Introduction to Approximation Algorithms, part II

2-1 2023, Mikkel Abrahamsen, Department of Computer Science

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```


Def.: An algorithm for an optimization problem has approximation ratio $\rho(n)$ if for every input of size n,

$$\max\left\{\frac{C}{C^*}, \frac{C^*}{C}\right\} \le \rho(n).$$

Def.: An algorithm for an optimization problem has approximation ratio $\rho(n)$ if for every input of size n,

Def.: An algorithm for an optimization problem has approximation ratio $\rho(n)$ if for every input of size n,

Def.: An algorithm for an optimization problem has approximation ratio $\rho(n)$ if for every input of size n,

Today: Examples of use of randomization, linear programming, and a fully polynomial time approximation scheme (FPTAS).

Def.: An algorithm for an optimization problem has approximation ratio $\rho(n)$ if for every input of size n,

Today: Examples of use of randomization, linear programming, and a fully polynomial time approximation scheme (FPTAS).

 ${f C}:={f E}\left[{\sf cost(produced\ sol.)}
ight]$

$$(x_1 \lor x_7 \lor \neg x_9)$$

$$\land (\neg x_7 \lor x_8 \lor x_9)$$

$$\land (\neg x_2 \lor x_3 \lor \neg x_4)$$

$$\vdots$$

$$(x_1 \lor x_7 \lor \neg x_9)$$

$$\land (\neg x_7 \lor x_8 \lor x_9)$$

$$\land (\neg x_2 \lor x_3 \lor \neg x_4)$$

$$\vdots$$

$$n \text{ clauses}$$

Each clause has three *literals* involving three distinct variables.

Each clause has three *literals* involving three distinct variables.

n clauses

Each clause has three *literals* involving three distinct variables.

Decision version:

NP-complete!

n clauses

MAX-3-SAT: Find assignment that maximizes the number of true clauses.

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied \iff

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right]$$

 $\blacktriangleright \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

 $\mathbf{Pr} \left[\neg C_i \right] = \mathbf{Pr} \left[\neg \ell_1 \right] \cdot \mathbf{Pr} \left[\neg \ell_2 \right] \cdot \mathbf{Pr} \left[\neg \ell_2 \right]$ variables in C_i chosen independently

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

 $\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$ variables in C_i chosen independently

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$$
variables in C_i chosen independently

$$\mathbf{Pr}[C_i] = 1 - \mathbf{Pr}[\neg C_i] = 1 - 1/8 = 7/8$$

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$$
variables in C_i chosen independently

$$\mathbf{Pr}[C_i] = 1 - \mathbf{Pr}[\neg C_i] = 1 - 1/8 = 7/8$$

 $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$$
variables in C_i chosen independently

 $\Pr[C_i] = 1 - \Pr[\neg C_i] = 1 - 1/8 = 7/8$

$$X := \sum_{i=1}^{n} [C_i] = \text{\#satisfied clauses}$$

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} [C_i]\right] = \sum_{i=1}^{n} \mathbf{E}[C_i] = \sum_{i=1}^{n} \frac{7}{8} = 7n/8$$

Linearity of expectation

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$$
variables in C_i chosen independently

 $\Pr[C_i] = 1 - \Pr[\neg C_i] = 1 - 1/8 = 7/8$

$$\Pr[C_i] = 1 - \Pr[\neg C_i] = 1 - 1/8 = 7/8$$

$$X := \sum_{i=1}^{n} [C_i] = \# \text{satisfied clauses}$$

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} [C_i]\right] = \sum_{i=1}^{n} \mathbf{E}[C_i] = \sum_{i=1}^{n} \frac{7}{8} = 7n/8$$

Approximation ratio: $\frac{C^*}{C} = \frac{C^*}{7n/8} \le$

Linearity of expectation

 $ightharpoonup \Phi$ is a MAX-3-SAT instance

RANDOM-ASSIGNMENT($\hat{\Phi}$)

for each variable x_i of Φ choose $x_i \in \{0,1\}$ by flipping fair coin return assignment

Thm.: RANDOM-ASSIGNMENT is a 8/7-approximation algorithm.

Proof: Let $\Phi = C_1 \wedge \ldots \wedge C_n$. Consider $C_i = \ell_1 \vee \ell_2 \vee \ell_3$.

Clause C_i not satisfied $\iff \neg \ell_1 \land \neg \ell_2 \land \neg \ell_3$.

$$\mathbf{Pr}\left[\neg C_i\right] = \mathbf{Pr}\left[\neg \ell_1\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] \cdot \mathbf{Pr}\left[\neg \ell_2\right] = (\frac{1}{2})^3 = 1/8$$
variables in C_i chosen independently

 $\Pr[C_i] = 1 - \Pr[\neg C_i] = 1 - 1/8 = 7/8$

$$X := \sum_{i=1}^n [C_i] = \#$$
satisfied clauses

$$X := \sum_{i=1}^{n} [C_i] = \# \text{satisfied clauses}$$

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} [C_i]\right] = \sum_{i=1}^{n} \mathbf{E}[C_i] = \sum_{i=1}^{n} \frac{7}{8} = 7n/8$$

Approximation ratio: $\frac{\mathcal{C}^*}{\mathcal{C}} = \frac{\mathcal{C}^*}{7n/8} \leq \frac{n}{7n/8} = 8/7$

Linearity of expectation

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Clause *C* with 2 literals: $\Pr[C] = 1 - (\frac{1}{2})^2 = 3/4$.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Clause *C* with 2 literals: $\Pr[C] = 1 - (\frac{1}{2})^2 = 3/4$.

