CLAIMS

What is claimed is:

 A method of inhibiting CRTH2 in a subject in need of CRTH2 inhibition, comprising administering to the subject an effective amount of a compound represented by the following structural formula:

$$\begin{array}{c|c}
R^3 & R^x \\
\hline
 & R^6 \\
\hline
 & R^5 \\
\hline
 & R^5
\end{array}$$

or a pharmaceutically acceptable salt thereof, wherein:

Ring ${\bf A}$ is an optionally substituted monocyclic aromatic ring;

R is $-X_1-R^1$;

 R^x is $-X_2-R^4$, and R^3 is an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group; or $-NR^xR^3$, taken together, is an optionally substituted non-aromatic nitrogen containing heterocyclic group;

X is
$$-C(O)$$
- or $-C(R^2)_2$ -;

15

20

10

5

 X_1 and X_2 are each independently a bond, S(O), $S(O)_2$, C(O) or C(O)NH; R^1 is H or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

provided that when X_1 is a bond, SO or SO_2 , then R^1 is not H;

each R² is independently H, -X₄-R⁸ or an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

R⁴ is H, -X₆-R¹⁰ or an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

provided that when X₂ is a bond, SO or SO₂, then R⁴ is not H;

 X_4 and X_6 are each independently a straight or branched hydrocarbyl group optionally substituted with one or more groups selected from the group consisting of halo, -OH, =O, C_1 - C_3 alkoxy, nitro and cyano;

R⁵ and R⁶ are each independently H or C₁-C₃ alkyl; and

5

R⁸ and R¹⁰ are each independently H, -C(O)OR' or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

where,

10

the optional substituents on the aliphatic group, the cycloaliphatic group or the non-aromatic heterocyclic group are one to three groups each independently selected from the group consisting of halo, R^{11} , =0, =S, =NNHR*, =NN(R*)₂, =NNHC(O)R*, =NNHCO₂(alkyl), =NNHSO₂ (alkyl) and =NR*;

the optional substituents on unsaturated carbon atoms of the aromatic group is \mathbb{R}^{11} ;

15

the optional substituents on a nitrogen atom of the aromatic group or the nitrogen atom of the non-aromatic nitrogen containing heterocyclic group are one to three groups each independently selected from the group consisting of R^+ , $N(R^+)_2$, $-C(O)R^+$, $-CO_2R^+$, $-C(O)C(O)R^+$, $-C(O)CH_2C(O)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$ and $-NR^+SO_2R^+$;

20

 R^{11} is one to four substituents each independently selected from the group consisting of halo, R° , -OH, $-OR^{\circ}$, -SH, $-SR^{\circ}$, 1,2-methylenedioxy, 1,2-ethylenedioxy, protected -OH, phenyl, $[R^{12}]$ -phenyl, -O(phenyl), $-O([R^{12}]$ -phenyl), $-CH_2(\text{phenyl})$, $-CH_2([R^{12}]$ -phenyl), $-CH_2([R^{12}]$ -phenyl), $-CH_2([R^{12}]$ -phenyl), $-NO_2$, -CN, $-N(R')_2$, $-NR'CO_2R^{\circ}$, $-NR'C(O)R^{\circ}$, $-NR'NR'C(O)R^{\circ}$, $-NR'NR'C(O)R^{\circ}$, $-NR'NR'CO_2R^{\circ}$, $-C(O)C(O)R^{\circ}$, $-C(O)CH_2C(O)R^{\circ}$, $-CO_2R^{\circ}$, $-C(O)R^{\circ}$, $-C(O)N(R^{\circ})_2$, $-OC(O)N(R^{\circ})_2$, $-S(O)_2R^{\circ}$, $-SO_2N(R^{\circ})_2$, $-S(O)R^{\circ}$, $-NR'SO_2N(R^{\circ})_2$, $-NR'SO_2R^{\circ}$, $-C(=S)N(R^{\circ})_2$, $-(CH_2)_yN(R^{\circ})_2$, $-C(=NH)-N(R^{\circ})_2$, $-(CH_2)_yC(O)N(R^{\circ})_2$, $-(CH_2)_yNHC(O)R^{\circ}$ or $-(CH_2)_yNHC(O)CH(V-R^{\circ})(R^{\circ})$;

25

R' is H, R°, $-CO_2R^\circ$, $-SO_2R^\circ$ or $-C(O)R^\circ$; y is 0-6;

