Facultatea

Numărul legitimației de bancă

Numele

Prenumele tatălui

Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Fizică F

VARIANTA **D**

1. Rezistența circuitului exterior al unei baterii cu tensiunea electromotoare de 1,5V este de 2Ω. Dacă tensiunea la bornele bateriei este de 1V atunci valoarea rezistenței sale interne este: (4 pct.)

a) 4Ω ; b) 0.1Ω ; c) 1.1Ω ; d) 0.5Ω ; e) 1Ω ; f) 2Ω .

2. Un gaz ideal are indicele adiabatic 1,4. Căldurile molare la volum și respectiv presiune constantă sunt: (4 pct.)

a)
$$\frac{3}{2}R$$
, $\frac{5}{2}R$; b) $\frac{2}{5}R$, $\frac{2}{7}R$; c) $\frac{2}{3}R$, $\frac{2}{5}R$; d) $\frac{1}{3}R$, $\frac{1}{4}R$; e) $\frac{5}{2}R$, $\frac{7}{2}R$; f) $3R$, $4R$.

3. Expresia forței de interacțiune dintre două conductoare paralele, foarte lungi, parcurse de curenți electrici (forța electrodinamică) este: (4 pct.)

a)
$$F = \mu \frac{I_1 I_2}{2\pi d I_2}$$
; b) $F = \mu \frac{I_1 I_2 I}{d}$; c) $F = \mu \frac{I_1 I_2 I}{4\pi d}$; d) $F = \mu \frac{I_1 I_2 I}{2\pi \sqrt{d}}$; e) $F = \mu \frac{I_1 I_2 I}{2\pi d}$; f) $F = \mu \frac{2\pi d}{I_1 I_2 I}$.

- 4. Atunci când un vehicul se deplasează cu viteza constantă de 15km/h, motorul său dezvoltă o putere de 15kW. Forța de rezistență pe care o întâmpină vehiculul este: (4 pct.)
 - a) 300N; b) 360N; c) 250N; d) 3,6kN; e) 1,2kN; f) 100N.
- 5. Un conductor de lungime 100m și diametru 1mm are rezistența electrică de 56Ω. Rezistivitatea materialului din care este confecționat conductorul este: (4 pct.)
 - a) $3\pi \cdot 10^{-8} \Omega \cdot m$; b) $14\pi \cdot 10^{-7} \Omega \cdot m$; c) $2\pi \cdot 10^{-8} \Omega \cdot m$; d) $14\pi \cdot 10^{-8} \Omega \cdot m$; e) $7\pi \cdot 10^{-7} \Omega \cdot m$; f) $4\pi \cdot 10^{-8} \Omega \cdot m$.
- 6. Prin încălzirea cu 10K a unui gaz ideal închis într-un recipient de volum constant, presiunea sa crește de 10 ori. Temperatura inițială a gazului este: (4 pct.)

a) 11K; b)
$$\frac{27}{13}$$
K; c) $\frac{10}{7}$ K; d) 117K; e) $\frac{10}{9}$ K; f) $\frac{8}{3}$ K.

7. Un mol de gaz ideal monoatomic se destinde după legea $TV^{-2} = a$ (a este o constantă pozitivă). Căldura sa molară în timpul acestui proces are valoarea: (8 pct.)

a)
$$0.5R$$
; b) $2R$; c) $4R$; d) $\frac{5}{2}R$; e) R ; f) $\frac{3}{2}R$.

- 8. Un obiect este aruncat vertical în sus. În momentul în care ajunge la jumătate din înălțimea maximă are o viteză de 10m/s. Dacă $g = 10\text{m/s}^2$, înălțimea maximă este: (8 pct.)
 - a) 10m; b) 100m; c) 15m; d) 25m; e) 5m; f) 20m.

