Математический анализ 4 семестр

shared with \heartsuit by artem Zholus

Содержание

1	Критерий Лебега интегрируемости по Риману	2
2	Суммируемые функции 2.1 Неотрицательные суммируемые функции	
3	Предельный переход в классе суммируемых функций 3.1 Теорема Лебега о мажорируемой сходимости 3.2 Теорема Леви 3.3 Теорема Фату	7
4	Пространства L_p 4.1 Неравенство Гельдера4.2 Неравенство Минковского	
5	Мера подграфика	12
6	Теорема Фубини	13

1 Критерий Лебега интегрируемости по Риману

Определение (Колебание на отрезке).

$$\omega(f,c,d) = \sup_{[c,d]} f - \inf_{[c,d]} f = \text{(по лемме из 1го семестра)} = \sup_{x',x'' \in [c,d]} |f(x') - f(x'')|$$

Определение (Колебание функции в точке).

$$\omega(f, x) = \lim_{\delta \to 0} \omega(f, x + \delta, x - \delta)$$

Очевидно, колебание на отрезке неотрицательно, и, если $0 < \delta_1 < \delta_2$ то $\omega(f, x - \delta_1, x + \delta_1) < \omega(f, x - \delta_2, x + \delta_2)$. Поэтому, вышеприведенный предел существует.

Утверждение 1.1. $\omega(f,x)=0 \Leftrightarrow f \in C(x)$

Доказательство. 1. ← Раз функция непрерывна, значит она достигает на отрезке своего sup и inf. Значит, если устремить границы отрезка к одной точке, в пределе получим разность двух одинаковых чисел.

 $2. \Rightarrow \omega(f,x) = 0$ означает, что можно подобрать такую δ -окрестность для x, что она будет сколь угодно малой. Берем формулу $\sup_{x',x''\in[x-\delta,x+\delta]}|f(x')-f(x'')|=0$ фиксируем x''=x (от этого sup разве что уменьшится) и получаем определение непрерывности в x.

Определение. τ : - разбиение отрезка [a,b], если $\tau = \{x_j\}$: $a = x_0 < x_1 < \cdots < x_n = b$

Ведем кусочно-постоянную функцию $g(\tau, x) = \omega(f, x_i, x_{i+1})$, при $x \in [x_i, x_{i+1}]$

Утверждение 1.2. $g(\tau_n,x) \xrightarrow[n \to +\infty]{} \omega(f,x)$ почти всюду на отрезке

Доказательство. Очевидно, мы можем подбирать τ_n так, чтобы границы отрезка, содержащего x совпали с границами из определения $\omega(f,x)$. Тогда для неграничных точек получим стремление. Граничных точек на конечном шаге - конечное число, а это значит, что мы не перейдем за границу счетной мощности (danger zone - МАТЛОГИКА), и предел будет почти всюду

Тогда, по теореме Лебега о предельном переходе под знаком интеграла, получаем:

$$\int_{[a,b]} g(\tau_n, x) dx \to \int_{[a,b]} \omega(f, x) dx$$

Левая часть, по лемме из первого семестра равна $\int\limits_{[a,b]}g(au_n,x)dx=\omega(f, au_n).$ Получаем:

$$\lim_{rang\tau_n \to 0} \omega(f, \tau_n) = \int_{[a,b]} \omega(f, x) dx$$

Это наша рабочая формула.

Теорема 1.3 (Критерий Лебега интегрируемости по Риману).

 $f \in \Re(a,b) \Leftrightarrow \lambda\{a : f \notin C(a)\} = 0$

Доказательство. 1. \Rightarrow Пусть $\omega(f,x)=0$ почти всюду на [a,b]. Тогда $\int\limits_{[a,b]}\omega(f,x)dx=0 \Rightarrow f\in\Re[a,b]$

2. \Leftarrow Пусть $f \in \Re[a,b]$. Тогда, по определению, $\omega(f,\tau_n) \to 0$. Тогда $\int\limits_{[a,b]} \omega(f,x) dx = 0$. Но $\omega(f,x) \geqslant 0$. Значит $\omega(f,x) = 0$ почти всюду на [a,b] (И, по лемме, почти всюду непрерывна).

$\mathbf{2}$ Суммируемые функции

Неотрицательные суммируемые функции

Здесь и далее считаем, что мера μ - полная и σ -конечная. Наша задача - распространить интеграл Лебега на более широкую ситуацию. Считаем, что $E \in \mathcal{A}, f : E \xrightarrow{\text{измеримо}} \mathbb{R}, f(x) \geqslant 0$ на E.

Определение. $e \subset E$ называется допустимым для f если:

- 1. $\mu(e) < +\infty$
- $2. \, f$ ограничена на e

Утверждение 2.1. Непустые допустимые множества существуют.

Доказательство. Пусть $E_n = E(n < f(x) \leqslant n+1)$. Понятно, что $E = \bigcup E_n$. По σ -конечности $X = \bigcup X_m$, причем X_m - конечномерны. Тогда $E = \bigcup_{n,m} E_n X_m$ - допустимые множества. Если они все пустые, то E, тоже пусто. Значит среди них хотя бы одно непустое.

