

8位 EPROM-Based 6 I/O 单片机

Version 1.4 Aug. 17, 2018

本文内容是由英文规格书翻译,目的是为了使您的阅读更加方便。它无法跟随原稿的更新,敬请参考英文规格书以获得更准确的信息。

ATW TECHNOLOGY CO. reserves the right to change this document without prior notice. Information provided by ATW is believed to be accurate and reliable. However, ATW makes no warranty for any errors which may appear in this document. Contact ATW to obtain the latest version of device specifications before placing your orders. No responsibility is assumed by ATW for any infringement of patent or other rights of third parties which may result from its use. In addition, ATW products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of ATW.

改版记录

版本	日期	内容描述	修正页
1.0	2016/04/19	新发布。	-
1.1	2017/05/23	在配置表中添加"输入电平"选项。	60
1.2	2017/11/14	修改"表 12 /TO 和/PD 值和相关事件概述"。	42
1.3	2018/04/17	更新直流电气特性表格。	61
1.4	2018/08/17	1. 修改图 2 程序存储器对映地址。 2. 更新RLR指令说明。	10 56

目 录

	1.1	74 AL		
		切肥…		6
	1.2	系统框	图	8
	1.3	引脚图		8
	1.4	引脚说	明	9
_				
2.		存结构·		_
	2.1		储器	
	2.2	数据存	储器	··· 11
3.	功能	と概述・		14
	3.1	R-page	> 特殊功能寄存器 ······	14
		3.1.1	INDF (间接寻址寄存器) ····································	
		3.1.2	TMR0 (定时器 0 寄存器) ····································	
		3.1.3	PCL(程序计数器低字节)····································	14
		3.1.4	STATUS(状态寄存器) ····································	15
		3.1.5	FSR(数据指针寄存器)······	15
		3.1.6	PortB (PortB数据寄存器) ····································	16
		3.1.7	PCON (Power寄存器) ····································	16
		3.1.8	BWUCON(PortB唤醒控制寄存器)·····	16
		3.1.9	PCHBUF(程序计数器高字节)······	17
		3.1.10	BPLCON(PortB下拉电阻控制寄存器)·····	17
		3.1.11	BPHCON(PortB上拉电阻控制寄存器)·····	17
			INTE(中断使能寄存器)·····	
		3.1.13	INTF(中断标志寄存器)·····	18
		T0MD ²	奇存器	··· 19
	3.3	F-page	特殊功能寄存器	20
		3.3.1	IOSTB (PortB I/O控制寄存器) ····································	20
		3.3.2	PS0CV (预分频器 0 寄存器)	20
		3.3.3	BODCON(PortB开漏控制寄存器) ······	20
		3.3.4	PCON1 (Power控制寄存器 1) ·······	21
	3.4	S-page	特殊功能寄存器	21
		3.4.1	TMR1 (定时器 1 寄存器)	21

ATW

		3.4.2	T1CR1 (定时器 1 控制寄存器 1)	
		3.4.3	T1CR2(定时器 1 控制寄存器 2) ······	
		3.4.4	PWM1DUTY (PWM1 占空比寄存器) ······	
		3.4.5	PS1CV (预分频器 1 寄存器) ···································	
		3.4.6	BZ1CR (蜂鸣器 1 控制寄存器)	
		3.4.7	IRCR(IR控制寄存器)·····	
		3.4.8	TBHP(表格指针高字节寄存器)·····	
		3.4.9	TBHD(表格数据高字节寄存器)·····	
			OSCCR(振荡器控制寄存器)·····	
	3.5			
		3.5.1	IO引脚结构框图·····	28
	3.6	定时器	0	33
	3.7	定时器	1/PWM1/BZ1·····	34
			载波(IR) ·······	
			定时器(WDT) ····································	
	3.9	1179	た円 俗(WDT)	20
	3.10	平断…	Timer0 上溢中断······	37
		3.10.2	Timer1 下溢中断·······	38
			看门狗超时中断·····	
			PB输入状态改变中断·····	
			外部中断输入	
			配置	
	3.12		式	
			正常模式	
			慢速模式	
			<i>待机模式</i> ······	
			睡眠模式	
			唤醒稳定时间	
		3.12.6	工作模式概述・・・・・	41
	3.13	复位…		42
4	指△	·沿署		44
			£	60
6.	电气	特性…		61

AT8A513D

ATW

	6.1	最大绝对值 · · · · · · · · · · · · · · · · · · ·	61
	6.2	直流电气特性	61
	6.3	特性图	63
		6.3.1 高速RC振荡频率与电源电压曲线图······	63
		6.3.2 高速RC振荡频率与温度曲线图······	63
		6.3.3 低速RC振荡频率与电源电压曲线图······	64
		6.3.4 低速RC振荡频率与温度曲线图······	64
	6.4	建议工作电压 ·····	65
	6.5	LVR电压与温度曲线图·····	65
7.	芯片	├脚位坐标图······	65
Ω	村出	隻尺寸	66
0.			
		6 引脚SOT23-6(63 毫寸)····································	66
		THE TANK OF THE PARTY OF THE PA	66
	8.3	8 引脚DIP(300 毫寸) ···································	67
9.	订则	勾信息 ······	67

5

1. 概述

AT8A513D 是以 EPROM 作为存储器的 8 位单片机,专为多 IO 产品的应用而设计,例如遥控器、风扇/灯光控制或是玩具周边等等。采用 CMOS 制程并同时提供客户低成本、高性能等显着优势。AT8A513D 核心建立在 RISC 精简指令集架构可以很容易地做编程和控制,共有 55 条指令。除了少数指令需要两个指令时钟,大多数指令都是一个指令时钟能完成,可以让用户轻松地以程序控制完成不同的应用。因此非常适合各种中低记忆容量但又复杂的应用。

在 I/O 的资源方面,AT8A513D 有 6 根弹性的双向 I/O 脚,每个 I/O 脚都有单独的寄存器控制为输入或输出脚。而且每一个 I/O 脚位都能相关的寄存器达成如上拉或下拉电阻或开漏(Open-Drain)输出。此外针对红外线摇控的产品方面,AT8A513D 内置了可选择频率的红外载波发射口。

AT8A513D 有两组定时器,可用系统时钟当作一般的计时应用或者从外部讯号触发来计数。另外 AT8A513D 提供一组 8 位的 PWM 输出或者蜂鸣器输出,可用来驱动马达、LED、或蜂鸣器等等。

AT8A513D 采用双时钟机制,高速振荡时钟或者低速振荡时钟都由内部 RC 振荡输入。在双时钟机制下,AT8A513D 可选择多种工作模式如正常模式(Normal)、慢速模式(Slow mode)、待机模式(Standby mode)与睡眠模式(Halt mode),可节省电力消耗,延长电池寿命。

在省电的模式下,如待机模式(Standby mode)与睡眠模式(Halt mode)中,有多个中断源可以触发来唤醒 AT8A513D 进入正常操作模式(Normal mode)或慢速模式(Slow mode)来处理突发事件。

1.1 功能

- 宽广的工作电压: (指令时钟为 4 个CPU时钟, 亦即 4T模式)
 - 2.0V~5.5V @系统时钟≤8MHz。
 - ➤ 2.2V~5.5V @系统时钟>8MHz。
- 宽广的工作温度: -40°C~85°C。
- 1Kx14 位的程序存储器空间。
- 48字节的通用数据寄存器空间。
- 6根可分别单独控制输入输出方向的I/O脚(GPIO)、PB[5:0]。
- PB[3:0]可选择输入时使用内部下拉电阻。
- PB[5:4]及PB[2:0]可选择内部上拉电阻或开漏输出(Open-Drain)。
- PB[3]可选择当作输入或开漏输出(Open-Drain)。
- 8级深度硬件堆栈(Stack)。
- 存取数据有直接或间接寻址模式。
- 一组8位上数定时器(Timer0)包含可编程的预分频器。
- 一组8位下数定时器(Timer1)可选自动重载与连续下数计时。
- 一个 8 位的脉冲宽度调变输出(PWM1)。

- 一个蜂鸣器输出(BZ1)。
- 38/57KHz红外线载波(IR)频率可供选择,同时载波之极性也可以通过寄存器选择。
- 内置上电复位电路(POR)。
- 内置低压复位功能(LVR)。
- 内置看门狗计时(WDT),可由配置字节(Configuration Word)控制开关。
- 双时钟机制,系统时钟可以随时切换高速振荡或者低速振荡。
 - ➤ 高速振荡时钟: I_HRC (内部 1~20MHz高速RC振荡)
 - ▶ 低速振荡时钟: I_LRC (内部 32KHz低速RC振荡)
- 四种工作模式可随系统需求调整电流消耗:正常模式(Normal mode)、慢速模式(Slow mode)、特机模式(Standby mode)与睡眠模式(Halt mode)。
- 五种硬件中断:
 - > Timer0 上溢中断。
 - ➤ Timer1 下溢中断。
 - ➤ WDT中断。
 - > PB输入状态改变中断。
 - > 外部中断。
- AT8A513D在待机模式(Standby mode)下的五种唤醒中断:
 - > Timer0 上溢中断。
 - ➤ Timer1 下溢中断。
 - ➤ WDT中断。
 - > PB输入状态改变中断。
 - > 外部中断。
- AT8A513D在睡眠模式(Halt mode)下的三种唤醒中断:
 - WDT中断。
 - ▶ PB输入状态改变中断。
 - > 外部中断。

1.2 系统框图

1.3 引脚图

AT8A513D提供三种封装类型: SOP8、DIP8及SOT23-6。

图 1 封装引脚图

1.4 引脚说明

引脚名	I/O	描述
PB0/ INT/ SDI	1/0	PB0 是一个双向I/O引脚。当EIS=1 & INTIE=1 时,PB0 是外部中断的输入引脚。
PBU/ INT/ SDI	1/0	PB0 也是编程数据输入SDI。
		PB1 是一个双向I/O引脚。
PB1/ IR/ SDO	I/O	如果启用红外模式,该引脚为红外载波输出。
		PB1 也是编程数据输出SDO。
		PB2 是一个双向I/O引脚,
PB2/ EX_CKI / PWM1/ BZ1/ SCK	I/O	可当作定时器外部时钟来源EX_CKI,且提供PWM输出、蜂鸣器BZ1输出。
		PB2 也是编程时钟输入SCK。
		PB3 可选择当作输入脚或开漏输出脚,或当作复位引脚RSTb,若RSTb为低电平,PB3
PB3/ RSTb/ Vpp	I/O	将复位AT8A513D。
		PB3 也是编程高压输入Vpp。
PB4	I/O	PB4 是一个双向I/O引脚,也可以当成指令时钟输出。
PB5	I/O	PB5 是一个双向I/O引脚。
VDD	-	电源正端。
VSS	-	电源负端。

2. 内存结构

AT8A513D存储器分为两类:分别是程序存储器和数据存储器。

2.1 程序存储器

AT8A513D程序存储器空间是 1Kx14 位。因此,10 位宽的程序计数器(PC)可以访问程序存储器的任何地址。

复位地址位于 0x000,软件中断地址位于 0x001,内部和外部硬件中断地址位于 0x008。AT8A513D提供CALL、GOTOA和CALLA等指令去访问程序空间的 256 个地址。还提供GOTO指令去访问程序空间 512 个地址,LCALL和LGOTO指令访问程序空间的任何地址。

当发生子程序调用或中断情况时,下一个ROM地址写入堆栈的顶部。而当执行RET、RETIA或RETIE指令,堆栈 顶部的数据会被读取并加载到程序计数器。

AT8A513D程序存储器地址 0x3FE~0x3FF是保留地址。如果用户在这些地址写入程序可能会发生无法预期的程序执行错误。

AT8A513D程序存储器地址 0x00E~0x00F是Preset Rolling Code地址。如果用户在不设置滚码时可当作程序区使用。

图 2 程序存储器对映地址

2.2 数据存储器

根据用于存取数据存储器的指令,数据存储器可分为三类: R-page特殊功能寄存器(SFR)和通用寄存器(GPR)、F-page特殊功能寄存器、S-page特殊功能寄存器。GPR是由SRAM组成,用户可以使用它们来存储变量或计算结果。

R-page特殊功能寄存器和数据存储器分为四组Bank,可透过数据指针寄存器(FSR)来切换Bank。寄存器BK[1:0]为FSR[7:6],可从四个Bank中选择其中一个。

