CSC 611: Analysis of Algorithms

Lecture 3

Recurrence Relations

Recurrent Algorithms: BINARY – SEARCH

7

 for an ordered array A, finds if x is in the array A[lo...hi]

Alg.: BINARY-SEARCH (A, lo, hi, x)

if (lo > hi)

return FALSE

mid
$$\leftarrow$$
 L(lo+hi)/2

if $x = A[mid]$

return TRUE

if ($x < A[mid]$)

BINARY-SEARCH (A, lo, mid-1, x)

if ($x > A[mid]$)

BINARY-SEARCH (A, mid+1, hi, x)

12

10

mid

Example

• $A[8] = \{1, 2, 3, 4, 5, 7, 9, 11\}$ - lo = 1 hi = 8 x = 7

mid = 4, lo = 5, hi = 8

mid = 6, A[mid] = xFound!

CSC 611 - Lecture 3

Example

- $A[8] = \{1, 2, 3, 4, 5, 7, 9, 11\}$
 - $hi = 8 \quad x = 6$ - lo = 1

mid = 4, lo = 5, hi = 8

mid = 6, A[6] = 7, lo = 5, hi = 5

mid = 5, A[5] = 5, lo = 6, hi = 5NOT FOUND!

Analysis of BINARY-SEARCH

Recurrences and Running Time

CSC 611 - Lecture 3

Recurrences arise when an algorithm contains recursive calls to itself

- What is the actual running time of the algorithm?
- Need to solve the recurrence
 - Find an explicit formula of the expression (the generic term of the sequence)

CSC 611 - Lecture 3

6

5

Example Recurrences

•
$$T(n) = T(n-1) + n$$

$$\Theta(n^2)$$

 Recursive algorithm that loops through the input to eliminate one item

•
$$T(n) = T(n/2) + c$$

Recursive algorithm that halves the input in one step

•
$$T(n) = T(n/2) + n$$

$$\Theta(n)$$

 Recursive algorithm that halves the input but must examine every item in the input

•
$$T(n) = 2T(n/2) + 1$$

$$\Theta(n)$$

Recursive algorithm that splits the input into 2 halves and does a constant amount of other work
 CSC 611 - Lecture 3

Methods for Solving Recurrences

- Iteration method
- Substitution method
- Recursion tree method
- Master method

Iteration Method

Calls for expanding a recurrence as a summation of terms dependent on n and the initial conditions

CSC 611 - Lecture 3

9

The Iteration Method

$$T(n) = c + T(n/2)$$

 $T(n) = c + T(n/2)$
 $T(n/2) = c + T(n/4)$
 $= c + c + T(n/4)$
 $= c + c + c + T(n/8)$
Assume $n = 2^k$
 $T(n) = c + c + ... + c + T(1)$
 $= c + c + c + C(1)$
 $= c + c + C(1)$
 $= c + c + C(1)$
 $= c + c + C(1)$

Iteration Method – Example 1

$$T(n) = n + 2T(n/2)$$
 Assume: $n = 2^k$
 $T(n) = n + 2T(n/2)$ $T(n/2) = n/2 + 2T(n/4)$
 $= n + 2(n/2 + 2T(n/4))$
 $= n + n + 4T(n/4)$
 $= n + n + 4(n/4 + 2T(n/8))$
 $= n + n + n + 8T(n/8)$
... $= in + 2^iT(n/2^i)$
 $= kn + 2^kT(1)$
 $= nlgn + nT(1) = \Theta(nlgn)$

CSC 611 - Lecture 3

11

Iteration Method – Example 1

$$T(n) = n + T(n-1)$$

$$T(n) = n + T(n-1)$$

= $n + (n-1) + T(n-2)$
= $n + (n-1) + (n-2) + T(n-3)$
... = $n + (n-1) + (n-2) + ... + 2 + T(1)$
= $n(n+1)/2 - 1 + T(1)$
= $n^2 + T(1) = \Theta(n^2)$

Iteration Method – Example 2

• $T(n) = 3T\left(\left|\frac{n}{4}\right|\right) + n$ Can be iterated as follows:

$$T(n) = n + 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right)$$

$$= n + 3\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + 3T\left(\left\lfloor \frac{n}{16} \right\rfloor\right)$$

$$= n + 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + 3\left(\left\lfloor \frac{n}{16} \right\rfloor\right) + 3T\left(\left\lfloor \frac{n}{64} \right\rfloor\right)$$

$$= n + 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + 9\left\lfloor \frac{n}{16} \right\rfloor + 27T\left(\frac{n}{64}\right)$$

