

MATEMÁTICA Matemática e suas Tecnologias ♦>> ○BJETIVO FRENTE 1 Álgebra As melhores cabeças

MÓDULO 49

Permutações

1. PERMUTAÇÕES SIMPLES

São arranjos simples de **n** elementos tomados **k** a **k** em que **n** = **k**. Assim, **permutações simples** são agrupamentos que diferem entre si **apenas pela ordem** de seus elementos.

Podemos dizer que uma permutação de **n** elementos é qualquer agrupamento ordenado desses **n** elementos.

Por exemplo, as permutações dos elementos distintos A, B e C são **ABC**,

ACB, BAC, BCA, CAB e CBA.

O número de permutações simples de ${\bf n}$ elementos é dado por

$$P_n = A_{n,n} = \frac{n!}{(n-n)!} = n!$$
 $P_n = n!$

2. PERMUTAÇÃO COM REPETIÇÃO

Sejam α elementos iguais a **a**, β elementos iguais a **b**, γ elementos iguais a **c**, . . . , λ elementos iguais a **l**, num total de $\alpha + \beta + \gamma + ... + \lambda = n$ elementos.

O número de permutações distintas que podemos obter com esses n elementos é

$$\mathbf{P}_{\mathbf{n}}^{(\alpha, \beta, \gamma, \dots, \lambda)} = \frac{\mathbf{n}!}{\alpha! \cdot \beta! \cdot \gamma! \dots \lambda!}$$

3. PERMUTAÇÕES CIRCULARES

O número de permutações circulares de n elementos é dado por

$$P'_{n} = (n-1)!$$

MÓDULOS 50 e 51

Combinações Simples e Arranjos e Combinações com Repetição

1. COMBINAÇÕES SIMPLES

São agrupamentos que diferem entre si **apenas pela natureza** de seus elementos.

Podemos dizer que uma combinação de \mathbf{n} elementos distintos tomados \mathbf{k} a \mathbf{k} ($\mathbf{n} \ge \mathbf{k}$) é uma escolha não ordenada de \mathbf{k} dos \mathbf{n} elementos dados.

Por exemplo, as combinações dos 4 elementos distintos A, B, C e D, tomados 3 a 3, são **ABC**, **ABD**, **ACD** e **BCD**.

É bom notar que ABC e BAC,

bem como todas as permutações de A, B e C, representam a mesma combinação. O mesmo acontece com cada um dos agrupamentos ABC, ACD e BCD.

O número de combinações simples de \mathbf{n} elementos, tomados \mathbf{k} a \mathbf{k} , ou classe \mathbf{k} ($\mathbf{n} \ge \mathbf{k}$), é dado por

$$\mathbf{C}_{n,k} = \frac{\mathbf{A}_{n,k}}{\mathbf{P}_k} = \frac{\mathbf{n}!}{\mathbf{k}!(\mathbf{n} - \mathbf{k})!} = \begin{pmatrix} \mathbf{n} \\ \mathbf{k} \end{pmatrix}$$

$$\mathbf{C}_{n,k} = \frac{\mathbf{n}!}{\mathbf{k}!(\mathbf{n} - \mathbf{k})!}$$

2. ARRANJOS COM REPETIÇÃO

O número de arranjos com repetição de n elementos k a k é dado por

$$\mathbf{A*}_{\mathbf{n}, \mathbf{k}} = \mathbf{n}^{\mathbf{k}}$$

3. COMBINAÇÕES COM REPETIÇÃO

O número de combinações com repetição de n elementos k a k é dado por

$$C_{n,k}^* = C_{n+k-1,k} = {n+k-1 \choose k}$$

MÓDULO 52

Probabilidade, Definição e União de Eventos

1. CONCEITO DE PROBABILIDADE

Seja uma experiência em que pode ocorrer qualquer um de **n** resultados possíveis. Cada um dos **n** resultados possíveis é chamado ponto amostral e o conjunto S de todos os pontos amostrais é chamado **espaço amostral**; qualquer subconjunto A do espaço amostral S é chamado de **evento**.

Chama-se probabilidade de ocorrer um evento A de um espaço amos

tral S ≠ Ø ao número P(A) =

em que n(A) é o número de elementos

♦>>OBJETIVO - 1

de A, e n(S) é o número de elementos de S.

Na prática, costuma-se dizer que **probabilidade** é o quociente entre o **número de casos favoráveis**, que é n(A), e o **número de casos possíveis**, que é n(S).

2. PROPRIEDADES

Sendo $S \neq \emptyset$ um espaço qualquer, A, um evento de $S \in \overline{A}$, o complementar de A em S, valem as seguintes propriedades:

- $P(\emptyset) = 0$
- P(S) = 1
- $0 \le P(A) \le 1$
- $P(A) + P(\overline{A}) = 1$

3. UNIÃO DE DOIS EVENTOS

Sejam A e B dois eventos de um espaço amostral $S \neq \emptyset$.

A probabilidade de ocorrer A ou B é dada por

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Observe que o número de elementos de $A \cup B$, $n(A \cup B)$, é dado por $n(A \cup B) = n(A) + n(B) - n(A \cap B) \Leftrightarrow$

$$\Leftrightarrow \frac{\mathsf{n}(\mathsf{A} \cup \mathsf{B})}{\mathsf{n}(\mathsf{S})} = \frac{\mathsf{n}(\mathsf{A})}{\mathsf{n}(\mathsf{S})} + \frac{\mathsf{n}(\mathsf{B})}{\mathsf{n}(\mathsf{S})} - \frac{\mathsf{n}(\mathsf{A} \cap \mathsf{B})}{\mathsf{n}(\mathsf{S})} \Leftrightarrow$$

 \Leftrightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B).

Se $A \cap B = \emptyset$, A e B são chamados eventos mutuamente exclusivos. Neste caso,

$$P(A \cup B) = P(A) + P(B)$$

Se $A \cap B = \emptyset$ e $A \cup B = S$, A e B são chamados eventos exaustivos. Então.

$P(A \cup B) = P(A) + P(B) = 1$

Generalizando: sejam \mathbf{n} eventos A_1 , A_2 , A_3 , ..., A_n de um espaço amostral S, tais que

$$A_1 \cup A_2 \cup A_3 \cup ... \cup A_n = S.$$
Assim

$$P(A_1 \cup A_2 \cup A_3 \cup ... \cup A_n) =$$

= $P(S) = 1$

Além disso, se A₁, A₂, A₃, ..., A_n são, dois a dois, mutuamente exclusivos, então eles são eventos exaustivos.

Assim sendo,

$$P(A_1 \cup A_2 \cup A_3 \cup ... \cup A_n) =$$

= $P(A_1) + P(A_2) + P(A_3) + ... + P(A_n) = 1$

Exercício Resolvido

Numa urna, existem 10 bolas numeradas de 1 a 10. Retirando-se, ao acaso, uma bola dessa urna,

qual a probabilidade de se ter

- a) um múltiplo de 2 ou um múltiplo de 3?
- b) um número ímpar ou um múltiplo de 6?

Resolução

O espaço amostral é

$$S = \{1; 2; 3; ...; 10\} e n(S) = 10.$$

a) 1) O evento "múltiplo de 2" é

$$A = \{2; 4; 6; 8; 10\} e n(A) = 5.$$

3)
$$A \cap B = \{6\} e n(A \cap B) = 1$$
.

4)
$$P(A) = \frac{n(A)}{n(S)} = \frac{5}{10}$$
,

$$P(B) = \frac{n(B)}{n(S)} = \frac{3}{10} e$$

$$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{10}.$$

5) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Logo,

P(A
$$\cup$$
 B) =
= $\frac{5}{10} + \frac{3}{10} - \frac{1}{10} = \frac{7}{10} = 70\%$

b) 1) O evento "número ímpar" é

$$A = \{1; 3; 5; 7; 9\} e n(A) = 5.$$

2) O evento "múltiplo de 6" é $B = \{6\} e n(B) = 1.$

3) $A \cap B = \emptyset$ e $n(A \cap B) = 0$ (A e B são mutuamente exclusivos).

4)
$$P(A) = \frac{n(A)}{n(S)} = \frac{5}{10}$$
,

$$P(B) = \frac{n(B)}{n(S)} = \frac{1}{10} e$$

$$P(A \cap B) = 0.$$

5) $P(A \cup B) =$

$$= P(A)+P(B)-P(A\cap B)=P(A)+P(B)$$

Logo,

$$P(AUB) = \frac{5}{10} + \frac{1}{10} = \frac{6}{10} = 60\%.$$

Respostas: a) 70% b) 60%

MÓDULO 53

Probabilidade Condicional e Intersecção de Eventos

1. PROBABILIDADE CONDICIONAL

Dados dois eventos A e B de um espaço amostral $S \neq \emptyset$, chama-se probabilidade de A condicionada a B a probabilidade de ocorrer A, sabendo-se que já ocorreu ou vai ocorrer o evento B.Indica-se por P(A/B).

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Observe que

$$P(A/B) = \frac{n(A \cap B)}{n(B)} \Leftrightarrow$$

$$\Leftrightarrow P(A/B) = \frac{\frac{n(A \cap B)}{n(S)}}{\frac{n(B)}{n(S)}} \Leftrightarrow$$

$$\Leftrightarrow P(A/B) = \frac{P(A \cap B)}{P(B)}$$

2. EVENTOS INDEPENDENTES

Os eventos A e B de um espaço amostral S são independentes se P(A|B) = P(A) OU P(B|A) = P(B).

3. INTERSEÇÃO DE DOIS EVENTOS

 $P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$

Propriedade

A e B independentes ⇔

$$\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$$

A e B dependentes ⇔

$$\Leftrightarrow P(A \cap B) \neq P(A) \cdot P(B)$$

Se **A** e **B** são independentes, então P(B/A) = P(B) e

$$P(A \cap B) = P(A) \cdot P(B)$$

MÓDULO 54

Lei Binomial de Probabilidade

1. PROBLEMA

Realizando-se a experiência descrita exatamente n vezes, qual é a probabilidade de ocorrer o evento A somente k vezes?

2. RESOLUÇÃO DO PROBLEMA

a) Se ocorre apenas **k vezes o evento A**, num total de **n** experiências, então deverá ocorrer exatamente **n - k vezes o evento A**.

b) Se a probabilidade de ocorrer o evento $\overline{\mathbf{A}}$ é \mathbf{p} e do evento $\overline{\mathbf{A}}$ é $\mathbf{1} - \mathbf{p}$, então a probabilidade de ocorrer \mathbf{k} vezes o evento $\overline{\mathbf{A}}$, numa certa ordem, é

. (1 - p) . (1 - p) . (1 - p) (1 - p) =

$$= p^{k} \cdot (1 - p)^{n - k}$$

c) As \mathbf{k} vezes em que ocorre o evento \mathbf{A} são quaisquer entre as \mathbf{n} vezes possíveis. O número de maneiras de escolher \mathbf{k} vezes o evento \mathbf{A} é, pois, $C_{n..k}$.

d) Existem, portanto, $C_{n,k}$ eventos diferentes, todos com a mesma probabilidade p^k . $(1 - p)^{n-k}$ e, assim sendo, a probabilidade procurada é

$$C_{n,k}$$
 . p^k . $(1-p)^{n-k}$

Observações

a) Fala-se em lei binomial de probabilidade, porque a fórmula representa o termo T_{k+1} do desenvolvimento de $[p + (1-p)]^n$.

b) O número $C_{n, k}$ pode ser substituído por $C_{n, n-k}$ ou $P_n^{k, n-k}$, já que $C_{n, k} = C_{n, n-k} = P_n^{k, n-k} = \frac{n!}{k! (n-k)!}.$

MÓDULO 55 Médias

O número real x que substitui cada um dos números reais $x_1, x_2, x_3, \dots x_n$ é a sua média. Podemos ter:

Média aritmética

$$x_1 + x_2 + x_3 + \dots + x_n =$$

$$= X + X + X + \dots + X \Rightarrow$$

$$\Rightarrow \mathbf{x} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n}{\mathbf{n}}$$

Média geométrica

$$x_1 . x_2 . x_3 . . . x_n =$$

$$\Rightarrow$$
 $\mathbf{x}^{n} = \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{3} \cdot \dots \cdot \mathbf{x}_{n}$

Média harmônica

$$\frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} + \dots + \frac{1}{X_n} =$$

$$=\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\dots+\frac{1}{x}\Rightarrow$$

$$\Rightarrow x = \frac{1}{\frac{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}{n}}$$

Média aritmética ponderada

$$P_1 \cdot X_1 + P_2 \cdot X_2 + \dots + P_n \cdot X_n =$$

$$= P_1 \cdot X + P_2 \cdot X + \dots + P_n \cdot X \Rightarrow$$

$$\Rightarrow x = \frac{P_1 \cdot x_1 + P_2 \cdot x_2 + ... + P_n \cdot x_n}{P_1 + P_2 + ... + P_n}$$

MÓDULO 56

Noções de Estatística I

1. CONCEITO

Estatística é um ramo da Matemática Aplicada. A palavra Estatística provém da palavra latina *Status* e é usada em dois sentidos:

- **ESTATÍSTICAS** (no plural) referem-se a dados numéricos e são informações sobre determinado assunto, coisa, grupo de pessoas etc. obtidas por um pesquisador.
- **ESTATÍSTICA** (no singular) significa o conjunto de métodos usados na condensação, análises e interpretações de dados numéricos.

