$\rm MA327~Turmas~C, D, E$ - 2S 2011 - Prova 1

CLOLOITA		
Nome: GABARITO	RA.	08/09/2011
	1011.	00/09/2011

Respostas sem justificativas serão desconsideradas. Bom trabalho!

- 1. (10pts) Escreva as definições de subespaço de um espaço vetorial e de soma de dois subespaços.
- 2. Seja $V=\mathcal{P}_3(\mathbb{R})$ o espaço vetorial real dos polinômios de grau menor ou igual a 3.
 - (a) (10pts) Verifique que $\beta=\{t-1,t^2-1,t-t^3,2t^2\}$ é uma base de V.
 - (b) (10pts) Encontre as coordenadas de $p(t)=2t^3+3t^2+t$ na base $\beta.$
- 3. Considere o conjunto $S=\{v_1,v_2,v_3,v_4\}\subseteq\mathbb{R}^4$, onde $v_1=(1,2,0,1),v_2=(1,0,4,3),v_3=(0,-1,2,1),v_4=(3,4,4,5).$
 - (a) (10pts) Encontre uma base para o subespaço W gerado por S e calcule sua dimensão.
 - (b) (10pts) Complete a base encontrada no ítem (a) a uma base para \mathbb{R}^4 .
 - (c) (10pts) Encontre uma base para $U\cap W$ onde U é o subespaço gerado por $\{v_1+v_3,e_1\}$ e $e_1=(1,0,0,0)$.
- 4. (10pts) Seja $V=M_n(\mathbb{R})$ o espaço vetorial das matrizes $n\times n$ com entradas reais e sejam

$$U = \{A \in V \mid A^t = -A\}, \quad W = \{B = (b_{ij}) \in V \mid b_{ij} = 0 \text{ se } i > j\}$$

os conjuntos das matrizes antissimétricas e triangulares superiores, respectivamente. Verifique que U e W são subespaços de V e que $V=U\oplus W$.

- 5. Determine se as seguinte afirmações são verdadeiras ou falsas
 - (a) (10pts) A interseção de dois subespaços de dimensão n de um espaço de dimensão 2n-1 é sempre diferente do subespaço que contém apenas 0.
 - (b) (10pts) As funções $\cos(2t), \cos(t)$ e $\sin(t)$ formam um subconjunto linearmente dependente do espaço vetorial das funções contínuas de $[0, 2\pi]$ em \mathbb{R} .
 - (c) (10pts) Se A é uma matriz real 19 x 831, a dimensão do subespaço de \mathbb{R}^{19} gerado pelas colunas de A é igual à dimensão do subespaço de \mathbb{R}^{831} gerado pelas linhas de A.

Questão	
Seja V um espaço vetorial sobre o corpo K	· 1 [
· WCV é un subespaço se W# de é f	echadu reates)
com relação às operações (combinações lir de V, ou seja:	icui (s)
αυ+βν ∈ W, Y Lα,β∈ K.	

• Sejam $W_1, W_2 \subset V$ subespaçõs; a soma $W_1 + W_2$ e o conjunto (subespaço): $W_1 + W_2 = \{ w_1 + w_2 \mid w_i \in W_i, i=1,2 \}$ Uma combinação linear de elementos de B é da forma: $\alpha(t-t^3) + \beta(2t^2) + \chi(t^2-1) + \delta(t-1) = (-\alpha)t^3 + (2\beta+\chi)t^2 + (\alpha+\delta)t + (x-\delta)t + (x-$

(a) O espaço $P_3(R) = \{at^3 + bt^2 + ct + d \mid a,..., d \in R\}$ tem dimensão 4, logo # B = dim $P_3(R)$; assim B será uma base se e simente se for l.i.; Usando (**), vernos que uma combinação linear nula implica:

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ \xi \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

e det $A = (-1) \begin{vmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^2 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2 \neq 0$ logo a Unica Solução é a trivial $\alpha = -1 = \delta = 0$.

Assim B é l.i. e portanto é uma base de $P_3(R)$.

(b)
$$d=-2$$
, $\delta=3$, $\delta=3$.

1//

(a)
$$dV_1 + \beta V_2 + \delta V_3 + \delta V_4 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 0 & -1 & 4 \\ 0 & 4 & 2 & 4 \\ 1 & 3 & 1 & 5 \end{bmatrix} \begin{pmatrix} d \\ \beta \\ \delta \end{pmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Escalonando A, obtemos:

Substitution
$$V = -1$$
, $\delta = 0$ temos $V_3 = -\frac{1}{2}V_1 + \frac{1}{2}V_2$
 $V = 0$, $\delta = -1$ $V_4 = 2V_1 + V_2$

ou seja, $\{v_1, v_2\}$ gera $W = \langle S \rangle$.

Como [V,, V2] è l.i. (pois V, não é múltiplo escalar de V2) concluimos tratar-se de uma base.

(b) Afirmo que {v, v2, e2, e3} é l.i., e portanto base de R4; pois contem 4 elementos:

$$\det \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 3 & 0 & 0 \end{bmatrix} = - \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 3 & 0 & 0 \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 & 0 \end{vmatrix}$$

(c) Como $V_1 + V_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \neq \lambda \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, o conjunto $\{v_1 + v_3, e_1\}$ é l.i. e dim $U = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ Por outro lado, dim $U \cap W = \dim U + \dim W - \dim U + W$

= 2 + 2 - 3

usando os fatos de que $V_1 + V_3 \in W$ (pelo item (a)), mas $e_1 = dV_1 + BV_2 \Rightarrow \begin{cases} x + \beta = 1 \\ x = \beta = 0 \end{cases}$, portanto $e_1 \notin W$. Assim $V_1 + V_3$ gera a interseção:

 $U \cap W = \chi(\{v_1 + v_3\})$

Questão 4

·
$$A_1, A_2 \in U \Rightarrow (\alpha A_1 + \beta A_2)^{t} = \alpha A_1^{t} + \beta A_2^{t} = -(\alpha A_1 + \beta A_2)$$

$$\Rightarrow \alpha A_1 + \beta A_2 \in U$$
;

$$B_{1}, B_{2} \in \mathbb{W} \Rightarrow (\alpha B_{1} + \beta B_{2})_{ij} = \alpha (B_{1} + \beta (B_{2})_{ij} = 0 \text{ so it } j$$

$$\Rightarrow \alpha B_{1} + \beta B_{2} \in \mathbb{W};$$

· Claramente
$$W \cap U = \{0\}$$
, pois $B^{\dagger} = -B \Rightarrow B = 0$.

· Para MEV qualquer, podemos decompor:

$$M = \begin{bmatrix} \boxed{1} \\ \boxed{1} \end{bmatrix} = \begin{bmatrix} 0 \\ \boxed{1} \end{bmatrix}$$

Questão 5

(a) VERDADEIRO: dim W, NW2 = dim W, + dim W2 - dim (W)

$$(b) FALSO: cos 2t = d cost + \beta sent \Rightarrow |d=0| (t=0)$$

(C) VERDADEIRO: pois a forma escalonada reduzida dai transposta possur o mesmo número de privos