Integrale curbilinii de speța I. Definiții. Proprietăți

Fie arcul L de curbă cu capetele A și B și fie $f\left(x,y\right)$ o funcție continuă definită pe L. Divizăm arcul AB de punctele $A_0=A,A_1,...,a_{n-1},\ A_n=B$. Considerăm pe arcul A_iA_{i+1} punctul arbitrar M_i . Notăm lungimea arcului A_iA_{i+1} cu Δl_i , formăm suma $\sigma_n=\sum_{i=0}^{n-1}f\left(x_iy_i\right)\Delta l_i$. și notăm $\lambda=\max\Delta l_i$.

Definiție: Dacă limita sumei σ_n există, este finită și nu depinde de modul de divizare al arcului L, nici de modul de alegere a punctelor $M_i(x_i, y_i)$, atunci valoare ei se numește **integrală** curbilinie de speța I a funcției f(x,y) pe arcul L. Se notează cu $\int_I f(x,y) dl$. Deci,

$$\int_{L} f(x, y) dl = \lim_{\lambda \to 0} \sum_{i=0}^{n-1} f(x_i, y_i) \Delta l_i.$$

Notă. În mod analog poate fi definită integrala curbilinie a unei funcții f(x, y, z) definite pe un arc L de curbă spațială. Atunci, $\int_L f(x, y, z) dl = \lim_{\lambda \to 0} \sum_{i=0}^{n-1} f(x_i, y_i, z_i) \Delta l_i.$

Proprietăți ale integralei curbilinii de speța I

- 1. Integrala curblinie de speța I nu depinde de direcția integrării, adică $\int_{AB} f(M) dl = \int_{BA} f(M) dl.$
- 2. $\int_{L} \left[f_1(M) \pm f_2(M) \right] dl = \int_{L} f_1(M) dl \pm \int_{L} f_2(M) dl.$
- 3. $\int_{I} c \cdot f(M) dl = c \cdot \int_{I} f(M) dl$, unde c este constantă.
- 4. Dacă drumul de integrare L este divizat în porțiunile $L_1, L_2, ..., L_n$, atunci $\int_L f(M) dl = \int_{L_1} f(M) dl + ... + \int_{L_n} f(M) dl.$

Calcularea integralei curbilinii de speța I

- 1. Dacă în planul *OXY* curba L este dată de ecuația y = y(x), unde $x \in [a,b]$, iar funcțiile y(x) și y'(x) sunt continui pe segmentul [a,b], atunci $dl = \sqrt{1 + [y'(x)]^2} dx$ și $\int_{a}^{b} f(x,y) dl = \int_{a}^{b} f(x,y(x)) \sqrt{1 + [y'(x)]^2} dx$.
- 2. Dacă arcul L este definit parametric: x = x(t), y = y(t), $t \in [t_1, t_2]$ atunci $\int_{t} f(x, y) dl = \int_{t_1}^{t_2} f(x(t), y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} dt.$

3. Dacă arcul L este dat de ecuația $\rho = \rho(\theta)$, $\theta \in [\alpha, \beta]$ în coordonatele polare, atunci

$$dl = \sqrt{\rho^2 + (\rho')^2} d\theta \text{ si } \int_{I} f(x, y) dl = \int_{\alpha}^{\beta} f(\rho \cos \theta, \rho \sin \theta) \sqrt{\rho^2 + (\rho')^2} d\theta$$

4. Dacă arcul L este o curbă spațială și definită parametric: $\begin{cases} x = x(t) \\ y = y(t), t \in [t_1, t_2] \end{cases}$ atunci z = z(t)

$$\int_{t_1} f(x, y, z) dl = \int_{t_1}^{t_2} f(x(t), y(t), z(t)) \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2 + \left[z'(t)\right]^2} dt$$

Integrale curbilinii de speța II. Definiții. Proprietăți

Fie dat un arc L de curbă neîntrerupt, mărginit de punctele A și B și funcțiile P(x,y) și Q(x,y) continui pe L. Divizăm arcul L în direcția de la A spre B de punctele $M_0 = A, M_1, M_2, ..., M_n = B$. Notăm $\overline{M_i M_{i+1}}$ cu $\overline{\Delta l_i}$. Punem $\Delta x_i = x_{i+1} - x_i$, $\Delta y_i = y_{i+1} - y_i$. Formăm suma $\sigma_n = \sum_{i=0}^{n-1} \left[P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right]$.

Dacă limita acestei sume, când $\Delta x_i, \Delta y_i \to 0$, există, este finită și nu depinde de modul de divizare a arcului L, valoarea ei se numește **integrală curbilinie de speța II.** Se notează, $\int\limits_{(AB)} P(x,y) dx + Q(x,y) dy$. Deci,

$$\int_{(AB)} P(x,y)dx + Q(x,y)dy = \lim_{\Delta x_i, \Delta y_i \to 0} \sum_{i=0}^{n-1} \left(P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right)$$

Dacă L este un arc de curbă spațial, analog poate fi introdusă noțiunea de integrală curbilinie a funcțiilor P(x, y, z), Q(x, y, z), R(x, y, z):

$$\int_{AB} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

Proprietăți ale integralei curbilinii de speța II

- 1. Dacă drumul de integrare va fi de la B la A, atunci integrala curbilinie își va schimba semnul, adică: $\int_{(AB)} P(x,y) dx + Q(x,y) dy = -\int_{(BA)} P(x,y) dx + Q(x,y) dy$
- 2. Dacă drumul de integrare L este divizat în porțiunile $L_1, L_2, ..., L_n$, atunci $\int_L = \int_{L_1} + ... + \int_{L_n} \int_{L_n} \frac{1}{n} dt$

Calcularea integralei curbilinii de speța II

1. Dacă L este definit de funcția y = y(x), $x \in [a,b]$, continuă împreună cu derivata sa pe [a,b], atunci: $\int_{L} P dx + Q dy = \int_{a}^{b} P(x,y(x)) + Q(x,y(x))y'(x)dx$

2. Dacă arcul de curbă L este dat de ecuațiile parametrice x = x(t), y = y(t), $t \in [t_1, t_2]$, atunci avem: $\int_{L} Pdx + Qdy = \int_{t_1}^{t_2} P(x(t), y(t)) \cdot x'(t) + Q(x(t), y(t)) \cdot y'(t) dt$

Teoremă: Dacă domeniul D, închis și mărginit, poate fi descompus într-un număr finit de domenii regulate, iar funcțiile P(x,y), Q(x,y), $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ sunt continui pe acest domeniu,

atunci are loc **formula lui Green** $\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P(x, y) dx + Q(x, y) dy,$

L este frontiera lui D parcursă în sens pozitiv.

Problema 1. Să se calculeze integrala curbilinie.

- 1. $\int_{L_{AB}} (x^2 2xy) dx + (y^2 2xy) dy$, unde L_{AB} arcul parabolei $y = x^2$ de la punctul A(-1, 1) până la punctul B(1, 1).
- 2. $\int_{L_{AB}} \frac{x^2 dy y^2 dx}{\sqrt[3]{x^5} + \sqrt[3]{y^5}}$, unde L_{AB} arcul astroidei $x = 2\cos^3 t$, $y = 2\sin^3 t$ parcursă din punctul A(2, 1)
- 0) spre punctul B(0, 2).
- 3. $\int_{L_{OA}} (x^2 + y^2) dx + 2xy dy$, unde L_{OA} arcul parabolei cubice $y = x^3$ parcursă din punctul O(0, 1)
- 0) spre punctul A(1, 1).
- **4.** $\oint_L (x+2y)dx + (x-y)dy$, unde L circumferința $x = 2\cos t$, $y = 2\sin t$ parcursă în sens pozitiv.
- 5. $\oint_L (x^2y x)dx + (y^2x 2y)dy$, unde L conturul elipsei $x = 3\cos t$, $y = 2\sin t$ parcursă în sens pozitiv.
- **6.** $\oint_{L_{AB}} (xy-1)dx + x^2ydy$, unde L_{AB} conturul elipsei $x = \cos t$, $y = 2\sin t$ parcursă din punctul

A(1, 0) până în punctul B(0, 2).

7. $\int_{L_{OBA}} 2xydx - x^2dy$, unde L_{OBA} – linia frântă OBA, cu O(0, 0),

B(2, 0), A(2, 1).

- **8.** $\int_{L_{AB}} (x^2 y^2) dx + xy dy$, unde L_{AB} segmentul de dreaptă AB, cu A(1, 1), B(3, 4).
- 9. $\int_{L_{AB}} \cos y dx \sin x dy$, unde L_{AB} segmentul de dreaptă AB, cu $A(2\pi, -2\pi)$, $B(-2\pi, 2\pi)$.
- **10.** $\int_{L_{AB}} \frac{ydx + xdy}{x^2 + y^2}$, unde L_{AB} segmentul de dreaptă AB, A(1, 2), B(3, 6).
- **11.** $\int_{L_{AB}} xydx + (y-x)dy$, unde L_{AB} arcul parabolei cubice $y=x^3$ de la punctul A(0,0) până la punctul B(1,1).

- **12.** $\int_{L_{ABC}} (x^2 + y^2) dx + (x + y^2) dy$, unde L_{ABC} linia frântă ABC, A(1, 2), B(3, 2), C(3, 5).
- **13.** $\int_{L_{OB}} xy^2 dx + yz^2 dy x^2 z dz$, unde L_{OB} segmentul de dreaptă OB, O(0, 0, 0), B(-2, 4, 5).
- **14.** $\int_{L_{OA}} y dx + x dy$, unde L_{OA} circumferința $x = R \cos t$, $y = R \sin t$, parcursă de la punctul O(R, O) până la punctul A(O, R).
- **15.** $\int_{L_{OA}} xydx + (y-x)dy$, unde L_{OA} arcul parabolei $y^2 = x$ parcursă din punctul O(0, 0) până la punctul A(1, 1).
- **16.** $\int_{L_{12}} x dx + y dy + (x y + 1) dz$, unde L_{AB} segmentul de dreaptă AB, A(1, 1, 1), B(2, 3, 4).
- 17. $\int_{L_{AB}} (xy-1)dx + x^2ydy$, unde L_{AB} arcul parabolei $y^2 = 4-4x$ parcursă din punctul A(I, 0) până la punctul B(0, 2).
- **18.** $\int_{L_{OB}} xydx + (y-x)dy$, unde L_{OB} arcul parabolei $y=x^2$ de la punctul O(0, 0) până la punctul B(1, 1).
- **19.** $\int_{L_{AB}} x dy + y dx$, unde L_{AB} arcul astroidei $x = 2\cos^3 t$, $y = 2\sin^3 t$ de la punctul A(2, 0) până la punctul B(0, 2).
- **20.** $\int_{L_{AB}} (xy x) dx + \frac{1}{2} x^2 dy$, unde L_{AB} arcul parabolei $y^2 = 4x$ de la punctul A(0, 0) până la punctul B(1, 2).
- **21.** $\int_{L_{AB}} (xy-1)dx + x^2ydy$, unde L_{AB} segmentul de dreaptă AB, A(1, 0), B(0, 2).
- **22.** $\int_{L_{AB}} x dx + y dy + (x y + 1) dz$, unde L_{AB} arcul curbei $x = \cos t$, $y = \sin t$, z = 2t, A(1, 0, 0), $B(1, 0, 4\pi)$.
- 23. $\int_{L_{AB}} \frac{y}{x} dx + x dy$, unde L_{AB} arcul $y = \ln x$ de la punctul

A(1, 0) până la punctul B(e, 1).

