Markov Chain

November 28, 2023

1. Consider a Markov chain with transition matrix

$$P = \stackrel{\stackrel{\textstyle E}{\stackrel{}_{\sim}}}{\mathop{\stackrel{}_{\sim}}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0.1 & 0.2 & 0.7 \\ 3 & 0.4 & 0 & 0.6 \end{bmatrix}$$

Compute

(a) $P(X_2 = 3, X_1 = 3 | X_0) = 1$

(b) $P(X_4 = 2, X_3 = 1 | X_0 = 2)$

(c) $P(X_3 = 1 | X_0 = 3)$

(d) $P(X_5 = 1, X_2 = 0 | X_1 = 3)$

2. A Markov chain $X_n, n \geq 0$ with states 0, 1, 2, has the transition probability matrix

$$P = \left[\begin{array}{ccc} 1/2 & 1/3 & 1/6 \\ 0 & 1/3 & 2/3 \\ 1/2 & 0 & 1/2 \end{array} \right]$$

(a) Compute $P(X_3 = 2|X_1 = 0)$.

(b) Determine $P(X_5 = 1, X_2 = 0 | X_0 = 2)$.

(c) Suppose that the initial distribution of X_0 is $\pi^{(0)} = \begin{pmatrix} 0.25 & 0.35 & 0.4 \end{pmatrix}$. Find the unconditional distribution of X_2 and then compute $E(X_2)$.

(d) Find the stationary distribution of this Markov chain

3. Consider the Markov chain below.

1

For all parts of this problem, the process is in state 3 immediately before the first transition.

(a) Classify all states of the Markov chain.

(b) Determine all recurrence class and indicate which one is periodic.