Multimedia Databases Access Structures

Prof (FH) PD Dr. Mario Döller

Literature

Books

 Hanan Samet; Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann Publishers, 2006, ISBN: 978-0-12-369446-1.

 K. Selcuk Candan, Maria Luisa Sapino; Data Management for Multimedia Retrieval, Campridge University Press, 2010, ISBN: 978-0-521-88739-7

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Introduction

- Content-based retrieval in Multimedia database systems bases on the use of signature vectors.
- Low-level features of an image (ex.: color distributions) are described by signature vectors.
- Signature vectors are automatically computed from the data.

Signature Vectors

Example of Signature vector: greyscale-histogram of an image

Computation of Index Structures

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Reduction of Dimensionality

- Goal: Signature vector with fewer dimensions but preserving the distance.
- Why?: efficiency of the index structures decreases with the dimensionality:
 - Curse of Dimensionality: sequential scan is faster than searching in the index structure.
- Means:
 - Transformations
 - Space filling curves

Reduction of Dimensionality through Transformations I

- Change the basis of the vectors
- Conversion in orthonormal vectors
- After transformation, possible to distinguish between coefficients with high and low influence
- The non important coefficients are deleted
- A signature vector with less dimensions is obtained

Reduction of Dimensionality through Transformations II

Transformation	Application
Karhunen-Loeve	clustered data
Fourier bzw. FFT	periodic data
Wavelet	discrete data
DCT	locally correlated data

Reduction of Dimensionality through Space Filling curves I

- Multidimensional space represented by a single curve.
- Create a d-dimensional point in a one-dimensional space, such that the multidimensional order is kept (as much as possible)
- Enables the use of a one-dimensional index structure.
- Examples:
 - Hilbert curve
 - Z-Ordering

Reduction of Dimensionality through Space Filling curves II

Example: Hilbert curves

Reduction of Dimensionality through Space Filling curves III

Example: Z-curves

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Multi-dimensional access structures Classification

- Secondary storage algorithms:
 - R-tree (and its variants)
 - VA-file
- Main memory algorithms:
 - quadtrees
 - kd-trees
 - Locality Sensitive Hashing

Multimedia Databases

17

Multidimensional Access Structures

- R-tree and its variants are among the most effective index trees for multidimensional index structures.
- R-tree is a generalization of the B-trees for multidimensional spaces.
- Each node is described by its MBR (Minimum Bounding Rectangle).
- A MBR contains all objects inside a node (signature vectors and sub-trees)

Access Structures: History

Secondary Storage Algorithms R-tree I

Secondary Storage Algorithms R-tree II

- Overlapping MBRs reduce the efficiency of R-trees.
- Variants of the R-tree:
 - R+-tree
 - R*-tree
 - SS-tree
 - SR-tree
 - TV-tree
 - X-tree

Secondary Storage Algorithms R+ - tree

- No overlap of MBRs allowed in R+-tree.
- An object is added to all nodes which MBR it overlaps.
- Improved search efficiency (compared to R-tree).

Height of the tree is higher compared to R-tree.

Secondary Storage Algorithms

R* - tree

- Overlap of MBRs allowed.
- More efficient than R-tree.

- Reason: modified add- and split strategies.
- If a node is full: forced re-add.
- Split algorithm not called directly, instead: try to delete then re-add existing entries.

Secondary Storage Algorithms SS-tree

- R*-tree and SS-tree very similar.
- Bounding box is a circle.
- By adding, the tree is ordered on the basis of the similarity of circular bounding boxes.
- Better performance than the R*-tree.

Secondary Storage Algorithms SR-tree

- Enhancement of the R*-trees and of the SS-trees.
- Bounding Box is a combination of rectangles (cf. R*-tree) and circles (cf. SS-tree).
- Divide the objects in smaller, disjoint regions.
- Efficient search.
 - Details see later.

Secondary Storage Algorithms TV-tree I

- Varying number of dimensions for indexing.
- Used dimensions depend on:
 - number of the objects to index.
 - current tree height.
- Node closer to the root: consider less dimensions.
- Actually used dimensions computed with telescope function.

