

Combinational Logic

2019. 4. 8.

K-S. Sohn

Introduction

- □ Logic circuits for digital systems may be combinational or sequential.
- □ A combinational circuit consists of logic gates whose outputs at any time are determined from only the present combination of inputs.

Definition of Combinational Circuit

Block diagram

- - o 2ⁿ possible combinations of input values
- Outputs

OUTPUTs are determined from the PRESENT COMBINATION of INPUTs

- Examples
- O Adders, subtractor, comparator, multiplier, decoder, encoder, multiplexer, etc. Boolean algebra and logic gates

Difference from S.C.

- □ Definition of sequencial circuit (S.C.)
 - Outputs depends not only on the present input values but also on the past input values
- Essential components for S.C.
 - Memory, register, feedback
- □ Block diagram of S.C.

Boolean algebra and logic gates

-5

Knowledge of Digital System

Knowledge map in a digital system

Boolean algebra and logic gates

-6-

Analysis of A Combinational Logic

Analysis model

Analysis Steps

- Checking if it is a COMBINATIONAL CIRCUIT
 - No feedback paths
 - O No memory or register elements
- Obtaining Boolean functions and truth table
 - O Labeling, Boolean function at each gate level, ...
- Investigating the function of the circuit using:
 - Boolean function
 - Truth table

Obtaining Boolean Function

- □ Step-1. Labeling
 - o all (inputs and outputs of the given circuit and) gate outputs
- □ Step-2. Boolean functions of gate outputs of the 1st stage
 - Boolean functions of input variables
- □ Step-3. Boolean functions of intermediate gate outputs
 - Function of input variables and the outputs from the previous stage
- □ Step-4. Repeat Step-3.
 - O Until all output variables are determined.
- Step-5. Substitution of Boolean functions
 - Obtain Boolean functions of output variables in terms of input variables

Boolean algebra and logic gates

-9-

-11-

Obtaining Boolean Function

Given combinational circuit

Boolean algebra and logic gates

-10-

Obtaining Boolean Function

 \Box F_1 and F_2

Step-1. Labeling

- -. input variables : A,B,C
- -. circuit outputs : F₁, F₂
- -. gate outputs : T₁, T₂, T₃

Step-2. Boolean function of gate outputs of the 1st stage

- -. T₁ = ABC
- -. $T_2 = A + B + C$
- $-. F_2 = AB + AC + BC$

Step-3.,4. Boolean function of gate outputs of intermediate stages

- -. $T_3 = F'_2 T_2$
- $-. F_1 = T_3 + T_1$

Step-5.

- -. F₁ = F'₂ + T₂ + T₁ = (AB+AC+BC)'(A+B+C) + ABC = A'BC' + A'B'C + AB'C' + ABC
- $-. F_2 = AB + AC + BC$

Obtaining Truth Table

- Obtaining the truth table from the combinational circuit
 - Step-1. Determine the number of input variables
 - Step-2. Label the outputs of selected gates
 - Step-3. Obtain the truth table for the outputs that are a function of input variables only
 - Setp-4. Proceed to obtain the truth table for the outputs that are a function of the previously defined values

Obtaining Truth Table

							310	ρ-z /	
A	В	C	F ₂	F ₂	<i>T</i> ₁	T ₂	T ₃	<i>F</i> ₁	
0	0	0	0	1	0	0	0	0	
0	0	1	0	1	1	0	1	1	
0	1	0	0	1	1	0	1	1	step-4
0	1	1	1	0	1	0	0	0	
1	0	0	0	1	1	0	1	1	
1	0	1	1	0	1	0	0	0	
1	1	0	1	0	1	0	0	0	
1	1	1	1	0	1	1	0	1	
	tep-1	and logic	gates	step-3					

sten-2

Obtaining Boolean Function (P.E.)

