FPGA Based Digital Camera

Ryan Henderson February 10, 2013

Digital Imaging

- Real time video capture
- CMOS Image Sensor
- FPGA
- External Memory
- PC or Monitor Display
- Image Sensor Evaluation Kit

Presentation Overview

External Hardware

- Image Sensor
- XSA-100

Host PC Software

- Save Pictures as JPG / BMP
- Control Image Sensor

FPGA Design

- Parallel Port
- Master Control
- Memory Control
- SDRAM
- I2C
- Image Sensor DataReader

External Hardware

FPGA Based Digital Camera Debug & Human **Parallel Port Host PC** Interface Interface **Software FPGA** Kodak Monitor Video Interface **KAC1310** 1280 x 1024 DAC **CMOS** Connector **Image Sensor** Clock **Power Supply** Generation Frame Buffer DRAM GEORGE

Image Sensor

Motorola ImageMOS MCM20027

Kodak Digital ScienceKAC – 1310

Image Sensor Features

- 1280 x 1024 Pixels Resolution
- Continuous / Single Shutter Modes
- 10-bit, RSD ADC Analog to Digital Converter
- 48-pin Ceramic LCC Package
- Digitally Programmable via I2C Interface
- 10/15 fps full SXGA at 13/20Mhz Master Clock Rate
- Bayer-RGB Color Filter Array
- 3.3V Analog and 3.3V Digital at 250mW Operation
- Camera on a Chip

Feature Notes

- 1280 x 1024 x 10bits x 15fps= 196 608 000 Mbps
- Sub sample and window of interest (WOI)
- Surface mount <u>Leadless</u>
 Chip Carrier

Plastronics Socket

- Zero insertion force
- Strange bottom pin out
- Required adaptor to .1" hole spacing
- Only socket available under \$250

leadless chip carrier

Sunex Lens

- Blurry image without lens
- Matches
 - F stop
 - Focal Length
 - Center of Sensor
- Plastic

Bayer RBG Color Microlenses

- Twice as many green pixels
- Combine set of 4 to get RGB value

Figure 6 - Optional Bayer RGB Pattern CFA

Control Registers

- 41 8-bit Registers
- Analog adjustment
 - Exposure, white balance etc
- Digital functions / sensor interface
 - Zoom, pan, sub-sample
- Column offsets for WOI

FPGA Development Board

- Xess XSA-100
- Spartan 2
- 16Mb SDRAM
- 100MHz Osc.
- Parallel Port
- 84 Pin Prototype Header

XC2S100 Spartan 2

- 100k System Gates
- 40k Bits Block SelectRAM+
- 38k Distributed RAM
- 4 Global Clocks
- 4 Delay Locked Loops
- 2.5V, 3.3V or 5V I/O
- Altera Flex 10K70
 - 4x Slower
 - 18k total RAM

ициіх

SDRAM

- Hynix HY57V281620A
- 4 Banks x 2M x 16bits
- PC133 CAS 2
- External PCB Clock Feedback
- Prebuilt Xess VHDL Interface

FPGA Design

Planned Top Level

Sub components and their interfaces

Parallel Port Module

- Connects through PLD to PC parallel port
- 6 Download data lines d6 d0
 - Line d7 controls reconfiguration of Spartan
- 4 Upload Lines
- Data Strobe controlled by PC
- Receives commands from PC to:
 - Set / Read registers in image sensor
 - Upload from RAM
- 17,000 Gates

Parallel Port Upload

- XSA-100 limitation, only upload using status pins
- Debounced strobe signal
- DDR upload 4 bits / clock edge
- ~150K bytes/sec
- Asynchronous Coregen FIFO
 - 16 bits 50MHz in
 - 4 bits ~75kHz out
- Counter determines memory addresses

Parallel Port Download

- Commands and addresses received
- Latched and sent to Master Control Signal Generator

Master Control Signal Generator

- State machine
- Branches to receive commands from PC
- Controls Memory Controller
 - Sends start address, end address for upload
- Relay data between PC and image sensor through I2C interface

Memory Controller

- Arbitration between different components that access the memory
- Interleaved memory read and write operations
- Connected to internal RAM or SDRAM controller

SDRAM Controller

- Sample VHDL code from XESS
 - 100ns Access
 - No Burst Mode
 - Incorrectly set Mode Register
- If then else state machine implementation
- Example of DLL use
- Modify to fit project needs
- 16, 000 Gates

SDRAM Controller Problems

- Errors in code
- Would synthesize in Leonardo but fail Xilinx place and route
- Had to move I/O buffer instantiations to top level

I2C

- CoolRunner XPLA3 I2C bus controller implementation from Xilinx
- App note XAPP333
- Microcontroller interface
 - Write / Read from registers using bus cycles
 - Similar to Wishbone common interface from Open Cores
- Includes test benches
- 2000 Gates I2C plus 4000 Gates my controller

I2C Block Diagram

Figure 1: CoolRunner I²C Bus Controller

I2C State Sequence

I2C Test Bench

- Bi-directional bus requires slave response to test master
- Slave simulates KAC during functional verification

I2C Interface Flow

Image Sensor Data Reader

- Transfer data from image sensor to FPGA
- 5 bits / Pixel
- 1 pixel / 12MHz clock
- FIFO between Image sensor and memory
- Handle timing for image sensor signals
- Convert Bayer pattern to RGB values
 - Buffer pairs of lines
- 20,000 Gates with FIFO and Buffers

Host PC Software

- Control parallel port transfers
- Save uploaded pixel data as JPG or BMP
- Read and write image sensor register values
- GUI spring term
 - Implement live video

Conclusion

External Hardware Summary

- 1280x1024 Kodak CMOS Image Sensor
- XESS XSA-100 FPGA Board
 - 100k Gate Spartan 2
 - 16M bytes SDRAM
 - Parallel Port

FPGA Design Summary

- Parallel port
- SDRAM controller
- Memory read write arbitrator
- 12C
- RGB data conversion
- 80, 000 Gates total

Schedule

ID	Task Name	Start	Finish	Duration	Jan 2002 Feb 2002 Mar 2002 Apr 2002 May 2002 Jun 2002 6/1 13/1 20/1 27/1 3/2 10/2 17/2 24/2 3/3 10/3 17/3 24/3 31/3 7/4 14/4 21/4 28/4 5/5 12/5 19/5 26/5 2/6 9/6
1	Develop Design Flow	1/7/2002	1/18/2002	10d	
2	Parallel Port Connection	1/15/2002	2/5/2002	16d	
3	Master Control Signal Generator	2/1/2002	5/10/2002	71d	
4	Memory Controller	1/15/2002	3/15/2002	44d	
5	SDRAM Interface	1/10/2002	2/1/2002	17d	
6	I2C	3/7/2002	4/1/2002	18d	
7	Image Sensor RGB Data Reader	4/1/2002	4/15/2002	11d	
8	Signal Processor	4/15/2002	4/19/2002	5d	•
9	Monitor Interface	5/6/2002	5/15/2002	8d	
10	Build Image Sensor Board	1/7/2002	4/1/2002	61d	
11	Project Documentation	1/7/2002	9/6/2002	175d	

Sources

- Xilinx www.xilinx.com
- XESS www.xess.com
- Hynix www.hynix.com
- Motorola e-www.motorola.com
- Kodak www.kodak.com/US/en/digital/ccd/sensorsMain.shtml
- Plastronics www.locknest.com
- Comp.arch.fpga