De um modo geral, conceitua-se Estatística da seguinte forma:

É ciência, quando estuda populações; é método, quando serve de instrumento a uma outra ciência. É também arte, ciência-método e método-ciência, segundo vários tratadistas, daí advindo uma variedade de definições. Eis algumas: "Conjunto dos processos que tem por objeto a observação, a classificação formal e a análise dos fenômenos coletivos ou de massa, e por fim a indução das leis a que tais fenômenos obedecem globalmente" (Milton da Silva Rodrigues).

"A Estatística é a parte da Matemática Aplicada que se ocupa em obter conclusões a partir de dados observados" (Ruy Aguiar da Silva Leme).

"A Estatística é o estudo numérico dos fatos sociais" (Levasseur).

"É observação metódica e tão universal quanto possível dos fatos considerados em globo, reduzidos a grupos homogêneos e interpretados mediante a indução matemática" (Ferraris).

2. POPULAÇÃO E AMOSTRA

População

É um conjunto de elementos com uma característica comum.

O termo é mais amplo que no senso comum, pois envolve aglomerado de pessoas, objetos ou mesmo ideias.

Exemplo

Todos os alunos do Ensino Médio do Brasil.

Amostras

São subconjuntos da população, que conservam, portanto, a característica comum da população e são retiradas por técnicas adequadas, chamadas de amostragem.

Exemplo

500 alunos do Ensino Médio do Brasil.

□ Parâmetros

São características numéricas da população.

Exemplo

QI médio dos estudantes do Ensino Médio do Brasil.

☐ Estimativas

Em geral, por problemas de tempo e dinheiro, trabalha-se com amostras e não com a população.

Os elementos numéricos característicos de uma amostra são estimativas dos elementos correspondentes na população, que são os parâmetros.

3. DISTRIBUIÇÃO DE FREQUÊNCIAS

Quando se vai fazer um levantamento de uma população, um dos passos é retirar uma amostra dessa população e obter dados relativos à variável desejada nessa amostra.

Cabe à Estatística sintetizar esses dados na forma de tabelas e gráficos que contenham, além dos valores das variáveis, o número de elementos correspondentes a cada variável.

Ilustramos, a seguir, esse procedimento, acompanhando com um exemplo.

Dados brutos

É o conjunto dos dados numéricos obtidos e que ainda não foram organizados.

Exemplo

A partir de uma lista de chamada, em ordem alfabética, obteve-se o conjunto de alturas, em cm, de 20 estudantes:

168, 168, 163, 164, 160, 160, 164, 166, 169, 169, 166, 168, 162, 165, 165, 164, 168, 166, 161, 168.

□ Rol

É o arranjo dos dados brutos em ordem crescente (ou decrescente).

No exemplo apresentado, temos o seguinte rol:

160, 160, 161, 162, 163, 164, 164, 164, 165, 165, 166, 166, 168, 168, 168, 168, 168, 169, 169.

□ Amplitude total (H)

E a diferença entre o maior e o menor dos valores observados. No exemplo:

$$H = 169 - 160 \Rightarrow H = 9$$

☐ Frequência absoluta (f_i)

É o número de vezes que o elemento aparece na amostra:

x _i	f _i
160	2
161	1
162	1
163	1
164	3
165	2
166	3
167	0
168	5
169	2
Σ	20

Frequência relativa (f.)

É dada por:

$$f_{\mathbf{r}} = \frac{f_{\mathbf{i}}}{n}$$

em que n é o número de elementos da amostra ($n = \sum_{i=1}^{n} f_{i}$)

Observe que $\sum f_{\bullet} = 1$

x _i	f _i	f _r
160	2	2 ÷ 20 = 0,10
161	1	$1 \div 20 = 0.05$
162	1	$1 \div 20 = 0.05$
163	1	$1 \div 20 = 0.05$
164	3	$3 \div 20 = 0,15$
165	2	2 ÷ 20 = 0,10
166	3	3 ÷ 20 = 0,15
167	0	0 ÷ 20 = 0
168	5	5 ÷ 20 = 0,25
169	2	$2 \div 20 = 0,10$
Σ	20	1,00

□ Frequência relativa percentual (f_%)

$$f\% = f_* \cdot 100$$

x _i	f _i	f _r	f _%
160	2	0,10	10
161	1	0,05	5
162	1	0,05	5
163	1	0,05	5
164	3	0,15	15
165	2	0,10	10
166	3	0,15	15
167	0	0	0
168	5	0,25	25
169	2	0,10	10
Σ	20	1,00	100

☐ Frequência absoluta acumulada (f_a)

É a soma da frequência do valor da variável com todas as frequências anteriores:

x _i	f _i	f _r	f _%	f _a
160	2	0,10	10	0 + 2 = 2
161	1	0,05	5	2 + 1 = 3
162	1	0,05	5	3 + 1 = 4
163	1	0,05	5	4 + 1 = 5
164	3	0,15	15	5 + 3 = 8
165	2	0,10	10	8 + 2 = 10
166	3	0,15	15	10 + 3 = 13
167	0	0	0	13 + 0 = 13
168	5	0,25	25	13 + 5 = 18
169	2	0,10	10	18 + 2 = 20
Σ	20	1,00	100	

□ Frequência relativa acumulada (f_{ra})

É a soma da frequência relativa do valor da variável com todas as frequências relativas anteriores.

□ Frequência percentual acumulada ($f_{\%a}$)

$$f_{\text{%a}} = f_{\text{ra}} \cdot 100$$

Distribuição de frequências

É o arranjo dos valores da variável e suas respectivas frequências.

X;	fi	f _r	f	f	f _{ra}	f
^i	°i.	'r	f _%	fa	'ra	f _{%a}
160	2	0,10	10	2	0,10	10
161	1	0,05	5	3	0,15	15
162	1	0,05	5	4	0,20	20
163	1	0,05	5	5	0,25	25
164	3	0,15	15	8	0,40	40
165	2	0,10	10	10	0,50	50
166	3	0,15	15	13	0,65	65
167	0	0	0	13	0,65	65
168	5	0,25	25	18	0,90	90
169	2	0,10	10	20	1,00	100
Σ	20	1,00	100			

4. CLASSES

O número de elementos de uma amostra, de um modo geral, é grande. Para condensá-los, os valores obtidos devem ser, normalmente, distribuídos em classes.

A distribuição de frequências dos dados de uma amostra distribuídos em classes é idêntica à que é feita com cada valor da variável, adotando-se as seguintes normas:

☐ O número de classes (nc)

É da ordem de \sqrt{n} , em que n é o número total de elementos da amostra.

$$nc \cong \sqrt{n}$$

□ A amplitude da classe (h)

É, aproximadamente, o quociente entre a amplitude total (H) e o número de classes (nc).

O ponto médio da classe (PM)

É a média aritmética entre o limite inferior e o limite superior de cada classe. É o valor da variável que representa a classe: $PM = X_i$.

□ Exercício

Num teste de raciocínio numérico, obtiveram-se os seguintes **dados brutos**:

$$52 - 33 - 80 - 61 - 45 - 77 -$$

Fazer a **distribuição de frequências** dos dados dessa amostra, distribuindo-os em classes.

□ Resolução

• Cálculo do rol

• Cálculo da amplitude total

$$H = 98 - 33 = 65$$

• Cálculo do número de classes

$$nc = \sqrt{n}$$

$$nc \approx \sqrt{50} \approx 7$$

• Cálculo da amplitude de classe

$$h = \frac{H}{nc} = \frac{65}{7} \approx 9.3$$

Adotaremos h = 10.

• Distribuição de frequências

Classes	PM	f _i	f _r	f _%	f _a	f _{ra}	f _{%a}
30 + 40 40 + 50 50 + 60 60 + 70 70 + 80 80 + 90 90 + 100	35 45 55 65 75 85 95	4 6 8 13 9 6 4	0,08 0,12 0,16 0,26 0,18 0,12 0,08	8 12 16 26 18 12 8	4 10 18 31 40 46 50	0,08 0,20 0,36 0,62 0,80 0,92 1,00	8 20 36 62 80 92 100
Σ		50	1,00	100			

5. REPRESENTAÇÃO GRÁFICA DA DISTRIBUIÇÃO DE FREQUÊNCIAS

As tabelas de distribuição de frequências vistas no item 4 podem ser representadas graficamente.

A finalidade principal disso é fornecer as informações analíticas de uma maneira mais rápida. Descreveremos apenas três tipos de gráficos: histogramas, polígonos de frequências e polígonos de frequências acumuladas.

□ Histogramas

É a representação gráfica de uma distribuição de frequências por meio de **retângulos justapostos**. No eixo das abscissas, temos os limites das classes e no eixo das ordenadas, as frequências (f_i ou f_r ou f_∞).

□ Polígono de frequências

É um gráfico de linhas que se obtém unindo os pontos médios dos patamares dos retângulos do histograma.

Polígono de frequências acumuladas

Polígono de frequências acumuladas ou OGIVA DE GALTON é uma representação gráfica que tem no eixo das abscissas os limites das classes e no eixo das ordenadas, as frequências acumuladas (f_a ou f_{ra} ou f_{wa}) que se situam abaixo de um determinado limite superior.

Exemplo

Fazer a representação gráfica da distribuição de frequências apresentada na tabela a seguir:

Observações

- Conforme vemos na figura, o histograma e o polígono de frequências em termos de f_i , f_r e $f_{\%}$ têm exatamente o mesmo aspecto, mudando apenas a escala vertical.
- Observe que, como o 1º valor é bem maior que zero, adotamos aproximá-lo do zero segundo a convenção:

Classes	PM	f _i	f _r	f _%	f _a	f _{ra}	f _{%a}
30 ⊦ 40	35	4	0,08	8	4	0,08	8
40 ⊦ 50	45	6	0,12	12	10	0,20	20
50 ⊦ 60	55	8	0,16	16	18	0,36	36
60 ⊦ 70	65	13	0,26	26	31	0,62	62
70 ⊦ 80	75	9	0,18	18	40	0,80	80
80 ⊦ 90	85	6	0,12	12	46	0,92	92
90 ⊦ 100	95	4	0,08	8	50	1,00	100
Σ		50	1,00	100			

6. MEDIDAS DE POSIÇÃO

As medidas de posição servem para localizar os dados sobre o eixo da variável em questão. As mais importantes são: a **média**, a **mediana** e a **moda**.

A média e a mediana tendem a se localizar em valores centrais de um conjunto de dados. Por essa razão, costuma-se dizer que são **medidas de tendência central**. A moda, por sua vez, indica a posição de maior concentração de dados.

☐ Média aritmética

- Dados não agrupados

Sendo X₁, X₂, X₃, ..., X_n os n valores de uma variável

X, define-se média aritmética, ou simplesmente média, como sendo:

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} \mathbf{X}_{i}}{n}$$

Exemplo

A média aritmética dos valores 3; 5; 7; 8 é

$$\overline{X} = \frac{3+5+7+8}{4} = 5,75$$

- Dados agrupados

Sendo X_1 , X_2 , X_3 , ..., X_n os n valores da variável X com frequências f_1 , f_2 , f_3 , ..., f_n , respectivamente, definese média aritmética, ou simplesmente **média**, como

-@

sendo

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{X}_{i}}{\mathbf{n}}$$

sendo $\sum f_i = n$.

Exemplo

A média aritmética da distribuição de dados a seguir é:

x _i	f _i
1	1
1 2 3 4	1 3 5
3	5
4	1
Σ	10

$$\overline{X} = \frac{1 \cdot 1 + 3 \cdot 2 + 5 \cdot 3 + 1 \cdot 4}{10}$$

 $\overline{X} = 2.6$

Dados agrupados em classes

A média aritmética é calculada como no item anterior, lembrando que cada classe é representada pelo seu ponto médio ($X_i = PM$).