- **24.** $\oint_L y dx x dy$, unde L_{AB} arcul elipsei $x = 3\cos t$, $y = 2\sin t$ parcursă în sens pozitiv.
- **25.** $\int_{L_{OA}} 2xydx + x^2dy$, unde L_{OA} arcul parabolei $y = \frac{x^2}{4}$ parcurs din punctul O(0, 0) până la punctul A(2, 1).
- **26.** $\int_{L_{AB}} (x^2 + y^2) dx + (x^2 y^2) dy$, unde L_{AB} linia frântă y = |x| parcursă din punctul A(-1, 1) până la punctul B(2, 2).
- **27.** $\int_{L_{OA}} 2xydx + x^2dy + zdz$, unde L_{OA} segmentul de dreaptă, care unește punctele O(0, 0, 0) și A(2, 1, -1).

- **28.** $\oint_L x dy y dx$, unde L conturul triunghiului cu vârfurile
- A(-1, 0), B(1, 0), C(0, 1) parcurs în sens pozitiv.
- **29.** $\int_{L_{ACB}} (x^2 + y) dx + (x + y^2) dy$, unde L_{ACB} frânta ACB, cu A(2, 0), C(5, 0), B(5, 3).
- **30.** $\oint_L (x^2 + y) dx + (y^2 + x) dy$, unde L arcul elipsei $x = 2\cos t$, $y = 3\sin t$ parcurs în sens pozitiv.
- **31.** $\int_{L_{AB}} (x^2 + y^2) dx + (x^2 y^2) dy$, unde L_{AB} segmentul de dreaptă AB, care unește punctele A(-1, 1), B(3, 2).
- **32.** $\int_{L_{OB}} (xy y^2) dx + xdy$, unde L_{OB} arcul parabolei $y = x^2$ parcurs de la punctul O(0, 0) până la punctul B(1, 1).
- **33.** $\int_{L_{AB}} xydx + yzdy + zxdz$, unde L_{AB} curba $x = \cos t$, $y = \sin t$, z = 1, $t \in [0, 2\pi]$.
- **34.** $\int_{L_{OA}} (xy x)dx + \frac{x^2}{y}dy$, unde L_{OA} arcul parabolei $y = 2\sqrt{x}$ parcurs de la punctul O(0, 0) până la punctul A(1, 2).
- **35.** $\oint_L x dy$, unde L conturul triunghiului obținut între dreptele x = 2, y = x, y = 0 parcurs în sens pozitiv.
- **36.** $\int_{L} x dx + xy dy$, unde L arcul de sus al circumferinței $x^2 + y^2 = 2x$ parcurs în sens pozitiv.
- 37. $\oint_L (x^2 y) dx$, unde L conturul dreptunghiului format de dreptele x = 0, y = 0, x = 1, y = 2 parcurs în sens pozitiv.
- **38.** $\int_{L_{OB}} (xy y^2) dx + x dy$, unde L_{OB} arcul parabolei $y = x^2$ parcurs de la punctul O(0, 0) până la punctul B(1, 1).
- **39.** $\int_{L_{OB}} 4x \sin^2 y dx + y \cos 2x dy$, unde L_{OB} segmentul de dreaptă OB, care unește punctele O(-1, 1), B(3, 2).
- **40.** $\oint_{L} y dx x dy$, unde L arcul elipsei $x = 6\cos t$, $y = 4\sin t$ parcurs în sens pozitiv.
- **41.** $\int_{L_{OA}} 2xzdx y^2dz$, unde L_{OA} arcul parabolei $z = \frac{x^2}{4}$ parcurs de la punctul O(0,0,0) până la punctul A(2,0,1).
- **42.** $\int_{L_{AB}} \left(x \frac{1}{y}\right) dy$, unde L_{AB} arcul parabolei $y = x^2$ parcurs de la punctul A(1, 1) până la punctul B(2, 4).
- **43.** $\int_{L_{AB}} \cos z dx \sin x dz$, unde L_{AB} segmentul de dreaptă AB care unește punctul A(2,0,-2) cu punctul B(-2,0,2).

44. $\int_{L_{OA}} (xy - y^2) dx + xdy$, unde L_{OA} – arcul parabolei $y = 2\sqrt{x}$ parcurs de la punctul O(0, 0) până la punctul A(1, 2).

45. $\int_{L_{OA}} (xy - y^2) dx + xdy$, unde L_{OA} – arcul parabolei $y = 2x^2$ parcurs de la punctul O(0, 0) până la punctul A(2, 3).

- **46.** $\oint_L (x+y)dx + (x-y)dy$, unde L circumferința $x^2 + y^2 = 16$ parcursă în sens pozitiv.
- **47.** $\int_{L_{AB}} 2y \sin 2x dx \cos 2x dy$, unde L_{AB} segmentul de dreaptă AB, cu $A\left(\frac{\pi}{4}, 2\right)$ și $B\left(\frac{\pi}{6}, 1\right)$
- **48.** $\int_{L_{AB}} xydx + x^2zdy + xyzdz$, unde L_{AB} curba $x = e^t$, $y = e^{-t}$, $z = t^2$, $t \in [0,1]$.
- **49.** $\int_{L} \sqrt{1-x^2} dx + x dy$, unde L este elipsa $x^2 + \frac{y^2}{4} = 1$ situată în cadranele 1 și 4. Conturul este parcurs în sens pozitiv.
- **50.** $\int_L xye^x dx + (x-1)e^x dy$, unde L este segmentul de dreaptă ce unește punctele A(0, 2) și B(1, 2).

Exemplu rezolvat

Să se calculeze integrala curbilinie.

$$\int_{L} x^{2} y dy - xy^{2} dx, \text{ dacă conturul L este mărginit de curba } x = \sqrt{\cos t}, \ y = \sqrt{\sin t}, \ t \in \left[0, \frac{\pi}{2}\right].$$

Rezolvare:

$$\int_{L} x^{2} y dy - xy^{2} dx = \int_{0}^{\frac{\pi}{2}} \left[\cos t \cdot \sqrt{\sin t} \cdot \frac{\cos t}{2\sqrt{\sin t}} - \sin t \sqrt{\cos t} \cdot \frac{(-\sin t)}{2\sqrt{\cos t}} \right] dt =$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (\cos^{2} t + \sin^{2} t) dt = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} dt = \frac{\pi}{4}.$$

SERIA ABSTRACTĂ FOURIER

Funcției periodică f(x) cu perioada 2π poate fi descompusă în serie Fourier

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \quad \text{unde} \quad \int_{-\pi}^{\pi} f(x) dx = \pi a_0 \Rightarrow a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \, dx, \int_{-\pi}^{\pi} f(x) \sin mx \, dx = b_{m} \cdot \pi \Rightarrow b_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \, dx$$

Teoremă (teorema Dirichlet) Dacă f(x) periodică, cu perioada 2π , este monotonă pe porțiuni și mărginită pe $[-\pi, \pi]$, atunci seria Fourier asociată funcției f(x), converge în toate punctele segmentului $[-\pi, \pi]$. În punctele în care funcția f(x) este continuă, suma S(x) a seriei obținute este egală cu valoarea funcției f în punctul respectiv. În punctele de discontinuitate a funcției f(x) suma seriei este egală cu media aritmetică a limitelor laterale în punctele respective. Adică, dacă x = c este punct de discontinuitate, $S(c) = \frac{f(c-0) + f(c+0)}{2}$

Dacă f(x) este o funcție pară și admite dezvoltare în serie Fourier, atunci produsul $f(x) \cdot \sin kx$ este o funcție impară, iar produsul $f(x) \cdot \cos kx$ este o funcție pară și au loc

relațiile:
$$a_0 = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$
, $a_k = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos kx dx$, $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx = 0$ Astfel, în seria

Fourier a unei funcții pare figurează numai cosinusuri.

Dacă f(x) este o funcție impară și admite dezvoltare în serie Fourier, atunci produsul $f(x) \cdot \sin kx$ este o funcție pară, iar produsul $f(x) \cdot \cos kx$ este o funcție impară și au loc

relațiile:
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = 0$$
, $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx = 0$, $b_k = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin kx dx$

Astfel în seria Fourier a unei funcții impare figurează numai sinusuri.

Problema 2. Să se dezvolte în serie Fourier funcția f(x) pe intervalul dat cu perioada T.

Problema 2. Să se dezvolte în serie Fourier funcția
$$f(x)$$
 pe interval. $f(x) = \begin{cases} 0, & \pi \le x < 0 \\ \frac{x}{2} + 1, 0 \le x \le \pi, T = 2\pi \end{cases}$. 2. $f(x) = 2x, x \in [-1,1], T = 2$.
$$\begin{cases} 7 - 3x, -\pi \le x < 0 \end{cases}$$

$$\begin{aligned}
\mathbf{3.} f(x) &= \begin{cases} 7 - 3x, -\pi \le x < 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases} \\
\mathbf{5.} f(x) &= \begin{cases} 0, & -\pi \le x < 0 \\ 3 - 8x, 0 \le x \le \pi, T = 2\pi \end{cases} \\
\mathbf{6.} f(x) &= \begin{cases} 1, -1 \le x < 0 \\ x, & 0 \le x \le 1, T = 2\pi \end{cases} \\
\mathbf{7.} f(x) &= \begin{cases} 2x - 11, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases} \\
\mathbf{8.} f(x) &= e^x, x \in [-2, 2], T = 4. \\
\mathbf{9.} f(x) &= \begin{cases} 7x - 1, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases} \\
\mathbf{10.} f(x) &= 10 - x, x \in [5, 15], T = 10.
\end{aligned}$$

5.
$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 3 - 8x, 0 \le x \le \pi, T = 2\pi \end{cases}$$

7.
$$f(x) = \begin{cases} 2x - 11, & -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, \ T = 2\pi \end{cases}$$

9.
$$f(x) = \begin{cases} 7x - 1, & \pi \le x \le 0 \\ 0, & 0 < x \le \pi, \ T = 2\pi \end{cases}$$

