SSD feature map 选择解析

陈继科 (/u/4b16c099ba4b) + 关注

2016.11.03 19:26 字数 288 阅读 1685 评论 11 喜欢 2

(/u/4b16c099ba4b)

针对不同的物体大小(Object Scales),传统的方法将图像转化成不同的大小,分别处理然后把结果综合。

这里ssd从不同的卷积层利用featuremap,可以达到同样的效果

生成预测的方法

如下图所示:

ssd-feature map.png

最左侧是选取的神经网络中的一个"图像"层

每个层做3个处理:

- (1) 生成loc预测,厚度4 x box
- (2) 生成类别预测,厚度21(类别) x box
- (3) 生成priorbox,这里面有个box大小范围、宽长比(23)等等

1 of 8 10/11/17, 9:37 AM

```
prior_box_param {
    min_size: 276.0
    max_size: 330.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: true
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
}
```

ssd实例说明

(1)基本网络

Layer name	"图像"规格
input	3x300x300
conv1_1	64x300x300
conv1_2	64x300x300
pool_1	64x150x150
conv2_1	128x150x150
conv2_2	128x150x150
pool_2	128x75x75
conv3_1	256x75x75
conv3_2	256x75x75
conv3_3	256x75x75
pool_3	256x38x38
conv4_1	512x38x38
conv4_2	512x38x38
conv4_3	512x38x38
pool_4	5121919
conv5_1	512x19x19
conv5_2	512x19x19
conv5_3	512x19x19
	VGG昏割线
fc6(convolution kernel dilation)	1024x19x19
fc7	1024x19x19
conv6_1	256x19x19

Layer name	"图像"规格
conv6_2	512x10x10
conv7_1	128x10x10
conv7_2(10-3+1*2)/2+1	256x5x5
conv8_1	128x5x5
conv8_2	256x3x3
pool6	25611

选取提取特征的层

Layer name	"图像"规格	特征生成	特征说明
conv4_3	512x38x38	mbox-loc conv	38x38x12(=3x4)
		mbox-conf conv	38x38x63(=3x21)
		prior-box	box min:30
fc7	1024x19x19	mbox-loc conv	19x19x24(=6x4)
		mbox-conf conv	19x19x126(=6x21)
		prior-box	box min:60 max:114
conv6_2	512x10x10	mbox-loc conv	10x10x24(=6x4)
		mbox-conf conv	10x10x126(=6x21)
		prior-box	box min:114 max:168
conv7_2	256x5x5	mbox-loc conv	5x5x24(=6x4)
		mbox-conf conv	5x5x126(=6x21)
		prior-box	box min:168 max:222
conv8_2	256x3x3	mbox-loc conv	3x3x24(=6x4)
		mbox-conf conv	3x3x126(=6x21)
		prior-box	box min:222 max:276
pool_6	256x1x1	mbox-loc conv	1x1x24(=6x4)
		mbox-conf conv	1x1x126(=6x21)
		prior-box	box min:276 max:330

Detection nums(e.g. 3 or 6) Loc & label conf

所以对一张图一共提供:

38x38x3+(19x19+10x10+5x5+3x3+1x1)x6=7308个detection 每个detection包括4个值表示位置和21个值表示每个类的概率

为了实现ssd,原生的caffe是不行的

要定义新层:

Normalize

Permute

MultiBoxLoss等

一篇定义新层的方法如下所示:

http://blog.csdn.net/kuaitoukid/article/details/41865803 (http://blog.csdn.net/kuaitoukid/article/details/41865803)

设计feature map

已知一个神经网络,选特定层,再后面加:

```
layer {
 name: "conv6_2_mbox_loc"
 type: "Convolution"
 bottom: "conv6_2"
 top: "conv6_2_mbox_loc"
 param {
  lr_mult: 1
   decay_mult: 1
 }
 param {
  lr_mult: 2
   decay_mult: 0
 convolution_param {
   kernel_size: 3
   stride: 1
   weight_filler {
    type: "xavier"
   }
   bias_filler {
    type: "constant"
    value: 0
 }
}
layer {
 name: "conv6_2_mbox_loc_perm"
 type: "Permute"
 bottom: "conv6_2_mbox_loc"
 top: "conv6_2_mbox_loc_perm"
 permute_param {
  order: 0
   order: 2
   order: 3
   order: 1
 }
}
layer {
 name: "conv6_2_mbox_loc_flat"
 type: "Flatten"
 bottom: "conv6_2_mbox_loc_perm"
 top: "conv6_2_mbox_loc_flat"
 flatten_param {
   axis: 1
 }
layer {
 name: "conv6_2_mbox_conf"
 type: "Convolution"
 bottom: "conv6_2"
 top: "conv6_2_mbox_conf"
 param {
  lr_mult: 1
  decay_mult: 1
 }
 param {
   lr_mult: 2
   decay_mult: 0
 convolution_param {
```

```
kernel_size: 3
   stride: 1
   weight_filler {
    type: "xavier"
   bias_filler {
    type: "constant"
    value: 0
   }
 }
}
layer {
 name: "conv6_2_mbox_conf_perm"
 type: "Permute"
 bottom: "conv6_2_mbox_conf"
 top: "conv6_2_mbox_conf_perm"
 permute_param {
  order: 0
  order: 2
   order: 3
   order: 1
 }
}
layer {
 name: "conv6_2_mbox_conf_flat"
 type: "Flatten"
 bottom: "conv6_2_mbox_conf_perm"
 top: "conv6_2_mbox_conf_flat"
 flatten_param {
  axis: 1
 }
layer {
 name: "conv6_2_mbox_priorbox"
 type: "PriorBox"
 bottom: "conv6_2"
 bottom: "data"
 top: "conv6_2_mbox_priorbox"
 prior_box_param {
   max_size: 168.0
   aspect_ratio: 2
   aspect_ratio: 3
   flip: true
   clip: true
   variance: 0.1
   variance: 0.1
   variance: 0.2
   variance: 0.2
 }
}
```

■ 深度学习 (/nb/6967882)

举报文章 © 著作权归作者所有

	(/u/4b16	陈继科 (/u/4b16c099ba4b) 写了 27353 字,被 20 人关注,获得了 17 个喜欢 GC099ba4b)	十 关注
复旦大学微电子本科生	复旦大学	学微电子本科生	

如果觉得我的文章对您有用,请随意赞赏。您的支持将鼓励我继续创作!

