Lec-18. 数理统计介绍、随机样本、统计量

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本节课内容

t 分布

F分布

正态总体的抽样分布

2. t分布

定义

设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X, Y 相互独立, 则称

$$t = \frac{X}{\sqrt{Y/n}}$$

为服从自由度为 n 的t 分布, 记为 $t \sim t(n)$.

概率密度和图像

t 分布又称学生氏分布, 概率密度为

$$h(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < t < \infty.$$

- **1.** 关于 t = 0 对称.
- 2.

$$\lim_{n \to \infty} h(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

当 n 充分大, t 分布近似 N(0,1); 当 n 较小时, t 分布与 N(0,1) 相差很大.

4/32

• t 分布的上分位数 对于给定的 α ,满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 是 t(n) 分布的上 α 分位数.

• t 分布的上分位数 对于给定的 α , 满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 是 t(n) 分布的上 α 分位数.

• $t_{1-\alpha}(n) = -t_{\alpha}(n)$. 分布函数的角度: 1 - F(x) = F(-x).

• t 分布的上分位数 对于给定的 α , 满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 是 t(n) 分布的上 α 分位数.

- $t_{1-\alpha}(n) = -t_{\alpha}(n)$. 分布函数的角度: 1 - F(x) = F(-x).
- 当 $n \le 45$ 时, 查表 Page-399, 求 $t_{\alpha}(n)$.

• t 分布的上分位数 对于给定的 α , 满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的 $t_{\alpha}(n)$ 是 t(n) 分布的上 α 分位数.

- $t_{1-\alpha}(n) = -t_{\alpha}(n)$. 分布函数的角度: 1 - F(x) = F(-x).
- 当 $n \le 45$ 时, 查表 Page-399, 求 $t_{\alpha}(n)$.

例

设 $T \sim t(n)$, t(n) 的上 α 分位数满足

$$P\{T > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(y) dy = \alpha,$$

求 $t_{0.05}(10), t_{0.025}(15)$ 的值.

设 $T \sim t(n)$, t(n) 的上 α 分位数满足

$$P\{T > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(y) dy = \alpha,$$

求 $t_{0.05}(10), t_{0.025}(15)$ 的值.

解:
$$t_{0.05}(10) = 1.8125$$
, $t_{0.025}(15) = 2.1315$.

6/32

3. F 分布

定义

设 $U \sim \chi^2(n_1)$, $V \sim \chi^2(n_2)$ 且 U, V 相互独立, 则称

$$F = \frac{U/n_1}{V/n_2}$$

服从自由度为 (n_1, n_2) 的F 分布, 记为 $F \sim F(n_1, n_2)$.

3. F分布的概率密度和图像

概率密度

$$\phi(y) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})(\frac{n_1}{n_2})^{\frac{n_1}{2}}y^{\frac{n_1}{2}-1}}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})(1+\frac{n_1y}{n_2})^{\frac{n_1+n_2}{2}}} & y > 0; \\ 0 & \sharp \mathfrak{W}. \end{cases}$$

$$= \begin{cases} \frac{n_1^{\frac{n_1}{2}}n_2^{\frac{n_2}{2}}y^{\frac{n_1}{2}-1}}{\mathrm{B}(\frac{n_1}{2},\frac{n_2}{2})(n_2+n_1y)^{\frac{n_1+n_2}{2}}} & y > 0; \\ 0 & \sharp \mathfrak{W}. \end{cases}$$

其中 Beta 函数
$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

3. F分布的性质

- 上分位数 对于给定的 α , $0 < \alpha < 1$, 满足条件

$$P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{\infty} \phi(y) dy = \alpha$$

的 $F_{\alpha}(n_1, n_2)$ 就是 $F(n_1, n_2)$ 分布的上 α 分位数.

求F分布的上 α 分位数

• 查表 Page401-404 $F_{0.025}(8,7) = 4.90, F_{0.05}(30,14) = 2.31.$

求 F 分布的上 α 分位数

- 查表 Page401-404 $F_{0.025}(8,7) = 4.90, F_{0.05}(30,14) = 2.31.$
- F 分布的上 α 分位数满足

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}.$$

(1)

求F分布的上 α 分位数

- 查表 Page401-404 $F_{0.025}(8,7) = 4.90, F_{0.05}(30,14) = 2.31.$
- F分布的上α分位数满足

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}.$$
 (1)

利用上式,可以求分布表中未列出的常用的上α分位数.
 例如: F_{0.95}(12,9) = 0.357.