Определение (Несобственный интеграл Лебега).

$$\int_{E} f d\mu \stackrel{\text{def}}{=} \sup_{e-\text{допустимо}} \int_{e} f d\mu$$

Определение (Неотрицательная суммируемая функция). Неотрицательная функция f называется суммируемой на множестве E, если $\int\limits_{E}fd\mu<+\infty$

Очевидно, если $\mu E < +\infty, \ f(x) \geqslant 0, \ {\rm To} \ \int\limits_E f d\mu = \sup_{e \subset E} \int\limits_e f d\mu.$

Проверим аддитивность и линейность.

Теорема 2.2 (σ -аддитивность несобственного интеграла Лебега). Пусть $E=\bigcup_n E_n$ - дизъюнктивны. Тогда $\int\limits_E f=\sum\limits_n \int\limits_E f$

Докажем в два этапа. сначала конечную аддитивность, потом σ -аддитивность

1. Пусть $E=E_1\cup E_2$.Пусть $e_1\in E_1,\,e_2\in E_2$ - допустимые. И любое допустимое для E множество $e=e_1\cup e_2$. Для определенного интеграла мы знаем, что $\int\limits_e f=\int\limits_{e_1} f+\int\limits_{e_2} f\leqslant \int\limits_{E_1} f+\int\limits_{E_2} f$

Переходя к sup по e получаем $\int\limits_{E} f \leqslant \int\limits_{E_{1}} f + \int\limits_{E_{2}} f$ В обратную сторону. Считаем, что f - суммируема (иначе все тривиально). По определению sup, $\forall \varepsilon >$

$$\int\limits_{E_1} f + \int\limits_{E_1} f - 2\varepsilon < \int\limits_{e_1} f + \int\limits_{e_2} f = \int\limits_{e} f \leqslant \int\limits_{E} f.$$
 Устремив $\varepsilon \to 0$ получим
$$\int\limits_{E_1} f + \int\limits_{E_2} f \leqslant \int\limits_{E} f.$$
 Значит
$$\int\limits_{E_1} f + \int\limits_{E_2} f = \int\limits_{E} f$$

2. Итак, пусть $e = \bigcup_{n=1}^{+\infty} e_n$. Очевидно $\int_{e_n} f \leqslant \int_{E_n} f$ и $\int_{e} f = \sum_{n} \int_{e_n} f$. Значит $\int_{E} f \leqslant \sum_{n} \int_{E_n} f$. Обратно. $\forall \varepsilon > 0 \,\exists e_n \subset E_n$:

 $\int\limits_{E_n}^{\varepsilon} f - \frac{\varepsilon}{2^n} < \int\limits_{e_n}^{\varepsilon} f.$ Сложим первые p неравенств: $\sum_{1}^{p} \int\limits_{E_n}^{\varepsilon} f - \varepsilon \sum_{1}^{p} \frac{1}{2^n} < \sum_{1}^{p} \int\limits_{e_n}^{\varepsilon} f \leqslant \int\limits_{E}^{\varepsilon} f.$ Устремляя $p \to +\infty$,

получаем $\sum_{n=1}^{+\infty} \int_{E} f - \varepsilon \leqslant \int_{E} f$. Теперь устремим $\varepsilon \to 0$ и получим обратное неравенство.

Теорема 2.3 (Линейность несобственного интеграла Лебега).

1.
$$\int_{E} \alpha f = \alpha \int_{E} f$$
, $\alpha > 0$

2.
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Первое свойство следует непосредственно из определения. Докажем второе. Итак, пусть $E_n = E(n < f + g \leqslant n + 1)$. Тогда, очевидно, $E = \bigcup E_n$. По σ -конечности можно написать $X = \bigcup X_n$. От X_n

мы хотим дизъюнктивности, поэтому, если они не таковы, то проделаем следующий трюк: $X = X_1 \cup (X_2 \setminus X_1) \cup \cdots \cup (X_n \setminus \bigcup_{1}^{n-1} X_j) \cup \ldots$ Теперь E можно разбить как $E = \bigcup_{n,m} E_n X_m$ - эти множества дизъюнктивны и допустимы для f+g. Далее по σ -аддитивности пишем: $\int\limits_E (f+g) = \sum\limits_n \int\limits_{A_n} (f+g) =$ (по линейности определенного интеграла) = $\sum_{n} \int_{A_n} f + \sum_{n} \int_{A_n} g = (\text{по } \sigma\text{-аддитивности несобственного}) = \int_{E} f + \int_{E} g$ \square

Утверждение 2.4. Если $0\leqslant f\leqslant g,\ mo\int\limits_{\Gamma}f\leqslant\int\limits_{\Gamma}g$

 $Доказательство. \ 0 \leqslant g-f$ - по арифметике измеримости, эта функция суммируема. Раз она неотрицательна, интеграл от нее тоже.

$$0\leqslant \int\limits_{E}g-f=\int\limits_{E}g-\int\limits_{E}f\,\Rightarrow \int\limits_{E}f\leqslant \int\limits_{E}g$$

2.2Суммируемые функции произвольного знака

Определение.

$$f^{+}(x) = \begin{cases} 0 & , f(x) < 0 \\ f(x) & , f(x) \geqslant 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & , f(x) < 0 \\ 0 & , f(x) \geqslant 0 \end{cases}$$

Заметим, что $f = f^+ - f^-$, $|f| = f^+ + f^-$. f^+ и f^- - неотрицательные суммируемые функции (если f измерима).

