Umkehrfunktionsaufgaben 1) 2)

1)

Gegeben sind die beiden linearen Funktionen $f_1(x) = -2x + 4$ und $f_2(x) = 2x - 3$.

a)

Zeichnen Sie beide Funktionsbilder ein!

b)

Bestimmen Sie rechnerisch die beiden Umkehrfunktionen!

Für $f_1(x) = -2x + 4$ gilt:

$$egin{aligned} f_1(x) &= -2x + 4 \ y &= -2x + 4 \ y - 4 &= -2x & | \div (-2) \ x &= rac{y - 4}{-2} &= -rac{1}{2}y + 2 & | (x;y)
ightarrow (y;x) \ y &= -rac{1}{2}x + 2 \ \overline{f}_1(x) &= -rac{1}{2}x + 2 \end{aligned}$$

Für $f_2(x)=2x-3$ gilt:

$$egin{aligned} f_2(x) &= 2x - 3 \ y &= 2x - 3 \ y + 3 &= 2x \ x &= rac{y+3}{2} &= rac{1}{2}y + rac{3}{2} \ y &= rac{1}{2}x + rac{3}{2} \ \hline f_2(x) &= rac{1}{2}x + rac{3}{2} \end{aligned} \hspace{0.5cm} | \ +3 \ | \ \div 2 \ | \ (x;y)
ightarrow (y;x)$$

c)

Zeichnen Sie die Graphen der Umkehrfunktionen ein!

d)

Stellen Sie für die einander entsprechenden Funktionen und Umkehrfunktionen folgende Merkmale gegenüber: Definitionsbereich, Wertebereich, Achsenschnittpunkte und Monotonie!

Für $f_1(x)=-2+4$ und $\overline{f}_1(x)=0,5x+2$:

Der Definitionsbereich von $f_1(x)$ ist $D_{f_1}=\mathbb{R}.$ Hierdurch ist der Wertebereich von $\overline{f}_1(x)$ ebenfalls $\mathbb{R}.$ Wir erhalten $D_{f_1}=\mathbb{R}$ und $W_{\overline{f}_1}=\mathbb{R}.$ Der Wertebereich von $f_1(x)$ ist $W_{f_1}=\mathbb{R}.$ Hierdurch ist der Definitionsbereich von $\overline{f}_1(x)$ ebenfalls $\mathbb{R}.$ Allgemein erhalten wir:

- $D_{f_1}=\mathbb{R}$; $W_{f_1}=\mathbb{R}$
- $D_{\overline{f}_1}=\mathbb{R}$; $W_{\overline{f}_1}=\mathbb{R}$

($D_{f_1}=W_{\overline{f}_1}$ und $D_{\overline{f}_1}=W_{f_1}$)

Durch $\deg f_1(x)=1$ ist $f_1(x)$ bijektiv und $\overline{f}_1(x)$ wohldefinitert.

Die Achsenschnittpunkte sind für $f_1(x)$:

- *x*-Achse: 2
- *y*-Achse: 4

Die Achsenschnittpunkte sind für $\overline{f}_1(x)$:

- *x*-Achse: 4
- *y*-Achse: 2

Allgemein sind Nullstellen einer Funktion f die y-Achsenschnittpunkte der Umkehrfunktion \overline{f} . Dies lässt sich durch die Umwandlung von $(x;y) \to (y;x)$ begründen. Eine Nullstelle ist an der Umkehrfunktion auf der y-Achse: $(n;0) \to (0;n)$.

Die Monotonie der Funktion $f_1(x)$ ist streng monoton fallend, wie $\overline{f}_1(x)$ auch (erkennbar durch die Funktionen und Graphen).

Annahmeweise ist eine lineare Funktion g(x) streng monoton fallend, dann gilt: g'(x) < 0. Für die Umkehrfunktion gilt dann: $\overline{g}'(x) = \frac{1}{g'(\overline{g}(x))} < 0$, durch $g'(\overline{g}(x)) < 0$. Hierdurch ist gezeigt, dass jede streng monoton fallende Funktion in ihrer Umkehrfunktion ebenfalls streng monoton fallend sein muss.

Für $f_2(x)=2x-3$ und $\overline{f}_2(x)=0,5x+1,5$:

Der Definitionsbereich von $f_2(x)$ ist $D_{f_1}=\mathbb{R}$. Hierdurch ist der Wertebereich von $\overline{f}_2(x)$ ebenfalls \mathbb{R} . Wir erhalten $D_{f_2}=\mathbb{R}$ und $W_{\overline{f}_2}=\mathbb{R}$. Der Wertebereich von $f_2(x)$ ist $W_{f_2}=\mathbb{R}$. Hierdurch ist der Definitionsbereich von $\overline{f}_2(x)$ ebenfalls \mathbb{R} . Allgemein erhalten wir:

...**g**.......

