

Dr Joram M. Posma

Lecturer in Cancer Informatics

Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK

Rutherford Fellow
Health Data Research (HDR) UK, HDR-London, UK

On the (pre-lunch) menu for today

- Data analysis of metabolic profiling data
 - Data curation
 - Outlier detection
 - Variable selection
 - Predictive models
- Multivariate methods
 - Data reduction and unsupervised analysis
 - Principal Component Analysis (PCA)
 - Visualization
 - Validation strategies

By the end of this session, you will be better able to

- Describe some ways in which data reduction methods can be used to evaluate data quality
- Explain the basis behind Principal Component Analysis
- Choose between different types of scaling
- Distinguish between visualizing similarity of samples and similarity of variables
- Detail the difference between unsupervised and supervised analyses
- Discuss the concept of cross-validation

Motivation: classification (example)

Y-Axis

Visualizing:
2 axes is easy
3 axes still easy
4 axes getting more difficult

Hundred, thousand or more axes...can you visualize that?

Each circle is called an 'object' Has an X and a Y coordinate

Most probable being 'red'?

Class 1 or 'blue'

What multivariate data looks like: NMR and MS

What multivariate data looks like: data matrices

Variables (only 17...)

Objects (only 33

samples...)

Data reduction

Describing the original data (X) in another way

$$X = U\Sigma V^T = (U\Sigma)V^T = TP^T$$

- Goal: have less variables to do data analysis on
- Unsupervised analysis: do not assume any prior relationship between samples
 Supervised analysis: algorithm uses relationships between samples (e.g. classification)

- PCA is a data reduction method
- A new way of looking at the data
- (X,Y)-example (2 variables):

How would you classify the yellow object?

Let's make use of the two coordinates and use them together...

PCA is not classification

Interest:

Spread of the data

Unsupervised analysis Example data (n = 100, p = 3)

5 5 30 53 90 47 78 94 23

Principal Component Analysis (PC 1)

Principal Component Analysis (PC 2)

Principal Component Analysis (PC 3)

Centering and scaling

- Subtract average of each variable
- Mean of 0
 - PCA finds direction of most variance

- The maths behind
 PCA assume the
 variables to be
 centered around
 0
- Variance is spread around mean
- Mean-centering

- Difference in variance of variables
- Higher variance: more interesting for PCA

Centering and scaling

- Divide each meancentered variable by standard deviation
- Variance of 1

- Making all variances equal
- Every variable has potential to be important as others
- 'Unit variance'
- Combined with mean-centering = auto-scaling

- Difference in variance of variables
- Higher variance: more interesting for PCA

- Step 1: mean-center the data
- (Optional step 1b: scale the data)

Y-Axis

- Step 2: find direction with most variance (principal component 1)
- Step 3: find next direction with most (remaining) variance (orthogonal to PC1)
- (Potential steps 4-n): find next direction with most variance remaining (orthogonal to PC1, PC2, ...)

- PCs are 'new' variables
- Linear combinations of original variables = 'latent' variables
- Use PCs to define new axes (turn the data space)
- Same interpretation

Do we need all axes in this classification example?

• Need less variables than before:

Data reduction

Data reduction

Describing the original data (X) in another way

$$oldsymbol{X} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T = oldsymbol{T} oldsymbol{P}^T$$
 Score plot

- Score plot: similarity of samples
- Scores: T (3 components)
- Variance explained:
 - PC1: 68.36%
 - PC2: 28.35%
 - PC3: 3.29%

Data reduction

Describing the original data (X) in another way

$$X = U\Sigma V^T = (U\Sigma)V^T = TP^T$$

- Loading plot: similarity of variables
- Loadings: P (3 components)
- Variance explained:
 - PC1: 68.36%
 - PC2: 28.35%
 - PC3: 3.29%

Loading plot

Loading plot (2D)

PC1+PC2 combined variance: 96.71%

Biplot (combining scores and loadings)

How many and which variables do we need?

- PC1+PC2 combined variance: 96.71%
- Most of the data explained by 2 latent variables
- We had 3 variables, now just 2: data reduction
- Same extends to 1,000s of variables: PCs combine these into less variables

Scaling

Scaling

Scaling

- Mean-centering: variables with high variance will dominate the model
- Auto-scaling: all variables are equally important (including noise variables)
- Pareto-scaling: intermediate between the above two (divide by square root of standard deviation)
- Other types exist:
 - Range scaling (divide by difference of highest and lowest value of each variable)
 - Log scaling (take the log of all values, be aware of values <1 and especially <0...)

Spotting outliers (faecal water NMR data) PCA pairs plot

Spotting outliers

- Hotelling's T² statistic
- Scores plot with two components: an ellipse

Scores plot with 3 or more components: a (multidimensional)

ellipsoid

Anything outside ellipse:

Potential outlier

Unsupervised vs supervised

- PCA is unsupervised (a model that projects)
- But PCs can be used for supervised analysis

- For supervised analysis we use the class (outcome, Y) information as well
 - Principal Component Regression (PCR) and Principal Component Discriminant Analysis (PCDA) are models that try to predict

Supervised analysis Example data (n = 100, p = 3)

Multiple Linear Regression (MLR) Principal Component Regression (PCR)

Derivation 1 Multiple Linear Regression

Derivation 2 Principal Component Regression

INPUT
$$T, P, Y$$

CONDITIONS rank $T = \text{rank } P = c \le n - 1$
 $Y = TP^T\beta + \epsilon$
 $P^T\beta = (T^TT)^{-1}T^TY$
 $\beta = P(T^TT)^{-1}T^TY$
 $\beta = V((U\Sigma)^T(U\Sigma))^{-1}(U\Sigma)^TY$
 $\beta = V(\Sigma U^TU\Sigma)^{-1}(U\Sigma)^TY = V(\Sigma I\Sigma)^{-1}(U\Sigma)^TY$
 $\beta = V\Sigma^{-2}\Sigma U^TY = V\Sigma^{-1}U^TY$
OUTPUT β

$$X = U\Sigma V^T = (U\Sigma)V^T = TP^T$$

The problem with Multiple Linear Regression (Ordinary Least Squares)

$$\beta = (X^T X)^{-1} X^T Y$$
Only possible
for n > p

The problem with Multiple Linear Regression

Suppose we have X with n > p

Transpose of this matrix looks like

• And
$$X^T \times X =$$

$$=$$
 X^TX

No problem:

smaller sized matrix than before (lower dimension), we can calculate this!

The problem with Multiple Linear Regression

Suppose we have X with n (like MS and NMR data...)

• Transpose of this matrix looks like

• And
$$X^T \times X = \begin{bmatrix} X \\ X \end{bmatrix}$$

Problem!

Bigger sized matrix than before, we can not calculate this!
Too much uncertainty, bigger dimension: *singular matrix*

Multiple Linear Regression and Principal Component Regression

Derivation 1 Multiple Linear Regression

INPUT
$$X, Y$$

 $Y = X\beta + \epsilon$
 $e = Y - X\beta$
 $e^{T}e = (Y - X\beta)^{T}(Y - X\beta)$
 $e^{T}e = Y^{T}Y - \beta^{T}X^{T}Y - \beta XY^{T} + \beta^{T}X^{T}X\beta$
 $e^{T}e = Y^{T}Y - 2\beta^{T}X^{T}Y + \beta^{T}X^{T}X\beta$
 $\frac{d(e^{T}e)}{d\beta} = -2X^{T}Y + 2X^{T}X\beta = 0$
 $2X^{T}X\beta = 2X^{T}Y \longrightarrow X^{T}X\beta = X^{T}Y$
 $\beta = (X^{T}X)^{-1}X^{T}Y$
OUTPUT β

Derivation 2 Principal Component Regression

INPUT
$$T, P, Y$$

CONDITIONS rank $T = \text{rank } P = c \le n - 1$
 $Y = TP^T\beta + \epsilon$
 $P^T\beta = (T^TT)^{-1}T^TY$
 $\beta = P(T^TT)^{-1}T^TY$
 $\beta = V((U\Sigma)^T(U\Sigma))^{-1}(U\Sigma)^TY$
 $\beta = V(\Sigma U^TU\Sigma)^{-1}(U\Sigma)^TY = V(\Sigma I\Sigma)^{-1}(U\Sigma)^TY$
 $\beta = V\Sigma^{-2}\Sigma U^TY = V\Sigma^{-1}U^TY$
OUTPUT β

$$X = U\Sigma V^{T} = (U\Sigma)V^{T} = TP^{T}$$

Principal Component Regression

Principal Component Regression

Comparing the two methods

- MLR uses all 3 variables
 - 100% variance explained

Goodness of fit: 0.79 (0.7897 exact)

$$R^{2}_{Y} = 1 - \frac{\sum_{i=1}^{n} (\hat{\boldsymbol{Y}}_{i} - \boldsymbol{Y}_{i})^{2}}{\sum_{i=1}^{n} (\boldsymbol{Y}_{i} - \overline{\boldsymbol{y}})^{2}}$$

- PCR uses 1, 2 or 3 components
 - PC1 only: 68.36%
 - PC1 and 2: 96.71%
 - All 3 PCs: 100% of variance
- Goodness of fit:
 - PC1 only: 0.02 (bad model)
 - PC1 and 2: 0.79 (0.7876 exact)
 - All 3 PCs: 0.79 (0.7897 exact)

Validation

- Goodness of fit is self-fulfilling prophecy
- The model is fit to the data, so that data will always be predicted (\widehat{Y}) as good as it can be: it is trained this way

$$R^{2}_{Y} = 1 - \frac{\sum_{i=1}^{n} (\hat{\boldsymbol{Y}}_{i} - \boldsymbol{Y}_{i})^{2}}{\sum_{i=1}^{n} (\boldsymbol{Y}_{i} - \overline{\boldsymbol{y}})^{2}}$$

- How well can it predict 'in the real world'?
- Require independent data set to be predicted (\widehat{Y}^*) as test
- Evaluate goodness of prediction (Q²_Y)

Option 1: completely independent data set

- Data acquired using same technology as training data
- Data curated in the same way as training data
- Data processed in the same way as training data
- Data from similar population sample as target population
- Data cannot be the training data
- Pros: completely independent, best option
- Cons: studies often not designed with this in mind, expensive, do not always know how many samples are needed, difficult to obtain otherwise

Option 2: split available data in two (hold out)

- All data is acquired in the same way
- A proportion of data is set aside (randomly) = test set
- Remainder is training set
- Model evaluated as before using this test set

- Pros: independent, same experimental design
- Cons: are enough samples left in training set, how random is the random split

Option 3: leave-one-out cross-validation

- All data is acquired in the same way
- One sample is the test set ('leave one (sample) out' of training set)
- Remainder is training set
- Model evaluated as before using this test set
- Pros: unbiased, same experimental design, big(ger) training set, good for small datasets, no random split
- Cons: training sets are related (overlap), predictions have high variability, for large datasets not very computationally efficient

Option 4: k-fold cross-validation

- Same as option 2, except the splitting is repeated
- All data is split randomly in k ways (e.g. k = 7)
- This creates 7 partitions, each is test set once
- Each partition is part of 6 training models
- Total of 7 models

- Pros: same experimental design, all samples are used in training and test sets, not relying on one model/split
- Cons: need to combine 7 models, how random is the random split

Option 5: do cross-validation many times

- Choose a number of times to run a model (say 100 or 1,000)
- Each time split the data randomly into training and test set
- Q²_Y is evaluated across the test sets, samples are predicted in multiple models
- Monte Carlo cross-validation

- Pros: same as option 4, the more models means the less we need to worry about how random the random split is
- Cons: takes more time to calculate

Evaluating how good a model is

- High R²_Y is not everything
- High Q²_Y is more important
- How high is high?
- The closer Q_{γ}^2 is to R_{γ}^2 the better
- High R^2_{γ} and low Q^2_{γ} ? Overfitting (too much like training, not general enough)
- Low R²_y and low Q²_y? Underfitting (have not captured the data structure)
- One strategy to decide on a cut-off: randomly scramble your outcome (again: many times) and calculate the models in the same way
- How many times are the random models better than the actual model? Lower is better (empirical P-value)

How many components do we need?

 If data is 'wide' (n samples and p variables, with n<p), there are a maximum of 'n' PCs we can calculate (that are orthogonal)

- No need for all n PCs
- Two simple (and one tricky) approaches:
- Keep PCs that explain 80, 90 or 95% of the total variance (arbitrary)
- Elbow plot of variance explained
- Leave-one-out cross-validation and calculate the reconstruction error of the left out sample

Selecting number of components

- Reconstruction of each sample
- Calculate PCA on all data except one (training = X, test = x): X=TP^T
- Calculate score: t=x^TP
- Calculate projected data: tP^T
 = x^TPP^T
- Error = $x x^T P P^T$
- Do this for all samples, for different numbers of components
- Pro: pick the number of PCs with lowest error
- Con: takes a long time...

Summary

- Unsupervised: make no assumptions about groupings
- Visualize data: score plots, loading plots and biplots
- Data reduction: select number of PCs to use
- Outlier detection: Hotelling's T² on reduced data
- Scaling changes the data:
 - mean-centering variables with high variance most important in first few PCs
 - auto-scaling all variables equally important (including noise)
- Great way to inspect your data before doing further analyses

