Esercizi Tutorato Algebra

chiara.malerba@studenti.unipd.it ${\it a.a.}\ \ 2022/2023$

Esercitazione del 9 Marzo 2023

- Scrivere un vettore $w \in \mathbb{R}^3$ linearmente dipendente dal vettore $\begin{pmatrix} 1\\10\\0 \end{pmatrix}$.
- Stabilire se i vettori $v_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ e $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ sono linearmente indipendenti.
- Stabilire se i vettori $v_1=\begin{pmatrix} -2\\1\\1\\3 \end{pmatrix}$ e $v_1=\begin{pmatrix} 0\\-1\\2\\1 \end{pmatrix}$ sono linearmente indipendenti.
- \bullet Studiare la dipendenza o indipendenza lineare dei seguenti vettori di \mathbb{R}^3 :

$$\begin{pmatrix} 1 \\ -3 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Se risultano linearmente dipendenti esprimere, quando possibile, ciascun vettore come combinazione lineare degli altri due.

 \bullet Verificare se il seguente insieme e' un sottospazio vettoriale di \mathbb{R}^3 :

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + 2x_2 = 6x_1 + x_3 = 0 \right\}$$

• Verificare se il seguente insieme e' un sottospazio vettoriale di \mathbb{R}^3 :

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + 2x_2 = x_2 + 3x_3 = 0 \right\}$$

- Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ e $u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ e sia V il sottospazio di \mathbb{R}^4 generato dai vettori $v_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$
 - Si determini una base di $U \cap V$.
 - Si determini una base di U+V.