P.T.O.

F.E. (Semester – II) (RC 2016-17) Examination, May/June 2018 ENGINEERING MATHEMATICS – II

Total Marks: 100 Duration: 3 Hours Instructions: i) Attempt five questions, two each from Part - A and Part - B and one from Part - C. ii) Assume suitable data, if necessary. iii) Figures to the right indicate full marks. In the supplies to the 1. a) Evaluate $\int_{0}^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx$ by applying differentiation under the integral 8 b) Find the perimeter of the curve $r = 2aSin\theta$. c) Evaluate $\int_{0}^{1} \int_{y^2}^{1} Sin\left(\frac{\pi y}{\sqrt{x}}\right) dxdy$ 6 2. a) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{x-1}^{x} 3y + x dx dy$ 8 b) Evaluate $\int_{0}^{1} \int_{1}^{1} \int_{0}^{1-x} x + y \, dz \, dx \, dy$. 6 c) For the curve $\overline{r}(t) = a \cos t \overline{i} + a \sin t \overline{j} + b t \overline{k}$ $a \ge 0, b \ge 0$ and $a^2 + b^2 \ne 0$ find 6 the curvature. 3. a) Find by double integration the volume of the solid generated by the revolution of the ellipse $x^2 + \frac{y^2}{4} = 1$ about the x-axis. 6 b) The velocity of a particle at time t is given by $\overline{v} = \sin 2t \overline{i} + 2\cos 2t \overline{j} + t \overline{k}$ was at origin at t = 0. Find the position vector and acceleration of the particle for t ≥ 0. Also find the times for which the position and acceleration are 7 orthogonal. c) Evaluate $\iiint 2x + z \, dxdydz$ over the region $\{(x, y, z)/y^2 \le x, x \le 1, 0 \le z \le 1\}$. 7

6

8

F.E. (Semester - II) (RC 2018 - TRA9 mination, May/June 2018

- 4. a) In which direction is the rate of change of $f(x, y, z) = 2x^2 + 3z + y^2$ at (1, -2, 2) maximum? Find the magnitude of this maximum.
 - b) Show that $\overline{F} = 4xy\hat{i} + (2x^2 + 4z)\hat{j} + 4y\hat{k}$ is irrotational and find its scalar Potential.
 - c) Solve the following:
 - i) $(x + y + 1)^2 \frac{dy}{dx} = 1$
 - ii) $\frac{dy}{dx} y \tan x = y^4 \sec x$
- 5. a) Use Stoke's theorem to evaluate the surface integral $\iint (\nabla \times \overline{F}) \cdot \hat{n} dS$ where $\overline{F} = (x^2y)\hat{i} + (2y+z)\hat{j} + y^2\hat{k}$ and \hat{n} is the unit outward normal vector to S, S being the surface of the region bounded by x = 0, y = 0, x + 2y + z = 2 excluding the surface in the xy plane.
 - b) Prove for any scalar fields f and g
 - i) div(grad f) = $\nabla^2 f$
 - ii) grad(f g) = f(gradg) + g(gradf).
 - Solve $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 4y = x \log_e x \cdot \log_e x \cdot \log_e x$
- 6. a) Verify Green's Theorem in the plane for ∮(2x + y²)dx + (5 + xy)dy along the boundary of the region bounded by y² = 4x and y = 2x.
 - 10 The velocity of a particle at time t is given by $\overline{v} = \sin 2t \, \overline{1} + 2\cos \frac{v}{2}$ and society of the position vector and acceleration of the test of the position vector and acceleration of the test of the t
 - (D³ D² 6D)y = $x^2 + 1$ mainly not seem and only only $0 \le 1$ to

.9 - 5

ii) $(D^2 + 5D + 6)y = \sinh(x)$.

7. a) If $\overline{r}(t) = \overline{a}e^{2t} + \overline{b}e^{2t}$, then prove that $\frac{d^2\overline{r}}{dt^2} - 4\frac{d\overline{r}}{dt} + 4\overline{r} = 0$. Where \overline{a} and \overline{b} are constant vectors.

7 here

b) If $f = x^2\overline{i} - 2xy\overline{j} + yz\overline{k}$, compute $\int_C^f dr$ between (2, 1, 2) and (6, 9, 8) where C is the path with parametric equations x = 2t, $y = t^2$, z = 3t - 1.

c) Solve $(1+x)\frac{dy}{dx} + 1 = 2e^{-y}$.

8. a) The curve r = 2acosθ is revolved about the X-axis. Use integration to find the surface area of the object generated.

b) Find the volume of the region $\{(x, y, z)/x^2 + y^2 \le z^2, x^2 + y^2 + z^2 \le 4\}$.

c) Solve $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log_e x$.

