Промышленная автоматика

Программируемые контроллеры *HIMatrix*

F30

Руководство по эксплуатации

Важные указания

Все упомянутые в настоящем документе продукты фирмы HIMA Paul Hildebrandt GmbH зарегистрированы и защищены законодательством Европейского Союза. Это же действует и в отношении других упомянутых в настоящем документе производителей и их продукции.

Описываемое в настоящем документе изделие сертифицировано в Европейском Союзе и соответствует требованиям Европейской Директивы по электромагнитной совместимости.

Все технические сведения и указания в настоящем документе были разработаны с большой тщательностью и составлены с соблюдением эффективных мер контроля. Тем не менее, не исключается возможность появления ошибок.

Пэтому фирма HIMA Paul Hildebrandt GmbH не гарантирует отсутствие ошибок и не несет юридическую или другую ответственность за возможные последствия, возникшие в результате предоставления в документе ошибочных сведений.

Фирма HIMA Paul Hildebrandt GmbH с благодарностью примет все сообщения о возможных ошибках и неточностях.

Фирма HIMA Paul Hildebrandt GmbH оставляет за собой право на внесение технических изменений без предварительного уведомления.

Дополнительную информацию и техническую поддержку можно получить на сайте фирмы HIMA Paul Hildebrandt GmbH <u>www.hima.com</u> и по адресу:

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Bruehl Germany

Тел.: +49 6202 709 0 Факс: +49 6202 709 107

Адрес электронной почты: info@hima.com

F30 F30 -20°

Содержание

1	Ко	нтроллер HIMatrix F30	. 4
	1.1 1.2	Вид спереди	
2	Бе	зопасные цифровые входы	. 5
	2.1 2.2	Перенапряжение на цифровых входах Контроль линии	
3	Бе	зопасные цифровые выходы	. 7
	3.1	Контроль линии	. 9
4	Ко	ммуникация	. 9
	4.1 4.2 4.3 4.4	Подключения для связи Ethernet	10 10
5	Кн	опка сброса	12
6	Ча	сы аппаратного обеспечения	13
7	Св	етодиодные индикаторы	13
8	Ус	тановка F30 во взрывоопасной зоне класса 2	14
9	Ко	нфигурация входов/выходов	15
1	0 (Сигналы и коды ошибок входов/выходов	15
		Цифровые входы F30	
1	1 1	Гехнические характеристики F30	18
		Технические характеристики HIMatrix F30 -20°Сертификаты HIMatrix F30	19 19

1 Контроллер *HIMatrix* F30

Безопасный программируемый логический контроллер *HIMatrix* F30 (далее контроллер) поставляется в двух исполнениях.

Обозначение Номер изделия		Описание	
F30 98 2200415		Рабочая температура от 0 до +60 °C	
F30 -20°	98 2200455	Рабочая температура от -20 до +60 °C	

Следующее описание действительно для обоих вариантов исполнения. Отличия контроллеров друг от друга описаны в технических характеристиках в главе 1.13.1 F30 -20°.

1.1 Вид спереди

Рисунок 1: Вид спереди

Контроллер F30 представляет собой компактное программируемое электронное устройство в металлическом корпусе с 20 цифровыми входами и 8 цифровыми выходами.

1.2 Блок-схема

Рисунок 2: Блок-схема

2 Безопасные цифровые входы

Контроллер имеет 20 цифровых входов, состояние которых отображается посредством светодиодов.

Питание беспотенциальных пассивных контактных датчиков с LS+ осуществляется от устойчивых к короткому замыканию источников напряжения 24 В. Один источник напряжения снабжает группу из четырех датчиков.

Вместо контактов могут также подключаться источники сигналов с собственным питанием. Тогда минус источника сигнала необходимо соединить с минусом сигнала входа (L-).

Рисунок 3: Подключения к безопасным цифровым входам

беспотенциальных контактов

Безопасным состоянием входа является передача сигнала 0 в логическую схему прикладной программы.

источников сигнала с напряжением

Если тестовые программы цифровых входов обнаружили ошибку, то для неисправного канала согласно принципу тока покоя в прикладной программе обрабатывается сигнал 0 и активируется светодиод «FAULT».

Для внешней проводки и подключения датчиков следует применять принцип тока покоя. Таким образом, для входных сигналов в качестве безопасного состояния в случае ошибки принимается обесточенное состояние (сигнал 0).

Если внешняя линия не контролируется, тогда обрыв провода оценивается как безопасный сигнал 0.

