Линейные методы регрессии (advanced)

Елена Кантонистова

ekantonistova@hse.ru

ПЛАН ЛЕКЦИИ

- Линейная регрессия (напоминание)
- Почему MSE? Вероятностное объяснение
- Другие функции потерь
- Точное решение (OLS или метод наименьших квадратов)
- Особенности применения линейной регрессии

ЛИНЕЙНАЯ РЕГРЕССИЯ (НАПОМИНАНИЕ)

Пример (напоминание):

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) .

Линейная модель для предсказания стоимости:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2,$$

где w_0, w_1, w_2 -

параметры модели (веса).

Пример (напоминание):

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) .

Линейная модель для предсказания стоимости:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2,$$

где w_0, w_1, w_2 -

параметры модели (веса).

Общий вид (линейная регрессия):

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

где $x_1, ..., x_n$ - признаки объекта x.

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• сокращенная запись:

$$a(x) = w_0 + \sum_{j=1}^n w_j x_j$$

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• сокращенная запись:

$$a(x) = w_0 + \sum_{j=1}^n w_j x_j$$

• запись через скалярное произведение (с добавлением признака $x_0=1$):

$$a(x) = w_0 \cdot 1 + \sum_{j=1}^{n} w_j x_j = \sum_{j=0}^{n} w_j x_j = (w, x)$$

Линейная регрессия:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• сокращенная запись:

$$a(x) = w_0 + \sum_{j=1}^n w_j x_j$$

• запись через скалярное произведение (с добавлением признака $x_0=1$):

$$a(x) = w_0 \cdot 1 + \sum_{j=1}^{n} w_j x_j = \sum_{j=0}^{n} w_j x_j = (w, x) \Leftrightarrow a(x) = (w, x)$$

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^{n} w_j x_j = (w, x)$$

Обучение линейной регрессии - минимизация среднеквадратичной ошибки:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^{l} ((w, x_i) - y_i)^2 \to \min_{w}$$

(здесь l — количество объектов)

ПОЧЕМУ MSE?

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА

 Даже если целевая переменная линейно зависит от признаков, то идеальной модели не существует, то есть реальные ответы будут отличаться от предсказаний, поэтому мы пишем

$$y \approx (w, x)$$

• Неидеальность прогноза можно объяснить неполнотой данных, или же шумом в данных. Тогда формула переписывается со знаком "=":

$$y = (w, x) + \varepsilon$$
,

где ε – шум в данных.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА

$$y = (w, x) + \varepsilon$$

• Шум в данных обычно имеет некоторое распределение. В большинстве реальных задач считается, что

$$\varepsilon \sim N(0, \sigma^2)$$
.

• Отсюда получаем, что $y \sim N((w, x), \sigma^2)$.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА

$$y \sim N((w, x), \sigma^2)$$

Это означает, что вероятность наблюдать y при данных значениях x равна

$$p(y|x,w) \sim N((w,x),\sigma^2)$$

Мы хотим подобрать оптимальные веса. Что это значит?

Мы хотим подобрать такой вектор w, что вероятность наблюдать некоторое значение y при наблюдаемых x максимальна.

МЕТОД МАКСИМУМА ПРАВДОПОДОБИЯ (ММП)

Мы хотим подобрать оптимальные веса. Что это значит?

Мы хотим подобрать такой вектор w, что вероятность наблюдать некоторое значение y при наблюдаемых x максимальна.

Запишем это желание сразу для всех объектов выборки (в предположении, что объекты независимы):

$$p(y|X, w) = p(y_1|x_1, w) \cdot p(y_2|x_2, w) \cdot ... \cdot p(y_i|x_i, w) \cdot ... \rightarrow \max_{w}$$

Величина p(y|X,w) называется функцией правдоподобия (или правдоподобием) выборки.

