Рубежный контроль №1 по курсу Методов Машинного Обучения ВАРИАНТ 11

Набор данных содержит список Вин. Используются данные из https://www.kaggle.com/datasets/zynicide/wine-reviews

Загрузка и первичный анализ данных

[1]:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('winemag-data-130k-v2.csv')</pre>														
[80]:															
[92]:	data.head(8)														
[92]:		Unnamed: 0	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle	title	variety	winery
	0	0	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	NaN	Sicily & Sardinia	Etna	NaN	Kerin O'Keefe	@kerinokeefe	Nicosia 2013 Vulkà Bianco (Etna)	White Blend	Nicosia
	1	1	Portugal	This is ripe and fruity, a wine that is smooth	Avidagos	87	15.0	Douro	Not Stated	NaN	Roger Voss	@vossroger	Quinta dos Avidagos 2011 Avidagos Red (Douro)	Portuguese Red	Quinta dos Avidagos
	2	2	US	Tart and snappy, the flavors of lime flesh and	NaN	87	14.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paulgwine	Rainstorm 2013 Pinot Gris (Willamette Valley)	Pinot Gris	Rainstorm
	3	3	US	Pineapple rind, lemon pith and orange blossom	Reserve Late Harvest	87	13.0	Michigan	Lake Michigan Shore	NaN	Alexander Peartree	NaN	St. Julian 2013 Reserve Late Harvest Riesling	Riesling	St. Julian
	4	4	US	Much like the regular bottling from 2012, this	Vintner's Reserve Wild Child Block	87	65.0	Oregon	Willamette Valley	Willamette Valley	Paul Gregutt	@paulgwine	Sweet Cheeks 2012 Vintner's Reserve Wild Child	Pinot Noir	Sweet Cheeks
	5	5	Spain	Blackberry and raspberry aromas show a typical	Ars In Vitro	87	15.0	Northern Spain	Navarra	NaN	Michael Schachner	@wineschach	Tandem 2011 Ars In Vitro Tempranillo-Merlot (N	Tempranillo- Merlot	Tandem
	6	6	Italy	Here's a bright, informal red that opens with	Belsito	87	16.0	Sicily & Sardinia	Vittoria	NaN	Kerin O'Keefe	@kerinokeefe	Terre di Giurfo 2013 Belsito Frappato (Vittoria)	Frappato	Terre di Giurfo
	7	7	France	This dry and restrained wine offers spice in p	NaN	87	24.0	Alsace	Alsace	NaN	Roger Voss	@vossroger	Trimbach 2012 Gewurztraminer (Alsace)	Gewürztraminer	Trimbach

```
[82]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 129971 entries, 0 to 129970
      Data columns (total 14 columns):
       # Column
                                  Non-Null Count
           -----
                                 129971 non-null int64
129908 non-null object
       0 Unnamed: 0
       1 country
                                  129971 non-null object
92506 non-null object
        2 description
           designation
                                   129971 non-null int64
                                   120975 non-null float64
           price
           province
                                   129908 non-null object
                                  108724 non-null object
50511 non-null object
            region_1
        8 region_2
       9 taster_name 103727 non-null object
10 taster_twitter_handle 98758 non-null object
                                    103727 non-null object
                                    129971 non-null object
        12 variety
                                    129970 non-null object
        13 winery
                                    129971 non-null object
       \texttt{dtypes: float64(1), int64(2), object(11)}
       memory usage: 8.4+ MB
[83]: data.describe()
                Unnamed: 0
                                    points
                                                    price
       count 129971.000000 129971.000000 120975.000000
              64985.000000
                                 88.447138
                                                35.363389
       mean
         std
               37519.540256
                                  3.039730
                                                41.022218
        min
                   0.000000
                                 80.000000
                                                4.000000
        25%
               32492.500000
                                 86.000000
                                                17.000000
               64985.000000
                                 88.000000
        50%
                                                25.000000
        75%
              97477.500000
                                 91.000000
                                                42.000000
        max 129970.000000
                                100.000000
                                              3300.000000
```

[86]:	<pre>data[['country',</pre>	'points',	'region_1',	'variety']]
-------	-----------------------------	-----------	-------------	-------------

[86]:		country	points	region_1	variety
	0	Italy	87	Etna	White Blend
	1	Portugal	87	NaN	Portuguese Red
	2	US	87	Willamette Valley	Pinot Gris
	3	US	87	Lake Michigan Shore	Riesling
	4	US	87	Willamette Valley	Pinot Noir
	129966	Germany	90	NaN	Riesling
	129967	US	90	Oregon	Pinot Noir
	129968	France	90	Alsace	Gewürztraminer
	129969	France	90	Alsace	Pinot Gris
	129970	France	90	Alsace	Gewürztraminer

129971 rows × 4 columns

Для набора данных проведите устранение пропусков для одного (произвольного) категориального признака с использованием метода заполнения отдельной категорией для пропущенных значений.

