

JC714 U.S. PTO

11/12/99

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

A

Applicant: JUNG, et al.
 Docket: 9983.97US01
 Title: METHOD FOR CONTROLLING TRANSMISSION CONTROL PROTOCOL WINDOW SIZE IN ASYNCHRONOUS TRANSFER MODE NETWORK

CERTIFICATE UNDER 37 CFR 1.10

'Express Mail' mailing label number: EL435540165US

Date of Deposit: November 12, 1999

I hereby certify that this paper or fee is being deposited with the United States Postal Service 'Express Mail Post Office To Addressee' service under 37 CFR 1.10 and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Name: Linda McCormick

 JC688 U.S. PTO
 09/439206
 11/12/99

BOX PATENT APPLICATION

Assistant Commissioner for Patents
 Washington, D.C. 20231

Sir:

We are transmitting herewith the attached:

- Transmittal sheet, in duplicate, containing Certificate under 37 CFR 1.10.
- Utility Patent Application: Spec. 12 pgs; 7 claims; Abstract 1 pgs.
The fee has been calculated as shown below in the 'Claims as Filed' table.
- 2 sheets of formal drawings
- Certified copy of a Korea application, Serial No. 1999-17310, filed May 14, 1999, the right of priority of which is claimed under 35 U.S.C. 119
- A signed Combined Declaration and Power of Attorney
- Assignment of the invention to Korea Telecommunication Authority, Recordation Form Cover Sheet
- A check in the amount of \$760.00 to cover the Filing Fee
- A check for \$40.00 to cover the Assignment Recording Fee.
- Other: Information Disclosure Statement; PTO Form 1449; 1 Reference; Communication Regarding Submission of Priority Document
- Return postcard

CLAIMS AS FILED

Number of Claims Filed	In Excess of:	Number Extra	Rate	Fee
Basic Filing Fee				\$760.00
Total Claims	20	0	x 18.00	\$0.00
Independent Claims	2	3	x 78.00	\$0.00
MULTIPLE DEPENDENT CLAIM FEE				\$0.00
TOTAL FILING FEE				\$760.00

Please charge any additional fees or credit overpayment to Deposit Account No. 13-2725. A duplicate of this sheet is enclosed.

By: _____

Name: Douglas P. Mueller
 Reg. No.: 30,300
 Initials: DPM/sef

MERCHANT & GOULD P.C.
 3100 Norwest Center, Minneapolis, MN 55402
 (612) 332-5300

**METHOD FOR CONTROLLING TRANSMISSION CONTROL PROTOCOL
WINDOW SIZE IN ASYNCHRONOUS TRANSFER MODE NETWORK**

BACKGROUND OF THE INVENTION

5

Field of the Invention

The present invention relates to a method for controlling a transmission control protocol (hereinafter, referred to as 'TCP') window size in an asynchronous transfer mode 10 (hereinafter, referred to as 'ATM') network, and in particular to a method for determining a TCP congestion window size by using an explicit rate (hereinafter, referred to as 'ER') value 15 in a resource management (hereinafter, referred to as 'RM') cell.

15

Description of the Background Art

In general, an available bit rate ABR service has been developed to support a data application in the ATM network, and the TCP is the most widely-used transport level protocol in a 20 currently-used data network.

A TCP window-based flow control is a method for predicting a packet loss by employing an acknowledgement (ACK) signal transmitted from a receiving side. The aforementioned 25 method can detect a congestion state of the network only when the packet loss is generated. Sometimes, the retransmission may be unnecessarily performed by mistakenly predicting the packet loss.

30 Here, a method for predicting the packet loss detects the congestion state of the network by predicting the packet loss by using a TCP timeout. However, this method has a disadvantage in that a degree of the congestion state of the network cannot be measured because a feedback of the TCP is provided merely by 35 the receiving side TCP.

As described above, the TCP window-based flow control predicts the packet loss, and thus increases/decreases the window size. However, the congestion state of the network cannot be precisely evaluated by a simple increase/decrease of 5 the window size. Accordingly, the window size may exceed an allowable size in the network. At this time, the packet loss and the resultant retransmission are generated, and thus the increase/decrease of the window size and retransmission are repeated.