赞赏支持

♡ 喜	喜欢 (/sign_in?utm_sourc	ce=desktop&utm_medium=not-signed-in-like-button)
		全 6 国 多分享
		(http://cwb.assets.jianshu.io /notes
		/images
		登录 (/sign后废表评论source=1663340620utm_medium=not-signed-in-
		/image_867f9af05a7c.jpg)
() = \ \	(== " +i	
条评论	只看作者)	按喜欢排序 按时间正序 按时间倒序
We 2楼 70309 牧一下 仍然是	kernel size=2 , stride=2 , pa	经过pool_3得到38*38的呢?网络结构中这一步的p
We 2楼 (70309 次一下 仍然是 赞 \(\bigcup \)	· 2017.03.14 11:56 Øb24b6d6) , 从conv3_3的75*75是如何组 kernel size=2, stride=2, pa 回复 (/u/4b16c099ba4b): @WendyC 内,即并不是矩阵加0变大,而是 下尽也没关系,只是它拿来做poo	经过pool_3得到38*38的呢?网络结构中这一步的p
We 2楼 170309 (70309 下)	· 2017.03.14 11:56 9b24b6d6) , 从conv3_3的75*75是如何约 kernel size=2 , stride=2 , pa 回复 (/u/4b16c099ba4b): @WendyC 均,即并不是矩阵加0变大,而是	经过pool_3得到38*38的呢?网络结构中这一步的p ad=0的呀 Cui (/users/70309b24b6d6) caffe中pad 0是通过offset的方 如果pad0则边缘用来pool的数据少于kernel的大小,所以
We 2楼 /70309 次一下 是	· 2017.03.14 11:56 Øb24b6d6) , 从conv3_3的75*75是如何组 kernel size=2, stride=2, pa 回复 (/u/4b16c099ba4b): @WendyC 内,即并不是矩阵加0变大,而是 下尽也没关系,只是它拿来做poo 14 12:11 口 回复	经过pool_3得到38*38的呢?网络结构中这一步的p ad=0的呀 Cui (/users/70309b24b6d6) caffe中pad 0是通过offset的方 如果pad0则边缘用来pool的数据少于kernel的大小,所以
We _{2楼} /70309 牧一下 仍然是 赞 ^[2] 陈继科 京进使除 2017.03.	· 2017.03.14 11:56 Øb24b6d6) , 从conv3_3的75*75是如何组 kernel size=2, stride=2, pa 回复 (/u/4b16c099ba4b): @WendyC 内,即并不是矩阵加0变大,而是 下尽也没关系,只是它拿来做poo 14 12:11 口 回复	经过pool_3得到38*38的呢?网络结构中这一步的pad=0的呀 Qui (/users/70309b24b6d6) caffe中pad 0是通过offset的方如果pad0则边缘用来pool的数据少于kernel的大小,所以可的数据少了,具体可以看下caffe源码
We _{2楼} /70309 牧一下 奶然是 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等 等	· 2017.03.14 11:56 Øb24b6d6) , 从conv3_3的75*75是如何经 kernel size=2, stride=2, pa 回复 (/u/4b16c099ba4b): @WendyC 內,即并不是矩阵加0变大,而是 下尽也没关系,只是它拿来做poo 14 12:11 口 回复 Cui (/u/70309b24b6d6): 那没有	经过pool_3得到38*38的呢?网络结构中这一步的pad=0的呀 Qui (/users/70309b24b6d6) caffe中pad 0是通过offset的方如果pad0则边缘用来pool的数据少于kernel的大小,所以可的数据少了,具体可以看下caffe源码

小酒房_arcc、3楼·2017.05.08 15:30 小酒窝_a753 (/u/86333112903c)

(/u/86333112903c) 你好,请问PriorBox层中box的最大最小size是如何计算的,而且它还有一个参数step, 请问你知道它表示什么吗?

△ 赞 □ 回复

陈继科 (/u/4b16c099ba4b): @小酒窝_a753 (/users/86333112903c) feature map从前往后检测的box从小到达,有一点的经验成分在里面,同时你也可以参考两层3*3结合对感受面积的变化(9-25)
2017.05.08 15:46
陈继科 (/u/4b16c099ba4b): @小酒窝_a753 (/users/86333112903c) Priorbox里好像没有step呀 2017.05.08 15:48 🔘 回复
小酒窝_a753 (/u/86333112903c): @陈继科 (/users/4b16c099ba4b) gitub上开源的代码运行ssd _pascal.py文件生成的网络文件train.prototxt中就有,和ssd_pascal.py文件中的step相对应。这个step和min_size,max_size的计算问题我已经弄懂啦,谢谢你的回复 2017.05.10 22:18
▲ 添加新评论

喻茸sophie (/u/4224a1c10d55)

4楼 · 2017.07.17 16:15

(/u/4224a1c10d55) 最近在看ssd,发现居然是你写的,哈哈,厉害

☆ 赞 □ 回复