11/32

$$= P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

$$= 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

$$= 1 - P\left\{\frac{1}{F} > \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

 $1 - \alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}\$

(1) 式的证明: $F \sim F(n_1, n_2)$

 $\frac{1}{E} \sim F(n_2, n_1)$, 则

故 $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$. $\Box 12/32$

 $P\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\} = \alpha = P\{\frac{1}{F} > \frac{1}{F_{1-\alpha}(n_1, n_2)}\},$

X, Y, Z相互独立, 服从 N(0,1), 则

- (1) $X^2 + Y^2 + Z^2 \sim \chi^2(3)$,
- (2) $\frac{X}{\sqrt{(Y^2+Z^2)/2}} \sim t(2)$,
- (3) $\frac{2X^2}{Y^2+Z^2} \sim F(1,2)$.

例

若 $t \sim t(n)$, 则 $t^2 \sim F(1, n)$.

4. 正态总体的抽样分布

• 设总体 *X* 的期望、方差存在.

$$E(X) = \mu,$$
 $D(X) = \sigma^2.$

设 X₁,..., X_n 是来自总体 X 的样本,

• 设
$$X_1, ..., X_n$$
 是来自总体 X 的样本,
$$\overline{X} = \frac{1}{n} \sum X_i, \qquad S^2 = \frac{1}{n-1} \left(\sum X_i^2 - n \overline{X}^2 \right)$$

分别是样本均值和样本方差. 则有

$$E(\overline{X}) = \mu, \qquad D(\overline{X}) = \frac{\sigma^2}{n}.$$

4. 正态总体的抽样分布

. 正态总体的抽样分布
$$E(S^2) = E\left(\frac{1}{n-1}\left(\sum X_i^2 - n\overline{X}^2\right)\right)$$

 $D(S^2) = D\left(\frac{1}{n-1}\left(\sum X_i^2 - n\overline{X}^2\right)\right) = ?.$

 $= \frac{1}{n-1} \left(\sum E(X_i^2) - nE(\overline{X}^2) \right)$

 $= \frac{1}{n-1} \left(\sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} (\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2) \right) \right)$

4. 正态总体的抽样分布

. 正态总体的抽样分布
$$E(S^2) = E\left(\frac{1}{n-1}\left(\sum X_i^2 - n\overline{X}^2\right)\right)$$

$$= \frac{1}{n-1} \left(\sum_{j=1}^{n-1} \left(\sum_{j=1}^{n-1} \left(\sum_{j=1}^{n-1} (\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2) \right) \right)$$

 $D(S^2) = D\left(\frac{1}{n-1}\left(\sum X_i^2 - n\overline{X}^2\right)\right) = ?.$ 一般不能由 μ, σ^2 表示.

 $= \frac{1}{n-1} \left(\sum E(X_i^2) - nE(\overline{X}^2) \right)$

定理 (正态总体的抽样分布)

设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_n$ 是样本, 样本均值和样本方差分别为

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

则
(1) $\overline{X} \sim N(\mu, \sigma^2/n)$.

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
, 且 \overline{X} 与 S^2 相互独立.

(3)
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$
.

(2) 的证明见本章末二维码.

例

设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_n$ 是样本, 则

(1)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1).$$

(2)
$$\frac{\sum (X_i - \mu)^2}{\sigma^2} = \sum \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n).$$

其原因是在 (1) 式中有一个约束条件

$$\sum_{i=1}^{n} (X_i - \overline{X}) = 0.$$

(3)
$$\frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$$
的证明:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

相互独立, 由
$$t$$
分布的定义

相互独立, 由
$$t$$
 分布的定义

相互独立, 由
$$t$$
 分布的定义
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}/\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)} = \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1).$$

例

设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_n$ 是样本, 样本方差为 $S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$. 求 $D(S^2)$.

解:
$$: \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\therefore D\left(\frac{(n-1)S^2}{\sigma^2}\right) = 2(n-1).$$

$$\therefore D(S^2) = \frac{2\sigma^4}{n-1}.$$

• 随 n 增大, $D(S^2)$ 减小, 样本方差的方差变小. 所以, 可用样本方差 S^2 推断总体方差.

定理 (两个正态总体的抽样分布)

设 $X_1, ..., X_{n_1}$ 与 $Y_1, ..., Y_{n_2}$ 分别是正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的样本, 且相互独立. 样本均值分别为 $\overline{X}, \overline{Y}$; 样本方差分别为 S_1^2, S_2^2 . 则

(1)
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1);$$

(2) 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 时,

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$
, $S_w = \sqrt{S_w^2}$.

