Sprint Delivery - 4

SmartFarmer - IoT Enabled Smart Farming Application

Team ID: PNT2022TMID30663 Date: 17/11/2022

Receiving commands from IBM cloud using Python program

```
import time import sysimportibmiotf.applicationimport ibmiotf.device import random
```

#Provide your IBM Watson Device Credentials

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

Initialize GPIO

```
def myCommandCallback(cmd):
```

```
print("Command
```

```
received: %s" % cmd.data['command'])
```

```
status=cmd.data['command'] if
```

status=="motoron":

print ("motor is on") elif status == "motoroff":

print("motor is off") else:

print ("please send proper command")

try:

deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,

"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#
except Exception as e:

print("Caught exception connecting device: %s" % str(e))

```
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
eventof type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120) data
{ 'temp' : temp, 'Humid': Humid , ' Mois' :
Mois}
    #print data
                  de
fmyOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s
%%" % Humid, " Moisture =%s deg c" % Mois " to IBM
Watson") success = deviceCli.publishEvent("IoTSensor", "json",
  data, qos=0, on_publish=myOnPublishCallback) if not
success:
print("Not connected
                         to
IoTF")time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
File Edit Format Run Options Window Help
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
   print ("Command received: %s" % cmd.data['command'])
    status=cmd.data['command']
    if status == "motoron":
        print ("motor is on")
   elif status == "motoroff":
       print ("motor is off")
   else :
        print ("please send proper command")
try:
       deviceOptions = ("org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
        deviceCli = ibmiotf.device.Client(deviceOptions)
        Ln: 22 Cel: 21
```


6. Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

MOTOR SWITCH ON

MOTOR SWITCH OFF

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9. Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.