Scuola universitaria professionale della Svizzera italiana **Dipartimento tecnologie innovative**

SUPSI

Introduction to Machine Learning and Deep Learning

Dario Piga

SUPSI - Scuola Universitaria Professionale della Svizzera Italiana

IDSIA – Dalle Molle Institute for Artificial Intelligence

dario.piga@supsi.ch

University of Applied Sciences and Arts of Southern Switzerland

Youtube video

IDSIA is a research institute on Artificial Intelligence founded in 1988 in Lugano

Thanks to the Italian philantropist Angelo Dalle Molle (1908-2002)

Artificial Intelligence, Machine Learning, Deep Learning

Artificial Intelligence

Techniques that allow machines to mimic human intelligence

Machine learning

Algorithms that allow machines to learn from data without explicitly programming them to solve the task

Deep learning

Algorithms based on deep neural networks

Machine learning: Regression

Real estate application

$$\{(x^i, y^i)\}$$
 $i = 1, ..., N$ available dataset
$$\hat{y}^i = M(x^i; \theta)$$
 parametric model
$$\hat{y}^i = M(x^i; \theta)$$

$$\{(x^i,y^i)\} \ i=1,...,N \ \text{ available dataset}$$

$$\hat{y}^i=M(x^i;\theta) \ \text{ parametric model}$$

$$L(\theta)=\frac{1}{N}\sum_{i=1}^N \left(y^i-\hat{y}^i(\theta)\right)^2 \ \text{ Loss (MSE)}$$

$$\frac{1000}{600}$$

$$\frac{1}{50} \sum_{i=1}^N \left(y^i-\hat{y}^i(\theta)\right)^2 \ \text{ Loss (MSE)}$$

$$\theta^* = \arg\min_{\theta} L(\theta)$$

Machine learning: (binary) Classification

$$\{(x^i, y^i)\} i = 1, ..., N$$
 available dataset

$$p_i = M(x^i; \theta)$$
 parametric model

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{N} y^{i} \log p_{i}(\boldsymbol{\theta}) + (1 - y^{i}) \log(1 - p_{i}(\boldsymbol{\theta}))$$

Cardiovascular risk classification

$$\theta^* = \arg\min_{\theta} L(\theta)$$

Regression and Classification

Choice of the model structure

$$\hat{y}^i = M(x^i; \boldsymbol{\theta})$$
$$p_i = M(x^i; \boldsymbol{\theta})$$

How to optimize the loss?

$$\theta^* = \arg\min_{\theta} L(\theta)$$

Linear regression

Linear model

$$\hat{y} = M(x; \theta)$$

$$\hat{y} = \theta_0 + \sum_{j=1}^d \theta_j x_j = \sum_{j=0}^d \theta_j x_j = \theta^T x$$

• Quadratic Loss
$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y^i - \hat{y}^i(\theta))^2$$
 $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y^i - \theta^T x^i)^2$

$$L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y^i - \boldsymbol{\theta}^T x^i)^2$$

Easy problem with analytical solution: solve $\nabla_{\theta} L(\theta) = 0$

Towards nonlinear models

• Linear-in the parameter model

$$\hat{y} = \sum_{j=0}^{d} \theta_{j} \varphi_{j}(x) = \theta^{T} \varphi(x)$$

Quadratic Loss

$$L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y^{i} - \boldsymbol{\theta}^{T} \varphi(x^{i}))^{2}$$

Still an easy problem with analytical solution: $\nabla_{\theta} L(\theta) = 0$

- How to select the basis functions?
- How to assess model performance?

Assess model performance

- Split your data into a training and test dataset
- Estimate the model based on training data and assess the performance in test
- Test data should be never used for model training
- · Avoid overfitting: model perform well on training data, but not on test data

Assess model performance: metrics

Plot true output vs predicted output

• RMSE (root mean square error): RMSE =
$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y^i - \theta^T x^i)^2}$$

•
$$R^2$$
 index:
$$1 - \frac{\sum_{i=1}^{N} (y^i - \theta^T x^i)^2}{\sum_{i=1}^{N} (y^i - \bar{y})^2}$$

and many others...

Good practice: always check performance both in training and test data

Logistic Regression for binary classification

$$\{(x^i, y^i)\} i = 1, ..., N$$
 available dataset

$$p_i = M(x^i; \theta)$$
 parametric model

$$p = M(x; \theta) = \sigma(\theta^{T} x) = \frac{1}{1 + e^{-\theta^{T} x}}$$
sigmoid

Logistic Regression for binary classification

$$p = M(x; \theta) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$L(\theta) = -\sum_{i}^{N} y^i \log p_i(\theta) + (1 - y^i) \log(1 - p_i(\theta))$$

$$\theta^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

• Inference: if $p_i = M(x_i; \theta) \ge 0.5 \ \rightarrow \ y_i = 1; \quad y_i = 0$ otherwise

$$y_i = 1 \quad \text{if} \quad \frac{\theta^T}{\theta} x > 0$$

We have a linear separator!

