1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По лабораторной работе №1

По курсу: «Анализ алгоритмов»

Тема: «Расстояния Левенштейна и Дамерау-Левенштейна»

Студент: Пронин А. С.

Группа: ИУ7-52Б

Преподаватель: Власова Л. Л.

Оценка: ____

Москва

Содержание

Введение			3	
1	Аналитический раздел			
	1.1	Расстояние Левенштейна	4	
	1.2	Расстояние Дамерау-Левенштейна	5	
	1.3	Применение	6	
2	Кон	нструкторский раздел	7	
	2.1	Разработка алгоритмов	7	
3	В Технологический раздел		8	
4	4 Исследовательский раздел		9	
Заключение			10	
\mathbf{C}_{1}	Список использованных источников			

Введение

Цель работы – получить навык динамического программирования. **Задачи работы:**

- изучить расстояния Левенштайна
- изучить расстояния Дамерау-Левенштайна
- разработать алгоритм вычисления расстояния:
 - Левенштейна обычным способом (матричным)
 - Левенштейна рекурсивным способом
 - Левенштейна рекурсивным способом с кэшированием
 - Дамерау-Левенштейна обычным способом (матричным)
- реализовать алгоритмы.
- провести сравнительный анализ процессорного времени выполнения реализации алгоритмов.
- провести анализ пикового значения затрачиваемой памяти в программе

1 Аналитический раздел

1.1 Расстояние Левенштейна

Расстояние Левенштейна (базовый вид редакторского расстояния) – это минимальное количество редакций необходимое для превращения одной строки в другую.

Редакторские операции бывают:

- I (insert) вставка
- D (delete) удаление
- R (replace) замена

У этих трёх операций штраф = 1. Еще одна операция:

• M (Match) – совпадение

Эта операция не имеет штрафа (он равен нулю).

Пусть s1 и s2— две строки (длиной M и N соответственно) над некоторым афвалитом, тогда редакционное расстояние (расстояние Левенштейна) d(s1, s2) можно подсчитать по следующей рекуррентной

формуле:

$$|x| = \begin{cases} 0, \text{ если } i = 0, j = 0; \\ i, \text{ если } i > 0, j = 0; \\ j, \text{ если } i = 0, j > 0; \\ D(s1[1 \dots i], s2[1 \dots j - 1]) + 1 \\ D(s1[1 \dots i - 1], s2[1 \dots j]) + 1 \\ D(s1[1 \dots i - 1], s2[1 \dots j]) + \begin{bmatrix} 0, s1[i] == s2[j] \\ 1, \text{ иначе} \end{bmatrix} \end{cases}$$

1.2 Расстояние Дамерау-Левенштейна

Вводится дополнительна операция: перестановка или транспозиция двух букв со штрафом 1. Если индексы позволяют и если две соседние буквы $s1[i] = s2[j-1] \wedge s1[i-1] = s2[j]$, то в минимум включается перестановка.

Пусть s1 и s2— две строки (длиной M и N соответственно) над некоторым афвалитом, тогда редакционное расстояние (расстояние Дамерау-Левенштейна) d(s1, s2) можно подсчитать по следующей рекуррентной

формуле:

$$|x| = \begin{cases} 0, \text{если } i = 0, j = 0; \\ i, \text{если } i > 0, j = 0; \\ j, \text{если } i = 0, j > 0; \\ \\ min \begin{cases} D(s1[1 \dots i-1], s2[1 \dots j]) + 1 \\ D(s1[1 \dots i-1], s2[1 \dots j-1]) + \begin{bmatrix} 0, s1[i] == s2[j] \\ 1, \text{иначе} \end{bmatrix} \end{cases}, \\ D(s1[0 \dots i-2], s2[0 \dots j-2]) + 1 \\ \text{если } i > 1, j > 1, s1[i-1] = s2[j-2], s1[i-2] = s2[j-1] \\ \\ min \begin{cases} D(s1[1 \dots i], s2[1 \dots j-1]) + 1 \\ D(s1[1 \dots i-1], s2[1 \dots j]) + 1 \\ D(s1[1 \dots i-1], s2[1 \dots j]) + 1 \\ D(s1[1 \dots i-1], s2[1 \dots j]) + 1 \\ D(s1[1 \dots i-1], s2[1 \dots j]) + 1 \end{cases}, \text{иначе} \end{cases}$$

1.3 Применение

Расстояние Левенштейна и его обобщения активно применяются:

- при автозамене
- в поисковых строках
- "возможно вы имели ввиду"
- В биоинформатика (кодируем молекулы буквами)

2 Конструкторский раздел

2.1 Разработка алгоритмов

В разделе представлены схемы следующих алгоритмов вычисления расстояния:

- Левенштейна обычным способом (матричным)
- Левенштейна рекурсивным способом
- Левенштейна рекурсивным способом с кэшированием
- Дамерау-Левенштейна обычным способом (матричным)

3 Технологический раздел

4 Исследовательский раздел

Заключение

Список использованных источников