Test de Mann et Whitney ($\alpha = 0.05$)

	$n_1 n_2$
- 1/////	2
- 1777771	

La table donne la valeur m_{α} tel que $P(M \leqslant m_{\alpha}) = \alpha = 0.05$ pour deux échantillons d'effectifs n_1 et n_2 avec $n_1 \leqslant n_2$.

n_1	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		- 0 1 2	1 2 3 5	-135688	0 2 4 6 8 10 13	0 2 4 7 10 12 15 17	0 3 5 8 11 14 17 20 23	0 3 6 9 13 16 19 23 26 30	1 4 7 11 14 18 22 26 29 33 37	1 4 8 12 16 20 24 28 33 37 41 45	1 5 9 13 17 22 26 31 36 40 45 50 55	1 5 10 14 19 24 29 34 39 44 49 54 59 64	1 6 11 15 21 26 31 37 42 47 53 59 64 70 75		86	2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113	2 8 14 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

Test de Mann et Whitney ($\alpha = 0.01$)

	$n_1 n_2$
O ma	2
- 1777771	

La table donne la valeur m_{α} tel que $P(M \le m_{\alpha}) = \alpha = 0.01$ pour deux échantillons d'effectifs n_1 et n_2 avec $n_1 \le n_2$.

n_1 n_2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		o	- 0 1 2	0 1 3 4	- 1 2 4 6 7	- 0 1 3 5 7 9 11	-0 2 4 6 9 11 13 16	-0 2 5 7 10 13 16 18 21	-1 3 6 9 12 15 18 21 24 27	-13710 1317 2024 2731 34	-14 77 111 155 188 222 266 300 334 338 42	-2 5 8 12 16 20 24 29 33 37 42 46 51	- 2 5 9 13 18 22 27 31 36 41 45 50 55 60	-2 6 10 15 19 24 29 34 39 44 49 54 60 65 70	-2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81	0 3 7 12 17 22 28 33 39 45 51 57 63 68 74 81 87 93	0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105

Table 9

Test de Wilcoxon

La table donne la valeur w_{α} tel que $P(W \leqslant w_{\alpha}) = \alpha$, dans les cas $\alpha = 0.05$ et $\alpha = 0.01$.

a N	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
0,05	2	4	6	8	11	14	17	21	25	30	35	40	46	52	59	66	73	81	89
0,01	-	0	2	3	5	7	10	13	16	20	23	28	32	38	43	49	55	61	68

Table du coefficient de corrélation linéaire

_ a			
d.d.l.	0,10	0,05	0,01
1	0,9877	0,9969	
2	0,9000	0,9500	0,9999
3	0,8054	0,8783	0,9900
4	0,7293	0,8114	0,9587
5	0,6694	0,7545	0,9172
6	0,6215	0,7067	0,8745
7	0,5822	0,6664	0,8343
8	0,5494	0,6319	0,7977 0,7646
9	0,5214	0,6021	0,7348
10	0,4973	0,5760	0,7079
11	0,4762	0,5529	0,6835
12	0,4575	0,5324	0,6614
13	0,4409	0,5139	0,6411
14	0,4259	0,4973	0,6226
15	0,4124	0,4821	0,6055
16	0,4000	0,4683	0,5897
17	0,3887	0,4555	0,5751
18	0,3783	0,4438	0,5614
19	0,3687	0,4329	0,5487
20	0,3598	0,4227	0,5368
25	0,3233	0,3809	0,4869
30	0,2960	0,3494	0,4487
35	0,2746	0,3246	0,4182
40	0,2573	0,3044	0,3932
45	0,2428	0,2875	0,3721
50	0,2306	0,2732	0,3541
60	0,2108	0,2500	0,3248
70	0,1954	0,2319	0,3017
80	0,1829	0,2172	0,2830
90	0,1726	0,2050	0,2673
100	0,1638	0,1946	0,2540

Coefficient de corrélation de rang de Spearman

La table donne la valeur r_{α} tel que $P(|R_S| > r_{\alpha}) = \alpha$.

α	4	5	6	7	8	9	10	11	12	13
0,10	0,99	0,87	0,77	0,69	0,64	0,59	0,56	0,53	0,51	0,49
0,05		0,95	0,85	0,78	0,73	0,68	0,64	0,61	0,59	0,56
0,02		0,99	0,93	0,87	0,82	0,77	0,73	0,70	0,67	0,64
0,01		—	0,97	0,91	0,86	0,82	0,79	0,75	0,72	0,70

Table 12

Test de Kruskal et Wallis

La table donne la valeur h_{α} tel que $P(H \geqslant h_{\alpha}) = \alpha$.

taille des échantillons	$\alpha = 0.05$	$\alpha = 0.01$
3 2 2	4,71	DESTRUCTION OF
3 3 1	5,10	
3 3 2	5,22	6,26
3 3 3	5,60	6,50
4 2 1	4,94	
4 2 1 4 2 2 4 3 1	5,15	6,30
	5,21	
4 3 2	5,42	6,35
4 3 3	5,73	6,75
4 4 1	4,93	6,67
4 4 2	5,45	6,90
4 4 3	5,60	7,14
4 4 4	5,70	7,60
5 2 1 5 2 2	5,00	
5 2 1 5 2 2 5 3 1	5,10	6,40
5 3 1	4,91	6,42
5 3 2 5 3 3	5,25	6,82
5 3 3	5,66	7,03
5 4 1	4,92	6,90
5 4 2 5 4 3	5,27	7,12
5 4 3	5,63	7,44
5 4 4	5,62	7,75
5 5 1	5,00	7,08
5 5 1 5 5 2 5 5 3	5,27	7,30
5 5 3	5,64	7,55
5 5 4 5 5 5	5,64	7,80
5 5 5	5,72	7,98