

Pré-requisitos para Lógica, Teoria dos Conjuntos, Indução e Integração

Contents

1	Intr	roduçã				
	1.1	Opera	ções Fundamentais			
		1.1.1	Adição			
		1.1.2	Subtração			
		1.1.3	Multiplicação			
		1.1.4	Divisão			
	1.2	Propri	iedades das Operações			
		1.2.1	Comutatividade			
		1.2.2	Associatividade			
		1.2.3	Distributividade			
	1.3	Opera	ções Inversas			
	1.4	Equaç	ões e Inequações			
		1.4.1	Equações Lineares			
		1.4.2	Equações Quadráticas 6			
		1.4.3	Resolução de Inequações			
	1.5	Concl	usão			
2	Funções e Gráficos					
	2.1	Defini	ção de Função			
		2.1.1	Domínio, Contradomínio e Imagem 8			
		2.1.2	Tipos de Funções			
		2.1.3	Exemplos de Funções			
	2.2	Gráfic	os de Funções			
		2.2.1	Esboço de Gráficos de Funções Elementares 10			
		2.2.2	Interpretação Geométrica das Soluções			
		2.2.3	Conclusão			

3	Cor	ajuntos e Relações	14		
	3.1	Conjuntos	14		
	9	3.1.1 Noções Básicas de Conjuntos			
		3.1.2 Subconjuntos, Conjuntos Finitos e Infinitos			
	3.2	Relações e Funções			
	J	3.2.1 Relações Binárias			
		3.2.2 Funções como Casos Especiais de Relações	16		
	3.3	Conclusão	16		
			17		
4	Sequências e Progressões				
	4.1	Progressão Aritmética (PA)	17		
	4.2	Progressão Geométrica (PG)	18		
5	Trigonometria Básica				
0	5.1	Funções Trigonométricas	18 18		
	5.2	Equações Trigonométricas			
	5.3	Conclusão	20		
	~		20		
6	Cálculo Diferencial				
	6.1	Derivadas			
		6.1.1 Regras de Derivação			
	6.2	Aplicações de Derivadas			
	6.3	Conclusão	22		
7	Cor	nclusão	23		

1 Introdução

Este documento apresenta os conceitos fundamentais necessários para o estudo de lógica, teoria dos conjuntos, indução e integrais. Ele abrange tópicos matemáticos básicos que servirão como base para o estudo avançado dessas áreas.

1.1 Operações Fundamentais

As operações fundamentais são as bases sobre as quais a álgebra e a matemática avançada são construídas. Elas incluem adição, subtração, multiplicação e divisão. Além disso, as propriedades dessas operações desempenham um papel crucial na simplificação e resolução de expressões matemáticas.

1.1.1 Adição

A adição é uma operação que combina dois números (ou termos) para formar um único número chamado soma.

$$a + b = c$$

onde a e b são números reais, e c é a soma.

Exemplo:

$$3 + 5 = 8$$

1.1.2 Subtração

A subtração é o processo de remover um valor de outro, resultando na diferença.

$$a - b = c$$

onde a e b são números reais, e c é a diferença.

Exemplo:

$$7 - 4 = 3$$

1.1.3 Multiplicação

A multiplicação é uma forma de adição repetida, onde um número é somado a si mesmo várias vezes.

$$a \times b = c$$

onde a e b são números reais, e c é o produto.

Exemplo:

$$4 \times 3 = 12$$

1.1.4 Divisão

A divisão é a operação inversa da multiplicação. Ela distribui um número em partes iguais.

$$a \div b = c$$

onde a é o dividendo, b é o divisor, e c é o quociente.

Exemplo:

$$12 \div 4 = 3$$

1.2 Propriedades das Operações

As operações de adição e multiplicação seguem certas propriedades que tornam a manipulação de expressões mais fácil e confiável.

1.2.1 Comutatividade

A propriedade comutativa afirma que a ordem dos números em uma operação não afeta o resultado.

• Adição: a + b = b + a

• Multiplicação: $a \times b = b \times a$

Exemplo:

$$5 + 3 = 3 + 5 = 8$$

$$4 \times 2 = 2 \times 4 = 8$$

1.2.2 Associatividade

A propriedade associativa indica que a maneira como os números são agrupados em uma operação não altera o resultado.

