Python与项目反应理论: 基于EM和MCMC的参数估计算法

代霸天

项目反应理论的开端

早在上世纪初,智力测验的发明者比奈(也可能是西蒙)便发现了一条神奇的曲线,这条曲线的x 轴是智力水平,y轴是试题正确率,而这是项目反应理论(以下简称IRT)的最初雏形。上世界五六十年代,ETS的统计学家Lord经过一系列的工作,正式开创了IRT理论。

为什么在经典测验理论(以下简称CTT)存在的情况下,还要继续IRT理论呢?因为CTT的统计模型毛病超级多。首先,CTT的核心概念——信度,无法计算,这是最致命的;其次,CTT统计模型过于简单,像猜测度、失误、时间等等参数都很难纳入模型。所以抛弃了信度概念的IRT应运而生。同时IRT可以解决CTT完全应付不了的问题,比如组卷,IRT可以很好的控制误差和等值,CTT想正儿八经的控制误差和等值难于登天,比如理想点反应机制,IRT有理想点模型处理,CTT无法处理,比如排序数据(CTT假设真分数和误差独立,但在排序数据中,真分数和误差明显不是独立的,而IRT的瑟斯顿模型可以解决这个问题)。

IRT的函数

对于最初的IRT来说,有三条基本假设,一是单维性,二是局部独立性,三是项目反应函数假设,但其实前两条假设可有可无(例如mirt理论打破了单维性假设,题组反应理论打破了局部独立性假设),核心的是第三个假设。

对于单维度IRT来说,最常用的两个函数,一个是正态肩形曲线函数,一个是logistic函数(跟茴香豆的N种叫法一样,你也可以叫它sigmoid函数)。我们这里主要说logistic函数。logisitc的推导没什么好说的,无非是假设试题作答正确概率为 P ,则答错的概率为 Q=1-P ,取自然对数比,则 $log\left[\frac{P}{Q}\right]=log(P)-log(Q)=z$,而 z 是潜在特质 θ 的线性函数 $z=a\theta+b$,于是我们可以得到函数 $P=\frac{e^{a\theta+b}}{1+e^{a\theta+b}}$ (这个推导其实是搞笑的,正儿八经的推导是基于正态肩曲线的),其中 a 可以称为区分度(或斜率),b 可以称为阈值(或截距),而 $-\frac{b}{a}$ 则是难度(或通俗度)。注意,有时候这个logistic函数上会有个特殊参数D,例如 $P=\frac{e^{D(a\theta+b)}}{1+e^{D(a\theta+b)}}$,D通常等于1.702,这是为了让logistic函数更接近正态肩形曲线,可以证明 $|\Phi(z)-\Psi(1.702z)|<0.01$,但是加D不加D意义不大。

 上面的项目反应函数中,如果区分度 a 恒等于1,那么这个函数也称为Rasch函数,是由丹麦 f 家Rasch独立提出的一种统计模型,其中 f 呈现随机效应,而 f 呈现固定效应,学过线性模型,人能看出这是一个混合模型。

双参数二级计分模型的参数估计

我们先对较为简单的双参数二级计分模型进行参数估计,模型即为之前的 $P=rac{e^{a heta+b}}{1+e^{a heta+b}}$ 。

先定义一个基础类

```
from __future__ import print_function, division
import numpy as np
import warnings

class BaseIrt(object):

    def __init__(self, scores=None):
        self.scores = scores

    @staticmethod
    def p(z):
        # 回答正确的概率函数
        e = np.exp(z)
        p = e / (1.0 + e)
        return p
```

然后定义一个Irt2PL继承这个类,并加上了计算z函数的静态方法,对于z函数的值,我们加了一些限制,这是为了防止数值溢出。

```
class Irt2PL(BaseIrt):
    @staticmethod
    def z(slop, threshold, theta):
        # z函数
        _z = slop * theta + threshold
        _z[_z > 35] = 35
        _z[_z < -35] = -35
        return _z
```

已赞同 58 ▼ ● 28 条评论 ▼ 分享 ● 喜欢 ★ 收藏 昼 申请转载 ·

然法求解a 和b的值。由此,Irt2PL类的构造函数如下


```
class Irt2PL(BaseIrt):
   # EM算法求解
   def __init__(self, init_slop=None, init_threshold=None, max_iter=10000, tol=1e-5,
                m_step_method='newton', *args, **kwargs):
        .....
        :param init_slop: 斜率初值
        :param init threshold: 阈值初值
        :param max_iter: EM算法最大迭代次数
        :param tol: 精度
        :param gp_size: Gauss-Hermite积分点数
       super(Irt2PL, self).__init__(*args, **kwargs)
       # 斜率初值
       if init slop is not None:
           self._init_slop = init_slop
       else:
           self. init slop = np.ones(self.scores.shape[1])
       # 阈值初值
       if init threshold is not None:
           self._init_threshold = init_threshold
       else:
            self. init threshold = np.zeros(self.scores.shape[1])
       self._max_iter = max_iter
       self._tol = tol
       self._m_step_method = '_{0}'.format(m_step_method)
       self.x_nodes, self.x_weights = self.get_gh_point(gp_size)
```