Secondary Storage Algorithms TV-tree II

- Overlaps allowed
 - Problems for nodes that use dimensions for indexing

Next problem: first dimensions often contain the same value

Secondary Storage Algorithms X-tree

eXtended tree.

- Splitting is avoided as much as possible.
- Made possible by supernode -> double capacity from "normal" node.
- Splitting using split history -> find split with minimal overlap.
- More efficient than TV-tree and R*-tree

Secondary Storage Algorithms

Multi-Feature Access Structures

- Previously introduced access structures target on one feature space (e.g. feature vector for color or texture).
- By indexing several feature vectors several access structures are needed.
- Multi-feature access structure support indexing several feature vectors in one access structure
 - M-tree and M2-tree[1,2]

[1] P. Ciaccia and M. Patella. The M2-Tree: Processing Complex Multi-Feature Queries with Just One Index. In Proceedings of the First DELOS Network of Excellence Workshop on Information Seeking, Searching and Querying in Digital Libraries, Zurich, Switzerland, 2000.

[2] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity Search the Metric Space Approach, volume 32 of Advances in Database Systems, chapter 3. Springer Verlag, 2006.

- TempoM2: Access structure for multifeature temporal search in video repositories
- Data model: a Video is defined as: $V = \{VS_1, VS_2, ..., VS_n\}$, $n \in \mathbb{N}$ and features a partial order over the video segments: $VS_x, VS_y \in V \land VS_x \neq VS_y | VS_x \leq VS_y$ (due to overlapping and temporal wholes).

- Consists of two levels:
 - First level bases on multi-feature M^2 -tree
 - Indexing multiple low-level features of VS_x .
 - Balanced tree where all VS_x are leaf nodes.
 - Used for content-based search.
 - Second level represents temporal relations among the video segments.
 - Requires total order over video segments

[3] Mario Döller, Florian Stegmaier, Simone Jans and Harald Kosch. **T empoM2: A Multi Feature Access Method for Temporal Video Search.** *In Proceedings of the 18th International Conference on Multimedia Modelling.*January 4-6, Klagenfurt, Austria, 2012.

- Total order over video segments is realized by introducing a container node Con_x with the following characteristic:
 - Every container node has a time interval $[Con_x.start, Con_x.end]$
 - For all VS_j covered by Con_x the following must hold: $\forall VS_j \in Con_x$: VS_j . $start \geq Con_x$. $start \wedge VS_j$. $end \leq Con_x$. end
 - Relation to neighboring container:
 - Let Con_i be the parent node of Con_x , then: Con_i . $start \leq Con_x$. $start \wedge Con_i$. $end \geq Con_x$. end
 - Let Con_i be the left neighbor node of Con_x at the same level then: Con_i . $end \leq Con_x$. start

 Total order over video segments for example video of previous slide:

Multi-Feature Access Structures

TempoM2 - Search

 Is triggered by three input parameters according to the TemporalQuery type of the MPEG Query Format:

sourceResource, targetResource, relation

Example Query:

freeKicks -> precedes-> goalScene

Note: the targetResource element is optional

Multi-Feature Access Structures

TempoM2 - Search

- Evaluation of Temporal Search
 - I. Similarity Search over the M^2 -tree to receive two video segment lists: $S = \{VS_i, ..., VS_m\}$ for the sourceRelation and $T = \{VS_j, ..., VS_n\}$ for the targetRelation.

Example: $S = \{VS_c, VS_s\}$ and $T = \{VS_g, VS_t, VS_o\}$

Multi-Feature Access Structures

TempoM2 - Search

- II. Temporal Search for all elements of the set *S* according to the direction of the temporal relation until an element of set *T* is found.
 - I. Due to total ordering navigation direction is either horizontal (e.g., follows, meets, precedes, etc.) or vertical (e.g., starts, finishes, contains, etc.)
 - II. Due to total ordering the following pruning criteria (excerpt) can be applied, where container node Con_N and $VS_x \in S$:
 - During: Con_N . $end \leq VS_x$. $start \vee Con_N$. $start \geq VS_x$. end
 - Overlaps: VS_x . end ≥ Con_x . end
 - Starts: VS_x . end $\geq Con_x$. end $\forall VS_x$. start $\leq Con_x$. start

— ...

