Description of the codes to solve the model with financial intermediaries

Jesús Fernández-Villaverde Samuel Hurtado Galo Nuño

University of Pennsylvania Banco de España Banco de España

October 2019

Here we provide a description of the codes, in order to understand the codes please read the numerical appendix in the paper. The only difference with the codes in the case of Krusell Smith is that we also consider the possibility of parallelization. This requires introducing a new script b5_use_parallel.m to verify whether parallelization is possible, both in terms of licence and memory space, and to separate the simulation of the dynamics of the distribution in b5_KFE.m to a new function f8_KFE_sim.m.

As a first guess of the algorithm we employ the solution of the model using a linear regression to generate the PLM. The codes to generate such a guess can be found in the subfolder model_LR.

Name	Description
a2_launch.m	Launches the program
b1_parameters.m	Stores all the parameters of the model
b2_Klm.m	Runs the main loop
b3_HJB.m	Solves the HJB equation
b5_KFE.m	Solves the KF equation
b5_use_parallel.m	Ckecks whether there is a parallel Toolbox licence with at least 12GB of RAM.
b7_PLM.m	Updates the PLM using a neural network
b7_PLM_iter.m	Subroutine of b7_PLM.m in charge of running the line search
b9_plot.m	Creates basic plots to assess convergence and performance
f1_NN_loss.m	Computes the loss function $E(\boldsymbol{\theta})$ of the neural network
f2_NN_eval.m	Evaluates the output of the neural network $h(K, Z)$ for a given set of data
f5_NN_gradient.m	Computes the gradient $\nabla E(\boldsymbol{\theta})$ of the neural network
f8_KFE_sim.m	Simulates the dynamics of the distribution using the KF