

Professor: Franz Beckenbauer da Silva

Introdução

- ✓Um dispositivo eletrônico, armazena e movimenta as informações internamente sob forma eletrônica; tudo o que faz é reconhecer dois estados físicos distintos, produzidos pela eletricidade, pela polaridade magnética ou pela luz refletida em essência, eles sabem dizer se um "interruptor" está ligado ou desligado.
- ✓O computador, por ser uma máquina eletrônica, só consegue processar duas informações: a presença ou ausência de energia.
- ✓ Para que a máquina pudesse representar eletricamente todos os símbolos utilizados na linguagem humana, seriam necessários mais de 100 diferentes valores de tensão (ou de corrente).

- ✓ Tipos de Grandezas:
 - Analógica = Contínua
 - Digital = Discreta (passo a passo)
- ✓ Mundo analógico Trabalha com sinais elétricos de infinitos valores de tensão e corrente (modelo continuamente variável, ou analogia, do que quer que estejam medindo).
- ✓ Mundo digital Trabalha com dois níveis de sinais elétricos: alto e baixo. Representam dados por meio de um símbolo facilmente identificado (dígito).

✓ Como os computadores modernos representam as informações?

- ✓ Para sistema digital, tudo são números.
- ✓ Sistema Digital -> Normalmente a informação a ser processada é de forma numérica ou texto -> codificada internamente através de um código numérico.
- ✓ Código mais comum -> BINÁRIO

- ✓ Como os computadores representam as informações utilizando apenas dois estados possíveis eles são totalmente adequados para números binários.
- ✓ Número binário no computador: **bit** [de "**B**inary dig**IT**"]
 - ☐A menor unidade de informação.
 - □Uma quantidade computacional que pode tomar um de dois valores, tais como verdadeiro e falso ou 1 e 0, respectivamente (lógica positiva).

0 – DESLIGADO, BAIXO, FALSO

1 – LIGADO, ALTO, VERDADEIRO

- ✓ Um bit pode representar apenas 2 símbolos (0 e 1)
- ✓ Necessidade unidade maior, formada por um conjunto de bits, para representar números e outros símbolos, como os caracteres e os sinais de pontuação que usamos nas linguagens escritas.
- ✓ Unidade maior (grupo de bits) precisa ter bits suficientes para representar todos os símbolos que possam ser usados:
 - dígitos numéricos,
 - ☐ letras maiúsculas e minúsculas do alfabeto,
 - ☐ sinais de pontuação,
 - símbolos matemáticos e assim por diante.

✓ Necessidade:

Caracteres alfabéticos maiúsculos	26
Caracteres alfabéticos minúsculos	26
Algarismos	10
Sinais de pontuação e outros símbolos	32
Caracteres de controle	24
Total	118

✓ Capacidade de representação:

Bits	Símbolos
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

✓ BYTE (Blnary TErm)

- ☐ Grupo ordenado de 8 bits, para efeito de manipulação interna mais eficiente;
- ☐ Tratado de forma individual, como unidade de armazenamento e transferência. símbolos matemáticos e assim por diante;
- ☐ Unidade de memória usada para representar um caractere.

Com 8 bits, podemos arranjar 256 configurações diferentes: dá para 256 caracteres, ou para números de 0 a 255, ou de -128 a 127, por exemplo.

O termo bit apareceu em 1949, inventado por John Tukey, um pioneiro dos computadores.

O termo byte foi criado por Werner Buchholz em 1956 durante o desenho do computador IBM Stretch. A palavra é uma mutação de bite, para não confundir com bit.

- ✓ Todas as letras, números e outros caracteres são codificados e decodificados pelos equipamentos através dos bytes que os representam, permitindo, dessa forma, a comunicação entre o usuário e a máquina.
- ✓ Sistemas mais importantes desenvolvidos para representar símbolos com números binários (bits): dígitos numéricos,
 - ☐ EBCDIC (Extended Binary Coded Decimal Interchange Code Código Ampliado de Caracteres Decimais Codificados em Binário para o Intercâmbio de Dados).
 - ☐ ASCII (American Standard Code for Information Interchange Código Padrão Americano para o Intercâmbio de Informações).
 - ☐ UNICODE (Unicódigo).

