Cryptography for Blockchain

Prof. James Won-Ki Hong

Distributed Processing & Network Management Lab.

Dept. of Computer Science and Engineering

POSTECH

http://dpnm.postech.ac.kr jwkhong@postech.ac.kr

Table of Contents

- Cryptographic Hash Functions
- Hash Pointers and Data Structures
- Basic Cryptography
- Digital Signature

Cryptographic Hash Functions (1/4)

- Hash function
 - 1) Message Digest
 - Take any string as input (i.e., any string of any size)
 - Always produce a fixed-size output
 - One-way function

Cryptographic Hash Functions (2/4)

- Hash function
 - 2) Collision-free
 - Nobody can find x and y such that x!=y and H(x)=H(y)
 (If H(x) = H(y), it's safe to assume that x=y)
 - When the input changes, the output also changes

Cryptographic Hash Functions (3/4)

- Hash function
 - 3) Hiding(Asymmetry)
 - Y=H(X) and given Y, it is infeasible to find X
 - Ex) multiplication

mul(8*9) = 72

Easy to calculate

Find $x,y = 72 \rightarrow (x,y) = (1,72),(2,36),(3,24)...$ Too many cases

Cryptographic Hash Functions (4/4)

Kinds of Hash Functions

- SHA (Secure Hash Algorithm)
 - **SHA-1**
 - less than 2^64 bits input
 - Produces 160 bit output
 - SHA-256
 - Used in Bitcoin
 - Produces 256 bit output
- Keccak 256
 - Produces 256 bit output
 - Used in Ethereum
 - The first 96 bits are discarded and only the last 160 bits are used

Hash Pointers and Data Structures (1/2)

- What is Hash Pointer?
 - Pointer to where some information is stored

- Why the Hash Pointer is used?
 - For asking to get the information back
 - For verifying that the information hasn't changed

Hash Pointers and Data Structures (2/2)

- Linked list with Hash pointers
 - Each block has a hash pointer to the previous block in the list
 - Detecting tampering

Basic Cryptography (1/2)

- Symmetric Key Algorithm
 - One symmetric key

• Example: 3DES, AES

Basic Cryptography (2/2)

- Asymmetric Key Algorithm
 - Asymmetric Key
 - Private Key & Public Key
 - Public key Encryption

Example: RSA

Digital Signatures (1/5)

- What is Digital Signature?
 - Techniques for realizing functions in the computer that correspond to seal imprint or sign on the document
- What we want from Digital Signatures
 - No forgery
 - Authentication
 - No re-use
 - Unchangeable
 - Non-repudiation

Digital Signatures (2/5)

- Basic for Digital Signatures
 - Use a pair of Private key & Public key
 - Signing
 - Only you can sign with Private Key
 - Verification
 - Anyone can verify with Public Key
 - Hash of Original message
 - Size reduction
 - Message integrity

Digital Signatures (3/5)

- Process of Digital Signatures
 - Signing

Digital Signatures (4/5)

- Process of Digital Signatures
 - Verification

Digital Signatures (5/5)

- API for digital signatures
 - (sk, pk) := generateKeys(keysize)
 - sk: secret signing key
 - pk: public verification key
 - sig := sign(sk, message)
 - isValid := verify(pk, message, sig)

Summary

- Cryptographic Hash function
 - Produce fixed size output
 - Collision free
 - Hiding
- Hash pointers and data structures
- Basic Cryptography
- Digital signature
 - Signing
 - Verification

References

- https://www.coursera.org/learn/cryptocurrency/lecture/gFEJL/cryptogra phic-hash-functions
- https://www.youtube.com/watch?v=lik9aaFIsI4
- https://en.wikipedia.org/wiki/Encryption
- https://en.wikipedia.org/wiki/Digital_signature
- http://www.parkjonghyuk.net/lecture/modernCrypto/lecturenote/chap09.
 pdf