Variational Auto Encoders

Recap

- Deep Neural Models consist of 2 primary components
 - A feature extraction network Where important aspects of the data are amplified and projected into a linearly separable form (or close to one)
 - A linear classifier to determine how to best label the data
- Neural Networks can be used for representation generation
 - One case of this is called the Autoencoder
 - Project the data into some space which is informative for reconstructing the input

Recap

- The network learns features using layers 0 to N-1...
- Final layer used for classification
- Common in industry to take a pretrained model, fix all weights except for the last layer and retrain with a new objective.

Recap: How the layers act

- You can think of autoencoders as performing a nonlinear PCA on the your data
 - How can we think about this?

Training: Learning W by minimizing L2 divergence

$$\hat{\mathbf{x}} = \mathbf{w}^T \mathbf{w} \mathbf{x}$$

$$div(\hat{\mathbf{x}}, \mathbf{x}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2$$

$$\hat{W} = \underset{W}{\operatorname{argmin}} E[div(\hat{\mathbf{x}}, \mathbf{x})]$$

$$\hat{W} = \underset{W}{\operatorname{argmin}} E[\|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2]$$

- Autoencoders find the direction of maximum energy
 - Varience if the input is a zero-mean random value
- All input vectors are mapped onto a point on the principal axis

- Varying the input to the hidden layer only generates data along the learned manifold
 - English translation the decoder can only decode what looks like the training data
 - This may be poorly learned
 - Any and every input will result in an output along the learned manifold

- The decoder represents a source specific generative dictionary
- Passing data to it will produce data typical from the source

Notes for the Rest of This Lecture

- Motivation for Variational Autoencoders (VAEs)
 - Just as auto encoders can be seen as performing non-linear PCA, variational auto encoders can be viewed as performing non-linear factor analysis
- VAEs get their name from variational inference, a technique that can be used for parameter estimation
- During this lecture we will discuss
 - Basics of generative models
 - Factor Analysis
 - Variational Inference and Expectation Maximization
 - VAEs

Recap: Types of Models

- Different types of neural models
 - Discriminative neural models
 - Eg. Classify this image as 1 of 10 different classes
 - CIFAR, MNIST, etc
 - Generative Neural Models
 - Eg. Given this input sequence generate a resulting output sequence
 - Machine translation, etc
 - Both of these types of models have their place and we have explored them both in this class
 - We just haven't drawn this kind of line before
 - This will be a very important distinction when we talk about GANs later

 Having a decoder of any kind means that you can arbitrarily generate data points that are similar to those in your training set

- Often easier to train than discriminative models
 - More training data available
 - People don't go around labeling things, but they often go around associating things
 - Eg. Videos + Comments, images and captions, translation pairs, etc

Caption -> Image

A man in an orange jacket with sunglasses and a hat skis down a hill

Outline -> Image

https://arxiv.org/abs/1611.07004

Example: Super resolution

original bicubic SRGAN SRResNet (21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)

- These models give us insight into our data
 - Is there a low level manifold underlying the data or is every variable independent?
 - What how complex is our data, is it easily predictable or is it not

Factor Analysis

 Generative model: Assumes that data are generated from real valued latent variables

Factor Analysis model

Factor analysis assumes a generative model

• where the *ith* observation, $x_i \in \mathbb{R}^D$ is conditioned on a vector of real valued latent variables $z_i \in \mathbb{R}^L$.

Here we assume the prior distribution is Gaussian:

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{z}_i | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

We also will use a Gaussian for the data likelihood:

$$p(x_i | \mathbf{z}_i, W, \mu, \Psi) = \mathcal{N}(W \mathbf{z}_i + \mu, \Psi)$$

Where $W \in \mathbb{R}^{D \times L}$, $\Psi \in \mathbb{R}^{D \times D}$, Ψ is diagonal

Marginal distribution of observed x_i

$$p(x_i|W,\mu,\Psi) = \int \mathcal{N}(Wz_i + \mu, \Psi) \,\mathcal{N}(z_i|\mu_0, \Sigma_0) dz_i$$
$$= \mathcal{N}(x_i|W\mu_0 + \mu, \Psi + W \,\Sigma_0 W^T)$$

Note that we can rewrite this as:

$$p(x_i|\widehat{W},\widehat{\mu},\Psi) = \mathcal{N}(x_i|\widehat{\mu},\Psi + \widehat{W}\widehat{W}^T)$$

Where $\widehat{\mu} = W \mu_0 + \mu$ and $\widehat{W} = W \Sigma_0^{-\frac{1}{2}}$.

