THE BATTLE OF NEIGHBORHOODS

IDENTIFY THE PERFECT PLACE IN THE CITY OF TORONTO TO OPEN A CAFÉ

Alexander. V. Larionov April 27, 2021

INTRODUCTION

Background

- According to Wikipedia, Toronto is Canada's largest city, the administrative center of Ontario.
- It has a population of 2,731,571 (2016). Toronto is part of the Golden Fory, a densely populated region around the western part of Lake Ontario with a population of about 7 million people.
- About one third of Canada's total population lives within a 500 km radius of Toronto. About a sixth of all Canadian jobs are within the city limits.
- The city of Toronto is also known as the "economic engine" of Canada, considered one of the leading metropolises in the world and has a lot of weight both in the region and at the state and international level.
- In The Economist'sannual global quality of liferanking, which measures overall quality of life, Toronto ranks fourth in the world among 140 participating cities.

INTRODUCTION

Problem

- But where is the best place to open your own café?
- Using Foursquare location data and regional clustering, location information to determine which area in Toronto might be the "best" to open
- The cafe aims to predict the most appropriate place to open a new cafe in Toronto, Canada.

INTRODUCTION

Interest

Obviously, new entrepreneurs are very interested in accurately predicting the optimal location when deciding to buy, or rent a property when deciding to open a new café, to gain competitive advantages and business values.

The data that will be required will be a combination of CSV files that have been produced for analysis from multiple sources that will provide a list of areas in Toronto (via Wikipedia), the geographic location of the districts (via the Geocoder Package) and location data related to the cafe (via Foursquare).

First, we need to extract data from data

	Postal Code	Borough	Neighborhood
0	МЗА	North York	Parkwoods
1	M4A	North York	Victoria Village
2	M5A	Downtown Toronto	Regent Park, Harbourfront
3	M6A	North York	Lawrence Manor, Lawrence Heights
4	M7A	Queen's Park	Ontario Provincial Government
5	M9A	Etobicoke	Islington Avenue
6	M1B	Scarborough	Malvern, Rouge
7	МЗВ	North York	Don Mills North
8	M4B	East York	Parkview Hill, Woodbine Gardens
9	M5B	Downtown Toronto	Garden District, Ryerson
10	M6B	North York	Glencairn
11	M9B	Etobicoke	West Deane Park, Princess Gardens, Martin Grov
12	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek
13	M3C	North York	Don Mills South
14	M4C	East York	Woodbine Heights

The Wikipedia website, as shown above, provides almost all information about neighborhoods. Including the postcode, the district and the name of the districts present in Toronto. Because the data is not in a format suitable for analysis, the data was cleaned from this site

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	M1B	Scarborough	Malvern, Rouge	43.806686	-79.194353
1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497
2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711
3	M1G	Scarborough	Woburn	43.770992	-79.216917
4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476
5	M1J	Scarborough	Scarborough Village	43.744734	-79.239476
6	M1K	Scarborough	Kennedy Park, Ionview, East Birchmount Park	43.727929	-79.262029
7	M1L	Scarborough	Golden Mile, Clairlea, Oakridge	43.711112	-79.284577
8	M1M	Scarborough	Cliffside, Cliffcrest, Scarborough Village West	43.716316	-79.239476
9	M1N	Scarborough	Birch Cliff, Cliffside West	43.692657	-79.264848
10	M1P	Scarborough	Dorset Park, Wexford Heights, Scarborough Town	43.757410	-79.273304
11	M1R	Scarborough	Wexford, Maryvale	43.750072	-79.295849

Geographical Location data.

Second source of data provided (https://cf-courses-data.s3.us.cloud-object-

storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-

SkillsNetwork/labs v1/Geospatial Coordinates.csv)

us with geographical coordinates of areas with appropriate postcodes. Because the CSV file, attaching it to the Pandas data frame was easy

GEOGRAPHICAL LOCATION DATA.

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Malvern, Rouge	43.806686	-79.194353	Wendy's	43.807448	-79.199056	Fast Food Restaurant
1	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497	Royal Canadian Legion	43.782533	-79.163085	Bar
2	Guildwood, Morningside, West Hill	43.763573	-79.188711	RBC Royal Bank	43.766790	-79.191151	Bank
3	Guildwood, Morningside, West Hill	43.763573	-79.188711	G & G Electronics	43.765309	-79.191537	Electronics Store
4	Guildwood, Morningside, West Hill	43.763573	-79.188711	Sail Sushi	43.765951	-79.191275	Restaurant
5	Guildwood, Morningside, West Hill	43.763573	-79.188711	Big Bite Burrito	43.766299	-79.190720	Mexican Restaurant
6	Guildwood, Morningside, West Hill	43.763573	-79.188711	Enterprise Rent-A-Car	43.764076	-79.193406	Rental Car Location
7	Guildwood, Morningside, West Hill	43.763573	-79.188711	Krispy Kreme Doughnuts	43.767169	-79.189660	Donut Shop
8	Guildwood, Morningside, West Hill	43.763573	-79.188711	Woburn Medical Centre	43.766631	-79.192286	Medical Center
9	Guildwood, Morningside, West Hill	43.763573	-79.188711	Lawrence Ave E & Kingston Rd	43.767704	-79.189490	Intersection
10	Guildwood, Morningside, West Hill	43.763573	-79.188711	Eggsmart	43.767800	-79.190466	Breakfast Spot
11	Woburn	43 770992	-79 216917	Starbucks	43 770037	-79 221156	Coffee Shop