Цифровые входы подключаются при помощи следующих клемм:

№ клеммы	Обозначение	Функция (входы)	
13	LS+ Питание датчиков входов 14		
14	1 Цифровой вход 1		
15	2	Цифровой вход 2	
16	3 Цифровой вход 3		
17	4 Цифровой вход 4		
18	L- Минус входного сигнала		

№ клеммы	Обозначение	Функция (входы)	
19	LS+	Питание датчиков входов 58	
20	5	Цифровой вход 5	
21	6	Цифровой вход 6	
22 7		Цифровой вход 7	

№ клеммы	Обозначение	Функция (входы)	
23	8	Цифровой вход 8	
24	L-	Минус входного сигнала	

№ клеммы	Обозначение	Функция (входы)	
25	LS+ Питание датчиков входов 912		
26	9 Цифровой вход 9		
27	10	Цифровой вход 10	
28	11 Цифровой вход 11		
29	12 Цифровой вход 12		
30	L- Минус входного сигнала		

№ клеммы	Обозначение Функция (входы)	
31	LS+	Питание датчиков входов 1316
32	13 Цифровой вход 13	
33	14	Цифровой вход 14
34	15 Цифровой вход 15	
35	16 Цифровой вход 16	
36	L- Минус входного сигнала	

№ клеммы	Обозначение Функция (входы)	
37	LS+ Питание датчиков входов 1720	
38	17 Цифровой вход 17	
39	18	Цифровой вход 18
40	19 Цифровой вход 19	
41	20 Цифровой вход 20	
42	L- Минус входного сигнала	

Таблица 1: Назначение клемм цифровых входов

2.1 Перенапряжение на цифровых входах

Вследствие непродолжительного времени цикла контроллеров HIMatrix на цифровых входах импульс перенапряжения согласно EN 61000-4-5 может считываться как кратковременный сигнал высокого уровня.

Чтобы в таких случаях избежать сбоев в работе, в соответствии с применением необходимо принять одну из следующих мер:

- использовать экранированные линии для сигналов ввода для предотвращения воздействия перенапряжения в системе,
- устранить помехи в прикладной программе: сигнал должен поступить минимум в двух циклах, прежде чем его можно будет проанализировать.

Внимание: за счет этого увеличивается время реакции системы!

От вышеуказанных мер можно отказаться, если при расчете параметров установки можно исключить возможности перенапряжение в системе. К расчету параметров, в частности, относятся меры защиты, касающиеся перенапряжения, удара молнии, заземления и проводного монтажа установки на основе данных изготовителя и релевантных стандартов.

2.2 Контроль линии

Контроль линии представляет собой контроль на замыкание и обрыв линии, например, входов аварийного отключения согл. категории 4 в соответствии с EN 954-1, который для контроллера F30 можно параметрировать.

Для этого цифровые выходы DO1 – DO8 контроллера соединяются с цифровыми входами DI того же контроллера следующим образом (пример):

Рисунок 4: Контроль линии

Цифровые выходы DO синхронизируются, чтобы контролировать линии, идущие к цифровым входам.

На передней панели контроллера мигает светодиод «FAULT», входы устанавливаются на сигнал 0 и отображается код ошибки, если возникают следующие ошибки:

- перекрестное замыкание между двумя параллельными линиями,
- скрещивание двух линий (напр., DO 2 на DI 3),
- замыкание одной из линий на землю (только при заземленном минусе выходного сигнала),
- обрыв линии или размыкание контактов, т. е. даже при задействовании одного из показанных выше переключателей EMERGENCY OFF мигает светодиод «FAULT» и отображается код ошибки.

Конфигурация контроля линии в прикладной программе описана в **Руководстве по проектированию** для HIMatrix.

3 Безопасные цифровые выходы

Контроллер имеет 8 цифровых выходов, состояние которых отображается посредством светодиодов.

Безопасным состоянием любого выхода является обесточенное состояние. При ошибках канала отключаются соответствующие выходы, а при ошибках контроллера – все выходы. При сбое связи через Ethernet для выхода устанавливается параметрированное предустановленное значение по умолчанию. Это необходимо учитывать в поведении подключенных исполнительных элементов

Ошибки в одном или нескольких каналах, а также ошибки контроллера отображаются при помощи светодиода «FAULT» на передней панели. Дополнительно системные сигналы могут анализироваться в прикладной программе контроллера.

Нагрузка выходов 1...3 и 5...7 при максимальной температуре окружающей среды может составлять 0,5 A, выходов 4 и 8 – соответственно 1 A, при температуре окружающей среды до 50 °C – 2 A.