V is C₁-C₆ alkylene;

each R^* is independently H, an aliphatic group or an aliphatic group substituted with R^{12} ;

 R^+ is H, phenyl, $[R^{12}]$ -phenyl, -O(phenyl), -O($[R^{12}]$ -phenyl), - $CH_2(phenyl)$, - $CH_2([R^{12}]$ -phenyl), a heteroaryl group, a non-aromatic heterocyclic group, an aliphatic group or an aliphatic group substituted with R^{12} ;

R° is an aliphatic group, a cycloaliphatic group, an aromatic group, an aralkyl group or a non-aromatic heterocyclic group, each group being optionally substituted with R¹²;

10

15

5

 R^{12} is one to four substituents each independently selected from the group consisting of halo, $C_1\text{-}C_6$ alkyl, $(halo)_rC_1\text{-}C_6$ alkyl, $C_3\text{-}C_8$ cycloalkyl, $(halo)_rC_3\text{-}C_8$ cycloalkyl, -CN, -CF3, -CHF2, -CH2F, -OCF3, -OCHF2, -OCH2F, -OR', - OR^{13}C(O)R', -C(O)OR', -C(O)N(R^{16})_2, -N(R^{16})_2, -NO_2, -NR^{16}C(O)R', -NR^{16}C(O)R', -NR^{16}C(O)R(R^{16})_2, -NR^{16}SO_2R^{17}, -S(O)_qR^{17}, -R^{13}NR^{16}C(O)R', -R^{13}C(O)R', -R^{13}NR^{16}C(O)OR', tetrazolyl, imidazolyl or oxadiazolyl;

 R^{13} is C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl; each R^{16} is independently R' or benzyl; R^{17} is R^{13} or - CF_3 ; q is 0-2; and

91502

r is 1-3.

20

25

2.

The method of Claim 1 wherein:

Ring A is phenyl or [R¹¹]-phenyl;

X is -CHR²-;

 R^{x} is $-X_{2}-R^{4}$;

R¹ and R³ are each independently an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

 R^2 is H or an optionally substituted, C_1 - C_4 alkyl group, C_1 - C_4 alkyl alkoxymethylene group or C_3 - C_6 cycloalkyl group;

30

R⁴ is an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group; and

R⁵ and R⁶ are each H.

- 3. The method of Claim 2 wherein R³ is an optionally substituted aromatic group.
- 5 4. The method of Claim 3 wherein the compound is represented by the following structural formula:

where Ring A, R^1 , R^2 and R^4 are each independently defined in Claim 2.

10 5. The method of Claim 4 wherein:

15

20

R¹ is H or an optionally substituted, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

R³ is phenyl or [R¹¹]-phenyl;

 R^4 is H, -CH₂C(O) R^{14} , -CH₂ R^{15} , -CH₂O R^{14} or an optionally substituted, C₁-C₃ alkyl group, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

R¹⁴ is H or an optionally substituted, alkyl group, aromatic group, cycloalkyl group or non-aromatic heterocyclic group; and

 $\ensuremath{R^{15}}$ is an optionally substituted, aromatic group, cycloalkyl group or non-aromatic heterocyclic group;

where R^{11} and the optional substituents are each independently defined in Claim 1.

6. The method of Claim 1 wherein Ring A is thiophene, furan, pyridine, pyrazole, pyrrole, [2,3]pyrimidine, [3,4]pyrimidine, [4,5]pyrimidine, [5,6]pyrimidine, oxazole, isoxazole or 1,2,3-triazole, each group being optionally substituted with R¹¹.

5

7. The method of Claim 6 wherein:

$$X \text{ is -CHR}^2$$
-;

$$R^{x}$$
 is $-X_{2}-R^{4}$;

R¹ and R³ are each independently an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

 R^2 is H or an optionally substituted, C_1 - C_4 alkyl group, C_1 - C_4 alkyl alkoxymethylene group or C_3 - C_6 cycloalkyl group;

R⁴ is an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group; and

R⁵ and R⁶ are each H.

