FORMAL ARCHITECTURE OVERVIEW INDUSTRIAL IOT

Software and Services Group IoT Developer Relations, Intel

LEGAL NOTICES AND DISCLAIMERS

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document.

ARDUINO 101 and the ARDUINO infinity logo are trademarks or registered trademarks of Arduino, LLC.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, OpenVINO, Intel Atom, Celeron, Intel Core, and Intel Movidius Myriad 2 are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2018 Intel Corporation.

INTRODUCTION VIDEO

FORMALIZING THE INDUSTRIAL INTERNET OF THINGS

ADDRESSING ENVIRONMENT COMPLEXITY

The IIoT landscape is replete with proprietary connectivity technologies and specialized connectivity standards optimized for a narrow set of domain-specific use cases in vertically integrated systems. These domain-specific connectivity technologies, though optimal in their respective domains, can be a hindrance to the sharing of data, designs, architectures, and communications essential to creating new value streams and unlocking the potential of a global IIoT marketplace. The overarching goal of IIoT connectivity is to unlock data in these isolated systems ("silos") and enable data sharing and interoperability between previously closed components and subsystems (brownfield) and new applications (greenfield), within and across industries.

77

INDUSTRIAL INTERNET REFERENCE ARCHITECTURE

Apply to IIoT Systems

Extend, enrich & develop

Feedback & Improvement

System Architecture

The Industrial Internet of Things Volume G1 – Reference Architecture

MULTIPLE STAKEHOLDERS

Architecture Representation

Architecture Frame

.....

Business Model

Stakeholders

Business Viewpoint

Usage Viewpoint

Functional Viewpoint

Implementation Viewpoint

Usage Model

Functional Model

Implementing Industry 4.0 processes requires the vision and coordination of the entire business unit.

Implementation Model

The Industrial Internet of Things Volume G1 – Reference Architecture

BUSINESS AND USAGE VIEWPOINTS

The Industrial Internet of Things Volume G1 – Reference Architecture

FUNCTIONAL VIEWPOINT

THE CONTROL DOMAIN

the collection of functions that are performed by industrial control systems.

THE OPERATIONS DOMAIN

the collection of functions responsible for the provisioning, management, monitoring and optimization.

THE INFORMATION DOMAIN

the collection of functions for gathering data and transforming, persisting, modeling or analyzing that data to acquire high-level intelligence about the overall system.

THE APPLICATION DOMAIN

the collection of functions implementing application logic that realizes business functionalities.

THE BUSINESS DOMAIN

enable end-to-end operations of the industrial internet of things systems

CONTROL DOMAIN

FUNCTIONAL VIEWPOINT

The collection of functions that are performed by Control Domain

- Sensing
- Actuating
- Entity Abstraction
- Modeling

IMPLEMENTATION VIEWPOINT

- 3. Physical Sensors and Actuators
- 4. Communications and Protocols

OPERATIONS DOMAIN

FUNCTIONAL VIEWPOINT

The operations domain represents the collection of functions responsible for the provisioning, management, monitoring and optimization of the systems in the control domain

IMPLEMENTATION VIEWPOINT

- 5. Virtualization and Consolidation
- Security and IIoT

INFORMATION DOMAIN

FUNCTIONAL VIEWPOINT

The collection of functions for gathering data and transforming, persisting, modeling or analyzing that data to acquire high-level intelligence about the overall system.

IMPLEMENTATION VIEWPOINT

- 7. Automated Control Systems
- 8. Smart Video Systems

CROSSCUTTING FUNCTIONS AND SYSTEM CHARACTERISTICS

APPLICATION DOMAIN

MANUFACTURING ANALYTICS

DATA PROCESSING

PRODUCTION PERFORMANCE

PRODUCTION RULES

PROCESS QUALITY

REMOTE SERVICES

PREDICTIVE MAINTENANCE

SENSOR CLOUD

AN EVOLUTION TOWARD SMART FACTORY

NOT CONNECTED

CONNECT THE UNCONNECTED

SMART AND CONNECTED THINGS

SOFTWARE-DEFINED AND AUTONOMOUS

Fixed function

First IoT adoption

Machines & sensors built to be intelligent and interconnected

New merged control stack is optimized for machine apps

LEARNING LOOP

- Predictive maintenance
- Machine learning
- Increased efficiencies

CONTROL LOOP

- Reduced OPEX
- Increased use of assets
- Synchronized real-time control

AUTONOMOUS LOOP

- Flexible function
- Down the wire updates
- Reconfigurable production

INCREASING AUTONOMY

COMPUTE POWER

INTELLIGENTLY USE EXISTING PRODUCTION DATA

Predictive

Models

High level Modeling

- Existing deployments are integrated with sensors
- Data sheds light on existing processes
- Real-time monitoring allows optimization
- Data mining reveals new patterns
- Machine Learning builds predictive models of business processes

llows

Reporting
Dashboards

Unified
Data Access

MACHINE LEARNING

DATA MINING

DATA VISUALIZATION

DATA INTEGRATION

DATA COLLECTION

Sensor Framework

FUNCTIONAL DOMAINS & COMPUTATIONAL DEPLOYMENT PATTERNS EDGE

MULTI-TIER OT-IT STRUCTURE

- Multi-tier OT-IT structure: converges ISA-95 model with traditional IT computing & networking distribution model
- Enables modularity and portability of services to support current & emerging use cases

GENERALIZE PLATFORM FOR INDUSTRIAL CONTROL APPLICATIONS

SDIS for Industrial Control using Smart-Controller nodes

GENERALIZE PLATFORM FOR INDUSTRIAL CONTROL APPLICATIONS

SDIS for Industrial Control using Real-time Operation Server node

- Secure infrastructure that runs virtualized control functions with maximum reliability
 - Dynamic scalability from one server to hundreds
 - Integrated compute, control and storage functions
 - Six nines (99.9999%) uptime
 - Fault-tolerant to multiple hardware and software faults with no single point of failure
 - Simplified installation, commissioning and maintenance
 - Remote monitoring, diagnostics and updates
 - Supports time critical industrial applications
 - Supports standard guest operating systems
 - Runs on standard IT-class servers
 - Professional Services to accelerate deployment

PROBLEMATIC OF INDUSTRY 4.0 MULTI-TIER TRANSFORMATION

Global Industrial player are converging OT structure to traditional IT computing & networking distribution model.

- IEEE 802.3 Ethernet networks interoperability with existing OT Systems is a strong vector for Growth.
 - Lack of an open network stack allowing OT/IT convergence as well as interoperability between devices of various vendors.
- SDIS (e.g. OT SaaS) concept provides a very attractive vision for OT scability.

Literature

				Issues	Literature
IT CIO Enterprise Vertical		OT (Does someone own this?) Centralized Distributed	IT versus Engineering	Steenstrup 2008; Barber, 2012; Schneider, 2006; Kern, 2009	
• ERP • Finance • A/P • HR • Payroll	Appl. S/W Geographic info system (GIS) Enterprise asset	analysis (DAA)	Gateways/substation integration	Drivers forcing convergence	Steenstrup, 2008-2012; Romero, 2011; Wiese 2004; fyschwick, 1996
	management (EAM) Customer information system (CIS) Energy trading & risk			Many frameworks, standards, principles	Steenstrup 2012, IBM, Parekh 2007, Hillard, 2010, Thomas, 2009)
	management (ETRM)			Successful EAM requires integration	Too, 2010; Sklar, 2004; Mays Business School, 2011; Humffray, 2003
Corporate IT network		Control network(s)		When converge, integrate, align	Lack of academic literature

Ref. Cooperative Research Center for Infrastructure and Engineering Asset Management