При перегрузке отключается один выход или все. Если перегрузка устранена, то выходы снова включаются в соответствии с заданным состоянием (см. «Технические характеристики»).

Внешняя линия выхода не контролируется, но при распознавании короткого замыкания подается сигнал.

Цифровые выходы подключаются при помощи следующих клемм:

№ клеммы	Обозначение	Функция (выходы)	
1	L-	Минус выходного сигнала группы каналов	
2	1	Цифровой выход 1	
3	2	Цифровой выход 2	
4	3	Цифровой выход 3	
5	4	Цифровой выход 4 (для повышенной нагрузки)	
6	L-	Минус выходного сигнала группы каналов	

№ клеммы	Обозначение	Функция (выходы)	
7	L-	Минус выходного сигнала группы каналов	
8	5	Цифровой выход 5	
9	6	Цифровой выход 6	
10	7	Цифровой выход 7	
11	8	Цифровой выход 8 (для повышенной нагрузки)	
12	L-	Минус выходного сигнала группы каналов	

Таблица 2: Назначение клемм цифровых выходов

Пример подключения исполнительных элементов к выходам

Рисунок 5: Подключение исполнительных элементов к выходам

Параллельное соединение с резервированием двух выходов должно выполняться только с применением развязывающих диодов.

Для надежного срабатывания встроенной защиты однополюсного нагруженного выхода обязательно выполнение двухполюсного подключения нагрузки с использованием соответствующего минуса выходного сигнала L- используемой группы каналов.

Подключение индуктивных нагрузок может осуществляться без гасящего диода на потребителе. Однако для шунтирования напряжения помех непосредственно на потребителе настоятельно рекомендуется использовать защитный диод.

3.1 Контроль линии

Цифровые выходы могут использоваться для контроля замыкания и обрыва линии входов, напр. для кнопок аварийного отключения EMERGENCY OFF согласно кат. 4 в соответствии с EN 954-1. Для этого выходы синхронизируются и соединяются с безопасными цифровыми входами того же контроллера (см. главу 2.2). Выходы в этом случае берут на себя функцию тактовых выходов.

Тактовые выходы нельзя использовать как безопасные выходы!

4 Коммуникация

4.1 Подключения для связи Ethernet

Обозначение	Разъем	Функция
1 10/100BaseT	RJ-45	С обеспечением безопасности: Safe ethernet
		Небезопасные: Ethernet/IP, OPC,
		программирующее устройство (PADT), TCP-SR, SNTP, Modbus-TCP
0 10/100D T	51.45	·
2 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet
		Без обеспечения безопасности: Ethernet/IP, OPC, программирующее устройство (PADT), TCP-SR, SNTP, Modbus-TCP
3 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet
		Без обеспечения безопасности: Ethernet/IP, OPC, программирующее устройство (PADT), TCP-SR, SNTP, Modbus-TCP
4 10/100BaseT	RJ-45	С обеспечением безопасности: Safeethernet
		Без обеспечения безопасности: Ethernet/IP, OPC, программирующее устройство (PADT), TCP-SR, SNTP, Modbus-TCP

Таблица 3: Подключения для связи Ethernet

По два подключения RJ-45 со встроенными светодиодами расположены на верхней и нижней стороне корпуса. Значения светодиодов объясняется в главе «Индикация связи» в Руководстве по компактным системам. Считывание параметров соединения основано на «MAC-адресе» (Media Access Control), определяемом при производстве.

MAC-адрес системы управления указан на наклейке над обоими нижними подключениями RJ-45 (1 и 2).

Пример наклейки: MAC-ADR

00.E0.A1.00.06.C0

Контроллер HIMatrix F30 имеет встроенный сетевой коммутатор для безопасной связи Ethernet (Safeethernet). Более подробная информация на тему «сетевой коммутатор» и «Safeethernet» находится в главе «Безопасная связь» Руководства по компактным системам.

4.2 Используемые сетевые порты для связи Ethernet

Порты UDP/использование

8000: Программирование и управление при помощи ELOP II Factory

8001: Конфигурация удаленного устройства ввода/вывода посредством ПЭС

6010: Safeethernet и OPC

123: SNTP (синхронизация по времени между ПЭС и устройством удаленного ввода/

вывода, а также внешними устройствами)

6005/

6012: Если в сети НН не выбрано TCS_DIRECT

8895: Ведущее устройство Modbus UDP, если конфигурировано

44818: Ethernet/IP протокол сессии для идентификации устройства

2222: Обмен данными Ethernet/IP

Порты ТСР /использование

502: Modbus (изменяется пользователем)