Определение. f называется суммируемой на E, если одновременно f^+ и f^- - суммируемы.

$$\int_{E} f \stackrel{\text{def}}{=} \int_{E} f^{+} - \int_{E} f^{-}$$

Утверждение 2.5. f - суммируема $\Leftrightarrow |f|$ - суммируема.

Доказательство. f - суммируема тогда и только тогда, когда f^+ и f^- - суммируемы. |f| - суммируема тогда и только тогда, когда f^+ и f^- - суммируемы. П

> Аналогом суммируемости функций служит абсолютная сходимость.

Проверим σ -аддитивность и линейность для случая функции произвольного знака:

Теорема 2.6 (Аддитивность в случае произвольного знака). Пусть $E = \bigcup_n E_n$ - дизбюнктивные, тогда $\int\limits_E f = \sum\limits_n \int\limits_{E_n} f$

Доказательство.
$$\int\limits_{E} f^{+} = \sum\limits_{n} \int\limits_{E_{n}} f^{+}$$
, то же для f^{-} . Тогда $\int\limits_{E} f = \int\limits_{E} f^{+} - \int\limits_{E} f^{-} = \sum\limits_{n} \int\limits_{E_{n}} f^{+} - \sum\limits_{n} \int\limits_{E_{n}} f^{-} = \sum\limits_{n} (\int\limits_{E_{n}} f^{+} - \int\limits_{E_{n}} f^{-} = \int\limits_{E_{n}} f^{-}$

Теорема 2.7 (Линейность в случае произвольного знака).

1.
$$\int_{E} \alpha f = \alpha \int_{E} f, \ \alpha \in \mathbb{R}$$

2.
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

Доказательство. Пункт 1 очевиден, не будем на нем останавливаться. Докажем пункт 2:

$$\int\limits_E f + \int\limits_E g = (\int\limits_E f^+ + \int\limits_E g^+) - (\int\limits_E f^- + \int\limits_E g^-) = \int\limits_E (f^+ + g^+) - \int\limits_E (f^- + g^-) = (*) = \int\limits_E (f + g)^+ - \int\limits_E (f + g)^- = \int\limits_E (f + g)^$$

Проверим переход (*). Для этого нужно, чтобы выполнялось $(f^+ + g^+) = (f + g)^+$ - в общем случае, это неправда. Поэтому нужно рассмотреть много случаев:

- 1. $f \geqslant 0, \ g \geqslant 0 \Rightarrow$ пусть $E_1 = E(f \geqslant 0, \ g \geqslant 0)$, тогда
 - $f^+ = f$, $g^+ = g$, $(f+g)^+ = f+g \Rightarrow f^+ + g^+ = f+g = (f+g)^+$
 - $f^- = 0$, $g^- = 0$, $(f+g)^- = 0 \Rightarrow 0 + 0 = 0$
- 2. $f\leqslant 0,\ g\leqslant 0\Rightarrow$ пусть $E_2=E(f\leqslant 0,\ g\leqslant 0),$ разбираем аналогично пункту (1) появятся минусы в формулах

В остальных случаях переход (*) не верен, но под-интегральные функции можно перегруппировать по другому, например $\int_{\Gamma} (f^+ - g^-) - \int_{\Gamma} (f^- - g^+)$:

- 3. $f \geqslant 0, \ g \leqslant 0 \Rightarrow$ тут нужно различить два подслучая:
 - (a) $f+g \geqslant 0 \Rightarrow$ пусть $E_3 = E(f \geqslant 0, g \leqslant 0, f+g \geqslant 0)$, тогда
 - $f^+ = f$, $g^- = -g$, $(f+g)^+ = f+g \Rightarrow f^+ g^- = f+g = (f+g)^+$
 - $f^- = 0$, $g^+ = 0$, $(f+g)^- = 0 \Rightarrow 0 0 = 0$
 - (b) $f + g < 0 \Rightarrow$ пусть $E_4 = E(f \ge 0, g \le 0, f + g < 0)$, тогда
 - $f^+ = f$, $g^- = -g$, $(f+g)^- = -(f+g) \Rightarrow -f^+ + g^- = -(f+g) = (f+g)^-$
 - $f^- = 0$, $q^+ = 0$, $(f+q)^+ = 0 \Rightarrow -0 + 0 = 0$
- 4. $f \leqslant 0, \ g \geqslant 0 \Rightarrow$ аналогично, два подслучая, разбор которых аналогичен пункту (3), если поменять f и g местами :
 - (a) $f+q \ge 0 \Rightarrow \text{пусть } E_5 = E(f \le 0, q \ge 0, f+q \ge 0)$
 - (b) $f + q < 0 \Rightarrow \text{пусть } E_6 = E(f \le 0, q \ge 0, f + q < 0)$