Clause C with 1 literal: $\mathbf{Pr}[C] = 1 - \frac{1}{2} = 1/2$.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Clause *C* with 2 literals: $\Pr[C] = 1 - (\frac{1}{2})^2 = 3/4$.

Clause C with 1 literal: $\mathbf{Pr}[C] = 1 - \frac{1}{2} = 1/2$.

Clause C with 0 literals: $\mathbf{Pr}[C] = 1 - (\frac{1}{2})^0 = 0$.

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Clause *C* with 2 literals: $\Pr[C] = 1 - (\frac{1}{2})^2 = 3/4$.

Clause C with 1 literal: $\mathbf{Pr}[C] = 1 - \frac{1}{2} = 1/2$.

Clause C with 0 literals: $\mathbf{Pr}[C] = 1 - (\frac{1}{2})^0 = 0$.

DETERMINISTIC-ASSIGNMENT(Φ)

for $i=1,\ldots,m$ m=# variables in Φ $x_i:=0$ compute $D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i\right]$ if D<7n/8 $x_i:=1$

return assignment

Goal: Find deterministic alg. that satisfies 7n/8 clauses.

Recall: $\mathbf{E}[X] = 7n/8$, where $X := \sum_{i=1}^{n} [C_i] = \#$ satisfied clauses

Assignment guaranteed to exist by the probabilistic method.

Clause *C* with 3 literals: $\Pr[C] = 1 - (\frac{1}{2})^3 = 7/8$.

Clause *C* with 2 literals: $\Pr[C] = 1 - (\frac{1}{2})^2 = 3/4$.

Clause C with 1 literal: $\mathbf{Pr}[C] = 1 - \frac{1}{2} = 1/2$.

Clause C with 0 literals: $\mathbf{Pr}[C] = 1 - (\frac{1}{2})^0 = 0$.

DETERMINISTIC-ASSIGNMENT(Φ)

for
$$i=1,\ldots,m$$
 $\longrightarrow m=\#$ variables in Φ $x_i:=0$

compute $D := \mathbf{E}[X \mid \text{chosen values of } x_1, \dots, x_i]$

if
$$D < 7n/8$$

 $x_i := 1$

return assignment

Method of conditional probabilities

Example

DETERMINISTIC-ASSIGNMENT(Φ)

```
for i=1,\ldots,m x_i:=0 compute D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i\right] if D<7n/8 x_i:=1 return assignment
```

Method of conditional probabilities

$$\Phi = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

Example

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i\right]$ if D<7n/8 $x_i:=1$

return assignment

$$\Phi = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

Example

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i
ight]$ if D<7n/8 $x_i:=1$

return assignment

 $\Phi = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$ $x_1 := 0:$

 $\Phi = (1 \vee \neg x_2 \vee x_4) \wedge (0 \vee \neg x_4 \vee x_5) \wedge (0 \vee \neg x_5 \vee x_6) \wedge \dots$

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i
ight]$ if D<7n/8 $x_i:=1$

$$\frac{7/8}{\Phi = (\neg x_1 \lor \neg x_2 \lor x_4)} \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 0: \quad 1 \quad 3/4 \quad 3/4$$

$$\Phi = (1 \lor \neg x_2 \lor x_4) \land (0 \lor \neg x_4 \lor x_5) \land (0 \lor \neg x_5 \lor x_6) \land \dots$$

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D := \mathbf{E}\left[X \mid \text{chosen values of } x_1, \dots, x_i \right]$ if D < 7n/8 $x_i := 1$

$$\frac{7/8}{\Phi} = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 0: \quad 1 \quad 3/4 \quad 3/4$$

$$\Phi = (1 \lor \neg x_2 \lor x_4) \land (0 \lor \neg x_4 \lor x_5) \land (0 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 1$$

$$\Phi = (0 \lor \neg x_2 \lor x_4) \land (1 \lor \neg x_4 \lor x_5) \land (1 \lor \neg x_5 \lor x_6) \land \dots$$

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D := \mathbf{E}\left[X \mid \text{chosen values of } x_1, \dots, x_i \right]$ if D < 7n/8 $x_i := 1$

$$\frac{7/8}{\Phi} = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 0: \quad 1 \quad 3/4 \quad 3/4$$

$$\Phi = (1 \lor \neg x_2 \lor x_4) \land (0 \lor \neg x_4 \lor x_5) \land (0 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 1 \quad 3/4 \quad 1 \quad 1$$

$$\Phi = (0 \lor \neg x_2 \lor x_4) \land (1 \lor \neg x_4 \lor x_5) \land (1 \lor \neg x_5 \lor x_6) \land \dots$$