ххх: TCP-SR задается пользователем

44818: Ethernet/IP Explicit Messaging Services

4.3 Разъемы для связи с полевой шиной

Три 9-полюсных разъема SUB-D находятся на передней стороне корпуса:

Обозначение	Разъем	Аппаратное обеспечение/ модули	Выбор протокола
FB 1	Гнездо	CM-PROFIBUS-DP Master	Profibus Master
(со съемным моду-	SUB-D	CM-PROFIBUS-DP Slave	Profibus Slave
лем, опционально, заводская установка)		CM-RS485 MODBUS M/S	Modbus Master RS485 Modbus Slave RS485
		CM-INTERBUS Master	Interbus Master
FB 2	Гнездо	CM-PROFIBUS-DP Master	Profibus Master
(со съемным моду-	SUB-D	CM-PROFIBUS-DP Slave	Profibus Slave
лем, опционально, заводская установка)		CM-RS485 MODBUS M/S	Modbus Master RS485 Modbus Slave RS485
		CM-INTERBUS Master	Interbus Master
FB 3	Гнездо SUB-D	RS485	Modbus Master RS485 Modbus Slave RS485

Таблица 4: Разъемы для связи с полевой шиной

Назначение штырьковых выводов разъемов SUB-D FB1 и FB2

со съемным модулем для ведущего или ведомого устройства Profibus DP

Разъем	Сигнал	Функция
1		
2		
3	RxD/TxD-A	Принятые/переданные данные А
4	RTS	Управляющий сигнал

Разъем	Сигнал	Функция
5	DGND	Опорный потенциал данных
6	VP	5 В, положительный полюс питающего напряжения
7		
8	RxD/TxD-B	Принятые/переданные данные В
9		

Таблица 5: Назначение штырьковых выводов подключений SUB-D FB1 и FB2 Profibus DP

Назначение штырьковых выводов разъемов SUB-D FB1 и FB2

Со съемным модулем для ведущего или ведомого устройства Modbus (RS 485)

Разъем	Сигнал	Функция
1		
2	RP	5 В, с применением развязывающих диодов
3	RxD/TxD-A	Принятые/переданные данные А
4	CNTR-A	Управляющий сигнал А
5	DGND	Опорный потенциал данных
6	VP	5 В, положительный полюс питающего напряжения
7		
8	RxD/TxD-B	Принятые/переданные данные В
9	CNTR-B	Управляющий сигнал В

Таблица 6: Назначение штырьковых выводов подключений SUB-D FB1 и FB2 Modbus

Назначение штырьковых выводов разъемов SUB-D FB1 и FB2

со съемным модулем для COM USER Task (RS 232)

Разъем	Сигнал	Функция
1		
2	TxD	Переданные данные
3	RXD	Принятые данные
4		
5	DGND	Опорный потенциал данных
6		
7	RTS	Запрос на отправку (Request to Send)
8		
9		

Таблица 7: Назначение штырьковых выводов разъемов SUB-D FB1 и FB2 RS 232

Назначение штырьковых выводов разъемов SUB-D FB1 и 2

Со съемным модулем для INTERBUS

Разъем	Сигнал	Функция
1	DO	Положительный выход данных
2	DI	Положительный вход данных
3	COM	Общая линия 0 В

Разъем	Сигнал	Функция
4		
5		
6	DO-	Отрицательный вход данных
7	DI-	Отрицательный выход данных
8		
9		

Таблица 8: Назначение штырьковых выводов подключений SUB-D FB1 и FB2 INTERBUS

Назначение штырьковых выводов подключения SUB-D FB3

Ведущее или ведомое устройство Modbus

Разъем	Сигнал	Функция
1		
2		
3	RxD/TxD-A	Принятые/переданные данные А
4	CNTR-A	Управляющий сигнал А
5	DGND	Опорный потенциал данных
6	VP	5 В, положительный полюс питающего напряжения
7		
8	RxD/TxD-B	Принятые/переданные данные В
9	CNTR-B	Управляющий сигнал В

Таблица 9: Назначение штырьковых выводов подключения SUB-D FB3 Modbus

4.4 IP-адрес и ID системы (SRS)

Вместе с контроллером поставляется прозрачная наклейка, на которой можно написать IP-адрес и ID контроллера (SRS, System-Rack-Slot) после изменения:

IP___.__.SRS___._.

Значение по умолчанию для IP-адреса:192.168.0.99Значение по умолчанию для SRS:60000.0.0

Не закрывайте наклейками вентиляционные щели на корпусе контроллера.

Изменение IP-адреса и ID контроллера описано в руководстве «Первые шаги» **ELOP II Factory**.

