

SQL Server Database Forensics

Kevvie Fowler, GCFA Gold, CISSP, MCTS, MCDBA, MCSD, MCSE Black Hat USA 2007

SQL Server Forensics | Why are Databases Critical Assets?

- Why are databases critical assets?
 - Databases hold critical information
 - Industry trends are scaling in versus out
 - Database servers today hold more sensitive information than ever before
 - Data security legislations & regulations dictate that security breaches must be reported
 - Database security breaches are "Front Page" news
 - T.J. Maxx | 45.7 million credit/debit cards disclosed
 - CardSystems Solutions | 200,000 credit/debit cards disclosed

SQL Server Forensics | The Problem With Traditional Forensics

■ Traditional investigations often exclude databases

SQL Server Forensics | The Solution

Database Forensics

The application of computer investigation and analysis techniques to gather database evidence suitable for presentation in a court of law

Benefits

- Retrace user DML & DDL operations
- Identify data pre and post transaction
- Recover previously deleted data rows
- Can help prove/disprove a data security breach
- Can help determine the scope of a database intrusion
- For the "real world": No dependency on 3rd party auditing tools or pre-configured DML or DDL triggers

SQL Server Forensics | Database Forensics Primer⁽¹⁾

- Database files
 - Data files (.mdf) contain the actual data
 - Consists of multiple data pages

Page

Header

Data Row

Page

- Log files (.ldf) hold all data required to reverse transactions and recover the database
- Physical log files consist of multiple Virtual Log Files (VLF)

VLF #1	VLF #2	VLF #3	VLF #4	Free
(Inactive)	(Inactive)	(Active)	(Inactive)	Space

- A VLF is the unit of truncation for the transaction log
- According to Microsoft:

"Although you might assume that reading the transaction log directly would be interesting or even useful, it's just too much information."

Inside SQL Server 2005: The Storage Engine, Microsoft Press, 2006

SQL Server Forensics | Database Forensics Primer⁽²⁾

Inside the transaction log:

- 1. CurrentLSN
- 2. Operation
- 3. Context
- 4. Transaction ID
- 5. Tag Bits
- 6. Log Record Fixed Length
- 7. Log Record Length
- 8. PreviousLSN
- 9. Flag Bits
- 10. AllocUnitID
- 11. AllocUnitName
- 12. Page ID
- 13. Slot ID
- 14. Previous Page LSN
- 15. PartionID
- 16. RowFlags
- 17. Num Elements
- 18. Offset in Row
- 19. Checkpoint Begin
- 20. CHKPT Begin DB Version
- 21. MaxXDESID
- 22. Num Transactions
- 23. Checkpoint End

- 24. CHKPT End DB Version
- 25. Minimum LSN
- 26. Dirty Pages
- 27. Oldest Replicated Begin LSN
- 28. Next Replicated End LSN
- 29. Last Distributed End LSN
- 30. Server UID
- 31. UID
- **32. SPID**
- 33. BeginLogStatus
- 34. Begin Time
- 35. Transaction Name
- 36. Transaction SID
- 37. End Time
- 38. Transaction Begin
- 39. Replicated Records
- 40. Oldest Active LSN
- 41. Server Name
- 42. Database Name
- 43. Mark Name
- 44. Master XDESID
- 45. Master DBID
- 46. PrepLogBegin LSN
- 47. PrepareTime
- 48. Virtual Clock
- 49. Previous Savepoint

- 50. Savepoint Name
- 51. Rowbits First Bit
- 52. Rowbits Bit Count
- 53. Rowbits Bit Value
- 54. Number of Locks
- 55. Lock Information
- 56. LSN Before Wrties
- 57. Pages Written
- 58. Data Pages Delta
- 59. Reserved Pages Delta
- 60. Used Pages Delta
- 61. Data Rows Delta
- 62. Command Type
- 63. Publication ID
- 64. Article ID
- 65. Partial Status
- 66. Command
- 67. Byte Offset
- 68. New Value
- 69. Old Value
- 70. New Split Page
- 71. Rows Deleted
- 72. Bytes Freed
- 73. CI Table ID
- 74. CI Index ID
- 75. NewAllocationUnitID
- 76. FIlegroupID

