 shows the results, Finally 5 shows the snr vs accuracy.

Figure 1: confusion matrix for the all the test data with an fc net

Figure 2: confusion matrix for the 0 dB part of the test data with an fc net

Layer (type)	Output	Shape	Param #
flatten_7 (Flatten)	(None,	256)	0
dense_25 (Dense)	(None,	128)	32896
dense_26 (Dense)	(None,	64)	8256
batch_normalization_7 (Batch	(None,	64)	256
dense_27 (Dense)	(None,	32)	2080
dropout_7 (Dropout)	(None,	32)	0
dense_28 (Dense)	(None,	11)	363

Figure 3: fc net architecuture $\,$

Figure 4: fc net accuracy

Figure 5: fc net snr vs acc

1.2 CNN

1.3 Inception

Inception modules are a typical convolutional neural networks (CNNs) that is made up of stacked convolutional layers in combination with max pooling and dropout. To sum it up we could say if we make a choice to either have a stack of 3x3 filters, or a stack of 5x5 filters or a max pooling layer. In general all of these are beneficial to the modelling power of the network. The inception module suggests the use of all of them.

Figure 6 shows architecture we used as summarised by keras.

Layer (type)	Output Shape	Param #	Connected to
input_5 (InputLayer)	(None, 2, 128)	0	
reshape_5 (Reshape)	(None, 1, 2, 128)	0	input_5[0][0]
conv2d_29 (Conv2D)	(None, 1, 2, 128)	16512	reshape_5[0][0]
conv2d_31 (Conv2D)	(None, 1, 2, 128)	32896	reshape_5[0][0]
conv2d_33 (Conv2D)	(None, 1, 2, 128)	16512	reshape_5[0][0]
max_pooling2d_5 (MaxPooling2D)	(None, 1, 2, 128)	0	reshape_5[0][0]
conv2d_30 (Conv2D)	(None, 1, 2, 64)	49216	conv2d_29[0][0]
conv2d_32 (Conv2D)	(None, 1, 2, 64)	32832	conv2d_31[0][0]
conv2d_34 (Conv2D)	(None, 1, 2, 64)	32832	conv2d_33[0][0]
conv2d_35 (Conv2D)	(None, 1, 2, 128)	16512	max_pooling2d_5[0][0]
batch_normalization_17 (BatchNo	(None, 1, 2, 64)	256	conv2d_30[0][0]
batch_normalization_18 (BatchNo	(None, 1, 2, 64)	256	conv2d_32[0][0]
batch_normalization_19 (BatchNo	(None, 1, 2, 64)	256	conv2d_34[0][0]
batch_normalization_20 (BatchNo	(None, 1, 2, 128)	512	conv2d_35[0][0]
concatenate_5 (Concatenate)	(None, 1, 2, 320)	0	batch_normalization_17[0][0] batch_normalization_18[0][0] batch_normalization_19[0][0] batch_normalization_20[0][0]
flatten_5 (Flatten)	(None, 640)	0	concatenate_5[0][0]
dropout_4 (Dropout)	(None, 640)	0	flatten_5[0][0]
dense_8 (Dense)	(None, 360)	230760	dropout_4[0][0]
dense_9 (Dense)	(None, 120)	43320	dense_8[0][0]
dense_10 (Dense)	(None, 64)	7744	dense_9[0][0]
dense_11 (Dense)	(None, 11)	715	dense_10[0][0]
1			

Total params: 481,131 Trainable params: 480,491 Non-trainable params: 640

Figure 6: CNN Inception Architecuture

Figure 7 shows the plotting of accuracy comparison between training and validation accuracy.

Figure 7: CNN Inception val vs training acc

Figure 8 shows the plotting of confusion matrix of the whole test data.

Figure 8: CNN Inception Confusion matrix and accuracy of whole test data

Figure 9 shows the plotting of confusion matrix of $\operatorname{snr} = 0$

Figure 9: CNN Inception Confusion Matrix of SNR = 0

Figure 10 shows the plotting of accuracy against the ${\rm SNR}$

Figure 10: CNN Inception Confusion Matrix of SNR = 0

2 Feature

2.1 Derivative

Calculated derivative of each sample and created fully connected model and CNN (inception) model with these samples

Figure 11: fully connected val vs training accuracy with derivative feature only

Figure 12: fully connected derivative feature only, Confusion matrix and accuracy of whole test data

Figure 13: fully connected derivative feature only, Confusion Matrix of SNR=0

2.2 FFT

Calculated Fourier transform of each sample and created fully connected model and CNN (inception) model with these samples

Figure 14: fully connected val vs training accuracy with fft feature only

Figure 15: fully connected fft feature only, Confusion matrix and accuracy of whole test data

Figure 16: fully connected fft feature only, Confusion Matrix of SNR=0

2.3 combined features

Combined above features with raw data and created fully connected model and CNN (inception) model with these samples $\frac{1}{2}$

Figure 17: fully connected val vs training accuracy with all features

Figure 18: fully connected with all features, Confusion matrix and accuracy of whole test data

Figure 19: fully connected with all features, Confusion Matrix of ${\rm SNR}=0$

3 Conclusion

3.1 First Comparison

Comparison of Average Accuracies			
Features	Fully Connected	Inception Module (CNN)	
Raw data	61.68	62.0	
Derivative	48.07	15.22	
Raw & FFT	60.44	60.63	
Raw & Derivative & FFT	58.49	61.24	

3.2 Second Comparison

Comparison of Accuracies at $SNR = 0$			
Features	Fully Connected	Inception Module (CNN)	
Raw data	83.69	86.05	
Derivative	63.43	15.62	
Raw & FFT	81.49	83.28	
Raw & Derivative & FFT	79.02	85.21	

3.3 Third Comparison

Comparison of Best Accuracies				
Features	Fully Connected	Inception Module (CNN)		
Raw data	93.57	93.1		
Derivative	76.35	17.31		
Raw & FFT	87.19	88.56		
Raw & Derivative & FFT	82.04	92.19		