DETERMINISTIC-ASSIGNMENT(Φ)

for $i = 1, \dots, m$ $x_i := 0$ Method of conditional probabilities

compute $D := \mathbf{E}\left[X \mid \text{chosen values of } x_1, \dots, x_i \right]$ if D < 7n/8 $x_i := 1$

$$\frac{7/8}{\Phi} = (\neg x_1 \lor \neg x_2 \lor x_4) \land (x_1 \lor \neg x_4 \lor x_5) \land (x_1 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 0: \quad 1 \quad 3/4 \quad 3/4$$

$$\Phi = (1 \lor \neg x_2 \lor x_4) \land (0 \lor \neg x_4 \lor x_5) \land (0 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_1 := 1 \quad 3/4 \quad 1 \quad 1$$

$$\Phi = (0 \lor \neg x_2 \lor x_4) \land (1 \lor \neg x_4 \lor x_5) \land (1 \lor \neg x_5 \lor x_6) \land \dots$$

$$x_2 := 0 \quad 1 \quad 1$$

$$\Phi = (0 \lor 1 \lor x_4) \land (1 \lor \neg x_4 \lor x_5) \land (1 \lor \neg x_5 \lor x_6) \land \dots$$

Bonus info

DETERMINISTIC-ASSIGNMENT(Φ)

```
for i=1,\ldots,m x_i:=0 compute D:=\mathbf{E}\left[X\mid \text{chosen values of }x_1,\ldots,x_i\right] if D<7n/8 x_i:=1 return assignment
```

By work of Håstad, it is NP-hard to approximate within $8/7 - \varepsilon$ for all $\varepsilon > 0$, so this very simple algorithm is essentially optimal, unless P=NP.

Vertex Cover

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$.

Vertex Cover

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$. NP-hard!

Vertex Cover

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$. NP-hard!

APPROX-VERTEX-COVER(G)

$$C := \emptyset$$
 while $E(G) \neq \emptyset$ choose $uv \in E(G)$
$$C := C \cup \{u,v\}$$

remove all edges incident on u or v from E(G)

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$.

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$.

Now: We are given weight w(v) > 0 for each $v \in V$.

Goal: Find vertex cover C with minimum

$$w(C) = \sum_{v \in C} w(v).$$

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$.

Now: We are given weight w(v) > 0 for each $v \in V$.

Goal: Find vertex cover C with minimum

$$w(C) = \sum_{v \in C} w(v).$$

Exercise: Find minimum (unweighted) vertex cover and then minimum weighted vertex cover.

Def.: Let G = (V, E) be a graph. A set $V' \subseteq V$ of vertices is a *vertex cover* if for all $uv \in E$, we have $u \in V'$ or $v \in V'$.

Now: We are given weight w(v) > 0 for each $v \in V$.

Goal: Find vertex cover C with minimum

$$w(C) = \sum_{v \in C} w(v).$$

0-1-integer program (IP):

$$x_v \in \{0, 1\}, \forall v \in V$$
 $(x_v = 1 \Leftrightarrow v \in C)$ $x_u + x_v \ge 1, \forall uv \in E$ (edge uv covered)

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

0-1-integer program (IP):

$$x_v \in \{0,1\}$$
, $\forall v \in V$ $(x_v = 1 \Leftrightarrow v \in C)$ $x_u + x_v \ge 1$, $\forall uv \in E$ (edge uv covered)

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

IP is NP-complete!

0-1-integer program (IP):

$$x_v \in \{0,1\}, \forall v \in V$$
 $(x_v = 1 \Leftrightarrow v \in C)$ $x_u + x_v \ge 1, \forall uv \in E$ (edge uv covered)

$$\underset{v \in V}{\mathsf{minimize}} \sum_{v \in V} w(v) x_v$$

IP is NP-complete!

LP-relaxation: replace $x_v \in \{0,1\}$ with $0 \le x_v \le 1$. Result:

0-1-integer program (IP):

$$x_v \in \{0,1\}, \forall v \in V$$
 $(x_v = 1 \Leftrightarrow v \in C)$ $x_u + x_v \ge 1, \forall uv \in E$ (edge uv covered)

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

IP is NP-complete!

LP-relaxation: replace $x_v \in \{0,1\}$ with $0 \le x_v \le 1$. Result:

$$0 \le x_v \le 1$$
, $\forall v \in V$ $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

0-1-integer program (IP):

$$x_v \in \{0,1\}, \ \forall v \in V$$
 $(x_v = 1 \Leftrightarrow v \in C)$ $x_u + x_v \ge 1, \ \forall uv \in E$ (edge uv covered)

$$ightharpoonup$$
 minimize $\sum_{v \in V} w(v) x_v$

IP is NP-complete!

LP-relaxation: replace $x_v \in \{0,1\}$ with $0 \le x_v \le 1$. Result:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

ightharpoonup minimize $\sum_{v \in V} w(v) x_v$

Relaxed solution can be smaller, not larger

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$minimize \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Theorem: Alg. is a polynomial-time 2-approximation algorithm for minimum-weight vertex cover.

