COMPLEXITY ANALYSIS OF POLYNOMIAL ALGORITHMS

Ignacio Iker Prado Rujas Universidad Complutense de Madrid (UCM) Doble Grado en Matemáticas e Ingeniería Informática

May 6, 2016

 $\label{eq:Tutors:José F. Fernando & J.M. Gamboa}$ José F. Fernando & J.M. Gamboa

Abstract

This work is about three different proofs of the same fact and a computational comparison between them, looking for the best one.

Let R be a real closed field and $n \geq 2$. We prove that: (1) for every finite subset F of R^n , the semialgebraic set $R^n \setminus F$ is a polynomial image of R^n ; and (2) for any independent linear forms l_1, \ldots, l_r of R^n , the semialgebraic set $\{l_1 > 0, \ldots, l_r > 0\} \subset R^n$ is a polynomial image of R^n .

The key proof here is that $Q = \{x > 0, y > 0\}$ is a polynomial image of \mathbb{R}^2 . This assert is proved in three different ways: a first approach using real algebraic geometry; a second and shorter one, using the composition of 3 rather simple maps; and a third one that applies topology with no computer computations.

 (\ldots)

Polynomial images of R^n

1.1 Introduction

Definition 1.1. Let R be a real closed field and $m, n \in \mathbb{N}_{>0}$. A map $f = (f_1, \ldots, f_n) : R^m \longrightarrow R^n$ is said to be polynomial if $f_i \in R[x_1, \ldots, x_m], i = 1, \ldots, n$.

A very famous theorem by Tarski and Seidenberg states:

Theorem 1.1 (Tarski-Seidenberg). The image of any polynomial map $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is a semialgebraic subset of \mathbb{R}^n .

In this work we are studying sort of a converse of this statement. In an *Oberwolfach* week, J.M. Gamboa proposed to characterize the semialgebraic subsets of \mathbb{R}^n that are polynomial images of \mathbb{R}^m .

Notation. We need to mention to which topology we refer when we talk about closures, boundaries, etc. More specifically, the **exterior boundary** of a set S is $\delta S := \overline{S} \backslash S$, with \overline{S} being the **closure** of S in R^n in the usual topology. $\overline{S}^{\text{zar}}$ is the closure of S with respect to the Zariski topology. $A \subset R^n$ is **irreducible** if its Zariski closure $\overline{A}^{\text{zar}}$ is an irreducible algebraic set.

1.1.1 Necessary conditions and examples

To begin working on this idea, we provide some necessary conditions for a set $S \subset \mathbb{R}^n$ to be polynomial image of \mathbb{R}^m .

It is trivial that for m = n = 1 (so $f: R \to R$), the images of polynomial maps are either a set of one point or singletons (if the map is constant), or unbounded closed intervals (think of $f(x) = x^2$), or the whole R (think of f(x) = x).

In the general case, by Tarski-Seidenberg, S must be a semialgebraic set and, moreover, semialgebraically connected. Even more, by the identity principle for polynomials, S is irreducible and pure dimensional.

In the polynomial case there are more constrains.

Definition 1.2. A polynomial map $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is said to be **semialgebraically proper at a point** $p \in \mathbb{R}^n$ if there exists an open neighbourhood K of p such that the restriction

$$f^{-1}(K) \longrightarrow K$$

 $x \longmapsto f(x)$

is a semialgebraically proper map.

Definition 1.3. A parametric semiline of \mathbb{R}^n is a non-constant polynomial image of \mathbb{R} .

It is clear that every parametric semiline is semialgebraically closed, since every polynomial map from R to R^n is semialgebraically proper. Let \mathscr{S}_f denote the set of points $p \in R^n$ at which f is **not** semialgebraically proper.

Theorem 1.2 (Jelonek). Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a dominant polynomial map. Then \mathscr{S}_f is a finite union of parametric semilines.

With all these ideas in mind, we can get some conclusions in the following proposition:

Proposition 1.1. Let $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be a polynomial map and $S = f(\mathbb{R}^m)$.

