- 1. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated at least on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that a fluorine-delivering etching gas, containing at least one of the compounds selected from the group ClF₃, BrF₃, or IF₅, is added, at least from time to time, to the process gas.
- 2. The method according to Claim 1, characterized in that at least one gas selected from the group SiF_4 , C_4F_5 , C_3F_6 , C_4F_{13} , C_4F_8 , or C_2F_4 , is also added to the process gas, at least from time to time, as the gas forming the passivating material.
- 3. The method according to Claim 1, characterized in that at least one gas selected from the group O_2 , N_2O , NO, NO_x , CO_2 , Ar, NO_2 , or N_2 is added, at least from time to time, to the process gas.
- 4. The method according to Claim 1, characterized in that at least one additive, in particular, CHF₃, CF₄, C₂F₆, C₃F₆, C₄F₈, C₄F₁₃, C₃F₈, a fluoroalcane, or NF₃, consuming the passivating material, in particular, SiO₃ or a teflontype material, is added, at least from time to time, to the process gas.
- 5. The method according to Claim 1, characterized in

that a light and easily ionizable gas, in particular H_2 , He, or Ne, is added, at least from time to time, to the process gas.

- 6. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated at least on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that NF, is added to the process gas, at least from time to time, as an additive NF, consuming the passivating material, in particular, SiO₂ or a teflon-type material.
- 7. The method according to Claim 6, characterized in that a fluorine-delivering etching gas, containing at least one of the compounds selected from the group SF_6 , ClF_3 , BrF_3 , or IF_5 , is added, at least from time to time, to the process gas .
- 8. The method according to Claim 6, characterized in that at least one gas selected from the group SiF_4 , C_4F_8 , C_3F_6 , C_4F_{10} , C_3F_8 , or C_2F_6 is added to the process gas, at least from time to time, as the gas forming the passivating material.
- 9. The method according to Claim 6, characterized in that at least one gas selected from the group O_2 , N_2O , NO_2 , NO_2 , NO_2 , or N_2 is added, at least from time to time, to the process gas.

- 10. The method according to Claim 6, characterized in that a light and easily ionizable gas, in particular H_2 , He, or Ne, is added, at least from time to time, to the process gas.
- 11. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that a light and easily ionizable gas, in particular H_2 , He, or Ne, is added, at least from time to time, to the process gas.
- 12. The method according to Claim 11, characterized in that at least one fluorine-delivering etching gas, containing at least one of the compounds selected from the group SF_6 , ClF_3 , BrF_3 , or IF_5 , is added, at least from time to time, to the process gas.
- 13. The method according to Claim 11, characterized in that at least one gas selected from the group SiF_4 , C_4F_8 , C_3F_8 , C_4F_{10} , C_3F_8 , or C_2F_6 is added to the process gas, at least from time to time, as the gas forming the passivating material.
- 14. The method according to Claim 11, characterized in that at least one gas selected from the group O_2 , N_2O , NO, NO_{\times} , CO_2 , Ar, NO_2 , or N_2 is added, at least from time to time, to the process gas.

- 15. The method according to Claim 11, characterized in that at least one additive, in particular, CHF₃, CF₄, C₂F₆, C₃F₆, C₄F₁₀, C₃F₈, a fluoroalcane, or NF₃, consuming the passivating material, in particular, SiO₂, or a teflon-type material, is added, at least from time to time, to the process gas.
- 16. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that at least one fluorine-delivering etching gas, containing at least one of the compounds selected from the group ClF3, BrF3, or IF5, is added, at least from time to time, to the process gas; NF3 is added to the process gas, at least from time to time, as an additive consuming the passivating material, and a light and easily ionizable gas, in particular H2, He, or Ne, is added, at least from time to time, to the process gas.
- 17. The method according to Claim 16, characterized in that at least one gas selected from the group SiF_4 , C_4F_8 , C_3F_6 , C_4F_{10} , C_3F_8 , or C_2F_6 is added to the process gas, at least from time to time, as the gas forming the passivating material.
- 18. The method according to Claim 16, characterized in that at least one gas selected from the group O_2 , N_2O , NO_2 , NO_2 , NO_2 , or N_2 is added, at least from time to time, to the process gas.