E步的求解

从直觉的角度,依据贝叶斯法则, $P(\theta_i) = \frac{L(\theta_i)g(\theta_i)}{\int_{\theta} L(\theta_i)g(\theta_i)}$,所以 θ 下样本量分布(人数分布)为 $\sum_u \frac{L(\theta_i|u_j)g(\theta_i)}{\int_{\theta} L(\theta_i)g(\theta_i)}$,其中 $g(\theta_i)$ 是概率密度函数, $L(\theta_i|u_j)$ 是试题作答模式 u_j 下的似然函数, 而 θ 下答对试题的样本量分布(人数分布)为 $\sum_u \frac{u_{kj}L(\theta_i|u_j)g(\theta_i)}{\int_{\theta} L(\theta_i)g(\theta_i)}$, u_{kj} 代表的是第 j 个作答模式下第 k 道题的答题情况。很明显,前面的公式为连续变量,很难求解,需要用数值积分的方法,考虑到 $g(\theta_i)$ 通常假设为正态分布的概率密度函数,所以我们可以用最简单的Gauss—Hermite积分求解(当然,最好的方法是自适应积分)。

已 世 58 ▼ ● 28 条评论 夕 分 9 ● 喜欢 ★ 收藏 🗗 申请转载 🕟

Gauss-Hermite积分形式如下

$$\int e^{-x^2}f(x)dxpprox \sum w_if(x_i)$$

我们假设 $\theta \sim N(0,1)$,于是我们的Gauss-Hermite积分形式为 $\sum \frac{w_i}{\sqrt{\pi}} f(\sqrt{2}x_i)$,我们在Irt2PL 类上添加一个静态方法,处理Gauss-Hermite积分

```
class Irt2PL(BaseIrt):
    @staticmethod
    def get_gh_point(gp_size):
        x_nodes, x_weights = np.polynomial.hermite.hermgauss(gp_size)
        x_nodes = x_nodes * 2 ** 0.5
        x_nodes.shape = x_nodes.shape[0], 1
        x_weights = x_weights / np.pi ** 0.5
        x_weights.shape = x_weights.shape[0], 1
        return x_nodes, x_weights
```

似然函数和均值计算

双参数IRT似然函数和E步的代码具体如下

```
class BaseIrt(object):
   def _lik(self, p_val):
       # 似然函数
       scores = self.scores
       loglik_val = np.dot(np.log(p_val + 1e-200), scores.transpose()) + \
                    np.dot(np.log(1 - p val + 1e-200), (1 - scores).transpose())
       return np.exp(loglik_val)
   def _e_step(self, p_val, weights):
       # EM算法E步
       # 计算theta的分布人数
       scores = self.scores
       lik wt = self. lik(p val) * weights
       # 归一化
       lik wt sum = np.sum(lik wt, axis=0)
       _temp = lik_wt / lik_wt_sum
       # theta的人数分布
```

已赞同 58 ▼ ● 28 条评论 ▼ 分享 ● 喜欢 ★ 收藏 昼 申请转载 ・

```
right_dis = np.dot(_temp, scores)
full_dis.shape = full_dis.shape[0], 1
# 对数似然值
print(np.sum(np.log(lik_wt_sum)))
return full_dis, right_dis
```


上面的似然函数代码部分用了一点小花招,比如用对数将乘法变成加法以及1e-200这个极小数,这些都是为了避免数值溢出。

M步的求解

M步的求解算法很多,我们这里主要写两种,收敛速度很快的牛顿迭代以及以稳健见长的迭代加权最小二乘法 (irls)。

迭代加权最小二乘法 (irls)

