

VNNIC Internet Academy academy.vnnic.vn

Tổng quan bài học

Đối tượng

Sinh viên, kỹ sư mạng, chuyên viên CNTT các doanh nghiệp, cơ quan, tổ chức

Yêu cầu đầu vào

- Có kinh nghiệm vận hành khai thác hệ thống mạng
- Hiểu nguyên tắc hoạt động cơ bản của giao thức định tuyến IGP (Khóa học về OSPF trên trang Academy)

Mục tiêu

- Nắm được các lệnh khai báo cơ bản cho BGP
- Cách kiểm soát việc quảng bá Route
- Hướng dẫn kiểm tra, chẩn đoán một số sự cố cơ bản

Nội dung chính

- 1. Khai báo BGP cơ bản
- 2. Khai báo BGP nâng cao
- Một số lệnh kiểm tra sau khai báo

Mô hình LAB

- Dưới đây là mô hình LAB với 3 AS gồm 1 ISP và 2 Customer.
- Quy hoạch địa chỉ IP đấu nối, Loopback cùng với cổng vật lý chi tiết trên mỗi Router như trong sơ đồ

PHẦN 1 Các Bài LAB Cơ Bản

LAB1: Khai báo BGP Neighbor và quảng bá Route

- Trong bài LAB này, Router C1 thuộc AS101 kết nối với R1 thuộc AS100.
- C1 sẽ quảng bá địa chỉ Loopback0 và E0/0 vào BGP
- Khai báo Router-ID
- Khai báo Neigbor và Password (nếu cần)
- Quảng bá các Local/Directed Network vào BGP để trao đổi với Neighbor
- Với Classfull Network thì địa chỉ Mask không xuất hiện

```
C1#show running-config
interface Loopback0
 ip address 10.255.0.11 255.255.255.255
interface Ethernet0/0
 ip address 192.168.101.1 255.255.255.0
interface Ethernet0/1
ip address 10.1.0.1 255.255.255.252
router bap 101
bgp router-id 10.255.0.11
 network 10.255.0.11 mask 255.255.255.255
 network 192.168.101.0
neighbor 10.1.0.2 remote-as 100
 neighbor 10.1.0.2 password vnnic@vn
```

Cấu hình tương tự cho Router R1 với thông tin như trong sơ đồ

LAB1: Khai báo BGP Neighbor và quảng bá Route (tt)

Sau khi khai báo, thực hiện kiểm tra trạng thái Neighbor và kiểm tra Route học được

Trong trường hợp R1 chưa khai báo Password thì trên C1 sẽ xuất hiện thông báo:

*Dec 6 08:25:50.415: %TCP-6-BADAUTH: No MD5 digest from 10.1.0.2(65506) to 10.1.0.1(179) tableid - 0

LAB2: Load-balance qua Multi-Link

Trong bài LAB Router **C1** có 2 kết nối đến **R2**, cần khai báo để cân bằng tải qua cả 2 kết nối này.

- C1 Peering với địa chỉ Loopback của R2
- **C1** cũng dùng địa chỉ Loopback của mình để làm Update-source
- Sử dụng ebgp-multihop=2 vì mặc định =1 do sử dụng Direct Link để Peering
- Cần khai báo Static Route cho địa chỉ Loopback qua 2 Link để cân bằng tải

```
C1#show running
interface Loopback0
 ip address 10.255.0.11 255.255.255.255
interface Ethernet0/2
 ip address 10.1.0.5 255.255.255.252
interface Ethernet0/3
 ip address 10.1.0.9 255.255.255.252
router bgp 101
bgp router-id 10.255.0.11
 neighbor 10.255.0.2 remote-as 100
 neighbor 10.255.0.2 ebgp-multihop 2
 neighbor 10.255.0.2 update-source Loopback0
ip route 10.255.0.2 255.255.255.255 10.1.0.6
ip route 10.255.0.2 255.255.255.255 10.1.0.10
```

Cấu hình tương tự cho Router R2 với thông tin như trong sơ đồ

LAB2: Load-balance qua Multi-Link (tt)

Kiểm tra việc học Route và cân bằng tải

- Các BGP Route trên C1 có Next-hop là địa chỉ Loopback của R2
- Địa chỉ Loopback của **R2** được học 2 Link (Static Route) nên lưu lượng sẽ được tự cân bằng qua cả 2 đường

