

Lista 8

Fabio Zhao Yuan Wang*

1. Sejam $a, b \in \mathbb{R}$ em que a < b. Mostre que $(a, b), (-\infty, b), (a, \infty)$ são conjuntos abertos.

Dem: Vejamos que A=(a,b) é um conjunto aberto. Note que para todo $x\in A$, $x\in\mathbb{R}$ e a< x< b. Mais ainda, sejam $\overline{a}=x-a$ e $\overline{b}=b-x$. Como x>a, segue que $\overline{a}=x-a>0$, ou seja $\overline{a}>0$, analogamente temos $\overline{b}>0$. Com isto, considere $r=\min(\overline{a},\overline{b})$, vejamos então, que para todo $x\in A$, $\left(x-\frac{r}{2},x+\frac{r}{2}\right)\subset A$. Ora, como $r=\min(\overline{a},\overline{b})$, segue que $r\leq\overline{a}$ e $r\leq\overline{b}$. Ao considerar $r\leq\overline{a}$, isto é, $-r\geq-\overline{a}$, podemos verificar que,

$$x - \frac{r}{2} \ge x - \frac{\overline{a}}{2} = x - \frac{x - a}{2} = \frac{x + a}{2},$$

e, como x>a, segue que $x-\frac{r}{2}\geq\frac{x+a}{2}>\frac{a+a}{2}=a$, isto é, $x-\frac{r}{2}>a$. Agora, considere $r\leq\overline{b}$, isto é, $-r\geq-\overline{b}$. Visto que,

$$x - \frac{r}{2} \le x - \frac{\overline{b}}{2} = x - \frac{b - x}{2}$$

^{* 🏛} Universidade Tecnológica Federal do Paraná, Cidade, Paraná, Brasil. ➡ fabioyuan@gmail.com.

