Тренировочная работа №5 по МАТЕМАТИКЕ 11 класс

19 апреля 2019 года Вариант МА10509 (профильный уровень)

Выполнена: ФИО

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

 $\begin{aligned} \sin^2\alpha + \cos^2\alpha &= 1\\ \sin2\alpha &= 2\sin\alpha \cdot \cos\alpha\\ \cos2\alpha &= \cos^2\alpha - \sin^2\alpha\\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta\\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{aligned}$

© СтатГрад 2018-2019 уч. г.

Математика. 11 класс. Вариант МА10509

Часть 1

2

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

1	В школе 800 учеников, из них 35 % — ученики начальной школы. Среди учеников средней и старшей школы 40 % изучают немецкий язык. Сколько учеников в школе изучают немецкий язык, если в начальной школе немецкий язык не изучается?
	Ответ:
2	На рисунке точками показана месячная аудитория поискового сайта Ya.ru во все месяцы с декабря 2008 года по октябрь 2009 года. По горизонтали указываются месяцы, по вертикали — количество человек, посетивших сайт хотя бы раз за данный месяц. Для наглядности точки на рисунке соединены линией. Определите по рисунку наименьшую месячную аудиторию сайта Ya.ru в период с декабря 2008 года по апрель 2009 года. 3 500 000 3 200 000 3 200 000 2 900 000 2 800 000 2 800 000 2 700 000 дек янв фев мар апр май июн июл авг сен окт
	Ответ:
3	На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Ответ: _____

© СтатГрад 2018-2019 уч. г.

3

4 Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в автобусе окажется меньше 24 пассажиров, равна 0,81. Вероятность того, что окажется меньше 14 пассажиров, равна 0,6. Найдите вероятность того, что число пассажиров будет от 14 до 23.

Ответ: .

5 Найдите корень уравнения $\frac{1}{5x+8} = \frac{1}{4x-19}$.

Ответ: ______.

6 Угол между двумя соседними сторонами правильного многоугольника, равен 160°. Найдите число вершин многоугольника.

Ответ:

7 На рисунке изображён график функции y = f(x), определённой на интервале (-3;8). Найдите количество точек, в которых производная функции f(x) равна 0.

Ответ: ______.

8	Площадь основания конуса равна 45. Плоскость,
	параллельная плоскости основания конуса, делит его высоту
	на отрезки длиной 4 и 8, считая от вершины. Найдите
	площадь сечения конуса этой плоскостью.

Ответ:		
OIBCI.		

Часть 2

9 Найдите $-44\cos 2\alpha$, если $\cos \alpha = -0.5$.

Ответ: ______.

Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону $U=U_0\sin\left(\omega t+\phi\right)$, где t — время в секундах, амплитуда $U_0=2$ В, частота $\omega=150\,^\circ/\mathrm{c}$, фаза $\phi=45\,^\circ$. Датчик настроен так, что если напряжение в нём не ниже чем 1 В, то загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?

Ответ:

Первый садовый насос перекачивает 8 литров воды за 3 минуты, второй насос перекачивает тот же объём воды за 6 минут. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 24 литра воды?

Ответ: ______.

12 Найдите наименьшее значение функции $y = \log_3(x^2 - 14x + 778) + 5$.

Ответ: ______.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

5

а) Решите уравнение

$$\frac{1}{\sin^2 x} + \frac{1}{\cos\left(\frac{7\pi}{2} + x\right)} = 2.$$

- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=5 и диагональю BD=9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS точка F так, что SF=BE=4.
 - а) Докажите, что плоскость $\it CEF$ параллельна ребру $\it SB$.
 - б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.
- **15** Решите неравенство $\log_{\frac{1}{3}} (\log_2 (x^2 9) 2) \ge -1$.
- Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке K. К этой окружности проведена касательная, параллельная биссектрисе AP треугольника и пересекающая стороны AC и BC в точках M и N соответственно.
 - а) Докажите, что угол MOC равен углу NOK.
 - б) Найдите периметр треугольника ABC, если отношение площадей трапеции AMNP и треугольника ABC равно 2:7, MN=2, AM+PN=6.

- В июле планируется взять кредит в банке на сумму 8 млн рублей на срок 10 лет. Условия его возврата таковы:
 - каждый январь долг возрастает на $r\,\%$ по сравнению с концом предыдущего года;
 - с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем.

Найдите наименьшую возможную ставку r, если известно, что последний платёж будет не менее 0.92 млн рублей.

18 Найдите все значения *a*, при каждом из которых система уравнений

$$\begin{cases} (x+|y|-2)(x^2+4x+y^2+2) \\ y=\sqrt{a-5} \cdot x \end{cases} = 0,$$

имеет ровно два различных решения.

