## 10 Qüestions de TEORIA (6 punts) . Puntuació: BÉ:+0.6 punts. MAL: -0.15 punts, N.C: 0

- 1. En el circuit de la figura i suposant V = 2V i  $V\gamma = 0.7V$  per al díode, es pot **AFIRMAR** que:
  - [A] Si la tensió d'entrada (Vi) és positiva, el díode condueix i la tensió d'eixida (Vo) és 2V
  - [B] Si la tensió d'entrada (Vi) és menor que +2.7V, l'eixida Vo és igual a Vi, perquè no hi ha caiguda de potencial en R.
  - [C] Si la tensió d'entrada (Vi) és negativa, el díode no condueix i la tensió d'eixida (Vo) és 0V.
  - [D] Quan la tensió d'entrada (Vi) és positiva i major que +2.7V, el díode condueix i l'eixida Vo és igual a Vi.



- 2. Donat el circuit de la figura amb díodes LED, indique quina de les següents afirmacions és **CORRECTA**, tenint en compte que per als LED,  $V_{LED}$ =1.5V i  $I_{LED}$ =15mA, i per a la porta NAND,  $V_{OL}$ =0.15V i  $V_{OH}$ =4.5V ( $V_{CC}$  = 5V).
  - [A] En el nivell lògic alt d'eixida, els LED brillaran adequadament amb una resistència R major de 100Ω.
  - [B] En el nivell lògic baix d'eixida, els LED brillaran adequadament amb una resistència R menor de  $200\Omega$ .
  - [C] En el nivell lògic alt d'eixida, els LED brillaran adequadament amb una resistència R de  $100\Omega$ .
  - [D] Los LED no arribaran a brillar per a cap dels nivells lògics d'eixida de la porta NAND.



- 3. Par al circuit amb díodes de la figura i suposant que A = "0" (0V) i B = "1" (5V), assenyale l'afirmació **CORRECTA**, considerant  $V\gamma = 0.7V$  per ambdós díodes:
  - [A]  $V_{AK} = -4.3V$  per al díode amb entrada B.
  - [B] La tensió d'eixida S és de 5V.
  - [C] Es tracta d'una porta OR de dos entrades.
  - [D] El corrent que circula per la resistència es reparteix per els 2 díodes.



- 4. Al voltant de les característiques del transistor MOSFET, assenyale l'afirmació FALSA.
- [A] Permeten una alta densitat d'integració, adequada per als circuits VLSI.
- [B] Presenten un alt consum.
- [C] Presenten una alta impedància d'entrada.
- [D] Son unipolars i simètrics.

- 5. En el circuit amb transistor de la figura, i per a les dades que s'indiquen, assenyale l'afirmació **FALSA**. Dades:  $\beta$  = 100, VBE(ON) = 0.7V, VCE(SAT) = 0.2V
  - [A] Quan  $V_i = 2.7$ , la  $V_{CE} = 6V$
  - [B] En saturació la I<sub>C</sub> és de 9.8mA
  - [C] El transistor comença a conduir quan Vi > 0.7V
  - [D] En saturació, si augmenta la V<sub>i</sub>, augmenta la I<sub>C</sub>



6. Per al circuit de la figura s'han representat les corbes característiques del transistor i la recta de càrrega del circuit. Indique quina de les següents afirmacions és **FALSA**: (Dades: RB =  $100k\Omega$ ; VBE(ON) = 0.7V; VCE(SAT) = 0.2V)



- [A]  $R_{C} = 0.5k\Omega$
- [B]  $\beta = 200$
- [C] Con I<sub>B</sub> = 40μA, si augmentem Vcc de 4V a 8V el transistor passaria d'estar en saturació a estar en activa.
- [D] Per a una V<sub>BB</sub> de 3.7 V, estem en zona de saturació.
- 7. En el circuit inversor amb BJT de la figura, ¿Per a quin valor de Vi està en el límit entre activa i saturació?
  - [A]  $V_i = 0.7V$
  - [B]  $V_i = 2.7V$
  - [C]  $V_i = 1.92V$
  - [D]  $V_i = 2.62V$



- 8. Assenyale l'afirmació FALSA al voltant del transistor MOSFET de canal N.
- [A] En la zona de saturació, el corrent  $I_{DS}$  és constant al variar  $V_{DS}$ .
- [B] En la zona òhmica, la  $R_{ON}$  equivalent és major quan major és  $V_{GS}$ .
- [C] El límit entre la zona òhmica i la de saturació es troba quan  $V_{DS} = V_{GS} V_{T}$ .
- [D] La saturació es dóna quan  $V_{DS} \ge V_{GS} V_{T}$ .
- 9. Donat el circuit de polarització amb MOSFET de la figura, assenyale l'afirmació **CORRECTA**:  $I_{DS\,(SAT)} = K\,(V_{GS} V_T)^2; \quad I_{DS\,(OHM)} = K\,[2(V_{GS} V_T)V_{DS} V_{DS}^2]$
- [A] El MOSFET està en la zona òhmica.
- [B] El MOSFET està en el límit entre las zones òhmica i de saturació.
- [C] El MOSFET està saturat.
- [D] El MOSFET està en tall.



