SYS466 Analysis and Design

Lecture 2 - Behavioural Modelling School of Information and Communications Technology Seneca College "...capturing a description of how a system is expected to behave..."

Use Case Diagram

high level depiction of a system's interaction with its actors

Use Case Scenarios

- <u>ordered</u> set of steps required to achieve goal
- both system/actor interaction is required
- pre-condition, condition(s) which must hold <u>before</u> steps taken
- post-condition, condition(s) which must hold <u>after</u> steps taken

Purchase Transit Pass

Actor's Action	System Response
request to purchase pass	display different pass types requests pass type selection
provide pass type	

Activity Diagrams

- visual representation of steps for a single scenario
- focus on <u>logical flow</u>
- sequential, iteration (loops) and conditional (guarded) steps
- support for <u>parallel</u> execution

Basic Activity Diagram Notation

Activity Diagram Example

System Sequence Diagrams

- focuses on how actors <u>interact</u> with system
 - actor generates system events
 - system receives/handles event.
- covers one scenario
- order of events can be derived from diagram

System Sequence Diagram Notation

Parallel Interaction Frame

Interaction operands can execute in any order

Alternate Interaction Frame

Operand executes depending on the guard

Notes About SSD

- use descriptive terms
 - verbs for message names
 - nouns for return values
- show abstract intentions
 - do not think of user i/o interfaces for message exchange

SSD Example

Summary

- behavioural modelling captures how the system is intended to run
- use cases give textual description (scenarios)
- UML provides the following means of visually describing scenarios
 - <u>activity diagrams</u>, describe steps needed to satisfy goal
 - system sequence diagrams, illustrate actor/system interaction