

Analog IC Design

A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications

Instructor: Prof. Abhishek Srivastava Rohan Gupta – 2020112022

Introduction

The goal is to design a low-noise low-power bio signal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range.

Fig. 1 shows the schematic of our bioamplifier design. Given in the paper.

Fig 1: Schematic of Neural Amplifier

Fig 2: current-mirror OTA used in the bioamplifier.

Output transconductance Amplifier

- Fig. 4 shows a schematic of the current-mirror OTA used in the bioamplifier. The circuit topology is a standard design suitable for driving capacitive loads, the sizing of the transistors is critical for achieving low noise at low current levels.
- The bias current is set to 8 A, giving devices drain currents of 4 A. At this current level, each transistor may operate in weak, moderate, or strong inversion depending on its ratio.
- Given Design Specification for the OTA:
- DC gain ≥ 60dB.
- -3 dB bandwidth \geq 10 kHz.
- Input referred noise $\leq 2 \mu V_{rms}$.
- CMRR ≥ 100 dB.
- Noise efficiency factor (NEF) ≤ 4
- DC power consumption $\leq 30 \ \mu A$
- Supply voltage $\leq 1.8 \text{ V}$

Devices	ID(uA)	Inversion Coeffecient	Region of Operation
M1,M2	4	<1	Subthreshold(For greater gm1)
M3,M4,M5,M6	4	>10	Strong Inversion
M7,M8	4	>10	Strong Inversion
M9,M10	8	>10	Strong Inversion,Saturation
M_cascN	4	1 <ic<10< td=""><td>Moderate Inversion</td></ic<10<>	Moderate Inversion
M_cascP	4	>10	Saturarion

DC gain = $(gm_1*gm*r_o^2)/2$, gm_1 =Transconductance of M1, gm=Transconductance of Cascode Mosfets From Design Specifications,

1. For M1, M2 IC<1,

$$IC = \frac{Id}{Is} \rightarrow \frac{Id}{\sum_{K} \frac{2\mu C_{\text{Cox}}U_{\text{T}}^2}{\kappa} \cdot \frac{W}{L}} < 1$$
 From the following we get $(\frac{W}{L})_{1,2} > 444.44$

- 2. Similarly for $M_{3-6} < 4.222 \ M_{7-8} < 3.4$
- 4. -3dB Bandwidth ≥ 10 KHZ (Dominant pole exists at -3db frequency)

$$\frac{1}{Rout*C_L} \ge 10 \text{ KHZ}$$
Assumed $C_L = 10 \text{ farad} \Rightarrow 4 \text{ s. } E$

Assumed $C_L=10 {\rm f} \, {\rm farad}, \Rightarrow As, Rout=({\rm gm}^* \, r_o^2)/2$ and $r_o=10^7 {\rm ohm}$ we get, ${\rm gm} \leq 200 \, \mu \, S$

From gm, we get $(\frac{W}{L})_{CasN} \le 22.5$ and $(\frac{W}{L})_{CasP} \le 45$.

• Design Parameters from Hand calculation

Devices	Туре	W/L
M1,M2	p18.7	80/0.18
M3,M4,M5,M6	n18.9	10/5
M7,M8	p18.9	5/10
M9,M10	p18.6	1.2/1.2
M_cascN	n18.9	12/3.2
M_cascP	p18.8	6.4/3.2

• Specification Achieved After Hand calculations:

Specifications	Value
Gain	35.726628dB
Unity Gain Badwidth	5.2966344MHz
Phase Margin	55°
Gain Margin	19.871138dB

Final Circuit with chosen MOSFET and sizing

Devices	Туре	W/L	Hand Calculated
M1,M2	p18.7	80/0.18	80/0.18
M3,M4,M5,M6	n18.9	27/3	10/5
M7,M8	p18.9	2/9	5/10
M9,M10	p18.6	1.2/1.2	1.2/1.2
M_cascN	n18.9	40/5	12/3.2
M_cascP	p18.8	90/1	6.4/3.2
CL	0.5pF	1f	

Specification Achieved After Final design:

Specifications	Value
Gain	62.117163dB
Unity Gain Badwidth	5.4450265MHz
Slew Rate	5.1 MV/s
Phase Margin	42.80548°
Gain Margin	5.588399dB

Psuedo PMOS Resistor

• The pseudo resistor is capable of resisting large DC offsets and provide stability when used in feedback

Fig: Neural Amplifier Schematic

Neural Amplifier

Specifications	Value
Gain	1.3262585dB
Unity Gain Badwidth	2.837919MHz

Final Design and Results:

Performace	ОТА
Gain	62.117163dB
Unity Gain Badwidth	5.4450265MHz
Slew Rate	5.1 MV/s
Phase Margin	42.80548°
Gain Margin	5.588399dB
ICMR	1.22 V
CMRR	103.699053dB
PSRR	60.19 dB
RMS Noise	$401.77 \mu V/\sqrt{Hz}$
Power	43.452uW