PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Pater	nt Classification 6:	-	(1:	(11) International Publication Number: WO 98/42738			
C07K 14/00		A1	(4:	3) International Publication Date: 1 October 1998 (01.10.98			
(21) International Appli		S98/053		60/056,370 19 August 1997 (19.08.97) U: 60/060,862 2 October 1997 (02.10.97) U:			
(22) International Filing	g Date: 19 March 1998	(19.03.9	ا (۵				
(30) Priority Data: 60/041,281 60/041,276 60/042,344 60/041,277 60/048,355 60/048,351 60/048,154 60/048,160 60/048,160 60/048,131 60/048,186 60/048,099 60/050,937 60/048,352 60/048,135 60/048,188 60/048,094 60/048,094 60/048,350 60/054,804	21 March 1997 (21.03.97) 21 March 1997 (21.03.97) 21 March 1997 (21.03.97) 21 March 1997 (21.03.97) 30 May 1997 (30.05.97) 5 August 1997 (05.08.97)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		 (71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key Wes Avenue, Rockville, MD 20850 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): YOUNG, Paul [US/US] 122 Beckwith Street, Gaithersburg, MD 20878 (US) GREENE, John, M. [US/US]; 872 Diamond Avenue Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US] 13203 L Astoria Hill Court, Germantown, MD 20874 (US) RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive Olney, MD 20832 (US). ROSEN, Craig, A. [US/US] 22400 Rolling Hill Road, Laytonsville, MD 20882 (US) DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 1832 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316 Gaithersburg, MD 20878 (US). BREWER, Laurie, A [US/US]; 14920 M. Nebo Road, Poolesville, MD 20878 (US). MOORE, Paul, A. [GB/US], Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggg [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W #807, Washington, DC 20009 (US). NI, Jian [CN/US] 5502 Manorfield Road, Rockville, MD 20853 (US). (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR 			
				BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasia patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Europea patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE, SN, TD, TG).			
				Published			

(54) Title: 87 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 87 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

With international search report.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	ĹT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ -	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥŲ	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
cu	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

35

87 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

10

15

20

25

30

35

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

10

15

20

25

30

35

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and $20~\mu g/ml$ denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65° C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

10

15

20

25

30

35

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

10

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting
activity similar, but not necessarily identical to, an activity of a polypeptide of the
present invention, including mature forms, as measured in a particular biological assay,
with or without dose dependency. In the case where dose dependency does exist, it
need not be identical to that of the polypeptide, but rather substantially similar to the
dose-dependence in a given activity as compared to the polypeptide of the present
invention (i.e., the candidate polypeptide will exhibit greater activity or not more than
about 25-fold less and, preferably, not more than about tenfold less activity, and most
preferably, not more than about three-fold less activity relative to the polypeptide of the
present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

The translation product of this gene shares sequence homology with nucleolin, which is thought to be important in macromolecule binding, as well as some membrane proteins. Preferred polypeptide fragments comprise the amino acid sequence:

DPEAADSGEPQNKRTPDLPEEEYVKEEIQENEEAVKKMLVEATREFEEVVVDES (SEQ ID NO:239); QKLKRKAEEDPEAADSGEPQNKRTPDLPEEEYVKEEIQENEE AVKKMLVEATREFEEVVVDES (SEQ ID NO:240); KAMEKSSLTQHSWQSLKDR YLKHLRGQEHKYLLGDAPVSPSSQKLKRKAEEDPEAADSGEPQNKRTPDLPEE EYVKEEIQENEEAVKKMLVEATREFEEVVVDESPPDFEIHI (SEQ ID NO:241). Also preferred are the polynucleotide fragments encoding these polypeptide fragments.

10

15

20

25

30

35

This gene maps to chromosome 16, and therefore can be used as a marker in linkage analysis for chromosome 16.

This gene is expressed primarily in brain and kidney and to a lesser extent in wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cell-cell interaction or cell-matrix interaction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and kidney, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:125 as residues: Met-1 to Trp-10.

The tissue distribution and homology to nucleolin indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases involving cell-cell interaction or cell-extracellular matrix interaction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

The translation product of this gene shares sequence homology with a porcine zona pellucida protein ZPDS.1711. (See Accession No. R39356.) These two proteins have weak homology with *Drosophila* commissureless and metal homeostasis proteins which are thought to be important in controlling growth cone guidance across the CNS midline and protecting cells against reactive oxygen toxicity. thus, based on homology, it is likely that this gene also be involved in development. Preferred polypeptide fragments comprise the amino acid sequence: LPSYDEAERTKAEATIPLVPGRDEDF VGRDDFDDADQLRIGNDGIFMLTFFMAFLFNWIGFFLSFCLTTSAAGRYGAISG FGLSLIKWILIVRFSTYFPGYFDGQYWLWWVFLVLGFLLFLRGFINYAKVRKM PETFSNLPRTRVLFI (SEQ ID NO:242); and/or AGRYGAISGFGLSLIKWILIVRFS (SEQ ID NO:243). Also preferred are polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 5, and therefore can be used in linkage analysis as a marker for chromosome 5.

10

15

20

25

30

35

This gene is expressed primarily in kidney, adrenal gland, brain and to a lesser extent in wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, fertilization control or tissue damages by metabolites or other toxic agents. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and urosecretion system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., kidney, adrenal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to zona pellucida protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for fertility control such as controceptive development. The homology with metal homeostasis and commissureless genes indicates the gene's function in spermatozoa guidance and protection. It would also be useful for the treatment/diagnosis of tissue damages caused by toxic metabolites and other agents since the gene product is also expressed in urosecretive tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in liver and to a lesser extent in placenta. Preferred polypeptide fragments comprise the amino acid sequence: MKHLSAWNFT KLTFLQLWEI FEGSVENCQTLTSYSKLQIKYTFSRGSTFYI (SEQ ID NO:244). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, digestive and nutrient transport/utilization disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive and

10

15

25

35

circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., liver, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in liver and placenta indicates that the protein product is either an extracellular enzyme or a molecule carrier. Therefore, polynucleotides and polypeptides corresponding to this gene are useful for diagnosis/treatment of digestive and nutrient transport/utilization disorders, including malabsorption and malnutrition.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene shares homology with the sap47 gene of Drosophila melanogaster, a gene which codes for a conserved neuronal protein associated with synaptic terminals. (See Mol. Brain Res. 32:45-54 (1995); see also, Accession No. 929571.) Thus, based on homology, the gene of the present invention also should be associated with synaptic terminals. Preferred polypeptide fragments comprise the amino acid sequence: FSSDFRTSPWESRRVESKATSARCGLWGSGPRRRPASGMFRGLSSWLGLQQP VAGGGOPNGDAPPEQPSETVAESAEEELQQAGDQELLHQAKDFGNYLFNFASA ATKKITESVAETAQTIKKSVEEGKIDGIIDKTIIGDFQKEQKKFVEEQHTKKSEA 20 AVPPWVDTNDEETIQQQILALSADKRNFLRDPPAGVQFNFDFDQMYPVALVML (SEQ ID NO:245); MRFALVPKLVKEEVFWRNYFYRVSLIKQSAQLTALAAQQQA AGKGGEEQ (SEQ ID NO:246); STSPGVSEFVSDAFDACNLNQEDLRKEMEQL VLDKKOEETAVLEEDSADWEKELQOELQEYEVVTESEKRDENWDK (SEQ ID NO:247); SPWESRRVESKATSARCGLWGSGPRRRPASGMFRGLSSWLGLQQ PVAGGGOPNGDAPPEQPS (SEQ ID NO:248); PVAGGGQPNGDAPPEQPSETV ESAEEELQQAGDQELLHQAKDFGNYLFNFASAATKKITESVAE (SEQ ID NO: 249); and/or FQKEQKKFVEEQHTKKSEAAVPPWVDTNDEETIQQQILALSADKR NFLRDPPAGVQFNFDFDQMYPVALVML (SEQ ID NO:250). Also preferred are polynucleotide fragments encoding these polypeptide fragments. 30

This gene is expressed primarily in kidney pyramids and to a lesser extent in lung and other tissues of various types. This gene fluxes calcium in human aortic smooth muscle cells, and therefore is involved in signal transduction.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, renal and nervous disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and/or nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., kidney, lung, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in kidney and lung and homology with sap47 indicates that the protein product has regulatory or direct functions in molecular exchange with body fluids and nervous system signaling. Polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in kidney and nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

The translation product of this gene shares sequence homology with the mouse Ly-9.2 antigen which is thought to be an important cell surface marker in lymphoids, myeloids and hematopoietic progenitors. (See Accession No. gil198932.) Preferred polypeptide fragments comprise the amino acid sequence: PFICVARNPVSRNFSSPI LARKLCEGAA (SEQ ID NO:251); and/or KEDPANTVYSTVEIPKKMENPHSLLT MPDTPRL (SEQ ID NO:252). Also preferred are polynucleotide fragments encoding these polypeptide fragments. Based on homology, it is likely that this gene is also a cell surface marker, involved in hematopoiesis.

This gene is expressed primarily in activated macrophages, monocytes and T-cells and to a lesser extent in spleen and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., blood cells, and bone marrow, and cancerous and wounded

10

15

20

25

30

35

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:129 as residues: Lys-26 to Tyr-33, Arg-44 to Ile-49, Ser-53 to Lys-71, Lys-86 to Pro-91.

The tissue distribution and homology to Ly-9.2 surface immunoglobulin family indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune and hematopoietic disorders. Polypeptides and polynucleotides corresponding to this gene are also be used as a marker for leukemia or a modulator of the functions of the cells of macrophage/monocyte or T-cell types.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with the *Drosophila* glutactin gene which is thought to be important in cell-cell interaction or cell-extracellular matrix contact.

This gene is expressed primarily in colon tissue, aorta endothelial cells and to a lesser extent in skin, breast tissue and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of these tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the gastrointestinal tract, vascular system or T-cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, cardiovascular system, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., colon, cardiovascular tissue, skin, mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to glutactin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the development and maintenance of the integrity of the basal membrane in the gastrointestinal tract and

10

15

20

cardiovascular system. The expression in T-cells also indicate the protein may be involved in T-cell adhesion, cell-cell interaction and development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The translation product of this gene shares sequence homology with MURF4 protein, an ATPase homolog, which is thought to be important in ATP hydrolysis.

This gene is expressed primarily in breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer and non-neoplastic breast diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to MURF4 gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neoplastic or non-neoplastic breast diseases because ATPase like protein may be involved in changed metabolic states of the breast.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene shares homology to the alcohol dehydrogenase gene. Preferred polypeptide fragments comprise comprise the amino acid sequence: ASAVLLDLPNSG GEAQAKKLGNNCVFAPADVTSEKDVQTALALAKGKFGRVDVAVNCAGIAVAS KTYNLKKGQTHTLEDFQRVLDVNLMGTFNVIRLVAGEMGQNEPDQGGQRGVI INTASVAAFEGQVGQAAYSASKGGIVGMTLPIARDLAPIGIRVMTIAPGLFGTPL LTSLPEKVCNFLASQVPFPSRLGDPAEYAHLVQAIIENPFLNGEVIRLDGAIRMQ P (SEQ ID NO:253); and/or SVAAFEGQVGQAAYSASKGGIVGMTLPIA (SEQ ID NO:254). Polynucleotides encoding these fragements are also encompassed by the invention. Other groups have also recently cloned this gene, recognizing its homology to alcohol dehydrogenase. (See Accession No. 1778355.) Moreover, a second group

recently cloned the mouse homologue of this gene. (See Accession No. 2078284.) They found that the mouse homologue binds to amyloid beta-peptide and mediates neurotoxicity in Alzheimer's disease, calling the protein ERAB. This gene maps to chromosome X, and therefore can be used in linkage analysis as a marker for chromosome X. Therefore, mutations in the translated product of this gene may be involved in Alzheimer's disease in humans, as well as other sex linked diseases. This gene can be used as a diagnostic marker for these diseases.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO:132 as residues: Arg-45 to Ser-53.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

The translation product of this gene shares week sequence homology with rat N-methyl-D-aspartate receptor subunit and other proline-rich proteins which are thought to be important in neurotransmission or protein-protein intereaction.

This gene is expressed primarily in synovial hypoxia and to a lesser extent in ovary, senescent cells and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, synovial hypoxia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the synovia and brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., synovial tissue, ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in synovial hypoxia and nerve tissues, and homology to N-methyl-D-aspartate receptor subunit and other proline-rich proteins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of synovial hypoxia and other synovial disorders.

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in prostate and to a lesser extent in placenta and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male and female infertility, cancer, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., prostate, placenta, ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:134 as residues: Pro-17 to Met-23, Ala-30 to Trp-38, Ile-49 to Trp-54, Lys-68 to Gly-74, Thr-93 to Gly-99, Met-126 to Glu-132, Gly-173 to Ser-178, Lys-205 to Tyr-214.

The tissue distribution of this gene in the prostate, placenta and ovary indicates that this gene product is useful for treatment/diagnosis of male or female infertility, endocrine disorders, fetal deficiencies, ovarian failure, amenorrhea, ovarian cancer, benign prostate hyperplasia, prostate cancer, and other forms of cancer of the reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in the thyroid and to a lesser extent in the pineal gland. This gene maps to chromosome 10, and therefore can be used as a marker in linkage analysis for chromosome 10. Preferred polypeptide fragments comprise the amino acid sequence: HPIEWAINAATLSQFY (SEQ ID NO:256); CWIKYCLTLMQN AQLSMQDNIG (SEQ ID NO:257); KVSYLRPLDFEEARELFLLGQHYVF (SEQ ID NO:258); MERRCKMHKRXIAMLEPLTVDLNPQ (SEQ ID NO:259); and/or SHIV KKINNLNKSALKY YQLFLD (SEQ ID NO:260). Also preferred are polynucleotides encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as

15

20

25

30

35

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune, thyroid and pineal gland disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., thyroid and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:135 as residues: Ser-2 to Ser-8, Thr-38 to Arg-44.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/detecting immune disorders such as arthritis, asthma, immune deficiency diseases (e.g., AIDS), and leukemia, as well as treating/detecting thymus disorders (e.g., Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism), and treating/detecting pineal gland disorders (e.g., circadian rhythm disturbances associated with shift work, jet lag, blindness, insomnia and old age).

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in lung and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pulmonary or immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pulmonary tissue, and tonsils, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily

15

20

25

30

fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:136 as residues: Glu-28 to Gly-49.

The tissue distribution of this gene only in lung indicates that it could play a role in the treatment/detection of lung lymphoma or sarcoma formation, pulmonary edema and embolism, bronchitis and cystic fibrosis. Its expression in tonsils indicates a potential role in the treatment/detection of immune disorders such as arthritis, asthma, immune deficiency diseases (e.g., AIDS), and leukemia, in addition to the treatment/detection of tonsillitis.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed primarily in lymphoid, myeloid and erythroid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, myeloid cells, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in hematopoietic cell types indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, asthma, immunodeficiency diseases and leukemia. Preferred embodiments of the present invention are polypeptide fragments comprising the amino acid sequence: FTHLSTCLLSLLLVRMSGFLLLARASPSI CALDSSCFVEYCSSYSSSCFLHQHFPSLLDHLCQ (SEQ ID NO:261); or FLLL ARASPSICALDSSCFVQEY (SEQ ID NO:262). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is homologous to the *Drosophila Regena* (Rga) gene. (See Accession No. 1658504.) This *Drosophila* gene is thought to be a homolog of the global negative

10

15

20

25

30

35

transcriptional regulator NOT2 (CDC36) from yeast, which modifies gene expression and suppresses position effect variegation. Preferred polypeptide fragments comprise the amino acid sequence: PDGRVTNIPQGMVTDQFGMIGLLTFIRAAETDPGMVHL ALGSDLTTLGLNLNS (SEQ ID NO:263); VHLALGSDLTTLGLNLNSPENLYP (SEQ ID NO:265); EDLLFYLYYMNGGDVLQLLAAVELFNRDWRYHKEERVWI TR (SEQ ID NO:264); and/or HNEDFPALPGS (SEQ ID NO:266).

This gene is expressed primarily in placenta and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:138 as residues: Leu-9 to Tyr-15, Asp-34 to Gln-46, Pro-51 to Asp-57, Gly-88 to Thr-104, Thr-123 to Ser-128.

The tissue distribution of this gene indicates that it could be used in the detection and/or treatment of neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in adrenal gland tumor and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, endocrine and bone disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

15

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system and in bone, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adrenal gland, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:139 as residues: Ile-52 to Trp-57.

The tissue distribution of this gene indicates that it may be involved in the treatment and/or detection of adrenal gland tumors, osteosarcomas, endocrine disorders and bone disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with the FK506 binding protein, a protein which plays an important role in immunosupression. (See Accession No. M75099.) Specifically, a 12-kDa FK506-binding protein (FKBP-12) is a cytosolic receptor for the immunosuppressants FK506 and rapamycin. (See, Proc. Natl. Acad. Sci. 88: 6677-6681 (1991).) Thus, based on homology, it is likely that this gene also has immunosuppression activity. Preferred polypeptides comprise the amino acid sequence: GRIIDTSLTRDPLVIELGQKQVIPGLEQSLLDMCVGEKRRAIIPSH LAYGKRGFPPSVPADAVVQYDVELIALIR (SEQ ID NO:267); and/or IHYTGSLV DGR IIDTS (SEQ ID NO:268). Also preferred are the polynucleotide fragments encoding these polypeptides.

This gene is expressed primarily in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:140 as residues: Ala-118 to Phe-124, Arg-178 to Lys-201.

The tissue distribution and homology to the FK506 binding proteins which are believed to a role in immunosupression mediated by the immunosupressant drugs rapamycin and cyclosporin, indicates that this gene could serve as a novel target for the identification of novel immunosupressant drugs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this gene shares sequence homology with the rat calcium-activated potassium channel rSK3, which is thought to be important in regulating vascular tone. (See Accession No. gil2564072, gil1575663, and gil1575661.) Although homologous to these proteins, this gene contains an 18 amino acid insert, not previously identified in the homologs. Preferred polypeptide fragments comprise the amino acid sequence: CESPESPAQPSGSSLPAWYH (SEQ ID NO:269). Also preferred are the polynucleotide fragments encoding these polypeptides.

This gene is expressed primarily in B-cells, frontal cortex and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular (hyper/hypotension, asthma, pulmonary edema, pneumonia, heart disease, restenosis, atherosclerosis, stoke, angina and thrombosis) and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, and endothelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:141 as residues: Glu-72 to Gly-82, His-90 to Val-95, Gln-168 to Lys-174, Val-202 to Ser-212.

10

15

20

25

30

The tissue distribution and homology to calcium-activated potassium channels indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of vascular disorders (hyper/hypotension, athesma, pulmonary edema, pneumonia, heart disease, restenosis, atherosclerosis, stoke, angina and thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

This gene is expressed primarily in smooth muscle and to a lesser extent in brain (amygdala, corpus colosum, hippocampus).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular (hypertension, heart disease, athesma, pulmonary edema, restenosis, atherosclerosis, stoke, angina, thrombosis, and wound healing), and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and neurological systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., smooth muscle, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:142 as residues: Lys-43 to Arg-49, Tyr-58 to Glu-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (hypertension, heart disease, athesma, pulmonary edema, restenosis, atherosclerosis, stoke, angina, thrombosis, and wound healing). Expression in brain indicates a role in the treatment and diagnosis of behavioral or neurological disorders, such as depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in T-cells (Jurkats, resting, activated, and

10

15

20

25

30

35

anergic T-cells), endothelial cells, pineal gland, and to a lesser extent in a variety of other tissues and cell types. Preferred polypeptide fragments comprise the amino acid sequence: EEAGAGRRCSHGGARPAGLGNEGLGLGGDPDHTDTGSRSKQRINN WKESKHKVIMASASARGNQDKDAHFPPPSKQSLLFCPKSKLHIHRAEISK (SEQ ID NO:270); and/or SKQRINNWKESKHKVIMASASAR (SEQ ID NO:271). Also preferred are the polynucleotide fragments encoding these polypepides.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, immune and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neurological and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, endothelial cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:143 as residues: Phe-71 to Arg-76, Pro-82 to His-87, Glu-103 to Ala-111.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. In addition, expression in the pineal gland might suggest a role in the diagnosis of specific brain tumors and treatment of neurological disorders. Endothelial cell expression might suggest a role in cadiovascular or respiratory/pulmonary disorders or infections (athesma, pulmonary edema, pneumonia).

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in brain and embryo and to a lesser extent in leukocytes. This gene maps to chromosome 15, and therefore can be used as a marker in linkage analysis to chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as

10

15

20

25

30

35

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:144 as residues: Met-1 to Gly-8.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain -- and in particular the fetal brain -- would suggest a possible role in the treatment and diagnosis of developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior).

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in brain, kidney, lung, liver, spleen, and a variety of leukocytes (especially T-cells) and to a lesser extent in a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemias, lymphomas, autoimmune, immunosuppressive, and immunodeficiencies, hematopoietic disorders, as well as renal disorders, and neoplasms. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal, pulmonary, immune, and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g.,

10

15

20

25

30

35

brain and other tissue of the nervous system, kidney, pulmonary tissue, liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of renal conditions, such as acture renal failure, kidney fibrosis, and kidney tubule regeneration. The expression in leukocytes and other immune tissues indicates a role in immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain — and in particular the fetal brain — indicates a possible role in the treatment and diagnosis of developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior).

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

This gene is expressed primarily in skin (fetal epithelium, keratinocytes and skin). This gene also maps to chromosome 19, and therefore can be used in linkage analysis as a marker for chromosome 19.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, skin cancers (e.g., melanomas), eczema, psoriasis or other disorders of the skin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., skin and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:146 as residues: Pro-28 to Glu-35, Ser-39 to Phe-44, Ala-94 to Gln-99.

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of skin cancers (e.g., melanomas), eczema, psoriasis or other disorders of the skin.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 23

This gene maps to chromosome 11. Another group recently isolated this same gene, associating the sequence to the region thought to harbor the gene involved in Multiple Endocrine Neoplasia Type 1, or MEN 1. (See Accession No. 2529721 and Genome Res. 7(7), 725-735 (1997), incorporated herein by reference in its entirety.) Preferred polypeptide fragments comprise the amino acid sequence: LFHWACLNERA AQLPRNTAXAGYQCPSCNGPS (SEQ ID NO:272).

This gene is expressed primarily in epididymus, pineal gland, T-cells, as well as fetal epithelium, lung and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 15 biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune, metabolic mediated disorders, and MEN. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, renal, 20 neurological and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., epididymus and other reproductive tissue, pineal gland, T-cells and other blood cells, epithelium, lung, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of developmental deficiencies or abnormalities as well as a host of different disorders which arise as a result of conditions in the indicated tissues or cell types. An area of particular interest is in the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain, and in particular the fetal brain, would suggest a possible role in the treatment and diagnosis of

10

15

20

25

30

35

developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior). Respiratory/pulmonary disorders, such as athesma, pulmonary edema are also potential therapeutic areas, as well as renal conditions such as acute renal failure, kidney fibrosis and kidney tubule regeneration. Moreover, this gene can be used in the treatment and/or detection of MEN I.

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

This gene is expressed primarily in fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemia, lymphoma, AIDS, hematopoeitic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., spleen and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

A closely related homolog of this gene was recently cloned by another group, calling the gene CDO, an oncogene-, serum-, and anchorage-regulated member of the Ig/fibronectin type III repeat family. (See Accession No. 2406628, and J. Cell Biol. 138(1): 203-213 (1997), herein incorporated by reference in its entirety.) Preferred polypeptide fragments comprise the amino acid sequence: FYIYYRPTDSDNDSDYKK DMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVMICETKARKSSGQP GRLPPPTLAPPQPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVLIIVTFIPF CLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQAVDSPTSVASVD

25

30

35

GPVLM (SEQ ID NO:273); or YIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQ PETSYDIKMQCFNEGGESEFSNVMICETKARKS (SEQ ID NO:274).

This gene is expressed primarily in fetal lung and kidney, human embryo and osteoclastoma stromal cells and to a lesser extent in a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental disorders and cancers, as well as pulmonary and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are 10 useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory/pulmonary, skeletal and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, kidney, embryonic tissue, and bone cells, and cancerous and 15 wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:149 as residues: Thr-5 to Pro-18, 20 Ala-76 to Thr-84.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of: osteoperosis, fracture, osteosarcoma, ossification, and osteonecrosis, as well as respiratory/pulmonary disorders, such as athesma, pulmonary edema, and renal conditions such as acute renal failure, kidney fibrosis and kidney tubule regeneration.

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

This gene is homologous to the HIV envelope glycoprotein. (See Accession No. 2641463.) Preferred polypeptide fragments comprise the amino acid sequence: NVRALLHRMPEPPKINTAKFNNNKRKNLSL (SEQ ID NO:275).

This gene is expressed primarily in pineal gland and skin, and to a lesser extent in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

not limited to, neurological and behavior disorders; respiratory/pulmonary disorders, such as athesma, pulmonary edema; skin conditions such as eczema, psoriasis, acne and skin cancer, as well as AIDS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and respiratory systems, as well as skin and AIDS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, pineal gland, epidermis, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:150 as residues: Gln-15 to Gln-20.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions which affect the above tissues, such as: skin cancer, eczema, psoriasis, acne, athesma, pulmonary edema, neuro-degenerative or developmental disorders such as Alzheimer's, depression, schizophrenia, dementia, and AIDS.

20

25

30

35

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: NTNQREALQYAKNFQPFALNHQKDIQVLMGSLVYLRQGIENSPYVHL LDANQWADICDIFTRDACALLGLSVESPLSVSFSAGCVALPALINIKAVIEQRQC TGVWNQKDELPIEVDLGKKCWYHSIFACPILRQQTTDNNPPMKLVCGHIISRD ALNKMFNGSKLKCPYCPMEQSPGDAKQIFF (SEQ ID NO:276). Polynucleotides encoding such polypeptides are also provided as are complementary polynucleotides thereto.

This gene is expressed primarily in liver (adult and fetal) and spleen tissue, and to a lesser extent in placenta, T helper cells, kidney tumor, ovarian tumor, melanocytes and fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and developmental diseases and disorders and liver diseases such as liver cancer. Similarly, polypeptides and antibodies directed to these

10

20

25

30

35

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, circulatory and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, blood cells, kidney, ovary and other reproductive tissue, melanocytes, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of growth, hematopoietic and immune system disorders particularly related to the liver.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 28

The translation product of this gene shares sequence homology with prostaglandin transporter which is thought to be important in metabolic and endocrine disorders. See, for example, Gastroenterology Oct:109(4):1274-1282 (1995). Preferred polypeptides encoded by this gene comprise the following amino acid sequence: SYLSACFAGCNSTNLTGCACLTTVPAENATVVPGKCPSPGCQEAFLTFLCVMCI CSLIGAMARHP (SEQ ID NO:277); and/or PSVIILIRTVSPELKSYALGVLFLLLRL LGFIPPPLIFGAGIDSTCLFWSTFCGEQGACVLYDNVVYRYLYVSIAIALKSFAFI (SEQ ID NO:278).

This gene is expressed primarily in hematopoietic and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic, immune and endocrine diseases and disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., endocrine tissue, hematopoietic tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to prostaglandin (and anion) transporter indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of endocrine, metabolic, immune and kidney disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed primarily in early stage human lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth and respiratory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:153 as residues: Val-50 to Trp-55.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of respiratory and growth diseases and disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

The translation product of this gene shares sequence homology with human DNA helicase which is thought to be important in accurate and complete DNA replication in creation of new cells. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: QSLFTRFVRVGVPTVDLDAQGRARA SLCXXYNWRYKNLGNLPHVQLLPEFSTANAGLLYDFQLINVEDFQGVGESEPN PYFYQNLGEAEYVVALFMYMCLLGYPADKISILTTYNGQKHLIRDIINRRCGNN PLIGRPNKVTTVDRFQGQQNDYILLSLVRTRAVGHLRDVRRLVVAMSRAR (SEQ ID NO:279); and/or LVKEAKIIAMTCTHAALKRHDLVKLGFKYDNILMEE AAQILEIETFIPLLLQNPQDGFSRLKRWIMIGDHHQLPPVI (SEQ ID NO:280).

This gene is expressed primarily in testes tumor and to a lesser extent in adrenal

gland tumor and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers and endocrine/growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine, developmental, and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., testes and other reproductive tissue, adrenal gland, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to DNA helicase indicates that the protein products of this gene are useful for study, treatment, and diagnosis of many cancer types, including testicular cancer; as well as disorders involving endocrine function and normal growth and development.

20

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene shares sequence homology with BID-apoptotic death gene (mouse), Genbank accession no. PID g1669514, which is thought to be important in programmed cell death.

25

30

35

This gene is expressed primarily in jurkat membrane bound polysomes and activated neutrophils and to a lesser extent in endothelial cells and human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endothelium, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,

10

30

35

urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:155 as residues: Glu-4 to Leu-11, Cys-28 to Arg-35, Gln-50 to His-66, Glu-73 to Gln-79, Gly-94 to Ser-100, Arg-114 to Asp-126, Pro-139 to Lys-146.

The tissue distribution and homology to BID-apoptotic death gene indicates that the protein products of this gene are useful for study of cell death, and treatment and diagnosis of proliferative disorders and cancers. Apoptosis - programmed cell death - is a physiological mechanism involved in the deletion of peripheral T lymphocytes of the immune system, and its dysregulation can lead to a number of different pathogenic processes. Diseases associated with increased cell survival, or the inhibition of apoptosis, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, such as breast cancer, prostrate cancer, Kaposiís sarcoma and ovarian cancer); autoimmune disorders (such as systemic lupus 15 erythematosus and immune-related glomerulonephritis rheumatoid arthritis) and viral infections (such as herpes viruses, pox viruses and adenoviruses), inflammation; graft vs. host disease, acute graft rejection, and chronic graft rejection. Diseases associated with increased apoptosis include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis 20 pigmentosa, Cerebellar degeneration); myelodysplastic syndromes (such as aplastic anemia), ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia. Thus, the invention provides a method of enhancing apoptosis in an individual by treating the individual with a polypeptide encoded by this 25 gene.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

The translation product of this gene shares sequence homology with human fructose transporter which is thought to be important in normal metabolic function and activity.

This gene is expressed primarily in T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

20

25

30

not limited to, leukemia and other cancers, and metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic,

lymph and metabolic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:156 as residues: Pro-22 to Gly-48, Ser-54 to Pro-61.

The tissue distribution indicates that the protein products of this gene are useful for study of mechanisms leading to cancer, treatment and diagnosis of cancerous and pre-cancerous conditions; as well as the study and treatment of various metabolic diseases and disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human meningima.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and other disorders of the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., meningima and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:157 as residues: Asn-23 to Pro-31.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of disorders of the CNS and inflammatory responses.

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed primarily in activated monocytes and wound healing tissues and to a lesser extent in fetal epithelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and inflammatory disorders and wound healing and tissue repair dysfunctions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, epithelial and gastrointestinal systems, and healing wounds, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., monocytes and other blood cells, and epithelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:158 as residues: Ala-28 to Ala-33, Gly-35 to Glu-45.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis, study and treatment of immune and inflammatory disorders and wound healing dysfunctions.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in human osteosarcoma and prostate cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, skeletal and neoplastic conditions such as bone and prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial

10

15

20

25

30

35

fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:159 as residues: Ser-14 to Gly-22, Leu-37 to Gln-43.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of skeletal disorders and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene encodes a protein which is highly homologous to a protein called congenital heart disease protein 5, presumably implicated in congenital heart disease (see Genbank PID g2810996).

This gene is expressed primarily in Hodgkin's lymphoma, erythroleukemia cells, and TNF activated synovial fibroblasts, to a lesser extent in ovarian cancer, cerebellum, spleen, fetal liver and placenta and finally to a lesser extent in various other mesenchymal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer, immune, hematopoietic and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, hematopoietic and cardiovascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., heart and other cardiovascular tissue, lymphoid tissue, blood cells, bone marrow, ovary and other reproductive tissue, brain and other tissue of the nervous system, spleen, liver, and mesenchymal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:160 as residues: Lys-41 to Met-49, Gln-54 to Glu-59, Glu-76 to Thr-88.

The homology of this gene and translation product to congenital heart disease protein 5 indicates a role for this protein in the diagnosis, prognosis and/or treatment of

heart disease or other cardiovascular related disorders. In addition, predominant expression in cells associated with the immune and hematopoetic system indicates a role for this protein in the treatment, diagnosis and/or prognosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, AIDS, thymus disorders such as Graves 5 Disease, lymphocytic thyroiditis, hyperthyroidism and hypothyroidism, graft versus host reaction, graft versus host disease, transplant rejection, myelogenous leukemia, bone marrow fibrosis, and myeloproliferative disease. The protein could also be used to enhance or protect proliferation, differentiation and functional activation of hematopoietic progenitor cells such as bone marrow cells, which could be useful for 10 cancer patients undergoing chemotherapy or patients undergoing bone marrow transplantation. The protein may also be useful to increase the proliferation of peripheral blood leukocytes, which could be useful in the combat of a range of hematopoietic disorders including immunodeficiency diseases, leukemia, and septicemia.

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in ovarian cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, urogenital neoplasias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:161 as residues: Asn-22 to Asn-27.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of ovarian and other tumors.

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

The translation product of this gene shares sequence homology with zinc finger proteins.

This gene is expressed primarily in various fetal, cancer, and endothelial lines.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of immune and developmental conditions and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in fetal, infant, and adult brain and to a lesser extent in other brain and endocrine organs and blastomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain tumors and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, endocrine tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the

disorder.

10

15

20

25

30

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of brain cancer and other neurological disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with vesicular glycoproteins and lectins. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: DTYPNEEKQQERVFPXXSAMVNNGSLSYDHER DGRPTELGGCXAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGV RLPRGYYFGTSSITGDLSDNHDVISLKLFELTVERTPEEE (SEQ ID NO:281); and/or LKREHSLSKPYQGVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGA LWNRVPCFLRDWELQVHFKIHGQGKKNLHGDGLAIWYT (SEQ ID NO:282).

This gene is expressed primarily in infant brain and to a lesser extent in various normal and transformed neural, endocrine, and immune organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and neurodevelopmental conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hormonal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, endocrine tissue, and tissue and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:164 as residues: Pro-64 to Gly-71, Gly-94 to Leu-100, Thr-110 to Pro-116, Thr-135 to Arg-145, Glu-164 to Glu-171, Asp-204 to Asp-211, Arg-253 to His-261, Asn-312 to Tyr-323.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of mental retardation and other neurological disorders and neoplasias.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene displays homology to the glycosyltransferase family, which catalyze the addition of sialic acids to carbohydrate groups which are present on glycoproteins.

This gene is expressed primarily in smooth muscle and to a lesser extent in pineal gland, fetal liver, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, gastrointestinal injury, inflammatory and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., smooth muscle, pineal gland, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:165 as residues: Ser-12 to Trp-21, Arg-24 to Pro-32, Asp-73 to Lys-82, Lys-90 to Ala-97.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of neurodegenerative and growth disorders and gastrointestinal repair.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

The translation product of this gene shares sequence similarity with metallothionein polypeptides. See, for example, Proc. Natl. Acad. Sci. U S A 1992 Jul 15:89(14):6333-6337. Metallothioneins are believed to inhibit neuronal survival among other biological functions. Based on the sequence similarity (especially the conserved cysteine motifs characteristic of the metallothionein family) the translation product of this gene is expected to share certain biological activities with other members of the metallothionein polypeptide family. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: PGTLQCSALHHDPGCANCSRFCRD CSPPACQC (SEQ ID NO:283).

This gene is expressed exclusively in placenta and fetal liver.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, liver, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to metallothionien indicates that the protein products of this gene are useful for diagnosis and treatment of immune and hematopoietic system disorders and neurological diseases, especially in fetal development.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

Preferred polypeptides encoded by this gene comprise the following amino acid sequence: FLYDVLMXHEAVMRTHQIQLPDPEFPS (SEQ ID NO:284).

This gene is expressed primarily in T-cells and synovial tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein products of this gene are useful for treatment and diagnosis of disorders of the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence similarity with several methyltransferases (e.g., see Genbank gil1065505).

This gene is expressed primarily in ovary, thymus, infant adrenal gland, tissues of the nervous system and the hematopoietic tissue, and to a lesser extent in adipose tissue and many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the reproductive system, the endocrine system, the hematopoietic system and the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, endocrine, CNS and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., ovary and other reproductive tissue, thymus, adrenal gland, brain and other tissue of the nervous system, hematopoietic tissue, and adipose tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:168 as residues: Ser-3 to Gly-12, Asp-19 to Arg-31, Tyr-70 to Tyr-77, Asn-130 to Lys-140, Pro-165 to Gln-170, Pro-192 to Lys-199, Leu-216 to Glu-227, Glu-254 to Phe-281.

The tissue distribution and homology to methyltransferase indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the CNS, the hematopoietic system and reproductive organs and tissues. For example, the abundant expression in the ovary may indicate that the gene product can be used as a hormone with either systemic or reproductive functions; as growth factors for germ cell maintenance and in vitro culture; as a fertility control agent; remedy for sexual dysfunction or sex development disorders; diagnostics/treatment for ovarian tumors, such as serous adenocarcinoma, dysgerminoma, embryonal carcinoma,

15

20

25

30

35

choriocarcinoma, teratoma, etc; The expression in thymus may indicate its utilities in T-cell development and thus its applications in immune related medical conditions, such as infection, allergy, immune deficiency, tissue/organ transplantation, etc.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with cytochrome C oxidase which is thought to be important in metabolic function of cells. This gene has now recently been published as estrogen response gene. See Genbank accession no. AB007618 and Mol. Cell. Biol. 18 (1), 442-449 (1998). See also J Immunol. Mar 1:154(5): 2384-2392 (1995), where the mouse homologue was published and implicated in siliocis.

This gene is expressed primarily in adipose tissue, kidney and fetal brain and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic diseases involving especially adipose tissue, brain and kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adipose tissue, kidney, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:169 as residues: Thr-5 to Ser-14.

The tissue distribution and homology to cytochrome C oxidase, estrogen response gene product and siliocis related gene product indicates that the protein products of this gene are useful for diagnosis and treatment of metabolic disorders in the CNS, adipose tissue and kidney, particularly siliocis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 46

The translation product of this gene shares sequence homology with reticulocalbin. See, for example, J. Biochem. 117 (5), 1113-1119 (1995). Based on the

10

15

20

25

30

35

sequence similarity, the translation product of this gene is expected to share certain biological activities with reticulocalbin, e.g., Ca++ binding activities. This gene product is sometimes hereinafter referred to as "Reticulocalbin-2".

This gene is expressed primarily in breast, endothelial cells, synovial, heart and smooth muscle cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the breast, vascular and skeletal/cardiac muscular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast, vascular and skeleto-muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, endothelial cells, synovial tissue, heart and other cardiovascular tissue, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:170 as residues: Gly-16 to Arg-32, Ala-42 to Asn-50, Glu-66 to Gln-76, Arg-85 to Gly-94, Thr-108 to Asp-115, Trp-121 to Gly-130, Leu-137 to His-144, Glu-155 to Lys-161, Asp-175 to Ser-180, Glu-209 to Gly-217, Glu-232 to Glu-237, Thr-243 to Asp-261, Glu-287 to Arg-295.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of diseases of the vascular and skeletal/cardiac muscular system. The homology of the gene with reticulocalbin indicates its biological function in regulating calcium store, a particularly important function in muscular cell types. The gene expression in the heart may indicate its utilities in diagnosis and remedy in heart failure, ischemic heart diseases, cardiomyopathy, hypertension, arrhythmia, etc. The abundant expression in the breast may indicate its applications in breast neoplasia and breast cancers, such as fibroadenoma, papillary carcinoma, ductal carcinoma, Pagetís disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma; juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases, etc.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares weak sequence homology with H+-transporting ATP synthase which is thought to be important in cell metabolism or signal transduction.

This gene is expressed only in testis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of some types of diseases and conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Since only one out of about a million expressed sequence tag is found in testes indicates that its expression is low and selectively in testes. Since some of the genes only expressed in testes are usually expressed in brain or in certain induced hematopoietic cells/tissues, it is speculated that this gene to be expressed in brain or hematopoietic cells/tissues and is useful for diagnosis and treatment of disorders these systems.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with human polymeric immunoglobulin receptor (accession No.X73079) which is thought to be important in antibody recognition and immune defenses. In one embodiment, polypeptides of the invention comprise the sequence GWYWCG (SEQ ID NO:285). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in placenta and to a lesser extent in corpus callosum and fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

25

30

not limited to, disorders of the immune system, e.g. autoimmune diseases and immunodeficiency. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:172 as residues: Tyr-37 to Cys-49, Gly-51 to Tyr-56, Lys-88 to Trp-93, Leu-130 to Glu-136.

The tissue distribution and homology to human polymeric immunoglobulin receptor indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, e.g. autoimmune diseases and immunodeficiencies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

This gene is expressed in thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., thymus and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides

corresponding to this gene are useful for diagnosis and treatment of immune disorders,
e.g. autoimmunity and immunodeficiency.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: MKVGARIRVKMSVNKAHPVVSTHWRWPAEWPQMFLHLAQEPRTE VKSRPLGLAGFIRQDSKTRKPLEQETIMSAADTALWPYGHGNREHQENELQKY LQYKDMHLLDSGQSLGHTHTLQGSHNLTALNI (SEQ ID NO:286). Polynucleotides encoding this polypeptide are also provided as are complementary polynucleotides thereto.

This gene is expressed primarily in adrenal gland, pituitary, T helper cells, and breast cells and to a lesser extent in a wide variety of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the some diseases and conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adrenal gland, pituitary, T-cells and other blood cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:174 as residues: Gln-39 to Ser-47, Arg-57 to Glu-67, Tyr-82 to Gln-95.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of a wide range of disorders, such as immune and endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

The translation product of this gene shares sequence homology with human Sop2p-like protein which is important in cytoskeleton structure. In one embodiment, polypeptides of the invention comprise the sequence SLHKNSVSQISVLSGGKAKCS QFCTTGMDGGMSIWDVKSLESALKDLKI (SEQ ID NO:287). Polynucleotides encoding this polypeptide are also encompassed by the invention. This gene maps to chromosome 7. Therefore, polynucleotides of the invention can be used in linkage

10

15

analysis as a marker for chromosome 7.

This gene is expressed primarily in immune and hematopoietic tissues/cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological and hematopoietic disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., immune and hematopoietic tissue/cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:175 as residues: Lys-49 to Gln-54, Ala-61 to Arg-66, Lys-82 to Lys-87, Glu-126 to Val-133, His-136 to Ile-141, Glu-175 to Ser-187, Asp-286 to Leu-296, Ala-298 to Ser-310.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immunological, hematopoietic, and inflammatory disorders, e.g, immunodeficiency, autoimmunity, inflammation.

25

35

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

The translation product of this gene shares sequence homology with *Caenorhabditis elegans* R53.5 gene encoding a putative secreted protein without known function.

This gene is expressed primarily in endothelial cells, brain and several highly vascularized, and tumor tissues and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, aberrant angiogensis and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and brain system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, brain and other tissue of the nervous system, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:176 as residues: Thr-43 to Asn-60, Thr-106 to Phe-115, Asp-122 to Arg-133, Arg-186 to Asp-192, Leu-211 to Lys-216.

The tissue distribution and homology to a *C. elegans* secreted protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of disorders in vascular or brain system, e.g. aberrant angiogenesis, ischemia, neurodegeneration, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

In one embodiment, polypeptides of the invention comprise the sequence EASKSSHAGLDLFSVAACHRF (SEQ ID NO:288). Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed primarily in T-cells and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lymphocytic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lymphoid system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:177 as residues: Pro-3 to Thr-8, Arg-37 to Asp-46.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, treatment, and cure of lymphocytic disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 54

The translation product of this gene shares sequence homology with secreted cartilage matrix protein, a major component of the extracellular matrix of nonarticular cartilage which is thought to be important in cartilage structure. In specific embodiments, polypeptides of the invention comprise the sequence: RCKKCTEGPI DLVFVIDGSKSLGEENFEVVKQF (SEQ ID NO:297); VTGIIDSLTISPKAARVGL LQYSTQVH (SEQ ID NO:290); TEFTLRNFNSAKDMKKAVAHMKYM (SEQ ID NO:291); GKGSMTGLALKHMFERSFTQGEGARPF (SEQ ID NO:292); STRVP RAAIVFTDGRAQDDVSEWASKAKANGITMYAVGVGKAIE (SEQ ID NO:293); EELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDS (SEQ ID NO:294); TQRLEEMTQRM (SEQ ID NO:295); PQGCPEQPLH (SEQ ID NO:296); and/or YMGKGSMTGLALKHMFERSFT (SEQ ID NO:289). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in placenta, infant brain, prostate, fetal lung and to a lesser extent in endometrium and fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormal placenta and pregnancy, disorder and injury in brain, prostate, and vasculature. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproduction, neuronal, and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, brain and other tissue of the nervous system, prostate, lung and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to cartilage matrix protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis,

10

15

20

25

30

35

treatment, and cure of abnormalities in placenta and pregnancy, disorder and injury in brain, prostate, and vasculature.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

The translation product of this gene is the human ortholog of bovine and hamster CII-3, a succinate-ubiquinone oxidoreductase complex II membrane-intrinsic subunit, which is thought to be important in mitochondrial electron transport chain during metabolism. In specific embodiments, the polypeptides of the invention compriseMAALLLRHVGRHCLRAHFSPQLCIRNAVPLGTTAKEEMERFWNKNIG SNRPLSPHITIYS (SEQ ID NO:298); VFPLMYHTWNGIRHLMWDLGKGLKIPQL YQSG (SEQ ID NO:299); MAALLLRHVGRHCLRAH (SEQ ID NO:300); VKSLCL GPALIHTAKFAL (SEQ ID NO:301); VFPLMYHTWNGIRHLMWDLGKGL (SEQ ID NO:302).

This gene is expressed in 8-week old early stage human.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolism disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, treatment, and cure of metabolism disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in umbilical vein endothelial cells, human ovarian tumor cells, human meningima cells, and human Jurkat membrane bound polysomes. In specific embodiments, polypeptides of the invention comprise the amino acid sequence: RVWDVRPFAPKERCVKIFQGNV (SEQ ID NO:303); HNFEKNLL

10

15

20

RCSWSPDGSKIAAGSADRFVYV (SEQ ID NO:304); and/or WDTTSRRILYKLPG HAGSINEVAFHPDEPI (SEQ ID NO:305). Polynucleotides encoding these polypeptides are also encompassed by the invention.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, immune and cardiovascular disorders and urogenital neoplasias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neurological, urogenital, reproductive system and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, cells, endothelial cells, ovary and other reproductive tissue, meningima, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:143 as residues: Phe-71 to Arg-76, Pro-82 to His-87, Glu-103 to Ala-111.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. In addition, expression in ovarian tumor cells suggests that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of ovarian tumors, and other tumors and neoplasias. Further, endothelial cell expression suggests a role in cadiovascular or respiratory/pulmonary disorders or infections (athsma, pulmonary edema, pneumonia).

30

35

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

The translation product of this gene shares sequence homology with type I collagen. In specific embodiments, the polypeptides of the invention comprise the sequence: GRIPAPAPSVPAGPDSR (SEQ ID NO:309); VRGRTVLRPGLDAEPE LSPE (SEQ ID NO:306); EQRVLERKLKKERKKEERQ (SEQ ID NO:307); ARRSG

10

15

20

AELAWDYLCRWAQKHKNWRFQKTRQTWLLLHMYDSDKVPDEHFSTLLAYLE GLQGR (SEQ ID NO:255); and/or RLREAGLVAQHPP (SEQ ID NO:308).

Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in epididymus, prostate cell line (LNCAP), and pituitary gland; and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the epididymus, prostate (especially prostate cancer), and pituitary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system and neuroendocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., epididymus and other reproductive tissue, prostate, and pituitary gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to type I collagen, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of the epididymus, prostate (especially prostate cancer), and pituitary gland.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

This gene is expressed primarily in the frontal cortex of the brain from a schizophrenic individual.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of

20

25

30

35

the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of schizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

The polypeptide encoded by Gene 59 is homologous to human surface 4 integral membrane protein. In specific embodiments, the polypeptides of the invention comprise the sequence: TGCVLVLSRNFVQYACFGLFGIIALQTIAYSILWDLKF LMRN (SEQ ID NO:310); SRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLV LMFMTLLHFDASFFSIVQNIVG (SEQ IDNO:311); GTAEDFADQFLRVTKQYLP HVARLCLISTFLEDGIRMFQWSEQRDYIDTTWNCGYLLAS (SEQ ID NO:312); LMRNESRS (SEQ ID NO:314); ASFLLSRTSWGTA (SEQ ID NO:315); and/or ASFLLSRTSWGTALMIL (SEQ ID NO:313). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Hodgkin's lymphoma and lung; and to a lesser extent in many other human tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, Hodgkin's lymphoma, tumors or other abnormalities of the lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., lymphoid tissue, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:183 as residues: Met-20 to Trp-27.

The tissue distribution indicates that polynucleotides and polypeptides

10

15

20

30

35

corresponding to this gene are useful for diagnosis and treatment of Hodgkin's lymphoma, tumors or other abnormalities of the lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene is expressed primarily in bone cancer and stomach cancer, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone cancer and stomach cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, and the stomach, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of bone cancer and stomach cancer and possibly other cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in epididymus, and lymph node of breast cancer, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the epididymus, and breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the epididymus and breast, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., epididymus and other reproductive tissue, lymphoid tissue, and mammary tissue, and cancerous and wounded tissues) or bodily fluids

15

20

25

30

35

(e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:185 as residues: Arg-57 to Ser-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of the epididymus, and breast cancer.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

The translation product of this gene appears to be the human homolog of bovine NADH dehydrogenase which is thought to be important in cellular metabolism. In specific embodiments, the polypeptides of the invention comprise the amino acid sequence: SMSALTRLASFARVGGRLFRSGCARTAGDGGVRHAGGGVHIEPRY RQFPQLTRSQVFQSEFFSGLMWFWILWRFWHDSEEVLGHFPYPDPSQWTDEEL GIPPDDED (SEQ ID NO:323), or fragments thereof. Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed in larynx tumor, lymph node, brain amygdala, human cardiomyopathy, and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting cellular metabolism. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., larynx, lymphoid tissue, brain and other tissue of the nervous system, heart and cardiovascular tissue, and retina, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:208 as residues: Pro-27 to Gln-32, Arg-42 to Glu-51.

The tissue distribution and homology to NADH dehydrogenase indicates that

10

15

20

polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases involving cellular metabolism.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in amygdala, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the amygdala. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the amygdala, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., amygdala, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:187 as residues: Gln-17 to Glu-29, Pro-41 to Phe-46, Ser-59 to Ile-70, Thr-97 to Leu-105.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of amygdala.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

This gene is expressed primarily in female bladder, and to a lesser extent in chronic synovitis and hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bladder cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary tract, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bladder, synovial tissue, and

vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:188 as residues: Pro-2 to Gln-7, Pro-27 to Phe-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatments of defects of the urinary tract, especially bladder cancer.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in fetal spleen, and to a lesser extent in hemangiopericytoma, thymus, and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, defects of immune of hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune of hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., spleen, vascular tissue, thymus, blood cells, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The protein product of this gene is useful for treatment of defects of the immune or hematopoietic systems, because of the gene's expression in thymus and spleen.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This gene is expressed primarily in human pituitary and to a lesser extent in placenta and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, endocrine growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pituitary and other endocrine tissue, placenta, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:190 as residues: Val-38 to Asn-44, Gly-53 to Ser-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of growth disorders related to pituitary dysfunction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene of unknown function. In specific embodiments, the polypeptides of the invention comprise the sequence: DPRRPNKVLRYKPPPSE CNPALDDPTP (SEQ ID NO:317); DYMNLLGMIFSMCGLMLKLKWCAWVA VYCS (SEQ ID NO:318); FISFANSRSSEDTKQMMSSF (SEQ ID NO:316); and/or MLSISAVVMSYLQNPQPMTPPW (SEQ ID NO:319). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in primary breast cancer and lymph node breast cancer and to a lesser extent in adult brain, lung cancer, colon cancer, epithelioid sarcoma, and Caco-2 cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer and tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, lymphoid tissue, brain and other tissue of the nervous system, lung, colon, and

epithelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:191 as residues: Asn-34 to Lys-42.

The tissue distribution in a variety of cancer tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of a variety of cancer and tumor types.

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

The translation product of this gene shares sequence homology with steroid membrane binding protein. The translation product of this gene has recently been published as progesterone binding protein. See Genbank AJ002030. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: AAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAXGGGWAAAALALLTG GGE (SEQ ID NO:320).

This gene is expressed primarily in breast, and to a lesser extent in placenta and fetal tissue.

20

25

30

15

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer or developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of breast or fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, placenta, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:192 as residues: Pro-43 to Asp-49, Gln-54 to Pro-64, Asp-110 to Asp-118, Lys-138 to Tyr-143, Pro-150 to Asp-170.

35

The tissue distribution and homology to steroid membrane binding protein and to progesterone binding protein indicates that the protein products of this gene are

10

15

20

25

30

35

useful for treatment of breast cancers, especially those caused by estrogen and progesterone binding.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Preferred polypeptides encoded by this gene comprise the following amino acid sequence: AADNYGIPRACRNSARSYGAAWLLLXPAGSSRVEPTQDISISDQLGG QDVPVFRNLSLLVVGVGAVFSLLFHLGTRERRRPHAXEPGEHTPLLAPATAQPL LLWKHWLREXAFYQVGILYMTTRLIVNLSQTYMAMYLTYSLHLPKKFIATIPLV MYLSGFLSSFLMKPINKCIGRN (SEQ ID NO:321).

This gene is expressed primarily in macrophage (GM-CSF treated), and to a lesser extent in monocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., macrophages and other blood cells, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treatment of infection or inflammation or other events or defects involving the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

This gene is expressed primarily in adult brain and to a lesser extent in thyroid, 12 week old early stage human, and stromal cell TF274.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological or neuro-endocrine diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

20

25

30

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous or endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, thyroid, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:194 as residues: Pro-65 to Cys-71.

The tissue distribution indicates that the protein products of this gene are useful for treatment and diagnosis of neurological diseases or metabolic conditions involving the neuro-endocrine system.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene is expressed in T-cell helper and to a lesser extent in adult brain and adult testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, meningitis or reproductive problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neural and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, brain and other tissue of the nervous system, testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:195 as residues: Val-18 to Tyr-24, Ala-89 to Asp-99, Asp-104 to Ala-117, Leu-121 to Pro-136.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis immune and

10

15

20

25

30

35

reproductive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

The translated polypeptide of this contig has a high degree of identity with the Ob Receptor-Associated Protein deposited as GenBank Accession No. 2266638. No function has been determined for the Ob Receptor-Associated Protein, however it is expressed upon stimulation of the Ob Receptor by Leptin.

This gene is expressed in T-cells and to a lesser extent in endothelial and bone marrow cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, acute lymphoblastic leukemia, hematapoetic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematapoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, endothelial cells, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:196 as residues: Ser-61 to Trp-70.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of leukemia and other disorders of the primary immune system. In addition, since this gene appears to be related to the Ob Receptor-Related Protein, it is likely that this polypeptide is also involved in the Ob/Leptin signal transduction cascade. As a result, this protein may be of use in the molecular diagnosis and therapeutic intervention of obesity and related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

The translation product of this contig has homology with furin, a protein thought to be a key endopeptidase in the constitutive secretory pathway. The identification and initial characterization of Furin was reported by Takahasi and

10

15

20

25

30

35

colleagues (Biochem Biophys Res Commun 1993 Sep 15;195(2):1019-1026).

This gene is expressed in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system such as allergies, wound healing and antigen recognition. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., neutrophils and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of allergies or other immune disorders since neutrophils are an important part of an allergic response. Further, since this protein appears to be related to Furin, it can be used diagnostically and therapeutically to treat secretory protein processing disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed in the frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, of the motor activity and sensory functions that involve the central nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of neural disorders that affect cognitive functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with inorganic pyrophophatase which is thought to be important in the catalysis the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates and essential enzymes that are important for controlling the cellular levels of inorganic pyrophosphate (PPi). The bovine homolog of this gene has been identified by Yang and Wensel (J. Biol. Chem. 267:24641-24647 (1992)).

This gene is expressed in osteoclastoma cells and to a lesser extent in epithelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoporosis and other bone weakening diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:199 as residues: Lys-22 to Tyr-28, Asp-64 to Lys-77, Pro-86 to Ile-91, Gln-99 to Pro-119, Tyr-169 to Asp-174, Lys-176 to Gly-181, Trp-189 to Asn-202, Lys-233 to Gly-239, Ser-250 to Asp-257.

The tissue distribution and homology to inorganic pyrophophatase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of osteoporosis through the removal of bone by demineralization.

30

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

The translation product of this gene shares exact sequence homology with ATP sulfurylase/APS kinase (GenBank Accession No. 2673862) which is thought to be important in biosynthesis of the activated sulfate donor, adenosine 3'-phosphate 5'-phosphosulfate, involves the sequential action of two enzyme activities: ATP sulfurylase, which catalyzes the formation of adenosine 5'-phosphosulfate (APS) from ATP and free sulfate, and APS kinase, which subsequently phosphorylates APS to produce adenosine 3'-phosphate 5'-phosphosulfate.

This gene is expressed in osteoclastoma cells and to a lesser extent in developmental tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, antibiotic resistant bacterial infections, osteoarthritis and other auto immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or skeletal structure expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and developmental tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:200 as residues: Asn-15 to Trp-20, Ser-36 to Gly-41, Pro-103 to Val-110, Pro-134 to Arg-143, Leu-173 to Arg-178, Ser-190 to Ala-197, His-314 to Arg-319, Arg-354 to Asn-362, Asp-391 to Arg-397, Glu-402 to Asp-409, Asp-434 to Leu-439, Glu-441 to Arg-446, Gly-455 to Asp-462, Pro-528 to His-541, Asn-566 to Arg-571, Tyr-574 to Glu-581, Thr-589 to Glu-603.

The tissue distribution and homology to ATP sulfurylase/APS kinase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment or detection of autoimmune diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This polypeptide is identical to the SLP-76-associated protein reported by Musci and colleagues (J. Biol. Chem. 272 (18), 11674-11677 (1997)) and to the FYB protein

10

reported by da Silva and coworkers (Proc. Natl. Acad. Sci. U.S.A. (1997) In press). These proteins have been reported to be novel T-cell Proteins which bind FYN and SLP-76 and regulate IL-2 production. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: RITDNPEGKWLGRTARGSYGYIK TTAVEIXYDSLKLKKDSLGAPSRPIEDDQEVYDDVAEQDDISSHSQSGSGGIFPP PPDDDIYDGIEEEDADDGFPAPPKQLDMGDEVYDDVDTSDFPVSSAEMSQGTNV GKAKTEEKDLKKLKKQXKEXKDFRKKFKYDGEIRVLYSTKVTTSITSKKWGT RDLQVKPGESLEVIQTTDDTKVLCRNEEGKYGYVLRSYLADNDGEIYDDIADGC IYDND (SEQ ID NO:322).

This gene is expressed in CD34 positive cells (hematopoietic progenitor cells) and to a lesser extent in adult spleen derived from a chronic lymphocytic leukemia patient.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are 15 not limited to, chronic lymphocytic leukemia; hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels 20 may be routinely detected in certain tissues (e.g., T-cells and other blood cells, bone marrow, hematopoietic cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily 25 fluid from an individual not having the disorder. Further, nucleic acids and polypeptides of the present invention are useful both diagnostically and therapeutically in the intervention of immune and other disorders in which the ability to alter IL-2 expression is desired. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:201 as residues: Ala-17 to Lys-37, Val-39 to Ser-45, Lys-59 to His-70, 30 Arg-90 to Leu-95, Lys-97 to Lys-107, Ser-117 to Leu-124, Phe-133 to Ser-138, Trp-146 to Leu-167, Pro-175 to Asn-185, Lys-190 to Ser-211, Pro-213 to Ser-222, His-230 to Pro-235, Pro-240 to Pro-246, Pro-253 to Gly-261, Leu-271 to Leu-303, Leu-305 to Leu-326, Lys-343 to Leu-349, Thr-363 to Leu-371, Arg-373 to Tyr-381, Tyr-391 to Leu-401, Pro-404 to Val-414, Ser-426 to Ser-432, Ile-448 to Ser-457, Gln-462 35 to Trp-468, Lys-477 to Ser-501, Asp-518 to Ser-523, Ala-541 to Gln-554.

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of a variety of hematopoietic disorders. The noted expression of this gene in the hematopoietic progenitor cell compartment - as determined by its expression on CD34 positive hematopoietic stem and progenitor cells - indicates that it plays a critical role in the expansion or proliferation of hematopoietic stem/progenitor cells, as well as in the differentiation of the various blood cell lineages. Thus it could be useful in the reconstitution of the hematopoietic system of patients with leukemias and other hematopoietic diseases.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 78

This gene is homologous to heparin cofactor II (HCII) which is a 66-kDa plasma glycoprotein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin.

This gene is expressed in apoptotic and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, thrombopienia T-cell lymphomas; Hodgkin's lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system most notably the T-cell compartment, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The homology to heparin cofactor II (HCII) and the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic disorders particularly in thrombopoesis, most notably of the T-cell compartment. This could include immune modulation, inflammation, immune surveillance, graft rejection, and autoimmunity.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 79

The translation product of this gene shares sequence homology with a mouse

10

15

20

protein believed to represent an integral membrane protein.

This gene is expressed in fetal cochlea and epididymus and to a lesser extent in adult spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma; disorders of the inner ear; male fertility disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inner ear; male reproductive tract; bone; and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cochlea, epididymus and other reproductive tissue, spleen, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:203 as residues: Lys-13 to Gly-23, Cys-38 to Asp-43, Gly-48 to Trp-53, Cys-223 to Ile-237, Ile-240 to Ser-246.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of hearing and fertility disorders. Likewise, it may have a role in the modulation of immune function and in the treatment of osteoporosis.

25

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

The translation product of this gene shares sequence homology with reticulocalbin which is thought to be important in the binding of calcium, particularly within the endoplasmic reticulum.

This gene is expressed in endothelial cells and stromal cells and to a lesser extent in osteoblasts, osteoclasts, and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoperosis; osteoclastomas; T-cell lymphomas; Hodgkin's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

10

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature, bone, and immune systems - particularly the T-cell compartments, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, stromal cells, bone, T-cells and other blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:204 as residues: Lys-20 to Arg-27, Pro-32 to Asp-48, Leu-64 to Arg-72, Asp-108 to Lys-114, Glu-128 to Thr-133, Asp-139 to Phe-147, Thr-196 to Ala-204, Tyr-218 to Glu-228, Val-230 to Gln-236, Arg-241 to Lys-255, Glu-276 to Lys-287.

The tissue distribution and homology to reticulocalbin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of bone disorders such as osteoporosis; the diagnosis and treatment of T-cell lymphomas and Hodgkin's lymphoma; and the treatment of diseases and defects of the vasculature, such as vascular leak syndrome and aberrant angiogenesis that accompanies tumor growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

The translation product of this gene shares sequence homology with a family of peptide transport genes - particularly the AtPTR2-B gene from *Arabidopsis* - which are thought to be important in the uptake of small peptides.

This gene is expressed in a number of fetal tissues, most notably lung, brain, cochlea, and liver/spleen, and to a lesser extent in osteoclastoma and endometrial tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma; endometrial tumors; cancer; leukemias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone and endometrium, expression of this gene at significantly higher or lower levels may be

10

15

20

25

30

35

routinely detected in certain tissues (e.g., fetal tissue, pulmonary tissue, bone, brain and other tissue of the nervous system, cochlea, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:205 as residues: Lys-186 to Asn-199, Pro-202 to Ala-207.

The tissue distribution and homology to peptide transport genes indicates that polynucleotides and polypeptides corresponding to this gene are useful for the control of cell proliferation, owing to its strong expression in fetal tissues undergoing active cell division, as well as its expression in a variety of tumors or cancers of adult tissues. Potentially, it may regulate the uptake of peptides that stimulate cell proliferation. This gene product may also be useful in stimulating the uptake of a variety of peptide-based drug compounds.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

This gene is expressed in fetal liver and spleen and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and tumors of a hematopoietic and/or endothelial cell origin; leukemias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and/or vasculature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, endothelial cells, vascular tissue, and tissue and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:206 as residues: Met-1 to Asp-9, Arg-66 to Gly-76, Asp-164 to Arg-171.

The tissue distribution indicates that polynucleotides and polypeptides

10

15

20

25

30

corresponding to this gene are useful for the treatment of disorders of the immune system. Expression of this gene product in both fetal liver/spleen and endothelial cells indicates that it may be expressed in the hemangioblast, the progenitor cell for both the immune system and the vasculature. Thus, it is most likely expressed in hematopoietic stem cells, and may be useful for the expansion of hematopoietic stem and progenitor cells in conjunction with cancer treatment for a variety of leukemias.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with NADH dehydrogenase which is thought to be important in cellular metabolism.

This gene is expressed in fetal dura mater and to a lesser extent in T-cells and hypothalamus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting cellular metabolism. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, T-cells and other blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:208 as residues: Pro-27 to Gln-32, Arg-42 to Glu-51.

The tissue distribution and homology to NADH dehydrogenase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases involving cellular metabolism.

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with I-TRAF, a novel TNF receptor associated factor (TRAF)-interacting protein that regulates TNF receptor-mediated signal transduction. This protein is thought to be important in regulating the cellular response to tumor necrosis factor (TNF), which is an important mediator of inflammation.

This gene is expressed in endothelial cells and to a lesser extent in glioblastoma and osteoblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation; glioblastoma and osteoblastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, bone, and glial cells and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:209 as residues: Glu-15 to Thr-22, Glu-46 to Leu-62, Arg-103 to Glu-119, Gln-127 to Glu-132, Asn-152 to Trp-158, Gln-191 to Gln-210, Glu-264 to Thr-271, Tyr-282 to Leu-288, Trp-319 to Thr-331, Glu-335 to Ser-348, Ser-353 to Ser-358, Asp-382 to Asn-392.

The tissue distribution and homology to I-TRAF indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, including rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, particularly where tumor necrosis factor is known to be involved.

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene has homology with a candidate gene involved in X-linked Retinopathy reported by Wong and colleagues (Genomics 15:467-471 (1993)).

This gene is expressed in a T-cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and autoimmune diseases; T-cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory disorders such as sepsis, inflammatory bowel disease, psoriasis, and rheumatoid arthritis as well as autoimmune disease such as lupus. It could also be useful in immune modulation and in the process of immune surveillance. The present invention can be used diagnostically and therapeutically to treat X-linked Retinopathy.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 87

This gene is expressed in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain disorders; neurodegenerative disorders; tumors of a brain origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,

10

urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:211 as residues: Cys-32 to Tyr-38.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of CNS disorders such as epilepsy, paranoia, depression, Alzheimer's disease, and schizophrenia. It could be useful in the survival and/or proliferation of neurons and could effect neuronal regeneration.

		,	_	,			
Last AA of ORF	30	4	69	81	38	22	109
First AA of Secreted Portion		27	45	26	25	23	21
Last AA of Sig Pep		26	44	25	24	22	20
First AA of Sig Pep		П	1		-	H	-
¥Š⊎Š⊁ ׊⊎Š¥	125	126	212	213	127	128	129
S' NT Of AA Fi Of AA of ID OSignal NO: Signal NO: Signa	353	128	170	413	66	006	103
S' N' of Start	353	128	170	413	66	006	103
3' NT of Clone Seq.	1607	1786	1487	1637	1212	2061	733
S' NT 3' NT of of Clone Clone Seq.	247	87	79	394	-	882	10
Total NT Seq.	1679	1830	1487	1653	1212	2061	1412
SEQ NÖ:	11	12	86	66	13	4	15
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	xxxxx 03/19/98	209641 02/25/98	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
		1			_ :		HASAV70
Gene No.		2	2	. 2	3	4	\$

Last AA of ORF	62	29	52	56	215	48
First AA of Secreted Portion	18		24	18	19	27
Last AA of Sig Pep	17		23	17	18	26
First AA of Sig Pep	1	-			-	
AA SEQ D NO: Y	130	131	132	133	134	135
of AA First SEQ / AA of ID Signal NO: S	538	181	98	192	401	793
of of Start	538	181	98	192	401	793
3' NT of Clone Seq.	880	683	1007	1393	1070	2011
S' NT 3' NT of of Clone Clone Seq. Seq.	276	-	98	132	277	614
Total NT Seq.	1052	683	1054	1393	1215	2042
X Ö B Ö	16	17	18	19	20	21
Vector	Uni-ZAP XR					
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HBNAF22	HBNBL77	HCDDR90	HCEEF50	HCEMU42	HCENE16
Gene No.	9	7	∞	6	10	Ξ

Last AA of ORF	<i>L</i> 9	51	539	08	56	48	200
First AA of Secreted Portion	. 24	30	31	23	27	37	28
Last AA of Sig Pep	23	29	30	22	26	36	27
First AA of Sig Pep		_	-	_	-	-	_
¥ SEQ ¥	136	137	138	214	139	215	140
5' NT of First AA of Signal Pep	69	68	808	515	196	295	70
5' NT of Start Codon	69	68	808	515	196	295	70
S' NT 3' NT of of Clone Clone Seq. Seq.	1872	289	3532	1115	206	734	717
5' NTC of Clone Seq.	21	-	2821	435	171	25	-
Total NT Seq.	1872	289	3533	1145	1148	734	717
SEQ NÖ:	22	23	24	<u>0</u>	25	101	26
Vector		1	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	209179 07/24/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
		\sim	HE2DE47	i	_ 1		HE9DG49
Gene No.	12	5	14	14	15	15	16

Last AA of ORF	202	215	185	101	111	19
rirst AA of Secreted Portion	29	23	26	43	31	
Last AA of Sig Pep	28	22	25	42	30	
First AA of Sig Pep	1	-				
AA SEQ ID NO: Y	216	141	217	142	143	144
S' NT of AA First Last AA of ID of Signal NO: Sig Sig Sig Sig N AP Pep AP AA ID of Of Sig Sig Sig Sig N AP	78	38	149	128	294	496
S' NT of Start Codor	78	38	149	128	294	496
3' NT of Clone Seq.	713	1099	1080	941	756	2093
S' NT 3' NT of of Clone Clone Seq. Seq.	17		-	171	62	408
Total NT Seq.	713	1099	1080	941	756	2100
X Ö B Ö K	102	27	103	28	29	30
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 97923 03/07/97 209071 05/22/97	97923 97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HE9DG49	HELBA06	HELBA06	HSLFM29	HELBW38	HETHN28
Gene No.	16	17	17	18	19	20

		, ,					
Last AA of ORF	29	86	7	38	130	31	13
First AA of Secreted Portion		29		17	27	22	
Last AA of Sig Pep		28		16	26	21	
First AA of Sig Pep	-		-		-	-	_
¥ŠBŠ\$	145	146	147	148	149	150	151
of AA F First SEQ AA of D Signal NO: 9	267	21	210	242	178	144	1104
S' NT of Start Codon	567	21	210	242	178	441	1104
3' NT of Clone Seq.	1392	409	1322	710	1161	938	1581
5' NT 3' NT of of Clone Clone Seq. Seq.	475	1	-	-	110		974
Total NT Seq.	1448	456	1326	710	1188	926	1603
X S D S S S S S S S S S S S S S S S S S	31	32	33	34	35	36	37
1 1	— "		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97924 03/07/97
cDNA Clone ID	<u>-</u>						HKTAC77
Gene No.	21	77	23	24	25	26	27

Last AA of ORF	7	19	3 5	<u>4</u> 2	8	30	68	68	88	173	13/	47	44
First AA of Secreted Portion	,	33	Ç	55	19	31	20	23	61	21	21	28	58
Last AA of Sig Pep		32	0	32	18	30	61	22	18	20	20	27	27
First AA of Sig Pep	-	1	_	-	1		_	-	-		-	-	_
AS BOOK	152	153	154	155	156	157	158	218	159	160	219	220	161
5' NT of First AA of Signal Pep	209	119	581	126	43	171	55	58	17	15	72	54	269
5' NT of Start Codon		119	581	126	43	171	55	58	17	15	72	54	269
	1067	629	1793	1123	875	843	489	489	534	1374	640	1399	296
5' NT 3' NT of of Clone Clone Seq. Seq.	55		408	13		-	3	9		1	58	40	_
Total NT Seq.	1089	629	1964	1522	875	843	489	489	534	1374	640	1529	596
X S B S X	38	39.	40	41	42	43	4	104	45	46	105	106	47
Vector	pBluescript	pBluescript	Lambda ZAP II	Uni-Z	Uni-ZAP XR	pSport1	Uni-ZAP XR						
ATCC Deposit Nr and Date	97924	97924	97924 03/07/97	97924	97924	97924	97924	97924	97924	97924	97924	97924	97924 03/07/97
cDNA Clone ID		96ASHTH	НГОВО86	HLTBX31	HLTCJ63	HMKAH44	HMQAJ64	HMQAJ64	HOABG65	HODCL36	HODCL36	HODCL36	HODCL50
Gene	28	29	30	31	32	33	34	34	35	36	36	36	37

	Last	of ORF	22	69	322	69	319	82	30	71	280	42	22	326	183
	First AA	Secreted Portion		18	20	32	61	22		19	31	31		20	24
[ast		Sig Pep		17	19	31	09	21		18	30	30		61	23
First		Sig Pep	_	-	I	I	_		-	-	-	-	F		F
- ₹	<u> </u>	Ö.≻	162	163	164	221	165	222	166	167	168	223	169	170	224
5' NT of	First AA of	Signal Pep	170	829	66	928	150	239	432	142	25	433	217	57	35
	5° NT of	တပ္	170	638	66	928	150	239	432	142	25	433	217	57	35
5' NT 3' NT	of Clone	Seq.	822	2020	2432	2435	2340	791	601	337	1141	1166	1148	809	586
S' NT	of Clone	Seq.	66	569	848	849	1627	92	188		1	21	63	164	4
	Total	NT Seq.	851	2020	2432	2435	2340	\$05	109	359	1141	1166	1560	1507	586
Z	SEQ D	ÿ×	48	49	20	107	51	108	52	53	54	109	55	56	110
		Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
	ATCC Deposit	Nr and Date	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924	97924 03/07/97	97924 03/07/97
		cDNA Clone ID	HODCV74	HODCZ16	HTOEU03	~		HPBCJ74	HPMBU33			~	HSJBB37	•	HSJBQ79
		Gene No.	38	39	40	40	41	41	42	43	44	44	45	46	46

Last AA of ORF	89	158	70	122	128	6	371
AA ed on	36	16	20	61	31		2
Last AA of Sig Pep	35	15	19	18	30		1
First AA of Sig Pep		_	1	Ī	-	1	1
AA SEQ NO: Y	171	172	225	173	174	226	175
5' NT of First S AA of Signal P	83	163	155	115	52	829	114
5' NT of Start Codon	83	163	155	115	52	829	114
3' NT of Clone Seq.	450	1147	1134	777	598	1333	1554
5' NT 3' NT of of Clone Clone Seq.	1		_		48	594	443
Total NT Seq.	450	1147	1134	777	1191	1333	1580
X S B S B S B S B S B S B S B S B S B S	57	28	111	59	09	112	61
Vector	_	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	209235 09/04/97
cDNA Clone ID	HTEGA76	HTEJN13	HTEJN13	нтнвг86	HTSF071	HTSF071	HAPNO80
Gene No.	47	48	48	49	20	50	51

Last AA of ORF	137	215	54	22	102	47
First AA of Secreted Portion	29	29	33	21	34	39
First Last AA AA of of Sig Sig Pep Pep	28	28	32	20	33	38
First AA of Sig Pep	-	-	П		-	-
¥ŠΘÖ≻ ≺ÖΘÖŞ	227	176	177	178	179	180
of AA F First SEQ AA of D Signal NO: Pep Y	244	182	76	150	231	703
S' NT of Start	244	182	97	150	231	703
S' NT 3' NT of of Clone Clone Seq. Seq.	708	1034	361	1638	1303	1011
S' NT 3' NT of of Clone Seq. Seq.	249	105	_	-	35	655
Total NT Seq.	1015	1117	361	1668	1353	1011
XÖBÖX XÖBÖ	113	62	63	2	65	99
Vector	Uni-ZAP XR	pBluescript	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HAUCC47			нЕ8ЕМ69		HEBGF73
Gene No.	51	52	53	54	52	99

Last AA of ORF	95	94	26	10	49	21
First AA of Secreted Portion (36	30	22		20	22
	35	29	21		61	21
First Last AA AA of of Sig Sig Pep	1	_	1		1	-
¥ŠBŠB.≻	181	182	183	184	185	186
S' NT Of AA For SEQ AA of DO Signal NO: Sep Pep Y For Standard NO: Sta	459	£9	839	270	272	127
S' NT of Start Codon	459	63	839	270	272	127
of of Clone Seq.	1090	560	1581	711	935	484
5' NT 3' NT of of Clone Clone Seq. Seq.	267	_	765	∞ .	111	113
Total NT Seq.	1193	560	1657	711	935	504
X Ö B SEQ	<i>L</i> 9	89	69	70	71	72
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Lambda ZAP II	Lambda ZAP II	Lambda ZAP II
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HFEBF41	HFRBU14	HFVGZ79	ннGCM76	ннссо88	HHGCP52
Gene No.	57	58	59	09	- 61	62

Last AA of ORF	131	89	4	42	22	169
First AA of Secreted Portion	19	33	28	37	12	15
First Last AA AA of of Sig Sig Pep Pep	18	32	27	36	=	4
	-	_	-			-
¥Šeĕ×	187	188	189	190	228	192
of AA of EQ AA of D Signal NO:	96	248	630	167	575	187
5' NT of Start Codon	96	248	630	167		187
5' NT 3' NT of of Clone Clone Seq.	620	581	1786	800	1076	1888
5' NT of Clone Seq.	-	156	537	116	398	18
Total NT Seq.	620	581	1843	1441	1076	2776
SEQ NÖ: NÖ:	73	74	75	76	114	78
Vector	Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HHGDB72	HHGDI71	HHSDI45	HHSEB66	HJPAZ83	HLDBO49
Gene No.	63	64	65	99	<i>L</i> 9	89

Last AA of ORF	65	131	91	175	69	24	72
First AA of Secreted Portion	23	23	33	24	27	21	26
Last AA of Sig Pep	22	22	32	23	26	20	25
First Last AA AA of of Sig Sig Pep Pep	1	1	1	1	1	—	
AA SEQ ID NO: Y	193	229	194	195	196	197	198
S' NT AA Of AA Of AA Of DA Of Of Of Of Of Of Of O	534	534	40	238	286	85	14
S. S.	534	534	40	238	286	28	14
3' NT of Clone Seq.	1480	1487	1077	780	770	481	623
S' NT 3' NT of of Clone Clone Seq. Seq.	401	401	33	18	101	-	
Fotal NT Seq.	1525	1487	1563	1020	770	481	644
X SEQ	79	115	08	81	82	83	84
Vector	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	209226 08/28/97	97958 03/13/97 209072 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	HLDBQ19	HLDBQ19	HMSGT42	HMWIC78	HTTCT79	HNGJU84	HNTAC73
Gene No.	69	69	70	71	72	73	74

Last AA of ORF	288	27	623	09	648	28
First AA of Secreted Portion	13		31	33	31	22
Last AA of Sig Pep	12		30	32	30	21
First AA of Sig Pep		_	-	-	-	-
¥Šeš.⊁	199	230	200	231	201	232
S' NT of AA I SEC AA of ID Signal NO:	86	545	56	477	251	212
of of Start	86		56	477	251	677
3' NT of Clone Seq.	1284	1283	1747	1747	2566	8601
S' NT 3' NT of of Clone Clone Seq. Seq.	435	428	290	288	1843	375
Total NT Seq.	1351	1350	2527	2527	2566	1098
Z S S S S S S S S S S S S S S S S S S S	85	116	98	117	87	118
Vector	Uni-ZAP XR	Jni-ZAP XR				
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 (03/13/97 209073 05/22/97
	١ .			HOSFD58	HSAUM95	HSAUM95
Gene No.	75	75	76	76	77	77

Last AA of ORF	54	265	17	314	206	194
First AA Last of AA Secreted of Portion ORF	33	12		20	21	70
Last AA of Sig Pep	32	11		19	20	69
irst AA of Sig Pep	1	1	1	-	-	-
AA SEQ ID NO: Y	202	203	233	204	205	206
5' NT Of AA First SEQ AA of D Signal NO: Pep Y 1	83	188	315	92	414	157
S' NT of Start	83	188	315	92	414	157
3' NT of Clone Seq.	540	1165	1166	2449	2058	1411
5' NT 3' NT of of Clone Clone Seq. Seq.	-	152	152	1149	476	345
Total NT Seq.	540	1863	1679	2478	2058	1411
SEQ NÖ:	88	68	119	06	91	92
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 97957 03/13/97 209073 05/22/97	97957 97957 03/13/97 209073 05/22/97	97957 97957 03/13/97 209073 05/22/97	97957 97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	HSAUR67	HSKD181	HSKDI81	HSKDW91	HTLEX50	нѕкнг65
Gene No.	78	79	79	80	81	82

- [لل يو	T					
	Last AA of ORF	17	329	95	57	391	25
	First AA of Secreted Portion	38	31	20	21	2	22
	First Last AA AA of of Sig Sig Pep Pep	37	30	19	20	-	21
			_				_
	¥SEQ ∀ÖΘŞE	235	207	236	208	209	210
F. N.T.	of of First AA of Signal Pep	526	397	228	445	523	117
	S' NT of Start Sodon	526	397	228	445	523	117
	5' NT 3' NT of of Clone Clone Seq. Seq.	1411	2184	2063	809	2394	672
	of Olone Clone Seq.	345	147	138	524	481	-
	Total NT Seq.	1411	2187	2256	757	2394	672
L	SEQ X	121	93	122	46	95	96
	Vector	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR
	ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 (1 03/13/97 209073 05/22/97
	cDNA Clone ID	55	HHFGAII	A11	HWTBL40	l	HCACY32
L	Gene No.	82	83	83	84	85	98

									Z v		_			
Gene No.	Gene cDNA Clone ID	ATCC Deposit Nr and Date	Vector	Z B B S ×	Tota NT Seq	of Ol Clone Seq.	3' NT of Clone Seq.	5' NT 3' NT of of 5' NT of Of Clone Clone of Start Seq. Seq. Start Seq.	of AA II First SEQ AA of ID Signal NO: Pep Y	SEQ NO:	First AA of Sig Pep	Last AA of Sig Pep	:	Last AA of ORF
87	HCEDO21	97957 03/13/97 209073 05/22/97	97957 Uni-ZAP XR 97 1 03/13/97 209073 05/22/97	26	1419		1419	207	207	211 1	-	20	21	37

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

15

20

25

30

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization

10

15

20

25

30

35

Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query

10

15

20

25

30

35

amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

10

15

20

25

30

35

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or Ctermini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after

10

15

20

25

30

35

deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

10

15

20

25

30

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

10

15

20

25

30

35

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, or 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any

10

15

20

25

30

35

combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et

10

15

20

25

30

35

al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

10

15

20

25

30

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

10

15

20

25

30

35

Vectors, H st Cells, and Pr tein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

10

35

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, 15 tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be 20 non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most 25 proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

30 <u>Uses of the Polynucleotides</u>

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat

10

15

20

25

30

35

polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined.