- $D_{f_2}=\mathbb{R}$; $W_{f_2}=\mathbb{R}$
- $m{\cdot}~~D_{ar{f}_2}=\mathbb{R}$; $W_{ar{f}_2}=\mathbb{R}$ ($D_{f_2}=W_{ar{f}_2}$ und $D_{ar{f}_2}=W_{f_2}$)

Durch $\deg f_2(x)=1$ ist $f_2(x)$ bijektiv und $\overline{f}_2(x)$ wohldefinitert.

Die Achsenschnittpunkte sind für $f_2(x)$:

- *x*-Achse: 1,5
- y-Achse: -3

Die Achsenschnittpunkte sind für $\overline{f}_2(x)$:

- x-Achse: -3
- *y*-Achse: 1,5

Allgemein sind Nullstellen einer Funktion f die y-Achsenschnittpunkte der Umkehrfunktion \overline{f} . Dies lässt sich durch die Umwandlung von $(x;y) \to (y;x)$ begründen. Eine Nullstelle ist an der Umkehrfunktion auf der y-Achse: $(n;0) \to (0;n)$.

Die Monotonie der Funktion $f_2(x)$ ist streng monoton steigend, wie $\overline{f}_2(x)$ auch (erkennbar durch die Funktionen und Graphen). Annahmeweise ist eine lineare Funktion g(x) streng monoton steigend, dann gilt: g'(x)>0. Für die Umkehrfunktion gilt dann: $\overline{g}'(x)=\frac{1}{g'(\overline{g}(x))}>0$, durch $g'(\overline{g}(x))>0$. Hierdurch ist gezeigt, dass jede streng monoton steigende Funktion in ihrer Umkehrfunktion ebenfalls streng monoton steigend sein muss.

2)

Gegeben sind die quadratische Funktion $f_3(x)=(x+2)^2-3$ und die Wurzelfunktion $f_4(x)=\sqrt{4-x}-1$.

a)

Zeichnen Sie beide Funktionsbilder ein!

b)

Bestimmen Sie rechnerisch die beiden Umkehrfunktionen!

Für $f_3(x)=(x+2)^2-3$ gilt:

$$f_3(x) = (x+2)^2 - 3$$

 $y = (x+2)^2 - 3$ | +3
 $y+3 = (x+2)^2$ | $\sqrt{$
 $x+2 = \pm \sqrt{y+3}$ | -2
 $x = \pm \sqrt{y+3} - 2$ | $(x;y) \rightarrow (y;x)$
 $y = \pm \sqrt{x+3} - 2$
 $\overline{f}_3(x) = \pm \sqrt{x+3} - 2$

Für
$$f_4(x)=\sqrt{4-x}-1$$
 gilt:

$$egin{aligned} f_4(x) &= \sqrt{4-x} - 1 \ y &= \sqrt{4-x} - 1 \ y+1 &= \sqrt{4-x} & | \ ()^2 \ 4-x &= (y+1)^2 & | -4 \ -x &= (y+1)^2 - 4 & | \cdot (-1) \ x &= -(y+1)^2 + 4 & | (x;y)
ightarrow (y;x) \ ar{f}_4(x) &= -(x+1)^2 + 4 \end{aligned}$$

c)

Zeichnen Sie die Graphen der Umkehrfunktionen ein!

d)

Stellen Sie für die einander entsprechenden Funktionen und Umkehrfunktionen folgende Merkmale gegenüber: Definitionsbereich, Wertebereich, Achsenschnittpunkte und Monotonie!

Für $f_3(x)=(x+2)^2-3$ und $\overline{f}_3(x)=\pm\sqrt{x+3}-2$:

Der Definitionsbereich von $f_3(x)$ ist $D_{f_3}=\mathbb{R}$, mit dem Wertebereich $W_{f_3}=\{x\in\mathbb{R}\mid x\geq -3\}$. Hierdurch ist der Definitionsbereich von $\overline{f}_3(x)$ ebenfalls $\{x\in\mathbb{R}\mid x\geq -3\}$. Da die Funktion f_3 nicht injektiv durch $\deg f_3(x)=2$ ist, muss der Definitionsbereich von $f_3(x)$ jeweils der Umkehrfunktion angepasst werden. Wir erhalten:

$$D_{f_3} = W_{\overline{f}_3} = egin{cases} \{x \in \mathbb{R} \mid x \leq -2\}, & ext{wenn } \overline{f}_3(x) = -\sqrt{x+3} - 2 \ \{x \in \mathbb{R} \mid x \geq -2\}, & ext{wenn } \overline{f}_3(x) = \sqrt{x+3} - 2 \end{cases}$$

