

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: Miguel Sanz UB Person Number:	Instructions:
5 7 7 5 9 1 5 6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work.
1 2 3 4 5	6 7 TOTAL GRADE

16	10	4	20	16	4	3			73	В-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- y_1 y_2 b) is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 3 \rightarrow \beta_3 + (2) \\
0 & 1 & 2 & | & 2 & | & 3
\end{bmatrix}
\xrightarrow{\beta_3 \rightarrow \beta_3 + (2)}
\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & 1 & 2 & | & 2 & | & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | \\
0 & -1 & 2 & | & u + b
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 & | & 2 & | &$$

:. b = -6

How do you know that

this is the only value of b

which works?

not linearly independent because every rolumn of the matrix is not a prot column.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$A \cdot I = \begin{bmatrix} 1 & -1 & 2 & | & 0 & 6 \\ 1 & 0 & | & 0 & | & 0 \\ 0 & 2 & -1 & 0 & 0 & | \end{bmatrix} \xrightarrow{D_2 \to P_1} \begin{bmatrix} 1 & 0 & | & 0 & | & 0 & | & 0 \\ 1 & -1 & 2 & | & 0 & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{D_2 \to P_2} \begin{bmatrix} 1 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{D_2 \to P_2} \begin{bmatrix} 1 & 0 & | & | & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & 0 & | & 0 \\ 0 & 2 & 2 & 0 & 0 & | & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & | & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & | & 0 & 0 \\ 0 & 2 & 2 &$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$(A^{-1})^{\frac{1}{2}}(A^{-1})^{\frac{1}{2}} = \begin{bmatrix} -2 & 1 & 2 \\ -3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$(A) \cdot B$$

$$\therefore C = B(A)$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

=> (= [2 2 6] The order of multiplication is incorrect and multiplication -3 2 1] itself is incorrect too.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

a) Find the standard matrix of T.

b) Find all vectors
$$\mathbf{u}$$
 satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$C_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad C_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T(\mathcal{C}_1) = \begin{bmatrix} 1 \\ -2(0) \\ 1 + 6 \\ 1 - 3(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \implies S | \text{and a folial Malfitz} \text{ of } T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

$$T(\mathcal{C}_2) = \begin{bmatrix} 0 & -2(1) \\ 0 + 1 \\ 0 & -3(1) \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

Expression of the position in every column.

D) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
expression of the position in every column.

Expression of the position in ev

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u,v,w are vectors in \mathbb{R}^3 such that $w+u\in Span(u,v)$ then $w\in Span(u,v)$.

True, If w was not within the span(o,v) then??
The resultant vector would not be within the plane

Span (U,V)

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

Extse, only linearly independent if u is a scalar multiple of vior vice versa.

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True every matrix transformation is a linear transformation making the statement tree - why?