- На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, разность которых делится на 5.
 - а) Может ли сумма всех оставшихся на доске чисел равняться 34, если изначально по одному разу были написаны все натуральные числа от 9 до 20 включительно?
 - б) Может ли на доске остаться ровно два числа, произведение которых оканчивается на цифру 1, если изначально по одному разу были написаны квадраты натуральных чисел от 59 до 92 включительно?
 - в) Пусть известно, что на доске осталось ровно два числа, а изначально по одному разу были написаны квадраты натуральных чисел от 59 до 92 включительно. Какое наибольшее значение может получиться, если поделить одно из оставшихся чисел на второе из них?

Ответы на тренировочные варианты 10509-10512 (профильный уровень) от 19.04.2019

	1	2	3	4	5	6	7	8	9	10	11	12
10509	208	3150000	12	0,21	-27	18	8	5	22	70	6	11
10510	294	820000	21	0,25	-22	15	7	3	-7	87,5	7	13
10511	570	34,3	88	0,244	2	4	-0,25	300	30	5	350	8
10512	360	31	54	0,392	-2	2	-0,25	432	35	1,8	450	5

Критерии оценивания заданий с развёрнутым ответом

а) Решите уравнение

$$\frac{1}{\sin^2 x} + \frac{1}{\cos\left(\frac{7\pi}{2} + x\right)} = 2.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Решение.

а) Преобразуем уравнение:

$$\frac{1}{\sin^2 x} + \frac{1}{\sin x} = 2, \quad \sin x \neq 0,$$

$$1 + \sin x - 2\sin^2 x = 0,$$

$$(2\sin x + 1)(1 - \sin x) = 0.$$

Значит, $\sin x = -\frac{1}{2}$ или $\sin x = 1$, $x = -\frac{\pi}{6} + 2\pi k$, $x = -\frac{5\pi}{6} + 2\pi n$ или $x = \frac{\pi}{2} + 2\pi m$, $k, n, m \in \mathbb{Z}$.

б) Отбор корней произведём с помощью единичной окружности. Отрезку $\left[-\frac{5\pi}{2};-\pi\right]$ принадлежат корни $-\frac{13\pi}{6}$ и $-\frac{3\pi}{2}$.

Otbet: a) $-\frac{\pi}{6} + 2\pi k$, $-\frac{5\pi}{6} + 2\pi n$, $\frac{\pi}{2} + 2\pi m$, $k, n, m \in \mathbb{Z}$; 6) $-\frac{13\pi}{6}$, $-\frac{3\pi}{2}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 5 и диагональю BD = 9. Все боковые рёбра пирамиды равны 5. На диагонали BD основания ABCD отмечена точка E, а на ребре AS точка F так, что SF = BE = 4.
 - а) Докажите, что плоскость CEF параллельна ребру SB.
 - б) Плоскость CEF пересекает ребро SD в точке Q . Найдите расстояние от точки Q до плоскости ABC .

Решение.

а) Имеем DE = 9 - BE = 5. Пусть прямая CE пересекает ребро AB в точке M. Треугольники BME и DCE подобны, поэтому $\frac{BM}{DC} = \frac{BE}{DE} = \frac{4}{5}$, откуда BM = 4. Тогда AM = 1. Треугольники ABS и AMF подобны, значит, отрезок FM параллелен отрезку SB. Поэтому прямая SB параллельна плоскости CEF.

б) Из доказанного в предыдущем пункте следует, что отрезок QE параллелен отрезку SB. Тогда $\frac{DQ}{QS} = \frac{DE}{EB} = \frac{5}{4}$. Пусть O — центр основания ABCD. Так как все боковые рёбра пирамиды равны, SO — высота пирамиды. Имеем

$$SO = \sqrt{SA^2 - AO^2} = \sqrt{25 - \left(\frac{9}{2}\right)^2} = \frac{\sqrt{19}}{2}.$$

Плоскость *SDB* перпендикулярна плоскости основания, и проекция H точки Q на плоскость основания лежит на отрезке DO. Из подобия треугольников DQH и DSO находим $QH = \frac{5}{9} \cdot SO = \frac{5\sqrt{19}}{18}$.

Ответ: б) $\frac{5\sqrt{19}}{18}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	2
обоснованно получен верный ответ в пункте δ	
Верно доказан пункт а.	1
ИЛИ	
Верно решён пункт δ при отсутствии обоснований в пункте a	
Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

Решите неравенство $\log_{\frac{1}{3}} (\log_2(x^2 - 9) - 2) \ge -1$.

Решение.

