ПАРНАЯ НЕЛИНЕЙНАЯ КОРРЕЛЯЦИЯ

ΓΛΑΒΑ 4

Содержание

- § 18. Нелинейная корреляционная зависимость
- § 19. Определение силы криволинейной связи
- § 20. Проверка адекватности модели

Между изучаемыми признаками X и Y может существовать нелинейная корреляционная зависимость. Если линия регрессии с уравнением $\hat{y}_X = f(x)$ или $\hat{x}_Y = \phi(y)$ не является прямой, то зависимость между показателями называют нелинейной корреляционной зависимостью. Среди видов нелинейной корреляции обыкновенно выделяют: полиномиальную (в частности, параболическую), степенную (в частности, гиперболическую), экспоненциальную, гармоническую, фрактальную и другие. Рассмотрим некоторые из них, начав с параболической корреляции.

Пусть зависимость между признаками X и Y задана в виде корреляционной таблицы. Для определения типа нелинейной зависимости на координатной плоскости строят точки $M_i(\mathbf{x_i},\mathbf{y_i})$.

Параболическая корреляция. Если точки в корреляционном поле располагаются вблизи некоторой параболы, то уравнение регрессии записывают в виде

$$\hat{y}_x = a_0 + a_1 x + a_2 x^2.$$

Оценки a_0 , a_1 , a_2 для неизвестных параметров истинного уравнения регрессии находят по методу наименьших квадратов. Если опытные данные не сгруппированы в корреляционную таблицу, то оценки находят, решая систему нормальных уравнений

$$\begin{cases} n a_0 + [x]a_1 + [x^2]a_2 = [y], \\ [x]a_0 + [x^2]a_1 + [x^3]a_2 = [xy], \\ [x^2]a_0 + [x^3]a_1 + [x^4]a_2 = [x^2y]. \end{cases}$$

Для сгруппированных значений признаков X и Y оценки a_0 , a_1 , a_2 находят, решая СЛАУ:

$$\begin{cases} n a_0 + [n_x x] a_1 + [n_x x^2] a_2 = [n_x \overline{y}_x], \\ [n_x x] a_0 + [n_x x^2] a_1 + [n_x x^3] a_2 = [n_x x \overline{y}_x], \\ [n_x x^2] a_0 + [n_x x^3] a_1 + [n_x x^4] a_2 = [n_x x^2 \overline{y}_x]. \end{cases}$$

Гиперболическая корреляция 1. Зависимость между *X* и *Y* может быть близкой к гиперболической. В этом случае уравнение регрессии ищут в виде

$$\hat{y}_x = a_0 + \frac{a_1}{x}.$$

Оценки a_0 и a_1 неизвестных параметров истинного уравнения регрессии находят по методу наименьших квадратов, решая систему нормальных уравнений:

$$\begin{cases} n a_0 + [1/x]a_1 = [y], \\ [1/x]a_0 + [1/x^2]a_1 = [y/x], \end{cases}$$

где

$$[1/x] = \sum_{i=1}^{n} 1/x_i, [1/x^2] = \sum_{i=1}^{n} 1/x_i^2, [y] = \sum_{i=1}^{n} y_i, [y/x] = \sum_{i=1}^{n} y_i/x_i.$$

Гиперболическая корреляция 2. Если гиперболическая зависимость между признаками X и Y имеет вид

$$\hat{y}_x = \frac{1}{a_0 + a_1 x}$$

то оценки а0 и а1 находят, решая систему нормальных уравнений

$$\begin{cases} n a_0 + [x]a_1 = [1/y], \\ [x]a_0 + [x^2]a_1 = [x/y]. \end{cases}$$

Если зависимость между признаками имеет экспоненциальный характер, то уравнение регрессии ищут в виде

$$\hat{y}_x = a \cdot b^x.$$

 Δ ля определения оценок a и b, входящих в уравнение регрессии,решают СЛАУ:

$$\begin{cases} [x]\lg a + [x^2]\lg b = [x\lg y], \\ n\lg a + [x]\lg b = [\lg y]. \end{cases}$$

Если в корреляционном поле около построенных точек предполагается проведение разных по типу линий (параболы, гиперболы, экспоненты, логарифмики), то для выбора одной из них, характеризующей наилучшим образом зависимость между признаками X и Y, применяют либо метод конечных разностей, либо производят проверку необходимых условий.

Проверку необходимых условий для выбора одной из предполагаемых нелинейных зависимостей проводят, пользуясь табл. 33.

Необходимые условия	Регрессия	Таблица 33 Способ выравнивания (приведения к линейной зависимости $Y = AX + B$)
$y\left(\frac{x_1+x_n}{2}\right) = \frac{y(x_1)+y(x_n)}{2}$	линейная $y = a x + b$	Тождественное преобразование
$y(\sqrt{x_1x_n}) = \sqrt{y(x_1)y(x_n)}$	степенная $y = a x^b$	$Y = \ln y, X = \ln x,$ $A = \ln a, B = b$
$y\left(\frac{x_1 + x_n}{2}\right) = \sqrt{y(x_1)y(x_n)}$	экспоненциальная $y = a b^x$	$Y = \ln y, X = x,$ $A = \ln a, B = \ln b$
$y(\frac{2x_1x_n}{x_1+x_n}) = \frac{y(x_1)+y(x_n)}{2}$	гиперболическая $y = a + \frac{b}{x}$	Y = xy, X = x
$y(\frac{x_1 + x_n}{2}) = \frac{2y(x_1)y(x_n)}{y(x_1) + y(x_n)}$	гиперболическая $y = \frac{1}{ax+b}$	Y = 1/y, X = x
$y(\sqrt{x_1 x_n}) = \frac{y(x_1) + y(x_n)}{2}$	логарифмическая $y = a \ln x + b$	$Y = y, X = \ln x$

Если выполняется одно из условий первого столбца таблицы, то выбирают в качестве предполагаемой формулы соответствующую формулу, стоящую во втором столбце таблицы рассматриваемой строки. В третьем столбце указывается способ выравнивания, то есть приведения изучаемой зависимости к линейной. Если выровненные точки (X_i, Y_i) хорошо ложатся на прямую, то указанную во втором столбце таблицы зависимость принимаем в качестве предполагаемой.

Если значения функции, вычисленные в первом столбце таблицы при выбранных значениях аргумента, отсутствуют в таблице опытных данных, то их находят линейным интерполированием по формуле

$$y(x) = y(x_1) + \frac{y(x_2) - y(x_1)}{x_2 - x_1} (x - x_1),$$

где x_1 и x_2 — два рядом стоящих значения признака X в таблице опытных данных, между которыми находится значение x, вычисленное по табл. 33 первого столбца.

Для всех предполагаемых формул по результатам первого столбца табл. 33 вычисляют отклонения Δ правой части от левой необходимого условия. Вычисленные отклонения Δ_i сравнивают и по наименьшему из них выбирают окончательно одну из формул.

Пусть в корреляционном поле могут быть проведены линии, описываемые уравнениями

$$y = ax^b$$
,

$$y = ae^{cx}(c = \ln b),$$

$$y = a + \frac{b}{x},$$

$$y = \frac{1}{ax+b},$$

$$y = a \ln x + b.$$

Все эти формулы содержат по два параметра и могут быть приведены к формуле Y = AX + B посредством табл. 33.

Так как все зависимости, приведенные в табл. 33, сводятся к линейной, то для обоснования выбора формулы Y = AX + B вычисляют конечные разности первого порядка DX, DY и отношения DY / DX.

Аналитическим критерием выбора формулы по этому методу служит тот факт, что отношения DY / DX мало отличаются друг от друга для выбранной формулы.

Если предполагаемая формула имеет вид $y = ax^2 + bx + c$, то критерием выбора этой формулы являются незначительные отклонения по модулю конечных разностей второго порядка $\Delta^2 y$ от среднего значения этих разностей $\overline{\Delta^2 y}$. Конечные разности находят, пользуясь табл. 34.

			Таблица 34
	Таблица конеч	чных разностей	
x	y	Δy	$\Delta^2 y$
x_0	<i>y</i> ₀		
		Δy_0	
x_1	<i>y</i> ₁		$\Delta^2 y_0$
		Δy_1	
x_2	<i>y</i> ₂		$\Delta^2 y_1$
		Δy_2	
x_3	у3		$\Delta^2 y_2$
		Δy_3	
x_4	<i>y</i> ₄		$\Delta^2 y_3$
		Δy_4	
<i>x</i> ₅	<i>y</i> ₅		

Для определения тесноты связи между признаками X и Y при нелинейной корреляции используют корреляционные отношения и индекс корреляции. Корреляционным отношением η_{yx} называется величина, определяемая равенством:

$$\eta_{yx} = \sqrt{\frac{(\sum n_x (\bar{y}_{xi} - \bar{y})^2)/n}{(\sum n_y (y - \bar{y})^2)/n}},$$

где n- объем выборки, n_X- частота значения x признака X, n_y- частота значения y признака Y, $\bar{y}-$ общая средняя признака Y, $\bar{y}_{Xi}-$ условная средняя признака Y.

Аналогично определяется выборочное корреляционное отношение η_{XY} :

$$\eta_{xy} = \sqrt{\frac{(\sum n_y (\overline{x}_{yi} - \overline{x})^2)/n}{(\sum n_x (x - \overline{x})^2)/n}} \,.$$

где n — объем выборки, n_X — частота значения x признака X , n_y — частота значения y признака Y , \bar{x} — общая средняя признака X , \bar{x}_{yi} — условная средняя признака X .

Корреляционные отношения обладают следующими свойствами (сформулируем свойства для η_{yx} , так как для η_{xy} они аналогичны):

- 1. Корреляционное отношение заключено между 0 и 1, т.е. $0 \le \eta_{yX} \le 1$.
- 2. Корреляционная связь между признаками X и Y отсутствует тогда и только тогда, когда η_{VX} = 0.
- 3. Если η_{yx} =1, то между признаками X и Y существует обычная функциональная связь.
- 4. Чем ближе значение η_{yX} к 1, тем сильнее корреляционная связь между признаками X и Y , а чем ближе η_{yX} к 0, тем слабее эта зависимость.
- 5. Если η_{yx} = |r| регрессия y на x является линейной.
- 6. Коэффициент линейной корреляции r не превосходит по модулю, то есть $\mid r \mid \leq \eta_{yx}$

По коэффициенту корреляции r можно судить о наличии и тесноте линейной корреляционной связи между признаками X и Y.

Теснота связи между признаками *X* и *Y* при любой форме корреляции может быть измерена также с помощью индекса корреляции *i*. Если опытные данные не сгруппированы в корреляционную таблицу, то индекс корреляции находят по формуле:

$$i = \sqrt{1 - \frac{S_{yx}^2}{S_y^2}},$$

$$S_{yx}^2 = (\sum (y_j - \hat{y}_{x_j})^2)/n$$

 средний квадрат отклонений фактических значений у от значений у, вычисленных по уравнению регрессии;

$$S_y^2 = (\sum (y_j - \bar{y})^2)/n$$

 средний квадрат отклонений фактических значений у от их средней арифметической.

Если опытные данные сгруппированы в корреляционную таблицу, то индекс корреляции находят по формуле

$$i = \sqrt{1 - \frac{Q_e}{Q}} \,,$$

ИΛИ

$$i = \sqrt{\frac{\sigma_y^2}{S_y^2}},$$

где

$$Q_e = Q - Q_R \,,\; Q = \sum (y_j - \overline{y})^2 \,,\; Q_R = \sum (\overline{y}_{x_i} - \overline{y})^2 \,,$$

$$S_y^2 = (\sum (y_j - \bar{y})^2 n_j) / n, \ \sigma_y^2 = \sum (\bar{y}_{x_i} - \bar{y})^2 \cdot n_i / n.$$

Индекс корреляции по величине изменяется от 0 до 1. По индексу корреляции можно определять, как правило, тесноту связи между признаками X и Y, но не форму криволинейной связи.

§ 20. Проверка адекватности модели

Проверить адекватность модели — значит установить, соответствует ли построенное уравнение регрессии опытным данным и достаточно ли включенных в уравнение факторных признаков Xi для описания результативного признака. Оценка значимости уравнения регрессии производится на основе дисперсионного анализа. В случае нелинейной парной корреляции находят статистику $F_{\rm H}$ по формуле:

$$F_{\rm H} = \frac{Q_R(n-2)}{Q_e}$$

ИΛИ

$$F_{\rm H} = \frac{i^2(n-2)}{1-i^2}$$
.

§ 20. Проверка адекватности модели

Если оценке подвергаются не два, а k параметров уравнения регрессии, то находят статистику

$$F_{\rm H} = \frac{Q_R(n-k)}{Q_e(k-1)}.$$

Затем при заданном уровне значимости α и числах степеней свободы k_1 =1, k_2 = n - 2 по таблице критических точек распределения Фишера — Снедекора находят (приложение 7) $F_T = F_{\alpha:k1:k2}$. Если $F_H > F_T$, то уравнение регрессии согласуется с опытными данными, в противном случае — нет.

Спасибо за внимание!