Dynamische Masse von Photonen und ihre Implikationen für Nichtlokalität

Johann Pascher

25. März 2025

Zusammenfassung

Diese Arbeit untersucht die Konsequenzen einer dynamischen, frequenzabhängigen Masse für Photonen innerhalb verschiedener Zeitmodelle der Quantenmechanik. Durch die Zuordnung $m_{\gamma}=\omega$ in natürlichen Einheiten wird eine energieabhängige Zeit eingeführt, die Auswirkungen auf Nichtlokalität und Kausalität hat. Die Theorie wird durch experimentelle Vorhersagen untermauert.

Inhaltsverzeichnis

1	Einleitung	2
2	Natürliche Einheiten als Grundlage 2.1 Definition natürlicher Einheiten	2 2 2
3	Zeitmodelle in der Quantenmechanik 3.1 Grenzen des Standardmodells 3.2 Das T_0 -Modell mit absoluter Zeit 3.3 Das Modell mit intrinsischer Zeit 3.4 Erweiterung für Photonen	2 2 2 2 2 2
4	Zusammenführung der Modelle	2
5	Implikationen für Nichtlokalität und Verschränkung 5.1 Energieabhängige Korrelationen	2
6	Experimentelle Überprüfbarkeit	3
7	Physik jenseits der Lichtgeschwindigkeit	3
8	Fazit	3

1 Einleitung

Diese Arbeit untersucht die Konsequenzen einer dynamischen, frequenzabhängigen Masse für Photonen innerhalb unterschiedlicher Zeitmodelle in der Quantenmechanik [1].

2 Natürliche Einheiten als Grundlage

2.1 Definition natürlicher Einheiten

Theorem 2.1 (Natürliche Einheiten). *Mit* $\hbar = c = G = 1$:

$$[L] = [E^{-1}] \tag{1}$$

$$[T] = [E^{-1}] \tag{2}$$

$$[M] = [E] \tag{3}$$

2.2 Bedeutung für die Masse-Energie-Äquivalenz

$$m_{\gamma} = \omega \tag{4}$$

3 Zeitmodelle in der Quantenmechanik

3.1 Grenzen des Standardmodells

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi \tag{5}$$

3.2 Das T_0 -Modell mit absoluter Zeit

$$E = \frac{\hbar}{T_0} \tag{6}$$

3.3 Das Modell mit intrinsischer Zeit

$$T(x) = \frac{\hbar}{mc^2} \tag{7}$$

3.4 Erweiterung für Photonen

$$T(x) = \frac{1}{E} \tag{8}$$

4 Zusammenführung der Modelle

$$T(x) = \frac{1}{\max(m, E)} \tag{9}$$

5 Implikationen für Nichtlokalität und Verschränkung

5.1 Energieabhängige Korrelationen

• Verzögerung:
$$\left|\frac{1}{E_1} - \frac{1}{E_2}\right|$$

Abbildung 1: Energieabhängige Zeit für Photonen.

6 Experimentelle Überprüfbarkeit

• Frequenzabhängige Bell-Tests.

7 Physik jenseits der Lichtgeschwindigkeit

$$E^{2} = (mc^{2})^{2} + (pc)^{2} + \alpha_{c}p^{4}c^{2}/E_{P}^{2}$$
(10)

8 Fazit

Die dynamische Masse von Photonen bietet eine neue Sicht auf Nichtlokalität als emergentes Phänomen.

Literatur

- [1] Pascher, J. (2025). Zeit als emergente Eigenschaft in der Quantenmechanik.
- [2] Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891-921.
- [3] Planck, M. (1901). Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik, 309(3), 553-563.
- [4] Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics, 1(3), 195-200.
- [5] Feynman, R. P. (1985). *QED: The Strange Theory of Light and Matter*. Princeton University Press.