You must justify your answers to receive full credit.

- 1. Let V be a vector space over \mathbb{F} and $\sigma \in L(V, V)$. Let $\alpha \in V$ be an eigenvector of σ with eigenvalue λ .
 - a) Show that α is an eigenvector of σ^n with eigenvalue λ^n (for $n=1,2,\ldots$).

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n$, for some $a_i \in \mathbb{F}$.

- b) Show that α is an eigenvector of $f(\sigma)$ with eigenvalue $f(\lambda)$.
- c) Show that, if $f(\sigma) = 0$ (zero function), then $f(\lambda) = 0$ (zero number).
- 2. Let $C^0(\mathbb{R})$ denote the vector space of continuous functions on \mathbb{R} . Consider $\sigma: C^0(\mathbb{R}) \to C^0(\mathbb{R})$ given by

$$\sigma(f)(x) = f''(x) + f(x) + f(0).$$

- a) Show that, for each n, the function $f(x) = \sin(nx)$ is an eigenvector of σ , and find its corresponding eigenvalue.
- b) Let $W = P_{<3}(\mathbb{R})$ be the subspace of polynomials with degree less than 3. Find three linearly independent eigenvectors of the restriction $\sigma|_W$. (Click here for a hint)
- 3. Consider

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 1 & -2 \\ -4 & 3 & 3 & -2 \\ -2 & 2 & 1 & 0 \end{pmatrix}.$$

You are given that the characteristic polynomial of A is $\chi_A(x) = (x-2)^4$. Find the Jordan form J of A and find a matrix P such that $P^{-1}AP = J$. (You do **not** need to find P^{-1} .) (You may use an online RREF calculator, but remember you only have an ordinary calculator in the exams.)

4. Consider

You are given that $(B-I)^2 = 0$. (Hint: so what are the eigenvalues of B?) Find the Jordan form J of B and find a matrix P such that $B = PJP^{-1}$. (You do **not** need to find P^{-1} .)

- 5. Consider $n \times n$ complex matrices A and B.
 - a) Show that A, B are similar if and only if they have the same Jordan form. (Click here for a hint)
 - b) Let n = 3. Show that A, B are similar if and only if they have the same characteristic polynomial and the same minimal polynomial. (Click here for a hint)
 - c) Let n = 4. Give a counterexample to show that the second sentence of part b) is false.
- 6. Find, with explanation, all the possible Jordan forms of the following matrices:
 - a) The characteristic polynomial of A is $-(x-2)^3(x+7)^2$, and the minimal polynomial of A has degree 3.
 - b) The characteristic polynomial of B is $-(x-3)^5$, and $\ker(B-3I)$ is 3-dimensional.
 - c) The characteristic polynomial of C is $(x+2)^4(x-1)^2$, and $\ker(C+2I)^2$ is 3-dimensional.

The following two questions are to prepare you for upcoming classes, and is unrelated to the material from recent classes.

7. Consider the subspace W of \mathbb{R}^3 :

$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\}.$$

- a) Find an orthogonal basis for W.
- b) Find a basis for W^{\perp} , the orthogonal complement of W.
- 8. Consider

$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}.$$

Note that $\{\alpha_1, \alpha_2, \alpha_3\}$ is an orthogonal basis of \mathbb{R}^3 .

- a) Find the length of β .
- b) By computing dot products, express β as a linear combination of $\alpha_1, \alpha_2, \alpha_3$.

Optional question If you attempted seriously all the above questions, then your scores for the following question may replace any lower scores for one of the above questions.

- 9. Let V be a finite-dimensional vector space, and $\sigma, \tau \in L(V, V)$.
 - a) Suppose σ and τ are simultaneously diagonalisable, i.e. there is a basis of V that are eigenvectors for both σ and τ (with maybe different eigenvalues). Show that $\sigma \circ \tau = \tau \circ \sigma$. (Hint: consider the image of the eigenvectors under $\sigma \circ \tau$.)
 - b) Suppose σ, τ are diagonalisable, and $\sigma \circ \tau = \tau \circ \sigma$. Show that σ and τ are simultaneously diagonalisable. (Hint: first show that each eigenspace of σ is invariant under τ . Then use that the restriction of τ to these eigenspaces is diagonalisable.)
- 10. Let $C^0(\mathbb{R})$ be the vector space of continuous functions on \mathbb{R} . Show that $\sigma: C^0(\mathbb{R}) \to C^0(\mathbb{R})$ given by

 $\sigma(f)(x) = \int_0^x f(t) \, dt$

does not have any eigenvalues.