Problem Sheet - 5

- If $f(x,y) = \begin{cases} k \times y^2, & 0 < x < y < 1 \\ 0, & otherwise \end{cases}$ joint pet of Continuous random variables x and y, find the value of R.
 - $f_{x,y}(x,y) = \begin{cases} 3/4 & \text{or } y^2 \le x < 1 \\ \text{o} & \text{otherwise} \end{cases}$ the joint pdf, find he morginal pdf & X&Y.
- Let $f_{x,y}(x,y) = \begin{cases} 2x, & ocxel; ocyel \\ o & otherwise \end{cases}$ De the joint pdf of x and y. Find P(x+y \le 1 | x \le 1/2).
- & Fx,y (X,y) = { = { = { (2, x 3y + 3 x y^2) , o < y < 1}

is the CDF BX, Y, find the joint pdf BX&Y.

- Let x & Y have joint pdf which is uniform on the triangle with vertices (0,0), (0,1) and (1,0).

 i) Find the conditional pdf 8 x given /

 - i) E[x[y=y]
 - iii) E [x] .

- Let X and Y be two Continuous Gandon Variables. Let $f_X(x) = \begin{cases} 24 x^2, & 0 < x < \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$ and $f_{X|X}(y|x) = \begin{cases} \frac{y}{2}x^2, & 0 < y < 2x \\ 0 & \text{otherwise.} \end{cases}$ Final Show that $f_{X|Y}(x|y) = \begin{cases} \frac{2}{1-y}, & 0 < y < 2x < 1 \\ 0 & \text{otherwise.} \end{cases}$
- 7. Let XNEXP(1) and A = {x>1}.

 Show that ECXIAJ = 2 and Van (xIA) = 1.
- 8. Let $f_{x,y}(x,y) = \begin{cases} \frac{\chi^2}{4} + \frac{y^2}{4} + \frac{\chi y}{6} \\ 0 \leq y \leq 2 \end{cases}$ Show that $E[x|y=1] = \frac{7}{12}$; and $Var(x|y=1) = \frac{287}{3600}$ and $P(x-\frac{1}{2}|y=0) = \frac{1}{8}$
- 9. Let $D = \{(x,y): x^2 + y^2 \le 1\}$. A point (x,y) is Chosen uniformly at roundom from D.

 i) Show that $f_{X|Y}(x|y)$ follows amiform distribution.

 ii) Are x and y independent?
- 10. Let X and Y have the joint pdf $f_{X,Y}(X,Y)$ $f_{X,Y}(X,Y) = \begin{cases} \chi^2 + \frac{y}{3}, -1 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$ Show that X and Y are NoT independent.