Очевидно, эти множества дизъюнктивны (на 0 забьем) и можно написать: $\int\limits_E f = \sum\limits_{1}^6 \int\limits_{E_i} f.$

3 Предельный переход в классе суммируемых функций

3.1 Теорема Лебега о мажорируемой сходимости

Теорема 3.1 (Теорема Лебега о мажорируемой сходимости). Пусть $f_n \Rightarrow f$ на E, $|f_n| \leqslant \phi$ на E, ϕ - суммируема. Тогда:

1. f - суммируема

2.
$$\int_E f_n \to \int_E f$$

Следует иметь ввиду, что в условии теоремы достаточно требовать выполнения свойств почти всюду.

Теорема 3.2. Пусть f - суммируема на E. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall E' \subset E \Rightarrow \mu E' < \delta \Rightarrow |\int\limits_{E'} f| < \varepsilon$

 \mathcal{A} оказательство. По определению, можно написать $\forall \varepsilon > 0 \; \exists e : \int\limits_{E \setminus e} |f| < \varepsilon$. Так как e - допустимо, f - ограничена на e и $E = (E \setminus e) \cup e$. Возьмем любое $E' \subset E$, тогда $E' = E'(E \setminus e) \cup E'e$.

$$\left| \int_{E'} f \right| \leqslant \left| \int_{E'(E \setminus e)} f \right| + \left| \int_{E'e} f \right| \leqslant \varepsilon + \left| \int_{E'e} f \right|$$

Мы считаем, что $|f(x)| \leq M$. Заметим, что выбор E' не накладывал никаких ограничений на M. Тогда:

$$\int_{E'e} |f| \leqslant M\mu E'e \leqslant M\mu E'$$

Поэтому δ мы можем выбрать как $\delta=\frac{\varepsilon}{M}$. И получится, что $\mu E'\leqslant\delta\Rightarrow\left|\int\limits_{E'}f\right|\leqslant2\varepsilon$

Доказательство теоремы Лебега. По теореме Рисса $f_{n_k} \to f$ почти всюду, причем $|f_{n_k}(x)| \leqslant \phi(x)$, занчит $|f(x)| \leqslant \phi(x) \Rightarrow f$ — суммируема. Рассмотрим $\left|\int\limits_E f_n - \int\limits_E f\right| \leqslant \int\limits_E |f_n - f|$. Так как ϕ - суммируема, $\forall \varepsilon > 0 \ \exists e$ (допустимое для ϕ) : $\int\limits_E \phi \leqslant \varepsilon$

$$\int_{E} |f_n - f| = \int_{E \setminus e} |f_n - f| + \int_{e} |f_n - f| \leqslant 2\varepsilon + \int_{e} |f_n - f|$$

Пусть $|\phi|\leqslant M\Rightarrow |f_n-f|\leqslant 2M$. Так же мы знаем, что $\int\limits_e|f_n-f|\xrightarrow[n\to+\infty]{}0$. Значит, начиная с некоторого N_0 , $\int\limits_e|f_n-f|<\varepsilon$. Следовательно, начиная с N_0 , $\int\limits_E|f_n-f|\leqslant 3\varepsilon$

3.2 Теорема Леви

Теорема 3.3 (Теорема Леви). Пусть $f_n(x) \leqslant 0$, $f_n(x) \leqslant f_{n+1}(x)$, $f(x) = \lim_{n \to +\infty} f_n(x)$ на E. Тогда $\int_E f_n \to \int_E f_n(x)$

Доказательство. Два случая:

- 1. f почти всюду конечна на E. Два подслучая:
 - (a) $\int_E f < +\infty$. Так как $|f_n(x)| \leq f(x) \Rightarrow f$ суммируемая мажоранта для f_n , и теорема верна по теореме Лебега о мажорируемой сходимости.
 - (b) $\int_E f = +\infty$. (f все еще мажоранта для f_n , но уже не суммируемая) Мы поступим так. Раз $\sup_{e-\text{допустимо}} \int_e f = +\infty$, значит $\forall c>0 \; \exists e-$ допустимоедля $f:c<\int_e f$. В силу $f_n\leqslant f$ по теореме Лебега о мажорируемой сходимости $\int_e f_n \to \int_e f$. Это значит, начиная c некоторого N_0 , $c<\int_e f_n\leqslant \int_E f_n \to \int_E f_n \to +\infty = \int_E f$
- 2. $\mu E(f=+\infty)>0$ (Расслабьтесь, и будет не больно) Очевидно, в этой ситуации может быть только $\int\limits_E f=+\infty$. Из $f_n(x)\leqslant f_{n+1}(x) \Rightarrow \int\limits_E f_n(x)\leqslant \int\limits_E f_{n+1}(x)$. По теореме Вейерштрасса, у последовательности $\left\{\int\limits_E f_n\right\}$ будет существовать предел. Причем он будет конечным тогда и только тогда, когда эта последовательность ограничена. Так что нам нужно вывести

