Implementación y Análisis de Técnicas Híbridas de Aprendizaje Automático en la Detección Intrusos en Redes de Computadoras

Deyban Andrés Pérez Abreu

Introducción

El presente documento recopila las actividades realizadas en la elaboración del **Trabajo Especial de Grado** de mi persona (autor del documento). Este tiene cómo tema el **Análisis e Implementación de Técnicas Híbridas de Aprendizaje Automático en la Detección de Intrusos en Redes de Computadoras** haciendo uso del conjunto de datos **NSL-KDD**.

Los objetivos que se buscan lograr con este trabajo es la implementación y análisis de modelos basados en la firma del ataque, cómo lo son las redes neuronales y máquinas de soporte vectorial en conjunto con técnicas basadas en anomalías cómo lo es K-Medias. La idea de esta mezcla de paradigmas es la complementación de estos con la esperanza de mejorar el rendimiento desde un punto de vista de eficacia a la hora de detectar anomalías en una red de computadoras, específicamente, con la utilización de técnicas basadas en anomalías se busca detectar aquellos ataques conocidos que fueron provistos en el conjunto de entrenamiento, y con las técnicas basadas en anomalías se busca capturar aquellas nuevas anomalías que no fueron provistas en la fase de entrenamiento a los modelos.

El conjunto de datos **NSL-KDD** consta de un conjunto de entrenamiento y un conjunto de prueba excluyentes, es decir, que ningún registro está duplicado entre conjuntos. Adicionalmente, el conjunto de datos de prueba posee ataques que no son proporcionados en el conjunto de entrenamiento, así que la idea es evaluar la capacidad de generalización de los modelos creados simulando un ambiente real de prueba, donde nuevos ataques surgen constantemente.

La tareas a realizar se pueden dividir en tres grandes grupos que se mencionarán a continuación:

- 1. La primera fase corresponde al pre-procesamiento de los datos, esto aplica tanto al conjunto de entrenamiento como al conjunto de prueba. En este paso se busca crear una vista minable que facilite la manipulación de la información y estandarice los tipos de datos a ser utilizados a lo largo de la investigación.
- 2. La segunda fase corresponde a la demostración de la eficacia de la propuesta planteada con anterioridad, es decir, la prueba de los modelos híbridos a la hora de realizar las tareas de detección. Esta fase se dividirá en dos conjuntos.
- Análisis sobre el conjunto de entrenamiento: acá se realizarán las pruebas extrayendo un subconjunto de los datos para la prueba y el restante para el entrenamiento y se evaluará el rendimiento de cada uno de los modelos.
- Análisis sobre el conjunto de prueba: acá se tomará el conjunto de entrenamiento en su totalidad para realizar las tareas de entrenamiento y se hará la prueba sobre el conjunto total de prueba provisto por el conjunto de datos NSL-KDD.

NOTA: En esta fase los modelos serán entrenados haciendo uso de parámetros por defecto.

3. La tercera fase corresponde al proceso de selección de carcaterísticas y selección de parámetros, en esta fase se analizan los resultados obtenidos del proceso de reducción de características y ajuste de los parámetros para los modelos.

Pre-Procesamiento de los datos

En esta sección se listarán las actividades realizadas concernientes al proceso de pre-procesamiento de los datos. Esta tarea aplica para los conjuntos de datos de entrenamiento y de prueba, debido a que ambos conjuntos de datos deben poseer el mismo formato para poder realizar el proceso de aprendizaje automático.

Comenzaremos con la configuración del ambiente de trabajo, donde se eliminarán las variables del ambiente de trabajo. Y se cargará un archivo con funciones llamado **functions.R**, este archivo posee una leyenda donde se explica a cabalidad el funcionamiento de cada una de las funciones ilustradas en dicho documento.

```
rm(list = ls())
source("../source/functions/functions.R")
```

A continuación se cargarán los conjuntos de prueba y de entrenamiento a ser utilizados.

```
dataset.training = read.csv(file = "../dataset/KDDTrain+.txt", sep = ",", header = FALSE)
dataset.testing = read.csv(file = "../dataset/KDDTest+.txt", sep = ",", header = FALSE)
```

En la variable dataset.training se encuentra cargado el conjunto de entrenamiento y en la variable dataset.testing se tiene cargado el conjunto de prueba. Veamos las dimensiones de los conjuntos de datos.

```
dim(dataset.training)
## [1] 125973 43
dim(dataset.testing)
```

[1] 22544 43

El conjunto de entrenamiento tiene 125973 filas y 43 columnas. Por otra parte, el conjunto de prueba tiene 22544 filas y 43 columnas. Es importante mencionar que de las 43 columnas, la columna 42 corresponde a la etiqueta del ataque y la columna 43 corresponde a la cantidad de clasificadores que acertaron a la hora de clasificar dicho registro en el proceso de creación del conjunto de datos NSL-KDD. En el proceso previamente mencionado se utilizaron 21 clasificadores, por dicho motivo, el rango de valores en esta columna está comprendido entre [0,21]. A continuación veamos si los conjuntos de datos poseen valores faltantes, para ello haremos uso de la función complete.cases.

```
sum(complete.cases(dataset.training)) == nrow(dataset.training)
## [1] TRUE
sum(complete.cases(dataset.testing)) == nrow(dataset.testing)
```

[1] TRUE

Se observa que la cantidad de casos completos es igual a la cantidad de filas de ambos conjuntos de datos, por tal motivo no existen valores faltantes. Ahora veamos los tipos de ataques por conjuntos de datos. Empezaremos por con el conjunto de entrenamiento.

```
attacks.training = unique(dataset.training$V42)
attacks.training = sort(as.character(attacks.training))
length(attacks.training)
```

[1] 23

Se observa que el conjunto de entrenamiento consta de 23 etiquetas, donde 1 corresponde a la etiqueta de **tráfico normal**, y las otras 22 corresponden a **ataques**. Ahora veamos el conjunto de prueba.

```
attacks.testing = unique(dataset.testing$V42)
attacks.testing = sort(as.character(attacks.testing))
length(attacks.testing)
```

[1] 38

Se observan 38 etiquetas en el conjunto de prueba, donde 1 corresponde a la etiqueta de **tráfico normal** y las otras 37 corresponden a **ataques**. En este punto se puede observar cómo hay mayor cantidad de ataques en el conjunto de prueba que en el conjunto de entrenamiento, esto es debido a que el conjunto de prueba busca medir la habilidad del modelo de **aprendizaje automático** para generalizar ante ataques no vistos en el conjunto de entrenamiento con anterioridad. A continuacuón se observan cuales son los ataques presentes en el conjunto de prueba que no están presentes en el conjunto de prueba y viceversa. Se empezará con examinar la cantidad total de ataques presentes entre ambos conjuntos.

```
total.attacks = sort(unique(c(attacks.training, attacks.testing)))
length(total.attacks)
```

[1] 40

Entre ambos conjuntos se observan 40 etiquetas, donde 1 corresponde al **tráfico normal** y las otras 39 corresponden a etiquetas de **ataques**. De lo anterior se puede concluir que hay 17 tipos de ataques presentes en el conjunto de prueba que no están presentes en el conjunto de entrenamiento, y que hay 2 tipos de ataques en el conjunto de entrenamiento que no están presentes en el conjunto de prueba. A continuación se listarán aquellas etiquetas comunes entre ambos conjuntos de datos.

```
total.attacks = sort(unique(c(attacks.training, attacks.testing)))
length(total.attacks)
```

[1] 40

total.attacks

```
"back"
##
    [1] "apache2"
                                               "buffer_overflow"
    [4] "ftp_write"
                            "guess_passwd"
                                               "httptunnel"
                                               "land"
   [7] "imap"
                            "ipsweep"
## [10] "loadmodule"
                            "mailbomb"
                                               "mscan"
## [13] "multihop"
                            "named"
                                               "neptune"
## [16] "nmap"
                            "normal"
                                               "perl"
## [19] "phf"
                            "pod"
                                               "portsweep"
                            "ps"
                                               "rootkit"
## [22] "processtable"
## [25] "saint"
                            "satan"
                                               "sendmail"
```

```
## [28] "smurf" "snmpgetattack" "snmpguess"

## [31] "spy" "sqlattack" "teardrop"

## [34] "udpstorm" "warezclient" "warezmaster"

## [37] "worm" "xlock" "xsnoop"

## [40] "xterm"
```

Se observa que existen 21 etiquetas conmunes entre ambos conjuntos de datos, donde 1 corresponde a la etiqueta de **tráfico normal** y las otras 20 corresponde a **ataques**. Todas las etiquetas fueron listadas. A continuación se listarán aquellos **ataques** que están presentes en el conjunto de prueba y no en el conjunto de entrenamiento.

```
index.attacks = which(attacks.testing %in% attacks.training)
length(attacks.testing[-index.attacks])
```

[1] 17

attacks.testing[-index.attacks]

```
[1] "apache2"
                          "httptunnel"
                                                             "mscan"
##
                                           "mailbomb"
##
    [5]
        "named"
                          "processtable"
                                                             "saint"
    [9] "sendmail"
                          "snmpgetattack" "snmpguess"
                                                             "sqlattack"
## [13] "udpstorm"
                          "worm"
                                           "xlock"
                                                             "xsnoop"
## [17] "xterm"
```

Son 17 los ataques presentes en el conjunto de prueba que no están presentes en el conjunto de entrenamiento, los mismos fueron listados. A continuación se listarán aquellos ataques presentes en el conjunto de entrenamiento que no lo están en el conjunto de prueba.

```
index.attacks.training = which(attacks.training %in% attacks.testing)
length(attacks.training[-index.attacks.training])
```

[1] 2

```
attacks.training[-index.attacks.training]
```

```
## [1] "spy" "warezclient"
```

Son sólo 2 los ataques en el conjunto de entrenamiento que no están presentes en el conjunto de prueba. Estos corresponden a **spy** y **warezclient**.

Extracción de características

En este documento se clasifican las anomalías en 4 grupos **DoS**, **Probing**, **R2L** y **U2R**, es decir, habrán 5 etiquetas, donde 4 corresponden a los tipos de ataques mencionados previamente y la 5ta etiqueta corresponde a la etiqueta normal.

Para facilitar el trabajo se debe asociar cada uno de los ataques a cada una de las clases mencionadas con anterioridad. Para esto se hará uso de la función **ClassLabelAttack** que recibe cómo parámetro un **dataframe** y retorna una columna con la clase de cada tipo de ataque para cada registro. Estos nombres colocados acordes a la investigación hecha por **Bhavsar**.

```
dataset.training$V44 = ClassLabelAttack(dataset.training)
dataset.testing$V44 = ClassLabelAttack(dataset.testing)
```

De esta manera, tanto el **conjunto de entrenamiento** como el **conjunto de prueba** tienen una nueva columna en la que cada registro tiene asociada la respectiva clase a la que pertenece. Adicionalmente se agregó una nueva columna que corresponde a una nueva etiqueta que identifica a cada registro como **ataque** o **normal**. De esta manera se tiene una clase general para la asociación de los registros.

```
dataset.training$V45 = NormalAttackLabel(dataset.training)
dataset.testing$V45 = NormalAttackLabel(dataset.testing)
```

Ahora se dividirá el conjunto de datos en dataframes individuales para cada clase: DoS, normal, R2L, U2R.

```
training.split = split(dataset.training, dataset.training$V44)
testing.split = split(dataset.testing, dataset.testing$V44)
summary(training.split)
```

```
## Length Class Mode
## DoS 45 data.frame list
## normal 45 data.frame list
## Probing 45 data.frame list
## R2L 45 data.frame list
## U2R 45 data.frame list
```

summary(testing.split)

```
##
           Length Class
                              Mode
## DoS
           45
                  data.frame list
## normal
                  data.frame list
           45
## Probing 45
                  data.frame list
## R2L
           45
                  data.frame list
## U2R
           45
                  data.frame list
```

Las variables **training.split** y **testing.split** contienen una lista de sub-conjuntos por etiquetas de las clases de los ataques en ambos conjuntos de datos. A continuación se listará el número de cada clase en el conjunto de entrenamiento.

```
nrow(training.split$DoS)

## [1] 45927

nrow(training.split$normal)

## [1] 67343

nrow(training.split$Probing)
```

```
## [1] 11656
```

nrow(training.split\$R2L)

[1] 995

nrow(training.split\$U2R)

[1] 52

Se observa que la clase **normal** es la que más registros posee en el conjunto de datos de entrenamiento, seguido por la clase **DoS**. Lo anterior nos da una idea de cuáles son las clases de ataques más comunes y menos comunes. A continuación se presenta un gráfico que ilustra lo anterior y permite visualizar mejor la distribución de las clases.

Frecuencia de las Clases en el Conjunto de Entrenamiento

A continuación se repiten los pasos anteriores para el conjunto de prueba.

nrow(testing.split\$DoS)

[1] 7458

nrow(testing.split\$normal)

[1] 9711

```
nrow(testing.split$Probing)

## [1] 2421

nrow(testing.split$R2L)

## [1] 2754

nrow(testing.split$U2R)
```

[1] 200

En esta oportunidad la clase **normal** sigue siendo la clase con mayor cantidad de registros. En contraste con el conjunto de entrenamiento, se observa que en esta ocasión las clases **Probing** y **R2L** están más equilibradas, adicionalmente, la clase **U2R** posee una cantidad mucho mayor de registros que en el conjunto de entrenamiento. A continuación se presenta un gráfico con las distribuciones de las clases en el conjunto de prueba.

Renombramiento de las columnas

Se hará uso de la función **ColumnNames** que asigna a los conjuntos de datos los nombres respectivos, estos nombres colocados acordes a la investigación hecha por **Bhavsar**.

```
dataset.training = ColumnNames(dataset.training)
dataset.testing = ColumnNames(dataset.testing)
```

Eliminación de características no importantes

En esta sección se examinarán posibles características inútiles, esto es, aquellas características que sólo tienen un nivel de valores, por ejemplo, una característica de tipo **numérico** donde en todos los registros el valor es cero (0), es decir, el rango viene dado por [0]. Para dicho propósito se utilizará la función **CheckFeaturesLevels** que toma como entrada un dataframe y retorna la posición (si existe) de la característica que no aporta información.

```
index.dummy.variables.training = CheckFeaturesLevels(dataset.training)
index.dummy.variables.testing = CheckFeaturesLevels(dataset.testing)
names(dataset.training)[index.dummy.variables.training]
```

```
## [1] "Num_outbound_cmds"
```

```
names(dataset.testing)[index.dummy.variables.testing]
```

```
## [1] "Num_outbound_cmds"
```

Se observa que en ambos conjuntos de datos la columna **Num_outbound_cmds** es inútil, en consecuencia, la misma será eliminada del conjunto de datos.

```
dataset.training[,index.dummy.variables.training] = NULL
dataset.testing[, index.dummy.variables.testing] = NULL
```

Tranformación de los datos

Las columnas **Protocol_type**, **Service** y **Flag** tienen tipos de datos categóricos, los mismos serán transformados a numéricos. La transformación tiene su justificación en el hecho de que los algoritmos a utilizar que son **Redes Neuronales**, **Máquinas de Soporte Vectorial** y **K-Medias** funcionan con variables predictoras (características) numéricas. Dicho esto es obligatorio transformar las columnas de tipo categórico a tipo numérico.