R-page特殊功能寄存器和数据存储器可用直接寻址方式和间接寻址方式来进行存取。

数据存储器使用间接寻址方式如下图所描述,这种间接寻址方式包含使用INDF寄存器。Bank选择是由FSR[7:6] 决定,地址选择则是由FSR[5:0]而定。

图 3 间接寻址方式存取数据存储器

下面描述了数据存储器使用的直接寻址方式。Bank选择是由寄存器FSR[7:6]决定,而地址选择则是由指令码OP-Code[5:0]直接决定。

图 4 直接寻址方式存取数据存储器

R-page特殊功能寄存器可以通过一般的指令存取,如算术指令和数据搬移指令。R-page特殊功能寄存器占用了从Bank 0 的 0x0 到 0xF。然而,Bank 1、Bank 2 和Bank 3 的相同地址会映像到Bank 0。换句话说,R-page特殊功能寄存器只存在于Bank 0。GPR占用了数据存储器的 0x10 到 0x3F地址。其它Bank地址 0x10 到 0x3F亦映射到Bank 0,如表 1 所示。

AT8A513D寄存器名称和R-page特殊功能寄存器的映像地址说明如下表:

FSR[7:6]	00	01	10	11			
Address	(Bank 0)	(Bank 1)	(Bank 2)	(Bank 3)			
0x0	INDF						
0x1	TMR0						
0x2	PCL						
0x3	STATUS						
0x4	FSR						
0x5	-						
0x6	PORTB						
0x7	-						
0x8	PCON	— 映射至Bank 0					
0x9	BWUCON						
0xA	PCHBUF						
0xB	BPLCON						
0xC	BPHCON						
0xD							
0xE	INTE						
0xF	INTF						
0x10 ~ 0x1F	通用寄存器		映射至Bank 0				
0x20 ~ 0x3F	通用寄存器		映射至Bank 0				

表 1 R-page特殊功能寄存器地址映像表

F-page特殊功能寄存器只能被指令IOST和IOSTR存取,S-page特殊功能寄存器只能被指令SFUN和SFUNR存取。 当F-page和S-page寄存器被存取时,FSR[7:6]选择位会被忽略。寄存器名称和F-page、S-page的地址说明如下表。

特殊功能寄存器种类地址	F-page SFR	S-page SFR
0x0	-	TMR1
0x1	·	T1CR1
0x2	-	T1CR2
0x3	-	PWM1DUTY
0x4	-	PS1CV
0x5	-	BZ1CR
0x6	IOSTB	IRCR
0x7	-	ТВНР
0x8	-	TBHD
0x9	-	-
0xA	PS0CV	-
0xB	-	(-
0xC	BODCON	-
0xD	-	-
0xE	\(\frac{1}{2}\)	-
0xF	PCON1	OSCCR

表 2 F-page特殊功能寄存器和S-page特殊功能寄存器地址表

3. 功能概述

本章节将详细描述AT8A513D的操作方式。

3.1 R-page特殊功能寄存器

3.1.1 INDF (间接寻址寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
INDF	R	0x0	INDF[7:0]								
	读写属性			读/写							
初始值 xxxxxxxxx											

间接寻址寄存器并不是真的存在,而是以间接寻址模式来使用。任何指令访问间接寻址寄存器时,实际上是访问数据指针寄存器FSR所选择的寄存器。

3.1.2 TMR0 (定时器 0 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TMR0	R	0x1	TMR0[7:0]								
	读写属性					读	写				
	初始值		xxxxxxx								

当读取TMR0 寄存器时,会得到定时器 0 目前计数数值。

当写入TMR0 寄存器时,会更新定时器 0 目前计数数值。

通過设置T0MD与配置字节(Configuration Word),定时器 0 时钟源可以从指令时钟F_{INST}、外部时钟EX_CKI 或内部低频震荡I LRC中择一。

3.1.3 PCL(程序计数器低字节)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
PCL	R	0x2		PCL[7:0]								
	读写属性					读	写					
	初始值					0×	:00					

程序计数器(PC)是一个 10 位寄存器,分高 2 位和低 8 位。当程序执行了一个指令,同时PC数值会增加,除了某些指令会直接更改PC数值。PCL寄存器可存取PC低字节(PC[7:0]),PC高字节(PC[9:8])并不能直接存取,必须通過PCHBUF寄存器完成存取。

以GOTO指令来说,PC[8:0]是从指令码(OP-Code)取得,而PC[9]是从PCHBUF[1]加载。CALL指令的PC[7:0] 是从指令码取得,而PC[9:8]是从PCHBUF[1:0]加载。下一个PC地址(PC+1),将会存到堆栈的顶部。LGOTO 指令的PC[9:0]是从指令码取得。

LCALL指令的PC[9:0]是从指令码取得;下一个PC地址(PC+1),将被存到堆栈的顶部。

3.1.4 STATUS (状态寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
STATUS	R	0x3	GP7	GP6	GP5	/TO	/PD	Z	DC	С
	读写属性		读/写	读/写	读/写	读/写(*2)	读/写(*1)	读/写	读/写	读/写
	初始值		0	0	0	1	1	Х	Х	Χ

状态寄存器包含算术/逻辑指令的结果和是否发生看门狗超时复位。

C: 进位/借位标志位

C=1 时,加法运算有进位或减法运算无借位。

C=0 时,加法运算无进位或减法运算有借位。

DC: 半进位/半借位标志位

DC=1 时,加法运算低四位有进位或减法运算时没有向高四位借位。

DC=0 时,加法运算低四位无进位或减法运算时有向高四位借位。

Z: 零位

Z=1 时,算术或逻辑运算的结果是零。

Z=0 时,算术或逻辑运算的结果不为零。

/PD:睡眠模式标志位

/PD=1 时,上电或执行CLRWDT指令后。

/PD=0 时,执行SLEEP指令后。

/TO: 看门狗超时标志位

/TO=1 时,上电或执行CLRWDT或SLEEP指令后。

/TO=0 时,发生WDT上溢。

GP7、GP6、GP5: 通用寄存器数据位。

(*1): 可以被SLEEP指令清除。

(*2): 可以由CLRWDT指令设定。

3.1.5 FSR (数据指针寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
FSR	R	0x4	BK[1:0]	FSR[5:0]						
	读写属性		读/写								
	初始值		0	0	×	X	Х	Х	Х	Х	

FSR[5:0]: 从指定Bank数据存储器的 64 个寄存器(0x00~0x3F)中选择一个。

BK[1:0]: 以AT8A513D为例,寄存器Bank[1:0]是无用处的,因为AT8A513D实际上只有一个Bank。

3.1.6 PortB (PortB 数据寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PortB	R	0x6	GP7	GP6	PB5	PB4	PB3	PB2	PB1	PB0
	读写属性		1			读	/写			
	初始值		数扫	居锁存值是	是xxxxxx,	读取值贝	则是xxxxx	x端口值。	(PB5~PB	0)

读取PortB时,若特定脚位被配置为输入脚,将得到该脚位输入状态。然而,若该脚位被配置为输出脚,依据配置字节,得到该脚位的状态或相对应的输出数据锁存值。当写入PortB时,数据是被写入PortB的输出数据锁存集中

GP7, GP6: 通用寄存器数据位。

3.1.7 PCON (Power 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	R	0x8	WDTEN	EIS	GP5	GP4	LVREN	GP2	GP1	GP0
	读写属性					请	引写			
	初始值		1	0	0	0	1	0	0	0

GP5~0: 通用寄存器数据位。

LVREN: 开启/关闭LVR。

LVREN=1 时,开启LVR。

LVREN=0 时,关闭LVR。

EIS:外部中断选择位。

EIS=1 时,PB0 是外部中断输入。

EIS=0 时,PB0 是I/O口。

WDTEN: 开启/关闭WDT。

WDTEN=1 时,开启WDT。 WDTEN=0 时,关闭WDT。

3.1.8 BWUCON (PortB 唤醒控制寄存器)

名称	SFR 类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BWUCON	R	0x9	-	-	WUPB5	WUPB4	WUPB3	WUPB2	WUPB1	WUPB0
读	写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
è	刃始值		Х	Х	1	1	1	1	1	1

WUPBx: 开启/关闭PBx唤醒功能, $0 \le x \le 5$ 。

WUPBx=1 时,开启PBx唤醒功能。 WUPBx=0 时,关闭PBx唤醒功能。

3.1.9 PCHBUF (程序计数器高字节)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCHBUF	R	0xA	-	-	-	-		GP5	PCHBI	JF[1:0]
ì	卖写属性		-	-	-	-	-		读/写	
	初始值		Х	X	Х	Х	Х	000		

PCHBUF[1:0]:程序计数器PC的第九个位和第八个位。

GP5: 通用寄存器数据位。

3.1.10 BPLCON(PortB 下拉电阻控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BPLCON	R	0xB	/PLPB3	/PLPB2	/PLPB1	/PLPB0	-	-	-	-
į	卖写属性		读/写	读/写	读/写	读/写	-	-	-	-
	初始值		1	1	1	1	1	1	1	1

/PLPBx: 关闭/开启PBx下拉电阻, $0 \leqslant x \leqslant 3$ 。

/PLPBx=1 时,关闭PBx下拉电阻。 /PLPBx=0 时,开启PBx下拉电阻。

3.1.11 BPHCON (PortB 上拉电阻控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BPHCON	R	0xC	-	-	/PHPB5	/PHPB4	GP3	/PHPB2	/PHPB1	/PHPB0
读写属性			-	-	读/写	读/写	读/写	读/写	读/写	读/写
初始值			0	0	1	1	1	1	1	1

/PHPBx: 关闭/开启PBx上拉电阻, $0 \le x \le 5$ 。

/PHPBx=1 时,关闭PBx上拉电阻。 /PHPBx=0 时,开启PBx上拉电阻。

GP3:通用寄存器数据位。

3.1.12 INTE (中断使能寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTE	R	0xE	-	WDTIE	-	-	T1IE	INTIE	PBIE	TOIE
	读写属性		-	读/写	-	-	读/写	读/写	读/写	读/写
	初始值		Х	0	X	Х	0	0	0	0

TOIE: 定时器 0 上溢(overflow)中断使能位。

TOIE=1 时,开启定时器 0 上溢中断。 TOIE=0 时,关闭定时器 0 上溢中断。

PBIE: PortB输入状态变化中断使能位。

PBIE=1时,开启PortB输入状态变化中断。

PBIE=0时,关闭PortB输入状态变化中断。

INTIE: 外部中断使能位。

INTIE=1时,开启外部中断。

INTIE=0时,关闭外部中断。

T1IE: 定时器 1 下溢(underflow)中断使能位。

T1IE=1时, 开启定时器 1下溢中断。

T1IE=0时,关闭定时器1下溢中断。

WDTIE: WDT超时上溢中断使能位。

WDTIE=1 时,开启WDT超时上溢中断。

WDTIE=0时,关闭WDT超时上溢中断。

3.1.13 INTF (中断标志寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTF	R	0xF	-	WDTIF	ì	-	T1IF	INTIF	PBIF	TOIF
	读写属性		-	读/写	-	-	读/写	读/写	读/写	读/写
衫	J始值(注意	*)	0	0	0	0	0	0	0	0

TOIF: 定时器 0 上溢中断标志位。

T0IF=1 时,发生定时器 0 上溢中断。

TOIF必须由程序清零。

PBIF: PortB输入状态变化中断标志位。

PBIF=1时,发生PortB输入状态变化中断。

PBIF必须由程序清零。

INTIF: 外部中断标志位。

INTIF=1 时,发生外部中断。

INTIF必须由程序清零。

T1IF: 定时器 1 下溢中断标志位。

T1IF=1 时,发生定时器 1 下溢中断。

T1IF必须由程序清零。

WDTIF: WDT超时上溢中断标志位。

WDTIF=1 时,发生WDT超时上溢中断。

WDTIF必须由程序清零。

注意: 当对应的INTE寄存器控制位未使能,读取中断标志是 0。

3.2 TOMD寄存器

TOMD是可读写寄存器,但只能由指令TOMD / TOMDR存取。

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T0MD	-	-	LCKTM0	INTEDG	T0CS	T0CE	PS0WDT	PS	SOSEL[2:0]
	读写属性					读/写				
初]始值(注意*)	0	0	1	1	1		111	

PS0SEL[2:0]: 选择预分频器 0 的预分频比(Dividing Rate)。预分频器 0 根据PS0WDT控制位决定分配给定时器 0 或WDT。当预分频器 0 被分配给WDT,预分频比取决于选择哪种计数机制(WDT复位或WDT中断)。

		预分频比选项	A (A)
PS0SEL[2:0]	PS0WDT=0 (定时器 0)	PS0WDT=1 (WDT复位)	PS0WDT=1 (WDT中断)
000	1:2	1:1	1:2
001	1:4	1:2	1:4
010	1:8	1:4	1:8
011	1:16	1:8	1:16
100	1:32	1:16	1:32
101	1:64	1:32	1:64
110	1:128	1:64	1:128
111	1:256	1:128	1:256