Thus without loss of generality (since μ_0 , Σ_0 are absorbed into learnable parameters) we let:

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{z}_i|\mathbf{0}, \mathbf{I})$$

And find:

$$p(x_i|W,\mu,\Psi) = \mathcal{N}(x_i|\mu,\Psi + WW^T)$$

Marginal distribution interpretation

- We can see from $p(x_i|W,\mu,\Psi) = \mathcal{N}(x_i|\mu,\Psi+WW^T)$ that the covariance matrix of the data distribution is broken into 2 terms
- A diagonal part \(\Psi : \text{variance not shared between variables} \)
- A low rank matrix WW^T : shared variance due to latent factors

Special Case: Probabilistic PCA (PPCA)

- Probabilistic PCAis a special case of Factor Analysis
- We further restrict $\Psi = \sigma^2 I$ (assume isotropic independent variance)
- Possible to show that when the data are centered (μ =0), the limiting case where $\sigma \to 0$ gives back the same solution for W as PCA
- Factor analysis is a generalization of PCAthat models non-shared variance (can think of this as noise in some situations, or individual variation in others)

Inference in FA

- Tofind the parameters of the FA model, we use the Expectation Maximization (EM) algorithm
- EM is very similar to variational inference
- We'll derive EM by first finding a lower bound on the log-likelihood we want to maximize, and then maximizing this lower bound

Evidence Lower Bound Decomposition

• For any distributions q(z), p(z) we have:

$$\mathrm{KL}(q(z) \mid\mid p(z)) \triangleq \int q(z) \log \frac{q(z)}{p(z)} dz$$

• Consider the KL divergence of an **arbitrary** weighting distribution q(z) from a conditional distribution $p(z|x,\theta)$:

$$KL(q(z) || p(z|x, \theta)) \triangleq \int q(z) \log \frac{q(z)}{p(z|x, \theta)} dz$$

$$= \int q(z)[\log q(z) - \log p(z|x,\theta)] dz$$

Applying Bayes

$$\log p(z|x,\theta) = \log \left[\frac{p(x|z,\theta)p(z|\theta)}{p(x|\theta)} \right]$$
$$= \log p(x|z,\theta) + \log p(z|\theta) - \log p(x|\theta)$$

Then:

$$KL(q(z) || p(z|x,\theta)) = \int q(z)[\log q(z) - \log p(z|x,\theta)] dz$$

$$= \int q(z)[\log q(z) - \log p(x|z,\theta) - \log p(z|\theta) + \log p(x|\theta)]dz$$

Rewriting the divergence

• Since the last term does not depend on z, and we know $\int q(z)dz = 1$, we can pull it out of the integration:

$$\int q(z)[\log q(z) - \log p(x|z,\theta) - \log p(z|\theta) + \log p(x|\theta)]dz$$

$$= \int q(z)[\log q(z) - \log p(x|z,\theta) - \log p(z|\theta)]dz + \log p(x|\theta)$$

$$= \int q(z)\log \left[\frac{q(z)}{p(x|z,\theta)p(z,\theta)}\right]dz + \log p(x|\theta)$$

$$= \int q(z)\log \left[\frac{q(z)}{p(x,z|\theta)}\right]dz + \log p(x|\theta)$$

Then we have:

$$KL(q(z) || p(z|x,\theta)) = KL(q(z) || p(x,z|\theta)) + \log p(x|\theta)$$

Evidence Lower Bound (ELBO)

From basic probability we have:

$$KL(q(z)||p(z|x,\theta)) = KL(q(z)||p(x,z|\theta)) + \log p(x|\theta)$$

We can rearrange the terms to get the following decomposition:

$$\log p(x|\theta) = \mathrm{KL}(q(z) \mid\mid p(z|x,\theta)) - \mathrm{KL}(q(z) \mid\mid p(x,z|\theta))$$

• We define the evidence lower bound (ELBO) as:

$$\mathcal{L}(q,\theta) \triangleq -\mathrm{KL}(q(z) || p(x,z | \theta))$$

Then:

$$\log p(x|\theta) = \mathrm{KL}(q(z)||p(z|x,\theta)) + \mathcal{L}(q,\theta)$$

Why the name Evidence Lower Bound (ELBO)

Rearranging the decomposition

$$\log p(x|\theta) = \mathrm{KL}(q(z)||p(z|x,\theta)) + \mathcal{L}(q,\theta)$$

we have

$$\mathcal{L}(q,\theta) = \log p(x|\theta) - \mathrm{KL}(q(z) || p(z|x,\theta))$$

- Since $\mathrm{KL}(q(z)||p(z|x,\theta)) \geq 0$, $\mathcal{L}(q,\theta)$ is a lower bound on the log-likelihood we want to maximize
- $p(x|\theta)$ is sometimes called the evidence
- When is this **bound tight**? When $q(z) = p(z|x,\theta)$
- The ELBO is also sometimes called the variational bound

Visualizing ELBO decomposition

Bishop – Pattern Recognition and Machine Learning

- Note: all we have done so far is decompose the log probability of the data, we still have exact equality
- This holds for any distribution q

Expectation Maximization

• Expectation Maximization alternately optimizes the ELBO, $\mathcal{L}q$, θ) with respect to q (the Estep) and θ (the M step)

