Pregunta 1

¿Cuál es la complejidad del algoritmo de Edmonds-Karp? Probarlo. (NOTA: EN LA PRUEBA SE DEFINEN UNAS DISTANCIAS, Y SE PRUEBA QUE ESAS DISTANCIAS NO DISMINUYEN EN PASOS SUCESIVOS DE EK. UD. PUEDE USAR ESTO SIN NECESIDAD DE PROBARLO)

Solución

Completar prueba

Pregunta 2

Probar que si, dados vértices x, z y flujo f, definimos la distancia relativa a f como la longitud del menor f-camino aumentante entre x y z (si existe), o infinito si no existe, o 0 si x=z, denotándola como $d_f(x,z)$, y definimos $d_k(x)=d_{f_k}(s,x)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $d_k(x) \leq d_{k+1}(x)$.

Solución

Completar prueba

Pregunta 3

Probar que si, dados vértices x, z y flujo f, definimos la distancia relativa a f como la longitud del menor f-camino aumentante entre x y z (si existe), o infinito si no existe, o 0 si x=z, denotándola como $d_f(x,z)$, y definimos $b_k(x)=d_{f_k}(x,t)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $b_k(x) \leq b_{k+1}(x)$. (Este teorema solo se tomará a partir de diciembre 2025).

Solución

Completar prueba

Pregunta 4

¿Cuál es la complejidad del algoritmo de Dinic? Probarla en ambas versiones: Dinitz original y Dinic-Even. (No hace falta probar que la distancia en redes auxiliares sucesivos aumenta).

Solución

Completar prueba

Pregunta 5

¿Cuál es la complejidad del algoritmo de Wave? Probarla. (No hace falta probar que la distancia en redes auxiliares sucesivos aumenta).

Solución

Completar prueba

Pregunta 6

Probar que la distancia en redes auxiliares sucesivos aumenta. (Este teorema solo se tomará a partir de diciembre 2025).

Solución

Completar prueba

Pregunta	7
	•

Solución

Completar prueba

Pregunta 8

Probar que si G es conexo y no regular, entonces $\chi(G) \leq \Delta(G)$.

Solución

Completar prueba

Pregunta 9

Probar que 2-COLOR es polinomial.

Solución

Completar prueba

Pregunta 10

Enunciar y probar el Teorema de Hall.

Solución

Completar prueba

Pregunta 11

Enunciar y probar el teorema del matrimonio de Kőnig.

Solución

Completar prueba

Pregunta 12

Probar que si G es bipartito entonces $\chi'(G) = \Delta(G)$. (Este teorema solo se tomará a partir de diciembre 2025).

Solución

Completar prueba

Pregunta 13

Demostrar las complejidades $O(n^4)$ y $O(n^3)$ del algoritmo Húngaro. (Solo a partir de diciembre 2025).

Completar prueba

Pregunta 14

Enunciar el teorema de la cota de Hamming y probarlo.

Solución

Completar prueba

Pregunta 15

Probar que si H es matriz de chequeo de C, entonces:

$$\delta(C) = \min\{j \mid \exists \text{ un conjunto de } j \text{ columnas LD de } H\}$$

(LD significa "linealmente dependiente").

Solución

Completar prueba

Pregunta 16

Sea C un código cíclico de dimensión k y longitud n, y sea g(x) su polinomio generador. Probar que:

- i) C está formado por los múltiplos de g(x) de grado menor que n.
- ii) $C = \{v(x) \cdot g(x) : v(x) \text{ es un polinomio cualquiera}\}$
- iii) gr(g(x)) = n k
- iv) g(x) divide a $1 + x^n$

Solución

Completar prueba

Pregunta 17

Probar que 3SAT es NP-completo.

Solución

Completar prueba

Pregunta 18

Probar que 3-COLOR es NP-completo.

Solución

Completar prueba

Pregunta 19

Probar que Matrimonio3D (matrimonio trisexual) es NP-completo.

Solución

Completar prueba