1. Protocol type: esta característica posee 3 niveles, que serán listados alfabeticamente a continuación.

```
sort(unique(dataset.training$Protocol_type))

## [1] icmp tcp udp

## Levels: icmp tcp udp

sort(unique(dataset.testing$Protocol_type))

## [1] icmp tcp udp

## Levels: icmp tcp udp
```

Los mismos se tranformarán en los valores 1,2,3 respectivamente. La función **ProtocolTransformation** es la encargada de realizar dicho trabajo.

```
dataset.training = ProtocolTransformation(dataset.training)
dataset.testing = ProtocolTransformation(dataset.testing)
```

2. Service: esta característica posee una mayor cantidad de niveles con respecto a Protocol_type, los mismo serán listados a continuación.

sort(unique(dataset.training\$Service))

```
##
    [1] aol
                     auth
                                              courier
                                                           csnet_ns
                                 bgp
    [6] ctf
##
                     daytime
                                 discard
                                              domain
                                                           domain u
## [11] echo
                                 ecr i
                     eco_i
                                              efs
                                                           exec
## [16] finger
                     ftp
                                 ftp data
                                              gopher
                                                           harvest
## [21] hostnames
                                 http_2784
                                                           http_8001
                     http
                                              http_443
## [26] imap4
                     IRC
                                                           kshell
                                 iso_tsap
                                              klogin
## [31] ldap
                     link
                                 login
                                              mtp
                                                           name
## [36] netbios_dgm netbios_ns
                                 netbios_ssn netstat
                                                           nnsp
## [41] nntp
                     ntp_u
                                 other
                                              pm_dump
                                                           pop_2
## [46]
        pop_3
                     printer
                                 private
                                              red_i
                                                           remote_job
## [51] rje
                     shell
                                              sql_net
                                 smtp
                                                           ssh
## [56] sunrpc
                     supdup
                                 systat
                                              telnet
                                                           tftp_u
## [61] time
                     tim_i
                                 urh_i
                                              urp_i
                                                           uucp
## [66] uucp_path
                     vmnet
                                 whois
                                              X11
                                                           Z39_50
## 70 Levels: aol auth bgp courier csnet_ns ctf daytime discard ... Z39_50
```

sort(unique(dataset.testing\$Service))

```
[1] auth
                                 courier
                     bgp
                                              csnet ns
                                                           ctf
##
    [6] daytime
                     discard
                                 domain
                                              domain u
                                                           echo
## [11] eco i
                     ecr_i
                                 efs
                                              exec
                                                           finger
## [16] ftp
                     ftp_data
                                 gopher
                                              hostnames
                                                           http
                                 IRC
## [21] http_443
                     imap4
                                              iso_tsap
                                                           klogin
## [26] kshell
                                 link
                     ldap
                                              login
                                                           mtp
## [31]
        name
                     netbios_dgm netbios_ns
                                              netbios_ssn netstat
## [36]
        nnsp
                     nntp
                                 ntp_u
                                              other
                                                           pm_dump
## [41] pop_2
                     pop_3
                                 printer
                                              private
                                                           remote_job
## [46] rje
                     shell
                                 smtp
                                              sql_net
                                                           ssh
## [51] sunrpc
                     supdup
                                              telnet
                                 systat
                                                           tftp_u
## [56] time
                     tim_i
                                 urp_i
                                              uucp
                                                           uucp_path
## [61] vmnet
                     whois
                                 X11
                                              Z39 50
## 64 Levels: auth bgp courier csnet ns ctf daytime discard ... Z39 50
```

Se observa que en el **conjunto de entrenamiento** hay un total de 70 niveles, contra 64 niveles presentes en el **conjunto de prueba**. Observemos la cantidad total de servicios uniendo ambos conjuntos.

sort(unique(dataset.training\$Service))

```
[1] aol
##
                     auth
                                  bgp
                                               courier
                                                            csnet_ns
   [6] ctf
                     daytime
                                  discard
                                               domain
                                                            domain u
                                  ecr i
## [11] echo
                     eco_i
                                               efs
                                                            exec
## [16] finger
                     ftp
                                  ftp_data
                                               gopher
                                                            harvest
```

```
## [21] hostnames
                                 http_2784
                                              http 443
                                                          http 8001
                    http
## [26] imap4
                                                          kshell
                    IRC
                                             klogin
                                 iso_tsap
## [31] ldap
                    link
                                 login
                                              mtp
                                                          name
  [36] netbios_dgm netbios_ns
                                 netbios_ssn netstat
                                                          nnsp
## [41] nntp
                    ntp_u
                                 other
                                              pm_dump
                                                          pop_2
## [46] pop_3
                    printer
                                 private
                                                          remote job
                                              red i
## [51] rje
                    shell
                                 smtp
                                              sql_net
                                                          ssh
## [56] sunrpc
                    supdup
                                 systat
                                              telnet
                                                          tftp_u
## [61] time
                    tim_i
                                 urh_i
                                              urp_i
                                                          uucp
## [66] uucp_path
                    vmnet
                                 whois
                                              X11
                                                          Z39_50
## 70 Levels: aol auth bgp courier csnet_ns ctf daytime discard ... Z39_50
```

Se observa que el total de servicios es de 70, es decir, el conjunto de servicios en el conjunto de entrenamiento corresponde al universo de todos los servicios en los conjuntos de datos.

Los niveles serán enumerados en en rango [1,70] en orden alfabético, tal cómo se muestra a continuación.

```
"csnet ns"
##
    [1] "aol"
                        "auth"
                                        "bgp"
                                                       "courier"
##
    [6] "ctf"
                        "daytime"
                                        "discard"
                                                       "domain"
                                                                       "domain u"
  [11] "echo"
                        "eco_i"
                                        "ecr_i"
                                                       "efs"
                                                                       "exec"
   [16] "finger"
                        "ftp"
                                        "ftp_data"
                                                                       "harvest"
                                                       "gopher"
                                                                       "http_8001"
                                        "http_2784"
##
   [21]
        "hostnames"
                        "http"
                                                       "http_443"
                                                                       "kshell"
                        "IRC"
                                        "iso_tsap"
   [26]
        "imap4"
                                                       "klogin"
   [31]
        "ldap"
                        "link"
                                        "login"
                                                       "mtp"
                                                                       "name"
   [36]
        "netbios_dgm"
                        "netbios_ns"
                                        "netbios_ssn"
                                                       "netstat"
                                                                       "nnsp"
                                        "other"
                                                                       "pop_2"
   [41]
        "nntp"
                        "ntp_u"
                                                       "pm_dump"
##
   [46]
        "pop 3"
                        "printer"
                                        "private"
                                                       "red_i"
                                                                       "remote_job"
  [51]
        "rje"
                        "shell"
                                        "smtp"
                                                       "sql_net"
                                                                       "ssh"
##
   [56]
        "sunrpc"
                        "supdup"
                                        "systat"
                                                       "telnet"
                                                                       "tftp u"
        "time"
##
   [61]
                        "tim_i"
                                        "urh_i"
                                                       "urp_i"
                                                                       "uucp"
   [66] "uucp_path"
                        "vmnet"
                                        "whois"
                                                       "X11"
                                                                       "Z39 50"
```

Se utilizará la función ServiceTransformation para enumerar cada uno de los servicios listados previamente.

```
dataset.training = ServiceTransformation(dataset.training)
dataset.testing = ServiceTransformation(dataset.testing)
```

3. Flag: es la característica categórica restante. Observemos los niveles de esta características.

```
sort(unique(dataset.training$Flag))
##
    [1] OTH
                REJ
                        RSTO
                               RSTOSO RSTR
                                              S<sub>0</sub>
                                                      S1
                                                              S2
                                                                     S3
                                                                             SF
## [11] SH
## Levels: OTH REJ RSTO RSTOSO RSTR SO S1 S2 S3 SF SH
sort(unique(dataset.testing$Flag))
                                                                     S3
##
    [1] OTH
                REJ
                       RSTO
                               RSTOSO RSTR
                                              SO
                                                      S1
                                                              S2
                                                                             SF
## [11] SH
## Levels: OTH REJ RSTO RSTOSO RSTR SO S1 S2 S3 SF SH
```

```
## [1] 11
```

Se observa que hay 11 niveles en ambos conjuntos y que la unión de los niveles de ambos conjuntos de datos arroja el mismo resultado. Dicho esto, las etiquetas serán enumeradas por orden alfabético, tal cómo se muestra a continuación.

Se utilizará la función FlagTransformation para dicho propósito.

```
dataset.training = FlagTransformation(dataset.training)
dataset.testing = FlagTransformation(dataset.testing)
```

Guardando la vista minable

En este punto la vista minable ya fue creada, las columnas poseen un formato adecuado para los algoritmos que serán utilizados y se agregaron nuevas columnas que facilitarán tareas futuras en la investigación. Debido a que no hay más tareas por hacer, se procede a guardar los conjuntos de datos para cargar los datos preprocesados y no tener que repetir dicho procedimiento luego.

Implementación de modelos híbridos

La propuesta del **trabajo especial de grado** consta del entrenamiento de dos modelos híbridos de aprendizaje automático. El primer modelo (i) consta de una **red neuronal** en el primer nivel y **K-Medias** en el segundo, por otra parte, el segundo modelo (ii) consta de una **máquina de soporte vectorial** en el primer nivel y **K-Medias** en el segundo nivel.

En esta sección los modelos serán entrenados con los parámetros por defecto. Porteriormente se hará selección de características y parámetros, y se analizará el impacto con respecto a los modelos creados en esta sección.

Esta sección será divida en dos grandes secciones, una concerniente al entrenamiento y evaluación de los modelos utilizando el **conjunto de entrenamiento** exclusivamente. En esta fase se hará uso de la **técnica de validación cruzada de 10 conjuntos** para evaluar los modelos. Posteriormente, se hará el entrenamiento haciendo uso total del conjunto de entrenamiento y se hará evaluación de los modelos haciendo uso del conjunto de prueba.

Con la estrategia descrita en el párrafo anterior se podrán observar tres aspectos relevantes:

- 1. La eficacia de los modelos contra ataques conocidos.
- 2. La eficacia de los modelos contra ataques no conocidos.
- 3. Diferencias de rendimiento entre ambos modelos.

Análisis sobre el conjunto de entrenamiento

En esta sección se listarán las actividades concernientes al entrenamiento y evaluación de los modelos híbridos haciendo uso exclusivo del conjunto de entrenamiento y de la técnica de validación cruzada de 10 conjuntos para la evaluación de los modelos.

Inicialmente iniciaremos con una evaluación del rendimiento de **K-Medias**, se elegirán los centroides y se evaluará su desempeño en la tarea de detección de intrusos.

K-Medias

Se empezará por establecer el ambiente de trabajo eliminando las variables parciales, cargando el archivo de funciones y la vista minable del conjunto de entranmiento pre-procesado previamente.

Para esta sección sólo se necesitaran las etiquetas Label_Normal_ClassAttack y Label_Normal_or_Attack, por lo tanto las otras etiquetas serán eliminadas.

```
dataset = dataset.training
dataset$Label_Normal_TypeAttack = NULL
dataset$Label_Num_Classifiers = NULL
```

A continuación se le asignará el tipo numérico a todas las **columnas predictoras**, y el tipo factor a las **columnas de etiquetas**.

```
for (i in 1 : (ncol(dataset) -2) )
  dataset[,i] = as.numeric(dataset[,i])

for (i in (ncol(dataset) -1):ncol(dataset) )
  dataset[,i] = as.factor(dataset[,i])
```

En este punto se crearán dos nuevos conjuntos de datos, **dataset.two** que tendrá cómo etiqueta la columna **Label_Normal_or_Attack**, columna que sólo tiene dos niveles categóricos **Attack** o **normal**. Por otra parte, se creará un segundo conjunto de datos llamado **dataset.five** el cuál contendrá cómo etiqueta la columna **Label_Normal_ClassAttack**, columna que tiene cinco niveles categóricos **DoS**, **normal**, **Probing**, **R2L** y **U2R**.

```
dataset.two = dataset[-(ncol(dataset)-1)]
dataset.two[, ncol(dataset.two)] = as.character(dataset.two[, ncol(dataset.two)])
dataset.five = dataset[-ncol(dataset)]
```

Hasta este punto se tienen tres conjuntos de datos **dataset**, **dataset.two** y **dataset-five**. El algoritmo **K-Medias** funciona utilizando medidas de distancia, motivo por el cual es necesario el escalamiento de los valores de las columnas predictoras dentro de un mismo rango de valores, de lo contrario el rendimiento del algoritmo se verá deteriorado por la diferencia entre las escalas. La función **ScaleSet** lleva todas las columnas a un rango de valores con *media* cero (0), y *desviación estándar* uno (1). Adicionalmente, del conjunto de datos **dataset** se eliminará la columna **Label_Normal_or_Attack** debido a que ya no es necesaria.

```
dataset$Label_Normal_or_Attack = NULL
dataset = ScaleSet(dataset)
dataset.two = ScaleSet(dataset.two)
dataset.five = ScaleSet(dataset.five)
```

Codo de Jambu

Hasta este punto ya se tienen los conjuntos de datos listos para ser utilizados. El algoritmo **K-Medias** amerita que se le pasen cómo argumentos el número de centroides o la posición inicial de los centroides. Estos corresponden al número de conjuntos que se esperan identificar en el conjunto de datos. En el escenario que tenemos actualmente esta tarea es sencilla debido a que el conjunto de datos tiene cada uno de los registros etiquetados, sim embargo, este paso no siempre es sencillo. Adicionalmente es importante recordar que el algoritmo de **K-Medias** es un algoritmo de enfoque **no-supervisado** y no hace uso de estas etiquetas para separar los conjuntos.

Si bien es cierto que tenemos etiquetas que nos dicen de antemano cuáles son los niveles de los conjuntos, existe un dilema con respecto al rendimiento del algoritmo con dos o cinco clases objetivo. El problema de la selección del número de clusters siempre ha existido y existe un método llamado Codo de Jambu que es utilizado para capturar la varianza acumulada con respecto al número de clusters usados. Al graficar la cantidad de varianza acumulada por el número de clusters, se verá que llega un punto en el que la gráfica tiene un comportamiento que emula la articulación de un codo, y es en ese punto, donde se empieza a formar la articulación, es donde se indica que el uso de mayor cantidad de clusters no aporta mayor información al algoritmo.

Existen cuatro tipos de algoritmos para calcular las distancias de K-Medias, estas son **Hartigan-Wong**, **Lloyd**, **Forgy** y **Macqueen**. A continuación se aplicará cada una de estas técnicas variado la cantidad de centroides en el rango [1,30], se graficarán los resultados y se analizarán los mismos.

```
IIC.Hartigan = vector(mode = "numeric", length = 30)
IIC.Lloyd = vector(mode = "numeric", length = 30)
IIC.Forgy = vector(mode = "numeric", length = 30)
IIC.MacQueen = vector(mode = "numeric", length = 30)
for (k in 1:30)
{
  groups = kmeans(dataset[,ncol(dataset)-2], k, iter.max = 100,
                  algorithm = "Hartigan-Wong")
  IIC.Hartigan[k] = groups$tot.withinss
  groups = kmeans(dataset[,ncol(dataset)-2], k, iter.max = 100, algorithm = "Lloyd")
  IIC.Lloyd[k] = groups$tot.withinss
  groups = kmeans(dataset[,ncol(dataset)-2], k, iter.max = 100, algorithm = "Forgy")
  IIC.Forgy[k] = groups$tot.withinss
  groups = kmeans(dataset[,ncol(dataset)-2], k, iter.max = 100, algorithm = "MacQueen")
  IIC.MacQueen[k] = groups$tot.withinss
}
plot(IIC.Hartigan, col = "blue", type = "b", pch = 19, main = "Codo de Jambu",
     xlab = "Varianza Acumulada", ylab = "Número de Clusters")
points(IIC.Lloyd, col = "red", type = "b", pch = 19)
points(IIC.Forgy, col = "green", type = "b", pch = 19)
points(IIC.MacQueen, col = "magenta", type = "b", pch= 19)
legend("topright", legend = c("Hartigan", "Lloyd", "Forgy", "MacQueen"),
       col = c("blue", "red", "green", "magenta"), pch = 19)
```

Codo de Jambu

Se puede observar como con dos clusters se alcanza el mejor resultado, debido a que cómo se observa en el gráfico, la transición entre la varianza acumulada con dos y tres clusters hace la analogía del codo que corresponde a la articulación mencionada con anterioridad. Adicionalmente se puede observar que todos los algoritmos se solapan entre si, este comportamiento es indicativo de que todos se comportan de manera similar y es indiferente su uso en este conjunto de datos. Para mayor información consultar el siguiente enlace: Codo de Jambu.

En las próximas secciones se probará si estos resultados son ciertos evaluando el rendimiento del algoritmo utilizando 5 clusters y 2 clusters respectivamente.

K-Medias (5 clusters)

Empezaremos con 5 clusters, debido a que aparentemente es el que tiene peor rendimiento. La metodología es la siguiente, se aplicará 10 veces el algoritmo y se promediará la tasa de acierto para evaluar el desempeño.

```
{
  best.prediction.five = prediction.five
  best.accuracy.five = accuracy.five
}
```

La variable **results.five** contiene los resultados de la tasa de aciertos de cada iteración, y las variables **best.prediction.five** y **best.accuracy.five** contienen las mejores predicciones y la mejor tasa de aciertos respectivamente. Veamos los resultados.

```
results.five * 100

## [1] 69.87688 68.85364 69.35454 77.91590 68.58771 72.29724 76.55132

## [8] 59.90252 78.60891 76.77280

mean(results.five) * 100

## [1] 71.87215
```

Se observa que el promedio de acierto fue de 71, 87%, este rendimiento no parece estar mal, sin embargo, es necesario esperar a la comparación con el modelo de dos clusters para poder tener una mejor opinión. Mientras tanto crearemos una matriz de confusión para ilustrar el desempeño del modelo de manera gráfica.

```
confusion.matrix.five = table(Real = dataset.five$Label, Prediction = best.prediction.five)
confusion.matrix.five
```

```
##
              Prediction
## Real
                  DoS normal Probing
                                            R<sub>2</sub>L
                                                   U2R
##
      DoS
                34329
                          4691
                                   6888
                                              9
                                                     10
##
                                                  2856
                  115
                        63828
                                    119
                                            425
      normal
##
      Probing
                  384
                          5845
                                    869
                                           4217
                                                   341
##
      R2L
                     3
                           940
                                       0
                                              0
                                                     52
##
      U2R
                     0
                            52
                                       0
                                               0
                                                      0
```

La matriz de confusión se ve bastante desordenada, y no acertó en la predicción de ningún registro para las clases **R2L** y **U2R**. Veamos la mejor tasa se acierto y la peor tasa de aciertos.

```
best.accuracy.five*100

## [1] 78.60891

best.accuracy.five*100
```

```
## [1] 78.60891
```

La mejor tasa de aciertos fue de 78%, no parece ser un mal rendimiento, pero debemos esperar a la comparación con el otro modelo. Como aspecto importante a resaltar, la diferencia entre los resultados se debe a que la inicialización de los centroides en el algoritmo de **K-Medias** se hace de forma aleatoria, y dependiendo de la posición iniciales de los centroides, el algoritmo puede converger a diferentes mínimos locales. Por tal motivo, se colocaron semillas, de tal manera que las pruebas puedan ser recreables. A continuación calcularemos la eficacia por etiqueta, la salida es un vector numérico que representa a las clases ordenadas en orden alfabético de la siguiente forma: **DoS**, **normal**, **Probing**, **R2L** y **U2R**.

```
AccuracyPerLabel(confusion.matrix.five, dataset.five)
```

```
## [1] 74.746881 94.780452 7.455388 0.000000 0.000000
```

Se aprecia el hecho de que el algoritmo sólo clasifica bien las clases **DoS** y **Normal**. Estas dos clases corresponden a la mayoría de registros del conjunto de datos y por eso es que el promedio de aciertos es elevado, sin embargo, el rendimiento con las otras tres etiquetas **Probing**, **R2L** y **U2R** es pobre.