• Adição: (a + b) + c = a + (b + c)

• Multiplicação: $(a \times b) \times c = a \times (b \times c)$

Exemplo:

$$(2+3)+4=2+(3+4)=9$$

$$(2 \times 3) \times 4 = 2 \times (3 \times 4) = 24$$

1.2.3 Distributividade

A propriedade distributiva conecta as operações de multiplicação e adição. Ela afirma que multiplicar um número por uma soma é o mesmo que multiplicar o número por cada parcela e depois somar os resultados.

$$a \times (b+c) = a \times b + a \times c$$

Exemplo:

$$2 \times (3+5) = 2 \times 3 + 2 \times 5 = 6 + 10 = 16$$

1.3 Operações Inversas

Cada operação fundamental possui uma operação inversa correspondente:

- A subtração é a operação inversa da adição.
- A divisão é a operação inversa da multiplicação.

Exemplo:

$$5-3=2$$
 (inverso da adição de 2 e 3)

$$12 \div 4 = 3$$
 (inverso da multiplicação de 3 e 4)

Essas operações são essenciais para simplificar equações e resolver problemas matemáticos. Elas formam a base para tópicos mais avançados, como álgebra, cálculo e teoria dos conjuntos.

1.4 Equações e Inequações

Nesta seção, abordaremos a solução de equações lineares e quadráticas, além da resolução de inequações. Esses conceitos são fundamentais para o desenvolvimento de raciocínios algébricos e para a aplicação de técnicas mais avançadas em matemática.

1.4.1 Equações Lineares

Uma equação linear tem a forma geral:

$$ax + b = 0$$

onde a e b são constantes, e x é a variável. A solução dessa equação pode ser obtida isolando x.

Solução de Equações Lineares Para resolver ax + b = 0, seguimos os seguintes passos:

1. Subtrair b de ambos os lados:

$$ax = -b$$

2. Dividir ambos os lados por a (desde que $a \neq 0$):

$$x = \frac{-b}{a}$$

Exemplo:

$$3x + 6 = 0$$

Subtraindo 6 de ambos os lados:

$$3x = -6$$

Dividindo ambos os lados por 3:

$$x = -2$$

1.4.2 Equações Quadráticas

Uma equação quadrática tem a forma geral:

$$ax^2 + bx + c = 0$$

onde a, b, e c são constantes e x é a variável. Existem vários métodos para resolver equações quadráticas, incluindo fatoração, o método da fórmula quadrática, e completamento de quadrados.

Fórmula Quadrática A solução de uma equação quadrática pode ser encontrada utilizando a fórmula quadrática:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

onde $\sqrt{b^2-4ac}$ é chamado de discriminante, que determina a natureza das soluções:

- $\bullet\,$ Se $b^2-4ac>0,$ a equação tem duas soluções reais distintas.
- Se $b^2 4ac = 0$, a equação tem uma solução real única.
- Se $b^2 4ac < 0$, a equação tem duas soluções complexas.

Exemplo:

$$2x^2 - 4x - 6 = 0$$

Aqui $a=2,\,b=-4,\,{\rm e}\,\,c=-6.$ Usando a fórmula quadrática:

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-6)}}{2(2)}$$
$$x = \frac{4 \pm \sqrt{16 + 48}}{4}$$
$$x = \frac{4 \pm \sqrt{64}}{4}$$
$$x = \frac{4 \pm 8}{4}$$

Logo, as soluções são:

$$x_1 = \frac{4+8}{4} = 3, \quad x_2 = \frac{4-8}{4} = -1$$

1.4.3 Resolução de Inequações

As inequações são expressões onde os dois lados não são necessariamente iguais, e utilizam símbolos como >, \geq , <, ou \leq em vez do sinal de igualdade.

Inequações Lineares Uma inequação linear tem a forma:

$$ax + b > 0$$

ou

$$ax + b < 0$$

A solução de uma inequação linear segue os mesmos passos de uma equação linear, com a diferença de que ao multiplicar ou dividir ambos os lados por um número negativo, o sentido da inequação se inverte.

Exemplo:

$$3x - 4 > 2$$

1. Adicionar 4 a ambos os lados:

2. Dividir ambos os lados por 3:

Inequações Quadráticas Para resolver uma inequação quadrática, o procedimento geralmente envolve a resolução da equação quadrática associada $ax^2 + bx + c = 0$ para encontrar os pontos críticos. Depois, analisamos os sinais dos fatores em intervalos entre esses pontos críticos.

Exemplo:

$$x^2 - 3x + 2 > 0$$

Primeiro, resolvemos a equação quadrática associada:

$$x^2 - 3x + 2 = 0$$

Fatorando:

$$(x-1)(x-2) = 0$$

As soluções são x=1 e x=2. Agora, analisamos os sinais dos fatores nos intervalos $(-\infty, 1)$, (1, 2), e $(2, \infty)$.

