Computer arithmetic

Victor Eijkhout

Fall 2019

Justification

This short session will explain the basics of floating point arithmetic, mostly focusing on round-off and its influence on computations.

Numbers in scientific computing

- Integers: ..., -2, -1, 0, 1, 2, ...
- Rational numbers: 1/3,22/7: not often encountered
- Real numbers $0, 1, -1.5, 2/3, \sqrt{2}, \log 10, ...$
- Complex numbers $1 + 2i, \sqrt{3} \sqrt{5}i, \dots$

Computers use a finite number of bits to represent numbers, so only a finite number of numbers can be represented, and no irrational numbers (even some rational numbers).

Bit operations

	boolean	bitwise (C)	bitwise (Py)
and	& &	&	&
or			
not	!		~
xor		^	

Bit string operations:

left shift	<<
right shift	>>

Exercise 1: Bit operations

Use bit operations to test whether a number is odd or even.

Integers

Scientific computation mostly uses real numbers. Integers are mostly used for array indexing.

16/32/64 bit: short, int, long, long long in C, size not standardized, use sizeof(long) et cetera. (Also unsigned int et cetera)

INTEGER*2/4/8 Fortran, also KIND

Exercise 2: Powers of two

Print 2^n for n = 0, ..., 31. There are at least two ways of generating these powers.

Also print the bit pattern. What is unexpected?

Negative integers

Use of sign bit: typically first bit

Simplest solution:
$$n > 0$$
, rep $(n) = 0, i_1, \dots i_{31}$, then

$$\operatorname{rep}(-n)=1,i_1,\ldots i_{31}$$

Problem: +0 and -0; also impractical in other ways.

Sign bit

bitstring	000	 01 · · · 1	100	 111
as unsigned int	0	 $2^{31} - 1$	2 ³¹	 $2^{32}-1$
as naive signed	0	 $2^{31}-1$	-0	 $-2^{31}+1$

Shifting

Interpret unsigned number n as n - B

bitstring	00 · · · 0	 01 · · · 1	100	 11 · · · 1
as unsigned int	0	 $2^{31} - 1$	2 ³¹	 $2^{32}-1$
as shifted int	-2^{31}	 -1	0	 $2^{31} - 1$

2's Complement

Let m be a signed integer, then the 2's complement 'bit pattern' $\beta(m)$ is a non-negative integer defined as follows:

• If $0 \le m \le 2^{31} - 1$, the normal bit pattern for m is used, that is

$$0 \leq m \leq 2^{31} - 1 \Rightarrow \beta(m) = m.$$

• For $-2^{31} \le n \le -1$, n is represented by the bit pattern for $2^{32} - |n|$:

$$-2^{31} \leq n \leq -1 \Rightarrow \beta(m) = 2^{32} - |n|.$$

Bit pattern to integer: $\eta = \beta^{-1}$.

2's complement visualized

bitstring	000	 01 · · · 1	100	 11 · · · 1
as unsigned int	0	 $2^{31} - 1$	2 ³¹	 $2^{32}-1$
as 2's comp. integer	0	 $2^{31}-1$	-2^{31}	 -1

Addition in 2's complement

More

Add m+n, where m, n are representable:

$$0 \leq |m|, |n| < 2^{31}.$$

The easy case is 0 < m, n, as long as there is no overflow.

Addition in 2's complement (cont'd)

Case m > 0, n < 0, and m + n > 0. Then $\beta(m) = m$ and $\beta(n) = 2^{32} - |n|$, so the unsigned addition becomes

$$\beta(m) + \beta(n) = m + (2^{32} - |n|) = 2^{32} + m - |n|.$$

Since m - |n| > 0, this result is $> 2^{32}$.

However, this is basically m+n with the overflow bit set.

Subtraction in 2's complement

Subtraction m-n:

- Case: m < n. Observe that -n has the bit pattern of $2^{32} n$. Also, $m + (2^{32} n) = 2^{32} (n m)$ where $0 < n m < 2^{31} 1$, so $2^{32} (n m)$ is the 2's complement bit pattern of m n.
- Case: m > n. The bit pattern for -n is $2^{32} n$, so m + (-n) as unsigned is $m + 2^{32} n = 2^{32} + (m n)$. Here m n > 0. The 2^{32} is an overflow bit; ignore.

Overflow

There is a limited number of bits, so numbers that are too large in absolute value can not be represented.

Overflow.

This is not a fatal error: your program continues with the wrong result.

Exercise 3: Integer overflow

Investigate what happens when you perform an integer calculation that leads to overflow. What does your compiler say if you try to write down a nonrepresentible number explicitly, for instance in a declaration or assignment statement?

