

Síntese de Parâmetros de Condutores

• Matriz das resistências:

$$\mathbf{R} = egin{pmatrix} R_1 & & & & & \\ & R_2 & & & & \\ & & \ddots & & & \\ & & R_n \end{pmatrix}$$

93

EESC • USP

Síntese de Parâmetros de Condutores

Matriz das indutâncias:

$$\mathbf{L} = \frac{\mu_0}{2\pi} \ln \begin{pmatrix} \frac{2h_1}{r_1} & \frac{D_{12}}{D_{12}} & \cdots & \frac{D_{1n}}{D_{1n}} \\ \frac{D_{12}}{D_{12}} & \frac{2h_2}{r_2} & \cdots & \frac{D_{2n}}{D_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{D_{1n}}{D_{1n}} & \frac{D_{2n}}{D_{2n}} & \cdots & \frac{2h_n}{r_n} \end{pmatrix}$$

Síntese de Parâmetros de Condutores

Matriz inversa das capacitâncias:

$$\mathbf{P} = \frac{1}{2\pi\varepsilon_0} \ln \begin{bmatrix} \frac{2h_1}{r_1} & \frac{D_{12}^{'}}{D_{12}} & \cdots & \frac{D_{1n}^{'}}{D_{1n}} \\ \frac{D_{12}^{'}}{D_{12}} & \frac{2h_2}{r_2} & \cdots & \frac{D_{2n}^{'}}{D_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{D_{1n}^{'}}{D_{1n}} & \frac{D_{2n}^{'}}{D_{2n}} & \cdots & \frac{2h_n}{r_n} \end{bmatrix}$$

EESC • USP Exemplo Calcular os parâmetros série de uma linha de distribuição com altura média de instalação de 10 m. Cabo Merlin 60 Hz Reactance Approx. Current-Cross-Section Area Diameter Resistance (mΩ/km) Carrying Capacity Aluminum AC (60 Hz) Stranding Conductor GMR (kcmil) (mm²) (Ω/km)

Exemplo - Resultados

Matriz das resistências (mOhms/km)

#	1	2	3
1	207,1	0,0	0,0
2	0,0	207,1	0,0
3	0,0	0,0	207,1

Matriz das indutâncias (mH/km)

#	1	2	3
1	1,5991	0,6096	0,4824
2	0,6096	1,7632	0,6318
3	0,4824	0,6318	1,8857

Matriz inversa das capacitâncias (pF/km)-1

#	1	2	3
1	0,140	0,055	0,043
2	0,055	0,162	0,057
3	0,043	0,057	0,213

97

Desequilíbrio Elétrico e Transposição de Linhas de Transmissão

Desequilíbrio Elétrico e Transposição de Linhas de Transmissão

• Indutâncias de uma Linha Trifásica Transposta

$$\overline{\mathbf{L}} = \frac{1}{3} \left\{ \begin{bmatrix} L_{aa} & L_{ab} & L_{ac} \\ L_{ba} & L_{bb} & L_{bc} \\ L_{ca} & L_{cb} & L_{cc} \end{bmatrix} + \begin{bmatrix} L_{bb} & L_{bc} & L_{ba} \\ L_{cb} & L_{cc} & L_{ca} \\ L_{ab} & L_{ac} & L_{aa} \end{bmatrix} + \begin{bmatrix} L_{cc} & L_{ca} & L_{cb} \\ L_{ac} & L_{aa} & L_{ab} \\ L_{bc} & L_{ba} & L_{bb} \end{bmatrix} \right\}$$

$$\overline{\mathbf{L}} = \begin{bmatrix} \overline{L_{aa}} & \overline{L_{ab}} & \overline{L_{ab}} \\ \overline{L_{ab}} & \overline{L_{aa}} & \overline{L_{ab}} \\ \overline{L_{ab}} & \overline{L_{ab}} & \overline{L_{aa}} \end{bmatrix}$$

99

EESC • USP

Desequilíbrio Elétrico e Transposição de Linhas de Transmissão

 Capacitâncias de uma Linha Trifásica Transposta

 \circ Lembrando: $\mathbf{U} = \mathbf{P} \, \mathbf{Q}$

$$\boxed{\overline{\mathbf{P}} = \frac{1}{3} \begin{bmatrix} p_{aa} & p_{ab} & p_{ac} \\ p_{ba} & p_{bb} & p_{bc} \\ p_{ca} & p_{cb} & p_{cc} \end{bmatrix} + \frac{1}{3} \begin{bmatrix} p_{bb} & p_{bc} & p_{ba} \\ p_{cb} & p_{cc} & p_{ca} \\ p_{ab} & p_{ac} & p_{aa} \end{bmatrix} + \frac{1}{3} \begin{bmatrix} p_{cc} & p_{ca} & p_{cb} \\ p_{ac} & p_{aa} & p_{ab} \\ p_{bc} & p_{ba} & p_{bb} \end{bmatrix}}$$