10

In addition, since a delay sharply varies according to the network state on the TCP over the ABR service, a retransmission timeout (hereinafter, referred to as 'RTO') value also increases. In case the packet loss is generated, the 15 loss may be detected after the RTO. As a result, the level of performance ability considerably reduces. According to the fast-retransmission algorithm of the TCP-Reno ("TCP/IP Illustrated Volume 1: The Protocols" by W. Richard Stevens (Addison-Wesley, 1994), more than a half of the packet loss can 20 be detected before the RTO, and according to the method suggested by the TCP-Vegas (Lawrence S. Brakmo and Sean W. O'Malley, "TCP Vegas: New Techniques for Congestion Detection and Avoidance, "SIGCOMM '94 Conference on Communications Architectures and Protocols, pp.24-35, Oct. 1994), more than a 25 half of the residual packet loss can be detected in advance, thereby reducing the number of cases of waiting the RTO. Nevertheless, the decrease and recovery of the window size resulting from the retransmission reduce a TCP throughput.

30 In the conventional TCP over the ABR service, a bandwidth which can be used by the TCP is dependent upon time. Accordingly, a fast recovery to the bandwidth and transmission by a linear increase from the time are not significant.

35

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a method for controlling a transmission control protocol (TCP) window size in an asynchronous transfer mode (ATM) network by employing resource management (RM) cell information of an available bit rate (ABR) service.

In order to achieve the above-described object of the present invention, there is provided a method for computing a window size by using congestion information of a network during data transmission from a transmitting side ATM terminal to a receiving side ATM terminal, an explicit rate value in a resource management (RM) cell being used as the congestion information.

In addition, in order to achieve the above-described object of the present invention, there is provided a method for controlling a transmission control protocol window size in an asynchronous transfer mode network, including: a step for an ATM transmitting terminal to receive a resource management (RM) cell; a step for transmitting an explicit rate value in the received resource management (RM) cell to a transmission control protocol (TCP) level in the ATM transmitting terminal; a step for setting a congestion window to be '1' when the explicit rate value is received; a step for computing the congestion window, when an acknowledgment signal is received from an ATM receiving terminal; and a step for computing a window size, when the congestion window value is computed, and for transmitting a data to the ATM receiving terminal according to the computed size.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become better understood with

reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein:

Figure 1 is a schematic block diagram illustrating a network constitution for providing a transmission control protocol over an available bit rate service which the present invention adapts to; and

Figure 2 is a flowchart showing sequential steps of a control process for a window size on the transmission control protocol in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A method for controlling a transmission control protocol (TCP) window size in an asynchronous transfer mode (ATM) network in accordance with a preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

An algorithm according to the present invention is an explicit rate (ER) mode available bit rate (ABR) switch algorithm.

An ER field in a resource management (RM) cell used by the ABR stores a minimum value of throughputs which each node of the network can receive, and returns to a transmitting side. When the ER value is transmitted to a TCP level, the TCP can detect a state of the network before the packet loss, and prepare for the packet loss, thereby improving the performance of the TCP.

To use the ER value guarantees fairness and stability of each ATM virtual circuit, and thus guarantees fairness and stability of each TCP connection.

The TCP window size control algorithm in accordance with the present invention will now be described.

-ATM level transformation of the transmitting side
5 terminal.

When the RM cell is received, the ER value in the RM cell is transmitted to the TCP.

-TCP level transformation of the transmitting side
10 terminal.

The TCP transmitting side sets the following relationship in every acknowledgment (ACK) signal.

$$awnd = \text{MIN} [\text{credit}, \text{cwnd}] \quad (1)$$

15 Here, 'awnd' implies an allowed window, 'credit' implies an amount of data which the TCP receiving side can receive, and 'cwnd' implies a congestion window, respectively.

20 At this time, a value of 'cwnd' is determined by mapping the ER value and preceding 'cwnd' value, different from the conventional method for controlling the TCP window size.

25 The mapping enables the TCP transmitting side to determine an optimal window size, thus preventing congestion of the network. In addition, it is possible to efficiently use the bandwidth which can be provided to a given TCP connection.

