Why Dirac Notation? The Language of Quantum Computing

Think of it as Quantum Programming Syntax

- Ket $|\psi\rangle$: Column vector (quantum state) like a variable holding quantum data
- Bra $\langle \psi |$: Row vector (conjugate transpose) for computing probabilities
- Bracket $\langle \phi | \psi \rangle$: Inner product returns complex number (amplitude)
- Why use it? Cleaner than matrices: $\langle 0|H|0\rangle$ vs $\begin{pmatrix} 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Notation Basics

Core Concepts

State Representation:

Ket:
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Bra:
$$\langle \psi | = \alpha^* \langle 0 | + \beta^* \langle 1 | = (\alpha^* \quad \beta^*)$$

Normalization: $|\alpha|^2 + |\beta|^2 = 1$

Computational Basis:

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Key Operations:

- Gate application: $U|\psi\rangle$ applies unitary U to state $|\psi\rangle$
- Sequential gates: $U_2U_1|\psi\rangle$ applies U_1 first, then U_2
- Measurement probability: $P(i) = |\langle i|\psi\rangle|^2$
- Overlap: $\langle \phi | \psi \rangle$ gives amplitude
- Normalization: $\langle \psi | \psi \rangle = 1$

Tensor Products - Building Multi-Qubit Systems

Combining Qubits

Notation: $|\psi\rangle \otimes |\phi\rangle = |\psi\phi\rangle = |\psi\rangle |\phi\rangle$

2-Qubit Basis States:

Dirac	Vector
$ 00\rangle = 0\rangle \otimes 0\rangle$	$(1,0,0,0)^T$
$ 01\rangle = 0\rangle \otimes 1\rangle$	$(0,1,0,0)^T$
$ 10\rangle = 1\rangle \otimes 0\rangle$	$(0,0,1,0)^T$
$ 11\rangle = 1\rangle \otimes 1\rangle$	$(0,0,0,1)^T$

General 2-qubit state:

$$|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Tensor Product Rules:

- $(a|\psi\rangle) \otimes |\phi\rangle = a(|\psi\rangle \otimes |\phi\rangle)$
- $(|\psi_1\rangle + |\psi_2\rangle) \otimes |\phi\rangle = |\psi_1\rangle \otimes |\phi\rangle + |\psi_2\rangle \otimes |\phi\rangle$
- $A \otimes B$ creates block matrix

${\bf Common~Single-Qubit~States}$

The Building Blocks				
	Name	Dirac	Vector	Properties
	Zero	$ 0\rangle$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Computational basis
	One	$ 1\rangle$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Computational basis
	Plus	$ +\rangle = \frac{ 0\rangle + 1\rangle}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$	H 0 angle= + angle
	Minus	$ -\rangle = \frac{ 0\rangle - 1\rangle}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}$	H 1 angle= - angle
	Circular+	$ i\rangle = \frac{ 0\rangle + i 1\rangle}{\sqrt{2}}$ $ -i\rangle = \frac{ 0\rangle - i 1\rangle}{\sqrt{2}}$	$\left \begin{array}{c} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}\right $	Y-basis eigenstate
	Circular-	$ -i \rangle = \frac{ 0\rangle - i 1\rangle}{\sqrt{2}}$	$\left \begin{array}{c} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}\right $	Y-basis eigenstate
These form 3 orthogonal pairs: $\{ 0\rangle, 1\rangle\}$ (Z-basis), $\{ +\rangle, -\rangle\}$ (X-basis), $\{ i\rangle, -i\rangle\}$ (Y-basis)				

Single-Qubit Gates

Fundamental Operations					
	Gate	Symbol	Matrix	Action	
	Pauli-X	X, σ_x	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X 0\rangle = 1\rangle, \ X 1\rangle = 0\rangle$ $Y 0\rangle = i 1\rangle, \ Y 1\rangle = -i 0\rangle$ $Z 0\rangle = 0\rangle, \ Z 1\rangle = - 1\rangle$ $H 0\rangle = +\rangle, \ H 1\rangle = -\rangle$ $S 0\rangle = 0\rangle, \ S 1\rangle = i 1\rangle$ $T 1\rangle = e^{i\pi/4} 1\rangle$	
	Pauli-Y	Y, σ_y	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$Y 0\rangle = i 1\rangle, Y 1\rangle = -i 0\rangle$	
	Pauli-Z	Z,σ_z	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$Z 0\rangle = 0\rangle, Z 1\rangle = - 1\rangle$	
	Hadamard	Н	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H 0\rangle= +\rangle,H 1\rangle= -\rangle$	
	Phase	S	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	$ S 0\rangle = 0\rangle, S 1\rangle = i 1\rangle$	
	T gate	T	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$	$T 1\rangle = e^{i\pi/4} 1\rangle$	

Key insight: Gates are unitary matrices that preserve normalization: $U^{\dagger}U=I$

