2/2

3/3

2/2

4/4

Note: 20/20 (score total: 26/26)

+46/1/30+

IPS - S7A - Jean-Matthieu Bourgeot

QCM₂

IPS Quizz du 13/11/2013

Nom et prénom	:				
LE MEUR	Hickory!	 	 	 ,	

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •	Classer ses	différentes	technologies	de C	AN par	ordre de	Temps d	e conversion
(du plus rapide a	u plus lent)	?						
- annoviment	ion suggesti	ros - Aash -	eimple ramp	e - do	nuble ran	nne		

approximation successives - flash - simple rampe - double rampe $$
${\it flash - approximation \ successives - simple \ rampe \ - \ double \ rampe}$
${\it flash - approximation successives - double\ rampe - simple\ rampe}$
double rampe - flash - approximation successives - simple rampe
approximation successives - flash - double rampe - simple rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T)=R_0(1+\alpha T)$ où Treprésente la température en °C, $R_0=1$ k Ω la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

Question 3 •

Quelle est la capacité d'un condensateur plan ? On note :

- \bullet ϵ : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d: Distance entre les armatures.

$$\Box C = \frac{\epsilon d}{S} \qquad \Box C = \epsilon dS \qquad \Box C = \frac{\epsilon S}{d} \qquad \Box C = \frac{\epsilon}{Sd}$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

		des potentiels. de températures des différences de potenti	des courants. des résistances.
--	--	--	-----------------------------------

	Question 5 • Pourquoi faire du sur-échantillonnage ?
2/2	Pour réduire le bruit de quantification Pour améliorer l'efficacité du filtre antirepliement. Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	La longueur du potentiomètre La taille des grains de la poudre utilisée La course électrique. Le pas de bobinage La résistance maximale du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des courants des grands déplacements des températures des déformations des résistances des flux lumineux.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des températures des déplacement linéaire des flux lumineux des courants des déplacements angulaires
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
3/3	Les voies sont symétriques. De rejeter les perturbations de mode différentiel. Les impédances d'entrées sont élevés. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C=1 \mathrm{ms}$. Quel est le pas de quantification de ce CAN ?
1/1	
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	