# PC基础硬件

2023年11月26日 22:38

#### 主板结构划分:

IO接口区域

一般位于左上角,包含网线、usb等接口

CPU区域:一般位于中间偏上部分,主要用于安装CPU、安装散热并为CPU供电

СРИ四周的供电区域,圆柱体为电容。立方体为电感,类似小芯片的为MOS管,电感和MOS管基本是一比一的数量,每一组称为一相,负责将输入的电压转 化为CPU工作的电压

内存区域:一般位于右上角

DDR5和DDR4的插槽互不兼容,需认清主板的后缀(一般有D4或D5标识)

拓展区域:一般位于下方

有多种接口,如M.2、PCIE接口等

南桥: 一般位于右下角,即本主板的芯片组区域 南桥芯片组负责连通非与CPU直连的接口

针脚: 位于主板四周

针脚也叫跳线,可连接其它接口以及扩展出更多的接口,如耳机跳线、RGB跳线、散热风扇跳线等

#### 主板规格划分:

EATX:超大号版型 ATX:标准版型 MATX:中号版型 ITX:小号版型

内存: 其它条件一定时, 频率越高, 延迟越低

SPD信息:用于开机内存自检的信息,让主板了解到内存信息,以此给出合理的内存工作参数,存储在内存PCB上的EEPROM中

XMP(Extreme Memory Profile):是SPD技术的延伸,在Intel平台直接叫XMP,在AMD平台也被叫做A-XMP、DOCP等

是厂家已经测试完的内存可以跑的一套高频(超频)预设,包含了电压、频率、时序等多项参数,和SPD一起存储在EEPROM中,开机自检时可以被主板读取,但为了稳定性往往不会启用,而是需要在bios里手动打开XMP

XMP1和XMP2:往往在预设里也有多个选项,一般来说1和2并没有绝对的好坏,需要根据情况选用

一般主板支持双通道,相比单通道,可以插上两根内存条,将数据拆分并分别存在两根内存中,类似于多体存储器,且有两条道路通往内存,这样就可以获得内存带宽翻倍的效果

一般四槽主板,1、2槽是一个内存通道,3、4槽是一个内存通道

内存通道数量由内存控制器决定,和内存槽数量无关。此外,最大支持内存大小也是由内存控制器决定的,内存控制器一般在主板上,也有将其集成在手机soc的

不对称双通道:可以使用两根不同容量的内存条组双通道,此时容量小的内存,全部容量都是双通道,而容量大的内存中,多出的那一部分容量实际是单通道的 速度

但一般不推荐使用不对称双通道,因为系统并不知道双通道是哪一部分

内存时序: 时序用来表示延迟, 越低表示延迟越小

CL xx-xx-xx

同内存频率, 时序越低

## 内存的频率分频机制:

1、内存的频率=Ratio倍数 x 基础频率 x 参考系数

基础频率:一般为100MHz,只有高端主板(如Intel Z系列主板)才支持调整基频

参考系数:是一种异步工作的技术,有1.0和1.33两种,带K的CPU可自由切换,非K处理器只支持1.33

Ratio倍数: 类似CPU的倍频,必须为整数,内存频率可以是整个基础频率的整数倍而不影响其他元件的工作。它由内存控制器的体质决定

2、内存工作频率收到内存控制器工作频率的制约,根据两者频率的比值可划分为以下两个模式:

Gear1模式:内存控制器频率和内存工作频率为1:1,两者同步工作,内存延迟低,效能最大化

Gear2模式:内存控制器频率和内存工作频率为1:2,可减轻内存控制器的压力,让内存达到更高的频率

当从Gear1切换到Gear2时,延迟可能有一个突然的上升,然后随着频率的上升,延迟才缓慢开始下降

3、当内存频率比较低时(一般是3600MHz以下),无需分频,而当使用高频内存时,则需要分频才能让内存跑到较高的频率

例如11代酷睿CPU,它的内存控制器体质一般支持Ratio=27~30,板厂采取保守策略就是27顶天,在Gear1模式下最高内存频率=27\*100\*1.33=3600MHz,要使用更高频率的内存条就需要切换到Gear2模式,但是由于不带K的CPU无法调参考系数,非z系列主板无法动基础频率,且Ratio必须为整数,所以有些频率在Gear2下不一定能支持,具体看配置

- 4、内存分频的影响:显然Gear2模式能提高主机支持的内存频率上限,可以利用更高频率的内存带来更大带宽。但是虽然内存频率越高延迟越低,但分频的存在仍然会让内存的延迟增大(高频率的内存在通信时需要等待内存控制器)
- 5、Gear2的分频和锐龙的分频不相同,后者分频后会伴随着IF总线的频率变动,从而影响整个CPU的性能,但Gear2模式仅影响内存控制器和内存性能

#### 内存种类:

内存是RAM的一种,更准确的说是RAM->DRAM->SDRAM(同步动态随机存取存储器),目前主要有三种:

DDR(Double Data Rate,双倍速率SDRAM):主要面向PC端

双倍指的是数据速率是总线时钟频率的两倍

LPDDR(Low Power Double Data Rate, 低功耗双倍速率SDRAM): 主要面向移动端

为了压低功耗,LPDDR系列位于片上,不仅降低了工作电压,且主要提高预读取位数等来提升性能,因此功耗小、频率高、带宽较大,但延迟比DDR高不少。另外LPDDR单条内存位宽没有DDR高,现在DDR已经原生64bit位宽了,但LPDDR仍然是32bit位宽

GDDR(Graphics DDR SDRAM,图形用双倍速率SDRAM): 主要作为显存使用,主要强化了带宽,但是增大了延迟 GDDR是基于DDR技术的,但并不是GDDR5就是使用DDR5的技术,而是DDR3的技术,GDDR6使用DDR4的技术

#### 电源:

PC使用的是低压直流电,而家里一般是220V交流电,电源一个很重要的功能就是这个转化

转化率:电源输出功率与电源输入功率之比,越接近100%越好。转化率不是固定的,一般在40%~50%的负载下转化率最高

常见电脑电源的功率如650W指电源输出功率 80PLUS认证:衡量电源的转化率和功率因素

依次为: 白牌、铜牌、银牌、金牌、白金牌、钛金牌

不包含接口数量、线材长度、过载保护等参数,即牌越高不一定越好,转化率的高低仅仅是剩下一些电费而已。但一般而言是成正比的

模组电源: 电源模组和电源品质完全无关

非模组电源: 所有线都是从电源里定死了的, 不可更换, 多余的线也无法拆掉

半模组电源:仅保留必须的24pin主板供电和4+4pin的CPU供电,其余的都以接口的形式存在,按需配

全模组电源:整个电源的所有线缆都是以接口的形式存在

定制线: 全模组和半模组电源可以选用定制线, 可以把主机装得好看一点

#### 键盘: 主要分为薄膜键盘和机械键盘

薄膜键盘: 低成本低噪音, 体积小, 一般大多数笔记本都是薄膜键盘

小时候的游戏手柄也是薄膜类型的

机械键盘: 主要以轴体分类

黑轴: 段落感较弱, 声音较小, 按下去力道较大, 适合游戏但不适合打字

红轴:有着和黑轴一样的段落感,但相较于黑轴所需按压的力道较小,游戏和办公打字均可青轴:段落感和机械感最强,打字声音大,一个人办公打字时很爽,但对游戏来说不适合

茶轴:万精油,所有参数基本都卡在中间,游戏和办公均可

此外还有其它许多轴体

键盘第一个指示灯:指示数字小键盘是否开启,按NumLock切换

第二个指示灯:指示大写锁定是否开启

#### CPU与GPU的功耗:

TDP: 早期时可以作为CPU的功耗参考,比较准确,但随着技术的发展,睿频等技术的加入,TDP目前几乎没有参考价值,睿频功耗一般会超过TDP,而默频下功耗可能低于TDP

PL1功耗: 是长时睿频功耗,是散热到位的情况下CPU睿频能一直维持的功耗

PL2功耗: 在一小段时间内睿频到非常高的频率和功耗, 极限功耗

显卡TDP: 丐卡的功耗和TDP是接近的,但对于高端卡,厂商可能把功耗墙以及频率给得更高,此时一般用GDP(整卡功耗)来衡量显卡功耗 注意核心功耗和整卡功耗是不同的

#### 固态硬盘:

主控:控制着固态硬盘数据的读取和写入,对外通过M.2接口和PCIe总线和外部相连

DRAM缓存:存放着文件的逻辑-物理映射表 (FTL),以及其它用途,其大小一般和固态的容量成正比

存储单元(NAND颗粒):基本存储单元是浮栅晶体管,通过其中存储的电子数目表示存储的是0还是1

SLC: 每个浮栅晶体管可存储1bit数据, 当存储的电子阈值大于某个数时(如5个)就表示存储1, 否则表示存储0

MLC: 每个可以存储2bit数据,如有6-7个电子即表示存储00,4-5个电子表示存储01

TLC: 每个可以存储3bit数据,如1个电子表示存储110

QLC: 每个可存储4bit数据

其中SLC的浮栅晶体管中电子状态只有两种,擦写简单,于是读写速度最快,QLC则最慢,但SLC的容量最低(时间和空间的权衡)。浮栅晶体管的结构决定了闪存写入速度要远慢于读取速度,且写入速度受颗粒的影响更大,读取则几乎不受颗粒种类的影响