30 'cwnd' which is the TCP congestion window size is determined by the mapping, as follows. Firstly, a throughput of the TCP level is computed by the following Expression.

$$\text{TCP throughput} = \text{last_ER} * \frac{48}{53} * \frac{31}{32} * \frac{\text{TCP_MSS}}{\text{TCP_MSS} + 56\text{bytes}} \quad (2)$$

Here, 'TCP_MSS' implies a maximum segment size of the TCP level. When overheads of the ATM cell, the RM cell, the TCP, the internet protocol (IP), the ATM adaptation layer 5 (AAL5) and an internet engineering task force request for comments 5 1577 (RFC 1577) are removed from the 'last_ER' value, the bandwidth which can be used by the connection over the ABR, the throughput of the TCP level is computed.

$$\text{cwnd} = \text{TCP throughput} * \text{estimated_RTT} * \text{safety_factor} \quad (3)$$

10

Here, 'estimated_RTT' is an estimated round trip time, and 'safety_factor' is a numerical value compensating for variations in the network state and RTT.

15

The computed value is multiplied by an appropriate safety_factor($s < 1$), and thus a sharp variation of the network state and influence of the incorrect RTT are compensated, thereby controlling the throughput of the TCP level. The retransmission mechanism of the conventional TCP is used as a 20 retransmission mechanism.

25

Figure 1 is a constitutional diagram illustrating the TCP service over the ABR service to which the present invention adapts, and shows feedback control loops of the TCP level and the ATM level.

30

The ATM level 121 of the ATM transmitting terminal 12 consecutively receives the RM cell which returns through the network. The ER value of the RM cell is transmitted to the TCP level 122 of the ATM transmitting terminal 12 as it is. The TCP level 122 of the ATM transmitting terminal 12 receiving the ER value computes the allowed window size (awnd), as shown in Expression (1), by using the congestion window size (cwnd) decided by the ER value and 'credit' which is the feedback 35 control loop information of the TCP level.

As depicted In Figure 1, reference numerals 11, 131 and 132 denote an ATM switch, an ATM level of the ATM receiving terminal 13, and a TCP level thereof, respectively.

5 Figure 2 is a flowchart showing the method for controlling the TCP window size in accordance with the present invention, and shows sequential steps of the information transmission between the ATM level 121 and the TCP level 122 of the ATM transmitting terminal 12, and the computation of the
10 allowed window size (awnd).

Firstly, when receiving the RM cell of the ABR feedback control loop, the ATM level 121 of the ATM transmitting terminal 12 replaces the value thereof with the 'last_ER' value,
15 and transmits the replaced value to the TCP level 122 (S1).

The TCP level 122 of the ATM transmitting terminal 12 receiving the 'last_ER' value computes the allowed window size (awnd). Here, the TCP level 122 of the ATM transmitting terminal 12 sets 'cwnd' to be '1' at an initial stage (S2). The decision of the allowed window size (awnd) is driven when the acknowledgement (ACK) signal is received (S3). The 'cwnd' value is computed by Expressions (2) and (3) (S4).

25 In addition, the allowed window size (awnd) is computed as shown in Expression (1), and a transmittable amount thereof at that point is transmitted to the receiving side (S5).

After computing the allowed window size (awnd), the conventional TCP algorithm is applied as it is. Here, the allowed window size (awnd) indicates the right edge of the sliding window at the present point. The transmittable amount is a difference between the 'awnd' value and an amount of the data which have been lastly transmitted (namely, the amount of
35 data which do not receive the acknowledgement (ACK) signal).

Here, the transmission can be performed only when the value is positive.

Tables 1 and 2 as shown below are simulation results for 5 measuring the TCP performance when the algorithm according to the present invention is applied. The throughput (Mbps) and the ratio of retransmission (%) are computed by using a performance parameter of the TCP. The throughput is computed by dividing transmission amount by transmission time, and the ratio of 10 retransmission is computed by dividing the number of the retransmitted packets by the number of the transmitted packets.

The simulation is carried out in a state where five users 15 of a file transfer protocol (FTP) operated over the ABR service and n users of an on-off constant bit rate (CBR) share a link 20 of 150Mbps. In order to presume the local area network (LAN) and the wide area network (WAN) environment, in the length of the links (l_1 , l_2 , l_3), the simulation is performed in regard to the lengths of 1Km, 100Km, 1Km and 0.1Km, 1Km, and 0.1Km, respectively.