Lo siguiente será transformar la matriz de confusión de **cinco clases** a **dos clases**. Esto con la finalidad de poder calcular medidas de rendimiento binarias como lo son **sensitividad**, **especificidad** y **precisión**.

```
## Prediction
## Real Attack normal
## Attack 47102 11528
## normal 3515 63828
```

Se observa cómo hay una gran cantidad de **falsos negativos** y **falsos positivos**, a pesar de que la mayoría de los registros son clasificados de buena manera. Ahora veamos la eficacia por etiqueta. La salida corresponde a un vector numérico donde la primera posición es **Attack** y la segunda **normal**.

```
AccuracyPerLabel(attack.normal.confusion.matrix.five, dataset.two)
```

```
## [1] 80.33771 94.78045
```

La eficacia a la hora de detectar tráfico normal es bastante elevada, de 94.78%. Para la detección de los ataques es menor, esta corresponde a 80.34%, que es un número elevado, sin embargo, hay que recordar que este número está sesgado desde el punto de vista que sólo se clasificaron ataques de tipo **DoS**. A continuación se calcularán las medidas de rendimiento binarias.

```
Sensitivity(attack.normal.confusion.matrix.five) * 100
```

[1] 80.33771

```
Especificity(attack.normal.confusion.matrix.five) * 100
```

[1] 94.78045

```
Precision(attack.normal.confusion.matrix.five) * 100
```

```
## [1] 93.05569
```

Se observa que el modelo es bueno detectando tráfico normal, sin embargo, a la hora de detectar ataques el rendimiento se ve mermado.

K-Medias (2 clusters)

Ahora se implementarán los pasos realizados con cinco clusters pero ahora con dos clusters. Es decir, se correrá el algoritmo de **K-Medias** diez veces con dos clusters.

La variable resulst.two contiene la tasa de aciertos en cada iteración del algoritmo.

```
results.two
```

```
## [1] 0.9050590 0.9050590 0.9050590 0.9050590 0.8103244 0.6087177 0.4935740
## [8] 0.6087177 0.6087177 0.9050590
```

Se observa que la tasa de aciertos es mayor que con cinco clusters, adicionalmente, hubo iteraciones en la que los resultados se repitieron. Esto es debido a que la inicialización de los centroides al inicio del algoritmo hizo que en esas ocasiones se alcazara el mismo **mínimo local**. Este comportamiento da indicios de que la solución al conjunto de datos se representa con dos clusters y no con cinco. A continuación calculemos el promedio de acierto.

```
mean(results.two) * 100
```

```
## [1] 76.55347
```

La media de acierto es de 76.55%, este resultado es mayor al promedio con cincos clusters. Se creará una matriz de confusión para visualizar gráficamente el desempeño del algoritmo en la tarea de clasificación.

```
confusion.matrix.two = table(Real = dataset.two$Label, Prediction = best.prediction.two)
confusion.matrix.two
```

```
## Prediction
## Real Attack normal
## Attack 47351 11279
## normal 681 66662
```

Se aprecia que contiene una alto número de falsos negativos, en realidad es una cantidad similar a la matriz de confusión con cinco clusters. Por otra parte, la cantidad de falsos positivos se vio reducida notablemente. Ahora imprimiremos la tasa de aciertos y la tasa de error del mejor modelo obtenido.

best.accuracy.two*100

[1] 90.5059

ErrorRate(best.accuracy.two)*100

[1] 9.494098

Se obtuvo una **tasa de aciertos** de 90.51% una tasa bastante alta, mucho mayor que el modelo con cinco clusters. Por consecuente, la **tasa de errores** será también menor. Ahora veamos la **tasa de aciertos** por etiquetas. Es importante recordar que la salida corresponde a un vector numérico donde la primera posición corresponde a la etiqueta **Attack** y la segunda a la etiqueta **normal**.

AccuracyPerLabel(confusion.matrix.two, dataset.two)

[1] 80.76241 98.98876

Se obtuvo una eficacia similar en la detección de ataques que en la evaluación con cinco clusters. La verdadera mejora vino en la eficacia a la hora de clasificar el **tráfico normal**, donde se obtuvo un 98.99% de acierto. En esta oportunidad, la matriz de confusión ya es binaria, por consecuente se pueden calcular las medidas de rendimiento correspondientes.

Sensitivity(confusion.matrix.two) * 100

[1] 80.76241

Especificity(confusion.matrix.two) * 100

[1] 98.98876

Precision(confusion.matrix.two) * 100

[1] 98.5822

La sensitividad nos dice que el modelo fue muy bueno clasificando el **tráfico normal**, por otra parte clasificando los **ataques** es menos efectivo. La medida de **sensitividad** con respecto al modelo con cinco clusters se vio incrementada en 4%, por otra parte, la **especificidad** y la **precisión** es bastante parecida en ambos modelos.

Conclusión

En general ambos modelos tienen altos valores de eficacia, sin embargo, el modelo con dos clusters obtuvo mejores resultados con respecto a la **eficacia** y **sensitividad** de manera notoria, y algunas mejoras simples en las medidas de **especificidad** y **precisión**. Adicionalmente, se observó que la cantidad de falsos positivos fue reducida en el modelo con dos clusters. Finalmente, el algoritmo **Codo de Jambu** es un buen método para la preselección de clusters a la hora de aplicar **K-Medias**.

Redes Neuronales

En esta sección se describirán las actividades realizadas para el entrenamiento y evaluación de redes neuronales en el ámbito de detección de intrusos en redes de computadoras. Este sección de subdivide en dos grandes partes **Entrenamiento del modelo** y **Evaluación del modelo**. Esto debido a que los pasos y observaciones serán realizadas de manera individual.

Entrenamiento del modelo

Para el entrenamiento de la red neuronal se propone una arquitectura con cuarenta neuronas en la capa de entrada, una capa intermedia con veinte neuronas, y cinco neuronas para la capa de salida. La razón para la selección de la arquitectura descrita previamente corresponde a que inicialmente se tienen cuarenta variables predictoras que corresponden a la capa de entrada; por otra parte, se tienen cinco clases objetivo que corresponden a las cinco neuronas de la capa de salida. El número de capas intermedias y el número de neuronas por capas que debe poseer una red neuronal no está normado en ningún lugar, sólo existen recomendaciones hechas por expertos. Andrew Ng profesor de la Universidad de Stanford, menciona en uno de sus cursos de aprendizaje automático en Coursera que un modelo con una capa intermedia es suficiente para resolver una gran cantidad de problemas, adicionalmente comenta que en caso de querer utilizar una segunda capa intermedia, es recomendable que ambas capas posean igual cantidad de neuronas.

En este modelo se utilizaron 20 neuronas debido a que al haber una gran cantidad de neuronas de entrada, entonces la mitad de las neuronas de entrada parece suficiente. El paquete utilizado para la implementación de redes neuronales se llama **nnet**. Se probó otro paquete llamado **neuralnet**, a diferencia de **nnet**, **neuralnet** permite crear modelos con múltiples capas intermedias, pero es mucho más lento y para las tareas de clasificación hace el proceso más engorroso. Por otra parte, **nnet** a pesar de que sólo permite hacer uso de una capa intermedia, es mucho más rápido para el entrenamiento y el proceso de preparación de los datos para ser pasados cómo parámetros es más directo.

Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el archivo de funciones y la vista minable del conjunto de entrenamiento.

Es importante mencionar que en esta sección se hará el entrenamiento y la evaluación del modelo haciendo uso únicamente del **conjunto de entrenamiento** haciendo uso de la técnica de validación de modelos llamada validación cruzada de 10 conjuntos.

Cómo se mencionó previamente el paquete utilizado es **nnet**, a continuación se procederá a instalarlo y a cargarlo en el ámbiente de trabajo.

```
install.packages("nnet")
library("nnet")
```

Una vez que tenemos nuestro ambiente de trabajo preparado se eliminarán aquellas etiquetas del conjunto de datos que no van a ser utilizadas a lo largo del proceso de entrenamiento del modelo. Este nivel posee cinco clases objetivos que son **DoS**, **normal**, **Probing**, **R2L** y **U2R**, esto con la finalidad de que la salida para el especialista sea más entendible y pueda identificar la falla se seguridad acontándola dentro de estas cuatro clase de ataques. Dicho esto eliminaremos el resto de las etiquetas.

```
dataset = dataset.training
dataset$Label_Normal_TypeAttack = NULL
dataset$Label_Num_Classifiers = NULL
dataset$Label_Normal_or_Attack = NULL
```

Es obligatorio para el uso de las redes neuronales que todas las variables predictoras sean de tipo **numérico**. Por tal motivo, las columnas serán transformadas a tipo numérico. Adicionalmente, cómo haremos tareas de clasificación, se establecerá la columna objetivo como tipo **factor**.

```
for (i in 1 : (ncol(dataset) -1) )
  dataset[,i] = as.numeric(dataset[,i])

dataset[,ncol(dataset)] = as.factor(dataset[,ncol(dataset)])
```

Para reducir el tiempo de entrenamiento y mejorar la precisión de las predicciones es buena práctica escalar el conjunto de datos a valores que posean media cero (0) y desviación estándar uno (1).

```
dataset = ScaleSet(dataset)
```

La estrategia adoptada para la evaluación del modelo será la utilización de validación cruzada de 10 conjuntos. La función CVSet toma un conjunto de datos y establece 10 divisiones de igual longitud del conjunto de datos y las devuelve en una lista de dataframes.

```
cv.sets = CVSet(dataset, k = 10, seed = 22)
length(cv.sets)
```

```
## [1] 10
```

Se observa que la longitud de la lista es de diez posiciones, esto debido a que en cada posición se posee un dataframe que corresponde a un subconjunto del conjunto de datos original. Todos los registros entre los diferentes dataframes son diferentes debido a que el muestreo se hizo sin reemplazo. Para seguir con las tareas se procederá a inicializar algunas variables.

```
results = vector(mode = "numeric", length = 10)
list.results = list(0, 0, 0, 0)
names(list.results) = c("results", "best_model", "best_testing_set", "best_predictions")
best.accuracy = 0
```

El proceso de entrenamiento y de validación del modelo es bastante largo y por esto se almacenarán en una lista los **resultados** correspondiendes a la eficacia de cada modelo en cada iteración, el **mejor modelo**, el **conjunto de datos de prueba** que originó la predicción, y el mejor conjunto de **predicciones**. De esta manera la lista puede ser guardada como un objeto y ser exportada a un archivo que posteriormente puede cargarse, y no es necesario esperar a la realización de este paso cada vez que se deseen analizar los resultados. El siguiente fragmento de código es el encargado de realizar las tareas mencionadas con anterioridad.

```
size = 20.
                     maxit = 100)
  #Realizando las predicciones
  predictions = predict(model, testingset[, 1:(ncol(testingset)-1)], type = "class")
  #Calculando la tasa de aciertos
  accuracy = mean(testingset[, ncol(testingset)] == predictions)
  #Almacenando el resultado
  results[i] = accuracy
  #Almacenando el mejor resultado
  if(best.accuracy < accuracy)</pre>
   list.results$best_model = model
   list.results$best_testing_set = testingset
   list.results$best_predictions = predictions
   best.accuracy = accuracy
  }
}
```

Una vez que se culmina el proceso de entrenamiento, se almacenan en la lista los resultados parciales de cada iteración y se exporta el modelo.

```
list.results$results = results
saveRDS(list.results, "../source/normal_model/NN/Tests/list_results.rds")
```

Evaluación del modelo

En esta sección se hará la evaluación de los resultados obtenidos en la sección anterior, adicionalmente se tomará el mejor modelo y las mejores predicciones obtenidas para agregarle el segundo nivel de clasificación correspondiente al algoritmo **K-Medias**.

Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el paquete **nnet**, cargando el archivo de funciones y la lista con información exportada previamente.

```
rm(list = ls())
library("nnet")
source("../source/functions/functions.R")
list.results = readRDS("../source/normal_model/NN/Tests/list_results.rds")
```

A continuación se visualizará la eficacia obtenida de la eficacia del proceso de validación cruzada y se calculará la *media* de los resultados obtenidos.

```
list.results$results
```

```
## [1] 0.9952370 0.9946194 0.9945114 0.9949907 0.9960073 0.9954289 0.9952203 ## [8] 0.9941909 0.9957588 0.9956967
```

```
mean(list.results$results) * 100
```

```
## [1] 99.51661
```

La media de aciertos es de 99.52%. Esta tasa de aciertos es bastante alta, lo que demuestra que las redes neuronales pueden tener un buen desempeño en la tarea de detección de intrusos en redes de computadoras. A continuación se creará una matriz de confusión del mejor modelo obtenido en el proceso para visualizar gráficamente el desempeño del algoritmo.

##	Prediction					
##	Real	DoS	normal	Probing	R2L	U2R
##	DoS	3036	3	0	1	0
##	normal	4	4417	6	5	1
##	Probing	1	6	711	0	0
##	R2L	0	2	1	67	1
##	U2R	1	1	0	0	1

Se observa una matriz de confusión bastante ordenada con pocos registros fuera de la diagonal, es decir, con pocos fallos de clasificación. Ahora se calculará la tasa de acierto y de error.

```
## [1] 99.60073
```

```
ErrorRate(accuracy) * 100
```

```
## [1] 0.399274
```

La mejor tasa de aciertos fue de 99.6%. Una muy buena tasa de aciertos proporcionada por el modelo de red neuronal. Ahora veamos la eficacia del modelo por etiqueta. Recordemos que la salida corresponde a un vector numérico donde el orden es el siguiente: **DoS**, **normal**, **Probing**, **R2L**, **U2R**, es decir, el orden alfabético de las etiquetas.

```
AccuracyPerLabel(confusion.matrix, list.results$best_testing_set)
```

```
## [1] 99.86842 99.63907 99.02507 94.36620 33.33333
```

Para las clases **DoS**, **normal**, **Probing** y **R2L** la **tasa de aciertos** está por encima del 99.3%, mientras que para la clase **U2R** es de solo el 33.3%. Lo último se debe a la poca cantidad de ejemplos para entrenamiento proporcionados que hace que el algoritmo no pueda generalizar de la manera adecuada, sin embargo, se espera que la eficacia para esta clase incremente conforme se agreguen mayor cantidad de ejemplos para el entrenamiento.

Para poder calcular las medidas de rendimiendo binarias correspondientes a la **sensitividad**, **especificidad**, **precisión** y la graficación de la curva **ROC** es necesario llevar la matriz de confusión de cinco clases a una una matriz binaria, es decir, con clases **Attack** y **normal**.

```
attack.normal.confusion.matrix = AttackNormalConfusionMatrix(list.results$best_testing_set, list.results$best_predictions)
attack.normal.confusion.matrix
```

```
## Prediction
## Real Attack normal
## Attack 3820 12
## normal 16 4417
```

De esta manera se observa que sólo existen veintiocho errores en el proceso de clasificación, donde doce pertenecen a falsos negativos y dieciseís corresponden a falsos positivos. Es importante resaltar que el modelo está realizado para que la clase objetivo sea la detección de ataques, esto dicho para la correcta interpretación de la matriz de confusión. Ahora que se tiene la matriz de confusión binaria es posible calcular las medidas de rendimiento binarias mencionadas con anterioridad.

```
Sensitivity(attack.normal.confusion.matrix) * 100

## [1] 99.68685

Especificity(attack.normal.confusion.matrix) * 100

## [1] 99.63907

Precision(attack.normal.confusion.matrix) * 100
```

```
## [1] 99.5829
```

En las tres medidas se obtuvo un excelente desempeño, todas estas tuvieron un porcentaje superior a 99.5%. Esto nos indica que el modelo es bueno clasificando vualqueir tipo de tráfico de manera correcta, es decir, acierta de forma correcta identificando los **ataques** y el **tráfico normal**.

A continuación se graficará la **curva ROC** que nos dará una perspectiva gráfica con la que el modelo clasifica. En este gráfico se grafica la proporción de aciertos contra la proporción de fallos. La correcta interpretación de este gráfico es la siguiente: medir la certeza con la que algoritmo toma sus decisiones. Esto debido a que las predicciones fueron ordenadas de manera descendente utilizando la probabilidad de predicción de los registros, en el inicio del *eje x* se tienen las predicciones realizadas con mayor probabilidad, y a medida que nos desplazamos hacia la derecha del mismo eje la probabilidad de las predicciones va decrementando. Dicho esto, para la creación de la **curva ROC** se necesita un **vector de probabilidades**, un **vector de predicciones** y un **vector real** que corresponde al correcto nombramiento de un registro.

ROC Curve

En la curva se observa que la mayoría de los aciertos son logrados con una alta probabilidad, conforme la probabilidad va decrementando, el modelo empieza a cometer algunos pocos errores. Al final la mayoría de los errores son cometidos por aquellas predicciones realizadas con baja probabilidad.

Segundo nivel de clasificación (K-Medias)

A continuación se añadirá el segundo nivel de clasificación que corresponde al uso de **K-Medias** para tomar todos aquellos registros clasificados como **normal** para tratar de corregir los **falsos negativos** producidos por la red neuronal. El algoritmo de K-Medias será implementado con dos clusters debido a que en la sección de **K-Medias** se ilustra que con dos clusters la varianza acumulada es la más adecuada, adicionalmente se probó que con dos clusters se obtuvieron mejores resultados que con cinco.

```
kmeans.set = list.results$best_testing_set[list.results$best_predictions == "normal",]
kmeans.set[,ncol(kmeans.set)] = as.character(kmeans.set[,ncol(kmeans.set)])
kmeans.set[kmeans.set[,ncol(kmeans.set)] != "normal",ncol(kmeans.set)] = "Attack"
SumLabels(kmeans.set, ncol(kmeans.set))
```

[1] 12 4417

Acá se observa cómo fueron extraidos los 12 registros que no fueron correctamente clasificados, y los otros 4417 registros que si fueron correctamente clasificados como **normal**. El objetivo es clasificar la mayor cantidad de esos 12 registros que son ataques cómo ataques.

