

Derivative Rules

Advanced
The Derivative tells us the slope of a function at any point.

There are **rules** we can follow to find many derivatives.

For example:

- The slope of a **constant** value (like 3) is always 0
- The slope of a **line** like 2x is 2, or 3x is 3 etc
- and so on.

Here are useful rules to help you work out the derivatives of many functions (with examples below). Note: the little mark r means "Derivative of".

Common Functions	Function	Derivative
Constant	С	0
Line	X	1
	ax	а
Square	x^2	2x
Square Root	√x	$(1/2)X^{-1/2}$
Exponential	e ^x	e ^x
	a ^x	In(a) a ^x
Logarithms	ln(x)	1/x
	log _a (x)	1 / (x ln(a))
Trigonometry (x is in <u>radians</u>)	sin(x)	cos(x)
	cos(x)	-sin(x)
	tan(x)	sec ² (x)

Inverse Trigonometry	$sin^{-1}(x)$	$1/\sqrt{(1-x^2)}$
	$cos^{-1}(x)$	$-1/\sqrt{(1-x^2)}$
	tan ⁻¹ (x)	$1/(1+x^2)$

Function

Derivative

cf	
CI	cf'
x ⁿ	nx^{n-1}
f + g	f' + g'
f - g	f'-g'
fg	f g' + f' g
f/g	$(f' g - g' f)/g^2$
1/f	-f'/f ²
f ^o g	(f' ^o g) × g'
f(g(x))	f'(g(x))g'(x)
	$= \frac{dy}{du} \frac{du}{dx}$
	f + g f - g fg f/g 1/f f o g f(g(x))

"The derivative of" is also written $\frac{d}{dx}$

Rules

So $\frac{d}{dx}sin(x)$ and sin(x)' both mean "The derivative of sin(x)"

Examples

Example: what is the derivative of sin(x)?

From the table above it is listed as being cos(x)

It can be written as:

$$\frac{d}{dx}\sin(x) = \cos(x)$$

Or:

$$sin(x)' = cos(x)$$

Power Rule

Example: What is $\frac{d}{dx}x^3$?

The question is asking "what is the derivative of x^3 ?"

We can use the <u>Power Rule</u>, where n=3:

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{d}{dx}x^3 = 3x^{3-1} = 3x^2$$

(In other words the derivative of x^3 is $3x^2$)

So it is simply this:

"multiply by power then reduce power by 1"

It can also be used in cases like this:

Example: What is $\frac{d}{dx}(1/x)$?

1/x is also x^{-1}

We can use the Power Rule, where n = -1:

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{d}{dx}x^{-1} = -1x^{-1-1} = -x^{-2}$$

So we just did this:

which simplifies to $-x^{-2}$

Multiplication by constant

Example: What is $\frac{d}{dx} 5x^3$?

the derivative of cf = cf'

the derivative of 5f = 5f'

We know (from the Power Rule):

$$\frac{d}{dx}x^3 = 3x^{3-1} = 3x^2$$

So:

$$\frac{d}{dx}5x^3 = 5\frac{d}{dx}x^3 = 5 \times 3x^2 = 15x^2$$

Sum Rule

Example: What is the derivative of x^2+x^3 ?

The Sum Rule says:

the derivative of f + g = f' + g'

So we can work out each derivative separately and then add them.

Using the Power Rule:

•
$$\frac{d}{dx}x^2 = 2x$$

•
$$\frac{d}{dx}x^3 = 3x^2$$

And so:

the derivative of
$$x^2 + x^3 = 2x + 3x^2$$

Difference Rule

It doesn't have to be \mathbf{x} , we can differentiate with respect to, for example, \mathbf{v} :

Example: What is $\frac{d}{dv}(v^3-v^4)$?

The Difference Rule says

the derivative of f - g = f' - g'

So we can work out each derivative separately and then subtract them.

Using the Power Rule:

- $\frac{d}{dv}v^3 = 3v^2$
- $\frac{d}{dv}v^4 = 4v^3$

And so:

the derivative of
$$v^3 - v^4 = 3v^2 - 4v^3$$

Sum, Difference, Constant Multiplication And Power Rules

Example: What is
$$\frac{d}{dz}(5z^2 + z^3 - 7z^4)$$
?

