Higman's Theorem and the Multiset Order

Ian Wehrman

The following is a proof that the multiset extension of (\mathbb{N}, \leq) is well-founded. The proof uses a generalization of Higman's theorem (1952), which originally considered string embeddings. I closely follow the development (originally attributed to Nash-Williams) in Jean Gallier's article, What's So Special About Kruskal's Theorem and the Ordinal Γ_0 ?.

Let (A, \leq) be a quasi-order. Its multiset extension $(\mathcal{M}(A), \ll)$ is defined by $X \ll Y$ iff $X = (Y - A) \cup B$ for some $A, B \in \mathcal{M}(A)$ with $\emptyset \neq A \subseteq M$, for all $b \in B$ there exists $a \in A$ with $b \leq a$, and $a \leq b$ for at most |A| of the elements $b \in B$. $(\mathcal{M}(A), \ll)$ is also a quasi-order.

For an infinite sequence $(a_i)_{i\geq 1}$, a strictly monotonic function $f: \mathbb{N}^+ \to \mathbb{N}^+$ defines the subsequence $(a_{f(i)})_{i\geq 1}$. An infinite sequence $(a_i)_{i\geq 1}$ over (A, \preceq) is good if there exist positive integers i < j such that $a_i \preceq a_j$, and bad otherwise. If all its infinite sequences are good, then (A, \preceq) is a well-quasi-order (WQO).

Lemma 1. (A, \preceq) is a WQO iff there exists a subsequence $(a_{f(i)})_{i\geq 1}$ such that, for all positive integers i, $a_{f(i)} \preceq a_{f(i+1)}$.

Proof. (Non-trivial direction.) Assume a is an infinite sequence over A. Call i > 0 a terminal index in a if there is no j > i such that $a_i \leq a_j$. There are only finitely many terminal indexes in a. Otherwise, the subsequence of terminal indexes would be bad, contradicting the assumption that (A, \leq) is a WQO. So let N be the last terminal index. A suitable subsequence $(a_{f(i)})_{i\geq 1}$ is defined such that f(1) = N + 1, and f(i+1) is the least index such that $a_{f(i)} \leq a_{f(i+1)}$, which exists because all terminal indexes are less than f(1).

Theorem 1 (Higman). If (A, \preceq) is a WQO, then $(\mathcal{M}(A), \ll)$ is also a WQO.

Proof. If not, then there exists a bad sequence on $\mathcal{M}(A)$. Define a minimal bad sequence t on $\mathcal{M}(A)$ such that t_1 is a multiset of minimal size that starts a bad sequence, and t_{n+1} is a multiset of minimal size that is the n+1st element of a bad sequence whose first n elements are $(t_i)_{1 \leq i \leq n}$.

Because t is bad and $\emptyset \ll x$ for any $x \in \mathcal{M}(A)$, for all i > 0, $|t_i| \ge 1$. Let a_i be a maximal element of t_i . Then $t_i = \{a_i\} \uplus s_i$ for some $s_i \in \mathcal{M}(A)$. By definition of the multiset extension, $s_i \ll t_i$ for all i > 0.

By Lem. 1, there is a subsequence $a'=(a_{f(i)})_{i\geq 1}$ of a such that $a_{f(i)} \leq a_{f(i+1)}$ for all i>0. The subsequence $s'=(s_{f(i)})_{i\geq 1}$ of s is good. If not, and f(1)=1, then the sequence $(s_{f(i)})_{i\geq 1}$ is bad and has $|s_1|<|t_1|$, contradicting minimality of t. Otherwise f(1)>1, and the sequence $\langle t_1,\ldots,t_{f(1)-1},s_{f(1)},s_{f(2)},\ldots\rangle$ is also bad, because if not, for some i< f(1) and j>0, $t_i\ll s_{f(j)}\ll t_{f(j)}$, contradicting the assumption that t is bad. But $|s_{f(1)}|<|t_{f(1)}|$, contradicting minimality of t. So s' is good.

Since s' is good, there exists positive integers i, j such that f(i) < f(j) and $s_{f(i)} \ll s_{f(j)}$. But by definition of a', $a_{f(i)} \leq a_{f(j)}$, and so

$$t_{f(i)} = \{a_{f(i)}\} \uplus s_{f(i)} \ll \{a_{f(j)}\} \uplus s_{f(j)} = t_{f(j)},$$

which contradicts assumption that t is bad.

Theorem 2. The multiset extension of (\mathbb{N}, \leq) , $(\mathcal{M}(\mathbb{N}), \ll)$, is well-founded.

Proof. (\mathbb{N}, \leq) is a WQO because \leq is total and well-founded. By Thm. 1, $\mathcal{M}(\mathbb{N}, \ll)$ is a WQO. All the infinite sequences of a WQO are good, and good sequences are not infinitely decreasing. Hence, $\mathcal{M}(\mathbb{N}, \ll)$ is well-founded.