- 77. Meta Status
- 78. File Status
- 79. File ID
- 80. Physical Name
- 81. Logical Name
- 82. Format LSN
- 83. RowsetID
- 84. TextPtr
- 85. Column Offset
- 86. Flags
- 87. Text Size
- 88. Offset
- 89. Old Size
- 90. New Size
- 91. Description
- 92. Bulk allocated extent count
- 93. Bulk rowinsertID
- 94. Bulk allocationunitID
- 95. Bulk allocation first IAM Page ID
- 96. Bulk allocated extent ids
- 97. RowLog Contents 0
- 98. RowLog Contents 1
- 99. RowLog Contents 2
- 100. RowLog Contents 3
- 101. RowLog Contents 4

SQL Server Forensics | Database Forensics Primer⁽³⁾

- Server Process ID (SPID)
 - A unique value used by SQL Server to track a given session within the database server
 - Transaction log activity is logged against the executing SPID
- Data type storage and retrieval
 - 31 different data types
 - Data types are stored and retrieved differently within SQL Server
 - Little-endian ordering (LEO) is applicable to selected data types
 - Storing and retrieving value: 21976 in various data types results in the following:

Data type	On disk value	Retreived value			
CHAR	3231393736	21976			
INT	D855	21976			
DATETIME	D855	3/3/1960			

Procedure Cache

Contains ad-hoc and parameterized statements

SQL Server Forensics | Database Evidence Repositories

- SQL Server data resides natively within SQL Server and stored externally within the native Windows operating system
- Evidence repositories
 - SQL Server
 - Volatile database data
 - Database data files
 - Database log files
 - Plan cache
 - Data cache
 - Indexes
 - Tempdb
 - Version store

- Operating System
 - Trace files
 - System event logs
 - SQL Server error logs
 - Page file
 - Memory

SQL Server Forensics | Investigation Tools

- SQL Server Management Studio Express
- SQLCMD
- Windows Forensic Toolchest
- DD\DCFLDD
- MD5SUM
- Netcat\CryptCat
- WinHex
- Native SQL Server views, functions and statements
 - Dynamic Management Views (DMV)
 - Database Consistency Checker (DBCC) commands
 - FN_*
- Lots of sanitized acquisition media

Evidence Collection

SQL Server Forensics | Evidence Collection⁽²⁾

Determine the scope of evidence collection

- Prioritize evidence collection
 - 1. Volatile database data (sessions/connections, active requests, active users, memory, etc.)
 - 2. Transaction logs
 - 3. Database files
 - 4. SQL Server error logs
 - 5. System event logs
 - 6. Trace files

SQL Server Forensics | Evidence Collection⁽³⁾

- Collecting volatile database data
 - Can be automated using WFT & command line SQL tools
 - GUI front end, binary validation and thorough logging
 - Gathers volatile data internal and external to SQL Server

SQL Server Forensics | Evidence Collection⁽⁴⁾

SQLCMD

Load command line tool and establish logging

```
D:\FResponse>Sqlcmd -S RZ-SQL-2005 -e -s"," -E
1> :out z:\initialconnection.txt
```

- Collecting the active transaction log
 - Determine on disk locations of the transaction log files

```
D:\FResponse>Sqlcmd -S RZ-SQL-2005 -e -s"," -E
1> sp_helpdb OnlineSales
2> go
```

Results:

name	fileid	filename		• • •
OnlineSales	1	C:\Program File	es\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales.mdf	
OnlineSales log	2	C:\Program File	es\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales log.ldf	
OnlineSales_log2	3	C:\OtherLogs\0	OnlineSales_log2.ldf	

SQL Server Forensics | Evidence Collection⁽⁵⁾

- Collecting the active transaction log (cont'd)
 - Gather the VLF allocations

Changed database context to 'OnlineSales'. 1> dbcc loginfo

Results:

2 14352384 8192 16 2 64 0 2 14352384 14360576 0 0 0 0 2 14352384 28712960 0 0 0 0 2 14606336 43065344 0 0 0 0	Fileld	F	FileSize	StartOffset	FSeqNo	Status	Parity	CreateLSN	
2 14352384 14360576	2	2	14352384	8192	16	2	 64		
2 14606336 43065344 0 0 0 0	2	2		0.02	0	0		Ö	
	2	2	14352384	28712960	0	0	0	0	
0 44050004 0400 0 0 0	2	2	14606336	43065344	0	0	0	0	
3 14352384 8192 0 0 0 0	3	3	14352384	8192	0	0	0	0	
3 14352384 14360576 0 0 0 0	3	3	14352384	14360576	0	0	0	0	
3 14352384 28712960 0 0 0	3	3	14352384	28712960	0	0	0	0	
3 14606336 43065344 0 0 0 0	3	3	14606336	43065344	0	0	0	0	

2 = Active

0 = Recoverable or unused

SQL Server Forensics | Evidence Collection⁽⁶⁾

- Collecting the active transaction log (cont'd)
 - Fn_dblog filters transactions by:
 - Target database object
 - Specific columns
 - SPID and/or date/time range

Select * from ::fn_dblog(NULL, NULL)

- DBCC Log
 - More resource intensive
 - Dumps transaction log in its entirety

dbcc log(<databasename>, 3)

0 = minimal info

1 = slightly more info

2 = detailed info including (page id, slot id, etc.)

3 = full information about each operation

4 = full information on each operation in addition to hex dump of current data row

SQL Server Forensics | Evidence Collection⁽⁷⁾

- Collecting the database plan cache
 - Collecting the plan cache

```
select * from sys.dm_exec_cached_plans cross apply
sys.dm_exec_sql_text(plan_handle)
```

- Collect additional plan cache specifics
 - select * from sys.dm_exec_query_stats
 - select * from sys.dm_exec_cached_plans cross apply sys.dm_exec_plan_attributes(plan_handle)
- Collecting database data files & logs (\\Microsoft SQL Server\MSSQL.1\MSSQL\DATA*.mdf | *.Ldf)
- Collecting default trace files (\\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\LOG_#.TRC)
- Collecting SQL Server error logs (\\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG)
- Collecting system event log (WFT)

Evidence Analysis

SQL Server Forensics | Evidence Analysis⁽²⁾

Windows event log

- SQL Server authentication data (failures, successful log-on/off)
- SQL Server startup and shutdown
- IP addresses of SQL Server client connections

Error log

- SQL Server authentication data (failures, successful log-on/off)
- SQL Server startup and shutdown
- IP addresses of SQL Server client connections

```
| 17-03-02 07:39:10.80 Logon | Login failed for user 'sa'. [CLIENT: 192.168.1.20] | Error: 18456, Severity: 14, State: 8. | Login failed for user 'sa'. [CLIENT: 192.168.1.20] | Error: 18456, Severity: 14, State: 8. | Login failed for user 'sa'. [CLIENT: 192.168.1.20] | Error: 18456, Severity: 14, State: 8. | Login failed for user 'sa'. [CLIENT: 192.168.1.20] | Error: 18456, Severity: 14, State: 8. | Login failed for user 'sa'. [CLIENT: 192.168.1.20] |
```


SQL Server Forensics | Evidence Analysis⁽³⁾

Default database trace

- Complete authentication history
- DDL operations (schema changes)
- IP addresses of SQL Server client connections

ssID	ApplicationName	LoginName	SPID	StartTime	EventSubClass	Success	LoginSid	RequestID	Event9
160	squelda 1.0	5 a	51	2007-03-02 07:39:11.003		0		0	
160	squelda 1.0	sa	51	2007-03-02 07:39:11.203		0		0	
1300	OSQL-32	sa	51	2007-03-02 07:54:07.180	1 - Add	1	0×01	0	
1300	OSQL-32	sa	51	2007-03-02 07:54:34.030	1 - Commit		0×01	0	
1300	OSQL-32	sa	51	2007-03-02 07:54:35.740			0×01	0	
1300	OSQL-32	sa	51	2007-03-02 07:54:35.903	0 - Begin		0×01	0	
1300	OSQL-32	sa	51	2007-03-02 07:54:35.913	1 – Commit		0X01	0	
1300	OSQL-32	sa	51	2007-03-02 07:55:52.783	3 - Grant	1	0×01	0	
1300	OSQL-32	sa	51	2007-03-02 07:56:18.440	1 - Add	1	0×01	0	
1660	OSQL-32	EASYACCESS	51	2007-03-02 08:09:33.773	1 - Commit	:	0×B89	0	
			2	2007-03-02 08:13:29.350	1 - Increase			0	
1660	OSQL-32	EASYACCESS	51	2007-03-02 08:13:31.433	1 - Commit		0×B89	0	
1660	OSQL-32	EASYACCESS	51	2007-03-02 08:13:32.667	1 - Commit		0×B89	0	

