Mirror Descent

Yoav Freund

February 12, 2020

Material follows Chapter 11 of "Prediction Learning and Games" Sections 11.{1,2,3}

Linear Pattern Recognition

Linear Pattern Recognition

Potential Based Gradient descent

Duality

Linear Pattern Recognition

Potential Based Gradient descent

Duality

The Mirror Descent Algorithm

Linear Pattern Recognition

Potential Based Gradient descent

Duality

The Mirror Descent Algorithm

Algorithms for specific potentials

▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$

- ▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Expert: $\mathbf{u} \in \mathbb{R}^d$

- ▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Expert: $\mathbf{u} \in \mathbb{R}^d$
- ▶ Predictor: $\mathbf{w}_t \in \mathbb{R}^d$

- ▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Expert: $\mathbf{u} \in \mathbb{R}^d$
- ▶ Predictor: $\mathbf{w}_t \in \mathbb{R}^d$
- ► Loss $\ell(\mathbf{w} \cdot \mathbf{x}, \mathbf{y})$ (online regression = square loss)

- ▶ Instance: $(\mathbf{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Expert: $\mathbf{u} \in \mathbb{R}^d$
- ▶ Predictor: $\mathbf{w}_t \in \mathbb{R}^d$
- ► Loss $\ell(\mathbf{w} \cdot \mathbf{x}, \mathbf{y})$ (online regression = square loss)
- ► Regret: $\mathbf{R}_t(\mathbf{u}) = \sum_{i=1}^t \left[\ell(\mathbf{w}_t \cdot \mathbf{x}_t, y_t) \ell(\mathbf{u} \cdot \mathbf{x}_t, y_t) \right]$

ightharpoonup = Regret vector $R_t(\mathbf{w}) = L_{A,t} - L_t(\mathbf{w})$

- ▶ \mathbf{R}_t = Regret vector $\mathbf{R}_t(\mathbf{w}) = \mathbf{L}_{A,t} \mathbf{L}_t(\mathbf{w})$
- ightharpoonup
 igh

- ightharpoonup
 igh
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.

- ightharpoonup
 igh
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.

- ightharpoonup
 igh
- ightharpoonup
 igh
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t

- $ightharpoonup \mathbf{R}_t = \text{Regret vector } R_t(\mathbf{w}) = L_{A,t} L_t(\mathbf{w})$
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ is a good choice.

- ightharpoonup
 igh
- ightharpoonup
 igh
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ is a good choice.
- For finite number of experts, R_t is finite dimensional and we can compute w_t explicitly.

- $ightharpoonup \mathbf{R}_t = \text{Regret vector } R_t(\mathbf{w}) = L_{A,t} L_t(\mathbf{w})$
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ is a good choice.
- For finite number of experts, R_t is finite dimensional and we can compute w_t explicitly.
- ► Here, $\mathbf{R} = \{R(\mathbf{w})\}_{\mathbf{w} \in \mathbb{R}^d}$ is continuous dimensional.

- ightharpoonup
 igh
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ is a good choice.
- For finite number of experts, R_t is finite dimensional and we can compute w_t explicitly.
- ► Here, $\mathbf{R} = \{R(\mathbf{w})\}_{\mathbf{w} \in \mathbb{R}^d}$ is continuous dimensional.
- Experts that correspond to exponential distributions we can use conjugate priors. (recall: biased coins).

- $ightharpoonup \mathbf{R}_t = \text{Regret vector } R_t(\mathbf{w}) = L_{A,t} L_t(\mathbf{w})$
- R_t = State of prediction algorithm at time t
- Potential: Φ(R) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction to balance $\Phi(\mathbf{R}_{t+1}) \Phi(\mathbf{R}_t) + \mathbf{w}_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ is a good choice.
- For finite number of experts, R_t is finite dimensional and we can compute w_t explicitly.
- ► Here, $\mathbf{R} = \{R(\mathbf{w})\}_{\mathbf{w} \in \mathbb{R}^d}$ is continuous dimensional.
- Experts that correspond to exponential distributions we can use conjugate priors. (recall: biased coins).
- ▶ We need a new trick to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$ efficiently.

