K-Means and Expectation Maximization

Chelsea Parlett-Pelleriti

Unsupervised Machine Learning

Clustering

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers
- 4. Repeat 2 and 3 until either:
 - a. Cluster membership does not change
 - b. Centers change only a tiny amount

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

SIMPLIFY

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

2

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

3

- Choose **k** random points to be cluster centers
- For each data point, assign it to the cluster whose center is closest
- Using these assignments, recalculate the centers

- Choose **k** random points to be cluster centers
- For each data point, assign it to the cluster whose center is closest
- Using these assignments, recalculate the centers

3

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

2

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

SIMPLIFY

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the centers

SIMPLIFY GROUP RED DU CF

Assumptions

Spherical Clusters

Roughly the same # in each cluster

Evaluating Unsupervised Models

SIMPLIFY

GROUP

R
D
D
U
C
E

OOLISEAPARLETT

Cohesion:

Separation:

$$s(i) = rac{b(i) - a(i)}{\max\{a(i),b(i)\}},$$

Normal (Gaussian) Distribution

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 $\mu = Mean$

 $\sigma =$ Standard Deviation

 $\pi \approx 3.14159\cdots$

 $e \approx 2.71828 \cdots$

K means

- Hard Assignment
- All Variances the Same

EM with mixtures of Gaussians

- Soft (probabilistic) Assignment
- Variances can be different

K-Means Review

- 1. Choose **k** random points to be cluster centers
- 2. For each data point, assign it to the cluster whose center is closest
- Using these assignments, recalculate the centers
- 4. Repeat 2 and 3 until either:
 - a. Cluster membership does not change
 - b. Centers change only a tiny amount

- Choose k random points to be cluster centers (or estimate using k-means...etc)
- 2. For each data point, assign it to the cluster whose center is closest
- 3. Using these assignments, recalculate the **means + variances**
- 4. Repeat 2 and 3 until **distributions converge.**

