Course Code	Course Name	Te	eaching Scho (Hrs.)	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO 6012	Computer Organisation and Architecture	3		***	3	1		3

Course Code	Course Name	Examination Scheme								
		Theory Marks					Ci	D		
		Internal assessment			End	Exam.	Term Work	Practical and	Total	
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs))	Oral		
ECCDLO 6012	Computer Organisation and Architecture	20	20	20	80	03			100	

Course Pre-requisites:

ECC303-Digital System Design

ECC402-Microcontrollers

Course objectives:

- 1. To have a thorough understanding of the basic structure and operation of a digital computer.
- To understand memory systems, processor organization and generation of control unit signals.
- To demonstrate the operation of various arithmetic algorithm including integer and floating point representation.
- To understand the working principles of multiprocessor and parallel organization's as advanced computer architectures.

Course outcomes:

After successful completion of the course student will be able to -

- Describe Computer system along with I/O operations and performance measures.
- Demonstrate data representation and different arithmetic algorithm for solving ALU operations.
- 3. Categorize memory organization and identify the function of each element of memory hierarchy.
- 4. Demonstrate control unit operations.
- 5. Articulate design issues in the development of Multiprocessor organization & architecture

Module No.	Unit No.	Topics	Hrs
1		Computer Organization, Architecture and Performance	8
	1.1	Organization and Architecture,	
	1.2	Structure and Function,	
	1.3	Designing for Performance,	
	1.4	Multicore, MICs, and GPGPUs	
	1.5	Two Laws that Provide Insight: Amdahl's Law and Little's Law	
	1.6	Basic Measures of Computer Performance,	
	1.7	Calculating the Mean	
	1.8	Benchmarks and SPEC	
2		Computer System	6
*	2.1	Computer Components	
	2.2	Computer Function	
	2.3	Interconnection Structures	
	2.4	Bus Interconnection	
3		Data Representation and Arithmetic Algorithms	5
	3.1	Unsigned & Signed multiplication- Add & Shift Method, Booth's algorithm. Unsigned & Signed division, Restoring and non-restoring division.	
	3.2	Integer and floating point representation, IEEE 754 standard for floating point (Single & double precision) number representation.	
4		Memory System Organization	7
,	4.1	Classification and design parameters, Memory Hierarchy ,Internal Memory: RAM, SRAM and DRAM	
	4.2	Cache Memory: Characteristics of Memory Systems, Cache Memory Principles, Elements of Cache, Cache Coherence. Design problems based on mapping techniques	
	4.3	Virtual Memory, External Memory : Magnetic Discs, Solid State Drive, Optical Memory, Flash Memories, RAID Levels	
5		Control Unit Design	8
	5.1	Micro- Operations: The Fetch Cycle, The Indirect Cycle, The Interrupt Cycle, The Execute cycle, The Instruction Cycle	
	5.2	Control of the Processor: Functional Requirements, Control Signals, Internal Processor Organization	
	5.3	Hardwired Control Unit	
	5.4	Microinstructions Microprogrammed Control Unit, Advantages & disadvantages	
6		Fundamentals of Advanced Computer Architecture	5
	6.1	Parallel Architecture: Classification of Parallel Systems,	
	6.2	Flynn's Taxonomy, Array Processors, Clusters, and NUMA Computers	
	6.3	Multiprocessor Systems : Structure & Interconnection Networks	
	6.4	Multi-Core Computers: Introduction, Organization and Performance.	
		Total	39

Text Books:

- William Stallings "Computer Organization and Architecture Designing for Performance" Tenth Edition, Pearson Education.
- C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGrawHill,
- 3. Andrew S. Tanenbaum "Structured Computer Organization", Pearson, Sixth Edition

Reference books:

- 1. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design -
- 2. Morris Mano. "Computer System Architecture" Pearson Publication, 3rd Edition, 2007
- 3. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998
- B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal assessment. Duration of each test shall be of one hour.

End Semester Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- The students need to solve total 4 questions.
- Question No.1 will be compulsory and based on entire syllabus.
- Remaining question (Q.2 to Q.6) will be selected from all the modules.