Справочник по математике

Борис Кожуховский

2017

Оглавление

Ι	\mathbf{A}_{J}	гебра	4	
1	Pa n	диональные выражения Формулы сокращённого умножения	5	
II	\mathbf{N}	Іатематический анализ	6	
2	Фу г 2.1 2.2	нкции и их свойства. График функции	7 7 8	
3	Пре 3.1	еделы Предел на бесконечности	9	
4	Про 4.1	Свойства производных 4.1.1 Экстремумы функции двух переменных 4.1.2 Экстремумы функции трёх переменных 4.1.3 Экстремум с условием. Метод множителей Лагранжа Геометрическая интерпретация производной 4.2.1 Касательная 4.2.2 Нормаль	10 10 11 11 11 12 12	
II	I I	Сеометрия	13	
ΙV	7 Д	Цискретная математика	14	
5	Бу л 5.1	евы функции Методы минимализации	15 15	

		5.1.2	Сокращенные ДНФ	. 1	6					
		5.1.3	Тупиковые ДНФ							
		5.1.4	Кратчайшие и минимальные ДНФ	. 1	6					
	5.2	ы булевых функций и полнота	. 1	6						
		5.2.1	Классы БФ	. 1	6					
		5.2.2	Теорема о функциональной полноте	. 1	6					
6	Теория графов									
	6.1	Основ	вные понятия	. 1	7					
	6.2	Эйлер	оовы и Гамильтоновы пути и циклы	. 1	7					
	6.3	Плана	арные графы	. 1	8					
	6.4	Коды	Прюфера	. 19	9					
. 7	Т	000114		20	`					
V	\mathbf{T}	еория	и множеств	20)					
V 7		_	и множеств е понятия	20 21						
•		овные		2	1					
•	Осн	- ювные Опред	е понятия	2 :	1					
•	Осн 7.1	овные Опред Аксио	е понятия целение	. 2 . 2	1 1					
•	Och 7.1 7.2 7.3	овные Опред Аксио Опера	е понятия целение	. 2 . 2	1 1 1					
7	Och 7.1 7.2 7.3	овные Опред Аксио Опера	е понятия целение	2: . 2: . 2: . 2:	1 1 1 2					
7	Осн 7.1 7.2 7.3 Фун	овные Опред Аксио Опера нкции Опред	е понятия целение	2: . 2 . 2 . 2	1 1 1 2 2					
7	Осн 7.1 7.2 7.3 Фун 8.1	овные Опред Аксио Опера нкции Опред	е понятия целение матика щии на множествами над множествами целение	2: . 2 . 2 . 2	1 1 1 2 2					

Введение

Цели этого справочника:

- Систематизация и сохранение математических знаний, полученных мной за годы учёбы
- Сбор информации, которую трудно найти в понятном мне виде
- Конспектирование лекций в красивом виде
- Изучение LaTeX

Часть І

Алгебра

Рациональные выражения

1.1 Формулы сокращённого умножения

• $(a \pm b)^n$ вычисляется через треугольник паскаля

Например:

5

Часть II Математический анализ

Функции и их свойства.

2.1 График функции

Преобразование графиков ф-ий:

- 1. Симметрия относительно осей координат
 - Функции y = f(x) и y = -f(x) имеют одну и ту же область определения, их графики симметричны относительно оси Ox.
 - Функции y = f(x) и y = f(-x) имеют области определения, симметричные относительно точки O. Их графики симметричны относительно оси Oy.
- 2. Сдвиг вдоль осей координат (параллельный перенос)
 - Функция y = f(x-a), где $a \neq 0$, определена для всех x, таких, что $(x-a) \in D(f(x))$. График ф-ии y = f(x-a) получается сдвигом вдоль оси Ox на величину |a| графика функции y = f(x) вправо, если a > 0, и влево, если a < 0.
 - Функция y = f(x) + B, где $B \neq 0$, имеет ту же область определения, что и ф-ия y = f(x). График ф-ии y = f(x) + B получается сдвигом вдоль оси Oy на величину |B| графика функции y = f(x) вверх, если B > 0, и вниз, если B < 0.
- 3. Растяжение с сжатие графика вдоль всей оси координат
- 4. Построение графика функции y = Af(k(x-a)) + B) по графику функции y = f(x)

5. Симметрия относительно прямой y = x

2.2 Периодичность ф-ий

Определение:

Функцию y=f(x) с областью определения X называют периодической, если $\exists T\neq 0 \quad \forall x\in X$ такой, что $(x+T)\in X,$ и $(x-t)\in X,$ и f(x+T)=f(x)

Пример ур-ия, где используется периодичность ф-ий:

Пусть f(x) - периодическая функция с периодом 8, такая, что $f(x) = 8x - x^2$ при $x \in [0;8)$. Решите уравнение f(2x+16) + 23 = 5f(x). Решение:

