Quantum Fourier sampling

- Load F to quantum state
- Discrete Fourier transform
- Load: what's the joint state?

- Measure answer qubits, the joint state collapses to?
- Now apply DFT_N , the final state is ...
- What is $\langle \chi_s \mid g \rangle$?

Summary

- L-periodic $F: \mathbb{Z}/N\mathbb{Z} \to \{0,1\}^m$
- Load F: n Hadamard gates, 1 Q_F
- DFT $_N$: at most n^2 gates
- Measurement: gives uniform random $s \in \{0, M, 2M, 3M, ...\}$, where M = N/L
- Claim: repeat twice, get k_1M , k_2M for some random $0 \le k_1, k_2 < L$
- There is a good chance of learning M, hence L=N/M
- Claim: For k_1, k_2 randomly sampled from $\{0,1,\dots,L-1\}$, the probability they are co-prime is about $6/\pi^2$

What if L does not divide N?

No wrap around towards end Example: ABCABCABCABCABCA

- Observation: each label used $\lfloor M \rfloor$ or $\lceil M \rceil$ times
- Claim: For each value $0,[M],[2M],[3M],\ldots,[(L-1)M],$ readout is that value w.p. at least 0.4/L

Approximate period finding

- Given $F \colon \{0,1,2,\dots,N-1\} \to \{0,1\}^m$ which is L-periodic (without warp around) and $N=2^n$
- Then with about n^2 gates and one application of Q_F , we get a clue about L: $s=[k\cdot M]$, where $k\in\{0,1,\ldots,L-1\}$ randomly chosen; else "junk"
- Question: how to use the clue s to find L?

- Additional assumption: L has m bits, and N has 10m bits
- Note: L is way smaller than N, and N/L might not be integer
- The clue s is about $k \cdot N/L$, and so s/N is about k/L
- Fact: Classical algorithm can efficiently figure out fraction k/L in lowest terms
- Example: Let $N=2^{20}$ and s=740171, and L has less than 5 bits.
- Idea: "continued fraction"
- Hope $k \in \{0,1,...,L-1\}$ is a prime (which happens with probability 1/m by the prime number theorem)

Period-finding to number factoring

- Question: How does this period-finding ability help use factor numbers?
- Input: B big integer, m bits (e.g., m = 1024)
- Goal 1: factorize B. Hardest case: B = PQ (interesting for breaking RSA)
- Goal 2: Find nontrivial R such that $R^2 = 1 \pmod{B}$ (nontrivial means $R \neq \pm 1 \pmod{B}$)
- Question 1: How does R help factor B? Example: B=91 and R=27
- Question 2: How to find R?

How to find R?

- Input: B big integer, m bits (e.g., m = 1024)
- Pick $A \in \{1, ..., B-1\}$ and we may assume that gcd(A, B) = 1.
- Let L be the order of A in $(\mathbb{Z}/B\mathbb{Z})^*$, which is the smallest positive L such that $A^L=1\pmod{B}$
- Example: B = 91 and A = 3
- Pick $N=2^{10m}$. Now the sequence $A^0 \mod B, A^1 \mod B, A^2 \mod B, \ldots, A^{N-1} \mod B$ is L -periodic. We can efficiently implement the function $F\colon \{0,1,2,\ldots,N-1\} \to \{0,1\}^m$ with roughly m^3 quantum gates, and then use period-finding to get L
- Hope L is even and $A^{L/2} \neq \pm 1 \pmod{B}$, which happens with probability $\geq 1/4$
- Take $R = A^{L/2} \mod B$