Analisi 3

Appunti di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

1	Teoı	ria della misura	3
	1.1	Misure astratte	3
	1.2	Esempi di misure	4
	1.3	Funzioni misurabili	5
		1.3.1 Funzioni semplici	5
	1.4	Integrale	5
	1.5	Teoremi di convergenza	7
		1.5.1 Fubini-Tonelli	8
2	Spaz	zi L^p e convoluzione	10
	2.1	Disuguaglianze	10
		2.1.1 Disuguaglianza di Jensen	10
		2.1.2 Disuguaglianza di Young	12
		2.1.3 Disuguaglianza di Hölder	12
		2.1.4 Disuguaglianza di Minkowski	13
	2.2	Esercitazione del 4 ottobre	14
	2.3	Costruzione spazi L^p	19
	2.4	Completezza degli spazi L^p	20
	2.5	Nozioni di convergenza per successioni di funzioni	22
		2.5.1 Prodotto scalare su L^2	24
	2.6	Controesempi sulle convergenze	25
		2.6.1 Approssimazioni di funzioni in L^p	26
	2.7	Esercitazione del 13 ottobre	28
		2.7.1 Esercizi su spazi $L^p(X)$ al variare di p e dello spazio X	28
		2.7.2 Spazi ℓ^p	31
	2.8	Complementi su approssimazioni di funzioni in L^p	31
	2.9	Appendice	33
	2.10	Convoluzione	35
	9 11	Escreitagione del 21 ettebre	38

		2.11.1 Convoluzione	41
		2.11.2 Separabilità degli spazi L^p	41
	2.12	Aggiunte sulle lezioni precedenti	42
	2.13	Derivata e Convoluzione	44
3	Spa	zi di Hilbert	47
	3.1	Esercitazione del 3 Novembre 2021	52
		3.1.1 Basi Hilbertiane e proiezioni	52
		3.1.2 Approssimazioni per convoluzione	54
	3.2	Esempi di basi Hilbertiane	54
		3.2.1 Polinomi	54
		3.2.2 Base di Haar	55
	3.3	Spazi di Hilbert complessi	55
4	Seri	ie di Fourier	57
5	Applicazioni della serie di Fourier		60
6	Tra	sformata di Fourier	61
7	Fun	zioni armoniche	62
8	Inte	egrazione di superfici	63
	8.1	Indice Analitico	64

Capitolo 1

Teoria della misura

1.1 Misure astratte

Definizione. Uno spazio misurabile è una terna (X, \mathcal{A}, μ) tale che

- \bullet X è un insieme qualunque.
- \mathcal{A} è una σ -algebra di sottoinsiemi di X, ovvero una famiglia di sottoinsiemi di X che rispetta le seguenti proprietà:
 - $\circ \emptyset, X \in \mathcal{A}.$
 - o \mathcal{A} è chiusa per complementare, unione e intersezione numerabile.
- μ è una misura su X, ossia una funzione $\mu \colon \mathcal{A} \to [0, +\infty]$ σ -addittiva, cioè tale che data una famiglia numerabile $\{E_k\} \subset \mathcal{A}$ disgiunta e posto $E := \bigcup E_n$, allora

$$\mu(E) = \sum_{n} \mu(E_n).$$

Notazione. Data una crescente di insiemi $E_1 \subset E_2 \subset \cdots \in E_n \subset \cdots \subset E_n = E$, scriviamo $E_n \uparrow E$.

Proprietà.

- $\bullet \ \mu(\emptyset) = 0$
- Monotonia: Dati $E, E' \in \mathcal{A}$ e $E \subset E'$, allora $\mu(E) \leq \mu(E')$.
- Data una successione crescente di insiemi $E_n \uparrow E$, allora $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \sup_n \mu(E_n)$.
- Se $E_n \uparrow E$ e $\mu(E_{\bar{n}}) < +\infty$ per qualche \bar{n} , allora $\mu(E) = \lim_{n \to +\infty} \mu(E_n) = \inf_n \mu(E_n)$.
- Subadditività: Se $\bigcup E_n \supset E$, allora $\mu(E) \leq \sum_n \mu(E_n)$.

Osservazione. Dato $X' \in \mathcal{A}$ si possono restringere \mathcal{A} e μ a X' nel modo ovvio.

Definizioni.

• μ si dice **completa** se $F \subset E, E \in \mathcal{A}$ e $\mu(E) = 0$, allora $F \in \mathcal{A}$ (e di conseguenza $\mu(F) = 0$).

- μ si dice finita se $\mu(X) < +\infty$.
- μ si dice σ -finita se esiste una successione $\{E_n\}$ con $E_n \subset E_{n+1}$ tale che $\bigcup E_n = X$ con $\mu(E_n) < +\infty$ per ogni n.

Notazione. Sia P(X) un predicato che dipende da $x \in X$ allora si dice che P(X) vale μ -quasi ogni $x \in X$ se l'insieme $\{x \mid P(x) \text{ è falso}\}$ è (contenuto in) un insieme di misura μ nulla.

D'ora in poi consideriamo solo misure complete.

1.2 Esempi di misure

• Misura che conta i punti.

$$X \text{ insieme} \qquad \mathcal{A} \coloneqq \mathcal{P}(X) \qquad \mu(E) \coloneqq \#E \in \mathbb{N} \cup \{+\infty\}$$

• Delta di Dirac in x_0 .

$$X$$
 insieme, $x_0 \in X$ fissato $\mathcal{A} := \mathcal{P}(X)$ $\mu(E) := \delta_{x_0}(E) = \mathbb{1}_E(x_0)$

• Misura di Lebesgue.

 $X = \mathbb{R}^n$ \mathcal{M}^n σ -algebra dei misurabili secondo Lebesgue \mathscr{L}^n misura di Lebesgue Dato R parallelepipedo in \mathbb{R}^n , cioè $R = \prod_{k=1}^n I_k$ con I_k intervalli in \mathbb{R} . Si pone

$$\operatorname{vol}_n(R) := \prod_{k=1}^n \operatorname{lungh}(I_k)$$

per ogni $E \subset \mathbb{R}^n$ (assumendo lungh([a, b]) = b - a). Infine poniamo

$$\mathscr{L}^n(E) := \inf \left\{ \sum_i \operatorname{vol}_n(R_i) \mid \{R_i\} \text{ tale che } E \subset \bigcup_i R_i \right\}.$$

Osservazioni.

- $\mathscr{L}^n(R) = \operatorname{vol}_n(R)$.
- \mathcal{L}^n è così definita se $\mathcal{P}(\mathbb{R}^n)$ ma non è σ -addittiva.
- \mathcal{L}^n è σ -addittiva su \mathcal{M}^n (è per questo che bisogna introdurre \mathcal{M}^n).

Il terzo punto giustifica l'introduzione dei **misurabili secondo Lebesgue**. Dunque definiamo \mathcal{M}^n , dato $E \subset \mathbb{R}^n$ si dice che E è misurabile (secondo Lebesgue) se

$$\forall \varepsilon > 0 \; \exists A \; \text{aperto e} \; C \; \text{chiuso con} \; C \subset E \subset A \text{tali che} \mathscr{L}^n(A \setminus C) \leq \varepsilon$$

Osservazioni.

• Per ogni E misurabile vale

$$\mathscr{L}^n(E) = \inf \left\{ \mathscr{L}^n : A \text{ aperto}, A \supset E \right\} = \sup \left\{ \mathscr{L}^n : K \text{ compatto}, K \subset E \right\}.$$

• Notiamo che se $F \subset E$ con $E \subset \mathcal{M}^n$ e $\mathscr{L}^n(E) = 0$, allora $F \in \mathcal{M}^n$. Ovvero la misura di Lebesgue è completa!

Notazione. $|E| := \mathcal{L}^n(E)$

1.3 Funzioni misurabili

Definizione. Dato (X, \mathcal{A}, μ) e $f: X \to \mathbb{R}$ (o al posto di \mathbb{R} in Y spazio topologico), diciamo che f è **misurabile** (più precisamente \mathcal{A} -misurabile), se

$$\forall A \text{ aperto } f^{-1}(A) \in \mathcal{A}$$

Osservazioni.

- Dato $E \subset X$, vale $E \in \mathcal{A}$ se solo se $\mathbb{1}_E$ è misurabile.
- La classe delle funzioni misurabili è chiusa rispetto a molte operazioni
 - o Somma, prodotto (se hanno senso nello spazio immagine della funzione).
 - o Composizione con funzione continua: Se $f: X \to Y$ continua e $g: Y \to Y'$ continua, allora $g \circ f$ è misurabile.
 - o Convergenza puntuale: data una successione di f_n misurabili e $f_n \to f$ puntualmente, allora f è misurabile.
 - \circ lim inf e lim sup (almeno nel caso $Y = \mathbb{R}$).

1.3.1 Funzioni semplici

Definizione. Definiamo la classe delle funzione semplici come

$$\mathcal{S} := \left\{ f \colon X \to \mathbb{R} \;\middle|\; f = \sum_i \alpha_i \mathbb{1}_{E_i} \text{ con } E_i \text{ misurabili e } \{\alpha_i\} \text{ finito} \right\}$$

Osservazione. La rappresentazione di una funzione semp/alice come combinazione lineare di indicatrici di insiemi $non \ \dot{e} \ unica$, però se necessario possiamo prendere gli E_i disgiunti.

1.4 Integrale

Definizione. Diamo la definizione di $\int_X f \, \mathrm{d}\mu$ per passi

i) Se $f \in \mathcal{S}$ e $f \geq 0$ cioè $f = \sum_i \alpha_i \mathbb{1}_{E_i}$ con $\alpha_i \geq 0$ allora poniamo

$$\int_X f \, \mathrm{d}\mu := \sum_i \alpha_i \mu(E_i),$$

convenendo che $0 \cdot +\infty = 0$ in quanto la misura di un insieme non è necessariamente finita.

ii) Se $f: X \to [0, +\infty]$ misurabile si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \sup_{\substack{g \in \mathcal{S} \\ 0 \le g \le f}} \int_X g \, \mathrm{d}\mu.$$

5

iii) $f \colon X \to \overline{\mathbb{R}}$ misurabile si dice **integrabile** se

$$\int_X f^+ \,\mathrm{d}\mu < +\infty \quad \text{oppure} \quad \int_X f^- \,\mathrm{d}\mu < +\infty.$$

e per tali f si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu.$$

iv) $f: X \to \mathbb{R}^n$ si dice **sommabile** (o di **classe** \mathscr{L}^1) se $\int_X |f| d\mu < +\infty$. In tal caso, se $\int_X f_i^{\pm} d\mu < +\infty$ per ogni f_i componente di f, allora $\int_X f d\mu$ esiste ed è finito.

Per tali f si pone

$$\int_X f \, \mathrm{d}\mu := \left(\int_X f_1 \, \mathrm{d}\mu, \dots, \int_X f_n \, \mathrm{d}\mu \right).$$

Notazione. Scriveremo spesso $\int_E f(x) dx$ invece di $\int_E f d\mathcal{L}^n$.

Osservazioni.

- L'integrale è lineare (sulle funzioni sommabili).
- I passaggi i) e ii) danno lo stesso risultato per f semplice ≥ 0 .
- La definizione in ii) ha senso per ogni $f: X \to [0, +\infty]$ anche non misurabile. Ma in generale vale solo che

$$\int_X f_1 + f_2 \,\mathrm{d}\mu \ge \int_X f_1 \,\mathrm{d}\mu + \int_X f_2 \,\mathrm{d}\mu.$$

• Dato $E \in \mathcal{A}$, f misurabile su E, notiamo che vale l'uguaglianza

$$\int_E f \, \mathrm{d}\mu \coloneqq \int_X f \cdot \mathbb{1}_E \, \mathrm{d}\mu.$$

- Si può definire l'integrale anche per $f: X \to Y$ con Y spazio vettoriale normato finito dimensionale¹ ed f sommabile.
- Se $f_1 = f_2 \mu$ -q.o. allora $\int_X f_1 d\mu = \int_X f_2 d\mu$.
- Si definisce $\int_X f \, \mathrm{d}\mu$ anche se f è misurabile e definita su $X \setminus N$ con $\mu(N) = 0$.
- Se $f:[a,b] \to \mathbb{R}$ è integrabile secondo Riemann allora è misurabile secondo Lebesgue e le due nozioni di integrale coincidono.

Nota. Lo stesso vale per integrali impropri di funzioni positive. Ma nel caso più generale non vale: se consideriamo la funzione

$$f: (0, +\infty) \to \mathbb{R}$$
 $f(x) := \frac{\sin x}{x}$

allora l'integrale di f definito su $(0, +\infty)$ esiste come integrale improprio ma non secondo Lebesgue, infatti

$$\int_0^{+\infty} f^+ \, \mathrm{d}x = \int_0^{+\infty} f^- \, \mathrm{d}x = +\infty$$

¹È necessario avere uno spazio vettoriale, perché serve la linearità e la moltiplicazione per scalare

- $\bullet \int_X f \, \mathrm{d}\delta_{x_0} = f(x_0)$
- Se $X=\mathbb{N}$ e μ è la misura che conta i punti l'integrale è

$$\int_X f \, \mathrm{d}\mu = \sum_{n=0}^\infty f(n)$$

per le f positive o tali che $\sum f^+(n) < +\infty$ oppure $\sum f^-(n) < +\infty$.

Nota. Come prima nel caso di funzioni non sempre positive ci sono casi in cui la serie solita non è definita come integrale di una misura, ad esempio

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

esiste come serie ma non come integrale.

• Dato X qualunque, μ misura che conta i punti e $f: X \to [0, +\infty]$ possiamo definire la somma di tutti i valori di f

$$\sum_{x \in X} f(x) := \int_X f \, \mathrm{d}\mu.$$

1.5 Teoremi di convergenza

Sia (X, \mathcal{A}, μ) come in precedenza.

Teorema (di convergenza monotona o Beppo-Levi). Date $f_n: X \to [0, +\infty]$ misurabili, tali che $f_n \uparrow f$ ovunque in X, allora

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu,$$

dove

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \sup_n \int f_n \, \mathrm{d}\mu.$$

Teorema (lemma di Fatou). Date $f_n: X \to [0, +\infty]$ misurabili, allora

$$\liminf_{n \to +\infty} \int_X f \, \mathrm{d}\mu \ge \int_X \left(\liminf_{n \to +\infty} f_n \right) \, \mathrm{d}\mu.$$

Teorema (di convergenza dominata o di Lebesgue). Date $f_n: X \to \mathbb{R}$ (o anche \mathbb{R}^n) con le seguenti proprietà

- Convergenza puntuale: $f_n(x) \to f(x)$ per ogni $x \in X$.
- Dominazione: Esiste $g: X \to [0, +\infty]$ sommabile tale che $|f_n(x)| \le g(x)$ per ogni $x \in X$ e per ogni $n \in \mathbb{N}$.

allora

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Nota. La seconda proprietà è essenziale; sostituirla con $\int_X |f_n| d\mu \le C < +\infty$ non basta!

Definizione. Data una "densità" $\rho: \mathbb{R}^n \to [0, +\infty]$ misurabile, la **misura** μ con densità ρ è data da

$$\forall E \in \mathcal{A} \quad \mu(E) := \int_{E} \rho \, \mathrm{d}x$$

Osservazioni.

- \mathbb{R}^n e \mathcal{L}^n possono essere sostituiti da X e $\widetilde{\mu}$.
- ullet il fatto che μ è una misura segue da Beppo Levi, in particolare serve per mostrare la subadditività.

Teorema (di cambio di variabile). Siano Ω e Ω' aperti di \mathbb{R}^n , $\Phi \colon \Omega \to \Omega'$ un diffeomorfismo di classe C^1 e $f \colon \Omega' \to [0, +\infty]$ misurabile. Allora

$$\int_{\Omega'} f(x') dx' = \int_{\Omega} f(\Phi(x)) |\det(\Lambda \Phi(x))| dx.$$

La stessa formula vale per f a valori in $\overline{\mathbb{R}}$ integrabile e per f a valori in \mathbb{R}^n sommabile.

Osservazioni.

- Se n = 1, $|\det(\Lambda \Phi(x))| = |\Phi'(x)|$ e non $\Phi'(x)$ come nella formula vista ad Analisi 1 (l'informazione del segno viene data dall'inversione degli estremi).
- Indebolire le ipotesi su Φ è delicato. Basta Φ di classe C^1 e $\widetilde{\forall} x' \in \Omega' \# \Phi^{-1}(x') = 1$ (supponendo Φ iniettiva la proprietà precedente segue immediatamente). Se Φ non è "quasi" iniettiva bisogna correggere la formula per tenere conto della molteplicità.
- Quest'ultima osservazione serve giusto per far funzionare il cambio in coordinate polari che non è iniettivo solo nell'origine.

1.5.1 Fubini-Tonelli

Di seguito riportiamo il teorema di Fubini-Tonelli per la misura di Lebesgue.

Teorema (di Fubini-Tonelli). Sia $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \simeq \mathbb{R}^n$ con $n = n_1 + n_2$, $E := E_1 \times E_2$ dove E_1, E_2 sono misurabili e f è una funzione misurabile definita su E. Se f ha valori in $[0, +\infty]$ allora

$$\int_X f \, \mathrm{d}\mu = \int_{E_2} \int_{E_1} f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{E_1} \int_{E_2} f(x_1, x_2) \, \mathrm{d}x_2 \, \mathrm{d}x_1$$

Vale lo stesso per f a valori in \mathbb{R} o in \mathbb{R}^n sommabile.

Osservazioni. Possiamo generalizzare il teorema di Fubini-Tonelli a misure generiche ed ottenere alcuni risultati utili che useremo ogni tanto.

• Se X_1, X_2 sono spazi con misure μ_1, μ_2 (con opportune ipotesi) vale:

$$\int_{E_2} \int_{E_1} f(x_1, x_2) \, \mathrm{d}\mu_1(x_1) \, \mathrm{d}\mu_2(x_2) = \int_{E_1} \int_{E_2} f(x_1, x_2) \, \mathrm{d}\mu_2(x_2) \, \mathrm{d}\mu_1(x_1).$$

se
$$f \ge 0$$
 oppure $\int_{X_1} \int_{x_2} |f| d\mu_2(x_2) d\mu_1(x_1) < +\infty$.

• Teorema (di scambio serie-integrale). Se $X_1 \subset \mathbb{R}$ (oppure $X_1 \subset \mathbb{R}^n$), $\mu_1 = \mathcal{L}^n$ e $X_2 = \mathbb{N}$, μ_2 è la misura che conta i punti, allora la formula sopra diventa

$$\sum_{n=0}^{\infty} \int_{X_1} f_n(x) \, \mathrm{d}x = \int_{X_1} \sum_{n=0}^{\infty} f_n(x) \, \mathrm{d}x.$$

se
$$f_i \ge 0$$
 oppure $\sum_i \int_{X_1} |f_i(x)| dx < +\infty$.

• Teorema (di scambio di serie). Se $X_1=X_2=\mathbb{N}$ e $\mu_1=\mu_2$ è la misura che conta i punti la formula sopra diventa

$$\sum_{i=0}^{\infty} \sum_{i=0}^{\infty} a_{i,j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j}$$

se
$$a_{i,j} \ge 0$$
 oppure $\sum_{i} \sum_{j} |a_{i,j}| < +\infty$.

Capitolo 2

Spazi L^p e convoluzione

2.1 Disuguaglianze

2.1.1 Disuguaglianza di Jensen

Ricordiamo che una funzione $f: \mathbb{R}^d \to [-\infty, +\infty]$ è **convessa** se e solo se dati $x_1, \dots, x_n \in \mathbb{R}^d$ e $\lambda_1, \dots, \lambda_n \in [0, 1]$ con $\sum_i \lambda_i = 1$ abbiamo che

$$f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f(x_{i})$$

Teorema (Jensen). Dato (X, \mathcal{A}, μ) con $\mu(X) = 1$ e $f: \mathbb{R}^d \to [-\infty, +\infty]$ convessa e semi-continua inferiormente (S.C.I.) e $u: X \to \mathbb{R}^d$ sommabile allora vale

$$\int_X f \circ u \, \mathrm{d}\mu \ge f \left(\int_X u \, \mathrm{d}\mu \right)$$

e $f \circ u$ è integrabile.

Osservazioni.

- $(f \circ u)^-$ ha integrale finito.
- Interpretando μ come probabilità si riscrive come $\mathbb{E}[f \circ \mu] \geq f([u])$.
- Se u è una funzione semplice, cioè $u = \sum_i y_i \cdot \mathbb{1}_{E_i}$ con E_i disgiunti e $\bigcup E_i = X$ allora posti $\lambda_i = \mu(E_i)$ abbiamo

$$\int_X f \circ u \, d\mu = \int_X \sum_i f(y_i) \cdot \mathbb{1}_{E_i} \, d\mu = \sum_i \lambda_i f(y_i) \ge f\left(\sum_i \lambda_i y_i\right) = f\left(\int_X u \, d\mu\right)$$

Questo ci darebbe una strada per dimostrare in generale per passi il teorema di Jensen ma in realtà si presentano vari problemi tecnici.

• Ogni funzione convessa e S.C.I su Ω convesso in \mathbb{R}^d si estende a $\tilde{f}: \mathbb{R} \to (-\infty, +\infty]$ convessa e S.C.I., ad esempio se $\Omega = (0, +\infty)$

$$f(y) = \frac{1}{y} \quad \leadsto \quad \widetilde{f}(y) = \left\{ \frac{1}{y} \quad y > 0 \right\}$$

• La semi-continuità inferiore serve perché le funzioni convesse sono continue solo se a valori in \mathbb{R} , ad esempio per k costante la funzione

$$f(y) := \begin{cases} k & y < 0 \\ +\infty & y \ge 0 \end{cases}$$

è convessa ma non semi-continua inferiormente (e neanche continua).