1.

$$\begin{cases} f(x) = f(x+T) = f(x-T) \\ T = 8 \end{cases} \implies f(2x+16) = f(2x)$$

 $2. \ x \in [0;4) \implies 2x \in [0;8)$

Решаем уравнение для этого случая:

$$f(2x)+23=5f(x)$$
 $16x-4x^2+23=40x-5x^2$ $x^2-24x+23=0$ $x1=1$ $x2=23$ побочный корень для $x\in[0;4)$

3. $x \in [4; 8) \implies (2x - 8) \in [0; 8)$

Решаем уравнение для этого случая:

$$f(2x-8)+23=5f(x)$$
 $16x-64-4x^2+16x-64+23=40x-5x^2$
 $x^2-8x-105=0$
 $x1=7$
 $x2=-15$ побочный корень для $x\in[4;8)$

4. Так как наша функция имеет период 8, то и корни будут повторятся с такой же периодичностью, так как f(x) = f(x+T) = f(x-T). То есть получаем корни x = 1 + 8n и x = 7 + 8n.

Ответ: x = 1 + 8n и x = 7 + 8n.

Пределы

3.1 Предел на бесконечности

Производная

Определение:

Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к 0.

$$\mathbf{f}'(\mathbf{x_0}) = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\triangle \mathbf{f}}{\triangle \mathbf{x}} = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{x_0} + \triangle \mathbf{x}) - \mathbf{f}(\mathbf{x_0})}{\triangle \mathbf{x}}$$

 $\triangle x$ - приращение аргумента, то есть изменение аргумента от x до x_0 (дельта x).

 $\Delta f = f(x + \Delta x) - f(x)$ - приращение функции (дельта f).

4.1 Свойства производных

1.
$$(C * x)' = C * (x)'$$
 $C = const$

2.
$$(f + g)' = f' + g'$$

3.
$$(f * g)' = f' * g + g' * f$$

$$4. \ \left(\frac{f}{g}\right)' = \frac{f'*g - g'*f}{g^2}$$

5.
$$(f(g))' = f'(g) * g'(f)$$

6.
$$(f^g) = f^g * \ln f * g' + g * f(g - 1) * f'$$

7.
$$f'(y)=rac{1}{g(x)}$$
 $f(y)$ и $g(x)$ - взаимообратные функции $(D(f(y))=E(g(x))$ и $D(g(x))=E(f(y))$.

4.1.1 Экстремумы функции двух переменных

Для того, чтобы найти экстремум функции z(x,y) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0)$. Тогда найдём производные второго порядка в этой точке $A=z_{xx}''(x_0,y_0),\ B=z_{xy}''(x_0,y_0)$ и $C=z_{yy}''(x_0,y_0)$. Если $AC-B^2>0$, то z(x,y) имеет экстремум в точке M_0 (если A>0, то минимум, если A<0, то максимум).

4.1.2 Экстремумы функции трёх переменных

Для того, чтобы найти экстремум функции f(x,y,z) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0,z_0)$. Тогда найдём производные второго порядка в этой точке, вычислим их и составим матрицу Гессе:

$$\begin{pmatrix} f''_{xx}(M_0) & f''_{xy}(M_0) & f''_{xz}(M_0) \\ f''_{yx}(M_0) & f''_{yy}(M_0) & f''_{yz}(M_0) \\ f''_{zx}(M_0) & f''_{zy}(M_0) & f''_{zz}(M_0) \end{pmatrix}$$

Найдём угловые миноры: $\sigma_1=f''_{xx}(M_0),\,\sigma_2=\begin{bmatrix}f''_{xx}(M_0)&f''_{xy}(M_0)\\f''_{yx}(M_0)&f''_{yy}(M_0)\end{bmatrix},\,\sigma_3=$

$$\begin{bmatrix} f_{xx}''(M_0) & f_{xy}''(M_0) & f_{xz}''(M_0) \\ f_{yx}''(M_0) & f_{yy}''(M_0) & f_{yz}''(M_0) \\ f_{zx}''(M_0) & f_{zy}''(M_0) & f_{zz}''(M_0) \end{bmatrix}$$

Теперь возможны 4 случая

- 1. Если $\sigma_1 > 0$, $\sigma_2 > 0$ и $\sigma_3 > 0$, то $M_0(x_0, y_0, z_0)$ точка минимума.
- 2. Если $\sigma_1 < 0$, $\sigma_2 > 0$ и $\sigma_3 < 0$, то $M_0(x_0, y_0, z_0)$ точка максимума.
- 3. Иначе если $\sigma_3 \neq 0$, то $M_0(x_0, y_0, z_0)$ седловая точка.
- 4. При $\sigma_3 = 0$, то нужно дополнительное исследование.

