General Linear Models

General Linear Models

Linear Regression

Assumptions

Loss Function

Logistic Regression

Reasoning/Intuition

Quick Aside on Probability and Odds

Method 1

Method 2

Interpretation

Software Implemenation Notes

Loss Function

Loss Function Walkthrough

Regularized Regression

Ridge Regression

Lasso Regression

Basis Expansion Approaches

Multicollinearity

Variance Inflation Factor (VIF)

Linear Regression

Basic Form:

$$\hat{y}=eta_0+\sum_{j=1}^peta_jX_j$$

Each coefficient can be interpreted as the expected average change in the response Y for a one unit change in the predictor X_j , holding all other predictors $X_{j'}$ constant.

Assumptions

1. f(x) is linear in nature - The true function f(x) (or $\mathbf{E}(\mathbf{Y}|\mathbf{X})$, which can be read as, "The expected value of the response Y given the input array X.") is **linear in nature** (or that the linear assumption is a reasonable one). This means that, regardless of the value of an attribute X_j , a one unit increase in the value of X_j results in a β_j increase in Y (holding all other attributes constant).

\setlength{\leftskip}{1cm}

An example of this assumption being removed would be if there was a "leveling off" affect - where at a certain value of X_j , the expected absolute change in Y is *less* than what it was at a different level of X_j . Alternatively, there could be an "exponentiation" affect - where at a certain value of X_j , the expected absolute change in Y is *greater* than what it was at a different level of X_j .

Either way, the the linear assumption states that β_j is the expected change in Y for **any value of** X_j . \setlength{\leftskip}{0cm}

2. f(x) is additive - The additive assumption states that there aren't any interaction effects between the attributes. Another way of saying this is: " β_j , the expected change in Y for a one unit change in X_j , is independent of changes in any other attributes $X_{i'}$."

\setlength{\leftskip}{1cm}

Removing this assumption opens up the possibility for interaction terms, which is to say that changing the value of X_j could change $\beta_{j'}$, the effect of a different attribute $X_{j'}$ on the response Y.

Adding an interaction term takes the form of:

$$\begin{array}{ll} y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 \\ = \beta_0 + \beta_1 X_1 + \beta_3 X_1 X_2 + \beta_2 X_2 \\ = \beta_0 + X_1 (\beta_1 + \beta_3 X_2) + \beta_2 X_2 \\ = \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 \quad \text{where } \tilde{\beta}_1 = \beta_1 + \beta_3 X_2 \end{array} \quad \text{substitution}$$

Thus, β_3 can be interpretted as the effect that a one unit change in X_2 has on the **effectiveness** of X_1 in changing Y. This could obviously be abstracted to more than one interaction term.

\setlength{\leftskip}{0cm}

Loss Function

The loss function for linear regression is the Residual Sum of Squares:

$$RSS = \sum_{i=n}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j X_j
ight)^2$$

This can be read as, "Minimize the sum of the squared distances between the predicted values and the observed values."

Logistic Regression

Logistic regression is used in a classification setting, namely when the response is dichotomous (binary). When this is the case, one seeks to model the probability of an observation being a "success" (or "of interest", encoded as a 1) or a failure (encoded as a 0). The same assumptions that apply for linear regression apply to logistic regression.

Logistic regression is similar to linear regression in that it still assumes the relationship between the attributes \mathbf{X} and the response \mathbf{y} is linear, however with one small caveat; logistic regression assumes that the log odds of a success are linear in \mathbf{X} .

Reasoning/Intuition

Since the response in logistic regression is dichotomous, and one would like to model the probability of an observation being a success, a good place to start would be:

$$P(Y=1|X=x)=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_px_p$$
 $P(Y=1|X=x)=eta_0+\sum_{i=1}^Peta_jx_j$