En la sección de **K-Medias** se mencionó que utilizando dos centroides en varias iteraciones se obtuvo el mismo resultado, también se mencionó que esto fue debido a que el algoritmo convergió todas esas veces al mismo **mínimo local**. K-Medias es un algoritmo en el que la preselección de los centroides se hace de manera aleatoria, y es posible obtener diferentes resultados si se hacen múltiples corridas del algoritmo. Por lo anterior, precalcularemos los centroides ejecutando el algoritmo de K-Medias 100 veces y luego promediaremos la posición de los centroides finales. De esta manera, tendremos mejor posicionados los centroides del mejor mínimo local y podremos obtener mejores resultados.

Una vez que el modelo fue entrenado, veamos sus predicciones.

```
## Prediction
## Real Attack normal
## Attack 0 12
## normal 1 4416
```

Se observa que 0 de los 12 ataques fueron detectados, es decir, volvemos a tener 12 **falsos negativos**. Dicho esto, aparentemente el uso de K-Medias en esta ocación no fue eficaz debido a que el desempeño del modelo quedo intacto, esto da indicios a pensar que esos 12 **falsos negativos** están mezclados dentro de lo que es el tráfico normal y no son notablemente separables. Por otra parte hay un aspecto positivo a destacar que es el hecho de que el uso de K-Medias no deterioró de gran manera el trabajo hecho por el modelo de redes neuronales. Se espera que este comportamiento mejore conforme haya mayor cantidad de falsos negativos luego de pasar el primer nivel de clasificación. A continuación se calculará la tasa de **aciertos** y de **errores** del modelo.

```
accuracy.kmeans.model = mean(predictions == kmeans.set[,ncol(kmeans.set)])
accuracy.kmeans.model*100
```

```
## [1] 99.70648
```

```
ErrorRate(accuracy.kmeans.model)*100
```

```
## [1] 0.29352
```

Evidentemente la tasa de aciertos es bastante alta debido a que la gran mayoría del tráfico correspondía a **tráfico normal** y el algoritmo clasificó todos los registros salvo uno cómo **tráfico normal**. A continuación veamos la eficacia por etiqueta. Las posiciones del vector de salida corresponden a la eficacia de las etiquetas **Attack** y **normal** respectivamente.

```
AccuracyPerLabel(confusion.matrix.kmeans.model, kmeans.set)
```

```
## [1] 0.00000 99.97736
```

Se obtuvo 0% de acierto en la predicción de ataques, esto no es bueno debido a que el objetivo es la detección de los ataques, sin embargo, es bueno que la tasa aciertos en el tráfico normal sea tan alta, ya que esto da indicio de que no se generaron muchos **falsos positivos** ni **falsos negativos**. Ahora veamos las medidas de **sensitividad**, **especificidad** y **precisión**.

```
Sensitivity(confusion.matrix.kmeans.model) * 100

## [1] 0

Especificity(confusion.matrix.kmeans.model) * 100

## [1] 99.97736

Precision(confusion.matrix.kmeans.model) * 100
```

La **especificidad** es bastante alta, esto quiere decir que el algoritmo tiene alta precisión detectando el **tráfico normal**, por otra parte, la **sensitividad** y **precisión** son 0, lo que nos dice que el algoritmo no clasificó bien ningún ataque.

Estadísticas totales

[1] 0

En esta sección se unificarán las estadísticas de ambos niveles de los modelos utilizados para evaluar el desempeño conjunto. Se empezará por unificar las dos matrices de confusión, para poder calcular las estadísticas utilizadas con anterioridad.

```
## [,1] [,2]
## [1,] 3820 12
## [2,] 17 4416
```

Se observa que la martriz de confusión quedó muy parecida a la matriz de confusión del modelo de red neuronal, salvo que ahora hay un falso positivo más. Ahora calcularemos las medidas de rendimiento de tasa de acierto, tasa de error, sensitividad, espcificidad y precisión.

```
accuracy.total = Accuracy(confusion.matrix.two.labels)
accuracy.total * 100

## [1] 99.64912

ErrorRate(accuracy.total) * 100
```

[1] 0.3508772

```
Sensitivity(confusion.matrix.two.labels) * 100

## [1] 99.68685

Especificity(confusion.matrix.two.labels) * 100

## [1] 99.61651

Precision(confusion.matrix.two.labels) * 100
```

[1] 99.55695

Las medidas practicamente iguales a las del modelo de **red neuronal**, esto es porque la aplicación de **K-Medias** no proporcionó ningún aspecto positivo ni negativo significante.

Conclusiones

Individualmente el modelo de red neuronal posee un excelente rendimiento con bajas tasas de **falsos positivos** y **falsos negativos**. Al combinarse con **K-Medias** no se logró ninguna mejora, tampoco esto deterioró el modelo, aspecto que es positivo. La situación del segundo modelo espera que mejore en escenarios donde el primer nivel tenga una mayor cantidad de **falsos negativos**, donde quizás los elementos queden con divisiones más obvias y detectables por el algoritmo de **K-Medias**.

Máquinas de Soporte Vectorial

En esta sección se describirán las actividades realizadas para el entrenamiento y evaluación de **máquinas** de soporte vectorial en el ámbito de la deteccción de intrusos en redes de computadoras. Esta sección se subdivide en dos grandes partes, que son **Entrenamiento del modelo** y **Evaluación del modelo**. Esto debido a que los pasos y observaciones a ambos procesos serán realizadas de manera individual.

Entrenamiento del modelo

Para el entrenamiento de la **máquina de soporte vectorial** se utilizará el **kernel radial**, esto debido a que Bhavsar y Waghmare expusieron en su publicación *Intrusion Detection System Using Data Mining Technique: Support Vector Machine* que el kernel radial es más preciso y veloz a la hora de entrenar y clasificar que los otros kernels **linear**, **polinomial** o **sigmoid**. Los parámetros para el algoritmo de SVM con kernel radial tiene los parámetros **cost** y **gamma** que deben ser elegidos, sin embargo, en esta sección se utilizarán los parámetros por defecto, ya que el objetivo acá es probar el desempeño general del modelo. Más adelante, en la sección de selección de parámetros, se seleccionarán los mejores parámetros para el modelo. Se utilizará el paquete **e1071** debido a que en la documentación en blogs y tutoriales es el más utilizado y es el que posee más documentación.

Se iniciará la descripción de las actividades realizadas eliminando variables parciales, cargando el archivo de funciones y la vista minable del conjunto de entrenamiento.

```
rm(list = ls())
dataset.training = read.csv("../dataset/NSLKDD_Training_New.csv",
sep = ",", header = TRUE)
source("../source/functions/functions.R")
```

Es importante mencionar que en esta sección, al igual que en la de **redes neuronales** se hará el entrenamiento y la evaluación del modelo haciendo uso únicamente del **conjunto de entrenamiento**, y aplicando la técnica de validación de modelos llamada **validación cruzada de 10 conjuntos**.

Cómo se mencionó con anterioridad el paquete a ser utilizado es e1071, por consiguiente se procederá a instalarlo y cargarlo en el ambiente de trabajo.

```
install.packages("e1071")
library("e1071")
```

Una vez que se tiene nuestro ambiente de trabajo preparado, se eliminarán aquellas etiquetas del conjunto de datos que no van a ser utilizadas a los largo del proceso de entrenamiento del modelo. Este nivel del modelo híbrido poseerá cinco clases objetivos que son **DoS**, **normal**, **Probing**, **R2L**, y **U2R**; esto con la finalidad de que la salida para el especialista sea más entendible y pueda identificar las fallas de seguridad acontándolas dentro de estas cuatro clases de ataques. Dicho esto, eliminaremos el resto de las etiquetas.

```
dataset = dataset.training
dataset$Label_Normal_TypeAttack = NULL
dataset$Label_Num_Classifiers = NULL
dataset$Label_Normal_or_Attack = NULL
```

Es necesario que todos los tipos de datos de las diferentes columnas sean de tipo numérico para poder entrenar a la máquina de soporte vectorial. Por este motivo, las columnas predictoras serán transformadas a tipo **numérico**. Adicionalmente, cómo haremos tareas de clasificación, la columna objetivo la transformaremos a tipo **factor**.

```
for (i in 1 : (ncol(dataset) -1) )
  dataset[,i] = as.numeric(dataset[,i])

dataset[,ncol(dataset)] = as.factor(dataset[,ncol(dataset)])
```

Para reducir el tiempo de entrenamiento y mejorar la precisión de las predicciones es buena práctica escalar el conjunto de datos a valores que posean media cero (0) y desviación estándar uno (1).

```
dataset = ScaleSet(dataset)
```

La estategia utilizada para la evaluación del modelo será la utilización de validación cruzada de 10 conjuntos. La función CVSet toma un conjunto de datos y establece 10 divisiones de igual longitud del conjunto de datos y las retorna en una lista de dataframes.

```
cv.sets = CVSet(dataset, k = 10, seed = 22)
length(cv.sets)
```

```
## [1] 10
```

Se observa que la longitud de la lista es de diez posiciones, esto debido a que en cada posición se posee un datafrme que corresponde a un subconjunto del conjunto de datos original. Todos los registros entre los dataframes son diferentes debido a que el muestreo se hizo sin reemplazo. Para seguir con las actividades se procederá a inicializar algunas variables.

```
results = vector(mode = "numeric", length = 10)
list.results = list(0, 0, 0, 0)
names(list.results) = c("results", "best_model", "best_testing_set", "best_predictions")
best.accuracy = 0
```

El proceso de entrenamiento y validación del modelo es bastante largo y por eso se almacenarán en una lista los **resultados** correspondientes a la eficacia del modelo en cada iteación, el **mejor modelo**, el **conjunto de datos de prueba**, que originó la predicción, y el mejor conjunto de **predicciones**. De esta manera, la lista puede ser guardada como un objeto y ser exportada a un archivo que posteriormente puede cargarse y no es necesario esperar a la realización de este paso cada vez que se deseen analizar los resultados. El siguiente fragmento de código es el encargado de realizar las tareas mencionadas con anterioridad.

```
for (i in 1:10)
  #Extrayendo el conjunto de datos
  testingset = as.data.frame(cv.sets[[i]])
  trainingset = cv.sets
  trainingset[[i]] = NULL
  trainingset = do.call(rbind, trainingset)
  #Entrenamiento de SVM
  model = svm(Label ~ .,
              data = trainingset,
              kernel = "radial",
              scale = FALSE,
              probability = TRUE)
  #Realizando las predicciones
  predictions = predict(model, testingset[, 1:(ncol(testingset)-1)],
                        type = "class")
  #Calculando la tasa de aciertos
  accuracy = mean(testingset[, ncol(testingset)] == predictions)
  #Almacenando el resultado
  results[i] = accuracy
  #Almacenando el mejor resultado
  if(best.accuracy < accuracy)</pre>
  {
   list.results$best_model = model
   list.results$best_testing_set = testingset
   list.results$best_predictions = predictions
   best.accuracy = accuracy
  }
}
```

Una vez que se culmina el proceso de entrenamiento y validación, se almacenan en la lista los resultados parciales de cada iteración y se exporta el modelo.

```
list.results$results = results
saveRDS(list.results, "../source/normal_model/SVM/Tests/list_results.rds")
```

Evaluación del modelo

En esta sección se hará la evaluación de los resultados obtenidos en la sección anterior, adicionalmente se tomará el mejor modelo y las mejores predicciones para agregar el segundo nivel de clasificación correspondiente al algoritmo **K-Medias**.

Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el paquete e1071, cargando el archivo de funciones y la lista con la información exportada previamente.

```
rm(list = ls())
library("e1071")
source("../source/functions/functions.R")
list.results = readRDS("../source/normal_model/SVM/Tests/list_results.rds")
```

A continuación se visualizará la eficacia obtenida en cada iteración del proceso de validación cruzada y se calculará la media de acierto.

```
list.results$results
```

```
## [1] 0.9919028 0.9909147 0.9915711 0.9923772 0.9937084 0.9920678 0.9914862
## [8] 0.9908714 0.9933616 0.9907787

mean(list.results$results) * 100
```

```
## [1] 99.1904
```

La media de aciertos es de 99.19%. Esto demuestra que que las máquinas de soporte vectorial pueden tener un muy buen desempeño en la tarea de detectar anomalías conocidas en redes de computadoras. A continuación se creará una matriz de confusión del mejor modelo obtenido en el proceso para visualizar gráficamente el desempeño del algoritmo.

```
##
              Prediction
## Real
                                       R2L
                                             U2R
                DoS normal Probing
               3035
                          5
                                               0
##
     DoS
                                   0
                                         0
##
                  4
                       4407
                                  12
                                         9
                                               1
     normal
     Probing
                         13
                                 704
                                         0
                                               0
##
                  1
                          5
                                    0
##
     R2L
                  0
                                        66
                                               0
     U2R
                          2
                                    0
                                               1
```

Se puede ver una matriz bastante ordenada con pocos elementos fuera de la diagonal. A continuación se visualizará la tasa de aciertos para el mejor modelo.

```
ErrorRate(accuracy) * 100
```

```
## [1] 0.6291591
```

La mejor tasa de aciertos fue de 99.37%. Una tasa de aciertos bastante buena, ahora observemos la eficacia por etiquetas del modelo. Recordemos que la salida es un vector numérico ordenado alfabeticamente por el nombre de las etiquetas; es decir, **DoS**, **normal**, **Probing**, **R2L**, **U2R**.

```
AccuracyPerLabel(confusion.matrix, list.results$best_testing_set)
```

```
## [1] 99.83553 99.41349 98.05014 92.95775 33.33333
```

Para las clases **DoS**, **normal**, **Probing** y **R2L**, el desempeño es bastante bueno, en todos los casos por encima del 92.95%. Por otra parte, para la clase **U2R** es de sólo 33.33%, esto es debido a la poca cantidad de registros presentes en el conjunto de datos para entrenar al modelo con esta clase de ataques que hace que el algoritmo no pueda generalizar de buena manera para esta clase de ataques. Se espera que incrementando la cantidad de registros de esta clase de ataques aumente la eficacia para su detección.

Para poder calcular las medidas de rendimiento binarias correspondientes a la **sensitividad**, **especificidad**, **precisión** y la graficación de la **curva ROC** es necesario llevar a la matriz de cinco clases a una matriz binaria, es decir, con clases **Attack y** normal**.

```
## Prediction
## Real Attack normal
## Attack 3807 25
## normal 26 4407
```

De esta manera se observa que sólo existen 55 errores en la clasificación, de los cuales 25 pertenecen a **falsos negativos** y 26 a **falsos positivos**. Es importante resaltar que el modelo fue hecho para que la clase objetivo sea la detección de ataques, esta información es importante para la correcta interpretación de la matriz de confusión. Ahora que se tiene la matriz de confusión binaria es posible calcular las medidas de rendimiento mencionadas previamente.

```
Sensitivity(attack.normal.confusion.matrix) * 100
```

```
## [1] 99.3476
```

```
Especificity(attack.normal.confusion.matrix) * 100
```

[1] 99.41349

```
Precision(attack.normal.confusion.matrix) * 100
```

```
## [1] 99.32168
```

En la tres medidas se obtuvo un excelente desempeño, todas tuvieron un porcentaje superior a 99.32%. Esto nos indica que el modelo es bueno clasificando el tráfico de manera correcta, es decir, acierta de buena manera identificando **ataques** y **tráfico normal**.

A continuación se graficará la **curva ROC** que nos dará una perspectiva gráfica de la certeza de las clasificaciones del modelo. En este gráfico se ilustra la proporción de aciertos contra la proporción de fallos ordenados por la probabilidad de la toma de la decisión del modelo al clasificar cierto registro; por consiguiente, en el inicio del *eje* X se obtendrán aquellas predicciones que fueron hechas con mayor puntaje de certeza; a medida que nos desplazamos hacia la derecha en dicho eje, el puntaje de las certezas va decrementando. Dicho esto, para la creación de la **curva ROC** se necesita de un **vector de probabilidades**, un **vector de predicciones** y un **vector real** que corresponde al correcto nombramiento del registro.

ROC Curve

En la curva se muestra como el comportamiento es un tanto errático con respecto a la certeza con la que se toman las decisiones, es decir, hay decisiones erroneas que se toman con alta certeza. El mejor rendimiento se alcanza con valores de certeza intermedios que es donde la función se separa más de la línea de identidad.

Segundo nivel de clasificación (K-Medias)

A continuación se añadirá el segundo nivel de clasificación que corresponde al uso de **K-Medias** para tomar todos aquellos registros clasificados como **normal** para tratar de corregir los falsos negativos producidos por la **máquina de soporte vectorial**. El algoritmo de K-Medias será implementado con dos clusters debido a que en la *sección de K-Medias* se ilustra que con dos clusters la varianza acu,ulada es óptima, adicionalmente se probó que con dos clusters se obtuvieron mejores resultados que con cinco.

```
kmeans.set = list.results$best_testing_set[list.results$best_predictions == "normal",]
kmeans.set[,ncol(kmeans.set)] = as.character(kmeans.set[,ncol(kmeans.set)])
kmeans.set[kmeans.set[,ncol(kmeans.set)] != "normal",ncol(kmeans.set)] = "Attack"
SumLabels(kmeans.set, ncol(kmeans.set))
```

```
## [1] 25 4407
```

Acá se observa como fueron extraídos los 25 registros que no fueron correctamente clasificados y los 4407 registros que si fueron correctamente clasificados como **tráfico normal**. El objetivo es clasificar la mayor cantidad de esos registros que son ataques cómo ataques.