LAB3: Cấu hình Next-hop-self

- Trong LAB này Router **R3** nhận được các eBGP Route của **C1** nhưng không được Active trong Routing table bởi vì **R3** không biết địa chỉ Next-hop 10.1.0.1 (thuộc **C1**).
- Việc này do **R1** không thay đổi Next-hop khi trao đổi qua iBGP với **R3**.

```
R1#show running-config | sec bgp
router bgp 100
network 10.255.0.1 mask 255.255.255.255
neighbor 10.0.0.2 remote-as 100
!
R3#show running-config | sec bgp
router bgp 100
network 10.255.0.3 mask 255.255.255.255
neighbor 10.0.0.1 remote-as 100
neighbor 10.0.0.1 soft-reconfiguration inbound
!
```

soft-reconfiguration inbound giúp hiển thị các BGP nhận từ Neighbor

```
R3#show ip route bgp
                                                                 Dù R3 nhận được BGP Route của
         10.255.0.1/32 [200/0] via 10.0.0.1, 00:17:14
                                                                 C1 nhưng không được Active trong
                                                                 Routing table do không biết địa chỉ
R3#show ip bgp neighbors 10.0.0.1 received-routes
                                                                 Next-hop 10.1.0.1
BGP table version is 22, local router ID is 10.2.0.1
                                           Metric LocPrf Weight Path
     Network
                     Next Hop
*>i 10.255.0.1/32 10.0.0.1
                                                      100
                                                                0 i
                                                 0
                                                                0 101 i
* i 10.255.0.11/32 10.1.0.1 4
                                                      100
 * i 192.168.101.0
                       10.1.0.1
                                                      100
                                                                0 101 i
```


LAB3: Cấu hình Next-hop-self (tt)


```
R1#show running-config | sec bgp router bgp 100 neighbor 10.0.0.2 remote-as 100 neighbor 10.0.0.2 next-hop-self !
```

- Sau khi bổ sung Next-hop-self thì **R3** đã Active Route trong Routing Table vì Next-hop của các BGP Route giờ là địa chỉ của **R1**

```
R3#show ip route bgp
        10.255.0.1/32 [200/0] via 10.0.0.1, 00:42:01
                                                          Các Route từ C1 đã được Active
        10.255.0.11/32 [200/0] via 10.0.0.1, 00:00:20
                                                          trong Routing Table với Next-
      192.168.101.0/24 [200/0] via 10.0.0.1, 00:00:20
                                                          hop là của R1
R3#show ip bgp neighbors 10.0.0.1 received-routes
    Network
                      Next Hop
                                          Metric LocPrf Weight Path
*>i 10.255.0.1/32 10.0.0.1
                                                              0 i
                                                     100
*>i 10.255.0.11/32 10.0.0.1
                                                    100
                                                              0 101 i
*>i 192.168.101.0 10.0.0.1
                                                     100
                                                              0 101 i
Total number of prefixes 3
```


LAB4: Cấu hình Route-Reflector

- R1, R2 & R3 cùng thuộc AS100 nhưng R1 & R2 không có kết nối trực tiếp - R3 sẽ đóng vai trò Route-Reflector (RR) cho cả R1 & R2


```
R3#show running-config | section bgp
router bgp 100
neighbor 10.0.0.1 remote-as 100
neighbor 10.0.0.1 route-reflector-client
neighbor 10.0.0.5 remote-as 100
neighbor 10.0.0.5 route-reflector-client
```

R1 & R2 được khai báo là RR Client

```
R2#show ip bgp

BGP table version is 14, local router ID is 10.255.0.2

Network

* i 10.255.0.1/32 10.0.0.1

* * 10.255.0.2/32 0.0.0.0

* Next Hop

Metric LocPrf Weight Pat

0 100 0 i

* 32768 i
```

- Vì thế thông thường <mark>cần một IGP</mark> (như OSPF) để <mark>quảng bá</mark> các địa chỉ đấu nối để các iBGP Router có thể biết đường đi đến các Next-Hop.
- Lệnh Next-hop-self nếu khai trên **R3** chỉ cho phép thay đổi Next-Hop của các eBGP Route chứ không đổi đối với iBGP.

LAB4: Cấu hình Route-Reflector (tt)

- Trong trường hợp không muốn quảng bá các địa chỉ đấu nối thì có thể dùng lệnh next-hop-self all
- Lệnh này cho phép thay đổi Next-hop cả của iBGP Route


```
R3#show running-config | section bgp router bgp 100 neighbor 10.0.0.1 remote-as 100 neighbor 10.0.0.1 route-reflector-client neighbor 10.0.0.1 next-hop-self all neighbor 10.0.0.5 remote-as 100 neighbor 10.0.0.5 route-reflector-client neighbor 10.0.0.5 next-hop-self all
```

Lệnh này cho phép đổi Next-hop của cả iBGP Route

```
R2#show ip route bgp
```

```
10.0.0.0/8 is variably subnetted, 9 subnets, 2 masks
B 10.255.0.1/32 [200/0] via 10.0.0.6, 00:08:37
```

Lúc này **R2** nhận được BGP Route của **R1** với Next-hop là của **R3**