Floating point numbers

Analogous to scientific notation $x = 6.022 \cdot 10^{23}$:

$$x = \pm \sum_{i=0}^{t-1} d_i \beta^{-i} \beta^e$$

- sign bit
- β is the base of the number system
- 0 ≤ d_i ≤ β − 1 the digits of the mantissa:
 one digit before the radix point, so mantissa < β
- $e \in [L, U]$ exponent, stored with bias: unsigned int where fl(L) = 0

Examples of floating point systems

	β	t	L	U
IEEE single (32 bit)	2	24	-126	127
IEEE double (64 bit)	2	53	-1022	1023
Old Cray 64bit	2	48	-16383	16384
IBM mainframe 32 bit	16	6	-64	63
packed decimal	10	50	-999	999

BCD is tricky: 3 decimal digits in 10 bits

(we will often use $\beta=10$ in the examples, because it's easier to read for humans, but all practical computers use $\beta=2$)

Internal processing in 80 bit

Limitations

Overflow: more than $\beta(1-\beta^{-t+1})\beta^U$ or less than $\beta(1-\beta^{-t+1})\beta^L$

Underflow: numbers less than $\beta^{-t+1} \cdot \beta^L$

Exercise 4: Floating point overflow

For real numbers
$$x, y$$
, the quantity $g = \sqrt{(x^2 + y^2)/2}$ satisfies

$$g \le \max\{|x|,|y|\}$$

so it is representable if x and y are. What can go wrong if you compute g using the above formula? Can you think of a better way?

The normalization problem

Do we allow

$$1.100 \cdot 10^0$$
, $0.110 \cdot 10^1$, $0.011 \cdot 10^2$?

This makes testing for equality hard.

Solution: normalized numbers have one nonzero before the radix point.

Normalized floating point numbers

Require first digit in the mantissa to be nonzero.

Equivalent: mantissa part $1 \le x_m < \beta$

Unique representation for each number,

also: in binary this makes the first digit 1, so we don't need to store that

(do you see a problem?)

With normalized numbers, underflow threshold is $1 \cdot \beta^L$; 'gradual underflow' possible, but usually not efficient.

IEEE 754, 32-bit

sign	exponent	mantissa
s	$e_1 \cdots e_8$	$s_1 \dots s_{23}$
31	30 · · · 23	22…0

$(e_1 \cdots e_8)$	numerical value
$(0\cdots 0)=0$	$\pm 0.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 01)=1$	$\pm 1.s_1 \cdots s_{23} \times 2^{-126}$
$(0\cdots 010)=2$	$\pm 1.s_1 \cdots s_{23} \times 2^{-125}$
(011111111) = 127	$\pm 1.s_1 \cdots s_{23} \times 2^0$
(10000000) = 128	$\pm 1.s_1 \cdots s_{23} \times 2^1$
(111111110) = 254	$\pm 1.s_1 \cdots s_{23} \times 2^{127}$
(111111111) = 255	$\pm\infty$ if $s_1\cdots s_{23}=0$, otherwise <code>NaN</code>

Other precisions

- There is a 64-bit format, with 53 bits mantissa.
- IEEE envisioned a sliding scale of precisions: see Intel 80-bit registers
- Half precision, and recent invention bfloat16

Representation error

Error between number x and representation \tilde{x} :

absolute
$$x - \tilde{x}$$
 or $\left| x - \tilde{x} \right|$ relative $\frac{x - \tilde{x}}{x}$ or $\left| \frac{x - \tilde{x}}{x} \right|$

Equivalent:
$$\tilde{x} = x \pm \varepsilon \Leftrightarrow |x - \tilde{x}| \le \varepsilon \Leftrightarrow \tilde{x} \in [x - \varepsilon, x + \varepsilon]$$
.

Also:
$$\tilde{x} = x(1+\varepsilon)$$
 often shorthand for $\left|\frac{\tilde{x}-x}{x}\right| \leq \varepsilon$

Example

Decimal, t = 3 digit mantissa: let x = 1.256, $\tilde{x}_{round} = 1.26$, $\tilde{x}_{truncate} = 1.25$

Error in the 4th digit: $|\epsilon| < \beta^{t-1}$ (this example had no exponent, how about if it does?)

Exercise 5: Round-off

The number $e \approx 2.72$, the base for the natural logarithm, has various definitions. One of them is

$$e = \lim_{n \to \infty} (1 + 1/n)^n.$$

Write a single precision program that tries to compute e in this manner. Evaluate the expression for an upper bound $n = 10^k$ with k = 1, ..., 10. Explain the output for large n. Comment on the behaviour of the error.

Machine precision

Any real number can be represented to a certain precision:

$$\tilde{x} = x(1+\varepsilon)$$
 where truncation: $\varepsilon = \beta^{-t+1}$ rounding: $\varepsilon = \frac{1}{2}\beta^{-t+1}$

This is called *machine precision*: maximum relative error.