irls是一种收敛速度很快,也很稳健,同时易于实现编程的非线性方程求解算法,代码如下

```
class Irt2PL(BaseIrt):
   def _irls(self, p_val, full_dis, right_dis, slop, threshold, theta):
        # 所有题目误差列表
       e_list = (right_dis - full_dis * p_val) / full_dis * (p_val * (1 - p_val))
       # 所有题目权重列表
       _w_list = full_dis * p_val * (1 - p_val)
       # z函数列表
       z_list = self.z(slop, threshold, theta)
       # 加上了阈值哑变量的数据
       x list = np.vstack((threshold, slop))
       # 精度
       delta_list = np.zeros((len(slop), 2))
        for i in range(len(slop)):
           e = e_list[:, i]
           w = w list[:, i]
           w = np.diag(w ** 0.5)
           wa = np.dot(w, np.hstack((np.ones((self.x_nodes.shape[0], 1)), theta)))
           temp1 = np.dot(wa.transpose(), w)
           temp2 = np.linalg.inv(np.dot(wa.transpose(), wa))
           x0 \text{ temp} = np.dot(np.dot(temp2, temp1), (z list[:, i] + e))
           delta_list[i] = x_list[:, i] - x0_temp
            slop[i], threshold[i] = x0_temp[1], x0_temp[0]
        return slop, threshold, delta_list
```

已赞同 58 ▼ ● 28 条评论 夕 分享 ● 喜欢 ★ 收藏 🗗 申请转载 🗼

牛顿迭代

牛顿迭代也是一种收敛速度很快的算法,但缺点是必须要计算步长,否则可能会不收敛,我们假设不需要计算步长,事实上步长恒为1的收敛效果还不错。代码如下

```
class Irt2PL(BaseIrt):
   def _newton(self, p_val, full_dis, right_dis, slop, threshold, theta):
       # 一阶导数
       dp = right dis - full dis * p val
       # 二阶导数
       ddp = full_dis * p_val * (1 - p_val)
       # jac矩阵和hess矩阵
       jac1 = np.sum(dp, axis=0)
       jac2 = np.sum(dp * theta, axis=∅)
       hess11 = -1 * np.sum(ddp, axis=0)
       hess12 = hess21 = -1 * np.sum(ddp * theta, axis=0)
       hess22 = -1 * np.sum(ddp * theta ** 2, axis=0)
       delta list = np.zeros((len(slop), 2))
       # 把求稀疏矩阵的逆转化成求每个题目的小矩阵的逆
       for i in range(len(slop)):
           jac = np.array([jac1[i], jac2[i]])
           hess = np.array(
               [[hess11[i], hess12[i]],
                [hess21[i], hess22[i]]]
           )
           delta = np.linalg.solve(hess, jac)
           slop[i], threshold[i] = slop[i] - delta[1], threshold[i] - delta[0]
           delta list[i] = delta
       return slop, threshold, delta list
```

上面的牛顿迭代,并没有计算所有参数形成的雅克比矩阵和黑塞矩阵,因为求稀疏矩阵的逆近乎于求每个小矩阵的逆,事实也是如此,参数估计效果一致。

上面还可以看到,无论是irls还是牛顿迭代,都是只迭代一次就返回值,这是EM算法的一种取巧,减少计算量,同时取得精确结果,当然,迭代多次收敛后返回值肯定更好(不确定)。

接下来就是收工的工作

```
class Irt2PL(BaseIrt):
```

已赞同 58 ▼ ● 28 条评论

◇ 分享 ● 喜欢 ★ 收藏

□ 申请转载 ・・

```
return self._m_step(p_val, full_dis, right_dis, slop, threshold, theta)
```



```
def m step(self, p val, full dis, right dis, slop, threshold, theta):
     # EM算法M步
     m_step_method = getattr(self, self._m_step_method)
     return m_step_method(p_val, full_dis, right_dis, slop, threshold, theta)
def em(self):
     max_iter = self._max_iter
     tol = self. tol
     slop = self._init_slop
     threshold = self. init threshold
     for i in range(max_iter):
         z = self.z(slop, threshold, self.x_nodes)
         p_val = self.p(z)
         slop, threshold, delta_list = self._est_item_parameter(slop, threshold, se
         if np.max(np.abs(delta list)) < tol:</pre>
             print(i)
             return slop, threshold
     warnings.warn("no convergence")
     return slop, threshold
```

Irt2PL的测试

我们测试一下Irt2PL的结果,测试数据是LSAT,测试代码为

```
f = file('lsat.csv')
score = np.loadtxt(f, delimiter=",")
res = Irt2PL(scores=score, m_step_method='newton').em()
print(res)
```

结果如下, 前面是 a 值, 后面是b值

```
array([ 0.8256459 , 0.72277713, 0.89078346, 0.68838961, 0.65689704]), array([ 2.77
```

