DCP 1206: Probability Lecture 19 — Bivariate Normal Random Variables and Multivariate Random Variables

Ping-Chun Hsieh

November 22, 2019

GitHub's Mascot: The Octocat

master

□ branch3

Octocat = Octopus-Cat

Merge branches 'branch1', 'branch2' and 'branch3'

Add file6 Add file5 Add file4 Add file3 Add file2 Committed Initial commit

How to merge 3 branches simultaneously?

"Octopus-merge" e.g.: git merge b1 b2 b3 b4

Add file9

Add file8

Add file7

This Lecture

1. Bivariate Normal Random Variables

2. Multivariate Random Variables

Reading material: Chapter 10.5 and 9.1

1. Bivariate Normal Random Variables

Let's do a quick review of "bivariate normal"!

Review: Bivariate Normal R.V.s (Formally)

• Bivariate Normal: X_1 and X_2 are said to be bivariate normal random variables if the joint PDF of X_1, X_2 is

$$f_{X_1 X_2}(x_1, x_2) = \frac{1}{2\pi\sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]$$

where

$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{y}_2 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

 $\begin{bmatrix} x_2 \end{bmatrix}$ $\begin{bmatrix} \mu_2 \end{bmatrix}$

Notation for bivariate normal: $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\mu, \Sigma)$

Bivariate Normal R.V.s: Alternative Expression

Joint PDF of Bivariate Normal:

$$f_{X_1 X_2}(x_1, x_2) = \frac{1}{2\pi\sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right]$$

$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Alternative expression:
$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

Plotting the Joint PDF Bivariate Normal

Joint PDF of Bivariate Normal:

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

• **Example:** $\sigma_1 = \sigma_2 = 1$, $\mu_1 = \mu_2 = 0$

X_1, X_2 Normal $\Rightarrow X_1, X_2$ Bivariate Normal

- ightharpoonup Example: Let Y and Z be two independent standard normal r.v.s
 - $X_1 = |Y| \cdot \operatorname{sign}(Z)$
 - $X_2 = Y$
- Question:
 - Are X_1 and X_2 normal?
 - Are X_1 and X_2 bivariate normal?

Now, let's study important properties of bivariate normal!

Properties of Bivariate Normal R.V.

• If X_1, X_2 are bivariate normal, then we have:

- $\begin{cases} \text{1. Marginal: } X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2) \text{ and } X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2) \\ \text{2. Conditional: } X_2 \,|\, X_1 = x_1 \sim \mathcal{N}\Big(\mu_2 + \frac{\rho \sigma_2(x_1 \mu_1)}{\sigma_1}, (1 \rho^2) \sigma_2^2\Big) \end{cases}$
 - 3. Correlation coefficient: $\rho(X_1, X_2) = \rho$
 - 4. If X_1, X_2 are uncorrelated ($\rho = 0$), then X_1, X_2 are independent

1. Marginal: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

$$\frac{f_{X_{1}X_{2}}(x_{1}, x_{2})}{\frac{d}{dx_{1}}} = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}} \exp\left[-\frac{\left(\frac{(x_{1} - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x_{1} - \mu_{1})(x_{2} - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(x_{2} - \mu_{2})^{2}}{\sigma_{2}^{2}}\right)}{2(1 - \rho^{2})}\right] = \frac{\left(\frac{(x_{1} - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x_{1} - \mu_{1})(x_{2} - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(x_{2} - \mu_{2})^{2}}{\sigma_{2}^{2}}\right)}{2(1 - \rho^{2})} = \frac{\left(x_{1} - \mu_{1}\right)^{2}}{2\sigma_{1}^{2}} + \frac{1}{2\sigma_{2}^{2}}\left(\frac{(x_{2} - \mu_{2}) - \rho(x_{1} - \mu_{1})}{\sqrt{1 - \rho^{2}}}\right)^{2}}{\sqrt{1 - \rho^{2}}}$$

$$= \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \left(\frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}} + \frac{(x_{1} - \mu_{1})^{2}}{2\sigma_{1}^{2}}\right) - \frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}}$$

$$= \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \left(\frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}} + \frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}}\right) - \frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}}$$

$$= \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \left(\frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}} + \frac{(x_{2} - \mu_{2})^{2}}{\sqrt{1 - \rho^{2}}}\right) - \frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}}$$

$$= \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \left(\frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}} + \frac{(x_{2} - \mu_{2})^{2}}{\sqrt{1 - \rho^{2}}}\right) - \frac{(x_{1} - \mu_{1})^{2}}{\sqrt{1 - \rho^{2}}}$$

