Mathematical aspects in machine learning

Lorenz Richter BTU Cottbus-Senftenberg

October 27, 2017

Contents

1	Stat	tistical learning theory	1
	1.1	Concentration inequalities	3
	1.2	Error bounds in the finite dimensional case	5
2	Bib	liography	7

1 Statistical learning theory

We consider data from an input space \mathcal{X} and an output space \mathcal{Y} , specifically the sample $S_n = ((X_i, Y_i))_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$. The goal is to learn a (prediction) function $f : \mathcal{X} \to \mathcal{Y}$ that maps input to output data.

Example 1.1. $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$ (binary classification), $\mathcal{Y} = \mathbb{N}$, $\mathcal{Y} = \mathbb{R}$ (regression).

In order to develop a proper theory we need to make some assumptions:

- There exists an unknown probability distribution \mathbb{P} over $\mathcal{X} \times \mathcal{Y}$.
- The data S_n are i.i.d. from \mathbb{P} , i.e. $(X_i, Y_i) \sim \mathbb{P}$ for every $i = 1, \ldots, n$.
- The future data (sometimes called test data) also come from \mathbb{P} .

In order to measure how good we learn the prediction function f we consider a loss function $l: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ that indicates deviations from predictions and true values. Being stochastically more meaningful, we consider for any function f the expected loss

$$L(f) := \mathbb{E}_{(X,Y) \sim \mathbb{P}}[l(f(X),Y)],$$

which in statistics is sometimes called "(Bayes-)Risk". The goal is to come up with a learning algorithm $\mathcal{A}: S_n \mapsto \hat{f}_n$ (i.e. $\hat{f}_n := \mathcal{A}(S_n)$, indicating that the function depends on the *n* training data) s.t. $L(\hat{f}_n)$ is small. We therefore consider $\mathbb{E}[l(\hat{f}_n(X), Y)|S_n]$, i.e. the expectation conditioned on the samples, which is still a random quantity (as it depends on the sample data)¹.

Definition 1.2. A predictor f^B is called Bayes-optimal if it minimizes the expected loss, i.e.

$$L(f^B) = \inf_f L(f) =: L^B.$$

Remark 1.3. Bayes-optimality depends on \mathbb{P} , S_n and l.

Example 1.4 (Zero noise or function learning). One could consider the case that our targets Y are deterministically prescribed by a function g, i.e. $\mathbb{P}(Y = g(X)|X = x) = 1$. However, this is a rather unrealistic case.

¹We will continuously omit the measure \mathbb{P} in the expected value.

Example 1.5 (Binary classification). Consider $\mathcal{Y} = \{0,1\}$ and the loss $l(y',y) = \mathbb{1}\{y' \neq y\}$. One can show that the Bayes-optimal predictor (in this case classifier) is $f^B(x) = \mathbb{1}\{\eta(x) > \frac{1}{2}\}$ with $\eta(x) = \mathbb{P}(Y = 1|X = x)$. We have

$$\begin{split} \mathbb{P}(f(X) \neq Y | X = x) &= 1 - \mathbb{P}(f(X) = Y | X = x) \\ &= 1 - \left(\mathbbm{1}_{\{f(x) = 1\}} \eta(x) - \mathbbm{1}_{\{f(x) = -1\}} (1 - \eta(x)) \right). \end{split}$$

This yields

$$\mathbb{P}(f(X) \neq Y | X = x) - \mathbb{P}(f^B(X) \neq Y | X = x) = \eta(x) \left(\mathbb{1}_{\{f^B(x) = 1\}} - \mathbb{1}_{\{f(x) = 1\}} \right) + (1 - \eta(x)) \left(\mathbb{1}_{\{f^B(x) = -1\}} - \mathbb{1}_{\{f(x) = -1\}} \right) = (2\eta(x) - 1) \left(\mathbb{1}_{\{f^B(x) = 1\}} - \mathbb{1}_{\{f(x) = 1\}} \right) \ge 0$$

and by integration w.r.t. x the statement

Example 1.6 (Regression). We consider $\mathcal{Y} = \mathbb{R}$ and $l(y',y) = (y'-y)^2$. Then the Bayes-optimal predictor is $f^B(x) = \mathbb{E}[Y|X=x]$, which we can see by noting that

$$L(f) = \mathbb{E}\left[(f(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^B(X) + f^B(X) - Y)^2 \right]$$

$$= \mathbb{E}\left[(f(X) - f^B(X))^2 \right] + \mathbb{E}\left[(f^B(X) - Y)^2 \right] - 2\mathbb{E}\left[(f(X) - f^B(X))(f^B(X) - Y) \right]$$

is minimized by $f = f^B$ since the last term is equal to

$$\mathbb{E}_{X}\left[\mathbb{E}_{Y|X}\left[(f(X)-f^{B}(X))(f^{B}(X)-Y)\right]\right] = \mathbb{E}_{X}\left[(f(X)-f^{B}(X))\mathbb{E}_{Y|X}\left[(f^{B}(X)-Y)\right]\right] = 0.$$

Let us come back to finding a good function f. Somehow we need to work with our sample S_n . We therefore define the empirical risk to be

$$L_n(f) = \frac{1}{n} \sum_{i=1}^{n} l(f(X_i), Y_i).$$

We see that $\mathbb{E}[L_n(f)] = L(f)$ and can therefore consider empirical risk minimization (ERM), namely

$$\hat{f}_n := \operatorname*{arg\,inf}_f L_n(f)$$

as a reasonable strategy to learn the function f. However, the following example shows that this is not always a good idea.

Example 1.7. Consider $\mathcal{X} = [0,1], \mathcal{Y} = \{0,1\}, l(y',y) = \mathbb{1}\{y' \neq y\}$ and $\mathbb{P}(Y=1|x) = \frac{1}{2}$ for all $x \in \mathcal{X}$. Define the predictor as

$$\hat{f}_n(x) = \begin{cases} y & \text{if } (x,y) \in S_n \text{ for some value } y \\ 0 & \text{otherwise} \end{cases}.$$

Note again that this predictor is not fixed, but depends on the data. We can see that it performs very badly: $L_n(\hat{f}_n) = 0$, but $L(\hat{f}_n) = \frac{1}{2}$. This is a stereotypical example of what is described as overfitting.

Theorem 1.8 (No-free-lunch). Let \mathcal{A} be any learning algorithm for binary classification. Let S_n be a sample s.t. its size $n < \frac{|\mathcal{X}|}{2}$. Then there exists a probability distribution \mathbb{P} s.t.

- (i) there exists a function $f: \mathcal{X} \to \mathcal{Y}$ with L(f) = 0,
- (ii) with probability $\geq \frac{1}{7}$ we have $L(\mathcal{A}(S_n)) > \frac{1}{8}$.

Proof. See chapter 5 in $[5]^2$.

Remark 1.9. This means that there is no prefect algorithm that works for all distributions. Bayes optimality cannot be obtained independent of \mathbb{P} .

²The proof is similar to the concept of VC dimension, which we will discuss later.

In order to address the problem of overfitting³, we consider the function class \mathcal{F} (usually a class chosen with prior knowledge regarding the prediction problem) and restrict our predictors to come from this class, i.e. $\hat{f}_n \in \mathcal{F}$. We can then decompose our expected error as

$$L(\hat{f}_n) - L(f^B) = \underbrace{L(\hat{f}_n) - \inf_{f \in \mathcal{F}} L(f)}_{\text{estimation error (variance)}} + \underbrace{\inf_{f \in \mathcal{F}} L(f) - L(f^B)}_{\text{approximation error (bias)}}.$$

Here, \hat{f}_n shall be the predictor that minimizes the empirical error in our hypothesis class, i.e. $L_n(\hat{f}_n) = \inf_{f \in \mathcal{F}} L_n(f)$. In the sequel, we will only study the estimation error, i.e. we aim at statements of the form

$$\mathbb{P}\{L(\hat{f}_n) - L(f^*) > \epsilon\} \le B(\epsilon, n, \mathcal{F}),$$

where B decreases to 0 as $n \to \infty$ for any ϵ and $f^* = \arg\inf_{f \in \mathcal{F}} L(f)$, i.e. the best predictor in the class \mathcal{F} (we will not study the approximation error here, details can for instance be found in [3]). Equivalently, we will consider the following kind of deviation inequality: With probability $1 - \delta$ for $\delta \in (0, 1)$ we want

$$L(\hat{f}_n) - L(f^*) \le D(\delta, n, \mathcal{F}).$$

We will particularly be interested in statements for all $f \in \mathcal{F}$, i.e. we want uniform and not only pointwise bounds. Note that we have $L(\hat{f}_n) - L_n(\hat{f}_n) \le \sup_{f \in \mathcal{F}} \{L(f) - L_n(f)\}$, so we will then also investigate the difference between expected and empirical loss, $L(\hat{f}_n) - L_n(\hat{f}_n)$, which we call generalization error⁴.

More abstractly, we consider the following learnability definition.

Definition 1.10 (PAC learnability [6]). A hypothesis class \mathcal{F} is "probably approximately correctly" (PAC) learnable if there is an algorithm \mathcal{A} such that for all $\epsilon > 0$ and $\delta > 0$ there is a sample size $n(\epsilon, \delta) \in \mathbb{N}$ such that for all distributions \mathbb{P} over $\mathcal{X} \times \mathcal{Y}$

$$\mathbb{P}(L(\mathcal{A}(S_n)) - L(f^*) < \epsilon) \ge 1 - \delta.$$

Remark 1.11. One interesting aspect in introducing hypothesis classes \mathcal{F} is <u>model selection</u>. Consider a family of hypothesis classes $\{\mathcal{F}_{\alpha}\}_{\alpha\in A}$ with $\mathcal{F}=\cup_{\alpha}\mathcal{F}_{\alpha}$ (e.g. $\mathcal{F}_1\subset\mathcal{F}_2\subset\ldots$). Let \hat{f}_n^{α} be the predictor corresponding to the ERM over \mathcal{F}_{α} . One considers $\alpha_n:=\alpha(S_n)$, i.e. a data-dependent selection of the possible classes. We are then interested in $L(\hat{f}_n^{\alpha_n})-\inf_{\alpha\in A}\inf_{f\in\mathcal{F}_{\alpha}}L(f)$.

Remark 1.12. If we consider only one possible function, i.e. $\mathcal{F} = \{f_1\}$, then nothing will be learnt and we know from the law of large numbers that

$$L_n(\hat{f}_n) - L(\hat{f}_n) = \frac{1}{n} \sum_{i=1}^n l(f_1(X_i), Y_i) - \mathbb{E}[l(f_1(X), Y)] \to 0$$

for $n \to \infty$ at rate $\frac{1}{\sqrt{n}}$.

So in the rather pathological case of $\mathcal{F} = \{f_1\}$ we have convergence of $L(\hat{f}_n) - L(f^*)$. But does it also hold with N predictors at hand, and if yes, how fast does it happen? To answer these questions the following so-called concentration inequalities will be of help.

1.1 Concentration inequalities

Concentration inequalities are statements of the form⁵

$$\mathbb{P}(|\bar{Z}_n - \mathbb{E}[Z]| < \epsilon) \ge 1 - \delta.$$

Theorem 1.13 (Markov inequality). Consider a random variable Z with $Z \ge 0$. Then for all $\epsilon > 0$ we have

$$\mathbb{P}(Z > \epsilon) \leq \frac{\mathbb{E}[Z]}{\epsilon}.$$

³Another way to address overfitting is to modify the criterion to be minimized by for instance adding a penalty term for too "complicated" functions – see structural risk minimization and (normalized) regularization.

 $^{^4}$ Compare to the uniform law of large numbers.

⁵Sometimes the notation $Pf = \mathbb{E}[f(X,Y)]$ and $P_n f = \frac{1}{n} \sum_{i=1}^n f(X_i,Y_i)$ for the empirical measure is used. Compare this to the theory of empirical processes, where uniform deviations of averages from their expectations are investigated, i.e. $\sup_{f \in \mathcal{F}} \{Pf - P_n f\}$.

Proof. See [4]. \Box

Theorem 1.14 (Chebysheff inequality). Consider a random variable Z. Then for all $\epsilon > 0$ we have

$$\mathbb{P}(|Z - \mathbb{E}[Z]| > \epsilon) \le \frac{\operatorname{Var}(Z)}{\epsilon^2}.$$

Proof. See [4]. \Box

We motivate the next bound with

Example 1.15. Consider $X \sim \mathcal{N}(\mu, \sigma^2)$, then we have

$$\mathbb{P}(|X - \mu| > \epsilon) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx \le \int_{0}^{\infty} \frac{x}{\epsilon\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

and therefore $\mathbb{P}(|X - \mu| \ge \epsilon) \le \frac{\sigma}{\epsilon} \sqrt{\frac{2}{\pi}} e^{-\frac{\epsilon^2}{2\sigma^2}}$. We will see that this is a special case of the following theorem, when replacing σ^2 with the maximal possible variance of a random variable in [0,1] (i.e. $\frac{1}{4}$). It is also intuitive to look at $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, i.e. $\mathbb{P}(|\bar{X}_n - \mu| > \epsilon) = \mathbb{P}(|Z| > \sqrt{n\epsilon}) \le \frac{\sigma}{\sqrt{n\epsilon}} \sqrt{\frac{2}{\pi}} e^{-\frac{n\epsilon^2}{2\sigma^2}}$, which decreases exponentially for large n.

Lemma 1.16 (Hoeffding's lemma). For a random variable $Z \in [a,b]$ with $\mathbb{E}[Z] = 0$ we can bound the moment generating function for all $\lambda \in \mathbb{R}$ as

$$\mathbb{E}[e^{\lambda Z}] \le \exp\left(\frac{\lambda^2 (b-a)^2}{8}\right).$$

Proof. Since $e^{\lambda Z}$ is convex we have for all $a \leq Z \leq b$

$$e^{\lambda Z} \le \frac{b-Z}{b-a}e^{\lambda a} + \frac{Z-a}{b-a}e^{\lambda b}$$

and therefore

$$\mathbb{E}\left[e^{\lambda Z}\right] \le \frac{b}{b-a} e^{\lambda a} - \frac{a}{b-a} e^{\lambda b}$$

$$= \left(-\frac{a}{b-a}\right) e^{\lambda a} \left(-\frac{b}{a} + e^{\lambda b - \lambda a}\right)$$

$$= \left(-\frac{a}{b-a}\right) e^{\lambda a} \left(-\frac{b-a}{a} - 1 + e^{\lambda(b-a)}\right)$$

$$= \left(1 - c + ce^{d}\right) e^{-cd}$$

$$=: e^{L(d)}$$

with $c = -\frac{a}{b-a} > 0$, $d = \lambda(b-a)$ and

$$L(d) = -cd + \log(1 - c + ce^d).$$

Taking derivatives w.r.t. d brings

$$L(0) = L'(0) = 0$$

and

$$L''(d) = \frac{ce^d \left(1 - c + ce^d\right) - c^2 e^{2d}}{\left(1 - c + ce^d\right)^2} = \frac{ce^d}{1 - c + ce^d} \left(1 - \frac{ce^d}{1 - c + ce^d}\right) = t(1 - t) \le \frac{1}{4}$$

with $t = \frac{ce^d}{1 - c + ce^d} > 0$. By Taylor's theorem there exists an $e \in [0, d]$ s.t.

$$L(d) = L(0) + dL'(0) + \frac{1}{2}d^2L''(e) \le \frac{1}{8}d^2 = \frac{\lambda^2}{8}(b-a)^2.$$

This implies the bound (by convexity of the logarithm).

Theorem 1.17 (Hoeffding's inequality). Let Z_1, \ldots, Z_n be independent (but not necessarily identically distributed). Assume w.l.o.g. that $Z_i \in [0,1]$ for $i=1,\ldots,n$. Then with $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$

$$\mathbb{P}\left(\left|\bar{Z}_n - \mathbb{E}\left[\bar{Z}_n\right]\right| > \epsilon\right) \le 2e^{-2n\epsilon^2}.$$

Proof. Consider $Z_i \in [a_i, b_i]$. With Markov's inequality we have for $\lambda > 0$

$$\mathbb{P}\left(\bar{Z}_{n} - \mathbb{E}\left[\bar{Z}_{n}\right] > \epsilon\right) \leq \frac{\mathbb{E}\left[e^{\lambda(\bar{Z}_{n} - \mathbb{E}\left[\bar{Z}_{n}\right])}\right]}{e^{\lambda\epsilon}}$$

$$= \frac{\mathbb{E}\left[e^{\frac{\lambda}{n}\sum_{i=1}^{n}(Z_{i} - \mathbb{E}\left[Z_{i}\right])}\right]}{e^{\lambda\epsilon}}$$

$$= \frac{\prod_{i=1}^{n}\mathbb{E}\left[e^{\frac{\lambda}{n}(Z_{i} - \mathbb{E}\left[Z_{i}\right])}\right]}{e^{\lambda\epsilon}}$$

$$\leq \frac{\prod_{i=1}^{n}e^{\frac{\lambda^{2}}{8n^{2}}(b_{i} - a_{i})^{2}}}{e^{\lambda\epsilon}}$$

$$= \exp\left(\frac{\sum_{i=1}^{n}(b_{i} - a_{i})^{2}}{8n^{2}}\lambda^{2} - \lambda\epsilon\right),$$

where in the last inequality we used Hoeffding's lemma. This general proof technique is called Chernoff bound. We now minimize w.r.t λ and get $\lambda^* = \frac{4n^2\epsilon}{\sum_{i=1}^n(b_i-a_i)^2}$ and therefore

$$\mathbb{P}\left(\bar{Z}_n - \mathbb{E}\left[\bar{Z}_n\right] > \epsilon\right) \le \exp\left(-\frac{2n^2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right),\,$$

which yields the desired result with $a_i = 0$, $b_i = 1$ and by noting that $\mathbb{P}(|Z|) \leq \mathbb{P}(Z \leq t) + \mathbb{P}(-Z \leq t)$.

Remark 1.18. Note that this theorem also holds for functions of random variables. One can for instance consider Z = g(X,Y) with g(X,Y) = l(f(X),Y). However, also note that it only holds for a fixed function and not uniformly for all $f \in \mathcal{F}$. For a fixed sample one finds an $f \in \mathcal{F}$ that yields a very large error, as for instance seen in example 1.7.

Remark 1.19. We can formulate Hoeffding's bound as a deviation inequality by realizing the equivalence of the statements $\mathbb{P}(|Z| > \epsilon) \le \delta$ and $\mathbb{P}(|Z| < \epsilon) \ge 1 - \delta$. Set $\delta := 2e^{-2n\epsilon^2}$, then $\epsilon = \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$, and we have with probability at least $1 - \delta$ that

$$\left|\bar{Z}_n - \mathbb{E}\left[\bar{Z}_n\right]\right| \le \sqrt{\frac{\log\frac{2}{\delta}}{2n}}.$$

Hoeffding's inequality does not use any knowledge about the distribution of variables. Therefore one can consider Bernstein's inequality, which uses the variance of the distribution to get a tighter bound.

Theorem 1.20 (Bernstein's inequality). Let Z_1, \ldots, Z_n be independent (but not necessarily identically distributed). Assume w.l.o.g. $|Z_i| < 1$. Then with probability $1 - \delta$ we have

$$\left|\bar{Z}_n - \mathbb{E}\left[\bar{Z}_n\right]\right| \le \sqrt{2 \operatorname{Var}\left(\bar{Z}_n\right) \log \frac{2}{\delta}} + \frac{2 \log \frac{2}{\delta}}{3n}.$$

Proof. See [2].

Remark 1.21. If the variance is very small then the first term on the right hand side becomes negligible.

1.2 Error bounds in the finite dimensional case

Let us first consider the finite-dimensional hypothesis space $\mathcal{F} = \{f_1, \dots, f_N\}$.

Theorem 1.22 (Realizable case). Consider $\mathcal{Y} = \{0,1\}$ in the zero-noise case, i.e. $L(f^B) = 0$ with $f^B \in \mathcal{F}$ (as in example 1.4). As before we call such an f^B , since it is in \mathcal{F} , just f^* . Then with probability $\geq 1 - \delta$ we have

$$L(\hat{f}_n) - L(f^*) = L(\hat{f}_n) \le \frac{\log N + \log\left(\frac{1}{\delta}\right)}{n}.$$

Proof. Let us try to bound $\mathbb{P}(\text{ERM selects } f \text{ with } L(f) > \epsilon)$. By definition we know that $L_n(\hat{f}_n) = 0$, since ERM selects only these predictors f for which $L_n(f) = 0$. Now take any $f \in \mathcal{F}$ s.t. $L(f) = \mathbb{P}(f(X) \neq Y) > \epsilon$, i.e. consider the functions that are expected to make some error. That implies that $\mathbb{P}(L(f) = 0) < 1 - \epsilon$ and therefore for n samples we get

$$\mathbb{P}(L_n(f) = 0) < (1 - \epsilon)^n \le e^{-n\epsilon},$$

where the last step follows from $1 + x \le e^x$. Now we consider

$$\mathbb{P}(\text{ERM selects } \hat{f}_n \text{ with } L(\hat{f}_n) > \epsilon) \leq \mathbb{P}\left(\exists f \in \mathcal{F} \text{ s.t. } L(f) > \epsilon, L_n(f) = 0\right)$$

$$= \mathbb{P}\left(\bigcup_{\substack{f \in \mathcal{F} \\ L(f) > \epsilon}} L_n(f) = 0\right)$$

$$\leq \sum_{\substack{f \in \mathcal{F} \\ L(f) > \epsilon}} \mathbb{P}(L_n(f) = 0)$$

$$\leq \sum_{\substack{f \in \mathcal{F} \\ L(f) > \epsilon}} e^{-n\epsilon}$$

$$\leq Ne^{-n\epsilon} = \delta$$

This gives $\epsilon = \frac{\log N + \log(\frac{1}{\delta})}{n}$. So with probability at least $1 - \delta$ we have the complement event, i.e.

$$\mathbb{P}(\text{ERM selects } f \text{ with } L(f) \leq \epsilon) \geq 1 - \delta.$$

The event {ERM selects f with $L(f) \leq \epsilon$ } is just $\{L(\hat{f}_n) \leq \epsilon\}$ and therefore we get the desired bound.

Remark 1.23. One can show that given our assumptions this bound is actually the best possible one.

Let us now drop the assumption $L(f^*) = 0$.

Theorem 1.24 (Agnostic case). We consider again $\mathcal{F} = \{f_1, \dots, f_N\}$. Let l be bounded. Then with probability $\geq 1 - \delta$ we have

$$L(\hat{f}_n) - L(f^*) \le \sqrt{2 \frac{\log(2N) + \log\left(\frac{1}{\delta}\right)}{n}}.$$

Proof.

$$L(\hat{f}_n) - L(f^*) = L(\hat{f}_n) - L_n(\hat{f}_n) + \underbrace{L_n(\hat{f}_n) - L_n(f^*)}_{\leq 0} + L_n(f^*) - L(f^*)$$

$$\leq |L(\hat{f}_n) - L_n(\hat{f}_n)| + |L_n(f^*) - L(f^*)|$$

$$\leq 2 \sup_{f \in \mathcal{F}} |L(f) - L_n(f)|.$$

Since our \mathcal{F} is finite dimensional, we can actually consider the maximum and compute

$$\mathbb{P}\left(\max_{i=1,\dots,N}|L(f_i) - L_n(f_i)| > \epsilon\right) = \mathbb{P}\left(\bigcup_{i=1}^N \{|L(f_i) - L_n(f_i)| > \epsilon\}\right)$$

$$\leq \sum_{i=1}^N \mathbb{P}(|L(f_i) - L_n(f_i)| > \epsilon)$$

$$\leq 2Ne^{-2n\epsilon^2} =: \delta,$$

where the last step follows from Hoeffding's inequality, which also holds when taking functions of the random variables. If we solve for ϵ we get $\epsilon = \sqrt{\frac{\log \frac{2N}{\delta}}{2n}}$. Considering again the complement event (as in the proof of theorem 1.22) yields our desired statement.

We have now seen the two extreme cases: The rather unrealistic realizable setting $(L(f^*) = 0)$ and the totally agnostic setting $(L(f^*) = \frac{1}{2})$. The first one has convergence rate $\mathcal{O}(\frac{1}{n})$, the latter one $\mathcal{O}(\frac{1}{\sqrt{n}})$. Let us now look at cases in between those extremes ("from slow to fast rates").

Theorem 1.25. We again consider $\mathcal{F} = \{f_1, \dots, f_N\}$ and our loss being bounded. With probability $\geq 1 - \delta$ we have

$$L(\hat{f}_n) - L(f^*) \le C\left(\sqrt{L(f^*)} \frac{\log 4N + \log\left(\frac{1}{\delta}\right)}{n} + \frac{\log\left(\frac{4N}{\delta}\right)}{n}\right),$$

where C is a constant.

Proof. First note that

$$\operatorname{Var}(\mathbb{1}_{\{f(X)\neq Y\}}) = \mathbb{E}[\mathbb{1}^2] - \mathbb{E}[\mathbb{1}]^2 \le \mathbb{E}[\mathbb{1}] = L(f).$$

Now take Bernstein's inequality with $\delta \to \frac{\delta}{N}$:

$$\mathbb{P}\left(\exists f \in \mathcal{F} : |L_n(f) - L(f)| \ge \sqrt{2L(f)\frac{\log \frac{2N}{\delta}}{n}} + \frac{2\log \frac{2N}{\delta}}{3n}\right) = \mathcal{P}(\cup_{f \in \mathcal{F}} E(f)) \le \sum_{f \in \mathcal{F}} \mathbb{P}(E) \le \sum_{f \in \mathcal{F}} \frac{\delta}{N} = \delta.$$

Forming the complement yields

$$\mathbb{P}\left(\forall f \in \mathcal{F} : |L_n(f) - L(f)| \le \sqrt{2L(f)\frac{\log \frac{2N}{\delta}}{n}} + \frac{2\log \frac{2N}{\delta}}{3n}\right) \ge 1 - \delta.$$

We can therefore pick $f = \hat{f}_n$ and get that with probability at least $1 - \delta$

$$|L_n(\hat{f}_n) - L(\hat{f}_n)| \le \sqrt{2L(\hat{f}_n) \frac{\log \frac{2N}{\delta}}{n}} + \frac{2\log \frac{2N}{\delta}}{3n}.$$

Using another time Bernstein's inequality for f^* yields

$$L_n(\hat{f}_n) \le L_n(f^*) \le L(f^*) + \sqrt{2L(f^*) \frac{\log \frac{2}{\delta}}{n}} + \frac{2\log \frac{2}{\delta}}{3n}$$

We can now combine the preceding two equations to get

$$\frac{L(\hat{f}_n) - L(f^*)}{\sqrt{L(\hat{f}_n)}} \leq \sqrt{2 \frac{\log \frac{4N}{\delta}}{n}}$$

and use the fact $\frac{A-B}{\sqrt{A}} \leq C \Rightarrow A \leq B + C^2 + \sqrt{B}C$ for $A, B, C \geq 0$ to get the result.

Remark 1.26. This bound is again tight. Note that if we assume $n < \frac{1}{L(f^*)} =: \gamma$ we are in a fast-rates-regime, i.e. $\mathcal{O}(\frac{1}{n})$.

Remark 1.27. Note that we often do not use ERM in practice, as the minimization can be NP-hard.

2 Bibliography

- [1] Bartlett, P. L. and Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482.
- [2] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic theory of independence. Oxford university press.
- [3] Cucker, F. and Zhou, D. X. (2007). Learning theory: an approximation theory viewpoint, volume 24. Cambridge University Press.
- [4] Hartmann, C. (2017). Wahrscheinlichkeitstheorie. Lecture script, BTU Cottbus-Senftenberg.
- [5] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
- [6] Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11):1134–1142.