Lecture 12: Contextual and Structured Online Learning

- Structured bandits
- Contextual bandits
- OFUL/Kernel-UCB/Kernel-TS

Recall: Stochastic bandit setting

- Set $\mathcal{K} = \{1, 2, \dots, K\}$ of K actions (arms, machines)
- You are facing a tuple of distributions $\nu = (P_1, P_2, \dots, P_K)$

• Identify the best action by interacting with the environment

Recall: Stochastic bandit game

- Set $\mathcal{K} = \{1, 2, \dots, K\}$ of K actions (arms, machines)
- You are facing a tuple of distributions $\nu = (P_1, P_2, \dots, P_K)$
- Distribution P_k under tuple ν has expectation $\mu_k(\nu)$
- For each round *t*:
 - 1. Select an action $k_t \in \mathcal{K}$
 - 2. Play action k_t
 - 3. Observe reward $r_t \sim P_{k_t}$

Goal: Maximize $\sum_{t=1}^{T} \mu_{k_t}(\nu) \to \operatorname{play} k_\star = \operatorname{arg} \max_{k \in \mathcal{K}} \mu_k(\nu)$

Recall: Regret

Minimize regret:

$$R_T(\pi, \nu) = T\mu_{\star}(\nu) - \sum_{t=1}^T \mu_{k_t}(\nu) \qquad \text{where } \mu_{\star}(\nu) = \max_{k \in \mathcal{K}} \mu_k(\nu)$$

Decomposing the regret:

- Suboptimality gap: $\Delta_k(\nu) = \mu_{\star}(\nu) \mu_k(\nu)$
- Number of plays of action k up to time t: $N_k(t) = \sum_{s=1}^t \mathbb{I}\{k_s = k\}$

$$R_T(\pi, \nu) = \sum_{k \in \mathcal{K}} \Delta_k(\nu) \mathbb{E}[N_k(T)]$$

What happens when K is very large?

Exploit structure

- Learn about an action without trying it!
- Requires a notion of similarity between actions
- Example:
 - Online parameter tuning (velocities, powers, intensities)
 - Treatment optimization (volumes, quantities, time)
 - Recommender systems

Example: Photo recommendation

Stochastic bandit with structured actions

- Action space $\mathcal{X} \subseteq \mathbb{R}^n$
- Reward function $f: \mathcal{X} \mapsto \mathbb{R}$
- For each round *t*:
 - 1. Select an action $x_t \in \mathcal{X}$
 - 2. Play action x_t
 - 3. Observe reward $r_t = f(x_t) + \epsilon_t \leftarrow \text{Observation noise } \epsilon_t$

Goal: Maximize $\sum_{t=1}^{T} f(x_t) \to \operatorname{play} x_{\star} = \operatorname{arg} \max_{x \in \mathcal{X}} f(x)$

Online function approximation

- Sequentially select locations where to observe the function
- Noisy observations
- Gathering an observation is not *free*

Example: Adaptive treatment dosage

What is the best treatment dosage for some disease?

- ullet Space ${\mathcal X}$ of possible dosages
- Patients come in sequentially
- For each patient $t \ge 1$:
 - 1. Select a dosage $x_t \in \mathcal{X}$
 - 2. Treat patient t with dosage x_t
 - 3. Observe the effectiveness $r_t = f(x_t) + \epsilon_t$

Goal: Maximize the effectiveness at every step $\sum_{t=1}^{T} f(x_t)$

The linear case

- Action space $\mathcal{X} \subseteq \mathbb{R}^n$
- ullet There exists an **unknown** parameter $\theta_\star \in \mathbb{R}^n$ such that $f(x) = \langle x, \theta_\star \rangle$
- On each rount *t*:
 - 1. Select an action $x_t \in \mathcal{X}$
 - 2. Play action x_t
 - 3. Observe reward $r_t = \langle x_t, \theta_{\star} \rangle + \epsilon_t$
- Goal: maximize $\sum_{t=1}^{T} f(x_t) \to \text{play } x_{\star} = \arg \max_{x \in \mathcal{X}} \langle x, \theta_{\star} \rangle$
- \rightarrow Minimize

$$R_T(\pi, \theta_{\star}) = \sum_{t=1}^{T} \langle x_{\star}, \theta_{\star} \rangle - \sum_{t=1}^{T} \langle x_t, \theta_{\star} \rangle = \sum_{t=1}^{T} \langle x_{\star} - x_t, \theta_{\star} \rangle$$

