图结构作业

1、

- (1) 度数之和是边数之和的 2 倍。
- (2) 入度之和等于出度之和。
- (3) n-1 条边, 大小为n×n。
- (4) n 条边,当有向图的结点构成一个环时,各节点能通过该环到达另一个结点,为强连通图。删掉任一条边环断裂,因此是最少的。

2、

	入度	出度
а	2	2
b	3	1
С	1	2
d	2	1
е	1	3

正邻接表

逆邻接表

3、

(1)

1	2	3	4	5	6	
0	9	6	3	ω	∞	1
9	0	∞	5	8	ω	2
6	∞	0	2	9	5	3
3	5	2	0	∞	7	4
ω	8	9	∞	0	4	5
ω	∞	5	7	4	0	6

(2)

from	to	weight
1	2	9
1	3	6
1	4	3
2	4	5
2	5	8
3	4	2
3	5	9
3	6	5
4	6	7
5	6	4

(3)

顶点	度
1	3
2	3
3	4
4	4
5	3
6	3

4、(1)

题目为逆邻接链表

(2) 邻接矩阵:

	V_5	V_4	V_3	V_2	V_1	
V ₁	0 0 1 0	1	0	1	О	
V ₂	0	0	0	0	0	
V ₃	1	0	0	1	1	
V_4	0	0	1	0	1	
V ₅	0	1	1	1	0	

(3)

深度优先: V₁ V₂ V₄ V₃ V₅ 广度优先: V₁ V₂ V₄ V₃ V₅

(4)

5、

可能不唯一,当存在不同的边有相同的权值时不唯一。 6、

(1)

(2)

7、

	含义	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	s
0	Dis/Pre	ω	20/4	ω	0	ω	15/4	{4}
1	Dis/Pre	ω	20/4	ω	0	ω	15/4	{4,6}
2	Dis/Pre	30/2	20/4	ω	0	50/2	15/4	{4,6,2}
3	Dis/Pre	30/2	20/4	45/1	0	50/2	15/4	{4,6,2,1}
4	Dis/Pre	30/2	20/4	45/1	0	50/2	15/4	{4,6,2,1,5}
5	Dis/Pre	30/2	20/4	45/1	0	50/2	15/4	{4,6,2,1,5,3}

终点	路径	长度
V_1	4,2,1	30
V ₂	4,2	20
V ₃	4,2,1,3	45
V ₄	4,2,5	50
V ₅	4,6	15

8、

abcdef

$$A_0 = \begin{bmatrix} 0 & 5 & 3 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & 9 & 4 \\ \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 4 & \infty \\ 6 & \infty & \infty & \infty & 0 & 0 \\ \infty & \infty & \infty & 3 & 0 \end{bmatrix} \quad \begin{array}{c} \textbf{a} \\ \textbf{b} \\ \textbf{c} \\ \textbf{d} \\ \textbf{e} \\ \textbf{m} \end{array} \quad \begin{array}{c} \begin{bmatrix} 0 & 5 & 3 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & 9 & 4 \\ \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 4 & \infty \\ 6 & 11 & 9 & \infty & 0 & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 \end{bmatrix} \quad \begin{array}{c} A_2 = \begin{bmatrix} 0 & 5 & 3 & \infty & 14 & 9 \\ \infty & 0 & \infty & \infty & 9 & 4 \\ \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 15 \\ \infty & \infty & \infty & \infty & 3 & 0 \end{bmatrix}$$

a b c d e f

$$\mathsf{Path}_0 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 \\ 5 & 0 & 0 & 0 & 6 & 6 \end{bmatrix} \quad \begin{array}{l} \textbf{a} \\ \textbf{b} \\ \textbf{c} \\ \textbf{Path}_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 \\ 5 & 1 & 1 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{bmatrix} \\ \mathsf{Path}_2 = \begin{bmatrix} 1 & 1 & 1 & 0 & 2 & 2 \\ 0 & 2 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 \\ 5 & 1 & 1 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 0 & 5 & 3 & 5 & 8 & 9 \\ \infty & 0 & \infty & \infty & 9 & 4 \\ \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 4 & \infty \\ 6 & 11 & 9 & 11 & 0 & 15 \\ \infty & \infty & \infty & \infty & 3 & 0 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 0 & 5 & 3 & 5 & 8 & 9 \\ \infty & 0 & \infty & \infty & 9 & 4 \\ \infty & \infty & 0 & 2 & 5 & \infty \\ \infty & \infty & \infty & 0 & 4 & \infty \\ 6 & 11 & 9 & 11 & 0 & 15 \\ \infty & \infty & \infty & \infty & 3 & 0 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} 0 & 5 & 3 & 5 & 8 & 9 \\ 15 & 0 & 18 & 20 & 9 & 4 \\ 11 & 16 & 0 & 2 & 5 & 20 \\ 10 & 15 & 13 & 0 & 4 & 19 \\ 6 & 11 & 9 & 11 & 0 & 15 \\ 9 & 14 & 12 & 14 & 3 & 0 \end{bmatrix}$$

$$\mathsf{Path}_3 \! = \! \begin{bmatrix} 1 & 1 & 1 & 3 & 3 & 2 \\ 0 & 2 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 \\ 5 & 1 & 1 & 3 & 5 & 2 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{bmatrix}$$

$$\mathsf{Path_4} = \begin{bmatrix} 1 & 1 & 1 & 3 & 3 & 2 \\ 0 & 2 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 \\ 5 & 1 & 1 & 3 & 5 & 2 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} 0 & 5 & 3 & 5 & 8 & 9 \\ 13 & 0 & 16 & 18 & 7 & 4 \\ 11 & 16 & 0 & 2 & 5 & 20 \\ 10 & 15 & 13 & 0 & 4 & 19 \\ 6 & 11 & 9 & 11 & 0 & 15 \\ 9 & 14 & 12 & 14 & 3 & 0 \end{bmatrix}$$