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$ $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W): Compute opt. sol. \bar{x} to LP return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Theorem: Alg. is a polynomial-time 2-approximation algorithm for minimum-weight vertex cover.

Need to prove: 1) Polynomial time. 2) Alg. produces feasible solution (i.e., C is a vertex cover). 3) $\frac{w(C)}{w(C^*)} \leq 2$.

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$ $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Theorem: Alg. is a polynomial-time 2-approximation algorithm for minimum-weight vertex cover.

Need to prove: 1) Polynomial time. 2) Alg. produces feasible solution (i.e., C is a vertex cover). 3) $\frac{w(C)}{w(C^*)} \leq 2$. 1) \checkmark

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$ $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W): Compute opt. sol. \bar{x} to LP return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Theorem: Alg. is a polynomial-time 2-approximation algorithm for minimum-weight vertex cover.

Need to prove: 1) Polynomial time. 2) Alg. produces feasible solution (i.e., C is a vertex cover). 3) $\frac{w(C)}{w(C^*)} \leq 2$.

- 1) 🗸
- 2) $uv \in E \Rightarrow \bar{x}_u + \bar{x}_v \ge 1 \Rightarrow \bar{x}_u \ge \frac{1}{2} \lor \bar{x}_v \ge \frac{1}{2} \Rightarrow u \in C \lor v \in C$.

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Need to prove: 3) $\frac{w(C)}{w(C^*)} \leq 2$.

$$0 \le x_v \le 1$$
, $\forall v \in V$ $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Need to prove: 3) $\frac{w(C)}{w(C^*)} \leq 2$.

Let $z^* := \sum_{v \in V} \bar{x}_v w(v)$, recall $z^* \leq w(C^*)$.

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$\underset{v \in V}{\mathsf{minimize}} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Need to prove: 3) $\frac{w(C)}{w(C^*)} \le 2$.

Let $z^* := \sum_{v \in V} \bar{x}_v w(v)$, recall $z^* \le w(C^*)$.

$$w(C) = \sum_{v \in C} w(v) = \sum_{v \in V} w(v) [v \in C] = \sum_{v \in V} w(v) [\bar{x}_v \ge \frac{1}{2}]$$

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Need to prove: 3) $\frac{w(C)}{w(C^*)} \le 2$.

Let $z^* := \sum_{v \in V} \bar{x}_v w(v)$, recall $z^* \leq w(C^*)$.

$$w(C) = \sum_{v \in C} w(v) = \sum_{v \in V} w(v) [v \in C] = \sum_{v \in V} w(v) [\bar{x}_v \ge \frac{1}{2}]$$

LP:

$$0 \le x_v \le 1$$
, $\forall v \in V$
 $x_u + x_v \ge 1$, $\forall uv \in E$

$$\operatorname{minimize} \sum_{v \in V} w(v) x_v$$

APPROX-MIN-WEIGHT-VC(G,W):
Compute opt. sol. \bar{x} to LP
return $C:=\{v\in V\mid \bar{x}_v\geq 1/2\}$

Need to prove: 3) $\frac{w(C)}{w(C^*)} \leq 2$.

Let $z^* := \sum_{v \in V} \bar{x}_v w(v)$, recall $z^* \leq w(C^*)$.

$$w(C) = \sum_{v \in C} w(v) = \sum_{v \in V} w(v) [v \in C] = \sum_{v \in V} w(v) [\bar{x}_v \ge \frac{1}{2}]$$

$$\leq 2 \sum_{v \in V} w(v) \bar{x}_v = 2z^* \leq 2w(C^*) \Rightarrow \frac{w(C)}{w(C^*)} \leq 2.$$

Reflection and methodology

How can we prove $w(C)/w(C^*) \leq 2$ when we don't know $w(C^*)$?

Answer: By proving $w(C) \leq 2z^*$ and $|z^*| \leq w(C^*)$.

Reflection and methodology

How can we prove $w(C)/w(C^*) \leq 2$ when we don't know $w(C^*)$?

Answer: By proving $w(C) \leq 2z^*$ and $|z^*| \leq w(C^*)$.

General technique: Find a parameter \square such that $C \leq \rho \cdot \square$ and $\square \leq C^*$.

For weighted vertex cover: $\square = z^*$ and $\rho = 2$.

Polynomial-time approximation scheme (PTAS):

Approximation algorithm that takes instance I of an optimization problem P and $\varepsilon>0$ as input. For any fixed ε works as $(1+\varepsilon)$ -approximation algorithm for P.

Polynomial-time approximation scheme (PTAS):

Approximation algorithm that takes instance I of an optimization problem P and $\varepsilon>0$ as input. For any fixed ε works as $(1+\varepsilon)$ -approximation algorithm for P.

Ex: Runtime $O(2^{1/\varepsilon} \cdot n^3)$ or $O(n^{1/\varepsilon})$ or $O(n \log n/\varepsilon^2)$.

Polynomial-time approximation scheme (PTAS):

Approximation algorithm that takes instance I of an optimization problem P and $\varepsilon>0$ as input. For any fixed ε works as $(1+\varepsilon)$ -approximation algorithm for P.