5 Кнопка сброса

Контроллер F30 оснащен кнопкой сброса. Нажимать на нее нужно только в том случае, если неизвестны имя пользователя или пароль для доступа администратора. Если настроенный IP-адрес контроллера не подходит к PADT (ПК), то установить соединение позволяет запись «Route add» в ПК.

Доступ к кнопке возможен через небольшое круглое отверстие на верхней стороне корпуса, прибл. в 5 см от левого края. Нажимать на кнопку следует при помощи стержня из изоляционного материала, чтобы избежать коротких замыканий внутри корпуса.

Сброс осуществляется только в том случае, если происходит перезагрузка контроллера (выключение, включение) и одновременно минимум 20 сек удерживается нажатой кнопка сброса. Нажатие кнопки во время эксплуатации не дает никакого результата.

Внимание! Возможны нарушения связи по полевой шине!

Перед включением контроллера **с** нажатой кнопкой сброса необходимо отсоединить все штекеры полевой шины контроллера, так как в противном случае возможны помехи при связи с полевой шиной других участников.

Вновь вставить штекеры полевой шины можно только тогда, когда контроллер будет находиться в рабочем состоянии STOP или RUN.

Свойства и поведение контроллера после перезагрузки с нажатием кнопки сброса:

- Параметры соединения (IP-адрес и ID контроллера) устанавливаются на default value (значения по умолчанию).
- Деактивируются все доступы пользователя, кроме доступа пользователя по умолчанию **Administrator without password** (администратор без пароля).
- Начиная с версии операционной системы COM 10.42, загрузка прикладной программы или операционной системы с параметрами соединения по умолчанию блокирована!
 Загрузка станет возможна только после того, как в контроллере будут заданы параметры соединения и доступ пользователя, и будет произведена его перезагрузка.

После повторной перезагрузки без нажатия кнопки сброса

- Становятся действительны заданные пользователем параметры соединения (IP-адрес и ID контроллера) и доступы пользователя.
- Если изменений не было, то вновь действуют параметры соединения и доступы пользователя, введенные перед перезагрузкой с нажатием кнопки сброса.

6 Часы аппаратного обеспечения

При снятии рабочего напряжения энергии встроенного конденсатора достаточно для того, чтобы поддерживать работу часов контроллера приблизительно одну неделю.

7 Светодиодные индикаторы

Значение светодиодов для контроллера, связи и рабочего напряжения объясняется в главе «Светодиодные индикаторы» Руководства по компактным системам.

8 Установка F30 во взрывоопасной зоне класса 2 (по ГОСТ Р 52350.10 – 2005 и ГОСТ Р 52350.14 – 2006)

Контроллер F30 допускается устанавливать во взрывоопасной зоне класса 2 по ГОСТ Р 52350.10-2005 (МЭК 60079-10:2002) в соответствии с требованиями ГОСТ Р 52350.14-2006 (МЭК 60079-14:2002). Декларация изготовителя о соответствии приведена в конце настоящего Руководства.

Маркировка взрывозащиты контроллера F30: Ex nA II T4 X.

При установке и эксплуатации контроллера F30 необходимо строго соблюдать следующие особые условия (специальные условия X):

Специальные условия Х:

1. Контроллер F30 должен находиться внутри корпуса, удовлетворяющего требованиям ГОСТ Р 52350.15-2005 (МЭК 60079-15:2005) и обеспечивающего степень защиты не ниже IP54 по ГОСТ 14254-96. На наружней стороне корпуса должна быть закреплена табличка с предупредительной надписью:

«Предупреждение - не открывать под напряжением»

При гарантированном отсутствии взрывоопасной атмосферы допускается кратковременное открытие и под напряжением.

- 2. Используемый корпус должен надежно отводить выделяемое при работе контроллера тепло. Максимальная мощность возникаемых при работе тепловых потерь зависит от величины питающего напряжения и подключенных нагрузок и может достигать 33 Вт.
- 3. Питающее напряжение должно подаваться на контроллер через предохранитель **10 A** (отдельный предохранитель для каждого питающего входа контроллера) от безопасного источника питания в исполнении 3CHH или БСНН.
- 4. Наряду с другими предписаниями должно быть обеспечено безусловное и полное выполнение требований стандартов:

ΓΟCT P 52350.14-2006 (M3K 60079-14:2002)

ΓΟCT P 52350.15-2005 (M9K 60079.15:2005)

5. Изготовитель оснащает контроллер следующей этикеткой:

HIMA	Paul Hildebrandt GmbH Albert-Bassermann-Straße 28 68782 Brühl Germany	Орган по сертификации НАНИО ЦСВЭ 109377, Москва, а/я 22		
HIMatrix	Ex nA II T4 X	Сертификат соответствия		
F30	-25 °C ≤ Ta ≤ 70 °C	POCC GE.FE05.B XXXX		
ГЗО	Соблюдать специальные условия X!			

9 Конфигурация входов/выходов

При помощи программного обеспечения *ELOP II Factory* сигналы, предварительно определенные в редакторе сигналов программного обеспечения (Hardware Management), присваиваются отдельным имеющимся каналам контроллера (входы/ выходы) (см. главу «Конфигурация входов/выходов» в Руководстве по компактным системам).

Сигналы, имеющиеся в контроллере для присвоения сигналов, указаны в главе «Сигналы и коды ошибок входов/выходов».

10 Сигналы и коды ошибок входов/выходов

В следующих таблицах приведены считываемые и настраиваемые сигналы входов/выходов, включая коды ошибок.

Коды ошибок можно считать в рамках прикладной программы посредством соответствующего присвоенного в логической схеме сигнала.

Коды ошибок могут также отображаться в ELOP II Factory Hardware Management:

- Выделите ресурс HIMatrix и щелкните по нему правой кнопкой мыши.
- В контекстном меню выберите **Online**, затем в подменю выберите **Diagnosis**.
- После этого в окне «Diagnosis» Вы увидите все ответные сообщения системы управления (ЦПУ, СОМ), включая коды ошибок входов/выходов, если в них имеются ошибки.
- Дальнейшие указания Вы найдете в главе «Диагностика» Руководства по компактным системам.

Сигналы входов/выходов можно при помощи *ELOP II Factory* присвоить сигналам редактора сигналов. Сигналы могут быть присвоены логической схеме *(Project Management)*, а также считываться из нее или описываться в ней. В целях тестирования и проверки прохождения сигнала они могут устанавливаться и/или отображаться в редакторе инициализации *(Hardware Management)*.

Проверка прохождения сигнала подробно описывается при помощи редактора инициализации в руководстве *ELOP II Factory* «Первые шаги».

10.1 Цифровые входы F30

Системный сигнал	R/W	Значение		
Module.SRS [UDINT]	R	Номер сл	Номер слота (System-Rack-Slot)	
Module.Type [UINT]	R	Тип моду	Тип модуля, заданное значение: 0x00A5 [165 _{dez}]	
Module.Error Code [WORD]	R	Коды ошибок модуля		
		0х0000 Обработка ввода/вывода, возможно с другими ошибками, см. следующие коды ошибок		
		0x0001	Отсутствует обработка ввода/вывода (ЦПУ не в состоянии RUN)	
		0x0002	Отсутствует обработка ввода/вывода во время теста при загрузке	
		0x0004	Интерфейс изготовителя в режиме работы	
		0x0010	Отсутствует обработка ввода/вывода: неправильное параметрирование	
		0x0020	Отсутствует обработка ввода/вывода: превышено допустимое количество ошибок	

Системный	R/W	Значение		
сигнал		0x0040/	Отсутствует обработка входа/выхода:	
		0x0040/	не вставлен конфигурированный модуль	
DI.Error Code	R	Коды ошибок всех цифровых входов		
[WORD]		коды ошиоок всех цифровых входов		
		0x0001	Ошибка в зоне цифровых входов	
		0x0002	Тест FTZ образца тестирования содержит ошибку	
DI[xx].Error Code [BYTE]	R	Коды оши	ибок цифровых входных каналов	
		0x01	Ошибка в модуле цифрового ввода	
		0x10	Замыкание линии канала	
		0x80	Прерывание линии между тактовым выходом DO	
			и тактовым входом DI, например, в результате	
			• обрыва линии	
			• разомкнутых переключателей	
Differential	В	Dyarusa	• пониженного напряжения L+	
DI[xx].Value [BOOL]	R	входное	значение цифровых входных каналов	
		0	Вход не включается	
		1	Вход включается	
DI No. of Pulse Channel [USINT]	W	Количество тактовых выходов (питающие выходы)		
		0	Тактовый выход для распознавания LS/LB*	
			не предусмотрен	
		1	Тактовый выход 1 предусмотрен	
		2	для распознавания LS/LB* Тактовые выходы 1 и 2 предусмотрены	
			для распознавания LS/LB*	
		 8		
		0	Тактовые выходы 18 предусмотрены для распознавания LS/LB*	
		Тактовь	ие выходы нельзя использовать как	
		_	ные выходы!	
DI Pulse Slot	W	Слот мод	уля тактового питания	
[UDINT]			авание LS/LB*), установить значение на 2	
DI[xx].Pulse Channel [USINT]	W	Исходный канал тактового питания		
		0	Входной канал	
		1	Такт 1-го канала DO	
		2	Такт 2-го канала DO	
		8	 Такт 8-го канала DO	
DI Pulse Delay	W		кидания для управления линией (распознавание	
[10E-6 s] [UINT]		замыкания/перекрестного замыкания)		