Typical assumptions

- Action space \mathcal{X} lies in a bounded set What would happen if it did not?
- Noise ϵ_t satisfies $\mathbb{E}[\epsilon_t|x_{1:t},\epsilon_{1:t}]=0$ and tail-constraints
- More specifically, ϵ_t is R-subGaussian for a fixed constant $R \geq 0$
 - A real-valued random variable X is R-subgaussian if

$$\mathbb{E}\left[e^{\gamma X}\right] \le e^{\gamma^2 R^2/2}$$

- \to The Laplace transform of X is dominated by the Laplace transform of a random variable sampled from $\mathcal{N}(0,R^2)$
- Requires that the tails of the noise distribution are dominated by the tails of a Gaussian distribution
- For example, true for: Gaussian noise, bounded noise

Recall: UCB algorithm

$$UCB_k(t,\delta) = \hat{\mu}_k(t) + \sqrt{\frac{2\ln(1/\delta)}{N_k(t)}}$$

- Action set $\mathcal{K} = \{1, 2, \dots, K\}$, confidence level δ
- Play each action once
- For each round t > K:
 - 1. Select action $k_t = \arg \max_{k \in \mathcal{K}} UCB_k(t-1, \delta)$
 - 2. Play action k_t
 - 3. Receive reward $r_t \sim P_{k_t}$

 μ_k is at most here with high confidence

Optimism in the Face of Uncertainty principle (OFU)

- Maintain a confidence set $C_{t-1} \subseteq \mathbb{R}^n$ for the parameter θ_{\star}
- Calculate C_{t-1} from $x_1, r_1, x_2, r_2, \ldots, x_{t-1}, r_{t-1}$ such that $\theta_{\star} \in C_{t-1}$ with high probability

Confidence sets generalize confidence intervals to multiple dimensions

- Each parameter θ in C_{t-1} is potentially θ_{\star}
- For each θ in C_{t-1} : if this θ is θ_{\star} , what would be $f(x_{\star,\theta})$?
- Optimistic $\tilde{\theta}_t = \arg \max_{\theta \in C_{t-1}} f(x_{\star,\theta})$

OFUL algorithm

- OFU for Linear bandits
- Action space $\mathcal{X} \subseteq \mathbb{R}^n$
- Reward function $f(x) = \langle x, \theta_{\star} \rangle$
- On each round t:
 - 1. Choose an optimistic estimate $\tilde{\theta}_t = \arg\max_{\theta \in C_{t-1}} (\max_{x \in \mathcal{X}} \langle x, \theta \rangle)$
 - 2. Select action $x_t = \arg\max_{x \in \mathcal{X}} \langle x, \tilde{\theta}_t \rangle$
 - 3. Play action x_t
 - 4. Receive reward $r_t = \langle x_t, \theta_{\star} \rangle + \epsilon_t$

Do you see any links between OFUL and UCB?

What if the function is non-linear?

Recall: Generalized linear regression

- Feature mapping $\phi(\cdot)$: column vector of d real numbers
- Assume $f(x) = \langle \phi(x), \theta_{\star} \rangle$
- ightarrow $heta_{\star}$ has dimension d

What if d is very large (e.g. $d \to \infty$)?

Recall: Kernel regression

- $\mathbf{y} = (r_1, r_2, \dots, r_t)^{\top}$: column vector of t observations
- Feature mapping $\phi(\cdot)$; feature matrix Φ of size $t \times d$

$$\text{Kernel matrix} \quad \mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^\top = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_t) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_t) \\ \vdots & \vdots & & \vdots \\ k(x_t, x_1) & k(x_t, x_2) & \dots & k(x_t, x_t) \end{bmatrix}$$

Kernel vector
$$\mathbf{k}(x) = \phi(x)^{\top} \mathbf{\Phi}^{\top} = \begin{bmatrix} k(x, x_1) \\ k(x, x_2) \\ \vdots \\ k(x, x_t) \end{bmatrix}$$