8. A compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof, wherein:

Ring A is an optionally substituted monocyclic aromatic ring;

R is
$$-X_1-R^1$$
;

 R^x is $-X_2-R^4$, and R^3 is an optionally substituted aromatic group; or $-NR^xR^3$, taken together, is an optionally substituted non-aromatic nitrogen containing heterocyclic group;

15

20

X is -C(O)- or $-C(R^2)_2$ -;

 X_1 and X_2 are each independently a bond, S(O), $S(O)_2$, C(O) or C(O)NH; R^1 is H or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

5

provided that when X_1 is a bond, SO or SO_2 , then R^1 is not H; each R^2 is independently H, $-X_4$ - R^8 or an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

R⁴ is H, -X₆-R¹⁰ or an optionally substituted, aliphatic group, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

10

provided that when X₂ is a bond, SO or SO₂, then R⁴ is not H;

 X_4 and X_6 are each independently a straight or branched hydrocarbyl group optionally substituted with one or more groups selected from the group consisting of halo, -OH, =O, C_1 - C_3 alkoxy, nitro and cyano;

 R^5 and R^6 are each independently H or $C_1\text{-}C_3$ alkyl; and

15

R⁸ and R¹⁰ are each independently H, -C(O)OR' or an optionally substituted, cycloaliphatic group, aromatic group or non-aromatic heterocyclic group;

where,

20

the optional substituents on the aliphatic group, the cycloaliphatic group or the non-aromatic heterocyclic group are one to three groups each independently selected from the group consisting of halo, R^{11} , =0, =S, =NNHR*, =NN(R*)₂, =NNHC(O)R*, =NNHCO₂(alkyl), =NNHSO₂ (alkyl) and =NR*;

the optional substituents on unsaturated carbon atoms of the aromatic group is R^{11} ;

25

the optional substituents on a nitrogen atom of the aromatic group or the nitrogen atom of the non-aromatic nitrogen containing heterocyclic group are one to three groups each independently selected from the group consisting of R^+ , $N(R^+)_2$, $-C(O)R^+$, $-CO_2R^+$, $-C(O)C(O)R^+$, $-C(O)CH_2C(O)R^+$, $-SO_2R^+$, $-SO_2N(R^+)_2$, $-C(=S)N(R^+)_2$, $-C(=NH)-N(R^+)_2$ and $-NR^+SO_2R^+$;

30

R¹¹ is one to four substituents each independently selected from the group consisting of halo, R°, -OH, -OR°, -SH, -SR°, 1,2-methylenedioxy, 1,2-

ethylenedioxy, protected -OH, phenyl, [R¹²]-phenyl, -O(phenyl), -O([R¹²]-phenyl),

```
-CH<sub>2</sub>(phenyl), -CH<sub>2</sub>([R^{12}]-phenyl), -CH<sub>2</sub>CH<sub>2</sub>(phenyl), -CH<sub>2</sub>CH<sub>2</sub>([R^{12}]-phenyl), -
                  NO<sub>2</sub>, -CN, -N(R')<sub>2</sub>, -NR'CO<sub>2</sub>R<sup>0</sup>, -NR'C(O)R<sup>0</sup>, -NR'NR'C(O)R<sup>0</sup>,
                   -N(R')C(O)N(R')_2, -NR'NR'C(O)N(R')_2, -NR'NR'CO_2R^0, -C(O)C(O)R^0,
                   -C(O)CH_2C(O)R', -CO_2R', -C(O)R^{\circ}, -C(O)N(R')_2, -OC(O)N(R')_2, -S(O)_2R^{\circ},
  5
                   -SO_2N(R')_2, -S(O)R', -NR'SO_2N(R')_2, -NR'SO_2R^0, -C(=S)N(R')_2, -(CH_2)_vN(R')_2,
                   -C(=NH)-N(R')_2, -(CH_2)_yC(O)N(R')_2, -(CH_2)_vNHC(O)R' or
                   -(CH_2)_vNHC(O)CH(V-R')(R');
                             R' is H, R^{\circ}, -CO_2R^{\circ}, -SO_2R^{\circ} or -C(O)R^{\circ};
                             y is 0-6;
10
                            V-is C<sub>1</sub>-C<sub>6</sub> alkylene;
                             each R* is independently H, an aliphatic group or an aliphatic group
                   substituted with R<sup>12</sup>;
                            R^+ is H, phenyl, [R^{12}]-phenyl, -O(phenyl), -O([R^{12}]-phenyl), -
                  CH<sub>2</sub>(phenyl), -CH<sub>2</sub>([R<sup>12</sup>]-phenyl), a heteroaryl group, a non-aromatic
15
                  heterocyclic group, an aliphatic group or an aliphatic group substituted with R<sup>12</sup>;
                             R<sup>o</sup> is an aliphatic group, a cycloaliphatic group, an aromatic group, an
                  aralkyl group or a non-aromatic heterocyclic group, each group being optionally
                  substituted with R<sup>12</sup>:
                            R<sup>12</sup> is one to four substituents each independently selected from the group
20
                  consisting of halo, C<sub>1</sub>-C<sub>6</sub> alkyl, (halo)<sub>r</sub>C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>8</sub> cycloalkyl, (halo)<sub>r</sub>C<sub>3</sub>-C<sub>8</sub>
                  cycloalkyl, -CN, -CF<sub>3</sub>, -CHF<sub>2</sub>, -CH<sub>2</sub>F, -OCF<sub>3</sub>, -OCHF<sub>2</sub>, -OCH<sub>2</sub>F, -OR', -
                  OR^{13}C(O)R', -C(O)OR', -C(O)N(R^{16})_2, -N(R^{16})_2, -NO_2, -NR^{16}C(O)R', -
                  NR^{16}C(O)OR', -NR^{16}C(O)N(R^{16})_2, -NR^{16}SO_2R^{17}, -S(O)_0R^{17}, -R^{13}NR^{16}C(O)R', -
                  R<sup>13</sup>C(O)R', -R<sup>13</sup>NR<sup>16</sup>C(O)OR', tetrazolyl, imidazolyl or oxadiazolyl;
25
                            R^{13} is C_1-C_6 alkyl or C_3-C_8 cycloalkyl;
                            each R<sup>16</sup> is independently R' or benzyl;
                            R<sup>17</sup> is R<sup>13</sup> or -CF<sub>3</sub>;
                             q is 0-2; and
30
                            r is 1-3;
```

