COMP3301: Process Synchronization [Based on Chapter 5, OSC]

Process Synchronization

- Background
- The Critical-Section Problem
- Peterson's Solution
- Synchronization Hardware
- Mutex Locks
- Semaphores
- □ Classic Problems of Synchronization
- Monitors
- Synchronization Examples
- Alternative Approaches

Objectives

- ☐ To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data
- □ To present both software and hardware solutions of the critical-section problem
- ☐ To examine several classical process-synchronization problems
- □ To explore several tools that are used to solve process synchronization problems

Background

- Processes can execute concurrently
 - May be interrupted at any time, partially completing execution
- Concurrent access to shared data may result in data inconsistency
- Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes
- Illustration of the problem: Suppose that we wanted to provide a solution to the consumer-producer problem that fills **all** the buffers. We can do so by having an integer **counter** that keeps track of the number of full buffers. Initially, **counter** is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the consumer after it consumes a buffer.

Consumer

```
while (true) {
      /* produce an item in next produced */
      while (counter == BUFFER SIZE) ;
            /* do nothing */
      buffer[in] = next produced;
                                       while (true) {
      in = (in + 1) % BUFFER SIZE;
                                             while (counter == 0)
      counter++;
                                                   ; /* do nothing */
                                             next consumed = buffer[out];
                                             out = (out + 1) % BUFFER SIZE;
                                             counter--;
                                             /* consume the item in next consumed */
```


Consumer

```
while (true) {
      /* produce an item in next produced */
      while (counter == BUFFER SIZE) ;
            /* do nothing */
      buffer[in] = next produced;
                                       while (true) {
      in = (in + 1) % BUFFER SIZE;
                                             while (counter == 0)
      counter++;
                                                   ; /* do nothing */
                                             next consumed = buffer[out];
                                             out = (out + 1) % BUFFER SIZE;
                                             counter--;
                                             /* consume the item in next consumed */
```


Race Condition

counter++ could be implemented as

```
register1 = counter
register1 = register1 + 1
counter = register1
```

counter-- could be implemented as

```
register2 = counter
register2 = register2 - 1
counter = register2
```

□ Consider this execution interleaving with "count = 5" initially:

```
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6}
S5: consumer execute counter = register2
```


Critical Section Problem

- Consider system of n processes $\{p_0, p_1, \dots p_{n-1}\}$
- Each process has critical section segment of code
 - Process may be changing common variables, updating table, writing file, etc
 - □ When one process in critical section, no other may be in its critical section
- □ Critical section problem is to design protocol to solve this
- Each process must ask permission to enter critical section in entry section, may follow critical section with exit section, then remainder section

Critical Section

General structure of process p_i is

```
do {
     entry section
     critical section

     exit section

remainder section
} while (true);
```


Solution to Critical-Section Problem

- 1. **Mutual Exclusion** If process P_i is executing in its critical section, then no other processes can be executing in their critical sections
- 2. **Progress** If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely
- 3. **Bounded Waiting** A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted
 - Assume that each process executes at a nonzero speed
 - No assumption concerning relative speed of the n processes
- Two approaches depending on if kernel is preemptive or non-preemptive
 - Preemptive allows preemption of process when running in kernel mode
 - Non-preemptive runs until exits kernel mode, blocks, or voluntarily yields CPU
 - Essentially free of race conditions in kernel mode

Questions?

Peterson's Solution

- Good algorithmic description of solving the problem
- Two process solution
- Assume that the **load** and **store** instructions are atomic; that is, cannot be interrupted
- The two processes share two variables:
 - int turn;
 - Boolean flag[2]
- The variable turn indicates whose turn it is to enter the critical section
- The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies that process P_i is ready!

Algorithm for Process Pi

```
do {
    flag[i] = true;
    turn = j;
    while (flag[j] && turn == j);
        critical section

    flag[i] = false;
        remainder section
} while (true);
```

- Provable that
- 1. Mutual exclusion is preserved
- 2. Progress requirement is satisfied
- 3. Bounded-waiting requirement is met

Synchronization Hardware

- Many systems provide hardware support for critical section code
- All solutions below based on idea of locking
 - Protecting critical regions via locks
- □ Uniprocessors could disable interrupts
 - Currently running code would execute without preemption
 - Generally too inefficient on multiprocessor systems
 - Operating systems using this not broadly scalable
- Modern machines provide special atomic hardware instructions
 - Atomic = non-interruptible
 - Either test memory word and set value
 - Or swap contents of two memory words

Solution to Critical-section Problem Using Locks

```
do {
    acquire lock
        critical section
    release lock
        remainder section
} while (TRUE);
```


test_and_set Instruction

Perinition:

```
boolean test_and_set (boolean *target)
{
    boolean rv = *target;
    *target = TRUE;
    return rv:
}
```

