## Module F

Section F.1 Section F.2

Section F.4

# Module F: First order ODEs

#### Module F

Section F.1

Section F.2 Section F.3

Section F.4

How can we solve and apply first order ODEs?

#### Module F Section F.1

Section F.2 Section F.3 Section F.4 Section F.5 Section F.6 At the end of this module, students will be able to...

- **F1. Sketching trajectories.** ...given a slope field, sketch a trajectory of a solution to a first order ODE
- **F2. Separable ODEs.** ...find the general solution to a separable first order ODE
- F3. Modeling motion. ...model the motion of an object with quadratic drag
- **F4. Autonomous ODEs.** ...find and classify the equillibria of an autonomous first order ODE, and describe the long term behavior of solutions
- **F5. First order linear ODEs.** ...find the general solution to a first order linear ODE
- **F6. Exact ODES.** ...find the general solution to an exact first order ODE

#### Module F

Section F.
Section F.
Section F.
Section F.
Section F.
Section F.

#### **Readiness Assurance Outcomes**

Before beginning this module, each student should be able to...

- Use integration techniques like substitution to compute indefinite integrals.
- Determine the intervals on which a polynomial is positive, negative, or zero.
- Determine when a vector field is conservative.
- Find the potential function of a conservative vector field.
- Use variation of parameters to solve non-homogeneous ODEs when given the solution to the corresponding homogeneous ODE (Standard C5)

The following resources will help you prepare for this module.

- Use integration techniques like substitution to compute indefinite integrals. https://youtu.be/b76wePnIBdU
- Determine the intervals on which a polynomial is positive, negative, or zero. https://youtu.be/jGaOGJjwQh8
- Determine when a vector field is conservative. https://youtu.be/gAb1ZTD41wo
- Find the potential function of a conservative vector field. https://youtu.be/nY4mW\_R-T40
- Use variation of parameters to solve non-homogeneous ODEs when given the solution to the corresponding homogeneous ODE (Standard C5)

#### Math 238

Section F.1

Section F.2

# Module F Section 1

### **Definition F.1.1**

A **first order ODE** is an equation involving (for a function y(x)) only y', y, and x.

We will most often deal with **explicit first order ODEs**, which can be written in the form

$$y' = f(y, x)$$

for some function f(y, x).

Section F.3

Section F.4

$$y' = y^2 - x^2$$

Section F.4

Activity F.1.2 ( $\sim$ 5 min)

Consider the (explicit) first order ODE

$$y' = y^2 - x^2$$

Part 1: Compute y' at each of the points (1,1), (2,1), (3,-2), and (4,-7).

# **Activity F.1.2** ( $\sim$ 5 min)

Consider the (explicit) first order ODE

$$y' = y^2 - x^2$$

Part 1: Compute y' at each of the points (1,1), (2,1), (3,-2), and (4,-7). Part 2:

Let  $y_0(x)$  be a solution that passes through the point (1,1). What can you conclude about  $\lim_{x\to\infty} y_0(x)$ ?

- (A)  $\lim_{x\to\infty} y_0(x) = -\infty$
- (B)  $\lim_{x\to\infty} y_0(x)$  is a finite number
- (C)  $\lim_{x\to\infty} v_0(x) = \infty$

Module F

Math 238

# Module F Section F.1

Section F. Section F. Section F.

#### Definition F.1.3

These kinds of questions are easier to answer if we draw a **slope field** (sometimes called a **direction field**.

To draw one, draw a small line segment or arrow with the correct slope at each point.

Math 238

Module F Section F.1 Section F.2

Section F.

Section F. Section F.



Let  $y_1(x)$  be a solution that passes through the point (1,3). What can you conclude about  $\lim_{x\to\infty}y_0(x)$ ?

- (A)  $\lim_{x\to\infty} y_0(x) = -\infty$
- (B)  $\lim_{x\to\infty} y_0(x)$  is a finite number
- (C)  $\lim_{x\to\infty} y_0(x) = \infty$



Section F.1

Section F.2 Section F.3

Section F.4

Activity F.1.5 ( $\sim$ 15 min) Consider the ODE

$$y'=xy-x.$$

#### Module F Section F.1 Section F.2

Section F.3 Section F.4 Section F.5 **Activity F.1.5** (~15 min)

Consider the  $\ensuremath{\mathsf{ODE}}$ 

$$y' = xy - x$$
.

Part 1: Draw a slope field for this ODE.

#### Section F.1 Section F.2

Section F.3 Section F.4 Section F.5

Section F.5 Section F.7 Section F.7 Activity F.1.5 ( $\sim$ 15 min)

Consider the ODE

$$y' = xy - x$$
.

