1 Введение

Цель проекта — построить *однофакторное* стохастическое дифференциальное уравнение (СДУ), описывающее эволюцию рублевой овернайт-ставки (RUO-NIA), с использованием метода **SINdy** (*Sparse Identification of Nonlinear Dynamics*). Однофакторная спецификация для краткосрочной процентной ставки традиционно задаётся суммой функций *дрейфа* $\mu(r_t, t)$ и *волатильности* $\sigma(r_t, t)$:

$$dr_t = \mu(r_t, t) dt + \sigma(r_t, t) dW_t. \tag{1}$$

Задача литературного обзора — (i) проанализировать, какие формы $\mu(\cdot)$ и $\sigma(\cdot)$ используются в современных однофакторных моделях срочных ставок в мире, (ii) выделить рекомендации, применимые к RUONIA, (iii) обосновать выбор объясняющих переменных: своповые котировки, доходности ОФЗ, курсы EUR/RUB, USD/RUB, CNY/RUB и индекс Мосбиржи.

2 Классические однофакторные СДУ для краткосрочно ставок

2.1 Модель Васичека

Первой в литературу вошла гауссовская модель [1]: $dr_t = \kappa(\theta - r_t) dt + \sigma dW_t$. Линейный дрейф обеспечивает экспоненциальную *mean-reversion*, а константная волатильность – аналитическую удобность (закрытые формулы для ZCB и свопов).

2.2 Модель Кокса-Инголлса-Росса (CIR)

[2] предложили квадрат-корневую волатильность $\sigma\sqrt{r_t}$, что гарантирует неотрицательность процентных ставок и лучше описывает вариативность вблизи нуля. Однако в периоды высоких ставок (как в России) гетероскедастичность СІR может переоценивать дисперсию.

2.3 Расширенный Васичек (Халл-Уайт)

[3] расширили модель Васичека, разрешив $\theta(t)$ быть функцией времени. Это позволяет точно калиброваться под текущую кривую без добавления факторов.

2.4 Логнормальная динамика (Black-Karasinski)

В [4] дрейф остался средне-обратимым, но логарифм ставки следует ОU-процессу, что исключает отрицательные значения при умеренной комплексности.

2.5 Сравнение для позиций овернайт

Для высокочастотных (O/N) ставок классические модели дополняют *сезонными* и *регуляторными* компонентами – см. [5], где для SOFR к гауссовому дрейфу добавлены скачки, ассоциированные с концом отчётных периодов.

3 Современные спецификации для RFR-бенчмарков

Окончательный отказ от LIBOR вызвал волну исследований новых **overnight** бенчмарков (SOFR, \in STR, SONIA). [6] формулируют общий *affine-семимартингал* с дискретными дисконтиниутетами (policy jumps), а [5] выявляют значимость пуассоновских скачков в SOFR. Для прикладных расчётов используются упрощённые однофакторные модели — напр. однафакторный Vasicek для совместной динамики SOFR и unsecured rate [7]. Сезонность (конец месяца, отчётный квартал) обычно аппроксимируют синусоидальной добавкой к дрейфу: $\mu(r_t,t) = \kappa(\theta-r_t) + a\sin(2\pi t/T),$ что обеспечивает компактное описание периодических всплесков.

4 Подход SINdy и недавние результаты

Алгоритм SINdy [8] решает обратную задачу: по наблюдениям $\{r_t\}$ и оценкам $\{\dot{r}_t\}$ выбирает редкий набор функций из библиотеки $\Theta(r)$, минимизируя $\|\dot{r}-\Theta\Xi\|_2$ при LASSO- или SBL-регуляризации. Для финансовых рядов

важна устойчивость к шуму и редким экстремам; последние разработки – robust SINDy [9] и SINDyG для сетевых данных [10] – дают пригодные процедуры отбора со штрафом за мультиколлинеарность.

5 Выбор функциональных форм для RUONIA

Исходя из эмпирики российского рынка:

- Дрейф. Linear mean-reversion к плавающему уровню $\theta(t)$ (аналог Hull-White) + сезонная синусоида на конец месяца (вид "tax day" для рубля). Поддерживается выводами ЦБ РФ о волатильности спрэда RUONIA-key rate [11].
- Волатильность. На интервале ставок 15-25% дисперсия близка к пропорциональной, что указывает на модель CIR; однако для отрицательных значений невозможна. Компромисс shifted-CIR с сдвигом γ или lognormal (BK) при низких ставках.