Dimostrazione. Poniamo $y_0 := \int_X u \, \mathrm{d}\mu$, allora la tesi diventa

$$\int_X f \circ u \, \mathrm{d}\mu \ge f(y_0)$$

Prendiamo $\phi \colon \mathbb{R}^d \to \mathbb{R}$ affine (ovvero $\phi(y) = a \cdot y + b$ con $a \in \mathbb{R}^d$ e $b \in \mathbb{R}$) tale che $\phi \leq f$, allora

$$\int_X f \circ u \, \mathrm{d}\mu \ge \int_X \phi \circ u \, \mathrm{d}\mu = \int_X a \cdot u + b \, \mathrm{d}\mu = ay_0 + b = \phi(y_0)$$

Infine concludiamo usando il seguente lemma di caratterizzazione delle funzioni convesse ed S.C.I.

Lemma. Ogni $f: \mathbb{R}^d \to (-\infty, +\infty]$ convessa e S.C.I è tale che

$$\forall y_0 \in \mathbb{R}^d \quad \sup_{\substack{\phi \text{ affine} \\ \phi \le f}} \phi(y_0) = f(y_0)$$

Nel caso d=1 e $f: \mathbb{R} \to \mathbb{R}$ possiamo appoggiarci al fatto che le funzioni convesse sono ammettono sempre derivata destra o sinistra, il sup diventa un massimo e ci basta prendere come ϕ la retta tangente in $(y_0, f(y_0))$ o una con pendenza compresa tra $f'(y_0^-)$ e $f'(y_0^+)$.

Rileggendo meglio la dimostrazione segue che $(f \circ u)^- < (\phi \circ u)^- \implies (f \circ u)^-$.

Definizione. Dati $p_1, p_2 \in [1, +\infty]$ diciamo che sono **coniugati** se

$$\frac{1}{p_1} + \frac{1}{p_2} = 1$$

convenendo che $1/\infty = 0$.

Fissiamo $p \in [1, +\infty]$ detto "esponente di sommabilità" e sia (X, \mathcal{A}, μ) come sempre.

Definizione. $f \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d misurabile, allora la **norma** p **di** f è per $p \in [1, +\infty)$

$$||f||_p \coloneqq \left(\int_X |f|^p \,\mathrm{d}\mu\right)^p$$

mentre per $p = +\infty$ poniamo

$$\|f\|_{\infty}\coloneqq\inf\{m\in[0,+\infty]\mid|f(x)|\leq m\text{ per }\mu\text{-q.o. }x\}$$

in realtà queste sono solo delle semi-norme¹.

$$\bullet \|f\|_{\infty} \le \sup_{x \in X} |f(x)|$$

¹Vedremo meglio più avanti questo dettaglio

• $||f||_p = 0 \iff f = 0$ quasi ovunque Dimostrazione.

⇒ [TODO: Facile ma non ovvia]

← Ovvio.

• Se $f_1 = f_2$ quasi ovunque $\Longrightarrow ||f_1||_p = ||f_2||_p$.

Dimostrazione. $f_1 = f_2$ quasi ovunque $\Longrightarrow \exists D \subset X \text{ con } \mu(D) = 0$ tale che $f_1(x) = f_2(x)$ su $X \setminus D$, usiamo il fatto che l'integrale non cambia se modifichiamo la funzione su un insieme di misura nulla

$$||f_1||_p^p = \int_X |f_1|^p d\mu = \int_{X \setminus D} |f_1|^p d\mu = \int_{X \setminus D} |f_2|^p d\mu = \int_X |f_2|^p d\mu = ||f_2||_p^p$$

2.1.2 Disuguaglianza di Young

Proposizione. Per ogni $a_1, a_2 \ge 0$ e $\lambda_1, \lambda_2 > 0$ con $\lambda_1 + \lambda_2 > 0$ abbiamo che

$$a_1^{\lambda_1} a_2^{\lambda_2} \le \lambda_1 a_1 + \lambda_2 a_2$$

inoltre vale l'uguale se e solo se $a_1 = a_2$.

Dimostrazione. Se $a_1 = a_2 = 0$ allora è ovvia. Supponiamo dunque $a_1, a_2 > 0$, ma sappiamo che

$$\lambda_1 \log a_1 + \lambda_2 \log a_2 \le \log(\lambda_1 a_2 + \lambda_2 a_2)$$

per concavità del logaritmo e quindi segue la tesi.

Il se e solo se per l'uguale segue dal fatto che il logaritmo è strettamente concavo.

2.1.3 Disuguaglianza di Hölder

Proposizione. Date $f_1, f_2 \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d e p_1, p_2 esponenti coniugati allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

vale anche per $p=+\infty$ convenendo che $+\infty\cdot 0=0$ a destra dell'uguale.

Dimostrazione. Se $||f_1||_{p_1} = 0$ o $+\infty$ e anche $||f_2||_{p_2} = 0$ o $+\infty$ la dimostrazione è immediata, supponiamo dunque $||f_1||_{p_1}$, $||f_2||_{p_2} > 0$ e finiti.

• Caso 1: se $p_1 = 1, p_2 = +\infty$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \int_X |f_1| \cdot ||f_2||_{\infty} \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot \int_X |f_1| \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot ||f_1||_1$$

• Caso 2: se $1 < p_1, p_2 < +\infty$, introduciamo un parametro $\gamma > 0$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu = \int_X (\gamma^{p_1} \cdot |f_1|^{p_1})^{1/p_1} \cdot (\gamma^{-p_2} \cdot |f_1|^{p_2})^{1/p_2} \, \mathrm{d}\mu$$

a questo punto chiamiamo per comodità $g_1:=\gamma^{p_1}\cdot|f_1|^{p_1},\ \lambda_1:=1/p_1$ e $g_2:=\gamma^{-p_2}\cdot|f_1|^{p_2},\ \lambda_2:=1/p_2$ da cui

$$= \int_{X} g_{1}^{\lambda_{1}} \cdot g_{2}^{\lambda_{2}} \stackrel{\text{Young}}{\leq} \int_{X} \lambda_{1} g_{1} + \lambda_{2} g_{2} \, \mathrm{d}\mu = \lambda_{1} \gamma^{p_{1}} \int_{X} |f_{1}|^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \int_{X} |f_{1}|^{p_{2}} \, \mathrm{d}\mu$$
$$= \lambda_{1} \gamma^{p_{1}} \cdot ||f_{1}||_{p_{1}}^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \cdot ||f_{1}||_{p_{2}}^{p_{2}}$$

posti ora $a_1 := \gamma^{p_1} \|f_1\|_{p_1}^{p_1}$ e $a_2 := \gamma^{-p_2} \|f_1\|_{p_2}^{p_2}$, per $\gamma \to 0$ abbiamo che $a_1 \to 0, a_2 \to +\infty$ mentre per $\gamma \to +\infty$ abbiamo che $a_1 \to +\infty, a_2 \to 0$ dunque per il teorema del valor medio esisterà γ tale che $a_1 = a_2$, ma allora siamo nel caso dell'uguaglianza per la disuguaglianza di Young dunque

$$\lambda_1 \gamma^{p_1} \|f_1\|_{p_1}^{p_1} + \lambda_2 \gamma^{-p_2} \|f_1\|_{p_2}^{p_2} = \lambda_1 a_1 + \lambda_2 a_2 = a_1^{\lambda_1} \cdot a_2^{\lambda_2} = \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

In particolare, vale l'uguaglianza se prendiamo un valore di γ tale che $a_1=a_2$. Resta da verificare che tale valore di γ esista [TODO].

Osservazione. La disuguaglianza di Hölder può essere generalizzata a n funzioni, date f_1, \ldots, f_n e p_1, \ldots, p_n con $\frac{1}{p_1} + \cdots + \frac{1}{p_2} = 1$ allora

$$\int_X \prod_i |f_i| \,\mathrm{d}\mu \le \prod_i \|f_i\|_{p_i}$$

2.1.4 Disuguaglianza di Minkowski

Proposizione. Consideriamo sempre (X, \mathcal{A}, μ) e sia $p \in [1, +\infty]$ un esponente di sommabilità ed $f_1, f_2 \colon X \to \mathbb{R}$ oppure \mathbb{R}^d allora vale la disuguaglianza triangolare

$$||f_1 + f_2||_p \le ||f_1||_p + ||f_2||_p$$

Dimostrazione.

• Caso 1: se p=1 o $p=+\infty$, allora basta fare il calcolo diretto

$$\circ$$
 Se $p=1$

$$||f_1 + f_2||_1 = \int_X |f_1 + f_2| \, \mathrm{d}\mu \le \int_X |f_1| + |f_2| \, \mathrm{d}\mu = \int_X |f_1| \, \mathrm{d}\mu + \int_X |f_2| \, \mathrm{d}\mu = ||f_1||_1 + ||f_2||_1$$

$$\circ$$
 Se $p = +\infty$

$$||f_1 + f_2||_{\infty} = \operatorname{supess}_X |f_1 + f_2| = \operatorname{supess}_{X \setminus D} \le \operatorname{supess}_{X \setminus D} (|f_1| + |f_2|)$$

$$= \operatorname{supess}_{X \backslash D} |f_1| + \operatorname{supess}_{X \backslash D} |f_2| = \operatorname{supess}_X |f_1| + \operatorname{supess}_X |f_2| = \|f_1\|_\infty + \|f_2\|_\infty$$

• Caso 2: se $1 e <math>0 < ||f_1 + f_2||_p < +\infty$

$$\begin{split} \|f_1 + f_2\|_p^p &= \int_X |f_1 + f_2|^p \le \int_X (|f_1| + |f_2|) \cdot |f_1 + f_2|^{p-1} \, \mathrm{d}\mu = \\ &= \int_X |f_1| \cdot |f_1 + f_2|^{p-1} \, \mathrm{d}\mu + \int_X |f_2| \cdot |f_1 + f_2|^{p-1} \, \mathrm{d}\mu = \\ &\stackrel{\mathrm{H\"older}}{\le} \|f_1\|_p \cdot \left\| |f_1 + f_2|^{p-1} \right\|_q + \|f_2\|_p \cdot \left\| |f_1 + f_2|^{p-1} \right\|_q = \\ &= (\|f_1\|_p + \|f_2\|_p) \cdot \left\| |f_1 + f_2|^{p-1} \right\|_q = (\|f_1\|_p + \|f_2\|_p) \cdot \|f_1 + f_2\|_p^{p-1} \end{split}$$

e poiché $\|f_1 + f_2\|_p > 0$ possiamo portare l'ultimo fattore dall'altra parte

$$\implies \frac{\|f_1 + f_2\|_p^p}{\|f_1 + f_2\|_p^{p-1}} \le \|f_1\|_p + \|f_2\|_p \implies \|f_1 + f_2\|_p \le \|f_1\|_p + \|f_2\|_p$$

• Caso 3: se $1 ma <math>||f_1 + f_2|| = 0$ o $+\infty$ allora se $||f_1 + f_2|| = 0$ la disuguaglianza è banale mentre se $||f_1 + f_2|| = +\infty$ si usa la seguente disuguaglianza

$$||f_1 + f_2||_p^p \le 2^{p-1} (||f_1||_p^p + ||f_2||_p^p)$$

che si ottiene usando la convessità della funzione $y\mapsto y^p$

$$||f_1 + f_2||_p^p = \int_X |f_1 + f_2|^p d\mu = 2^p \int_X \left| \frac{f_1 + f_2}{2} \right|^p d\mu$$

$$\leq 2^p \int_X \frac{1}{2} |f_1|^p + \frac{1}{2} |f_2|^p d\mu = 2^{p-1} (||f_1||_p^p + ||f_2||_p^p)$$

da cui possiamo ricavare subito che almeno uno dei due termini deve essere $+\infty$.

2.2 Esercitazione del 4 ottobre

Teoria della misura

Di seguito riportiamo alcune proprietà di base di teoria della misura.

Proprietà.

i) Se $A \subset B$, allora $\mu(A) \leq \mu(B)$.

Dimostrazione. Scomponiamo $B = (B \setminus A) \cup (A \cap B)$. Per ipotesi $A \cap B = A$ ed essendo la misura positiva segue che

$$\mu(B) = \underbrace{\mu(B \setminus A)}_{\geq 0} + \mu(A) \geq \mu(A).$$

ii) Dati due insiemi A, B misurabili, vale

$$\mu(A \cup B) \le \mu(A) + \mu(B)$$
.

Dimostrazione. La disuguaglianza segue dalle seguenti uguaglianze.

$$\mu(A) = \mu(A \setminus B) + \mu(A \cap B)$$

$$\mu(B) = \mu(B \setminus A) + \mu(A \cap B)$$

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(B \setminus A) + \mu(A \cap B).$$

iii) Data una successione di insiemi $E_1 \subset E_2 \subset \cdots \subset \cdots$, si ha

$$\mu\left(\bigcup_{i} E_{i}\right) = \sup_{i} \mu(E_{i}) = \lim_{i} \mu(E_{i}).$$

iv) Data una successione di insiemi $E_1\supset E_2\supset\cdots\supset\cdots$ e $\mu(E_1)<+\infty,$ si ha

$$\mu\left(\bigcap_{i} E_{i}\right) = \lim_{i} \mu(E_{i}).$$

Esercizio (Numerabile subaddittività). Dato $E \in \mathcal{A}, E \subset \bigcup_i E_i$ dove $E_i \in \mathcal{A}$. Allora

$$\mu(E) \leq \sum_{i} \mu(E_i).$$

Dimostrazione (Idea). Basta dimostrare che $\mu\left(\bigcup_{i} E_{i}\right) \leq \sum_{i} \mu(E_{i})$. Infatti per quanto visto prima $\mu(E) \leq \mu\left(\bigcup_{i} E_{i}\right)$. Prima dimostriamo per induzione $\mu\left(\bigcup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} \mu(E_{i})$.

Il passo base n=2 è stato visto al punto ii). Una volta dimostrata la proprietà sopra, si nota che $\sum_{i=1}^{N} \mu(E_i)$ è limitata per ogni N, e dunque è limitato anche il suo limite, da cui la tesi. \square

Funzioni misurabili rispetto alla misura di Lebesgue

Si ricorda che le funzioni continue, semplici e semicontinue sono classi di funzioni misurabili. Due osservazioni sulle funzioni semicontinue.

- Le funzioni semicontinue sono boreliane.
- La proprietà di misurabilità delle funzioni semicontinue è necessaria per l'enunciato della disuguaglianza di Jensen.

Controesempio (disuguaglianza di Jensen). Notiamo che l'ipotesi di semicontinuità inferiore della funzione f è necessaria per la validità della disuguaglianza di Jensen. Infatti, definiamo f come segue

$$f(x) = \begin{cases} 0 & x \in (0,1) \\ +\infty & \text{altrimenti} \end{cases}.$$

Osserviamo che la funzione f così definita è convessa ma non semicontinua inferiormente.

Ora definiamo la funzione $u: X \to \mathbb{R}$ con X = (0, 2), come la funzione costante di valore 1/2. Calcoliamo l'integrale di u(x) su X.

$$\int_X u(x) \, \mathrm{d}x = 1.$$

In tal caso vale $f\left(\int_X u(x) dx\right) = +\infty$. D'altra parte $\int_X f \circ u dx = 0$, dunque l'ipotesi di semicontinuità inferiore è necessaria.

Fatto. Date φ_1, φ_2 funzioni semplici su \mathbb{R} con misura di Lebesgue. Allora $\varphi_1 \vee \varphi_2$ e $\varphi_1 \wedge \varphi_2$ sono ancora funzioni semplici.

Lemma. Data $f: X \to [0, +\infty]$ misurabile

$$\int_X f \, \mathrm{d}\mu = 0 \quad \Longleftrightarrow \quad f = 0 \text{ q.o. su } X.$$

Dimostrazione.

 \implies Dato che f è non negativa, il dominio X può essere riscritto come

$$X = \{x \in X \mid f(x) \ge 0\} = \{x \in X \mid f(x) > 0\} \cup \{x \in X \mid f(x) = 0\}$$

ricordiamo che $(0, +\infty) = \bigcup_{n \ge 1} (\frac{1}{n}, +\infty)$ da cui segue

$$\{x \in X \mid f(x) > 0\} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \left\{ x \in X \mid f(x) \ge \frac{1}{n} \right\},$$

e passiamo alle misure

$$\mu\left(\left\{x \in X \mid f(x) > 0\right\}\right) = \lim_{n \to +\infty} \mu\left(\left\{x \in X \mid f(x) \ge \frac{1}{n}\right\}\right),\,$$

in questo modo otteniamo la seguente caratterizzazione dell'insieme su cui f è positiva

$$\mu\left(\left\{x\in X\mid f(x)>0\right\}\right)>0\Longleftrightarrow\exists\bar{n}\mid\mu\left(\left\{x\in X\mid f(x)\geq1/\bar{n}\right\}\right)>0.$$

Allora possiamo maggiorare come segue

$$0 = \int_X f \, \mathrm{d}\mu \ge \int_{\left\{f \ge \frac{1}{n}\right\}} f \, \mathrm{d}\mu \ge \frac{1}{n} \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right).$$

Dunque abbiamo

$$\mu\left(\left\{x\mid f(x)\geq \frac{1}{n}\right\}\right)=0 \quad \forall n.$$

Si conclude osservando che

$$\mu(\{x \mid f(x) > 0\}) = \lim_{n} \mu\left(\left\{x \mid f(x) \ge \frac{1}{n}\right\}\right) = 0.$$

 \sqsubseteq Dal fatto che f è positiva possiamo scrivere

$$\int_X f \, \mathrm{d}\mu = \sup_{\substack{g \le f \\ g \text{ semplice}}} \int_X g \, \mathrm{d}\mu = \sup_i \sum_i \alpha_i \mu(E_i) = 0.$$

Osservazione (sup essenziale di funzioni misurabili). Data f misurabile, definiamo

$$||f||_{\infty,X} := \inf \{ m \in [0, +\infty] \mid |f(x)| \le m \text{ quasi ovunque} \}.$$

Se $||f||_{\infty} < +\infty$, allora diciamo che esiste una costante L > 0 con $L = ||f||_{\infty,X}$, tale che

$$|f(x)| \le L$$

quasi ovunque. Infatti, per definizione di inf, $L = \lim_n m_n$, dove m_n verificano

$$|f(x)| \le m_n \quad \forall x \in X \setminus N_m, \quad \mu(N_m) = 0.$$

Definiamo $N = \bigcup_m N_m$, da cui si ottiene

$$\mu(N) \le \sum_{m=1}^{\infty} \mu(N_m) = 0.$$

Ovvero N è trascurabile. Preso $x \in X \setminus N$, vale

$$|f(x)| \le m_n \quad \forall n \in \mathbb{N}.$$

Formula di cambio di variabile applicata a funzioni radiali

Sia $f: [0, +\infty) \to \mathbb{R}$ misurabile (di solito si richiede misurabile e positiva oppure sommabile). Vala la seguente

$$\int_0^{+\infty} f(|x|) dx = c_n \cdot \int_0^{+\infty} f(\rho) \rho^{n-1} d\rho,$$

dove $c_n = n \mathcal{L}^n (\mathcal{B}(0,1)).$

Applichiamo questa formula alla stima di integrali di funzioni positive.

Esercizio. Sia

$$\psi(x) = \frac{1}{\|x\|^{\alpha}}$$

su $\mathcal{B}(0,1) \in \mathbb{R}^n$. Notiamo che $\psi(x) = f(\|x\|)$ con $f = 1/t^{\alpha}$. Usiamo la formula appena introdotta per determinare gli $\alpha \in \mathbb{R}$ per i quali ψ è sommabile su $\mathcal{B}(0,1)$.

$$\int_{\mathcal{B}(\ell,\infty)} \psi(x) \, \mathrm{d}x = c_n \int_0^1 \frac{1}{\rho^{\alpha}} \rho^{n-1} \, \mathrm{d}\rho = c_n \int_0^1 \rho^{n-1-\alpha} \, \mathrm{d}\rho = \begin{cases} \log(\rho) & n = \alpha \\ \frac{\rho^{n-\alpha}}{n-\alpha} & \text{altrimenti} \end{cases}$$

Concludendo,

$$\int_{B} (0,1) \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \Longleftrightarrow n > \alpha.$$

Esercizio. Con passaggi analoghi al precedente otteniamo

$$\int_{\mathbb{R}^{n}\setminus\mathcal{B}(0,1)}\frac{1}{\|x\|^{\alpha}}\,\mathrm{d}x<+\infty\Longleftrightarrow n<\alpha.$$

Esercizio. Vediamo per quali valori di β l'integrale

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x$$

converge.

Vale la seguente catena di uguaglianze.

$$\int_{\mathbb{R}^n} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x = \int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x + \int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x.$$

Studiamo separatamente i due pezzi dell'integrale.

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} dx = c_n \int_{\mathcal{B}(0,1)} \frac{1}{(\rho + \rho^2)^{\beta}} \rho^{n-1} d\rho = c_n \int_0^1 \frac{1}{\rho^{\beta}} \cdot \frac{\rho^{n-1}}{(1+\rho)^{\beta}} d\rho$$
$$\approx \int_0^1 \rho^{n-1-\beta} d\rho < +\infty \iff \beta < n.$$

Inoltre,

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\left\|x\right\| + \left\|x\right\|^{2}\right)^{\beta}} \, \mathrm{d}x = \int_{\mathbb{R}^{n} \setminus \mathcal{B}(0,1)} \frac{1}{\rho^{2\beta}} \cdot \frac{\rho^{n-1}}{\left(\frac{1}{\rho} + 1\right)^{\beta}} \, \mathrm{d}\rho \approx \int_{1}^{+\infty} \frac{\rho^{n-1}}{\rho^{2\beta}} \, \mathrm{d}r ho < +\infty \Longleftrightarrow 2\beta > \alpha.$$

In conclusione, l'integrale è finito se $n > \beta > n/2$.

