

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

·					
•		·			
			•		
					·

. . .

SMITHSONIAN MISCELLANEOUS COLLECTIONS.

156

CATALOGUE

0F

MINERALS,

WITH THEIR FORMULAS, ETC.

PREPARED FOR THE SMITHSONIAN INSTITUTION.

ВY

T. EGLESTON.

WASHINGTON: SMITHSONIAN INSTITUTION: JUNE, 1863.

SYL

d

2

• .

CONTENTS.

Advertisement	٠.	•	•	•	•	•	•	•	•	•	•	iii
Introduction			•		•		•					v
Chemical symb	ols			•		•				•		vii
Systems of crys	stalli	zati	on						•			ix
Analytical table	е	÷	•	•	•	•	•	•	•	•	•	xi
Catalogue of m	iner	als	•			•				•	•	1
Check list of m	iner	als							•			33
Alphabetical in	dex	_	_	_	_			_			_	39

.(ii)

ADVERTISEMENT.

THE following Catalogue of Mineral Species has been prepared by Mr. Egleston, at the request of the Institution, for the purpose of facilitating the arranging and labelling of collections, and the conducting of exchanges, as well as of presenting in a compact form an outline of the science of mineralogy as it exists at the present day.

In labelling collections it is considered important to give the chemical composition as well as the names, and hence the formulæ have been added.

Some doubt was at first entertained as to the system of classification which ought to be adopted; but after due consideration it was concluded to make use of that followed by Professor Dana, in the last edition of his Manual of Mineralogy. Whatever difference of opinion may exist as to the best classification, the one here employed is that which will be most generally adopted in this country, on account of the almost exclusive use of Professor Dana's excellent Manual.

The Institution is under obligations to Prof. Dana, Prof. Brush, Dr. Genth, and other gentlemen, for their assistance in perfecting the work, and carrying it through the press.

Copies of the Catalogue, printed on one side only, to be cut apart for labels, can be furnished on application.

JOSEPH HENRY,

Secretary S. I.

Smithsonian Institution, June, 1863.

(iii)

.

•

;

•

.

. . . . · •

. • . •

INTRODUCTION.

To render the present Catalogue of Minerals more than a mere enumeration of names, the formulæ expressing the chemical composition of the mineral and the system in which it crystallizes, as far as at present understood, have been given. The classification adopted is Dana's, as published in the fourth edition of his Some species that have proved not to be well founded have been omitted, and many since published have been added. Of these latter species, some must be considered as having only a provisional place in the series, and it is probable that others will ultimately be dropped altogether. In making the additions and corrections, the Supplements to Dana's Mineralogy, which have appeared from time to time in Silliman's Journal, have always been consulted, and the most probable formulæ, as deduced by recent investigations, have been selected. In a few instances a change has been made in the place of a species where a more thorough examination has thrown light upon the true nature of the mineral or where it has been found that the system of crystallization had previously been incorrectly given. Faujasite, p. 19, was formerly considered as dimetric, it has lately been proved to be monometric, and it has therefore been placed among the monometric zeolites. The formula for Euclase is the one given by Rose; Damour's analysis gave water, and the formula 2Be Si3 + 371 Si3 + A. Rammelsberg has recently discovered the existence of protoxides in Staurotide, and proposes as a general formula $(\mathbf{R}, \mathbf{R}^2) + \mathbf{S}^{in}$. In the formula for *Opal*, water has not been written.

. . . . • . .

•

.

. •

.

as it is found in very variable quantities, and is not considered as essential. For what is known of the species added to the list of organic compounds, see the 2d, 5th, 6th, and 7th Supplements to Dana's Mineralogy. For changes in the systems of crystallization, Des-Cloizeaux has generally been the authority.

A table of the symbols used, with illustrations of the meaning of the formulæ, are given on p. vii., and on p. ix. will be found a table relating to the systems of crystallization. In the first column are the simple forms from which all the others, of the same system, are derived; in the second the description of the axes of these simple forms, and in the others the nomenclature that has been adopted by the authors whose names stand at the head of the column. The axes of a crystal are imaginary lines drawn through its centre and about which it is symmetrical. It has been found most convenient to refer to the systems of crystallization by the numbers which have been placed on the left hand of the table.

An asterisk following the name of a mineral, as Gold,* p. 1, denotes that it has been found in the United States. A dagger, as Danburite,† p. 14, denotes that it has been found in the United States only. The other minerals have not, so far as is known, been found in this country.

T. EGLESTON.

New York, May, 1863.

CHEMICAL SYMBOLS.

Ag. (Argentum)	Silver.	Mg.	Magnesium.
Al.	Aluminium.	Mn.	Manganese.
Aq.	Water.	Mo.	Molybdenum.
As.	Arsenic.	N.	Nitrogen.
Au. (Aurum)	Gold.	Na. (Natrum)	Sodium.
В.	Boron.	Ni.	Nickel.
Ba.	Barium.	0.	Oxygen.
Be. (Beryllium)	Glucinum.	Os.	Osmium.
Bi.	Bismuth.	P.	Phosphorus.
Br.	Bromine.	Pb. (Plumbum)	Lead.
C.	Carbon.	Pd.	Palladium.
Ca.	Calcium.	Pt.	Platinum.
Cb.	Columbium.	Rd.	Rhodium.
Cd.	Cadmium.	Ru.	Ruthenium.
Ce.	Cerium.	S.	Sulphur.
C1.	Chlorine.	Sb. (Stibium)	Antimony.
Co.	Cobalt.	Se.	Selenium.
Cr.	Chromium.	Si.	Silicium.
Cu. (Cuprum)	Copper.	Sn. (Stannum)	Tin.
D.	Didymium.	Sr.	Strontium.
F.	Fluorine.	Ta.	Tantalum.
Fe. (Ferrum)	Iron.	Tb.	Terbium.
H.	Hydrogen.	Te.	Tellurium.
Hg. (Hydrargyrum)	Mercury.	Th.	Thorium.
I.	Iodine.	υ.	Uranium.
Ir.	Iridium.	v.	Vanadium.
K. (Kalium)	Potassium.	W. (Wolframium)	Tungsten.
La.	Lanthanum.	Y.	Yttrium.
Li.	Lithium.	Zn.	Zinc.
¥.	Mellic Acid.	Zr.	Zirconium.

Note.—R is an indefinite symbol, and may refer to any one or more of the symbols in the table. In the formulæ given in the Catalogue the dots over the symbols indicate atoms of oxygen—thus, Fe indicates one atom (vii)

•

.

of Iron combined with one of Oxygen. A dashed letter indicates a double atom of the substance-thus, Fe means two atoms of Iron combined with three of Oxygen. A general formula has sometimes been given when one or more of the elements are replaced by others in variable proportions, or for species which include several important varieties, as Melinophane, p. 12, Allanite and others, p. 14, Pyroxene, p. 11, Amphibole and Peridot, p. 12, &c. In these formulæ R represents all the bases composed of one atom of an element and one of Oxygen, and # all those composed of two atoms of an element and three of Oxygen. Thus the general formula for the family of the Chlorites, p. 17, is $5R^3 \ddot{S}i_2^2 + 3\ddot{R} \ddot{S}i_2^2 + 12\dot{H}$, which means that the mineral contains five atoms of a compound made up of three atoms of proto-base combined with three-quarters of an atom of silicic acid, plus three atoms of a compound of one atom of sesqui-base combined with threequarters of an atom of silicic acid, plus 12 atoms of water. In Chlorite and Pennine the proto-bases are Magnesia and Iron, but in Clinochlore Magnesia only; in Chlorite and Clinochlore the sesqui-base is Alumina only, while in Pennine it is Alumina and Iron. It will thus be seen that a large figure written as a co-efficient refers to the whole of the member to which it is prefixed, while a small figure written as an exponent refers only to the symbol to which it is attached. Thus 5 R3 Si3 means five atoms of $R^3 Si_4^2$, while R^3 means simply three atoms of R. When the symbols are written together the substances are in chemical combination—thus As S which is the formula for Realgar, p. 2, characterizes that mineral as a sulphuret of Arsenic. When one element is combined with several these are placed in brackets and each symbol is followed by a comma-thus Smaltine (Co, Fe, Ni) As2, p. 4, is an Arseniuret of Cobalt, Iron, and Nickel. In this case the proportions of Cobalt, Iron, and Nickel are not stated. In the formula of Eisennickelkies (3Ni + 3Fe) S, p. 3, a sulphuret of Nickel and Iron, the proportions are stated. The general formula in this case would be RS; one-third of R is Nickel, and the other two-thirds Iron. When more than one element is combined with several others, both members are written in brackets; thus Glaucodot (Co, Fe) (S, As)2, p. 4, is a Bi-sulpho-arseniuret of Cobalt and Iron. In some instances, as Bismuth Silver, p. 1, no formula has been given, but simply an enumeration of the elements of which the mineral is composed; in this case each symbol is followed by a comma.

When the water of a mineral has not been determined, it has been written Aq. instead of H.

SYSTEMS OF CRYSTALLIZATION.

No.		SIMPLE FORMS.				Axrs.					
				_							
1	Cube and o	stahedron.		3 8	ixes rectan	gular and e	qual.				
2	Right prism	with square	base.	3 8	axes rectan	gular, 2 equ	ıal.				
3	Right prism	n with rectar	ngular or	3 8	xes rectan	gular and	unequal.				
4	Right rhon rhombic	nboidal and prisms.	oblique	3 4	ixes unequ	al, 2 rectan	gular.				
5	Oblique di prism.	symetric rho	mboidal	3 4	3 axes unequal, and unequally inclined.						
6	Rhombohed prism.	ron and hex	agonal	4 4	4 axes, 3 equal and equally inclined, 1 at right angles to the other three.						
	NAMES USED BY DIFFERENT AUTHORS.										
No.	Naumann.	Mohs.	Weiss & Ro	se.	Phillips.	Delafosse.	Dana.				
1	Tesseral.	Tessular.	Regular.		Cubic.	Cubic.	Monome- tric.				
2	Tetragonal.	Pyramidal.	2 and 1 ax	ial.	Pyram- idal.	Tetrago- nal.	Dimetric.				
3	Rhombic.	Orthotype.	1 and 1 ax	ial.	Pris- matic.	Ortho- rhombic.	Trimetric.				
4	Monoclino- hedric.	Hemiortho- type.	2 and 1 me bered.	em-	Oblique.	Clino- rhombic.	Mono- clinic.				
5	Triclino- hedric.	Anortho- type.	1 and 1 me bered.	9 m -	Anorthic.	Clino- hedric.	Triclinic.				
6	Hexagonal.	Rhombohe- dral.	3 and 1 ax	ial.	Rhombo- hedral.	Hexago- nal.	Hexago- nal.				

•

.

::

,

. • · . •

ANALYTICAL TABLE.

									PA	GE.
A. NATIVE ELEMI	ents .					•		•		1
1.	Hydrogen	Grou	p							1
	Arsenic G		-	•	•					1
3.	Carbon Gr	oup	•	•	•			•	•	2
B. SULPHURETS,	ARSENIUR	ets,	ETC.			•	•			2
I. BINARY COMP	POUNDS .				•					2
1. Compou	ınds of Ele	ments	of t	he A	rsenic	Gro	up w	ith or	1e	
•	another			•		•				2
2. Compou	ınds of Eler	nents	of th	e Ars	senio	Gron	o wit	h thos	3e	
	of the H					•	•	•	•	3
1.	Discrasite					•				3
2.	Galena Di	vision	٠.							3
3.	Pyrites Di	visio	n.							4
4.	. Skutterud	lite D	ivisio	n			•			5
II. Double Bin	ARY COMPO	INDS	•		•					5
1. The Per	rsulphuret a drogen (•	y-	5
2. The Per	sulphuret	a Sulj	hure	t of I	deme	nts of	the	Arsen	ic	
,	Group	•			•	•		•	•	5
C. FLUORIDS, CH	LORIDS, B	ROMI	ds, I	odi	s	•	•	•	•	6
1.	. Calomel I	Divisi	n		•	•	•	•		6
2,	Rock Salt	Divi	sion		•			•		7
D. OXYGEN COMP	POUNDS		•	•			•	•		8
I. BINARY COM	POUNDS .				•					8
1 Oxides	of the Elen	nante	of th	а Нъ	droge	n Gra	mn			8
			01 011		ar o B o	u.u	up	•	•	
	hydrous O		•	•	•	•	•	•	•	8
	. Monometr		•	•	•	•	•	•	•	8
Zi.	. Hexagona	1.	•	. •	•	•	٠,٠	· ri \	•	0

. . .

į

. • ••

•

.

								•
			_					
	•	•						
								•
								•
	•	•						
	•	•	•	•	•	•		
	•	•	•	•	•			
								•
				•	•			
		•						
					•	•		
		•		•	•			
				•		,		
								•
							•	•
								••
					•			:
							•	
								. `
		٠.						.
								•
·					•	•		•
			•			•		
			•	٠	•		•	• •
								·
	<u> -</u>	•	•	•	•	•	• •	

ANALYTICAL TABLE.

D. OXYGEN COMPOUNDS (Continued	١.						PAGE
	•		•				9
4. Trimetric		•					9
. Appendix to Anhydr	ous C	xid	es .				9
5. Combinations of Ox	ides	and	Chlo	rides	or	Sul-	
phurets .			•				9
B. Hydrous Oxides .							9
Appendix to Hydrou	s Oxi	ides	•				10
2. Oxides of Elements of the Ar	senic	Gro	up				10
1. Arsenic Division			•				10
2. Sulphur Division	•	•	•	•		•	10
3. Oxygen Compounds of Carbon	ı, Bo	ron a	ind S	ilicon			11
II. Oxygen Double Binary Compount)S						11
1. Silicates							11
A. Anhydrous Silicates			•				11
1. Edelforsite Section		:		•	•		11
2. Augite Section .			•				11
3. Eulytine Section		•					12
 Rulytine Section Garnet Section 							12
5. Mica Section .							14
6. Feldspar Section		•		•			14
Appendix			•				15
7. Andalusite Section		•		•			15
B. Hydrous Silicates .	•	_	_				16
I, Magnesian Hydrous Sil	licate	8		•			16
1. Tale Section .	•		•				16
2. Serpentine Section	•						16
Appendix				•			17
3. Chlorite Section				•			17
II. Non-Magnesian Hydro	us Si	ilioa	tes				18
 Pyrophyllite Section Pectolite Section 				•			18
2. Pectolite Section		٠	•				18
				•			18
4. Zeolite Section .							19
5. Datholite Section				•			20
Appendix to Hydrou							
C. Unarranged Silicates con	taini	ng I	'itani	o Acid	ι.		20
Appendix	•	•	•				20
2. Titanates, Tungstates, Molybdi						ates.	
Chromates, Vans			•	•		•	21
3. Sulphates and Selenates							22
1. Anhydrons Sulnhates		_	-	•	-		22

					ANAL	YTIC	AL T	ABI	E.				:	xiii	
													1	'AGB	,
D.	OXYGE	N CC)MP(OUND	S.—((Conti	nued.	.)							
			1.	Trime	etric		•			•		•		22	
			2.	Rhon	ibohe	dral					•	•		22	
			3.	Mono	clinic		•		•	•	•			22	
				Appe	ndix 1	to Ar	hydr	aro	Sulph	ates	•		•	23	
		2.	Hyd	lrous !	Sulph	ates		•			•			23	
	4.	Bor	ates		•		•		•	•	•			25	
	5.	Pho	sphs	ites, A	rsena	tes, A	Antim	ona	tes, N	itrate	8			25	
			-	aydrou		•	•							25	
			1.	Hexa	gonal		•		•			•		25	
			2.	Dime	tric				•					25	
			3.	Mono	oclinic	3								25	
			4.	Trim	etrio					•	•			26	
				Appe	ndix		•	•		•	•			26	
		ь.	Hvd	lrous										26	
					hato-I	Phost	hate	в.						27	
					ndix		•							28	
		c.	Nit	rates	•	•			•	•	•	•		28	
	6.	Car	bona	tes										28	
			1.	Anhy	drou	s Car	bonat	es						28	
				Hydi								•		28	
				Carb					ide or	Fluo	ride	•	•	29	
	7.	Oxe	late	B					•	•		•		29	
12:	PESINS	NA	ח מ	RGAN	IIC C	ОМР	TINI	g						30	

.