Testando valores em cada intervalo:

Para
$$x \in (-\infty, 1), (x - 1)(x - 2) > 0$$

Para
$$x \in (1, 2), (x - 1)(x - 2) < 0$$

Para
$$x \in (2, \infty), (x - 1)(x - 2) > 0$$

Logo, a solução para $x^2 - 3x + 2 > 0$ é $x \in (-\infty, 1) \cup (2, \infty)$.

1.5 Conclusão

As equações e inequações são ferramentas essenciais para modelar e resolver uma ampla variedade de problemas matemáticos e práticos. A compreensão de equações lineares, quadráticas e inequações fornece uma base sólida para o estudo de álgebra, cálculo e outras áreas avançadas da matemática.

2 Funções e Gráficos

2.1 Definição de Função

Uma função é uma relação que associa cada elemento de um conjunto A (chamado de domínio) a um único elemento de um conjunto B (chamado de contradomínio). Mais formalmente, uma função $f: A \to B$ é uma regra que atribui a cada $x \in A$ um único $y \in B$, de modo que f(x) = y.

2.1.1 Domínio, Contradomínio e Imagem

Para compreender completamente uma função, é necessário entender os seguintes termos:

Domínio O domínio de uma função f, denotado como Dom(f), é o conjunto de todos os valores de entrada possíveis. Ou seja, é o conjunto de todos os valores de x para os quais a função f(x) está definida.

Exemplo: Para a função $f(x) = \frac{1}{x}$, o domínio é $x \in \mathbb{R}$ com a exceção de x = 0, pois a divisão por zero não está definida. Logo:

$$Dom(f) = \mathbb{R} \setminus \{0\}$$

Contradomínio O contradomínio de uma função f, denotado como $\operatorname{Cod}(f)$, é o conjunto de todos os valores que a função pode teoricamente produzir, ou seja, o conjunto no qual a função "aponta". O contradomínio é especificado ao definir a função, mas nem sempre todos os valores do contradomínio são atingidos pela função.

Exemplo: Se uma função é definida como $f: \mathbb{R} \to \mathbb{R}^+$, isso significa que o contradomínio da função é o conjunto dos números reais positivos, mesmo que a função possa não atingir todos esses valores.

Imagem A imagem de uma função f, denotada como Im(f), é o conjunto de todos os valores que f(x) realmente atinge, para todos os $x \in \text{Dom}(f)$. Em

outras palavras, a imagem é o subconjunto do contradomínio que a função cobre.

Exemplo: Para a função $f(x) = x^2$, com $x \in \mathbb{R}$, a imagem é o conjunto dos números reais não negativos (\mathbb{R}_0^+) porque o quadrado de um número real nunca será negativo:

$$Im(f) = \{ y \in \mathbb{R} \mid y \ge 0 \}$$

2.1.2 Tipos de Funções

As funções podem ser classificadas em diferentes tipos, dependendo da relação entre os elementos do domínio e os do contradomínio. Aqui estão três tipos principais de funções:

Função Injetora Uma função $f: A \to B$ é chamada de **injetiva** (ou injetiva) se diferentes elementos do domínio são mapeados em diferentes elementos do contradomínio. Em outras palavras, $f(x_1) = f(x_2)$ implica que $x_1 = x_2$.

Exemplo: A função f(x) = 2x, com $x \in \mathbb{R}$, é injetiva, pois $f(x_1) = f(x_2)$ leva a $2x_1 = 2x_2$, o que implica que $x_1 = x_2$.

f(1) = 2, f(2) = 4 (não há dois valores distintos de x que produzam o mesmo valor de f(x))

Função Sobrejetora Uma função $f:A\to B$ é chamada de sobrejetiva se cada elemento do contradomínio tem pelo menos um elemento do domínio que é mapeado para ele. Ou seja, a imagem da função é igual ao contradomínio: Im(f)=B.

Exemplo: A função f(x) = x, com $x \in \mathbb{R}$, é sobrejetiva se o contradomínio for \mathbb{R} , pois cada número real tem um correspondente no domínio (a função cobre todos os valores do contradomínio).

Função Bijetora Uma função $f:A\to B$ é chamada de bijetiva se ela é simultaneamente injetiva e sobrejetiva. Isso significa que cada elemento do contradomínio é atingido por exatamente um elemento do domínio. Funções bijetivas estabelecem uma correspondência biunívoca entre os elementos do domínio e os do contradomínio.

Exemplo: A função f(x) = x + 1, com $x \in \mathbb{R}$ e contradomínio \mathbb{R} , é bijetiva. Ela é injetiva porque $f(x_1) = f(x_2)$ implica $x_1 = x_2$, e é sobrejetiva porque para qualquer $y \in \mathbb{R}$, podemos encontrar um $x \in \mathbb{R}$ tal que f(x) = y (basta escolher x = y - 1).