✓ Parte do conjunto de caracteres ASCII:

Binário	Caractere
0100 0001	Α
0100 0010	В
0110 0001	Α
0110 0010	В
0011 1100	<
0011 1101	=
0001 1011	ESC
0111 1111	DEL

- ✓ Conjunto de símbolos utilizados para representação de quantidades e de regras que definem a forma de representação.
- ✓ Cada sistema de numeração é apenas um método diferente de representar quantidades. As quantidades em si não mudam; mudam apenas os símbolos usados para representá-las.
- ✓ A quantidade de algarismos disponíveis em um dado sistema de numeração é chamada de **base**.
- ✓ Representação numérica mais empregada: **notação posicional**.

Sistema	Base	Algarismos
Binário	2	0,1
Ternário	3	0,1,2
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Duodecimal	12	0,1,2,3,4,5,6,7,8,9,A,B
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Como os números representados em base 2 são muito extensos e, portanto, de difícil manipulação visual, costuma-se representar externamente os valores binários em outras bases de valor mais elevado (octal ou hexadecimal). Isso permite maior compactação de algarismos e melhor visualização dos valores.

Padrões de Representação

- ✓ Letra após o número para indicar a base;
- ✓ Número entre parênteses e a base como um índice do número.

✓ Exemplo:

Sistema Decimal - 1234D ou (1234)₁₀ ou 1234₁₀

<u>Decimal</u>

- ✓ Sistema mais utilizado.
- ✓ Apareceu naturalmente no aprendizado de contagem (dez dedos).
- √ 10 símbolos para representar quantidades.

0 1 2 3 4 5 6 7 8 9

<u>Decimal</u>

- ✓ Também chamado de sistema de base 10 é um sistema posicional, no qual o valor de cada dígito depende de sua posição no número: unidade, dezena, (dez unidades), centena (cem unidades), milhar (mil unidades), dezena de milhar, centena de milhar, etc.
- ✓ Exemplo: 1234 é composto por 4 unidades, 3 dezenas,
 2 centenas e 1 milhar, ou 1000+200+30+4 = 1234;

<u>Sistema Binário</u>

- ✓ Também chamado de sistema de base 2 é um sistema posicional, no qual o valor de cada dígito é nomeado de bit.
- ✓ Segue as regras do sistema decimal válidos os conceitos de peso e posição. Posições não têm nome específico.
- ✓ Cada algarismo é chamado de bit. Exemplo: 101₂
- ✓ Expressão oral diferente dos números decimais.
 - Caractere mais à esquerda Most-Significative-Bit "MSB".
 - Caractere mais à direita Least-Significative-Bit "LSB".

Contagem Binário

 Em operações binários, circuitos restringem a um número de bits específico, portanto, a contagem é restrita ao número de bits do sistema considerado;

•	Exemp	olo:	números	de 4	bits
---	-------	------	---------	------	------

- O "1" muda a cada contagem
- · O "2" muda a cada duas contagens
- · O "4" muda a cada quatro contagens
- · O "8" muda a cada oito contagens
- Com N bits, conta-se 2^N números, com a última contagem em 2^N-1

Representação de Quantidades Binárias

- Quantidades binárias podem ser representadas por qualquer dispositivo que tenha dois estados;
- ✓ Exemplos: chave (liga-desliga), CD-ROM (furos ou "não-furos"), transistor (corte ou saturação);
- ✓ Em sistemas digitais, bits são tensões (ou correntes) presentes nas entradas e saídas ex.: OV ("0") ou 5V ("1");
- ✓ Bits são, na verdade, faixas de tensão, diferentes de sinais analógicos;

Sistema Octal

✓ Também chamado de sistema de base 8 é um sistema posicional;

01234567

- √ Exemplo: 563₈
- ✓ Expressão oral similar ao sistema binário.

