浙江大学 20 15 - 20 16 学年 春夏 学期

《电磁场与电磁波》课程期末考试试卷

课程号:	11120010	,开i	果学院 : 信	自 学院			
考试试卷	. √A卷、B	卷(请在选定	(项上打 √)				
考试形式	\. 闭、 √ 开卷	と (请在选定)	项上打 √), 允	\``许带 <u>课本</u>	入场		
考试日期	月: <u>2016</u> 年	6 月 25	_日,考试时间	: <u>120</u> 分年	中		
		诚信	考试,沉着应 *	考,杜绝违纪	•		
生姓名: _		_学号:		属院系:		_	
题序	_	=	三	四	五	总 分	
得分							
评卷人							
 、 单项选	上择题(每小	题 2 分,共	30 分)				
矩形波导可	可以传播 TM i	皮和 TE 波, b	最低阶 TM 波	模式和 TE 波	莫式分别为 (C)	
A. TM ₁₀ 和	TE_{10} B. TM	M ₀₁ 和 TE ₀₁	C. TM ₁₁ 和 TI	E_{10} D. TM_{01}	和 TE ₁₁		
介质中(ε	r=4) 某区域[的电场强度 E	$= \mathbf{z} \cdot 5\sin^2 z$,	則该区域最大	自由电荷密度	为(B)	
Α. 10ε ₀	B. $20\varepsilon_0$	C. 14.	$1\varepsilon_0$ D.	$28.2\varepsilon_0$			
电磁波进入	人良导体的深质	度在频率不变	时随着良导体	的电导率的增	曾大而(),	在良导体的电导	率不变
时随着频率	率的增加而 (D)					
A. 增大,减小 B. 减小,增大 C. 增大,增大 D. 减小,减小							
理想介质中	中的均匀平面流	皮是 (), 長	异电媒质中的均	均匀平面波是	(C)		
A. 色散波	7, 非色散波	B. 色	散波,色散波	č C.	非色散波,6	色散波	
D. 非色散	(波,非色散)	ž					
沿+z 方向位	传播的矩形波	导中,横截面	i 尺寸为 $a \times b$,	试根据理想	导体边界条件	判断下面哪个分	量可能
存在(()						
A. $H_x = $	$A\sin(\frac{m\pi}{a}x)$	$\cos(\frac{n\pi}{b}y)e^{-jx}$	kz		и	$\cos(\frac{n\pi}{b}y)e^{-jkz}$	
C. $H_x = 1$	$A\sin(\frac{m\pi}{a}x)$ s	$ \sin(\frac{n\pi}{b}y)e^{-jkx} $	z	D. $H_x = A$	$\cos(\frac{m\pi}{a}x)\sin$	$n(\frac{n\pi}{b}y)e^{-jkz}$	

6. 下列说法正确的是(**D**)

1.

2.

3.

4.

5.

- A. 波印廷矢量不一定垂直于电场强度矢量 B. 如果源内阻为实数,只要负载与源内阻相同,就能利用任意特征阻抗的 TEM 模传输线在全波段实现行波传输 C. 满足波动方程的场一定满足 Maxwell 方程 D. $\vec{E} = (4\vec{x} j3\vec{y})e^{-0.1z-j0.3z}$ 是均匀平面波 7. 对于长度为l 的传输线,若kl <<1 ,那么当终端开路和短路时,该传输线相当于一个(D)
- A. 都是电容
 B. 都是电感
 C. 电感和电容
 D. 电容和电感

 8. 已知一平面波, 电场方向为 x-2y+z, 磁场方向为 2y-y, 间以哪个方向为纵向时, 可看成 TF 波(B)
- 8. 已知一平面波, 电场方向为 **x**-2**y**+**z**, 磁场方向为 2**x**-**y**, 问以哪个方向为纵向时, 可看成 TE 波(**B**)
 A. **x**+2**y** 方向 B. **y**+2**z** 方向 C. **z** 方向 D. **y**-2**z** 方向
- 9. 在调节阻抗匹配时,不能使用(B)
 - A. 电容 B. 电阻 C. 电感 D. 传输线
- 10. 在传播 TE_{10} 模的矩形波导中,当填充介质($\varepsilon_r\varepsilon_0$, μ_0)后($\varepsilon_r>1$),设工作频率不变,则其特征阻抗将(B)
- A. 变大 B. 变小 C. 不变 D. 取决于波导尺寸而变大或变小
- 11. 下列说法错误的是(C)
 - A. 圆波导中 TE 模表示为 TE $_m$ 时,m表示场沿圆周分布的驻波数,n表示场沿半径分布的半驻波数或场的最大值个数
 - B. 汽车在隧道中接收不到电台信号,是因为隧道可等效成圆波导,而信号频率在此圆波导截止频率以下
 - C. 圆波导的 TE₁₁ 模和矩形波导的 TE₁₀ 模场分布类似,因而可直接将两者连接并且无反射
 - D. 圆波导不适合用来做传输系统
- 12. 在谐振器顶部开一个小孔,从孔中插入一青草叶子,插入到某一深度时发现反射功率变为 0,那么 未插入青草叶子时,该谐振器与外部电路的耦合度为(A)