10. Indique els nivells mínim i màxim de la tensió d'eixida Vo en l'inversor lògic de la figura, si Vi és una ona quadrada amb mínim i màxim de 0V i 5V. Supose que en la zona òhmica es pot utilitzar la següent expressió aproximada del corrent:

$$I_{DS\;(ON)}\approx 2K(V_{GS}\text{-}V_T)\;V_{DS}$$

- [A] 0V i 4.7V
- [B] 0.05V i 5V
- [C] 0.08V i 4.5V
- [D] 0.03V i 5V

$$R_D$$
  $\geqslant$  80K  
 $Q1$   $V_0$   $V_$ 

PÀGINA INTENCIONADAMENT EN BLANC

Cognoms: Nom:

## **PROBLEMA 1 (4 PUNTS)**

El circuit de la figura és una porta lògica NMOS. Es demana:

**Nota:** En zona òhmica utilitze l'expressió aproximada  $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$ , i en saturació  $I_{DS} = K(V_{GS} - V_T)^2$ 





Nota: Las corbes representades són per a increments de 1V de  $V_{GS}$ .

[A] (20%) Obtinga a partir de la gràfica el valor de la transconductància K i de  $V_T$  del transistor MOSFET. **Justifique la resposta**.

| V <sub>T</sub> = (V) | K = | $(mA/V^2)$ |
|----------------------|-----|------------|
|----------------------|-----|------------|

[B] (20%) Calcule el punt de treball Q ( $V_{GS}$ ,  $V_{DS}$ ,  $I_{DS}$ ) i el valor lògic d'eixida  $V_o$  amb una entrada a "1" ( $V_i$  = 5V). **Justifique la resposta**. (Suggeriment: calcule el valor de la resistència equivalent  $R_{ON}$ )

| $V_{GS} = (V) V_{DS} = (V) V_o = "   I_{DS} = (mA) R_{ON} = (kOhm)$ |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|

| [C] | (10%) Dibuixe,  | sobre las corbes | característiques, | la recta de carreç | ja i el punt de tr | eball de l'a | apartat ante | erior. |
|-----|-----------------|------------------|-------------------|--------------------|--------------------|--------------|--------------|--------|
| Jus | tifique la resp | osta.            |                   |                    |                    |              |              |        |

[D] (10%) Si **Vi = 3V**, ¿en quina zona de funcionamient es trobarà el transistor? Es recomana l'ús de la gràfica. **Justifique la resposta**.

| Zona de funcionament: |  |
|-----------------------|--|
|-----------------------|--|

[E] (20%) Partint del disseny base de l'inversor, dibuixe el circuit d'una porta **NOR NMOS** de 2 entrades, i complete la taula de veritat adjunta.

| V1 | V2 | M1 (OFF/ON) | M2 (OFF/ON) | <b>Eixida</b><br>(Valor lògic) |
|----|----|-------------|-------------|--------------------------------|
| 0  | 0  |             |             |                                |
| 0  | 1  |             |             |                                |
| 1  | 0  |             |             |                                |
| 1  | 1  |             |             |                                |

<sup>[</sup>F] (20%) Calcule la tensió d'eixida de la porta **NOR** de 2 entrades de l'apartat anterior quan las entrades son  $V_1$  = 5V i  $V_2$  = 5V. Nota: utilitze la resistència equivalent  $R_{ON}$  del MOSFET calculada en l'apartat B, i agafe la resistència de drenador  $R_D$  = 2.5k $\Omega$ , com en el primer apartat.







| 0  | 0 | 0  | 0   | 0 | 0   | 0   | 0   |
|----|---|----|-----|---|-----|-----|-----|
|    |   |    |     |   |     |     |     |
| _1 | 1 | _1 | _1_ | 1 | _1_ | _1_ | _1_ |
| 2  | 2 | 2  | 2   | 2 | 2   | 2   | 2   |
| 3  | 3 | 3  | 3   | 3 | 3   | 3   | 3   |
| 4  | 4 | 4  | 4   | 4 | 4   | 4   | 4   |
| 5  | 5 | 5  | 5   | 5 | 5   | 5   | 5   |
| 6  | 6 | 6  | 6   | 6 | 6   | 6   | 6   |
| 7  | 7 | 7  | 7   | 7 | 7   | 7   | 7   |
| 8  | 8 | 8  | 8   | 8 | 8   | 8   | 8   |
| 9  | 9 | 9  | 9   | 9 | 9   | 9   | 9   |

| DΝ | П |   |   |   | ——————————————————————————————————————  |
|----|---|---|---|---|-----------------------------------------|
|    |   |   |   |   | ETSINF - Tecnología de computadores GII |
| 0  | 0 | 0 | 0 | 0 | E renti recinciogia de compatadores en  |
|    |   |   |   |   |                                         |

| Examen    | n Primer Parcial - 13/04/2018 |
|-----------|-------------------------------|
| Apellidos |                               |
| Nombre    |                               |

| Marque así | Así NO marque                               |  |  |  |
|------------|---------------------------------------------|--|--|--|
|            | $\bigcirc$ $\not\sim$ $\nearrow$ $\not\sim$ |  |  |  |
| NO BORRAR. | corregir con Typex                          |  |  |  |

| 1 |   | b |   |   |
|---|---|---|---|---|
| 2 |   | b |   | d |
| 3 |   | b |   | d |
|   |   | b |   | d |
| 5 |   | b | С | d |
| 6 |   | b |   |   |
| 7 |   | b | С | d |
| 8 |   | b | С | d |
|   | _ | h | 0 | d |