Unidad 8. Elemento de área en coordenadas polares.

Necesitamos definir previamente el concepto de *Línea Coordenada*: llamamos así a la línea que se obtiene dejando constante una de las dos variables

En coordenadas cartesianas:

Las líneas coordenadas son $x = x_0$ e $y = y_0$ que resultan rectas paralelas a los ejes coordenados.

Si incrementamos en dx y dy respectivamente, obtenemos otras líneas coordenadas: $x = x_0 + dx$, $y = y_0 + dy$. La porción de recinto comprendida entre las cuatro líneas coordenadas se define como *Diferencial de área en coordenadas cartesianas*, que vale $dA = dx \, dy$.

· En coordenadas polares

Las líneas coordenadas son $\rho = \rho_0$ y $\phi = \phi_0$, que resultan ser circunferencia de centro en (0,0) y radio ρ_0 y semirrecta con origen en el origen de coordenadas e inclinación ϕ_0 .

Si incrementamos en $d\rho$ y $d\phi$, respectivamente, se obtienen otras dos líneas coordenadas: $\rho = \rho_0 + d\rho$ y $\phi = \phi_0 + d\phi$. La porción de recinto comprendida entre las cuatro líneas se define como *Diferencial de área en coordenadas polares*, cuyo valor es $dA = \rho d\rho d\phi$

Justificación

El recinto queda, entonces, dividido en trapecios circulares de área A.

A= área
$$ODC$$
 - área $OAB=\frac{1}{2}\rho_2^2\Delta\varphi-\frac{1}{2}\rho_1^2\Delta\varphi=\frac{1}{2}(\rho_2^2-\rho_1^2)\Delta\varphi$

$$A = \underbrace{\frac{1}{2}(\rho_{2}^{\square} + \rho_{1}^{\square})(\rho_{2}^{\square} - \rho_{1}^{\square})\Delta\varphi}_{\rho_{m}} = \rho_{m}^{\square}\Delta\rho_{\square}^{\square}\Delta\varphi$$

