Parameter Regularization Schemes for AutoDL Transfer Learning

Li Xuhong
Big Data Lab, Baidu Research

Transfer Learning

Biological Motivation

Transfer the knowledge from one or more **source** tasks to one or more **target** tasks.

Definitions

- Domain: data space (x) and the corresponding distribution
- Task : label space (y) and the parametric function to optimize for predicting the labels $\hat{y} = f(x; w)$

Different Settings

Multi-Task : learning several tasks simultaneously

Lifelong Learning : learning several tasks successively

Domain Adaptation : different domains but the same task

■ Inductive Transfer : the same domain but different tasks

Transfer Learning and Fine-Tuning

Fine-tuning: A practical method for (inductive) transfer learning

Train the model from scratch for solving the source task; **Adjust** the *pretrained* parameters for solving the target task.

Catastrophic Forgetting

=> not the objective of transfer learning

Proposed Solution through Parameter Regularization Approaches

Regularization

Supplementary information added to the task

During the transfer, we apply the proposed regularization approaches to preserve the learned source knowledge.

Regularized Loss Function (Supervised Learning)

$$\blacksquare L(f(\boldsymbol{x}; \boldsymbol{w}^{(t)}), \boldsymbol{y}) + \alpha \Omega(\boldsymbol{w}^{(t)})$$

Standard Parameter Regularization (example of L^2)

Weight Decay :
$$\Omega({m w}) = rac{lpha}{2} \, \|{m w}\|_2^2$$

Introduction

- + Starting point w^0
- * Unregularized minimum
- Regularized minimum

Weight Decay in Transfer Learning

-SP Parameter Regularization

No Transfer

- + Starting point w^0
- * Unregularized minimum
- Regularized minimum

With Transfer Learning

Staring point = pretrained parameters L^2 effect => driving towards the origin Not adapted to transfer learning

Regularization with the Pretrained Model as Reference

- + Starting point w^0
- * Unregularized minimum
 - Regularized minimum

The pretrained model is used (1) as the starting point (-SP) for fine-tuning, (2) also as the reference for the parameter regularization.

$$L^2$$
-SP: $\Omega(\boldsymbol{w}) = \frac{\alpha}{2} \| \boldsymbol{w} - \boldsymbol{w}^0 \|_2^2$

Introduction

-SP Regularization For Transfer Learning

Standard Regularization L^2 (weight decay)

$$L^2: \Omega(\boldsymbol{w}) = \frac{\alpha}{2} \|\boldsymbol{w}\|_2^2$$

Regularization -SP (Starting Point)

$$L^2$$
-SP: $\Omega(w) = \frac{\alpha}{2} ||w - w^0||_2^2$

$$\blacksquare L^1 \text{-SP} : \Omega(\boldsymbol{w}) = \alpha \left\| \boldsymbol{w} - \boldsymbol{w}^0 \right\|_1$$

$$\blacksquare$$
 GL-SP: $\Omega(\boldsymbol{w}) = \alpha \sum_{g=1}^{G} s_g \left\| \boldsymbol{w}_{\mathcal{G}_g} - \boldsymbol{w}_{\mathcal{G}_g}^0 \right\|_2$

w: parameter vector to learn;

 w^0 : pretrained parameter vector;

 \mathcal{G}_a : group of parameters;

 s_q : predefined constant for balancing the groups.

Fisher Information Metric

Introduction

Estimated Fisher Information Matrix

$$\hat{F}_{jj} = \frac{1}{m} \sum_{i=1}^{m} \sum_{c=1}^{C} f_c(\boldsymbol{x}_i; \boldsymbol{w}^0) \left(\frac{\partial}{\partial w_j} \log f_c(\boldsymbol{x}_i; \boldsymbol{w}^0) \right)^2$$

- i: example index
- c: class index
- j: parameter index

Fisher information mesures the model's sensibility on the source task w.r.t. the parameters.