注意:诸如SLC、TLC等在浮栅晶体管上并没有本质区别,只是主控将其电子数目进行了划分从而表示不同数据,因此可以把MLC等模拟成SLC使用以达到更快

注意: 浮栅晶体管有擦写寿命, SLC (包括模拟SLC) 寿命最短, 因为1bit就要擦写一次

#### SLC Cache

缓内速度: 硬盘中将部分存储单元模拟成SLC使用,写入数据时先写入这一部分中,速度很快。等硬盘闲置下来后再将数据真正写入硬盘。这部分区域即SLC Cache,它的大小和当前硬盘剩余容量有关,当剩余容量过小,SLC Cache就会显著降低,读写速度也会下降。

缓外速度: 当单次写入数据量超过SLC Cache时,以及没有采用SLC Cache时,体验到的是MLC等单元的正常速度而没有SLC加成,所以速度将降低4K对齐:

固态硬盘有扇区、簇两个重要概念,扇区是硬盘存储数据的物理单位。簇是一个存储单元,可以包含多个扇区,一个簇只能对应一个文件 4K指的是4096字节,是固态硬盘一般的扇区大小,即4K扇区。但传统的硬盘是512B扇区,而且系统一般也是认512B一个扇区,因此把固态硬盘的一个扇区在逻辑上分成8份,称为逻辑扇区。4K对齐就是让8个逻辑扇区也只对应一个文件,否则一个4K扇区可能对应多个文件,但固态硬盘擦写仍然以4K即一个扇区为最小单位,由于没有对齐,导致硬盘需要反复擦写,使得寿命降低。而机械硬盘写入之前不需要擦除数据,因此4K对齐无关紧要

外设和主机的连接:根据所使用的总线规格判断速率是最稳的

物理接口: 规范了接口的形态

PCI-E接口:使用PCI-E通道因此称为PCI-E接口,使用NVMe协议,可插显卡、声卡、固态等,而PCIE接口也可以转化成很多接口

SATA接口: 使用SATA通道因此称为SATA接口, 使用AHCI协议, 一般用于硬盘连接, 主要是机械硬盘, 也有部分固态

mSATA接口: 和SATA类似,主要减小了体积,协议、速率等均一致

SATA Express接口:使用PCIE总线,可使用AHCI或NVMe协议,但目前已淘汰

M.2接口:可使用SATA通道(AHCI)或PCI-E通道(AHCI或NVMe),目前SSD主流的物理接口

SAS接口: 主要在服务器上使用,在SATA接口上改良而来

通道: 也就是总线, 规范了速率等标准

PCI-E通道: 速率丰富,如PCI-E X1, X4, X8, X16, X32,速率依次上升,目前广泛使用PCIE3.0和PCIE4.0

SATA通道:以前用于接硬盘、光驱等,目前广泛使用SATA3.0

SAS通道:企业级别硬盘使用的通道

FC通道: 光纤通道

协议:相当于通讯协议的应用层,规范了如何识别对方、如何建立连接、数据编解码的方式等等,如同高速公路上的不同类型的汽车,载货量、速度等均有不同

使用NVMe协议,必然使用PCI-E通道,而使用m.2物理接口则可能是PCI-E也可能是SATA

AHCI协议:机械硬盘时代的主流数据传输协议,例如使用SATA通道

IDE协议: 机械硬盘时代常用的协议

#### PCle:

PCIe是PCI的升级,频率非常高。PCI是并行总线,而PCIe是串行总线,PCIe通道通过PCIe控制器和CPU相连,由PCIe控制器决定可支持的最高PCIe通道数PCIe的存在形态

1、PCIe插槽(接口): 可以插显卡、网卡等,也可以转接成M.2、Type-C、USB等

NVMe协议:设计跑在PCI-E通道上,一种专门针对SSD、目前消费级最先进的协议

- 2、PCIe通道:承担数据传输总线的任务,例如M.2接口、雷电接口都是使用PCIe通道传输数据的,根据PCIe带宽的不同可分为残血、满血接口PCIe通道:
  - X1、X2、X4、X8、X16, X1代表一个通道, X16代表16个通道, 速度依次上升, X16是X1的16倍, 此外这个数字也和接口的长度有关, 数字越大长度越长 雷电3满血是PCIe X4速率的, 残血是X2速率的, 速度降了1倍

PCIe 版本和速度也相关,如PCIe 4.0 X8和PCIe 3.0 X16速度相等,下一代的PCIe是上一代相同通道时速度的两倍PCIe通道的拆分:

可以降一个高速PCIe通道拆分成多个低速度的通道,例如PCIe X16拆分成两个X8的通道

## 北桥芯片组North Bridge

存在于早期的计算机主板中,称为"图形与内存控制器",和CPU关系密切,在主板靠近CPU的位置,包含高速设备的控制器,如PCIe控制器和内存控制器等。随着制造工艺的进步,内存控制器已集成进CPU中,而PCIe控制器被划归到南桥管理

