

CASE STUDY - TABLEAU

STUDENT NAME

STUDENT ID

LEEN MAMOUN ALMANASEER

149615

LEEN RA'ED ABO ALHAIJA'A

146980

AHMED SAMER SHANABLEH

149493

CLASSIFICATION SECTION

This section presents a visual representation of employees' data, with axes representing the average salary and their position *figure 1.1*.

Condition data is overlaid as a color gradient which includes (The calculation field for both age and gender)*figure 1.2*, enabling the exploration of potential correlations between the average salary levels across different positions based on the conditions we made in *figure 1.3* as we labeled them.

Figure 1.1: Classification

CLASSIFICATION SECTION

For the male employees: If the employee is not female ([sex] != 'Female') and their age is less than or equal to 50 ([age] <= 50), they are considered as "Young Man Employee".

If the employee is not female ([sex] != 'Female') and their age is greater than 50 ([age] > 50), they are considered an "Old Man Employee".

For Female Employees: If the employee is female ([sex] = 'Female') and their age is less than or equal to 50 ([age] <= 50), they are considered a "Young Woman Employee".

If the employee is female ([sex] = 'Female') and their age is greater than 50 ([age] > 50), they are considered an

Note: We have three values for gender: Female, male, and Male. that's why we have used 'Female' as the condition for female employees in our calculations.

"Old Woman Employee".

CLUSTERING SECTION

This section employs a scatterplot visualization to show the relationship between employee salary (Coulmn), and rewards (Rows) *figure 2.1* based on the hire date (any <u>day</u> of the month of the year) *figure 2.2*.

iii Columns	Salary
≡ Rows	Rewards

Figure 2.1:

Figure 2.2:

Data points were partitioned by size each size has its own (hiring date), Large -sized circle shows the latest hired employees and the small-sized circle shows the earliest hired employees and other circles are sized gradually between them based on the hire date as we labeled the hiring date on the scatterplot *figure 2.3* *figure 2.4* using K-means clustering we divided the data points into 3 clusters *figure 2.5*, allowing for analysis of the scatterplot within groups in terms of number of items and centroid points.

CLUSTERING SECTION

It appears that a growing relationship between rewards and salaries, with the latest hires receiving higher amounts.

CLUSTERING SECTION

figure 2.6 shows the clustering summary in terms of Number of items, centroid points as well as the sum of squares within-group and between-group for the two variables (salary and rewards).

Figure 2.6: Summary

Describe Clusters									
Summary	Models								
Analysis		riance:	p-value	Model Sum of Squares	DE	Error Sum of Squares	DF		
Sum of R	lewards	43.31 40.13	2.842e-14 1.604e-13	5.943 3.175	2 2	6.862 3.956	100 100		

Figure 2.7: Models: Analysis of Variance