

# Lecture 6: Time Value of Money — Part 2

The Basics of Time Value of Money



Presentation to Cox Business Students

FINA 3320: Financial Management



# **Purpose of This Lecture**

- Gain an understanding of the basics of time value of money pertaining to assets with multiple cash flows
  - (1) Multiple Cash Flows (i.e., PMTs)
  - (2) Ordinary Annuities and Annuities Due
  - (3) Perpetuities
  - (4) Uneven Cash Flows



#### On Valuation

- Asset: Anything that generates cash flows for its owner
- Valuation: Process of assigning a value to an asset
  - Amounts to finding the present value of cash flows asset generates
  - Examples so far...
    - We valued assets generating single cash flows for their owners
    - But that need not be the case!



# Valuation Examples

- A piece of art will generate a future cash flow when it is sold. Should you buy it today?
- Your education will generate a stream of future cash flows for you throughout your career. Is it worth the investment?
- A project generates expected future cash flows for the firm's shareholders. Should you approve the project?



### Valuation Examples continued...

- All examples on the prior page require you to:
  - (1) Assess the value of the asset
  - (2) Weigh the value against the cost of the asset
- When the asset value exceeds the purchase price (i.e., cost), wealth is increased
- In each situation, where would you see the effects of the wealth increase?

#### **Assets with Multiple Cash Flows**

- Suppose an asset generates a series of cash flows for its owners
  - Value each cash flow separately
  - Sum these present values to assign a value to the asset

$$PV_0 = \sum_{t=0}^{\infty} \frac{CF_t}{(1+r)^t} = CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + K$$



# Multiple Cash Flows: An Example

- Consider an asset that generates \$5,000 in year 1 and \$3,000 in year 5; discount rate = 6%
  - View this as a time line that displays the cash flows





# Multiple CFs: An Example continued...

- Consider an asset that generates \$5,000 in year 1 and \$3,000 in year 5; discount rate = 6% per year
  - To solve, use the basic PV equation and then  $\sum$ 
    - $PV = FV_t/(1+r)^t = \$5,000/(1.06)^1 = \$4,716.98$
    - PV = FV<sub>t</sub> /(1+r)<sup>t</sup> = \$3,000/(1.06)<sup>5</sup> = \$2,241.77  $\Sigma = $6,958.75$
  - Or, use a financial calculator and then  $\sum$ 
    - 1n; 6i; 0PMT; 5,000FV; PV = -\$4,716.98
    - 5n; 6i; 0PMT; 3,000FV; PV =  $\underline{-\$2,241.77}$  $\Sigma = -\$6,958.75$



# Multiple CFs: An Example continued...

- Consider an asset that generates \$5,000 in year 1 and \$3,000 in year 5; discount rate = 6%
  - To solve, use the basic PV equation





# Multiple CFs: An Example continued...

- Consider an asset that generates \$5,000 in year 1 and \$3,000 in year 5; discount rate = 6%
- **Note**: In finding the PV of this asset, we are simply summing the PVs of each individual cash flow
- **Interpretation**: You are indifferent between receiving the future cash flow stream and having \$6,958.75 today



### Back to the Future (Values that is)

- What if you wanted to find future value of a stream of cash flows?
- Alternatively, you would be indifferent between receiving the future cash flow stream on the time line and a time period 5 cash flow of ???
- Two ways to answer this question:
  - Method 1: Compound each cash flow and sum them up
  - Method 2: Find PV of each cash flow, sum them up, and then compound the sum



#### **Back to Future Value (and Time Lines)**

- Consider our example again: Asset generates \$5,000 in year 1 and \$3,000 in year 5; discount rate = 6%
- What is the future value of this cash flow stream?





#### Method 1

Formula:  $FV_t = PV^*(1+r)^t = \$5,000^*(1.06)^4 = \$6,312.39$ 

**Financial Calculator**: 4n; 6i; 0PMT; 5,000PV; FV = \$6,312.39

Note: For Method 1 period 5 cash flow is already FV (i.e., at time period 5)





#### Method 2

Formula:  $PV = FV_t/(1+r)^t = 5,000/(1.06)^1 = \$4,716.98$ Financial Calculator: 1n; 6i; 0PMT; 5,000FV; PV = \$4,716.98CF 5 Formula:  $PV = FV_t/(1+r)^t = 3,000/(1.06)^5 = \$2,241.78$ Financial Calculator: 5n; 6i; 0PMT; 3,000FV; PV = \$2,241.778