#### 南桥芯片组South Bridge

相当于是CPU的秘书,把一些不重要、实时通信要求不高的外设如网卡、NVME固态、机械硬盘等直接连接在南桥上,通过南桥汇总后再交给CPU,减轻CPU的负载

由于北桥已经消失,目前主板的芯片组一般就是指南桥芯片组,如z790主板使用z790芯片组。南桥最开始仅包含磁盘控制器等低速设备的控制器,在北桥小时候南桥也承担起PCIe总线控制的任务

通过PCIe总线直接和CPU相连的称为直连,如显卡直连。南桥上连接的所有外设的总速度,无法超过南桥和CPU之间的带宽

#### 装机三步:

- 1. 装主机
- 2、装系统

装系统可以使用官方工具,也可以使用PE辅助安装。无论哪一种,装系统本质就是运行提前在U盘内放好的Windows安装包

#### 官方方法

三种U盘格式化方式:

FAT32: 兼容性最好,但单个文件不能超过4G,单个分区不能超过32G

exFAT、NTFS: 先进且推荐

步骤:

1、制作启动盘: 将∪盘格式化后,直接去微软官网,直接按官网的步骤走就可以 如果卡0%可能是防火墙问题

2、插入启动盘,进入主板bios,选择从U盘启动(将其拖动到第一启动项),优先选择带有UEFI的U盘,保存并重启 磁盘存储数据的结构目前主要有两种:

MBR: Legacy引导,即使用BIOS进行引导启动

GPT: UEFI引导, 更为先进, 优先选择

UEFI(统一可扩展固件接口)由EFI更新而来,拥有安全启动(固件验证)的特性,存在无法通过验证的固件将无法开机

3、进入Windows安装程序,将Windows安装到空硬盘中,按需进行磁盘分区。磁盘分区(固态)一定要勾选对齐分区到此扇区的整数倍(4K对齐),数值2048或4096都可以

如果磁盘格式和引导方法不相同,将报错,需要将磁盘数据结构切换: shift+F10打开CMD,输入diskpart,回车,再输入list disk即可列出所有磁盘,注意区分磁盘。select disk 磁盘号,回车即可选择磁盘,输入clean清空磁盘,再输入convert GPT即可将磁盘切换成GPT格式。输入两次exit即可退出CMD

注意点: 用户名用中文, 不要联网否则可能不好激活系统

#### PE方法

在装有PE系统的u盘内提前下好系统的iso文件,同样是U盘启动。这里可以使用PE里的软件对空的硬盘进行分区。然后右键iso文件,选择装载,并运行 setup.exe程序即可安装Windows

#### 3、装驱动

手动补齐各个硬件的驱动,操作系统里的驱动只能临时凑合用

- 1、Windows如果监测到联网会自动下驱动,但型号识别不一定准确,且可能型号过老
- 2、第三方软件安装驱动,但存在捆绑问题
- 3、手动安装驱动

|      | 核心部件   |              |      | 附属部件   |      |
|------|--------|--------------|------|--------|------|
| 驱动分类 | 驱动名称   | 下载地址         | 驱动分类 | 驱动名称   | 下载地址 |
| 主板   | 集成声卡   | 主板官网         | 硬盘   | 固态硬盘   | 品牌官网 |
| 主板   | 集成有线网卡 | 主板官网         | 硬盘   | 磁盘阵列   | 主板官网 |
| 主板   | 集成无线网卡 | 主板官网         | 外设   | 独立有线网卡 | 品牌官网 |
| 主板   | 集成蓝牙   | 主板官网         | 外设   | 独立无线网卡 | 品牌官网 |
| 主板   | 芯片组    | 主板官网         | 外设   | 独立声卡   | 品牌官网 |
| 主板   | SATA   | 主板官网         | 外设   | 鼠标     | 品牌官网 |
| 主板   | USB    | 主板官网         | 外设   | 键盘     | 品牌官网 |
| 显卡   | 集成显卡   | intel/AMD官网  | 外设   | 耳机     | 品牌官网 |
| 显卡   | 独立显卡   | Nvidia/AMD官网 | 外设   | 音响     | 品牌官网 |

NAS: 网络附加存储 (NetWork Attached Storage) ,相当于一个个人组的网络云盘

相当于用一个小功耗的电脑,装载一堆硬盘,然后接入局域网内,并开启这台电脑的局域网磁盘共享,这就是一个局域网磁盘服务器。如果用端口映射将其挂在 到公网上,就可以随时访问

系统自带的共享磁盘服务:右键磁盘,属性-共享-高级共享-勾选共享此文件夹。进入控制面板,进入网络和共享中心-更改高级共享设置,把网络发现全部打开,随后进入网络连接属性,查看局域网ip。在另一台电脑上的我的电脑,通过//ip即可访问该磁盘,右键-映射网络驱动器即可映射到本电脑中,只要共享电脑在线且局域网ip没有动过,就可以访问它的磁盘