11.
$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 6x - 5, 0 \le x \le \pi, & T = 2\pi \end{cases}$$
 12. $f(x) = 5x - 1, & x \in [-5, 5], & T = 10.$

4.
$$f(x) = x, x \in [1,3], T = 2$$

6.
$$f(x) = \begin{cases} 1, -1 \le x < 0 \\ x, \ 0 \le x \le 1, \ T = 2\pi \end{cases}$$

8.
$$f(x) = e^x$$
, $x \in [-2, 2]$, $T = 4$

10.
$$f(x) = 10 - x, x \in [5, 15], T = 10.$$

12.
$$f(x) = 5x - 1, x \in [-5, 5], T = 10$$

13.
$$f(x) = \begin{cases} 2x - 1, & \pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

15.
$$f(x) = \begin{cases} 5 - x, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

17.
$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 4x - 3, 0 \le x \le \pi, T = 2\pi \end{cases}$$

19.
$$f(x) = \begin{cases} 2x + 3, & \pi \le x \le 0 \\ 0, & 0 < x \le \pi, \ T = 2\pi \end{cases}$$

21.
$$f(x) = \begin{cases} x - 2, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, \ T = 2\pi \end{cases}$$

13.
$$f(x) = \begin{cases} 2x - 1, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$
14. $f(x) = 1 + x, x \in [-1,1], T = 2.$
15. $f(x) = \begin{cases} 5 - x, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$
16. $f(x) = 2x + 3, x \in [-1,3], T = 4.$
17. $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 4x - 3, 0 \le x \le \pi, T = 2\pi \end{cases}$
18. $f(x) = 1 - |x|, x \in [-3,3], T = 6.$
19. $f(x) = \begin{cases} 2x + 3, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$
20. $f(x) = |x| - 3, x \in [-4,4], T = 8.$
21. $f(x) = \begin{cases} x - 2, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$
22. $f(x) = \begin{cases} -0, 5, -6 \le x < 0 \\ 1, & 0 \le x \le 6, T = 12 \end{cases}$
23. $f(x) = \begin{cases} 1, & -\pi \le x < 0 \\ \frac{x}{2} + 1, 0 \le x \le \pi, T = 2\pi \end{cases}$
24. $f(x) = 4x - 3, x \in [-5,5], T = 10.$

$$25. f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 3 - x, 0 \le x \le \pi, & T = 2\pi \end{cases}$$

$$26. f(x) = \begin{cases} 1, & 1 \le x < 2 \\ -1, 2 \le x \le 3, & T = 2 \end{cases}$$

$$27. f(x) = \begin{cases} -0, -2 \le x \le 0 \\ 2, & 0 < x \le 2, & T = 4 \end{cases}$$

$$28. f(x) = \frac{\pi - x}{2}, & x \in [-\pi, \pi], & T = 2\pi.$$

27.
$$f(x) = \begin{cases} -0, -2 \le x \le 0 \\ 2, \quad 0 < x \le 2, \ T = 4 \end{cases}$$

29.
$$f(x) = |1-x|, x \in [-2,2], T = 4.$$

$$31. f(x) = \begin{cases} \frac{x}{2} + 2, & \pi \le x < 0 \\ 0, & 0 \le x \le \pi, T = 2\pi \end{cases}$$

$$32. f(x) = 3x, & x \in [-2, 2], T = 4.$$

$$33. f(x) = \begin{cases} 6 - 2x, -\pi \le x < 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

$$34. f(x) = 3x, & x \in [-1, 1], T = 2.$$

$$35. f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 3 - 5x, & 0 \le x \le \pi, T = 2\pi \end{cases}$$

$$36. f(x) = \begin{cases} 1, -1 \le x < 0 \\ x, & 0 \le x < 1, T = 2 \end{cases}$$

$$37. f(x) = \begin{cases} x - 9, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

$$38. f(x) = e^x, & x \in [-1, 1], T = 2.$$

$$\begin{cases} x - 3, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

$$\begin{cases} x - 3, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

$$\begin{cases} x - 3, -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

33.
$$f(x) = \begin{cases} 6 - 2x, -\pi \le x < 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$

35.
$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 3 - 5x, 0 \le x \le \pi, T = 2\pi \end{cases}$$

37.
$$f(x) = \begin{cases} x - 9, -\pi \le x \le 0 \\ 0, \quad 0 < x \le \pi, T = 2\pi \end{cases}$$

39.
$$f(x) = \begin{cases} \frac{x}{3} - 3, & \pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$
 40. $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 2 - 4x, & 0 \le x \le \pi, T = 2\pi \end{cases}$

41.
$$f(x) = 5 - x$$
, $x \in [-3,3]$, $T = 6$.

43.
$$f(x) = 2x - 1, x \in [-4, 4], T = 8.$$

45.
$$f(x) = 4 + x, x \in [-2, 2], T = 4$$

47.
$$f(x) = \begin{cases} 2x - 11, & -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, \ T = 2\pi \end{cases}$$

14.
$$f(x) = 1 + x, x \in [-1,1], T = 2.$$

16.
$$f(x) = 2x + 3, x \in [-1,3], T = 4$$

18.
$$f(x) = 1 - |x|, x \in [-3, 3], T = 6.$$

20.
$$f(x) = |x| - 3, x \in [-4, 4], T = 8$$

22.
$$f(x) = \begin{cases} -0.5, -6 \le x < 0 \\ 1, 0 \le x \le 6, T = 12 \end{cases}$$

24.
$$f(x) = 4x - 3, x \in [-5, 5], T = 10.$$

26.
$$f(x) = \begin{cases} 1, & 1 \le x < 2 \\ -1, & 2 \le x \le 3, & T = 2 \end{cases}$$

28.
$$f(x) = \frac{\pi - x}{2}, x \in [-\pi, \pi], T = 2\pi.$$

30.
$$f(x) = \begin{cases} 1, & -\pi \le x < 0 \\ 3x + 1, 0 \le x \le \pi, T = 2\pi \end{cases}$$

32.
$$f(x) = 3x, x \in [-2, 2], T = 4$$

34.
$$f(x) = 3, x \in [-1,1], T = 2.$$

36.
$$f(x) = \begin{cases} 1, -1 \le x < 0 \\ x, \ 0 \le x < 1, \ T = 2 \end{cases}$$

38.
$$f(x) = e^x$$
, $x \in [-1,1]$, $T = 2$.

40.
$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 2 - 4x, 0 \le x \le \pi, T = 2\pi \end{cases}$$

$$(0, \quad 0 < x \le \pi, T = 2\pi)$$

$$(2 - 1x, 0 = x = \pi, T - 2\pi)$$

$$41. f(x) = 5 - x, x \in [-3,3], T = 6.$$

$$42. f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 6x + 4, 0 \le x \le \pi, T = 2\pi \end{cases}$$

43.
$$f(x) = 2x - 1$$
, $x \in [-4, 4]$, $T = 8$.
44. $f(x) = \begin{cases} 3x + 4, -\pi \le x \le 0 \\ 0, \quad 0 < x \le \pi, T = 2\pi \end{cases}$.
45. $f(x) = 4 + x$, $x \in [-2, 2]$, $T = 4$.
46. $f(x) = \begin{cases} 1, \quad -\pi \le x < 0 \\ 3x + 1, 0 \le x \le \pi, T = 2\pi \end{cases}$.

46.
$$f(x) = \begin{cases} 1, & -\pi \le x < 0 \\ 3x + 1, 0 \le x \le \pi, T = 2\pi \end{cases}$$

47.
$$f(x) = \begin{cases} 2x - 11, & -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$$
 48. $f(x) = \begin{cases} 7 - 3x, & -\pi \le x \le 0 \\ 0, & 0 < x \le \pi, T = 2\pi \end{cases}$

49.
$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 1 - 4x, & 0 \le x \le \pi, & T = 2\pi \end{cases}$$
 50. $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 4 - 2x, & 0 \le x \le \pi, & T = 2\pi \end{cases}$

Să se dezvolte în serie Fourier funcția f(x) pe intervalul dat cu perioada T:

$$f(x) = \begin{cases} 2x - 2, -\pi \le x \le 0 \\ 0, \qquad 0 < x \le \pi, \ T = 2\pi \end{cases}$$

$$\underbrace{\text{Rezolvare:}}_{=} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} (2x - 1) dx + \frac{1}{\pi} \int_{0}^{\pi} 0 dx = \frac{1}{\pi} (x^2 - x) \Big|_{-\pi}^{0}$$

$$= -\frac{1}{\pi} (\pi^2 + \pi) = -\pi - 1;$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} (2x - 1) \cos nx dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cos nx dx = \begin{vmatrix} u = 2x - 1, du = 2dx \\ dv = \cos nx dx, v = \frac{1}{n} \sin nx \end{vmatrix} = \frac{1}{\pi} \frac{(2x - 1) \sin nx}{n} \Big|_{-\pi}^{0} - \frac{2}{\pi n} \int_{-\pi}^{0} \sin nx dx = \frac{2}{\pi n^2} \cos nx \Big|_{-\pi}^{0} = \frac{2}{\pi n^2} (1 - \cos n\pi) = \frac{1}{\pi} \frac{4}{\pi (2k - 1)^2}, \quad n = 2k - 1, \quad k \in \mathbb{N}^*.$$

$$0, \quad n = 2k$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} (2x - 1) \sin nx dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} (2x - 1) \sin nx dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}$$

Obtinem:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) =$$

$$= -\frac{\pi + 1}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{n\pi} + \frac{(2\pi - 1)\cos n\pi}{\pi n} \right) \sin nx + \sum_{k=1}^{\infty} \left(\frac{4}{\pi (2k - 1)^2} \right) \cos (2k - 1)x.$$

ECUAȚII DIFERENȚIALE DE ORDINUL I

Definiție. Se numește **ecuație diferențială de ordinul I**, ecuația de forma F(x, y, y') = 0, unde x este variabila independentă, y = y(x) funcția necunoscută, y' derivata ei, F o funcție definită pe careva domeniu $G \subseteq R^3$. Uneori ecuația diferențială are forma y' = f(x, y) sau M(x, y)dx + N(x, y)dy = 0.

Definiție. Se numește **problemă Cauchy** a ecuației diferențiale y' = f(x, y), problema găsirii soluției ecuației diferențiale, care verifică condițiile inițiale $y(x_0) = y_0$.

Teoremă (de existență și unicitate a problemei Cauchy): Fie ecuația y'=f(x,y). Dacă funcțiile f(x,y) și și $f_y'(x,y)$ sunt continui în careva domeniu $D \subset R^3$, $(x_0,y_0) \in D$, atunci în careva vecinătate $|x-x_0| < \delta$ a punctului x_0 există o singură soluție y=y(x), care satisface condiția inițială $y(x_0)=y_0$.