32-bit single precision:
$$mp \approx 10^{-7}$$
 64-bit double precision: $mp \approx 10^{-16}$

Maximum attainable accuracy.

Another definition of machine precision: smallest number ϵ such that $1+\epsilon>1$.

Exercise 6: Machine epsilon

Write a small program that computes the machine epsilon for both single and double precision. Does it make any difference if you set the *compiler optimization levels* low or high?

(For C++ programmers: can you write a templated program that works for single and double precision?)

Addition

- 1. align exponents
- 2. add mantissas
- 3. adjust exponent to normalize

Example: $1.00 + 2.00 \times 10^{-2} = 1.00 + .02 = 1.02$. This is exact, but what happens with $1.00 + 2.55 \times 10^{-2}$?

Example:
$$5.00 \times 10^{1} + 5.04 = (5.00 + 0.504) \times 10^{1} \rightarrow 5.50 \times 10^{1}$$

Any error comes from limiting the mantissa: if x is the true sum and \tilde{x} the computed sum, then $\tilde{x} = x(1+\varepsilon)$ with $|\varepsilon| < 10^{-2}$

The 'correctly rounded arithmetic' model

Assumption (enforced by IEEE 754):

The numerical result of an operation is the rounding of the exactly computed result.

$$\mathrm{fl}(x_1\odot x_2)=(x_1\odot x_2)(1+\varepsilon)$$

where
$$\odot = +, -, *, /$$

Note: this holds only for a single operation!

Guard digits

Correctly rounding is not trivial, especially for subtraction.

Example:
$$t = 2, \beta = 10$$
: $1.0 - 9.5 \times 10^{-1}$, exact result $0.05 = 5.0 \times 10^{-2}$.

Simple approach:

$$1.0 - 9.5 \times 10^{-1} = 1.0 - 0.9 = 0.1 = 1.0 \times 10^{-1}$$

• Using 'guard digit':

$$1.0 - 9.5 \times 10^{-1} = 1.0 - 0.95 = 0.05 = 5.0 \times 10^{-2}$$
, exact.

In general 3 extra bits needed.

Fused Mul-Add instructions

$$a \leftarrow a * b + c$$
 or $c \leftarrow a * b + c$

- Addition plus multiplication, but not independent
- Processors can have dedicated hardware for FMA (also IEEE 754-2008)
- Internally evaluated in higher precision: 80-bit.
- Very useful for certain linear algebra (which?) Not for other operations (examples?)

Computate 4+6+7 in one significant digit.

Evaluation left-to-right gives:

$$\begin{array}{c} \left(4\cdot10^0+6\cdot10^0\right)+7\cdot10^0 \Rightarrow 10\cdot10^0+7\cdot10^0 & \text{addition} \\ & \Rightarrow 1\cdot10^1+7\cdot10^0 & \text{rounding} \\ & \Rightarrow 1.0\cdot10^1+0.7\cdot10^1 & \text{using guard digit} \\ & \Rightarrow 1.7\cdot10^1 \\ & \Rightarrow 2\cdot10^1 & \text{rounding} \end{array}$$

On the other hand, evaluation right-to-left gives:

$$\begin{array}{lll} 4\cdot 10^0 + \left(6\cdot 10^0 + 7\cdot 10^0\right) \Rightarrow 4\cdot 10^0 + 13\cdot 10^0 & \text{addition} \\ & \Rightarrow 4\cdot 10^0 + 1\cdot 10^1 & \text{rounding} \\ & \Rightarrow 0.4\cdot 10^1 + 1.0\cdot 10^1 & \text{using guard digit} \\ & \Rightarrow 1.4\cdot 10^1 \\ & \Rightarrow 1\cdot 10^1 & \text{rounding} \end{array}$$

Error propagation under addition

Let
$$s = x_1 + x_2$$
, and $x = \tilde{s} = \tilde{x}_1 + \tilde{x}_2$ with $\tilde{x}_i = x_i(1 + \varepsilon_i)$

$$\tilde{x} = \tilde{s}(1 + \varepsilon_3)$$

$$= x_1(1 + \varepsilon_1)(1 + \varepsilon_3) + x_2(1 + \varepsilon_2)(1 + \varepsilon_3)$$

$$= x_1 + x_2 + x_1(\varepsilon_1 + \varepsilon_3) + x_2(\varepsilon_2 + \varepsilon_3)$$

$$\Rightarrow \tilde{x} = s(1 + 2\varepsilon)$$

⇒ errors are added

Assumptions: all ε_i approximately equal size and small; $x_i > 0$

Multiplication

- 1. add exponents
- 2. multiply mantissas
- 3. adjust exponent

Example:

$$.123 \times .567 \times 10^{1} = .069741 \times 10^{1} \rightarrow .69741 \times 10^{0} \rightarrow .697 \times 10^{0}.$$

What happens with relative errors?