Allgemein erhalten wir:

- D_{f_3} : Bedingung direkt oben; $W_{f_3} = \{x \in \mathbb{R} \mid x \geq -3\}$
- $D_{ar{f}_3}=\{x\in\mathbb{R}\mid x\geq -3\};\;\;W_{ar{f}_3}: Bedingung\ direkt\ oben$ ($D_{f_1}=W_{ar{f}_1}$ und $D_{ar{f}_1}=W_{f_1}$)

Die Achsenschnittpunkte sind für $f_3(x)$:

- ullet x-Achse: $-2\mp\sqrt{3}.$ (Minus bei erster Bedingung vom Definitionsbereich D_{f_3} , plus bei zweiter Bedingung)
- ullet $y ext{-Achse: }1 ext{, wenn die zweite Bedingung vom Definitionsbereich gilt}$

Die Achsenschnittpunkte sind für $\overline{f}_1(x)$:

- ullet x-Achse: 1, wenn die zweite Bedingung vom Definitionsbereich gilt
- y-Achse: $-2 \mp \sqrt{3}$. (Minus bei erster Bedingung vom Definitionsbereich D_{f_3} , plus bei zweiter Bedingung)

Allgemein sind Nullstellen einer Funktion f die y-Achsenschnittpunkte der Umkehrfunktion \overline{f} . Dies lässt sich durch die Umwandlung von $(x;y) \to (y;x)$ begründen. Eine Nullstelle ist an der Umkehrfunktion auf der y-Achse: $(n;0) \to (0;n)$.

Die Monotonie der Funktion $f_3(x)$ ist streng monoton fallend, wenn die erste Bedingung gilt, und streng monoton steigend, wenn die zweite Bedingung gilt. Die Monotonie der Umkehrfunktion orientiert sich identisch zu der Funktion $f_3(x)$.

Annahmeweise ist eine lineare Funktion g(x) streng monoton fallend, dann gilt: g'(x) < 0. Für die Umkehrfunktion gilt dann: $\overline{g}'(x) = \frac{1}{g'(\overline{g}(x))} < 0$, durch $g'(\overline{g}(x)) < 0$. Hierdurch ist gezeigt, dass jede streng monoton fallende Funktion in ihrer Umkehrfunktion ebenfalls streng monoton fallend sein muss.

Für $f_4(x)=\sqrt{4-x}-1$ und $\overline{f}_4(x)=-(x+1)^2+4$:

Der Definitionsbereich von $f_4(x)$ ist $D_{f_4}=\{x\in\mathbb{R}\mid x\leq 4\}$, mit dem Wertebereich $W_{f_4}=\{x\in\mathbb{R}\mid x\geq -1\}$. Hierdurch ist der Definitionsbereich von $\overline{f}_4(x)$ ebenfalls $\{x\in\mathbb{R}\mid x\geq -1\}$.

Allgemein erhalten wir:

- $D_{f_4}=\{x\in\mathbb{R}\mid x\leq 4\}$; $W_{f_4}=\{x\in\mathbb{R}\mid x\geq -1\}$
- $D_{ar{f}_4}=\{x\in\mathbb{R}\mid x\geq -1\}$; $W_{ar{f}_4}=\{x\in\mathbb{R}\mid x\leq 4\}$ $(D_{f_4}=W_{ar{f}_4}\text{ und }D_{ar{f}_4}=W_{f_4})$

Die Achsenschnittpunkte sind für $f_4(x)$:

- *x*-Achse: 3
- *y*-Achse: 1

Die Achsenschnittpunkte sind für $\overline{f}_4(x)$:

- *x*-Achse: 1
- *y*-Achse: 3

Allgemein sind Nullstellen einer Funktion f die y-Achsenschnittpunkte der Umkehrfunktion \overline{f} . Dies lässt sich durch die Umwandlung von (x;y) o (y;x) begründen. Eine Nullstelle ist an der Umkehrfunktion auf der y-Achse: (n;0) o (0;n).

Die Monotonie der Funktion $f_4(x)$ ist streng monoton fallend, wie $\overline{f}_4(x)$ auch (erkennbar durch die Funktionen und Graphen).