Two-Qubit Gates

Gate	Action	Matrix Size
CNOT	$ 00\rangle \rightarrow 00\rangle, 01\rangle \rightarrow 01\rangle, 10\rangle \rightarrow 11\rangle, 11\rangle \rightarrow 10\rangle$	4×4
CZ	$ 11\rangle \rightarrow - 11\rangle$, others unchanged	4×4
SWAP	$ \begin{array}{c} 00\rangle \rightarrow 00\rangle, \ 01\rangle \rightarrow 01\rangle, \ 10\rangle \rightarrow 11\rangle, \ 11\rangle \rightarrow 10\rangle \\ \\ 11\rangle \rightarrow - 11\rangle, \ \text{others unchanged} \\ \\ 01\rangle \leftrightarrow 10\rangle, \ 00\rangle, 11\rangle \ \text{unchanged} \\ \end{array} $	4×4
ENOT Matrix: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	I	I

Entangled States

The Magic of Quantum Computing

Bell States (Maximally Entangled):

Name	State
$ \Phi^+ angle$	$\frac{ 00\rangle + 11\rangle}{\sqrt{2}}$
$ \Phi^-\rangle$	$\frac{ 00\rangle - 11\rangle}{\sqrt{2}}$
$ \Psi^{+}\rangle$	$\frac{ 01\rangle + 10\rangle}{\sqrt{2}}$
$ \Psi^- angle$	$\frac{ 01\rangle - 10\rangle}{\sqrt{2}}$

Key properties:

- Cannot write as $|\psi\rangle \otimes |\phi\rangle$ (not separable)
- Measuring one qubit instantly determines the other
- All Bell states are orthonormal
- Created by: $CNOT(H \otimes I)|00\rangle = |\Phi^+\rangle$

Inner Products - Computing Amplitudes

The Bracket Operation

Definition: $\langle \phi | \psi \rangle = \sum_i \phi_i^* \psi_i$ **Key Properties:**

- Returns complex number (amplitude)
 - $\langle \psi | \psi \rangle = 1$ for normalized states
 - $\langle 0|1\rangle = 0$ (orthogonal basis states)
 - $\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$ (conjugate symmetry)
 - $\langle \psi | U | \phi \rangle$ represents matrix element of U

Examples:

- $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$: $\langle\psi|\psi\rangle = \frac{1}{2}(1+1) = 1\checkmark$
- $\langle +|1\rangle = \frac{1}{\sqrt{2}}$
- $\langle +|-\rangle = 0$ (orthogonal)

Outer Products and Projectors

Building Matrices from States

Outer Product: $|\psi\rangle\langle\phi|$ creates a matrix Examples:

- $|0\rangle\langle 1| = \begin{pmatrix} 1\\0 \end{pmatrix}(0 \quad 1) = \begin{pmatrix} 0 & 1\\0 & 0 \end{pmatrix}$
- $|1\rangle\langle 0| = \begin{pmatrix} 0\\1 \end{pmatrix}(1 \quad 0) = \begin{pmatrix} 0 & 0\\1 & 0 \end{pmatrix}$

Projectors: $P_i = |i\rangle\langle i|$

- $P_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- $P_1 = |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- Completeness: $P_0 + P_1 = I$
- Idempotent: $P_i^2 = P_i$

Applications:

- Density matrix: $\rho = |\psi\rangle\langle\psi|$ for pure state
- Measurement operators: $M_i = |i\rangle\langle i|$
- Gate construction: $X = |0\rangle\langle 1| + |1\rangle\langle 0|$

$$Y = -i|0\rangle\langle 1| + i|1\rangle\langle 0|$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

Measurements - How We Extract Information

The Fundamental Quantum Operation

Born Rule (Core of QC):

$$P(i) = |\langle i|\psi\rangle|^2$$

Example: For $|\psi\rangle = \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$

•
$$P(0) = |\langle 0|\psi\rangle|^2 = \left|\frac{3}{5}\right|^2 = \frac{9}{25} = 36\%$$

•
$$P(1) = |\langle 1|\psi\rangle|^2 = \left|\frac{4}{5}\right|^2 = \frac{16}{25} = 64\%$$

• Verification:
$$P(0) + P(1) = 1\checkmark$$

Measurement Process:

- 1. Calculate $P(i) = |\langle i|\psi\rangle|^2$
- 2. Outcome i with probability P(i)
- 3. State collapses: $|\psi\rangle \rightarrow |i\rangle$
- 4. Subsequent measurements give same result

General Observable:

For $A = \sum_{i} a_i |i\rangle\langle i|$:

- $\langle A \rangle = \langle \psi | A | \psi \rangle$
- $Var(A) = \langle A^2 \rangle \langle A \rangle^2$

Quick Reference Tables

Pauli Identities

- $X^2 = Y^2 = Z^2 = I$
- XY = iZ, YZ = iX, ZX = iY
- XYZ = iI
- $\{X,Y\} = 0$ (anticommute)
- [X, Y] = 2iZ (commutator)
- HXH = Z, HZH = X

Useful Formulas

- $H = \frac{X+Z}{\sqrt{2}}$
- $|+\rangle = H|0\rangle, |-\rangle = H|1\rangle$
- $S = \sqrt{Z}, T = \sqrt{S}$
- CNOT = $(I \otimes H)CZ(I \otimes H)$
- Bell: $|\Phi^+\rangle = \text{CNOT}(H \otimes I)|00\rangle$

State Overlap Quick Check