Gliederung:

Identifikation von $t\bar{t}H$ -Endzuständen mit hohen Transversalimpulsen am CMS-Experiment

Genrich Zeller

17. September 2014

Inhaltsverzeichnis

1	Einleitung (1S.)	2
2	Theorie (3S.) 2.1 Standardmodell	2 2 2 2 2
3	Experiment (2S.) 3.1 LHC	2 2 2
4	Datensätze (3S.)4.1Monte Carlo Simulation4.1.1Verwendete Monte Carlo Datensätze4.2Objektrekonstruktion4.3Ereignisselektion	2 2 2 2 2
5	Leptonisolation im Bereich hoher transversaler Energien5.1Untersuchung der Leptonisolation in Abhängigkeit verschiedener Variablen5.2Untersuchung des Standardschnitts5.3Schlussfolgerung	2 3 3 3
6	Verhalten von Single-Lepton-Triggern im Bereich hoher transversaler Energien 6.1 Abhängigkeit der Triggereffizienz von dem Transversalimpuls der Zerfallsprodukte 6.2 Schlussfolgerung	3 3
7	Zusammenfassung	3
8	Quellenangaben	3
9	Anhang	3

1 Einleitung (1S.)

- Problemstellung
- Motivation

2 Theorie (3S.)

2.1 Standardmodell

Quarks, Leptonen, Kräfte usw.

2.1.1 Higgsmechanismus

Spontane Symmetriebrechung, Potential, Goldstone- und Higgsboson

2.2 Higgs-Produktion in Assoziation mit einem Top-Quark-Antiquark-Paar

Erklärung/Beschreibung der Produktion von ttH und ttbar als Untergrund von ttH

2.3 Ereignisse mit hohen transversalen Impulsen

Besonderheiten bzw. was die Ereignisse interessant macht

- 3 Experiment (2S.)
- 3.1 LHC
- 3.2 CMS-Experiment
- 4 Datensätze (3S.)
- 4.1 Monte Carlo Simulation
- 4.1.1 Verwendete Monte Carlo Datensätze
- 4.2 Objektrekonstruktion
- 4.3 Ereignisselektion

5 Leptonisolation im Bereich hoher transversaler Energien

- Kurze Einleitung (Problemstellung, Herangehensweise usw.)
- Isolierung definieren und motivieren, warum man diesen Schnitt normalerweise macht

5.1 Untersuchung der Leptonisolation in Abhängigkeit verschiedener Variablen

• Darstellung/Beschreibung/Beobachtungen an den erstellten Histogrammen

5.2 Untersuchung des Standardschnitts

- Berechnete Zahlen des Standardschnittes im e/μ -Kanal
- Untersuchung von Signal/Untergrund und Signal-Signifikanz in Abhängigkeit des Isolationsschnitts, Beobachtungen

5.3 Schlussfolgerung

- 6 Verhalten von Single-Lepton-Triggern im Bereich hoher transversaler Energien
 - Kurze Einleitung (Problemstellung, Herangehensweise usw.)
- 6.1 Abhängigkeit der Triggereffizienz von dem Transversalimpuls der Zerfallsprodukte
- 6.2 Schlussfolgerung
- 7 Zusammenfassung
- 8 Quellenangaben
- 9 Anhang