Main memory algorithms Quadtree

Simplest spatial structure on Earth!

Main memory algorithms Quadtree

Split the space into 2^d equal subsquares

Repeat until done:

- only one pixel left
- only one point left
- only a few points left

Variants:

- split only one dimension at a time
- k-d-trees (in a moment)

Quadtree – Range Search

- Near neighbor (range search):
 - put the root on the stack
 - repeat
 - pop the next node *T* from the stack
 - for each child C of T:
 - if C is a leaf, examine point(s) in C
 - if C intersects with the ball of radius r around q, add C to the stack

Main memory algorithms Quadtree - Problems

- Simple data structure
- Versatile, easy to implement
- Problems?
 - Empty spaces: if the points form sparse clouds, it takes a while to reach them
 - Space exponential in dimension
 - Time exponential in dimension, e.g., points on the hypercube

Main memory algorithms K-d tree [4]

[4] J. L. Bentley: *Multidimensional binary* search trees used for associative searching. Communications of the ACM 18, 9 (September 1975), S. 509–517.

Main ideas:

- only one-dimensional splits
- instead of splitting in the middle, choose the split "carefully" (many variations)
- near(est) neighbor queries: as for quadtrees

Advantages:

- no (or less) empty spaces
- only linear space

Exponential query time still possible

Locality-Sensitive Hashing [5]

- Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.
- has been shown to be the most promising solution to Approximate NN search [5] A. Gionis, P. Indyk, and R. Motwani.

Similarity search in high dimensions via hashing. In VLDB, pages 518-529, 43 1999.

Locality-Sensitive Hashing

Partition into Bands.

Locality-Sensitive Hashing

- Partition into Bands
 - Divide matrix M into b bands of r rows.
 - For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.
 - Candidate column pairs are those that hash to the same bucket for ≥
 1 band.
 - Tune b and r to catch most similar pairs, but few non similar pairs.

Locality-Sensitive Hashing

Locality-Sensitive Hashing

The hashing function of LSH to produce Hash Code

$$h_{\boldsymbol{r}}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \boldsymbol{r}^T \boldsymbol{x} \ge 0\\ 0, & \text{otherwise} \end{cases}$$

 ${m r}^T{m x} \ge 0$ is a hyperplane separating the space (next page for example)

Locality-Sensitive Hashing

- Take random projections of data
- $\boldsymbol{r}^T \boldsymbol{x}$
- Quantize each projection with few bits

Locality-Sensitive Hashing - Search

A set of data points Hash function Search the hash table for a small set of images << N Hash table 110101 110111 111101 New query

Locality-Sensitive Hashing – State of the Art

- Drawback of original LSH
 - hundreds of or even more hash tables are constructed, which causes a huge space requirement
- To reduce the number of hash tables, Multi-Probe LSH [6] was proposed, which could find more similar points from a single hash table by exploring the buckets near the one into which the query point falls
- C2LSH [7] proposes an interesting method to collect candidate points, called dynamic collision counting.
- SortingKeys-LSH (SK-LSH) [8], which verifies candidates in the unit of disk page. As points with close compound hash keys are arranged together in the disk space, only a small number of disk page accesses are required

Main memory algorithms Locality-Sensitive Hashing – State of the Art

[6] A. Joly and O. Buisson. A posteriori multi-probe locality sensitive hashing. In ACM Multimedia, pages 209-218, 2008.

[7] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality sensitive hashing scheme based on dyanmic collision counting. In SIGMOD, pages 541-552, 2012.

[8] Yingfan Liuz, Jiangtao Cuiz, Zi Huangx, Hui Liz, Heng Tao Shen. SKLSH: An Efficient Index Structure for Approximate Nearest Neighbor Search. In Proceedings of the VLDB Endowment, 7(9):745-756, 2014.

