Don't say CAT: NEW ITEM RESPONSE THEORY APPROACHES FOR DEVELOPING SHORT TEST FORMS

Ottavia M. Epifania^{1,2}, Pasquale Anselmi¹, Egidio Robusto¹ ottavia.epifania@unipd.it

¹University of Padova

²Catholic University of the Sacred Heart

September 30th 2022, Padova

XXX Annual Conference of the Italian Psychology Association (AIP)

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
- **4** Simulation study
- **5** Some final remarks

CAT

CAT

Computerized Adaptive Testing

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow the information is maximized across θ levels (i.e., across all respondents)

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

Issue

Different short test forms for each respondent \to Potential fairness issues in assessments for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow the information is maximized across θ levels (i.e., across all respondents)

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

Issue

Different short test forms for each respondent \rightarrow Potential fairness issues in assessments for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow the information is maximized across θ levels (i.e., across all respondents)

Issue

Not being tailored to any θ level of interest \to Potentially more items are needed to cover a wide range of θ s

Aim

New IRT-based procedures for shortening tests

Aim

New IRT-based procedures for shortening tests

Equal for all respondents

Aim

New IRT-based procedures for shortening tests

Equal for all respondents

Tailored to specific levels of the latent trait

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
- **4** Simulation study
- **5** Some final remarks

Item Response Theory 2-PL

$$P(x_{ps} = 1 | \theta_p, b_s, a_s) = \frac{exp[a_s(\theta_p - b_s)]}{1 + exp[a_s(\theta_p - b_s)]}$$
(1)

where:

 $P(x_{ps} = 1)$: Probability of a correct response to item s by respondent p

 θ_p : Ability of respondent's p

 b_s : Difficulty of item s

 a_s : Discrimination of item s

Item Information Function

$$IIF_s = a_s^2 [P(\theta)(1 - P(\theta))] \quad (2)$$

Item Information Function

$$IIF_s = a_s^2 [P(\theta)(1 - P(\theta))] \quad (2)$$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Item Information Function

$$IIF_s = a_s^2 [P(\theta)(1 - P(\theta))] \quad (2)$$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Test Information Function

$$TIF = \sum_{s=1}^{S} IIF_s \tag{3}$$

Item Information Function

$$IIF_s = a_s^2 [P(\theta)(1 - P(\theta))] \quad (2)$$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Test Information Function

$$TIF = \sum_{s=1}^{S} IIF_{s}$$
 (3)

Figure 2: TIF = $IIF_1 + IIF_2 + IIF_3$

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
- **4** Simulation study
- **6** Some final remarks

Selected items \rightarrow items with the highest *IIF*s

Selected items \rightarrow items with the highest *IIF*s

item	b	а	IIF
1	-0.67	0.71	0.08
2	0.50	1.19	0.15
3	-2.43	0.25	0.01
4	2.12	1.98	0.24
5	1.72	0.39	0.03
6	-2.28	1.62	0.19
7	0.64	0.50	0.05
8	-2.51	1.68	0.19
9	-0.66	0.44	0.04
10	0.72	0.33	0.02

Selected items \rightarrow items with the highest *IIF*s

item	b	a	IIF
4	2.12	1.98	0.24
8	-2.51	1.68	0.19
6	-2.28	1.62	0.19
2	0.50	1.19	0.15
1	-0.67	0.71	0.08
7	0.64	0.50	0.05
9	-0.66	0.44	0.04
5	1.72	0.39	0.03
10	0.72	0.33	0.02
3	-2.43	0.25	0.01

Selected items \rightarrow items with the highest *IIF*s

item	b	a	IIF
4	2.12	1.98	0.24
8	-2.51	1.68	0.19
6	-2.28	1.62	0.19
2	0.50	1.19	0.15
1	-0.67	0.71	0.08
7	0.64	0.50	0.05
9	-0.66	0.44	0.04
5	1.72	0.39	0.03
10	0.72	0.33	0.02
3	-2.43	0.25	0.01

Selected items \rightarrow items with the highest *IIF*s

item	b	a	IIF
4	2.12	1.98	0.24
8	-2.51	1.68	0.19
6	-2.28	1.62	0.19
2	0.50	1.19	0.15
1	-0.67	0.71	0.08
7	0.64	0.50	0.05
9	-0.66	0.44	0.04
5	1.72	0.39	0.03
10	0.72	0.33	0.02
3	-2.43	0.25	0.01

item	θ'_{1} -2.67	θ_2' 0.01	θ_{3}' 2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

item	$\theta'_1 \\ -2.67$	θ_2' 0.01	θ_{3}' 2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

item	$\theta'_1 -2.67$	θ_2' 0.01	θ_3' 2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

	θ_1'	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

$\theta'_1 -2.67$	$\frac{\theta_2'}{0.01}$	θ_3' 2.67
0.04	0.12	0.08
0.09	0.33	0.03
0.01	0.01	0.02
0.73	0.06	0.01
0.04	0.03	0.02
0.01	0.06	0.59
0.05	0.06	0.03
0.01	0.04	0.69
0.03	0.05	0.04
0.02	0.03	0.02
	-2.67 0.04 0.09 0.01 0.73 0.04 0.01 0.05 0.01 0.03	-2.67 0.01 0.04 0.12 0.09 0.33 0.01 0.01 0.73 0.06 0.04 0.03 0.01 0.06 0.05 0.06 0.01 0.04 0.03 0.05

Segmenting the latent trait

Equal Intervals Procedure
Equal segmentation

Segmenting the latent trait

Equal Intervals Procedure
Equal segmentation

Unequal Intervals Procedure

- 1 Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
- **4** Simulation study
- **5** Some final remarks

Comparison between the item selection procedures:

- Benchmark procedure (BP): The N items with the highest IIFs are selected from the full-length test
- Unequal Intervals Procedure (UIP): The N items that maximize the information for each θ' obtained by clustering the latent trait are selected
- Equal Intervals Procedure (EIP): The N items that mazimize the information for each θ' obtained by dividing the latent trait into equal intervals are selected
- Random Procedure (RP): *N* items are randomly selected from the full-length tests
- 10, 30, 50, 70-item short test forms from a 100-item full-length test

1000 respondents p

- $\textbf{ 1} \ \, \mathsf{Normal \ distribution} \\ \, p \sim \mathcal{N}(0,1)$
- 2 Positive skewed distribution $p \sim Beta(1, 100)$ (linearly transformed to obtain negative values)
- **3** Uniform distribution $p \sim \mathcal{U}(-3,3)$

100 items s:

- $b \sim \mathcal{U}(-3,3)$
- *a* ∼ *U*(0.40, 2)

An overall look

Figure 3: Overall Information of the short test forms

A closer look

Figure 4: TIF of the 10-item short test form

An even closer look

Figure 5: $bias = \theta - \hat{\theta}$ of the 10-item short test form

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
- **4** Simulation study
- **6** Some final remarks

Good! There's no "one-fits-all" solution

The θ distribution is a key element

Good!
There's no "one-fits-all" solution

The θ distribution is a key element

..but work is still needed Real life applications are missing Final remarks

Thank you!

ottavia.epifania@unipd.it