智能车项目报告

目标

智能车从一个地点开始,在有限的移动步数内到达目的地。

已知条件

- 1. 交通规则:绿灯亮时,仅在十字路口无直行来车时才能左转;红灯亮时,如果 无直行来车左转,或左方来车直行时,则可以右转。
- 2. 动作: None, forward, left, right

问题分析

当智能车在每个路口时,采用随机的动作。观察到一些行为

- 1. 智能车大部分情况无法完成目标,即不能在有限的步数内到达目的地。但有时也可以到达目的地
- 2. 智能车可以穿越边界到达相反的边界
- 3. 智能车的每一步越靠近目的地, reward 的值越大
- 4. 智能车表现很怪异,有时在一个位置停留很久,整个行驶轨迹比较混乱,毫无章法。

根据观察,虽然智能车能够移动,但是并不能很好的达到目标,因此我们对智能车建模

建模分析

选取一组状态对智能车和环境建模。我们选取(next_waypoint,light, oncoming,left)作为一组状态。主要是因为一下几个原因:

1. next_waypoint:表明智能车在路口时,不考虑交通因素,选取的最快到

达目的地的动作,表明去往目的地的方向。

2. light:表明交通规则,影响步数,路口为红灯的时候,可以向右移动,

3. left:表明交通规则的影响,会一定程度影响步数,当无直行车时,可以

左转。

4. oncoming:表明交通规则的影响,也会影响步数,和 left 相关,

对于 right, 影响权重比较小, 不管右侧有没有车, 不影响车的动作, 所

以不考虑这个属性

根据选择的 4 个状态, next_waypoint (4 个值), light (2 个值), left (4 个值),

oncoming (4 个值), 所以状态空间一共有 4*4*2*4=128 个状态, 状态空间的变

量比较少,每个状态都会影响目标的实现,足够做 Q-learning,使每个状态可以

做出基于训练的决策。

Q-LEARNING 实现

状态更新函数:

Q(s,a)=(1-alpha)Q(s,a)+alpha(reward+gamma*max(Q(s',a')))

s:当前状态

a:当前动作

s':下一个状态

a':下一个动作

Q(s,a):当前状态, 当前动作的 Q 值

Q(s',a'):下一个状态,下一个动作的 Q 值

reward:下一个动作的奖励

alpha:学习率,下一个状态的Q值的权重。

gamma: 折扣因子

epsilon:随机参数,随机选取动作

参数是学习率 alpha, 折扣因子 gamma 和随机参数 espilon,主要是对这 3 个参数调整, 达到高准确率和快速学习的能力。

实验结论

是每组 100 次学习结果的成功情况。实验结果如下:

			平均成功	第一	第二	第三	第四	第五
alpha	gamma	epsilon	率	组	组	组	组	组
0.1	0.1	0.1	45	25	46	32	55	67
0.2	0.1	0.1	56.4	56	68	53	50	55
0.3	0.1	0.1	39.4	42	36	52	33	34
0.4	0.1	0.1	36.8	53	31	23	33	44
0.5	0.1	0.1	36.6	39	28	46	31	39
0.6	0.1	0.1	30.6	39	30	21	39	24
0.7	0.1	0.1	24.8	22	20	26	34	22
0.8	0.1	0.1	29.8	33	23	24	28	41
0.9	0.1	0.1	25.4	31	18	32	17	29
0.2	0.2	0.1	45.8	29	37	62	51	50
0.2	0.3	0.1	45.6	61	46	39	46	36
0.2	0.4	0.1	40	52	25	48	43	32
0.2	0.5	0.1	47.6	58	52	29	42	57
0.2	0.6	0.1	56	62	56	55	53	54

0.2	0.7	0.1	60.8	49	47	61	92	55
0.2	0.8	0.1	51.4	65	58	43	53	38
0.2	0.9	0.1	31.2	43	25	24	34	30
0.2	0.7	0.2	39.6	54	19	51	28	46
0.2	0.7	0.3	28.6	32	35	19	19	38
0.2	0.7	0.08	54.2	46	41	60	63	61
0.2	0.7	0.06	58.8	62	60	64	37	71
0.2	0.7	0.04	41.6	25	31	63	66	23

从实验结果可以得出以下结论:

alpha 越大,对累积的经验依赖越小,gamma 越大,对新的状态和动作的Q值依赖越大,epsilon 是随机参数,应该控制在较小的范围,尽量减小探索的情况。当 alpha=0.2,gamma=0.8,epsilon=0.1 是,智能车表现最好。正确率达到60.8%。

智能车在部分状态下,能够给出最佳的状态,不遇到任何惩罚。但是 Q 值没有学习到的状态或这初始化时选取的随机状态,或探索率,都会影响最佳策略的选择。增加一些训练数据,使所有的状态的 Q 值收敛,智能车在不同的状态下就会选择最佳策略。