انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																					يباچي	. کاد	اب	بلی کتا ہلی کتا	یپ	مير
1																																		ات	سياو	رقی.	ه تفر	ىساد	اول	رجه ا	,	1
2																																				i.	ئە نە	نمو		1.1		
13																	ر_	پوا	· يب	تر ک	اور	ست	ماسم	ن ک	بدا	ا_م	ب لب	مط	إنى َ	بىٹر يا	جيو م	1 کا	y'	_	f	(x	, y)		1.2		
22																														ت	باوار	: ي مس	فر ق	ره ^ت	۔ کی سا	بحد گ	ل ^ع ا	قال		1.3	,	
40																																					می سا			1.4	ļ	
52																																			- /		ئ سا			1.5	,	
70																																					و ی			1.6)	
74																								ئيت	يكتأ	اور	يت	جود) وج	ل ک	ے: ف:	وات	مسا	ر قی	ن تفر	قيمت	رائی	ابتا		1.7	7	
81																																		ات	ساو	ق.	ه تفر	ى ساد	روم	ر جه ۱	,	2
81																														- (.;					نس			2.1		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·				- /					ن نقل	•		$\frac{2.1}{2.2}$		
98 113																											هر د	נס	ساد	U		•		_			**			$\frac{2.2}{2.3}$		
113	•	•	•	•	•	•	•	•	•															٠			٠	څ	•	•							ر فيء سي					
																																					ر نلد رکون ^ا			2.4		
134																																				-		••		2.5		
143																																								2.6		
152																													٠											2.7		
164																													•						_		کاار			2.8	5	
																						•				_	ي کمک	مع	-,	**					•		2.8					
174																						:			٠,	;	٠.		•				تى	نه	بانمو	ار کح	ن ن اد و	برا		2.9		
185	•				•	•	•	•	•	•	•		•				Ĺ	احل	ت کا	وار	سياه	رقی.	تفر	ساده	کمی س	2)	فإنسر	رمتح	غير	سے	يقي	طر	کے	لنے	مبد	علوه	رارم	مق	2	.10)	
193																																٠	وات	مساو	, قی	ه تفر	ىساد	خطح	. جي	بند در	ļ	3
193																														, .	• ارد						نس			3.1		-
205																								ت	ماوار	سەل	فرق	ده ت	ساد				- /			-	نقل نقل	•		3.2		

iv

غير متجانس خطی ساده تفرقی مساوات	3.3	
مقدار معلوم ہولنے کے طُریقے سے غیر متجانس خطی سادہ تفرقی مساوات کا حل بریریں ہے۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔	3.4	
تی مساوات	نظامِ تفر	4
قالب اور سمتىيە كے بنیادی حقائق	4.1	
سادہ تفرقی مساوات کے نظام بطورانجینئری مسائل کے نمونے	4.2	
نظر به نظام ساده تفرقی مساوات اور ورونسکی	4.3	
4.3.1 خطی فطام		
متنقل عددی سروالے نظام سطح مرحله کی ترکیب	4.4	
ں عدوق مروات تھا ہے۔ ن مرحلیہ معیار داشتھکام	4.5	
تفظ فا س کے جابی پریان فاصمہ معیار المحکام		
	4.6	
4.6.1 سطح حرکت پرایک در جی مساوات میں تبادلہ		
سادہ تفرقی مساوات کے غیر متجانس خطی نظام	4.7	
4.7.1 نامعلوم عددی سر کی ترکیب		
سل سے ساوہ تفرِ تی مساوات کا حل۔اعلٰی نفاعل	طاقتي تشك	5
تركيب طاقتي شكسل	5.1	
ليراندر ميادات ليراندر كثير ركني	5.2	
مبسوط طاقتی شکیل به ترکیب فروبنیوس	5.3	
5.3.1 عملی استعال		
مباوات بيسل اور ميسل تفاعل	5.4	
بىيل تفاعل كى دوسرى قشم به عموى حل	5.5	
نادلہ 385	لا يلاس:	6
ې د په لايلاس بډل-الځ لايلاس بډل- خطيت	6.1	Ü
ت ما الله الله الله الله الله الله الله ا	6.2	
s محور پر منتقلی ، t محور پر منتقلی ، اکائی سیر هی تفاعل	6.3	
ئى يىراكىۋىلغانى نقاعل-اكانى شرې نقاعل- جزوى كىرى چىيلاو	6.4	
- الجماو	6.5	
لاً پلاس بدل کی تکمل اور تفرق ـ متغیر عددی سر والے سادہ تفر قی مساوات	6.6	
ت تفر قی مساوات کے نظام	6.7	
۔ لایلائن بدل کے عمومی کلیے ۔	6.8	
• •		
را-سمتيات 477	خطىالجبر	7
قالبي ضرب آ	7.2	
7.2.1 تىدىلى محل		

508 519 527					 									ی .	ورب	ارص	ينهو	ف	٥	7.3	3.1			
377																					ت	ما فی ثبو	اض	1
381 381																	ت	ساوار	ے.			فيد معلو . ب		

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سختالی الفاظ ہی استعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سخے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الکیٹر یکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہال کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

201<u>1</u> توبر 201<u>1</u>

باب7

خطى الجبرا لهمتيات

خطی الجبرا وسیع مضمون ہے جس میں قالب اور سمتیات، مقطع قالب، خطی مساوات کے نظام، سمتی فضا اور خطی تادلہ، آنگنی قیمت مسائل، اور دیگر موضوعات شامل ہیں۔اس کا استعال انجیئئری، طبیعیات، جیومیٹری، کمپیوٹر سائنس، معاشیات اور دیگر میدانوں میں پایا جاتا ہے۔

متعدد اعداد و شاریا متعدد تفاعل کو مربوط طریقے سے قالب 1 اور سمتیات 2 کی مدد سے ظاہر کیا جاتا ہے۔ قالب اور سمتیات ہی خطی الجبرا کی زبان ہیں۔

matrices¹ vectors²

7.1 قالب اور سمتیات مجموعه اور غیر سمتی ضرب

مستطیلی ترتیب وار فہرست کو قالب کہتے ہیں۔درج ذیل قالب کی مثال ہیں۔قالب میں درج اعداد یا تفاعل کو قالب کے اندراجات یا قالب کے ارکان³ کہتے ہیں۔

(7.1)
$$\begin{bmatrix} 0.1 & -2 & 1.2 \\ -6 & 0 & 23 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \begin{bmatrix} \ln x & -e^x \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}, \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ e^{3x} & 3.2x^2 \end{bmatrix}$$

ایسا قالب جو صرف ایک عدد صف یا صرف ایک عدد قطار پر مشتمل ہو، سمتیہ 7 کہلاتا ہے۔ یوں نجلے دائیں ہاتھ دو ارکان پر مشتمل سمتیہ قطار 8 پایا جاتا ہے جبکہ نجلے بائیں ہاتھ سمتیہ صف 9 پایا جاتا ہے۔چو ککہ سمتیہ قطار میں کوئی صف نہیں پایا جاتا ہے۔ای طرح سمتیہ صف نہیں پایا جاتا ہے۔ای طرح سمتیہ صف نہیں بھی ارکان کا مقام صرف ایک عدد اشاریہ سے ظاہر کیا جاتا ہے۔ یوں سمتیہ قطار میں $a_1 = 3.22$ اور $a_2 = -\frac{4}{5}$ ہیں۔

عملی استعال میں مواد کے ذخیرہ اور اس پر عمل کرنے میں قالب کار آمد ثابت ہوتے ہیں۔درج ذیل مثال دیکھیں

elements³

 $rows^4$

columns⁵

 $^{{\}rm square\ matrix}^6$

 $vector^7$

column vector⁸

row vector⁹

مثال 7.1: خطی نظام درج ذیل خطبی نظام میں x_2 ، x_1 اور x_3 نا معلوم متغیرات ہیں۔

$$2x_1 + 3x_2 + 2x_3 = 0$$
$$3x_1 - 2x_2 + 4x_3 = 15$$
$$5x_1 + 3x_3 = 11$$

A اور x_3 اور x_3

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 2 \\ 3 & -2 & 3 \\ 5 & 0 & 3 \end{bmatrix}$$

 $a_{32}=0$ ہیں A ہیں پایا جاتا للذا اس کا عددی سر صفر کے برابر ہو گا اور یوں x_2 ہیں x_2 ہیں میاوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A میں مساوات کے دائیں ہاتھ کی معلومات کا اضافہ کرنے سے افزودہ قالب A ماتا ہے۔

$$\tilde{A} = \begin{bmatrix} 2 & 3 & 2 & 0 \\ 3 & -2 & 3 & 15 \\ 5 & 0 & 3 & 11 \end{bmatrix}$$

چونکہ افزودہ قالب \tilde{A} سے تینوں مساوات کھے جا سکتے ہیں للذا دیے گئے خطی نظام کو \tilde{A} مکمل طور ظاہر کرتا ہے۔ یوں ہم \tilde{A} کو حل کرتے ہوئے نا معلوم متغیرات x_2 ، x_1 اور x_3 حاصل کر سکتے ہیں۔ایسا کرنا جلد سمجھایا جائے گا۔ فی الحال تسلی کر لیس کہ اس نظام کا حل x_1 حل x_2 ہے۔ اور x_3 ہے۔

x نا معلوم متغیرات کو x_2 ، x_1 اور x_3 سے ظاہر کرنے کی بجائے دیگر علامتوں سے ظاہر کیا جا سکتا ہے مثلاً x ، y ، y ، y

coefficient matrix¹⁰ augmented matrix¹¹

باب. 7. خطى الجبراد سمتيات

مثال 7.2: فروخت کھاتا

ایک دکان کی تین اشیاء کی ہفتہ وار فروخت درج بالا قالب میں دی گئی ہے۔ ہر ہفتے کی فروخت کو اسی طرح قالبول میں لکھا جا سکتا ہے۔ مہینے کے آخر میں تمام قالبوں کے مطابقتی ارکان کا مجموعہ لینے سے ہر دن، تینوں اشیاء کی کل فروخت کی فہرست حاصل ہو گی۔

عمومي تصورات اور علامت نوليي

آئیں اب تک پیش کیے گئے تصورات کو با ضابطہ دستوری صورت دیں۔ ہم موٹی کھھائی میں لاطینی حروف تہی کے بڑے حروف سے قالب کو ظاہر کریں گے مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A ہنگا ہم مثلاً A وغیرہ۔اییا قالب جس میں A صف اور یا اس کو چکور قوسین میں عمومی رکن سے ظاہر کریں گے مثلاً A وغیرہ۔اییا قالب جس میں میں A صف اور یعد میں قطار آئے گا) اور A تالب کی جسامت A کہلاتی ہے۔یوں A تالب کی صورت کا ہو گا۔

(7.2)
$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

مساوات 7.1 میں بالائی بائیں قالب 2×3 جسامت کا ہے جبکہ نچلا بایاں قالب 3×1 جسامت کا ہے۔ $\frac{1}{1}$

مساوات 7.2 میں ہر رکن کو دو عدد اشاریہ سے پیچانا جاتا ہے جہاں پہلا اشاریہ صف اور دوسرا اشاریہ قطار ہے۔یوں a23 دوسرے صف اور تیسرے قطار پر موجود اندراج ہے۔

 a_{22} ، a_{11} پر میں m=n ہو m>0 چکور قالب کہلاتا ہے۔ چکور قالب کا وہ وتر جس پر m=n ایسا قالب جس مرکزی وتر a_{11} کا مرکزی وتر a_{11} کا مرکزی وتر a_{11} کا مرکزی وتر a_{11} کا مرکزی وتر a_{12} دوسرے چکور قالب کے مرکزی وتر کے ارکان a_{22} ، a_{11} اور a_{22} ، a_{22} ، a_{23} بیں۔ جیسا ہم دیکھیں گے، چکور قالب نہایت اہم ہیں۔ a_{22}

ایا قالب جس میں $n \neq m$ ہو $m \times n$ مستطیل 14 قالب کہلاتا ہے۔ مستطیل قالب کی ایک مخصوص قسم چور قالب ہے۔

سمتيات

$$\boldsymbol{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2 & -3 & 0 & 4.2 & \frac{3}{5} \end{bmatrix}$$

اسی طرح سمتیہ قطار کی مثالیں درج ذیل ہیں۔

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix}, \qquad d = \begin{bmatrix} 2 \\ -1 \\ 2.3 \end{bmatrix}$$

سمتہ صف $m \times n$ جامت کے قالب $m \times n$

$$(7.3) A = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$

main diagonal¹³ rectangular matrix¹⁴

components¹⁵

باب. 5. خطي الجبرار سمتيات

تصور کیا جا سکتا ہے جہاں b_1 تا b_n از خود m جسامت کے سمتیہ قطار

(7.4)
$$b_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, b_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \quad \cdots \quad b_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

ہیں۔اسی طرح A کو m جسامت کا سمتیہ قطار

(7.5)
$$A = \begin{bmatrix} c_1 \\ c_2 \\ \vdots c_m \end{bmatrix}$$

تصور کیا جا سکتا ہے جہاں c_1 تا c_n از خود n جسامت کے سمتیہ صف ہیں۔

(7.6)
$$c_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$

$$c_{2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$

$$\vdots$$

$$c_{m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

مجموعه اور غير سمتى ضرب

آئیں قالب مساوی ہونے کی تصور جانتے ہیں۔

تعریف: دو قالب A اور B اس صورت مساوی ہوں گے جب دونوں قالب کی جسامت برابر ہو اور ان کے نظیری ارکان آپس میں برابر ہوں لیعنی قالب مختلف $a_{12}=b_{12}$ ، $a_{11}=b_{11}$ نظیری ارکان آپس میں برابر ہوں لیعنی قالب ہر صورت مختلف ہوں گے۔مساوات کا تعلق A=B کھا جاتا ہے۔

 $^{-}$ different 16

مثال 7.3: قالبول کی مساوات اگر درج ذیل قالب مساوی ہوں

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 vi $B = \begin{bmatrix} 2 & -3 \\ 0 & 3.2 \end{bmatrix}$

A=B اور $a_{22}=3.2$ ہوں گے اور ہم A=B کھ سکت $a_{21}=0$ ، $a_{12}=-3$ ، $a_{11}=2$ ہیں۔ ردرج ذیل تمام قالب آپس میں مختلف ہیں۔

$$\begin{bmatrix} 2 & 7 \\ 5 & 1 \end{bmatrix} \quad \begin{bmatrix} 5 & 1 \\ 2 & 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} \quad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

تعریف: قالبوں کا مجموعہ دو کیساں جسامت کے قالب $A=[a_{jk}]$ اور $B=[b_{jk}]$ ور کیساں جسامت کے قالب $A=[a_{jk}]$ اور B اور B کے نظیری ارکان کے مجموعے سے حاصل کیا جائے گا۔ دو مختلف جسامت کے قالبوں کا مجموعہ حاصل کرنا نا ممکن ہے۔

مثال 7.4: اگر

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & -2 \\ 3 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 3 & 0 \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}, \quad a = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

a+b ، a+B واور a+b ماصل کریں۔

با___7. خطى الجبرار سمتيات

حل: چونکہ A اور B کی کیساں جسامت ہے لہذا انہیں جمع کیا جا سکتا ہے۔ مجموعہ درج ذیل ہو گا۔

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 2+7 & -1+3 & 3+0 \\ 1+1 & 0+2 & -2+1 \\ 3+2 & 2-1 & 1+3 \end{bmatrix} = \begin{bmatrix} 9 & 2 & 3 \\ 2 & 2 & -1 \\ 5 & 1 & 4 \end{bmatrix}$$

