MATH410: Advanced Calculus I

James Zhang*

 $January\ 31,\ 2024$

These are my notes for UMD's MATH410: Advanced Calculus I. These notes are taken live in class ("live- T_EX "-ed). This course is taught by Lecturer Anna Szczekutowicz.

Contents

3	Sequences	5
2	The Completeness Axiom 2.1 Archimedian Property	3
1	Set Theory Preliminaries	2

^{*}Email: jzhang72@terpmail.umd.edu

§1 Set Theory Preliminaries

This section covers the foundation of analysis, which is just the set of real numbers. It covers basic definitions such as \in , \notin , \emptyset , \subseteq , =, \cap , \cup , \setminus , so for example

Definition 1.1. Intersection of A and B is $C = A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Some quantifiers include $\forall, \exists, \exists!$ and some number sets include $\mathbb{R}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^C$.

Definition 1.2. The real numbers \mathbb{R} satisfies 3 groups of axioms: Refer to the notes on Canvas for the Consequences of all of the following axioms.

- 1. Field (+, *)
 - Commutativity of Addition
 - Associativity
 - Additive Identity
 - Additive Inverse
 - Commutativty of Multiplication
 - Associativity of Multiplication
 - Multiplicative Identity
 - Multiplicative Inverse
 - Distributive Property

The set of integers \mathbb{Z} is not a field because it fails under the multiplicative inverse.

2. Positivity

There is a subset of \mathbb{R} denoted by \mathcal{P} , called the set of positive numbers for which:

- If x and y are positive, then x + y and xy are both positive.
- For each $x \in \mathbb{R}$, eaxctly one of the following 3 alternatives is true: $x \in \mathcal{P}$, $-x \in \mathcal{P}$, or x = 0

3. Completeness

Definition 1.3. Absolute value is defined as

$$|x| = \begin{cases} x \text{ if } x \ge 0\\ -x \text{ if } x < 0 \end{cases}$$

Definition 1.4. Triangle Inequality is $\forall a, b \in \mathbb{R}, |a+b| \leq |a| + |b|$

Proof. Assume without loss of generality, $a \geq b$. We will proceed with proof by cases.

Case 1: Assume $a \ge b \ge 0$. Then |a+b| = a+b by the definition of absolute value since $a \ge 0, b \ge 0 \implies |a+b| = a+b = |a| + |b|$.

Case 2: Now assume $a \ge 0 \ge b$ and $a + b \ge 0$. Note since $b \le 0$ then $b \le |b|$. Then

$$|a+b| = a+b \le |a| + |b|$$

by the definition of absolute value and our above note.

Case 3: Now consider $a \ge 0 \ge b$ and a + b < 0. So

$$|a+b| = -(a+b) = -a - b \le |a| + |b|$$

Case 4: Now consider $0 \ge a \ge b$ so a + b < 0. Therefore,

$$|a + b| = -(a + b) = -a + -b = |a| + |b|$$

§2 The Completeness Axiom

Definition 2.1. A subset S of \mathbb{R} is said to be **bounded above** if $\exists r \in \mathbb{R}$ such that $s \leq r \ \forall \ s \in S$

The definition of **bounded below** is similar.

Definition 2.2. The least upper bound, if it exists, is called the **supremum** of S. We denote it as the "sup" of S. Similarly, the largest lower bound is called the **infemum** and is denoted as the "inf" of S.

Definition 2.3. Let $S \subseteq R$ where $S \neq \emptyset$. If S has a largest (smallest), the element is a max (min).

Example 2.4

Find the sup of (0,1) and prove it.

Proof. Let us prove that the sup(0,1) = 1. First, let us show that we have an upperbound. If $x \in (0,1)$, then $x \leq 1$. By definition of upperbound, 1 is an upper bound. Note that we can find many other upper bounds.

On the contrary, assume x < 1 is an upper bound. Now consider the average $\frac{1+x}{2}$.

$$\frac{x+1}{2} < \frac{1+1}{2} = 1$$

Therefore, we have showed that $0 < \frac{x+1}{2} < 1 \implies \frac{x+1}{2}(0,1)$. But, $\frac{1+x}{2} > \frac{x+x}{2} \implies \frac{1+x}{2} > x$. This is a contradiction. Since x is an upper bound, and we found $\frac{1+x}{2} \in (0,1)$ where $\frac{1+x}{2} > x$, so x is not a supremum.

