NBA Multilevel Model

Yuka Chen

2022-12-07

```
df_analysis |>
  group_by(PERSONTYPE) |>
  summarise("Numbers of Accidents"=n()) |>
  knitr::kable()
```

PERSONTYPE	Numbers of Accidents
0	182
Bicyclist	4714
Driver	447058
Electric M	31
Occupant o	338
Other	2200
Passenger	112612
Pedestrian	12438
Reporting	2
Streetcar	4
Unknown	128
Witness	36

```
options(scipen=10000)

df_analysis |>
    ggplot(aes(x = PERSONTYPE))+
    geom_bar()+
    coord_flip()+
    labs(y = "Numbers of Accidents")+
    scale_y_continuous()
```



```
options(scipen=10000)
df_analysis |>
  group_by(WARD) |>
  summarise("Numbers of Accidents"=n()) |>
  knitr::kable()
```

WARD	Numbers of Accidents		
Null	3798		
UNKNOWN	2		
Ward 1	48351		
Ward 2	120658		
Ward 3	31802		
Ward 4	48680		
Ward 5	91812		
Ward 6	84594		
Ward 7	81096		
Ward 8	68950		

```
df_analysis |>
  ggplot(aes(x = WARD))+
  geom_bar()+
  coord_flip()+
  labs(y = "Numbers of Accidents")+
  scale_y_continuous()
```



```
#Changing variables to factors
fact_vars <- c('WARD', 'SPEEDING_INVOLVED', 'PERSONTYPE', 'FATAL', 'MAJORINJURY', 'MINORINJURY', 'TICKE'
df_analysis[,fact_vars] <- lapply(df_analysis[,fact_vars] , factor)

#Logistic Regression with the full data set
fatal_logit <- glm(FATAL ~ time_period + month + SPEEDING + IMPAIRED + AGE+ TOTAL_VEHICLES + TOTAL_BICY'
logit_sum<-summary(fatal_logit)
logit_sum

##
## Call:
## glm(formula = FATAL ~ time_period + month + SPEEDING + IMPAIRED +
## AGE + TOTAL_VEHICLES + TOTAL_BICYCLES + TOTAL_PEDESTRIANS +
### AGE + TOTAL_VEHICLES + TOTAL_BICYCLES + TOTAL_PEDESTRIANS +
```

```
MAR_SCORE + WARD + TOTAL_GOVERNMENT, family = "binomial",
##
      data = df_analysis)
##
##
## Deviance Residuals:
##
      Min
              1Q
                   Median
                              3Q
                                     Max
## -1.1036 -0.0395 -0.0324 -0.0268
                                   4.3852
##
## Coefficients:
##
                     Estimate Std. Error z value
                                                        Pr(>|z|)
                    ## (Intercept)
## time_periodEvening -0.184045 1.000679 -0.184
                                                        0.854076
## time_periodMorning 0.139845 1.002458 0.140
                                                        0.889053
## time_periodNight
                    1.348819 0.717811
                                       1.879
                                                        0.060235 .
## month2
                     0.162120 0.274983 0.590
                                                        0.555483
```

```
## month3
                        0.307357
                                   0.255990
                                              1.201
                                                                0.229883
## month4
                                              1.043
                        0.265542
                                  0.254681
                                                                0.297112
                        0.127202
                                  0.260686
## month5
                                             0.488
                                                                0.625585
## month6
                        0.228136
                                                                0.375908
                                  0.257646
                                             0.885
## month7
                       0.436896
                                  0.247667
                                             1.764
                                                                0.077725
                                             1.362
## month8
                       0.344248
                                  0.252822
                                                                0.173317
## month9
                       0.044196
                                  0.272607
                                             0.162
                                                                0.871207
## month10
                       0.567618
                                   0.242036
                                             2.345
                                                                0.019018 *
## month11
                       0.077043
                                  0.274933
                                             0.280
                                                                0.779306
## month12
                       -0.152519
                                   0.293617 -0.519
                                                                0.603448
## SPEEDINGY
                        2.719291
                                   ## IMPAIREDY
                        0.296374
                                   0.395820
                                             0.749
                                                                0.454001
## AGE
                       0.010749
                                  0.002215
                                             4.852
                                                              0.00000122 ***
                      -0.146731
                                   0.067940 -2.160
## TOTAL_VEHICLES
                                                                0.030795 *
## TOTAL_BICYCLES
                        0.784156
                                   0.249707
                                             3.140
                                                                0.001688 **
## TOTAL_PEDESTRIANS
                       0.643427
                                   0.043303 14.859 < 0.0000000000000000 ***
## MAR_SCORE
                       -0.004026
                                   0.001091
                                            -3.690
                                                                0.000225 ***
## WARDUNKNOWN
                      -4.767367 229.127722
                                            -0.021
                                                                0.983400
## WARDWard 1
                      -0.176170
                                  0.617775
                                            -0.285
                                                                0.775516
## WARDWard 2
                       -0.376522
                                  0.600372
                                            -0.627
                                                                0.530563
## WARDWard 3
                      -0.232542
                                  0.636611 -0.365
                                                                0.714901
## WARDWard 4
                       0.352591
                                  0.603358
                                             0.584
                                                                0.558964
## WARDWard 5
                       0.244941
                                  0.595374
                                             0.411
                                                                0.680775
## WARDWard 6
                       0.022380
                                  0.600706
                                             0.037
                                                                0.970281
## WARDWard 7
                       0.607482
                                   0.591938
                                             1.026
                                                                0.304769
## WARDWard 8
                       0.527672
                                   0.596236
                                             0.885
                                                                0.376154
## TOTAL_GOVERNMENT
                      -0.417530
                                  0.194191 - 2.150
                                                                0.031547 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 6782.6 on 579742 degrees of freedom
## Residual deviance: 6404.7 on 579711 degrees of freedom
## AIC: 6468.7
## Number of Fisher Scoring iterations: 11
tidy(fatal_logit) |>
  filter(p.value<0.05) |>
  mutate(p.value = round(p.value, 5)) |>
  dplyr::arrange(p.value) |>
  knitr::kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)	-8.4911837	0.9398892	-9.034239	0.00000
SPEEDINGY	2.7192910	0.1631818	16.664176	0.00000
AGE	0.0107488	0.0022153	4.852089	0.00000
TOTAL_PEDESTRIANS	0.6434274	0.0433031	14.858703	0.00000
MAR_SCORE	-0.0040256	0.0010911	-3.689527	0.00022
TOTAL_BICYCLES	0.7841557	0.2497068	3.140306	0.00169
month10	0.5676182	0.2420357	2.345183	0.01902
TOTAL_VEHICLES	-0.1467311	0.0679403	-2.159707	0.03080

term	estimate	std.error	statistic	p.value
TOTAL_GOVERNMENT	-0.4175302	0.1941906	-2.150105	0.03155

glance(fatal_logit) |> knitr::kable()

null.devia	nce df.nı	ıll logLik	AIC	BIC	deviance	df.residual	nobs
6782.	645 5797	42 -3202.342	6468.684	6829.335	6404.684	579711	579743

logout1 <- augment(fatal_logit)</pre>