Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset

Hannah Rashkin^{1*}, Eric Michael Smith², Margaret Li², Y-Lan Boureau²

¹ Paul G. Allen School of Computer Science & Engineering, University of Washington

² Facebook AI Research

hrashkin@cs.washington.edu, {ems, margaretli, ylan}@fb.com

20191018 Yang

Why EMPATHY

EMPATHETICDIALOGUES dataset example

Figure 1: Example where acknowledging an inferred feeling is appropriate

Problem

 Existing chitchat dialogue benchmarks do not capture whether those agents are responding to implicit emotional contexts in an empathetic way

Data Collections

Label: Afraid

Situation: Speaker felt this when...

"I've been hearing noises around the house at night"

Conversation:

Speaker: I've been hearing some strange noises around

the house at night.

Listener: oh no! That's scary! What do you think it is?

Speaker: I don't know, that's what's making me anx-

ious.

Listener: I'm sorry to hear that. I wish I could help you

figure it out

Label: Proud

Situation: Speaker felt this when...

"I finally got that promotion at work! I have tried so

hard for so long to get it!"

Conversation:

Speaker: I finally got promoted today at work!

Listener: Congrats! That's great!

Speaker: Thank you! I've been trying to get it for a

while now!

Listener: That is quite an accomplishment and you

should be proud!

Figure 2: Two examples from EMPATHETICDIALOGUES training set. The first worker (the speaker) is given an emotion label and writes their own description of a situation when they've felt that way. Then, the speaker tells their story in a conversation with a second worker (the listener).

- 1. Workers are asked to describe in a 1-3 sentences (19.8 words averagely) a situation based on a feeling label.
- 2. Each conversation is allowed to be 4-8 utterances long (the average is 4.31 utterances per conversation). The average utterance length was 15.2 words long.
- 3. 24,850 prompts/conversations from 810 different participants Each conversation is allowed to be 4-8 utterances long

Dataset Statistics

Label: Afraid

Situation: Speaker felt this when...

"I've been hearing noises around the house at night"

Conversation:

Speaker: I've been hearing some strange noises around

the house at night.

Listener: oh no! That's scary! What do you think it is? Speaker: I don't know, that's what's making me anx-

ious.

Listener: I'm sorry to hear that. I wish I could help you

figure it out

Label: Proud

Situation: Speaker felt this when...

"I finally got that promotion at work! I have tried so

hard for so long to get it!"

Conversation:

Speaker: I finally got promoted today at work!

Listener: Congrats! That's great!

Speaker: Thank you! I've been trying to get it for a

while now!

Listener: That is quite an accomplishment and you

should be proud!

Figure 2: Two examples from EMPATHETICDIALOGUES training set. The first worker (the speaker) is given an emotion label and writes their own description of a situation when they've felt that way. Then, the speaker tells their story in a conversation with a second worker (the listener).

Training, val, testing set are respectively 19533 / 2770 / 2547 conversations

Emotion label statistics

Emotion Most-used speaker words		Most-used listener words	Training set emotion distrib	
Surprised	got,shocked,really	that's,good,nice	5.1%	
Excited	going,wait,i'm	that's,fun,like	3.8%	
Angry	mad,someone,got	oh,would,that's	3.6%	
Proud	got,happy,really	that's,great,good	3.5%	
Sad	really,away,get	sorry,oh,hear	3.4%	
Annoyed	get,work,really	that's,oh,get	3.4%	
Grateful	really,thankful,i'm	that's,good,nice	3.3%	
Lonely	alone,friends,i'm	i'm,sorry,that's	3.3%	
Afraid	scared,i'm,night	oh,scary,that's	3.2%	
Terrified	scared,night,i'm	oh,that's,would	3.2%	
Guilty	bad,feel,felt	oh,that's,feel	3.2%	
Impressed	really,good,got	that's,good,like	3.2%	
Disgusted	gross,really,saw	oh,that's,would	3.2%	
Hopeful	i'm,get,really	hope,good,that's	3.2%	
Confident	going,i'm,really	good,that's,great	3.2%	
Furious	mad,car,someone	oh,that's,get	3.1%	
Anxious	i'm,nervous,going	oh,good,hope	3.1%	
Anticipating	wait,i'm,going	sounds,good,hope	3.1%	
Joyful	happy,got,i'm	that's,good,great	3.1%	
Nostalgic	old,back,really	good,like,time	3.1%	
Disappointed	get,really,work	oh,that's,sorry	3.1%	
Prepared	ready,i'm,going	good,that's,like	3%	
Jealous	friend,got,get	get,that's,oh	3%	
Content	i'm,life,happy	good,that's,great	2.9%	
Devastated	got,really,sad	sorry,oh,hear	2.9%	
Embarrassed	day,work,got	oh,that's,i'm	2.9%	
Caring	care,really,taking	that's,good,nice	2.7%	
Sentimental	old,really,time	that's,oh,like	2.7%	
Trusting	friend,trust,know	good,that's,like	2.6%	
Ashamed	feel,bad,felt	oh,that's,i'm	2.5%	
Apprehensive	i'm,nervous,really	oh,good,well	2.4%	
Faithful	i'm,would,years	good,that's,like	1.9%	