Regularization Approaches with Fisher information

$$lacksquare$$
 L^2 -SP-Fisher : $\Omega(oldsymbol{w}) = rac{lpha}{2} \sum_j \hat{F}_{jj} \left(w_j - w_j^0
ight)^2$

$$\blacksquare$$
 GL-SP: $\Omega(\boldsymbol{w}) = \alpha \sum_{g=1}^{G} s_g \| \boldsymbol{w}_{\mathcal{G}_g} - \boldsymbol{w}_{\mathcal{G}_g}^0 \|_2$

$$lacksquare$$
 GL-SP-Fisher : $\Omega(m{w}) = \alpha \sum_{g=1}^G s_g \Big(\sum_{j \in \mathcal{G}_q} \hat{F}_{jj} \left(w_j - w_j^0 \right)^2 \Big)^{1/2}$

Application to Image Classification – Experimental Settings

Source Datasets

- ImageNet
- Places365

Target Datasets

- Indoors67
- Dogs120
- Caltech256
- Foods101

Network Structure

ResNet-101

000000

Application to Image Classification – Experimental Results

- source : ImageNet
- source : Places365

Remarks

- -SP is always better than L^2 .
- Similarity helps transfer.
- Performances of L^1 et GL are not better than L^2 (due to the discontinuity of gradients?).
- L^2 -SP is efficient.

L^2 -SP Application to Image Semantic Segmentation

Cityscapes

Approach	L^2	$\mid L^2$ -Si
FCN	66.9	67.9
ResNet-101	68.1	68.7
DeepLab	68.6	70.4
DeepLab-COCO	72.0	73.2
PSPNet	78.2	79.4
PSPNet-extra	80.9	81.2

Pascal VOC

78.3 vs 79.9 on the validation set

image RGB

segmentation PSPNet-extra + L^2 -SP

More Experiments with L^2 -SP

Cooperation with three other research teams (Tsinghua, Amazon et Cornell)

The performances are systematically improved by L^2 -SP.

Approach	Target Data	Task	Metric	L^2	L^2 -SP
EncNet-50 ¹	PASCAL Context	image segmentation image segmentation	mloU	50.84	51.17
EncNet-101	PASCAL Context		mloU	54.10	54.12
SegFlow* ²	DAVIS	video segmentation video segmentation	loU	65.5	66.2
SegFlow	DAVIS		loU	67.4	68.0
SegFlow	Monkaa <i>Final</i>	optical flow optical flow	EPE	7.90	7.17
SegFlow	Driving <i>Final</i>		EPE	37.93	30.31
DSTL ³ DSTL DSTL DSTL DSTL DSTL DSTL	Birds200 Flowers102 Cars196 Aircraft100 Food101 NABirds	image classification image classification image classification image classification image classification image classification	accuracy accuracy accuracy accuracy accuracy	88.47 97.21 90.19 85.89 88.16 87.64	89.19 97.68 90.67 86.83 88.75 88.32

^{1.} Hang Zhang et al. "Context encoding for semantic segmentation". In: CVPR. 2018.

^{2.} Jingchun Cheng et al. "SegFlow: Joint learning for video object segmentation and optical flow". In: ICCV. 2017.

Analyses of the L^2 -SP Regularization

Introduction

Performance drops in (%) on the source task after fine-tuning

	L^2	L^2 -SP	L^2 -SP-Fisher
MIT Indoors 67	24.1	5.3	4.9
Caltech 256-30	15.4	4.2	3.6
Caltech 256-60	16.9	3.6	3.2
Stanford Dogs 120	14.1	4.7	4.2
Foods 101	68.6	64.5	53.2

Analyses of the L^2 -SP Regularization

■ Freezing first layers when fine-tuning - ResNet-101 Stanford Dogs 120

Conclusion

Conclusion

Conclusion

- weight decay in transfer learning
- use starting point (-SP) as the reference
- experiments on different tasks, with different networks
- analyses