Université de Djibouti

L1 Informatiques

Logiques et Arithmétiques

Semestre 1

 ${\bf Enseignant}:$

HAKIM AMER ABDOULAZIZ

Septembre 2022

Table des matières

1 Logique et raisonne			t raisonnement mathématiques	
	1.1	Logiqu	ue mathématique	
		1.1.1	Négation, conjonction , disjonction, équivalence	
	1.2	Les qu	$\text{nantificateurs} \ \forall \ \text{et} \ \exists. \ \dots $	
	1.3	Eléme	ents de raisonnement	
		1.3.1	Raisonnement direct	
		1.3.2	Raisonnement par contraposition	
2			es et Applications	
	2.1	Ensem	ables	
		2.1.1	Définitions	
		2.1.2	Inclusion, complémentaire, union et intersection	
		2.1.3	Régles de calculs	
		2.1.4	Produit cartésien	
	2.2	Applic	cations	
		2.2.1	Définition	
		2.2.2	Fonctions injectives, surjectives et bijectives	

Introduction

Chapitre 1

Logique et raisonnement mathématiques

1.1 Logique mathématique

Définition 1.1. Une proposition est un enoncé mathématique (une assertion) qui est soit vraie, soit fausse.

Exemple 1.1.

 E_1 : La proposition $3 \ge 1$ est vraie.

 E_2 : la proposition $\sqrt{2} \ge 2$ est fausse.

 E_3 : Pour tout réel x, on a $x^3 - 1 = (x - 1)(x^2 + x + 1)$ est vraie.

Remarque 1.1.

- 1. Quand on enonce une proposition, on sous entend en général qu'elle est vraie.
- 2. Parfois, une proposition est appelée propriété, théorème, lemme, corollaire.

Définition 1.2. Un prédicat est un énoncé mathématique dépendant des variables x, y, n.

Exemple 1.2. $P(x) = e^x \ge 1$ qui dépend de la variable x, pour x < 0, P(x) est fausse, et pour $x \ge 0$ P(x) est vraie.

Remarque 1.2. Quand on formule un prédicat, il n a de sens que si on a bien précisé qui sont les variables.

Exemple 1.3. $ln(x) \ge 0$ est vrai si $x \ge 1$ et n'a pas de sens si $x \in \mathbb{R}$.

1.1.1 Négation, conjonction, disjonction, équivalence

Définition 1.3. Si **P** est une proposition, alors on note **non (P)**, la proposition qui est vraie lorsque **P** est fausse et qui est fausse lorsque **P** est vraie. C'est la négation de la proposition **P**.

Р	non(P)
F	V
V	f

Remarque 1.3.

- 1. Pour toute proposition P, on a nécessairement soit P soit non(P) qui est vraie. De plus non(non(P)) = P
- 2. Attention parfois l'intention peut être source d'erreur lors de la négation de certains phrases. Par exemple **Tout le monde est présent** n'est pas **Tout le monde est absent**.

Définition 1.4. Conjonction Si \mathbf{P} et \mathbf{Q} sont deux propositions. On appelle conjonction de P et Q ($\mathbf{P} \wedge \mathbf{Q}$) la proposition \mathbf{P} et \mathbf{Q} qui est vraie si et seulement si les deux proposition P et Q sont vraies à la fois. Autrement dit : \mathbf{P} et \mathbf{Q} est vraie si et seulement si P est vraie et Q est vraie. De même, \mathbf{P} et \mathbf{Q} est fausse des que l'une des deux propositions P ou Q est fausse (ou les deux)

P	Q	P / Q
V	V	V
V	F	F
F	V	F
F	F	F

Définition 1.5. Disjonction Si P et Q sont deux propositions. On appelle disjonction de P et Q ($P \lor Q$) la proposition P ou Q qui est vraie si et seulement si au moins l'une des propositions P ou Q est vraie si et seulement si soit P soit Q est vraie soit P et Q sont vraies. De même, P ou Q est fausse si P et Q sont toutes les deux fausses

P	Q	$P \lor Q$
V	V	V
V	F	V
F	V	V
F	F	F

Propriété 1.1. Regles de Morgan Soient P et Q deux propositions alors :

- 1. non $(P \land Q) \iff \bar{P} \lor \bar{Q}$
- 2. non (P \vee Q) $\iff \bar{P} \wedge \bar{Q}$

Définition 1.6. Implication Etant données deux proposition P et Q. On note non P ou Q ou $P \Rightarrow Q$ la proposition qui est fausse si P est vraie et Q est fausse.