Path

	1	1	1	3	3	2
	6	2	6	6	6	2
Path ₆ =	5	5	3	3	3	5
	5	5	5	4	4	5
	5	1	1	3	5	2
	5	5	5	5	6	6 _

			-		
1	1,2	1,3	1,3,4	1,3,5	1,2,6
2,6,1	2	2,6,3	2,6,4	2,6,5	2,6
3,5,1	3,5,2	3	3,4	3,5	3,5,6
4,5,1	4,5,2	4,5,3	4	4,5	4,5,6
5,1	5,1,2	5,1,3	5,1,3,4	5	5,1,2,6
6,5,1	6,5,2	6,5,3	6,5,4	6,5	6

9、

拓扑排序序列v₀ v₁ v₂ v₃ v₄ v₅ v₆

10、请参考刘思然同学的答案。

(1) 新44年5月34 12 9 12 9 12 9 12 9 12 8 2 9 1 2 8 2 9 1 8 2 0	后赴代為例 43765 47635 47365	3×6=18
1294 1924 9124 1249	3 7 8 65 3 8 7 65 8 7 6 35 8 1 3 65 8 3 7 65 7 8 6 3 5 7 8 6 5 7 3 8 6 5	4×8=32
1 24 3	97865	1 x2 = 2

11、

这道题同学们在解决时主要有两种思路。

(1) 采用 dfs 依次遍历到最底层的结点,即出度为 0 的结点。输出该结点。然后 dfs 依次 回溯,直到最顶层入度为 0 的结点。最后将结果反转。

参考: https://blog.csdn.net/u014099894/article/details/72638366

```
List<Vertex> DFSSort() {
   mSortResult.clear();
   mSortTmpMarked.clear();
                                           对每个结点依
   for (Vertex vertex : mGraph.getNodes()) {
      dfs(vertex, mSortResult, mSortTmpMarked);
   Collections.reverse(mSortResult); 反转
   return mSortResult;
private void dfs(Vertex node, List<Vertex> result, Set<Vertex> tmpMarked) {
   if (result.contains(node)) {
      return;
   if (tmpMarked.contains(node)) {
       throw new RuntimeException("This graph contains cyclic dependencies");
   tmpMarked.add(node);
   List<Vertex> outgoingNodes = mGraph.getOutgoingNodes(node);
   if (outgoingNodes != null) {
                                             如果结点出度
       for (Vertex outgoingNode : outgoingNodes) {
                                             不为0,则递归
到下一层
         dfs(outgoingNode, result, tmpMarked);
                         结点出度为0或
                                              这样递归的顺序
   tmpMarked.remove(node);
                         后续结点都递
                                              是拓扑排序的逆
   result.add(node);
                         归完成了,则
添加
```

(2) 先找出入度为 0 的结点集合。依次对结点进行 dfs。输出该结点,去掉该结点和该节点的边,依次遍历入度为 0 的结点。

请参考刘思然同学的答案:

12、

这道题的意思是找出从 v到 v_i的一条路径,且长度为 s。这里 s 理解为边长比较合适。 跟传统的采用 dfs 遍历图的算法比较类似,不过这里要从开始 v_i遍历,到 v_i结束。要记录遍历过的路径长度,到终点时须判断长度是否满足要求。

Algorithm 1 12 题

```
Input: 图的邻接链表 Node, v<sub>i</sub>, v<sub>j</sub>, s, 头指针 Node* head[numvertex+1];
Output: 路径序列 res;
 1: struct Node {
         int val; //顶点值
         int weight; //边权重
         Node* next; //下一个块
 6: Initialize vis^{(numvertex+1)\times 1} \leftarrow false, found \leftarrow false, length \leftarrow 0;
 7: Initialize res \leftarrow null;
 8: DFS(res, head[vi], length);
 9: return res;
10: function DFS(&res, Node * cur, &length)
       if length == s and res.last == v_j then
11:
12:
            found \leftarrow true;
           return;
13:
       end if
14:
        while cur do
15:
           if vis[cur] == false then
16:
               vis[cur] \leftarrow true;
                                               添加当前结点到路
                                               径中并递归进入下
               res.push(cur \rightarrow val);
18
               length+=cur \rightarrow weight;
19:
               DFS(res, head[cur \rightarrow val], length);
20:
               if found then
21:
                   return;
22
               end if
23:
               vis[cur] \leftarrow false;
                                         不成功,回溯
               res.pop(cur \rightarrow val);
25:
               length-=cur \rightarrow weight;
26:
            end if
27:
           cur \leftarrow cur \rightarrow next;
       end while
29
30: end function
```

13、

(1)

	V ₀	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V ₉
最早开始时间	0	5	6	18	21	21	23	25	28	30
最晚开始时间	0	15	6	18	22	26	23	26	28	30

	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a ₁₁	a ₁₂	a ₁₃	a ₁₄
最早开始时间	0	0	5	6	6	18	18	18	21	21	21	23	25	28 0
最晚开始时间	10	0	15	6	19	19	23	18	22	22	26	23	26	28

(2) 30

(3) 关键路径: V₀ V₂ V₃ V₆ V₈ V₉ 关键活动: a₂ a₄ a₈ a₁₂ a₁₄

14、15请见第7、8题。