Soluciones Ejercicio modelo relacional: Álgebra y Cálculo Relacional

Ejercicio 1

Suponer el siguiente modelo relacional de una empresa con os siguientes esquemas de relación:

Empleado(nombre, inicial, apellido, nss, fecha_nacimiento, dirección, sexo, salario, nss_supervisor, nd)

Departamento(nombred, numerod, nss_jefe fecha_inic_jefe)

Localizaciones_dept(<u>numerod</u>, <u>localizaciond</u>)

Trabaja_en(<u>nsse</u>, <u>np</u>, horas)

Proyecto(nombrep, numerop,localizacionp,nd)

Dependiente(<u>nsse</u>, <u>nombre_dependiente</u>, sexo, fecha_ncto, parentesco)

Consultas a resolver en el Algebra Relacional:

1. Obtener el nombre y la dirección de todos los empleados que trabajan para el departamento 'Investigación'.

 $Temp1 \leftarrow \sigma_{nombredep='Investigacion'}(DEPARTAMENTO)$

Temp2 ← Temp1
$$\bowtie$$
 EMPLEADO

Nd=numerod

 $\prod_{nombre, apellido, direccion} (Temp2)$

2. Para cada proyecto localizado en 'Santiago', obtener una lista con el número de proyecto, el número de departamento que lo controla, y el apellido, la dirección y la fecha de nacimiento del jefe de dicho departamento.

Temp1
$$\leftarrow \sigma_{localizacionp='Santiago'}(PROYECTO)$$

Temp2 ← Temp1
$$\bowtie$$
 DEPARTAMENTO

Nd=numerod

$$Temp3 \leftarrow Temp2 \bowtie \underbrace{ EMPLEADO}_{NSS=NSS_JEFE}$$

∏_{nombre, apellido,direccion} (Temp3)

3. Buscar el nombre de los empleados que trabajan en todos los proyectos controlados por el departamento número 5.

$$\text{Temp1} \leftarrow \prod_{\text{Numerop}} (\sigma_{\text{numd=5}}(PROYECTO))$$

Temp2
$$\leftarrow \prod_{\text{NSSE,NP}} (\text{TRABAJA_EN}))$$

Temp3 ← Temp2
$$\div$$
 Temp1

4. Obtener una lista con los números de los proyectos en que intervienen un empleado cuyo apellido es 'Smith', ya sea como trabajador o como jefe del departamento que controla el proyecto.

$$\begin{split} \text{Temp1} \leftarrow & \prod_{NSS} (\sigma_{Apellido='Smith'}(EMPLEADO)) \\ \text{Temp2} \leftarrow & \prod_{NP} (TRABAJA_EN & \text{Temp1} \\ & \text{NSSE=NSS}) \\ \text{Temp3} \leftarrow & \prod_{Apellidos,numerod} (EMPLEADO & \text{DEPARTAMENTO} \\ & \text{NSS=NSS_JEFE} \end{split}$$

$$\text{Temp4} \leftarrow & \prod_{numerod} (\sigma_{Apellido='Smith'}(Temp3)) \\ \text{Temp5} \leftarrow & \prod_{Nuerop} (PROYECTOS & \text{Temp4} \\ & \text{ND=numerod} \end{split}$$

Temp2 ∪ Temp5

5. Obtener una lista con los nombres de todos los empleados que tienen dos ó más personas dependientes de ellos.

$$\begin{split} \text{Temp1} &\leftarrow_{\text{NSS}} G_{\text{count(nombre_dependiente) as cuenta}} \text{ (DEPENDIENTE)} \\ \text{Temp2} &\leftarrow \sigma_{\text{cuenta} \,\geq\, 2} \text{ (Temp1)} \\ &\prod_{\text{nombre, apellido}} \text{ (Temp2} \bowtie \underset{\text{NSSE=NSS}}{\text{EMPLEADO)}} \end{split}$$