Parameters used for the simulation will now be listed.

Link capacity = 150Mbps
25 Link buffer = 1,000 cells (for on-off CBR users), 2,500 cells (for FTP users)
On-off CBR source on time = 84ms, off time = 84ms
TCP maximum segment size (MSS) = 9,140bytes
TCP timer granularity = 50ms
30 TCP maximum window size = 20 segments = 182,800bytes
User buffer size = 1,000,000 cells
ABR Nrm (number of cells between forward RM cells) = 32
Peak cell rate (PCR) = 150Mbps
Minimum cell rate (MCR) = 0.1Mbps
35 Initial cell rate (ICR) = 5Mbps

Rate Increase Factor (RIF) = 1
 Rate Decrease Factor (RDF) = 1
 Transient buffer exposure (TBE) = 512 cells

5 In order to evaluate performance when only the TCP employs a fixed bandwidth, it is presumed that a background traffic does not exist. In addition, for the states where a burstiness of the network is large and small, one 100Mbps on-off CBR user and ten 10Mbps users are presumed. The five 10Mbps users are presumed to observe the operation of an algorithm suggested when the resources of the network are plentiful.
 10
 15

In the respective network states, the simulation is performed by varying the safety_factor(s). The following Tables show the results of the simulation.

Table 1. Simulation result in wide area network

Background Traffic	Performance Parameter	Before Variation	After Variation					
			s= 0.2	s= 0.3	s= 0.4	s= 0.5	s= 0.6	s= 0.7
0Mpbs	Processing Ability	92.6	126.0	126.0	128.8	128.8	129.2	121.8
	Ratio of Retransmission	14.4	2.1	2.1	0.8	0.5	0.5	3.7
100Mbps*1	Processing Ability	67.4	82.3	82.7	83.3	81.6	78.7	75.5
	Ratio of Retransmission	9.7	4.5	1.0	2.2	3.4	6.2	7.3
10Mbps*10	Processing Ability	65.6	85.5	86.0	83.9	82.0	77.5	74.1

	Ratio of Retransmission	10.9	1.7	1.0	2.2	3.4	6.2	8.4
10Mbps*5	Processing Ability	75.6	105.9	107.0	107.6	105.8	100.5	94.4
	Ratio of Retransmission	15.0	1.8	1.3	0.8	1.7	4.4	7.4

Table 2. Simulation result in local area network

Background Traffic	Performance Parameter	Before Variation	After Variation						
			s=0	s=0	s=0	s=0	s=0	s=0	s=0
0Mbps	Processing Ability	94.2	91.4	98.2	104.1	114.3	122.4	121.8	115.9
	Ratio of Retransmission	14.0	14.2	12.8	11.2	7.1	3.7	3.8	6.3
100Mbps*1	Processing Ability	67.4	67.3	70.0	72.6	75.1	76.6	74.9	73.2
	Ratio of Retransmission	10.3	11.1	11.2	10.4	8.9	7.5	8.0	8.9

10Mbps*1 0	Proce- ssing Abili- ty	65.8	65. 8	70. 5	74. 9	79. 4	78. 6	75. 6	73. 5
	Ratio of Retra- nsmis- sion	10.6	12. 2	11. 0	8.3	5.3	5.7	7.7	9.1
10Mbps*5 5	Proce- ssing Abili- ty	76.6	78. 3	82. 2	89. 2	98. 3	101 .4	96. 8	92. 8
	Ratio of Retra- nsmis- sion	14.8	13. 5	12. 9	10. 3	5.8	4.0	6.3	8.4

As shown in the above Tables, the TCP performance is improved by using the suggested method in every background traffic. The window size of the conventional TCP increases regardless of the network state, and repeats the information loss, the resultant retransmission and the increase of the window size. However, when the algorithm in accordance with the present invention is applied, the window size is flexibly varied according to the network state.

10

In regard to performance of the TCP, in the case that the safety_factor(s) is approximately to 0.5, the throughput is considerably improved and the ratio of retransmission is reduced in both the local area network and the wide area network. As a result, in addition to improvement of the throughput, the ratio of retransmission is decreased, thereby reducing unnecessary consumption of the network resources.

