Models of Computation

by Costas Busch, LSU

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

output memory

Program memory

compute X * X

CPU

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

CPU

input memory

$$x = 2$$

f(x) = 8

Program memory

compute
$$X * X$$
 output memory

compute $x^2 * x$

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power

Solve more

computational problems

Mathematical Preliminaries

Mathematical Preliminaries

- Sets
- Functions
- Relations
- · Graphs
- Proof Techniques

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

 $B = \{train, bus, bicycle, airplane\}$

We write

$$1 \in A$$

Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some k>0}\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

$$A = \{1, 2, 3, 4, 5\}$$

Universal Set: all possible elements

Set Operations

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

Union

Intersection

$$A \cap B = \{2, 3\}$$

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Complement

Universal set = $\{1, ..., 7\}$ $A = \{1, 2, 3\}$ $\overline{A} = \{4, 5, 6, 7\}$

$$=$$
 $A = A$

{ even integers } = { odd integers }

Integers

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

Subset

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Proper Subset: $A \subseteq B$

Disjoint Sets

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

Powersets

A powerset is a set of sets

$$S = \{ a, b, c \}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

Observation:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Generalizes to more than two sets

AXBX...XZ

FUNCTIONS

domain

range

 $f:A \rightarrow B$

If A = domain

then f is a total function

otherwise f is a partial function

RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. g. if
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

In relations x_i can be repeated

Equivalence Relations

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and $y R z \longrightarrow x R z$

Example: R = '='

- x = x
- x = y and y = z x = z

Equivalence Classes

For equivalence relation R

equivalence class of
$$x = \{y : x R y\}$$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of $3 = \{3, 4\}$

GRAPHS

A directed graph

Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Labeled Graph

Walk

Walk is a sequence of adjacent edges (e, d), (d, c), (c, a)

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

Hamiltonian Cycle

A simple cycle that contains all nodes

Finding All Simple Paths

- (c, a) (c, e)

(c, a)

(c, a), (a, b)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

44

Binary Trees

PROOF TECHNIQUES

Proof by induction

Proof by contradiction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some b that P_1 , P_2 , ..., P_b are true
- for any k >= b that

$$P_1, P_2, ..., P_k$$
 imply P_{k+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P₁, P₂, ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the number of leaves at level i

51

Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume
$$L(i) \leftarrow 2^i$$
 for all $i = 0, 1, ..., k$

Induction step

we need to show that
$$L(k + 1) \leftarrow 2^{k+1}$$

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

Remark

Recursion is another thing

Example of recursive function:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2} = n/m \qquad \qquad 2 m^2 = n^2$$

Therefore,
$$n^2$$
 is even $n = 2 k$

Thus, m and n have common factor 2

Contradiction!