Discrete Mathematics

Rules of Inference

Shin Hong

14 Sep 2020

How can we know an argument true?

Rules of Inference

Discrete Math.

Proof and Inference

- An argument is a sequence of statements connected with inference rules
- An **argument form** is a valid proposition whose structure is $P_1 \wedge P_2 \dots \wedge P_n \rightarrow Q$ where P_i and Q are compound propositions

- Example:
$$p \rightarrow q$$

$$\vdots \frac{p}{q}$$

- An argument is **valid** if all initial statements are known to be true, and for every non-initial statement, there is an argument form that connects the preceding statements with **it**
 - a conclusion follows the premises
 - it is impossible that all preceding statements are true and a final statement is false at the same time
 - such a sequence of argument is called **proof**

Rules of Inference

Discrete Math.

 $\neg q$

 $\therefore \neg p$

Rules of Inference

Discrete Math.

Rule of Inference	Tautology	Name	Rules of Inferences
p	$p \to (p \lor q)$	Addition	- interences
$\therefore \frac{p}{p \vee q}$			premise ₁
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification	premise ₂
$ \frac{p}{q} $ $ \therefore \overline{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction	conclusion
$p \vee q$ $\neg p \vee r$ $\therefore \overline{q \vee r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution	

Rules of Inference

Discrete Math.

$p \\ p \to q \\ \therefore \overline{q}$	Modus ponens	 If there is fire, fire alarm rings. There is fire. Thus, fire alarm rings 	Intuitiv Exampl
	Modus tollens	 Fire alarm rings if there's fire. There is no fire alarm. Thus, there is no fire. 	LXampi
$p \to q$ $q \to r$ $\therefore p \to r$	Hypothetical syllogism	 If one is a man, the one eventually dies. If one is a philosoper, the one is a man. Thus, a philosoper eventually dies. 	
$ \begin{array}{c} p \lor q \\ \neg p \\ \vdots \\ \hline q \end{array} $	Disjunctive syllogism	riids, a prinosoper eventually dies.	
$\therefore \frac{p}{p \vee q}$	Addition		
$\therefore \frac{p \wedge q}{p}$	Simplification		
р q	Conjunction		
$ \begin{array}{c} \therefore p \land q \\ p \lor q \\ \neg p \lor r \\ \therefore \overline{q \lor r} \end{array} $	Resolution	 I will take a taxi tonight if it rains. Otherwise, I will take a bus tonight. Thereby, I will take a taxi or bus tonight. 	

Rules of Inference

Discrete Math.

p	Modus ponens
$p \rightarrow q$	
$\therefore q$	
$\neg q$	Modus tollens
$p \rightarrow q$	
$\therefore \frac{\neg p}{\neg p}$	
	**
$p \to q$	Hypothetical syllogism
$\therefore \frac{q \to r}{p \to r}$	
$\therefore p \to r$	
$p \lor q$	Disjunctive syllogism
$\neg p$	
$\therefore \overline{q}$	
1	
$\therefore \frac{p}{p \vee q}$	Addition
$\therefore p \vee q$	
$p \wedge q$	Simplification
$\therefore \frac{p}{p}$	
· · P	
p	Conjunction
q	
$\therefore \overline{p \wedge q}$	
$p \lor q$	Resolution
$\therefore \frac{\neg p \lor r}{q \lor r}$	
4 🗸 /	

Premises

I. $\neg p \land q$

2. $r \rightarrow p$

3. $\neg r \rightarrow s$

4. $s \rightarrow t$

Concolusion

•

• Inference steps (proof)

I. $\neg p \land q$ Premise I

2. $\neg p$ Simplification I

3. $r \rightarrow p$ Premise 2

4. $\neg r$ Modus tollens 2, 3

5. $\neg r \rightarrow s$ Premise 3

6. s Modus ponens 4, 5

7. $s \rightarrow t$ Premise 4

8. t Modus ponens 6, 7

Example

/

Rules of Inference

Discrete Math.

Quantified Statements

- Valid arguments for quantified statements are a sequence of statements where each statement is either a premise or follows from previous statements by rules of inference
 - rules of inference for propositional logic
 - rules of inference for quantified statements
 - Universal Instantiation (UI)
 - Universal Generalization (UG)
 - Existential Instantiation (EI)
 - Existential Generalization (EG)

Rules of Inference

Discrete Math.

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

- c is a specific instance of the domain, or
- c is a variable representing an arbitrary value of the domain

Example:

Our domain consists of all dogs and Bingo is a dog.

"All dogs are cuddly."

"Therefore, Bingo is cuddly." "Therefore, dog d is cuddly"

Rules of Inference

Discrete Math.

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

Used often implicitly in Mathematical Proofs.

Rules of Inference

Discrete Math.

Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c)$ for some element c

Example:

"There is someone who got an A in the course."

"Let's call her a and say that a got an A"

Rules of Inference

Discrete Math.

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Example:

"Michelle got an A in the class."

"Therefore, someone got an A in the class."

Rules of Inference

Discrete Math.

Using Rules of Inference

Construct a valid argument to show that

"John Smith has one wife" is a consequence of the premises:

"Every married man has one wife." "John Smith is a married man."

Solution: Let M(x) denote "x is a married man", and L(x) denote "x has one wife", and let / be an element representing John Smith.

Step

- 1. $\forall x (M(x) \to L(x))$
- 2. $M(J) \to L(J)$ UI from (1)
- 3. M(J)
- 4. L(J)

Reason

Premise

Premise

Modus Ponens using

(2) and (3)

Rules of Inference

Discrete Math.

Using Rules of Inference

- Construct a valid argument showing that the conclusion:
 - "Someone who passed the first exam has not read the book." follows from
 - "A student in this class has not read the book."
 - "Everyone in this class passed the first exam."
- Solution: Let C(x) denote "x is in this class," B(x) denote "x has read the book," and P(x) denote "x passed the first exam."

$$\frac{\exists x (C(x) \land \neg B(x))}{\forall x (C(x) \to P(x))}$$

$$\therefore \exists x (P(x) \land \neg B(x))$$

Step

- 1. $\exists x (C(x) \land \neg B(x))$
- 2. $C(a) \wedge \neg B(a)$ EI from (1)
- 3. C(a)
- 4. $\forall x (C(x) \to P(x))$
- 5. $C(a) \rightarrow P(a)$
- 6. P(a)
- 7. $\neg B(a)$
- 9. $\exists x (P(x) \land \neg B(x))$

Reason

Premise

Simplification from (2)

Premise

UI from (4)

MP from (3) and (5)

Simplification from (2)

8. $P(a) \wedge \neg B(a)$ Conj from (6) and (7)

EG from (8)

Rules of Inference

Discrete Math.