

Term Deposit Conversion Rate Prediction & Analysis

Banking Telephonic Marketing Case.

Pegasus Data Scientist Team

Final Project Presentation - Batch 18 Rakamin Academy

Introduction

Who are we?

Pegasus adalah tim data science di **Bank PTG** yang bertanggung jawab untuk menyelesaikan permasalahan pada perusahaan

yang berhubungan dengan data

The Pegasus Team

Ramadhan Adi Lead Team

Muhammad Firman A Member

Bagaskara TA Member

Puguh Santosa D. Member

Gerry Chandra

Mentor

Aldin Islamy

Member

Nadiana Yemin M.

Member

Dien Galuh

Member

Business Understanding

Produk deposit berjangka merupakan salah satu produk perbankan di Bank PTG yang memberikan **kontribusi besar** terhadap pendapatan bank.

Saat ini untuk menawarkan produk, metode pemasaran melalui telepon (*telemarketing*) merupakan **cara yang paling efektif** untuk menarik pelanggan.

Sayangnya, **biaya untuk metode pemasaran ini cukup tinggi**, sedangkan berdasarkan data yang ada, **conversion rate** nasabah yang mengambil produk deposito masih **relatif kecil**.

Let's check the data...

Conversion Rate Subscribed

Total Call

What is a term deposit?

A term deposit is a fixed-term investment that includes the deposit of money into an account at a financial institution[1].

What is a conversion rate? The conversion rate is the percentage of users who take a desired action[2].

Dari periode 2008-2010 dengan total 45.211 data, conversion rate terhadap deposit sebesar 11.7%.

Reference [1]: https://www.investopedia.com/terms/t/termdeposit.asp [2]: https://www.nngroup.com/articles/conversion-rates/

Problem Statement

Rendahnya conversion rate yaitu 11.7%, sedangkan biaya untuk telemarketing cukup tinggi.

Goal

Nasabah yang ditargetkan berhasil menjadi nasabah deposito berjangka, dengan tetap mengoptimalkan marketing cost.

Objectives

- Membuat model Machine Learning untuk memprediksi nasabah yang berpotensi mengambil produk deposito berjangka.
- Memberikan insight dari dataset yang ada dengan menampilkan visualisasi.

Business Metrics

- Conversion Rate
- Telephone Marketing Cost

Data Overview, EDA

No	Feature	Description			
1	Age	Age of customer			
2	Job	Type of job			
3	Marital	Marital Status of customer			
4	Education	Education level			
5	Default	Whether customer has credit in default			
6	Balance	Average yearly balance (in euros)			
7	Housing	Whether customer has housing loan			
8	Loan	Whether customer has personal loan			
9	Contact	Contact communication type			
10	Day	Last contact day of the month			
11	Month	Last contact month of the year			
12	Duration	Last contact duration (in seconds)			
13	Campaign	Number of contacts performed during this campaign			
14	Pdays	Number of days that passed by after the client was last contacted			
15	Previous	Number of contacts performed before this campaign			
16	Poutcome	Outcome of the previous marketing campaign			
17	Υ	Whether the client subscribed a term deposit			

7 Numerical 9 Categorical 1 Target

Target Label (converted)

Feature Numerical

Berdasarkan heatmap correlation disamping, yang paling memiliki korelasi paling kuat dengan fitur target converted (subscribed) adalah fitur duration.

5000

Feature Categorical

20000 15000

10000

5000

0 = Not subscribed 1 = Subscribed

Berdasarkan countplot di atas, fitur yang memiliki korelasi yang menarik dengan target misal fitur poutcome, housing.

Data Cleaning & Preparation

Data Cleaning

- Handling Null / Missing Values -> 0 Missing value
- Replace Issues Values with Modus
- Check & Remove Duplicates -> 4.163 Duplicates
- Handling Outliers (Z-Score Method):

Why is it necessary?

Getting **clean data** to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results [1]

*Data before ~ after cleaning: $45.211 \rightarrow 41.048$

Data Preparation

Encoding	Scaling & Transformation	Feature Selection	Split Data Train & Test	Imbalance Handling	
- Label Encoding - One Hot Encoding	- Log Transformation - Standardization	Analyze the feature that has possible to decrease ML Performance	Train : Test = 70 : 30 ratio	Threshold-Moving However, 0.5 is not ideal for our imbalanced datasets.	
				Threshold in our dataset ~ 0.2	

Around **90% of the time spent** on data analytics, data visualization, and machine learning projects is dedicated to performing **data preprocessing** [1]

Model Evaluation

Model Evaluation After Hypertuning

/										
Madal	Prec	ision	Αl	1C	Accı	ıracy	Red	call	F1 S	core
Model	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
Logistic Regression	0.43	0.41	0.90	0.90	0.89	0.89	0.63	0.61	0.51	0.49
Decision Tree	0.38	0.37	0.89	0.87	0.87	0.89	0.61	0.58	0.47	0.45
KNN	0.41	0.37	0.90	0.88	0.88	0.88	0.63	0.62	0.50	0.47
Random Forest	0.56	0.44	0.94	0.91	0.92	0.90	0.67	0.66	0.61	0.53
XGBoost	0.53	0.48	0.94	0.92	0.92	0.91	0.70	0.62	0.60	0.55

Confusion Matrix (XGBoost)

1st Metrics: AUC

2nd Metrics : Precision

Karena fokus utama adalah **mengurangi** cost maka dipilih **Precision** karena tidak memperbolehkan **False Positive** yang besar.