Esercizio. Studiare l'insieme di finitezza al variare del parametro α dell'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^\alpha} \, \mathrm{d}x$$

Osserviamo che la norma 1 e 2 sono legate dalle seguenti disuguglianze

$$\frac{\|x\|_1}{n} \le \|x\|_2 \le \|x\|_1.$$

Studiamo una maggiorazione per l'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx \le \int_{[0,1]^n} \frac{1}{\|x\|^{\alpha}} dx \le \int_{B(0,\sqrt{n})} \frac{1}{\|x\|^{\alpha}} dx < +\infty \iff \alpha < n,$$

dunque

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x < +\infty \quad \text{se } \alpha < n.$$

Vediamo ora una minorazione.

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x = \frac{1}{2^n} \int_{[-1,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x \ge \frac{1}{2^n} \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x \approx \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \Longleftrightarrow \alpha < n.$$

Dunque l'integrale $\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx$ converge se solo se $\alpha < n$.

Esercizi per casa.

(1) Dimostrare che date f, g misurabili ed $r, p_1, p_2 > 0$ tali che $1/r = 1/p_1 + 1/p_2$. Allora vale $||f \cdot g||_r \le ||f||_{p_1} + ||g||_{p_2}.$

Suggerimento. Usare Hölder osservando che $1 = \frac{r}{p_1} + \frac{r}{p_2} = \frac{1}{(p_1/r)} + \frac{1}{(p_2/r)}$.

(2) Dimostrare che date f_1, \ldots, f_n misurabili e $p_i > 0$ tali che $1/p_1 + \ldots + 1/p_n = 1$ si ha $\|f_1 \cdots f_n\|_1 \leq \|f_1\|_{p_1} \cdots \|f_n\|_{p_n}.$

Suggerimento. Fare il primo passo dell'induzione e usare la formula precedente scegliendo r in modo corretto.

2.3 Costruzione spazi L^p

Fissiamo (X, \mathcal{A}, μ) come sempre.

Definizione. Sia \mathcal{L}^p l'insieme delle funzioni $f\colon X\to\mathbb{R}$ o \mathbb{R}^d misurabili tali che $\|f\|_p<+\infty$. Osservazioni.

• \mathscr{L}^p è un sottospazio vettoriale dello spazio vettoriale dato da $\{f \colon X \to \mathbb{R} \mid f \text{ misurabile}\}$ e $\|\cdot\|_p$ è una semi-norma.

Dimostrazione.

- o \mathscr{L}^p è chiuso per moltiplicazione per scalari.
- $\circ f_1, f_2 \in \mathcal{L}^p \implies f_1 + f_2 \in \mathcal{L}^p$
- o Dalla definizione segue subito $\|\lambda f\|_p = |\lambda| \cdot \|f\|_p$ l'omogeneità della norma.
- o Dalla disuguaglianza di Minkowski segue che $\|\cdot\|_p$ è una semi-norma.
- In particolare non è una norma se $\{0\} \subsetneq \{f \mid ||f||_p = 0\}$ ovvero se \mathcal{A} contiene insiemi non vuoti di misura nulla.
- In generale dato V spazio vettoriale e $\|\cdot\|$ semi-norma su V possiamo inotrdurre $N\coloneqq\{v\mid \|v\|=0\}$. N risulta essere un sottospazio di V e la norma data da $\|[v]\|\coloneqq\|v\|$ per $[v]\in V/N$ è ben definita ed è proprio una norma su V/N.
- Nel caso della della norma $\|\cdot\|_p$ abbiamo che $[f_1]=[f_2]\iff [f_1-f_2]=0\iff f_1-f_2=0$ quasi ovunque.

Definizione. Poniamo $N \coloneqq \{f \mid \|f\|_p = 0\}$ e definiamo gli **spazi** L^p come

$$L^p := \mathcal{L}^p/N = \mathcal{L}^p/\sim \qquad \left\| [f] \right\|_p \coloneqq \left\| f \right\|_p$$

Notazione. Ogni tanto serve precisare meglio l'insieme di partenza e di arrivo degli spazi L^p ed in tal caso useremo le seguenti notazioni

$$L^{p} = L^{p}(X) = L^{p}(X, \mu) = L^{p}(X, \mathcal{A}, \mu) = L^{p}(X, \mu; \mathbb{R}^{d})$$

Nota. Nella pratica non si parla mai di "classi di funzioni" e si lavora direttamente parlando di "funzioni in L^p ". Le "operazioni" comuni non creano problemi però in certi casi bisogna stare attenti di star lavorando con oggetti ben definiti ad esempio:

- Preso $x_0 \in X$ consideriamo l'insieme $\{f \in L^p \mid f(x_0) = 0\}$ non è un sottoinsieme ben definito (a meno che $\mu(\{x_0\}) > 0$) di L^p in quanto possiamo variare f su un insieme di misura nulla.
- Invece l'insieme $\{f\in L^1\mid \int_X f\,\mathrm{d}\mu=0\}$ è ben definito.

2.4 Completezza degli spazi L^p

Vediamo ora la proprietà più importante degli spazi L^p .

Teorema. Per $p \in [1, +\infty]$ lo spazio L^p è completo.

Lemma 1. Dato (Y, d) spazio metrico, allora

i) Ogni successione (y_n) tale che

$$\sum \infty_{n=1} d(y_n, y_{n+1}) < +\infty$$

è di Cauchy, e in particolare converge a qualche $y \in Y$ se Y è completo.

ii) Se ogni (y_n) tale che $\sum \infty_{n=1} d(y_n, y_{n+1}) < +\infty$ converge allora Y è completo.

Osservazione. Non tutte le successioni di Cauchy (y_n) soddisfano quella condizione, ad esempio su \mathbb{R} la successione $(-1)^n)/n$ è di Cauchy però

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+n} \approx \sum_{n=1}^{\infty} \frac{1}{n} \to \infty$$

ma come abbiamo visto nella ii) ci basta per mostrare la completezza dello spazio che è ciò che ci interessa veramente.

Dimostrazione.

i) Dati n > m abbiamo che

$$d(y_m, y_n) \le \sum_{k=m}^{n-1} d(y_k, y_{k+1}) \le \sum_{k=m}^{\infty} d(y_k, y_{k+1}) \to 0$$

in quanto è la coda di una serie convergente quindi

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} \ \text{tale che} \ \sum_{k=m_{\varepsilon}}^{\infty} d(y_k, y_{k+1}) < \varepsilon \implies \forall n > m \ge m_{\varepsilon} \ d(y_m, y_n) \le \varepsilon$$

ii) Basta far vedere che data (y_n) di Cauchy esiste una sottosuccessione y_{n_k} tale che

$$\sum_{k=1}^{\infty} d(y_{n_k}, y_{n_{k+1}}) < +\infty$$

ma $\forall k \; \exists n_k \text{ tale che } \forall n, m \geq n_k \; d(y_m, y_n) \leq \frac{1}{2^k} \text{ dunque } d(y_{n_k}, y_{n_{k+1}}) \leq \frac{1}{2^k}.$ Quindi per ipotesi y_{n_k} converge a qualche $y \in Y$ ed anche $y_n \to y$.

Lemma 2. Dato Y spazio normato, i seguenti fatti sono equivalenti

i) Y è completo.

ii)
$$\sum_{n=1}^{\infty} y_n$$
 converge in Y per ogni (y_n) tale che $\sum_{n=1}^{\infty} \|y_n\| < +\infty$ ovvero $\|y - \sum_{n=1}^{N} y_n\| \to 0$.

Dimostrazione. È un corollario del lemma precedente.

Lemma 3 (Minkowski per somme infinite). Date delle funzioni (g_n) funzioni positive su X allora

$$\left\| \sum_{n=1}^{\infty} g_n \right\|_p \le \sum_{n=1}^{\infty} \left\| g_n \right\|_p$$

Dimostrazione. Per ogni N abbiamo che

$$\left\| \sum_{n=1}^{N} g_n \right\|_{p}^{p} \le \left(\sum_{n=1}^{N} \|g_n\|_{p} \right)^{p} \le \left(\sum_{n=1}^{\infty} \|g_n\|_{p} \right)^{p}$$

 \mathbf{e}

$$\left\| \sum_{n=1}^{N} g_n \right\|_p^p = \int_X \left(\sum_{n=1}^{N} g_n(x) \right)^p d\mu(x) \xrightarrow{N} \int_X \left(\sum_{n=1}^{\infty} g_n(x) \right)^p d\mu(x)$$

per convergenza monotona.

Dimostrazione (Completezza spazi L^p).

- Se $p = +\infty$: si tratta di vedere che data (f_n) di Cauchy in $L^{\infty}(X)$ esiste E con $\mu(E) = 0$ tale che (f_n) è di Cauchy rispetto allora norma del sup in $X \setminus E$. [TODO: Finire]
- Se $p < +\infty$: per il Lemma 2, basta far vedere che data $(f_n) \subset L^p(X)$ tale che $\sum_{n=1}^{\infty} \|f_n\|_p < +\infty$ allora $\sum_n f_n$ converge a qualche $f \in L^p(X)$.

La dimostrazione è suddivisa in tre passi, prima costruiamo f, poi mostriamo che f_n convege a f ed infine mostriamo $f \in L^p(X)$.

o Passo 1: Per ipotesi abbiamo

$$\infty > \sum_{n=1}^{\infty} \|f_n\|_p = \sum_{n=1}^{\infty} \||f_n|\|_p \ge \left\| \sum_{n=1}^{\infty} |f_n| \right\|_p = \left(\int \left(\sum_{n=1}^{\infty} |f_n(x)| \right)^p d\mu(x) \right)^{1/p}$$

quindi $\sum_{n=1}^{\infty} |f_n(x)| < +\infty$ per ogni $x \in X \setminus E$ con $\mu(E) = 0$. Quindi $\sum_{n=1}^{\infty} f_n(x)$ converge a qualche f(x) per ogni $x \in X \setminus E$ ed a questo punto ci basta estendere f a zero¹.

o Passo 2: Fissiamo N ed osserviamo che $\forall x \in X \setminus E$ abbiamo

$$\left| f(x) - \sum_{n=1}^{N} f_n(x) \right| = \left| \sum_{n=N+1}^{\infty} f_n(x) \right| \le \sum_{n=N+1}^{\infty} |f_n(x)|$$

da cui otteniamo

$$\left\| f - \sum_{n=1}^{N} f_n \right\|_p \le \left\| \sum_{n=N+1}^{\infty} |f_n| \right\|_p \le \sum_{n=N+1}^{\infty} \|f_n\|_p$$

dove l'ultimo termine è la coda di una serie convergente.

¹Una costruzione alternativa degli spazi L^p potrebbe anche partire da funzioni definite quasi ovunque, questo ovvierebbe al problema di estendere a 0 la funzione f appena costruita. Però diventa più complicato mostrare di essere in uno spazio vettoriale poiché per esempio serve ridefinire + per funzioni definite quasi ovunque.

o Passo 3: In particolare rileggendo il passo precedente per N=0 otteniamo

$$||f||_p \le \sum_{n=1}^{\infty} ||f_n||_p < +\infty \implies f \in L^p$$

Esercizio. Sia $f: X \to [0, +\infty]$ allora $\int_X f \, d\mu < +\infty \implies f(x) < +\infty$ per quasi ogni x.

Dimostrazione. Sia $E := \{x \mid f(x) = +\infty\}$, allora l'idea è che

$$\infty > \int_X f \, \mathrm{d}\mu \ge \int_E f \, \mathrm{d}\mu = +\infty \cdot \mu(E)$$

più precisamente osserviamo che $\forall m \in [0, +\infty)$ abbiamo $f \cdot \mathbb{1}_E \geq m \cdot \mathbb{1}_E$ quindi integrando ricaviamo

$$\underbrace{\int_E f \, \mathrm{d}\mu}_I \ge m \cdot \mu(E) \implies \mu(E) \le \frac{I}{m} \xrightarrow{m \to +\infty} 0$$

2.5 Nozioni di convergenza per successioni di funzioni

Fissiamo X, \mathcal{A}, μ e prendiamo $f, f_n \colon X \to \mathbb{R}$ (o \mathbb{R}^k) misurabili.

Definizione. Riportiamo le definizioni di alcune nozioni di convergenza.

- Uniforme : $\forall \varepsilon \; \exists n_{\varepsilon} \; \text{tale che} \; ||f(x) f_n(x)|| < \varepsilon \; \; n > n_{\varepsilon}.$
- Puntuale: $f_n \to f \ \forall x \in X$.
- Puntuale μ -quasi ovunque : $f_n \to f$ per μ -q.o. $x \in X$.
- In $L^p: ||f_n f||_p \to 0.$
- In misura : $\forall \varepsilon > 0$ $\mu(\{x \mid |f_n(x) f(x)| \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0$.

Osservazione. Abbiamo le seguenti implicazioni ovvie delle diverse nozioni di convergenza:

uniforme \Rightarrow puntuale \Rightarrow puntuale μ q.o.

Proposizione. Valgono le seguenti.

- i) Data $f_n \to f$ q.o. e $\mu(X) < +\infty$, allora $f_n \to f$ in misura.
- ii) (Severini-Egorov): Data $f_n \to f$ q.o. e $\mu(X) < +\infty$, allora $\forall \delta > 0$ esiste $E \in \mathcal{A}$ tale che $\mu(E) < \delta$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iii) $f_n \to f$ in L^p , $p < +\infty$, allora $f_n \to f$ in misura.

¹In questo corso non è strettamente necessario ricordarsi come si facciano tutti questi esercizietti di teoria della misura ma è bene saperli applicare in automatico quando serve.

- iii') $f_n \to f \in L^{\infty}$, allora $\exists E$ tale che $\mu(E) = 0$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iv) $f_n \to f$ in misura, allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.
- v) $f_n \to f$ in L^p , allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.

Osservazione. In i) e ii) l'ipotesi $\mu(X) < +\infty$ è necessaria. Infatti, preso $X = \mathbb{R}$ e $f_n = \mathbb{1}_{[n,+\infty)}$ si ha che $f_n \to 0$ ovunque ma f_n non converge a 0 in misura, e f_n non converge a 0 uniformemente in $\mathbb{R} \setminus E$ per ogni E di misura finita.

Lemma (disuguaglianza di Markov). Data $g: X \to [0, +\infty]$ misurabile e m > 0 si ha

$$\mu\left(\left\{x \in X \mid g(x) \ge m\right\}\right) \le \frac{1}{m} \int_X g \,\mathrm{d}\mu$$

Dimostrazione. Poniamo $E := \{x \in X \mid g(x) \geq m\}$. Osserviamo che $g \geq m \cdot \mathbb{1}_E$. Dunque vale

$$\int_{X} g \, \mathrm{d}\mu \ge \int_{X} m \cdot \mathbb{1}_{E} \, \mathrm{d}\mu = m \cdot \mu \left(\left\{ x \in X \mid g(x) \ge m \right\} \right)$$

da cui la tesi. \Box

Lemma (Borel-Cantelli). Dati $(E_n) \subset \mathcal{A}$ tali che $\sum \mu(E_n) \leq +\infty$, l'insieme

$$E := \{x \in X \mid x \in E_n \text{ frequentemente}\}$$

ha misura nulla. Cioè per $\mu\text{-q.o.}$ $x,\,x\notin E_n$ definitivamente (in n.)

Dimostrazione. Osserviamo che

$$E = \bigcap_{m=1}^{\infty} \left(\underbrace{\bigcup_{n=m}^{\infty} E_n}_{F_m} \right).$$

Allora

$$\mu(E) = \lim_{F_m \downarrow E \& \mu(F_1) < +\infty} \lim_{m \to \infty} \mu(F_m) \le \lim_{m \to \infty} \sum_{n=m}^{\infty} \mu(E_n) = 0.$$

Osservazione. L'ipotesi $\sum \mu(E_n) < +\infty$ non può essere sostituita con $\mu(E_n) \to 0$.

Ora dimostriamo la proposizione.

Dimostrazione.

Definiamo gli insiemi

$$A_n^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon\},$$

$$B_m^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ per qualche } n \ge m\} = \bigcup_{n=m}^{\infty} A_n^{\varepsilon},$$

$$A_n^{\varepsilon} := \{x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ frequentemente}\} = \{x \in A_n^{\varepsilon} \text{ frequentemente}\} = \bigcap_{m=1}^{\infty} B_m^{\varepsilon}.$$

i) Per ipotesi, $f_n \to f$ quasi ovunque, cioè $\mu(B^{\varepsilon})=0$ per ogni $\varepsilon>0$, ma $B_m^{\varepsilon}\downarrow B^{\varepsilon}$ e $\mu(X)<+\infty$. Allora

$$\lim_{m \to +\infty} \mu(B_m^{\varepsilon}) = \mu(B^{\varepsilon}) = 0 \Rightarrow \lim_{m \to \infty} \mu(A_m^{\varepsilon}) = 0.$$

ii) Dalla dimostrazione precedente, abbiamo $\lim_{m\to\infty}\mu(B_m^{\varepsilon})=0$. Allora per ogni k esiste un m_k tale che $\mu\left(B_m^{1/k}\right)\leq \delta/2^k$. Pongo $E:=\bigcup_k B_{m_k}^{1/k}$ per ogni k; allora $\mu(E)\leq \delta$. Inoltre,

$$x \in X \setminus E \Rightarrow x \notin B_{m_k}^{1/k} \ \forall k \iff x \notin A_n^{1/k} \ \forall k, n \ge m_k$$

$$\Rightarrow |f(x)f_n(x)| < \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Rightarrow \sup_{x \in X \setminus E} |f(x) - f_n(x)| \le \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Rightarrow f - f_m \text{ uniformemente su } X \setminus E.$$

iii) Dobbiamo mostrare che per ogni $\varepsilon > 0$ $\mu(A_n^{\varepsilon}) \xrightarrow{n} 0$. Usando la disuguaglianza di Markov ottengo

$$\mu\left(A_n^{\varepsilon} = \left\{x \middle| \overbrace{|f_n(x) - f(x)|}^{g} \ge \varepsilon^p\right\}\right) \le \frac{1}{m} \int_X g \, \mathrm{d}\mu = \frac{1}{\varepsilon^p} \|f_n - f\|_p^p \xrightarrow{n \to +\infty} 0.$$

iii') Definiamo $E_n := \{x \mid |f_n(x) - f(x)| > ||f_n - f||_{\infty}\}$ per ogni n, allora $\mu(E_n) = 0$. Poniamo $E = \bigcup_n E_n$ e $\mu(E) = 0$, dunque

$$\sup_{x \in X \setminus E} |f_n(x) - f(x)| \le ||f_n - f||_{\infty} \to 0.$$

iv) per ipotesi, $f_n \to f$ in misura, cioè

$$\forall \varepsilon > 0 \quad \mu\left(A_n^{\varepsilon}\right) \xrightarrow{n \to +\infty} 0$$

$$\Rightarrow \forall k \ \exists n_k \colon \mu\left(A_{n_k}^{1/k}\right) \le \frac{1}{2^k}$$

$$\Rightarrow \sum_{k} \mu\left(A_{n_k}^{1/k}\right) < +\infty.$$

Allora per Borel-Cantelli, si ha per μ -quasi ogni $x, x \notin A_{n_k}^{1/k}$ definitivamente in k, cioè $||f_{n_k}(x) - f(x)|| < 1/k$ definitivamente in k, cioè $f_{n_k}(x) \xrightarrow{k} f(x)$.

v) [TODO].

2.5.1 Prodotto scalare su L^2

Date $f_1, f_2 \in L^2(X)$ si pone

$$\langle f_1, f_2 \rangle \coloneqq \int_X f_1 \cdot f_2 \, \mathrm{d}\mu.$$

Osservazioni.

• La definizione di $\langle f_1, f_2 \rangle$ è ben posta. Infatti, basta far vedere che $\int_X |f_1 f_2| d\mu < +\infty$, che segue da Hölder.

$$\int_{X} |f_1 f_2| \, \mathrm{d}\mu \le \|f_1\|_2 \|f_2\|_2 < +\infty$$

• $||f||_2^2 = \langle f, f \rangle$ per ogni $f \in L^2(X)$.

• Inoltre,
$$\left| \int_X f_1 f_2 \right| d\mu \le \int_X |f_1 f_2| d\mu$$
 quindi $|\langle f_1, f_2 \rangle| \le ||f_1||_2 ||f_2||_2$ (Cauchy-Schwartz).

• L'operatore $\langle \ , \ \rangle$ è un prodotto scalare definito positivo.

Osservazioni.

• Dato C spazio vettoriale reale con prodotto scalare $\langle \ , \ \rangle$, allora $\langle \ , \ \rangle$ si ricava dalla norma associata $\|\cdot\|$ tramite l'identità di polarizzazione:

$$\langle v_1, v_2 \rangle = \frac{1}{4} (\|v_1 + v_2\|^2 - \|v_1 - v_2\|^2).$$

ullet Dato V come sopra, vale l'identità del parallelogramma:

$$||v_1 + v_2||^2 + ||v_1 - v_2||^2 = 2||v_1||^2 + 2||v_2||^2 \quad \forall v_1, v_2 \in V.$$

Usando questa identità di dimostra che la norma di L^p deriva da un prodotto scalare solo per p=2.

Proprietà. Sia V uno spazio vettoriale normato con norma $\|\cdot\|$. Allora vale l'identità del parallelogramma se solo se $\|\cdot\|$ deriva da un prodotto scalare.