▶ V is a vector space, with a norm ||v||

- V is a vector space, with a norm ||v||
- U is the set of all linear mappings from V to V

- V is a vector space, with a norm ||v||
- U is the set of all linear mappings from V to V
- ▶ The norm of $u \in U$ is defined as

$$||u||^* = \max_{v \in V} \frac{||u(v)||}{||v||}$$

- V is a vector space, with a norm ||v||
- U is the set of all linear mappings from V to V
- ▶ The norm of $u \in U$ is defined as

$$||u||^* = \max_{v \in V} \frac{||u(v)||}{||v||}$$

V is equivalent to the set of all linear mappings from U to U.

- V is a vector space, with a norm ||v||
- U is the set of all linear mappings from V to V
- ▶ The norm of $u \in U$ is defined as

$$||u||^* = \max_{v \in V} \frac{||u(v)||}{||v||}$$

- V is equivalent to the set of all linear mappings from U to U.
- \triangleright U and V are dual vector spaces, with dual norms.

▶ this

- ▶ this
- ► The space is always $U, V = \mathbb{R}^n$

- this
- ▶ The space is always $U, V = \mathbb{R}^n$
- The linear operation is the dot product u · v

- this
- ► The space is always $U, V = \mathbb{R}^n$
- The linear operation is the dot product u · v
- ► L_2 norm: $\sqrt{\sum_{i=1}^n x_i^2}$

- this
- ► The space is always $U, V = \mathbb{R}^n$
- ► The linear operation is the dot product u · v
- ► L_2 norm: $\sqrt{\sum_{i=1}^n x_i^2}$
- ▶ L_1 norm: $\sum_{i=1}^{n} |x_i|$

- this
- ► The space is always $U, V = \mathbb{R}^n$
- ► The linear operation is the dot product u · v
- $L_2 \text{ norm: } \sqrt{\sum_{i=1}^n x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- ▶ L_{∞} norm: $\max_i |x_i|$

- this
- ► The space is always $U, V = \mathbb{R}^n$
- ► The linear operation is the dot product u · v
- ► L_2 norm: $\sqrt{\sum_{i=1}^n x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- ▶ L_{∞} norm: $\max_i |x_i|$
- $\blacktriangleright L_p \text{ norm: } \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$

- this
- ► The space is always $U, V = \mathbb{R}^n$
- ► The linear operation is the dot product u · v
- L₂ norm: $\sqrt{\sum_{i=1}^{n} x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- ▶ L_{∞} norm: $\max_i |x_i|$
- L_p norm: $(\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$
- ▶ L_p, L_q are dual norms if $p, q \ge 1$, and $\frac{1}{p} + \frac{1}{q} = 1$

- this
- ▶ The space is always $U, V = \mathbb{R}^n$
- ► The linear operation is the dot product u · v
- L₂ norm: $\sqrt{\sum_{i=1}^n x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- ▶ L_{∞} norm: $\max_i |x_i|$
- L_p norm: $(\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$
- ▶ L_p , L_q are dual norms if $p, q \ge 1$, and $\frac{1}{p} + \frac{1}{q} = 1$
- $ightharpoonup L_1, L_{\infty}$ are dual.

- this
- ► The space is always $U, V = \mathbb{R}^n$
- The linear operation is the dot product u · v
- L₂ norm: $\sqrt{\sum_{i=1}^n x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- ▶ L_{∞} norm: $\max_i |x_i|$
- \blacktriangleright L_p norm: $\left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$
- ▶ L_p, L_q are dual norms if $p, q \ge 1$, and $\frac{1}{p} + \frac{1}{q} = 1$
- ▶ L_1, L_∞ are dual.
- L₂ is self-dual.

Legendre Duality

▶ Suppose $F : A \to \mathbb{R}$ is a convex function over a convex set $A \subseteq \mathbb{R}^n$.

Legendre Duality

- ▶ Suppose $F : A \to \mathbb{R}$ is a convex function over a convex set $A \subset \mathbb{R}^n$.
- ► The dual function to F is

$$F^*(\mathbf{u}) = \sup_{\mathbf{v} \in A} (\mathbf{u} \cdot \mathbf{v} - F(\mathbf{v}))$$

▶ *X*, *y*ℝ

- $\rightarrow x, y\mathbb{R}$

- $\rightarrow x, y\mathbb{R}$
- $f^*(y) = \sup_{x \in \mathbb{R}} (xy f(x))$
- $-f^*(y) = \inf_{x \in \mathbb{R}} \left(f(x) xy \right)$

- $\rightarrow x, y\mathbb{R}$
- $f^*(y) = \sup_{x \in \mathbb{R}} (xy f(x))$
- $-f^*(y) = \inf_{x \in \mathbb{R}} (f(x) xy)$

Dual of Dual

▶ The dual of any function is convex.