En la sección de **k-Medias** se mencionó que utilizando dos centroides en varias iteraciones se obtuvo el mismo resultado, también se mencionó que esto fue debido a que el algoritmo convergió todas esas veces al mismo **mínimo local**. k-Medias es un algoritmo en el que la preselección de los centroides se hace de manera aleatoria, por esta razón, es posible obtener diferentes resultados si se hacen multiples corridas del algoritmo. Por lo anterior, se precalcularán los centroides ejecutando el algoritmo de K-Medias 100 veces y luego se promediará la posición de los centroides finales. De esta manera, se tendrán mejor posicionados los centroides desde el inicio permitiéndonos acercarnos al mínimo local y obtener mejores resultados.

Una vez que el modelo fue entrenado, veamos sus predicciones.

```
## Prediction
## Real Attack normal
## Attack 0 25
## normal 1 4406
```

Se observa que 0 de los 25 ataques fueron detectados, es decir, volvemos a tener 25 **falsos negativos**. Dicho esto, aparentemente el uso de K-Medias en esta ocasión no fue eficaz debido a que el desempeño del modelo

quedó intacto, esto da indicios a pensar que esos 25 falsos negativos están mezclados dentro lo que es el tráfico normal y no son notablemente separables. Por otra parte hay un aspecto positivo a destacar que es el hecho de que el uso de K-Medias no deterioró de gran manera el trabajo hecho por el modelo de máquina de soporte vectorial. Se espera que este comportamiento mejore conforme haya mayor cantidad de falsos negativos luego de pasar el primer nivel de clasificación. A continuación se calcularán las tasas de acierto y de error del modelo.

```
accuracy.kmeans.model = mean(predictions == kmeans.set[,ncol(kmeans.set)])
accuracy.kmeans.model*100
```

[1] 99.41336

```
ErrorRate(accuracy.kmeans.model)*100
```

[1] 0.5866426

Evidentemente la tasa de aciertos es bastante alta debido a que la gran mayoría del tráfico correspondía a **tráfico normal** y el algoritmo clasificó todos los registros salvo uno como **tráfico normal**. A continuación veamos la eficacia por etiqueta. Las posiciones del vector de salida corresponden a las clases **Attack** y **normal** respectivamente.

```
AccuracyPerLabel(confusion.matrix.kmeans.model, kmeans.set)
```

```
## [1] 0.00000 99.97731
```

Se obtuvo 0% de acierto en la predicción de ataques, esto no es bueno debido a que el objetivo es la detección de ataques; sin embargo, es bueno que la tasa de aciertos para **tráfico normal** sea tan alta, ya que esto refleja que no se generaron muchos **falsos positivos** ni **falsos negativos**. Ahora veamos las medidas de **sensitividad**, **especificidad** y **precisión**.

```
Sensitivity(confusion.matrix.kmeans.model) * 100
```

[1] 0

```
Especificity(confusion.matrix.kmeans.model) * 100
```

[1] 99.97731

```
Precision(confusion.matrix.kmeans.model) * 100
```

[1] 0

La especificidad es bastante alta, esto quiere decir que el modelo es excelente clasificando el **tráfico normal**, por otra parte, la sensitividad y la especificidad son cero; en consecuencia, el modelo tiene pobre desempeño clasificando los **ataques**.

Estadísticas totales

A continuación se unificarán las estadísticas de ambos niveles de los modelos utilizados para evaluar el desempeño conjunto. Se empezará por unificar las dos matrices de confusión para poder calcular las estadísticas utilizadas con anterioridad.

```
## [,1] [,2]
## [1,] 3807 25
## [2,] 27 4406
```

Se observa que la matriz de confusión quedó muy parecida a la matriz de confusión del modelo de máquina de soporte vectorial, salvo que ahora hay un falso positivo más. Ahora calcularemos las medidas de rendimiendo de tasa de acierto, tasa de error, sensitividad, especificidad y precisión.

```
accuracy.total = Accuracy(confusion.matrix.two.labels)
accuracy.total * 100

## [1] 99.37084

ErrorRate(accuracy.total) * 100

## [1] 0.6291591

Sensitivity(confusion.matrix.two.labels) * 100

## [1] 99.3476

Especificity(confusion.matrix.two.labels) * 100

## [1] 99.39093

Precision(confusion.matrix.two.labels) * 100
```

[1] 99.29577

Las medidas quedaron practicamente invariantes con respecto al modelo de **máquina de soporte vectorial**, esto debido a que la aplicación de **K-Medias** fue irrelevante.

Conclusiones

Individualmente el modelo de **SVM** posee un muy buen desempeño con bajas tasas de **falsos positivos** y **falsos negativos**. Con respecto a la **Curva ROC**, se observa que el modelo comete errores tomando decisiones con un elevado valor de certeza, situación que deteriora un poco su rendimiento.

Al combinarse el modelo de **SVM** con **K-Medias** no se logró absolutamente nada, no se mejoró el proceso de detección de intrusos. Cómo aspecto favorable se puede rescatar el hecho de que no se deterioró el rendimiento del primer nivel del modelo híbrido. Por último, la situación con la inclusión de **K-Medias** se espera que mejore conforme se cometan más fallos de tipo **falsos negativos** por parte del primer nivel.

Conclusiones generales

Los modelos de **red neuronal** y **máquina de soporte vectorial** de manera individual funcionan de gran manera, con bajas tasas de **falsos positivos**, **falsos negativos**, y una gran tasa de acierto. Comparándolos entre ellos, el modelo de **red neuronal** tiene un mejor desempeño individualmente en cada una de las clases de ataques presentes en el conjunto de datos. Adicionalmente, las decisiones que toma con alta certeza suelen ser acertadas, esta característica se puede observar en la **curva ROC**.

La inclusión del segundo nivel de **K-Medias** se comportó en ambos casos de igual manera. Esta no aportó absolutamente nada a la detección de ataques, sin embargo, un aspecto positivo fue que esta no afectó de gran manera el desempeño del primer nivel. Por lo que se espera que con mayor cantidad de ataques no detectados por el primer nivel **K-Medias** pueda tener un mejor desempeño.

Análisis sobre el conjunto de prueba

En esta sección se listarán las actividades concernientes al entrenamiento y evaluación del modelo haciendo uso del conjunto de datos para la fase de entrenamiento y haciendo uso del conjunto de prueba para la fase de evaluación. Hasta este punto en el documento se ha probado que ante ataques conocidos los modelos de SVM y NN tienen un muy buen desempeño a la hora de clasificar ataques y el segundo nivel de K-Medias no parece ser útil. En esta oportunidad el conjunto de prueba tendrá ataques no incluidos en el conjunto de entrenamiento, situación que permitirá medir la capacidad de generalización de los modelos de SVM y NN. Adicionalmente, se espera que si hay mayor cantidad de falsos negativos en el primer nivel, entonces K-Medias pueda ser de utilidad. Se iniciará haciendo el análisis sobre el uso de las redes neuronales.

Redes Neuronales

En esta sección se describirán las actividades realizadas para el entrenamiento y evaluación de las redes neuronales en el ámbito de la detección de intrusos en redes de computadoras. Esta sección se subdivide en dos grandes partes concernientes al **Entrenamiento del modelo** y **Evaluación del modelo**. Esto debido a que los pasos y observaciones se harán de manera individual en cada fase.

Entrenamiento del modelo

Se aplicará el mismo criterio que se propuso en la sección de análisis sobre el conjunto de entrenamiento; es decir, se usará una arquitectura con 40 neuronas de entrada, una capa intermedia de 20 neuronas y una capa de salida de 5 neuronas. Se usará un modelo de 5 clases donde 4 corresponden a las etiquetas de los ataques y 1 a la etiqueta del tráfico normal. De igual manera, se hará uso del paquete **nnet**. La única diferencia es que ahora se hará uso del conjunto total del conjunto de entrenamiento para el entrenamiento del modelo y se hará la evaluación del modelo haciendo uso del conjunto de datos de prueba, en esta ocasión no se hará uso de **validación cruzada de 10 conjuntos** como técnica de validación.

Se empezará establecer el ambiente de trabajo eliminando variables parciales, cargando el archivo de funciones y la vista minable del conjunto de entrenamiento.

```
rm(list = ls())
dataset.training = read.csv("../dataset/NSLKDD_Training_New.csv", sep = ",", header = TRUE)
source("../source/functions/functions.R")
```

El paquete utilizado para el entrenamiento de las redes neuronales es **nnet**, a continuación el paquete se cragará.

```
library("nnet")
```

Una vez que tenemos nuestro ambiente de trabajo preparado se eliminarán aquellas etiquetas del conjutno de datos que no van a ser utilizadas a lo largo del proceso de entrenamiento del modelo. El primer nivel de detección del modelo híbrido posee cinco calses obtetivo que son **DoS**, **normal**, **Probing**, **R2L** y **U2R**; esto con la finalidad de que la salida para el especialista sea más entendible y pueda identificar la(s) falla(s) de seguridad acotándola dentro de estas cuatro clases de araques. Dicho esto eliminaremos el resto de las etiquetas.

```
dataset = dataset.training
dataset$Label_Normal_TypeAttack = NULL
dataset$Label_Num_Classifiers = NULL
dataset$Label_Normal_or_Attack = NULL
```

Es obligatorio que para el uso de las redes neuronales todas las variables predictoras sean de tipo numérico. Por lo tanto, se transformarán cada una de estas a tipo numérico y la columna objetivo se transformará en tipo factor debido a que se realizarán labores de clasificación.

```
for (i in 1 : (ncol(dataset.training) -1) )
  dataset.training[,i] = as.numeric(dataset.training[,i])

dataset.training[,ncol(dataset.training)] = as.factor(dataset.training[,ncol(dataset.training)])
```

Para acelerar el tiempo de entrenamiento y tener un modelo más preciso es buena práctica escalar el conjunto de datos a rangos similares. En este caso, todas las columnas predictoras tendrán *media* cero (0) y *desviación* estándar uno (1).

```
dataset.training = ScaleSet(dataset.training)
```

Ya se tienen el conjunto de datos listo y el ambiente de trabajo preparado, a continuación se iniciará el proceso de entrenamiento. De igual manera que se realizó en la sección análisis sobre el conjunto de prueba el modelo creado será guardado en un objeto debido a que el proceso de entrenamiento es largo y es tedioso tener que esperar a su entrenamiento cada vez que se quiera analizar el modelo. Adicionalmente, en esta oportunidad se calculará el tiempo que tarda el modelo entrenándose. Esto, para poder comparar el tiempo contra la **máquina de soporte vectorial** y luego contra el tiempo de entrenamiento luego de hacer la selección de características y selección de parámetros.

Por último, el tiempo y el modelo creado se guardan en una lista y se exportan cómo un objeto para su posterior uso.

```
list.results = list(total.time, model)
saveRDS(list.results, file = "../source/normal_model/NN/Real_Model/list_results.rds")
```

Evaluación del modelo

En esta sección se hará la evaluación de los resultados obtenidos en la sección anterior, adicionalmente se tomará el mejor modelo y las mejores predicciones obtenidas para agregarle el segundo nivel de clasificación correspondiente al algoritmo K-Medias.

Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el paquete **nnet**,cargando el archivo de funciones, la lista con información exportada previamente y el conjunto de datos de prueba.

Se empezará por eliminar las etiquetas innecesarias, transformar las variables predictoras a tipo **numérico** y la columna objetivo a tipo **factor**, y escalar las variables predictoras dentro de la misma *media* y *desviación* estándar.

```
#Eliminando eiquetas
testing.set$Label_Normal_TypeAttack = NULL
testing.set$Label_Num_Classifiers = NULL
testing.set$Label_Normal_or_Attack = NULL

#Cambiando el tipo de dato
for (i in 1 : (ncol(testing.set) -1) )
   testing.set[,i] = as.numeric(testing.set[,i])

testing.set[,ncol(testing.set)] = as.factor(testing.set[,ncol(testing.set)])

#Escalando las variables predictoras
testing.set = ScaleSet(testing.set)
```

Hasta este punto ya se tienen listos el ambiente de trabajo, conjunto de datos y la lista de resultados de la sección anterior. A continuación se extraerá el modelo y el tiempo de entrenamiento del modelo y se visualizará el tiempo correspondiente al entrenamiento del modelo.

```
training.time = results[[1]]
model = results[[2]]
training.time
```

```
## Time difference of 4.444731 mins
```

A partir de este punto se empezará con el análisis del modelo. Todos los pasos que involucrados con el tiempo de entrenamiento y predicción serán cronometrados y al final serán sumados para tener una prespectiva del tiempo necesario para cada fase. Se iniciará con el cálculo de las predicciones.

```
start.time.predictions = Sys.time()
predictions = predict(model, testing.set[, 1:(ncol(testing.set)-1)], type = "class")
total.time.predictions = Sys.time() - start.time.predictions
total.time.predictions
```

Time difference of 0.3103209 secs

A continuación, se creará una matriz de confusión que nos ayude a ver gráficamente el desempeño del modelo durante el proceso de clasificación.

```
##
             Prediction
## Real
               DoS normal Probing R2L
                                          U2R
##
     DoS
             5942
                     1428
                                      1
##
     normal
               114
                     9338
                               225
                                     32
                                            2
     Probing 262
                      477
                              1679
                                      3
                                            0
##
##
     R2L
                14
                     2361
                                25
                                    354
                                            0
     U2R
                 5
                                26
##
                      154
```

Si se compara con la matriz de confusión del modelo en la sección de análisis sobre el conjunto de entrenamiento se observa una matriz de confusión mucho más desordenada. Sin embargo, a simple vista se observa que la diagonal acumula la mayoría de los registros, adicionalmente se observa que existen más falsos negativos que falsos positivos, es decir, hubo más errores en los que se clasificó tráfico normal como ataques que ataques que se clasificaron cómo tráfico normal. A continuación veamos la tasa de aciertos y la tasa de errores.

```
accuracy = mean(testing.set[,ncol(testing.set)] == predictions)
accuracy * 100
```

[1] 76.81423

```
ErrorRate(accuracy) * 100
```

```
## [1] 23.18577
```

Ya no se tiene un desempeño tan alto como se tuvo en el análisis sobre el conjunto de entrenamiento y es entendible, debido a que en el conjunto de prueba hay clases ataques que no estuvieron presentes en conjunto de entrenamiento. Sin embargo, una tasa de aciertos de 76.81% es bastante alta, y se espera que la inclusión de K-Medias incremente la tasa de aciertos. Ahora veamos la precisión por etiquetas, recordemos que la salida corresponde a un vector que corresponde al siguiente orden: DoS, normal, Probing, R2L y U2R.

```
AccuracyPerLabel(confusion.matrix, testing.set)
```

```
## [1] 79.67283 96.15899 69.35151 12.85403 2.00000
```

Para las etiquetas de **DoS**, **normal** y **Probing** el rendimiento es bastante bueno, en especial para **DoS** y **normal**. Sin embargo, para **R2L** y **U2R** es bastante pobre. Esto puede deberse a la poca cantidad de registros usados para el entrenamiento en ambos casos, en particular para la clase **U2R**.

A continuación crearemos una matriz de confusión binaria para poder calcular las medidas de rendimiento binarias correspondientes a **sensitividad**, **especificidad**, **precisión** y la graficación de la **curva ROC**.

```
attack.normal.confusion.matrix = AttackNormalConfusionMatrix(testing.set, predictions)
attack.normal.confusion.matrix
```

```
## Prediction
## Real Attack normal
## Attack 8413 4420
## normal 373 9338
```

Se nota una baja cantidad de **falsos positivos** y una alta cantidad de **falsos negativos** y una alta tasa de aciertos con respecto a la clasificación de los registros en la diagonal. Ahora que hay mayor cantidad de **falsos negativos** el algoritmo de **K-Medias** puede aportar más al tema de la clasificación. Ahora veamos las medidas de rendimiento binarias mencionadas con anterioridad.

```
Sensitivity(attack.normal.confusion.matrix) * 100

## [1] 65.55755

Especificity(attack.normal.confusion.matrix) * 100

## [1] 96.15899

Precision(attack.normal.confusion.matrix) * 100
```

```
## [1] 95.75461
```

La sensitividad nos dice que el 65.56% de los ataques presentes en el conjunto de datos fueron detectados. Por otra parte, la especificidad nos dice que el 95.16% de los registros pertenecientes al tráfico normal fueron detectados. Por último, la precisión nos dice que el 95.75% de las clasificaciones de ataques fueron correctas.

En general el modelo tiene un buen desempeño en la detección de **tráfico normal** y la mayoría de las predicciones que hace cómo **ataques** son verdaderas, sin embargo, el gran problema son los **falsos negativos** que se espera que con la utilización de **k-Medias** la tasa de aciertos pueda mejorar. A continuación graficaremos la **curva ROC**.

```
probabilities = predict(model, testing.set[, 1:(ncol(testing.set)-1)])
roc.data = DataROC(testing.set, probabilities, predictions)
generate_ROC(roc.data$Prob, roc.data$Label, roc.data$Prediction)
```

ROC Curve

En comparación con la sección de análisis sobre el conjunto de entrenamiento, se observa un desempeño notablemente inferior, en esta ocasión la curva no tiene tanta distancia de separación de la función de identidad y se puede observar cómo ahora comete errores con altos valores de certeza. Esta situación es entendible y esperada, debido a que el conjunto de prueba contiene nuevas clases de ataques.

Segundo nivel de clasificación (K-Medias)

A continuación se añadirá el segundo nivel de clasificación que corresponde al uso de K-Medias para tomar todos aquellos registros clasificados como normal para tratar de corregir los falsos negativos producidos por la red neuronal. El algoritmo de K-Medias será implementado con dos clusters debido a que en la sección de K-Medias se ilustra que con dos clusters la varianza acumulada es la adecuada, adicionalmente se probó que con dos clusters se obtuvieron mejores resultados que con cinco.

```
kmeans.set = testing.set[predictions == "normal", ]
kmeans.set[,ncol(kmeans.set)] = as.character(kmeans.set[,ncol(kmeans.set)])
kmeans.set[kmeans.set[,ncol(kmeans.set)] != "normal",ncol(kmeans.set)] = "Attack"
SumLabels(kmeans.set, ncol(kmeans.set))
```

[1] 4420 9338

Se observa como se extrayeron los 4420 falsos negativos en conjunto con el resto del tráfico normal y ese será el conjunto de datos para la aplicación de K-Medias. A continuación se precalcularán los centroides. Las actividades relacionadas con el entrenamiento y predicciones serán cronometradas de igual forma que con el primer nivel de clasificación del modelo.

```
#Promediando los centroides
matrix.centers = matrix.centers/100
total.time.kmeans.training = Sys.time() - start.time.kmeans.training
total.time.kmeans.training
```

Time difference of 8.283242 secs

Ahora se realizarán las predicciones.

Time difference of 0.07578397 secs

Ahora se creará la matriz de confusión producto de la clasificación de K-Medias.

```
## Prediction
## Real Attack normal
## Attack 2334 2086
## normal 1661 7677
```

Se observa cómo se detectaron 2334 ataques, sin embargo, ahora hay mayor cantidad de **falsos positivos**. Veamos la **tasa de aciertos** y la **tasa de errores**.

```
accuracy.kmeans.model = mean(predictions == kmeans.set[,ncol(kmeans.set)])
accuracy.kmeans.model*100
```

[1] 72.76494

```
ErrorRate(accuracy.kmeans.model)*100
```

```
## [1] 27.23506
```

Se obtiene un 72.76% de acierto, es un número bastante bueno, similar al de la detección de intrusos en el primer nivel. Ahora veamos la tasa de aciertos por etiqueta.

```
AccuracyPerLabel(confusion.matrix.kmeans.model, kmeans.set)
```

```
## [1] 52.80543 82.21247
```

Se detecta alrededor de la mitad de los **ataques** presentes y se separa con 82% de certeza el **tráfico normal**. Ahora veamos las medidas binarias de **sensitividad**, **especificidad** y **precisión**.

```
Sensitivity(confusion.matrix.kmeans.model) * 100

## [1] 52.80543

Especificity(confusion.matrix.kmeans.model) * 100

## [1] 82.21247

Precision(confusion.matrix.kmeans.model) * 100
```

[1] 58.42303

El modelo tiene un desempeño decente en la clasificación del **tráfico normal** y un desempeño intermedio en la detección de ataques. Ahora veamos las estadísticas totales producto de la mezcla de ambos niveles. Empecemos por ver la matriz de confusión.

confusion.matrix.two.labels = TwoLevelsCM(attack.normal.confusion.matrix, confusion.matrix.kmeans.model
confusion.matrix.two.labels

```
## [,1] [,2]
## [1,] 10747 2086
## [2,] 2034 7677
```

El resultado total refleja un incremento positivo en la detección de **ataques** y en la reducción de **falsos negativos**. Por otra parte, el incremento de los **falsos positivos** y el decremento de la certeza de clasificación del tráfico normal son aspectos negativos. Veamos la tasa de **aciertos** y de **errores**.

```
accuracy.total = Accuracy(confusion.matrix.two.labels)
accuracy.total * 100
```

[1] 81.72463

```
ErrorRate(accuracy.total) * 100
```

```
## [1] 18.27537
```

La tasa de aciertos mejoró con respecto al primer nivel de clasificación del modelo en un 5%. Una mejora significativa en la detección de intrusos. Ahora veamos cómo quedaron el resto de las medidas de rendimiento concernientes a la sensitividad, especificidad y precisión.

```
Sensitivity(confusion.matrix.two.labels) * 100
## [1] 83.74503
Especificity(confusion.matrix.two.labels) * 100
```

[1] 79.05468

Precision(confusion.matrix.two.labels) * 100

[1] 84.08575

Se nota un incremento con respecto a la **sensitividad** del primer nivel del 23%. Por otra parte, hubo un decremento con un promedio de alrededor 15% en la **especificidad** y en la **precisión**. En general el modelo híbrido tiene un desempeño bastante bueno, se logra incrementar la cantidad de **ataques** detectados y se obtiene una combinación balanceada entre los **falsos negativos** y **falsos positivos**. Por último el tiempo total para el entrenamiento y las predicciones se imprime a continuación respectivamente.

```
training.time + total.time.kmeans.training
```

Time difference of 274.9671 secs

```
total.time.predictions + total.time.kmeans.predictions
```

Time difference of 0.3861048 secs

Conclusiones

El rendimiento del primer nivel con **red neuronal** comparado al redimiento obtenido en la sección de análisis sobre el conjunto de entrenamiento es bastante inferior; sin embargo, es comprensible debido a que en el conjunto de prueba se agregan nuevos tipos de ataques que no estuvieron presentes en el conjunto de entrenamiento. Más allá de eso, el rendimiento es bueno, con 76% de **tasa de aciertos** y buenas medidas de rendimiento para la **sensitividad**, **especificidad** y **precisión**. Por otra parte la **curva ROC** indica que el modelo no es tan certero con respecto a la toma de decisiones, es decir, comete errores con grandes valores de certeza, situación que en la sección de análisis sobre el conjunto de entrenamiento no se presentó. Adicionalmente el modelo no comete gran cantidad de **falsos positivos**.

El segundo nivel de **K-Medias** en esta oportunidad tuvo mayor cantidad de ataques debido a que el primer nivel obtuvo un gran número de **falsos negativos**. La **tasa de aciertos** del modelo de **K-Medias** fue del 72.76%, un número similar a la tasa de aciertos del modelo de **red neuronal**. **K-Medias** logró detectar el 50% de los ataques presentes y redujo la cantidad de **falsos negativos** presentes en la entrada; sin embargo, incrementó la cantidad de **falsos positivos** notablemente.

En conjunto, con la inclusión de **K-Medias** se logró un incremento de alrededor del 5% en la **tasa de aciertos** llegando así al 81%, y un incremento del 23% en la **sensitividad**. Por otra parte hubo un decremento de alrededor del 15% en la **especificidad** y **precisión**. Las comparaciones son realizadas con respecto al desempeño del primer nivel del modelo, que corresponde al clasificador de **red neuronal**.

En general el desempeño es bastante bueno, la gran mayoría del tráfico fue clasificado de manera satisfactoria y se produjeron alredor de 2000 **falsos positivos** y 2000 **falsos negativos** del total de los 22 mil registros presentes en el conjunto de datos. Para un especialista el hecho de que haya mayor cantidad de **falsos positivos** representará más trabajo desde el punto de vista que tendrá que revisar registros que no son una amenaza. Por otra parte, la presencia de **falsos negativos** representa un punto más sensible debido a que los ataques están presentes y no fueron detectados.

Máquina de soporte vectorial

En esta sección se describirán las actividades realizadas para el entrenamiento y evaluación de la **máquina** de soporte vectorial en el ámbito de la detección de intrusos en redes de computadoras. Esta sección se subdivide en dos grandes partes concernientes al entrenamiento del modelo y evaluación del modelo. Esto debido a que los pasos y observaciones se harán de manera individual en cada fase.

Entrenamiento del modelo

Se aplicará el mismo criterio que se propuso en la sección análisis sobre el conjunto de entrenamiento; es decir, se usará máquina de soporte vectorial con el **kernel radial**.

Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el archivo de funciones y la vista minable del conjunto de entrenamiento.

```
rm(list = ls())
dataset.training = read.csv("../dataset/NSLKDD_Training_New.csv", sep = ",", header = TRUE)
source("../source/functions/functions.R")
```

El paquete utilizado para el entrenamiento de las máquinas de soporte vectorial es e1071, a continuación será cargado.

```
library("e1071")
```

Una vez que tenemos nuestro ambiente de trabajo preparado se eliminarán aquella etiquetas del conjunto de datos que no van a ser utilizadas a lo largo del proceso de entrenamiento del modelo. El primer nivel de detección del modelo híbrido posee cinco calses obtetivo que son **DoS**, **normal**, **Probing**, **R2L** y **U2R**; esto con la finalidad de que la salida para el especialista sea más entendible y pueda identificar la(s) falla(s) de seguridad acotándolas dentro de estas cuatro clases de ataques. Dicho esto eliminaremos el resto de las etiquetas.

```
dataset.training$Label_Normal_TypeAttack = NULL
dataset.training$Label_Num_Classifiers = NULL
dataset.training$Label_Normal_or_Attack = NULL
```

Es obligatorio que para el uso de las máquinas de soporte vectorial todas las variables predictoras sean de tipo numérico. Por lo tanto, se transformarán cada una de estas a tipo numérico y la columna objetivo se transformará en tipo factor debido a que se realizarán labores de clasificación.

```
for (i in 1 : (ncol(dataset.training) -1) )
  dataset.training[,i] = as.numeric(dataset.training[,i])

dataset.training[,ncol(dataset.training)] = as.factor(dataset.training[,ncol(dataset.training)])
```

Para acelerar el tiempo de entrenamiento y tener un modelo más preciso es buena práctica escalar el conjunto de datos a rangos similares. En este caso, todas las columnas predictoras tendrán *media* cero (0) y *desviación* estándar uno (1).

```
dataset.training = ScaleSet(dataset.training)
```

Ya se tienen el conjunto de datos listo y el ambiente de trabajo preparado, a continuación se iniciará el proceso de entrenamiento. De igual manera que se realizó en la sección análisis sobre el conjunto de entrenamiento el modelo creado será guardado en un objeto debido a que el proceso de entrenamiento es largo y es tedioso tener que esperar a su entrenamiento cada vez que se quiera analizar el modelo. Adicionalmente, en esta oportunidad se calculará el tiempo que tarda el modelo entrenándose. Esto, para poder comparar el tiempo contra la **red neuronal** y luego contra el tiempo de entrenamiento luego de hacer la selección de características y selección de parámetros.

Por último, el tiempo y el modelo creado se guardan en una lista y se exportan cómo un objeto para su posterior uso.

```
list.results = list(total.time, model)
saveRDS(list.results, file = "../source/normal_model/SVM/Real_Model/list_results.rds")
```

Evaluación del modelo

En esta sección se hará la evaluación de los resultados obtenidos en la sección anterior, adicionalmente se tomará el mejor modelo y las mejores predicciones obtenidas para agregarle el segundo nivel de clasificación correspondiente al algoritmo K-Medias. Se empezará por establecer el ambiente de trabajo eliminando variables parciales, cargando el paquete e1071, cargando el archivo de funciones, la lista con información exportada previamente y el conjunto de datos de prueba.

```
rm(list = ls())
library("e1071")
source("../source/functions/functions.R")
results = readRDS("../source/normal_model/SVM/Real_Model/list_results.rds")
testing.set = read.csv("../dataset/NSLKDD_Testing_New.csv", sep = ",", header = TRUE)
```

Se empezará por eliminar las etiquetas innecesarias, transformar las variables predictoras a tipo **numérico** y la columna objetivo a tipo **factor**, y escalar las variables predictoras dentro de la misma *media* y *desviación* estándar.

```
#Eliminando eiquetas
testing.set$Label_Normal_TypeAttack = NULL
testing.set$Label_Num_Classifiers = NULL
testing.set$Label_Normal_or_Attack = NULL

#Cambiando el tipo de dato
for (i in 1 : (ncol(testing.set) -1) )
   testing.set[,i] = as.numeric(testing.set[,i])

testing.set[,ncol(testing.set)] = as.factor(testing.set[,ncol(testing.set)])

#Escalando las variables predictoras
testing.set = ScaleSet(testing.set)
```

Hasta este punto ya se tienen listos el ambiente de trabajo, conjunto de datos y la lista de resultados de la sección anterior. A continuación se extraerá el modelo y el tiempo de entrenamiento del modelo y se visualizará el tiempo correspondiente al entrenamiento del modelo.

```
training.time = results[[1]]
model = results[[2]]
training.time
```

Time difference of 20.26872 mins

A partir de este punto se empezará con el análisis del modelo. Todos los pasos involucrados con el tiempo de entrenamiento y predicción serán cronometrados y al final será sumados para tener una perspectiva del tiempo necesario para cada fase. Se iniciará con el cálculo de las predicciones.

```
start.time.predictions = Sys.time()
predictions = predict(model, testing.set[, 1:(ncol(testing.set)-1)], type = "class")
total.time.predictions = Sys.time() - start.time.predictions
total.time.predictions
```

Time difference of 41.96981 secs

A continuación se creará una matriz de confusión que nos ayude a ver gráficamente el desempeño del modelo durante el proceso de clasificación.

```
##
            Prediction
## Real
              DoS normal Probing R2L
                                       U2R
             6125
##
    DoS
                    1266
                              67
                                    0
                                          0
##
               24
                    9521
                             158
                                    8
                                          0
    normal
##
    Probing 173
                     707
                            1541
                                    0
                                          0
##
    R2L
                0
                    2530
                               9 215
                                          0
##
     U2R
                1
                     177
                              19
```

Si se compara con la matriz de confusión del modelo en la sección análisis sobre el conjunto de entrenamiento, se observa una matriz de confusión mucho más desordenada. Sin embargo, a simple vista se observa que la diagonal acumula la mayoría de los registros, adicionalmente se observa que existen más falsos negativos que falsos positivos, es decir, hubo más errores en los que se clasificó tráfico normal como ataques que ataques que se clasificaron como tráfico normal. A continuación veamos la tasa de aciertos y la tasa de errores.

```
accuracy = mean(testing.set[,ncol(testing.set)] == predictions)
accuracy * 100
```

```
## [1] 77.19127
```

```
ErrorRate(accuracy) * 100
```

```
## [1] 22.80873
```

Ya no se tiene un desempeño tan alto como se tuvo en el análisis sobre el conjunto de entrenamiento, y es entendible debido a que en el conjunto de prueba hay clases de ataques que no estuvieron presentes en el conjunto de entrenamiento. Sin embargo, una tasa de aciertos de 77.19% es bastante alta para este escenario y se espera que con la inclusión de K-Medias se incremente aún más la tasa de aciertos. Ahora veamos la precisión por etiquetas, recordemos que la salida corresponde a un vector con el siguiente orden: DoS, normal, Probing, R2L y U2R. En comparación con el modelo de red neuronal se tiene un porcentaje de acierto ligeramente mayor, debido a que el modelo de red neuronal tuvo una tasa de aciertos de 76.81%.

```
AccuracyPerLabel(confusion.matrix, testing.set)
```

```
## [1] 82.126575 98.043456 63.651384 7.806826 0.000000
```

Para las etiquetas de **DoS**, **normal** y **Probing** el rendimiento es bastante bueno, en especial para **DoS** y **normal**. Sin embargo, para **R2L** y **U2R** es bastante pobre. Esto puede deberse a la poca cantidad de registros usados para el entrenamiento en ambos casos, en particular para la clase **U2R**. Con respecto a la **red neuronal**, este modelo es mejor en la clasificación de las etiquetas **DoS** y **normal**, sin embargo, en las demás el modelo de **red neuronal** tiene un mejor desempeño.

A continuación crearemos una matriz de confusión binaria para poder calcular las medidas de rendimiento binarias correspondientes a **sensitividad**, **especificidad**, **precisión** y la graficación de la **curva ROC**.

```
attack.normal.confusion.matrix = AttackNormalConfusionMatrix(testing.set, predictions)
attack.normal.confusion.matrix
```

```
## Prediction
## Real Attack normal
## Attack 8153 4680
## normal 190 9521
```

Se nota una baja cantidad de **falsos positivos**, incluso menos cantidad que en el modelo de **red neuronal**, y una alta cantidad de **falsos negativos**, cantidad mayor que en el modelo de **red neuronal**, y una alta tasa de aciertos con respecto a la clasificación de los registros ubicados en la diagonal. Ahora que hay mayor cantidad de **falsos negativos**, el algoritmo de **K-Medias** puede aportar más al tema de la clasificación. Ahora veamos las medidas de rendimiento binarias mencionadas con anterioridad.

```
Sensitivity(attack.normal.confusion.matrix) * 100

## [1] 63.53152

Especificity(attack.normal.confusion.matrix) * 100

## [1] 98.04346
```

```
Precision(attack.normal.confusion.matrix) * 100
```

[1] 97.72264

La sensitividad nos dice que el 63.53% de los ataques fueron detectados de forma correcta; así mismo, la especificidad nos dice que el 98.04% del tráfico normal fue clasificado de forma satisfactoria. Por último, la precisión nos dice que el 97%.72% de los registros clasificados como ataques de verdad eran ataques. Dicho esto el modelo es bastante efectivo a la hora de clasificar el tráfico normal y moderadamente bueno

a la hora de clasificar los **ataques**, sin embargo, las decisiones tomadas con respecto a la detección de los ataques es bastante elevada, situación que hace que no tenga tantos **falsos positivos**. Si se compara con el modelo de **red neuronal**, la **red neuronal** detecta mayor cantidad de **ataques**, mientras que la **máquina de soporte vectorial** clafica mejor el tráfico normal.

