Отчет о выполнении лабораторной работы 1.3.3 "Измерение вязкости воздуха по течению в тонких трубках"

Гибатова Амалия, Кириченко Варвара, Б03-402

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются:

- система подачи воздуха (компрессор, поводящие трубки);
- газовый счетчик барабанного типа ($\sigma_V = 0.02$);
- спиртовой микроманометр с регулируемым наклоном ($\rho = 0,8095 \pm 0.0005 \ g/cm^3, \sigma_h = 1 \ mm$);
- набор трубок различного диаметра с выходами для подсоединения микроманометра ($d_1 = 3,0 \pm 0,1 \ mm,\ d_2 = 3,95 \pm 0,05 \ mm,\ d_3 = 5,10 \pm 0,05 \ mm$);
- секундомер

1. Теоретическая часть

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку:

$$\tau_z = -\eta \frac{\delta v_x}{\delta y}$$

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{n}$$

Течение Пуазейля. Из опыта известно, что при достаточно малых числах Рейнольдса течение в прямой трубе с гладкими стенками имеет ламинарный характер. В таком случае будет верна формула Пуазеля, которая позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

Длина установления. Пусть на вход трубы поступает течение, распределение скоростей которого не является пуазейлевским. Профиль течения не может установиться сразу, а реализуется лишь на некотором расстоянии l от начала трубы. Грубая оценка для этой величины, с учётом экспериментально установленного коэффициента, позволяющего добиться удовлетворительной точности:

$$l \sim \frac{\rho u R^2}{\eta} \approx 0, 2R \cdot Re$$

Турбулентность. Ламинарная картина течения наблюдается при относительно малых числах Рейнольдса, когда вязкие силы достаточны для того, чтобы погасить любые случайно возникшие возмущения потока. При превышении некоторого критического числа Рейнольдса Re > Re.кр течение Пуазейля становится неустойчивым. В потоке начинают рождаться вихри, которые затем сносятся вниз по трубе (при докритических числах Рейнольдса такие вихри быстро затухают за счёт вязкости). С дальнейшим увеличением Re количество вихрей возрастает и, взаимодействуя между собой, они порождают вихри всё меньшего размера, создавая таким образом сложную многомасштабную картин течения. Эта картина радикально отличается от ламинарной: в ней отсутствуют непрерывные линии тока, а слои жидкости постоянно перемешиваются. Течение становится практически непредсказуемым, а скорость и давление испытывают значительные случайные флуктуации. В таком потоке расход можно оценить следующим образом:

$$Q \sim R^{\frac{5}{2}} \sqrt{\frac{\Delta P}{\rho l}}$$

2. Экспериментальная установка

Рис. 1: Экспериментальная установка

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками. Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя.

3. Проведение эксперимента

- 1. Перед началом работы ознакомимся с характеристиком установки и измерительных приборов.
- 2. Подсоединим манометр к двум соседним выводам трубки среднего диаметра ($l=50\ cm$). Включим компрессор и создадим поток воздуха через трубку, следя за показаниями микроманометра. Убедимся в работоспособности установки.
- 3. Измерим параметры окружающей среды: $t_0=23,7^{\circ}C,~\rho_0=20,9\%,~P_0=97,59~kPa$. Из таблицы определим поправочный коэффициент к плотности спирта: k=0,9932. Зафиксируем диаметры трубок.
- 4. Рассчитаем критическое значение расхода.

$$Re = \frac{\rho ua}{\eta} \approx \frac{\rho Qa}{\pi R^2 \eta} \approx \frac{\rho Q}{\pi R \eta} = \frac{\mu P_0 Q}{R_{T_0 \pi R \eta}}$$

$$Q_{kp} = \frac{R_{T_0\pi R\eta Re_{kp}}}{\mu P_0} \approx 6,5 \ l/min$$

Далее выразим соответвующий данному расходу перепад давлений.

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

$$\Delta P_{kp} = \frac{8\eta l Q_{kp}}{\pi R^4} \approx 180 \ Pa$$

Переведя это в деления шкалы микроманометра, получим 114 мм.

Оценим длину, на которой течение можно считать установившимся.

$$l_{ust} = 0, 2Re_{kp}R \approx 40 \ cm$$

Расстояние от начала трубки до ближайшего вывода, подключенного к микроманометру превышает 80 см, то есть течение можно с уверенностью считать установившимся.

- 5. Визуально определим границу перехода от ламинарного течения к турбулентному. Столбик микроманометра начинает заметно колебаться при превышении отметки в 80 мм. Данная величина немного ниже чем оценка, полученная в предыдущем пункте.
- 6. Найдем параметры расхода, при которых относительная погрешность не будет превышать 1%. Так как $\sigma_V=0,02\ l$, то минимальный объём проходящего через счётчик газа нужно принять равным 2 литрам. Проведя простые измерения скорости реакции человека с помощью секундомера, мы определили, что она не превышает $\sigma_t=0,2\ c$. Так как, мы фиксируем время начала и конца процесса измерения, абсолютная погрешность удваивается. То есть минимальное время измерения должно превышать $40\ c$.
- 7. Измерим зависимость перепада давления ΔP от расхода Q на выбраном участке. Проведем пять измерения в ламинарном режиме течения, пять в турбулентном и еще две в зоне, находящейся в промежуточной зоне. Результаты запишем в таблицу 1. Обработаем их, вычислив ΔP и Q по формулам:

$$\Delta P = \rho_{kgh\sin\alpha}, \quad Q = \frac{V}{4}$$

где ρ — плотность спирта, k — поправочный температурный коэффициент, g — ускорение свободного падения, $\sin \alpha = 0, 2$ на протяжении всей лабораторной работы. Обработанные результаты занесем в таблицу 2.