$$\overline{\mathbf{P}} = \left[egin{array}{ccc} \overline{p_{aa}} & \overline{p_{ab}} & \overline{p_{ab}} \ \overline{p_{ab}} & \overline{p_{ab}} & \overline{p_{ab}} \ \overline{p_{ab}} & \overline{p_{ab}} & \overline{p_{aa}} \end{array}
ight]$$

Desequilíbrio Elétrico e Transposição de Linhas de Transmissão

• Para o exemplo anterior, tem-se:

EESC • USP

Desequilíbrio Elétrico e Transposição de Linhas de Transmissão

• Para o exemplo anterior, tem-se:

Matriz das indutâncias (mH/km)

#	1	2	3
1	1,599	0,575	0,575
2	0,575	1,599	0,575
3	0,575	0,575	1,599

Matriz inversa das capacitâncias (pF/km)-1

#	1	2	3
1	0,140	0,052	0,052
2	0,052	0,140	0,052
3	0,052	0,052	0,140

Matriz das capacitâncias (pF/km)

#	1	2	3
1	8,904	-2,398	-2 , 398
2	-2,398	8,904	-2 , 398
3	-2,398	-2,398	8,904

				Exe	emp	olo) —	LT 34	45	k'	V		EE	:SC •	USF
	Cross-Section Area		Diame	ter		Approx. Current- Carrying Capacity	Re		(mΩ/km C (60 Hz				eactances		
Code	Total (mm ²)	(kcmil)	(mm ²)	Stranding Al/Steel	Conductor (mm)	Core (mm)	Layers	(Amperes)	DC 25°C	25°C	50°C	75°C	GMR (mm)	X_1 (Ω /km)	X_0 (M Ω /km
Cardinal Rail Baldpate	546 517 562	954 954 900	483 483 456	54/7 45/7 30/7	30.38 29.59 30.78	10.13 7.39 13.21	3 3 2	1 010 1 010 960	61.2 61.2 65.0	62.0 62.4 65.5	68.0 68.3 71.8	74.0 74.3 78.2	12.31 11.73 12.71	0.332 0.335 0.329	0.2 0.2 0.1
														10	4

Redução de Kron

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$$

105

EESC • USP

Redução de Kron

$$\begin{cases} \mathbf{b}_1 = \mathbf{A}_{11} \mathbf{x}_1 + \mathbf{A}_{12} \mathbf{x}_2 \\ \mathbf{b}_2 = \mathbf{A}_{21} \mathbf{x}_1 + \mathbf{A}_{22} \mathbf{x}_2 \end{cases}$$
$$\mathbf{x}_2 = \mathbf{A}_{22}^{-1} (\mathbf{b}_2 - \mathbf{A}_{21} \mathbf{x}_1)$$

Redução de Kron

$$\mathbf{A}_{11}\mathbf{x}_{1} + \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{b}_{2} - \mathbf{A}_{21}\mathbf{x}_{1}) = \mathbf{b}_{1}$$

$$(\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21})\mathbf{x}_{1} = \mathbf{b}_{1} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{b}_{2}$$

$$(\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21})\mathbf{x}_{1} = \mathbf{b}_{1} \operatorname{se} \mathbf{b}_{2} = \mathbf{0}$$

EESC • USP

Influência de Cabos Guarda

- Nos desenvolvimentos apresentados até agora determinamos os parâmetros de linha de transmissão em termos de seus condutores.
- Cada um dos parâmetros determinados relaciona a tensão nos condutores com alguma outra grandeza elétrica nos demais condutores.

Influência de Cabos Guarda

 A matriz de resistências relaciona a tensão nos condutores com a corrente nesses mesmos condutores.

$$\begin{pmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_n(t) \end{pmatrix} = \begin{pmatrix} R_{11} & 0 & \cdots & 0 \\ 0 & R_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{pmatrix} \begin{pmatrix} i_1(t) \\ i_2(t) \\ \vdots \\ i_n(t) \end{pmatrix}$$

109

EESC • USP

Influência de Cabos Guarda

 A matriz de indutâncias relaciona o fluxo concatenado pelos condutores com a corrente nesses mesmos condutores.