A. $\beta > 1$ B. $\beta = 1$ C. $\beta < 1$ D. $\beta = \infty$

- 13. 如何提高天线的增益? (C)
 - A. 在天线系统中使用功率放大器 B. 使用高效率的天线馈线
 - C. 使天线的辐射变得集中 D. 使设备之间达到良好的匹配
- 14. 在相对介电常数分别为 ε_{r1} 与 ε_{r3} 的无耗介质中间放置一块厚度为 d、相对介电常数为 ε_{r2} 的介质板,
 - $d=rac{\lambda_0}{4\sqrt{arepsilon_{r_2}}}$,假设这三种介质的磁导率均为 μ_0 ,现有一均匀平面波从介质 1 垂直投射到介质板上,

下列哪种情况时,没有反射。(B)

A.
$$\varepsilon_{r1} = \varepsilon_{r3}$$

B.
$$\varepsilon_{r2} = \sqrt{\varepsilon_{r1}\varepsilon_{r3}}$$

C.
$$\varepsilon_{r2} = \sqrt{\varepsilon_{r1}^2 - \varepsilon_{r2}^2}$$

A.
$$\varepsilon_{r1} = \varepsilon_{r3}$$
 B. $\varepsilon_{r2} = \sqrt{\varepsilon_{r1}\varepsilon_{r3}}$ C. $\varepsilon_{r2} = \sqrt{\varepsilon_{r1}^2 - \varepsilon_{r2}^2}$ D. $\varepsilon_{r2} = \sqrt{\varepsilon_{r1}^2 + \varepsilon_{r2}^2}$

- 15. 关于光纤, 下列说法错误的是(C)
 - A. 光纤是一种介质光波导, 其包层折射率必须比纤芯低, 从而实现全内反射
 - B. 梯度光纤中的模间色散要比阶跃光纤小得多,因而具有更高的传输带宽
 - C. 光纤可以单模工作在 LP_{01} , LP_{01} 模具有低频截止的特性
 - D. 光纤中传播的电磁波是准 TEM 模

二、 简单计算题(20分)

- 1. 在无限大的介质(相对介电常数 $\varepsilon_r = 9$)中,沿负 z 方向传播的均匀平面波,其电场强度瞬时值表示 为 $\vec{E} = \overline{x_0} 4 \times 10^{-6} \cos(10^8 \pi t + kz + \pi/3)$ (V/m) . (10分)
- 1) 求k;
- 2) 写出 \overline{H} 的瞬时值表示式和复矢量表达式:

1)
$$k = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r} = \frac{\omega c}{\sqrt{\varepsilon_r}} = \pi \text{ rad/m}$$
 (3 \(\frac{\fin}}}}}{\fint}}}}}}}}}}}}}}}}}}}}}}}} \endrettion{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fra

2)
$$\eta = \sqrt{\frac{\mu_0}{\varepsilon_0 \varepsilon_r}} = \frac{120\pi}{3} = 40\pi$$

$$\overline{H}(t) = -\overline{z_0} \times \overline{x_0} \frac{4 \times 10^{-6} \cos(10^8 \pi t + kz + \pi/3)}{\eta} = -\overline{y_0} 3.18 \times 10^{-8} \cos(10^8 \pi t + kz + \pi/3)$$
(3 \(\frac{\psi}{2}\))

2)

$$\overline{H} = -\overline{y_0} 3.18 \times 10^{-8} e^{j(\pi z + \pi/3)}$$
 (3 \(\frac{\frac{1}}{2}\))

2. 求下图所示的分布参数电路的输入阻抗 (10分)

$$Z_{in} = Z_c \frac{Z_L + jZ_c \tan(kl)}{Z_c + jZ_L \tan(kl)}$$

$$= Z_0 \frac{4Z_0 + jZ_0 \tan(3\pi/4)}{Z_0 + j4Z_0 \tan(3\pi/4)}$$

$$= \frac{4 - j}{1 - j4} Z_0 = \frac{8 + j15}{17} Z_0 = (0.47 + 0.88j) Z_0$$

支

路还是 Z₀, 支路由开路变到短路, 短路和 Z₀ 并联还 是短路,短路再经过四分之一波长变为开路,因而 Zin

$$= \infty \qquad (5 \, \%)$$
 (5 $\%$)

负载到

三、计算题(共50分)