P	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Définition 1.7. Équivalence. L'équivalence est définie par

$$P \iff Q = (P \Rightarrow Q) \ et \ (Q \Rightarrow P)$$

On dira P est équivalent à Q ou P est équivalent à Q ou P si seulement si Q. Cette assertion est vraie lorsque P et Q sont vraies ou fausses à la fois.

Р	Q	$P \iff Q$
V	V	V
V	F	F
F	V	F
F	F	V

Propriété 1.2. Soient P et Q deux propositions

- 1. non $(P \Rightarrow Q) \iff P \bigvee \bar{Q}$ négation d'une implication.
- 2. $P \Rightarrow Q \iff \bar{Q} \Rightarrow \bar{P}$ contraposée d'une implication.

1.2 Les quantificateurs \forall et \exists .

Définition 1.8.

- 1. \forall s'appelle quantificateur universel. On écrit $\forall x$ pour lire **pour tout** x.
- 2.. \exists s'appelle quantificateur existentiel. On écrit $\exists x$ pour lire **il existe** x.
- 3. $\exists !x$ pour lire il existe un unique x.

Exemple 1.4.

- 1. La proposition pour tous éléments x de E s'écrit $\forall x \in E$.
- 2. La proposition pour tous éléments x de E le prédicat P(x) est vrai s'écrit $\forall x \in E, P(x)$.
- 3. La proposition il existe un et un seul élément de E, le prédicat P(x) est vrai s'écrit $\exists ! x \in E, P(x)$.

Propriété 1.3. Soit E un ensemble et P(x) un prédicat.

- 1. non $(\forall x \in E, P(x)) \iff \exists x \in E, \text{ non } (P(x)).$
- 2. non $(\exists x \in E, P(x)) \iff \forall x \in E, \text{ non } (P(x)).$

Remarque 1.4. La négation de \forall est \exists et la négation de \exists est \forall

1.3 Eléments de raisonnement

1.3.1 Raisonnement direct

On veut montrer que P \Rightarrow Q est vraie. On suppose que P est vraie et on montre que Q est vraie.

Exemple 1.5. Montrer que si $a, b \in \mathbb{Q}$ alors $a + b \in \mathbb{Q}$

On peut écrire

$$\begin{cases} a = \frac{p}{q} & p \in \mathbb{Z}, q \in \mathbb{N}^* \\ b = \frac{n}{m} & n \in \mathbb{Z}, m \in \mathbb{N}^* \end{cases}.$$

On a

$$a+b = \frac{pm+nq}{qm}$$

Il est claire que le numérateur $pm + nq \in \mathbb{Z}$ et le dénominateur $qm \in \mathbb{N}^*$. Alors $a + b \in \mathbb{Q}$

1.3.2 Raisonnement par contraposition

Le raisonnement par contraposition est basé sur l'équivalence suivant . Pour montrer que $P \Rightarrow Q$ est vraie il suffit de montrer que $\bar{Q} \Rightarrow \bar{P}$. est vraie.

Exemple 1.6. Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

Nous supposons que n n'est pas pair. montrons alors que n^2 n'est pas pair. Comme n est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k + 1. On a alors

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2h + 1$$
 avec $h = 2k^2 + 2k \in \mathbb{N}$.

et donc n^2 est impair. Nous avons montrer que si n est impair alors n^2 est impair, par contraposition ceci est équivalent à si n^2 est pair alors n est pair.

Chapitre 2

Ensembles et Applications

2.1 Ensembles

2.1.1 Définitions

Définition 2.1. Un ensemble est une collection d'éléments.

Exemple 2.1.

- 1. $\{2,3\}, \{0,1,2,3,4,5,6,7,\ldots\} = \mathbb{N}$..
- 2. Un ensemble particulier est l'ensemble vide, noté \emptyset .

Définition 2.2. Soit A un ensemble.

- 1. On note $x \in A$ si x est un élément de A, .
- 2. On note $x \notin A$ si x n'est pas un élément de A.

Définition 2.3. On appelle P(A) l'ensemble des parties (ou sous ensemble) de l'ensemble A.

Exemple 2.2. Par exemple $A = \{1, 2\}$, alors $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

2.1.2 Inclusion, complémentaire, union et intersection.

Définition 2.4. (Inclusion) Soit E un ensemble et A,B deux sous ensembles de E On dit que A est inclu dans B ($A \subset B$) si tout élément de A est aussi un élément de B. Autrement dit

$$\forall x \in A, x \in B$$

Remarque 2.1.

- 1. On dit aussi que A est un sous ensemble de B ou une partie de B.
- 2. A = B si et seulement si $A \subset B$ et $B \subset A$.

