ECE523: Engineering Applications of Machine Learning and Data Analytics

I acknowledge that this exam is solely my effort. I have done this work by myself. I have not consulted with others about this exam in any way. I have not received outside aid (outside of my own brain) on this exam. I understand that violation of these rules contradicts the class policy on academic integrity.

_	
Date :	
	You have 50 minutes to complete the exam. re partially correct. No credit is given for te neatly.
Problem 1:	
Problem 2:	
Problem 3:	
Problem 4:	
Problem 5:	
Total:	

Name:

Signature:

arizona.edu 1 February 8, 2017

Problem #1 – Ridge Regression (10 Points)

In class we discussed linear discriminant models and one approach was linear regression. In this problem we look at ridge regression, which is given by

$$\arg\min_{\mathbf{w}\in\mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

where $\mathbf{y} \in \mathbb{R}^n$ is a vector of the outputs, $\mathbf{X} \in \mathbb{R}^{n \times p}$ is the matrix of data and $\mathbf{w} \in \mathbb{R}^p$ are the parameters for the linear model $y = \mathbf{w}^\mathsf{T} \mathbf{x}$. Find \mathbf{w} .

Problem #2 – Principal Component Analysis (10 Points)

In class, we showed two different approaches that we could arrive at a solution to PCA: one with linear algebra and one with optimization. This problem asks you to use both of what you know about the PCA projection and task of optimization. Use these facts:

- The projection is performed with $z = \mathbf{w}^\mathsf{T} \mathbf{x}$. Note that z is a scalar because we are only looking for one principal axis.
- I am not too concerned with the magnitude of w, but I am concerned with its direction.
- You need to maximize the variance of z.

Use these facts to find w. It maybe a good idea to let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be the matrix of data. Then the covariance matrix is given by $\frac{1}{n-1}\mathbf{X}\mathbf{X}^\mathsf{T} = \Sigma$. This approach is similar to how we discussed PCA from a linear algebra perspective.

arizona.edu 3 February 8, 2017

Problem #3 – A Gamblers Ruin (10 Points)

[True/False] (1 point): Density estimation (using say, the kernel density estimator) can be used to perform classification.

[True/False] (1 point): One of the disadvantages of the logistic function is that its derivative is not very convenient to compute.

[True/False] (1 point): Logistic regression assumes that the log-likelihood ratio for two classes with equal priors is linear. More formally this is given by

$$\log \left\{ \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \right\} = \mathbf{w}^\mathsf{T} \mathbf{x} + w_0$$

[True/False] (1 point): Regularization is one way to prevent overfitting and the reason it is so effective is because the regularization term is data-dependent. Therefore, the optimization process will "find" the best way to be resilient against overfitting.

[True/False] (1 point): The training error of 1-NN classifier is 0.

[True/False] (1 point): The principal components are the ones that maximize the variance within a class.

[True/False] (1 point): The correspondence between logistic regression and naïve Bayes (with identity class covariances) means that there is a one-to-one correspondence between the parameters of the two classifiers.

[True/False] (1 point): The number of actions need not be equal to the number of classes. This question is in the context of risk and decision making with Bayes.

[True/False] (1 point): I don't like true and false questions, but I do like free points!

[Accept/Reject] (1 point): "My algorithm is better than yours. Look at the training error rates!"

[Accept/Reject] (1 point): "My algorithm is better than yours. Look at the training error rates and the p-value from the signed rank Wilcoxon test! (Footnote: reported results for best value of λ , chosen with 10-fold cross validation.)"

arizona.edu 5 February 8, 2017

Problem #4 – To Bayes or Not Bayes (10 Points)

Let consider a Bayes classifier with $p(\mathbf{x}|\omega_i)$ distributed as a multivariate Gaussian with mean μ_i and covariance $\Sigma_i = \sigma^2 I$ (note they all share the same covariance). We choose the class that has the largest

$$g_i(\mathbf{x}) = \log(p(\mathbf{x}|\omega_i)P(\omega_i)) \propto \mathbf{w}_i^\mathsf{T}\mathbf{x} + w_{0i}$$

Find \mathbf{w}_i and w_{0i} . Fact:

$$p(\mathbf{x}|\omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} \left(\mathbf{x} - \mu_i\right)^\mathsf{T} \Sigma_i^{-1} \left(\mathbf{x} - \mu_i\right)\right\}$$

Hints: Start with $g_i(\mathbf{x})$ and the fact stated above. Then begin to drop out the terms that are constant for all $g_i(\mathbf{x})$ to simplify the solution.

Problem #5 – Density Estimation (10 Points)

In class, we discussed three conditions that need be met if a density estimator $(p_n(\mathbf{x}) = \frac{k_n/n}{V_n})$ is to converge in probability to the true density $(p(\mathbf{x}))$. More formally,

$$\lim_{n \to \infty} V_n = 0, \quad \lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0$$

where k_n is the number of samples that fall within a region \mathcal{R} with volume V_n . Describe two out of the three conditions and why they are necessary for $p_n(\mathbf{x})$ to converge in probability to $p(\mathbf{x})$ when n approaches inifinity.