That is to say, when the safety_factor(s) is 0.5, the throughput increases by 10.27% to 28.3 according to the network states, and the ratio of retransmission decreases remarkably.

5 It is thus confirmed that the TCP performance is considerably improved by using the TCP window size control algorithm suggested for the TCP service over the ABR service in accordance with the present invention.

10 For reference, the technical matters of the present invention have been published in 'The Korean Communication Institute' on November 14, 1998, entitled by 'Performance improvement of TCP over ATM by using RM cell information'.

15 As discussed earlier, in accordance with the present invention, the cells transmitted pursuant to the ER value are rarely dropped or tagged by the switch algorithm, thereby reducing the ratio of retransmission.

20 As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiment is not limited by any of the details of the foregoing description, unless otherwise specified, but rather 25 should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the meets and bounds of the claims, or equivalences of such meets and bounds are therefore intended to be embraced by the appended claims.

WHAT IS CLAIMED IS:

1. A method for controlling a transmission control protocol window size in an asynchronous transfer mode network, wherein a
5 window size is computed by using congestion information of a network during data transmission from a transmitting side ATM terminal to a receiving side ATM terminal, an explicit rate value in a resource management cell of an ATM level being used as the congestion information.

10

2. The method according to claim 1, wherein the explicit rate value stores a minimum value of throughputs, which each node of the network can receive, in the network resource management cell.

15

3. The method according to claim 1, wherein the window size is computed by the Expression wherein,

$$\text{window size} = \text{MIN} [\text{credit}, \text{cwnd}],$$

('credit' is an amount of data which the transmission

20 control protocol receiving side can receive, 'cwnd' is a congestion window, $\text{cwnd} = \text{transmission control protocol throughput} * \text{estimated_RTT} * \text{safety_factor}$),

'estimated_RTT' is an estimated round trip time of the packet,

25 'safety_factor(s)' is a numerical value compensating for variations in network states and RTT,

$$\text{TCP throughput} = \text{last_ER} * \frac{48}{53} * \frac{31}{32} * \frac{\text{TCP_MSS}}{\text{TCP_MSS} + 56\text{bytes}}$$

30 'last_ER' is an ER value in the currently-received RM cell, and

'TCP_MSS' is a maximum segment size of the transmission control protocol level.

35 4. A method for controlling a transmission control protocol

window size in an asynchronous transfer mode network, comprising:

a step for an ATM transmitting terminal to receive a resource management cell;

5 a step for transmitting an explicit rate value in the received resource management cell to a transmission control protocol level in the ATM transmitting terminal;

a step for setting a congestion window to be '1', when the explicit rate value is received;

10 a step for computing the congestion window, when an acknowledgment signal is received from an ATM receiving terminal; and

a step for computing a window size, when the congestion window value is computed, and for transmitting a data to the

15 ATM receiving terminal according to the computed size.

5. The method according to claim 4, wherein the congestion window is computed by the Expression wherein,

congestion window = transmission control protocol
20 throughput * estimated_RTT * safety_factor
('estimated_RTT' is an estimated round trip time of the packet, and 'safety_factor(s)' is a numerical value compensating for variations in network states and RTT).

25 6. The method according to claim 5, wherein the transmission control protocol throughput is computed by the Expression wherein,

$$TCP \text{ throughput} = last_ER * \frac{48}{53} * \frac{31}{32} * \frac{TCP_MSS}{TCP_MSS + 56bytes}$$

30 ('last_ER' is an ER value in the currently-received RM cell, and

'TCP_MSS' is a maximum segment size of the transmission control protocol level).

7. The method according to claim 4, wherein the window size is computed by the Expression wherein,

window size = MIN [credit, cwnd],

('credit' is an amount of data which the transmission

5 control protocol receiving side can receive, and 'cwnd' is a congestion window).

ABSTRACT OF THE DISCLOSURE

The present invention relates to a method for controlling
a transmission control protocol window size in an asynchronous
5 transfer mode network which determines a TCP congestion window
size by using an explicit rate value in a resource management
cell. According to the present invention, cells transmitted
pursuant to the explicit rate value are rarely dropped or
tagged by a switch algorithm, thereby reducing a ratio of
10 retransmission.

