A Privacy-Preserving Algorithm for Graph Spanners

Outline of the Project

- Graph Spanners
- K Graph Spanner
- Previous Related Work on Privacy
- Problem Formulation
- Implementing Linear Programming
- Performance Measures and Evaluations
- Results
- Conclusions

What is A Graph Spanner

Graph Spanners are important in graph applications where we want to reduce the number of edges in the graph without affecting the navigability of the graph.

K - Spanner

- Given an input Graph G (V, E) then a Graph Spanner (H) is a subgraph of the Graph G such that $H \subseteq G$.
- k Spanner can be defined as for all edges $(u, v) \in G$, the Spanner graph 'H' contains a path between u and v of length no greater than k.d(u, v)
- A Graph Spanner preserves lengths of the shortest paths in G.

Example of k - spanner

Stretch factor when k = 1 and k = 2

K - Spanner

Suppose if k = 3, then the subgraph H of G has at most 3 times the distance of that in G.

Is there a Need for Privacy?

- Privacy enables us to Create and Manage barriers/boundaries to protect the network from unwanted interference.
- Privacy is a key for **Protecting the Data** to ensure the Individual's safety (Examples include Banking Data, Medical Data and so on...).
- With increase in massive data analysis, notion of privacy is under focus over highly sensitive user information.

Previous related work

Differential Privacy:

- Initial work on the privacy preservation is by Differential Privacy.
- In this algorithm the output does not change significantly with altering the some data points in the data.

- Implemented on large datasets
- This technique was employed by various companies like Apple, Facebook, Google and many more.
- Implemented on Medical Data, Employee Data etc.

Our Initial Problem

Given a set of edges P (Private edges) such that $P \subset E$ in a Graph G (V, E) and an integer k > 1, we need to construct a (2k-1)-spanner H (V, $F \subseteq E$) of the Graph G such that $F \cap P = \emptyset$

Can we Avoid Private Data completely while building the model for our problem?

- Is it possible to construct a spanner while excluding all the private edges?
- May be difficult in some scenarios
- Try to relax the above objective and construct a spanner with fewest possible Private Edges

Problem formulation

So, we can now formulate the problem from the Initial Problem

• Given a set of edges $P \subset E$ in a Graph G(V, E) and an integer k > 1, we need to construct a Spanner H $(V, F \subseteq E)$ of the Graph G while minimizing the objective function of $F \cap P$.

Linear Programming

- To solve the above said problem, Our strategy is to formulate them as Linear Programming (LP) problems.
- Implementing Pulp Package in Python for Linear Programming.
- LP method in used in construction of optimizing the objective function.

Linear Programming

- Linear Programming is a method to achieve the best outcome like Maximum profit or Lower cost to a model which has it's representations by linear relationships.
- Linear programming is widely implemented in the field of optimization.
- Special cases such as Network Flow Problems can be solved by linear programming.

- $y_p = 1$ if path is selected to included in the spanner and 0 otherwise.
- $x_e = 1$ if edge is included in the spanner and 0 otherwise
- $p_e = 1$ if edge is a private edge and 0 otherwise. (known in advance)
- $a_e^p = 1$ if edge e is on path p and 0 otherwise
- $P_{u,v}$ be the set of all paths of distance at most $k \cdot d(u, v)$ between u and v.

a_p^e table for the below graph:

	<s, u=""></s,>	<u, t=""></u,>	<s, t=""></s,>	<\$, V>	<v, t=""></v,>
P1 <s, t="" u,=""></s,>	1	1	0	0	0
P2 <s, t=""></s,>	0	0	1	0	0
P3 <s, t="" v,=""></s,>	0	0	0	1	1

Considering k = 3 in this example $a_p^e = 1$ if edge e is on the path p else 0.

Distance P1 <S, U, T> = 3 Distance P2 <S, T> = 1

Distance P3 <S, V, T> = 3

Main Objective Of the Linear Program

$$\min \sum_{e \in E} x_e p_e$$

• A model is constructed for minimizing the number of private edges selected to be included in the spanner (thus reducing information leak) for a given network.

• $x_e p_e$ are the number of private edges included in this spanner

Constraints in the linear program

$$s.t. \sum_{p \in P_{u,v}} a_p^e y_p \le x_e, \forall e \in E, \forall u, v \in V \times V$$
$$\sum_{p \in P_{u,v}} y_p \ge 1, \forall u, v \in V \times V$$

- 1st constraint: if a path is included in the spanner, all its edges are also included.
- 2nd constraint: For every node pair (constructing a spanner from source to target) there is at least a path P with distance at most k times the distance included in the spanner.
- Relax every pair to some pair in the experiments for computational saving.

Datasets Implemented for analysis

- Data Sets from Stanford SNAP project (https://snap.stanford.edu)
- Facebook Dataset (88k edges and 4k node)
- EPINIONS Dataset (508k edges and 75k nodes)

Performance Measures (Model Construction and Solving time)

- Objective Function
 - The number of private edges included in the constructed spanner
- LP Model Construction Time
 - The time to construct a linear program by adding constraints
- LP Model Solving Time
 - The time of solving the linear program

Default Parameter Setting (Experiment A)

- Considering 5 (s, t) pairs: Source Target nodes are selected in random.
- Edge Weights are not Considered (That is equal edge weights for all edges in the graph).
- 0.1 percent of edges of the graph are initially selected as private edges.
- K = 2 (Spanner constructed should have distance max 'k' times of d(u, v)).
- Number pairs = 1 (Number of (s, t) pairs selected to include in the spanner).
- Early stop= True (Parameter set to only included minimum number of paths of all the available paths for the node pairs selected to obtain sub-optimal solution and so we early stop at a certain level).

