Design & Analysis of Algorithms CSE 304

All Pairs of Shortest Path

All-Pairs Shortest Paths

Given:

- Directed graph G = (V, E)
- Weight function w : E → R

Compute:

- The shortest paths between all pairs of vertices in a graph
- Representation of the result: an n × n matrix of shortest-path distances δ(u, v)

Dijkstra (G, w, s)

1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$ 2. S ← ∅ 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap while $Q \neq \emptyset \leftarrow$ Executed O(V) times do u ← EXTRACT-MIN(Q) ← O(lqV) 5. $S \leftarrow S \cup \{u\}$ 6. 7. **for** each vertex $v \in Adi[u]$ 8. do RELAX(u, v, w) \leftarrow O(E) times; O(lgV) Running time: O(VlgV + ElgV) = O(ElgV)

BELLMAN-FORD(V, E, w, s)

```
INITIALIZE-SINGLE-SOURCE(V, s)
2. for i \leftarrow 1 to |V| - 1
        do for each edge (u, v) \in E
               do RELAX(u, v, w)
4.
    for each edge (u, v) \in E
                                               O(E)
        do if d[v] > d[u] + w(u, v)
6.
             then return FALSE
    return TRUE
```

Running time: O(VE)

All-Pairs Shortest Paths - Solutions

- Run BELLMAN-FORD once from each vertex:
 - $O(V^2E)$, which is $O(V^4)$ if the graph is dense $(E = \Theta(V^2))$
- If no negative-weight edges, could run
 Dijkstra's algorithm once from each vertex:
 - O(VElgV) with binary heap, O(V³lgV) if the graph is dense
- We can solve the problem in O(V³), with no elaborate data structures

All-Pairs Shortest Paths

- Assume the graph (G) is given as adjacency matrix of weights
 - $-W = (w_{ii})$, $n \times n$ matrix, |V| = n
 - Vertices numbered 1 to n

- Vertices numbered 1 to n
$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of (i, j) if } i \neq j, (i, j) \in E \\ \infty & \text{if } i \neq j, (i, j) \notin E \end{cases}$$

- Output the result in an n x n matrix
 - $D = (d_{ii})$, where $d_{ii} = \delta(i, j)$
- Solve the problem using dynamic programming

Optimal Substructure of a Shortest Path

- All subpaths of a shortest path are shortest paths
- Let p: a shortest path p
 from vertex i to j that
 contains at most m edges
- If i = j
 - w(p) = 0 and p has no edges

If
$$i \neq j$$
: $p = i \stackrel{p'}{\longleftrightarrow} k \rightarrow j$

- p' has at most m-1 edges
- p' is a shortest path

$$\delta(i, j) = \delta(i, k) + W_{kj}$$

Recursive Solution

I_{ij}(m) = weight of shortest path i →j that contains
 at most m edges

•
$$m = 0$$
: $I_{ij}(0) = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

- $m \ge 1$: $I_{ij}^{(m)} = \min \{ I_{ij}^{(m-1)}, \min \{ I_{ik}^{(m-1)} + w_{kj} \} \}$ = $\min \{ I_{ik}^{(m-1)} + w_{kj}^{(m-1)} \}$
 - Shortest path from i to j with at most m 1 edges
 - Shortest path from i to j containing at most m edges,
 considering all possible predecessors (k) of j

Computing the Shortest Paths

- $m = 1: I_{ij}^{(1)} = W_{ii}$ $L^{(1)} = W$
 - The path between i and j is restricted to 1 edge
- Given W = (w_{ij}) , compute: L⁽¹⁾, L⁽²⁾, ..., L⁽ⁿ⁻¹⁾, where L^(m) = (I_{ij})
- L⁽ⁿ⁻¹⁾ contains the actual shortest-path weights
 Given L^(m-1) and W ⇒ compute L^(m)
 - Extend the shortest paths computed so far by one more edge
- If the graph has no negative cycles: all simple shortest paths contain at most n - 1 edges

$$\delta(i, j) = I_{ij}^{(n-1)}$$
 and $I_{ij}^{(n)} = I_{ij}^{(n+1)} \dots = I_{ij}^{(n-1)}$

