• **Problem:** Consider a PIB problem with the grid boundaries at 0 and 10, respectively.

The potential is defined as

$$V(x) = \begin{cases} 0, & \text{if } x < 4 \\ 9, & \text{if } 4 \le x \le 5 \\ 0, & \text{if } 5 < x. \end{cases}$$
 (1)

We will start with $c_2=1$, and hence, the calculation actually works backward in space to compute c_0 which should be consistent with $c_2=1$. In extreme left (where the wave is a free wave), the $\psi_{j=0}=exp(-ikx)=1$. Similarly, at j=1 (at dx), $\psi_{j=1}=exp(-ik\times dx)$. Once, these two are known, we can calculate the others using the finite difference scheme. The calculation of P_{avg} will be done from the maximum and the minimum of oscillations. We will calculate this far away from the potential, let us say after 600th point. Use the following values: $\hbar=1$, m=1, dx=0.01. Remember that, $k=\sqrt{2mE}/\hbar^2$. Write a Fortran code to compute the transmission probability as a function of incident kinetic energy. Vary the incident energy from 1 to 26 eV with $\Delta E=0.1$ eV. Plot "transmission probability" vs "incident kinetic energy". Remember that $t=\frac{2}{1+P_{avg}}$.