• ith term is $3^i \left\lfloor \frac{n}{4^i} \right\rfloor$

Iteration stops when $\left| \frac{n}{A^i} \right| = 1 \Longrightarrow i \ge \log_4 n$

CSC 611 - Lecture 3

13

Iteration Method – Example 2

- · Thus,
 - $T(n) \le n + 3n/4 + 9n/16 + 27n/64 + \dots + 3^{\log_4} n \Theta(1)$

$$\leq n \sum_{i=0}^{\infty} \frac{3}{4}i + \Theta(n \log_4 3)$$

$$= 4n + o(n)$$

$$= O(n)$$

CSC 611 - Lecture 3

The substitution method

- 1. Guess a solution
- 2. Use induction to prove that the solution works

CSC 611 - Lecture 3

15

Substitution method

- Guess a solution
 - T(n) = O(g(n))
 - Induction goal: apply the definition of the asymptotic notation
 - $T(n) \le d g(n)$, for some d > 0 and $n \ge n_0$
 - Induction hypothesis: $T(k) \le d g(k)$ for all k < n
- Prove the induction goal
 - Use the induction hypothesis to find some values of the constants d and n₀ for which the induction goal holds

Example: Binary Search

$$T(n) = c + T(n/2)$$

- Guess: T(n) = O(lgn)
 - Induction goal: $T(n) \le d \lg n$, for some d and $n \ge n_0$
 - Induction hypothesis: T(n/2) ≤ d lg(n/2)
- Proof of induction goal:

CSC 611 - Lecture 3

17

Example: Binary Search

$$T(n) = c + T(n/2)$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = c$ has to verify condition: $T(1) \le d \cdot \lg 1 \Rightarrow c \le d \cdot \lg 1 = 0$ - contradiction
 - Choose $n_0 = 2 \Rightarrow T(2) = 2c$ has to verify condition: $T(2) \le d \lg 2 \Rightarrow 2c \le d \lg 2 = d \Rightarrow \text{ choose } d \ge 2c$
- We can similarly prove that $T(n) = \Omega(lgn)$ and therefore: $T(n) = \Theta(lgn)$

Example 2

$$T(n) = T(n-1) + n$$

- Guess: $T(n) = O(n^2)$
 - Induction goal: $T(n) \le c n^2$, for some c and $n \ge n_0$
 - Induction hypothesis: T(n-1) ≤ c(n-1)²
- Proof of induction goal:

T(n) = T(n-1) + n
$$\le$$
 c (n-1)² + n
= cn² - (2cn - c - n) \le cn²
if: 2cn - c - n \ge 0 \Rightarrow c \ge n/(2n-1) \Rightarrow c \ge 1/(2 - 1/n)

- For $n \ge 1 \Rightarrow 2 - 1/n \ge 1 \Rightarrow$ any $c \ge 1$ will work

CSC 611 - Lecture 3

19

Example 2

$$T(n) = T(n-1) + n$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = 1$ has to verify condition: $T(1) \le c \ (1)^2 \Rightarrow 1 \le c \Rightarrow OK!$
- We can similarly prove that $T(n) = \Omega(n^2)$ and therefore: $T(n) = \Theta(n^2)$

Example 3

$$T(n) = 2T(n/2) + n$$

- Guess: T(n) = O(nlgn)
 - Induction goal: $T(n) \le cn \ lgn$, for some c and $n \ge n_0$
 - Induction hypothesis: T(n/2) ≤ cn/2 lg(n/2)
- Proof of induction goal:

T(n) = 2T(n/2) + n
$$\leq$$
 2c (n/2)|g(n/2) + n
= cn |gn - cn + n \leq cn |gn
if: - cn + n \leq 0 \Rightarrow c \geq 1

