

دانشكدهي مهندسي كامپيوتر

آمار و احتمال مهندسي

تمرین سری چهارم

مهلت: ۹ دی ساعت ۲۳:۵۵

مدرس: دکتر مطهری

سوال ۱

توزیع p(heta|lpha, au) را که p(heta|lpha, au) ، به صورت زیر تعریف می کنیم:

 $p(\theta|\alpha,\tau) \sim \begin{cases} \theta^{-(\alpha+1)}, & \theta \geq \tau \\ \circ, & \text{otherwise} \end{cases}$

الف

مقدار ضریب نرمال σ این توزیع را بر حسب α و au بیابید.

Ľ

توزیعی مانند ($q(x|\theta)$ بیابید که توزیع q برای q ، توزیع conjugate باشد، یعنی:

$$p(\theta|\alpha',\tau') = Prob(\theta|x) \sim q(x|\theta)p(\theta|\alpha,\beta)$$

سوال ۲

فرض کنید $X_i \sim Unif(\circ, \theta)$ متغیرهای تصادفی با توزیع X_1, X_7, \dots, X_n باشند.

الف

تخمین گر درستنمایی بیشینه $\hat{\theta}_{ML}$ ، تخمین گر

ب

فرض کنید $\hat{ heta}_{UB}=lpha\hat{ heta}_{UB}$ ، مقدار lpha چقدر باشد تا تخمین گر

¹Maximum Likelihood Estimator

[†]Unbiased

 $\hat{\theta}_{UB}$ واریانس تخمین گر $\hat{\theta}_{UB}$ و کران کرامر –راو $^{"}$ را حساب کنید. بعد از محاسبه، می بینید که واریانس کمتر از کران کرامر –راو است. علت این مسئله چیست؟

سوال ۳

فرض کنید X_1, X_7, \dots, X_n متغیرهای تصادفی با توزیع X_1, X_7, \dots, X_n باشند. اگر از روش گشتاورها † برای تخمین λ استفاده کنیم، تخمین گرهای $\hat{\lambda}_1$ و $\hat{\lambda}_2$ که به ترتیب تخمین گر با استفاده از برابری با گشتاور اول و تخمینگر با استفاده از برابری با گشتاور دوم هستند را به دست آورید.

سوال ۴

دادههای $X_i \underset{i.i.d}{\sim} \mathcal{N}(\circ, \sigma^\intercal)$ دادههای $(X_1, Y_1), (X_7, Y_7), \dots, (X_n, Y_n)$ دادههای بین $X_i \underset{i.i.d}{\sim} \mathcal{N}(\circ, \sigma^\intercal)$ به صورت زیر مدل می شود:

$$Y_i = (w_1 X_i + w_\circ) + Z_i$$

در فرمول بالا $(\circ,1)$ $\sim Z_j \sim Z_j$ هستند. همچنین تمامی X_i ها و Z_j ها از یکدیگر مستقل هستند. به صورتی دیگر، می توانیم بگوییم که رابطه ی X و Y خطی است و Z مانند یک نویز گاوسی است که در هنگام نمونه گیری اضافه می شود. تخمین گر کمترین مربعات را به صورت زیر تعریف می کنیم:

$$\hat{w}_{LMS} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (Y_i - (w_1 X_i + w_\circ))^{\mathsf{T}}$$

الف

ثابت کنید که $\hat{w}_{LMS}=\hat{w}_{ML}$ که در اینجا \hat{w}_{ML} نشاندهنده تخمین گر درستنمایی بیشینه است (راهنمایی: توزیع $P(Y|X,w_\circ,w_1)$ را بنویسید).

ب اگر

$$\hat{w}_{RLMS} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (Y_i - (w_1 * x_i + w_\circ))^{\mathsf{T}} + \frac{\lambda}{n} \|w\|_{\mathsf{T}}^{\mathsf{T}}$$

در این صورت به ازای چه مقداری از \hat{w}_{MAP} ، \hat{w}_{MAP} است که \hat{w}_{MAP} نشاندهنده ی تخمین گر احتمال پسین بیشینه \hat{v}_{MAP} به ازای توزیع پیشین \hat{v}_{MAP} ، \hat{v}_{MAP} ، \hat{v}_{MAP} ، \hat{v}_{MAP} بنویسید). (راهنمایی: توزیع \hat{v}_{MAP} ، \hat{v}_{MAP} را بر حسب \hat{v}_{MAP} ، \hat{v}_{MAP} و \hat{v}_{MAP} ، \hat{v}_{MAP} بنویسید).

 $^{^{\}tau}\mathrm{Cram\acute{e}r}\mathrm{-Rao}$

^{*}Method of moments

^aMaximum A Posteriori Estimator

⁹Prior Distribution

سوال ۵

فرض کنید X_1, X_1, \dots, X_n متغیرهای تصادفی با توزیع X_1, X_1, \dots, X_n باشند و توزیع پیشین پارامتر σ^{T} برابر σ^{T} است (ویژگیهای توضیح معکوس-گاما را می توانید در صفحه ویکیپدیا σ^{T} آن بخوانید).

الف)

توزیع پسین $P(\sigma^{\mathsf{T}}|X_{\mathsf{1}},X_{\mathsf{T}},\ldots,X_n)$ را به دست آورید.

ب)

اگر تابع فاصله بر روی فضای پارامترها $L(\sigma_{\lambda}^{\intercal},\sigma_{\lambda}^{\intercal})=(\sigma_{\lambda}^{\intercal}-\sigma_{\lambda}^{\intercal})^{\intercal}$ باشد، تخمین گر بیز را محاسبه کنید.

ج)

حال اگر داده ی جدید X_{n+1} را بگیریم، توزیع آن چیست؟ در واقع، توزیع می توزیع Predictive Distribution را (به این توزیع، $Prob(X_{n+1}|X_1,X_7,\ldots,X_n)$ به دست آورید. این توزیع را نمی توان به صورت بسته محاسبه کرد و نوشتن آن به صورت یک انتگرال کافی است.

 $^{^{\}rm v}{\rm https://en.wikipedia.org/wiki/Inverse-gamma_distribution}$