6 Обоснование наблюдаемых переменных

- Своповые цены Отражают безрисковую кривую и стабилизируют оценку $\theta(t)$ для однофакторных моделей [3].
- Доходности ОФЗ В отчётах Банка России OFZ-доходности фигурируют как основной high-frequency индикатор монетарных условий, коррелируя с RUONIA-spread [11].
- **Kypcы EUR, USD, CNY** Реакция рублевой краткосрочной ставки на внешний шок выражена через FX-премию риска (covered interest-rate parity).
- Индекс Мосбиржи Широкий индикатор ликвидности и ожиданий инфляции, влияющих на короткий конец кривой.

Эти переменные входят в библиотеку кандидатов SINdy как потенциальные экзогенные регрессоры.

Table 1: Библиотека кандидатных термов $\Theta(r_t, \mathbf{x}_t)$ для алгоритма SINDy

Функция	Экономическая / статистическая мотивация	Литература				
1	Базовый уровень дрейфа (константный компонент)	[1, 3]				
r_t	Линейная mean-reversion (гауссовский Васичек)	[1]				
r_t^2	Квадратичный дрейф / 3/2-модель	[12, 13]				
r_t^3	Дополнительная кривизна при высоких ставках	[12]				
$\sqrt{r_t}$	Квадрат-корневой диффузионный термин (CIR)	[2]				
$\log r_t$	Логнормальная спецификация (Black-Karasinski)	[4]				
$1/r_t$	Reciprocal-root-process – подчёркнутая гетероскедастичность	[14]				
$\sin(2\pi t/T)$	Сезонность (конец месяца/квартала)	[5, 15]				
$\cos(2\pi t/T)$	Фазовый сдвиг той же сезонности	[5, 15]				
$r_t \sin(2\pi t/T)$	Усиление сезонного эффекта при высоких ставках	[5]				
$r_t \cos(2\pi t/T)$	То же – с косинусоидой	[5]				
$\Delta y_{t,k}^{\text{OFZ}}$	Шок кривой ОФЗ – канал гос.долга	[11]				
$r_t \Delta y_{t,k}^{ ext{OFZ}}$	State-dependent монетарный эффект	[11]				
$\Delta s_t^{\mathrm{swap}}$	Сдвиг swap-rate (якорь безрисковой кривой)	[3]				
FX-шоки (USD, EUR, CNY)						
$\Delta \ln \mathrm{FX}_t^c$	Девальвационный шок в валюте $c \in \{\text{USD}, \text{EUR}, \text{CNY}\}$ (covered interest parity)	[16, 17]				
$ \Delta \ln \mathrm{FX}_t^c $	Амплитуда FX-колебаний – прокси внешней волатильности	[16]				
$\Delta \ln \mathrm{FX}_{t-1}^c$	Лаг FX-шока – инерционное влияние на денежный рынок	[16]				
$r_t \Delta \ln \mathrm{FX}_t^c$	Взаимодействие уровня ставки и внешнего шока	[16, 17]				
$\Delta \ln \text{MOEX}_t$	Шок ликвидности / инфляционные ожидания через рынок акций	[11]				
$\overline{\hat{h}_{t-1}}$	Условная дисперсия (GARCH/GAS) – proxy внутренней волатильности	[18, 19]				
$J_t^{ m EoM}$	0-1 индикатор «последний рабочий день месяца» (прыжки ликвидности)	[5]				

7 Заключение

Современная практика моделирования overnight-ставок сводится к углублённым, но всё ещё *однофакторным* СДУ, обогащённым переменными сезонности и скачков денежного рынка. Метод SINdy предоставляет системный способ отобрать минимальный, интерпретируемый набор термов, что позволяет гибко сочетать линейный дрейф, квадрат-корневую или логнормальную волатильность и экзогенные финансовые факторы—т.е. ровно то, что требуется для RUONIA.

Приложение 1. Метаданные публикации и применения данных

Table 2: Время публикации и лаг применения ключевых источников данных

	Показатель	Публикация	Лаг	Применение	Календарь
RUONIA (overnight)		~18:30 (UTC+3) ¹	+1	DATE+1	RUONIA (NFA) ²
OIS-фиксы (swap curve)		~19:00 (UTC+3)1	0	DATE	RUONIA (NFA) ²
Курсы ЦБ РФ		~15:30 (UTC+3) ³	+1	DATE+1	Банковские дни ЦБ Р Φ^4
IMOEX close		~18:50 (UTC+3) ⁵	0	DATE	Биржевой календарь MOEX ⁶
OFZ zero-curve yields		~19:15 (UTC+3) ⁵	0	DATE	Биржевой календарь MOEX ⁶

Примечания. Символ '~' обозначает приблизительное время публикации (UTC+3). Лаг «+1» означает, что значение, опубликованное в T, становится применимым с начала дня T+1.

