

# High Performance Computing Course Notes Assignment Project Exam Help

https://powcoder.com Performance II

Add WeChat powcoder



#### Four approaches to modelling the performance of a parallel application

Speedup

Assignment Project Exam Help

Amdahl's law https://powcoder.com

Add WeChat powcoder

Asymptotic analysis

Model execution time (Construct the performance model)

#### Modelling execution time – an example

#### **Atmosphere model**

- ☐ The atmosphere model is used in weather forecast
- Capture the relation among atmospheric attributes, such as versignmental project, Exame Hebraure, etc.
- □ The model is established by physical laws and represented by https://powcoder.com
  a set of partial differential equations

Add WeChat powcoder

# Partial differential equations in the atmosphere model

Conservation of momentum:

$$\frac{du}{dt} - \left(f + u \frac{\tan \phi}{a}\right) v = -\frac{1}{a \cos \phi} \frac{1}{\rho} \frac{\partial p}{\partial \lambda} + F_{\lambda}$$

Assignment Project Exam Help

Hydrostatic approximation:

https://powcodencom

Conservated We Chat powcoder

$$\frac{\partial \rho}{\partial t} = -\frac{1}{s \cos \phi} \left( \frac{\partial}{\partial \lambda} (\rho u) + \frac{\partial}{\partial \phi} (\rho v \cos \phi) \right) - \frac{\partial}{\partial z} (\rho w)$$

Conservation of energy:

$$C_p \frac{dT}{dt} - \frac{1}{\rho} \frac{dp}{dt} = Q$$

State equation (atmosphere):

$$p = \rho RT$$

#### **Modelling execution time – an example**

#### **Atmosphere model**

- □ too complicated to be solved by mathematical derivation
- ☐ We have to resort to the numerical method
- □ Cannot generate the solution for every physical point
  ASSIGNMENT Project Exam Help
  □ discretize the space, i.e., partition the space into a set of cells and use one point in a cell to represent all points in the cell.
- https://powcoder.com

  □ a continuous space is approximated by a finite set of regularly spaced points in that space



#### **Communication pattern**

Each point uses the nine-point stencil to calculate its horizontal motion and uses the three-point stencil to calculate its vertical motion



Fig. 2. The 9-point stencil for calculating the horizontal velocity

#### Question

When processor 1 wants to calculate the data points allocated to it, how many data items does it have to obtain from processor 2?



#### **Modelling computation time**



https://powcoder.com

If we assume a grid of size N\*N\*Z points, and using 1D decomposition Water poiso to partition the grid among P processors, then

- □ each task is responsible for a subgrid of size N\*(N/P)\*Z
- □ then, T<sub>comp</sub> for each subgrid can be calculated as follows, where t<sub>c</sub> is the average time of calculating a single grid point

 $T_{comp}=t_c*N*(N/P)*z$ 

#### Modelling the time of sending one message

☐ T<sub>msg</sub> (the time spent in sending one message) can be calculated as follows,

$$T_{msg}=t_s+t_wL$$

where  $t_s$  is the message startup time,  $t_w$  is the transfer time per byte, L is the size of the message ASSIGNMENT Project Exam Help

T<sub>msg</sub> is a function of the poly and the standing ven a computing platform

Question: if I plot the function of This over L, what does the plot look like? How are ts and tw represented in the line? e Charles powcoder



## Modelling communication time





Communication time for calculating a subgrid can be computed as

$$T_{comm} = 2(t_s + t_w 2NZ)$$

Hence Alessig in ment Project the seeputible ipe of calculating the velocity of the grid of points is

T\_=T\_comp = Project the seeputible ipe

T\_=T\_comp = Project the



- Add WeChat powcoder

  From the performance model of the execution time,
  we can know a lot of information.
  - What will happen when we increase p?
    Execution time decreases with increasing P; the proportion of communication cost increases
  - Execution time increases with increasing N, Z,
     t<sub>c</sub>, t<sub>s</sub>, t<sub>w</sub>



#### Speedup and parallel efficiency

→ The execution time on one processor is

$$T_1 = t_c N^2 Z$$

- ightarrow Speedssignment Project Exam Help  $t_c N^2 ZP$   $S(P) = t_c N^2 ZP$   $S(P) = t_c N^2 ZP$
- > Parallel efficient War Chara polated aler

$$E = \frac{t_c N^2 Z}{t_c N^2 Z + 2t_s P + t_w 4NZP}$$

#### **Iso-efficiency**

$$E = \frac{t_c N^2 Z}{t_c N^2 Z + 2t_s P + t_w 4NZP}$$

Question: Swigatusent Projecti Examultaba?

E can be rechttes to powcoder.com

$$E = \frac{\text{Add WeChat p wcoder}}{t_c + \frac{t_s 2P}{ZN^2} + \frac{t_w 4P}{N}}$$

When N=P, E remains approximately constant as P changes(except when P is small)

#### 2D decomposition



If applying 2-D decomposition, then

### Add WeChat powcoder Execution time can be modelled as 1D

$$T_{comp} = t_c N^2 Z/P$$

$$T_{comm} = 4(t_s + t_w 2\frac{N}{\sqrt{P}}Z)$$

#### 1D decomposition

$$T_{comp} = t_c * N * (N/P) * z$$
$$T_{comm} = 2(t_s + t_w 2NZ)$$

$$T_{comm} = 2(t_s + t_w 2NZ)$$

$$T_P = T_{comp} + T_{comm} = \frac{t_c N^2 Z + t_s 4P + t_w 8NZ\sqrt{P}}{P}$$

#### **Iso-efficiency**

Parallel efficiency can be modelled as

$$t_c N^2 Z$$

Assignment Project Example Project P

- When  $N=\sqrt{p}$ , E remains constant as P increases https://powcoder.com
- Iso-efficiency in 1D is N=P Add WeChat powcoder
- Therefore, for this particular communication pattern, applying 2D decomposition will achieve better scalability than 1D decomposition



#### **Decomposition analysis**



- Boundary surfaces between Bob grids are shaded.
- Data on boundary surfaces need to be communicated.
- The lower surface-to-volume ratio, the better:
  - Surface = communication
  - Volume = computation

#### **Decomposition analysis**

#### Consider a 3-D grid and assume the grid is a cube

- ■Volume V=c\*n, where c = number of cells per PE, n is the number of processors
  Assignment Project Exam Help
- The length of the grid in each dimension is V<sup>1/3</sup> https://powcoder.com

Add WeChat powcoder

#### **Decomposition analysis**

|     |                    | Sub-grid Length   |                     |                      |                                                                              |                                      |
|-----|--------------------|-------------------|---------------------|----------------------|------------------------------------------------------------------------------|--------------------------------------|
|     | Sub-grid<br>Volume | I                 | J                   | K                    | Sub-grid<br>Surfaces                                                         | Surface to<br>Volume                 |
| 1-D | Assi               | onment            | Project             | Exam l               | Hefp <sup>2/3</sup> .n <sup>2/3</sup><br>4c <sup>2/3</sup> .n <sup>1/6</sup> | 2n <sup>2/3</sup> / c <sup>1/3</sup> |
| 2-D | C                  | $V^{1/3}/n^{1/2}$ | $V^{1/3} / n^{1/2}$ | V <sup>1/3</sup>     | 4c <sup>2/3</sup> .n <sup>1/6</sup>                                          | 4n <sup>1/6</sup> / c <sup>1/3</sup> |
| 3-D | С                  | <b>https://</b> j | boowbe              | ey!&omf <sup>3</sup> | 6c <sup>2/3</sup>                                                            | 6 / c <sup>1/3</sup>                 |

