

AJACS & 第22回DDBJing 講習会 in 東京

BodyParts3D/Anatomographyの利用法

http://lifesciencedb.jp/bp3d/

ライフサイエンス統合データベースセンター(DBCLS) 大学共同利用機関法人 情報・システム研究機構(ROIS) 三橋 信孝/藤枝 香/今井 紫緒/大久保公策 2009年6月23日

目次

- BodyParts3D/Anatomographyとは
- ・ (現時点での)利用事例の紹介
- BodyParts3Dの特徴
- 実習(motdb参照)

BodyParts3Dとは

人体の各部位の位置や形状を3次元モデルで記述した データベース

- ・ 読み方:ボディパーツスリーディー
- ・ 計算機技術:3次元CGの基本技術(ポリゴンモデル)

ポンチ絵

BodyParts3D

現実の人体

引用:解剖学カラーアトラス 第6版 (大型本) Johannes W.Rohen (著)

Anatomographyとは

- 読み方:アナトモグラフィー
- ・ 名前の由来

Anatomography = Anatomy (解剖学) + - graphy(画法:出力の仕組み)

- 解剖学用語を選択して自由に 人体のモデル図を描くツール
- 視点やズーム、色、透過度など自由に設定できる

自分の見たい臓器を見たい角度で表示できる!

BodyParts3D/Anatomographyの場所

Getting Started

Getting Started

目次

- BodyParts3D/Anatomographyとは
- ・ (現時点での)利用事例の紹介
- BodyParts3Dの特徴
- · 芜岩(motdb参居)

(現時点での)利用事例の紹介

1. 臓器の形状や位置の表現・伝達・確認

- Wikipediaの挿絵
- 科学番組のコンテンツ
- 科学技術関連のニュースの記事
- − Twitterとの連携
- 一 学会発表資料作成
- 授業(大学、予備校)の教材

2. 人体上にデータをマッピングして可視化

- 臓器別遺伝子発現データの可視化
- かんの部位別死亡率の可視化

Wikipediaの挿絵

画像はWikimedia Commonsにアーカイブ

科学番組のコンテンツ

科学技術関連のニュース記事

http://www.redorbit.com/news/health/1845003/neurons_coordinate_their_messaging_yielding_clues_to_how_the_brain/index.html?source=r_healt_h

Thalamus (視床、赤い部分) の位置、形状説明

Image 2: Although they only account for a fraction of the synapses in the visual cortex, neurons in the thalamus (shown in red) get their message across loud and clear by simultaneously hitting the "send" button. Credit: From Anatomography, website maintained by Life Science Databases(LSDB).

twitterとの連携

(現時点での)利用事例の紹介

- 1. 順報器の形状や位置の表現。伝達。確認
 - Wikipediaの持続
 - 科学番組のコンテンツ
 - 科学技術題題の……ス語書
 - Twitterとのi≢持
 - 学会発表資料作成

2. 人体上にデータをマッピングして可視化

- 臓器別遺伝子発現データの可視化
- がんの部位別死亡率の可視化

臓器別遺伝子発現量の可視化

http://togoexp.dbcls.jp/RefEx/human/→「発現パターンから探す」

ヒートマップをGoogle Maps上に配置

目次

- BodyParts3D/Anatomographyとは
- ・ (現時点での) 利用事例の紹介
- BodyParts3Dの特徴
- · 美智(motdb参照)

BodyParts3Dの特徴

1. 利用条件

- 無償利用・改変・再配布可能(CC-BY-SAライセンス)
- 3次元ポリゴンメッシュのデータもダウンロード可能

- 解剖学用語集にある解剖名称カバーを目指す
- 一会パーツ(様器)が同一3次元歴提上存在

3. 挥打学資料達规者目指す

- 教科書、論文等にある標準的な臓器のサイズ、臓器同士の位置関係(メルクマール)をできるだけ満たすように
- 準拠したメルクマール情報をメタデータとして提供したい

ポリゴンメッシュモデルのダウンロード (CC-BY-SAライセンス)

BodyParts3Dの特徴

- 無償利用・改変・再配布可能(CC-BY-SAライセンス)
- 3次元ポリゴンメッシュのデータもグウンロード可能

2. 全身モデル

- 解剖学用語集にある解剖名称を網羅することを目指す
- 全パーツ(臓器)が同一3次元座標上存在

3. 角罕自了学資料、準规を目指す

- 教科書、論文等にある標準的な臓器のサイズ、臓器同士 の位置関係(メルクマール)をできるだけ満たすように
- 準拠したメルクマール情報をメタデータとして提供したい

全身モデル:パーツ(臓器)数 2010年4月28日にリリース 2.0を公開

English	漢字	Rel. 1.0	Rel.2.0
nervous system	神経系	55	58
sense organ system	感覚器系	18	4
cardiovascular system	循環器系	144	75
respiratory system	呼吸器系	45	11
alimentary system	消化器系	32	54
endocrine system	内分泌系	15	5
lymphoid system	リンパ系	2	5
urinary system	泌尿器系	9	9
genital system	生殖系	18	18
skeletal system	骨格系	272	270
muscular system	筋肉系	2	768
articular system	関節系	3	30
integumentary system	外皮系	0	6
others	その他	27	1
合計	642	1,314	