30

35

First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods 15 rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 20 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple 25 helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying

10

15

20

25

30

35

personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

10

25

30

35

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

10

15

20

25

30

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin \$\\$ for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

35 Immune Activity

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the

20

25

30

35

proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in
treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or
polynucleotide of the present invention could be used to increase differentiation and
proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to
treat those disorders associated with a decrease in certain (or many) types hematopoietic
cells. Examples of immunologic deficiency syndromes include, but are not limited to:
blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia
telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV
infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome,
lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency
(SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

10

15

20

25

30

35

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect

10

15

20

30

35

interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or 25 detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes

Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g.,

Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps,

Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention 15 include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, 20 Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases 25 or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, 30

Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning,
Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,
Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus,
impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases
(e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections.

35 A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

10

15

30

35

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue

10

20

25

30

35

regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

15 Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit

15

20

25

30

35

(antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the 5 polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

10

15

20

25

30

35

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of

10

15

20

25

30

positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type

15

20

25

30

35

Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

15

20 -

25

30

35

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

10

15

20

25

30

35

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

25

35

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
15	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
20	pCR [®] 2.1	pCR®2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res.

- 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS.
- The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain

15

20

25

30

35

DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed 5 into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.

The oligonucleotide is labeled, for instance, with $^{32}\text{P-}\gamma\text{-ATP}$ using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

20

25

30

35

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is

used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

5

10

15

20

25

30

35

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on

15

20

25

30

35

either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

5 Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high

15

20

25

30

affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with Ndel and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

10

15

20

25

30

35

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

10

15

20

30

35

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life

20

25

30

35

Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.)

5 After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of 35 S-methionine and 5 μ Ci 35 S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used

10

15

20

25

30

35

include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

10

15

20

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μg of the expression plasmid pC6 is cotransfected with 0.5 μg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μM , 2 μM , 5 μM , 10 m M, 20 m M). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

25

30

35

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion

10

15

25

30

35

proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

20 Human IgG Fc region:

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide.

10

15

25

30

35

Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20 <u>Example 11: Production Of Secreted Protein For High-Throughput</u> Screening <u>Assays</u>

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L $CuSO_4$ -5 H_2O ; 0.050 mg/L of $Fe(NO_3)_3$ -9 H_2O ; 0.417 mg/L of $FeSO_4$ -7 H_2O ; 311.80 20 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂0; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO $_4$ -7H $_2$ O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic 25 Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitric Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 30 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H20; 99.65 mg/ml of L-35 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of

10

15

20

25

30

35

Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in

10

15

20

25

many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	<u>Ligand</u>	tyk2	<u>JAKs</u> <u>Jakl</u>	Jak2	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	- - -	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10 15	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic) LIF(Pleiotrohic) CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	+ ? ? ? -/+ ?	+ + + + + -	+ ? + + + ?	? ? ? ? ? +	1,3 1,3 1,3 1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	-	+ + + + + + + + + + + + + + + + + + + +	- - - - ?	+ + + + + ? +	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS
25 30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- - -	- - -	+ + +	- - -	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fan GH PRL EPO	nily ? ? ?	- +/- -	+ + +	- -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine K EGF PDGF CSF-1	Cinases ? ? ?	+ + +	+ + +	- - -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

10

15

20

25

30

35

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest $2x10e^7$ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

30

35

Example 15: High-Throughput Screening Assay Identifying Neur nal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6) 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)
- Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.
- To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

20

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

Next, replace the SV40 minimal promoter element present in the pSEAP2promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII.
However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP

cassette is removed from the above NF-κB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

10

15

20

25

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Ruffer Formulation:

Reaction	Butter Formulation:	
# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
22		

10

15

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.23 9.5
37	195	9.75
38	200	
39	205	10
40	210	10.25
41	215	10.5
42	220	10.75
43	225	11
44	230	11.25
45	235	11.5
46	240	11.75
47	245	12
48	250	12.25
49	255	12.5
50	260	12.75 13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37° C in a CO_2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to $2\text{-}5x10^6$ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37° C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to $1x10^6$ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca++ concentration.

20

25

30

35

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

10

15

20

25

30

35

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

10

15

20

25

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine
kinase activity described in Example 19, an assay which detects activation
(phosphorylation) of major intracellular signal transduction intermediates can also be
used. For example, as described below one particular assay can detect tyrosine
phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other
molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase,
Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

10

15

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

20

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

35

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

10

15

20

25

30

35

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about $1 \mu g/kg/day$ to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about $1 \mu g/kg/hour$ to about $50 \mu g/kg/hour$, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), 10 copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped 15 polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes 20 are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

10

15

20

25

30

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

5

10

15

20

25

30

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

(1) GENERAL INFORMATION: (i) APPLICANT: Human Genome Sciences, Inc. et al. (ii) TITLE OF INVENTION: 87 Human Secreted Proteins 5 (iii) NUMBER OF SEQUENCES: 323 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue 10 (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: USA (F) ZIP: 20850 15 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage (B) COMPUTER: HP Vectra 486/33 20 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text (vi) CURRENT APPLICATION DATA: 25 (A) APPLICATION NUMBER: (B) FILING DATE: March 19, 1998 (C) CLASSIFICATION: 30 (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 35 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: A. Anders Brookes (B) REGISTRATION NUMBER: 36,373 (C) REFERENCE/DOCKET NUMBER: PZ004PCT 40 (vi) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (301) 309-8504 (B) TELEFAX: (301) 309-8439 45 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs 50 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
5	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
10	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
15	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
••	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
20	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
25	GACTCTAGAG GAT	733
20	2	
30	(2) INFORMATION FOR SEQ ID NO: 2:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids	
	(B) TYPE: amino acid	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
40	Trp Ser Xaa Trp Ser	•
40	1 5	
4.5	TO THE OWN THE OWN TO THE WORLD	
45	(2) INFORMATION FOR SEQ ID NO: 3:	
,	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 86 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
55	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	. 60
	CCCGAAATAT CTGCCATCTC AATTAG	86

	(2) INFORMATION FOR SEQ ID NO: 4:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
15		
	(2) INFORMATION FOR SEQ ID NO: 5:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	•
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
30	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
	GCCCCTAACT CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
35	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
40	(2) INFORMATION FOR SEQ ID NO: 6:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
50	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
55	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs	
	(B) TYPE: nucleic acid	

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

5	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
10	ACT THEODISTING FOR CEO ID NO. 9.	
	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(D) TOPOLOGY: TIMEAR	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
20	GGGGACTTTC CC	12
25	TO TO THE OWNER OF THE WOOD OF	
	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 73 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
•	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
35	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 10:	
45	(i) SEQUENCE CHARACTERISTICS:	
43	(A) LENGTH: 256 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTCGAGGGGA CITTCCCGGG GACTITCCGG GGACTITCCA TCTGCCATCT	60
55	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTT TTTATTTATG CAGAGGCCGA	180
	CONTROL COMMENCE MARKET SEA COMMENCE CONTROLLE GARGETTAGG	240

CTTTTGCAAA AAGCTT 256

5

10

15

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARAC	CTERISTICS:
---------------------	-------------

(A) LENGTH: 1679 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	GCAGCGCACC CGGGCGATCG CTTCACGGAT GCGGACGACG TAGCCATCCT TACCTACGTG	60
	AAGGAAAATG CCCGCTCGCC CAGCTCCGTC ACCGGTAACG CCTTGTGGAA AGCGATGGAG	120
20	AAGAGCTCGC TCACGCAGCA CTCGTGGCAG TCCCTGAAGG ACCGCTACCT CAAGCACCTG	180
	CGGGGCCAGG AGCATAAGTA CCTGCTGGGG GACGCGCCGG TGAGCCCCTC CTCCCAGAAG	240
25	CTCAAGCGGA AGGCGGAGGA GGACCCGGAG GCCGCGGATA GCGGGGAACC ACAGAATAAG	300
	AGAACTCCAG ATTTGCCTGA AGAAGAGTAT GTGAAGGAAG AAATCCAGGA GAATGAAGAA	360
	GCAGTCAAAA AGATGCTTGT GGAAGCCACC CGGGAGTTTG AGGAGGTTGT GGTGGATGAG	420
30	AGCCCTCCTG ATTTTGAAAT ACATATAACT ATGTGTGATG ATGATCCACC CACACCTGAG	480
	GAAGACTCAG AAACACAGCC TGATGAGGAG GAAGAAGAAG AAGAAGAAAA AGTTTCTCAA	540
35	CCAGAGGTGG GAGCTGCCAT TAAGATCATT CGGCAGTTAA TGGAGAAGTT TAACTTGGAT	600
	CTATCAACAG TTACACAGGC CTTCCTAAAA AATAGTGGTG AGCTGGAGGC TACTTCCGCC	660
	TTCTTAGCGT CTGGTCAGAG AGCTGATGGA TATCCCATTT GGTCCCGACA AGATGACATA	720
40	GATTIGCAAA AAGATGATGA GGATACCAGA GAGGCATTGG TCAAAAAATT TGGTGCTCAG	780
	AATGTAGCTC GGAGGATTGA ATTTCGAAAG AAATAATTGG CAAGATAATG AGAAAAGAAA	840
45	AAAGTCATGG TAGGTGAGGT GGTTAAAAAA AATTGTGACC AATGAACTTT AGAGAGTTCT	900
	TGCATTGGAA CTGGCACTTA TTTTCTGACC ATCGCTGCTG TTGCTCTGTG AGTCCTAGAT	960
	TTTTGTAGCC AAGCAGAGTT GTAGAGGGGG ATAAAAAGAA AAGAAATTGG ATGTATTTAC	1020
50	AGCTGTCCTT GAACAAGTAT CAATGTGTTT ATGAAAGGAA GATCTAAATC AGACAGGAGT	1080
	TGGTCTACAT AGTAGTAATC CATTGTTGGA ATGGAACCCT TGCTATAGTA GTGACAAAGT	1140
55	GAAAGGAAAT TTAGGAGGCA TAGGCCATTT CAGGCAGCAT AAGTAATCTC CTGTCCTTTG	1200
	GCAGAAGCTC CTTTAGATTG GGATAGATTC CAAATAAAGA ATCTAGAAAT AGGAGAAGAT	1260
	TTAATTATGA GGCCTTGAAC ACGGATTATC CCCAAACCCT TGTCATTTCC CCCAGTGAGC	1320
60	TCTGATTTCT AGACTCCTTT GAAAATCCTG TATTCATTTT CCTAACTTAG TATTTCGGTA	1380

	CCCTGCTCTT	TGGCTGTTCT	TTTTTTGGAG	CCCTTCTCAG	TCAAGTCTGC	CGGATGTCTT	1440
_	TCTTTACCTA	CCCCTCAGTT	TTCCTTAAAA	CGCGCACACA	ACTCTAGAGA	GTGTTAAGAA	1500
5	TAATGTTACT	TGGTTAATGT	GTTATTTATT	GAGTATTGTT	TGTGCTAAGC	ATTGTGTTAG	1560
	АТТТАААААА	TTAGTGGATT	GACTCCACTT	TGTTGTGTTG	TTTTCATTGT	TGAAAATAAA	1620
10	TATAACTTTG	TATTCGAAAA	ААААААААА	AAAATNRCTG	CGGNCCGACA	AGGGAATTC	1679

15 (2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1830 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

25	GCGACCGCGC CCTTCAGCTA GCTCGCTCGC TCGCTCTGCT TCCCTGCTGC CGGCTGCGCA	60
	TGGCTTNGGC GTTGGCGGCG CTGGCGGCGG TCGAGCNGCC TGCGSAGCCG GTACCAGCAG	120
20	TTGCAGAATG AAGAAGAGTC TGGAGAACCT GAACAGGCTG CAGGTGATGC TCCTCCACCT	180
30	TACAGCAGCA TITCTGCAGA GAGCGCACAT NATITTGACT ACAAGGATGA GTCTGGGTTT	240
	CCAAAGCCCC CATCTTACAA TGTAGCTACA ACACTGCCCA GTTATGATGA AGCGGAGAGG	300
35	ACCAAGGCTG AAGCTACTAT CCCTTTGGTT CCTGGGAGAG ATGAGGATTT TGTGGGTCGG	360
	GATGATTTTG ATGATGCTGA CCAGCTGAGG ATAGGAAATG ATGGGATTTT CATGTTAACT	420
40	TTTTTCATGG CATTCCTCTT TAACTGGATT GGGTTTTTCC TGTCTTTTTG CCTGACCACT	480
40	TCAGCTGCAG GAAGGTATGG GGCCATTTCA GGATTTGGTC TCTCTCTAAT TAAATGGATC	540
	CTGATTGTCA GGTTTTCCAC CTATTTCCCT GGATATTTTG ATGGTCAGTA CTGGCTCTGG	600
45	TOGGTGTTCC TTGTTTTAGG CTTTCTCCTG TTTCTCAGAG GATTTATCAA TTATGCAAAA	660
	GTTCGGAAGA TGCCAGAAAC TTTCTCAAAT CTCCCCAGGA CCAGAGTTCT CTTTATTTAT	720
50	TAAAGATGTT TTCTGGCAAA GGCCTTCCTG CATTTATGAA TTCTCTCTCA AGAAGCAAGA	780
50	GAACACCTGC AGGAAGTGAA TCAAGATGCA GAACACAGAG GAATAATCAC CTGCTTTAAA	840
	AAAATAAAGT ACTGTTGAAA AGATCATTTC TCTCTATTTG TTCCTAGGTG TAAAATTTTA	900
55	ATAGTTAATG CAGAATTCTG TAATCATTGA ATCATTAGTG GTTAATGTTT GAAAAAGCTC	960
	TTGCAATCAA GICTGTGATG TATTAATAAT GCCTTATATA TTGTTTGTAG TCATTTTAAG	1020
60	TAGCATGAGC CATGTCCCTG TAGTCGGTAG GGGGCAGTCT TGCTTTATTC ATCCTCCATC	1080
60		

	TCAAAATGAA	CTTGGAATTA	AATATTGTAA	GATATGTATA	ATGCTGGCCA	TTTTAAAGGG	1140
	GTTTTCTCAA	AAGTTAAACT	TTTGTTATGA	CIGIGITITI	GCACATAATC	CATATTTGCT	1200
5	GTTCAAGTTA	ATCTAGAAAT	TTATTCAATT	CTGTATGAAC	ACCTGGAAGC	AAAATCATAG	1260
	TGCAAAAATA	CATTTAAGGT	GTGGTCAAAA	ATAAGTCTTT	AATTGGTAAA	TAATAAGCAT	1320
10	TAATTTTTTA	TAGCCTGTAT	TCACAATTCT	GCGGTACCTT	ATTGTACCTA	AGGGATTCTA	1380
	AAGGTGTTGT	CACTGTATAA	AACAGAAAGC	ACTAGGATAC	AAATGAAGCT	ТААТТАСТАА	1440
	AATGTAATTC	TTGACACTCT	TTCTATAATT	AGCGTTCTTC	ACCCCCACCC	CCACCCCCAC	1500
15	CCCCCTTATT	TTCCTTTTGT	CTCCTGGTGA	TTAGGCCAAA	CTCTGGGAGT	AAGGAGAGGA	1560
	TTAGGTACTT	AGGAGCAAAG	AAAGAAGTAG	CTTGGAACTT	TTGAGATGAT	CCCTAACATA	1620
20	CTGTACTACT	TGCTTTTACA	ATGTGTTAGC	AGAAACCAGT	GGGTTATAAT	GTAGAATGAT	1680
	GTGCTTTCTG	CCCAAGTGGT	AATTCATCTT	GGTTTGCTAT	GTTAAAACTG	ТАААТАСААС	1740
	AGAACATTAA	TAAATATCTC	TTGTGTAGCA	CCTTTTAAAA	АААААААА	АААААААА	1800
25	АААААААА	AANCCCGGGG	GGGGCCCCN				1830

30 (2) INFORMATION FOR SEQ ID NO: 13:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1212 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

	·	
40	TGTTTGAAGT TGTTACTTTT GTTTACAGCA AAGTTTGATG TAGTGTGCAG TAGTGAGCTC	60
	TAGACTGATC TTTTTCTAAA TCAGAAAGTG ATTAAAGTAT GCACAACCAA AGGCAGGTTT	120
45	TTCTTTTTCA TTTATTCAGC AACTATTTAT TAAGCATCAA CTCTGTGCCA GGCACGTTAC	180
	TAGCTGCTAC ATACTGTCTG AACATGACAT ACGGTTAAGT AACTTTACAA TTATTATCAA	240
	ATACTTCAAT GTAGATATTT CTTAAGTTGA AATAGCATTA ACTAGGATAA TGCTTTCATG	300
50	TTATTTTATT TGTCTTGTGA TAGAAATTCA ACTTTGTACC ATCTTAAAAC TAGGTTGCTA	360
	TAAAAATAGG AGGATGAAGT CAATAAAGTT TATGCCAGTT TAAAAACTGG AAGGAAAAGG	420
55	TAAGAGCTCT CCATTATAAA ATAGTTGCAT TCGGTTAATT TTTACACATT AGTGCATTGC	480
	GTATATCAAC TGGCCCTCAA TGAAGCATTT AAGTGCTTGG AATTTTACTA AACTGACTTT	540
	TTTGCAACTT TGGGAGATTT TTGAGGGGGG TGTTGAAAAT TGCCAAACAC TCACCTCTTA	600
60	CTCAAAACTT CAAATAAAAT ACACATTTTC AAGAGGGAGC ACCTTTTATA TITGATAAGT	660

	TTTCATTATA	AACCTTATAA	TACCAGTCAC	AAAGAGGTTG	TCTGTCTATG	GTTTAGCAAA	720
_	CATTTGCTTT	TCTTTTTGGA	AGTGTGATTG	CAATTGCAGA	ACAGAAAGTG	AGAAAACACT	780
5	GCCAGCGGTG	ATTGCTACTT	GAGGTAGTTT	TTTACAACTA	CCATTTCCCC	TCCATGAAAT	840
	TATGTGAAAT	TTATTTTATC	TTTGGGAAAA	GTTGAGAAGA	TAGTAAAAGA	ATTAGGAATT	900
10	ТААААТТАСА	GGGAAAAATA	TGTAAGTGAA	AAGCAATAAA	TATTTTGTTC	ACTITIGCTAT	960
	CAAGATGTTC	ACTATCAGAT	ATTTATTAA	TGGCAGCAAT	TTATATTTTT	AATCATTGCC	1020
1.5	CATTAATAGA	CGCAGTAAAA	TATTTTTGAA	TCAGACATTT	GGGGTTTGTA	TGTGCATTAA	1080
15	AATTGTCTTT	TGTACTGTAA	GTTACTGTTA	ATTTGAATAT	TTTATTGAAC	TGTCTCCCTG	1140
	TGCCTTTATA	ATATAAAGTT	GTTTCTACAA	CTTTTAATGA	. ТСТТААТААА	GAATACTTTA	1200
20	АСАААААААА	. AA					1212

25 (2) INFORMATION FOR SEQ ID NO: 14:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2061 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGTTTTCCTC CGACTTCCGG ACATCTCCCT GGGAGTCGCG CAGAGTGGAG TCAAAAGGCAA 60 35 CCAGTGCTCG CTGCGGTCTC TGGGGATCGG GACCGCGGGG GCGGCCCGCG AGCGGGATGT 120 TCCGGGGCTT GAGCAGTTGG TTGGGCTTGC AGCAGCCGGT GGCAGCCGGT GGGCAGCCCA 180 40 ATGGAGATGC TCCACCCGAG CAGCCGTCCG AGACGGTGGC TGAGTCTGCG GAGGAGGAGC 240 TGCAGCAAGC GGGAGACCAG GAGCTCCTCC ACCAGGCCAA AGACTTCGGC AACTATTTAT 300 TTAACTTTGC ATCTGCTGCC ACAAAAAAGA TAACTGAATC AGTTGCTGAA ACAGCACAAA 360 45 CAATAAAGAA ATCCGTAGAA GAAGGAAAAA TAGATGGCAT CATTGACAAG ACAATTATAG 420 GAGATTITCA GAAGGAACAG AAAAAATTTG TTGAAGAGCA ACATACAAAG AAGTCAGAAG 480 50 CAGCTGTGCC CCCATGGGTT GACACTAACG ATGAAGAAAC AATTCAACAA CAAATTTTGG 540 CCTTATCAGC TGACAAGAGG AATTTCCTTC GTGACCCTCC GGCTGGCGTG CAATTTAATT 600 TCGACTTTGA TCAGATGTAC CCCGTGGCCC TGGTCATGCT CCAGGAGGAT GAGCTGCTAR 660 55 CAAGATGAGA TITGCCCTCG TTCCTAAACT TGTGAAGGAA GAAGTGTTCT GGAGGAACTA 720 CTTTTACCGC GTCTCCCTGA TTAAGCAGTC AGCCCAGCTC ACGGCCCTGG CTGCCCAACA 780 60

	GCAGGCCGCA GGGAAGGGAG GAGAAGAGCA ATGGCAGAGA GCAAGATTTG CCGCTGGAGA	840
	GGCAGTACGG CCCAAAACGC CACCCGTTGT AATCAAATCT CAGCTTAAAA CTCAAGAGGA	900
5	TGAGGAAGAA ATTTCTACTA GCCCAGGTGT TTCTGAGTTT GTCAGTGATG CCTTCGATGC	960
	CTGTAACCTA AATCAGGAAG ATCTAAGGAA AGAAATGGAG CAACTAGTGC TTGACAAAAA	1020
10	GCAAGAGGAG ACAGCCGTAC TGGAAGAGGA TTCTGCAGAT TGGGAAAAAG AACTGCAGCA	1080
10	GGAACTTCAA GAATATGAAG TGGTGACAGA ATCTGAAAAA CGAGATGAAA ACTGGGATAA	1140
	GGAAATAGAG AAAATGCTTC AAGAGGAAAA TTAGCTGTTC CTGAAATAGA AGAATAATCC	1200
. 15	TTAACAGTCT GCAAACTGAC ATTAAATTCT AGATGTTGAC AATTACTGAA TCAGAAGGCA	1260
	TGAAAGAGTA TAATTTTATG AAATTCAAAA TTATTCTTTT TTCAAGTTGA AACTTGCCTC	1320
20	TTCTACTTTA AAAAAGTATA TAGAACAGTT ACTTCTAATA ATCAGAAAGA GATGTTTTAT	1380
20	AGAACATTTC TTTAATATAA AGTTAGAGAT GTCTTCATAG GCAGTATGGC TATCTTTGCC	1440
	ACAGAAACAT AAGTAAAATT TTAGAGTTCT GTTTTCCATG AGGTCAAAAA TATAATTTAT	1500
25	TCCTCAGTCA TGGTTTTCTA AATATCTGTA CTCCACATTC CATTTTAATT GATATGAGGG	1560
	TGTTAAAGTA CCTACTTAAT GGGTTGATTA CTATCAAAAT GACCAAATTA TACCAAAGAA	1620
30	CTTAAGAGGA AGCACTITCA GAACTATTCA CTTGCCAGGT ATTTTCTAAA ATTCCACCTG	1680
	AAAGCCAAAA GATAAAATAC ATNAGTTGGA TTTTAATGAT ATAAGCATCA CACAATTTTA	1740
	CATTAAGAAA TACTGTGCAG CCCATGCGTG GTGGCTCAGG CCTGTAATCC CAGCANTITG	1800
35	GGAGGCCGAG GTGGGCAGAT CACCGGAGGT CAGGAGTTCG AGACCAGCCT TGCCAACATA	1860
	GTGAAACCCT GTCTTTACTA AAAATACAAA AATTAGCCGG GCATGGTGGC AGGCACCTGT	1920
40	AATCCCAGCT ACTAGGGAGG CTTTTGAACC CAGGAGGCAG AGGTTGCAGC GAGCTGAGAT	1980
	CGCGCCACTG CACTCCAGCC TGGGTGATAG AGTGAGATTC AGTCTCAAAA AAAAAAAAA	2040
	AAAAAAAA AATGACCTCG A	2061
45		
	(2) INTERPRETATION FOR GROUP IN THE CAR	
50	(2) INFORMATION FOR SEQ ID NO: 15:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1412 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
60	CCCTTCATCT GCGTTGCCAG GAACCCTGTC AGCAGAAACT TCTCAAGCCC CATCCTTGCC	60
60	AGGAAGCTCT GTGAAGGTGC TGCTGATGAC CCAGATTCCT CCATGGTCCT CCTGTGTCTC	120

٠	CTGTTGGTGC CCCTCCTGCT CAGTCTCTTT GTACTGGGGC TATTTCTTTG GTTTCTGAAG	180
5	AGAGAGAGAC AAGAAGAGTA CATTGAAGAG AAGAAGAGAG TGGACATTTG TCGGGAAACT	240
	CCTAACATAT GCCCCCATTC TGGAGAGAAC ACAGAGTACG ACACAATCCC TCACACTAAT	300
	AGAACAATCC TAAAGGAAGA TCCAGCAAAT ACGGTTTACT CCACTGTGGA AATACCGAAA	360
10	AAGATGGAAA ATCCCCACTC ACTGCTCACG ATGCCAGACA CACCAAGGCT ATTTGCCTAT	420
	GAGAATGTTA TCTAGACAGC AGTGCACTCC CCTAAGTCTC TGCTCAAAAA AAAAACAATT	480
15	CTCGGCCCAA AGAAAACAAT CAGAAGAATT CACTGATTTG ACTAGAAACA TCAAGGAAGA	540
13	ATGAAGAACG TTGACTTTTT TCCAGGATAA ATTATCTCTG ATGCTTCTTT AGATTTAAGA	600
	GTTCATAATT CCATCCACTG CTGAGAAATC TCCTCAAACC CAGAAGGTTT AATCACTTCA	660
20	TCCCAAAAAT GGGATTGTGA ATGTCAGCAA ACCATAAAAA AAGTGCTTAG AAGTATTCCT	720
	ATAAAAATGT AAATGCAAGG TCACACATAT TAATGACAGC CTGTTGTATT AATGATGGCT	780
25	CCAGGTCAGT GTCTGGAGTT TCATTCCATC CCAGGGCTTG GATGTCAGGA TTATACCAAG	840
	AGTCTTGCTA CCAGGAGGCC AAGAAGACCA AAACAGACAG ACAAGTCCAG CAGAAGCAGA	900
	TGCACCTGAC AAAAATGGAT GTATTAATTG GCTCTATAAA CTATGTGCCC AGCAYTATGC	960
30	TGAGCTTACA CTAATTGGTC AGACATGCTG TCTGCCCTCA TGAAATTGGC TCCAAATGAW	1020
	TGAACTACTT TCATGAGCAG TTGTAGCAGG CCTGACCACA GATTCCCAGA GGGCCAGGTG	1080
35	TGGATCCACA GGACTTGAAG GTCAAAGTTC ACAAAGATGA AGAATCAGGG TAGCTGACCA	1140
	TGTTTGGCAG ATACTATAAT GGAGACACAG AAGTGTGCAT GGCCCAAGGA CAAGGACCTC	1200
	CAGCCAGGCT TCATTTATGC ACTTGTCTGC AAAAGAAAAG	1260
40	CAGAACCCAT CCCAATAAAG AGACCGAGTC TGAAGTCACA TTGTAAATCT AGTGTAGGAG	1320
	ACTTGGAGTC AGGCAGTGAG ACTGGTGGGG CACGGGGGGC ANTGGGTANT GTAAACCTTT	1380
45	TAAAGATGGT TAATTCNICA TTAGTGTTTT TT	1412

(2) INFORMATION FOR SEQ ID NO: 16:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

TTCCTCTCT CTCTCTACCC CTCCTGTCTC TCCTCCCCTC CTCTCTCTTC CTCTCCTCTC

	TETETTECTE TECTTETET TECCTTECTG TETETTETE CETECTET CTCTTCCTGT	120
	CCTCTATCTC TTCCCCTCCT CTATCTCTTC CTCTCCTCTC TCTCTTCCTC TCCTCTCTCT	180
5	CTCTTSCTTT CTTCTCTCTC TCCTGTCTCG GCTGTTGTGG GTTGCAGGTT GGGTGCTGCT	240
	GTTGTGGTCC TTCCCAGAAA CTGCCAGTAG AGGGCAGCCT GGGCATCCTA ATGCTTACTC	300
10.	TGGTTGTTAC ACAAAGAAAA TATTGGGGTC ACTGGCGAGC CCACCCACAC TCACCAGAAT	360
	CTCCACTGTA GTCCCCCTAA CAAACAGCCC TTCACTTCCT CTCCCACTTC AGCAATTTGT	420
	ATTTTGATGC CATTGGCCTC AGATCAGAGT GTTTTAAATC ATCACGCCCT GGCTTATCCC	480
15	TOGTCGAGCC AGGACACOGG GTGCTTCAGT GGGTCTGTCA CCCTCTCTCC TTGAAGCATG	540
	TTGCTTTTAT TTATTTACTT TTACTCTCAC CCTGCTCCTG TACCAGCAGG GGCCACTTCA	600
20	AAGCCAAGGT ACAGGGTGAT AACTTGTGGT CCAGCATCAG TTTTCTCCAC TTCTTTCTCC	660
	CACTCACCCC CAGCAAGGTG CCTGGGGAGA CTTGAGCAGA TGTTTCATTT TGGCCTGGCC	720
	AGTGGCTGAA AGCAGGCCTC CAATGCACTG TGACCTCTGG CTTCCCCAGC AGCTTTCCCA	780
25	GAGAGGCAGA GGGGCCTTCC ACAGCCCGGG TTCTCCTGCT GCCTCCTGCC TGCTGCAGCT	840
	GCAGGCATTC TGAGGGGCAA CGTGGAGGAA GGGCCAGGGA TGCATGGGAT TTTAATTGTT	900
30	TCATCACACC TTCCCCGTGG CAAAGAAACA GTCAGTCCTC TTCAGGTGTC TTCTGGATTT	960
	CTGGTGATGG ACAGAGAAAT CTTTTTACAG TTTCAAATTA TGTTCAACAA ATAAAAATTG	1020
	CATTITITAT TITIGGAAAAA AAAAAAAAAA AA	1052
35		
	(2) INFORMATION FOR SEQ ID NO: 17:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 683 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	AATTCGGCAG AGGCACTTAT CATGTACATA TAGCCTGTTT TTTAGCATTG TTAGACAAAG	60
50	TAGGCATATT CCTTTCCATC CAAGAACTCA TAACCTAGTA ATTGTAGTTG GCTGATAGCT	120
	CATTGCCCAT ACACAAGGAT CTAACACAAC CTCTTGAATA AACATCCCCC TTATTCAGAA	180
55	ATGCCTTTTC CTATTTCCAT ATTGCAACTT TGCTTACAAA TTTCCAATCT GTCTTTCTGT	240
JJ	TTACAGAAGA TATACAAAAT TCCTTTTGTA TGATCTCTTT ATATCTCTTG ATTTTCTTTT	300
	GTGTTTGCTA CCAAAGGCCC TGCACATAGT GAGAAGATTG TGCATGATCT GTGAGCTCTA	360
60	CCACACCTGG AATTAGGGAT CACCAATATG AGAAAAAAA TTGGAGGTAC AAATAACATT	420

	ATCATATGTW	ATTGGCATAT	AAATTACAGA	TGTWTCTATG	ACTAAAAACC	CTGTGGATAT	480
5	WAACCMAATG	CAGATAAWIW	TAATAAATW	WTAAAATWT	TWATCMAATA	ATGATAGTGC	540
.	TATTCAAATA	CTTCAAATTT	GCACAGTGAT	TTATTTCTTA	AAATATGTTA	ACACATGTGA	600
	GCCAATACAC	TGAGGTCACT	GGATAAATAA	ACAGATTCTT	GCAAAAAAA	АААААААА	660
10	ACTCGAGGGG	GGCCCGTACC	CTT				683
						•	

15 (2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1054 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

25	AAACTCATTT	AGGTGACACT	ATAGAAGGTA	CGCCTGCAGG	TACCGGTCCG	GAATTCCCGG	60
	GTCGACCCAC	GMGNCCGGCG	ACAAGATGGC	AGCAGCGTGT	CGGAGCGTGA	AGGGCCTGGT	120 .
20	GGCGGTAATA	ACCGGAGGAG	CCTCGGGCCT	GGGCCTGGCC	ACGGCGGACG	ACTIGTGGGG	180
30	CAGGGAGCCT	CTGCTGTGCT	TCTGGACCTG	CCCAACTCGG	GTGGGGAGGC	CCAAGCCAAG	240
	AAGTTAGGAA	ACAACTGCGT	TTTCGCCCCA	GCCGACGTGA	CCTCTGAGAA	GGATGTGCAA	300
35	ACAGCTCTGG	CTCTAGCAAA	AGGAAAGTTT	CCCCTCTCC	ATGTAGCTGT	CAACTGTGCA	360
	GGCATCGCGG	TGGCTAGCAA	GACGTACAAC	TTAAAGAAGG	GCCAGACCCA	TACCTTGGAA	420
40	GACTTCCAGC	GAGTTCTTGA	TGTGAATCTC	ATGGGCACCT	TCAATGTGAT	CCGCCTGGTG	480
40	GCTGGTGAGA	TGGGCCAGAA	TGAACCAGAC	CAGGGAGGCC	AACGTGGGGT	CATCATCAAC	540
	ACTGCCAGTG	TGGCTGCCTT	CGAGGGTCAG	GTTGGACAAG	CTGCATACTC	TGCTTCCAAG	600
45	GGGGGAATAG	G TGGGCATGAC	ACTGCCCATT	GCTCGGGATC	TGGCTCCCAT	AGGTATCCGG	660
	GTGATGACCA	TTGCCCCAGG	TCTGTTTGGC	ACCCCACTGC	TGACCAGCCT	CCCAGAGAAA	720
	GTGTGCAACT	TCTTGGCCAG	CCAAGTGCCC	TTCCCTAGCC	GACTGGGTGA	CCCTGCTGAG	780
50	TATGCTCACC	TCGTACAGGC	CATCATCGAC	AACCCATTCC	TCAATGGAGA	GGTCATCCGG	840
	CTGGATGGG	CCATTCGTAT	GCAGCCTTGA	AGGGAGAAGG	CAGAGAAAAC	ACACGCTCCT	900
55	CTGCCCTTCC	TTTCCCTGGG	GTACTACTC	CCAGCTTGGG	G AGGAAGCCCA	GTAGCCATTT	960
	TGTAACTGC	C TACCAGTCGC	CCTCTGTGCC	TAATAAAGTC	CTCTTTTCTC	: ACANAAAAA	1020
60	AAAAAAA	AAAAAAAA A	AAAAAAAA	AAAA			1054

(2) INFORMATION FOR SEQ ID NO: 19:

5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1393 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GGAACAAGCT GGGATATGTG AGCGTTAAGC TACTCACATC CTTCAAAAAG GTGAAACATC 60 15 TTACACGGGA CTGGAGAACC ACAGCACATG CTTTGAAGTA TTCAGTGGTC CTTGAGTTGA · 120 ATGAGGNCCA CCGGAAGGTG AGGAGGACCA CCCCCGTCCC ACTGTTCCCC AACGAGAACC 180 20 TCCCCAGCAA GATGCTCCTG GTCTATGATC TCTACTTGTY TCCTAAGCTG TGGGCTCTGG 240 CCACCCCCA GAAGAATGGG AAGGGTGCAA GARAAGGTGA TGGAACACCT GCTCAAGCTT 300 TTTGGGACTT TTGGAGTCAT CTCATCAGTG CGGATCCTCA AACCTGGGAG AGAGCTGCCC 360 25 CCTGACATCC GGAGGNTCCA GCAGCCGCTA CAGCTCCTCT GACCCCGAGA GCAACCCCAC 420 ATCCCCTATG GCGGGCCGAC GGCACGNGKC CACCAACAAG CTCAGCCCGT CTGGCCACCA 480 30 GAATCTCTTT CTGAGTCCAA ATGCCTCCCC GTGCACAAGT CCTTGGAGCA GCCCCTTGGC 540 CCAACGCAAA GGCGTTTCCA GAAAGTCCCC ACTGGCGGAG GAAGGTAGAC TGAACTGCAG 600 CACCAGCCCT GAGATCTTCC GCAAGTGTAT GGATTATTCC TCTGACAGCA GCGTCACTCC 660 35 CTCTGGCAGC CCCTGGGTCC GGAGGCGTCG CCAAGCCGAG ATGGGGACCC AGGAGAAAAG 720 CCCCGGTACG AGTCCCCTGC TCTCCCGGAA GATGCAGACT GCAGATGGGS TACCCGTAGG 780 40 TNGCTTGAGG TTGCCCAGGG GTCCTGACAA CACCAGAGGA TTTCATGGCC ATGAGAGGAG 840 CAGGGCCTGT GTATAAATAC CTTCTATTTT TAATACAAGC TCCACTGAAA ACCACCTTCG 900 TTTTCAAGGT TCTGACAAAC ACCTGGCATG ACAGAATGGA ATTCGTTCCC CTTTGAGAGA 45 960 TTTTTTATTC ATGTAGACCT CTTAATTTAT CTATCTGTAA TATACATAAA TCGGTACGCC 1020 ATGGTTTGAA GACCACCITC TAGTTCAGGA CTCCTGTTCT TCCCAGCATG GCCACTATTT 1080 50 TGATGATGGC TGATGTGTG GAGTGTGATG GCCCTGAAGG GCTGTAGGAC GGAGGTTCCC 1140 TGGGGGAAGT CTGTTCTTTG GTATGGAATT TTTCTCTCTT CTTTGGTATG GAATTTTTCC 1200 CTTCAGTGAC TGAGCTGTCC TCGATAGGCC ATGCAAGGGC TTCCTGAGAG TTCAGGAAAG 1260 55 TTCTCTTGTG CAACAGCAAG TAGCTAAGCC TATAGCATGG TGTCTTGTAG GACCAAATCG 1320 ATGITACCTG TCAAGTAAAT AAATAATAAA ACACCCAACT GGGAGTGCTG AAAAAAAANA 1380 60 ANNAAAAAAC TCG 1393

5 (2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1215 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

	(XI) SEQUENCE DESCRIPTION. SEQ 15 No. 201	
15	AGGAAAAGTT TTCCNAATTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG	60
	NTCANTCATT AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGNTCGTAT GTTGTGTGGA	120
	ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTN	180
20	TAATACGACT CACTATAGGG AAAGCTGGTA CGCCTGCAGG TACCGGTCCG GAATTCCCGG	240
	GTCGACCCAC GCGTCCGCC ACGCGTCCGT GAAAATCCGA AGTGCCGCGG AAAGTGGAGG	300
25	TGAGGGCCGC CCGCCCTAGA GGTGCCCGTC CGAGAGGCAG AGCTGACAAG GAAGGTTTCG	360
	AGCGTTTTGC TGGCAAAGGG ATTTCTTACA ACCTCCAGGC ATGCGTCTTT CTGCCCTGCT	420
20	GGCCTTGGCA TCCAAGGTCA CTCTGCCCCC CCATTACCGC TATGGGATGA GCCCCCCAGG	480
30	CTCTGTTGCA GACAAGAGGA AGAACCCCCC ATGGATCAGG CGGCGCCCAG TGGTTGTGGA	540
	ACCCATCTCT GATGAAGACT GGTATCTGTT CTGTGGGGAC ACGGTGGAGA TCCTAGAAGG	600
35	CAAGGATGCC GGGAAGCAGG GCAAAGTGGT TCAAGTTATC CGGCAGCGAA ACTGGGTGGT	660
	CGTGGGAGGG CTGAACACAC ATTACCGCTA CATTGGCAAG ACCATGGATT ACCGGGGAAC	720
40	CATGATCCCT AGTGAAGCCC CCTTGCTCCA CCGCCAGGTC AAACTTGTGG ATCCTATGGA	780
40	CAGGAAACCC ACTGAGATCG AGTGGAGATT TACTGAAGCA GGAGAGCGGG TACGAGTCTC	840
	CACACGATCA GGGAGAATTA TCCCTAAACC CGAATTTCCC AGAGCTGATG GCATCGTCCC	900
45	TGAAACGTGG ATTGATGGCC CCAAAGACAC ATCAGTGGAA GATGCTTTAG AAAGAACCTA	960
.,	TGTGCCCTGT CTAAAGACAC TGCAGGAGGA GGTGATGGAG GCCATGGGGA TCAAGGAGAC	1020
50	CCGGAAATAC AAGAAGGTCT ATTGGTATTG AGCCTGGGGC AGAGCAGCTC CTCCCCAACT	1080
	TCTGTCCCAG CCTTGAAGGC TGAGGCACTT CTTTTTCAGA TGCCAATAAA GAGCACTTTA	1140
	ТСАСТССТСС АЛАЛАЛАЛА ЛАЛАЛАЛАЛА ЛАЛАЛАЛАЛА ЛАЛАЛАЛАЛА	1200
55	AAAAGGGGCG GCCGC	1215

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2042 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

	THE PERSONNEL PROPERTY OF THE ROY 21:	
10	CTGCATCCAG GCGCAGAATA ACCTGGGTAT CTTGTGGTCT GAAAGAGAGA AATTGAAACT	60
	GCACAGGCTT ACCTAGAGTC ATCAGAAGCA CTATATAATC AGTATATGAA AGAGGTTGGG	120
15	AGTCCTCCTC TIGATCCTAC TGAGCGTTTT CTTCTGAAGA AGAGAAACTT ACTGAACAAG	180
1.3	AGAGATCAAA AAGATTTGAA AAGGTTTATA CTCATAACCT ATATTACCTA GCTCAAGTCT	240
	ACCAGCATCT GGAAATGTTT GAGAAGGCTG CTCACTATTG CCATAGTACA CTAAAACGCC	300
20	AGCTTGAGCA CAATGCCTAC CATCCTATAG AGTGGGCTAT CAATGCTGCT ACCTTGTCAC	360
	AGITTTACAT CAATAAGCTA TGCTTTATGG AGGCCAGGCA CTGTTTATCA GCTGCTAATG	420
25	TCATTTTTGG TCAAACTGGA AAGATCTCAG CCACAGAAGA CACTCCTGAA GCTGAAGGAG	480
	AAGTGCCAGA GCTTTATCAT CAAAGAAAGG GGGAAATAGC AAGGTGCTGG ATCAAATACT	540
	GTTTGACTCT CATGCAGAAT GCCCAACTCT CCATGCAGGA CAACATAGGA GAGCTTGATC	600
30	TTGATAAACA GTCTGAACTT AGAGCTTTAA GGAAAAAGA ACTAGATGAG GAGGAAAGCA	660
	TTCGGAAAAA AGCTGTGCAG TTTGGAACCG GTGAACTGTG TGATGCCATC TCTGCAGTAG	.720
35	AAGAGAAAGT GAGCTACTTG AGACCTTTAG ATTTTGAAGA AGCCAGAGAA CTTTTCTTAT	780
	TGGGTCAGCA CTATGTCTTT GAGGCAAAAG AGTTCTTTCA GATTGATGGT TATGTCACTG	840
	ACCATATTGA AGTTGTCCAA GACCACAGTG CTCTGTTTAA GGTGCTTGCA TTCTTTGAAA	900
40	CTGACATGGA GAGACGGTGC AAGATGCATA AACGCRGAAT AGCCATGCTA GAGCCCCTAA	960
	CTGTAGACCT GAATCCACAG TATTATCTGT TGGTCAACAG ACAGATCCAG TTTGAAATTG	1020
45	CACATGCTTA CTATGATATG ATGGATTTGA AGGTTGCCAT TGCTGACAGG CTAAGGGATC	1080
	CTGATTCACA CATTGTAAAA AAAATAAATA ATCTTAATAA GTCAGCACTG AAGTACTACC	1140
	AGCTCTTCTT AGACTCCCTG AGAGACCCAA ATAAAGTATT CCCTGAGCAT ATAGGGGGAAG	1200
50	ATGITCTTCG CCCTGCCATG TTAGCTAAGT TTCGAGTTGC CCGTCTCTAT GGCAAAATCA	1260
	TTACTGCAGA TCCCAAGAAA GAGCTGGAAA ATTTGGCAAC ATCATTGGGA ACATTACAAA	1320
55	TITATTGITG ATTACTGTGA AAAGCATCCT GAGGCCGCCC AGGAAATAGA AGTTGAGCTA	1380
	GAACTTAGTA AAGAGATGGT TAGTCTTCTC CCAACAAAAA TGGAGAGATT CAGAACCAAG	1440
	ATGGCCCTGA CTTAATCCTT GTTTTTAAAG AAAGGAAATG TGCAATATTG AAGTGATCTT	1500
60	TTTCCCTAGT CAGACAGGCC CAATTCCATT GTGATGTTTA CCTTTATAGC CAGGTGAGTG	1560

	CAGTTTGAAC TTGAGATACA GTCAACTGAG TGTTTGCTAG GATCCTAAGG AACATAAAGT	1020
5	TAATTAAAAA CTTACACCTA ATTATGTAAA TTGCCTTGTT AAAGACATGT GATTTGTATT	1680
	TTAGATGCTT GTTTCCTATT AAAATACAGA CATTTCTACC CTCAGTTTCT AAATGTAGAC	1740
	TATTTGTTGG CTAGTACTTG ATAGATTCCT TGTAAGAAAA AATGCTGGGT AATGTACCTG	1800
10	GTAACAAGCC TGTTAATATA TTAAGATTGA AAAAGTAACT TCTATAGTTA CTCCTTCTAA	1860
	AATATTTGAC TTCCTACATT CCCCCCACCC AAAATCTTTC CCTTTTGAAA ATACTAAAAA	1920
1.50	CTAAGTTATG TTATTATAAA GTGTAAAATG GTTTGTCTTA ATTATAGGAG AAAAAGGCCT	1980
15	TGTTAGAAAT AAAATAAACT GACTTATTTC ACTAATGAAA AAAAAAAAAA	2040
	TT	2042
20		
	TO TO WOOD TO THE	
25	(2) INFORMATION FOR SEQ ID NO: 22:	.*
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1872 base pairs(B) TYPE: nucleic acid	
	(B) TYPE: nucleic actu (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	GGGTCGACCC ACGCGTCCGA TTGGCCTAGA GCTCCTGTGA CCGAGAGCGC CACGGAAGCC	60
35	TGGGGATGAT GTCGGGCAGC TTTATTCTTT GCTTGGCTTT GGTAACTAGG TGGTCCCCTC	120
33	AAGCATCCTC AGTTCCTCTT GCTGTTTATG AATCTAAGAC AAGGAAGTCC TATAGAAGCC	180
	AAAGGGACAG GGACGGAAAG GACAGGTCCC AAGGGATGGG GCTGTCTTTA CTTGTGGAAA	240
40	CCAGGAAATT GCTCCTCTCA GCCAACCAAG GTTGACCACA CACCACCCTT CCGGAGCAGC	300
	TCAGTCAGCC CTCGGGGACG RGAAACCACA AGCGCAGAGA CGCTGAGGCC CAGGCAGGTG	360
45	AAGAGGAAGT GGCTTTGGGT TTTTAAAGTA GGTGAGCGTG ACCTCTCTGA CTGCTTCTTC	420
73	CCCGGGGGG ACTGCAAACC GCTCAGGGTT GCGGCAGAGC CATGGACTTC CGGTCCCTGC	480
	AACGGGTGAC CTAAGCGTGG TGCACCCATC AGTCACGCAG GAGGACTGAC TTGACAGACG	540
50		600
	ACCAACAGGT GCATGGTGAG TGTGGCAGTC CCCACAGCTC CACAATGGGC TCCCCCGCCA	660
55		720
55	CACTCCACGA GGATGTGAAA CGGTTCTTTA AAATGGGATT TTAGAGCCTC GGGAATGCAT	. 780
	GTGCGTCGCA TCTTTCATAT TATGGGTCAG GATAGATTCA TTTCTTGCAA CATAGTGGAA	840

	AAGATATAAG CTGCAGTAAT TTGCTCTTTG AATGACCGTC ACCCCCAGTA TAGGATATGC	900
	TTGTATCCCC CCGTCACTCC TCCGCCTGTT TTTTAAACTT TTCCACCACC TGCGTCCAAA	960
5	AAGAATGITA TAGCGAGTGC TCTTAAATGT TGAACCTGGG TGTTGCTTCC GGGCCAGTCT	1020
	GCGTGGCTCC ATGAAAAGCT CACTGCTGCC CCAGCCGGGC TTCTTAGAGG AGGTCAGTTG	1080
10	TCCTATGTAT CATCATTTAC TCTGGGAATC CTACTGTGAA ATCATGTCTG TATTTTTCTG	1140
	GAGCAGTTCA CATAGAGTAG AATGTGGAAT TTCCCGTGAA CGTCTCCTTC CTCCCCCGTA	1200
	TCTGCCGCCT GTCACTTCGC CACCGTGCTA GAATACTGTT GTGTTGTAAG ATGACTAATT	1260
15	TTAAAAGAAC CTGCCCTGAA AAGTTCTTAG AAACGCAATG AAAGGGAGGA ACTTGTCCTT	1320
	TACCCAGTTT TTCCTTTGTA GGATGGGAAA GTATAAAAAG GCACAGAAGG TTGTCATGGG	1380
20	CTGTTCCTTG GGGGTTTTTA TCCTGCTCAC CGTGGAGATA AGCCTGCGGC TTGTCTAACC	1440
	AGCGCAGCGM AAAGGTCTCA ATGCCTTTTG GTAACATCCG TCATTGCAGA AGAAAGTTTA	1500
	CACGACGTCA AAAAGTGACG TTCATGCTAA GTGTTTTTCC AGAAATATTG GTTTCATGTT	1560
25	TCTTATTKGC TCTGCCTCCT GTGCTTATAT CATCCAAAAA CTTTTTAAAA AGGTCCAGAA	1620
	TTCTATTTTA ACCTGATGTT GAGCACCTTT AAAACGTTCG TATGTGTGTT GCACTAATTC	1680
30	TAAACTTTGG AGGCATTTTG CTGTGTGAGG CCGATCGCCA CTGTAAAGGT CCTAGAGTTG	1740
	CCTGTTTGTC TCTGGAGATG GAATTAAACC AAATAAAGAG CTTCCACTGG AGGCTTGTAT	1800
	TGACCTTGTA ACTATATGTT AATCTCGTGT TAAAATAAAA	1860
35	AAAAAAAAC NT	1872
	•	

40 (2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 289 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

50	CATTTACCCA	CCTATCAACA	TGTTTGCTTT	CTCTTTTGTT	GGTGAGAATG	AGTGGCTTCT	60
55	TGCTCCTAGC	TAGAGCCAGT	CCTTCCATAT	GTGCTTTAGA	TTCTTCCTGT	TTTGTTCAAG	120
	AATATTGCTC	AAGCTATTCT	TCCTCCTGTT	TCCTGCATCA	GCATTTCCCC	TCTCTACTAG	180
	ATCATCTCTG	TCAGTAAATG	AACATGTTGT	TGTTTCTCCT	AGAAGTACTG	TTTCTATATC	240
	TAGATAGTAC	TCTAGCTAGA	GTTAAAAAAA	ааааааааа	CCTNGGGGG		289

(2) INFORMATION FOR SEQ ID NO: 24:

5	(i) SEQUENCE CHARACTERISTICS:
•	(A) LENGTH: 3533 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
	(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	TTTTATTTAC TTCAAATTAA CTGTACTTTA CTCAAATAGA AAANGAATAA TTTTCACATT	60
15	ATGAAGCTAC ACAATTCCAA AATACACATG CTGAGGCTCT TTTTAAGTCC GAATTGTCTA	120
	GTAATTACAA AAAAGTGAAG AGTTTACAGA TATACAAGGA AATAAAGGCG AATTATTGCA	180
20	AAGAAAACAA GTTTAATTTC ACTTTGAATG ACAACGATTT TTCTGGAAAG CAGATACTTC	240
20	ACTCCTTTAA GTTTCCACCC AAGCCACAAT AATTTCAAAC GGTCTTGCGG ATGACCCAGC	300
	TGGTCACTCT TGTTTATGTG GGGACTGGAG GTAATGAGAG CCAAAAAAAG TGCTATAAAC	360
25	CTAATTTGGC TAGAGCAAGT TCACACGACA CGACCGTGCT TTAAAAACTT GCTCTCCATT	420
	ATGTACTTCC TTCCATCAGG TTGGGGAAAA AAAAATGGTG GGGATGGTGA GTAAACACAC	480
20	CAGTGGTTTC ATCAGAGGGG AACTCACTAC TCAGGAGGTG ACGGTGACGT GGTGCCGGTC	540
30	CCTGAAGTAC GCGCACAAGC TCCGGAGGTT GCGGGAGCTT CCGCTGCCGC CTGGAGGGAA	600
٠	GCCGGAGCGA CGGGGGTCAC GGCGGCGTC AGAGGGTAAA GGTCTTGCTC CCAGCAGCCT	660
35	CCGCGGTGGA TACGTCGCCA TCTTGGATCC GCGGGACAAG AAAATTCATG CGAGGGAGAC	720
	GTGGTGGGCG GTCCTTCCTG TGACACGACC CTTGAGTGAC AGTTCTATTT GATTGCCTCC	780
	GGTACTGTGA GGAAAGGACA CGACTCTATG GTGAGGACTG ATGGACATAC ATTATCTGAG	840
40	AAAAGAAACT ACCAGGTGAC AAACAGCATG TTTGGTGCTT CAAGAAAGAA GTTTGTAGAG	900
	GGGGTCGACA GTGACTACCA TGACGAAAAC ATGTACTACA GCCAGTCTIC TATGTTTCCA	960
45	CATCGGTCAG AAAAAGATAT GCTGGCATCA CCATCTACAT CAGGTCAGCT GTCTCAGTTT	1020
	GGGGCAAGTT TATACGGGCA ACAAAGTGCA CTAGGCCTTC CAATGAGGGG GATGAGCAAC	1080
	AATACCCCTC AGTTAAATCG CAGCTTATCA CAAGGCACTC AGTTACCGAG CCACGTCACG	1140
50	CCAACAACAG GGGTACCAAC AATGTCACTT CACACGCCTC CATCTCCAAG CAGGGGTATT	1200
	TIGCCTATGA ATCCTARGAA TATGATGAAC CACTCCCAGG TIGGTCAGGG CATTGGAATT	1260
55	CCTAGCAGGA CAAATAGCAT GAGCAGTTCA GGGTTAGGTA GCCCCAACAG AAGCTCGCCA	.1320
	AGCATAATAT GTATGCCAAA GCAGCAGCCT TCTCGACAGC CTTTTACTGT GAACAGTATG	1380
	TCTGGATTTG GAATGAACAG GAATCAGGCA TTTGGAATGA ATAACTCCTT ATCAAGTAAC	1440
60		

	ATTTTAATG GAACAGACGG AAGTGAAAAT GTGACAGGAT TGGACCTTTC AGATTTCCCA	1500
	GCATTAGCAG ACCGAAACAG GAGGGAAGGA AGTGGTAACC CAACTCCATT AATAAACCCC	1560
5	TTGGCTGGAA GAGCTCCTTA TGTTGGAATG GTAACAAAAC CAGCAAATGA ACAATCCCAG	1620
	GACTICICAA TACACAATGA AGATITICCA GCATTACCAG GCTCCAGCTA TAAAGATCCA	1680
10	ACATCAAGTA ATGATGACAG TAAATCTAAT TTGAATACAT CTGGCAAGAC AACTTCAAGT	1740
	ACAGATOGAC CCAAATTCCC TGGAGATAAA AGTTCAACAA CACAAAATAA TAACCAGCAG	1800
	AAAAAAGGGA TCCAGGTGTT ACCTGATGGT CGGGTTACTA ACATTCCTCA AGGGATGGTG	1860
15	ACGGACCAAT TTGGAATGAT TGGCCTGTTA ACATTTATCA GGGCAGCAGA GACAGACCCA	1920
	GGAATGGTAC ATCTTGCATT AGGAAGTGAC TTAACAACAT TAGGCCTCAA TCTGAACTCT	1980
20	CCTGAAAATC TCTACCCCAA ATTTGCGTCA CCCTGGGCAT CTTCACCTTG TCGACCTCAA	2040
	GACATAGACT TCCATGITCC ATCTGAGTAC TTAACGAACA TTCACATTAG GGATAAGCTG	2100
	GCTGCAATAA AACTTGGCCG ATATGGTGAA GACCTTCTCT TCTATCTCTA TTACATGAAT	2160
25	GGAGGAGACG TATTACAACT TTTAGCTGCA GTGGAGCTTT TTAACCGTGA TTGGAGATAC	2220
	CACAAAGAAG AACGAGTATG GATTACCAGG GCACCAGGCA TGGAGCCAAC AATGAAAACC	2280
30	AATACCTATG AGAGGGGAAC ATATTACTTC TTTGACTGTC TTAACTGGAG GAAAGTAGCT	2340
	AAGGAGTTCC ATCTGGAATA TGACAAATTA GAAGAACGGC CTCACCTGCC ATCCACCTTC	2400
	AACTACAACC CTGCTCAGCA AGCCTTCTAA AAAAAAAAAA	2460
35	CCCTTTTCTT GGGGTATGGC TGTCTCAGCA CAATACTCAA CATAACTGCA GAACTGATGT	2520
	GGCTCAGGCA CCCTGGTTTT AATTCCTTGA GGATCTGGCA ATTGGCTTAC GCAAAAGGTC	2580
40	ACCATTIGAG GTCCIGCCTT ACTAATTATG TGCTGCCCAA CAACTAAATT TGTAATTTGT	2640
	TTTTCTCTAG TTTGAGCAGG GTCTGAATTT TTTCATTTAT TTCCTTTTTT GCCAGCAGAC	2700
	AGACTTGAGT CTGTAAAGAC AAGCAAATAC ACTGACAGAA GTTTACCATA GTTTCTAAAA	2760
45	TGTAAAAAG AAAACCCCCA AAAGACTCAA GAAAATTAGA CCACAAATTT TGCATTGTTC	2820
	ATTGTAGCAC TATTGGTAAT AAAATAACAA ATGTTTGTGC ATTTTTATGT GAAGATCCTT	2880
50	CTCGTATTTC ATTTGGAAAG ATGAGCAAGA GGTCTGCTTC CTTCATTTTA CTTCCCCTTC	2940
	TGTTTTTGAA AGGCAGTTTC GCCAAGCTTA ATGCAAGAAT ATCTGACTGT TTAGAAGAAA	3000
	GATATTGCCA CAATCTCTGG ATGGTTTTCC AGGGTTGTGT TATTACTGAG CTTCATCTTT	3060
55	CCAGAATGAG CAAAACACTG TCCAGTCTTT GTTACGATTT TGTAATAAAT GTGTACATTT	3120
	TTTTTAAATT TTTGGACATC ACATGAATAA AGGTATGTAT GTACGAATGT GTATATATTA	3180
60	TATATATGAC ATCTATTTTG GAAAATGTTT GCCCTGCTGT ACCTCATTTT TAGGAGGTGT	3240

PCT/US98/05311

1080

1140

60

	GCATGGATGC AATATATGAA AATGGGACAT TCTGGAACTG CTGGTCAGGG GACTTTGTCG	3300
	CCCTGTGCAC TAAAAGGGCC AGATTTTCAG CAGCCAAGGA CATCCATACC CAAGTGAATG	3360
5	TGATGGGACT TAAAAGAAGT GAACTGAGAC AATTCACTCT GGCTGTTTGA ACAGCAGCGT	3420
	TTCATAGGAA GAGAAAAAA GATCAATCTT GTATTTTCTG ACCACATAAA GGCTTCTTCT	3480
	CTTTGTAATA AAGTAGAAAA GCTCTCCTCA AAAAAAAAAA	3533
10		
15	(2) INFORMATION FOR SEQ ID NO: 25:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1148 base pairs	
	(B) TYPE: nucleic acid	
••	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
25	ACCCACGCGT CCGCAAATTA TACTTCCTCA TTCATATTAT GTTGATACAA AAGACCTTGG	60
25	CAGCCATTTC TCCCAGCAGT TTTAAAGGAT GAACATTGGA TTTCATGCCA TCCCATAGAA	120
	AACCTGTTTT AAAATTTTAG GGATCTTTAC TTGGTCATAC ATGAAAAGTA CACTGCTTAG	180
30	AAATTATAGA CTATTATGAT CTGTCCACAG TGCCCATTGT CACTTCTTTG TCTCATTTCT	240
	TCCCTTTGTT CCTTAGTCAT CCAAATAAGC CTGAAAACCA TAAGAGATAT TACTTTATTG	300
35	AATATGGTTG GCATTAAATT TAGCATTTCA TTATCTAACA AAATTAATAT AAATTCCAGG	360
33	ACATGGTAAA ATGTGTTTTA ATAACCCCCA GACCCAAATG AAAATTTCAA AGTCAATACC	420
	AGCAGATTCA TGAAAGTAAA TTTAGTCCTA TAATTTTCAG CTTAATTATA AACAAAGGAA	480
40	CAAATAAGTG GAAGGGCAGC TATTACCATT CGCTTAGTCA AAACATTCGG TTACTGCCCT	540
	TTAATACACT CCTATCATCA GCACTTCCAC CATGTATTAC AAGTCTTGAC CCATCCCTGT	600
45	CGTAACTCCA GTAAAAGTTA CTGTTACTAG AAAATTTTTA TCAATTAACT GACAAATAGT	660
43	TTCTTTTTAA AGTAGTTTCT TCCATCTTTA TTCTGACTAG CTTCCAAAAT GTGTTCCCTT	720
	TTTGAATCGA GGTTTTTTG TTTTGTTTTG TTTTCTGAAA AAATCATACA ACTTTGTGCT	780
50		840
	TTAATTAATG CTTTTTAGTT TAAATAAATT GAATCATTTA TAATAATCAG TGTTAACAAT	90
55	TTAGTGACCC TTGGTAGGTT AAAGGTTGCA TTATTTATAC TTGAGATTTT TTTCCCCTAA	96
33	CTATTCTGTT TTTTGTACTT TAAAACTATG GGGGAAATAT CACTGGTCTG TCAAGAAACA	102

GCAGTAATTA TTACTGAGTT AAATTGAAAA GTCCAGTGGA CCAGGCATTT CTTATATAAA

	·	
	CCCTATTA	1148
5		
	(2) INFORMATION FOR SEQ ID NO: 26:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 717 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GGCACGAGCT AGCTGCCGCC ACCCGAACAG CCTGTCCTGG TGCCCCGGCT CCCTGCCCCG	60
20	CGCCCAGTCA TGACCCTGCG CCCCTCACTC CTCCCGCTCC ATCTGCTGCT GCTGCTGCTG	120
	CTCAGTGCGG CGGTGTGCCG GGCTGAGGCT GGGCTCGAAA CCGAAAGTCC CGTCCGGACC	180
	CTCCAAGTGG AGACCCTGGT GGAGCCCCCA GAACCATGTG CCGAGCCCGC TGCTTTTGGA	240
25	GACACGCTTC ACATACACTA CACGGGAAGC TTGGTAGATG GACGTATTAT TGACACCTCC	300
	CTGACCAGAG ACCCTCTGGT TATAGAACTT GGCCAAAAGC AGGTGATTCC AGGTCTGGAG	360
30	CAGAGTCTTC TCGACATGTG TGTGGGAGAG AAGCGAAGGG CAATCATTCC TTCTCACTTG	420
	GCCTATGGAA AACGGGGATT TCCACCATCT GTCCCAGCGG ATGCAGTGGT GCAGTATGAC	480
35	GTGGAGCTGA TTGCACTAAT CCGAGCCAAC TACTGGCTAA AGCTGGTGAA GGGCATTTTG	540
33	CCTCTGGTAG GGATGGCCAT GGTGCCAGCC CTCCTGGGCC TCATTGGGTA TCACCTATAC	600
	AGAAAGGCCA ATAGACCCAA AGTCTCCAAA AAGAAGCTCA AGGAAGAGAA ACGAAACAAG	660
40	AGCAAAAAGA AATAATAAAT AATAAATTTT AAAAAAAAAA	717
45	(2) INFORMATION FOR SEQ ID NO: 27:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1099 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
55	GGCACGAGCC GATGTGGACA TCATCCTGTC TATCCCCATG TTCCTGCGCC TGTACCTGAT	60
55	CGCCCGAGTC ATGCTGCTGC ACAGCAAGCT CTTCACCGAT GCCTCGTCCC GCAGCATCGG	120
	GGCCCTCAAC AAGATCAACT TCAACACCCG CTTTGTCATG AAGACGCTCA TGACCATCTG	180
60	CCCTGGCACT GTGCTGCTCG TGTTCAGCAT CTCTCTGTGG ATCATTGCTG CCTGGACCGT	240

	CCGTGTCTGT GAAAGTCCTG AATCACCAGC CCAGCCTTCT GGCTCATCAC TTCCTGCTTG	300
5 .	GTACCATGAC CAGCAGGACG TAACTAGTAA CTTTCTGGGT GCCATGTGGC TCATCTCCAT	360
	CACATTCCTT TCCATTGGTT ATGGGGACAT GGTGCCCCAC ACATACTGTG GGAAAGGTGT	420
	CTGTCTCCTC ACTGGCATCA TGGGTGCAGG CTGCACTGCC CTTGTGGTGG CCGTGGTGGC	480
10	CCGAAAGCTG GAACTCACCA AAGCGGAGAA GCACGTTCAT AACTTCATGA TGGACACTCA	540
	GCTCACCAAG CGGATCAAGA ATGCTGCAGC CAATGTCCTT CGGGAAACAT GGTTAATCTA	600
	TAAACACACA AAGCTGCTAA AGAAGATTGA CCATGCCAAA GTGAGGAAAC ACCAGAGGAA	660
15	GTTCCTCCCA AGCTATCCAC CAGTTTGAGG AGCGTCCCAG ATGGAACAGA GGAAAGCTGA	720
٠	GTGACCAAGC CAACACTCTG GTGGACCTTT CCAAGATGCA GAATGTCATG TATGACTTAA	780
20	TCACAGAACT CAATGACCGG AGCGAAGACC TGGAGAAGCA GATTGGCAGC CTGGAGTCGA	840
	AGCTGGAGCA TCTCACCGCC AGCTTCAACT CCCTGCCGCT GCTCATCGCC GACACCCTGC	900
25	GCCAGCAGCA GCAGCAGCTC CTGTCTGCCA TCATCGAGGC CCGGGGTGTC AGCGTGGCAG	960
	TGGGCACCAC CCACACCCCA ATCTCCGATA GCCCCATTGG GGTCAGCTCC ACCTCCTTCC	1020
	CGACCCCGTN CACAAGTTCA AGCAGTTGCT AAATAAATCT CCCCACTCCA GAAGCATTAA	1080
30	AAAAAAA AAAAAAAA	1099

35 (2) INFORMATION FOR SEQ ID NO: 28:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

AATTCGCCAG AGAGCCAACC GAGGGCGTTC CTGTCGGGGC TGCAGCGGCG GGAGGGAGCC 60 45 CAGTGGAGGC GCCCTCCCGA AGCGCCACTG CCCATGCTGA CCACCCAGCC CTCCGGCTGC 120 TGATGTCATG AGTAACACCA CTGTGCCCAA TGCCCCCCAG GCCAACAGCG ACTCCATGGT 180 50 GGGCTATGTG TTGGGGCCCT TCTTCCTCAT CACCCTGGTC GGGGTGGTGG TGGCTGTGT 240 AATGTATGTA CAGAAGAAAA AGCGGGTGGA CCGGCTGCGC CATCACCTGC TCCCCATGTA 300 CAGCTATGAC CCAGCTGAGG AACTGCATGA GGCTGAGCAG GAGCTGCTCT CTGACATGGG 360 55 AGACCCCAAG GTGGTACATG GCTGGCAGAG TGGCTACCAG CACAAGCGGA TGCCACTGCT 420 GGATGTCAAG ACGTGACCTG ACCCCCTTGC CCCACCCTTC AGAGCCTGGG GTYCTGGACT 480 60

15	ATTCGTATTA					CCTATANTGA	900
	ATGGTGATGG (840
10	TCTAGCCCTC						780
					TGGTAGACAC		720
5	CCTCACTGCC	CCCAGGCCTT	CIGCCCTTTG	TGGGTGTTGA	GCTCACCGCC	CACCCACAGG	660
	GTCTCCATTT	CTCCCTCCAC	CCACCCTCAG	CAGCATCTGC	TTCCCATGCC	CTCACCATCA	600
	GCCTGGGGCC	CTGCCATCTG	CITCCCCTGC	TGTCACCTGG	STCCCCCTGC	TEGETECTEG	540

20 (2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 756 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

30	GGCACGAGGA AGCTGGAGCG GGCCGGCGGT GCAGTCACGG GGGAGCGAGG CCTGCTGGGC	60
	TTGGCAACGA GCGACTCGGC CTCGGAGGCG ACCCAGACCA CACAGACACT GGGTCAAGGA	120
35	GTAAGCAGAG GATAAACAAC TGGAAGGAGA GCAAGCACAA AGTCATCATG GCTTCAGCGT	180
	CTGCTCGTGG AAACCAAGAT AAAGATGCCC ATTTTCCACC ACCAAGCAAG CAGAGCCTGT	240
	TGTTTTGTCC AAAATCAAAA CTGCACATCC ACAGAGCAGA GATCTCAAAG ATTATGCGAG	300
40	AATGTCAGGA AGAAAGTTTC TGGAAGAGAG CTCTGCCTTT TTCTCTTGTA AGCATGCTTG	360
	TCACCCAGGG ACTAGTCTAC CAAGGTTATT TGGCAGCTAA TTCTAGATTT GGATCATTGC	420
45	CCAAAGTTGC ACTTGCTGGT CTCTTGGGAT TTGGCCTTGG AAAGGTATCA TACATAGGAG	480
	TATGCCAGAG TAAATTCCAT TTTTTTGAAG ATCAGCTCCG TGGGGCTGGT TTTGGTCCAC	540
	AGCATAACAG GCACTGCCTC CTTACCTGTG AGGAATGCAA AATAAAGCAT GGATTAAGTG	600
50	AGAAGGGAGA CTCTCAGCCT TCAGCTTCCT AAATTCTGTG TCTGTGACTT TCGAAGTTTT	660
	TTAAACCTCT GAATTTGTAC ACATTTAAAA TTTCAAGTGT ACTTTAAAAT AAAATACTTC	720
55	ТААТОДАААА ААААААААА АААААААААА АСТОДА	756

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2100 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

		C 0
10	NCCAGAGGCA GAAAGTCCTG CTTCTGGGGC GTAACCTACA GGATATCCTT GGAACAGAAG	60
	ATCTTATTGT GGAAGTRACT TCCAATGATG CTGTGAGATT TTATCCCTGG ACCATTGATA	120
	ATAAATACTA TICAGCAGAC ATCAATCTAT GTGTGGTGCC AAACAAATTT CTTGTTACTG	180
15	CAGAGATTIGC AGAATCTGTC CAAGCATTTG TGGTTTACTT TGACAGCACA CAAAAATCGG	240
	GCCTTGATAG TGTCTCCTCA TGGCTTCCAC TGGCAAAAGC ATGGTTACCY GAGGTGATGA	300
	TCTTGGTCTG CGATAGAGTG TCTGAAGATG GTATAAACCG ACAAAAAGCT CAAGAATGGT	360
20	GCATCCAAAC ATGGCTTTGA ATTGGTAGAA CTTAGTCCAG AGGAGTTGCC TGAGGAGGAT	420
	GATGACTICC CAGAATCTAC AGGAGTAAAG CGAATTGTCC AAGCCCTGAA TGCCAATGTG	480
25	TGGTCCAATG TAGTGATGAA GAATGATAGG AACCAAGGCT TTAGCTTGCT GCAACTCATT	540
	GACTOGAACA AACCATAGCA TTGGGTCAGC AGATCCCTGT CACCCAGAGC AACCCCATTT	600
	GCCAGCAGCA GATAGTACTG AATCCCTCTC TGATCATCGG GGTGGTGCAT CTAACACAAC	660
30	AGATGCCCAG GTTGATAGCA TTGTGGATCC CATGTTAGAT CTGGATATTC AAGAATTAGC	720
	CAGTCTTACC ACTGGAGGAG GAGATGTGGA GAATTTTGAA AGACTCTTTT CAAAGTTAAA	780
35	GCAAATGAAA GACAAGGCTG CGACGCTTCC TCATGAGCAA AGAAAAGTGC ATGCAGAAAA	840
	GGTGGCCAAA GCATTCTGGA TGGCAATCGG GGGAGACAGA GATGAAATTG AAGGCCTTTC	900
	ATCTGATGAA GAGCACTGAA TTATTCATAC TAGGGTTTGA CCAACAAAGA TGCTAGCTGT	960
40	CTCTGAGATA CCTCTCTACT CAGCCCAGTC ATATTTTGCC AAAATTGCCC TTATCATGTT	1020
	GGCTGCCTGA CTTGTTTATA GGGTCCCCTT AATTTTAGTT TTTAGTAGGA GGTTAAGGAG	1080
45	AAATCTTTT TTTCCTCAGT ATATTGTAAG AGAGTGAGGA ATACAGTGAT AGTAATGAGT	1140
	GAGGATITCT TAAATRTACT TITTITTTGT TCTAGGAATG AGGGTAGGAT AAATCTCAGA	1200
	GGTCTGTGTG ATTTACTCAA GTTGAAGACA ACCTCCAGGC CATTCCTGGT CAACCTTTTA	1260
50	AGTAGCATTT CCAGCATTCA CACTTGATAC TGCACATCAG GAGTTGTGTC ACCTTTCCTG	1320
	GGTGATTTGG GTTTTCTCCA TTCAAGGAGC TTGTAGCTCT GAAGCTATGA TGCTTTTATT	1380
55	GGGAGGAAAG GAGGCAGCTG CAGAATTGAT GTGAGCTATG TGGGGCCGAA GTCTCAGCCC	1440
	GCAGCTAAGT CTCTACCTAA GAAAATGCCT CTGGGCATTC TTTTGAAGTA TAGTGTCTGA	1500
	GCTCATGCTA GAAAGAATCA AAAAGCCAGT GTGGATTTTT AGACTGTAAT AAATGAGGCA	1560

	AAGGATTTCT ATTCCAGTGG GAAGRAAACC TCTCTACTGA GTTGTGGGGG ATATGTTGTA	1620
	TGITAGAGAG AACCITAAGG AGTCCTTGTA TGGGCCATGG AGACAGTATG TGATAACATA	1680
5	CCGTGATTTT CATGAAGAAA TTCTTCTGTC TTAGAGTTCT CCCCTGCTGC TTGAGATGCC	1740
	AGAGCTGTGT TGTTGCACAC CTGCAAAACA AGGCACATTT CCCCCTTTCT CTTTAAAGCC	1800
10	AAAGAGAGAT CACTGCCAAA GTGGGAGCAC TAAGGGGTGG GTGGGGAAGT GAAATGTTAG	1860
	GCGATGAATT CCTGAGCACC TIGITTTTCT TCCAAGGITC GTAGCTCCTC TCTGCCCTTC	1920
	CAAGCCTGTA ACCTCGGAGG ACTATCTTTT GTTCTTTATC CTTTGTCTTG TTTGAGTGGG	1980
15	TCAGCCCCAG AGGAACTGAT AAGCAAATGG CAAGTTTTTA AAGGAAGAGT GGAAAGTACT	2040
	GCAAATAAAA ATCCTTATTT GTTTTTGTAG ААААААААА ААААААААА ААААААААА	2100
20		
	(2) INFORMATION FOR SEQ ID NO: 31:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1448 base pairs	
	(B) TYPE: nucleic acid ´	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	AAAAAAAAA AAAGCCCACC TGAAAGCCTG TCTCTTTCCA CTTTGTTGGC CCTTCCAGTG	60
35	GGATTATCGA GCATGTTGTT TTTTCATAGT GCCTTTTTCC TTATTTCAAG GGTTGCTTCT	120
	GAGTGGTGTT TTTTTTTTTT TTAATTTGTT TTGTTTTAAA ATAAGTTAAA GACAGTCCAG	180
	AGCTTTTCAG CCAATTTGTC TCCTACTCTG TGTAAATATT TTTCCCTCCG GGCAGGGGAG	240
40	CCAGGGTAGA GCAAAGGAGA CAAGCAGGAG TGGAAGGTGA GGCGTTCTCC TGCTTGTACT	300
	AAGCCAGGAG STITAAGCTC CAGCTTTAAG GGTTGTGAGC CCCTTGGGGT TCAGGGAACT	360
45	GCTTGCCCAG GGTGCAGTGT GAGTGTGATG GGCCACCGGG GCAAGAGGGGA AGGTGACCGC	420
	CCAGCTCTCC CACATCCCAC TGGATCTGGC TTACAGGGGG GTCGGAAGCC TGTCCTCACC	480
	GTCTCGGGGG TTGTGGCCCC CGCCCCCTCC CTATATGCAC CCCTGGAACC AGCAAGTCCC	540
50	AGACAAGGAG AGCGGAGGAG GAAGTCATGG GAACGCAGCC TCCAGTTGTA GCAGGTTTCA	600
	CTATTCCTAT GCTGGGGTAC ACAGTGAGAG TACTCACTTT TCACTTGTCT TGCTCTTAGA	660
55	TTGGGCCATG GCTTTCATCC TGTGTCCCCT GACCTGTCCA GGTGAGTGTG AGGGCAGCAC	
JJ	TEGGAAGCTE GAGTECTECT TETECCTCCC TTCCCAGTEG GCTGTGTTGA CTGCTGCTCC	720
	CCACCCCTAC CGATGGTCCC AGGAAGCAGG GAGAGTTGGG GAAGGCAAGA TTGGAAAGAC	780
60	AGGAAGACCA AGGCCTCGGC AGAACTCTCT GTCTTCTCTC CACTTCTGGT CCCCTGTGGT	840
	CACITOTOGT CCCCTGTGGT	900

	GATGTGCCTG TAATCTTTTT CTCCACCCAA ACCCCTTCCC ACGACAAAAA CAAGACTGCC	960
	TCCCTCTCTT CCGGGAGCTG GTGACAGCCT TGGGCCTTTC AGTCCCAAAG CGGCCGATGG	1020
5	GAGTCTCCCT CCGACTCCAG ATATGAACAG GGCCCAGGCC TGGAGCGTTT GCTGTGCCAG	1080
	GAGGCGGCAG CTCTTCTGGG CAGAGCCTGT CCCCGCCTTC CCTCACTCTT CCTCATCCTG	1140
10	CTTCTCTTTT CCTCGCAGAT GATAAAAGGA ATCTGGCATT CTACACCTGG ACCATTTGAT	1200
	TGTTTTATTT TGGAATTGGT GTATATCATG AAGCCTTGCT GAACTAAGTT TTGTGTGTAT	1260
1.5	ATATTTAAAA AAAAAATCAG TGTTTAAATA AAGACCTATG TACTTAATCC TTTAACTCTG	1320
15	CGGATAGCAT TTGGTAGGTA GTGATTAACT GTGAATAATA AATACACAAT GAATTCTTMA	1380
	AAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAACCCCGGG GGGGCCCCCG GGCCCCAATT	1440
20	CCCCCCAA	1448
25	(2) INFORMATION FOR SEQ ID NO: 32:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 456 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
35	GGCACAGCAA ACTTGACGCC ATGAAGATCC CGGTCCTTCC TGCCGTGGTG CTCCTCTCCC	60
	TCCTGGTGCT CCACTCTGCC CAGGGAGCCA CCCTGGGTGG TCCTGAGGAA GAAAGCACCA	120
40	TIGAGAATTA TGCGTCACGA CCCGAGGCCT TTAACACCCC GTTCCTGAAC ATCGACAAAT	180
40	TGCGATCTGC GTTTAAGGCT GATGAGTTCC TGAACTGGCA CGCCCTCTTT GAGTCTATCA	240
	AAAGGAAACT TCCTTTCCTC AACTGGGATG CCTTTCCTAA GCTGAAAGGA CTGAGGAGCG	300
45		360
	ATTCTCAACC TACCATAACT CTTTCCTGCC TCAGGAACTC CAATAAAACA TTTTCCATCC	420
	AAAAAAAAA AAAAAAAAAC CCCNGGGGGG GCCCGG	456

(2) INFORMATION FOR SEQ ID NO: 33:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1326 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

