Χ

harsh.k@iiitg.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning (course)

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Week 0 ()

Week 1: ()

Week 2: ()

- Lecture 06:
 Discriminant
 Function I
 (unit?
 unit=29&lesson
 =30)
- Lecture 07 : Discriminant Function - II (unit?

Week 2: Assignment 2

Your last recorded submission was on 2023-08-09, 19:47 IST Due date: 2023-08-09, 23:59 IST.

1) 2 points

Choose the correct option regarding discriminant functions $g_i(x)$ for multiclass classification (x is the feature vector to be classified).

Statement i: Risk value R ($\alpha_i|x$) in Bayes minimum risk classifier can be used as a discriminant function.

Statement ii : Negative of Risk value R ($\alpha_i|x$) in Bayes minimum risk classifier can be used as a discriminant function.

Statement iii : Aposteriori probability $P(\omega_i|x)$ in Bayes minimum error classifier can be used as a discriminant function.

Statement iv : Negative of Aposteriori probability $P(\omega_i|x)$ in Bayes minimum error classifier can be used as a discriminant function.

- a. Only Statement i is true
- b. Both Statements ii and iii are true
- c. Both Statements i and iv are true
- d. Both Statements ii and iv are true
- a.
- O_b
- <u>О</u> с.
- \bigcirc d.

2) **2 points**

unit=29&lesson =31)

- Lecture 08:DiscriminantFunction III(unit?unit=29&lesson=32)
- Lecture 09 : Linear Classifier (unit? unit=29&lesson =33)
- Lecture 10 :
 Linear
 Classifier II
 (unit?
 unit=29&lesson
 =34)
- Week 2 : Lecture Materials (unit? unit=29&lesson =35)
- Quiz: Week 2 : Assignment 2 (assessment? name=183)
- Feedback Form for Week 2 (unit? unit=29&lesson =167)

Week 3:()

DOWNLOAD VIDEOS ()

Text
Transcripts ()

Books ()

Problem Solving

Which of the following is regarding functions of discriminant functions $g_i(x)$ i.e., $f(g_i(x))$

- We can not use functions of discriminant functions f(g_i(x)), as discriminant functions for multiclass classification.
- b. We can use functions of discriminant functions, $f(g_i(x))$, as discriminant functions for multiclass classification provided, they are constant functions i.e., $f(g_i(x)) = C$ where C is a constant.
- We can use functions of discriminant functions, f(g_i(x)), as discriminant functions for multiclass classification provided, they are monotonically increasing functions.
- d. None of the above is true.

○ a.

Ob.

<u>О</u> с.

Od.

3) 2 points

The class conditional probability density function for the class ω_i , i.e., $P(x|\omega_i)$ for a multivariate

normal (or Gaussian) distribution (where x is a d dimensional feature vector) is given by

a.
$$p(x|\omega_i) = \frac{1}{(2\pi)^{d/2}|\Sigma_i|^{1/2}} \exp(-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i))$$

b.
$$p(x|\omega_i) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)\right)$$

c.
$$p(x|\omega_i) = \frac{1}{(2\pi)^{d/2}} \exp(-\frac{1}{2}(x-\mu_i)^T(x-\mu_i))$$

d. None of the above

○ a.

b.

O c.

Od.

4) 2 points

There are some data points for two different classes given below.

Class 1 points: $\{(2,6), (3,4), (3,8), (4,6)\}$

Class 2 points: $\{(3,0), (1,-2), (5,-2), (3,-4)\}$

Compute the mean vectors μ_1 and μ_2 for these two classes and choose the correct option.

a.
$$\mu_1 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
 and $\mu_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$

b.
$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
 and $\mu_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

c.
$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
 and $\mu_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

d.
$$\mu_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
 and $\mu_2 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$

Oa.

Session -July 2023 ()

Ob.

O c.

Od.

5) 2 points

There are some data points for two different classes given below.

Class 1 points: $\{(2,6), (3,4), (3,8), (4,6)\}$

Class 2 points: $\{(3,0), (1,-2), (5,-2), (3,-4)\}$

Compute the covariance matrices Σ_1 and Σ_2 and choose the correct option.

- a. $\Sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$
- b. $\Sigma_1 = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
- c. $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- d. $\Sigma_1 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$ and $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Oa.
- Ob.
- <u>О</u> с.
- O d.

6) 2 points

There are some data points for two different classes given below.