اسی طرح چونکہ a اور b کی جسامت کیسال ہے لہذا انہیں جمع کیا جا سکتا ہے۔ ان کا مجموعہ درج ذیل ہے۔

$$a+b = \begin{bmatrix} 1+0\\3+2\\-2+1 \end{bmatrix} = \begin{bmatrix} 1\\5\\-1 \end{bmatrix}$$

چونکہ A اور b کی جمامت کیسال نہیں ہے لہذا a+b حاصل نہیں کیا جا سکتا ہے۔

تعریف: غیر سمتی ضرب

کسی جمی c کا حاصل ضوب c کا حاصل ضوب c کسا جاتا $m \times n$ مقدار (عدد) کسی جمی $m \times n$ تالب $m \times n$ تالب $m \times n$ ورکسی جمی غیر سمتی مقدار (عدد) $m \times n$ تالب $m \times n$ تالب $m \times n$ تالب $m \times n$ جم کا ہر رکن $m \times n$ کا مر کسی جاتا ہے۔

> ثال 7.5: غير سمتی ضرب گر

$$\mathbf{A} = \begin{bmatrix} 1.2 & 3.3 \\ 0.6 & -1.5 \\ 0 & 6.0 \end{bmatrix}$$

 $difference^{17}$

ہو تب درج ذیل لکھے جا سکتے ہیں۔

$$-\mathbf{A} \begin{bmatrix} -1.2 & -3.3 \\ -0.6 & 1.5 \\ 0 & -6.0 \end{bmatrix}, \quad \frac{10}{3}\mathbf{A} = \begin{bmatrix} 4 & 11 \\ 2 & -5 \\ 0 & 20 \end{bmatrix}, \quad 0\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

اگر قالب B میں مختلف اشیاء کی کلو گرام کمیت درج ہو تب 1000 قالب انہیں اشیاء کی کمیت گرام میں دے گا۔

مجموعه قالب اور غير سمتی ضرب کے قواعد

مجموعہ اعداد کے قواعد سے یکسال جسامت $m \times n$ کے قالبوں کے مجموعے کے درج ذیل قاعدے حاصل ہوتے ہیں۔

$$($$
الف) $A+B=B+A$

$$(7.7) \qquad (A+B)+C=A+(B+C) \qquad ($$
خب $($ خب $)$ $A+B+C$ $)$ $($ خب $)$ $A+0=A$ $)$ $($ خب $)$ $A-A=0$

ورج بالا موٹی کھائی میں صفر $oldsymbol{0}$ ایسے $m \times n$ صفر قالب 18 کو ظاہر کرتی ہے جس کے تمام ارکان صفر $m \times n$ کے برابر ہوں۔اگر m = 1 یا m = 1 ہو تب اس کو صفو سمتیہ 19 کہیں گے۔

يول مجموعه قالب قانون تبادل اور قانون تلازم پر پورا اترتا ہے۔

اسی طرح غیر سمتی ضرب درج ذیل قواعد پر پورا اترتا ہے۔

(7.8)
$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$(\mathbf{c} + k)\mathbf{A} = c\mathbf{A} + k\mathbf{B}$$

$$(\mathbf{c} + k)\mathbf{A} = (ck)\mathbf{A} \qquad (\mathbf{c} + k)\mathbf{A}$$

$$(\mathbf{c} + k)\mathbf{A} = (ck)\mathbf{A} \qquad (\mathbf{c} + k)\mathbf{A}$$

$$(\mathbf{c} + k)\mathbf{A} = (ck)\mathbf{A} \qquad (\mathbf{c} + k)\mathbf{A}$$

$$(\mathbf{c} + k)\mathbf{A} = \mathbf{A}$$

zero $matrix^{18}$ zero $vector^{19}$

سوالات

اور $[a_{12}]$ اور $[a_{12}]$ مثال 7.2 عمومی سوالات ہیں۔ سوال 7.1: $[a_{jk}]$ اور $[a_{12}]$ اور $[a_{12}]$ مثال 7.2 میں سوالات ہیں۔ $[a_{25}]$

 $[a_{25}] = 0$ اور $[a_{12}] = 23$ جوابات:

سوال 7.2: مثال 7.2 میں دیے گئے قالب کی جسامت ککھیں۔

جواب: 7 × 3

سوال 7.3: مثال 7.4 میں قالب A کی مرکزی وتر تکھیں۔

جواب: 2 ، 0 اور 1

سوال 7.4 تا سوال 7.10 میں قالبوں کے مجموعے اور غیر سمتی ضرب حاصل کرنے ہوں گے۔ان سوالات میں درکار قالب درج ذیل ہیں۔

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 2 & 3 \\ 0 & 4 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 \\ 6 & -2 \\ 4 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 4 \\ 2 & 2 \\ -1 & 3 \end{bmatrix}$$
$$E = \begin{bmatrix} 4 & 0 \\ 12 & -4 \\ 8 & 4 \end{bmatrix}, \quad u = \begin{bmatrix} 2.2 \\ 1.0 \\ 0.0, \end{bmatrix} \quad v = \begin{bmatrix} 1.1 \\ 0.5 \\ 0.0 \end{bmatrix}, \quad w = \begin{bmatrix} 2.0 \\ 1.6 \\ 3.2 \end{bmatrix}$$

-2u ، 0.2B ، 0.5A :7.4 سوال

جوابات:

$$0.5\mathbf{A} = \begin{bmatrix} 0.5 & 0 & 1.0 \\ 1.5 & -0.5 & 0.5 \\ 1.0 & 0.5 & 0 \end{bmatrix}, \quad 0.2\mathbf{B} = \begin{bmatrix} 0.4 & 0 & 0.6 \\ -0.2 & 0.4 & 0.6 \\ 0 & 0.8 & 0.2 \end{bmatrix}, \quad -2\mathbf{u} = \begin{bmatrix} -4.4 \\ -2.0 \\ 0 \end{bmatrix}$$

3A + 2B, 2C - E, -3u + v - 2w :7.5 سوال

جوابات:

$$\begin{bmatrix} 7 & 0 & 12 \\ 7 & 1 & 9 \\ 6 & 11 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} -9.5 \\ -5.7 \\ -6.4 \end{bmatrix}$$

 $(3 \cdot 6)B$, 6(3)B, 5A - 3A :7.6 سوال جوابات:

$$\begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \quad \begin{bmatrix} 18 & 0 & 36 \\ 54 & -18 & 18 \\ 36 & 18 & 0 \end{bmatrix}, \quad \begin{bmatrix} 2 & 0 & 4 \\ 6 & -2 & 2 \\ 4 & 2 & 0 \end{bmatrix}$$

3(2C+5D), 0.2(0.1E-0.3D) :7.7 عوالت:

$$\begin{bmatrix} 12 & 60 \\ 66 & 18 \\ 9 & 57 \end{bmatrix}, \begin{bmatrix} 0.08 & -0.24 \\ 0.12 & -0.2 \\ 0.22 & -0.1 \end{bmatrix}$$

E + (D + C), (D + E) + C, A + C, 0B + D :7.8 سوال جوابات: چونکه A اور C کی جسامت کیسال نہیں ہے لہذا آنہیں جمع نہیں کیا جا سکتا ہے۔ غیر کیسال جسامت کی بنا B + D بنا B + D بنا رکھی حاصل نہیں کیا جا سکتا ہے۔

$$E + (D + C) = (D + E) + C = \begin{bmatrix} 6 & 4 \\ 20 & -4 \\ 11 & 9 \end{bmatrix}$$

سوال 7.9: v ، v اور v کو خلاء میں قوت کے اجزاء تصور کرتے ہوئے ان کے مجموعے سے کل قوت دریافت کریں۔

جواب:

با___7. خطى الجبرا يسمتها ___

سوال 7.10: متوازن صورت تمام قوتوں کا مجموعہ صفر کے برابر ہونے کی صورت کو متوازن²⁰ حال کہتے ہیں۔

ایا قوت x دریافت کریں کہ u ، v ، u اور x متوازن حال میں ہوں۔

$$x = \begin{bmatrix} -5.3 \\ -3.1 \\ -3.2 \end{bmatrix}$$

7.2 قالبي ضرب

قالبی ضرب سے مراد دو عدد قالبوں کا آپس میں ضرب ہے۔آپ سے گزارش ہے کہ چند مثالیں حل کرتے ہوئے قالبی ضرب کو اچھی طرح سمجھیں۔ قالبی ضرب کی تعریف درج ذیل ہے۔

تعریف: قالبی ضرب تعریف: اور $a = [a_{jk}]$ اور $a = [b_{jk}]$ قالب $a = [a_{jk}]$ کا (ای ترتیب سے) حاصل ضرب $a \times n$ قالب $a \times p$ موگا جس کے $a \times p$ تاربات درج ذیل ہول گے۔ اندراجات درج ذیل ہول گے۔

(7.9)
$$c_{jk} = \sum_{l=1}^{n} a_{jl} b_{lk} = a_{j1} b_{1k} + a_{j2} b_{2k} + \dots + a_{jn} b_{nk}, \quad j = 1, \dots, m \quad k = 1, \dots, p$$

یوں پہلے جزو A میں قطاروں کی تعداد n دوسرے جزو B کی صفوں کی تعداد p کے برابر ہونا لاز می p کے جرمیاوات 7.9 میں p کو p کے p صف کے ہر رکن کو p قطار کے نظیری رکن سے ضرب p وعنا p وع

7.2. قالبي ضرب

دیتے ہوئے تمام n حاصل ضرب کا مجموعہ لینے سے حاصل کیا جاتا ہے۔ ہم کہتے ہیں صف ضوب قطار سے قالبی ضرب حاصل کیا جاتا ہے۔ قالبی ضرب n=3 کی صورت میں درج زیل ہو گا

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \\ c_{41} & c_{42} \end{bmatrix}$$

جہاں A کی پہلی صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{11} حاصل ہو گا۔ ای طرح A کی پہلی صف کے ارکان کو B کی دوسری قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{12} حاصل ہو گا اور A کی دوسری صف کے ارکان کو B کی پہلی قطار کے نظیری ارکان سے ضرب دیتے ہوئے تمام کا مجموعہ لینے سے c_{21} حاصل ہو گا۔ اس عمل کو درج ذیل کھا جائے گا۔

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

چونکہ سمتیہ در حقیقت قالب کی مخصوص صورت ہے للذا قالب اور سمتیہ کا ضرب بھی بالکل اسی طرح حاصل کیا جائے گا۔ قابی ضرب کی چند مثالیں درج ذیل ہیں۔

مثال 7.6: قالبی ضرب

$$\begin{bmatrix} 1 & 3 \\ 4 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 9 & 7 \\ 8 & 10 \end{bmatrix} = \begin{bmatrix} 1 \cdot 9 + 3 \cdot 8 & 1 \cdot 7 + 3 \cdot 10 \\ 4 \cdot 9 + 6 \cdot 8 & 4 \cdot 7 + 6 \cdot 10 \\ 5 \cdot 9 + 2 \cdot 8 & 5 \cdot 7 + 2 \cdot 10 \end{bmatrix} = \begin{bmatrix} 33 & 37 \\ 84 & 88 \\ 61 & 55 \end{bmatrix}$$

باب. 7. خطى الجبراد سمتيات

مثال 7.7: قالب اور سمتیه کا ضرب

$$\begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 4 + 1 \cdot 5 \\ 3 \cdot 4 + 0 \cdot 5 \end{bmatrix} = \begin{bmatrix} 13 \\ 12 \end{bmatrix} \qquad \text{if} \qquad \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} = \text{otherwise}$$

درج بالا میں قالب اور سمتیہ کی جگہ تبدیل کرنے سے پہلے جزو کی قطاروں اور دوسرے جزو کی صفوں کی تعداد کیساں نہیں رہتی لہٰذا ایبا ضرب نا ممکن ہے۔ یوں ضروری نہیں ہے کہ AB اور BA برابر ہوں اور یہ کہ دونوں ضرب کا حصول ممکن ہو۔

سوال 7.11:

$$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 0 \\ -4 & -2 & -6 \end{bmatrix}$$

آپ نے دیکھا کہ سمتیات کی جگہ تبدیل کرنے سے حاصل ضرب تبدیل ہوتا ہے لینی قالبی ضوب قانون تبادل پو پورا نہیں اترتا۔

مثال AB
eq BA قالبی ضرب قانون تبادل پر پورا نہیں اترتا للذا عموماً مثال $AB \neq BA$ ہو گا

$$\begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 200 & 200 \end{bmatrix} = \begin{bmatrix} 199 & 199 \\ -199 & -199 \end{bmatrix}$$

آپ نے دیکھا کہ قالبی ضرب میں اجزاء کی جگہ تبدیل نہیں کی جاسکتی ہے۔اس کے علاوہ قالبی ضرب، عام اعدادی ضرب کے درج ذیل قواعد پر پورا اترتا ہے۔

(7.10)
$$(kA)B = k(AB) = A(kB) \quad (kAB \ \ AkB)$$

$$((7.10) \quad (ABC) = (AB)C \quad (\mathring{\mathcal{G}}^{J} ABC)$$

$$((7.10) \quad (A+B)C = AC + BC$$

$$((7.10) \quad (C(A+B) = CA + CB)$$

درج بالا میں k کوئی عدد ہے اور یہ قواعد اس صورت درست ہوں گے کہ بائیں ہاتھ کے قالب، قالبی ضرب کی تحریف پر پورا اترتے ہوں۔ درج بالا میں مساوات-ب قانون تلازہ 21 کہلاتا ہے جبکہ مساوات-پ اور مساوات-ت قانون تقسیم 22 کہلاتا ہے۔

چونکہ قالبی ضرب صف ضرب قطار کو کہتے ہیں للذا مساوات 7.9 کو زیادہ خوش اسلوبی سے درج ذیل کھا جا سکتا ہے $c_{jk} = a_j b_k, \quad j = 1, \cdots, m \quad k = 1, \cdots, p$ جہاں a_j قالب a_j کا صف a_j قالب a_j کا قطار a_j کا صف a_j کا صف a_j کا صف و درج دیل کھا جا سکتا ہے۔

$$a_j b_k = \begin{bmatrix} a_{j1} & a_{j2} & \cdots & a_{jn} \end{bmatrix} \begin{bmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{nk} \end{bmatrix} = \begin{bmatrix} a_{j1} b_{1k} + a_{j2} b_{2k} + \cdots + a_{jn} b_{nk} \end{bmatrix}$$

مثال 7.9: صف اور قطار سمتیہ کی صورت میں ضرب ارکان $m{A}=[a_{jk}]$ وضرب دینے سے درج کھا جا سکتا ہے۔ $m{A}=[a_{jk}]$ قالب $m{A}=[a_{jk}]$ اور $m{A}=[a_{jk}]$ قالب نظام ہے۔

(7.12)
$$AB = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 & a_1b_4 \\ a_2b_1 & a_2b_2 & a_2b_3 & a_2b_4 \\ a_3b_1 & a_3b_2 & a_3b_3 & a_3b_4 \end{bmatrix}$$

associative law^{21} distributive law^{22}

مثال 3:7.10 مثال $\mathbf{B} = [b_{jk}]$ اور $\mathbf{A} \times \mathbf{A}$ اور $\mathbf{A} = [a_{jk}]$ ورج ذیل ہیں۔ ماوات $\mathbf{A} = [a_{jk}]$ عاصل کریں۔ $\mathbf{A} = [a_{jk}]$ عاصل کریں۔

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 2 & 1 & 2 \\ 1 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

 $a_3=[3 \quad 2 \quad 1]$ اور $a_2=[2 \quad 1 \quad 1]$ ، $a_1=[1 \quad 0 \quad 2]$ بین لول درج $a_3=[3 \quad 2 \quad 1]$ اور الحما جا سکتا ہے۔

$$a_1b_1 = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = 2 + 0 + 4 = 6$$

اسی طرح بقایا ارکان حاصل کرتے ہوئے درج ذیل ملتا ہے۔

$$\mathbf{AB} = \begin{bmatrix} 6 & 4 & 7 & 4 \\ 7 & 7 & 5 & 8 \\ 10 & 11 & 6 & 13 \end{bmatrix}$$

قالبى ضرب بذريعه كمپيوٹر

مساوات 7.12 کو ذرہ مختلف طریقے سے لکھتے ہیں۔ A کو جوں کا توں جبکہ B کو سمتیہ قطار کی صورت میں لکھتے ہوئے درج ذیل ماتا ہے۔

(7.13)
$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

7.2. قالبي ضرب ...