Esempio. La norma di $L^p([-1,1])$, deriva da un prodotto scalare solo per p=2. Prendiamo $f_1 = \mathbb{1}_{[-1,0]}$ e $f_2 = \mathbb{1}_{[0,+1]}$. Allora

$$||f_1 + f_2||_p^p = \int_{-1}^1 1 \, \mathrm{d}x = 2 \Rightarrow ||f_1 + f_2||_p = 2^{1/p}$$
$$||f_1 - f_2||_p = ||f_1 + f_2||_p = 2^{1/p}, \quad ||f_1||_p = ||f_2||_p = 1$$

Se vale l'identità del parallelogramma allora

$$||f_1 + f_2||_p^2 + ||f_1 - f_2||_p^2 = 2 ||f_1||_p^2 + 2 ||f_2||_p^2$$

cioè

$$2^{2/p} + 2^{2/p} = 2 \cdot 1 + 2 \cdot 1 \iff p = 2.$$

Domanda. Per quali X, \mathcal{A}, μ vale la stessa conclusione?

2.6 Controesempi sulle convergenze

Vediamo un controesempio che mostra che tutte le implicazioni sui vari tipi di convergenza sono ottimali ovvero

- i) $f_n \to f$ in misura $\implies f_n \to f$ q.o.
- ii) $f_n \to f$ in L^p con $p < +\infty \implies f_n \to f$ q.o.
- iii) $\mu(E_n) \to 0 \implies \text{per q.o } x \text{ si ha } x \notin E_n \text{ definitivamente.}$

Dimostrazione. Consideriamo gli insiemi $I_1 = \left[1, 1 + \frac{1}{2}\right], I_2 = \left[1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}\right], \dots$

$$I_n \coloneqq \left[\sum_{k=1}^n \frac{1}{k}, \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

e consideriamo la loro proiezione "modulo" [0,1] usando la funzione $p\colon \mathbb{R} \to [0,1)$ parte frazionaria data da

$$p(x) \coloneqq x - \lfloor x \rfloor$$

e chiamiamo $E_n := p(I_n)$. Per ogni n abbiamo che $|I_n| = |E_n| = 1/n$ e $\bigcup_n I_n = [1, +\infty)$ (in quanto $\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$) e quindi ogni $x \in [0, 1)$ appartiene ad E_n per infiniti n ed in particolare questo mostra la iii).

[TODO: Disegnino]

Per la i) basta consideare $\mathbb{1}_{E_n} \to 0$ in misura (in quanto $|E_n| \to 0$) ma $\mathbb{1}_{E_n} \not\to 0$ q.o., anzi $\forall x \in [0,1) \, \mathbb{1}_{E_n}(x) \not\to 0$ e la ii) segue analogamente.

2.6.1 Approssimazioni di funzioni in L^p

Vediamo ora alcune classi di funzioni dense in L^p che risulteranno essere un utile strumento da usare nelle dimostrazioni.

Nota. Ricordiamo la nozione di insieme denso in uno spazio metrico. Sia (X, d) uno spazio metrico e $Y \subset X$. Allora Y è denso in X se solo se per ogni $x \in X$, esiste una successione $(y_n)_{n\in\mathbb{N}}$ in Y che tale che $x = \lim_n y_n$.

Per ora sia (X, \mathcal{A}, μ) in generale.

Esercizio. Le funzioni limitate in L^p sono dense in L^p .

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione di funzioni $f_n \in L^p(X)$ limitate tali che $f_n \to f$ in L^p , consideriamo

$$f(x) (:= f(x) \land n) \lor (-n)$$

vorremmo mostrare che $f_n \to f$ in L^p ovvero

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu \to 0$$

intanto vediamo che per la convergenza puntuale basta osservare che se $n \ge |f(x)|$ abbiamo che $\forall x f_n(x) = f(x) \implies f_n(x) \stackrel{n}{\longrightarrow} f(x) \implies |f_n(x) - f(x)|^p \to 0.$

Per concludere basta applicare convergenza dominata usando come dominazione direttamente $|f(x) - f_n(x)| \le |f(x)| \implies |f(x) - f_n(x)|^p \le |f(x)|^p$ e notiamo che $|f|^p \in L^1(X)$.

Proposizione. Sia¹ $\widetilde{\mathscr{S}} := \operatorname{Span}(\{\mathbb{1}_E \mid E \in \mathcal{A}, \mu(E) < +\infty\})$, allora $\widetilde{\mathscr{S}}$ è denso in $L^p(X)$.

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione che approssima f in $\widetilde{\mathscr{S}}$.

• Caso 1: Se f > 0 allora fissiamo $\varepsilon > 0$ e per ogni $k = 1, 2, \ldots$ e poniamo

$$A_k^\varepsilon := \{x \mid k\varepsilon \le f(x) \le (k+1)\varepsilon\}$$

¹Lo span è inteso come combinazioni lineari

risulta che A_k^{ε} è misurabile ed ha misura finita. Ora consideriamo la successione di funzioni parametrizzata da ε data da

$$f_{\varepsilon}(x) := \sum_{1 \le k \le 1/\varepsilon^2} k \varepsilon \cdot \mathbb{1}_{A_{\varepsilon}^k}(x) \in \widetilde{\mathscr{S}}$$

[TODO: Disegnino]

Osserviamo che vale anche $f_{\varepsilon}(x)=\max\{k\varepsilon\mid k\varepsilon\leq f(x)\ \mathrm{e}\ k\leq 1/\varepsilon^2\}$ e mostriamo la seguente 1

 $\int_{Y} |f(x) - f_{\varepsilon}(x)|^{p} d\mu(x) \xrightarrow{\varepsilon \to 0} 0$

- o Convergenza puntuale: Per l'identità precedente abbiamo che $0 \le f(x) f_{\varepsilon}(x) \le \varepsilon$ se $f(x) \le 1/\varepsilon$.
- o Dominazione: Possiamo usare nuovamente $|f(x)-f_{\varepsilon}(x)|^p \leq |f(x)|^p < +\infty$ in quanto $f \in L^p(X)$.

[TODO: Disegnino]

- Caso 2: Sia $f: X \to \mathbb{R}$ allora si può rifare la dimostrazione precedente oppure si può semplicemente consideare $f_{\varepsilon} := (f^+)_{\varepsilon} (f^-)_{\varepsilon}$.
- Caso 3: Generalizziamo la proposizione al caso di $f: X \to \mathbb{R}^d$ come segue Proposizione (Generalizzata). Sia $\widetilde{\mathscr{S}} := \{ \sum_i \alpha_i \mathbb{1}_{E_i} \mid \alpha_i \in \mathbb{R}^d, E_i \in \mathcal{A}, \mu(E_i) < +\infty \} \implies \widetilde{\mathscr{S}}$ è denso in $L^p(X; \mathbb{R}^d)$.

Dimostrazione. (Idea) Basta approssimare componente per componente.

Sia ora X uno spazio metrico e {aperti} $\subset A$.

Proposizione. Sia $\widetilde{\mathscr{S}_{\ell}} := \{ \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}} \mid \alpha_{i} \in \mathbb{R}^{d}, E_{i} \in \mathcal{A}, \mu(E_{i}) < +\infty, E_{i} \text{ limitati} \}$ allora $\widetilde{\mathscr{S}_{\ell}}$ è denso in $L^{p}(X; \mathbb{R}^{d})$ per $p < +\infty$.

Osservazione. In generale l'enunciato non vale per $p=+\infty$. Ad esempio preso $L^{\infty}(\mathbb{R})$ e f=1 non si può approssimare con funzioni a supporto limitato (come quelle in $\widetilde{\mathscr{S}}_{\ell}$. In particolare data g con supporto A limitato |f-g|=1 su $\mathbb{R} \backslash A$ e siccome $|\mathbb{R} \backslash A|>0$ abbiamo $||f-g||_{\infty}\geq 1$).

Dimostrazione. $(\widetilde{\mathscr{S}_\ell}$ è denso in $L^p)$ Per prima cosa vediamo un lemma che useremo assieme alla proposizione precedente.

Lemma. Dato $E \in \mathcal{A}, \mu(E) < +\infty$ esiste $E_n \in \mathcal{A}$ con E_n limitati tali che $E_n \subset E$ e $\mu(E \setminus E_n) \to 0$ e quindi $\|\mathbb{1}_E - \mathbb{1}_{E_n}\|_p = \mu(E \setminus E_n)^{1/p} \xrightarrow{n} 0$ (e $\mathbb{1}_{E_n} \in \widetilde{\mathscr{S}_\ell}$).

Dimostrazione. Dato E con $\mu(E) < +\infty$ prendiamo $x_0 \in X$ e poniamo $E_n := E \cap \mathcal{B}(x_0, n)$; $E_n \subset E$ e $E \setminus E_n \downarrow \varnothing \implies \mu(E \setminus E_n) \xrightarrow{n} 0$.

Intuitivamente $\widetilde{\mathscr{S}_{\ell}}$ è denso in $\widetilde{\mathscr{S}}$ che a sua volta è denso in L^p (usando la definizione di densità topologica la tesi è quasi ovvia mentre usando la definizione per successioni bisogna passare per un procedimento diagonale).

¹Notiamo che qui stiamo applicando il teorema di convergenza dominata su una famiglia parametrizzata da ε e non su una successione ma si può verificare facilmente che il teorema (ed anche gli altri risultati di convergenza di successioni di funzioni) si può estendere semplicemente prendendo ε = 1/n per n → ∞.

Ora sia $X \subset \mathbb{R}^n, \mu = \mathscr{L}^n$ e

$$C_C(\mathbb{R}^n) := \{\text{funzioni a supporto compatto}\}\$$

notiamo che $C_C(\mathbb{R}^n) \subset L^p$ per ogni p.

Proposizione. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense in $L^p(X)$ per $p < +\infty$.

Vediamo prima alcuni lemmi.

Lemma. Dato $E \subset \mathbb{R}^n$ limitato (e quindi di misura finita) esiste $f_{\varepsilon} \in C_C(\mathbb{R}^n)$ tale che $f_{\varepsilon} \xrightarrow{\varepsilon \to 0} \mathbb{1}_E$ in $L^p(\mathbb{R}^n)$ e quindi in $L^p(X)$.

Dimostrazione. Per regolarità della misura di Lebesgue abbiamo che per ogni ε esistono $C_{\varepsilon} \subset E \subset A_{\varepsilon}$ tali che $|A_{\varepsilon} \setminus C_{\varepsilon}| \leq \varepsilon$ e prendiamo $f_{\varepsilon} \colon \mathbb{R}^n \to [0,1]$ continua tale che

$$f_{\varepsilon} = 1 \text{ su } C_{\varepsilon}$$
 $f_{\varepsilon} = 0 \text{ su } \mathbb{R}^n \setminus A_{\varepsilon}$

in particolare sappiamo che su $A_\varepsilon \vee C_\varepsilon$ vale $|f_\varepsilon - \mathbb{1}_E| \leq 1$

$$\implies \|f_{\varepsilon} - \mathbb{1}_E\|_p^p = \int_{A_{\varepsilon} \setminus C_{\varepsilon}} |f_{\varepsilon} - \mathbb{1}_E|^p \, \mathrm{d}x$$

Lemma. (di Urysohn) Dati C_0, C_1 chiusi disgiunti in X spazio metrico esiste una funzione $f: X \to [0, 1]$ continua tale che f = 0 su C_0 e f = 1 su C_1 .

Dimostrazione. Posta $d(x,C) = \inf\{d(x,y) \mid y \in C\}$ basta consideare

$$f(x) = \frac{d(x, C_0)}{d(x, C_0) + d(x, C_1)}$$

Dimostrazione. $(C_C(\mathbb{R}^n) \text{ è denso in } L^p(X))$

Segue dalla proposizione e dal lemma precedente.

2.7 Esercitazione del 13 ottobre

2.7.1 Esercizi su spazi $L^p(X)$ al variare di p e dello spazio X

Sia $X \subset \mathbb{R}^n$, μ la misura di Lebesgue e $1 \leq p_1 \leq p_2$.

Domanda. Possiamo confrontare gli spazi $L^{p_1}(X)$ e $L^{p_2}(X)$? In generale no.

Vediamo informalmente perché. Posto $X = (0, +\infty)$, gli integrali

$$\int_0^{+\infty} \frac{1}{(1+x)^{\beta p}} \, \mathrm{d}x, \qquad \int_0^{+\infty} \frac{1}{x^{\beta p}} \cdot \mathbb{1}_{[0,1]}(x) \, \mathrm{d}x = \int_0^1 \frac{1}{x^{\beta p}} \, \mathrm{d}x$$

sono maggiorati dall'integrale di $1/x^{\alpha}$ dove l'esponente α è rispettivamente più piccolo e più grande di $\beta \cdot p$.

Vediamo quanto detto finora più formalmente.

Cerchiamo una funzione $f \in L^{p_1}(0,+\infty) \setminus L^{p_2}(0,+\infty)$ e una funzione $g \in L^{p_2}(0,+\infty) \setminus L^{p_1}(0,+\infty)$. La funzione f definita come segue

$$f(x) := \begin{cases} 1/x^{\beta} & x \in (0,1) \\ 0 & x \ge 1 \end{cases}$$

ha integrale

$$\int_0^{+\infty} f(x)^{p_1} dx = \int_0^1 \frac{1}{x^{\beta p_1}} dx < +\infty \iff \beta \cdot p_1 < 1, \ 0 < p_1 < p_2 \iff \frac{1}{p_2} < \frac{1}{p_1}$$

e

$$\int_0^{+\infty} f(x)^{p_2} dx = \int_0^1 \frac{1}{x^{\beta p_2}} dx = +\infty \iff \beta \cdot p_2 \ge 1$$

basta prendere $\beta \in [1/p_2, 1/p_1)$.

Ora cerco $g \in L^2(0,+\infty) \setminus L^{p_1}(0,+\infty)$. Definisco g(x) come segue

$$g(x) \coloneqq \frac{1}{(1+x)^{\alpha}}$$

da cui

$$\int_0^{+\infty} g(x)^{p_2} dx < +\infty \iff \alpha \cdot p_2 > 1 \quad \text{e} \quad \int_0^{+\infty} g(x)^{p_1} dx = +\infty \iff \alpha \cdot p_1 \le 1$$

Conclusione. In generale non c'è confrontabilità fra gli spazi L^p . La confrontabilità, dipende infatti dall'insieme X su cui sono definiti.

Un caso particolare è dato ponendo $p_1 < p_2$ e $\mu(X) < +\infty$. In tal caso $L^{p_2}(X) \subset L^{p_1}(X)$.

Data $f \in L^{p_2}(X)$, cioè con $\int_X |f|^{p_2} d\mu < +\infty$ vediamo che $\int_X |f|^{p_1} d\mu < +\infty$.

Usiamo Hölder:

$$\int_{X} |f|^{p_{1}} d\mu \leq \left(\int_{X} \underbrace{|f(x)|^{p_{1}p}}_{|h(x)|^{p}} d\mu \right)^{1/p} \cdot \left(\int_{X} 1^{q} d\mu \right)^{1/q} \underbrace{\leq}_{p = p_{1}/p_{2}} \left(\int_{X} |f|^{p_{1}} d\mu \right)^{p_{1}/p_{2}} \left(\int_{X} 1^{q} d\mu \right)^{1/q}$$

$$= \underbrace{\|f\|_{L^{p_{2}}(X)}^{p_{1}} \cdot \mu(X)^{\frac{p_{2}-p_{1}}{p_{2}}}}_{q = (1 - \frac{1}{p}^{-1} = \frac{p}{p-1} = \frac{p_{2}/p_{1}}{p_{2}-p_{1}}} \|f\|_{L^{p_{2}}(X)}^{p_{1}} \cdot \mu(X)^{\frac{p_{2}-p_{1}}{p_{2}}}.$$

Dunque

$$\|f\|_{L^{p_1}(X)} \leq \|f\|_{L^{p_2}(X)} \cdot \mu(X)^{\frac{p_2-p_1}{p_1p_2}}.$$

L'inclusione

$$i \colon L^{p_2} \to L^{p_1}(X)$$

 $f \mapsto f$

è ben definita per quanto fatto sopra. Per esercizio vedere con quale topologia risulta continua. [TO DO]

Esercizio. [TO DO] Dato $p \ge 1$, stabilire se esistono $X, \mu, f \in L^p(X)$ e $f \notin L^q(X)$ per ogni $q \ne p, q \ge 1$.

Suggerimento. pensare a $X=(0,+\infty),\,\mu$ misura di Lebesgue.

Osservazione. $L^p(X)$ è uno spazio vettoriale di dimensione infinita, ossia ogni base algebrica ha cardinalità infinita. Vediamo il caso X=(0,1). Per trovare una base infinita, cerchiamo per ogni $N \in \mathbb{N}, f_1, \ldots, f_N \in L^p(0,1)$ tali che siano linearmente indipendenti. Vale a dire, presi $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ vale $\lambda_1 f_1 + \ldots + f_N = 0$ se solo se $\lambda_1 = \ldots = \lambda_N = 0$.

Ad esempio, definisco $f_i := \mathbb{1}_{i/N,(i+1)/N}$ (questa costruzione si può riprodurre per ogni $N \in \mathbb{N}$).

Ricordiamo che, essendo $L^p(X)$ uno spazio metrico, dato $Y \subset L^p$ vale la seguente caratterizzazione:

Y è compatto \iff Y è compatto per successioni \iff Y chiuso e totalmente limitato.

Osservazione. $Y\subset L^p(X)$ è un sottoinsieme che eredita la norma $\left\|\cdot\right\|_{L^p}$:

$$Y$$
 è completo \iff Y è chiuso.

Osservazione. In L^p i sottoinsiemi chiusi e limitati non sono compatti! In particolare le palle

$$Y = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte.

Ad esempio, mostriamo che in $L^p(0,1)$ le palle

$$B = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte. Per farlo, esibiamo una successione $\{f_n\}_{n\in\mathbb{N}}\subset B$ che non ammette sottosuccessioni convergenti. La costruiamo in modo che non abbia sottosuccessioni di Cauchy

$$f_n \colon (0,1) \to \mathbb{R}, \quad ||f_n - f_m||_{L^p} \ge c_0 > 0 \ \forall n \ne m.$$

Cerco $A_n \subset (0,1)$ tale che $|A_n \cap A_m| = 0$ per ogni $n \neq m$. Definiamo f_n come segue

$$f_n(x) := \begin{cases} 0 & \text{se } x \in (0,1) \setminus (1/(n+1), 1/n) \\ c_n > 0 & \text{altrimenti} \end{cases}$$

dove c_n è tale che

$$\left(\int_{1/n+1}^{1/n} c_n^p\right)^{1/p} = 1 \iff c_n^p \cdot (1/n - 1/(n+1)) = 1 \iff c_n^p = n \cdot (n+1).$$

Calcoliamo ora $||f_n - f_m||_{L^p}^p$ con $n \neq m$:

$$\int_0^1 |f_n(x) - f_m(x)|^p dx = \int |f_n - f_m|^p dx = \int_{1/n+1}^{1/n} |f_n|^p dx + \int_0^1 |f_m|^p dx = 1 + 1 = 2.$$

Si osserva che quanto detto sopra vale anche per $p = +\infty$.

Esercizio. [TO DO] Sia $E=\{f\in L^1(1,+\infty)\mid |f(x)|\leq 1/x^2\ \mathrm{e}\ x\in [1,+\infty)\}.$

- E è limitato in L^1 ?
- E è chiuso in L^1 ?
- E è compatto in L^1 ?

Esercizio. [TO DO]

- Dire se $f_n(x) = x^n$, n = 0, ..., N è un insieme di funzioni linearmente indipendenti in $L^p([0,1])$.
- Dire se $\{f_n\} \subset L^p(0,1)$ è compatta in $L^p(0,1)$.

Suggerimento. Studiare il limite puntuale.

2.7.2 Spazi ℓ^p

Prendiamo $X = \mathbb{N}$ e $\mu = \#$ la misura che conta i punti.

Osservazione. Definiamo

$$\ell^p = L^p(\mathbb{N}, \#) = \left\{ (x_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{+\infty} |x_n|^p < +\infty \right\}$$

con $p \ge 1$ e $p \ne +\infty$, e

$$l^{\infty} = \{\text{successioni limitate}\} = \left\{ (x_n) \mid \sup_{n \in \mathbb{N}} |x_n| < +\infty \right\}.$$

Esempio (di insieme non compatto in ℓ^1). Consideriamo la successione (e_i) definita come

$$(e_i)_n := \begin{cases} 0 & \text{se } n \neq i \\ 1 & \text{se } n = i \end{cases}$$

si osserva inoltre che le successioni così definite sono linearmente indipendenti e generano se sono infiniti.

Esempio (di insieme compatto in ℓ^1). Sia $F = \{(x_n)_n \in \ell^1 \mid |x_n| \le 1/n^2 \quad \forall n \in \mathbb{N}\}$. Noto subito che F è limitato, infatti, presa

$$\underline{x} = (x_n) \in F, \quad \|\underline{x}\|_{\ell^1} = \sum_{n=0}^{+\infty} |x_n| \le \sum_{n=0}^{+\infty} 1/n^2 < +\infty.$$

F è anche chiuso.

Osservazione. Data una successione $(\underline{x}^k) \subset \ell^1$, se $\underline{x}^k \xrightarrow{\ell^1} \underline{x}^\infty$, vuol dire che

$$\left\|\underline{x}^k - \underline{x}^{\infty}\right\|_{\ell^1} = \sum_{n=0}^{+\infty} \left|x_n^k - x_n^{\infty}\right| \xrightarrow{k} 0.$$

In particolare, per ogni $n \in \mathbb{N}$ fissato, $\lim_{k} (x_n^k - x_n^{\infty}) = 0$.

F è chiuso perché se $(\underline{x}^k)\subset F$ e $\underline{x}^k\xrightarrow{\ell^1}\underline{x}^\infty,$ allora per ogni $n\in\mathbb{N}$ vale

$$\left|x_n^k\right| \le 1/n^2$$
 e $\underbrace{\lim_{n \to +\infty} \left|x_n^k\right|}_{x_n^\infty} \le 1/n^2$.

