Dynamics of plastic networks of excitatory and inhibitory spiking neurons

Clayton Seitz

July 30, 2021

A loopy picture of computational neuroscience

Biological neural networks

- Store and recall enormous amounts of information
- Function at very low power
- Rely only on basic neural primitives

¹

¹[Peirera and Brunel, Neuron. 2018]

Inferring the transfer function from ITC data

Measuring the *static* transfer function from novel images assuming that input currents are Gaussian variables

$$\phi(\boldsymbol{\xi}) = \frac{r_{max}}{1 + \exp\beta(\boldsymbol{\xi} - \boldsymbol{\xi}_0)}$$

²[Peirera and Brunel, Neuron. 2018]

Inferring the learning rule from ITC data

Inferring the change in input current ξ_{in} from the change in firing rate in novel relative to familiar stimuli

³[Lim et al., Nature Neuroscience. 2015]

Inferring the learning rule from ITC data

The change in input current to a neuron can then be read from the firing rate of that neuron when presented a novel stimulus

$$\Delta \xi_i(r) \propto (2q+1- anh(eta(r-x)))$$

4

A Hebbian update for synaptic weights

Assuming that $\Delta W_{ij} \propto f(r_i)g(r_j)$, the change in input current is related to synaptic plasticity by

$$\Delta \xi_i \propto f(r_i) \sum_i g(r_j) r_j$$

which we have fit from the data as

$$\Delta \xi_i(r) \propto (2q+1- \tanh(eta(r-x)))$$

so we can write

$$f(r_i) = \frac{(2q+1-\tanh(\beta(r-x)))}{\sum_j g(r_j)r_j}$$

Presenting novel and familiar stimuli to the network