,

•

. • . . . -.

CATALOGUE OF MINERALS.

No.	Name.	Formula.	System of erystallization.
		A. NATIVE ELEMENTS.	
		1. Hydrogen Group.	
1.	Gold *	Au	1
2.	Platinum *	Pt	1
3.	Platiniridium *	Ir, Pt	1
4.	Palladium	Pa	1
5.	Quicksilver *	$\mathbf{H}_{\mathbf{g}}$	1
6.	Amalgam	Ag Hg² and Ag Hg³	1
7.	Arquerite	Åg⁵ Hg	1 -
8.	Gold Amalgam *	(Au, Ag) ² Hg ⁵	
9.	Silver *	Ag	1
10.	Bismuth Silver	Fe, Bi, Pb, Ag	19
11.	Copper *	Cu	1
12.	Lead	Pb	1
13.	Iron *	Fe	. 1
14.	Tin	Sn	2
15.	Zinc	Zn	6
		2. Arsenic Group.	
16.	Iridosmine *	Ir, Os, Rd	6
17.	Tellurium 1	Te	6

.

· ,

•

Y₀

No.	Name.	Formula.	System of crystallization.
18.	Bismuth *	Bi	6
19.	Tetradymite *	· Bi, Te	6
20.	Antimony	Sb	6
21.	Arsenic *	As	6
22.	Arsenical Antimony *	Sb, As	6
23.	Sulphur *	8	3
24.	Selenium	Se	4
25.	Selensulphur	Se, S	
		3. Carbon Group.	
26.	Diamond. *	C	1
27.	Mineral Coal	C	
	27. Anthracite *		
	27°. Bituminous Coal *		
	27°. Jet *		
	274. Lignite *		
28.	Graphite *	C	6

B. SULPHURETS, ARSENIURETS, ETC.

I. BINARY COMPOUNDS.

1. Compounds of Elements of the Arsenic Group with one another.

2 9.	Realgar	As S	4
3 0.	Orpiment *	As ² S ³	3
31.	Dimorphine	As4 S3	3
32.	Bismuthine *	Bi ² S ³	3
3 3.	Stibnite *	8b ⁸ 8 ⁹	3

No.	Name.	Formula.	•	tem of llization.
2.		ements of the Arsenic G'the Hydrogen Group.	roup	with
	1	. Discrasite Division.		
34.	Discrasite	Ag ² Sb		3
35.	Domeykite *	Cu ³ As ²		
36.	Algodonite *	Cu ⁶ As ²		
37.	Whitneyite *	Cu ⁹ As ²		
	:	2. Galena Division.		
38.	Silver Glance *	Ag S		1
39.	Erubescite *	(Fe, Eu) S		1
4 0.	Galena *	Pb S		1
41.	Steinmannite	Pb, S, Sb		1
4 2.	Cuproplumbite?	2Pb S + &u S		1
4 3.	Alisonite	3&u S + Pb S		
44.	Manganblende	Mn S		1
45.	Syepoorite	Co S		
46.	Eisennickelkies	$(\frac{1}{3}Ni + \frac{2}{3}Fe)$ S		1
47.	Clausthalite	Pb Se	-	1
4 8.	Naumannite	Ag Se		1
4 9.	Berzelianite	€u Se		
50.	Eucairite	(Cu, Ag) Se		
51.	Hessite *	Ag Te		1?
52.	Altaite	Рь Те		1
53.	Grünauite	(Bi, Ni, Co, Fe) ² S ³		1
54.	Blende *	Zn S		1
55.	Copper Glance *	Cu S		3

			•
		-	
	•		

• .

•

•

.

No. Name.	Formula.	System of crystallization.
56. Akanthite	Ag S	3
7. Stromeyerite	(€u, A g) 8	3
8. Cinnabar *	HgS	6
9. Millerite *	Ni S	6
0. Pyrrhotine *	Fe ⁷ S ⁸	6
1. Greenockite	Cd S	6
2. Wurtzite	Zn S	6
3. Onofrite	Hg ⁶ Se ⁵	
4. Copper Nickel *	Ni As	6
5. Breithauptite *	Ni Sb	6
6. Kaneite	Mn As	
7. Schreibersite	Fe, P, Ni	
3.	Pyrites Division.	
8. Pyrites *	Fe S ²	1
Hauerite	Mn S²	1
Smaltine *	(Co, Fe, Ni) As2	1
. Cobaltine	Co (S, As) ²	1
2. Gersdorffite *	Ni (S, As) ²	1
3. Ullmannite	Ni (S, As, Sb) ²	1
. Marcasite *	Fe S²	3
. Rammelsbergite	Ni As²	3
3. Leucopyrite *	Fe As ²	8
. Mispickel *	Fe (As, S) ²	3
. Glauoodot	(Co, Fe) (S, As) ²	3
. Sylvanite *	(Ag, Au) Te²	3
. Nagyagite	(Pb, Au) (Te, E)2	2

3

1

No. Name.	Formula.	System of crystallization.
81. Covelline	€u S²	6
82. Molybdenite *	Mo S²	6
83. Riolite	Ag Se ²	69
4. Skut	terudite Division.	
84. Skutterudite	Co As ³	1
II. DOUBLE B	INARY COMPOUNDS.	
1. The Persulphuret a S Hydrogen Group, as	-	
85. Linnæite *	Co S + Co ² S ⁸	1
86. Cuban	Cu S + Fe ² S ³	1
87. Chalcopyrite *	Gu S + Fe ² S ³	2
88. Barnhardite *	26u S + Fe S	2
89. Tin Pyrites	Cu S (Sn ² S ³ , Fe ² S ³)	21.
90. Sternbergite	$AgS+2Fe^2S^3?$	3
2. The Persulphuret a	Sulphuret of Elemenic Group.	nts of the
91. Wolfsbergite	€u S + Sb² S³	3
92. Tannenite	CuS+Bi'S	3?
93. Berthierite	Fe S + Sb2 S3	
94. Zinkenite	Pb S + Sb ² S ³	3

 $AgS + Sb^2S^3$

 $PbS + \frac{3}{4}Sb^{2}S^{3}$

 $PbS + \frac{2}{3}Sb^2S^3$

 $PbS + \frac{1}{2}Sb^2S^3$

(Pb, Ag) 8+ \frac{1}{2}Sb2 83

(Eu, Pb) S + ½Bi² S³

95. Miargyrite

96. Plagionite

97. Jamesonite

98. Heteromorphite

99. Brongniardite

100. Chiviatite

• . . • .

No.	Name.	Formula. System crystalliz	
101. Dufr	enoysite	Pb S + ½As ² S ³	1
102. Pyr a	ırg yr itə	$\mathbb{A}_{\mathbf{g}} \mathbf{S} + \frac{1}{3} \mathbf{S} \mathbf{b}^{\mathbf{g}} \mathbf{S}^{\mathbf{g}}$	6
103. Pro t	ıstite *	Ag S + 1 AB S	6
104. Frei	eslebenite *	(Ag, Pb) S + §Sb ² S ³	4
105. Bou	rnonite	(Eu, Pb) S + \frac{1}{3}Sb2 S3	8
106. Ken	ngottite	Ag, Pb, S, Sb	4
107. Boul	langerite	Pb S + \frac{1}{3}Sb^2 S^3	
108. Aiki	nite	(Eu, Pb) S + \frac{1}{3}Bi^2 S^3	8
109. W öl	chite	Pb, Cu, As, Sb, S	3
110. Clay	ite?	(Eu, Pb) (S, As, Sb)	1
111. Kob	ellite?	(Fe, Pb) S + $\frac{2}{5}$ (Sb, Bi) S	1 ?
112. Men	eghinite	Pb S + \(\frac{1}{4}\)Sb S ³	
113. Tetr	ahedrite *	(Eu, Fe, Zn, Ag) $S + \frac{1}{4}(Sb, As)^2 S^3$	1
114. Tenr	antite *	(€u, Fe) S + ¼As ² S ³	1
115. Geo	pronite *	Pb S + \frac{1}{6}(Sb, As) \frac{9}{5}	3
116. Poly	basite	$(Ag, \mathfrak{Su}) S + \frac{1}{9} (Sb, As)^2 S^5$	6
117. Step	hanite	$\mathbf{Ag}\mathbf{S} + \mathbf{\frac{1}{6}}\mathbf{Sb^2}\mathbf{S^3}$	3
118. Enar	gite *	(\in u, Fe, Zn) S + $\frac{1}{3}$ (As, Sb) 8 S ⁵ ?	3
119. Xant	chocone	$(3AgS+As^2S^5)+2(3AgS+As^2S^5)$	6
120. Fire	blende	Ag, 8, 8b	4
121. W itt	cichite	Cu, Bi, S	3

c. FLUORIDS, CHLORIDS, BROMIDS, IODIDS.

1. Calomel Division.

122. Calomel Hg²Cl 2

Formula.	System of crystallization.
Salt Division.	
K Cl	1
Na Cl	1
NH Cl	1
Ag Cl	1
3Ag Cl + 2Ag Br	1
Ag Br	1
Ag, I, Br	
Ca F	1
Ca F, YF, Ce F	
Ag I	6
Hg I	2 ?
€ e, Ŷ, HF	6
Ce ² F ³ + 3 €e Ĥ	1?
Pb Cl	3
H Cl	
Na F $+ \frac{1}{3}$ A1' F ³	2
Na F $+\frac{2}{3}$ Al ² F ³	2
A 1, F	3
KCl + MgCl + 12H	
CaCl + 2MgCl + 12	Ė
	Salt Division. K Cl Na Cl NH' Cl Ag Cl 3Ag Cl + 2Ag Br Ag Br Ag, I, Br Ca F Ca F, YF, Ce F Ag I Hg I Če, Ŷ, HF Ce² F³ + 3 Če Ĥ Pb Cl H Cl Na F + ½Al² F³ Na F + ½Al² F³ Al, F K Cl + Mg Cl + 12Ĥ

. . . • .

• .

No.

Name.

Formula.

System of crystallization.

D. OXYGEN COMPOUNDS.

I. BINARY COMPOUNDS.

1. Oxides of the Elements of the Hydrogen Group.

A. ANHYDROUS OXIDES.

1. Monometric.

143. Periclase	Йg	1
144. Red Copper *	€u	1
145. M artite *	₽e	1
146. Iserine	Fe (Fe, Ti)	1
147. Irite?	$(1r, 0s, fe) (Ir, 0s, Cr)^2 O^3$?	1
148. Spinel *	* Mg X 1	
149. Magnetite *	∱e F e	1
150. Magnoferrite	† Mg³ Fe⁴	1
151. Franklinite *	(Ťe, Źn)³ (Ŧe, ₩n)	1
152. Chromic Iron *	(Fe, Mg) (A l, Er)	1
153. Pitchblende	U ⊕ ?	1
154. Melaconite *	€u	11
155. Plumbic Ochre *	Рb	
2. Hexa	gonal.	
156. Water *	拍	6
157. Zincite *	Żn	6
158. Corundum *	∄ l	6
159. Hematite *	₽e	6
160. Ilmenite *	Ti, Fe,	6
161. Plattnerite	Pb	61
162. Tenorite	Č u	6 ?
	•	

^{*} $\dot{M}g$ may be replaced by $\dot{C}a$, $\dot{F}e$, $\dot{M}n$, or $\dot{Z}n$, alone or in combination. † Rammelsberg gives the formula $\dot{M}g^m$ $\dot{F}e^n$, and gives 3 and 4 as the probable values of m and n.

No.	Name.	Formula.	System of crystallization.
		3. Dimetric.	
163. Bra	unite *	Mn Mn	2
164. Ha v	ısmannite *	Мп М п	2
165. Cas	siterite *	Sn	2
166. Rut	ile *	Ti	2
167. Ana	atase *	Ti	2
		4. Trimetric.	
168. Cha	lcotrichite *	Č u	8
169. Ch r	ysoberyl *	B e+ ₹ 1*	8
170. Bro	okite *	Ti ·	3
171. Pyr	olusite *	Mn	· 8
172. Pol	ianite	<u>Mn ₩n</u>	8
	Appendi	x to Anhydrous Oxides.	
173. M ii		Pb²Pb	
174. Cre	dnerite	Ču³ ₩n²	4
175. He	teroclin?	™ n, Si	4
176. Pal	ladinite? *	Ра	
	5. Combinations of C	Oxides and Chlorides or Sulphur	ets.
177. ▼ o	ltzite	4ZnS+Zn	
178. M a	tlockite	Pb Cl + Pb	2
179. Me	ndipite	Pb Cl + 2Pb	3
180. Pe :	rcylite?	(Pb Cl + Pb)+(Cu Cl+	-Ču)+Aq 1
181. Ka	relinite?	$\mathbf{\bar{B}i + Bi S}$	
	В.	Hydrous Oxides.	
182. Dis	spore *	₹1拍	3
183. G ö	thite *	F e Ĥ	3

.

No. Name.	Formula. System crystallis	
184. Manganite	M n Á	3
185. Limonite *	F e² À ³	
186. Brucite *	МgĤ	6
187. Gibbsite *	₹ 1 ਜ் ³	6
Ap_{I}	pendix to Hydrous Oxides.	
188. Völknerite *	Mg* ₹1+16Ĥ	6
189. Hydrotalcite	$Mg^{\circ} \stackrel{\times}{\lambda} 1 + 12H$	
190. Psilomelane *	$(\dot{\mathbf{M}}\mathbf{n},\dot{\mathbf{B}}\mathbf{a})\dot{\mathbf{M}}\mathbf{n}^{\mathbf{s}}+\dot{\mathbf{H}}$	
191. Newkirkite	M n, F e, Ĥ	
192. Wad *	* £ Mn + Ĥ	
193. Atacamite	Cu Cl + 3Ču Ĥ	3
2. Oxides of I	Elements of the Arsenic Group.	
	1. Arsenic Division.	
194. Arsenolite *	Χs	1
195. Senarmontite	Sb	1
196. Valentinite	₿b	3
197. Bismuth Ochre*	Bi	
198. Kermesite	2Sb 5⁵ + 55b	4
199. Retzbanyite	(3Bi S + 2Cu S, Pb S) + 2Pb 🕏	
200. Cervantite	5b + \$b	
201. Volgerite	\$b + 5Ĥ	
202. Ammiolite	Ĥg, Ŝb, F e, Ĥ	
	2. Sulphur Division.	
203. Sulphurous Acid *	S	
204. Telluric Ochre	Te?	
	* Ř = K, Ba, Čo, Mn.	