这个结果与R包ltm和R包mirt的结果一致

特质参数 (θ) 估计

已赞同 58 ▼ ● 28 条评论 4 分享 ● 喜欢 ★ 收藏 🗗 申请转载 …

posteriori)算法是唯一不需要迭代的算法,所以它的计算速度是最快的,常用于在线测验的估计,其理论依据是贝叶斯法则。 EAP的公式为 $E(\theta_i)=\theta_i=rac{\int \theta_i g(\theta) L(\theta_i) d\theta}{\int g(\theta) L(\theta_i) d\theta}$, $g(\theta)$ 是概率密度函数,常假设服从正态分布,所以上式的积分可以用最简单的Gauss—Hermite积分处理,代码如下

```
class EAPIrt2PLModel(object):
    def __init__(self, score, slop, threshold, model=Irt2PL):
        self.x_nodes, self.x_weights = model.get_gh_point(21)
        z = model.z(slop, threshold, self.x_nodes)
        p = model.p(z)
        self.lik_values = np.prod(p**score*(1.0 - p)**(1-score), axis=1)
    @property
    def g(self):
        x = self.x_nodes[:, 0]
        weight = self.x_weights[:, 0]
        return np.sum(x * weight * self.lik_values)
    @property
    def h(self):
        weight = self.x_weights[:, 0]
        return np.sum(weight * self.lik_values)
    @property
    def res(self):
        return round(self.g / self.h, 3)
```

测试我们的代码

```
# 模拟参数
a = np.random.uniform(1, 3, 1000)
b = np.random.normal(0, 1, size=1000)
z = Irt2PL.z(a, b, 1)
p = Irt2PL.p(z)
score = np.random.binomial(1, p, 1000)
# 计算并打印潜在特质估计值
eap = EAPIrt2PLModel(score, a, b)
print(eap.res)
```

已赞同 58 ▼ ● 28 条评论 4 分享 ● 喜欢 ★ 收藏 🗗 申请转载 …

IRT抛弃了CTT测验的信度概念,是因为IRT有了更好的信息函数。从直觉的角度,同一测验,同的特质理当拥有不同的误差,CTT无法做到衡量每一个特质的误差,IRT的信息函数可以。 $\frac{(P_i'(\theta))^2}{P_i(\theta)Q_i(\theta)}$,这个公式可由似然函数的二阶导数取均值和相反数导出来。

GRM (等级反应模型)

双参数IRT模型只是GRM (grade response theory) 模型的二级计分特殊形式,算法和流程与二级计分大致一样。统计模型用的是ordered logistic (也称为proportional odds) 。模型形式为 $P_k(\theta) = P_{k-1}^*(\theta) - P_k^*(\theta)$,其中 $P_k^*(\theta)$ 是logistic函数。

等级得分的数据

```
[4, 4, 3, 4, 2, 1]
```

通常会转化如下形式处理为

```
[[1, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1]]
```

本质上还是01计分问题

由于用的还是EM算法,且计算过程和二级计分大同小异,就不详加解释了,原理还是计算每个 θ 的分布,以及在各个选项上的样本分布,然后求项目参数的极大

```
class Grm(object):
```

```
def __init__(self, scores=None, init_slop=None, init_threshold=None, max_iter=1000
# 试题最大反应计算
max_score = int(np.max(scores))
min_score = int(np.min(scores))
self._rep_len = max_score - min_score + 1
self.scores = {}
for i in range(scores.shape[1]):
    temp_scores = np.zeros((scores.shape[0], self._rep_len))
    for j in range(self._rep_len):
        temp_scores[:, j][scores[:, i] == min_score + j] = 1
```

已 受同 58 ▼ ● 28 条评论 夕 分享 ● 喜欢 ★ 收藏 昼 申请转载 ・・

```
self.item_size = scores.shape[1]
    if init_slop is not None:
        self. init slop = init slop
    else:
        self._init_slop = np.ones(scores.shape[1])
    if init_threshold is not None:
        self._init_thresholds = init_threshold
    else:
        self._init_thresholds = np.zeros((scores.shape[1], self._rep_len - 1))
        for i in range(scores.shape[1]):
            self._init_thresholds[i] = np.arange(self._rep_len / 2 - 1, -self._rep
    self. max iter = max iter
    self._tol = tol
    self.x_nodes, self.x_weights = self.get_gh_point(gp_size)
@staticmethod
def get gh point(gp size):
    x_nodes, x_weights = np.polynomial.hermite.hermgauss(gp_size)
    x_nodes = x_nodes * 2 ** 0.5
    x_nodes.shape = x_nodes.shape[0], 1
    x_weights = x_weights / np.pi ** 0.5
    x_{weights.shape} = x_{weights.shape}[0], 1
    return x_nodes, x_weights
@staticmethod
def p(z):
    # 回答为某一反应的概率函数
    p_val_dt = {}
    for key in z.keys():
        e = np.exp(z[key])
        p = e / (1.0 + e)
        p_val_dt[key] = p
    return p_val_dt
@staticmethod
def z(slop, thresholds, theta):
    # z函数
    z val = {}
    temp = slop * theta
    for i, threshold in enumerate(thresholds):
        z_val[i] = temp[:, i][:, np.newaxis] + threshold
    return z_val
```

