第二章 组合逻辑

1. 分析图中所示的逻辑电路,写出表达式并进行化简

$$F = \overline{AB} \overline{BABC} \overline{CABC}$$

$$= \overline{AB} + \overline{AC} + \overline{BC} + \overline{BC}$$

$$= \overline{AB} + \overline{BC} + \overline{BC}$$

2. 分析下图所示逻辑电路, 其中 S3、S2、S1、S0 为控制输入端, 列出真值表, 说明 F 与 A、B 的关系。

$$F1 = \frac{\overline{A + BS_0 + \overline{B}S_1}}{\overline{ABS_2 + A\overline{B}S_3}}$$

$$F = F_1F_2 = \frac{\overline{A + BS_0 + \overline{B}S_1}}{\overline{A + BS_0 + \overline{B}S_1}}$$

3. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能。

解:

$$F_{1}=\overline{A\overline{B}C}+\overline{AB}\overline{C}+\overline{\overline{A}BC}+\overline{\overline{B}\overline{C}}=\overline{A}\overline{B}C+\overline{\overline{A}BC}+ABC=A(B\oplus C)+ABC$$
 真值表如下:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

当 B≠C 时, F1=A

当 B=C=1 时, F1=A

当 B=C=0 时, F1=0

裁判判决电路,A 为主裁判,在 A 同意的前提下,只要有一位副裁判(B, C)同意,成绩就有效。

$$F2=\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}=AB+BC+AC$$
 真值表如下:

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

当 $A \times B \times C$ 三个变量中有两个及两个以上同时为"1"时,F2 = 1。

4. 图所示为数据总线上的一种判零电路,写出 F 的逻辑表达式,说明该电路的逻辑功能。

解: F= A0A1A2A3 + A4A5A6A7 + A8A9A10A11 + A12A13A14A15 只有当变量 A0~A15 全为 0 时, F = 1; 否则, F = 0。 因此, 电路的功能是判断变量是否全部为逻辑"0"。

5. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能

解: $F = \overline{A1A0}X0 + \overline{A1}A0X1 + A1\overline{A0}X2 + A1A0X3$ 真值表如下:

$A_1 A_0$	F
0 0	$\mathbf{X_0}$
0 1	$egin{array}{c} \mathbf{X_0} \\ \mathbf{X_1} \\ \mathbf{X_2} \\ - \end{array}$
1 0	$\mathbf{X_2}$
1 1	\mathbf{X}_3

因此,这是一个四选一的选择器。

6. 下图所示为两种十进制数代码转换器,输入为余三码,输出为什么代码?

解:

A B	C D	W	X	Y	Z
0 0	1 1	0	0	0	0
0 1	0 0	0	0	0	1
0 1	0 1	0	0	1	0
0 1	1 0	0	0	1	1
0 1	1 1	0	1	0	0
1 0	0 0	0	1	0	1
1 0	0 1	0	1	1	0
1 0	1 0	0	1	1	1
1 0	1 1	1	0	0	0
1 1	0 0	1	0	0	1