	name	categories	lat	Ing
0	Dairy Queen	Ice Cream Shop	43.710378	-79.290701
1	Warden Ave & St. Clair Ave E	Intersection	43.712057	-79.281005
2	TTC Bus #68 Warden	Bus Line	43.711778	-79.279714
3	Warden Station Bus Loop	Bus Station	43.711241	-79.279576
4	TTC Bus 102 Markham Road	Bus Line	43.711381	-79.279588

Location data using Foursquare

The location, name and category of various sites in Toronto was collected using the Foursquare explore API.

To get the data, you needed to create an account where it provided a "Secret Key" as well as a "Customer ID" that would allow me to retrieve any data.

You can see that the neighborhoods are grouped around the neighborhood, so clustering data is further simplified.

Once all the data has been collected and placed in the data frame, the analysis process must be cleaned and merged.

After, the venue data pulled from the Foursquare API was merged with the table above providing us with the local venue within a 500-meter radius shown below.

GEOGRAPHICAL LOCATION DATA.

Oshawa Now after cleansing the data, the next step was to analyze it.

We then created a map using folium and color coded each Neighborhood depending on what Borough it was located in.

to_merged['Venue Category'].value_counts()['Café']

5]: 93

Next, we used the Foursquare API to get a list of all the Venues in Toronto which included Parks, Schools, Café Shops, Asian Restaurants etc. Getting this data was crucial to analyzing the number of Italian Restaurants all over Toronto.

There was a total of 93 cafe in Toronto.

We then merged the Foursquare Venue data with the Neighborhood data which then gave us the nearest Venue for each of the Neighborhoods.

Venue Category	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	Neighborhood	
Fast Food Restaurant	-79.199056	43.807448	Wendy's	-79.194353	43.806686	Malvern, Rouge	0
Bar	-79.163085	43.782533	Royal Canadian Legion	-79.160497	43.784535	Rouge Hill, Port Union, Highland Creek	1
Bank	-79.191151	43.766790	RBC Royal Bank	-79.188711	43.763573	Guildwood, Morningside, West Hill	2
Electronics Store	-79.191537	43.765309	G & G Electronics	-79.188711	43.763573	Guildwood, Morningside, West Hill	3
Restaurant	-79.191275	43.765951	Sail Sushi	-79.188711	43.763573	Guildwood, Morningside, West Hill	4
Mexican Restaurant	-79.190720	43.766299	Big Bite Burrito	-79.188711	43.763573	Guildwood, Morningside, West Hill	5
Rental Car Location	-79.193406	43.764076	Enterprise Rent-A-Car	-79.188711	43.763573	Guildwood, Morningside, West Hill	6
Donut Shop	-79.189660	43.767169	Krispy Kreme Doughnuts	-79.188711	43.763573	Guildwood, Morningside, West Hill	7
Medical Center	-79.192286	43.766631	Woburn Medical Centre	-79.188711	43.763573	Guildwood, Morningside, West Hill	8
Intersection	-79.189490	43.767704	Lawrence Ave E & Kingston Rd	-79.188711	43.763573	Guildwood, Morningside, West Hill	9
Breakfast Spot	-79.190466	43.767800	Eggsmart	-79.188711	43.763573	Guildwood, Morningside, West Hill	10

Then to analyze the data we performed a technique in which Categorical Data is transformed into Numerical Data for Machine Learning algorithms. This technique is called One hot encoding. For each of the neighborhoods, individual venues were turned into the frequency at how many of those Venues were located in each neighborhood.

