ОГЛАВЛЕНИЕ

	J
ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУ-	
РЫ	2
1.1 Теория управления по прогнозирующей модели	
1.2 Экономический МРС	6
1.3 Задачи оптимального управления	6
1.4 Численные методы решения задач оптимального управления и	
программные средства	8
ГЛАВА 2 НАЗВАНИЕ ГЛАВЫ	Ć
2.1 Название раздела 1	G
2.2 Название раздела 2	Ć
ЗАКЛЮЧЕНИЕ	1(
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	11

Γ ЛАВА 1

ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУРЫ

1.1 Теория управления по прогнозирующей модели

Управление по прогнозирующей модели(MPC)- это продвинутый метод управления, который используется для управления процессом при одновременном удовлетворении набора ограничений. Он используется в перерабатывающей промышленности на химических и нефтеперерабатывающих заводах с 1980-х годов. В последние годы он также используется в моделях балансировки энергосистем и в силовой электронике. Прогнозирующие контроллеры моделей опираются на динамические модели процесса. Основным преимуществом МРС является тот факт, что он позволяет оптимизировать текущий временной интервал, сохраняя при этом будущие временные интервалы в учете. Это достигается за счет оптимизации конечного временного горизонта, но только реализации текущего временного интервала и последующей повторной оптимизации. Модели используемые в МРС обычно призваны показать поведение сложных динамических систем. Модели МРС предсказывают изменение в зависимых переменных моделируемой системы, которое будет вызвано изменениями в независимых переменных. Независимые переменные, которые не могут быть [скорректированы? связаны с? управлением], воспринимаются как возмущения. Зависимыми переменными в этих процессах представляют либо задачи управления, либо ограничения на процесс. МРС использует текущие значения переменных, текущее динамическое состояние процесса, модели МРС, а также значение эталона? и ограничения переменных для расчета будущих изменений зависимых переменных. Эти изменения рассчитаны так, чтобы держать зависимые переменные близко к эталону, соблюдая ограничения как для независимых, так и для зависимых переменных. МРС обычно вычисляет только первое изменение в каждой независимой переменной, и повторяет вычисление, когда требуется следующее изменение.

Многие реальные процессы нелинейны, но их можно считать линейными на маленьком рабочем диапазоне. Линейный подход используется в большиснтве приложений с механизмом обратной связи МРС, компенсирующим ошибки прогнозирования из-за структурного несоответствия между моделью и процессом. В управлениях, которые состоят только из линейных моделей, принцип суперпозиции линейной алгебры позволяет суммировать эффект из-

менений нескольких независимых переменных для прогнозирования реакции зависимых переменных. Это упрощает задачу управления до ряда прямых матричных вычислений, которые быстры и безошибочны. Когда линейные модели недостаточно точны для представления реальных нелинейных процессов, можно использовать несколько подходов. В некоторых случаях переменные процесса могут быть преобразованы до и / или после линейной модели МРС, чтобы уменьшить нелинейность. Процесс может контролироваться с помощью нелинейного МРС, который использует нелинейную модель непосредственно в приложении управления. Нелинейная модель может быть в форме эмпирического подбора данных (например, искусственных нейронных сетей) или динамической модели высокой точности, основанной на фундаментальных балансах массы и энергии.

МРС основан на пошаговой оптимизации модели с конечным шагом/горизонтом??? В момент времени t замеряется текущее состояние? и вычисляется стратегия управления с минимальными затратами (с помощью алгоритма численной минимизации) для относительно короткого горизонта в будущем: [t, t+T]. В частности, онлайн-вычисления или вычисления «на лету» используются для изучения траекторий состояния, которые исходят из текущего состояния, и находят (посредством решения уравнений Эйлера – Лагранжа) стратегию с минимальными затратами до времени t+T. Реализуется только первый шаг стратегии управления, затем снова производится измерение состояния, и вычисления повторяются, начиная с нового текущего состояния. Получается новый элемент управления и новый прогнозируемая траектория состояния. Горизонт прогнозирования продолжает смещаться вперед, и по этой причине MPC также называют управлением по смещаемому горизонту.