□ Find the Boolean expressions for F₁ and F₂

Boolean algebra and logic gates

-14-

Design Procedure of Combinational Circuits

Overview

-. User abstract requirements

Design Steps

- Step-1. Determine the number of input and output variables
 - the input and output variable are assigned symbols(or labels)
- □ Step-2. Derive the truth table
- □ Step-3. Obtain the Boolean functions
 - o Simplification with algebraic manipulation, K-Map,...
- □ Step-4. Draw the logic circuit diagram
 - verify the correctness

Boolean algebra and logic gates -15- Boolean algebra and logic gates -16-

-13-

Design Methods

Truth table

n-input variables	outputs
2 ⁿ binary numbers obtained from the combinations of inputs	Determined by the stated specifications and described as the canonical formed function of inputs

Boolean algebra and logic gates

-17-

Design Methods

- Functional description
 - Boolean function
 - trueth table
 - HDL
 - logic diagram
- Logic minimization objectives
 - o number of gates
 - o number of inputs to a gate
 - propagation delay
 - number of interconnection
 - limitations of the driving capabilities

Boolean algebra and logic gates

-18-

Code Converter

- Needs of code converter
 - Representing the same information with different codes at different digital systems (e.g., BCD, Excess-3, 2421, 84-2-1)
 - Code conversion between systems that use different codes for compatibility and information exchange.

Design BCD to Excess-3 Code Converter

- Step-1. Determination of input and output variables
 - o Input variables : BCD code bits (A,B,C,D)
 - Output variables: Excess-3 code bits (w,x,y,z)
- □ Step-2. Obtaining truth table
 - Mapping BCD code values to Excess-3 code values
 - 6 don't care combinations
- Step-3. Obtaining Boolean functions
 - K-map simplification for each output functions
- □ Step-4. Drawing logic circuit diagram
 - Manipulating Boolean functions for the purpose of using common gates for more than 2 outputs

Design BCD to Excess-3 Code Converter

□ Truth table specifying the objectives of the code converter

Decim	Code	ess-3	ut Exc	Outp		BCD	Input	
	z	y	x	w	D	c	В	Α
0	1	1	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0
2	1	0	1	0	0	1	0	0
3	0	1	1	0	1	1	0	0
4	1	1	1	0	0	0	1	0
5	0	0	0	1	1	0	1	0
6	1	0	0	1	0	1	1	0
7	0	1	0	1	1	1	1	0
8	1	1	0	1	0	0	0	1
9	0	0	1	1	1	0	0	1

Boolean algebra and logic gates

-21-

Remind

□ Ch.01 binary codes for decimal digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
250.5 45	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit	1101	1000	1101	1100
combi- nations	1110	1001	1110	1101
nations	1111	1010	1111	1110

Boolean algebra and logic gates

-22-

Design BCD to Excess-3 Code Converter

■ Maps for BCD-to-excess-3 code converter

Design BCD to Excess-3 Code Converter

- ☐ The simplified functions (standard form, 2-level circuit)
 - z = D'
 - y = CD +C'D'
 - x = B'C + B'D+BC'D'
 - w = A+BC+BD
- □ Another implementation (multilevel circuit)
 - o z = D'
 - y = CD +C'D' = CD + (C+D)'
 - \circ x = B'C + B'D+BC'D'= B'(C+D) +B(C+D)'
 - w = A+BC+BD

Design BCD to Excess-3 Code Converter

□ Logic diagram for BCD-to-excess-3 code converter

-25-

Binary Adder

- Addition of 1 bit numbers
 - \circ 0+0=0, 0+1=1, 1+0=1, 1+1=10 \Rightarrow 1+1=0 with a carry
- Half adder
 - Addition of only 2 significant bits
- Full adder
 - Addition of 2 significant bits and a carry
- Addition of multi-bit numbers
 - Add bits of the same order
 - O Carry is added to addition of the next higher order bits

Boolean algebra and logic gates

-26-

-

Binary Adder

■ Bit addition examples

$$(1)_2+(1)_2$$

 $(3)_2+(3)_2$

Design of Half Adder

■ Requirement analysis

Carry(
$$C$$
)
Augend(x)
Addend(y)
+

Sum(S)

$$(1)_2 + (1)_2$$

- o two input variable: x, y
- o two output variables: C, S
- o truth table ⇒

x	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Design of Half Adder

■ Boolean function of outputs

$$\circ$$
 S = x'y + xy' = x \oplus y

Logic diagrams

Boolean algebra and logic gates

-29-

4

Design of Half Adder

for implementation flexibility

$$\circ$$
 S = (x+y)(x'+y')

$$\circ$$
 S' = xy + x'y'

$$\circ$$
 S = (xy + x'y')' = (C + x'y')'

$$\circ$$
 C = xy = (x' + y')'

