計算機結構 Exercise 04

B03902062 資工三 董文捷

- **5.3.1** 5 bits are used for the offset, which means the cache block size is 32 byte = 8 words
- **5.3.2** 5 bits are used for the index, which means the cache have 32 entries.

5.3.3
$$\frac{2^5 \times (2^5 \times 8 \ (block \ size) + 22 \ (tag \ size) + 1 \ (valid \ field \ size))}{2^5 \times (2^5 \times 8)} = 1.090$$

5.3.4

byte address	block address	block number	hit / miss
0	$\lfloor 0/32 \rfloor = 0$	$0 \bmod 32 = 0$	miss
4	$\lfloor 4/32 \rfloor = 0$	$0 \bmod 32 = 0$	hit
16	$\lfloor 16/32 \rfloor = 0$	$0 \bmod 32 = 0$	hit
132	$\lfloor 132/32 \rfloor = 4$	$4 \bmod 32 = 4$	miss
232	$\lfloor 232/32 \rfloor = 7$	$7 \bmod 32 = 7$	miss
160	$\lfloor 160/32 \rfloor = 5$	$5 \bmod 32 = 5$	miss
1024	$\lfloor 1024/32 \rfloor = 32$	$32 \bmod 32 = 0$	miss $(0 \to 32)$
30	$\lfloor 30/32 \rfloor = 0$	$0 \bmod 32 = 0$	miss $(32 \rightarrow 0)$
140	$\lfloor 140/32 \rfloor = 4$	$4 \bmod 32 = 4$	hit
3100	$\lfloor 3100/32 \rfloor = 96$	$96 \mod 32 = 0$	miss $(0 \rightarrow 96)$
180	$\lfloor 180/32 \rfloor = 5$	$5 \bmod 32 = 5$	hit
2180	$\lfloor 2180/32 \rfloor = 68$	$68 \mod 32 = 4$	$miss (4 \to 68)$

4 replacement

5.3.5 Hit ratio =
$$\frac{4}{12} = 0.33$$

5.3.6 <index, tag, data>

$$<00000_2, 0000 \cdots 0011_2 \ (22 \ \text{bits}), \ \text{mem}[3072] > < 00100_2, 0000 \cdots 0010_2 \ (22 \ \text{bits}), \ \text{mem}[2176] > < 00101_2, 0000 \cdots 0000_2 \ (22 \ \text{bits}), \ \text{mem}[160] > < 00111_2, 0000 \cdots 0000_2 \ (22 \ \text{bits}), \ \text{mem}[224] >$$

5.6.1 P1 :
$$\frac{1}{0.66ns} = 1.52 \text{ GHz}$$

P2 : $\frac{1}{0.90ns} = 1.11 \text{ GHz}$

5.6.2 P1 :
$$0.66 \text{ ns} + 8\% \times 70 \text{ ns} = 6.26 \text{ ns}$$

P2 : $0.90 \text{ ns} + 6\% \times 70 \text{ ns} = 5.1 \text{ ns}$

5.6.3 P1:
$$1.0 + 36\% \times 8\% \times \frac{70}{0.66} = 4.05 \rightarrow 2.68$$
 ns per instruction P2: $1.0 + 36\% \times 6\% \times \frac{70}{0.90} = 2.68 \rightarrow 2.41$ ns per instruction \longrightarrow P2 is faster

5.6.4 AMAT = 0.66 ns + 8% × 5.62 ns + 8% × 95% × 70 ns = 6.43 ns
$$\longrightarrow$$
 worse

5.6.5
$$1 + 36\% \times 8\% \times \frac{5.62}{0.66} + 36\% \times 8\% \times 95\% \times \frac{70}{0.66} = 4.15$$

5.6.6 P1 : 2.74 ns per instruction

P2: 2.41 ns per instruction

 \longrightarrow **P2** is faster

 $0.66 + 36\% \times \text{miss rate} \times 5.62 + 36\% \times \text{miss rate} \times 95\% \times 70$

 $= 0.90 + 36\% \times 6\% \times 70$

 $\longrightarrow \mathbf{P1}$ needs miss rate in its L1 cache to be 6.75% to match $\mathbf{P2}$'s performance