# 零死角玩转STM32



# SPI—读写串行 FLASH

淘宝: fire-stm32.taobao.com

论坛: www.firebbs.cn



扫描进入淘宝店铺

## 主讲内容



01 SPI协议简介

02 STM32的SPI特性及架构

03 SPI初始化结构体详解

04 SPI—读写串行FLASH实验

参考资料:《零死角玩转STM32》

"SPI—读写串行FLASH"章节



#### STM32的SPI外设简介

STM32的SPI外设可用作通讯的主机及从机,支持最高的SCK时钟频率为f<sub>pclk</sub>/2 (STM32F407型号的芯片默认f<sub>pclk2</sub>为84MHz, f<sub>pclk1</sub>为42MHz), 完全支持SPI协议的4种模式,数据帧长度可设置为8位或16位,可设置数据MSB先行或LSB先行。它还支持双线全双工(前面小节说明的都是这种模式)、双线单向以及单线模式。



### STM32的SPI架构剖析



- 通讯引脚
- 时钟控制逻辑
- 数据控制逻辑
- 整体控制逻辑



#### 1.通讯引脚

STM32芯片有多个SPI外设,它们的SPI通讯信号引出到不同的GPIO引脚上,使用时必须配置到这些指定的引脚,以《STM32F4xx规格书》为准。

| 引脚   | SPI编号    |               |              |          |          |      |  |  |
|------|----------|---------------|--------------|----------|----------|------|--|--|
|      | SPI1     | SPI2          | SPI3         | SPI4     | SPI5     | SPI6 |  |  |
| MOSI | PA7/PB5  | PB15/PC3/PI3  | PB5/PC12/PD6 | PE6/PE14 | PF9/PF11 | PG14 |  |  |
| MISO | PA6/PB4  | PB14/PC2/PI2  | PB4/PC11     | PE5/PE13 | PF8/PH7  | PG12 |  |  |
| SCK  | PA5/PB3  | PB10/PB13/PD3 | PB3/PC10     | PE2/PE12 | PF7/PH6  | PG13 |  |  |
| NSS  | PA4/PA15 | PB9/PB12/PI0  | PA4/PA15     | PE4/PE11 | PF6/PH5  | PG8  |  |  |

其中SPI1、SPI4、SPI5、SPI6是APB2上的设备,最高通信速率达42Mbtis/s,SPI2、SPI3是APB1上的设备,最高通信速率为21Mbits/s。其它功能上没有差异。



#### 2.时钟控制逻辑

SCK线的时钟信号,由波特率发生器根据"控制寄存器CR1"中的BR[0:2]位控制,该位是对f<sub>pclk</sub>时钟的分频因子,对f<sub>pclk</sub>的分频结果就是SCK引脚的输出时钟频率

| BR[0:2] | 分频结果(SCK频率)           | BR[0:2] | 分频结果(SCK频率)            |
|---------|-----------------------|---------|------------------------|
| 000     | f <sub>pclk</sub> /2  | 100     | f <sub>pclk</sub> /32  |
| 001     | f <sub>pclk</sub> /4  | 101     | f <sub>pclk</sub> /64  |
| 010     | f <sub>pclk</sub> /8  | 110     | f <sub>pclk</sub> /128 |
| 011     | f <sub>pclk</sub> /16 | 111     | f <sub>pclk</sub> /256 |

其中的f<sub>pclk</sub>频率是指SPI所在的APB总线频率,APB1为f<sub>pclk1</sub>,APB2为f<sub>pckl2</sub>。



#### 3.数据控制逻辑

SPI的MOSI及MISO都连接到数据移位寄存器上,数据移位寄存器的数据来源来源于接收缓冲区及发送缓冲区。

- 通过写SPI的"数据寄存器DR"把数据填充到发送缓冲区中。
- 通过读"数据寄存器DR",可以获取接收缓冲区中的内容。
- 其中数据帧长度可以通过"控制寄存器CR1"的"DFF位"配置成8位及16位模式;配置"LSBFIRST位"可选择MSB先行还是LSB先行。



#### 4.整体控制逻辑

- 整体控制逻辑负责协调整个SPI外设,控制逻辑的工作模式根据"控制寄存器(CR1/CR2)"的参数而改变,基本的控制参数包括前面提到的SPI模式、波特率、LSB先行、主从模式、单双向模式等等。
- 在外设工作时,控制逻辑会根据外设的工作状态修改"状态寄存器(SR)",只要读取状态寄存器相关的寄存器位,就可以了解SPI的工作状态了。除此之外,控制逻辑还根据要求,负责控制产生SPI中断信号、DMA请求及控制NSS信号线。
- 实际应用中,一般不使用STM32 SPI外设的标准NSS信号线,而是更简单地使用普通的GPIO,软件控制它的电平输出,从而产生通讯起始和停止信号。



#### 通讯过程





### 通讯过程

- 控制NSS信号线,产生起始信号(图中没有画出);
- 把要发送的数据写入到"数据寄存器DR"中,该数据会被存储到发送缓冲区;
- 通讯开始,SCK时钟开始运行。MOSI把发送缓冲区中的数据一位 一位地传输出去; MISO则把数据一位一位地存储进接收缓冲区中;
- 当发送完一帧数据的时候,"状态寄存器SR"中的"TXE标志位" 会被置1,表示传输完一帧,发送缓冲区已空;类似地,当接收完 一帧数据的时候,"RXNE标志位"会被置1,表示传输完一帧,接 收缓冲区非空;
- 等待到"TXE标志位"为1时,若还要继续发送数据,则再次往 "数据寄存器DR"写入数据即可;等待到"RXNE标志位"为1时, 通过读取"数据寄存器DR"可以获取接收缓冲区中的内容。

假如使能了TXE或RXNE中断,TXE或RXNE置1时会产生SPI中断信号,进入同一个中断服务函数,到SPI中断服务程序后,可通过检查寄存器位来了解是哪一个事件,再分别进行处理。也可以使用DMA方式来收发"数据寄存器DR"中的数据。

# 零死角玩转STM32





论坛: www.firebbs.cn

淘宝: fire-stm32.taobao.com



扫描进入淘宝店铺