Languages

Language: a set of strings

String: a sequence of symbols from some alphabet

Example:

Strings: cat, dog, house

Language: {cat, dog, house}

Alphabet: $\Sigma = \{a, b, c, \dots, z\}$

Languages are used to describe computation problems:

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

$$EVEN = \{0,2,4,6,...\}$$

Alphabet:
$$\Sigma = \{0,1,2,...,9\}$$

Alphabets and Strings

An alphabet is a set of symbols

Example Alphabet:
$$\Sigma = \{a, b\}$$

A string is a sequence of symbols from the alphabet

Decimal numbers alphabet
$$\Sigma = \{0,1,2,\ldots,9\}$$

Binary numbers alphabet

$$\Sigma = \{ extsf{0,1}\}$$

Unary numbers alphabet
$$\Sigma = \{1\}$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

|a| = 1

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters is denoted: λ or ε

Observations:
$$|arepsilon| = 0$$

$$arepsilon w = arepsilon w = w$$

$$arepsilon abba = abba = abba = abba$$

Substring

Substring of string: a subsequence of consecutive characters

Substring
ab
abba
b
bbab

Prefix and Suffix

abbab

Prefixes Suffixes

 \mathcal{E} abbab

a bbab

ab bab

abb ab

abba b

abbab E

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \mathcal{E}$$

$$(abba)^0 = \mathcal{E}$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\mathcal{E}, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except $\boldsymbol{\mathcal{E}}$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\mathcal{E}, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^{+} = \Sigma^{*} - \mathcal{E}$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

Languages

A language over alphabet Σ is any subset of Σ^*

Examples:

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{ \mathcal{E}, a, b, aa, ab, ba, bb, aaa, \ldots \}$$

Language: $\{\mathcal{E}_i\}$

Language: $\{a,aa,aab\}$

Language: $\{\mathcal{E}, abba, baba, aa, ab, aaaaaa\}$

More Language Examples

Alphabet
$$\Sigma = \{a, b\}$$

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\begin{array}{c} \mathcal{E} \\ ab \\ aabb \\ aaaaabbbbb \\ \end{array} \} \in L \qquad abb \not\in L$$

Prime numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

Language:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime}\}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Even and odd numbers

Alphabet
$$\Sigma = \{0,1,2,...,9\}$$

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even} \}$$

 $EVEN = \{0,2,4,6,...\}$

$$ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}\$$

 $ODD = \{1,3,5,7,...\}$

Unary Addition

Alphabet:
$$\Sigma = \{1,+,=\}$$

Language:

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11 + 111 = 111111 \in ADDITION$$

$$111 + 111 = 111 \notin ADDITION$$

Squares

Alphabet:
$$\Sigma = \{1, \#\}$$

Language:

$$SQUARES = \{x \# y : x = 1^n, y = 1^m, m = n^2\}$$

Note that:

$$\emptyset = \{\} \neq \{\mathcal{E}\}$$

$$|\{\}| = |\varnothing| = 0$$

$$|\{\mathcal{E}\}|=1$$

String length
$$|\mathcal{E}| = 0$$

$$|\mathcal{E}| = 0$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma * -L$$

$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\mathcal{E},b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

$$= \{ab, aaa, abb, abaa, bab, baaa\}$$

Another Operation

Definition:
$$L^n = LL \cdots L$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\mathcal{E}\}$$

$$\{a,bba,aaa\}^0 = \{\mathcal{E}\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

Star-Closure (Kleene *)

All strings that can be constructed from L

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \dots$$

Example:
$$\{a,bb\}^* = \begin{cases} \mathcal{E}, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

Same with L^* but without the \mathcal{E}

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$