- Initialize $\theta^{(0)}$
- At each iteration t=1,...
 - Estep: Hold $\theta^{(t-1)}$ fixed, find $q^{(t)}$ which maximizes $\mathcal{L}\left(q,\theta^{(t-1)}\right)$
 - M step: Hold $q^{(t)}$ fixed, find $\theta^{(t)}$ which maximizes $\mathcal{L}\left(q^{(t)},\theta\right)$

The Estep

Bishop - Pattern Recognition and Machine Learning

• Suppose we are at iteration t of our algorithm. How do we maximize $\mathcal{L}(q,\theta^{(t-1)})$ with respect to q? We know that:

$$\operatorname{argmax}_{q} \mathcal{L}(q, \theta^{(t-1)}) = \operatorname{argmax}_{q} \log p(x|\theta^{(t-1)}) - \operatorname{KL}(q(z)||p(z|x, \theta^{(t-1)}))$$

The Estep

- The first term does not involve q, and we know the KL divergence must be non-negative
- The best we can do is to make the KLdivergence 0
- Thus the solution is to set $q^{(t)}(z) \leftarrow p(z|x, \theta^{(t-1)})$

Bishop - Pattern Recognition and Machine Learning

• Suppose we are at iteration t of our algorithm. How do we maximize $\mathcal{L}(q, \theta^{(t-1)})$ with respect to q? We know that:

$$\operatorname{argmax}_{q} \mathcal{L}(q, \theta^{(t-1)}) = \operatorname{argmax}_{q} \log p(x|\theta^{(t-1)}) - \operatorname{KL}\left(q(z) \mid\mid p(z|x, \theta^{(t-1)})\right)$$

The Estep

Bishop - Pattern Recognition and Machine Learning

• Suppose we are at iteration t of our algorithm. How do we maximize $\mathcal{L}(q, \theta^{(t-1)})$ with respect to q? $q^{(t)}(z) \leftarrow p(z|x, \theta^{(t-1)})$

The M step

• Fixing $q^{(t)}(z)$ we now solve:

$$\begin{aligned} & \operatorname{argmax}_{\theta} \mathcal{L} \big(q^{(t)}, \theta \big) = \operatorname{argmax}_{\theta} - \operatorname{KL} \left(q^{(t)}(z) \mid\mid p(x, z \mid \theta) \right) \\ &= \operatorname{argmax}_{\theta} - \int q^{(t)}(z) \log \left[\frac{q^{(t)}(z)}{p(x, z \mid \theta)} \right] dz \\ &= \operatorname{argmax}_{\theta} \int q^{(t)}(z) \left[\log p(x, z \mid \theta) - \log q^{(t)}(z) \right] dz \\ &= \operatorname{argmax}_{\theta} \int q^{(t)}(z) \log p(x, z \mid \theta) - q^{(t)}(z) \log q^{(t)}(z) dz \end{aligned}$$

$$&= \operatorname{argmax}_{\theta} \int q^{(t)}(z) \log p(x, z \mid \theta) dz$$

$$&= \operatorname{argmax}_{\theta} \mathcal{E}_{q^{(t)}(z)} [\log p(x, z \mid \theta)]$$
Constant w.r.t. θ

The M step

Bishop – Pattern Recognition and Machine Learning

• After applying the Estep, we increase the likelihood of the data by finding better parameters according to: $\theta^{(t)} \leftarrow \operatorname{argmax}_{\theta} \mathbb{E}_{q^{(t)}(z)}[\log p(x,z \mid \theta)]$

The EM Algorithm

- Initialize $\theta^{(0)}$
- At each iteration t = 1, ...
 - E step: Update $q^{(t)}(z) \leftarrow p(z|x,\theta^{(t-1)})$
 - M step: Update $\theta^{(t)} \leftarrow \operatorname{argmax}_{\theta} \mathbb{E}_{q^{(t)}(z)}[\log p(x, z \mid \theta)]$

Why Does EM Work?

- ullet EM does coordinate ascent on the ELBO, $\mathcal{L}(q, heta)$
- Each iteration increases the log-likelihood until $q^{(t)}$ converges (i.e. we reach a local maximum)!
- Simple to prove

Notice after the E step:

$$\mathcal{L}(q^{(t)}, \theta^{(t-1)})$$

$$= \log p(x|\theta^{(t-1)}) - \text{KL}\left(p(z|x, \theta^{(t-1)}) \mid\mid p(z|x, \theta^{(t-1)})\right)$$

$$= \log p(x|\theta^{(t-1)})$$
The ELBO is tight!

By definition of argmax in the M step:

$$\mathcal{L}(q^{(t)}, \theta^{(t)}) \ge \mathcal{L}(q^{(t)}, \theta^{(t-1)})$$

By simple substitution:

$$\mathcal{L}(q^{(t)}, \theta^{(t)}) \ge \log p(x | \theta^{(t-1)})$$

Rewriting the left hand side:

$$\log p(x|\theta^{(t)}) - \text{KL}\left(p(z|x,\theta^{(t-1)}) \mid\mid p(z|x,\theta^{(t)})\right)$$

$$\geq \log p(x|\theta^{(t-1)})$$

Noting that KL is non-negative:

$$\log p(x|\theta^{(t)}) \ge \log p(x|\theta^{(t-1)})$$

Why does EM work?

