Table des matières

Fone	ctions	2
1	Fonctions	2
2	Opérations sur les fonctions	4
3	Image (direct) d'une fonction composé (composition)	5
4	Image réciproque	5
5	Application, surjectives, injectives, bijectives	6
6	Fonction réciproque	7
	1 2 3 4 5	Opérations sur les fonctions

Ι

Fonctions

Ensembles de nombres : Réels \mathbb{R} , Rationnels $\mathbb{Q} = \frac{a}{b}$ avec a et b entiers naturels \mathbb{N} , entiers $\mathbb{Z} = \{-3, -2, ..., 1\}$, nombres complexes \mathbb{C} .

Intervalle: [a, b] avec a, b réels compris dans l'intervale, dit fermé, a < b,]a, b[avec a, b non compris dans l'intervale dit ouvert \rightarrow Intervalle bornés $\mathbb{R} =]-\infty; +\infty[\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[\mathbb{R}^+ = [0; +\infty[\mathbb{R}^- =]-\infty; 0]$

1 Fonctions

Exemple: sinus: sin: \mathbb{R} (domaine de definitions, sources, ensemble de depart) $\to \mathbb{R}$ ou[-1,1] (domaine de valeurs, image, but, ensemble d'arrivee)

Définitions Soit E, F 2 ensemble de R. Une fonction f est procédé pour associer à tout élément de R un unique élément de F Le graph de F "vit" dans $\mathbb{R}^2 = \mathbb{R} * \mathbb{R}$

Définitions : Soit E et F 2 ensembles, on définit leur <u>produit cartesien</u> : comme l'ensemble dont les éléments sont les couples (x, y) avec x "vit" dans E et y dans F. $\text{ExF} = \{(x, y), x \in E, y \in F\}$

2

Définitions : Le graphe de f : $E \to F$ est un sous ensemble de E*F donné par $= \{(x,y), x \in E, y = (x)\}$ $= \{x : \to f(x) = y\}$

Exemples cosinus : $\cos : \mathbb{R} \to [-1, 1]$

tangeante tan : $\mathbb{R} \setminus \{\pi/2 + k * \pi, k \text{ appartient a Z}\} \rightarrow]-\infty, +\infty[$

1. FONCTIONS

I. FONCTIONS

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\mathbb{R} \to \mathbb{R}x \to x^n, n \in \mathbb{N}$$

$$n = 0 : x \to 1$$

$$n = 1 : x \to x$$

$$n = 2 : x \to x^2$$

$$n = 3 : x \to x^3$$

n ¿0 et n pair.

Remarque : les fonctions sont plus étroites. Schéma typique pour

Définitions Soit $f: E \to R$ une fonction, avec E symétrique par rapport à 0.

- f est dite <u>paire</u> si : $\forall x \in E, f(-x) = f(x)$
- f est <u>impaire</u> si : $\forall x \in E, f(x) = -f(-x)$ Remarque : si f est impaire $\rightarrow f(0) = 0$. En effet,

$$f(-0) = f(0) \tag{I.1}$$

$$f(0) = -f(0)$$
 (I.2)

$$2 * f(0) = 0 (I.3)$$

Exemple : fonctions paire : cosinus, x^{2p} avec p appartient à N impaires sinus, tangeante, x^{2p+1} avec p appartient à N

monotonie Soit $f: E \to \mathbb{R}$

- f est croissante si a < b, alors $f(a) \le f(b)$ avec $a, b \in \mathbb{R}$
- f est strictement croissante si a < b, alors f(a) < f(b) avec $a, b \in \mathbb{R}$
- f est decroissant si $\forall \{a, b\} \in \mathbb{R}$ avec a < b, alors $f(a) \ge f(b)$
- f est decroissant si $\forall \{a, b\} \in \mathbb{R}$ avec a < b, alors f(a) > f(b)

décroissante sur] $-\infty$, 0[et]0, $+\infty[$ mais pas sur] $-\infty$, $0[\cup]0$, $+\infty[$ par exemple, $-1 \le 1et\frac{1}{-1} \le \frac{1}{1}$

Définition Soit $f: E \to F$ et A un sous ensemble de E. On appelle <u>restriction</u> de f a A, note $f_{|A}$. La fonction $f_{|A}: A \to F$ definie par $f_A(x) = f(x) \forall x \in A$ Soit $\overline{f: E \to F}$ et E', F' des sous ensembles de R, avec $E \subset E', F \subset F'$.La fonction $g: E' \to F'$ est un <u>prolongement</u> de f si $g_{|E} = F(ie \forall x \in E, g(x) = f(x))$

Exemple logarithme népérien $ln:]0, +\infty[\to \mathbb{R}$ $x \to ln(x)$ ln(a) + ln(b) = ln(a*b) avec $\forall (a,b) \in (R^{*+})^2$

2 Opérations sur les fonctions

Soit $f, g: E \to \mathbb{R}$. On peut définir :

- La fonction somme f + g par $f + g : E \to \mathbb{R}x \to (f + g)(x) = f(x) + g(x)$
- La fonction produit f * g par $f * g : E \to \mathbb{R}x \to (f * g)(x) = f(x)\dot{g}(x)$

3 Image (direct) d'une fonction composé (composition)

Définitions : $f: E \to F$. L'image de f notée im(f) c'est l'ensemble $\{y \in F \text{ tel que il existe } x \in E \text{ tel que } f(x) = y\}$ aussi noté f(E)