• The prediction at some input point x is given by

$$\hat{f}(x) = \phi(x)^{\top} \mathbf{\Phi}^{\top} (\mathbf{K} + \lambda \mathbf{I}_t)^{-1} \mathbf{y} = \mathbf{k}(x) (\mathbf{K} + \lambda \mathbf{I}_t)^{-1} \mathbf{y}$$

Recall: Bayesian view of regression

- Consider noisy observations $y = f(x) + \epsilon = \phi(x)^{\top} \theta_{\star} + \epsilon$
- With Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- With Gaussian prior on parameters $\theta_{\star} \sim \mathcal{N}_d(0, \Sigma_{\theta_{\star}})$
- The pointwise posterior predictive distribution is a normal distribution

$$\tilde{f}(x)|x_1,\ldots,x_m,y_1,\ldots,y_m \sim \mathcal{N}\left(\hat{f}(x),s^2(x)\right)$$

of expectation

$$\hat{f}(x) = \phi(x)^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{y}$$

and variance

$$s^{2}(x) = \phi(x)^{\top} \Sigma_{\theta_{\star}} \phi(x) - \phi(x)^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} (\mathbf{\Phi}^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{\Phi} \Sigma_{\theta_{\star}} \phi(x)$$

Recall: Using prior $\Sigma_{\theta_{\star}} = \frac{\sigma^2}{\lambda} \mathbf{I}_d$

The predictive mean/variance rewrite as:

$$\hat{f}(x) = \phi(x)^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{y}$$

$$= \phi(x)^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} \left(\mathbf{\Phi} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m} \right)^{-1} \mathbf{y}$$

$$= \mathbf{k}(x)^{\top} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

$$s^{2}(x) = \phi(x)^{\top} \Sigma_{\theta_{\star}} \phi(x) - \phi(x)^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi}^{\top} (\mathbf{\Phi}^{\top} \Sigma_{\theta_{\star}} \mathbf{\Phi} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{\Phi} \Sigma_{\theta_{\star}} \phi(x)$$

$$= \phi(x)^{\top} \frac{\sigma^{2}}{\lambda} \phi(x) - \phi(x)^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} \left(\mathbf{\Phi}^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi} + \sigma^{2} \mathbf{I}_{m} \right)^{-1} \mathbf{\Phi} \frac{\sigma^{2}}{\lambda} \phi(x)$$

$$= \frac{\sigma^{2}}{\lambda} k_{\lambda}(x, x) \quad \text{with}$$

$$k_{\lambda}(x, x') = k(x, x') - \mathbf{k}(x)^{\top} (\mathbf{K} + \lambda \mathbf{I}_{m})^{-1} \mathbf{k}(x')$$

Recall: Gaussian Process (GP)

- By considering the covariance between *every points in the space*, we get a distribution over functions!
- Posterior distribution on *f*:

$$P[f|x, \mathbf{y}] \sim \mathcal{N}\left(\left[\hat{f}(x)\right]_{x \in \mathcal{X}}, \frac{\sigma^2}{\lambda} \left[k_{\lambda}(x, x')\right]_{x, x' \in \mathcal{X}}\right)$$

This gives predictions, but also uncertainty!

Confidence envelope

Theorem 1 (Maillard (2016)). Assuming σ -subgaussian noise, we have

$$|f(x) - \hat{f}_t(x)| \le \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} \left[\sqrt{\lambda} \|\theta_{\star}\|_2 + \sigma \sqrt{2\ln(1/\delta) + 2\gamma_t(\lambda)} \right]$$

- With probability higher than 1δ
- Simultaneously for all $t \geq 0$, for all x
- Recall: information gain

$$\gamma_t(\lambda) = \sum_{s=1}^t \frac{1}{2} \ln \left[1 + \frac{1}{\lambda} k_{\lambda,s-1}(x_s, x_s) \right]$$

Confidence envelope

Kernel-UCB

$$UCB_x(t,\lambda,\delta) = \hat{f}_t(x) + \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} \left[\sqrt{\lambda} \|\theta_{\star}\|_2 + \sigma \sqrt{2\ln(1/\delta) + 2\gamma_t(\lambda)} \right]$$

- Action space $\mathcal{K} \subseteq \mathbb{R}^n$
- There exists an **unknown** parameter $\theta_{\star} \in \mathbb{R}^d$ such that $f(k) = \langle \phi(k), \theta_{\star} \rangle$
- For each round t:
 - 1. Select action $x_t = \arg \max_{x \in \mathcal{X}} UCB_x(t, \lambda, \delta)$
 - 2. Play action x_t
 - 3. Observe reward $r_t = f(x_t) + \epsilon_t$

Act optimistically directly on $\hat{f}(x)$ rather than through $\hat{\theta}_t$

What if we wanted a stochastic approach?