Boolean algebra and logic gates

-30-

Design of Full Adder

Requirements

Carry(z,C) Augend(x) Addend(y)

Sum(S)

- three input variables:x, y, and z(carry)
- o two outputs: C, S
- o truth table ⇒

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Design of Full Adder

K-map

(a)
$$S = x'y'z + x'yz' + xy'z' + xyz$$

- Boolean functions
 - S=x'y'z+x'yz'+xy'z'+xyz
 - C=xy+xz+yz

Design of Full Adder

□ 2-level implementation (sum-of-product form)

Boolean algebra and logic gates

-33-

Design of Full Adder

Modifying Boolean function

$$S = xy'z' + x'yz' + xyz + x'y'z$$

$$= z'(x'y + xy') + z(x'y + xy')'$$

$$= z'(x \oplus y) + z(x \oplus y)'$$

$$= z \oplus (x \oplus y)$$

$$C = xy + xz + yz$$

$$= xy + (y + y')xz + (x + x')yz = xy + x'yz + xy'z$$

$$= z(x \oplus y) + xy$$

Boolean algebra and logic gates

-34-

Design of Full Adder

□ Implementation with two half adders and an OR gates

Binary Adder

- Example: 4-bit adder
 - o connection of 4 full adders

or connection of 3 full adders and a half adder

Design of n-Bit Binary Adder

■ Example: 4-bit adder

O Calcluate 11 + 3

Subscript i:	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+1}

Boolean algebra and logic gates

-37-

Carry Propagation Problems

Carry propagation delay in the binary adder

- The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders
- □ Number of gate levels for the carry propagation
 - # of gate levels for each bit = 2 gate-levels
 - o n-bits binary adder ⇒ 2n gate-levels

Boolean algebra and logic gates

-38-

Carry Propagation Problem

Carry propagation in 4-bit adder

- when the correct outputs are available
- the critical path counts (the worst case)
- \circ (A₀,B₀,C₀) > C₁ > C₂ > C₃ > (C₄,S₃)
- > 8 gate levels

- G_i carry generate produces a carry of 1 when both A_i and B_i are 1.
- O P_i carry propagate controls the propagation of the carry from C_i to C_{i+1}

Propagation in an Full Adder

 $P_i = A_i \oplus B_i, \quad G_i = A_i B_i$ $S_i = P_i \oplus C_i$, $C_{i+1} = G_i + P_i C_i$

The 2nd H.A. stage

Boolean algebra and logic gates

- Characteristics of intermediate outputs

Analysis on 4-bit Binary Adder

Boolean functions for each carry

 $C_0 = \text{input carry}$

 $C_1 = G_0 + P_0 C_0$

 $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

o augend: A0, A1, A2, A3

o addend: B0, B1, B2, B3

o initial carry: C0

 ⇒ Each carry can be obtained independently of the carries from the previous digits ⇒ carry lookahead

Boolean algebra and logic gates

-41-

Carry Lookahead Generator

Boolean algebra and logic gates

-42-

Binary Adder witn Carry Lookahead

Constant 2 gate-level delay regardless to the number of bits of augend and addend

Binary Subtractor

Requirements

o minuend + subtrahend(2's complement)

□ 1's complement by a XOR gate

$$\bigcirc$$
 1 y = y' \rightarrow inverter

$$\circ$$
 0 y = y \rightarrow buffer

□ 2's complement = 1's complement + 1

Subtraction

o 1's complement by XOR gates (M=1) and plus by a input carrry

Overflow

- Why overflow?
 - The storage is limited
 - Limit of the ability to represent the number in digital computer. ⇒
 Limit of the number of digits (in terms of bits).
- What overflow?
 - The result of calculation is the number of (n+1)-bits while the computer has only n-bit registers to hold the number.
- When overflow?
 - O Positive number + positive number ⇒ negative number
 - Negative number + negative number ⇒ positive number

Overflow

- How to detect the overflow?
 - The carry into the sign bit position and the carry out of the sign bit position are different. ⇒ Overflow condition

Boolean algebra and logic gates

-45-

-47-

Boolean algebra and logic gates

-46-

Overflow

- Example
 - O Positive + positive ⇒ Inversed sign bit by the carry from the MSB

carries:	0 1
+70	0 1000110
+80	0 1010000
+150	1 0010110

 Negative + negative ⇒ Inversed sign bit by absence of carry from the MSB

carries:	1 0	
-70	1 01110	10
-80	1 01100	00
${-150}$	0 11010	10

4-Bit Adder-Subtractor

 \blacksquare M=1 ⇒ subtractor(A+B'+1), M=0 ⇒ adder(A+B)

Decimal Adder

- Error between real life and binary world
 - \circ 1/10 = 0.1
 - 0.099999 due to conversion from binary to decimal
 - Will you accept \$0.09999 or \$0.1 (i.e., 10 cents)?
- Many calculator (HW) or money dealing SW use decimal numbers in binary coded form

Boolean algebra and logic gates

-49-

1-Digit BCD Adder

- □ One BCD digit + one BCD digit
 - o 9 bit inputs: two BCD digits and one carry-in
 - o each input BDC digit ≤ 9
 - o 5 bit outputs: one BCD digit and one carry-out
 - output BCD digit ≤ 19 = 9 + 9 + 1
- One digit BCD adder

Boolean algebra and logic gates

-50-

BCD Adder Based on Binary Adder

- □ Implement with 4bit binary adders
 - Single layered binary adder

• Check the binary (not BCD) sum output >>

Binary sum to BCD sum

Binary vs. BCD

	Bir	ary S	um			В	CD Su	m		Decima
K	Z 8	Z_4	Z ₂	Z ₁	c	S ₈	54	S2	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Boolean algebra and logic gates

-53-

Binary vs. BCD

- Conceptually
 - \circ 0 ~ 9:

 sum> = <BCD sum>
 - \circ 10 ~ 19: <binary sum> + 6 = <BCD sum> with a carry-out
- How to detect that the <binary sum> exceeds 9
- □ Look at the truth table
 - \circ IF K==1 OR Z₈ == 1 AND (Z₄ == 1 OR Z₂ == 1) THEN C = 1
 - That is, C = K + $Z_8Z_4 + Z_8Z_2$
 - IF C == 1 THEN <BCD sum> = <binary sum> + 6

Boolean algebra and logic gates

-54-

1-Digit BCD Adder(Impl'ted)

-

Binary Multiplier

- Human's binary multiplication
 - Simple case of 2-bit multiplying: C = B × A

Binary Multiplier

 $\begin{array}{ccc}
B_1 & B_0 \\
A_1 & A_0 \\
\hline
A_0B_1 & A_0B_0
\end{array}$

Mimicing with digital logic

Boolean algebra and logic gates

4-bit by 3-bit Binary Multiplier

Boolean algebra and logic gates

-58-

K-bit by J-bit Binary Multiplier

- □ K-bit multiplicand × J-bit multiplier
 - J*K AND gates
 - (J-1) K-bit adders
 - (J+K)-bit product
- □ In the example of K=4, J=3
 - 12 AND gates
 - Two 4-bit adders
 - 7-bit product

Magnitude Comparator

- The comparison of two numbers
 - outputs: A>B, A=B, A<B
- Design Approaches
 - the truth table
 - > 2²ⁿ entries too cumbersome for large n
 - o use inherent regularity of the problem
 - > reduce design efforts
 - > reduce human errors

Magnitude Comparator

Algorithm

```
for (i=n-1; i>=0; i--) {
    if (a[i] == b[i]) {
        AeqB[i] = 1; // equal significant bit list
    elseif (a[i] ==1) { // a[i] ≠ b[i], a[i] ==1, b[i]==0
        AgtB = 1; AeqB[i] = 0; break;
    else // a[i] ≠ b[i], a[i] ==1, b[i]==0
        AgtB = 0; AeqB[i] = 0; break;
}
// we can know the break even point by checking
// AeqB[] and AqtB
```