表 3 预分频器 0 的预分频比选项

PS0WDT: 预分频器 0 分配选择。

PS0WDT=1时,预分频器0被分配到WDT。

PS0WDT=0时,预分频器 0 被分配到定时器 0。

注意: 在使能看门狗或定时器 0 中断前,要先设定PS0WDT和PS0SEL[2:0],否则复位或中断可能导致错误触发。

TOCE: 定时器 0 外部时钟源触发沿选择。

T0CE=1时,下降沿时定时器0加一。

T0CE=0时,上升沿时定时器 0加一。

注意: TOCE应用在外部 EX CKI脚作为定时器 0 时钟源。

TOCS: 定时器 0 时钟源选择。

TOCS=1 时,选择EX_CKI脚或内部低频震荡I_LRC。

TOCS=0时,选择指令时钟FINST。

INTEDG:外部中断触发沿选择。

INTEDG=1,当PB0引脚发生上升沿触发,发生外部中断。

INTEDG=0, 当PB0 引脚发生下降沿触发,发生外部中断。

LCKTMO: TOCS=1 时,定时器 0 时钟源可被选择为低频振荡器。

TOCS=0时,指令时钟FINST被选作定时器 0 时钟源。

TOCS=1时,LCKTM0=0时,外部EX_CKI脚被选择当作定时器 0 时钟源。

TOCS=1 时,LCKTM0=1 时,内部低频震荡I_LRC为定时器 0 时钟源。

注意: 有关定时器 0 时钟源选择的详细说明,请参考定时器 0 章节。

3.3 F-page特殊功能寄存器

3.3.1 IOSTB (PortB I/O 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IOSTB	F	0x6	GP7	GP6	IOPB5	IOPB4	IOPB3	IOPB2	IOPB1	IOPB0
	读写属性		读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		0	0	1	1	1	1	1	1

IOPBx: PBx I/O模式选择, 0 ≤ x ≤ 5。

IOPBx=1 时,PBx是输入口。 IOPBx=0 时,PBx是输出口。

GP7, GP6: 通用读写器寄存器。

3.3.2 PS0CV (预分频器 0 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PS0CV	F	0xA				PS0C	V[7:0]			
	读写属性					只	读			
	初始值		1	1	1	1	1	1	1	1

读取PS0CV时,会得到预分频器 0 器的目前数值。

3.3.3 BODCON (PortB 开漏控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BODCON	F	0xC	-	-	ODPB5	ODPB4	GP3	ODPB2	ODPB1	ODPB0
	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		0	0	0	0	0	0	0	0

ODPBx: 开启/关闭PBx的开漏, $0 \le x \le 5$ 。

ODPBx=1 时,开启PBx的开漏。

ODPBx=0时,关闭PBx的开漏。

GP3: 通用寄存器数据位。

3.3.4 PCON1 (Power 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON1	F	0xF	GIE	-	GP5	GP4	GP3	GP2	GP1	T0EN
	读写属性		读/写(1*)	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		0	0	0	0	0	0	0	1

T0EN: 开启/关闭定时器 0。

T0EN=1 时,开启定时器 0。 T0EN=0 时,关闭定时器 0。

GIE: 开启/关闭总中断屏蔽位。

GIE=1时,开启总中断。

GIE=0时,关闭总中断。

GP1~5: 通用寄存器数据位。

(1*): 由指令 ENI 设置 1、指令 DISI 清除、指令 IOSTR 所读取。

3.4 S-page特殊功能寄存器

3.4.1 TMR1 (定时器 1 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TMR1	S	0x0				TMR	1[7:0]				
	读写属性			读/写							
	初始值					XXXX	XXXX				

当读取TMR1 寄存器时,会得到定时器 1 目前计数数值。

当写入TMR1寄存器时,会更新定时器1目前计数数值。

3.4.2 T1CR1 (定时器 1 控制寄存器 1)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1CR1	S	0x1	PWM10EN	10EN PWM10AL		-		T10S	T1RL	T1EN
	读写属性		只写	只写	-	-	-	读/写	读/写	读/写
	初始值		0	0	X	X	X	0	0	0

此寄存器用于配置定时器 1 功能。

T1EN: 开启/关闭定时器 1。

T1EN=1 时, 开启定时器 1。

T1EN=0 时, 关闭定时器 1。

T1RL: 当连续模式被选择 (T1OS=0),选择定时器 1下数方式。

T1RL=1 时, 当下溢发生, 定时器 1 初始值从TMR1 寄存器被重新加载并继续下数。

T1RL=0时,当下溢发生,定时器1继续从0xFF下数。

T1OS: 当下溢发生,设置定时器 1 操作模式。

T1OS=1 时,单次计数模式 (One-Shot mode)。定时器 1 会从初始值到 0x00 计数一次。

T1OS=0 时,连续计数模式 (Non-Stop mode)。下溢后,定时器 1 会持续下数。

T10S	T1RL	定时器 1 计数选项
0	0	定时器 1 从 0xFF倒数到 0x00。 当下溢发生, 0xFF被重载至定时器 1 并继续下数。
0	1	定时器 1 从重载的数值倒数到 0x00。 当下溢发生,定时器 1 从TMR1 重新载入数值并继续下数。
1	х	定时器 1 从初始值下数到 0x00。 当下溢发生,定时器 1 停止下数。

表 4 定时器 1 功能

PWM1OAL: 定义PWM1输出有效状态。

PWM1OAL=1 时,PWM1 为低电平有效位输出。 PWM1OAL=0 时,PWM1 为电平高有效位输出。

PWM1OEN: 开启/关闭PWM1输出。

PWM10EN=1 时,PB2 输出PWM1。 PWM10EN=0 时,PB2 是I/O口。

3.4.3 T1CR2 (定时器 1 控制寄存器 2)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T1CR2	S	0x2	-	-	T1CS	T1CE	/PS1EN	PS1SEL[2		:0]
	读写属性		-	-	读/写	读/写	读/写	读/写	读/写	读/写
	初始值		Х	Х	1	1	1	1	1	1

该寄存器用于配置定时器 1 功能。

PS1SEL[2:0]: 预分频器 1 预分频比选项。

PS1SEL[2:0]	预分频比选项
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1:128
111	1:256

表 5 预分频器 1 预分频比选项

注意: 在PS1EN=1 前须先设定PS1SEL[2:0],否则可能会误发生中断。

/PS1EN: 关闭/开启预除器 1。

/PS1EN=1 时,关闭预分频器 1。 /PS1EN=0 时,开启预分频器 1。

T1CE: 定时器 1 外部时钟触发沿选项。

T1CE=1 时,EX_CKI脚下降沿时定时器 1 减一。 T1CE=0 时,EX_CKI脚上升沿时定时器 1 减一。

T1CS: 定时器 1 时钟源选项。

T1CS=1时,选择EX CKI脚作为外部时钟输入。

T1CS=0时,选择指令时钟。

3.4.4 PWM1DUTY (PWM1 占空比寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
PWM1DUTY	S	0x3	PWM1DUTY[7:0]								
ì	卖写属性		只写								
	初始值					XXXX	(XXXX				

此寄存器仅能写入。当定时器 1 被使能并开始倒数计时后,PWM1 输出会保持在非有效位状态。当定时器 1 数值等于PWM1DUTY, PWM1 输出有效位状态直到发生下溢。

定时器 1 重新加载的数值储存在TMR1 寄存器,以用来定义PWM1 帧率,PWM1DUTY寄存器用于定义PWM1 的占空比。

3.4.5 PS1CV (预分频器 1 寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PS1CV	S	0x4		PS1CV[7:0]						
	读写属性									
初始值 1 1 1 1 1 1 1 1					1					

读取PS1CV时,将会得到预分频器1的目前数值。

3.4.6 BZ1CR (蜂鸣器 1 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BZ1CR	S	0x5	BZ1EN	1	-	-	BZ1FSEL[3:0]			
	读写属性		只写	-	-	-	只写			
	初始值			X	Χ	X	1	1	1	1

BZ1FSEL[3:0]: BZ1 输出频率选项。

D74E9E1 [2:0]	BZ1 频3	率选项		
BZ1FSEL[3:0]	时钟源	预分频比		
0000		1:2		
0001		1:4		
0010		1:8		
0011	新八辆 思 1 於山	1:16		
0100	预分频器 1 输出	1:32		
0101		1:64		
0110		1:128		
0111		1:256		
1000		定时器 1 bit 0		
1001		定时器 1 bit 1		
1010		定时器 1 bit 2		
1011	空时现4 校山	定时器 1 bit 3		
1100	定时器 1 输出	定时器 1 bit 4		
1101		定时器 1 bit 5		
1110		定时器 1 bit 6		
1111		定时器 1 bit 7		

表 6 蜂鸣器BZ1输出(PB2)频率选项

BZ1EN: 开启/关闭蜂鸣器 1 输出。

BZ1EN=1 时, 开启蜂鸣器 1。

BZ1EN=0 时, 关闭蜂鸣器 1。

3.4.7 IRCR (IR 控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IRCR	S	0x6	-	-	-	-	-	IRCSEL	IRF57K	IREN
	读写属性		-	-	-	-		写入	写入	写入
	初始值		Х	Х	Х	X	X	0	0	0

IREN: 开启/关闭IR载波输出。

IREN=1时,开启IR载波输出。

IREN=0时,关闭IR载波输出。

IRF57K: IR载波频率选择。

IRF57K=1 时,IR载波频率是 57KHz。

IRF57K=0 时,IR载波频率是 38KHz。

IRCSEL: IR载波极性选择。

IRCSEL=0 且I/O脚PB1 数据是 1 时,IR载波会被产生。IRCSEL=1 且I/O脚PB1 数据是 0 时,IR载波会被产生。

注意:

- 1. 仅有高速震荡时钟(FHOSC)(详见章节 3.11)可以当作IR时钟源。
- 2. 不同振荡类型的分频比。

OSC. Type	57KHz	38KHz	条件
High IRC (4MHz)	64	96	HIRC 模式(不论系统时钟频率是多少,IR 模块的输入时钟都设定为 4MHz)

表 7 不同IR载波频率的分频比

3.4.8 TBHP (表格指针高字节寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBHP	S	0x7	-	-	-			TBHP2	TBHP1	TBHP0
	读写属性		-	-	-	-	•	读/写	读/写	读/写
	初始值		Х	Х	X	Х	Х	Х	Х	Х

当指令CALLA、GOTOA或TABLEA被执行时,程序计数寄存器会指向欲寻址的 10 位ROM地址,此目标地址是由TBHP[1:0]与ACC组成。ACC是PC[9:0]的低字节,TBHP[1:0]是PC[9:0]的高字节。

TBHP[2]是AT8A513D的通用寄存器数据位。

3.4.9 TBHD (表格数据高字节寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBHD	S	0x8	-	-	TBHD5	TBHD4	TBHD3	TBHD2	TBHD1	TBHD0
	读写属性		-	-	只读	只读	只读	只读	只读	只读
	初始值		Х	Х	Х	Х	Х	Х	Х	Х

当指令TABLEA被执行后,会得到ROM表格的 14 位数据内容,其中ROM表格的数据高字节内容被加载到TBHD[5:0]寄存器,ROM表格的数据低字节内容则被加载到ACC。

3.4.10 OSCCR (振荡器控制寄存器)

名称	SFR类型	地址	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
OSCCR	S	0xF	-	-	1	-	OPMD[1:0]	STPHOSC	SELHOSC
	读写属性			-		-	读/写	读/写	读/写
	初始值		Х	Х	Х	Х	00	0	1

SELHOSC: 系统振荡器选择 (Fosc)。

SELHOSC=1 时,Fosc是高频率振荡器(Fhosc)。 SELHOSC=0 时,Fosc是低频率振荡器(FLosc)。

STPHOSC: 关闭/开启高频率震荡器 (Fhosc)。

STPHOSC=1时,Fhosc会停止振荡并被关闭。

STPHOSC=0时,FHosc保持振荡。

OPMD[1:0]: 选择操作模式。

OPMD[1:0]	操作模式
00	正常模式
01	睡眠模式
10	待机模式
11	保留

表 8 选择OPMD[1:0]的操作模式

注意: STPHOSC不能与SELHOSC或OPMD同时更改。在SELHOSC=1 时,STPHOSC不能与OPMD同时更改。

3.5 I/O□

AT8A513D提供 6 个I/O口(PB[5:0])。用户可以由寄存器PORTB[5:0]读写这些脚位。每个I/O脚位都有一个对应的寄存器控制位以定义该脚位是输入或输出口。寄存器IOSTB[5:0]定义PB[5:0]为输入口或输出口。

当一个I/O脚位被配置为输入口,它可以由寄存器开启或关闭内部上拉/下拉电阻。除了PB3,寄存器BPHCON[5:0]用于开启或关闭PB[5:0]的内部上拉电阻。寄存器BPLCON[7:4]则是用于开启或关闭PB[3:0]的内部下拉电阻。

当一个I/O脚位被配置为输出口,可由寄存器开启或关闭开漏。寄存器BODCON[5:0]决定PB[5:0]是否为开漏输出脚。(当PB[3]配置为输出口时,只能是开漏输出。)

