Cross-layer communication over fading channels with adaptive decision feedback

Borna Sayedana¹ Aditya Mahajan¹ Edmund Yeh²

¹McGill University

²Northeastern University

Wiopt 2020

Motivation

Physical Layer Design Objective

- Reliable Communication
- Efficiency in Rate and Power

Network Layer Design Objective

- Quality of Service(delay, etc.)
- System Stability

Cross Layer Design Objective

- Physical and Network Layer consideration Reliable Communication
- Minimizing both Power and Delay in Reliable Communication

Features of Cross Layer Design in Wireless systems

- Rate Adaptation in wireless systems:
 - Traffic Load in Network
 - Channel State
- Optimization Objectives:
 - Block Error Probability
 - End to End Packet Delays
 - Transmission Power

Motivating Question

Effect of Feedback on System Performance

Effect of an ACK/NACK feedback channel

- It can improve decoding error performance
- It can also increase queuing delay due to re-transmission

What controls the expected number of retransmissions?

- Ohannel State (exogenous process)
- The decoding threshold at the receiver.

Important Question

• How can we control decoding threshold?

Our main idea: exploit adaptive decision feedback

Adaptive Decision feedback implies significantly better power-delay trade-off

• $P(\alpha) = \min_{g} \{ \text{power of policy (g)} \mid \text{Delay of policy (g)} \le \alpha \}$

Communication System

System Variables

- Number of new packets: A_k
- Queue length: Q_k
- Channel state: S_k
- Number of transmitter packets: U_k
- Decoding threshold : T_k
- Fading gain : $H(S_k)$

Processes and Queue Dynamic

- A_k is an i.i.d process with decreasing and convex pdf
- S_k is an i.i.d process

$$Q_{k+1} = \begin{cases} Q_k - U_k + A_k, & \text{if} \quad \mathfrak{E}_k = 1 \\ Q_k + A_k, & \text{if} \quad \mathfrak{E}_k = 0 \end{cases}$$

Performance Metrics

- Queuing delay
- Probability of Error
- Transmission power

Our Solution

- Buffering delay is $d(Q_{k+1} A_k)$
- ullet We upper bound P_e by arepsilon
- How to find transmission power?

Probability of error and re-transmission

By [Forney 1968], we know error exponent for channels with feedback

$$P_{\mathrm{e}} \leq \exp\Bigl(-rac{
ho}{2}M\log\bigl(1+rac{\pi H(s)}{(1+
ho)}\bigr) +
ho Nu + rac{1}{1+
ho}Mt\Bigr)$$

and

$$P_r = \exp(Mt)P_e$$

Ensuring Reliable Communication

Finding Power needed to ensure desired probability of error

• Power Function is $\phi(u, t)h(s)$, where

$$\phi(u,t) = (1+\rho) \Big[\exp \Big(-\frac{2\log \varepsilon}{\rho M} + 2\frac{N}{M}u - \frac{2}{1+\rho}t \Big) - 1 \Big]$$

2 probability of re-transmission p(t)

$$p_r(U_k, T_k, \Pi_k, S_k) = \exp(MT_k)\varepsilon =: p(T_k)$$

Imposing power constraint

• Maximum power constraint: $\phi(u, t)h(s) \leq \Pi_{\text{max}}$

Solution Approach

Assumptions on the model

Communication cost at each time

$$c(q, s, u, t) = \lambda_{\pi} \phi(u, t) h(s) + \lambda_{d} \left[p(t) d(q) + (1 - p(t)) d(q - u) \right]$$

Assumptions on the Model

- $d(\cdot)$ increasing convex
- $\phi(\cdot,\cdot)$ increasing in u_k
- $\phi(\cdot,\cdot)$ decreasing in t_k

- $h(\cdot)$ increasing, convex
- p(t) increasing in t_k

Solution Approach

MDP Formulation

Prolem(1)

State Space: communication rule:

 $(Q_k, S_k) (U_k, T_k) = g_k(Q_k, S_k)$

Action Space: communication policy:

 $(U_k, T_k) g = (g_1, g_2, \dots, g_N)$

Find policy g which minimizes:

$$J(g) = \mathbb{E}\left[\sum_{k=1}^{K} c(Q_k, S_k, U_k, T_k)\right]$$

Question: What are some qualitative properties of policy g?

