Name: Entry No.:

- 1. Suppose p, q, r are three propositional atoms.
 - (a) [0.5 marks] Are the two formulas ((p U q) U r) and (p U (q U r)) equivalent? That is, whichever (infinite) path satisfies the first formula would satisfy the second and vice-versa? Explain your answer.
 - (b) [0.5 marks] Is $(p \cup (q \vee r))$ equivalent to $((p \cup q) \vee (p \cup r))$? Explain.
 - (c) [0.5 marks] Is $((q \lor r) \lor p)$ equivalent to $((q \lor p) \lor (r \lor p))$? Explain.
- 2. Consider the transition system described by the following NuSMV code:

- (a) [1 marks] Draw the transition system corresponding to the above NuSMV code.
- (b) [0.5 marks] Argue whether or not the above transition system satisfies the property $(F \neg y) \rightarrow (F \neg z)$.
- 3. [1.5 marks] Does the transition system shown in the figure satisfy the following formulas? Briefly explain why.

- (a) $G(p_1 \to X p_2)$
- (b) $F G p_2$
- 4. [1.5 marks] Prove or disprove the following statement: there exists an LTL formula ψ and a transition system T such that T satisfies neither ψ nor $\neg \psi$ (i.e., T does not satisfy ψ , and T does not satisfy $\neg \psi$).