*Nasabah yang **dihubungi** namun ternyata **tidak convert**

Skor **AUC** dipilih untuk mempertimbangkan agar model *machine learning* yang digunakan adalah yang ideal untuk *dataset* kami. Karena *Precision* tidak memiliki variable *True Negative* dalam kalkulasinya.

Precision = TP / (TP+FP)

AUC = TPR = TP / (TP+FN) , FPR = FP / (FP+TN)

Feature Importance (XGBoost)

Fitur **poutcome_success** (hasil OHE) dari data *categorical* dan fitur **duration** dari data *numerical* menjadi yang paling tinggi berdasarkan pemodelan XGBoost.

Parameter	Before	After
Total Customer	45,211	45,211
Subscribed customer	5,289	1,904
Total telephone	45,211	8,239
Conversion Rate (%)	11.7	23.1
Total Telephone Duration(sec)	29,208,626	4,143,950
Marketing Cost (Rp)	590,987,866	83,707,79 0
		11.4%

Increment of Conversion Rate

Save Cost

Rp 506,306,455

Asumsi:

- Total nasabah pada periode selanjutnya sama dengan total nasabah periode sebelumnya
- Tarif telepon yang digunakan[1]
 Rp 578/30s Rp636/30s

Conversion Rate meningkat ~2x Lipat dari sebelum adanya model.

Business Insight & Recommendation

Distribution and Boxplot of Campaign for non-Subscribed Customer

- Jika dilihat dari distribusinya, **Semakin tinggi jumlah campaign menurunkan jumlah nasabah untuk** memutuskan mengambil deposito atau tidak mengambil deposit
- Perlu menurunkan jumlah campaign untuk menurunkan biaya marketing, dimana jumlah campaign 1–5
 memiliki konsentrasi tertinggi nasabah yang subscribe deposit
- **Rekomendasi**, tim sales **perlu membuat metode telemarketing yang menarik** dan yang cukup untuk dilakukan maksimal 5 kali sehingga dapat membuat nasabah tertarik untuk subscribe deposit.

- Jika dilihat dari distribusinya, Semakin lama durasi telepon akan menurunkan jumlah customer untuk memutuskan mengambil deposito atau tidak mengambil deposito
- Perlu menurunkan durasi telepon untuk menurunkan biaya marketing, dimana durasi telepon <500 detik memiliki konsentrasi tertinggi customer yang subscribe deposito
- **Rekomendasi**, tim sales **perlu membuat metode telemarketing yang menarik** dan yang cukup untuk dilakukan dalam <500 detik durasi telepon sehingga dapat membuat nasabah tertarik untuk subscribe deposit.

Terlihat bahwa persentase tertinggi nasabah yang subscribe deposito terjadi pada telemarketing yang dilakukan di bulan:

- 1. Maret(51.99%)
- 2. Desember(46.73%)
- **3.** September(46.46%)
- 4. Oktober(43.77%)

Rekomendasi

Tim sales dapat menggencarkan telemarketing pada bulan-bulan tersebut

Insight:

Pada fitur **Job** diketahui jumlah nasabah yang subscribed deposito berdasarkan tipe pekerjaan.

Nasabah yang memiliki pekerjaan management, technician, blue-collar, admin dan retired lebih banyak yang *subscribed* deposito berjangka dibanding pekerjaan lain

Rekomendasi: Tim Sales dapat menargetkan nasabah yang memiliki pekerjaan-pekerjaan pada peringkat **Top 5** di samping.

Insight:

"Poutcome" : diketahui sebagai status campaign sebelumnya pada nasabah tersebut.

Seperti hasil importance feature dari XGBoost adalah fitur dengan pengaruh tertinggi, lalu pada EDA di samping nasabah yang *subscribed* lebih banyak berasal dari nilai poutcome-nya *success* daripada yang tidak.

Rekomendasi:

So.. Tim marketing sebaiknya mempertimbangkan hal ini, yang success pada campaign sebelumnya untuk diprioritaskan terlebih dahulu untuk ditelpon karena mempunyai potensi *subscribed*.

Thank you 🐯