Figure 3: Distribution of conversation labels within EMPATHETICDIALOGUES training set and top 3 content words used by speaker/listener per category.

 The distribution is also evenly (sample distribution)

Modeling

Figure 4: Dialogue generation architectures used in our experiments. The context of concatenated previous utterances is tokenized into x_1, x_2, \cdots , and encoded into vector h_x by the context encoder. Left: In the retrieval set-up, each candidate y is tokenized into y_1, y_2, \cdots and encoded into vector h_y by the candidate encoder. The system outputs the candidate y^* that maximizes dot product $h_x \cdot h_y$. Right: In the generative set-up, the encoded context h_x is used as input to the decoder to generate start symbol $</s> and tokens <math>y_1, y_2, \cdots$. The model is trained to minimize the negative log-likelihood of target sequence \bar{y} conditioned on context.

Model details

Figure 5: Incorporating additional supervised information, here from an emotion classification task. An input sequence (either a dialogue context or a candidate) is run through a pre-trained classifier, and the top k output labels are prepended to the sequence, which is then run through the corresponding (context or candidate) encoder to output a hidden representation h_w (either h_x or h_y) as in the base setting.

 Train a classifier to predict the emotion label from the description of the situation written by the Speaker before the dialogue for the training set dialogues of

Supervision from a more distant task would be help as well?

 also experiment with a classifier trained on the 20-Newsgroup dataset (Joachims, 1996), for topic classification (TOPICPREPEND-1).

Evaluation

• For the retrieval systems, we additionally compute p@1,100, the accuracy of the model at choosing the correct response out of a hundred randomly selected examples in the test set.

•Evaluate Relevance, Fluency, Empathy: did the responses show understanding of the feelings of the person talking about their experience? (1: not at all, 3: somewhat, 5: very much)

•Source candidate during inference: in addition to EMPATHETICDIALOGUES, the DailyDialog (Li et al., 2017) training set and up to a million utterances from a dump of 1.7 billion Reddit conversations are included

Quantitative Results

	Retrieval			Retrieval w/ BERT		Generative	
Model	Candidate Source	P@1,100	AVG BLEU	P@1,100	AVG BLEU	PPL	AVG BLEU
Pretrained	R	-	4.10	-	4.26	27.96	5.01
	ED	43.25	5.51	49.94	5.97	-	-
Fine-Tuned	ED	56.90	5.88	65.92	6.21	21.24	6.27
	ED+DD	-	5.61	-	-	-	-
	ED+DD+R	-	4.74	-	-	-	-
EmoPrepend-1	ED	56.31	5.93	66.04	6.20	24.30	4.36
TopicPrepend-1	ED	56.38	6.00	65.96	6.18	25.40	4.17

Table 1: Automatic evaluation metrics on the test set. Pretrained: model pretrained on a dump of 1.7 billion RED-DIT conversations (4-layer Transformer architecture, except when specified BERT). Fine-Tuned: model fine-tuned over the EMPATHETICDIALOGUES training data (Sec. 4.2). EmoPrepend-1, Topic-Prepend1: model incorporating supervised information from an external classifiers, as described in Sec. 4.3. Candidates come from REDDIT (R), EMPATHETICDIALOGUES (ED), or DAILYDIALOG (DD). P@1,100: precision retrieving the correct test candidate out of 100 test candidates. AVG BLEU: average of BLEU-1,-2,-3,-4. PPL: perplexity. All automatic metrics clearly improve with in-domain training on utterances (Fine-Tuned vs. Pretrained), other metrics are inconsistent. Bold: best performance for that architecture.