5	GGCACGAGIG CAGGCCCAGA GAGGACTCAT TGAAAGGACT GAAAGGGGAG GTGGCGTTTT	60
	CTTCCTACCC AAACTTACCC CTGTGAGCTG GACAGCTTGG TAGCACCTGC CTGGACTTAG	120
	ATGGTGGTAG CCAAGAAGAC TGACATTTTA GGGAACAGGA CGGGGAGGAG AAGGCTCTGG	180
10	CACACACAC TGTGTCCATA TGTCCTGCAA TGGTCTGGGG ACTATTGCTA GGCTAGGAGC	240
	CCTAAGTGTC TTCTTCCTCA TGTCTMTTCT CCCCTGTSTC ATGGGCCCTA AGRTCTCTTT	300
15	CACTGGGCCT GCCTCAATGA ACGTGCTGCC CAGCTACCCC GAAACACGGC ANCTGCCGGC	360
	TATCAATGCC CCAGCTGCAA TGGCCCATCT TCCCCCAACC AACCTGGCTG GGCCCGTGGG	420
	CTCCGCACTG AGARARAAAS TTGGCACART CAACTGGGCC CGGGCAGGAC TGGGCCYCCC	480
20	TCTGATCGAT GAAGKTGGTG ARCCCAGAGC CCGAGCCCCT CAACACGTCT GACTTCTCTG	540
	ACTGGTCTAG TTTTAATGCC AGCAGTACCC CTGGACCAGA GGAGGTAGAC AGCGCCTCTG	600
25	CTGCCCCAGC CTTCTACAGC CGAGCCCCCC GGCCCCAGC TTCCCCCAGGC CGGCCCGAGC	660
	AGCACACAGT GATCCACATG GGCAATCCTG AGCCCTTGAC TCACGCCCCT AGGAAGGTGT	720
	ATGATACGCG GGATGATGAC CGGACACCAG GCCTCCATGG AGACTGTGAC GATGACAAGT	780
80	ACCGACGTCG GCCGGCCTTG GGTTGGCTGG CCCGGCTGCT AAGGAGCCGG GCTGGGTCTC	840
	GGAAGCGRCC GCTGACCCTG CTCCAGCGGG CGGGGCTGCT GCTACTCTTG GGACTGCTGG	900
5	GCTTCCTGGC CCTCCTTGCC CTCATGTCTC GCCTAGGCCG GGCCGCAGCT GACAGCGATC	960
	CCAACCTGGA CCCACTCATG AACCCTCACA TCCGCGTGGG CCCCTCCTGA GCCCCCTTGC	1020
_	TTGTGGCTAG GCCAGCCTAG GATGTGGGTT CTGTGGAGGA GAGGCGGGGT AATGGGGAGG	1080
0	CTGAGGGCAC CTCTTCACTG CCCCTCTCCC TCAAGCCTAA GACACTAAGA CCCCAGACCC	1140
	AAAGCCAAGT CCACCAGAGT GGCTGCAGGC CAGGCCTGGA GTCCCCGTGG GTCAAGCATT	1200
5	TGTCTTGACT TGCTTTCCTC CCGGGTYTCC AGCCTCCGAC CCCTCGCCCC ATGAAGGAGC	1260
	ТОЗСАЗСТОЗ АВАТАВАСАВ СВАСТТТАТТ ВАВАВАВАВ ВАВАВАВАВА	1320
	AAANAA	1326

50

(2) INFORMATION FOR SEQ ID NO: 34:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 710 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

660

60

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	GCGAAAGAGA AAAAGGCTGG AGCTCCCGCC CCCGGGGCTG TCAGATGGCT TGGGTTTCTG	60
5	CGACGCGATT GGCTCGCGGA GGGCAGAAAT TACTCAGCAA ACATGACTAT TATTAGCTGC	120
	TTAGCAACAG CTCACCAAAG TAGAGAGACC ACCCAGGTAG GCAACCCAGT GTGTGCATCC	180
	TCGGCTTCGG GGCAGCCTCT GAGAGCGCCA ACCTTCTCGC ATGCAATACT TCCATTAAGG	240
10	AATGCTCCCC CTCCTTTCTC TCTTATTCCT TTTCTTTCA ACAGTGTCTT CTTTTTGTGG	300
	GATGCCTTTG CGCGCACACA CGCGCGCGCA SGCACACACA CGAACATTTG CCTCGCGGTA	360
15	GACACGGGG GAAATGIWAT ATTITITAA GCGCTTAAAC AATTICTGAA ATTCCTCAAA	420
	GAAAAGCCTT TCAGARGCAC CTTGGCCTCA AGCTGCAACA AATACTGGGA RGTCCGGCTC	480
	GCATTCCCAG GCCTGCACCA ATAATGACAG CGTGCTGGAT ARTGCGCCAG TGTGTGCCAG	540
20	ATTTTTTTT CCTCTTCTCT TTTCTTTTAT AACTAAAGGG AAGACTTAGG CTCTTGCAGG	600
	GAACAACGCC TCGCATTAAG ATAAACAGAA TGGAAAGTTA AAGAGGAAAG CAAGGACGTT	660
25	GGGAAAAGCC ATCTTTCTTA AAATCCGTCT GCCCCCAGC CGCTTTCTCC	710
,		
30	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1188 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
40	GATGGCTTTT ATATCTATTA TCGACCCACA GACAGTGACA ATGATAGTGA CTACAAGAAG	60
	GATATGGTGG AAGGGGACAA GTACTGGCAC TCCATCAGCC ACCTGCAGCC AGAGACCTCC	120
4.5	TACGACATTA AGATGCAGTG CTTCAATGAA GGAGGGGAGA GCGAGTTCAG CAACGTGATG	180
45	ATCTGTGAGA CCAAAGCTCG GAAGTCTTCT GGCCAGCCTG GTCGACTGCC ACCCCCAACT	240
	CTGGCCCCAC CACAGCCGCC CCTTCCTGAA ACCATAGAGC GGCCGGTGGG CACTGGGGCC	300
50	ATGGTGGCTC GCTCCAGCGA CCTGCCCTAT CTGATTGTCG GGGTCGTCCT GGGCTCCATC	360
	GTTCTCATCA TCGTCACCTT CATCCCCTTC TGCTTGTGGA GGGCCTGGTC TAAGCAAAAA	420
سد	CATACAACAG ACCTGGGTTT TCCTCGAAGT GCCCTTCCAC CCTCCTGCCC GTATACTATG	480
55	GTGCCATTGG GAGGACTCCC AGGCCACCAG GCAGTGGACA GCCCTACCTC AGTGGCATCA	540

GTGGACGGC CTGTGCTAAT GGGATCCACA TGAATAGGGG CTGCCCCTCG GCTGCAGTGG

GCTACCCGGG CATGAAGCCC CAGCAGCACT GCCCAGGCGA GCTTCAGCAG CAGAGTGACA

	CCAGCAGCCT GCTGAGGCAG ACCCATCTTG GCAATGGATA TGACCCCCAA AGTCACCAGA	720
5	TCACGAGGG TCCCAAGTCT AGCCCGGACG AGGGCTCTTT CTTATACACA CTGCCCGACG	780
	ACTOCACTOA COAGCTGCTG CAGCCCCATO ACGACTGCTG COAACGCCAG GAGCAGCCTG	840
	CTGSTGTGGG CCAGTCAGGG GTGAGGAGAG CCCCCGACAG TCCTGTCCTG	900
10	GGGACCCTCC ATTTCACTCA GGGCCCCCAT GCTGCTTGGG CCTTGTGCCA GTTGAAGAGG	960
	TOGACAGTOC TGACTOCTGC CAAGTGAGTG GAGGAGACTG GTGTCCCCAG CACCCCGTAG	1020
15	GGGCCTACGT AGGACAGGAA CCTGGAATGC AGCTCTCCCC GGGGCCACTG GTGCGTGTGT	1080
	CTTTTGAAAC ACCACCTCTC ACAATTTAGG CAGAAGCTGA TATCCCAGAA AGACTATATA	1140
	TIGITITITI TITAAAAAA AAAAAAAAA AWCYCGGGG GGGCCCCC	1188
20		
	(2) INFORMATION FOR SEQ ID NO: 36:	
25		
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 956 base pairs	•
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		-
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
25	GGCAGAGCAG TGAAAATGCA TCCTAAAAAT TCAATGTTTA TACCAGGCTC ATGACACTAA	60
35	GATGTGACAT CTGGACACGA GGGGTCAGCC ACGTGGATAC ATCCCTCCCA GATTGCATCT	120
	CCAGGAATCA CTCTGCTAGC AGAATGGGCG CCCCATCCCT TACTATGCTG CTCCTCCTCA	180
40	AAGTGCAGCC CAGAAGGACC CAGGCCTTTG ATGCACATTG GGTGGGTCTC CCACTACTTT	240
	AGTTGAAATG GGAGCATGCT GGAGTCGGCG TTCTGTTGCT TCTGGTGAGA AGGACATCCC	300
4.5	ATTGACCCCT GGCCACCAGG TCCAGTATTC CATCCTTCCT TCTGTCCCAG CCTATCGCCC	360
45	TCCCCACYAG GCCCACCCC ACAACTTCTC CTCAAGGGAG GTTNTCCCGC AGCTGGAGGG	420
	CTTGCACAGA CCAGCAGTCA CAGAAATCAT TCTTCCTGCT GTACTGGGCC TTAACTGCCT	480
50	GCAAATGTCC GAGCACTACT GCATAGGATG CCAGAGCCAC CGAAGATAAA CACAGCCAAG	540
	TTTAATAATA ATAAAAGGAA AAATCTCAGC CTGCAGAACT CTGGTTTTGA CCCACCATCG	600
	GCCAGATGCA CATCTTCAGG GCCTGTTGAG CACCTTCTGA AAAGCAGGGC TCGTAATAGA	660
55	CTCCAGCACA TTCCATCAGA GTCAGGAAAA CTGCGGTGAG TCCCAGAGAA TCTAGGGTGC	720
	AGGGCAGGGA GCAGGAGTCA TAACCTAAAC TGTGTGTAGT CAGCGGGGAG	780
60	GGTCTTATGT TATCAGGTGA AATGAGAGCC AGTAAGTTAG TTGATCCTGT CACAGATATA	840

	ACCCTGATAA CACCCCATAG ATACGCGACA CGTGTGTCCT GCCCCTGCTT TCCCCCATCCA	900
	ACATGGTTCT TCTGTTCCAC AGACATTAAA GGGGCTTTCT GCAATTACTT AAAAAA	956
5		
	(2) INFORMATION FOR SEQ ID NO: 37:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1603 base pairs	
*	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	TCGACCCACG CGTCCGCTCT GCCAGGAATC TGGTCTTTCT GTAGACCCAA GTCAGAAAGA	60
20	ACCATTIGIG GAGITAAATC GAATATTAGA RGCATTAAAR GTCAGAGITC TGAGACCTGC	120
	TCTGGAATGG GCAGTTTCAA ACCGAGAGAT GCTTATAGCC CAAAACAGCT CCTTGGAATT	180
	TAAACTACAC AGACTGTATT TTATTAGCTT RTTAATGGGT GGAACACAAA TCAGCGAGAR	240
25	GCATTACAAT ATGCTAAAAA TTTTCAGCCA TTTGCCCTAA ATCATCAAAA AGACATTCAG	300
	GTTTTGATGG GAAGCCTTGT GTACCTGAGA CAAGGGATTG AGAACTCACC ATATGTTCAC	360
30	CTACTTGATG CAAACCAGTG GGCTGATATC TGTGACATCT TTACACGGGA TGCTTGTGCC	420
	CTCCTGGGC TCTCCGTGGA GTCCCCTCTC AGTGTCAGTT TCTCAGCAGG TTGTGTGGCG	480
	CTGCCAGCTT TAATTAACAT CAAAGCCGTG ATTGAACAGA GGCAGTGTAC TGGAGTTTGG	540
35	AACCAGAAAG ATGAATTACC TATTGAAGTG GACCTTGGTA AAAAGTGCTG GTATCACTCT	600
	ATATTTGCCT GCCCCATTCT TCGTCAGCAA ACAACAGATA ACAATCCACC CATGAAATTG	660
40	GTCTGTGGTC ATATTATATC AAGAGATGCC CTGAATAAAA TGTTTAATGG TAGCAAATTA	720
	AAATGTCCCT ACTGTCCAAT GGAACAAAGT CCAGGAGATG CCAAACAGAT ATTTTTCTGA	780
	AGAGATAACT TTAGTTTGCA ATTTGTAAGT GAAACTGAAT CGTGGGTGCA TTTCAGAAGA	840
45	GAACGTTCCA TATAATGCAG CTAACCAAGG ACTCCTGTGT TTCTATAAGC TAATGCTCCA	900
	GAAACTTTGC CAACCTGTTA GTGTACACAC ACTGAGGGGA GTGCTCCCGG TGAATATTAT	960
50		1020
50	TCATTCAATG CAGGTPTTTG TACTTAATTA TATGGTGATT TTTTTACTTT TTAAGAGCAG	1080
	AAACGGAAAT TGACCTCCCC GCCATGTGTT TAATATTCCT CCTGCTTTTA CTTTTGTCAT	1140
55		1200
	TACATAATTA AATGAAAATT CTTCAGAAAA AGTTTGATAA ATTGAATTGT GGTTATGAAA	1260
		1320
60	CTAATTIGCA TITITATIIG CITARCHEN TERESCOTO	

	TGATGTTTTC	CTCTGCTCCA	GCTCCAAGAA	GTCAGCACAC	CTGCATTTTA	GCTCTGCATG	1380
5	CAGCCCCAGC	AGGCTGCGTG	TTTAAGAATT	TCATTGTTTA	ACTGGCTGGT	GTGAGAAGTC	1440
	TTCCGTTAGC	ATAGAGTGGA	AGGAGTACTA	TIGITIGGIT	CCCTTTTTCT	TIGITIGITT	1500
	TTTCTTTTTG	CTTTTATTGC	CAAGAGGTGC	TTGTTTTAAA	AGTATGTTTA	ATAAAATGAA	1560
10	ATTCTAAAGT	TAARAAGTGT	TCTTAAAGTT	GATATTTAAC	TCT		1603

15 (2) INFORMATION FOR SEQ ID NO: 38:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

25	GGCACGAGCT ACCITICIGC CIGCITIGCT GGCTGCAACA GCACGAATCT CACGGGCTGT	60
	GCGTGCCTCA CCACCGTCCC TGCTGAGAAC GCAACCGTGG TTCCTGGAAA ATGCCCCAGT	120
30	CCTGGGTGCC AAGAGGCCTT CCTCACTTTC CTCTGTGTGA TGTGTATCTG CAGCCTGATC	180
30	GGTGCCATGG CAAGACACCC TCAGTCATCA TCCTCATCAG GACAGTCAGC CCTGAACTCA	240
	AGTOTTACGO TITGGGAGIT CITTITCTCC TCCTTCGITT GITGGGCTTC ATCCCTCCAC	300
35	CCCTCATCTT CGGGGCTGGC ATCGACTCCA CCTGCCTGTT CTGGAGCACG TTCTGTGGGG	360
	AGCAAGGCGC CTGCGTCCTC TACGACAATG TGGTCTACCG ATACCTGTAT GTCAGCATCG	420
40	CCATCGCGCT CAAATCCTTC GCCTTCATCC TGTACACCAC CACGTGGCAG TGCTGAGGAA	480
	AAACTATAAA CGCTACATCA AAAACCACGA GGGCGGGCTG AGCACCAGTG AGTTCTTTGC	540
	CTCTACTCTG ACCCTAGACA ACCTGGGGAG GGACCCTGTG CCCGCAAACC AGACACATAG	600
45	GACAAAGTTT ATCTATAACC TGGAAGACCA TGAGTGGTGT GAAAACATGG AGTCCGTTTT	660
	ATAGTGACTA AAGGAGGGCT GAACTCTGTA TTAGTAATCC AAGGGTCATT TTTTTCTTAA	720
50	AAAAAGAAAA AAAGGTTCCA AAAAAAACCA AAACTCAGTA CACACACACA GGCACAGATG	780
	CACACACAC CAGACAGACA CACCGACTTT GTCCTTTTTC TCAGCATCAG AGCCAGACAG	840
	GATTCAGAAT AAGGAGAGAA TGACATCGTG CGGCAGGGTC CTGGAGGCCA CTCGCGCGCC	900
55	TGGGCCACAG AGTCTACTTT GAAGGCACCT CATGGTTTTC AGGATGCTGA CAGCTGCAAG	960
	CAACAGGCAC TGCCAAATTC AGGGAACAGT GGTGGCCAGC TTGGAGGATG GACATTTCTG	1020
60	GATACACATA CACATACAAA ACAGAAAACA TTTTTTAAAA GAAGTTTCCT AAAATAAAAA	1080

	далалала	1089
5	(2) INFORMATION FOR SEQ ID NO: 39:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 629 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	AGCTCAGTTC CCTTAGAAAT GAAATTTTAA ATGACACTAC CAGGTAAGCC ACTGAGACCA	60
	GTGGAGGTGA TAGCTAAGAA CATAAGGAAT TAAGAATTTT TAATGGAGAA AGGAGGTAAT	120
20	GAATACCAGT TACATCCTAA GACTCACTGT AGTGGTGAGT GTTGTAATTT ATCTCGCTAT	180
·	CCATCCTCTT TTAAGTTTTT CCTTAGAAAG TCCTCTATTG GTACCTTGGA GGGACTGCTG	240
	TCAAAATATA TGGAAAAGTG GGTCTGTGTG GTACAAGAGG TGGACTTTGC CACACATGGA	300
25	AGTITICCTICC CAAGATCTTC ACTAATGAAA GAAATCACCA GTGAGCTGCA CAGATTAGCC	360
•	AAATACTGAG CTCATTAGAA CTACTAAGGC CTGGACATTT CTGCCTAATC CAGGACTCCT	420
30	GTAATTATCA GTCTTTGCTT TGGAGCTTCC CATTGTGTAG CTGARAATTT GTCATATCTG	480
	CATTATAATC TAAGGCTCCA CATACTTAAT CCTGCTTCTC CCCCTTTTC TTTCCCTTTC	540
	CCAGCGGTCA GCTCTGCTGC ATAGTCTGAA GACTTTCCCT GCCCAATCCT GATAAAATTC	600
35	TTGCACTCGT AACCCCATCT CAGTGTCTG	629
40		
, -	(2) INFORMATION FOR SEQ ID NO: 40:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1964 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
50	AAGAAGACAT GGAAATTGCT GAAGGATGTT TCAGGCATAT TAAGAAAATC TTTACGCAGC	60
	TTGAGGAATT CAGAGCCTCT GAATTGCTTC GAAGTGGACT GGACAGATCT AAATACCTTT	120
55	TAGTGAAAGA AGCCAAAATT ATTGCTATGA CCTGTACTCA TGCTGCCTTA AAACGACATG	180
	ACTTGGTCAA GCTAGGTTTC AAGTATGACA ACATTTTGAT GGAAGAGGCT GCTCAGATTC	240
	TOGAGATAGA AACTITITATC CCTCTTCTTC TACAGAATCC TCAGGATGGA TTTAGCCGAC	300

	TAAAACGATG GATTATGATT GGCGATCATC ACCAGTTACC TCCAGTTATT AANGAACATG	360
	GCCTTTCAAA AGTACTCAAA CATGGAGCAG TCTCTCTTCA CTCGCTTTGT TCGCGTTGGA	420
5	GTTCCGACTG TTGACCTTGA TGCTCAAGGG AGAGCCAGAG CAAGCTTGTG CAMCTNCTAC	480
	AACTGGCGAT ACAAGAATCT AGGAAACTTA CCCCATGTGC AGCTCTTGCC AGAGTTTAGT	540
10	ACAGCAAATG CTGGCTTACT GTATGACTTC CAGCTCATTA ATGTTGAAGA TTTTCAAGGA	600
-	GTGGGAGAAT CTGAACCTAA TCCTTACTTC TATCAGAATC TTGGAGAGGC AGAATATGTA	660
	GTAGCACTTT TTATGTACAT GTGTTTACTT GGTTACCCTG CTGACAAAAT CAGTATTCTA	720
15	ACAACATATA ATGGCCAAAA GCATCTTATT CGCGACATCA TCAATAGACG ATGTGGAAAC	780
	AATCCATTGA TTGGAAGACC AAACAAGGTG ACAACTGTTG ATAGATTTCA AGGTCAACAG	840
20	AATGACTATA TTCTTCTTTC TCTGGTACGA ACCAGGCCAG TGGGCCATCT GAGGGATGTC	900
-0	CGTCGCTTGG TAGTGGCCAT GTCTAGAGCC AGACTTGGAC TTTATATCTT CGCCAGAGTA	960
	TECCTETTEC AAAACTGTTT TGAACTGACT CCAGCTTTCA GTCAGCTCAC AGCTCGCCCC	1020
25	CTTCATTTGC ATATAATTCC AACAGAACCT TTCCCAACTA CTAGAAAGAA TGGAGAGAGA	1080
	CCATCTCATG AAGTACAAAT AATAAAAAAT ATGCCCCAGA TGGCAAACTT TGTATACAAC	1140
30	ATGTACATGC ATTTGATACA GACTACACAT CATTATCATC AGACTTTATT ACAACTACCA	1200
	CCTGCTATGG TAGAAGAGGG TGAGGAAGTT CAAAATCAAG AAACAGAATT GGAAACAGAA	1260
	GAAGAGCCCA TGACTGTTCA AGCTGACATC ATACCCAGTC CAACAGACAC CAGCTGCCGT	1320
35	CAAGAAACTC CAGCCTTTCA AACTGACACC ACCCCCAGTG AGACAGGAGC CACTTCCACT	1380
	CCAGAAGCCA TCCCTGCTTT ATCTGAGACC ACCCCTACTG TGGTAGGAGC TGTATCTGCA	1440
40	CCGGCAGAAG CTAACACACC TCAGGATGCC ACATCTGCCC CAGAAGAGAC CAAGTAGCCA	1500
	AACTGTAGTC CTTCTAAAGG AGGACATGGC AGTCAAAAAG TCTGAGTAAA GCTGTTTTTT	1560
	GTATTITATA TITGCTTCTG CCATTITACT GTCACTAATT AATGTTAGT TCTTATATTT	1620
45	GITAACTGAT TICGGTGTCT TGAATATATT TTTTTAAATT ATGTGTATGA ACAATTCTAG	1680
	TITCATITGT TCAATCAGAA GAGCAAATAA CCATTCCTTT CATGITTTGA TCACTGAGTG	1740
50	TOTOTGTAAT CATACCTACA TTAAAATCAT TTTCTATGAA TATATAATAT ATACTTCACA	1800
50	TTTTTAGTGA ACTTCTCTAA AGAAGAGGAC AGAATATACT GGACTTAACC ACGAATACCC	1860
	TTGAGTGTCC AAATTGGGAA GGAACTKGTT TCTTCYGTTA TACTAYCAAA TGCTTAAATT	1920
55	CKGTTTCCTT TTTTCTTACC TTTGTTTGCT GTCTTTATGT AAAG	1964

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1522 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO. 41.	
10	CGTGTCCGCG CGCCTGGGAG ACGCTGCCTC GGCCCGGACG CGCCCGCGCC CCCGCGGCTG	60
	GAGGGTGGTC GCCACTGGGA CACTGTGAAC CAGGAGTRAG TCGGAGCTGC CGCGCTGCCC	120
	AGGCCATGGA CTGTGAGGTC AACAACGGTT CCAGCCTCAG GGATGAGTGC ATCACAAACC	180
15	TACTGGTGTT TGGCTTCCTC CAAAGCTGTT CTGACAACAG CTTCCGCAGA GAGCTGGACG	240
	CACTGGGCCA CGAGCTGCCA GTGCTGGCTC CCCAGTGGGA GGGCTACGAT GAGCTGCAGA	300
20	CTGATGGCAA CCGCAGCAGC CACTCCCGCT TGGGAAGAAT AGAGGCAGAT TCTGAAAGTC	360
	AAGAAGACAT CATCCGGAAT ATTGCCAGGC ACCTCGCCCA GGTCGGGGAC AGCATGGACC	420
	GTAGCATCCC TCCGGGCCTG GTGAACGGCC TGGCCCTGCA GCTCAGGAAC ACCAGCCGGT	480
25	CGGAGGAGGA CCGGAACAGG GACCTGGCCA CTGCCCTGGA GCAGCTGCTG CAGGCCTACC	540
	CTAGAGACAT GGAGAAGGAG AAGACCATGC TGGTGCTGGC CCTGCTGCTG GCCAAGAAGG	600
30	TGGCCAGTCA CACGCCGTCC TTGCTCCGTG ATGTCTTTCA CACAACAGTG AATTTTATTA	660
	ACCAGAACCT ACGCACCTAC GTGAGGAGCT TAGCCAGAAA TGGGATGGAC TGAACGGACA	720
0.5	GTTCCAGAAG TGTGACTGGC TAAAGCTCGA TGTGGTCACA GCTGTATAGC TGCTTCCAGT	780
35	GTAGACGGAG CCCTGGCATG TCAACAGCGT TCCTAGAGAA GACAGGCTGG AAGATAGCTG	840
	TGACTTCTAT TTTAAAGACA ATGTTAAACT TATAACCCAC TTTAAAATAT CTACATTAAT	900
40	ATACTTGAAT GAAAATGTCC ATTTACACGT ATTTGAATGG CCTTCATATC ATCCACACAT	960
	GAATCTGCAC ATCTGTAAAT CTACACACGG TGCCTTTATT TCCACTGTGC AGGTTCCCAC	1020
	TTAAAAATTA AATTGGAAAG CAGGTITCAA GGAAGTAGAA ACAAAATACA ATTTTTTTGG	1080
45	TAAAAAAAA TTACTGTTTA TTAAAGTACA ACCATAGAGG ATGGTCTTAC AGCAGGCAGT	1140
	ATCCTGTTTG AGGAAAGCAA GAATCAGAGA AGGAACATAC CCCTTACAAA TGAAAAATTC	1200
50	CACTCAAAAT AGGGACTATC YATCTTAATA CTAAGGAACC AACAATCTTC CTGTTTAAAA	1260
	AACCACATGG CACAGAGATT CNGAACTAAA GTGCTGCACT CAAATGATGG GAAGTCCCGG	1320
	CCCCAGTACA CCAGGGGCTT TGGACTTTTT TCAACTTCGT TTCCTTTTGT TTGGANTCCA	1380
55	AAAGAACCAC TTTGTGGTTC TTAAAAGGGT GTGAAGGTGA TTTAAGGGGC CCAGGTCAGC	1440
	CACTGGTTGG TTTACAAAAT CNGGGTAACT AACTGCATAC AACTTTTTCC CNTTTCCATG	1500
60	NCATCAGGAC TTTGCTAAAG AC	1522

	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 875 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
15	COCACTTCCT CTATGTCCCT TTCCTTGGTG	60
	TCTGTGTCTG TGGGGCCATC TACACTGGCC TGTTCCTTCC TGAGACCAAA GGCAAGACCT	120
20	TCCAAGAGAT CTCCGAGGAA TTACACAGAC TCAACTTCCC CAGGCGGGCC CAGGGCCCCA	180
	CGTGGAGGAG CCTGGAGGTT ATCCAGTCAA CAGAACTCTA GTCCCAAAGG GGTGGCCGTA	240
25	GCCAAAGCCA GCTACCGTCC TGTCCTCTGC TTCCTGCCAG GGCCCTGGTC CTCAMTYCCT	300
25	YCTGCATTCC TCATTTAAGG AGTGTTTATT GAGCACCCTT TGTGTGCAGA CATGGCTCCA	360
	GGTGCTTAGC AATCAWIGGT GAGCGTGGTA TCCAGGCTAA AGGTAATTAA CTGACAGRAA	420
30	ATCAGTAACA ACATAATTAC AGGYTGGTTG TGGCAGYTCA TGACTGTAAT CCCAGCACTT	480
	TTGGGAGCCA AGGTGGGARG ATCAATTGAG GCCAGAGTTT GAAAMCAGCT AGGTAACATA	540
35	GTGAGACCCC CTATCTCTAC AAAAAATTTT AAACATTAGC TGGGCATGGT GGTATGTGCT	600
33	AACAGCTCTA GCTACTCAGG AGGCTGAGGC AGCAGGATCA CTTGAGTCCA AGAGTTCAAG	660
	GTAGCAGTAA GCTACAATCA CACCACTGCA TGCCAGACTG GGTGACAGAG GGAGACTTCA	720
40	TCTCTTTAAA ACATAATAAT AATAATTACA GACTCAGGAA ATGCAGTGAA AGAAAAATAC	780
	AGGTTGGCCA GGTGAGGTGG CTGATGCCTG TAATCCCAGC ACTTTGGGAG GCCAAGATGG	840
45	GAAGATTGCT TTGAGACCAG AAGTTTGAGA CCAGC	875
	(2) INFORMATION FOR SEQ ID NO: 43:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 843 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
	CCCACGCGT CCGNATCGTC CTTCCCTCAC TTCAGAGGT GGCCAGAGCT GAATACCCAG	60
60	AGAGGGACAA GTAAGGGTCC AGTTCCAAAA CATCATGAGG ATGTATCATC CCACGTGTCT	120

	CACCTGACAG TTACAGAGGA AACCCGCACC CAGAATGCAC GTGCTGTCTT ATGGGAACAC	180
5	TCAGCGCAGA GTGCTCAGGT CCGGCCACAC TCGGGCTGTG CTTGGTCGTG CCATGGAATT	240
	CCTCAGGACT TTCTCAGCCT CCCTAATGGC AGAAGCCCCT TTACAGCAAG ACATTTACCG	300
	TTTGTCTGAA AATAGCCGAA CTGAGCTTTT CTTCAGGCTA TATGAGAAGT CTCTAGACAG	360
10	TGGGCACCGT CAGAAAGCCC AGAGCCTTGT GATAGCTCCC ACCCTGCCTG GCTCAGATCT	420
	TCCCATTTT TTTCCTCTGG CACTAACCTC ACCTTTTGTT TTTTTGTGTT TGTGTTTGTT	480
	TTTGTTTTG CAGAGTTGGA TTACAGAAAC TCCTATGAAA TTGAATATAT GGAGAAAATT	540
15	GGCTCCTCCT TACCTGTAAG TTCGTCTGCC TCGGGCCACT TAGGGGACTC GCTTTCCTGC	600
•	CTTCAGGGGC CTCCTCCCCT GTGCAGAGTG TCTCTGGGAG CTCAGACCCC AAATCGAGTG	660
20	TITTCTGTGT ACACAGCTTC CCGGGTGCAC AGCAATGATG GACTGGGGCT GGGGGGTTGA	720
	GGTTTGTACT CAATCCACTT CGTTTGACAT TTTCAGGGAG AAAATGATAG AATACAATTA	780
	GACGTCCTGC AGAATTACTT TCCTAGACTG AGAAAGAGCT AGAGATTTCT TTAAAAAAAA	840
25	AAA	843

35

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 489 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

40 CTCTTAGGCT TTGAAGCATT TTTGTCTGTG CTCCCTGATC TTCAGGTCAC CACCATGAAG 60 TTCTTAGCAG TCCTGGTACT CTTGGGAGTT TCCATCTTTC TGGTCTCTGC CCAGAATCCG 120 ACAACAGCTG CTCCAGCTGA CACGTATCCA GCTACTGGTC CTGCTGATGA TGAAGCCCCT 180 45 GATGCTGAAA CCACTGCTGC TGCAACCACT GCGACCACTG CTGCTCCTAC CACTGCAACC 240 ACCGCTGCTT CTACCACTGC TCGTAAAGAC ATTCCAGTTT TACCCAAATG GGTTGGGGAT 300 50 CTCCCGAATG GTAGAGTGTG TCCCTGAGAT GGAATCAGCT TGAGTCTTCT GCAATTGGTC 360 ACAACTATTC ATGCTTCCTG TGATTTCATC CAACTACTTA CCTTGCCTAC GATATCCCCT 420 TTATCTCTAA TCAGTTTATT TTCTTTCAAA TAAAAAATAA CTATGAGCAA CAAAAAAAAA 480 55 489 *даааааа*аа

(2) INFORMATION	FOR	SEQ	ID	NO:	45:
-----------------	-----	-----	----	-----	-----

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 534 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GAAGCAGTGT GTATCTATGA TTATATCTCT GTTCATCTAT ATATTTTTGA CATGTAGCAA	60
15	CACCTCTCCA TCTTATCAAG GAACTCAACT CGGTCTGGGT CTCCCCAGTG CCCAGTGGTG	120
	GCCTTTGACA GGTAGGAGGA TGCAGTGCTG CAGGCTATTT TGTTTTTTGT TACAAAACTG	180
	TOTTTTCCCT TTTCCCCTCC ACCTGATTCA GCATGATCCC TGTGAGCTGG TTCTCACAAT	240
20	CTCCTGGGAC TGGGCTGAGG CAGGGGCTTC GCTCTATTCT CCCTAACCAT ACTGTCTTCC	300
	TTTCCCCTTG CCACTTAGCA GTTATCCCCC CAGCTATGCC TTCTCCCTCC CTCCCTTGCC	360
25	CTGGCATATA TTGTGCCTTA TTTATGCTGC AAATATAACA TTAAACTATC AAGTGAAAAA	420
	AAAAAAAAA AAAACTCCAA GGGGGGGCCG GTACCCAATT CCCCCTATAN TGAGTCNTAT	480
	TACAATTCAC TGGGCCGTCG TTTTACAACG TCGTGAATGG GAAAACCTGG GCGT	534
30		
35	(2) INFORMATION FOR SEQ ID NO: 46:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT	60 120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GCCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAAACCCA TGTGAAAGCT CGGACAGCTC	120 180
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAAACCCA TGTGAAAGCT CGGACAGCTC AATTAGCCAA GATAAAATGG GTGATAAGTG TCGCTTTCTA CGTATTGCAG GCTGCCCTGA	120 180 240
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GECACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAAACCCA TGTGAAAGCT CGGACAGCTC AATTAGCCAA GATAAAATGG GTGATAAGTG TCCCTTTCTA CGTATTGCAG GCTGCCCTGA TGATCTCACT CATTTGGAAG TATTATTCTG TCCCTGTGGC TGTCGTGCCG AGTAAATGGA	120 180 240 300
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1374 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCCC GTCCTTCTCA TCCTTCATGT CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAAACCCA TGTGAAAGCT CGGACAGCTC AATTAGCCAA GATAAAATGG GTGATAAGTG TCGCTTTCTA CGTATTGCAG GCTGCCCTGA	120 180 240 300 360

	CAGGAGGATG	GATACAGCCG	CGAGGCTAAA	AAACGGATTT	CCTCTTCCTA	GCTTAAAATC	600
	TGATTTACAC	TGTTTTGTT	TTTAAGAAAC	AAAAGTGCAT	AGTTTAGATT	TTTTTTTTT	660
5	TTGAATATGT	TTGTTCTTGG	ACTITATGAG	AGAGTCTTAT	AAGAATCACG	ATTTTCTACA	720
	CCTGTCATTG	AGCCAAGAAA	GTCCAGTTTA	TGACACGTAT	GTACTAGTGA	ACACCGTCCT	780
	CGATCTGTAC	GAAATGTGAA	ATGTTTAGGG	ACATCTCCAT	GCTGTCACTT	GTGATTTGCC	840
10	CTCTTATGTA	TTTTGGTCAT	ATTGCCAACT	GGAAAGTCAA	AATTTTCTAA	CAACTTTAAG	900
	TAAGTTCTTT	GAAGACTTAG	TGCTGTTTTT	AATCCAGTTT	AGAAAGTAAC	TTAATTTTAA	960
15	TACCACTACT	AAAAATTCGA	AAATTTCTTC	TTTAATCACA	TTCAATATGG	TTAAAAGAAC	1020
	AACACTAATT	GACATTGCGT	GGGCTTTTTC	TCCCTTTGTT	TAAAATGTCA	TTTGTTGAGC	1080
20	AAGAGTTGTA	TAGTATTATC	TACTTACTTG	AGGCTGTTAA	TTTTTCATTA	CAGTGTTTTG	1140
20	TAAATGTATC	CACGAGACCA	TGATGCATTG	TTTTGTGCTC	AACTTGTGTT	TTGTATTTAA	1200
	AGCATTTTGA	ATGAAGTGTA	TTTTATAAGC	ATTTAATATT	TATGCTCTTT	AGAATGGAAC	1260
25	ACAGAAAACA	AACCTTATAA	GTCCTGATTA	ATCTGAACCA	ATAACCTGTG	TGGCCTACAA	132
	AGTATAATTO	TATTAAATGT	TCCTTAAAAC	AAAAAAAAA	AAAAAAAA	AAAA	137

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 596 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47: 40

	······	
	GAATTCGNCA CGAGATTACT TGGACATGAA AGAACTCAGG TTCAAGTTTA TTCATTTACT	60
45	AAGTTAGTTA AATCATGTGC CTTCCATGAG CCTTCATTTG GTAACTTGGA AAATGGAAAT	120
45	AATAACACTA GTCATATATA TTCTACACTG CTACCATATG GACCAAAGGG ATTATAGATT	180
	ACAATCACCA TCATTCCTGC TGACAGGTAT ATAGAAAACA ATTTCATTGA AGAAAAGTCC	240
50	TTACATTTAT CCTTTCCTA ATATCTGCAT GGGTAAACTA ATAAATATAG TCATTAGAAA	300
	ACCCTTATTA TTATTATTAG TTCAATGTGA GAACTGCTGC AGAAAAAATA TGCTTTATAA	360
e e	TATTITCITG AATATACATA ATATTCATAA ATTITCAAAT CATTGAAAAT TACCTTAAAA	420
55	TTGGAAAAAA TGTGCATTTC TACTCATATA ACAGTATAAA ATTCCTATGT CAATCTCTTT	480
	TTTTTTTTT TGTTTTGAGT TGGAGTCTCG CTCTGTCGCC CAGGCTGGGC AACAGAGCAG	540
60	GACCCTGTCT TAATTAAAAA AAAAAAAAAA AAACTCGAGG GGGGCCCGGT ACCCTA	596

3	(2) INFORMATION FOR SEQ ID NO: 48:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
15	CACATGAAGA CACACAGTGG TGAGAAGCCC TTCCGCTGCG CCCGCTGTCC TTATGCCTCT	60
	CCTCATCTGG ATAACCTGAA ACGGCACCAG CGCGTCCATA CAGGAGAGAA GCCCTACAAG	120
20	TGCCCCCTCT GCCCTTATGC CTGTGGCAAT CTGGCCAACC TCAAGCGTCA TGGTCGCATC	180
_0	CACTCTGGTG ACAAACCTTT TCGGTGTAGC CTTTGCAACT ACAGCTGCAA CCAGAGCATG	240
	AACCTCAAAC GTCACATGCT GCGGCACACA GGCGAGAAGC CTTCCGCTGT GCCACCTGCG	300
25	CCTATACCAC GGGCCACTGG GACAACTACA AGCGCCACCA GAAGGTGCAT GGCCACGGTG	360
	GGGCAGGAGG GCCTGGTCTC TCTGCCTCTG AGGGCTGGGC CCCACCTCAT AGCCCACCCT	420
30	CTGTTTTGAG CTCTCGGGGC CCACCAGCCC TGGGGACTGC TGGCAGCCGG GCTGTCCACA	480
50	CAGACTCATC CTGAACTAGG TCCTTCTTCC CCATGTTTTA TACAGACGGA CCAGAAGCCA	540
	CCTTTTTCTC CCCCGCTGGC CAGGGGCTCC ACACAGACTA ACGTAGGCAC TATAAGGACC	600
35	AGCCCAACCC CATGGGCGGG GGGGCCCATA TGGACCAGGG GACCTTGCCT TGACTGAGGC	· 660
	ACTICACGAG CICAGIGAGA AGGGCCCIGI ATTCACCICC ACTGCCCCCA GGGGCTGIGG	720
40	ACAAACCGGC TGGGGGACTG CCCAGCCTCC CACCTGTTTA TTTAACTTAT TTCAGTGCTT	780
70	TATAATAAAG GAAACACTAA CAAAGCCATG TCTATGCTGA ATTGGCAATG GCAGGCAATT	840
	TGGCCTTACC C	851
45		
50	(2) INFORMATION FOR SEQ ID NO: 49:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2020 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
JJ	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	GTGAAATGAA AACAGTCTTT TTATAGCCTT TAGCTTGTGA GTTTGGAAGT TTGGGGGGTC	60
60	TTATGITTGT TITGCCTCTT CTGTTTCTTG GAGGAGAGTT GAGGATTTTC TTATGTTCAT	100

	ACACAGACCC AGGTGAACAC GCTGACTGTG AACCTGCCCT GTATCCGGAG CTGTGCTGGG	180
	CACTGAGGGG ATGCAACAAA ATTAGGAGAG GWTCCTTGCT CCCAACGTCT ACTTCTCCTA	240
5	CCTCAACAGG GGTCCAGGGT GCAGTGAACT CAGTTCTTGG CCCTTGGGTG AGGATTCATG	300
	GATGAATGAA AGCTAGACCT GATGGGGAGG CATTATGACT AAATAGGCCC AGCCTCCTTC	360
10	CCTTCCAGCT CTGTCCTAGG AGCATAGGCG GGAAATCTGA GTAGAGTCTG ACTGCAGTTT	420
	TTGCTTATGA TTTGTAAAAG CCGTCATGGG GTCAATAAGA AAATAGGGGT GATGGAGGGG	480
1	GAGAAGCCCA GGACTGGGAG AATCGCACGT GCCCCAGGGG TTTTCACCAA GGATTTTCAA	540
15	GACAAACTGG AGTAAGAATT AAAGCCCCAG AGGATTTAAT TATCCTGGTT TGCAAAAGAG	600
	CCTCCCATGC CAGTACCGCC CAGCCTTGGA GGCCGGAATG CTCATGGCCC CTGTGGTCTG	660
20	CTTGTCCTTC AGCCCATGCC CAGCAGATAC CTCTCTGACT GGAGACGGGC TCAAAGCTGG	720
	ATTAGAAAGG GGAGMGGCAC TTGTGACTTT GTTTGACTCT GTGACTCACT TCCTCGCTCA	780
25	CACCTTGTTT GAACTACTGG ACTTTCAACT GGCTTTCCTT AGGTCAGGCA AGCAGACAGC	840
23	TCCCCACTGA AGAGGTCTGT ACAGTGACAA CCCGGGCCGG CAGCAAGGAC ACAGATGCAG	900
	CCACAGTAAG GCTCCATCAG GACTGGGTCA GTGATGGCAA CAGGATGGCC AAGGATGGCT	960
30	CTAGAACAYT CTGTCCATGC GTCACTCCCC CCAGTTTTRT TTTTAGCTTT GGCTTCAGGG	1020
	AGTGACAGCC ATCACAAATA GCCACATTCT GCTCTACTCT CCAACATACC AGATTSTACA	1080
35	CTGTTGTTAT TTCATGAGAC GTGAATGTTG CAGAGAGTGG GGGGATTCTG GTTGTTAAGG	1140
33	AACTTACACT GGGGAGCTTT ACTCTTCCGT GTCAACAATG TGACTACATG TTCTCCAGAT	1200
	TAGCCACACA TGCAAACATC AGTGTCCTTC TAGCTTTANC CGAGAAAGAA ACCAGTCCCA	1260
40 .	GGGAATGAAT GGTGGTCTCC CCACTCCCGG CAGCACTTTA GGCAGCCCAT AAGCTATGCG	1320
	AGAATGTGAA CGCTCACCTT GCTCCGTCAC GGTTCTGACC TACCACATAA ACAGGAAGAA	1380
45	GCCAGTGACC GGAACAGCTC TAGGAATAAC AAGTCAGAAT AGAAGTGTCC TTTATATTAC	1440
43	CAGAAAATAT GGGCTTGGCC TAAGTCGCTG TCTCCTAACC TGCCGGGGTC ATTCCCCACC	1500
	AAACACCCCA TACTAAGGAG CCATGAGCCA CCTGGACATT CACCTTTTCT TTGACCATCT	1560
50	GGAGTCTGGG GCAACTTAAG GAAGGCNCCA CACAGTGGTG CAGGCACATT TCCAAGCGTA	1620
	GCTGTCCCTG GCTTTTGTGG CCAAAGCTAG TGTTATGGTC AACAACAGGC CAGGGTCTGT	1680
55	GGGGCACTGA CCTTGAAAGT GGCAAAATGG AGGTTTCACA GGCTGTGCGG GAGCAGGACG	1740
33	GCTTGCTTCA TCTAACAATC TCAGTTTCCT TTAAAAAAAG AAAGAAAGGA AAAGATTTCA	1800
	TAAGCAGGTG TCAGTGGACA GTTTAAGYAC TTAACCATTT CTCTTTCTTC TTATGGATGT	1860
60	GAACTOTGCT GTGGATAAAT CATTTGTATT TCTTGAATGT TCTCTATGAC TAACAGTTAT	1920

	TAAGTCGGTT GTGTATATGT GTAACTAATG TAACTGCCTT TTAAAATTTC ATTACAATAA	1980
5	AAATGACTTT GCTCTGAAMA AAAAAAAAAA AAAAACTCGA	2020
10	(2) INFORMATION FOR SEQ ID NO: 50:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2432 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
20	ATGAAGGGTC GTTGGTGGGA AAGATGGCGG CGACTCTGGG ACCCCTTGGG TCGTGGCAGC	60
20	AGTGGCGGCG ATGTTTGTCG GCTCGGGATG GGTCCAGGAT GTTACTCCTT CTTCTTTTGT	120
	TGGGGTCTGG GCAGGGGCCA CAGCAAGTCG GGGCGGGTCA AACGTTCGAG TACTTGAAAC	180
25	GGGAGCACTC GCTGTCGAAG CCCTACCAGG GTGTGGGCAC AGGCAGTTCC TCACTGTGGA	240
	ATCTGATGGG CAATGCCATG GTGATGACCC AGTATATCCG CCTTACCCCA GATATGCAAA	300
30	GTAAACAGGG TGCCTTGTGG AACCGGGTGC CATGTTTCCT GAGAGACTGG GAGTTGCAGG	360
	TGCACTTCAA AATCCATGGA CAAGGAAAGA AGAATCTGCA TGGGGATGGC TTGGCAATCT	420
	GGTACACAAG GAATCGGATG CAGCCAGGGC CTGTGTTTGG AAACATGGAC AAATTTGTGG	480
35	GGCTGGGAGT ATTTGTAGAC ACCTACCCCA ATGAGGAGAA GCAGCAAGAG CGGGTATTCC	540
	CCTACATCTC AGCCATGGTG AACAACGGCT CCCTCAGCTA TGATCATGAG CGGGATGGGC	600
40	GGCCTACAGA GCTGGGAGGC TGCACAGCCA TTGTCCGCAA TCTTCATTAC GACACCTTCC	- 660
	TGGTGATTCG CTACGTCAAG AGGCATTTGA CGATAATGAT GGATATTGAT GGCAAGCATG	720
	AGTGGAGGGA CTGCATTGAA GTGCCCGGAG TCCGCCTGCC CCGCGGCTAC TACTTCGGCA	780
45	CCTCCTCCAT CACTGGGGAT CTCTCAGATA ATCATGATGT CATTTCCTTG AAGTTGTTTG	840
	AACTGACAGT GGAGAGAACC CCAGAAGAGG AAAAGCTCCA TCGAGATGTG TTCTTGCCCT	900
50	CAGTGGACAA TATGAAGCTG CCTGAGATGA CAGCTCCACT GCCGCCCCTG AGTGGCCTGG	960
50	CCCTCTTCCT CATCGTCTTT TTCTCCCTGG TGTTTTCTGT ATTTGCCATA GTCATTGGTA	1020
	TCATACTCTA CAACAAATGG CAGGAACAGA GCCGAAAGCG CTTCTACTGA GCCCTCCTGC	1080
55	TGCCACCACT TTTGTGACTG TCACCCATGA GGTATGGAAG GAGCAGGCAC TGGCCTGAGC	1140
	ATGCAGCCTG GAGAGTGTTC TTGTCTCTAG CAGCTGGTTG GGGACTATAT TCTGTCACTG	1200
60	GAGTITIGAA TGCAGGGACC CCGCATTCCC ATGGTTGTGC ATGGGGACAT CTAACTCTGG	1260

240

60

	TCTGGGAAGC CACCCACCCC AGGGCAATGC TGCTGTGATG TGCCTTTCCC TGCAGTCCTT	1320
	CCATGTGGGA GCAGAGGTGT GAAGAGAATT TACGTGGTTG TGATGCCAAA ATCACAGAAC	1380
5	AGAATTTCAT AGCCCAGGCT GCCGTGTTGT TTGACTCAGA AGGCCCTTCT ACTTCAGTTT	1440
	TGAATCCACA AAGAATTAAA AACTGGTAAC ACCACAGGCT TTCTGACCAT CCATTCGTTG	1500
	GGTTTTGCAT TTGACCCAAC CCTCTGCCTA CCTGAGGAGC TTTCTTTGGA AACCAGGATG	1560
10	GAAACTICTT CCCTGCCTTA CCTTCCTTTC ACTCCATTCA TTGTCCTCTC TGTGTGCAAC	1620
	CTGAGCTGGG AAAGGCATTT GGATGCCTCT CTGTTGGGGC CTGGGGCTGC AGAACACACC	1680
15	TGCGTTTCAC TGGCCTTCAT TAGGTGGCCC TAGGGAGATG GCTTTCTGCT TTGGATCACT	1740
	GTTCCCTAGC ATGGGTCTTG GGTCTATTGG CATGTCCATG GCCTTCCCAA TCAAGTCTCT	1800
	TCAGGCCCTC AGTGAAGTTT GGCTAAAGGT TGGTGTAAAA ATCAAGAGAA GCCTGGAAGA	1860
20	CATCATGGAT GCCATGGATT AGCTGTGCAA CTGACCAGCT CCAGGTTTGA TCAAACCAAA	1920
	AGCAACATTT GTCATGTGGT CTGACCATGT GGAGATGTTT CTGGACTTGC TAGAGCCTGC	1980
25	TTAGCTGCAT GTTTTGTAGT TACGATTTTT GGAATCCCAC TTTGAGTGCT GAAAGTGTAA	2040
	GGAAGCTTTC TTCTTACACC TTGGGCTTGG ATATTGCCCA GAGAAGAAAT TTGGCTTTTT	2100
20	TITTCTTAAT GGACAAGAGA CAGTTGCTGT TCTCATGTTC CAAGTCTGAG AGCAACAGAC	2160
30	CCTCATCATC TGTGCCTGGA AGAGTTCACT GTCATTGAGC AGCACAGCCT GAGTGCTGGC	2220
	CTCTGTCAAC CCTTATTCCA CTGCCTTATT TGACAAGGGG TTACATGCTG CTCACCTTAC	2280
35	TGCCCTGGGA TTAAATCAGT TACAGGCCAG AGTCTCCTTG GAGGGCCTGG AACTCTGAGT	2340
	CCTCCTATGA ACCTCTGTAG CCTAAATGAA ATTCTTAAAA TCACCGATGG AACCAAAAAA	2400
40	AA AAAAAAAA AAAAAAAA AAAAAAAA	2432
40		
45	(2) INFORMATION FOR SEQ ID NO: 51:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2340 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
55	GACGCTGGGG GCGGGTGGGG GCGCGGGTA CCGGGCTGGA CGGCCGGCCG GCGCCCCCTC	60
55	ATTAGTATGC GGACGAAGCG GCGGGCTGCG CGGAGNGACG TCCCCTGCAG CCGCGGACCG	120

AGGCAGCGGC GGCACCTGCC GGCCGAGCAA TGCCAAGTGA GTACACCTAT GTRAAACTGA

GAAGTGATTG CTCGAGGCCT TCCCTGCAAT GGTACACCCG AGCTCAAAGC AAGATGAGAA

	GOCCCAGCTT GITATTAAAA GACATCCTCA AATGTACATT GCTTGTGTTT GGAGTGTGGA	30
5	TCCTTTATAT CCTCAAGTTA AATTATACTA CTGAAGAATG TGACATGAAA AAAATGCATT	36
	ATGTGGACCC TGACCATGTA AAGAGAGCTC AGAAATATGC TCAGCAAGTC TTGCAGAAGG	420
	AATGTCGTCC CAAGTTTGCC AAGACATCAA TGGCGCTGTT ATTTGAGCAC AGGTATAGCG	486
10	TGGACTTACT CCCTTTTGTG CAGAAGGSCC CCAAAGACAG TGAAGCTGAG TCCAAGTACG	540
	ATCCTCCTTT TGGGTTCCGG AAGTTCTCCA GTAAAGTCCA GACCCTCTTG GAACTCTTGC	600
15	CAGAGCACGA CCTCCCTGAA CACTTGAAAG CCAAGACCTG TCGGCGCTGT GTGGTTATTG	660
	GAAGCGGAGG AATACTGCAC GGATTAGAAC TGGGCCACAC CCTGAACCAG TTCGATGTTG	720
	TGATAAGGTT AAACAGTGCA CCAGTTGAGG GATATTCAGA ACATGTTGGA AATAAAACTA	780
20	CTATAAGGAT GACTTATCCA GAGGGCGCAC CACTGTCTGA CCTTGAATAT TATTCCAATG	840
	ACTTATTTGT TGCTGTTTTA TTTAAGAGTG TTGATTTCAA CTGGCTTCAA GCAATGGTAA	900
25	AAAAGGAAAC CCTGCCATTC TGGGTACGAC TCTTCTTTTG GAAGCAGGTG GCAGAAAAAA	960
	TCCCACTGCA GCCAAAACAT TTCAGGATTT TGAATCCAGT TATCATCAAA GAGACTGCCT	1020
	TTGRACATCC TTCAGTACTC AGAGCCTCAG TCAAGGTTCT GGGGGCCGAG ATAAGAACGT	1080
30	CCCCACAATC GGTGTCATTG CCGTTGTCTT AGCCACACAT CTGTGCGATG AAGTCAGTTT	1140
	GGCGGGTTTT GGATATGACC TCAATCAACC CAGAACACCT TTGCACTACT TCGACAGTCA	1200
35	ATGCATGGCT GCTATGAACT TTCAGACCAT GCATAATGTG ACAACGGAAA CCAAGTTCCT	1260
	CTTAAAGCTG GTCAAAGAGG GAGTGGTGAA AGATCTCAGT GGAGGCATTG ATCGTGAATT	1320
	TTGAACACAG AAAACCTCAG TTGAAAATGC AACTCTAACT CTGAGAGCTG TTTTTGACAG	1380
40	CCTTCTTGAT GTATTTCTCC ATCCTGCAGA TACTTTGAAG TGCAGCTCAT GTTTTTAACT	1440
	TITAATTTAA AAACACAAAA AAAATTTTAG CTCTTCCCAC TTTTTTTTTC CTATTTATTT	1500
45	GAGGTCAGTG TITGTTTTTG CACACCATTT TGTAAATGAA ACTTAAGAAT TGAATTGGAA	1560
	AGACTTCTCA AAGAGAATTG TATGTAACGA TGTTGTWFTG ATTTTTAAGA AAGTAATTTA	1620
	ATTTGTAAAA CTTCTGCTCG TTTACACTGC ACATTGAATA CAGGTAACTA ATTGGAAGGA	1680
50	GAGGGGAGGT CACTCTTTTG ATGGTGGCCC TGAACCTCAT TCTGGTTCCC TGCTGCGCTG	1740
	CTTGGTGTGA CCCACGGAGG ATCCACTCCC AGGATGACGT GCTCCGTAGC TCTGCTGCTG	1800
55	ATACTGGGTC TGCGATGCAG CGGCGTGAGG CCTGGGCTGG TTGGAGAAGG TCACAACCCT	1860
	TCTCTGTTGG TCTGCCTTCT GCTGAAAGAC TCGAGAACCA ACCAGGGAAG CTGTCCTGGA	1920
	GGTCCCTGGT CGGAGAGGGA CATAGAATCT GTGACCTCTG ACAACTGTGA AGCCACCCTG	1980
60	GGCTACAGAA ACCACAGTCT TCCCAGCAAT TATTACAATT CTTGAATTCC TTGGGGATTT	2040

	TTTACTGCCC TTTCAAAGCA CTTAAGTGTT AGATCTAACG TGTTCCAGTG TCTGTCTGAG	2100
	GTGACTTAAA AAATCAGAAC AAAACTTCTA TTATCCAGAG TCATGGGAGA GTACACCCTT	2160
5	TCCAGGAATA ATGTTTTGGG AAACACTGAA ATGAAATCTT CCCAGTATTA TAAATTGTGT	2220
	ATTTAAAAAA AAGAAACTTT TCTGAATGCC TACTGGCGGT GTATACCAGG CAGTGTGCCA	2280
10	GTTTAAAAAG ATGAAAAAGA ATAAAAACTT TTGAGGAAMA AAAAAAAAAA AAAAACTCGA	2340
15	(2) INFORMATION FOR SEQ ID NO: 52:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 601 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
25	ACTACGGGAG ACTGAGACTG ACCGGTAGCC AGGCAGGCGG ACGACGCACG CCCGGACAGA	60
	CTGAGCAGGC GCCGGAGAAC CACTCACAGG TTCCCCCCGC CTTTCCCTTT GAAANCTAGG	120
30	CTTTTGCCTT TCCCGTGGCG CCCGAGAGAG AATGCTGGAC TCTGCCGACT TCAGCGCAAC	180
30	TAANGATTTC TCAAGCTAGG GGACAAACGA TCAGCCCAAT CCTGAGAAGG GGGGAACCAA	240
	GCACCCCGTC CCCATCCCCC TCCCCTCCCC CGACTAAACT CGGGCGCCAA ACCCAGCCCT	300
35	TCTCTAACCA CCCTACTTCC TCCTCTCTT TCTAGCATGG TGGCTGTATG GACAGTCTGA	360
	CAGAACAGAG ACTGACATCT CCCAATCTGC CGGCCCCCCA CCTGGAACAC TACAGTGTTC	420
40	TGCATTGCAC CATGACCCTG GATGTGCAAA CTGTAGTCGT TTTTGCCGTG ATTGTAGTCC	480
40	TCCTGCTTGT CAATGTCATA CTCATGTTTT TCCTGGGAAC GCGCTGAATG GAGTCCAGNC	540
	ACCTGAGCTG TCGCGAACTC TCGCTTTGAT TTCATCCCGA GAGCCACCGA GAAGAAAAAA	600
45	A	601
50	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 359 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

10	AGAGTGAGTT GTTATAAAAC AATGCTGCCT CTTCTATTTT GCGCTTTTTG TTTGCACAAA CTCGGTCCCC TTCTGTTTCT CTACGATGTT TTGATGCRGC ATGAGGCAGT CATGAGAACC CACCAGATAC AGCTGCCTGA TCCTGAATTT CCCAGCCAAC AGAACCAAGT GCTAAATAAA ACTCTTTTTA ATAAGTTAAA AAAAAAAAA AAAAAAAAA AANAAAANAN AAAAAA	180 240 300 359
10	CACCAGATAC AGCTGCCTGA TCCTGAATTT CCCAGCCAAC AGAACCAAGT GCTAAATAAA	300
	ACTCTTTTTA ATAAGTTAAA AAAAAAAAA AAAAAAAAA AANAAANANA AAAAAA	359
15		
15		
	(2) INFORMATION FOR SEQ ID NO: 54:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1141 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
25	GGCACGAGCT GCTGAGGCGT GAGAATGGCG TCCCGCGGCC GGCGTCCGGA GCATGGCGGA	60
	CCCCCAGAGC TGTTTTATGA CGAGACAGAA GCCCGGAAAT ACGTTCGCAA CTCACGGATG	120
30	ATTGATATCC AGACCAGGAT GGCTGGGCGA GCATTGGAGC TTCTTTATCT GCCAGAGAAT	180
50	AAGCCCTGTT ACCTGCTGGA TATTGGCTGT GGCACTGGGC TGAGTGGAAG TTATCTGTCA	240
	GATGAAGGCC ACTATTGGGT GGGCCTGGAT ATCAGCCCTG CCATGCTGGA TGAGGCTGTG	300
35	GACCGAGAGA TAGAGGGAGA CCTGCTGCTG GGGGATATGG GCCAGGGCAT CCCATTCAAG	360
	CCAGGCACAT TTGATGGTTG CATCAGCATT TCTGCTGTGC AGTGGCTCTG TAATGCTAAC	420
40	AAGAAGTCTG AAAACCCTGC CAAGCGCCTG TACTGCTTTT TTGCTTCTCT TTTTTCTGTT	480
	CTCCTCCGGG GATCCCGAGC TGTCCTGCAG CTGTACCCTG AGAACTCAGA GCAGTTGGAG	540
	CTGATCACAA CCCAGGCCAC AAAGGCAGGC TTCTCCGGTG GCATGGTGGT AGACTACCCT	600
45	AACAGTGCCA AAGCAAAGAA ATTCTACCTC TGCTTGTTTT CTGGGCCTTC GACCTTTATA	660
	CCAGAGGGGC TGAGTGAAAA TCAGGATGAA GTTGAACCCA GGGAGTCTGT GTTCACCAAT	720
50	GAGAGGTTCC CATTAAGGAT GTCGAGGCGG GGAATGGTGA GGAAGAGTCG GGCATGGGTG	780
	CTGGAGAGA AGGAGCGCA CAGGCGCCAG GGCAGGGAAG TCAGACCTGA CACCCAGTAC	840
	ACCGGCCGCA AGCGCAAGCC CCGCTTCTAA GTCACCACGC GGTTCTGGAA AGGCACTTGC	900
55	CTCTGCACTT TTCTATATTG TTCAGCTGAC AAAGTAGTAT TTTAGAAAAG TTCTAAAGTT	960
	ATAAAAATGT TTTCTGCAGT AAAAAAAAAG TTCTCTGGGC CGGGCGTGGT GGCTCACACC	1020
60	TGTAATCCCA GCACCTTGGG AGGCTGAGGT GGGAGGATCA TTTGAGGCCA GGAGTTTGAG	1080

60

	ACCTGCCTGG GCAACATAAT GAAACTTCCT TTCCAGGGAG AAAAAAAAAA	1140
	A	1141
. 5		
•	(2) INFORMATION FOR SEQ ID NO: 55:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1560 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	TCCTTCTCTG GGGCGGTCGC GTTGGCAGCG GATGCGGGAA GCCGGACTCT GGGCGTCATG	60
20	TACTACAAGT TTAGTGGCTT CACGCAGAAG TTGGCAGGAG CATGGGCTTC GGAGGCCTAT	120
	AGCCCGCAGA TINAAAGCCI GIGGITICCA CAGAAGCACC ACCIAICATA IIIGCCACAC	180
0.5	CAACTAAACT GACCTCCGAT TCCACAGTGT ATGATTATGC TGGGAAAAAC AAAGTTCCAG	240
25	AGCTACAAAA GTTTTTCCAG AAAGCTGATG GTGTGCCCGT CTACCTGAAA CGAGGCCTGC	300
	CTGACCAAAT GCTTTACCGG ACCACCATGG CGCTGACTGT GGGAGGGACC ATCTACTGCC	360
30	TGATCGCCCT CTACATGGCT TCGCAGCCCA AAAACAAATG AGTTAGGCTG CAGAGGACTG	420
	GTTTGTTTTT TGGCATAAAC CCTTTGAAGT TCCTTTTTCA TTGTTAAATT AAAATTTTTT	480
25	TTTTTACTTG GATGGCTTAA CATTTTTGCA AGAAAAATAG GAAGATATGA AGATGATGTT	540
35	TTGGTTTGTT TATGAAATGC ATATGGCTTG TCAGAGCTCA TTCGACAGTT AAAGCCATTG	600
	TTTAAAGAAA CGGTGCTTTG CTCTGTGTTT GTGCTCCTGA TTTCCCTGGA GGTTCTGGAT	660
40	GAAGGCTGAA CACAGGCTTG TTAATGTCAG TCTGTGCTGA GGACCTCAGG GACTTGAGGT	720
	TGCATTTTTG AGCATGGGGT GCAGGAGCCT TTCTGGATTT GGATGTGGCT ATGGAAAGAA	780
	CACAGAAGCC AAGGTCATGT GCATGAAATG AGGAGTTTGA GTTAGTCACC TCGGGGATTT	840
45	TTTCCATTTT GCAGTAAAAT GTTAAATTAA TGTAGCCTGC CTCTATTTGT TGGGCAGGTA	900
	ATTTCAAAGG GTTATTTGCC TCATCTCCTA TCTTTAGTGA AATCTTATGT GTAATTGTGT	960
50	GTATTTATTC CACCGTGGGA ACAGAGAATA CCTGTTTAGT GTTGCACTTT AGACTGGTGT	1020
	CTGTTTTGTT AATGCAGCTG TGCCACAAAT TCTCCTTTAT CTTTTAAAAA TGTTATAGCT	1080
	TTAAATTTTG ATTTATTTTG ACTGTGGAAT AAATACATGA ATGAAAAATT TTAAGTTTGA	1140
55	AGTTCTTTGA ATGACCTTTC AGAGTAATTT CAGAACACCA GCAGCATCTT AAACCTGAGT	1200
	CTAATTICTT TCTTGTTAAT TAGGCACCAG ATAATCTTTA TAAAATGGTC TTAAAAGCTA	1260

GTAATAGGAG CTTAATGGCA ATKGATGATT ACCACAKGGT TTTTTATAAA AACCTGCCTG

	CCCCIWAGIG AAAGGTACCT GTAACYCACA GTYCATTTAG ACACTAATTT CCTYTGCYGT	138
5	CATGATTGGK AGACTTCACT TACCCTATAT TAATTTTGAA AAAAGGTGGA ATTTTATTAT	144
	ATATGAAGGA ATAGTTTGTA TCTTACCATA GCACAGAACA GTGACCTCTT GCTCAGGATA	150
	AGATGTGGTG ATTTGAAAAT ACTCATAGTA GCCTTGCAGT GATACCTCTC TCNCTCTCTC	1560
10		
	(2) INFORMATION FOR SEQ ID NO: 56:	-
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1507 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	GGAACGCAGA GCGGAGCGTG GAGAGCCGGAG CGAAGCTGGA TAACAGGGGA CCGATGATGT	60
25	GGCGACCATC AGTTCTGCTG CTTCTGTTGC TACTGAGGCA CGGGGCCCAG GGGAAGCCAT	120
	CCCCAGACGC AGGCCCTCAT GGCCAGGGGA GGGTGCACCA GGCGGCCCCC CTGAGCGACG	180
30	CTCCCCATGA TGACGCCCAC GGGAACTTCC AGTACGACCA TGAGGCTTTC CTGGGACGGG	240
	AAGTGGCCAA GGAATTCGAC CAACTCACCC CAGAGGAAAG CCAGGCCCGT CTGGGGCGGA	300
	TCGTGGACCG CATGGACCGC GCGGGGGACG GCGACGCTG GGTGTCGCTG GCCGAGCTTC	360
35	GCGCGTGGAT CGCGCACACG CAGCAGCGGC ACATACGGGA CTCGGTGAGC GCGGCCTGGG	420
	ACACGTACGA CACGGACCGC GACGGCGTG TGGGTTGGGA GGAGCTGCGC AACGCCACCT	480
40	ATGGCCACTA CGCGCCCGGT GAAGAATTTC ATGACGTGGA GGATGCAGAG ACCTACAAAA	5 4 0
	AGATGCTGGC TCGGGACGAG CGGCGTTTCC GGGTGGCCGA CCAGGATGGG GACTCGATGG	600
	CCACTCGAGA GGAGCTGACA GCCTTCCTGC ACCCCGAGGA GTTCCCTCAC ATGCGGGACA	660
45	TCGTGATTGC TGAAACCCTG GAGGACCTGG ACAGAAACAA AGATGGCTAT GTCCAGGTGG	720
	AGGAGTACAT CGCGGATCTG TACTCAGCCG AGCCTGGGGA GGAGGAGCCG GCGTGGGTGC	780
50	AGACGGAGAG GCAGCAGTTC CGGGACTTCC GGGATCTGAA CAAGGATGGG CACCTGGATG	840
20	GGAGTGAGGT GGGCCACTGG GTGCTGCCCC CTGCCCAGGA CCAGCCCCTG GTGGAAGCCA	900
	ACCACCTGCT GCACGARAGC GACACGGACA AGGAYGGGCG GCTGAGCAAA GCGSAAATCC	960
55	TGGGTAATTG GAACATGTTT GTGGGCAGTC AGGCCACCAA CTATGGYGAG GACCTGACCC	1020
	GGCACCACGA TGAGCTGTGA GCMCCGNGCA CCTGCCACAG CCTCAGAGGC CCGCACAATG	1080
6 0	ACCGGAGGAG GGGCCGCTGT GGTCTGGCCC CCTCCCTGTC CAGGCCCCGC AGGAGGCAGA	1140
60		

		1200
	TGCAGTCCCA GGCATCCTCC TKCCCCTGGG CTCTCAGGGA CCCCCTGGGT CGGCTTCTGT	1200
	CCCTGTCACA CCCCCAACCC CAGGGAGGGG CTGTCATAGT CCCAGAGGAT AAGCAATACC	1260
5	TATTTCTGAC TGAGTCTCCC AGCCCAGACC CAGGGACCCT NGGCCCCAAG CTCAGCTCTA	1320
	AGAACCGCCC CAACCCCTCC AGCTCCAAAT CTGAGCCTCC ACCACATAGA CTGAAACTCC	1380
	CCTGGCCCCA GCCCTCTCCT GCCTGGCCTG GCCTGGGACA CCTCCTCTCT GCCAGGAGGC	1440
10	AATAAAAGCC AGCGCCGGGA AAAAAAAAAA AAAAAAAAA AAAAAAAA	1500
	AAAAAN	1507
15		
	(2) INFORMATION FOR SEQ ID NO: 57:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
	GAATTCGGCA CGAGCAGTGT CCAACACTGT AGCTGGTGCC TGCCAGGTTC CCAGTGGCTG	60
30	GGGTCACCAG GTCTGAAGAG AGATGTGCTG GCTGCGGGCA TGGGSCCAGA TCYTCCTGCC	120
	AGTTTTCYTC TCCYTCTTTC TCATCCAATT GCTTATCAGC TTCTCAGAGA ATGGTTTTAT	180
35	CCACAGCCCC AGGAACAATC AGAAACCAAG AGATGGGAAT RAAGAGGAAT GTGCTGTAAA	240
22	GAAGACTTGT CAATTGTGCA CAGAAGATAA GAAATATATG ATGAATAGAT AATTGAAAAG	300
	AGATCCTCCA GAAAGAGCAG AAGGAAGTTT CTTCAATGGC TTCCTTCAGG ATTTTAATCA	360
40	TCCTTACAGC CTCTTTGAGA ATGATTGAAC TTCCAAATTC CCTGAAGTTA AAATTTTAAA	420
	TTCTATTAAA CATTTTTTCG AGTAAAAAA	450
٠ .		
45		
	(2) INFORMATION FOR SEQ ID NO: 58:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1147 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	GGCACGAGAC CCATTGAGCA GAAGGAGGCC AGGTGGGAAA GCTCCTGGGA AGAGCAGCCA	60
60	GACTOGACAC TEGGCTGCTT GAGTCCTGAG TCACAATTCA GAATTCCTGG GCTCCCTGGG	120
UU		

	TGCATTCTAT	CATTCCAGTT	GAAAGTTTGC	TTCCTTCCAG	TCATGTGGCT	CTTCATTCTA	180
	CTCTCCTTGG	CTCTCATTTC	AGATGCCATG	GTCATGGATG	AAAAGGTCAA	GAGAAGCTTT	240
5	GTGCTGGACA	CGGCTTCTGC	CATCTGCAAC	TACAATGCCC	ACTACAAGAA	TCACCCCAAA	300
	TACTGGTGCC	GAGGCTATTT	CCGTGACTAC	TGCAACATCA	TCGCCTTCTC	CCCTAACAGC	360
10	ACCAATCATG	TGGCCCTGAA	GGACACAGGG	AACCAGCTCA	TTGTCACTAT	GTCCTGCCTG	420
10	AACAAAGAAG	ACACGGGCTG	GTACTGGTGT	GGCATCCAGC	GGGACTTTGC	CAGGGATGAC	480
	ATGGATTTTA	CAGAGCTGAT	TGTAACTGAC	GACAAAGGAA	CCTGGCCAAT	GACTTTGGTC	540
15	TGGGAAAGAC	TATCAGGCAC	AAAACCAGAA	GCTGCAAGGC	TCCCAAAGTT	GTCCGCAAGG	600
	CTGACCGCTC	CAGGACGTCC	ATTCTCATCA	TTTGCATACT	GATCACGGGT	TTGGGAATCA	660
20	TCTCTGTAAT	CAGTCATTTG	ACCAAAAGGA	GGAGAAGTCA	AAGGAATAGA	AGGGTAGGCA	720
20	ACACTTTGAA	GCCCTTCTCG	CGTGTCCTGA	CTCCAAAGGA	AATGGCTCCT	ACTGAACAGA	780
	TGTGACTGAA	GATTTTTTTA	ATTTAGTTCA	TAAAGTGATG	CTACAACAGA	ATAATCACCA	840
25	TGACAACTGG	CCCCACACCT	CAGAGACTGA	TTCTGATCTC	CCAGGAATTC	TGAAGGTCCC	900
•	TCTATCCTTG	ACAACAATCA	TTTGCAGCCA	GGTAGCAACG	GCAGTAGTCA	GAGGAGCTAT	960
30	GATAGACCAC	ACCCAAGCAA	GGCTGCCCTC	AAATAACATC	TCAAGATCTT	AGTTCTTATG	1020
,0	CATTCCATCA	GTCAGAAGTG	AAGAAGAGGT	GGAGAATCTG	GATTGGGGAC	CAGGAAATCA	1080
	CTTGTATTTT	GTTAGCCAAT	AAATTCCTAG	CCAGTGTTGA	ATGAAAAAA	АААААААА	1140
35	AAAAAA			•			1147

40 (2) INFORMATION FOR SEQ ID NO: 59:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

50	GGCAGAGGCT	CCTCAGAAGG	GCGTGGGCTC	TCCAGTCTTC	CACAGTCCCC	ACCATGCCCT	60
	GTTGCCTTAC	CGCTGACGTA	GCTCACCCAT	CTTTTACTTG	CCTGGCTAAG	ATGCATGGCA	120
55	TYWCATTICC	TCCTTGTTGC	ACTGCAGTCA	GTCCCTCACT	GCCCCCATCT	CCTGGAAGAG	180
	GAGCATAAGC	TTTGCAAGGT	CAGCCACTTC	TCTGGGGTCA	CACTAGTTAC	ATCAAGACAG	240
	GACTCCAGCT	CATATGTGCC	AGTGCAGACA	CTCTTCATCC	ACCTGGGGCC	CTGGGCTTGG	300
60	GACCTGGYTC	CTTGCACAGC	AGARGACCCG	GAGGCTGAGA	GGAGCTTGCG	GTTGTGTCAT	360

960

60

	AGTCACCTGG CCAGARGGAA CGTGAGCCCC TCCCAAGCTG CAGARGGARG GARCARGCGT	420
5	GGCTGTCAGC ACCGAGGTAG CAGAGAATTA ACATTCTTGT CAGCAGAGAA TGAAGCAGGA	480
	ATATAATTAA AACTITGCCC TTGGAATAGC TGATTCATTT GAATTTTATT CCACACGTTT	540
	GAAAGAGGAA AGAAAATGTG AAGACTTGCA GCCTGGTTCT CGCCTGGCCT GGGCTGGCCC	600
10	AGCTGTCAGG CCCGGTTCCT TTCTGAGCAT TCAGTCCACT GATGTTGACT GAGGGCCAGG	660
	AGAGACCCTC AGCAGGGTAT TACCATATCA GCCTCCTATC GCTGCTGGGA GAAATTACCA	720
15	TGAATTCAGT GGCTTAAAAC AACACACGAG CCTCTCTGAG CCTACCCTGG CTCAGGA	777
20	(2) INFORMATION FOR SEQ ID NO: 60:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1191 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
30	AAGANTGATT TTCCTTACTC TCCAAAGCGT CAGCATTITG AAGTTTCTTT TATGAAAGTG	60
,	GGGGCAAGAA TCAGGGTGAA AATGAGTGTA AACAAAGCCC ATCCTGTGGT CAGCACCCAC	120
	TGGAGGTGGC CAGCAGAGTG GCCTCAGATG TTCCTGCACC TGGCCCAGGA GCCCAGGACA	180
35	GAGGTCAAAT CTAGGCCCCT TGGTCTGGCT GGATTCATCA GGCAAGATTC GAAAACAAGA	240
	AAACCTCTAG AACAAGAAAC AATCATGTCT GCAGCAGATA CGGCACTGTG GCCCTATGGC	300
40	CATGGCAATC GTGAGCACCA AGAGAATGAG TTACAGAAAT ATCTCCAATA CAAAGACATG	360
70	CATCTCCTGG ACAGTGGACA GTCGCTGGGA CACACACAC CACTTCAAGG CTCACACAAC	420
	CTAACAGCCT TAAATATCTG AAGAAACAGA ATCACGACAT TAAGTCAGCA GAGGGAGAGG	480
45	TAGGCTGAAG CAGCAGGAGG CCAATTTTAT ATCCCACAGA TTTTTTTAAA AATGACTCCC	540
	CAGCAAGGGG TGGGGAGAAA GCCACTGATT TAGGAGAGTT CTTGGCTCAG CCAACCACTG	600
50	CGGTTATCTA CACGTTTTAC AAAGGCACRG AAGTAGAGAG GGGCTGCACT CACGACCCTC	660
	CCCAGGGCCC GCACAGCCAG ACACGGTGGG TTCTTCCTTT TTCCCTTCTG GCCTTGGTGG	720
	AATTCCTACC ACGGTGGCCT CTGCCTTTGG GACAATGCCT TCATGCTCAT CCCCGGGTCA	780
55	AGGATGGAGT CTGTTACCAT TTTCCAGGGG AAATTCCAAG GACCAGCCCC GCCTCATTAC	840

GTTCACCCCA CAGGAAGGTG ATCTGGAAAG CCTGTAAACA CGTACTCTGG GTGGCTGAGT

GGTGTCACCA AGCTGCTTTT GTGCAGGGCT GAAGCACAGA CAAGAGGGCA GGCAGCTGCC

	GGAGGCCTGA ACTGGGGAGA GATCCCCGCA GGCCTGCAGG AGCCAGGGAG AACCTCCAAC	1020
	TGGATCTAAA CTGTGGGACA GCCCAGGCGT GCCCCTCTTC ACATGGCTCC CAGGCTCCCT	1080
5	CAAAGCCCTT CCCAGGCCCT GCAGGAAGAG AGGGAGGGTG AGGAGAGGCA GGGAGGGCAG	1140
	AGGTCGCCTG AAAGCCTGGG CTCCGAACTC CCTCAGCAGA GCTTTAAAGT G	1191
10		
	(2) INFORMATION FOR SEQ ID NO: 61:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1580 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
	CCCCGCCCCC CGCCCACGAA GGAAGTGGCT GCTGCTCCGG CGCGGACCCA GAGCCGGTTC	60
25	GGCGCGTCGA CTGCCCAGAG TCCGCGGCCG GGCGCGGGAG GAGCCAAGCC GCCATGGCCT	120
	ACCACAGCTT CCTGGTGGAG CCCATCAGCT GCCACGCCTG GAACAAGGAC CGCACCCAGA	180
	TIGCCATCTG CCCCAACAAC CATGAGGTGC ATATCTATGA AAAGAGCGGT GCCAAATGGA	240
30	CCAAGGTGCA CGAGCTCAAG GAGCACAACG GGCAGGTGAC AGGCATCGAC TGGGCCCCCG	300
	AGAGTAACCG TATTGTGACC TGCGGCACAG ACCGCAACGC CTACGTGTGG ACGCTGAAGG	360
35	GCCGCACATG GAAGCCCACG CTGGTCATCC TGCGGATCAA CCGGGCTGCC CGCTGCGTGC	420
	GCTGGGCCCC CAACGAGAAC AAGTTTGCTG TGGGCAGCGG CTCTCGTGTG ATCTCCATCT	480
4.0	GTTATTTCGA GCAGGAGAAT GACTGGTGGG TTTGCAAGCA CATCAAGAAG CCCATCCGCT	540
40	CCACCGTCCT CAGCCTGGAC TGGCACCCCA ACAATGTGCT GCTGGCTGCC GGCTCCTGTG	600
	ACTICAAGIG TOGGATOITI TOAGCOTACA TOAAGGAGGT GGAGGAACGG COGGCACCCA	660
45	CCCCGTGGGG CTCCAAGATG CCCTTTGGGG AACTGATGTT CGAATCCAGC AGTAGCTGCG	720
	GCTGGGTACA TGGCGTCTGT TTCTCAGCCA GCGGGAGCCG CGTGGCCTGG GTAAGCCACG	780
50	ACAGCACCGT CTGCCTGGCT GATGCCGACA AGAAGATGGC CGTCGCGACT CTGGCCTCTG	840
50	AAACACTACC ACTGCTGGCG CTGACCTTCA TCACAGACAA CAGCCTGGTG GCAGCGGGCC	900
	ACGACTGCTT CCCGGTGCTG TTCACCTATG ACGCCGCCGC GGGGATGCTG AGCTTCGGCG	960
55	GGCGGCTGGA CGTTCCTAAG CAGAGCTCGC AGCGTGGCTT GACGGCCCGC GAGCGCTTCC	1020
	AGAACCTGGA CAAGAAGGCG AGCTCCGAGG GTGGCACGGC TGCGGGCGCG GGCCTAGACT	1080
	CGCTGCACAA GAACAGCGTC AGCCAGATCT CGGTGCTCAG CGGCGCAAG GCCAAGTGCT	1140
60	CGCAGTTCTG CACCACTGGC ATGGATGGCG GCATGAGTAT CTGGGATGTG AAGAGCTTGG	1200

