Tutorial Exercise for Tuesday 20230919

- 1. Given the following vectors in \mathbb{R}^3 : $\mathbf{u} = (1,3,5)$, $\mathbf{v} = (1,4,6)$, $\mathbf{w} = (2,-1,3)$ and $\mathbf{b} = (6,5,17)$.
 - a) Does $\mathbf{b} \in \mathbf{W} = \text{span } \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}\$
 - b) If the answer to b) is yes, express **b** as a linear combination of **u**,**v**,**w**.
- 2. Let U and W be two subspaces of the vector space V. Show that $U \cap W$ is also a subspace of V.
- 3. Obtain an LU decomposition of the symmetric matrix A given below. Find four conditions on a, b, c, d to ensure that an LU decomposition exists, i.e. A can be reduced to an echelon form matrix **without row interchanges**.

$$A = \left[\begin{array}{ccccc} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{array} \right]$$

- 4. In the following is W a subspace of V? Base field is $\mathbb R$ in all. Justify your answer.
 - a. $V = R_n[t] = \text{vector space of polynomials of degree} \le n$, $W = \{p(t) \in V : \text{deg } p(t) = n\} \cup \{\mathbf{0}(t)\}$. Here $\mathbf{0}(t)$ indicates the zero polynomial.

- b. $V = \mathbb{R}^3$, $W = \{(x,y,z): x, y, z \in \mathbb{Q}\}.$
- c. $V = \mathbb{R}^3$, $W = \{(x,y,z): xy = 0\}$.
- d. $V = \mathbb{R}^3$, $W = \{(x,y,z): x^2 + y^4 + z^6 = 0\}$
- 5. Consider the space V of all 2×2 matrices over \mathbb{R} . Which of the following sets of matrices A in V are subspaces of V? Justify (prove) your answers.
 - All symmetric matrices (**Definition**: For any m×n matrix $A = [a_{ij}]$, its **transpose** is the n×m matrix $B = [b_{ij}]$, given by $b_{ij} = a_{ji}$. The standard notation for the transpose of A is A^T . A matrix is symmetric if $A = A^T$.)
 - All A such that AB = BA where B is some fixed matrix in V
 - All A such that BA = 0 where B is some fixed matrix in V
 - Would the above results hold for all n×n matrices where n is a general positive integer
 - 6. Consider the space V of all $n \times n$ matrices over \mathbb{R} . and let W be the subset consisting of all upper triangular matrices.
 - a) Show that W is a subspace of V.
 - b) Show further that W satisfies closure with regard to products and multiplicative inverses, i.e. if A, B \in W, then AB \in W, and if A \in W happens to be invertible, then $A^{-1} \in$ W.

- 7. Is \mathbb{R}^2 a subspace of \mathbb{R}^3 (YES/NO)? Justify your answer briefly.
- 8. Let $V = \{x \in \mathbb{R} : x > 0\}$. Define addition for V by $x \oplus y = xy$, and scalar multiplication by any $\alpha \in \mathbb{R}$ by $\alpha * x = x^{\alpha}$.
- (a) (7 marks) Verify the closure axioms, the commutative, zero and inverse properties for addition, and the property 1*x = x for all $x \in V$.

(**Remark**: V is in fact a vector space over the field \mathbb{R} . However, you need not verify the other properties of a vector space.)

(b) (3 marks) Is V a subspace of \mathbb{R} regarded as a vector space over itself (YES/NO)? Justify your answer clearly.

(This question was given as an exam problem for a previous batch.)

- 9. Prove Remark 6 related to linear dependence/independence: Any list which contains a linearly dependent list is linearly dependent.
- 10.Prove Remark 7 related to linear dependence/independence: Any subset of a linearly independent set is linearly independent.
- 11. Determine whether the given matrices in the vector space $\mathbb{R}^{2\times 2}$ are linearly dependent or linearly independent.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

12.In the vector space $V = C[0, 2\pi]$, determine whether the given vectors (i.e. functions) are linearly dependent or linearly independent:

$$f_1(x) = 1$$
, $f_2(x) = \sin(x)$, $f_3(x) = \sin(2x)$.

(You must justify your answer.)

- 13.Let $F = \mathbb{Z}_2$, and consider the vector space $V = F^4$, the space of all ordered 4-tuples with entries from F.
 - a) Suppose $v \in V$, $v \neq 0$. What can you say about the additive inverse of v?
 - b) Consider the vectors $\mathbf{v_1} = (1, 0, 1, 0)$, $\mathbf{v_2} = (1, 1, 0, 0)$ and $\mathbf{v_3} = (0, 0, 1, 1)$. Determine Span $\{\mathbf{v_1}, \mathbf{v_2}\}$ and Span $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$.
 - c) Construct subspaces U and W of V which have 3 and 5 vectors, respectively.
 - d) Apply what you have learned from a), b), and c) to state and prove a result about the possible orders of subspaces of V. *Note*: For any finite set X, the **order** of X is the number of elements in X, notation |X|.
 - e) Generalize your result in d) to subspaces of Fⁿ for any arbitrary positive integer n. Can you prove your result? *Hint:* Attempt a bounded stepwise ascent type of proof (you may recall that the proof of Corollary 1.3 was a bounded stepwise descent).