Recall: Thompson Sampling

- Action set $\mathcal{K} = \{1, 2, \dots, K\}$
- Select next action based on its probability of being optimal
- \bullet Maintain one posterior $\pi_t^{(k)}$ for each action $k \in \mathcal{K}$
- At each round t:
 - 1. Sample one value $\tilde{\mu}_k \sim \pi_t^{(k)}$ for each action $k \in \mathcal{K}$
 - 2. Select action $k_t = \arg \max_{k \in \mathcal{K}} \tilde{\mu}_k$
 - 3. Play action k_t
 - 4. Observe reward $r_t \sim P_{k_t}$

How do we extend that to the structured setting with kernel regression?

Recall: Sampling from a Gaussian Process

- Generalization of normal probability distribution to the function space
 - From a normal distribution we sample variables
 - From a GP we sample *functions*!

Kernel-TS

- Discrete action space X
- There exists an **unknown** parameter $\theta_{\star} \in \mathbb{R}^d$ such that $f(k) = \langle \phi(k), \theta_{\star} \rangle$
- For each round *t*:
 - 1. Compute the posterior mean/covariance on t-1 observations

$$\hat{f}_{t-1} = \left(\hat{f}(x)\right)_{x \in \mathbb{X}} \quad \text{and} \quad \hat{\Sigma}_{t-1} = \frac{\sigma^2}{\lambda} \left(k_{\lambda}(x, x')\right)_{x, x' \in \mathbb{X}}$$

- 2. Sample a function $\tilde{f} \sim \mathcal{N}_{|\mathbb{X}|} \left(\hat{f}_{t-1}, \hat{\Sigma}_{t-1} \right)$
- 3. Select action $x_t = \arg\max_{x \in \mathbb{X}} \tilde{f}(x)$
- 4. Play action x_t
- 5. Observe reward $r_t = f(x_t) + \epsilon_t$

Summary

- UCB and Thompson Sampling can be extended to exploit action structure
- This allows to consider much larger action spaces
- Kernel-TS is limited to a discrete action space

What about bounds?

Kernel-UCB analysis

$$UCB_{x}(t,\lambda,\delta) = \hat{f}_{t}(x) + \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} \left[\sqrt{\lambda} \|\theta_{\star}\|_{2} + \sigma \sqrt{2 \ln(1/\delta) + 2\gamma_{t}(\lambda)} \right]$$

- Minimize regret: $R_T = \sum_{t=1}^{T} (f(x_{\star}) f(x_t))$
- Recall: confidence envelope says $|f(x) \hat{f}_t(x)| \leq \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}}B(t,\lambda,\delta)$ simultaneously for all x and t

$$f(x_{\star}) - f(x_{t}) \leq \text{UCB}_{x_{\star}}(t, \lambda, \delta) - f(x_{t})$$

$$\leq \text{UCB}_{x_{t}}(t, \lambda, \delta) - f(x_{t})$$

$$\leq |\text{UCB}_{x_{t}}(t, \lambda, \delta) - \hat{f}_{t}(x_{t})| + |\hat{f}_{t}(x_{t}) - f(x_{t})|$$

$$\leq 2\sqrt{\frac{k_{\lambda, t}(x, x)}{\lambda}}B(t, \lambda, \delta)$$

Kernel-UCB analysis (cont'd)

$$f(x_{\star}) - f(x_t) \le 2\sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} \underbrace{\left[\sqrt{\lambda} \|\theta_{\star}\|_{2} + \sigma\sqrt{2\ln(1/\delta) + 2\gamma_{t}(\lambda)}\right]}_{B(t,\lambda,\delta)}$$

$$R_{T} = \sum_{t=1}^{T} (f(x_{\star}) - f(x_{t}))$$

$$\leq 2 \sum_{t=1}^{T} \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} B(t,\lambda,\delta)$$

$$\leq 2B(T,\lambda,\delta) \sum_{t=1}^{T} \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}}$$

Show that $B(t,\lambda,\delta) \leq B(T,\lambda,\delta)$ for $t \leq T$ and bound the sum!

