Polynomial Inverse of Kellerian Mapping

Dang Vu Giang

Hanoi Institute of Mathematics
18 Hoang Quoc Viet, 10307 Hanoi, Vietnam

e-mail: \(\dangvugiang@yahoo.com\)

February 27, 2012

Abstract. Using the uniqueness of orthonormal polynomial basis of the Bergman space over a ball in complex vector space we prove that every Kellerian mapping has polynomial inverse. The Jacobian conjecture is simply proved.

Keywords: Bergman space, orthonormal polynomial basis of several variables

AMS subject classification: 32M15, 43A85

Kellerian mapping is a polynomial mapping $\Phi: \mathbb{C}^n \to \mathbb{C}^n$ whose Jacobian deternimant is 1. The famous Jacobian conjecture [1] [4] says that the mapping Φ has polynomial inverse. Thousands of authors are interested in proving this conjecture [1] but unsuccessful for more than 70 years. In this paper we use a completely new idea from the orthonormal polynomial basis of a Bergman space [2] [3]. In fact, there is r>0 such that the restriction of Φ into the open ball B(0,r) is injective. Let $\{\varphi_k\}_{k=1}^{\infty}$ be the complete system of orthonormal polynomials of several variables over the body $\Phi(B(0,r))$ with respect to the Lebesgue measure in $\mathbb{R}^{2n}=\mathbb{C}^n$. Then, $\{\varphi_k\circ\Phi\}_{k=1}^{\infty}$ is an orthonormal polynomial basis of the Bergman space over the ball B(0,r). But the system $\{z_1^{\alpha_1}z_2^{\alpha_2}\cdots z_n^{\alpha_n}\}_{\alpha_j=0}^{\infty}$ is the only orthogonal polynomial basis

of this Bergman space. Therefore, there are n polynomials φ_{k_j} from the basis $\{\varphi_k\}_{k=1}^{\infty}$ such that

$$z_j = \kappa_j \varphi_{k_j} \circ \Phi (z_1, z_2, \cdots, z_n)$$

for every $j=1,2,\cdots,n$. This means exactly, Φ has polynomial inverse. The famous Jacobian conjecture is true.

Acknowledgement. Deepest appreciation is extended towards the NAFOSTED (the National Foundation for Science and Techology Development in Vietnam) for the financial support.

References

- [1] van den Essen, Polynomial Automorphisms and the Jacobian conjecture, Birkhauser, 2000.
- [2] L. Hörmander, An introduction to complex analysis in several variables, Second Edition, Amsterdam, North-Holland, 1973.
- [3] S. Helgason, Differential Geometry, Lie Group and Symmetric spaces, AMS 2001.
- [4] O. Keller, Ganze Cremona-Transformationen, Monathsh. Math. Phys. 47(1939) 299-306.