

CIRCUITOS ELÉTRICOS Comportamento de Circuitos RLC Série em Regime Permanente Senoidal

Professor : Adélio José de Morais Engenharia Elétrica

Grupo: Kaio Saramago 11511EEL013

Gustavo de Oliveira Machado 11511EEL014
Matheus Henrique Marconi 11511EEL005
Raoni Exaltação Masson 11511ETE005

Sumário

2
2
5
7
9
11
11

1 Materiais Utilizados:

- Protoboard
- Gerador de função
- Indutor Variável (1H)
- Resistor Variável (470Ω)
- Osciloscópio
- Capacitor Variável (0,1uF)
- Multímetro.
- Cabos para conexões.

2 Procedimento Experimental

Objetivo: Verificar experimentalmente as características de circuitos RLC em série quando excitados por uma fonte de tensão senoidal em regime permanente. Primeiramente, fixou-se os valores dos componentes variáveis(resistor, indutor e capacitor) para $R = 470\Omega$, L = 1 H, $C = 0.1\mu$ F. Logo após, conectando-se à uma fonte tensão senoidal de valor máximo(\dot{V}_m) igual à 3V e ligando os elementos por meio de fios jumpers, montou-se o circuito abaixo com o propósito de medir as quedas de tensões $\dot{V}_R, \dot{V}_L, \dot{V}_C$ e \dot{V}_1 em diferentes frequências ajustadas.

Em seguida, calculamos a frequência de ressonância RLC em série pela seguinte fórmula:

$$fR = \frac{1}{2\pi\sqrt{LC}}$$

$$fR = \frac{1}{2\pi\sqrt{1*0,1.10^{-6}}}$$

$$fR = 503,29 \text{ Hz}$$

Assim, iniciou-se as medidas das quedas de tensões $\dot{\mathbf{V}}_R, \dot{\mathbf{V}}_L, \dot{\mathbf{V}}_C$ e $\dot{\mathbf{V}}_1$ utilizando-se do osciloscópio para visualizar as formas de onda(senoidal), valores das tensões nos componentes e as respectivas fases associadas

considerando a corrente \dot{I} na referência(ângulo de fase = 0°). Nesse caso, ajustou-se diferentes valores de frequências, sendo que para cada ajuste, utilizou-se a seguinte sequência de medições no osciloscópio:

$$1 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}_{R}(A,B) \\ Ch. \ 2 \Rightarrow \dot{V}_{L}(B,C) \end{cases}; ref. B$$

$$2 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}_{R}(A,B) \\ Ch. \ 2 \Rightarrow \dot{V}_{C}(B,C) \end{cases}; ref. B$$

$$2 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}_{R}(A,B) \\ Ch. \ 2 \Rightarrow \dot{V}_{L}(B,D) \end{cases}; ref. B$$

$$4 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}_{R}(A,B) \\ Ch. \ 2 \Rightarrow \dot{V}_{L}(B,D) \end{cases}; ref. A$$

Com base nos valores de períodos medidos por meio do osciloscópio, calculou-se os ângulos de fases da tensão \dot{V} através das seguintes relações:

$$T \to 360^{\circ}$$

$$\Delta t \to \Delta \theta$$

$$\therefore \Delta \theta = \frac{\Delta t \cdot 360^{\circ}}{T}$$

$$T = \frac{1}{f}$$

Dessa forma, com os dados obtidos experimentalmente e as fases das tensões correspondentes calculadas anteriormente, montou-se a seguinte tabela geral:

F(hz)	$\dot{\mathrm{V}}_R(\mathrm{V})$	$\dot{\mathrm{V}}_L(\mathrm{V})$	$\dot{\mathrm{V}}_C(\mathrm{V})$	$\dot{V}_1(V)$	$\dot{V}(V)$	$\Delta t(\mu s)$
250	0,29 <u>/0°</u>	1,06 <u>/90°</u>	$3,60/-90^{\circ}$	$3,04/-90^{\circ}$	$2,88/-82,80^{\circ}$	920
350	0,59 <u>/0°</u>	2,88 <u>/90°</u>	5,60 <u>/-90°</u>	$2,92/-90^{\circ}$	$3,04/-73,08^{\circ}$	580
500	2,24 <u>/0°</u>	15,40 <u>/90°</u>	14,60 <u>/-90°</u>	$0.20/-90^{\circ}$	2,76 <u>/0°</u>	0
650	0,76 <u>/0°</u>	6,80 <u>/90°</u>	$3,76/-90^{\circ}$	3,20 <u>/90°</u>	$3,04/70,20^{\circ}$	300
750	0,54 <u>/0°</u>	5,40 <u>/90°</u>	$2,08/-90^{\circ}$	3,00 <u>/90°</u>	$3,00/72,90^{\circ}$	270

3 Simulação:

3.1 Circuito para medir tensão na resistência e no indutor:

Figura 3: Gráfico de tensão na resistência e no indutor para frequência 250Hz.

Figura 4: Gráfico de tensão na resistência e no indutor para frequência 350Hz.

Figura 5: Gráfico de tensão na resistência e no indutor para frequência 500Hz.

Figura 6: Gráfico de tensão na resistência e no indutor para frequência 650Hz.

Figura 7: Gráfico de tensão na resistência e no indutor para frequência 750Hz.

3.2 Circuito para medir tensão no capacitor:

Figura 8: Gráfico de tensão no capacitor para frequência 250Hz.

Figura 9: Gráfico de tensão no capacitor para frequência 350Hz.

Figura 10: Gráfico de tensão no capacitor para frequência 500Hz.

Figura 11: Gráfico de tensão no capacitor para frequência 650Hz.

Figura 12: Gráfico de tensão no capacitor para frequência 750Hz.

3.3 Calcular tensão \dot{V}_1 :

Figura 13: Gráfico de tensão \dot{V}_1 para frequência 250Hz.

Figura 14: Gráfico de tensão \dot{V}_1 para frequência 350Hz.

Figura 15: Gráfico de tensão \dot{V}_1 para frequência 500Hz.

Figura 16: Gráfico de tensão \dot{V}_1 para frequência 650Hz.

Figura 17: Gráfico de tensão \dot{V}_1 para frequência 750Hz.

3.4 Circuito para medir a tensão total ($\dot{\mathbf{V}}_T$):

Figura 18: Gráfico de tensão $\dot{\mathbf{V}}_T$ para frequência 250Hz.

Figura 19: Gráfico de tensão $\dot{\mathbf{V}}_T$ para frequência 350Hz.

Figura 20: Gráfico de tensão $\dot{\mathbf{V}}_T$ para frequência 500Hz.

Figura 21: Gráfico de tensão $\dot{\mathbf{V}}_T$ para frequência 650Hz.

Figura 22: Gráfico de tensão $\dot{\mathbf{V}}_T$ para frequência 750Hz.

4 Conclusão:

No circuito RLC em série, percebemos que com a variação da frequência modificamos a impedância do circuito, devido a dependência que esta tem em relação a impedância capacitiva e indutiva (presentes no circuito).

Uma das variações que foram percebidas foi a angular, nos ângulos dos fasores que medimos em V_1 e V_T principalmente. Já com relação a frequência de ressonância ($\approx 500 \mathrm{hz}$), onde sabemos que $X_C = X_L$, o circuito é praticamente resistivo (indutâncias não tem contribuição significativa para o circuito, praticamente se anulam) e V_R e V_T ficam em fase.

5 Bibliografia:

BOYLESTAD, R. L. Introdução à Análise de Circuitos. 10ª edição. São Paulo: Pearson Education do Brasil, 2004.