конечным тогда и только тогда, когда эта последовательность ограничена. Так что нам нужно вывести противоречие из того факта, что эта последовательность ограничена. Предположим, что это так: пусть $\int_E f_n \leqslant M$. Итак, зафиксируем $\forall c > 0$. Рассмотрим $E(f_n \geqslant c) \subset E$.

$$\int_{E(f_n \geqslant c)} f_n \leqslant M$$

$$c\mu E(f_n \geqslant c) \leqslant \int_{E(f_n \geqslant c)} f_n \Rightarrow \mu E(f_n \geqslant c) \leqslant \frac{M}{c}$$

Можно проверить, что:

$$E(f = +\infty) \subset \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c)$$

Доказательство. Пусть $x \in E(f=+\infty)$. Значит $f_n(x) \xrightarrow[n \to +\infty]{} +\infty$. Следовательно $\forall c > 0 \exists N_x : \forall n > \infty$

$$N_x \Rightarrow f_n(x) \geqslant c \xrightarrow{by \atop def} x \in \bigcap_{n=N_-}^{\infty} E(f_n \geqslant c)$$

Заметим одну интересную штуку.

$$\forall c > 0 f_n(x) \geqslant c \Rightarrow f_{n+1}(x) \geqslant c \Rightarrow E(f_n \geqslant c) \subset E(f_{n+1} \geqslant c) \Rightarrow \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = E(f_m \geqslant c) \Rightarrow$$
$$\Rightarrow \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = \lim_{m \to +\infty} E(f_m \geqslant c)$$

Отсюда делаем вывод, что:

$$\mu \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \xrightarrow[m \to +\infty]{} \mu \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \geqslant \mu E(f = +\infty)$$

$$\mu \bigcap_{n=m}^{\infty} E(f_n \geqslant c) = \mu E(f_m \geqslant c) \leqslant \frac{M}{c} \Rightarrow$$

$$\Rightarrow \mu \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E(f_n \geqslant c) \leqslant \frac{M}{c} \Rightarrow$$

$$\Rightarrow \mu E(f = +\infty) \leqslant \frac{M}{c}$$

c - любое, поэтому можно устремить $c \to +\infty$. Значит $\mu E(f = +\infty) = 0$. Противоречие получено.

Следствие 3.4. Пусть $u_n(x)\geqslant 0$ и $\sum\limits_n\int\limits_E u_n$ - сходится. Тогда $\sum\limits_n u_n(x)$ - сходится почти всюду на E.

Доказательство. $S_n = u_1 + u_2 + \dots + u_n$. Так как интеграл сходится, его частичная сумма ограничена. $M \geqslant \sum_{n=1}^m \int\limits_E u_n = \int\limits_E S_m$ Обозначим $S(x) = \sum\limits_n u_n(x)$. В силу неотрицательности $u_n(x)$, $S_n(x)$ - возрастает $(S_n \leqslant S_{n+1})$, и $S(x) = \lim\limits_{n \to +\infty} S_n(x)$. Следовательно, по теореме Леви $\int\limits_E S_n \to \int\limits_E S$. Следовательно, S - суммируемая функция, это значит, что она почти всюду конечна.

Следствие 3.5. Пусть $f\geqslant 0,\ f_n(x)=\min\left\{f(x),n\right\}$ - срезка функции f. Тогда $\int\limits_E f_n \to \int\limits_E f.$

3.3 Теорема Фату

Теорема 3.6 (Теорема Фату). Пусть $f_n \geqslant 0$, $f_n \Rightarrow f$ на E. Тогда

$$\int\limits_{E} f \leqslant \sup\limits_{n \in \mathbb{N}} \int\limits_{E} f_n$$

Доказательство. Применим теорему Рисса, получив, что $f_{n_k} \to f$ почти всюду. Без ограничения общности можем считать, что $f_n \to f$ почти всюду (потому что если доказать для sup по подпоследовательности, неравенство будет верно и для последовательности). Пусть $g_n = \min\{f_n, f\}$. Тогда $g_n \leqslant f$. Рассмотрим два случая:

- 1. f суммируема. Тогда, по теореме Лебега, $\int\limits_{E}g_{n}\to\int\limits_{E}f$. Предел последовательности $\int\limits_{E}g_{n}$ не превзойдет своего верхнего предела, поэтому $\int\limits_{E}f\leqslant\sup\limits_{n}\int\limits_{E}g_{n}\leqslant\sup\limits_{n}\int\limits_{E}f_{n}$
- 2. $\int\limits_E f = +\infty$. Тогда $\forall e$ допустимо для f. $\int\limits_e f < +\infty$ Как мы показали, $\int\limits_e f \leqslant \sup\limits_n \int\limits_E f_n$. Переходя к sup по e получаем необходимое неравенство.

