inpop: symmetric real value of para: $\hat{\theta}$ \Rightarrow bias := $\hat{E}(\hat{\theta} - \hat{\theta})$ estimator of para: $\hat{\theta}$ var of estimator: $var(\hat{\theta})$ $\underline{MSE} := bias^2 + var(\widehat{\theta})$: it is a criteria to evaluate the estimator. Estimator with smaller MSE is better. eg: | pop mean = u sample mean: X is an estimator of μ . bias = 0, $E(\overline{X} - \mu) = \mu - \mu = 0$. Var (I) $MSE(\overline{X}) = Var(\overline{X})$ J: para has 2 estimators: De> € $\frac{\text{MSE}(\widehat{\theta}) \text{ vs } \text{MSE}(\widehat{\theta}')}{\text{MSE}(\widehat{\theta}')}$ generating 50 values from N(100; 6=15).

TO Arm (= (- --) Interpretation of 95% CP: with the same statistical method 95% of the asTCI's constructed will cover true parameter. ind sample, n=1k, = 95% CD for para) [95% of these N CDs)

2nd sample, n=1k, = 95% CD for para) [will cover fara.

th sample, N= 1K, > 95% I for para

Comparing estimators of μ : mean μ :

can use different estimators to estimate mean μ :

Sample mean XSample median q_0 ;

Sample trimmed mean X_0 .

Sample trimmed mean X_0 .

Subsich estimator is better?

which criteria to determine the godness?

Pava: θ an estimator of θ : $\hat{\theta}$; bias: \hat{f} E(\hat{f}) - θ eq: μ : pop mean .

an estimator of M is X; For this X the bias: $E(X) - \mu = 0$