已赞同 58 ▼ ● 28 条评论 7 分享 ● 喜欢 ★ 收藏 🗗 申请转载 🕟

```
rep_len = self._rep_len
    scores = self.scores
    for i in range(self.item size):
        for j in range(rep_len):
            p_pre = 1 if j == 0 else p_val_dt[i][:, j - 1]
            p = 0 if j == rep_len - 1 else p_val_dt[i][:, j]
            loglik_val += np.dot(np.log(p_pre - p + 1e-200)[:, np.newaxis], scores
    return np.exp(loglik_val)
def e step(self, p val dt, weights):
    # E步计算theta的分布人数
    scores = self.scores
    lik_wt = self._lik(p_val_dt) * weights
    # 归一化
    lik_wt_sum = np.sum(lik_wt, axis=0)
    _temp = lik_wt / lik_wt_sum
    # theta的人数分布
    full_dis = np.sum(_temp, axis=1)
    # theta下回答的人数分布
    right_dis_dt = {}
    for i in range(self.item_size):
        right dis dt[i] = np.dot( temp, scores[i])
    # full_dis.shape = full_dis.shape[0], 1
    # 对数似然值
    print(np.sum(np.log(lik_wt_sum)))
    return full_dis, right_dis_dt
def _pq(self, p_val):
    return p_val * (1 - p_val)
@staticmethod
def _item_jac(p_val, pq_val, right_dis, len_threshold, rep_len, theta):
    # 雅克比矩阵
    dloglik val = np.zeros(len threshold + 1)
    _theta = theta[:, 0]
    for i in range(rep len):
        p_pre, pq_pre = (1, 0) if i == 0 else (p_val[:, i - 1], pq_val[:, i - 1])
        p, pq = (0, 0) if i == rep_len - 1 else (p_val[:, i], pq_val[:, i])
        temp1 = _theta * right_dis[:, i] * (1 - p_pre - p)
        dloglik_val[-1] += np.sum(temp1)
        if i < rep len - 1:</pre>
            temp2 = right_dis[:, i] * pq / (p - p_pre + 1e-200)
            dloglik val[i] += np.sum(temp2)
```

已赞同 58 ▼ ● 28 条评论 7 分享 ● 喜欢 ★ 收藏 🗗 申请转载 …

```
dloglik_val[i - 1] += np.sum(temp3)
return dloglik_val
```



```
@staticmethod
def _item_hess(p_val, pq_val, full_dis, len_threshold, rep_len, theta):
    # 黑塞矩阵
    ddloglik_val = np.zeros((len_threshold + 1, len_threshold + 1))
    _theta = theta[:, 0]
    for i in range(rep_len):
        p_pre, dp_pre = (1, 0) if i == 0 else (p_val[:, i - 1], pq_val[:, i - 1])
        p, dp = (0, 0) if i == rep_len - 1 else (p_val[:, i], pq_val[:, i])
        if i < rep_len - 1:</pre>
            temp1 = full_dis * _theta * dp * (dp_pre - dp) / (p_pre - p + 1e-200)
            ddloglik_val[len_threshold:, i] += np.sum(temp1)
            temp2 = full_dis * dp ** 2 / (p_pre - p + 1e-200)
            ddloglik_val[i, i] += -np.sum(temp2)
        if i > 0:
            temp3 = full_dis * _theta * dp_pre * (dp - dp_pre) / (p_pre - p + 1e-2
            ddloglik_val[len_threshold:, i - 1] += np.sum(temp3, axis=0)
            temp4 = full_dis * dp_pre ** 2 / (p_pre - p + 1e-200)
            ddloglik_val[i - 1, i - 1] += -np.sum(temp4)
        if 0 < i < rep len - 1:
            ddloglik_val[i, i - 1] = np.sum(full_dis * dp * dp_pre / (p_pre - p +
        temp5 = full dis * theta ** 2 * (dp pre - dp) ** 2 / (p - p pre)
        ddloglik_val[-1, -1] += np.sum(temp5, axis=0)
    ddloglik_val += ddloglik_val.transpose() - np.diag(ddloglik_val.diagonal())
    return ddloglik_val
def _m_step(self, p_val_dt, full_dis, right_dis_dt, slop, thresholds, theta):
    # M步, 牛顿迭代
    rep_len = self._rep_len
    len_threshold = thresholds.shape[1]
    delta_list = np.zeros((self.item_size, len_threshold + 1))
    for i in range(self.item size):
        p_val = p_val_dt[i]
        pq val = self. pq(p val)
        right dis = right dis dt[i]
        jac = self._item_jac(p_val, pq_val, right_dis, len_threshold, rep_len, the
        hess = self._item_hess(p_val, pq_val, full_dis, len_threshold, rep_len, th
        delta = np.linalg.solve(hess, jac)
        slop[i], thresholds[i] = slop[i] - delta[-1], thresholds[i] - delta[:-1]
        delta_list[i] = delta
    return slop, thresholds, delta list
```