4 Пространства L_p

Определение. $L_p(E)\stackrel{ ext{def}}{=}\left\{f:E o\mathbb{R},f$ – измерима, $\int\limits_E|f|^p<+\infty
ight\}$

Нам нужно проверить, что $L_p(E)$ - НП. То есть, $f, g \in L_p \Rightarrow \alpha f + \beta g \in L_p$, $\|f\|_p = \left(\int_E |f|^p\right)^{\frac{1}{p}}$. Причем, $\|f\|_p = \int_E |f|^p$ - удовлетворяет аксиомам нормы.

Утверждение 4.1. $\|f\|_p$ удовлетворяет двум свойствам:

1.
$$\|\alpha f\|_p = |\alpha| \|f\|_p$$

2.
$$||f + g||_p \le ||f||_p + ||g||_p$$

Доказательство. 1. Очевидно.

2.
$$\int\limits_E \left|f+g\right|^p \leqslant \int\limits_E (|f|+|g|)^p$$
. Пусть $E_1=E(|f|\leqslant |g|),\ E_2=E(|f|>|g|)$. Тогда $E=E_1\cup E_2$.

$$\int_{E} (|f| + |g|)^{p} = \int_{E_{1}} (|f| + |g|)^{p} + \int_{E_{2}} (|f| + |g|)^{p} \le \int_{E_{1}} (2|g|)^{p} + \int_{E_{2}} (2|f|)^{p} < +\infty$$

Следовательно $f+g\in L_p$

4.1 Неравенство Гельдера

Теорема 4.2 (Неравенство Гельдера). Пусть p > 1 и $q: \frac{1}{p} + \frac{1}{q} = 1$. Пусть $f \in L_p, g \in L_q$. Тогда

$$\int\limits_{E} |f|\,|g| \leqslant \left(\int\limits_{E} |f|^{p}\right)^{\frac{1}{p}} \left(\int\limits_{E} |g|^{q}\right)^{\frac{1}{q}}$$

Доказательство. Воспользуемся неравенством Юнга: $(uv\leqslant \frac{1}{p}u^p+\frac{1}{q}v^q)$. Пусть $u=\frac{|f|}{\|f\|_p},\,v=\frac{|g|}{\|g\|_p}$

$$\begin{split} \frac{|f|\,|g|}{\|f\|_p\,\|g\|_p} \leqslant \frac{1}{p} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|g|^q}{\|g\|_p^q} \\ \int_E \frac{|f|\,|g|}{\|f\|_p\,\|g\|_p} \leqslant \frac{1}{p} \int_E \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \int_E \frac{|g|^q}{\|g\|_p^q} = \frac{1}{p} + \frac{1}{q} = 1 \end{split}$$

4.2 Неравенство Минковского

Теорема 4.3 (Неравенство Минковского). Пусть $p > 1, f, g \in L_p$. Тогда

$$\left(\int\limits_{E} (|f|+|g|)^{p}\right)^{\frac{1}{p}} \leqslant \left(\int\limits_{E} |f|^{p}\right)^{\frac{1}{p}} + \left(\int\limits_{E} |g|^{p}\right)^{\frac{1}{p}}$$

Доказательство. Рассмотрим $(f+g)^p = f(f+g)^{p-1} + g(f+g)^{p-1}$.

$$\int_{E} (f+g)^{p} = \int_{E} f(f+g)^{p-1} + \int_{E} g(f+g)^{p-1} \leqslant$$

$$\leqslant \left(\int_{E} f^{p}\right)^{\frac{1}{p}} \left(\int_{E} (f+g)^{q(p-1)}\right)^{\frac{1}{q}} + \left(\int_{E} g^{p}\right)^{\frac{1}{p}} \left(\int_{E} (f+g)^{q(p-1)}\right)^{\frac{1}{q}}$$

$$\text{пусть } q = \frac{p}{p-1}$$

$$\left(\int_{E} (f+g)^{p}\right)^{1-\frac{1}{q}} \leqslant \left(\int_{E} f^{p}\right)^{\frac{1}{p}} + \left(\int_{E} g^{p}\right)^{\frac{1}{p}}$$

$$\frac{1}{p} = 1 - \frac{1}{q}$$

Если подставить в неравенство Минковского определение нормы, то можно заметить, что мы доказали неравенство треугольника.

Теорема 4.4. $L_p(E)$ - Банахово пространство.

Докажем вспомогательную лемму:

Лемма 4.5. Пусть f_n - измеримы, $u \ \forall \delta > 0 \ \mu E \left(|f_n - f_m| \geqslant \delta \right) \xrightarrow[n,m \to +\infty]{} 0$. Тогда $\exists n_1 < n_2 < \dots < n_k < \dots : f_{n_k} \to f$ почти всюду.

