CLAIMS

 A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (1) in a molecule,

5

20

Wherein R represents -A₁-SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R, R₁, R_{1a}, A₁, m, and n each independently have the above meaning for each unit.

2. A polyhydroxyalkanoate according to claim 1, comprising one or more units each represented by the chemical formula (2), (3), (4A), or (4B) in a molecule as the units of the chemical formula (1),

$$\begin{array}{c} SO_2R_2 \\ A_2 \\ N-H \\ C=0 \\ (CH_2)m \\ \hline \\ O \end{array}$$

$$(CH_2)n - O \\ (2)$$

wherein R₂ represents OH, a halogen atom, ONa, OK, or OR_{2a}, R_{2a} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, A₂ represents a linear or branched alkylene group having 1 to 8 carbon atoms, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, when multiple units exist, A₂, R₂, R_{2a}, m, and n each independently have the above meaning for each unit,

$$\begin{array}{c|c}
R_{3b} & R_{3d} \\
R_{3a} & R_{3e} \\
N-H & O \\
(CH_2)m & O
\end{array}$$

$$\begin{array}{c|c}
(CH_2)m & O \\
(CH_2)n & O
\end{array}$$

$$\begin{array}{c|c}
(3)
\end{array}$$

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} , and R_{3e} each independently represent SO_2R_{3f} (R_{3f} represents OH, a halogen atom,

ONa, OK, or OR_{3f1} (R_{3f1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 5 carbon atoms, an OH group, an NH2 group, an NO2 group, $COOR_{3g}$ (R_{3g} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph 10 represents a phenyl group), and at least one of these groups represents SO₂R_{3f}, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R_{3a} , R_{3b} , R_{3c} , R_{3d} , R_{3e} , R_{3f} , R_{3f1} , R_{3g} , m, and n each 15 independently have the above meaning for each unit,

$$R_{4g}$$
 R_{4g}
 R_{4g}
 R_{4b}
 R

Wherein R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4f} , and R_{4g} each independently represent SO_2R_{4o} (R_{4o} represents OH, a

halogen atom, ONa, OK, or OR401 (R401 represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF3 group, a C2F5 group, or a 10 C₃F₇ group (Ph represents a phenyl group), and at least one of these groups represents SO₂R₄₀, n represents an integer selected from 1 to 4 and m represents an integer selected from 0 to 8, and wherein multiple units exist, R4a, R4b, R4c, R4d, R4e, 15 R_{4f} , R_{4g} , R_{4o} , R_{4o1} , R_{4p} , m, and n each independently have the above meaning for each unit),

$$R_{4m}$$
 R_{4m}
 R_{4h}
 R

wherein R_{4h} , R_{4i} , R_{4j} , R_{4k} , R_{4l} , R_{4m} , and R_{4n} each

independently represent SO₂R₄₀ (R₄₀ represents OH, a halogen atom, ONa, OK, or OR401, (R401 represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl 5 group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH2 group, an NO2 group, COOR4p (R4p represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh 10 group, an NHPh group, a CF3 group, a C2F5 group, or a C_3F_7 group (Ph represents a phenyl group), and at least one of these groups represents SO₂R₄₀, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and 15 wherein multiple units exist, R4h, R4i, R4i, R4i, R4k, R41, R_{4m} , R_{4n} , R_{4o} , R_{4o1} , R_{4p} , m, and n each independently have the above meaning for each unit.

3. A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (5),

$$(CH_2)m$$

$$(CH_2)n^{-O}$$

$$(5)$$

20

Wherein R_5 represents a hydrogen atom, a group for forming a salt, or $R_{5a},\ R_{5a}$ represents a linear or

branched alkyl or aralkyl group having 1 to 12 carbon atoms, or a group having a saccharide, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, when n=4, R_5 represents only a group having a saccharide for m=0, and when multiple units exist, R_5 , R_{5a} , m, and n each independently have the above meaning for each unit.)

4. A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (6),

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 (6)

10

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n=3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each independently have the above meaning for each unit.

5. A polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by the chemical formula (7) in a molecule,

15

wherein (R7 represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 5 1 or 2 carbon atoms (alkylene groups each independently have 1 or 2 carbon atoms), or an alkylidene group having 1 to 5 carbon atoms which may be substituted by aryl, and when multiple units exist, R_7 's each independently have the above meaning for each unit.