Literature Review

Similar Models in the Literature

- Power-delay trade-off only with rate adaption.
 [Berry and Gallager 2002], [Uysal-Biyikoglu, Prabhakar, and El Gamal 2002], [Zafer and Modiano 2009], [Bettesh and Shamai 2006], [Goyal, Kumar, and Sharma 2008], [Fu, Modiano, and Tsitsiklis 2006]
 - Dynamic Programming Decomposition/structure of optimal policy in 1 dimension.
- [Cao and Yeh 2008]: Investigated *Adaptive Decision Feedback*, and 2 dimensional structural Properties
 - Only for binary choice for rate and threshold

Key Contribution of This paper

Investigating qualitative structure of multi-dimensional optimal policies

Question

Question: Does the optimal policy have monotonicity Properties?

Why this question is important?

- Understanding the physical system
- Can be exploited in online-learning algorithms

Why it's hard to answer?

- Both state and action spaces are multi-dimensional
- Most of previous results in cross layer design are for 1 dimensional systems.

Solution and Main Results

Dynamic Programming Decomposition

Defining value functions and action-value functions

Proposition 1

For any q and s

$$V_{K+1}(q,s)=0$$

and for $k \in \{K, K - 1, ..., 1\}$,

$$W_k(q, s, u, t) = c_k(q, s, u, t) +$$

$$\sum_{(s,a)} P_S(s) P_A(a) [(1-p(t)) V_{k+1}(q-u+a,s) + p(t) V_{k+1}(q+a,s)]$$

- Value function : $V_k(q, s) = \min_{u,t} W_k(q, s, u, t)$.
- Then: $g_k(q,s) \to \text{arg min at stage } k \Rightarrow g = (g_1,\ldots,g_K)$ is optimal for Problem.

Main Results

Structural Properties of Value Function

Theorem 1

For any time slot k, the value function $V_k(q,s)$ satisfies the following properties:

- For any $s \in \mathcal{S}$, $V_k(q, s)$ is weakly increasing in q.
- ② For any $q \in \mathcal{Q}$, $V_k(q,s)$ is weakly increasing in s.
 - $1 \Rightarrow \uparrow$ number of packets $\Rightarrow \uparrow$ cost to go.
 - 2 \Rightarrow channel deteriorates $\Rightarrow \uparrow$ cost to go.

Main Results

Structural Properties of Optimal policy

Theorem 2 (Informal Representation)

- \uparrow number of packets \Rightarrow (Rate \uparrow) Or (Threshold \downarrow).
- channel deteriorates \Rightarrow (Rate \downarrow) Or (Threshold \uparrow).

Main Results

Structural Properties of Optimal policy

Theorem 3

Suppose the cost function satisfies the following property:

(P) for any $(q,s)\in\mathcal{Q}\times\mathcal{S}$, and any $u_1,u_2\in\mathcal{U}$ and $t_1,t_2\in\mathcal{T}$ such that $u_1\leq u_2$ and $t_1\leq t_2$, we have

$$c(q, s, u_1, t_2) + c(q, s, u_2, t_1) \leq c(q, s, u_2, t_2) + c(q, s, u_1, t_1).$$

Then, the "or" in Theorem 2 can be replaced by "and".

- Verify property (P) \rightarrow system parameters $(\lambda_{\pi}, \lambda_{d}, \Pi_{\mathsf{max}}, M)$
- $1 \Rightarrow \uparrow$ number of packets \Rightarrow (Rate \uparrow) And (Threshold \downarrow).
- 2 \Rightarrow channel deteriorates \Rightarrow (Rate \downarrow) And (Threshold \uparrow).

Partial Order on Action Space

Definition

 $\preceq_{\mathcal{A}}$: a partial order on $\mathcal{U} \times \mathcal{T}$

- we say $(u_1, t_1) \preceq_{\mathcal{A}} (u_2, t_2)$ if $u_1 \leq u_2$ and $t_1 \geq t_2$
- Fixed $s \in \mathcal{S}$, $W_k(q, s, u, t)$ has decreasing differences on $\mathcal{Q} \times (\mathcal{U} \times \mathcal{T})$.
- ② Fixed $q \in \mathcal{Q}$, $W_k(q, s, u, t)$ has increasing differences on $\mathcal{S} \times (\mathcal{U} \times \mathcal{T})$.
- **3** Given the sub-modularity on $(\mathcal{U} \times \mathcal{T}) \Rightarrow$ Theorem 3.

Conclusion and Future Directions

Conclusion

- We investigate the impact of adaptive decision feedback on power-delay curve.
- We establish monotonicity property of the optimal policy and value function.

Future Directions

- Extend these results to infinite horizon setup
- 2 Develop online learning algorithms to utilize such properties.

Thank you!

Questions

borna.sayedana@mail.mcgill.ca