FV Formula:  $FV_t = PV^*(1+r)^t = 6,958.76^*(1.06)^5 = \$9,312.39$ 

**Financial Calculator**: 5n; 6i; 6,958.76PV; 0PMT; FV = \$9,312.39





#### **Back to Future Value (and Time Lines)**

Method 1 and Method 2 provide the same FV of \$9,312.39





# **Special Cases**

- PV formula holds for any stream of cash flows
- Two special cases where the formula simplifies:
  - (1) Perpetuity
  - (2) Annuity



# **Perpetuity**

# Present Value of a Perpetuity

$$PVPerpetuity_0 = \sum_{t=0}^{\infty} \frac{CF_t}{(1+r)^t} = CF + \frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + \dots$$



# **Perpetuity**

- Definition: Steam of level cash flows that never ends
  - Cash flow is always in the amount of CF
  - First cash flow is in *period 1* (i.e., time 0 cash flow is \$0)
- What does the time line look like?
  - Draw it!

$$PVPerpetuity_0 = \sum_{t=0}^{\infty} \frac{CF_t}{(1+r)^t} = CF + \frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + \dots$$



# **Perpetuities and Time Lines**

• Time line for a perpetuity follows...





# Perpetuities and Time Lines

- Determining present value for a perpetuity follows...
- Note: You need to determine the present value of an *infinite* cash flow stream!



# Simplifying a Perpetuities

A power series take the form:

a + ax + ax<sup>2</sup> +ax<sup>3</sup> + ax<sup>4</sup> + ... + ax
$$^{\infty}$$
, and is equivalent to a/(1-x)

• A perpetuity is a power series with:

$$a = CF/(1+r)$$

and

$$x = 1/(1+r)$$

• So, a/(1-x) becomes...

### Simplifying a Perpetuities continued...

• So, a/(1-x) becomes...

$$a = \frac{CF}{(1+r)} \qquad \qquad x = \frac{1}{(1+r)}$$

•

$$\frac{a}{(1-x)} = \frac{\frac{CF}{(1+r)}}{1 - \frac{1}{(1+r)}} = \frac{CF}{r}$$

$$PVPerpetuity_0 = \frac{CF}{r}$$

#### Think About It...

• What if the first payment of the perpetuity were to occur at time 0?

$$PVPerpetuity_0 = \sum_{t=0}^{\infty} \frac{CF_t}{(1+r)^t} = CF + \frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + \dots$$

$$PVPerpetuity_0 = (1+r)\left[\frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + ...\right] = (1+r)\frac{CF}{r}$$

$$PVPerpetuity_0 = CF + \frac{CF}{r}$$



# Simplifying a Perpetuities Example continued...

• What is the present value of \$100,000 per year in perpetuity at 10% interest?





# Simplifying a Perpetuities Example continued...

• What is the present value of \$100,000 per year in perpetuity at 10% interest?

$$PVPerpetuity_0 = \frac{CF}{r} = \frac{\$100,000}{.10} = \$1,000,000$$

• You can easily solve for different numbers in the formula!

• Given PV and CF, what is r? 
$$r = \frac{CF}{PV}$$

• Given PV and r, what is CF?  $CF = PV \times r$ 



# **Annuity**

#### Present Value of an Annuity (PVA)

$$PVA_0 = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t} = CF + \frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + \dots + \frac{CF}{(1+r)^T}$$

# Future Value of an Annuity (FVA)

$$FVA = \sum_{t=1}^{T} CF_t (1+r)^t = CF_1 (1+r)^1 + CF_2 (1+r)^2 + \dots + CF_T (1+r)^T$$

# Present Value of an Annuity (PVA)

- Definition: Level stream of cash flows for a limited (finite) period of time discounted back to time 0 at the stated interest rate (i.e., discount rate)
  - Cash flow is always in the amount CF
  - First cash flow is in period 1 (i.e., time 0 cash flow is \$0)
  - Last cash flow is in period T
- What does the time line look like for PVA?
  - Draw it!

$$PVA_0 = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t} = CF + \frac{CF}{(1+r)^1} + \frac{CF}{(1+r)^2} + \dots + \frac{CF}{(1+r)^T}$$



#### **PVAs and Time Lines**

• Time line for a present value of an annuity follows...





#### **PVAs and Time Lines**

- Determining present value for an annuity follows...
  - Note: You need to determine the present value of a limited (finite) cash flow stream





# Simplifying an Annuity

- Consider two perpetuities with the same cash flow (call it CF)
  - Perpetuity 1, P1, has first payment at time 1
  - Perpetuity 2, P2, has first payment at time T+1
- What does the time line look like?
  - Draw it!



