PCOS Prediction Project Report

Objective

The goal of this project is to predict the likelihood of Polycystic Ovary Syndrome (PCOS) based on various clinical, physical, and lifestyle-related features using machine learning and exploratory data analysis (EDA). The project emphasizes data-driven medical decision support using interpretable and accurate models.

Dataset Overview

The dataset contains multiple features such as:

- Demographic features: Age, Height, Weight, Blood Group
- Clinical & Lifestyle features: Menstrual Cycle, Skin Darkening, Hair Loss, Fast Food Consumption, etc.
- Target variable: PCOS Diagnosis (1 = PCOS, 0 = Non-PCOS)

Exploratory Data Analysis (EDA)

Step 1: Correlation Heatmap

Why: To identify relationships between features and the target variable.

Findings:

- PCOS Diagnosis is positively correlated with Menstrual Cycle Interval (0.44), Excessive Facial/Body Hair, Skin Darkening, Weight Gain.
- Negatively correlated with Regular Periods (-0.54).
- Some features like Blood Group, Hair Loss, and Exercise show no significant correlation.

Feature Importance Analysis

Step 2: Permutation Feature Importance

Why: To quantify the effect of each feature on the model's prediction.

Top Influential Features:

- 1. Regular Periods
- 2. Menstrual Cycle Interval
- 3. Skin Darkening

PCOS Prediction Project Report

Step 3: Class-wise Feature Importance

For PCOS (Class 1): Regular Periods, Menstrual Cycle, Skin Darkening, Weight are strong indicators.

For Non-PCOS (Class 0): Feature importance is relatively flat.

Partial Dependence Plot (PDP)

Step 4: PDP on Menstrual Cycle Interval

Why: To visualize the marginal effect of a feature on prediction probability.

Insight: Longer or irregular menstrual cycles directly increase the likelihood of PCOS prediction.

Machine Learning Models

Step 5: Model Training & Comparison

Why: To identify the best algorithm for PCOS prediction.

Top Performing Model: Stacking (SVM + Logistic Regression) with F1 Score = 0.71.

Simpler models like Decision Tree underperform.

Final Insights & Conclusion

Key indicators of PCOS:

- Irregular or absent periods
- Abnormal menstrual cycle interval
- Weight gain, hirsutism, skin pigmentation

Less relevant features: Blood group, exercise, acne, hair loss

Stacking models outperform single models. SVM + LR stacking is recommended for deployment.

Future Scope

PCOS Prediction Project Report

Add hor	monal te	est data to	o improve	accuracy.	Apply	SHAP	or	LIME	for	deeper	interpretabil	ity.	Explore	Power
BI dashb	ooard fo	r clinician	-friendly v	isual analy	tics.									