Ex: Runtime $O(2^{1/\varepsilon} \cdot n^3)$ or $O(n^{1/\varepsilon})$ or $O(n \log n/\varepsilon^2)$.

Fully polynomial-time approximation scheme (FPTAS):

PTAS with runtime polynomial in $1/\varepsilon$ and the size of I.

Polynomial-time approximation scheme (PTAS):

Approximation algorithm that takes instance I of an optimization problem P and $\varepsilon>0$ as input. For any fixed ε works as $(1+\varepsilon)$ -approximation algorithm for P.

Ex: Runtime $O(2^{1/\varepsilon} \cdot n^3)$ or $O(n^{1/\varepsilon})$ or $O(n \log n/\varepsilon^2)$.

Fully polynomial-time approximation scheme (FPTAS):

PTAS with runtime polynomial in $1/\varepsilon$ and the size of I.

Ex: Runtime $O(n \log n/\varepsilon^2)$.

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \leq t$ with maximum $\sum_{x \in U} x$.

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \leq t$ with maximum $\sum_{x \in U} x$.

Example: $S = \{1, 4, 5\}, t = 8.$

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \le t$ with maximum $\sum_{x \in U} x$.

Example: $S = \{1, 4, 5\}, t = 8.$

NP-complete to decide if $\exists U \subset S : \sum_{x \in U} = t$.

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \leq t$ with maximum $\sum_{x \in U} x$.

Example: $S = \{1, 4, 5\}, t = 8.$

NP-complete to decide if $\exists U \subset S : \sum_{x \in U} = t$.

Abstract exact alg.:

for $k=1,2,\ldots,n$ compute $L_k:=\left\{\sum_{x\in U}x\mid U\subset \{x_1,\ldots,x_k\}\wedge\sum_{x\in U}x\leq t\right\}$. return $\max L_n$

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \leq t$ with maximum $\sum_{x \in U} x$.

Example: $S = \{1, 4, 5\}, t = 8.$

NP-complete to decide if $\exists U \subset S : \sum_{x \in U} = t$.

Abstract exact alg.:

for $k=1,2,\ldots,n$ compute $L_k:=\left\{\sum_{x\in U}x\mid U\subset \{x_1,\ldots,x_k\}\wedge\sum_{x\in U}x\leq t\right\}$. return $\max L_n$

Note: $L_k \subset L_{k-1} \cup (L_{k-1} + x_k)$.

Input: Set $S = \{x_1, \dots, x_n\} \subset \mathbb{N}$, and $t \in \mathbb{N}$.

Goal: Find $U \subset S$ s.t. $\sum_{x \in U} x \leq t$ with maximum $\sum_{x \in U} x$.

Example: $S = \{1, 4, 5\}, t = 8.$

NP-complete to decide if $\exists U \subset S : \sum_{x \in U} = t$.

Abstract exact alg.:

```
for k=1,2,\ldots,n compute L_k:=\left\{\sum_{x\in U}x\mid U\subset \{x_1,\ldots,x_k\}\wedge\sum_{x\in U}x\leq t\right\}. return \max L_n
```

Note: $L_k \subset L_{k-1} \cup (L_{k-1} + x_k)$.

EXACT-SUBSET-SUM(S, t)

$$L_0 = [0]$$
 for $k = 1, \ldots, n$
$$L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k)$$
 remove from L_k duplicates and elements $> t$ return last (L_n)

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

Example: $S = \{1, 4, 5\}, t = 8.$

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

Example:
$$S = \{1, 4, 5\}, t = 8.$$

 $L_0 = [0]$

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

Example:
$$S = \{1, 4, 5\}$$
, $t = 8$. $L_0 = [0]$ $L_1 = L_0 \cup (L_0 + 1) = [0] \cup [1] = [0, 1]$

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

Example:
$$S = \{1, 4, 5\}, t = 8.$$
 $L_0 = [0]$ $L_1 = L_0 \cup (L_0 + 1) = [0] \cup [1] = [0, 1]$ $L_2 = L_1 \cup (L_1 + 4) = [0, 1] \cup [4, 5] = [0, 1, 4, 5]$

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

```
Example: S = \{1, 4, 5\}, t = 8.

L_0 = [0]

L_1 = L_0 \cup (L_0 + 1) = [0] \cup [1] = [0, 1]

L_2 = L_1 \cup (L_1 + 4) = [0, 1] \cup [4, 5] = [0, 1, 4, 5]

L_3 = L_2 \cup (L_2 + 5) = [0, 1, 4, 5] \cup [4, 5] \cup [4, 5] = [0, 1, 4, 5, 6]
```

```
EXACT-SUBSET-SUM(S,t)
L_0 = [0]
for k = 1, \ldots, n
L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k)
remove duplicates and elm.s > t
return last(L_n)
```

```
Example: S = \{1,4,5\}, t = 8. L_0 = [0] L_1 = L_0 \cup (L_0 + 1) = [0] \cup [1] = [0,1] L_2 = L_1 \cup (L_1 + 4) = [0,1] \cup [4,5] = [0,1,4,5] L_3 = L_2 \cup (L_2 + 5) = [0,1,4,5] \cup [\times,6,\times) = [0,1,4,5,6] Running time: Computing L_k: O(|L_{k-1}|).
```

