SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ARHITEKTURA RAČUNALA 2 laboratorijske vježbe

3. ciklus: mikroprogramiranje Skupina zadataka: 15

Zastavice i njihova značenja:

JCC:	Jump in Current Column
JZR:	Jump in Zero Row
JCR:	Jump in Current Row
JCE:	Jump in Column &
	Enable
JFF:	Jump & test F Latch
JCF:	Jump & test C Flag
JZF:	Jump & test Z Flag
JPR:	Jump & test PR latch
JLL:	Jump & test Left Latch
JRL:	Jump & test Right Latch
JPX:	Jump & test PX bus

SZC	upiši Fin=CO u Carry i Zero
STZ	upiši Fin=CO u Zero
STC	upiši Fin=CO u Carry
HTZ	zadrži Carry i Zero

FF0	postavi 0 na CI=Fout
FFC	postavi Carry na CI=Fout
	postavi Zero na CI=Fout
FF1	postavi 1 na CI=Fout

Sinonimi registara:

R0 =	Α
R1 =	В
R3 =	R8
R9 =	РС

Zadatak: Napisati mikroprograme za sljedeće strojne instrukcije.

Skupina 15: MOVE (#),A AND A, B SHL2 A POP B

Prije definiranja mikroprograma zadanih makroinstrukcija definirana je zajednička **PRIBAVI** rutina. Realizirana je u dvije mikroinstrukcije smještena na dvije memorijske lokacije (000 i 001)₁₆ i to unutar prve makroinstrukcije MOVE (#),A.

Adresa	Slijedeća	Zastavice	Funkcija	Registar	Memorija	Opis
000	JCR 1	HCZ, FF1	LMI/1	R9/I	čitanje	$PC \rightarrow MAR; (MAR) \rightarrow M; PC+1 \rightarrow PC$
001	LD = 1	HCZ, FF0	NOP/6	R0/I	ništa	A→A; CI→CO

Također je realizirana mikronaredba **STOP** koja zaustavlja rad mikroprogramskog sustava prilikom pokretanja programa bez izvođenja korak po korak. Smještena je na memorijskoj lokaciji (0FF)₁₆.

Adresa	Slijedeća	Zastavice	Funkcija	Regista	Memorij	Opis
				r	a	
0FF	M=1	HCZ FF0	NOP/6	R0/I	ništa	zaustavljanje programa

MOVE (#), A - punjenje registra A sadržajem memorijske lokacije koja se nalazi jedan oktet iza operacijskog koda. Konstanta se sprema u akumulator te se nakon toga PC uvećava za 1. Akumulator se konačno pohranjuje u registar A.

Slijedeća	Zastavice	Funkcija	Registar	Memorija	Opis
JCR 1	HCZ, FF1	LMI/1	R9/I	čita	$PC \rightarrow MAR$; $(MAR) \rightarrow M$; $PC + 1 \rightarrow PC$
JCR 2	HCZ, FF0	LMM/1	AC/II	čita	$M \rightarrow MAR; M \rightarrow AC; (MAR) \rightarrow M$
JCR 3	HCZ, FF0	ACM/0	AC/II	ništa	$M\rightarrow AC$
JZR 0	HCZ, FF1	SDR/2	R0/I	ništa	$AC \rightarrow A$

AND A, B - logička operacija I(&) registara A i B. Na početku registar A pohranjujemo u akumulator. Vršimo operaciju & između akumulatora AC i registra B te rezultat spremamo u registar B. Obnavljamo zastavicu zerro(Z). Rezultat operacije nalazi se u registru B.

Slijedeća	Zastavice	Funkcija	Regista	Memorij	Opis
			r	a	
JCR 1	HCZ, FF0	ILR/0	R0/I	ništa	$A \rightarrow AC$
JCR 2	STZ, FF0	ANR/4	R1/I	ništa	B & AC→B; CI I (B&AC) \rightarrow CO
					//CI=0
JCR 3	STZ, FF0	TZR/5	R1/I	ništa	CI I B→CO
JCR 4	HCZ, FFZ	CSR/2	T/I	ništa	CI - 1→T
JZR 0	STZ, FF0	TZR/5	T/I	ništa	CIIT→CO

SHL2 A - posmak sadržaja registara A ulijevo za 2 mjesta. Posmak ulijevo je ekvivalentan množenju s dva stoga ponavljamo taj postupak dvaput. Sadržaj registra A spremamo u AC. Sadržaju akumulatora AC pridodajemo vrijednost registra A te rezultat spremamo u A i AC. Akumulatoru AC dodajemo registar A te se konačan rezultat sprema u registar A.

Slijedeća	Zastavice	Funkcija	Regista	Memorij	Opis	
			r	a		
JCR 1	HCZ, FF0	ILR /0	R0/I	ništa	$A + CI \rightarrow A, AC$	
JCR 2	HCZ, FF0	ALR /0	R0/I	ništa	$AC + A + CI \rightarrow A, AC$	//CI=0
JZR 0	HCZ, FF0	ADR/3	R0/I	ništa	$AC + A + CI \rightarrow A$	//CI=0

POP B - skidanje podatka sa stoga i pohranjivanje u registar B. U registru SP(R8) spremljena je adresa prvog praznog mjesta stoga. Da bi pristupili vrhu stoga moramo umanjiti SP za 1. Adresu, pohranjenu na memorijskoj lokaciji koju pokazuje stog, spremamo u memorijski adresni registar a nakon toga sadržaj te lokacije spremamo u akumulator. Konačno podatak pohranjujemo u registar B.

Adresa	Slijedeća	Zastavice	Funkcija	Regista	Memorij	Opis	
				r	a		
A0	JCR 1	HCZ, FF0	ILR/0	R8/I	ništa	$SP \rightarrow AC$	
A1	JCR 2	HCZ, FF0	SDR/2	R8/I	ništa	AC-1→SP	
A2	JCR 3	HCZ, FF0	LMI/1	R8/I	čita	$SP \rightarrow MAR; (MAR) \rightarrow M$	
A3	JCR 4	HCZ, FF0	ACM/0	AC/II	ništa	$M\rightarrow AC$	
A4	JZR 0	HCZ, FF1	SDR/2	R1/I	ništa	$AC - 1 + CI \rightarrow B$	//CI=1

Primjer izvođenja programa koristeći navedene makronaredbe:

Sadržaj registra A popunjen je konstantom $(05)_{16} = (00000101)_2$.

Sadržaj registra A posmiče se 2 mjesta ulijevo te se u registar A sprema (20)₁₆ = (00010100)₂.

SP je postavljen na adresu (08)₁₆, a na memorijskoj lokaciji(07)₁₆ pohranjen je podatak (07)₁₆.

Podatak sa stoga $(07)_{16} = (00000111)_2$ pohranjuje se u registar B.

Vrši se operacija I između A i B te je konačan rezultat (04)₁₆ spremljen u registar B.

```
(00010100)<sub>2</sub>
(00000111)<sub>2</sub>
& -----
(00000100)<sub>2</sub> = (04)<sub>16</sub>
```

