DUDAS Y ANOTACIONES

DUDAS

- Preguntar si es necesario meter los tipos de clustering *density-based*, *grid-based* y *model-based* o con *partitioning* y *micro-clusters*.
 - Partitioning algorithms: construct a partition of a set of objects into k clusters, that minimize an objective function (e.g. the sum of squares distances to the centroid representative). Examples include k-means (Farnstrom et al., 2000), and k-medoids;
 - **Hierarchical algorithms.** (En otro sitio sale este tipo en lugar de microclustering)
 - Micro-clustering algorithms: divide the clustering process into two phases, where the first phase is online and summarizes the data stream in local models (micro-clusters) and the second phase generates a global cluster model from the micro-clusters. Examples of these algorithms include BIRCH (Zhang et al., 1996) and CluStream (Aggarwal et al., 2003);
 - O Density-based algorithms are based on connectivity between regions and density functions. This type of algorithms find clusters of arbitrary shapes, e.g., DBSCAN (Birant and Kut, 2007), and OPTICS (Peter Kriegel et al., 2003). Se basa en la detección de en qué áreas existen concentraciones de puntos y dónde están separados por áreas vacías o con escasos puntos. Los puntos que no forman parte de un clúster se etiquetan como ruido.
 - O Grid-based algorithms: based on a multiple-level granularity structure. View instance space as grid structures, e.g., Fractal Clustering (Barbará and Chen, 2000), and STING (Hinneburg and Keim, 1999). Grid based methods quantize the object space into a finite number of cells (hyperrectangles) and then perform the required operations on the quantized space.
 - Model-based algorithms: find the best fit of the model to all the clusters. Good for conceptual clustering, e.g., COBWEB (Fisher, 1987), and SOM (Kaski and Kohonen, 1994). Model based clustering operates on the assumption that gene expression data originates from a finite mixture of underlying probability distributions (Ramoni et al. 2001). Each cluster corresponds to a different distribution, and generally, the distributions are assumed to be Gaussians.
- Preguntar si es necesario leer diferentes formas de estimar distribuciones continuas en clasificadores bayesianos para implementar una propuesta con clasificadores bayesianos.
 - Paper "Estimating continuous distributions in bayesian classifiers":
 When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed

- that the data are generated by a single Gaussian. In this paper we abandon the normality assumption and instead use statistical methods for nonparametric density estimation.
- Paper "Incremental discretization for naive-bayes classifier" (IFFD) ->
 Se podría utilizar en la propuesta "Incremental Weighted Naive
 Bayes..."-> IFFD discretizes values of a quantitative attribute into a
 sequence of intervals of flexible sizes. It allows online insertion and
 splitting operation on intervals.
- STREAM -> No sé que relación hay entre SSQ minimization y facility location ¿... and instead evaluates an algorithm's performance by a combination of SSQ and the numbers of centers used?
- STREAM -> k-Median: N° of medians to be at most k; Facility location -> Range of number of centers. ¿Why facility location is more convinient if they look for a z that gives a certain k? -> ¿K-Median es NP-Hard pero utilizando Facility Location en el Local Search es factible?
- ¿El recurring concept drift de la propuesta RGNBC (Redes Bayesianas) tiene que ver con la definición de este concepto? -> En RGNBC puede que no tenga que ver con un concept drift recurrente puesto que habla sobre la llegada de nuevos atributos.
- ¿Por qué en la ecuación 9 se tienen en cuenta aquellos valores de instancias que no pertenecen a la clase a? (Propuesta RGBNC)
- En la propuesta RGNBC, en la ecuación 12, ¿la evidencia no debería ser el sumatorio del numerador de posterior(...) en lugar del sumatorio de posterior(...)? -> Para calcular cada uno de los posterior necesitas la evidencia que se calcula con la suma de todos los posterior.
- Paper "A survey on rough set theory and its applications" -> ¿BND(X) and NEG(X) definitions interchanged? Además, duda con respecto a la utilidad que tiene el paper RGNBC
- Paper "RGNBC" -> Página 5 último párrafo -> Debería de hablar sobre la varianza en lugar de sobre la media.
- ¿Error en la gráfica de la página 5 del paper "Classification of Massive ..."? ¿En la segunda también?
- Comentarle a los profesores lo de los diferentes surveys encontrados. Ejemplo: Ensemble (2017).
- No se entiende la función de CFIT en el paper "An effective pattern-based Bayesian classifier for evolving data stream". Utilización: último párrafo de la página 5.
- Paper "Mining Complex Models from Arbitrarly Large Databases in Constant Time" -> Difficult to understand.
- Preguntar si es necesario que los métodos de clasificación sean también multietiqueta.
- Preguntar si también interesan papers que traten las redes bayesianas en general para flujos de datos, sin ser clasificadores bayesianos explícitamente.
- Paper "Mining multi-dimensional concept drifting data streams using Bayesian network classifiers" -> Están Pedro y Concha.

