

12.24196

Introduction to Embedded Systems

Prof. Dr.-Ing. Stefan Kowalewski | Julius Kahle, M. Sc. Summer Semester 2025

Part 6

Model-based Development & Simulink

Agenda

IES Part 8 – Embedded Software Development using Simulink

- Simulink Fundamentals
- II. Model-Based Software Development Process

Matlab

MATLAB

- Math-language
 - Everything is a matrix
- Invented by Cleve Moler
- Math-tool
- Distributed by TheMathworks
- Variety of extensions
 - **Optimization**
 - **Statistics**
 - **Fuzzy Logic**
 - **Image Processing**
 - **Physical Modelling**
 - **Finances**
 - **Simulink**

Command-Window

Value $[1 \, 4]$ 5.4772

[1 2 3 4] [2345]

3

Simulink Blocks

- Simulink is a tool to model and simulate ",dynamic systems"
- Operations are expressed by blocks

Similar to Function Block language (PLC)

Simulink Block Parameters

Block parameters can be configured

Main Signal Attributes Icon shape round ▼	Main Signal Attributes Icon shape: round ▼
List of signs:	List of signs:
>+	>

Available parameters depend on block type

Signals

Simulink blocks generate/process signals

Signals are variables (values change over time)

Sampling

- Signals and Simulink simulation are sample-based
- Blocks are executed according to an execution order

Configured Step-size: 0.1

Sampling time: 0.4

Signal Properties

- Basic Signal Properties
 - Dimension
 - Datatype
 - <u>logical(boolean)</u>
 - int8, int16, int32
 - uint8, uint16, uint32
 - float32(single), float64(double)
 - fixed-point data types
- Signal properties are configurable by some blocks, e.g. Sum block

Voise les. Mantisse. 2

Signal Property Influencing Blocks

- There are special blocks to influence signal properties
 - Mux (combine signals to vectors)
 - Demux (split vectors)
 - Vector Concatenate
 - Data Type Conversion

Modeling Possibilities

Example – Low Pass Filter

Different possibilities to model a behavior

Subsystems

Models can be hierarchically composed using Subsystem-blocks

Copyright 1990-2015 The MathWorks, Inc.

Subsystem Implementation

Front Suspension Subsystem implementation

Abstraction Principles

- Subsystems structure model
- Subsystems can be
 - Reused
 - Parametrized
 - Extracted to Libraries
- Signals can be hierarchically grouped (Bus-signals)

Bus Signals

Copyright 1990-2015 The MathWorks, Inc.

Advanced Simulink Blocks

- Extension by mixture with other modelling/programming paradigms
 - Mfunctions
 - Write MATLAB programs within Simulink


```
function y = fcn(u)
% very sophisticated matlab code
y = 2*u;
```

- Sfunctions
 - Call (compiled) code from Simulink

- Stateflow (Toolbox)
 - Model control structure as state chart

Stateflow

Stateflow example

Transition guard

Acc:

Acc:

Entry: x = 5:

exit: y = 0;

Initial state

Actions

- Entry: actions performed when entering a state
- During: actions performed when remaining in a state for the considered sampling time
- Exit: actions performed when exiting a state

Agenda

IES Part 8 – Embedded Software Development using Simulink

- Simulink Fundamentals
- II. Model-Based Software Development Process

Simulink in Context

Code Generation

- Multiple code generators available
 - PLC Coder (Mathworks)
 - Structured Text
 - Ladder Diagram
 - Embedded Coder (Mathworks)
 - C code
 - C++ code
 - TargetLink (dSpace)
 - C code
 - But: requires use of TargetLink blockset
- Code generators vary in
 - Configuration possibilities
 - Quality regarding generated code

Rapid Prototyping

- Encourages rapid prototyping
 - Models are executable from the beginning
 - Easy integration of controllers with plant models

- Code can be generated at any time
- Early testing possible

MIL and SIL Tests

Model-in-the-loop (MIL)

Execution on standard PC

Software-in-the-loop (SIL)

PIL and HIL Tests

HIL simulator plattform (Real-time capable)