МРС — многомерный алгоритм управления, который использует:

- Внутренняя динамическая модель процесса.
- Функция затрат Ј над смещаемым горизонтом.
- Оптимизационный алгоритм минимизирующий функцию стоимости J используя управляющее воздействие.

В западной литературе управление в реальном времени представлено теорией управления по прогнозирующей модели — Model Predictive Control (MPC), также называемая Receding Horizon Control (RHC). Основными приложениями теории являются задачи стабилизации динамических систем. Современная теория нелинейного MPC предлагает основанные на решении за-

дач оптимального управления методы построения обратных связей для нелинейных объектов.

Главная идея MPC — использование математической модели управляемого процесса в пространстве состояний для предсказания и оптимизации будущего поведения системы. Поясним на примере модели нелинейного процесса управления

$$\dot{x} = f(x, u) \tag{1.1}$$

где $x = x(t) \in \mathbb{R}^n$ — состояние модели в момент времени $t; u = u(t) \in \mathbb{R}^r$ — значение управляющего воздействия; $f: \mathbb{R}^n \to \mathbb{R}^r$ — заданная функция, обеспечивающая существование и единственность решения (1.1) при любом допустимом управляющем воздействии.

Нелинейное управление по прогнозирующей модели Нелинейное управление по прогнозирующей модели — это оптимизационный метод для управления по обратной связи нелинейных систем. Его основные приложения — это [стабилизационная задача и задача отслеживания?? stabilization and tracking problems]. Предположим, что нам дан контролируемый процесс, состояние которого x(n) измеряется в дискретные моменты времени t_n $n=0,1\ldots$ «Контролируемый» означает, что в каждый момент времени мы можем выбрать управляющее воздействие u(n), которое влияет на будущее поведение состояния системы. В [следящем?? tracking] управлении задача состоит в том, чтобы определить управляющее воздействие u(n) таким образом, чтобы x(n) следовало заданному эталону $x^{ref}(n)$ настолько точно, насколько это возможно. Это значит, что если текущее состояние далеко от эталонного, то мы должны управлять системой в направлении эталонного состояния, а если текущее состояние уже близко к эталону, то мы стараемся удержать его там. Для простоты будем считать, $x(n) \in X = R^d$ и $u(n) \in U = R^m$, более того считаем эталон константой и равным $x_* = 0$, т.е, $x^{ref}(n) = x_* = 0$ для всех $n \geqslant 0$. С таким константным эталоном задача отслеживания упрощается до задачи стабилизации. Так как мы хотим иметь возможность влиять на отклонение x(n) от эталонного значения $x_* = 0$, нам бы хотелось иметь u(n)в [обратном? feedback] виде, т.е. в виде $u(n) = \mu(x(n))$, где некоторое отображение? отображает состояние $x \in X$ во множество значений управления U. Идея управления по прогнозирующей модели — как использовать модель процесса с целью предсказания и оптимизации будущего поведения системы. Будем рассматривать модели вида $x^+ = f(x,u)$ (1.1) где $f: X \times U \to X$ это известная, вообще говоря, нелинейная функция, которая ставит в соответствие состоянию х и значению управления и [последовательное значение? successor state] x^+ в следующий момент времени. Начиная с текущего состо-

яния x(n), для любой последовательности управлений $u(0), \ldots, u(N-1)$ с длиной горизонта $N \geqslant 2$, мы можем совершать итерации (1.1) с целью составления прогнозируемой траектории x_n определённой как $x_n(0) = x(n)$, $x_u(k+1) = f(x_u(k), u(k)), k = 0, \dots, N-1$ (1.2) Этим способом мы получаем прогнозы $x_u(k)$ для состояния системы x(n+k) в момент времени t_{n+k} в будущем. Таким образом, мы получаем прогноз поведения системы на дискретном интервале t_n, \ldots, t_{n+N} в зависимости от выбранной последовательности управлений $u(0), \ldots, u(N-1)$. Теперь мы используем оптимальное управление для определения $u(0), \ldots, u(N-1)$ таким образом, чтобы x_u было как можно ближе к $x_* = 0$. С этой целью мы измеряем расстояние между $x_u(k)$ и $x_* = 0$ для $k = 0, \dots, N-1$ с помощью функции $\ell(x_u(k), u(k))$. То есть мы не только вводим штраф за отклонение состояния от эталона, но также – если хотим — расстояние значений управления u(k) до эталонного управления u_* , которое мы здесь также выбираем $u_*=0$. Стандартныйи популярный выбор для этой цели – это квадратичная функция $\ell(x_u(k), u(k)) = ||xu(k)||^2 + \lambda ||u(k)||^2$ где || . || обозначает обычную Евклидову норму, а $\lambda \geqslant 0$ это весовой параметр управления, который также может быть принят равным 0, если мы желаем вводить штраф. Теперь задача оптимального управления выглядит так:

minimize
$$J(x(n), u(.)) := \sum_{k=0}^{N-1} \ell(x_u(k), u(k))$$

Для всех допустимых последовательностей управления $u(0), \ldots, u(N-1)$ с x_u вычисленными по формулам (1.2). Будем считать, что ЗОУ имеет решение, которое получается в результате минимизации последовательности управлений $u^*(0), \ldots, u^*(N-1)$, то есть

$$\min J(x(n), u(.)) = \sum_{k=0}^{N-1} \ell(x_{u^*}(k), u^*(k))$$

Чтобы получить желаемое значение величины обратной связи $\mu(x(n))$, мы теперь устанавливаем $\mu(x(n)) := u^*(0)$, то есть, мы используем первый элемент последовательности оптимальных управлений. В следующие моменты времени t_{n+1}, t_{n+2}, \ldots мы повторяем процедуру с новыми измерениями $x(n+1), x(n+2), \ldots$ с целью получения переменных обратной связи $\mu(x(n+1)), \mu(x(n+2)), \ldots$ Другими словами, мы получаем закон обратной связи μ с помощью итерационной онлайн оптимизации над прогнозами, полученными с помощью нашей модели (1.1). Это первая ключевая характеристика управления по прогнозирующей модели.

С точки зрения горизонта планирования, при выполнение этих итераций, траектории $x_u(k), k=0,\ldots N$ обеспечивают прогноз на дискретном интервале $t_n,\ldots t_{n+N}$ в момент времени t_n , на интервале $t_{n+1},\ldots t_{n+N+1}$ в момент времени t_{n+1} , на интервале $t_{n+2},\ldots t_{n+N+2}$ в момент времени t_{n+2} и т. д. Следовательно, горизонт планирования движется, и этот движущийся горизонт является второй ключевой характеристикой управления по прогнозирующей

1.2 Экономический МРС

Экономический МРС это вид МРС, в котором, в отличие от обычного, задача управления не обязательно связана со стабилизацией априори заданной точки [значения?] (или траектории), а с оптимизацией некоторого общего критерия эффективности, возможно относящегося к экономике рассматриваемой системы. В связи с использованием общего критерия эффективности оптимальный режим работы рассматриваемой системы может быть не стационарным, а циклическим или даже более сложным. Отсюда возникает вопрос, как узнать, каков оптимальный режим работы данной системы и данной функции стоимости. Более того, желательно гарантировать, чтобы замкнутая система [система с обратной связью???] возникающая в результате применения схемы экономического МРС, «находила» оптимальное рабочее поведение, то есть сходилась к оптимальной траектории.

1.3 Задачи оптимального управления

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Постановка любой конкретной задачи оптимального управления включает в себя ряд факторов: математическую модель управляемого объекта, цель управления (именуемую иногда критерием качества), различного рода ограничения на траекторию системы, управляющее воздействие, длительность процесса управления, класс допустимых управлений и т.д.

