

Course > Unit 2: ... > Lec. 3: I... > 8. Exer...

8. Exercise: Independence of event complements

Exercises due Feb 12, 2020 05:29 IST Completed

Exercise: Independence of event complements

1/1 point (graded)

Suppose that A and B are independent events. Are A^{c} and B^{c} independent?

Yes, they are independent >

✓ Answer: Yes, they are independent

Solution:

We saw in the previous segment that for any 2 generic events E_1 and E_2 , independence of E_1 and E_2 implies independence of E_1 and E_2^c . In the case of this particular problem, we can apply this result with $E_1=A$ and $E_2=B$ to conclude that since A and B are assumed to be independent, then A and B^c are also independent.

Independence is symmetric, so A and B^c being independent is the same as B^c and A being independent. If we now reuse the generic result with $E_1=B^c$ and $E_2=A$, we can conclude that B^c and A^c are also independent, which by symmetry is the same as A^c and B^c being independent.

To summarize:

A and B independent \Rightarrow A and B^c independent \Rightarrow B^c and A independent \Rightarrow B^c and A^c independent

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

Topic: Unit 2: Conditioning and independence:Lec. 3: Independence / 8. Exercise: Independence of event complements	Hide Discussion
Show all posts 💙	by recent activity 🗸
Mathematics proof [Edited to remove answer]	6
For those with less intuition (like me)	5
? Isn't it the intersection of two complementary events the empty set? I got very confused with the answer of this problem considering that the intersection of two	o complemen
☑ Is it correct to assume that a union of the complement events is 1 - intersection events?	n of the
? I got the correct answer based on intuition but can someone explain the math The intuition is simple but I doubted myself and tried deriving a mathematical formula from	/

© All Rights Reserved