provided that the compound is not 2-methyl-N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(2-methyl-1-oxobutyl)-4-quinolinyl]-butamide; N-(1-Acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-heptamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxo-3-phenylpropyl)-4-quinolinyl]benzenepropanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(3-5 nitrobenzoyl)-4-quinolinyl]- hexanamide; N-[1,1'-biphenyl]-3-yl-N-[1,2,3,4tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]-acetamide; N-(1benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-(4-nitrophenyl)heptanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-(4methoxyphenyl)-2-methyl- propanamide; N-[1-(4-fluorobenzoyl)-1,2,3,4-10 tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- butanamide; N-phenyl-N-[1,2,3,4tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]-pentanamide; 2-ethyl-N-[1-(2-ethyl-1-oxobutyl)-1,2,3,4-tetrahydro-2,8-dimethyl-4-quinolinyl]-N-(2methylphenyl)-butanamide; N-[1-[(4-fluorophenyl)acetyl]-1,2,3,4-tetrahydro-2methyl-4-quinolinyl]-N-phenyl- propanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-15 methyl-1-(4-nitrobenzoyl)-4-quinolinyl]-octanamide; N-cyclohexyl-4-[(cyclohexylamino)carbonyl]phenylamino]-3,4-dihydro-2-methyl-1(2H)quinolinecarboxamide; N-[1-(4-ethylbenzoyl)-1,2,3,4-tetrahydro-2,8-dimethyl-4quinolinyl]-N-(2-methylphenyl)-3-(4-nitrophenyl)- 2-propenamide; 3-(4methoxyphenyl)-N-phenyl-N-[1,2,3,4-tetrahydro-1-[3-(4-methoxyphenyl)-1-oxo-20. 2-propenyl]-2-methyl-4-quinolinyl]-2-propenamide; 4-[(ethoxyoxoacetyl)phenylamino]-3,4-dihydro-2-methyl-\(\forall\)-oxo-ethyl ester-1(2H)quinolineacetic acid; N-[1-(3-cyclohexyl-1-oxopropyl)-1,2,3,4-tetrahydro-2methyl-4-quinolinyl]-N-phenyl- cyclohexanepropanamide; 4-(acetylphenylamino)-3,4-dihydro-2-methyl-gamma-oxo-1(2H)-quinolinepentanoic 25 acid; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-2,2-dimethyl-Nphenyl- propanamide; N-(1-benzoyl-6-bromo-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl- pentanamide; N-[1-(2-furanylcarbonyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- acetamide; 2-methyl-N-phenyl-N-[1,2,3,4tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]- propanamide; N-[1-30 [(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl]-1,2,3,4-tetrahydro-2-methyl-4-dioxo-2H-isoindol-2-yl)acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl)acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2H-isoindol-2-yl]acetyl-2-dioxo-2-dio

