3

الدوال اللوغاريتمية

ر س	الد	محتوي	
\smile	-		

2	1 دالة اللوغاريتم النبيري	1
---	------------------------------	---

- دراسة دالة اللوغاريتم دالة اللوغاريتم ذات الأساس a

1. دالة اللوغاريتم النبيري

نشاط 1

- $0;+\infty[$ بين أن الدالة $x\mapsto rac{1}{x}$ تقبل دالة اصلية على المجال.
- f(1)=0 على $0;+\infty[$ و التي تحقق f(1)=0 على f(1)=0
 - بين أن f قابلة للاشتقاق على $+\infty$ و حدد دالتها المشتقة.
 - $[0,+\infty[$ على استنتج رتابة f على استنتج
 - (-7) لیکن a عددا حقیقیا موجبا قطعا و r عددا جذریا، بین ما یلی:
- $\forall x \in]0, +\infty[: f\left(\frac{a}{x}\right) = f(a) f(x) \text{ (ii)} \quad (\forall x \in]0; +\infty[): f(ax) = f(a) + f(x) \text{ (i)}$ $(\forall x \in]0; +\infty[): f(x^r) = rf(x)$ (iii)

تعریف

الدالة الأصلية للدالة $x\mapsto rac{1}{x}$ على $x\mapsto 0$ [التي تنعدم في 1 تسمى دالة اللوغاريتم النبيري ونرمن لها بالرمن الدالة

نتائج

- ln(1) = 0 •
- $(\forall x \in]0; +\infty[): \ln'(x) = \frac{1}{x} \bullet$
- $oldsymbol{0};+\infty$ اً تزايدية قطعاً على $]0;+\infty$
- $(\forall (x;y) \in (\mathbb{R}_+^*)^2) : x = y \Leftrightarrow \ln(x) = \ln(y) \bullet$
- $(\forall x \in \mathbb{R}_+^*) : \ln(x) = 0 \Leftrightarrow x = 1 \bullet$
- $0;+\infty[$ هي: $]0;+\infty[$ هي: $]0;+\infty[$
- $oldsymbol{\cdot}$ الدالة \ln قابلة للاشتقاق على $0;+\infty[$
 - $-10;+\infty$ [متصلة على ا $0;+\infty$
- $(\forall (x;y) \in (\mathbb{R}_+^*)^2) : x < y \Leftrightarrow \ln(x) < \ln(y) \bullet$
 - $(\forall x \in \mathbb{R}_+^*) : \ln(x) > 0 \Leftrightarrow x > 1 \bullet$
 - $(\forall x \in \mathbb{R}_+^*) : \ln(x) < 0 \Leftrightarrow 0 < x < 1 \bullet$

خاصيات

 \mathbb{C} لکل a و b من $0;+\infty$ و لکل r من \mathbb{Q} لدینا:

 $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$ (iii) $\ln\left(\frac{1}{a}\right) = -\ln(a)$ (ii)

 $\ln(ab) = \ln(a) + \ln(b) \text{ (i)}$

 $\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln(a)$ (v)

 $ln(a^r) = r ln(a)$ (iv)

ملاحظات

- $(\forall (x;y) \in (\mathbb{R}^*)^2): xy > 0 \Rightarrow \left\{ \begin{array}{l} \ln(xy) = \ln\left(|x|\right) + \ln\left(|y|\right) \\ \ln\left(\frac{x}{y}\right) = \ln\left(|x|\right) \ln\left(|y|\right) \end{array} \right.$
 - $(\forall x \in \mathbb{R}^*) : \ln(x^2) = 2 \ln(|x|)$

تمرين 1

نعطى: $1,7 = 2 \ln 2$ و 1,6 = 1. أحسب ما يلى: $\ln\left(\sqrt[3]{2}\right) \left(\mathbf{z}\right)$ $\ln\left(\frac{4}{125}\right) \left(\varphi\right)$ ln(10) (l) $\ln(\sqrt[3]{100})$ (2)

السنة الدراسية: 2020 – 2021

ثانوية الصفاء التأهيلية

$$\ln\left(\sqrt{2+\sqrt{2}}\right) - \ln\left(\sqrt{2-\sqrt{2}}\right) \ \left(\mathbf{e}\right) \ \ln\left(\sqrt{5}\right) - \ln\left(\frac{1}{\sqrt{2}}\right) \ \left(\mathbf{e}\right)$$

تمرين 2

حل في ℝ المعادلات التالية:

 $\ln(x) = 2 \, \left(1 \right)$

 $\ln(x-1) = 2 - 3\ln(2)$

$ln(x^2 - 2x - 3) = -ln(7)$ (\smile) $\ln(x) + \ln(3x+2) = \ln(2x+3)$ (د)

تمرين 3

حل في ℝ المتراجحات التالية:

 $\ln(x-1) \geq 0$

 $\ln(x+1) + \ln(3-x) < 0;$

$\ln(x^2-1) \ge \ln(4x-1)$

 $\ln\left(\frac{x-1}{x+1}\right) > 0$ $\left(\boldsymbol{\cdot}\right)$

2. دراسة دالة اللوغاريتم

نشاط 2

- 1. نقبل أن $\lim_{x \to +\infty} \ln(x) = \lim_{x \to +\infty} \ln(x)$ أحسب $\lim_{x \to 0^+} \ln(x) = +\infty$ أول هندسيا النتيجة.
- $(\forall x \in]1; +\infty[): 0 \leq \ln(x) \leq 2\sqrt{x}$ بین أن: 3
- ر أحسب $\frac{\ln(x)}{x-1}$ ثم أول هندسيا النتيجة.
- استنتج $\lim_{x \to +\infty} \frac{\ln(x)}{x}$ أول هندسيا النتيجة. 5. ضع جدول تغيرات الدالة ln. $[0;+\infty[$ على ان المعادلة $\ln(x)=1$ تقبل حلا وحيدا على ا $\ln(x)=1$
- 7. حدد معادلة المماس في النقطة ذات الأفصول e. 8. أحسب "ln و استنتج تقعر منحني الدالة ln.
 - $\cdot \left(rac{1}{e} pprox 0, 37
 ight)$ و epprox 2, 72 و منحنى الدالة epprox 0, 37 في معلم متعامد ممنظم epprox 2, 72
 - 10. بين أن $\ln x \ln(x) = 0$ و أن $\lim_{x \to 0^+} \frac{\ln(x+1)}{x} = 0$ و أن $\lim_{x \to 0^+} x^n \ln(x) = 0$. $\lim_{x \to 0^+} x^n \ln(x) = 0$. $\mathbb{N}^* \{1\}$. $\mathbb{N}^* \{1\}$. \mathbb{N}^*

دراسة

مجموعة تعريف الدالة ln $D_{ln} = \cdots$

 $\lim_{x \to +\infty} \ln(x) = \dots$ $\lim_{x \to 0^+} \ln(x) = \dots$ النهايات عند محدات مجموعة تعريف الدالة In

الدالة \ln قابلة للاشتقاق على $]\infty + \infty$ و دالتها المشتقة هي:

قابلية اشتقاق الدالة ln

 $\forall x \in]0, +\infty[: \ln'(x) = \dots$

ln

جدول تغيرات الدالة ln

الفروع اللانهائية $\ln(x) = \dots$ $\lim_{x \to 0^+} \ln(x) = \dots$ $\lim_{x \to 0^+} \ln(x) = \dots$ $\lim_{x \to +\infty} \frac{\ln(x)}{x} = \dots$ $\lim_{x \to +\infty} \frac{\ln(x)}{x} = \dots$ $\lim_{x \to 0^+} x \ln(x) = \dots$ $\lim_{x \to 0^+} \frac{\ln(x+1)}{x} = \dots$ $\lim_{x \to 0^+} \frac{\ln(x+1)}{x-1} = \dots$ $\lim_{x \to 0^+} \frac{\ln(x)}{x-1} = \dots$ $\lim_{x \to 0^+} \frac{\ln(x)}{x^n} = \dots$ $\lim_{x \to 0^+} x^n \ln(x) = \dots$ $\lim_{x \to 0^+} (10; +\infty[) = \dots$

تمرين 4

 $\lim_{x \to +\infty} x^2 + (\ln(x))^2$ (ج) $\lim_{x \to +\infty} x^2 + (\ln(x))^2$ (ب) $\lim_{x \to +\infty} 2x - \ln(x)$ (ا) $\lim_{x \to +\infty} x \ln(1 + \frac{1}{x})$ (ع) $\lim_{x \to +\infty} x \ln(1 + \frac{1}{x})$ (ع) $\lim_{x \to 0^+} x^2 + (\ln(x))^2$ (ع)

خاصية

I لتكن u دالة قابلة للإشتقاق على مجال I و لا تنعدم على u

- $(\forall x \in I): \left(\ln\left(u(x)\right)\right)' = \frac{u'(x)}{u(x)}:$ وإذا كانت 0>0 على I فإن: u>0 على المشتقة اللوغاريتمية للدالة u على u
- الدوال الأصلية للدالة $x\mapsto \frac{u'(x)}{u(x)}$ على $x\mapsto \frac{u'(x)}{u(x)}$ الدوال الأصلية للدالة $x\mapsto \frac{u'(x)}{u(x)}$

a دالة اللوغاريتم ذات الأساس

تعریف

 $a \neq 1$ و a > 0 ليكن a > 0 و المحتفيا موجبا بحيث:

 $(\forall x \in]0; +\infty[): \log_a(x) = \frac{\ln x}{\ln a}$ يلي: $\log_a(x) = \log_a(x) = \log_a(x)$ دالة اللوغاريتم للأساس a هي الدالة التي يرمن لها بالرمن

$$\log_e = \dots$$
 $\log_a(1) = \dots$ $\log_a(e) = \dots$ $\log_a(a) = \dots$

خاصيات

 $\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$ (ii) $\log_a(xy) = \log_a(x) + \log_a(y)$ (i) $(\forall r \in \mathbb{Q}) : \log_a(x^r) = r\log_a(x)$ (iv) $\log_a\left(\frac{1}{x}\right) = -\log_a(x)$ (iii)

دراسة

$$D_{\log_a} = \dots$$

 \log_a بحموعة تعريف الدالة

0 < a < 1 إذا كان $\lim_{x\to +\infty}\log_a(x)=\dots$ a>1 الله المحافظة المحاف

 \log_a النهايات عند محدات مجموعة تعريف الدالة

 $\lim_{x\to +\infty}\log_a(x)=\dots \lim_{x\to 0^+}\log_a(x)=\dots \dots$

الدالة \log_a قابلة للاشتقاق على $0; +\infty$ و دالتها المشتقة هي:

قابلية اشتقاق الدالة In

 $\forall x \in]0, +\infty[: \log'_a(x) = \dots$

0 < a < 1 کان

جدول تغيرات الدالة log_a

 \boldsymbol{x} \log_a

a > 1 کان

x	
\log_a	

$$(\forall b \in \mathbb{R}) : \log_a(x) = b \Leftrightarrow x = a^b$$

نتيجة

تعریف

نسمي دالة اللوغاريتم العشري الدالة اللوغاريتمية ذات الأساس 10 و نرمز لها بالرمز log عوض log،

