The SFRA: A Corner-Turn FPGA Architecture

Paper by Nicholas Weaver John Hauser, John Wawrzynek Berkeley CS, FPGA'04 ACME Seminar, January 23, 2004 Mark L. Chang

Conventional FPGAs

- Conventional FPGAs do not predetermine clock frequency
- Interfacing with microprocessor requires compatible clocking schemes

Fixed-Frequency FPGAs

- Operate at a set clock rate regardless of configuration
- Easier to integrate with other computation blocks
- Higher clock rates
- Good for computations that can be pipelined!

Interconnect and Routing

- Interconnect delay dominates conventional FPGAs
- Fixed-frequency generally requires pipelining the interconnect and routing structures
- Previous fixed-frequency arrays
 - Difficult placement problems
 - Highly restrictive interconnect topologies

Other Fixed-Frequency FPGAs

o Garp

- MIPS processor with reconfigurable coprocessor
- Interconnect fabric supported only limited connectivity

• RaPiD / PipeRench

- Coarse-grained array of functional units
- Explicitly pipelined interconnect

More Fixed-Frequency FPGAs

• HSRA

- Pipelined H-tree for the routing structure
- Retiming chains, programmable delay shift registers on all inputs to balance delay
- o Introduces a significant placement problem
 - Not Manhattan
 - Recursive biparitioning for placement
 - Good for random logic applications
 - Bad for datapath-oriented circuits

The Problem

- Want to leverage conventional placement and synthesis tools and techniques
- o Interconnect must be pipelined
- But adding pipelined switches to a conventional FPGA would be impractical
 - Too many registers!
 - Could complicate the routing problem if switches are not fully registered

The FPGA Landscape

Corner-Turn Interconnect

- Any-to-any connectivity for very signals
- Maintains Manhattan placement
- o Can be efficiently pipelined

Routing Corner-Turn FPGAs

Global Routing

- Assigns signals to particular channels and turns
- Attempts to minimize the number of turns taken by each signal
- Done in 5 stages

Detailed routing

- Performs wire assignment within each channel
- Greedy channel-packing technique (O(N logN))

o 1 - Direct routing

Route all no turn nets which can be routed

o 2 - Fanout routing

- Attempt to route large fanout nets to maximize sharing of turns
- Sort all remaining nets by degree of fanout
- Starting with highest, route all nets with fanout > 4

Fanout Routing

- Possibly route horizontally or vertically
- Use orientation that uses fewer turns
- Leave unroutable nets to later routing stages
- Lock down routed nets

o 3 - Pushrouting

- Consider all nets as individual point-to-point signals
- Prioritize shorter nets and nets on critical paths
- For each net, only two possible one-turn routes
- o If either route is free, assign the turn to this net
- If not free, depth-first search routed nets that use the two turns to see if an adjustment can be made to allow routing of the net

o 4 - Zig-zag routing

- Remaining nets are examined to find possible twoturn routes
- Prioritize longer nets, as they have more possible turns along their route

o 5 - Rip-up-and-reroute

- We want to route any remaining nets
- For each unrouted net, determined if it can be pushrouted or zig-zag routed
- If not, examine the two one-turn route switches
- Breath [sic] first search on all nets using these turns
- Select on randomly (weighted toward longer nets)
- Rip-up-and-reroute

Retiming

- In a fixed-frequency FPGA we must either
 - Restrict the user's designs to meet the array's pipeline requirements
 - Automatically transform designs to meet the array's constraints
- o Feed-forward designs can be repipelined
- Feed-backward designs must use C-Slow

The SFRA Architecture

- Generally compatible with Xilinx Virtex
- o Designs must use a single global clock
- Resets and clock enables must be expressed as combinational logic rather than using primitives
- Cannot use LUTs as RAMs or SRL16s

The SFRA Slice

The SFRA Interconnect

- I/O on any horizontal and vertical wire
- Every three CLBs, bidirectional buffer break
- o Every nine CLBs, bidirectional register break

The SFRA Interconnect

The SFRA Tile

- o 180nm process, 160,000 square microns
- o 3.9x larger than Xilinx Virtex E, 1.5x HSRA
- 300MHz in simulation

The SFRA Tool Flow

Begins with Xilinx toolset

- Design entry
- Placement
- Mapping

Custom tools

- Initial retiming to find critical path
- Global routing
- Detailed routing
- Retiming

Evaluating the SFRA

Benchmarks

- AES encryption
- Smith/Waterman sequence matching
- Synthetic datapath (core of 32-bit CPU)
- LEON 1 microprocessor core (SPARC)
- Xilinx benchmarks done on a Spartan II
 @ 250nm
 - Clock rates scaled by 1.4

Evaluating the SFRA

- Benchmarks placed using Xilinx tools
- Maximum effort for all tools
- C-Slow retimed Xilinx implementations
- Used hand- and automatically-placed circuits

Tool Runtime Results

Benchmark	Xilinx	Custom Xilinx	SFRA	SFRA
	Routing Time	Retiming Time	Routing Time	Toolflow Time
AES (hand placed)	405 s	73 s	2 s	6 s
AES (autoplaced)	542 s	77 s	2 s	6 s
Smith/Waterman (hand placed)	104 s	178 s	2 s	8 s
Smith/Waterman (autoplaced)	102 s	169 s	2 s	9 s
Synthetic Datapath				
(hand placed)	284 s	47 s	2 s	5 s
Synthetic Datapath				
(autoplaced)	$307 \mathrm{s}$	$50 \mathrm{s}$	$2 \mathrm{s}$	6 s
LEON (autoplaced)	432 s	hours	11 s	62 s

SFRA Performance Results

Benchmark	Adjusted Xilinx	SFRA	Expected Speedup	Area-
	Clock Rate	C-slow	for 300-MHz	Normalized
		Factor	SFRA	Speedup
AES (hand placed)	67 MHz	24-slow	4.4x	1.1x
AES (autoplaced)	67 MHz	27-slow	4.4x	1.1x
Smith/Waterman (hand placed)	66 MHz	31-slow	4.4x	1.1x
Smith/Waterman (autoplaced)	60 MHz	37-slow	5.0x	1.3x
Synthetic Datapath				
(hand placed)	77 MHz	21-slow	3.9x	1.0x
Synthetic Datapath				
(autoplaced)	70 MHz	23-slow	4.2x	1.1x
LEON (autoplaced)	38 MHz	67-slow	7.9x	2.2x

Unretimed Xilinx

SFRA Performance Results

Benchmark	Adjusted Xilinx	SFRA	Expected Speedup	Area
Denomiark		THE RESERVE OF THE PERSON NAMED IN		
	Clock Rate and	C-slow	for 300 MHz	Normalized
	C-slow Factor	Factor	SFRA	Speedup
AES (hand placed)	147 MHz 5-slow	24-slow	2.0x	.5x
AES (autoplaced)	123 MHz 5-slow	27-slow	2.4x	.6x
Smith/Waterman (hand placed)	120 MHz 3-slow	31-slow	2.5x	.6x
Smith/Waterman (autoplaced)	117 MHz 3-slow	37-slow	2.5x	.6x
Synthetic Datapath				
(hand placed)	127 MHz 3-slow	21-slow	2.4x	.6x
Synthetic Datapath				
(autoplaced)	123 MHz 3-slow	23-slow	2.4x	.6x
LEON (autoplaced)	64 MHz 2-slow	67-slow	4.6x	1.2x

C-Slow Retimed Xilinx