2.1.3 Exemplos de Funções

Função Constante Uma função constante é uma função da forma f(x) = c, onde c é uma constante e x pertence ao domínio. Esta função não é injetiva nem sobrejetiva (a menos que o contradomínio seja um conjunto de um único elemento).

Exemplo:

$$f(x) = 5$$

A imagem desta função é o conjunto $\{5\}$, e o contradomínio pode ser qualquer conjunto que inclua o valor 5.

Função Linear Uma função linear tem a forma f(x) = ax + b, onde a e b são constantes. Dependendo de a, a função pode ser injetiva e/ou sobrejetiva. Exemplo:

$$f(x) = 2x + 3$$

Se o contradomínio é \mathbb{R} , esta função é bijetiva (é tanto injetiva quanto sobrejetiva).

Função Quadrática Uma função quadrática tem a forma $f(x) = ax^2 + bx + c$, onde $a \neq 0$. As funções quadráticas geralmente não são injetivas nem sobrejetivas, a menos que restrinjamos o domínio e o contradomínio.

Exemplo:

$$f(x) = x^2$$

Esta função não é injetiva, pois f(1) = f(-1) = 1, e não é sobrejetiva se o contradomínio for \mathbb{R} , já que f(x) nunca é negativo.

2.2 Gráficos de Funções

Os gráficos de funções são representações visuais da relação entre os elementos do domínio e a imagem de uma função. Eles são fundamentais para a compreensão intuitiva de como as funções se comportam e como seus valores mudam à medida que a variável independente varia. Nesta seção, veremos o esboço de gráficos de funções elementares e a interpretação geométrica das soluções.

2.2.1 Esboço de Gráficos de Funções Elementares

Função Linear Uma função linear tem a forma geral:

$$f(x) = ax + b$$

O gráfico de uma função linear é uma reta, onde: - a é o coeficiente angular, que define a inclinação da reta. - b é o coeficiente linear, que indica o ponto onde a reta cruza o eixo y.

Exemplo: Para a função f(x) = 2x+1, o gráfico é uma reta com inclinação 2 e intercepta o eixo y no ponto (0,1).

Figure 1: Gráfico de uma função linear f(x) = 2x + 1.

Função Quadrática A função quadrática tem a forma geral:

$$f(x) = ax^2 + bx + c$$

O gráfico de uma função quadrática é uma parábola. Se a>0, a parábola se abre para cima; se a<0, ela se abre para baixo. O ponto mais baixo (ou mais alto) da parábola é chamado de vértice.

Exemplo: Para a função $f(x) = x^2 - 4x + 3$, o gráfico é uma parábola que se abre para cima. O vértice pode ser encontrado pela fórmula $x = -\frac{b}{2a}$. Neste caso, a = 1, b = -4, então:

$$x = \frac{-(-4)}{2(1)} = 2$$

Substituindo x = 2 na função para encontrar o valor de f(x):

$$f(2) = (2)^2 - 4(2) + 3 = -1$$

O vértice da parábola é (2, -1).

Função Exponencial A função exponencial tem a forma geral:

$$f(x) = a^x$$

onde a > 0 e $a \neq 1$. O gráfico de uma função exponencial cresce rapidamente quando a > 1 e decresce rapidamente quando 0 < a < 1. O gráfico sempre passa pelo ponto (0,1), já que $f(0) = a^0 = 1$.

Exemplo: Para a função $f(x) = 2^x$, o gráfico cresce exponencialmente para x > 0 e se aproxima do eixo x (mas nunca o toca) para x < 0.

Figure 2: Gráfico de uma função quadrática $f(x) = x^2 - 4x + 3$.

Figure 3: Gráfico de uma função exponencial $f(x) = 2^x$.

Função Logarítmica A função logarítmica tem a forma geral:

$$f(x) = \log_a(x)$$

onde a > 0 e $a \neq 1$. O gráfico de uma função logarítmica é o inverso do gráfico de uma função exponencial. Ele cresce lentamente e só está definido para x > 0. O gráfico passa pelo ponto (1,0), já que $\log_a(1) = 0$.

Exemplo: Para a função $f(x) = \log_2(x)$, o gráfico cresce lentamente e se aproxima do eixo y à medida que x se aproxima de zero (mas nunca o toca).

2.2.2 Interpretação Geométrica das Soluções

A interpretação geométrica de uma função é obtida a partir do gráfico da função e nos ajuda a compreender como as soluções de equações e inequações podem ser vistas de forma visual.

