Hugo Marquerie March 2, 2025

Relación de orden

Definición 1 (Relación de orden). Sea X un conjunto, la relación $\mathcal{R} \subseteq X \times X$ es de orden \iff

- (i) Reflexividad: $\forall x \in X : x \mathcal{R} x$.
- (ii) Antisimetría: $\forall x, y \in X : x \mathcal{R} \ y \land y \mathcal{R} \ x \implies x = y$.
- (iii) Transitividad: $\forall x, y, z \in X : x \mathcal{R} y \wedge y \mathcal{R} z \implies x \mathcal{R} z$.

Al par (X, \mathcal{R}) se le llama **conjunto ordenado**.

Definición 2 (Máximo y mínimo). Sea (X, \preceq) un conjunto ordenado y $A \subseteq X$, $x \in A$ es el máximo de A $(x = \max A) \iff \forall a \in A : a \preceq x$.

Análogamente, $x \in A$ es el mínimo de A $(x = \min A) \iff \forall a \in A : x \leq a$.

Definición 3 (Supremo e ínfimo). Sea (X, \preceq) un conjunto ordenado y $A \subseteq X$, $x \in X$ es el supremo de A $(x = \sup A) \iff x$ es la menor de las cotas superiores de A

$$\iff \forall a \in A: a \preceq x \quad \land \quad \forall y \in X: \forall a \in A: a \preceq y: x \preceq y.$$

Análogamente, $x \in X$ es el ínfimo de A $(x = \inf A)$

$$\iff \forall a \in A : x \leq a \quad \land \quad \forall y \in X : \forall a \in A : y \leq a : y \leq x.$$

Definición 4 (Maximal y minimal). Sea (X, \preceq) un conjunto ordenado y $A \subseteq X$, $x \in A$ es un elemento maximal de $A \iff \forall a \in A : x \preceq a \implies x = a$.

Análogamente, $x \in A$ es un elemento minimal de $A \iff \forall a \in A : a \leq x \implies x = a$.

Definición 5 (Orden total). Sea (X, \preceq) un conjunto ordenado, \preceq es de orden total

$$\iff \forall x, y \in X : x \prec y \lor y \prec x.$$

Ejemplos 1 (de relaciones de orden).

- 1 La relación de menor o igual en \mathbb{R} es de orden total.
- $\boxed{2}$ La relación de divisibilidad en \mathbb{Z} es de orden parcial.

Referenciado en

• Estructura-diferenciable