Definiție. Se numește **soluție generală** a ecuației diferențiale y' = f(x, y) în careva domeniu D de existență și unicitate a soluției problemei Cauchy funcția y = y(x, C) ce depinde de x, iar C este parametru astfel încât

- 1) y(x,C) verifică ecuația pentru orice $C \in R$;
- 2) oricare ar fi condiția inițială $y(x_0) = y_0$, $(x_0, y_0) \in D$, se poate de găsit o valoare C_0 a lui C astfel încât soluția $y = y(x, C_0)$ să verifice condiția inițială, adică $y(x_0, C_0) = y_0$.

Uneori, în procesul găsirii soluției generale a ecuației diferențiale, obținem o relație de forma $\Phi(x, y, C) = 0$, care nu-i rezolvată în raport cu y și care se numește **integrală generală** a ecuației.

Definiție. Se numește **soluție particulară** a ecuației diferențiale, orice soluție $y = y(x, C_0)$, care se obține din cea generală pentru careva valoare C_0 a constantei C. Analog, $\Phi(x, y, C_0) = 0$ se numește **integrală particulară**.

Definiție. Orice soluție a ecuației diferențiale y' = f(x, y), care nu se obține din soluția generală și în fiecare punct al căreia nu se respectă unicitatea soluției, se numește **soluție** singulară a acestei ecuatii.

Definiție. Se numește ecuație diferențială cu **variabile separabile** ecuația de forma: $M_1(x)\cdot N_1(y)dx + M_2(x)\cdot N_2(y)dy = 0$ sau $y' = f(x)\cdot g(y)$.

În domeniul în care $M_2(x)$ și $N_1(y)$ sunt nenule, putem scrie: $\frac{M_1(x)}{M_2(x)}dx = -\frac{N_2(y)}{N_1(y)}dy$

o ecuație cu variabile separate. Atunci $\int \frac{M_1(x)}{M_2(x)} dx = -\int \frac{N_2(y)}{N_1(y)} dy$.

Definiție. Ecuația diferențială y' = f(x, y) se numește **omogenă**, dacă funcția f(x, y) este omogenă de gradul zero, adică f(tx, ty) = f(x, y).

Dacă y' = f(x, y) este o ecuație diferențială omogenă, atunci putem nota $\frac{y}{x} = u = u(x)$.

Ecuația capătă forma: u'x + u = f(1,u) sau u' = f(1,u) - u – o ecuație cu variabile separabile.

Notă: Uneori ecuația omogenă mai este scrisă sub forma P(x, y)dx + Q(x, y)dy = 0, unde P(x, y) și Q(x, y) sunt funcții omogene de același ordin, adică $P(tx, ty) = t^n P(x, y)$ și

 $Q(tx,ty) = t^n Q(x,y)$. În acest caz, avem $\frac{dy}{dx} = y' = -\frac{P(x,y)}{Q(x,y)}$, iar funcția $f(x,y) = -\frac{P(x,y)}{Q(x,y)}$ este omogenă de grad zero.

Fie ecuația $y'=f\left(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\right)$ cu $c_1^2+c_2^2>0$ (dacă $c_1=c_2=0$, atunci ecuația este deja omogenă).

Dacă $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$, facem schimbul de variabile $x = x_1 + h$, $y = y_1 + k$, unde (h, k) este

soluție a sistemului $\begin{cases} a_1x+b_1y+c_1=0\\ a_2x+b_2y+c_2=0 \end{cases}, \text{ care duce la ecuația omogenă } y_1'=f\bigg(\frac{a_1x_1+b_1y_1}{a_2x_2+b_2y_2}\bigg).$

Dacă $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$, atunci $\frac{a_2}{a_1} = \frac{b_2}{b_1} = \lambda$ și $a_2 = \lambda a_1, b_2 = \lambda b_1$. Obținem: $y' = f\left(\frac{a_1x + b_1y + c_1}{\lambda(a_1x + b_1y)}\right) = \varphi(a_1x + b_1y).$

Cu ajutorul notației $a_1x+b_1y=z$, care implică relația $z'=a_1+b_1y'$, obținem o ecuație cu variabile separabile $z'=a_1+b_1\varphi(z)$.

Definiție. Se numește **ecuație liniară de ordinul I** ecuația liniară față de funcția necunoscută y și derivata ei: $y' + p(x) \cdot y = q(x)$.

Una din metodele de rezolvare ale ecuațiilor liniare este metoda Bernoulli, se caută soluția sub forma $y = u(x) \cdot v(x) = u \cdot v$. Atunci y' = u'v + uv'. Înlocuind în ecuație, obținem: $u'v + uv' + p(x) \cdot uv = q(x) \Leftrightarrow u'v + u(v' + p(x) \cdot v) = q(x)$. Alegem (!) funcția v(x) (concretă), astfel încât expresia dintre paranteze să se transforme în zero, adică $v' + p(x) \cdot v = 0$ – o ecuație liniară omogenă cu soluția $v = e^{-\int p(x)dx}$. Atunci u'v = q(x) și $u' = q(x) \cdot e^{\int p(x)dx}$ și separînd variabilele, găsim u(x) și respectiv v.

Altă metodă de rezolvare a ecuațiilor liniare este **metoda Lagrange** (metoda **variației constantei**). Fie $y_0 = C \cdot e^{-\int p(x)dx}$ soluția generală a ecuației omogene y' + p(x)y = 0, asociate ecuației liniare neomogene y' + p(x)y = q(x). Mai departe, considerăm C ca funcție de x, adică C(x). Atunci $y = C(x) \cdot e^{-\int p(x)dx}$. Vom înlocui această funcție în ecuația inițială, de unde vom găsi C(x).

Definiție. Se numește **ecuație Bernoulli**, ecuația de forma: $y' + p(x) \cdot y = q(x) \cdot y^{\alpha}, \alpha \in R \setminus \{0,1\}$.

Ecuația Bernoulli poate fi rezolvată prin trei metode:

- a) **metoda Bernoulli**: se caută soluția sub forma $y = u \cdot v$;
- b) metoda Lagrange (de variație a constantei);
- c) se face substituția $z = y^{1-\alpha}$, care ne duce la o ecuație liniară față de z' și z.

Definiție. Ecuația diferențială de forma P(x,y)dx + Q(x,y)dy = 0, unde partea stângă a ecuației reprezintă diferențiala totală a unei funcții u(x,y), definită pe un domeniu $D \subset R^2$, se numește **ecuație cu diferențiale totale** (exactă). În acest caz soluția generală a ecuației va avea formă implicită u(x,y) = C, unde C este o constantă arbitrară.

Teoremă. Dacă ecuația P(x,y)dx + Q(x,y)dy = 0 este o ecuație cu diferențiale totale și P(x,y), Q(x,y) au derivate parțiale pe domeniul simplu conex D cu P_y', Q_x' continui, atunci are loc egalitatea $P_y'(x,y) = Q_x'(x,y)$. Și invers, dacă $P_y'(x,y) = Q_x'(x,y)$, atunci avem o ecuație în diferențiale totale. Integrala generală a ecuației este $\int_{x_0}^x P(x,y)dx + \int_{y_0}^y Q(x_0,y)dy = C \text{ sau } \int_{x_0}^x P(x,y_0)dx + \int_{y_0}^y Q(x,y)dy = C.$

ECUAȚII DIFERENȚIALE DE ORDIN SUPERIOR. GENERALITĂȚI

Definiție. Se numește **ecuație diferențială ordinară de ordinul** n o ecuație diferențială de forma $F(x, y, y', ..., y^{(n)}) = 0$, unde x este variabila independentă, y = y(x) este funcția necunoscută și F este o funcție continuă în careva domeniu G din spațiul \mathbf{R}^{n+2} , sau $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$.

Definiție. Se numește **problemă Cauchy** pentru ecuația $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ problema care constă în determinarea soluției acestei ecuații, care satisface **condițiile inițiale** $y(x_0) = y_0, \ y'(x_0) = y_0', ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$.

Teorema de existență și unicitate a soluției problemei Cauchy. Dacă funcția $f(x,y,y',...,y^{(n-1)})$ și derivatele ei parțiale în raport cu variabilele $y,y',...,y^{(n-1)}$ sunt continue într-un domeniu $D \subset \mathbb{R}^{n+1}$ care conține punctul $(x_0,y_0,y_0',...,y_0^{(n-1)})$, atunci există un interval (a,b) care conține punctul x_0 și o singură funcție y(x) continuu derivabilă pe (a,b) care verifică ecuația $y^{(n)}=f(x,y,y',...,y^{(n-1)})$.

Definiție. Se numește **soluție generală** a ecuației diferențiale funcția $y = y(x, C_1, C_2, ..., C_n)$ care satisface condițiile:

- 1) $y(x, C_1, C_2, ..., C_n)$ este soluție a ecuației diferențiale $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ pentru orice valori ale constantelor $C_1, C_2, ..., C_n$;
- 2) pentru orice $(x_0,y_0,y_0',...,y_0^{(n-1)}) \in D$ există așa valori $C_1^{(0)},C_2^{(0)},...,C_n^{(0)}$ ale constantelor $C_1,C_2,...,C_n$, astfel încât funcția $y(x,C_1^{(0)},...,C_n^{(0)})$ este soluție a problemei Cauchy respective.

Definiție. Se numește **soluție particulară** a ecuației diferențiale $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ orice soluție a acestei ecuații care se obține din soluția generală pentru valori concrete ale constantelor $C_1, C_2, ..., C_n$.

ECUAȚII DIFERENȚIALE CARE PERMIT MICȘORAREA ORDINULUI

- 1. Ecuații diferențiale de forma $y^{(n)} = f(x)$. Această ecuație poate fi rezolvată prin n integrări. La fiecare integrare se rezolvă o ecuație diferențială de ordinul întâi.
- 2. Ecuații diferențiale care nu conțin în mod explicit funcția necunoscută. Ecuațiile de acest tip au forma $F(x, y^{(k)}, ..., y^{(n)}) = 0$. Ele pot fi reduse la ecuații diferențială de ordinul n-k cu ajutorul substituției $y^{(k)} = p(x)$.

3. Ecuații diferențiale care nu conțin în mod explicit variabila independentă. Fie ecuația diferențială de forma F(y, y', y'') = 0, unde y = y(x) este funcția necunoscută de variabila x, care nu se conține explicit în această ecuație. Această ecuație poate fi redusă la o ecuație diferențială de ordinul întâi folosind substituția y' = p(y).

ECUATII DIFERENTIALE LINIARE OMOGENE DE ORDIN SUPERIOR.

Definiție. Se numește ecuație diferențială liniară de ordinul n ecuația de forma

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = f(x),$$

unde x este variabila independentă, $f(x), p_0(x), p_1(x), ..., p_{n-1}(x)$ sunt funcții continue pe careva interval I, y = y(x) este funcția necunoscută care trebuie determinată, iar $y', ..., y^{(n)}$ sunt derivatele ei.

