Informe Técnico Comparativo

Arquitecturas: Centralizada, Cliente-Servidor y Distribuida

Introducción

En el ámbito de la ingeniería de sistemas y computación, la arquitectura de los sistemas informáticos juega un papel fundamental, ya que determina la manera en que los recursos de hardware y software son organizados, administrados y puestos a disposición de los usuarios. La elección de una arquitectura adecuada influye directamente en el rendimiento, la escalabilidad, la seguridad y la disponibilidad de los servicios que se ofrecen en una organización.

Existen múltiples enfoques arquitectónicos, pero entre los más representativos se encuentran la arquitectura centralizada, la arquitectura cliente-servidor y la arquitectura distribuida. Cada una de ellas responde a diferentes necesidades tecnológicas y de negocio, y ha sido empleada en distintas épocas o contextos.

Este informe técnico presenta un análisis comparativo de estas tres arquitecturas, destacando sus características principales, ventajas, limitaciones y casos de aplicación, con el fin de proporcionar un panorama claro que sirva como guía para la toma de decisiones en proyectos de implementación tecnológica.

1. Arquitectura Centralizada

Descripción General

La arquitectura centralizada es uno de los modelos más antiguos y consiste en concentrar todos los recursos en un único servidor o computador central (mainframe). Los usuarios acceden mediante terminales que funcionan como simples interfaces de entrada y salida, sin capacidad de procesamiento local.

En este modelo, el servidor principal realiza todas las operaciones: almacenamiento de datos, ejecución de programas, cálculos y administración de recursos.

Características

- Dependencia absoluta de un único servidor.
- Terminales sin capacidad de procesamiento independiente.
- Control total de los recursos desde un único punto.

Ventajas

 Facilidad de administración: al estar todo en un solo lugar, es sencillo gestionar usuarios, datos y aplicaciones.

- Seguridad elevada: la información se mantiene en un único servidor, lo que permite un control más riguroso.
- Menor costo en estaciones de trabajo: las terminales son dispositivos simples, de bajo costo.

Desventajas

- Escalabilidad muy limitada: es difícil incrementar la capacidad del sistema sin reemplazar el servidor central.
- Un único punto de fallo: si el servidor presenta problemas, todo el sistema queda inactivo.
- Rendimiento limitado: el servidor puede saturarse si el número de usuarios es elevado.

2. Arquitectura Cliente-Servidor

Descripción General

La arquitectura cliente-servidor surge como una evolución de la centralizada, con el objetivo de distribuir parte del trabajo hacia los clientes. En este modelo, los clientes son equipos que solicitan servicios y poseen cierta capacidad de procesamiento, mientras que el servidor central almacena la información y responde a las solicitudes.

Es una arquitectura muy común en el desarrollo de aplicaciones modernas, especialmente en sistemas web y bases de datos.

Características

- División en dos roles principales: cliente y servidor.
- Comunicación basada en peticiones y respuestas.
- Posibilidad de conectar múltiples clientes a un único servidor.

Ventajas

- Mayor flexibilidad: el procesamiento puede dividirse entre cliente y servidor.
- Escalabilidad moderada: se pueden añadir más clientes sin modificar drásticamente la infraestructura.
- Estandarización: ampliamente soportada en múltiples sistemas y plataformas.

Desventajas

- Dependencia del servidor: si el servidor falla, el servicio se interrumpe.
- Posible cuello de botella: el rendimiento depende de la capacidad del servidor.
- Mayor complejidad de implementación respecto a la arquitectura centralizada.

4. Arquitectura Distribuida

Descripción General

La arquitectura distribuida representa el modelo más moderno y avanzado, en el que los recursos no se concentran en un único servidor, sino que se encuentran repartidos en múltiples nodos interconectados. Cada nodo puede actuar como servidor, cliente o ambos, compartiendo la carga de trabajo de manera cooperativa.

Este enfoque elimina la dependencia de un único punto y permite mayor escalabilidad, resiliencia y rendimiento en entornos complejos.

Características

- Recursos (datos, aplicaciones, procesos) distribuidos en diferentes servidores o nodos.
- Alta tolerancia a fallos gracias a la redundancia de información.
- Escalabilidad horizontal: se pueden añadir más nodos según sea necesario.

Ventajas

- Alta disponibilidad: si un nodo falla, otros pueden continuar prestando el servicio.
- Escalabilidad superior: se adapta a grandes volúmenes de datos y usuarios.
- Rendimiento optimizado: distribución de cargas entre múltiples servidores.

Desventajas

- Complejidad de administración: requiere mayor conocimiento técnico para su configuración y gestión.
- Consistencia de datos: se necesitan mecanismos robustos para mantener los datos sincronizados entre nodos.
- Costos de infraestructura: en etapas iniciales puede implicar una inversión significativa.

4. Comparación de las Arquitecturas

Aspecto	Centralizada	Cliente-Servidor	Distribuida
Estructura	Un servidor único concentra todo el procesamiento y almacenamiento.	Un servidor central provee servicios a múltiples clientes.	Varios nodos interconectados comparten recursos y responsabilidades.
Escalabilidad	Muy baja.	Moderada.	Muy alta.
Tolerancia a fallos	Nula (dependencia total de un servidor).	Baja (caída del servidor afecta a los clientes).	Alta (redundancia y resiliencia).
Seguridad	Elevada, pero limitada a un punto central.	Moderada, depende del servidor.	Compleja de implementar por la dispersión de recursos.
Costos	Bajos en terminales, altos en el servidor central.	Balanceados entre clientes y servidor.	Altos inicialmente, pero eficientes en grandes escalas.
Ejemplos	Mainframes, sistemas bancarios antiguos.	Aplicaciones web, correo electrónico, bases de datos.	Cloud computing, blockchain, microservicios.