Best Book

V Sai Prabhav

2024-09-23

Table of contents

Preface		3
1	question one	4
2	question two	5
3	Problem Three	6
4	Problem Four	7
5	interactive	8
6	Introduction	11
7	Summary	12
References		13
8	shiny dosent work	14

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 question one

Prove Riemann Hypothesis

Its so easy there is no solution

2 question two

prove or disprove the twin prime conjecture

This problem is so trival once you under stand the first question please refer it previous question

3 Problem Three

Prove 1=0 this question is significantly harder than the first 2 question let use first assume the proof in problem 4 to prove this by problem 4 we have 0=1

$$\implies 1 = 0$$

HENCE THE PROOF

4 Problem Four

Prove 0=1 this question is significantly harder than the first 2 question let use first assume the proof in previous problem to prove this by problem 3 we have 1=0

$$\implies 0 = 1$$

HENCE THE PROOF

5 interactive

I love python

```
from ipyleaflet import Map, Marker, basemaps, basemap_to_tiles
m = Map(
   basemap=basemap_to_tiles(
      basemaps.NASAGIBS.ModisTerraTrueColorCR, "2017-04-08"
   ),
   center=(52.204793, 360.121558),
   zoom=4
)
m.add_layer(Marker(location=(52.204793, 360.121558)))
m
```

Map(center=[52.204793, 360.121558], controls=(ZoomControl(options=['position', 'zoom_in_text

```
import matplotlib.pyplot as plt

# Data for plotting
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]

# Create the plot
plt.plot(x, y)

# Add a title and labels
plt.title('Simple Plot')
plt.xlabel('X axis')
plt.ylabel('Y axis')

# Show the plot
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
# Generate x values
x = np.linspace(-100, 100, 4000) # Creates 400 points between -10 and 10
# Define the polynomial: y = x^3 - 4x^2 + 2x - 5
y = x**3 - 4*x**2 + 2*x - 5
# Plot the polynomial
plt.plot(x, y, label=r'$y = x^3 - 4x^2 + 2x - 5$')
# Add title and labels
plt.title('Polynomial Graph')
plt.xlabel('X axis')
plt.ylabel('Y axis')
# Show grid and legend
plt.grid(True)
plt.legend()
# Show the plot
plt.show()
```


polynomial

6 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

Summary

In summary, this book has no content whatsoever.

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2):~97-111.~https://doi.org/10.1093/comjnl/27.2.97.

8 shiny dosent work