bossu 40 spin 70 = 1 T. 4(t.r) = +*(-t,r) T (4, (t, r)) = = = = = (4,*(-t)) fermion spin 1 T2 = -1 zer= spin H 4nc = En 4nc L=1.d(n) general 50 of 5chrödingen egn $4(\vec{r},t) = \sum_{n=1}^{\infty} a_n + I_n(\vec{r}) e^{\frac{-1}{\hbar}E_n t}$ (H:) real not explicitly

To $\psi(\vec{r},t) = \sum_{n} a_{n}^{*} \psi_{n}^{*}(\vec{r}) e^{-\frac{1}{\hbar} \vec{E}_{n} t}$ effectively To; 4,(r) -> 4, (F) if H is real, H the = Entrol the is eigenstate => (+ + " = En +" +" is eigen state the bais in H (h)

whether H and H (h) * the same? (1) $H^{(n)} \simeq H^{(n) \times}$ equivalent rep of symm, group (2) $H^{(n)} \to H^{(n) \times}$ not equivalent eigenspare = H (4) & H (n) * red rep psudo red rep and complex rep Ginen a syun group G, unitary irrep D: 9 - D(9) GH(1)

Det DIG) is unitary un He " , the orthonormal basis in He ") Complex D(g) $\psi_{i}(\vec{r}) = \sum_{j} \psi_{ij}(\vec{r}) D_{ji}(g)$ irrep Dj. (9) haiten westrix Corplex conjugate: $D(g)^* \downarrow_{h_i}^* (\vec{r}) = Z + \sqrt{(\vec{r})^*} D_{i_i} (g)^*$ 4, (F) = T. 4, (F) Dij (g) unitary irrep motrix To *

Dij (9) unitery ivap matrix (irrep D) Complex conjugate irrep relation between D and D*

(1) if $\exists unitary transf.$ $U: \mathcal{H}^{(n)} \to \mathcal{H}^{(n)}$ S.t U D(9) U = D, (9) \ \forall 5 \in G real matrix =) D is equivalent to D* sine V*Dg)*v*-1 = Do (9) $= \sum_{i=1}^{n} \frac{D^{*}(j)}{D^{*}(j)} = U^{*-1}D^{*}(j) U^{*} = U^{*-1}U^{*}(j) U^{-1}U^{*}$ U#-1 U is usitary we say $D \simeq D^*$ is a real rep.

by Schmi's lamma, when
$$D^*$$
 is irrep. $ZZ^* = c1$

$$c \in C$$

$$Z : s \text{ whitary}, \quad Z'' = (Z^T)^{-1}$$

$$\Rightarrow \quad Z(Z^T)^{-1} = c1 \Rightarrow \quad Z = cZ^T$$

$$\Rightarrow \quad Z^T = cZ$$

$$\Rightarrow \quad Z = c^2Z \Rightarrow \quad c^2 = 1, \quad c = \pm 1$$

$$Thu : \quad ZZ^* = 1 \quad \text{iff} \quad D : c \text{ real}$$

$$ZZ^* = -1 \quad \text{iff} \quad D : c \text{ real}$$

$$ZZ^* = -1 \quad \text{iff} \quad D : c \text{ real}$$

$$ZZ^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{iff} \quad D : c \text{ pendo-real}$$

$$Z^* = -1 \quad \text{i$$

$$Z^{2^{\times}} = C1 \implies |b|^{2} c = 1$$

$$C = 1 \text{ or } -1 \qquad c = 1 \text{ } |b|^{2} > 0$$

$$Conversely \quad \text{if} \quad C = 1 \qquad (Z^{2^{\times}} = 1)$$

$$Z \quad \text{unitary} \quad , \quad Z = e^{iA} \quad A \text{ hereitien}$$

$$Z^{\times} = Z^{-1} \iff Z^{\top} = Z \quad , \quad Z \text{ symetric}$$

$$Z^{*} = (Z^{*})^{-1} \qquad \text{def.} \quad U = Z^{\frac{1}{2}} = e^{iA/2} \quad \text{unitary}$$

$$U^{2} = Z \qquad \qquad U^{\times} Z = e^{-iA/2} \quad e^{iA} = e^{\frac{1}{2}iA} = U$$

$$\forall G \in G, \quad [UDG)U^{-1}]^{\times} = U^{\times}D(g) \quad U^{\times -1} = U^{\times}Z D(g) \quad Z^{-1}U^{\times -1} = U^{\times}Z D(g) \quad Z^{\times -1}U^{\times -1} = U^{\times -1}Z D(g) \quad Z^{\times -1}U^{$$