1.3.1 Постановка задач оптимального управления

Модели объекта

В зависимости от вида рассматриваемого явления и желаемой степени детализации его изучения могут быть использованы различные типы уравнений: обыкновенные дифференциальные уравнения, уравнения с последействием, стохастические уравнения, уравнения в частных производных и т.д. Предположим ради определенности, что эволюция объекта описывается системой обыкновенных дифференциальных уравнений.

$$\dot{x}(t) = f(t, x(t), u), \dot{x}(t) = \frac{dx}{dt}, t_0 \le t \le T \tag{1}$$

Здесь $u \in \mathbb{R}^m$ — управление, $x \in \mathbb{R}^n$ — фазовый вектор системы, $f \in \mathbb{R}^n$ — заданная функция, \mathbb{R}^n —евклидово пространство размености п. Придавая управлению и различные возможные значения, получаем различные состояния объекта, среди которых выбирается оптимальное.

Критерий качества

Управление системой (1) осуществляется для достижения некоторых целей, которые формально записываются в терминах минимизации по и функционалов J, определяемых управлением и и траекторией x, где $J=\int_{t_0}^T (F(t,x(t),u)dt) + \varphi(T,x(T)) \to min$ (2)

Здесь F и φ – заданные скалярные функции. Задача (1), (2) в общем виде называется задачей Больца. Если F=0, то её называют задачей Майера, а если $\varphi=0$, то это задача Лагранджа.

Ограничения на траекторию

Иногда в реальных ситуациях траектория не может принадлежать какой-либо части пространства R^n . Тогда указывают, что $x(t) \in G(t)$, где G(t)-заданная область в R^n . В зависимости от типа ограничений выделяют различные классы задач управления. В задачах с фиксированными концами начальное состояние $x(t_0)$ и конечное состояние x(T) заданы. Если $x(t_0)(x(T))$ не задано, то получаем задачу со свободным левым(правым) концом. Также ограничения могут быть интегрального характера: $\int_{t_0}^T F(t,x(t),u)dt \leq 0$

Если в задаче (1),(2) начальное и конечное положение задано, моменты начала и конца движения свободны, функция $\varphi = 0$, а F = 1, то получаем задачу оптимального быстродействия.

Ограничения на управление

Ограничения на управление зависят от того, какая информация о системе (1) доступна в момент выработки управляющего воздействия. Если $\mathbf{x}(t)$ недоступен, то оптимальное управление ищется в классе функций $\mathbf{u}(t)$, зависящих только от \mathbf{t} . Тогда оптимальное управление называется программным. Если $\mathbf{x}(t)$ известен при $t_0 \leq t \leq T$, то оптимальное управление ищется в классе функционалов $u(t, x_{t_0}^t)$ и называется управлением по обратной связи. $x_{t_0}^t$ означает всю траекторию движения на отрезке $t_0 \leq s \leq T$

1.3.2 Условия оптимальности, принцип максимума

Сформулируем необходимые условия оптимальности в форме принципа максимума для задачи Майера

$$\dot{x}(t) = f(t, x(t), u), t_0 \le t \le T, x(t_0) = x_0,$$

 $u(t) \in U, J = F(x(t)) \to min$ (3)

 $U\subset R^m$ — заданное множество, x_0 — заданное начальное положение системы. Введём в рассмотрение скалярную функцию H и вектор сопряжённых переменных $\psi\in R^n$ с помощью соотношений

$$H(t,x(t),u(t),\psi(t))=\psi'(t)f(t,x(t),u(t)),$$
 $\dot{\psi}(t)=-\frac{\partial H}{\partial x}(t,x(t),u(t),\psi(t)),$ (4) $\psi(T)=-\frac{\partial F(x(t))}{\partial x},$ где '— знак транспонирования.

Предположим, что u(t) — оптимальное управление, а $x(t)\psi(t)$ — соответствующие траектория и вектор сопряжённых переменных, удовлетворяющие уравнениям (3) (4). Тогда функция $H(t,x(t),u,\psi(t))$ достигает своего максимума по $u\in U$ в точке $\mathbf{u}(t)$

$$H(t, x(t), u(t), \psi(t)) = \max_{u \in U}(t, x(t), u, \psi(t)).$$
 (5)
Из (5) найдём зависимость и от t, ψ, x , то есть $u = u(t, x(t), \psi(t))$ (6)

