	Utech
Name:	
Roll No.:	To Descript Source State State Control
Invigilator's Signature :	

CS/B.Tech (OLD)/SEM-1/PH-101/2010-11 2010-11 ENGINEERING PHYSICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) A body of mass m moves with a velocity v and hits a stationary block of mass M and both of them start moving in the same direction with the same velocity, v'. Assuming the collision to be elastic the
 - a) kinetic energy of the system is increased
 - b) kinetic energy of the system is decreased
 - c) v' = v if M >> m
 - d) v' = v if $M \ll m$.
 - ii) Degrees of freedom of a *N*-particle rigid body restricted to move on the surface of the earth along the equator is
 - a) one

b) 3*N*-1

c) four

d) five.

1101 [Turn over

- a) the system comprizes of a single particle
- b) total force on the system is zero
- c) total torque on the system is zero
- d) total force and torque both are zero.
- iv) Generalized co-ordinates of a single particle (of mass m) system are chosen as the spherical polar co-ordinates r, θ , ϕ . If p_r , p_θ and p_ϕ denote the corresponding momenta then the Hamiltonian of the system which is constrained to move in ϕ =0 plane is

a)
$$\frac{1}{2m} \left(p_r^2 + p_\theta^2 + p_\phi^2 \right)$$

b)
$$\frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right)$$

c)
$$\frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta} \right)$$

- d) none of these.
- v) Electromagnetic wave and elastic wave
 - a) both can propagate through vacuum
 - b) both can be longitudinal
 - c) both can be transverse
 - d) both travel with same velocity in all media.

- vi) If a charged capacitor (C) is discharged through a resistor (R) and an inductor (L) then the charge will
 - a) always decay without oscillation irrespective of the circuit elements
 - b) always show decaying oscillation irrespective of the values of the circuit elements
 - c) show decaying oscillation only when $R > 2\sqrt{\frac{L}{C}}$
 - d) show decaying oscillation only when $R < 2\sqrt{\frac{L}{C}}$.
- vii) For a particle executing S.H.M. the phase difference between displacement and velocity is
 - a) π

b) zero

c) $\frac{\sigma}{2}$

- d) $\frac{\pi}{4}$.
- viii) The equation of the surface above x-y plane is $x^2 + y^2 = z$, the unit normal vector in the surface at (x, y, z) is given by
 - a) $\frac{x\hat{i}+y\hat{j}+2\hat{k}}{\sqrt{3}}$
- b) $\frac{x\hat{i}+y\hat{j}}{\sqrt{2}}$
- c) $\frac{2x\hat{i}+2y\hat{j}-\hat{k}}{3}$
- d) \hat{k}
- ix) Electric field is
 - a) always irrotational
 - b) never irrotational
 - c) irrotational only in a charge-free region
 - d) irrotational if the magnetic field does not change with time.

- a function of ϕ only a)
- b) a constant
- c) a function of (r, θ) only
- a function of all three co-ordinates (r, θ, ϕ) . d)

xi) Ampere's circuital law is valid for

- varying current only a)
- steady current only b)
- c) alternative current only
- d) none of these.

A point charge q is placed at the centre of a cube of side a, then the flux of the electric field at each surface of the cube is

a)
$$\frac{q}{4\pi \in_0}$$

b)
$$\frac{q}{\in_0}$$

c)
$$\frac{q}{6 \in_{0}}$$

b)
$$\frac{q}{\in_0}$$
d) $\frac{qa^2}{\in_0}$.

xiii) In a region electric field is uniform and pointing towards positive z direction. The electrostatic potential at z = 0and at z = 1 are denoted by ϕ_0 and ϕ_z . Then

- a) $\phi_0 = \phi_z$
- b) $\phi_0 > \phi_z$
- $\phi_0 < \phi_z$ c)
- d) the field will be changed if ϕ_0 is made $\phi_0 + \alpha$ and ϕ_z is made $\phi_z + \alpha$ when α is a constant.

