《机器学习》课件

2.2 增强学习

背景

■ 人工智能发展历程

背景

■ 人工智能-- 第四次技术革命的基石

■ 人工智能将在提升机器认知能力基础上,全面整合人类本身智能以及人类过去文明成果,从而提升乃至解放人类认知。

背景

■ 人工智能发展最大特点:将渗入到人类社会的各个领域,重塑产业格局以及社会结构

国防

工业

农业

医疗

教育

八机协作

人机决策

人工智能领域的里程碑

AlphaGo技术的三大核心内容

- ◆憎强学习:Q学习
 - ◆重点、难点、零握机器人、无人机路径规 划中的应用
- ◆深度学习
 - ◆难点、后续课程介绍
- ◆蒙特卡洛搜索树
 - ◆了解此何结合Q学习实现AlphaGo,上节课 内容

增强学习:学习如何下棋

恒,则**仕家行下**夕例上过**一少辰井卜一**级划**的技系(如囟C川不**)。

Q-学习通用算法 不限于围棋

Q学习-增强学习算法

以回报为核心的通用算法: Agent在所处环境总是基于回报最大选择合适的动作, 从而完成与环境的交互, 完成特定任务。

Q学习算法

> 机器人路径规划

A to E: rooms, F: outside building (target).

任务: 处于任何一个房间的机器人都能够找到一条最优路径 走到室外

>环境建模图表示

> 图表示, 节点表示房间号, 边表示动作,

它的值表示回报,例如E > 基子回报进行建模 100 100 100

问题:如何存储?

> 环境建模矩阵表示

- > 回报矩阵
- > 图表示等价形式
- > 建立状态和行为对应关系

思考:由于元素的值多数为0,无法求解,如何计算更加 合理的回报?

> Q学习算法核心概念

- > Q矩阵进行回报学习
- >更加合理的回报:状态/动作

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$ $0 \le \gamma < 1 \quad$ 学习率

Q矩阵的计算是一个迭代过程, 决定了算法设计;

思考问题:为什么是增强学习?

Q学习算法

- > 输入:状态/动作-回报矩阵(R),目标状态Goal,
- > 输出:从任何初始状态到目标状态的最小路径(Q);
 - 1. 设置学习率γ,环境汇报矩阵R
 - 2.Q = 0;
 - 3. 进行迭代循环:
 - 随机选择初始状态
 - 如果不是目标状态:
 - 选择所有可能的动作, 进行测试:
 - 选择Q值最大的状态进行Q值更新, 计算公式如下所示:
 - $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$

如果Q值稳定了, 结束循环, 否则继续迭代。

٧

Q学习算法

初始状态选择为B

		4	4	B		C	I)	E	' P	7
Q =	\boldsymbol{A}		0	()	0 0 0 0	C)	0	0	
	В		0	()	0	C)	0	0	
	· C		0	()	0	C)	0	0	
	D		0	()	0	C)	0	0	
	E		0	()	0	C)	0	0	
	F		0	()	0	C)	0	0_	

1次迭代

在B状态下,我们随机选择一个动作,根据收益最大,我们选择为F,则有:

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max[\mathbf{Q}(next state, all actions)]$

$$\mathbf{Q}(B,F) = \mathbf{R}(B,F) + 0.8 \cdot Max\{\mathbf{Q}(F,B), \mathbf{Q}(F,E), \mathbf{Q}(F,F)\} = 100 + 0.8 \cdot 0 = 100$$

м

2次迭代

随机选择一个状态D, 根据回报最大, 选择的动作为B, 则可以更新Q如下:

 $\mathbf{Q}(state, action) = \mathbf{R}(state, action) + \gamma \cdot Max \big[\mathbf{Q}(next \ state, \ all \ actions) \big]$

$$\mathbf{Q}(D,B) = \mathbf{R}(D,B) + 0.8 \cdot Max\{\mathbf{Q}(B,D), \mathbf{Q}(B,F)\} = 0 + 0.8 \cdot Max\{0,100\} = 80$$

多次迭代之后

Q矩阵达到稳定状态

基于Q矩阵,可以从任何一个状态开始,

寻优找到路径:

请同学回答:从C开始,机器人如何走出去房间

课堂练习

- > 给出R矩阵 -输入
- > 计算Q矩阵-输出

无人机导航