Далее подставим (6) в (3) и (4). В результате получим краевую задачу для системы обыкновенных дифференциальных уравнений относительноx(t) и $\psi(t)$. Только среди её решений может находиться оптимальная траектория. Если x(t) и $\psi(t)$ найдены, то оптимальное управление находится из (6). Однако не стоит забывать, что (3)-(5) являются необходимыми условиями оптимальности, а значит, необходимо дополнительно подтвердить, что найденные траектории и управление являются оптимальными

1.4 Численные методы решения задач оптимального управления и программные средства

ГЛАВА 2 НАЗВАНИЕ ГЛАВЫ

(Bpe3Ka)		
2.1	Название раздела 1	
2.2	Название раздела 2	
••••		
Не забываем ледать выводы		

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1 Агаев, Р.П. Сходимость и устойчивость в задачах согласования характеристик (обзор базовых результатов) / Р.П. Агаев, П.Ю. Чеботарев // УБС. 2010. Вып. 30.1. С. 470–505.
- 2 Асеев С. М., Кряжимский А. В. Принцип максимума Понтрягина и задачи оптимального экономического роста //Труды Математического института имени ВА Стеклова. 2007. Т. 257. № 0. С. 3-271.
- 3 Балашевич, Н.В. Построение оптимальных обратных связей по математическим моделям с неопределенностью / Н.В. Балашевич, Р. Габасов, Ф.М. Кириллова // Ж. вычисл. матем. и матем. физ. 2004. Т. 44, N = 2. С. 265-286.
- 4 Балашевич, Н.В. Численные методы программной и позиционной оптимизации линейных систем управления / Н.В. Балашевич, Р. Габасов, Ф.М. Кириллова // Ж. вычисл. матем. и матем. физ. 2000. Т. 40, № 6. С. 838-859.
- 5 Беллман, Р. Динамическое программирование / Р. Беллман. М.:Инностранная литература, 1960. 400 с.
- 6 Данциг, Д. Линейное программирование, его применения и обобщения / Д. Данциг. М.: Прогресс, 1966. 600 с.
- 7 Дмитрук Н.М., Габасов Р., Калинин А.И. Децентрализованные стратегии в задачах опти-мального управления и стабилизации взаимосвязанных динамических систем: отчет о НИР (заключительный) / НИИ ППМИ; науч. рук. Дмитрук, Н.М. 71 с.
- 8 Дмитрук, Н.М. Оптимальное управление взаимосвязанными объектами // В сборнике "Динамика систем и процессы управления Труды Международной конференции, посвященной 90-летию со дня рождения академика Н.Н. Красовского". Изд-во: Институт математики и механики УрО РАН им. Н.Н. Красовского, Екатеринбург, 2015. С. 147-154.
- 9 Дмитрук, Н.М. Оптимальное управление мультиагентными динамическими системами в условиях неопределенности / Н.М. Дмитрук // Доклады НАН Беларуси. 2014. Т. 58, № 2. С. 11-15.
- 10 Габасов Р., Кириллова Ф.М., Во Тхи Тань Ха. Оптимальное управление в реальном времени многомерным динамическим объектом // Автоматика и телемеханика. 2015. № 1. С. 121–135.

