Quiz Questions: Relations, Sequences, Summations

- 1. Which of these are posets?
 - A. (R, =)
 - B. (R, <)

 - C. (R, \neq) D. (R, |)
- 2. Let a set $S = \{2, 4, 8, 16, 32\}$ and \leq be the partial order defined by $S \leq R$ if a divides b. Number of edges in the Hasse diagram of is:
 - A. 6
 - B. 5
 - C. 9
 - D. 4
- 3. Determine the number of different equivalence relations for the set {2, 4, 5}.

 - B. 7
 - C. 8
 - D. 125
- 4. How many elements are there in the smallest equivalence relation on a set with 8 elements?
 - A. 64
 - B. 8
 - C. 48
 - D. 32
- 5. The value of $\sum_{i=1}^{3} \sum_{h=0}^{2} i$ is:
 - A. 10
 - B. 17
 - C. 15
 - D. 18
- 6. Which of the following sequences will have a difference 3 among subsequent elements, where *n* is an Integer?
 - A. $a_n = 2n^2 + 3n$
 - B. $a_n = 2n^2 + 3$
 - C. $a_n = 3n^2 + 3n$ D. $a_n = 5 + 3n$
- 7. For the given geometric progression find the first fractional term: 2⁵⁰, 2⁴⁷, 2⁴⁴,......
 - A. 2^{-1}
 - B. 2^{-2}
 - $C. 2^{-3}$
 - D. None of the mentioned

- 8. For the sequence 1, 7, 25, 79, 241, 727 ... a function $f: \mathbb{Z}^+ \to S$ for defining a_n is: A. $3^{n+1}-2$ B. 3^n-2 C. $(-3)^n+4$ D. $(n+1)^2-3$