- 3. Write a function MCpaths (Nt,Np,mu,sigma,dt) in R or Python to generate a set of simulated price paths for a stock following geometric Brownian motion. Use this function with expected annual return $\mu=10\%$, standard deviation $\sigma=30\%$, and initial price $S_0=\$100$. Let the number of time steps per path be $N_t=252$ and let the number of paths be $N_p=10,000$. (Include your own code with your submission.)
 - (a) Plot a histogram of the *terminal values* of the paths. What are the mean and standard deviation of the distribution?
 - (b) What is the average number of returns to the origin? That is, how many times, after the first step, does S_t hit or cross the initial value S_0 ?
 - (c) Consider a one-year European call option on the stock with strike price K = \$100. What is the empirical mean value, averaged over all simulated paths, of the terminal payoff $C_{N_t} = \max(S_{N_t} K, 0)$?
 - (d) Now consider a one-year European put option, instead of a call, with the same strike price, K = \$100. What is the corresponding value? Should you evaluate the put option using the *same* random price prices used to evaluate the call above, or should a *new set* be drawn independently?