960

60

	AGTCAGCCTT GAAGGACCTC AAGATCAAAT GACCTGTGAG GAATATGTTG CCTTCATCCT	1260
5	AGCTGCTGGG GAAGCGGGGA GAGGGGTCAG GGAGGCTAAT GGTTGCTTTG CTGAATGTTT	1320
	CTGGGGTACC AATACGAGTT CCCATAGGGG CTGCTCCCTC AAAAAGGGAG GGGACAGATG	1380
	GGGAGCTTTT CTTACCTATT CAAGGAATAC GTGCCTTTTT CTTAAATGCT TTCATTTATT	1440
10	GAAAAAAAA AAAAATGCCC CCAAAGCACT ATGCTGGTCA TGAACTGCTT CAAAATGTGG	1500
2	AGGTAATAAA ATGCAACTGT GTAAAAAAAAA AAAAAAAAA AAATGACCCT CGCGATCTAG	1560
15	AACTAGNCGG ACGCNTGGGT	1580
• •	(2) INFORMATION FOR SEQ ID NO: 62:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1117 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
30	GGCACGAGGC GCGATGCAGC ACAGGCTAGA GGCTGCGCAA SGCGGGGGCC CGCCCCTGGG	60
<i>5</i> 0	ACCCTCCGGG CCGGGCGGTT TGGCCCCTTA GCGCCCGGGC GTCGGGGCGG TAAAAAGGCCG	120
	GCAGAAGGGA GGCACTTGAG AAATGTCTTT CCTCCAGGAC CCAAGTTTCT TCACCATGGG	180
35	GATGTGGTCC ATTGGTGCAG GAGCCCTGGG GGCTGCTGCC TTGGCATTGC TGCTTGCCAA	. 240
	CACAGACGTG TTTCTGTCCA AGCCCCAGAA AGCGGCCCTG GAGTACCTGG AGGATATAGA	300
40	CCTGAAAACA CTGGAGAAGG AACCAAGGAC TTTCAAAGCA AAGGAGCTAT GGGAAAAAAA	360
70	TGGAGCTGTG ATTATGGCCG TGCGGAGGCC AGGCTGTTTC CTCTGTCGAG AGGAAGCTGC	420
	GGATCTGTCC TCCCTGAAAA GCATGTTGGA CCAGCTGGGC GTCCCCCTCT ATGCAGTGGT	480
45	AAAGGAGCAC ATCAGGACTG AAGTGAAGGA TTTCCAGCCT TATTTCAAAG GAGAAATCTT	540
	CCTGGATGAA AAGAAAAAGT TCTATGGTCC ACAAAGGCGG AAGATGATGT TTATGGGATT	600
50	TATCCGTCTG GGAGTGTGGT ACAACTTCTT CCGAGCCTGG AACGGAGGCT TCTCTGGAAA	660
3 U	CCTGGAAGGA GAAGGCTTCA TCCTTGGGGG ACTTTTCGTG GTGGGATCAG GAAAGCAGGG	720
	CATTCTTCTT GAGCACCGAG AAAAAGAATT TGGAGACAAA GTAAACCTAC TTTCTGTTCT	780
55	GGAAGCTGCT AAGATGATCA AACCACAGAC TTTGGCCTCA GAGAAAAAAT GATTGTGTGA	840

AACTGCCCAG CTCAGGGATA ACCAGGGACA TTCACCTGTG TTCATGGGAT GTATTGTTTC

CACTOGTGTC CCTAAGGAGT GAGAAACCCA TTTATACTCT ACTCTCAGTA TGGATTATTA

	ATGTATTTTA ATATTCTGTT TAGGCCCACT AAGGCAAAAT AGCCCCAAAA CAAGACTGAC	1020
	AAAAATCTGA AAAACTAATG AGGATTATTA AGCTAAAACC TGGGAAATAG GAGGCTTWAA	1080
5	ATGACTGCCM GCTGGTGCRT GCTCACACTT GGCCCAC	1117
	·	
10	(0)	
10	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
20	CCCACGCGTG CKGGCGCCTG GCAGCCACCG CCTGGGAGGT TACTGTAAGG CCCGCAGCTC	60
	CCGCCAGCTC CCGCGGACTS CTGCCGCCTC CTTACCATGA AGCCAGTAAG TCGTCGCACG	120
25	CTGGACTGGA TTTATTCAGT GTTGCTGCTT GCCATCGTTT TAATCTCCTG GGGCTGCATC	180
	ATCTATGCTT CGATGGTGTC TGCAAGACGA CAGCTAAGGA AGAAATACCC AGACAAAATC	240
	TTTGGGACGA ATGAAAATTT GTAACTCTTC TGGATTTAAT TATCTGAAAA TACAGTTCTT	300
30	TCCCTCATGC TTATGTAGAT ATAAAAATAA AATTCATAAT GCAAAAAAAA AAAAAAAAA	360
	G	361
35		
	(2) INFORMATION FOR SEO ID NO: 64:	•
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1668 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	•
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	GGCACGAGGT CTGCCAAGCT ATAGACCATG GCTGTGAACA CATTTGTGTG AACAGTGACG	60
50	ACTCATACAC GTGCGAGTGC TTGGAGGGAT TCCGGCTCGC TGAGGATGGG AAACGCTGCC	120
	GAAGAAGGAT GTCTGCAAAT CAACCCACCA TGGCTGCGAA CACATTTGTG TTAATAATGG	180
	GAATTCCTAC ATCTGCAAAT GCTCAKAGGG ATTTGTTCTA GCTGAGGACG GAAGACGGTG	240
55	CAAGAAATGC ACTGAAGGCC CAATTGACCT GGTCTTTGTG ATCGATGGAT CCAAGAGTCT	300
	TGGAGAAGAG AATTTTGAGG TCGTGAAGCA GTTTGTCACT GGAATTATAG ATTCCTTGAC	360
50	AATTTCCCCC AAAGCCGCTC GAGTGGGGCT GCTCCAGTAT TCCACACAGG TCCACACAGA	420

	GTTCACTCTG	AGAAACTTCA	ACTCAGCCAA	AGACATGAAA	AAAGCCGTGG	CCCACATGAA	480
	ATACATGGGA	AAGGGCTCTA	TGACTGGGCT	GGCCCTGAAA	CACATGTTTG	AGAGAAGTTT	540
5	TACCCAAGGA	GAAGGGCCA	GCCCTTTCC	ACAAGGGTGC	CCAGAGCAGC	CATTGTGTTC	600
	ACCGACGGAC	GGGCTCAGGA	TGACGTCTCC	GAGTGGGCCA	GTAAAGCCAA	GGCCAATGGT	660
	ATCACTATGT	ATGCTGTTGG	GGTAGGAAAA	GCCATTGAGG	AGGAACTACA	AGAGATTGCC	720
10	TCTGAGCCCA	CAAACAAGCA	TCTCTTCTAT	GCCGAAGACT	TCAGCACAAT	GGATGAGATA	780
	AGTGAAAAAC	TCAAGAAAGG	CATCTGTGAA	GCTCTAGAAG	ACTCCGATGG	AAGACAGGAC	840
15	TCTCCAGCAG	GGGAACTGCC	AAAAACGGTC	CAACAGCCAA	CAGTGCAACA	CAGATATCTG	900
	TTTGAAGAAG	ACAATCTTTT	ACGGTCTACA	CAAAAGCTTT	CCCATTCAAC	AAAACCTTCA	960
	GGAAGCCCTT	TGGAAGAAAA	ACACGATCAA	TGCAAATGTG	AAAACCTTAT	AATGTTCCAG	1020
20	AACCTTGCAA	ACGAAGAAGT	AAGAAAATTA	ACACAGCGCT	TAGAAGAAAT	GACACAGAGA	1080
	ATGGAAGCCC	TGGAAAATCG	CCTGAGATAC	AGATGAAGAT	TAGAAATCGC	GACACATTTG	1140
25	TAGTCATTGT	ATCACGGATT	ACAATGAACG	CAGTGCAGAG	CCCCAAAGCT	CAGGCTATTG	1200
	ттааатсаат	AATGTTGTGA	AGTAAAACAA	TCAGTACTGA	GAAACCTGGT	TTGCCACAGA	1260
20	ACAAAGACAA	GAAGTATACA	CTAACTTGTA	TAAATTTATC	TAGGAAAAA	ATCCTTCAGA	1320
30	ATTCTAAGAT	GAATTTACCA	GGTGAGAATG	AATAAGCTAT	GCAAGGTATT	TTGTAATATA	1380
	CTGTGGACAC	AACTTGCTTC	TGCCTCATCC	TGCCTTAGTG	TGCAATCTCA	TTTGACTATA	1440
35	CGATAAAGTT	TGCACAGTCT	TACTTCTGTA	GAACACTGGC	CATAGGAAAT	GCTGTTTTTT	1500
	TGTAYTGGAC	TTTACCTTGA	TATATGTATA	TGGATGTATG	CATAAAATCA	TAGGACATAT	1560
40	GTACTTGTGG	AACAAGTTGG	ATTTTTTAT?	CAATATTAAA	ATTCACCACT	TCAGAGRAAA	1620
40	AAAAAAA	AAAAAAAA A	AAAAAAAA .	AAAAAAAA A	AAANAAA		1668

50

(2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1353 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

GGGTCGACCC ACGCGTCCGC CCACGCGTCC GGATGGCTGC GCTGTTGCTG AGACACGTTG 60
GTCGTCATTG CCTCCGAGCC CACTTTAGCC CTCAGCTCTG TATCAGAAAT GCTGTTCCTT 120

TGGGAACCAC GGCCAAAGAA GAGATGGAGC GGTTCTGGAA TAAGAATATA GGTTCAAACC 180

	GTCCTCTGTC TCCCCACATT ACTATCTACA GTTGGTCTCT TCCCATGGCG ATGTCCATCT	240
5	GCCACCGTGG CACTGGTATT GCTTTGAGTG CAGGGGTCTC TCTTTTTGGC ATGTCGGCCC	300
	TGTTACTCCC TGGGAACTTT GAGTCTTATT TGGAACTTGT GAAGTCCCTG TGTCTGGGGC	360
	CAGCACTGAT CCACACAGCT AAGTTTGCAC TYGTCTTCCC TCTCATGTAT CATACCTGGA	420
10	ATGGGATCCG ACACTTGATG TGGGACCTAG GAAAAGGCCT GAAGATTCCC CAGCTATACC	480
	AGTOTOGAGT GGTTGTCCTG GTTCTTACTG TGTTGTCCTC TATOGGGCTG GCAGCCATGT	540
15	GAAGAAAGGA GGCTCCCAGC ATCATCTTCC TACACATTAT TACATTCACC CATCTTTCTG	600
	TITGTCATTC TTATCTCCAG CCTGGGAAAA GITCTCCTTA TTTGTTTAGA TCCTTTTGTA	660
	TTTTCAGATC TCCTTGGAGC AGTAGAGTAC CTGGTAGACC ATAATAGTGG AAAAGGGTCT	720
20	AGTITICCCC TIGITICTAA AGATGAGGIG GCTGCAAAAA CTCCCCTTIT TIGCCCACAG	780
•	CTTGCCTACT CTCGGCCTAG AAGCAGTTAT TCTCTCTCCA TATTGGGCTT TGATTTGTGC	840
25	TGAGGGTCAG CTTTTGGCTC CTTCTTCCTG AGACAGTGGA AACAATGCCA GCTCTGTGGC	900
	TTCTGCCCTG GGGATGGGCC GGGTTGGGG GTGGCTTTGG GTGCCACTGC	960
	CTGTGGGTTG CTGGCTTAAA GGACAATTCT CTTCATTGGT GAGAGCCCAG GCCATTAACA	1020
30	CCTACACAGT GTTATTGAAA GAAGAGAGGT GGGGGTGGAG GGGAATTAGT CTGTCCCAGC	1080
1	TAGAGGGAGA TAAAGAGGGC TAGTTAGTTC TTGGAGCAGC TGCTTTTGAG GAGAAAATAT	1140
35	ATAGCTTTGG ACACGAGGAA GATCTAGAAA ATTATCATTG AACATATTAA TGGTTATTTC	1200
33	TTTTTCTTGG ATTTCCAGAA AAGCCTCTTA ATTTTATGCT TTCTCATCGA AGTAATGTAC	1260
	CCTTTTTTC TGAAACTGAA TTAAATACTC ATTTTATCTT TGAAAAAAAA AAAAAAAACC	1320
40	TNGGGGGGG CCCCGGACCC NAATTGGCCC TAT	1353
45	(2) INFORMATION FOR SEQ ID NO: 66:	
,		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1011 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
55	CGGAAGAAAG CAGCCATCCA GACATTTCAG AACACGTACC AGGTGTTAGC TGTGACCTTC	60
	AATGACACAA GTGATCAGAT TATTTCTGGT GGAATAGACA ATGATATCAA GGTCTGGGAC	120
60	TGCGCCAGAA CAAGCTAACC TACACCATGA GAGGCCATGC AGATTCAGTG ACTGGCCTGA	180

	GTTTAAGTTC	TGAAGGCTCT	TATCTTTTGT	CCAATGCAAT	GGACAATACA	GTTCGTGTCT	240
	GGGATGTCCG	GCCATTTGCC	CCCAAAGAGA	GATGTGTAAA	GATATTTCAA	GGAAATGTGC	300
5	ACAACTITGA	AAAGAACCTT	CTGAGATGTT	CTTGGTCACC	TGATGGAAGC	AAAATAGCAG	360
	CTGGCTCAGC	CGACAGGTTT	GTTTATGTGT	GGGATACCAC	AAGCAGGAGA	ATATTGTATA	420
	AGCTGCCCGG	CCATGCTGGC	TCCATCAATG	AAGTGGCTTT	CCACCCTGAT	GAGCCCATCA	480
10	TTATCTCAGC	ATCGAGTGAC	AAGAGACTGT	ATATGGGAGA	GATTCAGTGA	AGATATGGAC	540
	TGGAAGACTC	CAAGGCCGCT	TGTCTTTGAG	ACCTCAGACT	GCATAAGTGA	TGCCAAATGT	600
15	TGGATGTCCA	GGYTAGCACC	CTCCCTTCAG	ATGACCATTG	CTAGCAAGAA	ACAGGAGGCG	660
	GTGGCCATAT	TCCAAAAACC	ACTICTGTCC	CATTTCACCA	GGATGACTAA	GGCAAGCTCC	720
20	CTGTGGCCTC	TAAAAACCAC	CTGCCAGATT	TCAGGGACTG	TTTTTTTTT	TCTTTTTCTT	780
20	TTTTCCTGTT	TTCTAATGCA	GGCCCAATGT	GACAAATTTG	TTGGTTGGGA	TTTTTTTT	840
	TTTTTGTAAC	TGGCTTGTAT	GATATTTCT	TTCTGTATTT	CTCTATATCA	TTTTGTATTA	900
25	AAAGCCAAAT	AGATGCCTTT	TTACAAGAR	AAAAAAAA 1	AAAAAAAAA	AAAAAAANN .	960
	CTGGGAGGG	GGGCCCGGTA	CCCAAATCGC	CGGATATGAT	CGTAAACAAT	C C	1011

35

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1193 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67: 40 GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC 60 CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC 120 45 TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAGG 180 AGAGGCAGCG TCTGCGGGAG GCAGGCCTTG TGGCCCAGCA CCCGCCTGCC AGGCGCTCGG 240 GGGCCGAACT GGCCTGGGAC TACCTCTGCA GATGGGCCCA AAAGCACAAG AACTGGAGGT 300 50 TTCAGAAGAC GAGGCAGACG TGGCTCCTGC TGCACATGTA TGACAGTGAC AAGGTTCCCG 360 ATGAGCACTT CTCCACCCTG CTGGCCTACC TGGAGGGGCT GCAGGGCCGG GCCCGAGAGC 420 55 TGACGGTGCA GAAGGCCGAA GCCTGATGCG GGAGCTGGAT GAGGAGGGCT CTGATCCCCC 480 CCTGCCGGGG AGGGCCCAGC GCATCCGACA GNTGCTGCAG CTGCTCTCCT AGTGGGTTCA 540 GCGCGGGGCG GGGCCGCTGC CCAGTGCAGG GCTGCCTCAG ACCACACAGG GTGCAGCTCC 600 60

	TOTAL CONTROL OF THE CANADAS CONTROL OF THE CARREST CONTROL OF THE C	660
5	TCCGGTGGTG GGGGCCGGGA TCACCAGCAC CAGAGCCTCG CAAGGGCCCC TTCCCTCCTC	720
	CAGACCCTCC TTGGCCGGTG ACGCTGTGAC AGTGATGGCA GGTTCAGTGC CTTCAGCGCA	780
	GAGCGTGGAT GCTCTGGAAT CACCCGGACC CCTGGCCTTG GAGGGACCCT CCAGCCCCAG	840
10	GAATCTGCTT TGGAGGGAAA TGTCTATTTT TCTACCGGGA ATATTTTAGA GATTGGGGCA	900
	TGCTGGCTCC TCCCGCCAGC TGCAAACCTG CACCTTCCGC CTGATTCCCG ATCCCCCTGC	960
15	GTGGGCCGCA TTCCTGGTCC CCTGCCTGCG TCCATCGAGG GGCCTGGCTG TGGCCTGTTT	1020
	TCCTTTGACC CCACACAGCG TCATTGCGGG TCATGGGGGAG CCCCTGGTGG GAGCTTGTGG	1080
	AGTOGGATCA CGTACCTGTG CAGAAACCGC CTCTGTGGCT GCATTTGAAA TAAAACCCGA	1140
20	CCCAGCAGCA AAAAAAAAA AAAAAANCNC NAGGGGGGGC CCGGNACCCA ATT	1193
25	(2) INFORMATION FOR SEQ ID NO: 68:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 560 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
35	GAATTCGGCA CGAGTTGGCA CATGATGCAA AATGCATTTC TCAGAGTAGA TTGCAGTCAA	60
	AAATGTTGGA AACTACTAAG CATGTGCARA TAGCATGCAT GCTGCTGCTG ACCTGCCAGA	120
40	TATTTCTCCC TTCCTCCCTT TCTCCCTCAT TTATTCATTC	180
70	CATTAAAAAA ATTATATGTA TGTTTTGTGC AAAGCACCCT ACTCAAGGCT GCGGGGTACA	240
	AAAGTATATC AGAAGCCTTG GGCTTTGACM WACTTCTCTG TAGTAGTGCT AGATTTGTGT	300
45	GGATCTGCCA CACTTACTCC AGGCCTCTTG TGACCTGTGC TTTGCATTAA TCTCTTAGGC	360
	TAAGCCACAT ACCTTTCAT TATACAATCT TTGCTGATGC TAAGGACAGA TTCCAAAGTG	420
50	CCCTCCTTAT AATTITIGTA TITAATGCAA AGTGTAATCA AGAATAGGCC ATTGTTAGGT	480
50	CAATTGCTTT TCTGTATTTA TCTTTTCAAA CAATAAATAA TCAGTGGGAT GAAAAAGGCC	540
	СОGВАВАВАВ ВВАВАВАВАВ	560
55		

(2) INFORMATION FOR SEQ ID NO: 69:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1657 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

	(AL) DEGOTED THE STATE OF THE S	
	CGGACNGAGC CGCCGCCGGG CACTTCCTGT GGAGGCCGCA GCGGGTGCGG GCGCCGACGG	60
10	GCGAGAGCCA GCGAGCGAGC GAGCGAGCCG AGCCGAGCCT CCCGCCGTCG CCATGGGCCA	120
	GAACGACCTG ATGGGCACGG CCGAGGACTT CGCCGACCAG TTCCTCCGTG TCACAAAGCA	180
15	GTACCTGCCC CACGTGGCGC GCCTCTGTCT GATCAGCACC TTCCTGGAGG ACGGCATCCG	240
13	TATGTGGTTC CAGTGGAGCG AGCAGCGCGA CTACATCGAC ACCACCTGGA ACTGCGGCTA	300
	CCTGCTGGCC TCGTCCTTCG TCTTCCTCAA CTTGCTGGGA CANTGACTGG CTGCGTCCTG	360
20	GTGTTGAGCA GGAACTTCGT GCAGTACGCC TGCTTCGGGC TCTTTGGAAT CATAGCTCTG	420
•	CAGACGATTG CCTACAGCAT TTTATGGGAC TTGAAGTTTT TGATGAGGAA CCTGGCCCTG	480
25	GGAGGAGGCC TGTTGCTGCT CCTAGCAGAA TCCCGTTCTG AAGGGAAGAG CATGTTTGCG	540
25	GGCGTCCCCA CCATGCGTGA GAGCTCCCCC AAACAGTACA TGCAGCTCGG AGGCAGGGTC	600
	TIGCTGGTTC TGATGTTCAT GACCCTCCTT CACTTTGACG CCAGCTTCTT TTCTATTGTC	660
30	CAGAACATCG TGGGGCACAG CTCTGATGAT TTTAGTGGCC ATTGGTTTTA AAACCAAGCT	720
	GGCTGCTTIG ACTCTTGTTG TGTGGCTCTT TGCCATCAAC GTATATTTCA ACGCCTTCTG	780
35	GACCATTCCA GTCTACAAGC CCATGCATGA CTTCCTGAAA TACGACTTCT TCCAGACCAT	840
33	GTCGGTGATT GGGGGCTTGC TCCTGGTGGT GGCCCTGGGC CCTGGGGGTG TCTCCATGGA	900
	TGAGAAGAAG AAGGAGTGGT AACAGTCACA GATCCCTACC TGCCTGGCTA AGACCCGTGG	960
40	CCGTCAAGGA CTGGTTCGGG GTGGATTCAA CAAAACTGCC AGCTTTTATG TATCCTCTTC	1020
	CCTTCCCCTC CCTTGGTAAA GGCACAGATG TTTTGAGAAC TTTATTTGCA GAGACACCTG	1080
45	AGAATCAATG GCTTCAGGAC ATGGGTTCTC TTCTCCTGTG ATCATTCAAG TGCTCACTGC	1140
45	ATGAAGACTG GCTTGTCTCA GTGTTTCAAC CTCACCAGGG CTGTCTCTTG GTCCACACCT	1200
	CGCTCCCTGT TAGTGCCGTA TGACAGCCCC CATCAAATGA CCTTGGCCAA GTCACGGTTT	1260
50	CTCTGTGGTC AAGGITGGTT GGCTGATTGG TGGAAAGTAG GGTGGACCAA AGGAGGCCAC	1320
	GTGAGCAGTC AGCACCAGTT CTGCACCAGC AGCGCCTCCG TCCTAGTGGG TGTTCCTGTT	1380
F.E	TCTCCTGGCC CTGGGTGGGC TAGGGCCTGA TTCGGGAAGA TGCCTTTGCA GGGAGGGGAG	1440
55	GATAAGTGGG ATCTACCAAT TGATTCTGGC AAAACAATTT CTAAGATTTT TTTGCTTTAT	1500
	GTGGGAAACA GATCTAAATC TCATTTTATG CTGTATTTTA TATCTTAGTT GTGTTTGAAA	1560
60	ACGTTTTGAT TTTTGGAAAC ACATCAAAAT AAATAATGGC GTTTGTTGTA AAAAAAAAAA	1620

	AAAAAAACTC GRGGGGGGC CCGGTACCCA AATCGCC	1657
5		
	(2) INFORMATION FOR SEQ ID NO: 70:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 711 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	•
	GGCACGAGCG AAGACCCTGT TCGGACCCTG CCCCGATTCC AGACTCAGGT AGATCGTCGG	60
20	CATACCCTCT ACCGTGGACA CCAGGCAGCC CTGGGGCTGA TGGAGAGAGA TCAGGTATCC	120
	CCCAGGGAGT AGGGGCTACC TTGAGGGGAT GATAGACCTC CCCCACTCCC AGTGKKACTC	180
	TOGANATATG AAGGAACTAG GGAGTGGAAG AGATTTCAGA GCTGGGGAGA GGAGTTCCTC	240
25	CCTTCAAAGC CAGCAACTGC CTTTGGGGAA TGTCGGGGGG TCTCTCCTTT CTCCTGCTTG	300
	TTTRAGGTGG TACACAGTCC CCCCTTCAMC TGGSGGGAAG CTGTNCCGGA CARACTCATC	360
30	TCAGCTTTCC CTTGGGGCAG GATCGGGGGC AGCAGCTCCA GCAGAAACAG CAGGATCTGG	420
	AGCAGGAAGG CCTCGAGGCC ACACAGGGGC TGCTGGCCGG CGAGTGGGCC CCACCCCTCT	480
	GGRAGCTGGG CAGCCTCTTC CAGGCCTTCG TGAAGAGGGA GAGCCAGGCT TATGCGTAAG	540
35	CTTCATAGCT TCTGCTGGCC TGGGGTGGAC CCAGGACCCC TGGGGCCTGG GTGCCCTGAG	600
	TGGTGGTAAA GTGGAGCAAT CCCTTCACGC TCCTTGGCCA TGTTCTGAGC GGCCAGCTTG	660
40	GCCTTTGCCT TAATAAATGT GCTTTATTTT CAAAAAAAAA AAAAAAAAAC T	711
45	(2) INFORMATION FOR SEQ ID NO: 71: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 935 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
55	GGCACAGGGT GAAAGCCAGC TAAACCCCAA GTGGAGAAGT GAAAGACATG GTTGTTCCCA	60
<i>J J</i>	TAAGTTTATT GCTCACATTA TGAAAGAAGC CATAGTCATG AGTGAACCAC TCCCTAGGTT	120
	GATAAGGAAA CCAACACGGA AGATCTCTTT CTGGAAGAAG CAGCCAGCCT CGTGAAGGAG	180
60	CGGCCCAGCC GCCGGGCCCG AGGGTCGCCT TTTGTTCGGA GTCGCACCAT TCTTCCCTTTC	240

	CAGACATTCT CGCCTGGAGC ACGAAGCCAG TATGTTTGCA GACTTTATCG TAGTGACAGC	300
_	GACAGTICAA CGCTGCCCCG GAAGTCCCCC TTTGTCCGAA ATACTTTGGA AAGACGAACC	360
5	CTTCGCTATA AGCAGTCATG CAGGTCTTCC CTGGCTGAGC TCATGGCCCG CACCTCCCTG	420
	GACTTGGAGC TGGATCTCCA GGCGTCGAGA ACACGGCAGA GGCAGCTGAA TGAGGAGCTC	480
10	TGCGCCCTCC GTGAGCTGCG GCAGCGGTTN GGAGGACGCC CAGCTCCGTG GCCAGACTGA	540
	CCTCCCACCC TGGGTGCTTC GGGACGAGCG GCTCCGTGGC CTGCTGCGG AGCCGAGCGG	600
1 e ·	CAGACAAGAC AGACCAAACT TGACTACCGT CATGAGCAGG CGGCTGAGAA GATGCTGAAG	660
15	AAGGCCTCCA AGGAGATCTA CCAGCTGCGT GGCAGAGCCA CAAAGAGCCC ATCCAAGTGC	720
	AGACCTTTAG GGAGAAGATA GCATTCTTCA CAAGGCCAAG GATCAACATA CCTCCTCTCC	780
20	CAGCCGACGA CGTCTGATGG AGTGCATTGT GCACATGAAG TATTTATCCA CCTGTTTTAT	840
	TTTCATGAAG TTCTTAGACT AGCTGAATTT GTCTTTAAAA TATTTGTGCA AAGCTATTAA	900
25	TATACACATT TTGTAAAAAA AAAAAAAAAAA AAACT	935
25		
	(2) INFORMATION FOR SEQ ID NO: 72:	
30		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
40	GCAGGGGCGA GGGGYTGGGG ACCGCGGGGC GAGCGGGAGC GAGTATGTCC GCTCTGACTC	60
	GGCTGGCGTC TTTCGCTCGC GTTGGAGGCC GCCTTTTCAG AAGCGGCTGC GCACGGACTG	120
	CTGGAGATGG TGGAGTCCGT CATGCCGGTG GTGGTGTGCA CATTGAGCCC CGGTATAGAC	180
45	AGTTCCCCCA GCTGACCAGA TCCCAGGTGT TCCAGAGCGA GTTCTTCAGC GGACTCATGT	240
	GGTTCTGGAT TCTCTGGCGC TTTTGGCATG ACTCAGAAGA GGTGCTGGGT CACTTTCCGT	300
50	ATCCTGATCC TTCCCAGTGG ACAGATGAAG AATTAGGTAT CCCTCCTGAT GATGAAGACT	360
JU	GAAGGTGTAG ACTCAGCCTC ACTCTGTACA AGAGCCAGGT GAGAATTTCA AGGATTATCG	420
	ACTTCATATT GCACATTAAA GTTACAAATT AAAGTGGCTT GGTCAAGAAT GARAAAAAAA	480
55	AAAAAAATT GGGGGGGGC CCCN	504

(i) SEQUENCE CHARACTERISTICS:

_	(A) LENGTH: 620 base pairs	
•	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Torologi: Timear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
10	GAATTCGGCA CGAGGAGGAG GGGAGGCGGG GTAAGTTTGG TGGGAAACTC TGTAATTTCC	60
	WITTITACTT TCACAGCAAT AGTGCAGAAT CCAGAATGGA TGTCCTCTTT GTAGCCATCT	120
15	TIGCTGTGCC ACTTATCCTG GGACAAGAAT ATGAGGATGA AGAAAGACTG GGAGAGGATG	180
	AATATTATCA GGTGGTCTAT TATTATACAG TCACCCCCAG TTATGATGAC TTTAGTGCAG	240
	ATTICACCAT TGATTACTCC ATATTTGAGT CAGAGGACAG GCTGAACAGG TTGGATAAGG	300
20	ACATAACAGA AGCAATAGAG ACTACCATTA GTCTTGAAAC AGCACGTGCA GACCATCCGA	360
	AGCCTGTAAC TGTGAAACCA GTAACAACGG AACCTCAGAG TCCAGATCTG AACGATGCCG	420
25	TGTCCAGTTT GCGAAGTCCT ATTCCCCTCC TCCTGTCGTG TGCCTTTGTT CAGGTGGGGA	480
	TGTATTTCAT GTAGAAGGTG GAAGAAGGCT GCTATGACTC TTTGGATGGG AGTCTGGCAA	540
•	GAGGAAATTG GAAGATAAAA TAAATAATAA GTGAAATAAA AAAAAAAA	600
30	GGGGGGCCC GGTACCCAAT	620
		-
35	(2) INFORMATION FOR SEQ ID NO: 74:	
	440	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 581 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double	
	(C) STRANDELMESS: GOUDTE	
	(D) TOPOLOGY: linear	
45	(D) TOPOLOGY: linear	60
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	60 120
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC	
45 50	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC TCGGGAGTAA TTCATTTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT	120
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC TCGGGAGTAA TTCATTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT TTTTACACGT TAAAAAATAA CAGGGCATCG AGAGGATTCC TAGGTGACAT CCAGACTCCT	120 180
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC TCGGGAGTAA TTCATTTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT TTTTACACGT TAAAAAATAA CAGGGCATCG AGAGGATTCC TAGGTGACAT CCAGACTCCT TTAGCTTTGT GTGTGGCA CCGGTTAGTC TGCTTCTCT TCCTTTCTTG CACTGCTTCA	120 180 240
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74: ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC TCGGGAGTAA TTCATTTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT TTTTACACGT TAAAAAATAA CAGGGCATCG AGAGGATTCC TAGGTGACAT CCAGACTCCT TTAGCTTTGT GTGTGGCA CCGGTTAGTC TGCTTCTTC TCCTTTCTTG CACTGCTTCA CACAGCCATG CCCTGCCAGC CCGGGCAGGT GCCTTCCTGT CAATGTACAT TTGGGCTTCT	120 180 240 300

	CCGSTAAAGC CATAAACTCC TTAAGGACAG GTAGCATTCT TAGTATCTTC GTTCTTCTCA	540
	ATGACCAGTA GACCATTAAA CATGTAGCAA ACAAATGTGA A	581
5		
	(2) INFORMATION FOR SEQ ID NO: 75:	·
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1843 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	AAACCCAACN CCCTCCGGTC CCCNAAAGAA AGCCCAGCCC AAATCCCAAG CCGGCAGTGA	60
20	GCCCGCGAAC AAGGCCCTCA AGACGCCCAG NCGAACAAGC AGCCCCCAGG AGGCCCCGCA	120
	AGAGAACTCC CTGCCGCCC AAGCGGGCAG CTTCTGTGCG GCAGAACTCA GCCACCGAGA	180
25	GCGCAGACAG CATCGAGATT TATGTCCCGG AGNCCCAGAC CAGGCTCTGA GACCATGCAG	240
25	GAGGAAAGAA ACGATTTTAA ATCATTAAAA ACACAAAAAC TAAGTGCGAA CGGAACAGAG	300
	TTTTCTCAAC CTTTGCTATG GTTATTCTGT CTAGAGACCC TGAGCCAACT TTCAAATTGA	360
30	CGCATACAAG GGCTCACAAT TTGGCTTTTT TGGGTCCCTC CCAGCTTTAG GTTATGAAGA	420
	TTITACTCAC AAAAAAAATC AACAAAAATC ACGAAACTAG AAAACTTTTT TTTTCCTCTT	480
35	GCTGGCCGTG GTGGACTAGA TAGATGGACG TCGGCAACTC CCGGCCCAGC CTCCATACTG	540
,,,	CGGTCTTTTT ACTCGTTCTA TCTGATGAGA ACTCACACTA GCTTGTTTAC AAGATGACGA	600
	CAGTCCAAGG GCAGCCTTGG GCACCTGCCA TGTCCCTCCT TTCCCCAGCT ATCCCCGCTC	660
40 .	TGACCTTGAT TTTCATTCTT ATGTTTTTCT CTTTTCCCTT CAGAGCTCAC ACAGTGGTCA	720
	CCATTGTGGC AAGCGGCTTT CTGGGTCTCA GCCCTCTCTG CGGTTGAGGG CCCAGAGGAC	780
45	AGAGAGATGG ACATGCGTCC CCTCCCTCCC CCCGCCAAGT GCTCACACAC AACCTCACGC	840
43	GCACACACA ACACGCAGAT GGAGGCGCCT CACTGGGAGG TGCCCCGCCA GCCCTGGGCA	900
	GTGTCAGGCA GGACTCACTC ACCGCTGAGC AGATGAGAGA AGTTTTAGTC TTGGCGGGTG	960
50	GAAATGAGAC GAAGCCACAG TTATCACACT CCAGACTCCT GCCCTTTTAT TTTCTCCAGC	1020
	CCCTTCTTCC TTCAGCAAAA TCTAGGACTC CCGAGTGGCT TCCAGGGGGC CGTCAGTCCT	1080
55	CAGCCGCGCC TGTGTCCGGT GCCCGAGGGG CGGGCGGCGG TGTCTGTATG TATGTGTACA	1140
<i>JJ</i>	TATGCACATA GACCTTAGAG TGTATAGTTA ACAAACGCCC ATCTGCTCAC CCATGCCCAC	1200
	CCAGCGCCGC CGCCGCTGGC TCTCGGGGGCA CCTGGCAGGA GGCGGGTGTG TGAATAGCAT	1260
60	ATATTTTTAC ATGTACTATA TCTAGGTGTG TGTACAAGTG TGTGTAAAAA TATATACCTT	1320

	GTGTGTAAGC AGCCCTTTTT TTTTTTGGTC TCCACCCCCC TCCCCCGCCC CCGCACTCCT	1380
5	AAGGGCCCAT CTGCCCAGCC TCTGAGTTTT CTGTTCTATT TTTTTTTTAA CCCCAATTAT	1440
	CCTTCTCTCT CTCCTGCCCC CGCATCCCAC TCCCAGGGTG TCACGAGCCC TGAGCTGCAA	1500
	TGGCCCGGGC CTGCAGGGCG GGGTAGGGGA GGGCARGGCT SAGCCCCGAA GCCAGCTCAG	1560
10	TACCTGAGGG GCTGCTCTAT GCTGTGTATG CGCCTCTCTG GCATCCGAGA CATCCTCTTG	1620
	GTGGCGCTTG CTNGCAGGGG ACCCCCCCCC CGTCCCCAGG TGAACCAAGG GTCTGCTCCG	1680
15	GGGCCCATTT CCAGCTTGGC CGCCGTCTGT GACCTTGGGC AAGTCACTTG ACCTCTGTGT	1740
	GCCTCAACTT CCTCCTCTGT AAAACGGGGA CAGTCCCTGC CCCTCCCTAC CTCACAGGCA	1800
	TGTTGTGAGA ATAAATGAGG TAACGTGTAA AAAAAAAAAA	1843
20		
	(2) INFORMATION FOR SEQ ID NO: 76:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1441 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
	TCGACCCACG CGTCCGGCTC CCCGAGCCCT GCCAACCATG GTGAACTTGG GTCTGTCCCG	60
35	GGTGGACGAC GCCGTGGCTG CCAAGCACCC GGGACTCGGG GAGTATGCCG CATGCCAGTC	120
	ACACGCCTTC ATGAAGGGCG TTTTCACCTT CGTCACAGGC ACCGGCATCG CCTTTGGCTT	180
40	GCAGATGTTC ATTCAGAGGA AGTTTCCATA CCCTTTGCAG TGGAGCCTCC TAGTGGCCGT	240
40	GGTTGCAGGC TCTGTGGTCA GCTACGGGGT GACGAGAGTG GAGTCGGAGA AATGCAACAA	300
	CCTCTGGCTC TTCCTGGAGA CCGGGCAGCT CCCCAAAGAC AGGAGCACAG ATCAGAGAAG	360
45	CTAGGAGAGC TCCAGCAGGG GCACAGAGGA TTGGGGGCAG GAGGAGTCTG GAACACAGCC	420
	TTCATGCCCC CTGACCCCAG GCCGACCCTC CCCACACCCT AGGGTACCCC AGTCGTATCC	480
50	TCTGTCCGCA TGTKTGGCCA GGCCTGACAA ACACCTGCAG ATGGCTGCTG CCCCAACCTG	540
50	GGACCTGCCC AGRAGGTTGG AGCAGAAAGG GCTCTCCCTG GGGTGGTGTT TCTCCTCTAG	600
	GGTATTGGGA TGCATGTTCT GCACTGCCAG CAGAGAGGGT GTGTCTGGGG GCCACCACCT	660
55	ATGGGACACG GGGTCGAAGG GGCCTGTACA CTCTGTCATT TCCTTTCTAG CCCCTGCATC	720
	TCCAACAAGT CCAAGGTGAC AGCTGGTGCT AGGGGCGTGG GGTTAATAAA TGGCTTATCC	780
60	TTCTCTCCAC CCAAGTTTCC ACCTGACCAG GTGAAAAACA AATCAGAAGG GTAAGATGAT	840
UU		

660

780

		900
	ACATACTGAG GATGTACAGG GAAGTTCCCA GCGCTGAACC CCAGAATTAG ACGTTCGCAT	960
5	CAGCCCCGTA GGCCACGTGG ACACCACCAC AGCCTCTCTG TATGGGGGTC TGCCTCTGTA	1020
	GCACTTGGCA TGTAGGGGCA GAGCAAAAGG GGCCANGCTG GCCAGAGCCT GGCTGCTGGG	1080
10	NAGARGAGGG ACTTGTGGGS CACGCCACNT GCCTATCATT CCCCAYTCAT CTATTAGCCA	1140
10	AAGTCACTCC CCAGAGGCAG AGCTAGCCCG TTGTAGCCGT GTCTGTGTGG AGGGAAAGCT	1200
	TCTGAGTGGG CAAGCCTACA CACAGCCCCG AGCCCCAAGA GGAGGAAGAG GTGGAGACCA	1260
15	GACGGAACCT CCACAAGTCC ATCATGGTTA CAGCTGGCTT CCCCGCAGCA CCGAAGACCC	1320
	ACAGCATNGG CCCTGCTGCC CCCGACCCAG CTCAGCTGCC ANGCCTCACC TTGCCAGGAA	1380
20	TTGAAAGAAA GTTATTGAGT ACTAATTGGC CTCAGAGTNA CAGGAAGCTC AAGTTAAAGT	1440
20	G	1441
25	(2) INFORMATION FOR SEQ ID NO: 77:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 910 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77: GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG	60
35		60 120
35 40	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG	
	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG	120
40	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT	120 180
	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG	120 180 240
40	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG ACGCCGGACT ACATGAACCT GCTGGGCATG ATCTTCAGCA TGTGCGGCCT CATGCTTAAG	120 180 240 300
40	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGCAGG ACCTGAGCGC CCCTGACCCT CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG ACGCCGGACT ACATGAACCT GCTGGGCATG ATCTTCAGCA TGTGCGGCCT CATGCTTAAG CTGAAGTGGT GTGCTTGGGT CGCTGTCTAC TGCTCCTTCA TCAGCTTTGC CAACTCTCGG	120 180 240 300 360
40 45	GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG ACGCCGGACT ACATGAACCT GCTGGGCATG ATCTTCAGCA TGTGCGGCCT CATGCTTAAG CTGAAGTGGT GTGCTTGGGT CGCTGTCTAC TGCTCCTTCA TCAGCTTTGC CAACTCTCGG AGCTCGGAGG ACACGAAGCA AATGATGAGT AGCTTCATGT GAGACTTGCC CTACAGAACA	120 180 240 300 360 420

ACTAGGCCTG GGCTTTGGCT GCTAAACCTG CTGCCTTCAG CTGCCATCCT GGACTTCCCT

GAATGAGGCC GTCTCGGTGC CCCCAGCTGG ATAGAGGGAA CCTGGCCCTT TCCTAGGGAA

CACCCTAGGC TTACCCCTCC TGCCTCCCTT CCCCTGCCTG CTGCTGGGGG AGATGCTGTC

	CATGITICTA GGGGTATICA TITGCTITCT CGITGAAACC TGITGITAAT AAAGTTITIC	840
5	ACTCTGAAAA AAAAAAAAA AAAAAAAAAC TYGROGOGG GCCCGGAACC CAATTCSCCG	900
J	GATAGTGAGT	910
10	(2) INFORMATION FOR SEQ ID NO: 78:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 2776 base pairs (B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
	TCGACCCACG CGTCCGGGCG GGCAGTGATG GCGGCTGGTG ATGGGGACGT GAAGCTAGGC	60
	ACCCTGGGGA GTGGCAGCGA GAGCAGCAAC GACGGCGGCA GCGAGAGTCC AGGCGACGCG	120
25	GGAGCGGCAG CGRAAGGGG AGGCTGGGCG GCGGCGGCT TGGCGCTTCT GACGGGGGGC	180
	GGGGAAATGC TGCTGAACGT GGCGCTGGTG GCTCTGGTGC TGCTGGGGGC CTACCGGCTG	240
30	TGGGTGCGCT GGGGGGGCG GGGTCTGGGG GCCGGGGCCG GGGCGGGC	300
30	GCCACCTCTC TGCCTCGCAT GAAGAAGCGG GACTTCAGCT TGGAGCAGCT GCGCCAGTAC	360
	GACGGCTCCC GCAACCCGCG CATCCTGCTC GCGGTCAATG GGAAAGTCTT CGACGTGACC	420
35	AAAGGCAGCA AGTTCTACGG CCCGGCGGGT CCATATGGAA TATTTGCTGG TAGGGATGCC	480
	TCCAGAGGAC TGGCCACATT TTGCCTAGAT AAAGATGCAC TTAGAGATGA ATATGATGAT	540
40	CTCTCAGATT TGAATGCAGT ACAAATGGAG AGTGTTCGAG AATGGGAAAT GCAGTTTAAA	600
40	GAAAAATATG ATTATGTAGG CAGACTCCTA AAACCAGGAG AAGAACCATC AGAATATACA	660
	GATGAAGAAG ATACCAAGGA TCACAATAAA CAGGATTGAA CTTTGTAAAC AACCAAAGTC	720
45	AGGGGCCTTC AGAACTGCAA TTCTTACTCC CTTTCACAGA CTGTCCGGAG TCTTTGGGTT	780
	TGATTCACCT GCTGCGAAAA ACATTCAACA AATTGTGTAC AAGATAAATT AATCTCACTA	840
50	TGAAGATTTG AATAACTAGA CATTATTTAT GCTGCCAAAC TCATTTGTTG CAGTTGTTTG	900
50	TAATGTCTAG TGGGGCTTCA TCATCCTGAA AAGAAGGAGA CAGGGATTTT TTTAAAGAGC	960
	AAGAAAGTCA CAATATTACT TCTTTCCTTC CTTTTTTCCT TCTTTCCTTT CTTCTT	1020
55	TITCTITCTT TITAAAATAT ATTGAAGACA ACCAGATATG TATTTGCTAC TCAAGTGTAC	1080
	AGATCTCCTC AAGAAACATC AAGGGACTCC TGTGTCACAT ACTGTGTTTT TATTTTAACA	
	TGGGTGAGGG AGGCGACCTG ATCAGGGGAG GTGGGGGTAC ACATCAATTT GAGTTGTTCA	
60	CIGGGGIAC ACAICAMITI GAGIIGIICA	1200

	GGCTACTGAA	ACATTAAAAT	GTGAATTCCC	AAACTTTTCT	TITIGGCTIT	GTCAGGGAAA	1260
	AGAAAATAT	CTTTATAAAG	AAATCTTTGG	AAATTAGGAG	AAGGAATTTC	AGGTGGGTTT	1320
5	AAGTCAGAGC	TAGTTCCCCA	ACAGAAAGAT	CATTTGAAAC	CAGTTTTTAT	CCCTTCTCTT	1380
	TCCTTCCCTT	TCCCTAAATC	AAATCAATAT	TAATTGTGCC	TTATTTCACT	TAACATAGAC	1440
10	TTGAATTATT	TTTAGGGAAA	GCCCCTATAA	TGAATTCAGA	AATCACTACA	AGCAGCATTA	1500
10	AGACTGAAGT	TGGAATATTC	TGTTGACCAT	AAAACCTTGA	TATCATTCTG	TGTATATAGA	1560
	ATGTAAAAGG	AATATTACAG	TGTTAACTGC	CATATATGTA	ATATACACAA	ACTCAATTAG	1620
15	CATTGTAATG	GCCAAATGCA	TTCCCCCATG	CTTTTCTGTT	ттсааааааа	TTGAAAAACA	1680
	AATCAACTCT	TATCCCCAAC	AGCTGCCTAA	TTTTAGGAGT	CTGACCCTCC	ACATCTCACT	1740
20	GGTGTGGGTG	CATGGGGCTG	TGGAGTGGGT	GTCAGTATGG	ATGTGTCTGA	ATGTGTGAGG	1800
20	CCTTGGAAGG	GACTCTTTCT	GCAGATACTG	TAAATACAAG	TACCATTTTA	ATAAAGCATG	1860
	TACAATAAAC	CAAAATAAGC	TTGAGTTGGA	CTTTATATAC	AGAACTGTAA	GCCAGTGCAT	1920
25	TATGATACAG	TTGTAAGATT	GTGCATTTGA	TTCAAGATAA	GGAAAAATCT	TGGAAATGAA	1980
	AAGCAGGCAC	KGGTTAACCA	AGTTGTACAC	ATTGTACCAC	ATTCAGCATA	ACTTTAGGAA	2040
30	GAAATTCCAC	TTTGTGAACA	TTCTCCAGAA	ATCCAAGATT	ATTCAGGTAA	GAATTGGTAT	210
JĢ	ATTAAATGTA	CATCTTITTA	CTTTCTATTI	TGATGCCAAC	TGATTATACT	AGACAATTAG	216
• •	CACTCCAGGT	GGTTATTGAA	CACAAAACAG	TAAAAGAATA	TTGCACTGAT	AGATACTAAA	222
35	TTATTATTT	ATTAGGTTGA	AAAAGCCCTI	' ACTAAAAGCC	CCTCATATAT	CAATTACTTT	228
	ATTTCATTAT	GACTACTTAG	GTTCCGGGCT	GGGGACAAGT	TCACTTAAAA	A AGGCAATGTT	234
40	ATTTAACAGO	TCACCAGTTA	AGACTTCTGC	TTTGTAGATA	CATGCAGAAG	CCATCAAACA	240
	AGGGGGRGCT	TTTAACTGCA	ACAATAAGCT	AAAGTATGTA	AAATACTACA	A TTCTATTCAG	246
	TCTTGGAGTG	TTTTGTAGAA	AGTTATCTTC	AGCCAAATCT	TTGCTGAAG	A CTGGTTGTGG	252
45	AGTGTTGGT	A AATGCTTTGT	GTTTTTATGT	TTTTATAAAA 7	CTAAACAAA	AAAATTOTAAA	258
	GTACATGTC	C TCTGTAGTA	ACTGATATCT	ATATATATG	ATCATTCAA	G CCTAAAGTCT	264
50	AGTAATAAA	C TGTACTIGTO	AATAGAGAA	A CCCTAAATAT	TCATGCAGW	A AAAATTATGC	270
	GGTCTGTTA	A GAAAAATGA	G TAATTTGTG	TTTGGACTT	S AAATAAACA	G TGTTCTGTAG	276
	ATAATTCCT	CAACTIC					277

⁽²⁾ INFORMATION FOR SEQ ID NO: 79:

(A) LENGTH: 1525 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

	CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG	60
10	COGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA	120
	GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG	180
15	TOGTGGGTGT CGGCGCCGTG TTCTCACTGC TATTCCACCT GGGCACCCGG GAGAGGCGCC	240
	GGCCGCATGC GGASGAGCCA GGCGAGCACA CCCCCCTGTT GGCCCCTGCC ACGGCCCAGC	300
	CCCTGCTGCT CTGGAAGCAC TGGCTCCGGG AGCSGGCTTT CTACCAGGTG GGCATACTGT	360
20	ACATGACCAC CAGGCTCATC GTGAACCTGT CCCAGACCTA CATGGCCATG TACCTCACCT	420
	ACTOGOTOCA COTGCOCAAG AAGTTCATOG CGACCATTCC COTGGTGATG TACCTCAGOG	480
25	GCTTCTTGTC CTCCTTCCTC ATGAAGCCCA TCAACAAGTG CATTGGGAGG AACATGACCT	540
	ACTICICAGG CCTCCTGGTG ATCCTGGCCT TTGCCGCCTG GGTGGCGCTG GCGGAGGGAC	600
	TGGGTGTGGC CGTGTACGCA GCGGCTGTGC TGCTGGGTGC TGGCTGTGCC ACCATCCTCG	660
30	TCACCTCGCT GGCCATGACG GCCGACCTCA TCGGTCCCCA CACGAACAGC GGACTKTCGT	720
	GTACGGCTCC ATGAGCTTCT TGGATAAGGT GGCCAATGGG CTGGCAGTCA TGGCCATCCA	780
35	GAGCCIGCAC CCTIGCCCCT CAGAGCTCIG CTGCAGGGCC TGCGTGAGCT TTTACCACTG	840
	GCCGATGGTG GCTGTGACGG GCGGCGTGGG CGTGGCCCGCT GCCCTGTGTC TCTGTAGCCT	900
	CCTGCTGTGG CCGACCCGCC TGCGACGCTG GGACCGTGAT GCCCGGCCCT GACTCCTGAC	960
40	AGCCTCCTGC ACCTGTGCAA GGGAACTGTG GGGACGCACG AGGATGCCCC CCARGGCCTT	1020
	GGGGAAAAGC CCCCACTGCC CCTCACTCTT CTCTGGACCC CCACCCTCCA TCCTCACCCA	1080
45	GCTCCCGGGG GTGGGGTCGG GTGAGGGCAG CAGGGATGCC CGCCAGGGAC TTGCAAGGAC	1140
	CCCCTGGGTT TTGAGGGTGT CCCATTCTCA ACTCTAATCC ATCCCAGCCC TCTGGAGGAT	1200
	TTGGGGTGCC CCTCTCGGCA GGGAACAGGA AGTAGGAATC CCAGAAGGGT CTGGGGGAAC	1260
50	CCTAACCCTG AGCTCAGTCC AGTTCACCCC TCACCTCCAG CCTGGGGGTC TCCAGACACT	1320
	GCCAGGGCCC CCTCAGGACG GCTGGAGCCT GGAGGAGACA GCCACGGGT GGTGGGCTGG	1380
55	GCCTGGACCC CACCGTGGTG GGCAGCAGGG CTGCCCGGCA GGCTTGGTGG ACTCTGCTGG	1440
<i>JJ</i>	CAGCAAATAA AGAGATGACG GCAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	1500
	AAAAAAAAA AAACCCACCG TCCGC	1525

(2) INFORMATION FOR SEQ ID NO: 80:

,		

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1563 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
	AATTCGGCAC GAGNCAGAAA CCTGCGGAAA ATGGTAGCGA TGGCGGCTGG GCCGAGTGGG	60
15	TGTCTGGTGC CGGCGTTTGG GCTACGGTTG TTGTTGGCGA CTGTGCTTCA AGCGGTGTCT	120
	GCTTTTGGGG CAGAGTTTTC ATCGGAGGCA TGCAGAGAGT TAGGCTTTTC TAGCAACTTG	180
20	CTTTGCAGCT CTTGTGATCT TCTCGGACAG TTCAACCTGC TTCAGCTGGA TCCTGATTGC	240
20	AGAGGATGCT GTCAGGAGGA AGCACAATTT GAAACCAAAA AGCTGTATGC AGGAGCTATT	300
	CTTGAAGTTT GTGGATGAAA ATTGGGAAGG TTCCCTCAAG TCCAAGCTTT TGTTAGGAGT	360
25	GATAAACCCA AACTGTTCAG AGGACTGCAA ATCAAGTATG TCCGTGGTTC AGACCCTGTA	420
•	TTAAAGCTTT TGGACGACAA TGGGAACATT GCTGAAGAAC TGAGCATTCT CAAATGGAAC	480
30	ACAGACAGTG TAGAAGAATT CCTGAGTGAA AAGTTGGAAC GCATATAAAT CTTGCTTAAA	540
	TTTTGTCCTA TCCTTTTGTT ACCTTATCAA ATGAAATATT ACAGCACCTA GAAAATAATT	600
	TAGTTTTGCT TGCTTCCATT GATCAGTCTT TTACTTGAGG CATTAAATAT CTAATTAAAT	660
35	CGTGAAATGG CAGTATAGTC CATGATATCT AAGGAGTTGG CAAGCTTAAC AAAACCCATT	720
	TTTTATAAAT GTCCATCCTC CTGCATTTGT TGATACCACT AACAAAATGC TTTGTAACAG	780
40	ACTTGCGGTT AATTATGCAA ATGATAGTTT GTGATAATTG GTCCAGTTTT ACGAACAACA	840
	GATTTCTAAA TTAGAGAGGT TAACAAGACA GATGATTACT ATGCCTCATG TGCTGTGTGC	900
	TCTTTGAAAG GAATGACAGC AGACTACAAA GCAAATAAGA TATACTGAGC CTCAACAGAT	960
45	TGCCTGCTCC TCAGAGTCTC TCCTATTTTT GTATTACCCA GCTTTCTTTT TAATACAAAT	1020
	GTTATTTATA GTTTACAATG AATGCACTGC ATAAAAACTT TGTAGCTTCA TTATTGTAAA	1080
50	ACATATTCAA GATCCTACAG TAAGAGTGAA ACATTCACAA AGATTTGCGT TAATGAAGAC	1140
	TACACAGAAA ACCITICTAG GGATITGTGI GGATCAGATA CATACITGGC AAATITITGA	1200
	GTTTTACATT CTTACAGAAA AGTCCATTTA AAAGTGATCA TTTGTAAGAC CAAAATATAA	1260
55	ATAAAAAGTT TCAAAAATCT ATCTGAATTT GGAATTCTTC TGGTTTGTTC TTTCATGTTT	1320
	AAAAATGATG TTTTTCAATG CATTTTTTTC ATGTAAGCCC TTTTTTTAGC CAAAATGTAA	1380
60	AAATGGCTGT AATATITAAA ACTTATAACA TCTTATTGTT GGTAATAGTG CTTTATATTT	1440

	GICIGATITT	ATTTTTCAAA	GTITTTTCAT	TTATGAACAC	ATTTTCATTG	GTATATTATT	1500
	TAAGGAATAT	CTCTTGATAT	AGAATTTTTA	ТАТТАААААТ	GATTTTTCTT	TGCTTAAAAA	1560
5	AAA						1563

10 (2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1020 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:

20	TGCACGCTGG	CCATGTGGGN	GTTGGGCCAC	TGCGACCCCC	GGCGCTGCAC	GGCCGCAAG	60
	CTGGCCGGC	TGGGGCTGGT	GCGCTGCCTG	CGCCTGGGCC	ACAGATTCGG	CGGTCTGGTG	120
25	CTGAGCCCCG	TGGGCAAGCA	GTACGCGTCC	CCCGCAGACA	GACAGCTGGT	GGCGCAGTCT	180
	GGGTCGCCG	TCATCGACTG	CTCCTGGGCC	AGGCTGGACG	AGACACCGTT	TGGGAAGATG	240
	CGAGGGAGCC	ACTTGCGCCT	GTTGCCCTAC	CTGGTGGCCG	CCAACCCCGT	GAACTATGGC	300
30	CGCCCTACA	GACTITCCTG	CGTGGAAGCG	TTTGCTGCCA	CCTTCTGCAT	CGTAGGCTTT	360
	CCAGACCTTG	CTGTCATTTT	GCTGCGGAAG	TTTAAATGGG	GCAAGGGCTT	CTTGGACCTG	420
35	AACCGCCAGC	TCCTGGACAA	GTACGCGGCC	TGCGGCAGCC	CGGAGGAGGT	GCTGCAGGCG	480
	GAGCAGGAGT	TCTTGGCCAA	TGCCAAGGAG	AGCCCCCAGG	AGGAGGAGAT	CGATCCCTTC	540
	GATGTGGATT	CAGGGAGAGA	GTTTGGAAAC	CCCAACAGGC	CTCTGGCCAG	CACCCGGCTG	600
40	CCCTCGGACA	CTGATGACAG	TGATGCGTCT	GAGGACCCAG	GGCCTKGCGC	CGAGCGCGGA	660
	GGAGCCAGCA	GCAGCTGCTG	TGAAGAGGAG	CAGACGCAGG	GACGGGGGGC	TGAGGCCAGG	720 ·
45	GCCCCGGCTG	AGGTTTGGAA	AGGAATCAAG	AAACGGCAGA	GAGACTGAGG	GTTGCAGACA	780
	CATATATTTT	TGAGGCTGGG	TGACGAGAAA	ATCTAGAGAC	ATGAGGGACA	TAAATGGGCC	840
	TGGCAGCCTC	GGCTCTTTGC	GGCTGCTGGC	AGGACTGAGC	TGTCCGGGTT	CTCCCCACAC	900
50	TTCCAGCACA	GCIGIGCICT	GTGTCCTGCC	TCGGCGCTCT	CGCAAATGAA	GCTGCAGGCC	960
	AAGAAAAAA	AAAAAAAAA	АААААААА	АААААААА	AAAAAAAAG	GGGGGGGGC	1020

55

(2) INFORMATION FOR SEQ ID NO: 82:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 770 base pairs

60

480

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
	TCGACCCACG CGTCCGGGCC GCCGTAGCGC GTCTTGGGTC TCCCGGCTGC CGCTGCTGCC	60
10	GCCGCCGCCT CGGGTCGTGG AGCCAGGAGC GACGTCACCG CCATGGCAGG CATCAAAGCT	120
10	TTGATTAGTT TGTCCTTTGG AGGAGCAATC GGACTGATGT TTTTRATGCT TGGATGTGCC	180
	CTTCCAATAT ACAACAAATA CTGGCCCCTC TTTGTTCTAT TTTTTTACAT CCTTTCACCT	240
15	ATTCCATACT GCATAGCAAG AAGATTAGTG GATGATACAG ATGCTATGAG TAACGCTTGT	300
	AAGGAACTTG CCATCTTTCT TACAACGGC ATTGTCGTGT CAGCTTTTGG ACTCCCTATT	360
20	GTATTTGCCA GAGCACATCT GATTGAGTGG GGAGCTTGTG CACTTGTTCT CACAGGAAAC	420
20	ACAGTCATCT TTGCAACTAT ACTAGGCTTT TTCTTGGTCT TTGGAAGCAA TGACGACTTC	480
	AGCTGGCAGC AGTGGTGAAA AGAAATTACT GAACTATTGT CAAATGGACT TCCTGTCATT	540
25	TGTTGGCCAT TCACGCACAC AGGAGATGGG GCAGTTAATG CTGAATGGTA TAGCAAGCCT	6.00
	CTTGGGGGTA TTTTAGGTGC TCCCTTCTCA CTTTTATTGT AAGCATACTA TTTTCACAGA	660
30	GACTTGCTGA AGGATTAAAA GGATTTTCTC TTTTGGAAAA AAAAAAAAA AAAAACYCGA	720
30	GGGGGGGCCC GTWCCCATTC SCCCYATATG AATTCCNTTT TIACAATCCC	770
35	(2) INFORMATION FOR SEQ ID NO: 83:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 481 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
45	GAATTCGCCA CGAGCATAGT GTTAACCACT AGAATTCACT GCCCTTCCTA TCCAAAAATG	60
	ACACTACTGA TCATTTTCT TCCTTTTSCT TTTACAACAT TMACAAATTC AGGTGGCTCT	
50	•	120
30	TTCCCAGTAC GGTAGGCTGA TTCGTATGGA TGCACCACGG TTGGTGACTC CCCCCACCCC	180
	ACAGAGTITC TOGCGTTCAT TCGGTTGAAC CCAAGGCCAG CAAGGGCTGA CTGGGAACAA	240
55	ACCGAACACT AGGCCGTGAA CCAATCGTCT CTCCGTGCCC GGGAGCGAMC CCGGGGGCCT	300
	TTCACTCTCC CAAGGACTCC ANGGGGGGC CGGGTACCCA ATTCCGCCCC TATAGTGAAT	360
	CCGTNATTAC AATTCCACNT GGGCCGTCCN TTTTTACAAA CGTTCCGTTG AACTGGGAAA	420

AACCCCTTGG CGGTTTACCC CAACTTTAAT CCGCCTTTGC AAGCACATCC CCCCCCTTTT

	с	481
5		
	(2) INFORMATION FOR SEQ ID NO: 84:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 644 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	GCTGGGATAG AGCATGAAAG GAGAACTGCT CCCTTTTCTG TTTCTCACAG TTTGGTTATG	60
20	GCTTTATAAA CTTKTATTTG GTGAAAGCCC CAGATACCCA AATGTCATTG GCAAAACTTA	120
	TTTTTTTTC TGGACAGATC AGATTTCTAG AGAGAGCAGA TTTCTAGAGA GATTAGCATT	180
	CATAGTAAGT GAAAATTGTC TAATTTTTTT AATCCATGCT ATTACTGGGC AGTAGGTCTA	240
25	ATTITITITG ACAAAAATA GATCTATITT CCTTATATAT TGATTTAGAA TCTTAAGITA	300
	GAATTITATA GAAGAAATGT CTGAGCAGTT CTATGTATGG AGGAGCAATT CAGCTTTTCA	360
30	GCAGCAACTT TATCTTTTGC CACTAGAGGG AGATCTGTGG TTGCTTTCTC CTTTGGAGAA	420
	TAGCTGCTTT GCTTTTATTT TTAATTTCTA AGGTTGGAAT AGAACTTATT CTCAAAATTC	480
2.5	CTTTAGTGTT ATTAAATATT TICATTTATT AGTCAAAGGT AAGTTAATTA AGCTTGTTTA	540
35	ATGATGCCAA TCTTATGCTT TTCTGTAATC TTCAATTTTT AATAAATGTG AGTTAGATAC	600
	AAAA AAAAAAAA AAAAAAAAA AAAAAAAA AAAAAA	644
40		
	(2) INFORMATION FOR SEQ ID NO: 85:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1351 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	GGCACGAGTG CGCASGCGTG GGGCTCTCTC CTTGTCAGTC GGCGCCGGGT GCGGGCTGGT	60
55	GGCTCTGTGG CAGCGGCGGC GGCAGGACTC CGGCACTATG AGCGGCTTCA GCACCGAGGA	120
	GCGCCCCCCC CCNTTCTCCC TGGAGTACCG AGTCTTCCTC AAAAATGAGA AAGGACAATA	180
	TATATCTCCA TTTCATGATA TTCCAATTTA TGCAGATAAG GATGTGTTTC ACATGGTAGT	240
60	TGAAGTACCA CGCTGGTCTA ATGCAAAAAT GGAGATTGCT ACAAAGGACC CTTTAAACCC	300

	TATTAAACAA GATGIGAAAA AAGGAAAACT TCGCTATGTT GCGAATTTGT TCCCGTATAA	360
5	AGGATATATC TGGAACTATG GTGCCATCCC TCAGACTTGG GAAGACCCAG GGCACAATGA	420
	TAAACATACT GGCTGTTGTG GTGACAATGA CCCAATTGAT GTGTGTGAAA TTGGAAGCAA	480
	GGTATGTGCA AGAGGTGAAA TAATTGGCGT GAAAGTTCTA GGCATATTGG CTATGATTGA	540
10	CGAAGGGGAA ACCGACTGGA AAGTCATTGC CATTAATGTG GATGATCCTG ATGCAGCCAA	600
	TTATAATGAT ATCAATGATG TCAAACGGCT GAAACCTGGC TACTTAGAAG CTACTGTGGA	660
1 ~	CTGGTTTAGA AGGTATAAGG TTCCTGATGG AAAACCAGAA AATGAGTTTG CGTTTAATGC	720
15	AGAATTTAAA GATAAGGACT TTGCCATTGA TATTATTAAA AGCACTCATG ACCATTGGAA	780
	AGCATTAGTG ACTAAGAAAA CGAATGGAAA AGGAATCAGT TGCATGAATA CAACTTTGTC	840
20	TGAGAGCCCC TTCAAGTGTG ATCCTGATGC TGCCAGAGCC ATTGTGGATG CTTTACCACC	900
	ACCCTGTGAA TCTGCCTGCA CAGTACCAAC AGACGTGGAT AAGTGGTTCC ATCACCAGAA	960
25	AAACTAATGA GATTTCTCTG GAATACAAGC TGATATTGCT ACATCGTGTT CATCTGGATG	1020
23	TATTAGAAGT AAAAGTAGTA GCTTTTCAAA GCTTTAAATT TGTAGAACTC ATCTAACTAA	1080
	AGTAAATTCT GCTGTGACTA ATCCAATATA CTCAGAATGT TATCCATCTA AAGCATTTTT	1140
30	CATATCTCAA CTAAGATAAC TTTTAGCACA TGCTTAAATA TCAAAGCAGT TGTCATTTGG	1200
	AAGTCACTTG TGAATAGATG TGCAAGGGGA GCACATATTG GATGTATATG TTACCATATG	1260
35	TTAGGAAATA AAATTATTTT GCTGAAAAAA AAAAAAAAA AACCNCGGG GGGGCCCCGG	1320
33	TCCCCATTIG GCCCTTIGGG GGGNGGTTTT A	1351
40	(2) INFORMATION FOR SEQ ID NO: 86:	
	(1) CROWNING CHARACHERT CHITCE.	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2527 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

50	(XI) SEQUENCE DESCRIPTION. DEG 12 No. 001	
50	CTCTTGCTAC CTTCCCGGCG CAGAGAACCC CGGCTGCTCA GCGCGCTCCG GGGTCATGGA	60
	GATCCCCGGG AGCCTGTGCA AGAAAGTCAA GCTGAGCAAT AACGCGCAGA ACTGGGGAAT	120
55	GCAGAGAGCA ACCAATGTCA CCTACCAAGC CCATCATGTC AGCAGGAACA AGAGAGGTCA	180
	GGTGGTGGG ACCAGAGGTG GCTTTCGTGG TTGCACAGTT TGGCTAACAG GCTTGTCTGG	240
60	AGCGGGAAAG ACTACTGTGA GCATGGCCTT GGAGGAGTAC CTGGTTTGTC ATGGTATTCC	300
60		

	ATGCTACACT CTGGATGGTG ACAATATTCG TCAAGGTCTC AATAAAAATC TTGGCTTTAG	360
	TCCTGAAGAC AGAGAAGAGA ATGTTCGACG CATCGCAGAA GTTGCTAAAC TGTTTGCAGA	420
5	TGCTGGCTTA GTGTGCATCA CAAGTTTCAT ATCACCTTAC ACTCAGGATC GCAACAATGC	480
	AAGGCAAATT CATGAAGGTG CAAGTTTACC GTTTTTTGAA GTATTTGTTG ATGCTCCTCT	540
10	GCATGTTTGT GAACAGAGGG ATGTCAAAGG ACTCTACAAA AAAGCCCCGGG CAGGAGAAAT	600
	TARAGGITTC ACTOGGATCG ATTCTGARTA TGARARGCCA GAGGCCCCTG AGTTGGTGCT	660
	GAAAACAGAC TCCTGTGATG TAAATGACTG TGTCCAGCAA GTTGTGGAAC TTCTACAGGA	720
15	ACGGGATATT GTACCTGTGG ATGCATCTTA TGAAGTAAAA GAACTATATG TGCCAGAAAA	780
	TAAACTTCAT TTGGCAAAAA CAGATGCGGA AACATTACCA GCACTGAAAA TTAATAAAGT	840
20	GGATATGCAG TGGGTGCAGG TTTTGGCAGA AGGTTGGGCA ACCCCATTGA ATGGCTTTAT	900
	GAGAGAGAGG GAGTACTTGC AGTGCCTTCA TTTTGATTGT CTTCTGGATG GAGGTGTCAT	960
	TAACTTGTCA GTACCTATAG TTCTGACTGC GACTCATGAA GATAAAGAGA GGCTGGACGG	1020
25	CTGTACAGCA TTTGCTCTGA TGTATGAGGG CCGCCGTGTG GCCATTCTTC GCAATCCAGA	1080
	GTTTTTTGAG CACAGGAAAG AGGAGCGCTG TGCCAGACAG TGGGGAACGA CATGCAAGAA	1140
30	CCACCCCTAT ATTAAGATGG TGATGGAACA AGGAGATTGG CTGATTGGAG GAGATCTTCA	1200
	AGTCTTGGAT CGAGTTTATT GGAATGATGG TCTTGATCAG TATCGTCTTA CTCCTACTGA	1260
	GCTAAAGCAG AAATTTAAAG ATATGAATGC TGATGCTGTC TTTGCATTTC AACTACGCAA	1320
35	CCCAGTGCAC AATGGACATG CCCTGTTAAT GCAGGATACC CATAAGCAAC TTCTAGAGAG	1380
	GGGCTACCGG CGCCCTGTCC TCCTCCTCCA CCCTCTGGGT GGCTGGACAA AGGATGACGA	1440
40	TGITCCTTTG ATGTGGCGTA TGAAGCAGCA TGCTGCAGTG TTGGAGGAAG GAGTTCTGAA	1500
	TCCTGAGACG ACAGTGGTGG CCATCTTCCC ATCTCCCATG ATGTATGCTG GACCAACTGA	1560
	GGTCCAGTGG CATTGCAGAG CACGGATGGT TGCAGGAGCC AACTTTTACA TTGTTGGACG	1620
45	AGACCCTGCT GGCATGCCTC ATCCAGAAAC AGGGAAGGAT CTTTATGAGC CAAGTCATGG	1680
	TGCCAAAGTG CTGACGATGG CCCCTGGTTT AATCACTTTG GAAATAGTTC CCTTTCGAGT	1740
50	TGCAGCTTAC AACAAGAAAA AGAAGCGTAT GGACTACTAT GACTCTGAAC ACCATGAAGA	1800
50	CTTTGAATTT ATTTCAGGAA CACGAATGCG CAAACTTGCT CGAGAAGGCC AGAAACCACC	1860
	TGAAGGTTTC ATGGCTCCCA AGGCTTGGAC CGTGCTGACA GAATACTACA AATCCTTGGA	1920
55	GAAAGCTTAG GCTGTTAACC CAGTCACTCC ACCTTTGACA CATTACTAGT AACAAGAGGG	1980
	GACCACATAG TCTCTGTTGG CATTTCTTTG TGGTGTCTGT CTGGACATGC TTCCTAAAAA	2040
60	CAGACCATTT TCCTTAACTT GCATCAGTTT TGGTCTGCCT TATGAGTTCT GTTTTGAACA	2100
		-

60

	AGTGTAACAC ACTGATGGTT TTAATGTATC TTTTCCACTT ATTATAGTTA TATTCCTACA	2160
	ATACAATTIT AAAATTGTCT TTTTATATTA TATTTATGCT TCTGTGTCAT GATTTTTTCA	2220
5	AGCTGTTATA TTAGTTGTAA CCAGTAGTAT TCACATTAAA TCTTGCTTTT TTTCCCCTTA	2280
	AAAAAAGAAA AAAATTACCA AACAATAAAC TTGGCTAGAC CTTGTTTTGA GGATTTTACA	2340
	AGACCTTTGT AGCGATTAGA TTTTTTTTCT ACATTGAAAA TAGAAACTGC TTCCTTTCTT	2400
10	CTTTCCAGTC AGCTATTGGT CTTTCCAGCT GTTATAATCT AAAGTATTCT TATGATCTGT	2460
	GTAAGCTCTG AATGAACTTC TTTACTCAAT AAAATTAATT TTTTGGCTTC TTAAAAAAAA	2520
15	AAAAAA	2527
	·	•
20	(2) INFORMATION FOR SEQ ID NO: 87:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2566 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
30	CCCAAGAATT CGGCACGAGC GNGGCAWAAK TGGGATTTCT GAAACCTGTA GGCCCCAAGC	60
	CCATCAACTT GCCCAAAGAA GATTCCAAAC CTACATTTCC CTGGCCTSCT GGAAACAAGC	120
~ ~	CATCTCTTCA CAGTGTAAAC CAAGACCATG ACTTAAAGCC ACTAGGCCGA AATCTGGGCC	180
35	TACTCCTCCA ACCTCAGAAA ATGAACAGAA GCAAGCKTTT CCCAAATTGA CTGGGGTTAA	240
	AGGGAAATTT ATGTCAGCAT CACAAGATCT TGAACCCAAG CCCCTCTTCC CCAAACCCGC	300
40	CTTTGGCCAG AAGCCGCCCC TAAGTACCGA GAACTCCCAT GAAGACGAAA GCCCCATGAA	360
	GAATGTGTCT TCATCAAAAG GGTCCCCAGC TCCCCTGGGA GTCAGGTCCA AAAGCGGCCC	420
4.5	TTTAAAACCA GCAAGGGAAG ACTCAGAAAA TAAAGACCAT GCAGGGGAGA TTTCAAGTTT	480
45	GCCCTTTCCT GGAGTGGTTT TGAAACCTGC TGCGAGCAGG GGAGGCCCAG GTCTCTCCAA	540
	ANATOGTGAA GAAAAAAAGG AAGATAGGAA GATAGATGCT GCTAAGAACA CCTTCCAGAG	600
50	CAAAATAAAT CAGGAAGAGT TGGCCTCAGG GACTCCTCCT GCCAGGTTCC CTAAGGCCCC	660
	TTCTAAGCTG ACAGTGGGG GGCCATGGGG CCAAAGTCAG GAAAAGGAAA AGGGAGACAA	720
	GAATTCAGCC ACCCCGAAAC AGAAGCCATT GCCTCCCTTG TTTACCTTGG GTCCACCTCC	780
55	ACCAAAACCC AACAGACCAC CAAATGTTGA CCTGACGAAA TTCCACAAAA CCTCTTCTGG	840
	AAACAGTACT AGCAAAGGCC AGACGTCTTA CTCAACAACT TCCCTGCCAC CACCTCCACC	900

ATCCCATCCG GCCAGCCAAC CACCATTGCC AGCATCTCAC CCATCACAAC CACCAGTCCC

	AAGCCTACCT CCCAGAAACA TTAAACCTCC GTTTGACCTA AAAAGCCCTG TCAATGAAGA	1020
5	CAATCAAGAT GGTGTCACGC ACTCTGATGG TGCTGGAAAT CTAGATGAGG AACAAGACAG	1080
	TGAAGGAGAA ACATATGAAG ACATAGAAGC ATCCAAAGAA AGAGAGAAGA AAAGGGAAAA	1140
	GGAAGAAAAG AAGAGGTTAG AGCTGGAGAA AAAGGAACAG AAAGAAAAG AAAAGAAAGA	1200
10	ACAAGAAATA AAGAAGAAAT TTAAACTAAC AGGCCCTATT CAAGTCATCC ATCTTGCAAA	1260
	AGCTTGTTGT GATGTCAAAG GAGGAAAGAA TGAACTGAGC TTCAAGCAAG GAGAGCAAAT	1320
15	TGAAATCATC CGCATCACAG ACAACCCAGA AGGAAAATGG TTGGGCAGAA CAGCAAGGGG	1380
	TTCATATGGC TATATTAAAA CAACTGCTGT AGAGATTGAC TATGATTCTT TGAAACTGAA	1440
	AAAAGACTCT CTTGGTGCCC CTTCAAGACC TATTGAAGAT GACCAAGAAG TATATGATGA	1500
20	TGTTGCAGAG CAGGATGATA TTAGCAGCCA CAGTCAGAGT GGAAGTGGAG GGATATTCCC	1560
	TCCACCACCA GATGATGACA TTTATGATGG GATTGAAGAG GAAGATGCTG ATGATGGCTC	1620
25	CACACTACAG GTTCAAGAGA AGAGTAATAC GTGGTCCTGG GGGATTTTGA AGATGTTAAA	. 1680
	GGGAAAAGAT GACAGAAAGA AAAGTATACG AGAGAAACCT AAAGTCTCTG ACTCAGACAA	1740
	TAATGAAGGT TCATCTTTCC CTGCTCCTCC TAAACAATTG GACATGGGAG ATGAAGTTTA	1800
30	CGATGATCTC GATACCTCTG ATTTCCCTGT TTCATCAGCA GAGATGAGTC AAGGAACTAA	1860
	TGTTGGAAAA GCTAAGACAG AAGAAAAGGA CCTTAAGAAG CTAAAAAAAGC AGRAAAAARA	1920
35	ARAAAAAGAC TTCAGGAAAA AATTTAAATA TGATGGTGAA ATTAGAGTCC TATATTCAAC	1980
	TAAAGTTACA ACTTCCATAA CTTCTAAAAA GTGGGGAACC AGAGATCTAC AGGTAAAACC	2040
40	TGGTGAATCT CTAGAAGTTA TACAAACCAC AGATGACACA AAAGTTCTCT GCAGAAATGA	2100
40	AGAAGGGAAA TATGGTTATG TCCTTCGGAG TTACCTAGCG GACAATGATG GAGAGATCTA	2160
	TGATGATATT GCTGATGGCT GCATCTATGA CAATGACTAG CACTCAACTT TGGTCATTCT	2220
45	GCTGTGTTCA TTAGGTGCCA ATGTGAAGTC TGGATTTTAA TTGGCATGTT ATTGGGTATC	2280
	AAGAAAATTA ATGCACAAAA CCACTTATTA TCATTTGTTA TGAAATCCCA ATTATCTTTA	2340
	CAAAGTGTTT AAAGTTTGAA CATAGAAAAT AATCTCTCTG CTTAATTGTT ATCTCAGAAG	2400
50	ACTACATTAG TGAGATGTAA GAATTATTAA ATATTCCATT TCCGCTTTGG CTACAATTAT	2460
	GAAGAAGTTG AAGGTACTTC TTTTAGACCA CCAGTAAATA ATCCTCCTTC AAAAAATAAA	2520
55	AATAAAAAA AAAAAAAAA ACTCGAGGGG GGGCCCGGTA CCCAAT	2566

⁽²⁾ INFORMATION FOR SEQ ID NO: 88:

660

60

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 540 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	GAATTCGGCA CGAGGCTTTC TGTGTCCTCT GTGGCTGCTT TAGTGTGCCA CCAGGGGCAG	60
10	ACTTGGGTGG GTTGCAGCAG AGATGGCATG GCCCTCAAGG TCCAAGATGT TTACTCTCTT	120
	GCCGGTCCTC TGTTATCTCT GGTCTTTGTG GTTGCCACAG TTTTCTTGGA TCCAGGAGTT	180
15	AAAGGCAGTC CTGAGGGATG ATGGCCTCAT CTCCGCAGTT GCYTGGAATG CTGAATTTCA	240
	GACGTGCTAA AGGAGGGTTG CAGACATTGT GTGGWATGCA TTCAGACCCC AGATGTGGGT	300
	GCAGGAAGGC AGGCATGGCA CAGCCAGGTA GAGACTGGTT TCCAGGCCCA AGCAGCCTTC	360
20	AGCAGCTGTG CGCCTTGTTT CTGATGTTGT TTGGGAGTAA GAATAATGTA GACATGGGGG	420
	GTCATGARGC TCAATAAAAA CTTCAAGGAA ACCTCCCATG GCATGGTTGG GCGCAGTGAC	480
25	TCATGCCTGT AACCCCAGCA CTGTGGAATG CCAAGGTGGA AGGATCGCTT GAGGCCAAGA	540
30 35	(2) INFORMATION FOR SEQ ID NO: 89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1863 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
40	TCGACCCACG CGTCCGGCGA GATCCCTACC GCAGTAGCCG CCTCTGCCGC CGCGGAGCTT	6
	CCCGAACCTC TTCAGCCGCC CGGAGCCGCT CCCGGAGCCC GGCCGTAGAG GCTGCAATCG	12
45	CAGCCGGGAG CCCGCAGCCC GCGCCCGAG CCCGCCGC CCCTTCGAGG GCGCCCCAGG	18
45	CCGCCCCATG GTGAAGGTGA CGTTCAACTC CGCTCTGGCC CAGAAGGAGG CCAAGAAGGA	24
	CGAGCCCAAG AGCGGCGAGG AGGCGCTCAT CATCCCCCCC GACGCCGTCG CGGTGGACTG	30
50	CAAGGACCCA GATGATGTGG TACCAGTTGG CCAAAGAAGA GCCTGGTGTT GGTGCATGTG	36
	CTTTGGACTA GCATTTATGC TTGCAGGTGT TATTCTAGGA GGAGCATACT TGTACAAATA	42
55	TTTTGCACTT CAACCAGATG ACGTGTACTA CTGTGGAATA AAGTACATCA AAGATGATGT	48
	CATCTTAAAT GAGCCCTCTG CAGATGCCCC AGCTGCTCTC TACCAGACAA TTGAAGAAAA	54

