Week 1: Data Structures Course Material

Authors: Refat Othman and Diaeddin Rimawi

Lecture 1: Recursion and Algorithm Analysis

Part 1: Revision on Recursion

What is Recursion?

- A function that calls itself (directly or indirectly).
- Useful for solving problems that can be broken into similar subproblems.

Key Characteristics:

- Has one or more base cases.
- Other cases must call the function recursively with reduced input.

Example 1: Recursive Multiplication Using Addition

This function simulates multiplication by using repeated addition. It multiplies two positive integers a and b by adding a to itself b times.

Mathematical representation:

- Base case: \$\text{multiply}(a, 1) = a\$
- Recursive case: wultiply(a, b) = a + multiply(a, b 1)

```
def multiply(a, b):
   if b == 1:
     return a
   return a + multiply(a, b - 1)
```

Example 2: Factorial

• Mathematical definition:

```
0! = 1n! = n * (n - 1)!
```

Recursive implementation:

```
def factorial(n):
   if n == 0 or n == 1:
     return 1
   return n * factorial(n - 1)
```

Iterative implementation:

```
def factorial_iterative(n):
    result = 1
    for i in range(2, n + 1):
        result *= i
    return result
```

Example 3: Fibonacci

This function computes the Fibonacci sequence, where each number is the sum of the two preceding ones. It is used to model natural phenomena like rabbit populations and tree branching.

Mathematical representation:

- Base cases: $\text{text{fib}}(0) = 1$, $\text{text{fib}}(1) = 1$
- Recursive case: \$\text{fib}(n) = \text{fib}(n 1) + \text{fib}(n 2)\$

Naive recursive implementation:

```
def fibonacci(n):
   if n == 0 or n == 1:
      return 1
   return fibonacci(n - 1) + fibonacci(n - 2)
```

Iterative implementation (efficient):

```
def fibonacci_iterative(n):
    t1, t2 = 0, 1
    for _ in range(n):
        print(t1, end=" ")
        t1, t2 = t2, t1 + t2
```

Part 2: Introduction to Algorithm Analysis

Why Analyze Algorithms?

- To compare efficiency independent of machine and compiler.
- Time and space complexity are two major metrics. Nowadays, memory is relatively abundant and inexpensive, so developers often prioritize optimizing time complexity (performance) over minimizing space usage.

Types of Analysis:

- Worst-case: guarantees upper bound
- **Best-case**: too optimistic
- Average-case: uses statistical assumptions

How to Analyze?

- Count the **basic operations** (e.g., comparisons, assignments).
- Express time as a function of input size n.

Basic Operation Counting Example:

```
sum = 0
for i in range(1, n + 1):
    sum += i
```

• Time complexity: O(n) since the loop runs n times

Loop Rules Summary:

Simple loop example (O(n))

```
import time

def simple_loop(n):
    start = time.time()
    total = 0
    for i in range(n):
        total += i
    end = time.time()
    print("Total:", total)
    print("Time taken:", end - start, "seconds")

simple_loop(1000000)
```

Triangular nested loop example (O(n^2), non-uniform inner loop)

This loop has the outer loop run n times and the inner loop runs i times for each i from i to n, so the total number of iterations is the sum of the first n integers: $\frac{1}{n}$

```
import time

def triangular_nested_loop(n):
    start = time.time()
    total = 0
    for i in range(1, n + 1):
        for j in range(1, i + 1):
        total += 1
```

```
end = time.time()
print("Total operations:", total)
print("Time taken:", end - start, "seconds")

triangular_nested_loop(10000)
```

Constant time summation (O(1))

This uses the formula $\frac{n(n+1)}{2}$ to compute the sum in constant time.

```
import time

def constant_time_sum(n):
    start = time.time()
    total = n * (n + 1) // 2
    end = time.time()
    print("Total:", total)
    print("Time taken:", end - start, "seconds")

constant_time_sum(1000000)
```

Nested loop example (O(n^2))

```
import time

def nested_loop(n):
    start = time.time()
    count = 0
    for i in range(n):
        for j in range(n):
            count += 1
    end = time.time()
    print("Count:", count)
    print("Time taken:", end - start, "seconds")

nested_loop(1000)
```

Consecutive statements example

```
import time

def consecutive_statements(n):
    start = time.time()
    total = 0
    for i in range(n):
        total += i # O(n)
    for j in range(n):
```

```
total += j # 0(n)
end = time.time()
print("Total:", total)
print("Time taken:", end - start, "seconds")

consecutive_statements(1000000)
```

Conditional example

```
import time

def conditional_example(n):
    start = time.time()
    total = 0
    for i in range(n):
        if i % 2 == 0:
            total += i * 2
        else:
            total += i + 1
    end = time.time()
    print("Total:", total)
    print("Time taken:", end - start, "seconds")

conditional_example(10000000)
```

Lecture 2: Asymptotic Analysis

Part 1: Motivation

- Measures algorithm growth rate for large input sizes.
- Ignores constants and lower-order terms.
- Allows developers to estimate performance before writing the actual code, aiding in design decisions.
- Helps in choosing the most suitable algorithm when working with large datasets or resourceconstrained environments.