However, this opens up the possibility of the output P(Y=1|X=x) taking on a value greater than 1 or less than 0, which violates probabilities. To remedy this, one makes use of the *logistic function* (hence the name), which restricts all output to be within the bounds of 0 and 1, and therefore a valid probability (note that there are two ways to write the logistic function, but they are equivalent and will lead to the same result):

$$rac{1}{1+\epsilon^{-x}}=f(x)=rac{\epsilon^x}{\epsilon^x+1}$$

So, knowing that one would like the output to be a valid probability, we simply substitute P(Y=1|X=x) into the above equation in place of f(x), where x is equal to the linear model $\beta_0 + \sum_{j=1}^P \beta_j x_j$:

$$rac{1}{1+\epsilon^{-(eta_0+\sum_{j=1}^Peta_jx_j)}} = P(Y=1|X=x) = rac{\epsilon^{eta_0+\sum_{j=1}^Peta_jx_j}}{\epsilon^{eta_0+\sum_{j=1}^Peta_jx_j}+1}$$

Quick Aside on Probability and Odds

In order to illustrate how everything comes together, it is important to note the relationship between the *probability* of an event occurring and the *odds* of an event occurring, given below:

$$Odds = rac{P}{1-P} ~~and ~~P = rac{Odds}{Odds+1}$$

Method 1

Now knowing the relationship between probabilities and odds, is clear how the right hand side of the two equations above are related, reproduced below:

$$rac{Odds}{Odds+1} = P(Y=1|X=x) = rac{\epsilon^{eta_0 + \sum_{j=1}^P eta_j x_j}}{\epsilon^{eta_0 + \sum_{j=1}^P eta_j x_j}+1}$$

Therefore, we can express the odds of a success as:

$$Odds = \epsilon^{eta_0 + \sum_{j=1}^P eta_j x_j}$$

Using the natural logarithm on both sides of the equation, it is evident that **the log odds of a succes are linear in the attributes X**.

$$log(Odds) = log(\epsilon^{eta_0 + \sum_{j=1}^P eta_j x_j})$$

$$log(Odds) = eta_0 + \sum_{j=1}^P eta_j x_j$$

Method 2

The other way to reconcile logistic regression is to look at the other expression of logistic regression, reproduced below:

$$P(Y=1|X=x)=rac{1}{1+\epsilon^{-(eta_0+\sum_{j=1}^Peta_jx_j)}}$$

Knowing the above, one can substitute the right side of the equation into the odds ratio and solve for $\beta_0 + \sum_{j=1}^P \beta_j x_j$:

$$Given \;\; Odds = rac{P}{1-P} \;\; and \;\; P(Y=1|X=x) = rac{1}{1+\epsilon^{-(eta_0+\sum_{j=1}^Peta_jx_j)}}$$

Then:

$$Odds = \frac{\left(\frac{1}{1+\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)}}\right)}{1-\left(\frac{1}{1+\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)}}\right)}$$

$$Odds = \frac{\frac{1}{a}}{1-\frac{1}{a}} \qquad \text{set } a = 1+\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)} \text{ to clean up this proof}$$

$$= \frac{\frac{1}{a}}{\frac{a}{a}-\frac{1}{a}} \qquad \text{change the 1 to } \frac{a}{a} \text{ to create like terms}$$

$$= \frac{\frac{a}{a}}{\frac{a^2}{a}-\frac{a}{a}} \qquad \text{multiply each term by } a$$

$$= \frac{1}{a-1} \qquad \text{simplify}$$

$$= \frac{1}{1+\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)}-1} \qquad \text{substitute } 1+\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)} \text{ in for } a$$

$$= \frac{1}{\epsilon^{-(\beta_0+\sum_{j=1}^P\beta_jx_j)}} \qquad 1'\text{s in denominator cancel}$$

$$= \epsilon^{(\beta_0+\sum_{j=1}^P\beta_jx_j)} \qquad \text{bring the negative exponent up}$$

$$Log(Odds) = Log(\epsilon^{(\beta_0+\sum_{j=1}^P\beta_jx_j)}) \qquad \text{take the log of both sides}$$

$$Log(Odds) = \beta_0 + \sum_{j=1}^P\beta_jx_j \qquad \text{the log odds are linear in } \mathbf{X}$$

And, once again, the conclusion is made that the log odds of a succes are linear in the attributes X.

$$Log(Odds) = eta_0 + \sum_{j=1}^P eta_j x_j$$

Interpretation

Given the equation above, one can see that a one unit change in X_j will result in a β_j change in the log odds of a success. Since this isn't overly intuitive, one can turn this into a probability by following the below steps (most software [R/Python] does this automatically):

- 1. Plug each attribute value of a test observation into the linear equation, using the respective coefficients and the intercept; this returns the **log odds** of a success for that test observation (equation shown above).
- 2. Exponentiate this value; this removes the log and **returns the odds of a success** for the test observation.

$$Odds = \epsilon^{log(Odds)}$$

3. Divide the odds by one plus the odds ($\frac{Odds}{Odds+1}$) and you have the **probability that the test** observation is a success.

$$Prob(y_i = 1) = \frac{Odds}{1 + Odds}$$

Software Implemenation Notes

X must be scaled before being used by sklearn's LogisticRegression() class (it utilizes Lasso, which must have scaled data).

