ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN PARCIAL. ENERO 2008

- 1. Suponiendo todos los bipolares con áreas iguales, salvo Q_9 que tiene área 5 veces mayor, entradas DC nulas, corrientes de base despreciables y $V_{BE} = 0.6 \text{ V}$,
 - a. Calcule los puntos de polarización de los transistores y la tensión de salida. Con entradas diferenciales puras y en pequeña señal,
 - b. Calcule la resistencia diferencial de entrada
 - c. Calcule la resistencia de salida
 - d. Calcule la ganancia diferencial

- 2. La figura muestra el circuito equivalente en alta frecuencia de un amplificador MOSFET con una resistencia conectada al Terminal de fuente.
 - a. Derive una expresión para la ganancia en voltaje a bajas frecuencias, A_{M} , (con las capacidades en abierto)
 - b. Con el método de las constantes de tiempo en circuito abierto, derive expresiones para $R_{\rm gs}$ y $R_{\rm gd}$.
 - c. Sea $R_{sig} = 100 \text{ k}\Omega$, $g_m = 4 \text{ mA/V}$, $R_L = 1 \text{ k}\Omega$, y $C_{gs} = C_{gd} = 1 \text{ pF}$. Utilice las expresiones calculadas en los apartados anteriores para determinar la ganancia a bajas frecuencias y la frecuencia superior de corte, f_H para tres casos: $R_s = 0 \Omega$, 100Ω , 250Ω . En cada caso evalúe también el producto ganancia-ancho de banda, ¿a qué conclusión se llega? Justifique de acuerdo con lo visto en teoría este resultado.

