Course Number	ELE404
Course Title	Electronic Circuits I
Semester/Year	W2024
Instructor	Fei Yuan
Section Number	15

Design Project

Report Title	Amplifier Design Project
Group Number	
Submission Date	2024-04-07
Due Date	2024-04-07

Student Name	Student ID (xxxx1234)
Jason Su	501158090

Table of Content

1.	Introduction	3
	Objectives	
	Circuit under Test	
	Experimental Results	
5.	Conclusions and Remarks	9
6.	Appendix: Manual Calculations	10

1. Introduction

The final report for the design project, Amplifier Design Project, is presented herein. The lab took place on March 27th, 2024 and is due on April 7th, 2024. This lab tests all course material regarding Bipolar-Junction Transistors (BJT), and requires the implementation of a multistage amplifier. The circuit was simulated using Multisim and all calculations can be found in the appendix below (Pg 10).

2. Objectives

The objective of this lab was to design, simulate, analyze, implement, and test a single-supply, multistage, inverting, transistor amplifier which fulfills a set of specifications. Bipolar-Junction Transistors in active mode are utilized to create the multistage amplifier. Results were checked with values obtained from the simulated circuit and the specifications requirements below:

- Power supply: +10*V* relative to the ground;
- Quiescent current drawn from the power supply: no larger than 10 mA;
- No-load voltage gain (at 1 kHz): $|Avo| = 50 (\pm 10\%)$;
- Maximum no-load output voltage swing (at 1 kHz): no smaller than 8 V peak to peak;
- Loaded voltage gain (at 1 kHz and with $RL = 1 k\Omega$): no smaller than 90% of the no-load voltage gain;
- Maximum loaded output voltage swing (at 1 kHz and RL = 1 $k\Omega$): no smaller than 4 V peak
- to peak;
- Input resistance (at 1 kHz): no smaller than 20 $k\Omega$;
- Amplifier type: inverting or non-inverting;
- Frequency response: 20 Hz to 50 kHz (-3dB response);
- Type of transistors: BJT;
- Number of transistors (stages): no more than 3;
- Resistances permitted: values smaller than 220 $k\Omega$ from the E24 series;
- Capacitors permitted: 0. 1 μF , 1. 0 μF , 2. 2 μF , 4. 7 μF , 10 μF , 47 μF , 100 μF , 220 μF ;
- Other components (BJTs, diodes, Zener diodes, etc.): only from your ELE404 lab kit.

Notes:

- The output voltage must be free from distortions (clipping, etc.) in all test conditions.
- The source resistance, Rs, must be 600 Ω for all tests.

3. Circuit under Test

Figure 1 below is a schematic diagram of the test circuit. Thus the amplifier circuit consists of three stages, two Common-Emitter amplifiers back to back and an Emitter-Follower. The two CE amplifiers were chosen to achieve the no load gain of 50 since using a singular CE amplifier would cause too much distortion. The total gain was split between the two CE amplifiers to supply around 7.1 each. This was found from the square root of 50 as the total gain is the product of the gain from each stage, and since voltage gain from a CC (stage 3) is approximately 1. Therefore total gain would be $7.1 \times 7.1 \times 1 \approx 50$.

The signal source consists of a signal voltage Vs with a peak-to-peak voltage of 100 mV (50 mV_{pk}) and frequency of 1 kHz, as well as a signal resistor R_s of 600 Ω . V_1 represents the V_{cc} DC voltage of 10 V.

Emitter and collector resistors were chosen first by calculating the current and input resistance of each stage. Emitter resistor R_{E5} was chosen to be a smaller value so it doesn't

significantly affect the loading properties of the load stage. The emitter degeneration resistors for the first two stages were chosen next by comparing it to the 7.1 gain needed. Finally the six biasing resistors in the voltage dividers were chosen. The resistance was chosen to be large enough to supply supple negative feedback while still allowing enough current to pass through. A low resistance would cause the input resistance to decrease as well, creating a large loading impact between each stage.