Exemplo

Classes	PM = x _i	f _i
2 + 4	3	5
4 ⊦ 6	5	10
6 ⊦ 8	7	14
8 ⊦ 10	9	8
10 + 12	11	3
Σ		40

$$\overline{X} = \frac{5.3 + 10.5 + 14.7 + 8.9 + 3.11}{40}$$

$$\Rightarrow \overline{X} = \frac{268}{40} \Rightarrow X = 6.7$$

☐ Moda (M_o)

Define-se **moda** (ou modas) de um conjunto de valores dados como

sendo o valor de frequência máxima (ou os valores da frequência máxima).

Exemplos

a) A moda do conjunto de dados 2,2, 5, 7, 9, 9, 9, 10, 11, 12 é 9.Observe que 9 é o elementomais frequente.

$$M_o = 9$$

b) O conjunto de dados 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 10, 10 tem duas modas:

е

$$M_{o_2} = 8$$

c) Para a distribuição

x _i	243	245	248	251	307
f _i	7	17	23	20	8

a moda é 248, pois é o valor de frequência máxima (23).

$$M_0 = 248$$

 d) Para os dados agrupados em classes, a seguir, podemos dizer, pelo menos, que a classe modal é 2 ⊢ 3.

Classes	f _i
0 + 1	3
1 + 2	10
2 + 3	17
3 ⊦ 4	8
4 ⊦ 5	5

■ Mediana (M_d)

Colocando-se os valores da variável em ordem crescente, a **mediana** é o elemento que ocupa a posição central. Em outras palavras: a **mediana** divide um conjunto de n dados em dois subconjuntos com igual número de elementos.

Cálculo da mediana para dados não agrupados

- Se **n** for **impar**, a mediana é o valor central dos n dados do rol. É o elemento de ordem $\frac{n+1}{2}$.

Exemplo

A mediana dos dados 5; 7; 8; 10; 15 é 8, que é o 3º termo do rol.

$$\left(\frac{5+1}{2}\right)=3$$

Se n for par, a mediana é a média aritmética dos dois dados centrais do rol. É a média aritmética entre os dados de ordem

$$\frac{n}{2} e \frac{n}{2} + 1$$

Exemplo

Os valores centrais do rol 5; 7; 8; 10; 14; 15 são o 8 e o 10.

A mediana dos valores deste rol é

$$M_d = \frac{8+10}{2} = 9$$

Cálculo da mediana para dados agrupados em classes

Calcula-se $\frac{n}{2}$ e, pela frequência acumulada, identifica-se a classe que contém a mediana. Em seguida, calcula-se a mediana usando uma fórmula. O mais prático, porém, é usar o gráfico de frequências acumuladas percentuais (OGIVA DE GALTON).

Exemplo

Classes	f _i	f _a
34 + 45	5	5
45 ⊦ 55	12	17
55 ⊦ 65	18	35
65 ⊦ 75	14	49
75 ⊦ 85	6	55
85 ⊦ 95	3	58

♦>> OBJETIVO − 9

Construída a OGIVA, a partir dos dados, note que:

19) no ponto B, temos
$$f_a = 58$$
, que corresponde a $f_{\%a} = 100$.

9) o valor da variável asso-4 ciado a
$$f_{\%a}$$
 = 50 é a mediana.

29) o ponto A é médio de OB **39)** o valor da variável asso- **49)** da OGIVA, concluímos, e, nesse ponto, temos ciado a
$$f_{\%a} = 50$$
 é a pois, que $M_d \cong 62$. mediana.

MÓDULO 57

Noções de Estatística II

1. MEDIDAS DE DISPERSÃO

□ Introdução

As medidas de posição vistas até aqui, média, mediana e moda, têm conceitos diferentes, detalhes próprios, que ajudam semelhantemente a representar um conjunto de dados.

Entretanto, a informação fornecida pelas medidas de posição, em geral, necessita ser completada pelas MEDIDAS DE DISPERSÃO. Estas servem para indicar o quanto os dados se apresentam dispersos em torno da região central. Caracterizam, portanto, o grau de variação existente no conjunto de valores e, por isso, são também chamadas MEDIDAS DE VARIABILIDADE.

Exemplo

Suponha que as notas de 2 alunos no decorrer do ano foram:

Aluno A: 2; 3; 4; 3; 8; 10
$$\rightarrow \overline{X} = 5$$

Aluno B: 5; 6; 4; 5; 4; 6 $\rightarrow \overline{X} = 5$

Ambos obtiveram a mesma média $(\overline{X}=5)$, entretanto percebe-se claramente que o aluno A, de péssimos resultados iniciais, conseguiu recuperar-se no fim, enquanto o aluno B manteve-se praticamente no mesmo nível.

Isso significa que as notas do aluno B não foram dispersas como as notas do aluno A.

Portanto, a medida de posição poderá ser completada por uma medida de dispersão (amplitude, desvio médio, desvio padrão, variância) que passaremos a descrever.

□ Amplitude

Amplitude (H), ou **intervalo total**, é definida como a diferença entre os valores extremos da série, ou seja:

Exemplo

Sejam os valores 4; 5; 7; 9; 10; 13

$$H = 13 - 4 = 9$$

Por depender de apenas dois valores do conjunto de dados, a amplitude contém relativamente pouca informação quanto à dispersão, pois se sujeita a grandes flutuações de uma amostra para outra.

Suponhamos que numa classe, os pesos dos alunos se distribuam entre 45 e 75 kg, a amplitude seja H = 75 - 45 = 30 kg. Se entrar nessa classe um aluno com 100 kg, a nova

amplitude será 100 – 45 = 55kg, quase o dobro da anterior apenas por causa de um aluno.

Desvio

Uma maneira de medir o grau de dispersão ou concentração de cada valor da variável em relação às medidas de tendência central é fazer a diferença entre o valor da variável e a média.

Esta diferença é chamada **desvio** e representada por D.

$$\mathbf{D_i} = \mathbf{X_i} - \overline{\mathbf{X}}$$

Exemplo

Um aluno que obteve as notas 2, 3, 4, 3, 8, 10 conseguiu uma média $\overline{X} = \frac{2+3+4+3+8+10}{6} = 5.$

Os desvios de cada uma das notas são:

x _i	$D_i = X_i - \overline{X}$	
2	-3	
3	-2	
4	– 1	
3	-2	
8 3		
10	5	

Observe que $\Sigma Di = 0$.

□ Observação

Ao calcular a média dos desvios, para conhecer um desvio global do conjunto, o resultado é sempre ZERO, pois $\sum D_i = 0$.

Assim, para obter um resultado que exprima a média dos desvios, costuma-se proceder de dois modos:

- a) calcular a média dos módulos de cada desvio;
- b) calcular a média dos quadrados dos desvios e em seguida extrair a raiz quadrada.

O primeiro é chamado **desvio médio** (D_m) e o segundo é chamado **desvio padrão** (s).

□ Desvio médio (D_m)

$$D_{m} = \frac{\sum |D_{i}|}{n}$$

ou

$$D_m = \frac{\sum f_i |D_i|}{n}$$

□ Desvio padrão (s)

$$s = \sqrt{\frac{\sum f_i D_i^2}{n}}$$

Variância

É o quadrado do desvio padrão.

$$s^2 = \frac{\sum f_i D_i^2}{n}$$

MÓDULO 58

Grandezas Proporcionais

9090909090

1. RAZÃO

Razão entre dois números \mathbf{a} e \mathbf{b} ($\mathbf{b} \neq \mathbf{0}$), nessa ordem, é o quociente $\frac{\mathbf{a}}{\mathbf{b}}$ (ou \mathbf{a} : \mathbf{b}). O número \mathbf{a} é chamado de primeiro termo ou antecedente, e o número \mathbf{b} é chamado segundo termo ou consequente. A razão inversa de \mathbf{a} e \mathbf{b} é $\frac{\mathbf{b}}{\mathbf{a}}$ ($\mathbf{a} \neq \mathbf{0}$).

2. PROPORÇÃO

Dizemos que os números **a**, **b**, **c** e **d** (b ≠ 0 e d ≠ 0), nessa ordem, formam uma PROPORÇÃO se, e somente se, a razão entre **a** e **b** é igual à razão entre **c** e **d**. Indicação:

$$\frac{a}{b} = \frac{c}{d}$$
 (ou a : b = c : d),

em que **a** e **d** são chamados extremos e **b** e **c** são chamados meios.

3. PROPRIEDADES DAS PROPORÇÕES

Dados os números **a**, **b**, **c** e **d** (b \neq 0 e d \neq 0), então:

1) (Fundamental)

$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} \Leftrightarrow \mathbf{ad} = \mathbf{bc}$$

2)
$$\begin{cases} \mathbf{a} \cdot \frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} \Leftrightarrow \frac{\mathbf{a} + \mathbf{b}}{\mathbf{b}} = \frac{\mathbf{c} + \mathbf{d}}{\mathbf{d}} \\ (\mathbf{a} \neq 0 \in \mathbf{c} \neq 0) \end{cases}$$

$$\mathbf{b} \cdot \frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} \Leftrightarrow \frac{\mathbf{a} + \mathbf{b}}{\mathbf{b}} = \frac{\mathbf{c} + \mathbf{d}}{\mathbf{d}}$$

3)
$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} \Leftrightarrow \frac{\mathbf{a} + \mathbf{c}}{\mathbf{b} + \mathbf{d}} = \frac{\mathbf{c}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}}$$

4)
$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} \Leftrightarrow \frac{\mathbf{ac}}{\mathbf{bd}} = \frac{\mathbf{a}^2}{\mathbf{b}^2} = \frac{\mathbf{c}^2}{\mathbf{d}^2}$$

(se ab tem o mesmo sinal de cd)

4. GRANDEZAS PROPORCIONAIS

■ Notação

Em geral, letras maiúsculas do nosso alfabeto representam GRAN-DEZAS QUAISQUER, e letras minúsculas do nosso alfabeto, cada uma com um índice numérico, representam os VALORES dessas grandezas.

Assim, quando escrevemos:

A = $(a_1, a_2, a_3, ...)$ e B = $(b_1, b_2, b_3, ...)$, estamos referindo-nos às grandezas A e B e aos seus valores $a_1, a_2, a_3, ...$ e $b_1, b_2, b_3, ...$ num dado problema. Estamos dizendo ainda que, nesse problema, "quando a grandeza A assume o valor a_1 (ou a_2 ou a_3 ou ...), a grandeza B assume o valor b_1 (ou b_2 ou b_3 ou ...), respectivamente", e que " a_1 e b_1 (ou a_2 e b_2 ou a_3 e b_3 ou ...) são VALORES CORRESPONDENTES das grandezas A e B".

□ Grandezas Diretamente Proporcionais (GDP)

Uma grandeza \mathbf{A} é DIRETAMEN-TE PROPORCIONAL a uma grandeza \mathbf{B} se, e somente se, AS RAZÕES entre os valores de \mathbf{A} e os correspondentes valores de \mathbf{B} forem CONS-TANTES, isto é, se $\mathbf{A} = (\mathbf{a}_1, \, \mathbf{a}_2, \, \mathbf{a}_3, \, \ldots)$ e $\mathbf{B} = (\mathbf{b}_1, \, \mathbf{b}_2, \, \mathbf{b}_3, \, \ldots)$; então:

$$\Leftrightarrow \frac{\mathbf{a}_1}{\mathbf{b}_1} = \frac{\mathbf{a}_2}{\mathbf{b}_2} = \frac{\mathbf{a}_2}{\mathbf{b}_3} = \dots = \mathbf{k}$$

em que k é constante.

☐ Grandezas Inversamente Proporcionais (GIP)

Uma grandeza A é INVERSA-MENTE PROPORCIONAL a uma grandeza B se, e somente se, OS PRODUTOS entre os valores de A e os correspondentes valores de **B** forem CONSTANTES, isto é, se $A = (a_1, a_2, a_3, ...)$ e $B = (b_1, b_2, b_3, ...)$; então:

$$\Leftrightarrow \mathbf{a_1b_1} = \mathbf{a_2b_2} = \mathbf{a_3b_3} = \dots = \mathbf{k}$$

em que k é constante.