6. Obtener el nombre de los empleados que no tienen otras personas dependientes de ellos.

$$\begin{split} \text{Temp1} &\leftarrow \rho_{dep(NSS)} \left(\prod_{NSSE} (\text{DEPENDIENTES}) \right) \\ \text{Temp2} &\leftarrow \prod_{NSS} (\text{EMPLEADO}) \\ \text{Temp3} &\leftarrow \text{Temp2} - \text{Temp1} \end{split}$$

 $\prod_{\text{nombre, apellido}} (\text{Temp3} \bowtie \text{EMPLEADO})$

7. Obtener el nombre de los jefes que tienen por lo menos una persona dependiente de ellos.

$$\begin{split} \text{Temp1} &\leftarrow \rho_{dep(NSSE)} \left(\prod_{\text{NSS_JEFE}} (\text{DEPARTAMENTO}) \right) \\ \text{Temp2} &\leftarrow \prod_{\text{NSSE}} (\text{DEPENDIENTE}) \\ \text{Temp3} &\leftarrow \text{Temp2} \cap \text{Temp1} \end{split}$$

Consultas a resolver en el Cálculo Relacional de Tuplas:

- 1. Obtener la fecha de nacimiento y la dirección del empleado cuyo nombre sea 'John B. Smith'
- $\{t\mid \exists s\in empleado\ (t[fecha_ncto] = s[fecha_ncto] \land t[direccion] = s[direccion] \land s[nombre] = 'John' \land s[inic] = 'B' \land s[apellido] = 'Smith' \}$
 - 2. Obtener el nombre y la dirección de todos los empleados que trabajan para el departamento 'Investigación'.
- $\{t \mid \exists s \in empleado (t[nombre] = s[nombre] \land t[apellido] = s[apellido] \land \exists d \in departamento (d[numerod] = s[nd] \land d[nombred] = `Investigacion') \}$
 - 3. Buscar el nombre de los empleados que trabajan en algún proyecto controlado por el departamento número 5.
- $\{t \mid \exists e \in empleado \ (t[apellido] = e[apellido] \land t[nombre] = e[nombre] \land (\exists x \in proyecto \ (x[numd] = 5 \land \exists w \in trabaja_en(w[nsse] = e[nsse] \land x[numerop] = w[np])))) \}$
 - 4. Obtener una lista con los números de los proyectos en que intervienen un empleado cuyo apellido es 'Smith', ya sea como trabajador o como jefe del departamento que controla el proyecto.
- { t | \exists p∈ proyecto (t[numerop] = p[numerop] ^ (\exists e∈ empleado (e[apellido]='Smith' ^ \exists w∈ trabaja_en(w[np]=p[numerop] ^ w[nsse] = e[nsse]))) \lor \exists m∈ empleado (m[apellido]='Smith' ^ \exists d∈ departamento(p[numd]=d[numerod] ^ d[nss_jefe]=m[nss]))))}
 - 5. Buscar el nombre de los empleados que trabajan en todos los proyectos controlados por el departamento número 5.
- $\{t \mid \exists e \in empleado \ (t[apellido] = e[apellido] \land t[nombre] = e[nombre] \land \forall x \in proyecto \ (x[numd] = 5 \Rightarrow \exists w \in trabaja_en(w[nsse] = e[nsse] \land x[numerop] = w[np])))) \}$
 - 6. Obtener el nombre de los empleados que no tienen otras personas dependientes de ellos.
- $\{ t \mid \exists e \in empleado \ (t[apellido] = e[apellido] \land t[nombre] = e[nombre] \land \neg \exists d \in dependiente(e[nss] = d[nsse]))) \}$
 - 7. Obtener el nombre de los jefes que tienen por lo menos una persona dependiente de ellos.
- $\{ \ t \mid \exists \ e \in \ empleado \ (\ t[nombre] = e[nombre] \ ^* \ t[apellido] = e[apellido] \ ^* \ (\ \exists \ d \in \ departamento \ (\ \exists \ p \in dependiente(e[nss]=p[nss_jefe] \ ^* p[nsse] = e[nss])))) \ \}$

Consultas a resolver en el Cálculo Relacional de Dominios.