Définition $f: E \to F$ et $g: E' \to F'$ Si l'image de $g \subset E$, on peut définir la fonction composé $fog: E' \to F$ $x \mapsto fog(x) = f(g(x))$

4 Image réciproque

Définition $f: E \to F$, et $B \subset F$

L'image réciproque de B par f est l'ensemble $f^{-1}(B) = \{x \in E \text{ tel que } f(x) \in B\}$ $f^{-1}([-1,1]) = [a,b]$

Exemple (de composition)

$$f:E \longrightarrow \mathbb{R}$$

$$x \longrightarrow \sqrt{x^2 - 4x + 3}$$

composé de fonction f = gou

$$u: \mathbb{R}$$
 $\rightarrow \mathbb{R}$ $x: \rightarrow x^2 - 4x + 3$

$$g: \mathbb{R}^2 \qquad \to \mathbb{R}$$

$$x \qquad \to \sqrt{x}$$

 $\Delta = 16 - 12 = 4$ racine de u : 1 et 3

u(x) > 0 si et seulement si $x \in]-\infty;1] \cup [3;+\infty[$ $E=x \in]-\infty;1] \cup [3;+\infty[$

$$h: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x^2)$$

Pour composer $v: \mathbb{R} \to \mathbb{R}^+$ $v: x \mapsto x^2$ ou doit enlever les points où v s'annule, c'est à dire $v^{-1}(\{0\}) = \{0\}$

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$

$$x \mapsto 2ln(x)$$

 $ln(x^2) = ln(x*x) = ln(x) + ln(x) = 2ln(x)$ mais ln(a*b) = ln(a) + ln(b) n'est valable que si a et b>0

5 Application, surjectives, injectives, bijectives

Définition $w: E \to F$ $(E, F \in \mathbb{R})$ On dit que w est surjective si w(E) = F De manière équivalente : $(y \in F \text{ tel que il existe } x \in E \text{ avec } w(x) = y) = F$ c'est à dire tout les éléments de F admette un antécédent. c'est à dire $\forall y \in F$, il existe un $x \in E$ tel que w(x) = y

Définition $w: E \to F$ $(E, F \subset R)$ On dit que w est injective si tout élément de F admet au plus un antécédent. c'est à dire que si x et x' des éléments de E qui sont différents, w(x) différent w(x')

Exemple $w(x) = x^2$ n'est pas injectifs car -2 et 2 ont la meme image (4). Exemple :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^3$$

Cette fonction est surjective car pour tout y de \mathbb{R} , il existe un $x \in \mathbb{R}$ tel que f(x) = y. On a aussi $\forall y \in \mathbb{R}$, cet antécédent est unique.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^2$$

Cette fonction n'est pas surjective (-1 par exemple n'a pas d'antécédent) et pas injective car y=4 par exemple possède 2 antécédents.

Remarque : Si on considère

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$x \longmapsto x^2$$

g est surjective (il y a toujours au minimum un antécédent) mais toujours pas injective Plus généralement, si on considère $f: E \to f(E)$ est toujours surjective.

 $sin: R \to [-1;1]$ elle est subjective mais pas injective : 0 est compris entre [-1;1] mais possède plusieurs antécédent $(k*\pi$ avec $k \in \mathbb{R})$

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$x \mapsto e^{2x}$$

Cette fonction n'est pas surjective (antécédent de 0 n'existe pas) mais est injective.

Definition $w: E \to F(E, R \subset \mathbb{R})$ w est dîtes bijective si elle est injective <u>et</u> surjective, c'est à dire tout élément de F admet exactement un antécédent.

6 Fonction réciproque

Si $f: E \to F$ est bijective, pour tout y de F, il existe un unique x dans E tel que f(x) = y On peut donc définir $g: F \to E$ par g(y) = x (tel que f(x) = y) g est la réciproque de f, notée f^{-1}

Exemple

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{*+}$$

$$x \longmapsto exp(x)$$

et g

$$g: \mathbb{R}*+ \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x)$$

Remarque si $g = f^{-1}$ avec $f : E \to F$ et $g : F \to E$ alors

$$\begin{array}{ccc} fog: F & & \rightarrow F \\ x & & \mapsto x \end{array}$$

et $f \circ g = g \circ f$

Démonstration Soit $y \in F$, quelconque, on veut calculer fog(y) Par définition de g comme fonction réciproque de f, g(y) = x tel que f(x) = y donc f(g(y)) = f(x) = y

Proposition $f: E \to F$ une fonction impaire, supposons que $f_{|E \cap \mathbb{R}^+}$ est croissante, Alors $f_{|E \cap \mathbb{R}^-}$ est croissante

Démonstration

$$f_{|E \cap \mathbb{R}^{-}} : E \cap \mathbb{R}^{-} \longrightarrow \mathbb{R}$$

$$x \mapsto f(x)$$

Soit x et x' dans $E \cap \mathbb{R}^-$ tels que $x \leq x'$.

$$f(x) = f(-x)$$
 car f impaire
 $f(x') = -f(-x)$

Comme $x, x' \in E \cap \mathbb{R}^-$, $-x, -x' \in E \cap \mathbb{R}^-$ Comme $x \leq x'$, $-x \geq -x'$ et donc $f(-x) \geq f(-x')$ car f est coissante sur $E \cap \mathbb{R}^+$ Conclusion, $-f(-x) \leq -f(-x')$ et donc $f(x) \leq f(x')$ et donc $f(x) \leq f(x')$. On a prouvé que $f_{|E \cap \mathbb{R}^-}$ est croissante.