TATTAAAATC TTTGAAGAAG AAGAAGTTGA ATTTATCAGT GTGCCTGTCC CAGAGTTTGC

AGATAGTGAT CCTGCCAACA TTGTTCATGA CTTTAACAAG AAACTTACAG CCTATTTAGA

TCTTAACCTG GATAAGTGCT ATGTGATCCC TCTGAACACT TCCATTGTTA TGCCACCCAG

5	AAACCTACTG GAGTTACTTA TTAACATCAA GGCTGGAACC TATTTGCCTC AGTCCTATCT	780
	GATTCATGAG CACATGGITA TTACTGATCG CATTGAAAAC ATTGATCACC TGGGITTCTT	840
	TATTTATCGA CTGTGTCATG ACAAGGAAAC TTACAAACTG CAACGCAGAG AAACTATTAA	900
10	AGGTATTCAG AAACGTGAAG CCAGCAATTG TTTCGCAATT CGGCATTTTG AAAACAAATT	960
	TGCCGTGGAA ACTITAATIT GITCITGAAC AGTCAAGAAA AACATTATTG AGGAAAATTA	1020
15	ATATCACAGC ATAACCCCAC CCTTTACATT TTGTGCAGTG ATTATTTTTT AAAGTCTTCT	1080
	TTCATGTAAG TAGCAAACAG GGCTTTACTA TCTTTTCATC TCATTAATTC AATTAAAACC	1140
	ATTACCTTAA AATTITTTC TITCGAAGIG TGGTGTCTTT TATATTTGAA TTAGTAACTG	1200
20	TATGAAGTCA TAGATAATAG TACATGTCAC CTTAGGTAGT AGGAAGAATT ACAATTTCTT	1260
	TAAATCATTT ATCTGGATTT TTATGTTTTA TTAGCATTTT CAAGAAGACG GATTATCTAG	1320
25	AGAATAATCA TATATATGCA TACGTAAAAA TGGACCACAG TGACTTATTT GTAGTTGTTA	1380
	GTTGCCCTGC TACCTAGTTT GTTAGTGCAT TTGAGCACAC ATTTTAATTT TCCTCTAATT	1440
	AAAATGTGCA GTATTTTCAG TGTCAAATAT ATTTAACTAT TTAGAGAATG ATTTCCACCT	1500
30	TTATGTTTTA ATATCCTAGG CATCTGCTGT AATAATATTT TAGAAAATGT TTGGAATTTA	1560
٠	AGAAATAACT TGTGTTACTA ATTTGTATAA CCCATATCTG TGCAATGGAA TATAAATATC	1620
35	ACAAAGTTGT TTAACTAGAC TGCGTGTTGT TTTTCCCGTA TAATAAAACC AAAGAATAGT	1680
	TIGGITCTIC AAATCITAAG AGAATCCACA TAAAAGAAGA AACTATITIT TAAAAATTCA	1740
	CTTCTATATA TACAATGAGT AAAATCACAG ATTTTTCTT TAAATAAAAA TAAGTCATTT	1800
40	TAATAACTAA ACCAGATTCT TTGTGATACT ATTAANGTAA CATTTAGCCC CAAAAAAAAA	1860
	AAA	1863
45		
	(2) INFORMATION FOR SEQ ID NO: 90:	
50	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 2478 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
	GGCACAGCGG CACGAGGTGA GCTGAGCCGG TGGGTGAGCG GCGCCCACGG CATCCTGTGC	60
60	TGTGGGGGCT ACGAGGAAAG ATCTAATTAT CATGGACCTG CGACAGTTTC TTATGTGCCT	120

	GTCCCTGTGC ACAGCCTTTG CCTTGAGCAA ACCCACAGAA AAGAAGGACC GTGTACATCA	180
	TGAGCCTCAG CTCAGTGACA AGGTTCACAA TGATGCTCAG AGTTTTGATT ATGACCATGA	240
5	TGCCTTCTTG GGTGCTGAAG AAGCAAAGAC CTTTGATCAG CTGACACCAG AAGAGAGCAA	300
	GGAAAGGCTT GGAAAGATTG TAAGTAAAAT AGATGGCGAC AAGGACGGGT TTGTCACTGT	360
	GGATGAGCTC AAAGACTGGA TTAAATTTGC ACAAAAGCGC TGGATTTACG AGGATGTAGA	420
10	GCGACAGTGG AAGGGGCATG ACCTCAATGA GGACGCCCTC GTTTCCTGGG AGGAGTATAA	480
	AAATGCCACC TACGGCTACG TTTTAGATGA TCCAGATCCT GATGATGGAT TTAACTATAA	540
15	ACAGATGATG GTTAGAGATG AGCGGAGGTT TAAAATGGCA GACAAGGATG GAGACCTCAT	600
	TGCCACCAAG GAGGAGTTCA CAGCTTTCCT GCACCCTGAG GAGTATGACT ACATGAAAGA	660
	TATAGTAGTA CAGGAAACAA TGGAAGATAT AGATAAGAAT GCTGATGGTT TCATTGATCT	720
20	AGAAGAGTAT ATTOGTGACA TGTACAGCCA TGATGGGAAT ACTGATGAGC CAGAATGGGT	780
	AAAGACAGAG CGAGAGCAGT TTGTTGAGTT TCGGGATAAG AACCGTGATG GGAAGATGGA	840
25	CAAGGAAGAG ACCAAAGACT GGATCCTTCC CTCAGACTAT GATCATGCAG AGGCAGAAGC	900
	CAGGCACCTG GTCTATGAAT CAGACCAAAA CAAGGATGGC AAGCTTACCA AGGAGGAGAT	960
20	CGTTGACAAG TATGACTTAT TTGTTGGCAG CCAGGCCACA GATTTTGGGG AGGCCTTAGT	1020
30	ACGGCATGAT GAGTTCTGAG CTRCGGAGGA ACCCTCATTT CCTCAAAAGT AATTTATTTT	1080
	TACAGCTTCT GGTTTCACAT GAAATTGTTT GCGCTACTGA GACTGTTACT ACAAACTTTT	1140
35	TAAGACATGA AAAGGCGTAA TGAAAACCAT CCCGTCCCCA TTCCTCCTCC TCTCTGAGGG	1200
	ACTGGAGGGA AGCCGTGCTT CTGAGGAACA ACTCTAATTA GTACACTTGT GTTTGTAGAT	1260
40	TTACACTTTG TATTATGTAT TAACATGGCG TGTTTATTTT TGTATTTTTC TCTGGTTGGG	1320
40	AGTATGATAT GAAGGATCAA GATCCTCAAC TCACACATGT AGACAAACAT TAGCTCTTTA	1380
	CTCTTTCTCA ACCCCTTTTA TGATTTTAAT AATTCTCACT TAACTAATTT TGTAAGCCTG	1440
45	AGATCAATAA GAAATGTTCA GGAGAGAGGA AAGAAAAAA ATATATGCTC CACAATTTAT	1500
	ATTTAGAGAG AGAACACTTA GTCTTGCCTG TCAAAAAGTC CAACATTTCA TAGGTAGTAG	1560
50	GGGCCACATA TTACATTCAG TTGCTATAGG TCCAGCAACT GAACCTGCCA TTACCTGGGC	1620
50	AAGGAAAGAT CCCTTTGCTC TAGGAAAGCT TGGCCCAAAT TGATTTTCTT CTTTTTCCCC	1680
	CTGTAGGACT GACTGTTGGC TAATTTTGTC AAGCACAGCT GTGGTGGGAA GAGTTAGGGC	1740
55	CAGTGTCTTG AAAATCAATC AAGTAGTGAA TGTGATCTCT TTGCAGAGCT ATAGATAGAA	1800
	ACAGCTGGAA AACTAAAGGA AAAATACAAG TGTTTTCGGG GCATACATTT TTTTTCTGGG	1860
<i></i>	TGTGCATCTG TTGAAATGCT CAAGACTTAA TTATTTGCCT TTTGAAATCA CTGTAAATGC	192
60		

	CCCCATCCGG TTCCTCTTCT TCCCAGGIGT GCCAAGGAAT TAATCTTGGT TTCACTACAA	1980
	TTAAAATTCA CTCCTTTCCA ATCATGTCAT TGAAAGTGCC TTTAACGAAA GAAATGGTCA	2040
5	CTGAATGGGA ATTCTCTTAA GAAACCCTGA GATTAAAAAA AGACTATTTG GATAACTTAT	2100
	AGGAAAGCCT AGAACCTCCC AGTAGAGTGG GGATTTTTTT CTTCTTCCCT TTCTCTTTTG	2160
10	GACAATAGTT AAATTAGCAG TATTAGTTAT GAGTTTGGTT GCAGTGTTCT TATCTTGTGG	2220
10	GCTGATTTCC AAAAACCACA TGCTGCTGAA TTTACCAGGG ATCCTCATAC CTCACAATGC	2280
	AAACCACTTA CTACCAGGCC TTTTTCTGTG TCCACTGGAG AGCTTGAGCT CACACTCAAA	2340
15	GATCAGAGGA CCTACAGAGA GGGCTCTTTG GTTTGAGGAC CATGGCTTAC CTTTCCTGCC	2400
	TTTGACCCAT CACACCCCAT TTCCTCCTCT TTCCCTCTCC CCGCTGCCAA TTCCTGCAGC	2460
20	CCGGGGAAC CACTAGTT	2478
20		
25	(2) INFORMATION FOR SEQ ID NO: 91:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2058 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
35	TCGGCCTTGC TTTTGTGGYC TTCCTCTGTG GCCAGAGCGT TTTCATCACC AAGCCTCCTG	60
	ATGGCAGTNC CTTCACCGAT ATGTTCAAGA TACTGACGTA TTCCTGCTGT TCCCAGAAGC	120
	GAAGTGGAGA GCGCCAGAGT AATGGTGAAG GCATTGGAGT NTTTCAGCAA TCTTCTAAAC	180
40	AAAGTCTGTT TGATTCATGT AAGATGTCTC ATGGTGGGCC ATTTACAGAA GAGAAAGTGG	240
	AAGATGTGAA AGCTCTGGTC AAGATTGTCC CTGTTTTCTT GGCTTTGATA CCTTACTGGA	300
15	CAGTGTATTT CCAAATGCAG ACAACATATG TTTTACAGAG TCTTCATTTG AGGATTCCAG	360
	AAATTTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG	420
	ATGCTGTGCT CATCCTCCTG CTCATCCCTC TGAAGGACAA ACTGGTCGAT CCCATTTTGA	480
50 -	GAAGACATGG CCTGCTCCCA TCCTCCCTGA AGAGGATCGC CGTGGGCATG TTCTTTGTCA	540
	TGTGCTCRGC CTTTGCTGCA GGAATTTTGG AGAGTAAAAG GCTGAACCTT GTTAAAGAGA	600
55	AAACCATTAA TCAGACCATC GGCAACGTCG TCTACCATGC TGCCGATCTG TCGCTGTGGT	660
-	GGCAGGTGCC GCAGTACTTG CTGATTGGGA TCAGCGAGAT CTTTGCAAGT ATCGCAGGCC	720
	TGGAATTTGC ATACTCAGCT GCCCCCAAGT CCATGCAGAG TGCCATAATG GGCTTGTTCT	780
0	TTTTCTTCTC TGGCGTCGGG TCGTTCGTGG GTTCTGGACT GCTGGCACTG GTGTCTATCA	840

	AAGCCATCGG ATGGATGAGC AGTCACACAG ACTTTGGTAA TATTAACGGC TGCTATTTGA	900
~	ACTATTACTT TTTCCTTCTG GCTGCTATTC AAGGAGCTAC CCTCCTGCTT TTCCTCATTA	960
5	TTTCTGTGAA ATATGACCAT CATCGAGACC ATCAGCGATC AAGAGCCAAT GGCGTGCCCA	1020
	CCAGCAGGAG GGCCTGACCT TCCTGAGGCC ATGTGCGGTT TCTGAGGCTG ACATGTCAGT	1080
10	AACTGACTGG GGTGCACTGA GAACAGGCAA GACTTTAAAT TCCCATAAAA TGTCTGACTT	1140
	CACTGAAACT TGCATGTTGC CTGGATTGAT TTCTTCTTTC CCTCTATCCA AAGGAGCTTG	1200
	GTAAGTGCCT TACTGCAGCG TGTCTCCTGG CACGCTGGGC CCTCCGGGAG GAGAGCTGCA	1260
15	GATTTCGAGT ATGTCGCTTG TCATTCAAGG TCTCTGTGAA TCCTCTAGCT GGGTTCCCTT	1320
	TTTTACAGAA ACTCACAAAT GGAGATTGCA AAGTCTTGGG GAACTCCACG TGTTAGTTGG	1380
20	CATCCCAGTT TCTTAAACAA ATAGTATCAC CTGCTTCCCA TAGCCATATC TCACTGTAAA	1440
	AAAAAAATT AATAAACTGT TACTTATATT TAAGAAAGTG AGGATTTTTT TTTTTTAAAG	1500
	ATAAAAGCAT GGTCAGATGC TGCAAGGATT TTACATAAAT GCCATATTTA TGGTTTCCTT	1560
25	CCTGAGAACA ATCTTGCTCT TGCCATGTTC TTTGATTTAG GCTGGTAGTA AACACATTTC	1620
	ATCTGCTGCT TCAAAAAGTA CTTACTTTT AAACCATCAA CATTACTTTT CTTTCTTAAG	1680
30	GCAAGGCATG CATAAGAGTC ATTTGAGACC ATGTGTCCCA TCTCAAGCCA CAGAGCAACT	1740
	CACGGGGTAC TTCACACCTT ACCTAGTCAG AGTGCTTATA TATAGCTTTA TTTTGGTACG	1800
	ATTGAGACTA AAGACTGATC ATGGTTGTAT GTAAGGAAAA CATTCTTTTG AACAGAAATA	1860
35	GTGTAATTAA AAATAATTGA AAGTGTTAAA TGTGAACTTG AGCTGTTTGA CCAGTCACAT	1920
	TTTTGTATTG TTACTGTACG TGTATCTGGG GCTTCTCCGT TTGTTAATAC TTTTTCTGTA	1980
40	TTTGTTGCTG TATTTTTGGC ATAACTTTAT TATAAAAAGC ATCTCAAATG CGAAAWAAAA	2040
	АААААААА ААААААС	2058

50

(2) INFORMATION FOR SEQ ID NO: 92:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1411 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

GGCACAGGAG CGACCCGGGA GAAGGAGGGC CAMGAKGCGG AAGCGGAGGA GTCTCCAGGA 60
GACCCGGGGA CAGCATCGCC CAGGCCCCTG TTTGCAGGCC TTTCAGATAT ATCCATCTCA 120

	CAAGACATCC COGTAGAAGG AGAAATCACC ATTCCTATGA GATCTCGCAT CCGGGAGTTT	180
	GACAGCTCCA CATTAAATGA ATCTGTTCGC AATACCATCA TGCGTGATCT AAAAGCTGTT	240
5	GGGAAAAAT TCATGCATGT TTTGTACCCA AGGAAAAGTA ATACTCTTTT GAGAGATTGG	300
	GATTTGTGGG GCCCTTTGAT CCTTTGTGTG ACACTCGCAT TAATGCTGCA AAGAGACTCT	360
10	GCAGATAGTG AAAAAGATGG AGGGCCCCAA TTTGCAGAGG TGTTTGTCAT TGTCTGGTTT	420
	GGTGCAGTTA CCATCACCCT CAACTCAAAA CTTCTTGGAG GGAACATATC TTTTTTTCAG	480
	AGCCTCTGTG TGCTGGGTTA CTGTATACTT CCCTTGACAG TAGCAATGCT GATTTGCCGG	540
15	CTGGTACTTT TGGCTGATCC AGGACCTGTA AACTTCATGG TTCGGCTTTT TGTGGTGATT	600
	GTGATGTTTG CCTGGTCTAT AGTTGCCTCC ACAGCTTTCC TTGCTGATAG CCAGCCTCCA	660
20	AACCGCAGAG CCCTAGCTGT TTATCCTGTT TTCCTGTTTT ACTTTGTCAT CAGTTGGATG	720
	ATTCTCACCT TTACTCCTCA GTAAATCAGG AATGGGAAAT TAAAAACCAG TGAATTGAAA	780
	GCACATCTGA AAGATGCAAT TCACCATGGA GCTTTGTCTC TGGCCCTTAT TTGTCTAATT	840
25	TTGGAGGTAT TTGATAACTG AGTAGGTGAG GAGATTAAAA GGGAGCCATA TAGCACTGTC	900
	ACCCCTTATT TGAGGAACTG ATGTTTGAAA GGCTGTTCTT TTCTCTCTTA ATGTCATTTC	960
30	TTTAAAAATA CATGTGCATA CTACACACAG TATATAATGC CTCCTTAAGG CATGATGGAG	1020
	TCACCGTGGT CCATTTGGGT GACAACCAGT GACTTGGGAA GCACATAGAT ACATCTTACA	1080
	AGITGAATAG AGITGATAAC TATTITCAGT TITGAGAATA CCAGITCAGG TGCAGCTCTT	1140
35	AAACACATTG CCTTATGACT ATTAGAATAT GCCTCTCTTT TCATAAATAA AAATACATCG	1200
	TCTATATCCA TTTTCTTTTA TTTCTCTCTC TTAAGCTTAA AAAGGCAATG AGAGAGGTTA	1260
40	GGAGTGGGTT CATACACGGA GAATGAGAAA ACATGCATTA ACCAATATTC AGATTTTGAT	1320
	CAGGGGAAAT TCTAYACTTG TTGCAAAAAA AAAAAAAAAA AAACTCGAGG GGGGCCCGGT	1380
	ACCCAATCGC NGTATATGAT CGNAAACAAT C	1411
45		
	(2) INFORMATION FOR SEQ ID NO: 93:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2187 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
	GCTTTGGCTT TTTTTGGCGG ACTGGGGCGC CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG	60
60	TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA CTGCCATATA TAGATCCCGG GAGCAGGGA	120

	GCGGGCTAAG AGTAGAATCG TGTCGCGCTC GAGAGCGAGA GTCACGTCCC GGCGCTAGCC	180
_	CAGCCCGACC CAGGCCCACC GTGGTGCACG CAAACCACTT CCTGGCCATG CGCTCCCTCC	240
5	TGCTTCTCAG CGCCTTCTGC CTCCTGGAGG CGGCCCTGGC CGCCGAGGTG AAGAAACCTG	300
	CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA AGTTGAGCCC CAAGGCGGCC ACGCTTGCCG	360
10	AGCGCAGCCG GCCTGGCCTT CAGCTTGTAC CAGGCCATGG CCAAGGACCA GGCAGTGGAG	420
	AACATCCTGG TGTCACCCGT GGTGGTGGCC TCGTCGCTGG GGCTCGTGTC GCTGGGCGGC	480
	AAGGCGACCA CGGCGTCGCA GGCCAAGGCA GTGCTGAGCG CCGAGCAGCT GCGCGACGAG	540
15	GAGGTGCACG CCGGCCTGGG CGAGCTGCTG CGCTCACTCA GCAACTCCAC GGCGCGCAAC	600
	GTGACCTGGA AGCTGGGCAG CCGACTGTAC GGACCCAGCT CAGTGAGCTT CGCTGATGAC	660
20	TTCGTGCGCA GCAGCAAGCA GCACTACAAC TGCGAGCACT CCAAGATCAA CTTCCGCGAC	720
	AAGCGCAGCG CGCTGCAGTC CATCAACGAG TGGGCCGCGC AGACCACCGA CGGCAAGCTG	780
- "	CCCGAGGTCA CCAAGGACGT GGAGCGCACG GACGGCGCCC TGTTAGTCAA CGCCATGTTC	840
25	TTCAAGCCAC ACTGGGATGA GAAATTCCAC CACAAGATGG TGGACAACCG TGGCTTCATG	900
	GTGACTCGGT CCTATACCGT GGGTGTCATG ATGATGCACC GGACAGGCCT CTACAACTAC	960
30	TACGACGACG AGAAGGAAAA GCTGCAAATC GTGGAGATGC CCCTGGCCCA CAAGCTCTCC	1020
	AGCCTCATCA TCCTCATGCC CCATCACGTG GAGCCTCTCG AGCGCCTTGA AAAGCTGCTA	1080
25	ACCAAAGAGC AGCTGAAGAT CTGGATGGGG AAGATGCAGA AGAAGGCTGT TGCCATCTCC	1140
35	TTGCCCAAGG GTGTGGTGGA GGTGACCCAT GACCTGCAGA AACACCTGGC TGGGCTGGGC	1200
	CTGACTGAGG CCATTGACAA GAACAAGGCC GACTTGTCAC GCATGTCAGG CAAGAAGGAC	1260
40	CTGTACCTGG CCAGCGTGTT CCACGCCACC GCCTTTGAGT TGGACACAGA TGGCAACCCT	1320
	TTGACCAGAA TTACGGCCGG AGGAGTGCGC ACCCAAGTGT TCTACGCCGA CCACCCCTTC	1380
45	ATTTCCTAGT GCGGGACACC CAAAGCGGTC CCTGCTATTC ATTGGGCGCC TGGTCCGGCC	1440
45	TAAGGGTGAC AAGATGCGAG ACGAGTTATA GGCCTCAGGG TGCACACAGG ATGGCAGGAG	1500
	GCATCCAAAG GCTCCTGAGA CACATGGGTG CTATTGGGGT TGGGGGGGAG GTGAGGTACC	1560
50	AGCCTTGGAT ACTCCATGGG GTGGGGTGGA AAAGCAGACC GGGGTTCCCG TGTGCCTGAG	1620
	CGGACTTCCC AGCTAGAATT CACTCCACTT GGACATGGGC CCCAGATACC ATGATGCTGA	1680
==	GCCCGGAAAC TCCACATCCT GTGGGACCTG GGCCATAGTC ATTCTGCCTG CCCTGAAAGT	1740
55	CCCAGATCAA GCCTGCCTCA ATCAGTATTC ATATTTATAG CCAGGTACCT TCTCACCTGT	1800
	GAGACCAAAT TGAGCTAGGG GGGTCAGCCA GCCCTCTTCT GACACTAAAA CACCTCAGCT	1860
60	GCCTCCCCAG CTCTATCCCA ACCTCTCCCA ACTATAAAAC TAGGTGCTGC AGCCCCTGGG	1920

	ACCAGGCACC CCCAGAATGA CCTGGCCGCA GTGAGGCGGA TTGAGAAGGA GCTCCCAGGA	1980
5	GGGCTTCTG GGCAGACTCT GGTCAAGAAG CATCGTGTCT GGCGTTGTGG GGATGAACTT	2040
	TTTGTTTGT TTCTTCCTTT TTTAGTTCTT CAAAGATAGG GAGGGAAGGG GGAACATGAG	2100
	CCTTTGTTGC TATCAATCCA AGAACTTATT TGTACATTTT TTTTTTCAAT AAAACTTTTC	2160
10	CAATGACAAA AAAAAAAA AAAAAAA	2187
15	(2) INFORMATION FOR SEQ ID NO: 94:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 757 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
25	GACAGTACGG TCGGATTCCC GGGTCGACCC ACGCGTCCGC GGACGGTGAA GAAGGTGAAG	60
	ATGCCGGTGG CCAGGGCCGG GGTCTTGGGA GTCCAGTGGC TGCAAAGGGC ATCCCGGAAC	120
30	GTGATGCCGC TGGGCGCACG GACAGCCTCC CACATGACCA AGGACATGTT CCCGGGGCCC	180
	TATCCTAGGA CCCCAGAAGA ACGGGCCGCC GCCGCCAAGA AGTATAATAT GCGTGTGGAA	240
	GACTACGAAC CTTACCCGGA TGATGGCATG GGGTATGGCG ACTACCCGAA GCTCCCTGAC	300
35	CGCTCACAGC ATGAGAGAGA TCCATGGTAT AGCTGGGACC AGCCGGGCCT GAGGTTGAAC	360
	TGGGGTGAAC CGATGCACTG GCACCTAGAC ATGTACAACA GGAACCGTGT GGATACATCC	420
40	CCCACACCTG TITCTTGGCA TGTCATGTGT ATGCAGCTCT TCGGTTTCCT GGCTTTCATG	480
	ATATTCATGT GCTGGGTGGG GGACGTGTAC CCTGTCTACC AGCCTGTGGG ACCAAAGCAG	540
,	TATCCTTACA ATAATCTGTA CCTGGAACGA GGCGGTGATC CCTCCAAAGA ACCAGAGCGG	600
45	GTGGTTCACT ATGAGATCTG AGGAGGCTTC GTGGGCTTTT GGGTCCTCTA ACTAGGACTC	660
	CCTCATTCCT AGAAATTTAA CCTTAATGAA ATCCCTAATA AAACTCAGTG CTGTGTTAAA	720
50	AAAAAAAA AAAAAAAA AAAAAGGGGG GCCCCNN	757
55	(2) INFORMATION FOR SEQ ID NO: 95:	
رر	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2394 base pairs (B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

	(12)	
_	GGCACGAGCA CTCCTGCACT TCCCCACCCC CACGACCGAA CCTGGCTTCG CTAACGCCCT	60
5	CCCAGCTCCC TCGGGCCTGA CTTCCGGTTT CCTCGCGCGT CCCTGGCGCC GAGCCGCGGA	120
	CAGCAGCCCC TTTTCCGGCT GAGAGCTCAT CCACACTTCC AATCACTTTC CGGAGTGCTT	180
10	CCCCTCCCTC CGGCCCGTGC TGGTCCCGAC GGCGGGCCTG GGTCTCGCGC GCGTATTGCT	240
	GGGTAACGGG CCTTCTCYCG CGTCGGCCCG GCCCCTCCTG CCTCGGCTCG TCCCTCCTTC	300
	CAGAACGTCC CGGGCTCCTG CCGAGTCAGA AGAAATGGGA CTCCCTCCGC GACGTGCCCG	360
15	GAGCAGCTCC CTTCGCTGTG GAAGCGGCGG TGTCTTCGAA GAAACCGGAA GCCCGTGGTG	420
	ACCCCTGGCG ACCCGGTTTG TTTTCGGTCC GTTTCCAAAC ACTAAGGAAT CGAAACTCGG	480
20	CGGCCTTGGG GGCGGCCCTA CGTAGCCTGG CTTCTGGTTG TCATGGATGC ACTGGTAGAA	540
	GATGATATCT GTATTCTGAA TCATGAAAAA GCCCATAAGA GAGATACAGT GACTCCAGTT	600
25	TCAATATATT CAGGAGATGA ATCTGTTGCT TCCCATTTTG CTCTTGTCAC TGCATATGAA	660
25	GACATCAAAA AACGACTTAA GGATTCAGAG AAAGAGAACT CTTTGTTAAA GAAGAGAATA	720
	AGATTITIGG AAGAAAAGCT AATAGCTCGA TITGAAGAAG AAACAAGITC CGTCGGACGA	780
30	GAACAAGTAA ATAAGGCCTA TCATGCATAT CGAGAGGTTT GCATTGATAG AGATAATTTG	840
	AAGAGCAAAC TGGACAAAAT GAATAAAGAC AACTCTGAAT CTTTGAAAGT ATTGAATGAG	900
35	CAGCTACAAT CTAAAGAAGT AGAACTCCTC CAGCTGAGGA CAGAGGTGGA AACTCAGCAG	960
33	GTGATGAGGA ATTTAAATCC ACCTTCATCA AACTGGGAGG TGGAAAAGTT GAGCTGTGAC	1020
	CTGAAGATCC ATGGTTTGGA ACAAGAGCTG GAACTGATGA GGAAAGAATG TAGCGATCTC	1080
40	AAAATAGAAC TACAGAAAGC CAAACAAACG GATCCATATC AGGAAGACAA TCTGAAGAGC	1140
	AGAGATCTCC AAAAACTAAG CATTTCAAGT GATAATATGC AGCATGCATA CTGGGAACTG	1200
45	AAGAGAGAAA TGTCTAATTT ACATCTGGTG ACTCAAGTAC AAGCTGAACT ACTAAGAAAA	1260
73	CTGAAAACCT CAACTGCAAT CAAGAAAGCC TGTGCCCCTG TAGGATGCAG TGAAGACCTT	1320
	GGAAGAGACA GCACAAAACT GCACTTGATG AATTTTACTG CAACATACAC AAGACATCCC	1380
50	CCTCTCTTAC CAAATGGCAA AGCTCTTTGT CATACCACAT CTTCCCCTTT ACCAGGAGAT	1440
	GTAAAGGTTT TATCAGAGAA AGCAATCCTC CAATCATGGA CAGACAATGA GAGATCCATT	1500
55	CCTAATGATG GTACATGCTT TCAGGAACAC AGTTCTTATG GCAGAAATTC TCTGGAAGAC	1560
55	AATTCCTGGG TATTTCCAAG TCCTCCTAAA TCAAGTGAGA CAGCATTTGG GGAAACTAAA	1620
	ACTAAAACTT TGCCTTTACC CAACCTTCCA CCACTGCATT ACTTGGATCA ACATAATCAG	1680
60	AACTGCCTTT ATAAGAATTA ATTTGGAAGA GATTCACGAT TTCACCATGA GGACACTTAT	1740

	CTCTTTCAGT GGTCCTCCCA AGAAATTATT TAACAAACTG AANGGAGATT TTGATTAAAA	1800
5	TITTGCAGAG GTCTTCAGTA TCTATATTTG AACACACTGT ACAATAGTAC AAAAACCAAC	1860
	ATAGTTGGTT TTCTAGTATG AAAGAGCACC CTCTAGCTCC ATATTCTAAG AATCTGAAAT	1920
	ATGCTACTAT ACTAATTAAT AAGTAAACTT AAGGTGTTTA AAAAACTCTG CCTTCTATAT	1980
10	TAATTGTAAA ATTTTGCCTC TCAGAAGAAT GGAATTGGAG ATTGTAGACG TGGTTTTACA	2040
	AAATGTGAAA TGTCTAAATA TCTGTTCATA AAAATAAAAG GAAAACATGT TTCTTCAAAT	2100
15	TGCATAATGG AACAAATGGC AATGTGAGTA GGTTACATTT CTGTTGTTAT AATGCGTAAA	2160
	GATATTGAAA ATATAATGAA ATAAAAGCAT CTTAGGTTAT ACCATCTTTA TATGCTATTG	2220
	CGTTTCAATA TTTAAGATTT AAAGTGATTT TTTGGTCACA GTGTTTTGTT GATAAAATTT	2280
20	TTTTAGAATT GAAGTTTGAA TTCTAAGACT TGAAACAACC TGATCACTGA AGCCAACTTT	2340
	GTCCCAGCAC ATTCCTTAAG TCCTAATTGG GGAAAAAAAA AAAAAAAAAC TCGA	2394
25		
	(2) INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 672 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	•
0.5	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NC: 96:	•
	AGTGCTCTGT TGCCCAGGCT GGAGTGCGTT AGTGTAATGT CAGTCCACTG CAACCTCCAC	60
40	CCCCAGGITC AAGCAATICT CATGCCTCAG CCTCCCAAGT AGCTGAAATT ACTGGCATGC	120
	ACCACCACAC CCAGCTGATG TITATITATT TATTITATATA TITATITIATT TIAGGTGTTT	180
	TITTTTTTT TTTTTGAGAC GGAGTCTTGC TCTGTTGCCC TGGGTGTGGT TACGTGGRAT	240
45		
	TACCATYCTG GGTGACTCAC TGAAATGTAC TCMCAGTGAG TCATGCCTTC MAATGACATC	300
	TACCATYCTG GGTGACTCAC TGAAATGTAC TCMCAGTGAG TCATGCCTTC MAATGACATC TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC	300 360
50		
50	TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC	360
50	TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC AAGAAGGAAT TTAGCCTGTC TTTTTAAATA AACGGCATTT CTTTTTCCTA KAAAAAATGGG	360 420
50 55	TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC AAGAAGGAAT TTAGCCTGTC TTTTTAAATA AACGGCATTT CTTTTTCCTA KAAAAATGGG AAATTCTTCA ATTCTCTAAT ACAGGGACAC TGAGATAACA AAGAGGAAAG TGTCTGGTTG	360 420 480
	TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC AAGAAGGAAT TTAGCCTGTC TTTTTAAATA AACGGCATTT CTTTTTCCTA KAAAAATGGG AAATTCTTCA ATTCTCTAAT ACAGGGACAC TGAGATAACA AAGAGGAAAG TGTCTGGTTG GAGGTTGGGA RGCCACCCTG GGGTCTCTCC TACAAAAATG GAAAAGAAAA	360 420 480 540

(2) INFORMATION FOR SEQ ID NO: 97:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1419 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

15	TAAGAACAGA ACAGCAAGTA TGAACCACAT GGAACTTAAA ACATATGGGT GTGAAGTCCA	60
13	CTTATGTAGA CAAAACTTAT AATTTCCAAA CTGTTGTCTA GTATACAGTG ATCAGTTGCT	120
	CTCTGTTCAA GTCATTCCAC ACATTTCCCT ATTTTAGGCT ATTATAATAT AGAAAGAAAA	180
20	TGGGAAGCAT TAGTTGGAGC TAGAAAATGA ACTGTATATT ATTGCTATAT TTGCTAATAC	240
	CAACTATTTC AATAAGTGTT GTACCATATG TAGCATTAAA TATAAAATAC ATAAAAGAAT	300
25	GTACAGAAAA TAGCTTTTAT TGAGTAATAT TACATTTCAT TTATACTGTA GCAATATATT	360
23	TGTAGGTATA CTCTGTAAGG GCTTTAAATA AAAGAGGTCC ATTAATACTT CCTTATAAAA	420
	ATTCTAGTCT GTTTCATTAC TGCCCAGATG TTTTAGAGAT AAATATTTAT GCAGAAGGTA	480
30	TTTTKGAAAG TCYCCYTTTG TCTGATAGAG TTTAACNAGA TATTTAAATT TAGTGCYCNA	540
	GAAATCCCAC AAGTCACGGT CTAAACACAC TTAGAATACT ACAGCATAAA TCTGTTAGCA	600
35	TTANTTGCCA AATAAGACAG TTGGGATCCC AAACCCCAAG TCCTTGAGCA ATGTTTTTCC	660
33	TCAAAAAGCT GCTATNCCAA TGATATAGGA AAAWACATTG TGTTTTCCTA AACACACTTT	720
	TCTTTTTAAA TGTGCTTCAT TGTTTGATTT GGTCCTGCCT AAATTTCACA AGCTAGGCCA	780
40	ATGAAGGCTG AATCAAAGAC ATTTCATCCA CCAATATCAT GTGTAGATAT TATGTATAGA	840
	AAATAAAATA AATTATGGCT CTAACTTCTG TGTTGCTGTT TATCTTGTTA TTTTTCGGCG	900
45	TTATACTAAT GNGTTTATTG AGAGCATTTT ACCTTCCAGA CTTCTCATGG CTAACTTTTG	960
43	GTCTGWATTT TGSTCCTTAG ATGKGAATAT TTCTTATTAG TYTGCTYCCT GCWACGCAAT	1020
	GACTGCATTT CTATCATTTC TCAGTTTGTT AGWATATGTG GATAGTATTC TACTGTATAA	1080
50	ATGATTGCAA AGTTTATCAA AAACAAATTA TTATATGTAG CTTTTCTACA GTGCTTTGCT	1140
	AAACCATGTA GTACTAGTTA AGTSTTCCTT GAAAATAAAG ATACACTCTT ATAGGGGACA	1200
55	GTTCCTGTTC ACTCCCAGGA AACTTTTTTA AAAGATGACA CTGAATGTTT ATTGCACTTT	1260
	AGTGCAGTGA AGTGGCAATA AAACCTAACA TGAATCAAGG TTGTTTATGG CAGATGCATG	1320
	TGTTGCTTTA CAGAGTTTAG CAAAAGCTCT TAATTTTATG TCATACTGTA TTCTACTGAA	1380
60	TAATAAAGCT AACATTATTC AATAATAAAA TGGAAAAAA	1419

5 (2) INFORMATION FOR SEQ ID NO: 98	,	(2)	INFORMATION	FOR	SEQ	ID	NO:	91
-------------------------------------	---	-----	-------------	-----	-----	----	-----	----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
15	GCGACCGCGC CCCTTTCAGC TAGCTCGCTC GCTCGCTCTG CTTCCCTGCT GCCGGCTGCG	60
	CATGGCKWTG GCGTTGGCGG CGCTGGCGGC GCCTGCGCAG CCGGTACCAG	120
20	CAGTTGCAGA ATGAAGAAGA GTCTGGAGAA CCTGAACAGG CTGCAGGTGA TGCTCCTCCA	180
	CCTTACAGCA GCATTTCTGC AGAGAGCGCA GTTTTCCACC TATTTCCCTG GATATTTTGA	240
	TGGTCAGTAC TGGCTCTGGT GGGTGTTCCT TGTTTTAGGC TTTCTCCTGT TTCTCAGAGG	300
25	ATTTATCAAT TATGCAAAAG TTCGGAAGAT GCCAGAAACT TTCTCAAATC TCCCCAGGAC	360
	CAGAGITCTC TITATTTATT AAAGATGITT TCTGGCAAAG GCCTTCCTGC ATTTATGAAT	420
30	TCTCTCTCAA GAAGCAAGAG AACACCTGCA GGAAGTGAAT CAAGATGCAG AACACAGAGG	480
	AATAATCACC TGCTTTAAAA AAATAAAGTA CTGTTGAAAA GATCATTTCT CTCTATTTGT	540
	TCCTAGGTGT AAAATTTTAA TAGTTAATGC AGAATTCTGT AATCATTGAA TCATTAGTGG	600
35	TTAATGITIG AAAAAGCTCT TGCAATCAAG TCTGTGATGT ATTAATAATG CCTTATATAT	660
	TGTTTGTAGT CATTTTAAGT AGCATGAGCC ATGTCCCTGT AGTCGGTAGG GGGCAGTCTT	720
40	GCTTTATTCA TCCTCCATCT CAAAATGAAC TTGGAATTAA ATATTGTAAG ATATGTATAA	780
	TGCTGGCCAT TTTAAAGGGG TTTTCTCAAA AGTTAAACTT TTGTTATGAC TGTGTTTTTG	840
	CACATAATCC ATATTTGCTG TTCAAGTTAA TCTAGAAATT TATTCAATTC TGTATGAACA	900
45	CCTGGAAGCA AAATCATAGT GCAAAAATAC ATTTAAGGTG TGGTCAAAAA TAAGTCTTTA	960
	ATTGGTAAAT AATAAGCATT AATTTTTTAT AGCCTGTATT CACAATTCTG CGGTACCTTA	1020
50	TTGTACCTAA GGGATTCTAA AGGTGTTGTC ACTGTATAAA ACAGAAAGCA CTAGGATACA	1080
	AATGAAGCTT AATTACTAAA ATGTAATTCT TGACACTCTT TCTATAATTA GCGTTCTTCA	1140
	CCCCCACCC CACCCCCACC CCCCTTATTT TCCTTTTGTC TCCTGGTGAT TAGGCCAAAG	1200
55	TCTGGGAGTA AGGAGGAT TAGGTACTTA GGAGCAAAGA AAGAAGTAGC TTGGAACTTT	1260
	TGAGATGATC CCTAACATAC TGTACTACTT GCTTTTACAA TGTGTTAGCA GAAACCAGTG	1320
60	GGITATAATG TAGAATGATG TGCTTTCTGC CCAAGTGGTA ATTCATCTTG GTTTGCTATG	1380

	TTAAAACTGT AAATACAACA GAACATTAAT AAATATCTCT TGTGTAGCAC CTTTAAAAAA	1440
	AAAAAAAAA AAAAAAAAA AAAAAAAAAN CCCGGGGGGG GGCCCCN	1487
5		
	. :	
	(2) INFORMATION FOR SEQ ID NO: 99:	•
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1653 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
	GCGACCGCGC CCTTCAGCTA GCTCGCTCGC TCGCTCTGCT TCCCTGCTGC CGGCTGCGCA	60
20	TGGCTTNGGC GTTGGCGGCG CTGGCGGCGG CTCGAGCCGC CTGCGSAGCC GGTACCAGCA	120
	GTTGCAGAAT GAAGAAGAGT CTGGAGAACC TGAACAGGCT GCAGGTGATG CTCCTCCACC	180
25	TTACAGCAGC ATTTCTGCAG AGAGCGCACA TNATTTTGAC TACAAGGATG AGTCTGGGTT	240
25	TCCAAAGCCC CCATCTTACA ATGTAGCTAC AACACTGCCC AGTTATGATG AAGCGGAGAG	300
	GACCAAGGCT GAAGCTACTA TCCCTTTGGT TCCTGGGAGA GATGAGGATT TTGTGGGTCG	360
30	GGATGATTTT GATGATGCTG ACCAGCTGAG GATAGGAAAT GATGGGATTT TCATGTTAAC	420
	TITITICATG GCATTCCTCT TTAACTGGAT TGGGTTTTTC CTGTCTTTTT GCCTGACCAC	480
35	TTCAGCTGCA GGAAGGTATG GGGCCATTTC AGGATTTGGT CTCTCTCTAA TTAAATGGAT	540
33	CCTGATTGTC AGGTTTTCCA CCTATTTCCC TGCATTTATG AATTCTCTCT CAAGAAGCAA	600
	GAGAACACCT GCAGGAAGTG AATCAAGATG CAGAACACAG AGGAATAATC ACCTGCTTTA	660
40	AAAAAATAAA GTACTGTTGA AAAGATCATT TCTCTCTATT TGTTCCTAGG TGTAAAATTT	720
	TAATAGTTAA TGCAGAATTC TGTAATCATT GAATCATTAG TGGTTAATGT TTGAAAAAGC	780
15	TCTTGCAATC AAGTCTGTGA TGTATTAATA ATGCCTTATA TATTGTTTGT AGTCATTTTA	840
45	AGTAGCATGA GCCATGTCCC TGTAGTCGGT AGGGGGCAGT CTTGCTTTAT TCATCCTCCA	900
	TCTCAAAATG AACTTGGAAT TAAATATTGT AAGATATGTA TAATGCTGGC CATTTTAAAG	960
50	GGGTTTTCTC AAAAGTTAAA CTTTTGTTAT GACTGTGTTT TTGCACATAA TCCATATTTG	1020
	CTGTTCAAGT TAATCTAGAA ATTTATTCAA TTCTGTATGA ACACCTGGAA GCAAAATCAT	1080
55	AGTGCAAAAA TACATTTAAG GTGTGGTCAA AAATAAGTCT TTAATTGGTA AATAATAAGC	1140
	ATTAATTTTT TATAGCCTGT ATTCACAATT CTGCGGTACC TTATTGTACC TAAGGGATTC	1200
	TAAAGGTGTT GTCACTGTAT AAAACAGAAA GCACTAGGAT ACAAATGAAG CITAATTACT	1260
60	AAAATGTAAT TCTTGACACT CTTTCTATAA TTAGCGTTCT TCACCCCCAC CCCCACCCCC	1320

	ACCCCCCTTA TTTTCCTTTT GTCTCCTGGT GATTAGGCCA AAGTCTGGGA GTAAGGAGAG	1380
5	GATTAGGTAC TTAGGAGCAA AGAAAGAAGT AGCTTGGAAC TTTTGAGATG ATCCCTAACA	1440
	TACTGTACTA CTTGCTTTTA CAATGTGTTA GCAGAAACCA GTGGGTTATA ATGTAGAATG	1500
	ATGTGCTTTC TGCCCAAGTG GTAATTCATC TTGGTTTGCT ATGTTAAAAC TGTAAATACA	1560
10	ACAGAACATT AATAAATATC TCTTGTGTAG CACCTTTTAW AAAAAAAAAA AAAAAAAAA	1620
	AAAAAAAAA AAAAANCCCG GGGGGGGCC CCN	1653
15		
	(2) INFORMATION FOR SEQ ID NO: 100:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	TTTTTTTTT TTGACTGAAC TAAGTGGCTT TTTTATTAGA GAAAGCCAGA	60
30	ATTACAAAAG ACTTCCCTTT TCTTGGGGTA TGGCTGTCTC AGCACAATAC TCAACATAAC	120
	TGCAGAACTG ATGTGGCTCA GGCACCCTGG TTTTAATTCC TTGAGGATCT GGCAATTGGC	180
	TTACGCAAAA GGTCACCATT TGAGGTCCTG CCTTACTAAT TATGTGCTGC CCAACAACTA	240
35	AATTTGTAAT TTGTTTTTCT CTAGTTTGAG CAGGGTCTGA ATTTTTTCAT TTATTTCCTT	300
	TTTTGCCAGC AGACAGACTT GAGTCTGTAA AGACAAGCAA ATACACTGAC AGAAGTTTAC	360
40	CATAGTITCT AAAATGTAAA AAAGAAAACC CCCAAAAGAC TCAAGAAAAT TAGACCACAA	420
	ATTITICATI GITCATIGIA GCACTATIGG TAATAAAATA ACAAATGIII GIGCATIIII	480
	ATGTGAAGAT CCTTCTCGTA TTTCATTTGG AAAGATGAGC AAGAGGTCTG CTTCCTTCAT	540
45	TTTACTTCCC CTTCTGTFTT TGAAAGGCAG TTTCGCCAAG CTTAATGCAA GAATATCTGA	600
	CTGTTTAGAA GAAAGATATT GCCACAATCT CTGGATGGTT TTCCAGGGTT GTGTTATTAC	660
50	TGAGCTTCAT CTTTCCAGAA TGAGCAAAAC ACTGTCCAGT CTTTGTTACG ATTTTGTAAT	720
	AAATGIGTAC ATTTTTTTTA AATTTTTGGA CATCACATGA ATAAAGGTAT GTATGTACGA	780
	ATGTGTATAT ATTATATATA TGACATCTAT TTTGGAAAAT GTTTGCCCTG CTGTACCTCA	840
55	TTTTTAGGAG GTGTGCATGG ATGCAATATA TGAAAATGGG ACATTCTGGA ACTGCTGGTC	900
	AGGGGACTTT GTCGCCCTGT GCACTAAAAG GGCCAGATTT TCAGCAGCCA AGGACATCCA	960
60	TACCCAAGTG AATGTGATGG GACTTAAAAG AAGTGAACTG AGACAATTCA CTCTGGCTGT	1020

	TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER	1080
	TTGAACAGCA GCGTTTCATA GGAAGAGAAA AAAAGATCAA TCTTGTATTT TCTGACCACA	1080
	TAAAGGCTTC TTCTCTTTGT AATAAAGTAG AAAAGCTCTC CTCAAAAAAAA AAAAAAAAAA	1140
5	AAAAA	1145
10	(2) INFORMATION FOR SEQ ID NO: 101:	•
10		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	•
20	TACCCGGCGG ATTCCAGGAA GGTAAATTTA GTCCTATAAT TTTCAGCTTA ATTATAAACA	60
20		120
	AAGGAACAAA TAAGTGGAAG GGCAGCTATT ACCATTCGCT TAGTCAAAAC ATTCGGTTAC	
25	TGCCCTTTAA TACACTCCTA TCATCAGCAC TTCCACCATG TATTACAAGT CTTGACCCAT	180
25	CCCTGTCGTA ACTCCAGTAA AAGTTACTGT TACTAGAAAA TTTTTATCAA TTAACTGACA	240
	AATAGTTTCT TTTTAAAGTA GTTTCTTCCA TCTTTATTCT GACTAGCTTC CAAAATGTGT	300
20	TCCCTTTTTG AATCGAGGTT TTTTTGTTTT GTTTTGTTTT	360
30		
	TGTGCTTCTA TTGCTTTTTT GTGTTTTGTT AAGCATGTCC CTTGGCCCAA ATGGAAGAGG	420
2.5	AAATGITTAA TTAATGCTTT TTAGTTTAAA TAAATTGAAT CATTTATAAT AATCAGTGTT	480
35	AACAATITAG TGACCCTTGG TAGGTTAAAG GTTGCATTAT TTATACTTGA GATTTTTTTC	540
	CCCTAACTAT TCTGTTTTTT GTACTTTAAA ACTATGGGGG AAATATCACT GGTCTGTCAA	600
40	GAAACAGCAG TAATTATTAC TGAGTTAAAT TGAAAAGTCC AGTGGACCAG GCATTTCTTA	660
40		720
	TATAAATAAA ATTGGTGGTA CTAATGTGAA AAAAAAAAA AAAAAAAACT CGAGGGGGC	720
45	CCGGTACCCT ATTA	734
43		
	(2) INFORMATION FOR SEQ ID NO: 102:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 713 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
	CCGCGGGAAC GCTGTCCTGG CTGCCGNCAC CCGAACAGCC TGTCCTGGTG CCCCGGCTCC	60

	CTGCCCCGCG CCCAGTCATG ACCCTGCGCC CCTCACTCCT CCCGCTCCAT CTGCTGCTGC	120
	TECTECTECT CACTECOGCE GTGTGCCGGG CTGAGGCTGG GCTCGAAACC GAAAGTCCCG	180
5	TCCGGACCCT CCAAGTGGAG ACCCTGGTGG AGCCCCCAGA ACCATGTGCC GAGCCCGCTG	240
	CTTTTGGAGA CACGCTTCAC ATACACTACA CGGGAAGCTT GGTAGATGGA CGTATTATTG	300
10	ACACCTCCCT GACCAGAGAC CCTCTGGTTA TAGAACTTGG CCAAAAGCAG GTGATTCCAG	360
	GTCTGGAGCA GAGTCTTCTC GACATGTGTG TGGGAGAGAA GCGAAGGGCA ATCATTCCTT	420
	CTCACTTGGC CTATGGAAAA CGGGGATTTC CACCATCTGT CCCAGCGGAT GCAGTGGTGC	480
15	AGTATGACGT GGAGCTGATT GCACTAATCC GAGCCAACTA CTGGCTAAAG CTGGTGAAGG	540
	GCATTTTGCC TCTGGTAGGG ATGGCCATGG TGCCACCCTC CTGGGCCTCA TTGGGTATCA	600
20	CCTATACAGA AAGGCCAATA GACCCAAAGT CTCCAAAAAG AAGCTCAAGG AAGAGAAACG	660
	AAACAAGAGC AAAAAGAAAT AATAAATAAT AAATTTTAAA AAACTTAAAA AAA	713
25	(2) INFORMATION FOR SEQ ID NO: 103:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1080 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
	CCGATGTGGA CATCATCCTG TCTATCCCCA TGTTCCTGCG CCTGTACCTG ATCGCCCGAG	60
	TCATGCTGCT GCACAGAAGC TCTTCACCGA TGCCTCGTCC CGCAGCATCG GGGCCCTCAA	120
40	CAAGATCAAC TTCAACACCC GCTTTGTCAT GAAGACGCTC ATGACCATCT GCCCTGGCAC	180
	TGTGCTGCTC GTGTTCAGCA TCTCTCTGTG GATCATTGCT GCCTGGACCG TCCGTGTCTG	240
45	TGAAAGTCCT GAATCACCAG CCCAGCCTTC TGGCTCATCA CTTCCTGCTT GGTACCATGA	300
	CCAGCAGGAC GTAACTAGTA ACTITICTGGG TGCCATGTGG CTCATCTCCA TCACATTCCT	360
	TTCCATTGGT TATGGGGACA TGGTGCCCCA CACATACTGT GGGAAAGGTG TCTGTCTCCT	420
50	CACTGGCATC ATGGGTGCAG GCTGCACTGC CCTTGTGGTG GCCGTGGTGG CCCGAAAGCT	480
	GGAACTCACC AAAGCGGAGA AGCACGTTCA TAANTTCATG ATGGACACTC AGCTCACCAA	540
55	GCGGATCAAG AATGYTGCAG CCAATGTCCT TSGGGAAACA TGGTTAATCT ATAAACACAC	600
	AAAGYTGYTA AAGAAGATTG ACCATGCCAA AGTGAGGAAC ACCAGAGGAA GTTCYTCCAA	660
	GTATCCACCA GTTGAGGAGC GTCAAGATGG AACAGAGGAA GCTGAGTGAC CAAGCCAACA	720
60	NTCTGGTGGA CCTTTCCAAG ATGCAGAATG TCMTGTATGA CTTAATCACA GAACTCAATG	780

	ACCGGAGCGA AGACCTGGAG AAGCAGATTG GCAGCCTGGA GTCGAAGCTG GAGCATCTCA	840
_	CCGCCAGCTT CAACTCCCTG CCGCTGCTCA TCGCCGACAC CCTGCGCCAG CAGCAGCAGC	900
5	AGCTCCTGTC TGCCATCATC GAGGCCCGGG GTGTCAGCGT GGCAGTGGGC ACCACCCACA	960
	CCCCAATCTC CGATAGCCCC ATTGGGGTCA GCTCCACCTC CTTCCCGACC CCGTACACAA	1020
10	GTTCAAGCAG TTGCTAAATA AATCTCCCCA CTCCAGAAGC ATTAAAAAAA AAAAAAAAAA	1080
		•
15	(2) INFORMATION FOR SEQ ID NO: 104:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 489 base pairs	
••	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	,
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
25	GGCACGAGAG GCTTTGAAGC ATTTTTGTCT GTGCTCCCTG ATCTTCAGGT CACCACCATG	60
	AAGTTCTTAG CAGTCCTGGT ACTCTTGGGA GTTTCCATCT TTCTGGTCTC TGCCCAGAAT	120
	CCGACAACAG CTGCTCCAGC TGACACGTAT CCAGCTACTG GTCCTGCTGA TGATGAAGCC	180
30	CCTGATGCTG AAACCACTGC TGCTGCAACC ACTGCGACCA CTGCTGCTCC TACCACTGCA	240
	ACCACCGCTG CTTCTACCAC TGCTCGTAAA GACATTCCAG TTTTACCCAA ATGGGTTGGG	300
35	GATCTCCCGA ATGGTAGAGT GTGTCCCTGA GATGGAATCA GCTTGAGTCT TCTGCAATTG	360
	GTCACAACTA TTCATGCTTC CTGTGATTTC ATCCAACTAC TTACCTTGCC TACGATATCC	420
40	CCTTTATCTC TAATCAGTTT ATTITCTTTC AAATAAAAA TAACTATGAG CAACAAAAAA	480
40	ААААААА	489
45		
	(2) INFORMATION FOR SEQ ID NO: 105:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 640 base pairs	
50	(B) TYPE: nucleic acid	
	. (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
33	GCGGTCGCCG CTGTTGTTGT GGTCCCCATG GAGCTGCCGT AGCGGACCCA GCACAGCCAG	60
	GAGCGTCCGG GATGAGCTCA GCCGCGCCG ACCACTGGGC GTGGTTGCTG GTGCTCAGCT	120
60	TCGTGTTTGG ATGCAATGTT CTTAGGATCC TCCTCCCGTC CTTCTCATCC TTCATGTCCA	180

	GGGTGCTGCA GAAGGACGCG GAGCAGGAGT CACAGATGAG AGCGGAGATC CAGGACATGA	24
5	AGCAGGAGCT CTCCACAGTC AACATGATGG ACGAGTTTGC CAGATATGCC AGGCTGGAAA	30
	GAAAGATCAA CAAGATGACG GATAAGCTCA AAACCCATGT GAAAGCTCGG ACAGCTCAAT	36
	TAGCCAAGAT AAAATGGGTG ATAAGTGTCG CTTTCTACGT ATTGCAGGCT GCCCTGATGA	42
10	TCTCACTCAT TTGGAAGTAT TATTCTGTCC CTGTGGCTGT CGTGCCGAGT AAATGGATAA	480
	CCCTYTAGAC CGCCTGGTAG CCTTTCCYAY TAGAGTAGCA GGTGGTGTTG GAATTACTGT	540
15	TOGATTTART CTGTACAAAT TGTCCTATTG TGCTTCACCG TYCASTGAAC AGGAGGTGGT	600
	ACAGCCGGAG TTAAAAACGG TTTCCNITCC AGTTTAAAAT	640
20	(2) INFORMATION FOR SEQ ID NO: 106:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1529 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	
50	GGGCACNAGA TGGAGCTGCC GTAGCGGACC CAGCACAGCC AGGAGCGTCC GGGATGAGCT	60
	CAGCCGCGC CGACCACTGG GCGTGGTTGC TGGTGCTCAG CTTCGTGTTT GGATGCAATG	120
35	TTCTTAGGAT CCTCCCCG TCCTTCTCAT CCTTCATGTC CAGGGTGCTG CAGAAGGACG	180
	CGGACAGGAG TCACAGATGA GAGCGGAGAT CCAGGACATG AAGCAGGAGC TCTCCACAGT	240
40	CAACATGATG GACGAGTTTG CCAGATATGC CAGGCTGGAA AGAAAGATCA ACAAGATGAC	300
	GGATAAGCTC AAAACCCATG TGAAAGCTCG GACAGCTCAA TTAGCCAAGA TAAAATGGGT	360
	GATAAGTGTC GCTTTCTACG TATTGCAGGC TGCCCTGATG ATCTCACTCA TTTGGAAGTA	420
45	TTATTCTGTC CCTGTGGCTG TCGTGCCGAG TAAATGGATA ACCCCTCTAG ACCGCCTGGT	480
	AGCCTTTCCT ACTAGAGTAG CAGGTGGTGT TGGAATTACC TGTTGGATTT TAGTCTGTAA	540
50	CAAAGTTGTC GCTATTGTGC TTCATCCGTT CAGCTGAACA GGAGGATGGA TACAGCCGCG	600
	AGTAAAAAA CGGATTTCCT CTTCCTAGCT TAAAATCTGA TTTACACTGT TTTGTTTTTT	660
	AAGAAACAAA AGTGCATAGT TTAGATTTTT TTTTTGTTGA ATATGTTTGT TCTTGGACTT	720
55	TATGAGATAG TCTTATAAGA ATCACGATTT TCTACACCTG TCATTGAGCC AAGAAAGTCC	780
	AGTITATGAC ACGTATGTAC TAGTGAACAC CGTCCTCGAT CTGTACGAAA TGTGAAATGT	840
60	TTAGGGACAT CTCCATGCTG TCACTTGTGA TTTGCCCTCT TATGTATTTT GGTCATATTG	900

	CCAACTGGAA	AGTCAAAATT	TTCTAACAAC	TTTAAGTAAG	TTCTTTGAAG	ACTTAGTGCT	960
	GTTTTTAATC	CAGTTTAGAA	AGTAACTTAA	TTTTAATACC	RCTACTAAAA	ATTCGAAAAT	1020
5	TTCTTCTTTA	ATCACATTCA	ATATGGTTAA	AAGAACAACA	CTAATTGACA	TTGCGTGGGC	1080
	TTTTTCTCCC	TTTGTTTAAA	ATGTCATTTG	TTGAGCAAGA	GTTGTATAGT	ATTATCTACT	1140
10	TACTTGAGGC	TGTTAATTTT	TCATTACAGT	GTTTTGTAAA	TGTATCCACG	AGACCATGAT	1200
ı	GCATTGTTTT	GTGCTCAACT	TGTGTTTTGT	ATTTAAAGCA	TTTTGAATGA	AGTGTATTTT	1260
	ATAAGCATTT	AATATTTATG	CTCTTTAGAA	TGGAACACAG	AAAACAAACC	TTATAAGTCC	1320
15	TGATTAATCT	GAACCAATAA	CCTGTGTGGC	CTACAAAGTA	TAATTCTATT	AAATGTTCCT	1380
	TAAAACACTT	TTTTCTAATT	AAAATCTTTG	CAAATGCTTG	TGTAACTTCC	TGCCTTACAG	1440
20	CTACTTGTTT	GCTGTGAGCC	ACCCGCAACT	GACAAGTGGC	TGTTAACTGA	GTCACCATAT	1500
20	CCCAGTAAAG	CTGAATTTTC	TCACTAAAA				1529

30

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2435 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

35 60 · ATGAAGGGTC GTTGGTGGGA AAGATGGCGG CGACTCTGGG ACCCCTTGGT CGTGGCAGCA GTGGCGRCGA TGTTTGTCGG CTCGGGATGG GTCCAGGATG TTACTCCTTC TTCTTTTGTT 120 GGGGTCTGGG CAGGGGCCAC AGCAAGTCGG GGCGGGTCAA ACGTTCGAGT ACTTGAAACG 180 40 GGAGCACTCG CTGTCGAAGC CCTACCAGGG TGTGGGCACA GGCAGTTCCT CACTGTGGAA TCTGATGGGC AATGCCATGG TGATGACCCA GTATATCCGC CTTACCCCAG ATATGCAAAG 45 TAAACAGGT GCCTTGTGGA ACCGGGTGCC ATGTTTCCTG AGAGACTGGG AGTTGCAGGT GCACTTCAAA ATCCATGGAC AAGGAAAGAA GAATCTGCAT GGGGATGGCT TGGCAATCTG 420 480 GTACACAAAG GRWTCGGATG CAGCCAGGGC CTGTNTTTGG GAAACATGGA CAAATTTGTG 50 GGGCTGGGAG TATTTGTAGA CACCTACCCC AATGAGGAGA AGCAGCAAGA GCGGGTATTC 540 600 CCCTRCMTCT CAGCCATGGT GAACAACGGC TCCCTCAGCT ATGATCATGA GCGGGATGGG 55 CGGCCTACAG AGCTGGGAGG CTGCASAGCC ATTGTCCGCA ATCTTCATTA CGACACCTTC 660 CTGGTGATTC GCTACGTCAA GAGGCATTTR ACGATAATGA TGGATATTGA TGGCAAGCAT 720 780 GAGTGGAGGG ACTGCATTGA AGTGCCCGGA GTCCGCCTGC CCCGCGGCTA CTACTTCGGC 60

	ACCICCICCA TCACIGGGGA TCTCTCAGAT AATCATGATG TCATTTCCTT GAAGITGTTT	840
5	GAACTGACAG TOGAGAGAAC COCAGAAGAG GAAAAGCTCC ATCGAGATGT GTTCTTGCCC	900
	TCAGTGGACA ATATGAAGCT GCCTGAGATG ACAGCTCCAC TGCCGCCCCT GAGTGGCCTG	960
	GCCCTCTTCC TCATCGTCTT TTTCTCCCTG GGTGTTTTCT GTATTTGCCA TAGTCATTGG	1020
10	TATCATACTC TACAACAAAT GGCAGGAACA GAGCCGAAAG CGCTTCTACT GAGCCCTCCT	1080
	GCTGCCACCA CTTTTGTGAC TGTCACCCAT GAGGTATGGA AGGAGCAGGC ACTGGCCTGA	1140
15	GCATGCAGCC TGGAGAGTGT TCTTGTCTCT AGCAGCTGGT TGGGGACTAT ATTCTGTCAC	1200
	TOGAGTTTTG AATOCAGGGA CCCCGCATTC CCATGGTTGT GCATGGGGAC ATCTAACTCT	1260
	GGTCTGGGAA GCCACCCACC CCAGGGCAAT GCTGCTGTGA TGTGCCTTTC CCTGCAGTCC	1320
20	TTCCATGTGG GAGCAGAGGT GTGAAGAGAA TTTACGTGGT TGTGATGCCA AAATCACAGA	1380
	ACAGAATTTC ATAGCCCAGG CTGCCGTGTT GTTTGACTCA GAAGGCCCTT CTACTTCAGT	1440
25	TTTGAATCCA CAAAGAATTA AAAACTGGTA ACACCACAGG CTTTCTGACC ATCCATTCGT	1500
	TGGGTTTTGC ATTTGACCCA ACCCTCTGCC TACCTGAGGA GCTTTCTTTG GAAACCAGGA	1560
	TGGAAACTTC TTCCCTGCCT TACCTTCCTT TCACTCCATT CATTGTCCTC TCTGTGTGCA	1620
30	ACCTGAGCTG GGAAAGGCAT TTGGATGCCT CTCTGTTGGG GCCTGGGGCT GCAGAACACA	1680
	CCTGCGTTTC ACTGGCCTTC ATTAGGTGGC CCTAGGGAGA TGGCTTTCTG CTTTGGATCA	1740
35	CTGTTCCCTA GCATGGGTCT TGGGTCTATT GGCATGTCCA TGGCCTTCCC AATCAAGTCT	1800
	CTTCAGGCCC TCAGTGAAGT TTGGCTAAAG GTTGGTGTAA AAATCAAGAG AAGCCTGGAA	1860
	GACATCATGG ATGCCATGGA TTAGCTGTGC AACTGACCAG CTCCAGGTTT GATCAAACCA	1920
40	AAAGCAACAT TTGTCATGTG GTCTGACCAT GTGGAGATGT TTCTGGACTT GCTAGAGCCT	1980
	GCTTAGCTGC ATGTTTTGTA GTTACGATTT TTGGAATCCC ACTTTGAGTG CTGAAAGTGT	2040
45	AAGGAAGCTT TCTTCTTACA CCTTGGGCTT GGATATTGCC CAGAGAAGAA ATTTGGCTTT	2100
	TTTTTTNCTT AATGGACAAG AGACAGTTGC TGTTCTCATG TTCCAAGTCT GAGAGCAACA	2160
	GACCCTCATC ATCTGTGCCT GGAAGAGTTC ACTGTCATTG AGCAGCACAG CCTGAGTGCT	2220
50	GGCCTCTGTC AACCCTTATT CCACTGCCTT ATTTGACAAG GGGTTACATG CTGCTCACCT	2280
	TACTGCCCTG GGATTAAATC AGTTACAGGC CAGAGTCTCC TTGGAGGGCC TGGAACTCTG	2340
55	AGTCCTCCTA TGAACCTCTG TAGCCTAAAT GAAATTCTTA AAATCACCGA TGGAACCAAA	2400
	ИАЛЛА ДАЛЛАЛАЛА АЛЛАЛАЛА АЛЛАЛАЛА АЛЛАЛАЛА	2435

240

300

60

	(2) INFORMATION FOR SEQ ID NO: 108:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
10	ATGAAACTTA AGAATTGAAT TGGAAAGACT TCTCAAAGAG AATTGTATGT AACGATGTTG	60
	TATTGATTTT TAAGAAAGTA ATTTAATTTG TAAAACTTCT GCTCGTTTAC ACTGCACATT	120
15	GAATACAGGT AACTAATTGG AAGGAGAGGG GAGGTCACTC TTTTGATGGT GGCCCTGAAC	180
	CTCATTCTGG TTCCCTGCTG CGCTGCTTGG TGTGACCCAC GGAGGATCCA CTCCCAGGAT	240
20	GACGTGCTCC GTAGCTCTGC TGCTGATACT GGGTCTGCGA TGCAGCGGCG TGAGGCCTGG	300
20	GCTGGTTGGA GAAGGTCACA ACCCTTCTCT GTTGGTCTGC CTTCTGCTGA AAGACTCGAG	360
	AACCAACCAG GGAAGCTGTC CTGGAGGTCC CTGGTCGGAG AGGGACATAG AATCTGTGAC	420
25	CTCTGACAAC TGTGAAGCCA CCCTGGGCTA CAGAAACCAC AGTCTTCCCA GCAATTATTA	480
	CAATTCTTGA ATTCCTTGGG GATTTTTTAC TGCCCTTTCA AAGCACTTAA GTGTTAGATC	540
20	TAACGTGTTC CAGTGTCTGT CTGAGGTGAC TTAAAAAAATC AGAACAAAAC TTCTATTATC	600
30	CAGAGTCATG GGAGAGTACA CCCTTTCCAG GAATAATGTT TTGGGAAACA CTGAAATGAA	660
	ATCTTCCCAG TATTATAAAT TGTGTATTTA AAAAAAAGAA ACTTTTCTGA ATGCCTACTG	720
35	GCGGTGTATA CCAGGCAGTG TGCCAGTTTA AAAAGATGAA AAAGAATAAA AACTTTTGAG	780
	GAACAAAAA AAAAAAAAA AAATT	805
40		
40 -	(2) INFORMATION FOR SEQ ID NO: 109:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	•
	GGCACGAGAG GCGCCAGTCG CAGGTGTGCT GCTGAGGCGT GAGAATGGCG TCCCGCGGCC	6
	GGCGTCCGGA GCATGGCGGA CCCCCAGAGC TGTTTTATGA CGAGACAGAA GCCCGGAAAT	12
55	ACGTTCGCAA CTCACGGATG ATTGATATCC AGACCAGGAT GGCTGGGCGA GCATTGGAGC	18

TTCTTTATCT GCCAGAGAAT AAGCCCTGTT ACCTGCTGGA TATTGGCTGT GGCACTGGGC

TGAGTGGAAG TTATCTGTCA GATGAAGGGC ACTATTGGGT GGGCCTGGAT ATCAGCCCTG

	CCATGCTGGA TGAGGCTGTG GACCGAGAGA TAGAGGGAGA CCTGCTGCTG GGGGATATGG	360
5	GCCAGGGCAT CCCATTCAAG CCAGGCACAT TTGATGGTTG CATCAGCATT TCTGCTGTGC	420
J	AGRECATOR TAATECTAAC AAGAAGTOTG AAAACCCTGC CAAGCGCCTG TACTGCTTTT	480
	TIGCTICTCT TITTICTGIT CTCGTCCCGG GATCCCGAGC TGTCCTGCAG CTGTACCCTG	540
10	AGAACTCAGA GCAGTTGGAG CTGATCACAA CCCAGGCCAC AAAGGCAGGC TTCTCCGGTG	600
	GCATGGTGGT AGACTACCCT AACAGTGCCA AAGCAAAGAA ATTCTACCTC TGCTTGTTTT	660
15	CTGGGCCTTC GACCTTTATA CCAGAGGGC TGAGTGAAAA TCAGGATGAA GTTGAACCCA	720
13	GGGAGTCTGT GTTCACCAAT GAGAGGTTCC CATTAAGGAT GTCGAGGCGG GGAATGGTGA	780
	GGAAGAGTCG GGCATGGGTG CTGGAGAAGA AGGAGCGGCA CAGGCGCCAG GGCAGGGAAG	840
20	TCAGACCTGA CACCCAGTAC ACCGGCCGCA AGCGCAAGCC CCGCTTCTAA GTCACCACGC	900
	GGTTCTGGAA AGGCACTTGC CTCTGCACTT TTCTATATTG TTCAGCTGAC AAAGTAGTAT	960
25	TTTAGAAAAG TTCTAAAGTT ATAAAAATGT TTTCTGCAGT AAAAAAAAAA	1020
23	CGGGCGTGGT GGCTCACANC TGTAATCCCA GCACCTTGGG AGGCTGAGGT GGGAGGATCA	1080
	TTTGAGGCCA GGAGTTTGAG ACCTGCCTGG GCAACATAAT GAAACTTCCT TTCCAGGGAG	1140
30	АААААААА ААААААААА ACTCGA	1166
		1100
35	(0)	
33	(2) INFORMATION FOR SEQ ID NO: 110:	•
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 586 base pairs	
40	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:	
45	AGAGCGGACG AAGCTGGATA ACAGGGGACC GATGATGTGG CGACCATCAG TTCTGCTGCT	60
	TCTGTTGCTA CTGAGGCACG GGGCCCAGGG GAAGCCATCC CCAGACGCAG GCCCTCATGG	120
50	CCAGGGGAGG GTGCACCAGG CGGCCCCCT GAGCGACGCT CCCCATGATG ACGCCCACGG	180
30	GAACTTCCAG TACGACCATG AGGCTTTCCT GGGACGGGAA GTGGCCAAGG AATTCGACCA	240
	ACTCACCCCA GAGGAAAGCC AGGCCCGTCT GGGGCCGGATC GTGGACCGCA TGGACCGCGC	
55	GGGGGACGGC GACGGCTGGG TGTCGCTGGC CGAGCTTCGC GCGTGGATCG CGCACACGCA	300
	GCAGCGGCAC ATACGGGACT CGGTGAGCGC GGCCTGGGAC ACGTACGACA CGGACCGCGA	360
	CGGGCGTGTG GGTTGGGAGG AGCTGCGCAA CGYCACCTAT GGCCACTASG SGCCCGKTGA	420
60	COLACTAT GGCCACTASG SGCCCGRTGA	480

AGAATTTCAT	GACGTGGAGG	ATGCAGAGAC	YTACAAAAAG	ATGCTGGYTC	GGGACGAGCG	540
GCGTTTCCGG	GTGGCCGACC	AGGATGGGGA	CTCGATGGCC	ACTCGA		586

(2) INFORMATION FOR SEQ ID NO: 111:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1134 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

	ACCCATTGAG CAGAAGGAGG CCAGGTGGGA AAGCTCCTGG GAAGAGCAGC CAGACTGGAC	60
20	ACTGGGCTGC TTGAGTCCTG AGTCACAATT CAGAATTCCT GGGCTCCCTG GGTGCATTCT	120
	ATCATTCCAG TTGAAAGTTT GCTTCCTTCC AGTCATGTGG CTCTTCATTC TACTCTCCTT	180
	GGCTCTCATT TCAGATGCCA TGGTCATGGA TGAAAAGGTC AAGAGAAGTT TGTGCTGGAC	240
25	ACGGCTTCTG CCATCTGCAA CTACAATGCC CAYTACAAGA ATCACCCCAA ATACTGGTGC	300
	CGAGGYTATT TCCGTGAYTA CTGCAACATC ATCGCCTTCT CCCCTAACAG CACCAATCAT	360
30	GTGGCCCTGA AGGACACAGG GAACCAGCTC ATTGTCACTA TGTCCTGCCT GAACAAANAA	420
	GACACGGGCT GGTACTGGTG TGGCATCCAR CGGGACTTTG CMAGGGATGA CATGGATTTT	480
	ACAGAGCTGA TTGTAACTGA CGACAAAGGA ACCCTGGCCA ATGACTTTTG GTCTGGGAAA	- 540
35	GACCTATCAG GCAACAAAAC CAGAAGCTGC AAGGCTCCCA AAGTTGTCCG CAAGCTGACC	600
	GCTCCAGGAC GTCCATTCTC ATCATTTGCA TACTGATCAC GGGTTTGGGA ATCATCTCTG	660
40	TAATCAGTCA TTTGACCAAA AGGAGGAGAA GTCAAAGGAA TAGAAGGGTA GGCAACACTT	720
	TGAAGCCCTT CTCGCGTGTC CTGACTCCAA AGGAAATGGC TCCTACTGAA CAGATGTGAC	780
	TGAAGWITTT TTTAATTTAG TINCATAAAG TGATGNCTAC AACAGAWTAA TCACCCATGA	840
45	CAACTGGCCC CACACCTCAG AGACTGATTC TGATCTCCCA GGAATTCTGA AGGACCCTCT	900
	ATCCTTGACA ACAATCATTT GCAGCCAGGT AGCAACGGCR GTAGTCAGAG GAGCTATGAT	960
50	AGACCACACC CAAGCAAGGC TGCCCTCAAA TAACATCTCA AGATCTTAGT TCTTATGCAT	1020
50	TCCATCAGTC AGAAGTGAAG AAGAGGTGGA GAATCTKGAT TGGGGACCAG GAAATCACTT	1080
	GTATITIGIT AGCCAATAAA TICCTAGCCA GIGIIGAAIG AAAAAAAAA AAAA	1134
55		٠,

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1333 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	CACTITAAAG CTCTGCTGAG GGAGTTCGGA GCCCAGGCTT TCAGGCGACC TCTGCCCTCC	60
10	CTGCCTCTCC TCACCCTCCC TCTCTTCCTG CAGGGCCTGG GAAGGGCTTT GAGGGAGCCT	120
	GGGAGCCATG TGAAGAGGGG CACGCCTGGG CTGTCCCACA GTTTAGATCC AGTTGGAGGT	180
15	TCTCCCTGGC TCCTGCAGGC CTGCGGGGAT CTCTCCCCAC TTCAGGCCTC CGGCAGCTGC	240
	CTGCCCTCTT GTCTGTGCTT CAGCCCTGCA CAAAAGCAGC TTGGTGACAC CACTCAGCCA	300
20	CCCAGAGTAC GTGTTTACAG GCTTTCCAGA TCACCTTCCT GTGGGGTGAA CGTAATGAGG	360
_0	CGGGGCTGGT CCTTGGAATT TCCCCTGGAA AATGGTAACA GACTCCATCC TTGACCCGGG	420
	GATGAGCATG AAGGCATTGT CCCAAAGGCA GAGGCCACCG TGGTAGGAAT TCCACCAAGG	480
25	CCAGAAGGGA AAAAGGAAGA ACCCACCGTG TCTGGCTGTG CGGGCCCTGG GGAGGGTCGT	540
	GAGTGCAGCC CCTCTCTACT TCYGTGCCTT TGTAAAACGT GTAGATAACC GCAGTGGTTG	600
30	GCTGAGCCAA GAACTCTCCT AAATCAGTGG CTTTCTCCCC ACCCCTTGCT GGGGAGTCAT	660
	TTTTAAAAAA ATCTGTGGGA TATAAAATTG GCCTCCTGCT GCTTCAGCCT ACCTCTCCCT	720
	CTGCTGACTT AATGTCGTGA TTCTGTTTCT TCAGATATTT AAGGCTGTTA GGTTGTGTGA	780
35	GCCTTGAAGT GTGTGTGTGT GTCCCAGCGA CTGTCCACTG TCCAGGAGAT GCATGTCTTT	840
	GTATTGGAGA TATTTCTGTA ACTCATTCTC TTGGTGCTCA CGATTGCCAT GGCCATAGGG	900
40	CCACAGTGCC GTATCTGCTG CAGACATGAT TGTTTCTTGT TCTAGAGGTT TTCTTGTTTT	960
	CGAATCTTGC CTGATGAATC CAGCCAGACC AAGGGGCCTA GATTTGACCT CTGTCCTGGG	1020
	CTCCTGGGCC AGGTGCAGGA ACATCTGAGG CCACTCTGCT GGCCACCTCC AGTGGGTGCT	1080
45	GACCACAGGA TGGGCTTTGT TTACACTCAT TTTCACCCTG ATTCTTGCCC CCACTTTCAT	1140
	AAAAGAAACT TCAAAAATGCT GACGCTTTGG AGAGTAAGAA AATCAATCTT GGCTGGGCAC	1200
50	GGTGGCTCCT GCCTGTGATC CTAGCACTTT GGGAGGCTGA AGCTGAAGGA TCACTTGAGC	1260
	TCAGGAGTTG GAGACCAACC CTGGCAACAT AACAAGACCC TGTCTCTACA AAAAAAAAAA	1320
	AAAAAAACT CGA	1333

55

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 113:

(A) LENGTH: 1015 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
	GGCACGAGCG GCACGAGCGG CACGAGGTGA CTTCAAGTGT CGGATCTTTT CAGCCTACAT	60
10	CAAGGAGGTG GAGGAACGGC CGGCACCCAC CCCGTGGGCT CCAAGATGCC CTTTGGGGAA	120
	CTGATGTTCG AATCCAGCAG TAGCTGCGGC TGGGTACATG GCGTCTGTTT CTCAGCCAGC	180
15	GGGAGCCGCG TGGCCTGGGT AAGCCACGAC AGCACCGTCT GCCTGGCTGA TGCCGACAAG	240
	AAGATGGCCG TCGCGACTCT GGCCTCTGAA ACACTACCAC TGCTGGCGCT GACCTTCATC	300
	ACAGACAACA GCCTGGTGGC AGCGGCCAC GACTGCTTCC CGGTGCTGTT CACCTATGAC	360
20	GCCGCCGCG GGATGCTGAG CTTCGGCGGG CGGCTGGACG TTCCTAAGCA GAGCTCGCAG	420
	CGTGGCTTGA CGGCCCGCGA GCGCTTCCAG AACCTGGACA AGAAGGCGAG CTCCGAGGGT	480
25	GGCACGGCTG CGGGCGCGG CCTAGACTCG CTGCACAAGA ACAGCGTCAG CCAGATCTCG	540
25	GTGCTCAGCG GCGGCAAGGC CAAGTGCTCG CAGTTCTGCA CCACTGGCAT GGATGGCGGC	600
	ATGAGTATCT GGGATGTGAA GAGCTTGGAG TCAGCCTTGA AGGACCTCAA GATCAAATGA	660
30	CCTGTGAGGA ATATGTTGCC TTCATCCTAG CTGCTGGGGA AGCGGGGAGA GGGGTCAGGG	720
	AGGCTAATGG TTGCTTTGCT GAATGTTTCT GGGGTACCAA TACGAGTTCC CATAGGGGCT	780
25	GCTCCCTCAA AAAGGGAGGG GACAGATGGG GAGCTTTTCT TACCTATTCA AGGAATACGT	840
35	GCCTTTTTCT TAAATGCTTT CATTTATTGA AAAAAAAAA AAATGCCCCC AAAGCACTAT	900
	GCTGGTCATG AACTGCTTCA AAATGTGGAG GTAATAAAAT GCAACTGTGT AAAAAAAAAA	960
40	ааааааааа аааааааааа аааааааааа ааааааа	1015
45	(2) INFORMATION FOR SEQ ID NO: 114:	
	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 1076 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
55	GGCACGAGGG GAAAGCCATG CTCCCAGGAC TCCTTCCTTG CAGCCTTAAA TCGGTCTGTA	6
	CGGAAAATTC CGCGCCTTAG AAACCCACGC TTGGGTGTAA CTTATTATTG TTCTTCCTGA	. 12
60	CCTACTTCCT GTTTATCACT TCCGGGTTCA TCATTTTGGC ATTTCGGTGA TCGGGTTGGA	18

	ACTATTGAAG CCCGCTTTCA GGTTCTTTTC CCCATTTTCC CTTTGAAAGG AAGACTTCTG	24
	GCTTCTCCTA AATCTCCGTT CTCTGGGTAA GGGGAGTCCA AGCCTCTGTC ATGAGGAACG	30
5	GAAATGCGAG GGCCTCGGGT GTTACTCTAA AATCCGCCCT CAGCTTGCAC GCCGGAAGCT	36
	GCGATTCCTG CAGCGGAAGA GGCGTGATCT GGCCTTCGAC TCGCTATGTC CACTAACAAT	42
10	ATGTCGGACC CACGGAGGCC GAACAAAGTG CTGAGGTACA AGCCCCCGCC GAGCGAATGT	48
10	AACCCGGCCT TGGACGACCC GACGCCGGAC TACATGAACC TGCTGGGCAT GATCTTCAGC	540
	ATGTGCGGCC TCATGCTTAA GCTGAAGTGG TGTGCTTGGG TCGCTGTCTA CTGCTCCTTC	600
15	ATCAGCTTTG CCAACTCTCG GAGCTCGGAG GACACGAAGC AAATGATGAG TAGCTTCATG	660
	CTGTCCATCT CTGCCGTGGT GATGTCCTAT CTGCAGAATC CTCAGCCCAT GACGCCCCCA	720
20	TGGTGATACC AGCCTAGAAG GGTCACATTT TGGACCCTGT CTATCCACTA GGCCTGGGCT	780
20	TTGGCTGCTA AACCTGCTGC CTTCAGCTGC CATCCTGGAC TTCCCTGAAT GAGGCCGTCT	840
	CGGTGCCCCC AGCTGGATAG AGGGAACCTG GCCCTTTCCT AGGGAACACC CTAGGCTTAC	900
25	CCCTCCTGCC TCCCTTCCCC TGCCTGCTGC TGGGGGAGAT GCTGTCCATG TTTCTAGGGG	960
	TATTCATTTG CTTTCTCGTT GAAACCTGTT GTTAATAAAG TTTTTCACTC TGAAAAAAAA	1020
30	AAAAAAAAA RAAAACNCGN GGGGGGCCCC GGAACCCAAT TCSCCGGATA GTGAGT	1076
		٠.٠.
	(2) INFORMATION FOR SEO ID NO: 115	
35	(2) INFORMATION FOR SEQ ID NO: 115:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	60 120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCCACC CAAGACATCA	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG	120 180
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG TGGTGGGTGT CGGCGCCGTG TTCTCACTGC TATTCCACCT GGGCACCCGG GAGAGGCGCC	120 180 240
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG TGGTGGGTGT CGGCGCCGTG TTCTCACTGC TATTCCACCT GGGCACCCGG GAGAGGCGCC GGCCGCATGC GGASGAGCCA GGCGAGCACA CCCCCCTGTT GGCCCCTGCC ACGGCCCAGC	120 180 240 300
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115: CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG TGGTGGGTGT CGGCGCCGTG TTCTCACTGC TATTCCACCT GGGCACCCGG GAGAGGCGCC GGCCGCATGC GGASGAGCCA GGCGAGCACA CCCCCCTGTT GGCCCCTGCC ACGGCCCAGC CCCTGCTGCT CTGGAAGCAC TGGCTCCGGG AGCSGGCTTT CTACCAGGTG GGCATACTGT	120 180 240 300 360