Bishop - Pattern Recognition and Machine Learning

 This proof is saying the same thing we saw in pictures. Make the KLO, then improve our parameter estimates to get a better likelihood

From EM to Variational Inference

- In EM we alternately maximize the ELBOwith respect to θ and probability distribution (functional) q
- In variational inference, we drop the distinction between hidden variables and parameters of a distribution
- I.e. we replace $p(x, z | \theta)$ with p(x, z). Effectively this puts a **probability distribution on the parameters** θ , then absorbs them into z
- Fully Bayesian treatment instead of a point estimate for the parameters

Variational Inference

- Now the ELBOis just a function of our weighting distribution $\mathcal{L}(q)$
- We assume a form for q that we can optimize
- For example *mean field theory* assumes *q* factorizes:

$$q(Z) = \prod_{i=1}^{M} q_i(Z_i)$$

- Then we optimize $\mathcal{L}(q)$ with respect to one of the terms while holding the others constant, and repeat for all terms
- By assuming a form for q we approximate a (typically) intractable true posterior

Why does Variational Inferencework?

- The argument is similar to the argument for EM
- When expectations are computed using the current values for the variables not being updated, we implicitly set the KLdivergence between the weighting distributions and the posterior distributions to 0

• The update then pushes up the data likelihood

KL(q||p)

Bishop – Pattern Recognition and Machine Learning

A different perspective

• Consider the log-likelihood of a marginal distribution of the data x in a generic latent variable model with latent variable z parameterized by θ :

$$\ell(\theta) \triangleq \sum_{i=1}^{N} \log p(x_i|\theta) = \sum_{i=1}^{N} \log \int p(x_i, z_i|\theta) dz_i$$

- Estimating θ is difficult because we have a log outside of the integral, so it does not act directly on the probability distribution (frequently in the exponential family)
- If we observed z_i , then our log-likelihood would be:

$$\ell_c(\theta) \triangleq \sum_{i=1}^{N} \log p(x_i, z_i | \theta)$$

This is called the complete log-likelihood

Expected Complete Log-Likelihood

• We can take the expectation of this likelihood over a distribution of the latent variable q(z):

$$\mathbb{E}_{q(z)}[\ell_c(\theta)] = \sum_{i=1}^N \int q(z_i) \log p(x_i, z_i | \theta) \, \mathrm{d}z_i$$

- This looks similar to marginalizing, but now the log is inside the integral, so it's easier to deal with
- We can treat the latent variables as observed and solve this more easily than directly solving the log-likelihood
- Finding the q that maximizes this is the E step of EM
- Finding the θ that maximizes this is the M step of EM

Back to Factor Analysis

• For simplicity, assume data is centered. We want:

$$\operatorname{argmax}_{W,\Psi} \log p(X|W,\Psi) = \operatorname{argmax}_{W,\Psi} \sum_{i=1}^{N} \log p(x_i|W,\Psi)$$
$$= \operatorname{argmax}_{W,\Psi} \sum_{i=1}^{N} \log \mathcal{N}(x_i|\mathbf{0}, \Psi + WW^T)$$

- No closed form solution in general (PPCA can be solved in closed form)
- Ψ , W get coupled together in the derivative and we can't solve for them analytically

EM for Factor Analysis

$$\begin{split} & \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} \mathbb{E}_{q^{(t)}(\boldsymbol{z})}[\log p(\boldsymbol{X},\boldsymbol{Z} \mid \boldsymbol{W},\boldsymbol{\Psi})] = \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} \sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\log p(\boldsymbol{x}_{i} \mid \boldsymbol{z}_{i},\boldsymbol{W},\boldsymbol{\Psi})] + \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\log p(\boldsymbol{z}_{i})] \\ & = \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} \sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\log p(\boldsymbol{x}_{i} \mid \boldsymbol{z}_{i},\boldsymbol{W},\boldsymbol{\Psi})] \\ & = \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} \sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\log \mathcal{N}(\boldsymbol{W}\boldsymbol{z}_{i},\boldsymbol{\Psi})] \\ & = \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} \operatorname{const} - \frac{N}{2} \log \det(\boldsymbol{\Psi}) - \sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})} \left[\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i})^{T} \boldsymbol{\Psi}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i}) \right] \\ & = \operatorname{argmax}_{\boldsymbol{W},\boldsymbol{\Psi}} - \frac{N}{2} \log \det(\boldsymbol{\Psi}) - \sum_{i=1}^{N} \left(\frac{1}{2} \boldsymbol{x}_{i}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{W} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})} [\boldsymbol{z}_{i}] + \frac{1}{2} \operatorname{tr} \left(\boldsymbol{W}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{W} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})} [\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}] \right) \right) \end{split}$$

