Making Series Stationary

What is Stationarity?

A stationary series is one whose statistical properties like –
mean, variance do not vary with time.

- Stationary Series will have
 - Constant mean
 - Constant variance
 - Constant Covariance

A Series with trend and seasonality is not stationary

How to Make a Series Stationary?

Differencing

- Differencing
 - This is done to stabilize the mean by removing changes in the level
 - Differencing is performed by subtracting the previous observation from the present observation

$$[y(t) = x(t) - x(t-1)]$$

Differencing

	value	
1	100	
2	120	
3	130	
4	160	
5	170	
6	180	

	value	D = 1
1	100	
2	120	20
3	130	10
4	160	30
5	170	10
6	180	10

Seasonal Differencing

Seasonal Differencing

	value
1	100
2	20
3	150
4	55
5	220
6	98

Seasonal Differencing

- Seasonal Differencing
 - Preferred when the data has a seasonal pattern
 - Differencing is performed by subtracting the previous nth observation from the present observation
 - The value of n depends on the seasonal component

$$[y(t) = x(t) - x(t-n)]$$

Seasonal Differencing

Seasonal Differencing

	value	
1	100	
2	20	
3	150	
4	55	
5	220	
6	98	

	value	D = 1
1	100	
2	20	
3	150	50
4	55	35
5	220	70
6	98	43

Train and Validation Data

Differencing can stabilize the mean of the series.

Analytics Vidhya

- Differencing can stabilize the mean of the series.
- Cannot deal with the high variance in our series.

In order to do that, we will have to look at some other techniques.

How to Make a Series Stationary?

- Differencing
- Seasonal Differencing
- Log transform
- Box cox transform

Log Transform

- Log Transform is used
 - To penalize the high values
 - Stabilize variance of time series

Box Cox Transform

- Log Transform is used
 - To penalize the high values
 - Stabilize variance of time series
- Box Cox Transforms
 - Stabilize variance of the time series
 - Takes lambda as input
 - Equivalent to log at λ = 0

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0; \\ \log y, & \text{if } \lambda = 0. \end{cases}$$

Box Cox Transform

Below are some common values for lambda

- lambda = -1. is a reciprocal transform.
- lambda = -0.5 is a reciprocal square root transform.
- lambda = 0.0 is a log transform.
- lambda = 0.5 is a square root transform.
- lambda = 1.0 is no transform.

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0; \\ \log y, & \text{if } \lambda = 0. \end{cases}$$

Log transform is a special case of box - cox transform

Log Transform

Thank You

Notebook