### Simplifying an Annuity continued...

• From the time line, we see that the present value of the T-period annuity is simply:

$$PV(P1)_0 - PV(P2)_0$$



# Simplifying an Annuity continued...

- We can easily solve for the present values of the two perpetuities as of the periods before the payments start:
  - $PV(P1)_0 = CF/r$
  - $PV(P2)_T = CF/r$
- But what is  $PV(P2)_0$ ?
  - Just view its present value at time T as a time-T cash flow and discount it to time 0

$$PV(P2)_{0} = \frac{PV(P2)_{T}}{(1+r)^{T}} = \frac{CF}{r} \left[ \frac{1}{(1+r)^{T}} \right] = CF \begin{vmatrix} 1 - \frac{1}{(1+r)^{T}} \\ r \end{vmatrix}$$

### Simplifying an Annuity continued...

Mathematically...

$$PVA_0 = PV(P1)_0 - PV(P2)_0$$

$$PVA_0 = \frac{CF}{r} - \frac{CF}{r} \left[ \frac{1}{(1+r)^T} \right]$$

$$PVA_0 = CF \left[ \frac{1}{r} - \frac{1}{r(1+r)^T} \right]$$

$$PVA_0 = CF \left| \frac{1 - \frac{1}{(1+r)^T}}{r} \right|$$



#### Present Value of an Annuity: Example

• Example: What is the present value of \$100,000 per year for 3 years at 10%





# Present Value of an Annuity: Example continued...

• Example: What is the present value of \$100,000 per year for 3 years at 10%

Formula: 
$$PVCF_1 = FVCF_1/(1+r)^1 = \$100,000/(1.10)^1 = \$90,909.09$$
  
 $PVCF_2 = FVCF_2/(1+r)^2 = \$100,000/(1.10)^2 = \$82,644.63$   
 $PVCF_3 = FVCF_3/(1+r)^3 = \$100,000/(1.10)^3 = \frac{\$75,131.48}{\$248,685.20}$ 

Formula: 
$$PVA_0 = CF \left[ \frac{1 - \frac{1}{(1+r)^T}}{r} \right] = 100,000 \left[ \frac{1 - \frac{1}{(1.10)^3}}{0.10} \right] = $248,685.20$$

Financial Calculator: 3n; 10i; 100,000PMT; PV = \$248,685.20

# Present Value of an Annuity: Example continued...

 Present Value Annuity Factor (PVIF): Factor the payment is multiplied by in order to calculate PV

Formula: 
$$PVA_0 = CF \left[ \frac{1 - \frac{1}{(1+r)^T}}{r} \right] = 100,000 \left[ \frac{1 - \frac{1}{(1.10)^3}}{0.10} \right] = $248,685.20$$

**PVIF**: 
$$PVA_0 = CF[PVIF] = 100,000 \left| \frac{1 - \frac{1}{(1.10)^3}}{0.10} \right| = 100,000[2.486851991] = $248,685.20$$



#### **Future Value of an Annuity**

- How can you calculate the future value of an annuity?
- Definition: Level stream of cash flows for a limited (finite) period of time compounded to the future at a stated interest rate
  - Cash flow is always in the amount CF
  - First cash flow is in period 1 (i.e., time 0 cash flow is \$0)
  - Last cash flow is in period T
    - What does time line look like? Draw it!

$$FVA = \sum_{t=1}^{T} CF_t (1+r)^T = CF_1 (1+r)^1 + CF_2 (1+r)^2 + \dots + CF_T (1+r)^T$$



#### **Future Value of an Annuity**

• Time line for future value of an annuity follows...





# Future Value of an Annuity: An Example

• Example: What is the future value of \$100,000 per year for 3 years at 10%





# Future Value of an Annuity: An Example

• Example: What is the future value of \$100,000 per year for 3 years at 10%

Formula: 
$$FVCF_1 = PVCF_1*(1+r)^2 = \$100,000*(1.10)^2 = \$121,000.00$$
  
 $FVCF_2 = PVCF_2*(1+r)^1 = \$100,000*(1.10)^1 = \$110,000.00$   
 $FVCF_3 = PVCF_3*(1+r)^0 = \$100,000*(1.10)^0 = \frac{\$100,000.00}{\$331,000.00}$ 

Formula: 
$$FVA_T = CF\left[\frac{(1+r)^T - 1}{r}\right] = 100,000\left[\frac{(1.10)^3 - 1}{0.10}\right] = $331,000$$