- We only need these 2 sufficient statistics to enable the M step.
- In practice, sufficient statistics are often what we compute in the E step

Factor Analysis E step

$$\mathbb{E}_{q^{(t)}(\mathbf{z}_i)}[\mathbf{z}_i] = \mathbf{G} \mathbf{W}^{(t-1)^T} \mathbf{\Psi}^{(t-1)^{-1}} \mathbf{x}_i$$

$$\mathbb{E}_{q^{(t)}(\mathbf{z}_i)}[\mathbf{z}_i \mathbf{z}_i^T] = \mathbf{G} + \mathbb{E}_{q^{(t)}(\mathbf{z}_i)}[\mathbf{z}_i] \mathbb{E}_{q^{(t)}(\mathbf{z}_i)}[\mathbf{z}_i]^T$$

Where

$$G = \left(I + W^{(t-1)^T} \Psi^{(t-1)^{-1}} W^{(t-1)}\right)^{-1}$$

This is derived via the Bayes rule for Gaussians

Factor Analysis M step

$$\boldsymbol{W}^{(t)} \leftarrow \left[\sum_{i=1}^{N} \boldsymbol{x}_{i} \, \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\boldsymbol{z}_{i}]^{T} \right] \left[\sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\boldsymbol{z}_{i}\boldsymbol{z}_{i}^{T}] \right]^{-1}$$

$$\mathbf{\Psi}^{(t)} \leftarrow \operatorname{diag}\left(\frac{1}{N}\sum_{i=1}^{N} \boldsymbol{x_i}\boldsymbol{x_i^T} - \boldsymbol{W}^{(t)}\frac{1}{N}\sum_{i=1}^{N} \mathbb{E}_{q^{(t)}(\boldsymbol{z_i})}[\boldsymbol{z_i}]\boldsymbol{x_i^T}\right)$$

From EM to Variational Inference

- In EM we alternately maximize the ELBOwith respect to θ and probability distribution (functional) q
- In variational inference, we drop the distinction between hidden variables and parameters of a distribution
- I.e. we replace $p(x, z|\theta)$ with p(x, z). Effectively this puts a **probability distribution on the parameters** θ , then absorbs them into z
- Fully Bayesian treatment instead of a point estimate for the parameters

Variational Inference

- Now the ELBOis just a function of our weighting distribution $\mathcal{L}(q)$
- We assume a form for q that we can optimize
- For example *mean field theory* assumes *q* factorizes:

$$q(Z) = \prod_{i=1}^{M} q_i(Z_i)$$

- Then we optimize $\mathcal{L}(q)$ with respect to one of the terms while holding the others constant, and repeat for all terms
- By assuming a form for q we approximate a (typically) intractable true posterior

Mean Field Update Derivation

$$\begin{split} &\mathcal{L}(q) = \int q(Z) \log \left[\frac{p(X,Z)}{q(Z)} \right] dZ = \int q(Z) \log p(X,Z) - q(Z) \log q(Z) \ dZ \\ &= \int \prod_i q_i(Z_i) \left\{ \log p(X,Z) - \sum_k \log q_k(Z_k) \right\} dZ \\ &= \int q_j(Z_j) \left\{ \int \prod_{i \neq j} q_i(Z_i) \left\{ \log p(X,Z) - \sum_k \log q_k(Z_k) \right\} dZ_i \right\} dZ_j \\ &= \int q_j(Z_j) \left\{ \int \log p(X,Z) \prod_{i \neq j} q_i(Z_i) dZ_i - \int \prod_{i \neq j} \sum_k q_i(Z_i) \log q_k(Z_k) dZ_i \right\} dZ_j \\ &= \int q_j(Z_j) \left\{ \int \log p(X,Z) \prod_{i \neq j} q_i(Z_i) dZ_i - \log q_j(Z_j) \int \prod_{i \neq j} q_i(Z_i) dZ_i \right\} dZ_j + \text{const} \\ &= \int q_j(Z_j) \left\{ \int \log p(X,Z) \prod_{i \neq j} q_i(Z_i) dZ_i \right\} dZ_j - \int q_j(Z_j) \log q_j(Z_j) dZ_j + \text{const} \\ &= \int q_j(Z_j) \mathbb{E}_{i \neq j} [\log p(X,Z)] dZ_j - \int q_j(Z_j) \log q_j(Z_j) dZ_j + \text{const} \end{split}$$

Mean Field Update

$$q_{j}(Z_{j})^{(t)}$$

$$\leftarrow \operatorname{argmax}_{q_{j}(Z_{j})} \int q_{j}(Z_{j}) \mathbb{E}_{i \neq j} [\log p(X, Z)] dZ_{j}$$

$$- \int q_{j}(Z_{j}) \log q_{j}(Z_{j}) dZ_{j}$$

- The point of this is not the update equations themselves, but the general idea:
 - freeze some of the variables, compute expectations over those
 - update the rest using these expectations

Why does Variational Inferencework?