□ Observações

- É evidente que, "se A é GDP (ou GIP) a B, então B é GDP (ou GIP, respectivamente) a A".
- 2) Quando dizemos que "A e B são grandezas diretamente (ou inversamente) proporcionais", estamos querendo dizer que "A é uma grandeza diretamente (ou inversamente, respectivamente) proporcional à grandeza B".
- 3) Quando dizemos que "A e B são grandezas proporcionais", omitindo a especificação "DIRETA-MENTE" ou "INVERSAMENTE", é porque ou essa especificação está subentendida no problema, ou o problema não depende dessa especificação.
- É evidente que duas grandezas quaisquer podem NÃO SER diretamente NEM inversamente proporcionais.
- 5) PROPRIEDADE: se a grandeza A = (a₁, a₂, a₃, ...) É INVERSA-MENTE PROPORCIONAL à grandeza B = (b₁, b₂, b₃, ...), então a grandeza A = (a₁, a₂, a₃, ...) é DI-RETAMENTE PROPORCIONAL à grandeza

$$B' = \left(\frac{1}{b_1}, \frac{1}{b_2}, \frac{1}{b_3}, \dots\right),$$

com $b_1 \neq 0$, $b_2 \neq 0$, $b_3 \neq 0$, ...

Demonstração

Se A = $(a_1, a_2, a_3, ...)$ e B = $(b_1, b_2, b_3, ...)$ são GIP, então temos que: $a_1b_1 = a_2b_2 = a_3b_3 = ... \Rightarrow$

$$\Rightarrow \frac{a_1}{\frac{1}{b_1}} = \frac{a_2}{\frac{1}{b_2}} = \frac{a_3}{\frac{1}{b_3}} = \dots \Rightarrow$$

⇒ A =
$$(a_1, a_2, a_3, ...)$$
 e
B' = $(\frac{1}{b_1}, \frac{1}{b_2}, \frac{1}{b_3}, ...)$, com b_1 ,

b₂ e b₃ ≠ 0, são GRANDEZAS DI-RETAMENTE PROPORCIONAIS.

5. DIVISÃO PROPORCIONAL

a) DIVIDIR um número N em PARTES (suponhamos: x, y e z) DIRETAMENTE PROPORCIONAIS aos números a, b e c significa determinar os números x, y e z, de tal modo que:

- (I) as sequências (x, y, z) e (a, b,
 - c) sejam diretamente proporcionais;

$$(II) \times + y + z = N.$$

Para isso, usando a definição de GDP e as propriedades das proporções, podemos usar a seguinte TÉCNICA OPERATÓ-RIA:

$$\begin{cases} \frac{x}{a} = \frac{y}{b} = \frac{z}{c} \\ x + y + z = N \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \frac{x+y+z}{a+b+c} = \frac{x}{a} = \frac{y}{b} = \frac{z}{c} \\ x+y+z=N \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{N}{a+b+c} = \frac{x}{a} \\ \frac{N}{a+b+c} = \frac{y}{b} \\ \frac{N}{a+b+c} = \frac{z}{c} \end{cases}$$

e então calculamos x, y e z.

b) DIVIDIR um número M em PAR-TES INVERSAMENTE PROPOR-CIONAIS aos números m, n e p É O MESMO QUE DIVIDIR M em PARTES DIRETAMENTE PRO-PORCIONAIS aos INVERSOS:

$$\frac{1}{m}, \frac{1}{n}, \frac{1}{p},$$

com m \neq 0, n \neq 0 e p \neq 0.

MÓDULO 59

1. REGRA DE TRÊS SIMPLES (R3S)

□ Definição

É o método prático empregado para resolver o seguinte problema:

"Quando comparamos duas grandezas A e B proporcionais, relacionando dois valores de A com dois valores correspondentes de B, determinamos um dos quatro valores, uma vez que sejam conhecidos os outros três."

□ Técnica operatória

Grandeza B

$$Valores \begin{cases} a_1 \dots b_1 \\ a_2 \dots b_2 \end{cases}$$

(um dos quatro é a incógnita do problema). Se A e B forem GDP, montamos a proporção:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}$$

Regra de Três

(da qual calculamos o valor desconhecido).

Se A e B forem GIP, montamos uma das proporções:

$$\frac{a_2}{a_1} = \frac{b_1}{b_2}$$
 ou $\frac{a_1}{a_2} = \frac{b_2}{b_1}$

(invertemos uma das razões e calculamos o valor desconhecido).

2. REGRA DE TRÊS COMPOSTA (R3C)

□ Definição

É o método prático empregado para resolver problema análogo ao da regra de três simples, só que envolvendo MAIS DE DUAS GRANDEZAS PROPORCIONAIS.

Propriedades

Se uma grandeza $A(a_1, a_2, ...)$ é diretamente proporcional a uma grandeza $B(b_1, b_2, ...)$ e a uma grandeza $C(c_1, c_2, ...)$, então:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \cdot \frac{c_1}{c_2}$$

□ Técnica operatória

Grandeza	Grandeza	Grandeza	Grandeza
A	В	C	D

(fundamental)

Valores
$$\begin{cases} a_1 & & b_1 & & c_1 & & d_1 \\ \mathbf{x} & & b_2 & & c_2 & & d_2 \end{cases}$$

Comparamos cada grandeza (B, C, D etc.) com a grandeza fundamental A (a que contém a incógnita) separadamente.

Suponhamos que ocorram:

B e A (GDP), C e A (GIP) e D e A (GDP).

Nesse caso, montamos a proporção:

$$\frac{a_1}{x} = \frac{b_1}{b_2} \cdot \frac{c_2}{c_1} \cdot \frac{d_1}{d_2}$$
, com base na qual calculamos **x**.

MÓDULO 60

Porcentagem e Juros

1. PORCENTAGEM

■ Noção intuitiva

Exemplo

"O índice de analfabetismo da cidade X é de 12% (lê-se 12 por cento)" significa que, em média, 12 de cada 100 habitantes são analfabetos.

■ Nomenclatura usual

Exemplo

Em "25% de R\$ 80,00 é R\$ 20,00", temos:

Observação

Usa-se também o símbolo "%", que significa "por mil".

Exemplos

- 1) "O índice de mortalidade infantil do país Y é de 15‰ ao ano" significa que, em média, de cada 1000 crianças que nascem por ano, 15 morrem.
- 2) Em "25% de R\$ 80,00 é R\$ 2,00", temos:

$$\begin{cases} \text{ o PRINCIPAL \'e} & \text{P} = 80 \\ \text{a TAXA \'e} & \text{i} = 25(\%) \\ \text{a PORMILAGEM \'e} & \text{p} = 2 \end{cases}$$

□ Técnica operatória

Para resolver problemas, estabelecemos a seguinte REGRA DE TRÊS SIMPLES:

Grandeza % (ou %)

Grandeza do problema

da qual, por REGRA DE TRÊS SIMPLES, obtemos o valor desconhecido.

Exemplo

Calcule 25% de 80.

Temos:

100% correspondem a 80 25% correspondem a x

Então:

$$\frac{100}{25} = \frac{80}{x}$$
 e, portanto, $x = \frac{25.80}{100}$, isto é, $x = 20$.

Ao escrevermos p%, estamos representando o número $\frac{p}{100}$ ou p : 100.

Assim, temos:

a)
$$(20\%)^2 = 4\%$$
, pois: $(20\%)^2 =$
= $\left(\frac{20}{100}\right)^2 = \left(\frac{2}{10}\right)^2 = \frac{4}{100} = 4\%$

b) 25% de 400 é igual a 100, pois:

$$25\% \cdot 400 = \frac{25}{100} \cdot 400 = 100$$

c) 32 é 80% de 40, pois:

$$32 - p$$

$$40 - 100$$

$$\begin{cases}
GDP & 32 \\
p & 100
\end{cases} \Rightarrow 32 = 40$$

$$\Rightarrow$$
 p = 80 ou 32 = p% . 40 \Rightarrow

$$\Rightarrow 32 = \frac{p}{100} \cdot 40 \Rightarrow p = 80$$

d) 40 é 125% de 32, pois:

$$\left.\begin{array}{c}
40 - p \\
32 - 100
\end{array}\right\} \xrightarrow{\text{GDP}} \frac{40}{p} = \frac{32}{100} \Rightarrow$$

$$\Rightarrow$$
 p = 125 ou 40 = p% . 32 \Rightarrow

$$\Rightarrow 40 = \frac{p}{100} . 32 \Rightarrow p = 125$$

e) Um valor, ao passar de 32 para 40, aumentou 25%, pois:

$$(100 + p)\% \cdot 32 = 40 \Rightarrow$$

$$\Rightarrow \frac{100 + p}{100}$$
. $32 = 40 \Rightarrow p = 25$

f) Um valor, ao passar de 40 para 32, decresceu 20%, pois:

$$(100 - p)\% \cdot 40 = 32 \Rightarrow$$

$$\Rightarrow \frac{100 - p}{100} \cdot 40 = 32 \Rightarrow p = 20$$

14 - **≫OBJETIVO**

g) Um valor de 50, após um aumento de 15%, passa a ser 57,5, pois:

$$(100 + 15)\% \cdot 50 = \frac{115}{100} \cdot 50 = 57,5$$

h) Um valor de 50, após um decréscimo de 15%, passa a ser 42,5, pois:

$$(100 - 15)\%$$
 . $50 = \frac{85}{100}$. $50 = 42,5$

i) Um valor de 50, após um aumento de 15% e, em seguida, um desconto de 15%, passa a ser 48,875, pois:

$$(100 + 15)\% \cdot 50 \cdot (100 - 15\%) =$$

$$= \frac{115}{100} \cdot 50 \cdot \frac{85}{100} = 48,875$$

j) Um aumento de 10% seguido de um aumento de 10% não é um aumento de 20%, pois:

Corresponde a um único aumento de 21%!

k) Um desconto de 10% seguido de um desconto de 10% não é um desconto de 20%, pois:

$$90\% . 90\% . x = 81\% x =$$

= $(100 - 19)\% . x$

Corresponde a um único desconto de 19%!

2. JUROS SIMPLES

Denominamos juros simples aqueles que não são somados ao capital durante o tempo de seu emprego. Assim, a taxa incide apenas sobre o capital aplicado inicialmente.

Sendo

J = juros,

C = capital

i = taxa

t = tempo,

M = montante,

temos:

е

$$M = C + J$$

3. JUROS COMPOSTOS

Neste sistema, após cada período (dia, mês, ano etc.), os juros são somados ao capital acumulado até então (juros sobre juros). Em seguida, a taxa incide sobre o novo valor obtido, e assim sucessivamente.

Então:

$$M = C \cdot (1 + i)^t$$

е

$$J = M - C$$

Exemplo

Calcule o montante ao final de três meses, com a aplicação de um capital de R\$ 10 000,00 à taxa de 4% ao mês, pelo sistema:

- a) de juros simples;
- b) de juros compostos.

Resolução:

a)
$$J = \frac{\text{Cit}}{100}$$

$$J = \frac{10000 \cdot 4 \cdot 3}{100} = 1200$$

$$M = C + J =$$

$$= 10000 + 1200 = 11200$$

b)
$$M = C \cdot (1 + i)^t$$

$$M = 10000 \cdot \left(1 + \frac{4}{100}\right)^3 =$$

$$= 10000 \cdot (1,04)^3 =$$

$$= 10000.1,124864 = 11248,64$$

Obs.:
$$J = M - C = 11248,64 - 10000 = 1248,64$$

Respostas:

a) R\$ 11200,00

b) R\$ 11248,64

MATEMÁTICA Matemática e suas Tecnologias ♦>> ○BJETIVO FRENTE 2 Álgebra As melhores cabeças

MÓDULO 25

Propriedades da Matriz Inversa e Equações Matriciais

1. PROPRIEDADES

- Se A é invertível, então A⁻¹ é única.
- Se A é invertível, então $(A^{-1})^{-1} = A$.
- Se A e B são invertíveis e de mesma ordem, então $(A . B)^{-1} = B^{-1} . A^{-1}$.
- Se A é invertível, então $(A^t)^{-1} = (A^{-1})^t$.
- Se A é invertível, então det $(A^{-1}) = \frac{1}{\det(A)}$.

MÓDULO 26

Sistema Normal, Regra de Cramer e Escalonamento

1. SISTEMAS LINEARES

• Um sistema (S) de **m** equações lineares (m $\in \mathbb{N}^*$) com **n** incógnitas (n $\in \mathbb{N}^*$), $x_1, x_2, x_3, ..., x_n$, é um conjunto de equações da forma:

(s)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

 $com m \ge 2 e n \ge 2$

no qual os coeficientes a_{ij} são números reais não todos nulos simultaneamente e os termos b_i são números reais quaisquer.

