Math 623, Fall 2013: Problem set 5

- 1. Exercise 2, p. 90
- 2. Prove the following

Theorem Let $-\infty < a < b < \infty$ and let $f : \mathbf{R}^d \times [a,b] \to \mathbf{R}$ be such that f(x,t) is integrable for any $t \in [a,b]$. Let

$$F(t) = \int f(x,t) dx.$$

- (a) Suppose that the map $t \mapsto f(x, \cdot)$ is continuous every x and that there exists an integrable function g such that $|f(x,t)| \leq g(x)$ for all x,t. Then the function F(t) is continuous.
- (b) Suppose that $\frac{\partial f}{\partial t}(x,t)$ exist and that there exists and integrable function h such that $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq h(x)$ for all x,t. Then the function F(t) is differentiable and $F'(t) = \int \frac{\partial f}{\partial t}(x,t) dx$.

Hint: Given t_0 let $\{t_n\}$ be an arbitrary sequence such that $\lim_n t_n = t_0$ and apply the Dominated Convergence Theorem.

- 3. (a) Consider the functions $f_n(x) = \frac{n^2x}{1+n^3x^2}$ defined on the interval [0,1]. Show that the sequence $\{f_n\}$ is not uniformly bounded, i.e., there exists no constant M such that $|f_n(x)| \leq M$ for all $x \in [0,1]$ and all n.
 - (b) Find a nonnegative function g(x) such that $\int_{[0,1]} g(x) dx < \infty$ and $f_n(x) \leq g(x)$ for all n and all $x \in [0,1]$. Hint: Fix x and maximize $f_n(x)$ over n by replacing the discrete variable n by a continuous one.
 - (c) Compute $\lim_{n\to\infty}\int_{[0,1]}f_n(x)dx$.
- 4. Compute $\lim_{n\to\infty} \int_a^\infty n(1+n^2x^2)^{-1} dm$. Distinguish between a>0, a=0 and a<0. Justify your computation carefully. *Hint*: Use the transformation of integrals under dilation.
- 5. (a) Suppose $\{f_n\}$ is a sequence of integrable functions such that $\sum_{n=1}^{\infty} \int |f_n| dx < \infty$. Show that $\sum_{n=1}^{\infty} f_n(x)$ converges a.e. to an integrable function and $\int \sum_n f_n = \sum_n \int f_n$. Hint: Use DCT.
 - (b) Prove that for a > -1 we have $\int_{[0,1]} x^a (1-x)^{-1} \log(x) dx = \sum_{n=1}^{\infty} \frac{1}{(a+n)^2}$
- 6. Consider the function $f_n(x) = ae^{-nax} be^{-nbx}$ where 0 < a < b and for $0 \le x < \infty$ Show that

- (a) $\sum_{n=1}^{\infty} \int |f_n| dx = \infty$. (b) $\sum_{n=1}^{\infty} \int f_n dx = 0$. (c) $\sum_{n=1}^{\infty} f_n(x)$ is integrable on $[0, \infty)$ and $\int_{[0,\infty)} \sum_{n=1}^{\infty} f_n dx = \ln(b/a)$.