Gradient-based optimization

Vanilla Gradient Descent

- 1. Initialize Parameters: $\theta^{(0)}$
- 2. for $k = 0, 1, \ldots$: until maximum number of iterations or convergence do:
 - (a) Compute Gradient: $\nabla_{\theta} \mathcal{L}(\theta^{(k)})$
 - (b) Update Parameters:

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \cdot \nabla_{\theta} \mathcal{L}(\theta^{(k)})$$

optimizer = optim.SGD(model.parameters(), 1r=0.01, momentum=0.9)

Assess model performance: metrics

- Accuracy: $\frac{\# Correcty \ classified \ samples}{Total \ number \ of \ samples}$
- Confusion matrix

• Plot whatever you can (ex., p vs y)

Deep Learning

Basic units for Neural Networks

$$\hat{y} = \sigma \left(\sum_{j=1}^{n} \mathbf{w_j} x_j + \mathbf{b} \right)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z}$$

$$\sigma(z) = \begin{cases} z & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

We have a non-linear relation between inputs and outputs!

Fully-connected Feedforward Neural Networks

Move from one neuron to a hierarchical structure with fully connected neurons

$$z_1^2 = \sigma \left(\sum_{j=1}^4 w_{1,j}^1 z_j^1 + b_1^1 \right) = \sigma \left(W_1^1 z_1^1 + b_1^1 \right)$$

$$z_2^3 = \sigma \left(\sum_{j=1}^5 w_{2,j}^2 z_j^2 + b_2^2 \right) = \sigma \left(W_2^2 z^2 + b_2^2 \right)$$

$$y = z^4 = \sum_{j=1}^3 w_{1,j}^3 z_j^3 + b^3 = W_1^3 z^3 + b^3$$

$$y = z^4 = f(z^3(z^2(z^1)); W, b)$$

- For regression problems, the output node typically does not have a nonlinear activation function
- For binary classification problems, the output node has a sigmoid as an activation function

Neural Networks for multi-class classification

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \sum_{j=1}^{c} 1[y^{i} = j] \log p_{j}(\boldsymbol{\theta})$$

Categorical cross entropy

$$p_i = \sigma(z_i) = rac{e^{z_i}}{\sum_{j=1}^c e^{z_j}}$$

$$p_1, \dots, p_c \ge 0, \qquad \sum_{j=1}^{c} p_j = 1$$

FFN: PyTorch

```
import torch.nn.functional as F
class FeedforwardNN(nn.Module):
   def __init__(self, input_dim=32*32*3, hidden1=512, hidden2=256, num_classes=10):
        super(FeedforwardNN, self). init ()
       self.fc1 = nn.Linear(input_dim, hidden1)
       self.relu1 = nn.ReLU()
       self.fc2 = nn.Linear(hidden1, hidden2)
       self.relu2 = nn.ReLU()
       self.fc3 = nn.Linear(hidden2, num_classes)
   def forward(self, x):
       x = x.view(x.size(0), -1) # Flatten the image
       x = self.fc1(x)
       x = self.relu1(x)
       x = self.fc2(x)
       x = self.relu2(x)
       z = self.fc3(x)
       return z
model = FeedforwardNN(input_dim = X_train.shape[1]*X_train.shape[2]*X_train.shape[3], hidden1=254, hidden2=64, num_classes=10)
print(f"Model structure: {model}")
for name, params in model.named parameters():
    print(f"parameter name: {name}. Value {params.data}")
# check what model provides:
y_hat = model(X_train)
```

FFN: Training in PyTorch

```
# Define the Loss function
criterion = nn.CrossEntropyLoss() # Multi-class classification loss
# define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
# Training Loop with accuracy calculation
max epochs = 8000
for it in range(max epochs):
   optimizer.zero grad()
   i = np.random.randint(0, X_train.shape[0], size = 1024) # mini-batch implementation
    z_hat = model(X_train[i,:]) # Logit Predictions
   loss = criterion(z hat, y train[i]) # Compute Loss
   loss.backward()
   optimizer.step()
   if it % 5 == 0: # Print every 5 iterations
       with torch.no grad():
           z hat = model(X train)
           predicted_labels = torch.argmax(z_hat, dim=1) # Get predicted class
           accuracy = (predicted labels == y train).float().mean().item() # Compute accuracy
       print(f"Iteration: {it}. Loss: {loss.item():.3f}, Accuracy: {accuracy:.2%}")
```

Exercise: Image classification