- 1. 一均匀平面波由空气垂直入射到 z=0 处的理想介质($\varepsilon_r=3$, $\mu_r=1$)分界面上,入射波的电场强度 为 $\mathbf{E}^+=E_0(\mathbf{x_0}-\mathrm{i}\mathbf{y_0})e^{-\mathrm{i}kz}$,试求:
- 1) 反射波的电场强度 \mathbf{E}^{-} ; (6分)
- 2) 透射波的磁场强度 **H**_T; (6分)
- 3) 入射波,反射波,透射波各自的极化情况(说明是:线极化,圆极化还是椭圆极化,如果是圆极化或椭圆极化请说明旋向)。 (6分)

1)
$$\eta_{1} = \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} = \frac{\eta_{0}}{\sqrt{\varepsilon_{r_{1}}}} = 40\sqrt{3}\pi \Omega$$

$$\Gamma = \frac{\eta_{1} - \eta_{0}}{\eta_{1} + \eta_{0}} = -0.27, \quad (2\%) \quad T = \frac{2\eta_{1}}{\eta_{1} + \eta_{0}} = 0.73 \quad (2\%)$$

$$\overline{E^{r}} = \Gamma \overline{E^{i}} = -0.27E_{0}(\overline{x_{0}} - j\overline{y_{0}}) e^{jkz}, \quad |\overline{E^{r}}| = 0.27\sqrt{2}E_{0} = 0.38E_{0} \quad (2\%)$$

2)
$$\overline{E^{T}} = 0.73E_{0}(\overline{x_{0}} - j\overline{y_{0}})e^{-jk_{2}z}, \quad (2\%)$$

$$\overline{H^{T}} = \overline{z_{0}} \times (\overline{x_{0}} - j\overline{y_{0}})\frac{0.73E_{0}e^{-jk_{2}z}}{\eta_{1}} = 3.4 \times 10^{-3}E_{0}(\overline{y_{0}} + j\overline{x_{0}})e^{-jk_{2}z} \quad (2\%)$$

$$|\overline{H^{T}}| = 3.4\sqrt{2} \times 10^{-3}E_{0} = 4.8 \times 10^{-3}E_{0} \qquad \text{其中 } k_{2} = \sqrt{3}k \quad (2\%)$$

3)入射波为右旋圆极化 (2分),反射波为左旋圆极化 (2分),透射波为右旋圆极化 (2分)

- 2. 一个空气填充的矩形波导,横截面尺寸为 $a \times b$,其中a = 80 mm,b = 40 mm。
- 1) 试求主模 TE₁₀模下的截止波长; (4分)
- 2) 若工作频率f为主模截止频率的 2.5 倍,试问有哪些模式可以在该波导中传播? (8分)
- 3) 计算在 2) 中工作频率 f 处 TE_{10} 模的波导波长和波阻抗($Z_{TE} = \eta \frac{\lambda_g}{\lambda}$)。(8 分)

1)

$$\lambda_{c} = \frac{2\pi}{\sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}}} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}}$$
 (2 \(\frac{\frac{\psi}{b}}{\psi}\))

 TE_{10} 模的截止波长为 $\lambda_c = 2a = 160 \text{ mm}$ (2分)

2)

$$f_{c} = \frac{c}{\lambda_{c}}, \quad \diamondsuit \left(\frac{2\pi \times 2.5 f_{c}}{c}\right)^{2} \ge \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2},$$

$$\mathbb{E}\left[\left(\frac{2\pi \times 2.5}{\lambda_{c}}\right)^{2} \ge \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right]$$

$$(3 \%)$$

满足此关系的波有 TE_{10} , TE_{01} , TE_{11} , TE_{20} , TM_{11} (5分)

3)

$$\lambda_g = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = \frac{\lambda}{\sqrt{1 - \left(\frac{1}{2.5}\right)^2}} = 1.091\lambda \quad (4 \%)$$

而 $\lambda = c / f = 64$ mm 故 $\lambda_g \approx 70$ mm

$$Z_{TE10} = \frac{\eta}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}} = 1.091\eta = 411.3 \,\Omega \quad (4 \,\%)$$

- 两个无耗、电小尺寸偶极子天线平行放置相距 500 km,一个作发射,一个作接收, 两天线之间连线与偶极子垂直,即 $\theta=90^\circ$,发射天线发射功率 1 kW,频率 200 MHz,
- 1) 求在两天线连线方向上的天线增益。(3分)
- 2)接收天线能接收到多少功率? (9分)

1)
$$\theta = 90^{\circ}$$
, $G_D = \frac{3}{2}\sin^2\theta = 1.5$ (3 $\frac{4}{2}$)

$$f = 200 \text{MHz}, \ \lambda = \frac{c}{f} = 1.5 \text{m}, \ A_{\theta} = \frac{G_D \lambda^2}{4\pi} = 0.2686 \text{m}^2$$
 (3\frac{\gamma}{2})

$$\langle S_r \rangle = G_D \frac{P}{4\pi r^2} = 4.775 \times 10^{-10} \,\text{W/m}^2 (3\%)$$

$$P_R = A_\theta \langle S_r \rangle = 1.28 \times 10^{-10} \,\text{W} \, (3\%)$$