$$= \int_{\mathbb{R}^{2}} \mathbb{R}^{2} \int_{\mathbb{R}^{2}}$$

1. Marginal: $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)}\right]$$

$$\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)} = \frac{\left(x_2 - \mu_2\right)^2}{2\sigma_2^2} + \frac{1}{2\sigma_1^2}\left(\frac{(x_1 - \mu_1) - \rho(x_2 - \mu_2)}{\sqrt{1 - \rho^2}}\right)^2$$

$$f_{X_2}(x_2) =$$
(1) Hom e

2. Conditional:
$$X_{2} | X_{1} = x_{1} \sim \mathcal{N}\left(\mu_{2} + \frac{\rho\sigma_{2}(x_{1} - \mu_{1})}{\sigma_{1}}, (1 - \rho^{2})\sigma_{2}^{2}\right)$$

$$f_{X_{1}X_{2}}(x_{1}, x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}} \exp\left[-\frac{(x_{1} - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x_{1} - \mu_{1})(x_{2} - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(x_{2} - \mu_{2})^{2}}{\sigma_{2}^{2}}\right]$$

$$f_{X_{1}}(x_{1}) = \frac{1}{\sqrt{2\pi\sigma_{1}}} \exp\left[-\frac{(x_{1} - \mu_{1})^{2}}{2\sigma_{1}^{2}}\right]$$

$$f_{X_{2}|X_{1}}(x_{2}|x_{1}) = \frac{f_{X_{1}X_{2}}(X_{1}/X_{2})}{f_{X_{2}|X_{1}}(X_{2}|x_{1})} + \frac{f_{X_{2}|X_{1}}(X_{2}|x_{1})}{\sigma_{1}\sigma_{2}} + \frac{f_{X_{2}|X_{1}}(X_{1}|x_{1})}{\sigma_{1}\sigma_{2}} + \frac{f_{$$

3. Correlation Coefficient: $\rho(X_1, X_2) =$

3. Correlation Coefficient:
$$\rho(X_1, X_2) = \rho$$

$$\int_{X_1 X_2} (x_1, x_2) = \frac{1}{2\pi\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1 - \rho^2)}\right]$$

$$Cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ((x_1 - \mu_1)(x_2 - \mu_2) \tilde{f}_{X_1 X_2}(x_1, x_2) dx_1 dx_2$$

$$Hint: \int_{X_2 | X_1} = \frac{\int_{X_1 X_2}}{f_{X_1}} \Rightarrow \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_1} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_{X_2 | X_2} \int_{X_2 | X_1} \int_{X_2 | X_2} \int_$$

3. Correlation Coefficient: $\rho(X_1, X_2) = \rho$ (Cont.)

(left blank intentionally for the proof)

4. Uncorrelated ($\rho = 0$) Implies Independence

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

If
$$\rho = 0$$
:
$$f_{X_1 X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1 \sigma_2} \exp\left(-\frac{(x_1 - m_1)^2}{2} + \frac{(x_2 - m_2)^2}{2}\right)$$

$$= \int_{X_1} (x_1) \cdot \int_{X_2} (x_2).$$

Extension: Multivariate Normal R.V.

• Multivariate Normal Random Variables: X_1, \dots, X_n are said to be multivariate normal random variables if the joint PDF of X_1, \dots, X_n is

$$f_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) = \frac{1}{2\pi \sqrt{|\det(\Sigma)|}} \exp\left[-\frac{1}{2}(x - \mu)^T \sum_{i=1}^{n-1} (x - \mu)\right]$$
 where

$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \cdots & \cdots & \cdots \\ \operatorname{Cov}(X_n, X_1) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \cdots \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \cdots \end{bmatrix}$$

There is still one remaining question:

Is it possible to construct "bivariate normal" from "normal"?

Construction of Bivariate Normal R.V.

Idea: Let Z, W be 2 independent standard normal r.v.s and define

$$X_{1} = \sigma_{1}Z + \mu_{1}$$

$$X_{2} = \sigma_{2}(\rho Z + \sqrt{1 - \rho^{2}W}) + \mu_{2}$$

ightharpoonup Result: X_1, X_2 are bivariate normal with joint PDF

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}{2(1-\rho^2)}\right]$$

Linear Transformation of 2 Random Variables

Theorem: Let U_1, U_2, V_1, V_2 be random variables that satisfy $V_1=aU_1+bU_2$ and $V_2=cU_1+dU_2$. Define the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \text{ Then, we have } \\ f_{V_1 V_2}(v_1, v_2) = \frac{1}{|\det(A)|} f_{U_1 U_2}(A^{-1}[v_1, v_2]^T)$$

Intuition:

For more details, please check: https://www.stat.berkeley.edu/~aditya/resources/AllLectures2018Fall201A.pdf

Joint PDF of X_1 and X_2

For simplicity, assume $\mu_1 = \mu_2 = 0$ (can be handled via translation)

$$X_1 = \sigma_1 Z$$

$$X_2 = \sigma_2 \left(\rho Z + \sqrt{1 - \rho^2} W \right) \quad f_{X_1 X_2}(x_1, x_2) = \frac{1}{|\det(A)|} f_{ZW}(A^{-1}[x_1, x_2]^T)$$