- 8. Проведем измерение распределения давления газа вдоль трубки. Подсоединим микроманометр ко всевозможным парам отверстий. Результаты занесем в таблицу 3.
- 9. Повторим предыдущие пять пунктов для трубки с наибольшим диаметром. Дополним таблицы 1-3.
- 10. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления. Измерим расход всех труб, при градиенте, обеспечивающем ламинарное течение, и при градиенте, обеспечивающем турбулентное течение. Заполним получившимися данными таблицу 4.

4. Обработка данных

11. По данным таблицы 2 построим графики зависимости $Q(\Delta P)$. На графиках отчетливо видна граница перехода от ламинарного режима течения, к турбулентному. По угловым коэффициентам линейных зависимостей для ламинарных потоков определим вязкость воздуха.

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} = k \Delta P,$$

$$k = \frac{\pi R^4}{8\eta l}, \quad \eta = \frac{\pi R^4}{8kl}$$

Также рассчитаем критическое число Рейнольдса по формуле из пункта 4:

$$Re = \frac{\mu P_0 Q}{R_{T_0 \pi R \eta}}$$

$$Re_1 = 1010, \quad Re_2 = 1220$$

- 12. Построим график зависимости $\Delta P(x)$, используя данные из таблицы 3.
- 13. Теперь построим график зависимости $\ln Q(\ln R)$, основываясь на данных из таблицы 4. Угловой коэффициент данной прямой будет равен показателю степени β в зависимости $Q \propto R^{\beta}$.

$$\beta_1 = 4, 6, \quad \beta_2 = 3, 2$$

5. Расчет погрешностей

Определим погрешность всех измеренных и вычисленных значений.

$$\varepsilon_{\Delta P} \approx \varepsilon_h = <\frac{\sigma_h}{h}> = 4,2\% \ (\varepsilon_{\rho \ll \varepsilon_h})$$

$$\varepsilon_Q = \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_t^2} = 0,9\%$$

Найдем погрешность вязкости воздуха η .

$$\begin{split} \varepsilon_{\eta,} &= \varepsilon_k, \quad \varepsilon_{\eta,} &= 4\varepsilon_R \\ \\ \varepsilon_{\eta} &= \sqrt{\varepsilon_{\eta,}^2 + \varepsilon_{\eta,}^2} = \sqrt{\varepsilon_k^2 + 16\varepsilon_R^2} \\ \\ \varepsilon_{\eta_1} &= 6, 1\% \quad \varepsilon_{\eta_2} = 6, 2\% \\ \\ \eta_1 &= 17, 0 \pm 1, 0 \ mkPa \cdot c, \quad \eta_2 = 14, 9 \pm 0, 9 \ mkPa \cdot c \end{split}$$

6. Вывод

Полученные значения вязкости близки с табличным значением, равным 17,8 мкПа*с.

Показатели степени β_1 и β_2 полученные из теоритических зависимостей должны быть равны 4 и 2,5 соответственно. Значения, полученные из опыта довольно сильно отличаются.

7. Приложение

d = 3,95		d = 5, 10	
h	V	h	V
10	0,4	10	0,4
20	0,7	20	0,9
30	1,1	30	0,7
40	1,4	40	0,8
50	1,8	50	1,1
60	2,2	60	1,2
70	2,5	70	1,3
80	2,7	80	1,4
90	3,0	90	1,4
100	3,1	100	1,5
110	3,2	110	1,6
120	3,2	120	1,7
130	3,3	130	1,7
140	3,4	140	1,8
150	3,5	150	1,9
160	3,6	160	1,9
170	3,7	170	2,0
180	3,7	180	2,1
190	3,8	190	2,1
200	3,9	200	2,2

Таблица 1: Измерения расхода воздуха в зависимости от перепада давления

d = 3,95		d = 5, 10	
ΔP	Q	ΔP	Q
8	0,8	12	0,8
49	1,4	86	1,9
121	2,3	160	2,8
202	2,9	236	3,4
272	3,6	307	4,3
349	4,2	380	4,6
441	4,9	445	5,1
525	5,4	490	5,4
598	6,1	538	6,0
670	6,3	609	6,1
727	6,6	669	6,5
760	6,7	760	6,8
809	6,9	834	7,2
854	6,7	909	7,3
899	7,3	989	7,6
939	7,3	1059	7,7
989	7,2	1130	8,0
1035	7,6	1183	8,3
1087	7,6	1257	8,3

Таблица 2: Зависимость расхода воздуха от перепада давления

Q = const = 4,75				
d=3,95				
1	Р			
10,9	45			
40,9	93			
50	68			
70	112			
80,9	157			
90	132			
120	180			
130,9	226			

Таблица 3: Измерение давления между всевозможными парами выводов, мм столбца микрометра

d	Р	l	Q
3,95	50	50	3,5
5,10	50	50	9,1
3,00	30	30	1,3

Таблица 4: Измерение зависимости Q(R) от радиуса трубы при ламинарном течение и заданном градиент давления

Рис. 2: Зависимость расхода воздуха от перепада давления

Рис. 3: Распределение давления газа вдоль трубок

Рис. 4: Зависимость $\ln Q(\ln R)$