1

1 SECURITY PROOF

Theorem 1. If the q-BDHE assumption holds, no polynomial time adversary can selectively break the DB-SS-IOV with a challenge matrix of size $l^* \times n^*$, where $n^* < q$.

Proof. Suppose there is an adversary $\mathcal A$ can break the DB-SS-IOV scheme with a non-negligible advantage ε . $\mathcal A$ can query any attribute keys and proxy keys that cannot be used to decrypt the challenge ciphertext. Then we can build a simulator $\mathcal B$ to break the DB-SS-IOV scheme with the advantage $\varepsilon/2$.

Init. \mathcal{A} selects a user revocation list U^* and a challenge access structure $W^* = (M^*, \rho^*, \mathcal{S}^*)$, where M^* is a $l^* \times n^*$ access matrix, $\mathcal{S}^* = (I_S^*, S^*)$, I_S^* is the attribute names set, $S^* = \left\{\beta_{\rho^*(i)}^*\right\}_{i \in [1, l^*]}$ is the attribute values set, ρ^* maps a row in M^* into an attribute name in I_S^* .

Setup. \mathcal{B} generates the system public parameters by performing the following steps.

- Chooses $\alpha_0 \in Z_p$ at random and set $e(g,g)^{\alpha_1} = e(g,g)^{\alpha_0}e(g^d,g^{d^q})$, then $\alpha_1 = \alpha_0 + d^{q+1}$.
 - Selects $a_0 \in Z_p$ and computes g^{a_0} , $\mu = g^d$, $\nu = g^{d^q}$.
- For U^* , let $I_{U^*} = \{i \in \text{path}(uid) \mid uid \in U^*\}$, randomly selects $v_i \in Z_p$ where $i = 0, 1, \dots, 2N 2$. If $i \in I_{U^*}$, set $y_i = g^{v_i}g^{d^i}$, then $\xi_i = v_i + d^i$; otherwise, set $y_i = g^{v_i}g^{d^q}$, then $\xi_i = v_i + d^q$.

Then \mathcal{B} publishes the system public parameters $GP = \langle G_0, G_1, e, g, \mu, \nu, e(g, g)^{\alpha_1}, g^{a_0}, \{y_i\}_{i=0}^{2N-2} \rangle$.

Phase 1. \mathcal{B} answers the key queries from \mathcal{A} with the attribute sets $(uid_1,\mathcal{S}_1),(uid_2,\mathcal{S}_2),\dots,(uid_{Q_1},\mathcal{S}_{Q_1})$, where $\mathcal{S}_i=(I_S,S),i\in[1,Q_1]$ and $S=\{s_i\}_{i\in I_S}$ is the attribute value set. For each $s_i\in\mathcal{S}$, if $s_i=\beta_{p^*(i)}^*$ then set $u_i=s_i+\sum_{n=1}^{n^*}d^nM_{k,n}^*$, where $i\in\{1,2,\dots,l^*\}$; otherwise set $u_i=s_i$. There are four cases below, where $\mathcal{S}\models W^*$ represents that the \mathcal{S} meets the access policy W^* , and the $\mathcal{S}\not\models W^*$ represents that the \mathcal{S} does not meet the access policy W^* .

Case 1: If $S \models W^*$ and $uid \notin U^*$, then terminate.

Case 2: If $S \models W^*$ and $uid \in U^*$, then \mathcal{B} performs the following steps:

ullet Randomly chooses $c\in Z_p$. Let $r=-rac{d^q}{a_0+c}+rac{d^{q-1}}{a_0+c}\cdotrac{M_{i,1}}{M_{i,2}^*}$, then computes $K_1=c, L_1=L_0^{a_k}=g^{a_kr}$,

$$\begin{split} K_0 &= g^{\frac{\alpha'}{a_0+c}} (g^{\frac{d^q}{a_0+c}})^{\frac{M_{i,1}^*}{M_{i,2}^*}} = g^{\frac{\alpha_1}{a_0+c}} \mu^r, \\ L_0 &= [(g^{d^q})^{\frac{1}{a_0+c}}]^{-1} [(g^{d^{g^{-1}}})^{\frac{1}{a_0+c}}]^{\frac{M_{i,1}^*}{M_{i,2}^*}} = g^r, \\ K_i &= [(g^{d^q})^{\frac{s_i}{a_0+c}}]^{-1} \cdot [(g^{d^{q^{-1}}})^{\frac{s_iM_{i,1}^*}{a_0+cM_{i,2}^*}}]^{\frac{M_{i,1}^*}{M_{i,2}^*}} \cdot g^{u_i \cdot r} v^{-(a_0+c)r} \\ &[(\prod_{k=1}^{n^*} g^{-d^{q+k} \cdot M_{i,k}^*}) \cdot (\prod_{k=1}^{n^*} g^{d^{q+k-1} \cdot M_{i,k}^*})^{\frac{M_{i,1}^*}{M_{i,2}^*}}]^{\frac{1}{a_0+c}} \cdot g^{d^{2q}} \\ &= g^{u_i \cdot r} \nu^{-(a_0+c)r} \end{split}$$