Dimostriamo che è compatto per successioni. Prendiamo $(\underline{x}^k) \subset F$, ogni componente x_n è equilimitata a meno di sottosuccessioni $x_n^{x_j}$ converge a x_n^{∞} . A meno di diagonalizzare, posso supporre che le successione k_j non dipenda da n. Otteniamo che $x_n^{k_j}$ sono dominate da $y = (1/n^2)$. Concludiamo usando il teorema di Lebesgue.

2.8 Complementi su approssimazioni di funzioni in L^p

Sia X misurabile in \mathbb{R}^n con $\mu = \mathcal{L}^n$ su X, in precedenza abbiamo visto che

Proposizione 3. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense in L^p se $p < +\infty$.

[TODO: la seguente osservazione è da rilocare probabilmente]

Osservazione. Le funzioni $C_C(\mathbb{R}^n)$ sono le funzioni a supporto compatto, dove il supporto è definito come la chiusura dell'insieme dei punti in cui la funzione è non zero

$$\operatorname{supp}(f) := \overline{\{x \mid f(x) \neq 0\}}$$

in quanto per le funzioni continue l'insieme $\{x \mid f(x) \neq 0\}$ è sempre aperto e dunque mai veramente compatto a parte quando è vuoto.

Osservazione. Si vede facilmente che $C_C(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$.

Domanda. Vale un risultato analogo per le funzioni $C_C(X)$?

Notiamo che dato $X \subset \mathbb{R}^n$ le funzioni continue su X hanno supporto compatto solo se X è aperto in quanto il supporto ha veramente distanza non nulla dal bordo e possiamo estendere la funzione a 0 fuori da X, altrimenti... [TODO: Esempio con un chiuso in cui le cose non fungono?]

Proposizione 4. Sia X aperto di \mathbb{R}^n , $\mu = \mathcal{L}^n$ allora $C_C(X)$ è denso in L^p per ogni $p < +\infty$ Dimostrazione.

- $\mathscr{S}_C := \{ \text{funzioni semplici con supporto compatto in } X \}$ è denso in $L^p(X)$ per ogni $p < +\infty$.
- Dato E relativamente compatto in X esiste $f_n \in C_C(X)$ tale che $f_n \to \mathbb{1}_E$ in L^p per ogni $p < +\infty$.

La Proposizione 3 non vale per $p = +\infty$, intuitivamente in quanto data $f \in L^{\infty}(X)$ discontinua, se trovassimo $f_n \to f$ in $L^{\infty}(X)$ con f_n continue avremmo $f_n \to f$ uniformemente e dunque f continua.

Fatto. In generale vale che data $f: X \to \mathbb{R}$ misurabile, $||f||_{\infty} \le \sup_{x \in X} |f(x)|$ (detta anche norma del sup)

Esercizio. Se X è aperto in \mathbb{R}^n e $\mu = \mathcal{L}^n$ e $f: X \to \mathbb{R}$ continua, allora $||f||_{\infty} = \sup_{x \in X} |f(x)|$.

Soluzione. Se per assurdo $\exists x \in X$ tale che $\|f\|_{\infty} < |f(x)|$ allora la continuità di f implica che esiste un intorno di x in cui $|f| > \|f\|_{\infty}$ ma un intorno contiene una palla aperta di misura positiva $x \notin \mathbb{R}$

In particolare possiamo anche estenderci a $X\subseteq\mathbb{R}^n$ tali che ogni A aperto relativamente a X abbia misura positiva.

Per spiegare meglio il perché la Proposizione 3 non si estende al caso $p=+\infty$ consideriamo

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

e vediamo che $\nexists f_n \colon \mathbb{R} \to \mathbb{R}$ tale che $f_n \to f$ in L^{∞} .

X

A

Se esistesse $(f_n)_n$, allora sarebbe di Cauchy rispetto alla norma $\|\cdot\|_{\infty}$ allora per continuità $(f_n)_n$ è di Cauchy anche rispetto alla norma del sup $\implies f_n \to \tilde{f}$ uniformemente con \tilde{f} continua, quindi $\tilde{f} = f$ quasi ovunque ma questo non è possibile per la f definita sopra.

(In particolare dato $E = \{x \mid f(x) = \tilde{f}(x)\}$, prendiamo $x_n, y_n \in E$ tali che $x_n \uparrow 0$ e $y_n \downarrow 0$ ma i limiti di f sono 0 e $1 \not \{j\}$

Teorema (di Lusin). Dato $X \subset \mathbb{R}^d$, $\mu = \mathscr{L}^d$ e data $f: X \to \mathbb{R}$ o \mathbb{R}^m misurabile e $\varepsilon > 0$, esiste E aperto in X con $|E| \le \varepsilon$ tale che f è continua su $X \setminus E$ (la restrizione di f a $X \setminus E$ è continua)

Osservazione. In generale f può essere non continua in tutti i punti di X, infatti E può essere denso e $X \setminus E$ avere parte interna vuota.

Lemma (di estensione di Tietze). Dato X spazio metrico e $C \subset X$ chiuso, $f: C \to \mathbb{R}$ continua allora f si estende a una funzione continua su X.

Usando questo lemma possiamo rienunciare il teorema precedente come segue

Teorema (di Lusin'). Data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$, $\exists E$ aperto con $|E| \le \varepsilon$ e $g: X \to \mathbb{R}$ continua tale che f = g su $X \setminus E$, inoltre se $f \in L^p(X)$ e $p < +\infty$ si può anche chiuedere che $||f - g||_p \le \varepsilon$.

Dimostrazione. Basta trovare E misurabile (per ottenere E aperto si usa la regolarità della misura)

- Caso 1: $f \in L^1(X)$ e $|X| < +\infty$ Abbiamo che $f \in L^1 \implies \exists f_n$ continue tali che $f_n \to f$ in $L^1 \implies f_n \to f$ in misura e per Severini-Egorov esiste E tale che $|E| \le \varepsilon$ e $f_n \to f$ uniformemente su $X \setminus E \implies f$
- Caso 2: f qualunque misurabile e $|X| < +\infty$

Lemma. Dati X, \mathcal{A}, μ con $\mu(X) < +\infty$ e data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$ esiste F misurabile con $\mu(F) \le \varepsilon$ tale che f è limitata su $X \setminus F$.

Dimostrazione. $\forall m > 0$ sia $F_m := \{x \mid |f(x)| > m\}$ allora $F_m \downarrow \emptyset \implies \mu(F_m) \downarrow 0$ e quindi esiste m tale che $\mu(F_m) \leq \varepsilon$.

Quindi data f qualunque misurabile e $|X| < +\infty$ esiste F misurabile tale che $|F| \le \varepsilon/2$ e con f limitata su $X \ F \implies f \in L^{\infty}(X \ F) \subset L^{1}(X \ F)$, dunque per il $Caso\ 1$ esiste E misurabile tale che $|E| \le \varepsilon/2$ e f è continua su $X \ (E \cup F)$ e $\mu(E \cup F) \le \varepsilon$

• Caso 3: f qualunque misurabile

è continua su $X \setminus E$.

Per ogni n poniamo $X_n := X \cap B(0, n)$ per il $Caso\ 2$ esistono E_n misurabili con $|E_n| \le \varepsilon/2^n$ tali che f è continua su $X_n \setminus E_n$, infine prendo $E := \bigcup_{n=1}^{\infty} E_n$ con $\mu(E) \le \varepsilon \implies f$ è continua su $X_n \setminus E$ per ogni $n \implies f$ è continua su $X \setminus E$.

2.9 Appendice

Proposizione. Siano V, W spazi normati, $T: V \to W$ lineare. Sono fatti equivalenti

- i) T è continua in 0.
- ii) T è continua.
- iii) T è lipschitziana, cioè esiste una costante $c < +\infty$ tale che $||Tv Tv'||_W \le ||v v'||_V$.
- iv) esiste una costante c tale che $||Tv'|| \le c ||v||$ per ogni $v \in V$.
- v) esiste una costante c tale che $||Tv||_W \le c$ per ogni $v \in V$, $||v||_V = 1$.

Dimostrazione. v) \Rightarrow iv). Vale la seguente

$$\|Tv\|_W \underbrace{=}_{v=\lambda \widetilde{v},\|v\|_V=1} |\lambda| \, \|T\widetilde{v}\|_W \le c\lambda = c \, \|v\|_V \le 1.$$

 $iv) \Rightarrow iii$). Vale la seguente

$$||Tv - Tv'||_W = ||T(v - v')||_W \le c ||v - v'||_W.$$

 $iii) \Rightarrow ii$).

i) \Rightarrow v). T continua in 0, dunque esiste $\delta > 0$ tale che

$$||Tv - T0||_W \le 1$$
 se $||v - 0||_V \le \delta$,

cioè

$$||Tv|| \le 1$$
 se $||v|| \le \delta$,

da cui segue che $||Tv|| \le 1/\delta$ se $||v|| \le 1$.

Osservazione. Le costanti ottimali iii), iv), v) sono uguali e valgono

$$c = \sup_{\|v\|_{V} \le 1} \|Tv\|_{W}.$$

Esempi di utilizzo.

i) Sia X, \mathcal{A}, μ coma al solito, con $\mu(X) < +\infty$. Allora, dati $1 \le p_1 < p_2 \le +\infty$, vale

$$L^{p_2}(X) \subset L^{p_1}(X). \tag{*}$$

Inoltre, l'inclusione $i: L^{p_2}(X) \to L^{p_1}(X)$ è continua.

Dimostrazione. La dimostrazione di (\star) segue dalla stima

$$\|u\|_{p_1} \underbrace{\leq}_{\text{H\"{o}lder generalizzato}} \|\mathbb{1}_X\|_q \, \|u\|_{p_2} \quad \text{dove} \quad q = \frac{p_1 p_2}{p_2 - p_1}.$$

Dove

$$\|\mathbb{1}_X\|_{\frac{p_1p_2}{p_2-p_1}} \|u\|_{p_2} = (\mu(X))^{\frac{1}{p_1}-\frac{1}{p_2}} \|u\|_{p_2}.$$

Quanto sopra soddisfa la condizione al punto iv).

ii) L'applicazione $L^1(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$ è continua.

Dimostrazione. Infatti, vale

$$\left| \int_X u \, \mathrm{d}\mu \right| \le \int_X |u| \, \mathrm{d}\mu = \|u\|_1.$$

Quanto sopra soddisfa la condizione al punto iv).

iii) Cosa possiamo dire invece dell'applicazione $L^p(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$? Se $\mu(X) < +\infty$ la continuità segue dagli esempi i) e ii) sopra. Se invece $\mu(X) = +\infty$? Per esempio $L^2(\mathbb{R})$? [TO DO].

2.10 Convoluzione

Definizione. Date $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ misurabili, il **prodotto di convoluzione** $f_1 * f_2$ è la funzione (da \mathbb{R}^d a \mathbb{R}) data da

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$
 (*)

Osservazioni.

- i) La definizione (\star) è ben posta se $f_1, f_2 \geq 0$ $(f_1 * f_2(x))$ può essere anche $+\infty$). In generale non è ben posta per funzioni a valori reali (non è detto che l'integrale esista).
- ii) Se $f_1 * f_2(x)$ esiste, allora $f_1 * f_2(x) = f_2 * f_1(x)$, infatti

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy = \begin{pmatrix} t := x - y \\ dt = dy \end{pmatrix} = \int_{\mathbb{R}^d} f_1(t) f_2(x - t) \, dt = f_2 * f_1(x).$$

iii) È importante che f_1, f_2 siano definite su \mathbb{R}^d e che la misura sia quella di Lebesgue. In realtà, si può generalizzare quanto sopra rimpiazzando (\mathbb{R}^d, L^d) con (G, μ) , dove G è un gruppo commutativo e μ una misura su G invariante per traslazione. Per esempio, \mathbb{Z} con la misura che conta i punti. Cioè $f_1, f_2 : \mathbb{Z} \to \mathbb{R}$, vale

$$f_1 * f_2(n) := \sum_{n \in \mathbb{Z}} f_1(n-m) f_2(m).$$

iv) Data f distribuzione di massa (continua) su \mathbb{R}^3 , il potenziale gravitazionale generato è

$$v(x) = \int_{y \in \mathbb{R}^d} \frac{1}{|x - y|} \rho(y) \, \mathrm{d}y$$

cioè $v = g * \rho$, dove g(x) = 1/|x| è il potenziale di una massa puntuale in 0.

v) Se X_1, X_2 sono variabili aleatorie (reali) con distribuzione di probabilità continua p_1, p_2 e X_1, X_2 sono indipendenti, allora $X_1 + X_2$ ha distribuzione di probabilità $p_1 * p_2$. (Facile per X_1, X_2 in \mathbb{Z}).

Proposizione 1. Se $|f_1| * |f_2|(x) < +\infty$ allora $f_1 * f_2(x)$ è ben definito in quanto

$$|f_1 * f_2(x)| \le |f_1| * |f_2|(x)$$

Dimostrazione. Basta osservare che

$$\int_{\mathbb{R}^d} |f_1(x-y) * f_2(y)| \, \mathrm{d}y < +\infty \implies \int_{\mathbb{R}^d} f_1(x-y) f_2(y) \, \mathrm{d}y$$

e dunque esiste.

Corollario 2. Se $|f_1|*|f_2| \in L^p(\mathbb{R}^d)$ con $1 \leq p \leq +\infty$ allora $f_1*f_2(x)$ è ben definito per quasi ogni $x \in \mathbb{R}^d$ e $||f_1*f_2||_p \leq |||f_1|*|f_2||_p$.

Dimostrazione. Segue subito dalla proposizione precedente.

Teorema 3 (Disuguaglianza di Young per la convoluzione). Se $f_1^{p_1}$ e $f_2 \in L^{p_2}$ e preso $r \geq 1$ tale che

$$\frac{1}{r} = \frac{1}{p_1} + \frac{1}{p_2} - 1 \tag{(\star)}$$

allora $f_1 * f_2$ è ben definito quasi ovunque e

$$||f_1 * f_2||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \tag{**}$$

Osservazioni.

- Nel caso di prima 1 e sin x sono solo in L^{∞} infatti viene r=-1 e la disuguaglianza non ha senso
- Supponiamo di avere $||f_1 * f_2|| \le C \cdot ||f_1||_{p_1}^{\alpha_1} \cdot ||f_2||_{p_2}^{\alpha_2}$ allora vediamo che per ogni f_1, f_2 positiva deve valere necessariamente $\alpha_1 = \alpha_2 = 1$ e la condizione (\star) .

Dimostrazione. Per ogni $\lambda > 0$ consideriamo λf_1 e f_2 , allora

$$\|(\lambda f_1) * f_2\|_r = \|\lambda (f_1 * f_2)\|_r = \lambda \|f_1 * f_2\|_r$$

ma abbiamo anche

$$\|(\lambda f_1) * f_2\|_r \le C \cdot \|f_1\|_{p_1}^{\alpha_1} \cdot \|f_2\|_{p_2}^{\alpha_2} = C \cdot \lambda^{\alpha_1} \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

A questo punto richiediamo anche che f_1 e f_2 siano tali che $||f_1||_{p_1}, ||f_2||_{p_2} < +\infty$ e $||f_1 * f_2|| > 0$ (questo possiamo farlo in quanto basta prendere $f_1 = f_2 = \mathbb{1}_B$ con B una palla, nel caso segue proprio che $f_1 * f_2(x) > 0$ se |x| < 1).

Data $f: \mathbb{R}^d \to \mathbb{R}$ e $\lambda > 0$ poniamo $R_{\lambda} f(x) := f(\frac{x}{\lambda})$ allora abbiamo

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r = \lambda^{d(1+\frac{1}{r})} \|f_1*f_2\|_r$$

ma anche

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r \le C \cdot \|R_{\lambda}f_1\|_{p_1} \cdot \|R_{\lambda}f_2\|_{p_2} = \lambda^{d(\frac{1}{p_1} + \frac{1}{p_2})} \cdot \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

dunque sicuramente abbiamo $\lambda^{d(1+1/r)} \leq C \cdot \lambda^{d(1/p_1+1/p_2)}$ per ogni $\lambda > 0$ e quindi $1+1/r = 1/p_1 + 1/p_2 \iff (\star)$.

• $||R_{\lambda}f||_p = \lambda^{d/p} ||f||_p$ ed in realtà possiamo ricavare l'esponente d/p per analisi dimensionale¹². Consideriamo l'espressione

$$||f||_p^p = \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x$$

se f(x) è una quantità adimensionale e $\int_{\mathbb{R}^d} f \, dx$ ha dimensione di una lunghezza L^d allora $||f||_p$ ha dimensione di $L^{d/p}$.

Similmente per ottenere $||R_{\lambda}(f_1 * f_2)||_r = \lambda^{d(1+1/r)} ||f_1 * f_2||_r$ basta osservare che nell'espressione

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

dunque $f_1 * f_2(x)$ ha dimensione L^d da cui

$$||f_1 * f_2||_r = \left(\int_{\mathbb{R}^d} \underbrace{|f_1 * f_2|^r}_{L^{dr}} \underbrace{dx}_{L^d} \right)^{1/r}$$

e quindi $||f_1 * f_2||_r$ ha dimensione di $L^{d(1+1/r)}$.

 $^{^1\}mathrm{Ovvero}$ studiando le potenze delle unità di misura delle varie quantità.

²In particolare ad Istituzioni di Analisi si vedono le disuguglianze di Sobolev ed anche in quel caso tutte le condizioni sugli esponenti si riescono a ricavare per analisi dimensionale...

Dimostrazione Teorema 3. Per via del Corollario 2. ci basta dimostrare $(\star\star)$ se $f_1, f_2 \geq 0$.

• Caso facile. Se $p_1 = p_2 = 1$ e r = 1

$$||f_1 * f_2||_1 = \int f_1 * f_2(x) dx = \iint f_1(x - y) f_2(y) dy dx = \int f_2(y) \int f_1(x - y) dx dy =$$

$$= \int ||f_1||_1 \cdot f_2(y) dy = ||f_1||_1 \cdot ||f_2||_1$$

• Caso leggermente meno facile. Se $p_1 = p, p_2 = 1$ e r = p. Vogliamo vedere che

$$||f_1 * f_2||_p \le ||f_1||_p \cdot ||f_2||_1$$

allora

$$||f_1 * f_2||_p = \int_{\mathbb{R}^d} (\underbrace{f_1 * f_2}_h)^p \, dx = \int h \cdot h^{p-1} \, dx = \iint f_1(x - y) f_2(y) h^{p-1}(x) \, dy \, dx =$$

$$= \iint f_1(y - x) h^{p-1}(x) \, dx f_2(y) \, dy \overset{\text{H\"older}}{\leq} \int ||f_1(y - \cdot)||_p \, ||h^{p-1}||_{p'} f_2(y) \, dy$$

con p' esponente coniugato a p. Inoltre notiamo che $||f_1(y-\cdot)||_p = ||f_1||$ per invarianza di \mathcal{L}^d per riflessioni e traslazioni, infine otteniamo

$$= \|f_1\|_p \|h^{p-1}\|_{p'} \|f_2\|_1 = \|f_1\|_p \|h\|_{p'}^{p-1} \|f_2\|_1$$

 $\implies \|f_1*f_2\|_p^p \le \|f_1*f_2\|_p^{p-1} \|f_1\|_p \|f_2\|_1 \implies \|f_1*f_2\|_p \le \|f_1\|_p \|f_2\|_1$. Questo però solo nel caso in cui valga $0 < \|f_1*f_2\|_p < +\infty$, resterebbero da controllare i due casi in cui la norma è 0 oppure $+\infty$, il primo è ovvio, il secondo invece si fa per approssimazione e passando al limite.

Consideriamo f_1, f_2 e approssimiamole con $f_{1,n}, f_{2,n}$ limitate a supporto compatto, allora vale $||f_{1,n} * f_{1,n}||_p \le ||f_{1,n}||_p \cdot ||f_{2,n}||_1$ e passando al limite si ottiene la tesi. In particolare possiamo costruire le f_n come

$$f_n(x) := (f(x) \cdot \mathbb{1}_{\mathcal{B}(0,n)}(x)) \wedge n$$

Osservazione. Se $f_2 \ge 0$ e $\int f_2 dx = 1$ allora $||f_1 * f_2||_p \le ||f_1||_p$ è una versione semplificata della proposizione precedente, in particolare la dimostrazione si semplifica in quanto possiamo pensare a f_2 come distribuzione di probabilità e quindi $f_1 * f_2$ è una "media pesata" delle traslazioni di f_1 o più precisamente una combinazione convessa "integrale".

• Caso generale. Non lo facciamo perché servono mille mila parametri e non è troppo interessante.

Teorema 4. Se p_1 e p_2 sono coniugati e $r=+\infty$ abbiamo un risultato più forte ovvero valgono

- i) $f_1 * f_2(x)$ è ben definito per ogni $x \in \mathbb{R}^d$
- ii) $|f_1 * f_2(x)| \le ||f_1||_{p_1} ||f_2||_{p_2}$
- iii) $f_1 * f_2$ è uniformemente continua

no.

iv) Se
$$1 < p_1, p_2 < +\infty$$
 allora $f_1 * f_2 \to 0$ per $|x| \to +\infty$

Dimostrazione i) e ii). Seguono subito da (\star) per $f_1, f_2 \ge 0$ (con il Corollario 2.), se $f_1, f_2 \ge 0$ allora

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy \le \|f_1(x - \cdot)\|_{p_1} \|f_2\|_{p_2} = \|f_1\|_{p_1} \|f_2\|_{p_2}$$

Proposizione 5. Data $f \in L^p(\mathbb{R}^d)$ con $p < +\infty$ la mappa

$$\tau_h f: \mathbb{R}^d \to L^p(\mathbb{R}^d)$$
 $h \mapsto f(\cdot - h)$

è continua.

Lemma 6. Lo spazio $C_0(\mathbb{R}^d) = \{f \colon \mathbb{R}^d \to \mathbb{R} \text{ continue con } f(x) \to 0 \text{ per } |x| \to 0\}$ è chiuso rispetto alla convergenza uniforme.