Dual of Dual

- ▶ The dual of any function is convex.
- if F is convex then $F^{**} = F$

Gradient Duality

► If the gradient of f at x is k then the gradient of f* at k is x

Gradient Duality

- ▶ If the gradient of f at x is k then the gradient of f* at k is x
- In general:

$$\nabla F^* = (\nabla F)^{-1}$$

▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$

- ▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ► Gradient: $\nabla F(\mathbf{u})_i = e^{u_i}$ or $\nabla F(\mathbf{u}) = F(\mathbf{u})$.

- ▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ► Gradient: $\nabla F(\mathbf{u})_i = e^{u_i}$ or $\nabla F(\mathbf{u}) = F(\mathbf{u})$.
- ▶ Dual: $F^*(\mathbf{v}) = \sum_{i=1}^d v_i (\ln v_i 1)$

- ▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ► Gradient: $\nabla F(\mathbf{u})_i = e^{u_i}$ or $\nabla F(\mathbf{u}) = F(\mathbf{u})$.
- ▶ Dual: $F^*(\mathbf{v}) = \sum_{i=1}^d v_i (\ln v_i 1)$
- ▶ Gradient of dual: $\nabla F^*(\mathbf{v})_i = \ln v_i$

- ▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ► Gradient: $\nabla F(\mathbf{u})_i = e^{u_i}$ or $\nabla F(\mathbf{u}) = F(\mathbf{u})$.
- ▶ Dual: $F^*(\mathbf{v}) = \sum_{i=1}^d v_i (\ln v_i 1)$
- ▶ Gradient of dual: $\nabla F^*(\mathbf{v})_i = \ln v_i$
- ▶ Note $(\nabla F)^{-1} = \nabla F^*$

F: strictly convex with continuous first derivative.

- F: strictly convex with continuous first derivative.
- F* is the Legendre Dual of F

- **F**: strictly convex with continuous first derivative.
- F* is the Legendre Dual of F
- ▶ D_F, D_{F*} Bregman divergences wrt F, F*

- F: strictly convex with continuous first derivative.
- F* is the Legendre Dual of F
- ▶ D_F, D_{F*} Bregman divergences wrt F, F*
- $\mathbf{u}' = \nabla F(\mathbf{u})$ and $\mathbf{v}' = \nabla F(\mathbf{v})$

- F: strictly convex with continuous first derivative.
- F* is the Legendre Dual of F
- ▶ D_F, D_{F*} Bregman divergences wrt F, F*
- $\mathbf{u}' = \nabla F(\mathbf{u})$ and $\mathbf{v}' = \nabla F(\mathbf{v})$
- $D_F(\mathbf{u},\mathbf{v}) = D_{F^*}(\mathbf{u}',\mathbf{v}')$

▶ We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$

- ▶ We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- ▶ Let Φ* by the convex Dual of Φ

- We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- Let Φ* by the convex Dual of Φ
- $ightharpoonup \mathbf{R}_t = \nabla \Phi^*(\mathbf{w}_t)$

- ▶ We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- ▶ Let Φ* by the convex Dual of Φ
- $ightharpoonup \mathbf{R}_t = \nabla \Phi^*(\mathbf{w}_t)$
- ▶ We use $\theta_t = \mathbf{R}_t$ because we treat \mathbf{R}_t as a parameter.

- We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- Let Φ* by the convex Dual of Φ
- $ightharpoonup \mathbf{R}_t = \nabla \Phi^*(\mathbf{w}_t)$
- ▶ We use $\theta_t = \mathbf{R}_t$ because we treat \mathbf{R}_t as a parameter.
- r_t regret for single step.

- We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- $ightharpoonup \mathbf{R}_t = \nabla \Phi^*(\mathbf{w}_t)$
- ▶ We use $\theta_t = \mathbf{R}_t$ because we treat \mathbf{R}_t as a parameter.
- r_t regret for single step.
- $\bullet \ \theta_t = \theta_{t-1} + \mathbf{r}_t$

