vignette

library(hlacoloc)

Introduction

HLA-coloc performs colocalization in two steps, as described in the manuscript. These are:

- 1. HLA gene causal signature: this uses SuSiE to assign a posterior inclusion probability (PIP) to each HLA allele.
- 2. HLA PIP Bayesian regression: this uses stanR to perform Bayesian regression of the PIPs in each genes separately.

Required inputs

The following dataframes are necessary to run it (for each of the two phenotypes):

- 1. The HLA association summary statistics. This is a dataframe with the following columns:
- Name: the name of the allele. These must be given in IMGT-HLA format, but can be of any field resolution though (as long as it's the same for both phenotypes).
- z: the z-scores of the associations.
- beta: the beta of the associations (if z is not provided).
- se: the standard errors (if z is not provided).
- N: the sample sizes.
- 2. The LD matrix (can be either in dataframe or matrix format). This is a square matrix of R coefficient for the HLA alleles above. Importantly, the order of the alleles needs to be the same in the summary statistics dataframe and in the LD matrix here.

Example

First, load the data:

The data is included in the package.

```
data("ebna", "ms", "r_ebna", "r_ms")
```

Data snippet

Here's a snippet of the EBNA data:

```
head(ebna)
         Name
                     beta
                               se
#> 1 G*01:01:01 0.014137500 0.015906 7247
#> 2 G*01:04:04  0.076847400  0.070867 7247
#> 3 G*01:01:02 -0.017568100 0.018972 7247
#> 4 G*01:01:03  0.000931893  0.033494 7247
#> 5 G*01:05N -0.293138000 0.078049 7247
#> 6 G*01:06:01 0.002110380 0.035066 7247
r ebna[1:5,1:5]
            G*01:01:01 G*01:04:04 G*01:01:02 G*01:01:03 G*01:05N
#> G*01:04:04 -0.157365 1.0000000 -0.0359779 -0.0317737 -0.0171784
#> G*01:01:02 -0.540432 -0.0359779 1.0000000 -0.1419840 -0.0672568
#> G*01:01:03 -0.247842 -0.0317737 -0.1419840 1.0000000 -0.0257557
#> G*01:05N -0.092508 -0.0171784 -0.0672568 -0.0257557 1.0000000
```

And here's a snippet of the multiple sclerosis (MS) data:

```
head(ms)
         Name
                  beta
                            se
#> 1 G*01:01:01 -0.082764 0.032331 429822
#> 2 G*01:04:04  0.059263  0.144366  429822
#> 3 G*01:01:02 -0.050757 0.043057 429822
#> 4 G*01:01:03  0.120691  0.061987  429822
#> 5 G*01:05N -0.112573 0.158904 429822
#> 6 G*01:06:01 0.155703 0.059848 429822
r_ms[1:5,1:5]
            G*01:01:01 G*01:04:04 G*01:01:02 G*01:01:03
                                                       G*01:05N
#> G*01:01:01 1.0000000 -0.15260200 -0.5331010 -0.2476440 -0.09820330
#> G*01:01:02 -0.5331010 -0.03782300 1.0000000 -0.1369080 -0.05690370
#> G*01:01:03 -0.2476440 -0.01675320 -0.1369080 1.0000000 -0.02644930
#> G*01:05N -0.0982033 -0.00766048 -0.0569037 -0.0264493 1.00000000
```

Now we run HLA-coloc on EBNA and MS:

This performs the 2 steps described above in one command.

Results:

Results include the colocalization table and a plot (optional).

The colocalization table includes 5 columns - gene: the HLA gene. - susie_coloc_prob: the probability that SuSiE selects at least one shared HLA allele between the two traits at the given gene. - bayes_pd: the probability that the SuSiE posterior inclusion probabilities (PIP) correlate for each genes. - direction_of_correlation: a check to make sure that the correlation between the PIPs is positive. - hla_colocalization_probability: the HLA colocalization probability (only valid if direction_of_correlation is correct). This is the product of susie_coloc_prob and bayes_pd, and is the final probability of HLA colocalization.

```
coloc_res[["hla_colocalization"]]
#> # A tibble: 9 x 5
     gene susie_coloc_prob bayes_pd direction_of_correlat~1 hla_colocalization_p~2
     <chr>
                      <db1>
                               <dbl> <chr>
                                                                               <db1>
#> 1 DQB1
                                                                         1.00
                 1.00
                               1
                                     Correct
#> 2 DRB1
                 0.990
                               0.925 Correct
                                                                         0.841
#> 3 DPB1
                 0.0856
                               1.00 Correct
                                                                         0.0855
#> 4 H
                 0.00349
                               0.994 Correct
                                                                         0.00345
#> 5 DQA1
                 0.00129
                               0.733 Correct
                                                                         0.000601
#> 6 B
                 0.000803
                               0.774 Incorrect
                                                                         0.000440
#> 7 A
                 0.000152
                               0.750 Correct
                                                                         0.0000760
#> 8 C
                               0.686 Incorrect
                 0.000192
                                                                         0.0000715
#> 9 G
                 0.00000352
                               0.548 Correct
                                                                         0.000000341
#> # i abbreviated names: 1: direction_of_correlation,
#> # 2: hla_colocalization_probability
```

The plot has two columns. Left (a): the betas of the HLA allele summary statistics for the two traits. Right (b): the PIPs obtained from SuSiE, and the final probabilities of HLA colocalization.

```
coloc_res[["plot"]]
```