Distinguish real
$$f$$
 psudo-roal reps by characters

$$D^*(g) = 2D(g) \geq -1$$

orthogonality $\sum D^*(g) D_{g}(g) \geq \delta_{g} \leq \delta_{g} \leq \frac{1}{d \ln(D)} = d$

$$\sum_{q} \sum_{q} \times \sum_{q} \sum_{q} \sum_{q} \sum_{q} D_{q}(g) \sum_{p} \sum_{q} D_{p}(g) \times \sum_{q} \sum_{q} D_{p}(g) \times \sum_{q} \sum_{q} D_{q}(g) \times \sum$$

$$\Rightarrow \sum_{j} \chi(j^{2}) = 0$$

Summary:
$$\frac{1}{h} \sum_{j \in G} \chi(j^2) = \begin{cases} 1 & \text{real rep} \\ 1 & \text{ps.do-real rep} \end{cases}$$

Extra-legeneracy of fi due to time-veversal inv.

find degeneracy at En, deg, at En is either dored

if H is real and not explicitly depont

$$H +_{nc} = E_n +_{nc}$$

$$L +_{nc} = E_n +_{nc}$$

then of (4) is the final eigen space i.e. $\mathcal{H}^{(h)} = \mathcal{H}^{(h)*}$ degenerary at En is d · otherwise, eigenspare = H (h) + H (h)* degeneracy at En = 2d (extra degeneracy) SDin-Zero 1 4; = E 4; 4; 6 H(4) D(g) 4: = 5 4; D; (g) + g e G H is real H 4: = E 4: 4: EH(n) x D*(5) 4; = \(\Sigma\); (9) * \(\Jeta\) \(\delta\) H(h) Carries irrep D of G H (4) * carries complex conjugate irrep D* of G $\mathcal{H}^{(n)} \simeq \mathcal{H}^{(n)} \times \text{ or hot relates to } D \simeq D^{\times} \text{ or hot}$ firstly if D & D* complex irrop, H 1" I He IN X by or thogonality theorem. => extra dejeverany 2 d

let's look at case (1) real rep and (2) psido-real rep. $\frac{1}{2}$ unitary $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{$ Lemma if $H^{(n)} = H^{(n)} \times$, then D is of case (1); e. real rep. $\frac{\mathcal{H}^{(h)}}{\mathcal{H}^{(h)}} = \mathcal{H}^{(h)*}, \qquad \frac{\hat{\mathcal{H}}}{\hat{\mathcal{H}}^*} = \hat{\mathcal{E}}\mathcal{H}^*_{:}$ both {4;}, {4;} are both orthonormal basis then I unitary U s.t. $\psi_i = \sum_{k} \psi_k V_{ki}$ 4; = 2 + Dri $\Rightarrow \psi_i = \sum_{kl} \psi_{lk} \psi_{lk} \psi_{ki} \quad i.e. \psi_{l}^* = 1$ $D(g) \ \downarrow_i = \underbrace{\Sigma}_{j} \ \downarrow_{j} D_{ji}(g)$ $D(g) + = \sum_{k} + (UD(g) U^{-1})_{k}$ same as D*(5) +* compare to $D^*(g) \downarrow_{i}^{*} = \sum_{j} \int_{j}^{*} D_{ji}^{*}(g)$ $D^*(g) = VD(g)V^{-1} = D \text{ is res}($

$$V = Z$$

$$V = Z = Z$$

$$V = Z$$

$$V = Z = Z$$

$$V =$$

above 2 lennas => H = H = H iff D is real (ho extra deservery) d then if Dis psudo-real than H(h) + H(h)* => extra degeneraly 2d f Dis psudo-real degenerary = 2 d

Complex degenerary = 2 d Examples (1) | d free particle $H = \frac{1}{2m} \hat{p}^2$ $\hat{p} = -i \frac{\partial}{\partial x}$ Symmetry: trans(.inv. $Q(\lambda)x = x + \lambda \quad \lambda \in \mathbb{R}$ $D(\lambda) = e^{-\frac{i}{5}\lambda \hat{p}}$ $D(\lambda) + (x) = + (x + \lambda)$ G=R={}3 group untiplication: +; 1,+12 imp of R: D(k) (1) = eikl $\mathcal{H}^{(k)} = \mathcal{L} \qquad \text{din}(\mathcal{D}^{(k)}) = 1$ all irrep of G are 1-din

Complex conjugate of
$$D^{(k)}(\lambda_2) = e^{-ik(\lambda_1 + \lambda_2)} = D^{(k)}(\lambda_1) + e^{-ik\lambda}$$
 $\Rightarrow e^{-ik\lambda}$
 $\Rightarrow e^{-ik\lambda}$