Запишем исходное неравенство в виде

$$\log_{\frac{1}{3}} \left(\log_2 \left(x^2 - 9 \right) - 2 \right) \ge -1; \ 0 < \log_2 \left(x^2 - 9 \right) - 2 \le 3; \ 2 < \log_2 \left(x^2 - 9 \right) \le 5;$$

$$4 < x^2 - 9 \le 32; \ 13 < x^2 \le 41.$$

Отсюда получаем $-\sqrt{41} \le x < -\sqrt{13}$ и $\sqrt{13} < x \le \sqrt{41}$.

Ответ: $\left[-\sqrt{41}; -\sqrt{13} \right); \left(\sqrt{13}; \sqrt{41} \right]$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

© СтатГрад 2018-2019 уч. г.

- Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке K. К этой окружности проведена касательная, параллельная биссектрисе AP треугольника и пересекающая стороны AC и BC в точках M и N соответственно.
- а) Докажите, что угол MOC равен углу NOK.
- б) Найдите периметр треугольника ABC, если отношение площадей трапеции AMNP и треугольника ABC равно 2:7, MN=2, AM+PN=6.

Решение.

16

а) Обозначим $\angle ACB = \alpha$. Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому MO и NO — биссектрисы внешних углов при вершинах M и N треугольника MCN. Значит, $\angle MON = 90^{\circ} - \frac{\alpha}{2}$, а так как CO — биссектриса угла ACP, получаем, что

$$\angle OCK = \frac{\alpha}{2}, \ \angle COK = 90^{\circ} - \frac{\alpha}{2} = \angle MON.$$

Следовательно,

 $\angle MOC = \angle MON - \angle CON = \angle COK - CON = \angle NOK$.

б) Луч МО — биссектриса угла АМN, поэтому

$$\angle AOM = \angle NMO = \angle AMO$$
.

Значит, треугольник AOM равнобедренный, AM = AO. Аналогично PN = OP.

Пусть радиус вписанной окружности треугольника ABC равен r, а полупериметр треугольника ABC равен p. Точка O лежит на основании AP трапеции AMNP, поэтому высота трапеции равна r. Тогда

$$\begin{split} S_{AMNP} = \frac{AP + MN}{2} \cdot r = \frac{\left(AO + OP\right) + MN}{2} \cdot r = \frac{\left(AM + PN\right) + MN}{2} \cdot r = 4r\,, \\ S_{ABC} = \frac{1}{2} \Big(AB + BC + AC\Big) \cdot r = pr\,. \end{split}$$

Поскольку $\frac{S_{AMNP}}{S_{ABC}} = \frac{4r}{pr} = \frac{4}{p} = \frac{2}{7}$, получаем, что p = 14, а периметр равен 28.

Ответ: б) 28.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта a , и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта a .	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

17

В июле планируется взять кредит в банке на сумму 8 млн рублей на срок 10 лет. Условия его возврата таковы:

- каждый январь долг возрастает на $r\,\%$ по сравнению с концом предыдущего года;
- с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем.

Найдите наименьшую возможную ставку r, если известно, что последний платёж будет не менее 0.92 млн рублей.

Решение.

Долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно:

По условию каждый январь долг возрастает на r %. Пусть $k = 1 + \frac{r}{100}$, тогда последовательность размеров долга (в млн рублей) в январе такова:

Следовательно, последний платёж составит 0.8k млн рублей.

Получаем $0.8k \ge 0.92$, откуда $k \ge 1.15$. Значит, k = 1.15, и r = 15.

Ответ: 15.

© СтатГрад 2018-2019 уч. г.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели и получен результат:	
— неверный ответ из-за вычислительной ошибки;	
— верный ответ, но решение недостаточно обосновано	
Верно построена математическая модель, решение сведено	1
к исследованию этой модели, при этом решение может быть	
не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

18 Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} \frac{(x+|y|-2)(x^2+4x+y^2+2)}{x-2} = 0, \\ y = \sqrt{a-5} \cdot x \end{cases}$$

имеет ровно два различных решения.

Решение.

Решим первое уравнение системы:

$$\frac{(x+|y|-2)(x^2+4x+y^2+2)}{x-2}=0.$$

Получим |y| = 2 - x или $(x+2)^2 + y^2 = 2$ при условии $x \neq 2$.

Построим график данного уравнения. x

Графиком функции $y = \sqrt{a-5} \cdot x$ является прямая с неотрицательным угловым коэффициентом, равным $\sqrt{a-5}$, определённая при $a \ge 5$.

Возможны четыре случая взаимного расположения данной прямой и графика первого уравнения системы.

