0.1 Modules

Let $(R, 0, 1, +, \cdot)$ or simply R be a ring.

Definition 0.1. (a) A left *R*-module $(M,0,+,\cdot)$ or simply M is an abelian group (M,0,+), together with an operation $\cdot: R \times M \to M, (r,m) \mapsto r \cdot m = rm$, such that for all $a,b \in R, m,n \in M$

- (M1) a(m+n) = am + an and (a+b)m = am + bm
- (M2) $a(b \cdot m) = (ab) \cdot m$
- (M3) $1 \cdot m = m$
- (b) Let M,N be left R-modules. A map $\varphi:M\to N$ is called R-linear or a left R-module homomorphism : $\iff \varphi:(M,0,+)\to (N,0,+)$ is a group homomorphism, and $\forall a\in R, m\in M: \varphi(am)=a\varphi(m)$. Define $\operatorname{Hom}_R(M,N)=\{\varphi:M\to N\mid \varphi \text{ is }R\text{-linear}\}.$

Facts 0.2 (Excers.). $\forall x \in M, a \in R : 0_R \cdot x = 0_M, a \cdot 0_M = 0_M, (-1) \cdot x = -x$

Remark 0.3 (Excers.). (a) $\operatorname{Hom}_R(M,N)$ is an abelian group with 0= the map $M \to \{0_N\}$ and $\varphi + \psi : M \to N, m \mapsto \varphi(m) + \psi(m)$.

(b) If R is commutative, then $\operatorname{Hom}_R(M,N)$ is an R-module via

$$r \cdot \varphi : M \to N, m \mapsto r \cdot \varphi(m)$$

- (c) If an abelian group (M,0,+) carries an operation $\cdot: M \times R \to M, (m,r) \mapsto m \cdot r$ such that:
 - (M1') $(m+n) \cdot a = m \cdot a + n \cdot a, m \cdot (a+b) = ma + mb$
 - (M2') $(m \cdot a) \cdot b = m \cdot (ab)$
 - (M3') $m \cdot 1 = m$

then $(M, 0, +, \cdot)$ is called a right R-module. Analogously we can define right R-module homomorphisms.

Convention 0.4. We shall use the term R-module for left R-module, since we will mainly work with these. In fact right R-modules are left R^{op}-modules.

Definition 0.5. The opposite ring (Gegenring) of $(R,0,1,+,\cdot)$ is $R^{\text{op}}=(R,0,1,+,\cdot^{\text{op}})$ with $a\cdot^{\text{op}}b=b\cdot a$

Facts 0.6 (Excersize). (a) R^{op} is a ring

- (b) $id_R: R \to R$ is a ring homomorphism $\iff R$ is commutative.
- (c) $id_R : R \to (R^{op})^{op}$ is an isomorphism. In particular: If R is commutative, then left R-modules are right R-modules.

Remark 0.7 (Excersize). Let (M, 0, +) be an abelian group.

(a) The abelian group $\operatorname{End}_{\mathbb{Z}}(M) = \operatorname{Hom}_{\mathbb{Z}}(M,M)$ is a ring with composition as multiplication.

(b) There is a bijection {operations $*: R \times M \to M \mid (M, 0, +, *)$ is an R-module} \leftrightarrow {ring homomorphisms $\varphi: R \to \operatorname{End}_{\mathbb{Z}}(M)$ } via

$$*\mapsto \varphi_*: R\to \operatorname{End}_{\mathbb{Z}}(M), r\mapsto (\varphi_*(r): m\mapsto r\cdot m)$$

figure out an inverse.

- (c) If M is an R-module, then $\operatorname{End}_R(M) \subseteq \operatorname{End}_{\mathbb{Z}}(M)$ is a subring
- (d) The map $R^{\text{op}} \to \text{End}_R(R), r \mapsto \rho_r : a \mapsto a \cdot r$ is a ring isomorphism. The inverse is $\text{End}_R(R) \to R^{\text{op}}, \varphi \mapsto \varphi(1)$

Example 0.8. (a) Let K be a field, K-modules are K-vector spaces and vice versa.