Part 2: Big-O, Big-Omega, and Big-Theta

Big-O Notation (Upper Bound)

Definition:

```
f(n) is in O(g(n)) if there are positive constants c and n0 such that: 0 \leq f(n) \leq c \leq g(n)  all n \geq n_0
```

Example:

- f(n) = 5n + 6
- Prove O(n): choose c=6, n0=1 → valid

Big-Omega (Lower Bound)

f(n) is in $\Omega(g(n))$ if $f(n) \geq c \cdot g(n)$ for some c > 0, $n \geq n_0$

Big-Theta (Tight Bound)

f(n) is in $\hat{g}(n)$ if it is both G(g(n)) and G(g(n))

Common Orders of Growth

• $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

Part 3: Analyzing Examples

This section shows how to analyze the time complexity of algorithms by counting how many steps (basic operations) they execute as the input size n grows. For each example below, we provide a detailed explanation of how the time complexity is computed.

Example 1: Constant Time - O(1)

Accessing an element in an array is done in constant time regardless of the size of the input.

```
def get_first_element(arr):
    return arr[0] # Always takes one step
```

Explanation: This function executes a single operation (array access), independent of n. So, time complexity is O(1).

Example 2: Logarithmic Time - O(log n)

Binary search splits the problem in half each time, reducing the size logarithmically.

```
def binary_search(arr, left, right, target):
    if left > right:
        return -1
    mid = (left + right) // 2
    if arr[mid] == target:
        return mid
    elif arr[mid] > target:
        return binary_search(arr, left, mid - 1, target)
    else:
        return binary_search(arr, mid + 1, right, target)
```

Explanation: Each call halves the problem size. Let's say we start with an array of size n. After one step, the size becomes n/2, then n/4, then n/8, and so on. After k steps, the array size becomes n/2. We stop when this value equals 1. That gives us the equation $n/2^k = 1$, which simplifies to $2^k = n$. Taking logarithms on both sides gives $k = \log_2(n)$. Therefore, the number of steps required is proportional to log n, hence the time complexity is $O(\log n)$.

Example 3: Linear Time - O(n)

Linear search checks every item in the array until the target is found.

```
def linear_search(arr, x):
    for i in range(len(arr)):
        if arr[i] == x:
            return i
    return -1
```

Explanation: In the worst case, we iterate over the entire array of size n, performing one comparison per element. Time complexity is O(n).

Example 4: Linearithmic Time - O(n log n)

A common example of O(n log n) time complexity occurs when we iterate over a list and perform a logarithmic operation for each element.

```
import math

def linearithmic_example(arr):
    total = 0
    for x in arr:
        i = len(arr)
        while i > 1:
            i = i // 2
            total += 1
    return total
```

Explanation: The outer loop runs n times. The inner loop executes $log_2(n)$ times per iteration. Hence, total operations = $n * log n \rightarrow O(n log n)$.

Example 5: Quadratic Time - O(n²)

Nested loops over the same input size.

```
def count_pairs(arr):
    count = 0
    for i in range(len(arr)):
        for j in range(len(arr)):
```

```
count += 1
return count
```

Explanation: For each of the n iterations of the outer loop, the inner loop runs n times, leading to $n * n = n^2$ operations. Time complexity is $O(n^2)$.

Example 6: Cubic Time - O(n³)

Triple nested loop example.

```
def count_triplets(n):
    count = 0
    for i in range(n):
        for j in range(n):
            for k in range(n):
                 count += 1
    return count
```

Explanation: Three nested loops each run n times \rightarrow total iterations = $n * n * n = n^3$. Time complexity is $O(n^3)$.

Example 7: Exponential Time - O(2ⁿ)

Recursive Fibonacci is an example of exponential time.

```
def fib(n):
    if n <= 1:
        return 1
    return fib(n - 1) + fib(n - 2)</pre>
```

Explanation: Each call results in two more calls. The call tree has a branching factor of 2 and depth of n, leading to roughly 2^n calls. Time complexity is $O(2^n)$.

Tips:

- Drop constants: $O(2n) \rightarrow O(n)$
- Keep dominant term: O(n^2 + n) → O(n^2)

Self-Check Exercises

- 1. Write and trace f(x) = f(x-1) + 2 with f(0) = 0
- 2. Compare recursive vs iterative Fibonacci runtime
- 3. Prove that $2n^2 + 1 \in O(n^2)$