$$\begin{pmatrix} \lambda_{1}(t) \\ \lambda_{2}(t) \\ \vdots \\ \lambda_{n}(t) \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{12} & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{1n} & L_{2n} & \cdots & L_{nn} \end{pmatrix} \begin{pmatrix} i_{1}(t) \\ i_{2}(t) \\ \vdots \\ i_{n}(t) \end{pmatrix}$$

Influência de Cabos Guarda

Pela lei de Faraday-Neumann-Lenz, tem-se:

$$\begin{vmatrix} \begin{pmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_n(t) \end{pmatrix} = \frac{\partial}{\partial t} \begin{pmatrix} \lambda_1(t) \\ \lambda_2(t) \\ \vdots \\ \lambda_n(t) \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{12} & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{1n} & L_{2n} & \cdots & L_{nn} \end{pmatrix} \begin{pmatrix} \partial i_1(t) / \partial t \\ \partial i_2(t) / \partial t \\ \vdots \\ \partial i_n(t) / \partial t \end{pmatrix}$$

111

EESC • USP

Influência de Cabos Guarda

 Ou seja, a matriz das indutâncias relaciona a tensão nos condutores com a derivada temporal da corrente.

$$\begin{pmatrix} v_{1}(t) \\ v_{2}(t) \\ \vdots \\ v_{n}(t) \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{12} & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{1n} & L_{2n} & \cdots & L_{nn} \end{pmatrix} \begin{pmatrix} \partial i_{1}(t)/\partial t \\ \partial i_{2}(t)/\partial t \\ \vdots \\ \partial i_{n}(t)/\partial t \end{pmatrix}$$

Influência de Cabos Guarda

 A matriz inversa das capacitência relaciona a tensão nos condutores com a carga elétrica, integral da corrente, nesses mesmos condutores.

$$\begin{pmatrix} v_{1}(t) \\ v_{2}(t) \\ \vdots \\ v_{n}(t) \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{12} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{1n} & P_{2n} & \cdots & P_{nn} \end{pmatrix} \begin{pmatrix} q_{1}(t) \\ q_{2}(t) \\ \vdots \\ q_{n}(t) \end{pmatrix}$$

113

EESC • USP

Influência de Cabos Guarda

- Conclusão: Os parâmetros de linhas de transmissão relacionam a tensão nos condutores com outras grandezas élétricas.
- Esse aspecto auxilia quando se pretende incorporar a influência de cabos guarda, ou cabos para-raios, nos parâmetros de fase.
- Observação: Tal como o plano terra exerce influência nos parâmetros, principalmente a indutância e a capacitância, os cabos guarda também exercem influência.

Influência de Cabos Guarda

- A influência é calculada admitindo-se que os cabos guarda estão sob o mesmo potência do plano de referência, ou seja, zero.
- Vamos considerar uma linha trifásica com condutores guarda.

115

EESC • USP

Influência de Cabos Guarda

 Os parâmetros de indutância, por exemplo, podem ser apresentados da seguinte forma:

Influência de Cabos Guarda

 Os parâmetros de indutância, por exemplo, podem ser apresentados da seguinte forma:

117

EESC • USP

Influência de Cabos Guarda

 Em função da simetria da matriz de parâmetros tem-se:

$$\mathbf{L}_{0-abc} = \mathbf{L}_{abc-0}^T$$

Além disso, é necessário impor que:

$$\mathbf{V}_0 = \mathbf{0}$$

Influência de Cabos Guarda

• Assim, empregando a redução de Kron, tem-se:

$$j\omega \left(\mathbf{L}_{abc-abc} - \mathbf{L}_{abc-0} \mathbf{L}_{0}^{-1} \mathbf{L}_{0-abc}\right) \mathbf{I}_{abc} = \mathbf{V}_{abc}$$

Matrix de indutâncias dos condutores fase com a influência dos condutores guarda

$$\mathbf{V}_{abc} = j\omega \tilde{\mathbf{L}}_{abc-abc} \mathbf{I}_{abc}$$

$$\tilde{\mathbf{L}}_{abc-abc} = \mathbf{L}_{abc-abc} - \mathbf{L}_{abc-0} \mathbf{L}_0^{-1} \mathbf{L}_{0-abc}$$

119

EESC • USP

Influência de Cabos Guarda

 A mesma formulação é válida para a matriz inversa das capacitâncias:

> Matrix inversa das capacitâncias dos condutores fase com a influência dos condutores guarda

$$\mathbf{V}_{abc} = \tilde{\mathbf{P}}_{abc-abc} \mathbf{Q}_{abc}$$

$$\tilde{\mathbf{P}}_{abc-abc} = \mathbf{P}_{abc-abc} - \mathbf{P}_{abc-0} \mathbf{P}_0^{-1} \mathbf{P}_{0-abc}$$