SQL Server Forensics | Evidence Analysis⁽⁴⁾

- Data files & log files
 - Attach files
 - Use to obtain on-demand schema info, data page contents, etc.
- Active transaction log
 - Import into Excel / Access for viewing
 - Identify DML & DDL statements
 - Map transactions to a SPID

SQL Server Forensics | Evidence Analysis⁽⁵⁾

Transaction log - Update operations

Identifier	Hex	Decimal
Transaction ID	0000:0000032e	0:814
Data Page	0001:000000d3	1:211

SQL Server Forensics | Evidence Analysis⁽⁶⁾

DBCC Page will pull up the modified data page dbcc page (OnlineSales, 1, 211, 1)

Viewing the page header will detect the owning object

```
Page @0x04304000
                                     m headerVersion = 1
m pageId = (1:211)
m typeFlagBits = 0x0
                                     m level = 0
                                                                           m flagBits = 0x0
m_objId (AllocUnitId.idObj) = 87
                                     m_indexId (AllocUnitId.idInd) = 256
Metadata: AllocUnitId = 72057594043629568
Metadata: PartitionId = 72057594039500800
                                                                           Metadata: IndexId = 1
Metadata: ObjectId = 629577281
                                                                           m_nextPage = (1:315)
                                     m prevPage = (1:314)
pminlen = 108
                                     m slotCnt = 22
                                                                           m freeCnt = 3263
m freeData = 5918
                                     m reservedCnt = 0
                                                                           m lsn = (16:3686:2)
m xactReserved = 0
                                     m \times desId = (0:0)
                                                                           m ghostRecCnt = 0
m tornBits = -1731484635
```

Lookup the owning object: Select * from sysobjects where id = 629577281

Results:		name	id	xtype	uid	info	status	base_schema_ver	replinfo	parent_obj	crdate
	1	Order	629577281	U	1	0	0	0	0	0	2007-02-26 16:08:21.320

SQL Server Forensics | Evidence Analysis⁽⁷⁾

Gather the object schema

"SELECT sc.colorder, sc.name, st.name as 'datatype', sc.length FROM syscolumns sc, systypes st

WHERE sc. xusertype = st. xusertype and sc. id = 629577281

ORDER BY colorder"

Results:

colorder	name	datatype	length
]
1	OrderlD	int	4
2	FirstName	varchar	20
3	LastName	varchar	20
4	Address	varchar	50
5	City	nchar	40
6	State	nchar	4
7	ZIP	nchar	10
8	CCType	varchar	15
9	CCNumber	varchar	20
11	ShipStatusID	int	4
12	OrderDate	datetime	8
13	Product	nvarchar	100
14	Price	nchar	30

SQL Server Forensics | Evidence Analysis⁽⁸⁾

Viewing data page 1:211 modified using Slot 20 & Row offset 80

```
Slot 20 Offset 0x147f Length 237
Record Type = PRIMARY RECORD Record Attributes = NULL BITMAP VARIABLE COLUMNS
Memory Dump @0x2F3AD47F
          30006c00 6f000000 53007000 72006900 t0.1.o...S.p.r.i.
00000000:
00000010:
          6e006700 4c006100 6b006500 20002000 tn.g.L.a.k.e. . .
00000020:
          20002000 20002000 20002000 20002000 + . . . . . . . .
          41005a00 31003400 34003100 30000a00 +A.Z.1.4.4.1.0...
00000030:
          00000040:
00000050: [► Ze003500 30002000 20002000 20002000 +..5.0. . . . . .
00000060:
          00000070: 1
          00000080:
          6f736f6e 456d696c 37322053 74617266 tosonEmi172 Starf
00000090: 1
          656c6c20 44726976 65566973 61343931 tell DriveVisa491
0000000A0:
          36383833 38343033 38323330 3056006f +6883840382300V.o
          006c0063 0061006e 006f0020 00360032 t.l.c.a.n.o. .6.2
000000B0: |
          00200069 006e0063 00680020 0050006c t. .i.n.c.h. .P.1
000000CO:
          00610073 006d0061 00200054 00560020 +.a.s.m.a. .T.V.
000000D0:
000000RO:
          00560043 00320033 00330032|00+++++++.V.C.2.3.3.2.
                            Start of column
      Start of transaction.
```