Solution using test_and_set()

```
n Shared boolean variable lock, initialized to FALSE
do {
   while (test_and_set(&lock))
     ; /* do nothing */
   /* critical section */
   lock = false;
   /* remainder section */
} while (true);
```


compare_and_swap Instruction

```
Definition:
int compare and swap(int *value, int expected, int new value) {
   int temp = *value;
   if (*value == expected)
      *value = new value;
   return temp;
         Solution using compare_and_swap
   Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key
do
   while (compare and_swap(&lock, 0, 1) != 0)
      ; /* do nothing */
      /* critical section */
   lock = 0;
      /* remainder section */
} while (true);
```


Bounded-waiting Mutual Exclusion with test_and_set

```
do {
   waiting[i] = true;
   key = true;
   while (waiting[i] && key)
      key = test_and_set(&lock);
   waiting[i] = false;
   /* critical section */
   j = (i + 1) % n;
   while ((j != i) && !waiting[j])
      j = (j + 1) % n;
   if (j == i)
      lock = false;
   else
      waiting[j] = false;
   /* remainder section */
} while (true);
```


Questions?

Mutex Locks

- Previous solutions are complicated and generally inaccessible to application programmers
- OS designers build software tools to solve critical section problem
- Simplest is mutex lock
- Product critical regions with it by first acquire() a lock then release() it
 - Boolean variable indicating if lock is available or not
- Calls to acquire() and release() must be atomic
 - Usually implemented via hardware atomic instructions
- But this solution requires busy waiting
 - This lock therefore called a spinlock
 - Can be OK for short waits on a multi-processor system

acquire() and release()

```
acquire() {
   while (!available)
      ; /* busy wait */
   available = false;;
release() {
   available = true;
do {
   acquire lock
      critical section
   release lock
      remainder section
} while (true);
```


Semaphore

- Synchronization tool that does not require busy waiting
- □ Semaphore **S** integer variable
- Two standard operations modify S: wait() and signal()
 - Originally called P() and V(). The inventor of semaphores was Edsger Dijkstra who was very Dutch. P and V are the first letters of two Dutch words proberen (to test) and verhogen (to increment).
- Less complicated
- Can only be accessed via two indivisible (atomic) operations

```
wait (S) {
    while (S <= 0)
        ; // busy wait
    S--;
}
signal (S) {
    S++;
}</pre>
```


Semaphore Usage

- □ Counting semaphore integer value can range over an unrestricted domain
- □ Binary semaphore integer value can range only between 0 and 1
 - ☐ Then a mutex lock
- Can implement a counting semaphore S as a binary semaphore
- Can solve various synchronization problems
- Consider P_1 and P_2 that require S_1 to happen before S_2

```
P1:
S<sub>1</sub>;
signal(synch);
P2:
wait(synch);
S<sub>2</sub>;
```


Semaphore Implementation

- Must guarantee that no two processes can execute wait() and signal() on the same semaphore at the same time
- Thus, implementation becomes the critical section problem where the wait and signal code are placed in the critical section
 - Could now have busy waiting in critical section implementation
 - But implementation code is short
 - Little busy waiting if critical section rarely occupied
- Note that applications may spend lots of time in critical sections and therefore this is not a good solution

Semaphore Implementation with no Busy waiting

- With each semaphore there is an associated waiting queue
- Each entry in a waiting queue has two data items:
 - value (of type integer)
 - pointer to next record in the list
- Two operations:
 - block place the process invoking the operation on the appropriate waiting queue
 - wakeup remove one of processes in the waiting queue and place it in the ready queue

Semaphore Implementation with no Busy waiting (Cont.)

```
typedef struct{
   int value;
   struct process *list;
} semaphore;
wait(semaphore *S) {
   S->value--;
   if (S->value < 0) {
      add this process to S->list;
      block();
signal(semaphore *S) {
   S->value++;
   if (S->value <= 0) {</pre>
      remove a process P from S->list;
      wakeup(P);
```


Questions?

Deadlock and Starvation

- Deadlock two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes
- □ Let S and Q be two semaphores initialized to 1

- □ Starvation indefinite blocking
 - A process may never be removed from the semaphore queue in which it is suspended
- Priority Inversion Scheduling problem when lower-priority process holds a lock needed by higher-priority process
 - Solved via priority-inheritance protocol

- Classical problems used to test newly-proposed synchronization schemes
 - Bounded-Buffer Problem
 - Readers and Writers Problem
 - Dining-Philosophers Problem

Bounded-Buffer Problem

- □ *n* buffers, each can hold one item
- □ Semaphore mutex initialized to the value 1
- □ Semaphore **full** initialized to the value 0
- □ Semaphore **empty** initialized to the value n

