

Where are the diamonds? - using a giant battery

Michael Mitchell, Seogi Kang and the SimPEG Team

DC resistivity & Induced Polarization (IP)

- Why? Electrical properties (conductivity and chargeability) of rocks can be diagnostic for finding diamond-bearing kimberlites
- How? Inject currents, and measure resulting voltages during on- and off-times
- Response. Current flow depends on the electrical properties of the geologic units
- Goal. Use DC and IP data to characterize the kimberlite and find some diamonds

Model

- Diagnostic physical properties in DC, IP
- Conductivity: ease with which current flows
- Ohargeability: a material's capacity to retain charges

	Conductivity	Chargeability
Host	t V. Low	Low
Till	Mod	Low
PK	High	High
HK	Mod	Mod
VK	V. Low	Low

Conductivity

Physics

 Electrostatic Maxwell' s equations

$$ec{j} = \sigma \vec{e}$$
 $ec{e} = -\nabla \phi$
 $\nabla \cdot \vec{j} = -\vec{j}_s$

: Current density (A/m²) E: Electric field (V/m) \vec{j}_s : current source (A/m²) σ : Conductivity (S/m)

Linearization of IP data

$$d^{IP} = F[\sigma(1-\eta)] - F[\sigma]$$

$$\simeq -\frac{\partial F[\sigma]}{\partial log(\sigma)} \eta$$

 $F[\cdot]$: Static Maxwell's operator (taking $\sigma(x,y,z)$) η : Chargeability (ms or mV/V)

Survey & Data

Inversion Implementation

Results

- Recovered models fit the observed data
- Both inversions image PK unit (highest grade for diamonds)
- Depth resolution is limited
- Depth weighting is used
- Other survey designs may provide additional depth information

DC-IP inversion:

- 1. Invert DC data to obtain a conductivity model.
- 2. Use the conductivity to generate sensitivity function.
- 3. Invert IP data to obtain a chargeability model.

Mesh, Survey, Fields and Factorization shared between DC and IP

Summary

A 3D DC-IP inversion package is developed within the SimPEG framework. Synthetic DC and IP data are inverted. Both the recovered conductivity and chargeability models show a deep-rooted body of interest, narrowing our search for the diamonds.