SQL Server Forensics | Evidence Analysis⁽⁹⁾

Price column pre and post transaction modification

 RowLog Contents 0	RowLog Contents 1
 0x3500300030002E00300030	0x2E00350030002000200020

Price column pre and post transaction modification

RowLog0

Hex	35	00	30	00	30	00	2E	00	30	00	30
ASCII	5		0		0				0		0

RowLog1

(Hex) 2E	00	35	00	30	00	20	00	20	00	20
ASCII		5		0		SP		SP		SP

■ 1st record affected by transaction 814 had the price column updated from "3500.00" to "3.50" (including leading byte "33")

SQL Server Forensics | Evidence Analysis⁽¹⁰⁾

Transaction log - Insert operations

Operation	Context	Transaction ID	Page ID	Slot ID	 Offset in Row
LOP_BEGIN_XACT	LCX_NULL	0000:00000330	NULL	NULL	NULL
LOP_INSERT_ROWS	LCX_CLUSTERED	0000:00000330	0001:00000138	8	NULL
LOP_COMMIT_XACT	LCX_NULL	0000:00000330	NULL	NULL	NULL

- Reconstruct the data row
- RowLog Contents 0:

SQL Server Forensics | Evidence Analysis⁽¹¹⁾

- Lookup the schema and reconstruct the data row
- Structure of a variable length data row:

930 020 0	3∴ Fixed length	columns ::43	450 460	373	::::Variable:length:columns::::
	- Interior				valiable length volume

Source: Inside SQL Server 2005 The Storage Engine

	г		ı
-	•	•	ч
			н

Legend					
Item	Storage Allocation	Description			
1	1 byte	StatusBits A contains data row properties ⁵			
2	1 byte	Unused in SQL Server 2005 ³			
3 2 bytes Row offset to in row location containi number of columns in the data row ⁵					
Fixed length columns	Fixed column length for all fixed columns	Location of in row fixed length data columns ⁵			
4	2 bytes	Total number of columns in data row ³			
5	1 bit for each row column	Null Bitmap ⁵			
6	2 bytes	Number of variable length columns within data row ⁵			
7 2 bytes for each variable Row offset marking the end of each length column length column ⁵					
Variable length columns	Used length of all variable length columns	Location of in row variable length data columns ⁵			

SQL Server Forensics | Evidence Analysis⁽¹²⁾

SECURITY

SQL Server Forensics | Evidence Analysis⁽¹³⁾

- Swap the bytes (endian ordering)
- Translate data types
- The inserted record was:

OrderID: 4122

FirstName: Nino

LastName: Black

Address: 72 Starfell Drive

City: SpringLake

State: AZ

ZIP: 14410

CCType: Visa

CCNumber: 5518530000000000

ShipStatusID: 1

OrderDate: March 1st, 2007

Product: XBOX 360

Price: 4.00

SQL Server Forensics | Evidence Analysis (14)

- Transaction Log Delete operations
- Ghost records

Operation	Context	Transaction ID	Page ID	Slot ID	 Offset in Row
LOP_BEGIN_XACT	LCX_NULL	0000:00000332	NULL	NULL	ŀ
LOP_DELETE_ROWS	LCX_MARK_AS_GHOST	0000:00000332	0001:00000158	24	-
LOP_SET_BITS	LCX_PFS	0000:00000000	0001:00000001	0	
LOP COMMIT XACT	LCX NULL	0000:00000332	NULL	NULL	[