quinolinyl]-N-phenyl-acetamide; 2,2,2-trifluoro-N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]- acetamide; 2-ethyl-N-[1-(2-ethyl-1-oxobutyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- butanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-(3-methoxyphenyl)acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxohexyl)-4quinolinyl]- acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-Nphenyl-2-thiophenecarboxamide; N-[1-(2-fluorobenzoyl)-1,2,3,4-tetrahydro-2methyl-4-quinolinyl]-N-phenyl- hexanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-phenyl-N-[1,2,3,4tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-[1-(cyclopropylcarbonyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylcyclopropanecarboxamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-(4-methylphenyl)- acetamide; 2-methyl-N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(2-methyl-1-oxopropyl)-4-quinolinyl]- propanamide; Nphenyl-N-[1,2,3,4-tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]-2thiophenecarboxamide; 1-(3,5-dinitrobenzoyl)-N-formyl-1,2,3,4-tetrahydro-2methyl-N-phenyl-4-quinolinamine; N-[1-(4-chloro-3-nitrobenzoyl)-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl- acetamide; N-phenyl-N-[1,2,3,4tetrahydro-2-methyl-1-(3-nitrobenzoyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]- hexanamide; N-[1-(2-furanylcarbonyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-2furancarboxamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxopropyl)-4quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-[3-(4-methoxyphenyl)-1-oxo-2-propenyl]-2-methyl-4-quinolinyl]-acetamide; 3-(2-furanyl)-N-[1-[3-(2-furanyl)furanyl)-1-oxo-2-propenyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-2-propenamide; N-[1-[2-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)-1-oxo-3phenylpropyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-octanamide; N-[1-(3-chlorobenzoyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2methyl-1-(1-oxopropyl)-4-quinolinyl]- acetamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2-methyl-N-

5

10

15

20

25

phenyl-propanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-hexanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-Nphenyl-propanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-heptanamide; Relative 5 stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2,2-dimethyl-N-phenyl-propanamide; N-[1-(3-fluorobenzoyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; N-[1-[4-(1,1dimethylethyl)benzoyl]-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-2-methyl-N-10 phenyl- propanamide; 2,2,2-trifluoro-N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(trifluoroacetyl)-4-quinolinyl]- acetamide; Relative stereochemistry N-[(2R,4S)-1acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-2,2-dimethyl-N-phenylpropanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2methyl-4-quinolinyl]-N-phenyl-butanamide; Relative stereochemistry N-[(2R,4S)-15 1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-acetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2-methyl-1-(1oxoheptyl)-4-quinolinyl]-acetamide; Relative stereochemistry N-phenyl-N-[(2R,4S)-1,2,3,4-tetrahydro-2-methyl-1-(1-oxohexyl)-4-quinolinyl]-acetamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-20 quinolinyl]-N-phenyl-pentanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxo-3-phenyl-2-propenyl)-4-quinolinyl]-acetamide; Relative stereochemistry N-[(2R,4S)-1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylheptanamide; Relative stereochemistry N-[(2R,4S)-1-acetyl-1,2,3,4-tetrahydro-2methyl-4-quinolinyl]-N-phenyl-acetamide; Relative stereochemistry N-[(2R,4S)-25 1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenyl-pentanamide; Nphenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(tricyclo[3.3.1.13,7]dec-1-ylcarbonyl)-4quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxopropyl)-4-quinolinyl]- propanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(2thienylcarbonyl)-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(4-30 methoxybenzoyl)-2-methyl-4-quinolinyl]- 2-furancarboxamide; N-phenyl-N-