- Part 1: Draw a slope field for this ODE.
- Part 2: Draw a solution that passes through the point (0,0).

#### Section F.1 Section F.2

Section F.3 Section F.4

Section F

Activity F.1.5 ( $\sim$ 15 min)

Consider the ODE

$$y'=xy-x.$$

- Part 1: Draw a slope field for this ODE.
- Part 2: Draw a solution that passes through the point (0,0).
- Part 3: Draw a solution that passes through the point (-2,2).

## Observation F.1.6

# Section F.2

Section F.1



#### Module F Section F.1

Section F.2 Section F.3 Section F.4 Section F.5 Section F.6

## Observation F.1.7

How can we solve y' = xy - x exactly?

Notice 
$$xy - x = x(y - 1)$$
, so we can write  $y' = x(y - 1)$ .

Write

$$\frac{y'}{v-1} = x.$$

This is called a **separable** DE.

Section F.1

Section F.4

## Observation F.1.8

Integrate both sides (and switch to Leibniz notation):

$$\int \frac{1}{y-1} \frac{dy}{dx} \ dx = \int x \ dx.$$

The substitution rule (i.e. chain rule) says this is equivalent to

$$\int \frac{1}{y-1} dy = \int x \ dx.$$

Thus,  $\ln |y-1| = \frac{1}{2}x^2 + c$ . Exponentiating, we have

$$|y-1| = e^{\frac{1}{2}x^2+c} = e^{\frac{1}{2}x^2}e^c = c_0e^{\frac{1}{2}x^2}.$$

Allowing  $c_0$  to take on negative values, we can drop the absolute value sign, and obtain

$$y = 1 + c_0 e^{\frac{1}{2}x^2}.$$

Section F.1 Section F.2 Section F.3

Section F.4

Activity F.1.9 ( $\sim$ 10 min) Find the general solution to

$$y'=xy+y.$$

Section F.1 Section F.2

Section F.3 Section F.4

**Activity F.1.10** (~10 min) Solve the IVP

$$y'=\frac{x}{y},y(0)=-1.$$

#### Math 238

Module F
Section F.1
Section F.2
Section F.3
Section F.4
Section F.5

# Module F Section 2

# Activity F.2.1 ( $\sim$ 5 min)

In Module C, we discussed that tiny spherical objects like droplets of water obey Stoke's law: drag is proportional to velocity (speed). But for larger objects, a better model incorporates **quadratic drag**, i.e. drag is proportional to the square of velocity.

Which of the following ODEs models the velocity of a falling object subject to quadratic drag?

- (a) mv' = mg + bv
- (b) mv' = mg bv
- (c)  $mv' = mg + bv^2$
- (d)  $mv' = mg bv^2$

Activity F.2.2 ( $\sim$ 10 min)

Consider our model of a falling object under quadratic drag

$$mv' = mg - bv^2$$
.

# Activity F.2.2 ( $\sim$ 10 min)

Consider our model of a falling object under quadratic drag

$$mv' = mg - bv^2$$
.

Part 1: For what value of v will the change in velocity be 0?

# Activity F.2.2 ( $\sim$ 10 min)

Consider our model of a falling object under quadratic drag

$$mv' = mg - bv^2$$
.

Part 1: For what value of v will the change in velocity be 0?

*Part 2:* Suppose the object is currently falling at a rate slower than this speed. What will happen?

- (a) It will slow down
- (b) It will keep falling at the same speed.
- (c) It will speed up

#### Math 238

Section F.1 Section F.2 Section F.3 Section F.4 Section F.5 Section F.6

## Observation F.2.3

This equillibrium speed is called the **terminal velocity**.

# Activity F.2.4 ( $\sim$ 5 min)

Consider the following question:

A penny is dropped off the top of the Empire State Building. How fast will it be going when it hits the ground? // // What information do we need to answer this question?

#### Observation F.2.5

The mass of a penny is  $2.5\mathrm{g}.$  The Empire State Building is (roughly)  $400\mathrm{m}$  tall.

The terminal velocity of a penny is about  $25 \mathrm{m/s}$ .

#### Math 238

Section F.1 Section F.2 Section F.3 Section F.4 Section F.5 Section F.6

# Activity F.2.6 ( $\sim$ 20 min)

We calculated earlier that the terminal velocity is  $v_t = \sqrt{\frac{mg}{b}}$ .

#### Math 238

Module F
Section F.1
Section F.2
Section F.3
Section F.4
Section F.5
Section F.6

# Activity F.2.6 ( $\sim$ 20 min)

We calculated earlier that the terminal velocity is  $v_t = \sqrt{\frac{mg}{b}}$ .

