Bài 1 : Xét dấu các tam thức bậc hai:

a) $5x^2 - 3x + 1$; b) $-2x^2 + 3x + 5$ c) $x^2 + 12x + 36$; d) (2x - 3)(x + 3)

5)

Lời giải

a) $f(x) = 5x^2 - 3x + 1$ có $\Delta = 9 - 20 = -11 < 0$ và có hệ số a = 5 > 0 nên f(x) $> 0 \ \forall x \in R$

b)
$$f(x) = -2x^2 + 3x + 5$$
 $code \Delta = 9 + 40 = 49$

Tam thức có hai nghiệm phân biệt $x_1 = -1$; $x_2 = 5/2$

Ta có bảng xét dấu:

Vậy
$$f(x) > 0 \Leftrightarrow x \in (-1; 5/2)$$

$$f(x) = 0 \Leftrightarrow x = -1$$
; $x = 5/2$

$$f(x) < 0 \Leftrightarrow x \in (-\infty; -1) \cup (5/2; +\infty)$$

c)
$$f(x) = x^2 + 12x + 36$$
 có $\Delta = 0$ nên có một nghiệm là $x = -6$

Ta có bảng xét dấu:

Vậy
$$f(x) > 0 \Leftrightarrow x ≠ -6$$

$$f(x) = 0 \Leftrightarrow x = -6$$

(hoặc có thể phân tích $f(x) = (x + 6)^2 \ge 0 \ \forall x \in \mathbb{R}$)

d)
$$f(x) = (2x - 3)(x + 5)$$
 có hai nghiệm phân biệt $x_1 = 3/2$; $x_2 = -5$

Ta có bảng xét dấu:

Vậy
$$f(x) > 0 \Leftrightarrow x \in (-\infty; -5)$$

$$f(x) = 0 \Leftrightarrow x = -5$$
; $x = 3/2$

$$f(x) < 0 \Leftrightarrow x \in (-5; 3/2)$$

Bài 2 : Lập bảng xét dấu các biểu thức sau:

a)
$$f(x) = (3x^2 - 10x + 3)(4x - 5)$$

b)
$$f(x) = (3x^2 - 4x)(2x^2 - x - 1)$$

c)
$$f(x) = (4x^2 - 1)(-8x^2 + x - 30)(2x + 9)$$

d)
$$f(x) = \frac{(3x^2 - x)(3 - x^2)}{4x^2 + x - 3}$$

Lời giải

a)
$$f(x) = (3x^2 - 10x + 3)(4x - 5)$$

Bảng xét dấu:

x	-∞	$\frac{1}{3}$	1//	$\frac{5}{4}$		3	+∞
$3x^2 - 10x + 3$	+	0	-		-	0	+
4x - 5	-	311	_	0	+		+
f(x)		0	+	0	-	0	+

Vậy: $f(x) > 0 \Leftrightarrow x \in (1/3; 5/4) \cup x \in (3; +∞)$

$$f(x) = 0 \Leftrightarrow x = 1/3; 5/4; 3$$

$$f(x) < 0 \Leftrightarrow x \in (-\infty; 1/3) \cup x \in (5/4; 3)$$

b)
$$f(x) = (3x^2 - 4x)(2x^2 - x - 1) = x(3x - 4)(2x^2 - x - 1)$$

Bảng xét dấu:

x	-∞ -	$\frac{1}{2}$	0		1		$\frac{4}{3}$	+∞
х	7-	-	0	+		+		+
3x - 4	-	-		-	E	-	0	+
$2x^2-x-1$	+	0 -		=	0	+		+
f(x)	+	0 -	0	+	0	-	0	+

Vậy: $f(x) > 0 \Leftrightarrow x \in (-\infty; -1/2) \cup x \in (0; 1) \cup x \in (4/3; +\infty)$

$$f(x) = 0 \Leftrightarrow x = -1/2; 0; 1; 4/3$$

$$f(x) < 0 \Leftrightarrow x \in (-1/2; 0) \cup x \in (1; 4/3)$$

c)
$$f(x) = (4x^2 - 1)(-8x^2 + x - 30)(2x + 9)$$

Bảng xét dấu:

x	-∞	$-\frac{9}{2}$		$-\frac{1}{2}$		$\frac{1}{2}$	+∞
$4x^2 - 1$	+		+	0	-	0	+
$-8x^2 + x - 3$	_		=		-		, j ~
2x + 9	_	0	+		+		+
f(x)	+	0	-	0	+	0	/

Vậy: $f(x) > 0 \Leftrightarrow x \in (-\infty; -9/2) \cup x \in (-1/2; 1/2)$

$$f(x) = 0 \Leftrightarrow x = -9/2; -1/2; 1/2$$

$$f(x) < 0 \Leftrightarrow x \in (-9/2; -1/2) \cup x \in (1/2; +\infty)$$

d)
$$f(x) = \frac{(3x^2 - x)(3 - x^2)}{4x^2 + x - 3}$$

Bảng xét dấu:

x		√3 -1	1 0	$\frac{1}{3}$	$\frac{3}{4}$	√3	+∞
x	-	-	- 0	+	+	+	+
3x - 1	-	-	-	- 0	+	+	+
$3 - x^2$	-	0 +	+	+	+	+ () –
$4x^2 + x - 3$	+	+ () –	-	- 0) +	+
f(x)	-	0 +	- 0	+ () –	+ () -