(1) $\delta S \subset \mathscr{S}_f$.

Proof. Suppose $p \in \delta S \backslash \mathscr{S}_f$. Because $p \notin \mathscr{S}_f$, there exists an open neighbourhood K of p such that the restriction $f^{-1}(K) \to K$ of f is proper, and thus its image $K \cap S$ is a closed subset of K. Hence, $p \in K \cap \overline{S} = K \cap (\overline{K \cap S}) = K \cap S$, which yields in a contradiction.

(2) Let m = n = 2 and Γ be a 1-dimensional irreducible component of \overline{S}^{zar} . Γ is the Zariski closure of a parametric semiline of R^2 .

Proof. Since f is a dominant map, we can apply Jelonek and get that \mathscr{S}_f is a finite union of parametric semilines, say M_1,\ldots,M_s in R^2 . Then, using (1) we get: $\Gamma \subset \overline{\delta S}^{\mathrm{zar}} \subset \overline{\mathscr{S}_f}^{\mathrm{zar}} = \cup_{i=1}^s \overline{M_i}^{\mathrm{zar}}$. Lastly, using that both Γ and the $\overline{M_i}^{\mathrm{zar}}$'s are irreducible, we must have that for some $i=1,\ldots,s:\Gamma=\overline{M_i}^{\mathrm{zar}}$.

(3) Let $p: \mathbb{R}^n \to \mathbb{R}$ be a polynomial map which is non-constant on S. Then p(S) is unbounded.

Proof. If $a \in R^m$, let us define $\varphi_a : R \to R$ as $\varphi_a(t) := p(f(ta))$. Then, $\forall a \in R^m$, p(S) would contain the image $\varphi_a(R) : \varphi_a(R) \subset p(S)$. Now suppose that $\varphi_a(R)$ is bounded $\forall a$. Then $\varphi_a(R)$ would be a point r_a , and given $a, b \in R^m : \varphi_a(1) = p(f(ta)) = r_a = \varphi_a(0) = \varphi_b(0) = r_b = p(f(tb)) = \varphi_b(1)$. This implies that p would be constant on S, which is a contradiction.

Corolary 1.1. Because of (3) in proposition 1.1, all linear projections of S are either a point or unbounded. Consequently, S is also unbounded or a point.

Example 1.1.

(i) One.

Auxiliary definitions and results

Definition A.1. A **real closed field** is a field R that has the 1st order properties as the field of real numbers \mathbb{R} .

Definition A.2. A semialgebraic set is a subset $S \subset \mathbb{R}^n$ (for some real closed field R) defined by a finite sequence of polynomial equations of the form:

$$P_1(x_1, ..., x_n) = 0$$

$$\vdots$$

$$P_r(x_1, ..., x_n) = 0$$

$$Q_1(x_1, ..., x_n) > 0$$

$$\vdots$$

$$Q_l(x_1, ..., x_n) > 0$$

. A **semialgebraic map** is a map that has semialgebraic graph. Moreover, the finite union, intersection and complement of semialgebraic sets is still a semialgebraic set.

Definition A.3 (Zariski topology). It is a topology on algebraic varieties whose closed sets are the algebraic subsets of the variety. Its sets are defined as the set of solutions of a system of polynomial equations over a field R. In this topology, when we talk about the irreducibility of a element, we mean that it is not the union of two smaller sets that are closed under the Zariski topology.

Definition A.4. A set $S \subset \mathbb{R}^n$ is said to be **pure dimensional** if its irreducible components are of the same dimension.

Definition A.5. A map f is called **proper** if the preimage of every compact set is compact. A semialgebraic map $f: f^{-1}(K) \longrightarrow K$ is called **semialge-**

braically proper if the preimage $f^{-1}(C)$ of a compact and semialgebraic subset $C \subset K$ is compact. This condition is weaker than the previous one. **Definition A.6.** A polynomial map is said to be **dominant** if it has a dense image.

Bibliography