Extending the Shortest Path

Replace:
$$\min \rightarrow +$$
 Computing L^(m) looks like $+ \rightarrow \bullet$ matrix multiplication

EXTEND(L, W, n)

- 1. create L', an $n \times n$ matrix
- 2. for $i \leftarrow 1$ to n

3. do for
$$j \leftarrow 1$$
 to n $I_{ij}^{(m)} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + W_{kj}\}$

- 4. do $l_{ij}' \leftarrow \infty$
- 5. for $k \leftarrow 1$ to n
- 6. $do l_{ij}' \leftarrow min(l_{ij}', l_{ik} + w_{kj})$
- 7. return L'

Running time: $\Theta(n^3)$

SLOW-ALL-PAIRS-SHORTEST-PATHS(W, n)

- 1. $L^{(1)} \leftarrow W$
- 2. for $m \leftarrow 2$ to n 1
- 3. do L(m) \leftarrow EXTEND (L(m 1), W, n)
- 4. **return** L(n 1)

Running time: $\Theta(n^4)$

Example

$$I_{ij}^{(m)} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$$

W

 ∞

 ∞

 ∞

$$L^{(m-1)} = L^{(1)}$$

 ∞

0

-5

 ∞

0

4

 ∞

 ∞

 ∞

00

 ∞

∞	-4	
1	7	
∞	8	
0	8	
6	0	

 ∞

$$L^{(m)} = L^{(2)}$$

0	3	8	2	-4
3	0	-4	1	7
∞	4	0	5	11
2	-1	-5	0	-2
8	∞	1	6	0

... and so on until $L^{(4)}$

 ∞

6

Improving Running Time

- No need to compute all L^(m) matrices
- If no negative-weight cycles exist:

$$L(m) = L(n-1)$$
 for all $m \ge n-1$

• We can compute $L^{(n-1)}$ by computing the sequence:

$$\Rightarrow 2^{x} = n - 1$$

$$L^{(n-1)} = W^{2^{\lceil \lg(n-1) \rceil}}$$

FASTER-APSP(W, n)

L(¹) ← W
 m ← 1
 while m < n - 1
 do L(²m) ← EXTEND(L(m), L(m), n)
 m ← 2*m
 return L(m)

- OK to overshoot: products don't change after L⁽ⁿ⁾
- Running Time: Θ(n³lg n)

The Floyd-Warshall Algorithm

Given:

- Directed, weighted graph G = (V, E)
- Negative-weight edges may be present
- No negative-weight cycles could be present in the graph

Compute:

The shortest paths between all pairs of vertices in a graph

The Structure of a Shortest Path

Vertices in G are given by

$$V = \{1, 2, ..., n\}$$

Consider a path p = ⟨V₁, V₂, ...,
 V₁□

- An **intermediate** vertex of p is any vertex in the set $\{v_2, v_3, ..., v_{l-1}\}$
- E.g.: $p = \langle 1, 2, 4, 5 | : \{2, 4\}$ $p = \langle 2, 4, 5 | : \{4\}$

The Structure of a Shortest Path

- For any pair of vertices i, j ∈ V, consider all paths from i to j whose intermediate vertices are all drawn from a subset {1, 2, ..., k}
 - Find p, a minimum-weight path from these paths

No vertex on these paths has index > k

Example

- $d_{13}^{(0)} = 6$
- $d_{13}^{(1)} = 6$
- $d_{13}^{(2)} = 5$
- $d_{13}^{(3)} = 5$
- $d_{13}^{(4)} = 4.5$

The Structure of a Shortest Path

- k is not an intermediate vertex of path p
 - Shortest path from i to j with intermediate vertices from {1, 2, ..., k} is a shortest path from i to j with intermediate vertices from {1, 2, ..., k 1}

- k is an intermediate vertex of path p
 - p_1 is a shortest path from i to k
 - p₂ is a shortest path from k to j
 - k is not intermediary vertex of p_1 , p_2
 - p₁ and p₂ are shortest paths from i to k with
 vertices from {1, 2, ..., k 1}

A Recursive Solution (cont.)