	ACTTCTCAGG (CCTCCTGGTG	ATCCTGGCCT	TTGCCGCCTG	GGTGGCGCTG	GCGGAGGGAC	600
5	TGGGTGTGGC (CCTCTACCCA	GCGGCTGTGC	TGCTGGGTGC	TGGCTGTGCC	ACCATCCTCG	660
3	TCACCTCGCT (GCCATGACG	GCCGACCTCA	TCGGTCCCCA	CACGAACAGC	GGAGCKTTCG	720
	TGTACGGCTC (CATGAGCTTC	TTGGATAAGG	TGGCCAATGG	GCTGGCAGTC	ATGGCCATCC	780
10	AGAGCCTGCA	CCCTTGCCCC	TCAGAGCTCT	GCTGCAGGGC	CTGCGTGAGC	TTTTACCACT	840
	GGGCGATGGT	GGCTGTGACG	GCCGCCTCG	GCGTGGCCGC	TGCCCTGTGT	CTCTGTAGCC	900
15	TCCTGCTGTG	GCCGACCCGC	CTGCGACGCT	GATGAGACCT	GCACGCANTG	GCTCACAGCA	960
15	GCACGATTTG	TGACAGCCCG	AGGCGGAGAA	CACCGAACAC	CCAGTGAAGG	TGAGGGGATC	1020
	AGCACGGCGC	GGCCACCCAC	GCACCCACGC	GCTGGAATGA	GACTCAGCCA	CAAGGAGGTG	1080
20	CGAACCTCTG	ACCCAGGCCA	CAGTGCGGAT	GCACCTTGAG	GATGTCACGC	TCAGTGAGAG	1140
	ACACCAGACA	CAGAAGGGTA	CGCTGTGATC	CCACTTCTAT	GAAATGTCCA	GGACAGACCA	1200
25	ATCCACAGAA	TCAGGGAGAG	GATTCGTGGG	TGCCGGGACT	GGGGAGGGGG	ACCTGGGGGT	1260
25	GACTAGGTGA	CATAATGGGG	ACAGGGCTGC	CITCIGGGIG	ATGAGAATGT	TCTGGAATCA	1320
	GATGGGATGG	CTGCACGGCG	TGGTGAAGGT	ACTGAACGCC	ACCTCACTGT	AAGACGGTAG	1380
30	ATTTTGTATT	TTACCACAAT	AAACAAAACA	AAACAAAACC	ААААААААА	AAAAAAAA	1440
	AAAAAAAAGG	AATTCGATAT	CAAGCTTATC	GATACCGTCG	ACCTCGA		1487

40

50

55

60

(2) INFORMATION FOR SEQ ID NO: 116:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

GCCACGAGTG CGCANGCGTG GGGCTCTCTC CTTGTCAGTC GGCGCCGCGT GCGGCTGGT 60
GGCTCTGTGG CAGCGGCGGC GGCAGGACTC CGGCACTATG AGCGGCTTCA GCACCGAGGA 120
GCGCGCCGCG CCTTCTCCCT GGAGTACCGA GTCTTCCTCA AAAATGAGAA AGGACAATAT 180
ATATCTCCAT TTCATGATAT TCCAATTTAT GCAGATAAGG ATGTGTTTCA CATGGTAGTT 240
GAAGTACCAC GCTGGTCTAA TGCAAAAATG GAGATTGCTA CAAAGGACCC TTTAAACCCT 300
ATTAAACAAG ATGTGAAAAA AGGAAAACTT CGCTATGTTG CGAATTTGTT CCCGTATAAA 360
GGATATATCT GGAACTATGG TGCCATCCCT CAGACTTGGG AAGACCCAGG GCACAATGAT 420

480

	AAACATACTG GCTGTTGTGG TGACAATGAC CCAATTGATG TGTGTGAAAT TGGAAGCAAG	48
	GTATGTGCAA GAGGTGAAAT AATTGGCGTG AAAGTTCTAG GCATATTGGC TATGATTGAC	54
5	GAAGOGGAAA CCGACTOGAA AGTCATTGCC ATTAATGTGG ATGATCCTGA TGCAGCCAAT	60
	TATAATGATA TCAATGATGT CAAACGGCTG AAACCTGGCT ACTTAGAAGC TACTGTGGAC	66
10	TGGTTTAGAA GGTATAAGGT TCCTGATGGA AAACCAGAAA ATGAGTTTGC GTTTAATGCA	720
	GAATTTAAAG ATAAGGACTT TGCCATTGAT ATTATTAAAA GCACTCATGA CCATTGGAAA	780
	GCATTAGTGA CTAAGAAAAC GAATGGAAAA GGAATCAGTT GCATGAATAC AACTTTGTCT	840
15	GAGAGCCCCT TCAAGTGTGA TCCTGATGCT GCCAGAGCCA TTGTGGATGC TTTACCACCA	900
	CCCTGTGAAT CTGCCTGCAC AGTACCAACA GACGTGGATA AGTGGTTCCA TCACCAGAAA	960
20	AACTAATGAG ATTTCTCTGG AATACAAGCT GATATTGCTA CATCGTGTTC ATCTGGATGT	1020
20	ATTAGAAGTA AAAGTAGTAG CTTTCAAAG CTTTAAATTT GTAGAACTCA TCTAACTAAA	1080
	GTAAATTCTG CTGTGACTAA TCCAATATAC TCAGAATGTT ATCCATCTAA AGCATTTTTC	1140
25	ATATCTCAAC TAAGATAACT TTTAGCACAT GCTTAAATAT CAAAGCAGTT GTCATTTGGA	1200
•	AGTCACTTGT GAATAGATGT GCAAGGGGAG CACATATTGG ATGTATATGT TACCATATGT	1260
30	TAGGAAATAA AATTATTTTG CTGAAAAAAA AAAAAAAAA ACCTSGGGG GGGSCCCGGT	1320
50	CCCCATTTGG CCCTTTGGGG GGNGGTTTTA	1350
35	(2) INFORMATION FOR SEQ ID NO: 117:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 2527 base pairs	
.0	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
	CTCTTGCTAC CTTCCCGGCG CAGAGAACCC CGGCTGCTCA GCGCGCTCCG GGGTCATGGA	60
50	GATCCCCGGG AGCCTGTGCA AGAAAGTCAA GCTGAGCAAT AACGCGCAGA ACTGGGGAAT	120
30	GCAGAGAGCA ACCAATGTCA CCTACCAAGC CCATCATGTC AGCAGGAACA AGAGAGGTCA	180
	GGTGGTGGGG ACCAGAGGTG GCTTTCGTGG TTGCACAGGTT TGGCTAACAG GCTTGTCTGG	240
55	AGCGGGAAAG ACTACTGTGA GCATGGCCTT GGAGGAGTAC CTGGTTTGTC ATGGTATTCC	300
	ATGCTACACT CTGGATGGTG ACAATATTCG TCAAGGTCTC AATAAAAATC TTGGCTTTAG	360
	TCCTGAAGAC AGAGAAGAGA ATGTTCGACG CATCGCAGAA GTTCCTAAAC TGTTTGCAGA	420

TGCTGGCTTA GTGTGCATCA CAAGTTTCAT ATCACCTTAC ACTCAGGATC GCAACAATGC

	AAGGCAAATT CATGAAGGTG CAAGTTTACC GTTTTTTGAA GTATTTGTTG ATGCTCCTCT	540
_	GCATGTTTGT GAACAGAGGG ATGTCAAAGG ACTCTACAAA AAAGCCCGGG CAGGAGAAAT	600
5	TAAAGGTTTC ACTGGGATCG ATTCTGAATA TGAAAAGCCA GAGGCCCCTG AGTTGGTGCT	660
	GAAAACAGAC TCCTGTGATG TAAATGACTG TGTCCAGCAA GTTGTGGAAC TTCTACAGGA	720
0	ACGGGATATT GTACCTGTGG ATGCATCTTA TGAAGTAAAA GAACTATATG TGCCAGAAAA	780
	TAAACTTCAT TTGGCAAAAA CAGATGCGGA AACATTACCA GCACTGAAAA TTAATAAAGT	840
	GGATATGCAG TGGGTGCAGG TTTTGGCAGA AGGTTGGGCA ACCCCATTGA ATGGCTTTAT	900
15	GAGAGAGAGG GAGTACTTGC AGTGCCTTCA TTTTGATTGT CTTCTGGATG GAGGTGTCAT	960
	TAACTTGTCA GTACCTATAG TTCTGACTGC GACTCATGAA GATAAAGAGA GGCTGGACGG	1020
20	CTGTACAGCA TTTGCTCTGA TGTATGAGGG CCGCCGTGTG GCCATTCTTC GCAATCCAGA	1080
,	GTTTTTTGAG CACAGGAAAG AGGAGCGCTG TGCCAGACAG TGGGGAACGA CATGCAAGAA	1140
~ ~	CCACCCCTAT ATTAAGATGG TGATGGAACA AGGAGATTGG CTGATTGGAG GAGATCTTCA	1200
25	AGTCTTGGAT CGAGTTTATT GGAATGATGG TCTTGATCAG TATCGTCTTA CTCCTACTGA	1260
	GCTAAAGCAG AAATTTAAAG ATATGAATGC TGATGCTGTC TTTGCATTTC AACTACGCAA	1320
30	CCCAGTGCAC AATGGACATG CCCTGTTAAT GCAGGATACC CATAAGCAAC TTCTAGAGAG	1380
	GGGCTACCGG CGCCCTGTCC TCCTCCTCCA CCCTCTGGGT GGCTGGACAA AGGATGACGA	1440
25	TGTTCCTTTG ATGTCGCGTA TGAAGCAGCA TGCTGCAGTG TTGGAGGAAG GAGTTCTGAA	1500
35	TCCTGAGACG ACAGTGGTGG CCATCTTCCC ATCTCCCATG ATGTATGCTG GACCAACTGA	1560
	GGTCCAGTGG CATTGCAGAG CACGGATGGT TGCAGGAGCC AACTTTTACA TTGTTGGACG	1620
40	AGACCCTGCT GGCATGCCTC ATCCAGAAAC AGGGAAGGAT CTTTATGAGC CAAGTCATGG	1680
	TGCCAAAGTG CTGACGATGG CCCCTGGTTT AATCACTTTG GAAATAGTTC CCTTTCGAGT	1740
	TGCAGCTTAC AACAAGAAAA AGAAGCGTAT GGACTACTAT GACTCTGAAC ACCATGAAGA	1800
45	CTTTGAATTT ATTTCAGGAA CACGAATGCG CAAACTTGCT CGAGAAGGCC AGAAACCACC	1860
	TGAAGGTTTC ATGGCTCCCA AGGCTTGGAC CGTGCTGACA GAATACTACA AATCCTTGGA	1920
50	GAAAGCTTAG GCTGTTAACC CAGTCACTCC ACCTFTGACA CATTACTAGT AACAAGAGGG	1980
	GACCACATAG TCTCTGTTGG CATTTCTTTG TGGTGTCTGT CTGGACATGC TTCCTAAAAA	2040
55	CAGACCATTT TCCTTAACTT GCATCAGTTT TGGTCTGCCT TATGAGTTCT GTTTTGAACA	2100
55	AGTGTAACAC ACTGATGGTT TTAATGTATC TTTTCCACTT ATTATAGTTA TATTCCTACA	2160
	ATACAATTTT AAAATTGTCT TITTATATTA TATITATGCT TCTGTGTCAT GATTTTTCA	2220
60	AGCTGTTATA TTAGTTGTAA CCAGTAGTAT TCACATTAAA TCTTGCTTTT TTTCCCCTTA	2280

1080

	AAAAAAGAAA AAAATTACCA AACAATAAAC TTGGCTAGAC CTTGTTTTGA GGATTTTACA	2340
5	AGACCTITGT AGCGATTAGA TITTITITCT ACATTGAAAA TAGAAACTGC TICCTITCTT	2400
	CTITCCAGTC AGCTATTGGT CTITCCAGCT GTTATAATCT AAAGTATTCT TATGATCTGT	2460
	GTAAGCTCTG AATGAACTTC TTTACTCAAT AAAATTAATT TTTTGGCTTC TTAAAAAAAA	2520
10	АААААА	2527
15	(2) INFORMATION FOR SEQ ID NO: 118:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1098 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
25	CGCATCACAG ACAACCCAGA AGGAAAATGG TTGGGCAGAA CAGCAAGGGG TTCATATGGC	60
	TATATTAAAA CAACTGCTGT AGAGATTNNC TATGATTCTT TGAAACTGAA AAAAGACTCT	120
20	CTTGGTGCCC CTTCAAGACC TATTGAAGAT GACCAAGAAG TATATGATGA TGTTGCAGAG	180
30	CAGGATGATA TTAGCAGCCA CAGTCAGAGT GGAAGTGGAG GGATATTCCC TCCACCACCA	240
	GATGATGACA TTTATGATGG GATTGAAGAG GAAGATGCTG ATGATGGTTT CCCTGCTCCT	300
35	CCTAAACAAT TOGACATGGG AGATGAAGTT TACGATGATG TOGATACCTC TGATTTCCCT	360
	GTTTCATCAG CAGAGATGAG TCAAGGAACT AATGTTGGAA AAGCTAAGAC AGAAGAAAAG	420
	GACCTTAAGA AGCTAAAAAA GCAGRAAAAA GAARAAAAAG ACTTCAGGAA AAAATTTAAA	-
40	TATGATGGTG AAATTAGAGT CCTATATTCA ACTAAAGTTA CAACTTCCAT AACTTCTAAA	480
		540
	AAGTGGGGAA CCAGAGATCT ACAGGTAAAA CCTGGTGAAT CTCTAGAAGT TATACAAACC	600
45	ACAGATGACA CAAAAGTTCT CTGCAGAAAT GAAGAAGGGA AATATGGTTA TGTCCTTCGG	660
	AGTTACCTAG CGGACAATGA TGGAGAGATC TATGATGATA TTGCTGATGG CTGCATCTAT	720
50	GACAATGACT AGCACTCAAC TTTGGTCATT CTGCTGTGTT CATTAGGTGC CAATGTGAAG	780
	TCTGGATTTT AATTGGCATG TTATTGGGTA TCMAGAAAAT TAATGCACAR AACCACTTAT	840
	TATCATTTGT TATGAAATCC CAATTATCTT TACAAAGTGT TTAAAGTTTG AACATAGAAA	900
55	ATAATCTCTC TGCTTAATTG TTATCTCAGA AGACTACATT AGTGAGATGT AAGAATTATT	960
	AAATATTCCA TTTCCGCTTT GGCTACAATT ATGAAGAAGT TGAAGGTACT TCTTTTAGAC	1020

GGGGCCCGG TACCCAAT

1098

5

10

(2) INFORMATION FOR SEQ ID NO: 119:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1679 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	•
13	TCGACCCACG CGTCCGGCGA GATCCCTACC GCAGTAGCCG CCTCTGCCGC CGCGGAGCTT	60
	CCCGAACCTC TTCAGCCGCC CGGAGCCGCT CCCGGAGCCC GGCCGTAGAG GCTGCAATCG	120
20	CAGCCGGGAG CCCGCAGCCC GCGCCCCGAG CCCGCCGCCG CCCTTCGAGG GCGCCCCAGG	180
	CCGCGCCATG GTGAAGGTGA CGTTCAACTC CGCTCTGGCC CAGAAGGAGG CCAAGAAGGA	240
25	CGAGCCCAAG AGCGGCGAGG AGGCGCTCAT CATCCCCCCC GACGCCGTCG CGGTGGACTG	300
	CAAGGACCCA GATGATGTGG TACCAGTTGG CCAAAGAAGA GCCTGGTGTT GGTGCATGTG	360
	CTTTGGACTA GCATTTATGC TTGCAGGTGT TATTCTAGGA GGAGCATACT TGTACAAATA	420
30	TTTTGCACTT CAACCAGATG ACGTGTACTA CTGTGGAATA AAGTACATCA AAGATGATGT	480
	CATCTTAAAT GAGCCCTCTG CAGATGCCCC AGCTGCTCTC TACCAGACAA TTGAAGAAAA	540
35	TATTAAAATC TTTGAAGAAG AAGAAGTTGA ATTTATCAGT GTGCCTGTCC CAGAGTTTGC	600
55	AGATAGTGAT CCTGCCAACA TTGTTCATGA CTTTAACAAG AAACTTACAG CCTATTTAGA	660
	TCTTAACCTG GATAAGTGCT ATGTGATCCC TCTGAACACT TCCATTGTTA TGCCACCCAG	720
40	AAACCTACTG GAGTTACTTA TTAACATCAA GGCTGGAACC TATTTGCCTC AGTCCTATCT	780
	GATTCATGAG CACATGGTTA TTACTGATCG CATTGAAAAC ATTGATCACC TGGGTTTCTT	840
45	TATTTATCGA CTGTGTCATG ACAAGGAAAC TTACAAACTG CAACGCAGAG AAACTATTAA	900
73	AGGTATTCAG AAACGTGAAG CCAGCAATTG TITCGCAATT CGGCATTTTG AAAACAAATT	960
	TGCCGTGGAA ACTITAATTT GTTCTTGAAC AGTCAAGAAA AACATTATTG AGGAAAATTA	1020
50	ATATCACAGC ATAACCCCAC CCTTTACATT TTGTGCAGTG ATTATTTTTT AAAGTCTTCT	1080
	TTCATGTAAG TAGCAAACAG GGCTTTACTA TCTTTTCATC TCATTAATTC AATTAAAACC	1140
55	ATTACCTTAA AATTTTTTC TTTCGAAGTG TGGTGTCTTT TATATTTGAA TTAGTAACTG	1200
<i>JJ</i>	TATGAAGTCA TAGATAATAG TACATGTCAC CTTAGGTAGT AGGAAGAATT ACAATTTCTT	1260
	TAAATCATTT ATCTGGATTT TTATGTTTTA TTAGCATTTT CAAGAAGACG GATTATCTAG	1320
60	AGAATAATCA TATATATGCA TACGTAAAAA TGGACCACAG TGACTTATTT GTAGTTGTTA	1380

1080

	GTTGCCCTGC TACCTAGTTT GTTAGTGCAT TTGAGCACAC ATTTTAATTT TCCTCTAATT	144
5	AAAATGIGCA GTATTTTCAG TGTCAAATAT ATTTAACTAT TTAGAGAATG ATTTCCACCT	1500
	TTATGITTTA ATATCCTAGG CATCTGCTGT AATAATATTT TAGAAAATGT TTGGAATTTA	1560
	AGAAATAACT TGTGTTACTA ATTTGTATAA CCCATATCTG TGCAATGGAA TATAAATATC	1620
10	АСАААСТТСТ ТТААМЖААА ААААААААА ААААААААА ААААААААА	1679
15	(2) INFORMATION FOR SEQ ID NO: 120:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	·	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
2.5	TTGGCANCNG GGAGAGGGAA AGAGGAGGAA ATGGGGTTTG AGGACCATGG CTTACCTTTC	60
	CTGCCTTTGA CCCATCACAC CCCATTTCCT CCTCTTTCCC TCTCCCCGCT GCCAAAAAAA	120
30	AAAAAAAGG AAACGTTTAT CATGAATCAA CAGGGTTTCA GTCCTTATCA AAGAGAGATG	180
	TGGAAAGAGC TAAAGAAACC ACCCTTGTT CCCAACTCCA CTTTACCCAT ATTTTATGCA	240
35	ACACAAACAC TGTCCTTTTG GGTCCCTTTC TTACAGATGG ACCTCTTGAG AAGAATTATC	300
23	GTATTCCACG TTTTTAGCCC TCAGGTTACC AAGATAAATA TATGTATATA TAACCTTTAT	360
	TATTGCTATA TCTTTGTGGA TAATACATTC AGGTGGTGCT GGGTGATTTA TTATAATCTG	420
40	AACCTAGGTA TATCCTTTGG TCTTCCACAG TCATGTTGAG GTGGGCTCCC TGGTATGGTA	480
	AAAAGCCAGG TATAATGTAA CTTCACCCCA GCCTTTGTAC TAAGCTCTTG ATAGTGGATA	540
45	TACTCTTTTA AGTTTAGCCC CAATATAGGG TAATGGAAAT TTCCTGCCCT CTGGGTTCCC	600
45	CATTITIACT ATTAAGAAGA CCAGTGATAA TITAATAATG CCACCAACTC TGGCTTAGTT	660
	AAGTGAGAGT GTGAACTGTG TGGCAAGAGA GCCTCACACC TCACTAGGTG CAGAGAGCCC	720
50	AGGCCTTATG TTAAAATCAT GCACTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA	780
	AGCATTATAC GGTCATCTTG AATGATCCCT TTGAAATTTT TTTTTTGTTT GTTTGTTTAA	840
	ATCAAGCCTG AGGCTGGTGA ACAGTAGCTA CACACCCATA TTGTGTGTTC TGTGAATGCT	900
55	AGCTCTCTTG AATTTGGATA TTGGTTATTT TTTATAGAGT GTAAACCAAG TTTTATATTC	960
	TGCAATGCGA ACAGGTACCT ATCTGTTTCT AAATAAAACT GTTTACATTC ATTATGCCCT	1020

ATGTATGACC TTCATTTTCC AAGAAATAGA ACTCTAGCTT AGAATTATGG ATGCTCTAAA

1080

1140

1200

55

60

	ATGTCAGAAT GGGAACTCTC CTCGAAGTTC TCCCAAACTC AGAGACAGCA CTGCCTTCTC	1140
	CTAAATGATT ATTCTTTTCT CCCTGTTTTC TGGTATTTTC TAGGCATCCT TCTCACCACA	1200
5	GCCATAACCC TTTTTTACTT CCATTAGGCC GTATAACTGG NGGGACNGCT GGTCGGTATA	1260
	TAATACTGGT WCCAACAMAG GGGTTCTGGA TGTACACMAG GTTATCTT	1308
•		
10		
	(2) INFORMATION FOR SEQ ID NO: 121:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
	GGCACAGGAG CGACCCGGGA GAAGGAGGGC CAMGAKGCGG AAGCGGAGGA GTCTCCAGGA	60
	GACCCGGGGA CAGCATCGCC CAGGCCCCTG TTTGCAGGCC TTTCAGATAT ATCCATCTCA	120
25	CAAGACATCC CCGTAGAAGG AGAAATCACC ATTCCTATGA GATCTCGCAT CCGGGAGTTT	180
	GACAGCTCCA CATTAAATGA ATCTGTTCGC AATACCATCA TGCGTGATCT AAAAGCTGTT	240
30	GGGAAAAAAT TCATGCATGT TTTGTACCCA AGGAAAAGTA ATACTCTTTT GAGAGATTGG	300
	GATTTGTGGG GCCCTTTGAT CCTTTGTGTG ACACTCGCAT TAATGCTGCA AAGAGACTCT	360
	GCAGATAGTG AAAAAGATGG AGGGCCCCAA TTTGCAGAGG TGTTTGTCAT TGTCTGGTTT	420
35	GGTGCAGTTA CCATCACCCT CAACTCAAAA CTTCTTGGAG GGAACATATC TTTTTTCAG	480
	AGCCTCTGTG TGCTGGGTTA CTGTATACTT CCCTTGACAG TAGCAATGCT GATTTGCCGG	540
40	CTGGTACTTT TGGCTGATCC AGGACCTGTA AACTTCATGG TTCGGCTTTT TGTGGTGATT	600
	GTGATGTTTG CCTGGTCTAT AGTTGCCTCC ACAGCTTTCC TTGCTGATAG CCAGCCTCCA	660
	AACCGCAGAG CCCTAGCTGT TTATCCTGTT TTCCTGTTTT ACTTTGTCAT CAGTTGGATG	720
45	ATTCTCACCT TTACTCCTCA GTAAATCAGG AATGGGAAAT TAAAAACCAG TGAATTGAAA	780
	GCACATCTGA AAGATGCAAT TCACCATGGA GCTTTGTCTC TGGCCCTTAT TTGTCTAATT	840
50		900
50	TTGGAGGTAT TTGATAACTG AGTAGGTGAG GAGATTAAAA GGGAGCCATA TAGCACTGTC	
	ACCCCTTATT TGAGGAACTG ATGTTTGAAA GGCTGTTCTT TTCTCTCTTA ATGTCATTTC	960

TTTAAAAATA CATGTGCATA CTACACACAG TATATAATGC CTCCTTAAGG CATGATGGAG

TCACCGTGGT CCATTTGGGT GACAACCAGT GACTTGGGAA GCACATAGAT ACATCTTACA

AGTTGAATAG AGTTGATAAC TATTTTCAGT TTTGAGAATA CCAGTTCAGG TGCAGCTCTT

AAACACATTG CCTTATGACT ATTAGAATAT GCCTCTCTTT TCATAAATAA AAATACATGG

	TCTATATCCA TTTTCTTTTA TTTCTCTCTC TTAAGCTTAA AAAGGCAATG AGAGAGGTTA	1260
5	GGAGTGGGTT CATACACGGA GAATGAGAAA ACATGCATTA ACCAATATTC AGATTTTGAT	1320
	CAGGGGAAAT TCTAYACTTG TTGCAAAAAA AAAAAAAAA AAACTCGAGG GGGCCCGGT	1380
	ACCCAATCGC NGTATATGAT CGNAAACAAT C	1411
10		
	(2) INFORMATION FOR SEQ ID NO: 122:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2256 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GCTTTGGCTT TTTTTGGCGG ACTGGGGCGC CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG	60
25	TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA CTGCCATATA TAGATCCCGG GAGCAGGGGA	120
	GCGGGCTAAG AGTAGAATCG TGTCGCGGCT CGAGAGCGAG AGTCACGTCC CGGCGCTAGC	180
30	CAGCCCGACC CAGGCCCACC GTGGTGCACG CAAACCACTT CCTGGCCATG CGCTCCCTCC	240
	TECTTCTCAG CECCTTCTEC CTCCTEGAGG CEGCCCTEGC CECCGAGGTG AAGAAACCTG	300
	CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA AGTTGAGCCC CAAGGCGGCC ACGCTTGCCG	360
35	AGCGCANGCC GGCCTGGCCT TCAGCTTGTA CCAGGCCATG GCCAAGGACC AGGCAGTGGA	420
	GAACATCCTG GTGTCACCCG TGGTGGTGGC CTCGTCGCTG GGGCTCGTGT CGCTGGGCGG	480
40	CAAGGCGACC ACGCCGTCGC AGGCCAAGGC AGTGCTGAGC GCCGAGCAGC TGCGCGACGA	- 540
40	GGAGGTGCAC GCCGGCCTGG GCGAGCTGCT GCGCTCACTC AGCAACTCGA CGGCGCGCAA	600
	CGTGACCTGG AAGCTGGGCA GCCGACTGTA CGGACCCAGC TCAGTGAGCT TCGCTGATGA	660
45	CTTCGTGCGC ACAGCAAGCA GCACTACAAC TGCGAGCACT CCAAGATCAA CTTCCGCGAC	720
	AAGCGCAGNG CGCTGCAGTC CATCAACGAG TGGGCCGCGC AGACCACCGA CGGCAAGCTG	780
50	CCCGAGGTCA CCAAGGACGT GGAGCGCACG GACGGCGCCC TGCTAGTCAA CGCCATGTTC	840
50	TTCAAGCCAC ACTGGGATGA GAAATTCCAC CACAAGATGG TGGACAACCG TGGCTTCATG	900
	GTGACTCGGT CCTATACYGT GGGTGTCATG ATGATGCACC GGACAGGCCT CTACAACTAC	960
55	TACGACGACG AGAAGGAAAA GCTGCAAATC GTGGAGATGC CCCTGGCCCA CAAGCTCTCC	1020
	AGCCTCATCA TCCTCATGCC CCATCACGTG GAGCCTCTCG AGCGCCTTGA AAAGCTGCTA	1080
60	ACCAAAGAGC AGCTGAAGAT CTGGATGGGG AAGATGCAGA AGAAGGCTGT TGCCATCTCC	1140

60

	TTGCCCAAGG GTGTGGTGGA GGTGACCCAT GACCTGCAGA AACACCTGGC TGGGCTGGGC	1200
	CTGACTGAGG CCATTGACAA GAACAAGGCC GACTTRTCAC GCATGTCAGG CAAGAAGGAC	1260
5	CTGTACCTGG CCAGCGTGTT CCACGCCACC GCCTTTGAGT TGGACACAGA TGGCAACCCC	1320
	TTTGACCAGG ACATCTACGG GCGCGAGGAG CTGCGCANCC CAAGCTGTTC TACGCCGACC	1380
10	ACCCCTTCAT CTTCCTAGTG CGGGACACCC AAAGCGGCTC CCTGCTATTC ATTGGGCGCC	1440
10	TGGTCCGGCC TAAGGGTGAC AAGATGCGAG ACGAGTTATA GGGCCTCAGG GTGCACACAG	1500
	GATGGCAGGA GGCATCCAAA GGCTCCTGAG ACACATGGGT GCTATTGGGG TTGGGGGGGA	1560
15	GGTGAGGTAC CAGCCTTGGA TACTCCATGG GGTGGGGGTG GAAAARCAGA CCGGGGTTCC	1620
	CGTGTGCCTG AGCGGACCTT CCCAGCTAGA ATTCACTCCA CTTGGACATG GGCCCCAGAT	1680
	ACCATGATGC TGAGCCCGGA AACTCCACAT CCTGTGGGAC CTGGGCCATA GTCATTCTGC	1740
20	CTGCCCTGAA AGTCCCAGAT CAAGCCTGCC TCAATCAGTA TTCATATTTA TAGCCAGGTA	1800
	CCTTCTCACC TGTGAGACCA AATTGAGCTA GGGGGGTCAG CCAGCCCTCT TCTGACACTA	1860
25	AAACACCTCA GCTGCCTCCC CAGCTCTATC CCAACCTCTC CCAACTATAA AACTAGGTGC	1920
	TGCAGCCCCT GGGACCAGGC ACCCCCAGAA TGACCTGGCC GCAGTGAGGC GGATTGAGAA	1980
20	GGAGCTCCCA GGAGGGGCTT CTGGGCAGAC TCTGGTCAAG AAGCATCGTG TCTGGCGTTG	2040
30	TGGGGATGAA CTTTTTGTTT TGTTTCTTCC TTTTTTAGTT CTTCAAAGAT AGGGAGGGAA	2100
	GOGGGAACAT GAGCCTTTGT TGCTATCAAT CCAAGAACTT ATTTGTACAT TTTTTTTTC	2160
35	AATAAAACTT TTCCAATGAC AAAAAAAAAA AAAAAAAAA AAAAAGGGGS GGGCCGCTCC	2220
	TAGAGGGATC CCTCCGANGG NGCCCAATCG AAAATN	2256
40		
40	(2) INFORMATION FOR SEQ ID NO: 123:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	•
	ATGCGCTCCC TCCTGCTTCT CAGCGCCTTC TGCCTCCTGG AGGCGGCCCT GGCCGCCGAG	60
	GTGAAGAAAC CTGCAGCCGC AGCAGCTCCT GGCACTGCGG AGAAGTTGAG CCCCAAGGCG	120
55	GCCACGCTTG CCGAGCGCAA GCGGCCTGGC CTTCAGCTTG TACCAGGCCA TGGCCAAGGA	180
	CCAGGCAGTG GAGAACATCC TGGTGTCACC CGTGGTGGTG GCCTCGTCGC TGGGGCTCGT	240

GTCGCTGGGC GGCAAGGCGA CCACGGCGTC GCAGGCCAAG GCAGTGCTGA GCGCCGAGCA

	GCTGCGCGAC GAGGAGGTGC ACGCCGGCCT GGGCGAGCTG CTGCGCTCAC TCAGCAACTC	360
5	CACGGCGCG AACGTGACCT GGAAGCTGGG CAGCCGACTG TACGGACCCA GCTCAGTGAG	420
J	CTTCGCTGAT GACTTCGTGC GCAGCAGCAA GCAGCACTAC AACTGCGAGC ACTCCAAGAT	480
	CAACTTCCGC GACAAGCGCA GCGCGCTGCA GTCCATCAAC GAGTGGGCCG CGCAGACCAC	540
10	CGACGGCAAG CTGCCCGAGG TCACCAAGGA CGTGGAGCGC ACGGACGGCG CCCTGTTAGT	600
	CAACGCCATG TTCTTCAAGC CACACTGGGA TGAGAAATTC CACCACAAGA TGGTGGACAA	660
15	CCGTGGCTTC ATGGTGACTC GGTCCTATAC CGTGGGTGTC ATGATGATGC ACCGGACAGG	720
13	CCTCTACAAC TACTACGACG ACGAGAAGGA AAAGCTGCAA ATCGTGGAGA TGCCCCTGGC	780
	CCACAAGCTC TCCAGCCTCA TCATCCTCAT GCCCCATCAC GTGGAGCCT	829
20		
25	(2) INFORMATION FOR SEQ ID NO: 124:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2223 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
	CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA	60
35	CTGCCATATA TAGATCCCGG GAGCAGGGGA GCGGGCTAAG AGTAGAATCG TGTCGCGGCT	120
	CGAGAGCGAG AGTCACGTCC CGGCGCTAGC CAGCCCCGACC CAGGCCCACC GTGGTGCACG	180
40	CAAACCACTT CCTGGCCATG CGCTCCCTCC TGCTTCTCAG CGCCTTCTGC CTCCTGGAGG	240
.0	CGGCCCTGGC CGCCGAGGTG AAGAAACCTG CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA	300
	AGITGAGCCC CAAGGCGGCC ACGCTTGCCG AGCGCAGNCG GCCTGGCCTT CAGCTTGTAC	360
45	CAGGCCATGG CCAAGGACCA GGCAGTGGAG AACATCCTGG TGTCACCCGT GGTGGTGGCC	420
	TCGTCGCTGG GGCTCGTGTC GCTGGGCGGC AAGGCGACCA CGGCGTCGCA GGCCAAGGCA	480
50	GTGCTGAGCG CCGAGCAGCT GCGCGACGAG GAGGTGCACG CCGGCCTGGG CGAGCTGCTG	540
50	CGCTCACTCA GCAACTCSAC GGCGCGCAAC GTGACCTGGA AGCTGGGCAG CCGACTGTAC	600
	GGACCCAGCT CAGTGAGCTT CGCTGATGAC TTCGTGCGCA CAGCAAGCAG CACTACAACT	660
55	GCGAGCACTC CAAGATCAAC TTCCGCGACA AGCGCACGCG CTGCAGTCCA TCAACGAGTG	720
	GGCCGCGCAG ACCACCGACG GCAAGCTGCC CGAGGTCACC AAGGACGTGG AGCGCACGGA	780
60	CGGCGCCCTG YTAGTCAACG CCATGTTCTT CAAGCCACAC TGGGATGAGA AATTCCACCA	840
UU		

	CAAGATGGTG	GACAACCGTG	GCTTCATGGT	GACTCGGTCC	TATACYGTGG	GTGTCATGAT	900
	GATGCACCGG	ACAGGCCTCT	ACAACTACTA	CGACGACGAG	AAGGAAAAGC	TGCAAATCGT	960
5	GGAGATGCCC	CTGGCCCACA	AGCTCTCCAG	CCTCATCATC	CTCATGCCCC	ATCACGTGGA	1020
	GCCTCTCGAG	CGCCTTGAAA	AGCTGCTAAC	CAAAGAGCAG	CTGAAGATCT	GGATGGGGAA	1080
10	GATGCAGAAG	AAGGCTGTTG	CCATCTCCTT	GCCCAAGGGT	GTGGTGGAGG	TGACCCATGA	1140
10	CCTGCAGAAA	CACCTGGCTG	GCTGGCCT	GACTGAGGCC	ATTGACAAGA	ACAAGGCCGA	1200
•	CTTRTCACGC	ATGTCAGGCA	AGAAGGACCT	GTACCTGGCC	AGCGTGTTCC	ACGCCACCGC	1260
15	CTTTGAGTTG	GACACAGATG	GCAACCCCTT	TGACCAGGAC	ATCTACGGGC	GCGAGGAGCT	1320
	GCGCASCCCA	AGCTGTTCTA	CGCCGACCAC	CCCTTCATCT	TCCTAGTGCG	GGACACCCAA	1380
20	AGCGGCTCCC	TGCTATTCAT	TGGGCGCCTG	GTCCGGCCTA	AGGGTGACAA	GATGCGAGAC	1440
20	GAGTTATAGG	GCCTCAGGGT	GCACACAGGA	TGGCAGGAGG	CATCCAAAGG	CTCCTGAGAC	1500
	ACATGGGTGC	TATTGGGGTT	GGGGGGGAGG	TGAGGTACCA	GCCTTGGATA	CTCCATGGGG	1560
25	TGGGGTGGA	AAARCAGACC	GGGGTTCCCG	TGTGCCTGAG	CGGACCTTCC	CAGCTAGAAT	1620
	TCACTCCACT	TGGACATGGG	CCCCAGATAC	CATGATGCTG	AGCCCGGAAA	CTCCACATCC	1680
30	TGTGGGACCT	GGCCATAGT	CATTCTGCCT	GCCCTGAAAG	TCCCAGATCA	AGCCTGCCTC	1740
30	AATCAGTATT	CATATTTATA	GCCAGGTACC	TTCTCACCTG	TGAGACCAAA	TTGAGCTAGG	1800
	GGGGTCAGCC	AGCCCTCTTC	TGACACTAAA	ACACCTCAGC	TGCCTCCCCA	GCTCTATCCC	1860
35	AACCTCTCCC	AACTATAAAA	CTAGGTGCTG	CAGCCCCTGG	GACCAGGCAC	CCCCAGAATG	1920
	ACCTGGCCGC	AGTGAGGCGG	ATTGAGAAGG	AGCTCCCAGG	AGGGGCTTCT	GGGCAGACTC	1980
40	TGGTCAAGAA	GCATCGTGTC	: TGGCGTTGTG	GGGATGAACT	TITITGTTTTG	TTTCTTCCTT	2040
	TTTTAGTTCT	TCAAAGATAG	GGAGGGAAGG	GGGAACATGA	GCCTTGTTG	CTATCAATCC	2100
	AAGAACTTAT	TTGTACATT	TITITITCA	A TAAAACTTTI	CCAATGACAA	AAAAAAAA	2160
45	KAAAAAA A	A MWMGGGGSGG	GCCGCTCCT	A GAGGGATCCC	TCCGANGGNG	CCCAATCGAA	2220
,	AAT						2223

55

(2) INFORMATION FOR SEQ ID NO: 125:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 Met Lys Lys Gln Ser Lys Arg Cys Leu Trp Lys Pro Pro Gly Ser Leu

```
1
                                            10
                                                                15
       Arg Arg Leu Trp Trp Met Arg Ala Leu Leu Ile Leu Lys Tyr Ile
                                       25
  5
       (2) INFORMATION FOR SEQ ID NO: 126:
 10
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 45 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:
15
      Met Lys Lys Ser Leu Glu Asn Leu Asn Arg Leu Gln Val Met Leu Leu
      His Leu Thr Ala Ala Phe Leu Gln Arg Ala His Xaa Ile Leu Thr Thr
20
                  20
                               25
      Arg Met Ser Leu Gly Phe Gln Ser Pro His Leu Thr Met
                                   40
25
      (2) INFORMATION FOR SEQ ID NO: 127:
              (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 39 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:
35
      Met His Asn Gln Arg Gln Val Phe Leu Phe His Leu Phe Ser Asn Tyr
       -1
      Leu Leu Ser Ile Asn Ser Val Pro Gly Thr Leu Leu Ala Ala Thr Tyr
                                     25
40
      Cys Leu Asn Met Thr Tyr Gly
45
      (2) INFORMATION FOR SEQ ID NO: 128:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 23 amino acids
50
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:
     Met Arg Lys Lys Phe Leu Leu Ala Gln Val Phe Leu Ser Leu Ser Val
55
     Met Pro Ser Met Pro Val Thr
                  20
```

	(2) INFORMATION FOR SEQ ID NO: 129:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129: 	
10	Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu Ph 1 5 10 15	e
15	Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln Glu Gl 20 25 30	u
13	Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu Thr Pro As 35 40 45	n
20	Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp Thr Ile Pro Hi 50 55 60	.s
	Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala Asn Thr Val Tyr Se 65 70 75	er 30
25	Thr Val Glu Ile Pro Lys Lys Met Glu Asn Pro His Ser Leu Leu Th 85 90 95	ır
30	Met Pro Asp Thr Pro Arg Leu Phe Ala Tyr Glu Asn Val Ile 100 105 110	
	(2) INFORMATION FOR SEQ ID NO: 130:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 63 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
	Met Leu Leu Phe Ile Tyr Phe Tyr Ser His Pro Ala Pro Val P. 1 5 10 15	ro
45	Ala Gly Ala Thr Ser Lys Pro Arg Tyr Arg Val Ile Thr Cys Gly P 20 25 30	rc
	Ala Ser Val Phe Ser Thr Ser Phe Ser His Ser Pro Pro Ala Arg C 35 40 45	уs
50	Leu Gly Arg Leu Glu Gln Met Phe His Phe Gly Leu Ala Ser Gly 50 55 60	
55	(2) INFORMATION FOR SEQ ID NO: 131:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids	
60	(B) TYPE: amino acid (D) TOPOLOGY: linear	

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:
      Met Pro Phe Pro Ile Ser Ile Leu Gln Leu Cys Leu Gln Ile Ser Asn
 5
      Leu Ser Phe Cys Leu Gln Lys Ile Tyr Lys Ile Pro Phe Val
                  20
                                      25
10
      (2) INFORMATION FOR SEQ ID NO: 132:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 53 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:
      Met Ala Ala Cys Arg Ser Val Lys Gly Leu Val Ala Val Ile Thr
20
      Gly Gly Ala Ser Gly Leu Gly Leu Ala Thr Ala Asp Asp Leu Trp Gly
25
      Arg Glu Pro Leu Leu Cys Phe Trp Thr Cys Pro Thr Arg Val Gly Arg
                                  40
      Pro Lys Pro Arg Ser
          50
30
      (2) INFORMATION FOR SEQ ID NO: 133:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 57 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:
40
     Met Leu Leu Val Tyr Asp Leu Tyr Leu Xaa Pro Lys Leu Trp Ala Leu
                       5
                                          10
     Ala Thr Pro Gln Lys Asn Gly Lys Gly Ala Arg Xaa Gly Asp Gly Thr
45
      Pro Ala Gln Ala Phe Trp Asp Phe Trp Ser His Leu Ile Ser Ala Asp
                                  40
50
      Pro Gln Thr Trp Glu Arg Ala Ala Pro
          50
                              55
55
      (2) INFORMATION FOR SEQ ID NO: 134:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 216 amino acids
                    (B) TYPE: amino acid
60
                    (D) TOPOLOGY: linear
```

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:															
5	Met 1	Arg	Leu	Ser	Ala 5	Leu	Leu	Ala	Leu	Ala 10	Ser	Lys	Val	Thr	Leu 15	Pro
J	Pro	His	Tyr	Arg 20	Tyr	Gly	Met	Ser	Pro 25	Pro	Gly	Ser	Val	Ala 30	Asp	Lys
10	Arg	Ĺys	Asn 35	Pro	Pro	Trp	Ile	Arg 40	Arg	Arg	Pro	Val	Val 45	Val	Glu	Pro
	Ile	Ser 50	Asp	Glu	Asp	Trp	Тут 55	Leu	Phe	Cys	Gly	Asp 60	Thr	Val	Glu	Ile
15	Leu 65	Glu	Gly	Lys	Asp	Ala 70	Gly	Lys	Gln	Gly	Lys 75	Val	Val	Gln	Val	Ile 80
20	Arg	Gln	Arg	Asn	Trp 85	Val	Val	Val	Gly	Gly 90	Leu	Asn	Thr	His	Tyr 95	Arg
20	Tyr	Ile	Gly	Lys 100	Thr	Met	Asp	Tyr	Arg 105	Gly	Thr	Met	Ile	Pro 110	Ser	Glu
25	Ala	Pro	Leu 115	Leu	His	Arg	Gln	Val 120	Lys	Leu	Val	Asp	Pro 125	Met	Asp	Arg
	Lys	Pro 130		Glu	Ile	Glu	Trp 135	Arg	Phe	Thr	Glu	Ala 140		Glu	Arg	Val
30	Arg 145		Ser	Thr	Arg	Ser 150		Arg	Ile	Ile	Pro 155		Pro	Glu	Phe	Pro 160
35	Arg	Ala	Asp	Gly	Ile 165		. Pro	Glu	Thr	Trp 170		Asp	Gly	Pro	Lys 175	Asp
33	Thr	Ser	. Val	Glu 180		Ala	Leu	Glu	Arg 185		Туг	Val	. Pro	Cys 190		Lys
40	Thr	Leu	195		Glu	ı Val	Met	Glu 200		Met	: Gly	7 Il€	Lys 205		Thr	Arg
	Lys	Туг 210		Lys	· Va]	Туг	Trp 215	туг			•					
45	•			,												
	(2)	IN	FORM	TION	I FOR	R SEÇ	Q ID	NO:	135	:						

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:
- Met Ser Leu Arg Gln Lys Ser Ser Phe Arg Leu Met Val Met Ser Leu 1 5 10 15
 - Thr Ile Leu Lys Leu Ser Lys Thr Thr Val Leu Cys Leu Arg Cys Leu 20 25 30

His Ser Leu Lys Leu Thr Trp Arg Asp Gly Ala Arg Cys Ile Asn Ala 40 45 Glu 5 (2) INFORMATION FOR SEQ ID NO: 136: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: Met Ser Gly Ser Phe Ile Leu Cys Leu Ala Leu Val Thr Arg Trp Ser 5 10 20 Pro Gln Ala Ser Ser Val Pro Leu Ala Val Tyr Glu Ser Lys Thr Arg 25 Lys Ser Tyr Arg Ser Gln Arg Asp Arg Asp Gly Lys Asp Arg Ser Gln 40 25 Gly Met Gly Leu Ser Leu Leu Val Glu Thr Arg Lys Leu Leu Ser 55 Ala Asn Gln Gly 30 65 (2) INFORMATION FOR SEQ ID NO: 137: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137: Met Cys Phe Arg Phe Phe Leu Phe Cys Ser Arg Ile Leu Leu Lys Leu 10 45 Phe Phe Leu Leu Phe Pro Ala Ser Ala Phe Pro Leu Ser Thr Arg Ser 25 Ser Leu Ser Val Asn Glu His Val Val Val Ser Pro Arg Ser Thr Val 40 50 Ser Ile Ser Arg 50 55 (2) INFORMATION FOR SEQ ID NO: 138: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 541 amino acids 60

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

5	Met 1	Val	Arg	Thr	Asp 5	Gly	His	Thr	Leu	Ser 10	Glu	Lys	Arg	Asn	Tyr 15	Gln
	Val	Thr	Asn	Ser 20	Met	Phe	Gly	Ala	Ser 25	Arg	Lys	Lys	Phe	Val 30	Glu	Gly
10	Val	Asp	Ser 35	Asp	Tyr	His	Asp	Glu 40		Met	Tyr	Tyr	Ser 45	Gln	Ser	Ser
15	Met	Phe 50	Pro	His	Arg	Ser	Glu 55	Lys	Asp	Met	Leu	Ala 60	Ser	Pro	Ser	Thr
15	Ser 65	Gly	Gln	Leu	Ser	Gln 70	Phe	Gly	Ala	Ser	L eu 75	Tyr	Gly	Gln	Gln	Ser 80
20	Ala	Leu	Gly	Leu	Pro 85	Met	Arg	Gly	Met	Ser 90	Asn	Asn	Thr	Pro	Gln 95	Leu
	Asn	Arg	Ser	Leu 100	Ser	Gln	Gly	Thr	Gln 105	Leu	Pro	Ser	His	Val 110	Thr	Pro
25	Thr	Thr	Gly 115	Val	Pro	Thr	Met	Ser 120	Leu	His	Thr	Pro	Pro 125	Ser	Pro	Ser
30	Arg	Gly 130	Ile	Leu	Pro	Met	Asn 135	Pro	Xaa	Asn	Met	Met 140	Asn	His	Ser	Gln
	Val 145	Gly	Gln	Gly	Ile	Gly 150	Ile	Pro	Ser	Arg	Thr 155	Asn	Ser	Met	Ser	Ser 160
35	Ser	Gly	Leu	Gly	Ser 165	Pro	Asn	Arg	Ser	Ser 170	Pro	Ser	Ile	Ile	Cys 175	Met
	Pro	Lys	Gln	Gln 180	Pro	Ser	Arg	Gln	Pro 185	Phe	Thr	Val	Asn	Ser 190	Met	Ser
40	Gly	Phe	Gly 195	Met	Asn	Arg	Asn	Gln 200	Ala	Phe	Gly	Met	Asn 205	Asn	Ser	Leu
45	Ser	Ser 210	Asn	Ile	Phe	Asn	Gly 215	Thr	Asp	Gly	Ser	Glu 220	Asn	Val	Thr	Gly
	Leu 225	_	Leu	Ser	Asp	Phe 230	Pro	Ala	Leu	Ala	Asp 235	Arg	Asn	Arg	Arg	Glu 240
50	Gly	Ser	Gly	Asn	Pro 245		Pro	Leu	Ile	Asn 250		Leu	Ala	Gly	Arg 255	Ala
	Pro	Tyr	Val	Gly 260		Val	Thr	Lys	Pro 265		. Asn	Glu	Gln	Ser 270	Gln	Asp
55	Phe	. Ser	11e 275		Asn	Glu	Asp	Phe 280		Ala	Leu	Pro	Gly 285		Ser	Tyr
60	Lys	290		Thr	Ser	Ser	Asn 295	_	Asp	Ser	Lys	Ser 300		Leu	Asn	Thr

	305	•				310)		. not	, Gr	315		s Prie	e Pro) G1	y Ası 32(
5	Lys	Ser	: Sei	Thr	Thr 325	Glr	Asn	Asn	Asr.	330		Lys	Lys	Gly	7 Ile 335	
	Val	Leu	Pro	340	Gly	Arg	Val	Thr	Asn 345		Pro	Gln	Gly	7 Met 350		l Thr
10	Asp	Gln	Phe 355	Gly	Met	Ile	Gly	Leu 360	Leu	Thr	Phe	Ile	Arg 365		Ala	a Glu
15	Thr	Asp 370	Pro	Gly	Met	Val	His 375	Leu	Ala	Leu	Gly	Ser 380		Leu	Thr	Thr
	Leu 385	Gly	Leu	Asn	Leu	Asn 390	Ser	Pro	Glu	Asn	Leu 395	Tyr	Pro	Lys	Phe	Ala 400
20	Ser	Pro	Trp	Ala	Ser 405	Ser	Pro	Cys	Arg	Pro 410	Gln	Asp	Ile	Asp	Phe 415	
	Val	Pro	Ser	Glu 420	Tyr	Leu	Thr	Asn	Ile 425	His	Ile	Arg	Asp	Lys 430	Leu	Ala
25	Ala	Ile	Lys 435	Leu	Gly	Arg	Tyr	Gly 440	Glu	Asp	Leu	Leu	Phe 445	Tyr	Leu	Tyr
30	Tyr	Met 450	Asn	Gly	Gly	Asp	Val 455	Leu	Gln	Leu	Leu	Ala 460	Ala	Val	Glu	Leu
	Phe 2 465	Asn [.]	Arg	Asp	Trp	Arg 470	Tyr	His	Lys	Glu	Glu 47 5	Arg	Val	Trp	Ile	Thr 480
35	Arg i				485					490					495	
40	Gly 1			500					505					510		
40	Glu I		212					520					525	His	Leu	Pro
45	Ser 1	Thr :	Phe	Asn '	Tyr		Pro . 535	Ala	Gln	Gln /		Phe :	Xaa			
50	(2) I			ION 1												
50		(í)∙ S	(B		NGTH PE:	: 58 amin	ami o ac	no a id	cids						·
55		(:	xi)	SEQU						Q ID	NO:	139	:			
	Met I 1	le (Cys 1	Pro (Sln (Cys I	Pro I	eu S	Ser I	Leu I 10	Leu (Cys I	Leu :	Ile s	Ser 15	Ser
60	Leu C	ys S	Ser 1	Leu V 20	al 1	le (3ln]	le s	Ser I 25	Leu I	ys 1	Thr I	lle 1	Arg <i>1</i> 30	Asp :	Ile

	Thr	Leu	Leu 35	Asn	Met	Val	Gly	Ile 40	Lys	Phe	Ser	Ile	Ser 45	Leu	Ser	Asn
5	Lys	Ile .50	Asn	Ile	Asn	Ser	Arg 55	Thr	Trp	Xaa						
10	(2)	INF	ORMAT	rion	FOR	SEQ	ID N	vo: 1	.40:							
15			(i) :	()	A) L B) T	ENGT YPE :	H: 2 ami	ERIST 02 au no ao 1in	mino cid		ds					
			(xi)	-												
20	Met 1	Thr	Leu	Arg	Pro 5	Ser	Leu	Leu	Pro	Leu 10	His	Leu	Leu	Leu	Leu 15	Leu
	Leu	Leu	Ser	Ala 20	Ala	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Glu
25	Ser	Pro	Val 35	Arg	Thr	Leu	Gln	Val 40	Glu	Thr	Leu	Val	Glu 45	Pro	Pro	Glu
	Pro	Cys 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Tyr
30	Thr 65	_	Ser	Leu	Val	Asp 70		Arg	Ile	Ile	Asp 75	Thr	Ser	Leu	Thr	Arg 80
35	Asp	Pro	Leu	Val	Ile 85	Glu	Leu	Gly	Gln	Lys 90	Gln	Val	Ile	Pro	Gly 95	Leu
33	Glu	Gln	Ser	Leu 100		Asp	Met	Cys	Val 105	Gly	Glu	Lys	Arg	Arg 110		Ile
40	Ile	Pro	Ser 115		Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125		Ser	Val
	Pro	Ala 130	a Asp	Ala	Val	Val	Gln 135	_	Asp	Val	Glu	Leu 140		Ala	Leu	Ile
45	Arg 145		a Asn	Tyr	Trp	Leu 150	_	Leu	Val	Lys	Gly 155		Leu	Pro	Leu	Va]
50	Gly	Met	: Ala	Met	Val 165		Ala	Leu	Leu	Gly 170		. Ile	e Gly	Тут	His 175	
50	Тут	Arg	J Lys	180		Arg	Pro	Lys	Val 185		Lys	Lys	: Lys	Leu 190		Glı
55	Glu	ь Гу	s Arg		Lys	Ser	Lys	Lys 200		Xaa	ι				-	

(2) INFORMATION FOR SEQ ID NO: 141:

			(i)	SEQU												
							TH: 2			ac	ids					
							: ami									
5			(xi)	SEX						EQ I	D NC): 14	1:			
	•	_,														
	Met	Phe	e Leu	Arg	Leu 5		Leu	Ile	Ala			Met	Leu	Leu		Ser
	•				,					10					15	
10	Lys	Leu	Phe	Thr	Asp	Ala	Ser	Ser	Arg	Ser	Ile	Gly	Ala	Leu	Asn	Lys
		•		20					25			_		30		•
	Tle) Acn	Dho	. Acm	Th~	N ~~~	Dha	*** 1	3 7-4	•		_				
			35		1111	ALG	FILE	40		ràs	ınr	Leu	met 45	Thr	He	Cys
15																
	Pro	Gly	Thr	Val	Leu	Leu		Phe	Ser	Ile	Ser	Leu	Trp	Ile	Ile	Ala
		50					55					60				
	Ala	Тхр	Thr	Val	Ara	Val	Cvs	Glu	Ser	Pro	Glu	Ser	Pro	212	Cln	Dro
20	65	_				70					75	Det	110	AIG	GIII	80
		_														
	Ser	Gly	Ser	Ser		Pro	Ala	Trp	Tyr		Asp	Gln	Gln	Asp		Thr
					85					90					95	
25 ·	Ser	Asn	Phe	Leu	Gly	Ala	Met	Trp	Leu	Ile	Ser	Ile	Thr	Phe	Leu	Ser
				100					105					110		
	Tlo	G1v	The nor	C1	3	V	***	5			_	_				
	116	GIY	115	Gly	Asp	met	vaı	120	HIS	Thr	Tyr	Cys	Gly 125	Lys	Gly	Val
30								120					125			
•	Cys	Leu	Leu	Thr	Gly	Ile	Met	Gly	Ala	Gly	Cys	Thr	Ala	Leu	Val	Val
		130					135					140				
	Ala	Val	Val	Ala	Arq	Lvs	Leu	Glu	Leu	Thr	īvs	Δla	Glu	Lare	Hic	t/a1
35	145				•	150					155		OLU	цуз	1113	160
		•	5 1			_										
	`His	Asn	Pne	met	Met 165	Asp	Thr	Gin	Leu	Thr 170	Lys	Arg	Ile	Lys		Ala
					105					170					175	
40	Ala	Ala	Asn	Val	Leu	Arg	Glu	Thr	Trp	Leu	Ile	Tyr	Lys	His	Thr	Lys
				180					185					190		
	Leu	Leu	Lvs	Lys	Tle	Δsn	Hie	Δ1 a	Lare	Val	7~~	Tura	w	. 01	>	•
			195					200	Lys	vai	Arg	пуs	205	GIII	Arg	Lys
45																
	Phe		Pro	Ser	Tyr	Pro		Val	Xaa							
		210					215									
50																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ю: 1	42:							
			(i) s	SEQUE	MCE	בענוי	אריים ב	ייי דכוי	TOO							
		,	/ .				i: 10				is					
55							amir				~					
							CGY:									
		((xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	142	:			
	Met	Ser	Asn	Thr	Thr	Val	Pro :	Asn	Ala	Pro (Gln	م ۵۱	Δen	Sor	y e	Co-
60	1			_	5		- .			10	J111 .			JEL .	ASP	ser

	Met	Val	Gly	Туг 20	Val	Leu	Gly	Pro	Phe 25	Phe	Leu	Ile	Thr	Leu 30	Val	Gly
5	Val	Val	Val 35	Ala	Val	Val	Met	Tyr 40	Val	Gln	Lys	Lys	Lys 45	Arg	Val	Asp
10	Arg	Leu 50	Arg	His	His	Leu	Leu 55	Pro	Met	Tyr	Ser	Туг 60	Asp	Pro	Ala	Glu
10	Glu 65	Leu	His	Glu	Ala	Glu 70	Gln	Glu	Leu	Leu	Ser 75	Asp	Met	Gly	Asp	Pro 80
15	Lys	Val	Val	His	Gly .85	Trp	Gln	Ser	Gly	Туг 90	Gln	His	Lys	Arg	Met 95	Pro
	Leu	Leu	Asp	Val 100	Lys	Thr										
20																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 1	L 4 3:							
25			(i) :					ERIS'			ds					
				(в) т	YPE:	ami	noa	cid	ucı						
				,	ו וע	OPOL	OGI:	lin	ear							
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 14	3:			
30	Met	Arg	(xi) Glu										-	Leu	Pro 15	Phe
	1			Cys	Gln 5	Glu	Glu	Ser	Phe	Trp 10	Lys	Arg	Ala		15	٠.
30 35	1 Ser	Leu	Glu	Cys Ser 20	Gln 5 Met	Glu	Glu Val	Ser	Phe Gln 25	Trp 10	Lys	Arg Val	Ala Tyr	Gln 30	15 Gly	Tyr
	1 Ser Leu	Leu Ala	Glu Val Ala 35 Leu	Cys Ser 20 Asn	Gln 5 Met	Glu Leu Arg	Glu Val Phe	Ser Thr Gly 40	Phe Gln 25 Ser	Trp 10 Gly Leu	Lys Leu Pro	Arg Val Lys	Ala Tyr Val 45	Gln 30 Ala	15 Gly Leu	Tyr Ala
35	Ser Leu Gly	Leu Ala Leu 50	Glu Val Ala 35 Leu	Cys Ser 20 Asn Gly	Gln 5 Met Ser	Glu Leu Arg Gly	Glu Val Phe Leu 55	Ser Thr Gly 40 Gly	Phe Gln 25 Ser Lys	Trp 10 Gly Leu Val	Lys Leu Pro Ser	Arg Val Lys Tyr 60	Ala Tyr Val 45	Gln 30 Ala Gly	15 Gly Leu Val	Tyr Ala
35	Ser Leu Gly Gln 65	Leu Ala Leu 50 Ser	Glu Val Ala 35 Leu	Cys Ser 20 Asn Gly	Gln 5 Met Ser Phe	Glu Leu Arg Gly Phe	Glu Val Phe Leu 55	Ser Thr Gly 40 Gly	Phe Gln 25 Ser Lys	Trp 10 Gly Leu Val	Lys Leu Pro Ser Leu 75	Arg Val Lys Tyr 60 Arg	Ala Tyr Val 45 Ile	Gln 30 Ala Gly Ala	15 Gly Leu Val	Tyr Ala Cys Phe
35 40	Ser Leu Gly Gln 65	Leu Ala Leu 50 Ser	Glu Val Ala 35 Leu Lys	Cys Ser 20 Asn Gly Phe	Gln 5 Met Ser Phe His	Glu Arg Gly Phe 70 Arg	Glu Val Phe Leu 55 Phe	Thr Gly 40 Gly Glu Cys	Phe Gln 25 Ser Lys Asp	Trp 10 Gly Leu Val Gln Leu 90	Leu Pro Ser Leu 75	Arg Val Lys Tyr 60 Arg	Ala Tyr Val 45 Ile Gly	Gln 30 Ala Gly Ala	Gly Leu Val Gly Cys 95	Tyr Ala Cys Phe 80 Lys
35 40 45	Ser Leu Gly Gln 65	Leu Ala Leu 50 Ser	Glu Val Ala 35 Leu Lys Gln	Cys Ser 20 Asn Gly Phe His	Gln 5 Met Ser Phe His	Glu Arg Gly Phe 70 Arg	Glu Val Phe Leu 55 Phe	Thr Gly 40 Gly Glu Cys	Phe Gln 25 Ser Lys Asp Leu Gly	Trp 10 Gly Leu Val Gln Leu 90	Leu Pro Ser Leu 75	Arg Val Lys Tyr 60 Arg	Ala Tyr Val 45 Ile Gly	Gln 30 Ala Gly Ala	Gly Leu Val Gly Cys 95	Tyr Ala Cys Phe 80 Lys

(2) INFORMATION FOR SEQ ID NO: 144:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 amino acids

60

(B) TYPE: amino acid

```
(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:
```

Met Lys Asn Asp Arg Asn Gln Gly Phe Ser Leu Leu Gln Leu Ile Asp
1 5 10 15

Trp Asn Lys Pro

20

10

15

25

35

- (2) INFORMATION FOR SEQ ID NO: 145:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:
- 20 Met Gly Thr Gln Pro Pro Val Val Ala Gly Phe Thr Ile Pro Met Leu
 1 5 10 15

Gly Tyr Thr Val Arg Val Leu Thr Phe His Leu Ser Cys Ser

- (2) INFORMATION FOR SEQ ID NO: 146:
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 99 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu Val 1 5 10 15

Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu Glu Ser 20 25 30

Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn Thr Pro Phe 35 40 45

Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala Asp Glu Phe Leu
50 55 60

Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg Lys Leu Pro Phe Leu 65 70 75 80

Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly Leu Arg Ser Ala Thr Pro 85 90 95

Asp Ala Gln

55

50

(2) INFORMATION FOR SEQ ID NO: 147:

		(i) S	_ (A) LE	NGTH PE:	ı: 8 amin	RIST amin o ac line	o ac	ids						
5			xi)	_					: SE	Q ID	NO:	147	:			
0	Met 1	Val	Trp	Gly 1	Leu :	Leu	Leu	Gly								
-	(2)	INFC	RMAT	ION :	FOR	SEQ	ID N	0: 1	48:							
5			(i) S (xi)	(E (E	L) LE 3) TY 0) TO	INGTI (PE : OPOL(H: 39 amir XGY:	ami no ac line	ino a cid ear	acids Q ID		148	ı:			
20	Met 1	Leu	Pro	Leu	Leu 5	Ser	Leu	Leu	Phe	Leu 10	Phe	Phe	Ser	Thr	Val 15	Ser
25	Ser	Phe	Cys	Gly 20	Met	Pro	Leu	Arg	Ala 25	His	Thr	Arg	Ala	Xaa 30	Ala	His
	Thr	Arg	Thr 35	Phe	Ala	Ser	Arg						•			
30	(2)	INF	ORMAT	'ION	FOR	SEQ	ID N	io: 1	.49:							
35			(i) s	() () ()	A) Li B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	31 a no a lin	mino cid ear	acio		: 149	9:			
40	Met 1	Ile	Cys	Glu	Thr 5	Lys	Ala	Arg	Lys	Ser 10	Ser	Gly	Gln	Pro	Gly 15	Arg
	Leu	Pro	Pro	Pro 20	Thr	Leu	Ala	Pro	Pro 25	Gln	Pro	Pro	Leu	Pro 30	Glu	Thr
45	Ile	Glu	Arg 35	Pro	Val	Gly	Thr	Gly 40	Ala	Met	Val	Ala	Arg 45	Ser	Ser	Asp
50	Leu	Pro 50	Tyr	Leu	Ile	Val	Gly 55	Val	Val	Leu	Gly	Ser 60	Ile	Val	Leu	Ile
	Ile 65	Val	Thr	Phe	Ile	Pro 70	Phe	Cys	Leu	Trp	Arg 75	Ala	Trp	Ser	Lys	Gln 80
55	Lys	His	Thr	Thr	Asp 85	Leu	Gly	Phe	Pro	Arg 90	Ser	Ala	Leu	Pro	Pro 95	Ser
	Cys	Pro	Tyr	Thr 100	Met	Val	Pro	Leu	Gly 105	Gly	Leu	Pro	Gly	His 110	Gln	Ala

Val Asp Ser Pro Thr Ser Val Ala Ser Val Asp Gly Pro Val Leu Met

```
115
                                   120
                                                       125
       Gly Ser Thr
           130
  5
       (2) INFORMATION FOR SEQ ID NO: 150:
 10
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 32 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:
 15
       Met Gly Ala Pro Ser Leu Thr Met Leu Leu Leu Leu Lys Val Gln Pro
                                           10
      Arg Arg Thr Gln Ala Phe Asp Ala His Trp Val Gly Leu Pro Leu Leu
 20
                                      25
25
      (2) INFORMATION FOR SEQ ID NO: 151:
              (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 14 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:
35
      Met Cys Leu Ile Phe Leu Leu Leu Leu Leu Ser Phe Ser
        1
                      5
                                          10
40
      (2) INFORMATION FOR SEQ ID NO: 152:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 8 amino acids
                    (B) TYPE: amino acid
45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:
      His Pro His Gln Asp Ser Gln Pro
                      5
50
      (2) INFORMATION FOR SEQ ID NO: 153:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 68 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:
60
```

	Met 1	Asn	Thr	Ser	Tyr 5	Ile	Leu	Arg	Leu	Thr 10	Val	Val '	Val	Ser '	Val 15	Val
5	Ile	Тут	Leu	Ala 20	Ile	His	Pro	Leu	Leu 25	Ser	Phe	Ser :	Leu	Glu 30	Ser	Pro
	Leu	Leu	Val 35	Pro	Trp	Arg	Asp	Cys 40	Cys	Gln	Asn	Ile	Trp 45	Lys	Ser	Gly
10	Ser	Val 50	Trp	Тут	Lys	Arg	Trp 55	Thr	Leu	Pro	His	Met 60	Glu	Val	Cys	Cys
15	Gln 65	Asp	Leu	His												
20	(2)	INF	(i)	SEQU	(A) I (B) I (D) I	CHA ENGT YPE:	RACT H: 2 ami OGY:	ERIS 26 am ino a : lir	TICS nino ncid near	acid		. 15				
25	Met		•	_	-	Lys			N: S Glu		Leu			Ile	Leu 15	Thr
30	Ser	: Ile	e Arg	ı Ile		Glu	Arg	g Gln	Asn 25	Met						
35	(2)	INE			JENCI (A)	E CHA	ARACT	reris	155: STICS amino		ids					·.
40			(xi) SE		TOPOI			near ON: S	SEQ 1	ID NO): 15	5:			
	:	1				5				- 10)			•	15	
45				2	0				25	5	٠			30	ı	Ser
50	*		3	5				4	0				45	•		ı Ala
		5	0				5	5			-	60)			j Ser
55	6	5				. 7	0				7!	5				n Glu 80
. *	As	p Il	e Il	.e Ar	_	n Il	e Al	a Ar	g Hi	s Le 9		a Glr	ı Val	l Gly	Ası 9!	o Ser 5
60				_		- 0	- n		T -	17-	1 3-	~ ~1.	. T.O.	. 7.7	a T.es	u Gln

		100		105	110
5		sn Thr Ser 15	Arg Ser Glu 120	Glu Asp Arg A	sn Arg Asp Leu Ala 125
J	Thr Ala L 130	eu Glu Gln	Leu Leu Gln 135		rg Asp Met Glu Lys 40
10	Glu Lys T	hr Met Leu	Val Leu Ala 150	Leu Leu Leu A 155	la Lys Lys Val Ala 160
	Ser His T	hr Pro Ser 165	Leu Leu Arg	Asp Val Phe H 170	is Thr Thr Val Asn 175
15	Phe Ile A	sn Gln Asn 180	Leu Arg Thr	Tyr Val Arg S 185	er Leu Ala Arg Asn 190
20	Gly Met A	sp 95			
	(2) INFOR	MATION FOR	SEQ ID NO: 1	.56:	
25	(i	(A) LE (B) Ti	CHARACTERIST ENGTH: 91 am: PE: amino ac DPOLOGY: line	ino acids cid	
30	(x			SEQ ID NO:	156:
	Met Ser Le 1	eu Ser Leu 5	Val Ser Val	Ser Val Gly P: 10	ro Ser Thr Leu Ala 15
35	Cys Ser Pl	he Leu Arg	Pro Lys Ala	Arg Pro Ser L	ys Arg Ser Pro Arg 30
		nr Asp Ser' 35	Thr Ser Pro 40	Gly Gly Pro A	rg Ala Pro Arg Gly 45
40	Gly Ala Ti 50	rp Arg Leu :	Ser Ser Gln 55		er Pro Lys Gly Val
45	Ala Val Al 65	la Lys Ala :	Ser Tyr Arg 70	Pro Val Leu Cy 75	ys Phe Leu Pro Gly 80
	Pro Trp Se	er Ser Xaa 1 85	Pro Xaa Ala	Phe Leu Ile 90	
50	(2) INFORM	ATION FOR S	SEQ ID NO: 1	57:	
55		(A) LE (B) TY (D) TO	CHARACTERIST NGTH: 31 ami PE: amino ac POLOGY: line DESCRIPTION	no acids	157 :
60	Met Gly Th	ur Leu Ser 1 5	Ala Glu Cys	Ser Gly Pro Al	a Thr Leu Gly Leu 15

	Cys	Leu	Val	Val 20	Pro	Trp	Asn	Ser	Ser 25	Gly	Leu	Ser	Gln	Pro 30	Pro	
5																
,	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	10: 1	.58:							
10				(; (;	A) LI B) T D) T	ENGT YPE : OPOL	H: 9 ami: OGY:	ERIST 1 am: no ac line PTION	ino a cid ear	acid		: 15	B:			
15	Met 1	Lys	Phe	Leu	Ala 5	Val	Leu	Val	Leu	Leu 10	Gly	Val	Ser	Ile	Phe 15	Leu
20	Val	Ser	Ala	Gln 20	Asn	Pro	Thr	Thr	Ala 25	Ala	Pro	Ala	Asp	Thr 30	Tyr	Pro
	Ala	Thr	Gly 35	Pro	Ala	Asp	Asp	Glu 40	Ala	Pro	Asp	Ala	Glu 45	Thr	Thr	Ala
25	Ala	Ala 50		Thr	Ala	Thr	Thr 55	Ala	Ala	Pro	Thr	Thr 60	Ala	Thr	Thr	Ala
	Ala 65	Ser	Thr	Thr	Ala	Arg 70		Asp	Ile	Pro	Val 75	Leu	Pro	Lys	Trp	Val 80
30	Gly	Asp	Leu	Pro	Asn 85	Gly	Arg	Val	Cys	Pro 90	Xaa					
35	(2)	INF					,	NO: .:								
40				((A) I (B) T (D) T	ENGT YPE : OPOI	H: 8 ami OGY:	ERIS 39 am ino a lin PTIO	ino cid ear	acid): 1 5	9:			
45	Met		: Ile	e Ser	Leu 5		Ile	Tyr	Ile	Phe 10		Thr	Cys	Ser	Asn 15	
	Ser	Pro	Ser	Tyr 20		Gly	Thr	Gln	Leu 25		Leu	Gly	Leu	Pro 30		Ala
50	Gln	Tr	Trp 35		Leu	Thr	Gly	Arg 40		Met	Gln	Cys	Cys 45		Leu	Phe
	Cys	Phe 50		ı Leu	Gln	Asn	Cys 55		Phe	Pro	Phe	Pro 60		His	Leu	Ile
55	Glr 65		s Asp	Pro	Cys	Glu 70		ı Val	. Leu	Thr	75		Trp	Asp	Trp	Ala 80
60	Glu	ı Ala	a Gly	/ Ala	Ser 85		тут	Ser	Pro)						

	(2)	7141	Olum	41 TON	ror	, DE	עד ג	NO:	TOO:							
5			(i)		(A) 1 (B) 1	LENG TYPE	ARACT TH: : am:	174 a ino a	amino acid		ids					
10	Met	Ser		SEÇ										Val	. Leu	Sei
15	1			e Gly 20	Cys	•				10 Ile					15 Phe	•
	Ser	Phe	Met 35	Ser	Arg	Val	. Leu	Gln 40		Asp	Ala	Glu	Gln 45	Glu		Glr
20	Met	Arg 50	Ala	Glu	Ile	Gln	Asp 55		Lys	Gln	Glu	Leu 60		Thr	Val	Asn
25	Met 65	Met	Asp	Glu	Phe	Ala 70		Ťyr	Ala	Arg	Leu 75	Glu	Arg	Lys	Ile	Asn 80
	Lys	Met	Thr	Asp	Lys 85	Leu	Lys	Thr	His	Val 90	Lys	Ala	Arg	Thr	Ala 95	Gln
30				Ile 100					105					110		
			115	Met				120					125			
35		130		Pro			135					140				
40	145			Arg		150					155				Ile	Leu 160
	Val	Cys	Asn	Lys	Val 165	Val	Ala	Ile	Val	Leu 170	His	Pro	Phe	Ser		
45	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	ю: 1	.61:							
50				(I	A) L1 3) T O) T	ENGT YPE: OPOLA	H: 49 amir OGY:	5 am no ac line	ino a cid ear	acids		161	L:		:	
55	Met 1	Gly	Lys	Leu	Ile 5	Asn	Ile	Val	Ile	Arg 10	Lys	Pro	Leu	Leu	Leu 15	Leu
	Leu	Val	Gln	Cys 20	Glu	Asn	Cys	Cys	Arg 25	Lys .	Asn :	Met	Leu	Tyr 30	Asn	Ile
60	Phe	Leu	Asn	Ile 1	His	Asn	Ile :	His	Lvs	Phe	Ser	Δen	Hie			

45 35 40 (2) INFORMATION FOR SEQ ID NO: 162: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162: Met Val Ala Ser Thr Leu Val Thr Asn Leu Phe Gly Val Ala Phe Ala 5 10 15 Thr Thr Ala Ala Thr Arg Ala 20 20 (2) INFORMATION FOR SEQ ID NO: 163: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids 25 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163: Met Leu Met Ala Pro Val Val Cys Leu Ser Phe Ser Pro Cys Pro Ala 30 5 10 1 Asp Thr Ser Leu Thr Gly Asp Gly Leu Lys Ala Gly Leu Glu Arg Gly 25 Xaa Ala Leu Val Thr Leu Phe Asp Ser Val Thr His Phe Leu Ala His 35 35 Thr Leu Phe Glu Leu Leu Asp Phe Gln Leu Ala Phe Leu Arg Ser Gly 55 40 Lys Gln Thr Ala Pro His 65 45 (2) INFORMATION FOR SEQ ID NO: 164: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 amino acids 50 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164: Met Leu Leu Leu Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln 55 10 1 Val Gly Ala Gly Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu

25

Ser Lys Pro Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn

20

20	٠

_	Le	u Me 5	t Gly 0	y Ası	n Ala	Met	: Va]		Thr	Glr	тут	: Ile		j Lei	Thi	Pro
5	Ası 6	o Me 5	t Gli	ı Sei	: Lys	Gln 70		/ Ala	Leu	Trp	Asn 75		Val	. Pro	Cys	Phe 80
10	Let	ı Ar	g Asp	Tr	61u 85	Leu	Glr	Val	His	Phe 90		Ile	His	Gly	Gln 95	Gly
	Lys	s Ly:	s A sr	Lev 100	His	Gly	Asp	Gly	Leu 105		Ile	Trp	Тут	Thr 110		Asn
15	Arg	y Me	115	Pro	Gly	Pro	Val	Phe 120	Gly	Asn	Met	Asp	Lys 125		Val	Gly
20	Leu	130	y Val	Phe	Val	Asp	Thr 135		Pro	Asn	Glu	Glu 140	Lys	Gln	Gln	Glu
20	A rg 145	r Val	Phe	Pro	Туг	Ile 150	Ser	Ala	Met	Val	Asn 155	Asn	Gly	Ser	Leu	Ser 160
25	Туг	Ası	His	Glu	Arg 165	Asp	Gly	Arg	Pro	Thr 170	Glu	Leu	Gly	Gly	Cys 175	Thr
	Ala	Ile	· Val	Arg 180	Asn	Leu	His	Tyr	Asp 185	Thr	Phe	Leu	Val	Ile 190	Arg	Tyr
30	Val	Lys	Arg 195	His	Leu	Thr	Ile	M et 200	Met	Asp	Ile	Asp	Gly 205	Lys	His	Glu
35	Trp	Arg 210	Asp	Cys	Ile	Glu	Val 215	Pro	Gly	Val	Arg	Leu 220	Pro	Arg	Gly	тут
	Tyr 225	Phe	Gly	Thr	Ser	Ser 230	Ile	Thr	Gly	Asp	Leu 235	Ser	Asp	Asn	His	Asp 240
40	Val	Ile	Ser	Leu	Lys 245	Leu	Phe	Glu	Leu	Thr 250	Val	Glu	Arg	Thr	Pro 255	Glu
	Glu	Glu	Lys	Leu 260	His	Arg	Asp	Val	Phe 265	Leu	Pro	Ser	Val	Asp 270	Asn	Met
45	Lys	Leu	Pro 275	Glu	Met	Thr	Ala	Pro 280	Leu	Pro	Pro		Ser 285	Gly	Leu	Ala
50	Leu	Phe 290	Leu	Ile	Val	Phe	Phe 295	Ser	Leu	Val		Ser 300	Val	Phe	Ala	Ile
	Val 305	Ile	Gly	Ile	Ile :	Leu 310	Tyr	Asn	Lys		Gln 315	Glu (Gln	Ser .		Lys 320
55	Arg	Phe	Tyr													

			(i) S	() (1	A) LI B) T	ENGTI YPE :	H: 32 amir	21 and	nino cid		ds					
5			(xi)	-			OGY: SCRIE			ΣQ 11	ONO:	165	5:			
	Met 1	Pro	Ser	Glu	Tyr 5	Thr	Tyr	Val	Lys	Leu 10	Arg	Ser	Asp	Cys	Ser 15	Arg
10	Pro	Ser	Leu	Gln 20	Trp	Tyr	Thr	Arg	Ala 25	Gln	Ser	Lys	Met	Arg 30	Arg	Pro
15	Ser	Leu	Leu 35	Leu	Lys	Asp	Ile	Leu 40	Lys	Cys	Thr	Leu	Leu 45	Val	Phe	Gly
	Val	Trp 50	Ile	Leu	Tyr	Ile	Leu 55	Lys	Leu	Asn	Tyr	Thr 60	Thr'	Glu	Glu	Cys
20	Asp 65	Met	Lys	Lys	Met	His 70	Tyr	Val	Asp	Pro	Asp 75	His	Val	Lys	Arg	Ala 80
	Gln	Lys	Tyr	Ala	Gln 85	Gln	Val	Leu	Gln	Lys 90	Glu	Cys	Arg	Pro	Lys 95	Phe
25	Ala	Lys	Thr	Ser 100	Met	Ala	Leu	Leu	Phe 105	Glu	His	Arg	Tyr	Ser 110	Val	Asp
30	Leu	Leu	Pro 115	Phe	Val	Gln	Lys	Xaa 120	Pro	Lys	Asp	Ser	Glu 125	Ala	Glu	Ser
30	Lys	Tyr 130	Asp	Pro	Pro	Phe	Gly 135	Phe	Arg	Lys	Phe	Ser 140	Ser	Lys	Val	Gln
35	Thr 145		Leu	Glu	Leu	Leu 150		Glu	His	Asp	Leu 155	Pro	Glu	His	Leu	Lys 160
	Ala	Lys	Thr	Cys	Arg 165		Cys	Val	Val	Ile 170		Ser	Gly	Gly	Ile 175	Leu
40	His	Gly	Leu	Glu 180		Gly	His	Thr	Leu 185		Gln	Phe	Asp	Val 190	Val	Ile
45	Arg	Leu	195		Ala	Pro	Val	Glu 200		Tyr	Ser	Glu	His 205		Gly	Asr
43	Lys	Thr 210	Thr	Ile	Arg	Met	Thr 215		Pro	Glu	Gly	Ala 220		Leu	Ser	Asp
50	Leu 225		туг	Туг	Ser	Asn 230		Leu	. Phe	val	Ala 235		Leu	Phe	Lys	Ser 240
	Val	. Asr	Phe	e Asn	Trp 245		ı Gln	Ala	Met	Val 250		Lys	Glu	Thr	Leu 255	
55	Phe	Tr	o Val	Arg 260		Phe	e Phe	Trp	Lys 265		ı Val	. Ala	a Glu	Lys 270		Pro
	Lev	ı Glr	n Pro		: His	: Phe	e Arg	Ile		ı Asr	n Pro	Va]	l Ile		. Lys	Gl