- 11 Габасов, Р. Принципы оптимального управления / Р. Габасов, Ф.М. Кириллова // Докл. НАН Беларуси. 2004. Т. 48, № 1. С. 15-18.
- 12 Габасов, Р. Оптимальное децентрализованное управление динамическими системами в условиях неопределенности / Р. Габасов, Н.М. Дмитрук, Ф.М. Кириллова // Ж. вычисл. матем. и матем. физ. 2011. Т. 51, N 7. С. 1209-1227.
- 13 Габасов, Р. Оптимальное управление динамическим объектом по совершенным измерениям его состояний / Р. Габасов, Ф.М. Кириллова, Н.С. Павленок // Докл. Академии наук. 2012. Т. 444, № 4. С. 371-375.
- 14 Габасов, Р. Оптимальное децентрализованное управление группой динамических объектов / Р. Габасов, Н.М. Дмитрук, Ф.М. Кириллова // Ж. вычисл. матем. и матем. физ. 2008. Т. 48, № 4. С. 593-609.
- 15 Габасов Р. Ф., Кириллова Ф. М. Оптимизация линейных систем: Методы функционального анализа. Изд-во Белорус. гос. ун-та, 1973.
- 16 Габасов Р., Кириллова Ф.М., Павленок Н.С. Оптимальное управление динамическим объектом по совершенным измерениям его состояний // Доклад Академии
- 17 Габасов Р., Кириллова Ф. М., Костюкова О. И. Оптимизация линейной системы управления в режиме реального времени //Известия РАН. Техническая кибернетика. 1992. Т. 4. С. 3-19.
- 18 Габасов Р., Кириллова Ф.М., Костина Е.А. Замыкаемые обратные связи по состоянию для оптимизации неопределенных систем управления // Автоматика и телемеханика, 1996
- 19 Габасов Р., Н.М. Дмитрук, Ф.М. Кириллова. Оптимальное наблюдение за нестационарными системами // Известия РАН. Теория и системы управления. № 3, 2002. С. 35 46.
- 20 Габасов Р., Кириллова Ф. М. Принципы оптимального управления //Докл. НАН Беларуси. 2004. Т. 48. №. 1. С. 15-18.
- 21 Габасов Р., Кириллова Ф.М., Поясок Е.И. Оптимальное наблюдение в реальном времени линейного динамического объекта // Доклады Академии наук. 2013. Т. 448, № 3. С. 145–148.
- 22 Габасов Р., Н.М. Дмитрук, Ф.М. Кириллова. Оптимальное управление многомерными системами по неточным измерениям их выходных сигналов // Труды Института матема-тики и механики УрО РАН, Т.10, №2, 2004. С. 33-57.
 - 23 Каляев И. А., Гайдук А. Р., Капустян С. Г. Модели и алгоритмы

- коллективного управления в группах роботов $//\mathrm{M}$.: Физматлит. 2009. Т. 280.
- 24 Кириллова, Ф.М. Синтез оптимальных систем оптимальное управление в реальном времени / Ф.М. Кириллова, Н.М. Дмитрук, Р. Габасов // В сборнике "Динамика систем и процессы управления Труды Международной конференции, посвященной 90-летию со дня рождения академика Н.Н. Красовского". Изд-во: Институт математики и механики УрО РАН им. Н.Н. Красовского, Екатеринбург, 2015. С. 208-219
- 25 Кряжимский, А.В. Программный критерий разрешимости задачи позиционного наведения с неполной информацией. Линейные управляемые системы / А.В. Кряжимский, Н.В. Стрелковский// Труды Институт математики и механики УрО РАН. 2014. Т.20, № 3. С. 132–147.
- 26 Куржанский, А.Б. Задача управления групповым движением. Общие соотношения / А.Б. Куржанский // Доклады РАН. 2009. Т. 426, N 1. С. 20—25.
- 27 Куржанский, А.Б. О задаче группового управления в условиях препятствий / А.Б. Куржанский // Тр. Ин-та математики и механики УрО РАН. Екатеринбург. 2014. Т. 20, № 3. С. 166-179.
 - 28 Малкин И.Г. Теория устойчивости движения М., Наука, 1966
- 29 Петрикевич Я. И. Линейные алгоритмы управления геометрическим расположением объектов в многоагентной системе //Управление большими системами: сборник трудов. − 2010. − №. 30-1.
- 30 Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Физматгиз, 1961. 392 с.
- 31 Сетевые модели в управлении / Сборник статей (под ред. Д.А. Новикова, О.П. Кузнецова, М.В. Губко). М.: Эгвес, 2011. 443 с.
- 32 Фельдбаум А.А. Оптимальные процессы в системах автоматического регулирования // Автоматика и телемеханика. 1953. Т. 14, № 5. С. 712–728.
- 33 Constrained model predictive control: Stability and optimality / D.Q. Mayne [et. al] // Automatica. 2000. Vol. 36, no. 6. P. 789-814.
- 34 Distributed model predictive control: A tutorial review and future research directions / P.D. Christofides [et. al] // Computers & Chemical Eng. $-2013.-Vol.\ 51.-P.\ 21-41.$
- 35 Distributed model predictive control / E. Camponogara [et. al] // IEEE Control Systems Magazine. -2002. Vol. 22, no. 1. P. 44-52.