متعدد متوازی جڑے کمپیوٹر کو علیحدہ علیحدہ b_1 ، b_2 ، b_3 یا آنہیں کئی کئی علیحدہ سمتیہ قطار فراہم کیے جاتے ہیں اور ساتھ ہی تمام کو A بھی فراہم کیا جاتا ہے۔ یوں قالبی ضرب کے اجزاء Ab_1 ، Ab_2 ، Ab_3 ہوتے ہیں۔ Ab_p

مثال 7.11: درج ذیل کو مساوات 7.13 کی مدد سے حل کریں۔

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 7 \\ -1 & -1 & -1 \end{bmatrix}$$

حل: مساوات 7.13 سے قالبی ضرب کے قطار حاصل کرتے ہیں جنہیں ایک ہی قالب میں کیجا کرتے ہوئے درج بالا جواب ملتا ہے۔

$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

خطى تبادل اور قالبى ضرب

دو متغیرات پر مبنی خطی تبادل درج ذیل لکھا جانا ہے

(7.14)
$$y_1 = a_{11}x_1 + a_{12}x_2 y_2 = a_{21}x_1 + a_{22}x_2$$

جس کو سمتیات کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(7.15)
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix}$$

اب اگر x_1x_2 نظام ازخود w_1w_2 پر مبنی ہو یعنی

(7.16)
$$x_1 = b_{11}w_1 + b_{12}w_2 x_2 = b_{21}w_1 + b_{22}w_2$$

١

(7.17)
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Bw = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} b_{11}w_1 + b_{12}w_2 \\ b_{21}w_1 + b_{22}w_2 \end{bmatrix}$$

تب y_1y_2 نظام بالواسطه w_1w_2 پر مبنی ہو گا۔ آئیں اس تعلق کو جانیں۔

مساوات 7.14 میں مساوات 7.16 استعال کرتے ہوئے

$$y_1 = a_{11}(b_{11}w_1 + b_{12}w_2) + a_{12}(b_{21}w_1 + b_{22}w_2)$$

$$= (a_{11}b_{11} + a_{12}b_{21})w_1 + (a_{11}b_{12} + a_{12}b_{22})w_2$$

$$y_2 = a_{21}(b_{11}w_1 + b_{12}w_2) + a_{22}(b_{21}w_1 + b_{22}w_2)$$

$$= (a_{21}b_{11} + a_{22}b_{21})w_1 + (a_{21}b_{12} + a_{22}b_{22})w_2$$

لعيني

(7.18)
$$y_1 = c_{11}w_1 + c_{12}w_2 y_2 = c_{21}w_1 + c_{22}w_2$$

ملتا ہے جہاں

(7.19)
$$c_{11} = a_{11}b_{11} + a_{12}b_{21}, \quad c_{12} = a_{11}b_{12} + a_{12}b_{22}$$
$$c_{21} = a_{21}b_{11} + a_{22}b_{21}, \quad c_{22} = a_{21}b_{12} + a_{22}b_{22}$$

لیا گیا ہے۔اس تعلق کو سمتیات کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(7.20)
$$\mathbf{y} = C\mathbf{w} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} c_{11}w_1 + c_{12}w_2 \\ c_{21}w_1 + c_{22}w_2 \end{bmatrix}$$

C = AB عاصل کرتے ہوئے ثابت کریں کہ AB ہے۔

(7.21)
$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix} = \mathbf{C}$$

 7.2. قالبي ضر___

7.2.1 تبديلي محل

قالب کے صفوں کو بطور قطار (یعنی قطاروں کو بطور صف) لکھ کر تبدیل محل قالب 23 حاصل ہوتا ہے اور اس عمل کو 24 کہتے ہیں۔ سمتیہ کی تبدیل محل بھی اسی طرح کی جاتی ہے۔ اس طرح قالب کا صف، تبدیل محل قالب کا قالب کا قطار ہو گا اور یو نہی قالب کا قطار ، تبدیل محل قالب کا صف ہو گا۔ چکور قالب کے ارکان کا مرکزی و تر میں "عکس" لینے سے بھی تبدیل محل قالب حاصل ہو گا۔ مرکزی و تر کے دونوں اطراف یکساں مقامات پر ارکان کی آپس میں جگہ تبدیل کریں گے، اور تبدیل کریں گے، اور تبدیل کریں گے، اور a_{13} آپس میں جگہ تبدیل کریں گے، وغیرہ و غیرہ و قیرہ و قالب کہ سے حاصل تبدیل محل قالب کو A^T سے ظاہر کیا جائے گا۔ درج ذیل مثال دیکھیں۔

مثال 7.12: تبدیل محل قالب A^T کا تبدیل محل A^T درج ذیل ہے۔

$$A = \begin{bmatrix} 5 & 1 & -2 \\ 3 & 6 & 4 \end{bmatrix}, \quad A^T = \begin{bmatrix} 5 & 3 \\ 1 & 6 \\ -2 & 4 \end{bmatrix}$$

درج بالا کو درج ذیل بھی لکھا جا سکتا ہے۔

$$\begin{bmatrix} 5 & 1 & -2 \\ 3 & 6 & 4 \end{bmatrix}^T = \begin{bmatrix} 5 & 3 \\ 1 & 6 \\ -2 & 4 \end{bmatrix}$$

چور قالب اور اس کا تبدیل محل درج ذیل ہیں۔ چور قالب اور اس کے تبدیل محل قالب میں مرکزی وتر کے ارکان جگہ تبدیل نہیں کرتے ہیں۔

$$\begin{bmatrix} 5 & -2 & 6 \\ 7 & 1 & 0 \\ 4 & 8 & 3 \end{bmatrix}^{T} = \begin{bmatrix} 5 & 7 & 4 \\ -2 & 1 & 8 \\ 6 & 0 & 3 \end{bmatrix}$$

transpose matrix²³ transposition²⁴ باب. 7. خطى الجبرار سمتيات

سمتیه صف کا تبدیل محل، سمتیه قطار ہو گا اور یو نہی سمتیہ قطار کا تبدیل محل، سمتیہ صف ہو گا۔

$$\begin{bmatrix} 3 & 7 & -1 \end{bmatrix}^T = \begin{bmatrix} 3 \\ 7 \\ -1 \end{bmatrix}, \qquad \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix}^T = \begin{bmatrix} 4 & 5 & 2 \end{bmatrix}$$

تبدیل محل کا تبدیل محل اصل قالب ہو گا۔

$$\begin{bmatrix} 2 & 1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$$

تعریف: قالب اور سمتیہ کا تبدیل محل $n \times m$ قالب $A = [a_{jk}]$ میں کا پہلا قطار، $m \times n$ قالب $A = [a_{jk}]$ کا تبدیل محل $a \times m$ قالب کا دوسرا صف $a \times m$ کا تبدیل محل $a \times m$ درج ذیل ہو گا۔

(7.22)
$$\mathbf{A}^{T} = [a_{kj}] = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

سمتیه صف کا تبدیل محل سمتیه قطار ہو گا جبکه سمتیه قطار کا تبدیل محل سمتیه صف ہو گا۔

بعض او قات قالب اور بعض او قات تبریل محل کے ساتھ کام کرنا زیادہ آسان ثابت ہوتا ہے۔ تبدیلی محل کے قواعد درج ذیل ہیں۔

(رافن)
$$\left(\mathbf{A}^T \right)^T = \mathbf{A}$$

$$(...) \quad (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

$$(...) \quad (c\mathbf{A})^T = c\mathbf{A}^T$$

$$(...) \quad (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

7.2. قالبي ضرب

دھیان رہے کہ مساوات 7.23-ت میں دائیں ہاتھ قالبوں کی ترتیب بائیں ہاتھ کی ترتیب کے الٹ ہے۔سوال 7.25 میں آپ کو درج بالا تعلقات ثابت کرنے کو کہا گیا ہے۔

مثال 7.13: درج ذیل قالب کو استعال کرتے ہوئے مساوات 7.23-ت ثابت کریں۔

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

حل: پہلے مساوات 7.23-ت کا بایاں ہاتھ حاصل کرتے ہیں۔ قالبی ضرب AB لینے کے بعد

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

اس کا تبدیل محل حاصل کرتے ہیں۔

(7.24)
$$(\mathbf{A}\mathbf{B})^T = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} \\ a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

آئیں اب مساوات 7.23-ت کا دایاں ہاتھ حاصل کرتے ہیں۔یوں $oldsymbol{B}^T$ اور $oldsymbol{A}^T$ حاصل کرنے کے بعد

$$m{B}^T = egin{bmatrix} b_{11} & b_{21} \ b_{12} & b_{22} \end{bmatrix}, \quad m{A}^T = egin{bmatrix} a_{11} & a_{21} \ a_{12} & a_{22} \end{bmatrix}$$

ان کا قالبی ضرب لیتے ہیں۔

(7.25)
$$\mathbf{B}^{T}\mathbf{A}^{T} = \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = \begin{bmatrix} b_{11}a_{11} + b_{21}a_{12} & b_{11}a_{21} + b_{21}a_{22} \\ b_{12}a_{11} + b_{22}a_{12} & b_{12}a_{21} + b_{22}a_{22} \end{bmatrix}$$

چو ککہ $a_{11}a_{11}=b_{11}a_{11}$ ، $a_{12}b_{21}=b_{21}a_{12}$ ، $a_{11}b_{11}=b_{11}a_{11}$ ورائیں پوک میں برابر ہیں لہذا ان کے بائیں ہاتھ بھی آلیں میں برابر ہوں گے۔اس طرح مساوات 7.23-ت ثابت موا۔

498 پالېرا سمتيات

مخصوص قالب

چند اقسام کے قالب عملی استعال کے لحاض سے زیادہ اہم ہیں۔ان پر غور کرتے ہیں۔

تشاكلي قالب اور منحرف تشاكلي قالب

ایبا چکور قالب جو اپنے تبدیل محل قالب کے برابر $A=A^T$ ہو تشاکلی 25 قالب کہلاتا ہے۔ایبا قالب جو اپنے تبدیل محل قالب کے نفی کے برابر $A=-A^T$ ہو منحوف تشاکلی 26 قالب کہلاتا ہے۔

(7.26)
$$\mathbf{A} = \mathbf{A}^{T}, \quad (a_{jk} = a_{kj})$$
 $\mathbf{A} = -\mathbf{A}^{T}, \quad (a_{jk} = -a_{kj})$ $a_{jj} = 0)$

مثال 7.14: تشاکلی اور منحرف تشاکلی قالب منحرف تشاکلی اور نہ منحرف تشاکلی ہے۔ A تشاکلی اور نہ منحرف تشاکلی ہے۔

ر شاکل
$$A = \begin{bmatrix} 2 & 7 & 5 \\ 7 & 1 & -2 \\ 5 & -2 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 3 & -1 \\ -3 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix}$

 $\begin{array}{c} {\rm symmetric}^{25} \\ {\rm skew-symmetric}^{26} \end{array}$

7.2. قالبي ضرب

تكونى قالب

بالائی تکونی قالب²⁷اس چکور قالب کو کہتے ہیں جس میں غیر صفر مقدار صرف مرکزی وتر اور اس سے بالائی جانب پائے جاتے ہیں جبکہ مرکزی وتر سے نیچے کی طرف تمام ارکان صفر ہوں۔اسی طرح نچلا تکونی قالب²⁸ اس چکور قالب کو کہتے ہیں جبکہ مرکزی وتر اور مرکزی وتر کے نیچے پائے جاتے ہیں جبکہ مرکزی وتر کے بال کی جانب تمام ارکان صفر کے برابر ہوں۔

مثال 7.15: بالائي تكوني اور نحيلا تكوني قالب

يالا ئى تكونى قالب
$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 3 & -7 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ -1 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

وترى قالب

اییا چکور قالب جس میں غیر صفر ارکان صرف مرکزی وتر پر پائے جاتے ہوں وتری قالب²⁹ کہلاتا ہے۔مرکزی وتر سے ہٹ کر تمام ارکان صفر ہوں گے۔

اگر وتری قالب S کے تمام ارکان یکسال، مثلاً c کے برابر ہوں، تب S غیر سمتی قالب 30 کہلائے گا۔ کسی بھی چور قالب A جس کی جسامت S کی جسامت کے برابر ہو، کا S کے ساتھ قالبی ضرب کا حاصل، غیر سمتی مقدار S اور S کے حاصل ضرب کے برابر ہو گا۔

$$(7.27) AS = SA = cA$$

اییا غیر سمتی قالب جس کے ارکان اکائی I_n کے برابر ہوں اکائی قالب 31 کہلاتا ہے جے I_n یا I_n خاہر کیا

upper triangular matrix²⁷

lower triangular matrix²⁸

 $^{{\}rm diagonal\ matrix}^{29}$

scalar matrix³⁰

 $unit\ matrix^{31}$

900 باب. 7. خطى الجبراد سمتيات

$$(7.28) AI = IA = A$$

I عال تال S اور اکائی قالب D، غیر سمتی قالب S اور اکائی قالب امثال تالب S

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{bmatrix}, \quad S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

مثال 7.17: کارخانے کے اخراحات

ایک کارخانے میں تین اقسام کے کھلونے (الف، ب اور پ) تیار ہوتے ہیں۔ایک کھلونا تیار کرنے کے اخراجات قالب A میں دیے گئے ہیں۔ قالب B ایک ہفتے کی پیداوار دیتا ہے۔ جمع اور جمع رات کے دن تعطیل ہوتی ہے۔ایسا قالب C حاصل کریں جو اس ایک ہفتے میں پیدا کیے گئے کھلونوں پر خرچ اخراجات پیش کرے۔

بفتہ اتوار پیر منگل برھ

$$A = \begin{bmatrix} 200 & 100 & 50 \\ 15 & 12 & 10 \\ 5 & 4 & 2 \end{bmatrix}$$
 فام مال $B = \begin{bmatrix} 13 & 18 & 11 & 19 & 20 \\ 2.0 & 2.2 & 2.3 & 2.1 & 2.2 \\ 0.8 & 0.9 & 1.0 & 1.1 & 0.9 \end{bmatrix}$ ب

7.2. قالبي ضرب

مثال 7.18: امکانی شاریاتی قالب ایک شہر کے رقبے کا استعال <u>2018</u> میں درج ذیل ہے۔

