Základy středoškolské kombinatoriky

DAVID WEBER

david.weber99@seznam.cz 26. června 2022

Obsah

1 Základní pojmy a značení		ladní pojmy a značení	5
	1.1	Was ist kombinatorika?	5
	1.2	Množiny	5
2	Kon	nbinatorické počítání	7

4 OBSAH

Kapitola 1

Základní pojmy a značení

1.1 Was ist kombinatorika?

Kombinatorika představuje matematickou disciplínu zabývající se se kolekcemi prvků množin s definovanou vnitřní strukturou. Řekneme-li to méně formálně, studuje, kolika způsoby lze sestavit konfiguraci s jistými vlastnostmi. Zároveň se tak váže k blízkému oboru zvanému teorie pravděpodobnosti.

Typickou úlohou (otázkou) kombinatoriky je třeba tato:

Úloha 1.1.1. Na svatbě je n lidí.

- (a) Kolika způsoby lze n svatebčanů sestavit do řady?
- (b) V kolika případech stojí nevěsta napravo od ženicha?
- (c) Kolik je řad, že ženich a nevěsta stojí vedle sebe?

Pro podobné úlohy v dalších odstavcích vybudujeme potřebný matematický aparát.

1.2 Množiny

Množiny pro nás budou klíčovým pojmem, neboť s jejich pomocí budeme formulovat další části výkladu. Proto považuji za nezbytné si zopakovat aspoň některé základní vlastnosti a operace, které s množinami můžeme provádět. Množinou v matematice rozumíme "soubor neuspořádaných prvků". Dvě množiny tak považujeme za stejné (sobě rovné) právě tehdy, když mají stejné prvky. Byť tento popis nepředstavuje zcela formální definici, pro naše potřeby s tímto chápáním vystačíme.

Množiny zapisujeme pomocí složených závorek {, }, přičemž jejich specifikace lze provést dvě způsoby:

- výčtem (výpisem) jednotlivých prvků,
- společnou vlastností

Příklad 1.2.1. Množinu M obsahující prvky a, b, c lze jako

$$M = \{a, b, c\}.$$

V případě většího počtu prvků, avšak s jistou strukturou, můžeme množinu specifikovat buď pomocí "..." nebo explicitním vyjádřením specifické vlastnosti.

Příklad 1.2.2. Množinu všech přirozených čísel menších nebo rovny 5 lze zapsat jako

$$S = \{ n \in \mathbb{N} \mid n \leqslant 5 \}$$

Důležitou vlastností množin je, že neuvažujeme násobné výskyty prvků. Tedy např. množiny $M=\{1,\,2,\,3\}$ a $N=\{1,\,2,\,3,\,3\}$ jsou si rovny, tj. M=N. Též je vhodné si připomenout, že chceme-li vyjádřit, že libovolný prvek a je v množině A, pak píšeme $a\in A$ (čteme "a náleží množině A"). Naopak v případě, že prvek a nenáleží množině A, píšeme $a\notin A$.

Podstatnou vlastností pro nás budou operace sjednocení, průniku a rozdílu množin.

Definice 1.2.3 (Sjenocení, průnik a rozdíl). Mějme množiny A, B. Pak definujeme:

- (i) sjednocení $A \cup B = \{x \mid x \in A \lor x \in B\}$, tj. výsledná množina obsahuje prvky množiny A a zároveň prvky množiny B.
- (ii) průnik $A \cap B = \{x \mid x \in A \land x \in B\}$, tj. výsledná množina obsahuje *pouze* prvky, které náleží oběma množinám.
- (iii) rozdíl $A \setminus B = \{x \mid x \in A \land x \notin B\}$, tj. výsledná množina obsahuje pouze ty prvky z množiny A, které nenáleží množině B.

Příklad 1.2.4. Pro množiny² $X = \{x, y, z\}$ a $Y = \{x, z, \{z\}, w\}$ platí

- $X \cup Y = \{x, y, z\} \cup \{x, z, \{z\}, w\} = \{x, y, z, x, z, \{z\}, w\} = \{x, y, z, \{z\}, w\},$
- $X \cap Y = \{x, y, z\} \cap \{x, z, \{z\}, w\} = \{x, z\},$
- $X \setminus Y = \{x, y, z\} \setminus \{x, z, \{z\}, w\} = \{x, z\} = \{y\}.$

Zkuste si výsledky operací porovnat s definicí 1.2.3 výše.

Pro větší počet množin můžeme využít pro zápis sjednocení tzv. velké operátory \bigcup , \bigcap . Máme-li tedy množiny X_1, X_2, \ldots, X_n , můžeme jejich sjednocení, resp. průnik zapsat jako

$$\bigcup_{i=1}^n X_i = X_1 \cup X_2 \cup \cdots \cup X_n \quad \text{resp.} \quad \bigcap_{i=1}^n X_i = X_1 \cap X_2 \cap \cdots \cap X_n$$

Poslední, co nás bude zajímat, je velkost množiny. Tu budeme označovat svislými čarami, tedy např. velikost množiny X zapíšeme jako |X|. Konkrétně např. pro množinu $A = \{-1, 0, 10, 20\}$ je velikost |A| = 4.

¹Mohou být **konečné** i **nekonečné**, avšak nás budou zajímat konečné množiny.

 $^{^2}$ U množiny Y si uvědomme, že prvek $\{z\}$ není to samé jako prvek z, tedy např. po sjednocení se ve výsledné množině vyskytnou oba.

Kapitola 2

Kombinatorické počítání