الولى والإن والان والان المراحة والان والا

In his Name

Chapter 3:

AY: 2020/2

Genetic variation and polymorphism worksheet 2

Documents 2: mutation and multiple alleles

Al-Mahdi High Schools

Exercise 1: complete the following tables:

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with	
corresponding peptide	corresponding peptide	
DNA:CCA-GAG-ACG-TAC-ACT-GGC-CAC	DNA: CCA-GAG-AGG-TAC-ACT-GGC-CAC	
Peptide: Pro-Glu- Thr- Tyr- Thr-Gly-His	Peptide:Pro-Glu-Arg- Tyr -Thr-Gly-His	
Type of mutation:		
Effect of the mutation:		

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with	
corresponding peptide	corresponding peptide	
DNA :CCA-GAG-ACG-TAC-ACT-GGC-	DNA: CCA-GAG-ACC-TAC-ACT-GGC-CAC	
CAC	Peptide:Pro-Glu-Thr -Tyr-Thr-Gly-His	
PeptidePro-Glu-Thr-Tyr-Thr-Gly-His		
Type of mutation:		
Effect of the mutation:		

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with	
corresponding peptide	corresponding peptide	
DNA: CCA-GAG-ACG-TAC-ACT-GGC-	DNA: CCA-GAG-ACG-TAG-ACT-GGC-CAC	
CAC	PeptidePro-Glu-Thr	
Peptide: Pro- Glu-Thr- Tyr-Thr -Gly-His		
Type of mutation:		
Effect of the mutation:		

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with		
corresponding peptide	corresponding peptide		
DNA: CCA-GAG-ACG-TAC-ACT-GGC-CAC	DNA: CCA-GGA-CGT-ACA-CTG-GCC-AC		
Peptide:Pro-Glu-Thr-Tyr-Thr-Gly-His	Peptide:Pro-Gly-Arg-Thr-Leu-Ala		
Type of mutation:			
Effect of the mutation:			

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with		
corresponding peptide	corresponding peptide		
DNA: CCA-GAG-ACG-TAC-ACT-GGC- DNA: CCA-GAG-ATC-GTA-CAC-TGG-C			
CAC	<u>C</u>		
Peptide: Pro-Glu-Thr- Tyr-Thr	Peptide: Pro-Glu -Ile-Val- His- Trp- Pro		
Type of mutation:			
Effect of the mutation:			

Normal non-transcribed strand of DNA with Mutant non-transcribed strand of DNA with	
corresponding peptide	corresponding peptide
DNA :CCA-GAG-ACG-TAC-ACT-GGC-	DNA: CCA-TGA-GAC-GTA-CAC-TGG-
CAC	CCA-C
Peptide: Pro-Glu-Thr-Tyr -Thr-Gly-His	Peptide:Pro
Type of mutation:	
Effect of the mutation:	

Normal non-transcribed strand of DNA with	Mutant non-transcribed strand of DNA with	
corresponding peptide	corresponding peptide	
DNA: CCA-GAG-ACG-TGG-ACT-GGC-	DNA: CCA-GAG-ACG-TGA-CTG-GCC-AC	
CAC	Peptide:Pro-Glu-Thr	
Peptide:Pro-Glu-Thr-Trp-Thr-Gly-His		
Type of mutation:		
Effect of the mutation:		

Exercise 2:

 β globin polypeptides constitute the iron binding protein (Hemoglobin). Hemoglobin is a hetero protein found in the red blood cells which is responsible for transportation of respiratory gases. Some allelic mutations may result in the gene coding for β globin to different types of Thalassemia. This mutation leads to the appearance of dysfunctional hemoglobin molecules that cannot bind iron properly.

Case	Codon	Mutation	Site	Clinical Signs
1	5	Substitution	3 rd Nitrogenous base by A	Normal hemoglobin
2	9	Substitution	2 nd Nitrogenous base by A	Sickle cell anemia
3	9	Substitution	1 st Nitrogenous base by T	Mild Thalassemia
4	19	Deletion	3 rd Nitrogenous base	Carrage Thelegages
4	20	Substitution	1 st Nitrogenous base by A	Severe Thalassemia

The table below represents the types of Thalassemia presents in Lebanon.

The following DNA segment represents the transcribed strand that codes for normal B globin:

a-Determine the amino acid sequence coded by this normal gene.

b- By referring to the table, determine the type of Thalassemia in a person showing in his gene the following DNA sequence.

c-Determine the amino acid sequence for a person having severe Thalassemia, knowing that the mutation occurs within his gene doesn't lead to a change in the reading frame.

d-How can you explain the clinical sign of the first case.

Exercise 3: Genetics and Cancer

Billions of cells of the organism, which have a limited life span, are constantly renewed by cell divisions, these divisions are controlled by a regulatory system. The dysfunction of this regulatory system can produce a clone of cells, forming a tumor.

Cancer is the proliferation of abnormal and "sick" cells in one part of the body. When they develop and contaminate surrounding tissues and organs, we talk about metastasis.

- 1- Pick out from the text:
- 1-1- The cause of tumors.
- 1-2- The definition of cancer
- 1-3- The definition of metastasis.

To understand the origin of a type of cancer, several studies have been carried out concerning the p53 gene, which codes for the p53 protein. This protein is involved in the regulation of cell divisions.

Document 1 shows the nucleotide sequence of the non-transcribed strand of the two alleles (the normal allele p53+ and the mutant one p53-) involved in this study.

Gene p	4	eotid sequence of the ranscribed strand of DNA
No of the co	don 1244	↓250
Allele p5	3+ GGC	GGC ATG AAC CGG AGG CCC
allele p5	3- GGC	GGC ATG AAC CGG AGT CCC

Document1

- 2- Specify the type of mutation at the origin of this cancer.
- 3-Determine, using the table of the genetic code, the peptide sequence coded by each of the two alleles.
- 4- Explain how the modification of the nucleotide sequence leads to the appearance of tumors.