证明 (1): $\chi_1^2 = \frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1),$

 $\chi_2^2 = \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$

 S_1^2, S_2^2 独立.

$$F = \frac{S_1^2}{S_2^2} / \frac{\sigma_1^2}{\sigma_2^2} = \frac{\chi_1^2/(n_1 - 1)}{\chi_2^2/(n_2 - 1)} \sim F(n_1 - 1, n_2 - 1).$$

21/3

 $U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$ \mathcal{X} $\frac{(n_1 - 1)S_1^2}{\sigma^2} \sim \chi^2(n_1 - 1), \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_2 - 1)$

 $V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{2} \sim \chi^2(n_1 + n_2 - 2).$

 $\overline{X} - \overline{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_1}\right)$

证明 (2): 当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时.

且相互独立,故有 χ^2 分布的可加性.

22/32

U, V相互独立. 由 t 分布的定义,

$$\frac{U}{\sqrt{V/(n_1+n_2-2)}} = \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2),$$

文
$$V/(n_1+n_2-2)$$
 $S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$ 其中 $S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$, $S_w=\sqrt{S_w^2}$.

U, V 相互独立的证明见本章末二维码.

思考: 若 σ^2 未知, 为什么用 S_w^2 来估计 σ^2 , 而不用 S_1^2 或 S_2^2 来估计 σ^2 呢?

思考: 若 σ^2 未知, 为什么用 S_w^2 来估计 σ^2 , 而不用 S_1^2 或 S_2^2 来估计 σ^2 呢?

- $E(S_1^2) = E(S_2^2) = E(S_w^2) = \sigma^2$;
- $D(S_1^2) = \frac{2\sigma^4}{n_1 1}, D(S_2^2) = \frac{2\sigma^4}{n_2 1}$,

$$D(S_w^2) = \frac{2\sigma^4}{n_1 + n_2 - 2}$$

 S_w^2 包含更多信息,具有更小的方差.

- 对于单个正态总体 $N(\mu, \sigma^2)$, 得到了 \overline{X} , S^2 的分 布,用于对 μ , σ ²进行推断(区间估计,假设检 验).
- 对于两个独立正态总体 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$, 得 到了 $\overline{X} - \overline{Y}$, S_1^2/S_2^2 的分布,用于对 $\mu_1 - \mu_2$, $\frac{\sigma_1^2}{\sigma_2^2}$

定理3的证明

令 $Z_i = \frac{X_i - \mu}{\sigma}$, i = 1, 2, ..., n, 则由定理 3 的假设知, $Z_1, Z_2, ..., Z_n$ 相互独立,且都服从 N(0,1) 分布,而

$$\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \frac{\overline{X} - \mu}{\sigma};$$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} = \sum_{i=1}^n \left[\frac{(X_i - \mu) - (\overline{X} - \mu)}{\sigma} \right]^2$$
$$= \sum_{i=1}^n (Z_i - \overline{Z})^2 = \sum_{i=1}^n Z_i^2 - n\overline{Z}^2.$$

取一 n 阶正交矩阵 $A = (a_{i_j})$, 其中第一行的元素均为 $1/\sqrt{n}$. 作正交变换

文变换
$$\mathbf{Y} = \mathbf{AZ}.$$

其中

$$\mathbf{Y} = egin{pmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{pmatrix}, \quad \mathbf{Z} = egin{pmatrix} Z_1 \ Z_2 \ dots \ Z_n \end{pmatrix}.$$

由于 $Y_i = \sum_{i=1}^n a_{ij} Z_j$, i=1,2,...,n. 故 $Y_1,Y_2,...,Y_n$ 仍为正态变量,由 $Z_i \sim N(0,1)$, i=1,2,...,n 知

$$E(Y_i) = E\left(\sum_{j=1}^n a_{ij}Z_j\right) = \sum_{j=1}^n a_{ij}E(Z_j) = 0.$$

又由 $Cov(Z_i, Z_j) = \delta_{ij}, i, j = 1, 2, ..., n$, 知

$$\operatorname{Cov}(Y_i, Y_k) = \operatorname{Cov}\left(\sum_{j=1}^n a_{ij} Z_j, \sum_{l=1}^n a_{kl} Z_l\right)$$
$$= \sum_{i=1}^n \sum_{l=1}^n a_{ij} a_{kl} \operatorname{Cov}(Z_j, Z_l) = \sum_{i=1}^n a_{ij} a_{kj} = \delta_{ik}$$

(由正交矩阵的性质), 故 $Y_1, Y_2, ..., Y_n$ 两两不相关. 又由于 n 维随机变量 $(Y_1, Y_2, ..., Y_n)$ 是由 n 维正态随机变量 $(X_1, X_2, ..., X_n)$ 经由线性变换而得到的,因此 $(Y_1, Y_2, ..., Y_n)$ 也是 n 维正态随机变量 (参见第 4 章 §4).

