Conc vs time data to evaluate $\frac{d\mathcal{C}_{EG}}{dt}$

time (min)	C(EG)	∆ (†)	∆ (C)	$\Delta C/\Delta t$	dC/dt
0	0				0.315
		0.5	0.145	0.29	
0.5	0.145				0.265
		0.5	0.125	0.25	
1	0.27				0.225
		0.5	0.106	0.212	
1.5	0.376				0.160

Graphical method

Lecture # 10.2 CHE331A

- Design and Analysis of different Reactors
- Differential method of analyzing rate data – Graphical method
- Numerical differentiation and differentiation using polynomical fits

GOUTAM DEO
DEPARTMENT OF CHEMICAL ENGINEERING
IIT KANPUR

Numerical differentiation method can be used if data points are equally spaced

► The collection of concentration data is such that the time intervals are the same

$$t_1 - t_0 = t_2 - t_1 = \dots = \Delta t$$

► Three-point differentiation formula:

o Initial point:	$\left(\frac{dC_A}{}\right)$	$-3C_{A0}+4C_{A1}-C_{A2}$
	$\left(\frac{1}{dt}\right)_{t_0}$	$2\Delta t$

o Interior points: $\left(\frac{dC_A}{dt}\right)_{t_i} = \frac{C_{A(i+1)} - C_{A(i-1)}}{2\Delta t}$

o Last point:	$\left(\frac{dC_A}{}\right)$	$-\frac{C_{A(n-2)}-4C_{A(n-1)}+3C_{An}}{}$
	$\left(\frac{1}{dt}\right)_{t_n}$	$ {2\Delta t}$

time (min)	C(EG)	dC/dx (Num)	dC/dx (Equal area)
0	0	0.310	0.315
0.5	0.145	0.270	0.265
1	0.27	0.231	0.225
1.5	0.376	0.193	0.200

Polynomial fit should be done with care

► The conversion versus time data is fit to an nth-order polynomial:

$$C_A = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

- Software packages do this readily by choosing the order of the polynomial
 - $_{\circ}$ Constants a_i are determined and equation is differentiated

$$\frac{dC_A}{dt} = a_1 + 2a_2 \cdot t + \dots + n \cdot a_n t^{n-1}$$

- Choose the order of the polynomial with care
 - Trends should be captured

time (min)	C(EG)	dC/dt (Poly)	dC/dt (Num)	dC/dt (E-A)
0	0	0.297	0.310	0.315
0.5	0.145	0.282	0.270	0.265
1	0.27	0.231	0.231	0.225
1.5	0.376	0.145	0.193	0.200

Once $\frac{dC_A}{dt}$ is determined the rate law parameters can be obtained

- ▶ For the case of $EO + H_2O \rightarrow EG$, with a rate law of $r_{EG} = -r_{EO} = k \cdot C_{EO}^{\alpha} C_{H2O}^{\beta}$
 - $_{\circ}$ With excess H₂O the rate law reduces to: $r_{EG} = k_{EO}^{\prime} C_{EO}^{\alpha}$
- ▶ From numerical methods: $\frac{dC_{EG}}{dt}$ was obtained. Since $C_{EG} = C_{E0,0} C_{EO}$
- $ightharpoonup rac{dC_{EG}}{dt} = -rac{dC_{EO}}{dt}$ Also, with $C_{EO,0} = 1rac{kmol}{m^3}$ $\Rightarrow C_{EO} = 1 C_{EG}$
 - $_{\circ}$ Then, α determined from: $ln\left(-\frac{dC_{EO}}{dt}\right) = lnk_{EO}' + \alpha.lnC_{EO}'$
- Thus, α = 1; knowing $-\frac{dc_{EO}}{dt}$ at specific c_{EO} , $< k'_{EO} > = 0.313$ min⁻¹

$$-r_A = 0.313C_A \frac{mole}{L.min}$$

Integral method is used to determined rate constant at different temperatures

- Order is usually known or is assumed
- ▶ Mole balance equation for batch reactor is integrated to obtain the $C_A \ vs \ time$ data, which is compared with experimental values
- $\blacktriangleright EO + H_2O \rightarrow EG$ in a constant-volume batch reactor
- ▶ Mole balance: $\frac{dC_{EG}}{dt} = r_{EG} = k'_{EO}C^{\alpha}_{EO}$, given $C_{EG}(t) \rightarrow C_{EO} = C_{EO,0} C_{EG}$
 - \circ For $\alpha = 0$ (0 order), then C_{EO} vs time is linear with $slope = k'_{EO}$
 - \circ For $\alpha=1$ (1st order), then $ln\left(\frac{c_{EO,0}}{c_{EO}}\right)$ vs time is linear with $slope=k_{EO}'$
 - $_{\circ}$ For $\alpha=2$ (2nd order), then $\frac{1}{c_{EO}}vs$ time is linear with $slope=k_{EO}'$

Different plots can be compared to know the proper order – plots should be linear

- ▶ 1st order is a straight line. Thus, order of $\alpha = 1$
- ▶ Rate constant (from slope of 2^{nd} plot), $k = 0.314 \, min^{-1}$