Quick Summary: Bivariate Normal

2. Multivariate Random Variables

From Bivariate To Multivariate

- Key Idea: Bivariate definitions and properties can be directly extended to the "multivariate" cases
- For example:
 - 1. Joint CDF / PMF / PDF
 - 2. Expected value
 - 3. Marginal CDF / PMF / PDF
 - 4. Independence

Joint CDF

Joint CDF of 2 Random Variables: Let X and Y be two random variables defined on the same sample space Ω . The joint CDF $F_{XY}(t,u)$ is defined as

$$F_{XY}(t,u) = P(X \le t, Y \le u), \ \forall t, u \in \mathbb{R}$$

Joint CDF of n Random Variables: Let X_1, \dots, X_n be random variables defined on the same sample space Ω . The joint CDF $F(x_1, x_2, \dots, x_n)$ is defined as

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n), \ \forall x_i \in \mathbb{R}$$

Joint PDF

Joint PDF of 2 Random Variables: Let X and Y be two continuous random variables. Then, $f_{XY}(x, y)$ is the joint PDF of X and Y if for every subset B of \mathbb{R}^2 , we have

$$P((X,Y) \in B) = \iiint_B f_{XY}(x,y) dx dy$$

Joint PDF of n **Random Variables**: Let X_1, \dots, X_n be n continuous random variables. Then, $f(x_1, x_2, \dots, x_n)$ is the joint PDF of X_1, \dots, X_n if for every subset B of \mathbb{R}^n , we have

$$P((X_1, X_2, \dots, X_n) \in B) = \int \dots \int_B f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

Expected Value

Expected Value of a Function of 2 Continuous RVs:

Let X, Y be 2 continuous random variables with joint PDF $f_{XY}(x, y)$. Let $g(\cdot, \cdot)$ be a function from $\mathbb{R}^2 \to \mathbb{R}$

The expected value of
$$g(X,Y)$$
 is function
$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{g(x,y)f_{XY}(x,y)dxdy}{g(x,y)f_{XY}(x,y)dxdy}$$

Expected Value of a Function of *n* **Continuous RVs:**

Let X_1, \dots, X_n be n continuous random variables with joint PDF $f(x_1, x_2, \dots, x_n)$. Let g be a function from $\mathbb{R}^n \to \mathbb{R}$. The expected value of $g(X_1, X_2, \dots, X_n)$ is

$$E[g(X_1, X_2, \dots, X_n)] = \int \dots \int g(X_1, \dots, X_n) \cdot f(X_1, \dots, X_n) \cdot f(X_1,$$

Independence Property: Joint CDF

Independence ≡ joint CDF is the product of the marginal CDFs:

Two random variables X, Y are **independent** if and only if

$$F_{XY}(t, u) = F_X(t) \cdot F_Y(u)$$

Independence of n Random Variables \equiv joint CDF is the product of the marginal CDFs:

Random variables X_1, X_2, \dots, X_n are **independent** if and only if

$$F_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n) = \left[\chi_1(\chi_1) \left(\chi_2(\chi_2) \cdots \right) \right]$$

Independence Property: Joint PDF

Joint PDF is the product of the marginal PDFs under independence: Two continuous random variables X, Y are independent if and only if the joint PDF satisfies that

$$f_{XY}(t, u) = f_X(t) \cdot f_Y(u)$$

Joint PDF is the product of the marginal PDFs of n random variables under independence: n continuous random variables X_1, X_2, \cdots, X_n are independent if and only if the joint PDF satisfies that

$$f_{X_1X_2\cdots X_n}(x_1,x_2,\cdots,x_n) = \oint_{X_1}(\gamma_1)\cdots \oint_{X_n}(\gamma_n)$$

Independence Property: Expected Value

• Expected value under independence: Suppose X, Y are independent random variables. Then, we have

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$$

• Expected value of n random variables under independence: Suppose X_1, X_2, \dots, X_n are independent random variables. Then, we have

$$E[g_1(X_1)\cdots g_n(X_n)] = E[\mathcal{G}(X_1)]\cdots E[\mathcal{G}_n(X_n)]$$

Next Lecture

- 1. Sum of n independent random variables
- 2. Moment generating function (MGF)

1-Minute Summary

1. Bivariate Normal Random Variables

- Joint PDF
- X_1, X_2 normal $\Rightarrow X_1, X_2$ bivariate normal
- 4 properties: marginal PDF / conditional PDF / ρ / uncorrelated
- Construction from 2 independent standard normal r.v.s

2. Multivariate Random Variables

- Joint CDF / PDF / PMF of n random variables
- Expected value regarding n random variables
- Independence properties of n random variables