Using the Power Rule:

•
$$\frac{d}{dz}z^2 = 2z$$

•
$$\frac{d}{dz}z^3 = 3z^2$$

•
$$\frac{d}{dz}z^4 = 4z^3$$

And so:

$$\frac{d}{dz}(5z^2 + z^3 - 7z^4) = 5 \times 2z + 3z^2 - 7 \times 4z^3 = 10z + 3z^2 - 28z^3$$

Product Rule

Example: What is the derivative of cos(x)sin(x)?

The Product Rule says:

the derivative of fg = f g' + f' g

In our case:

- f = cos
- $g = \sin$

We know (from the table above):

- $\frac{d}{dx}\cos(x) = -\sin(x)$
- $\frac{d}{dx}\sin(x) = \cos(x)$

So:

the derivative of cos(x)sin(x) = cos(x)cos(x) - sin(x)sin(x)

$$= \cos^2(x) - \sin^2(x)$$

Example: What is
$$\frac{d}{dx}(1/x)$$
?

The Reciprocal Rule says:

the derivative of
$$1/f = -f'/f^2$$

With
$$f(x) = x$$
, we know that $f'(x) = 1$

So:

the derivative of
$$1/x = -1/x^2$$

Which is the same result we got above using the Power Rule.

Chain Rule

Example: What is
$$\frac{d}{dx}\sin(x^2)$$
?

 $sin(x^2)$ is made up of sin() and x^2 :

- $f(g) = \sin(g)$
- $g(x) = x^2$

The Chain Rule says:

the derivative of
$$f(g(x)) = f'(g(x))g'(x)$$

The individual derivatives are:

- f'(g) = cos(g)
- g'(x) = 2x

So:

$$\frac{d}{dx}\sin(x^2) = \cos(g(x)) (2x)$$
$$= 2x \cos(x^2)$$

Another way of writing the Chain Rule is: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Let's do the previous example again using that formula:

Example: What is $\frac{d}{dx}\sin(x^2)$?

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Have $u = x^2$, so $y = \sin(u)$:

$$\frac{d}{dx} \sin(x^2) = \frac{d}{du} \sin(u) \frac{d}{dx} x^2$$

Differentiate each:

$$\frac{d}{dx}\sin(x^2) = \cos(u) (2x)$$

Substitue back $u = x^2$ and simplify:

$$\frac{d}{dx}\sin(x^2) = 2x\cos(x^2)$$

Same result as before (thank goodness!)

Another couple of examples of the Chain Rule:

Example: What is $\frac{d}{dx}(1/\cos(x))$?

 $1/\cos(x)$ is made up of 1/g and $\cos()$:

- f(g) = 1/g
- g(x) = cos(x)

The Chain Rule says:

the derivative of
$$f(g(x)) = f'(g(x))g'(x)$$

The individual derivatives are:

•
$$f'(g) = -1/(g^2)$$

•
$$g'(x) = -\sin(x)$$

So:

$$(1/\cos(x))' = -1/(g(x))^2 \times -\sin(x)$$

= $\sin(x)/\cos^2(x)$

Note: $sin(x)/cos^2(x)$ is also tan(x)/cos(x), or many other forms.

Example: What is $\frac{d}{dx}(5x-2)^3$?

The Chain Rule says:

the derivative of
$$f(g(x)) = f'(g(x))g'(x)$$

 $(5x-2)^3$ is made up of g^3 and 5x-2:

•
$$f(g) = g^3$$

•
$$g(x) = 5x-2$$

The individual derivatives are:

•
$$f'(g) = 3g^2$$
 (by the Power Rule)

•
$$g'(x) = 5$$

So:

$$\frac{d}{dx}(5x-2)^3 = 3g(x)^2 \times 5 = 15(5x-2)^2$$

<u>Question 1 Question 2 Question 3 Question 4 Question 5 Question 6</u> <u>Question 7 Question 8 Question 9 Question 10 Question 11 Question 12</u> <u>Question 13</u>

Copyright © 2017 MathsIsFun.com