• Suppose $path(uid) = \{i_0, \dots, i_d\}$, where $i_0 = root$ and i_d is the leaf node value in the binary tree that is related to the user uid. Since $uid \in U^*$, then $i_d \in$

 $I_{U^*}, \xi_{i_d} = v_{i_d} + d^{i_d}$ is concluded. \mathcal{B} calculates

$$K_u = (g^{d^q})^{-1} \cdot (g^{d^{q-1}})^{\frac{M_{i,1}^*}{M_{i,2}^*}}]^{\frac{1}{(v_{id} + d^{id}) \cdot (a_0 + c)}} = g^{r/\xi_{id}}.$$
 (2)

Case 3: If $S \not\models W^*$ and $uid \in U^*$, \mathcal{B} performs as follows:

- According to the definition of LSSS, randomly choose a vector $\vec{\omega} = (\omega_1, \omega_2, \dots, \omega_{n^*})^\mathsf{T} \in Z_p^{n^*}$, where $\omega_1 = -1$ and $M_i^* \cdot \vec{\omega} = 0$ for $i \in [2, l^*]$.
 - Select $c \in Z_p$ and set $K_1 = c$,
- Randomly chooses $h \in Z_p$ and implicitly define $r = \frac{1}{a_0 + c} \left(h + \omega_1 d^q + \omega_2 d^{q-1} \cdots + \omega_{n^*} d^{q-n^*+1} \right)$,
 - Calculate K_0, L_0 and L_1 as follows:

$$L_{0} = g^{\frac{h}{a_{0}+c}} \prod_{i=1}^{n^{*}} (g^{\omega_{i}d^{q+1-i}})^{\frac{1}{a_{0}+c}} = g^{r},$$

$$L_{1} = g^{\frac{a_{0}h}{a_{0}+c}} \prod_{i=1}^{n^{*}} (g^{\omega_{i}d^{q+1-i}})^{\frac{a_{0}}{a_{0}+c}} = g^{a_{0}r},$$

$$K_{0} = (g^{\alpha'_{1}+dh} \prod_{i=2}^{n^{*}} g^{\omega_{i}d^{q+2-i}})^{\frac{1}{a_{0}+c}} = g^{\frac{\alpha_{1}}{a_{0}+c}} \mu^{r},$$
(3)

• For $\forall \tau \in I_S$, if there exists i such that $\rho^*(i) = \tau$ and $s_{\tau} = \beta^*_{\rho^*(i)}$, then $\mathcal B$ computes

$$K_{\tau} = L_0^{s_{\tau}} \left[\prod_{j=1}^{n^*} (g^{t \cdot d^j} \cdot \prod_{k=1}^{n^*} g^{\omega_k d^{q+1+j-k}})^{M_{i,j}^*} \right]^{\frac{1}{a_0 + c}}$$

$$\cdot (g^{-t \cdot d^q} \prod_{i=1}^{n^*} g^{-\omega_i d^{2q+1-i}}).$$

$$(4)$$

Otherwise, the $K_{\tau} = L_0^{s_{\tau}} (g^{t \cdot d^q} \prod_{i=1}^{n^*} g^{\omega_i} d^{2q+1-i})^{-1}$.

• Suppose $path\left(uid\right)=\{i_0,\ldots,i_d\}$, where $i_0=root$ and i_d is the leaf node value in the binary tree that is related to the user uid. Since $uid\in U^*$, then $i_d\in I_{U^*}, sk_{i_d}=v_{i_d}+d^{i_d}$ is obtained. $\mathcal B$ computes $K_u=(g^t\prod_{i=1}^{n^*}g^{\omega_id^{q+1-i}})^{1/\left(v_{i_d}+d^{i_d}\right)\cdot(a_0+c)}=g^{r/\xi_{i_d}}$.

