Wykonał: Radosław Smoter

Grupa: 14

**Nr**: 27

Numer zadania: 1

Przykład: 62

**Prowadzący**: Prof. dr hab. inż. Volodymyr Samotyy

# Politechnika Krakowska

Wydział Inżynierii Elektrycznej i Komputerowej

Sprawozdanie: Wstęp do Programowania

### Spis treści

| Polecenie     | 1 |
|---------------|---|
| Kod programu  |   |
| Wyniki        |   |
| Opis Programu |   |
| Wnioski       |   |

#### **Polecenie**

Obliczyć wartości funkcji jednoargumentowej. Wyniki obliczeń zapisać do pliku tekstowego. Narysować wykres y(x) .

Funkcja: 
$$y = \frac{5}{3 + lg^2(x)}$$
,

Dziedzina: 
$$x \in [1.2;3.1]$$
.

$$lg(x)$$
 przyjmuję za  $\log_{10}(x)$  .

#### Kod programu

```
/**
 * @file main.c
 * @author Radoslaw Smoter (radoslaw.smoter@student.pk.edu.pl)
 * @version 0.1
 * @date 2021-12-16
 * @copyright Copyright (c) 2021
  * Calculate values of given function in specified domain.
 * Save results to a file.
 * Draw a plot for the results.
#include <stdio.h>
#include <math.h>
double math_function(double);
int main(void)
  /* Domain min/max. */
  const double domain[] = { 1.2, 3.1 };
  /* Domain step. */
  double step = (domain[1] - domain[0]) / 100;
 FILE *file = fopen("results.dat", "w");
  /* File exists. */
  if (file != NULL) {
    for (double x = domain[0]; x < domain[1]; x += step) {</pre>
      double y = math_function(x);
      /* Save results only if they exist. */
      if (!isnan(y))
        fprintf(file, "%10.5lf%10.5lf\n", x, y);
    fclose(file);
  /* File doesn't exist. */
  else {
    fprintf(stderr, "Error: File did not open correctly.\n");
    return -1;
 return 0;
}
```

```
/* Carry out the mathematical function. */
double math_function(double x) {
  double log1 = log(x) / log(10);
  /* Error: Not a number. */
  if (isnan(log1))
    return NAN;
  /* Error: Zero division. */
  if (pow(log1, 2) == -3)
    return NAN;
  return 5 / (pow(log1, 2) + 3);
}
```

## Wyniki

| NT. |          |          |
|-----|----------|----------|
| Nr  | X        | <b>y</b> |
| 1   | 1.200000 | 1.663191 |
| 2   | 1.219000 | 1.662568 |
| 3   | 1.238000 | 1.661904 |
| 4   | 1.257000 | 1.661203 |
| 5   | 1.276000 | 1.660465 |
| 6   | 1.295000 | 1.659693 |
| 7   | 1.314000 | 1.658889 |
| 8   | 1.333000 | 1.658054 |
| 9   | 1.352000 | 1.657190 |
| 10  | 1.371000 | 1.656299 |
|     |          |          |
| 11  | 1.390000 | 1.655381 |
| 12  | 1.409000 | 1.654438 |
| 13  | 1.428000 | 1.653472 |
| 14  | 1.447000 | 1.652483 |
| 15  | 1.466000 | 1.651473 |
| 16  | 1.485000 | 1.650443 |
| 17  | 1.504000 | 1.649394 |
| 18  | 1.523000 | 1.648327 |
| 19  | 1.542000 | 1.647243 |
| 20  | 1.561000 | 1.646142 |
| 21  | 1.580000 | 1.645027 |
| 22  | 1.599000 | 1.643896 |
| 23  |          |          |
|     | 1.618000 | 1.642753 |
| 24  | 1.637000 | 1.641596 |
| 25  | 1.656000 | 1.640427 |
| 26  | 1.675000 | 1.639246 |
| 27  | 1.694000 | 1.638055 |
| 28  | 1.713000 | 1.636853 |
| 29  | 1.732000 | 1.635641 |
| 30  | 1.751000 | 1.634421 |
| 31  | 1.770000 | 1.633191 |
| 32  | 1.789000 | 1.631954 |
| 33  | 1.808000 | 1.630709 |
| 34  | 1.827000 | 1.629457 |
| 35  | 1.846000 | 1.628198 |
| 36  | 1.865000 | 1.626933 |
| 37  | 1.884000 | 1.625662 |
| 38  | 1.903000 | 1.624386 |
|     | 1.903000 |          |
| 39  |          | 1.623105 |
| 40  | 1.941000 | 1.621819 |
| 41  | 1.960000 | 1.620528 |
| 42  | 1.979000 | 1.619234 |
| 43  | 1.998000 | 1.617936 |
| 44  | 2.017000 | 1.616634 |
| 45  | 2.036000 | 1.615329 |
| 46  | 2.055000 | 1.614022 |
|     |          |          |