- The argument is similar to the argument for EM
- When expectations are computed using the current values for the variables not being updated, we implicitly set the KLdivergence between the weighting distributions and the posterior distributions to

• The update then pushes up the data likelihood

Pattern Recognition and Machine Learning

Variational Autoencoder

- Kingma & Welling: Auto-Encoding Variational Bayes proposes maximizing the ELBOwith a trick to make it differentiable
- Discusses both the variational autoencoder model using parametric distributions and fully Bayesian variational inference, but we will only discuss the variational autoencoder

Problem Setup

- Assume a generative model with a latent variable distributed according to some distribution $p(z_i)$
- The observed variable is distributed according to a conditional distribution $p(x_i|z_i,\theta)$
- Note the similarity to the Factor Analysis (FA) setup so far

Problem Setup

- We also create a weighting distribution $q(z_i|x_i,\phi)$
- This will play the same role as $q(z_i)$ in the EM algorithm, as we will see.
- Note that when we discussed EM, this
 weighting distribution could be
 arbitrary: we choose to condition on
 x_i here. This is a choice.

Using a conditional weighting distribution

- There are many values of the latent variables that don't matter in practice – by conditioning on the observed variables, we emphasize the latent variable values we actually care about: the ones most likely given the observations
- We would like to be able to encode our data into the latent variable space. This conditional weighting distribution enables that encoding

Problem setup

- Implement $p(x_i | z_i, \theta)$ as a neural network, this can also be seen as a **probabilistic decoder**
- Implement $q(z_i|x_i,\phi)$ as a neural network, we also can see this as a probabilistic encoder
- Sample z_i from $q(z_i | x_i, \phi)$ in the middle

Unpacking the encoder

• We choose a family of distributions for our conditional distribution q. For example Gaussian with diagonal covariance:

$$q(z_i|x_i,\phi) = \mathcal{N}(z_i|\mu = u(x_i, W_1), \Sigma = \operatorname{diag}(s(x_i, W_2)))$$

Unpacking the encoder

- We create neural networks to predict the parameters of q from our data
- In this case, the outputs of our networks are μ and Σ

Unpacking the encoder

- We refer to the parameters of our networks, W_1 and W_2 collectively as ϕ
- Together, networks u and s parameterize a distribution, $q(z_i|x_i,\phi)$, of the latent variable z_i that depends in a complicated, non-linear way on x_i

Unpacking the decoder

- The decoder follows the same logic, just swapping x_i and z_i
- We refer to the parameters of our networks, W_3 and W_4 collectively as θ
- Together, networks u_d and s_d parameterize a distribution, $p(x_i|z_i, \theta)$, of the latent variable x_i that depends in a complicated, non-linear way on z_i

Understanding the setup

- Note that p and q do not have to use the same distribution family, this was just an example
- This basically looks like an autoencoder, but the outputs of both the encoder and decoder are parameters of the distributions of the latent and observed variables respectively
- We also have a sampling step in the middle

Using EM for training

- Initialize $\theta^{(0)}$
- At each iteration t=1,...,T
 - Estep: Hold $\theta^{(t-1)}$ fixed, find $q^{(t)}$ which maximizes $\mathcal{L}\left(q,\theta^{(t-1)}\right)$
 - M step: Hold $q^{(t)}$ fixed, find $\theta^{(t)}$ which maximizes $\mathcal{L}\left(q^{(t)},\theta\right)$
- We will use a modified EM to train the model, but we will transform it so we can use standard back propagation!

Using EM for training

- Initialize $\theta^{(0)}$
- At each iteration t=1,...,T
 - Estep: Hold $\theta^{(t-1)}$ fixed, find $\phi^{(t)}$ which maximizes $\mathcal{L}(\phi, \theta^{(t-1)}, x)$
 - M step: Hold $\phi^{(t)}$ fixed, find $\theta^{(t)}$ which maximizes $\mathcal{L}(\phi^{(t)}, \theta, x)$

• First we modify the notation to account for our choice of using a parametric, conditional distribution \boldsymbol{q}

Using EM for training

- Initialize $\theta^{(0)}$
- At each iteration t=1,...,T
 - **E step:** Hold $\theta^{(t-1)}$ fixed, find $\frac{\partial \mathcal{L}}{\partial \phi}$ to increase $\mathcal{L}\left(\phi, \theta^{(t-1)}, x\right)$
 - M step: Hold $\phi^{(t)}$ fixed, find $\frac{\partial \mathcal{L}}{\partial \theta}$ to increase $\mathcal{L}\left(\phi^{(t)}, \theta, x\right)$
- Instead of fully maximizing at each iteration, we just take a step in the direction that increases \mathcal{L}

