Lesson 27: Practice Problems

Fundamental Matrix Solutions - Construction

Part A: Basic Fundamental Matrix Construction (6 problems)

- 1. Given solutions $\mathbf{x}_1(t) = \begin{bmatrix} e^t \\ 2e^t \end{bmatrix}$ and $\mathbf{x}_2(t) = \begin{bmatrix} e^{3t} \\ e^{3t} \end{bmatrix}$, construct the fundamental matrix.
- 2. For the system $\mathbf{x}' = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \mathbf{x}$, find a fundamental matrix.
- 3. Verify that $\Phi(t) = \begin{bmatrix} e^{2t} & e^{-t} \\ e^{2t} & -2e^{-t} \end{bmatrix}$ is a fundamental matrix for some system. Find the system.
- 4. Given $\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \mathbf{x}$, construct the fundamental matrix using trigonometric functions.
- 5. Find the principal fundamental matrix at t = 0 for $\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \mathbf{x}$.
- 6. Construct a fundamental matrix for $\mathbf{x}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \mathbf{x}$.

Part B: IVP Solutions Using Fundamental Matrices (5 problems)

- 7. Use $\Phi(t) = \begin{bmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{bmatrix}$ to solve the IVP with $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
- 8. Given $\Phi(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$, solve for $\mathbf{x}(t)$ with $\mathbf{x}(\pi/2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- 9. The fundamental matrix $\Phi(t) = \begin{bmatrix} \mathrm{e}^{2t} & t\mathrm{e}^{2t} \\ 0 & \mathrm{e}^{2t} \end{bmatrix}$ corresponds to a system with repeated eigenvalues. Solve the IVP with $\mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

- 10. Find the solution to $\mathbf{x}' = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \mathbf{x}$ with $\mathbf{x}(1) = \begin{bmatrix} e \\ 0 \end{bmatrix}$.
- 11. Use the fundamental matrix method to solve $\mathbf{x}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \mathbf{x}$ with $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Part C: Verification and Properties (5 problems)

- 12. Verify that $\Phi(t) = \begin{bmatrix} e^{3t} & e^{-2t} \\ 3e^{3t} & -2e^{-2t} \end{bmatrix}$ satisfies $\Phi'(t) = A\Phi(t)$ and find A.
- 13. Show that if $\Phi(t)$ is a fundamental matrix, then so is $\Phi(t)C$ for any nonsingular constant matrix C.
- 14. Prove that $det(\Phi(t))$ is never zero if $\Phi(t)$ is a fundamental matrix.
- 15. Given two fundamental matrices $\Phi_1(t) = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}$ and $\Phi_2(t) = \begin{bmatrix} 2e^t & e^{2t} \\ 3e^t & 4e^{2t} \end{bmatrix}$, find the constant matrix C such that $\Phi_2(t) = \Phi_1(t)C$.
- 16. Verify that the columns of $\Phi(t) = \begin{bmatrix} \cos 2t & \sin 2t \\ -2\sin 2t & 2\cos 2t \end{bmatrix}$ are linearly independent for all t.

Part D: Principal Fundamental Matrix (5 problems)

- 17. Find the principal fundamental matrix at $t_0 = 0$ for $\mathbf{x}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$.
- 18. Given $\Phi(t) = \begin{bmatrix} e^{2t} + e^{-t} & e^{2t} e^{-t} \\ 2e^{2t} e^{-t} & 2e^{2t} + e^{-t} \end{bmatrix}$, find the principal fundamental matrix at t = 0.
- 19. Construct the principal fundamental matrix at t = 1 for $\mathbf{x}' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{x}$.
- 20. If $\Psi(t)$ is the principal fundamental matrix at t_0 , express the solution to $\mathbf{x}(t_0) = \mathbf{x}_0$ in terms of $\Psi(t)$.
- 21. Show that the principal fundamental matrix is unique for a given t_0 .

Part E: Advanced Theory (4 problems)

22. Prove that if A(t) is continuous on an interval I, then a fundamental matrix exists on I.

- 23. Show that for constant A, the fundamental matrix can be written as $\Phi(t) = Pe^{Dt} P^{-1}$ where D is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors.
- 24. Prove that $\Phi(t+s) = \Phi(t)\Phi(s)\Phi(0)^{-1}$ for constant coefficient systems.
- 25. If $\Phi(t)$ is a fundamental matrix for $\mathbf{x}' = A(t)\mathbf{x}$, show that $\Psi(t) = \Phi(t)^{-T}$ is a fundamental matrix for the adjoint system $\mathbf{y}' = -A(t)^T \mathbf{y}$.

Part F: Exam-Style Problems (5 problems)

- 22. (Prof. Ditkowski style) Given the system $\mathbf{x}' = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \mathbf{x}$:
 - (a) Find all eigenvalues and eigenvectors
 - (b) Construct the fundamental matrix $\Phi(t)$
 - (c) Verify $\Phi'(t) = A\Phi(t)$
 - (d) Solve the IVP with $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- 23. The solutions $\mathbf{x}_1(t) = e^t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_2(t) = e^{2t} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \ \mathbf{x}_3(t) = e^{3t} \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$ form a fundamental set.
 - (a) Construct $\Phi(t)$
 - (b) Find the system matrix A
 - (c) Compute $\Phi(1)\Phi(0)^{-1}$
- 24. For the system with fundamental matrix $\Phi(t) = \begin{bmatrix} e^{-t} & e^{-t}(1+t) \\ -e^{-t} & -e^{-t}t \end{bmatrix}$:
 - (a) Find the system matrix A
 - (b) Explain why there's a term with t
 - (c) Find all solutions to $\mathbf{x}' = A\mathbf{x}$
- 25. Given partial information: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has tr(A) = 4 and det(A) = 3.
 - (a) Find the eigenvalues
 - (b) If one eigenvector is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find A
 - (c) Construct the fundamental matrix
 - (d) Find the principal fundamental matrix at t = 0

26. (Comprehensive) Consider the third-order equation y''' - 6y'' + 11y' - 6y = 0.

- (a) Convert to a first-order system
- (b) Given that e^t , e^{2t} , e^{3t} are solutions to the scalar equation, construct the fundamental matrix
- (c) Solve the IVP: y(0) = 1, y'(0) = 2, y''(0) = 3
- (d) Verify your solution satisfies the original equation

Solutions and Hints

Selected Solutions:

Problem 1:
$$\Phi(t) = \begin{bmatrix} e^t & e^{3t} \\ 2e^t & e^{3t} \end{bmatrix}$$

Problem 3:
$$A = \Phi'(t)\Phi(t)^{-1} = \begin{bmatrix} 3 & -1 \\ 3 & -2 \end{bmatrix}$$

Problem 7:
$$\mathbf{x}(t) = 2e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Problem 12:
$$A = \begin{bmatrix} 3 & 0 \\ 3 & -2 \end{bmatrix}$$

Problem 16: $C = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

Problem 16:
$$C = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

Problem 18: Principal fundamental matrix:
$$\Phi_p(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

4

Problem 25: Eigenvalues:
$$\lambda_1 = 1, \lambda_2 = 2$$
 (repeated)

Key Insights:

- Always verify $\Phi'(t) = A\Phi(t)$ to confirm fundamental matrix
- Check $det(\Phi(t)) \neq 0$ for linear independence
- Remember: $\mathbf{x}(t) = \Phi(t)\Phi(t_0)^{-1}\mathbf{x}_0$
- Principal fundamental matrix simplifies to $\mathbf{x}(t) = \Phi(t)\mathbf{x}_0$
- For repeated eigenvalues, expect terms with t in $\Phi(t)$