

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO								
Disciplina:				Cód	igo da Disciplina:			
Hidráulica e Pneumática				ECA410				
Course:				·!				
Instrumentation								
Materia:								
Instrumentación								
Periodicidade: Anual	Carga horária total:	80	Carga horária seman	al: 00	- 00 - 02			
Curso/Habilitação/Ênfase:	•		Série:	Período	:			
Engenharia de Controle e Automação			5 Noturno					
Engenharia de Controle e Automação			4	Diurno				
Engenharia de Controle e Autor	nação		4	Noturn	10			
Professor Responsável:		Titulação - Graduação		Pós-Graduação				
Alexandre Harayashiki Moreira		Engenheiro em Controle e Automação		Mestre				
Professores:		Titulação - Graduação		Pós-Graduação				
Alexandre Harayashiki Moreira		Engenheiro em Controle e Automação		Mestre				
MODALIDADE DE ENSINO								

Presencial: 100%

Mediada por tecnologia: 0%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Introdução à automação pneumática e hidráulica. Fundamentos físicos da pneumática e hidráulica. Mistura ar-vapor d¿água. Fluídos hidráulicos e suas propriedades. Componentes de circuitos pneumáticos e hidráulicos: válvulas, atuadores lineares e rotativos, bombas, compressores. Simbologia gráfica. Análise e projeto de circuitos pneumáticos e hidráulicos. Eletro-pneumática e eletro-hidráulica. Aulas práticas em bancadas didáticas.

SYLLABUS

Introduction to pneumatic and hydraulic automation. Physical Fundamentals of pneumatics and hydraulics. Mixing air-water vapor. Hydraulic fluids and their properties. Components of pneumatic and hydraulic circuits: valves, linear and rotary actuators, pumps, compressors. Graphic symbols. Analysis and design of pneumatic and hydraulic circuits. Electro-pneumatic and electro-hydraulic. Practical lessons in didactics benches.

2021-ECA410 página 1 de 8

TEMARIO

Introducción a la automatización neumática y hidráulica. Fundamentos físicos de la neumática y la hidráulica. Mezcla de aire-vapor de agua. Los fluidos hidráulicos y sus propiedades. Componentes de circuitos neumáticos y hidráulicos: válvulas, actuadores lineales y giratorios, bombas, compresores. Símbolos gráficos. Análisis y diseño de circuitos neumáticos y hidráulicos. Electro-neumática y electro-hidráulicos. Lecciones prácticas en bancos didácticos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Fenômenos de Transporte: transporte de calor e Mecânica dos Fluidos.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

II - analisar e compreender os fenômenos físicos e químicos por meio de modelos simbólicos, físicos e outros, verificados e validados por experimentação.III - conceber, projetar e analisar sistemas, produtos (bens e serviços), componentes ou processos.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

- c5) Sólida formação em sistemas hidráulicos e pneumáticos, em especial, para obter os seguintes conhecimentos:
- Elementos Finais de Controle;
- Controladores de sistemas realimentados;
- Outras estratégias de Controle;
- Importância da aplicação de sistemas hidráulicos e sistemas pneumáticos como solução para viabilizar projetos de equipamentos e dispositivos mecânicos;
- Leitura e interpretação de diagramas simbológicos de circuitos hidráulicos e pneumáticos;
- Aspectos construtivos dos componentes basicos de um sistema hidráulico e pneumático;
- Características principais de aplicação dos circuitos fundamentais de sistemas óleo hidráulicos e pneumáticos.

HABILIDADES:

- h1) Aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à engenharia na sua área de atuação;
- h2) Assumir a postura de permanente busca de atualização profissional;
- h3) Atuar em equipes multidisciplinares;
- h6) Avaliar criticamente a operação e manutenção de sistemas e processos na sua área de atuação;
- h8) Comunicar eficientemente nas formas oral e escrita, no padrão formal da língua portuguesa;

2021-ECA410 página 2 de 8

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas, com a participação ativa dos estudantes, acompanhadas de exercícios relacionados com os assuntos abordados na teoria e voltados às suas aplicações em situações práticas com vista à interdisciplinaridade.

Utilização de equipamentos de audiovisual, como por exemplo, projetor de slides, bem como a utilização de softwares existentes na IES, para simulação do comportamento dinâmico de equipamentos industriais típicos e respectivos sistemas de controle automático.

Utilização dos equipamentos existentes em laboratório para demonstração e/ou realização de práticas pertinentes a esta área de conhecimento.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

É cada vez mais frequente a necessidade de se automatizar os processos industriais com a finalidade de melhorar a qualidade dos produtos fabricados e/ou a produtividade dos processos envolvidos. Na indústria, em particular, a busca contínua de uma melhora no desempenho dos processos industriais leva obrigatoriamente à utilização de sistemas eletro-mecânicos para o acionamento e o controle de processos e/ou de automação da manufatura. Dentro deste cenário, a disciplina de Hidráulica e Pneumática contribui para integrar os conhecimentos adquiridos pelos alunos em outras disciplinas que compõem a grade curricular do curso na solução de problemas relacionados com a automatização de unidades industriais, desenvolvendo no aluno a capacidade de abordar de forma sistêmica o equipamento e/ou o processo em estudo. Adicionalmente esta disciplina apresenta ao aluno uma visão abrangente sobre os principais equipamentos utilizados industrialmente para o controle automático de processos industriais.

2021-ECA410 página 3 de 8

BIBLIOGRAFIA

Bibliografia Básica:

FESTO Didactic. Introdução à hidráulica. São Paulo, SP: Festo, 1995. 154 p.

FESTO Didactic. Introdução à pneumática: P111. São Paulo, SP: Festo, 1994. 93 p.

STEWART, Harry L. Pneumática e hidráulica. São Paulo, SP: Hemus, s.d. 481 p. ISBN 85-289-0108-4.

Bibliografia Complementar:

ASSOCIAÇÃO Brasileira de Hidráulica e Pneumática. Coletânea de artigos técnicos: hidráulica e pneumática. São Paulo, SP: ABHP, 1995. v. 1.

ASSOCIAÇÃO Brasileira de Hidráulica e Pneumática. Coletânea de artigos técnicos: hidráulica e pneumática. São Paulo, SP: ABHP, 1995. v. 2.

FESTO Didactic. Análise e montagem de sistemas pneumáticos (P121). São Paulo, SP: Festo, 1995. 142 p.

MANUAL prático de hidráulica e pneumática: conceitos, cálculos dimensionais, conversões de medidas, tabelas, símbolos gráficos. 2. ed. São Paulo, SP: Associação Brasileira de Hidráulica e Pneumática, 1993. 75 p.

RACINE Hidráulica; PALMIERI, Antonio Carlos. Manual de hidráulica básica. 9. ed. Porto Alegre, RS: Albarus, 1994. 326 p.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

FluidSim

Codesys

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A avaliação será realizada com base nos trabalhos realizados em laboratório e também apresentados ao longo dos períodos estipulados pelos professores.

A nota de trabalho pode ser baseada em uma média de trabalhos apresentados e/ou entregues no período corrente.

2021-ECA410 página 4 de 8

OUTRAS INFORMAÇÕES

2021-ECA410 página 5 de 8

APROVAÇÕES

2021-ECA410 página 6 de 8

	PROGRAMA DA DISCIPLINA		_	
Nº da	Conteúdo	EAA		
semana				
1 L	Dia não letivo.	0		
2 L	Apresentação do Curso, Introdução aos Circuitos Pneumáticos:	0		
	LeisBásicas da Pneumática e Simbologia Pneumática.			
3 L	Aspectos construtivos e de funcionamento dos componentes de um	41%	a	60%
	circuitopneumático.			
4 L	Aspectos construtivos e de funcionamento dos componentes de um	41%	а	60%
	circuitopneumático.			
5 L	Circuitos Pneumáticos: comandos.	41%	а	60%
6 L	Circuitos Pneumáticos: método intuitivo. Montagem na bancada da	41%	а	60%
	Festo.			
7 L	Exercícios com Aplicações de Circuitos Pneumáticos.	91%	а	
		100%		
8 L	Circuitos Pneumáticos: exercícios sobre o método intuitivo no	91%	а	
	programaFluidSim.	100%		
9 L	Semana de provas.	0		
10 L	Circuitos Pneumáticos: método cascata.	41%	a	60%
11 L	Circuitos Pneumáticos: exercícios utilizando o método cascata.	91%	a	
		100%		
12 L	Circuitos Pneumáticos: método passo a passo.	41%	а	60%
13 L	Exercícios com o método passo a passo.	91%	а	
		100%		
14 L	Projetos de circuitos pneumáticos.	91%	a	
		100%		
15 L	Projetos de circuitos pneumáticos.	91%	a	
		100%		
16 L	Avaliação com circuitos pneumáticos.	91%	a	
		100%		
17 L	Apresentação projeto de circuitos pneumáticos.	91%	а	
		100%		
18 L	Semana de provas.	0		
19 L	Semana de provas.	0		
20 L	Revisão de notas.	0		
21 L	Simbologia Hidráulica: Conceitos e Convenções. Simbologia	0		
	Aplicada aCircuitos Hidráulicos.			
22 L	Classificação dos Componentes Básicos de um Circuito Hidráulico.	0		
	Aspectos Construtivos dos Componentes de um Circuito Hidráulico.			
23 L	Especificação e dimensionamento de componentes hidráulicos.	41%	а	60%
24 L	Aplicações de Circuitos Hidráulicos. Exemplos e exercícios.	41%	a	60%
25 L	Projetos e Aplicações de um Circuito Hidráulico.	91%	a	
		100%		
26 L	Projetos e Aplicações de um Circuito Hidráulico.	91%	a	
		100%		
27 L	Projetos e Aplicações de um Circuito Hidráulico.	91%	a	
		100%		

2021-ECA410 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

28 L	Exercícios sobre circuitos hidráulicos.	91% a
		100%
29 L	Semana de provas.	0
30 L	Exercícios sobre circuitos hidráulicos.	91% a
		100%
31 L	Projeto de sistemas de automação.	91% a
		100%
32 L	Projeto de sistemas de automação.	91% a
		100%
33 L	Projeto de sistemas de automação.	91% a
		100%
34 L	Projeto de um sistema de automação aplicado à indústria.	91% a
		100%
35 L	Projeto de um sistema de automação aplicado à indústria.	91% a
		100%
36 L	Semana de provas.	0
37 L	Semana de provas.	0
38 L	Semana de provas.	0
39 L	Solução de exercícios de avaliação.	41% a 60%
40 L	Semana de provas.	0
41 L	Semana de provas.	0
Legend	a: T = Teoria, E = Exercício, L = Laboratório	

2021-ECA410 página 8 de 8