ر باکثی
$$R = 60\%$$
, تجارتی $T = 25\%$, ر باکثی $S = 15\%$

پانچ سالوں میں رقبے کا استعال تبدیل ہو گا۔اس تبدیلی کو درج ذیل امکانی شماریاتی قالب 32 دیتا ہے جو سالہا سال اس شہر کے لئے قابل استعال ہے۔

$$A = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix}$$
 تجارتی کو منتقل $A = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix}$

ورج بالا امکانی شاریاتی قالب A کے تمام ارکان مثبت ہیں جبکہ ہر قطار کے ارکان کا مجموعہ اکائی کے برابر ہو (چونکہ تمام مکنہ امکانات کا مجموعہ اکائی کے برابر ہوتا ہے)۔ پانچ سال بعد 2023 میں رقبے کی تقسیم درج ذیل ہو گی۔

$$y = \begin{bmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.2 & 0.9 \end{bmatrix} \begin{bmatrix} 60 \\ 25 \\ 15 \end{bmatrix} = \begin{bmatrix} 0.8 \cdot 60 + 0.1 \cdot 25 + 0 \cdot 15 \\ 0.2 \cdot 60 + 0.7 \cdot 25 + 0.1 \cdot 15 \\ 0.6 \cdot 60 + 0.2 \cdot 25 + 0.9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 50.5 \\ 31.0 \\ 18.5 \end{bmatrix}$$

اس عمل کو A کی مدو سے سیجھتے ہیں۔ پانچ سالوں میں 0.8 امکان ہے کہ رہائش رقبہ، رہائش ہی رہے گا جبکہ 0.1 امکان ہے کہ تجارتی رقبے پر رہائش ہو گی اور 0 امکان ہے کہ صنعتی رقبے پر رہائش ہو گی۔ یول 0.20 میں رہائش رقبہ درج ذیل ہو گا۔

$$0.8 \cdot 60 + 0.1 \cdot 25 + 0 \cdot 15 = 50.5\%$$

اس بورے عمل کو درج ذیل لکھا جا سکتا ہے

$$y = Ax = A \begin{bmatrix} 60 & 25 & 15 \end{bmatrix}^T$$

 ${\rm stochastic}\ {\rm matrix}^{32}$

باب. خطى الجرار سمتيات

جہاں x سمتیہ حال 33 ہے جو $\frac{2018}{20}$ میں رقبے کی تقسیم بیان کرتا ہے۔ اس طرح $\frac{2028}{200}$ اور $\frac{2030}{200}$ میں صورت حال بالترتیب درج ذیل ہو گی۔

$$z = Ay = A(Ax) = A^{2}x = \begin{bmatrix} 43.50 \\ 33.65 \\ 22.85 \end{bmatrix}$$
$$u = Az = A(A^{2}x) = A^{3}x = \begin{bmatrix} 38.165 \\ 34.540 \\ 27.295 \end{bmatrix}$$

یوں 2033 میں % 38.165 علاقہ رہائش، % 34.54 تجارتی اور % 27.295 صنعتی ہو گا۔ یاد رہے کہ رقبہ مستقل قبت ہے۔

سوالات

سوال 7.12: چکور قالب ایبا چکور قالب جو تشاکلی اور منحرف تشاکلی ہو، کی صورت کیا ہو گی۔

حل: صفر قالب

سوال 7.13 تا سوال 7.25 مين درج ذيل قالب استعال كرين

$$A = \begin{bmatrix} -3 & 2 & 4 \\ 0 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 & 0 \\ -4 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 0 \\ 1 & 2 \\ 2 & -1 \end{bmatrix}$$
$$a = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$

state $vector^{33}$

7.2. قالبي ضرب

$$m{A}^T,m{B}^T,m{a}^T,m{b}^T$$
 :7.13 عوال $m{A}^T=egin{bmatrix} -3 & 0 & 2 \ 2 & 1 & 3 \ 4 & 2 & 5 \end{bmatrix}$, $m{B}^T=egin{bmatrix} 3 & -4 & 0 \ 4 & -1 & 0 \ 0 & 0 & 2 \end{bmatrix}$, $m{a}^T=egin{bmatrix} 2 \ -1 \ 0 \end{bmatrix}$, $m{b}^T=egin{bmatrix} 1 & 3 & -2 \end{bmatrix}$. Results:

$$AB = egin{bmatrix} -17 & -14 & 8 \ -4 & -1 & 4 \ -6 & 5 & 10 \end{bmatrix}, \quad BA = egin{bmatrix} AB, BA & :7.14 \ -9 & 10 & 20 \ 12 & -9 & -18 \ 4 & 6 & 10 \end{bmatrix}$$
جوابات:

$$(m{A}m{B})^T, m{B}^Tm{A}^T, m{A}^Tm{B}^T$$
 :7.15 وابات: $(m{A}m{B})^T = m{B}^Tm{A}^T = egin{bmatrix} -17 & -4 & -6 \\ -14 & -1 & 5 \\ 8 & 4 & 10 \end{bmatrix}, m{A}^Tm{B}^T = egin{bmatrix} -9 & 12 & 4 \\ 10 & -9 & 6 \\ 20 & -18 & 10 \end{bmatrix}$

$$AA^T,A^2$$
 :7.16 عوال $AA^T=egin{bmatrix}29&10&20\10&5&13\20&13&38\end{bmatrix}$, $A^2=egin{bmatrix}17&8&12\4&7&12\4&22&39\end{bmatrix}$:2.14 AA^T

$$m{B}m{B}^T = egin{bmatrix} 25 & -16 & 0 \ -16 & 17 & 0 \ 0 & 0 & 4 \end{bmatrix}$$
 , $m{B}^2 = egin{bmatrix} -7 & 8 & 0 \ -8 & -15 & 0 \ 0 & 0 & 4 \end{bmatrix}$. وابات:

$$CC^T$$
, BC :7.18 روال $CC^T = egin{bmatrix} 9 & 3 & 6 \ 3 & 5 & 0 \ 6 & 0 & 5 \end{bmatrix}$, $BC = egin{bmatrix} 13 & 8 \ -13 & -2 \ 4 & -2 \end{bmatrix}$ برابت:

$$2A - 3B, (2A - 3B)^T, 2A^T - 3B^T$$
 :7.19 عوال $2A - 3B = \begin{bmatrix} -15 & -8 & 8 \\ 12 & 5 & 4 \\ 4 & 6 & 4 \end{bmatrix}, (2A - 3B)^T = 2A^T - 3B^T = \begin{bmatrix} -15 & 12 & 4 \\ -8 & 5 & 6 \\ 8 & 4 & 4 \end{bmatrix}$ يوابات:

$$egin{aligned} egin{aligned} eg$$

$$oldsymbol{Aa} oldsymbol{Aa} = oldsymbol{Aa}^T = egin{bmatrix} -8 \ -1 \ 1 \end{bmatrix}, oldsymbol{Ab} = oldsymbol{Ab}^T = egin{bmatrix} -5 \ -1 \ 1 \end{bmatrix}$$
 بابات:

$$(m{A}m{b})^T, m{b}^Tm{A}^T$$
 :7.22 وابات: $egin{bmatrix} (m{A}m{b})^T = m{b}^Tm{A}^T = egin{bmatrix} -5 & -1 & 1 \end{bmatrix}$ بوابات:

$$ABC, ABa, ABb$$
 :7.23 يوال 23.5 $\begin{bmatrix} -49 & -36 \\ -5 & -6 \\ 7 & 0 \end{bmatrix}$, $\begin{bmatrix} -20 \\ -7 \\ -17 \end{bmatrix}$, $\begin{bmatrix} -75 \\ -15 \\ -11 \end{bmatrix}$: يوابات:

$$ab, ba, aB, Bb$$
 :7.24 وال $\begin{bmatrix} 2 & -1 & 0 \\ 6 & -3 & 0 \\ -4 & 2 & 0 \end{bmatrix}$, $\begin{bmatrix} 10 & 9 & 0 \end{bmatrix}$, $\begin{bmatrix} 15 \\ -7 \\ -4 \end{bmatrix}$

$$a + b, a^{T} + b, a + b^{T}$$
 :7.25

$$oldsymbol{a}^T+oldsymbol{b}=egin{bmatrix}3\\2\\-2\end{bmatrix}$$
 , $oldsymbol{a}+oldsymbol{b}^T=egin{bmatrix}3&2&-2\end{bmatrix}$ وابات: $oldsymbol{a}+oldsymbol{b}$

موال 7.26: AB کو موال 7.13 میں حاصل کیا گیا ہے۔ای کو دوبارہ A کے قطار اور B کے صف استعمال کرتے ہوئے دوبارہ حاصل کریں۔

$$A=egin{bmatrix} 2 & 3 \ 3 & 4 \end{bmatrix}$$
 اليا $2 imes 2$ وريافت كرين كه $AB=BA$ ابو جهان $2 imes 2$

505 7.2. قالبي ضر ___

$$\boldsymbol{B} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} : \boldsymbol{\mathcal{P}}$$

 $rac{1}{2}(C-C^T)$ عبت کریں کہ کسی بھی چکور قالب C کے لئے $rac{1}{2}(C+C^T)$ تشاکلی ہے جبکہ روال 2.7: ثابت کریں کہ کسی بھی چکور قالب منحرف تشاکلی ہیں۔

سوال 30.3: درج بالا سوال کے تحت $M=rac{1}{2}(m{C}-m{C}^T)$ اور $T=rac{1}{2}(m{C}+m{C}^T)$ کھا جا سکتا ہے جہاں T تشاکلی اور M منحرف تشاکلی قالب ہیں۔ کسی بھی قالب کو تشاکل قالب اور منحرف تشاکلی قالب کا مجموعہ لکھا جا سکتا ہے۔ یوں سوال 7.13 تا سوال 7.25 میں استعال کیے گئے 🔏 کو تشاکل اور منحرف تشاکلی قالب کا مجموعه لکھا جا سکتا ہے۔ان قالبوں کو دریافت کریں۔

$$T = egin{bmatrix} -3 & 1 & 3 \ 1 & 1 & 2.5 \ 3 & 2.5 & 5 \end{bmatrix}$$
 , $M = egin{bmatrix} 0 & 1 & 1 \ -1 & 0 & -0.5 \ -1 & 0.5 & 0 \end{bmatrix}$: يوايات:

سوال 7.31: قابل تبادل A کا قالبی ضرب A اس صورت تشاکلی ہو گا جب A اور B اور B اور AAB = BA بور AB = BA بور AB = BA بور AB = BA بور AB = BA بور

$$AB = (AB)^T = B^T A^T = BA$$
 :اب \mathfrak{L}

سوال 7.32: کن صورتوں میں منحرف تشاکلی قالبوں کا قالبی ضرب منحرف تشاکلی قالب دے گا؟

AB = -BA :واب

سوال 7.33: امكاني شارياتي عمل

ایک مثین اگر آج ٹھیک ہوتب 0.9 امکان ہے کہ وہ ایک دن بعد (کل) بھی ٹھیک ہو گا۔ یوں 0.1 امکان ہے کہ وہ کل خراب ہو گا۔اس طرح اگر مشین آج خراب ہو تب 0.4 امکان ہے کہ وہ کل بھی خراب ہو گا۔یوں 0.6 امکان ہے کہ وہ کل ٹھیک ہو گا۔ آج ٹھیک اور خراب کو بالترتیب t اور k سے ظاہر کریں جبکہ ایک دن بعد انہیں T اور K سے ظاہر کریں۔ اس پیش گوئی سے امکانی شار ماتی قالب A کھیں۔ اگر آج مشین ٹھک ہو تب دو دن بعد (پرسوں) مشین ٹھیک ہونے کا کتنا فی صد امکان ہے۔

 $commutative^{34}$

506

$$t$$
 k $A = egin{bmatrix} 0.9 & 0.6 \ 0.1 & 0.4 \end{bmatrix} ext{T}$ جوابات: دو دن بعد % 87 امكان ہے كہ مشين شيك ہو گا۔

سوال 7.34: امكاني شارياتي عمل ایک شہر کی آبادی 000 00 ہے۔ایک بینک میں آج کھاتے دار کا %90 امکان ہے کہ وہ اگلے سال بھی اس بینک کا کھاتے دار ہو گا جبکہ یہاں کھاتا نہ رکھنے والے کا %1 امکان ہے کہ وہ اگلے سال یہاں کا کھاتا دار ہو گا۔اگر آج 1000 افراد اس بینک کے کھاتے دار ہوں تب ایک سال، دو سال اور تین سال بعد کتنے افرادیباں کے کھاتے دار ہوں گے؟

جوابات: 1090 ، 1170 ، 1241

سوال 7.35: ایک کارخانه لامور، یثاور اور کراچی میں تین اشیاء الف، ب اور پ فروخت کرتا ہے۔ فی کلو گرام منافع وان دورج دیا ہے۔ بالترتیب 8 ، 10 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ پالترتیب 8 ، 10 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ اللہ بالترتیب 8 ، 100 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ پالترتیب 8 ، 2000 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ پالترتیب 8 ، 2000 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ پالترتیب 8 ، 2000 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔ پالترتیب 8 ، 2000 اور 6 روپیہ ہے۔ ایک دن کی فروخت درج ذیل ہے۔

الیا "سمتیه منافع" m دریافت کریں که y=Am هر شهر میں روزانه کمائی دے۔

$$m = \begin{bmatrix} 8 & 10 & 6 \end{bmatrix}^T$$
 :جاب

سوال 7.36: خطى تبادلهـ گهومنا

کار تیسی محدد کی y=Ax ظاہر کرتی ہے کا الٹ رخ گھومنے کو الٹ y=Ax ظاہر کرتی ہے جال y اور x ورج ذیل ہیں۔

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ثابت کریں کہ y=Ax کسی بھی سطح پر x_1x_2 کارتیسی محدد کے نظام کو، مرکز کے گرد، گھڑی کی الٹ رخ، θ زاویہ گھما کر ناکار تیسی محدد γ11/2 دیتا ہے۔

سوال 7.37: نطی تبادلہ۔ گھومنا درج بالا سوال میں زاویہ گھومنا دیکھا گیا۔ ثابت کریں کہ درج ذیل قالب، مرکز کے گرد، گھڑی کی الٹ رخ، n0 زاویہ گھومنے کو ظاہر کرتا ہے۔

$$A^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

سوال 7.38: خطی تبادلہ۔ گھومنا درج بالا دو سوالات کو دیکھیں۔درج ذیل قالب، مرکز کے گرد، گھڑی کی الٹ رخ، α اور β زاویہ گھومنے کو ظاہر کرتے ہیں۔

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \quad B = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

یوں باری باری lpha اور eta گھومنے کو $oldsymbol{AB}$ ظاہر کرے گا۔یوں درج ذیل ثابت کریں۔

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} = \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix}$$

بين جبيه $oldsymbol{y}=\begin{bmatrix}y_1 & y_2 & y_3\end{bmatrix}^T$ ، $oldsymbol{x}=\begin{bmatrix}x_1 & x_2 & x_3\end{bmatrix}^T$ ويتا ہے جہاں $oldsymbol{y}=\begin{bmatrix}y_1 & y_2 & y_3\end{bmatrix}^T$ ، $oldsymbol{x}=\begin{bmatrix}x_1 & x_2 & x_3\end{bmatrix}^T$ ويتا ہے جہاں $oldsymbol{y}=A$ درج ذیل ہو سکتے ہیں۔

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \quad \begin{bmatrix} \cos\phi & 0 & -\sin\phi \\ 0 & 1 & 0 \\ \sin\phi & 0 & \cos\phi \end{bmatrix}, \quad \begin{bmatrix} \cos\gamma & -\sin\gamma & 0 \\ \sin\gamma & \cos\gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