Boolean algebra and logic gates

-61-

Magnitude Comparator

- Comparing 2 n-bit binary numbers : A, B
 - \bullet A=(A₀,A₁,...,A_{n-1}), B=(B₀,B₁,...,B_{n-1})
- Bit-by-bit comparation
 - o Input binary numbers (n-bits): A, B
 - Equality (A=B) : A_i=B_i for i=0,1,..., n-1
 - Inequality
 - Compare bits from MSB bit position
 - > Compare until two bits are not equal
 - ▶ If $A_i \neq B_i$, $A_i = 1$, and $B_i = 0$ then A>B, where i = 0, 1, ..., or n-1
 - \rightarrow if $A_i \neq B_i$, $A_i = 0$, $B_i = 1$ then A<B, where i = 0, 1, ..., or n-1

Boolean algebra and logic gates

-62-

4-bit Magnitude Comparator

- Algorithm to logic
 - \bullet A = A₃A₂A₁A₀; B = B₃B₂B₁B₀
 - \circ A=B if A₃=B₃, A₂=B₂, A₁=B₁and A₁=B₁
 - equality: $x_i = A_i B_i + A_i' B_i'$, for i = 0, 1, 2, 3
 - \circ (A=B) = $x_3x_2x_1x_0$
 - \circ (A>B) = A₃B₃'+x₃A₂B₂'+x₃x₂A₁B₁'+x₃x₂x₁A₀B₀'
 - \circ (A>B) = A₃'B₃+x₃A₂'B₂+x₃x₂A₁'B₁+x₃x₂x₁A₀'B₀
- Implementation
 - \circ xi = $(A_iB_i'+A_i'B_i)'$

4-bit Magnitude Comparator

Decoders

- Definition
 - Oconverts a given input code to a unique output line's assertion
 - \circ Value of n input lines \Rightarrow One of 2ⁿ output lines
 - Each output represents one of 2ⁿ minterms

- Use of decoders
 - Switch, demultiplexer
 - Implementation of Boolean functions: $F = \sum_{i} (m_i)$

Boolean algebra and logic gates

-65-

3-to-8 Line Decoder

□ Truth table

	Input	s		Outputs							
x	y	z	D _o	D_1	D_2	D_3	D ₄	D_{5}	D_6	D_7	
0	0	0	(i)	0	0	0	0	0	0	0	
0	0	1	0	(1)	0	0	0	0	0	0	
0	1	0	0	0	(1)	0	0	0	0	0	
0	1	1	0	0	0	(1)	0	0	0	0	
1	0	0	0	0	0	0	(î)	0	0	0	
1	0	1	0	0	0	0	0	(1)	0	0	
1	1	0	0	0	0	0	0	0	(1)	0	
1	1	1	0	0	0	0	0	0	0	1	

Boolean algebra and logic gates

-66-

3-to-8 Line Decoder

Implementation

2-to-4 Decoder NAND Implementation

□ Decoding minterms in complement form

1	E	\boldsymbol{A}	B	D_0	D_1	D_2	D_3
1	1	X	X	1	1	1	1
()	0	0	0	1	1	1
()	0	1	1	0	1	1
()	1	0	1	1	0	1
()	1	1	1	1	1	0

Boolean algebra and logic gates

Demultiplexer from Decoder

Definition

 \circ Distribute information from a single line to one of 2^n possible output lines

- \square Decoder with enable (E) \Rightarrow Demultiplexer
 - O Input lines ⇒ Selection lines
 - Enable line ⇒ Input information line

Boolean algebra and logic gates

-69-

Demultiplexer

■ 1×4 DeMux

o a decoder with selection lines and a data line

Boolean algebra and logic gates

-70-

Decoder Expansion

□ Construct 4×16 decoder with two 3×8 decoders

Decoder Expansion

□ P.E.