El gran problema del modelo recae en la cantidad de **falsos negativos generados**. Se espera que con la inclusión de **K-Medias** esta situación pueda mejorar. A continuación se graficará la **curva ROC**.

```
probabilities = predict(model, testing.set[, 1:(ncol(testing.set)-1)], probability = TRUE)
roc.data = DataROC(testing.set, attr(probabilities, "probabilities"), predictions)
generate_ROC(roc.data$Prob, roc.data$Label, roc.data$Prediction)
```

ROC Curve

En comparación con la sección de análisis sobre el conjutno de entrenamiento, se observa un desempeño notablemente inferior, en esta ocasión, el desempeño es bastante errático, teniendo su mejor rendimiento al inicio y luego casi pegándose a la línea del azar. Que el desempeño sea inferior es entendible y esperado dada la naturaleza del conjunto de prueba donde hay nuevos tipos de ataques.

Segundo nivel de clasificación (K-Medias)

A continuación se añadirá el segundo nivel de clasificación que corresponde al uso de **K-Medias** para tomar todos aquellos registros clasificafos como **tráfico normal** y serán pasados al segundo nivel para corregir los **falsos positivos** producidos por el modelo del primer nivel correspondiente a la **máquina de soporte vectorial**- El algoritmo de **K-Medias** será implementado con dos clusters debido a que en la sección de *K-Medias* se ilustra que con dos clusters se acumula la mejor cantidad de varianzza, y adicionalmente se probó que con dos clusters se obtuvieron mejores resultados que con cinco clusters.

```
kmeans.set = testing.set[predictions == "normal", ]
kmeans.set[,ncol(kmeans.set)] = as.character(kmeans.set[,ncol(kmeans.set)])
kmeans.set[kmeans.set[,ncol(kmeans.set)] != "normal",ncol(kmeans.set)] = "Attack"
SumLabels(kmeans.set, ncol(kmeans.set))
```

```
## [1] 4680 9521
```

Se observa como se extrajeron los 4680 falsos negativos en conjunto con el resto del tráfico normal, y ese será el conjunto de datos para la aplicación de K-Medias. A continuación, se precalcularán los centroides. Las actividades relacionadas con el entrenamiento y predicción serán cronometradas de igual forma que se hizo en el primer nivel de clasificación del modelo.

Time difference of 11.10112 secs

Ahora se realizarán las predicciones.

Time difference of 0.09903479 secs

Ahora se creará la matriz de confusión producto de la clasificación de k-Medias.

```
## Prediction
## Real Attack normal
## Attack 542 4138
## normal 80 9441
```

Se observa omo se separaron 542 ataques de los 4680 iniciales, la cantidad de falsos negativos se redujo y la cantidad de falsos positivos aumentó en 80. Es una mejora bastante conservadora que tiene un incremento bastante favorable en la detección de los ataques sin desordenar de gran manera la clasificación lograda para el tráfico normal. Veamos la tasa de aciertos y la tasa de errores.

```
accuracy.kmeans.model = mean(predictions == kmeans.set[,ncol(kmeans.set)])
accuracy.kmeans.model*100
```

```
## [1] 70.29787
```

```
ErrorRate(accuracy.kmeans.model)*100
```

```
## [1] 29.70213
```

Se obtuvo una tasa de aciertos de 70.30%, es un número bastante bueno, similar al obtenido en el primer nivel. Si se compara con el rendimiento obtenido por el modelo de **red neuronal**, entonces se obtiene 2% menos, pero en la **red neuronal** se cometen mayor cantidad de **falsos positivos**. Ahora veamos la tasa de aciertos por etiqueta.

```
AccuracyPerLabel(confusion.matrix.kmeans.model, kmeans.set)
```

```
## [1] 11.58120 99.15975
```

Se detecta solo el 11.58% de los **ataques** presentes, y se clasifica de buena manera el 99.16% del **tráfico normal**. Si se compara con el el modelo de **red neuronal**, la **red neuronal** es mejor detectando *ataques pero la **máquina de soporte vectorial** clasifica mejor el **tráfico normal**. Ahora veamos las medidas binarias de **sensitividad**, **especificidad** y **precisión**.

```
Sensitivity(confusion.matrix.kmeans.model) * 100
```

```
## [1] 11.5812
```

```
Especificity(confusion.matrix.kmeans.model) * 100
```

```
## [1] 99.15975
```

```
Precision(confusion.matrix.kmeans.model) * 100
```

```
## [1] 87.13826
```

El modelo tiene un desempeño excelente en la detección del **tráfico normal**, por otra parte, el desempeño a la hora de clasificar los **ataques** es bastante pobre, pero acierta con alta probabildiad los ataques detectados, por lo tanto no genera muchos **falsos positivos**. Ahora veamos las estadísticas totales producto de la mezcla de ambos niveles. Empecemos por ver la matriz de confusión.

```
confusion.matrix.two.labels = TwoLevelsCM(attack.normal.confusion.matrix, confusion.matrix.kmeans.model
confusion.matrix.two.labels
```

```
## [,1] [,2]
## [1,] 8695 4138
## [2,] 270 9441
```

El resultado total refleja un incremento positivo en la detección de **ataques** aunque no muy grande. La cantidad de **falsos negativos** sigue siendo bastante alta, mientras que la cantidad de **falsos positivos** es bastante baja. Por último, la fortaleza de este modelo es la correcta identificación del tráfico normal, motivo por el cuál existe una gran cantidad de **falsos negativos**. Ahora veamos la **tasa de aciertos** y la **tasa de errores**.

```
accuracy.total = Accuracy(confusion.matrix.two.labels)
accuracy.total * 100
```

[1] 80.44713

```
ErrorRate(accuracy.total) * 100
```

[1] 19.55287

Se logró un incremento del 3% en la **tasa de aciertos** con respecto al primer nivel de clasificación, una mejora significativa en el área de la detección de intrusos en redes de computadoras. Ahora veamos cómo quedaron el resto de las medidas de rendimiento concernientes a la **sensitividad**, **especificidad** y **precisión**.

```
Sensitivity(confusion.matrix.two.labels) * 100
```

[1] 67.75501

```
Especificity(confusion.matrix.two.labels) * 100
```

[1] 97.21965

```
Precision(confusion.matrix.two.labels) * 100
```

```
## [1] 96.98829
```

Se nota un incremento con respecto a la **sensitividad** del 4%, es decir, se detectaron 4% más de los ataques presentes con la inclusión de **K-Medias**. Por otra parte hubo un decremento de alrededor del 1% con respecto a la **especificidad** y **precisión**. En general el modelo híbrido tiene un buen desempeño, los puntos altos son la baja generación de **falsos positivos** y la alta eficacia en la clasificación del **tráfico normal**. Los puntos bajos corresponden a la gran cantidad de **falsos negativos** presentes en las predicciones. Por último, el tiempo total para el entrenamiento y las predicciones se mostrará a continuación respectivamente.

```
training.time + total.time.kmeans.training
```

```
## Time difference of 1227.224 secs
```

```
total.time.predictions + total.time.kmeans.predictions
```

Time difference of 42.06884 secs

Conclusiones

El rendimiento del primer nivel con **máquina de soporte vectorial** comparado con el rendimiento obtenido en la sección *análisis sobre el conjunto de entrenamiento* es bastante inferior; sin embargo, es comprensible debido a que en el conjunto de prueba se agregan nuevos tipos de ataques que no estuvieron presentes en el conjunto de entrenamiento. Más allá de eso el rendmiento es bastante bueno con 77% de **tasa de aciertos** y buenas medidas de rendimiento para la **sensitividad**, **especificidad** y **precisión**. Por otra parte la **curva ROC** indica que el modelo es bastante variante con respecto a la certeza con la que toma las decisiones,

llegando en un punto a pegarse bastante a la **línea del azar**, situación bastante deteriorada con respecto a la sección de *análisis sobre el conjunto de entrenamiento*. Como aspecto positivo, el modelo no comete gran cantidad de **falsos positivos**, pero si una gran cantidad de **falsos negativos**.

El segundo nivel del modelo, con **K-Medias** tuvo un mejor desempeño comparado con la sección análisis sobre el conjunto de entrenamiento, esto debido a que el primer nivel correspondiente a la **máquina de soporte vectorial** tuvo gran cantidad de falsos negativos. La **tasa de aciertos** del modelo **K-Medias** fue del 70.30%, un número similar al del primer nivel. Sin embargo, **K-Medias** solo logró detectar el 11% de los ataques presentes y redujo escasamente la cantidad de **falsos negativos** presentes. Por otra parte, un aspecto positivo fue la no generación excesiva de **falsos positivos**.

En conjunto, la inclusión de **K-Medias** logró un incremento de alrededor del 3% con respecto a los resultados obtenidos en el primer nivel en la **tasa de aciertos**, llegando así a un 80%. Por otra parte el incremento en la **sensitividad** fue de sólo el 4% que corresponde a la proporción de los ataques detectados por **K-Medias**. La **especificidad** y la **precisión** se vieron invariantes, decrementando ambas alrededor de 1%. Estas comparaciones fueron realizadas con respecto al desempeño obtenido por el primer nivel, que corresponde al clasificador de **máquina de soporte vectorial**.

En general el desempeño es bastante bueno, la gran mayoría del tráfico fue clasificado de manera satisfactoria y se produjeron alrededor de 4400 errores en la clasificación, donde 4138 corresponden a **falsos negativos** de los 22 mil registros presentes en el conjunto de prueba. Para un especialista el hecho de que no haya gran cantidad de **falsos positivos** es positivo debido a que no tendrá que invertir tiempo revisando registros que no son una amenaza. Sin embargo, la gran cantidad de falsos negativos representan una gran amenaza debido a que los ataques no fueron detectados y además elimina la posibilidad de poder retroalimentar el modelo tomando los **falsos positivos** y colocándolos cómo pertenecientes al tráfico normal, para que de esta manera el modelo pueda aumentar su base de conocimientos.

Conclusiones generales

El modelo de **red neuronal** es más efectivo a la hora de detectar ataques, adicionalmente se observa mediante la **curva ROC** que las decisiones tomadas tienen mayor certeza y son más precisas. Por otra parte, el modelo de **máquina de soporte vectorial** es mejor clasificando el tráfico normal, e incluso individualmente tiene mayor cantidad de **tasa de aciertos**. También se pudo observar que la **máquina de soporte vectorial** es más efectiva detectando las clases **DoS** y **normal**, mientras que la **red neuronal** es mejor detectando el resto de las clases concernientes a **Probing**. **R2L** y **U2R**.

La inclusión de **K-Medias** en los modelos repercutó de manera diferente en ambos modelos. Para la **red neuronal** logró un incremento notable en la cantidad de ataques detectados, pero incrementó notablemente la cantidad de **falsos positivos generados**. Por el contrario, para la **máquina de soporte vectorial** la inclusión de **K-Medias** fue más conservadora, detectando menor cantidad de **ataques** pero sin generar exceso de **falsos positivos**.

Para poder determinar cuál modelo es mejor que otro hay que irse por el tema de prioridades. Es decir, ¿Es más importante tener más cantidad de ataques detectados con un mayor número de falsos positivos presentes o es mejor un enfoque más conservador con menor cantidad de ataques detectados pero con menor cantidad de falsos positivos presentes? Particularmente me parece que la red neuronal es mejor debido a que el objetivo es la detección de ataques. Adicionalmente, en este caso los falsos positivos incrementan el trabajo del especialista para examinar los posibles ataques, y en caso de que una no sea correcta, esta puede ser etiquetada y ser usada para la retroalimentación del modelo, es decir, hay una curva de aprendizaje mucho más rápida que en el modelo híbrido de la máquina de soporte vectorial.

Hasta este punto se han usado los parámetros por defecto, queda como tarea pendiente aún realizar la selección de características y la selección de parámetros y analizar el impacto sobre ambos enfoques.

Selección de características

En esta sección se realizán las actividades concernientes a la selección de características. La idea principal detrás de la reducción de características es la de quitar aquellas variables predictoras que puedan introducir ruido al modelo, adicionalmente al haber menor cantidad de dimensiones el modelo es entrenado de forma más rápida, y las predicciones también son hechas con mayor velocidad. El conjunto de datos **NSL-KDD** quedó con 40 variables predictoras luego de realizar el pre-procesamiento, y en esta sección se reducirá su número y se analizará su impacto para los modelos híbridos basados en **red neuronal** y en **máquina de soporte vectorial**.

Se aplicarán dos métodos para la selección de características. El primer método, que es uno de los más populares y ampliamente usados en el área de **aprendizaje automático** es el **Análisis de Componentes Principales - PCA**. Con la técnica de PCA se crea un nuevo espacio de variables predictoras basándose en combinaciones lineales entre las mismas. Cómo ventaja para este enfoque se tiene una manera efectiva de visualizar y obtener aquellas nuevas variables predictoras que acumulan mayor cantidad de varianza. Por otra parte, se pierde interpretabilidad de los datos, debido a que ya no hay variables predictoras con un nombre que se pueda asociar a un evento producido en el ámbito del problema.

Como segunda técnica se usará la **Reducción Gradual de Características - GFR** que es una técnica propuesta por Li en su trabajo An Efficient Intrusion Detection System Based on Support Vector Machines and Gradually Feature Removal Method. Esta técnica tuvo buenos resultados en dicha publiación, adicionalmente es sencilla de implementar y de esta manera se puede visualizar cuales son las variables predictoras más importantes ya que en esta se mantiene la interpretabilidad de los datos. Por otra parte, habrá que compararla con PCA para saber cuál de estas tiene mejor desempeño.

Comenzaremos por la implementación de PCA y posteriormente con GFR.

PCA

En esta sección se describirán las actividas concernientes a la implementación y análisis de la aplicación de PCA sobre el conjunto de datos **NSL-KDD** para la reducción de características. Estas actividades corresponden al **análisis exploratorio** y posteriormente se calculará el error producido por cada uno de los modelos basados de **red neuronal** y **máquina de soporte vectorial**.

Análisis exploratorio

Acá se aplicará PCA sobre el conjunto de datos y se verá con cuántas variales predictoras se acumula una cantidad suficiente de varianza acumulada. También se verá si este número de variables corresponde a una reducción significativa.

Empezaremos las actividades limpiando el ambiente de trabajo, cargando el conjunto de datos de entrenamiento y el archivo de funciones.

Para probar el error de las características, se usarán los clasificadores **red neuronal** y **máquina de soporte vectorial**, debido a esto se usarán 5 clases objetivo y motivado por esto es necesario eliminar aquellas etiquetas innecesarias, transformar las columnas predictoras a tipo **numérico**, la columna objetivo a tipo **factor** y escalar el conjunto de datos para que estos tengan *media* cero (0) y *desviación estándar* uno (1).

```
#Eliminando columnas innecesarias
dataset = dataset.training
dataset$Label_Normal_TypeAttack = NULL
dataset$Label_Num_Classifiers = NULL
dataset$Label_Normal_or_Attack = NULL

#Cambiando el tipo de dato de las columnas
for (i in 1:(ncol(dataset)-1))
   dataset[,i] = as.numeric(dataset[,i])

dataset[,ncol(dataset)] = as.factor(dataset[,ncol(dataset)])

#Escalando las variables predictoras
dataset = ScaleSet(dataset)
```

Ya se tiene el ambiente de trabajo listo, y ahora podemos aplicar PCA.

```
pca = prcomp(dataset[,-41], scale. = TRUE)
```

Se utilizó la función **prcomp** perteneciente a la biblioteca **stats**. se observa que como pará metros se pasaron todas las variables predictoras (se dejó por fuera la variable objetivo), y se pidió que se escalara el conjunto de datos. El esacalamiento de los datos juega un rol fundamental en PCA debido a que las combinaciones lineales ameritan que los valores estén unificados con respecto a su rango para poder tener éxito. De otra manera, las combinaciones lineales podrían no tener sentido. A continuación veamos un resumen del objeto **pca**.

```
summary(pca)
```

```
## Importance of components:
##
                                    PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                             PC1
                          2.7842 2.2758 1.67855 1.45803 1.39380 1.29213
## Standard deviation
## Proportion of Variance 0.1938 0.1295 0.07044 0.05315 0.04857 0.04174
## Cumulative Proportion 0.1938 0.3233 0.39372 0.44686 0.49543 0.53717
##
                             PC7
                                    PC8
                                             PC9
                                                    PC10
                                                            PC11
## Standard deviation
                          1.2555 1.1455 1.05883 1.04509 1.02839 1.00350
## Proportion of Variance 0.0394 0.0328 0.02803 0.02731 0.02644 0.02518
## Cumulative Proportion 0.5766 0.6094 0.63741 0.66471 0.69115 0.71633
##
                            PC13
                                   PC14
                                           PC15
                                                    PC16
                                                            PC17
## Standard deviation
                          1.0001 1.0000 0.99726 0.99348 0.96406 0.94985
## Proportion of Variance 0.0250 0.0250 0.02486 0.02468 0.02324 0.02256
## Cumulative Proportion 0.7413 0.7663 0.79119 0.81587 0.83910 0.86166
                             PC19
                                                     PC22
##
                                     PC20
                                             PC21
                                                             PC23
                                                                     PC24
                          0.87354 0.83652 0.7848 0.77298 0.69884 0.66839
## Standard deviation
## Proportion of Variance 0.01908 0.01749 0.0154 0.01494 0.01221 0.01117
## Cumulative Proportion 0.88073 0.89823 0.9136 0.92856 0.94077 0.95194
                             PC25
                                     PC26
                                             PC27
                                                     PC28
                                                             PC29
## Standard deviation
                          0.64268 0.59476 0.56037 0.4857 0.37344 0.36283
## Proportion of Variance 0.01033 0.00884 0.00785 0.0059 0.00349 0.00329
## Cumulative Proportion 0.96227 0.97111 0.97896 0.9849 0.98834 0.99164
##
                             PC31
                                     PC32
                                             PC33
                                                      PC34
                                                              PC35
                                                                      PC36
## Standard deviation
                          0.31398 0.25630 0.22109 0.20809 0.16992 0.14567
## Proportion of Variance 0.00246 0.00164 0.00122 0.00108 0.00072 0.00053
```

```
## Cumulative Proportion 0.99410 0.99574 0.99696 0.99805 0.99877 0.99930  
## PC37 PC38 PC39 PC40  
## Standard deviation 0.11987 0.09491 0.06388 0.02346  
## Proportion of Variance 0.00036 0.00023 0.00010 0.00001  
## Cumulative Proportion 0.99966 0.99988 0.99999 1.00000
```

Se observa que las componente fueron enumeradas en las columnas de la forma **PCX** donde la X corresponde a un número en el rango [1,40] debido a que teníamos 40 variables predictoras inicialmente. Adicionalmente las filas corresponden a tres medidas que son: desviación estándar que mide la desviación estándar que se logra sin dicha componente. La proporción de varianza dice cuál es la varianza lograda por dicha componente individualmente. Por último, la proporción acumulada tiene la sumatoria de todas las proporciones de varianza hasta cierto punto; es decir, la proporción acumulada hasta la **componente principal 3** es la sumatoria de la proporción de varianza desde PC1 hasta PC3.

