# 三阴乳腺癌的多药耐药的靶点分析

## 2024-04-07

LiChuang Huang



@ 立效研究院

## ${\bf Contents}$

| 1                         | 摘要<br>1.1 | 生信需求                                | <b>1</b> |
|---------------------------|-----------|-------------------------------------|----------|
|                           | 1.2       | 结果                                  | 1        |
| 2                         | 前言        |                                     | 1        |
| 3                         |           | 和方法                                 | 1        |
|                           |           | 材料                                  | 1        |
|                           | 3.2       | 方法                                  | 1        |
| 4                         | 分析        | 结果                                  | 2        |
| 5                         | 结论        |                                     | 2        |
| 6                         | 附:        | 分析流程                                | 2        |
|                           | 6.1       | 三阴乳腺癌                               | 2        |
|                           | 6.2       | 多药耐药                                | 3        |
|                           | 6.3       | 交集基因的富集分析                           | 4        |
| Re                        | efere     | nce                                 | 7        |
| $\mathbf{L}^{\mathrm{i}}$ | ist (     | of Figures                          |          |
|                           | 1         | Intersection of MDR with TNBC       | 4        |
|                           | 2         | KEGG enrichment                     | 5        |
|                           | 3         | GO enrichment                       | 5        |
|                           | 4         | Hsa05206 visualization              | 6        |
| $\mathbf{L}^{\mathrm{i}}$ | ist       | of Tables                           |          |
|                           | 1         | TNBC related targets from GeneCards | 2        |
|                           | 2         | MDR related targets from GeneCards  | 3        |

## 1 摘要

#### 1.1 生信需求

三阴乳腺癌的多药耐药的靶点分析(创新性比较好的通路)

#### 1.2 结果

经查阅资料,发现 MDR 所能应用的数据库或方法比较有限,难以拓展分析。以下采用了比较简单的办法得出结果,仅供参考。

- 分别对 MDR 和 TNBC 使用 GeneCards 获取相关基因,见 Tab. 2 和 Tab. 1
- 取交集基因 Fig. 1
- 对交集基因做富集分析见 Fig. 2 和 Fig. 3。
- "MicroRNAs in cancer"可能是良好的候选通路,见 Fig. 4 中的"breast cancer"部分。

### 2 前言

### 3 材料和方法

#### 3.1 材料

#### 3.2 方法

Mainly used method:

- R package ClusterProfiler used for gene enrichment analysis<sup>1</sup>.
- The Human Gene Database GeneCards used for disease related genes prediction<sup>2</sup>.
- R package pathview used for KEGG pathways visualization<sup>3</sup>.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

## 4 分析结果

## 5 结论

6 附:分析流程

#### 6.1 三阴乳腺癌

#### The GeneCards data was obtained by querying:

Triple negative breast cancer

#### Restrict (with quotes):

TRUE

#### Filtering by Score: :

Score > 3

Table 1 (下方表格) 为表格 TNBC related targets from GeneCards 概览。

#### (对应文件为 Figure+Table/TNBC-related-targets-from-GeneCards.xlsx)

注:表格共有 491 行 7 列,以下预览的表格可能省略部分数据;表格含有 491 个唯一'Symbol'。

Table 1: TNBC related targets from GeneCards

| Symbol       | Description | Category   | $UniProt\_ID$ | $\operatorname{GIFtS}$ | $GC_id$     | Score |
|--------------|-------------|------------|---------------|------------------------|-------------|-------|
| BRCA1        | BRCA1 DNA   | Protein Co | P38398        | 59                     | GC17M043044 | 29.76 |
| BARD1        | BRCA1 Asso  | Protein Co | Q99728        | 55                     | GC02M214725 | 19.27 |
| BRCA2        | BRCA2 DNA   | Protein Co | P51587        | 56                     | GC13P032315 | 19.14 |
| EGFR         | Epidermal   | Protein Co | P00533        | 63                     | GC07P055019 | 17.03 |
| TP53         | Tumor Prot  | Protein Co | P04637        | 62                     | GC17M007661 | 15.21 |
| CD274        | CD274 Mole  | Protein Co | Q9NZQ7        | 54                     | GC09P005450 | 14.49 |
| PALB2        | Partner An  | Protein Co | Q86YC2        | 53                     | GC16M023603 | 13.77 |
| LOC126862571 | BRD4-Indep  | Functional |               | 9                      | GC17P103838 | 13.42 |
| LINC01672    | Long Inter  | RNA Gene   |               | 18                     | GC01P011469 | 11.84 |
| CHEK2        | Checkpoint  | Protein Co | O96017        | 63                     | GC22M028687 | 11.81 |
| AR           | Androgen R  | Protein Co | P10275        | 60                     | GC0XP067544 | 11.11 |
| H19          | H19 Imprin  | RNA Gene   |               | 34                     | GC11M001995 | 11.05 |

| Symbol  | Description | Category   | UniProt_ID | $\operatorname{GIFtS}$ | GC_id       | Score |
|---------|-------------|------------|------------|------------------------|-------------|-------|
| LDHA    | Lactate De  | Protein Co | P00338     | 58                     | GC11P018394 | 10.71 |
| ERBB2   | Erb-B2 Rec  | Protein Co | P04626     | 63                     | GC17P039687 | 10.66 |
| STAT3   | Signal Tra  | Protein Co | P40763     | 62                     | GC17M042313 | 10.6  |
| <u></u> |             |            |            |                        |             |       |