1. Obtener la fecha de nacimiento y la dirección del empleado cuyo nombre sea 'John B. Smith'

```
\{ \langle u,v \rangle \mid \exists q,r,s (\langle q,r,s,t,u,v,w,x,y,z \rangle \in empleado \land q='John' \land r='B' \land s='Smith') \}
```

2. Obtener el nombre y la dirección de todos los empleados que trabajan para el departamento 'Investigación'.

```
\{ \langle q,s,v \rangle \mid \exists z \ (\langle q,r,s,t,u,v,w,x,y,z \rangle \in empleado \land \exists l,m \ (\langle l,m,n,o \rangle \in departamento \land l = 'Investigacion' \land m=z)) \}
```

3. Obtener el nombre de los empleados que no tienen otras personas dependientes de ellos.

```
\{ \langle q, s \rangle \mid \exists t (\langle q, r, s, t, u, v, w, x, y, z \rangle \in \text{empleado } (\neg \exists l (\langle l, m, n, o, p \rangle \in \text{dependiente } t = l))) \}
```

4. Obtener el nombre de los jefes que tienen por lo menos una persona dependiente de ellos.

```
\{\  \, <\!\! s,q\!\!>\  \, |\  \, \exists\  \, t\  \, (<\!\! q,r,s,t,u,v,w,x,y,z\!\!>\  \, \in\  \, empleado\  \, ^\wedge\  \, (\exists\  \, j\  (\  \, <\!\! h,i,j,k\!\!>\  \, \in\  \, departamento\  \, ^\wedge\  \, \exists\  \, l\  \, (\  \, <\!\! l,m,n,o,p\!\!>\  \, \in\  \, dependiente\  \, ^\wedge\  \, t=j\  \, ^\wedge\  \, l=t))))\  \, \}
```

Cuestión 4 [15 p]

Una empresa dispone de un sistema para manejar los proyectos que realiza y el personal asignado a os mismos. Se usan las siguientes tablas:

PROYECTOS(cod_proy, cod_cliente, fecha_inicio, tipo)

PERSONAL(cod func, nombre, fecha_ingreso)

TAREAS(cod_tarea, descipción, tipo)

ASIGNACION(cod func, cod proy, cod_tarea)

REGISTRO_HORAS(cod_func, cod_prov, fecha, cant_horas)

Se pide:

- a) Resolver las siguientes consultas utilizando el álgebra relacional
 - 1) Obtener los códigos de los proyectos, clientes y tipo de los proyectos que sólo tienen asignadas personas que ingresaron en el 2005 en la empresa.

$$Temp1 \leftarrow \sigma_{fecha_ingreso \geq `01-01-1995' \ ^{} fecha_ingreso \leq `31-12-1995'} \ (PERSONAL)$$

Temp2 ← ASIGNACION \bowtie Temp1

Temp3 ← PROYECTOS \bowtie Temp2

Temp4 $\leftarrow \prod_{\text{cod_proy,cod_cliente,tipo}} (\text{Temp3})$

2) Obtener los nombres de los funcionarios que se encuentran asignados a todos los proyectos de tipo consultoría o que tienen asignadas todas las tareas de Gestión.

$$Sola1 \leftarrow \prod_{cod_proy}(\sigma_{tipo='consultoria'}(PROYECTOS))$$

$$Sola2 \leftarrow \prod_{cod_func,cod_proy}(ASIGNACION)) \div Sola1$$

Solb1
$$\leftarrow \prod_{\text{cod_tarea}} (\sigma_{\text{tipo='gestion'}}(\text{TAREA}))$$