Class 1 points: $\{(2,6), (3,4), (3,8), (4,6)\}$

Class 2 points: $\{(3,0), (1,-2), (5,-2), (3,-4)\}$

What will be the value expression of decision boundary between these two classes if both the class has equal class probability 0.5? For the input sample $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ consider $g_i(x) = x^t A_i x + B_i^t x + C$, where

$$A = \, - \frac{1}{2} \Sigma_i^{-1} \, , \; B = \, \Sigma_i^{-1} \mu_i \, , \; \; C = \, - \frac{1}{2} \mu_i^t \Sigma_i^{-1} \mu_i \, - \frac{1}{2} \ln |\Sigma_i| + \ln |P(\omega_i)|$$

- a. $x_1 = 0.09x_2^2 1.12x_2 + 0.5$
- b. $x_2 = 0.19x_1^2 1.12x_1 + 3.5$
- c. $x_1 = 0.09x_1^2 1.12x_2 + 0.5$
- d. $x_2 = 0.19x_2^2 1.12x_1 + 3.5$
- a.
- Ob.
- O c.
- O d.

7) 2 points

Let Σ_i represents the covariance matrix for ith class. Assume that the classes have the same co-variance matrix. Also assume that the features are statistically independent and have same co-variance. Which of the following is true?

- a. $\Sigma_i = \Sigma$, (diagonal elements of Σ are zero)
- b. $\Sigma_i = \Sigma$, (diagonal elements of Σ are non-zero and different from each other, rest of the elements are zero)
- c. $\Sigma_i = \Sigma$, (diagonal elements of Σ are non-zero and equal to each other, rest of the elements are zero)
- d. None of these
 - a.
 - Ob.
 - <u>О</u> с.
 - Od.

8) 2 points

The decision surface between two normally distributed class ω_1 and ω_2 is shown on the figure. Can you comment which of the following is true?

- a. $p(\omega_1) = p(\omega_2)$
- b. $p(\omega_2) > p(\omega_1)$
- c. $p(\omega_1) > p(\omega_2)$
- d. None of the above.
- Oa.
- b.
- Ос.
- O d.

9)

2 points

You are given some data points for two different class.

Class 1 points: {(11, 11), (13, 11), (8, 10), (9, 9), (7, 7), (7, 5), (15, 3)}

Class 2 points: {(7, 11), (15, 9), (15, 7), (13, 5), (14, 4), (9, 3), (11, 3)}

Compute the covariance matrices and choose the correct option.

a.
$$\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 5.65 \end{bmatrix}$$
 and $\Sigma_2 = \begin{bmatrix} 3.65 & -1.0 \\ -1.0 & 3.65 \end{bmatrix}$

b.
$$\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

c.
$$\Sigma_1 = \begin{bmatrix} 3.65 & -1.0 \\ -1.0 & 3.65 \end{bmatrix}$$
 and $\Sigma_2 = \begin{bmatrix} 9.67 & -1.0 \\ -1.0 & 9.67 \end{bmatrix}$

$$\begin{array}{ll} \text{c.} & \Sigma_1 = \begin{bmatrix} 3.65 & -1.0 \\ -1.0 & 3.65 \end{bmatrix} \text{ and } \Sigma_2 = \begin{bmatrix} 9.67 & -1.0 \\ -1.0 & 9.67 \end{bmatrix} \\ \text{d.} & \Sigma_1 = \begin{bmatrix} 9.67 & -1.0 \\ -1.0 & 9.67 \end{bmatrix} \text{ and } \Sigma_2 = \begin{bmatrix} 9.67 & -1.0 \\ -1.0 & 9.67 \end{bmatrix}$$

- Oa
- Ob.
- C.
- Od.

10) 2 points

You are given some data points for two different class.

Class 1 points: {(11, 11), (13, 11), (8, 10), (9, 9), (7, 7), (7, 5), (15, 3)}

Class 2 points: {(7, 11), (15, 9), (15, 7), (13, 5), (14, 4), (9, 3), (11, 3)}

Assume that the points are samples from normal distribution and a two class Bayesian classifier is used to classify them. Also assume the prior probability of the classes are equal i.e.,

$$p(\omega_1) = p(\omega_2)$$

Which of the following is true about the corresponding decision boundary used in the classifier? (Choose correct option regarding the given statements)

Statement i: Decision boundary passes through the midpoint of the line segment joining the means of two classes

Statement ii: Decision boundary will be orthogonal bisector of the line joining the means of two classes.

- Only Statement i is true
- b. Only Statement ii is true
- Both Statement i and ii are true C.
- d. None of the statements are true
 - O a.
 - 🔘 b.
 - \bigcirc c.
 - \bigcirc d.

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers