Graham's law mathematical problem

Problem #1: If equal amounts of helium and argon are placed in a porous container and allowed to escape, which gas will escape faster and how much faster?

Problem #2: What is the molecular weight of a gas which diffuses 1/50 as fast as hydrogen?

Problem #3: Two porous containers are filled with hydrogen and neon respectively. Under identical conditions, 2/3 of the hydrogen escapes in 6 hours. How long will it take for half the neon to escape?

Problem #4: If the density of hydrogen is 0.090 g/L and its rate of effusion is 5.93 times that of chlorine, what is the density of chlorine?

Problem #5: How much faster does hydrogen escape through a porous container than sulfur dioxide?

Problem #6: Compare the rate of diffusion of carbon dioxide (CO₂) & ozone (O₃) at the same temperature

Problem #7: 2.278 x 10⁻⁴ mol of an unidentified gaseous substance effuses through a tiny hole in 95.70 s. Under identical conditions, 1.738×10^{-4} mol of argon gas takes 81.60 s to effuse. What is the molar mass of the unidentified substance?

Problem #8: A compound composed of carbon, hydrogen, and chlorine diffuses through a pinhole 0.411 times as fast as neon. Select the correct molecular formula for the compound:

(a) $CHCI_3$ (b) CH_2CI_2 (c) $C_2H_2CI_2$ (d) C_2H_3CI

Problem #9: Which pair of gases contains one which effuses at twice the rate of the other in the pair?

(a) He and Ne

(b) Ne and CO_2 (c) He and CH_4 (d) CO_2 and HCI

(e) CH₄ and HC

Problem #10: If a molecule of CH₄ diffuses a distance of 0.530 m from a point source, calculate the distance (in meters) that a molecule of N_2 would diffuse under the same conditions for the same period of time.

> Md. Bashirul islam Software Engineering IIT, UNIVERSITY OF DHAKA Email: bsse1022@iit.du.ac.bd

Mobile: 01676827989