- 36 Dmitruk, N.M. Optimal Measurement Feedback Control of Finite-time Continuous Linear Systems / N.M. Dmitruk, R. Findeisen, F. Allgöwer // 17th IFAC World Congress. Seoul, 2008.
- 37 Dmitruk, N. Robust Optimal Control of Dynamically Decoupled Systems via Distributed Feedbacks / N. Dmitruk // Optimization in the Natural Sciences. Communications in Computer and Information Science. Springer, 2015. Vol. 499. P. 95-106.
- 38 Farina, M. Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems / M. Farina, R. Scattolini // Automatica. 2012. Vol. 48, no. 6. P. 1088-1096.
- 39 Grune L., Pannek J. Nonlinear model predictive control. Springer London, 2011.
- 40 Gabasov R., Kirillova F. M., Prischepova S. V. Optimal feedback control. Springer, 1995.
- 41 Hopkin A.M. A phase plan approach to the compensation of saturating servomechanisms // Trans. AIEE. 1951. Pt. 1, Vol. 70. P. 631–639.
- 42 Jia, D. Min-max feedback model predictive control for distributed control with communication / D. Jia, B. Krogh // Proc. American Control Conference, 2002. P. 4507-4512.
- 43 Karmarkar, N. A new polynomial-time algorithm for linear programming / N. Karmarkar // Combinatorica. 1984. Vol. 4, no. 4. P. 373-395.
- 44 Keerthi, S.S. Optimal, ininite horizon feedback laws for a general class of constrained discrete time systems: Stability and moving-horizon approximations / S.S. Keerthi, E.G. Gilbert // Journal of Optimization Theory and Application. 1988. Vol. 57, no. 2. P. 265-293.
- 45 Keviczky, T. Decentralized receding horizon control for large scale dynamically decoupled systems / T. Keviczky, F. Borrelli, G.J. Balas // Automatica. 2006. Vol. 42. P. 2105-2115.
- 46 Kostina E., Kostyukova O. Worst-case control policies for (terminal) linear-quadratic control problems under disturbances // Int. J. of Robust and Nonlinear Control, 2009
- 47 Magni, L. Stabilizing decentralized model predictive control of nonlinear systems / L. Magni, R. Scattolini // Automatica. 2006. Vol. 43, no. 7. P. 1231–1236.
- 48 Mehrotra, S. On the Implementation of a Primal-Dual Interior Point Method / S. Mehrotra // SIAM Journal on Optimization. 1992. Vol. 2. P. 575–601.

- 49 Müller, M.A. Cooperative control of dynamically decoupled systems via distributed model predictive control / M.A. Müller, M. Reble, F. Allgöwer // Internat. Journal of Robust and Nonlinear Control. 2012. Vol. 22, no. 12. P. 1376-1397.
- 50 Nocedal, J. Numerical Optimization / J. Nocedal, S.J. Wright. Springer Series in Operations Research, Springer Verlag, 2006.
- 51 Rawlings, J.B. Model Predictive Control: Theory and Design / J.B. Rawlings, D.Q. Mayne. Madison: Nob Hill Publishing, 2009. 576 p.
- 52 Richards, A. Robust distributed model predictive control / A. Richards, J.P. How // Internat. Journal of Control. 2007. Vol. 80, no. 9. P. 1517-1531.
- 53 Scattolini, R. Architectures for distributed and hierarchical model predictive control a review / R. Scattolini // Journal of Process Control. 2009. Vol. 19, no. 5. P. 723-731.
- 54 Siljak, D.D. Decentralized control of complex systems / D.D. Siljak. London: Academic Press, 1991. 525 p.
- 55 Trodden, P. Cooperative distributed MPC of linear systems with coupled constraints / P. Trodden, A. Richards // Automatica. Vol. 49, no. 2. P. 479–487.
- 56 Trodden, P. Distributed model predictive control of linear systems with persistent disturbances / P. Trodden, A. Richards // Internat. Journal of Control. 2010. Vol. 83, no. 8. P. 1653-1663.