这是一个*余三码* 至 8421 BCD 码转换的电路

7. 下图是一个受 M 控制的 4 位二进制码和格雷码的相互转换电路。M=1 时,完成自然二进制码至格雷码转换; M=0 时,完成相反转换。请说明之

解: Y3=X3

W = AB + ACD $X = \overline{B}\overline{C} + \overline{B}\overline{D} + BCD$

 $Y = \overline{C}D + C\overline{D}$

 $Z = \overline{D}$

 $Y2 = X2 \oplus X3$

 $Y1 = X1 \oplus (MX2 + \overline{M}Y2)$

 $Y0 = X0 \oplus (MX1 + \overline{M}Y1)$

当 M=1 时 Y3=X3

 $Y2=X2 \oplus X3$ $Y1=X1 \oplus X2$

 $Y0=X0 \oplus X1$

当 M=0 时 Y3=X3

 $Y2=X2 \oplus X3$

 $Y1=X1 \oplus Y2=X1 \oplus X2 \oplus X3$

 $Y0=X0 \oplus Y1=X0 \oplus X1 \oplus X2 \oplus X3$

M=1的真值表

M=O的真值表

1V1— 1 p	17天压水	447八匹14						
$X_3 X_2 X_1 X_0$	$\mathbf{Y}_{3} \mathbf{Y}_{2} \mathbf{Y}_{1} \mathbf{Y}_{0}$		X_3	$X_2 X_1$	$\mathbf{X_0}$	Y ₃	$\mathbf{Y_2} \ \mathbf{Y_1}$	$\mathbf{Y_0}$
0 0 0 0	0 0 0 0		0	0	0	0	0	0
0 0 0 1	0 0 0 1		0	0	0	10	0	0
$0 0 1 \overline{0}$	$0 0 1 \overline{1}$		0	0	1	10	0	1
0 0 $\overline{1}$ 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	1	0	0	1
0 1 0 0	0 1 1 0		0	1	1	0	1	0
0 1 0 1	0 1 1 1		0	1	1	10	1	0
0 1 1 0	0 1 0 1		0	1	0	10	1	1
0 1 1 1	0 1 0 0		0	1	0	0	1	1
1 0 0 0	1 1 0 0		1	1	0	Œ	0	0
1 0 0 1	1 1 0 1		1	1	0	11	0	0
1 0 1 0	1 1 1 1		1	1	1	11	0	1
1 0 1 1	1 1 1 0		1	1	1	Œ	0	1
1 1 0 0	1 0 1 0		1	0	1	a	1	0
1 1 0 1	1 0 1 1		1	0	1	11	1	0
1 1 1 0	1 0 0 1		1	0	0	11	1	1
1 1 1 1	1 0 0 0		1	0	0	a	1	1

由真值表可知: M=1 时, 完成 8421 BCD 码到格雷码的转换; M=0 时, 完成格雷码到 8421 BCD 码的转换。

8. 已知输入信号 A,B,C,D 的波形如下图所示,选择适当的集成逻辑门电路,设计产生输出 F 波形的组合电路(输入无反变量)

解:

列出真值表如下:

A B C D F 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
0 0 1 1 1	
0 1 0 0 1	
0 1 0 1 1	
$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & AB \\ 0 & AB \end{bmatrix}$	
0 1 1 1 0 CD 00 01	11 10
1 0 0 0 1 00 1	1
1 0 0 1 1	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ll ₁
	1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 1 1 0 0 10	1
1 1 1 1 0	

 $F = A\overline{B} + \overline{B}D + B\overline{C}\overline{D} + \overline{A}B\overline{C}(\overline{y}\overline{A}\overline{C}D)$

9. 用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常;红灯亮表示有一台不正常;黄灯亮表示有两台不正常;红、黄灯全亮表示三台都不正常。列出控制电路真值表,并选出合适的集成电路来实现。

解:

设:三台设备分别为 A、B、C: "1"表示有故障,"0"表示无故障; 红、黄、绿灯分别为 Y1、Y2、Y3:"1"表示灯亮;"0"表示灯灭。据题意列出真值表如下:

A	В	C	\mathbf{Y}_1	\mathbf{Y}_{2}	\mathbf{Y}_{3}
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

 $Y1 = A \oplus B \oplus C$

 $Y2 = BC + A(B \oplus C)$

于是得: $Y3 = \overline{ABC} = \overline{A+B+C}$

10. 用两片双四选一数据选择器和与非门实现循环码至 8421BCD 码转换。

解: (1) 画函数卡诺图;

	AB									
CD\	00	01	11	10						
00	0000	1001	1000	0111						
01	0001	Φ	Φ	Φ						
11	0010	Φ	Φ	Φ						
10	0011	0100	0101	0110						

(2) 写逻辑函数表达式:

(1) 画逻辑图:

11. 用一片 74LS148 和与非门实现 8421BCD 优先编码器

12. 用适当门电路,设计 16 位串行加法器,要求进位琏速度最快,计算一次加法时间。

解: 全加器真值表如下

Ai	Bi	Ci-1	Si	Ci+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

可以写出以下表达式

$$\overline{S} = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

$$S = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

$$\overline{C} = \overline{AB} + \overline{AC_{-1}} + \overline{BC_{-1}}$$

$$C = \overline{\overline{A}\overline{B} + \overline{A}\overline{C_{-1}}} + \overline{\overline{B}\overline{C_{-1}}}$$

$$C = AB + AC_{-1} + BC_{-1}$$

$$\overline{C} = \overline{AB + AC_{-1} + BC_{-1}}$$

要使进位琏速度最快,应使用"与或非"门。具体连接图如下。

若"与或非"门延迟时间为t1,"非门"延迟时间为t2,则完成一次16位加法运算所需时间为:

$$t = (16-1)t_{1} + (t_{1} + t_{2})$$

13. 用一片 4:16 线译码器将 8421BCD 码转换成余三码,写出表达式解:

十进制数	8421码	余三码
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

 $W(A, B, C, D) = \Sigma(5,6,7,8,9)$

 $X(A, B, C, D) = \Sigma(1, 2, 3, 4, 9)$

 $Y(A, B, C, D) = \Sigma(0,3,4,7,8)$

 $Z(A, B, C, D) = \Sigma(0, 2, 4, 6, 8)$

$$\begin{split} \mathbf{W}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}) = \mathbf{Y}_5 + \mathbf{Y}_6 + \mathbf{Y}_7 + \mathbf{Y}_8 + \mathbf{Y}_9 = \overline{\mathbf{Y}_5} \, \overline{\mathbf{Y}_6} \, \overline{\mathbf{Y}_7} \, \overline{\mathbf{Y}_8} \, \overline{\mathbf{Y}_9} \\ \mathbf{X}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{9}) = \mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3 + \mathbf{Y}_4 + \mathbf{Y}_9 = \overline{\mathbf{Y}_1} \, \overline{\mathbf{Y}_2} \, \overline{\mathbf{Y}_3} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_9} \\ \mathbf{Y}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{0}, \mathbf{3}, \mathbf{4}, \mathbf{7}, \mathbf{8}) = \mathbf{Y}_0 + \mathbf{Y}_3 + \mathbf{Y}_4 + \mathbf{Y}_7 + \mathbf{Y}_8 = \overline{\mathbf{Y}_0} \, \overline{\mathbf{Y}_3} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_7} \, \overline{\mathbf{Y}_8} \\ \mathbf{Z}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{8}) = \mathbf{Y}_0 + \mathbf{Y}_2 + \mathbf{Y}_4 + \mathbf{Y}_6 + \mathbf{Y}_8 = \overline{\mathbf{Y}_0} \, \overline{\mathbf{Y}_2} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_6} \, \overline{\mathbf{Y}_8} \end{split}$$

14. 使用一个 4 位二进制加法器设计 8421BCD 码转换成余三码转换器:

解:

15. 用 74LS283 加法器和逻辑门设计实现一位 8421 BCD 码加法器电路。

解:

16. 设计二进制码/格雷码转换器

解: 真值表

$\mathbf{B_3} \ \mathbf{B_2} \ \mathbf{B_1} \ \mathbf{B_0}$	$\mathbf{G_3} \ \mathbf{G_2} \ \mathbf{G_1} \ \mathbf{G_0}$
0 0 0 0	0 0 0 0
0 0 0 1	0 0 0 1
0 0 0 1 0	0 0 1 1
0 0 1 1	0 0 1 0
0 1 0 0	0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1	0 1 1 0 0 1 1 1
0 1 1 0	0 1 0 1
0 1 1 1	0 1 0 0
1 0 0 0	0 1 0 0
1 0 0 1	1 1 0 0 1
1 0 0 1 1 1 0 1 0	1111
1 0 1 1	1 1 1 0
1 0 1 1 1 1 0 0	1 0 1 0
0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1	1 0 1 1
	1001
1 1 1 1	1 0 0 0

17. 设计七段译码器的内部电路,用于驱动共阴极数码管。解: 七段发光二极管为共阴极电路,各段为"1"时亮。

七段译码器真值表如下:

	输	入			输		出				显示
A_3	A_2	A_1	A_0	Ya	Y_{b}	\mathbf{Y}_{c}	\mathbf{Y}_{d}	Ye	γ_{f}	Y_{g}	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

$$a = A_{3} + A_{1} + A_{2}A_{0} + \overline{A}_{2}\overline{A}_{0}$$

$$b = \overline{A}_{2} + \overline{A}_{1}\overline{A}_{0} + A_{1}A_{0}$$

$$c = A_{2} + \overline{A}_{1} + A_{0}$$

$$d = \overline{A}_{2}\overline{A}_{0} + A_{1}\overline{A}_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}A_{0}$$

$$e = \overline{A}_{2}\overline{A}_{0} + A_{1}\overline{A}_{0}$$

$$f = A_{3} + \overline{A}_{1}\overline{A}_{0} + A_{2}\overline{A}_{1} + A_{2}\overline{A}_{0}$$

$$g = A_{3} + A_{1}\overline{A}_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}$$

 码。代码设定如下: XY = 00
 A型
 MM

 01
 B型
 01
 B型

 10
 AB型
 10
 AB型

 11
 0型
 11
 0型

X	Y	M N	F ₁ (绿) F ₂ (红)
0	0	0 0	1 0
0 0 0 0 0 0 0 1 1	0	0 1	0 1
0	0	1 0	1 0
0	0		0 1
0	1	0 0 0 1	0 1
0	1	0 1 1 0	1 0
0	1	1 0	1 0
0	1	1 1	0 1
_ 1	0	0 0 0 1	0 1
1	0	0 1	0 1
- 1	0	1 0 1 1	1 0 0 1
_ 1	0		
_ 1	1	0 0 0 1	1 0
_ 1	1	0 1	1 0
_ 1	1	1 0	1 0
1	1	1 1	1 0

得: $F_1 = \Sigma$ (0, 2, 5, 6, 10, 12, 13, 14, 15) $F2 = \overline{F1}$

19. 设计保密锁。

解: 设 A,B,C 按键按下为 1, F 为开锁信号 (F=1 为打开), G 为报警信号 (G=1 为报警)。

(1) 真值表

A	В	С	F	G	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	0	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	

(1) 卡诺图化简 F 的卡诺图:

化简得: F = AB + ACG 的卡诺图

∖ AB								
c \	00	01	11	10				
0		1						
1	1	1						

化简得: $G = \overline{AB} + \overline{AC}$