Problem 1

 $(A \cap B) \times (A \cup B) = \emptyset$, 若 $(A \cap B) \neq \emptyset$ 且 $(A \cup B) \neq \emptyset$, ∃ $x \in A$, ∃ $y \in B$, 则∃ $(x, y) \in (A \cap B) \times (A \cup B)$, 矛盾, 可知 $((A \cap B) = \emptyset) \vee ((A \cup B) = \emptyset)$. 假设 $(A \cap B) \neq \emptyset$, 根据析取三段论, $(A \cup B) = \emptyset$. A = \emptyset , B = \emptyset , $(A \cap B) = \emptyset$, 矛盾, 故 $(A \cap B) = \emptyset$.

Problem 2

a) $\{x \in Z \mid x \ge 1\}$ b) \emptyset c) $\{x \in Z \mid x < 0 \land x > 1\} = \{x \in Z \mid x \ne 0 \land x \ne 1\}$

Problem 3

- a) 不能, 取 A={0}, B={1}, C=U, AUC = U, BUC = U, AUC = BUC, A≠B.
- b) 不能, 取 A={0}, B={1}, C= \emptyset , A \cap C = \emptyset , B \cap C = \emptyset , A \cap C = B \cap C, A \neq B.
- c) 能. 取 $x \in A$, $x \in A \cup C$, 又 $A \cup C = B \cup C$, 则 $x \in B \cup C$.
- 1° 若 x \in C, 得 x \in A \cap C, 又 A \cap C = B \cap C, 则 x \in B \cap C, x \in B.
- 2° 若 x∉C, 由 x∈B∪C 得 x∈B.

综上所述可知 A⊆B, 同理取 y∈B 可证 B⊆A, A = B.

Problem 4

A⊆B 可表示为∀x(x∈A→x∈B).

 $\forall x(x \in A \rightarrow x \in B) \equiv \forall x(x \notin A \lor x \in B) \equiv \forall x(x \notin \neg B \lor x \in \neg A) \equiv \forall x(x \in \neg B \rightarrow x \in \neg A)$ 由 $\forall x(x \in \neg B \rightarrow x \in \neg A)$ 可得 $\neg B \subseteq \neg A$.

Problem 5

- a) $A \oplus A = (A \cup A) (A \cap A) = A A = A \cap \sim A = \varnothing$
- b) $A \oplus U = (A \cup U) (A \cap U) = U A = U \cap \sim A = \sim A$

Problem 6

对 $Ai = \{x \mid x \in Z \land x \leq i\}, Ai \subseteq Ai + 1, 则:$

- a) \bigcup n i=1 Ai = A1 \bigcup A2 \bigcup ... \bigcup Ai = Ai = {x | x \in Z \bigwedge x \leqslant i}
- b) \cap n i=1 Ai = A1 \cap A2 \cap \cdots \cap Ai = A1 = {x | x \in Z \lambda x \le 1}

Problem 7

 $\rho(A) = \{ \varnothing, \{\varnothing\}, \{\{1\}\}, \{\{1\}, \varnothing\}, \{\{1, 2\}\}, \{\{1, 2\}, \varnothing\}, \{\{1, 2\}, \{1\}\}, \{\{1, 2\}, \{1\}, \varnothing\} \}$

- a) $\cup \rho(A) = \emptyset \cup \{\emptyset\} \cup \{\{1\}\} \cup \{\{1\}, \emptyset\} \cup \{\{1, 2\}\} \cup \{\{1, 2\}, \emptyset\} \cup \{\{1, 2\}, \{1\}\} \cup \{\{1, 2\}, \{1\}, \emptyset\} \cup \rho(A) = \{\{1, 2\}, \{1\}, \emptyset\} = A$
- b) $\cap \cup \rho(A) = \cap A = \{1, 2\} \cap \{1\} \cap \emptyset = \emptyset$