Financial Calculator: 3n; 10i; 100,000PMT; FV = \$331,000.00



#### **Annuity Due**

#### Present Value of an Annuity Due

$$PVADue_0 = (1+r)CF \begin{bmatrix} 1 - \frac{1}{(1+r)^T} \\ r \end{bmatrix}$$

#### Future Value of an Annuity Due

$$FVADue_{T} = (1+r)CF\left[\frac{(1+r)^{T}-1}{r}\right]$$



# Present Value of an Annuity Due

- Definition: Present value of an annuity with first payment at time 0 (instead of time 1)
- Amounts to discounting one less period than with an ordinary annuity
- Multiply present value of an ordinary annuity by (1+r)

$$PVADue_0 = (1+r)CF \begin{bmatrix} 1 - \frac{1}{(1+r)^T} \\ r \end{bmatrix}$$



# Present Value of an Annuity Due: Time Line

• Time line for the present value of an annuity due follows...





# Present Value of an Annuity Due: An Example

• Example: What is the present value of an annuity due with three cash flows of \$100,000 at a rate of 10%?





#### Present Value of an Annuity Due: An Example

• Example: What is the present value of an annuity due with three cash flows of \$100,000 at a rate of 10%?

Formula: 
$$PVCF_0 = FVCF_0/(1+r)^0 = 100,000/(1.10)^0 = \$100,000.00$$

$$PVCF_1 = FVCF_1/(1+r)^1 = 100,000/(1.10)^1 = \$90,909.09$$

$$PVCF_2 = FVCF_2/(1+r)^2 = 100,000/(1.10)^2 = \$82,644.63$$

$$\$273,553.72$$

Formula: 
$$PVADue_0 = (1+r)CF \left[ \frac{1 - \frac{1}{(1+r)^T}}{r} \right] = (1.10)\$100,000 \left[ \frac{1 - \frac{1}{(1.10)^3}}{0.10} \right] = \$273,553.72$$

Financial Calculator: Set Due: 3n; 10i; 100,000PMT; PV = \$273,553.72

#### Future Value of an Annuity Due

- Definition: Future value of an ordinary annuity with the first payment at time 0 (instead of time 1)
- Amounts to compounding one period more than with an ordinary annuity
- Multiply ordinary annuity FV by (1+r)

$$FVADue_{T} = (1+r)CF\left[\frac{(1+r)^{T}-1}{r}\right]$$



# Future Value of an Annuity Due: An Example

• What does the time line look like for the future value of an annuity due? Draw it...





# Future Value of an Annuity Due: An Example

• Example: What is the future value of \$100,000 per year for 3 years at 10%





# Future Value of an Annuity Due: An Example

• Example: What is the future value of \$100,000 per year for 3 years at 10%

Formula: 
$$FVCF_0 = PV*(1+r)^3 = 100,000*(1.10)^3 = \$133,100.00$$
$$FVCF_1 = PV*(1+r)^2 = 100,000*(1.10)^2 = \$121,000.00$$
$$FVCF_2 = PV*(1+r)^1 = 100,000*(1.10)^1 = \frac{\$110,000.00}{\$364,100.00}$$

Formula: 
$$FVADue_T = (1+r)CF\left[\frac{(1+r)^T - 1}{r}\right] = (1.10)\$100,000\left[\frac{(1.10)^3 - 1}{0.10}\right] = \$364,100.00$$

Financial Calculator: Set Due: 3n; 10i; 100,000PMT; FV = \$364,100.00



# **Back to Our Original Three Projects**

• Can you determine which project provides the best value creation if all project cash flows are discounted at 5%?





#### **Projects 1**

• What is present value of all cash flows for project 1 discounted at 5%?





#### **Project 2**

• What is the present value of all cash flows for project 2 discounted at 5%?





# **Project 2**

Note: There is an annuity in project 2!

Financial Calculator: 5n; 5i; 1,000PMT; PV = \$4,329.48 - \$4,000 = \$329.48





#### **Project 3**

• What is the present value of all cash flow from project discounted at 5%?





# Back to Our Original Three Projects

- Project 1: Net Cash Flows = \$535.15
- Project 2: Net Cash Flows = \$329.48
- Project 3: Net Cash Flows = \$437.71
- Which project provides the best value creation?



# We now know how to do Present and Future Values of Single Cash flows and Multiple Cash Flows!



#### Thank You!



Charles B. (Chip) Ruscher, PhD

Department of Finance and Business Economics