

HMC412BMS8GE

n2 n/17

DOUBLE-BALANCED MIXER 8 - 16 GHz

Typical Applications

The HMC412BMS8GE is ideal for:

- Long Haul Radio Platforms
- Microwave Radio
- VSAT

Functional Diagram

Features

Conversion Loss: 8 dB Noise Figure: 8 dB

LO to RF Isolation: 44 dB LO to IF Isolation: 38

RF to IF Isolation: 29 dB

Input Third-Order Intercept: 19 dB

Input Power for 1 dB Compression: 10 dB

No External Components
MSOP8GE SMT Package

General Description

The HMC412BMS8GE is a passive double-balanced mixer that operates from 8 to 16 GHz. The HMC412BMS8GE operates with LO drive levels between 9 to 15 dBm and provides 8 dB of conversion loss across the entire specified frequency band. This mixer requires no external components or bias.

Electrical Specifications, $T_A = +25$ °C, IF = 1.45 GHz, LO Power= +13 dBm, USB [1]

Parameter		Min.	Тур.	Max.	Units
RF Frequency Range		8		16	GHz
LO Frequency Range		8		16	GHz
IF Frequency Range		DC		2.5	GHz
Conversion Loss			8	11	dB
Noise Figure, Single Sideband (SSB)			8		dB
LO to RF Isolation			44		dB
LO to IF Isolation		32	38		dB
RF to IF Isolation			29		dB
Input Third-Order Intercept (IP3)		15	19		dBm
Input Power for 1 dB Compression (P1dB)			10		dBm
[1] Unless otherwise noted all measurements performed as down-cor	verter with upper sideban	nd selected	I , IF = 1.45 GHz	z, RFIN = -5dB	3m

Down-converter Performance, IF = 1450 MHz

Conversion Loss vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Conversion Loss vs. LO Drive RFIN = -5 dBm, USB, Ta = +25C

Input IP3 vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Input IP3 vs. LO Drive RFIN = -5 dBm, USB, Ta = +25C

Input IP2 vs. Temperature

Input IP2 vs. LO Drive

Down-converter Performance, IF = 150 MHz

Conversion Loss vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

RFIN = -5 dBm, USB, Ta = +25C

Conversion Loss vs. LO Drive

Input IP3 vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Input IP3 vs. LO Drive RFIN = -5 dBm, USB, Ta = +25C

Input IP2 vs. Temperature

Input IP2 vs. LO Drive RFIN = -5 dBm, USB, Ta = +25C

Down-converter Performance, IF = 1450 MHz

Input P1dB vs. Temperature LO Power = +13 dBm, USB

Input P1dB vs. LO Power USB, Ta = +25C

Noise Figure vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Noise Figure vs. LO Power RFIN = -5 dBm, USB, Ta = +25C

LO to RF, LO to IF, and RF to IF Isolation LO Power = +13 dBm, USB, Ta = +25C

Down-converter Performance, IF = 150 MHz

Input P1dB vs. Temperature LO Power = +13 dBm, USB

Input P1dB vs. LO Power USB, Ta = +25C

Noise Figure vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Noise Figure vs. LO Power RFIN = -5 dBm, USB, Ta = +25C

Noise Figure vs. Temperature LO = +13 dBm, RFIN = -5 dBm, USB

Noise Figure vs. LO Power RFIN = -5 dBm, USB, Ta = +25C

JUGE

DOUBLE-BALANCED MIXER 8 - 16 GHz

Down-converter Performance

Conversion Loss over IF Bandwidth, USB RFIN = -5dBm, LO = 9.5 GHz @ +13 dBm

Input IP3 over IF Bandwidth, USB
RFIN = -5dBm, LO = 9.5 GHz @ +13 dBm

RF and LO Return Loss @ LO = 11 GHz, LO Power = +13 dBm, Ta = +25C

IF Return Loss, Ta = +25C

Up-converter Performance, IF = 1450 MHz

Conversion Loss vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Input IP3 vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Input IP2 vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Conversion Loss vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

Input IP3 vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

Input IP2 vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

Up-converter Performance, IF = 150 MHz

Conversion Loss vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Conversion Loss vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

Input IP3 vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Input IP3 vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

Input IP2 vs. Temperature LO = +13 dBm, IFIN = -5 dBm, USB

Input IP2 vs. LO Drive IFIN = -5 dBm, USB, Ta = +25C

(02.0417

DOUBLE-BALANCED MIXER 8 - 16 GHz

Harmonics of LO

	nLO Spur @ RF port								
LO Freq (GHz)	1	2	3	4					
9	39 35 5	51	63						
10.5	40	48	51	62					
12	46	53	60	N/A					
13.5	49	65	52	N/A					
15	40	48	N/A	N/A					
16	39	47	N/A	N/A					
16.5	35	45	N/A	N/A					