Dimostrazione iii). Supponiamo $p_1 < +\infty$ allora

$$|f_1 * f_2(x+h) - f_1 * f_2(x)| \le \int |f_1(x+h-y) - f_1(x-y)| \cdot |f_2(y)| \, dy$$

$$\le ||f_1(x+h-y) - f_1(x-y)| \cdot |f_2(y)| \, dy$$

$$\le ||f_1(x+h-y) - f_1(x-y)| \cdot |f_2(y)| \, dy$$

$$= ||f_1(x+h-y) - f_1||_{p_2} ||f_2||_{p_2}$$

2.11 Esercitazione del 21 ottobre

Data $T\colon X\to Y$ lineare tra X,Y spazi normati, allora T è continua se solo se T è limitata. In altre parole, T è continua se solo se esiste C>0 tale che $\|T(x)\|_Y\le C\,\|x\|_X$ per ogni $x\in X$. Applichiamo questo risultato.

i) Sia $X=\mathbb{R}^d$. L'applicazione $L^1(\mathbb{R}^d)\ni u\stackrel{T}{\longmapsto} \int_{\mathbb{R}^d}u\,\mathrm{d}x$ è lineare e continua in quanto limitata. Infatti:

$$|T(u)| = \left| \int_{\mathbb{R}^d} u \, dx \right| \le \int_{\mathbb{R}^d} |u| \, dx = ||u||_{L^1(\mathbb{R}^d)}.$$

ii) Studiamo ora il caso per p>1. Data $u\in L^p(\mathbb{R}^d),$ l'applicazione

$$u \mapsto \int_{\mathbb{R}^d} u \, \mathrm{d}x$$

potrebbe non essere ben definita.

Ad esempio se restringiamo il dominio a $L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ l'applicazione sopra è ben definita, ma in generale non è continua. Più formalmente, la mappa

$$T: \left(L^p \cap L^1(\mathbb{R}^d), \|\cdot\|_{L^p}\right) \to \mathbb{R}$$

è lineare ma non continua.

Osservazione. Dobbiamo cercare una funzione tale per cui non esista C per cui

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| \le C \left(\int_{\mathbb{R}} |u|^p \, \mathrm{d}x \right)^{1/p}.$$

Studiamo il caso reale, ovvero d = 1.

Nota. Le funzioni limitate soddisfano la disuguaglianza sopra (per Hölder), dunque non possono essere utilizzate come controesempio.

Usiamo la nozione di continuità per successioni per mostrare che la mappa sopra non è continua. Per farlo definiamo una successione di funzioni a supporto compatto (che sappiamo essere in tutti gli spazi L^p).

Definiamo la successione come segue (fare disegno):

$$u_n(x) = \begin{cases} \frac{1}{n} & \text{se } n \le x \le 2n\\ 0 & \text{altrimenti} \end{cases}$$

Dunque, $T(u_n) = \int_{\mathbb{R}} u_n \, dx = \frac{1}{n} |E_n| = 1$, dove $E_n = [n, 2n]$. Segue che $T(u_n) \equiv 1$ e non è vero che $T(u_\infty = u_n \to 0) = 0$.

Più in generale, quando $u \in L^p(\mathbb{R}^d)$ con p > 1, una costruzione come sopra non funziona, infatti

$$||u_n||_{L^p(\mathbb{R})}^p = \int_{\mathbb{R}} u_n^p(x) dx = \frac{1}{n^p} \cdot |E_n| = \frac{n}{n^p} = \frac{1}{n^{-1}} \xrightarrow{n \to \infty} 0.$$

Esercizio. [TO DO] Fissato C > 0, trovare $u \in L^p \cap L^1(\mathbb{R})$ tale che

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| \ge C \left\| u \right\|_{L^p(\mathbb{R})}$$

Esercizio. Sia
$$p \ge 1$$
 e $E = \left\{ u \in L^p(-1,1) : \int_{-1}^1 u \, dx = 0 \right\}.$

- i) Dire se E è limitato in $L^p(-1,1)$.
- ii) Dire se E è chiuso in $L^p(-1,1)$.

Soluzione.

i) Dimostrare che E è limitato in $L^p(-1,1)$ equivale a dimostrare che esiste M>0 tale che ogni $u\in L^p(-1,1),$ $\int_{-1}^1 u\,\mathrm{d}x=0$ verifica $\|u\|_{L^p}\leq M.$

Vediamo che E non è limitato. Preso M>0, riesco sempre a trovare una funzione maggiore di M in norma. Ad esempio la funzione definita come

$$u(x) := \begin{cases} M & \text{se } x \in (0,1) \\ -M & \text{se } x \in (-1,0) \end{cases}$$

ha norma $||u||_{L^p}^p = 2M^p$.

Nota. Aveva senso cercare il controesempio nella classe delle funzioni dispari e limitate, perché hanno media zero, e perché sono in tutti gli L^p .

ii) Vediamo che E è chiuso.

Nota. Possiamo dimostrarlo usando i teoremi di convergenza, ma seguiremo un'altra strada.

• $Caso\ p > 1$. Definiamo l'operatore

$$T: L^p(-1,1) \to \mathbb{R}$$

$$u \mapsto \int_{-1}^1 u \, \mathrm{d}x$$

è ben definito. Infatti, per Hölder vale

$$\left| \int_{-1}^{1} 1 \cdot u \, dx \right| \le \left(\int_{-1}^{1} |u|^{p} \, dx \right)^{1/p} (1^{q})^{1/q}$$

dove $q = \frac{p}{p-1}$. Allora

$$|T(u)| \le ||u||_{L^p(-1,1)} \cdot 2^{\frac{p}{p-1}}.$$

Dunque T è continuo in L^p per ogni p > 1.

• Caso p=1. L'operatore sopra è continuo anche per p=1. Grazie alla stima vista prima

$$|T(u)| = \left| \int_{-1}^{1} u \, \mathrm{d}x \right| \le \int_{-1}^{1} |u| \, \mathrm{d}x = ||u||_{L^{1}}.$$

Dunque T è continua e $T^{-1}(0) = E$, dunque E è chiuso.

Esercizio. [TO DO] Sia $p \ge 1$. Definiamo

$$F = \left\{ v \in L^p(\mathbb{R}) \mid \int_0^1 u(x) \, dx - 2 \int_{-1}^0 u(x) \, dx = 3 \right\}.$$

Dire se F è chiuso in $(L^p(\mathbb{R}), \|\cdot\|_{L^p(\mathbb{R})})$.

Esercizio. [TO DO] Sia

$$G = \left\{ v \in L^p(0, 2\pi) \mid \int_0^{2\pi} v(x) \sin(x) dx = 1 \right\}.$$

Dire se G è chiuso in $L^2(0, 2\pi)$.

Domanda. Dato $L^p(X,\mu)$ e V sottospazio di $L^p(X,\mu)$, posso dire che V è chiuso?

In generale no! Infatti esistono sottospazi densi in $L^p(X,\mu)$.

Ad esempio in ℓ^2 consideriamo l'insieme denso

$$V = \{\{x_n\} \mid x_n = 0 \text{ definitivamente}\}.$$

Vediamo che non è chiuso. Sia $\underline{x} \in \ell^2$, definita come $\underline{x} = \{1/n\}_{n \in \mathbb{N} \setminus \{0\}}$, dico che $\underline{x} = \lim_{n \to +\infty} \underline{x}^n$ dove

$$x_n^k = \begin{cases} \frac{1}{n} & 1 \le n \le k \\ 0 & n > k, n = 0 \end{cases}$$

ho che

$$\left\| \underline{x} - \underline{x}^k \right\|_{\ell^2}^2 = \sum_{n=1}^{\infty} \left| x_n - x_n^k \right|^2 = \sum_{n=k+1}^{+\infty} \left| x_n \right|^2 = \sum_{n=k+1}^{\infty} \frac{1}{n^2} \xrightarrow{k \to +\infty} 0.$$

Vediamo un altro esempio. Siano $X = \mathbb{R}$, μ la misura di Lebesgue e p > 1. In tal caso, l'insieme $L^p \cap L^1(\mathbb{R})$ è un sottospazio denso in $(L^1(\mathbb{R}), \|\cdot\|_{L^1})$ e $(L^p(\mathbb{R}), \|\cdot\|_{L^p})$.

Nota. L'insieme $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ è un sottospazio proprio di $L^1(\mathbb{R})$. Dico che non è chiuso in $\|\cdot\|_{L^1(\mathbb{R})}$ perché è denso. Infatti,

$$\mathcal{C}^0_C(\mathbb{R}) \subset L^2(\mathbb{R}) \cap L^1(\mathbb{R}).$$

2.11.1 Convoluzione

Sia $f \in L^1(\mathbb{R}^d)$ e sia g supporto compatto K e lipschitziana, vale a dire esiste M > 0 tale che per ogni x, y vale

$$|g(x) - g(y)| \le M |x - y|_{\mathbb{R}^d}.$$

Esercizio. Dimostrare che f * g è ben definita e lipschitziana, dove $f \in L^1(\mathbb{R}^d)$ e $g \in \mathcal{C}^0_C(\mathbb{R}^d)$. Prendo $x_1, x_2 \in \mathbb{R}^d$

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} f(x_1 - x)g(y) \, dy - \int_{\mathbb{R}^d} f(x_2 - y)g(y) \, dy \right|$$

Uso la proprietà che essendo ben definita, f * g si ha f * g(x) = g * f(x), dai cui

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} g(x_1 - y) f(y) \, \mathrm{d}y \int_{\mathbb{R}^d} g(x_2 - y) f(y) \, \mathrm{d}y \right|$$

$$= \left| \int_{\mathbb{R}^d} \left(g(x_1 - y) - g(x_2 - y) \right) f(y) \, \mathrm{d}y \right|$$

$$\leq \int_{\mathbb{R}^d} |g(x_1 - y) - g(x_2 - y)| |f(y)| \, \mathrm{d}y$$

$$\leq \int_{\mathbb{R}^d} M |x_1 - y - (x_2 - y)| |f(y)| \, \mathrm{d}y \leq M |x_1 - x_2| \cdot ||f||_{L^1(\mathbb{R}^d)}.$$

Esercizio. [TO DO] Se $f \in L^1(\mathbb{R}^d)$ e g a supporto compatto è α -Hölderiana allora anche f * g lo è.

Esercizio. [TO DO] Presa $f(x) = \mathbb{1}_{[0,1]}$ in \mathbb{R} , calcolare f * f.

2.11.2 Separabilità degli spazi L^p

Proposizione. Si ha che $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue, è separabile se solo se $p \neq +\infty$. Lo stesso risultato vale per ℓ^p .

Sia $1 \leq p < +\infty$, $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue. Le funzioni semplici costituite da somme finite di insiemi di misura finita sono dense in $L^p(\mathbb{R}^d)$.

Prendiamo una base numerabile di \mathbb{R}^d e la indichiamo con \mathcal{B} . L'insieme

$$Y = \left\{ \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{B_{i}} \mid B_{i} \in \mathcal{B}, \alpha_{i} \in \mathbb{Q} \right\}$$

è numerabile. Vediamo che è denso in $L^p(\mathbb{R}^d)$.

Idea. È sufficiente approssimare le funzioni semplici a somma finita $\sum_{i=1}^{N} \alpha_i \mathbb{1}_{E_i}$. In particolare, mi basta approssimare $\alpha \cdot \mathbb{1}_E$. Essendo $\alpha \in \mathbb{R}$ trovo una successione di razionali α_j tali che $\alpha_j \xrightarrow{j \to \infty} \alpha$. Dunque, rimane da approssimare l'insieme E.

Fissiamo E e supponiamo dapprima E aperto. Possiamo scrivere E come unione arbitraria di elementi della base $\mathcal B$

$$E = \bigcup_{i=1}^{\infty} B_i.$$

Per approssimare E considero gli insiemi $E_N = \bigcup_{i=1}^N B_i$. Otteniamo $|E| = \lim_N |E_N|$, da cui $|E \setminus E_N| \xrightarrow{N \to +\infty} 0$. Concludiamo notando che il caso E arbitrario si fa approssimandolo con una famiglia di aperti.

Per ℓ^p con $p < +\infty$ definisco

$$Y = \{\{x_n\} \mid x_n = 0 \text{ definitivamente, } x_n \in \mathbb{Q}\}$$

e verifico che è numerabile e separabile.

Domanda. Cosa succede per $p = +\infty$?

Considero $L^{\infty}([0,+\infty],\mu)$ con μ di Lebesgue e $E_n=[n,n+1]$. Definisco l'insieme

$$Z = \left\{ \forall J \subset \mathbb{N} \quad u = \sum_{j \in J} \mathbb{1}_{E_j} \right\}.$$

Z ha la cardinalità delle parti di $\mathbb N$ cioè è più che numerabile. Osserviamo che per ogni $u,v\in Z$, $u\neq v$ si ha che $\|u-v\|_{L^\infty(\mathbb R)}=1$. Se per assurdo esistesse un insieme denso e numerabile D in ℓ^∞ , per definizione di insieme denso dovremmo trovare per ogni palla di raggio minore di 1 e centro in un qualsiasi elemento di Z, un elemento di D. Ma questo è impossibile in quanto D ha cardinalità numerabile e Z la cardinalità del continuo.

Vediamo in un altro modo che l^{∞} non è separabile. Se per assurdo $Y = \left\{\underline{x}^k\right\}_{k \in \mathbb{N}}$ fosse denso in L^{∞} , allora potremmo definire un elemento $z \in l^{\infty}$ tale che $\left\|\underline{x}^k - \underline{z}\right\|_{l^{\infty}} \ge 1$ per ogni k.

Definiamo $z = \{z_n\}$ come segue

$$z_n = \begin{cases} 0 & \text{se} & |x_n^n| > 1 \\ 2 & \text{se} & |x_n^n| \le 1 \end{cases}.$$

2.12 Aggiunte sulle lezioni precedenti

Proposizione. Data $f \in L^p(\mathbb{R}^d)$ con $1 \leq p < +\infty$ allora la funzione $\tau_h f \colon \mathbb{R}^d \to L^p(\mathbb{R}^d)$ data da $\tau_h f(x) := f(x-h)$ è continua.

Dimostrazione. Per prima cosa notiamo che basta vedere solo la continuità in 0 in quanto

$$\tau_{h'}f - \tau_h f = \tau_h(\tau_{h'-h}f - f) \implies \|\tau_{h'}f - \tau_h f\|_p = \|\tau_{h'-h}f - f\|_p$$

dimostriamo ora la proposizione in due passi

• Caso 1: $f \in C_C(\mathbb{R}^d)$

$$\|\tau_h f - f\|_p^p = \int_{\mathbb{R}^d} |f(x - h) - f(x)|^p dx \xrightarrow{|h| \to 0} 0$$

per convergenza dominata, verifichiamo però che siano rispettate le ipotesi

- i) La convergenza puntuale, ovvero $|f(x-h)-f(x)|^p \xrightarrow{|h|\to 0} 0$ segue direttamente dalla continuità di f.
- ii) Come dominazione invece usiamo $|f(x-h)-f(x)|^p \leq (2 ||f||_{\infty})^p \cdot \mathbb{1}_{\mathcal{B}(0,R+1)}$ usando che $f \in C_C \implies \sup(f) \subset \overline{B(0,R)}$ e poi che

$$\operatorname{supp}(f(\cdot - h) - f(\cdot)) \subset \overline{\mathcal{B}(0, R + |h|)}$$

infine se |h| < 1 come raggio ci basta prendere R + 1.

• Caso 2: f qualunque Dato $\varepsilon > 0$ prendiamo $g \in C_C(\mathbb{R}^d)$ tale che $||g - f|| \le \varepsilon$ allora aggiungiamo a sottraiamo $g + \tau_h g$ e raggruppiamo in modo da ottenere

$$\tau_h f - f = \tau_h (f - g) + (\tau_h g - g) + (g - f)$$

$$\implies \|\tau_h f - f\|_p \leq \underbrace{\|\tau_h (f - g)\|_p}_{\leq \varepsilon} + \|\tau_h g - g\|_p + \underbrace{\|g - f\|_p}_{\leq \varepsilon} \leq 2\varepsilon + \underbrace{\|\tau_h g - g\|_p}_{\to 0 \text{ per } Caso \ 1}$$

dunque $\limsup_{|h|\to 0} \|\tau_h f - f\|_p \le 2\varepsilon$ ma per arbitrarietà di ε otteniamo anche che $\|\tau_h f - f\|_p \to 0$ per $|h| \to 0$.

Teorema. Siano $f_1 \in L^{p_1}(\mathbb{R}^d)$ e $f_2 \in L^{p_2}(\mathbb{R}^d)$ con p_1 e p_2 esponenti coniugati, allora $f_1 * f_2$ è definita per ogni x e uniformemente continua e

$$\forall x \quad |f_1 * f_2(x)| \le ||f_1||_{p_1} \cdot ||f_2||_{p_2}$$

Dimostrazione. Prendiamo $f_{1,n}, f_{2,n} \in C_C(\mathbb{R}^d)$ tali che $f_{1,n} \to f_1$ in L^{p_1} e $f_{2,n} \to f_2$ in L^{p_2} .

• Per prima cosa notiamo che $f_{1,n}*f_{2,n}$ ha supporto limitato, infatti se supp $(f_{i,n}) \subset \overline{\mathcal{B}(0,r_{i,n})}$ per i=1,2 allora

$$\operatorname{supp}(f_{1,n} * f_{2,n}) \subset \overline{\mathcal{B}(0, r_{1,n} + r_{2,n})}$$

e basta notare che l'espressione

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

ha integranda nulla per ogni y se $|x| \ge r_{1,n} + r_{2,n}$.

• Vediamo che $f_{1,n} * f_{2,n} \to f_1 * f_2$ uniformemente

$$f_{1,n} * f_{2,n} - f_1 * f_2 = (f_{1,n} - f_1) * f_{2,n} - f_1 * (f_{2,n} - f_2)$$

$$||f_{1,n} * f_{2,n} - f_1 * f_2||_p \le ||(f_{1,n} - f_1) * f_{2,n}||_{\infty} - ||f_1 * (f_{2,n} - f_2)||_{\infty}$$

$$\le \underbrace{||f_{1,n} - f_1||_{p_1}}_{\to 0} \cdot \underbrace{||f_{2,n}||_{p_2}}_{\to ||f_2||_{p_2}} + \underbrace{||f_1||_{p_1}}_{\cot t} \cdot \underbrace{||f_{2,n} - f_2||_{p_2}}_{\to 0} \to 0$$

• $C_0(\mathbb{R}^d)$ è chiuso per convergenza uniforme [TODO: da fare per esercizio]

2.13 Derivata e Convoluzione

Osservazione. Osserviamo che la convoluzione si comporta bene con l'operatore di traslazione definito precedentemente, infatti $\tau_h(f_1 * f_2) = (\tau_h f_1) * f_2$ in quanto

$$f_1 * f_2(x - h) = \int f_1(x - h - y) \cdot f_2(y) \, dy = \int \tau_h f(x - y) \cdot f_2(y) \, dy = (\tau_h f_1) * f_2(y) \, dy$$

quindi "formalmente" possiamo calcolare il seguente rapporto incrementale

$$\frac{\tau_h(f_1 * f_2) - f_1 * f_2}{h} = \frac{\tau_h f_1 - f_1}{h} * f_2 \implies (f_1 * f_2)' = (f_1)' * f_2$$

Vediamo ora di formalizzare questo risultato

Teorema. Dati p_1 e p_2 esponenti coniugati

- se $f_1 \in C^1(\mathbb{R}^d)$ allora $f_1, \Lambda f_1 \in L^{p_1}(\mathbb{R}^d)$
- se $f_2 \in L^{p_2}(\mathbb{R}^d)$ allora $f_1 * f_2 \in C^1$ con $\Lambda(f_1 * f_2) = (\Lambda f_1) * f_2$ cioè

$$\frac{\partial}{\partial x}(f_1 * f_2) = \left(\frac{\partial f_1}{\partial x_i}\right) * f_2 \text{ per } i = 1, \dots, d$$

Dimostrazione.

• d = 1: Sappiamo che $f_1 * f_2$ è continua e $f'_1 * f_2$ è continua, vediamo che coincidono usando il teorema fondamentale del calcolo integrale, infatti $(f_1 * f_2)' = f'_1 * f_2$ segue da

$$\int_{a}^{b} f_{1}' * f_{2} dx = f_{1} * f_{2}(b) - f_{1} * f_{2}(a) \quad \forall a < b$$

ed in effetti

$$\int_{a}^{b} f_{1} * f_{2}(x) dx = \int_{a}^{b} \int_{-\infty}^{\infty} f'_{1}(x - y) f_{2}(y) dy dx$$

$$\stackrel{(*)}{=} \int_{-\infty}^{\infty} \int_{a}^{b} f'_{1}(x - y) dx \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} (f_{1}(b - y) - f_{1}(a - y)) \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} f_{1}(b - y) f_{2}(y) dy - \int_{-\infty}^{\infty} f_{1}(a - y) f_{2}(y) dy$$

$$= f_{1} * f_{2}(b) - f_{1} * f_{2}(a)$$

in particolare in (*) stiamo usando Fubini-Tonelli in quanto

$$\int_{a}^{b} \int_{-\infty}^{\infty} |f_{1}'(x-y)| \cdot |f_{2}(y)| \, \mathrm{d}y \le \int_{a}^{b} \|f_{1}'(x-\cdot)\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \, \, \mathrm{d}x = \|f_{1}'\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \cdot (b-a)$$

 \bullet per d>1 dato $i=1,\ldots,d$ basta semplicemente considerare le proiezioni infatti

$$\int_{a}^{b} \frac{\partial f_{1}}{\partial x_{i}} * f_{2}(x_{1}, \dots, \overset{(i)}{t}, \dots, x_{d}) dt = f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{b}, \dots, x_{d}) - f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{a}, \dots, x_{d})$$

Corollario. Data $f_1 \in C_C^{\infty}(\mathbb{R}^d)$ (da cui segue $\Lambda^k \in L^q(\mathbb{R}^d)$ per ogni $k = 0, 1, \ldots$ e $1 \leq q < +\infty$) e $f_2 \in L^p(\mathbb{R}^d)$ allora $f_1 * f_2 \in C^{\infty}(\mathbb{R}^d)$ (anzi $\Lambda^k(f_1 * f_2) \in C_0(\mathbb{R}^d)$ per ogni k) e vale la formula nota¹

$$\Lambda^k(f_1 * f_2) = (\Lambda^k f_1) * f_2$$

Dimostrazione. Dimostriamo il corollario per approssimazione usando il seguente teorema

Definizione. Per prima cosa data una funzione $g \colon \mathbb{R}^d \to \mathbb{R}$ e $\delta \neq 0$ poniamo

$$\sigma_{\delta}g(x) \coloneqq \frac{1}{\delta^d}g\left(\frac{x}{\delta}\right)$$

e notiamo che questa trasformazione preserva la norma L^1 .