Interseção com o Eixo x A solução de uma equação f(x) = 0 pode ser interpretada como o ponto onde o gráfico da função f(x) cruza o eixo x. Esse ponto é chamado de "raiz" ou "zero" da função.

Figure 4: Gráfico de uma função logarítmica $f(x) = \log(x)$.

Exemplo: Para a função quadrática $f(x) = x^2 - 4x + 3$, resolvendo f(x) = 0:

$$x^{2} - 4x + 3 = 0 \implies (x - 1)(x - 3) = 0$$

As soluções são x=1 e x=3. No gráfico da parábola, esses pontos são as interseções com o eixo x.

Interseção com o Eixo y O ponto onde o gráfico cruza o eixo y é o valor da função quando x = 0. Para qualquer função f(x), esse valor é dado por f(0).

Exemplo: Na função linear f(x) = 2x + 1, o gráfico cruza o eixo y no ponto f(0) = 1, então a interseção é (0, 1).

Crescimento e Decrescimento A análise do gráfico de uma função pode nos mostrar onde ela está crescendo (subindo) ou decrescendo (descendo). Uma função f(x) é crescente em um intervalo I se $f(x_1) < f(x_2)$ para $x_1 < x_2 \in I$. Da mesma forma, é decrescente se $f(x_1) > f(x_2)$ para $x_1 < x_2 \in I$.

Exemplo: Na função $f(x) = x^2 - 4x + 3$, o gráfico da parábola cresce para x > 2 e decresce para x < 2, com o ponto de inflexão no vértice (2, -1).

2.2.3 Conclusão

O esboço de gráficos é uma ferramenta essencial para a compreensão das propriedades de uma função. Além disso, a interpretação geométrica das soluções nos permite visualizar as raízes e os comportamentos de crescimento e decrescimento, o que facilita a resolução de equações e inequações.

3 Conjuntos e Relações

O estudo de conjuntos e relações é fundamental em várias áreas da matemática. Nesta seção, abordaremos os conceitos básicos de conjuntos, suas operações, e a noção de relações binárias, que são uma base importante para a definição de funções.

3.1 Conjuntos

Um conjunto é uma coleção de objetos, chamados elementos, que compartilham alguma propriedade comum. Os conjuntos são representados por letras maiúsculas, e seus elementos são listados entre chaves.

Exemplo:

$$A = \{1, 2, 3, 4\}$$

Aqui, A é um conjunto com quatro elementos: 1, 2, 3, 4.

3.1.1 Noções Básicas de Conjuntos

Os conjuntos podem ser manipulados de várias maneiras, usando operações como união, interseção, complemento e diferença. Estas operações permitem combinar ou comparar conjuntos de acordo com seus elementos.

União A união de dois conjuntos A e B, denotada por $A \cup B$, é o conjunto de todos os elementos que pertencem a A, a B, ou a ambos. Formalmente:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Exemplo: Se $A=\{1,2,3\}$ e $B=\{3,4,5\},$ então:

$$A \cup B = \{1, 2, 3, 4, 5\}$$

Interseção A interseção de dois conjuntos A e B, denotada por $A \cap B$, é o conjunto de todos os elementos que pertencem tanto a A quanto a B. Formalmente:

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Exemplo: Se $A=\{1,2,3\}$ e $B=\{3,4,5\}$, então:

$$A\cap B=\{3\}$$

Complemento O complemento de um conjunto A, denotado por A^c , é o conjunto de todos os elementos que não pertencem a A, mas pertencem a um conjunto universo U. Formalmente:

$$A^c = \{ x \mid x \in U \text{ e } x \notin A \}$$

Exemplo: Se $U = \{1, 2, 3, 4, 5\}$ e $A = \{1, 2, 3\}$, então:

$$A^c = \{4, 5\}$$

Diferença A diferença entre dois conjuntos A e B, denotada por A – B, é o conjunto de todos os elementos que pertencem a A, mas não a B. Formalmente:

$$A - B = \{x \mid x \in A \in x \notin B\}$$

Exemplo: Se $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$, então:

$$A - B = \{1, 2\}$$

3.1.2 Subconjuntos, Conjuntos Finitos e Infinitos

Subconjuntos Um conjunto A é um subconjunto de B, denotado por $A \subseteq B$, se todos os elementos de A também pertencem a B. Formalmente:

$$A \subseteq B$$
 se $\forall x (x \in A \Rightarrow x \in B)$

Exemplo: Se $A=\{1,2\}$ e $B=\{1,2,3\}$, então $A\subseteq B$.