No. Name.	Formula.	System of crystallization.
205. Sulphuric Acid *	SÁ	
206. Wolframine *	₩	1
207. Molybdine *	Мо	3
3. Oxygen Compounds of	Carbon, Boron as	nd Silicon.
208. Carbonic Acid *	Ō	
209. Sassolin	语 拍 3	5
210. Quartz *	Si	6
210°. Jasper *	5	
210b. Agate *	• •	
210°. Chalcedony *	er en l	•
211. Opal *	Si	*
211. Precious opal	r	
211 ^b . Semi-opal *		
211°. Hyalite *.		
211d. Geyserite		
II. OXYGEN DOUBLI	E BINARY COMPOU	JND S.
1. Si	licates.	
A. Anhyd	ROUS SILICATES.	
1. Edelfe	orsite Section.	•
212. Edelforsite	Ča Ši	
2. Aug	gite Section.	
213. Wollastonite *	Ča³ Ši²	4
214. Pyroxene	Ř³ Ši²	4
214. Diopside *	$(\mathring{\mathrm{C}}\mathrm{a},\mathring{\mathrm{M}}\mathrm{g})^3 \overline{\mathrm{S}}\mathrm{i}^8$	
214b. Hedenbergite *	(Ča, Fe) ³ Ši ²	
214°. Augite *	$(\mathring{\mathrm{C}}\mathrm{a},\mathring{\mathrm{M}}\mathrm{g},\mathring{\mathrm{F}}\mathrm{e})^{8} \widetilde{\mathrm{S}}\mathrm{i}^{2}$	

X1 Si³ + 2拍

215. Pelicanite

.

No. Name.		Formula.	System of crystallization.
216. Spodumene *		(Li, Na) ³ Si ² + 4 X 1 Si ²	4
217. Prehnitoid		$(\dot{N}a,\dot{C}a)^3\ddot{S}i^2+2\ddot{\ddot{A}}l\ddot{S}i^2$	
218. Amphibole		R 4 Si*	4
218a. Tremoli	te *	(Ca + 3Mg) Si ^a	
218b. Actinoli	te *	$(\mathring{\text{C}}\text{a} + 3(\mathring{\text{M}}\text{g},\mathring{\text{F}}\text{e})) \overline{\text{S}}\text{i}^{*}$	
218°. Hornble	nde *	$(\dot{\mathbf{f}}\mathbf{e} + 3\dot{\mathbf{M}}\mathbf{g})\mathbf{\bar{S}}\mathbf{i}^{\mathbf{s}}$	
219. Acmite		Na Si + Fe Si²	4
220. Strakonitzite?		Ča, Mg, Fe, X l, Si, H	4
221. Enstatite		$\dot{M}g^3 \ddot{S}i^2$	3
222. Anthophyllite	•	$(fe + 3Mg) Si^3$	3
223. Hypersthene *		$(\dot{\mathbf{f}}\mathbf{e},\dot{\mathbf{M}}\mathbf{n})^3\ddot{\mathbf{S}}\mathbf{i}^2$	3
224. Wichtyne		(Na, Ca, Mg, Fe)3 Si + X1	Ši ²
225. Babingtonite *		(Ča, Fe) ⁵ Si ⁵	5
226. Rhodonite *		$ m \dot{M}n^3 \ddot{S}i^2$	5
227. Beryl *	•	$(\frac{1}{2}\overline{B}e + \frac{1}{2}\overline{A}l)\overline{S}i^2$	6
228. Eudialyte		$2(\mathring{\text{Ca}},\mathring{\text{Na}},\mathring{\text{Fe}})^3\ddot{\text{Si}}^2+Zr\ddot{\text{Si}}$	6
	3. Eulytin	e Section.	
229. Eulytine	•	Bi ² Si ³	1
230. Leucophane		$\hat{C}a^{\gamma}\hat{S}i^{2}+\hat{B}e\hat{S}i+NaF$	3
231. Melinophane		* R' Si2 + H Si + Na F	6 ?
	4. Garnet	Section.	
232. Peridot		Ř³ Ši	3
232°. Forsteri	te*	Mg³ Si	
232b. Chrysoli	te *	(Mg, Fe)³ Ši	
232°. Fayalite	*	∱e³ Ši	
	* Ř = Ča. Ňa.	$\mathbf{R} = \mathbf{R}1$. Be	

No. Name.	Formula. System	
233. Tephroite *	Mn³ Ši	21
234. Knebelite	(Ŷe, Mn)³Ŝi	
235. Chondrodite*	* Mg⁴ Ši	3
336. Willemite *	Źn³ Ši	6
237. Phenacite *	B e Si	6
238. Garnet	1 8° \$i + 2 8 \$i	1
238*. Pyrope *	(Ča, Mg)* Ši + (Xl, Fe) Ši	
238 ^b . Grossular *	$\hat{\mathbf{C}}\mathbf{a}^{\mathfrak{g}}\mathbf{S}\mathbf{i} + \mathbf{X}1\mathbf{S}\mathbf{i}$	
238°. Almandine *	$\mathbf{\hat{F}}\mathbf{e}^{\mathbf{\hat{g}}}\mathbf{\hat{g}}\mathbf{i}+\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{i}$	
238 ⁴ . Spessartine *	$\dot{\mathbf{M}}\mathbf{n^3}$ $\ddot{\mathbf{S}}\mathbf{i} + \ddot{\mathbf{X}}\mathbf{l}$ $\ddot{\mathbf{S}}\mathbf{i}$	
238°. Melanite *	Ča³ Ši + Fe Ši	
238 ^r . Ouvarovite	Ča³ Ši + (ër X l) Ši	
239. Helvin	$(\dot{M}n, \dot{F}e)^3 \ddot{S}i^3 + \ddot{B}e \ddot{S}i + Mn S$	1
240. Zircon *	Zr Ši	2
241. Auerbachite	Zrł Sił .	2
242. Alvite?	\mathbf{Th} ?, $\mathbf{\hat{Y}}$, \mathbf{Zr} , \mathbf{Fe} , $\mathbf{\hat{X}}$ l, $\mathbf{\hat{B}e}$, $\mathbf{\hat{S}i}$, $\mathbf{\hat{H}}$	2
243. Tachyaphaltite	Th?, X1, Fe, Zr, Si, H	2
244. Idoorase*	$(\mathring{C}a, \mathring{M}g, \mathring{F}e)^3 \mathring{S}i + \frac{\chi}{4} \mathring{S}i$	2
245. Sarcolite	$(\mathring{\mathbf{C}}\mathbf{a},\mathring{\mathbf{N}}\mathbf{a})^3 \ddot{\mathbf{S}}\mathbf{i} + \frac{\mathbf{x}}{\mathbf{x}}\mathbf{l}\ddot{\mathbf{S}}\mathbf{i}$	2
246. Meionite	$\mathring{\mathbf{C}}\mathbf{a}^{3} \ddot{\mathbf{S}}\mathbf{i} + 2 \frac{\mathbf{X}}{1} \ddot{\mathbf{S}}\mathbf{i}$	2
247. Scapolite *	$\hat{C}a^3\bar{S}i^2+2\bar{\Xi}l\bar{S}i$	2
248. Mellilite	$2(\dot{C}a,\dot{N}a,\dot{M}g)^3\ddot{S}i+(\ddot{A}l,Fe)\ddot{S}i$	2
249. Dipyre	4(Ča, Na) Ši + 3 X 1 Ši	2

^{*} Part of the oxygen is replaced by fluorine in varying proportions.

				•
				i
				İ
•		•		
			•	
				i

• -.

No. Name.	Formula.	System of crystallization.
250. Epidote	⋭³ 5i + 2 ∄ 5i	5
250°. Pistacite *	$(Ca, Fe)^3 Si + 2 \frac{\pi}{8} i Si$	
250b. Zoisite *	$\hat{C}a^3\bar{S}i+2\bar{A}1\bar{S}i$	
250°. Piedmontite	$\hat{C}a^3 \hat{S}i + 2(\hat{X}l, \hat{M}n) \hat{S}i$	
251. Allanite *	* R ³ Si + R Si	4
252. Partschin	$(\dot{\mathbf{f}}\mathbf{e},\dot{\mathbf{M}}\mathbf{n})^3 \bar{\mathbf{S}}\mathbf{i} + \bar{\mathbf{A}}\mathbf{l} \bar{\mathbf{S}}\mathbf{i}$	4
253. Zoisite Brooks	$\hat{C}a^3 \hat{S}i + 2\frac{\pi}{4} \hat{I} \hat{S}i$	4
254. Gadolinite	† (Ř³, £) Šiž	4
255. Danburite †	$\hat{C}a^3\bar{S}i+3\bar{B}\bar{S}i$	5
256. Axinite *	‡ (R³, #, B) Si	5
257. Iolite *	$(\dot{M}_{\rm g},\dot{F}_{\rm e})^3\ddot{\mathbb{S}}i^2+3\ddot{\mathbb{X}}l\ddot{\mathbb{S}}i$	3
. 5. 1	Mica Section.	
258. Muscovite*	§ (┦₃⋢³+┤ŧĦ)Ši {	3
259. Phlogopite *	$3(\dot{\mathbf{K}},\dot{\mathbf{M}}_{\mathbf{g}})^3\ddot{\mathbf{S}}\mathbf{i} + 2\frac{\mathbf{K}}{\mathbf{K}}1\ddot{\mathbf{S}}\mathbf{i}$. 8
260. Biotite *	$(K,Mg)^{3}$ $Si + (Xl,Fe)$	ši 3 ?
261. Astrophyllite	K, Na, Ca, Fe, Mn, Ti, X	l, Z r, Fe, Si
262. Lepidomelane	$(K, F_e)^3 Si + 3(X_l, F_e)$	Si 3 ?
263. Lepidolite *	(K, Li) Si + (Xl, Fe) Si	3
6. Fe	ldspar Section.	
264. Sodalite *	\dot{N} a ³ \ddot{S} i $+$ 3 $\ddot{\Xi}$ l \ddot{S} i $+$ Na Cl	1
265. Lapis Lazuli	Na, Ca, Xl, Fe, Si, S	1
266. Häuyne	\hat{N} a³ \hat{S} i $+3\hat{A}$ l \hat{S} i $+2\hat{C}$ a \hat{S}	1
267. Nosean	$\dot{N}a^3 \ddot{S}i + 3 \ddot{A}l \ddot{S}i + \dot{N}a \ddot{S}$	1
268. Skolopsite	$\parallel \hat{\mathbf{R}}^{3} \tilde{\mathbf{S}} \hat{\mathbf{i}}^{3} + \frac{1}{4} \hat{\mathbf{S}} \hat{\mathbf{i}} + \frac{1}{8} \hat{\mathbf{N}} \hat{\mathbf{a}} \tilde{\mathbf{S}}$	
* R = Ca. Ce. La. Di. Fe. Mg. R: ‡ R = Ca. R = Al. Fe. Mn. R = Na. Ka. Ca. Mg. Mn.	= £1 Fe † R = Ca. Ce. Fe. § R = £1. Fe.	Ŷ. H =Be.

K ² Si ² + 3 K 1 Si ² (Na, K) ² Si + 2 K 1 Si	1
$(\dot{N}a,\dot{K})^2\ddot{S}i + 2\ddot{A}l\ddot{S}i$	
	6
$\dot{N}a^2\ddot{S}i + 2\ddot{\ddot{A}}l\ddot{S}i + (\dot{N}a, \dot{C}a)$	Č+Ĥ6
$(\dot{N}a, \dot{K}, \dot{C}a, \dot{M}g)$ * $\ddot{S}i + 3 \frac{\pi}{4}l$ \ddot{S}	i 5
$(\mathring{C}a, \mathring{N}a)^3 \mathring{S}i^2 + 3 \frac{1}{2} \mathring{I} \mathring{S}i^2$	5
$Ca^3 \overline{S}i^2 + 3\overline{A}1 \overline{S}i$	5?
$Ca^3 Si^2 + 3\frac{\pi}{2} 1 Si$	
$(\mathring{C}a,\mathring{N}a)$ $\mathring{S}i + \frac{1}{2}l$ $\mathring{S}i$	5
$(\mathring{C}a,\mathring{N}a) \mathring{S}i + \frac{1}{2} \mathring{S}i^2$	5
\dot{N} a $\ddot{S}i + \ddot{A}l \ddot{S}i^{3}$	5
Ķ Ši + X l Ši³	4
(Li, Na) 3 Si4 + 4 \(\) Si4	5 ?
lix.	
$(\mathring{\operatorname{Ca}},\mathring{\operatorname{N}}{\operatorname{a}})^3 \mathring{\operatorname{Si}} + 2(\maltese{\operatorname{l}}, \maltese{\operatorname{e}}) \mathring{\operatorname{Si}}$	5
Ňa, K, Li, X 1, Si	4
Ř, Ňa, X l, Fe, Ši	
$\mathring{\mathbf{C}}\mathbf{a}\ \ddot{\mathbb{S}}\mathbf{i}+(\ddot{\mathbf{A}}\mathbf{l},\mathbf{F}\mathbf{e})\ \ddot{\mathbb{S}}\mathbf{i}$	
Ý, Ši	
$\mathbf{\dot{M}}_{\mathbf{g}}$, $\mathbf{\ddot{X}}$ l, $\mathbf{\ddot{F}}$ e, $\mathbf{\ddot{S}}$ i, $\mathbf{\dot{H}}$	6?
e Section.	
$3(\dot{M}_g, \dot{C}_a)^3 \ddot{S}i + (Fe, £1)^3 \ddot{S}i$	2
* X l Si ²	3
* X 1 Si ²	3
† (X 1, F e) Si 3	3
	(Li, Na) ³ Si ⁴ + 4\(\)1 Si ⁴ lix. (Ca, Na) ³ Si + 2(\(\)1, \(\)Fe) Si Na, K, Li, \(\)1, Si K, Na, \(\)1, Fe, Si Ca Si + (\(\)1, Fe) Si Y, Si Mg, \(\)1, Fe, Si, \(\)1 e Section. 3(Mg, Ca) ³ Si + (\(\)7, \(\)1) ³ Si *\(\)1,

^{*} And $\frac{1}{4}$ l $\frac{1}{4}$ i. In Topaz part of the oxygen is replaced by fluorine. † And $\frac{1}{4}$ l $\frac{1}{4}$ i. Rammelsberg writes the formula $(R, \frac{11}{4})$ + $\frac{1}{4}$ in.

• • • . .

* And \lambda l \lambda i\frac{3}{4}.