<u>Sistema Hexadecimal</u>

- ✓ Também chamado de sistema de base 16 é um sistema posicional.
- ✓ Possui 16 símbolos (algarismos) para representar qualquer quantidade.

0123456789ABCDEF

- ✓ Uso das letras facilidade de manuseio.
- ✓ Exemplo: FA3₁₆

Ao trabalhar com sistemas de numeração, em qualquer base, deve-se observar o seguinte:

- ✓ O número de dígitos usado no sistema é igual à base.
- ✓ O maior dígito é sempre menor que a base.
- ✓ O dígito mais significativo está à esquerda, e o menos significativo à direita
- ✓ Um "vai-um" de uma posição para outra tem um peso igual a uma potência da base.
- ✓ Em geral se toma a base decimal como referência.

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- ✓ Procedimentos básicos: divisão
 (números inteiros) polinômio
 - agrupamento de bits

- ✓ Divisão (Decimal → outro sistema)
 - Divisão inteira (do quociente) sucessiva pela base, até que quociente seja menor do que a base.
 - Valor na base = composição do último quociente (MSB) com restos (primeiro resto é bit menos significativo - LSB)
 - Dividir o número por b (base do sistema) e os resultados consecutivas vezes.

$$\checkmark Ex.: (125)_{10} = (?)_2$$

$$(538)_{10} = (?)_{16}$$

Notação Polinomial ou Posicional

- √ Válida para qualquer base numérica.
- ✓ LEI DE FORMAÇÃO (Notação ou Representação Polinomial):

Número =
$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + ... + a_0 b^0$$

 a_n = algarismo, b = base do número n = quantidade de algarismo - 1

Notação Polinomial ou Posicional

Ex.:

a)
$$(1111101)_2 = (?)_{10}$$

 $(1111101)_2 =$
 $1x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 125_{10}$

b)
$$(21A)_{16} = (?)_{10}$$

 $(21A)_{16} = 2x16^2 + 1x16^1 + 10x16^0 = 538_{10}$

Agrupamento de Bits

- √ Sistemas octal e hexa → binário (e vice versa)
- ✓ associando 3 bits ou 4 bits (quando octal ou hexadecimal, respectivamente) e vice-versa.
- \checkmark Ex.: (1011110010100111)₂ = (?)₁₆

$$(A79E)_{16} = (?)_2$$

Conversão octal — hexadecimal

- ✓ Não é realizada diretamente não há relação de potências entre as bases oito e dezesseis.
- ✓ Semelhante à conversão entre duas bases quaisquer base intermediária (base binária)
- ✓ Conversão em duas etapas:
- 1 número: base octal (hexadecimal) binária.
- 2 resultado intermediário: binária \longrightarrow hexadecimal (octal).

Conversão octal — hexadecimal

Ex.:

a)
$$(175)_8 = (?)_{16}$$

$$(175)_8 = (11111101)_2 = (70)_{16}$$

b)
$$(21A)_{16} = (?)_8$$

$$(21A)_{16} = (001000011010)_2 = (1032)_8$$

Conversão de Números Fracionários

Lei de Formação ampliada (polinômio):

$$N\'{u}mero = \underbrace{a_{n}.b^{n} + a_{n-1}.b^{n-1} + a_{n-2}.b^{n-2} + ... + a_{0}.b^{0} + a_{-1}.b^{-1} + a_{-2}.b^{-2} + ... + a_{-m}.b^{-m}}_{parte inteira}$$

Exemplo:
$$(101,110)_2 = (?)_{10}$$

 $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} = (5,75)_{10}$

Lei de Formação Decimal

Exemplo: (10,214)₁₀

$$1 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 1 \times 10^{-2} + 4 \times 10^{-3} = (10,214)_{10}$$

Lei de Formação Binário

Exemplo: (1011,101)₂

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} =$$
 $(?)_{10}$

Conversão decimal - outro sistema

✓ Operação inversa: multiplicar a parte fracionária pela base até que a parte fracionária do resultado seja zero. Exemplo: (8,375)₁₀ = (?)₂

