☞ Fonction logarithme 1

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$f(x) = 2x + 9 - 5x\ln(x)$$

- 1. Calculer la limite de f en 0^+
- **2.** Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Déterminer le signe de f'(x).
- **5.** En déduire le tableau de variation de f(x).
- **6.** Déterminer le nombre de solutions de f(x) = 0 et en donner un encadrement d'amplitude 10^{-2} .

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to 0^+} 2x + 9 = 9$$

$$\lim_{x \to 0^+} 5x \ln(x) = 0 \quad \text{par propriété du cours}$$

$$\text{donc } \lim_{x \to 0^+} 2x + 9 - 5x \ln(x) = 9$$

2.

$$\lim_{x \to +\infty} 2x + 9 = +\infty$$

$$\lim_{x \to +\infty} -5x \ln(x) = -\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x \to +\infty} 2x + 9 - 5x \ln(x) = -\infty \quad \text{par prédominance de } x \ln(x)$$

3.

$$f'(x) = 2 - 5(x \ln(x))'$$

$$= 2 - 5(x' \ln(x) + x \times \ln(x)')'$$

$$= 2 - 5(\ln(x) + x \times \frac{1}{x})'$$

$$= 2 - 5(\ln(x) + 1)'$$

$$= -3 - 5\ln(x)$$

4.

$$f'(x) \ge 0$$
$$-3 - 5\ln(x) \ge 0$$
$$-5\ln(x) \ge 3$$
$$\ln(x) \le \frac{3}{-5}$$
$$x \le e^{\frac{3}{-5}}$$

5. On a:

x	$e^{\frac{3}{-5}}$	+∞
f'(x)	+ 0 -	
f(x)	$9+5e^{\frac{3}{-5}}$	

6. D'après le tableau de variation, comme 9 > 0, la fonction f ne peut pas s'annuler sur l'intervalle $[0; e^{\frac{3}{-5}}]$.

Pour $x > e^{\frac{3}{-5}}$, la fonction est décroissante de $9 + 5e^{\frac{3}{-5}} > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur

Logarithme TG

 $\alpha > e^{\frac{3}{-5}}$ telle que $f(\alpha) = 0$. En utilisant la calculatrice, on trouve :

$$f(0.54) > 0$$

$$f(0.55) < 0$$

$$0.54 \le \alpha \le 0.55$$