No.	Name.	Formula. System crystalli	
292.	Lievrite *	3(fe, Ca)* Si + Fe* Si	8
293.	Kyanite *	X 1 S 13	5
294.	Sillimanite *	* X 1 Si3	3
295.	Sapphirine	Mg, Fe, ₹1, 51	3 ?
296.	Euclase	(½Be+½X1) Si‡	4
297.	Sphene *	(Ċa, Ti) Si ²	4
29 8.	Keilhauite	(Ý, (Ča, Ti), Xl, Fe, Mn, €r) Si3	4
2 99.	Tourmaline *	† (R³, H, B) Si¾	6
		B. Hydrous Silicates.	
		I. Magnesian Hydrous Silicates.	
		1. Talc Section.	
3 00.	Talo *	$ m \dot{M}g^6 ar{S}i^5 + 2\dot{H}$	8 ?
3 01.	Meerschaum	$ m \dot{M}_{ m g} m \ddot{S}i + \dot{H} m ?$	
3 02.	Neolite	$(\mathbf{\dot{f}e},\mathbf{\dot{M}g})\ \mathbf{\ddot{S}i}+rac{1}{2}\mathbf{\dot{H}}\ \mathbf{\dot{f}}$	
3 03.	Spadaite	$\mathbf{\dot{M}g^5}\mathbf{\ddot{5}i^4}\mathbf{+4\dot{H}}$	
304.	Chlorophæite	∳e Si + 6 拍 ?	
305.	Crocidolite	(Na, Mg, Fe) ⁶ Si ⁵ + 2H	4?
		2. Serpentine Section.	
306.	Picrophyll	$(\dot{ ext{Mg}}, \dot{ ext{Fe}})^3 \ddot{ ext{Si}}^2 + 2\dot{ ext{H}}$	6?
307.	Kerolite *	$\mathbf{\hat{M}}\mathbf{g^3}\mathbf{\bar{S}}\mathbf{i^2} + 4\mathbf{\hat{g}}\mathbf{\hat{H}}$	
3 08.	Monradite	(Mg, Fe) ³ Si ² + ²	
309.	Aphrodite	$\mathbf{\hat{M}}\mathbf{g^3}\mathbf{\bar{S}}\mathbf{i^2} + 2\mathbf{\bar{I}}\mathbf{\hat{H}}$	
310.	Picrosmine	$\mathbf{\hat{M}}\mathbf{g^3}\mathbf{\tilde{S}}\mathbf{i^2}+1\mathbf{\hat{I}}\mathbf{\hat{H}}$	8
311.	Saponite *	$2\dot{M}g^{5}\ddot{S}i^{2}+\ddot{\Xi}l\ddot{S}i+10\dot{H}$	

 $\dagger \hat{R} = \hat{F}e. \hat{M}g. \hat{O}a. \hat{N}a. \hat{R} = \hat{X}l. \hat{F}e.$

No.	Name.		ystem of stallization.
312. S	erpentine *	Mg° Si⁴+6A	3 ?
313. D	eweylite *	$\mathbf{\hat{M}}\mathbf{g}^{2}\mathbf{\ddot{S}}\mathbf{i}+3\mathbf{\dot{H}}$	
31 4. H	ydrophite *	(Mg, Fe) ² Si + 3H?	
315. N	ickel Gymnite*	$(\dot{N}i,\dot{M}g)^{g}\overline{S}i+3\dot{\Pi}$	
		Appendix.	
316. O	ttrelite *	$(fe, Mn)^3 \ddot{S}i^2 + 2 \ddot{A}l \ddot{S}i + 3 \dot{H}$	41
317. G	roppite	$(\dot{K}, \dot{C}a, \dot{M}g)^3 \ddot{S}i^2 + 2 \ddot{\ddot{A}}l \ddot{S}i + 3$	Ĥ
318. S f	tilpnomelane	$\mathbf{\hat{F}}e^{3}\mathbf{\bar{S}}i^{2}+\mathbf{\bar{A}}1\mathbf{\bar{S}}i^{2}+7\mathbf{\dot{H}}$	
319. C	halcodite †	$2(\dot{\mathbf{f}}\mathbf{e},\dot{\mathbf{M}}\mathbf{g}) \ddot{\mathbf{S}}\mathbf{i} + (\ddot{\mathbf{x}}\mathbf{l},\mathbf{F}\mathbf{e}) \ddot{\mathbf{S}}\mathbf{i} +$	3 À
320. E	ukamptite	$(\dot{M}_{\rm g},\dot{F}_{\rm e})^3\ddot{S}{ m i}+\ddot{A}{ m l}\ddot{S}{ m i}+\dot{H}$	•
321. M	(elanhydrite	$(\dot{\mathbf{M}}_{\mathbf{g}}, \dot{\mathbf{f}}_{\mathbf{e}}, \dot{\mathbf{M}}_{\mathbf{n}})^{3} \ddot{\mathbf{S}} \mathbf{i}^{2} + 2(\ddot{\mathbf{A}}\mathbf{l}, \ddot{\mathbf{F}}_{\mathbf{e}}) \ddot{\mathbf{S}}$	1+12Ĥ
	3. C	hlorite Section.	
3 2 2. H	isingerite	$\dot{\mathbf{F}}\mathbf{e}^3 \mathbf{S}\mathbf{i} + 2 \mathbf{F}\mathbf{e} \mathbf{S}\mathbf{i} + 6 \mathbf{H}$	
323. T	huringite *	$2\mathbf{\dot{f}}e^{3}\mathbf{\ddot{S}}\mathbf{i}+(\frac{\mathbf{\ddot{A}}}{\mathbf{l}}\mathbf{,F}e)^{3}\mathbf{\ddot{S}}\mathbf{i}+6\mathbf{\dot{H}}$	
32 4. E	uphyllite †	$(\dot{N}a, \dot{K}, \dot{C}a)^3\ddot{S}i + 8\ddot{A}l\ddot{S}i + 6$	Ė
325. P	yrosclerite *	$2\dot{M}g^3\bar{S}i + \bar{A}l\bar{S}i + 6\dot{H}$	6 ?
326. P	seudophite?	$4(\dot{M}g, \dot{F}e)^3 \ddot{S}i + \ddot{A}l^2 \ddot{S}i + 9\dot{\Pi}$	
327. T	hermophyllite?	$\dot{M}g^{3}\ddot{S}i_{3}^{2}+(\ddot{A}l,\ddot{F}e)\ddot{S}i_{3}^{2}+2\dot{\Pi}$	
328. C	hlorite	5 R ³ Si ² / ₄ + 3 H Si ² / ₄ + 12 H	6
	328. Chlorite *	$5(\dot{M}g, \dot{F}e)^3 \ddot{S}i^{\frac{3}{4}} + 3 \ddot{\Xi}l \ddot{S}i^{\frac{3}{4}} + 1$	2 <u>Ĥ</u>
	328b. Pennine	$5(\dot{ ext{Mg}}, \dot{ ext{Fe}})^3 \ddot{ ext{S}} \dot{ ext{$\frac{3}{4}$}} + 3(\ddot{ ext{$\frac{3}{4}$}}, \ddot{ ext{Fe}}) \ddot{ ext{S}}$	$1\frac{3}{4} + 12\hat{H}$
	328°. Clinochlore *	$5 \text{Mg} \text{Si}_{\frac{3}{4}} + 3 \frac{3}{4} \text{1} \text{Si}_{\frac{3}{4}} + 12 \hat{\text{H}}$	
329. D	elessite	$(\dot{\mathbf{M}}_{\mathbf{g}}, \dot{\mathbf{f}}_{\mathbf{e}})^{\mathbf{g}} \ddot{\mathbf{g}}_{\mathbf{i}} + (\ddot{\mathbf{g}}_{\mathbf{i}}, \ddot{\mathbf{f}}_{\mathbf{e}}) \ddot{\mathbf{g}}_{\mathbf{i}} - \ddot{\mathbf{g}}_{\mathbf{e}}$	⊢3Ĥ 6?
3 30. R	ipidolite G. Rosc	$(\dot{M}_{\rm g}, \dot{F}_{\rm e})^3 \ddot{\mathbb{S}}_{1\frac{3}{2}} + \frac{1}{2} \ddot{\mathbb{S}}_{1\frac{3}{2}} + 3 \dot{\Pi}$	6
331. C	lintonite *	Ca, Mg, Fe, X l, Si, Ĥ	
332. C	hloritoid *	$(fe, Mg)^3 Si_3^2 + 2 \frac{\pi}{4} 1 Si_3^2 + 3$	Ĥ

· . • • . • • . • • .

.

• •

No.	Name.	Formula. System crystalliz	
333.	Cronstedtite	(Mg, Fe, Mn) 5 5 1 + Fe 5 1 1 + 3 A	6
334.	Sideroschisolite	$\mathbf{\hat{F}e^3}\mathbf{\bar{S}i}_{2}^{1}+\mathbf{\hat{j}}\mathbf{\hat{H}}$	6
335.	Margarite *	$(\dot{N}a,\dot{C}a)^3\ddot{S}i + 3\ddot{A}l^3\ddot{S}i + 3\dot{\Pi}$	3
336.	Ephesite	Ňa, K, Ča, X l, Ši, Ĥ	
	II. No	n-Magnesian Hydrous Silicates.	
		1. Pyrophyllite Section.	
337.	Pyrophyllite *		8
338.	Pholerite *	¥19 Ši•+6庄	
3 39.	Anthosiderite	F e Si³ + Ĥ	
	•	2. Pectolite Section.	
34 0.	Apophyllite *	$(\dot{\mathbf{C}}\mathbf{a},\dot{\mathbf{K}})^3\ddot{\mathbf{S}}\mathbf{i}^g + 2\dot{\mathbf{H}}$	2
341.	Pectolite *	(Ča, Ňa) ⁴ Ši ³ + 茁	4
342.	Okenite ·	$\dot{\text{C}}\text{a}^3 \dot{\text{S}}\text{i}^4 + 6\dot{\Pi}$	3 ?
343.	Laumontite *	$\dot{C}a^3 \ddot{S}i^2 + 3 \ddot{A} 1 \ddot{S}i^2 + 12 \dot{H}$	4
344.	Leonhardite *	$\dot{C}a^3\ddot{S}i^2+3$ $\ddot{\Xi}i\ddot{S}i^2+9\dot{\Pi}$	4
345.	Catapleiite	$(\dot{N}a,\dot{C}a)^3\ddot{S}i^2+2Zr\ddot{S}i^2+6\dot{\Pi}$	6
346.	Dioptase	Ċu³Si³+3Ĥ	6
347.	Chrysocolla *	Ċu³Si²+6Ĥ	
348.	Demidoffite	Ču, Si, Ĥ	
349.	Pyrosmalite .	* $4(\hat{R}^3 \hat{S}^i + 2\hat{R}^3 \hat{S}^i + 6\hat{H}) + 3F_0 Cl$	6
3 50.	Portite	X 1 Si² + 2Ĥ	3
		3. Calamine Section.	
351.	Tritomite	† # Si + 2 i ?	1
352.	Thorite	Th³ Si + 3Ĥ	2
353.	Cerite	(Če, La, Di) ' Si + 宜	6
	* R=Fe, Mn.	• † #= Ce. La.	

No.	Name.	Formula. System crystalliz	
35 4.	Calamine *	Z_{n^3} Si $+1$	3
355.	Prehnite *	$\dot{C}a^2\ddot{S}i + \frac{1}{2}\dot{I}\ddot{S}i + \dot{H}$	3
356.	Chlorastrolite †	$(\dot{C}a,\dot{N}a)^3\ddot{S}i + 2(\ddot{A}l, Fe)\ddot{S}i + 3\dot{H}$	
357.	Savite	$(\dot{N}a,\dot{M}g)^3\ddot{S}i^2+\frac{1}{4}\dot{l}\ddot{S}i+2\dot{H}$	3
358.	Schneiderite	$3(\dot{C}a,\dot{M}g)^3\ddot{S}i^8 + \ddot{\Xi}l^3\ddot{S}i^2 + 3\dot{H}$	
359.	Carpholite	(光1, Fe, H n) Si + 1½ 宜	3
		4. Zeolite Section.	
360.	Analcime *	$\dot{N}a^3\ddot{S}i^2+3\ddot{A}1\ddot{S}i^2+6\dot{H}$	1
361.	Ittnerite	$(\dot{N}a,\dot{C}a)^3\ddot{S}i + 3\frac{1}{8}\dot{I}\ddot{S}i + 6\dot{H}$	1
362.	Faujasite	$(\dot{N}a,\dot{C}a)\ddot{S}i + \ddot{A}l\ddot{S}i^2 + 9\dot{H}$	1
363.	Chabazite *	. $(\dot{C}a, \dot{N}a, \dot{K})^3 \ddot{S}i^2 + 3 \ddot{A} \ddot{1} \ddot{S}i^3 + 18 \dot{H}$	6
64.	G melinite	$(Ca, Na, K)^3 Si^2 + 3 £1 Si^2 + 1811$	6
365.	Le vy ne	$\hat{C}a\vec{S}i + \vec{A}l\vec{S}i + 4\hat{H}$	6
36 6 .	Gismondine	$(\mathring{\text{Ca}}, \mathring{\text{K}})^2 \ddot{\text{Si}} + 2 \ddot{\text{K}} \ddot{\text{Si}} + 9 \dot{\text{H}}$	2
367.	Edingtonite	$3\dot{\mathbf{B}}\mathbf{a}\mathbf{\bar{S}}\mathbf{i} + 4\mathbf{\bar{K}}\mathbf{l}\mathbf{\bar{S}}\mathbf{i} + 12\dot{\mathbf{\Pi}}$	2
368.	Harmotome	$\hat{B}a\vec{S}i + \hat{A}l\vec{S}i^2 + 5\hat{\Pi}$	3
369.	Phillipsite	$(\dot{C}a,\dot{K})$ $\ddot{S}i + \ddot{A}l \ddot{S}i^2 + 5\dot{\Pi}$	3
370.	Thomsonite *	$(\mathring{\text{C}}\text{a},\mathring{\text{N}}\text{a})^3\ddot{\text{S}}\text{i} + 3\ddot{\mathbb{H}}\ddot{\text{S}}\text{i} + 7\dot{\mathbb{H}}$	3
371.	Natrolite *	$\mathbf{Na}\mathbf{\bar{S}i} + \mathbf{\bar{Z}1\bar{S}i} + 2\mathbf{\dot{H}}$	3
372.	Scolecite	$\hat{C}a\ \hat{S}i + \hat{A}l\ \hat{S}i + 3\hat{H}$	4
373.	Ellagite	$\ddot{\text{C}}$ a³ $\ddot{\text{S}}$ i $^4+\ddot{\text{A}}$ f $\ddot{\text{S}}$ i $+12\dot{\text{H}}$	4?
37 4.	Sloanite	$(\mathring{C}a,\mathring{M}g)^3 \ddot{S}i^2 + 5 \ddot{\Xi}l \ddot{S}i + 9 \dot{\Pi}$	3
375.	Epistilbite	(Ca, Na) $\ddot{S}i + \ddot{A}l \ddot{S}i^3 + 5\dot{H}$	3
376.	Heulandite *	Ča Ši + 表1 Ši ³ + 5宜	4
377.	Brewsterite	$(\mathring{\mathbf{S}}\mathbf{r},\mathring{\mathbf{B}}\mathbf{a}) \ddot{\mathbf{S}}\mathbf{i} + \ddot{\mathbf{X}}\mathbf{l} \ddot{\mathbf{S}}\mathbf{i}^{\mathbf{s}} + 5\dot{\mathbf{H}}$	4
378.	Stilbite *	\dot{C} a \ddot{S} i $+ \frac{\pi}{4}$ l \ddot{S} i 3 $+ 6\dot{H}$	3
379.	Caporcianite	$\dot{C}a^3\ddot{S}i^2+3\ddot{A}l\ddot{S}i^2+9\dot{\Pi}$	4