- Preguntar por el paper que contiene el método denominado Globally Adaptive-MB-MBC (supervisado multidimensional) -> No lo podemos encontrar -> ¿Tiene un paper publicado?
- Método CPL-DS (semi-supervisado unidimensional) -> ¿tiene un paper publicado? -> ¿Classifying evolving data streams with partially labeled data?
- "Clustering of Data Streams With Dynamic Gaussian Mixture Models: An IoT Application in Industrial Processes" -> Entre los autores están Pedro y Concha
- Diferencia entre los artículos de la sección Refereed journals y los de la sección Conference and workshop
- Types of concept drift:
 - Real concept drift (change of the target concept that the classifier is trying to predict) and virtual concept drift (change of the underlying data distribution).
 - According to [14], there are three possible sources of concept drifts:
 Conditional change (real concept drift), feature change (virtual concept drift) and dual change.
 - Sudden drift, gradual drift, incremental drift, recurring concepts -> ¿Rate of change?

- En la página 4 del paper "Classifying evolving data streams with partially labeled data (2011)" -> otherwise, the window size increases to include the more recent instances. -> ¿No debería ser to include the more out-of-date instances?
- Paper "Classifying evolving data streams with partially labeled data (2011)" -> Página 7 -> ¿Por qué se muestrea solo de la distribución empírica del instante de tiempo s y no también del instante de tiempo s+1?
- O Preguntar por el future work del paper Classifying evolving data streams with partially labeled data (2011) para ver si se podría hacer una propuesta a partir de ese future work. -> In the future, it would be interesting to investigate and compare the performance of other classifiers with our results. Furthermore, note that in this paper we asume that labeled and unlabeled data come from the same distribution. This usually leads to a better classification accuracy. An interesting future line

- of research would be to consider the scenario where labeled and unlabeled data possibly come from different distributions, inspect the impacto f unlabeled data, and study the possibility of refining the change detection proposal.
- Preguntar por las propuestas multi-etiqueta y multi-dimensional. Si hay que nombrarlas.
- o Preguntar si me centro en los papers más recientes.
- Para los árboles de decisión estoy cogiendo información de surveys.
 Preguntar si es una buena estrategia para redactar el estado del arte.
- Plantear las diferentes propuestas recabadas con el objetivo de corroborar que son adecuadas.

ANOTACIONES

- Mirar libro para ver las relaciones entre métodos de clustering.
- Ver si el Sampling to Obtain Feasible Centers (apartado) de STREAM se puede comparar con el coreset nombrado en STREAMKM++.
- Cambiar los índices de los métodos en las secciones de comparación del documento de clustering.
- Comprobar si la carpeta Dynamic, Temporal and Continuous Time Bayesian Networks se puede incluir dentro de la carpeta de Bayesian networks que está dentro de la carpeta Classification for data streams.
- Ver el survey on supervised classification on Data Streams para buscar propuestas.
- Mirar de las propuestas de clasificadores bayesianos a la hora de redactar el estado del arte relacionado con el Ensemble.
- Paper "MReC-DFS" -> Naive Bayes as a base learner -> Posible paper a introducir dentro de las propuestas de redes bayesianas.
- Una vez leídos bastantes papers -> Buscar menciones de papers dentro de otros papers (por fecha).
- A la hora de implementar un algoritmo -> SIMULAR FLUJO DE DATOS PARTIENDO LOS DATOS EN BLOQUES DE TAL FORMA QUE SIMULAMOS QUE LOS DATOS VAN LLEGANDO A MEDIDA QUE PASA EL TIEMPO.
- Hay muchas propuestas para ensemble.
- Añadir documento "Online Machine Learning in Big Data Streams (2018)" al grupo de surveys a consultar.