学生须将答案写在此线以下

密封线

鲁东大学 2022 — 2023 学年第一学期

2021 级 通信工程、电子信息工程、电气工程及其自动化专业 本科卷 A 课程名称 <u>模拟电子技术</u>

课程号(2220180152) 考试形式(闭卷) 时间(120分钟)

题目	_	=	总 分	统分人	复核人
得分					

得分评卷人

一、半导体器件特性及基本电路。 本题共 3 小题, 满分 25 分。

1. (6分)一个三极管放大电路,电源电压为24V,若有三只管子可供选用,其参数如表1所示,请从中选用一只,并简述理由。

表 1						
三极管参数	T ₁ 管	T ₂ 管	T ₃ 管			
β	80	100	150			
$I_{\mathrm{CBO}}/\mu\mathrm{A}$	0.01	0.1	0.02			
$V_{\rm BR(CEO)}/{ m V}$	50	50	20			

- 2. (10分)设二极管的正向压降可以忽略不计。请回答下列问题:
 - (1) 判断图 1(a)中二极管 D 的工作状态,并计算电阻通过的电流 I。
 - (2) 判断图 1(b)中二极管 D_1 、 D_2 的工作状态,并求出 V_{AO} 。

3. **(9分)** 图 2 所示为 MOS 管的转移特性,请分别说明各属于何种类型的 MOS 管。 并指出它们的阈值电压各为多少?(图中 *i*_D的参考方向是它的实际方向。)

得分 评卷人

二、模拟电路综合分析。本题共7小题,满分75分。

- **1.** (**15** 分)图 3 电路中 R_{b1} =30k Ω , R_{b2} =10k Ω , R_c =2.7k Ω , r_{bb} '=300 Ω , R_e =1k Ω , R_L =5.1k Ω , V_{cc} =12V, β =100, V_{BE} =0.7V。
- (1) 画出直流通路, 求 V_{BQ} 、 I_{BQ} 、 I_{CQ} 、 V_{CEQ} ;
- (2) 画出小信号等效电路, 求 r_{be} ;
- (3) 求电压放大倍数 A_v 、输入电阻 R_i 、输出电阻 R_o 。

3. (12 分)设图 5 中的集成运放为理想器件,且工作于线性区,求 $v_{\rm o}$ 的值。要求在图中标注相应的电流,写出具体计算过程。

- **2.** (12 分) 图 4 电路中, V_{DD} =5V, R_d =3.5kΩ, R_{g1} =60kΩ, R_{g2} =40kΩ。FET 的参数 V_{TN} =1V, K_n =0.8mA/V², λ =0。当 MOS 管工作于饱和区,求:
- (1) 静态工作点 (V_{GSQ} , I_{DQ} , V_{DSQ});
- (2) 画出小信号等效电路;
- (3) 求互导 g_m ,电压放大倍数 A_v ,输入电阻 R_i 、输出电阻 R_o 。

- 4. (8分) RC 正弦波振荡电路如图 6 所示,请回答下列问题:
- (1) 欲使该电路稳定振荡, R_f 和 R_1 应满足什么关系?
- (2) 为实现稳幅, $R_{\rm f}$ 通常用热敏电阻 $R_{\rm t}$ 代替, $R_{\rm t}$ 应选取正温度系数还是负温度系数?
- (3) R=16kΩ, C=0.01μF 时,求振荡频率 f_{0} 。
- (4) 该电路产生的信号频率范围是多少?

- 5. (10分) 乙类互补对称功率放大电路如图 7 所示, v_i 为正弦波,设 $\pm V_{CC}$ = ± 12 V, R_L = 8Ω ,忽略 BJT 的饱和压降 V_{CES} ,求:
 - (1) 负载 R_L 上能够得到的最大输出功率 P_{om} ;
 - (2) 每个管子的最大管耗为多少?
 - (3) 该电路的理想效率 η 为多少?
 - (4) 若所提供的功率 BJT 的极限参数为 $I_{CM}=3A$,

 $\left|V_{(BR)CEO}\right|$ =30V, P_{CM} =6W,请判断能否满足要求? 并说明理由。

- 6. (8分) 图 8 为反馈放大电路,请回答下列问题:
 - (1) 判断(a)中运放 A_2 、 R_3 引入的交流反馈组态,并说明该反馈是否能够稳定输出电流?
 - (2) 判断(b)中 R_6 引入的交流反馈组态,并说明该反馈对反馈环内的输入电阻有何影响?

- 7. (10 分) 恒流源式差分电路如图 9 所示,已知 T_1 、 T_2 的 β =60, V_{BE} =0.7V, r_{bb} '=300 Ω , I_0 =1.2mA, R_{c1} = R_{c2} =10 k Ω , R_L =12 k Ω , V_{CC} =+12V, $-V_{EE}$ =-12V。试求:
- (1) 电路处于静态时的 I_{CI} 、 V_E 、 V_{CEI} ;
- (2) 双端输入、双端输出时,差模电压放大倍数 A_{vd} 、差模输入电阻 R_{id} 、输出电阻 R_{o} 。

第5页 共6页 第6页 共6页