SOLVING ATOMIC STRUCTURE USING STATISTICAL MECHANICAL SEARCHES ON X-RAY SCATTERING DERIVED POTENTIAL ENERGY SURFACES

by

Christopher James Wright

Bachelor of Science Brown University 2014

Submitted in Partial Fulfillment of the Requirements
for the Degree of Masters of Science in
Chemical Engineering
College of Engineering and Computing
University of South Carolina

2016

Accepted by:

Xiao-Dong Zhou, Major Professor

Thomas Vogt, Committee Member

Mark Uline, Committee Member

Jochen Lauterbach, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies

 \odot Copyright by Christopher James Wright, 2016 All Rights Reserved.

DEDICATION

ACKNOWLEDGMENTS

Abstract

TABLE OF CONTENTS

DEDICATION	iii
Acknowledgments	iv
Abstract	V
List of Tables	viii
List of Figures	ix
Chapter 1 Atomic Structure: Extraction and Application	2
1.1 Atomistic Experiments	2
1.2 Atomistic Simulations	2
CHAPTER 2 ATOMIC PAIR DISTRIBUTION FUNCTION: THEORY AND COMPUTATION	3
2.1 Theory	3
2.2 Computation	3
2.3 Experiment	3
2.4 Data Processing Workflow	3
Chapter 3 Statistical Mechanical Ensembles and Potential Energy Surfaces	4
3.1 Ensembles	Δ

Снарт	ER 4 BENCHMARKING	5
4.1	PDF	5
4.2	PDF with ADPs	5
Снарт	ER 5 ANNEALING AND AGGREGATION OF 2NM AU NANOPARTICLES	6
5.1	Experiments	6
5.2	Data Processing	6
5.3	Data Analysis	6
5.4	Simulation	6
5.5	Structural Analysis	6
5.6	Conclusions	6
Снарт	ER 6 Phase Changes and Annealing Dynamics of Pr_2NiO_4 and its derivatives	7
6.1	Experiments	7
6.2	Data Processing	7
6.3	Data Analysis	7
6.4	Simulation	7
6.5	Structural Analysis	7
6.6	Conclusions	7

LIST OF TABLES

LIST OF FIGURES

Introduction

This is the introduction to the thesis.

ATOMIC STRUCTURE: EXTRACTION AND APPLICATION

- 1.1 Atomistic Experiments
- 1.2 Atomistic Simulations

How do I combine/separate the Ensemble, PES and PDF math/computation sections?

ATOMIC PAIR DISTRIBUTION FUNCTION:

THEORY AND COMPUTATION

2.1 Theory

Derivation

2.2 Computation

HPC and **GPUs**

GPUs and vectorization

Map from ij space to k space

Periodic Boundary Conditions

- 2.3 Experiment
- 2.4 Data Processing Workflow

CHAPTER 3

STATISTICAL MECHANICAL ENSEMBLES AND POTENTIAL ENERGY SURFACES

3.1 Ensembles

Hamiltonian Monte Carlo

No-U-Turn-Sampling

Grand Canonical Monte Carlo

Configurational Biasing

BENCHMARKING

4.1 PDF

Au55

4.2 PDF WITH ADPS

Annealing and Aggregation of 2nm

Au Nanoparticles

- 5.1 Experiments
- 5.2 Data Processing
- 5.3 Data Analysis
- 5.4 SIMULATION
- 5.5 STRUCTURAL ANALYSIS
- 5.6 Conclusions

Phase Changes and Annealing Dynamics of ${\rm Pr}_2{\rm NiO}_4 \ {\rm and} \ {\rm its} \ {\rm derivatives}$

- 6.1 Experiments
- 6.2 Data Processing
- 6.3 Data Analysis
- 6.4 SIMULATION
- 6.5 STRUCTURAL ANALYSIS
- 6.6 Conclusions