

(11)Publication number:

2001-095199

(43)Date of publication of application: 06.04.2001

(51)Int.CI.

H02K 5/18

(21)Application number: 11-265058

(71)Applicant:

YASKAWA ELECTRIC CORP

(22)Date of filing:

20.09.1999 (72)Inventor:

KAMIYAMA KENJI

IKEDA ATSUO

YOSHIZAWA NAOTAKE WATANABE KENJI

(54) SERVO MOTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a servo motor which can prevent the increase in cogging torque caused by the distortion of a magnetic circuit of an iron core.

SOLUTION: A servo motor 1 comprises a stator 2 having a metal frame 6, a rotor 3 disposed in an inner space of the stator 2, and a load-side and an anti-load side housing 4, 5 which rotatably support the rotor 3 from both sides in the axial direction of the rotor 3. The metal frame 6 has a shape having fins 9. The thickness of the frame body 6a at the foot of the fins is nearly uniformed. Due to this structure, if the stator 2 is manufactured by a shrink fitting method wherein an iron core 7 is inserted into the heated metal frame 6 or by a method of fixing the metal frame 6 and the frame 7 with a thermosetting adhesive, there is no distortion generated in the iron core 7, preventing the increase in cogging torque.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2001-95199

(P2001-95199A)

(43)公開日 平成13年4月6日(2001.4.6)

(51) Int.CL? HO2K 5/18 織別記号

FΙ HO2K 5/18 テーマユード(参考) 5H605

審査請求 京請求 請求項の数2 OL (全 3 頁)

(21) 山崩路号

(22)出窗日

特顯平11-265058

平成11年9月20日(1999.9.20)

(71)出頭人 000006622

株式会社安川電機

福岡県北九州市八幡西区県崎城石2番1号

(72) 発明者 上山 風洽

福岡県北九州市八幡西区県崎城石2番1号

株式会社安川電機内

(72) 発明者 池田 敦夫

福岡県北九州市八幡西区県崎城石2番1号

株式会社安川電機内

(72) 発明者 吉澤 尚剛

福岡県北九州市八幡西区県崎城石2番1号

株式会社安川電機内

最終頁に続く

(54) 【発明の名称】 サーボモータ

(57)【要約】

【課題】 鉄心の磁気回路の歪みからくるコギングトル クの悪化を防ぐことができるサーボモータを提供する。 【解決手段】 金属製フレーム6を有する固定子2と、 固定子2の内部空間に配置される回転子3と、回転子3 を軸方向の両側から回転自在に支持する負荷側および反 負荷側ハウジング4、5とで構成されてなるサーボモー タ1において、金属製フレーム6をフィン9有する形状 にして、フィン底部のフレーム本体6 a の内厚を略均一 にする。このようにすることにより、加熱した金属製フ レーム6に鉄心?を挿入する焼きバメ固定、あるいは金 届製フレーム6と終心7を加熱硬化型接着剤で固定する 製法で固定子2を製作しても、鉄心?に歪みを与えるこ とがなく、コギングトルクの悪化を防止することができ る。

特開2001-95199

【特許請求の範囲】

【請求項1】 金属製フレームを有する固定子と、この 固定子の内部空間に配置される回転子と、この回転子を 軸方向の両側から回転自在に支持する負荷側および反負 両側ハウジングとで構成されてなるサーボモータにおい

前記金属製フレームをフィンを有する形状にして、前記 フィン底部のフレーム本体の内厚を略均一にしたことを 特徴とするサーボモータ。

【請求項2】 前記フレーム本体の最薄肉部の肉厚を A. 最厚肉部の肉厚をBとしたときに、肉厚のばらつき の範囲が、A≦O. 5×Bであることを特徴とする請求 項1に記載のサーボモータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属製フレームを 有するサーボモータに関するものである。

[0002]

【従来の技術】従来の、例えば同期型ACサーボモータ おいて、1はサーボモータで、固定子2と、この固定子 2の内部空間に配置される回転子3と、この回転子3を 軸方向の両側から回転自在に支持する負荷側および反負 荷側ハウジング4、5とで構成されている。前記固定子 2は、例えばアルミニュウム合金などでできた金属製フ レーム6Aと、この金属製フレーム6Aの内周面に嵌合 固定した鉄心?と、この鉄心?に巻続される図示しない 固定子巻線とで構成されている。また、前記両ハウジン グ4 5は、前記固定子2に図示しないボルトで固定さ れるため、金属製フレーム6Aには複数個所にネジ穴8 30 が設けられている。そのため、金属製フレーム6Aは、 図4に示すように、肉厚が大きくばらついた形状をして いる。前記固定子2の組立にあたっては、加熱した金属 製フレーム6Aに鉄心7を挿入する焼きバメ固定。ある いは金属製フレーム6Aと鉄心7を匍熱硬化型接着剤で 固定する製法がとられている。