Teorema. Data $g \in L^p(\mathbb{R}^d)$ e $g \in L^1(\mathbb{R}^d)$ con $1 \leq p < +\infty$ e posto

$$m \coloneqq \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$$

allora $f * \sigma_{\delta} g \xrightarrow{\delta \to 0} mf$ in $L^p(\mathbb{R}^d)$.

Osservazione. Se $g_2 \ge 0$ con $\int g \, dx = 1$ (dunque g distribuzione di probabilità) allora f * g possiamo pensarla come media pesata di traslate di f, dunque facendo $f * \sigma_{\delta}g$ stiamo pesando sempre di più i valori delle traslate vicino a 0.

Inoltre per $p = +\infty$ non vale ed il controesempio è sempre il solito.

Dimostrazione. Per ora consideriamo g generica e ripercorriamo una dimostrazione simile a quella fatta per la disuguaglianza di Young [TODO: ricontrollare: o Minkowski??]

$$||f * g - mf||_p^p = \int_{\mathbb{R}^d} \underbrace{|f * g - mf|^p} \, \mathrm{d}x$$

$$= \int |f * g - mf| \cdot h^{p-1} \, \mathrm{d}x$$

$$= \int \left| \int \left(f(x - y)g(y) - f(x) \int g(y) \right) \, \mathrm{d}y \right| \cdot h^{p-1}(x) \, \mathrm{d}x$$

$$\leq \int \int |f(x - y) - f(x)| \cdot |g(y)| \, \mathrm{d}y \cdot h^{p-1}(x) \, \mathrm{d}x$$

$$\stackrel{(*)}{=} \int \left(\int |f(x - y) - f(x)| h^{p-1}(x) \, \mathrm{d}x \right) |g(y)| \, \mathrm{d}y$$

dove in (*) abbiamo usato Fubini-Tonelli, ora prendiamo q tale che 1/p + 1/q = 1 allora per Hölder abbiamo

$$\leq \int \|f(\cdot - y) - f(\cdot)\|_p \|h^{p-1}\|_q \cdot |g(y)| \, \mathrm{d}y$$
$$= \|h\|_p^{p-1} \int_{\mathbb{R}^d} \|\tau_y f - f\|_p \cdot |g(y)| \, \mathrm{d}y$$

¹Vista in termini di gradienti la formulazione è più compatta ma non poi così intuitiva, bisognerebbe definire la convoluzione tre una funzione a valori vettoriali ed uno scalare etc... Altrimenti basta scrivere le singole identità usando derivate parziali e multiindici.

dunque abbiamo ricavato che

$$||f * g - mf||_p^p \le ||f * g - mf||_p^{p-1} \int_{\mathbb{R}^d} ||\tau_y f - f||_p \cdot |g(y)| \, dy$$

ed ora applicando questa stima a $\sigma_\delta g$ invece che a gotteniamo

$$||f * \sigma_{\delta}g - mf||_{p} \le \int_{\mathbb{R}^{d}} ||\tau_{y}f - f||_{p} \cdot |\sigma_{\delta}g(y)| \,dy$$

infine ponendo $z=y/\delta$ e d $z=1/\delta^d$ dy e sostituendo nell'integrale

$$= \int_{\mathbb{R}^d} \|\tau_{\delta z} f - f\|_p \cdot |\sigma_{\delta} g(y)| \, \mathrm{d}y \xrightarrow{\delta \to 0} 0$$

per convergenza dominata, verifichiamone le ipotesi

- i) La convergenza puntuale segue in quanto $\|\tau_{\delta z}f-f\|_p \xrightarrow{\delta \to 0} 0$ per ogni z.
- ii) Come dominazione prendiamo $2\left\Vert f\right\Vert _{p}\cdot\left\vert g\right\vert \in L^{1}.$

Corollario. Sia $g \in C_C^{\infty}(\mathbb{R}^d)$ con $\int g \, dx = 1$ e $f \in L^p(\mathbb{R}^d)$ e $1 \leq p < +\infty$ allora $\sigma_{\delta}g * f \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ e $\sigma_{\delta}g * f \in C^{\infty}(\mathbb{R}^d)$.

Spazi di Hilbert

Sia H spazio vettoriale reale con prodotto scalare $\langle \cdot, \cdot \rangle$ definito positivo e norma indotta $\| \cdot \|$ definita come $\| x \| = \sqrt{\langle x, x \rangle}$.

Si ricorda l'identità di polarizzazione

$$\langle x_1, x_2 \rangle = \frac{1}{4} (\|x_1 + x_2\|^2 - \|x_1 - x_2\|^2).$$

Nota. Siccome $\|\cdot\|$ è continua, dalla formula di polarizzazione segue che il prodotto scalare è continuo.

Definizione. H si dice **spazio di Hilbert** se è completo.

Esempi.

- Dato (X, \mathcal{A}, μ) , gli spazi $L^2(X), L^2(X, \mathbb{R}^m)$ sono spazi di Hilbert.
- Lo spazio $\ell^2 = \left\{ (x_n) \mid \sum_{n=0}^{\infty} x_n^2 < +\infty \right\}$ è uno spazio di Hilbert.

Definizione. $\mathcal{F} \subset H$ è un sistema ortonormale se

$$||e|| = 1 \ \forall e \in \mathcal{F}, \qquad \langle e, e' \rangle = 0 \ \forall e \neq e' \in \mathcal{F}.$$

Definizione. \mathcal{F} si dice **completo** se $\overline{\mathrm{Span}(\mathcal{F})} = H^1$. In tal caso \mathcal{F} si dice **base di Hilbert**.

Osservazione. Se H ha dimensione infinita non esistono basi ortonormali di Hilbert. Attenzione. Le basi algebriche esistono, sono quelle ortonormali a non esistere.

Esempi. In ℓ^2 una base ortonormale è $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$ con $e_n = (0, \dots, 0, \underbrace{1}_{i}, 0, \dots)$.

Infatti, il fatto che siano ortonormali è banale; verifichiamo che sia una base. Studiamo Span $(\mathcal{F}) = \{x = (x_0, x_1, \ldots) \mid x_n \text{ è definitivamente nullo}\}: dato <math>x \in \ell^2$ e $m = 0, 1, 2, \ldots$, definiamo

$$P_m x := (x_0, x_1, \dots, x_m, 0, \dots).$$

Allora Span $(\mathcal{F}) \supset P_m x \xrightarrow{m \to +\infty} x$ in ℓ^2 . Infatti,

$$x - P_m x = (0, \dots, 0, x_{m+1}, x_{m+2}, \dots).$$

¹lo span sono combinazioni lineari finite

Dunque

$$||x - P_m x|| = \sum_{n=m+1}^{\infty} x_n^2 \xrightarrow{m \to +\infty} 0.$$

Teorema 1. (della base di Hilbert.) Dato H spazio di Hilbert, \mathcal{F} sistema al più numerabile¹, ovvero $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo per ogni $x \in H$, $n \in \mathbb{N}$ l'elemento $x_n = \langle x, e_n \rangle$. Allora

- i) Vale $\sum_{n} x_n^2 \le ||x||^2$ (Disuguaglianza di Bessel).
- ii) La somma $\sum_{n} x_n e_n$ converge a qualche $\overline{x} \in H$ e $\overline{x}_n = x_n$ per ogni n.
- iii) Vale $\|\overline{x}\|^2 = \sum_{n} x_n^2 \le \|x\|^2$.
- iv) Se $x \overline{x} \perp \mathcal{F}$, allora $x \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})}$, ovvero \overline{x} è la proiezione di x su $\overline{\operatorname{Span}(\mathcal{F})}$.
- v) Se \mathcal{F} è completo, allora $x = \overline{x}$ e in particolare

$$x = \sum_{n=0}^{\infty} x_n e_n, \qquad ||x||^2 = \sum_{n=0}^{\infty} x_n^2 \qquad \text{(Identità di Parceval)}.$$

Nota. Il punto ii) non segue dal fatto che la serie non è assolutamente convergente. Infatti

$$\sum \|x_n e_n\| = \sum |x_n|$$

può essere $+\infty$.

Alla dimostrazione del teorema premettiamo il seguente lemma.

Lemma. Siano H e \mathcal{F} come nel teorema. Data $(a_n) \in \ell^2$, allora

- i) La somma $\sum_{n} a_n e_n$ converge a qualche $\overline{x} \in H$.
- ii) $\overline{x}_n = a_n$.
- iii) $\|\overline{x}\|^2 = \sum_n a_n^2$.

Dimostrazione lemma.

i) Dimostriamo che $y_n = \sum_{n=1}^m x_n e_n$ è di Cauchy in H. Se m' > m, vale

$$y_{m'} - y_m = \sum_{n=m+1}^{m'} x_n e_n \Longrightarrow \|y_{m'} - y_m\|^2 = \left\| \sum_{n=m+1}^{m'} x_n e_n \right\|^2 = \sum_{n=m+1}^{m'} x_n^2 \le \sum_{n=m+1}^{\infty} x_n^2 < +\infty.$$

Dunque, per ogni ε esiste m_{ε} tale che $\sum_{m+1}^{\infty} x_n^2 \leq \varepsilon^2$, per cui

$$\frac{\|y_{m'} - y_m\|^2}{\|y_{m'} - y_m\|^2} \le \sum_{m+1}^{\infty} x_n^2 \le \sum_{m_{\varepsilon}+1}^{\infty} x_n^2 \le \varepsilon^2 \quad \forall m, m' \ge m_{\varepsilon}.$$

 $^{^{1}}$ il caso interessante è quello numerabile

ii) Per ipotesi, $\langle y_m, e_n \rangle = x_n$ se $m \geq n$, dunque

$$\langle y_n, e_n \rangle \xrightarrow{n \to \infty} \langle \overline{x}, e_n \rangle = x_n.$$

iii) Si ha l'uguaglianza $||y_n||^2 = \sum_{n=1}^m x_n^2$, per cui passando al limite per $n \to +\infty$ otteniamo

$$||y_n||^2 \to ||\overline{x}||^2$$
, $\sum_{n=0}^m x_n^2 \to \sum_{n=0}^\infty x_n^2$.

Dimostrazione teorema.

i) Studiamo la somma

$$x = \sum_{n=0}^{\infty} x_n e_n + \mathbf{\hat{y}}$$

notiamo che x è somma di vettori ortogonali, infatti y è ortogonale a $\sum_{n=0}^{\infty} x_n e_n$:

$$\langle y, e_i \rangle = \left\langle x - \sum_{n=0}^{\infty} x_n e_n, e_i \right\rangle = \left\langle x, e_i \right\rangle - \sum_{n=0}^{\infty} x_n \underbrace{\left\langle e_n, e_i \right\rangle}_{\delta_{i,n}} = x_i - x_i = 0.$$

Essendo che x è somma di vettori ortogonali abbiamo

$$||x||^2 = \sum_{n=1}^{\infty} x_n^2 + ||y||^2 \ge \sum_{n=1}^{m} x_n^2.$$

Passando al limite per $m \to +\infty$ otteniamo

$$||x||^2 \ge \sum_{n=1}^{\infty} x_n^2.$$

- ii) Segue dal punto precedente e dal lemma.
- iii) Segue dal punto precedente e dal lemma.
- iv) Notiamo che

$$\langle x - \overline{x}, e_n \rangle = \langle x, e_n \rangle - \langle \overline{x}, -e_n \rangle = x_n - \overline{x}_n \stackrel{(i)}{=} x - \overline{x} \perp e_n \ \forall n \Longrightarrow x - \overline{x} \perp \operatorname{Span}(\mathcal{F}).$$

Segue che $x - \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})}$. (dato $y \in \operatorname{chiusura\ span...}$, prendo $y_m \to y \in \operatorname{span}$, $\langle x - \overline{x}, y_n \rangle = 0 \Rightarrow \langle x - \overline{x}, y \rangle = 0$).

v)
$$x - \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})} = H \Longrightarrow x - \overline{x} = 0$$
, cioè $x = \overline{x}$.

Corollario. Siano H spazio di Hilbert, $\mathcal{F} = \{e_n \mid n \in \mathbb{Z}\}$ base di Hilbert, $x, x' \in H$. Valgono le seguenti.

- i) Se $x_n = x'_n$ per ogni $n \in \mathbb{N}$, allora x = x' (\Leftarrow è ovvia.)
- ii) $\langle x, x' \rangle = \sum_{n=0}^{\infty} x_n x'_n$ (Identità di Parceval).
- iii) L'applicazione $H \ni X \mapsto (x_n) \in \ell^2$ è un'isometria surgettiva¹.

Dimostrazione.

- i) Per l'enunciato v) se due vettori hanno la stessa rappresentazione rispetto a una base di Hilbert coincidono.
- ii) La tesi segue usando l'identità di polarizzazione conigiuntamente all'enunciato v) del teorema:

$$\langle x, x' \rangle = \frac{1}{4} \left(\|x + x'\|^2 + \|x - x'\|^2 \right) = \frac{1}{4} \left(\sum_{n} \underbrace{(x_n + x'_n)^2}_{(x_n + x'_n)^2} \sum_{n} \underbrace{(x_n - x'_n)^2}_{x_n^2 + x'_n^2 - 2x_n x'_n} \right)$$

$$= \frac{1}{4} \left(\sum_{n} x''_n + \sum_{n} x''_n^2 + 2 \sum_{n} x_n x'_n - \sum_{n} x''_n - \sum_{n} x''_n^2 + 2 \sum_{n} x_n x'_n \right).$$

iii) TO DO.

Osservazioni.

- \bullet Gli enunciati i) e v) non richiedono H completo.
- Se H è uno spazio di Hilbert e \mathcal{F} sistema ortonormale infinito, allora \mathcal{F} non è mai una base algebrica². Dunque combinazioni lineari finite di H non sono mai uguali ad H, ovvero $\operatorname{Span}(\mathcal{F}) \subseteq H$) di H.

Dimostrazione. Notiamo che possiamo scrivere \overline{x} come

$$(e_n) \subset \mathcal{F}, \quad \overline{x} = \sum_{n=0}^{\infty} \frac{1}{2^n} e_n, \quad \overline{x} \notin \operatorname{Span}(\mathcal{F}).$$

Nota. I coefficienti sono univocamente determinati perchè ottenuti tramite prodotto scalare. Notiamo che non si può usare il teorema di albebra lineare sull'unicità della rappesentazione poichè stiamo trattando combinazioni lineari infite.

• Siano H uno spazio di Hilbert di dimensione infinita e \mathcal{F} una base di Hilbert. Allora, \mathcal{F} è numerabile se solo se H è separabile.

Dimostrazione.

- \Longrightarrow Vale $H = \overline{\operatorname{Span}(\mathcal{F})} = \overline{\operatorname{Span}_{\mathbb{Q}}(\mathcal{F})}$ e notando che $\overline{\operatorname{Span}_{\mathbb{Q}}(\mathcal{F})}$ è numerabile se \mathcal{F} è numerabile.
- \sqsubseteq Se $\mathcal F$ non è numerabile, siccome $||e-e'||=\sqrt{2} \quad \forall e,e'\in \mathcal F$ allora H non è separabile.

¹in particolare è bigettiva ma l'iniettività è ovvia

²per base algebrica s'intende un insieme di vettori di uno spazio vettoriale le cui combinazioni lineari generano tutto lo spazio

Esempio. Lo spazio $H=L^2(X)$, con $X=\mathbb{R}^n$, μ misura di Lebesgue ha base di Hilbert numerabile.

• Dato \mathcal{F} sistema ortonormale in H, allora \mathcal{F} è completo se solo se \mathcal{F} è massimale (nella classe dei sistemi ortonormali rispetto all'inclusione).

Dimostrazione.

 \implies Dato che \mathcal{F} è completo segue che $\overline{\mathrm{Span}(\mathcal{F})} = X$, quindi

$$\mathcal{F}^{\perp} = (\operatorname{Span}(\mathcal{F}))^{\perp} = \overline{\operatorname{Span}(\mathcal{F})}^{\perp} = H^{\perp} = \{0\}.$$
continuità del prodotto scalare

dunque \mathcal{F} è massimale.

Se \mathcal{F} non è completo, esiste $c \in H \setminus \operatorname{Span}(\mathcal{F})$. Definiamo \overline{x} come nel Teorema 1. Notiamo che $x - \overline{x} \perp \operatorname{Span}(\mathcal{F})$, dunque $x - \overline{x} \perp \mathcal{F}$ e $x - \overline{x} \neq \{0\}$, da cui $\mathcal{F} \cup \left\{\frac{x - \overline{x}}{\|x - \overline{x}\|}\right\}$ è un sistema ortonormale che include strettamente \mathcal{F} . 4

Osservazione. Nell'implicazione \Rightarrow non abbiamo usato la completezza di H.

Corollario. Ogni sistema ortonormale \mathcal{F} si completa a $\widetilde{\mathcal{F}}$ base di Hilbert di H.

Dimostrazione. Sia $X = \{ \mathcal{F} \text{ sistema ortonormale } H \text{ tale che } \tilde{\mathcal{F}} \subset \mathcal{F} \}$ Per Zorn, X contiene un elemento massimale. Denotiamolo con $\tilde{\mathcal{F}}$. Allora $\tilde{\mathcal{F}}$ è una base di Hilbert.

Nota. Aggiungere le note a caso.

Teorema 2. Dato V sottospazio vettoriale chiuso di H. Allora

- i) $H = V + V^{\perp}$, cioè per ogni $x \in H$ esiste $\overline{x} \in V$ e $\widetilde{x} \in V$ tale che $x = \overline{x} + \widetilde{x}$.
- ii) Gli elementi \overline{x} e \widetilde{x} sono univocamente determinati (e indicati con x_V e x_V^{\perp}).
- iii) \overline{x} è caratterizzato come l'elemento di V più vicino a X.

Dimostrazione.

- i) Dato che V è chiuso, V è completo, cioè V è un sottospazio di H, dunque V ammette base ortonormale $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo $\overline{x} \in \overline{\mathrm{Span}(\mathcal{F})}$ come nel Teorema 1 e $\widetilde{x} := x \overline{x} \in \overline{\mathrm{Span}(\mathcal{F})} = V^{\perp}$ (per iv)).
- ii) Se $x=\overline{x}+\widetilde{x}=\overline{x}'+\widetilde{x}',$ dove $\overline{x},\overline{x}'\in V$ e $\widetilde{x},\widetilde{x}'\in V^{\perp},$ allora

$$\overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} \Longrightarrow_{V \cap V^{\perp} = \{0\}} \overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} = 0.$$

iii) Per ogni $y \in V$ sia $f(y) = ||x - y||^2$. Mostriamo che \overline{x} è l'unico minimo di f.

$$f(y) = \|x - y\|^2 = \|\widehat{x - \overline{x}} + \widehat{\overline{x} - y}\|^2 = \|x - \overline{x}\|^2 + \|\overline{x} - y\|^2 = f(\overline{x}) + \|\overline{x} - y\|^2 \ge f(\overline{x}).$$

Osservazione. Serve V chiuso. Dato \mathcal{F} base di Hilbert di H (H dimensione infinita), $V := \operatorname{Span}(\mathcal{F})$, so che $V = \operatorname{Span}(\mathcal{F}) \subset \overline{V} = H$. Allora

$$\overline{V^{\perp}} = \overline{V}^{\perp} = H^{\perp} = \{0\} \Longrightarrow V + V^{\perp} = V \subsetneq H.$$

Teorema 3. Dato $\Lambda \colon H \to \mathbb{R}$ lineare e continuo, esiste $x_0 \in H$ tale che

$$\Lambda(x) = \langle x, x_0 \rangle$$
 per ogni $x \in H$. (*)

Dimostrazione. Supponiamo $\Lambda \not\equiv 0$. Dato che Λ è continuo, ker Λ è chiuso in H. Definiamo $V := \ker \Lambda$. Per il primo enunciato del teorema precedente, $H = V + V^{\perp}$ e per quanto supposto $V^{\perp} \neq \{0\}$.

Notiamo che dim $V^{\perp}=1$. Infatti, se per assurdo dim $(V^{\perp})>1$, allora esisterebbe $W\subset V^{\perp}$ con dim W=2, da cui seguirebbe che $\Lambda\colon W\to\mathbb{R}$ ha ker banale. 4

Allora $V^{\perp} = \operatorname{Span} \{x_1\}$ con $||x_1|| = 1$. Definiamo $c := \Lambda(x_1), x_0 = cx_1$.

Dimostriamo ora l'uguaglianza * per passi.

- i) Vale per $x \in V$ tale che $x \in \ker \Lambda$. Infatti $\Lambda(x) = x_0 \in \langle x, x_0 \rangle = 0$ perchè $x_0 \in V^{\perp}$.
- ii) Vale per $x = x_1$ (e quindi per $x \in V^{\perp}$). Infatti,

$$\Lambda(x_1) = c \quad \langle x_1, x_0 \rangle = \langle x_1, cx_1 \rangle = c \|x_1\|^2 = c.$$

iii) Vale su $V + V^{\perp} = H$.