Модель данных с некоррелированным гауссовским шумом:

$$y_i = (w, x_i) + \varepsilon_i$$
, $\varepsilon_i \sim N(0, \sigma^2)$, $i = 1, ..., l$

Модель данных с некоррелированным гауссовским шумом:

$$y_i = (w, x_i) + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2), i = 1, ..., l$$

Тогда $y_i \sim N((w, x_i), \sigma^2), i = 1, ..., l$

Модель данных с некоррелированным гауссовским шумом:

$$y_i = (w, x_i) + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2), i = 1, ..., l$$
 Тогда $y_i \sim N((w, x_i), \sigma^2), i = 1, ..., l$

Метод максимума правдоподобия (ММП):

$$L(y_1, ..., y_l | w) = \prod_{i=1}^{l} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (y_i - (w, x_i))^2\right) \to \max_{w}$$

Модель данных с некоррелированным гауссовским шумом:

$$y_i = (w, x_i) + arepsilon_i, arepsilon_i \sim N(0, \sigma^2), i = 1, ..., l$$
 Тогда $y_i \sim N((w, x_i), \sigma^2), i = 1, ..., l$

Метод максимума правдоподобия (ММП):

$$L(y_1, ..., y_l | w) = \prod_{i=1}^{l} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (y_i - (w, x_i))^2\right) \to \max_{w}$$
$$-\ln L(y_1, ..., y_l | w) = const + \frac{1}{2\sigma^2} \sum_{i=1}^{l} (y_i - (w, x_i))^2 \to \min_{w}$$

В данном случае ММП совпадает с МНК.

ДРУГИЕ ФУНКЦИИ ПОТЕРЬ

ОПТИМУМЫ МЅЕ И МАЕ

Рассмотрим вероятностную постановку задачи.

Предположим, что на объектах с одинаковым признаковым описанием могут быть разные ответы. В этом случае на всех таких объектах MSE (или MAE) должна выдать один и тот же ответ.

Теорема. Пусть даны l объектов с одинаковым признаковым описанием и значениями целевой переменной y_1, \dots, y_l . Тогда:

1. Оптимум MSE достигается на среднем значении ответов:

$$\alpha_{MSE} = \sum_{i=1}^{l} y_i$$

2. Оптимум МАЕ достигается на медиане ответов:

$$\alpha_{MAE} = median\{y_1, ..., y_l\}$$

КВАНТИЛЬНАЯ РЕГРЕССИЯ

Квантильная функция потерь:

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} \rho_{\tau}(y_i - a(x_i))$$

3десь

$$\rho_{\tau}(z) = (\tau - 1)[z < 0]z + \tau[z \geqslant 0]z = (\tau - \frac{1}{2})z + \frac{1}{2}|z|$$

Параметр $\tau \in [0; 1]$.

• Чем больше τ , тем больше штрафуем за занижение прогноза.

ВЕРОЯТНОСТНЫЙ СМЫСЛ КВАНТИЛЬНОЙ ФУНКЦИИ ПОТЕРЬ

Теорема.

Пусть в каждой точке $x \in X$ (пространство объектов) задано распределение p(y|x) на ответах для данного объекта.

Тогда оптимизация функции потерь $\rho_{\tau}(z)$ дает алгоритм a(x), приближающий τ -квантиль распределения ответов в каждой точке $x \in X$.

МАТРИЧНОЕ ДИФФЕРЕНЦИРОВАНИЕ И АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ МНК

МАТРИЧНОЕ ДИФФЕРЕНЦИРОВАНИЕ

Напомним, как выглядит производная функции-скаляра по вектору (1) и по матрице (2):

$$\mathsf{1)} \qquad \nabla_{\mathbf{x}} f = \frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n.$$

$$\mathbf{2)} \quad \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{11}} & \frac{\partial f}{\partial X_{12}} & \cdots & \frac{\partial f}{\partial X_{1n}} \\ \frac{\partial f}{\partial X_{21}} & \frac{\partial f}{\partial X_{22}} & \cdots & \frac{\partial f}{\partial X_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{m1}} & \frac{\partial f}{\partial X_{m2}} & \cdots & \frac{\partial f}{\partial X_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

Задача 1. Пусть $a \in \mathbb{R}^n$ — вектор параметров, а $x \in \mathbb{R}^n$ — вектор переменных. Необходимо найти производную их скалярного произведения по вектору переменных $\nabla_x a^T x$.

Задача 1. Пусть $a \in \mathbb{R}^n$ — вектор параметров, а $x \in \mathbb{R}^n$ — вектор переменных. Необходимо найти производную их скалярного произведения по вектору переменных $\nabla_x a^T x$.

Решение.

$$\frac{\partial}{\partial x_i} a^T x = \frac{\partial}{\partial x_i} \sum_j a_j x_j = a_i,$$

поэтому $\nabla_x a^T x = a$.

