Logistic Regression

Andy Grogan-Kaylor

23 May 2020

Key Concepts and Commands

• Fitting a Curve to 2 Possible Values

- Linear models, probit and logit
- y x1 x2 ... $\leftarrow \rightarrow F(y) = \beta_0 + \beta x_1 + \beta x_2...$
- regress y x1 x2 OLS; Linear Model
- logit y x1 x2 Logistic Regression
- probit y x1 x2 Probit Regression
- glm ...

Limited Dependent Variables

- Categorical Dependent Variable
- Binary Dependent Variable
- Limited Dependent Variable

General Social Survey

```
. use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Data/GSS_panel > 2010w123_R6 - stata.dta", clear
```

. codebook happy_3 // what does this variable look like?

happy_3 happy_3: GENERAL HAPPINESS

type: numeric (byte)

label: HAPPY_3

range: [1,3]
unique values: 3
unique mv codes: 3 units: 1 missing .: 0/2,044 missing .*: 742/2,044

tabulation: Freq. Numeric Label 391 1 VERY HAPPY 1 VERY HAPPY
2 PRETTY HAPPY
3 NOT TOO HAPPY
d DK 758 153

1 740 .i IAP .n NA 1

Data Management

. recode happy_3 (1/2 = 1)(3=0), generate(happy_3_D) (911 differences between happy_3 and happy_3_D)

. tabulate happy_3 happy_3_D // double check

happy_3: GENERAL	RECODE of (happy_3: HAPPIN	GENERAL	
HAPPINESS	0	1	Total
VERY HAPPY	0	391	391
PRETTY HAPPY	0	758	758
NOT TOO HAPPY	153	0	153
Total	153	1,149	1,302

- . keep happy_3 happy_3_D coninc_3 // keep only some variables
- . save GSSsmall.dta, replace file GSSsmall.dta saved

Visualize

- . twoway scatter happy_3_D coninc_3, scheme(burd) jitter(5)
- . graph export happiness-income.png, width(500) replace (file happiness-income.png written in PNG format)

Linear Probability Model

. regress happy_3_D coninc_3

Source	SS	df	MS		er of obs	=	1,223
Model Residual	2.26477708 120.937185	1 1,221	2.2647770	8 Prob 4 R-squ	ared	=	22.87 0.0000 0.0184
Total	123.201962	1,222	.10081993		NSE	=	0.0176 .31472
happy_3_D	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
coninc_3 _cons	9.69e-07 .8368664	2.03e-07 .0137133	4.78 61.03	0.000	5.72e-0 .809962		1.37e-06 .8637706

Figure 1: Happiness and Income

Normal and Cumulative Normal Distribution

```
. clear all
. set obs 100 // 100 observations
number of observations (_N) was 0, now 100
. generate z = runiform(-5, 5) // randomly distributed z scores
. generate mynormaldensities = normalden(z) // normal densities
. generate myprobabilities = normal(z) // cumulative normal probabilities
. twoway scatter mynormaldensities myprobabilities z, scheme(michigan)
. graph export normal.png, width(500) replace
(file normal.png written in PNG format)
```

The Probit Model

```
. use GSSsmall.dta, clear ( )
. probit happy_3_D coninc_3
Iteration 0:
              log likelihood = -433.05123
              log likelihood = -419.92819
Iteration 1:
              log likelihood = -419.73499
Iteration 2:
               \log = -419.73484
Iteration 3:
              log likelihood = -419.73484
Iteration 4:
Probit regression
                                                Number of obs
                                                                         1,223
                                                LR chi2(1)
                                                                         26.63
                                                Prob > chi2
                                                                        0.0000
```


Figure 2: Standard and Cumulative Normal Curves

Log likelihood	d = -419.7348	4		Pseudo R	2 =	0.0308
happy_3_D	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
coninc_3 _cons	6.43e-06 .9244086	1.35e-06 .0721521	4.76 12.81	0.000 0.000	3.78e-06 .7829931	9.08e-06 1.065824

The Logistic Distribution

```
. clear all
. set obs 100 // 100 observations
number of observations (_N) was 0, now 100
. generate z = runiform(-5, 5) // randomly distributed z scores
. generate mylogisticdensities = logisticden(z) // logistic densities
. generate mylogisticprobabilities = logistic(z) // cumulative logistic probabilities
. twoway scatter mylogisticdensities mylogisticprobabilities z, scheme(michigan)
. graph export logistic.png, width(500) replace
(file logistic.png written in PNG format)
```

The Logit (Logistic) Model

```
. use GSSsmall.dta, clear ( )
```

. logit happy_3_D coninc_3

Figure 3: Standard and Cumulative Logistic Curves

```
log \ likelihood = -433.05123
Iteration 0:
                log \ likelihood = -420.07608
Iteration 1:
                log likelihood = -419.28644
log likelihood = -419.28513
Iteration 2:
Iteration 3:
Iteration 4:
                log\ likelihood = -419.28513
Logistic regression
                                                    Number of obs
                                                                                1,223
                                                    LR chi2(1)
                                                                                27.53
                                                    Prob > chi2
                                                                               0.0000
Log likelihood = -419.28513
                                                                               0.0318
                                                    Pseudo R2
                      Coef.
                                                                [95% Conf. Interval]
   happy_3_D
                              Std. Err.
                                                    P>|z|
                   .0000134
                                                                             .0000192
    coninc_3
                              2.93e-06
                                            4.58
                                                    0.000
                                                               7.68e-06
                   1.484066
                               .1381599
                                                                             1.754854
       _cons
                                            10.74
                                                    0.000
                                                                1.213277
```

Comparison of LPM, Probit and Logistic Coefficients

NB: Negative vs. positive β .

- . quietly probit happy_3_D coninc_3
- . est store myprobit
- . quietly logit happy_3_D coninc_3
- . est store mylogit
- . est table myprobit mylogit

Variable	myprobit	mylogit
coninc_3	6.430e-06	.00001343
_cons	.92440857	1.4840659

Logistic Model (2)

Derivation of logistic model from linear probability model. Using instructor notes

$$\ln\left(\frac{P(y)}{1 - P(y)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

Interpretation of Odds Ratios (Robert Mare)

indicates that an increase in x is associated with a decrease in y.

$$1 < OR < \infty$$

indicates that an increase in x is associated with an increase in y.

A Poem About Logistic Regression

Complete Determination

See handout

Rare Events

- Statistical power
- Complete determination

Predicted Probabilities

Discussion

The General Linear Model

Interaction Terms

See interactive demo, or example script.

https://agrogan1.github.io/multilevel/logistic-interactions/logistic-interactions.html