- k = 0
- $\bullet \ d_{ij}(k) = \ W_{ij}$

A Recursive Solution (cont.)

- k ≥ 1
- Case 1: k is not an intermediate
 vertex of path p
- $d_{ij}^{(k)} = d_{ij}^{(k-1)}$

A Recursive Solution (cont.)

- k ≥ 1
- Case 2: k is an intermediate
 vertex of path p
- $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

Computing the Shortest Path Weights

•
$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ min \{d_i^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \geq 1 \end{cases}$$

• The final solution: $D^{(n)} = (d_{ij}^{(n)})$: $d_{ij}^{(n)} = \delta(i, j) \ \forall i, j \in V$

The Floyd-Warshall algorithm

```
Floyd-Warshall(W[1..n][1..n])

01 D ← W // D<sup>(0)</sup>

02 for k ← 1 to n do // compute D<sup>(k)</sup>

03 for i ←1 to n do

04 for j ←1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] ← D[i][k] + D[k][j]

07 return D
```

Running Time: O(n³)

Computing predecessor matrix

How do we compute the predecessor matrix?

```
Initialization: p^{(0)}(i,j) = \begin{bmatrix} nil & \text{if } i=j \text{ or } w_{ij} = \infty \\ & \text{if } i \neq j \text{ and } w_{ii} < \infty \end{bmatrix}
- Updating: p(k)(i,j) = p(k-1)(i,j) if (d(k-1)(i,j) < = d(k-1)(i,k) + (d(k-1)(k,j))
            p(k-1)(k,j) if (d(k-1)(i,j) > d(k-1)(i,k) + (d(k-1)(k,j))
    Floyd-Warshall(W[1..n][1..n])
    01 ...
    02 for k \leftarrow 1 to n do // compute D^{(k)}
              for i \leftarrow 1 to n do
    03
                   for i \leftarrow 1 to n do
    04
    05
                      if D[i][k] + D[k][j] < D[i][j] then
                           D[i][j] \leftarrow D[i][k] + D[k][j]
    06
                           P[i][j] \leftarrow P[k][j]
    07
    08 return D
```

Example $d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$

Example $d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$

Source: 5, Destination: 1

Shortest path: 8

Path: 5 ...1 : 5...4...1: 5->4...1: 5->4->1

Source: 1, Destination: 3

Shortest path: -3

Path: 1 ...3 : 1...4...3: 1...5...4...3: 1->5->4->3

PrintPath for Warshall's Algorithm

```
PrintPath(s, t)
  if(P[s][t]==nil) {print("No path");return;}
  else if (P[s][t]==s){
      print(s);
  else{
      print_path(s,P[s][t]);
      print_path(P[s][t], t);
  }
Print (t) at the end of the PrintPath(s,t)
```

Question

- Why should we use D[i, j] instead of D(k)[i, j]?
- Exercise:
 - 25.2-4: Memory O(n²)
 - 25.2-6: Negative weight cycle
 - Find the shortest positive cycle

Transitive closure of the graph

Input:

- Un-weighted graph G: W[i][j] = 1, if $(i,j) \in E$, W[i][j] = 0 otherwise.

Output:

-T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0 otherwise.

• Algorithm:

- Just run Floyd-Warshall with weights 1, and make T[i] [j] = 1, whenever D[i][j] < ∞.
- More efficient: use only Boolean operators

Transitive closure algorithm

```
Transitive-Closure(W[1..n][1..n])

01 T ← W // T<sup>(0)</sup>

02 for k ← 1 to n do // compute T<sup>(k)</sup>

03 for i ←1 to n do

04 for i ←1 to n do

05 T[i][j] ← T[i][j] Y (T[i][k] ^ T[k][j])

06 return T
```

Readings

• Chapters 25