^{*} LS = замыкание линии LB = обрыв линии

10.2 Цифровые выходы F30

Системный сигнал	R/W	Значение	
Module.SRS [UDINT]	R	Номер слота (System-Rack-Slot)	
Module.Type [UINT]	R	Тип модуля, заданное значение: 0x00B4 [180 _{dez}]	
Module.Error Code [WORD]	R	Коды оши	бок модуля
		0x0000	Обработка ввода/вывода, при необходимости с ошибками,
		0x0001	см. следующие коды ошибок Отсутствует обработка ввода/вывода (ЦПУ не в состоянии RUN)
		0x0002	Отсутствует обработка ввода/вывода во время теста при загрузке
		0x0004	Интерфейс изготовителя в режиме работы
		0x0010	Отсутствует обработка ввода/вывода:
		0x0020	неправильное параметрирование Отсутствует обработка ввода/вывода:
		0,0020	превышено допустимое количество ошибок
		0x0040/	Отсутствует обработка входа/выхода:
	_	0x0080	не вставлен конфигурированный модуль
DO.Error Code [WORD]	R	Коды оши	бок всех цифровых выходов
		0x0001	Ошибка в зоне цифровых выходов
		0x0002	Тест MEZ предохранительного отключения показывает ошибку
		0x0004	Tect MEZ вспомогательного напряжения
		0x0008	показывает ошибку Тест FTZ образца тестирования показывает
		000000	ошибку
		0x0010	Тест MEZ образца тестирования выходного
		0x0020	выключателя показывает ошибку Тест MEZ образца тестирования выходного
		0.0020	выключателя (тест отключения выходов)
		0x0040	показывает ошибку Тест MEZ активного отключения посредством
		0,100.10	WD показывает ошибку
		0x0200	Все выходы отключены, превышен общий ток
		0x0400	Тест FTZ: температурный порог 1 превышен
		0x0800 0x1000	Тест FTZ: температурный порог 2 превышен Тест FTZ: контроль вспомогательного
		0.000	напряжения 1: пониженное напряжение
DO[xx].Error Code [BYTE]	R	Коды ошибок цифровых выходных каналов	
'		0x01	Ошибка в модуле цифрового ввода
		0x02	Выход отключен из-за перегрузки
		0x04	Ошибка при обратном считывании настройки
		0x08	цифровых выходов Ошибка при обратном считывании состояния
		0,00	цифровых выходов
DO[xx].Value	W	Выходное	значения для каналов DO:
[BOOL]		1 = выход включен	
		0 = выход	обесточен

11 Технические характеристики F30

Контроллер		
Пользовательская память	Прикладная программа макс. 500 кБ Данные пользователя макс. 500 кБ	
Время реакции	≥ 20 MC	
Интерфейсы:		
Ethernet	4 x RJ-45, 10/100BaseT (100 Мбит/с) с встроенным сетевым коммутатором	
Ведущее / ведомое устройство Profibus DP, ведущее / ведомое устройство Modbus, ведущее устройство Interbus RS 485 (ведущее / ведомое	SUB-D 9-полюсный (FB1, FB2)	
устройство Modbus)	SUB-D 9-полюсный (FB3)	
Рабочее напряжение	24 В DC, -15%…+20%, w _{ss} ≤ 15%, от блока питания с безопасным разделени-ем, согласно требованиям МЭК 61131-2	
потребление тока	Макс. 8 A (с максимальной нагрузкой) Ток холостого хода: 0,5 A	
Предохранитель (внешний)	10 A T	
Буфер для даты/времени	Goldcap	
Рабочая температура	0 °C+60 °C	
Температура хранения	-40 °C+85 °C	
Степень защиты	IP 20	
Макс. размеры (без штекера)	Ширина: 257 мм (с винтами корпуса) Высота: 114 мм (с крепежным запором) Глубина: 66 мм (с заземляющим болтом)	
Macca	Прибл. 1,2 кг	