[1,2,3,4-tetrahydro-1-(4-methoxybenzoyl)-2-methyl-4-quinolinyl]- acetamide; N-[1-(3,5-dinitrobenzoyl)-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl]-N-phenylacetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(4-nitrobenzoyl)-4quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(2-iodobenzoyl)-2-5 methyl-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(2methyl-1-oxopropyl)-4-quinolinyl]-acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2methyl-1-[(4-methylphenyl)sulfonyl]-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-[(4-nitrophenyl)methyl]-4-quinolinyl]- acetamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-methoxybenzoyl)-2-methyl-4-quinolinyl]acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-10 butanamide; N-phenyl-N-[1,2,3,4-tetrahydro-2-methyl-1-(1-oxobutyl)-4quinolinyl]- acetamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-hexanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-pentanamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-N-phenyl-propanamide; 1-benzoyl-1,2,3,4-tetrahydro-4-(N-15 phenylacetamido)quinaldine; N-(1-acetyl-6-bromo-1,2,3,4-tetrahydro-2-methyl-4quinolinyl)-N-phenyl-acetamide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-6-nitro-4-quinolyl)-acetanilide; N-(1-acetyl-6-chloro-1,2,3,4-tetrahydro-2-methyl-4quinolyl)-acetanilide; N-(1-acetyl-1,2,3,4-tetrahydro-2-methyl-4-quinolinyl)-Nphenyl-acetamide; N-(1-benzoyl-6-bromo-1,2,3,4-tetrahydro-2-methyl-4-20 quinolinyl)-N-phenyl-acetamide; N-(1-benzoyl-6-chloro-1,2,3,4-tetrahydro-2methyl-4-quinolinyl)-N-phenyl-acetamide; N-(1-benzoyl-1,2,3,4-tetrahydro-2methyl-4-quinolinyl)-N-phenyl- butanamide; N-phenyl-N-[1,2,3,4-tetrahydro-1-(3-fluorobenzoyl)-2-methyl-4-quinolinyl]-hexanamide; N-[1-(3-chloro-benzoyl)-25 2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-N-phenyl-acetamide; N-[1-(4-fluorobenzoyl)-2-methyl-6-nitro-1,2,3,4-tetrahydro-quinolin-4-yl]-N-phenyl-acetamide; pentanoic acid (1-benzoyl-6-bromo-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)phenyl-amide; N-(1-benzoyl-6-chloro-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenyl-acetamide; N-[6-chloro-1-(4-fluoro-benzoyl)-2-methyl-1,2,3,4-30 tetrahydro-quinolin-4-yl]-N-phenyl-acetamide; N-[6-bromo-1-(4-fluoro-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-N-phenyl-acetamide; N-(1-benzoyl-6nitro-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenyl-acetamide; N-(1-benzoyl-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-N-phenyl-butyramide; N-[1-(3-methoxy-benzoyl)-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-2,2-dimethyl-N-phenyl-propionamide.

5

9. The compound of Claim 8 wherein:

 $X \text{ is -CHR}^2$ -;

R² is H, methyl or ethyl;

R³ is an optionally substituted aromatic group; and

R⁵ and R⁶ are each H.

10 ;

10. The compound of Claim 9 wherein the compound is represented by the following structural formula:

15

where Ring A, R^1 and R^4 are each independently defined in Claim 8.

11. The compound of Claim 10 wherein:

R¹ is H or an optionally substituted, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

20

R³ is phenyl or [R¹¹]-phenyl;

 R^4 is H, -CH₂C(O) R^{14} , -CH₂ R^{15} , -CH₂O R^{14} or an optionally substituted, C₁-C₃ alkyl group, cycloalkyl group, aromatic group or non-aromatic heterocyclic group;

R¹⁴ is H or an optionally substituted, alkyl group, aromatic group, cycloalkyl group or non-aromatic heterocyclic group; and

R¹⁵ is an optionally substituted, aromatic group, cycloalkyl group or non-aromatic heterocyclic group;

where R^{11} and the optional substituents are each independently defined in Claim 8.

12. The compound of Claim 10 wherein:

5

10

15

20

30

Ring A is phenyl or $[R^{11}]$ -phenyl, where R^{11} is at the five, six, seven and/or eight position;

R¹ is R¹⁸; and

 R^4 is R^{18} , $C_{17}C_4$ alkyl, $-CH_2OH$, $-CH_2OCH_3$, $-CH_2OCH_2CH_3$, $-CH_2CH_2OCH_3$ or $-CH_2CH_2OCH_2CH_3$; and

R¹⁸ is an optionally substituted, phenyl, pyridyl, furanyl, thiophenyl, isoxazolyl, imidazolyl, pyrazolyl, pyrrolyl, benzofuranyl, tetrazolyl, thiazolyl, benzyl, benzothiazolyl, benzoimidazolyl, benzotriazolyl, benzomorpholinyl, benzopyrazolyl, indolyl, -CH₂-(*N*-pyridyl), -CH₂-furanyl, -CH₂-thiophienyl, -CH₂-isoxazolyl, -CH₂-imidazolyl, -CH₂-pyrazolyl, -CH₂-pyrollyl, -CH₂-benzofuranyl, -CH₂-tetrazolyl, -CH₂-thiazolyl, -CH₂-tetrazolyl, -CH₂-benzothiazolyl, -CH₂-benzimidazolyl, -CH₂-O-phenyl, -CH₂C(O)-phenyl, naphthalimidyl, tetrahydrofuranyl, cyclohexyl, cyclopentyl or cyclopropyl group; where R¹¹ and the optional substituents are each independently defined in

25 13. The compound of Claim 12 wherein:

Claim 8.

