536 Homework 5

Adrian Dobra adobra@uw.edu

Problem 1. A single-nucleotide polymorphism (SNP) is a DNA sequence variation occurring when a single nucleotide (A, T, C, or G) in the genome differs between members of a species or paired chromosomes in an individual. We want to study whether the genotype associated with a particular SNP (which we generically call "SNP2") is related to the occurrence of Crohn's disease. Its three possible values represent the genotype of this biallelic SNP: 1 (BB), 2 (Bb) and 3 (bb). Here b is the minor allele (proportion of occurrence $\frac{649+2*527}{2*4970} = 0.171$) and B the wildtype allele (proportion of occurrence $\frac{2*3794+649}{2*4970} = 0.829$). The data is Table 1 is a cross-classification of 4970 individuals by SNP2 ("BB" vs. "Bb or bb") and Crohn's disease status ("yes" and "no"). The two binary variables are denoted by X_1 (occurrence of Crohn's disease) and X_2 (absence or presence of the minor allele b at location SNP 2).

		SN	$P \ 2 \ (X_2)$	
		BB(1)	Bb or bb (2)	Row Totals
Disease (X_1)	No (1)	2037	958	2995
	Yes(2)	1757	218	1975
	Column Totals	3794	1176	4970

Table 1: An example of a 2×2 table for genotype-disease association.

Analyze the data in Table 1 as follows:

- 1. Fit the log-linear model of independence and determine if it fits the data well.
- 2. Derive the logistic regression of X_1 given X_2 from the log-linear model you chose. Provide an interpretation for this regression equation.
- 3. Use Fisher's exact test to test whether there is an association between the occurrence of disease and the presence/absence of the minor allele b in location SNP2. Make sure you consider all three alternative hypotheses.

Problem 2. Consider the 2×3 categorical data in Table 2. It cross-classifies the same 4970 individuals based on their Crohn's disease status and genotype at locus SNP2. Remark that Table 1 is obtained from Table 2 by collapsing categories Bb or bb of SNP2.

Analyze the data in Table 2 as follows:

		SNP 2 (X_2)			
		BB(1)	Bb(2)	bb (3)	Row Totals
Disease (X_1)	No (1)	2037	631	327	2995
	Yes(2)	1757	18	200	1975
	Column Totals	3794	649	527	4970

Table 2: An example of a 2×3 table for genotype-disease association.

- 1. Calculate the asymptotic p-value for testing independence vs. interaction.
- 2. Calculate the exact p-value for testing independence vs. interaction.
- 3. Based on your choice of log-linear model, derive the regression of disease given SNP 2.