Bounded Buffer Problem (Cont.)

n The structure of the producer process

```
do {
   /* produce an item in next produced */
   wait(empty);
   wait(mutex);
   /* add next produced to the buffer */
   signal (mutex);
   signal(full);
} while (true);
```


Bounded Buffer Problem (Cont.)

n The structure of the consumer process

```
do {
   wait(full);
   wait(mutex);
     ...
   /* remove an item from buffer to next_consumed */
     ...
   signal(mutex);
   signal(empty);
     ...
   /* consume the item in next consumed */
     ...
} while (true);
```


Readers-Writers Problem

- A data set is shared among a number of concurrent processes
 - Readers only read the data set; they do not perform any updates
 - □ Writers can both read and write
- □ Problem allow multiple readers to read at the same time
 - Only one single writer can access the shared data at the same time
- □ Several variations of how readers and writers are treated all involve priorities
- Shared Data
 - Data set
 - Semaphore rw_mutex initialized to 1
 - Semaphore mutex initialized to 1
 - Integer read_count initialized to 0

Readers-Writers Problem (Cont.)

n The structure of a writer process

```
do {
    wait(rw_mutex);
    ...
    /* writing is performed */
    ...
    signal(rw_mutex);
} while (true);
```


Readers-Writers Problem (Cont.)

n The structure of a reader process

```
do {
   wait(mutex);
   read count++;
   if (read_count == 1)
      wait(rw mutex);
   signal(mutex);
   /* reading is performed */
   wait(mutex);
   read count--;
   if (read count == 0)
      signal(rw mutex);
   signal(mutex);
} while (true);
```


- □ First variation no reader kept waiting unless writer has permission to use shared object
- Second variation once writer is ready, it performs write ASAP
- Both may have starvation leading to even more variations
- Problem is solved on some systems by kernel providing reader-writer locks

Questions?

Dining-Philosophers Problem

- Philosophers spend their lives thinking and eating
- Don't interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl
 - Need both to eat, then release both when done
- ☐ In the case of 5 philosophers
 - Shared data
 - Bowl of rice (data set)
 - Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

The structure of Philosopher *i*:

```
do {
    wait (chopstick[i] );
    wait (chopstick[ (i + 1) % 5] );

    // eat

    signal (chopstick[i] );
    signal (chopstick[ (i + 1) % 5] );

    // think
} while (TRUE);
```

□ What is the problem with this algorithm?

Problems with Semaphores

- Incorrect use of semaphore operations:
 - □ signal (mutex) wait (mutex)
 - wait (mutex) ... wait (mutex)
 - Omitting of wait (mutex) or signal (mutex) (or both)
- Deadlock and starvation

Monitors

- A high-level abstraction that provides a convenient and effective mechanism for process synchronization
- □ Abstract data type, internal variables only accessible by code within the procedure
- Only one process may be active within the monitor at a time
- But not powerful enough to model some synchronization schemes

```
monitor monitor-name
{
    // shared variable declarations
    procedure P1 (...) { .... }

    procedure Pn (...) {......}

    Initialization code (...) { ... }
}
```


Schematic view of a Monitor

Condition Variables

- condition x, y;
- Two operations on a condition variable:
 - x.wait() a process that invokes the operation is suspended until x.signal()
 - x.signal() resumes one of processes (if any) that invoked
 x.wait()
 - If no x.wait() on the variable, then it has no effect on the variable

Monitor with Condition Variables

Condition Variables Choices

- If process P invokes x.signal(), with Q in x.wait() state, what should happen next?
 - If Q is resumed, then P must wait
- Options include
 - Signal and wait P waits until Q leaves monitor or waits for another condition
 - □ **Signal and continue** Q waits until P leaves the monitor or waits for another condition
 - Both have pros and cons language implementer can decide
 - Monitors implemented in Concurrent Pascal compromise
 - P executing signal immediately leaves the monitor, Q is resumed
 - Implemented in other languages including Mesa, C#, Java

Questions?

Linux Synchronization

- Linux:
 - Prior to kernel Version 2.6, disables interrupts to implement short critical sections
 - Version 2.6 and later, fully preemptive
- Linux provides:
 - atomic integers (set, add, sub, inc, read)
 - mutex locks
 - semaphores
 - spinlocks
 - reader-writer versions of both
- On single-CPU system, spinlocks replaced by enabling and disabling kernel preemption (i.e. disabling interrupts)

Atomic Transactions

- Assures that operations happen as a single logical unit of work, in its entirety, or not at all
- Related to field of database systems
- Challenge is assuring atomicity despite computer system failures
- Must also work with multiple concurrent clients
- Approaches see textbook if more detail needed
 - Log-based Recovery
 - Checkpoints
 - Concurrent Atomic Transactions

Questions?