$$Solb2 \leftarrow \prod_{cod_func,cod_tarea}(ASIGNACION)) \div Solb1$$

 $Sol1 \leftarrow Sola1 \cup Sola2$

$$Sol \leftarrow \prod_{nombre} (Sol1 \bowtie PERSONA)$$

- b) Resolver en el cálculo relacional la consulta: "Obtener el código de los funcionarios que no están asignados a proyectos del tipo Desarrollo, pero sí a tareas de tipo Desarrollo".
- { t | \exists se personal (t[cod_func] = s[cod_func] ^ \exists ue tareas (u[tipo]='Desarrollo' ^ \exists ae asignacion(a[cod_func]=s[cod_func] ^ a[cod_tarea] = u[cod_tarea])) ^ \neg (\exists pe proyectos (p[tipo]='Desarrollo' ^ \exists a2e asignacion (a2[cod_func]=s[cod_func] ^ a2[cod_proy] = p[cod_proy]))) }

Cuestión 3 [10 p]

Dada la siguiente consulta expresada en lenguaje SQL:

SELECT DISTINCT C.nro_cli, C.nombre, E.fecha_inicio FROM Clientes C, Estancias E, Casas A WHERE C.nro_cli=E.nro_cliente AND E.nro_casa = A.nro_casa and A.categoria = 'A' AND E.dias>5

Se pide:

a) Obtener una expresión equivalente del álgebra relacional que utilice sólo operadores básicos o fundamentales del álgebra relacional.

 $\pi_{\text{C.ro_vcli,C.nombre,E.fecha_inicio}}(\sigma_{\text{E.nro_casa} = \text{A.nro_casa} \sim \text{C.nro_cli} = \text{E.nro_cliente} \sim \text{A.categoria} = \text{A} \sim \text{E.dias} > 5}(\rho_{\text{C}}(\text{Clientes}) \quad x \qquad \rho_{\text{E}}(\text{Estancias}) \quad x \\ \rho_{\text{A}}(\text{Casas})))$

b) Reescriba la expresión anterior utilizando obligatoriamente operadores adicionales que proporcionen el mismo resultado que la expresión anterior.

 $\pi_{\text{C.nro_vcli,C.nombre,E.fecha_inicio}}(\sigma_{\text{A.categoria}=\text{A^*E.dias}>5}((\rho_{\text{C}}(\text{Clientes}) \bowtie_{\text{C.nro_cli}=\text{E.nro_cliente}} \rho_{\text{E}}(\text{Estancias})) \bowtie \rho_{\text{A}}(\text{Casas})))$

Problema 1 [20 p]

Se tiene una base de datos con las siguientes relaciones:

RESIDENCIAS(cod-res,nom-res,cod-ins,año-constr,arquitecto,num-hab)

Contiene los datos de todas las residencias y cuyos atributos son: código de la residencia, nombre de la residencia, código de la institución que la construyó, año de construcción, arquitecto que la proyectó y número de habitaciones.

INSTITUCIONES(<u>cod-ins</u>,nom-ins,cant-becas)

Contiene los datos de las instituciones que construyeron residencias ya sean departamentales o particulares y cuyos atributos son: código de la institución, nombre de la institución y cantidad de becas que otorga.

DEPARTAMENTALES(cod-ins, departamento, programa, encargado, tel-contacto)

Contiene los proyectos de residencias construidas por organismos departamentales y cuyos atributos son: código de la institución. Departamento, programa o proyecto, encargado del proyecto y teléfono de contacto. Las instituciones que se encuentran en esta tabla, también están en INSTITUCIONES.

PARTICULARES(<u>cod-ins</u>,nom-fundador,encargado,tel-contacto)

Contiene los proyectos de residencias de fundaciones particulares y cuyos atributos son: código de la institución. Departamento, programa o proyecto, encargado del proyecto y teléfono de contacto. Las instituciones que se encuentran en esta tabla, también están en INSTITUCIONES pero no en DEPARTAMENTALES.

ESTUDIANTES(<u>DNI</u>,nombre,depto-origen,edad)

Contiene los datos de todos los estudiantes que se han alojado en alguna residencia y cuyos atributos son: DNI del estudiante, nombre del estudiante, departamento del que viene y edad.