Цифровые входы		
Количество входов	20 (без гальванического разделения)	
Сигнал 1:напряжение потребление тока	15 В30 В DC ≥ 2 мА при 15 В	
Сигнал 0: напряжение потребление тока	Макс. 5 В DC Макс. 1,5 мА (1 мА при 5 В)	
Точка переключения	Станд. 7,5 В	
Питание	5 x 20 B/100 мА (при 24 B), устойчивость к короткому замыканию	

Цифровые выходы		
Количество выходов	8 (без гальванического разделения)	
Выходное напряжение	≥ L+ минус 2 B	
Выходной ток	Каналы 13 и 57: 0,5 А при 60 °C Каналы 4 и 8: 1 А при 60 °C (2 А при 50 °C)	
Минимальная нагрузка	2 мА на каждый канал	
Внутреннее падение напряжения	Макс. 2 В при 2 А	
Ток утечки (для сигнала 0)	Макс. 1 мА при 2 В	

Поведение при перегрузке	Отключение соответствующего выхода с	
	циклическим повторным включением	
Общий выходной ток	Макс. 7 А	
	При превышении отключение всех выходов с	
	циклическим повторным включением	

11.1 Технические характеристики HIMatrix F30 -20°

Вариант модели F30 -20 $^{\circ}$ сконструирован для использования в расширенном диапазоне температур от -20 $^{\circ}$ C до +60 $^{\circ}$ C. На компоненты электронного оборудования нанесено защитное покрытие.

Система управления F30 -20°	
Рабочая температура	-20 °C+60 °C
Macca	Прибл. 1,2 кг

11.2 Сертификаты HIMatrix F30

HIMatrix F30		
CE	ЭМС, АТЕХ зона 2	
TÜV	МЭК 61508 1-7:2000 до уровня совокупной	
	безопасности 3	
	MЭK 61511:2004	
	EN 954-1:1996 до категории 4	
TÜV ATEX	94/9/EG	
	EN 1127-1	
	EN 61508	
Регистр Ллойда	Сертификация для судоходства	
	ENV1, ENV2 и ENV3:	
	Номер спецификации испытаний 1 - 2002	
UL Underwriters	ANSI/UL 508, NFPA 70 – Industrial Control	
Laboratories Inc.	Equipment	
	CSA C22.2 № 142	
	UL 1998 Software Programmable Components	
	NFPA 79 Electrical Standard for Industrial	
	Machinery	
	MЭK 61508	
FM Approvals	Класс I, DIV 2, группы A, B, C и D	
	Класс 3600, 1998	
	Класс 3611, 1999	
	Класс 3810, 1989	
	Including Suppliment #1, 1995	
	CSA C22.2 № 142	
	CSA C22.2 № 213	
Организация	Спецификация испытаний ведомого	
пользователей PROFIBUS		
(PNO)	версия 3.0, ноябрь 2005	

Konformitätserklärung **Declaration of Conformity**

Wir / We

erklären in eigner Verantwortung, dass die Produkte declare under our sole responsibility that the products

HIMatrix	F1 DI 16 01	
	F2 DO 4 01	
	F2 DO 8 01	
	F2 DO 16 01	
	F2 DO 16 02	
	F3 AIO 8/4 01	
	F3 DIO 8/8 01	
	F3 DIO 16/8 01	
	F3 DIO 20/8 01 + 02	
	F31 01 + 02	
	F20, F30, F35	

auf die sich diese Erklärung bezieht, mit den folgenden Normen übereinstimmen. to which this declaration relates is in conformity with the following standards.

EN 61000-6-4 (08.02) EN 61000-6-2 (08.02) EN 61131-2 (2003)

EN 60079-15 (2003)

Elektrische Betriebsmittel für gasexplosionsgefährdete Breiche - Teil 15 : Zündschutzart "n" Electrical apparatus for explosive gas atmospheres - Part 15: Type of protection "n"

Gemäß den Bestimmungen der Richtlinien Following the provisions of Directives

EMV-Richtlinie

89/336/EWG

Ex-Richtlinie

94/9/EG

Brühl, den 1/6 Februar 2006

ppa.

Prof. Dr. habil. Josef Börcsök Bereichsleiter Entwicklung Vice-President Development

Jürgen Hölzel

Leiter Vorentwicklung und Qualitätswesen Lead Engineer Predevelopment and Quality Assurance

HIMA ... the safe decision.

HIMA Paul Hildebrandt GmbH Системы промышленной автоматизации

Postfach 1261 • D-68777 Brühl Телефон: +49(06202) 709-0 • Факс: +49(06202) 709-107 Эл. почта: info@hima.com • Интернет: www.hima.de