Verification with a smaller case

Combinational Logic Implementation

Sum of minterm

 use a decoder and an external OR gate to implement any Boolean function of n-input variables

$$\circ$$
 S(x,y,z) = \sum (1,2,4,7)

$$\circ$$
 C(x,y,z) = $\sum (3,5,6,7)$ x \longrightarrow 2²

Boolean algebra and logic gates

-73-

Combinational Logic Implementation

- Two possible approaches using decoder
 - OR(minterms of F): k inputs
 - O NOR(minterms of F'): 2ⁿ-k inputs
- In general,
 - o it is not a practical implementation

Encoders

Definition

- 2ⁿ input lines and *n* output lines
- The inverse function of a decoder
- □ Example : Octal-to-binary encoder

Inputs									Outputs		
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	у	z	
1	0	0	0	0	0	0	0	0	0	0	
0	1.	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

Encoders

Boolean algebra and logic gates

- Octal-to-binary encoder
 - Output Boolean functions

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_5 + D_7$$

- Ambiguity in the encoder
 - Multiple active inputs
 - > Ex.: If D3 and D6 are active simultaneously, output is 111
 - > Solution: establish priority among inputs
 - Multiple identical outputs
 - ➤ All inputs are 0 ⇒ All outputs are 0
 - Solution: all-zero-indicator

-74-

Priority Encoder

- Requirements
 - o resolve the ambiguity of illegal inputs
 - only one of the input is encoded
- Design
 - Priority (H to L): D₃, D₂, D₁, D₀

	Inp	uts	Outputs			
Do	D ₁	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

Boolean algebra and logic gates

Priority Encoder

□ The maps for x and y (how to get these?)

Boolean algebra and logic gates

-78-

Priority Encoder

Boolean expressions

$$x = D_2 + D_3$$

$$y = D_3 + D_1 D_2$$

$$V = D_1 + D_2 + D_3 + D_4$$

-77-

-79-

Multiplexers

Definition

o select binary information from one of many input lines and direct it to a single output line

- o 2ⁿ input lines,
- on selection lines
- o and one output line

□ 2-to-1 multiplexer

Boolean algebra and logic gates -81-

Multiplexers

4-to-1 multiplexer

Boolean algebra and logic gates

-82-

Multiplexers

□ Quadruple 2-to-1 multiplexer

Boolean algebra and logic gates

-84-

Boolean Function Implementation

- Analogy Mux and Decoder
 - A multiplexer is a decoder including an OR gate.
- □ 2ⁿ-to-1 MUX
 - o can implement any Boolean function of n input variable
 - however needs external gates
- □ 2⁽ⁿ⁺¹⁾-to-1 MUX
 - a better solution: implement any Boolean function of n+1 input variable
 - on of these input: act as selection lines
 - o remaining 1 input: the variable of the function

Boolean algebra and logic gates

-85-

Boolean Function Implementation

V₀ V₁ ...V_{n-2} V_{n-1}

0 0 ... 0 0 0 0 ... 0 1

0 0 ... 1 0

0 0 ... 1 1

1 1 ... 1 0

1 1 ... 1 1

0 0 ...

- n-Variable function
 - Lookup the truth table
 - Input variables
 - n-1 pivot input variables
 - · Remaining 1 designated input variable
 - > Output variable (the boolean function)
 - Designated variable
 - Complement of the designated variable
 - Constant value 0
 - Constant value 1
 - Implement the function using 2ⁿ⁻¹-to-1-line multiplexer
 - ➤ Input variable ⇒ selection input
 - ➤ Remaining 1 input variable ⇒ the 0-th input data position

Boolean algebra and logic gates

-86-

Boolean Function Implementation

 Γ F(x,y,z)=Σ(1,2,6,7)

Boolean Function Implementation

Procedure

- o assign an ordering sequence of the input variable
- the rightmost variable (D) will be used for the input lines
- assign the remaining n-1 variables to the selection lines w.r.t. their corresponding sequence
- o construct the truth table
- o consider a pair of consecutive minterms starting from m₀
- determine the input lines

Boolean Function Implementation

 \Box F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15) using 8x1 MUX

Boolean algebra and logic gates

-89-

Three-State Gates

Definition

Buffer

o High impledence: Open circuit (R = ∞)

Boolean algebra and logic gates

-90-

Three-State Gates

■ Multiplexers with 3-state gates

Discussion~~~