- ▶ We want to compute $\mathbf{w}_t = \nabla \Phi(\mathbf{R}_t)$
- Let Φ* by the convex Dual of Φ
- $ightharpoonup \mathbf{R}_t = \nabla \Phi^*(\mathbf{w}_t)$
- ▶ We use $\theta_t = \mathbf{R}_t$ because we treat \mathbf{R}_t as a parameter.
- r_t regret for single step.
- $\theta_t = \theta_{t-1} + \mathbf{r}_t$
- re-written using Duality:

$$\nabla \Phi^*(\mathbf{w}_t) = \nabla \Phi(\mathbf{w}_{t-1}) + \mathbf{r}_t$$

Mirror Descent

► Gradient descent in dual space $\theta_t = \theta_{t-1} - \lambda \nabla \ell_t(\theta_{t-1})$

Mirror Descent

- ► Gradient descent in dual space $\theta_t = \theta_{t-1} \lambda \nabla \ell_t(\theta_{t-1})$
- Using duality can be rewritten as

$$\nabla \Phi^*(\mathbf{w}_t) = \nabla \Phi^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1})$$

Mirror Descent

- ► Gradient descent in dual space $\theta_t = \theta_{t-1} \lambda \nabla \ell_t(\theta_{t-1})$
- Using duality can be rewritten as

$$\nabla \Phi^*(\mathbf{w}_t) = \nabla \Phi^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1})$$

▶ As $\nabla \Phi$ is the inverse of $\nabla \Phi^*$ we get

$$\mathbf{w}_t = \nabla \Phi(\nabla \Phi^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$$

A picture of mirror descent

$$\mathbf{w}_t = \nabla \Phi(\nabla \Phi^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$$

Intuition

▶ \mathbf{u} should balance minimizing the loss from observing same example again and divergence between \mathbf{u} and \mathbf{w}_{t-1}

Intuition

- ▶ \mathbf{u} should balance minimizing the loss from observing same example again and divergence between \mathbf{u} and \mathbf{w}_{t-1}
- ► Exact Goal: $\min_{\mathbf{u} \in \mathbb{R}^d} [D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{u})]$

Intuition

- ▶ \mathbf{u} should balance minimizing the loss from observing same example again and divergence between \mathbf{u} and \mathbf{w}_{t-1}
- ► Exact Goal: $\min_{\mathbf{u} \in \mathbb{R}^d} [D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{u})]$
- ► Taylor order one approximation: $\min_{\mathbf{u} \in \mathbb{R}^d} [F(\mathbf{u})]$ where $F(\mathbf{u}) = D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda [\ell_t(\mathbf{w}_{t-1}) + (\mathbf{u} \mathbf{w}_{t-1})\nabla \ell_t(\mathbf{w}_{t-1})]$

Intuition

- ▶ \mathbf{u} should balance minimizing the loss from observing same example again and divergence between \mathbf{u} and \mathbf{w}_{t-1}
- ► Exact Goal: $\min_{\mathbf{u} \in \mathbb{R}^d} [D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{u})]$
- ► Taylor order one approximation: $\min_{\mathbf{u} \in \mathbb{R}^d} [F(\mathbf{u})]$ where $F(\mathbf{u}) = D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda [\ell_t(\mathbf{w}_{t-1}) + (\mathbf{u} \mathbf{w}_{t-1}) \nabla \ell_t(\mathbf{w}_{t-1})]$
- ► Assuming everything is differrentiable and convex, $\nabla_{\mathbf{u}} F[\mathbf{u}] = 0$ yields: $\nabla \Phi^*(\mathbf{w}_t) = \nabla \Phi^*(\mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{w}_{t-1})$

Intuition

- u should balance minimizing the loss from observing same example again and divergence between u and w_{t-1}
- ► Exact Goal: $\min_{\mathbf{u} \in \mathbb{R}^d} [D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{u})]$
- ► Taylor order one approximation: $\min_{\mathbf{u} \in \mathbb{R}^d} [F(\mathbf{u})]$ where $F(\mathbf{u}) = D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda [\ell_t(\mathbf{w}_{t-1}) + (\mathbf{u} \mathbf{w}_{t-1}) \nabla \ell_t(\mathbf{w}_{t-1})]$
- ► Assuming everything is differrentiable and convex, $\nabla_{\mathbf{u}} F[\mathbf{u}] = 0$ yields: $\nabla \Phi^*(\mathbf{w}_t) = \nabla \Phi^*(\mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{w}_{t-1})$
- Equivelently: $\mathbf{w}_t = \nabla \Phi(\nabla \Phi^*(\mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$

▶ $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a regular loss function if it is convex, non-negative and differentiable.