Theorem 2.5

Suppose $S \in \mathbb{R}, S \neq \emptyset$ that is bounded above. Then a supremum exists. Every nonsempty subset S of \mathbb{R} that is bounded below has a lower bound.

Note 2.6. Let c be a positive number then $\exists !$ a positive number whose square is c. $x^2 = c, x > 0$ has a unique solution and this gives us the notion of square root.

§2.1 Archimedian Property

Definition 2.7. The Archimedian Property is a result of the completeness axiom. Suppose there is a small $\epsilon > 0$ and c is an arbitrary large number.

- 1. $\exists n \in \mathbb{N}$ such that c < n, which just means that you can always find a natural number than any large number
- 2. $\exists m \in \mathbb{N}$ such that $\frac{1}{m} < \epsilon$, which just means you can always find smaller rational numbers.

Proof. We will proceed by contradiction. Assume that \exists an upper bound c for the \mathbb{N} . So there is no $n \in \mathbb{N}$ s.t. c < n. Since \mathbb{N} is bounded above, and the \mathbb{N} is nonempty, the supremum exists (Completeness Axiom). Let $s = \sup \mathbb{N}$. Consider s - 1 and $s - 1 < s = \sup \mathbb{N}$, which is the least upper bound, so s - 1 is not an upper bound. So $\exists n \in \mathbb{N}$ such that $s - 1 < n \implies s < n + 1$. But $s = \sup \mathbb{N}$, the least upper bound, this is a contradiction since it is less than $(n + 1) \in \mathbb{N}$. For part b, use $c = \frac{1}{\epsilon}$ and use part a.

Note 2.8. Some of the following are results from the Archimedian Property.

Theorem 2.9

For all $n \in \mathbb{Z}$, there is no integer in (n, n + 1) (an open interval).

Theorem 2.10

If S is a nonempty subset of \mathbb{Z} that is bounded above, then it has a max.

Theorem 2.11

* For every $c \in \mathbb{R}$, $\exists ! \ n \in \mathbb{Z}$ in [c, c+1)

Definition 2.12. A subset $S \subseteq \mathbb{R}$ is said to be **dense** in \mathbb{R} if for every $a, b \in \mathbb{R}$ with a < b, then there is a $s \in S$ s.t. $s \in (a, b)$.

Theorem 2.13

 \mathbb{Q} is dense in \mathbb{R} . Reminder that $\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}$

Proof. Suppose we have arbitrary $a, b \in \mathbb{R}$ and a < b. We want to find $\frac{m}{n} \in (a, b)$. By multiplication, we can say we want na < m < nb. We want an integer m between na and nb. We can write this as

$$nb - na > 1 \implies n(b - a) > 1 \implies n > \frac{1}{b - a}$$

By part a of the Archimedian Property, let $c = \frac{1}{b-a}$, and we know that there exists some $n \in \mathbb{N}$ such that n > c. Since a < b, and b - a > 0, multiply

$$n > \frac{1}{b-a}$$

$$n(b-a) > 1$$

$$nb-na > 1$$

$$nb-1 > na \implies na < nb-1$$

By previous (*), $\exists m \in \mathbb{Z} \text{ s.t. } m \in [nb-1, nb)$. Therefore, $nb-1 \leq m < nb$. Therefore,

$$na \le nb - 1 \le m < nb \implies na < m < nb \implies a < \frac{m}{n} < b$$

and so we have found that there exists $m \in \mathbb{Z}, n \in \mathbb{N}$ such that $\frac{m}{n} \in (a, b)$ for all $a, b \in \mathbb{R}$ and a < b. Therefore, the rational numbers are dense in the real numbers.