- Prin conectarea unui rezistor având rezistența de 1,4 kΩ la o sursă de curent continuu, intensitatea curentului prin circuit devine de 29 ori mai mică decât intensitatea curentului de scurtcircuit. Rezistența internă a sursei este: (8 pct.)
 - a) 0.1Ω ; b) 5Ω ; c) 1Ω ; d) 10Ω ; e) 50Ω ; f) 2Ω .
- 10. Două becuri electrice pe care scrie "40W, 220V" și "100W, 220V" sunt legate în serie și alimentate la tensiunea de 220V. Puterea consumată în total de cele două becuri este: (6 pct.)

a)
$$\frac{200}{7}$$
 W; b) $\frac{220}{7}$ W; c) $\frac{100}{7}$ W; d) $\frac{500}{7}$ W; e) $\frac{400}{7}$ W; f) $\frac{120}{7}$ W.

- 11. Un corp cu masa de 2kg este lansat în sus de-a lungul unui plan înclinat cu viteza inițială de 4m/s. Corpul revine la baza planului înclinat cu o viteză egală cu jumătate din viteza inițială. Valoarea absolută a lucrului mecanic efectuat în timpul mișcării de forța de frecare dintre corp și plan este: (6 pct.)
 - a) 15J; b) 8J; c) 12J; d) 16J; e) 4J; f) 10J.
- 12. Ecuația de mișcare a unui mobil este $x(t) = 2 + 6t t^2$, în care mărimile fizice sunt exprimate în SI. După cât timp viteza mobilului este egală cu o treime din viteza sa inițială? (6 pct.)
 - a) 1,5s; b) 10s; c) 1s; d) 3s; e) 4s; f) 2s.
- 13. Un corp cu masa de 50kg este tras pe o suprafață orizontală de către o forță F care acționează sub unghiul $\alpha = 60^{\circ}$ față de verticală. Dacă corpul se deplasează cu frecare, având viteza constantă și sunt cunoscute valorile $g = 10 \text{m/s}^2$, $\mu = \frac{\sqrt{3}}{7}$, atunci valoarea forței F este: (4 pct.)
 - a) 250N; b) 225N; c) 150N; d) 500N; e) 125N; f) 100N.
- 14. Legea inducției electromagnetice are următoarea expresie: (4 pct.)

a)
$$e = -\Delta \Phi \cdot \Delta t$$
; b) $e = \sqrt{\frac{\Delta \Phi}{\Delta t}}$; c) $e = -\frac{1}{2} \frac{\Delta \Phi}{\Delta t}$; d) $e = \frac{1}{2} \frac{\Delta \Phi}{\Delta t}$; e) $e = -\frac{\Delta \Phi}{\Delta t}$; f) $e = \frac{\Delta \Phi}{\Delta t}$.

- 15. Impulsul unui corp este de 10N s iar energia sa cinetică de 10J. Masa corpului este: (4 pct.)
 - a) 6kg; b) 1kg; c) 14kg; d) 10kg; e) 15kg; f) 5kg.
- 16. Unitatea de măsură pentru randament este: (4 pct.)

a)
$$\frac{J \cdot s}{kg \cdot m}$$
; b) $\frac{J \cdot s^2}{kg \cdot m^2}$; c) W; d) $J \cdot s$; e) $\frac{N \cdot m}{J \cdot s}$; f) J.

17. Dacă L este lucrul mecanic efectuat de o sursă electrică pentru deplasarea sarcinii q pe întregul circuit, atunci definiția tensiunii electromotoare a sursei este: (4 pct.)

a)
$$E = \sqrt{\frac{L}{q}}$$
; b) $E = \frac{L}{q}$; c) $E = L \cdot q$; d) $E = \frac{L}{q^2}$; e) $E = \frac{L}{\sqrt{q}}$; f) $E = L \cdot q^2$.

- 18. U solenoid cu lungimea de 10cm având 1000 spire și permeabilitatea magnetică a miezului $\mu_0 = 4\pi \cdot 10^{-7} \, \text{N/A}^2$, este parcurs de un curent cu intensitatea de 1A. Inducția câmpului magnetic în interiorul său este: (4 pct.)
 - a) 0,001T; b) $4\pi \cdot 10^{-5}$ T; c) $4\pi \cdot 10^{-4}$ T; d) $4\pi \cdot 10^{-3}$ T; e) 0,02T; f) $4\pi \cdot 10^{-7}$ T.