21-варманы.

По двут гладнит медним ишнеат слопозит невесомах перемична, к которой прилошена смая F(t). Сопромивление перемична равно R_0 , сечение S, концен-я по. Перетична замывает эл-ую цень, состоящую либо из конд-ра ёмкости C, либо индук-и L ими из сопр-их R. Расстой-е методу ишками L. Систета нах-их в однороднот пер-от магн-от попе с индукцией B(t), перт-от плоих ости, в которой перет-ся перемична. Сопромивление ишп, скол-их компоктов, а также самострукций контура пренеб-о малы Ускорение переточки в нах-ый потент времени кончено, попотение определено и равно $Y(0) = Y_0$.

Dareo

n

M = 3 n

F = -fe^{-nt}

Ro, S, L

Bz: -ce^{-nt}

Hairnu:

I(f) = ?

Y= Y(t) - ?

Ymax - ?

Fly-?

Fly-?

Fly-?

E(t) -?

Pemerue

1. $\frac{1}{2}$ pabhenuce $\frac{1}{2}$ tup x $\frac{1}{2}$ of $\frac{1}{2}$ $\frac{$

 D_{RSI} перемощки по II3. Наположа

- $F_{y} + F_{A} = m \frac{J^{2}y}{J^{2}}$, из условия перемиска

невесотая, тогда m = 0:

$$-F_{y}+F_{n}=0$$

$$-F_{y}+IB_{z}l=0$$

$$I(t)=-\frac{fe^{-nt}}{ce^{-3nt}}=\frac{fe^{2nt}}{cl}$$

 $I(t) = \frac{U(t)}{R_o}$ $I(t) = \frac{E(t)\ell}{R_o} \implies E(t) = \frac{I(t)R_o}{\ell} = \frac{\ell e^{2nt}}{\ell \ell} R_o$

Hairgen poekgun Ha och

Fax = -1901 \sqrt{J} be

Fax = -1901 $\left(\frac{J}{J} + y(t)\right) \left(-ce^{-3et}\right)$ Fax = 1901 $\left(\frac{J}{J} + y(t)\right) \left(-ce^{-3et}\right)$ Cuna Amrepa

Fa = $\int Bet = \frac{\int c^{1nt}}{ce^{-nt}} ce^{-nt} = -\int e^{-nt} i \left[F_{0} = -\int e^{-nt}\right]$ Cuna Appenya:

Fa = $\int Bet = \frac{\int c^{1nt}}{ce^{-nt}} ce^{-nt} = -\int e^{-nt} i \left[F_{0} = -\int e^{-nt}\right]$ $\int \int e^{-nt} e^{-nt} e^{-nt} i \left[F_{0} = -\int e^{-nt}\right] e^{-nt} = -\int e^{-nt} i \left[F_{0} = -\int e^{-nt}\right]$ $\int \int e^{-nt} e^{-nt} e^{-nt} e^{-nt} e^{-nt} e^{-nt} = -\int e^{-nt} e^{-nt} e^{-nt} e^{-nt}$

- Banonium npobepty pez-ob

Cuna Amnipa-pez-n generabia cuna Mopenya na kamegia neartent

Sapagol a abn.a cymioù siur. $F_A = EF_A$ $F_A = F_{Ay}N$, 1ge N = nsl $F_A = F_{Ay}N = \frac{fe^{-nt}}{nes}$, $1gl = \frac{fe^{-nt}}{nes}$ - cobnagaen = borriù

cunoù $F_A = F_{Ay}N = \frac{fe^{-nt}}{nes}$.

No empour spagouses 3 abuseum ocnes
$$\frac{I(t)}{I_{max}}$$
 is $\frac{Y(t)}{I_{max}} = \frac{e^{-nt}}{e^{-nt_{max}}}$

$$\frac{Y(t)}{Y(0)} = \frac{\left(\frac{f}{2e^{2}e^{2}}(R_{0}+2I_{0})+y_{0}\right)e^{-nt}}{y(0)} = \frac{f}{2e^{2}e^{2}}(R_{0}+2I_{0})e^{-nt}}{y(0)}$$

Bosoner $A := \frac{f(R_{0}+2I_{0})}{3e^{2}e^{2}y_{0}}$
 $\frac{Y(t)}{Y(0)} = (A+1)e^{3nt} - Ae^{-snt}$

Onbem:
$$I = \frac{fe^{int}}{ce}$$

 $y(t) = (\frac{f}{1c^{2}e^{-}}(R_{0} + 2L_{n}) + y_{0})e^{-3nt} = \frac{f}{2c^{2}e^{-}}(R_{0} + 2L_{n})e^{-5nt}$
 $y(t) = (\frac{f}{1c^{2}e^{-}}(R_{0} + 2L_{n}) + y_{0})e^{-3nt} = \frac{f}{2c^{2}e^{-}}(R_{0} + 2L_{n})e^{-5nt}$
 $y(t) = (\frac{f}{1c^{2}e^{-}}(R_{0} + 2L_{n}))e^{-3nt} = \frac{f}{2c^{2}e^{-}}(R_{0} + 2L_{n})e^{-3nt}$
 $f_{ny} = -\frac{fe^{-nt}}{nes}$
 $f_{ny} = -e(3n(\frac{f}{2ce^{-}}(R_{0} + 2L_{n}) + cy_{0}) - \frac{snf}{2ce^{-}}(R_{0} + 2L_{n})e^{-3nt})$
 $f_{ny} = -e(3n(\frac{f}{2ce^{-}}(R_{0} + 2L_{n}) + cy_{0}) - \frac{snf}{2ce^{-}}(R_{0} + 2L_{n})e^{-3nt})$