Do Hyun Nam, A01025276

Programacion de estructuras de datos y algoritmos fundamentales

29 de noviembre del 2021

Reflexión de la actividad 5.2

Programa

```
Hay algún nombre de dominio que sea anómalo?

1. ¿Hay algún nombre de dominio que sea anómalo?

5. ¿Cuúl es su 1P? ¿Cómo determinarías esta información de la manera más eficiente en complejidad temporal?

Lo 1P es 128,80.113,138

Lo 1P es 128,80.
```

^{*}No se muestra la lista completa de la pregunta 3 por cuestiones de tamaño de la imagen

Preguntas

1. Hay algún nombre de dominio en el conjunto que sea anómalo (Esto puede ser con inspección visual).

Si

2. De los nombres de dominio encontrados en el paso anterior, ¿cuál es su IP? ¿Cómo determinarías esta información de la manera más óptima en complejidad temporal?

La IP es 128.88.113.158

Con una inspección visual identificamos: http://36ytsfs8ph6iczxio1i4.net

Hicimos una función prototipo de cómo se podrían encontrar dominios anómalos *encontrar Anomalos (datos)* que toma como parámetros el largo del dominio y si contiene caracteres no alfanuméricos, ya que los dominios largos con una extraña combinación de carácteres alfanuméricos son las características más comunes de los dominios anómalos. Si se entrenara un modelo de ML para que pudiese reconocer a los dominios anómalos podríamos identificarlos al momento de que entren o salgan, en una complejidad de O(1).

- 3. De las computadoras pertenecientes al dominio reto.com determina la cantidad de IPs que tienen al menos una conexión entrante. (Recuerda que ya tienes la dirección de la red y el último octeto puede tener computadoras del .1 al .254. Imprime la cantidad de computadoras.
- 91 computadoras de la red interna con al menos una conexión entrante.
 - 4. Toma algunas computadoras que no sean server.reto.com o el servidor DHCP. Pueden ser entre 5 y 10. Obtén las IPs únicas de las conexiones entrantes.

192.168.29.1	192.168.29.102	192.168.29.106
192.168.29.10	192.168.29.103	192.168.29.107
192.168.29.100	192.168.29.104	192.168.29.108
192.168.29.101	192.168.29.105	192.168.29.11

192.168.29.110	192.168.29.15	192.168.29.58
192.168.29.111	192.168.29.150	192.168.29.59
192.168.29.112	192.168.29.17	192.168.29.6
192.168.29.113	192.168.29.18	192.168.29.60
192.168.29.114	192.168.29.2	192.168.29.62
192.168.29.115	192.168.29.20	192.168.29.63
192.168.29.116	192.168.29.21	192.168.29.64
192.168.29.117	192.168.29.22	192.168.29.65
192.168.29.118	192.168.29.23	192.168.29.66
192.168.29.119	192.168.29.24	192.168.29.67
192.168.29.12	192.168.29.25	192.168.29.68
192.168.29.120	192.168.29.26	192.168.29.69
192.168.29.121	192.168.29.27	192.168.29.7
192.168.29.123	192.168.29.28	192.168.29.70
192.168.29.124	192.168.29.29	192.168.29.71
192.168.29.125	192.168.29.3	192.168.29.72
192.168.29.126	192.168.29.30	192.168.29.73
192.168.29.127	192.168.29.31	192.168.29.74
192.168.29.128	192.168.29.32	192.168.29.75
192.168.29.129	192.168.29.35	192.168.29.76
192.168.29.130	192.168.29.36	192.168.29.77
192.168.29.131	192.168.29.37	192.168.29.78
192.168.29.132	192.168.29.38	192.168.29.79
192.168.29.133	192.168.29.39	192.168.29.8
192.168.29.134	192.168.29.4	192.168.29.81
192.168.29.135	192.168.29.41	192.168.29.82
192.168.29.136	192.168.29.43	192.168.29.83
192.168.29.137	192.168.29.44	192.168.29.84
192.168.29.138	192.168.29.45	192.168.29.85
192.168.29.139	192.168.29.46	192.168.29.87
192.168.29.14	192.168.29.47	192.168.29.89
192.168.29.140	192.168.29.48	192.168.29.9
192.168.29.141	192.168.29.49	192.168.29.91
192.168.29.142	192.168.29.5	192.168.29.92
192.168.29.143	192.168.29.50	192.168.29.93
192.168.29.144	192.168.29.51	192.168.29.94
192.168.29.145	192.168.29.52	192.168.29.95
192.168.29.146	192.168.29.54	192.168.29.96
192.168.29.147	192.168.29.55	192.168.29.97
192.168.29.148	192.168.29.56	192.168.29.98
192.168.29.149	192.168.29.57	192.168.29.99

5. Considerando el resultado de las preguntas 3 y 4, ¿Qué crees que esté ocurriendo en esta

red? (Pregunta sin código)

91 computadoras internas tienen conexiones entrantes. Esto significa que computadoras externas

están intentando acceder a la información. De las conexiones entrantes, puede identificarse que

existe solo una conexión al dominio anómalo.

6. Para las IPs encontradas en el paso anterior, determina si se han comunicado con los

datos encontrados en la pregunta 1.

amanda.reto.com: 1

7. En caso de que hayas encontrado que las computadoras del paso 1 y 4 se comunican,

determina en qué fecha ocurre la primera comunicación entre estas dos y qué protocolo se

usa.

La computadora de Amanda se infectó el: 13/8/2020.

Puerto: 13307, utiliza el protocolo TCP y UDP.

Importancia y eficiencia de los conjuntos y diccionarios

Los diccionarios (maps) son contenedores asociativos ordenados que contienen pares

llave-valor con las llaves siendo únicas, mientras que los conjuntos (sets) el valor de un elemento

también lo identifica (el valor es en sí mismo que la llave, de tipo T), y cada valor debe ser

único. El valor de los elementos de un conjunto no puede modificarse una vez en el contenedor

(los elementos son siempre constantes), pero pueden insertarse o eliminarse del contenedor.

Para la presente entrega los sets nos permitieron identificar a todas las computadoras

involucradas sin repetición, ayudando a un análisis y escaneo más rápido y eficiente por el lado

positivo. Del lado negativo de su implementación está el hecho de que no se pueden distinguir

entre las conexiones entrantes y las salientes, teniendo que implementar otros métodos para obtener estos datos de cada computadora.

Por otro lado los maps nos ayudaron en poder guardar y almacenar los datos de las computadoras con su funcionalidad de llave-valor, el cual nos fue de gran ayuda para analizar las IPs de las distintas conexiones. Como desventaja tenemos el que no se pueden mostrar las distintas conexiones a las que se conectan, como lo pudiese hacer un grafo o en ciertos casos un árbol binario.

Referencias

Set VS map in C++ STL. GeeksforGeeks. (2021, mayo 26). Recuperado de https://www.geeksforgeeks.org/set-vs-map-c-stl/.

Std::Map. cppreference.com. (s.f.). Recuperado de https://en.cppreference.com/w/cpp/container/map.

TCP/UDP Port Finder. adminsub.net. (s.f.). Recuperado de https://www.adminsub.net/tcp-udp-port-finder/13307.