Total: $O(\sum_{k=1}^{n} |L_k|)$

```
EXACT-SUBSET-SUM(S,t)
L_0 = [0]
for k = 1, \ldots, n
L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k)
remove duplicates and elm.s > t
return last(L_n)

Example: S = \{1, 4, 5\}, \ t = 8.
```

```
Example: S = \{1, 4, 5\}, t = 8.
L_0 = [0]
L_1 = L_0 \cup (L_0 + 1) = [0] \cup [1] = [0, 1]
L_2 = L_1 \cup (L_1 + 4) = [0, 1] \cup [4, 5] = [0, 1, 4, 5]
L_3 = L_2 \cup (L_2 + 5) = [0, 1, 4, 5] \cup [\times, 6] \times [\times] = [0, 1, 4, 5, 6]
Running time: Computing L_k: O(|L_{k-1}|).
Total: O(\sum_{k=1}^n |L_k|) = O(nt)
```

```
EXACT-SUBSET-SUM(S, t)
   L_0 = [0]
   for k = 1, \ldots, n
     L_k = \mathsf{MERGE} - \mathsf{LISTS}(L_{k-1}, L_{k-1} + x_k)
     remove duplicates and elm.s > t
   return last(L_n)
Example: S = \{1, 4, 5\}, t = 8.
L_0 = [0]
L_1 = L_0 \cup (L_0 + 1) = |0| \cup |1| = |0, 1|
L_2 = L_1 \cup (L_1 + 4) = [0, 1] \cup [4, 5] = [0, 1, 4, 5]
L_3 = L_2 \cup (L_2 + 5) = [0, 1, 4, 5] \cup \times 6 \times [0, 1, 4, 5, 6]
Running time: Computing L_k: O(|L_{k-1}|).
Total: O(\sum_{k=1}^{n} |L_k|) = O(nt) = O(n2^{\log t}) EXPONENTIAL!!
```

$\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}$

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep $s\in L$, then remove $(s,(1+\delta)s]$.

```
EXACT-SUBSET-SUM(S, t)
   L_0 = [0]
   for k = 1, \ldots, n
      L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k) \| s \in L, then remove remove duplicates and elm.s > t (s, (1+\delta)s].
   return last(L_n)
```

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep

Example: $L = [0, 9, 10, 11, 12, 13, 16], \delta = 0.1.$

```
EXACT-SUBSET-SUM(S, t)
   L_0 = [0]
   for k = 1, \ldots, n
      L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k) \| s \in L, then remove remove duplicates and elm.s > t \| (s, (1+\delta)s].
   return last(L_n)
```

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep

Example: $L = [0, 9, 10, 10, 12, 13, 16], \delta = 0.1.$

```
EXACT-SUBSET-SUM(S, t)
   L_0 = [0]
   for k = 1, \ldots, n
       L_k = \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k) \Big\| s \in L, then remove remove duplicates and elm.s > t \Big\| (s, (1+\delta)s \Big\|.
   return last(L_n)
```

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep

Example: $L = [0, 9, 10, 10, 12, 10, 16], \delta = 0.1.$

```
\begin{aligned} \mathsf{EXACT-SUBSET-SUM}(S,t) \\ L_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L_k &= \mathsf{MERGE-LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L_n) \end{aligned}
```

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep $s\in L$, then remove $(s,(1+\delta)s]$.

Example: $L = [0, 9, 10, 10, 12, 10, 16], \delta = 0.1.$

$$ext{TRIM}(L=[s_1,\ldots,s_m],\delta)$$
 $L'=[s_1]$ for $i=2,\ldots,m$ if $s_i> \operatorname{last}(L')\cdot (1+\delta)$ $L'=L'\cup [s_i]$ return L'

```
\begin{aligned} \mathsf{EXACT\text{-}SUBSET\text{-}SUM}(S,t) \\ L_0 &= [0] \\ \text{for } k = 1, \dots, n \\ L_k &= \mathsf{MERGE\text{-}LISTS}(L_{k-1}, L_{k-1} + x_k) \\ \text{remove duplicates and elm.s} > t \\ \text{return last}(L_n) \end{aligned}
```

Idea: Trim list $L \subset \{0,1,\ldots,t\}$ with parameter $\delta>0$: if we keep $s\in L$, then remove $(s,(1+\delta)s]$.

Example: $L = [0, 9, 10, 10, 12, 12, 16], \delta = 0.1.$

$$ext{TRIM}(L=[s_1,\ldots,s_m],\delta)$$
 $L'=[s_1]$ for $i=2,\ldots,m$ if $s_i> \operatorname{last}(L')\cdot (1+\delta)$ $L'=L'\cup [s_i]$ return L'

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$

Thm.: The alg. is an FPTAS.

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \mathsf{last}(L_n) \le t$ and $\mathsf{last}(L'_n) \le \mathsf{last}(L_n)$.