一般使用服务器平台组NAS,一般消费级平台不适合组NAS,毕竟需要7x24的运行

#### CPU的顶盖:

台式电脑散热扣具将对CPU施加相当大的压力,此时铜盖就可以起到保护die(CPU核心)的作用,而笔记本电脑由于是已经设计好的散热,所以CPU核心是裸露在外的,不需要铜盖的保护。不过一般铜顶盖上覆盖了一层镍,防止铜氧化或发生其它反应。所以看起来是银灰色的

铜顶盖和散热器之间一般是自己涂硅脂,而顶盖和die之间所用的散热材料,可划分为用硅脂填充或使用钎焊工艺(一般用铟),有多层(包括黄金),价格高,但可能发生钎焊层材料断裂等情况

#### 显示器

灰阶响应时间GTG:表示一个像素在两种颜色之间变化所需的时间,这个响应速度越快,就能降低屏幕的拖影,反应更迅速

HDR功能:只要说支持HDR10的,都可以认为是没有严格HDR功能的,必须支持HDR400以上才算具有HDR功能的显示器,详情参考:摄影-色彩基础。

需同时打开显示器的HDR以及Windows显示设置中的HDR与HDR流式视频传输

#### 屏幕显示技术:

LCD系:偏振片和液晶是LCD的核心,通过控制偏振片的角度即可控制亮度,其屏幕的背光由LED灯带和匀光板得到,即使全屏显示黑色也仅仅是控制偏振片的角度使其不透过光,因此无法呈现纯黑且黑色状态下无法省电,对比度偏低

#### 传统LCD屏幕:

VA屏幕:液晶分子默认垂直,施加电压后呈现垂直螺线状偏转

对比度高,可视角度一般,响应速度较差,适用于电影、3A单机用户。不过近年来响应速度有很大改善,但仅限于旗舰产品

IPS屏幕:液晶分子默认水平,施加电压后呈现水平平行偏转

对比度一般, 可视角度广, 响应速度适中, 适用于大多数用户

TN屏幕:液晶分子默认水平螺旋偏转,施加电压后呈垂直偏转

对比度很低,可视角度较差,响应速度最快,适合FPS高帧率竞技玩家

QLED: 在LCD的基础上对背光进行改进,原理是使用蓝光照射不同直径的量子点材料会发出不同颜色的光

QLED的显示器可以是IPS也可以是TN

MiniLED: 同样是LCD的范畴,本质上就是加了分区背光,带来了更高的对比度,缺点是可能产生光晕现象

LED系:使用LED灯珠,即使用发光二极管实现显示,它可以控制每个子像素的亮度,对比度极高且不存在光晕现象

OLED:有机发光二极管,采用有机材料是因为无机材料造的LED灯珠无法做小。它响应速度快,可实现曲面屏和折叠屏,且暗色情况下能省电。缺点是材料会老化,即出现烧屏现象,另外也有PWM调光和等效分辨率下降等问题

microLED: 回归无机材料,本质上就是尽量将灯珠减小,因为使用有机材料必然产生材料老化问题

#### OEM原始设备制造商:

CPU盒装是零售商品,而散片是供给给OEM厂商用作整机原料的,但两者本质上是一模一样的。盒装是有保修等服务的,但散片啥也没有。且散片(尤其是高端的)可能是经别人测试过的大雷。盒装会赠送散热器,但这个散热器比较垃圾,一般还是自己买

#### 屏幕调光

调光: 即改变屏幕亮度

PWM调光: PWM即pluse width modulation(脉冲宽度调制),这种调光方式调节屏幕亮度并不改变屏幕功率,而是利用人眼视觉暂留原理,靠屏幕的亮、灭交替的时间,给人眼感觉亮度变化。灭屏的时间越长,眼睛就会认为屏幕亮度越低。这种亮、灭交替就是频闪



- 1、亮、灭交替的速度越低,对眼睛造成影响的可能性就越高。但这不是绝对的,因为每个人对闪烁的敏感程度不同,可能有的人感到视觉疲劳而另一个人不会,但就总体而言,频率越低影响越大,而亮、灭频率交替到达一定阈值,再往上可认为对人眼无影响了,但这个阈值暂无定论
- 2、由于OLED屏幕的限制,在低亮度时使用DC调光将导致屏幕显示出现偏差,所以一般手机都使用低频PWM调光。高亮度时电流足够大,可以采用DC调光而对屏幕显示影响较小

DC调光: DC即direct current(直流电),使用DC调光的屏幕通过提高或降低电路功率来改变屏幕亮度,无频闪

使用一般LCD等屏幕可以直接控制整个背板的功耗,无论屏幕亮度均是DC调光

DC调光在相机录制下不会出现移动的黑条

类DC调光:一类搭载OLED屏幕在低亮度情况下使用的调光方案,即从软件角度来模拟DC调光,本质上是高频PWM调光,使用相机拍摄屏幕仍然可以看到刷新的 黑条

# GPU架构和计算机图形学

2022年10月7日 23:34

GPU核心众多,可以理解为是数干个小核心、残废核心,只能做一些简单的运算,擅长在大量数据上做简单运算;总体分成多个模块,各有各的用途和特点

CPU核心不多,可以理解为是少数几个全能、高效率的核心,擅长在小数据上做相对复杂的串行计算和逻辑控制;通用编程,模块少 GPGPU是通用图形处理器,相较于GPU去掉了为图形处理而设计的加速单元,可以理解为就是一块专门做并行运算的加速卡,而不能玩游戏