Part 1: Solve for g in terms of  $v_t$ , m, b, and substitute this in to our model  $v' = g - \frac{b}{m}v^2$ .

# **Activity F.2.6** (~20 min)

We calculated earlier that the terminal velocity is  $v_t = \sqrt{\frac{mg}{b}}$ .

Part 1: Solve for g in terms of  $v_t, m, b$ , and substitute this in to our model  $v' = g - \frac{b}{m}v^2$ .

Part 2: Solve this separable ODE

**Hint:** 
$$\frac{1}{v_t^2 - v^2} = \frac{2}{v_t} \left( \frac{1}{v_t - v} + \frac{1}{v_t + v} \right)$$

# **Activity F.2.6** (~20 min)

We calculated earlier that the terminal velocity is  $v_t = \sqrt{\frac{mg}{b}}$ .

Part 1: Solve for g in terms of  $v_t, m, b$ , and substitute this in to our model  $v' = g - \frac{b}{m}v^2$ .

Part 2: Solve this separable ODE

**Hint:** 
$$\frac{1}{v_t^2 - v^2} = \frac{2}{v_t} \left( \frac{1}{v_t - v} + \frac{1}{v_t + v} \right)$$

Part 3: How fast is the penny going after 10 seconds?

Section F.2

Section F.3

# Module F Section 3

## Observation F.3.1

There are two very simple kinds of separable ODEs.

Equations of the form y' = f(x) can be solved immediately by integrating and produce explicit solutions.

Equations of the form y' = f(y) are often impossible or difficult to solve explicitly. They are called **autonomous** equations.

Section F.1 Section F.2 Section F.3

Section F.4

# **Activity F.3.2** (∼10 min)

# Consider the autonomous equation

$$y'=y^2$$
.

Section F.1 Section F.2 Section F.3

Section F.4

$$y'=y^2$$
.

Part 1: Draw a slope field

Activity F.3.2 (
$$\sim$$
10 min)

Consider the autonomous equation

$$y'=y^2$$
.

### Part 1: Draw a slope field

Part 2: Suppose a solution goes through the point y(10) = 50. What can you say about y(11)?

(a) 
$$y(10) < y(11)$$

(b) 
$$y(10) = y(11)$$

(c) 
$$y(10) > y(11)$$

### Math 238

Section F.1 Section F.2 Section F.3 Section F.4 Section F.5 Section F.6

### Observation F.3.3

Since the slopes do not change when moving horizontally (i.e. in the x direction), we often collapse the slope field onto the y-axis.





This is called a **phase line**.

Consider the autonomous equation

$$y'=y^2(y-2).$$

Consider the autonomous equation

$$y'=y^2(y-2).$$

Part 1: Draw a number line for y', indicating where it is positive or negative.

Consider the autonomous equation

$$y'=y^2(y-2).$$

Part 1: Draw a number line for y', indicating where it is positive or negative.

Part 2: What can you say about the long term behavior of a solution passing through y(4) = 1?

Consider the autonomous equation

$$y'=y^2(y-2).$$

Part 1: Draw a number line for y', indicating where it is positive or negative.

Part 2: What can you say about the long term behavior of a solution passing through y(4) = 1?

Part 3: What can you say about the long term behavior of a solution passing through y(2) = 0.001?

Consider the autonomous equation

$$y'=y^2(y-2).$$

Part 1: Draw a number line for y', indicating where it is positive or negative.

Part 2: What can you say about the long term behavior of a solution passing through y(4) = 1?

Part 3: What can you say about the long term behavior of a solution passing through y(2) = 0.001?

Part 4: What can you say about the long term behavior of a solution passing through y(2) = -0.001?

Section F.1

Section F.1 Section F.2

Section F.3 Section F.4

Section F.5

Section F.0

Module F Section 4

### **Definition F.4.1**

Recall from last week: the **phase line** is a useful way to visualize the long term behavior of an autonomous DE.

For example, here is a phase line for the autonomous DE  $y' = y^2(y-2)$ .

Section F.4

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Section F.3 Section F.4

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

### **Activity F.4.2** ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

Part 2: Describe the long term behavior of a solution passing through y(2) = -0.9999.

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

Part 2: Describe the long term behavior of a solution passing through y(2) = -0.9999.

Part 3: Describe the long term behavior of a solution passing through y(7) = -1.0001.

Activity F.4.2 (
$$\sim$$
15 min)

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

Part 2: Describe the long term behavior of a solution passing through

y(2) = -0.9999.

Part 3: Describe the long term behavior of a solution passing through

y(7) = -1.0001.