. • . • • -

Fo.	Name.	Vorm nle	ystem of stallization
	5	Datholite Section.	
80. Dat	tholite *	$2\mathring{\mathrm{C}}\mathrm{a}^{3}\mathrm{\ddot{S}}\mathrm{i}+\mathrm{\ddot{B}}^{3}\mathrm{\ddot{S}}\mathrm{i}^{2}+3\dot{\mathrm{H}}$	4
81. A 11	ophane *	X 1³ Si² + 15 H	
82. S ch	rötterite *	Ä 1⁴ Ši + 3 Ĥ	
	Appendi	x to Hydrous Silicates.	
83. Chi	oropal	∓ e Si²+3Ĥ	
84. Col	l yr ite	基 1 ⁸ Ši + 15 拍	
85. W	olchonskoite	* # Si + 21 H ?	
86. Chi	come Ochre	(Ä l, Ēr)³ Ši⁴+4Ĥ	
87. P in	nelite	$(\dot{N}i,\dot{M}g)^3\ddot{S}i + 2(\ddot{A}l,Fe)\ddot{S}i +$	- 9Ĥ
888. M o	ntmorillonite	Ĉa, Ř, X l, F e, Si, Ĥ	
89. De l	anovite?	$\dot{\mathbf{M}}\mathbf{n}^{\mathbf{T}}\ddot{\mathbf{S}}\mathbf{i}^{2}+2\ddot{\mathbf{H}}1\ddot{\mathbf{S}}\mathbf{i}^{2}+45\dot{\mathbf{H}}$	
990. E rá	lmanit e	\dot{C} a, \dot{F} e, \dot{M} n, \dot{Y} , \dot{C} e, \dot{L} a, \dot{X} l, \ddot{S} i,	Ĥ
91. Ba v	valite	Ča, Mg, Xl, Fe, Ši, Ĥ	
	C. Unarranged Si	LICATES CONTAINING TITANIC ACID.	
92. Ts o	heffkinite	$((\mathring{\mathbf{C}}\mathbf{a},\mathring{\mathbf{T}}\mathbf{i}),\mathring{\mathbf{C}}\mathbf{e},\check{\mathbf{L}}\mathbf{a},\check{\mathbf{A}}\mathbf{l})$ $\check{\mathbb{S}}\mathbf{i}\frac{2}{8}$	
93. S ch	norlomite †	$\dagger 2\hat{\mathbf{R}}^3 \tilde{\mathbf{S}} \mathbf{i} \frac{1}{2} + 3\hat{\mathbf{R}} \tilde{\mathbf{S}} \mathbf{i} \frac{1}{2}$	1
94. M o	sandrite	‡ Rº Si + 2R Si + 4½ H	3
95. W č	olherite	$6(\dot{N}a,\dot{C}a)^3\ddot{S}i + 3Zr\ddot{S}i + \ddot{C}b\ddot{S}i$	Ši 3
		Appendix.	
896. T ui	merite?	Ča, Mg, X l, Ši ?	4
	= €r. \(\frac{1}{4}\). \(\frac{1}{6}\)e. = \(\hat{C}\)a. \(\frac{1}{4}\) = (\hat{C}\)a. \(\frac{1}{4}\)). \(\frac{1}{6}\)e	† R = Ča. H = (Ča. Ti)	. F e.

Formula.

Name.

No.

System of crystallization.

2. Titanates, Tungstates, Columbates, Chro	Molybdates, Tantalate mates, Vanadates.	s,
397. Perofskite	Ča Ti	1
398. Pyrochlore *	4(\dot{C} a, \dot{M} g, \dot{C} e, \dot{L} a, \dot{Y} , \dot{U}) (\dot{T} i, \ddot{C} b)	1
399. Pyrrhite	Če, Zr, Čb	1
400. Scheelite *	Ċa₩ .	2
401. Scheeletine *	₽b₩	2
402. Tungstate of Copper? †	Ĉu, Ĉa,₩	
403. Wulfenite *	Pb Mo	2
404. Azorite	Ċa, Ĉb	2
405. Fergusonite	(Ý, Če) ⁶ Ĉb	2
406. Tyrite?	Ý, Če, Fe, Ú, X l, Ĉb	2
407. Adelpholite	Fe, Mn Ta	2
408. Tantalite	(Fe, Mn) Ta	3
409. Wolfram *	2 Fe $%$ $+3$ Mn $%$ and 4 Fe $%$ $+$ Mn $%$	3
410. Columbite *	(ḟe, M≀n) ëb	3
411. Paracolumbite? †	Fe, U, and a metallic acid.	
412. Samarskite *	Ý, Če, La, Fe, T , Čb	3
413. Mengite	Fe, Zr, Ti	3
414. Polymignyte *	Ý, Ti, Zr, Fe, Če,	3
415. Polycrase	Ú, Ti, Zr, Fe, Če, Čb	3
416. Æschynite	2(Ĉe, Ĺa, Ŷ, Ŷe) Ĉb $+$ Ĉe, Ti³	3
417. Euxenite	$\dot{\mathbf{C}}\mathbf{a},\dot{\mathbf{M}}\mathbf{g},\dot{\mathbf{Y}},\dot{\mathbf{C}}\mathbf{e},\dot{\mathbf{L}}\mathbf{a},\dot{\mathbf{U}},\dot{\mathbf{T}}\mathbf{i},\ddot{\mathbf{C}}\mathbf{b}$	3?
418. Yttro-Tantalite	* R' (Ta, W, U)	3
419. Parathorite †	Ѓе, Ті ?	3
420. Rutherfordite †	Če, Ý, Ča, Ti	4

* In the yellow $\hat{R}=\hat{Y}$. In the black $\hat{R}=\hat{Y},\hat{C}a,\hat{F}e$. In the brown $\hat{R}=\hat{Y},\hat{C}a$.

ı		
	•	·
,		

No. Nam	е.	Formula.	System of crystallization
421. Crocoisit	:e	Рь Ст	4
422. V auqueli	nite *	(Ču, Pb) ⁸ Čr ²	4
423. Melanoc	hroite	Pb³ Cr²	3?
424. Dechenit	e	2(Pb, Zn) ⁸ V + (Pb, Z	n)³ Äs
425. Descloizi	te	Pb²♡	3
426. Vanadini	te	Pb³ ♥ + 18Pb Cl	6
427. Volborth	ite	(Ċu, Ċa)⁴ Ѷ + Ĥ	6
428. Pateraite	?	Ċu, Ċo, Ÿ	
	3. Sulph	ates and Selenates.	
•	1. An	HYDROUS SULPHATES.	
		1. Trimetric.	
429. Glaserite	•	ŔŠ	3
430. Thenardi	te	Ňa Š	3
431. Barytes *	•	Ba S	3
432. Celestine	,*	Šr Š	3
433. Anhydrii	:e *	Ča Š	3
434. Anglesite	*	Pb 🕏	3
435. Almagre	rite	Źn S	3
436. Leadhilli	te *	Р Ь В + 3 Р Ь О	3
437. Caledoni	te *	Pb S, Pb Č, Ču Ö	3
	2.	Rhombohedral.	
438. Dreelite		Ca S + 3Ba S	6
439. Susannit	e	Рь § + 3Рь Ö	6
		3. Monoclinic.	
440. Glauberi	te	$(\frac{1}{2}\dot{N}a + \frac{1}{2}\dot{C}a)\ddot{S}$	4
441. Lanarkit	е	Pb \$ + Pb 0	4

No.	Name.		lystem of stallization.
	Appendix to 2	Anhydrous Sulphates.	_
442.	Reussin	Ν̈́a Š, Mg Š, Ca Cl	
44 3.	Selenate of Lead	Р ь Ѕе	1?
444.	Connellite	Ĉu 5, Cu Cl ?	6
445.	Alumian	₹ 1 5²	6?
	2. Hyde	OUS SULPHATES.	
44 6.	Misenite	K S+HS	
447.	Polyhalite	$(\dot{K},\dot{C}a,\dot{M}g)\ddot{S}+\frac{1}{2}\dot{H}$	3
44 8.	Gypsum *	Ca S + 2H	4
449.	Astrakanite	$\dot{N}a \ddot{S} + \dot{M}g \ddot{S} + 4\dot{\Pi}$	
45 0.	Löweite	$ \dot{N}a\ddot{S} + \dot{M}g\ddot{S} + 2\frac{1}{2}\dot{H} $	
4 51.	Mascagnine	ин• § + н	3
4 52.	Lecontite	$(\dot{N}a, \dot{N}H') \ddot{S} + 2\dot{H}$	3
4 53.	Coquimbite	∓ e 5³ + 9Ĥ	6
4 54.	Rœmerite	(Fe, $\dot{Z}n$) $\ddot{S} + Fe \ddot{S}^3 + 12H$	4
455.	Cyanosite *	Ċu S + 5Ĥ ·	
4 56.	Cyanochrome	(½於十½Cu) S+3拍	4
457.	Picromerid	(Mg, Cu) S+3H	4
4 58.	Alunogen *	X 1 S³ + 18Ĥ	
459.	Alum	$R \overline{S} + \overline{X} 1 \overline{S}^3 + 24 \dot{\Pi}$	1
	459a. Potash Alum *	ķ§+ " "	
	459°. Solfatarite	Na 5+ " "	
	459°. Tschermigite	ин. в + " "	
	459d. Pickeringite	Mg 5 + " "	
	459°. Halotrichite *	f e§ + " "	
	459°. Apjohnite *	Mn 5+ " "	

· • . · . •

			•		
				ı	
	·				
		•			
			·	·	
•					

No.	Name.	Formula.	System of crystallization.	
460.	Voltaite	f e S + f e S³ + 24 <u>Ĥ</u>	1	
4 61.	Epsomite *	$\dot{\mathbf{M}}_{\mathbf{S}}\ddot{\mathbf{S}} + 7\dot{\mathbf{H}}$	3	
462.	Tauriscite?	∲ e Š + 7拍	. 3	
4 63.	Mangan Vitriol?	М́п, З, Н		
464.	Goslarite	Źn S + 7Ĥ		
465.	Copperas *	ře 🖔 🕂 7 拍	4	
4 66.	Bieberite	$(\mathring{\text{Co}},\mathring{\text{M}}_{\text{g}}) \ddot{\mathbb{S}} + 7\dot{\mathbf{H}}$	4	
467.	Pyromeline *	Ńi, Ś, Ĥ	6?	
46 8.	Morenosite	Νi, S, Ĥ		
4 69.	Johannite	2(Ů 🕏) 🖔 + (Ču 🖔) + 4Ĥ	4	
470.	Basic Sulphate of Uranium	2(U U) ³ S ² + 'Ca, Cu) S-	⊢10拍	
471.	Glauber Salt*	$ m \mathring{N}$ а $ m \ddot{S}+10 \dot{H}$	4	
4 72.	Botryogen	$Fe^3 \overline{S}^2 + 3Fe \overline{S}^2 + 36H$	4	
4 73.	Copiapite	$\mathbf{F}e^2\mathbf{S}^5 + 18\mathbf{H}$		
474.	Apatelite	2 ∓ e² S³ + 3Ĥ		
475.	Alunite *	於 \$ + 3 ※ 1 \$ + 6 庄	6	
476.	Jarosite	Ř S + 4 F e S + 9Ĥ	6	
477.	Websterite	X 1 S + 9Ĥ		
478.	Loewigite	ا+3 X 1§+9Ĥ		
479.	Pissophane	(F e, X 1) ⁵ S³ + 30 H		
4 80.	Linarite	Pb S + Cu H	4	
4 81.	Brochantite *	Ĉu⁴ \$ + 3Ĥ	3	
482.	Lettsomite	$(\dot{C}u^6\ddot{S} + 3\dot{H}) + (\ddot{A}1\ddot{S} + \dot{S})$	9Ĥ)	
483.	Medjidite	₩S+CaS+15Ĥ		
484.	Uranochre	3#3 + 14 ft and 2#3 5 + C	a 🖁 + 28Ĥ	
485.	Uranochalcite	$\dot{\mathbf{U}} \mathbf{v} + 2\dot{\mathbf{c}}\mathbf{a} \mathbf{v} + \dot{\mathbf{c}}\mathbf{u} \mathbf{v} + 18$	B Í	

No.	Name.	Kormula.	stem of allization.
	4	. Borates.	
4 86.	Boracite	$2(\dot{\mathrm{M}}\mathrm{g}^{\mathrm{s}}\ddot{\mathrm{B}}^{\mathrm{s}})+\mathrm{M}\mathrm{g}\mathrm{Cl}$	1
487.	Rhodizite	Ĉa³ B̄⁴ ?	1
4 88.	Hydroboracite	$\dot{C}a^{3}\ddot{B}^{4} + \dot{M}g^{3}\ddot{B}^{4} + 18\dot{\Pi}$	
4 39.	Hayesine	Са В°+ 10Н	
4 90.	Boronatrocalcite	$\dot{N}a \ddot{B}^4 + \dot{C}a^3 \ddot{B}^5 + 12\dot{H}$	
4 91.	Borax *	\dot{N} a $\ddot{B}^z+10\dot{H}$	4
492.	Lagonite	₽ e В³+3 प	
4 93.	Larderellite	ŃН¹ В̂¹ + 4Ĥ	
4 9 4.	Warwickite †	$\dot{ extbf{M}} extbf{g}, \dot{ extbf{F}} extbf{e}, \dot{ extbf{T}} extbf{i}, \ddot{ extbf{B}}$	4
5.	Phosphates, Arsen	ates, Antimonates, Nitra	tes.
	a	. Anhydrous.	
]	1. Hexagonal.	
4 95.	Apatite *	$\dot{C}a^3\dot{P} + \frac{1}{3}Ca(Cl, F)$	6
1 96.	Hydroapatite	$\dot{C}a^3\dot{P} + \frac{1}{3}CaF + \dot{H}$	
1 97.	Cryptolite	Ĉe³ 🏞	6
1 98.	Pyromorphite *	P b³ P + ⅓Pb Cl	6
4 99.	Mimetene*	$(\dot{P}b, \dot{C}a)^3$ $(\ddot{A}s, \ddot{P}) + \frac{1}{3}Pb$ Cl	6
	,	2. Dimetric.	
500.	Xenotime *	(Ý, Ĉe)³ P	2
	3	3. Monoclinic.	
501.	Monazite *	(Če, La, Th) ³ P	4
502. °	Wagnerite	$\dot{M}g^{3}P + MgF$	4
503.	Kühnite	$(\mathring{\mathbf{C}}\mathbf{a},\mathring{\mathbf{M}}\mathbf{g},\mathring{\mathbf{M}}\mathbf{n})^3 \mathring{\mathbf{A}}\mathbf{s}$	
504.	Lazulite *	$2(\dot{M}g, \dot{F}e)^3 \dot{P} + \ddot{A}l^5 \dot{P}^3 + 5\dot{H}$	4
505.	Turquois *	五 12 2 十 5 由	
506.	Conarite?	Ņi, Р, н	41

. . .

. · .

