Exam title

Candidate nr. 10037

Department of Physics, Norwegian University of Science and Technology, Trondheim Norway

TFY4235 - Computational physics (Last updated on May 3, 2021)

Abstract

Short abstract

CONTENTS Cand. 10037

Contents

Ι	Introduction	2
II	Code overview	3
III	I Results and Discussion	4
1	Problem 2A: SIR model	4
2	Problem 2B: Stochastic SIR model	4

Introduction

Code overview

PART III

Results and Discussion

1 Problem 2A: SIR model

Figure 1: SIR equations with $\beta = 0.25 \, \mathrm{day}^{-1}$, $\tau = 10 \, \mathrm{day}$.

Figure 2: Infected people compared with the analytical approximation at the early stages.

2 Problem 2B: Stochastic SIR model

References

REFERENCES Cand. 10037

Figure 3: The effect of vaccination, with $\varphi = 0.3$.

Table 1: The maximum value of β giving a peak less than 0.2 of the infected fraction, and the minimum value of R(0) (vaccinated) avoiding exponential growth.

Parameter	value	$0.2 - \max_{t \in [0,\infty]} R(t)$	Initial log-slope
β	0.28020370	$8.319 \cdot 10^{-7}$	
R(0)	0.42410713		0.04393859

Figure 4: Solution of stochastic SIR equations with $\beta = 0.25\,\mathrm{day}^{-1}$, $\tau = 10\,\mathrm{day}$.

REFERENCES Cand. 10037

Figure 5: Infected people compared with the analytical approximation at the early stages. Stochastic and continuous model.

Figure 6: Probability of an outbreak as a function of initial number of infected people.