Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Contents

1	Wstępy		1
	02.10.2024	Grafy Cayleya	1
	1.	Metryka słów	1
	2.	Graf Cavleva	1

1. Wstępy

02.10.2024 Grafy Cayleya

1. Metryka słów

Definicja 1.1: metryka słów

Niech G będzie grupą, a S dowolnym układem jej generatorów. Wówczas dla dowolnych $g_1,g_2\in G$ odległość między nimi w metryce słów definiujemy jako

$$ds(g_1, g_2) = min\{n : g_2 = g_1s_1, ..., s_n, s_i \in S \cup S^{-1}\},\$$

$$gdzie S^{-1} = \{g^{-1} : g \in S\}.$$

Metryka słów jest

- 1. skończona
- 2. symetryczna (z definicji generatorów)
- 3. lewo-niezmiennicza, czyli $(\forall \gamma \in G) ds(\gamma g_1, \gamma g_2) = ds(g_1, g_2)$

Ostatnia własność oznacza, że G działa na sobie jako na przestrzeni metrycznej przez izometrie.

Gromov chce patrzeć na dyskretne przestrzenie metryczne, jakimi są grupy z metryką słów, jako na przestrzenie ciągłe (z dużej odległości).

2. Graf Cayleya

Definicja 1.2: graf Cayleya

Niech G będzie grupą, a S zbiorem jej generatorów. C(G,S) to graf Cayleya o wierz-chołkach będących elementami G i skierowanych krawędziach etykietowanych generatorami:

$$g \xrightarrow{s} gs$$

 $gdzie\ g\in G\ i\ s\in S.$

Przykłady

1. Dla $G = \mathbb{Z}^2$ oraz $S = \{(1,0), (0,1)\}$ graf Cayleya to nieskończona "kratka"

2. Dla grupy cyklicznej rzędu p z generatorem s graf Cayleya to p-kąt

3. TO DO parkietarz kwadratami

Każdy graf Cayleya jest **spójny**, bo jego krawędzie to mnożenie przez generatory. Dodatkowo, grupa G działa na nim przez automorfizmy zachowując krawędzie oraz ich etykiety. To znaczy, że krawędż z wierzchołkami g $\stackrel{\mathsf{s}}{\longrightarrow}$ gs pod działaniem elementu $\gamma \in \mathsf{G}$ staje się $\gamma \mathsf{g} \stackrel{\mathsf{s}}{\longrightarrow} \gamma \mathsf{gs}$.

Jeśli każdą krawędź w grafie Cayleya potraktujemy jako odcinek długości 1, to możemy na nim zdefiniować metrykę która jako odległość dwóch punktów przyjmuje długość najkrótszej ścieżki między nimi. Ta metryka na wierzchołkach pokrywa się z **metryką słów** na grupie G o generatorach S, której graf rozpatrujemy. Przy takiej metryce działanie grupy G jest więc działaniem nie tylko przez automorfizmy, ale przez izometrie (lewa-niezmienniczość).