CSC 611 - Lecture 3

21

Example 3

$$T(n) = 2T(n/2) + n$$

- Boundary conditions:
 - Base case: $n_0 = 1 \Rightarrow T(1) = 1$ has to verify condition: $T(1) \le c n_0 |g n_0| \Rightarrow 1 \le c * 1 * |g 1 = 0$ contradiction
 - Choose $n_0 = 2 \Rightarrow T(2) = 4$ has to verify condition: $T(2) \le c * 2 * lg2 \Rightarrow 4 \le 2c \Rightarrow \text{ choose } c = 2$
- We can similarly prove that $T(n) = \Omega(nlgn)$ and therefore: $T(n) = \Omega(nlgn)$

Changing variables

$$T(n) = 2T(\sqrt{n}) + Ign$$

- Rename: $m = lgn \Rightarrow n = 2^m$

$$T(2^m) = 2T(2^{m/2}) + m$$

- Rename: $S(m) = T(2^m)$

$$S(m) = 2S(m/2) + m \Rightarrow S(m) = O(mlgm)$$
 (demonstrated before)

$$T(n) = T(2^m) = S(m) = O(mlgm) = O(lgnlglgn)$$

Idea: transform the recurrence to one that you have seen before

CSC 611 - Lecture 3

23

Changing variables (cont.)

$$T(n) = T(n/2) + 1$$

- Rename:
$$n = 2^m (n/2 = 2^{m-1})$$

$$T(2^m) = T(2^{m-1}) + 1$$

- Rename:
$$S(m) = T(2^m)$$

$$S(m) = S(m-1) + 1$$

= 1 +
$$S(m-1)$$
 = 1 + 1 + $S(m-2)$ = $\underbrace{1 + 1 + ... + 1}_{} + S(1)$

m -1 times

$$S(m) = O(m) \Rightarrow T(n) = T(2^m) = S(m) = O(m) = O(lgn)$$

CSC 611 - Lecture 3

The recursion-tree method

Convert the recurrence into a tree:

- Each node represents the cost incurred at that level of recursion
- Sum up the costs of all levels

Used to "guess" a solution for the recurrence

CSC 611 - Lecture 3

25

E.g.:
$$T(n) = 3T(n/4) + cn^2$$

$$T(n) \qquad cn^{2} \qquad cn^{2}$$

$$T(\frac{n}{4}) \quad T(\frac{n}{4}) \quad T(\frac{n}{4}) \qquad c(\frac{n}{4})^{2} \qquad c(\frac{n}{4})^{2} \qquad c(\frac{n}{4})^{2}$$

$$T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16}) \quad T(\frac{n}{16})$$

Rev. 2.2 - 1/2/2015

E.g.: $T(n) = 3T(n/4) + cn^2$ (contd.)

- Subproblem size at level i is: n/4ⁱ
- Subproblem size hits 1 when $1 = n/4^i \Rightarrow i =$ log₄n
- Cost of a node at level i = c(n/4i)²
- Number of nodes at level $i = 3^i \Rightarrow last level$ has $3^{\log_A n} = n^{\log_A 3}$ nodes
- Total cost:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) \le \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) = \frac{1}{1 - \frac{3}{16}} cn^2 + \Theta\left(n^{\log_4 3}\right) = O(n^2)$$

 $\Rightarrow T(n) \in O(n^2)$

Rev. 2.2 - 1/2/2015

CSC711: Design and Analysis of Computer Algorithms

27

$$W(n) = 2W(n/2) + n^2$$

 $W(n/2)=2W(n/4)+(n/2)^{-2}$

 $\begin{array}{c} W(n/4) = 2W(n/8) + (n/4) \ \ \, \end{array}$ Subproblem size at level i is: n/2i Subproblem size hits 1 when $1 = n/2^i \Rightarrow i = lgn$

Cost of the problem at level $i = n^2/2^i$ No. of nodes at level $i = 2^i$ h = Height of the tree \rightarrow $n/2^h=1$ h = Ign

$$\Rightarrow W(n) = O(n^2)$$

$$\lg n - 1 \cdot n^2$$

$$W(n) = \sum_{i=0}^{\lg n-1} \frac{n^2}{2^i} + 2^{\lg n} W(1) = n^2 \sum_{i=0}^{\lg n-1} \left(\frac{1}{2}\right)^i + n \le n^2 \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i + O(n) = n^2 \frac{1}{1 - \frac{1}{2}} + O(n) = 2n^2$$

Rev. 2.2 - 1/2/2015

Readings

CSC 611 - Lecture 3

30