

Facultad de Ciencias

Universidad Autónoma de México Física Estadística

Tarea 2 - 5.4

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

5.4. Un sistema posee 3 niveles de energía $E_1=\epsilon$, $E_2=2\epsilon$ y $E_3=3\epsilon$ y cada nivel de energía tiene degeneraciones $g(E_1)=g(E_2)=1$ y $g(E_3)=2$. Encontrar la capacidad calorífica de este sistema.

Sol.

Tenemos los niveles de energía y sus degeneraciones:

 $E_1 = \epsilon$, $g(E_1) = 1$ $E_2 = 2\epsilon$, $g(E_2) = 1$ $E_3 = 3\epsilon$, $g(E_3) = 2$ La función de partición para un sistema con niveles discretos está dada por:

$$Z = \sum_{i} g(E_i) e^{-\beta E_i}$$

donde $\beta = \frac{1}{kT}$ (con k la constante de Boltzmann y T la temperatura.

$$Z = g(E_1)e^{-\beta E_1} + g(E_2)e^{-\beta E_2} + g(E_3)e^{-\beta E_3} = e^{-\beta \epsilon} + e^{-2\beta \epsilon} + 2e^{-3\beta \epsilon}$$

La energía promedio se obtiene como:

$$\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z = \frac{\partial}{\partial \beta} \ln \left(e^{-\beta \epsilon} + e^{-2\beta \epsilon} + 2e^{-3\beta \epsilon} \right) = \frac{-\epsilon e^{-\beta \epsilon} - 2\epsilon e^{-2\beta \epsilon} - 6\epsilon e^{-3\beta \epsilon}}{e^{-\beta \epsilon} + e^{-2\beta \epsilon} + 2e^{-3\beta \epsilon}}$$

Por lo tanto, la energía promedio es:

$$\langle E \rangle = \frac{\epsilon e^{-\beta \epsilon} + 2\epsilon e^{-2\beta \epsilon} + 6\epsilon e^{-3\beta \epsilon}}{Z}$$

La capacidad calorífica es la derivada de la energía promedio respecto a la temperatura:

$$C = \frac{\partial \langle E \rangle}{\partial T} = \frac{\partial \langle E \rangle}{\partial \beta} \cdot \frac{\partial \beta}{\partial T} = -\frac{1}{kT^2} \frac{\partial}{\partial \beta} \left(\frac{\epsilon e^{-\beta \epsilon} + 2\epsilon e^{-2\beta \epsilon} + 6\epsilon e^{-3\beta \epsilon}}{Z} \right)$$

$$= -\frac{1}{kT^2} \frac{1}{Z} \left[\frac{\partial}{\partial \beta} \left(\epsilon e^{-\beta \epsilon} \right) + \frac{\partial}{\partial \beta} \left(2\epsilon e^{-2\beta \epsilon} \right) + \frac{\partial}{\partial \beta} \left(6\epsilon e^{-3\beta \epsilon} \right) \right]$$

$$= -\frac{1}{kT^2} \frac{1}{\left(e^{-\beta \epsilon} + e^{-2\beta \epsilon} + 2e^{-3\beta \epsilon} \right)} \left[-\epsilon^2 e^{-\beta \epsilon} - 4\epsilon^2 e^{-2\beta \epsilon} - 18\epsilon^2 e^{-3\beta \epsilon} \right]$$

$$= \frac{1}{kT^2} \frac{\epsilon^2 e^{-3\beta \epsilon}}{e^{-\beta \epsilon}} \frac{e^{2\beta \epsilon} + 4e^{\beta \epsilon} + 18}{2e^{-2\beta \epsilon} + 4e^{\beta \epsilon} + 18}$$

$$= \frac{\epsilon^2 e^{-2\beta \epsilon}}{kT^2} \frac{e^{2\beta \epsilon} + 4e^{\beta \epsilon} + 18}{2e^{-2\beta \epsilon} + e^{-\beta \epsilon} + 1}$$