6. A method of producing a polyhydroxyalkanoate represented by the chemical formula (6), comprising the step of polymerizing a compound represented by the chemical formula (8) in the presence of a catalyst,.

wherein n represents an integer selected from 1 to 4 when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, and 20 when n = 3, m represents an integer selected from 0 and 2 to 8,

10

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n=3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each independently have the above meaning for each unit.

7. A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (10), comprising the step of oxidizing a double bond portion of a polyhydroxyalkanoate containing a unit represented by the chemical formula (9),

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

wherein n represents an integer selected from 1 to 4

15 and m represents an integer selected from 0 to 8,

when multiple units exist, m and n each independently
have the above meaning for each unit,

wherein R_{10} represents a hydrogen atom or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each independently have the above meaning for each unit.

- 8. A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (1), comprising the step of subjecting a
- polyhydroxyalkanoate containing a unit represented by the chemical formula (10) and at least one kind of amine compound represented by the chemical formula (11) to a condensation reaction,

$$(CH_2)m$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(1 0)$$

Wherein R_{10} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each independently have the above meaning for each unit,

$$H_2N - A_3 - SO_2R_{11}$$

wherein R_{11} represents OH, a halogen atom, ONa, OK, or OR_{11a} , R_{11a} and A_3 are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{11} , R_{11a} , and A_3 each independently have the above meaning for each unit,

$$\begin{array}{c}
R \\
N-H \\
C=0 \\
(CH_2)m
\end{array}$$

$$\begin{array}{c}
(CH_2)n^{-0}
\end{array}$$
(1)

wherein R represents $-A_1-SO_2R_1$, R_1 represents OH, a halogen atom, ONa, OK, or OR_{1a} , R_{1a} and A_1 each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R, R_1 , R_{1a} , A_1 , m, and n each independently have the above meaning for each

unit.

5

10

9. A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (101), comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the compound obtained in the foregoing step to react with a compound represented by the chemical formula (100),

wherein n represents an integer selected from 1 to 4, and when multiple units exist, n's each independently have the above meaning for each unit,

X(CH₂)mCOOR 100

(100)

15

20

wherein m represents an integer selected from 0 to 8, X represents a halogen atom, R_{100} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when n=4 in the chemical formula (99), m is not equal to 0,

(101)

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each independently have the above meaning for each unit.

10. A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (102), comprising the step of hydrolyzing a polyhydroxyalkanoate containing a unit represented by the chemical formula (101) in the presence of an acid or an alkali or the step of subjecting the polyhydroxyalkanoate to hydrogenolysis including catalytic reduction,

(101)

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each independently have the above meaning for each unit,

$$(CH2)m$$

$$(CH2)n - O$$

$$(1 0 2)$$

10

15

5

wherein R_{102} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4. when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, and when multiple units exist, R_{102} , m, and n each independently have the above meaning for each

unit.

5

10

11. A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (104), comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the compound obtained in the foregoing step to react with a compound represented by the chemical formula (103),

(In the formula, n represents an integer selected from 1 to 4. When multiple units exist, n's each independently have the above meaning for each unit.)

(103)

15

Wherein R_{103} represents $-A_{103}-SO_2R_{103a}$, R_{103a} represents OH, a halogen atom, ONa, OK, or OR_{103b} , R_{103b} and A_{103} are each independently selected from groups each having a substituted or unsubstituted aliphatic

hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{103} , R_{103a} , R_{103b} , and A_{103} each independently have the above meaning for each unit,

$$\begin{array}{c}
R & 104 \\
N - H \\
O = \\
(CH_2)_2 \\
(CH_2)_{n} - O
\end{array}$$
(1 0 4)

5

Wherein n represents an integer selected from 1 to 4, R₁₀₄ represents -A₁₀₄-SO₂R_{104a}, R_{104a} represents OH, a halogen atom, ONa, OK, or OR_{104b}, R_{104b} and A₁₀₄ each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R₁₀₄, R_{104a}, R_{104b}, A₁₀₄, and n each independently have the above meaning for each unit.