Machine Learning for HFT price movement predictions

James Han, Chun Yu Hong, Nick Sutardja, Sio Fong Wong

Table of Contents

- Supervised Learning (Classification)
 - Support Vector Machine
 - Random Forest
- HFT price movement prediction
 - Class Label
 - Feature extraction
 - Cross Validation and Performance Measurement
 - Experimental Results

Objectives:

 To use machine learning algorithms to predict price movements based on limit order book data

Ex: Support Vector Machines, Random Forests, etc.

Supervised Learning

- -Goal: to infer a function based on labeled data
- -Classification: labels are discrete (ex: whether an email is spam or not)
- -Regression: labels are continuous (ex: income)

-Basic idea: Find the maximum-margin separating hyperplane that divides the data points into two classes.

-Key property: Only the hard-to-classify data points matter when determining the separating hyperplane.

-Can be formulated as a convex optimization problem:

$$\min_{w,b} \frac{1}{2} ||w||^2$$

subject to $y^{(i)}(w^T z^{(i)} + b) \ge 1, i = 1, ..., m.$

-Problem: This formulation assumes that the data points are linearly separable!

-Remedy: Introduce **slack** variables.

$$\begin{aligned} & \min_{w,b} & & \frac{1}{2}||w||^2 + C\sum_{i=1}^m \xi^{(i)} \\ & \text{subject to} & & y^{(i)}(w^Tz^{(i)} + b) \geq 1 - \xi^{(i)}, \ i = 1, \dots, m. \\ & & & \xi^{(i)} \geq 0, \ i = 1, \dots, m. \end{aligned}$$

-large C: get as many correctly labeled data points as possible at the expense of having a small margin

-small C: get a large margin at the expense of (potentially) having more incorrectly classified labels

-What if we want to deal with nonlinear decision boundaries? Transformation.

$$\min_{w,b} \qquad \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi^{(i)}$$
 subject to $y^{(i)}(w^T z^{(i)} + b) \ge 1 - \xi^{(i)}, \ i = 1, \dots, m.$ subject to $y^{(i)}(\langle u, \Phi \rangle z^{(i)}) \rangle + b) \ge 1 - \xi^{(i)}, \ i = 1, \dots, m.$
$$\xi^{(i)} \ge 0, \ i = 1, \dots, m.$$
 feature map

-Dual Problem (Karush-Kuhn-Tucker conditions):

$$\max_{\alpha} \qquad \sum_{i=1}^{m} \alpha^{(i)} - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} y^{(i)} y^{(j)} \langle \Phi(z^{(i)}), \Phi(z^{(j)}) \rangle$$
subject to
$$\sum_{i=1}^{m} \alpha^{(i)} y^{(i)} = 0$$

$$0 \le \alpha^{(i)} \le C, \ i = 1, \dots, m.$$

-Key: The optimization problem depends only on $\mathcal{K}(\cdot,\cdot)\stackrel{\Delta}{=} \langle \Phi(\cdot), \Phi(\cdot) \rangle$

kernel / similarity measure

-Commonly used kernels:

Linear kernel:
$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial kernel:
$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = (c + \mathbf{x}^T \mathbf{x}')^d$$

Gaussian kernel:
$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}\right)$$

Gaussian kernel:
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Demo...

Random Forests

- -Three ideas put together: Decision Trees + Random selection of features + Random selection of data (Bootstrapping)
- -Example of a decision tree: Predict whether a student is currently taking IEOR 222

Random Forests

Connections?