No. Name.	Fernia	System of rystallization.
	4. Transtric.	
507. Triphyline *	(ře. Ýn. 15)1 P	3
508. Triplite	(Ýn. ře)' P	3
509. Pischerite	H÷÷Ä	3
	Appendix.	
⁵ 10. Hopeite	Źn. P. Aq	3
511. Amblygonite *	(2(Li, Na)) P+231P)+(All P	+ I 1) 3
512. Herderite	I 1. Ĉa . P. F	3
513. Carminite	Pb ās + Fe ās	3 ?
514. Romeine	Ča³, 5b, 5b	2
	b. Hydroys.	
515. Thrombolite	Ču³ P²+ €Ĥ ?	
516. Stercorite	$(\tilde{\mathbf{N}}_{\mathbf{a}}, \tilde{\mathbf{N}}_{\mathbf{B}'}) \tilde{\mathbf{P}} + 9\tilde{\mathbf{H}}$	
517. Struvite	$\hat{\mathbf{N}}\mathbf{H}^{t}\hat{\mathbf{\Sigma}}\mathbf{g}^{t}\hat{\mathbf{P}}+12\hat{\mathbf{H}}$	
518. Haidingerite	$Ca^2 \tilde{A}s + 4 \tilde{H}$	3
519. Pharmacolite	Ča ^r Ās + 6Ĥ	4
500. Vivianite *	feP+sH	4
\$21. Erythrine *	Cos As + SH	4
522. Hornesite	$\hat{\mathbf{x}}_{\mathbf{S}^{2}}\mathbf{\tilde{A}}s+\hat{\mathbf{x}}\hat{\mathbf{x}}$	4
523. Roesslerite	$\hat{\mathbf{M}}_{\mathbf{S}^{\mathbf{d}}}\mathbf{\bar{A}}\mathbf{s}+1\mathbf{\bar{M}}$	
524. Annabergite *	Υં 2 4 ₹ ₹ ₹ ₹ ₹	
525. Köttigite	(2n, Čo, Ši) ³ Ās ÷ \$Ĥ	4
526. Symplesite	3f e Ās! + 8Ĥ	4
527. Trichalcite	$\hat{C}u^{\dagger}\hat{A}s + 5\hat{H}$	
52%. Scorodite *	Fe $\bar{\Lambda}s + 4\tilde{n}$	3
123. Libethenite	Ču' P ÷ H	3

No.	Name.	Formula. Syste crystali	
530. C	Dlivenite	Ċu ⁴ (Äs, P) + Ĥ	3
531. C	Conichalcite	$(\mathring{\mathrm{C}}\mathrm{u},\mathring{\mathrm{C}}\mathrm{a})^4(\mathring{P},\mathring{\Lambda}\mathrm{s})+1\frac{1}{3}\mathring{\Pi}$	
532. I	luchroite	Cu · Ās + 7Ĥ	8
533. 4	Arseniosiderite	$\ddot{\mathbf{C}}\mathbf{a^6}\ddot{\mathbf{A}}\mathbf{s} + 4\mathbf{F}\mathbf{e^2}\ddot{\mathbf{A}}\mathbf{s} + 15\dot{\mathbf{H}}$	1
53 4. F	Pharmacosiderite	F e⁴ Ā s³ + 18Ĥ	1
535. T	Wavellite *	X 1° P²+12Ĥ	3
536. C	Cacoxene *	Pe 	
537. C	Childrenite *	((Åg, Fe, Ån) ⁸ , 素l) ⁶ P ⁸ +15拍	3
538. E	Brinite	Ĉu ^s Ās + 2拍	
539. C	Jornwallite	Ĉu⁵ Äs + 5Ĥ	
5 4 0. P	hosphochalcite * .	Ĉu⁵ P + 2 }Ĥ	3
5 4 1. T	'agilite	Ĉu⁴ P + 3Ĥ	
5 4 2. T	yrolite	$Cu^5 \tilde{\Lambda}s + 10 \hat{\Pi} + \hat{C}a \tilde{C}$?	3
543. D	elvauxene	Fe ² P + 24 H	
544. D	ufrenite *	Fe' P + 2½ Ĥ	3 ·
545. A	phanesite	Ĉu⁵ Ãs + 3Ĥ	4
546. C	halcophyllite	Ĉu⁵ Ãs + 12Ĥ	6
547. L	iroconite	5Ĉu ⁵ Xs + X l ³ P + 75宜	4
5 4 8. τ	ranite *	(Ča, ਚੌ²) 🏲 + 12拍	3
549. C	halcolite	(Cu, 😌) 🏲 + 8茁	2
550. C	arphosiderite	F e, P , H	
551. P	lumbo Resinite	₽ Ъ• ₽ + 6 % 1 Ħ	
552. C	alcoferrite	6(Ca, Mg), 3(X 1,Fe), 4P, 20H	
		Sulphato-Phosphates.	
553. P	itticite Haus *	Fe ² S ³ + 2Fe Ās + 24Ĥ	
554. D	ladochite	Fe' P *+2 Fe S*+36 1	

		•
		÷
	,	<u>;</u>
• •		

	·		
ř .			
	·		
	,		

: , ,

No. Name.	Formus.	System of crystallization.	
	4. Trimetric.		
507. Triphyline *	(Fe, Mn, Li) ³ P	3	
508. Triplite	(Mn, Fe) 4 B	3	
509. Fischerite	⊼ 1² P +8Ĥ	3	
	Appendix.		
510. Hopeite	Ź n, P , Aq	3	
511. Amblygonite *	$(2(\text{Li}, \text{Na})^3 \hat{P} + 2 \frac{\pi}{4} \hat{P}) + (\text{Al}^2 F^3 + \frac{\pi}{4} \hat{I})$	3	
512. Herderite	I l, Ca, P, F	3	
513. Carminite	\mathbf{P} b³ $\mathbf{\hat{A}}\mathbf{s} + 5\mathbf{\hat{F}}\mathbf{e}\mathbf{\hat{A}}\mathbf{s}$	3 ?	
514. Romeine	$ m \mathring{C}a^3, \Hat{Sb}, \Hat{Sb}$	2	
	b. Hydrous.		
515. Thrombolite	Ċu³ P² + 6 拍 ?		
516. Stercorite	(Ňa, ŇH ⁴) 🗗 + 9Ĥ		
517. Struvite	NH · Mg · P + 12由		
518. Haidingerite	$\hat{\mathbf{C}}\mathbf{a^2\hat{A}s} + 4\hat{\mathbf{H}}$	3	
519. Pharmacolite	$\hat{\mathbf{C}}\mathbf{a^2\hat{A}s} + 6\hat{\mathbf{H}}$	4	
520. Vivianite *	Fe $^{\circ}$ P $+$ $^{\circ}$ A $^{\circ}$	4	
521. Erythrine *	Čo³ Ãs + 8Ĥ	4	
522. Hörnesite	$\dot{ ext{M}} ext{g}^3 \ddot{ ext{A}} ext{s} + 8 \dot{ ext{H}}$	4	
523. Roesslerite	$ m \dot{M}g^2 \ddot{A}s + 15\dot{H}$		
524. Annabergite *	Ni ³ Ās + 8H		
525. Köttigite	(Žn, Čo, Ňi) ³ Äs + 8Ħ	4	
526. Symplesite	3Fe Äs² + 8 Ĥ	4	
527. Trichalcite	$\hat{\mathbf{C}}\mathbf{u}^{\mathbf{s}}\hat{\mathbf{A}}\mathbf{s}+5\hat{\mathbf{H}}$		
528. Scorodite *	∓ e Ās + 4 Ĥ	3	
529. Libethenite	Ĉu⁴ P + Ĥ	3	

>

No. Name. 530. Olivenite		#1 _*	System of ystallization.	
		Ċu* (Äs, P) + Ĥ	3	
531. Co	nichalcite	$(\mathring{\mathbf{C}}\mathbf{u},\mathring{\mathbf{C}}\mathbf{a})^4(\mathring{\mathbf{P}},\mathring{\mathbf{A}}\mathbf{s}) + 1\frac{1}{2}\mathring{\mathbf{H}}$		
532. Eu	chroite	Ĉu⁴ Ās + 7Ĥ	8	
533. Ar	seniosiderite	$\hat{\mathbf{C}}\mathbf{a^6}\mathbf{\ddot{A}}\mathbf{s} + \mathbf{4F}\mathbf{e^2}\mathbf{\ddot{A}}\mathbf{s} + \mathbf{15H}$	1	
534. Ph	armacosiderite	F e⁴ Ā s⁵ + 18Ĥ	1	
535. W	avellite *	X 13 ₱2+12Ĥ	3	
536. Ca	coxene *	∓ e ♣ + 12 Ĥ		
537. Ch	ildrenite #	((Mg, fe, Mn) ³ , X l) ⁵ P ³ + 15H	3	
538. Er	inite	$\mathrm{Cu^5}\ \mathrm{As} + 2\mathrm{H}$		
539. Co	rnwallite	$\hat{\mathbf{C}}\mathbf{u^5}\mathbf{f As} + 5\mathbf{\hat{H}}$		
540. Ph	osphochalcite *	$\mathring{\mathbf{C}}\mathbf{u}^{5}\mathring{\mathbf{P}}+2rac{1}{2}\mathring{\mathbf{H}}$	3	
541. Ta		Ĉu⁴ P + 3Ĥ		
542. T y		$\mathrm{Cu}^5\mathrm{\tilde{A}s} + 10\mathrm{\hat{H}} + \mathrm{\hat{C}a}\mathrm{\hat{C}}\mathrm{?}$	3	
_	elvauxene	Fe² P + 24H		
544. Dı	ıfrenite *	∓ e' P̃ + 2½ Ĥ	3 ·	
545. A	phanesite	Ĉu⁰ Ãs + 3Ĥ	4	
	nalcophyllite	$ m \hat{C}u^6$ $ m \hat{A}s+12\hat{H}$	6	
	roconite	5Ĉu ⁵ Ās + 表 l ³ 🗗 + 75宜	4	
548. U	ranite *	(Ċa, ♥²) Þ + 12Ĥ	3	
	halcolite	(Cu, 🔁) 🗗 + 8Ħ	2	
	arphosiderite	₽e, P, Ĥ		
	lumbo Resinite	ታ ъ• ፝		
552. C	alcoferrite	6(Ca, Mg), 3(X 1, Fe), 4P, 20H		
		Sulphato-Phosphates.		
553. P	itticite Haus *	Fe ² S ³ + 2Fe Ås + 24H		
	iadochite	Fe' P' + 2Fe S' + 36A		

: 1 • • . .

No. Name.	Formula.	System of crystallization.	
	Appendix.		
555. Lindackerite?	$2\dot{\mathrm{C}}\mathrm{u}^3 + \dot{\mathrm{N}}\mathrm{i}^3 + 8\dot{\mathrm{H}}$	3	
	c. NITRATES.		
556. Nitrammite *	nh• n		
557. Nitre *	Ŕ f	3	
558. Nitratine	Ňa 🕅	6	
559. Nitrocalcite*	Са 🕅 + Н		
6.	Carbonates.		
' 1. An	hydrous Carbonatcs.		
560. Calcite *	Ċa Ö	6	
561. Magnesite *	Мg Ö		
562. Dolomite *	(Ċa, Mg) Ö	6	
563. Breunnerite	(Mg, Fe, Mn) Ö		
564. Chalybite *	Ѓ е Ĉ	6	
565. Diallogite *	М́n Ö	6	
566. Smithsonite *	Źn Ö	6	
567. Aragonite *	Ĉa Ö	3	
568. Witherite	Ba Ö	3	
569. Strontianite *	Šr Ö	3	
570. Bromlite	Ba $\ddot{\mathrm{C}}+\dot{\mathrm{C}}$ a $\ddot{\mathrm{C}}$	3	
571. Manganocalcite	$\mathbf{\hat{M}}$ n $\ddot{\mathbf{C}}$, $\mathbf{\hat{F}}$ e $\ddot{\mathbf{C}}$, $\ddot{\mathbf{C}}$ a $\ddot{\mathbf{C}}$, $\mathbf{\hat{M}}$ g $\ddot{\mathbf{C}}$	3?	
572. Cerusite *	РbÖ	3	
573. Barytocalcite	Ba C+ Ca C	4	
2. H	lydrous Carbonates.		
74. Bicarbonate of Ammon	ia NH·Č²+H		
575. Trona *	$\dot{N}a^{2}\ddot{C}^{3}+4\dot{H}$	4	

No. Name.	Formula.	System of crystallization.	
576. Thermonatrite	Ńa Ĉ + Ĥ	3	
577. Natron *	Ńa Ĉ + 1 0Ĥ		
578. Gay-Lussite	\dot{N} a $\ddot{C}+\dot{C}$ a $\ddot{C}+5\dot{H}$	4	
579. Lanthanite *	La C+3H		
580. Hydromagnesite *	Mg⁴ Ö³ + 4 拍		
581. Hydrocalcite	$\ddot{\mathrm{C}}$ a $\ddot{\mathrm{C}}+5\dot{\mathrm{H}}$		
582. Malachite *	Ĉu² Ĉ+Ĥ		
583. Azurite *	2Ĉu Ö + Ĉu Ĥ		
584. Aurichaloite *	2(Źn, Ču) Ĉ+3(Źn, Ču)Ĥ		
585. Zinc Bloom *	Žn³ Ĉ+3Ĥ		
586. Emerald Nickel*	Ńi³ Ĉ+6Ĥ		
587. Remingtonite †	Čo Č + Aq ?		
588. Zippeite *	$\mathfrak{S}^3 + 12 \hat{\Pi}$ and $\mathfrak{S}^3 + \hat{C} u \tilde{S} + 12 \hat{\Pi}$		
589. Liebigite	♥ Ö + Ča Ö + 20Ĥ		
590. Voglite	$2\dot{\mathrm{U}}\ddot{\mathrm{C}} + \dot{\mathrm{C}}_{\mathrm{a}}\ddot{\mathrm{C}} + \dot{\mathrm{C}}_{\mathrm{U}^{3}}\ddot{\mathrm{C}}^{3} + 14\dot{\mathrm{H}}$		
591. Bismutite *	Bi4		
3. Carbonates u	with a Chloride or Fluoride.		
592. Parisite	$8(\mathring{\text{Ce}},\mathring{\text{La}},\mathring{\text{D}})\mathring{\text{C}} + 2\text{CaF} + (\mathring{\text{Ce}},\mathring{\text{La}},\mathring{\text{D}})\mathring{\text{H}}^26$		
593. Kischtimite	3La \ddot{C} + Ce q (Fl, O) 3 + \dot{H}		
594. Cerasine	Pb Cl + Pb Č	2	
7.	Oxalates.		
595. Whewellite	Ĉa $\ddot{\theta} + \dot{\mathbf{H}}$	4	
596. Oxalite	2Fe 🗗 + 3Ĥ		
597. Thierschite	Ča, Č		

. • 1 · . •

No. Name.

Formula.

System of crystallization.

E. RESINS AND ORGANIC COMPOUNDS.

598. Amber *	C 10 Ha O	
599. Copaline	C ₄₀ H ₈₈ O	
600. Middletonite	Cao H 10 十	
601. Retinite *		
602. Scleretinite	C ¹⁰ H ⁷ O	
603. Guyaquillite	C ₅₀ H ₁₂ O ₂	
604. Piauzite		
605. Walchowite	C18 H9 O	
606. Bitumen *	C_{6} H_{2}	
607. Idrialine	C42 H14 O	
608. Pyropissite		
609. Brewstoline	Ōŧ	
610. Elaterite *	С, н	
611. Scheererite	C H2 ?	4
612. Könlite	C ₅ H	
613. Fichtelite	C4 H3	4
614. Könleinite	Cas H ₁₈	
615. Hartite	$^{\prime}$ C ⁶ H ⁵	4
616. Hartine	Cao H ₁₄ O ₅	3
617. Ixolyte		
618. Hatchettine	С, Н	
619. Ozocerite	С, Н	
620. Chrismatine		
621. Dopplerite.	$G_8 H_2 O_2$	

No.	Name.	Formula.	System of crystallization.
622. D	inite		
623. H	ircine		
62 4. J a	aulingite		
625. N	I elanchyme		
626. A	nthracoxene		
627. E	aikerite		
628. B	Crantzite		
629. N	fellite	X 1 <u>M</u> 3 + 18Ĥ	2

. . , ,

. · • . - •

		1
		·

CHECK LIST OF MINERALS.

