Тема: «Задача Коши для обыкновенных дифференциальных уравнений».

Упражнения:

1. Функция ошибок определяется обычно интегралом, но может быть определена как решение дифференциального уравнения $y'(x) = \frac{2}{\sqrt{\pi}}e^{-x^2}$, y(0) = 0.

Напишите программу, которая печатает значения функции ошибок erf(x) через это ДУ для значений x=0.0, 0.1, 0.2, ...,1.9, 2.0. Сравните эту таблицу с таблицей для значений функции ошибок, полученных в ЛР6 с помощью численных квадратур. Сравните время, необходимое этим двум методам для генерирования одной и той же таблицы значений.

2. Рассмотрим простую экосистему, состоящую из кроликов, для которых имеется неограниченный запас пищи и лис, которые для пропитания охотятся за кроликами. Классическая математическая модель описывает эту систему двумя нелинейными дифференциальными уравнениями первого

порядка: $\frac{dr}{dt} = 2r - \alpha r f$, $r(0) = r_0$

$$\frac{df}{dt} = -f + \alpha r f$$
, $f(0) = f_0$, где t – время, $r = r(t)$ – число кроликов,

f=f(t)— число лис и α —положительная константа. При $\alpha=0$ эти две популяции не взаимодействуют. Поэтому кролики неограниченно размножаются, а лисы вымирают от голода. При $\alpha>0$ лисы встречают кроликов с вероятностью пропорциональной числу тех и других. В результате таких встреч число кроликов убывает, а число лис растет.

- А) Исследуйте поведение этой системы при $\alpha = 0.01$ и для различных значений r_0, f_0 от 2 или 3 и до нескольких тысяч.
- 2) Вычислите решение для $r_0 = 15$, $f_0 = 22$. В конце концов вы должны получить, что число кроликов меньше единицы. Это можно интерпретировать так, что кролики вымирают. Найдите начальные условия, которые обрекают на вымирание лис. Найдите начальные условия с $r_0 = f_0$, при которых вымирают оба вида.