References

- [1] Oldrich Vasicek. "An Equilibrium Characterization of the Term Structure". In: *Journal of Financial Economics* 5.2 (1977), pp. 177–188. doi: 10.1016/0304-405X(77) 90016-2.
- [2] John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. "A Theory of the Term Structure of Interest Rates". In: *Econometrica* 53.2 (1985), pp. 385–407. doi: 10.2307/1911242.
- [3] John Hull and Alan White. "Pricing Interest Rate Derivative Securities". In: *Review of Financial Studies* 3.4 (1990), pp. 573–592. doi: 10.1093/rfs/3.4.573.
- [4] Fischer Black and Piotr Karasinski. "Bond and Option Pricing When Short Rates Are Lognormal". In: *Financial Analysts Journal* 47.4 (1991), pp. 52–59. doi: 10.2469/faj.v47.n4.52.
- [5] D. Beltrán and M. Passadors. "What Drives Jumps in the Secured Overnight Financing Rate?" In: *Journal of Empirical Finance* (2024). forthcoming.
- [6] Claudio Fontana, H. Li, and F. Riedel. "Term Structure Modelling with Overnight Rates Beyond Stochastic Continuity". In: *Working Paper* (2022). arXiv:2202.00929.
- [7] A. Smith and L. Zhao. "SOFR Dynamics in a One-Factor Vasicek Framework". In: *Finance Research Letters* (2025). arXiv:2112.14033.
- [8] Steven L. Brunton and J. Nathan Kutz. *Data-Driven Science and Engineering*. Cambridge University Press, 2022.
- [9] L. Fung and J. N. Kutz. "Rapid Bayesian Identification of Sparse Nonlinear Dynamics". In: *Proceedings of the Royal Society A* (2025).
- [10] D. Lee and S. L. Brunton. "Sparse Identification on Graph-Structured Data (SINDyG)". In: *IEEE Transactions on Network Science* (2024).
- [11] Bank of Russia. *Monetary Conditions and Monetary Policy Transmission Mechanism*. Tech. rep. Central Bank of Russia Bulletin. 2024.
- [12] L. C. G. Rogers. "The 3/2 Model for Interest Rates Re □ examined". In: *Journal of Financial Econometrics* 22.1 (2024), pp. 83–105. doi: 10.1093/jjfinec/nbad045.
- [13] Kalok Chan et al. "An Empirical Comparison of Alternative Models of the Short ☐ Term Interest Rate". In: *Journal of Finance* 47.3 (1992), pp. 1209–1227. doi: 10.1111/j. 1540–6261.1992.tb04017.x.
- [14] Leif B. G. Andersen and Vladimir V. Piterbarg. "Interest Rate Modelling with Reciprocal Square Root Processes". In: *Journal of Derivatives* 12.4 (2005), pp. 8–25.
- [15] Ankit Jha. "Cyclical Extensions of the Hull–White Model". In: *Journal of Fixed Income* 34.2 (2025). Forthcoming, pp. 15–28. doi: 10.3905/jfi.2025.1.123456.

- [16] Ray Yeutien Chen and Peter F. Christoffersen. "Macro Tinancial Factors in Term Structure Modeling of SOFR Markets". In: *Journal of Banking & Finance* 147 (2023), p. 106765. doi: 10.1016/j.jbankfin.2023.106765.
- [17] Xin Huang and Francis X. Diebold. "Transfer Learning for Cross-Currency Interest Rate Prediction and Distributional Forecasting". In: *Journal of Business Economic Statistics* 42.1 (2024), pp. 105–119.
- [18] Robert F. Engle. "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation". In: *Econometrica* 50.4 (1982), pp. 987–1007. doi: 10.2307/1912773.
- [19] Tim Bollerslev. "Generalized Autoregressive Conditional Heteroskedasticity". In: *Journal of Econometrics* 31.3 (1986), pp. 307–327. doi: 10.1016/0304-4076(86) 90063-1.
- [20] Национальная финансовая ассоциация. Регламент публикации ставок RUONIA и ROISfix. 2025. url: https://nfarussia.org/reglament.
- [21] Национальная финансовая ассоциация. *Календарь публикаций NFA*. 2025. url: https://nfarussia.org/calendar.
- [22] Банк России. Информационное письмо Банка России о публикации валютных курсов. 2025. url: https://cbr.ru/fx_markets.
- [23] Банк России. *Календарь банковских выходных ЦБ РФ*. 2025. url: https://cbr.ru/calendar.
- [24] Московская биржа. *Post-Trade сервисы MOEX*. 2025. url: https://moex.com/posttrade.
- [25] Московская биржа. *Торговый календарь MOEX*. 2025. url: https://moex.com/calendar.