RowLog Contents 0:

Reconstruct the data row

SQL Server Forensics | Evidence Analysis (15) OrderID col. City col. Unused Pos. to find # StatusBits A of cols. 0x<mark>30006C00PF000000</mark>5000610079006500740074006500200020002000200 0200020002000200020002000200020002000<mark>46004C00</mark>31003600360030003200 City col. contd. State col. ZIP col. ShipStatusID OrderDate col. Price col. col. 01000000000000003A980000<mark>33003500300030002E0030003000200020002000</mark> 002000200020002000E0000E0000C006008200860098009C00AD00CD Price col. contd. # of cols. # of Positions where var cols, 1-6 end variable Null bitmap cols.

Address col

0042757274<mark>43617665</mark>323237205374617267656C6C204472697665<mark>5</mark>6697361

Product col.

CCType col

FirstName

col.

LastName

0506C61736D6120545620564332333332

col.

SQL Server Forensics | Evidence Analysis (16)

- Swap the bytes (endian ordering)
- Translate data types
- The deleted record was:
 - OrderID: 159
 - FirstName: Burt
 - LastName: Cave
 - Address: 227 Stargell Drive
 - City: Payette
 - State: FL
 - **ZIP: 16602**
 - CCType: Visa
 - CCNumber: 65903400343223200
 - ShipStatusID: 1
 - OrderDate: September 12th, 2006
 - Product: Volcano 62 inch Plasma TV VC2332
 - Price: 3500.00

SQL Server Forensics | Evidence Analysis⁽¹⁷⁾

Plan cache

- Review for applicable statements within scope of investigation (date, objects, etc.)
- Look for non-standard statements

bucketid	refcounts	usecounts	cacheobitype	objtype	plan_ha	lucioni lucioni	text
6514	2	1	Compiled Plan	Adhoc	0x06000		SELECT CAST(fti.is_enabled AS bit) AS [IsEnabled], OBJECTPROPERTY(fti.object_id,'TableFullT
3485	2	1	Compiled Plan	Adhoc	0x06000		SELECT col.name AS [Name] FROM sys.tables AS tbl INNER JOIN sys.fulltext_indexes AS fti ON
942	2	1	Compiled Plan	Adhoc	0x06000		SELECT dtb.is_fulltext_enabled AS [IsFullTextEnabled] FROM master.sys.databases AS dtb WHE
6312	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 1967
551	2	1	Compiled Plan	Adhoc	0x06000		select * from OrderHistory
8567	2	4	Compiled Plan	Adhoc	0x06000		select * from sys.dm_exec_cached_plans cross apply sys.dm_exec_sql_text(plan_handle)
944	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 1
9441	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 5
8278	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 22
6913	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 1823
3005	2	1	Compiled Plan	Adhoc	0x06000		select CCNumber, Firstname, Lastname from OrderHistory where OrderID = 1639

Investigation Pitfalls

SQL Server Forensics | Investigation Pitfalls⁽²⁾

What to look out for!

- Know the schema your working with
- Data type storage formats
- Reduce large data sets
- Correlate on-disk values with transaction log data
- Encryption
- This takes time so be patient!

Conclusion

SQL Server Forensics | Conclusion⁽²⁾

Conclusion

- Don't ignore the database when conducting computer forensics investigations
- Database forensics techniques learned today can augment traditional forensics skills to uncover the evidence needed to support your case

Additional information within the presentation white paper

- Real world database forensics scenario
- Database forensics methodology
- Additional evidence collection and analysis techniques
 - Code pages and collation settings
 - Obtaining server configuration
 - Identifying user account creation and elevation of privilege activity
 - Transaction log data carving
 - And more...

Questions

SQL Server Forensics | Presentation References

Presentation References

- Kalen Delaney, Inside SQL Server 2005 The Storage Engine, Microsoft Press, 2006
- Mark Horninger, How to Cheat at Securing SQL Server 2005, Syngress Publishing, 2007
- "MSDN Blog Pages" http://blogs.msdn.com/sqlserverstorageengine/default.aspx
- SQL Server 2005 Books Online, http://msdn2.microsoft.com/enus/library/ms130214.aspx