于是由 $Y_1, Y_2, ..., Y_n$ 两两不相关可推得 $Y_1, Y_2, ..., Y_n$ 相互独 立 (参见第 4 章 § 4), 且有 $Y_i \sim N(0,1)$, i=1,2,...,n. 而

立 (参见第 4 草 § 4), 且有
$$Y_i \sim N(0,1), i=1,2,...,n$$
. 而

 $\sum Y_i^2 = Y^{\mathrm{T}} Y = (A\mathbf{Z})^{\mathrm{T}} (A\mathbf{Z}) = \mathbf{Z}^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} \mathbf{A}) \mathbf{Z}$

 $=\mathbf{Z}^{\mathrm{T}}\mathbf{IZ}=\mathbf{Z}^{\mathrm{T}}\mathbf{Z}=\sum_{i}^{n}Z_{i}^{2},$

立 (参见第 4 草 § 4), 且有
$$Y_i \sim N(0,1), i=1,2,...,n$$
. 而

立 (参见第 4 草 § 4),且有
$$Y_i \sim N(0,1), i=1,2,...,n$$
. 而
$$Y_1 = \sum_{j=1}^n a_{1j}Z_j = \sum_{j=1}^n \frac{1}{\sqrt{n}}Z_j = \sqrt{n}\,\overline{Z};$$

干是

由于 $Y_2, Y_3, ..., Y_n$ 相互独立, 且 $Y_i \sim N(0,1), i=2,3,...,n$, 知 $\sum_{i=2} Y_i^2 \sim \chi^2(n-1)$. 从而 证得

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

再者, $\overline{X} = \sigma \overline{Z} + \mu = \frac{\sigma Y_1}{\sqrt{n}} + \mu$ 仅依赖于 Y_1 , 而 $S^2 = \frac{\sigma^2}{n-1} \sum_{i=2}^n Y_i^2$ 仅依赖于 Y_2 , $Y_3, ..., Y_n$.

再由 Y_1, Y_2, \dots, Y_n 的独立性. 推知 \overline{X} 与 S^2 相互独立.

定理3的推广

定理 $3 \, \text{中} \, \overline{X} \, \text{与} \, S^2 \, \text{相互独立这一结论, 还能推广到多个同方 差正态总体的情形.}$

例如,对于两个同方差正态总体的情形. 设 \overline{X} , \overline{Y} , S_1^2 , S_2^2 是定理 5 的 2° 中所说的正态总体 $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$ 的样本均值和样本方差. 只要引入正交矩阵

$$T = \begin{pmatrix} A_1 & \mathbf{0} \\ \mathbf{0} & A_2 \end{pmatrix},$$

其中 \mathbf{A}_i 为 n_i 阶正交矩阵, 其第一行元素都是 $1/\sqrt{n_i}$ (i=1,2).

与上面同样的做法,考察向量 Z = TV 各分量的独立性,其中

$$V^{\Gamma}=(V_1,\,V_2,\cdots,\,V_n),$$

$$V_i = (X_i - \mu_1)/\sigma, \quad i = 1, 2, \cdots, n_1,$$

$$V_{n_1+j}=(Y_j-\mu_2)/\sigma,\quad j=1,2,\cdots,n_2,\quad n_1+n_2=n,$$
就可证得 $\overline{X},\overline{Y},S_1^2,S_2^2$ 相互独立.

对于 $m(m \ge 2)$ 个同方差的正态总体的情形,设 \overline{X}_i , S_i^2 分别 是总体 $N(\mu_i, \sigma^2)$, i = 1, 2, ..., m 的样本均值和样本方差,且设 各样本相互独立,则 $\overline{X}_1, \overline{X}_2, ..., \overline{X}_m, S_1^2$, $S_2^2, ..., S_m^2$ 相互独立.