Ring $\bf A$ is phenyl or $[R^{11}]$ -phenyl, where R^{11} is at the six and/or seven position;

 R^1 is phenyl, thiophenyl, furanyl, pyridyl, pyrmidinyl, oxazolyl, isoxazolyl, benzotriazolyl or benzomorpholinyl, each group being optionally substituted with R^{11} ;

R³ is [R¹¹]-phenyl; and

 R^4 is methyl, ethyl, propyl, *iso*-propyl, *n*-butyl, *sec*-butyl, *tert*-butyl, -CH₂OCH₃ or -CH₂OCH₂CH₃;

where R¹¹ is defined in Claim 8.

5 14. The compound of Claim 12 wherein:

 R^1 is thiophenyl, $[R^{11}]$ -thiophenyl, isoxazolyl, $[R^{11}]$ -isoxazolyl, pyridinyl, $[R^{11}]$ -pyridinyl, benzotriazolyl, $[R^{11}]$ -benzotriazolyl, benzomorpholinyl or $[R^{11}]$ -benzomorpholinyl, where R^{11} is defined in Claim 8; or R^1 is phenyl or $[R^{11}]$ -phenyl, where R^{11} is halo, $-OR^\circ$, $-N(R^\circ)_2$, oxazolyl or

10

 $R^3 \ is \ [R^{11}] \ -phenyl, \ where \ R^{11} \ is \ Br, \ Cl, \ -CH_3, \ -N(R')_2, \ -NHC(O)OR', \ -S(O)_2CH_3, \ -S(O)_2N(R')_2 \ or \ -(CH_2)_yC(O)N(R')_2; \ and$

R⁴ is methyl, ethyl or -CH₂OCH₃;

where R° and R' are each independently defined in Claim 8.

15

20

- 15. The compound of Claim 14 wherein R^3 is $[R^{11}]$ -phenyl, where R^{11} is one substituent at the para position.
- 16. The compound of Claim 8 wherein:

X is -CHR²; and

 R^2 and NR^xR^3 are in a *cis* configuration relative to one another; where R^2 , R^x and R^3 are each independently defined in Claim 8.

17. The compound of Claim 16 where the cis configuration is 2S,4R or 2R,4S:

18. The compound of claim 8 which is represented by a structural formula selected from the group consisting of:

Structure	Structure:
	Children Chi

Sirveture	Structure
HO CI NI	O J
CI O O O O O O O O O O O O O O O O O O O	
CI OME	
	CI NOW OH

Structure	Structure
Br. O	
CI N N N N N N N N N N N N N N N N N N N	

Structure	Structure 🥶
CI O O O O O O O O O O O O O O O O O O O	
	4

Structure	Structure
	CI N N N N N N N N N N N N N N N N N N N

or a pharmaceutically acceptable salt thereof.

5 19. A pharmaceutical composition comprising the compound of Claim 8 and a pharmaceutically acceptable diluent, excipient or carrier.

- 20. A method of inhibiting CRTH2 in a subject in need of CRTH2 inhibition, comprising administering to the subject an effective amount of the compound or pharmaceutical salt of Claim 8.
- 5 21. A method of inhibiting DP in a subject in need of DP inhibition, comprising administering to the subject an effective amount of the compound or pharmaceutical salt of Claim 8.
- A method of treating an inflammatory disease, disorder or symptom in a subject in need of the treatment, comprising administering to the subject an effective amount of the compound or pharmaceutical salt of Claim 8.
- The method of Claim 22, where the inflammatory disease, disorder or symptom is allergic rhinitis, allergic asthma, atopic dermatitis, chronic obstructive pulmonary disorder, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease or a skin disorder.
 - 24. The method of Claim 23, where the inflammatory disease, disorder or symptom is allergic rhinitis or allergic asthma.