Influência de Cabos Guarda

Para a matriz das resistências tem-se que:

$$\mathbf{V}_{abc} = \mathbf{R}_{abc-abc} \mathbf{I}_{abc}$$

$$\tilde{\mathbf{R}}_{abc-abc} = \mathbf{R}_{abc-abc} - \mathbf{R}_{abc-0} \mathbf{R}_0^{-1} \mathbf{R}_{0-abc}$$

• Contudo:

$$\left. \begin{array}{l}
 \mathbf{R}_{abc-0} = \mathbf{0} \\
 \mathbf{R}_{0-abc} = \mathbf{0}
 \end{array} \right\} \Rightarrow \tilde{\mathbf{R}}_{abc} = \mathbf{R}_{abc}$$

121

EESC • USP

Influência de Múltiplos Cabos

- Em linhas de transmissão é frequente o emprego de múltiplos condutores por fase.
- Dessa forma, tem-se a adequação das perdas por efeito corona a níveis aceitáveis.
- Novamente vamos considerar a matriz de indutâncias (mas o desenvolvimento é o mesmo para as resistências e o inverso das capacitâncias)

Influência de Múltiplos Cabos

 Os parâmetros de indutância, por exemplo, podem ser apresentados da seguinte forma:

EESC • USP

Influência de Múltiplos Cabos

 Os parâmetros de indutância, por exemplo, podem ser apresentados da seguinte forma:

Matrix de indutâncias dos condutores "1" $\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{V}_{abc-2} \end{pmatrix} = j\omega \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} \end{pmatrix}$ Matrix de indutâncias mútuas entre os condutores "1" e "2" $\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} \end{pmatrix}$ Matrix de indutâncias mútuas entre os

condutores "1" e "2"

124

condutores "2"

Influência de Múltiplos Cabos

 Em função da simetria da matriz de parâmetros tem-se:

$$\mathbf{L}_{12} = \mathbf{L}_{21}^T$$

 Além disso, é necessário impor que as tensões em condutores de mesmas fase são iguais:

$$\mathbf{V}_{abc-1} = \mathbf{V}_{abc-2}$$

· Ou ainda:

$$\mathbf{V}_{abc-1} - \mathbf{V}_{abc-2} = \mathbf{0}$$

125

EESC • USP

Influência de Múltiplos Cabos

• O primeiro passo para incorporar o efeito de múltiplos cabos é impor a igualdade das tensões:

$$\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{V}_{abc-2} - \mathbf{V}_{abc-1} \end{pmatrix} = j\omega \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} - \mathbf{L}_{11} & \mathbf{L}_{22} - \mathbf{L}_{12} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{21} - \mathbf{L}_{11} & \mathbf{L}_{22} - \mathbf{L}_{12} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} \end{pmatrix}$$

Influência de Múltiplos Cabos

- A matriz resultante deve ter a sua simetria recuperada.
- Para tanto, basta realizar a mesma operação feitas entre as linhas com as colunas.
- Nesse caso, subtraímos da segunda coluna a primeira coluna.

$$\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{0} \end{pmatrix} = j\omega \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} - \mathbf{L}_{11} \\ \mathbf{L}_{21} - \mathbf{L}_{11} & \mathbf{L}_{22} - \mathbf{L}_{12} - \mathbf{L}_{21} + \mathbf{L}_{11} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} - \mathbf{I}_{abc-1} \end{pmatrix}$$

127

EESC • USP

Influência de Múltiplos Cabos

• O terceiro passo é a redução de Kron.

$$\begin{pmatrix} \mathbf{V}_{abc-1} \\ \mathbf{0} \end{pmatrix} = j\omega \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} - \mathbf{L}_{11} \\ \mathbf{L}_{21} - \mathbf{L}_{11} & \mathbf{L}_{22} - \mathbf{L}_{12} - \mathbf{L}_{21} + \mathbf{L}_{11} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{abc-1} \\ \mathbf{I}_{abc-2} - \mathbf{I}_{abc-1} \end{pmatrix}$$

$$\left| \tilde{\mathbf{L}} = \left(\mathbf{L}_{11} - \left(\mathbf{L}_{21} - \mathbf{L}_{11} \right) \left(\mathbf{L}_{22} - \mathbf{L}_{12} - \mathbf{L}_{21} + \mathbf{L}_{11} \right)^{-1} \left(\mathbf{L}_{21} - \mathbf{L}_{11} \right) \right) \right|$$