"Express Mail" mailing label number EL43554016545
Date of Deposit November 12, 1999
I hereby certify that this paper or fee is being de-
posited with the United States Postal Service "Express
Mail Post Office to Addressee" service under 37 CFR
1.10 on the date indicated above and is addressed to:
Assistant Commissioner for Patents, Washington, D.C. 20231.
Linda McCormick
(printed name)
Linda McCormick
(signature)

Fig. 1

Fig. 2

MERCHANT & GOULD

United States Patent Application

INSTRUCTIONS

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that

I verily believe I am the original, first and sole inventor (if only one name is listed below) or a joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

"METHOD FOR CONTROLLING TRANSMISSION CONTROL PROTOCOL WINDOW SIZE
IN ASYNCHRONOUS TRANSFER MODE NETWORK"

TITLE of invention

or b

The specification of which

a. is attached heretob. was filed on _____

checked, complete

as application serial no. _____

Application

and was amended on _____ (if applicable)

Int. application
r & filing date

(in the case of PCT-filed application)

described and claimed in international no. _____ filed _____

and as amended on _____ (if any), which I have reviewed and for which I solicit a United States patent.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, § 1.56(a). (Reprinted on back side).

I hereby claim foreign priority benefits under Title 35, United States Code, § 119/365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on the basis of which priority is claimed:

applications
x a or ba. no such applications have been filed.b. such applications have been filed as follows:

FOREIGN APPLICATION(S), IF ANY, CLAIMING PRIORITY UNDER 35 USC §119			
COUNTRY	APPLICATION NUMBER	DATE OF FILING (day, month, year)	DATE OF ISSUE (day, month, year)
Korea	99-17310	14/05/1999	
ALL FOREIGN APPLICATIONS, IF ANY, FILED BEFORE THE PRIORITY APPLICATION(S)			
COUNTRY	APPLICATION NUMBER	DATE OF FILING (day, month, year)	DATE OF ISSUE (day, month, year)

I hereby claim the benefit under Title 35, United States Code, § 120/365 of any United States and PCT international application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, 1.56, including the filing date of the prior application and the national or PCT international

For Continuation-in-Part
(CIP) Applications,
complete

U.S. APPLICATION NUMBER	DATE OF FILING (day, month, year)	STATUS(patented, pending, abandoned)

I hereby appoint the following attorney(s) and/or patent agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith:

Bartungale, Kari H.	Reg. No. 35,183	Hassing, Thomas A.	Reg. No. 36,159	Schumann, Michael D.	Reg. No. 30,422
Batzl, Brian H.	Reg. No. 32,960	Hilson, Randall A.	Reg. No. 31,838	Schwappach, Karl G.	Reg. No. 35,786
Beard, John L.	Reg. No. 27,612	Kluth, Daniel J.	Reg. No. 32,146	Schwegman, Micheal L.	Reg. No. 25,816
Beck, Robert C.	Reg. No. 28,184	Kowalczyk, Alan W	Reg. No. 31,535	Sebald, Gregory A.	Reg. No. 33,281
Bogucki, Raymond A.	Reg. No. 17,426	Kowalczyk, Katherine M.	Reg. No. 36,848	Sinith, Phillip H.	Reg. No. 20,476
Brennan, Thomas F.	Reg. No. 35,075	Lasky, Michael B.	Reg. No. 29,555	Sonenson, Andrew D.	Reg. No. 33,606
Bruess, Steven C.	Reg. No. 34,130	Lundberg, Steven W.	Reg. No. 30,568	Strawbridge, Douglas A.	Reg. No. 28,376
Byrne, Linda M.	Reg. No. 32,404	Lynch, David W.	Reg. No. 36,204	Strothoff, Kristine M.	Reg. No. 34,259
Carlson, Alan G.	Reg. No. 25,959	Mau, Michael L.	Reg. No. 30,087	Summer, John P.	Reg. No. 29,114
Caspers, Philip P.	Reg. No. 33,227	McDonald, Daniel W.	Reg. No. 32,044	Summers, John S.	Reg. No. 24,216
Clifford, John A.	Reg. No. 30,247	McDonald, Wendy M.	Reg. No. 32,427	Tellekson, David K.	Reg. No. 32,314
Conrad, Timothy R.	Reg. No. 30,164	Michel, Michelle M.	Reg. No. 33,968	Underhill, Albert L.	Reg. No. 27,403
D'Pietro, Mark J.	Reg. No. 28,707	Moy, R. Carl	Reg. No. 30,725	Vandenburgh, J. Derek	Reg. No. 32,179
Edell, Robert T.	Reg. No. 20,187	Muetting, Ann M.	Reg. No. 33,977	Wietzko, Lance L.	Reg. No. 36,708
Freed, Robert C.	Reg. No. 32,569	Nelson, Albin J.	Reg. No. 28,650	Welter, Paul A.	Reg. No. 20,890
Gafner, Peter J.	Reg. No. 36,517	Raasch, Kevin W.	Reg. No. 35,651	Williams, Douglas J.	Reg. No. 27,054
Gates, George H.	Reg. No. 33,500	Reiland, Earl D.	Reg. No. 25,767	Woessner, Warren D.	Reg. No. 30,440
Golla, Charles E.	Reg. No. 26,896	Roggan, Jesse D.	Reg. No. 34,417	Wood, Gregory B.	Reg. No. 28,133
Gould, John D.	Reg. No. 18,223	Rothfus, Joel A.	Reg. No. 33,277		
Gresens, John J.	Reg. No. 33,112	Schmidt, Cecil C.	Reg. No. 20,566		
Harnre, Curtis B.	Reg. No. 29,165	Schuman, Mark D.	Reg. No. 31,197		