Class Label Definition: Mid-price movement

Feature Extraction

LOB Snapshot (10 Level Bid, 10 Level Ask)

Feature vector set

Each LOB Snapshot will have its own associated features

n x d matrix (n data, d features)

Feature Vector Set

Basic Set	Description($i = level index, n = 10$)
$v_1 = \{P_i^{ask}, V_i^{ask}, P_i^{bid}, V_i^{bid}\}_{i=1}^n,$	price and volume (n levels)

Time-insensitive Set	$Description(i = level\ index)$
$v_2 = \{ (P_i^{ask} - P_i^{bid}), (P_i^{ask} + P_i^{bid})/2 \}_{i=1}^n,$	bid-ask spreads and mid-prices
$v_3 = \{P_n^{ask} - P_1^{ask}, P_1^{bid} - P_n^{bid}, P_{i+1}^{ask} - P_i^{ask} , P_{i+1}^{bid} - P_i^{bid} \}_{i=1}^n,$	price differences
$v_4 = \{ \frac{1}{n} \sum_{i=1}^n P_i^{ask}, \ \frac{1}{n} \sum_{i=1}^n P_i^{bid}, \ \frac{1}{n} \sum_{i=1}^n V_i^{ask}, \ \frac{1}{n} \sum_{i=1}^n V_i^{bid} \},$	mean prices and volumes
$v_5 = \{\sum_{i=1}^n (P_i^{ask} - P_i^{bid}), \sum_{i=1}^n (V_i^{ask} - V_i^{bid})\},$	accumulated differences

Time-sensitive Set	Description(i = level index)
$v_6 = \{dP_i^{ask}/dt, dP_i^{bid}/dt, dV_i^{ask}/dt, dV_i^{bid}/dt\}_{i=1}^n,$	price and volume derivatives
$v_7 = \{\lambda_{\Delta t}^{la}, \; \lambda_{\Delta t}^{lb}, \; \lambda_{\Delta t}^{ma}, \; \lambda_{\Delta t}^{mb}, \; \lambda_{\Delta t}^{ca}, \; \lambda_{\Delta t}^{cb} \; \}$	average intensity of each type
$v_8 = \left\{1_{\{\lambda_{\Delta t}^{la} > \lambda_{\Delta T}^{la}\}}, 1_{\{\lambda_{\Delta t}^{lb} > \lambda_{\Delta T}^{lb}\}}, 1_{\{\lambda_{\Delta t}^{ma} > \lambda_{\Delta T}^{ma}\}}, 1_{\{\lambda_{\Delta t}^{mb} > \lambda_{\Delta T}^{mb}\}}\right\},$	relative intensity indicators
$v_9 = \{d\lambda^{ma}/dt, \ d\lambda^{lb}/dt, \ d\lambda^{mb}/dt, \ d\lambda^{la}/dt\},$	accelerations(market/limit)

- Adding Additional
 Feature Improves
 Performance
- Certain Features
 may be more
 significant than
 others (Econ. Set)

[Kercheval 2014]

K-fold Cross Validation and Performance

Data and Definitions

- SPY and AAPL Data 05/10/2012 (30minutes only)
- Δ := Horizon of predicting time
- Distribution (U,D,S) := number of labels seen
- Economical set := V1 to V6 (Basic Set + Time Insensitive + Time Sensitive)

Performance Measurement

For each label/class y:

- Precision: P = #(correctly labeled y)/#(y in the predictions)
- Recall: R = #(correctly labeled y)/#(y in the sample)
- F1-measure: F1 = 2PR/(P + R)

Experimental Results - SVM w/ Linear kernel

SPY	Precision	Recall	F1 Measure
UP	'NA'	18.8%	'NA'
DOWN	28.6%	42.7%	34.3%
STATIONARY	64.1%	45.0%	52.9%

- Data is inseparable with Linear Kernel
- Try different Kernel
- NA = Does not predict U/D/S

$$\bullet$$
 $\Lambda = 30$

• (U,D,S) SPY = (4761, 5390, 11385)

Experimental Results - SVM w/ RBF kernel

SPY	Precision	Recall	F1 Measure
UP	93.2%	27.4%	41.2%
DOWN	95.3%	23.3%	37.3%
STATIONARY	60.1%	98.7%	74.7%

- For RBF: Precision is good but Recall is bad
- Predicting too many stationary

- \bullet $\Lambda = 30$
- (U,D,S) SPY = (4761, 5390, 11385)