کیا آپ ذہن میں اس عمل کو دیکھ پاتے ہیں؟

با___7. خطى الجبرا يسمتيات

7.3 خطی مساوات کے نظام۔ گاوسی اسقاط

قالب کا ایک اہم استعال، خطی تفرقی مساوات کے نظام کا حل ہے۔ ہم یہاں گاوسی اسقاط³⁵ کی ترکیب سیکھتے ہیں جو خطی الجبرا میں کلیدی کردار ادا کرتا ہے۔ آپ سے گزارش ہے کہ اس ترکیب کو اچھی طرح سمجھیں۔

خطی تفرقی مساوات کے نظام کا نام چھوٹا کرتے ہوئے اس کو خطبی نظام ^{36 بھ}ی کہتے ہیں۔انجینئری، معاشیات، شاریات، اور دیگر شعبوں کے کئی مسائل کی نمونہ کشی خطی نظام کی مدد سے کی جاتی ہے مثلاً برتی ادوار اور گاڑیوں کی آمد و رفت کا نظام۔

خطی نظام، عددی سر قالب اور افنر وده قالب

n متغیرات پر مبنی n مساوات کا نظام درج ذیل ہے۔

(7.29)
$$a_{11}x_1 + \dots + a_{1n}x_n = b_1 a_{21}x_1 + \dots + a_{2n}x_n = b_2 \vdots a_{mn}x_1 + \dots + a_{mn}x_n = b_m$$

چونکہ اس نظام میں تمام متغیرات کی طاقت اکائی (1) ہے لہذا یہ نظام خطی کہلاتا ہے (سیدھے خط کی طرح جس کی مستقل مستقل a_{mn} ت a_{11} سی مستقل کی مساوات a_{mn} ت a_{11} سی مستقل a_{mn} ت a_{11} سی مستقل a_{mn} ت a_{mn}

Gauss elimination³⁵

 $[\]begin{array}{c} linear\ system^{36} \\ coefficients^{37} \end{array}$

homogeneous³⁸

nonhomogeneous³⁹

نظام 7.29 کے حل سے مراد x_1 تا x_2 کی وہ قیمتیں ہیں جو اس نظام کے تمام مساواتوں پر پورا اترتے ہوں۔ نظام کے حل سمتیہ 40 کے ارکان نظام 7.29 کے حل x_1 تا x_2 ہیں۔ ہم جنسی نظام کا ہر صورت میں ایک حل x_1 میں میں ہیں۔ ہم جنسی نظام کا ہر صورت میں ایک حل x_1 میں x_2 ہوگا جو غیر اہم صفر حل x_1 کہلاتا ہے۔

نظام 7.29 کی قالبی صورت

7.29 قالبی ضرب کے استعال سے نظام 7.29 کو درج ذیل کھا جا سکتا ہے Ax = b

جہال A اور b درج ذیل ہیں۔ A عددی سر قالب 42 کہلاتا ہے۔

(7.31)
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

اور $m{b}$ سمتیہ قطار ہیں۔ہم فرض کرتے ہیں کہ a_{jk} تمام صفر نہیں ہیں للذا $m{A}$ صفر قالب نہیں ہو گا۔ وھیان رہے کہ $m{x}$ ادر $m{b}$ اور $m{b}$ کو ایک ہی قالب میں لکھ کر افودہ قالب $m{A}$ ماتا ہے۔

(7.32)
$$\vec{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

افنرودہ قالب میں عمودی کیبر کو ہٹایا جا سکتا ہے۔ہم بھی ایسا ہی کریں گے، بس یاد رہے کہ A کے ساتھ آخری قطار b کا اضافہ کرنے سے افنرودہ قالب \tilde{A} حاصل ہوتا ہے۔

solution vector⁴⁰ trivial solution⁴¹

coefficient matrix⁴²

 $[\]rm augmented\ matrix^{43}$

باب.7. خطى الجبرار سمتيات

چونکہ افنرودہ قالب میں نظام 7.29 کے تمام معلومات شامل ہیں للذا افنرودہ قالب اس نظام کو مکمل طور پر ظاہر کرتا ہے۔

مثال 7.19: حل کی وجودیت اور یکتائی۔ جیومیٹریائی نقطہ نظر m=n=2 کی صورت میں نظام دو عدد متغیرات m=n=2

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

 x_1 اگر ہم x_2 اور x_2 کو سطح x_1 پر محور فرض کریں تب درج بالا مساوات اس سطح پر سیدھے خطوط کے مساوات ہوں گے۔ان مساوات کا صرف اس صورت حل (x_1, x_2) ہو گا جب نقطہ x_1 جس کے محور x_2 مساوات ہوں، ان دونوں خطوط پر بایا جاتا ہو۔ یوں تین ممکنہ صور تیں یائی جاتی ہیں۔ شکل 7.1 دیکھیں۔

- اگر خطوط ایک دونوں کو قطع کرتے ہوں تب مکتا حل پایا جائے گا۔
 - ہم مکان خطوط کی صورت میں لا متناہی تعداد کے حل ہوں گے۔
- متوازی اور ایک دونول سے ہٹ کر خطوط کی صورت میں کوئی حل ممکن نہیں ہو گا۔

دو متغیرات اور دو مساوات کے نظام کو ہم نے دیکھا۔ تین متغیرات اور تین مساوات کے نظام کو بھی جیومیٹریائی نقطہ نظر سے دیکھا جا سکتا ہے۔اب خطوط کی بجائے نظام کے تین مساوات تین سطحوں کو ظاہر کریں گی۔شکل میں اس نظام کے حل دکھائے گئے ہیں۔

مثال 7.19 میں ہم نے دیکھا کہ عین ممکن ہے کہ نظام کا کوئی حل ممکن نہ ہو۔یوں کسی بھی نظام کے بارے میں ہم جاننا چاہیں گے کہ آیا اس کا حل موجود ہے اور آیا ایسا حل یکتا ہے۔آئیں اب خطی نظام کو حل کرنے کا منظم طریقہ سیکھیں۔

با__7. خطى الجبرا يسمتيات

گاوسی اسقاط

ہم درج ذیل خطی نظام پر غور کرتے ہیں۔

$$2x_1 + x_2 = 7$$
$$4x_2 = 12$$

اس نظام کے عددی سر قالب میں غیر صفر قیمتیں، مرکزی وتر اور اس سے اوپر ہیں لہذا یہ بالائی تکونی نظام ہے۔ اس نظام کی نجلی مساوات کو حل کرتے ہوئے $x_2 = \frac{12}{4} = 3$ ملتا ہے جس کو پہلی مساوات میں واپس پر کرتے ہوئے نظام کی نجلی مساوات میں واپس پر کرتے ہوئے $x_1 = \frac{7-x_2}{2} = \frac{7-3}{2} = 2$ حاصل ہوتا ہے۔ اس عمل سے ہم دیکھتے ہیں کہ تکونی نظام کو با آسانی حل کیا جا سکتا ہے۔ یوں ہم کسی بھی نظام کو تکونی صورت میں کھنا چاہیں گے۔

کسی بھی نظام کو تکونی صورت میں لانے کے عمل کو درج ذیل نظام کی مدد سے سیکھتے ہیں جس کا افخرودہ قالب بھی دیا گیا ہے۔ افغرودہ قالب کی پہلی صف کو S_1 اور دوسری صف کو S_2 کہا گیا ہے۔

$$S_1 \begin{bmatrix} 2 & 3 & 12 \\ S_2 & 4 & -2 & 8 \end{bmatrix} \qquad 2x_1 + 3x_2 = 12 \\ 4x_1 - 2x_2 = 8$$

اس کو تکونی صورت میں لکھنے کی خاطر نجلی مساوات سے x_1 حذف کرنا ہو گا۔ایبا کرنے کے لئے بالائی مساوات کو تکو تک صورت میں کھنے کی خاطر نجلی مساوات سے منفی کرتے ہیں کو $x_1 + 6x_2 = 24$ ماصل کرتے ہوئے اس کو نجلی مساوات سے منفی کرتے ہیں جس سے $-8x_2 = -16$ ملتا ہے۔یوں درج بالانظام درج ذیل لکھا جائے گا جو بالائی تکونی صورت ہے۔افنرودہ قالب پر بھی یہی عمل کیا گیا ہے جہاں مجلی صف کے ساتھ الجبرائی عمل $(S_2 - 2S_1)$ کھا گیا ہے۔

$$\begin{bmatrix} 2 & 3 & 12 \\ 0 & -8 & -16 \end{bmatrix} S_2 - 2S_1 \qquad 2x_1 + 3x_2 = 12 \\ -8x_2 = -16$$

تکونی صورت حاصل کرنے کی اس عمل کو گاوسی اسقاط 44 کہتے ہیں۔گاوی اسقاط کی ترکیب وسیع تر نظام پر قابل استعال ہے۔یوں کچلی مساوات سے $x_2=2$ حاصل کرتے ہوئے $x_1=3$

Gaussian elimination⁴⁴

مثال 7.20: گاوسی اسقاط

درج ذیل نظام کو گاوسی اسقاط سے بالائی تکونی صورت میں لائیں۔نظام کا افنرودہ قالب بھی دیا گیا ہے۔ پہلی صف کو S_1 ، دوسری کو S_2 اور تیسری کو S_3 کہا گیا ہے اور یہ نام قالب کا بائیں جانب لکھے گیے ہیں۔

$$S_1 \begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & -3 & 1 & 0 \\ -1 & 2 & 3 & -3 \end{bmatrix} \qquad \begin{aligned} x_1 + 2x_2 - x_3 &= 5 \\ 2x_1 - 3x_2 + x_3 &= 0 \\ -x_1 + 2x_2 + 3x_3 &= -3 \end{aligned}$$

 x_2 اور x_1 عرنی صورت کے لئے درمیانی مساوات سے x_1 حذف کرنا ہو گا جبکہ کجی مساوات سے x_1 اور حذف کرنے ہول گے۔

پہلی قدم میں ہم بالائی مساوات S_1 کو استعمال کرتے ہوئے کچلی دونوں مساواتوں سے x_1 حذف کرتے ہیں۔ پہلی مساوات کو x_1 سے ضرب دے کر دوسری مساوات سے منفی کرنے سے دوسری مساوات سے x_1 حذف ہوتا ہے۔ اس طرح پہلی مساوات کو تیسری مساوات کے ساتھ جمع کرتے ہوئے تیسری مساوات سے x_1 حذف ہوتا ہے۔ اس عمل کو افزودہ قالب کے لئے بیان کرتے ہیں۔

پہلی صف کو 2 سے ضرب دیتے ہوئے دوسری صف سے منفی کریں۔ پہلی صف کو تیسری صف کے ساتھ جمع کریں۔

$$S_{1}' \begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -7 & 3 & -10 \\ 0 & 4 & 2 & 2 \end{bmatrix} S_{2} - 2S_{1}$$

$$x_{1} + 2x_{2} - x_{3} = 5$$

$$-7x_{2} + 3x_{3} = -10$$

$$4x_{2} + 2x_{3} = 2$$

صف پر عمل کو الجبرائی صورت میں قالب کے دائیں جانب لکھا گیا ہے۔درج بالا تبدیل شدہ افنرودہ قالب ہے جس کی پہلی صف S'_1 ، دوسری صف S'_2 اور تیسری صف S'_3 ہے۔

دوسری قدم میں نجلی مساوات سے x_2 حذف کرتے ہیں۔

تبدیل شدہ افٹرودہ قالب کی دوسری صف کو 🐈 سے ضرب دیتے ہوئے اسی قالب کی تیسری صف کے ساتھ جمع کریں۔

(7.33)
$$\begin{bmatrix} 1 & 2 & -1 & 5 \\ 0 & -7 & 3 & -10 \\ 0 & 0 & \frac{26}{7} & -\frac{26}{7} \end{bmatrix} S_3' + \frac{4}{7} S_2'$$

$$\begin{aligned} x_1 + 2x_2 - x_3 &= 5 \\ -7x_2 + 3x_3 &= -10 \\ \frac{26}{7} x_3 &= -\frac{26}{7} \end{aligned}$$

باب. 7. خطى الجبرار سمتيات

شكل 7.21: برقى دور ـ مثال 7.21

 $x_3 = -1$ ماتا ہے جس ماوات سے $x_3 = -1$ ماتا ہے جس کو نی قالب کے حصول کے بعد حل حاصل کرتے ہیں۔ نظام $x_3 = -1$ ماتا ہے۔ ان دونوں جوابات کو پہلی مساوات میں واپس پر کرتے ہوئے $x_2 = 1$ ماتا ہے۔ ان دونوں جوابات کو پہلی مساوات میں پر کرتے ہوئے $x_1 = 2$ ماتا ہے۔

اگر دوسری قدم پر آپ پہلی مساوات کو 2 سے ضرب دے کر تیسری مساوات سے منفی کریں تو حاصل مساوات میں x_1 دوبارہ حاضر ہو جائے گا جو پہلی قدم کی محنت کو ضائع کر دے گا۔ ہم ایبا نہیں چاہتے ہیں۔ یوں آپ دکیھ سکتے ہیں کہ کسی بھی جسامت کی نظام کو حل کرتے ہوئے پہلی قدم پر ، نظام کی پہلی مساوات کو استعال کرتے ہوئے ، اس سے نیچے تمام مساوات سے x_1 حذف کیا جاتا ہے۔ دوسری قدم پر ، پہلی قدم کی حاصل نظام کی دوسری مساوات کو استعال کرتے ہوئے ، اس سے نیچے تمام مساواتوں سے x_2 حذف کیا جاتا ہے۔ اسی طرح تیسری قدم پر ، تیسری مساوات کو استعال کرتے ہوئے ، اس سے نیچے تمام مساواتوں سے x_3 حذف کیا جائے گا۔ یہی سلسلہ آخر تک دہرایا حائے گا۔ کہی سلسلہ آخر تک دہرایا حائے گا۔

اس نظام کو افنرودہ قالب استعال کرتے ہوئے حل کیا جا سکتا تھا۔ بار بار مکمل مساوات لکھنے کی کوئی ضرورت نہیں تھی۔ہم عموماً ایبا ہی کرتے ہوئے ، نظام کو افنرودہ قالب کی صورت میں لکھ کر، اس کی تکونی صورت گاوس اسقاط کی مدد سے حاصل کریں گے۔

مثال 7.21: برقی دور کو شکل 7.2 میں د کھایا گیا ہے۔اس کو حل کریں۔ حل: کرخوف قانون دباو سے درج ذیل لکھا

جا سکتا ہے

$$2I_1 + 8I_3 = 10$$

 $4I_3 + 8I_2 = 8$

جبکه کرخوف قانون رو سے درج ذیل لکھا جا سکتا ہے۔

$$I_1 + I_3 = I_2$$

ان تینوں مساوات کو ترتیب دیتے ہوئے ایک ساتھ لکھتے ہیں۔ ساتھ ہی بائیں جانب اس نظام کا افنرودہ قالب بھی لکھتے ہیں۔

$$S_1 \begin{bmatrix} 2 & 0 & 8 & 10 \\ S_2 & 0 & 8 & 4 & 8 \\ S_3 & 1 & -1 & 1 & 0 \end{bmatrix} \qquad \begin{aligned} 2I_1 + 8I_3 &= 10 \\ 8I_2 + 4I_3 &= 8 \\ I_1 - I_2 + I_3 &= 0 \end{aligned}$$

