CSE-2019 > Paper II

5) (b) Apply Newton-Raphson method, to find a real root of transcendantal equation x log 10 x = 1.2, correct to twee decimal places.

$$\Rightarrow \text{ Let } f(x) = x \log_{10} x - 1.2$$

$$f f'(x) = \log_{10} x + 1$$

Here, f(2) = -0.0000 and f(3) = 0.23 > 0

we take No = 3

, Or	1040				, l
n	χ_n	$f(x_n)$	f'(Kn)	$h_n = -\frac{f(x_n)}{f'(x_n)}$	$\chi_{n+1} = \chi_n + h_n$
0	3	0-2300	1.4771	-0.1557	2.8443
1	2.8443	0.0912	1.4540	-0.0627	2.7816
2	2.7816	0.0358	1-4443	-0.0248	2.7568
	2.7568	0.0141	1.4404	-0.0098	2.7470
	2.7470	0.0055	1.4389	-0.0038	2.7432
5	2.7432	0.0022	1.4383	-0.0015	2.7417
6			1.4380	-0.0006	2.7411
					1 7

(d) using Runge-Kutta method of fowth order, Solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 use four decimal places for calculation and step length 0.2.

FOR
$$y(0.2) \Rightarrow x_0 = 0$$
, $y_0 = 1$, $f(x,y) = \frac{y^2 - x^2}{y^2 + x^2}$, $h = 0.2$
 $K_1 = hf(x_0, y_0) = 0.2 f(0,1) = 0.2$

$$k_2 = h f(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2})$$

= 0.2 $f(0.1, 1.1) = 0.1967$

$$K_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2})$$

= 0.2 f(0.1, 1.09835) = 0.1967

$$K_{4} = h f(x_{0} + h, y_{0} + K_{3})$$
 $= 0.2 f(0.2, 1.1967) = 0.1891$
 $\therefore J_{1} = J(0.2) = J_{0} + J_{0} +$

cue take the finitial guess as, $\chi = y = Z = 0$

 $z^{(1)} = \frac{1}{20} \left[25 - 2(8.5) + 3(-2.175) \right] \pm 0.07375$ when k=1=> $\chi^{(2)} = \frac{1}{3} \left[17 - (-2 - 175) + 2(0.0734) \right]$ = 9.6610 $y^{(2)} = \frac{1}{20} \left[-18 - 3(9.6610) + 0.07375 \right]$ = -2.3450

 $z^{(2)} = \frac{1}{20} \left[25 - 2(0.6610) + 3(-2.3450) \right]$

= -0.0680

correction
$$k=2$$
 =>
$$\chi^{(3)} = \frac{1}{2} \left[17 - (-2.3450) - 12 (-0.0680) \right]$$
= 0.6045
$$\chi^{(3)} = \frac{1}{20} \left[-18 - 3(9.6045) + 12 (-0.0680) \right]$$
= -2.3440
$$\chi^{(3)} = \frac{1}{20} \left[25 - 2(9.6045) + 3(-2.3440) \right]$$
= -0.0620
$$\frac{1}{20} \left[-18 - 3(9.6090) + 2(-0.0620) \right]$$
= -2.3440
$$\chi^{(4)} = \frac{1}{20} \left[-18 - 3(9.6090) + 0.0620 \right]$$
= -2.3440
$$\chi^{(4)} = \frac{1}{20} \left[25 - 2 \times 9.6090 \right] + 3(-2.3440) \right]$$
= -0.0630
$$\frac{1}{20} \left[-18 - 3(9.6090) + 2(-0.0630) \right]$$
= -2.3440
$$\chi^{(5)} = \frac{1}{20} \left[-18 - 3(9.6090) + (-0.0630) \right]$$
= -2.3440
$$\chi^{(5)} = \frac{1}{20} \left[-18 - 3(9.6090) + (-0.0630) \right]$$
= -2.3440
$$\chi^{(5)} = \frac{1}{20} \left[-18 - 3(9.6090) + 3(-2.3440) \right]$$
= -0.0630
$$\chi^{(5)} = \frac{1}{20} \left[-25 - 2(96090) + 3(-2.3440) \right]$$
= -0.0630
$$\chi^{(5)} = \frac{1}{20} \left[-25 - 2(96090) + 3(-2.3440) \right]$$
= -0.0630

Solution of the given system of equations.