 Se todos os mesmos b_i forem nulos (i = 1, 2 ..., m), então (S) é um sistema linear homogêneo.

- Dizemos que a n-upla de números reais $(\alpha_1, \alpha_2, ..., \alpha_n)$ é uma SOLUÇÃO do sistema (S) se forem verdadeiras todas as sentenças de (S) fazendo-se $x_i = \alpha_i$.
- Um sistema (S) é COMPATÍVEL (ou possível) se existir pelo menos uma solução; (S) é INCOMPATÍVEL (ou impossível) se não admite solução.

Se "V" é o conjunto solução (ou conjunto verdade) do sistema (S), então devemos ter uma das seguintes situações:

- Compatível e determina do: quando V é um conjunto unitário.
- Compatível e indeterminado: quando V é um conjunto infinito.
- **Incompatível:** quando V é o conjunto vazio.

☐ Matrizes de um sistema

Num sistema linear, definem-se as duas matrizes seguintes:

$$\mathbf{MI} = \begin{bmatrix} \mathbf{a_{11}} & \mathbf{a_{12}} & \dots & \mathbf{a_{1n}} \\ \mathbf{a_{21}} & \mathbf{a_{22}} & \dots & \mathbf{a_{2n}} \\ \dots & \dots & \dots & \dots \\ \mathbf{a_{m1}} & \mathbf{a_{n2}} & \dots & \mathbf{a_{mn}} \end{bmatrix}$$

$$MC = \begin{bmatrix} a_{11} & a_{12} \dots a_{1n} & b_1 \\ a_{21} & a_{22} \dots a_{2n} & b_2 \\ \dots & \dots & \dots \\ a_{m1} & a_{n2} \dots a_{mn} & b_m \end{bmatrix}$$

que recebem o nome de:

MI = matriz incompleta.

MC = matriz completa (ou associada ao sistema).

Se a matriz M.I. for quadrada, o seu determinante é dito **determinante do sistema** (D).

Exemplo

• O sistema $\begin{cases} x + 2y = 5 \\ x + y = 3 \end{cases}$

é possível e determinado, pois apresenta uma única solução que $é S = \{(1, 2)\}.$

• O sistema
$$\begin{cases} x - y = 2 \\ 2x - 2y = 4 \end{cases}$$

é possível e indeterminado, pois apresenta infinitas soluções da forma $S = \{(k, k-2)\}.$

Observe, nesse exemplo, que a segunda equação é a primeira com ambos os membros multiplicados por 2.

• O sistema
$$\begin{cases} x - y = 2 \\ x - y = 4 \end{cases}$$

é impossível, pois não existe par ordenado (x, y) que torne as duas sentenças verdadeiras "simultaneamente".

• No sistema
$$\begin{cases} x + 2y = 5 \\ 3x + 4y = 11 \end{cases}$$
, definem-se:

$$MI = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} e MC = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & 11 \end{bmatrix}$$

e o determinante do sistema D = det MI = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

2. SISTEMA NORMAL

• O sistema linear (S) com "m" equações e "n" incógnitas será "NORMAL" quando:

Resolução de um sistema normal

Teorema de Cramer

Qualquer sistema normal admite uma e uma só solução dada por:

$$x_1 = \frac{D_1}{D}; \quad x_2 = \frac{D_2}{D}$$

$$x_3 = \frac{D_3}{D}$$
; ...; $x_n = \frac{D_n}{D}$ onde:

- D é o determinante do sistema.
- D; é o determinante que se obtém de D, trocando a iésima coluna da matriz M.I. por b₁, b₂, b₃, ..., b_n.

Exemplo

• O sistema
$$\begin{cases} x + 2y = 5 \\ 3x + 4y = 11 \end{cases}$$

é normal, pois o número de equações é igual ao número de incógnitas e o determinante do sistema:

$$D = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \neq 0$$

O Teorema de Cramer nos garante que a solução é única e obtida por:

$$x = \frac{D_x}{D} = \frac{-2}{-2} = 1$$
, pois $D_x = \begin{vmatrix} 5 & 2 \\ 11 & 4 \end{vmatrix} = -2$

$$y = \frac{D_y}{D} = \frac{-4}{-2} = 2$$
, pois $D_y = \begin{vmatrix} 1 & 5 \\ 3 & 11 \end{vmatrix} = -4$

MODULO 27

Escalonamento (Método de Gauss)

1. DEFINICÃO: SISTEMAS **EQUIVALENTES**

Dizemos que dois sistemas são equivalentes se e somente se apresentarem o mesmo conjunto solução.

Para transformar um sistema num sistema equivalente mais simples, pode-se

- permutar duas equações;
- multiplicar qualquer uma das equações por um número real diferente de zero;
- multiplicar uma equação por um número real e adicioná-la à outra equação.

Exemplo

(I)
$$\begin{cases} x - y + z = -2 & (a_1) \\ x - 2y - 2z = -1 & (b_1) \\ 2x + y + 3z = 1 & (c_1) \end{cases}$$

transformando-o num sistema equivalente mais simples, seguindo o sequinte roteiro:

- para obter (b₂), multiplique (a₁) por -1 e adicione o resultado a (b₁);
- para obter (c₂), multiplique (a₁) por -2 e adicione o resultado a (c₁).

(II)
$$\begin{cases} x - y + z = -2 & (a_1) \\ - y - 3z = 1 & (b_2) \\ 3y + z = 5 & (c_2) \end{cases}$$

$$3y + z = 5$$
 (c)

• para obter (b₃), multiplique (b₂) por (-1); para obter (c₃), multiplique (b₂) por 3 e adicione o resultado a

(III)
$$\begin{cases} x - y + z = -2 & (a_1) \\ y + 3z = -1 & (b_3) \\ -8z = 8 & (c_3) \end{cases}$$

Assim. como (I). (II) e (III) são equivalentes:

- de (c₃), obtém-se z = -1;
- substituindo-se em (b3), obtém-se y = 2 e substituindo-o em (a_1) , obtém-se x = 1.

Logo,
$$V = \{(1; 2; -1)\}$$

♦>> OBJETIVO - 17

2. DISCUSSÃO

Se for possível transformar um sistema (S) num sistema equivalente mais simples do tipo

$$\begin{cases} x - y + z = -2 \\ y + 3z = -1 \\ az = b \end{cases}$$

pode-se discuti-lo em função da variação de a e de b.

Assim, se

- a ≠ 0 ⇒ o sistema é possível e determinado.
- a = 0 e $b = 0 \Rightarrow o$ sistema é possível e indeterminado.
 - a = 0 e $b \neq 0 \Rightarrow$ o sistema é impossível.

MÓDULO 28

Característica de uma Matriz e Teorema de Rouché-Capelli

1. SUBMATRIZ

Seja a matriz A = [aij]_{mxn}

Submatriz de A é qualquer matriz que se obtém de A eliminando-se "r" linhas e "s" colunas. Seu determinante é chamado "menor" de A, se a matriz for quadrada.

□ Característica de A

"É a ordem máxima dos menores não todos nulos que se pode extrair de A".

2. TEOREMA DE KRONECKER

Característica de uma matriz é "p" se, e somente se:

- Existir pelo menos um "menor" de ordem p diferente de zero (determinante de ordem p ≠ zero).
- II. Todos os "menores" orlados ao "menor" do item (I) de ordem p + 1 são iguais a zero.

Propriedades da característica

A característica de uma matriz não se altera quando

- I. trocamos entre si duas filas paralelas.
- II. trocamos ordenadamente linhas por colunas.
- III. multiplicamos uma fila por uma constante $k \neq 0$.
- IV. acrescentamos ou eliminamos filas nulas.

 V. acrescentamos ou eliminamos uma fila que seja combinação linear de outras filas paralelas.

VI. somamos a uma fila uma combinação linear de outras filas paralelas.

Exemplos

• Se M = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 5 \\ 0 & -3 & -3 \end{bmatrix}$, então

p = 2, pois existe um "menor" de ordem 2 diferente de zero. Por exemplo:

$$\begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix}$$
 e o "menor" de ordem 3 é

igual a zero:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 1 & 5 \\ 0 & -3 & -3 \end{vmatrix} = 0$$

• Se M =
$$\begin{bmatrix} 1 & 2 & -1 & 5 & -1 \\ 3 & 1 & 0 & 4 & -1 \\ 4 & 3 & -1 & 9 & 2 \end{bmatrix},$$

então p = 3, pois existe um menor de ordem 3 diferente de zero:

$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & 1 & -1 \\ 4 & 3 & 2 \end{vmatrix} = -20 \neq 0$$

e a ordem 3 é a máxima possível.

A característica da matriz

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 5 \\ 0 & -3 & -3 \end{bmatrix}$$

é igual à característica das seis matrizes abaixo.

•
$$\begin{bmatrix} 1 & 4 & 0 \\ 2 & 1 & -3 \\ 3 & 5 & -3 \end{bmatrix}$$
 (prop. II)

•
$$\begin{bmatrix} 1 & 10 & 3 \\ 4 & 5 & 5 \\ 0 & -15 & -3 \end{bmatrix}$$
 (prop. III)

•
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 1 & 5 & 0 \\ 0 & -3 & -3 & 0 \end{bmatrix}$$
 (prop. IV)

•
$$\begin{bmatrix} 1 & 2 & 3 & 6 \\ 4 & 1 & 5 & 10 \\ 0 & -3 & -3 & -6 \end{bmatrix}$$
 (prop. V)

3. TEOREMA DE ROUCHÉ-CAPELLI

Seja (S) um sistema linear e sejam:

- "p" a característica da matriz incompleta (MI);
- "q" a característica da matriz completa (MC);
 - "m" o número de equações;
 - "n" o número de incógnitas.

□ Teorema de Rouché-Capelli

- p ≠ q ⇔ Sistema Impossível (SI)
- p = q = n ⇔ Sistema Possível e
 Determinado (SPD)
- p = q < n ⇔ Sistema Possível e
 Indeterminado (SPI)

18 - **≫OBJETIVO**

Observação

No (SPI), o número Gi = n - p é chamado grau de indeterminação do Sistema.

Exemplos

Sejam p e q as características das matrizes incompleta e completa, respectivamente.

• O sistema
$$\begin{cases} x - y = 2 \\ x - y = 4 \end{cases}$$

é impossível, pois

$$MI = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \Rightarrow p = 1,$$

$$MC = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 4 \end{bmatrix} \Rightarrow q = 2,$$
 e como n = 2, temos p = q < n

e portanto p ≠ q

• O sistema
$$\begin{cases} x - y = 2 \\ 2x - 2y = 4 \end{cases}$$

é possível e indeterminado, pois

$$MI = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \Rightarrow p = 1,$$

$$MI = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \Rightarrow p = 1, \qquad MC = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \end{bmatrix} \Rightarrow q = 1,$$

• O sistema
$$\begin{cases} x + 2y = 5 \\ x + y = 3 \end{cases}$$

é possível e determinado, pois

$$MI = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \Rightarrow p = 2,$$

$$MC = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix} \Rightarrow q = 2,$$

e como n = 2, temos p = q = n

MÓDULO 29

Discussão de Sistemas Lineares

1. TEOREMA DE CRAMER

• det MI = D ≠ 0 ⇒ o sistema é possível e determinado.

2. TEOREMA DE ROUCHÉ-CAPELLI

- p ≠ q ⇔ o sistema é impossível.
- p = q = n ⇔ o sistema é possível e determinado.
- p = q < n ⇔ o sistema é possível e indeterminado, sendo:
 - p característica da MI

q - característica da MC

n - número de incógnitas

3. MÉTODO DE GAUSS

A equação az = b do sistema (S), de três equações a três incógnitas (x, y, z) após o escalonamento, poderá permitir a discussão:

- a ≠ 0 ⇒ o sistema é possível e determinado.
- a = b = 0 ⇒ o sistema é possível e indeterminado.
- a = 0 e $b \neq 0 \Rightarrow$ o sistema é impossível.

MÓDULO 30

Sistema Linear Homogêneo

1. SISTEMA LINEAR HOMOGÊNEO (SLH)

Para um sistema linear homogêneo:

- as matrizes M.I. e M.C., embora diferentes, terão certamente a mesma característica (p = q). Um S.L.H. é, pois, sempre possível;
- a ênupla (0, 0, ..., 0) sempre é solução da equação $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = 0$, $a_i \in \mathbb{R}$ (chamada trivial);
 - A "C.N.S." para o S.L.H. admitir
 - só uma solução trivial é p = n.
 - outras soluções além da trivial é p < n.

