Direct Search Optimization

Concept:

- · Min f(x) s.t. X∈Ω⊆R"
- · f may be smooth, possibly not.
- · 12 defined by smooth functions
- · Improving iterates
- · No use of derivative information

Background Concepts

Def: The positive span of $\beta = \{v, v_2 \dots v_r\} \subseteq \mathbb{R}^n$ is the convex cone $S = \{x \in \mathbb{R}^n \mid x = a_1v_1 + a_2v_2 + \dots + a_rv_r, a_i \ge 0, i = 1/2, \dots, r\}$. We say that β is a positive spanning set for S. If no vector $V_i \in \beta$ is in the positive span of $\beta \setminus \{v_i\}$ then β is said to be positively independent. Furthermore, if β is a positive pass for S.

Theorem. Let $\beta = \frac{2}{5}V_1, V_2, ..., V_r$ be a set of nonzero vectors that span \mathbb{R}^n . Then β positively spans \mathbb{R}^n if and only if for every nonzero vector $U \in \mathbb{R}^n$, $U^T V_i > 0$ for some $V_i \in \beta$.

Proof. Suppose $\beta = \frac{1}{2} V_1, V_2, ..., V_r \frac{3}{3}$ is a set of numbero vectors that span \mathbb{R}^n . (\Rightarrow) Suppose β positively spans \mathbb{R}^n . For every numzero vector $u \in \mathbb{R}^n$ $u = a_1 V_1 + a_2 V_2 + \cdots + a_r V_r$ for some nonnegative coefficients a_1, a_2, \ldots, a_r . As $u \neq 0$, $0 < u^T u = (a_1 v_1^T + a_2 v_2^T + \cdots + a_r v_r^T) u = a_1 v_1^T u + a_2 v_2^T u + \cdots + a_r v_r^T u$. Because each $a_1 \geq 0$, at least one of $v_1^T u > 0$.

(\Leftarrow) (contrapositive) suppose there exists nonzero $u \in IP^n$ such that $V_i^T u \leq 0$ for all i. Use spanning set β to write $u = a_i v_i + a_z v_z + \cdots + a_r v_r$. Notice that $u^T u = a_i v_i^T u + a_z v_z^T u + \cdots + a_r v_r^T u > 0 \Rightarrow a_k < 0$ for some k, that is, β is not a positive spanning set.

Theorem. Suppose $\beta=\frac{4}{5}V_1,V_2,...,V_7$ is a positive basis for \mathbb{R}^n and \mathbb{W} a nonsingular nxn matrix. Then $Y=\frac{4}{5}\mathbb{W}V_1$, $\mathbb{W}V_2$,..., $\mathbb{W}V_n$ is also a positive basis for \mathbb{R}^n .

Proof. B is a spanning set for \mathbb{R}^n . Because W is invertible, 8 is a spanning set for \mathbb{R}^n . Consider nonzero $u \in \mathbb{R}^n$, then $Wu \neq 0$ and $(W^Tu)^T V_i > 0$ for some index i. So, $u^T(Wv_i) \geq 0$. Thus, by the previous theorem 8 is also a positive spanning set for \mathbb{R}^n .

Corollary. Let I be the nxn identity matrix, e the vector in \mathbb{R}^n with entries all one, W any nonsingular nxn matrix. The following matrices consist of columns that form positive bases for \mathbb{R}^n .

(a) [I - e]

(b) [I -I]

(c) [w -we]

(9) [M -M]

Uniform Angle Positive Basis

we seek a positive basis in IRM of unit vectors & V1, V2, ..., Vn+13 satisfying $V_i^TV_i = t$ for all $i \neq j$ and fixed value t.

Consider W= V1+V2+···+Vn+1. Then VKW = 1+nt for each K. If I+nt >0 then every VK lies in the open halfspace EXEIR" | WTX > 0 } and cannot form a positive basis.

Thus I+nt < 0 and t=-1/n.

Next consider matrix
$$M = \begin{bmatrix} 1 & t & t \\ t & 1 & t \\ t & t & 1 \end{bmatrix}$$
 (which is pos def!)

M = LLT => [= | V1 V2 ... Vn]. And So we can decompose finally Vn= - \$Vk. $V_{nn}^{+}V_{i} = -\sum_{n=1}^{\infty} V_{k}^{-}V_{i} = (\frac{1}{n})(n-1) - 1 = -\frac{1}{n}$

$$V_{NH}^{T}V_{NH}^{T}=-\sum_{i=1}^{N}V_{N+i}^{T}V_{K}=-\left(\frac{1}{n}\right)n=1$$

Def: The cosine measure of a positive spanning set (of nonzero vectors) D
TS defined by

$$Cm(D) = \max_{v \in \mathbb{R}^n} \min_{d \in D} ang(v_i d)$$

Find a vector v = 0 that maximizes the angle to the closest vector d = D. Then cm(D) is the cosine of that angle.

· The cosine measure can be useful in Setting bounds on problem-Important avantities. For any v to:

$$CM(D) \leq Max \frac{r^{T}d}{11rt^{1}11dH}$$

a And then also, there exists a specific vector d satisfying

$$CM(D) \leq \frac{v^{T}d}{\|v^{T}\| \|d\|} = COS(ang(v,d))$$

Idea:

Theorem. Let D be a positive spanning set and $\alpha > 0$. Assume Pf is Lipschitz continuous with constant L in an open set containing $B(x, \Delta)$ where $\Delta = \alpha \max_{\alpha \in D} \|d\|$.

If $f(x) \leq f(x+xd)$ for all $d \in D$ then $\| \nabla f(x) \| \leq \frac{L\Delta}{2 \text{ cm}(D)}.$

Proof: let $V = -\nabla f(x)$. Then we have $Cm(0) || \nabla f(x) || || d|| \leq -\nabla f(x)^T d$, and $0 \leq f(x + \kappa d) - f(x) = \int_0^1 \nabla f(x + \kappa d)^T (\kappa d) dt$ $\Rightarrow Cm(0) || \nabla f(x) || || d|| \alpha \leq \int_0^1 |\nabla f(x + \kappa d) - \nabla f(x)| \alpha ddt$ $\leq \frac{L}{2} || d||^2 \alpha^2$

$$\Rightarrow ||\nabla f(Y)|| \leq \frac{||d|| \alpha}{z ||d|| \alpha} \leq \frac{||D||}{z ||D||}$$

Def: The affine hull of set S = R" is the set of all Inear combinations of elements of S whose coefficients sum to 1.