Dacă $f(x) = 0, \forall x \in I$, atunci ecuația se numește **omogenă** sau fără termen liber, dacă însă f(x) nu este identic egală cu zero pe intervalul I, atunci ea se numește **neomogenă** sau cu termen liber.

Deci ecuația diferențială omogenă de ordinul n

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = 0$$

se numește ecuație omogenă asociată ecuației neomogene.

Pentru sistemul de funcții $y_1(x), y_2(x), ..., y_n(x)$ care au derivate până la ordinul n-1

inclusiv,
$$W(x) = W[y_1, y_2, ..., y_n] = \begin{vmatrix} y_1(x) & y_2(x) & ... & y_n(x) \\ y_1'(x) & y_2'(x) & ... & y_n'(x) \\ ... & ... & ... & ... \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & ... & y_n^{(n-1)}(x) \end{vmatrix}$$
. se numeşte

wronskian al funcțiilor $y_1(x), y_2(x),..., y_n(x)$.

Teorema. Dacă funcțiile $y_1(x), y_2(x), ..., y_n(x)$ sunt soluții ale ecuației omogene $y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = 0$, atunci ele sunt liniar independente pe intervalul I atunci și numai atunci când $W[y_1, y_2, ..., y_n] \neq 0, \forall x \in I$.

Definiție. Se numește **sistem fundamental de soluții** al ecuației omogene $y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = 0$ orice sistem liniar independent de n soluții ale acestei ecuații.

Astfel, sistemul de soluții $y_1(x), y_2(x), ..., y_n(x)$ al ecuației omogene care verifică relația $W[y_1, y_2, ..., y_n] \neq 0, \forall x \in I$, este sistem fundamental de soluții al acestei ecuații.

Teorema (structura soluției generale a ecuației diferențiale liniare omogene) Dacă $y_1(x), y_2(x), ..., y_n(x)$ este un sistem fundamental de soluții pe intervalul I a ecuației omogene $y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = 0$, atunci soluția generală a acestei ecuații are forma $y(x) = \sum_{i=1}^n C_j y_j(x), x \in I$, unde $C_1, C_2, ..., C_n$ sunt constante arbitrare.

Definiție. Se numește ecuație diferențială liniară omogenă de ordinul n cu coeficienți constanți ecuația de forma $y^{(n)}+p_{n-1}y^{(n-1)}+...+p_1y'+p_0y=0, x\in (-\infty,+\infty)$. unde $p_0,p_1,...,p_{n-1}$ sunt constante reale.

Funcția $y=e^{kx}$ este soluție a ecuației $y^{(n)}+p_{n-1}y^{(n-1)}+...+p_1y'+p_0y=0$ atunci și numai atunci când numărul k este rădăcină a ecuației $k^n+p_{n-1}k^{n-1}+...+p_1k+p_0=0$, numită **ecuație caracteristică** a ecuației diferențiale $y^{(n)}+p_{n-1}y^{(n-1)}+...+p_1y'+p_0y=0$. Gradul ecuației caracteristice este n și prin urmare ea are (ținând cont de multiplicitate) n rădăcini reale sau (și) complexe $k_1,k_2,...,k_n$ Aceste rădăcini determină n funcții de forma : $e^{k_1x},e^{k_2x},...,e^{k_nx}$, care sunt soluții particulare ale ecuației omogene date. Examinăm câteva cazuri posibile.

Cazul 1. Fie că toate rădăcinile ecuației caracteristice sunt numere reale și diferite. Soluția generală a acestei ecuații este $y(x) = C_1 e^{k_1 x} + C_2 e^{k_2 x} + ... + C_n e^{k_n x}$

Cazul 2. Fie că toate rădăcinile ecuației caracteristice sunt numere reale, iar k_j este o rădăcină reală de multiplicitatea m>1 a ecuației caracteristice. Atunci în sistemul de funcții $e^{k_1x}, e^{k_2x}, ..., e^{k_nx}$ m soluții coincid și în locul lor în sistemul fundamental de soluții se iau funcțiile $e^{k_jx}, xe^{k_jx}, ..., x^{m-1}e^{k_jx}$, care (poate fi demonstrat) sunt soluții ale ecuației omogene.

Cazul 3. Fie că ecuația caracteristică are o rădăcină complexă simplă (de multiplicitatea 1) $k_j = \alpha + \beta i, \beta \neq 0$. Atunci printre rădăcinile ecuației caracteristice se găsește și conjugata ei: rădăcina complexă simplă $k_s = \alpha - \beta i$. În acest caz soluțiile $e^{(\alpha+\beta i)x}, e^{(\alpha-\beta i)x}$ sunt înlocuite cu $e^{\alpha x}\cos\beta x$ și $e^{\alpha x}\sin\beta x$.

Cazul 4. Dacă ecuația caracteristică are rădăcina complexă $k_j = \alpha + i\beta$ de multiplicitatea m, atunci ea are și rădăcina $\bar{k}_j = \alpha - i\beta$ de aceeași multiplicitate. În acest caz sistemul de soluții conține m soluții complexe egale de forma $e^{(\alpha+i\beta)x}$ și tot atâtea soluții de forma $e^{(\alpha-i\beta)x}$ În locul lor în sistemul fundamental de soluții se iau soluțiile $e^{\alpha x}\cos\beta x, xe^{\alpha x}\cos\beta x, ..., x^{m-1}e^{\alpha x}\cos\beta x,$

 $e^{\alpha x}\sin\beta x, xe^{\alpha x}\sin\beta x, ..., x^{m-1}e^{\alpha x}\sin\beta x$

Fie ecuația de ordinul doi y'' + py' + qy = 0, unde p și q sunt constante reale. Ecuația caracteristică a acestei ecuații este $k^2 + pk + q = 0$.

- 1) Dacă ecuația caracteristică are **două rădăcini reale și diferite** k_1 și k_2 , atunci sistemul fundamental de soluții este e^{k_1x} , e^{k_2x} iar soluția generală $y = C_1e^{k_1x} + C_2e^{k_2x}$
- 2) Dacă $k_1 = k_2$, atunci sistemul fundamental de soluții este e^{k_1x} , xe^{k_1x} iar soluția generală are forma $y = C_1e^{k_1x} + C_2xe^{k_2x}$
- 3) Dacă $k_1 = \alpha + i\beta$, $k_2 = \alpha i\beta$, $\beta \neq 0$, atunci sistemul fundamental de soluții este $e^{\alpha x} \cos \beta x$, $e^{\alpha x} \sin \beta x$, iar soluția generală este $y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$

Teoremă (Structura soluției generale a ecuației diferențiale liniare neomogene) Soluția generală a ecuației neomogene $y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = f(x)$ este egală cu suma unei soluții

particulare a ei și a soluției generale a ecuației omogene asociate ei $y^{(n)} + p_{n-1}(x)y^{(n-1)} + ... + p_1(x)y' + p_0(x)y = 0$.

Dacă notăm soluția generală a ecuației neomogene cu $y_n(x)$, soluția particulară a ecuației neomogene cu $y_p(x)$ și soluția generală a ecuației omogene cu $y_o(x)$. Atunci putem scrie $y_n(x) = y_p(x) + y_0(x)$.

DETERMINAREA UNEI SOLUȚII PARTICULARE A ECUAȚIEI NEOMOGENE. METODA LAGRANGE.

Cazul n=2. Fie ecuația diferențială liniară neomogenă de ordinul doi $y''+p_1(x)y'+p_0(x)y=f(x)$. Fie că sistemul fundamental de soluții al ecuației omogene este $y_1(x)$, $y_2(x)$. Soluția generală a acestei ecuații are forma $y_o(x)=C_1y_1(x)+C_2y_2(x)$

Soluția particulară a ecuației neomogene are forma $y_0(x) = C_1(x)y_1(x) + C_2(x)y_2(x)$, unde $C_1(x)$ și $C_2(x)$ sunt funcții continuu derivabile pe careva interval care se determină din

sistemul
$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0, \\ C_1'(x)y_2'(x) + C_2'(x)y_2'(x) = f(x) \end{cases}.$$

METODA COEFICIENȚILOR NEDETERMINAȚI

Fie că termenul liber f(x) al ecuației $y^{(n)} + p_{n-1}y^{(n-1)} + ... + p_1y' + p_0y = f(x), x \in I$, are forma $f(x) = P(x)e^{\alpha x}\cos\beta x + Q(x)e^{\alpha x}\sin\beta x$, unde P(x) și Q(x) sunt polinoame de variabilă x. Vom spune în acest caz, că f(x) are formă **specială**.

- 1) Dacă $k_0=\alpha+\beta i$ nu este rădăcină a ecuației caracteristice $k^n+p_{n-1}k^{n-1}+...+p_1k+p_0=0$, atunci o soluție particulară e ecuației neomogene poate fi găsită în forma $y_p(x)=U(x)e^{\alpha x}\cos\beta x+V(x)e^{\alpha x}\sin\beta x$, unde U(x) și V(x) sunt polinoame de grade, egale celui mai mare dintre gradele polinoamelor P(x) și Q(x). Coeficienții acestor polinoame se determină prin metoda coeficienților indeterminați, înlocuind $y_p(x)=U(x)e^{\alpha x}\cos\beta x+V(x)e^{\alpha x}\sin\beta x$ în ecuația $y^{(n)}+p_{n-1}y^{(n-1)}+...+p_1y'+p_0y=f(x), x\in I$.
- 2) Dacă $k_0 = \alpha + \beta i$ este rădăcină de multiplicitatea m a ecuației caracteristice, atunci o soluție particulară a ecuației neomogene poate fi căutată în forma $y_p(x) = x^m \left\lceil U(x) e^{\alpha x} \cos \beta x + V(x) e^{\alpha x} \sin \beta x \right\rceil$.

Problema 1. Să se afle soluțiile sau integralele generale ale următoarelor ecuațiilor diferențiale rezolvabile în cuadraturi:

1. a)
$$xy' = y - xy$$
, b) $y^2 dx = (xy - x^2) dy$, c) $y' + 2xy = xe^{-x^2}$.

2. a)
$$y' \sin x = y \ln y$$
, b) $xy' = y \left(1 + \ln \left(\frac{y}{x} \right) \right)$, c) $y' - y \operatorname{tg} x = \frac{1}{\cos x}$.

3.a)
$$yy'\frac{1}{x} + e^y = 0$$
 b) $y' = \frac{x - y}{x + y}$, c) $(x^2 - 1)y' - xy = x^3 - x$.

4. a)
$$y' = 2^{x-3y}$$
, b) $y' = e^{y/x} + y/x$, c) $y' + (1-2x)y/x^2 = 1$.