پہلا قدم: چونکہ دوسری صف کا پہلا رکن صفر ہے لہذا اس کو کچھ کرنے کی ضرورت نہیں ہے البتہ تیسرے صف کے پہلے رکن I₁ کو حذف کرنا ہو گا۔

پہلی صف کو 🖞 سے ضرب دے کر تیسری صف سے منفی کرتے ہیں۔

دوسرا قدم: تیسرے صف سے I2 حذف کرتے ہیں۔

دوسرے صف کو اللہ سے ضرب دے کر تیسرے صف کے ساتھ جمع کرتے ہیں۔

تیسرا قدم: آخری صف یا آخری مساوات سے $\frac{8}{5}=I_3$ ملتا ہے۔اس قیمت کو پہلی اور (یعنی صف S_1'') اور درمیانی مساوات (یعنی صف S_2'') میں پر کرتے ہوئے بقایا برقی رو حاصل کرتے ہیں۔

$$2I_1 + 8\left(\frac{8}{5}\right) = 10 \implies I_1 = -\frac{7}{5}$$
$$8I_2 + 4\left(\frac{8}{5}\right) = 8 \implies I_2 = \frac{1}{5}$$

باب. 7. خطى الجبرار سمتيات

بنيادى اعمال صف

قالب کی صفوں پر درج ذیل تین عمل سے نظام تبریل نہیں ہوتا ہے۔گاوس اسقاط پہلی دو اعمال سے حاصل ہوتا ہے۔

- دو صفول کا آپس میں تبادلہ
- صف کو کسی مستقل قیمت سے ضرب دے کر کسی دوسرے (یااتی) صف کے ساتھ جمع کرنا
 - کسی صف کو غیر صفو متنقل قیت c کے ساتھ ضرب دینا

دھیان رہے کہ یہ اعمال افنرودہ قالب کے صفول پر قابل اطلاق ہیں نہ کہ قطاروں پر۔یہ اعمال، نظام کی مساوات پر ورج ذیل کے مترادف ہیں۔

- دو مساواتوں کی جگہ آپس میں تبدیل کرنا۔
- ایک مساوات کو کسی مستقل سے ضرب دے کر دوسری (یا اس) مساوات کے ساتھ جع کرنا۔
 - نظام کی مساوات کو غیر صفر مستقل c سے ضرب دینا۔

اب ظاہر ہے کہ ہمزاد مساواتوں کو آگے پیچھے لکھنے سے ان کا حاصل حل تبدیل نہیں ہوتا۔ اسی طرح کسی مساوات کو مستقل قیمت سے ضرب دے کر دوسری مساوات کے ساتھ جمع کرنے سے بھی حل تبدیل نہیں ہوتا اور نہ ہی کسی مساوات کو عیر صفر ستقل سے ضرب دینے سے حل تبدیل ہوتا ہے۔ (کسی مساوات کو صفر سے ضرب دینے سے مساوات کی تعداد کم ہوگی جس سے عین ممکن ہے کہ ان کا حل ممکن نہ رہے۔)

دو عدد خطی نظام N_1 اور N_2 اس صورت صف برابو 45 کہلاتے ہیں جب N_1 پر محدود عمل صف کے ذریعہ N_2 حاصل کرنا ممکن ہو۔ یہ حقیقت جسے درج ذیل طور پر بیان کیا جا سکتا ہے، گاوسی اسقاط کی جواز ہے۔ N_2

row equivalent⁴⁵

مسئلہ 7.1: صف برابر نظام صف برابر خطی نظام کے سلسلہ حل⁴⁶ کیساں ہوں گے۔

اس مسئلے کی بنا اگر ایک نظام کا سلسلہ حل دوسرے نظام کے سلسلہ حل کے عین مطابق ہو، تب انہیں صف بوابو نظام کہتے ہیں۔ یاد رہے کہ یہاں عمل صف کی بات کی جا رہی ہے۔افزودہ قالب کے قطار تبدیل کرنے سے نظام تبدیل ہو گا اور اس کا حل بھی تبدیل ہو گا المذا افغرودہ قالب پر کسی بھی عمل قطار کی اجازت نہیں ہے۔

اییا نظام جس کی نا معلوم متغیرات سے مساواتوں کی تعداد زیادہ ہو زائد معلوم ⁴⁷ کہلاتا ہے۔ نظام کی نا معلوم متغیرات اور مساواتوں کی تعداد برابر ہونے کی صورت میں اس کو معلوم ⁴⁸ کہتے ہیں جبکہ نظام کی نا معلوم متغیرات سے مساواتوں کی تعداد کم ہونے کی صورت میں اس کو کھم معلوم ⁴⁹ کہتے ہیں۔

اییا نظام جس کا کوئی حل نہ ہو متضاد⁵⁰ نظام کہلاتا ہے جبکہ اییا نظام جس کا ایک یا ایک سے زیادہ حل ممکن ہوں بلا تضاد⁵¹ نظام کہلاتا ہے۔

گاوسی اسقاط۔ نظام کی تین ممکنه صورتیں

یکتا حل کا نظام مثال 7.20 میں دیکھا گیا۔ آئیں اب لامتناہی تعداد کے حل والے نظام (مثال 7.22) کو اور بغیر کسی حل والے نظام (مثال 7.23) کو گاوسی اسقاط سے حل کرنے کی کوشش کریں۔

solution set⁴⁶

overdetermined⁴⁷

determined⁴⁸

 $^{{\}rm underdetermined}^{49}$

inconsistent⁵⁰

 $^{{\}rm consistent}^{51}$

باب. 7. خطى الجبرار سمتيات

مثال 7.22: لامتنائی تعداد کے حل والا نظام درج ذیل نظام جو تین مساوات پر مبنی ہے میں چار متغیرات پائے جاتے ہیں۔ اس کو گاوس اسقاط سے حل کریں۔

$$S_{1} \begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 4 & -2 & 1 & 2 & 2 \\ 8 & -4 & 2 & 4 & 4 \end{bmatrix} \qquad \begin{aligned} 2x_{1} + x_{2} + 2x_{3} - x_{4} &= 6 \\ 4x_{1} - 2x_{2} + x_{3} + 2x_{4} &= 2 \\ 8x_{1} - 4x_{2} + 2x_{3} + 4x_{4} &= 4 \end{aligned}$$

حل: پہلی قدم میں مجلی دو مساواتوں سے x₁ حذف کرتے ہیں۔

پہلی صف کو 2 سے ضرب کرتے ہوئے دوسری صف سے منفی کریں۔ پہلی صف کو 4 سے ضرب کرتے ہوئے تیسری صف سے منفی کریں۔

$$\begin{array}{c} S_1' \\ S_2' \\ S_3' \\ S_3' \end{array} \begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 0 & -4 & -3 & 4 & -10 \\ 0 & -8 & -6 & 8 & -20 \\ \end{bmatrix} \begin{array}{c} S_2 - 2S_1 \\ S_3 - 4S_1 \\ \end{array} \qquad \begin{array}{c} 2x_1 + x_2 + 2x_3 - x_4 = 6 \\ -4x_2 - 3x_3 + 4x_4 = -10 \\ -8x_2 - 6x_3 + 8x_4 = -20 \\ \end{array}$$

دوسری قدم میں درج بالا تبدیل شدہ افنرودہ قالب استعال کرتے ہوئے، دوسرے صف کی مدد سے تیسری صف سے منفی کرتے ہیں۔ سے x_2 حذف کرتے ہیں۔دوسری صف کو دو سے ضرب دیتے ہوئے تیسری صف سے منفی کرتے ہیں۔

$$\begin{bmatrix} 2 & 1 & 2 & -1 & 6 \\ 0 & -4 & -3 & 4 & -10 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} S_3' - 2S_2'$$

$$2x_1 + x_2 + 2x_3 - x_4 = 6 \\ -4x_2 - 3x_3 + 4x_4 = -10 \\ 0 = 0$$

روسری مساوات سے $x_1=rac{7}{4}-rac{5}{8}x_3$ اور یول پہلی مساوات سے $x_2=rac{5}{2}-rac{3}{4}x_3+x_4$ مانا ہے۔اب x_3 اور x_4 کی لامحدود مختلف قیمتیں پر کرتے ہوئے x_1 اور x_2 حاصل کیے جا سکتے ہیں۔

عموماً اختیاری مستقل کو t_1 ، t_2 ، t_3 ہوئے t_3 اور t_3 کو بالترتیب t_1 اور t_2 کھتے ہوئے درج ذیل کھا جائے گا۔

$$x_1 = \frac{7}{4} - \frac{5}{8}t_1$$
$$x_2 = \frac{5}{2} - \frac{3}{4}t_1 + t_2$$

مثال 7.23: گاوسی اسقاط-بلا حل نظام

اییا نظام جس کا حل ممکن نہ ہو کو گاوسی اسفاط سے حل کرتے ہوئے تضاد کی صورت حاصل ہو گی۔آئیں درج ذیل نظام حل کرنے کی کوشش کرتے ہیں۔

$$S_1 \begin{bmatrix}
4 & -2 & 2 & 6 \\
S_2 & 4 & -2 & 6 \\
-2 & 16 & -10 & 14
\end{bmatrix}$$

$$4x_1 - 2x_2 + 2x_3 = 6$$

$$2x_1 + 4x_2 - 2x_3 = 6$$

$$-2x_1 + 16x_2 - 10x_3 = 14$$

دوسری اور تیسری مساوات سے x_1 حذف کرتے ہیں۔

پہلی صف کو $\frac{1}{2}$ سے ضرب دے کر دوسری صف سے منفی کرتے ہیں۔ پہلی صف کو $\frac{1}{2}$ سے ضرب دے کر تیسری صف کے ساتھ جمع کرتے ہیں۔

آخری صف سے x₂ حذف کرتے ہیں۔

$$\begin{bmatrix} 4 & -2 & 2 & 6 \\ 0 & 5 & -3 & 3 \\ 0 & 0 & 0 & 8 \end{bmatrix} S_3' - 3S_2'$$

$$4x_1 - 2x_2 + 2x_3 = 6$$

$$5x_2 - 3x_3 = 3$$

$$0 = 8$$

آخری مساوات کے تحت 8=0 ہے جو تصاد کی صورت ہے۔بلا حل نظام کی گاوسی اسقاط تصاد کی صورت دے گی۔

7.3.1 صف زینه دار صورت

گاوسی اسقاط کے بعد حاصل عددی سر قالب، افغرودہ قالب اور نظام صف زینہ دار⁵² کہلاتے ہیں جن میں صفر کے صف، اگر موجود ہوں تو ہیہ، آخر پر پائے جاتے ہیں اور صف میں بائیں جانب پہلی غیر صفر اندراج، ہر الگے صف میں،

echelon form⁵²

باب. خطى الجبرا سمتيات

مزید دور ہو گی۔ مثال 7.23 میں عددی سر قالب اور افنرودہ قالب کی زینہ دار صورت درج ذیل ہیں۔

$$\begin{bmatrix} 3 & 2 & 1 & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & -2 \\ 0 & 0 & 0 & 12 \end{bmatrix} \qquad \begin{bmatrix} 3 & 2 & 1 \\ 0 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

دھیان رہے کہ ہم بائیں ترین اندراج کو اکائی (1) کی صورت میں لانے کی کوشش نہیں کرتے ہیں چو تکہ اس سے کوئی فائدہ حاصل نہیں ہو گا۔ (سادہ زینہ دار صورت 53 جس میں بائیں ترین اندراج اکائی ہو گی پر بعد میں بحث کی حائے گی۔)

 $\begin{bmatrix} R \mid f \end{bmatrix}$ ہے جس سے زینہ دار صورت $\begin{bmatrix} A \mid b \end{bmatrix}$ ہا افٹرودہ قالب ہوگا۔ $\begin{bmatrix} A \mid b \end{bmatrix}$ ہے جس سے زینہ دار صورت $\begin{bmatrix} ax = b \end{bmatrix}$ ماصل کی جاتی ہے۔ نظام $\begin{bmatrix} ax = b \end{bmatrix}$ اور $\begin{bmatrix} ax = b \end{bmatrix}$ ایک ہی نظام کا حل موجود ہو، تب یہی حل دوسرے نظام کا بھی حل ہو گا۔

گاوی اسقاط سے زینہ دار افزودہ قالب کی درج ذیل عمومی صورت حاصل ہو گا۔

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & \cdots & r_{1n} & f_1 \\ 0 & r_{22} & r_{23} & \cdots & \cdots & r_{2n} & f_2 \\ \vdots & & & & & & \\ 0 & 0 & \cdots & r_{rr} & \cdots & r_{rn} & f_r \\ 0 & 0 & 0 & \cdots & \cdots & 0 & f_{r+1} \\ \vdots & & & & & \\ 0 & 0 & 0 & \cdots & \cdots & 0 & f_m \end{bmatrix}$$

ورج بالا زینہ دار افغرودہ قالب میں $r \leq m$ ، $r \leq m$ تا $r \leq m$ تا میں تمام درج بالا زینہ دار افغرودہ قالب میں میں تمام جوں گے۔ $r_{ij} = 0$

زینہ دار عددی سر قالب R میں غیر صفر صفول کی تعداد r کو A کا درجہ 54 کہتے ہیں جو A کا بھی درجہ ہو گا۔ یہ جاننا کہ نظام Ax=b کا حمل موجود ہے یا نہیں اور اس حمل کو حاصل کرنا درج ذیل طریقے سے ممکن ہے۔

reduced echelon form⁵³ rank of matrix⁵⁴ • (الف) بلا حل: اگر m > r < m ہو (جس کا مطلب ہے کہ R میں کم از کم ایک صف ایبا ہے جس کے تمام اندراجات صفر (0) ہیں) اور f_m تا f_{r+1} تا f_m میں سے کم از کم ایک مقدار غیر صفر ہو تب Rx = f متضاد نظام ہو گا جس کا کوئی حل ممکن نہیں ہے۔ یوں Rx = f محبی متضاد نظام ہو گا جس کا کوئی حل نہیں پایا جاتا ہے۔

بلا تضاد نظام (جس میں یا m=r ہو اور یا r<m کے ساتھ ساتھ اور f_{r+1} تا f_m صفر کے برابر ہوں) تب نظام کا حل درج ذیل ہو گا۔

- (+) کیتا حل: | گر n=n ہو تب نظام کا حل کیتا ہو گا جس کو گاوی اسقاط سے حاصل کیا جا سکتا ہے۔ (-1) کی طرح۔)
- (پ) ہے انہا تعداد کے حل: الی صورت میں x_{r+1} تا x_n کی قیمتیں چن کر x_n تا x_{r-1} حاصل کریں۔(مثال 7.22 کی طرح۔)

سوالات

سوال 7.40 تا سوال 7.53 کو گاوسی اسقاط سے حل کریں۔

سوال 7.40:

$$2x - 3y = -4$$
$$x + y = 3$$

x = 1, y = 2 جوابات:

سوال 7.41:

$$\begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -1 \end{bmatrix}$$

 $x_1 = -1, x_2 = 1$ جوابات:

سوال 7.42:

$$x-2y+z = -1$$
$$y-z = -1$$
$$2x + y + z = 1$$

$$x = -1$$
, $y = 1$, $z = 2$ جوابات:

سوال 7.43:

$$\begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & -1 \\ 2 & -1 & 2 & 5 \end{bmatrix}$$

$$x_1 = 1, x_2 = -1, x_3 = 1$$
 برابات:

سوال 7.44:

$$\begin{bmatrix} 3 & -2 & 4 \\ 2 & -1 & 3 \\ 1 & 1 & 3 \end{bmatrix}$$

$$x_1 = 2, x_2 = 1$$
 جوابات:

سوال 7.45:

$$\begin{bmatrix} 4 & -8 & 3 & 16 \\ -1 & 2 & -5 & -21 \\ 3 & -6 & 1 & 7 \end{bmatrix}$$

جوابات:
$$t$$
 اختیاری مستقل ہے۔ $x_3=4,\,x_2=t,\,x_1=2t+1$

سوال 7.46:

$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ -1 & 1 & -2 & 0 \\ 4 & 0 & 6 & 0 \end{bmatrix}$$

جوابات:
$$t$$
 اختیاری متعقل ہے۔ $x_3=t,\,x_2=rac{t}{2},\,x_1=-rac{3}{2}t$ جوابات:

سوال 7.47:

$$x - y = 1$$
$$y + z = -1$$
$$2x - y = 6$$

x = 2, y = -2, z = 1 جوابات:

سوال 7.48:

$$2x + y - 3z = -1$$
$$x + y + z = 1$$

جوابات: z=t,y=3-5t,x=4t-2 جمال t اختیاری مستقل ہے۔

سوال 7.49:

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & -1 & -1 & 3 \end{bmatrix}$$

جوابات: $x = \frac{1}{3}(7-t), y = -\frac{1}{3}(4t+2), z = t$ جہاں نامتیاری ہے۔

سوال 7.50:

$$\begin{bmatrix} 1 & -1 & 2 & 3 & 0 \\ 2 & 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

جوابات: t اختیاری متعقل ہے۔ $x_4=t$, $x_3=-rac{4}{7}t$, $x_2=rac{5}{7}t$, $x_1=-rac{8}{7}t$

سوال 7.51:

$$\begin{bmatrix} 0 & 1 & -2 & -3 & & 6 \\ 2 & 1 & -1 & 1 & & 1 \\ 1 & -1 & -1 & 1 & & -1 \end{bmatrix}$$

جوابات: $x_1 = -\frac{10}{7}(t+1)$, $x_2 = \frac{1}{7}(5t+12)$, $x_3 = -\frac{1}{7}(8t+15)$ جہاں $x_1 = -\frac{10}{7}(t+1)$ جوابات: $x_2 = \frac{1}{7}(5t+12)$, $x_3 = -\frac{1}{7}(8t+15)$ جہاں کی صف کی جگہ تبدیل کرتے ہوئے حل کریں اور یا نجلی عمورت حاصل کرتے ہوئے حل کریں۔

باب. 7. خطي الجبرار سمتيات

شكل 7.3: برتى دور ـ سوال 7.54 اور سوال 7.55

سوال 7.52:

$$3x_1 + x_2 - 2x_3 - 3x_4 = 7$$
 $2x_1 + x_2 - x_3 + x_4 = 0$
 $x_1 - x_2 - x_3 + x_4 = -5$
 $x_1 + x_2 + x_3 - x_4 = 7$
 $x_1 = 1, x_2 = x_3 = 2, x_4 = -2$ يوال $x_1 = 2$:

$$\begin{bmatrix} 1 & 2 & 1 & -2 & -1 \\ 2 & 2 & 1 & 1 & 4 \\ 3 & -6 & -4 & 6 & 16 \\ 1 & 1 & 1 & -4 & -3 \end{bmatrix}$$

$$x_1 = 2, x_2 = 0, x_3 = -1, x_4 = 1$$
 جرابت:

$$\it I_3=\frac{9}{11}\,A$$
 ، $\it I_2=\frac{19}{33}\,A$ ، $\it I_1=\frac{8}{33}\,A$:ابات

شكل 7.4: اد واربرائے سوال 7.56 اور سوال 7.57

سوال 7.55: شکل 7.3-ب میں و کھائے گئے دور کو حل کریں۔

$$I_5 = \frac{200}{171}\,\mathrm{A}$$
 ، $I_4 = \frac{55}{57}\,\mathrm{A}$ ، $I_3 = \frac{170}{171}\,\mathrm{A}$ ، $I_2 = \frac{65}{57}\,\mathrm{A}$ ، $I_1 = \frac{10}{57}\,\mathrm{A}$.

سوال 7.56: شکل 7.4-الف میں تینوں برتی رو دریافت کریں۔ برتی رو I_2 کی قیمت منفی ہے۔ اس کا کیا مطلب ہے؟ جوابات: $I_3=\frac{50}{11}\,\mathrm{A}$ ، $I_2=-\frac{20}{11}\,\mathrm{A}$ ، $I_1=\frac{30}{11}\,\mathrm{A}$ ، منفی برتی رو کا مطلب ہے کہ رو کی سمت دکھائی گئ سمت کے الٹ ہے۔

سوال 7.58: ویٹ سٹون پل مراحمت R_1 ویٹ سٹون پل R_1 ویٹ سٹون پل R_2 شکل میں دکھایا گیا ہے۔ ایک ہاتھ R_1 اور مزاحمتوں کی پیاکش کے لئے استعال ہونے والا R_2 سٹون پل R_3 شکل میں دکھایا گیا ہے۔ ایک ہاتھ کے R_3 نسب ہیں اور دوسرے ہاتھ کے درمیانے نقطے تک اعمیدئر پیما R_3 نابی جاتی ہے جس کی مزاحمت R_3 کو تبدیل کیا جاتا ہے R_3 سٹون پل سے نا معلوم مزاحمت R_3 نابی جاتی ہے۔ متغیر مزاحمت R_3 کو تبدیل کیا جاتا ہے حتٰی کہ ایمپیئر پیا R_3 ہو گا۔ جواب: ایمپیئر پیا اس حتٰی کہ ایمپیئر پیا R_3 ہو گا۔ جواب: ایمپیئر پیا اس

voltage division formula⁵⁵

⁵⁶ برطانوى سائنىدان چاركس ويث سٹون [1875-1802] سے اس دور كانام منسوب ہے۔

wheatstone bridge⁵⁷

 $[\]mathrm{ammeter}^{58}$

 $[\]rm bridge^{59}$

باب. 7. خطى الجبراد سمتيات

شكل 7.5: ويث سٹون پل-سوال 7.58

صورت صفر برقی رو ناپے گی جب R_0 کے دونوں اطراف برقی دباو کی قیمت عین برابر ہو۔اگر R_0 میں برقی رو صفر کے برابر ہو تب R_0 کو دور سے ہٹانے سے دور پر کوئی اثر نہیں ہو گا۔ہم ایبا ہی کرتے ہوئے R_0 کو ہواتے ہوئے $V_x = \left(\frac{R_x}{R_1 + R_x}\right) V_s$ اور R_x پر دباو ہٹاتے ہوئے حل کرتے ہیں۔ سوال 7.57 کے تحت R_x پر دباو R_x پر دباو R_x اور R_x اور R_x ہوگا ہو گا۔ چونکہ سے دونوں دباو برابر ہیں لہذا R_x کی R_x ہوگا ہو گا۔ چونکہ سے دونوں دباو برابر ہیں لہذا R_x کی R_x ہوگا ہوتا ہے۔

سوال 7.59: آمد و رفت

برقی اووار حل کرنے کے طریقے دیگر شعبوں میں بھی استعال کیے جا سکتے ہیں۔ شکل 7.6 میں شہر کی سڑکوں پر فی گھنٹہ کا موائی گئ ہے۔ کرخوف قانون رو کی مماثل استعال کرتے ہوئے فی گھنٹہ نا معلوم آمد و معنٹہ گاڑیوں کی آمد و رفت دکھائی گئ ہے۔ کرخوف قانون رو کی مماثل استعال کرتے ہوئے فی گھنٹہ نا معلوم آمد و منت $x_3 = -x_1 - 150$ ، $x_2 = x_1 + 100$ ہوابات: $x_1 = x_2 + 100$ ہوابات: $x_2 = x_1 + 300$ ہوابات: $x_3 = -x_1 - 150$ ، $x_4 = x_1 + 300$ ہوابات: اور $x_4 = x_1 + 300$

سوال 7.60: منڈی کی رسد و طلب

$$M_1=30-3Q_1-2Q_2$$
, $D_1=5Q_1-2Q_2+6$ $M_2=4Q_1-Q_2+10$, $D_2=3Q_2-6$ $Q_2=7$ ($Q_1=3$ ($M_2=D_2=15$ ($M_1=D_1=7$).

سوال 7.61: ضيائى تاليف

روشنی کی توانائی استعال کرتے ہوئے پودے، پانی H₂O اور کاربن ڈائی آگسائڈ CO₂ سے آکسیجن

شكل 7.56: آمد ورفت ـ سوال 7.59

اور گلوکوز $C_6H_{12}O_6$ حاصل کرتے ہیں۔ یہ عمل، جے درج ذیل کیمیائی مساوات میں پیش کیا گیا ہے، ضیائی تالیف 60 کہلاتی ہے۔

$$x_1 CO_2 + x_2 H_2 O \xrightarrow{\mathcal{C}U_3} x_3 C_6 H_{12} O_6 + x_4 O_2$$

کیمیائی مساوات متوازن کرنے سے مراد ہ₁ ، ، ، ، کی الی کمتر قیمتیں دریافت کرنا ہے کہ مساوات کے بائیں ہاتھ ہر قشم کی ایٹم کی تعداد دائیں ہاتھ اس ایٹم کی تعداد کے برابر ہو۔ضائی تالیف کی مساوات کو متوازن کریں۔

$$x_4=6$$
 ، $x_3=1$ ، $x_2=6$ ، $x_1=6$.
 جرابات:

7.4 خطى غير تابعيت درجه قالب ـ سمتى فضا

ہم خطی نظام کے خصوصیات کو مکمل طور پر حل کی موجودگی اور یکنائی کی نقطہ نظر سے دیکھنا چاہتے ہیں۔ ایما کرنے کی خاطر ہم خطی الجبرا کے نئے اور بنیادی تصورات متعارف کرتے ہیں۔ ان میں خطی غیر تابعیت اور درجہ قالب زیادہ اہم ہیں۔ یاد رہے کہ گاوی اسقاط انہیں پر مخصر ہے۔

 $\rm photosynthesis^{60}$

الـــ7. خطى الجرار سمتيات

سمتيات كى خطى تابعيت اور غير تابعيت

عدو سمتیات $a_{(m)}$...، $a_{(m)}$...، $a_{(m)}$ عموعہ 6 درج ذیل میں ارکان کی تعداد کیساں ہے) کی خطبی مجموعہ 6 درج ذیل مساوات دیتی ہے،

$$c_1 \mathbf{a}_{(1)} + c_2 \mathbf{a}_{(2)} + \cdots + c_m \mathbf{a}_{(m)}$$

جہال c_1 تا c_m غیر سمتی قیتتیں ہیں۔اب درج ذیل مساوات پر غور کریں۔

(7.34)
$$c_1 \mathbf{a}_{(1)} + c_2 \mathbf{a}_{(2)} + \dots + c_m \mathbf{a}_{(m)} = \mathbf{0}$$

ظاہر ہے کہ تمام c_j کی قیمت صفر ہونے کی صورت میں مساوات 7.34 درست ہو گا چونکہ ایک صورت میں c_j ماوات 7.34 درست ہو تب c_j علیہ c_j ماوات 7.34 درست ہو تب c_j علیہ c_j ماوات 7.34 درست ہو تب c_j علیہ c_j ماوات 4 c_j ماوات 4 c_j میں اور ہم کہتے ہیں کہ c_j تا c_j میں تابع سلسلہ c_j میں خطی طور غیر تابع سلسلہ c_j میں اگر کس ایک بالیک سے زیادہ c_j کی قیمت غیر صفر ہونے کی خطی طور غیر تابع سلسلہ c_j میں ہوت ہوت میں اگر کس ایک بالیک سے زیادہ c_j کی قیمت غیر صفر ہونے کی صورت میں بھی مساوات 7.34 درست ہو تب c_j تابع صورت میں کس طور قابع c_j کی عدد سمتیہ کو بقایا سمتیات کی صورت میں کس جا سکتا ہے مثلاً c_j کی جورت میں ہم مساوات 7.34 سمتیات کی صورت میں کس جا ترتیب دے کر درج ذیل کھ سکتے ہیں صورت میں ہم مساوات 7.34 کی سے تعلیم کرتے ہوئے ترتیب دے کر درج ذیل کھ سکتے ہیں

$$a_{(1)} = k_2 a_{(2)} + \dots - k_m a_{(m)}$$
 $(k_j = -\frac{c_j}{c_1})$

جہاں چند k_j صفر ہو سکتے ہیں $a_{(1)}=\mathbf{0}$) جہاں چند جا صفر ہو سکتے ہیں $a_{(1)}=\mathbf{0}$

خطی طور تابع سمتیات کے سلسلہ سے کم از کم ایک عدد سمتیہ، اور عین ممکن ہے کہ ایک سے زیادہ سمتیات، خارج کرتے ہوئے خطی طور غیر تابع سلسلہ وہ کمتر تعداد کے سمتیات کا سلسلہ وہ کمتر تعداد کے سمتیات ہیں۔ سمتیات ہیں جن کے ساتھ ہم کام کر سکتے ہیں۔

linear combination⁶¹ linear independent⁶²

linearly independent set⁶³

linearly dependent⁶⁴

مثال 7.24: خطی طور غیر تابع اور خطی طور تابع سمتیات درج ذیل سمتیات

$$\mathbf{a}_{(1)} = \begin{bmatrix} 1 & 2 & 0 & -3 \end{bmatrix}$$
$$\mathbf{a}_{(2)} = \begin{bmatrix} 4 & -2 & 2 & 6 \end{bmatrix}$$
$$\mathbf{a}_{(3)} = \begin{bmatrix} 1 & -3 & 1 & 6 \end{bmatrix}$$

خطی طور تابع ہیں چونکہ انہیں استعال کرتے ہوئے مساوات 7.34 کی طرح درج ذیل لکھا جا سکتا ہے۔

$$2a_{(1)} - a_{(2)} + 2a_{(3)} = 0$$

درج بالا کو با آسانی الجبرا سے ثابت کیا جا سکتا ہے البتہ اس تعلق کو حاصل کرنے اتنا آسان نہیں ہے۔ تابعیت ثابت کرنے کا منظم طریقہ نیچے دیا گیا ہے۔

اس مثال کے پہلے دو عدد سمتیات خطی طور غیر تابع ہیں۔

قالب كادرجه

تعریف: قالب A میں خطی طور غیر تابع صفول کی زیادہ سے زیادہ تعداد کو A کا درجہ 65 کہتے ہیں۔

قالبوں اور خطی مساوات کے نظاموں کی عمومی خصوصیات سمجھنے میں درجہ قالب کا تصور کار آمد ثابت ہو گا۔

مثال 7.25: درجه قالب

حبيها گزشته مثال مين ديكها گيا، درج ذيل قالب مين دو عدد صف خطي طور غير تالع بين للذا اس قالب كا درجه 2 ہے۔

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & -3 \\ 4 & -2 & 2 & 6 \\ 1 & -3 & 1 & 6 \end{bmatrix}$$

 $rank^{65}$

باب. 7. خطى الجبرار سمتيات

دھیان رہے کہ درج A اس صورت 0 ہو گا جب A=0 ہو۔ یہ حقیقت درجہ قالب کی تحریف سے اخذ ہوتی ہے۔

رو عدر قالب A_1 اور A_2 اس صورت صف برابر 66 کہلاتے ہیں جب A_1 پر محدود عمل صف کے ذریعہ A_2 حاصل کرنا ممکن ہو۔