Experiment A results (Facebook Dataset)

Table: Facebook Dataset for 5 (s-t) pairs (for Default Setting)

s – t pairs	Construction time	Solving Time	Number of Private edges included	
s=2139, t=1359, distance=4	53.3 Seconds	3.8 Seconds	0	
s=3405, t=2882, distance=3	56.5 Seconds	3.9 Seconds	0	
s=2304, t=1961, distance=2	59.0 Seconds	3.9 Seconds	0	
s=3240, t=383, distance=7	53.3 Seconds	3.8 Seconds	0	
s=3297, t=415, distance=6	59.5 Seconds	3.9 Seconds	0	
Range (in Seconds)	56.32 ± 2.98 Seconds	3.86 ± 0.054 Seconds		

Experiment B results (Facebook Dataset)

- Experiment B: Changing k = [1, 2, 3, 4, 5] while keeping other parameters constant from the default experiment.
- Mean and Standard Deviations of the Model Construction time and the Model Solving time for the Considered 5 (s-t) pairs.

for 5 (s-t) pairs Mean & Standard Deviation

Experiment C results (Facebook Datatset)

• Experiment C : Changing Percentage of private edges PercP = [0.1, 0.3, 0.5, 0.7, 0.9]

Experiment D results (Facebook Dataset)

• Experiment D : Changing Edge Weights from False to True

s = 2139, t = 1359, distance = 4	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
When $k = 1.2$	15.0	15.1	2.9	2.9	0	0
When $k = 1.4$	58.0	303.2	2.9	3.1	0	0

s = 3405, t = 2882, distance = 3	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	14.7	15.0	2.9	2.9	0	0
K = 1.4	37.1	34.8	2.9	2.8	0	0

s = 2304, t = 1961, distance = 2	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	7.7	8.1	6.1	5.9	0	0
K = 1.4	8.5	7.8	5.9	6.3	0	0

s = 3240, t = 383, distance = 7	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	59.0	4159.1	2.9	3.0	1	0
K = 1.4	59.4	_	3.3	_	0	-

s = 3297, t = 415, distance = 6	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	59.0	1866.7	2.9	3.1	0	0
K = 1.4	57.9	-	3.0	-	0	-

Experiment E results

- Our method: We implement early stop
- Baseline method : Without early stopping

Experiment A Results (EPINIONS Dataset)

• Table: EPINIONS Dataset for 5 (s-t) pairs.

s – t pairs	Construction time	Solving Time	Number of Private edges included
s=48722, t=723, distance=3	311.1 Seconds	19.3 Seconds	0
s=15605, t=11914, distance=4	303.5 Seconds	19.4 Seconds	0
s=42615, t=9901, distance=5	316.2 Seconds	20.2 Seconds	0
s=12365, t=14160, distance=3	316.0 Seconds	19.9 Seconds	0
s=54096, t=69623, distance=8	314.2 Seconds	24.1 Seconds	0
Range (in Seconds)	312.2 ± 5.2 Seconds	20.58 ± 2 Seconds	

Experiment B (EPINIONS Dataset)

 Changing k = [1, 2, 3, 4, 5] while keeping other parameters constant

Experiment C (EPINIONS Dataset)

• Experiment C : Changing Percentage of private edges PercP = [0.1, 0.3, 0.5, 0.7, 0.9]

Experiment D (EPINIONS Dataset)

• Experiment D : Changing Edge Weights from False to True

s = 12365, t = 14160, distance = 3	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
When $k = 1.2$	21.6	22.0	16.6	17.6	0	0
When $k = 1.4$	125.9	127.0	16.8	17.9	0	0

s = 15605, t = 11914, distance = 4	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	33.9	33.6	18.0	14.9	0	0
K = 1.4	329.4	1418.0	17.4	15.5	0	0

s = 42615, t = 9901, distance = 5	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	328.4	690.2	17.0	17.2	0	0
K = 1.4	329.8	-	16.9	-	0	0

s = 48722, t = 723, distance = 3	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	22.2	22.6	17.0	16.8	0	1
K = 1.4	326	762.7	17.0	17.3	1	0

s = 54096, t = 69623, distance = 8	Construction time		Solving time		Private Edges Included	
	Ours	Baseline	Ours	Baseline	Ours	Baseline
K = 1.2	326.1	-	16.8	-	0	-
K = 1.4	324.7	-	16.9	-	0	-

Experiment E results

- Our method: We implement early stop
- Baseline method : Without early stopping

Conclusion

- In this project we implement the Objective function and get sub optimal solution in minimizing the private edges in a spanner.
- Early stopping is set as we have less computational power and time.
- Model performance is analyzed by several experiments.
- As the future work, we can try to implement this algorithm for all the s-t pairs in the graph.