LING/C SC/PSYC 438/538

Lecture 21 Sandiway Fong

Today's Topics

- FYI: there's an extra video on the state by-pass method on the course website
- Homework 11
- Beyond regular languages: {aⁿbⁿ | n≥1} and {1ⁿ | n is prime}
- A formal tool: the Pumping Lemma

- Consider the following NDFSA:
 - $\Sigma = \{a, b, c, d\}$ (alphabet)
 - $S = \{1, 4\}$ (start)
 - $F = \{3, 7\}$ (end)
 - $Q = \{1-8\}$ (states)
- Question 1:
 - what are the **five** shortest strings in L_{NDFSA} ?

- Question 2:
 - $L_{NDFSA}^{R} = \{w^{R} \mid w \in L_{NDFSA}\}$
- Example:
 - (hypothetically) if ab is in L, ba is in L^R.
- Draw a FSA for L_{NDFSA}^R
- Make sure you label the start and final states properly.
- Your machine should be non-deterministic.
- Check your answer:
 - give the **five** shortest strings in L_{NDFSA}^R,
 - and compare with your answer in Q1.

- Question 3:
 - convert L_{NDFSA}^R to a DFSA
 - Using the *set-of-states* construction.
 - Show your sets (of states)
- Check your work:
 - the machines for questions 2 and 3 should accept the same language, but the DFSA should be deterministic and have no empty transitions (ϵ)!
 - How many states does the DFSA have?
 - How many start states?
 - How many end states?

- Question 4:
 - Consider the language $L_{NDFSA}^{RR} = \{ w^R | w \in L_{NDFSA}^R \}$
 - Using *your* DFSA from Q3, construct the FSA for L^{RR}, taking care to label the start and final states properly.
- Note:
 - of course, L_{NDFSA}^{RR} = the language L_{NDFSA} we started with.
- Point out where your resulting machine is non-deterministic.
- Compare your FSA with the machine we began with in Question 1.
 - Name two significant differences between the machines?

- Question 5:
 - Convert your machine constructed in Q4 to a DFSA.
 - Use the *set-of-states* construction again.
 - Show your sets (of states)
 - Compare your DFSA to the original machine from Q1:
 - how many states?
 - Do you think there could exist a machine for L_{NDFSA} (= L_{NDFSA}^{RR}) with fewer states than your new DFSA?
 - Explain your answer

Beyond Regular Languages

- Beyond regular languages
 - aⁿbⁿ = {ab, aabb, aaabbb, aaaabbbb, ... } n≥1
 - is not a regular language

- That means no FSA, regex (or Regular Grammar) can be built for this set
- Informally, let's think about a FSA implementation ...

- 1. We only have a finite number of states to play with ...
- 2. We're only allowed simple free iteration (looping)

Beyond Regular Languages

[See also discussion in JM 16.2.1, pages 533-534]

- Let L be a regular language,
- then there exists a number p > 0
 - where *p* is a pumping length (*sometimes called a magic number*)

such that every string w in L with $|w| \ge p$ can be written in the following form w = xyz

- with strings x, y and z such that $|xy| \le p$, |y| > 0 and $xy^i z$ is in L
- for every integer $i \ge 0$.

BTW: there is also a pumping lemma for Context-Free Languages

Restated:

- For every (sufficiently long) string w in a regular language
- there is always a way to split the string into three adjacent sections, call them x, y and z, (y nonempty), i.e. w is x followed by y followed by z
- And y can be repeated as many times as we like (or omitted)
- And the modified string is still a member of the language

Essential Point!

To prove a language is non-regular: show that no matter how we split the string, there will be modified strings that can't be in the language.

- Example:
 - show that aⁿbⁿ is not regular
- Proof (by contradiction):
 - pick a sufficiently long string in the language
 - e.g. a..aab..bb (#a's = #b's)
 - Partition it according to w = xyz
 - then show xy i z is not in L
 - i.e. string does not pump

aaaa..aabbbb..bb

Case 1: **w = xyz**, **y straddles the ab boundary what happens when we pump y?**

Case 2: **w = xyz**, **y is wholly within the a's** what happens when we pump y?

Case 3: **w = xyz**, **y is wholly within the b's what happens when we pump y?**

- Prime number testing prime number testing using Perl's extended "regular expressions"
 - Using unary notation, e.g. 5 = "11111"
 - /^(11+?)\1+\$/ will match anything that's greater than 1 that's not prime

 $L = \{1^n \mid n \text{ is prime}\}\$ is not a regular language

 $1^n = 111..1111..11111$

such that *n* is a prime number

For any split of the string Pump y such that i = length(x+z), giving y^i

What is the length of string $w=xy^iz$ now?

In x y^{xz} z , how many copies of xz do we have? Answer is y+1

i.e. pumped number can be factorized into (1+|y|)|xz|

i.e., we can show any prime number can be pumped into a non-prime ...

The resulting length is non-prime since it can be factorized

 $1^n = 111..1111..1111$ such that n is a prime number

- Another angle to reduce the mystery, let's think in terms of FSA. We know:
 - 1. we can't control the loops
 - 2. we are restricted to a finite number of states
 - 3. assume (without loss of generality) there are no etransitions
- Suppose there are a total of p states in the machine
- Supose we have a string in the language longer than p
- What can we conclude?

Answer: we must have visited some state(s) more than once!

Also: there must be a loop (or loops)

in the machine!

Also: we can repeat or skip that loop and stay inside the language!