- (b) If (M, 0, +) is an abelian group, it is in a unique way a \mathbb{Z} -module.
- (c) Let K be a field, $R = M_{n \times n}(K), n > 1, V_n(K) = \text{column } Z_n(K) \text{ row vectors of length } n \text{ over } K, \text{ then:}$
 - $V_n(K)$ is a left R-module.
 - $Z_n(K)$ is a right R-module.
- (d) R is a left R-module and right R module with multiplication.
- (e) If M_1 and M_2 are R-modules, we can define on $M_1 \times M_2$ a R-module structure via

$$r \cdot (m_1, m_2) := (rm_1, rm_2)$$

(group structure from Algebra 1)

(f) $\operatorname{Hom}_R(R,M) \to M, \varphi : \varphi(1)$ is an isomorphism of abelian groups, and if R is commutative, then also an isomorphism of R-modules.

Definition 0.9. An R-linear map $\varphi: M \to M'$ is called a monomorphism/epimorphism/isomorphism $\iff \varphi$ is injective/surjective/bijective respectively. We say R-modules M, M' are isomorphic if there exists an isomorphism $M \to M'$.

Remark. φ is an R-linear isomorphism $\iff \varphi^{-1}$ is an R-linear isomorphism.

Definition 0.10. (a) Let M be an R-module. A subset $N \subseteq M$ is an R-submodule if it is a subgroup and $\forall a \in R, n \in N : a \cdot n \in N \text{ (i.e. } R \cdot N \subseteq N)$

- (b) An R-submodule $I \subseteq R$ is called a left ideal.
- (c) $I \subseteq R$ is called a two sided ideal iff it is a left ideal and $I \cdot R \subseteq I$

Example 0.11. (a) If $N' \subseteq N$ and $M' \subseteq M$ are R-submodules of R-modules M and N and if $\varphi: M \to N$ is an R-linear map, then:

$$\varphi(M') \subseteq N \text{ and } \varphi^{-1}(N') \subseteq M$$

are R-submodules. In particular $\ker(\varphi) \leq M$ and $im(\varphi) \leq N$ are submodules.

(b) If $(M_i)_{i\in I}$ is a family of submodules of M, then $\bigcap_{i\in I} M_i \subseteq M$ is the largest submodule of M contained in all M_i , and

$$\sum_{i \in I} M_i = \{ \sum_{i \in I} m_i \mid m_{i \in M}_{i}, \#\{i \mid m_{i \neq 0}\} < \infty \}$$

is the smallest submodule of M containing all M_i .

(c) 2-sided ideals of $M_{n\times n}(R)$ are of the form $M_{n\times n}(I)$ for $I\subseteq R$ a 2-sided ideal.

Quotient Modules

Definition 0.12. Let $N \subseteq N$ be a submodule. From linear algebra $(M/N, \overline{0}, \overline{+})$ is an abelian group. $(\overline{m} = m + N \text{ are the equivalence classes and } \overline{m} + \overline{m}' = \overline{m + m'})$. This is an R-module (exercise) via

$$\overline{\cdot}: R \times M/_{N} \to M/_{N}: (r, m+N) \mapsto rm+N$$

We call M_N (with $\overline{0}, \overline{+}, \overline{\cdot}$) the quotient module of M by N, and we write

$$\pi_{N \subset M} : M \to M/_N, m \mapsto m + N$$

Definition 0.13. If $I \subseteq R$ is a 2-sided ideal of R, then

- (a) $I\cdot M:=\{\sum_{i\in I}a_i\cdot m_i\mid I \text{ finite, } a_{i\in I,m_i\in M}\}$ is an R-submodule of M (M an R-module)
- (b) $(R/I, \overline{0}, \overline{1}, \overline{+}, \overline{\cdot})$ is a ring, and $M/I \cdot M$ is an R/I-module.

The following 3 results are proved as for groups:

Theorem 0.14 (Homomorphism theorem). Let $\varphi: M \to M'$ be an R-linear map, then

- (a) \forall submodules $N \subseteq \ker(\varphi) : \exists !R$ -linear map $\overline{\varphi} : M_{/N} \to M', m+N \mapsto \varphi(m)$ such that $\varphi = \overline{\varphi} \circ \pi_{N \subset M}$
- (b) For $N = \ker(\varphi)$, the map $\overline{\varphi} : M_{\ker(\varphi)} \to im(\varphi)$ is an R-module isomorphism.

Theorem 0.15. (First isomorphism theorem) Let M be an R-module and $N_1, N_2 \leq M$ be R-submodules. Then the map

$$N_1/N_1 \cap N_2 \to N_1 + N_2/N_2, n_1 + N_1 \cap N_2 \mapsto n_1 + N_2$$

is a well-defined R-linear isomorphism.

