第九章 文件系统

- 9.1文件系统概念
- 9.2文件物理结构
- 9.3FAT文件系统
- 9.4文件存储和目录

《操作系统原理》

9.1文件系统概念

教师: 苏曙光

华中科技大学软件学院

1 文件和文件系统概念

文件系统

- 文件是计算机信息存取的一种重要组织形式。
 - ■文件由若干信息项有序构成。
 - □ 信息项可以是字节,可以是结构化数据。

 0
 1
 ······
 i
 ······
 (n-1)

 信息项
 信息项
 ······
 信息项
 ······
 信息项

文件: D:\操作系统大作业列表(2015级).docx

操作系统大作业(12选1)。

所有习题都要在<u>网上先</u>搜索和调研,独立完成。每道题的起评分因为难度和工作量不同有所不同。。

1(90 分)、编写一个驱动程序 D、相应的应用程序 A 和动态链接库 L(可选)。驱动程序 D(和可选的 L)的核心功能是可以对特定的目录(譬如 d:\OS)或文件(譬如 d:\OS\homework.doc)进行保护。假定在 c:\user.txt 中已经事先记录有当前用户的 ID、密码和权限: 例如文件有这样 5 行: userid usrpassword read true/read false write true/write false delete true/delete false。其中后 3 行的内容任取"/"前后的一个词,表示该用户的读、写、删除的权限。那么当前用户对指定目录和文件的操作权限仅限于 c:\user.txt 文件所示。如果越权操作(例如无写的权限,如果用户进行写,即保存文件就是越权操作)就自动使该操作无效并给出提示。应用程序 A 的功能是安装和卸载该驱动。(提示: 支持 widows7 环

HexEditor打开"操作系统大作业列表(2015级).docx

文件的定义

- 文件是计算机系统中信息存放的一种组织形式。
 - 文件由若干信息项有序构成。
 - □ 信息项可以是字节,可以是结构化数据。

 0
 1

 i

 n-1

 信息项
 信息项

 信息项

- 用户通过读写指针来存取文件的信息项。
- 文件具有文件名。用户通过文件名存取文件。

文件分类

- 分类标准1:文件的用途
 - 系统文件
 - □包括操作系统的可执行程序和数据文件。这种文件不对用户开放, 仅供系统使用。
 - 库文件
 - 系统为用户提供的各种标准函数库和实用程序等。用户只能使用 这些文件,而无权对其进行修改。
 - 用户文件
 - □ 用户创建的文件,如用户可执行程序,源程序,数据文件等。这种文件的使用和修改权均属于用户。

文件分类

- 一 分类标准2:文件的操作权限
 - 只读文件
 - □只允许进行读操作。
 - 读写文件
 - □允许进行读写操作。
 - 不保护文件
 - □ 不作任何操作限制。

文件分类

- 分类标准3:文件的性质
 - 普通文件
 - □ 指一般的用户文件和/或系统文件。
 - 目录文件 ∪
 - □记录目录里面文件列表信息
 - □ 文件名, 文件存放地址, 文件属性,...
 - 设备文件
 - □ 把设备作为文件管理和使用。

文件属性

- 指定文件的类型、操作特性和存取保护等一组信息
- 文件属性存放在文件所在目录的目录文件中。
- MS-DOS系统中,文件属性占目录项的一个字节

■ 00000001: 只读属性

■ 00000010: 隐藏属性

文件系统

文件系统

- 定义 定义
 - 负责管理文件的机构称为文件系统。
- 功能
 - 负责文件的创立、撤消、读写、修改、复制和存取控制等,并管理存放文件的存储设备。
- 文件系统的目标是让用户以文件名来存取文件。

2 文件的结构

逻辑结构

- (用户的观点)
- ■为用户提供逻辑结构清晰、使用方便的文件。
- ■强调文件信息项的构成方式和用户的存取方式。

■ 物理结构

- (系统的观点)
- 文件在存储设备(例:硬盘)上的存储结构
- 强调合理利用储存空间,缩短I/O存取时间。

文件的逻辑结构

- 记录式文件
 - 信息项是记录: 结构化数据
 - □ 学生花名册文件:包含若干个学生记录
 - □ 每条学生记录:姓名,学号,性别,籍贯,成绩
 - □文件中需要保存记录长度和数量等说明信息
 - □浪费存储空间
- 流式文件
 - 信息项是字节,文件长度就是字节的数量。
 - 优点
 - 文件无需额外的说明信息或控制信息
 - □ 节省存储空间 华中科技大学.苏曙光老师.《操作系统原理》MOOC课程组版权所有