Part 4: Describe the long term behavior of a solution passing through y(4) = -1.

### Activity F.4.2 ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

Part 2: Describe the long term behavior of a solution passing through

y(2) = -0.9999.

Part 3: Describe the long term behavior of a solution passing through y(7) = -1.0001.

Part 4: Describe the long term behavior of a solution passing through y(4) = -1.

Part 5: Describe the long term behavior of solutions passing near the point y(2) = 0

y(3)=0.

$$y' = y(y+1)^2(y-2).$$

Part 1: Draw a phase line.

Part 2: Describe the long term behavior of a solution passing through

y(2) = -0.9999.

Part 3: Describe the long term behavior of a solution passing through y(7) = -1.0001.

Part 4: Describe the long term behavior of a solution passing through y(4) = -1.

Part 5: Describe the long term behavior of solutions passing near the point y(3) = 0.

*Part 6:* Describe the long term behavior of solutions passing near the point y(11) = 2.

### **Definition F.4.3**

The **critical points** of an autonomous DE are the numbers that give rise to equillibrium solutions (e.g. 0, -1, 2 in the previous problem).

A source is an unstable equillibrium in which all nearby trajectories move away in the limit.

A **sink** is a stable equillibrium in which all nearby trajectories approach the equillibrium in the limit.

There are also unstable equillibria in which some nearby trajectories return, while others diverge, analogous to a saddle point.

Section F.1

Section F.2

Section F.3 Section F.4

Activity F.4.4 ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y^3(y-2)^2(y+1)(y-1).$$

Consider the autonomous equation

$$y' = y^3(y-2)^2(y+1)(y-1).$$

Part 1: Find and classify all of the critical points.

Consider the autonomous equation

$$y' = y^3(y-2)^2(y+1)(y-1).$$

Part 1: Find and classify all of the critical points.

Part 2: Describe the long term behavior of solutions passing near the point y(1) = 1.5.

**Activity F.4.5** (
$$\sim$$
15 min)

Consider the autonomous equation

$$y' = y^4(y+3)^2(y-1)(y+2).$$

## Activity F.4.5 ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y^4(y+3)^2(y-1)(y+2).$$

Part 1: Find and classify all of the critical points.

## Activity F.4.5 ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y^4(y+3)^2(y-1)(y+2).$$

Part 1: Find and classify all of the critical points.

Part 2: Describe the long term behavior of solutions passing near the point y(0) = 0.5.

## Activity F.4.5 ( $\sim$ 15 min)

Consider the autonomous equation

$$y' = y^4(y+3)^2(y-1)(y+2).$$

Part 1: Find and classify all of the critical points.

Part 2: Describe the long term behavior of solutions passing near the point y(0) = 0.5.

Part 3: Describe the long term behavior of solutions passing near the point y(3) = 0.

Section F.2

Section F.5

# Module F Section 5

### Observation F.5.1

In module C, we solved constant coefficient linear ODEs.

Today we will observe that our existing techniques allow us to solve all **first order linear ODES**, i.e. ODEs of the form

$$a(x)y' + b(x)y + c(x) = 0.$$

Such equations can always be rewritten (by rearranging and dividing by a(x) in **standard form**:

$$y' + P(x)y = Q(x).$$

**Activity F.5.2** (~20 min)

Consider the first order linear ODE

$$y' + \frac{1}{x}y = 1.$$

Consider the first order linear ODE

$$y' + \frac{1}{x}y = 1.$$

Part 1: Solve the homogeneous first order linear ODE

$$y' + \frac{1}{x}y = 0.$$

# **Activity F.5.2** (~20 min)

Consider the first order linear ODE

$$y' + \frac{1}{x}y = 1.$$

Part 1: Solve the homogeneous first order linear ODE

$$y' + \frac{1}{x}y = 0.$$

Part 2: Use variation of parameters to the solve the original ODE

# Activity F.5.3 ( $\sim$ 15 min)

Solve the first order linear ODE

$$\frac{1}{x}y'-\frac{2}{x^2}y-x\cos(x)=0.$$

Module F
Section F.1
Section F.2
Section F.3
Section F.4
Section F.5

**Activity F.5.4** ( $\sim$ 15 min) Solve the first order linear ODE

### Math 238

Section F.2 Section F.3 Section F.4 Section F.5 Section F.5

### Remark F.5.5

The book provides a different technique; however, the method presented here does not require memorizing anything new.

### Module F

### Math 238

### Module F

Section E 1

Section F.1 Section F.2

Section F.:

Section F.4

Section F.5

Section F.6

# Module F Section 6

Section F.1 Section F.2

Section F.6

### Observation F.6.1

A vector field  $\langle P,Q \rangle$  corresponds to the slope field of the differential equation

$$\frac{dy}{dx} = \frac{Q}{P}.$$

Thus, a solution to this ODE describes the path taken by the particle in this fluid flow.