Each stage utilizes a 2N3904 BJT (Q_1 , Q_2 , Q_3), biasing resistors for the voltage divider, and collector and emitter resistors. Electrolytic capacitors C_1 , C_3 , and C_5 are used to bypass AC signals from flowing backwards and have a capacitance of 10 μ F. These coupling capacitors are used in between stages since input resistances are large. The overall gain of the amplifier could be affected by small changes in the emitter degeneration resistor which is why capacitors C_2 , C_4 , and C_6 are instead 100 μ F, as a higher capacitance is needed for emitter degeneration. The values for the resistors and capacitors are listed in **Tables 1**, **2**, **3** below:

$\mathbf{R}_1 [k\Omega]$	$\mathbf{R}_{2}\left[k\Omega \right]$	$\mathbf{R}_3 [k\Omega]$	$\mathbf{R}_{4}\left[k\Omega \right]$	$R_{5}[k\Omega]$	$\mathbf{R}_{6}[k\Omega]$			
91	68	91	68	91	200			

Table 1: Biasing Resistor Values

R _{c1} [<i>k</i> Ω]	$R_{c2}[k\Omega]$	$R_{E1}[k\Omega]$	$R_{E2}[k\Omega]$	$R_{E3}[k\Omega]$	$R_{E4}[k\Omega]$	$R_{E5}[k\Omega]$	$\mathbf{R}_{L}\left[k\Omega\right]$
15	13	15	1.5	15	1.3	1	1

Table 2: Collector and Emitter Resistor Values

C ₁ [<i>µF</i>]	C₂ [µF]	C ₃ [µF]	C ₄ [<i>µF</i>]	C ₅ [µF]	C ₆ [<i>µF</i>]
10	100	10	100	10	100

Table 3: Capacitor Values

Figure 1: Three-stage amplifier following a CE-CE-CC configuration.

4. Experimental Results

The circuit in **Figure 1** was constructed and simulated in Multisim. The V_i and V_o waveforms were then captured with the parameters of the no-load gain A_{vo} and loaded gain A_v measured and calculated. Quiescent current drawn from Vcc, the frequency response, and the input resistance were then found and compared to specifications list. **Graph 1**, **2**, **3**, **Table 4**, **5**, **6**, and **Figure 2** and **3** report the results.

Graph 1: Simulated results of V_i and V_o for **Figure 1** with **no-load** (RL = ∞).

V _{i,pp} [V]	$V_{o,pp}[V]$	A _{vo} [V/V]
0.098	4.818	49.163

Table 4: Simulated results of **no-load** voltage swing for **Figure 1** (RL = ∞).

Graph 2: Simulated results of V_i and V_o for **Figure 1** with **load** (RL = 1 k Ω).

V _{i,pp} [V]	V _{o,pp} [V]	A _v [V/V]
0.098	4.319	44.071

Table 5: Simulated results of **loaded** voltage swing for **Figure 1** (RL = 1 k Ω).

Figure 2: Quiescent current drawn from *Vcc* in Figure 1 ($I \le 10 \text{ mA}$).

Graph 3: Frequency response graph of Figure 1.

Figure 3: Voltage values of V_i and V_{th} .

R_{th} [k Ω]	V _{th} [mVrms]	V _i [mVrms]	R _{in,measured} [kΩ]	R _{in, calculated} [kΩ]
30	33	17.2	32.658	31.195

Table 6: Values from Figure 3 used to measure R_{in.}

5. Conclusions and Remarks

Specification	Calculated Value	Tested Value	% Error	Achieved?
Quiescent current drawn from the power supply: no larger than 10 mA;	5.23 mA	5.10 mA	2.549%	Yes
No-load voltage gain (at 1 kHz): $ Avo = 50 (\pm 10\%)$;	50.41	49.163	2.5365%	Yes
Maximum no-load output voltage swing (at 1 kHz): no smaller than 8 V peak to peak;	8 V	4.818 V _{pp}	66.044%	No
Loaded voltage gain (at 1 kHz and with $RL = 1 k\Omega$): no smaller than 90% of the no-load voltage gain;	47.57	44.071	7.9395%	Yes
Maximum loaded output voltage swing (at 1 kHz and RL = 1 $k\Omega$): no smaller than 4 V peak to peak;	4 V	4.319 V _{pp}	7.386%	Yes
Input resistance (at 1 kHz): no smaller than 20 $k\Omega$;	31.195 kΩ	32.658 kΩ	4.4798%	Yes
Frequency response: 20 Hz to 50 kHz (-3dB response);	_	Graph 3	_	Yes