[0003]

【発明が解決しようとする課題】しかしながら、このよ うな従来のサーボモータにおいては、金属製フレーム6 後等の冷却収縮時に、厚肉部と薄肉部とで鉄心に対して 発生する応力に差が生じ、鉄心7の磁気回路に歪みを与 えコギングトルクを悪化させるという問題があった。本 発明は、このような問題を解消するためになされたもの で、鉄心の磁気回路の歪みからくるコギングトルクの悪 化を防ぐことができるサーボモータを提供することを目 的とするものである。

[0004]

【課題を解決するための手段】上記問題を解決するた

固定子の内部空間に配置される回転子と、この回転子を 義方向の両側から回転自在に支持する負荷側および反負 前側ハウジングとで構成されてなるサーボモータにおい て、前記金属製フレームをフィンを有する形状にして、 前記フィン底部のフレーム本体の内厚を略均一にするよ うにしたものである。このようにすることにより、加熱 した金属製フレームに鉄心を挿入する焼きバメ固定、あ るいは金属製フレームと鉄心を加熱硬化型接着剤で固定 する設法で固定子を製作しても、鉄心に歪みを与えるこ 10 とがなく、コギングトルクの悪化を防止することができ る.

[0005]

【発明の実施の形態】以下、本発明を図1に示す実施例 に基づいて説明する。図1は本発明の実施例におけるサ ーポモータの固定子を示す正面図である。本発明のサー ボモータの基本構成は、従来のサーボモータと略同じで あるが、図1に示すように、金属製フレーム6をフィン 9を有する形状にして、前記フィン底部のフレーム本体 6 a の肉厚を略均一にするようにした点が従来と大きく は、図2ないし図4に示すように模成されている。図に、20、異なっている。前記フレーム本体6aの肉厚は全てに渡 って均一であることが望ましいが、構造上、ハウジング 固定用のネジ穴8を構成する部分が厚肉になることは避 けられない。しかし、この部分も肉厚を必要最小限に止 めればその作用に影響はない。そこで、本発明は、ネジ 大8の部分を除いたフレーム本体6aの内厚tのばらつ きの範囲を、前記フレーム本体6 a の最薄肉部の肉厚を A. 最厚肉部の肉厚をBとしたときに、A≦O. 5×B になるようにしている。このような構成にすることによ り、 加熱した金属製フレーム6 に鉄心7を挿入する焼き - バメ固定、あるいは金属製フレーム6Aと鉄心?を加熱 硬化型接着剤で固定する製法で固定子2を製作しても、 鉄心?に歪みを与えることがない。これにより、鉄心? の磁気回路の歪みからくるコギングトルクの悪化を防ぐ ことができる。なお、本発明は、わじ穴を有しない金属 製フレームを有するサーボモータにおいても適用するこ とができることはいうまでもない。

[0006]

【発明の効果】以上述べたように本発明によれば、金層 製フレームをフィンを有する形状として、フィンの底部 Aの内厚に大きなばらつきがあり、そのため、焼きバメー40 のフレーム本体の内厚を略均一にしているので、鉄心の 磁気回路に歪みを与えることがなく、コギングトルクの 小さなサーボモータを得ることができる効果がある。

【図面の簡単な説明】

【図1】 本発明の実施側におけるサーボモータの固定 子を示す正面図である。

【図2】 従来技術におけるサーボモータの分解斜視図 である。

【図3】 図2における固定子の構造を示す斜視図であ る.

め、本発明は、金属製フレームを有する固定子と、この 50 【図4】 図2 における固定子の正面図である。

(3) 特開2001-95199 【符号の説明】 金属製フレーム、 サーボモータ、 6 a フレーム本体、 固定子. 7 鉄心、 3 回転子. 8 ネジ穴. 9 負荷側ハウジング. フィン 反負荷側ハウジング. 【図1】 [图2] 2 国定子 6 会理製フレーム [図3] [図4]

フロントページの続き

(72) 発明者 渡邊 賢司 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 F ターム(参考) 5H605 AA00 AA01 BB05 CC01 CC02 DD03 DD12 FF03 GG04 GG06 GQ21