	Neighborhood	Accessories Store	Adult Boutique	Airport	Airport Food Court	Airport Gate	Airport Lounge	Airport Service	Airport Terminal	American Restaurant	Antique Shop	Aquarium	Art Gallery	Art Museum	Arts & Crafts Store	Asian Restaurant	
0	Malvern, Rouge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	Rouge Hill, Port Union, Highland Creek	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	Guildwood, Morningside, West Hill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	Guildwood, Morningside, West Hill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	Guildwood, Morningside, West Hill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

	Neighborhood	Café
0	Agincourt	0.000000
1	Alderwood, Long Branch	0.000000
2	Bathurst Manor, Wilson Heights, Downsview North	0.000000
3	Bayview Village	0.250000
4	Bedford Park, Lawrence Manor East	0.045455
5	Berczy Park	0.016949
6	Birch Cliff, Cliffside West	0.250000

After, we created a new data frame which only stored the Neighborhood names as well as the mean frequency of Cafe in that Neighborhood. This allowed the data to be summarized based on each individual Neighborhood and made the data much simpler to analyze.

To make the analysis more interesting, we wanted to cluster the neighborhoods based on the neighborhoods that had similar averages of Café in that Neighborhood. To do this we used K-Means clustering.

To get our optimum K value that was neither overfitting or underfitting the model, we used the Elbow Point Technique. In this technique we ran a test with different number of K values and measured the accuracy and then chose the best K value. The best K value is chosen at the point in which the line has a sharpest turn.

In our case we had the Elbow Point at K = 4.

That means we will have a total of 4 clusters.

	Neighborhood	Café	Cluster Labels
0	Agincourt	0.000000	0
1	Alderwood, Long Branch	0.000000	0
2	Bathurst Manor, Wilson Heights, Downsview North	0.000000	0
3	Bayview Village	0.250000	3
4	Bedford Park, Lawrence Manor East	0.045455	2
5	Berczy Park	0.016949	3
6	Birch Cliff, Cliffside West	0.250000	3
7	Brockton, Parkdale Village, Exhibition Place	0.136364	3
8	CN Tower, King and Spadina, Railway Lands, Har	0.000000	0
9	Caledonia-Fairbanks	0.000000	0
10	Cedarbrae	0.000000	0
11	Central Bay Street	0.049180	2

	Neighborhood	Café	Cluster Labels	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Agincourt	0.0	0	43.794200	-79.262029	Panagio's Breakfast & Lunch	43.792370	-79.260203	Breakfast Spot
35	Forest Hill North & West	0.0	0	43.696948	-79.411307	Kay Gardner Beltline Trail	43.698446	-79.406873	Trail
35	Forest Hill North & West	0.0	0	43.696948	-79.411307	Forest Hill Road Park	43.697945	-79.406605	Park
35	Forest Hill North & West	0.0	0	43.696948	-79.411307	Nikko Sushi Japenese Restaurant	43.700443	-79.407957	Sushi Restaurant
35	Forest Hill North & West	0.0	0	43.696948	-79.411307	Oliver jewelry	43.700374	-79.407644	Jewelry Store

In K-Means clustering, objects that are similar based on a certain variable are put into the same cluster. Neighborhoods that had similar mean frequency of Italian Restaurants were divided into 4 clusters. Each of these clusters were labelled from 0 to 3 as the indexing of labels begin with 0 instead of 1.

Then we created a map using the Folium package in Python and each neighborhood was colored based on the cluster label. For example, cluster 1 was purple and cluster 2 was aquamarine.

The map above shows the different clusters that had similar mean frequency of Café.

ANALYSIS

1]: 0 66 3 12 1 11 2 10

cafe['Cluster Labels'].value_counts()

We have a total of 4 clusters (0,1,2,3). Before we analyze them one by one lets check the total amount of neighborhoods in each cluster and the average café in that cluster.

From the bar graph that was made using Matplotlib, we can compare the number of Neighborhoods per Cluster. We see that Cluster 1 has the least neighborhoods (1)

while cluster 0 has the most (66). Cluster 3 has 12 neighborhoods, cluster 1 - 11 and cluster 2 has only 10. Then we compared the average Café per cluster.

Therefore, the ordering of the average Café in each cluster goes as follows:

- 1. Cluster 0 (≈0.012987)
- 2. Cluster 2 (≈0.031250)
- 3. Cluster 1 (≈0.049180)
- 4. Cluster 3 (≈0.063830)

ANALYSIS

	Borough	Neighborhood	Café	Cluster Labels
500	Downtown Toronto	Church and Wellesley	0.012987	0
512	Downtown Toronto	Church and Wellesley	0.012987	0
514	Downtown Toronto	Church and Wellesley	0.012987	0
515	Downtown Toronto	Church and Wellesley	0.012987	0
516	Downtown Toronto	Church and Wellesley	0.012987	0
517	Downtown Toronto	Church and Wellesley	0.012987	0
518	Downtown Toronto	Church and Wellesley	0.012987	0
519	Downtown Toronto	Church and Wellesley	0.012987	0
520	Downtown Toronto	Church and Wellesley	0.012987	0
521	Downtown Toronto	Church and Wellesley	0.012987	0
522	Downtown Toronto	Church and Wellesley	0.012987	0
523	Downtown Toronto	Church and Wellesley	0.012987	0