- 1. Gold *
- 2. Platinum *
- 3. Platiniridium *
- 4. Palladium
- 5. Quicksilver
- 6. Amalgam
- 7. Arquerite
- 8. Gold Amalgam *
- 9. Silver *
- 10. Bismuth Silver
- 11. Copper *
- 12. **Lead**
- 13. Iron
- 14. Tin
- 15. Zinc
- 16. Iridosmine *
- 17. Tellurium
- 18. Bismuth *
- 19. Tetradymite *
- 20. Antimony
- 21. Arsenic *
- 22. Arsenical Anti-
- 23. Sulphur * [mony *
- 24. Selenium
- 25. Selensulphur
- 26. Diamond *
- 27. Mineral Coal
 - 27a. Anthracite *
 - 27b. Bituminous
 - 27°. Jet * [Coal *
 - 27d. Lignite *
- 28. Graphite *
- 29. Realgar

- 30. Orpiment *
- 31. Dimorphine
- 32. Bismuthine *
- 33. Stibnite *
- 34. Discrasite
- 35. Domeykite *
- 36. Algodonite *
- 37. Whitneyite *
- 38. Silver Glance *
- 39. Erubescite * 40. Galena *
- 41. Steinmannite
- 42. Cuproplumbite?
- 43. Alisonite
- 44. Manganblende
- 45. Syepoorite
- 46. Eisennickelkies
- 47. Clausthalite
- 48. Naumannite
- 49. Berzelianite
- 50. Eucairite
- 51. Hessite *
- 52. Altaite
- 53. Grünauite
- 54. Blende*
- 55. Copper Glance *
- 56. Akanthite
- 57. Stromeyerite
- 58. Cinnabar *
- 59. Millerite *
- 60. Pyrrhotine *
- 61. Greenockite
- 62. Wurtzite

- 63. Onofrite
- 64. Copper Nickel *
- 65. Breithauptite *
- 66. Kaneite
- 67. Schreibersite
- 68. Pyrites *
- 69. Hauerite
- 70. Smaltine *
- 71. Cobaltine
- 72. Gersdorffite *
- 73. Ullmannite
- 74. Marcasite *
- 75. Rammelsbergite
- 76. Leucopyrite *
- 77. Mispickel *
- 78. Glaucodot
- 79. Sylvanite *
- 80. Nagyagite
- 81. Covelline
- 82. Molybdenite *
- 83. Riolite
- 84. Skutterudite
- 85. Linnæite *
- 86. Cuban
- 87. Chalcopyrite *
- 88. Barnhardite *
- 89. Tin Pyrites
- 90. Sternbergite
- 91. Wolfsbergite
- 92. Tannenite
- 93. Berthierite
- 94. Zinkenite
- 95. Miargyrite

(33)

• · .

ı

QG	Diamonito	140	M11-1-1-1	1100	TT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Plagionite Jamesonite		Tachhydrite		Völknerite *
			Periclase		Hydrotalcite
	Heteromorphite		Red Copper *		Psilomelane *
	Brongniardite	1	Martite *	1	Newkirkite
	Chiviatite		Iserine	i	Wad *
	Dufrenoysite	1	Irite?	1	Atacamite
	Pyrargyrite	1	Spinel *	1	Arsenolite *
	Proustite *		Magnetite *		Senarmontite
	Freieslebenite *		Magnoferrite	1	Valentinite
	Bournonite	1	Franklinite *	i	Bismuth Ochre*
	Kenngottite	١٠	Chromic Iron *	1	Kermesite
	Boulangerite		Pitchblende		Retzbanyite
	Aikinite	1	Melaconite *	i	Cervantite
	Wölchite		Plumbic Ochre*	ı	V olgerite
	Clayite?	156.	Water *	1	Ammiolite
	Kobellite?		Zincite *		Sulphurous Acid
	Meneghinite	158.	Corundum *		Telluric Ochre
	Tetrahedrite *	159.	Hematite *	205.	Sulphuric Acid *
	Tennantite *	160.	Ilmenite *		Wolframine *
	Geocronite *		Plattnerite		Molybdine *
	Polybasite	162.	Tenorite .	i .	Carbonic Acid *
	Stephanite	163.	Braunite *	209.	Sassolin
	Enargite *	164.	Hausmannite *	210.	Quartz *
	Xanthocono	ľ	Cassiterite *		210a. Jasper *
	Fireblende	166.	Rutile *		210b. Agate *
121.	Wittichite	167.	Anatase *		210°. Chalcedony *
122.	Calomel	168.	Chalcotrichite *	211.	Opal *
123.	Sylvine	169.	Chrysoberyl *	Ì	211a. Precious opal
124.	Salt *		Brookite *		211b. Semi-opal *
	Sal Ammoniac	171.	Pyrolusite *		211°. Hyalite
126.	Kerargyrite	172.	Polianite	1	211d. Geyserite
127.	Embolite	173.	Minium *	212.	Edelforsite
128.	Bromyrite	174.	Crednerite.	213.	Wollastonite *
129.	Iodo-bromid of		Heteroclin	214.	Pyroxene
130.	Fluor * [Silver	Į.	Palladinite?*		214°. Diopside *
131.	Yttrocerite *	177.	Voltzite	Ì	214b. Hedenbergite*
132.	Iodyrite	178.	M atlockite		214°. Augite *
133.	Coccinite	179.	M endipite	215.	Pelicanite
134.	Fluocerite	180.	Percylite?	216.	Spodumene *
135.	Fluocerine	181.	Karelinite?	217.	Prehnitoid
136.	Cotunnite	182.	Diaspore *	218.	Amphibole
137.	Muriatic Acid	183.	Göthite *	1	218a. Tremolite *
138.	Cryolite	184.	Manganite		218b. Actinolite *
139.	Chiolite	185.	Limonite *	}	218c. Hornblende *
14 0.	Fluellite	186.	Brucite *	219.	Acmite
141.	Carnallite	187.	Gibbsite *	220.	Strakonitzite?
	'	-			

CHECK LIST OF MINERALS.

221.	Enstatite	255.	Danburite †	301.	Meerschaum
	Anthophyllite *	256.	Axinite *		Neolite
223.	Hypersthene *	257.	Iolite *	303.	Spadaite
224.	Wichtyne	258.	Muscovite*	304.	Chlorophæite
225.	Babingtonite *	259.	Phlogopite *		Crocidolite
	Rhodonite *	260.	Biotite *	306.	Picrophyll
	Beryl *	261.	Astrophyllite	307.	Kerolite *
228.	E udialyte		Lepidomelane	308.	Monradite
229.	Eulytine		Lepidolite *	309.	Aphrodite
230.	Leucophane	264.	Sodalite *	310.	Picrosmine
231.	M elinophane	265.	Lapis Lazuli	311.	Saponite *
232.	Peridot	266.	Häuyne	312.	Serpentine *
	232°. Forsterite *	267.	Nosean	313.	Deweylite *
	232b. Chrysolite *	268.	Skolopsite		Hydrophite *
	232°. Fayalite *	269.	Leucite	315.	Nickel Gymnite*
2 33.	Tephroite *	270.	Nepheline *	316.	Ottrelite *
	Knebelite	271.	Cancrinite *		Groppite
	Chondrodite *	272.	Anorthite	318.	Stilpnomelane
	Willemite *	273.	Andesine *	319.	Chalcodite †
	Phenacite *	274.	Barsowite		Eukamptite
2 38.	Garnet	275.	Bytownite?		M elanhydrite
	238a. Pyrope *	276.	Labradorite *	1	Hisingerite
	238b. Grossular *	277.	Oligoclase *		Thuringite *
	238°. Almandine *	278.	Albite *		Euphyllite †
	238d. Spessartine *	279.	Orthoclase *		Pyrosclerite *
	238°. Melanite *	280.	Petalite *		Pseudophite?
	238f. Ouvarovite		Cyclopite		Thermophyllite?
	Helvin		Weissigite?	328.	Chlorite
	Zircon *		Pollux		328a. Chlorite
	Auerbachite		Isopyre		328b. Pennine
	Alvite?		Silicate of Yttria?		328°. Clinochlore
	Tachyaphaltite	1	Polychroilite		Delessite
	Idocrase *		Gehlenite		Ripidolite G. Rose
	Sarcolite	1	Andalusite*		Clintonite *
	Meiohite		Topaz *		Chloritoid * Cronstedtite
	Scapolite *		Staurotide *		Sideroschisolite
	Mellilite		Carolathine		Margarite *
	Dipyre		Lievrite *		Ephesite
250.	Tpidote 250*. Pistacite *		Kyanite * Sillimanite *		Pyrophyllite *
	250°. Fistacite *		Sapphirine	1	Pholerite *
	250°. Zoisite * 250°. Piedmontite		Euclase		Anthosiderite
251	Allanite *		Sphene *		Apophyllite *
	Partschin		Keilhauite		Pectolite*
	Zoisite Brooke	_	Tourmaline *		Okenite
	Gadolinite	l	Talc *		Laumontite *
ムシス・	4		= w4V		
	'#				

• .

. .

•

Leonhardite *		Erdmanite
Catapleiite	391.	Bavalite
Dioptase	392.	T scheffkinite
Chrysocolla *	393.	Schorlomite †
Demidoffite	394.	Mosandrite
Pyrosmalite	395.	Wölherite
Portite	396.	Turnerite?
Tritomite	397.	Perofskite
Thorite	398.	Pyrochlore *
Cerite	399.	Pyrrhite
Calamine *	400.	Scheelite *
Prehnite *	401.	Scheeletine
	402.	Tungstate of Cop-
Savite	403.	Wulfenite * [per †
Schneiderite		Azorite
	405.	Fergusonite
_	406.	Tyrite?
		Adelpholite
	408.	Tantalite
	409.	Wolfram *
	410.	Columbite *
	411.	Paracolumbite?†
	412.	Samarskite *
		Mengite
•		Polymignyte *
		Polycrase
•		Æschvnite
	ı	Euxenite
	l.	Yttro-Tantalite
	419.	Parathorite †
		Rutherfordite †
		Crocoisite
		Vauquelinite *
		Melanochroite
	l	Dechenite
	l	Descloizite
•		Vanadinite
		Volborthite
•		Pateraite?
		Glaserite
•	l	Thenardite
		Barytes *
		Celestine *
		Anhydrite *
		Anglesite *
		Almagrerite
Potamo Arra :	200.	
	Cataplelite Dioptase Chrysocolla * Demidoffite Pyrosmalite Portite Tritomite Thorite Cerite Calamine * Prehnite * Chlorastrolite †	Cataplelite 391. Dioptase 392. Chrysocolla * 393. Demidoffite 394. Pyrosmalite 395. Portite 396. Tritomite 397. Thorite 398. Cerite 399. Calamine * 400. Prehnite * 401. Chlorastrolite † 402. Savite 403. Schneiderite 404. Carpholite 405. Analcime * 406. Ittnerite 407. Faujasite 408. Chabazite * 409. Gmelinite 410. Levyne 411. Gismondine 412. Edingtonite 413. Harmotome 414. Phillipsite 416. Natrolite * 416. Natrolite * 416. Natrolite * 417. Scolecite 418. Ellagite 419. Sloanite 420. Epistilbite 421. Epistilbite 422. Brewsterite 422. Scilbite * 424. Caporcianite 425. Datholite * 426. Allophane * 427. Schrötterite * 428. Chloropal 429. Collyrite 430. Wolchonskoite 431. Chrome Ochre 432. Pimelite 433. Montmorillonite 434.

436. Leadhillite * 437. Caledonite * 438. Dreelite 439. Susannite 440. Glauberite 441. Lanarkite 442. Reussin 443. Selenate of Lead 444. Connellite 445. Alumian 446. Misenite 447. Polyhalite of Cop-448. Gypsum * 449. Astrakanite * [per† 450. Löweite 451. Mascagnine 452. Lecontite 453. Coquimbite 454. Romerite 455. Cyanosite * 456. Cyanochrome 457. Picromerid 458. Alunogen * 459. Alum 459. Potash Alum* 459b. Solfatarite 459°. Tschermigite 459d. Pickeringite 459°. Halotrichite* 459f. Apjohnite * 460. Voltaite 461. Epsomite * 462. Tauriscite? 463. Mangan Vitriol 464. Goslarite 465. Copperas * 466. Bieberite 467. Pyromeline * 468. Morenosite 469. Johannite [Uran. 470. Bas. Sulph. of 471. Glauber Salt* 472. Botryogen 473. Copiapite 474. Apatelite 475. Alunite *

CHECK LIST OF MINERALS.

#ي.	
476. Jarosite	522. Hörnesite
477. Websterite	523. Roesslerite
478. Loewigite	524. Annabergite *
479. Pissophane	525. Köttigite
480. Linarite	526. Symplesite
481. Brochantite	527. Trichalcite
482. Lettsomite	528. Scorodite *
483. Medjidite	529. Libethenite
484. Uranochre	530. Olivenite
485. Uranochalcite	531. Conichalcite
486. Boracite	532. Euchroite
487. Rhodizite	533. Arseniosiderite
488. Hydroboracite	534. Pharmacosiderite
489. Hayesine	535. Wavellite *
490. Borocalcite	536. Cacoxene *
491. Borax	537. Childrenite *
492. Lagonite	538. Erinite
493. Larderellite	539. Cornwallite
494. Warwickite †	540. Phosphochalcite*
495. Apatite *	541. Tagilite
496. Hydroapatite	542. Tyrolite
497. Cryptolite	543. Delvauxene
498. Pyromorphite *	544. Dufrenite*
499. Mimetene *	545. Aphanesite
500. Xenotime *	546. Chalcophyllite
501. Monazite *	547. Liroconite
502. Wagnerite	548. Uranite *
503. Kühnite	549. Chalcolite
504. Lazulite *	550. Carphosiderite
505. Turquois*	551. Plumbo Resinite
506. Conarite?	552. Calcoferrite
507. Triphyline *	553. Pitticite Haus *
508. Triplite	554. Diadochite
509. Fischerite	555. Lindackerite?
510. Hopeite	556. Nitrammite *
511. Amblygonite *	557. Nitre *
512. Herderite 513. Carminite	558. Nitratine
514. Romeine	559. Nitrocalcite* 560. Calcite*
515. Thrombolite 516. Stercorite	561. Magnesite * 562. Dolomite *
517. Struvite	563. Breunnerite
	1
518. Haidingerite 519. Pharmacolite	564. Chalybite * 565. Diallogite *
520. Vivianite *	566. Smithsonite *
521. Erythrine *	567. Aragonite *
ozi. Erythrine -	ingi. Wiskomra

s.		37
	568.	Witherite
	569.	Strontianite *
		Bromlite
	571.	Manganocalcite
		Cerusite *
	573.	Barytocalcite
		Bicarbonate of
	575.	Trona * [Ammon
	576.	Thermonatrite
	577.	Natron *
	578.	Gay-Lussite
	579.	Lanthanite *
•	580.	Hydromagnesite*
	581.	Hydrocalcite
	582.	Malachite *
		Azurite *
	584.	Aurichalcite *
		Zinc Bloom *
٠		Emerald Nickel *
		Remingtonite †
		Zippeite *
	589.	Liebigite Voglite
	590.	Voglite
		Bismutite *
	592.	
		Kischtimite
		Cerasine
		Whewellite
	596.	Oxalite
		Thierschite
		Amber *
		Copaline
		Middletonite Retinite *
		Scleretinite
		Guyaquillite
		Piauzite
	1	Walchowite
		Bitumen *
ı	608	Idrialine Pyropissite
	610.	Brewstoline Elaterite *
		Scheererite
	612.	
		Fichtelite

• • .

•

CHECK LIST OF MINERALS.

614. Könleinite	620. Chrismatine	625. Melanchyme
615. Hartite	621. Dopplerite	626. Anthracoxene
616. Hartino	622. Dinite	627. Baikerite
617. Ixolyte	623. Hircine	628. Krantzite
618. Hatchettine	624. Jaulingite	629. Mellite
010 O	_	

ALPHABETICAL INDEX.