5. a)
$$3^{x^2+y} dy + x dx = 0$$
, b) $x \cos(y/x)(y dx + x dy) = x^2 \cdot \sin(y/x) dx$, c) $y' - 2xy = 1 - x^2$.

6. a)
$$(1+y^2)dx - \sqrt{x}dy = 0$$
, b) $(x+2y)dx + xdy = 0$, c) $y' + y\cos x = \cos x$.

7. a)
$$y' = (2y+1) \operatorname{tg} x$$
, b) $x dy - y dx = y dy$, c) $y' + \frac{3}{x} y = x^3 + x$.

8. a)
$$y' \sin x = y \cos x + 2 \cos x$$
, b) $(2x - y) dx + (x + y) dy = 0$, c) $(1 - x^2) y' + xy = 1$.

9. a)
$$\ln \cos(y) dx + x \operatorname{tg} y dy = 0$$
, b) $y - xy' = x + yy'$, c) $y' - y = x^2 e^x$.

10. a)
$$1 + (1 + y')e^y = 0$$
, b) $(x^2 - 2y^2)dx + 2xydy = 0$, c) $y' - 2y/x = x^3 + 1$.

11. a)
$$(x^2y^3 + 5x^2)dx + (y^2x^3 + 5y^2)dy = 0$$
, b) $(x^2 - y^2)dx + 2xydy = 0$ c) $y' - y / x = x \cos x$.

12. a)
$$e^{2x+y} dy = x dx$$
, b) $(x^2 + y^2) dx + xy dy = 0$, c) $y' + \frac{4x}{x^2 + 1} y = \frac{1}{x^2 + 1}$.

13. a)
$$y' = \operatorname{tg} x \operatorname{tg} y$$
, b) $ydy + (x - 2y)dx = 0$, c) $y' + x^2y = x^2$.

14. a)
$$\sin x \operatorname{tg} y = y' / \sin x$$
, b) $xy' \ln (y/x) = x + y \ln (y/x)$, c) $y' + y = e^{-x} \cos x$.

15. a)
$$3e^x \operatorname{tg} y dx = (1 - e^x) \sec^2 y dy$$
, b) $(x^2 - xy) dy + y^2 dx = 0$, c) $x^2 y' + 3xy = 2$.

16. a)
$$(x^2 - x^2 y)y' + y^2 + xy^2 = 0$$
, b) $\left(x - y\cos\left(\frac{y}{x}\right)\right)dx + x\cos\left(\frac{y}{x}\right)dy = 0$, c) $y' - \frac{1}{x}y = x\sin x$.

17. a)
$$(1+e^x)ydy-e^xdx=0$$
, b) $xdy+ydx+y^2(xdy-ydx)=0$, c) $y'+2y/x=x^3+2x$.

18. a)
$$y' = e^{2x} \frac{1}{\ln y}$$
, b) $(x - y)ydx - x^2dy = 0$, c) $y' + \frac{1}{x}y = \frac{1}{x}\cos x$.

19. a)
$$5^{y^2-x^2} = yy'/x$$
, b) $(x+y)dx + (y-x)dy = 0$, c) $(1-x^2)y' + xy = 1$.

20. a)
$$x + xy + y'(y + xy) = 0$$
, b) $(x + y)dx + (y - x)dy = 0$, c) $xy' + y = \sin x$.

21. a) tg
$$ydx - x \ln xdy = 0$$
, b) $y' = e^{y/x} + y/x + 1$, c) $y' + y = xe^{-x}$.

22. a)
$$e^x \sin y dx + \operatorname{tg} y dy = 0$$
, b) $(y^2 - 3x^2) dy + 2xy dx = 0$, c) $xy' - 2y + x^2 = 0$.

23. a)
$$y' \cos x \ln y = y$$
, b) $xy + y^2 = (2x^2 + xy)y'$, c) $y' + y = x \cdot e^{-x}$.

24. a)
$$\sqrt{1-x^2} dy + \sqrt{1-y^2} dx = 0$$
, b) $xy' = y \ln\left(\frac{y}{x}\right)$, c) $xy' - 3y = x^2$.

25. a)
$$y = y' \ln y$$
, b) $(y^2 - xy)dx + (x^2 - 2xy)dy = 0$, c) $x^2y' = 2xy + 3$.

26. a)
$$(e^{3x} + 1)dy + ye^{3x}dx = 0$$
, b) $(2x - y)dx + (x + y)dy = 0$, c) $xy' - 2y = x^3 + x$.

27. a)
$$6xdx - 2ydy = 2yx^2dy - 3xy^2dx$$
, b) $(2x + y)dy - (x + 2y)dx = 0$, c) $(1 + x)y' - y = (1 + x)^2$.

28. a)
$$(e^x + 2)y' = e^x y$$
, b) $(x + y)dx - xdy = 0$, c) $y' + y \operatorname{tg} x = \cos x$.

29. a)
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
, b) $2xydx + (x^2 - y^2)dy = 0$, c) $y' - \frac{5x^4}{1+x^5}y = 1+x^5$.

30. a)
$$\sqrt{4+y^2}dx - (y+x^2y)dy = 0$$
, b) $(4xy+x^2)dy - 2y^2dx = 0$, c) $(1+x^4)y' + 4x^3y = 1$.

31. a)
$$xy' = y - xy$$
, b) $y^2 dx = (2xy + x^2) dy$, c) $y' - 2xy = xe^{x^2}$.

32. a)
$$y' \sin x = y \ln y$$
, b) $xy' = y \left(1 - \ln \left(\frac{y}{x} \right) \right)$, c) $y' + yctgx = \frac{1}{\sin x}$.

33. a)
$$yy' \frac{1}{x} + e^{-y} = 0$$
 b) $y' = \frac{2x + y}{2x - y}$, c) $(x^2 + 1)y' - xy = x^3 + x$.

34. a)
$$y' = 2^{x-3y}$$
, b) $xy' = xe^{-y/x} + y$, c) $y' - y = e^x \sqrt{y}$.

35. a)
$$3^{-x^2+y} dy + x dx = 0$$
, b) $(x^2 + \sin y) dx + (2 + x \cos y) dy = 0$, c) $y' - 2xy = 1 + x^2$.

36. a)
$$(1-y^2)dx - \sqrt{x}dy = 0$$
, b) $(x-2y)dx - xdy = 0$, c) $y' - y\sin x = e^{-\cos x}\sin 2x$.

37. a)
$$y' = (3y-2)ctgx$$
, b) $xdy - ydx = 2ydy$, c) $y' + \frac{2}{x}y = x^2 - x$.

38. a)
$$y' \sin^2 x = y \cos x - 3 \cos x$$
, b) $(2x + y) dx + (x - y) dy = 0$, c) $(1 + x^2) y' + xy = 1$.

39. a)
$$\ln \cos y dx - x \operatorname{tg} y dy = 0$$
, b) $y + xy' = x - yy'$, c) $y' + y = x^2 e^{-x}$.

40. a)
$$1 + (1 + y')e^{-2y} = 0$$
, b) $(x^2 + 2y^2)dx - 2xydy = 0$, c) $y' - 3y/x = x^2 + 1$.

41. a)
$$(x^2y^3 - 5x^2)dx + (y^2x^3 + 8y^2)dy = 0$$
, b) $(2x^2 - y^2)dx - 2xydy = 0$, c) $y' - 2y/x = x^2 \cos x$.

42. a)
$$e^{-2x+3y} dy = x dx$$
, b) $\left(x^2 - 2xy\right) dx + xy dy = 0$, c) $y' + \frac{2x}{x^2 + 1} y = \frac{x}{x^2 + 1}$.

43. a)
$$y' = ctgx tg y$$
, b) $ydy + (3x + 2y)dx = 0$, c) $y' + xy = x^2$.

44. a)
$$\cos x \cdot \operatorname{tg} y = y' / \cos x$$
, b) $xyy' = 2x^2 + y^2$, c) $y' + y = e^{-x} \sin 2x$.

45. a)
$$3e^{-x}ctgydx = (1-e^{-x})\cos ec^2ydy$$
, b) $(y^2-xy)dy+x^2dx=0$, c) $x^2y'-3xy=\frac{2}{x}$.

46. a)
$$(x^2 + x^2 y) y' + y^2 - xy^2 = 0$$
, b) $\left(x - y \cdot \sin\left(\frac{y}{x}\right)\right) dx + x \cdot \sin\left(\frac{y}{x}\right) dy = 0$, c)

$$y' - \frac{1}{x}y = x^2 \sin x.$$

47. a)
$$(1+e^{2x})ydy - e^{2x}dx = 0$$
, b) $xdy - ydx + y^2(xdy + ydx) = 0$, c) $y' + 2y/x = x^2 - 3x$.

48. a)
$$y' = e^{-2x} \cdot \frac{1}{\ln y}$$
, b) $(x+y)ydx - x^2dy = 0$, c) $y' + \frac{2}{x}y = \frac{1}{x^2}\sin x$.

49. a)
$$3^{y^2+x^2} = yy'/x$$
, b) $(x-y)dx + (y+x)dy = 0$, c) $(1+x^2)y' + 2xy = 1$.

50. a)
$$x - xy + y'(y - xy) = 0$$
, b) $(2x + y)dx + (y - 2x)dy = 0$, c) $xy' + y = \cos x$.

Să se afle soluțiile sau integralele generale ale următoarelor ecuațiilor diferențiale rezolvabile în cuadraturi:

a)
$$(xy^2 + x)ydx + (y - x^2y)dy = 0$$
, b) $y' = \frac{y - x}{x + y}$, c) $y' + y = \frac{e^{-x}}{1 - x}$, $y(0) = \ln 5$.

<u>Rezolvare:</u> a) Transformăm ecuația dată: $y(1-x^2)dy = -x(y^2+1)dx$.

Această ecuație este cu variabile separabile. Separăm variabilele: $\frac{y}{y^2+1}dy = -\frac{x}{1-x^2}dx$.

Integrăm ambele părți ale ultimei ecuații:

$$\int \frac{y}{y^2 + 1} dy = -\int \frac{x}{1 - x^2} dx, \quad \frac{1}{2} \ln |y^2 + 1| = \frac{1}{2} \ln |x^2 - 1| + \frac{1}{2} \ln |C|, \quad y^2 + 1 = C(x^2 - 1),$$

$$y^2 = C(x^2 - 1) - 1.$$

Deci soluția generală a ecuației inițiale este $y = \pm \sqrt{C(x^2 - 1) - 1}$.

b) Această ecuație este o ecuație omogenă de gradul întâi. Vom rezolva cu ajutorul substituției y = xu(x). În continuare găsim:

$$y' = u'x + u$$
, $u'x + u = \frac{ux - x}{x + ux}$, $u'x + u = \frac{u - 1}{1 + u}$, $u'x = \frac{u - 1}{1 + u} - u$, $x\frac{du}{dx} = -\frac{u^2 + 1}{1 + u}$.