Human Results

	Model	Candidate	Empathy	Relevance	Fluency
	Pre-trained	R	2.82 ± 0.12	3.03 ± 0.13	4.14 ± 0.10
		R+ED	3.16 ± 0.14	3.35 ± 0.13	4.16 ± 0.11
		ED	3.45 ± 0.12	3.55 ± 0.13	4.47 ± 0.08
Retrieval	Fine-tuned	ED	$\boldsymbol{3.76 \pm 0.11}$	3.76 ± 0.12	4.37 ± 0.09
	EmoPrepend-1	ED	3.44 ± 0.11	3.70 ± 0.11	4.40 ± 0.08
	TopicPrepend-1	ED	3.72 ± 0.12	$\textbf{3.91} \pm \textbf{0.11}$	$\textbf{4.57} \pm \textbf{0.07}$
	Pre-trained	R	3.06 ± 0.13	3.29 ± 0.13	4.20 ± 0.10
		R+ED	3.49 ± 0.12	3.62 ± 0.12	4.41 ± 0.09
		ED	3.43 ± 0.13	3.49 ± 0.14	4.37 ± 0.10
Retrieval w/ BERT	Fine-tuned	ED	3.71 ± 0.12	3.76 ± 0.12	4.58 ± 0.06
	EmoPrepend-1	ED	3.93 ± 0.12	3.96 ± 0.13	4.54 ± 0.09
	TopicPrepend-1	ED	$\textbf{4.03} \pm \textbf{0.10}$	$\boldsymbol{3.98 \pm 0.11}$	$\boldsymbol{4.65 \pm 0.07}$
	Pre-trained	_	2.31 ± 0.12	2.21 ± 0.11	3.89 ± 0.12
Generative	Fine-Tuned	_	3.25 ± 0.12	3.33 ± 0.12	4.30 ± 0.09
	EmoPrepend-1	_	3.16 ± 0.12	3.19 ± 0.13	4.36 ± 0.09
	TopicPrepend-1	_	3.09 ± 0.13	3.12 ± 0.13	$\textbf{4.41} \pm \textbf{0.08}$
Gold Response	_	_	4.19 ± 0.10	4.55 ± 0.07	4.68 ± 0.06

Table 2: Human ratings. Fine-tuning on ED and using ED candidates generally improves scores, especially on Empathy, with minimal retraining. Additional external supervision (Prepend) improves the Empathy and Relevance scores for BERT-based models. Bold: best score for that group. Italics: reference model for the group.

Fine-tuning using their dataset

	P@1,100		BLEU	
Model	DD	R	DD	R
Pretrained Fine-Tuned	39.04 44.58	58.95 56.25		1.43 1.64
Pretrained-Large Fine-Tuned-Large	42.28 48.96	61.60 58.71	6.94 7.42	1.42 1.73

Table 6: Performance of the retrieval-based pretrained model and retrieval-based models fine-tuned on ED data for next utterance prediction in other datasets, with both context and candidates from the same dataset (R=Reddit, DD=DailyDialog).

Case study

Context	Setup	Model	Cand	Generated Response
Someone came	Gen	Pretrained	-	I'm not sure if you're joking or not.
to my door	Gen	Fine-Tuned	-	Oh no! What did you do?
with a gun the	Gen	EmoPrepend	-	Oh no! Did you have a weapon?
other day.	Gen	TopicPrepend	-	I'm glad to hear that.
	Ret-BERT	Pretrained	R	Hopefully his mistakes can help you know what not to do on the tests.
My son failed his exams! Can	Ret-BERT	Pretrained	ED	Oh no! I'm so sorry! I hope you could pull your grade up!
you believe it!	Ret-BERT	Fine-Tuned	ED	Oh no! Did he not study?
I don't know what to do!	Ret-BERT	EmoPrepend	ED	Im sorry about that! Did your son start school already?
	Ret-BERT	TopicPrepend	ED	Oh no! Does he have the option of taking it again?

Table 4: Examples of model responses. Shading is provided for better legibility.

Conclusion

- Introduce a new dataset of 25k dialogues with emotion label
- Experiments show that using this dataset to provide retrieval candidates or fine-tune conversation models leads to responses that are evaluated as more empathetic

End