Content-based Queries

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Types of Queries for MMDB I

- Similarity query:
 - For a given object
 - k most similar searched
 - generalization of the k-Nearest-Neighbor-Search (k-NN Search)
 - Algorithms correspond to those for NN-Search
 - But additional option: ignore a node if its distance to the query vector is too high

Types of Queries in MMDB II

- Range query:
 - For a given region
 - Search all objects that intersect with the region
 - Reduce the computation time by ignoring nodes
 - -> nodes which intersection with query space is lower than a threshold
 - Near neighbor (range search): find one/all points in P within distance r from q
 - Approximate near neighbor: find one/all points p' in P, whose distance to q is at most $(1+\varepsilon)$ times the distance from q to its nearest neighbor

Nearest-Neighbor-Search I

- Consider as a type of range query.
- Variable radius.
- Condition: the nodes are enclosed in Minimum-Bounding-Rectangles (MBR).
- Given for R-trees (and variations).
- Fast search requires fast reduction of the radius.

Nearest-Neighbor-Search II

- Reduction of the radius:
 - Order not yet visited nodes in priority queue
 - First visit nodes in first positions
- Priority determined from:
 - minimal distance between query point and node's center
 - minimal distance between query point and node
 - minimizing the maximal distance

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

Case study: The SR-tree as an Example of Index Structure in Multimedia Databases

•The SR-tree is an index structure for high-dimensional Nearest-Neighbor-search

SR-tree: Introduction

- SR-tree stands for "Sphere/Rectangle-tree".
- is an extension of the R*-trees and of the SS-trees.
- The regions (bounding boxes) of the SR-tree correspond to intersections of rectangles (bounding rectangles) and circles (bounding spheres).

Structure of R*-trees

Structure of SS-trees

Regions of an SR-tree

- The diameter of a region in an SR-tree is comparable with:
 - The diameter of a bounding sphere of SS-trees
 - The diagonal of a bounding rectangles of R*-trees

Properties of SR-trees I

- Bounding rectangles divide the points in regions with lower volumes. They usually have a higher diameter than bounding spheres, especially in high-dimensional spaces.
- Bounding spheres divide the points in regions with lower diameters. They usually have a higher volume than bounding rectangles.

Properties of the SR-trees II

- SR-trees combine the use of bounding spheres and bounding rectangles
- The properties of both types of regions are complementary, thus allowing their diameters to divide points in regions with lower volumes and diameters

Comparison of R*-tree, SS-tree and SR-tree

	R*-tree	SS-tree	SR-tree
Shape of region	Rectangle	Circle	Intersection of rectangle and circle
Tree construction strategy	Minimize volumes and overlaps	Minimize diameters	Minimize diameters
Diameter	4	1	1
Volume	60	10 ⁹	1

^{*} The values for diameter and volume were determined from a test performed with 16-dimensional data points.

The structure of SR-trees

Insertion Algorithm

- The insertion algorithm of SR-trees is based on that of the SS-trees, which makes use of the center of the bounding spheres.
- By searching, when going down in the data structure, the subtree with the most similar center to the new entry is selected.
- In the case of SR-trees, both regions (bounding spheres and bounding rectangles) are updated.

Delete Algorithm

- The delete algorithm of SR-trees is similar to that of R-trees.
- When removing an entry that causes no underfilling of leaves/nodes, the entry is simply removed without any other action.
- Otherwise, the underfilled leaves/nodes are removed and all corresponding entries are added again.

Nearest-Neighbor-Search with SR-tree

- The algorithm performs an ordered depth search.
- A number of points that are the closest to the query point are found, and a set of candidates is built.
- The set of candidates is inspected by visiting each leaf which region overlaps the set of candidates.
- Once all leaves have been visited, the last candidate is returned as the result.

Nearest-Neighbor-Search – Definition I

- Minimal distance (MINDIST):
 Euclidian distance between the query point and the region
- Minimax-distance (MINMAXDIST):
 minimal value of all maximal distances between the query
 point and the corresponding points on all n axes

Nearest-Neighbor-Search – Definition II

Pruning When Searching in SR-trees I

- Pruning enables to identify subtrees that cannot possibly contain the searched object. They are then excluded from further processing in order not to be searched in vain.
- A region R1 is excluded if its MINDIST is higher than the MINMAXDIST of another region R2: indeed it cannot possibly contain the nearest neighbor (downward pruning).