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{array}{l} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 = [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k = \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k = \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{array}
```

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise: $\forall s \in L_k \exists s' \in L_k' : s' \leq s \leq (1+\delta)^k s'$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$$

$$\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$$

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise: $\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$ $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$$

$$\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$$

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio: $\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq \underline{s \leq (1+\delta)^k s'}$$
 $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$! From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio:
$$\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq \underbrace{(1+\delta)^n}$$

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$$
. $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio:
$$\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq \underbrace{(1+\delta)^n}$$

Claim: $(1+\delta)^n \le 1 + 2n\delta$ if $2n\delta \le 1$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$

From exercise: $\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$ $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio: $\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq \underbrace{(1+\delta)^n}$

Claim: $(1+\delta)^n \le 1 + 2n\delta$ if $2n\delta \le 1$.

Induction: $(1 + \delta)^0 = 1 = 1 + 2 \cdot 0 \cdot \delta$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$$
 $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio:
$$\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq (1+\delta)^n$$

Claim:
$$(1+\delta)^n \le 1 + 2n\delta$$
 if $2n\delta \le 1$.
Induction: $(1+\delta)^0 = 1 = 1 + 2 \cdot 0 \cdot \delta$. \checkmark $(1+\delta)^n = (1+\delta)^{n-1}(1+\delta) \le (1+2(n-1)\delta)(1+\delta)$ $= 1 + 2n\delta - 2\delta + \delta + \delta \cdot 2(n-1)\delta$

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

From exercise:
$$\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$$
 $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio:
$$\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq (1+\delta)^n$$

Claim:
$$(1+\delta)^n \le 1+2n\delta$$
 if $2n\delta \le 1$.
Induction: $(1+\delta)^0 = 1 = 1+2\cdot 0\cdot \delta$.

$$(1+\delta)^n = (1+\delta)^{n-1}(1+\delta) \le (1+2(n-1)\delta)(1+\delta)$$

$$= 1 + 2n\delta - 2\delta + \delta + \delta \cdot 2(n-1)\delta$$

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$

From exercise: $\forall s \in L_k \exists s' \in L'_k : s' \leq \underline{s} \leq (1+\delta)^k \underline{s'}$ $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio: $\frac{s_{\max}}{\operatorname{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq \underbrace{(1+\delta)^n}$

Claim: $(1+\delta)^n \le 1 + 2n\delta$ if $2n\delta \le 1$.

Induction: $(1+\delta)^0 = 1 = 1 + 2 \cdot 0 \cdot \delta$. \checkmark $(1+\delta)^n = (1+\delta)^{n-1}(1+\delta) \le (1+2(n-1)\delta)(1+\delta)$ $= 1 + 2n\delta - 2\delta + \delta + \delta \cdot 2(n-1)\delta < 1 + 2n\delta$.

Thm.: The alg. is an FPTAS.

Proof: Feasibility: Opt. is $s_{\max} = \operatorname{last}(L_n) \leq t$ and $\operatorname{last}(L'_n) \leq \operatorname{last}(L_n)$. Approx. ratio: Assume we trim with δ

 $\begin{array}{l} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 = [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k = \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k = \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{array}$

From exercise: $\forall s \in L_k \exists s' \in L'_k : s' \leq s \leq (1+\delta)^k s'$ $\Rightarrow \frac{s}{s'} \leq (1+\delta)^k$ want $\leq 1+\varepsilon$!

From exercise, there is $s' \in L'_n$ such that $\frac{s_{\max}}{s'} \leq (1+\delta)^n$.

Approximation ratio: $\frac{s_{\max}}{\mathsf{last}(L'_n)} \leq \frac{s_{\max}}{s'} \leq (1+\delta)^n$

Claim: $(1 + \delta)^n \le 1 + 2n\delta$ if $2n\delta \le 1$. $\delta := \varepsilon/2n \Rightarrow 1 + 2n\delta \le 1 + \varepsilon$ Induction: $(1 + \delta)^0 = 1 = 1 + 2 \cdot 0 \cdot \delta$. $\sqrt{(1 + \delta)^n} = (1 + \delta)^{n-1}(1 + \delta) \le (1 + 2(n-1)\delta)(1 + \delta)$

$$(1+\delta)^n = (1+\delta)^{n-1}(1+\delta) \le (1+2(n-1)\delta)(1+\delta)$$

$$= 1+2n\delta - 2\delta + \delta + \delta \cdot 2(n-1)\delta < 1+2n\delta.$$

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right)$$

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

Claim: $|L'_k| = O(\frac{n \log t}{\varepsilon})$.