Доказательство. Пусть $\delta = \frac{1}{2^k}$. Можно проверить, что (**TODO**) $\exists n_1 < n_2 < \dots < n_k < \dots$: $\mu E\left(\left|f_{n_{k+1}} - f_{n_k}\right| \geqslant \frac{1}{2^k}\right) \leqslant \frac{1}{2^k}$. Рассмотрим следующее множество:

$$E' = \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_j}\right| \leqslant \frac{1}{2^j}\right)$$

Рассмотрим функциональный ряд $S=f_1+(f_2-f_1)+(f_3-f_2)+\dots$ Фиксируем $x\in E'$. Тогда $\exists k_x: x\in \bigcap_{j=k_x}^{\infty} E\left(\left|f_{n_{j+1}}-f_{n_j}\right|\leqslant \frac{1}{2^j}\right)$. Это значит, что при $j>k_x$ выполняется $\left|f_{n_{j+1}}(x)-f_{n_k}(x)\right|\leqslant \frac{1}{2^j}\xrightarrow{j\to +\infty}0$. Следовательно, на E' функциональный ряд S - сходится. Нам осталось проверить, что его дополнение нуль-мерно. Т. е. $\mu\overline{E'}=0$. Очевидно:

$$\overline{E'} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \Rightarrow$$

$$\Rightarrow \overline{E'} \subset \bigcup_{j=k}^{\infty} E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \Rightarrow$$

$$\Rightarrow \mu \overline{E'} \leqslant \sum_{j=k}^{\infty} \mu E\left(\left|f_{n_{j+1}} - f_{n_{j}}\right| > \frac{1}{2^{j}}\right) \leqslant \sum_{j=k}^{\infty} \frac{1}{2^{j}} \xrightarrow[k \to +\infty]{} 0 \Rightarrow$$

$$\Rightarrow \mu \overline{E'} = 0$$

Доказательство Теоремы. Докажем для случая p=1 (общий случай напишу потом **TODO**). Итак, $f_n \in L_1(E), \|f_n - f_m\|_1 \xrightarrow[n,m \to +\infty]{} 0$. Зафиксируем $\forall \delta > 0$. Тогда

$$\delta \mu E(|f_n - f_m| \ge \delta) \le \int_{E(|f_n - f_m| \ge \delta)} |f_n - f_m| \le \int_{E} |f_n - f_m| = ||f_n - f_m||_1 \to 0$$

Отсюда, по лемме, $\exists (n_1 < n_2 < \dots < n_k < \dots) : f_{n_k} \xrightarrow[k \to +\infty]{} f$ почти всюду на E. Коль скоро k - фиксированное, $|f_{n_k} - f_{n_m}| \xrightarrow[m \to +\infty]{} |f_{n_k} - f|$ почти всюду на E. По теореме Фату:

$$\int_{E} |f_{n_k} - f| \leqslant \sup_{m} \int_{E} |f_{n_k} - f_{n_m}|$$

B силу $||f_{n_k} - f_{n_m}||_1 \xrightarrow[k,m \to +\infty]{} 0$

$$\forall \varepsilon > 0 \exists M : \forall k, m > M \Rightarrow ||f_{n_k} - f_{n_m}||_1 \leqslant \varepsilon$$

Без ограничения общности можем считать, что k и m удовлетворяют вышеприведенному условию. Получаем, что

$$\forall k > M \Rightarrow \int_{E} |f_{n_k} - f| \leqslant \varepsilon$$

Отсюда, $f_{n_k}-f$ суммируема, а значит $\in L_1$. Но, по условию, $f_{n_k}\in L_1\Rightarrow f\in L_1$. Так же, мы знаем, что $\|f_{n_k}-f\|_1\leqslant \varepsilon$, что, в свою очередь означает, что $f_{n_k}\to f$ по норме в L_1 . Оценим $\|f_n-f\|_1$:

$$||f_n - f||_1 \le ||f_{n_k} - f_n||_1 + ||f_{n_k} - f||_1$$

$$||f_{n_k} - f_n||_1 \xrightarrow[n,k \to +\infty]{} 0$$

$$||f_{n_k} - f||_1 \xrightarrow[n \to +\infty]{} 0$$

Получаем сходимость f_n к f по норме в L_1 . А значит - полноту.

Может показаться, что требование измеримости функции f в определении пространства L_p - излишне. Это отнюдь не так.

Утверждение 4.6. Существует функция f такая, что ее p-я степень измерима, но сама функция - нет. Доказательство. Рассмотрим произвольное неизмеримое множество $C \subset \mathbb{R}$. Тогда пусть

$$f(x) = \begin{cases} 1 & , x \in C \\ -1 & , x \notin C \end{cases}$$

Очевидно, f -неизмерима (так как множество Лебега $E(f>\frac{1}{2})={\rm C}$ - неизмеримо). Но $f^2(x)=1$ при $x\in\mathbb{R}$ - очевидно, измеримая функция.

Рассмотрим $f,g \in L_2$. По неравенству Гельдера, их произведение суммируемо. Положим $\langle f,g \rangle = \int\limits_E f \cdot g$. Очевидно, таким образом построенное отображение удовлетворяет аксиомам скалярного произведения. Получается, что L_2 - гильбертово пространство с нормой, естественным образом порожденной скалярным произведением: $\|f\|_2 = \sqrt{\langle f,f \rangle}$.