Las primeras componentes al ser las que mayor cantidad de varianza acumulan son las más relevantes. A continuación colocaremos en un **dataframe** las siguientes medidas: desviación estándar, varianza por componente, porcentaje de varianza acumulada y varianza acumulada.

```
##
      std_deviation PC_variance PR_variance cum_variance
## 1
         2.78419677 7.7517516596 0.1937937915
                                                    19.37938
##
  2
         2.27583578 5.1794284776 0.1294857119
                                                   32.32795
  3
         1.67854984 2.8175295769 0.0704382394
##
                                                   39.37177
## A
         1.45803491 2.1258658076 0.0531466452
                                                   44.68644
## 5
         1.39380286 1.9426864002 0.0485671600
                                                   49.54315
## 6
         1.29213141 1.6696035730 0.0417400893
                                                   53.71716
##
  7
         1.25545128 1.5761579268 0.0394039482
                                                   57.65756
## 8
         1.14545241 1.3120612185 0.0328015305
                                                   60.93771
## 9
         1.05883068 1.1211224006 0.0280280600
                                                   63.74052
## 10
         1.04508883 1.0922106575 0.0273052664
                                                   66.47104
## 11
         1.02838966 1.0575852834 0.0264396321
                                                   69.11501
## 12
         1.00350121 1.0070146699 0.0251753667
                                                   71.63254
## 13
         1.00006515 1.0001303068 0.0250032577
                                                   74.13287
## 14
         0.99998680 0.9999735905 0.0249993398
                                                   76.63280
## 15
         0.99725592 0.9945193708 0.0248629843
                                                   79.11910
##
  16
         0.99348388 0.9870102190 0.0246752555
                                                   81.58663
##
  17
         0.96406249 0.9294164802 0.0232354120
                                                   83.91017
         0.94985274 0.9022202273 0.0225555057
                                                   86.16572
##
  18
         0.87354132 0.7630744328 0.0190768608
                                                   88.07341
##
  19
## 20
         0.83651728 0.6997611537 0.0174940288
                                                   89.82281
## 21
         0.78476561 0.6158570680 0.0153964267
                                                   91.36245
## 22
         0.77297793 0.5974948872 0.0149373722
                                                   92.85619
## 23
         0.69884224 0.4883804825 0.0122095121
                                                   94.07714
         0.66838599 0.4467398298 0.0111684957
##
  24
                                                   95.19399
         0.64267812 0.4130351632 0.0103258791
                                                   96.22658
## 25
```

```
##
  26
         0.59475922 0.3537385252 0.0088434631
                                                    97.11092
##
  27
         0.56037118 0.3140158602 0.0078503965
                                                    97.89596
         0.48574705 0.2359501968 0.0058987549
##
   28
                                                    98.48584
   29
         0.37344455 0.1394608348 0.0034865209
                                                    98.83449
##
##
   30
         0.36282705 0.1316434713 0.0032910868
                                                    99.16360
##
   31
         0.31398185 0.0985846017 0.0024646150
                                                    99.41006
                                                    99.57429
##
   32
         0.25630325 0.0656913559 0.0016422839
##
   33
         0.22109079 0.0488811385 0.0012220285
                                                    99.69649
##
   34
         0.20809316 0.0433027639 0.0010825691
                                                    99.80475
##
   35
         0.16991893 0.0288724421 0.0007218111
                                                    99.87693
##
   36
         0.14567075 0.0212199676 0.0005304992
                                                    99.92998
         0.11987284 0.0143694970 0.0003592374
##
   37
                                                    99.96590
##
   38
         0.09490743 0.0090074209 0.0002251855
                                                    99.98842
##
   39
         0.06387895 0.0040805209 0.0001020130
                                                    99.99862
         0.02346359 0.0005505401 0.0000137635
                                                   100.00000
## 40
```

De esta manera podemos ver por lo menos en la primera fila que la componente número 1 tiene una desviación estándar de 2.78, una varianza de 7.75, un porcentaje de varianza acumulada de 19.38% y una varianza acumulada de 19.38%. Anteriormente se mencionó que la selección de las componente principales debería tener una varianza acumulada de alredor 95%, este número se alcanza con 24 componentes. Lo que nos dice que teóricamente con 24 variables predictoras de nuestras componentes principales se puede tener una buena selección de características. Ahora grafiquemos la varianza acumulada en función del número de componentes, de esta manera, se puede tener una vista gráfica de a partir de cuál cantidad de componentes principales la varianza se estabiliza.

```
plot(summary.pca$cum_variance,
     ylab = "Cumulative Proportion",
     xlab = "Number of Principal Components",
     type = "b", col = "blue")
```


Se observa que a partir de aproximadamente 24 componentes, la varianza acumulada crece de manera bastante

lenta y aparentemente se estabiliza en ese punto. Dicho esto, 24 debería ser un buen número de variables predictoras a usar, reduciendo así en 16 la dimensionalidad del conjunto de datos.

Por último en vista para preparar el ambiente de trabajo para las siguientes actividades, se unificará el nuevo espacio de variables predictoras con las etiquetas correspondientes a cada registro.

Adicionalmente, cómo se usará validación cruzada de 10 conjuntos, se dividirá el conjunto de datos en 10 subconjuntos de manera estratificada.

```
cv.sets = CVSet(dataset.pca, k = 10, seed = 22)
```

Efecto de PCA sobre SVM

En esta sección se evaluará el efecto de la aplicación de PCA sobre SVM. Para esto se entrenarán modelos haciendo uso desde [1,40] variables predictoras y se calculará la tasa de aciertos en cada iteración. Para validar el modelo se hará uso de la técnica de validación de modelos de validación cruzada de 10 conjuntos. Esta sección se dividirá en dos partes: entrenamiento y análisis.

Entrenamiento

A continuación se describen todas las tareas realizadas en el proceso de entrenamiento de los modelos en el rango de [1,40] variables predictoras. Cabe destacar que se hará uso de las varibles parciales utilizadas en la sección de PCA, ya que son necesarias para la elaboración de los diferentes modelos.

Empezaremos por crear una matriz para almacenar los resultados de cada iteración. La matriz será de 40x10, donde las 40 filas corresponden al número de componentes y las 10 columnas a cada iteración corresponden a una iteración en el proceso de validación cruzada. Con esta matriz luego se pueden calcular medidas cómo la media por componente y la desviación estándar o varianza dentro de cada componente.

```
results = matrix(nrow = 40, ncol = 10)
```

El siguiente segmento de código es el encargado de ejecutar las 400 iteraciones correspondientes al entrenamiendo de los modelos de SVM utilizando validación cruzada de 10 conjuntos.

```
for (i in 1:40)
{
    results.cv = vector(mode = "numeric", length = 10)

    for (j in 1:10)
    {
        data.cv.testing = cv.sets[[j]]
        data.cv.training = cv.sets
        data.cv.training[[j]] = NULL
        data.cv.testing = as.data.frame(data.cv.testing)
        data.cv.training = do.call(rbind, data.cv.training)

        data.training.pca = as.data.frame(data.cv.training[,1:i])
        colnames(data.training.pca) = names(data.cv.training)[1:i]
        data.training.pca = data.frame(data.training.pca,
```

```
Label = data.cv.training$Label)
 data.testing.pca = as.data.frame(data.cv.testing[,1:i])
  colnames(data.testing.pca) = names(data.cv.testing)[1:i]
  data.testing.pca = data.frame(data.testing.pca,
                                   Label = data.cv.testing$Label)
 model = svm(Label ~ .,
                         data = data.training.pca,
                         kernel = "radial",
                         scale = FALSE)
  if(i==1)
    prediction = predict(model, data.frame(PC1 = data.testing.pca[,1]), type = "class")
  else
   prediction = predict(model, data.testing.pca[,1:i], type = "class")
 results.cv[j] = mean(prediction == data.testing.pca[,ncol(data.testing.pca)])
}
results[i,] = results.cv
cat(i, " ")
```

Una vez que se acaba el proceso, la matriz es exportada como un objeto para su posterior análisis. Esto es debido a que el proceso para el entrenamiento de los 400 modelos llevó alrededor de 16 horas, y es tedioso tener que esperar todo ese tiempo cada vez que se quiera analizar los resultados.

```
saveRDS(results, file = "../source/feature_selection/SVM/results_PCA.rds")
```

Análisis

En esta sección se realizará el análisis de los resultados obtenidos en la fase de entrenamiento. Se cargarán los resultados, se calcularán la *desviación estándar* y la *media* de los resultados por cada componente y se graficarán para poder decidir un buen número de componentes a elegir para nuestro modelo definitivo.

Se empezarán las tareas preparando el ambiente de trabajo, esto incluye la eliminación de variables parciales y la carga del objeto de resultados de la sección anterior.

```
rm(list = ls())
results = readRDS("../source/feature_selection/SVM/results_PCA.rds")
```

En la variable **results** se tiene una matriz con los resultados de la **eficacia** producto de la validación cruzada sobre la combinación de componentes principales en el intérvalo [1,40]. A continuación se crearán dos vectores en los cuales de almacenarán los resultados producto del cálculo de la *desviación estándar* y la *media* de la **eficacia** por cada una de las componentes.

```
sd.results = vector(mode = "numeric", length = nrow(results))
mean.results = vector(mode = "numeric", length = nrow(results))
```

Lo siguiente será el cálculo de la desviación estándar y la media respectivamente.

```
#Cálculo de la desviación estándar
for (i in 1:length(sd.results))
   sd.results[i] = sd(results[i,])

#Cálculo de la media
for (i in 1:length(mean.results))
   mean.results[i] = mean(results[i,])
```

Para seleccionar el número de componentes se usará un criterio similar al del **codo de jambu**, es decir, se buscará el punto donde la **eficacia** empieza a suavizarse conforme el número de componentes principales son agregadas, adicionalmente, se verificará que la *desviación estándar* sea poca para dicho número de componentes.

Standard Dev. vs Components

Mean vs Components

En las gráficas se observa que con 7 componentes principales que logra una **tasa de aciertos** de alrededor del 99%. A partir de ese punto la mejora obtenida es mínima; adicionalmente, se observa que la *desviación estándar* para dicho número de componentes principales es bastante bajo.

Por lo anterior, se puede pensar que con 7 componentes principales se lograría una buena tasa de aciertos en la **detección de intrusos** y se reduciría la dimensionalidad del conjunto de datos en un 82.5%.

Efecto de PCA sobre NN

En esta sección se evaluará el efecto de la aplicación de PCA sobre NN. Para esto se entrenarán modelos haciendo uso desde [1,40] variables predictoras y se calculará la tasa de aciertos en cada iteración. Para validar el modelo se hará uso de la técnica de validación modelos de validación cruzada de 10 conjuntos. Esta sección se dividirá en dos partes entrenamiento y análisis.

Entrenamiento

A continuación se describren todas las tareas realizadas en el proceso de entrenamiento de los modelos en el rango [1,40] variables predictoras. Cabe destacar que se hará uso de las variables parciales utilizadas en la **sección de PCA**, ya que son necesarias para la elaboración de los diferentes modelos.

Empezaremos por crear una matriz para almacenar los resultados de cada iteración. La matriz será de 40x10, donde las 40 filas corresponden al número de componentes y las 10 columnas a cada iteración durante el proceso de **validación cruzada**. Con esta matriz luego se pueden calcular medidas como la *media*, la desviación estándar o varianza por número de componentes.

```
results = matrix(nrow = 40, ncol = 10)
```

El siguiente segmento de código es el encargado de ejecutar las 400 iteraciones correspondientes al entrenamiento de los modelos de NN utilizando validación cruzada de 10 conjuntos.

```
for (i in 1:40)
  results.cv = vector(mode = "numeric", length = 10)
  for (j in 1:10)
   data.cv.testing = cv.sets[[j]]
   data.cv.training = cv.sets
   data.cv.training[[j]] = NULL
    data.cv.testing = as.data.frame(data.cv.testing)
    data.cv.training = do.call(rbind, data.cv.training)
   data.training.pca = as.data.frame(data.cv.training[,1:i])
    colnames(data.training.pca) = names(data.cv.training)[1:i]
    data.training.pca = data.frame(data.training.pca,
                                   Label = data.cv.training$Label)
   data.testing.pca = as.data.frame(data.cv.testing[,1:i])
    colnames(data.testing.pca) = names(data.cv.testing)[1:i]
    data.testing.pca = data.frame(data.testing.pca,
                                  Label = data.cv.testing$Label)
   model = nnet(Label ~ .,
                 data = data.training.pca,
                 size = 20,
                 maxit = 100)
```

```
if(i==1)
    prediction = predict(model, data.frame(PC1 = data.testing.pca[,1]), type = "class")
    else
        prediction = predict(model, data.testing.pca[,1:i], type = "class")

    results.cv[j] = mean(prediction == data.testing.pca[,ncol(data.testing.pca)])
}

results[i,] = results.cv
    cat(i, " ")
}
```

una vez que se acaba el proceso, la matriz es exportada como un objeto para su posterior análisis. Esto es debiado a que el proceso de entrenamiento para los 400 modelos llevó alrededor de 13 horas, y es tedioso tener que esperar todo ese tiempo cada vez que se quieran analizar los resultados.

```
saveRDS(results, file = "../source/feature_selection/NN/results_PCA.rds")
```

Análisis

En esta sección se realizará el análisis de los resultados obtenidos en la fase de entrenamiento. Se cargarán los resultados, se calculará la desviación estándar y la media de los resultados por cada número de componentes y se graficarán para poder decidir un buen número de componentes a elegir apra nuestro modelo definitivo.

Se empezarán las tareas preparando el ambiente de trabajo, esto incluye la eliminación de variables parciales y la carga dle objeto de los resultados de la sección anterior.

```
rm(list = ls())
results = readRDS("../source/feature_selection/NN/results_PCA.rds")
```

En la variable **results** se tiene una matriz con los resultados de la **eficacia** producto de la aplicación de **validación cruzada** sobre la combinación de componentes principales en el intérvalo [1,40]. A continuación se crearán dos vectores en los cuales se almacenarán los resultados producto del cálculo de la *desviación estándar* y la *media* de la **eficacia** por cada una de las componentes.

```
sd.results = vector(mode = "numeric", length = nrow(results))
mean.results = vector(mode = "numeric", length = nrow(results))
```

Lo siguiente será el cálculo de la desviación estándar y la media respectivamente.

```
#Cálculo de la desviación estándar
for (i in 1:length(sd.results))
   sd.results[i] = sd(results[i,])
#Cálculo de la media
for (i in 1:length(mean.results))
   mean.results[i] = mean(results[i,])
```

Para seleccionar el número de componentes se usará un criterio similar al del **codo de jambu**. es decir, se buscará el punto donde la **eficacia** empieza a suavizarse conforme el número de componentes principales son agregadas; adicionalmente, se verificará que la *desviación estándar* sea poca para dicho número de componentes.

```
#Dividiendo la pantalla en dos columnas
par(mfrow = c(1,2))
#Graficando Desviación Estándar vs Número de Componentes
plot(sd.results, col = "blue", type = "b",
main = "Standard Dev. vs Components",
xlab = "Number of Components", ylab = "Standard Deviation")
#Graficando Media de Eficacia vs Número de Componentes
plot(mean.results, col = "blue", type = "b",
main = "Mean vs Components",
xlab = "Number of Components", ylab = "Mean Accuracy")
```

Standard Dev. vs Components

Mean vs Components

En las gráficas se observa que con 7 componentes principales se logra una **tasa de aciertos** de alrededor del 99%. A partir de ese punto, la mejora obtenida es mínima; adicionalmente, se observa que la *desviación estándar* para dicho número de componentes principales es bastante bajo.

Por lo anterior se puede pensar que con 7 componentes principales se lograría una buena tasa de aciertos en la **detección de intrusos**, y se reduciría la dimensionalidad del conjunto de datos en un 82.5%.

Conclusión

Una buena medida para seleccionar el número de componentes principales según **Andrew Ng** experto en el área de **aprendizaje automático** es elegir el número de componentes principales que logren capturar varianza en el rango [95%, 99%]. En el análisis exploratorio se observó que la medida de 95% es alcanzada con el uso de 24 componentes principales. Sin embargo, en la las secciones donde se realizó el análisis de PCA sobre SVM y NN, se puede notar que con 7 componentes principales se logra un excelente rendimiento reduciendo en 82.5% la dimensionalidad del conjunto de datos. La fase de análisis fue realizada haciendo uso de la técnica de validación de modelos de **validación cruzada de 10 conjuntos** y quedaría por ver el rendimiento de estos algoritmos utilizando el conjunto de pruebas para medir la eficacia de los mismos.