I/O口功能摘要如下表:

	功能	PB[2:0]	PB[3]	PB[5:4]
<i>t</i> △)	上拉电阻	V	Х	V
输入	下拉电阻	V	V	X
输出	开漏	V	总是	V

表 9 I/O端口功能摘要

在PB的每个I/O脚都有输入状态改变产生中断功能。寄存器BWUCON[5:0]会开启或关闭任一PB脚位的唤醒功能。只要BWUCON对应到的任一PB脚位被置为1时,且在此输入脚位有状态改变时,寄存器PBIF(INTF[1])就会被设为1。如果寄存器PBIE(INTE[1])与GIE(PCON1[7])同时设定为1,将发生中断要求并执行中断服务程序。

AT8A513D仅提供一个外部中断, 当寄存器EIS(PCON[6])设定为 1, PB0则被当作外部中断的输入脚。

注意: 当PB0 同时设定成输入状态改变触发脚与外部中断脚,外部中断有较高的优先权,而PB0 输入状态改变触发脚则会被关闭,但PB5~PB1 输入状态改变触发脚不会被影响。

AT8A513D提供红外线IR载波生成器。IR载波生成器是由寄存器IREN(IRCR[0])开启,PB1 会输出红外线载波。由配置字节决定PB3 可否当作外部复位输入RSTb。当PB3 为低电平时将导致AT8A513D发生复位。

当AT8A513D处于一般模式、慢速模式或待机模式并使能配置字节,用户可以在PB4输出指令时钟F_{INST}。

如果寄存器T0CS(T0MD[5])为 1 和LCK_TM0(T0MD[7])为 0,EX_CKI可以当作定时器 0 外部时钟源。如果寄存器T1CS(T1CR2[5])为 1,EX_CKI可以当作定时器 1 外部时钟源。

如果寄存器PWM1OEN(T1CR1[7])为 1 并使能配置字节,PB2 也可以当作脉冲宽度调制PWM1 输出。若寄存器BZ1EN(BZ1CR[7])为 1 并使能配置字节,PB2 也可以当作蜂鸣器 1 输出。

3.5.1 IO 引脚结构框图

IO_SEL:设定引脚为输入或输出口。

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。

PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

EIS: 开启外部中断功能。

INTEDGE: 选择外部中断触发沿。

EX_INT:外部中断信号。

WUB: 开启PB0唤醒功能。

SET_PBIF: Port B唤醒标志。

图 5 PB0 结构框图

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。

PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

IREN: 开启IR功能。

IRDT: IR数据。

WUB: 开启Port B唤醒功能。

SET_PBIF: Port B唤醒标志。

图 6 PB1 结构框图

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 开启内部上拉电阻。

PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

PBEN: 开启PMW/BUZZER功能。

PBDT: PMW/BUZZER数据。

WUB: 开启Port B唤醒功能。

SET_PBIF: Port B唤醒标志。

EX CKI: 定时器外部时钟输入。

图 7 PB2 结构框图

WRITE_EN:将数据写入引脚。

READ_EN: 读取引脚状态。

RSTPAD_EN: 开启外部复位引脚。

RSTB_IN: 复位引脚输入。

PULLDOWN_EN: 开启内部下拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

WUB:开启Port B唤醒功能。 SET_PBIF: Port B唤醒标志。

图 8 PB3 结构框图

WRITE_EN: 将资料写入引脚。

READ_EN: 读取引脚状态。

OD_EN: 开启开漏。

PULLUP_ENB: 使能上拉电阻。

RD_TYPE: 选择读取脚位或数据锁存器。

WUB: 开启Port B唤醒功能。

SET_PBIF: Port B唤醒标志。

图 9 PB4/PB5 结构框图

3.6 定时器 0

定时器 0 是 8 位上数定时器,由寄存器T0EN (PCON1[0])开启/关闭。写入定时器 0 将会设定其初始值;读取定时器 0 时则会显示目前的计数数值。

定时器 0 的时钟源可由寄存器TOCS (T0MD[5])与LCK_TM0 (T0MD[7])所决定,可以从指令时钟F_{INST}、外部时钟输入脚EX_CKI或内部低频震荡I_LRC中择一。当T0CS为 0,指令时钟会被选择当作定时器 0 时钟源。当T0CS为 1 且LCK_TM0 为 0,EX_CKI会被当作定时器 0 时钟源。当T0CS是 1 且LCK_TM0 为 1,会选择内部低频震荡I_LRC 当作定时器 0 时钟源。汇总成表格如下。(也请参考表 10)

定时器 0 时钟源	T0CS	LCKTM0	定时器 0 来源
Instruction clock	0	Х	X
EX CKI	1	0	X
EX_CKI		Х	0
I_LRC	1	1	1

表 10 定时器 0 时钟源摘要

寄存器T0CE(T0MD[4])可决定EX_CKI或I_LRC的时钟触发沿选择。当T0CE是 1,EX_CKI或I_LRC的下降沿将让定时器 0 计数加一。当T0CE是 0,EX_CKI或I_LRC的上升沿将让定时器 0 计数加一。

如果寄存器PS0WDT (T0MD[3])为 0,定时器 0 时钟源可以由预分频器 0 所分频,预分频器 0 会被指定到定时器 0,且会在PS0WDT设为 0 时清除Timer0 與寄存器PS0CV。寄存器PS0SEL[2:0] (T0MD[2:0])决定预分频器 0 的预分频比,其数值从 1:2 到 1:256。

定时器 0 时钟源默认为指令时钟。如果外部时钟脚EX_CKI或内部低频震荡I_LRC被用来当作定时器 0 时钟源,用户必须注意分频后的频率不能超过指令时钟,否则会导致错误计数。当I_LRC同时被当作定时器 0 时钟源与指令时钟,用户必须指定预分频器 0 到定时器 0,且须注意预分频器 0 的预分频比不得小于 4。当配置字节设定为异步(Async.),定时器 0 时外部钟源EX_CKI频率就可高于指令时钟。

当定时器 0 上溢,寄存器TOIF (INTF[0])将会设定为 1,以标明定时器 0 发生上溢中断。如果寄存器TOIE (INTE[0])与GIE都设定为 1,会发生中断的请求并执行中断服务程序。直到程序写入 0 到TOIF,TOIF才会被清除。

定时器 0 与WDT的结构框图如下图:

图 10 定时器 0 与WDT结构框图

3.7 定时器 1/PWM1/BZ1

定时器 1 是具有预分频器 1 的 8 位下数定时器,其预分频比是可编程的。定时器 1 的输出可以被用于产生PWM1输出与蜂鸣器 1 输出。写入TMR1时也会写入定时器 1 重载寄存器 (T1rld)与定时器 T1 计数器。读取寄存器 TMR1会显示定时器 1 目前计数数值的内容。

定时器 1 的结构框图如下图所示:

图 11 定时器 1 结构框图

定时器 1 的操作可以由寄存器T1EN (T1CR1[0])开启或关闭。开启定时器 1 后,寄存器T1CS (T1CR2[5])可决定时钟源是指令时钟F_{INST}或外部时钟EX_CKI。当T1CS为 0,指令时钟会被选择当做时钟源。当T1CS为 1,则是EX_CKI当做时钟源。当EX_CKI被选取,寄存器控制位T1CE (T1CR2[4])可决定EX_CKI的时钟触发沿。当T1CE是 1,EX_CKI的下降沿将让定时器 1 计数减一。当T1CE是 0,EX_CKI的上升沿将让定时器 1 计数减一。定时器 1 时钟

源可以由预分频器 1 所分频。寄存器/PS1EN (T1CR2[3])为 0,可开启预分频器 1。寄存器PS1SEL[2:0] (T1CR2[2:0]) 可以决定其预分频比从 1:2 到 1:256。预分频器 1 的目前数值可以由读取寄存器PS1CV取得。

定时器 1 提供两种计数模式:单次计数与连续计数。当寄存器T1OS (T1CR1[2])为 1,即为单次计数模式。定时器 1 从储存在寄存器TMR1 的初始值下数到 0x00,当下溢发生时,定时器 1 停止计数。当寄存器T1OS (T1CR1[2])为 0,即为连续计数模式。当下溢发生,寄存器T1RL (T1CR1[1])会决定计数的初始值。当T1RL为 1,定时器 1 从寄存器TMR1 重新载入数值作为初始值并继续下数。当T1RL为 0,定时器 1 以 0xFF作为初始值并继续下数。

当定时器 1 下溢,寄存器T1IF (INTF[3])会被设定为 1,标明定时器 1 发生下溢中断。如果寄存器T1IE (INTE[3])与GIE同时设定为 1,会发生中断请求且执行中断服务程序。直到程序写入 0 到T1IF,T1IF才会被清除。

定时器 1 时序图如下图所示:

图 12 定时器 1 时序图

当寄存器PWM1OEN (T1CR1[7])设定为 1 且使能配置字节,PB2 为PWM1 输出。当PWM1OEN为 1,PB2 会自动成为输出脚。PWM1 输出的有效状态是由寄存器PWM1OAL (T1CR1[6])决定。当PWM1OAL为 1,PWM1 為低电平有效输出;PWM1OAL为 0,PWM1 為高电平有效输出。

PWM1 的占空比与帧率皆可编程的。占空比是由寄存器PWM1DUTY决定。当PWM1DUTY为 0, PWM1 无法输出占空比。当PWM1DUTY为 0xFF, PWM1 将输出 255/256 的占空比(当PWM1OAL为 0)。帧率是由TMR1 初始值所决定。因此,PWM1DUTY数值必须小于或等于TMR1。PWM1 的结构框图如下:

图 13 PWM1 结构框图

当寄存器BZ1EN (BZ1CR1[7])设定成 1 且使能配置字节,PB2 为蜂鸣器 1 输出。当BZ1EN设定为 1,PB2 会自动成为输出脚。BZ1 的频率是由寄存器BZ1FSEL[3:0] (BZ1CR[3:0])决定,可以选择从定时器 1 输出或预分频器 1 输出。当BZ1FSEL[3]为 0,预分频器 1 输出被选择来产生BZ1 输出。当BZ1FSEL[3]为 1,定时器 1 输出被选来产生BZ1 输出。预分频比的范围是 1:2 到 1:256。蜂鸣器 1 结构框图如下所示:

图 14 蜂鸣器 1 结构框图

3.8 红外线载波(IR)

寄存器IREN (IRCR[0])被设定为 1 后,PB1 为红外线载波输出,而PB1 会自动成为输出脚。当IREN清零,PB1 将会成为一般I/O脚。

红外线载波频率是由寄存器IRF57K (IRCR[1])所选择。当IRF57K为 1, 红外线载波频率是 57KHz; 当IRF57K为 0, 频率是 38KHz。

红外线载波的极性会根据PB1 输出数据所影响。当寄存器IRCSEL (IRCR[2])为 1 且PB1 输出数据为 0,红外线载 波将由PB1 輸出。当寄存器IRCSEL (IRCR[2])为 0 且PB1 输出数据为 1,红外线载波将由PB1 輸出。红外线载波 的极性如下图所示:

图 15 红外线载波的极性 vs. PB1 数据

3.9 看门狗定时器 (WDT)

AT8A513D中有独立振荡器被WDT所使用。由于该振荡器与其它振荡电路无关,故在待机模式和睡眠模式中WDT 仍能继续工作。

WDT能被配置字节使能或禁止。当WDT被配置字节使能时,仍然可以通过寄存器WDTEN (PCON[7])位来开启/关闭。此外,WDT上溢后可由配置字节决定的复位AT8A513D或发出的中断请求。同时,在WDT上溢后,寄存器/TO (STATUS[4])位将被清除为 0。

WDT上溢的时基由配置字节决定,可以是 3.5 毫秒、15 毫秒、60 毫秒或 250 毫秒。如果将预分频器 0 分配给WDT,则可以延长上溢周期。通过将 1 写入寄存器PS0WDT位,预分频器 0 将分配给WDT。预分频器 0 对WDT的分频比由寄存器PS0SEL [2: 0]位决定。如果WDT上溢将复位AT8A513D,分频速率从 1: 1 到 1: 128。如果选为WDT中断时,则分频速率从 1: 2 到 1: 256。

当预分频器 0 分配给WDT时,执行CLRWDT指令将清除WDT、预分频器 0。并设置/ TO标志位为 1。

如果用户选择WDT中断机制,在WDT上溢后,寄存器WDTIF (INTF [6])位将设置为 1。如果寄存器WDTIE (INTE [6])位和GIE位都设置为 1,则可能产生中断请求。直到程序将 0 写入WDTIF,WDTIF才会被清除为 0。

3.10 中断

AT8A513D提供二种中断:一种是软件中断,另一种是硬件中断。软件中断由执行指令INT来产生。硬件中断则有以下五种:

- Timer0 上溢中断。
- Timer1 下溢中断。
- WDT中断。
- PB输入状态改变中断。
- 外部中断输入。

GIE是总中断屏蔽位,必须为1才能开启硬件中断功能。GIE可以通过ENI指令设置1,通过DISI指令清除为0。

执行完指令INT后,无论GIE是置 1 还是清除为零,下一条指令都将从地址 0x001 读取。同时,GIE将由AT8A513D 自动清除为零,这将防止嵌套中断的发生。软件中断的中断服务程序最后一条指令必须是RETIE。执行此指令将设置GIE为 1 并返回中斷前程序执行序列。

当发生硬件中断时,中断标志寄存器INTF的相应位将被设置为 1。该位在程序将 0 写入该位之前不会清除为零。因此,用户可以通过轮呼寄存器INTF获得哪个硬件引起中断。需注意只有当中断使能寄存器INTE的相应位设置为 1 时,才能读取相应的中断标志。如果中断使能寄存器INTE的相应位设置为 1,GIE也为 1,将发生硬件中断,下一条指令将从 0x008 执行。同时,AT8A513D将自动清除寄存器GIE位为零。如果用户想要实现嵌套中断,可以使用ENI指令作为中断服务程序的第一条指令,将GIE设置为 1,并允许其他中断事件再次中断AT8A513D。指令RETIE必须是中断服务程序的最后一条指令,它将GIE设置为 1 并返回中斷前程序执行序列。

用户应注意ENI指令不能放在RETIE指令之前,因为中断服务程序中的ENI指令将开启嵌套中断,但RETIE指令可能会误清除中断标志。

3.10.1 Timer0 上溢中断

Timer0 上溢(从 0x00 到 0xFF)将设置寄存器T0IF位。如果T0IE和GIE设置为 1,则将处理此中断请求。

3.10.2 Timer1 下溢中断

Timer1 下溢(从 0xFF到 0x00)将设置寄存器T1IF位。如果T1IE和GIE设置为 1,则将处理此中断请求。

3.10.3 看门狗超时中断

当WDT上溢且配置字节选择WDT超时将产生中断请求时,它将设置寄存器WDTIF位。如果WDTIE和GIE设置为 1,则将处理此中断请求。

3.10.4 PB 输入状态改变中断

当PBx($0 \le x \le 5$)设置为输入口且相应的寄存器WUPBx位设置为 1 时,这些选定输入口上的状态变化将设置寄存器PBIF位为 1。如果PBIE和GIE设置为 1,则将处理此中断请求。需注意当PB0 同时设置为状态变化中断和外部中断时,设置EIS=1 将关闭PB0 状态变化中断。

3.10.5 外部中断输入

根据EIS=1 和INTEDG的配置,I/O引脚PB0 上的有效边沿将设置寄存器位INTIF为 1,如果INTIE和GIE设置为 1,则将处理此中断请求。

3.11 振荡器配置

因为AT8A513D是双时钟IC,有高振荡时钟(Fhosc)和低振动时钟(FLosc)可选择作为系统振荡时钟(Fosc)。可用作Fhosc的振荡器是内部高RC振荡器(I HRC)。可用作FLosc的振荡器是内部低RC振荡器(I LRC)。

- (1) STPHOSC(OSCCR[1])=1 will stop Fhosc
- (2) FHOSC will be disabled automatically at Halt mode

图 16 AT8A513D振荡配置结构图

I HRC系统时钟频率由配置字节决定,可以是 1M、2M、4M、8M、16M或 20MHz。

当选择I_LRC时,其频率约为 32768Hz。

根据寄存器SELHOSC (OSCCR [0])位的值,可以选择F_{HOSC}或F_{LOSC}作为系统振荡时钟F_{OSC}。当SELHOSC为 1 时,选择F_{HOSC}作为F_{OSC}。当SELHOSC为 0 时,选择F_{LOSC}作为F_{OSC}。一旦确定F_{OSC},根据配置字节設置,指令时钟可以选择为F_{OSC}/2 或F_{OSC}/4。

3.12 工作模式

AT8A513D提供了四种操作方式来定制各种应用和节省电力消耗,分别是正常模式、慢速模式、待机模式和睡眠模式。正常模式被指定为高速运行模式,慢速模式被指定为低速模式,以节省功耗。在待机模式下,AT8A513D将停止几乎所有的运作,可由定时器 0/1、看门狗与外部事件来唤醒。在睡眠模式下,AT8A513D将睡眠直到外部事件或看门狗定时器来唤醒。

四种工作模式如下图所示。

图 17 四种工作模式

3.12.1 正常模式

发生任何复位事件并且复位过程完成后,AT8A513D将在正常模式或慢速模式下开始执行程序。重置过程后选择的模式由启动时钟配置字节决定。如果启动时钟为I_HRC,AT8A513D将进入正常模式,如果启动时钟为I_LRC,AT8A513D将进入慢速模式。在正常模式下,为提供最高性能而以Fhosc作为系统振荡时钟,其功耗在四种操作模式中将是最大的。在上电或任何重置触发器被释放后,待复位程序完成AT8A513D将进入正常模式。

- 指令的执行是基于FHOSC目所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- FLosc仍运行。
- IC可由写 0 至寄存器SELHOSC (OSCCR[0])位切换为慢速模式。
- IC可通过寄存器OPMD[1:0] (OSCCR[3:2])位切换为待机或睡眠模式。
- 关于实时时钟的应用,AT8A513D在运行正常模式时可同时将低频振荡时钟设为Timer0 的时钟源,这是通过设置LCKTM0 为 1 和配置字节中Timer0 时钟源来实现。

3.12.2 慢速模式

通过写 0 至寄存器SELHOSC位,AT8A513D将进入慢速模式。在低速模式下,为节省功耗,FLosc被选为系统振荡时钟。然而,FHOSC将不会自动被AT8A513D关闭。因此在慢速模式下,用户可写 0 至寄存器STPHOSC (OSCCR[1])位来停止FHOSC进一步降低功耗。但需注意的是,禁止进入慢速模式同时停止FHOSC,必须先进入慢速模式,然后关闭FHOSC。

- 指令执行是基于FLosc目所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- 通过写 1 至寄存器STPHOSC位,Fhosc可以被停止。
- IC可通过寄存器OPMD[1: 0]位切换为待机模式或睡眠模式。
- IC可通过写 1 至寄存器SELHOSC切换到正常模式。

3.12.3 待机模式

通过写入 10b至寄存器OPMD[1:0],AT8A513D将进入待机模式。然而,在待机模式下,Fhosc不会自动被AT8A513D关闭,用户必须进入先低速模式後写入 1 至寄存器STPHOSC位,以停止F_{HOSC}。部分AT8A513D的硬件功能会被关闭,如T0EN/T1EN位被设置为 1 则定时器仍可运作。因此Timer0/Timer1 溢出后AT8A513D会被唤醒。

- 停止执行指令且一些硬件功能可以根据相应的硬件使能位来开启/关闭。
- 由写入 1 至寄存器STPHOSC位Fhosc可以被关闭。
- FLosc仍保持运作。
- 如遇以下任一状况IC便能从待机模式唤醒: (a)Timer0 上溢中断/Timer1 下溢中断 (b)看门狗超时中断 (c)PB输入状态改变中断 (d)外部中断INT。
- 在从待机模式唤醒后,如SELHOSC=1,IC将回到正常模式,如SELHOSC=0则IC将回到慢速模式。
- 不建议在同一时间进入待机模式並改变振荡模式(正常到慢速/慢速到正常)。

3.12.4 睡眠模式

通过执行SLEEP指令或写入 01b至寄存器OPMD[1:0]位,AT8A513D将进入睡眠模式。在进入睡眠模式后,寄存器/PD (STATUS[3])位将清除为 0,寄存器/TO (STATUS[4])位将设置为 1 且清除WDT并保持运作。

在睡眠模式下,所有硬件功能是被关闭的,停止指令执行且AT8A513D只能通过一些特殊事件唤醒。因此,睡眠模式是AT8A513D最省电的模式。

- 指令执行停止,所有硬件功能关闭。
- FHOSC和FLOSC两者都自动关闭。
- 如遇以下任一状况IC便能从睡眠模式中唤醒: (a)看门狗超时中断(b)PB输入状态改变中断(c)发生INT外部中断。
- 从睡眠模式唤醒后,如SELHOSC=1,IC将回到正常模式,如SELHOSC=0则IC将回到慢速模式。 *注意: 您可以在同一指令中更改STPHOSC并进入睡眠模式。*
- 不建议改变振荡模式(正常到慢速/慢速到正常),并在同一时间进入待机模式。

3.12.5 唤醒稳定时间

睡眠模式的唤醒等待时间为 **16*Fosc**,由于待机模式下Fhosc或FLosc仍在运行,因此无需为待机模式唤醒稳定时间。

在AT8A513D进入待机模式或睡眠模式之前,用户可以执行指令ENI。在唤醒後,AT8A513D将跳转到地址 0x008,以便执行中断服务程序。如果在进入待机模式或睡眠模式之前执行DISI指令,则在唤醒后执行下一条 指令。

3.12.6 工作模式概述

四种工作模式概述如下:

模式	正常模式	慢速模式	待机模式	睡眠模式
Fhosc	使能	STPHOSC	STPHOSC	关闭
F _{LOSC}	使能	使能	使能	关闭
指令执行	执行	执行	停止	停止
计时器 0/1	T0EN / T1EN	T0EN / T1EN	T0EN / T1EN	关闭
WDT	配置和WDTEN	配置和WDTEN	配置和WDTEN	配置和WDTEN
其它硬件	硬件使能位	硬件使能位	硬件使能位	全部关闭
唤醒源	-		- Timer0 上溢 - Timer1 下溢 - WDT超时 - PB输入狀態改变 - 外部中断	- WDT超时 - PB输入狀態改变 - 外部中断

表 11 工作模式概述

3.13 复位

当以下任一复位事件发生时,AT8A513D将会进入复位状态并开始复位动作:

- 当VDD检测到上升沿时为上电复位。
- 当VDD电压低于预设的LVR电压时,为LVR复位。
- RSTb引脚为低电平。
- WDT超时复位。

此外,所有寄存器如果初始值未知时,寄存器将会被初始化为初始值或保持不变。状态位/TO和/PD可以根据复位事件来初始化。/TO和/PD的值及其相关的事件概述如下。

Event	/TO	/PD
POR, LVR	1	1
非睡眠模式时发生RSTb复位	不变	不变
睡眠模式时发生RSTb复位	1	1
非睡眠模式时发生WDT复位	0	1
睡眠模式时发生WDT复位	0	0
执行SLEEP指令	1	0
执行CLRWDT指令	1	1

表 12 /TO和/PD值和相关事件概述

复位事件发生后,AT8A513D将会开始复位进程。无论采用什么样的振荡器,它将等待一定的周期使振荡稳定。这个周期被称为上電复位时间,它由三位配置字节决定,这个时间可能是 140us, 4.5ms, 18ms, 72ms或 288 ms。振荡器稳定后,AT8A513D将等待 Fosc 的 16 个时钟周期 (OST, 振荡器启动时间)後完成复位。

图 18 芯片复位电路框图

如果VDD缓慢上升,建议使用RSTb复位功能,如下图。

- 建议R阻值不大于 40kΩ。
- ullet R1 值= 100Ω ~ 1kΩ时,将阻止過大电流,ESD或电气过载信号进入复位引脚。
- 二极管D 使电容C 能在VDD下电时快速放电

图 19 外部上电复位应用

4. 指令设置

AT8A513D为各种应用程序提供了55个强大的指令。

#b V	助记符		2 H H H	田和称	影響
指令	1	2	说明	周期数	标志
算术指令					
ANDAR	R	d	dest = ACC & R	1	Z
IORAR	R	d	dest = ACC R	1	Z
XORAR	R	d	dest = ACC ⊕ R	1	Z
ANDIA	i		ACC = ACC & i	1	Z
IORIA	i		ACC = ACC i	1	Z
XORIA	i		ACC = ACC ⊕ i	1	Z
RRR	R	d	Rotate right R	1	С
RLR	R	d	Rotate left R	1	С
BSR	R	bit	Set bit in R	1	-
BCR	R	bit	Clear bit in R	1	-
INCR	R	d	Increase R	1	Z
DECR	R	d	Decrease R	1	Z
COMR	R	d	dest = ~R	1	Z
条件指令					
BTRSC	R	bit	Test bit in R, skip if clear	1 or 2	/1
BTRSS	R	bit	Test bit in R, skip if set	1 or 2	-
INCRSZ	R	d	Increase R, skip if 0	1 or 2	-
DECRSZ	R	d	Decrease R, skip if 0	1 or 2	-
数据传送	指令				
MOVAR	R		Move ACC to R	1	-
MOVR	R	d	Move R	1	Z
MOVIA	i		Move immediate to ACC	1	ı
SWAPR	R	d	Swap halves R	1	-
IOST	F		Load ACC to F-page SFR	1	-
IOSTR	F		Move F-page SFR to ACC	1	_
SFUN	s		Load ACC to S-page SFR	1	-
SFUNR	s		Move S-page SFR to ACC	1	
T0MD			Load ACC to T0MD	1	-/
T0MDR			Move T0MD to ACC	1	1
TABLEA			Read ROM	2	-

46 V	助ü	己符	74 pp	田和米	以鄉村二十
指令	1	2	说明	问刑剱	影響标志
算术指令					
ADDAR	R	d	dest = R + ACC	1	Z, DC, C
SUBAR	R	d	dest = R + (~ACC)	1	Z, DC, C
ADCAR	R	d	dest = R + ACC + C	1	Z, DC, C
SBCAR	R	d	dest = R + (~ACC) + C	1	Z, DC, C
ADDIA	i		ACC = i + ACC	1	Z, DC, C
SUBIA	i		ACC = i + (~ACC)	1	Z, DC, C
ADCIA	i		ACC = i + ACC + C	1	Z, DC, C
SBCIA	i		ACC = i + (~ACC) + C	1	Z, DC, C
DAA			Decimal adjust for ACC	1	С
CMPAR	R		Compare R with ACC	1	Z, C
CLRA			Clear ACC	1	Z
CLRR			Clear R	1	Z
其它指令					
NOP			No operation	1	-
SLEEP			Go into Halt mode	1	/TO, /PD
CLRWDT			Clear Watch-Dog Timer	1	/TO, /PD
ENI			Enable interrupt	1	-
DISI			Disable interrupt	1	-
INT			Software Interrupt	3	-
RET			Return from subroutine	2	-
DETIE			Return from interrupt	0	
RETIE			and enable interrupt	2	-
DETIA			Return, place immediate	•	
RETIA			in ACC	2	-
CALLA			Call subroutine by ACC	2	-
GOTOA			unconditional branch by ACC	2	-
CALL	a	dr	Call subroutine	2	-
GОТО	a	dr	unconditional branch	2	-
LCALL	а	dr	Call subroutine	2	-
LGOTO	a	dr	unconditional branch	2	-
上					

表 13 指令设置

ACC: 累加器。

adr: 地址。

bit: R-page中 8 位寄存器的位地址。

C: 进位/借位。

C=1,加法指令有进位,减法指令无借位。

C=0,加法指令无进位,减法指令有借位。

d: 目标

若d="0",结果存入ACC。

若d="1",结果存入R寄存器。

DC: 半字节进位/借位标记。

dest: 目标。

F: F页面特殊功能寄存器, F值为 0x5~0xF。

i: 8 位立即数。

PC:程序计数器。

PCHBUF:程序计数器的高字节。

/PD: 睡眠标志位。

/PD=1,上電或CLRWDT指令执行后。

/PD=0, SLEEP指令执行后。

Prescaler: 预分频器。

R: R页面特殊功能寄存器, R值为 0x00~0x3F。

S: S页面特殊功能寄存器, S值为 0x0~0xF。

TOMD: TOMD寄存器。

TBHP: 表格指针高字节寄存器。

TBHD: 表格数据高字节寄存器。

/TO: 看门狗超时标志位。

/TO=1, 上電或执行 CLRWDT 或 SLEEP 指令后。

/TO=0,看门狗超时。

WDT: 看门狗计时器。

Z: 清零标志。

ADCAR	Add ACC and R with Carry	ADDAR	Add ACC and R
语法	ADCAR R, d	语法	ADDAR R, d
操作数	$0 \le R \le 63$ d = 0, 1	操作数	$0 \le R \le 63$ d = 0, 1
操作	$R + ACC + C \rightarrow dest$	操作	ACC + R → dest
状态影响	Z, DC, C	状态影响	Z, DC, C
说明	ACC和R带进位加法:若d="0",结 果存入ACC;若d="1",结果存入	说明	ACC和R加法: 若d="0", 结果存入 ACC; 若d="1", 结果存入"R"。
FI #0	"R"。	周期	1
周期 举例	ADCAR R, d	举例	ADDAR R, d 执行指令前:
	执行指令前: ACC=0x12, R=0x34, C=1, d=1。 执行指令后 R=0x47, ACC=0x12, C=0。		ACC=0x12, R=0x34,C=1, d=1。 执行指令后: R=0x46, ACC=0x12, C=0。

ADCIA	Add ACC and Immediate with Carry	ADDIA	Add ACC and Immediate
语法	ADCIA i	语法	ADDIA i
操作数	0 ≤ i < 255	操作数	0 ≤ i < 255
操作	$ACC + i + C \rightarrow ACC$	操作	$ACC + i \rightarrow ACC$
状态影响	Z, DC, C	状态影响	Z, DC, C
说明	ACC和 8 位立即数带进位加法,结果存入ACC。	说明	ACC和 8 位立即数加法,结果存入ACC。
周期	1	周期	1
举例	ADCIA i 执行指令前: ACC=0x12, i=0x34, C=1。 执行指令后: ACC=0x47, C=0。	举例	ADDIA i 执行指令前: ACC=0x12, i=0x34, C=1。 执行指令后: ACC=0x46, C=0。

ANDAR	AND ACC and R	BCR	Clear Bit in R
语法	ANDAR R, d	语法	BCR R, bit
操作数	$0 \le R \le 63$ d = 0, 1	操作数	$\begin{array}{l} 0 \leq R \leq 63 \\ 0 \leq \text{bit} \leq 7 \end{array}$
操作	ACC & R→dest	操作	$0 \rightarrow R[bit]$
状态影响	Z	状态影响	
说明	ACC和R做"AND"运算;若d="0",	说明	将R寄存器的bit位(0~7)清 0。
9 3 74	结果存入ACC;若d="1",结果存	周期	1
	入"R"。	举例	BCR R,B2
周期	1		执行指令前:
举例	ANDAR R, d		R=0x5A, B2=0x3。
	执行指令前:		执行指令后:
	ACC=0x5A, R=0xAF, d=1。		R=0x52。
	执行指令后:		
	R=0x0A, ACC=0x5A, Z=0.		

ANDIA	AND Immediate with ACC	BSR	Set Bit in R	
语法	ANDIA i	语法	BSR R, bit	_
操作数	0 ≤ i < 255	操作数	$0 \le R \le 63$	
操作	ACC & i→ACC		$0 \le \text{bit} \le 7$	
状态影响	Z	操作	1 → R[bit]	
		状态影响		
说明	ACC和 8 位立即数做"AND"运算。	说明	设置R寄存器的bit位為 1。	
周期	1	周期	1	
举例	ANDIA i	举例	BSR R,B2	
	执行指令前:		执行指令前:	
	ACC=0x5A, i=0xAF.		R=0x5A, B2=0x2。	
	执行指令后:		执行指令后:	
	ACC=0x0A, Z=0。		R=0x5E。	

BTRSC	Test Bit in R and Skip if Clear	CALL	Call Subroutine
语法	BTRSC R, bit	语法	CALL adr
操作数	$ 0 \le R \le 63 \\ 0 \le \text{bit} \le 7 $	操作数	0 ≤ adr < 255
操作	Skip next instruction, if R[bit] = 0	操作	PC + 1 → Top of Stack $\{PCHBUF, adr\} \rightarrow PC$
状态影响		状态影响	
说明	位判断指令,为"0"则跳过下一条指 令。	说明	子程序调用,首先将返回地址PC+1 压入栈顶。然后将 8 位立即地址载
周期	1 or 2(跳过) BTRSC R, B2		入 PC[7:0], 将 PCHBUF[1:0] 载 入 PC[9:8] 。
举例	指令 1	周期	2
	指令 2 执行指令前:	举例	CALL SUB 执行指令前:
	R=0x5A, B2=0x2。 执行指令后: 由于R[B2]=0,则指令 1 不执行, 程序直接从指令 2 开始执行。		PC=A0. Stack pointer=1。 执行指令后: PC=address of SUB, Stack[1]=A0+1, Stack pointer=2。

BTRSS	Test Bit in R and Skip if Set	CALLA	Call Subroutine
语法	BTRSS R, bit	语法	CALLA
操作数	$0 \le R \le 63$ $0 \le bit \le 7$	操作数	
操作	Skip next instruction, if R[bit] = 1	操作	PC + 1 \rightarrow Top of Stack {TBHP, ACC} \rightarrow PC
状态影响	-	状态影响	-
说明	位判断指令,为"1"则跳过下一条指 令。	说明	子程序调用。首先将返回地址PC+1 压入栈顶,然后将TBHP[1:0] 赋值
周期	1 or 2(跳过)		给 PC[9:8], 将 ACC 赋值给
举例	BTRSS R, B2 指令 2	周期	PC[7:0]。 2
	指令3	举例	CALLA
	执行指令前: R=0x5A, B2=0x3。 执行指令后: 由于R[B2]=1,则指令 2 不执行,		执行指令前 TBHP=0x02, ACC=0x34, PC=A0, Stack pointer=1。 执行指令后:
	直接从指令3开始执行。		PC=0x234, Stack[1]=A0+1, Stack pointer=2。

CLRA	Clear ACC	CLRWDT	Clear Watch-Dog Timer
语法	CLRA	语法	CLRWDT
操作数		操作数	
操作	$00h \rightarrow ACC$ $1 \rightarrow Z$	操作	00h → WDT, 00h → WDT预分频器(若开启)
状态影响	Z		$1 \rightarrow /TO$ $1 \rightarrow /PD$
说明	ACC清零,Z标志位置"1"。	状态影响	/TO, /PD
周期 举例	1 CLRA 执行指令前:	说明	清WDT计数器和预分频器;/TO和/PD标志位置"1"
	ACC=0x55, Z=0。	周期	1
	执行指令后: ACC=0x00, Z=1。	举例	CLRWDT 执行指令前: /TO=0 执行指令后: /TO=1

CLRR	Clear R	COMR	Complement R
语法	CLRR R	语法	COMR R, d
操作数	$0 \le R \le 63$	操作数	0 ≤ R ≤ 63
操作	$00h \rightarrow R$		d = 0, 1
	1 → Z	操作	~R → dest
状态影响	Z	状态影响	Z
说明	寄存器R清零,Z标志位置"1"。	说明	R寄存器取补,结果存入d;
周期	1	7574	d="0",结果存入ACC;
举例	CLRR R		d="1",结果存入R。
	执行指令前:	周期	1
	R=0x55, Z=0。 执行指令后 :	举例	COMR, d
	R=0x00, Z=1。		执行指令前:
	,		R=0xA6, d=1, Z=0。
			执行指令后:
			R=0x59, Z=0。

CMPAR	Compare ACC and R	DECR	Decrease R
语法	CMPAR R	语法	DECR R, d
操作数	$0 \le R \le 63$	操作数	$0 \le R \le 63$
操作	R - ACC → (No restore)		d = 0, 1
状态影响	Z, C	操作	R - 1 → dest
说明	ACC和R比较:执行R-ACC,不改	状态影响	Z
	变ACC和R的值,只改变Z和C标志	说明	R - 1,若d="0",结果存入ACC;
	位。		若d="1",结果存入R。
周期	1	周期	1
举例	CMPAR R	举例	DECR R, d
	执行指令前:	1 1/4	执行指令前:
	R=0x34, ACC=12, Z=0, C=0。		R=0x01, d=1, Z=0。
	执行指令后:		执行指令后:
	R=0x34, ACC=12, Z=0, C=1 _o		R=0x00, Z=1。

DAA	Convert ACC Data Format from Hexadecimal to Decimal	DECRSZ	Decrease R, Skip if 0
语法	DAA	语法	DECRSZ R, d
操作数	-	操作数	$0 \le R \le 63$
操作	$ACC(hex) \rightarrow ACC(dec)$		d = 0, 1
状态影响	С	操作	R - 1 \rightarrow dest,
说明	将累加器中的 16 进制数调整为十进		Skip if result = 0
	制数,该指令必须紧跟在加法指令	状态影响	-
	后。	说明	R 先- 1, 若d="0", 结果存入ACC; 若d="1", 结果存入R, 若结果为"0"
周期	1		则跳过下一条指令,改为执行NOP
举例	ADDAR R,d DAA		指令 ,因此结果为"0"时要执行两个 周期。
	执行指令前:	周期	1 or 2 (跳过)
	ACC=0x28, R=0x25, d=0。	举例	DECRSZ R, d
	执行指令后:		指令 2
	ACC=0x53, C=0。		指令3
			执行指令前:
			R=0x1, d=1, Z=0。
			执行指令后:
			R=0x0, Z=1,操作结果为 0,指令 2 被跳过。

DISI	Disable Interrupt Globally	GОТО	Unconditional Branch
语法	DISI	语法	GOTO adr
操作数		操作数	0 ≤ adr < 511
操作	Disable Interrupt, $0 \rightarrow GIE$	操作	{PCHBUF, adr} → PC
状态影响	-	状态影响	
说明	GIE设置为 0,关闭总中断。	说明	无条件短跳转指令,9位地址adr写入
周期	1		PC[8:0], PCHBUF[1] 写入PC[9]。
举例	DISI		
	执行指令前:		
	GIE=1。	周期	2
	执行指令后:	举例	GOTO Level
	GIE=0。	, , , ,	执行指令前:
			PC=A0。
			执行指令后:
			PC=address of Level。
			r U-address of Level.

ENI	Enable Interrupt Globally	GOTOA	Unconditional Branch
语法	ENI	语法	GOTOA
操作数		操作数	
操作	Enable Interrupt, 1 → GIE	操作	$\{TBHP, ACC\} \rightarrow PC$
状态影响		状态影响	
说明	GIE设置为 1,开启總中断。	说明	无条件跳转指令,ACC值寫入
周期	1		PC PC[7:0]; TBHP[1:0] 值寫入
举例	ENI		PC[9:8]。
1 1/4	执行指令前:	周期	2
	GIE=0。	举例	GOTOA
	执行指令后:		执行指令前:
	GIE=1。		PC=A0, TBHP=0x02, ACC=0x34.
			执行指令后:
			PC=0x234。

INCR	Increase R	INT	Software Interrupt
语法	INCR R, d	语法	INT
操作数	$0 \le R \le 63$ d = 0, 1	操作数	DC + 1 > Tan of Stock
操作	R + 1 → dest.	操作	PC + 1 → Top of Stack, 001h → PC
状态影响	Z	状态影响	
说明	R+ 1,若d="0",结果存入ACC; 若d="1",结果存入R。	说明	软 中 断 指 令 。 首 先 将 返 回 地 址 (PC+1)压入栈顶,然后将 001H的 地址装入PC[9:0]。
周期	1		• •
举例	INCR R, d	周期	3
	执行指令前: R=0xFF, d=1, Z=0。	举例	INT 执行指令前:
	执行指令后:		PC=address of INT code .
	R=0x00, Z=1。		执行指令后:
			PC=0x01。

INCRSZ	Increase R, Skip if 0	IORAR
语法	INCRSZ R, d	语法
操作数	$0 \le R \le 63$ d = 0, 1	操作数
操作	R + 1 \rightarrow dest, Skip if result = 0	操作 状态影响
状态影响		说明
说明	R先+ 1, 若d="0", 结果存入ACC; 若d="1", 结果存入R。若结果为"0"则跳过下一条指令(执行NOP指令)。	周期举例
周期 举例	1 or 2 (skip) INCRSZ R, d 指令 2 指令 3 执行指令前: R=0xFF, d=1, Z=0。 执行指令后: R=0x00, Z=1, 因结果为 0, 程序 跳过指令 2。	

IORAR	OR ACC with R
语法	IORAR R, d
操作数	$0 \le R \le 63$ d = 0, 1
操作	ACC R→dest
状态影响	Z
说明	ACC和R做"OR"运算,若d="0", 结果存入ACC; 若d="1",结果存入R。
周期	1
举例	IORAR R, d 执行指令前: R=0x50, ACC=0xAA, d=1, Z=0。 执行指令后: R=0xFA, ACC=0xAA, Z=0。

IORIA	OR Immediate with ACC	IOSTR	Move F-page SFR to ACC
语法	IORIA i	语法	IOSTR F
操作数	0 ≤ i < 255	操作数	$0 \le F \le 15$
操作	ACC i→ACC	操作	F-page SFR →ACC
状态影响	Z	状态影响	
说明	ACC和8位立即数做"OR"运算,	说明	将F-page特殊寄存器的数值给ACC。
	结果存入ACC	周期	1
周期	1	举例	IOSTR F
举例	IORIA i		执行指令前:
	执行指令前:		F=0x55, ACC=0xAA。 执行指令后:
	i=0x50, ACC=0xAA, Z=0。		F=0x55, ACC=0x55。
	执行指令后:		0.003,700
	ACC=0xFA, Z=0。		

IOST F
0 ≤ F≤ 15
ACC → F-page SFR
将ACC的值赋给F-page特殊寄存器。
1
IOST F 执行指令前: F=0x55, ACC=0xAA。 执行指令后: F=0xAA_ACC=0xAA

LCALL	Call Subroutine
语法	LCALL adr
操作数	$0 \le adr \le 1023$
操作	PC + 1 \rightarrow Top of Stack, adr \rightarrow PC[9:0]
状态影响	
说明	长调用子程序。首先将PC+1 压入栈顶,然后将 10 位立即数载入PC[9:0]。
周期	2
举例	LCALL SUB 执行指令前: PC=A0, Stack level=1。 执行指令后: PC=address of SUB, Stack[1]=
	A0+1, Stack pointer =2.

LGOTO	Unconditional Branch	MOVIA	Move Immediate to ACC
语法	LGOTO adr	语法	MOVIA i
操作数	$0 \le adr \le 1023$	操作数	0 ≤ i < 255
操作	adr → PC[9:0]	操作	$i \rightarrow ACC$
状态影响		状态影响	
说明	无条件长跳转,10位立即数寫入	说明 周期	8 位立即数赋值给ACC。 1
周期	PC[9:0]。 2	举例	MOVIA i 执行指令前:
举例	LGOTO Level 执行指令前: PC=A0。		i=0x55, ACC=0xAA。 执行指令后: ACC=0x55。
	执行指令后: PC=address of Level。		

MOVAR	Move ACC to R	MOVR	Move to ACC or R
语法	MOVAR R	语法	MOVR R, d
操作数	$0 \le R \le 63$	操作数	$0 \le R \le 63$
操作	ACC→R	₩. <i>U</i> .	d = 0, 1 R → dest
状态影响		操作	R → uesi
*		状态影响	Z
说明	ACC赋值给R-page寄存器。	说明	R-page寄存器赋值给d,若d="0",
周期	1	DC -97	结果存入 ACC : 若 d="1" , 结果存入
举例	MOVAR R		寄存器R。指令执行后,通过状态标
年 四	执行指令前:		杆位Z检查R是否为 0。
	R=0x55, ACC=0xAA。	F-1 ###	们位上位且内定百万0。
		周期	1
	执行指令后:	举例	MOVR R, d
	R=0xAA, ACC=0xAA。		执行指令前:
			R=0x0, ACC=0xAA, Z=0, d=0。
			执行指令后:
			R=0x0, ACC=0x00, Z=1。
			N-0XU, ACC-0XUU, Z-10

NOP	No Operation	RETIA	Return with Data in ACC
语法	NOP	语法	RETIA i
操作数		操作数	0 ≤ i < 255
操作	No operation.	操作	i→ACC,
状态影响		pieti.	Top of Stack → PC
说明	空操作	状态影响	
周期	1	说明	带参数返回: 8 位立即数赋值给
举例			ACC,栈顶地址载入PC,GIE标志为0。
	NOP	周期	2
	执行指令前:	举例	RETIA i
	PC=A0。	1,72	执行指令前:
	执行指令后:		GIE=0, Stack pointer =2, i=0x55,
	PC=A0+1。		ACC=0xAA。
			执行指令后:
		A 0	GIE=0, PC=Stack[2], Stack pointer =1, ACC=0x55。

RETIE	Return from Interrupt and Enable Interrupt Globally	RET	Return from Subroutine
语法	RETIE	语法	RET
操作数	-	操作数	
操作	Top of Stack \rightarrow PC	操作	Top of Stack \rightarrow PC
状态影响	1 → GIE 	状态影响	-
说明	中断返回,栈顶地址载入PC同时使	说明	子程序返回,栈顶载入PC。
VT 197	作副返回,役员追查教入FG同时使 能中断。	周期	2 RET
周期	2	举例	执行指令前:
举例	RETIE		Stack level=2。
	执行指令前:		执行指令后:
	GIE=0, Stack level=2。 执行指令后:		PC=Stack[2], Stack level=1。
	GIE=1, PC=Stack[2], Stack level		

RLR Rotate Left R Through Carry		
语法	RLR R, d	
操作数	$0 \le R \le 63$ d = 0, 1	
操作	$C \rightarrow dest[0], R[7] \rightarrow C,$ $R[6:0] \rightarrow dest[7:1]$	
С	P	

b7 b6 b5 b4 b3 b2 b1 b0

状态影响	С
说明	带进位R循环左移: 若d="0", 结果存入ACC; 若d="1", 结果存入R。
	八ACC;右d= T,结果仔八R。
周期	1
举例	RLR R, d
	执行指令前:
	R=0xA5, d=1, C=0。
	执行指令后:
	R=0x4A, C=1。

RRR	Rotate Right R Through Carry		
语法	RRR R, d		
操作数	$0 \le R \le 63$ d = 0, 1		
操作	$C \rightarrow dest[7], R[7:1] \rightarrow dest[6:0], R[0] \rightarrow C$		

状态影响	С
说明	带进位R循环右移:若d="0",结果存入ACC;若d="1",结果存入R。
周期	1
举例	RRR R, d 执行指令前: R=0xA5, d=1, C=0。
	执行指令后:
	R=0x52, C=1。

SBCAR	Subtract ACC and Carry from R		
语法	SBCAR R, d		
操作数	$0 \le R \le 63$ d = 0, 1		
操作	$R + (\sim ACC) + C \rightarrow dest$		
状态影响	Z, DC, C		
说明	R和ACC带借位减法,若d="0",结果存入ACC;若d="1",结果存入R。		
周期	1		
举例	SBCAR R, d (a) 执行指令前: R=0x05, ACC=0x06, d=1, C=0。 执行指令后: R=0xFE, C=0。(-2) (b) 执行指令前: R=0x05, ACC=0x06, d=1, C=1。 执行指令后: R=0xFF, C=0。(-1) (c) 执行指令前:		
	(c) 执行指令前: R=0x06, ACC=0x05, d=1, C=0。 执行指令后: R=0x00, C=1。(-0), Z=1. (d) 执行指令前:		
	(d) 执行指令前: R=0x06,ACC=0x05,d=1, C=1。 执行指令后: R=0x1, C=1。(+1)		

SBCIA	Subtract ACC and Carry from Immediate	SFUNR	Move S-page SFR from ACC
语法	SBCIA i	语法	SFUNR S
操作数	0 ≤ i < 255	操作数	$0 \le S \le 15$
操作	i + (~ACC) + C → dest	操作	S-page SFR \rightarrow ACC
状态影响	Z, DC, C	状态影响	
说明	常数和ACC带借位减法,结果存入ACC。	说明 周期	读S-page特殊寄存器到ACC。 1
周期举例	SBCIA i (a) 执行指令前: i=0x05, ACC=0x06, C=0。 执行指令后: ACC=0xFE, C=0。(-2) (b) 执行指令前: i=0x05, ACC=0x06, C=1. 执行指令后: ACC=0xFF, C=0。(-1) (c) 执行指令前: i=0x06, ACC=0x05, C=0。 执行指令后: ACC=0x00, C=1。(-0), Z=1. (d) 执行指令前: i=0x06, ACC=0x05, C=1。 执行指令后: ACC=0x1, C=1。(+1)	举例	SFUNR S 执行指令前: S=0x55, ACC=0xAA。 执行指令后: S=0x55, ACC=0x55。

SFUN	Load S-page SFR from ACC	SLEEP	Enter Halt Mode
语法	SFUN S	语法	SLEEP
操作数	0 ≤ S ≤15	操作数	-
操作	ACC → S-page SFR	操作	00h → WDT, 00h → WDT prescaler
状态影响 说明	 ACC写到S-page特殊寄存器。		$ \begin{array}{c} 1 \to /TO \\ 0 \to /PD \end{array} $
周期	1	状态影响	/TO, /PD
举例	SFUN S 执行指令前:	说明	WDT和分频器0清零。/TO标志为0,/PD清零,IC进入睡眠。
	S=0x55, ACC=0xAA。 执行指令后:	周期	1
	S=0xAA, ACC=0xAA。	举例	SLEEP 执行指令前: /PD=1, /TO=0。 执行指令后:
			/PD=0, /TO=1。

57 Ver. 1.4 2018/08/17

SUBAR	Subtract ACC from R	SWAPR	Swap High/Low Nibble in R
语法	SUBAR R, d	语法	SWAPR R, d
操作数	$0 \le R \le 63$ d = 0, 1	操作数	$0 \le R \le 63$ d = 0, 1
操作	R – ACC → dest	操作	$R[3:0] \rightarrow dest[7:4].$
状态影响	Z, DC, C		$R[7:4] \rightarrow dest[3:0]$
说明	R 减去ACC,若d="0",结果存入	状态影响	
02 /1	ACC;	说明	寄存器半字节交换, 若d="0", 结果
	若d="1",结果存入R		存入ACC;若d="1",结果存入R。
周期	1	周期	1
举例	SBCAR R, d	举例	SWAPR R, d
	(a) 执行指令前:	午7月	执行指令前:
	R=0x05, ACC=0x06, d=1。		R=0xA5, d=1。
	执行指令后:		执行指令后:
	R=0xFF, C=0。 (-1)		R=0x5A。
	(b) 执行指令前:		
	R=0x06, ACC=0x05, d=1。		
	执行指令后:		
	R=0x01, C=1。(+1)		

SUBIA	Subtract ACC from Immediate	TABLEA	Read ROM data
语法	SUBIA i	语法	TABLEA
操作数	0 ≤ i < 255	操作数	
操作	$i-ACC \rightarrow ACC$	操作	ROM data{ TBHP, ACC } [7:0]
状态影响	Z, DC, C	J#1F	→ACC
说明	8 位立即数减ACC,结果存入ACC。		ROM data{TBHP, ACC} [13:8] → TBHD
周期 举例	1 SUBIA i (a) 执行指令前: i=0x05, ACC=0x06。 执行指令后: ACC=0xFF, C=0。(-1) (b) 执行指令前: i=0x06, ACC=0x05, d=1.	状态影响 说明 周期 举例	TBHP=0x02, CC=0x34。
	执行指令后: ACC=0x01, C=1。(+1)		TBHD=0x01。 ROM data[0x234]= 0x35AA。 执行指令后: TBHD=0x35, ACC=0xAA。

Load ACC to T0MD	XORAR	Exclusive-OR ACC with R
TOMD	语法	XORAR R, d
-	操作数	$0 \le R \le 63$
ACC→ T0MD 	操作	d = 0, 1 ACC ⊕ R → dest
ACC写入T0MD寄存器		Z
1	说明	ACC和R做 "XOR" 运算, 若d="0", 结果存入ACC, 若d="1", 结果存入
TOMD		R _°
	周期	1
T0MD=0x55, ACC=0xAA。 执行指令后: T0MD=0xAA。	举例	XORAR R, d 执行指令前: R=0xA5, ACC=0xF0, d=1。 执行指令后: R=0x55。
	ACC → T0MD ACC写入T0MD寄存器 1 T0MD 执行指令前: T0MD=0x55, ACC=0xAA。 执行指令后:	操作数 ACC → T0MD 操作 ACC写入T0MD寄存器 1 T0MD 执行指令前: 周期 T0MD=0x55, ACC=0xAA。 执行指令后:

T0MDR	Move T0MD to ACC	XORIA	Exclusive-OR Immediate with ACC
语法	T0MDR	语法	XORIA i
操作数		操作数	0 ≤ i < 255
操作	$TOMD \rightarrow ACC$	操作	$ACC \oplus i \rightarrow ACC$
状态影响	-	状态影响	Z
说明	读T0MD寄存器到ACC	说明	ACC和8位立即数做"XOR"运算。
周期	1	周期	1
举例	TOMDR 执行指令前: TOMD=0x55, ACC=0xAA。 执行指令后: ACC=0x55。	举例	XORIA i 执行指令前: i=0xA5, ACC=0xF0。 执行指令后: ACC=0x55。

5. 配置字节表

项目	名称	选项
1	内部高速 RC 频率	1. 1MHz 2. 2MHz 3. 4MHz 4. 8MHz 5. 16MHz 6. 20MHz
2	指令时钟	1. 2 个振荡周期 2. 4 个振荡周期
3	看门狗定时器	1. 看门狗开启(程序控制) 2. 看门狗关闭(永远关闭)
4	看门狗定时器事件	1. 看门狗复位 2. 看门狗中断
5	定时器 0 时钟源	1. EX_CKI 2. I_LRC
6	PB.2	1. PB.2 为 I/O 口 2. PB.2 输出 PWM 3. PB.2 输出 Buzzer
7	PB.3	1. PB.3 为 I/O 口 2. PB.3 为复位脚
8	PB.4	1. PB.4 为 I/O 口 2. PB.4 输出指令时钟
9	上电复位时间	1. 140us 2. 4.5ms 3. 18ms 4. 72ms 5. 288ms
10	看门狗定时器时基	1. 3.5ms 2. 15ms 3. 60ms 4. 250ms
11	LVR 开关设定	1. 寄存器控制 2. LVR 永远开启
12	LVR 电压	1. 1.6V 2. 1.8V 3. 2.0V 4. 2.2V 5. 2.4V 6. 2.7V 7. 3.0V 8. 3.3V 9. 3.6V 10. 4.2V
13	VDD 电压	1. 3.0V 2. 4.5V 3. 5.0V
14	读取输出口数据	1. I/O 口 2. 寄存器
15	EX_CKI to Inst. Clock	1. 同步 2. 不同步
16	上电时钟源	1. I_HRC 2. I_LRC
17	输入高电压	1. CMOS (0.7VDD) 2. TTL (0.5VDD)
18	输入低电压	1. CMOS (0.3VDD) 2. TTL (0.2VDD)

表 14 配置表

6. 电气特性

6.1 最大绝对值

符号	参数	额定值	单位
V _{DD} - V _{SS}	工作电压	-0.5 ~ +6.0	V
V _{IN}	输入电压	Vss-0.3V ~ V _{DD} +0.3	V
Top	工作温度	-40 ~ +85	°C
Tst	储存温度	-40 ~ +125	°C

6.2 直流电气特性

(All refer F_{INST}=F_{HOSC}/4, F_{HOSC}=16MHz@I_HRC, WDT enabled, ambient temperature T_A=25°C unless otherwise specified.)

符号	参数	V _{DD}	最小值	典型值	最大值	单位	条件
			3.0				F _{INST} =20MHz @ I_HRC/2
			2.2			İ	F _{INST} =20MHz @ I_HRC/4
			2.7				F _{INST} =16MHz @ I_HRC/2
V_{DD}	工作电压		2.0		5.5	V	F _{INST} =16MHz @ I_HRC/4
			2.0				F _{INST} =8MHz @ I_HRC/4 & I_HRC/2
			1.6				F _{INST} =4MHz @ I_HRC/4 & I_HRC/2
			1.6				F _{INST} =32KHz @ I_LRC/4 & I_LRC/2
		5V	4.0			<	RSTb (0.8V _{DD})
		3V	2.4			\ \	K31b (0.6Vbb)
V _{IH}	输入高电平	5V	3.5	1		\ \	所有I/O引脚,EX_CKI,INT
VIH	棚八同 电丁	3V	2.1	1		V	CMOS (0.7V _{DD})
		5V	2.5			\ \	所有I/O引脚,EX_CKI,INT
		3V	1.5			V	TTL (0.5V _{DD})
		5V			1.0	V	RSTb (0.2V _{DD})
	输入低电平	3V			0.6		1.015 (0.2455)
V _{IL}		5V			1.5	V	所有I/O引脚,EX_CKI,INT
VIL		3V			0.9		CMOS (0.3V _{DD})
		5V			1.0	V	所有I/O引脚,EX_CKI,INT
		3V			0.6	V	TTL (0.2V _{DD})
I _{OH}	输出驱动电流	5V		-20		mA	V _{OH} =4.0V
ЮП	110 日 2027 - 101	3V		-10	^	11,01	V _{OH} =2.0V
I _{OL}	输出灌电流	5V		40		mA	V _{OL} =1.0V
IOL	加山作飞机	3V		26		111/	VOL 1.0 V
I _{IR}	红外输出灌电流	5V		40		mA	V _{OL} =1.0V
'IK	红月相山雀飞机	3V		26		1117	VOL 1.0 V
		正常模式					常模式
	工作电流	5V	<u></u>	2.1		mA	F _{HOSC} =20MHz @ I HRC/2
I _{OP}		3V		1.1		111/1	I HUSC-201VII IZ (W I_I IIXO/Z
		5V		1.5		mA	F _{HOSC} =20MHz @ I HRC/4
		3V	-	0.7			1 HOSC-20101112 @ 1_111\O/4

符号	参数	V _{DD}	最小值	典型值	最大值	单位	条件	
		5V		1.8		m A	F _{HOSC} =16MHz @ I_HRC/2	
		3V		0.9		mA		
		5V		1.3		Л	F -46MU- @ LUDC/4	
		3V	A	0.6		mA	F _{HOSC} =16MHz @ I_HRC/4	
		5V	-	1.3		mA	F -9MH-@1 HDC/2	
		3V		0.6			F _{HOSC} =8MHz @ I_HRC/2	
		5V		1.0	1	mA	F _{HOSC} =8MHz @ I_HRC/4	
		3V		0.5	1	IIIA	PHOSC-ONINZ @ I_FINC/4	
		5V		1.0		mA	F _{HOSC} =4MHz @ I_HRC/2	
		3V		0.5		ША	I HOSC - 41VII IZ @ I_I II CIZ	
		5V		0.9		mA	F _{HOSC} =4MHz @ I_HRC/4	
		3V		0.4		ША	I HOSC 4 WILL W I I II I I I I I	
		5V		0.8		mA	F _{HOSC} =1MHz @ I_HRC/2	
		3V		0.3		шд	FHOSC-TIVINZ @ I_NRC/2	
		5V		0.8		mA	Fuere-1MHz @ L HPC//	
		3V		0.3	_		F _{HOSC} =1MHz @ I_HRC/4	
			慢速模式					
		5V		7.0		uA	F _{HOSC} 美闭, F _{LOSC} =32KHz @ I_LRC/2	
		3V		2.6				
		5V		4.8		uA	Fhosc 关闭,	
		3V		1.8		uA	F _{LOSC} =32KHz @ I_LRC/4	
I _{STB}	 特机电流	5V		2.7		uA	待机模式,Fhosc 关闭,	
iolb	13 ላ/ ቤተር ለ) [3V		1.0		ид	F _{LOSC} =32KHz @ I_LRC/4	
		5V			0.5	uA	睡眠模式,关闭WDT	
I I _{HALT}	睡眠电流	3V			0.2	u, (PERMISSO, MANAGE	
IMALI	H= HM (C1)	5V			5	uA	睡眠模式,开启WDT	
		3V			2	۵, ۲	PERMITS / / / / / I TO	
R _{PH}	上拉电阻	5V		50		kΩ	 上拉电阻	
INPH		3V		100		1,32		
R _{PL}	下拉电阻	5V		50		kΩ	下拉电阻	
INPL		3V		100		1,32	1 3-2- (1) [23]	

6.3 特性图

6.3.1 高速 RC 振荡频率与电源电压曲线图

6.3.2 高速 RC 振荡频率与温度曲线图

6.3.3 低速 RC 振荡频率与电源电压曲线图

6.3.4 低速 RC 振荡频率与温度曲线图

6.4 建议工作电压

建议工作电压温度范围: -40°C~+85°C

频率	最小电压	最大电压	LVR:默认值 (25°C)	LVR:建议值 (-40°C~+85°C)
20M/2T	3.0V	5.5V	3.3V	3.6V
16M/2T	2.7V	5.5V	3.0V	3.3V
20M/4T	2.2V	5.5V	2.4V	2.7V
16M/4T	2.0V	5.5V	2.2V	2.4V
8M (2T or 4T)	2.0V	5.5V	2.2V	2.4V
≦4M (2T or 4T)	1.6V	5.5V	1.8V	2.0V

6.5 LVR电压与温度曲线图

7. 芯片脚位坐标图

8. 封装尺寸

8.1 6 引脚SOT23-6 (63 毫寸)

8.2 8 引脚SOP (150 毫寸)

8.3 8 引脚DIP (300 毫寸)

	ı	NCHES	6	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
Α	0.355	0.365	0.400	9.02	9.27	10.16	
В	0.240	0.250	0.280	6.10	6.35	7.11	
С	s - s		0.210	-	2.52	5.33	
D	oc +o o	0.018			0.46		
F		0.060	(1 -)		1.52	-	
G	- 3	0.100	-		2.54	-	
Н	0.050	4	0.090	1.27	043	2.29	
J	0.008		0.015	0.20	(- ()	0.38	
K	0.115	0.130	0.150	2.92	3.30	3.81	
L	0.	300 BS	C.	7	.62 BS	D.	
М	-	7°	15°	- 7°		15°	

9. 订购信息

产品名称	封装类型	引脚数	封装尺寸	配送方式
AT8A513D	Die			
AT8A513DS6	SOT23-6	6	63 mil	<u>卷装</u> : 每卷 3.0K颗
AT8A513DS8	SOP	8	150 mil	<u>卷装</u> : 每卷 2.5K颗 <u>管装</u> : 每管 100 颗
AT8A513DP8	PDIP	8	300 mil	<u>管装</u> : 每管 50 颗