Теория вероятностей. Лекция двадцать четвертая Марковские цепи

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

17.04.2019

Общее определение случайного процесса

Случайным процессом называют семейство случайных величин X_t $(t \in T)$, определенных на одном и том же вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, где $T \in \mathbb{R}$; при этом предполагают, что измеримо отображение $(\omega, t) \to X_t(\omega)$ относительно $\mathcal{F} \otimes \mathcal{B}(T)$. Индекс t будем называть временем. В качестве множества T обычно выбирают либо $\mathbb{N} \cup \{0\}$, либо \mathbb{Z} , либо $\mathbb{R}^+ = [0, +\infty)$, либо \mathbb{R} .

Вообще говоря, T может быть, например, подмножеством многомерного пространства, тогда его называют случайным полем. Мы будем рассматривать только процессы: случай $T \subset \mathbb{R}$.

Подумать: даже для $T=\mathbb{R}$ множество $\{\omega\,|\,X_t \text{ ограничено}\}$ не обязано быть событием без дополнительных предположений на \mathcal{F} .

Рассмотрим для всякого набора $(t_1, ..., t_N) \in T^{\mathbb{N}}$ совместные распределения векторов $(X_{t_1}, ..., X_{t_N})$:

$$F_{t_1,\ldots,t_N}(x_1,\ldots,x_N) = \mathbb{P}(X_{t_1} \leq x_1,\ldots,X_{t_N} \leq x_N) \qquad \forall (x_1,\ldots,x_N) \in \mathbb{R}^{\mathbb{N}}.$$

- $lackbox{0}$ F_{t_1,\dots,t_N} монотонна по каждой переменной, непрерывна справа, принимает значения из [0,1], $F_{t_1,\dots,t_N}(+\infty,\dots,+\infty)=1$ и $F_{t_1,\dots,t_{i-1},t_i,t_{i+1},\dots,t_N}(x_1,\dots,x_{i-1},-\infty,x_{i+1},\dots,x_N)=0$;
- 2 выполнено условие согласованности:

$$F_{t_1,\dots,t_{i-1},t_i,t_{i+1},\dots,t_N}(x_1,\dots,x_{i-1},+\infty,x_{i+1},\dots,x_N)$$

$$=F_{t_1,\dots,t_{i-1},t_{i+1},\dots,t_N}(x_1,\dots,x_{i-1},x_{i+1},\dots,x_N).$$

Теорема Колмогорова о построении случайных процессов [Коралов, Синай, Т.12.8] По любому семейству функций F_{t_1,\dots,t_N} , удовлетворяющему этим двум пунктам, можно построить как минимум один случайный процесс с такими функциями распределения.

Марковские цепи

Будем говорить, что случайный процесс X_t — марковская цепь с дискретным временем, если

- \bullet (время дискретно) t принимает только целые неотрицательные значения;
- ullet (счетное число состояний) множество значений X_t не более чем счетно;
- (марковость) вероятность состояния X_{t+1} зависит лишь от состояния X_t , т.е.

$$\mathbb{P}(X_{t+1}|X_t, X_{t-i_1}, \dots, X_{t-i_n}) = \mathbb{P}(X_{t+1}|X_t).$$

Отметим, что определение марковости верно почти всюду, в частности, нас не интересует значение $\mathbb{P}(X_{t+1}=x|X_t=y)$ при $\mathbb{P}(X_t=y)=0$.

Стохастические матрицы

Под матрицей будем далее понимать отображение из $\mathbb{N} \times \mathbb{N}$ в \mathbb{R} . Операции над ними стандартные. Более того, никто не мешает считать, что обычные конечномерные матрицы также являются такими объектами.

Будем говорить, что матрица $Q = (q_{ij})_{i,j=1,2,...}$ является стохастической, если

- $q_{ij} \ge 0$;
- $\sum_{j \in \mathbb{N}} q_{ij} = 1$.

Будем говорить, что строка $(p_j)_{j=1,2,\dots}$ является распределением, если

- $p_i \ge 0$;
- $\sum_{j\in\mathbb{N}} p_j = 1$.

Легко проверить, что если p — распределение, Q',Q'' — стохастические матрицы, то Q=Q'Q'' — стохастическая матрица, pQ' — распределение.

Матрицы перехода

Теперь можно считать, что X_t отображается в $\mathbb N$ (состояния — натуральные числа). Тогда F_{X_t} можно задать бесконечной строкой $\mu_t \stackrel{\triangle}{=} (\mathbb P(X_t=1),\dots,\mathbb P(X_t=k),\dots).$ Подумать: каждая такая строка — распределение. Матрицы $Q^{(k)} = (q_{ij}^{(k)})_{i,j=1,\dots,n} \stackrel{\triangle}{=} (\mathbb P(X_k=j|X_{k-1}=i))_{i,j=1,\dots,n}, \ k \in \mathbb N,$ называют матрицами переходов (матрицами вероятностей переходов, матрицами переходных вероятностей). Подумать: каждая такая матрица — стохастическая.

Уравнение Колмогорова

Теорема. (Колмогоров) [С-но] В марковской цепи с матрицами переходов $Q^{(k)}$ для $\mu_t \stackrel{\triangle}{=} (\mathbb{P}(X_t=1),\ldots,\mathbb{P}(X_t=k),\ldots)$ выполнено $\mu_1 = \mu_0 Q^{(1)}, \ \mu_k = \mu_{k-1} Q^{(k)}, \ \mu_k = \mu_0 Q^{(1)} \ldots Q^{(k)} \quad \forall k \in \mathbb{N}.$

Подумать : матрицы переходов однозначно восстанавливают распределения X_k по μ_0 . Однозначно ли определяются матрицы переходов (1 балл)?.

Подумать: верно ли, что всяким распределению μ_0 и последовательности стохастических матриц $Q^{(k)}$ соответствует марковская цепь с такими матрицами переходов? Такая марковская цепь единственна?

Стационарные марковские цепи. Стационарное распределение

Цепь Маркова называется стационарной (однородной по времени), если $Q^{(k)} \equiv Q$, то есть если соответствующие условные вероятности не зависят от времени.

Распределение μ называется стационарным (для цепи Маркова с матрицей переходов Q), если $\mu Q = \mu$.

Теорема. (еще раньше доказали) Всякая цепь Маркова с конечным числом состояний имеет хотя бы одно стационарное распределение.

Подумать: условие конечности в этой теореме существенно. Подумать: единственность стационарного распределения, вообще говоря, не утверждалась.

Эргодичность

Всюду далее вновь считаем, что число состояний конечно, матрицы и распределения имеют конечное число элементов.

Определение. Стохастическая матрица $Q = (q_{ij})_{i,j=1,2,...r}$ называется эргодической, если все её элементы положительны.

Теорема. Пусть матрица переходов Q эргодична. Тогда найдется такая строка μ_* , что $\mu_*Q=\mu_*$ и распределения μ_0Q^n сходятся к μ_* для любого начального распределения μ_0 ; в частности, других стационарных распределений, помимо μ_* , у нее нет.

Для доказательства потребуется почти очевидный: Принцип Банаха. Если в полном метрическом пространстве $\mathbb Y$ с метрикой d, оператор $A:\mathbb Y\to\mathbb Y$ сжимающий (для некоторого $\beta\in(0,1)$ $d(Ax_1,Ax_2)\leq\beta d(x_1,x_2)$), то существует единственный элемент $x_*\in\mathbb Y$ такой, что $Ax_*=x_*$, причем $d(A^kx,x_*)\to 0$ при $k\to\infty$, более того $d(A^kx,x_*)\leq\beta^k d(x,x_*)$.