В качестве произвольного признака выберем колонку "region_1". Затем заменим пропущенные значения категорией "Not Stated"

Заметим, что все пропущенные значения были успешно заменены на "Not Stated"

Задание №31

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте метод обертывания (wrapper method), прямой алгоритм (sequential forward selection).

```
[13]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
[14]: data = pd.read_csv("KNNAlgorithmDataset.csv")
[15]: data[['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'compactness_mean']]
            diagnosis radius_mean texture_mean perimeter_mean area_mean compactness_mean
         0
                   М
                             17.99
                                            10.38
                                                            122.80
                                                                       1001.0
                                                                                          0.27760
        1
                             20.57
                                            17.77
                                                            132.90
                                                                       1326.0
                                                                                          0.07864
                                            21.25
                                                                                          0.15990
                             19.69
                                                            130.00
                                                                       1203.0
                                            20.38
                                                                                          0.28390
                   М
                             11.42
                                                            77.58
                                                                        386.1
         4
                   М
                             20.29
                                            14.34
                                                            135.10
                                                                       1297.0
                                                                                         0.13280
       564
                             21.56
                                            22.39
                                                            142.00
                                                                       1479.0
                                                                                          0.11590
       565
                             20.13
                                            28.25
                                                            131.20
                                                                       1261.0
                                                                                          0.10340
       566
                                                                        858.1
                   М
                             16.60
                                            28.08
                                                            108.30
                                                                                          0.10230
       567
                             20.60
                                            29.33
                                                                       1265.0
                                                                                          0.27700
                                                            140.10
       568
                              7.76
                                            24.54
                                                            47.92
                                                                        181.0
                                                                                          0.04362
      569 rows × 6 columns
[ ]: from sklearn.neighbors import KNeighborsClassifier
      from mlxtend.feature_selection import SequentialFeatureSelector as SFS
```

Выберем "diagnosis" для предсказания прогноза

```
[ ]: X = data.drop(labels = 'diagnosis', axis = 1).copy(deep = True)
Y = data['diagnosis'].copy(deep = True)
knn = KNeighborsClassifier(n_neighbors=5)
sfs = SFS(knn, forward = True, floating = False, k_feature = 4)
[ ]: sfs.fit(X,Y)
```

```
► SequentialFeatureSelector

► estimator: KNeighborsClassifier

KNeighborsClassifier
```

```
[]: sfs.subsets_
{1: {'feature_idx': (7,),
  'cv_scores': array([0.86842105, 0.9122807 , 0.9122807 , 0.92982456, 0.90265487]),
  'avg score': 0.9050923769600994,
  'feature_names': ('concave points_mean',)},
 2: {'feature_idx': (7, 16),
  'cv_scores': array([0.92105263, 0.93859649, 0.90350877, 0.93859649, 0.90265487]),
  'avg_score': 0.9208818506443098,
  'feature_names': ('concave points_mean', 'concavity_se')},
 3: {'feature_idx': (7, 16, 20),
  'cv scores': array([0.85087719, 0.92105263, 0.93859649, 0.94736842, 0.9380531 ]),
  'avg score': 0.9191895668374475,
  'feature names': ('concave points mean', 'concavity se', 'radius worst')},
 4: {'feature_idx': (7, 16, 20, 26),
  'cv_scores': array([0.92105263, 0.92982456, 0.95614035, 0.93859649, 0.94690265]),
  'avg score': 0.9385033379909953,
  'feature names': ('concave points mean',
   'concavity_se',
   'radius worst',
   'concavity_worst')}}
```

Наилучшая точность достигается при выборе признаков 'concave_points_mean', 'concavity_se', 'radius_worst', 'concavity_worst'

Задание для группы ИУ5-25М - для произвольной колонки данных построить парные диаграммы (pairplot).

[] sns.pairplot(df[['ratings', 'Number of ratings']], height=3, aspect=2)

<seaborn.axisgrid.PairGrid at 0x7fdb7e69cd30>