Actinolite, 12 Adelpholite, 21 Æschynite, 21 Agate, 11 Aikinite, 6 Akanthite, 4 Albite, 15 Algodonite, 3 Alisonite, 3
Allanite, 14 Allophane, 20 Almagrerite, 22 Almandine, 13 Altaite, 3 Alum, 23 Alumian, 23 Alumite, 24 Alunogen, 23 Alvite, 13 Amalgam, 1 Amber, 30 Amblygonite, 26 Ammiolite, 10 Amphibole, 12
Analcime, 19
Anatase, 9
Andalusite, 15 Andesine, 15 Anglesite, 22 Anhydrite, 22 Annabergite, 26 Anorthite, 15 Anthophyllite, 12 Anthosiderite, 18 Anthracite, 2 Anthracoxene, 31 Antimony, 2 Apatelite, 24 Apatite, 25 Apatite, 25
Aphanesite, 27
Aphrodite, 16
Apjohnite, 23
Apophyllite, 18
Aragonite, 28
Arquerite, 1
Arsenic, 2
Arsenical antimony, 2 (39)

Acmite, 12

Arseniosiderite, 27 Arsenolite, 10 Astrakanite, 23 Astrophyllite, 14 Atacamite, 10 Auerbachite, 13 Augite, 11 Aurichalcite, 29 Axinite, 14 Azorite, 21 Azurite, 29 Babingtonite, 12 Baikerite, 31 Barnhardite, 5 Barsowite, 15
Barytes, 22
Barytocalcite, 28
Bavalite, 20
Berthiette, 5 Beryl, 12 Berzelianite, 3 Bicarbonate of ammonia, 28 Bieberite, 24 Biotite, 14 Bismuth, 2 Bismuth ochre, 10 Bismuth silver, 1 Bismuth silver, 1 Bismuthine, 2 Bismutite, 29 Bitumen, 30 Bituminous coal, 2 Blende, 3 Boracite, 25 Borax, 25 Boronatrocalcite, 52 Botryogen, 24 Boulangerite, 6 Bournonite, 6 Braunite, 9 Breithauptite, 4 Breunnerite, 28 Brewsterite, 19 Brewstoline, 30

Brochantite, 24 Bromite, 28

Bromyrite, 7 Brongniardite, 5

Brookite, 9 Brucite, 10 Bytownite, 15 Cacoxene, 27 Calamine, 19 Calcite, 28 Calcoferrite, 27 Caledonite, 22 Calomel, 6 Cancrinite, 15 Caporcianite, 19 Carbonic acid, 11 Carminite, 26 Carnallite, 7 Carolathine, 15 Carpholite, 19 Carphosiderite, 27 Cassiterite, 9 Catapleiite, 18 Celestine, 22 Cerasine, 29 Cerite, 18 Cerusite, 28 Cervantite, 10 Chabazite, 19 Chalcedony, 11 Chalcodite, 17 Chalcolite, 27 Chalcophyllite, 27 Chalcopyrite, 5 Chalcotrichite, 9 Chalybite, 28 Childrenite, 27 Chiolite, 7 Chiviatite, 5 Chlorastrolite, 19 Chlorite, 17 Chloritoid, 17 Chloropal, 20 Chlorophæite, 16 Chondrodite, 13 Chrismatine, 30 Chrome ochre, 20 Chromic iron, 8 Chrysoberyl, 9 Chrysocolla, 18 Chrysolite, 12

Ç €

· •

Cinnabar, 4 Clausthalite, 3 Clayite, 6 Clinochlore, 17 Clintonite, 17 Cobaltine, 4 Coccinite, 7 Collyrite, 20 Columbite, 21 Conarite, 25 Conichalcite, 27 Connellite, 23 Copaline, 30 Copiapite, 24 Copper, 1 Copperas, 24 Copper glance, 3 Copper nickel, 4 Coquimbite, 23 Cornwallite, 27 Corundum, 8 Cotunnite, 7 Covelline, 5 Crednerite, 9 Crocidolite, 16 Crocoisite, 22 Cronstedtite, 18 Cryolite, 7 Cryptolite, 25 Cuban, 5 Cuproplumbite, Cyanochrome, 23 Cyanosite, 23 Cyclopite, 15

Danburite, 14
Datholite, 20
Dechenite, 20
Delanovite, 20
Delanovite, 20
Delassite, 17
Delvauxene, 27
Demidoffite, 18
Descloizite, 22
Deweylite, 17
Diadochite, 27
Diamond, 2
Diallogite, 28
Diaspore, 9
Dimorphine, 2
Dinite, 31
Diopside, 11
Dioptase, 18
Dipyre, 13
Discrasite, 3
Dolomite, 28
Domeykite, 3
Dopplerite, 30
Dreelite, 22
Dufrenite, 27
Dufrenoysite, 6

Edelforsite, 11 Edingtonite, 19 Eisennickelkies, 3

Elaterite, 30 Ellagite, 19 Embolite, 7 Emerald nickel, 29 Enargite, 6 Enstatite, 12 Ephesite, 18 Epidote, 11
Epistilbite, 19
Epsomite, 24
Erdmanite, 20 Erinite, 27 Erubescite, 3 Erythrine, 26 Eucairite, 3 Euchroite, 27 Euclase, 16 Eudialyte, 12 Eukamptite, 17 Eulytine, 12 Euphyllite, 17 Euxenite, 21

Faujasite, 19
Fayalite, 12
Fergusonite, 21
Fichtelite, 30
Fireblende, 6
Fischerite, 26
Flucllite, 7
Fluccerine, 7
Fluccerite, 7
Flucr, 7
Forsterite, 12
Franklinite, 8
Freieslebenite, 6

Gadolinite, 14 Galena, 3 Garnet, 13 Gay-lussite, 29 Gehlenite, 15 Geocronite, 6 Gersdorffite, 4 Geyserite, 11 Gibbsite, 10 Gismondine, 14 Glaserite, 22 Glauberite, 22 Glauber salt, 24 Glaucodot, 4 Gmelinite, 19 Gold, 1 Gold amalgam, 1 Goslarite, 24 Göthite, 9 Graphite, 2 Greenockite, 4 Groppite, 17 Grossular, 13 Grünauite, 3 Guyaquillite, 30 Gypsum, 23

Haidingerite, 26 Halotrichite, 23 Harmotome, 19 Hartine, 30 Hartite, 30 Hatchettine, 30 Hauerite, 4 Hausmannite, 9 Häuyne, 14 Hayesine, 25 Hedenbergite, 11 Helvin, 13 Hematite, 8 Herderite, 26 Hessite, 3 Heteroclin, 9 Heteromorphite, 5 Heulandite, 19 Hircine, 31 Hisingerite, 17 Hopeite, 26 Hornblende, 12 Hörnesite, 26 Hyalite, 11 Hydroapatite, 25 Hydroboracite, 25 Hydrocalcite, 29 Hydromagnesite, 29 Hydrophite, 17 Hydrotalcite, 10 Hypersthene, 12

Idocrase, 13
Idrialine, 30
Ilmenite, 8
Iodo-bromid of silver, 7
Iolite, 14
Iridosmine, 1
Irite, 8
Iron, 1
Iserine, 8
Isopyre, 15
Ittnerite, 19
Ixolite, 30

Jamesonite, 5
Jarosite, 24
Jasper, 11
Jaulingite, 31
Jet, 2
Johannite, 24

Kaneite, 4 Karelinite, 9 Keilhauite, 16 Kenngottite, 6 Kerargyrite, 7 Kermesite, 10 Kerolite, 16 Kischtimite, 29 Knebelite, 13 Kobellite, 6 Könleinite, 30 Könlite, 30 Köttigite, 26 Krantzite, 31 Kuhnite, 25 Kyanite, 16

Labradorite, 15 Lagonite, 25 Lanarkite, 22 Lanthanite, 29 Lapis lazuli, 14 Larderellite, 25 Laumontite, 18 Lazulite, 25 Lead, 1 Leadhillite, 22 Lecontite, 23 Leonhardite, 18 Lepidolite, 14 Lepidomelane, 14 Lettsomite, 24 Leucite, 15 Leucophane, 12 Leucopyrite, 4 Levyne, 19 Libethenite, 26 Liebigite, 29 Lievrite, 16 Lignite, 2 Limonite, 10 Linarite, 24 Lindackerite, 28 Linnæite, 5 Liroconite, 27 Loewigite, 24 Löweite, 23

Magnesite, 28 Magnetite, 8 Magnoferrite, 8 Malachite, 29 Manganblende, 3 Manganite, 10 Manganocalcite, 28 Mangan vitriol, 24 Marcasite, 4 Margarite, 18 Martite, 8 Mascagnine, 23 Matlockite, 9 Medjidite, 24 Meerschaum, 16 Meionite, 13 Melaconite, 8 Melanchyme, 31 Melanhydrite, 17 Melanite, 13 Melanochroite, 22 Melanochroite, z.
Melinophane, 12
Mellilite, 13
Mellite, 31
Mendipite, 9
Meneghinite, 6
Mengite, 21

Miargyrite, 5
Middletonite, 30
Millerite, 4
Mimetene, 25
Mineral coal, 2
Minnium, 9
Misenite, 23
Mispickel, 4
Molybdenite, 5
Molybdenite, 11
Monazite, 25
Monradite, 16
Montmorillonite, 20
Morenosite, 24
Mosandrite, 20
Muriatio acid, 7
Muscovite, 14

Nagyagite, 4
Natrolite, 19
Natron, 29
Naumannite, 3
Neolite, 16
Nepheline, 15
Newkirkite, 10
Nickel gymnite, 17
Nitrammite, 28
Nitratine, 28
Nitro, 20
Nitrocalcite, 28
Nosean, 14

Okenite, 18 Oligoclase, 15 Olivenite, 27 Onofrite, 4 Opal, 11 Orpiment, 2 Orthoclase, 15 Ottrelite, 17 Ouvarovite, 13 Oxalite, 29 Ozocerite, 30

Palladinite, 9 Palladium, 1 Paracolumbite, 21 Parathorite, 21 Parisite, 29 Partschin, 14 Pateraite, 22 Pectolite, 18 Pelicanite, 11 Pennine, 17 Percylite, 9 Peridot, 12 Periclase, 8 Perofskite, 21 Petalite, 15 Pharmacolite, 26 Pharmacosiderite, 27 Phenacite, 13 Phillipsite, 19 Phlogopite, 14

Pholerite, 10 Phosphochalcite, 27 Piauzite, 30 Pickeringite, 15 Picromerid, 23 Picrophyll, 16 Picrosmine, 16 Piedmontite, 14 Pimelite, 20 Pissophane, 24 Pistacite, 14 Pitchblende, 8 Pitticite Haus, 27 Plagionite, 5 Platiniridium, 1 Platinum, 1 Plattnerite, 8 Plumbic ochre, 8 Plumbo resinite, 27 Polianite, 9 Pollux, 15 Polybasite, 6 Polychroilite, 15 Polycrase, 21 Polyhalite, 23 Polymignyte, 21 Portite, 18 Potash alum, 23 Precious opal, 11 Prehnite, 19 Prehnitoid, 12 Proustite, 6 Pseudophite, 17 Psilomelane, 10 Pyrargyrite, 6 Pyrites, 4 Pyrochlore, 21 Pyrolusite, 9 Pyromeline, 24 Pyromorphite, 25 Pyrope, 13 Pyrophyllite, 18 Pyropissite, 30 Pyroselerite, 17 Pyrosmalite, 18 Pyroxene, 11 Pyrrhite, 21 Pyrrhotine, 4

Quartz, 11 Quicksilver, 1

Rammelsbergite, 4
Realgar, 2
Red copper, 8
Remingtonite, 29
Retinite, 30
Retzbanyite, 10
Reussin, 23
Rhodizite, 15
Rhodonite, 12
Riolite, 5
Ripidolite, G. Rose, 17
Rœmerite, 23

. • •

•

Roesslerite, 26 Romeine, 26 Rutherfordite, 21 Rutile, 9

Sal ammoniac, 7 Salt, 7 Samarskite, 21 Saponite, 16 Sapphirine, 16 Sarcolite, 13 Sassolin, 11 Savite, 19 Scapolite, 13 Scheeletine, 21 Scheelite, 21 Scheererite, 30 Schneiderite, 19 Schorlomite, 20 Schreibersite, 4 Schrötterite, 20 Scleretinite, 30 Scolecite, 19 Scorodite, 26 Selenate of lead, 23 Selenium, 2 Selensulphur, 2 Semi-opal, 11 Senarmontite, 10 Serpentine, 17 Sideroschisolite, 18 Silicate of yttria, 15 Silimanite, 16 Silver, 1
Silver glance, 3
Skolopsite, 14
Skutterudite, 5 Sloanite, 19 Smaltine, 4 Smithsonite, 28 Sodalite, 14 Solfatarite, 23 Spadaite, 16 Spessartine, 13 Sphene, 16 Spinel, 8
Spodumene, 12
Staurotide, 15
Steinmannite, 3 Stephanite, 6 Stercorite, 26 Sternbergite, 5 Stibnite, 2 Stilbite, 19 Stilpnomelane, 17

Strakonitzite, 12 Stromeyerite, 4 Strontianite, 28 Struvite, 26 Sulphur, 2 Sulphuric acid, 11 Sulphurous acid, 10 Susannite, 22 Syepoorite, 3 Sylvanite, 4 Sylvine, 7 Symplesite, 26

Tachhydrite, 7 Tachyaphaltite, 13 Tagilite, 27 Talc, 16 Tannenite, 5 Tantalite, 21 Tauriscite, 24 Telluric ochre, 10 Tellurium, 1 Tennantite, 6 Tenorite, 8 Tephroite, 13 Tetradymite, 2 Tetrahedrite, 6 Thenardite, 22 Thermonatrite, 29 Thermophyllite, 17 Thierschite, 29 Thomsonite, 19 Thorite, 18 Thrombolite, 26 Thuringite, 17 Tin, 1 Tin pyrites, 5 Topaz, 15 Tourmaline, 16 Tremolite, 12 Trichalcite, 26 Triplite, 26 Tritomite, 18 Trona, 28 Tscheffkinite, 20 Tschermigite, 23 Tscnermigite, 20
Tungstate of copper, 21
Turnerite, 20
Turquois, 25
Tyrite, 21
Tyrolite, 27

Ullmannite, 4

Uranite, 27 Uranochalcite, 24 Uranochre, 24

Valentinite, 10 Vanadinite, 22 Vauquelinite, 22 Vivianite, 26 Voglite, 29 Volborthite, 22 Volgerite, 10 Völknerite, 10 Voltaite, 24 Voltzite, 9

Wad, 10
Wagnerite, 25
Walchowite, 30
Warwickite, 25
Water, 8
Wavellite, 27
Websterite, 24
Weissigite, 15
Whewellite, 29
Whitneyite, 3
Wichtyne, 12
Willemite, 13
Witherite, 28
Wittichite, 6
Wolchonekoite, 20
Wolframine, 11
Wolfsbergite, 5
Wölherite, 20
Wollastonite, 11
Wulfenite, 21
Wurtzite, 4

Xanthocone, 6 Xenotime, 25

Yttrocerite, 7 Yttro-tantalite, 21

Zinc, 1
Zinc bloom, 29
Zincite, 8
Zinkenite, 5
Zippeite, 29
Zircon, 13
Zoisite, 14
Zoisite Brooke, 14

	·					
			·			
				,	•	
		•				

•			

• . ·

: •