EST_FAC(DNI,facultad,año-curso,promedio)

Contiene en qué facultades estudia cada estudiante. Sus atributos son: DNI del estudiante, nombre de la facultad, año que está cursando y promedio de notas. Cada estudiante de esta relaci CONTRATOS(cod-res,DNI,año,becado,habitación,teléfono)

Contiene en qué residencia se ha alojado cada estudiante en cada año, ya que los contratos se alojamiento son anuales. Sus atributos son: código de residencia, DNI del estudiante, año del contrato, indicación de existencia de beca (SI ó NO), habitación que ocupa y teléfono de la habitación. Las residencias y estudiantes de esta tabla se encuentran en RESIDENCIAS y ESTUDIANTES respectivamente.

Se pide:

a) Escribir en Algebra Relacional la consulta: "Listar el código de institución y teléfono de contacto de todas las instituciones que otorgan 10 o más becas".

$$\begin{split} \text{Temp1} \leftarrow \pi_{\text{cod-ins,tel-contacto}}(\text{DEPARTAMENTALES}) \cup \pi_{\text{cod-ins,tel-contacto}}(\text{PARTICULARES}) \\ \text{Temp2} \leftarrow \pi_{\text{cod-ins}}(\sigma_{\text{cant becas} \geq 10} \text{ (INSTIRUCIONES)}) \end{split}$$

Resultado \leftarrow A \bowtie B

b) Escribir en Algebra Relacional la consulta: "Devolver los códigos de las residencias construidas por organismos departamentales que sólo han alojado a estudiantes del mismo departamento que el organismo departamental".

$$\begin{split} & \text{Temp1} \leftarrow \pi_{\text{cod-res,departamento}}(\text{ RESIDENCIAS } \bowtie \text{DEPARTAMENTALES} \,) \\ & \text{Temp2} \leftarrow \sigma_{\text{departamento}} <> \text{depto_origen}}(\text{ Temp1 } \bowtie \text{CONTRATOS } \bowtie \text{ ESTUDIANTES}) \\ & \text{Resultado} \leftarrow \pi_{\text{cod-res}}(\text{ TEMP1}) - \pi_{\text{cod-res}}(\text{ TEMP2}) \end{split}$$

Solución Ejercicios modelo relacional SQL

Ejercicio 1

Suponer el siguiente modelo relacional de una empresa con os siguientes esquemas de relación:

Empleado(nombre, inicial, apellido, nss, fecha_nacimiento, dirección, sexo, salario, nss_supervisor, nd)

Departamento(nombred, <u>numerod</u>, nss_jefe fecha_inic_jefe)

Localizaciones_dept(<u>numerod</u>, <u>localizaciond</u>)

Trabaja_en(<u>nsse</u>, <u>np</u>, horas)

Proyecto(nombrep, <u>numerop</u>,localizacionp,nd)

Dependiente(nsse, nombre_dependiente, sexo, fecha_ncto, parentesco)

Consultas a resolver en el lenguaje SQL:

1. Obtener el nombre y la dirección de todos los empleados que trabajan para el departamento 'Investigación'.

Select nombre, direction from empleado, departamento where nd=numerod and nombred='investigacion';

Otra forma más eficiente:

Select nombre, dirección From empleado inner join departamento on nd=numerod Where nombred='Investigacion'; 2. Para cada proyecto localizado en 'Santiago', obtener una lista con el número de proyecto, el número de departamento que lo controla, y el apellido, la dirección y la fecha de nacimiento del jefe de dicho departamento.

```
Select numerop,nd,apellido,direccion,fecha_nacimiento
From proyecto,departamento,empleado
Where nd=numerod and nss_jefe=nss and localizacionp='Santiago';
Otra forma más efiente:
```

Select a.numerop, a.nd, apellido, direccion, fecha_nacimiento From

```
( Select numerop,nd,nss_jefe
From proyecto inner join departamento
On nd=numerod
Where localizacionp='Santiago') as a
Inner join empleado
On nss_jefe=nss;
```