I hereby authorize them to act and rely on instructions from and communicate directly with the person/assignee/attorney/firm/organization/who/which first sends/send this case to them and by whom/which I hereby declare that I have consented after full disclosure to be represented unless/until I instruct Merchant, Gould to the contrary.

Please direct all correspondence in this case to Merchant, Gould, Smith, Edell, Welter & Schmidt at the address indicated below (or if no address is specified, the first address):

Suite 1700, 11100 Santa Monica Boulevard, Los Angeles, CA 90025-3302
Telephone No. (310) 445-1140

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Insert FULL name(s)
AND address(es) of
actual investor(s)

201	FULL NAME OF INVENTOR	FAMILY NAME JUNG	FIRST GIVEN NAME Jae	SECOND GIVEN NAME Il
	RESIDENCE & CITIZENSHIP	CITY Seoul	STATE OR FOREIGN COUNTRY Korea	COUNTRY OF CITIZENSHIP Korea
	POST OFFICE ADDRESS	POST OFFICE ADDRESS Electronic & Electrical Engineering Department, College of Engineering, Hanyang University, 17, Haengdang-dong, Sungdun-ku	CITY Seoul	STATE & ZIP CODE/COUNTRY 133-070
202	FULL NAME OF INVENTOR	FAMILY NAME KANG	FIRST GIVEN NAME Sung	SECOND GIVEN NAME Won
	RESIDENCE & CITIZENSHIP	CITY Taejeon	STATE OR FOREIGN COUNTRY Korea	COUNTRY OF CITIZENSHIP Korea
	POST OFFICE ADDRESS	POST OFFICE ADDRESS 463-1, Jeonmin-dong, Yusung-ku	CITY Taejeon	STATE & ZIP CODE/COUNTRY 305-390
203	FULL NAME OF INVENTOR	FAMILY NAME SEO	FIRST GIVEN NAME Young	SECOND GIVEN NAME Soo
	RESIDENCE & CITIZENSHIP	CITY Taejeon	STATE OR FOREIGN COUNTRY Korea	COUNTRY OF CITIZENSHIP Korea
	POST OFFICE ADDRESS	POST OFFICE ADDRESS 463-1, Jeonmin-dong, Yusung-ku	CITY Taejeon	STATE & ZIP CODE/COUNTRY 305-390
SIGNATURE OF INVENTOR 201		SIGNATURE OF INVENTOR 202		SIGNATURE OF INVENTOR 203
Jae Il Jung		Sung Won Kang		Gwangsoo Lee
DATE	Oct. 22, 1999	DATE	Oct. 22, 1999	DATE
				Oct. 22, 1999

Each inventor must
sign & date

Note: No legalization or
other witness required

For Additional Inventors:

Check box and attach sheet with same information, including date and signature.