Computing the Loss

• We need to compute the gradient for each mini-batch with B data samples using the ELBO/variational bound $\mathcal{L}(\phi,\theta,x_i)$ as the loss

$$\sum_{i=1}^{B} \mathcal{L}(\phi, \theta, x_i) = \sum_{i=1}^{B} -\text{KL}(q(z_i|x_i, \phi) \mid\mid p(x_i, z_i|\theta)) = \sum_{i=1}^{B} -\mathbb{E}_{q(z_i|x_i, \phi)} \left[\log \left[\frac{q(z_i|x_i, \phi)}{p(x_i, z_i|\theta)}\right]\right]$$

- Notice that this involves an intractable integral over all values of z
- We can use Monte Carlo sampling to approximate the expectation using L samples from $q(z_i|x_i,\phi)$:

$$\mathbb{E}_{q(z_i|x_i,\phi)}[f(z_i)] \simeq \frac{1}{L} \sum_{j=1}^{L} f(z_{i,j})$$

$$\mathcal{L}(\phi,\theta,x_i) \simeq \tilde{\mathcal{L}}^A(\phi,\theta,x_i) = \frac{1}{L} \sum_{j=1}^{L} \log p(x_i,z_{i,j}|\theta) - \log q(z_{i,j}|x_i,\phi)$$

A lower variance estimator of the loss

We can rewrite

$$\mathcal{L}(\phi, \theta, x) = -\text{KL}\left(q(z|x, \phi) \mid\mid p(x, z|\theta)\right)$$

$$= -\int q(z|x, \phi) \log \left[\frac{q(z|x, \phi)}{p(x|z, \theta)p(z)}\right] dz$$

$$= -\int q(z|x, \phi) \left[\log \left[\frac{q(z|x, \phi)}{p(z)}\right] - \log p(x|z, \theta)\right] dz =$$

$$= -\text{KL}\left(q(z|x, \phi) \mid\mid p(z)\right) + \mathbb{E}_{q(z|x, \phi)}\left[\log p(x|z, \theta)\right]$$

 The first term can be computed analytically for some families of distributions (e.g. Gaussian); only the second term must be estimated

$$\mathcal{L}(\phi, \theta, x_i)$$

$$\simeq \tilde{\mathcal{L}}^B(\phi, \theta, x_i) = -\text{KL}(q(z_i|x_i, \phi) || p(z_i)) + \frac{1}{L} \sum_{j=1}^{L} \log p(x_i|z_{i,j}, \theta)$$

Full EM training procedure (not really used)

- For t = 1: b: T
 - Estimate $\frac{\partial \mathcal{L}}{\partial \phi}$ (How do we do this? We'll get to it shortly)
 - Update ϕ
 - Estimate $\frac{\partial \mathcal{L}}{\partial \theta}$:
 - Initialize $\Delta \theta = 0$
 - For = t: t+b-1
 - Compute the outputs of the encoder (parameters of q) for x_i
 - For $\ell = 1,...L$
 - Sample $z_i \sim q(z_i | x_i, \phi)$
 - $\Delta\theta_{i,\ell}$ Run forward/backward pass on the decoder (standard back propagation) using either \mathcal{L}^{4} or \mathcal{L}^{4} a the loss
 - $\Delta\theta \leftarrow \Delta\theta + \Delta\theta_{i,\ell}$
 - Update θ

Full EM training procedure (not really used)

• Estimate $\frac{\partial \mathcal{L}}{\partial x}$ (How do we do this? We'll get to it shortly)

- Initialize $\Delta \theta = 0$
- For = t: t+b-1
 - Compute the outputs of the encoder (parameters of q) for x_i
 - Sample $z_i \sim q(z_i | x_i, \phi)$
 - $\Delta\theta_i \leftarrow$ Run forward/backward pass on the decoder (standard back propagation) using either \mathcal{P}_{+}^{1} or \mathcal{P}_{+}^{2} as the back
 - $\Delta\theta \leftarrow \Delta\theta + \Delta\theta_i$

The Estep

- We can use standard back propagation to estimate $\frac{\partial \mathcal{L}}{\partial \theta}$
- How do we estimate $\frac{\partial \mathcal{L}}{\partial \phi}$?
- The sampling step blocks the gradient flow
- Computing the derivatives through q via the chain rule gives a very high variance estimate of the gradient

Reparameterization

- Instead of drawing $z_i \sim q(z_i | x_i, \phi)$, let $z_i = g(\epsilon_i, x_i, \phi)$, and draw $\epsilon_i \sim p(\epsilon)$
- z_i is still a random variable but depends on ϕ deterministically
- Replace $\mathbb{E}_{q(z_i|x_i,\phi)}[f(z_i)]$ with $\mathbb{E}_{p(\epsilon)}[f(g(\epsilon_i, x_i, \phi))]$
- Example univariate normal:

$$a \sim \mathcal{N} (\mu, \sigma^2)$$
is equivalent to

$$a = g(\epsilon), \epsilon \sim \mathcal{N}(0, 1), g(b) \triangleq \mu + \sigma b$$

Reparameterization

Full EM training procedure (not really used)