Case 4: If $\mathcal{S} \not\models W^*$ and $uid \notin U^*$, the calculation process of L_0, L_1, K_0 and K_{τ} is the same as case 3. Since $uid \notin U^*$, then $i_d \notin I_{U^*}$, $sk_{i_d} = v_{i_d} + d^q$. Next, \mathcal{B} calculates $K_u = (g^t \prod_{i=1}^{n^*} . g^{\omega_i d^{g+1-i}})^{\frac{1}{(v_{i_d}+dq)\cdot(a_0+c)}} = g^{r/\xi_{i_d}}$.

Challenge. A sends two equal-length keys k_0, k_1 to B. B performs the following processes:

- Tosses a fair coin $b \in \{0,1\}$ and performs the Online. Encrypt algorithm. Computes $C_2 = k_b \cdot e(g,g)^{\alpha_1 s}$.
- \mathcal{B} performs the Offline.Encrypt algorithm and computes $C_0=g^s$, and $C_1=g^{a_0s}$.
- \mathcal{B} randomly chooses $r_2, \ldots, r_n \in Z_p^*$ and sets $\vec{v} = (s, sd + r_2, sd^2 + r_3, \ldots, sd^{n^*-1} + r_{n^*})^\mathsf{T} \in Z_{p^*}^*$, then calculate

$$\begin{split} C_{i,1} &= \prod_{j=2}^{n^*} (g^{dr_j})^{M^*_{i,j}} \prod_{j=1}^{n^*} (g^{sd^j})^{M^*_{i,j}} g^{-a_0d^{q+i}} (g^{sd^{j-1}})^{M^*_{i,j}}, \\ C_{i,2} &= (g^{t_{\rho^*(i)}})^{-a_0d^i} \prod_{j=2}^{n^*} (g^{d^jM^*_{i,j}})^{-a_0d^i} \cdot g^{r_jM^*_{i,j}+sd^{j-1}M^*_{i,j}} \\ C_{i,3} &= g^{-a_0d^i} \end{split}$$

(5)

• For $\forall j \in \text{cover}(U^*)$, since $\xi_j = v_j + d^q$ and $y_j = g^{v_j + d^q}$, then \mathcal{B} sets $T_j = (g^s)^{v_j + d^q} = y_j^s$.

 $\begin{aligned} &\{C_{i,1},C_{i,2},C_{i,3}\}_{i\in[1,l^*]}\,,\{T_j\}_{j\in\operatorname{cover}(U^*)}>\text{to }\mathcal{A}.\\ &\textit{Phase 2. This stage is the same as stage 1}. \end{aligned}$

Guess. A eventually output a guess b' of b.

• If $b=b',\mathcal{B}$ outputs a guess $\mu'=0$ of μ . If $\mu=0$ then $Z=e(g,g)^{\alpha^{q+1}s}$. \mathcal{A} can obtain a valid ciphertext. Suppose the advantage of \mathcal{A} is $\varepsilon=\Pr\left[b=b'\mid \mu=0\right]-\frac{1}{2}$, then $\Pr\left[b=b'\mid \mu=0\right]=\Pr\left[\mu=\mu'\mid \mu=0\right]$. Thus, the advantage of \mathcal{B} in winning the game is $\Pr\left[\mu=\mu'\mid \mu=0\right]=$

 $\varepsilon + \frac{1}{2}$.

• If $b \neq b'$, \mathcal{B} outputs a guess $\mu' = 1$ of μ . If $\mu = 1$ then Z is a randomly chosen number from G_1 . In this case, \mathcal{A} cannot get any information about b. In such case, The advantage of \mathcal{A} is $\Pr[b \neq b' \mid \mu = 1] = \frac{1}{2}$, then we can obtain $\Pr[b \neq b' \mid \mu = 1] = \Pr[\mu = \mu' \mid \mu = 1]$. Therefore, the advantage of B in winning the game is $\Pr[\mu = \mu' \mid \mu = 1] = \frac{1}{2}$.

Finally, the advantage of $\mathcal B$ in solving q-BDHE hardness assumption is

$$\begin{split} \Pr\left[\mu = \mu'\right] &= \Pr\left[\mu = \mu' \mid \mu = 0\right] \cdot \Pr[\mu = 0] \\ &+ \Pr\left[\mu = \mu' \mid \mu = 1\right] \cdot \Pr[\mu = 1] - \frac{1}{2} \\ &= (\varepsilon + \frac{1}{2}) \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} = \frac{1}{2}\varepsilon \end{split}$$