S-a obținut o ecuație cu variabile separabile. O rezolvam

$$\frac{u+1}{u^2+1}du = -\frac{dx}{x}, \qquad \int \frac{u+1}{u^2+1}du = -\int \frac{dx}{x}, \qquad \frac{1}{2}\int \frac{2u}{u^2+1}du + \int \frac{du}{u^2+1} = -\ln|x| + \ln|C|,$$

$$\frac{1}{2}\ln|u^2+1| + \arctan u = \ln\left|\frac{C}{x}\right|, \quad \arctan u = \ln\left|\frac{C}{x\sqrt{u^2+1}}\right|, \quad \arctan u = \frac{|C|}{x\sqrt{u^2+1}}.$$

c) Această ecuație este o ecuație liniară de gradul întâi. Vom rezolva cu ajutorul substituției y = u(x)v(x). Avem:

$$y' = u'v + uv'$$
, $u'v + uv' + uv = \frac{e^{-x}}{1-x}$, $u'v + u(v'+v) = \frac{e^{-x}}{1-x}$. (1)

Găsim funcția v(x) din condiția v'+v=0:

$$\frac{dv}{dx} = -v$$
, $\frac{dv}{v} = -dx$, $\int \frac{dv}{v} = -\int dx$, $\ln |v| = -x$, $v = e^{-x}$.

Înlocuim expresia obținută pentru v(x) în ecuația (1):

$$u'e^{-x} = \frac{e^{-x}}{1-x}, \frac{du}{dx} = \frac{1}{1-x}, du = \frac{dx}{1-x}, \int du = \int \frac{dx}{1-x}, u = -\ln|1-x| + \ln|C|, u = \ln\left|\frac{C}{1-x}\right|.$$

Atunci
$$y = e^{-x} \ln \left| \frac{C}{1-x} \right|$$

reprezintă soluția generală a ecuației inițiale. Găsim C folosind condiția inițială: $y(0) = \ln C = \ln 5, C = 5.$

Deci soluția particulară a ecuației inițiale este $y = e^{-x} \ln \frac{5}{|1-x|}$.

Problema 2. Să se integreze următoarea ecuație.

$$1.(1-x^2)y'' - xy = 2. \quad 2. \quad 2xy'y'' = y'^2 - 1. \quad 3. \quad x^3y'' + x^2y' = 1. \quad 4. \quad y'' + y'tgx = \sin 2x.$$

5.
$$y''x \ln x = y'$$
. **6.** $xy'' - y' = x^2 e^x$. **7.** $y''x \ln x = 2y'$. **8.** $x^2 y'' + xy' = 1$.

9.
$$y'' = -x/y$$
. 10. $xy'' = y'$. 11. $y'' = y' + x$. 12. $xy'' = y' + x^2$. 13. $xy'' = y' \ln(y'/x)$. 14. $xy'' + y' = \ln x$. 15. $y''tgx = y' + 1$. 16. $y'' + 2xy'^2 = 0$.

13.
$$xy'' = y' \ln(y'/x)$$
. **14.** $xy'' + y' = \ln x$. **15.** $y''tgx = y' + 1$. **16.** $y'' + 2xy'^2 = 0$.

17.
$$2xy'y'' = y'^2 + 1$$
. **18.** $y'' + 4y' = 2x^2$. **19.** $y'' - 2y'ctgx = \sin^3 x$. **20.** $x^2y'' = y'^2$.

21.
$$xy'' - y' = 2x^2e^x$$
. **22.** $y'' + 4y' = \cos 2x$. **23.** $y'' + y' = \sin x$. **24.** $y'' - \frac{y'}{x-1} = x(x-1)$.

25.
$$2xy''y' = y'^2 - 4$$
. **26.** $y'''x \ln x = y''$. **27.** $y''ctgx + y' = 2$. **28.** $(1+x^2)y'' = 2xy$.

29.
$$y'' = y'e^y$$
. **30.** $y'^2 + 2yy'' = 0$. **31.** $y''tgy = 2y'^2$. **32.** $yy'' - y'^2 = y^4$.

33.
$$y'' = -1/(2y^3)$$
. **34.** $yy'' + y'^2 = 0$. **35.** $y'' = 1 - y'^2$. **36.** $y'' = 2 - y$.

37.
$$y'' = 1/y^3$$
. **38.** $yy'' - 2y'^2 = 0$. **39.** $y'' = y' + y'^2$. **40.** $y''(1+y) = 5y'^2$.

41.
$$1 + y'^2 = yy'$$
. **42.** $4y''^2 = 1 + y'^2$. **43.** $y''(2y+3) - 2y'^2 = 0$. **44.** $2y'^2 = (y-1)y''$.

45.
$$yy'' - y'^2 = y^2 \ln y$$
. **46.** $y^3 y' y'' + 1 = 0$ **47.** $2y'^2 = (y-1)y''$. **48.** $xy'' = y' + x^2$.

49.
$$x(y''+1)+y'=0$$
. **50.** $y''ctgx+y'=2$.

Să se integreze următoarea ecuație (x-3)y'' + y' = 0.

<u>Rezolvare:</u> După substituția y' = p, $y'' = \frac{dp}{dx}$, ecuația data se transformă într-o ecuație de

ordinul I: $(x-3)\frac{dp}{dx} + p = 0$. Separând variabilele și integrand, avem:

$$\frac{dp}{p} + \frac{dx}{x-3} = 0; \ln|p| + \ln|x-3| = \ln|C|, C \neq 0; |p(x-3)| = |C|; p(x-3) = \pm C = C_1, C_1 \in \mathbb{R}.$$

Înlocuind p prin $\frac{dy}{dx}$, obținem $(x-3)\frac{dy}{dx} = C_1$ și după integrarea ei găsim:

$$dy = \frac{C_1 dx}{x-3}$$
; $y = C_1 \ln |x-3| + C_2$.

<u>Problema 3</u>. Să se afle sistemul fundamental de soluții și soluția generală ale următoarelor ecuații diferențiale liniare omogene cu coeficienți constanți.

1. a)
$$y'' + 2y' - 3y = 0$$
, b) $y'' + 9y' = 0$, c) $4y'' + 4y' + y = 0$.

2. a)
$$y'' + 2y' + y = 0$$
, b) $y'' - 4y = 0$, c) $y'' + 18y' = 0$.

3. a)
$$y'' + 8y' + 16y = 0$$
, b) $y'' + 25y' = 0$, c) $y'' + 16y = 0$.

4. a)
$$y'' - 4y' + 8y = 0$$
, b) $y'' - y = 0$, c) $y'' + 16y' + 64y = 0$.

5. a)
$$y'' - 5y' + 6y = 0$$
, b) $y'' + 2y = 0$, c) $4y'' + 12y' + 9y = 0$.

6. a)
$$y'' + 4y' + 5y = 0$$
, b) $y'' + y' = 0$, c) $y'' + 20y' + 100y = 0$.

7. a)
$$y'' + 10y' + 25y = 0$$
, b) $y'' - 3y' = 0$, c) $y'' + 9y = 0$.

8. a)
$$y'' - 9y' = 0$$
, b) $y'' + 12y' + 37y = 0$, c) $y'' + 2y' + y = 0$.

9. a)
$$y'' - y' - 6y = 0$$
, b) $y'' + 16y = 0$, c) $y'' - 14y' + 49y = 0$.

10. a)
$$y'' + 10y = 0$$
, b) $y'' + 8y' + 25y = 0$, c) $y'' + 12y' + 36y = 0$.

11. a)
$$y'' - 3y' - 4y = 0$$
, b) $y'' + 7y = 0$, c) $y'' - 16y' + 64y = 0$.

12. a)
$$y'' - 8y' + 17y = 0$$
, b) $y'' - 4y' = 0$, c) $y'' + 10y' + 25y = 0$.

13. a)
$$y'' - 25y' = 0$$
, b) $y'' + 6y' + 25y = 0$, c) $y'' + 8y' + 16y = 0$.

14. a)
$$y'' - 16y' + 64y = 0$$
, b) $y'' + 3y' = 0$, c) $y'' + 4y = 0$.

15. a)
$$y'' + 4y' + 13y = 0$$
, b) $y'' - 7y = 0$, c) $4y'' - 4y' + y = 0$.

16. a)
$$y'' + 12y' + 36y = 0$$
, b) $y'' + 5y' = 0$, c) $y'' - 4y' + 8y = 0$.

17. a)
$$y'' - 14y' + 49y = 0$$
, b) $y'' - 16y = 0$, c) $y'' + 12y = 0$.

18. a)
$$y'' + 4y = 0$$
, b) $y'' - 10y' + 16y = 0$, c) $y'' - 16y' + 64y = 0$.

19. a)
$$y'' + 8y' + 12y = 0$$
, b) $y'' + 7y = 0$, c) $4y'' - 12y' + 9y = 0$.

20. a)
$$y'' - 6y' + 8y = 0$$
, b) $y'' - y' = 0$, c) $y'' - 20y' + 100y = 0$.

21. a)
$$y'' - y' - y = 0$$
, b) $y'' + y = 0$, c) $y'' - 2y' + y = 0$.

22. a)
$$y'' - 4y' + 5y = 0$$
, b) $y'' - 25y' = 0$, c) $y'' + 14y' + 49y = 0$.

23. a)
$$y'' - 4y' + 13y = 0$$
, b)) $y'' - y'/4 = 0$, c) $y'' + 12y' + 36y = 0$.

24. a)
$$y'' + 2y' + y = 0$$
, b) $y'' - 100y = 0$, c) $y'' - 8y' + 17y = 0$.

25. a)
$$y'' + 16y = 0$$
, b) $y'' - 4y' + 13y = 0$, c) $y'' - 10y' + 25y = 0$.

26. a)
$$y'' + 20y' + 100y = 0$$
, b) $y'' + y = 0$, c) $y'' - y' - 6y = 0$.

27. a)
$$y'' + 3y' + 9y/4 = 0$$
, b) $y'' + 18y' = 0$, c) $y'' - 4y' + 13y = 0$.

28. a)
$$y'' + 2y' + y = 0$$
, b) $y'' - 2y' + 5y = 0$, c) $y'' - 25y' = 0$.

29. a)
$$y'' + 7y = 0$$
, b) $y'' + 16y' + 64y = 0$, c) $y'' + 8y' + 12y = 0$.

30. a)
$$y'' + y' + y/4 = 0$$
, b) $y'' + 9y = 0$, c) $y'' + 8y' + 25y = 0$.

31. a)
$$y'' + 3y' - 4y = 0$$
, b) $y'' + 8y' = 0$, c) $9y'' - 6y' + y = 0$.

32. a)
$$y'' - 2y' + y = 0$$
, b) $y'' - 9y = 0$, c) $y'' + 12y' = 0$.