- For t = 1: b: T
 - E Step
 - Estimate $\frac{\partial \mathcal{L}}{\partial \phi}$ using standard back propagation with either $\tilde{\mathcal{L}}^A$ or $\tilde{\mathcal{L}}^B$ as the loss
 - Update ϕ
 - M Step
 - Estimate $\frac{\partial \mathcal{L}}{\partial \theta}$ using standard back propagation with either $\tilde{\mathcal{L}}^A$ or $\tilde{\mathcal{L}}^B$ as the loss
 - Update θ

Full training procedure

- For t = 1:b:T
 - Estimate $\frac{\partial \mathcal{L}}{\partial \phi}$, $\frac{\partial \mathcal{L}}{\partial \theta}$ with either $\tilde{\mathcal{L}}^A$ or $\tilde{\mathcal{L}}^B$ as the loss
 - Update ϕ , θ
- Final simplification: update all of the parameters at the same time instead of using separate E, M steps
- This is standard back propagation. Just use $-\tilde{\mathcal{L}}^A$ or $-\tilde{\mathcal{L}}^B$ as the loss, and run your favorite SGD variant

Running the model onnew data

- Toget a MAP estimate of the latent variables, just use the mean output by the encoder (for a Gaussian distribution)
- No need to take a sample
- Give the mean to the decoder
- At test time, this is used just as an auto-encoder
- You can optionally take multiple samples of the latent variables to estimate the uncertainty

Relationship to Factor Analysis

- VAEperforms probabilistic, non-linear dimensionality reduction
- It uses a generative model with a latent variable distributed according to some prior distribution $p(z_i)$
- The observed variable is distributed according to a conditional distribution $p(x_i|z_i,\theta)$
- Training is approximately running expectation maximization to maximize the data likelihood
- This can be seen as a non-linear version of Factor Analysis

Regularization by a prior

• Looking at the form of \mathcal{L} we used to justify \mathcal{L}^{top} gives us additional insight

$$\mathcal{L}(\phi, \theta, x) = -\mathsf{KL}(q(z|x, \phi) \mid |p(z)) + \mathbb{E}_{q(z|x, \phi)}[\log p(x|z, \theta)]$$

- We are making the latent distribution as close as possible to a prior on z
- While maximizing the conditional likelihood of the data under our model
- In other words this is an approximation to Maximum Likelihood Estimation regularized by a prior on the latent space

Practical advantages of a VAE vs. an AE

- The prior on the latent space:
 - Allows you to inject domainknowledge
 - Can make the latent space more interpretable
- The VAEalso makes it possible to estimate the variance/uncertainty in the predictions

What does this look like in code

```
class VAE(nn.Module):
   def __init__(self):
       super(VAE, self).__init__()
       self.fc1 = nn.Linear(784, 400)
       self.fc21 = nn.Linear(400, 20)
       self.fc22 = nn.Linear(400, 20)
       self.fc3 = nn.Linear(20, 400)
       self.fc4 = nn.Linear(400, 784)
        self.relu = nn.ReLU()
       self.sigmoid = nn.Sigmoid()
def forward(self, x):
    mu, logvar = self.encode(x.view(-1, 784))
    z = self.reparameterize(mu, logvar)
    return self.decode(z), mu, logvar
```

```
def encode(self, x):
    h1 = self.relu(self.fc1(x))
    return self.fc21(h1), self.fc22(h1)

def reparameterize(self, mu, logvar):
    if self.training:
        std = logvar.mul(0.5).exp_()
        eps = Variable(std.data.new(std.size()).normal_())
        return eps.mul(std).add_(mu)
    else:
        return mu

def decode(self, z):
    h3 = self.relu(self.fc3(z))
    return self.sigmoid(self.fc4(h3))
```

What does our hidden space look like now?

Interpreting the latent space

Requirements of the VAE

- Note that the VAErequires 2 tractable distributions to be used:
 - The prior distribution p(z) must be easy to sample from
 - The conditional likelihood $p(x|z, \theta)$ must be computable
- In practice this means that the 2 distributions of interest are often simple, for example uniform, Gaussian, or even isotropic Gaussian

The blurry image problem

https://blog.openai.com/generative-models/

- The samples from the VAE look blurry
- Three plausible explanations for this
 - Maximizing the likelihood
 - Restrictions on the family of distributions
 - The lower bound approximation

The maximum likelihood explanation

Maximum likelihood

Reverse KL

https://arxiv.org/pdf/1701.00160.pdf

- Recent evidence suggests that this is not actually the problem
- GANs can be trained with maximum likelihood and still generate sharp examples

Investigations of blurriness

- Recent investigations suggest that both the simple probability distributions and the variational approximation lead to blurry images
- Kingma & colleages: Improving Variational Inference with Inverse Autoregressive Flow
- Zhao & colleagues: Towards a Deeper Understanding of Variational Autoencoding Models
- Nowozin & colleagues: f-gan: Training generative neural samplers using variational divergence minimization