# Lecture7: Diode circuit & small-signal analysis

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

## PN junction

Exponential model

$$I_D = I_s \left( \exp \frac{V_D}{V_T} - 1 \right)$$

- Constant-voltage model
  - An "offset" voltage of  $V_{D,on}$

#### Rectifier

- Analyze it!
  - When  $V_{in} < V_{D,on}$ ?
  - When  $V_{in} > V_{D,on}$ ?



#### **Simulation result**

• Example)  $I_S = 0.5$  fA and  $R_1 = 1 \text{ k}\Omega$ 





## Time-varying voltage source

• For example,  $V_{in}(t) = 3\sin(2\pi ft)$  V. 60 Hz. 10 periods



#### Introducing a capacitor

- Difference from the previous one?
  - First, consider the DC case.
  - Remember that  $I_C = C_1 \frac{d}{dt} V_{out}$ .



#### Qualitative understanding (1)

- Consider the first period.
  - When the input voltage exceeds  $V_{D,on}$ , the diode is turned on.
  - The charge is stored in the capacitor. Hence, the output voltage increases.
  - When the input voltage is lower than  $V_{D,on}$ , the output voltage does not change. (*Why?*)

## Qualitative understanding (2)

- After the first period...
  - In the second period, the diode current is smaller than the one in the first period. (Why?)
  - After some periods, the diode current vanishes.
  - A DC output voltage is established.

#### Simulation result

• The capacitance,  $C_1 = 1 \mu F$ .



#### Simple math

- Taylor series expansion
  - Consider a function, f(x).
  - Then, at  $x_0 + \Delta x$  ( $\Delta x$  is small.), the function value would be similar to that at  $x_0$ :

$$f(x_0 + \Delta x) \approx f(x_0)$$

– A better approximation?

$$f(x_0 + \Delta x) \approx f(x_0) + \frac{df(x)}{dx} \Big|_{x=x_0} \Delta x$$

Nonlinear function → linearly approximated!

#### Nonlinear system

• A diode: Input  $V_D$ , output  $I_D$ 

$$I_D \longrightarrow I_D = I_S \exp \frac{V_D}{V_T} \longrightarrow I_D$$

• When  $V_{in} = 0.6 + 0.3 \sin 2\pi f t$ ,



#### Small input amplitude

- When  $V_{in} = 0.6 + 0.001 \sin 2\pi f t$ ,
  - $I_D$  is almost sinusoidal.



#### **Small-signal analysis**

General case

$$V_{D,DC} + v_{D,AC}(t) \longrightarrow I_D = I_S \exp \frac{V_D}{V_T} \longrightarrow I_{D,DC} + i_{D,AC}(t)$$

- "Small-signal" case
  - When  $v_{D,AC}(t)$  is small, then, the AC current is given by

$$i_{D,AC}(t) \approx I_{D,DC} \frac{v_{D,AC}(t)}{V_T}$$

$$v_{D,AC}(t) \longrightarrow I_{D,AC}(t) = I_{D,DC} \frac{v_{D,AC}(t)}{V_T} \longrightarrow i_{D,AC}(t)$$

#### Application to a diode

- Small-signal resistance
  - As far as small changes in the diode current and voltage are concerned, the device behaves as a linear resistor.

$$r_d = \frac{V_T}{I_D}$$

When the small change in the diode voltage is time-varying,

$$I_D(t) = I_S \exp \frac{V_{D,DC} + \Delta V \cos \omega t}{V_T} = I_S \exp \frac{V_{D,DC}}{V_T} \exp \frac{\Delta V \cos \omega t}{V_T}$$
$$I_D(t) \approx I_{D,DC} \left(1 + \frac{\Delta V \cos \omega t}{V_T}\right)$$

– The output current has the same frequency!