Nom:	Prénom :	Groupe :	
ECOLE POLYTI	ECHNIQUE UNIVERSITAIRE DE N	NICE SOPHIA-ANTIPOLIS	
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2015/2016	Note / 20	
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°1	7 20	

Mardi 6 Octobre 2015

- Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié :
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable et de le mettre dans votre sac.

Durée: 1h30

N'OUBLIEZ PAS LES UNITES

Questions de cours (3 pts)

	Définition de deux résistances connectées en série (pas de schéma)
	Définition de deux résistances connectées en parallèle (pas de schéma)
	Formule donnant la résistance équivalente à n résistances connectées en série
	Formule donnant la résistance équivalente à n résistances connectées en parallèle
	Diviseur de tension
	Diviseur de courant I_s R_1 R_2 R_3 R_3 (sans démonstration)
aites les nœuds en couleur.	
	A34
omposants connectés en parallèle :	B —
· · · · · · · · · · · · · · · · · · ·	mposants connectés en série :

EXERCICE I : Puissance, énergie, charge (3 pts)

radiant - haut - bas-g - bas-d L'alime L'ampé	e plaque de cuisson comportant 4 foyer es de puissance : gauche : 2100W edroite : 1200W eauche : 1200W eroite : 1700W entation est sous 230V. erage de la plaque est de 27A. du kWh est de 10c€.	
I.1.a. Quelle est la valeur du courant parcourant la 1	résistance ? (expression et valeur)	0,5pt
Réponse :		
I.1.b. Il faut 3mn30s pour que l'eau bouille. Quelle é	nergie consomme-t-elle ? (expression et val	leur) 1pt
I.1.c. Combien cela coûte-il ? (expression et valeur)		0,5pt
Réponse :		
I.2. Quel est le courant maximal pouvant parcourir o	chaque foyer?	25pt
$R\'{e}ponses$: Foyer haut-gauche: $I_1 = \dots$	Foyer haut-droit : I_2 =	
Foyer bas-gauche : I_3 = (idem	I.1.a) Foyer bas-droite: $I_4 = \dots$	
I.3. En vous aidant des réponses à la question I.2, di	tes ce que représentent les 27A d'ampérage	e.
$R\'eponse:$,25pt
пероное		

EXERCICE II : Loi des mailles (3pt)

Faites les nœuds en couleur.

Déterminez les tensions inconnues. Justifiez vos réponses.

Tableau récapitulatif:

\mathbf{U}_1	\mathbf{U}_2	\mathbf{U}_3	U_4	\mathbf{U}_{5}	\mathbf{U}_{6}	U ₇	UAB	UCA
10V					10V			-8V

_EXERCICE III : Résistances équivalentes (4pt)

Calculez RAB lorsque l'interrupteur K est ouvert. Vous pouvez faire une succession de schéma numér	rotés.
	2 pts
	•
Calculez R _{AB} lorsque l'interrupteur K est fermé. Vous pouvez faire une succession de schéma numér	otés.

	2 pts
5	

EXERCICE IV: Alimentation de lampes (3pt)

Quatre **lampes de puissance 24W chacune** fonctionnent sous 12V : le schéma d'une lampe est donné ci-contre.

Ces quatre lampes sont alimentées par un générateur de tension U=230V

IV.1. Déterminez la valeur de la résistance R à mettre en série avec la source, de manière à ce que la tension aux bornes de chaque lampe soit de 12V.

$\kappa \epsilon$	ponse :
2pt	
:	

IV.2. Une des 4 lampes est en panne. Peu importe laquelle, puisqu'elles sont toutes identiques.

R a la valeur que vous avez trouvée au paragraphe IV.1.

Donnez la valeur de I en justifiant. Faites un schéma.

$Rcute{e}$	ponse :	ŀ
		ŀ
1 pt		i
:		ŀ
;		i
:		ŀ
:		i
į		i
		į
		į
į		i
į		i
:		i

EXERCICE V : Analyse de circuit (4pt)

Soit le circuit ci-contre.

Avec la méthode que vous souhaitez, **déterminez les valeurs des courants et tensions aux bornes de tous les composants.**

Vous détaillerez votre raisonnement de façon à que votre démarche soit compréhensible.

Pas besoin de faire des discours pour le raisonnement – une succession de formules ou de schémas, accompagnées de valeurs numériques, me convient si elles ou ils sont bien enchaîné(e)s et pertinent(e)s)

Réponse : Tableau récapitulatif des valeurs trouvées							
I	${ m I}_1$	${f I_2}$	${ m I}_3$	${f I_4}$			
Source	\mathbf{U}_1	\mathbf{U}_2	\mathbf{U}_3	\mathbf{U}_4	\mathbf{U}_5		
10V							

