BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI- HYDERABAD CAMPUS FIRST SEMESTER 2019-2020 Course Handout (Part II)

01-08-2019

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F214

Course Title : Elementary Real Analysis

Instructor in charge : MANISH KUMAR

Instructors : Manish Kumar, N. Kishore Kumar

1. Scope and objective of the Course:

The objective of this course is to train the students with the basic tools of modern mathematical analysis, train them in the art of logical, deductive & constructive thinking and thus equip them with enough background for courses which involve deeper mathematical analysis. Real analysis is needed in several science & engineering disciplines, in the study of dynamical systems, which are solutions of differential equations, theoretical study of differential equations, the concept of fractal & fractal dimension is usually studied in metric spaces. Riemann integral is basic integral on which advance theory of integration is developed. Integration theory is needed in the study of theoretical & numerical solution of partial differential equations.

2. Course Description: Countable and uncountable sets; real numbers, metric spaces, continuous and uniformly continuous maps in metric spaces, connectedness, completeness and compactness in a metric space, Numerical sequences and series, Riemann integral & Riemann Stieltjes Integral, Convergence & uniform convergence of sequence of functions, Approximation of continuous function, functions of several variables, derivative of function of several variables, inverse function theorem.

3. Text Book:

W. Rudin, Principles of Mathematical Analysis, McGraw, Hill 3rd edition, 1976.

4. Reference Books:

- 1. Apostal: Mathematical Analysis, Addision Wesley, 1983.
- 2. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, 4th Edition, John Wiley.
- 3. Kenneth Ross: Elementary Analysis, Springer International Edition 2000.

5. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-3	Representation of real numbers	Ordered field, Construction of real numbers, the set of real numbers as ordered field, extended real numbers	Chapter 1, Sec: 1.1 to 1.23
4-6	Difference between countable & uncountable set	Finite, Countable & uncountable sets	Chapter 2, Sec : 2.1 to 2.14
7-10	Generalization of concept of	Metric spaces, compact sets, different	Chapter 2, Sec: 2.15

	distance to abstract sets	Definition of compact sets, Cantor Intersection theorem, Contraction Principle	to 2.47
11-15	Convergence of Sequence and series of real numbers	Sequence and infinite series	Chapter: 3
16-21	Generalization of concept of limit & continuity to metric spaces	Continuous & uniformly continuous functions& their properties	Chapter 4
22-29	Integration with respect to a function	Riemann Stieltjes integral & properties	Chapter 6
30-37	Distinguish between uniform & pointwise convergence of sequence of functions. Functions not differentiable but continuous	functions & related properties of	Chapter 7
38-42	How continuity & differentiability have generalization for function of several variables	,	Chapter 9 sec: 9.1 to 9.15

6. Evaluation Scheme:

Components	Duration	Weightag	Date	&	Time	Nature of Component
		e				
Quizzes (5)*		20%	To be ann	ounc	ced in the	Closed Book
				class		
Mid Sem	90 min.	35%	30/9, 11	.00 -	- 12.30	Open Book
				PM		
Comprehensiv	3 hrs.	45%	4/	12 A	N	Closed Book
e Exam						

^{*} Best four will be considered for grading.

- **7. Chamber consultation hour:** To be announced in the class.
- **8. Notices:** Notices concerning this course will be displayed on the CMS Notice Board only.
- **9. Make up:** Make-up will be given only for very genuine cases and prior permission has to be obtained from the I/C.

10. Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.