Kernel-UCB analysis: Bounding $B(t, \lambda, \delta) \leq B(T, \lambda, \delta)$

$$B(t, \lambda, \delta) = \sqrt{\lambda} \|\theta_{\star}\|_{2} + \sigma \sqrt{2 \ln(1/\delta) + 2\gamma_{t}(\lambda)}$$

• Recall: Information gain $\gamma_t(\lambda)$ cumulates maximum possible information after t observation. Example: Linear vs Gaussian kernel

This shows that $\gamma_t(\lambda) \leq \gamma_T(\lambda)$ for $t \leq T$

Information gain

Kernel-UCB analysis: Finalizing

Lemma 1.

$$\sum_{t=1}^{T} \sqrt{\frac{k_{\lambda,t}(x,x)}{\lambda}} \le \sqrt{T \frac{2}{\lambda \ln(1+1/\lambda)} \gamma_T(\lambda)}$$

$$R_T \le 2B(T, \lambda, \delta) \sum_{t=1}^T \sqrt{\frac{k_{\lambda,t}(x, x)}{\lambda}}$$

$$\le 2 \left[\sqrt{\lambda} \|\theta_{\star}\|_2 + \sigma \sqrt{2 \ln(1/\delta) + 2\gamma_T(\lambda)} \right] \sqrt{T \frac{2}{\lambda \ln(1 + 1/\lambda)} \gamma_T(\lambda)}$$

Impact of kernel? Impact of noise σ ? Impact of $\|\theta_{\star}\|$?

Smoothness of the function

Recall regret:

$$R_T(\pi, \nu) = \sum_{k \in \mathcal{K}} \Delta_k(\nu) \mathbb{E}[N_k(T)]$$

• Smooth function: Many suboptimality gaps close to 0

Summary

- We can exploit structure in the action set
- In practice there might be additional information that we can exploit
- Example: Recommendation systems

What kind of information could we use?

Contextual bandit setting

- ullet Context set ${\cal S}$
- Action set \mathcal{X}
- On each round t:
 - 1. Receive context $s_t \in \mathcal{S}$
 - 2. Select action $x_t \in \mathcal{X}$
 - 3. Play action x_t
 - 4. Receive reward $r_t = f(d_t, x_t) + \epsilon_t$
- Goal: Maximize $\sum_{t=1}^{T} f(s_t, x_t)$

Minimize regret:
$$R_T = \sum_{t=1}^T \max_{x \in \mathcal{X}} f(s_t, x) - \sum_{t=1}^T f(s_t, x_t)$$

What is the optimal action?

Action set perspective

- Augmented action set $\mathcal{A} = \mathcal{S} \times \mathcal{X}$
- On each round t:
 - 1. Receive available action set $A_t \subset A$
 - 2. Select action $a_t \in \mathcal{A}_t$
 - 3. Play action a_t
 - 4. Receive reward $r_t = f(a_t) + \epsilon_t$
- Goal: Maximize $\sum_{t=1}^{T} f(a_t)$

Minimize regret:
$$R_T = \sum_{t=1}^{T} \max_{a \in \mathcal{A}_t} f(a) - \sum_{t=1}^{T} f(a_t)$$

Structured actions!

Specific case: Independent actions

- No information to be shared across actions
- ullet Each action $k \in \mathcal{K}$ has a reward function $f_k : \mathcal{S} \mapsto \mathbb{R}$

The locations that we observe now depend on the context arrival!

Specific case: Independent contexts

- No information to be shared across contexts
- ullet Each context $s \in \mathcal{S}$ is associated with a reward function $f_s: \mathcal{X} \mapsto \mathbb{R}$

Specific case: Independent actions and contexts

• Each context is an independent stochastic bandit problem

Summary

- Results on streaming regression are useful to derive bandits algorithms!
- Structured bandits: quality of estimate depends where you sample
- Contextual bandits: you may not always decide exactly where you sample!
- The more information you share the faster you can learn
- This shows up in the information gain