Prof. Marro Gueri

Z-N(M 5/m) ME 319/320 SEGUNDA PROVA 16/06/2011

Escreva nome, Tema e RA na primeira folha em branco.

Não são permitidas consultas.

Interpretação de enunciados e uso de tabelas fazem parte da prova. Justifique suas afirmações. Deve citar os resultados utilizados.

Não é permitido o uso de calculadora. Celulares desligados.

Fique com a folha de enunciados.

Poder(4) = 84(41) = 14(5755)

=1- 1 (58-4)

E= X-04

Exercício 1 (4 pontos, 1 ponto cada item)

 $=P\left(\frac{x-4}{2} > \frac{3x-4}{2}\right)$ Seja X_1, X_2, X_3, X_4 uma a. a. s. de uma distribuição X~Normal(μ , 4²).

Teste: $H_0 = \{\mu \le 50\}$ versus $H_1 = \{\mu > 50\}$ ao nível 0,0228 (2,28%). $= \sqrt{2.7}$

a) Calcule Ω_0 , Ω_1 e a função de poder (com desenho);

b) Calcule o p-valor se $\bar{x} = 53,60$;

c) Dê argumentos que justifiquem que o nível do teste é mesmo 0,0228;

d) Seja X-Normal(μ ,10²). Considere H₀ = { μ =50} versus H₁ = { μ =50} e uma

amostra de tamanho 4. Calcule o p-valor se x = 53,60.

9. 8. szlor czk era) 11. -- - 1

Exercício 2 (2 pontos)

Um fenômeno é modelado por uma variável aleatória X que segue alguma das duas distribuições p_0 ou p_1 , onde p_0 e p_1 estão definidas abaixo:

\boldsymbol{x}	-4	2	5	8	Y .
$p_0(x)$	0,40	0,10	0,30	0,20	
$p_1(x)$	0,10	0,50	0,10	0,30	

Pretende-se testar H_0 : { $p = p_0$ } contra H_I : { $p = p_I$ } com base numa única observação da variável aleatória X.

2/(0.5 ponto) Construa o teste mais poderoso de tamanho 0.30 e calcule o poder;

(1,5 ponto) Construa o teste mais poderoso de tamanho 0,54 e calcule o poder.

Em a) e b) indique como escolheu a região de rejeição e explicite a regra de decisão.

Exercício 3 (1 ponto)

Pretende-se estimar uma proporção populacional p. Tem-se certeza de que a proporção p é superior ou igual a 0,90. Qual é o tamanho de amostra necessário se queremos ter 95 % de certeza de que o erro de estimação não exceda 0,03? Justifique.

Exercício 4 (3 pontos, 1,5 ponto cada item)

 $X \sim \text{Bernoulli}(\theta)$. Sejam $X_1 \in X_2$ i.i.d. $(X) \in Y = X_1 + X_2$.

Utiliza-se a estatística Y para testar a hipótese $H_0 = \{\theta \le 0,4\}$ contra $H_1 = \{\theta > 0,4\}$.

A região de rejeição do teste é definida por $\Omega_1 = \{1, 2\}$.

a) Defina e calcule o tamanho do teste;

Defina, calcule e faça o gráfico da função poder.