Pruning When Searching in SR-trees II

- If the actual distance from query point P to a given object O is higher than the MINMAXDIST of a region, the object is excluded (upward pruning).
- A region with a MINDIST higher than the actual distance from query point P to an object O is excluded (upward pruning).

Recursive Procedure Nearest-Neighbor-Search I (Leaf Node)

```
If Node.type = LEAF then
  For I := 1 to Node.count
   /* Compute distance of points to region */
   dist := objectDist(Pt, Node.region)
   /* if the computed distance is lower than the distance to the
previous region, the leaf is nearest neighbour */
   if (dist < Nearest.dist) then
        Nearest dist := dist
        Nearest.region := Node.region
```

Recursive Procedure Nearest-Neighbour-Search II (Inner Nodes)

```
/* Not a leaf node =>
  order, sort, apply pruning & search next node */
Flse
  createSonsList(Point, node, sonsList)
/* Sort list, so that the next son is first selected */
  sortSonsList(sonsList)
  /* Apply downward pruning */
  number = pruneSonsList(node, point, Next, sonsList)
  For I := 1 to number
      nodeNew := node.currentSon
      /* Continue searching in the branch of the next son */
      nearestNeighborSearch(nodeNew, point, Next)
     /* Apply upward pruning */
   number := pruneSonsList(node, point, Next, sonsList)
```

Strengths of SR-trees

- SR-tree divides points in regions with small volume and low diameter.
- Putting the points in smaller regions improves their disjunctivity.
- Smaller volumes and diameters increase the performance of the Nearest-Neighbor-Search

Weaknesses of SR-trees

- Higher cost of creation.
- The size of the nodes increases with the dimensionality.
- Reducing the bifurcations can require reading more nodes when executing queries.
- Performance of query execution may suffer as a result.

Table of Contents

Access Structures

- 1 Introduction
- 2 Reduction of Dimensionality
- 3 Multidimensional Access Structures
- 4 Types of Queries
- 5 Example: SR-tree
- 6 Generalized Search Tree Framework (GiST)

GiST – Generalized Search Tree Framework

- http://gist.cs.berkeley.edu/
- The Generalized Search Tree (GiST) provides an abstraction of the "type of tree" actually used (from the previously presented B+ tree and R-tree variants).
 - Similarities in insert/delete/search and even "concurrency control" enable the use of "templates".
 - B+ trees are extremely important (and simple enough to be specialized), in practice they are available in all commercial DBMSs.
 - GiST offers an alternative for the integration of various types of trees in an ORDBMS.

Starting Position

 Problems of previous solutions: "Concurrency" and "Recovery" must be re-implemented for each new search tree.

Generalized Search Tree: Overview

- Generalized Search Tree (GiST) = "template index structure"
 - Extensible set of datatypes and queries
 - Examples available in downloadable package:
 B-trees, R-trees, SR-tress ...
 - Details: Hellerstein, Naughton, Pfeffer, VLDB '95

GiST offers:

- A "basic structure": height-balanced tree
- Template algorithms: search, insert and delete
- No limitation wrt. keys and their distribution on a node

Generalized Search Tree: Comparison

Current research paper in this direction:

- 1. Stefan Sprenger, Patrick Schäfer, Ulf Leser; BB-Tree: A main-memory index structure for static multidimensional workloads; In Proceedings of the Int. Conf. on Data Engineering; Macau, China; 2019
- 2. Angjela Davitkova, Evica Milchevski, Sebastian Michel; The ML-Index: A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor Queries; In Proceedings of the 23rd International Conference on Extending Database Technology (EDBT); 2020
- 3. Stefan Sprenger, Patrick Schäfer, Ulf Leser; Multidimensional range queries on modern hardware; In Proceedings of the 30th International Conference on Scientific and Statistical Database Management; 2018

The end