2[-51-02 Q(a) Hungarian method?

Q(a) Havegarress messes,					
	Mow	Paint	wash	Clean	
John	1	4	6	3	
Karen	9	7	lo	9	
Terri	4	5	11	7	
Jean	8	7	8	٢	
Solution	Oyon	- min			- min col
	Mow	Paint	wash	Clean	
John	B 0	@ 3	B E	D2 B) 2	
karen	992	2 000	O POB	0 @ 2	
Terri	D 0	B 1	DF)	4 1 3	
Jean.	3 3	2	3 3	0 (0	
3) using line to cover 0 Mow Paint Wash Clean					
J	Mon	Paint	Wash	Clean	
John	O	3	2	2	
karen	2	0	0	2	
Terri	0	1	4	3	
Jean	7)	0		

9 no cover - min Ocross position add 4 Mow Paint Wash Clean John 0 332 201 201 karen 20 0 0 2 Terri 0 00 0 3 3 2 Jean 37 2 0 0 Dassign ost o work, add * Mow Paint Wash Clean John 0th 2 1 1 karen 6 0 0* 2 Terri 0 0* 3 2 Jean 7 2 0 0* So John do Mow, \$1 karen do wash, \$10 Terri do Paint, 53 Jean do clean \$5 Total = 1+10+5+5 =\$21

Cb) Q: Lagrange
$$\rightarrow$$
 optimal solution

Solution

(1) Min $2 = \frac{1}{2} [X_1 X_2] (x_2) [X_1] + C_1 2J (x_2) + 2$

$$= \frac{1}{2} [4X_1 8X_2] [X_1] + X_1 + 2X_2 + 2$$

$$= \frac{1}{2} (4X_1^2 + 8X_2^2) + X_1 + 2X_2 + 2$$

$$= 2X_1^2 + 4X_2^2 + X_1 + 2X_2 + 2$$
Subject to $X_1 - 2 \le 0$

$$X_2 - 2 \le 0$$
Dagrange multipliers

$$L = 2X_1^2 + 4X_2^2 + X_1 + 2X_2 + 2 + \mu_1(X_1 - 2) + \mu_2(X_2 - 2)$$

$$\begin{cases} \frac{\partial L}{\partial X_1} = 4X_1 + 1 + \mu_1 = 0 \\ \frac{\partial L}{\partial X_2} = 8X_2 + 2 + \mu_2 = 0 \end{cases}$$

$$X_1 - 2 \le 0$$

$$X_1 - 2 \le 0$$

$$M_1(X_1 - 2) = 0$$

$$M_2(X_2 - 2) = 0$$

$$M_1 \ge 0$$

3 if
$$\mu_1 = \mu_2 = 0$$
, $\chi_1 = -\frac{1}{4}$, $\chi_2 = -\frac{1}{4}$
if $\mu_1 = 0$ $\mu_2 > 0$, $\chi_2 = 2$, $\mu_2 = -18$, contradiction
if $\mu_1 > 0$ $\mu_2 = 0$, $\chi_1 = 2$, $\mu_1 = -9$, contradiction
if $\mu_1 > 0$ $\mu_2 > 0$, $\chi_1 = 2$, $\chi_2 = 2$, $\mu_1 = -9$, $\mu_2 = -18$
contradiction.
So $\chi_1^* = -\frac{1}{4}$ $\chi_2^* = -\frac{1}{4}$ $\mu_1 = \mu_2 = 0$
 $\chi_1^* = -\frac{1}{4}$ $\chi_2^* = -\frac{1}{4}$ $\chi_1^* = -\frac{1}{2}$ $\chi_2^* = 2$
 $= 2 \times (-\frac{1}{4})^2 + 4 \times (-\frac{1}{4})^2 - \frac{1}{4} - \frac{1}{2} + 2$
 $= \frac{13}{8}$
 $= 1.625$

 $\frac{\partial L}{\partial x_{1}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{2}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$ $\frac{\partial L}{\partial x_{3}} = 4x_{1} + 1 + \mu_{1} = 0$

$$\frac{\partial L}{\partial x_2} = 8x_2 + 2 + \mu = 0$$

$$\frac{\partial L}{\partial x_1 \partial x_1} = 4 \quad \frac{\partial L}{\partial x_1 \partial x_2} = 0 \quad \frac{\partial L}{\partial x_2 \partial x_2} = 8$$

$$\begin{aligned}
\nabla_{xx}^{2}L(x,\mu) &= \begin{bmatrix} 4 & 07 \\ 0 & 8 \end{bmatrix} > 0 \text{ on } R^{3} & \text{Since} |4| > 0 \\
V^{7}\nabla_{xx}^{2}L(x,\mu)Y &= [y, y_{2}] \begin{bmatrix} 4 & 07 \end{bmatrix} \begin{bmatrix} y_{1} \\ 0 & 8 \end{bmatrix} \begin{bmatrix} y_{2} \end{bmatrix} \\
&= [4y, 8y_{2}] \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} \\
&= 4y_{1}^{2} + 8y_{2}^{2} > 0 \text{ for all } Y \neq 0 \\
So & X &= (-\frac{1}{4}, -\frac{1}{4}) \text{ is a minimum point}
\end{aligned}$$