- ▶ $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a regular loss function if it is convex, non-negative and differentiable.
- ▶ Instantaneous Loss: $\ell_t(\mathbf{w}) = \ell(\mathbf{w} \cdot \mathbf{x}_t, y_t)$

- ▶ $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a regular loss function if it is convex, non-negative and differentiable.
- ▶ Instantaneous Loss: $\ell_t(\mathbf{w}) = \ell(\mathbf{w} \cdot \mathbf{x}_t, y_t)$
- ▶ Regret: $\mathbf{R}_t(\mathbf{u}) = L_{A,t} L_t(\mathbf{u})$

- ▶ $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a regular loss function if it is convex, non-negative and differentiable.
- ▶ Instantaneous Loss: $\ell_t(\mathbf{w}) = \ell(\mathbf{w} \cdot \mathbf{x}_t, y_t)$
- Regret: $\mathbf{R}_t(\mathbf{u}) = L_{A,t} L_t(\mathbf{u})$
- ► Theorem: For all example sequences $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$, any initial vector $\mathbf{w}_0 \in \mathbb{R}^d$. all $\lambda > 0$ and all $\mathbf{u} \in \mathbb{R}^d$:

$$\mathbf{R}_{T}(\mathbf{u}) \leq \frac{1}{\lambda} D_{\Phi^*}(\mathbf{u}, \mathbf{w}_0) - \frac{1}{\lambda} \sum_{t=1}^{T} D_{\Phi^*}(\mathbf{w}_{t-1}, \mathbf{w}_t)$$

▶ Potential:
$$\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$$

- ▶ Potential: $\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $\Phi_p^* = \Phi_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$

- ► Potential: $\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $\Phi_p^* = \Phi_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$
- ► Euclidean norm: q = p = 2

- ► Potential: $\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $\Phi_p^* = \Phi_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_p \leq X_p$ for all $1 \leq t \leq T$

- ▶ Potential: $\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $\Phi_p^* = \Phi_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_p \leq X_p$ for all $1 \leq t \leq T$
- Suppose we use the dual descend algorithm for the potential function Φ_p and the learning rate $\lambda = \frac{2\epsilon}{(p-1)X_p^2}$ for some $0 < \epsilon < 1$

- ▶ Potential: $\Phi_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $\Phi_p^* = \Phi_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_p \leq X_p$ for all $1 \leq t \leq T$
- ▶ Suppose we use the dual descend algorithm for the potential function Φ_p and the learning rate $\lambda = \frac{2\epsilon}{(p-1)X_p^2}$ for some $0 < \epsilon < 1$
- Loss Bound: $L_{A,T} \leq \frac{L_T(\mathbf{u})}{1-\epsilon} + \frac{\|\mathbf{u}\|_q^2}{\epsilon(1-\epsilon)} \times \frac{(p-1)X_p^2}{4}$

▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$

- ▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $\Phi^*(\mathbf{u}) = \sum_{i=1}^d u_i (\ln u_i 1)$

- ▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $\Phi^*(\mathbf{u}) = \sum_{i=1}^d u_i (\ln u_i 1)$
- ► Euclidean norm: q = p = 2

- ▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $\Phi^*(\mathbf{u}) = \sum_{i=1}^d u_i (\ln u_i 1)$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_{\infty} \leq X_p$ for all $1 \leq t \leq T$

- ▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $\Phi^*(\mathbf{u}) = \sum_{i=1}^d u_i (\ln u_i 1)$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_{\infty} \leq X_D$ for all $1 \leq t \leq T$
- Suppose we use the dual descend algorithm for the exponential potential function Φ and the learning rate $\lambda = \frac{2\epsilon}{\chi_{\infty}^2}$ for some $0 < \epsilon < 1$

- ▶ Potential: $\Phi(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $\Phi^*(\mathbf{u}) = \sum_{i=1}^d u_i (\ln u_i 1)$
- ► Euclidean norm: q = p = 2
- ▶ Suppose the sequence of examples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_T, y_T)$ satisfies $\|\mathbf{x}_t\|_{\infty} \leq X_p$ for all $1 \leq t \leq T$
- ► Suppose we use the dual descend algorithm for the exponential potential function Φ and the learning rate $\lambda = \frac{2\epsilon}{\chi_{\infty}^2}$ for some $0 < \epsilon < 1$
- ► Loss Bound: $L_{A,T} \leq \frac{L_T(\mathbf{u})}{1-\epsilon} + \frac{X_\infty^2 \ln d}{2\epsilon(1-\epsilon)}$