- xiv) $\vec{\nabla} \cdot \vec{B} = 0$ signifies that
 - a) \vec{B} is a conservative field
 - b) magnetic monopole does not exist
 - c) $\vec{B} = 0$
 - d) there exist magnetic monopole.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. a) Write down the equations of constraint and obtain degrees of freedom for a simple pendulum, constrained to move in a plane, suspended by a rigid string of negligible mass. Mass of the pendulum is M. 1+1
 - b) Write down the Langragian of a system and derive the equation of motion. 1+2
- 3. If the damping force for a forced harmonic oscillator is proportional to 2bv (where v is the velocity of the particle), natural frequency is ω_0 , the periodic driving force is f sin pt then the steady state displacement is given by $x = \frac{f}{\sqrt{\left(\omega^2 p^2\right)^2 + 4b^2p^2}} \sin\left(pt \alpha\right) \text{ and } \alpha = \tan^{-1}\frac{2bp}{\left(\omega^2 p^2\right)}.$

Find out the frequency corresponding to the velocity resonance. Find the value of the phase factor at this frequency. Find the value of the frequency of amplitude resonance. 2 + 1 + 2

4. If a vector field $\vec{B} = \vec{\nabla} \times \vec{A}$, where \vec{A} is another vector field, then show that $\vec{\nabla} \cdot \vec{B} = 0$.

If \vec{E} is electrostatic field then show that it can be derived from a scalar potential, ϕ . Prove the necessary vector identity. 1+2

- 5. a) In a region of space, the electric field is given by $\vec{E} = 8\vec{i} + 4\vec{j} + 3\vec{k}$, calculate the electric flux through a surface area 10 units in *x-y* plane.
 - b) Find out the potential at the centre of a 1.0 metre square having charges $q_1 2q_2$, 3q and 2q at its corners.

3

6. State Ampere's circuital law in the integral form. Cast it into differential form. Show that this law implies a steady current. 1+2+2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Write down the differential equation of damped vibration and explain each term.
 - b) Obtain the solution for such equation for small damping. Hence calculate the time period. 6+2
 - c) What is relaxation time ? Show that relaxation time depends on damping constant. 2+3

1101 6

- 8. a) For a two-body system, show that the total linear momentum is constant when the total external force is zero.
 - b) A ball falls on the floor from a height H and rebounds to a height H. Calculate the coefficient of resitution in this case.
 - c) Show that the Hamiltonian remains conserved when the
 Lagrangian does not explicitly depend on time.
- 9. a) Derive equation of continuity from the principle of conservation of charge.
 - b) Define drift velocity and current density. Derive the relation between the two quantities.5
 - c) Find the electrostatic potential within a infinitely long hollow uniform cylinder of radius a, maintained at a potential V_0 by solving the appropriate Laplace equation. 5
- 10. a) If the electrostatic potential is given by $V = (x^2 + y^2 + z^2)/6$, then calculate the total charge within a sphere of radius *R*. Calculate the electrostatic field vector at the surface of this sphere.
 - b) State Biot-Savart law in its vector form. Explain the symbols with the help of a diagram. Find out the magnetic field at the centre of a circular current carrying loop of radius b (current is I). 2+2+4
 - c) Find the magnetic field due to solid cylinder of radius a carrying current I at a distance r > a.

- 11. a) State Coulomb's theorem on the electrostatic field near the surface of a conductor. Prove the theorem from Gauss' law of electrostatics.
 - b) Derive Poisson's equation from Gauss law. Verify that the electrostatic potential due to an isolated point charge at the origin satisfies Poisson's equation at a point whose distance from the origin, $r \neq 0$. 2 + 4
 - c) A charge q is placed at the origin of the coordinate system. Calculate the work done in bringing another charge q from infinity to a point of distance r from the origin directly from the definition of the work done.
- 12. a) State Maxwell's equations. Show that in a charge free, current free region the electric field vector satisfies a wave equation. Identify the velocity of this wave.

2 + 3 + 1

- b) What is a cyclic coordinate? From Hamilton's equation of motion show that the conjugate momentum corresponding to a cyclic co-ordinate is conserved. Give an example of a system with cyclic co-ordinate and the conserved corresponding momentum. 1+3+2
- c) If a particle executing simple harmonic motion simultaneously at two perpendicular directions with the same amplitude and frequency then find out the condition that the Lissajous figure will be a circle.

1101 8