Exemplo

O sistema
$$\begin{cases} x + 2y + z = 0 \\ 3x + y - z = 0 \\ ax + 2y - z = 0 \end{cases}$$

é sempre possível, pois:

• (0, 0, 0) é solução;

• MI =
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & -1 \\ a & 2 & -1 \end{bmatrix}$$
 tem

característica p ≥ 2, pois existe um menor de ordem 2 diferente de zero:

A característica p é igual a 2 se o menor de ordem 3 for igual a zero, ou seja:

$$\begin{vmatrix} 1 & 2 & 1 \\ 3 & 1 & -1 \\ a & 2 & -1 \end{vmatrix} = -3a + 13 = 0 \Leftrightarrow a = \frac{13}{3}$$

A característica p é igual a 3 se o menor de ordem 3 for differente de zero, ou seja, se a $\neq \frac{13}{3}$.

Assim, se $a = \frac{13}{3}$, o sistema admite infinitas soluções além da forma trivial (0, 0, 0), soluções da forma $S = \left\{ k, -\frac{4k}{3}, \frac{5k}{3} \right\}$. E, se $a \neq \frac{13}{3}$, o sistema admite somente a solução trivial (0, 0, 0).

Matemática e suas Tecnologias MATEMÁTICA OBJETIVO **Geometria Analítica** As melhores cabeças **FRENTE 3**

MÓDULO 25

Circunferência: Equações Reduzida e Geral

A circunferência é um dos mais importantes lugares geométricos (L.G.), merecendo, pois, um estudo detalhado.

1. DEFINICÃO

Dado um ponto C de um plano (chamado centro) e uma medida r não nula (chamada raio), denomina-se circunferência ao lugar geométrico (L.G.) dos pontos do plano que distam r do ponto C.

2. EQUAÇÃO REDUZIDA (OU CARTESIANA) DA CIRCUNFERÊNCIA

Seja a circunferência de centro C(a; b) e raio r. Considerando um ponto genérico P(x; y) pertencente à circunferência, teremos:

 $P \in circunferência \Leftrightarrow d_{PC} = r \Leftrightarrow$

$$\Leftrightarrow \sqrt{(x-a)^2+(y-b)^2}=r \Leftrightarrow (x-a)^2+(y-b)^2=r^2$$

A equação
$$(x - a)^2 + (y - b)^2 = r^2$$

é denominada equação reduzida da circunferência.

• Caso particular: Se o centro da circunferência é a origem, C(0; 0), então a equação reduzida resulta

$$x^2 + y^2 = r^2$$

Exemplos

1) Obter a equação reduzida da circunferência de centro C(-2; 3) e raio 5.

Resolução

A partir da equação $(x - \mathbf{a})^2 + (y - \mathbf{b})^2 = \mathbf{r}^2$, resulta: $\Leftrightarrow (x - (-2))^2 + (y - 3)^2 = 5^2 \Leftrightarrow (x + 2)^2 + (y - 3)^2 = 25$ denominada equação reduzida.

2) Obter a equação reduzida da circunferência de centro na origem e raio 5.

Resolução

A partir da equação $(x - \mathbf{a})^2 + (y - \mathbf{b})^2 = \mathbf{r}^2$, temos: $(x-0)^2 + (y-0)^2 = 5^2 \Leftrightarrow x^2 + y^2 = 25$

3. EQUAÇÃO GERAL (OU NORMAL) DA CIRCUNFERÊNCIA

Desenvolvendo a equação reduzida da circunferência: $(x - a)^2 + (y - b)^2 = r^2$, obtemos:

$$x^2 - 2ax + a^2 + v^2 - 2bv + b^2 = r^2 \Leftrightarrow$$

$$\Rightarrow x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2 = 0$$

Fazendo-se - 2a = m; - $2b = n e a^2 + b^2 - r^2 = p$, resulta:

$$x^2 + y^2 + m \cdot x + n \cdot y + p = 0$$

que é denominada equação geral da circunferência.

Exemplo

Determine a equação geral da circunferência de centro C(-1; 3) e raio 5.

Resolução

A partir da equação

 $(x - a)^2 + (y - b)^2 = r^2$, temos a equação reduzida:

 $(x + 1)^2 + (y - 3)^2 = 25$, que, desenvolvida, resulta:

$$x^2 + 2x + 1 + y^2 - 6y + 9 = 25 \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 + 2x - 6y - 15 = 0$$

denominada equação geral da circunferência.

20 - ♦>> OBJETIVO

MÓDULO 26

Determinação do Centro e do Raio

1. DETERMINAÇÃO DO CENTRO E DO RAIO DE UMA CIRCUNFERÊNCIA

□ Equação reduzida

Dada a equação **reduzida** de uma circunferência: $(x - \mathbf{a})^2 + (y - \mathbf{b})^2 = \mathbf{r}^2$, de imediato conclui-se que o centro é $\mathbf{C}(\mathbf{a}; \mathbf{b})$ e o raio é \mathbf{r} .

Exemplo

A circunferência de equação $(x-2)^2 + (y+5)^2 = 9$ tem centro C (2; -5) e raio r = 3.

□ Equação geral

Dada a equação **geral** de uma circunferência, $x^2 + y^2 + \mathbf{m} \cdot x + \mathbf{n} \cdot y + \mathbf{p} = 0$, o **centro** e o **raio** são obtidos comparando-se essa equação com a equação $x^2 + y^2 - 2a \cdot x - 2b \cdot y + a^2 + b^2 - r^2 = 0$.

Notando-se que os **coeficientes** de x² e y² são iguais a **1**, a obtenção do centro e do raio é feita da sequinte forma:

 Na determinação das coordenadas do centro, os coeficientes de x e y (m e n) devem ser divididos por (-2), pois a partir das equações, conclui-se que:

$$\begin{cases}
-2a = m \Leftrightarrow a = \frac{m}{-2} \\
-2b = n \Leftrightarrow b = \frac{n}{-2}
\end{cases}$$

Assim, as coordenadas do centro são:

• Obtido o centro $C(\mathbf{a}; \mathbf{b})$, o **raio** é determinado a partir da fórmula: $\mathbf{r} = \sqrt{\mathbf{a}^2 + \mathbf{b}^2 - \mathbf{p}}$, (com $\mathbf{a}^2 + \mathbf{b}^2 - \mathbf{p} > 0$), visto que das equações, temos:

$$p = a^2 + b^2 - r^2 \Leftrightarrow r^2 = a^2 + b^2 - p$$

Observações

- Quando a² + b² p = 0, a equação representa apenas o ponto C(a; b).
- Quando a² + b² p < 0, a equação **nada** representa.

MÓDULO 27

Posição dos Pontos do Plano em Relação a uma Circunferência

Seja a circunferência de centro C(\mathbf{a} ; \mathbf{b}) e raio \mathbf{r} , com equação $(\mathbf{x} - \mathbf{a})^2 + (\mathbf{y} - \mathbf{b})^2 = \mathbf{r}^2$ e um ponto P(\mathbf{x}_0 ; \mathbf{y}_0) do plano cartesiano.

A posição do ponto **P** em relação à circunferência é obtida pelo cálculo da distância do ponto **P** ao centro **C** da circunferência e comparada com a medida do raio **r**.

Dessa forma, temos:

- P(x₀; y₀) pertence à circunferência ⇔
 ⇔ (x₀ a)² + (y₀ b)² = r²
- P(x₀; y₀) é **interno** à circunferência ⇔
 ⇔ (x₀ a)² + (y₀ b)² < r²
- $P(x_0; y_0)$ é **externo** à circunferência \Leftrightarrow $\Leftrightarrow (x_0 - a)^2 + (y_0 - b)^2 > \mathbf{r}^2$.

Exemplo

Representar **graficamente** os pontos que satisfazem à inequação $x^2 + y^2 \le 9$.

Resolução

A equação $x^2 + y^2 = 9$ representa uma circunferência de centro C(0; 0) e raio r = 3. Dessa forma, a inequação $x^2 + y^2 \le 9$ representa os pontos da circunferência e os pontos **internos** a esta, e sua representação gráfica é:

MÓDULO 28

Elipse

1. DEFINIÇÃO

Dados dois pontos \mathbf{F}_1 e \mathbf{F}_2 (focos) de um plano, com $\mathbf{F}_1\mathbf{F}_2=2\mathbf{f}$, e uma medida **2a** (2a > 2f), chama-se **ELIP-SE** ao lugar geométrico dos pontos **P** do plano, tal que:

$$PF_1 + PF_2 = 2a$$

2. ELEMENTOS PRINCIPAIS

- Centro é o ponto C;
- Distância focal = $F_1F_2 = 2$. f;
- Eixo maior = $A_1A_2 = 2$. a;
- Eixo menor = $B_1B_2 = 2$. b;
- Vértices são os pontos A₁ e A₂;
- Polos são os pontos B₁ e B₂;
- Focos são os pontos **F**₁ e **F**₂.

A partir do triângulo retângulo CB₁F₁, da figura, temos:

$$a^2 = b^2 + f^2$$

3. EQUAÇÃO REDUZIDA

Seja a elipse com eixo maior (e focos) contido no eixo dos "x" e centro na origem:

A equação reduzida dessa elipse é:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Seja a elipse com eixo maior (e focos) contido no eixo "y" e centro na origem:

A equação **reduzida** da elipse, neste caso, é:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

4. OBSERVAÇÕES

Se o centro da elipse for o ponto **C** (**g**; **h**) e os eixos da elipse forem paralelos aos eixos coordenados, teremos as seguintes figuras e equações reduzidas:

a)
$$\frac{(x-g)^2}{a^2} + \frac{(y-h)^2}{b^2} = 1$$

b)
$$\frac{(x-g)^2}{h^2} + \frac{(y-h)^2}{a^2} = 1$$

5. EXCENTRICIDADE

Chama-se EXCENTRICIDADE da elipse à razão:

$$e = \frac{f}{a}$$
. Como 0 < f < a, então 0 < e < 1.

MÓDULO 29

Hipérbole

1. DEFINIÇÃO

Dados dois pontos \mathbf{F}_1 e \mathbf{F}_2 (focos) de um plano, com \mathbf{F}_1 \mathbf{F}_2 = 2f, e uma medida **2a** (2a < 2f), chama-se **HIPÉRBOLE** ao lugar geométrico dos pontos **P** do plano, tal que:

$$|PF_1 - PF_2| = 2a$$

A partir do triângulo retângulo CB₁D da figura, temos:

$$f^2 = a^2 + b^2$$

3. EQUAÇÃO REDUZIDA

Seja a hipérbole com eixo transverso (e focos) contido no eixo dos "x" e centro na origem.
 Sendo:

• focos: $F_1(f; 0) = F_2(-f; 0)$

• vértices: A₁(a; 0) e A₂ (- a; 0)

• polos: B₁(0; b) e B₂(0; -b)

a equação **reduzida** da hipérbole resulta:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

B_1 B_2 A_1 B_2 A_3 B_4 B_2 A_4 A_5 A_5

Seja a hipérbole com eixo transverso (e focos) contido no eixo "y" e centro na origem.

2. ELEMENTOS PRINCIPAIS

- Centro é o ponto C;
- Distância focal = F_1F_2 = 2 . f;
- Eixo transverso = $A_1A_2 = 2$. a;
- Eixo conjugado = $B_1B_2 = 2$. b;
- Vértices são os pontos A₁ e A₂:
- Polos são os pontos B₁ e B₂.
- Focos são os pontos F₁ e F₂;
- Assíntotas são as retas d₁ e d₂.

Sendo:

• focos: F₁(0; f) e F₂(0; - f)

• vértices: A₁(0; a) e A₂(0; - a)

• polos: B₁(b; 0) e B₂(-b; 0)

a equação reduzida da hipérbole resulta:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

4. COMPLEMENTOS

Se a hipérbole tiver **centro** no ponto **C(g; h)** e os eixos paralelos aos eixos coordenados, teremos as seguintes figuras e equações reduzidas:

a)
$$\frac{(x-g)^2}{a^2} - \frac{(y-h)^2}{b^2} = 1$$

b)
$$\frac{(y-h)^2}{a^2} - \frac{(x-g)^2}{b^2} = 1$$

5. HIPÉRBOLE EQUILÁTERA

Uma hipérbole é denominada **equilátera** quando as medidas dos eixos transversal e conjugado são **iguais**, isto é, quando as medidas **a** e **b** são iguais (a = b).

