ICT이노베이션스퀘어 AI복합교육 고급 언어과정

자연어처리를 위한 Negative Log Likelihood

현청천

2021.04.19

Likelihood (연속확률분포)

가능도 (특정 사건들이 일어날 가능성)

Likelihood (이산확률분포)

가능도 (특정 사건들이 일어날 가능성)

Likelihood

$$\mathcal{L}(\theta \mid a) > \mathcal{L}(\theta \mid b)$$

部 空工 和沙斯

<i>∃</i> I
/ I
164.95
165.35
165.76
166.16
167.78
168.99
169.80
170.20
171.82
172.63

사건으로부터 확률분포를 예측

 $\mathcal{L}(\theta_1|x) < \mathcal{L}(\theta_2|x)$ this to be like hoolst test.

 $\mathcal{L}(\theta_1 | x) < \mathcal{L}(\theta_2 | x) > \mathcal{L}(\theta_3 | x)$

Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta \mid x)$$

Log Likelihood

Likelihood

Log Likelihood

$$\mathcal{L}(\theta \mid x) = \prod_{i=1}^{N} f(x_i; \theta)$$

$$\log \mathcal{L}(\theta \mid x) = \sum_{i=1}^{N} \log f(x_i; \theta) \Rightarrow \text{Herrich All Ferry Al$$

日外到4月31号设置数44月2184 休保教士 花如1

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \log \mathcal{L}(\theta \mid x)$$

अधिकार्य सीक स्ट्रिस 出型和217十三121

Log Likelihood

Negative Log Likelihood

Likelihood

$$\mathcal{L}(\theta \mid x) = \prod_{i=1}^{N} f(x_i; \theta)$$

Log Likelihood

$$\log \mathcal{L}(\theta \mid x) = \sum_{i=1}^{N} \log f(x_i; \theta)$$

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmin}} - \log \mathcal{L}(\theta \mid x) \angle \qquad \underset{\text{DIUBLE $\frac{1}{2}$}}{\operatorname{Loss}} = \underset{\text{Self-Weight Loss functions}}{\operatorname{Loss functions}} = \underset{\text{Self-Weight Loss fu$$

Negative Log Likelihood

- Simple Example
 - 길가는 사람 10명의 핸드폰 운영체제를 조사했다.
 - Android 7명
 - iOS 3명

핸든폰 운영체제 점유율 추정

17:301714

VS

Android probability

IOS probability

1-p

Sampling probability

$$\frac{10C_7p^7(1-p)^3}{\text{GHB MH 3226}}$$

Likelihood

$$\mathcal{L}(p) = p^7 (1 - p)^3$$

MEGINALLE BETTLE

Log Likelihood

$$\log \mathcal{L}(p) = 7\log p + 3\log(1-p)$$

NLL
$$-\log \mathcal{L}(p) = -7\log p - 3\log(1-p)$$

NLL Gradient

$$-\frac{\log \mathcal{L}(p)}{dp} = -7\frac{1}{p} + 3\frac{1}{1-p}$$
 Promised the stantage of the sta

감사합니다.