Vậy: $f(x) > 0 \Leftrightarrow x \in (-\sqrt{3}; -1) \cup x \in (0; 1/3) \cup x \in (3/4; \sqrt{3})$

$$f(x) = 0 \Leftrightarrow x = \pm \sqrt{3}; 0; 1/3$$

$$f(x) < 0 \Leftrightarrow x \in (-\infty; -\sqrt{3}) \cup x \in (-1; 0) \cup x \in (1/3; 3/4) \cup x \in (\sqrt{3}; +\infty)$$

Bài 3: Giải các bất phương trình sau

a)
$$4x^2 - x + 1 < 0$$

b)
$$-3x^2 + x + 4 \ge 0$$

$$\frac{1}{x^2 - 4} < \frac{3}{3x^2 + x - 4}$$

d)
$$x^2 - x - 6 \le 0$$

Lời giải

a)
$$4x^2 - x + 1 < 0$$

Xét $f(x) = 4x^2 - x + 1$ có: $\Delta = 1 - 16 = -15 < 0$ và a = 4 > 0 nên f(x) > 0 ∀x ∈ R

Vậy bất phương trình đã cho vô nghiệm.

(Hoặc ta có: $4x^2 - x + 1 = (2x)^2 - 2.2x.1/4 + 1/16 + 15/16 = (2x - 1/4)^2 + 15/16 > 0 \ \forall x \in \mathbb{R}$)

b)
$$-3x^2 + x + 4 \ge 0$$

Xét $f(x) = -3x^2 + x + 4$ có hai nghiệm phân biệt: $x_1 = -1$; $x_2 = 4/3$

Ta có bảng xét dấu:

Nên $f(x) > 0 \Leftrightarrow x \in (-1, 4/3)$

$$f(x) = 0 \Leftrightarrow x = -1; x = 4/3$$

Vậy tập nghiệm của bất phương trình là: T = [-1; 4/3]

$$\frac{1}{x^2-4} < \frac{3}{3x^2+x-4}$$

$$\Rightarrow \frac{3x^2 + x - 4 - 3x^2 + 12}{(x^2 - 4)(3x^2 + x - 4)} < 0$$

$$\Rightarrow f(x) = \frac{x + 8}{(x^2 - 4)(3x^2 + x - 4)} < 0$$

Bảng xét dấu:

Nên
$$f(x) < 0 \Leftrightarrow x \in (-\infty; -8) \cup (-2; 4/3) \cup (1; 2)$$

Vậy tập nghiệm của bất phương trình là: T = (-∞; -8) ∪ (-2; 4/3) ∪ (1; 2)

d)
$$x^2 - x - 6 \le 0$$

Xét $f(x) = x^2 - x - 6$ có hai nghiệm phân biệt: $x_1 = -2$; $x_2 = 3$

Bảng xét dấu:

x	-∞	-2		3		+∞
f(x)	+	0	-	0	+	

Nên
$$f(x) < 0 \Leftrightarrow x \in (-2; 3)$$
 và $f(x) = 0 \Leftrightarrow x = -2; x = 3$

Vậy tập nghiệm của bất phương trình là: T = [-2; 3]

Bài 4 :Tìm các giá trị của tham số m để các phương trình sau vô nghiệm

a)
$$(m - 2)x^2 + 2(2m - 3)x + 5m - 6 = 0$$

b)
$$(3 - m)x^2 - 2(m + 3)x + m + 2 = 0$$

Lời giải

a) Đặt
$$f(x) = (m - 2)x^2 + 2(2m - 3)x + 5m - 6$$

- Nếu m -
$$2 = 0 \Leftrightarrow m = 2$$
 khi đó phương trình $f(x) = 0$ trở thành:

$$2x + 4 = 0 \Leftrightarrow x = -2$$
 hay phương trình có một nghiệm

Do đó m = 2 không phải là giá trị cần tìm.

- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:

$$\Delta' = (2m - 3)^2 - (m - 2)(5m - 6)$$

$$= 4m^2 - 12m + 9 - 5m^2 + 6m + 10m - 12$$

$$= -m^2 + 4m - 3 = (-m + 3)(m - 1)$$

Phương trình f(x) = 0 vô nghiệm khi và chỉ khi $\Delta' < 0$

$$\Leftrightarrow (-m+3)(m-1)<0 \Leftrightarrow m\in (-\infty;1)\cup (3;+\infty)$$

Vậy với m ∈ $(-\infty; 1) \cup (3; +\infty)$ thì phương trình vô nghiệm.

b) Đặt
$$f(x) = (3 - m)x^2 - 2(m + 3)x + m + 2$$

- Nếu 3 - m = 0 \Leftrightarrow m = 3 khi đó phương trình f(x) = 0 trở thành:

 $-6x + 5 = 0 \Leftrightarrow x = 5/6$ là nghiệm của phương trình.

Do đó m = 3 không phải là giá trị cần tìm.

- Nếu 3 - m ≠ 0 ⇔ m ≠ 3 ta có:

$$\Delta' = (m + 3)^2 - (3 - m)(m + 2)$$

$$= m^2 + 6m + 9 - 3m - 6 + m^2 + 2m$$

$$= 2m^2 + 5m + 3 = (2m + 2)(m + 3/2)$$

Phương trình f(x) = 0 vô nghiệm khi và chỉ khi $\Delta' < 0$

$$\Leftrightarrow$$
 $(2m + 2)(m + 3/2) < 0 \Leftrightarrow $m \in (-3/2; -1)$$

Vậy với m ∈ (-3/2; -1) thì phương trình vô nghiệm.