As equações reduzidas das hipérboles equiláteras, com centro na origem, resultam:

$$x^2 - y^2 = a^2$$
 ou $y^2 - x^2 = a^2$

As **assíntotas**, nesses casos, são as bissetrizes dos quadrantes pares e ímpares.

- ☐ Um caso importante de hipérbole equilátera é obtido fazendo-se uma rotação (nos casos acima) de modo a deixar os **eixos cartesianos** como **assíntotas** e focos nas bissetrizes dos quadrantes:
- Focos na bissetriz dos quadrantes ímpares (y = x). A equação, nesse caso, resulta $x \cdot y = k$, com k > 0.

• Focos na bissetriz dos quadrantes pares (y = -x). A equação, nesse caso, resulta $x \cdot y = k$, com k < 0.

6. EXCENTRICIDADE

$$e = \frac{f}{a}$$
, como f > a, então e > 1.

MÓDULO 30

Parábola

1. DEFINIÇÃO

Dados um ponto **F** (foco) e uma reta **d** (diretriz), com F ∉ d, pertencentes a um mesmo plano, chama-se **PARÁBOLA** ao lugar geométrico dos pontos **P** do plano, equidistantes do ponto **F** e da reta **d**.

2. ELEMENTOS PRINCIPAIS

- Foco é o ponto **F**;
- Diretriz é a reta d;
- Vértice é o ponto V;
- Parâmetro = 2 . f (VF = Vd = f).

3. EQUAÇÃO REDUZIDA

 Seja a parábola com eixo de simetria contido no eixo "x", vértice na origem e voltada para a "direita".
 Sendo:

a equação reduzida da parábola será:

$$y^2 = 4 \cdot f \cdot x$$

☐ Se a parábola, nas condições anteriores, estiver voltada para a "esquerda", teremos:

e sua equação reduzida será:

$$y^2 = -4 \cdot f \cdot x$$

□ Seja a parábola com eixo de simetria contido no eixo "y", vértice na origem e voltada para "cima".

Sendo:

a equação reduzida da parábola será:

$$x^2 = 4 \cdot f \cdot y$$

☐ Se a parábola, nas condições anteriores, estiver voltada para "baixo", teremos:

$$\begin{cases} \bullet \text{ foco: } F(0; -f) \\ \bullet \text{ diretriz: } y = f \end{cases}$$

e sua equação reduzida será:

$$x^2 = -4 \cdot f \cdot y$$

4. COMPLEMENTOS

□ Se a parábola apresentar vértice no ponto **V** (**g; h**), eixo de simetria paralelo ao eixo "x" e voltada para a "direita", sua equação reduzida será:

$$(y - h)^2 = 4 \cdot f \cdot (x - g)$$

☐ Se a parábola, nas condições anteriores, estiver voltada para a "esquerda", sua equação reduzida será:

$$(y - h)^2 = -4 \cdot f \cdot (x - g)$$

Desenvolvida a equação **reduzida**, resultará da forma: $\mathbf{x} = \mathbf{a} \cdot \mathbf{y}^2 + \mathbf{b} \cdot \mathbf{y} + \mathbf{c}$, com a $\neq 0$.

■ Se a parábola apresentar vértice no ponto **V** (**g; h**), eixo de simetria paralelo ao eixo "y" e voltada para "cima", sua equação reduzida será:

$$(x - g)^2 = 4 \cdot f \cdot (y - h)$$

☐ Se a parábola, nas condições anteriores, estiver voltada para "baixo", sua equação reduzida será:

$$(x-g)^2 = -4 \cdot f \cdot (y-h)$$

Desenvolvida a equação **reduzida**, resultará da forma: $y = a \cdot x^2 + b \cdot x + c$, com a $\neq 0$.

5. EXCENTRICIDADE

Chama-se EXCENTRICIDADE na parábola à razão:

$$e = \frac{PF}{Pd} = 1$$

MATEMÁTICAMatemática e suas Tecnologias♦>> ○BJETIVOFRENTE 4Geometria Métrica e de PosiçãoAs melhores cabeças

MÓDULO 25

Troncos

1. SECÇÃO PARALELA À BASE DE UMA PIRÂMIDE

Quando interceptamos todas as arestas laterais da pirâmide por um plano paralelo à base, que não contém esta, nem o vértice, obtemos uma secção poligonal, tal que:

 As arestas laterais e a altura ficam divididas na mesma razão.

$$\frac{\mathbf{VA'}}{\mathbf{VA}} = \frac{\mathbf{VB'}}{\mathbf{VB}} = \frac{\mathbf{VC'}}{\mathbf{VC}} = \dots = \frac{\mathbf{h}}{\mathbf{H}}$$

- A secção obtida e a base são polígonos semelhantes.
- A razão entre as áreas da secção (A_s) e da base (A_b) é igual ao quadrado da razão entre suas distâncias ao vértice.

$$\frac{A_s}{A_b} = \frac{h^2}{H^2}$$

• A razão entre os volumes das pirâmides semelhantes VA'B'C'... e VABC ... é igual ao cubo da razão entre suas alturas.

$$\frac{\mathbf{V}_{VAB'C'...}}{\mathbf{V}_{VABC...}} = \frac{\mathbf{h}^3}{\mathbf{H}^3}$$

 A "parte" (região) da pirâmide compreendida entre a base e a citada secção é denominada TRON-CO DE PIRÂMIDE DE BASES PARALELAS.

2. CÁLCULO DO VOLUME DE UM TRONCO DE PIRÂMIDE DE BASES PARALELAS

Sendo A_B e A_b as áreas das bases, H, a altura (distância entre os planos das bases) e V, o volume de um tronco de pirâmide de bases paralelas, tem-se:

$$V = \frac{H}{3} \left(A_B + A_b + \sqrt{A_B \cdot A_b} \right)$$

3. TRONCO DE CONE DE BASES PARALELAS

Seccionando-se um cone por um plano paralelo à base dele, obtêm-se dois sólidos: um novo cone e um tronco de cone de bases paralelas.

Sendo R e r os raios das bases e h a altura do tronco de cone de bases paralelas, tem-se que o seu volume é dado por:

$$V_t = \frac{\pi h}{3} (R^2 + r^2 + R r)$$

e sua área lateral é dada por:

$$\mathbf{A}_{\ell} = \pi \left(\mathbf{R} + \mathbf{r} \right) \mathbf{g}$$

4. SÓLIDOS SEMELHANTES

Em sólidos semelhantes, a razão entre as áreas é igual ao quadrado da razão de semelhança, e a razão entre os volumes é igual ao cubo da razão de semelhança.

Assim, se dois sólidos de áreas, respectivamente, iguais a A_1 e A_2 , e volumes, respectivamente, iguais a V_1 e V_2 são semelhantes numa razão K, então:

$$\frac{\mathbf{A_1}}{\mathbf{A_2}} = \mathbf{K^2} \quad \text{e} \quad \frac{\mathbf{V_1}}{\mathbf{V_2}}$$

♦>> OBJETIVO - 27

MÓDULO 26

A Esfera e suas Partes

1. SUPERFÍCIE ESFÉRICA

É a superfície gerada pela revolução completa de uma semicircunferência (ABA') em torno de seu diâmetro (AA'), como mostra a figura.

A área de uma superfície esférica de raio R é dada por:

$$\mathbf{A}_{\mathsf{SE}} = \mathbf{4} \; \mathbf{R}^{\mathbf{2}}$$

2. ESFERA

É o sólido limitado por uma superfície esférica.

O volume de uma esfera de raio R é dado por:

$$V_{esf} = \frac{4}{3} \pi R^3$$

3. PARTES DA SUPERFÍCIE ESFÉRICA

Fuso esférico

$$\mathbf{A_f} = \frac{\pi \ \mathbf{R^2} \ \alpha^{\circ}}{\mathbf{90}^{\circ}}$$

Zona esférica

 $A_{zona} = 2\pi R h$

Calota esférica

$$A_{cal} = 2\pi R h$$

4. PARTES DA ESFERA

· Cunha esférica

$$V_{c} = \frac{\pi R^{3} \alpha^{\circ}}{270^{\circ}}$$

Setor esférico

$$V = \frac{2}{3} \pi R^2 h$$

• Segmento esférico de uma base

$$V = \frac{\pi h}{6} (3r^2 + h^2)$$

• Segmento esférico de duas bases

$$V = \frac{\pi h}{6} [3 (r_1^2 + r_2^2) + h^2]$$

MÓDULO 27

Inscrição e Circunscrição de Sólidos

1. ESFERA INSCRITA NO CUBO

$$r + r = a \Leftrightarrow r = \frac{a}{2}$$

2. CUBO INSCRITO NA ESFERA

$$(2R)^2 = (a\sqrt{2})^2 + a^2 \Leftrightarrow \mathbf{R} = \frac{a\sqrt{3}}{2}$$

3. ESFERA INSCRITA NO CILINDRO

4. CILINDRO INSCRITO NA ESFERA

 $(2R)^2 = (2r)^2 + h^2$

5. CILINDRO INSCRITO NO CUBO

$$R = \frac{a}{2} \qquad e \qquad h = a$$

6. CUBO INSCRITO NO CILINDRO

$$R = \frac{a\sqrt{2}}{2}$$
 e $h = a$

7. ESFERA INSCRITA NO CONE

No triângulo retângulo BCA, de acordo com o Teorema de Pitágoras, tem-se:

$$g^2 = h^2 + R^2$$

Da semelhança dos triângulos retângulos DOA e BCA, resulta:

$$\frac{\mathbf{r}}{\mathbf{R}} = \frac{\mathbf{h} - \mathbf{r}}{\mathbf{g}}$$

8. CONE INSCRITO NA ESFERA

No triângulo retângulo MAO, de acordo com o Teorema de Pitágoras, tem-se:

$$R^2 = r^2 + (h - R)^2$$

9. ESFERA INSCRITA NUMA PIRÂMIDE REGULAR DE BASE QUADRADA

No triângulo retângulo AMV, de acordo com o Teorema de Pitágoras, tem-se:

$$g^2 = h^2 + \left(\frac{\ell}{2}\right)^2$$

Da semelhança dos triângulos retângulos POV e AMV, resulta:

$$\frac{r}{\ell/2} = \frac{h-r}{g} \iff \frac{2r}{\ell} = \frac{h-r}{g}$$

MÓDULOS 28 e 29

Paralelismo, Perpendicularismo no Espaço e Projeções Ortogonais

1. ENTES PRIMITIVOS

Entende-se por "entes primitivos" tudo o que não pode ser definido. Na geometria, usamos três conceitos primitivos: o PONTO, a RETA e o PLA-NO. Apesar de não poder defini-los, podemos estudá-los e relacioná-los, e é isso o que a "geometria de posição" faz.

Representam-se o PONTO, a RETA e o PLANO da seguinte forma:

Observe que para os pontos usamos geralmente letras maiúsculas, para as retas, letras minúsculas e para plano, letras do alfabeto grego.

2. POSTULADOS

Entende-se por "postulado" toda propriedade que não possui demonstração e que, portanto, só pode ser aceita por ser evidente.

□ Postulados de existência

a) Na reta ou fora dela existem infinitos pontos:

b) No plano ou fora dele existem infinitos pontos:

□ Postulado da inclusão

Se dois pontos distintos de uma reta pertencem a um plano, ela está contida neste plano.

Postulados da determinação

a) Determinação da reta

Dois pontos distintos determinam uma reta.

b) Determinação do plano

Três pontos não colineares determinam um plano.

3. CASOS DE DETERMINAÇÃO DE PLANOS

Além do caso abordado no item anterior, têm-se mais três outras formas de se determinar um plano, que são as seguintes:

Por um ponto e uma reta

Uma reta e um ponto não pertencente a ela determinam um plano.

Por duas retas concorrentes

Duas retas concorrentes determinam um plano.

Por duas retas paralelas distintas

Duas retas paralelas distintas determinam um plano.

--

4. POSIÇÕES RELATIVAS

Entre retasa) Coincidentes

Possuem todos os pontos em comum.

b) Concorrentes

Possuem um único ponto em comum.

c) Paralelas (distintas ou coincidentes)

Quando coincidem ou quando não possuem pontos em comum e existe um plano que as contém.

d) Reversas

Quando não existe plano que as contém.

□ Entre reta e plano

a) Contida

Quando todos os pontos da reta pertencem ao plano.

b) Incidente

Quando a reta e o plano possuem um único ponto em comum.

c) Paralela

Quando a reta e o plano não possuem pontos em comum.