Conjuntos Finitos Um conjunto é chamado de finito se o número de elementos nele for um número inteiro não negativo. Ou seja, é possível contar o número de elementos no conjunto.

Exemplo: O conjunto $A = \{1, 2, 3\}$ é finito, pois possui três elementos.

Conjuntos Infinitos Um conjunto é chamado de infinito se o número de elementos não pode ser contado, ou seja, continua indefinidamente.

Exemplo: O conjunto dos números naturais $\mathbb{N} = \{1, 2, 3, \dots\}$ é infinito, pois não tem um número final de elementos.

3.2 Relações e Funções

Uma relação é uma regra que associa elementos de um conjunto A a elementos de um conjunto B. Especificamente, uma relação binária é um subconjunto do produto cartesiano $A \times B$, isto é, um conjunto de pares ordenados (a,b), onde $a \in A$ e $b \in B$.

3.2.1 Relações Binárias

Uma relação binária entre dois conjuntos A e B é qualquer subconjunto de $A \times B$. Se (a,b) é um elemento da relação, dizemos que a está relacionado com b.

Exemplo: Seja $A = \{1,2\}$ e $B = \{x,y\}$. Uma relação $R \subseteq A \times B$ pode ser $R = \{(1,x),(2,y)\}$, onde 1 está relacionado com x e 2 está relacionado com y.

Propriedades das Relações As relações podem ter várias propriedades importantes:

- **Reflexiva**: Uma relação R em um conjunto A é reflexiva se $(a,a) \in R$ para todo $a \in A$. Ou seja, todo elemento está relacionado consigo mesmo.

Exemplo: $R = \{(1,1),(2,2)\}$ é reflexiva no conjunto $A = \{1,2\}$.

- **Simétrica**: Uma relação R é simétrica se, sempre que $(a,b) \in R$, também $(b,a) \in R$.

Exemplo: Se $R = \{(1, 2), (2, 1)\}$, a relação é simétrica.

- **Transitiva**: Uma relação R é transitiva se, sempre que $(a,b) \in R$ e $(b,c) \in R$, então $(a,c) \in R$.

Exemplo: Se $R = \{(1,2), (2,3), (1,3)\}$, a relação é transitiva.

3.2.2 Funções como Casos Especiais de Relações

Uma função é um caso especial de relação binária. Uma função $f:A\to B$ é uma relação em que cada elemento de A está relacionado a exatamente um elemento de B.

Ou seja, uma função é uma relação $f \subseteq A \times B$ tal que, para todo $a \in A$, existe um único $b \in B$ tal que $(a, b) \in f$.

Exemplo: Se $A = \{1, 2, 3\}$ e $B = \{a, b\}$, a função $f : A \to B$ pode ser representada por $f = \{(1, a), (2, b), (3, a)\}$, onde cada elemento de A está relacionado a exatamente um elemento de B.

Exemplo de Função Seja $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Esta função relaciona cada número real x ao seu quadrado x^2 . Note que para cada valor de $x \in \mathbb{R}$, existe exatamente um valor de $f(x) \in \mathbb{R}$.

3.3 Conclusão

Os conjuntos e as relações são a base para uma vasta gama de conceitos matemáticos. As operações com conjuntos, como união e interseção, e a análise de relações binárias e funções fornecem ferramentas importantes para

o estudo de estruturas mais complexas, como espaços vetoriais e funções matemáticas.

4 Sequências e Progressões

Uma sequência é uma função cujo domínio é o conjunto dos números naturais ou um subconjunto dele. Um tipo importante de sequência são as progressões, que podem ser aritméticas ou geométricas.

4.1 Progressão Aritmética (PA)

Uma Progressão Aritmética (PA) é uma sequência de números em que a diferença entre dois termos consecutivos é constante. Esta constante é chamada de razão da PA.

Definição e Fórmula do Termo Geral Seja uma PA de primeiro termo a_1 e razão r. O termo geral de uma PA, denotado por a_n , é dado pela fórmula:

$$a_n = a_1 + (n-1)r$$

onde n é o número do termo que queremos calcular.

Exemplo: Se $a_1 = 2$ e r = 3, o quarto termo da PA será:

$$a_4 = 2 + (4 - 1)3 = 2 + 9 = 11$$

Soma dos Termos de uma PA A soma dos primeiros n termos de uma PA, denotada por S_n , é dada pela fórmula:

$$S_n = \frac{n}{2} \cdot (a_1 + a_n)$$

ou

$$S_n = \frac{n}{2} \cdot (2a_1 + (n-1)r)$$

onde a_n é o último termo da soma.