LO = +13 dBm

All values in dBc below input LO level @ RF port

MxN Spurious Outputs, IF = 1450 MHz

		nLO						
mRF 0		1	2	3	4	5		
0	Х	3.3	32	26	N/A	N/A		
1	24	N/A	42	34	36	N/A		
2	76	67	69	81	75	64		
3	941	72	78	81	79.1	78		
4	N/A	N/A	68	78	8	82		
5	N/A	N/A	N/A	66	75	81		

RF = 14.45 GHz @ -10 dBm

LO = 13 GHz @ +13 dBm, USB

All values in dBc relative to the IF. Measured as Down-converter Spurs values are (m x RF) - (n x LO)

MxN Spurious Output, IFin = 1450 MHz

	nLO						
mIF	0	1	2	3	4	5	
0	X	8	16	N/A	N/A	N/A	
1	26	N/A	34	N/A	N/A	N/A	
2	79.3	54.7	71	N/A	N/A	N/A	
3	87	78	78	N/A	N/A	N/A	
4	84.5	82	70	N/A	N/A	N/A	
5	81	81	73	N/A	N/A	N/A	

RFout = 14.45 GHz, IF input power = -10 dBm

LO = 15.9 GHz @ +13 dBm, LSB

All values in dBc relative to the RFout. Measured as Up-converter Spurs values are (m x IF) - (n x LO)

MxN Spurious Output, IF = 150 MHz

	nLO						
mRF	0	1	2	3	4	5	
0	Х	10.6	24	23	66	N/A	
1	19	N/A	36	30	50	113	
2	71	61	59	67	67	68	
3	79	79	83	66	82	79	
4	65	78	80	85	68	82	
5	N/A	63	77	79	83	87	

RF = 9.5 GHz @ -10 dBm

LO = 9.65 GHz @ +13 dBm, LSB

All values in dBc relative to the IF. Measured as Down-converter

Spurs values are $(m \times RF)$ - $(n \times LO)$

MxN Spurious Output, IFin = 150 MHz

	nLO						
mIF	0	1	2	3	4	5	
0	Х	9.3	6	21	36.5	N/A	
1	45.5	N/A	23	48	64	N/A	
2	88	60	50	65	62	N/A	
3	89	59	74.5	79	63.5	N/A	
4	69	82.5	80.5	78	64	N/A	
5	91	82.5	78.6	78	65	N/A	

RFout = 9.5 GHz @ -10 dBm

LO = 9.35 GHz @ +13 dBm, USB

All values in dBc relative to the RFout. Measured as Up-converter

Spurs values are (m x IF) - (n x LO)

v02 0417

DOUBLE-BALANCED MIXER 8 - 16 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 8	GND	These pins and the exposed ground paddle must be connected to RF ground.	⊖ GND =
2	LO	This pin is AC coupled and matched to 50 ohms.	10 O T
3, 4, 6	N/C	These pins are not connected internally.	
5	IF	This pin is DC coupled. For applications not requiring operation to DC, this port shoud be DC blocked externally using a series capacitor whose values has been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/sink more than 6 mA of current or die non-funtion and possible die failure will result.	1F 0
7	RF	This pin is AC coupled and matched to 50 ohm.	RF O

1/00 0417

DOUBLE-BALANCED MIXER 8 - 16 GHz

Evaluation PCB

List of Materials for EV1HMC412BMS8G [1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector, SRI
J3	PCB Mount SMA Connector, Johnson
U1	HMC412BMS8GE MIXER
PCB [2]	101650 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.

^[2] Circuit Board Material: Rogers 4350

Absolute Maximum Ratings

	1
LO Input Power	+25 dBm
RF/IF input Power	+25 dBm
IF DC Current	±6 mA
Channel Temperature	150 °C
Continuous Pdiss (T=85 °C) (derate 4.3 mW/°C above 85 °C)	280 mW
Thermal Resistance (R _{TH}) (junction to ground paddle)	180 °C/W
Operating Temperature	-40 to +85 °C
Storage Temperature	-65 to +150 °C
ESD Sensitivity (HBM)	500 V (Class 1B)
ESD Sensitivity (FICDM)	1000 V (Class C3)

COMPLIANT TO JEDEC STANDARDS MO-187-AA-T

8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP] (RH-8-4) Dimensions shown in millimeters

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC412BMS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	<u>412B</u> XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX