année scolaire 2022-2023

 ${\bf Professeur}: Zakaria\ Haouzan$

Devoir N°2 Établissement : Lycée SKHOR qualifiant

Filière Tronc Commun Scientifique Durée 2h00

Duree 2nuu

Chimie 7pts - 36min
Le modèle de l'atome(7pts)
L'atome de sodium Na contient 23 nucléons et 11 électrons. Données : $m_p=m_n=1,7.10^{-27}kg$, $1pm=10^{-12}m$, $1m^3=10^6cm^3$
1. Déterminer le numéro atomique de cet atome(1pt)
2. Donner le symbole de cet atome
3. Calculer la masse de cet atome
4. Calculer le nombre des atomes de sodium contenus dans un échantillon de sodium de masse $m=23,20g$. (2pts)
5. Le rayon de l'atome de sodium est $r = 190pm$, calculer son volume exprimé en m^3 et cm^3 (1pt)
6. Donner la formule électronique de cet atome . la couche externe est-elle saturée justifier votre réponse. $(1\mathrm{pt})$
Physique 13pts - 84min
Les parties sont indépendantes
Exercice 1 : Le mouvement
vitesses respectivement $V_A = 72Km.h^{-1}$ et $V_B = 108Km.h^{-1}$. sens du mouvement 300m A l'instant $t = 0$ la voiture B est à $300m$ derrière la voiture A. On choisit la position O, la position de la voiture A à l'instant $t = 0$; comme origine des abscisses et des dates.
1. Convertir la valeur de V_A et V_B en $m.s^{-1}$ (1pt)
2. Ecrire l'équation horaire du mouvement de chacune des voitures (A) et (B) sur l'axe (Ox) (1pt)
3. Déterminer l'instant t et l'abscisse x du doublage de la voiture (A) par la voiture (B) (1pt)
Partie 2 : Le Mouvement de l'autoporteur(5 pts)
raisie 2. Le mouvement de radioporteur

M₁ M₂ M₃ M₄ M₅ M₆ M₇

On enregistre les positions occupées par un point A du mobile à intervalle de temps $\tau = 40ms$. On obtient

Un mobile autoporteur S, de masse m, glisse sur un plan horizontal.

l'enregistrement suivant :

1. Calculer la vitesse instantanée V_2 et V_4 respectivement en M_2 et M_4 (1pt)
2. Déterminer la nature du mouvement du mobile, justifier
3. Représentez V_2 en utilisant l'échelle de votre choix
4. On considère M_2 l'origine des abscisses et M_1 l'origine des dates, déterminer l'équation horaire du mouvement(1pt)
5. Calculer la distance parcourus par l'autoporteur (S) durant 3s
Exercice 2 : Principe d'inertie (5pts) - 36 min
Partie 1 : Vérification du concept d'inertie (2,5pts)
Un corps (S) se déplace sur un rail composé de 3 parties. On lance ce corps du point A avec une vitesse $V_A = 1m/s$, et arrive au point D avec une vitesse $V_D = 2m/s$. On considère que le contact se fait sans frottement.
1. Faire l'inventaire des forces appliquées sur le corps (S), et représenter ces forces sur la figure pour chaque partie
2. Déterminer la partie où le principe d'inertie n'est pas vérifié(0,5pt)
3. Quelle est la valeur de la vitesse du corps (S) au point B, et au point C ? justifier votre réponse. (1pt)
Partie 2 : Le centre d'inertie
Deux sphères (A) et (B) de masses respectives $m_1=1kg$ et $m_2=3kg$ et de centres d'inertie respectives G_1 et G_2 qui sont séparés par la distance $d=40cm$. Ces deux sphères sont liées rigidement et constitue un système comme l'indique la figure ci-contre.
1. Rappeler la relation barycentrique
2. Déterminer le centre d'inertie G de ce solide
3. Une plaque homogène et d'épaisseur constante, et formée d'une partie carrée et de côté $a=4cm,$ et d'une partie triangulaire équilatérale.
Sachant que la masse de la partie triangulaire est 3 fois plus légère que la masse de la partie carrée.
déterminer la position du centre de masse de la plaque homogène par application d'une méthode de votre choix
4.8

