PHYSIQUE – OPTIQUE CHAPITRE 1 Lois de l'optique géométrique

SOMMAIRE

- Introduction
- Propriétés de la lumière
- Lois de Snell-Descartes
- Exemples

L'optique

OPTIQUE = Optiké + tekhné

(Vision) (Technique)

Optique (Larousse): science qui traite des lois de la lumière et des phénomènes de la vision ainsi que des phénomènes mettant en jeu des rayonnements présentant des analogies avec la lumière

Plusieurs approches théoriques

- Optique géométrique
- Optique ondulatoire
- Optique quantique

Histoire de l'optique – Antiquité

Approche phénoménologique et géométrique

Euclide ~ -300 1ière notion de rayon lumineux

Deux écoles :

« Intramissionniste » les objets émettent de la lumière **Epicure** (-342 – -270)

« Extramissionnistes » les yeux projettent un flux

Ptolémée (90 – 168)

Table de l'angle de réfraction à l'interface air/eau Compromis entre les intra et extramissionniste

INTRODUCTION – Histoire de l'optique Époque médiévale et renaissance

Alhazen (965 – 1039)

L'œil est le récepteur (absence de vision nocturne) Soleil → objets → œil

Newton (1643 – 1727) : Lumière = jet de lumière qui rebondisse sur les surface Mise en évidence spectre lumineux (dispersion par un prisme)

Anneau de Newton

Huygens (1629 – 1695) : Nature ondulatoire du phénomène

Histoire de l'optique – 19^e siecle : Théorie ondulatoire

Thomas Young (1773 – 1829) : nouvelles expériences d'interférence.

Lumière = vibration d'un milieu très ténu : l'éther

James Clerk Maxwell (1831 – 1879) : uniformisation optique et électricité

→ onde électromagnétique

$$\begin{cases} \operatorname{div} \vec{D} = \rho & \operatorname{div} \vec{B} = 0 \\ \overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t} & \overrightarrow{\operatorname{rot}} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} \end{cases}$$

20^e siècle – Vers la dualité onde-corpuscule

Fin 19^e siècle effet photoélectrique

1905 : Einstein émet l'hypothèse des photon

1924 : Photons mis en évidence (effet Compton)

Approche ondulatoire

Optique ondulatoire:

lumière = onde / rayonnement électromagnétique

$$\vec{E} = \vec{E}_0 \sin(\omega t - \vec{k} \cdot \vec{r})$$

 \vec{E}_0 amplitude de l'onde ω pulsation de l'onde

$$\omega = 2\pi v = \frac{2\pi}{T}$$

 $\omega = 2\pi v = \frac{2\pi}{T}$ { v fréquence en Hz T période en s

Propagation dans le vide et spectre de la lumière

Longueur d'onde : distance entre deux maxima de l'amplitude

$$\lambda = c T = \frac{c}{v}$$

Célérité de la lumière (vide) :

$$c = 299792458 \, m \cdot s^{-1}$$

Onde

– Longueur d'onde →

Propagation dans un milieu

Indice optique : la vitesse de propagation de la lumière dépend du milieu

$$n = \frac{C}{V} \quad (c > v \Rightarrow n \ge 1)$$

n sans unité

v vitesse de la lumière dans le milieu

vide	1
eau	1,33
verre	1,52

Matériau dispersif:

l'indice dépend de la longueur d'onde

Modèle de Cauchy:

$$n(\lambda) = A + \frac{B}{\lambda^2}$$

Propriétés de la lumière – Approche géométrique

Optique géométrique :

Lumière = Rayons/Faisceaux lumineux

Lois déterminées par construction géométrique des rayons

Echelle de tailles $L >> \lambda$

Optique géométrique : applications actuelles

Principes fondamentaux

- Les faisceaux lumineux peuvent être décomposés en une infinité de rayons lumineux que l'on peut étudier de manière indépendante

- Les rayons lumineux se propagent en ligne droite dans les milieux homogènes
- Principe du retour inverse : Si la lumière se propage d'un point A vers un point B ou de B vers A, elle emprunte la même trajectoire
- La lumière suit le trajet de plus courte durée

Notions de source, objet, trajectoire et image

Source : désigne tout dispositif émettant ou diffusant de la lumière

Système optique: ensemble d'éléments optiques, tels que des miroirs, des lentilles, des réseaux de diffraction, etc. permettant de modifier la trajectoire des rayons lumineux ou les propriétés de la lumière

Objet : Pour un système optique donné, les rayons incidents proviennent des points formant l'objet

Image : les rayons issus des points objets traversent le système optique pour former l'image

Notions de source, objet, trajectoire et image

Rappel : le théorème de Thalès :

Permet de calculer des longueurs dans certaines figures géométriques

Nécessite la présence de deux droites sécantes coupées par deux droites parallèles.

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}$$

Lois de Snell-Descartes : Problèmatique

Dioptre = interface entre deux milieux transparents, homogènes et isotropes

Transparent : le terme transparent fait référence ici à un milieu non absorbant.

Homogène : les propriétés du milieu sont les mêmes en tout point de l'espace.

Isotrope : les propriétés du milieu sont les mêmes dans toutes les directions.

Lois de Snell-Descartes : Problèmatique

La question est de savoir quelle trajectoire va emprunter la lumière pour aller d'un point A vers un point B?

Principe de Fermat:

La lumière se propage d'un point à un autre de façon à minimiser le temps de trajet

Lois de Snell-Descartes : la réflexion

La réflexion s'effectue toujours dans le plan d'incidence

Les angles d'incidence i et de réflexion i' sont identiques

Lois de Snell-Descartes : la réfraction

Le rayon réfracté appartient au plan d'incidence

$$n_1 \sin i_1 = n_2 \sin i_2$$

Cas d'un milieu plus réfringent – Réfraction limite

Milieu 2 plus réfringent que le milieu 1 : $n_2 > n_1$

$$\Rightarrow \sin i_1 = \frac{n_2}{n_1} \sin i_2$$

$$\Rightarrow \sin i_1 > \sin i_2$$

$$\Rightarrow i_1 > i_2$$

Angle de réfraction limite :

Si
$$i_1 = 90^\circ \Rightarrow i_{2_{\text{lim}}} = \arcsin \frac{n_1}{n_2}$$

Cas d'un milieu moins réfringent – Réflexion totale

Milieu 2 moins réfringent que le milieu 1 : $n_2 < n_1$

$$\Rightarrow \sin i_1 = \frac{n_2}{n_1} \sin i_2$$

$$\Rightarrow \sin i_1 < \sin i_2$$

$$\Rightarrow i_1 < i_2$$

Angle de réflexion totale :

Si
$$i_2 = 90^{\circ} \Rightarrow i_{1_{\text{lim}}} = \arcsin \frac{n_2}{n_1}$$

Si $i_1 > i_1$, plus de réfraction possible : réflexion totale

Exemple 1 – Lame à face parallèle

Déterminer r₂ en fonction de i₁, n_{air} et n_{verre}

Exemple 2 – Le petit poisson dans l'eau... nage... nage...

Retrouver la position de l'image du poisson par l'interface air/eau

Exemple 2 – ... jusqu'à...