我们验证一下上面的代码,数据来源是R包ltm和R包mirt的Science数据

```
scores = np.loadtxt('science.csv', delimiter=',')
grm = Grm(scores=scores)
print(grm.em())
```

return slop, thresholds

打印出来的结果如下,第一个array是区分度,第二array是难度,由于是4级计分,所以每道题目有3个阈值

以上结果与R包ltm和R包mirt结果一致

MCMC

最后我们从贝叶斯的角度来求解IRT参数,即MCMC算法。MCMC算法优点是实现简单,容易编程、对初值不敏感。可以同时估计项目参数和港在变量、缺占具耗时、我们这次对三参数IRT模型

已 受同 58 ▼ ● 28 条评论 夕 分享 ● 喜欢 ★ 收藏 🗗 申请转载 🗼

进行参数估计,三参数IRT模型公式为 $c+(1-c)\frac{e^{a\theta+b}}{1+e^{a\theta+b}}$,与双参数模型相比,三参数多个 c 参数,这个 c 参数通常称为猜测参数。我们采用的MCMC算法是最简单的gibbs抽样。

依赖的库

除了numpy外,由于mcmc很耗时,我们还需要引入progressbar2这个库

```
from __future__ import print_function, division
import numpy as np
import progressbar
```

参数分布

```
我们假设 \theta \sim N(0,1) , a \sim lognormal(0,1) (对数正态分布) , b \sim N(0,1) , c \sim beta(5,17)
```

则上述对数概率密度函数的python代码为

def _log_lognormal(param):

```
# 对数正态分布的概率密度分布的对数
return np.log(1.0 / param) + _log_normal(np.log(param))

def _log_normal(param):
    # 正态分布的概率密度分布的对数
    return param ** 2 * -0.5

def _param_den(slop, threshold, guess):
    # 项目参数联合概率密度
    return _log_normal(threshold) + _log_lognormal(slop) + 4 * np.log(guess) + 16 * np
```

对数似然函数

三参数对数似然函数与双参数几乎一模一样

```
def logistic(slop, threshold, guess, theta):
# Logistic函数
return guess + (1 - guess) / (1.0 + np.exp(-1 * (slop * theta + threshold)))

已赞同 58 ▼ ② 28 条评论 ② 分享 ◎ 喜欢 ★ 收藏 ⑤ 申请转载 …
```

```
def loglik(slop, threshold, guess, theta, scores, axis=1):
    # 对数似然函数
    p = logistic(slop, threshold, guess, theta)
    p[p <= 0] = 1e-10
    p[p >= 1] = 1 - 1e-10
    return np.sum(scores * np.log(p) + (1 - scores) * np.log(1 - p), axis=axis)
```

转移函数

有了对数似然函数和对数概率密度函数,我们就能构造转移函数

```
def _tran_theta(slop, threshold, guess, theta, next_theta, scores):
   # 特质的转移函数
   pi = (loglik(slop, threshold, guess, next_theta, scores) + _log_normal(next_theta)
        loglik(slop, threshold, guess, theta, scores) + _log_normal(theta)[:, 0])
   pi = np.exp(pi)
   # 下步可省略
   pi[pi > 1] = 1
    return pi
def _tran_item_para(slop, threshold, guess, next_slop, next_threshold, next_guess, the
   # 项目参数的转移函数
   nxt = loglik(next_slop, next_threshold, next_guess, theta, scores, ∅) + _param_den
   now = loglik(slop, threshold, guess, theta, scores, 0) + _param_den(slop, threshol
   pi = nxt - now
   pi.shape = pi.shape[1]
   pi = np.exp(pi)
   # 下步可省略
    pi[pi > 1] = 1
    return pi
```