| 47       | 2.074000 | 1.612712 |
|----------|----------|----------|
| 48       | 2.093000 | 1.611399 |
| 49       | 2.112000 | 1.610085 |
| 50       | 2.131000 | 1.608769 |
| 51       | 2.150000 | 1.607451 |
| 52       | 2.169000 | 1.606131 |
| 53       | 2.188000 | 1.604811 |
| 54       | 2.207000 | 1.603489 |
| 55       | 2.226000 | 1.602167 |
| 56       | 2.245000 | 1.600844 |
| 57       | 2.243000 | 1.599520 |
| 58       | 2.283000 | 1.598196 |
|          |          |          |
| 59       | 2.302000 | 1.596873 |
| 60       | 2.321000 | 1.595549 |
| 61       | 2.340000 | 1.594225 |
| 62       | 2.359000 | 1.592901 |
| 63       | 2.378000 | 1.591578 |
| 64       | 2.397000 | 1.590256 |
| 65       | 2.416000 | 1.588934 |
| 66       | 2.435000 | 1.587613 |
| 67       | 2.454000 | 1.586293 |
| 68       | 2.473000 | 1.584974 |
| 69       | 2.492000 | 1.583656 |
| 70       | 2.511000 | 1.582340 |
| 71       | 2.530000 | 1.581025 |
| 72       | 2.549000 | 1.579711 |
| 73       | 2.568000 | 1.578398 |
| 74       | 2.587000 | 1.577088 |
| 75       | 2.606000 | 1.575779 |
| 76       | 2.625000 | 1.574471 |
| 77       | 2.644000 | 1.573166 |
| 78       | 2.663000 | 1.571862 |
| 79       | 2.682000 | 1.570560 |
| 80       | 2.701000 | 1.569261 |
| 81       | 2.720000 | 1.567963 |
| 82       | 2.739000 | 1.566668 |
| 83       | 2.758000 | 1.565375 |
| 84       | 2.777000 | 1.564084 |
| 85       | 2.796000 | 1.562795 |
| 86       | 2.815000 | 1.561509 |
| 87       | 2.834000 | 1.560225 |
| 88       | 2.853000 | 1.558944 |
| 89       | 2.872000 | 1.557665 |
| 90       | 2.891000 | 1.556389 |
| 91       | 2.031000 | 1.555115 |
| 91       | 2.910000 | 1.553844 |
| 92<br>93 | 2.929000 | 1.553644 |
|          |          |          |
| 94       | 2.967000 | 1.551309 |
| 95       | 2.986000 | 1.550046 |
| 96       | 3.005000 | 1.548786 |
|          |          |          |

| 97  | 3.024000 | 1.547528 |
|-----|----------|----------|
| 98  | 3.043000 | 1.546273 |
| 99  | 3.062000 | 1.545021 |
| 100 | 3.081000 | 1.543772 |



Figura 1: Wykres powyższych wartości. Wykonany programem Gnuplot, poleceniem <<plot"><plot"/results.dat">>>.

#### Opis Programu

Program składa się z głównego ciała, gdzie wykonywane są operacje na plikach oraz iteracja po elementach dziedziny; oraz z funkcji math\_function(), która wykonuje działanie matematyczne określone przez zadanie. Funkcja ta, poza wykonaniem operacji matematycznych, sprawdza wykonywane operacje pod kątem dwóch wyjątków: wartości nie będących liczbami dla operacji logarytmowania oraz czy mianownik funkcji zostaje wyzerowany. W obu przypadkach ta funkcja zwraca NAN.

W funkcji main() określone są dziedzina funkcji (domain) oraz krok iteracji (step). Stworzony zostaje plik "results.dat" w trybie zapisu ("r"). Dalej sprawdzana jest poprawność utworzenia pliku, w przeciwnym razie na strumień błędu (stderr) wypisywany zostaje błąd dotyczący tworzenia pliku. Jeśli plik zostanie otwarty prawidłowo, wykonuje się pętla o określonym kroku (step), w której oblicza się wartości poszczególnych iteracji za pomocą funkcji math\_function(). Jeżeli wynik przez nią zwrócony nie jest równy NAN, to do pliku dokonuje się sformatowany zapis dwóch wartości dla każdej iteracji: kroku oraz wartości funkcji matematycznej dla tego kroku.

### Wnioski

Otrzymane wyniki są prawidłowe, co łatwo zweryfikować za pomocą programów matematycznych, takich jak Matlab, Mathematica czy WolframAlpha.



Figura 2: Wykres dla zadanej funkcji, wykonany w programie WolframAlpha.