- 1. Прямая $y = \sqrt{a-5} \cdot x$ при a = 5 пересекает окружность $(x+2)^2 + y^2 = 2$ в двух точках и не имеет общих точек с графиком уравнения |y| = 2 - x. Таким образом, система имеет ровно два решения.
- 2. Прямая $y = \sqrt{a-5} \cdot x$ при 5 < a < 6 пересекает окружность $(x+2)^2 + y^2 = 2$ в двух точках и график уравнения |y| = 2 - x ещё в одной. В этом случае система имеет три решения.
- 3. Прямая $y = \sqrt{a-5} \cdot x$ при a = 6 касается окружности $(x+2)^2 + y^2 = 2$. Уравнение касательной имеет вид y = x. С графиком уравнения |y| = 2 - xданная прямая имеет одну точку пересечения. Таким образом, система имеет ровно два решения.
- 4. Прямая $y = \sqrt{a-5} \cdot x$ при a > 6 не имеет общих точек с окружностью $(x+2)^2 + y^2 = 2$. С графиком уравнения |y| = 2 - x прямая имеет две точки пересечения. Таким образом, система имеет ровно два решения.

Исходная система будет иметь ровно два различных решения при q=5 или $a \ge 6$.

Ответ: a = 5; $a \ge 6$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого только исключением точки $a = 6$	
С помощью верного рассуждения получен промежуток $(6; +\infty)$,	2
возможно, с исключением граничной точки $a=6$ и исключением	
точки $a=5$	
ИЛИ	
получен неверный ответ из-за вычислительной ошибки, но при этом	
верно выполнены все шаги решения	
Задача верно сведена к исследованию взаимного расположения	1
прямой и окружности и прямых (аналитически или графически)	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, разность которых делится на 5.
 - а) Может ли сумма всех оставшихся на доске чисел равняться 34, если изначально по одному разу были написаны все натуральные числа от 9 до 20 включительно?
 - б) Может ли на доске остаться ровно два числа, произведение которых оканчивается на цифру 1, если изначально по одному разу были написаны квадраты натуральных чисел от 59 до 92 включительно?
 - в) Пусть известно, что на доске осталось ровно два числа, а изначально по одному разу были написаны квадраты натуральных чисел от 59 до 92 включительно. Какое наибольшее значение может получиться, если поделить одно из оставшихся чисел на второе из них?

Решение.

- а) Пусть стирали следующие пары чисел: 9 и 19, 10 и 15, 11 и 16, 12 и 17, 13 и 18. Тогда на доске останутся числа 14 и 20, сумма которых равна 34.
- б) Среди чисел от 59 до 92 ровно 6 чисел, дающих при делении на 5 остаток 3, и ровно по 7 чисел, дающих при делении на 5 четыре других возможных остатка. Следовательно, среди квадратов чисел от 59 до 92 ровно 7 чисел, делящихся на 5, ровно 13 чисел, дающих при делении на 5 остаток 4, и ровно 14 чисел, дающих при делении на 5 остаток 1. По условию каждый раз с доски стирали два числа, разность которых делится на 5. Значит, в каждой из пар стёртых чисел оба числа дают одинаковый остаток при делении на 5. Поэтому на доске обязательно останется число, делящееся на 5, и число, которое при делении на 5 даёт остаток 4. Произведение этих чисел делится на 5 и, следовательно, не может оканчиваться на цифру 1.

[©] СтатГрад 2018-2019 уч. г.

Математика. 11 класс. Вариант МА10509

в) Как было доказано в предыдущем пункте, если на доске осталось ровно два числа, то одно из них делится на 5, а второе даёт при делении на 5 остаток 4. Первое из этих чисел не меньше 60^2 и не больше 90^2 , второе не меньше 62^2 и не больше 92^2 . Поэтому если первое из этих чисел поделить на второе, то получится не больше $\left(\frac{90}{62}\right)^2$, а если второе из этих чисел

на второе, то получится не больше $\left(\frac{90}{62}\right)^2$, а если второе из этих чисел поделить на первое, то получится не больше $\left(\frac{92}{60}\right)^2$. Поскольку

 $\left(\frac{92}{60}\right)^2 > \left(\frac{90}{62}\right)^2$, получаем, что наибольшее значение, которое может получиться, если поделить одно из оставшихся чисел на второе из них, не превосходит $\left(\frac{92}{60}\right)^2$.

На доске могли остаться числа 92^2 и 60^2 , так как остальные квадраты чисел от 59 до 92 можно разбить на такие пары: 3 пары чисел, делящихся на 5, 7 пар чисел, дающих при делении на 5 остаток 1, и 6 пар чисел, дающих при делении на 5 остаток 4. Значит, наибольшее значение, которое может получиться, если поделить одно из оставшихся чисел на второе из них, равно

$$\left(\frac{92}{60}\right)^2 = \left(\frac{23}{15}\right)^2.$$

Ответ: а) да; б) нет; в) $\left(\frac{23}{15}\right)^2$.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах а и б, либо	3
получены верные обоснованные ответы в пунктах а и в	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

[©] СтатГрад 2018-2019 уч. г.