Loss Function

The loss function (or cost function) for logistic regression, called the log loss, is given below:

$$Log \ Loss = -\left(rac{\sum_{i=1}^{N}\left(y_{i}log(\hat{y_{i}}) + (1-y_{i})log(1-\hat{y_{i}})
ight)}{N}
ight)$$

Loss Function Walkthrough

The key to understanding the loss function is to look at each term in the numerator, reproduced below:

$$Log\ loss = y_i log(\hat{y_i}) + (1-y_i) log(1-\hat{y_i})$$

Since logistic regression is used in a *binary* setting, the response \mathbf{y} will be a vector of 1's and 0's. Therefore, y_i will be either a 1 or a 0. With that in mind, it is clear that the first part of both terms in the above equation, y_i and $(1-y_i)$, serve the same functionality that an indicator function serves; if y_i is a 1, the second term in the equation will zero out, and conversely, if y_i is a 0, the first term in the equation will zero out:

$$egin{aligned} If & y_i = 1, & Log \ loss egin{cases} = (1)log(\hat{y_i}) + (1-1)log(1-\hat{y_i}) \ = (1)log(\hat{y_i}) \ = log(\hat{y_i}) \end{aligned} \ & If & y_i = 0, & Log \ loss egin{cases} = (0)log(\hat{y_i}) + (1-0)log(1-\hat{y_i}) \ = (1)log(1-\hat{y_i}) \ = log(1-\hat{y_i}) \end{aligned}$$

Now, the output of logistic regression is a **probability**, which is to say $\hat{y_i}$ will be the probability that observation i is a 1. Therefore, the loss function will always be taking the log of a probability. Referencing the formulas above, if $y_i = 1$, $Log \ loss = log(\hat{y_i})$ and if $y_i = 0$, $Log \ loss = log(1 - \hat{y_i})$.

Since all models seek to **minimize the loss**, ideally the log loss is as close to 0 as possible. As it turns out, log(1) = 0. So, when $y_i = 1$, $Log\ loss = log(1)$ will minimize the loss, and if $y_i = 0$, $Log\ loss = log(1-0)$ will minimize the loss. It is clear that this setup minimizes the error when $\hat{y_i}$ is as close to y_i as possible, averaged over all observations.

Regularized Regression

By appending an additional "penalty" term onto the loss function of linear regression (RSS), regularization techniques penalize the model for overfitting to the current sample. Holisticly, this takes the form of:

$$Loss = RSS + Penalty\ Term$$

Ridge Regression

In the case of Ridge regression, the penalty term is the product of a hyperparameter λ and the sum of the squares of the coefficient:

$$egin{aligned} Loss &= RSS + Penalty\ Term \ &= \sum_{i=n}^{n} \left(y_i - eta_0 - \sum_{j=1}^{p} eta_j X_j
ight)^2 + \lambda \sum_{j=1}^{p} eta_j^2 \end{aligned}$$

This penalty term is sometime referred to as the the product of λ and the l_2 norm (despite the fact that l_2 $norm = \sqrt{\sum_{j=1}^p \beta_j^2} = ||\beta||_2$ - i.e. the square root isn't accounted for in Ridge Regression).

The tuning parameters λ can be interpretted as the weight to apply to the penalty term:

- A lower value of λ leads to the model being **less** constrained by the penalty term.
- A higher value of λ leads to the model being **more** constrained by the penalty term.

 λ is best selected using cross validation.

