1 Energie

1.1 Energieerhaltung

Bei allen Vorgängen muss die Gesamtenergie eines Systems und seiner Umgebung erhalten werden.

$$E_{tot} = E_{Masse} + E_{kin} + E_{pot} + E_{chem} + \text{usw.} = \text{konst.}$$

1.2 Relativistische Grössen

Geschwindigkeitsparameter $\equiv \frac{v}{c}$

Für hohe Geschwindigkeiten giltet der relativistische Impuls:

$$p = \gamma m v$$

mit dem Lorentzfaktor γ

$$\gamma \equiv \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

1.3 Kinetische Energie

1.3.1 Klassisch (v < 0.3c)

Gesamtenergie

$$E = mc^2 + \frac{1}{2}mv^2$$

Kinetische Energie

$$E = \frac{1}{2}mv^2$$

1.3.2 Relativistisch ($v \ge 0.3c$)

Gesamtenergie

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Kinetische Energie

$$E_{kin} = E - mc^2 = mc^2(\gamma - 1)$$

1.4 Potentielle Energie der Gravitation

Die **potentielle Energie** eines Körpers auf der Höhe *h* ist gleich

$$E_{pot}(h) = mgh$$

Die **Gesamtenergie** eines Körpers im freien Fall von der Höhe h ist gleich

$$E(y) = \underbrace{mc^2}_{\text{Ruheenergie}} + \underbrace{\frac{1}{2}mv^2}_{\text{kinetisch}} + \underbrace{mgy}_{\text{potentiell}}$$

falls der Luftwiderstand vernachlässigt werden darf.

1.5 Looping

Ist die Geschwindigkeit kleiner als v_{min} , löst sich der Ball vom Kreis

$$v_{min} = \sqrt{gR}$$

Die Höhe h, von der die Kugel fallen gelassen werden muss, ist gleich

$$h = \frac{5}{2}R > 2R$$

1.6 Arbeit

Die **Arbeit** W ist gleich dem Produkt der Komponente der Kraft längs der Verschiebung und der Verschiebung selbst

$$W = F\Delta x \cos(\theta)$$

1.6.1 Arbeit der Federkraft

Die **Arbeit** zwischen den Verschiebungen x_1 und x_2 ist gleich

$$W_{12} = -\frac{k}{2}(x_2^2 - x_1^2)$$

1.7 Leistung

Die **Leistung** *P* ist die in der Zeiteinheit verrichtete Arbeit:

$$P = \frac{dW}{dt} = F \cdot v$$

1.8 Allgemeine potentielle Energie

1.8.1 Konservative Kräfte

Die geleistete Arbeit längs eines geschlossenen Wegs ist gleich null. Die Arbeit ist unabhängig vom zurückgelegten Weg. Potentielle Energie ist für diese Art von Kräften definiert. Beispiel: Gravitationskraft, Federkraft

1.8.2 Nicht-konservative Kräfte

Die geleistete Arbeit hängt vom Weg ab. *Beispiel:* Reibungskraft

1.9 Arbeit-Energie-Theorem

Die Arbeit, die an einem Körper zwischen zwei Punkten (1) und (2) geleistet wird, ist gleich der änderung seiner kinetischen Energie zwischen diesen Punkten.

$$W_{12} = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$$

1.10 Mechanische Energie

$$E_{mech} \equiv E_{kin} + E_{not}$$

Die mechanische Energie wird *erhalten*, wenn nur konservative Kräfte wirken.

Die änderung der mechanischen Energie ist gleich der Arbeit, die von *nicht-konservativen* Kräften geleistet wird.

1.11 Bremsweg

Betrachtet wird das Gleiten auf einer schiefen Ebene mit der Starthöhe h und dem Neigungswinkel ϑ . Dann ist der **Bremsweg** L

$$L = \frac{v_0^2}{2g(\mu\cos(\theta) - \sin(\theta))}$$