Exemplo: Se $a_1=2,\ r=3,$ e queremos somar os primeiros 5 termos, usamos a fórmula:

$$S_5 = \frac{5}{2} \cdot (2 + 14) = \frac{5}{2} \cdot 16 = 40$$

4.2 Progressão Geométrica (PG)

Uma Progressão Geométrica (PG) é uma sequência de números em que cada termo, a partir do segundo, é obtido multiplicando o termo anterior por uma constante chamada razão q.

Definição e Fórmula do Termo Geral Seja uma PG de primeiro termo a_1 e razão q. O termo geral de uma PG, denotado por a_n , é dado pela fórmula:

$$a_n = a_1 \cdot q^{n-1}$$

onde n é o número do termo que queremos calcular.

Exemplo: Se $a_1 = 3$ e q = 2, o quinto termo da PG será:

$$a_5 = 3 \cdot 2^{5-1} = 3 \cdot 16 = 48$$

Soma dos Termos de uma PG A soma dos primeiros n termos de uma PG, quando $q \neq 1$, é dada pela fórmula:

$$S_n = a_1 \cdot \frac{q^n - 1}{q - 1}$$

Exemplo: Se $a_1=3,\ q=2,$ e queremos somar os primeiros 4 termos, usamos a fórmula:

$$S_4 = 3 \cdot \frac{2^4 - 1}{2 - 1} = 3 \cdot (16 - 1) = 3 \cdot 15 = 45$$

5 Trigonometria Básica

A trigonometria lida com as relações entre os ângulos e os comprimentos dos lados de triângulos. As funções trigonométricas fundamentais (seno, cosseno e tangente) são amplamente utilizadas em várias áreas da matemática.

5.1 Funções Trigonométricas

Seno, Cosseno e Tangente As funções seno, cosseno e tangente são definidas para ângulos agudos em um triângulo retângulo como as razões entre os lados desse triângulo.

Dado um ângulo θ em um triângulo retângulo, as funções trigonométricas são definidas como:

- **Seno**:

$$\sin(\theta) = \frac{\text{oposto}}{\text{hipotenusa}}$$

- **Cosseno**:

$$\cos(\theta) = \frac{\text{adjacente}}{\text{hipotenusa}}$$

- **Tangente**:

$$\tan(\theta) = \frac{\text{oposto}}{\text{adjacente}}$$

As funções inversas seno (\sin^{-1}) , cosseno (\cos^{-1}) e tangente (\tan^{-1}) permitem calcular o ângulo dado o valor da função trigonométrica.

Identidades Trigonométricas Fundamentais As identidades trigonométricas são equações que envolvem funções trigonométricas e são verdadeiras para todos os valores de θ . Algumas das identidades mais importantes são:

- **Identidade Pitagórica**:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

- **Identidade da Tangente**:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

- **Identidade do Ângulo Complementar**:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$$

5.2 Equações Trigonométricas

As equações trigonométricas envolvem funções trigonométricas e requerem a determinação dos ângulos que satisfazem uma equação.

Resolução de Equações Trigonométricas Para resolver uma equação trigonométrica, buscamos os valores de θ que satisfazem a equação. Exemplos incluem:

$$\sin(\theta) = \frac{1}{2}$$

Para resolver esta equação, procuramos os valores de θ que resultam em $\sin(\theta) = \frac{1}{2}$. Sabemos que:

$$\theta = \frac{\pi}{6}, \quad \theta = \frac{5\pi}{6} \quad (\text{em } [0, 2\pi])$$

Se estivermos resolvendo em intervalos maiores, precisamos considerar as soluções periódicas:

$$\theta = \frac{\pi}{6} + 2k\pi$$
 ou $\theta = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$

Aplicações Geométricas As funções trigonométricas são amplamente usadas para resolver problemas envolvendo triângulos e círculos. Algumas aplicações incluem:

- **Lei dos Senos**:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

- **Lei dos Cossenos**:

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

Estas leis são usadas para resolver triângulos quando certos ângulos e lados são conhecidos.

5.3 Conclusão

As progressões aritméticas e geométricas são ferramentas importantes para estudar sequências numéricas, enquanto a trigonometria básica fornece uma compreensão das relações entre ângulos e lados em triângulos. Estes conceitos são fundamentais em áreas mais avançadas da matemática, como cálculo e álgebra.

6 Cálculo Diferencial

O cálculo diferencial lida com a taxa de variação de funções. Ele é amplamente utilizado para entender como uma função muda em relação a uma de suas variáveis e para determinar máximos e mínimos de funções.

6.1 Derivadas

A derivada de uma função é uma medida da taxa de variação instantânea da função em relação à sua variável independente. Geometricamente, a derivada de uma função em um ponto é a inclinação da reta tangente ao gráfico da função nesse ponto.

