A Sample Document for the Usages of lstEventB Package

Thai Son Hoang
ECS, University of Southampton
<T dot S dot Hoang at ecs dot soton dot ac dot uk>

May 13, 2018

For convenient, we define macro \EventB for Event-B.

We start first with some inline Event-B code by embedding them using a pair of \$, for example \$@grd1 "SNSR = FALSE"\$ gives @grd1 "SNSR = FALSE". Any Event-B formulae including Unicode symbols will be typeset using the bsymb package accordingly.

ASCII	Symbols	Explanation
false	上	False
true	T	True
&	^	Conjunction
or	V	Disjunction
=>	\Rightarrow	Implication
<=>	\Leftrightarrow	Equivalence
not	_	Negation
!	\forall	Universal quantification
#	3	Existential quantification
		Quantification dot
/=	\neq	Inequality

Table 1: Predicates

More complete piece of code (including the Unicode symbols) can be typeset using the EventBcode environment. Below is the typesetting of an Event-B machine.

```
1 machine Sens∨_m0_SNSR
2 variables
3 SNSR
4 invariants
5 @thm0_1∈ "SNSR ∈BOOL" the∨em
6 events
7
```

INITIALISATION

ASCII	Symbols	Explanation
{}	Ø	Empty set
		Vertical bar, e.g., in set comprehension
\/	U	Union
/\	\cap	Intersection
\	\	Set difference
**	×	Cartesian product
POW	\mathbb{P}	Powerset
POW1	\mathbb{P}_1	Non-empty subsets
card	card	Cardinality
union	union	Generalised union
inter	inter	Generalised intersection
UNION	U	Quantified union
INTER	\cap	Quantified intersection

Table 2: Sets

ASCII	Symbols	Explanation
:	\in	Set membership
/ :	⊭	Set non-membership
<:	\subseteq	Subset
/<: <<:	⊈	Not a subset
	\subset	Proper subset
/<<:	⊄	Not a proper subset
finite	finite	Finite
partition	partition	Partition

Table 3: Set predicates

ASCII	Symbols	Explanation
BOOL	BOOL	BOOL set
TRUE	TRUE	TRUE
FALSE	FALSE	FALSE
bool	bool	bool predicate

Table 4: BOOL and bool

ASCII	Symbols	Explanation
INT	\mathbb{Z}	Set of integer numbers
NAT	N	Set of natural numbers
NAT1	\mathbb{N}_1	Set of positive natural numbers
min	min	Mininum
max	max	Maximum
_	_	Difference
*	*	Product
/	÷	Quotient
mod	mod	Remainder
		Interval

Table 5: Numbers

ASCII	Symbols	Explanation
>	>	Greater
<	<	Less
>=	<u>></u>	Greater or equal
<=	\leq	Less or equal

Table 6: Number predicates

ASCII	Symbols	Explanation
<->	\leftrightarrow	Relations
dom	dom	Domain
ran	ran	Range
<<->	≪→	Total relations
<->>	≪→	Surjective relations
<<->>	«»	Total surjective relations
circ	0	Backward composition
id	id	Identity
<	⊲	Domain restriction
<<	\triangleleft	Domain subtraction
>	\triangleright	Range restriction
>>	⊳	Range subtraction
~	-1	Inverse
<+	\Leftrightarrow	Overriding
><	\otimes	Direct product
11		Parallel product
prj1	prj_1	First projection
prj2	prj_2	Second projection

Table 7: Relations

ASCII	Symbols	Explanation
+->	+>	Partial functions
>	\rightarrow	Total functions
>+>	→→	Partial injections
>->	\longrightarrow	Total injections
+>>		Partial surjections
->>	→	Total surjections
>->>	→→	Bijections
%	λ	Lambda abstraction

Table 8: Functions

ASCII	Symbols	Explanation
:=	:=	Becomes equal to
::	:∈	Choice from a set
:	:	Choice by predicate

Table 9: Functions

```
begin
         @act1∈ "SNSR :=FALSE"
10
11
      end
12
      SNSR_on
13
      when
14
         {\tt @grd1}{\in} \, "{\tt SNSR} = {\tt FALSE}"
15
16
      then
         \texttt{@act1} {\in} \text{"SNSR} := \!\! \text{TRUE"}
17
18
19
      SNSR_off
20
21
      when
         \texttt{@grd1} {\in} \text{"SNSR} = \mathrm{TRUE"}
22
         Qact1 \in "SNSR := FALSE"
24
25
26
27 end
```

One can change the different colour options. For example, \EventBSetKeywordColour{blue!50!black} will change the keyword colour to dark blue. (This has effects only when

```
machine Sens∨_m0_SNSR
variables
SNSR
invariants
@thm0_1∈ "SNSR ∈BOOL" the√em
```