Заметим, что $a^T x$ — это число, поэтому $a^T x = x^T a$, следовательно,

$$\nabla_x x^T a = a.$$

Задача 2. Пусть теперь $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_x x^T A x$.

Задача 2. Пусть теперь $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_x x^T A x$.

Решение.

$$\frac{\partial}{\partial x_i} x^T A x = \frac{\partial}{\partial x_i} \sum_j x_j (A x)_j = \frac{\partial}{\partial x_i} \sum_j x_j \left(\sum_k a_{jk} x_k \right) = \frac{\partial}{\partial x_i} \sum_{j,k} a_{jk} x_j x_k =$$

$$= \sum_{j \neq i} a_{ji} x_j + \sum_{k \neq i} a_{ik} x_k + 2a_{ii} x_i = \sum_j a_{ji} x_j + \sum_k a_{ik} x_k = \sum_j (a_{ji} + a_{ij}) x_j.$$

Поэтому $\nabla_x x^T A x = (A + A^T) x$.

 $\nabla_x x^T a = a.$

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ (МНК)

Задача обучения линейной регрессии (в матричной форме):

$$\frac{1}{\ell} \|Xw - y\|^2 \to \min_w$$

Точное (аналитическое) решение [с выводом на доске]:

$$w = (X^T X)^{-1} X^T y$$

НЕДОСТАТКИ АНАЛИТИЧЕСКОЙ ФОРМУЛЫ

- Обращение матрицы сложная операция ($O(N^3)$) от числа признаков)
- ullet Матрица X^TX может быть вырожденной или плохо обусловленной
- Если заменить среднеквадратичный функционал ошибки на другой, то скорее всего не найдем аналитическое решение

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ЛИНЕЙНОЙ РЕГРЕССИИ

Пример:

Предположим, что мы хотим предсказать стоимость дома y по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4.$$

Пример:

Предположим, что мы хотим предсказать стоимость дома y по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4.$$

<u>Проблема №1:</u> район (х₃) — это не число, а название района. Например, Мамыри, Дудкино, Барвиха... Что с этим делать?

Пример:

Предположим, что мы хотим предсказать стоимость дома y по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4.$$

<u>Проблема №1:</u> район (х₃) — это не число, а название района. Например, Мамыри, Дудкино, Барвиха... Что с этим делать?

<u>Решение</u> – one-hot encoding (OHE): создаем новые числовые столбцы, каждый из которых является индикатором района.

ONE-HOT ENCODING

Район
Дудкино
Барвиха
Мамыри
•••
Барвиха

Мамыри	Дудкино	Барвиха
0	1	0
0	0	1
1	0	0
•••	•••	•••
0	0	1

$$a(x) =$$

= $w_0 + w_1 x_1 + w_2 x_2 + w_{31} x_{\text{Мамыри}} + w_{32} x_{\text{Дудкино}} + w_{33} x_{\text{Барвиха}} + w_4 x_4.$

Пример:

Предположим, что мы хотим предсказать стоимость дома у по его площади (x_1) и количеству комнат (x_2) , району (x_3) и удаленности от МКАД (x_4) .

<u>Проблема №2:</u> удаленность от МКАД (х₄) не монотонно влияет на стоимость дома.

<u>Проблема №2:</u> удаленность от МКАД (x_4) не монотонно влияет на стоимость дома.

<u>Решение</u> – бинаризация (разбиение на бины).

Новые признаки:

• $x_{[0;10)}$ - равен 1, если

дом находится в пределах

10 км от МКАД, и 0 иначе

• $x_{[10;30)}$ - равен 1, если

дом находится в пределах от 10 км до 30 км МКАД, и 0 иначе. И т.д.

<u>Проблема №2:</u> удаленность от МКАД (x_4) не монотонно влияет на стоимость дома.

Решение – бинаризация (разбиение на бины).

Новые признаки:

• $x_{[0;10)}$ - равен 1, если

дом находится в пределах

10 км от МКАД, и 0 иначе

• $x_{[10;30)}$ - равен 1, если

дом находится в пределах от 10 км до 30 км МКАД, и 0 иначе. И т.д.

$$a(x) = = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_{41} x_{[0;10)} + w_{42} x_{[10;30)} + w_{43} x_{[30;50)} + w_{44} x_{\geq 50}$$