#### CUDA:

中文名: 统一计算硬件架构

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。

简而言之: CUDA的硬件基础为: GPU内部特殊的指令集(和CPU内部的机器码是不一样的),以及并行计算引擎。CUDA的软件基础为: 驱动、CUDA编译器和特殊的CUDA的API(和DirectX等图形API同一层级,往下都是调用驱动将编译后的代码进一步翻译成机器码)等。开发人员可以通过CUDA软件进行GPU编程,调用CUDA硬件进行通用计算

CUDA编程中, CPU被称为host (主机), GPU被称为device (设备)

#### 编程方式:

并行编程:和CPU串行编程(一行行执行代码)不一样,GPU创建线程的成本非常低,计算一些数的时候可创建多个并行运行的线程 异构编程:CPU为主设备,GPU相当于一个外设,因为最终输出等都需要由CPU来执行,因此需要在内存和GPU显存之间频繁交换数据,而与GPU显存交换数据就需要使用特定的函数来执行

显示器用像素来表示图形,每个像素由RGB三个分量组成,每个分量用8bit表示,即数值为0-255。这是目前主流配置,可以显示1670万种色彩,目前出现的10bit色深,则是每个分量用10bit来表示,因此可以显示更多种颜色

光栅化Rasterization: 也叫光栅渲染, 如前大部分可视化工具和游戏都采用光栅渲染

光栅化的核心: 投影



屏幕是"离散"的,也就是说屏幕由像素点组成,并不是连续的。离散的屏幕无法直接显示"连续"的三维物体,因此需要对连续的物体进行"离散化",即对三维物体的采样点进行投影,将其结果存储到帧缓存(存储每个像素的颜色值)上,最后显卡负责将其渲染到屏幕

光线追踪:模拟光线传播,追踪每条光线的路径,并计算它们对于人眼观察的贡献值,最终得到一张图像

反向光线追踪:考虑到光线众多,且不可能全部入射到人眼中,因此目前光线追踪技术一般都是反向光线追踪技术 根据光路可逆的原理,将光路的起点改到人眼,也就是想象只有眼睛一个发射源,从这个发射源出发的光线,经过多次反射后若能到达真正的 发射源,比如灯泡,则此即一条有效的光线



事实上,就算使用反向光线追踪技术,要求光线和射中物体上的三角片求交仍然不是一件容易的事,尤其是精度高、光线多时,需要消耗巨大的计算量

包围盒 (BVH) 技术:在原始场景中构造众多的"盒子",将模型包围起来,先计算光线和包围盒的关系,若光线没有射中这个包围盒,则也

计算机图形: 任何复杂图形在计算机中都是由无数个三角形构成

复杂三维图形的每个点被称为顶点: vertex, 计算机通过计算所有顶点的三维坐标变换,得到变换后的顶点,并且对这些顶点所围成的三角形,在屏幕上所铺盖的区域进行像素渲染(片元着色),这个环节称为:光栅化(Rasterize)。光栅化是具体在屏幕上实现渲染,而像素shader是先行计算出每个像素应该有的颜色

对GPU的编程:

通用的并行计算: CUDA、OpenCL、Openacc

图形编程:

显卡编程三大API: DirectX、OpenGL、Vulkan 使用这些API可以直接对显卡下达指令,方便硬件调度 显卡驱动: 将下达的指令翻译成显卡能直接识别的机器码

纹理texture: 输入的图像

shader:即着色器,是可以编程的,能根据预先设定好的模型给屏幕中的像素点进行上色,三位物体上每个顶点的颜色都由着色器计算得出。着色器如何编程即是重点,它直接决定了屏幕中图形的最终显示效果,而编程的核心,就是建立渲染方程,用于计算每个顶点的颜色。着色需要在投影前完成

Shader module: 着色器单元, 简称SM

Pixel shader:像素着色器,因为基本只和像素颜色打交道,因此不需要太高的计算精度,但是必须要读取纹理,即需要有一个采样器

Vertex shader: 顶点着色器,用于对每一个顶点进行坐标变换和光照计算,即T&L。Geforce 256最早出现T&L,后来也逐渐演化成了可编程的顶点着色器。只执行坐标计算等,因此不需要采样器,但需要相当高的计算精度,如32位浮点运算ALU