```
\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}
```

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

Claim: $|L'_k| = O(\frac{n \log t}{\varepsilon})$.

Let $L'_k = [0, s_0, s_1, \dots, s_m]$. Then

 $t \ge s_m > (1+\delta)s_{m-1} > \ldots > (1+\delta)^m s_0 \ge (1+\delta)^m$.

$$\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1, \dots, n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1}, L'_{k-1} + x_k) \\ L'_k &= \mathsf{TRIM}(L'_k, \varepsilon/2n) \\ \mathsf{remove} \ \mathsf{duplicates} \ \mathsf{and} \ \mathsf{elm.s} > t \\ \mathsf{return} \ \mathsf{last}(L'_n) \end{aligned}$$

Recall $\delta = \varepsilon/2n$.

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

Claim: $|L'_k| = O(\frac{n \log t}{\varepsilon})$.

Let $L'_k = [0, s_0, s_1, \dots, s_m]$. Then

 $t \ge s_m > (1+\delta)s_{m-1} > \ldots > (1+\delta)^m s_0 \ge (1+\delta)^m$.

So
$$m < \log_{1+\delta} t = \frac{\ln t}{\ln(1+\delta)}$$
.

 $\begin{aligned} \mathsf{APPROX\text{-}SUBSET\text{-}SUM}(S,t,\varepsilon) \\ L'_0 &= [0] \\ \mathsf{for} \ k = 1,\dots,n \\ L'_k &= \mathsf{MERGE\text{-}LISTS}(L'_{k-1},L'_{k-1}+x_k) \\ L'_k &= \mathsf{TRIM}(L'_k,\varepsilon/2n) \end{aligned}$

remove duplicates and elm.s >t return ${\sf last}(L_n')$

Recall
$$\delta = \varepsilon/2n$$
.

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

Claim: $|L'_k| = O(\frac{n \log t}{\epsilon})$.

Let $L'_k = [0, s_0, s_1, \dots, s_m]$. Then

 $t \ge s_m > (1+\delta)s_{m-1} > \dots > (1+\delta)^m s_0 \ge (1+\delta)^m$.

So $m < \log_{1+\delta} t = \frac{\ln t}{\ln(1+\delta)}$.

CLRS eq. (3.17): if $\delta > -1$: $\delta \ge \ln(1+\delta) \ge \frac{\delta}{1+\delta}$.

APPROX-SUBSET-SUM (S, t, ε)

$$L_0' = [0]$$
 for $k = 1, \ldots, n$
$$L_k' = \mathsf{MERGE-LISTS}(L_{k-1}', L_{k-1}' + x_k)$$

$$L_k' = \mathsf{TRIM}(L_k', \varepsilon/2n)$$
 remove duplicates and elm.s $> t$ return last (L_n')

Recall $\delta = \varepsilon/2n$.

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

 $\mathsf{APPROX} ext{-SUBSET-SUM}(S,t,arepsilon)$

$$L_0' = [0]$$
 for $k = 1, \ldots, n$
$$L_k' = \mathsf{MERGE-LISTS}(L_{k-1}', L_{k-1}' + x_k)$$

$$L_k' = \mathsf{TRIM}(L_k', \varepsilon/2n)$$
 remove duplicates and elm.s $> t$ return last (L_n')

Recall $\delta = \varepsilon/2n$.

Claim: $|L'_k| = O(\frac{n \log t}{\varepsilon})$.

Let $L'_k = [0, s_0, s_1, \dots, s_m]$. Then

$$t \ge s_m > (1+\delta)s_{m-1} > \ldots > (1+\delta)^m s_0 \ge (1+\delta)^m$$
.

So $m < \log_{1+\delta} t = \frac{\ln t}{\ln(1+\delta)}$.

CLRS eq. (3.17): if $\delta > -1$: $\delta \ge \ln(1+\delta) \ge \frac{\delta}{1+\delta}$.

So
$$m < \frac{\ln t}{\ln(1+\delta)} \le \frac{\ln t}{\frac{\delta}{1+\delta}} = \frac{(1+\delta)\ln t}{\delta} \le \frac{2\ln t}{\delta} = \frac{4n\ln t}{\varepsilon}$$
.

Thm.: The alg. is an FPTAS.

Running time:

$$O\left(\sum_{k=1}^{n} |L'_k|\right).$$

 $\mathsf{APPROX} ext{-SUBSET-SUM}(S,t,arepsilon)$

$$L_0' = [0]$$
 for $k = 1, \ldots, n$
$$L_k' = \mathsf{MERGE-LISTS}(L_{k-1}', L_{k-1}' + x_k)$$

$$L_k' = \mathsf{TRIM}(L_k', \varepsilon/2n)$$
 remove duplicates and elm.s $> t$ return last (L_n')

Recall $\delta = \varepsilon/2n$.

Claim: $|L'_k| = O(\frac{n \log t}{\varepsilon})$.

Let $L'_k = [0, s_0, s_1, \dots, s_m]$. Then

$$t \ge s_m > (1+\delta)s_{m-1} > \ldots > (1+\delta)^m s_0 \ge (1+\delta)^m$$
.

So $m < \log_{1+\delta} t = \frac{\ln t}{\ln(1+\delta)}$.

CLRS eq. (3.17): if $\delta > -1$: $\delta \ge \ln(1+\delta) \ge \frac{\delta}{1+\delta}$.

So
$$m < \frac{\ln t}{\ln(1+\delta)} \le \frac{\ln t}{\frac{\delta}{1+\delta}} = \frac{(1+\delta)\ln t}{\delta} \le \frac{2\ln t}{\delta} = \frac{4n\ln t}{\varepsilon}$$
.

Total running time:
$$O\left(\sum_{k=1}^n |L_k'|\right) = O\left(\frac{n^2 \ln t}{\varepsilon}\right)$$
.