اب قالب میں خطی طور غیر تابع صفول کی تعداد، صفول کی جگہ تبدیل کرنے سے تبدیل نہیں ہوتی اور نا ہی کسی صف کو غیر صفر قیمت دستان صف کی صورت صف کو غیر صفر قیمت دستقل قیمت ہوگا۔
میں کسی بھی قالب کا درجہ مستقل قیمت ہوگا۔

مسکہ 7.2: صف برابر قالب صف برابر قالبوں کا درجہ ایک دونوں کے برابر ہو گا۔

یوں گاوس اسقاط (حصہ 7.3) سے تکونی قالب حاصل کرتے ہوئے درجہ قالب حاصل کیا جا سکتا ہے۔ تکونی قالب میں غیر صفر صفوں کی تعداد درجہ قالب ہو گی۔

مثال 7.26: مثال 7.25 میں دیے گئے قالب کا درجہ، اس کی تکونی قالب کی مدوسے دریافت کرتے ہیں۔

$$A = \begin{matrix} S_1 \\ S_2 \\ S_3 \end{matrix} \begin{bmatrix} 1 & 2 & 0 & -3 \\ 4 & -2 & 2 & 6 \\ 1 & -3 & 1 & 6 \end{bmatrix}$$

$$= \begin{matrix} S'_1 \\ S'_2 \\ S'_3 \end{matrix} \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -10 & 2 & 18 \\ 0 & -5 & 1 & 9 \end{bmatrix} \begin{matrix} S_2 - 4S_1 \\ S_3 - S_1 \end{matrix}$$

$$= \begin{matrix} S''_1 \\ S''_2 \\ S''_3 \end{matrix} \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -10 & 2 & 18 \\ 0 & 0 & 0 & 0 \end{matrix} \begin{matrix} S'_3 - \frac{1}{2}S'_2 \end{matrix}$$

row equivalent⁶⁶

آخری قالب تکونی ہے جس کے آخری صف کے تمام اندراجات صفر کے برابر ہیں للذا یہ صفر صف ہے۔غیر صفر صف میں مفول کی تعداد 2 ہے للذا A کا درجہ بھی 2 ہے۔

مثال 7.24 تا مثال 7.26 میں p=3 ، p=3 اور درجی قالب 2 لیتے ہوئے درج ذیل مسکے کو پڑھیں۔ مشکہ 7.3: سمتیات کی تابعیت اور غیر تابعیت

ایسے p عدد سمتیات جن میں ہر سمتیہ کے n عدد ارکان ہوں کو بطور قالب کے صف کھیں۔ اگر حاصل قالب کا درجہ p ہو تب یہ سمتیات خطی طور غیر تابع ہوں گے۔اس کے برعکس اگر اس قالب کا درجہ p سے کم ہو تب یہ سمتیات خطی طور تابع ہوں گے۔

دیگر اہم خصوصیات درج ذیل مسئلے سے حاصل ہول گے۔

مسکلہ 7.4: سمتیات قطار کی صورت میں درجہ قالب قطار کی تعداد کے برابر ہو گا۔ قالب A کا درجہ r ، اس قالب میں غیر تابع سمتیہ قطار کی تعداد کے برابر ہو گا۔

یوں قالب A اور تبدیل محل قالب A^T کا درجہ ایک دونوں کے برابر ہو گا۔

 $r \in A$ کا درجہ تالب کی تعریف سے یوں کہ $m \times n$ قالب کی درجہ تالب کی تعریف سے یوں کہ $a_{(1)}$ صف ہوں گے جنہیں ہم موری درج ویل میں درج نوال کی خور نور کی میں اور $v_{(r)}$ میں درج ویل کھا جا سکتا ہے۔ $v_{(r)}$ کو ان خطی طور غیر تالع کی صورت میں درج ویل کھا جا سکتا ہے۔

$$\mathbf{a}_{(1)} = c_{11}\mathbf{v}_{(1)} + c_{12}\mathbf{v}_{(2)} + \dots + c_{1r}\mathbf{v}_{(r)}$$

$$\mathbf{a}_{(2)} = c_{21}\mathbf{v}_{(1)} + c_{22}\mathbf{v}_{(2)} + \dots + c_{2r}\mathbf{v}_{(r)}$$

$$\vdots$$

$$\mathbf{a}_{(m)} = c_{m1}\mathbf{v}_{(1)} + c_{m2}\mathbf{v}_{(2)} + \dots + c_{mr}\mathbf{v}_{(r)}$$

باب. 7. خطى الجبراد سمتيات

 v_{11} ہے مساوات سمتیات ہیں جن میں سے ہر v_{11} عدد مساوات پر مشتل ہے۔ $v_{(1)}$ کے ارکان کو $v_{(1)}$ ہوئے درج ذیل ملتا ہے جہال v_{1n} کھتے ہوئے درج ذیل ملتا ہے جہال v_{1n} کھتے ہوئے درج ذیل ملتا ہے جہاں v_{1n} کے ارکان کو بھی کھتے ہوئے درج ذیل ملتا ہے جہاں v_{1n} ہے۔

$$a_{1k} = c_{11}v_{1k} + c_{12}v_{2k} + \dots + c_{1r}v_{rk}$$

$$a_{2k} = c_{21}v_{1k} + c_{22}v_{2k} + \dots + c_{2r}v_{rk}$$

$$\vdots$$

$$a_{mk} = c_{m1}v_{1k} + c_{m2}v_{2k} + \dots + c_{mr}v_{rk}$$

اس کو درج ذیل لکھا جا سکتا ہے۔

$$\begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{pmatrix} = v_{1k} \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{m1} \end{pmatrix} + v_{2k} \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{m2} \end{pmatrix} + \dots + v_{rk} \begin{pmatrix} c_{1r} \\ c_{2r} \\ \vdots \\ c_{mr} \end{pmatrix}$$

بائیں ہاتھ سمتیہ A قالب کا k شار پر قطار ہے۔یوں درج بالا مساوات کے تحت A کا ہر قطار، دائیں ہاتھ کے r عدد سمتیات کا خطی مجموعہ ہے لہٰذا A کے خطی طور غیر تابع قطاروں کی تعداد r سے تجاوز نہیں کر سکتی ہے جو خطی طور غیر تابع صفوں کی تعداد ہے۔

A اب یہی کچھ تبدیل محل قالب A^T کے بارے میں بھی کہا جا سکتا ہے۔ چونکہ A^T کے سمتیات صف A کے سمتیات قطار ، اور A^T کے سمتیات قطار ، اور A^T کے سمتیات قطار ، اور A^T کی خطی طور غیر تابع صف سمتیات کی زیادہ سے زیادہ تعداد (جو A کے برابر ہے)، A کی خطی طور غیر تابع سمتیات قطار کی تعداد A ہوتا ہے۔ سمتیات قطار کی تعداد سے تجاوز نہیں کر سکتی ہے۔ اس طرح یہ تعداد A ہی ممکن ہے۔ یوں ثبوت مکمل ہوتا ہے۔

مثال 7.26 میں قالب A کا درجہ 2 ہے۔یوں A کے دو قطار خطی طور غیر تابع ہوں گے۔بائیں جانب سے پہلی اور دوسری قطار کو خطی طور غیر تابع لیتے ہوئے تیسرے اور چوشھے قطار کو درج ذیل کھا جا سکتا ہے۔

$$\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} -3 \\ 6 \\ 6 \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} - \frac{9}{5} \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$$

مسکہ 7.3 اور مسکہ 7.4 کی مدد سے درج ذیل مسکہ اخذ ہوتا ہے۔ مسکہ 7.5: سمتیات کی خطی طور تابعیت فرض کریں کہ p سمتیات کا ہر رکن n ارکان پر مشمل ہے۔اگر p ہوتب یہ سمتیات خطی طور تابع ہول گے۔

درجہ $A \leq n < p$

ہو گا جو مسکلہ 7.3 کے تحت خطی تابعیت کو ظاہر کرتی ہے۔

سمتي فضا

i فرض کریں کہ i سمتیات کا ایسا غیر خالی سلسلہ i ہے جس کے تمام سمتیات میں ارکان کی تعداد کیسال i ور i میں موجود کسی بھی دو سمتیات i اور i و اور i کے تمام ممکنہ مجموعے i i ور جہال i ور i میں موجود کسی بھی دو سمتیات i ور مزید رہے کہ i ور i مساوات i ور i میں کوئی بھی سمتیات i مساوات i مساوات i ور i مساوات i ور i میں کوئی بھی سمتیات i مساوات i مساوات i ور i مساوات i ور i میں کوئی بھی سمتیات i مساوات i مساوات i مساوات i مساوات i ور i ور i میں کوئی بھی سمتیات i مساوات i مساوات i مساوات i مساوات i ور i ور i میں کوئی بھی سمتیات i مساوات i مساوات i ور i

V میں خطی طور غیر تابع سمتیات کی تعداد کو V کی جسامت 69 کہتے ہیں۔ یہاں ہم فرض کرتے ہیں کہ V کی جسامت محدود ہے۔ لامتناہی جسامت کے سلسلے پر بعد میں غور کیا جائے گا۔

V میں موجود خطی طور غیر تابع سمتیات کی زیادہ سے زیادہ تعداد پر بنی سلسلے کو V کا اساس V کہتے ہیں۔ اس (اساسی) سلسلے میں کسی بھی ایک یا ایک سے زیادہ سمتیات کو شامل کرنے سے یہ سلسلہ خطی طور تابع ہو جائے گا۔ یوں V کی اساس میں سمتیات کی تعداد، V کی جسامت کے برابر ہو گی۔

nonempty set⁶⁷

vector space⁶⁸

dimension⁶⁹

 $[\]rm basis^{70}$

باب. 7. خطى الجبراد سمتيات

کسی بھی دیے گئے، میساں تعداد کے ارکان والے سمتیات $a_{(p)}$ \cdots ، $a_{(1)}$ نصلیہ، ویک بھی دیے گئے، میساں تعداد کے ارکان والے سمتیات کا احاطہ $a_{(p)}$ \cdots ، $a_{(1)}$ نصلی فضا ہے۔ اگر $a_{(p)}$ \cdots ، $a_{(1)}$ نصلی فضا کے اساس میسی نصل کی سمتیات ہوں گے۔

اس سے اساس کی نئی تعریف ملتی ہے۔ سمتیات کا سلسلہ اس صورت سمتی فضا V کا اساس ہو گا (الف) اگر اس سلسلے میں سمتیات خطی طور غیر تابع ہوں اور (ب) اگر V میں کسی بھی سمتیہ کو سلسلے کے سمتیات کا خطی مجموعے ککھنا ممکن ہو۔

سمتی فضا کی ذیلمی فضا 72 ہے مراد V کا وہ غیر خالی ذیلمی سلسلہ 73 ہے (جو پورے V پر بھی مشتمل ہو سکتا ہے۔) جو V کی سمتیات پر لاگو جمع اور غیر سمتی ضرب کے قواعد پر پورا اثرتا ہوا سمتی فضا ہو۔

مثال 7.27: ستی فضا، جسامت، اساس مثال 7.24 کے تین سمتیات کے احاطے کی جسامت 2 ہے۔ اس سمتی فضا کی اساس ان میں سے کسی بھی دو سمتیات پر مشتمل ہو گا مثلاً $a_{(1)}$ اور $a_{(2)}$ یا $a_{(1)}$ اور $a_{(3)}$ اور یا $a_{(2)}$ اور اور یا

مسکه 7.6: سمتی فضا R^n مسکله 7.6: سمتی فضا R^n کی جسامت n ہو گ۔ n

ثبوت: n سمتیات کی اساس درج ذیل ہے۔

$$egin{aligned} oldsymbol{a}_{(1)} &= egin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \ oldsymbol{a}_{(2)} &= egin{bmatrix} 0 & 1 & \cdots & 0 \end{bmatrix} \ &\vdots \ oldsymbol{a}_{(n)} &= egin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} \end{aligned}$$

 $\begin{array}{c} \mathrm{span}^{71} \\ \mathrm{subspace}^{72} \\ \mathrm{subset}^{73} \end{array}$

قالب A کے سمتیات صف کے احاطے کو A کا صف فضا 74 کہتے ہیں۔ اس طرح قالب A کے سمتیات قطار کے احاطے کو A کا قطار فضا 75 کہتے ہیں۔

اب مسئلہ 7.4 کے تحت قلب کے خطی طور غیر تابع قطاروں کی تعداد اس کے خطی طور غیر تابع صفوں کی تعداد کے برابر ہوتی ہے۔ جسامت کی تعریف کے تحت، یہ عدد صف فضا یا قطار فضا کی جسامت ہو گا۔اس سے درج ذیل مسئلہ ثابت ہوتا ہے۔

مسکلہ 7.7: صف فضا اور قطار فضا قالب A کی قطار فضا کی جمامت، اس کی صف فضا کی جمامت اور درجہ A عین برابر ہوں گے۔

آخر میں کسی بھی قالب A کی غیر متجانس مساوات Ax=0 کا سلسلہ حل، سمتی فضا ہو گا جس کو A کی معدوم فضا 77 کہتے ہیں۔ اگلے جسے میں درج ذیل بنیادی تعلق کو ثابت کرتے ہیں۔

$$A$$
میں تعداد قطار A معدومیت A درجہ ظار A

سوالات

سوال 7.62 تا سوال 7.62 کی تکونی صورت گاوی اسقاط سے حاصل کرتے ہوئے درجہ قالب حاصل کریں۔ صف فضا اور قطار فضا کی اساس بھی حاصل کریں۔

سوال 7.62:

$$\begin{bmatrix} 6 & -2 & 8 \\ -3 & 1 & -4 \end{bmatrix}$$

 $m row\ space^{74}$ column space⁷⁵ null set⁷⁶ nullity⁷⁷

باب. 7. فطي الجبرا سمتيات

جوابات: درجہ = 1 ؛ [8 - 2] ؛ $[2 - 1]^T$ ۔ آخری سمتیہ کو $[6 - 3]^T$ کی جگہ $[1 - 2]^T$ کی الکھا گیا ہے۔ بقایا جوابات میں بھی بعض او قات سمتیہ کی سادہ ترین صورت دی گئی ہے۔

سوال 7.63:

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

 $[0\ 0\ 1]^T$ ([1\ 0\ 1]) [1\ 0\ 1] ([1\ 0\ 0]) [1\ 0\ 1] ([1\ 0\ 0]) ([1\ 0\ 0]) ([1\ 0\ 0]) ([1\ 0\ 0]) ([1\ 0\ 0]) ([1\ 0\ 0]) ([1\ 0\ 0]) ([1

سوال 7.64:

$$\begin{bmatrix} 8 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \\ 4 & 0 & 2 & 0 \end{bmatrix}$$

 $[0\ 1\ 0]^T$ ($[0\ 1\ 0]^T$ ($[0\ 1\ 0]^T$) ($[0\ 1\ 0]^T$)

سوال 7.65:

$$\begin{bmatrix} 2 & 0 & 4 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 5 & -1 \end{bmatrix}$$

 $[0\ 0\ 1\ -1]^T$ ($[0\ 0\ 1\ -1]^T$ ($[0\ 0\ 1\ 0]^T$ ($[0\ 0\ 1\ 0]^T$ ($[0\ 0\ 1\ -1\ 1]^T$ ($[0\ 0\ 1\ 0]^T$).

سوال 7.66:

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

 $[0\ 0\ 1]$ ، $[0\ 0\ 1]$ ،

باب.7. خطى الجبرا ـ سمتيات

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.