Lasso Regression

Lasso Regression is similar to Ridge Regression, the slight difference being that the penalty term is the sum of the *absolute values of the* β 's, as opposed to the sum of their squares.

$$egin{aligned} Loss &= RSS + Penalty\ Term \ &= \sum_{i=n}^{n} \left(y_i - eta_0 - \sum_{j=1}^{p} eta_j X_j
ight)^2 + \lambda \sum_{j=1}^{p} |eta_j| \end{aligned}$$

The practical difference between Lasso and Ridge regression is that Lasso will set some of the coefficients equal to *exactly zero* while ridge regression shrinks the coefficients *towards zero*.

Basis Expansion Approaches

There are multiple ways to extend "linear" models, a few examples being:

- Interaction Terms (mentioned in the linear regression assumptions section)
- Polynomial Regression
- Step Functions
- Regression Splines
- Smoothing Splines

- Piecewise Polynomials
- Local Regression

... explanations for which can be found in chapter 7 of ISL or chapter 5 of ESL. However, it is worth noting that *most* of these methods come from applying a fucntion/transformation or a family of function/transformations to the matrix X, whose shape is $n \times p$, resulting in a new matrix f(X) whose shape is n by *anything*.

If one has some family of functions $\{f(x)_1, f(x)_2, f(x)_3, \cdots, f(x)_m\}$ that can be applied to **each** attribute X_j , these transformation take the below form, moving from the original matrix X (left) the the transformed matrix f(X) (right).

$$\begin{bmatrix} X_{1,1} & X_{1,2} & X_{1,2} & \cdots & X_{1,p} \\ X_{2,1} & X_{2,2} & X_{2,3} & \cdots & X_{2,p} \\ X_{3,1} & X_{3,2} & X_{3,3} & \cdots & X_{3,p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{n,1} & X_{n,2} & X_{n,3} & \cdots & X_{n,p} \end{bmatrix} \implies \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,p} & f(X_{1,1})_1 & f(X_{1,2})_1 & \cdots & f(X_{1,p})_m \\ X_{2,1} & X_{2,2} & \cdots & X_{2,p} & f(X_{2,1})_1 & f(X_{2,2})_1 & \cdots & f(X_{2,p})_m \\ X_{3,1} & X_{3,2} & \cdots & X_{3,p} & f(X_{3,1})_1 & f(X_{3,2})_1 & \cdots & f(X_{3,p})_m \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ X_{n,1} & X_{n,2} & \cdots & X_{n,p} & f(X_{n,1})_1 & f(X_{n,2})_1 & \cdots & f(X_{n,p})_m \end{bmatrix}$$

Once this new matrix f(X) is created, the traditional linear model is fit to this new matrix. Expanded out (to some degree), this formula takes the form:

$$\hat{y} = eta_0 + eta_1 X_1 + eta_2 X_2 \ \cdots \ eta_{f(x)_1} f(X_1)_1 + eta_{f(x)_2} f(X_1)_2 \ \cdots \ eta_{f(x)_m} f(X_p)_m$$

Regularization techniques (such as the Lasso) can be employed to keep this equation "in check" and prevent overfitting.

Multicollinearity

Variance Inflation Factor (VIF)

Penn State VIF

The VIF is a statistic that can help one determine whether multicollinearity exists in multivariate regression. By regressing each of the k predictors on the remaining predictors, one can obtain an estimate of how well the k_{th} predictor can be estimated with the other predictors:

Instead of ...
$$\mathbf{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_p x_p$$

Build a model ... $\mathbf{x_j} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{p-1} x_{p-1}$

In the same manner that the R^2 value for a "normal" regression ($y = \beta_0 + \sum_{j=1}^P \beta_j x_j$) illustrates the percentage of the total variance in the response explained by the model, regressing the k_{th} variable on the other predictors can determine if the k_{th} predictor could be (somewhat accurately) predicted by the other predictors.

The VIF for the k_{th} predictor, VIF_k , is a measure of how much the variance of the coefficient for the k_{th} predictor is inflated due to the existence of multicollinearity. Looking at the equation below, it is clear that if $R_k^2=0$, which is to say there is zero multicollinearity between the k_{th} predictor and the other predictors, the VIF_k would be equal to 1. Alternatively, VIF's exceeding 4 - 5 warrant further investigation, since that indicates there is some multicollinearity.

$$VIF_k = rac{1}{1 - R_k^2}$$