Experimental Results - Random Forest

SPY	Precision	Recall	F1 Measure
UP	85.2%	73.1%	78.6%
DOWN	85.4%	81.9%	83.6%
STATIONARY	84.2%	90.8%	87.4%

AAPL	Precision	Recall	F1 Measure
UP	84.3%	80.2%	82.1%
DOWN	81.9%	89.5%	85.5%
STATIONARY	72.7%	44.9%	55.1%

- terms of overall performance
 (especially when the distribution is around (1,1,2))
 AAPL has worse stationary performance because Δ = 30 does
 - AAPL has worse stationary performance because Δ = 30 does not have enough stationary samples in the training set

Random Forest performs better in

 can remedy this by having different ∆ optimized for unique assets

- \bullet $\Delta = 30$
- (U,D,S) SPY = (4761, 5390, 11385)
- (U,D,S) AAPL = (4972, 5807, 777)

Feature Vector Set Insights

Basic Set	Description($i = level index, n = 10$)
$v_1 = \{P_i^{ask}, V_i^{ask}, P_i^{bid}, V_i^{bid}\}_{i=1}^n,$	price and volume (n levels)

Time-insensitive Set	Description(i = level index)
$v_2 = \{ (P_i^{ask} - P_i^{bid}), (P_i^{ask} + P_i^{bid})/2 \}_{i=1}^n,$	bid-ask spreads and mid-prices
$v_3 = \{P_n^{ask} - P_1^{ask}, P_1^{bid} - P_n^{bid}, P_{i+1}^{ask} - P_i^{ask} , P_{i+1}^{bid} - P_i^{bid} \}_{i=1}^n,$	price differences
$v_4 = \{\frac{1}{n} \sum_{i=1}^n P_i^{ask}, \frac{1}{n} \sum_{i=1}^n P_i^{bid}, \frac{1}{n} \sum_{i=1}^n V_i^{ask}, \frac{1}{n} \sum_{i=1}^n V_i^{bid}\},$	mean prices and volumes
$v_5 = \{\sum_{i=1}^n (P_i^{ask} - P_i^{bid}), \sum_{i=1}^n (V_i^{ask} - V_i^{bid})\},$	accumulated differences

Time-sensitive Set	$Description(i = level \ index)$
$v_6 = \{dP_i^{ask}/dt, dP_i^{bid}/dt, dV_i^{ask}/dt, dV_i^{bid}/dt\}_{i=1}^n,$	price and volume derivatives
$v_7 = \{\lambda_{\Delta t}^{la}, \lambda_{\Delta t}^{lb}, \lambda_{\Delta t}^{ma}, \lambda_{\Delta t}^{mb}, \lambda_{\Delta t}^{ca}, \lambda_{\Delta t}^{cb} \}$	average intensity of each type
$v_8 = \{1_{\{\lambda_{\Delta t}^{la} > \lambda_{\Delta T}^{la}\}}, 1_{\{\lambda_{\Delta t}^{lb} > \lambda_{\Delta T}^{lb}\}}, 1_{\{\lambda_{\Delta t}^{ma} > \lambda_{\Delta T}^{ma}\}}, 1_{\{\lambda_{\Delta t}^{mb} > \lambda_{\Delta T}^{mb}\}}\},$	relative intensity indicators
$v_9 = \{d\lambda^{ma}/dt, \ d\lambda^{lb}/dt, \ d\lambda^{mb}/dt, \ d\lambda^{la}/dt\},$	accelerations (market/limit)

Biggest Effect on improving our measures was v6, the price and volume derivatives taken from the message book data

Real Implementation Considerations and Future Work

- More training data (aka: window size) will give better results but takes longer
 - o currently running on 2.3GHz intel core i-7 (2012) mac -> 30 minute data
 - solution: get a supercomputer and use a window size (aka dataset) that optimally trades off compute time with sufficient update frequency -> several hours of data
- Optimize Information gain from each feature to determine optimal economical feature vector set
- Use random forest to determine feature importance