Beyond the Cloud: Edge Computing

Tessema Mengistu (Ph.D.)

mengistu@cs.vt.edu

Outline

- Current Computing Landscape
- Edge Computing: An overview
- Edge Services

- Machine intelligence is becoming more prevalent
 - Powerful machine learning algorithms such as deep learning
 - Generative AI Large Language Models
- Proliferation of IoT devices
 - The number of wireless-connected IoT devices passed the 50 billion mark by 2020
 - Produces huge amount of data zettabytes
 - Poised to provide ubiquitous intelligence
 - Limitation in processing and storage powers

Conventional Cloud

- Cloud Computing has been catering the resource demands of most application
- "Data Center" approach.
 - Contains tens (if not hundreds) of thousands of servers.
- Utility computing vision of Cloud Computing is almost achieved.

- Problems with processing in the Cloud
 - Latency
 - Large round trip network latency
 - Data gravity
 - Moving large amount of data is expensive
 - Data velocity
 - Realtime application
 - Bandwidth bottleneck
 - Privacy
 - Sensitive user data
 - Lack of context

- One of the solutions to the problem is moving the cloud infrastructure closer to users/devices by creating mini data centers or using devices at the edge of a network
 - Edge Computing

- Content Delivery Networks (CDNs)
 - Precursor to Edge Computing
 - Offers fast and reliable content delivery and reduce communication bandwidth by caching and replication
 - A CDN receives the content from an origin server, then replicates it to its Edge cache servers
 - The content is delivered to an end-user from the "closest" Edge server

- Edge Computing
 - An enabling technology allowing computation to be performed at the edge of the network, on downstream data on behalf of cloud services, and on upstream data on behalf of IoT services
 - Offload the data processing, storage, and computing operations from the cloud to the edge of the network
 - Can provide better quality-of-experience (QoE) and quality-of-service (QoS)

- Components:
 - Perception/Things Layer
 - Edge Devices
 - The edge device has limited compute/storage resources
 - IoT, smartphones, etc.
 - Edge Layer
 - Edge infrastructure
 - Located directly adjacent to the access or last mile network
 - Example: cellular base stations
 - Cloud Layer
 - Cloud infrastructure

- There is no standardized specification about the edge of a network and the devices that are expected to participate in the edge vary
 - Vehicles, cellular base stations, networking devices, cloudlets, smart-phones, etc.

Cloudlet

- A trusted, resource-rich computer or cluster of computers that are well-connected to the Internet and available to nearby mobile devices (Wi-Fi enabled)
- A three-tier architecture Mobile Device-Cloudlet-Cloud
- The Open Edge computing initiative was also evolved from the Cloudlet project
- Multi-access Edge Computing (MEC)
 - The establishment of edge servers between the cloud server and edge devices for offloading computations
 - Embedded in mobile networks

- Enabling technologies
 - Advances in wireless networks
 - 5G, Zegbee, Bluetooth, etc.
 - Datacenter technology
 - Modular datacenters

- Advantages of Edge Computing
 - Reduction in computation latency to meet the customer demands
 - Reduction in network bandwidth
 - Preservation of data security and privacy
 - Good reliability even on network failures
 - Reduction in operational costs due to communication, storage, and processing
 - Better data governance due to improvement in quality and usability of data

- Limitation of Edge Computing
 - Limited computational and storage resources
 - Compare to Cloud Computing
 - Limited scalability

Autonomous Vehicles

Smart Cities

18

- GCP
 - Google Distributed Cloud
 - Google Distributed Cloud Edge
 - Edge Appliance
 - Data collection, analytics, and processing
- Azure
 - Azure IoT Edge
 - Extend cloud intelligence and analytics to edge devices
 - Azure Stack Edge
 - Bring Azure compute, storage, and intelligence to the edge with Azure-managed devices

- Point of Presence (PoP)
 - Amazon's Edge infrastructure
 - Hosts Amazon CloudFront, a content delivery network (CDN); Amazon Route 53, a public Domain Name System (DNS) resolution service; and AWS Global Accelerator (AGA), an edge networking optimization service

AWS

- AWS Outposts
 - A fully managed service that extends AWS infrastructure, AWS services, APIs, and tools to virtually any datacenter, co-location space, or on-premises facility for a truly consistent hybrid experience
- Amazon CloudFront
 - A global content delivery network (CDN) service that securely delivers data, videos, applications, and APIs

- AWS Edge Services
 - CloudFront
 - A web service that speeds up the distribution of static and dynamic web content, such as .html, .css, .js, and image files, to users
 - CloudFront distribution should be created to tell CloudFront:
 - Where you want content to be delivered from
 - The details about how to track and manage content delivery

AWS Edge Computing Portfolio

- ✓ Reduce Latency
- AWS Edge Integrate with a broad set of cloud services and edge specific capabilities
 - ✓ Reduce cost of development with a single programming model

References

- Understanding Infrastructure Edge Computing: concepts, technologies, and considerations.
 Alex Marcham. 2021
- https://aws.amazon.com/what-is/edgecomputing/