■ Entre planos

a) Coincidentes

Possuem todos os pontos em comum.

b) Secantes

Interceptam-se numa reta.

c) Paralelos

Quando coincidem ou possuem intersecção vazia.

5. INTERSECÇÃO DE PLANOS

□ Intersecção de dois planos

Se dois planos distintos possuem um ponto em comum, então eles se interceptam numa reta.

 $P \in \alpha$, $P \in \beta \in \alpha \neq \beta \Rightarrow \exists |r| \alpha \cap \beta = r$

☐ Intersecção de três planos

Se três planos distintos se interceptam dois a dois em três retas, então ou elas são concorrentes num mesmo ponto, ou são paralelas.

6. TEOREMA FUNDAMENTAL DO PARALELISMO DE RETA COM PLANO

A condição necessária e suficiente para que uma reta seja paralela a um plano é que não esteja contida nele e seja paralela a uma reta desse plano.

7. TEOREMA FUNDAMENTAL DO PARALELISMO DE PLANOS

A condição necessária e suficiente para que dois planos distintos sejam paralelos é um deles conter duas retas concorrentes entre si e paralelas ao outro.

$$\left. \begin{array}{l} r \subset \alpha, \ r \ /\!/ \ \beta \\ s \subset \alpha, \ s \ /\!/ \ \beta \\ r \cap s = \{P\} \end{array} \right\} \ \Leftrightarrow \ \alpha \, /\!/ \, \beta$$

8. TEOREMA DE TALES

Um feixe de planos paralelos determina sobre duas transversais segmentos correspondentes respectivamente proporcionais.

$$\alpha //\beta //\gamma //\zeta // ... \Rightarrow \frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CD}{C'D'} ...$$

--

9. PERPENDICULARISMO ENTRE RETA E PLANO

□ Definição

Uma reta é perpendicular a um plano se, e somente se, ela é perpendicular a todas as retas do plano que passam pelo ponto de intersecção dela com o plano (pé).

□ Teorema fundamental do perpendicularismo entre reta e plano

A condição necessária e suficiente para que uma reta seja perpendicular a um plano é que forme ângulo reto com duas concorrentes do plano.

$$\left. \begin{array}{l} \mathbf{t} \perp \mathbf{r} \subset \alpha \\ \mathbf{t} \perp \mathbf{s} \subset \alpha \\ \mathbf{r} \cap \mathbf{s} = \{\mathbf{P}\} \end{array} \right\} \Rightarrow \mathbf{t} \perp \alpha$$

□ Teorema das três perpendiculares

Sendo **r** perpendicular a α no ponto **P**, **s** contida em α e passando por **P**, **t** contida em α , não passando por **P** e perpendicular a **s** em **Q**, e **R** um ponto qualquer de **r**, então a reta \overrightarrow{RQ} é perpendicular à reta **t**.

Propriedades do perpendicularismo de reta com plano

a) Duas retas perpendiculares a um mesmo plano são paralelas.

$$\left. egin{array}{c} \mathbf{r} \perp \alpha \\ \mathbf{s} \perp \alpha \end{array} \right\} \Rightarrow \mathbf{r} \, /\!\!/ \, \mathbf{s}$$

b) Dois planos perpendiculares a uma mesma reta são paralelos.

$$\left.\begin{array}{c} \alpha \perp \mathbf{r} \\ \beta \perp \mathbf{r} \end{array}\right\} \Rightarrow \alpha \, /\!/ \, \beta$$

10. PERPENDICULARISMO ENTRE PLANOS

Dois planos são perpendiculares se, e somente se, um deles contém uma reta perpendicular ao outro.

Propriedades do perpendicularismo de planos

a) Se uma reta é perpendicular a um plano, qualquer plano que a contenha é perpendicular ao primeiro.

$$\begin{vmatrix} \mathbf{r} \perp \alpha \\ \mathbf{r} \subset \beta \\ \mathbf{r} \subset \gamma \\ \mathbf{r} \subset \delta \end{vmatrix} \Rightarrow \begin{cases} \beta \perp \alpha \\ \gamma \perp \alpha \\ \delta \perp \alpha \end{cases}$$

b) Se dois planos secantes são perpendiculares a um terceiro plano, a sua intersecção também será perpendicular a este terceiro plano.

36 - **≫OBJETIVO**

$$\begin{cases} \beta \perp \alpha \\ \gamma \perp \alpha \\ \beta \cap \gamma = \mathbf{r} \end{cases} \Rightarrow \mathbf{r} \perp \alpha$$

c) Se dois planos são perpendiculares, toda reta de um, perpendicular à intersecção, é perpendicular ao outro.

$$\left.\begin{array}{l}
\alpha \perp \beta \\
\alpha \cap \beta = \mathbf{S} \\
\mathbf{r} \subset \alpha \\
\mathbf{r} \perp \mathbf{S}
\end{array}\right\} \Leftrightarrow \mathbf{r} \perp \beta$$

11. PROJEÇÕES ORTOGONAIS

□ Projeção de um ponto

A projeção ortogonal de um ponto num plano é o "pé da perpendicular" ao plano pelo ponto.

O ponto **P'** é a projeção ortogonal de **P** em α . O plano α é chamado **plano de projeção** e a reta perpendicular **r** é chamada **reta projetante**.

□ Projeção de uma figura

A projeção ortogonal de uma figura num plano é o conjunto das projeções ortogonais dos pontos da figura.

Exemplo

A projeção ortogonal de um cilindro num plano paralelo ao eixo é um **retângulo**. A projeção do mesmo cilindro num plano paralelo à base é um **círculo**.

□ Projeção de uma reta

A projeção ortogonal de uma reta num plano é o conjunto das projeções ortogonais dos pontos da reta neste plano.

a) Se a reta for perpendicular ao plano, a sua projeção ortogonal será um ponto.

Na figura, **P** é a projeção ortogonal de **r** em α .

b) Se a reta não for perpendicular ao plano, a sua projeção ortogonal será outra reta.

Na figura, \mathbf{r}' é a projeção ortogonal de \mathbf{r} em α .

☐ Ângulo entre reta e plano

Se uma reta é perpendicular a um plano, o ângulo entre ela e o plano é reto. Se a reta é oblíqua em relação

ao plano, o ângulo entre ela e o plano é o ângulo que ela forma com a sua projeção ortogonal.

Na figura, temos:

- a) A reta **s** forma ângulo reto com α .
- b) O ângulo θ que a reta r forma com o plano α é o ângulo que a reta r forma com sua projeção ortogonal r³.

□ Retas de maior declive

Chamamos de retas de maior declive de um plano α em relação a um plano β às retas de α que formam o maior ângulo possível com β . Prova-se que, se os dois planos são secantes, as retas de maior declive de um em relação ao outro são perpendiculares à intersecção.

Na figura, \mathbf{r} é uma reta de maior declive de $\pmb{\alpha}$ em relação a $\pmb{\beta}$.

☐ Ângulos entre planos

Define-se ângulo entre dois planos como sendo o ângulo que uma reta de maior declive de um forma com o outro.

Na figura,

- ${\bf r}$ é uma reta de maior declive de ${\bf \alpha}$ em relação a ${\bf \beta}$
- r' é a projeção ortogonal da reta r em β
- θ é o ângulo entre α e β

♦>> OBJETIVO − 37

MÓDULO 30

Poliedros Convexos e Regulares

1. DIEDROS

□ Definição

Dois planos secantes α e β determinam no espaço quatro semiespaços.

Chama-se DIEDRO a intersecção não vazia de dois desses semiespaços.

Na figura, os semiplanos α e β são faces e a reta \boldsymbol{a} é a aresta do diedro determinado pela intersecção dos semiespaços I e I'.

Secção normal (ou reta) de um diedro

Chama-se secção normal (ou reta) de um diedro a intersecção desse diedro com um plano perpendicular à sua aresta.

Observações

a) Todas as secções retas do mesmo diedro são congruentes.

38 **- ≫ OBJETIVO**

- b) A medida de um diedro é a medida da sua secção reta.
- c) Dois diedros são congruentes quando suas secções retas são congruentes.

2. TRIEDROS

□ Definição

Dadas três semirretas $\overrightarrow{V_a}$, $\overrightarrow{V_b}$ e $\overrightarrow{V_c}$ de mesma origem V e não coplanares, consideremos os semiespaços I, II e III, como se segue:

- I com origem no plano (bc) e contendo $\overrightarrow{V_a}$
- II com origem no plano (ac) e contendo $\overrightarrow{V_b}$
- III com origem no plano (ab) e contendo $\overrightarrow{V_c}$

Chama-se triedro determinado por $\overrightarrow{V_a}$, $\overrightarrow{V_b}$ e $\overrightarrow{V_c}$ a intersecção dos semiespaços I, II e III.

 $V(a; b; c) = I \cap II \cap III$

--

O ponto V é denominado vértice do triedro: as semirretas $\overrightarrow{V_a}$, $\overrightarrow{V_b}$ e $\overrightarrow{V_c}$ são as arestas, os ângulos \overrightarrow{aVb} , \overrightarrow{aVc} e \overrightarrow{bVc} (ou \overrightarrow{ab} , \overrightarrow{ac} , e \overrightarrow{bc}) são as faces, e d_1 , d_2 , e d_3 são os diedros do triedro.

☐ Relações entre as faces de um triedro

a) Em todo triedro, qualquer face é menor que a soma das outras duas.

Assim, sendo f_1 , f_2 e f_3 as faces de um triedro, temos:

$$\begin{cases} f_1 < f_2 + f_3 \\ f_2 < f_1 + f_3 \\ f_3 < f_1 + f_2 \end{cases}$$

b) A soma das medidas (em graus) das faces de um triedro qualquer é menor que 360°.

Assim:

$$f_1 + f_2 + f_3 < 360^\circ$$

☐ Relações entre os diedros de um triedro

a) Em qualquer triedro, a medida (em graus) de um diedro aumentada de 180° supera a soma das medidas dos outros dois.

Assim, sendo d₁, d₂ e d₃ as medidas (em graus) dos diedros de um triedro, temos:

$$\begin{cases} d_1 + 180^{\circ} > d_2 + d_3 \\ d_2 + 180^{\circ} > d_1 + d_3 \\ d_3 + 180^{\circ} > d_1 + d_2 \end{cases}$$

b) A soma dos diedros de um triedro está compreendida entre 2 retos (180°) e 6 retos (540°).

Assim, sendo d_1 , d_2 e d_3 as medidas (em graus) dos diedros de um triedro, temos:

$$180^{\circ} < d_1 + d_2 + d_3 < 540^{\circ}$$

3. POLIEDROS CONVEXOS

□ Definição

Consideremos um número finito \mathbf{n} (n \geq 4) de polígonos convexos, tal que:

- dois polígonos não estão num mesmo plano;
- cada lado de polígono é comum a dois e somente dois polígonos;
- o plano de cada polígono deixa todos os demais polígonos num mesmo semiespaço.

Assim, ficam determinados n semiespaços, cada um

dos quais tem origem no plano de um polígono e contém os demais.

A intersecção desses **n** semiespaços é denominada poliedro convexo.

□ Elementos

Um poliedro convexo possui: **faces**, que são os polígonos convexos; **arestas**, que são os lados dos polígonos, e **vértices**, que são os vértices dos polígonos. A reunião das faces é denominada **superfície** do poliedro.

□ Relação de Euler

Para todo poliedro convexo de **V** vértices, **A** arestas e **F** faces, ou para sua superfície, vale a relação:

$$V - A + F = 2$$

□ Soma dos ângulos das faces

Em todo poliedro convexo de **V** vértices, a soma dos ângulos de todas as suas faces é dada por:

$$S = (V - 2) . 360^{\circ}$$

4. POLIEDROS DE PLATÃO

Um poliedro é denominado poliedro de Platão quando:

- a) todas as faces têm o mesmo número de lados;
- b) em todos os vértices, concorre o mesmo número de arestas:
 - c) vale a relação de Euler:

$$(V - A + F = 2).$$

Observação

Existem apenas cinco classes de poliedros de Platão.

5. POLIEDROS REGULARES (THODI)

São os poliedros de Platão em que as faces são regulares e congruentes.

Existem, portanto, apenas cinco tipos de poliedros regulares:

- 1) Tetraedros regulares
- 2) Hexaedros regulares (cubos)
- 3) Octaedros regulares
- 4) Dodecaedros regulares
- 5) cosaedros regulares

40 − ♦>> OBJETIVO