# Summary of Chapter 1

## 1 Concepts

- population sample
- primary data secondary data
- parameter statistic
- descriptive statistics inferential statistics
- nonprobability sample probability sample
- numerical (quantitative) data categorical (qualitative) data
- time series data cross sectional data

## 2 Tools

- stem-and-leaf plot
- frequency distribution and histogram
- scatter diagram
- bar chart, pie chart, and pareto diagram



Concepts

Tools

Example

Home Page

Title Page



**→** 

Page 1 of 8

Go Back

Full Screen

Close

### 2.1. Stem-and-leaf display

Suppose that the data are represented by  $x_1, x_2, \dots, x_n$  and that each number  $x_i$  consists of at least two digits.

To construct a stem-and-leaf plot, each number  $x_i$  are divided into two parts:

- (1) a stem, consisting of one or more of the leading digits;
- (2) a leaf, consisting of the remaining digits.

The stem-and-leaf display allows us to quickly determine some important features of the data that are not obvious from the data:

- (1) shape;
- (2) central tendency or middle of the data;
- (3) spread or variability.



Concepts

Tools

Example

Home Page

Title Page





Page 2 of 8

Go Back

Full Screen

Close

### 2.2. Histogram

The histogram is a graph of the observed frequencies versus the ring diameter. It represents a visual display of the data in which one may more easily see three properties:

- (1) Shape;
- (2) Location, or central tendency;
- (3) spread or variability.

Several guidelines are helpful in constructing histograms. When the data are numerous, grouping them into bins or cells is very useful. Generally,

- 1. Use between 4 and 20 bins often choosing the number of bins approximately equal to the square root of the sample size works well.
- 2. Make the bins of uniform width.
- 3. Start the lower limit for the first bin just slightly below the smallest data value.

Note: Grouping the data into bins condenses the original data, so some detail is lost. Thus, when the number of observations is relatively small, or when the observations only take a few values, the histogram may be constructed from a frequency distribution of ungrouped data. Alternatively, a stem-and-leaf display could be used.



Concepts

Tools

Example

Home Page

Title Page





Page 3 of 8

Go Back

Full Screen

Close

## 3 Example

The data displayed here represent the electricity cost during the month of July 2003 for a random sample of 50 one-bedroom apartments in a large city.

### Raw Data on Utility Charges (\$)

| 96  | 171 | 202 | 178 | 147 | 102 | 153 | 197 | 127 | 82  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 157 | 185 | 90  | 116 | 172 | 111 | 148 | 213 | 130 | 165 |
| 141 | 149 | 206 | 175 | 123 | 128 | 144 | 168 | 109 | 167 |
| 95  | 163 | 150 | 154 | 130 | 143 | 187 | 166 | 139 | 149 |
| 108 | 119 | 183 | 151 | 114 | 135 | 191 | 137 | 129 | 158 |

- a. Place the data into an ordered array.
- b. Construct a stem-and-leaf display for these data.
- c. Plot a percentage histogram.



Concepts

Tools

Example

Home Page

Title Page





Page 4 of 8

Go Back

Full Screen

Close

### Solution using R:

Utility<- c(96,171,202,178,147,102,153,197,127,82, 157,185,90,116, 172,111,148,213,130,165,141,149,206,175,123,128,144,168,109,167, 95,163,150,154,130,143,187,166,139,149,108,119,183,151,114,135, 191,137,129,158) —— save the data in an array

SortUtility<- sort(Utility) —— sort the array into an ordered array

SortUtility —— list the ordered array

stem(Utility) — function 'stem()' create a stem-and-leaf display

hist(Utility) —— function 'hist()' create a histogram



Concepts

Tools

Example

Home Page

Title Page





Page 5 of 8

Go Back

Full Screen

Close

#### Outputs:

#### R RGui

文件 编辑 其他 程序包 窗口 帮助







Concepts

Tools

Example

Home Page

Title Page

44 >>



Page 6 of 8

Go Back

Full Screen

Close

#### The Chinese University of Hong Kong

```
> stem(Utility)
The decimal point is 1 digit(s) to the right of the |
```

```
8 | 2056

10 | 2891469

12 | 378900579

14 | 1347899013478

16 | 356781258

18 | 35717

20 | 263
```

Concepts

Tools

Example

Home Page

Title Page





Page 7 of 8

Go Back

Full Screen

Close

#### R RGui

#### 文件 历史 重设大小 窗口







Concepts

Tools

Example

Home Page

Title Page





Page 8 of 8

Go Back

Full Screen

Close