Theorem 0.16 (Second isomorphism theorem). Let M be an R-module and $N \leq M$ an R-submodule. Then

(a) The following maps are bijective and mutually inverse to each other:

$$\{N'\subseteq M\ submodule\ |\ N\subseteq N'\} \overset{\varphi}{\underset{\psi}{\rightleftarrows}} \{\overline{N}\subseteq M/_{N}\ submodule\}$$

$$\varphi:N\mapsto^{N'}/_{N}\qquad \pi_{N\subseteq M}^{-1}(\overline{N}) \hookleftarrow \overline{N}:\psi$$

(b) For $N' \subseteq M$ a submodule with $N \subseteq N'$ we have the R-linear isomorphism:

$$(M/N)/(N'/N) \rightarrow M/N', \overline{m} + N'/M \mapsto m + N'$$

Direct sums and products

Let $(M_i)_{i \in I}$ be a family of R-modules.

Definition 0.17. (a) $\prod_{i \in I} M_i = \{(m_i)_{i \in I} \mid m_i \in M_i, \forall i \in I\}$ is an R-module with component-wise operations:

$$(m_i)_{i \in I} + (n_i)_{i \in I} = (m_i + n_i)_{i \in I}$$

 $r \cdot (m_i)_{i \in I} = (r \cdot m_i)_{i \in I}, \quad r \in R$

is called the (direct) product of $(M_i)_{i \in I}$. One has the projection maps (R-module epimorphisms):

$$\pi_{i_0}: \prod_{i \in I} M_i \to M_{i_0}, (m_i) \mapsto m_{i_0}$$

(b) $\bigoplus_{i\in I} M_i = \{(m_i)_{i\in I} \in \prod_{i\in I} M_i \mid \{i \mid m_i \neq 0\} < \infty\}$ is an R-submodule of $\prod_{i\in I} M_i$. It is called the direct sum of $(M_i)_{i\in I}$. One has R-module monomorphisms

$$\iota_{i_0}: M_{i_0} \to \bigoplus_{i \in I} M_i, m_{i_0} \mapsto (\iota_{i_0}(m_{i_0}))$$

where the *i*-th component of $\iota_{i_0}(m_{i_0})$ is given by $\begin{cases} m_{i_0}, & i=i_0, \\ 0, & \text{otherwise} \end{cases}$

Theorem 0.18 (Universal property of the direct product/sum). (a) $\forall R$ -modules M, the map

$$\operatorname{Hom}_R(M, \prod_{i \in I} M_i) \xrightarrow{\cong} \prod_{i \in I} \operatorname{Hom}_R(M, M_i), \varphi \mapsto (\pi_i \circ \varphi)_{i \in I}$$

 $is \ well \ defined, \ bijective \ and \ a \ group \ isomorphism.$

(b) $\forall R$ -modules M, the map

$$\operatorname{Hom}_R(\bigoplus_{i\in I} M_i, M) \xrightarrow{\cong} \prod_{i\in I} \operatorname{Hom}_R(M_i, M), \psi \mapsto (\psi \cdot \iota_i)_{i\in I}$$

is well defined, bijective and a group isomorphism.

Proof. (a) The inverse map is given by sending

$$\underline{\varphi} := (\varphi_i : M \to M_i)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}_R(M, M_i)$$

to

$$\pi_{\underline{\varphi}}: M \to \prod_{i \in I} M_i, m \mapsto (\varphi_i(m))_{i \in I}$$

now check: $\underline{\varphi} \mapsto \pi_{\underline{\varphi}}$ is inverse to the map in (a).

(b) The map is given by sending $\overline{\varphi} = (\varphi_i : M_i \to M)_{i \in I}$ to

$$\coprod_{\overline{\varphi}}: \bigoplus_{i \in I}: M_i \to M, (m_i)_{i \in I} \mapsto \sum_{i \in I} \varphi_i(m_i)$$

Corollary 0.19 (Important special case). Let I be finite, then:

- (a) $M := \prod_{i \in I} M_i \stackrel{!}{=} \bigoplus_{i \in I} M_i$
- (b) The maps $M_i \stackrel{\iota_i}{\underset{\pi_i}{\rightleftarrows}} M$ satisfy

$$\pi_i \circ \iota_j = \begin{cases} \mathrm{id}_{M_i}, & i = j, \\ 0, & otherwise \end{cases} \quad and \quad \sum_{i \in I} \iota_i \circ \pi_i = \mathrm{id}_M$$

(c) If M' is a module with maps $M_i \stackrel{\iota_i'}{\underset{\pi_i'}{\rightleftarrows}} M'$ such that the formulas above hold, then $M \cong M'$