§3 Sequences

Definition 3.1. A sequence of \mathbb{R} is a real-valued function whose domain is \mathbb{N} . $f: \mathbb{N} \to \mathbb{R}$ (a list of numbers indiced by \mathbb{N})

Example 3.2

A sequence of odd integers could be $a_1 = 1, a_2 = 3, a_3 = 5, \dots, a_n = 2n-1$ which can be

$$\{1, 3, 5, \dots\} = \{a_n\}_{n=1}^{\infty} = \{2n-1\}_{n=1}^{\infty}$$

Example 3.3

$$\left\{\frac{1}{n}\right\} = \left\{\frac{1}{n}\right\}_{n=1}^{\infty} \implies \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$$

Definition 3.4. A sequence $\{a_n\}$ is said to **converge** to a number L if $\forall \epsilon > 0$, \exists an index N s.t. \forall indices $n \geq N$ we have

$$|a_n - L| < \epsilon \implies \text{Notation: } \lim_{n \to \infty} a_n = L$$

Example 3.5

Suppose we have the sequence $\{\frac{(-1)^n}{n}\}$ and we WTS

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Think of the problem as someone gives you a small $\epsilon \implies$ you have to find N, which we call the **threshold**, such that for every sequence value after the threshold is in the ϵ -tube.

For example, $\epsilon = \frac{1}{2} \implies N = 3, \epsilon = \frac{1}{4} \implies N = 5.$

Above L = 0, sketch: we want

$$|a_n - L| < \epsilon \implies |\frac{(-1)^n}{n} - 0| < \epsilon \implies |\frac{1}{n}| < \epsilon \implies \frac{1}{\epsilon} < n$$

so choose $N = \frac{1}{\epsilon} < n$

Proof. Let $\epsilon>0$ be given. By Archimedian Property, $\exists N\in\mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Then if $n\geq N$

$$\left|\frac{(-1)^n}{n} - 0\right| = \left|\frac{(-1)^n}{n}\right| = \left|\frac{1}{n}\right| = \frac{1}{n}$$

From here, we need to relate n to N and then we can relate N to ϵ . Note that $n \geq N \implies \frac{1}{N} \geq \frac{1}{n}$ by algebra. Therefore,

$$\frac{1}{n} \le \frac{1}{N} < \epsilon$$

by our choice of N. Therefore,

$$\frac{1}{n} < \epsilon$$

and so we are done since we have shown that

$$\left|\frac{(-1)^n}{n} < 0\right| < \epsilon$$

Example 3.6

Given $\left\{\frac{n^2-2n}{n^2+1}\right\}$, prove that this sequence $\lim_{n\to\infty}\frac{n^2-2n}{n^2+1}=1$. Some sketch work: we want to show that $\left|\frac{n^2-2n}{n^2+1}-1\right|<\epsilon$

$$\left|\frac{n^2 - 2n}{n^2 + 1} - 1\right| = \left|\frac{n^2 - 2n}{n^2 + 1} - \frac{n^2 + 1}{n^2 + 1}\right| = \left|\frac{-2n - 1}{n^2 + 1}\right| = \left|\frac{2n + 1}{n^2 + 1}\right|$$

Note that both the numerator and denominator are both always positive, so we can consider. Now let us use the \leq operator to simplify and have one singular 'n.

$$\frac{2n+1}{n^2+1} \le \frac{2n+1}{n^2} \le \frac{2n+n}{n^2} = \frac{3n}{n^2} = \frac{3}{n}$$

Recall that $n \ge N \implies \frac{1}{N} \ge \frac{1}{n} \implies \frac{1}{n} \le \frac{1}{N}$ So we'd choose N to get rid of 3 and introduce ϵ .

Proof. Let $\epsilon > 0$. By A.P., $\exists \ N \in \mathbb{N} \text{ s.t. } \frac{1}{N} < \frac{\epsilon}{3}$. For $n \geq N$, then

$$\left| \frac{n^2 - 2n}{n^2 + 1} - 1 \right| = \dots = \frac{2n+1}{n^2 + 1} < \dots \le \frac{3}{n} \le \frac{3}{N} = 3 * \frac{1}{N} < 3 * \frac{\epsilon}{3} = \epsilon$$

Therefore, we have shown that

$$|a_n - L| < \epsilon \implies \lim_{n \to \infty} \frac{n^2 - 2n}{n^2 + 1} = 1$$