Influência de Múltiplos Cabos

• O mesmo se tem para os demais parâmetros.

$$\tilde{\mathbf{P}} = \left(\mathbf{P}_{11} - \left(\mathbf{P}_{21} - \mathbf{P}_{11}\right) \left(\mathbf{P}_{22} - \mathbf{P}_{12} - \mathbf{P}_{21} + \mathbf{P}_{11}\right)^{-1} \left(\mathbf{P}_{21} - \mathbf{P}_{11}\right)\right)$$

$$\tilde{\mathbf{R}} = \left(\mathbf{R}_{11} - \left(\mathbf{R}_{21} - \mathbf{R}_{11}\right)\left(\mathbf{R}_{22} - \mathbf{R}_{12} - \mathbf{R}_{21} + \mathbf{R}_{11}\right)^{-1}\left(\mathbf{R}_{21} - \mathbf{R}_{11}\right)\right)$$

EESL • USP	E	ESL	•	USP
------------	---	-----	---	-----

Exemplo – LT 345 kV

Matriz das indutâncias por condutor

1	1.65E-06	9.22E-07	3.40E-07	3.30E-07	2.11E-07	2.07E-07	3.90E-07	2.40E-07
3	9.22E-07	1.65E-06	3.51E-07	3.40E-07	2.16E-07	2.11E-07	3.94E-07	2.45E-07
5	3.40E-07	3.51E-07	1.65E-06	9.22E-07	3.40E-07	3.30E-07	3.48E-07	3.43E-07
2	3.30E-07	3.40E-07	9.22E-07	1.65E-06	3.51E-07	3.40E-07	3.42E-07	3.49E-07
4	2.11E-07	2.16E-07	3.40E-07	3.51E-07	1.65E-06	9.22E-07	2.44E-07	3.93E-07
6	2.07E-07	2.11E-07	3.30E-07	3.40E-07	9.22E-07	1.65E-06	2.39E-07	3.89E-07
7	3.90E-07	3.94E-07	3.48E-07	3.42E-07	2.44E-07	2.39E-07	1.71E-06	3.18E-07
8	2.40E-07	2.45E-07	3.43E-07	3.49E-07	3.93E-07	3.89E-07	3.18E-07	1.71E-06

131

EESC • USP

Exemplo – LT 345 kV

Matriz das indutâncias com influência dos cabos guarda

1	1.55E-06	2.33E-07	1.20E-07	8.14E-07	2.23E-07	1.17E-07
3	2.33E-07	1.54E-06	2.32E-07	2.42E-07	8.04E-07	2.23E-07
5	1.20E-07	2.32E-07	1.55E-06	1.24E-07	2.42E-07	8.15E-07
2	8.14E-07	2.42E-07	1.24E-07	1.55E-06	2.32E-07	1.20E-07
4	2.23E-07	8.04E-07	2.42E-07	2.32E-07	1.54E-06	2.33E-07
6	1.17E-07	2.23E-07	8.15E-07	1.20E-07	2.33E-07	1.55E-06

Exemplo – LT 345 kV

Matriz das indutâncias com influência da multiplicidade de cabos

Α	1.18E-06	2.32E-07	1.20E-07
В	2.32E-07	1.17E-06	2.33E-07
С			1.18E-06

Matriz das indutâncias considerando a linha transposta

Α	1.18E-06	1.95E-07	1.95E-07
В	1.95E-07	1.18E-06	1.95E-07
С			1.18E-06

133

EESC • USP

Influência de Múltiplos Cabos

- O desenvolvimento anterior é pertinente quanto se tem multiplicidade 2 por fase.
- Para mais de dois cabos por fase é conveniente o uso da seguinte matriz de transformação:

$$\mathbf{T} = \begin{pmatrix} \mathbf{1} & -\mathbf{1} & \cdots & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1} \end{pmatrix}$$

Influência de Múltiplos Cabos

- A matriz T é uma matriz de matrizes.
- Será composta por n x n matrizes onde n é o número de condutores por fase.
- As matrizes 1 e -1 são matrizes identidades 3 x 3 (sistema trifásico)
- As matrizes **0** são matrizes nulas 3 x 3.

135

EESC • USP

Influência de Múltiplos Cabos

 Dessa forma, os passos "1"e "2", restrição de igualdade das tensões entre os condutores de mesma fase e simetria da matriz de parâmetros, podem ser realizados da seguinte maneira:

$$\mathbf{L}_{\text{passo 1 e 2}} = \mathbf{T}^T \mathbf{L} \mathbf{T}$$

 Posteriormente faz-se a redução de Kron na matriz L_{passo 1 e 2}.