#Importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

#Importing_CSV

Academic_Performance = pd.read_csv('/content/Academic Performance of Students.csv')

#Displaying data set Academic_Performance.head(-1)

$\overline{\Rightarrow}$	Studen	t_ID	Name	Age	Gender	Study_Hours	Attendance_Percentage	Midterm_Score	Final_Score	Extracurricular_Activities	Parental_
	0	301	Alice	18	Female	15	95	85	88	Yes	
	1	302	Bob	19	Male	10	80	78	82	No	
	2	303	Charlie	17	Male	12	90	80	84	Yes	
	3	304	Daisy	18	Female	20	98	92	95	Yes	
	4	305	Ethan	20	Male	8	75	70	74	No	
	5	306	Fiona	17	Female	18	92	89	93	Yes	
	6	307	George	19	Male	7	65	68	70	No	
	7	308	Hannah	18	Female	14	88	84	87	Yes	
	8	309	Isaac	17	Male	16	94	87	90	Yes	
	4										

Next steps:

Generate code with Academic_Performance

View recommended plots

New interactive sheet

#Function assigning Grades def assign_grade(score):

```
if score >=90:
    return 'A'
elif score >=80:
    return 'B'
else:
    return 'C'
```

#Assigning grades as per function
Academic_Performance['Grade']=Academic_Performance['Final_Score'].apply(assign_grade)

Academic_Performance.head()

→		Student_ID	Name	Age	Gender	Study_Hours	Attendance_Percentage	Midterm_Score	Final_Score	Extracurricular_Activities	Parental_
	0	301	Alice	18	Female	15	95	85	88	Yes	
	1	302	Bob	19	Male	10	80	78	82	No	
	2	303	Charlie	17	Male	12	90	80	84	Yes	
	3	304	Daisy	18	Female	20	98	92	95	Yes	
	4	305	Ethan	20	Male	8	75	70	74	No	
	4										

Next steps:

Generate code with Academic_Performance

New interactive sheet

#Filtered Students who perticipated in Extracurricular_Activities
Academic_Performance.loc[Academic_Performance['Extracurricular_Activities']=='Yes']

→		Student_ID	Name	Age	Gender	Study_Hours	Attendance_Percentage	Midterm_Score	Final_Score	Extracurricular_Activities	Parental_
	0	301	Alice	18	Female	15	95	85	88	Yes	
	2	303	Charlie	17	Male	12	90	80	84	Yes	
	3	304	Daisy	18	Female	20	98	92	95	Yes	
	5	306	Fiona	17	Female	18	92	89	93	Yes	
	7	308	Hannah	18	Female	14	88	84	87	Yes	
	8	309	Isaac	17	Male	16	94	87	90	Yes	
,											•

#Group by Parental_Education_Level & Final_Score
FinalScore=Academic_Performance.groupby('Parental_Education_Level')['Final_Score'].mean()
print(FinalScore)

→ Parental_Education_Level

Bachelor's 90.00 High School 77.25 Master's 88.50

Name: Final_Score, dtype: float64

#Corelation between Study_Hours,Attendance_Percentage,Final_Score
Corelation =Academic_Performance [['Study_Hours','Attendance_Percentage','Final_Score']].corr()
print(Corelation)
#Plotting heatmap
sns.heatmap(Corelation, annot=True)
plt.show()

Double-click (or enter) to edit

#Corelation between SAT_Score,Attendance_Percentage

Sat_att=Academic_Performance[['SAT_Score','Attendance_Percentage']].corr()
print(Sat_att)

SAT_Score Attendance_Percentage
SAT_Score 1.00000 0.96273
Attendance_Percentage 0.96273 1.00000

Male

```
#Gender wise comparison of final score & bar chart
```

```
GENDER_SCORE=Academic_Performance.groupby('Gender')['Final_Score'].sum()
print(GENDER_SCORE)
plt.bar(GENDER_SCORE.index,GENDER_SCORE.values, color='blue',)
plt.xlabel('Gender')
plt.ylabel('Final Score')
plt.title('Gender vs Final Score')
plt.show()

Gender
Female 446
```

Name: Final_Score, dtype: int64

400


```
#Visulization of study_hours using density and histrogram
sns.kdeplot(Academic_Performance['Study_Hours'])
plt.show()
sns.distplot(Academic_Performance['Study_Hours'])
plt.show()
```


<ipython-input-30-e0dc6b880851>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Start coding or generate with AI.

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751