Osservazioni.

• Esistono funzioni $\Lambda \colon H \to \mathbb{R}$ lineari ma non continue se H ha dimensine infinita.

Dimostrazione. Prendo $\Lambda \colon H \to \mathbb{R}$ lineare definito come

$$\begin{cases} \Lambda(e_n) = n & \forall n \\ \Lambda(e) = \text{qualsiasi } e \in \mathcal{G} \setminus \{e_n\} . \end{cases}$$

Allora

$$+\infty = \sup_{n} |\Lambda(e_n)| \le \sup_{\|x\| \le 1} |\Lambda(x)|$$

da cui segue che Λ non è continuo.

3.1 Esercitazione del 3 Novembre 2021

3.1.1 Basi Hilbertiane e proiezioni

Esercizio 1. Sia $H = L^2(-1,1)$ e sia $V = \text{Span}\{1,x,x^2\}$, verificare che sia un sottospazio chiudo e calcolare la proiezione di sin x su V.

Osservazione. Su $L^2(\mathbb{R})$ e su $L^2(-1,1)$ esistono di sicuro basi Hilbertiane di cardinalità numerabile in quanto abbiamo già visto che sono spazi separabili.

Soluzione. Vediamo come trovare le proiezioni su dei sottospazi V di H spazi di Hilbert separabili.

- \bullet Bisgona controllare che V sia chiuso.
- Si calcola una "base hilbertiana di V", se $\{e_1,\ldots,e_n,\ldots\}$ è una base di V allora

$$p_V(x) = \sum_n \langle x, e_n \rangle e_n$$

Indichiamo con $\|\cdot\|_{L^2}$ la norma $\|\cdot\|_{L^2(-1,1)}$ e con $\langle\cdot,\cdot\rangle$ il prodotto scalare su L^2 . Notiamo che se V è chiuso in $L^2(-1,1)$ in quanto ha dimensione finita.

Abbiamo una base di V data da $1, x, x^2$ in quanto sono linearmente indipendenti (si può verficare mostrando che $\forall x \in [-1, 1] \ \lambda_1 + \lambda_2 x + \lambda_3 x^2 = 0 \implies \lambda_1 = \lambda_2 = \lambda_3 = 0$ usando la teoria sulle equazioni di II grado oppure si può derivare e man mano ottenere più informazioni su $\lambda_3, \lambda_2, \lambda_1$)

Una prima tecnica sarebbe di applicare direttamente il processo di ortonormalizzazione di Gram-Schmidt a questa base ed ottenere

$$e_{1} = \frac{1}{\|1\|_{L^{2}}} = \frac{1}{\sqrt{2}} \qquad \|1\|_{L^{2}} = \sqrt{2}$$

$$e_{2} = \frac{x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1}{\|x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1\|_{L^{2}}}$$

$$e_{3} = \frac{x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}}{\|x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}\|_{L^{2}}}$$

Alternativamente possiamo direttamente cercare la proiezione su V di sin x. Cerchiamo a,b,c tali che $a+bx+cx^2$ sia $p_V(x)=\sin x$ allora posto $f(x)\coloneqq\sin x-a-bx-cx^2$ abbiam $f(x)\in V^\perp\iff$ si verficano le seguenti condizioni

$$\langle f(x), 1 \rangle = 0$$
 $\langle f(x), x \rangle = 0$ $\langle f(x), x^2 \rangle = 0$

Ad esempio da $\langle f(x), 1 \rangle = 0$ otteniamo

$$0 = \int_{-1}^{1} (\sin x - a - bx - cx^{2}) \cdot 1 \, dx = \underbrace{\int_{-1}^{1} \sin x \, dx}_{=0} - 2a - b \underbrace{\int_{-1}^{1} x \, dx}_{=0} - c \int_{-1}^{1} x^{2} \implies 0 = -2a - \frac{2}{3}c$$

ed analogamente si procede con x e x^2 ... [TODO: Magari finire questo esercizio veramente] Un altro modo è considerare la funzione $g(a,b,c) := \|\sin x - a - bx - cx^2\|_{L^2(-1,1)}$ che è continua, coerciva, etc. e imponendo $\nabla_{a,b,c}g = 0$ si minimizza e si ottengono $\bar{a}, \bar{b}, \bar{c}$ che verficano $p_V(\sin x)$.

Esercizio 2. Sia $X = \{u \in L^2(\mathbb{R}) \mid \int_0^2 u \, \mathrm{d}x = 0\}$, dire se è un sottospazio chiuso, calcolare X^{\perp} per una generica $u \in L^2(\mathbb{R})$ e determinare le proiezioni $p_X(u)$ e $p_{X^{\perp}}(u)$.

Soluzione. Consideriamo la mappa T lineare data da

$$u \mapsto \int_0^2 u \, \mathrm{d}x$$

è ben definita, lineare e continua, allora X è proprio $T^{-1}(0)$ dunque è un sottospazio chiuso.

Osserviamo anche che

$$T(u) = \int_{\mathbb{R}} u(x) \cdot \mathbb{1}_{[0,2]}(x) \, \mathrm{d}x = \langle u, g \rangle_{L^2(\mathbb{R})}$$

con $g = \mathbb{1}_{[0,2]}(x) dx \in L^2(\mathbb{R})$. E dunque $X = \{u \in L^2 \mid \langle u, g \rangle = 0\}$.

Calcoliamo ora X^{\perp} e le proiezioni $p_X, p_{X^{\perp}}$.

$$L^2(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}} \left\{ \frac{g}{\|g\|_{L^2}} \right\} \oplus \left\{ \frac{g^{\perp}}{\|g\|_{L^2}} \right\}$$

quindi

$$||g||_{L^2} = \left(\int_{\mathbb{R}} \mathbb{1}_{[0,2]}(x)^2 dx\right)^{1/2} = \sqrt{2}$$

e dunque

$$p_X(u) = u - \frac{1}{2} \int_0^2 u \, \mathrm{d}x \cdot \mathbb{1}_{[0,2]}$$

[TODO: Ricontrollare i conti]

Esercizio. Sia $V = \{\underline{x} = (x_n)_{n \in \mathbb{N}} \in \ell^2 \mid x_1 + x_3 + x_5 = 0\}$, dire se V è chiuso in ℓ^2 e calcolare p_V e $p_{V^{\perp}}$.

3.1.2 Approssimazioni per convoluzione

Abbiamo visto che data $g \in L^1(\mathbb{R}^d)$ con $\int g \, dx = 1$ allora per ogni $f \in L^p(\mathbb{R}^d)$ abbiamo $f_\delta := f * \sigma_\delta g \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ per $p \neq \infty$.

Esercizio. Dire se esiste $v \in L^1(\mathbb{R})$ tale che sia elemento neutro della convoluzione ovvero

$$\forall f \in L^1(\mathbb{R}) \qquad f * v = f$$

Non esiste tale v, per vederlo scegliamo opportunamente \bar{f} e usiamo l'equazione. Prendiamo g a supporto compatto, allora vorremmo avere $\sigma_{\delta}g * v = \sigma_{\delta}g$ per ogni δ . Ma questo tende a 0 in quanto il supporto diventa sempre più piccolo...

[TODO: Aggiustare]

Osservazione. Abbiamo già visto in passato che se f è Lebesgue-misurabile tale che $\int_E f \, dx = 0$ per ogni E misurabile di \mathbb{R}^d allora f = 0 quasi ovunque su \mathbb{R}^d .

Esercizio. Sia f Lebesgue-misurabile su \mathbb{R}^d tale che $\forall B$ palla su \mathbb{R}^d

$$\int_B f \, \mathrm{d}x = 0$$

è vero allora che f=0 quasi ovunque su \mathbb{R}^d ?

Hint. Si usa la convoluzione con un opportuno nucleo. In particolare $f * 1_B$...

3.2 Esempi di basi Hilbertiane

3.2.1 Polinomi

La base data da

$$\{1, x, x^2, \dots, x^n, \dots\}$$

opportunamente ortonormalizzata è una base di $L^2[0,1]...$ si ricollega al teorema di Stone-Weierstrass...

3.2.2 Base di Haar

Vediamo la base di Haar data da due indici n, k dove n indica l'ampiezza delle "onde" (anche dette wavelet) e k il posizionamento dell'onda. Sia $n \in \mathbb{N}$ e $k = 1, \ldots, 2^n$ e poniamo

$$g^{0,0} \coloneqq 1 \qquad g^{n,k} \coloneqq 2^{\frac{n-1}{2}} \left(\mathbb{1}_{\left[\frac{2k-2}{2^n}, \frac{2k-1}{2^n}\right]} - \mathbb{1}_{\left[\frac{2k-1}{2^n}, \frac{2k}{2^n}\right]} \right)$$

Inoltre $||g^{n,k}||_{L^2[0,1]} = 1$ ed anche $||g^{0,0}||_{L^2[0,1]} = 1$. Vedremo che $\{g^{n,k} \mid n \geq 1, k = 1, \ldots, 2^n\} \cup \{g^{0,0}\}$ formano un sistema ortonormale.

- $\langle g^{n,k}, g^{0,0} \rangle = 0$: È ovvio in quanto le $g^{n,k}$ hanno media nulla.
- $\langle g^{n,k}, g^{n',k'} \rangle = 0$: Se n = n' i supporti sono sempre disgiunti altrimenti $n \neq n'$, se supponiamo n < n' allora i supporti o sono disgiunti e si conclude come prima o il supporto di $g^{n',k'}$ è contenuto in quello di $g^{n,k}$. In tal caso però $g^{n,k}$ è costante su $g^{n',k'}$ e dunque l'integrale è sempre nullo.

Inoltre è anche una base hilbertiana, per combinazioni algebriche si ottengono tutti gli intervalli della forma

$$I_k := \left\lceil \frac{k-1}{2^n}, \frac{k}{2^n} \right
ceil \qquad \leadsto \qquad \mathbb{1}_{I_k}$$

 $g^{3,3}$

ad esempio normalizzando $g^{n,k}+2^{\frac{n-1}{2}}g^{0,0}$ otteniamo uno degli intervalli di sopra di lunghezza $1/2^{n+1}$.

Vedremo che possiamo estendere la base di Haar a tutto \mathbb{R} però è più difficile... [TODO: Ehm aggiungere la parte dopo quando verrà fatta]

Esercizio. Sia $p \ge 1$ allora $\{u \in L^p(\mathbb{R}) \mid \int u \, dx = 0\} \subseteq L^p(\mathbb{R})$ è denso in $L^p(\mathbb{R})$?

3.3 Spazi di Hilbert complessi

Definizione. Sia H una spazio vettoriale su \mathbb{C} con prodotto hermitiano $\langle \cdot; \cdot \rangle$, ovvero tale che

- $\bullet \ \left\langle \, \cdot \, ; \, \cdot \, \right\rangle$ è lineare nella prima variabile
- $\langle x; x' \rangle = \overline{\langle x', x \rangle}$ ovvero è antilineare nella seconda variabile.
- $\langle x; x \rangle \ge 0$ per ogni x e vale 0 se e solo se x = 0.

Analogamente si pone $||x|| := \sqrt{\langle x; x \rangle}$. C'è un'identità di polarizzazione ma è leggermente diversa dalla versione reale.

Allora H si dice di Hilbert se è completo.

Esempio. Su $L^2(X;\mathbb{C})$ si mette il prodotto scalare dato da

$$\langle u; v \rangle \coloneqq \int_X u \cdot \overline{v} \, \mathrm{d}\mu$$

Teorema. (della base di Hilbert per spazi complessi) Dato $\mathcal{F} = \{e_n\}$ sistema ortonormale in H e $x \in H$ allora per ogni n si pone¹

$$x_n = \langle x; e_n \rangle$$

Vale anche l'identità di Parceval $||x^2|| = \sum |x_n|^2$ dove $|\cdot|$ è il modulo di un numero complesso, in particolare nella versione con prodotto scalare diventa

$$\langle x, x' \rangle = \sum_{n} x_n \overline{x'_n}$$

¹E non $\langle e_n; x \rangle$!

Serie di Fourier

Lo scopo della serie di Fourier (complessa) è di rappresentare una funzione $f: [-\pi, \pi] \to \mathbb{C}$ (o più in generale una funzione $f: \mathbb{R} \to \mathbb{C}$ 2 π -periodica) come

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

In particolare chiamiamo i coefficienti c_n coefficienti di Fourier di f(x) e tutta l'espressione a destra serie di Fourier di f(x).

Motivazione. La rappresentazione in serie di Fourier serve ad esempio a risolvere certe equazioni alle derivate parziali ed è anche utilizzata per la "compressione dati".

Problemi.

- Come si trovano (se esistono) i coefficienti di Fourier?
- Ed in che senso la serie converge?

Osservazione. La serie appena vista è indicizzata da $-\infty$ a $+\infty$, più avanti vedremo che la definizione esatta non sarà importante ma per ora usiamo la definizione

$$\sum_{n=-\infty}^{\infty} a_n := \lim_{N \to +\infty} \sum_{n=-N}^{N} a_n$$

ed ogni tanto scriveremo anche $\sum_{n\in\mathbb{Z}}a_n$ per brevità.

Teorema 1. Sia $\mathcal{F} = \left\{ e_n(x) \coloneqq \frac{e^{inx}}{\sqrt{2\pi}} \right\}$ allora è una base ortonormale di $L^2([-\pi, \pi]; \mathbb{C})$.

Da cui formalmente segue che

$$f(x) = \sum_{n \in \mathbb{Z}} \langle f; e_n \rangle \cdot e_n = \sum_{n \in \mathbb{Z}} \left(\int_{-\pi}^{\pi} f(t) \frac{\overline{e^{int}}}{\sqrt{2\pi}} dt \right) \frac{e^{inx}}{\sqrt{2\pi}}$$
$$= \sum_{n \in \mathbb{Z}} \underbrace{\frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(t) e^{-int} dt \right)}_{c_n} e^{inx}$$

Definizione. Data $f \in L^2([-\pi, \pi]; \mathbb{C})$ i coefficienti di Fourier di f sono

$$c_n = c_n(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

e notiamo in particolare che è anche ben definito per $f \in L^1$ (anche se per ora non ci dice molto in quanto L^1 non è uno spazio di Hilbert).

Corollario. Per ogni $f \in L^2([-\pi, \pi]; \mathbb{C})$ abbiamo

- i) La serie $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge a f in L^2 .
- ii) Vale l'identità di Parceval

$$||f||_2^2 = 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2 \qquad \langle f, g \rangle = \sum_{n \in \mathbb{Z}} c_n(f) \overline{c_n(g)}$$

Osservazione. Usando la i) ed il fatto che la convergenza in L^2 implica la convergenza quasi ovunque a meno di sottosuccessioni otteniamo che $\forall f \exists N_n \uparrow \infty$ tale che

$$\sum_{n=-N_k}^{N_k} c_n e^{inx} \xrightarrow{k} f(x) \qquad \widetilde{\forall} x \in [-\pi, \pi]$$

In particolare nel 1966 Carleson ha dimostrato che in realtà vale proprio

$$\sum_{n=-N}^{N} c_n e^{inx} \xrightarrow{N} f(x) \qquad \widetilde{\forall} x$$

Dimostrazione Teorema 1. Vogliamo vedere che

i) \mathcal{F} è un sistema ortonormale.

Dimostrazione. Basta calcolare $\langle e_n; e_m \rangle$ per ogni $n, m \in \mathbb{Z}$

$$\langle e_n; e_m \rangle = \int_{-\pi}^{\pi} \frac{e^{inx}}{\sqrt{2\pi}} \cdot \frac{e^{inx}}{\sqrt{2\pi}} dx = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dx = 1 & \text{se } n = m \\ \frac{1}{2\pi} \left[\frac{e^{i(n-m)x}}{i(n-m)} \right]_{-\pi}^{\pi} = 0 & \text{se } n \neq m \end{cases}$$

ii) \mathcal{F} è completo (richiede Stone-Weierstrass)

Teorema di Stone-Weierstrass. Sia K uno spazio compatto e T_2 (essenzialmente è uno spazio metrico compatto) e siano C(K) le funzioni continue reali su K, mentre $C(K;\mathbb{C})$ le funzioni continue complesse su K (con la norma del sup).

Dato $\mathcal{A} \subset C(K)$ diciamo che è una **sottoalgebra** se è uno spazio vettoriale e chiuso rispetto al prodotto e diciamo che **separa i punti** se $\forall x_1, x_2 \in K$ con $x_1 \neq x_2$ allora $\exists f \in \mathcal{A}$ tale che $f(x_1) \neq f(x_2)$.

Caso reale: Se \mathcal{A} è una sottoalgebra di C(K) che separa i punti e contiene le costanti, allora $\overline{\mathcal{A}} = C(K)$.

Caso complesso: Se \mathcal{A} è una sottoalgebra di $C(K;\mathbb{C})$ che separa i punti, contiene le costanti e *chiusa per coniugio* allora $\overline{\mathcal{A}} = C(K;\mathbb{C})$.

Osservazioni.

• Se K = [0, 1], A = "polinomi reali" $\Longrightarrow \overline{A} = C(K; \mathbb{C}).$

- L'ipotesi di separare i punti è necessaria, se ad esempio $\exists x_1, x_2$ tali che $x_1 \neq x_2$ e per ogni f abbiamo $f(x_1) = f(x_2)$ allora varrà analogamente anche per ogni funzione nella chiusura ma le funzioni continue separano i punti.
- È anche necessario che $\mathcal{A} \supset$ "costanti", ad esempio dato $x_0 \in K$ ed $\mathcal{A} := \{ f \in C(K) \mid f(x_0) = 0 \}$ abbiamo che $\overline{\mathcal{A}} = \mathcal{A} \subsetneq C(K)$.
- Anche la chiusura per coniugio è necessaria, infatti ad esempio preso $K = \{z \in \mathbb{C} \mid |z| \leq 1\}$, $\mathcal{A} =$ "polinomi complessi", \mathcal{A} separa i punti e contiene le costanti però $\overline{\mathcal{A}}$ sono solo le funzioni olomorfe su K.

In particolare noi vorremmo usare questo teorema applicandolo alle funzioni 2π -periodiche ristrette a $[-\pi, \pi]$, però queste non verificano la separazione dei punti in quanto per la periodicità $f(-\pi) = f(\pi)$.

Vediamo però nel seguente corollario che possiamo estendere leggermente il teorema passando dai quozienti topologici.

Corollario. Sia \mathcal{A} una sottoalgebra di C(K) (o analogamente per $C(K;\mathbb{C})$) che contiene le costanti (e nel caso complesso chiusa per coniugio). Definiamo la relazione $x_1 \sim x_2$ se $f(x_1) = f(x_2)$ per ogni $f \in \mathcal{A}$ allora

$$\overline{\mathcal{A}} = \{ f \in C(K) \mid x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2) \} \eqqcolon X$$

Dimostrazione.

Si applica Stone-Weierstrass a $K/_{\sim}$, è chiaro che $\overline{\mathcal{A}} \subset X$, vediamo che $X \subset \overline{\mathcal{A}}$.

Data $g \in X$ troviamo $g_n \in \mathcal{A}$ tale che $g_n \to g$ uniformemente allora $\exists \widetilde{g} \colon K/\sim \to \mathbb{C}$ tale che $g = \widetilde{g} \circ \pi$, consideriamo $\mathcal{A} = \{\widetilde{f} \mid f \in \mathcal{A}\}$ che è una sottoalgebra di $C(\overline{K/\sim}; \mathbb{C})$ che separa i punti, etc.

Sia ora $K = [-\pi, \pi]$ e consideriamo

$$\mathcal{A} = \operatorname{Span}_{\mathbb{C}}(\mathcal{F}) = \left\{ \sum_{n \in \mathbb{Z}} c_n e^{inx} \right\} = \left\{ p(e^{inx}) \mid p \text{ polinomio a esponenti interi} \right\}$$

segue che \mathcal{A} è una sottoalgebra, separa i punti di K tranne $-\pi$ e π ed è chiuso per coniugio.

Per il corollario $\overline{\mathcal{A}}^C = \{ f \in C([-\pi,\pi];\mathbb{C}) \mid f(-\pi) = f(\pi) \}$. Se invece facciamo la chiusura rispetto ad L^2 abbiamo che $\overline{\mathcal{A}}^{L^2} \supseteq \{ f \in C([-\pi,\pi];\mathbb{C}) \mid f(-\pi) = f(\pi) \}$ per il fatto che convergenza uniforme \Longrightarrow convergenza in L^2 per spazi di misura finita.

Poi $\overline{\mathcal{A}}^{L^2} \supseteq \{f \in C([-\pi, \pi]; \mathbb{C})\}$, data $f \in C([-\pi, \pi]; \mathbb{C})$ la approssimiamo in L^2 con $f_n = f \cdot \varphi_n$, dove le φ_n sono tali che $\varphi_n(-\pi) = \varphi_n(\pi) = 0$, $\varphi_n = 1$ su $[1/n - \pi, \pi - 1/n]$ e interpolata linearmente nell'intervallo rimanete.

[TODO: Disegnino delle φ_n]

Infine poiché le funzioni continue sono dense in L^2 rispetto alla sua norma segue che $\overline{\mathcal{A}}^{L^2}=L^2$.

Applicazioni della serie di Fourier

Trasformata di Fourier

Funzioni armoniche

Integrazione di superfici

8.1 Indice Analitico

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\$	Assurdo	\$	Assurdo
\$	Assurdo	4	Assurdo
\$	Assurdo	4	Assurdo
Ź	Assurdo	4	Assurdo

Esempi di figure

Semplici

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Wrappate

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Con caption o descrizione

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Figura 8.1: Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.