胸部

- 教育用解剖学教科書に準拠するように位置、形状修正
- 気管支、肺血管詳細部作製
- 領域分けは未達成

筋肉

- 大部分を作製
- 起始・停止は教科書準拠

3次元データが利用可能な人体3次元モデル

モデル名称	作成者	対象	パーツ数	無償	無断再配布
BodyParts3D	DBCLS	whole body	1,314	0	0
visible human dissector	Univ. Colorado, NLM	whole body	1,200	×	×
voxel man	Univ. Medical Center	whole body	>200		
(segmented inner organs)	Hamburg-Eppendorf			×	×
Virtual Anatomia	慈恵医大	whole body	600	×	×
Zubal Phantom	Yale Univ.	torso+head	65	0	×
TARO, HANAKO	情報通信総研	whole body	51	Δ	×
Talairach	Talairach project	brain	107	0	?
SPL-PNL Brain Atlas 2008	Harvard Neuroscience Laboratory	brain	168	0	0
ICBM Template	ICBM(International Consortium of Brain Mapping)	brain	54	Δ	×
SPL-PNL Abdominal Atlas 2008	Harvard Neuroscience Laboratory	abdomen	54	0	0

全身モデル:座標系

全身モデル: 各臓器の属性を見る

BodyParts3Dの特徴

1. 利用条件

- 無償利用・改変・再配布可能(CC-BY-SAライセンス)
- 3次元ポリゴンメッシュのデータもダウンロード可能

Common to the co

- 全パーツ(臓器)が同一3次元座標上存在
- 解剖学用語集にある解剖名称カバーを目指す

3. 解剖学資料準拠を目指す

- 教科書、論文等にある標準的な臓器のサイズ、臓器同士の位置関係(メルクマール)をできるだけ満たすように
- 準拠したメルクマール情報をメタデータとして提供したい

メルクマール(指標)例(第4・5胸椎の高さ)

重要ポイント

第4・第5胸椎間の高さ

患者を診察するとき、医師は患者の体内の各部位にある 重要な構造物の位置を固定するために椎骨の高さを指標と して用いる。

第4・第5胸椎間の椎間円板を通る水平面は、身体で最も重要な面の1つである(図3.10)。この面は、

- 前方では胸骨角を通り、胸骨と第2肋軟骨の間の関節の 高さを通る。胸骨角は、肋骨を数えるための基準点と して、第2肋骨の位置を同定するのに用いられる(第1 肋骨は鎖骨と重なっているため、体表からは触れるこ とができない)。
- 上縦隔と下縦隔を分け、心膜の上端の高さを通る。
- 大動脈弓の起始部と終端の位置を通る。
- 上大静脈が心膜を貫通して心臓に入る部位を通る。
- 気管が左右の主気管支に分岐する高さである。
- 肺動脈幹の上端の位置にあたる。

図3.10 第4・第5胸椎間の高さ

引用:グレイ解剖学p109

現在の開発体制

- DBCLS内開発チーム
 - 三橋 信孝: 臓器形状データ整理、システム運用
 - 藤枝 香: 臓器形状データ作成、臓器名称付与、臓器関係編集
 - 今井 紫緒: 3DCAD指導、モデリング
 - 大久保公策 (開発責任者): 原案、解剖学監修
- 外部開発分担企業
 - 株式会社エムアイシー: ラフモデリング、計測データ入力
 - ビッツ株式会社: レンダリングサーバ・WebAPI・GUI開発、 BodyParts3D解剖学用語辞書整備

目次

- BodyParts3D/Anatomographyとは
- BodyParts3Dの特徴
- 実習(motdb参照)

実習3の答え

- 1. 身長は何センチでしょうか。
 - 答え:約168.4cm
 - 確認:
 - Bp3dViewで人体(全身)パーツをパレットに入れて、Zmin、Zmax の値を調べてください。
 - 身長=Zmax Zmin =1670.79(mm)– (-13.5175(mm)) ≒ 168.4cm
- 2. 左肺と右肺はどちらが大きいでしょうか。その理由は
 - 答え:右肺が大きい。心臓が左に寄っているから。
 - 確認:
 - 左肺の体積 = 1489cm³、右肺の体積 = 1765cm³
 - アナトモグラフィーで肺と心臓を見てみてください。

実習3の答え

3. 左右の腎臓の高さが異なる理由は

- 答え:右側には肝臓があるため。
- 確認:腎臓と肝臓をアナトモグラフィーで描画
- グレイ解剖学(p320):肝臓が身体の右側によっているため、右腎臓が左腎臓よりやや低い位置にある。