33. a)
$$y'' - 8y' + 16y = 0$$
, b) $y'' - 25y' = 0$, c) $y'' + 49y = 0$.

34. a)
$$25y'' - 10y' + y = 0$$
, b) $y'' - 7y = 0$, c) $y'' + 6y' + 18y = 0$.

35. a)
$$y'' - 8y' + 7y = 0$$
, b) $y'' + 5y = 0$, c) $4y'' - 12y' + 9y = 0$.

36. a)
$$y'' + 5y' + 4y = 0$$
, b) $3y'' + y' = 0$, c) $y'' - 20y' + 100y = 0$.

37. a)
$$y'' + 24y' + 144y = 0$$
, b) $2y'' + 3y' = 0$, c) $y'' + 36y = 0$.

38. a)
$$y'' - 14y' = 0$$
, b) $y'' - 12y' + 37y = 0$, c) $3y'' + 2\sqrt{3}y' + y = 0$.

39. a)
$$y'' - y' - 12y = 0$$
, b) $9y'' + 16y = 0$, c) $y'' + 14y' + 49y = 0$.

40. a)
$$2y'' + 10y = 0$$
, b) $y'' - 8y' + 25y = 0$, c) $y'' - 12y' + 36y = 0$.

41. a)
$$y'' - 5y' - 6y = 0$$
, b) $y'' + 2y = 0$, c) $y'' + 22y' + 121y = 0$.

42. a)
$$y'' + 8y' + 17y = 0$$
, b) $3y'' + 4y' = 0$, c) $49y'' + 14y' + y = 0$.

43. a)
$$y'' + 15y' = 0$$
, b) $y'' - 8y' + 25y = 0$, c) $2y'' + 2\sqrt{2}y' + y = 0$.

44. a)
$$y'' + 16y' + 64y = 0$$
, b) $5y'' + 3y' = 0$, c) $y'' + 4y' + 5y = 0$.

45. a)
$$y'' - 4y' + 13y = 0$$
, b) $y'' + 7y = 0$, c) $5y'' - 2\sqrt{5}y' + y = 0$.

46. a)
$$y'' - 12y' + 36y = 0$$
, b) $2y'' - 5y' = 0$, c) $y'' + 4y' + 8y = 0$.

47. a)
$$7y'' - 2\sqrt{7}y' + y = 0$$
, b) $y'' + 16y = 0$, c) $y'' + 7y' - 8y = 0$.

48. a)
$$y'' + 20y = 0$$
, b) $y'' - 10y' - 11y = 0$, c) $8y'' - 4\sqrt{2}y' + y = 0$.

49. a)
$$y'' - 8y' + 12y = 0$$
, b) $y'' + 18y = 0$, c) $16y'' - 40y' + 25y = 0$.

50. a)
$$y'' + 6y' + 8y = 0$$
, b) $7y'' - 2y' = 0$, c) $y'' + 20y' + 100y = 0$.

Să se afle sistemul fundamental de soluții și soluția generală ale următoarelor ecuații diferentiale liniare omogene cu coeficienti constanti.

a)
$$4y'' - 11y' + 6y = 0$$
, b) $4y'' + 4y' + y = 0$, c) $y'' - 2y' + 37y = 0$.

Rezolvare: a) Scriem ecuația caracteristică și o rezolvam.

 $4\lambda^2-11\lambda+6=0$, rădăcinile $\lambda_1=3$ /4, $\lambda_2=2$ - reale, distincte, deci soluția generală a ecuației

este
$$y = C_1 e^{-\frac{3}{4}x} + C_2 e^{2x}$$
;

b) Scriem ecuația caracteristică și o rezolvam.

$$4\lambda^2 + 4\lambda + 1 = 0$$
, rădăcinile $\lambda_1 = \lambda_2 = -2$ - reale, ce coincid, deci soluția generală a ecuației este $y = C_1 e^{-2x} + C_2 x e^{-2x}$;

c) Scriem ecuația caracteristică și o rezolvam.

$$\lambda^2 - 2\lambda + 37 = 0$$
, rădăcinile $\lambda_{1,2} = 1 \pm 6i$ - complexe, conjugate, deci soluția generală a ecuației este $y = e^x (C_1 \cos 6x + C_2 \sin 6x)$.

Problema 4. Să se integreze ecuația liniară neomogenă cu coeficienți constanți.

1.
$$y'' + y' = 2x - 1$$
.

2.
$$y'' - 12y' + 36y = 14e^{6x}$$
.

3.
$$y'' - 3y' + 2y = (34 - 12x)e^{-x}$$
. **4.** $y'' - 6y' + 10y = 51e^{-x}$.

6. **4.**
$$y'' - 6y' + 10y = 51e^{-x}$$
.

$$5. y'' + 6y' + 10y = 74$$

5.
$$y'' + 6y' + 10y = 74e^{3x}$$
. **6.** $y'' + 6y' + 9y = (48x + 8)e^{x}$.

7.
$$y'' + 5y' = 72e^{2x}$$
.

8.
$$y'' + 8y' + 25y = 18e^{5x}$$
.

9.
$$y'' - 9y' + 20y = 126e^{-2}$$

9.
$$y'' - 9y' + 20y = 126e^{-2x}$$
. **10.** $y'' - 9y' + 20y = 36 + 66x - 36x^3$.

11.
$$y'' + 6y' + 13y = -7x$$
.

12.
$$y'' - 4y' + 29y = 10x + 1$$
.

13.
$$y'' + 9y = 9x^4 + 12x^2 - 27$$
. **14.** $y'' - 12y' + 40y = 2e^{6x}$.

14.
$$y'' - 12y' + 40y = 2e^{6x}$$
.

15.
$$y'' + 2y' + y = 6e^{-x}$$
.

16.
$$y'' + 2y' + 37y = 37x^2 - 33x + 74$$
.

17.
$$6y'' - y' - y = 3e^{2x}$$
.

18.
$$2y'' + 7y' + 3y = 2x^2 + 1$$
.

19.
$$y'' - 8y' + 17y = 10e^{2x}$$
.

20.
$$y'' + y' - 6y = (6x + 1)e^{3x}$$
.

21.
$$y'' - 7y' + 12y = 3e^{4x}$$
.

22.
$$y'' - 2y' = 6 + 12x - 24x^2$$
.

23.
$$y'' - 2y' = (4x + 4)e^{2x}$$
.

24.
$$y'' - 4y' = 8 - 16x$$
.

25.
$$y'' - 2y' + y = 4e^x$$
.

26.
$$y'' + 4y' + 4y = 6e^{-2x}$$
.

27.
$$y'' + 3y' = 10 - 6x$$
.

28.
$$y'' + 4y' + 5y = 5x^2 - 32x + 5$$
.

29.
$$y'' + 16y = 80e^{2x}$$
.

30.
$$y'' + 6y' + 9y = 72e^{3x}$$
.

31.
$$y'' - y' = x^2 - 4x + 1$$
.

32.
$$y'' + 12y' + 36y = 3e^{-6x}$$
.

33.
$$y + 3y + 2y = (3-x)e$$
.

33.
$$y'' + 3y' + 2y = (3-x)e^{-x}$$
. **34.** $y'' - 6y' + 10y = 51e^{-x}$.

37.
$$y'' - 2y' = 7e^{-2x}$$
.

35.
$$y'' + 6y' + 10y = (3x+5)e^{2x}$$
. **36.** $y'' + 6y' + 9y = (48x+8)e^{x}$.

39.
$$y'' - 9y' + 20y = (2 - 2x)e^{-x}$$
. **40.** $y'' - 4y' + 3y = 1 + 6x - 3x^3$.

38.
$$y'' - 8y' + 25y = 8e^{-3x}$$
.

41.
$$y'' + 6y' + 13y = 7\cos 2x$$
. **42.** $y'' - 4y' + 29y = (10x + 1)e^{3x}$.

43.
$$y'' + 4y = x^3 - 15x^2 + 4x - 27$$
. **44.** $y'' + 12y' + 40y = 3e^{-5x}$.

44.
$$y'' + 12y' + 40y = 3e^{-3x}$$
.

45.
$$y'' - 2y' + y = (2 - 5x)e^x$$
. **46.** $y'' - 2y' + 37y = 7x^2 - 13x$.

47. 6y + y - y =
$$3e^{x}$$
.

47.
$$6y'' + y' - y = 5e^{4x}$$
. **48.** $2y'' - 7y' + 3y = -x^2 + 3x + 7$.

49.
$$y'' + 8y' + 17y = (2 - 10x)e^{-2x}$$
. **50.** $y'' - y' - 6y = (2x - 3)e^{3x}$.

7. **50.**
$$y'' - y' - 6y = (2x - 3)e^{3x}$$
.

Exemplu model

Să se integreze ecuația liniară neomogenă cu coeficienți constanți $y'' - 3y' - 4y = 6xe^{-x}$.

Rezolvare: Ecuația caracteristică $\lambda^2 - 3\lambda - 4 = 0$ are rădăcinile $\lambda_1 = 4$, $\lambda_2 = -1$. Deci soluția generală a ecuației omogene este $\overline{y} = C_1 e^{4x} + C_2 e^{-x}$.

După funcția $f(x) = 6xe^{-x}$ din partea dreaptă a ecuației, găsim soluția particulară neomogenă sub forma $y^* = (Ax + B)xe^{-x} = (Ax^2 + Bx)e^{-x}$. Pentru aflarea coeficienților A și B, aflăm:

$$y^{*'} = (2Ax + B)e^{-x} - (Ax^2 + Bx)e^{-x} = (-Ax^2 + 2Ax - Bx + B)e^{-x},$$

$$y^{*"} = (-2Ax + 2A - B)e^{-x} - (-Ax^2 + 2Ax - Bx + B)e^{-x} = (Ax^2 - 4Ax + Bx + 2A - 2B)e^{-x}$$

Înlocuim expresiile obținute $y^{*'}$ și $y^{*''}$ în ecuația inițială și împărțind ambele părți la e^{-x} , obtinem:

$$Ax^{2}-4Ax+Bx+2A-2B-3(-Ax^{2}+2Ax-Bx+B)-4(Ax^{2}+Bx)=6x$$

Obţinem sistemul:
$$\begin{cases} -10A = 6 \\ 2A - 5B = 0 \end{cases} \Leftrightarrow \begin{cases} A = -\frac{3}{5} \\ B = -\frac{6}{25} \end{cases}.$$

Deci
$$y^* = \left(-\frac{3}{5}x^2 - \frac{6}{25}x\right)e^{-x}$$
 și soluția generală neomogenă este

$$y = C_1 e^{4x} + C_2 e^{-x} + \left(-\frac{3}{5}x^2 - \frac{6}{25}x\right)e^{-x}.$$