```
Thr Ala Phe Xaa His Pro Ser Val Leu Arg Ala Ser Val Lys Val Leu
                               295
       Gly Ala Glu Ile Arg Thr Ser Pro Gln Ser Val Ser Leu Pro Leu Ser
  5
                           310
                                               315
       Xaa
 10
       (2) INFORMATION FOR SEQ ID NO: 166:
              (i) SEQUENCE CHARACTERISTICS:
 15
                     (A) LENGTH: 31 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:
 20
       Met Thr Leu Asp Val Gln Thr Val Val Val Phe Ala Val Ile Val Val
                                           10
       Leu Leu Leu Val Asn Val Ile Leu Met Phe Phe Leu Gly Thr Arg
                                . 25
25
       (2) INFORMATION FOR SEQ ID NO: 167:
30
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 72 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:
35
      Met Leu Pro Leu Phe Cys Ala Phe Cys Leu His Lys Leu Gly Pro
      Leu Leu Phe Leu Tyr Asp Val Leu Met Xaa His Glu Ala Val Met Arg
40
                   20
      Thr His Gln Ile Gln Leu Pro Asp Pro Glu Phe Pro Ser Gln Gln Asn
                                   40
45
      Gln Val Leu Asn Lys Thr Leu Phe Asn Lys Leu Lys Lys Lys Lys
      Lys Lys Lys Xaa Xaa Xaa Lys Lys
                          70
50
      (2) INFORMATION FOR SEQ ID NO: 168:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 282 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:
60
```

	Met 1	Ala	Ser	Arg	Gly 5	Arg	Arg	Pro	Glu	His 10	Gly	Gly	Pro	Pro	Glu 15	Leu
5	Phe	Tyr	Asp	Glu 20	Thr	Glu	Ala	Arg	Lys 25	Tyr	Val	Arg	Asn	Ser 30	Arg	Met
	Ile	Asp	Ile 35	Gln	Thr	Arg	Met	Ala 40	Gly	Arg	Ala	Leu	Glu 45	Leu	Leu	Tyr
10	Leu	Pro 50	Glu	Asn	Lys	Pro	Cys 55	Tyr	Leu	Leu	Asp	Ile 60	Gly	Cys	Gly	Thr
15	Gly 65	Leu	Ser	Gly	Ser	Туг 70	Leu	Ser	Asp	Glu	Gly 75	His	Tyr	Trp	Val	Gly 80
13	Leu	Asp	Ile	Ser	Pro 85	Ala	Met	Leu	Asp	Glu 90	Ala	Val	Asp	Arg	Glu 95	
20	Glu	Gly	Asp	Leu 100		Leu	Gly	Asp	Met 105	Gly	Gln	Gly	Ile	Pro 110	Phe	Lys
	Pro	Gly	Thr 115		Asp	Gly	Cys	Ile 120	Ser	Ile	Ser	Ala	Val 125	Gln	Trp	Leu
25	Cys	Asn 130		Asn	Lys	Lys	Ser 135		Asn	Pro	Ala	Lys 140	Arg	Leu	Tyr	Суз
30	Phe 145		Ala	Ser	Leu	Phe 150		Val	Leu	Val	Arg 155		Ser	Arg	Ala	Val 160
	Leu	Gln	Leu	Tyr	Pro 165		Asn	Ser	Glu	170		Glu	Leu	Ile	Thr 175	Thr
35	Gln	Ala	Thr	Lys 180		Gly	Phe	Ser	Gly 185		Met	: Val	Val	Asp 190		Pro
	Asn	Ser	195		Ala	. Lys	Lys	200		: Leu	ı Cys	: Leu	205		Gly	Pro
40	Ser	Thr 210		e Ile	e Pro	Glu	Gly 215		Ser	: Glu	ı Asr	220		Glu	Val	. Glu
45	Pro 225		g Glu	ı Ser	· Val	230		Asr	ı Glu	ı Arç	235		Lev	ı Arg	Met	Ser 240
	Arg	J Arg	g Gly	y Met	245		, Lys	s Sei	Arg	250		y Val	l Leu	ı Glu	255	Lys
50	Glu	ı Arg	g His	s Arg 260		g Glr	n Gly	y Arg	g Gli 26		l Ar	g Pro	As _I	270		n Tyr
	Thi	r Gly	27		s Arg	g Lys	s Pro	280		e Xa	a ·					
55																

(2) INFORMATION FOR SEQ ID NO: 169:

60

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 amino acids

								ino a								
			,					: liı								
			(X1)) SEX	DUEN	CE DI	ESCR:	PTIC	ON: S	SEQ 1	ID N): 1	69:			
5		t Lei	ı Gly	/ Lys	Thr 5		Phe	Gln	Ser	Tyr 10		Sei	Phe	Sei	: Arg	
10	Leu	ı Met	: Val	. Cys		Ser	Thr									
	(2)	INE	ORMA	TION	FOR	SEC	ID	NO:	170:							
15				,	(A) I (B) 1 (D) 1	ENG TYPE : TOPOI	TH: : am: .OGY:	ERIS 328 a ino a : lir	mino cid mear	aci						
20			(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	: 17	70:			
20	Met	Trp	Arg	Pro	Ser 5		Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His	
25	Ala	Gln	Gly	Lys 20		Ser	Pro	Asp	Ala 25	Gly	Pro	His	Gly	Gln 30		Arg
	Val	His	Gln 35	Ala	Ala	Pro	Leu	Ser 40	Asp	Ala	Pro	His	Asp 45		Ala	His
30	Gly	Asn 50	Phe	Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	Gly 60	Arg	Glu	Val	Ala
35	65		Phe			70					75					80
			Val		85					90					95	
40			, Ala	100					105					110		
			Asp 115					120					125			
45	Asp	Gly 130	Arg	Val	Gly	Trp	Glu 135	Glu	Leu	Arg	Asn	Ala 140	Thr	Tyr	Gly	His
50	Tyr 145	Ala	Pro	Gly	Glu	Glu 150	Phe	His	Asp	Val	Glu 155	Asp	Ala	Glu	Thr	Tyr 160
	Lys	Lys	Met	Leu	Ala 165	Arg	Asp	Glu	Arg	Arg 170	Phe	Arg	Val	Ala	Asp 175	Gln
55	Asp	Gly	Asp	Ser 180	Met	Ala	Thr	Arg	Glu 185	Glu	Leu	Thr	Ala	Phe 190	Leu	His
	Pro	Glu	Glu 195	Phe	Pro	His	Met	Arg 200	Asp	Ile	Val	Ile	Ala 205	Glu	Thr	Leu
60	Glu	Asp	Leu	Asp	Arg	Asn	Lys	Asp	Gly	Tyr	Val	Gln	Val	Glu	Glu	Tyr

WO 98/42738 PCT/US98/05311

		210					215					220				
5	Ile 225	Ala	Asp	Leu	Tyr	Ser 230	Ala	Glu	Pro	Gly	Glu 235	Glu	Glu	Pro	Ala	Trp 240
5	Val	Gln	Thr	Glu	Arg 245	Gln	Gln	Phe	Arg	Asp 250	Phe	Arg	Asp	Leu	Asn 255	Lys
10	Asp	Gly	His	Leu 260	Asp	Gly	Ser	Glu	Val 265	Gly	His	Trp	Val	Leu 270	Pro	Pro
	Ala	Gln	Asp 275	Gln	Pro	Leu	Val	Glu 280	Ala	Asn	His	Leu	Leu 285	His	Glu	Ser
15	Asp	Thr 290	Asp	Lys	Asp	Gly	Arg 295	Leu	Ser	Lys	Ala	Xaa 300	Ile	Leu	Gly	Asn
20	Trp 305	Asn	Met	Phe	Val	Gly 310	Ser	Gln	Ala	Thr	Asn 315	Туг	Gly	Glu	Asp	Leu 320
	Thr	Arg	His	His	Asp 325	Glu	Leu	Xaa								
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: :	171:							
30				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	9 am no a lin	ino cid ear	acid		: 17	1:			
35	Met 1	Cys	Trp	Leu	Arg 5	Ala	Trp	Xaa	Gln	Ile 10	Xaa	Leu	Pro	Val	Phe 15	Xaa
	Ser	Xaa	Phe	Leu 20	Ile	Gln	Leu	Leu	Ile 25	Ser	Phe	Ser	Glu	Asn 30	_	Phe
40	Ile	His	Ser 35	Pro	Arg	Asn	Asn	Gln 40	Lys	Pro	Arg	Asp	Gly 45	Asn	Xaa	Glu
45	Glu	Суs 50		Val	Lys	Lys	Ser 55		Gln	Leu	Cys	Thr 60		Asp	Lys	Lys
	Tyr 65		Met	Asn	Arg											
50	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	172:							
5 5			(i)		(A) I	LENG	TH: I	160 a	min		ids					
55			(xi)		(D) 1	ropoi	LOGY	ino a : lir :PTIC	near	SEO I	D NO): 1 7	72:			

	Val	Met	Asp	Glu 20	Lys	Val	Lys	Arg	Ser 25	Phe	Val	Leu	Asp	Thr 30	Ala	Ser
5	Ala	Ile	Cys 35	Asn	Tyr	Asn	Ala	His 40	Tyr	Lys	Asn	His	Pro 45	Lys	Tyr	Trp
10	Cys	Arg 50	Gly	Tyr	Phe	Arg	Asp 55	Tyr	Суѕ	Asn	Ile	Ile 60	Ala	Phe	Ser	Pro
	Asn 65	Ser	Thr	Asn	His	Val 70	Ala	Leu	Lys	Asp	Thr 75	Gly	Asn	Gln	Leu	Ile 80
15	Val	Thr	Met	Ser	Cys 85	Leu	Asn	Lys	Glu	Asp 90	Thr	Gly	Trp	Tyr	Trp 95	Cys
	Gly	Ile	Gln	Arg 100	Asp	Phe	Ala	Arg	Asp 105	Asp	Met	Asp	Phe	Thr 110	Glu	Leu
20	Ile	Val	Thr 115	Asp	Asp	Lys	Gly	Thr 120	Trp	Pro	Met	Thr	Leu 125	Val	Trp	Glu
25	Arg	Leu 130	Ser	Gly	Thr	Lys	Pro 135	Ġlu	Ala	Ala	Arg	Leu 140	Pro	Lys	Leu	Ser
	Ala 145	Arg	Leu	Thr	Ala	Pro 150	Gly	Arg	Pro	Phe	Ser 155	Ser	Phe	Ala	Tyr	Xaa 160
30												•				
	(2)	INFO	ORMAT	rion	FOR	SEO	ID N	NO: 1	173:							
35						_										
			(i) \$								ds					
40			(i) { (xi)	() () ()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	23 a no a lin	mino cid ear	acio		: 173	3:			
40	Met 1			() () () SEQ(A) L B) T D) T JENCI	ENGT YPE: OPOL E DE:	H: 1 amin OGY: SCRII	23 anno ao lind PTION	mino cid ear N: SI	acio	ON C			Pro	His	Cys
40	1	Ala	(xi)	() (I SEQU	A) L B) T D) T JENCI Phe 5	ENGT YPE: OPOL E DE: Leu	H: 1 amin OGY: SCRII Leu	23 am no am lind PTION Val	mino cid ear N: Si	acio EQ II Leu 10	O NO Gln	Ser	Val		15	
45	1 Pro	Ala His	(xi) Xaa	() (I SEQU His Leu 20	A) L B) T D) T JENCI Phe 5	ENGT YPE: OPOL E DE: Leu Glu	H: 1 amin OGY: SCRII Leu Glu	23 amo	mino cid ear N: Si Ala Lys 25	acio EQ II Leu 10 Leu	O NO Gln Cys	Ser Lys	Val Val	Ser 30	15 His	Phe
	1 Pro Ser	Ala His Gly	(xi) Xaa Leu Val	() (I SEQU His Leu 20	A) L B) T D) T JENCI Phe 5 Glu Leu	ENGT YPE: OPOL E DE: Leu Glu Val	H: 1 amin OGY: SCRII Leu Glu	23 amo ao lino PTION Val His Ser 40	mino cid ear N: Si Ala Lys 25	acio EQ II Leu 10 Leu Gln	O NO Gln Cys Asp	Ser Lys Ser	Val Val Ser 45	Ser 30 Ser	15 His Tyr	Phe Val
45	Pro Ser	Ala His Gly Val	(xi) Xaa Leu Val 35	() () () () SEQT His Leu 20 Thr	A) L B) T D) T UENCI Phe 5 Glu Leu Leu	ENGT YPE: OPOL E DE: Leu Glu Val	H: 1 amin OGY: SCRII Leu Glu Thr	23 amo	mino cid ear N: SI Ala Lys 25 Arg	acid EQ II Leu 10 Leu Gln	O NO Gln Cys	Ser Lys Ser Trp 60	Val Val Ser 45 Ala	Ser 30 Ser Trp	15 His Tyr Asp	Phe Val Leu
45 50	Pro Ser Pro Xaa 65	Ala His Gly Val 50 Pro	(xi) Xaa Leu Val 35	(A) (I) (I) SEQUENTIAL END (I) S	A) L B) T D) T JENCI Phe 5 Glu Leu Leu Ala	ENGT YPE: OPPOL E DE: Leu Glu Val Phe Glu 70	H: 1 amir OGY: SCRII Leu Glu Thr Ile 55 Asp	23 amo acalono	mino cid ear N: SI Ala Lys 25 Arg Leu	acid EQ II Leu 10 Leu Gln Gly Ala	O NO Gln Cys Asp Pro Glu 75	Ser Lys Ser Trp 60 Arg	Val Ser 45 Ala Ser	Ser 30 Ser Trp	15 His Tyr Asp	Phe Val Leu Leu 80

				100					105					110		
5	Thr	Phe	Leu 115	Ser	Ala	Glu	Asn	Glu 120	Ala	Gly	Ile					
	(2)	INF	ORMA!	rion	FOR	SEQ	ID N	10:1	.74:		•					
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami: OGY:	29 a no a lin	mino cid ear	aci						
15				SEQ												
	Met 1	Lys	Val	Gly	Ala 5	Arg	Ile	Arg	Val	Lys 10	Met	Ser	Val	Asn	Lys 15	Ala
20	His	Pro	Val	Val 20	Ser	Thr	His	Trp	Arg 25	Trp	Pro	Ala	Glu	Trp 30	Pro	Gln
	Met	Phe	Leu 35		Leu	Ala	Gln	Glu 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
25	Pro	Leu 50	-	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
30	Pro 65	Leu	Glu	Gln	Glu	Thr 70	Ile	Met	Ser	Ala	Ala 75		Thr	Ala	Leu	Trp 80
	Pro	Туг	Gly	His	Gly 85	Asn	Arg	Glu	His	Gln 90	Glu	Asn	Glu	Leu	Gln 95	Lys
35	Tyr	Leu	Gln	Tyr 100	Lys	Asp	Met	His	Leu 105	Leu	Asp	Ser	Gly	Gln 110	Ser	Leu
	Gly	His	Thr 115	His	Thr	Leu	Gln	Gly 120	Ser	His	Asn	Leu	Thr 125	Ala	Leu	Asn
40	Ile			,							٠					
45	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	175:							
			(i)		(A) I	ENG	H: 3	ERIS	mino		.ds					
50			(xi)		(D) I	OPOI	OGY:	lir	near	EQ I	D NC): 17	5:			
55	Met 1		а Туг	His	Ser 5		Leu	Val	Glu	Pro 10		Ser	Cys	His	Ala 15	Trp
	Asn	Lys	Asp	Arg		Gln	Ile	Ala	11e 25	-	Pro	Asn	Asn	His		Val

His Ile Tyr Glu Lys Ser Gly Ala Lys Trp Thr Lys Val His Glu Leu

	ьуs	50		Asn	GIY	GIN	55		GIA	Ile	Asp	Trp 60		Pro	Glu	Ser
5	Asn 65		Ile	Val	Thr	Cys 70		Thr	Asp	Arg	Asn 75	Ala	Tyr	Val	Trp	Thr 80
10	Leu	Lys	Gly	Arg	Thr 85	Trp	Lys	Pro	Thr	Leu 90	Val	Ile	Leu	Arg	Ile 95	
10	Arg	Ala	Ala	Arg 100	Cys	Val	Arg	Trp	Ala 105	Pro	Asn	Glu	Asn	Lys 110	Phe	Ala
15	Val	Gly	Ser 115	Gly	Ser	Arg	Val	Ile 120	Ser	Ile	Cys	Tyr	Phe 125	Glu	Gln	Glu
	Asn	Asp 130	Trp	·Trp	Val	Cys	Lys 135	His	Ile	Lys	Lys	Pro 140	Ile	Arg	Ser	Thr
20	Val 145	Leu	Ser	Leu	Asp	Trp 150	His	Pro	Asn	Asn	Val 155	Leu	Leu	Ala	Ala	Gly 160
25	Ser	Cys	Asp	Phe	Lys 165	Cys	Arg	Ile	Phe	Ser 170	Ala	Tyr	Ile	Lys	Glu 175	Val
23	Glu	Glu	Arg	Pro 180	Ala	Pro	Thr	Pro	Trp 185	Gly	Ser	Lys	Met	Pro 190	Phe	Gly
30	Glu	Leu	Met 195	Phe	Glu	Ser	Ser	Ser 200	Ser	Cys	Gly	Ттр	Val 205	His	Gly	Val
	Cys	Phe 210	Ser	Ala	Ser	Gly	Ser 215	Arg	Val	Ala	Trp	Val 220	Ser	His	Asp	Ser
35	Thr 225	Val	Cys	Leu	Ala	Asp 230	Ala	Asp	Lys	Lys	Met 235	Ala	Val	Ala	Thr	Leu 240
40	Ala	Ser	Glu	Thr	Leu 245	Pro	Leu	Leu	Ala	Leu 250	Thr	Phe	Ile	Thr	Asp 255	Asn
10	Ser	Leu	Val	Ala 260	Ala	Gly	His	Asp	Cys 265	Phe	Pro	Val	Leu	Phe 270	Thr	Tyr
45	Asp	Ala	Ala 275	Ala	Gly	Met	Leu	Ser 280	Phe	Gly	Gly	Arg	Leu 285	Asp	Val	Pro
	Lys	Gln 290	Ser	Ser	Gln	Arg	Gly 295	Leu	Thr	Ala	Arg	Glu 300	Arg	Phe	Gln	Asn
50	Leu 305	Asp	Lys	Lys	Ala	Ser 310	Ser	Glu	Gly	Gly	Thr 315	Ala	Ala	Gly	Ala	Gly 320
55	Leu	Asp	Ser	Leu	His 325	Lys	Asn	Ser	Val	Ser 330	Gln	Ile	Ser	Val	Leu 335	Ser
	Gly	Gly	Lys	Ala 340	Lys	Cys	Ser	Gln	Phe 345	Cys	Thr	Thr	Gly	Met 350	Asp	Gly
60	Gly	Met	Ser 355	Ile	Trp	Asp	Val	Lys 360	Ser	Leu	Glu	Ser	Ala 365	Leu	Lys	Asp ·

Leu Lys Ile Lys 370

5

- (2) INFORMATION FOR SEQ ID NO: 176:
 - (i) SEQUENCE CHARACTERISTICS:

10

(A) LENGTH: 216 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

Leu Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala 20 25 30

20

Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu Pro 35 40 45

- Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala Val Ile 25 50 55 60
 - Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu Glu Ala Ala 65 70 75 80
- 30 Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu Gly Val Pro Leu 85 90 95
 - Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu Val Lys Asp Phe Gln 100 105 110

35

Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp Glu Lys Lys Lys Phe Tyr 115 120 125

- Gly Pro Gln Arg Arg Lys Met Met Phe Met Gly Phe Ile Arg Leu Gly 40 130 135 140
 - Val Trp Tyr Asn Phe Phe Arg Ala Trp Asn Gly Gly Phe Ser Gly Asn 145 150 155 160
- 45 Leu Glu Gly Glu Gly Phe Ile Leu Gly Gly Val Phe Val Val Gly Ser 165 170 175
 - Gly Lys Gln Gly Ile Leu Leu Glu His Arg Glu Lys Glu Phe Gly Asp 180 185 190

50

55

Lys Val Asn Leu Leu Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro 195 200 205

Gln Thr Leu Ala Ser Glu Lys Lys

(2) INFORMATION FOR SEQ ID NO: 177:

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 amino acids													
	(B) TYPE: amino acid													
_	(D) TOPOLOGY: linear													
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:													
	Met Lys Pro Val Ser Arg Arg Thr Leu Asp Trp Ile Tyr Ser Val Leu	ŀ												
	1 5 10 15													
10	Tan Yan 31- 71, 11 1 2 - 21 - 2 - 2 - 2 - 2 - 2													
10	Leu Leu Ala Ile Val Leu Ile Ser Trp Gly Cys Ile Ile Tyr Ala Ser													
	20 25 30													
	Mot Wal Cor Ala Ave Ave Cla Lou Ave Lou Lou Bar Day A													
	Met Val Ser Ala Arg Arg Gln Leu Arg Lys Lys Tyr Pro Asp Lys Ile 35 40 45													
15	35 40 45													
	Phe Gly Thr Asn Glu Asn Leu													
	50 55													
20														
	(2) INFORMATION FOR SEQ ID NO: 178:													
	(i) SEQUENCE CHARACTERISTICS:													
25	(A) LENGTH: 23 amino acids													
25	(B) TYPE: amino acid													
	(D) TOPOLOGY: linear													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:													
30	Met Ala Ala Asn Thr Phe Val Leu Ile Met Gly Ile Pro Thr Ser Ala	•												
30	1 5 10 15	•												
	Ann Ale Vee Ann Ann I an Die													
	Asn Ala Xaa Arg Asp Leu Phe 20													
	20													
35														
	(2) INFORMATION FOR SEQ ID NO: 179:													
	(i) SEQUENCE CHARACTERISTICS:													
40	(A) LENGTH: 103 amino acids	٠												
	(B) TYPE: amino acid													
	(D) TOPOLOGY: linear													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:													
45														
45	Met Ser Ile Cys His Arg Gly Thr Gly Ile Ala Leu Ser Ala Gly Val													
	1 5 10 15													
	Ser Leu Phe Gly Met Ser Ala Leu Leu Leu Pro Gly Asn Phe Glu Ser													
50	20 25 30													
50	The Lou Clu Lou Wal Lou Con Lou C													
	Tyr Leu Glu Leu Val Lys Ser Leu Cys Leu Gly Pro Ala Leu Ile His													
	35 40 45													
	Thr Ala Lys Phe Ala Leu Val Phe Pro Leu Met Tyr His Thr Trp Asn													
55	EA													
	50 55 60													
	Gly Ile Arg His Leu Met Trp Asp Leu Gly Lys Gly Leu Lys Ile Pro													
	65 70 75 80													
	· · · · · · · · · · · · · · · · · · ·													
60	Gln Leu Tyr Gln Ser Gly Val Val Leu Val Leu Thr Val Leu Ser													
	- The second of													

			,	85					90					95	
	Ser Met			la A	Ala 1	Met									
5		1'	00												
	(2) INFO	RMATI	ON F	OR S	SEO :	ID N	0: 1	80:							
10		(i) SE	QUEN (A)	ICE (CHAR NGTH	ACTE	RIST ami	ICS:		3					
		(xi) S	(D)	TO	POLC	ŒΥ:	line	ear	D II	NO:	180):			
15	Met Thr	Lys A	la S	er : 5	Ser	Leu '	Trp	Pro	Leu 10	Lys	Thr	Thr	Cys	Gln 15	Ile
20	Ser Gly	Thr V	7al F 20	he i	Phe	Phe	Leu	Phe 25	Leu	Phe	Ser	Cys	Phe 30	Leu	Met
	Gln Ala	Gln C	Cys A	sp :	Lys	Phe	Val 40	Gly	Trp	Asp	Phe	Phe 45	Phe	Phe	Leu
25															
20	(0) ==			707	œ.	TD N	7 0 · 1	101.							
30	(2) INF								_						
35		(i) Si (xi)	(A (B (D) LI ;) T;	ENGT: YPE: OPOL	H: 9 amin OGY:	6 am no a lin	ino cid ear	acid		: 18	1:			
	Met Arg												Ser	Ala	Ser
40	1	.		5				-	10					15	
	Asp Xaa	Cys	Cys 20	Ser	Cys	Ser	Pro	Ser 25		Phe	Ser	Ala	Gly 30	Arg	Gly
45	Arg Cys	35	Val (Gln	Gly	Cys	Leu 40	Arg	Pro	His	Arg	Val 45	Gln	Leu	Let
	Arg Arg		Gly	Pro	Gly	Ser 55	Pro	Ala	Gly	Gln	Arg 60		Ser	Lys	Gly
50	Phe Glr	Leu	Leu	Arg	Trp	Trp	Gly	Pro	Gly	Ser	Pro	Ala	Pro	Glu	Pro

Arg Lys Gly Pro Phe Pro Pro Pro Asp Pro Pro Trp Pro Val Thr Leu

90

60

	(2) INCOMMICA FOR SEQ ID NO: 102:												
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182: 												
10	Met Leu Glu Thr Thr Lys His Val Gln Ile Ala Cys Met Leu Leu Leu 1 5 10 15												
	Thr Cys Gln Ile Phe Leu Pro Ser Ser Leu Ser Pro Ser Phe Ile His 20 25 30												
15	Ser Leu Thr Asp Ser Phe Ile Pro Leu Lys Lys Leu Tyr Val Cys Phe 35 40 45												
20	Val Gln Ser Thr Leu Leu Lys Ala Ala Gly Tyr Lys Ser Ile Ser Glu 50 55 60												
20	Ala Leu Gly Phe Asp Xaa Leu Leu Cys Ser Ser Ala Arg Phe Val Trp 65 70 75 80												
25	Ile Cys His Thr Tyr Ser Arg Pro Leu Val Thr Cys Ala Leu His 85 90 95												
30	(2) INFORMATION FOR SEQ ID NO: 183: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids												
35	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:												
40	Met Ser Val Ile Gly Gly Leu Leu Leu Val Val Ala Leu Gly Pro Gly 1 5 10 15												
40	Gly Val Ser Met Asp Glu Lys Lys Glu Trp 20 25												
45	(2) INFORMATION FOR SEQ ID NO: 184:												
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184: 												
55	Met Ser Gly Gly Leu Ser Phe Leu Leu Leu Val 1 5 10												
	(2) INFORMATION FOR SEQ ID NO: 185:												
60	(i) SEQUENCE CHARACTERISTICS:												

	(A) LENGTH: 65 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:													
5	Met Phe Ala Asp Phe Ile Val Val Thr Ala Thr Val Gln Arg Cys Pro 1 5 10 15													
10	Gly Ser Pro Pro Leu Ser Glu Ile Leu Trp Lys Asp Glu Pro Phe Ala 20 25 30													
	Ile Ser Ser His Ala Gly Leu Pro Trp Leu Ser Ser Trp Pro Ala Pro 35 40 45													
15	Pro Trp Thr Trp Ser Trp Ile Ser Arg Arg Arg Glu His Gly Arg Gly 50 55 60													
20	Ser 65													
	(2) INFORMATION FOR SEQ ID NO: 186:													
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear													
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: Met Val Glu Ser Val Met Pro Val Val Val Cys Thr Leu Ser Pro Gly 1 5 10 15													
35	Ile Asp Ser Ser Pro Ser 20													
40	(2) INFORMATION FOR SEQ ID NO: 187: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 amino acids													
45	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:													
	Met Asp Val Leu Phe Val Ala Ile Phe Ala Val Pro Leu Ile Leu Gly 1 5 10 15	7												
50	Gln Glu Tyr Glu Asp Glu Glu Arg Leu Gly Glu Asp Glu Tyr Tyr Gl 20 25 30	1												
55	Val Val Tyr Tyr Tyr Thr Val Thr Pro Ser Tyr Asp Asp Phe Ser Ala 35 40 45	a												
		n												
	Asp Phe Thr Ile Asp Tyr Ser Ile Phe Glu Ser Glu Asp Arg Leu Ass 50 55 60	••												

(2) INFORMATION FOR SEQ ID NO: 190:

	Glu Thr Ala Arg Ala Asp His Pro Lys Pro Val Thr Val Lys Pro Val 85 90 95
5	Thr Thr Glu Pro Gln Ser Pro Asp Leu Asn Asp Ala Val Ser Ser Leu 100 105 110
10	Arg Ser Pro Ile Pro Leu Leu Ser Cys Ala Phe Val Gln Val Gly 115 120 125
	Met Tyr Phe Met 130
15	(2) INFORMATION FOR SEQ ID NO: 188:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:
25	Met Pro Cys Gln Pro Gly Gln Val Pro Ser Cys Gln Cys Thr Phe Gly 1 5 10 15
	Leu Leu Met Leu Pro Ser Leu Pro Ser Pro Ala Ser Gln Pro Arg 20 25 30
30	Pro Phe Cys Ser Ser Met Glu Tyr Phe His Gly Cys Ala Ser Pro Ser 35 40 45
35	Gln Ala Ile Ile Gly Gly Phe Pro Phe Ala Ser Val Ala Leu Ala Asp 50 55 60
	Ile Leu Cys Leu Gln 65
40	(2) INFORMATION FOR SEQ ID NO: 189:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:
50	Met Ser Leu Leu Ser Pro Ala Ile Pro Ala Leu Thr Leu Ile Phe Ile 1 5 10 15
	Leu Met Phe Phe Ser Phe Pro Phe Arg Ala His Thr Val Val Thr Ile 20 25 30
55	Val Ala Ser Gly Phe Leu Gly Leu Ser Pro Leu Cys Gly 35 40 45

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 65 amino acids
                    (B) TYPE: amino acid
5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:
     Met Ala Phe Gly Leu Gln Met Phe Ile Gln Arg Lys Phe Pro Tyr Pro
                                           10
10
      Leu Gln Trp Ser Leu Leu Val Ala Val Val Ala Gly Ser Val Val Ser
                  20
      Tyr Gly Val Thr Arg Val Glu Ser Glu Lys Cys Asn Asn Leu Trp Leu
15
                                   40
      Phe Leu Glu Thr Gly Gln Leu Pro Lys Asp Arg Ser Thr Asp Gln Arg
20
      Ser
       65
      (2) INFORMATION FOR SEQ ID NO: 191:
25
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 50 amino acids
                     (B) TYPE: amino acid
30
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:
      Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met Leu Lys
                                           10
                        5
35
      Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser Phe Ile Ser Phe
                                       25
      Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met Met Ser Ser Phe
40
               35
                                    40
       Met Xaa
           50
45
       (2) INFORMATION FOR SEQ ID NO: 192:
              (i) SEQUENCE CHARACTERISTICS:
 50
                     (A) LENGTH: 170 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:
       Met Leu Leu Asn Val Ala Leu Val Ala Leu Val Leu Leu Gly Ala Tyr
 55
       Arg Leu Trp Val Arg Trp Gly Arg Arg Gly Leu Gly Ala Gly Ala Gly
```

	Ala	Gly	Glu 35	Glu	Ser	Pro	Ala	Thr 40	Ser	Leu	Pro	Arg	Met 45	Lys	Lys	Ar
5	Asp	Phe 50	Ser	Leu	Glu	Gln	Leu 55	Arg	Gln	Tyr	Asp	Gly 60	Ser	Arg	Asn	Pr
	Arg 65	Ile	Leu	Leu	Ala	Val 70	Asn	Gly	Lys	Val	Phe 75	Asp	Val	Thr	Lys	G1;
10	Ser	Lys	Phe	Tyr	Gly 85	Pro	Ala	Gly	Pro	Тут 90	Gly	Ile	Phe	Ala	Gly 95	Ar
15	Asp	Ala	Ser	Arg 100	Gly	Leu	Ala	Thr	Phe 105	Cys	Leu	Asp	Lys	Asp 110	Ala	Le
	Arg	Asp	Glu 115	Tyr	Asp	Asp	Leu	Ser 120	Asp	Leu	Asn	Ala	Val 125	Gln	Met	Gl
20	Ser	Val 130	Arg	Glu	Trp	Glu	Met 135	Gln	Phe	Lys	Glu	Lys 140	Tyr	Asp	Tyr	Va:
	Gly 145	Arg	Leu	Leu	Lys	Pro 150	Gly	Glu	Glu	Pro	Ser 155	Glu	Tyr	Thr	Asp	Gl: 160
25	Glu	Asp	Thr	Lys	Asp 165	His	Asn	Lys	Gln	Asp 170						
30	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	NO: 1	L93:							
35				() () ()	A) L B) T D) T	ENGT YPE : OPOL	RACTI H: 6 ami OGY: SCRII	6 am no a lin	ino cid ear	acid		: 19:	3:			÷.
40	Met 1	Thr	Tyr	Phe	Ser 5	Gly	Leu	Leu	Val	Ile 10	Leu	Ala	Phe	Ala	Ala 15	Trp
	Val	Ala	Leu	Ala 20	Glu	Gly	Leu	Gly	Val 25	Ala	Val	Tyr	Ala	Ala 30	Ala	Va]
45	Leu	Leu	Gly 35	Ala	Gly	Cys	Ala	Thr 40	Ile	Leu	Val	Thr	Ser 45	Leu	Ala	Met
•	Thr	Ala 50	Asp	Leu	Ile	Gly	Pro 55	His	Thr	Asn	Ser	Gly 60	Leu	Ser	Cys	Thr
50	Ala 65	Pro														
55	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	ю: 1	.94 :							
		((i) S	(2	A) LI	NGT	RACTE H: 92 amir	2 am	ino a		5					
60							OGY:									

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194: Met Ala Ala Gly Pro Ser Gly Cys Leu Val Pro Ala Phe Gly Leu Arg																
	Met 1	Ala	Ala	Gly	Pro 5	Ser	Gly	Суѕ	Leu	Val 10	Pro	Ala	Phe	Gly	Leu 15	Arg
5	Leu	Leu	Leu	Ala 20	Thr	Val	Leu	Gln	Ala 25	Val	Ser	Ala	Phe	Gly 30	Ala	Glu
10	Phe	Ser	Ser 35	Glu	Ala	Cys	Arg	Glu 40	Leu	Gly	Phe	Ser	Ser 45	Asn	Leu	Leu
	Cys	Ser 50	Ser	Cys	Asp	Leu	Leu 55	Gly	Gln	Phe	Asn	Leu 60	Leu	Gln	Leu	Asp
15	Pro 65	Asp	Cys	Arg	Gly	Cys 70	Cys	Gln	Glu	Glu	Ala 75	Gln	Phe	Glu	Thr	Lys 80
20	Lys	Leu	Tyr	Ala	Gly 85	Ala	Ile	Leu	Glu	Val 90	Cys	Gly		·		
25	(2)		•	-	ENCE A) L	CHA ENGT	RACT H: 1		PICS mino		ds					
30				SEQ	D) T	OPOL E DE	OGY: SCRI	lin PTIO	ear N: S	_						
	Met 1	Arg	Gly	Ser	His 5	Leu	Arg	Leu	Leu	Pro 10	Tyr	Leu	Val	Ala	Ala 15	Asn
35	Pro	Val	Asn	Tyr 20	Gly	Arg	Pro	Tyr	Arg 25	Leu	Ser	Суѕ	Val	Glu 30	Ala	Phe
	Ala	Ala	Thr 35	Phe	Cys	Ile	Val	Gly 40	Phe	Pro	Asp	Leu	Ala 45	Val	Ile	Leu
40	Leu	Arg 50	-	Phe	Lys	Trp	Gly 55	Lys	Gly	Phe	Leu	Asp 60	Leu	Asn	Arg	Gln
45	Leu 65	Leu	Asp	Lys	Tyr	Ala 70	Ala	Cys	Gly	Ser	Pro 75	Glu	Glu	Val	Leu	Gln 80
	Ala	Glu	Gln	Glu	Phe 85	Leu	Ala	Asn	Ala	Lys 90	Glu	Ser	Pro	Gln	Glu 95	Glu
50	Glu	Ile	Asp	Pro 100		Asp	Val	Asp	Ser 105	_	Arg	Glu	Phe	Gly 110		Pro
	Asn	Arg	Pro 115		Ala	Ser	Thr	Arg 120		Pro	Ser	Asp	Thr 125	Asp	Asp	Ser
55	Asp	Ala 130		Glu	Asp	Pro	Gly 135		Xaa	Ala	Glu	Arg 140	_	Gly	Ala	Ser
	Ser 145		Cys	Cys	Glu	Glu 150		Gln	Thr	Gln	Gly 155	_	Gly	/ Ala	Glu	Ala 160

Arg Ala Pro Ala Glu Val Trp Lys Gly Ile Lys Lys Arg Gln Arg Asp

```
5
       (2) INFORMATION FOR SEQ ID NO: 196:
 10
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 70 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
15
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:
      Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile
                                           10
20
      Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu
                                      25
      Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile
                                   40
25
      Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe Gly Ser Asn Asp Asp
                                                   60
      Phe Ser Trp Gln Gln Trp
30
      (2) INFORMATION FOR SEQ ID NO: 197:
35
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 25 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
40
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:
      Met Thr Leu Leu Ile Ile Phe Leu Pro Phe Xaa Phe Thr Thr Xaa Thr
       1
                      5
45
      Asn Ser Gly Gly Ser Phe Pro Val Arg
                   20
50
      (2) INFORMATION FOR SEQ ID NO: 198:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 73 amino acids
                    (B) TYPE: amino acid
55
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:
      Met Lys Gly Glu Leu Leu Pro Phe Leu Phe Leu Thr Val Trp Leu Trp
60
```

	Leu	Tyr	Lys	Leu 20	Xaa	Phe	Gly	Glu	Ser 25	Pro	Arg	Tyr	Pro	Asn 30	Val	Ile
5	Gly	Lys	Thr 35	Tyr	Phe	Phe	Phe	Trp 40	Thr	Asp	Gln	Ile	Ser 45	Arg	Glu	Ser
	Arg	Phe 50	Leu	Glu	Arg	Leu	Ala 55	Phe	Ile	Val	Ser	Glu 60	Asn	Cys	Leu	Ile
10	Phe 65		Ile	His	Ala	Ile 70	Thr	Gly	Gln							
15	(2)	TMF	ORMA	rion	FOR	SEO	ID I	NO: 1	199:							
15	(2)	1111		SEQU						•						
20			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	89 a no a lin PTIO	cid ear			: 19:	9:			
05	Met 1	Ser		Phe										Ser	Leu 15	Glu
25	Tyr	Arg	Val	Phe 20	Leu	Lys	Asn	Glu	Lys 25	Gly	Gln	Tyr	Ile	Ser 30	Pro	Phe
30	His	Asp	Ile 35	Pro	Ile	Tyr	Ala	Asp 40	Lys	Asp	Val	Phe	His 45	Met	Val	Val
	Glu	Val 50		Arg	Trp	Ser	Asn 55		Lys	Met	Glu	Ile 60	Ala	Thr	Lys	Asp
35	Pro 65		Asn	Pro	Ile	Lys 70		Asp	Val	Lys	Lys 75		Lys	Leu	Arg	Tyr 80
40.	Val	. Ala	Asn	Leu	. Phe 85		Тух	Lys	Gly	Ту г 90		Trp	Asn	Tyr	Gly 95	Ala
	Ile	Pro	Glr	Thr 100		Glu	Asp) Pro	Gly 105		Asn	Asp	Lys	His 110		Gly
45	Cys	су:	Gly 115) Asn	Asp	Pro	120		Val	Cys	Glu	11e 125		Ser	Lys
	Va]	130		a Arg	, Gly	glu	135		e Gly	Val	. Lys	140		ı Gly	, Ile	. Leu
50	Ala 14		t Ile	e Asr	Glu	150		ı Thr	Asp	Trp	Lys 155		Ile	e Ala	lle	160
55	Va.	l As	o Ası	Pro	Asp 165		a Ala	a Asr	тут	17() Ile	e Ası	n Asp	Va]	Lys 5
	Ar	g Le	u Ly:	180		у Туг	r Le	u Glu	185		c Val	L Ası	Tr	Phe 190		Arg
60	Ту	r Ly	s Va	l Pro	o Ası	Gl;	y Ly:	s Pro	Gli	ı Ası	ı Glı	ı Phe	e Ala	a Pho	e Ası	n Ala

	Glu	210	Lys	Asp	Lys	Asp	Phe 215	Ala	Ile	Asp	Ile	11e 220		Ser	Thr	His
5	Asp 225		Trp	Lys	Ala	Leu 230		Thr	Lys	Lys	Thr 235	Asn	Gly	Lys	Gly	Ile 240
10	Ser	Cys	Met	Asn	Thr 245	Thr	Leu	Ser	Glu	Ser 250	Pro	Phe	Lys	Cys	Asp 255	Pro
10	Asp	Ala	Ala	Arg 260	Ala	Ile	Val	Asp	Ala 265		Pro	Pro	Pro	Cys 270		Ser
15	Ala	Cys	Thr 275	Val	Pro	Thr	Asp	Val 280	Asp	Lys	Trp	Phe	His 285	His	Gln	Lys
	Asn															
20																
	(2)	INF	ORMA'			-		٠								
25				(A) L B) T D) T	YPE: OPOL	H: 6 ami OGY:	25 a no a lin	mino cid ear	: aci EQ I		: 20	0:			
30	Met 1	Glu	Ile											Ser	Asn 15	Asn
35	Ala	Gln	Asn	Trp 20	Gly	Met	Gln	Arg	Ala 25	Thr	Asn	Val	Thr	Туг 30	Gln	Ala
	His	His	Val 35	Ser	Arg	Asn	Lys	Arg 40	Gly	Gln	Val	Val	Gly 45	Thr	Arg	Gly
40	Gly	Phe 50	Arg	Gly	Cys	Thr	Val 55	Trp	Leu	Thr	Gly	Leu 60	Ser	Gly	Ala	Gly
	Lys 65	Thr	Thr	Val	Ser	Met 70	Ala	Leu	Glu	Glu	Tyr 75	Leu	Val	Cys	His	Gly 80
45	Ile	Pro	Cys	Tyr	Thr 85	Leu	Asp	Gly	Asp	Asn 90	Ile	Arg	Gln	Gly	Leu 95	Asn
50	Lys	Asn	Leu	Gly 100	Phe	Ser	Pro	Glu	Asp 105	Arg	Glu	Glu	Asn	Val 110	Arg	Arg
7.0	Ile	Ala	Glu 115	Val	Ala	Lys	Leu	Phe 120	Ala	Asp	Ala	Gly	Leu 125	Val	Cys	Ile
55	Thr	Ser 130	Phe	Ile	Ser	Pro	Tyr 135	Thr	Gln	Asp	Arg	Asn 140	Asn	Ala	Arg	Gln
	Ile 145	His	Glu	Gly	Ala	Ser 150	Leu	Pro	Phe	Phe	Glu 155	Val	Phe	Val	Asp	Ala 160
60	Pro	Leu	His	Val	Cys	Glu	Gln	Arg	Asp	Val	Lys	Gly	Leu	Tyr	Lys	Lys

					165					170					175	
5	Ala	Arg	Ala	Gly 180	Glu	Ile	Lys	Gly	Phe 185		Gly	Ile	Asp	Ser 190	Glu	Тут
J	Glu	Lys	Pro 195	Glu	Ala	Pro	Glu	Leu 200	Val	Leu	Lys	Thr	Asp 205	Ser	Cys	Asp
10	Val	Asn 210	Asp	Cys	Val	Gln	Gln 215	Val	Val	Glu	Leu	Leu 220	Gln	Glu	Arg	Asp
	Ile 225	Val	Pro	Val	Asp	Ala 230	Ser	Tyr	Glu	Val	Lys 235	Glu	Leu	Tyr	Val	Pro 240
15	Glu	Asn	Lys	Leu	His 245	Leu	Ala	Lys	Thr	Asp 250	Ala	Glu	Thr	Leu	Pro 255	Ala
20	Leu	Lys	Ile	Asn 260	Lys	Val	Asp	Met	Gln 265	Trp	Val	Gln	Val	Leu 270	Ala	Glu
20	Gly	Trp	Ala 275	Thr	Pro	Leu	Asn	280	Phe	Met	Arg	Glu	Arg 285	Glu	Tyr	Leu
25	Gln	Cys 290		His	Phe	Asp	Cys 295	Leu	Leu	Asp	Gly	Gly 300	Val	Ile	Asn	Leu
	Ser 305	Val	Pro	Ile	Val	Leu 310	Thr	Ala	Thr	His	Glu 315	Asp	Lys	Glu	Arg	Leu 320
30	Asp	Gly	Cys	Thr	Ala 325	Phe	Ala	Leu	Met	Tyr 330	Glu	Gly	Arg	Arg	Val 335	Ala
35	Ile	Leu	Arg	Asn 340	Pro	Glu	Phe	Phe	Glu 345		Arg	Lys	Glu	Glu 350	Arg	Cys
	Ala	Arg	Gln 355	_	Gly	Thr	Thr	Суs 360	Lys	Asn	His	Pro	Tyr 365	Ile	Lys	Met
40	Val	Met 370		Gln	Gly	Asp	Trp 375	Leu	Ile	: Gly	Gly	Asp 380		Gln	Val	Leu
	Asp 385		Val	Tyr	Trp	Asn 390	Asp	Gly	Leu	Asp	Gln 395		Arg	Leu	Thr	Pro 400
45	Thr	Glu	Leu	Lys	Gln 405		Phe	Lys	Asp	Met 410		Ala	. Asp	Ala	Val 415	
50	Ala	Phe	Gln	420	Arg	Asn	. Pro	Val	His 425		Gly	His	Ala	Leu 430		Met
50	Glr	a Asp	Thr 435		Lys	Gln	Leu	Leu 440		ı Arg	Gly	Туг	Arg 445		Pro	Va]
55	Leu	1 Let 450		His	Pro	Leu	Gly 455	_	Tr	Thr	: Lys	Asp 460	_	Asp	Val	Pro
	Le:		Trp	Arg	g Met	Lys 470		His	: Ala	a Ala	val 475		ı Glu	Glu	Gly	Va:
60	T 01	, Ac-	Dre	, G1,	ւ Մhr	- ጥኮ፣	· Wal	Va1	1 א	a T] 4	Dhe	Pro	Ser	Pro	Met	Met

					485					490					495	ı
5	Тут	Ala	Gly	Pro 500		Glu	Val	Gln	Trp 505		Cys	Arg	Ala	Arg 510		Val
-	Ala	Gly	Ala 515		Phe	Tyr	Ile	Val 520	Gly	Arg	Asp	Pro	Ala 525		Met	Pro
10	His	530	Glu	Thr	Gly	Lys	Asp 535	Leu	Tyr	Glu	Pro	Ser 540	His	Gly	Ala	Lys
	Val 545		Thr	Met	Ala	Pro 550	Gly	Leu	Ile	Thr	Leu 555	Glu	Ile	Val	Pro	Phe 560
15	Arg	Val	Ala	Ala	Туг 565	Asn	Lys	Lys	Lys	Lys 570	Arg	Met	Asp	Tyr	Туг 575	Asp
20	Ser	Glu	His	His 580	Glu	Asp	Phe	Glu	Phe 585	Ile	Ser	Gly	Thr	Arg 590	Met	Arg
	Lys	Leu	Ala 595	Arg	Glu	Gly	Gln	Eys 600	Pro	Pro	Glu	Gly	Phe 605	Met	Ala	Pro
25	Lys	Ala 610	Trp	Thr	Val	Leu	Thr 615	Glu	Tyr	Tyr	Lys	Ser 620	Leu	Glu	Lys	Ala
	Х аа 625															
30	(2)	INF	ORMAT	rion	FOR-	SEQ	ID I	NO: 2	201:							
35			(i) :	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	49 a no a lin	mino cid ear	aci		20.				
40	Mot													_	_	_
	1		Ala		5					10	•				15	
45	Ala	Phe	Gly	Gln 20	Lys	Pro	Pro	Leu	Ser 25	Thr	Glu	Asn	Ser	His 30	Glu	Asp
	Glu	Ser	Pro 35	Met	Lys	Asn	Val	Ser 40	Ser	Ser	Lys	Gly	Ser 45	Pro	Ala	Pro
50	Leu	Gly 50	Val	Arg	Ser	Lys	Ser 55	Gly	Pro	Leu	Lys	Pro 60	Ala	Arg	Glu	Asp
	Ser 65	Glu	Asn	Lys	Asp	His 70	Ala	Gly	Glu	Ile	Ser 75	Ser	Leu	Pro	Phe	Pro 80
55	Gly	Val	Val	Leu	Lys 85	Pro	Ala	Ala	Ser	Arg 90	Gly	Gly	Pro	Gly	Leu 95	Ser
60	Lys	Asn	Gly	Glu 100	Glu	Lys	Lys	Glu	Asp 105	Arg	Lys	Ile	Asp	Ala 110	Ala	Lys

	Asn	Thr	Phe 115	GIn	Ser	Lys	Ile	120	GIn	Glu	Glu	Leu	Ala 125	Ser	Gly	Thr
5	Pro	Pro 130	Ala	Arg	Phe	Pro	Lys 135	Ala	Pro	Ser	Lys	Leu 140	Thr	Val	Gly	Gly
	Pro 145	Trp	Gly	Gln	Ser	Gln 150	Glu	Lys	Glu	Lys	Gly 155	Asp	Lys	Asn	Ser	Ala 160
10	Thr	Pro	Lys	Gln	Lys 165	Pro	Leu	Pro	Pro	Leu 170	Phe	Thr	Leu	Gly	Pro 175	Pro
15	Pro	Pro	Lys	Pro 180	Asn	Arg	Pro	Pro	Asn 185	Val	Asp	Leu	Thr	Lys 190	Phe	His
15	Lys	Thr	Ser 195	Ser	Gly	Asn	Ser	Thr 200	Ser	Lys	Gly	Gln	Thr 205	Ser	Tyr	Ser
20	Thr	Thr 210	Ser	Leu	Pro	Pro	Pro 215	Pro	Pro	Ser	His	Pro 220	Ala	Ser	Gln	Pro
	Pro 225	Leu	Pro	Ala	Ser	His 230	Pro	Ser	Gln	Pro	Pro 235	Val	Pro	Ser	Leu	Pro 240
25	Pro	Arg	Asn	Ile	Lys 245	Pro	Pro	Phe	Asp	Leu 250	Lys	Ser	Pro	Val	Asn 255	Glu
30	Asp	Asn	Gln	Asp 260	Gly	Val	Thr	His	Ser 265	Asp	Gly	Ala	Gly	A sn 270	Leu	Asp
	Glu	Glu	Gln 275	Asp	Ser	Glu	Gly	Glu 280	Thr	Tyr	Glu	Asp	Ile 285	Glu	Ala	Ser
35	Lys	Glu 290	Arg	Glu	Lys	Lys	Arg 295	Glu	Lys	Glu	Glu	Lys 300	Lys	Arg	Leu	Glu
	Leu 305	Glu	Lys	Lys*	Glu	Gln 310	Lys	Glu	Lys	Glu	Lys 315	Lys	Glu	Gln	Glu	Ile 320
40	Lys	Lys	Lys	Phe	Lys 325	Leu	Thr	Gly	Pro	Ile 330	Gln	Val	Ile	His	Leu 335	Ala
45	Lys	Ala	Cys	Cys 340	Asp	Val	Lys	Gly	Gly 345	Lys	Asn	Glu	Leu	Ser 350	Phe	Lys
	Gln	Gly	Glu 355	Gln	Ile	Glu	Ile	Ile 360	Arg	Ile	Thr	Asp	Asn 365	Pro	Glu	Gly
50	Lys	Trp 370	Leu	Gly	Arg	Thr	Ala 375	Arg	Gly	Ser	Tyr	Gly 380	Tyr	Ile	Lys	Thr
	Thr 385	Ala	Val	Glu	Ile	Asp 390	Tyr	Asp	Ser	Leu	Lys 395	Leu	Lys	Lys	Asp	Ser 400
55	Leu	Gly	Ala	Pro	Ser 405	Arg	Pro	Ile	Glu	Asp 410		Gln	Glu	Val	Tyr 415	Asp
60	Asp	Val	Ala	Glu 420	Gln	Asp	Asp	Ile	Ser 425	Ser	His	Ser	Gln	Ser 430	Gly	Ser

	Gly	/ Gly	/ Ile 435	Phe	Pro	Pro	Pro	Pro 440	Asp) Asp	Asp	Ile	445		Gly	/ Ile
5	Glu	450	ı Glu	Asp	Ala	Asp	Asp 455		Ser	Thr	Leu	Gln 460		. Gln	Glu	ı Lys
	Ser 465	Asn	Thr	Trp	Ser	Trp 470		Ile	Leu	Lys	Met 475	Leu	Lys	Gly	Lys	Asp 480
10	Asp	Arg	Lys	Lys	Ser 485	Ile	Arg	Glu	Lys	Pro 490	Lys	Val	Ser	Asp	Ser 495	Asp
15	Asn	Asn	Glu	Gly 500	Ser	Ser	Phe	Pro	Ala 505	Pro	Pro	Lys	Gln	Leu 510		Met
	Gly	Asp	Glu 515	Val	Tyr	Asp	Asp	Val 520	Asp	Thr	Ser	Asp	Phe 525	Pro	Val	Ser
20		530					535					540				Glu
	545					550					555					Asp 560
25			Lys		565					570					575	
30			Val	580					585					590		
			Val 595					600					605	•		
35		610	Lys				615					620				
40	625		Ser			630					Glu 635	Ile	Tyr	Asp	Asp	Ile 640
40	Ala	Asp	Gly	Cys	11e 645	Tyr	Asp	Asn	Asp							
45	(2)	INFO	RMAT	ION	FOR .	SEQ	ID N	0: 2	02:							
50			(i) S (xi)	(<i>I</i> (E	A) LE B) TY D) TO	NGTH PE: POLC	i: 55 amin XGY:	ami o ac line	no a id ar	acids		202	:			
55	Met	Ala	Trp :	Pro	Ser i	Arg	Ser 1	Lys i	Met	Phe :	Thr :	Leu :	Leu	Pro '	Val 15	Leu
<i>55</i>	Cys	Tyr	Leu '	Trp : 20	Ser 1	Leu '	Trp 1	Leu :	Pro (Gln 1	Phe :	Ser'	Trp	Ile (Gln	Glu
60	Leu :	Lys	Ala '	Val 1	Leu /	Arg i	Asp i	Asp (Gly i	Leu :	Ile :	Ser 1	Ala ' 45	Val i	Ala	Trp

	Asn .	Ala 50	Glu	Phe	Gln	Thr	Cys 55									
5				٠												
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0: 2	03:							
10				() () ()	B) TY	ENGTH (PE : OPOL(H: 26 amir XGY:	7 am no ac line	nino cid ear	acio		203):			
15	Met 1	Val	Lys	Val	Thr 5	Phe	Asn	Ser	Ala	Leu 10	Ala	Gln	Lys	Glu	Ala 15	Lys
20	Lys	Asp	Glu	Pro 20	Lys	Ser	Gly	Glu	Glu 25	Ala	Leu	Ile	Ile	Pro 30	Pro	Asp
20	Ala	Val	Ala 35	Val	Asp	Cys	Lys	Asp 40	Pro	Asp	Asp	Val	Val 45	Pro	Val	Gly
25	Gln	Arg 50	Arg	Ala	Trp	Cys	Trp 55	Cys	Met	Cys	Phe	Gly 60	Leu	Ala	Phe	Met
*	Leu 65	Ala	Gly	Val	Ile	Leu 70	Gly	Gly	Ala	Tyr	Leu 75	Tyr	Lys	Tyr	Phe	Ala 80
30	Leu	Gln	Pro	Asp	Asp 85	Val	Tyr	Tyr	Cys	Gly 90	Ile	Lys	Tyr	Ile	Lys 95	Asp
35	Asp	Val	Ile	Leu 100	Asn	Glu	Pro	Ser	Ala 105	Asp	Ala	Pro	Ala	Ala 110	Leu	Tyr
55	Gln	Thr	Ile 115		Glu	Asn	Ile	Lys 120	Ile	Phe	Glu	Glu	Glu 125	Glu	Val	Glu
40	Phe	Ile 130		Val	Pro	Val	Pro 135	Glu	Phe	Ala	Asp	Ser 140	Asp	Pro	Ala	Asr
	Ile 145		His	Asp	Phe	Asn 150	Lys	Lys	Leu	Thr	Ala 155	Tyr	Leu	Asp	Leu	Asr 160
45	Leu	Asp	Lys	Cys	Туг 165		Ile	Pro	Leu	Asn 170	Thr	Ser	Ile	Val	Met 175	
50	Pro	Arg	j Asn	180		Glu	Leu	Leu	Ile 185	Asn	Ile	Lys	Ala	Gly 190		Ту
50	Leu	Pro	Glr 195		Tyr	Leu	Ile	His 200		His	Met	Val	. Ile 205		Asp	Ar
55	Ile	Glu 210		ı Ile	e Asp	His	Leu 215		Phe	Phe	: Ile	Тут 220		, Leu	ı Cys	Hi
	Asr 225		s Glu	ı Thi	г Туг	Lys 230		Glm	Arg	A rg	Glu 235		: Ile	e Lys	Gly	7 Il 24

Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Ile Arg His Phe Glu Asn

					245					250)				255	;
5	Lys	Phe	e Ala	Val 260		Thr	Leu	lle	: Cys 265		Xaa	ı				
10	(2)	INF			ENCE	CHA	RACI	ERIS	TICS		ids					
15	Met 1			SEÇ Arg	UENC	E DE Phe		PTIC	N: S		Ser			Thr	Ala 15	
20	Ala	Le u	Ser	Lys 20	Pro	Thr	Glu	Lys	Lys 25		Arg	Val	His	His 30		Pro
	Gln	Leu	Ser 35	Asp	Lys	Val	His	Asn 40	Asp	Ala	Gln	Ser	Phe 45		Tyr	Asp
25	His	Asp 50		Phe	Leu	Gly	Ala 55	Glu	Glu	Ala	Lys	Thr 60	Phe	Asp	Gln	Leu
30	Thr 65		Glu	Glu	Ser	Lys 70	Glu	Arg	Leu	Gly	Lys 75	Ile	Val	Ser	Lys	11e
	Asp	Gly	Asp	Lys	Asp 85		Phe	Val	Thr	Val 90	Asp	Glu	Leu	Lys	Asp 95	Trp
35	Ile	Lys	Phe	Ala 100	Gln	Lys	Arg	Trp	Ile 105	Tyr	Glu	Asp	Val	Glu 110	Arg	Glr
	Trp	Lys	Gly 115	His	Asp	Leu	Asn	Glu 120	Asp	Gly	Leu	Val	Ser 125	Trp	Glu	Glu
40	Tyr	Lys 130	Asn	Ala	Thr	Tyr	Gly 135	Tyr	Val	Leu	Asp	Asp 140	Pro	Asp	Pro	Asp
45	Asp 145	Gly	Phe	Asn	Tyr	Lys 150	Gln	Met	Met	Val	Arg 155	Asp	Glu	Arg	Arg	Phe 160
	Lys	Met	Ala	Asp	Lys 165	Asp	Gly	Asp	Leu	11e 170	Ala	Thr	Lys	Glu	Glu 175	Phe
50	Thr	Ala	Phe	Leu 180	His	Pro	Glu	Glu	Tyr 185	Asp	Tyr	Met	Lys	Asp 190	Ile	Val
	Val	Gln	Glu 195	Thr	Met	Glu	Asp	Ile 200	Asp	Lys	Asn	Ala	Asp 205	Gly	Phe	Ile
55	Asp	Leu 210	Glu	Glu	Tyr	Ile	Gly 215	Asp	Met	Туг	Ser	His 220	Asp	Gly	Asn	Thr
60	Asp 225	Glu	Pro	Glu	Trp	Val 230	Lys	Thr	Glu	Arg	Glu 235	Gln	Phe	Val	Glu	Phe 240

	Arg	Asp	Lys	Asn	Arg 245	Asp	Gly	Lys	Met	Asp 250	Lys	Glu	Glu	Thr	Lys 255	Asp
5	Trp	Ile	Leu	Pro 260	Ser	Asp	Tyr	Asp	His 265	Ala	Glu	Ala	Glu	Ala 270	Arg	His
	Leu	Val	Tyr 275	Glu	Ser	Asp	Gln	Asn 280	Lys	Asp	Gly	Lys	Leu 285	Thr	Lys	Glu
10	Glu	11e 290	Val	Asp	Lys	Tyr	Asp 295	Leu	Phe	Val	Gly	Ser 300	Gln	Ala	Thr	Asp
15	Phe 305	Gly	Glu	Ala	Leu	Val 310	Arg	His	Asp	Glu	Phe 315					
20	(2)	INF		SEQU (FOR ENCE (A) L (B) T (D) T	CHAI ENGT YPE:	RACT H: 2	ERIS 07 a no a	TICS mino cid		ds					
25	Met 1				UENC Val 5									Lys	Asp 15	Lys
30			Asp	Pro 20	Ile	Leu	Arg	Arg	His 25		Leu	Leu	Pro	Ser 30		Leu
	Lys	Arg	Ile 35		Val	Gly	Met	Phe 40	Phe	Val	Met	Cys	Ser 45	Ala	Phe	Ala
35	Ala	Gly 50		Leu	Glu	Ser	Lys 55	Arg	Leu	Asn	Leu	Val 60	Lys	Glu	Lys	Thr
40	65				Ile	70					75			_		80
	Leu	Trp	Trp	Glr.	Val 85		Gln	Tyr	Leu	Leu 90	Ile	Gly	Ile	Ser	95	Ile
45	Phe	Ala	Ser	100		Gly	Leu	Glu	Phe 105		Tyr	Ser	Ala	Ala 110		Lys
	Ser	Met	: Gln 115		: Ala	Ile	Met	Gly 120		Phe	Phe	Phe	Phe 125		Gly	Val
50	Gly	/ Ser 13(· Val	l Gly	Ser	Gly 135		Leu	Ala	. Leu	Val 140		Ile	. Lys	Ala
55	Ile 145		/ Trp	Met	Ser	Ser 150		Thr	Asp	Phe	Gly 155		Ile	Asn	Gly	Cys 160
	Туз	Le	ı Asr	т Туг	тут 165		Phe	e Leu	ı Leu	170		ı Ile	Glr	n Gly	7 Ala 175	Thr
60	Le	ı Leı	ı Let	1 Phe		ı Ile	: Ile	e Ser	Val		тул	: Asp	His	His 190		Asp.

321

	His	Gln	Arg 195	Ser	Arg	Ala	Asn	Gly 200	Val	Pro	Thr	Ser	Arg 205	Arg	Ala	
5																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 3	206:							
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	96 a no a lin	mino cid ear	aci		: 20	6:			
15	Met 1	Arg	Ser	Arg	Ile 5	Arg	Glu	Phe	Asp	Ser 10	Ser	Thr	Leu	Asn	Glu 15	Ser
20	Val	Arg	Asn	Thr 20	Ile	Met	Arg	Asp	Leu 25	Lys	Ala	Val	Gly	Lys 30	Lys	Phe
20	Met	His	Val 35	Leu	Tyr	Pro	Arg	Lys 40	Ser	Asn	Thr	Leu	Leu 45	Arg	Asp	Trp
25	Asp	Leu 50	Trp	Gly	Pro	Leu	Ile 55	Leu	Cys	Val	Thr	Leu 60	Ala	Leu	Met	Leu
	Gln 65	Arg	Asp	Ser	Ala	Asp 70	Ser	Glu	Lys	Asp	Gly 75	Gly	Pro	Gln	Phe	Ala 80
30	Glu	Val	Phe	Val	Ile 85	Val	Trp	Phe	Gly	Ala 90	Val	Thr	Ile	Thr	Leu 95	Asn
35	Ser	Lys	Leu	Leu 100	Gly	Gly	Asn	Ile	Ser 105	Phe	Phe	Gln	Ser	Leu 110	Cys	Val
	Leu	Gly	Тут 115	Cys	Ile	Leu	Pro	Leu 120	Thr	Val	Ala	Met	Le u 125	Ile	Cys	Arg
· 40	Leu	Val 130	Leu	Leu	Ala	Asp	Pro 135	Gly	Pro	Val	Asn	Phe 140	Met	Val	Arg	Leu
	Phe 145	Val	Val	Ile	Val	Met 150	Phe	Ala	Trp	Ser	Ile 155		Ala	Ser		Ala 160
45	Phe	Leu	Ala	Asp	Ser 165	Gln	Pro	Pro	Asn	Arg 170	Arg	Ala	Leu	Ala	Val 175	Тут
50	Pro	Val	Phe	Leu 180	Phe	Tyr	Phe	Val	Ile 185	Ser	Trp	Met	Ile	Leu 190	Thr	Phe
	Thr	Pro	Gln 195	Xaa												
55	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	IO: 2	207 :			•				
			(i) :							: aci	ds					

(B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

5	Met 1	Ala	Lys	Asp	Gln 5	Ala	Val	Glu	Asn	Ile 10	Leu	Val	Ser	Pro	Val 15	Val
	Val	Ala	Ser	Ser 20	Leu	Gly	Leu	Val	Ser 25	Leu	Gly	Gly	Lys	Ala 30	Thr	Thr
10	Ala	Ser	Gln 35	Ala	Lys	Ala	Val	Leu 40	Ser	Ala	Glu	Gln	Leu 45	Arg	Asp	Glu
15	Glu	Val 50	His	Ala	Gly	Leu	Gly 55	Glu	Leu	Leu	Arg	Ser 60	Leu	Ser	Asn	Ser
13	Thr 65	Ala	Arg	Asn	Val	Thr 70	Trp	Lys	Leu	Gly	Ser 75	Arg	Leu	Tyr	Gly	Pro 80
20	Ser	Ser	Val	Ser	Phe 85	Ala	Asp	Asp	Phe	Val 90	Arg	Ser	Ser	Lys	Gln 95	His
	Tyr	Asn	Cys	Glu 100	His	Ser	Lys	Ile	Asn 105	Phe	Arg	Asp	Lys	Arg 110	Ser	Ala
25	Leu	Gln	Ser 115	Ile	Asn	Glu	Trp	Ala 120	Ala	Gln	Thr	Thr	Asp 125	Gly	Lys	Leu
30	Pro	Glu 130	Val	Thr	Lys	Asp	Val 135	Glu	Arg	Thr	Asp	Gly 140	Ala	Leu	Leu	Val
50	Asn 145	Ala	Met	Phe	Phe	Lys 150	Pro	His	Trp	Asp	Glu 155	Lys	Phe	His	His	Lys 160
35	Met	Val	Asp	Asn	Arg 165	Gly	Phe	Met	Val	Thr 170	Arg	Ser	Tyr	Thr	Val 175	Gly
	Val	Met	Met	Met 180	His	Arg	Thr	Gly	Leu 185	Tyr	Asn	Tyr	Tyr	Asp 190	Asp	Glu
40	Lys	Glu	Lys 195		Gln	Ile	Val	Glu 200	Met	Pro	Leu	Ala	His 205	Lys	Leu	Ser
45	Ser	Leu 210		Ile	Leu	Met	Pro 215	His	His	Val	Glu	Pro 220	Leu	Glu	Arg	Leu
	Glu 225		Leu	Leu	Thr	Lys 230		Gln	Leu	Lys	Ile 235		Met	Gly	Lys	Met 240
50	Gln	. Lys	Lys	Ala	Val 245		Ile	Ser	Leu	Pro 250		Gly	Val	Val	Glu 255	
	Thr	His	Asp	Leu 260		Lys	His	Leu	Ala 265	_	Leu	Gly	Leu	Thr 270		Ala
55	Ile	Asp	Lys 275		Lys	Ala	. Asp	Leu 280		Arg	Met	Ser	Gly 285	_	Lys	Asp
60	Leu	Туг 290		ı Ala	Ser	· Val	Phe 295	His	Ala	Thr	· Ala	Phe 300		Leu	Asp	Thr

	Asp 305		Asn	Pro	Leu	Thr 310	Arg	Ile	Thr	Gly	Gly 315		Val	Arg	Thr	Gln 320
5	Val	Phe	Tyr	Ala	Asp 325	His	Pro	Phe	Ile	Ser 330	Xaa					
10	(2)				FOR ENCE					:						
				(A) L B) T D) T	YPE:	ami	no a	cid	acid	s					
15			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 20	8: .			
	Met 1	Cys	Met	Gln	Leu 5	Phe	Gly	Phe	Leu	Ala 10	Phe	Met	Ile	Phe	Met 15	Cys
20	Trp	Val	Gly	Asp 20	Val	Tyr	Pro	Val	Туг 25	Gln	Pro	Val	Gly	Pro 30	Lys	Gln
25	Tyr	Pro	Туг 35	Asn	Asn	Leu	Tyr	Leu 40	Glu	Arg	Gly	Gly	Asp 45		Ser	Lys
23	Glu	Pro 50	Glu	Arg	Val	Val	His 55	Tyr	Glu	Ile						
30	(2)	TNEY	יסאנטר	DT ON	EOD	CEO	TD 1		200.			٠.				
	(2)				FOR											
35			(i) :	(ENCE A) L B) T D) T	ENGT YPE :	H: 3 ami	92 a no a	mino cid		ds					
			(xi)	SEQ	UENCI	E DE	SCRI:	PTIO	N: S	EQ I	D NO	: 20	9:			
40	Met 1	Asp	Ala	Leu	Val 5	Glu	Asp	Asp	Ile	Cys 10	Ile	Leu	Asn	His	Glu 15	Lys
	Ala	His	Lys	Arg 20	Asp	Thr	Val	Thr	Pro 25	Val	Ser	Ile	Tyr	Ser 30	Gly	Asp
1 5	Glu	Ser	Val 35	Ala	Ser	His	Phe	Ala 40	Leu	Val	Thr	Ala	Тут 45	Glu	Asp	Ile
50	Lys	Lys 50	Arg	Leu	Lys	Asp	Ser 55	Glu	Lys	Glu	Asn	Ser 60	Leu	Leu	Lys	Lys
) U	Arg 65	Ile	Arg	Phe	Leu	Glu 70	Glu	Lys	Leu	Ile	Ala 75	Arg	Phe	Glu	Glu	Glu 80
55	Thr	Ser	Ser	Val	Gly 85	Arg	Glu	Gln	Val	Asn 90	Lys	Ala	Tyr	His	Ala 95	Tyr
	Arg	Glu	Val	Cys 100	Ile	Asp _.	Arg	Asp	Asn 105	Leu	Lys	Ser	Lys	Leu 110	Asp	Lys
50	Met	Acn	Lve	Δen	Δen	Ser	Gl:	Sor	Len	Lare	17-1	T 01-	3	C1	C1=	I co-

			115					120					125			
5.	Gln	Ser 130	Lys	Glu	Val	Glu	Leu 135	Leu	Gln	Leu	Arg	Thr 140	Glu	Val	Glu	Thr
J	Gln 145	Gln	Val	Met	Arg	Asn 150	Leu	Asn	Pro	Pro	Ser 155	Ser	Asn	Trp	Glu	Val 160
10	Glu	Lys	Leu	Ser	Cys 165	Asp	Leu	Lys	Ile	His 170	Gly	Leu	Glu	Gln	Glu 175	Leu
	Glu	Leu	Met	Arg 180	Lys	Glu	Cys	Ser	Asp 185	Leu	Lys	Ile	Glu	Leu 190	Gln	Lys
15	Ala	Lys	Gln 195	Thr	Asp	Pro	Tyr	Gln 200	Glu	Asp	Asn	Leu	Lys 205	Ser	Arg	Asp
20	Leu	Gln 210	Lys	Leu	Ser	Ile	Ser 215	Ser	Asp	Asn	Met	Gln 220	His	Ala	Tyr	Trp
	Glu 225	Leu	Lys	Arg	Glu	Met 230	Ser	Asn	Leu	His	Leu 235	Val	Thr	Gln	Val	Gln 240
25	Ala	Glu	Leu	Leu	Arg 245	Lys	Leu	Lys	Thr	Ser 250	Thr	Ala	Ile	Lys	Lys 255	Ala
*	Cys	Ala	Pro	Val 260	Gly	Cys	Ser	Glu	Asp 265	Leu	Gly	Arg	Asp	Ser 270	Thr	Lys
30	Leu	His	Leu 275		Asn	Phe		Ala 280	Thr	Tyr	Thr	Arg	His 285	Pro	Pro	Leu
35	Leu	Pro 290		Gly	Lys	Ala	Leu 295		His	Thr	Thr	Ser 300		Pro	Leu	Pro
	Gly 305		Val	Lys	Val	Leu 310		Glu	Lys	Ala	315		Gln	Ser	Trp	Thr 320
40	Asp	Asn	Glu	Arg	Ser 325		Pro	Asn	Asp	Gly 330		Cys	Phe	: Gln	Glu 335	His
	Ser	Ser	Туг	Gly 340		Asn	Ser	Leu	Glu 345		Asn	Ser	Trp	Val 350		Pro
45	Ser	Pro	9rc 355	-	Ser	Ser	Glu	Thr 360		Phe	e Gly	Glu	Thr 365		Thr	Lys
50	Thr	1 Leu 370		Leu	Pro) Asr	375		Pro	Lev	His	тут 380		ı Asp	Gln	His
	Asr 385		n Asr	Cys	Leu	390		. Asn								
55								•								

(2) INFORMATION FOR SEQ ID NO: 210:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 27 amino acids

60 (B) TYPE: amino acid

325

```
(D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:
      Met His His Thr Gln Leu Met Phe Ile Tyr Leu Phe Ile Tyr Leu
 5
                                          10
      Phe Ile Leu Gly Val Phe Phe Phe Phe Xaa
                   20
10
      (2) INFORMATION FOR SEQ ID NO: 211:
             (i) SEQUENCE CHARACTERISTICS:
15
                     (A) LENGTH: 39 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:
20
      Met Asn Cys Ile Leu Leu Leu Tyr Leu Leu Ile Pro Thr Ile Ser Ile
      Ser Val Val Pro Tyr Val Ala Leu Asn Ile Lys Tyr Ile Lys Glu Cys
                                       25
25
      Thr Glu Asn Ser Phe Tyr Xaa
               35
30
      (2) INFORMATION FOR SEQ ID NO: 212:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 71 amino acids
35
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:
     Met Leu Leu His Leu Thr Ala Ala Phe Leu Gln Arg Ala Gln Phe Ser
40
      Thr Tyr Phe Pro Gly Tyr Phe Asp Gly Gln Tyr Trp Leu Trp Trp Val
                                      25
45
      Phe Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly Phe Ile Asn Tyr
                                  40
     Ala Lys Val Arg Lys Met Pro Glu Thr Phe Ser Asn Leu Pro Arg Thr
50
     Arg Val Leu Phe Ile Tyr Xaa
55
      (2) INFORMATION FOR SEO ID NO: 213:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 83 amino acids
```

(B) TYPE: amino acid

			(xi)			OPOL				EQ II	OM C	: 21	3:			
5	Met 1	Leu	Thr	Phe	Phe 5	Met	Ala	Phe	Leu	Phe 10	Asn	Trp	Ile	Gly	Phe 15	Ph∈
	Leu	Ser	Phe	Cys 20	Leu	Thr	Thr	Ser	Ala 25	Ala	Gly	Arg	Tyr	Gly 30	Ala	Ile
10	Ser	Gly	Phe 35	Gly	Leu	Ser	Leu	Ile 40	Lys	Trp	Ile	Leu	Ile 45	Val	Arg	Ph∈
15	Ser	Thr 50	Tyr	Phe	Pro	Ala	Phe 55	Met	Asn	Ser	Leu	Ser 60	Arg	Ser	Lys	Arg
	Thr 65	Pro	Ala	Gly	Ser	Glu 70	Ser	Arg	Cys	Arg	Thr 75	Gln	Arg	Asn	Asn	His
20	Leu	Leu	Xaa													
25	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	214:							
23			(i)	- (A) L	CHA ENGT YPE:	н: 8	1 am	ino		s					
30			(xi)	(D) T	OPOL E DE	OGY:	lin	ear	EQ I	D NO	: 21	4:			
	Met 1	Ser	Lys	Arg	Ser 5	Ala	Ser	Phe	Ile	Leu 10	Leu	Pro	Leu	Leu	Phe 15	Le
35	Lys	Gly	Ser	Phe 20	Ala	Lys	Leu	Asn	Ala 25	Arg	Ile	Ser	Asp	Cys 30	Leu	Gl
40	Glu	Arg	Tyr 35	_	His	Asn	Leu	Trp 40	Met	Val	Phe	Gln	Gly 45		Val	Ile
		50	Leu				55					60				
45	Tyr 65		Phe	Val	Ile	Asn 70		Tyr	Ile	Phe	Phe 75		Phe	Leu	Asp	11e
50	Thr														٠	
50	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	215:							
55			(i)		(A) I (B) !	E CHA LENG! IYPE:	TH: 4	19 ar ino a	nino acid	ació	ls					٠

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

Met Cys Ser Leu Phe Glu Ser Arg Phe Phe Cys Phe Val Leu Phe Ser

	;	1		•	5	•				10)				15	;
5	Glı	ı Lys	s Ile	20 20		Leu	ı Cys	s Ala	Ser 25		e Ala	Ph∈	e Leu	Cys 30		val
	Lys	s His	Val		Trp	Pro	Lys	Trp 40		Arg	j Lys	Cys	Leu 45		AST	Ala
10	Phe	:														
15	(2)	INF	ORMA													
20				(ENCE (A) I (B) I (D) I	ENGT YPE: OPOI	TH: 2 am: OGY:	203 á ino á : lir	mino cid mear	aci): 21	6.			
	Met	Thr												I.e.u	ī.o.u	Leu
	1			_	5					10		Deu	Dou	Deu	15	Deu
25	Leu	Leu	Ser	Ala 20	Ala	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Glu
30			35					40					45	-		Glu
	Pro	Cys 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Tyr
35	65					70					75			Leu		80
40					85					90				Pro	95	
40				100					105					Arg 110		
45	Ile	Pro	Ser 115	His	Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125	Pro	Ser	Val
15	Pro	Ala 130	Asp	Ala	Val	Val	Gln 135	Tyr	Asp	Val	Glu	Leu 140	Ile	Ala	Leu	Ile
50	Arg 145	Ala	Asn	Tyr	Trp	Leu 150	Lys	Leu	Val	Lys	Gly 155	Ile	Leu	Pro	Leu	Val 160
	Gly	Met	Ala	Met	Val 165	Pro	Pro	Ser	Trp	Ala 170	Ser	Leu	Gly	Ile	Thr 175	Tyr
55	Thr	Glu	Arg	Pro 180	Ile	Asp	Pro	Lys	Ser 185	Pro	Lys	Arg	Ser	Ser 190	Arg	Lys
60	Arg	Asn	Glu 195	Thr	Arg	Ala	Lys	Arg 200	Asn	Asn	Lys					

	(2)	INF	ORMA'I	'ION	FOR	SEQ	י מד	O: 2	1/:							
5			(i) S	- (;	A) LI B) T	CHAF ENGTI YPE: OPOLA	H: 1	B6 ar no ao	nino cid		ds			٠		
			(xi)	SEQ	JENCI	E DES	CRI	OITS	1: SI	II QE	ON C	217	7:			
10	Met	Lys	Thr	Leu	Met 5	Thr	Ile	Cys	Pro	Gly 10	Thr	Val	Leu	Leu	Val 15	Phe
15	Ser	Ile	Ser	Leu 20	Trp	Ile	Ile	Ala	Ala 25	Trp	Thr	Val	Arg	Val 30	Cys	Glu
	Ser	Pro	Glu 35	Ser	Pro	Ala	Gln	Pro 40	Ser	Gly	Ser	Ser	Leu 45	Pro	Ala	Trp
20	Tyr	His 50	Asp	Gln	Gln	Asp	Val 55	Thr	Ser	Asn	Phe	Leu 60	Gly	Ala	Met	Trp
25	65		Ser			70					75					80 -
			Tyr		85					90					95	
30				100					105					110		Glu
~~			Lys 115					120					125			
35		130)				135					140				Thr
40	145	•				150					155					Ala 160
	_				165		•			170		туг	Pro	Pro	175	Glu
45	GI	ı Arg	g Gln	ASP 180		' I'nr	GIU	GIU	185							
50	(2)	IN	FORMA	TION	1 FOF	R SEÇ) ID	NO:	218:					٠		
30			(i)	SEQ	(A)	E CHA LENG TYPE	TH:	90 au	nino		ds	•				
55			(xi) SE	(D)	TOPO:	LOGY	: li	near	SEQ :	ID N	D: 2	18:			
		t Ly: 1	s Phe	e Lei		a Val	L L ei	ı Val	Leu	Let 10		/ Val	l Ser	: Ile	Phe 15	e Leu
60	Va	l Se	r Ala	a G1:	n Ası	n Pro	Th	r Thi	Ala	a Ala	a Pro	Ala	a Ast	o Thi	Tyr	Pro

