

Шовкопляс Григорий

Введение в алгоритмы и структуры данных

Задача поиска в массиве и ее решения

Задача поиска

- Дан массив (например)
- Требуется найти в нем
 - Содержится элемент равный X
 - Минимальный элемент неменьший Х
 - Сколько раз содержится элемент X
- Как это сделать?
- Линейный поиск за O(n)
- Если массив не отсортирован, быстрее нельзя
- А если отсортирован?

- Петя и Вася играют в игру
- Петя загадал число, а Вася его угадывает
- Вася может назвать любое число, а Петя ответит больше, меньше или равно оно загаданного
- Вася хочет как можно быстрее угадать число

- Дан отсортированный массив (Если что отсортируем)
- Требуется проверить есть ли в нем конкретное число
- Та же логика, что с игрой
- За сколько работает?
- Почему это не всегда лучше линейного поиска?

Псевдокод

Инвариант: a[l] <= x < a[r]!

```
bin search(l, r, x)
 m = (l + r) / 2
 if x == a[m]
   return True
 if x < a[m]
   return bin search(l, m, x)
 else
   return bin search(m, r, x)
```

Терминальное условие©

Инвариант: a[I] <= x < a[r]!

```
bin search(l, r, x)
 if 1 == r - 1
   return (a[1] == x)
 m = (1 + r) / 2
 if x == a[m]
   return True
 if x < a[m]
   return bin_search(1, m, x)
 else
   return bin search (m, r, x)
```

Левое и правое вхождение

- Можно ли получить больше информации?
- Левое вхождение (нижняя граница) такое наименьшее і, что $a[i] \geq x$
- Правое вхождение (правая граница) такое наименьшее і, что a[i] > x

Левое вхождение

Псевдокод

Инвариант: a[l] <= x < a[r]!

```
lower_bound(1, r, x)
 if l == r - 1
   return 1
 m = (1 + r) / 2
 if x <= a[m]
   return lower bound(1, m + 1, x)
 else
   return lower bound (m + 1, r, x)
```

Правое вхождение

Псевдокод

Инвариант: a[l] <= x < a[r]!

```
upper_bound(1, r, x)
 if l == r - 1
   return 1
 m = (l + r) / 2
 if x < a[m]
   return upper_bound(1, m + 1, x)
 else
   return upper bound (m + 1, r, x)
```

Левое и правое вхождение

- То есть нужно каждый раз писать копипасту?
- Нет, можно выразить одно вхождение через другое
- upper_bound(x) = lower_bound(x + 1)
- Для целых чисел

Инвариант

- У нас был инвариант $a[l] \le x < a[r]$
- Какие проблемы?
- Другие инварианты:
 - $a[l] \le x \le a[r]$
 - $a[l] < x \le a[r]$
 - "Положим" $a[-1] = -\infty$, $a[n] = \infty$
 - a[l] < x < a[r]
- Тогда, какой инвариант самый удобный?

Левое вхождение

Инвариант: a[l] < x <= a[r]!

- Инвариант выполняется по умолчанию
- Никогда не обращаемся к a[-1] или a[n]
- Запускаем как lower_bound(-1, n, x)

```
lower_bound(1, r, x)
 if 1 == r - 1
   return r
 m = (1 + r) / 2
 if x <= a[m]
   return lower bound(1, m, x)
 else
   return lower bound (m, r, x)
```

Левое вхождение

Нерекурсивный вариант

```
lower_bound(x)
 r = n
while 1 < r - 1
  m = (1 + r) / 2
   if x <= a[m]
     r = m
   else
     l = m
 return r
```

Число вхождений

- Как узнать сколько раз элемент X встречается в массиве?
- $\forall i \in [lower_bound(x); upper_bound(x)) \ a[i] = x$
- cnt(x) = upper_bound(x) lower_bound(x)

- Хотим найти такой x, что f(x) = 0
- Какие условия накладываются на функцию?
 - Функция монотонная (можно нестрого)
 - $f(l) \le 0$ и $f(r) \ge 0$

Сразу псевдокод

```
bin search(l, r)
 while r - 1 > EPS
   m = (1 + r) / 2
   if f(m) < 0
     l = m
   else
     r = m
 return r
```

Можно искать не только корень функции, но и любое значение, если $f(l) \le y$ и $f(r) \ge y$

```
bin search(y, l, r)
 while r - 1 > EPS
   m = (1 + r) / 2
   if f(m) < y
     l = m
   else
     r = m
 return r
```

На самом деле while зло

Пишем всегда for!

```
bin search(y, l, r)
 while r - 1 > EPS
 for i = 0 to ITN
   m = (1 + r) / 2
   if f(m) < y
     l = m
   else
     r = m
 return r
```

- За сколько работает?
 - $O(\log_2 \frac{r-l}{EPS})$
- А что делать, если условие $f(l) \le y$ и $f(r) \ge y$ не выполняется?
- Или мы не знаем никаких I и г вообще?
- -1 = -1; while (f(1) > y) 1 *= 2
- r = 1; while (f(r) < y) r *= 2
- Если функция убывает, то наоборот

Двоичный поиск по ответу

Пример задачи

- Есть аллея длины L
- Фонарь в точке X освещает промежуток (X-R; X+R)
- Требуется поставить п фонарей так, чтобы осветить всю аллею и мощность фонарей была минимальна
- Если внимательно присмотреться, тут есть функция!

Пример задачи-2

- На прямой расположены стойла (в конкретных точках, *п* штук)
- Необходимо расставить К коров так, чтобы минимальное расстояние между коровами было как можно больше

- Пусть есть унимодальная функция
- Можно найти ее экстремум
- Раз в названии три, будем делить на три части!

Сразу псевдокод

```
ternary_search(l, r)
 for i = 0 to ITN
  m1 = 1 + (r - 1) / 3
  m2 = r - (r - 1) / 3
   if f(m1) < f(m2)
    r = m2
   else
     1 = m1
 return r
```

- За сколько работает?
 - $O(\log_{\frac{3}{2}} \frac{r-l}{EPS})$
- Можно ли улучшить основание логарифма?

•
$$m_1 = \frac{l+r}{2} - \varepsilon$$
; $m_2 = \frac{l+r}{2} + \varepsilon$

- А если функция очень тяжело вычисляема?
 - Сечение Фибоначчи
 - Золотое сечение

Десерт

Интерполяционный поиск

- А как мы ищем слово в словаре?
- Не двоичным же поиском

Bce!