Приведем важный частный случай пространства $L_2(E)$: В качестве тройки множество - σ -алгебра - мера возьмем: $(X, \mathcal{A}, \mu) = (\mathbb{N}, 2^{\mathbb{N}}, \mu)$, где μ - считающая мера (количество элементов в множестве). Тогда $\int_E f = \sum_{n=1}^\infty f(n)$. В данном контексте суммируемость будет значить абсолютную сходимость.

Рассмотрим $L_2(\mathbb{N})$, Обозначаем $a_n=f(n)$. Тогда $f\in L_2(\mathbb{N})\Leftrightarrow \sum\limits_n a_n^2<+\infty$. Принято бозначать $L_2(\mathbb{N})=l_2$

5 Мера подграфика

Итак, рассмотрим (X, \mathcal{A}, μ) . Считаем, что мера - полная и σ -конечная. $f: E \xrightarrow{\text{изм.}} \mathbb{R}, \, f \geqslant 0$ почти всюду.

Определение. $G_f \stackrel{\text{def}}{=} \{(x,y): x \in E, 0 \leqslant y \leqslant f(x)\}$ - подграфик функции f.

Здесь и далее, в качестве $X \equiv \mathbb{R}^n$, $\mu \equiv \lambda_n$.

Теорема 5.1 (Об измеримости подграфика). Подграфик измерим, и его мера равна $\lambda_{n+1}(G_f) = \int\limits_E f dx$

Утверждение 5.2. $G_c(E)$ - измеримо, $\lambda G_c(E) = c\lambda E$, где c - константа.

Доказательство. Пойдем от простого к сложному. Для ячейки \mathbb{R}^n формула верна по определению. Пусть теперь E - открытое множество. Как известно, любое открытое множество представляется в виде $E = \bigcup_m \Pi_m$, Π_m - дизъюнктные ячейки. $G(E) = \bigcup_m G(\Pi_m) \Rightarrow \lambda G(E) = \sum_m \lambda G(\Pi_m) = c \sum_m \lambda G(\Pi_m) = c \lambda E$. Далее, без ограничения общности, можем считать, что $\mu E < +\infty$ (Потому что у нас есть σ - конечность; $\mathbb{R}^n = \bigcup_m T_m \ (T_m : \lambda T_m < +\infty) \Rightarrow E = \bigcup_m E T_m \ (\lambda E T_m < +\infty)$). Воспользуемся формулой: $\lambda^* E = \inf_{E \subset G - \text{открыто}} \lambda G$ По аксиоме выбора, $\exists G_m : G_m \subset G_{m+1}, E = \bigcap_m G_m$. Понятно, что тогда $\lambda G_m \to \lambda E$. Так же $G(E) = \bigcap_m G(G_m)$. Следовательно $\lambda G(G_m) = c\lambda G_m \to c\lambda E$

Доказательство теоремы. Мы умеем писать суммы Лебега-Дарбу: $\underline{S}(\tau) \leqslant \int\limits_{E} f \leqslant \overline{S}(\tau)$. Важно, что интеграл Лебега - единственное число, которое обладает таким свойством. $\tau: E = \bigcup\limits_{m} e_{m}$ - конечное объединение дизъюнктных множеств, и

$$\underline{S}(\tau) = \sum_{p} m_{p} \lambda e_{p}, \ m_{p} = \inf_{x \in e_{p}} f(x)$$
$$\overline{S}(\tau) = \sum_{p} M_{p} \lambda e_{p}, \ M_{p} = \sup_{x \in e_{p}} f(x)$$

Обозначим $\underline{E}_p = G_{m_p}(e_p)$. Тогда $\lambda \underline{E}_p = m_p \lambda e_p$. Пусть $\underline{E}(\tau) = \bigcup_{p} \underline{E}_p$. Заметим, что

$$\lambda \underline{E}(\tau) = \sum_{p=1}^{n} \lambda \underline{E}_{p} = \sum_{p=1}^{n} m_{p} \lambda e_{p} = \underline{S}(\tau)$$

$$\lambda \overline{E}(\tau) = \sum_{p=1}^{n} \lambda \overline{E}_{p} = \sum_{p=1}^{n} M_{p} \lambda e_{p} = \overline{S}(\tau)$$

$$\underline{E}(\tau) \subset G_{f}(E) \subset \overline{E}(\tau)$$

По свйоствам сумм Лебега-Дарбу: $\forall \varepsilon > 0 \exists \tau_\varepsilon : \forall \tau \leqslant \tau_\varepsilon \ \overline{S}(\tau) - \underline{S}(\tau) \leqslant \varepsilon$ Сопоставляя это с предыдущими фактами, получаем $\underline{S}(\tau) \leqslant \lambda G_f(E) \leqslant \overline{S}(\tau)$. И тогда, необходимо, $\lambda G_f(E) = \int\limits_E f$

6 Теорема Фубини