#### 6.2 多药耐药

The GeneCards data was obtained by querying:

Multidrug Resistance

Restrict (with quotes):

TRUE

Filtering by Score: :

Score > 1

Table 2 (下方表格) 为表格 MDR related targets from GeneCards 概览。

(对应文件为 Figure+Table/MDR-related-targets-from-GeneCards.xlsx)

注: 表格共有 722 行 7 列,以下预览的表格可能省略部分数据;表格含有 722 个唯一'Symbol'。

Table 2: MDR related targets from GeneCards

| Cremb al | Description | Catamanu   | IIn:Dust ID | OIE+C | CC :4       | Score |
|----------|-------------|------------|-------------|-------|-------------|-------|
| Symbol   | Description | Category   | UniProt_ID  | GIFtS | GC_id       | score |
| ABCB1    | ATP Bindin  | Protein Co | P08183      | 60    | GC07M087504 | 66.16 |
| ABCC1    | ATP Bindin  | Protein Co | P33527      | 56    | GC16P015949 | 63.99 |
| ABCC2    | ATP Bindin  | Protein Co | Q92887      | 57    | GC10P099782 | 47.35 |
| ABCG2    | ATP Bindin  | Protein Co | Q9UNQ0      | 58    | GC04M088090 | 30.63 |
| ABCC3    | ATP Bindin  | Protein Co | O15438      | 53    | GC17P050634 | 29.32 |
| ABCC4    | ATP Bindin  | Protein Co | O15439      | 53    | GC13M095019 | 27.78 |
| ABCB4    | ATP Bindin  | Protein Co | P21439      | 55    | GC07M087365 | 27.09 |
| MVP      | Major Vaul  | Protein Co | Q14764      | 49    | GC16P065989 | 23.3  |
| ABCC5    | ATP Bindin  | Protein Co | O15440      | 52    | GC03M183919 | 22.16 |
| ABCB11   | ATP Bindin  | Protein Co | O95342      | 55    | GC02M168922 | 21.17 |
| ABCC6    | ATP Bindin  | Protein Co | O95255      | 56    | GC16M018124 | 18.44 |

| Symbol    | Description | Category   | UniProt_ID | GIFtS | GC_id       | Score |
|-----------|-------------|------------|------------|-------|-------------|-------|
| ABCC10    | ATP Bindin  | Protein Co | Q5T3U5     | 42    | GC06P043427 | 16.93 |
| C19orf48P | Chromosome  | Pseudogene |            | 30    | GC19M050797 | 14.79 |
| DNAH8     | Dynein Axo  | Protein Co | Q96JB1     | 47    | GC06P125656 | 11.7  |
| RPSA      | Ribosomal   | Protein Co | P08865     | 55    | GC03P039406 | 10.85 |
|           |             | •••        |            |       |             |       |

#### 6.3 交集基因的富集分析

Figure 1 (下方图) 为图 Intersection of MDR with TNBC 概览。

#### (对应文件为 Figure+Table/Intersection-of-MDR-with-TNBC.pdf)



Figure 1: Intersection of MDR with TNBC

#### Intersection:

ABCB1, GSTP1, YBX1, LINC01672, BCL2, TP53, TOP2A, TMX2-CTNND1, ESR1, HIF1A, SCARNA5, PTGS2, AKT1, BIRC5, PVT1, CERNA3, MIR7-3HG, JUN, CD44, STAT3, MIR381, PTEN, TNF, S100A4, MGMT, CAV1, MYC, EGFR, ERCC1, H19, SIRT1, SOD2-OT1, NFKB1, IL6, HSPA4, PARP1, NOTCH1, CTNNB1, VEGFA, CDH1, VIM, ANXA5, ALDH...

#### (上述信息框内容已保存至 Figure+Table/Intersection-of-MDR-with-TNBC-content)

Figure 2 (下方图) 为图 KEGG enrichment 概览。

(对应文件为 Figure+Table/KEGG-enrichment.pdf)



Figure 2: KEGG enrichment

Figure 3 (下方图) 为图 GO enrichment 概览。

#### (对应文件为 Figure+Table/GO-enrichment.pdf)



Figure 3: GO enrichment

#### (对应文件为 Figure+Table/hsa05206.pathview.png)



Figure 4: Hsa05206 visualization

#### Interactive figure:

https://www.genome.jp/pathway/hsa05206

## Reference

- 1. Wu, T. et~al. Cluster Profiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 2. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 3. Luo, W. & Brouwer, C. Pathview: An r/bioconductor package for pathway-based data integration and visualization. *Bioinformatics (Oxford, England)* **29**, 1830–1831 (2013).