1.

Na figura anterior está representado um sistema de controlo de um processo cuja Função de Transferência é:

$$G(s) = \frac{40}{10s^2 + 80s + 800}$$

sendo o controlador do tipo PID:

$$m(t) = 20 \left[e(t) + \frac{1}{T_i} \int_0^t e(t)dt + T_d \frac{de(t)}{dt} \right]$$

- a) Admitindo que não existe acção integral (1/T_i=0), calcular T_d de modo que o amortecimento do sistema realimentado seja unitário.
- b) Para o valor de T_d calculado, determinar o valor máximo de 1/T_i de modo a manter o sistema estável.
- 2. A figura seguinte é o esquema de um sistema de controlo de posição de um satélite.

Referência de Posição

Sendo:

2e - comprimento do satélite;

J - momento de inércia;

F/2 - força de reacção produzida por cada foguete.

Supor que o controlador é de tipo PD.

Determine o valor da constante de tempo T_d , de modo que ζ =0.7.

3. Considere o controlador apresentado na figura seguinte:

- a) Que tipo de acção de controlo produz o controlador indicado?
- b) Em que condições poderia este controlador estabilizar o controlo de posição de uma massa de inércia $(T(s)=Js^2\theta(s))$?
- 4. Considere o seguinte sistema de controlo de nível de um tanque cilindrico:

O caudal da entrada é comandado por um controlador através da relação:

$$Q_i(t) = 0.125 \left[x(t) + \int_0^t x(\tau) d\tau \right], t \ge 0$$

sendo x(t) o desnível em metros relativamente ao valor desejado de 1m.

Considerar que a válvula de saída foi bruscamente aberta, em t=0, estando o sistema em repouso (h=1, $q_o=0$), originando um caudal de saída $q_o(t)=0.01.h(t)$ m³/s. Considere ainda que $q_i(t)-q_o(t)=A.(dh(t)/dt)$.

Nestas condições determinar:

- a) A expressão de x em função do tempo.
- b) A altura do liquido no tanque, em regime estacionário. Justifique.
- 5. O sistema apresentado na figura seguinte viu a sua referência ser ajustada para o valor 1m.

Considere que a acção do controlador (acção integral) é a seguinte: $Q_i(s) = \frac{K}{s} \big[U(s) - H(s) \big]$ sendo a

Função de Transferência do tanque:
$$\frac{H(s)}{Q_i(s)} = \frac{1}{s.A + \frac{1}{R}}$$

Sendo:

$$A = 1 \text{ m}^2$$

 $K = 0.1$
 $R = 9.88 \text{ s/m}^{-2}$

a) Qual a frequência natural e qual o coeficiente de amortecimento do sistema?

b) Qual a sua resposta temporal ao seguinte sinal de entrada:

- c) Reduzir o ganho para metade e voltar a calcular ζ , ω_h , t_r , t_s .
- 6. O controlador (proporcional) do sistema de controlo de posição da figura apresentada abaixo fornece uma força F=A(x_r-x).

Sendo:

M = 1Kg;

A = 5

 $K = 2 \text{ Nm}^{-1}$

- a) Desenhar o Lugar Geométrico de Raízes do sistema com B como parâmetro.
- b) Determinar B de modo que o sistema não oscile.