3. Buscar el nombre de los empleados que trabajan en todos los proyectos controlados por el departamento número 5.

Una división:

```
Select nombre,apellido
From empleado,(Select nsse
From trabaja_en
EXCEPT
Select nsse from
(Select nsse,numerop
From (Select nsse from trabaja_en) as a,
(Select numerop from proyecto where numero_dep=5) as b
EXCEPT
(Select nss,numerop from trabaja_en)) as c) as d
Where d.nss=empleado.nss;
```

Otra forma:

```
Select nombre, apellido from

(Select nsse from trabaja_en natutal join proyecto

where numero_dep=5

group by nsse

having count(*) = (Select count(*) from proyecto where numerodep=5)) as t
inner join empleado
on nss=nsse:
```

4. Obtener una lista con los números de los proyectos en que intervienen un empleado cuyo apellido es 'Smith', ya sea como trabajador o como jefe del departamento que controla el proyecto.

```
(Select np from trabaja_en,Empleado
Where nss=nsse and apellido='Smith')
UNION
(Select numerop as np from proyecto,departamento,empleado
Where nd=numerod and nss_jefe=nss and apellido='Smith');
```

5. Obtener una lista con los nombres de todos los empleados que tienen dos ó más personas dependientes de ellos.

Select nombre, apellido

From empleado,

(Select nss from empleado, dependiente

Where nss=nsse

Group by nss

Having $count(*) \ge 2$) as a

Where a.nss=empleado.nss;

6. Obtener el nombre de los empleados que no tienen otras personas dependientes de ellos.

Select nombre, apellido

From

(Select nss from empleado

EXCEPT

Select nsse as nss from dependiente) as t, empleado

Where t.nss=empleado.nss;

7. Obtener el nombre de los jefes que tienen por lo menos una persona dependiente de ellos.

Select nombre, apellido

From

((Select nss_jefe as nss from departamento)

INTERSECT

(Select nsse as nss from dependiente)) as t

Natural join empleado;

Cuestión 2 [15 p]

Se tiene la siguiente tabla NOTAS

Nota_IA	Nota_BD	Nota_TP
8	5	NULL
10	NULL	NULL
8	6	NULL
7	5	NULL

Se desea obtener el resultado de las siguientes consultas. Justificar las respuestas.

a) SELECT (Nota_IA+Nota_BD) FROM NOTAS

13
NULL
14
12

Valor nulo + valor númerico = valor nulo

b) SELECT (Nota_IA+Nota_BD+Nota_TP) FROM NOTAS

Valor nulo + valor númerico = valor nulo

c) SELECT MAX(Nota_IA+Nota_BD) FROM NOTAS

14

Devuelve un campo. Los valores nulos se ignoran en la función agregada MAX

d) SELECT MAX(Nota_IA)+MAX(Nota_BD) FROM NOTAS

Devuelve la suma de los valores máximo de Nota_IA y Nota_BD. Lo null se ignoran.

e) SELECT COUNT(Nota_TP) FROM NOTAS

0

Se ignoran los valores nulos y se cuentan los que son distintos.

f) SELECT AVG(Nota_TP) FROM NOTAS

NULL

Devuele NULL ya que todas las filas son NULL y la suma es NULL

g) SELECT AVG(Nota_TP+Nota_DB) FROM NOTAS

NULL

Suma de todos los valores son nulos y la media es nulo

Cuestión 4 [15 p]

Una empresa dispone de un sistema para manejar los proyectos que realiza y el personal asignado a os mismos. Se usan las siguientes tablas:

PROYECTOS(cod proy, cod_cliente, fecha_inicio, tipo)

PERSONAL(cod func, nombre, fecha_ingreso)

TAREAS(cod_tarea, descipción, tipo)

ASIGNACION(cod func, cod proy, cod_tarea)

REGISTRO_HORAS(cod_func, cod_proy, fecha, cant_horas)

Se pide:

- c) Resolver las siguientes consultas en SQL (sin utilizar vistas)
 - 1) Obtener los códigos de los proyectos que tienen personal asignado y que en ninguna fecha fueron trabajadas más de 40 horas en él. (Notar que no necesariamente por una única persona).