				20)				25	•				30)	
5	Ala	a Thr	: Gly 35		Ala	Asp	Asp	Glu 40		Pro	Asp	Ala	Glu 45		Thr	Ala
	Ala	Ala 50		Thr	Ala	Thr	Thr 55		Ala	Pro	Thr	Thr 60		Thr	Thr	Ala
10	Ala 65		Thr	Thr	Ala	Arg 70		Asp	Ile	Pro	Val 75		Pro	Lys	Trp	Val 80
15	Gly	Asp	Leu	Pro	Asn 85		Arg	Val	Cys	Pro 90					,	
13																
	(2)	INF	ORMA		FOR ENCE					·						
20			,_,	(A) L B) T D) T	ENGT YPE:	H: 1 ami	.39 a	minc		ds					
			(xi)		UENC					EQ I	D NO	: 21	9:			
25	Met 1		Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10	Trp	Leu	Leu	Val	Leu 15	Ser
30	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Glu	Gln 45	Glu	Ser	Gln
35	Met	Arg 50	Ala	Glu	Ile	Gln	Asp 55	Met	Lys	Gln	Glu	Leu 60	Ser	Thr	Val	Asn
	Met 65	Met	Asp	Glu	Phe	Ala 70	Arg	Tyr	Ala	Arg	Leu 75	Glu	Arg	Lys	Ile	Asn 80
40			Thr		85					90					95	
45	-		Lys	100					105					110		
			Leu 115					120				Tyr	Ser 125	Val	Pro	Val
50	Ala	Val 130	Val	Pro	Ser	Lys	Trp 135	Ile	Thr	Leu	Xaa					
55	(2)		ORMAT	EQUE	NCE	CHAF	ACTE	RIST	ICS:							
					4) LI 3) TY					acids	3					
60		((xi)	(1) TC	POLO	GY:	line	ar	Q II	NO:	220):			

	Met 1	Ser	Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10		Leu	Leu	Val	Leu 15	Ser
5	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
10	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Asp	Arg 45	Ser	His	Arg
15	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 2	221:							
20			(i) (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	ERIS' 0 am no a lin PTIO	ino cid ear	acid		: 22	1:			
25	Met 1	Thr	Ala	Pro	Leu 5	Pro	Pro	Leu	Ser	Gly 10	Leu	Ala	Leu	Phe	Leu 15	Ile
	Val	Phe	Phe	Ser 20	Leu	Gly	Val	Phe	Cys 25	Ile	Cys	His	Ser	His 30	Trp	Tyr
30	His	Thr	Leu 35	Gln	Gln	Met	Ala	Gly 40	Thr	Glu	Pro	Lys	Ala 45	Leu	Leu	Leu
35		50					55		Val	Thr	Val	Thr 60		Glu	Val	Trp
	Lys 65		GII	Ala	Leu	70										
40	(2)	INF	ORMA	TION	FOF	SEÇ) ID	NO:	222 :							
45					(A) 1 (B) ' (D) '	LENG IYPE IOPO	TH: : am: LOGY	83 ar ino a : lin	mino acid near	acio		D: 22	22:			
50		Thi	Cy:	s Sei	Val		a Leu	ı Lev	ı Leu	10 10		ı Gly	r Let	ı Arg	Cys	Ser
	Gly	y Val	L Arg	g Pro	_	/ Let	ı Val	l Gly	7 Glu 25		/ His	s Ası	n Pro	Ser 30		1 Leu
55	Va.	l Cys	s Let	_	ı Le	ı Lys	s Ası	Sei 40		g Thi	. Ası	n Gli	1 Gly		Cys	Pro
60	Gl	y Gly 50		o Trj	o Se	r Glu	a Arg		o Ile	e Glu	ı Se:	r Va:	_	r Sei	c As <u>r</u>) Asn

	Cys 65	Glu	Ala	Thr	Leu	Gly 70	Tyr	Arg	Asn	His	Ser 75	Leu	Pro	Ser	Asn	Tyr 80
5	Tyr	Asn	Ser													
10	(2)				FOR ENCE	-				•						
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	3 am no a lin	ino cid ear	acid						
15			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 22	3:			
	Met 1	Leu	Thr	Arg	Ser 5	Leu	Lys	Thr	Leu	Pro 10		Ala	Cys	Thr	Ala 15	Phe
20	Leu	Leu	Leu	Phe 20	Phe	Leu	Phe	Ser	Ser 25	Gly	Asp	Pro	Glu	Leu 30	Ser	Cys
25	Ser	Cys	Thr 35	Leu	Arg	Thr	Gln	Ser 40	Ser	Trp	Ser					
25	·															
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 2	224:							
30			(i)	(ENCE A) L B) T	ENGT YPE :	H: 1 ami	84 a no a	mino cid		ds					-
35			(xi)		D) T UENC					EQ I	D NO	: 22	4 :			
	Met 1	Trp	Arg	Pro	Ser 5	Val	Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His 15	Gly
40	Ala	Gln	Gly	Lys 20	Pro	Ser	Pro	Asp	Ala 25	Gly	Pro	His	Gly	Gln 30	Gly	Arg
	Val	His	Gln 35	Ala	Ala	Pro	Leu	Ser 40	Asp	Ala	Pro	His	Asp 45	Asp	Ala	His
45	Gly	Asn 50	Phe	Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	.Gly 60	Arg	Glu	Val	Ala
50	Lys 65	Glu	Phe	Asp	Gln	Leu 70	Thr	Pro	Glu	Glu	Ser 75	Gln	Ala	Arg	Leu	Gly 80
J0	Arg	Ile	Val	Asp	Arg 85	Met	Asp	Arg	Ala	Gly 90	Asp	Gly	Asp	Gly	Trp 95	Val
55	Ser	Leu	Ala	Glu 100	Leu	Arg	Ala	Trp	Ile 105	Ala	His	Thr	Gln	Gln 110	Arg	His
	Ile	Arg	Asp 115	Ser	Val	Ser	Ala	Ala 120	Trp	Asp	Thr	Tyr	Asp 125	Thr	Asp	Arg
60	Asn	Glv	Ara	va 1	Glv	TTT	Glu	Glu	T.en:	λνα) Aer	Yaa	ጥኮ፦	ጥኒሎ	Glv	Hi-

332

		130					135					140					
5	Xaa 145	Xaa	Pro	Xaa	Glu	Glu 150	Phe	His	Asp	Val	Glu 155	Asp	Ala	Glu	Thr	Туг 160	
•	Lys	Lys	Met	Leu	Xaa 165	Arg	Asp	Glu	Arg	Arg 170	Phe	Arg	Val	Ala	Asp 175	Gln	
10	Asp	Gly	Asp	Ser 180	Met	Ala	Thr	Arg									
		•													•		
15	(2)	INF	ORMA'														
			(i)	(A) L B) T	ENGT YPE:	H: 7 ami	ERIS' 1 am no a lin	ino cid		s						
20			(xi)	-				PTIO		EQ I	D NO	: 22	5:				
	Met 1	Trp	Leu	Phe	Ile 5	Leu	Leu	Ser	Leu	Ala 10	Leu	Ile	Ser	Asp	Ala 15	Met	
25	Val	Met	Asp	Glu 20	Lys	Val	Lys	Arg	Ser 25	Leu	Cys	Trp	Thr	Arg 30	Leu	Leu	
30	Pro	Ser	Ala 35	Thr	Thr	Met	Pro	Хаа 40	Thr	Arg	Ile	Thr	Pro 45	Asn	Thr	Gly	
	Ala	G1u 50	Xaa	Ile	Ser	Val	Xaa 55	Thr	Ala	Thr	Ser	Ser 60	Pro	Ser	Pro	Leu	
35	Thr 65		Pro	Ile	Met	Tip 70	Pro										
40	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	226:								
			(i)		(A) I	ENGI	H: 1	ERIS 10 am	uno		ls						
45			(xi)					lir PTIC		EQ I	D NC	: 22	6:				
	Met		. Val	Phe	Val		Glu	Ile	Phe	Leu 10							
50	_	•			,					10							
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	227 :					•			
55			(i)					ERIS			ids						
			(xi)	٠	(D)	ropoi	OGY	ino a : lir [PTIC	near	SEQ I	D NO): 22	27 :				

Met Ala Val Ala Thr Leu Ala Ser Glu Thr Leu Pro Leu Leu Ala Leu

	1				5					10					15	
5	Thr	Phe	Ile	Thr 20	Asp	Asn	Ser	Leu	Val 25	Ala	Ala	Gly	His	Asp 30	Cys	Phe
J	Pro	Val	Leu 35	Phe	Thr	Тут	Asp	Ala 40	Ala	Ala	Gly	Met	Leu 45	Ser	Phe	Gly
10	Gly	Arg 50	Leu	Asp	Val	Pro	Lys 55	Gln	Ser	Ser	Gln	Arg 60	Gly	Leu	Thr	Ala
	Arg 65	Glu	Arg	Phe	Gln	Asn 70	Leu	Asp	Lys	Lys	Ala 75	Ser	Ser	Glu	Gly	Gly 80
15	Thr	Ala	Ala	Gly	Ala 85	Gly	Leu	Asp	Ser	Leu 90	His	Lys	Asn	Ser	Val 95	Ser
20	Gln	Ile	Ser	Val 100	Leu	Ser	Gly	Gly	Lys 105	Ala	Lys	Cys	Ser	Gln 110	Phe	Cys
	Thr	Thr	Gly 115	Met	Asp	Gly	Gly	Met 120	Ser	Ile	Trp	Asp	Val 125	Lys	Ser	Leu
25	Glu	Ser 130	Ala	Leu	Lys		Leu 135	Lys	Ile	Lys						
30	(2)							10: 2								
			(1) :	(1	A) Li B) T	ENGT YPE :	H: 2 ami	no ac	ino a	: acids	5					
35		((xi)					line TION		M II	NO:	: 228	3:			
	Leu 1	Gly	Ser	Leu	Ser 5	Thr	Ala	Pro	Ser	Ser 10	Ala	Leu	Pro	Thr	Leu 15	Gly
40	Ala	Arg	Arg	Thr 20	Arg	Ser	Lys								÷	
45	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	O: 2	29:							
50				(2 (E	A) LE 3) TY 0) TC	ength PE: POLO	H: 13 amir XGY:	o ac	nino id ar	ació						
										Ø ID						
55	Met 1	Thr '	Tyr	Phe	Ser 5	Gly	Leu	Leu '	Val	Ile: 10	Leu .	Ala	Phe	Ala .	Ala 15	Trp
	Val .	Ala :	Leu .	Ala (20	Glu (Gly :	Leu (Gly '	Val . 25	Ala '	Val '	Tyr	Ala	Ala . 30	Ala	Val
60	Leu i	Leu (Gly 2 35	Ala (Gly	Cys .	Ala '	Thr :	Ile	Leu '	Val '	Thr	Ser 45	Leu i	Ala :	Met

Gly Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu Ala Val 65 70 75 Ala Ile Gln Ser Leu His Pro Cys Pro Ser Glu Leu Cys Cys A 85 90 Cys Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly Cys 100 105 110 Gly Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp H 115 120 125 Arg Leu Arg Arg Xaa 130 20 (2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile 11 1 5 10 Gln Pro Ile Ile Met Ile Ser Met Met Ser Asn Gly	Cys Arg Ala 95 Gly Gly Val 110 Trp Pro Thr
Cys Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly Companies 100 105 110 110 110 110 110 110 110 110	95 Gly Gly Val 110 Trp Pro Thr
Gly Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp E 115 120 125 Arg Leu Arg Arg Xaa 130 20 (2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile II 1 5 10	110 Trp Pro Thr
Arg Leu Arg Arg Xaa 130 20 (2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile 1 1 5 10	
20 (2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile 1 1 5 10	
(2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile II 1 5 10	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile II 1 5 10	
(A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230: 30 Gly Lys Pro Thr Gly Lys Ser Leu Pro Leu Met Trp Met Ile I	
1 5 10	
1 5 10	: Ile Leu Met
Gln Pro Ile Ile Met Ile Ser Met Met Ser Asn Gly	15
35	
(2) INFORMATION FOR SEQ ID NO: 231:	
40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
Met Gln Gly Lys Phe Met Lys Val Gln Val Tyr Arg Phe Leu 1 5 10	
Leu Leu Met Leu Leu Cys Met Phe Val Asn Arg Gly Met Ser	e Leu Lys Tyr 15
50 20 25 30	15 t Ser Lys Asp
	t Ser Lys Asp 30 r Leu Gly Ser

60 (2) INFORMATION FOR SEQ ID NO: 232:

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 29 amino acids
                     (B) TYPE: amino acid
  5
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:
      Met Met Glu Arg Ser Met Met Ile Leu Leu Met Ala Ala Ser Met Thr
               5
10
      Met Thr Ser Thr Gln Leu Trp Ser Phe Cys Cys Val His
                   20
15
       (2) INFORMATION FOR SEQ ID NO: 233:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
20
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:
      Met Trp Tyr Gln Leu Ala Lys Glu Glu Pro Gly Val Gly Ala Cys Ala
25
      Leu Asp
30
      (2) INFORMATION FOR SEQ ID NO: 234:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 2 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:
40
      Leu Xaa
        1
45
      (2) INFORMATION FOR SEQ ID NO: 235:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 72 amino acids
                    (B) TYPE: amino acid
50
                   · (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:
     Met Leu Ile Cys Arg Leu Val Leu Leu Ala Asp Pro Gly Pro Val Asn
                       5
                                          10
55
     Phe Met Val Arg Leu Phe Val Val Ile Val Met Phe Ala Trp Ser Ile
                                      25
     Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg
60
              35
                                  40
```

	Ala	Leu 50	Ala	Val	Tyr	Pro	Val 55	Phe	Leu	Phe	Тут	Phe 60	Val	Ile	Ser	Trp
5	Met 65	Ile	Leu	Thr	Phe	Thr 70	Pro	Gln								
						٠										
10	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO: 2	36:							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami: OGY:	6 am no a lin	ino a cid ear	acid		: 23	6:			
20	Met 1	Arg	Ser	Leu	Leu 5	Leu	Leu	Ser	Ala	Phe 10	Cys	Leu	Leu	Glu	Ala 15	Ala
20	Leu	Ala	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
25	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Pro
	Ala	Trp 50		Ser	Ala	Cys	Thr 55	Arg	Pro	Trp	Pro	Arg 60	Thr	Arg	Gln	Trp
30	Arg 65		Ser	Trp	Cys	His 70	Pro	Trp	Trp	Trp	Pro 75	Arg	Arg	Trp	Gly	Ser 80
35	Cys	: Arg	Tr	Ala	Ala 85		Arg	Pro	Arg	Arg 90	Arg	Arg	Pro	Arg	Gln 95	Cys
							٠									
40	(2)	INI	FORM	ATION	FOF	SEQ	ID	NO:	23 7 :							
45					(A) 1 (B) '	LENG TYPE TOPO	TH: : : am: LOGY	143 a ino a : lir	mind acid near	aci		D: 23	37:			
50		t Arg	g Se	r Leu		ı Lev	l Leu	ı Ser	` Ala	Phe 10		Leu	ı Leu	ı Glu	Ala 15	Ala
	Le	u Al	a Al	a Glu 20		l Lys	s Lys	s Pro	Ala 25		Ala	a Ala	a Ala	Pro		Thr
55	Al	a Gl		s Len 5	ı Sei	r Pro	Ly:	s Ala		Thi	: Le	ı Ala	a Glu 4!	_	g Lys	Arg
60	Pr		y Le O	u Gli	n Le	u Va	1 Pro		/ His	Gly	/ Gli	n Gly		o Gly	/ Sex	Gly

	G1: 6:		is	Pro	Gly	Val	. Thi		Gly	/ Gly	/ Gly	Leu 75		Ala	Gly	Ala	Arg 80
5	Va:	l A	la	Gly	Arg	Gln 85		/ Asp	His	Gly	val 90		Gly	/ Glr	Gly	Ser 95	
	Gli	ı Aı	g	Arg	Ala 100		Ala	Arg	Arg	105	Gly	Ala	Arg	Arg	Pro 110		Arg
10	Ala	a Al	la	Ala 115		Thr	Gln	Gln	Leu 120		Gly	Ala	Gln	Arg 125		Leu	Glu
15	Ala	13		Gln	Pro	Thr	Val	Arg 135		Gln	Leu	Ser	Glu 140		Arg	Xaa	
20	(2)	IN		(i)	SĐQU)) (ENCE A) L B) T D) T	CHA ENGI YPE:	ami OGY:	ERIS 42 a no a lin	TICS mind acid mear	aci						
25	Met										Phe				Glu	Ala 15	Ala
30	Leu	Al	a	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
	Ala	. Gl	u	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Arg
35	Pro	G1; 5		Leu	Gln	Leu	Val	Pro 55	Gly	His	Gly	Gln	Gly 60	Pro	Gly	Ser	Gly
40	65						70				Gly	75					80
	Val	Al	a	Gly	Arg	Gln 85	Gly	Asp	His	Gly	Val 90	Ala	Gly	Gln	Gly	Ser 95	Ala
45	Glu	Ar	g .	Arg	Ala 100	Ala	Ala	Arg	Arg	Gly 105	Gly	Ala	Arg	Arg	Pro 110	Gly	Arg
	Ala	Ala		Ala 115	Leu	Thr	Gln	Gln	Leu 120	Xaa	Gly	Ala	Gln	Arg 125	Asp	Leu	Glu
50	Ala	Gl ₃		Gln	Pro	Thr	Val	Arg 135	Thr	Gln	Leu	Ser	Glu 140	Leu	Arg		
55	(2)	IN	O	RMAT	ION	FOR	SEQ	ID N	10: 2	39:							
			(i) S	(2	A) LI	NGT		ami	ino a	acids	;					
60								amir XGY:									

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:													
5	Asp Pro Glu Ala Ala Asp Ser Gly Glu Pro Gln Asn Lys Arg Thr Pro 1 5 10 15													
5	Asp Leu Pro Glu Glu Glu Tyr Val Lys Glu Glu Ile Gln Glu Asn Glu 20 25 30													
10	Glu Ala Val Lys Lys Met Leu Val Glu Ala Thr Arg Glu Phe Glu Glu 35 40 45													
	Val Val Asp Glu Ser 50													
15														
	(2) INFORMATION FOR SEQ ID NO: 240:													
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240: 													
25	Gln Lys Leu Lys Arg Lys Ala Glu Glu Asp Pro Glu Ala Ala Asp Ser 1 5 10 15													
20	Gly Glu Pro Gln Asn Lys Arg Thr Pro Asp Leu Pro Glu Glu Glu Tyr 20 25 30													
30	Val Lys Glu Glu Ile Gln Glu Asn Glu Glu Ala Val Lys Lys Met Leu 35 40 45													
35	Val Glu Ala Thr Arg Glu Phe Glu Glu Val Val Val Asp Glu Ser 50 55 60													
40	(2) INFORMATION FOR SEQ ID NO: 241:													
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids													
45	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:													
	Lys Ala Met Glu Lys Ser Ser Leu Thr Gln His Ser Trp Gln Ser Leu 1 5 10 15													
50	Lys Asp Arg Tyr Leu Lys His Leu Arg Gly Gln Glu His Lys Tyr Leu 20 25 30													
55	Leu Gly Asp Ala Pro Val Ser Pro Ser Ser Gln Lys Leu Lys Arg Lys 35 40 45													
23	Ala Glu Glu Asp Pro Glu Ala Ala Asp Ser Gly Glu Pro Gln Asn Lys 50 55 60													

Arg Thr Pro Asp Leu Pro Glu Glu Glu Tyr Val Lys Glu Glu Ile Gln 65 70 75 80

	-		. 01	- 010	85			, Lyc	rict	90		ı GIC	. AIC	1111	95	
5	Phe	e Gl	u Glı	1 Val		. Val	l Asp	Glu	Ser 105		Pro) Asp	Phe	Glu 110		His
	Ile	:														
10																
	(2)	IN	FORMA	TION	FOR	SEQ	ID.	NO:	242:							
15			(i)	((A) I (B) I	ENG	RACT	l48 a	mino cid		ids					
20			(xi)				OGY:			EQ I	D NC): 24	2:		•	
20	Leu 1	Pro	Ser	Tyr	Asp 5	Glu	Ala	Glu	Arg	Thr 10	Lys	Ala	Glu	Ala	Thr 15	Ile
25	Pro	Leu	ı Val	Pro 20	Gly	Arg	Asp	Glu	Asp 25	Phe	Val	Gly	Arg	Asp 30	Asp	Phe
	Asp	Asp	Ala 35	Asp	Gln	Leu	Arg	Ile 40	Gly	Asn	Asp	Gly	Ile 45	Phe	Met	Leu
30	Thr	Phe 50	Phe	Met	Ala	Phe	Leu 55	Phe	Asn	Trp	Ile	Gly 60	Phe	Phe	Leu	Ser
35	Phe 65	Cys	Leu	Thr	Thr	Ser 70	Ala	Ala	Gly	Arg	Tyr 75	Gly	Ala	Ile	Ser	Gly 80
	Phe	Gly	Leu	Ser	Leu 85	Ile	Lys	Trp	Ile	Leu 90	Ile	Val	Arg	Phe	Ser 95	Thr
40	Tyr	Phe	Pro	Gly 100	Tyr	Phe	Asp	Gly	Gln 105	Tyr	Trp	Leu	Trp	Trp 110	Val	Phe
	Leu	Val	Leu 115	Gly	Phe	Leu	Leu	Phe 120	Leu	Arg	Gly	Phe	Ile 125	Asn	Tyr	Ala
45	Lys	Val 130	Arg	Lys	Met	Pro	Glu 135	Thr	Phe	Ser	Asn	Leu 140	Pro	Arg	Thr	Arg
50	Val 145	Leu	Phe	Ile												
	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	ю: 2	43:							
55			(i) s	(2 (1	A) LE 3) TY	ENGTI PE:	H: 24 amir	ami	ino a		5					
60			(xi)				OGY: CRIF			Q II	NO:	243	:			

	Ala 1	Gly	Arg	Tyr	Gly 5	Ala	Ile	Ser	Gly	Phe 10	Gly	Leu	Ser	Leu	Ile i	Lys
5	Trp	Ile	Leu	Ile 20	Val	Arg	Phe	Ser								
10	(2)	INF		•	NCE A) Li	CHAI ENGTI	RACTI		TICS:		5					
15			(xi)	I) JOSES				line PTION		II QE	NO:	: 244	1:			
	Met 1	Lys	His	Leu	Ser 5	Ala	Trp	Asn	Phe	Thr 10	Lys	Leu	Thr	Phe	Leu 15	Gln
20	Leu	Trp	Glu	Ile 20	Phe	Glu	Gly	Ser	V al 25	Glu	Asn	Cys	Gln	Thr 30	Leu	Thr
25	Ser	Tyr	Ser 35	Lys	Leu	Gln	Ile	Lys 40	Tyr	Thr	Phe	Ser	Arg 45	Gly	Ser	Thr
25	Phe	Тут 50	Ile													
30	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO: 2	245:	ţ				٠		
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	13 a no a lin	mino cid ear	aci		: 24	5:			
40	Phe 1		: Ser	Asp	Phe 5	Arg	Thr	Ser	Pro	Trp 10	Glu	Ser	Arg	Arg	Val 15	Glu
	Ser	Lys	a Ala	Thr 20	Ser	Ala	Arg	Cys	Gly 25	Leu	Trp	Gly	Ser	Gly 30	Pro	Arg
45	Arg	Arg	Pro 35	Ala	Ser	Gly	Met	Phe 40	Arg	Gly	Leu	Ser	Ser 45		Leu	Gly
50	Leu	Glr 50		Pro	Val	Ala	Gly 55		Gly	Gln	Pro	Asn 60	Gly	Asp	Ala	Pro
30	Pro 65		ı Glr	n Pro	Ser	Glu 70		. Val	Ala	Glu	Ser 75		Glu	Glu	Glu	Leu 80
55	Gln	Gli	n Ala	a Gly	Asp 85		Glu	ı Leu	Leu	His		ı Ala	Lys	Asp	Phe 95	
	Asr	ту:	r Lei	Phe 100		Phe	Ala	a Ser	Ala 105		Thr	Lys	Lys	Ile 110		Glu
60								_,		_	_	_			~1.	~1.

			115					120					125				
5	Lys	Ile 130	Asp	Gly	Ile	Ile	Asp 135	Lys	Thr	Ile	Ile	Gly 140	Asp	Phe	Gln	Lys	
J	Glu 145		Lys	Lys	Phe	Val 150	Glu	Glu	Gln	His	Thr 155	Lys	Lys	Ser	Glu	Ala 160	
10	Ala	Val	Pro	Pro	Trp 165	Val	Asp	Thr	Asn	Asp 170	Glu	Glu	Thr	Ile	Gln 175	Gln	
			Leu	180					185					190			
15	Pro	Ala	Gly 195	Val	Gln	Phe	Asn	Phe 200	Asp	Phe	Asp	Gln	Met 205	Tyr	Pro	Val	
20	Ala	Leu 210	Val	Met	Leu												
	(2)	INF	OR MA T	NOI	FOR	SEQ	ID 1	NO: 2	246:								
25			(i) :	()	A) L B) T	ENGT YPE:	H: 4 ami	ERIS 9 am no a lin	ino cid		s						
30			(xi)	SEQ	JENCI	E DE:	SCRI	PTIO	N: S	EQ I	D NO	: 24	6:				
	Met 1	Arg	Phe	Ala	Leu 5	Val	Pro	Lys	Leu	Val 10	Lys	Glu	Glu	Val	Phe 15	_	
35	Arg	Asn	Tyr	Phe 20	Tyr	Arg	Val	Ser	Leu 25	Ile	Lys	Gln	Ser	Ala 30	Gln	Leu	
	Thr	Ala	Leu 35	Ala	Ala	Gln	Gln	Gln 40	Ala	Ala	Gly	Lys	Gly 45	Gly	Glu	Glu	
40	Gln				•												
45	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	1 0: 2	247 :								
50			(i) \$	() () ()	A) L B) T D) T	ENGT YPE : OPOLA	H: 7 ami OGY:	6 am no ao line	ino cid ear	acid							
•			(xi)	SEQU	JENCI	E DES	SCRI1	PTIO	N: S1	ĐQ II	D NO	: 24	7:				
55	1		Ser		5					10					15		
			Leu	20					25					30			
60	Leu	Asp	Lys 35	Lys	Gln	Glu	Glu	Thr 40	Ala	Val	Leu	Glu	Glu 45	Asp	Ser	Ala	

	Asp	Trp 50	Glu	Lys	Glu	Leu	Gln 55	Gln	Glu	Leu	Gln	Glu 60	Tyr	Glu	Val	Val
5	Thr 65	Glu	Ser	Glu	Lys	Arg 70	Asp	Glu	Asn	Trp	Asp 75	Lys				
10	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	248:			•				
15			(i)	(ENCE A) L B) T	engt Ype :	H: 6 ami	2 am no a	ino cid		s					
13			(xi)	-	D) T UENC					EQ I	D, NO	: 24	8:	٠		
20	Ser 1	Pro	Trp	Glu	Ser 5	Arg	Arg	Val	Glu	Ser 10	Lys	Ala	Thr	Ser	Ala 15	Arg
	Cys	Gly	Leu	Trp 20	Gly	Ser	Gly	Pro	Arg 25	Arg	Arg	Pro	Ala	Ser 30	Gly	Met
25	Phe	Arg	Gly 35	Leu	Ser	Ser	Trp	Leu 40	Gly	Leu	Gln	Gln	Pro 45	Val	Ala	Gly
	Gly	Gly 50	Gln	Pro	Asn	Gly	Asp 55	Ala	Pro	Pro	Glu	Gln 60	Pro	Ser		
30																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	249:							
35				- (ENCE A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami .OGY:	5 am no a lin	ino cid ear	acid		. 24	0.			
40	Pro	(ra)	Ala		UENC					-				Pro	Glu	Gln
10	1		AIG	GLY	5	Gly	0111	110	ADII	10	Tup	ALU	110	110	15	GIII
45	Pro	Ser	Glu	Thr 20		Ala	Glu	Ser	Ala 25	Glu	Glu	Glu	Leu	Gln 30	Gln	Ala
	Gly	Asp	Gln 35		Leu	Leu	His	Gln 40	Ala	Lys	Asp	Phe	Gly 45		Tyr	Leu
50	Phe	Asn 50	Phe	Ala	Ser	Ala	Ala 55		Lys	Lys	Ile	Thr 60	Glu	Ser	Val	Ala
	Glu 65															
55																
	(2)	INF	ORMA							_						
60			(1)	_	JENCE (A) I						ls					

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:													
5	Phe Gln Lys Glu Gln Lys Lys Phe Val Glu Glu Gln His Thr Lys Lys													
	1 5 10 15													
10	Ser Glu Ala Ala Val Pro Pro Trp Val Asp Thr Asn Asp Glu Glu Thr 20 25 30													
	Ile Gln Gln Ile Leu Ala Leu Ser Ala Asp Lys Arg Asn Phe Leu 35 40 45													
15	Arg Asp Pro Pro Ala Gly Val Gln Phe Asn Phe Asp Phe Asp Gln Met 50 55 60													
	Tyr Pro Val Ala Leu Val Met Leu 65 70													
20														
	(2) INFORMATION FOR SEQ ID NO: 251:													
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:													
30	Pro Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser 1 5 10 15													
35	Pro Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala 20 25													
	(2) INFORMATION FOR SEQ ID NO: 252:													
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid													
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:													
43	Lys Glu Asp Pro Ala Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys 1 5 10 15													
50	Lys Met Glu Asn Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg 20 25 30													
	Leu													
55														
	(2) INFORMATION FOR SEQ ID NO: 253:													
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 227 amino acids													

			(xi)	C	D) T	YPE: OPOLA E DES	CGY:	line	ear	EQ II	O NO	: 25	3:			
5	Ala 1	Ser	Ala	Val	Leu 5	Leu	Asp	Leu	Pro	Asn 10	Ser	Gly	Gly	Glu	Ala 15	Gln
10	Ala	Lys	Lys	Leu 20	Gly	Asn	Asn	Cys	Val 25	Phe	Ala	Pro	Ala	Asp 30	Val	Thr
10	Ser	Glu	Lys 35	Asp	Val	Gln	Thr	Ala 40	Leu	Ala	Leu	Ala	Lys 45		Lys	Phe
15	Gly	Arg 50	Val	Asp	Val	Ala	Val 55	Asn	Cys	Ala	Gly	Ile 60	Ala	Val	Ala	Ser
	Lys 65	Thr	Tyr	Asn	Leu	Lys 70	Lys	Gly	Gln	Thr	His 75	Thr	Leu	Glu	Asp	Phe 80
20	Gln	Arg	Val	Leu	Asp 85	Val	Asn	Leu	Met	Gly 90	Thr	Phe	Asn	Val	Ile 95	Arg
25	Leu	Val	Ala	Gly 100	Glu	Met	Gly	Gln	Asn 105	Glu	Pro	Asp	Gln	Gly 110	Gly	Gln
,	Arg	Gly	Val 115		Ile	Asn	Thr	Ala 120	Ser	Val	Ala	Ala	Phe 125	Glu	Gly	Gln
30	Val	Gly 130	Gln	Ala	Ala	Tyr	Ser 135		Ser	Lys	Gly	Gly 140		Val	Gly	Met
	Thr 145		Pro	Ile	Ala	Arg 150		Leu	Ala	Pro	Ile 155		Ile	Arg	Val	Met 160
35	Thr	Ile	· Ala	. Pro	Gly 165		Phe	Gly	Thr	Pro 170		Leu	Thr	Ser	Leu 175	Pro
40	Glu	Lys	: Val	Cys 180		Phe	Leu	Ala	Ser 185		. Val	Pro	Phe	Pro 190		Arg
	Leu	Gly	/ Asp 195		Ala	Glu	Тут	200		Leu	. Val	Gln	Ala 205		: Ile	Glu
45	Asn	210	Phe	e Leu	Asn	Gly	Glu 215		. Ile	Arg	Leu	Asp 220		Ala	Ile	Arg
	Met 225		n Pro			ě										
50								•								
	(2)	IN	FORM	OIT!	1 FOF	R SEC	ID (NO:	254:	:						

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:
- 60 $\,\,$ Ser Val Ala Ala Phe Glu Gly Gln Val Gly Gln Ala Ala Tyr Ser Ala

	1	5	10	15	
5	Ser Lys Gly	Gly Ile Val Gl 20	y Met Thr Leu Pr 25	o Ile Ala	
10			TERISTICS: 61 amino acids		
15			: linear MPTION: SEQ ID N	0: 255: c Tyr Leu Cys Arg 15	Trp
20	Ala Gln Lys	His Lys Asn Tr	p Arg Phe Gln Lys 25	s Thr Arg Gln Thr	Trp
25	35		40	l Pro Asp Glu His 45	Phe
23	Ser Thr Leu . 50	Leu Ala Tyr Le 5	u Glu Gly Leu Glr 5	n Gly Arg 60	
30		FION FOR SEQ ID SEQUENCE CHARACT (A) LENGTH: (B) TYPE: am	TERISTICS: 22 amino acids		
35	(xi)	(D) TOPOLOGY): 256:	
40	His Pro Ile 1 Ile Asn Lys	5	e Asn Ala Ala Thr 10	Leu Ser Gln Phe 1 15	Tyr
45	(2) INFORMAT	ION FOR SEQ ID	NO: 257:		
50		(B) TYPE: ami	22 amino acids ino acid	: 257:	
55	Cys Trp Ile : 1 Met Gln Asp 2	5	Thr Leu Met Gln 10	Asn Ala Gln Leu S 15	Ser

	(2) INFORMATION FOR SEQ ID NO: 258:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:
10	Lys Val Ser Tyr Leu Arg Pro Leu Asp Phe Glu Glu Ala Arg Glu Leu 1 5 10 15
	Phe Leu Leu Gly Gln His Tyr Val Phe 20 25
15	
	(2) INFORMATION FOR SEQ ID NO: 259:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:
25	Met Glu Arg Arg Cys Lys Met His Lys Arg Xaa Ile Ala Met Leu Glu 1 5 10 15
30	Pro Leu Thr Val Asp Leu Asn Pro Gln 20 25
÷	(2) INFORMATION FOR SEQ ID NO: 260:
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 amino acids(B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:
	Ser His Ile Val Lys Lys Ile Asn Asn Leu Asn Lys Ser Ala Leu Lys 1 5 10 15
45	Tyr Tyr Gln Leu Phe Leu Asp 20
50	(2) INFORMATION FOR SEQ ID NO: 261:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:
	Phe Thr His Leu Ser Thr Cys Leu Leu Ser Leu Leu Leu Val Arg Met 1 5 10 15
60	Ser Gly Phe Leu Leu Ala Arg Ala Ser Pro Ser Ile Cys Ala Leu

	20	25		30 .
5	Asp Ser Ser Cys Phe Va 35	l Gln Glu Tyr C 40	ys Ser Ser Tyr 45	Ser Ser Ser
J	Cys Phe Leu His Gln Hi 50	s Phe Pro Ser La 55	eu Leu Asp His 60	Leu Cys Gln
10				
15			rids	
20	(D) TOPO	LOGY: linear		
20	(xi) SEQUENCE D	ESCRIPTION: SEQ	ID NO: 262:	
	Phe Leu Leu Leu Ala Ar		er Ile Cys Ala 10	Leu Asp Ser 15
25	Ser Cys Phe Val Gln Glo 20	ı Tyr		
30	(2) INFORMATION FOR SEC) ID NO: 263:		
35	(B) TYPE	TH: 53 amino ac: : amino acid LOGY: linear		
40	Pro Asp Gly Arg Val Thu		ln Gly Met Val 10	Thr Asp Gln 15
	Phe Gly Met Ile Gly Let 20	Leu Thr Phe Il 25	le Arg Ala Ala	Glu Thr Asp 30
45	Pro Gly Met Val His Let 35	Ala Leu Gly Se 40	er Asp Leu Thr 45	Thr Leu Gly
	Leu Asn Leu Asn Ser 50			
50				
	(2) INFORMATION FOR SEC			
55	(B) TYPE (D) TOPO	TH: 41 amino aci amino acid OGY: linear		
	(xi) SEQUENCE DE			
60	Glu Asp Leu Leu Phe Tyr	Leu Tyr Tyr Me	t Asn Gly Gly	Asp Val Leu

	1				5					10					15	
5	Gln	Leu	Leu	Ala 20	Ala	Val	Glu	Leu	Phe 25	Asn	Arg	Asp	Trp	Arg 30	Tyr	His
	Lys	Glu	G1u 35	Arg	Val	Trp	Ile	Thr 40	Arg							
10	(2)	INFO	RMAT	NOI	FOR	SEQ	ID.N	IO: 2	65:							
15	,			(I (I	ENCE A) LE B) TY C) TO JENCE	ENGTI (PE: OPOL(i: 24 amin OGY:	4 am: no ac line	ino a cid ear	acid	s D NO:	: 265	i:			
20	Val 1	His	Leu	Ala	Leu 5	Gly	Ser	Asp	Leu	Thr 10	Thr	Leu	Gly	Leu	Asn 15	Leu
	Asn	Ser	Pro	Glu 20	Asn	Leu	Tyr	Pro						•		•
25						•										
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID Ì	10: 2	266:							
20			(i) s		ENCE											
30					A) LI B) T					acid	s					
			(vi)	-	D) T					F∩ T	D NO	. 260	۲.			
25	•			_						-		. 20	. .	-		
35	His 1	Asn	GIu	Asp	Phe 5	Pro	Ala	Leu	Pro	10	Ser					
40	(2)	INF	ORMA	rion	FOR	SEO	ID I	NO: 3	267:	•						
					ENCE	-										
			(1)	- (A) L	ENGT	H: 7	5 am	ino		ls					
45					B) T D) T											
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 26	7:			
50	Gly 1		Ile	Ile	Asp 5	Thr	Ser	Leu	Thr	Arg 10	Asp	Pro	Leu	Val	Ile 15	Glu
50	Leu	Gly	Gln	Lys 20	Gln	Val	Ile	Pro	Gly 25		Glu	Gln	Ser	Leu 30	Leu	Asp
55	Met	Cys	Val 35	_	Glu	Lys	Arg	Arg 40	Ala	Ile	· Ile	Pro	Ser 45	His	Leu	Ala
	Туг	Gly 50	-	Arg	Gly	Phe	Pro 55		Ser	Val	. Pro	Ala 60	Asp	Ala	Val	Val
60	Glr	туг	Asp	Val	Glu	Leu	Ile	Ala	Leu	Ile	Arg					

65 70 75 5 (2) INFORMATION FOR SEQ ID NO: 268: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268: Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp Thr Ser 5 15 20 (2) INFORMATION FOR SEQ ID NO: 269:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:

Cys Glu Ser Pro Glu Ser Pro Ala Gln Pro Ser Gly Ser Ser Leu Pro 30 1 5 10 15

Ala Trp Tyr His 20

35

40

50

25

(2) INFORMATION FOR SEQ ID NO: 270:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 95 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270:

45 Glu Glu Ala Gly Ala Gly Arg Cys Ser His Gly Gly Ala Arg Pro 1 5

Ala Gly Leu Gly Asn Glu Gly Leu Gly Leu Gly Gly Asp Pro Asp His

Thr Asp Thr Gly Ser Arg Ser Lys Gln Arg Ile Asn Asn Trp Lys Glu 45

Ser Lys His Lys Val Ile Met Ala Ser Ala Ser Ala Arg Gly Asn Gln 55

Asp Lys Asp Ala His Phe Pro Pro Pro Ser Lys Gln Ser Leu Leu Phe 65 75

60 Cys Pro Lys Ser Lys Leu His Ile His Arg Ala Glu Ile Ser Lys

		85		90		95	
5	(2) INFORMATION	FOR SEQ ID	NO: 271:				
10		JENCE CHARAC (A) LENGTH: (B) TYPE: am (D) TOPOLOGY QUENCE DESCR	23 amino a mino acid 7: linear		71:		
15	Ser Lys Gln Arg	; Ile Asn As 5	n Trp Lys	Glu Ser Lys 10	s His Lys	Val 1	Ile
13	Met Ala Ser Ala 20		g				
20						•	
20	(2) INFORMATION	N FOR SEQ ID	NO: 272:				-
25		UENCE CHARAC (A) LENGTH: (B) TYPE: au (D) TOPOLOG QUENCE DESC	32 amino a mino acid Y: linear	acids	72:	·	
30	Leu Phe His Tr	o Ala Cys Le 5	eu Asn Glu	Arg Ala Al 10	a Gln Leu	Pro . 15	Arg
÷	Asn Thr Ala Xaa		yr Gln Cys 25	Pro Ser Cy	s Asn Gly 30	Pro	Ser
35							
40	(2) INFORMATIO	N FOR SEQ I	D NO: 273:				
	(i) SEQ	UENCE CHARA (A) LENGTH: (B) TYPE: a	185 amino mino acid				
45	(xi) SE	(D) TOPOLOG EQUENCE DESC		EQ ID NO: 2	273 :		
50	Phe Tyr Ile Ty	r Tyr Arg P 5	ro Thr Asp	Ser Asp As	sn Asp Ser	Asp 15	Tyr
	Lys Lys Asp Me	et Val Glu G 10	ly Asp Lys 25		is Ser Ile 30		His
55	Leu Gln Pro Gl 35	lu Thr Ser T	yr Asp Ile 40	Lys Met G	ln Cys Phe 45	e Asn	Glu

Gly Gly Glu Ser Glu Phe Ser Asn Val Met Ile Cys Glu Thr Lys Ala 50 55 60

Arg Lys Ser Ser Gly Gln Pro Gly Arg Leu Pro Pro Pro Thr Leu Ala

	65					70					75					80
5	Pro	Pro	Gln	Pro	Pro 85	Leu	Pro	Glu	Thr	Ile 90	Glu	Arg	Pro	Val	G1y 95	Thr
J	Gly	Ala	Met	Val 100	Ala	Arg	Ser	Ser	Asp 105	Leu	Pro	Tyr	Leu	Ile 110	Val	Gly
10	Val	Val	Leu 115	Gly	Ser	Ile	Val	Leu 120	Ile	Ile	Val	Thr	Phe 125	Ile	Pro	Phe
	Cys	Leu 130		Arg	Ala	Trp	Ser 135	Lys	Gln	Lys	His	Thr 140	Thr	Asp	Leu	Gly
15	Phe 145	Pro	Arg	Ser	Ala	Leu 150	Pro	Pro	Ser	Cys	Pro 155	Tyr	Thr	Met	Val	Pro 160
20	Leu	Gly	Gly	Leu	Pro 165	Gly	His	Gln	Ala	Val 170	Asp	Ser	Pro	Thr	Ser 175	Val
20	Ala	Ser	Val	Asp 180	Gly	Pro	Val	Leu	Met 185							
25	(2)	TMEY	DDW A	TON	DOD.	ano.	TD 1	1 0.								
	(2)		ORMAT	SEQUI	ENCE	CHAI	RACTI	ERIS	rics							
30			(and)	(1 (1	B) T	YPE: OPOL	ami OGY:	no a	cid ear	acid				ē		
			(xi)	SEQU	JENCI	E DES	SCRI	PTIO	V: SI	EQ II	O NO	: 274	1:			
35	Tyr 1	Ile	Tyr	Tyr	Arg 5	Pro	Thr	Asp	Ser	Asp 10	Asn	Asp	Ser	Asp	Tyr 15	Lys
	Lys	Asp	Met	Val 20	Glu	Gly	Asp	Lys	Tyr 25	Trp	His	Ser	Ile	Ser 30	His	Leu
40	Gln	Pro	Glu 35	Thr	Ser	Tyr	Asp	Ile 40	Lys	Met	Gln	Cys	Phe 45	Asn	Glu	Gly
45	Gly	Glu 50	Ser	Glu	Phe	Ser	Asn 55	Val	Met	Ile	Cys	Glu 60	Thr	Lys	Ala	Arg
	Lys 65	Ser														
50	(2)	TNEC	RMAT	TOM	POB	ero.	TD N	n. 1	7E .							
	(2)															
		•	(i) S							cide	5					
55			(xi)	(E	3) TY 3) TY	PE:	amir XGY:	no ac line	id ar			275				
	_															
60	Asn 1	Val	Arg	Ala :	Leu : 5	Leu	His .	Arg	Met	Pro 10	Glu	Pro	Pro	Lys	Ile 15	Asn

	Thr	Ala	Lys	Phe 20	Asn	Asn	Asn	Lys	Arg 25	Lys	Asn	Leu	Ser	Leu 30		
5																
	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	10: 2	276:						•	
10			(i) :	() ()	A) Li B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	85 a no a lin	mino cid ear	aci		. 27	ć .			
15			(xi) Asn	, –	Arg					Tyr				Phe		Pro
	1 Dha	.1-	T 411	N am	5	Cl.	Tura) an	Tlo	10	t/a1	Tou	Mot	Clv	15	Lou
20	Pne	Ala	Leu	20	nıs	GIN	гух	ASD	25	GIII	vai	Deu	Mec	30	Ser	Leu
20	Val	Tyr	Leu 35	Arg	Gln	Gly	Ile	Glu 40	Asn	Ser	Pro	Tyr	Val 45	His	Leu	Leu
25	Asp	Ala 50	Asn	Gln	Trp	Ala	Asp 55	Ile	Cys	Asp	Ile	Phe 60	Thr	Arg	Asp	Ala
	Cys 65	Ala	Leu	Leu	Gly	Leu 70	Ser	Val	Glu	Ser	Pro 75	Leu	Ser	Val	Ser	Phe 80
30	Ser	Ala	Gly	Cys	Val 85	Ala	Leu	Pro	Ala	Leu 90	Ile	Asn	Ile	Lys	Ala 95	Val
35	Ile	Glu	Gln	Arg 100	Gln	Cys	Thr	Gly	Val 105	Trp	Asn	Gln	Lys	Asp 110	Glu	Leu
	Pro	Ile	Glu 115	Val	Asp	Leu	Gly	Lys 120	Lys	Cys	Trp	Tyr	His 125	Ser	Ile	Phe
40	Ala	Cys 130	Pro	Ile	Leu	Arg	Gln 135		Thr	Thr	Asp	Asn 140		Pro	Pro	Met
	Lys 145		Val	Cys	Gly	His 150		Ile	Ser	Arg	Asp 155		Leu	Asn	Lys	Met 160
45	Phe	Asn	Gly	Ser	Lys 165		Lys	Cys	Pro	Tyr 170		Pro	Met	Glu	Gln 175	Ser
50	Pro	Gly	/ Asp	Ala 180	-	Gln	Ile	Phe	Phe 185							
	(2)	INF	ORMA	TION	FOR	SEQ) ID	NO:	277 :			-				
55			(i)	_	JENCE (A) I (B) '	LENG!	TH:	65 aı	nino	S: acid	ds					
60			(xi)		(D) '					SEQ I	ED NO	o: 2'	77 :			

	Ser 1	Tyr	Leu	Ser	Ala 5	Cys	Phe	Ala	Gly	Cys 10	Asn	Ser	Thr	Asn	Leu 15	Thr
5	Gly	Cys	Ala	Cys 20	Leu	Thr	Thr	Val	Pro 25	Ala	Glu	Asn	Ala	Thr 30	Val	Val
	Pro	Gly	Lys 35	Cys	Pro	Ser	Pro	Gly 40	Cys	Gln	Glu	Ala	Phe 45	Leu	Thr	Phe
10	Leu	Cys 50	Val	Met	Cys	Ile	Cys 55	Ser	Leu	Ile	Gly	Ala 60	Met	Ala	Arg	His
15	Pro 65															
20	(2)		ORMA1	SEQUI () ()	ENCE A) Li B) T	CHA ENGT YPE: OPOL	RACT H: 8 ami OGY:	ERIS 4 am no a lin	TICS ino cid ear	acid						
25	Pro 1	•	(xi) Val											Leu	Lys 15	Ser
30	Tyr	Ala	Leu	Gly 20	Val	Leu	Phe	Leu	Leu 25	Leu	Arg	Leu	Leu	Gly 30	Phe	Ile
	Pro	Pro	Pro 35	Leu	Ile	Phe	Gly	Ala 40	Gly	Ile	Asp	Ser	Thr 45	Cys	Leu	Phe
35	Trp	Ser 50	Thr	Phe	Cys	Gly	Glu 55	Gln	Gly	Ala	Cys	Val 60	Leu	Tyr	Asp	Asn
40	65	Val Ala			Tyr	Leu 70	Tyr	Val	Ser	Ile	Ala 75	Ile	Ala	Leu	Lys	Ser 80
45	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	Ю: 2	:79:							
50			(i) S (xi)	() (I	A) LI 7T (8 7T (0	ENGT (PE: OPOLA	H: 18 amiı OGY:	82 an no ao line	mino cid ear	acio		: 279):			
55	Gln 1	Ser	Leu	Phe	Thr 5	Arg	Phe	Val	Arg	Val 10	Gly	Val	Pro	Thr	Val 15	Asp
	Leu	Asp	Ala	Gln 20	Gly	Arg	Ala	Arg	Ala 25	Ser	Leu	Cys	Xaa	Xaa 30	Туг	Asn
60	Trp	Arg	Tyr	Lys	Asn :	Leu	Gly	Asn	Leu	Pro	His	Val	Gln	Leu	Leu	Pro

			35					40					45			
5	Glu	Phe 50	Ser	Thr	Ala	Asn	Ala 55	Gly	Leu	Leu	Tyr	Asp 60	Phe	Gln	Leu	Ile
3	Asn 65	Val	Glu	Asp	Phe	Gln 70	Gly	Val	Gly	Glu	Ser 75	Glu	Pro	Asn	Pro	Tyr 80
10	Phe	Тут	Gln	Asn	Leu 85	Gly	Glu	Ala	Glu	Туг 90	Val	Val	Ala	Leu	Phe 95	Met
	Tyr	Met	Cys	Leu 100	Leu	Gly	Tyr	Pro	Ala 105	Asp	Lys	Ile	Ser	Ile 110	Leu	Thr
15	Thr	Tyr	Asn 115	Gly	Gln	Lys	His	Leu 120	Ile	Arg	Asp	Ile	Ile 125	Asn	Arg	Arg
20	Cys	Gly 130	Asn	Asn	Pro	Leu	Ile 135	Gly	Arg	Pro	Asn	Lys 140	Val	Thr	Thr	Val
	Asp 145	Arg	Phe	Gln	Gly	Gln 150	Gln	Asn	Asp	Tyr	Ile 155	Leu	Leu	Ser	Leu	Val 160
25	Arg	Thr	Arg	Ala	Val 165		His	Leu	Arg	Asp 170	Val	Arg	Arg	Leu	Val 175	Val
	Ala	Met	Ser	Arg 180	Ala	Arg										٠
30																
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	280:							
35			(i)	((A) I	ENGI	H: 7	77 an ino a	nino cid		is					
			(xi)	SEÇ		OPOI E DE				EQ I	:D NC	: 28	0:			
40	Leu 1		Lys	Glu	Ala 5	-	Ile	lle	Ala	Met		Cys	Thr	His	Ala 15	Ala
45	Leu	Lys	Arg	His 20		Leu	Val	Lys	Leu 25		Phe	. Lys	Tyr	Asp 30		Ile
4 5	Leu	Met	: Glu 35		Ala	Ala	Glm	11e 40		Glu	ılle	Glu	Thr 45		Ile	Pro
50	Leu	Leu 50		Gln	Asr.	Pro	Glr 55		Gly	Phe	e Ser	Arg		Lys	Arg	Trp
	Ile 65		: Ile	e Gly	Asp	His 70		s Glr	ı Lev	Pro	75		. Ile	•		
55																
	(2)	IN	FORM	MOITA	I FOF	SEÇ	O ID	NO:	281:	:		•				
			(i)	SEQ	JENCI	E CHI	ARAC	TERI	STIC	S:						

(A) LENGTH: 125 amino acids

						MPE:										
			(ri)			IOPOI TO DE			near M: S	EO 1	אר ער	. 20				
			(,,,,,	5.00	, O.L.				41. 5	EQ I	.D IVC	, 20	11:			
5	Asp 1		Tyr	Pro	Asn 5	Glu	Glu	Lys	Gln	Gln 10	Glu	Arg	Val	Phe	Pro 15	Xaa
10	Xaa	. Ser	Ala	Met 20		Asn	Asn	Gly	Ser 25	Leu	Ser	Tyr	Asp	His 30		Arg
	Asp	Gly	Arg 35		Thr	Glu	Leu	Gly 40		Cys	Xaa	Ala	Ile 45	Val	Arg	Asn
15	Leu	His 50		Asp	Thr	Phe	Leu 55	Val	Ile	Arg	Tyr	Val 60	Lys	Arg	His	Leu
	Thr 65		Met	Met	Asp	Ile 70	Asp	Gly	Lys	His	Glu 75	Trp	Arg	Asp	Cys	Ile 80
20	Glu	Val	Pro	Gly	Val 85	Arg	Leu	Pro	Arg	Gly 90	Tyr	Tyr	Phe	Gly	Thr 95	Ser
25	Ser	Ile	Thr	Gly 100	Asp	Leu	Ser	Asp	Asn 105	His	Asp	Val	Ile	Ser 110	Leu	Lys
	Leu	Phe	Glu 115	Leu	Thr	Val	Glu	Arg 120	Thr	Pro	Glu	Glu	Glu 125			
30	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	V O: 2	282:							
35			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	5 am no a lin	ear	acid		: 28:	2:			
40	Leu 1	Lys	Arg	Glu	His 5	Ser	Leu	Ser	Lys	Pro 10	Tyr	Gln	Gly	Val	Gly 15	Thr
	Gly	Ser	Ser	Ser 20	Leu	Trp	Asn	Leu	Met 25	Gly	Asn	Ala	Met	Val 30	Met	Thr
45	Gln	Tyr	Ile 35	Arg	Leu	Thr	Pro	Asp 40	Met	Gln	Ser	Lys	Gln 45	Gly	Ala	Leu
50	Trp	Asn 50	Arg	Val	Pro	Cys	Phe 55	Leu	Arg	Asp	Trp	Glu 60	Leu	Gln	Val	His
	Phe 65	Lys	Ile	His	Gly	Gln 70	Gly	Lys	Lys	Asn	Leu 75	His	Gly	Asp	Gly	Leu 80
55	Ala	Ile	Trp	Тут	Thr 85											

(2) INFORMATION FOR SEQ ID NO: 283:

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 32 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:
      Pro Gly Thr Leu Gln Cys Ser Ala Leu His His Asp Pro Gly Cys Ala
                        5
        1
10
      Asn Cys Ser Arg Phe Cys Arg Asp Cys Ser Pro Pro Ala Cys Gln Cys
                                      25
              . 20
15
      (2) INFORMATION FOR SEQ ID NO: 284:
20
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:
25
      Phe Leu Tyr Asp Val Leu Met Xaa His Glu Ala Val Met Arg Thr His
                        5
                                           10
      Gln Ile Gln Leu Pro Asp Pro Glu Phe Pro Ser
30
                   20
       (2) INFORMATION FOR SEQ ID NO: 285:
 35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 6 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 40
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:
       Gly Trp Tyr Trp Cys Gly
 45
       (2) INFORMATION FOR SEQ ID NO: 286:
              (i) SEQUENCE CHARACTERISTICS:
 50
                    (A) LENGTH: 129 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:
 55
       Met Lys Val Gly Ala Arg Ile Arg Val Lys Met Ser Val Asn Lys Ala
                                        10
       His Pro Val Val Ser Thr His Trp Arg Trp Pro Ala Glu Trp Pro Gln
                                        25
                    20
 60
```

	Met	Phe	Leu 35	His	Leu	Ala	Gln	Glu 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
5	Pro	Leu 50	Gly	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
	Pro 65	Leu	Glu	Gln	Glu	Thr 70	Ile	Met	Ser	Ala	Ala 75	Asp	Thr	Ala	Leu	Trp 80
10	Pro	Tyr	Gly	His	Gly 85	Asn	Arg	Glu	His	Gln 90	Glu	Asn	Glu	Leu	Gln 95	Lys
15	Tyr	Leu	Gln	Tyr 100	Lys	Asp	Met	His	Leu 105	Leu	Asp	Ser	Gly	Gln 110	Ser	Leu
	Gly	His	Thr 115	His	Thr	Leu	Gln	Gly 120	Ser	His	Asn	Leu	Thr 125	Ala	Leu	Asn
20	Ile															
	(2)	INFO	ORMA?	rion	FOR	SEQ	ID 1	VO: 2	287:	•						
25			(i) :	SEQUI		CHAI					s					
				-	-	YPE:										
30			(xi)	SEQ				lin PTIO		EQ II	OM C	: 28'	7:			
30	Ser			SEQ	JENC	E DE	SCRI	PTIO	1: S	_				Ser	Gly 15	Gly
30 35	1	Leu	His	SEQ	Asn 5	E DE: Ser	SCRII Val	PTIO	N: SI Gln	Ile 10	Ser	Val	Leu	Ser Gly 30	15	
35	1 Lys	Leu Ala	His Lys	SEQUENT Lys Cys 20	Asn 5 Ser	E DE: Ser Gln	Val Phe	PTION Ser Cys	N: SI Gln Thr 25	Ile 10 Thr	Ser Gly	Val Met	Leu Asp	Gly	15 Gly	Met
	1 Lys	Leu Ala	His Lys Trp	SEQI Lys Cys 20	Asn 5 Ser	E DE: Ser Gln	Val Phe	Ser Cys	N: SI Gln Thr 25	Ile 10 Thr	Ser Gly	Val Met	Leu Asp Lys	Gly 30	15 Gly	Met
35	1 Lys Ser Ile	Leu Ala Ile	His Lys Trp 35	Lys Cys 20 Asp	Asn 5 Ser Val	Ser Gln Lys	Val Phe Ser	Ser Cys Leu 40	Gln Thr 25 Glu	Ile 10 Thr	Ser Gly	Val Met	Leu Asp Lys	Gly 30	15 Gly	Met
35	1 Lys Ser Ile	Leu Ala Ile	His Lys Trp 35	SEQU Lys Cys 20 Asp	JENC: Asn 5 Ser Val	E DE: Ser Gln Lys SEQ CHAI	Val Phe Ser ID N	PTION Ser Cys Leu 40	N: SI Gln Thr 25 Glu	Ile 10 Thr Ser	Ser Gly Ala	Val Met	Leu Asp Lys	Gly 30	15 Gly	Met
35	1 Lys Ser Ile	Leu Ala Ile	His Lys Trp 35	SEQUI Lys Cys 20 Asp FION . SEQUI	JENC: Asn 5 Ser Val FOR ENCE A) L B) T D) T	E DE: Ser Gln Lys SEQ CHAI	Val Phe Ser ID N H: 2 amin OGY:	Ser Cys Leu 40 VO: 2	N: SI Gln Thr 25 Glu	Ile 10 Thr Ser	Ser Gly Ala	Val Met Leu	Leu Asp Lys 45	Gly 30	15 Gly	Met
35 40 45	1 Lys Ser Ile	Leu Ala Ile	His Lys Trp 35	Lys Cys 20 Asp TION . SEQUI	JENC: Asn 5 Ser Val FOR ENCE ENCE B) T D) T JENC:	E DE: Ser Gln Lys SEQ CHAR ENGT: YPE: OPOL	Val Phe Ser ID N H: 2 amin OGY: SCRII	PTION Ser Cys Leu 40 io: 2 I am no a lin PTION	N: SI Gln Thr 25 Glu E88: FICS ino: cid ear	Ile 10 Thr Ser	Ser Gly Ala	Val Met Leu	Leu Asp Lys 45	Gly 30	15 Gly Leu	Met Lys

```
(2) INFORMATION FOR SEQ ID NO: 289:
             (i) SEQUENCE CHARACTERISTICS:
5
                    (A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:
10
      Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe
                  5
                                          10
      Glu Arg Ser Phe Thr
15
      (2) INFORMATION FOR SEQ ID NO: 290:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 27 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:
25
      Val Thr Gly Ile Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg
      Val Gly Leu Leu Gln Tyr Ser Thr Gln Val His
30
                   20
      (2) INFORMATION FOR SEQ ID NO: 291:
35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 24 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
40
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:
      Thr Glu Phe Thr Leu Arg Asn Phe Asn Ser Ala Lys Asp Met Lys Lys
45
      Ala Val Ala His Met Lys Tyr Met
                   20
50
      (2) INFORMATION FOR SEQ ID NO: 292:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
                     (B) TYPE: amino acid
55
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:
      Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg
60
```

Ser Phe Thr Gln Gly Glu Gly Ala Arg Pro Phe 20 5 (2) INFORMATION FOR SEQ ID NO: 293: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293: Ser Thr Arg Val Pro Arg Ala Ala Ile Val Phe Thr Asp Gly Arg Ala 15 Gln Asp Asp Val Ser Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile 20 25 20 Thr Met Tyr Ala Val Gly Val Gly Lys Ala Ile Glu 35 40 25 (2) INFORMATION FOR SEQ ID NO: 294: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid 30 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294: Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Phe 1 5 35 Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu Ile Ser Glu Lys Leu Lys 25 30 Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 40 35 40 (2) INFORMATION FOR SEQ ID NO: 295: 45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:

Thr Gln Arg Leu Glu Glu Met Thr Gln Arg Met
1 5 10

55

(2) INFORMATION FOR SEQ ID NO: 296:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:
5
     Pro Gln Gly Cys Pro Glu Gln Pro Leu His
                        5
       1
10
      (2) INFORMATION FOR SEQ ID NO: 297:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 33 amino acids
                     (B) TYPE: amino acid
15
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:
      Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile
20
      Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln
      Phe
25
      (2) INFORMATION FOR SEQ ID NO: 298:
30
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 60 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
35
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:
      Met Ala Ala Leu Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala
                                           10
40
      His Phe Ser Pro Gln Leu Cys Ile Arg Asn Ala Val Pro Leu Gly Thr
      Thr Ala Lys Glu Glu Met Glu Arg Phe Trp Asn Lys Asn Ile Gly Ser
45
      Asn Arg Pro Leu Ser Pro His Ile Thr Ile Tyr Ser
            50
                                55
50
       (2) INFORMATION FOR SEQ ID NO: 299:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 32 amino acids
55
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299:
       Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Met
 60
```

```
Trp Asp Leu Gly Lys Gly Leu Lys Ile Pro Gln Leu Tyr Gln Ser Gly
                                      25
 5
10
      (2) INFORMATION FOR SEQ ID NO: 300:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
                    (B) TYPE: amino acid
15
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:
      Met Ala Ala Leu Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala
                                           10
20
      His
25
      (2) INFORMATION FOR SEQ ID NO: 301:
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 18 amino acids
30
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:
      Val Lys Ser Leu Cys Leu Gly Pro Ala Leu Ile His Thr Ala Lys Phe
35
                                . 10
                                                              15
      Ala Leu
40
      (2) INFORMATION FOR SEQ ID NO: 302:
             (i) SEQUENCE CHARACTERISTICS:
45
                    (A) LENGTH: 23 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:
50
      Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Met
                       5
      Trp Asp Leu Gly Lys Gly Leu
                  20
55
      (2) INFORMATION FOR SEQ ID NO: 303:
60
             (i) SEQUENCE CHARACTERISTICS:
```

```
(A) LENGTH: 22 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:
 5
     Arg Val Trp Asp Val Arg Pro Phe Ala Pro Lys Glu Arg Cys Val Lys
                                           10
     Ile Phe Gln Gly Asn Val
10
                   20
      (2) INFORMATION FOR SEQ ID NO: 304:
15
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:
      His Asn Phe Glu Lys Asn Leu Leu Arg Cys Ser Trp Ser Pro Asp Gly
      Ser Lys Ile Ala Ala Gly Ser Ala Asp Arg Phe Val Tyr Val
25
                                      25
30
   (2) INFORMATION FOR SEQ ID NO: 305:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
35
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:
      Trp Asp Thr Thr Ser Arg Arg Ile Leu Tyr Lys Leu Pro Gly His Ala
40
      Gly Ser Ile Asn Glu Val Ala Phe His Pro Asp Glu Pro Ile
45
       (2) INFORMATION FOR SEQ ID NO: 306:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 20 amino acids
50
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:
       Val Arg Gly Arg Thr Val Leu Arg Pro Gly Leu Asp Ala Glu Pro Glu
 55
                        5
                                           10
       Leu Ser Pro Glu
```

	(2) INFORMATION FOR SEQ ID NO: 307:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:
10	Glu Gln Arg Val Leu Glu Arg Lys Leu Lys Lys Glu Arg Lys Lys Glu 1 5 10 15
15	Glu Arg Gln
20	(2) INFORMATION FOR SEQ ID NO: 308: (i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308: Arg Leu Arg Glu Ala Gly Leu Val Ala Gln His Pro Pro 1 5 10
30	(2) INFORMATION FOR SEQ ID NO: 309:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:
40	Gly Arg Ile Pro Ala Pro Ala Pro Ser Val Pro Ala Gly Pro Asp Ser 1 5 10 15
45	Arg
73	(2) INFORMATION FOR SEQ ID NO: 310:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:
55	Thr Gly Cys Val Leu Val Leu Ser Arg Asn Phe Val Gln Tyr Ala Cys 1 5 10 15
60	Phe Gly Leu Phe Gly Ile Ile Ala Leu Gln Thr Ile Ala Tyr Ser Ile 20 25 30

```
Leu Trp Asp Leu Lys Phe Leu Met Arg Asn
              35
 5
      (2) INFORMATION FOR SEQ ID NO: 311:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 55 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:
      Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg
15
                       5
      Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu
20
      Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser
      Ile Val Gln Asn Ile Val Gly
                               55
25
      (2) INFORMATION FOR SEQ ID NO: 312:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:
35
      Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr Lys Gln
      Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe Leu Glu
40
      Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp Tyr Ile
45
      Asp Thr Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser
                              55
50
      (2) INFORMATION FOR SEQ ID NO: 313:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
55
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:
      Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala Leu Met Ile
```

Leu

```
5
      (2) INFORMATION FOR SEQ ID NO: 314:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 8 amino acids
10
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:
      Leu Met Arg Asn Glu Ser Arg Ser
15
      · 1
                      5
      (2) INFORMATION FOR SEQ ID NO: 315:
20
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 13 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:
      Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala
                        5
30
      (2) INFORMATION FOR SEQ ID NO: 316:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 20 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:
40
      Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met
               5
      Met Ser Ser Phe
                   20
45
      (2) INFORMATION FOR SEQ ID NO: 317:
50
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 27 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
55
      Asp Pro Arg Arg Pro Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser
     Glu Cys Asn Pro Ala Leu Asp Asp Pro Thr Pro
60
                   20
```

5	(2) INFORMATION FOR SEQ ID NO: 318:
,	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
	Asp Tyr Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met 1 5 10 15
15	Leu Lys Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser 20 25 30
20	(2) INFORMATION FOR SEQ ID NO: 319:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids
25	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
30	Met Leu Ser Ile Ser Ala Val Val Met Ser Tyr Leu Gln Asn Pro Gln 1 5 10 15
	Pro Met Thr Pro Pro Trp 20
35	(2) INFORMATION FOR SEQ ID NO: 320:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
45	Ala Ala Gly Asp Gly Asp Val Lys Leu Gly Thr Leu Gly Ser Gly Ser 1 5 10 15
	Glu Ser Ser Asn Asp Gly Gly Ser Glu Ser Pro Gly Asp Ala Gly Ala 20 25 30
50	Ala Ala Xaa Gly Gly Gly Trp Ala Ala Ala Ala Leu Ala Leu Leu Thr 35 40 45
55	Gly Gly Glu 50
	(2) INFORMATION FOR SEQ ID NO: 321:
60	(i) SPOIFNCE CHARACTERISTICS

						LENG				o aci	ids					
						TYPE : TOPOI										
5						E DE										
	Ala 1		a Asp	Asn	Tyr 5		Ile	Pro	Arg	Ala 10		Arg	Asn	Ser	Ala 15	
10	Ser	туг	: Gly	Ala 20		Trp	Leu	Leu	Leu 25		Pro	Ala	Gly	Ser 30		Arg
	Val	. Glu	Pro 35		Gln	Asp	Ile	Ser 40	Ile	Ser	Asp	Gln	Leu 45	Gly	Gly	Gln
15	Asp	Val	Pro	Val	Phe	Arg	Asn 55	Leu	Ser	Leu	Leu	Val 60		Gly	Val	Gly
20	Ala 65		. Phe	Ser	Leu	Leu 70	Phe	His	Leu	Gly	Thr 75	Arg	Glu	Arg	Arg	Arg 80
	Pro	His	Ala	Xaa	Glu 85	Pro	Gly	Glu	His	Thr 90	Pro	Leu	Leu	Ala	Pro 95	Ala
25	Thr	Ala	Gln	Pro 100	Leu	Leu	Leu	Trp	Lys 105	His	Trp	Leu	Arg	Glu 110	Xaa	Ala
	Phe	Tyr	Gln 115	Val	Gly	Ile	Leu	Tyr 120	Met	Thr	Thr	Arg	Leu 125	Ile	Val	Asn
30	Leu	Ser 130	Gln	Thr	Tyr	Met	Ala 135		Tyr	Leu	Thr	Tyr 140	Ser	Leu	His	Leu
35	Pro 145		Lys	Phe	Ile	Ala 150	Thr	Ile	Pro	Leu	Val 155	Met	Tyr	Leu	Ser	Gly 160
	Phe	Leu	Ser	Ser	Phe 165	Leu	Met	Lys	Pro	Ile 170	Asn	Lys	Cys	Ile	Gly 175	Arg
40	Asn															
	(2)	INF	ORMAT	NOI	FOR	SEQ	ID N	7 0: 3	322:							
45			(i) s	0	A) L B) T	CHAI ENGT YPE:	H: 24 amin	43 ar	mino cid		ds					
50			(xi)	SEQU	JENCI		CRI	PTIO	N: SI							•
	1		Thr		5					10					15	
55	Gly	Ser	Tyr	Gly 20	Tyr	Ile	Lys	Thr	Thr 25	Ala	Val	Glu	Ile	Xaa 30	Tyr	Asp
	Ser	Leu	Lys 35	Leu	Lys	Lys	Asp	Ser 40	Leu'	Gly	Ala	Pro	Ser 45	Arg	Pro	Ile
60	Glu	Asp	Asp	Gln	Glu	Val	Tyr	Asp	Asp	Val	Ala	Glu	Gln	Asp	Asp	Ile

		50					55					80				
5	Ser 65	Ser	His	Ser	Gln	Ser 70	Gly	Ser	Gly	Gly	Ile 75	Phe	Pro	Pro	Pro	Pro 80
3	Asp	Asp	Asp	Ile	Tyr 85	Asp	Gly	Ile	Glu	Glu 90	Glu	Asp	Ala	Asp	Asp 95	Gly
10	Phe	Pro	Ala	Pro 100	Pro	Lys	Gln	Leu	Asp 105	Met	Gly	Asp	Glu	Val 110	Tyr	Asp
	Asp	Val	Asp 115	Thr	Ser	Asp	Phe	Pro 120	Val	Ser	Ser	Ala	Glu 125	Met	Ser	Gln
15	Gly	Thr 130	Asn	Val	Gly	Lys	Ala 135	Lys	Thr	Glu	Glu	Lys 140	Asp	Leu	Lys	Lys
20	145		Lys			150					155					160
•	_		Gly	,	165					170					175	
25				180					185					190		Gly
20-			195					200					205			Cys
30		210					215			:		220	;			Ala Tyr
35	225		Asp		Glu	230		, a. p	,p		235		52 3	9,2		240
40	(2)	INF	ORMA	TION	FOR	SEC) ID	NO:	323:							
-			(i)		(A) 1	LENG		106 a	amino	S: o ac	ids					
45			(xi)	SEÇ			LOGY ESCR			SEQ :	ID NO	D: 32	23:			
50		Me	. Ser	Ala	Let		r Arg	j Let	ı Ala	a Sei 10		e Ala	a Arg	Val	. Gly	Gly
50	Arg	j Le	u Ph∈	e Arg 20		Gly	y Cy:	s Ala	a Arg	_	r Ala	a Gly	y Asp	Gl _y 30		/ Val
55	Arg	g Hi:	s Ala		/ Gly	y Gl	y Va	l Hi:		e Gl	u Pro	o Arg	у Туз 45		g Glr	n Phe
	Pro	5 G1:		ı Thi	r Ar	g Se:	r Gli 5		l Pho	e Gl	n Se	r Glu		e Phe	e Sei	Gly
60	Lei	ı Me	t Tr	p Phe	e Tr	p Il	e Le	u Tr	p Ar	g Ph	e Tr	p Hi	s Asj	Sei	r Glu	ı Glu

369

65 70 75 80

Val Leu Gly His Phe Pro Tyr Pro Asp Pro Ser Gln Trp Thr Asp Glu 85 90 95

Glu Leu Gly Ile Pro Pro Asp Asp Glu Asp 100 105

Form PCT/RO/134 (July 1992)

370

	·		
Applicant's or agent's tile	2004PCT	International application	Unassigned
reference number		<u> </u>	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to on page 73 , line N/A	in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	ion
Address of depositary institution (including postal code and country)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit March 7, 1997 Ac	ecession Number 97923
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave bit The indications listed below will be submitted to the International But	
Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Ougman Llely	Authorized officer

Applicant's or agent's file	Z004PCT	International analysis - II : 1
reference aumber	- -	International application Unassigned
reterence number		
		TO DE TOUR

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorgan	sion of a land and a land
	ins in referred to in the description ine N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 1
Name of depositary institution	Tarder deposits are identified on an additional sheet
American Type Cu	ulture Collection
Address of depositary institution (including postal code of	and country)
10801 University Boulevard Manassas, Virginia 20110-2209	
United States of America	
	·
Date of deposit May 22, 1997	Accession Number 209071
C ADDITIONAL INDICATIONS	
C. ADDITIONAL INDICATIONS (leave blank if n	not applicable) This information is continued on an additional sheet
•	
D DD0001	
b. Designated States FOR WHICH INDI	ICATIONS ARE MADE (if the indications are not for all designated States)
E CEDADATE FUDNICIONO CE MINICIONA	
E. SEPARATE FURNISHING OF INDICATION	
Number of Deposit")	rnational Bureau later (specify the general nature of the indications, e.g., "Accession
•	· ·
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	
или на пистанова аррисано	This sheet was received by the International Bureau on:
Authorized officer	
i i	Authorized officer
Vuginia Ililin	
Form PCT/RQ/134 (July 1992)	

Applicant's or agent's file reference number	Z004PCT	International application	Unassigned	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indication on page 7	ns made below relate to the microorganis		to in the description	<u></u> -	
B. IDENTIFIC	ATION OF DEPOSIT		Further deposi	ts are identified on a	n additional sheet [
Name of deposita	ry institution American Type Cult	ture Collec	ction		
10801 Universit	inia 20110-2209	nd country)			
Date of deposit	February 25, 1998	4	Accession Number	209641	
C. ADDITION	NAL INDICATIONS (leave blank if no	ı applicable	This information	is continued on an	additional sheet
D. DESIGNA	TED STATES FOR WHICH INDI	CATION	S ARE MADE (if i	the indications are not	for all designated States)
E. SEPARAT	E FURNISHING OF INDICATIO	NS (leave t	lank if not applicable)		
	listed below will be submitted to the Inte			e general nature of the	indications. e.g "Accessio
Authorized office	For receiving Office use only was received with the international applications The second sec	on	į	International Burea	au use only

	J. J
Applicant's or agent's file Z004PCT reference number	International application Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 75 . line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and counting 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	ury)	
Date of deposit July 24, 1997	Accession Number 209179	
C. ADDITIONAL INDICATIONS (leave blank if not application)	This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)	
Number of Deposit")	Bureau later (specify the general nature of the indications. e.g., "Accession	
For receiving Office use only	For International Bureau use only	
Authorized officer	This sheet was received by the International Bureau on: Authorized officer	
Vuluma - Illy		

Applicant's or agent's file Z004 reference number	PCT	International application	Unassigned	
		and the second s		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to on page 77 . line N/A	to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collect	ction
Address of depositary institution (including postal code and country)	
10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit March 7, 1997	Accession Number 97924
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS	S ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave b	olank if not applicable)
The indications listed below will be submitted to the International B Number of Deposit")	urcau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Virginia L lilia	Authorized officer

	37	5
Applicant's or agent's file reference number	Z004PCT	International application . Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

	ons made below relate to the mi		ed to in the description
		. line N/A	<u> </u>
3. IDENTIFIC	CATION OF DEPOSIT		Further deposits are identified on an additional sheet
Name of deposite	ury institution		
•		Type Culture Coll	ection
Address of depos	sitary institution (including pos	tal code and count	y)
10801 Universi Manassas, Virg United States o	inia 20110-2209		
Name of the 1			
Date of deposit	March 13, 1997		Accession Number 97958
C. ADDITION	NAL INDICATIONS (leave l	blank if not applicabl	e) This information is continued on an additional sheet
DESIGNAT	ED STATES FOR WILLO	UNDIGATION	
	ED STATES FOR WHICH	H INDICATION	S ARE MADE (if the indications are not for all designated States)
SEPARATE	FURNISHING OF INDIC	'ATIONS #	
SEPARATE	FURNISHING OF INDIC	ATIONS (leave b	lank if not applicable)
SEPARATE the indications lis	FURNISHING OF INDIC	CATIONS (leave b	lank if not applicable) ureau later (specify the general nature of the indications. e.g "Accessio
. SEPARATE the indications lis umber of Deposit	FURNISHING OF INDIC	CATIONS (leave b) the International B	lank if not applicable) ureau later (specify the general nature of the indications, e.g., "Accessio
. SEPARATE he indications lis umber of Deposit"	FURNISHING OF INDIC	CATIONS (leave b) the International B	lank if not applicable) ureau later (specify the general nature of the indications. e.g "Accessio
. SEPARATE he indications lis umber of Deposit"	FURNISHING OF INDIC	CATIONS (leave b the International B	lank if not applicable) ureau later (specify the general nature of the indications, e.g "Accessio
. SEPARATE the indications list the under of Deposit	FURNISHING OF INDIC	CATIONS (leave b) the international B	lank if not applicable) ureau later (specify the general nature of the indications, e.g., "Accessia
SEPARATE the indications lis umber of Deposit*	FURNISHING OF INDIC	CATIONS (leave b) the International B	lank if not applicable) ureau later (specify the general nature of the indications, e.g., "Accessio
he indications lis umber of Deposit"	ted below will be submitted to	the International B	ureau later (specify the general nature of the indications, e.g., "Accessio
he indications lis	ted below will be submitted to	the International B	lank if not applicable) ureau later (specify the general nature of the indications, e.g., "Accessio For International Bureau use only
he indications lis	ted below will be submitted to	the International B	ureau later (specify the general nature of the indications, e.g "Accessio
he indications lis	ted below will be submitted to	the International B	For International Bureau use only This sheet was received by the International Bureau on:
he indications lis umber of Deposit"	ted below will be submitted to	the International B	ureau later (specify the general nature of the indications, e.g., "Accession of the indications of the indication

Applicant's or agent's file reference number	Z004PCT	International application Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 80 . line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture (Collection
Address of depositary institution (including postal code and co	nuntry)
10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit May 22, 1997	Accession Number 209072
C. ADDITIONAL INDICATIONS (leave blank if not appl	licable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS ((leave blank if not applicable)
The indications listed below will be submitted to the Internation	onal Bureau later (specify the general nature of the indications, e.g., "Accession
Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Lucian Lucian Lucian	Authorized officer
Form PC/RO/134 (July 1992)	

		377
Applicant's or agent's tile reference number	Z004PCT	International application Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 80 . line N/A		
on page	. tine	IVA .
B. IDENTIFIC	CATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of deposits	ary institution	
•	American Type Culture	Collection
		·
Address of depo	sitary institution (including postal code and c	ountry)
10801 Univers		
Manassas, Virg	ginia 20110-2209	
Date of deposit	September 4, 1997	Accession Number 209235
a dia di daposii	3eptomber 4, 1997	Accession Number 209235
C ADDITION	NAL INDICATIONS (leave blank if not app	
C. ADDITIO	TAE INDICATIONS Heave blank if not app	olicable) This information is continued on an additional sheet
		•
		•
D. DESIGNAT	TED STATES FOR WHICH INDICAL	TIONS ARE MADE (if the indications are not for all designated States)
	E FURNISHING OF INDICATIONS (I	
The indications li Number of Deposit	sted below will be submitted to the Internatio	onal Bureau later (specify the general nature of the indications. e.g., "Accession
,,	•	
	For receiving Office use only	For International Bureau use only
,		. or international pureau use only
This sheet w	was received with the international application	This sheet was received by the International Bureau on:
Authorized officer		Authorized officer
1	·	
Vinne	ma Ilely	
- 11,40	(July 1992)	_J <u>L</u>

37	8
Applicant's or agent's tile Z004PCT	International application Unassigned
reference number	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 84 . line N/A .	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collection	
Address of depositary institution (including postal code and coun	try)
10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit August 28, 1997	Accession Number 209226
C. ADDITIONAL INDICATIONS (leave blank if not applications)	ble) This information is continued on an additional sheet
·	
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (learn	ve blank if not applicable)
The indications listed below will be submitted to the Internationa Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Virginia Llily	Authorized officer

Applicant's or agent's tile	Z004PCT	
reference number		International application Unassigned
		T

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred to in the description on page 84 . line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution American Type Culture Co	llection		
Address of depositary institution (including postal code and counting 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	try)		
Date of deposit March 13, 1997	Accession Number 97957		
C. ADDITIONAL INDICATIONS (leave blank if not applicate	This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)		
The indications listed below will be submitted to the International in Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession		
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application Authorized officer Lugunia L luly Form PCT/RO/134 (July 1992)	This sheet was received by the International Bureau on: Authorized officer		

Applicant's or agent's file	7004PCT	International application . Unassigned
reppirement a or against the	20071.01	
reference number	•	l beting da
7010101100 17-1110		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referre on page 84 , line N/A	· ·
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and countrel 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	(יכי
Date of deposit May 22, 1997	Accession Number 209073
C. ADDITIONAL INDICATIONS (leave blank if not applicab	te) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications. e.g., "Accessing the second of the indications of the indication of the i
For receiving Office use only This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Vugunia Llily	Authorized officer

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
 - (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
 - 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
 - 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

10

15

20

25

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

5

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
- (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- The isolated polypeptide of claim 11, wherein the secreted form or the
 full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
 - 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathological
 condition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.