:		Borough	Neighborhood	Café	Cluster Labels
	0	Downtown Toronto	Central Bay Street	0.049180	1
	1	Downtown Toronto	Central Bay Street	0.049180	1
	2	Downtown Toronto	Central Bay Street	0.049180	1
	3	Downtown Toronto	Central Bay Street	0.049180	1
	4	Downtown Toronto	Central Bay Street	0.049180	1
	5	Downtown Toronto	Central Bay Street	0.049180	1
	6	Downtown Toronto	Central Bay Street	0.049180	1
	7	Downtown Toronto	Central Bay Street	0.049180	1
	8	Downtown Toronto	Central Bay Street	0.049180	1
	9	Downtown Toronto	Central Bay Street	0.049180	1
	10	Downtown Toronto	Central Bay Street	0.049180	1
	11	Downtown Toronto	Central Bav Street	0.049180	1

df_cluster1['Venue Category'].value_counts(ascending=False)['Café']

3]:		Borough	Neighborhood	Café	Cluster Labels
	0	Queen's Park	Ontario Provincial Government	0.031250	2
	1	Queen's Park	Ontario Provincial Government	0.031250	2
	2	Queen's Park	Ontario Provincial Government	0.031250	2
	3	Queen's Park	Ontario Provincial Government	0.031250	2
	4	Queen's Park	Ontario Provincial Government	0.031250	2
	5	Queen's Park	Ontario Provincial Government	0.031250	2
	6	Queen's Park	Ontario Provincial Government	0.031250	2
	7	Queen's Park	Ontario Provincial Government	0.031250	2
	8	Queen's Park	Ontario Provincial Government	0.031250	2
	9	Queen's Park	Ontario Provincial Government	0.031250	2
	10	Queen's Park	Ontario Provincial Government	0.031250	2
	11	Queen's Park	Ontario Provincial Government	0.031250	2
df_	cluste	r2['Venue Category'].valu	e_counts(ascending=False)['Ca	fé']	

1]: 18

	Borough	Neighborhood	Café	Cluster Labels
0	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
1	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
2	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
3	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
4	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
5	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
6	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
7	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
8	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
9	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
10	Downtown Toronto	Regent Park, Harbourfront	0.063830	3
11	Downtown Toronto	Regent Park, Harbourfront	0.063830	3

: 29

DISCUSSION

Most of the Café are in cluster 3, represented by "darkkhaki" clusters.

Areas located in the Downtown Toronto area, which have the highest average level of Café Regent Park, Harbourfront and St. James Town. In spite of what is in the cluster of 0 huge number of districts, café are almost non-existent. Looking To nearby establishments, the optimal place to host a new café is in the city centre Toronto, as there are many areas in the area, but virtually no café, that excludes any competition.

Having 66 districts in the area without Italian restaurants provides a good opportunity for opening a new café . Some of the drawbacks of this analysis are that clustering based entirely on data from the Foursquare API. And only the geographical location of similar establishments is considered.

This sums up the initial conclusions for this project and recommends that the entrepreneur think about opening cafes in these places with little or no competition.

CONCLUSION

Finally, to complete this project, we had the opportunity to solve a business problem, and it was solved in a way that a real data scientist would.

We've used multiple Python libraries to extract information, manage content, and break and visualize these datasets.

We used the Foursquare API to study the settings in the Toronto area, and we got a lot of data from Wikipedia that we collected using the Beautifulsoup Web Scraper Library.

We have also visualized the use of different graphs present in seaborn and matplotlib libraries.

Similarly, we used the AI strategy to anticipate the error, taking into account the information, and used Folium to map it.

Places that are there to improve or certain shortcomings give us the opportunity to further improve this project with the help of additional information and the distinctive machine of the Learning Strategy.

In addition, we can use this venture to investigate any situation, such as opening an alternative kitchen or opening a movie theater and so on.

CONCLUSION

Достижение месячного предела обработки

Вы приближаетесь к пределу возможностей использования обработки в этом месяце. Когда вы достигнете предела, можно обновить план или подождать до следующего месяца.

Узнайте, как выполнить обновление.

Reaching the monthly processing limit

Закрыть

You're nearing the limit of processing capabilities this month. When you reach the limit, you can update your plan or wait until next month.

In a more serious analysis, with sufficient resources, computing power and funding, additional analysis is needed in the final decision, taking into account, among other things:

Popularity of the supposed place of opening of cafes among locals and tourists (the number of daily flow of people in this place)

Transport logistics

Cost of rent or cost of property purchase

- Local law (opportunity to sell alcoholic beverages)
- ✓ Income level of residents living in the area
- crime rate in the immediate vicinity,
- ✓ And many other factors.