Définition 2.5. (Complémentaire) Soit E un ensemble et A un sous ensembles de E Le complémentaire de A est l'ensemble des éléments de E qui ne sont pas dans E. Autrement dit

$$C_E(A) = \{x \in E | x \notin A\}.$$

Définition 2.6. (Union). Soit E un ensemble et A, B deux sous ensembles de E L'ensemble A union B ($A \cup B$) est l'ensemble

$$A \cup B = \{x \in E | x \in A \text{ ou } x \in B\}$$

Définition 2.7. (Intersection). Soit E un ensemble et A,B deux sous ensembles de E L'ensemble A inter B ($A \cap B$) est l'ensemble

$$A \cap B = \{x \in E | x \in A \text{ et } x \in B\}$$

2.1.3 Régles de calculs

Soient A, B, C des parties d'un ensemble E.

- $1. \ A \cup B = B \cup A \quad tA \cup (B \cup C) = (A \cup B) \cup C. \quad A \cup \emptyset = \emptyset, \quad A \cup A = A, \quad A \subset B \Longleftrightarrow A \cup B = B.$
- 2. $A \cap B = B \cap A$. $A \cap (B \cap C) = (A \cap B) \cap C$. $A \cap \emptyset = \emptyset$. $A \cap A = A$. $A \subset B \iff A \cap B = A$.
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 4. C(C(A)) = A $C(A \cap B) = C(A) \cup C(B)$ $C(A \cup B) = C(A) \cap C(B)$..

2.1.4 Produit cartésien

Définition 2.8. Soient E et F deux ensembles. La produit cartésien, noté $E \times F$, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

Exemple 2.3. $\{0:1;\}\times\{2;3\}=\{(0;2),(0;3),(1;2),(1;3)\}$

2.2 Applications

2.2.1 Définition

Soient E, F deux ensembles.

Définition 2.9. Une application (ou une fonction) $f: E \to F$, c'est la donnée pour chaque élément $x \in E$ d'un unique élément de F noté f(x). On appelle E l'ensemble de depart et F l'ensemble d'arrivée.

Définition 2.10. Deux applications, $f: E \to F, g: E \to F$ sont egales si et seulement si pour tout $x \in E$, f(x) = g(x). On note alors f = g.

Définition 2.11. Soient $f: E \to F$, et $g: F \to G$ alors $g \circ f: E \to G$ est l'application définie par $g \circ f(x) = g(f(x))$.

Exemple 2.4. $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = x + 1, $g: \mathbb{R} \to \mathbb{R}$ définie par g(x) = 2x + 1. Alors $g \circ f: \mathbb{R} \to \mathbb{R}$ vérifie pour tout $x \in \mathbb{R}: g(f(x)) = 2(x + 1) + 1 = 2x + 3$.

Définition 2.12. Soit $A \subset E$ et $f: E \to F$, l'image de A par f est l'ensemble

$$f(A) = \{ f(x) \in F; x \in A \}.$$

Définition 2.13. Soit $B \subset F$ et $f: E \to F$. L'ensemble des images reciproques de B par f est défini par

$$f^{-1}(B) = \{x \in E; f(x) \in B\}.$$

Définition 2.14. Soit $f: E \to F$, On appelle antécédant de y par f tout élément $x \in E$, tel que

$$y = f(x)$$
.

2.2.2 Fonctions injectives, surjectives et bijectives

Soient E, F deux ensembles et $f: E \to F$ une application.

Définition 2.15. On dit que f est :

- 1. injective si tout élément de F possède **au plus** un antécédent.
- 2. surjective si tout élément de F possède au moins un antécédent.
- 3. bijective si f est à la fois injective et surjective

Définition 2.16. On dit que f est injective si pour tout $x, x' \in E$ avec f(x) = f(x') alors x = x'. Autrement dit

$$\forall x, x' \in E \ f(x) = f(x') \Longrightarrow x = x'.$$

Une application injective

Une application non injective

Définition 2.17. On dit que f est surjective si pour tout $y \in F$, il existe $x \in E$ tel que y = f(x). Autrement dit

 $\forall y \in F, \ \exists x \in E$

Une application non surjective

Une application surjective

Définition 2.18. On dit que f est bijective si elle est injective et surjective. Cela équivaut à pour tout $y \in F$ il existe un unique $x \in E$ tel que y = f(x).

Remarque 2.2. l'existence du x vient de la surjectivité et l'unicité de l'injectivité.

Proposition. Soit f une application continue sur un intervalle I de \mathbb{R} .

- $1.\ Si\ f\ est\ strictement\ monotone\ ,\ alors\ elle\ est\ injective.$
- $2. \ Si \ f \ est \ injectiv, \ alors \ elle \ est \ strictement \ monotone.$

Théorème 2.1. On considère une fonction $f: I \to \mathbb{R}$. Si f est continue et strictement croissante sur I, alors f est bijective.