Subtraction

Correct rounding only applies to a single operation.

Example: $1.24 - 1.23 = 0.01 \rightarrow 1. \times 10^{-2}$: result is exact, but only one significant digit.

What if 1.24 = fl(1.244) and 1.23 = fl(1.225)? Correct result 1.9×10^{-2} ; almost 100% error.

- Cancellation leads to loss of precision
- subsequent operations with this result are inaccurate
- this can not be fixed with guard digits and such
- ullet \Rightarrow avoid subtracting numbers that are likely close.

ABC-formula

Example: $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

suppose b > 0 and $b^2 \gg 4ac$ then the '+' solution will be inaccurate

Better: compute $x_- = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ and use $x_+ \cdot x_- = -c/a$.

First we dig into bits Serious example

Evaluate $\sum_{n=1}^{10000} \frac{1}{n^2} = 1.644834$ more in 6 digits: machine precision is 10^{-6} in single precision

First term is 1, so partial sums are \geq 1, so $1/n^2 < 10^{-6}$ gets ignored, \Rightarrow last 7000 terms (or more) are ignored, \Rightarrow sum is 1.644725: 4 correct digits

Solution: sum in reverse order; exact result in single precision Why? Consider ratio of two terms:

$$\frac{n^2}{(n-1)^2} = \frac{n^2}{n^2 - 2n + 1} = \frac{1}{1 - 2/n + 1/n^2} \approx 1 + \frac{2}{n}$$

with aligned exponents:

$$n-1$$
: $.00 \cdots 0$ | $10 \cdots 00$
 n : $.00 \cdots 0$ | $10 \cdots 01$ | $0 \cdots 0$
 $k = \log(n/2)$ positions

The last digit in the smaller number is not lost if $n < 2/\epsilon$

First we dig into bits

Another serious example

Previous example was due to fifte representation; this example is more due to algorithm itself.

Consider
$$y_n = \int_0^1 \frac{x^n}{x-5} dx = \frac{1}{n} - 5y_{n-1}$$
 (monotonically decreasing) $y_0 = \ln 6 - \ln 5$.

In 3 decimal digits:

computation		correct result
$y_0 = \ln 6 - \ln 5 = .182 322 \times 10^1 \dots$		1.82
$y_1 = .900 \times 10^{-1}$.884
$y_2 = .500 \times 10^{-1}$.0580
$y_3 = .830 \times 10^{-1}$	going up?	.0431
$y_4 =165$	negative?	.0343

Reason? Define error as $\tilde{y}_n = y_n + \varepsilon_n$, then

$$\tilde{y}_n = 1/n - 5\tilde{y}_{n-1} = 1/n + 5n_{n-1} + 5\varepsilon_{n-1} = y_n + 5\varepsilon_{n-1}$$

so $\varepsilon_n \geq 5\varepsilon_{n-1}$: exponential growth.

Stability of linear system solving

Problem: solve Ax = b, where b inexact.

$$A(x + \Delta x) = b + \Delta b$$
.

Since Ax = b, we get $A\Delta x = \Delta b$. From this,

$$\left\{ \begin{array}{ll}
Ax &= b \\
\Delta x &= A^{-1} \Delta b
\end{array} \right\} \Rightarrow \left\{ \begin{array}{ll}
||A|| ||x|| &\geq ||b|| \\
||\Delta x|| &\leq ||A^{-1}|| ||\Delta b||
\end{array} \right.$$

$$\Rightarrow \frac{||\Delta x||}{||x||} \leq ||A|| ||A^{-1}|| \frac{||\Delta b||}{||b||}$$

'Condition number'. Attainable accuracy depends on matrix properties

Consequences of roundoff

Multiplication and addition are not associative: problems for parallel computations.

compute $a+b+c+d$		
sequential parallel		
((a+b)+c)+d	(a+b)+(c+d)	

Operations with "same" outcomes are not equally stable: matrix inversion is unstable, elimination is stable

Exercise 7: Fixed-point iteration

Consider the iteration

$$x_{n+1} = f(x_n) = \begin{cases} 2x_n & \text{if } 2x_n < 1 \\ 2x_n - 1 & \text{if } 2x_n \ge 1 \end{cases}$$

Does this function have a fixed point, $x_0 \equiv f(x_0)$, or is there a cycle $x_1 = f(x_0)$, $x_0 \equiv x_2 = f(x_1)$ et cetera?

Now code this function and see what happens with various starting points x_0 . Can you explain this?

Complex numbers

Two real numbers: real and imaginary part.

Storage:

- Store real/imaginary adjacent: easy to pass address of one number
- Store array of real, then array of imaginary. Better for stride 1 access if only real parts are needed. Other considerations.

Other arithmetic systems

Some compilers support higher precisions.

Arbitrary precision: GMPlib

Interval arithmetic