抽样

已赞同 58 ▼ ● 28 条评论 夕 分享 ● 喜欢 ★ 收藏 🗗 申请转载 🗼

```
theta = np.zeros((person_size, 1))
# 斜率初值
slop = np.ones((1, item size))
# 阈值初值
threshold = np.zeros((1, item_size))
# 猜测参数初值
guess = np.zeros((1, item_size)) + 0.1
# 参数储存记录
theta_list = np.zeros((chain_size, len(theta)))
slop list = np.zeros((chain size, item size))
threshold_list = np.zeros((chain_size, item_size))
guess_list = np.zeros((chain_size, item_size))
bar = progressbar.ProgressBar()
for i in bar(range(chain_size)):
    next_theta = np.random.normal(theta, 1)
    theta_pi = _tran_theta(slop, threshold, guess, theta, next_theta, scores)
    theta r = np.random.uniform(0, 1, len(theta))
    theta[theta_r <= theta_pi] = next_theta[theta_r <= theta_pi]</pre>
    theta_list[i] = theta[:, 0]
    next_slop = np.random.normal(slop, 0.3)
    # 防止数值溢出
    next slop[next slop < 0] = 1e-10</pre>
    next_threshold = np.random.normal(threshold, 0.3)
    next guess = np.random.uniform(guess - 0.03, guess + 0.03)
    # 防止数值溢出
    next guess[next guess <= 0] = 1e-10</pre>
    next\_guess[next\_guess >= 1] = 1 - 1e-10
    param_pi = _tran_item_para(slop, threshold, guess, next_slop, next_threshold,
    param_r = np.random.uniform(0, 1, item_size)
    slop[0][param_r <= param_pi] = next_slop[0][param_r <= param_pi]</pre>
    threshold[0][param r <= param pi] = next threshold[0][param r <= param pi]
    guess[0][param_r <= param_pi] = next_guess[0][param_r <= param_pi]</pre>
    slop_list[i] = slop[0]
    threshold list[i] = threshold[0]
    guess_list[i] = guess[0]
return theta list, slop list, threshold list, guess list
```

我们测试一下代码,只用一个链,长度7000、燃烧最初的3000次转移

```
# 样本量和题量
PERSON SIZE = 1000
```

已赞同 58 28 条评论 マ 分享 ● 喜欢 ★ 收藏 🕒 申请转载

```
1
```

```
a = np.random.lognormal(0, 1, (1, ITEM_SIZE))
a[a > 4] = 4
b = np.random.normal(0, 1, (1, ITEM SIZE))
b[b > 4] = 4
b[b < -4] = -4
c = np.random.beta(5, 17, (1, ITEM_SIZE))
c[c < 0] = 0
c[c > 0.2] = 0.2
true_theta = np.random.normal(0, 1, (PERSON_SIZE, 1))
p_val = logistic(a, b, c, true_theta)
scores = np.random.binomial(1, p_val)
# MCMC参数估计
thetas, slops, thresholds, guesses = mcmc(7000, scores=scores)
est_theta = np.mean(thetas[3000:], axis=0)
est_slop = np.mean(slops[3000:], axis=0)
est_threshold = np.mean(thresholds[3000:], axis=0)
est guess = np.mean(guesses[3000:], axis=0)
# 打印误差
print(np.mean(np.abs(est_slop - a[0])))
print(np.mean(np.abs(est_threshold - b[0])))
print(np.mean(np.abs(est_guess - c[:, 0])))
print(np.mean(np.abs(est_theta - true_theta[:, 0])))
```

结果如下, 还不赖

- 0.152234956351
- 0.179545516817
- 0.07689038666
- 0.24119026894

总结

IRT可以说是心理测量界的一次革命,也正是因为IRT理论的存在,SAT、ACT、雅思、托业等考试才能做到一年多次考试(其中的玄机在于IRT等值和基于IRT的自适应测验),同时,运用IRT的非认知测验(例如人格等),也在处理自比数据和抵抗作假等方面成果卓越。本文介绍的是最简单的IRT模型,IRT模型成千上万,下一章将会介绍多维IRT模型,也即全息项目因子分析。

编辑于 2018-04-17

心理统计

已赞同 58 ▼ ● 28 条评论 ▼ 分享 ● 喜欢 ★ 收藏 昼 申请转载 ·

文章被以下专栏收录

心理测量与自适应学习

统计和机器学习在心理和教育的应用

关注专栏

推荐阅读

用Python编写结构方程模型参 汝估计程序(上篇)

吉构方程模型是一种很low的心理测 量方法, 唯一的例外是它的测量模 型部分——验证性因子分析,因为 佥证性因子分析本质上可以从CTT 口IRT推导出来 (无论是CTT和 RT,均有严格的公理假设),而... 天電分

处理潜变量或随机效应的高维积 分时, 我们做些什么之MCEM

本文面向对象是心理和教育等社科 统计的初入门者。 广义线性潜变量 模型 (Generalized Linear Latent Variable Models, 在心理学和教育 学常用的是连接函数为probit或 logit的项目反应模型或因...