Definição de Derivada Seja f(x) uma função real de uma variável real. A derivada de f(x) em um ponto x = a, denotada por f'(a), é definida como:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Se este limite existir, a função f(x) é dita derivável em x = a.

Geometricamente, a derivada representa a inclinação da reta tangente ao gráfico da função no ponto x=a.

Exemplo: Seja $f(x) = x^2$. A derivada de f(x) em qualquer ponto x é:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x$$

Assim, a derivada de $f(x) = x^2$ é f'(x) = 2x.

6.1.1 Regras de Derivação

Para calcular a derivada de funções mais complexas, utilizamos algumas regras de derivação que facilitam esse processo.

Regra do Produto A regra do produto é usada para derivar o produto de duas funções. Se u(x) e v(x) são funções deriváveis, a derivada do produto $u(x) \cdot v(x)$ é dada por:

$$\frac{d}{dx}[u(x)\cdot v(x)] = u'(x)\cdot v(x) + u(x)\cdot v'(x)$$

Exemplo: Se $u(x) = x^2$ e $v(x) = \sin(x)$, a derivada de $u(x) \cdot v(x)$ é:

$$\frac{d}{dx}[x^2 \cdot \sin(x)] = 2x \cdot \sin(x) + x^2 \cdot \cos(x)$$

Regra do Quociente A regra do quociente é usada para derivar o quociente de duas funções. Se u(x) e v(x) são funções deriváveis, a derivada do quociente $\frac{u(x)}{v(x)}$ é dada por:

$$\frac{d}{dx} \left[\frac{u(x)}{v(x)} \right] = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$$

Exemplo: Se $u(x) = x^2$ e $v(x) = \cos(x)$, a derivada de $\frac{x^2}{\cos(x)}$ é:

$$\frac{d}{dx} \left[\frac{x^2}{\cos(x)} \right] = \frac{2x \cdot \cos(x) - x^2 \cdot (-\sin(x))}{\cos^2(x)}$$

Simplificando:

$$\frac{d}{dx} \left[\frac{x^2}{\cos(x)} \right] = \frac{2x \cdot \cos(x) + x^2 \cdot \sin(x)}{\cos^2(x)}$$

Regra da Cadeia A regra da cadeia é usada para derivar a composição de duas funções. Se f(x) e g(x) são funções deriváveis e y = f(g(x)), a derivada de y em relação a x é dada por:

$$\frac{dy}{dx} = \frac{df}{dq} \cdot \frac{dg}{dx} = f'(g(x)) \cdot g'(x)$$

Exemplo: Se $f(x) = \sin(x^2)$, podemos ver essa função como uma composição de f(g(x)), onde $g(x) = x^2$ e $f(u) = \sin(u)$. Aplicando a regra da cadeia:

$$\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x$$

6.2 Aplicações de Derivadas

As derivadas têm inúmeras aplicações na matemática e nas ciências. Elas são usadas para determinar a taxa de variação de grandezas, encontrar máximos e mínimos de funções, e resolver problemas de otimização.

Taxa de Variação A derivada de uma função em um ponto fornece a taxa de variação instantânea da função naquele ponto. Por exemplo, se s(t) é a posição de um objeto em função do tempo t, a derivada s'(t) representa a velocidade instantânea do objeto.

Máximos e Mínimos A derivada de uma função também pode ser usada para encontrar os pontos de máximo e mínimo. Se f'(x) = 0 em x = c e a derivada muda de sinal em torno de c, então c é um ponto crítico, podendo ser um máximo ou mínimo local.

Exemplo: Seja $f(x) = x^3 - 3x^2 + 4$. Para encontrar os pontos críticos, calculamos f'(x):

$$f'(x) = 3x^2 - 6x$$

Igualando a zero para encontrar os pontos críticos:

$$3x^2 - 6x = 0$$
 \Rightarrow $x(x-2) = 0$ \Rightarrow $x = 0$ ou $x = 2$

Agora analisamos a mudança de sinal de f'(x) para determinar se esses pontos são máximos ou mínimos.

6.3 Conclusão

As derivadas são uma ferramenta poderosa para entender como as funções variam e para resolver problemas envolvendo taxas de variação. As regras de

derivação simplificam o cálculo das derivadas, permitindo aplicar essas ideias em uma ampla gama de situações, desde a análise de gráficos até a resolução de problemas de otimização.

7 Conclusão

Este documento fornece uma base sólida para o estudo de tópicos mais avançados, como lógica, teoria dos conjuntos, indução e integrais. É recomendável revisitar esses conceitos antes de avançar.