Select cod_proy
From asignacion
Where cod_proy not in
(Selec R.cod_proy
From registro_horas R
Group by cod_proy,fecha
Having sum(cant_horas) > 40);

2) Obtener los códigos de los proyectos con el total de horas realizadas en él por el personal ingresado en la empresa antes del 04/05/71

Select cod_pry,sum(cant_horas)
From registro_horas R, personal P
Where p.fecha_incgreso < '04-05-1971' and p.cod_func=r.cod_func
Group by cod_proy;

Problema 1 [20 p]

Se tiene una base de datos con las siguientes relaciones:

RESIDENCIAS(cod-res,nom-res,cod-ins,año-constr,arquitecto,num-hab)

Contiene los datos de todas las residencias y cuyos atributos son: código de la residencia, nombre de la residencia, código de la institución que la construyó, año de construcción, arquitecto que la proyectó y número de habitaciones.

INSTITUCIONES(cod-ins,nom-ins,cant-becas)

Contiene los datos de las instituciones que construyeron residencias ya sean departamentales o particulares y cuyos atributos son: código de la institución, nombre de la institución y cantidad de becas que otorga.

DEPARTAMENTALES(cod-ins,departamento,programa,encargado,tel-contacto)

Contiene los proyectos de residencias construidas por organismos departamentales y cuyos atributos son: código de la institución. Departamento, programa o proyecto, encargado del proyecto y teléfono de contacto. Las instituciones que se encuentran en esta tabla, también están en INSTITUCIONES.

PARTICULARES(<u>cod-ins</u>,nom-fundador,encargado,tel-contacto)

Contiene los proyectos de residencias de fundaciones particulares y cuyos atributos son: código de la institución. Departamento, programa o proyecto, encargado del proyecto y teléfono de contacto. Las instituciones que se encuentran en esta tabla, también están en INSTITUCIONES pero no en DEPARTAMENTALES.

ESTUDIANTES(DNI,nombre,depto-origen,edad)

Contiene los datos de todos los estudiantes que se han alojado en alguna residencia y cuyos atributos son: DNI del estudiante, nombre del estudiante, departamento del que viene y edad.

EST_FAC(DNI,facultad,año-curso,promedio)

Contiene en qué facultades estudia cada estudiante. Sus atributos son: DNI del estudiante, nombre de la facultad, año que está cursando y promedio de notas. Cada estudiante de esta relaci CONTRATOS(cod-res,DNI,año,becado,habitación,teléfono)

Contiene en qué residencia se ha alojado cada estudiante en cada año, ya que los contratos se alojamiento son anuales. Sus atributos son: código de residencia, DNI del estudiante, año del contrato, indicación de existencia de beca (SI ó NO), habitación que ocupa y teléfono de la habitación. Las residencias y estudiantes de esta tabla se encuentran en RESIDENCIAS y ESTUDIANTES respectivamente.

Se pide:

c) Escribir en SQL la consulta: "Listar los códigos y nombres de las residencias construidas por la "Fundación José Fernández" que tienen ocupadas todas sus habitaciones en el 2002".

SELECT R.cod-res, R.nom-res

FROM RESIDENCIAS R, INSTITUCIONES I, CONTRATOS C

WHERE R.cod-ins = I.cod-ins AND I.nom-ins ="Fundación José Fernández" AND C.cod-res = R.cod-res AND C.año=2002

GROUP BY R.cod-res, R.nom-res

HAVING count(*)=R.num-hab;

d) Escribir en SQL la consulta: "Listar el código de residencia y código de institución de las residencias con más de 100 habitaciones en las que no se ha alojado ningún estudiante mayor de 25 años"