后来随着需求的提高,要求顶点着色器需要能读取纹理,像素着色器需要进行高精度计算,两者之间的界限越来越模糊,最终实现了统一:统一shader架构Unified Shader Architecture。他用同样的硬件单元来实现各种shader,不需要再划分各种专用的硬件单元。在流水线里它们仍然是不同的位置,只不过能用一致的硬件单元来实现。并且通过调度器,可以动态地分配统一shader单元给顶点着色器或像素着色器,提高硬件使用效率。

目前英伟达推出的统一计算架构CUDA,用来做通用计算,而shader是做图形渲染,目前CUDA已经替代了shader的图形渲染地位

目前GPU中有多个独立的模块,包含:Graphics图形处理模块、Compute通用计算模块、Ray Tracing光线追踪模块、Tensor Core张量核心、Video Codec视频编解码器模块,后面这些模块都是独立于GPU 图形处理模块之外的,是独立的流水线游戏和图形类应用,一般只使用GPU图形处理单元

CPU和GPU对核心的数量的定义并不相同,不能直接比较

CPU上的主要是SISD,带有一定的SIMD指令集做补充,如SSE指令集:可以对四个数进行相同的操作,类似于4车道。现在的AVX-512指令集,宽度到了16,也就是能同时对16个32位数进行运算。也就是说,CPU每个核可以做多条数据流的运算

对于GPU,可以理解为一整块GPU的所有核心(指统一shader核心)共同组成了一个SIMD,每个核心都是SIMD里的一条道路,这些道路上的数据流方向必须一致,且每条道路上只能有一个数据

而GPU的流水线宽度,则是通过核心数/控制器数来表示的

因为GPU的特殊性,每个控制器控制下的shader核心都必须对数据进行相同的操作,因此常用的分支,执行效率就会非常低下。为了改进,MIMD: 多指令多数据流也被多多少少用到了这里。传统的MIMD是每个数据流通道都有自己的控制器,并且做成了"立交桥"的形式,每个数据流可以做任意操作,但这种设计对GPU来说复杂度高了不知道多少。

位宽:单位为bit,内存或显存单次能传输的数据量,好比公路的宽度,使其能并行通过几辆车。和带宽类似

就算是相同的显存带宽,显存的位宽不同也会影响不同分辨率、不同精度材质下游戏的帧数表现,位宽越大,对于高精度、高分辨率的游戏就越有利

显卡的显存高位宽,致使延迟高了,但吞吐量也比CPU更高。即牺牲延迟换取高吞吐量,

可以理解为:读取每个0和1速度都是一样的,但显存位宽更高,也就是说一个数据位数可以更多,但把这个数据读完的时间也更长,然后再去读下一个数据,这样延迟就上来了。比如:CPU读16位数据,显卡读32位数据,一个数据只有16个0或1,显然读取得更快。但每次读完还要去读取下一个数据,32位数据需要读取两次,而显卡只需读取一次就能得到32位数据,因此带宽大



DDI: API的进一步分层,设备驱动接口,往上衔接API,往下衔接驱动API被操作系统翻译成DDI,驱动把DDI翻译成对硬件的操作(机器码)

对于游戏来说,游戏的分辨率和CPU之间并无关系,分辨率越高,越吃显卡。特效有的吃CPU

真正吃CPU的是帧率,每一帧CPU都要计算物体信息、摄像机位置等,因此要测量CPU性能,最好降低分辨率,保持显卡不是瓶颈的状态,然后测量 画面帧率。新的RTX40系列,DLSS3的补帧技术,正是因为有一半以上的帧是通过光流加速器等GPU硬件计算出来的,CPU没有参加,因此可以越过 CPU瓶颈,提高帧率

#### 英伟达显卡结构:

eg:采用Ada Lovelace架构的RTX 4090显卡,使用的AD102核心,共有12个GPC,每个GPC包含6个TPC,每个TPC包含1个独立光栅引擎、2个ROP分区(每个包含8个ROP单元)、2组SM。核心中有总计144组SM(有阉割),每组SM内部有128个FP32处理单元,其中又有一半可以执行INT32(32位整数)指令计算。除了CUDA核心,每个SM还集成了4个第四代Tensor Cores、1个第三代RT Core、128K一级数据缓存,此外还有光流加速器等单元

### 显卡及各种接口、散热器等

GPU核心、显存等

Optical Flow Accelerator光流加速器

NVENC硬件解码单元

L2 Cache二级数据缓存

GPC图形处理簇

光栅引擎

ROP分区:每个包含数个ROP单元

TPC纹理处理簇

SM (shader module着色器模块)

RT Cores: 光追单元,使用BVH算法进行光线追踪计算

Opacity Micro-Map Displaced Micro-Mesh

等

一级数据缓存

计算模块

流处理器 (CUDA): FP32和FP32/INT32 (32位单精度浮点运算单元/有的能执行整数运算)