网址: www.icourses.cn ,主页搜索"苏曙光" 即可进入MOOC课堂 文件的逻辑结构

现代操作系统中文件都是流式文件,由应用程序解释和处理文件。

用记事本打开"贝叶斯网络.m"文件

```
贝叶斯网络.m - 记事本
       编辑(E) 格式(O) 查看(V) 帮助(H)
文件(F)
N = 4;
                                %节点个数
%discrete_nodes = 1:N;
                                %1到N的等差数列
node\_sizes = 2*ones(1,N);
%各个节点的取值个数
dag = zeros(N,N);
                                %用邻接矩阵表示贝叶斯网络
C = 1; S = 2; R = 3; W = 4; %四个节点
dag(C,[R 5]) = 1; %生成贝叶斯网络的结构
dag(R,W) = 1;
dag(S,W) = 1;
%生成贝叶斯网络的结构
bnet = mk_bnet(dag,node_sizes,'names', {'Cloudy','Sprinkler
tu_plot(dag,1);
%%定义贝叶斯网络结构及参数: 指定条件概率分布
bnet.CPD\{C\} = tabular_CPD\{bnet, C, [0.5 0.5]\};
bnet.CPD\{R\} = tabular_CPD(bnet, R, [0.8 \ 0.2 \ 0.2 \ 0.8]); bnet.CPD<math>\{S\} = tabular_CPD(bnet, S, [0.5 \ 0.9 \ 0.5 \ 0.1]);
bnet.CPD\{W\} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9)
```

用matlab打开"贝叶斯网络.m"文件

网址: www.icourses.cn, 主页搜索"苏曙光"即可进入MOOC课堂用HexEditor打开"贝叶斯网络.m"文件

Hex Editor Neo (Administrator)																
文件(F)	编辑(V)	视图(V)		选	选择(S)		操作(O)		书签(B)		NTFS 流(R		(R)) 工具(
	-		 *	1		G	1/	7	7		- Value	1		Q	2	
▲► 1 UH斯网络.m ×																
00000000	00	01	02	03	04	05	06	07	80	09	0a	0b	0c	0d	0e	Of
00000000	4e	20	3d	20	34	310	09	09	09	09	09	09	25	bd	da	b5
00000010	e3	b8	f6	ca	fd	0d	0a	25	64	69	73	63	72	65	74	65
00000020	5f	6e	6f	64	65	73	20	3d	20	31	Sa	4e	3b	09	09	25
00000030	31	b5	bd	4e	b5	Ç4	b5	c8	b2	ee	ca	fd	c1	d0	0d	0a
00000040	6e	6f	64	65	5f	73	69	7a	65	73	20	3d	20	32	2a	6f
00000050	6e	65	73	28	31	2c	4e	29	3b	09	25	b8	f7	b8	f6	bd
00000050	4-	hE	~2	h.E	~1	~0	~1	46	hE	h0	FC	~~	FA	00	00	00

用PDF阅读器打开"*毕业论文.pdf"文件

用HexEditor打开"*毕业论文.pdf"文件

文件的存取方法

- 按文件信息项排列顺序依次存取。
- 读写指针 🗸
 - 文件打开时,读写指针指向第1个信息项(字节或记录)
 - 每存取1个信息项,读写指针自动加1而指向下一个信息项。

随机存取

- 直接存取
- 存取操作时指定存取的位置。

特点

- 对流式文件或记录为定长的记录式文件容易确定存取位置。
- 对记录不定长的记录式文件比较定位较麻烦
 - □ 从第1条记录开始查询,直到找到要存取的记录为止。
 - □建立索引
 - ◆ 索引可作为文件一部分也可单独建索引文件。

文件读写示例(利用读写指针)

```
//打开文件
   FILE *pFile=fopen("MyTestFile.txt","rb");
   char *pBuf;
   //移动文件指针到文件末尾
  fseek (pFile, 0, SEEK END);
   //获取文件指针的偏移量
   int len=ftell(pFile);
   pBuf=new char[len];
   7/将指针移动到文件头
   rewind (pFile); // = fseek (pFile, 0, SEEK SET);
10
   //读文件的内容
11
12 fread (oBuf, 1, len, pFile);
   fclose (pFile);
13
```