代霸天

Python与经典测量理论

什么是经典测量理论? 经典测量 论 (Classical Test Theory, 管 CTT) 发端于100年前, 其优点 计算简单不烧脑 (不算结构方程 一套),缺点是理论假设存在引 bug (后面会讲),所以上世纪...

代霸天

28 条评论

➡ 切换为时间排序

写下你的评论...

🌉 Lucky

2017-12-09

我想用MULTILOG计算,1000个考生在20道多项计分题上面的反应情况,可是出现的output 我看不太懂,网上也没有什么资料可以寻找,最主要的是从高中,本科,我都是文科生.....求 帮忙.....

┢ 赞

🚺 代霸天 (作者) 回复 Lucky 没用过这个软件, 爱莫能助

2017-12-28

┢ 特

🕒 申请转载

已赞同 58

28 条评论

┢ 赞

展开其他 1 条回复

■ 哇咔咔

2018-01-15

想问一下,源码有上传吗?

1

HuangXiao

2018-02-07

笔者您其他系列文章还会更新吗?

┢ 赞

代霸天 (作者) 回复 HuangXiao 工作繁忙,慢更

2018-02-07

┢赞

代霸天 (作者) 回复 HuangXiao 工作繁忙,慢更

2018-02-07

┢ 赞

🍎 小橙子

2018-02-24

你好,gp_size会对结果有啥影响啊。

┢ 特

🚺 代霸天 (作者) 回复 小橙子

2018-02-24

高斯厄米特积分点的数量,影响积分计算的精度

1

△ 小橙子 回复 代霸天(作者)

2018-02-24

这个是越大越好是吗,数量小了有时候跑不出来结果。

┢ 赞

展开其他 2 条回复

流光江影

2018-04-08

请问您是在哪个公司工作呢?

┢ 赞

已赞同 58

28 条评论

▼ 分享

● 喜欢

★ 收藏

💷 申请转载

• • •

┢ 赞

oiwuliang

2018-06-06

请问用的是什么python包(需要python install什么吧)?数据来源是R包ltm和R包mirt的 Science数据,在哪?

┢ 赞

🚺 代霸天 (作者) 回复 oiwuliang

2018-06-06

自己写的参数估计程序,只引用了线性代数库numy,数据在ltm和mirt库里面

● 赞

aliciayang

2019-01-17

Science数据维度是怎样的,这个R包数据没有找到,正在尝试用其他的题目分数数据来代替 进行实验

┢ 赞

🌬 zarelone Lee

2019-04-06

有一个小疑问:

BaseIRT里面计算的是p, 但是后面IRT2PL里面的都是p val, 所以就想问问各中原因是什么 呢?

特

🚺 代霸天 (作者) 回复 zarelone Lee

2019-04-09

p val代表p的值

┢ 赞

小白

2019-04-26

作者您好,您代码与我是用R语言mirt包跑出的结果不一致,我是用coef(model, simplify=TRUE, IRTpars = TRUE) 获取的项目参数如下:

a b1 b2 b3

Comfort 1.042 -4.669 -2.534 1.407

Work 1.226 -2.385 -0.735 1.849

Future 2.293 -2.282 -0.965 0.856

Benefit 1.095 -3.058 -0.906 1.542

● 赞

已赞同 58

28 条评论

マ 分享

● 喜欢

★ 收藏

💷 申请转载

20/21

因子旋转算法不一样吧

🌬 zarelone Lee 回复 小白

2019-05-24

小白too来掺和一下,作者的写代码时的b应该可以说是易度参数(加个负号就是难度参 数),然后总体上看参数还是比较一致的

┢ 赞

shaun 2019-04-28

我关注您的时候我看您写的是酒店经理来着哈哈哈,今天来重温一下代码,突然发现换成体育 老师了,有风格!

┢ 赞

张学奶

2019-06-13

太厉害了,感谢,学习到了

┢ 赞

林献寒

06-03

有没有多级多维度的irt代码呀?

┢ 赞

神林

07-11

您好,方便提供一下您程序中的原始数据吗。谢谢。

┢ 赞

山川

08-31

作者您好,有python求三参数估计的源码吗?[拜托][拜托]有偿求源代码

┢ 赞

已赞同 58

28 条评论

マ 分享

● 喜欢

★ 收藏

💷 申请转载