4.1.3 Экстремум с условием. Метод множителей Лагранжа

Пусть дана функция $f(x_1 \dots x_n)$ и несколько условий $u_1(x_1 \dots x_n) = 0 \dots u_k(x_1 \dots x_n) = 0$. Нужно найти экстремум функции при этих условиях. Метод множителей Лагранжа:

- 1. Составим функцию Лагранжа от n+k переменных $L(x_1...x_n, \lambda_1...\lambda_k) = f(x_1...x_n) + \sum_{i=1}^k \lambda_i u_i(x_1...x_n).$
- 2. Составим систему уравнений, приравняв частные производные L к 0.
- 3. Если полученная система имеет решение относительно параметров x'_j и λ'_i , тогда точка x' может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер. Проверка точки для функции двух переменных: найдём дифференциал второго порядка $d^2L = L''_{xx}(dx)^2 + 2L''_{xy}dxdy + L''_{yy}$. Если $d^2L > 0 \quad \forall x, y$ то функция достигает минимума в точке x', если $d^2L < 0 \quad \forall x, y$, то функция достигает максимума в точке x'.

4.2 Геометрическая интерпретация производной

4.2.1 Касательная

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x, y, z) = 0.

Касательная плоскость к поверхности в точке M_0 – это плоскость, содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку M_0 . Её уравнение имеет вид $F_x'(M_0)(x-x_0)+F_y'(M_0)(y-y_0)+F_z'(M_0)(z-z_0)=0$.

4.2.2 Нормаль

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x, y, z) = 0.

Нормаль к поверхности в точке M_0 – это прямая, проходящая через данную точку перпендикулярно касательной плоскости. Её каноническое уравнение имеет вид $\frac{x-x_0}{F_x'(M_0)} = \frac{y-y_0}{F_y'(M_0)} = \frac{z-z_0}{F_z'(M_0)}$.

Часть III

Геометрия

Часть IV Дискретная математика

Булевы функции

5.1 Методы минимализации

5.1.1 Импликанты

Литерал - это переменная или её отрицание. Н-р: $x_1, \overline{x_1}x_2$ Импликант K - это такая коньюкция литералов функции F, что $K_i \to F_i$ Простой ипликант - это такой импликант, что вычеркиванием из него литералов нельзя получить новый импликант.

H-p:

x_1	x_2	x_3	$K_1 = x_1$	$K_2 = \overline{x_3}$	x_1x_2	F
0	0	0	0	1	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	0	1	1

 K_1 - простой импликант

 K_2 - не импликант

 K_3 - импликант

- 5.1.2 Сокращенные ДНФ
- 5.1.3 Тупиковые ДНФ
- 5.1.4 Кратчайшие и минимальные ДНФ
- 5.2 Классы булевых функций и полнота
- 5.2.1 Классы БФ
- 5.2.2 Теорема о функциональной полноте

Теория графов

6.1 Основные понятия

Два графа называются **изоморфными**, если они одинаковые с точностью до переименования вершин.

6.2 Эйлеровы и Гамильтоновы пути и циклы

Эйлеров путь — это путь, проходящий по всем рёбрам графа и притом только по одному разу.

Эйлеров цикл — эйлеров путь, являющийся циклом. То есть замкнутый путь, проходящий через каждое ребро графа ровно по одному разу. **Эйлеров граф** — граф, содержащий эйлеров цикл.

Полуэйлеров граф — граф, содержащий эйлеров путь.

Существование эйлерова цикла и эйлерова пути

• В неориентированном графе

Согласно теореме, доказанной Эйлером, эйлеров цикл существует тогда и только тогда, когда граф связный и в нём отсутствуют вершины нечётной степени.

Эйлеров путь в графе существует тогда и только тогда, когда граф связный и содержит не более двух вершин нечётной степени.[1][2] Ввиду леммы о рукопожатиях, число вершин с нечётной степенью должно быть четным. А значит эйлеров путь существует только тогда, когда это число равно нулю или двум. Причём когда оно равно нулю, эйлеров путь вырождается в эйлеров цикл.

Гамильтоновым циклом является такой цикл, который проходит через каждую вершину данного графа ровно по одному разу. Гамильтонов граф - граф, содержащий гамильтонов цикл.

Условия существования гамильтонова цикла в графе

• Условие Дирака

Пусть p — число вершин в данном графе и p > 3. Если степень каждой вершины не меньше, чем $\frac{p}{2}$, то данный граф — гамильтонов.

• Условие Оре

Пусть p — количество вершин в данном графе и p>2. Если для любой пары несмежных вершин (x,y) выполнено неравенство $\deg x+\deg y\geqslant p$, то данный граф — гамильтонов (другими словами: сумма степеней любых двух несмежных вершин не меньше общего числа вершин в графе).