One can includes external file containing Event-B code using the \EventBinputlisting command. For example the following is the result of including the code in the file Sensor_m1_DEP.bumx using \EventBinputlisting{Sensor_m1_DEP.bumx}.

```
    machine Sens∨_m1_DEP

 _2 refines Sens\lor\_m0\_SNSR
 3 variables
     SNSR
     DEP
 6 invariants
     @inv0\_1 \in "DEP \in \mathbb{N}"
     INITIALISATION extended
10
11
       @act2∈ "DEP :=0"
^{12}
13
14
     SNSR_on extended
15
     refines SNSR_on
16
^{17}
18
     SNSR_off extended
19
     refines SNSR_off
20
21
     begin
       @act2∈ "DEP :=DEP + 1"
22
23
24
25 end
```

More specifically, one can specify more details on the inclusion, e.g., the ranges, as the following example

\EventBinputlisting[firstline=16,lastline=20]{Sensor_m2_snsr.bumx} gives

```
Qinv1_1∈ "Snsr_01 = TRUE⇒SNSR = TRUE"

Qinv1_2∈ "Snsr_10 = TRUE⇒SNSR = FALSE"

Qinv1_3∈ "Snsr_01 = FALSE∨Snsr_10 = FALSE"
```

```
1 machine Sens∨_m3_Ctrl

2 refines

4 
5 Sens∨_m2_Snsr

6 
7 variables

9 SNSR

10 
11 DEP

12 
13 Snsr_01
```

```
Snsr_10
15
16
       ctrl_snsr
17
18
       ctrl_dep
19
20
       ctrl_snsr_01
^{21}
22
       ctrl\_snsr\_10
23
24
25 invariants
26
27
       "Snsr\_01 = \mathrm{FALSE} \land Snsr\_10 = \mathrm{FALSE} \land \mathsf{ctrl\_snsr\_01} = \mathrm{FALSE} \land \mathsf{ctrl\_snsr\_10} =
              \mathrm{FALSE}{\Rightarrow}\mathsf{ctrl\_snsr} = \mathsf{SNSR"}
29
       @inv2\_2{\in}\ "ctrl\_dep\ {\in}\mathbb{N}"
30
31
       @inv2\_3{\in} \text{``Snsr\_10} = \operatorname{FALSE} \land \operatorname{ctrl\_snsr\_10} = \operatorname{FALSE} \Rightarrow \operatorname{ctrl\_dep} = \mathsf{DEP''}
32
33
       @inv2\_4 \in "Snsr\_10 = \mathrm{TRUE} \lor ctrl\_snsr\_10 = \mathrm{TRUE} \Rightarrow ctrl\_dep = \mathsf{DEP} - 1"
34
35
       @inv2\_5 \in "ctrl\_snsr\_01 = TRUE \Rightarrow SNSR = TRUE"
36
37
       @inv2\_6 \in "ctrl\_snsr\_10 = \mathrm{TRUE} \Rightarrow SNSR = \mathrm{FALSE}"
38
39
       @inv2_7 \in "ctrl\_snsr\_01 = TRUE \Rightarrow Snsr\_01 = FALSE"
40
41
       @inv2_8 \in "ctrl\_snsr_10 = TRUE \Rightarrow Snsr_10 = FALSE"
42
43
44 events
45
       INITIALISATION extended
46
       refines INITIALISATION
47
       begin
48
          @act5 \in "ctrl\_snsr := FALSE"
@act6 \in "ctrl\_dep := 0"
49
50
          @act7 \in "ctrl\_snsr\_01 := FALSE"
51
          @act8 \in "ctrl\_snsr\_10 := FALSE"
52
53
54
55
       SNSR_on extended
       refines SNSR_on
56
       when
57
58
         @grd3 \in "ctrl\_snsr\_10 = FALSE"
       end
59
60
       SNSR_off extended
61
       refines SNSR_off
62
63
       when
          \texttt{@grd3} {\in} \texttt{"ctrl\_snsr\_01} = \mathrm{FALSE"}
64
65
66
       ctrl_Senses_Snsr_01 extended
67
       refines ctrl_Senses_Snsr_01
68
       begin
69
```

```
@\mathsf{act2} \in "\mathsf{ctrl\_snsr\_01} := \!\! \mathrm{TRUE}"
70
71
        end
72
73
        ctrl\_Senses\_Snsr\_10~\textbf{extended}
        {\bf refines}\ {\sf ctrl\_Senses\_Snsr\_10}
74
75
        begin
          @act2€ "ctrl_snsr_10 :=TRUE"
76
77
        end
78
        ctrl_on
79
80
           \texttt{@grd1} {\in} \text{"ctrl\_snsr\_01} = \mathrm{TRUE"}
81
82
           \texttt{@act1} {\in} \texttt{"ctrl\_snsr\_01} := \!\! \texttt{FALSE"}
83
           @act2€ "ctrl_snsr :=TRUE"
84
85
        end
86
87
        ctrl\_off
        when
           \texttt{@grd1} {\in} \text{"ctrl\_snsr\_10} = \mathrm{TRUE"}
89
90
           @\mathsf{act1} \in "\mathsf{ctrl\_snsr\_10} := \!\! \mathsf{FALSE}"
91
           \texttt{@act2} {\in} \text{"ctrl\_snsr} := \!\! \text{FALSE"}
92
           @\mathsf{act3} \in "\mathsf{ctrl\_dep} := \!\! \mathsf{ctrl\_dep} + 1"
93
94
95
96 end
```