Wallet Risk Scoring for Compound Protocol

Project Workflow Report: Wallet Risk Scoring for Compound Protocol

Overview

This initiative aimed to create a comprehensive risk scoring framework for wallets engaging with the Compound protocol on the Arbitrum network. By analyzing on-chain behavior, each wallet was assigned a risk score ranging from 0 to 1000 using public data sourced via subgraphs from The Graph protocol.

1. Data Acquisition and Schema Analysis

Subgraphs Accessed: Both Compound V2 and V3 subgraphs were evaluated to collect transaction-level and position-specific data.

Schema Review:

- Two dedicated Python scripts ('introspection_query.py' for V2 and 'introspection_query_v3.py' for V3) were used to extract and examine schema structures in JSON format.
- These schemas provided the necessary blueprint to construct precise GraphQL queries.

Challenges Encountered:

- Among four tested archival subgraphs, only one V2 subgraph returned complete data for the 100 target wallets.
- No Compound V3 subgraph contained usable information for these addresses, prompting a shift to a V2-only approach for the rest of the analysis.

2. Raw Data Collection

- A script named `compound_query.py` was developed to pull relevant wallet data based on schema learnings.
- This script gueried transactional and positional information for all 100 wallets.
- The collected data was saved in a CSV file (`compound_wallets_raw.csv`) which served as the foundation for further processing.

Wallet Risk Scoring for Compound Protocol

3. Feature Engineering

From the raw dataset, the 'feature_engineering.py' script derived 17 key features including:

- `total_supplied_usd`, `total_borrowed_usd`, `collateralization_ratio`, `repayment_rate`, `liquidations_suffered`, `withdraw_to_supply_ratio`, and others.

These variables encapsulated wallet behavior such as lending/borrowing dynamics, protocol engagement, risk exposure, and repayment patterns.

4. Data Cleaning and Transformation (Executed on Google Colab)

- **Exploratory Data Analysis (EDA):**
- Investigated feature distributions, outliers, and correlations.
- **Preprocessing Steps:**
- Clipped values outside the 5th and 95th percentile to handle outliers.
- Applied log transformations to heavily skewed financial features.
- Removed features that were either constant or overly correlated, while keeping crucial metrics like `collateralization_ratio` and `repayment_rate`.
- For critical zero entries, minimal positive values were substituted to avoid downstream errors.

The final cleaned dataset was saved as `engineered_features_cleaned.csv`.

5. Heuristic Risk Scoring

A domain-driven, rule-based function was built to generate initial risk scores by:

- Weighting normalized features tied to factors such as liquidation, repayment behavior, protocol activity, collateral safety, diversification, and borrowing trends.
- Scores were scaled from 1 (most secure) to 1000 (most risky).

These scores were appended to the dataset, producing 'engineered features with scores.csv'.

6. Model Training and Evaluation (on Google Colab)

Wallet Risk Scoring for Compound Protocol

Three machine learning regression models were trained using heuristic scores as targets:

- XGBoost Regressor
- LightGBM Regressor
- Random Forest Regressor

Each model was validated on standard metrics like RMSE, MAE, and R². XGBoost outperformed the others in terms of prediction accuracy and model transparency.

7. Final Model Deployment and Prediction

- The full feature set and heuristic labels were used to train a final XGBoost model.
- This model predicted refined risk scores for all 100 wallets.
- The results were stored in `final_predictions.csv`, representing a hybrid risk estimation combining domain expertise and machine learning insights.