Consider the ODE

$$\frac{dy}{dx} = \frac{-2xy^2 - 1}{2x^2y}$$

This can be rewritten as

$$(2xy^2 + 1) + 2x^2y\frac{dy}{dx} = 0.$$

Now, consider  $\phi(x, y) = x^2y^2 + x$ .

Consider the ODE

$$\frac{dy}{dx} = \frac{-2xy^2 - 1}{2x^2y}$$

This can be rewritten as

$$(2xy^2 + 1) + 2x^2y \frac{dy}{dx} = 0.$$

Now, consider  $\phi(x, y) = x^2y^2 + x$ .

*Part 1:* Compute  $\nabla \phi$ .

Section F.6

### Activity F.6.2 ( $\sim$ 10 min)

Consider the ODE

$$\frac{dy}{dx} = \frac{-2xy^2 - 1}{2x^2y}.$$

This can be rewritten as

$$(2xy^2 + 1) + 2x^2y \frac{dy}{dx} = 0.$$

Now, consider  $\phi(x, y) = x^2y^2 + x$ .

*Part 1:* Compute  $\nabla \phi$ .

Part 2: Differentiate the equation  $\phi(x, y) = c$  with respect to x.

Consider the ODE

$$\frac{dy}{dx} = \frac{-2xy^2 - 1}{2x^2y}.$$

This can be rewritten as

$$(2xy^2 + 1) + 2x^2y\frac{dy}{dx} = 0.$$

Now, consider  $\phi(x, y) = x^2y^2 + x$ .

*Part 1:* Compute  $\nabla \phi$ .

Part 2: Differentiate the equation  $\phi(x, y) = c$  with respect to x.

Part 3: Solve the ODE  $(2xy^2 + 1) + 2x^2y \frac{dy}{dx} = 0$ .

Section F.6

### **Definition F.6.3**

If  $\langle M, N \rangle$  is a conservative vector field, the ODE

$$M + N \frac{dy}{dx} = 0$$

is called **exact**. This ODE can also be written

$$\frac{dy}{dx} = \frac{-M}{N}.$$

If  $\phi(x,y)$  is a potential function of  $\langle M,N\rangle$ , the general solution to the ODE is  $\phi(x,y)=c.$ 

The slope field of the ODE  $\frac{dy}{dx} = \frac{-M}{N}$  is the vector field  $\langle -N, M \rangle$ !

### Section F.1 Section F.2 Section F.3 Section F.4 Section F.5 Section F.6

# **Activity F.6.4** ( $\sim$ 10 min)

Determine which of the following ODEs are exact.

(a) 
$$2xy + (x^2 - 2y)\frac{dy}{dx} = 0$$

(b) 
$$\frac{dy}{dx} = \frac{2xy}{x^2 + 2y}$$

(c) 
$$\frac{dy}{dx} = -\frac{2xy}{x^2 + 2y}$$

Module F
Section F.1
Section F.2
Section F.3
Section F.4

Section F.4 Section F.5 Section F.6

Activity F.6.5 ( $\sim 10 \text{ min}$ ) Solve the exact ODE  $2xy + (x^2 - 2y)\frac{dy}{dx} = 0$ .

Section F.2

Section F.7

Module F Section 7

Section F.7

### Activity F.7.1 ( $\sim$ 10 min)

Determine which of the following ODEs are exact.

(a) 
$$\frac{dy}{dx} = \frac{-y}{x^2 + y^2 + x}$$

(b) 
$$1 + \frac{x}{x^2 + y^2} + \left(\frac{y}{x^2 + y^2}\right) \frac{dy}{dx} = 0$$

Section F.1 Section F.2 Section F.3

Section F.7

# Activity F.7.2 ( $\sim$ 15 min)

Solve the exact ODE

$$1 + \frac{x}{x^2 + y^2} + \left(\frac{y}{x^2 + y^2}\right) \frac{dy}{dx} = 0.$$

These solutions describe the trajectories taken by particles in the fluid flow below



# **Activity F.7.3** (~20 min)

Find solutions for the ODE

$$1 + \frac{x}{x^2 + y^2} + \left(\frac{y}{x^2 + y^2}\right) \frac{dy}{dx} = 0$$

for each of the following initial conditions

(a) 
$$y(0) = -1$$
.

(b) 
$$y(-2) = -2$$
.

(c) 
$$y(-4) = -4$$
.

Plot each of the solution curves.