When comparing values measured from **Figure 1** to values manually calculated, it is seen that the majority of the specifications have been met with a relatively small percent error. The maximum no-load output voltage swing is the only specification not met as the tested value is not greater than 8 V peak to peak. This could be due to error in calculations or in the simulation where the biasing of each stage may differ. Another likely case is that the operating point chosen is too close to the threshold voltage as the output voltage is not able to swing a full 8 volts. This could also be resolved if a lower frequency was used as $V_{\rm S}$ as it would allow the output voltage to swing more. The other percent errors could be due to calculation errors such as rounded resistance values to meet the E24 series requirement. Besides the one discrepancy, all other specifications were met with a percent error less than 10%, meaning that the circuit and calculations used were proven effective and successful.

6. Appendix - Calculations

No Load Vollage gain: Avo	1 =	50	± 10/.												
100 1000 11009															
Max No Load Output Wolf	age S	wing	: \	Vpp	≥ 8	٧			-						
Loaded Vollage gain	(RL=	IKS	٠) ;	٨v	2	90%	of	À	lb						
May landed a test test			(0 -	(Fa)					+	+	\vdash				
Max loaded output voll	age :	Smine	(KL=	12.50	· Vp	ρ = '	y v		+	+	+				
input resistance : Rin	≥ 20	ķÆ													
Must be CE to C	E +	СС													
(na	in L	Dist	ribuli	on			+		+	+	H				
Vcc = lov			= A4		· 4.,				+	+	+				
IDC GIOMA	Volt	age G	ain of	cc	21	.: A	6, 3′								
4vo = 50 ± 5 (10%)			iAvoz				1								
10 ≥ 8 NPP		23 7													
1 = 4 Upp	A 16. =	A 1/02	7.1												
2in Z 20 k.a	Ly /	A VOI	= 10,4 -	= - 7	.1	2 n	e ga	live	5i	иcе	CI	e i	5	inV	ertina
11 R = 220 KD	A	VOZ	- Vu	= -7	./	5.	ve x	-Ve	x ti	e =	f V	و			
			,,				. Fiv	a (outp	u+	is	Non	n -iu	vert	49
Stage 1 & 2 (())								+	+	+				J
Avoi = Avoz									\top						
: Ic1 & Ic2 = 400 M	.А -	from	load	line					_						
$g_M = \frac{T_c}{V_T} = \frac{400\mu A}{26mV} = 0.01$	545						+		+	+	+				
Is = 3.5 MA	973							П	\top	\top	\top				
B = 400 mA = 114.3									1	Ŧ	F				
IB, DC = 2,MA (for quiesce	ut)														
Sta 2 ()	++			++			+		+	+	+				-
Stage 3 (cc)	++			+++			+		+	+	+				
Assuming RES = 1K-Q (:	same a	25 R	(۱												
gm = 10 m A = 0.385	+++,	ll.	211	^	. 0		+		+	+	+				
	+++		91K			5	+		+	+	+				
LC = 10 MA L from load	++		From 1 VB s			2 066			+	+	+				
70=6504) """	++			h curi				\Box	+	+				+	
Ic = 10 mA) from local IB = 65 MA) from local						1.4	- 60					1			
$I_{8} = 65\mu A) $ $S = \frac{16}{18} = \frac{10mA}{65\mu A} = 153.8$ $I_{8,DC} = 30 \mu A (Quiescent)$	\pm	Ė	Divide	· Cur											