Tensor Cores: 张量加速单元,能执行混合精度运算,专门为执行张量和矩阵运算而设计的专用单元

SFU: 特殊功能单元, 执行图形差值指令

零级指令缓存

Wrap调度器

分配单元

载入存储单元



Parameter of colors while of

2023年12月5日 21:49

## CPU命名规范:

## Inte酷睿系列:

定位: i3、i5、i7、i9逐步上升

尾缀:

K: 能超倍频, 普遍比不带K的性能要好

F: 去掉了核显, 其它方面一致

核显能用于视频加速和辅助直播推流,还能在独显坏了的时候亮机,所以除非带F的便宜很多,不然还是买带核显的

T: 低TDP版

S: 早期和T类似,但目前一般指是官方特挑版

X: 超高性能,和K类似有着较高的频率且解锁倍频,无核显

XE: X的强化语义,比X更高的定位

Y: 超低电压版, 常用于笔记本和二合一上, TDP一般是个位数

U: 更低电压版,常用于笔记本上,TDP为15w

P: 低电压版, TDP为28W

H: 标压版, TDP为45w

HX: TDP为55w, 实际上就是对应的桌面处理器去掉顶盖然后更换BGA封装而

来,实际比H系列强很多,可超频

G: 代表graphics, 代表核显强化, 后面若带数字, 则数字越大核显越强

## AMD锐龙系列:

定位: R3、R5、R7、R9逐步上升

中间数字构成: 如R7 7700

第一位:代表代数(锐龙台式CPU没有4000和6000系,移动端有)

后三位:区分子型号,更大代表更高的定位,通常R3对应300,R5对应500和

600, R7对应700和800, R9对应900及以上

## 尾缀:

X:和K类似,但AMD全系都可超倍频,带X仅表示基础频率更高、体制更好

3D: 内置3D V-Cache, 使得比标准版的三级缓存更大, 对游戏有着较大提升

G:内置vega核显 (锐龙7000系以前不带G的没有核显)

U:和Intel的U尾缀相同

HS:和Intel的P类似,但TDP为35w

H: 和Intel的H相同

HX:和Intel的HX相同

## 移动端引入的新命名规范:

例如7945HX,7代表代数,9代表定位,4代表架构即Zen4,5代表特性(0为标准型号5为进阶型号)。注意AMD移动端可能有马甲的存在,例如7735虽然

# 是7代但却是zen3架构

# CPU的频率

- 1、CPU频率=外频 x 倍频
  - 例如CPU主频为5.0GHz,外频100MHz,倍频可以是50,对CPU的超频理论上可超倍频或外频,也可以两者同时超,也可以降一个超一个
- 2、但目前CPU外频和主板中其它设备的频率是相关的,改动外频降牵一发而动全身,因此目前通常采用超倍频的方式超频CPU

# 计算机技术

2023年12月7日 22:43

# 垂直同步、G-Sync及FreeSync技术

- 1、帧的显示:目前显示器一般使用逐行扫描或隔行扫描输出视频信息,即从左上角开始 一行行或隔行刷新,直到右下角,从而完成一帧的显示,随后返回左上角重新刷新一帧
- 2、帧缓冲:一般分为前、后缓冲两个缓冲,类似双缓冲区。显卡渲染完帧后,将其先存入后缓存,而显示器读取前缓存的一帧;只有当显卡将新帧写入后缓存后,前、后帧缓存发生交换即swap,此时显示器就读取变成前缓冲的后缓冲里的新帧
- 3、帧的撕裂:游戏帧率比刷新率低时,两个缓冲迟迟无法交换,显示器只能反复读取前缓冲的帧,但可能刷新到一半,新帧渲染好了,此时发生swap,导致后半部分是新帧,造成画面撕裂;当游戏帧数高于刷新率时,显示器这一帧显示到一半,发生了swap,下一半读取的是新帧的数据,同样发生画面撕裂。即只要显示器的刷新率和游戏帧率不匹配,都可能造成画面撕裂
- 4、垂直同步技术:强制swap交换的时间在一帧渲染完成之后,即使显卡已经渲染好了下一帧,此时显卡空载,等待显示器刷新完毕。该技术让帧率上限锁定为显示器刷新率,并且会增大延迟(包括画面延迟和输入延迟)
- 5、三重缓冲:在原来的双缓冲中加入一个新缓冲,能在一定程度上降低延迟
- 6、G-Sync与FreeSync:即自适应显示器刷新率(VRR),当显卡输出帧率低于刷新率时,持续让显示器显示原有的帧,直到新帧渲染完。两者均只能解决帧率低于刷新率的情况,故官方推荐垂直同步和VRR一起打开,但延迟问题仍然存在,且VRR只在帧率略低于刷新率且帧生成时间稳定的情况下有效
- 7、G-Sync和FreeSync两者技术上是完全相同的,只是前者需要NV认证且收费,而后者免费
- 8、以目前的技术,卡顿、撕裂、延迟这三者无法完美兼顾