6.3 Остовные деревья

Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.

Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.

Алгоритмы поиска минимального остовного дерева

• Алгоритм Крускала

Алгоритм Крускала изначально помещает каждую вершину в своё дерево, а затем постепенно объединяет эти деревья, объединяя на каждой итерации два некоторых дерева некоторым ребром. Перед началом выполнения алгоритма, все рёбра сортируются по весу (в порядке неубывания). Затем начинается процесс объединения: перебираются все рёбра от первого до последнего (в порядке сортировки), и если у текущего ребра его концы принадлежат разным поддеревьям, то эти поддеревья объединяются, а ребро добавляется к ответу. По окончании перебора всех рёбер все вершины окажутся принадлежащими одному поддереву, и ответ найден.

• Алгоритм Прима

Искомый минимальный остов строится постепенно, добавлением в него рёбер по одному. Изначально остов полагается состоящим из единственной вершины (её можно выбрать произвольно). Затем выбирается ребро минимального веса, исходящее из этой вершины, и добавляется в минимальный остов. После этого остов содержит уже две вершины, и теперь ищется и добавляется ребро минимального веса, имеющее один конец в одной из двух выбранных вершин, а другой — наоборот, во всех остальных, кроме этих двух. И так далее, т.е. всякий раз ищется минимальное по весу ребро, один конец которого — уже взятая в остов вершина, а другой конец — ещё не взятая, и это ребро добавляется в остов (если таких рёбер несколько, можно взять любое). Этот процесс повторяется до тех пор, пока остов не станет содержать все вершины (или, что то же самое, n-1 ребро).

В итоге будет построен остов, являющийся минимальным. Если граф был изначально не связен, то остов найден не будет (количество выбранных рёбер останется меньше n-1).

6.4 Планарные графы

Плоский граф - граф, который "нарисован"на плоскости так, чтобы ребра не пересекались.

Планарный граф - граф, который изоморфный плоскому.

Грань плоского графа - часть плоскости, границей которого являются его рёбра, и не содержащая внутри себя простых циклов.

Формула Эйлера для плоских графов.

Если граф плоский, то выполняется такой равенство

$$n-m+f=2$$

где n - число вершин, m - число рёбер, f - число граней. Для любых планарных выполняется

$$m \le 3n - 6$$

где n - число вершин, m - число рёбер.

Разбиением графа G называется граф, получающийся добавлением новой вершины на какое-нибудь ребро графа G.

Два графа называются гомеоморфными если получаются разбиением из одного и того же графа. (Стягиваем вершины степени 2 в ребро (удаляем их))

Критерий планарности. Теорема Понтрягина-Куратовского

Граф планарный тогда и только тогда, когда он не содержит подграфов, гомеоморфных $K_5, K_{3,3}$.

6.5 Коды Прюфера

Код Прюфера - это представление графа на n вершин в виде массива размера n-2. По графу однозначно строиться код Прюфера, а по коду Прюфера - граф.

Алгоритм построения графа по коду Прюфера:

1. Из вершин выбираем вершину с наименьшим номером, которая не встречается в коде

Часть V Теория множеств

Основные понятия

7.1 Определение

Множество - ключевое понятие теории множест. Оно аксиоматично, то есть неопределяемо. Обозначаются множества обычно заглавными буквами латинского алфивита.

∈ - символ принадлежности множеству.

Пустое множество — множество, не содержащее ни одного элемента. Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».

7.2 Аксиоматика

7.3 Операции на множествами

- Объеденение $A \cup B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ или $c \in B$
- Пересечение $A \cap B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \in B$
- Разница $A \backslash B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \notin B$
- Симметрическая разница $A \triangle B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A \cup \ \text{и} \ c \notin A \cap B$
- Дополнение к множеству A (в универсальном множестве M) \overline{A} \Leftrightarrow $\forall x \in \overline{A}, x \in M : x \notin A$

Функции над множествами

8.1 Определение

Функцией $\mathbf{f}: \mathbf{A} \to \mathbf{B}$ называется правило, ставящие в соответсвие каждому элементу множества A единственный элемент множества B ($f(a) \in B, a \in A$).

Множество A - область определения f. Множество B - область заначения f.

8.2 Биекции, Иньекции, Сюрьекции

- $f:A\to B$ называют **иньективной**, если $\forall x,y\in A:x\neq y\Rightarrow f(x)\neq f(y)$
- $f:A\to B$ называют **сюрьективной**, если $\forall b\in B\exists a\in A: f(a)=b$
- $f:A\to B$ называют **биньюктивной**, если она является и иньективной и сюрьективной одновременно.

Часть VI Комбинаторика