INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Intl. Trans. in Op. Res. 0 (2023) 1–32 DOI: 10.1111/itor.13340 INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

An iterated greedy algorithm with variable reconstruction size for the obnoxious *p*-median problem

Seyed Mousavi^{a,*} D, Soni Bhambar^b and Matthew England^b D

^aSchool of Computing, Mathematics and Data Sciences, Coventry University, Coventry CV1 5FB, UK

^bCentre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK

E-mail: Seyed.Mousavi@coventry.ac.uk [Mousavi]; bhambars@uni.coventry.ac.uk [Bhambar];

Matthew.England@coventry.ac.uk [England]

Received 19 December 2022; received in revised form 15 May 2023; accepted 31 May 2023

Abstract

The obnoxious *p*-median problem is a facility location problem where we maximise the sum of the distances between each client point and its nearest facility. Since it is nondeterministic polynomial-time (NP)-hard, most algorithms designed for the problem follow metaheuristic strategies to find high-quality solutions in affordable time but with no optimality guarantee. In this paper, a variant of the iterated greedy algorithm is developed for the problem. It adopts the idea of increasing the search radius used in variable neighbourhood search by increasing the number of reconstructed components at each iteration with no improved solution, where the amount of the increase is determined dynamically based on the quality of the current solution. We demonstrate that the new algorithm significantly outperforms the current state-of-the-art metaheuristic algorithms for this problem on standard datasets.

Keywords: facility location; hybrid metaheuristic; iterated greedy; obnoxious p-median problem; p-median problem

1. Introduction

The obnoxious p-median (OpM) problem is to locate a given number of facilities such that the sum of the distances between each client point and its nearest facility is maximised. It is similar to the p-median (pM) problem where we instead minimise that sum. The OpM problem has numerous real-world applications where the facilities, although useful, are unpleasant (hence obnoxious) to nearby clients. Examples of such facilities include garbage collection points in residential areas and the positioning of airports (obnoxious due to their air and sound pollution). Another example, by Chang et al. (2021), is the location of quarantine sites during pandemics. These sites should be far from residential areas to reduce the chance of infections. Among other applications of this

International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation of Operational Research Societies

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

^{*}Corresponding author.

^{© 2023} The Authors.

problem are the location of chemical and nuclear sites (Gökalp, 2020), hazardous waste disposal facilities, and high-voltage electrical transmission stations (Church and Drezner, 2022). Therefore, solving the OpM problem can potentially benefit people in a wide variety of ways. In addition, any algorithm for this problem can be a potential algorithm, via minor adjustments, for the pM problem because of their similarity.

1.1. Prior work

Research on this problem and its variants began in the last century when optimal solutions were sought (Church and Garfinkel, 1978; Erkut and Neuman, 1989; Plastria, 1996). However, the problem is NP-hard (Tamir, 1991), which means there exists no polynomial-time exact algorithm unless P = NP. Therefore, more recent research has focused on inexact algorithms, in particular those following metaheuristic strategies, to find (high-quality) feasible solutions in affordable time but with no optimality guarantee (Belotti et al., 2007; Colmenar et al., 2016a; Lin and Guan, 2018; Gökalp, 2020; Herrán et al., 2020; Mladenović et al., 2020).

Belotti et al. (2007) proposed a variant of tabu search (TS) called exploring TS (X-TS), in addition to an exact branch and cut algorithm. Colmenar et al. (2016a) improved on the X-TS algorithm by proposing a Greedy Randomised Adaptive Search Procedure (GRASP) equipped with further mechanisms. For example, they used a filtering method to avoid local search on low-quality solutions. They also maintained for each client two sorted lists of open and closed facilities to speed up their local search. Herrán et al. (2020) proposed an improved algorithm together with its parallel version based on variable neighbourhood search (VNS). Among useful ideas in their work was to decouple the facility swap operation used in Colmenar et al. (2016a) into two single operations of dropping and adding a facility. Then, by using different orders of these two operations, they obtained two different local search procedures. The decoupling idea was also used in Lin and Guan (2018), where a hybrid of binary particle swarm optimisation and iterated greedy (IG) algorithms was proposed to improve on the GRASP algorithm of Colmenar et al. (2016a). Mladenović et al. (2020) also used a basic VNS algorithm based on the so-called less-is-more-approach (Mladenović et al., 2016). They showed that the resulting algorithm was superior to the GRASP algorithm of Colmenar et al. (2016a) and competitive with the VNS metaheuristic algorithm of Herrán et al. (2020).

Gökalp (2020) extended the IG algorithm presented by Lin and Guan (2018) and further enhanced it by applying the local search procedures proposed by Herrán et al. (2020). He showed his algorithm outperformed the VNS algorithm of Herrán et al. (2020). Most recently, another TS method was proposed by Chang et al. (2021). It was not compared with the IG algorithm of Gökalp (2020) but was shown to outperform the other state-of-the-art metaheuristic algorithms at the time.

Thus, to the best of our knowledge, the current state-of-the-art metaheuristic algorithms for the problem are the IG of Gökalp (2020) and the TS of Chang et al. (2021).

For a review of the existing models for the problem and its historical overview, the interested reader is referred to Church and Drezner (2022).

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

The algorithm proposed in the present paper is a variant of IG with variable reconstruction size. It incorporates the idea of increasing the neighbourhood radius (for diversification) used in VNS by increasing the number of reconstructed components. However, in contrast to the standard VNS approach where the amount of the increase is fixed, in our proposed algorithm, it is variable and determined dynamically at run time. The new algorithm also generalises the idea of applying an additional pair of construction and deconstruction operations used in Herrán et al. (2020) and Gökalp (2020) to improve the solution quality. More specifically, in contrast to Herrán et al. (2020) and Gökalp (2020), its construction and deconstruction operators are not limited to a local search stage or a fixed number of components. In addition, it uses two data structures not previously proposed in the literature of OpM, to the best of our knowledge.

Although it hybridises several ideas and operations, the overall algorithm is actually simpler than the state-of-the-art metaheuristic algorithms as it is centred on the unit operations of opening and closing a facility with no additional local search. We demonstrate that the proposed algorithm outperforms the current state-of-the-art metaheuristic algorithms for the OpM problem on standard datasets, with extremely low p-value $< 10^{-8}$.

The rest of the paper is organised as follows. Section 2 presents the formal problem definition and the basic notations used in the paper. Then the new proposed algorithm is described in Section 3. Section 4 explains the auxiliary data structures used in the implementation and analyses the time complexity of the facility opening and closure operators. Experimental results are reported in Section 5 including a thorough comparison with the existing state of the art on standard datasets. Finally, the paper is concluded with potential future work outlined in Section 6.

2. Notation and problem definition

Let $I = \{1, ..., n\}$ and $J = \{1, ..., m\}$ be sets of clients and facilities, respectively, and let d_{ij} be the distance between client $i \in I$ and facility $j \in J$. An instance of the OpM problem is then represented by (D, p), where $D = [d_{ij}]_{n \times m}$ is the distance matrix, and p < m is a positive integer. The problem is to find the set P of p facilities that maximises the objective value

$$f(P) = \sum_{i \in I} \min_{j \in P} d_{ij}. \tag{1}$$

That is, we are maximising the sum of distances from each client to its nearest facility.

We assume that p > 1. Because the case $n \le p < m$ is also trivial, we further assume p < n. Hence, $p \in \{2, ..., \min(n, m) - 1\}$.

Given a candidate solution P, we say the facilities in P are *open* and the remaining facilities in $J \setminus P$ are *closed*. We use $\Delta_{close}(P, j)$, or simply $\Delta_{close}(j)$ when no ambiguity arises, to denote the resulting increase in the objective value if the facility j becomes closed. That is, $\Delta_{close}(P, j) = f(P \setminus \{j\}) - f(P)$. Similarly, $\Delta_{open}(P, j)$ or $\Delta_{open}(j)$ is defined as $f(P) - f(P \cup \{j\})$. Note that these definitions have been made so that the values are nonnegative.

Algorithm 1. Main

```
A distance matrix D = [d_{ii}]_{n \times m}
Inputs:
             An Integer p \in \{2, \ldots, \min(n, m) - 1\}
             A set of p facilities
Parameters: \gamma \in (0, 1) and \tau > 0
1 Begin
   Initialise P randomly with p facilities // and initialise related data structures
    best P = P; worst f = best f = f = f(P); radius = 1; \alpha = g(1)
4
   while termination\_condition = false do
5
      IG1()
6
      IG2()
7
      // update radius and \alpha:
8
      if best f = worst f then
9
          gap = 0
10
        else
11
          gap = (best f - f)/(best f - worst f)
12
        radius = min\{p-1, radius + \lfloor (p-2) \times gap \rfloor + 1\}
13
14
        \alpha = g(radius)
15
     end while
16
     return best P
17 End
```

3. Proposed algorithm

The new algorithm we propose in this paper (Algorithm 1) is a variant of the IG algorithm hybridised by a diversification mechanism similar to that used in VNS. It receives as input an instance (D, p) of the problem. It also has two parameters γ and τ whose roles are explained shortly. The algorithm returns as output the best solution to the corresponding OpM instance it finds.

14753955, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

3.1. Reconstruction size and algorithm parameters

As a trajectory (single point) algorithm (Blum and Roli, 2003), Algorithm 1 starts with an initial solution P and keeps changing it (hopefully improving it) during the search using an IG mechanism. Key to this is the variable *radius*, also known as the *reconstruction size*, which is the number of facilities to close during the deconstruction phase and to open during the construction phase. Another key variable in this operation is α , which holds the probability value by which each candidate is shortlisted when we choose the best facility for closure/opening. That is, if $\alpha = 1$, then we consider all potential facility changes, while if $\alpha = 0$, then we would not allow any facility to change.

We observed empirically that using a value for α that declines with the *radius*, as opposed to a constant α , speeds up the algorithm. Thus, in the proposed algorithm, we always determine α according to the following formula:

$$\alpha = g (radius) = \gamma 2^{-\tau(radius-1)} + (1 - \gamma) rand().$$
 (2)

© 2023 The Authors.

14753959, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee (and the conditions) of the conditions of the condition of the conditio

Fig. 1. Illustration of the function $2^{-\tau(radius-1)}$ for $\tau \in \{0, 2, 4, 6, 8\}$ and $radius \in \{1, 2, ..., 10\}$. It is constant (1) for $\tau = 0$ and declines exponentially otherwise.

Here, γ and τ are parameters of the algorithm, and rand() returns a nonnegative random value less than 1. In particular, the parameter τ controls how fast the function $2^{-\tau(radius-1)}$ declines as the radius grows, while the parameter γ controls the balance between the value returned by this function and the randomisation introduced by rand(). Figure 1 depicts the function $2^{-\tau(radius-1)}$ for different values of τ .

3.2. Algorithm description

Algorithm 1 starts by initialising a random solution P (consisting of p facilities) in line 2. Then in line 3, it initialises the other variables: best P, for storing the best solution found so far, is initialised to P; best f and worst f, for storing the best and worst objective values seen so far, are both initialised to f = f(P); variable radius is initialised to 1; and then α is set accordingly as described above.

The rest of Algorithm 1 consists of its main loop (lines 4–15), after whose termination the best solution found is returned (line 16). The loop termination condition could be a fixed number of iterations, a fixed number of consecutive iterations with no improvement, a time limit, or any combination of these, among other options.

Each iteration of the loop consists of two IG operations, **IG1** and **IG2** (lines 5–6), which we describe later. They may update the variables P, f, best P, best f, worst f, radius and α . Also, there is control code (lines 8–14) to further update the variables radius and α as follows. The temporary variable gap, calculated in lines 8–12, is used to indicate the quality of the current solution. It varies from 0 (when f = best f) to 1 (when f = worst f) and is defined as 0 in the exceptional case when f = worst f = best f. The variable radius is then increased by the value $\lfloor (p-2) \times gap \rfloor + 1$ in line 13 unless its new value would exceed p-1 in which case it becomes p-1. The increment

```
Inputs: Uses P, f, best f, worst f, radius and \alpha, as global variables
Outputs: Updates P, f, best P, best f, worst f, radius and \alpha as global variables
1 Begin
   improved = true
3
   while improved do
      improved = false
4
      delta f = 0
5
6
      for d = 0 to radius do
        delta_f = delta_f + Close_facility(P, \alpha)
8
      end for
9
      for d = 0 to radius do
10
          delta_f = delta_f - \mathbf{Open\_facility}(P, \alpha)
11
12
       f = f + delta_f
13
       if delta_f > 0 then
14
          improved = true
15
          radius = 1; \alpha = g(1)
16
          if f > best f then
17
            best P = P; best f = f
18
          end if
19
       end if
20
       worst f = min\{worst f, f\}
21
    end while
22 End
```

value $\lfloor (p-2) \times gap \rfloor + 1$ is at least 1 (when gap = 0) and at most p-1 (when gap = 1). This diversification mechanism generalises that used in the standard VNS, where the radius is incremented by 1, by dynamically determining the increment based on the quality of the current solution. Finally, the variable α is updated based on the new value of *radius* in line 14.

14753955, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

The IG operations IG1 and IG2 perform local searches: IG1 searches by first closing and then opening facilities, while IG2 searches by first opening and then closing facilities. These operations generalise, respectively, the local search operations RLS1 and RLS2, proposed by Herrán et al. (2020) and used by Gökalp (2020). They allow the reconstruction size (the variable *radius*) to be greater than 1 in a given search. IG1 and IG2 also contain randomisation on which facilities are considered for change, controlled by the probability value α . The IG algorithm of Gökalp (2020) also uses a reconstruction size (normally) greater than 1, but this is fixed during runtime, whereas in our proposed algorithm, it varies between 1 and p-1 depending on the solution quality. Another difference is that the facility selection in the deconstruction phase in Gökalp (2020) is random not greedy, whereas the same (semi) greedy mechanism is used in both the deconstruction and the construction phases of the proposed algorithm.

Algorithm 2 presents the IG operation IG1. The algorithm for IG2 is the same except that lines 7 and 10 are swapped (swapping whether we open or close facilities first). Therefore, we only describe IG1 in detail. It consists of a while-loop (lines 3–21), which runs until no improved solution is found. At each iteration, it closes a number (*radius*) of facilities (the deconstruction phase in lines 6–8) and opens the same number of facilities (the construction phase in lines 9–11). This is achieved

14753959, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee (and the conditions) of the conditions of the condition of the conditio

```
Inputs:
             P and \alpha
Outputs:
             Updates P and returns absolute change in the objective value
1 Begin
   df = -1
   for j \in P do
3
4
      if random() < \alpha then
5
         if \Delta_{close}(j) > df then
6
            df = \Delta_{close}(j)
7
8
         end if
9
      end if
10
    end for
11
    if df = -1 then
       j^* = a random facility in P
12
13
       df = \Delta_{close}(j^*)
14
     end if
15
     P = P \setminus \{j^*\} //and update related data
16
    return df
17 End
```

by invoking the **Close_facility** and **Open_facility** functions. These functions, which will shortly be described in more detail, close and open a single facility respectively, and return the absolute change in the objective value. After this, the objective value f is updated accordingly in line 12. If it has increased (as captured by the **if-**condition in line 13), then the flag *improved* is set to **true** (line 14) to allow for another iteration of the **while-**loop (lines 3–21). The variables *radius* and α are also set to 1 and g(1), respectively (line 15), to increase the intensification. Further, if the obtained solution is even better than *best P*, then *best P* and *best f* are updated (line 16–18). In the case where f becomes less than *worst f*, *worst f* is set to f (line 20).

The Close_facility (Algorithm 3) and Open_facility (Algorithm 4) operations are now described. The algorithm Close_facility receives as input a pair of P and α , closes a facility in P and returns the absolute amount of increase in the objective value. When $\alpha=1$, the for-loop (lines 3–10) iterates through all the elements in P and finds a facility j^* whose closure would yield the maximum increase in the objective value. The amount of the increase $\Delta_{close}(j^*)$ is stored in the variable df, which will be returned in line 16. Note that the for-loop performs the selection process only, and the actual closure of j^* is performed in line 15. Notice that if $\alpha=1$, then the condition of the if-statement in line 4 would always be true, which means all facilities would be allowed to 'compete' for the selection, and we would truly find the maximum increase in objective value. However, when $\alpha<1$, then the selection process is not completely greedy because the if-statement in line 4 may filter out some facilities. In the (rare) case when all the facilities are filtered out (with probability $\alpha^{|P|}$), a facility will be selected uniformly at random (lines 11–14). The algorithm Open_facility (Algorithm 4) has a line-to-line correspondence with the algorithm Close_facility (Algorithm 3). It opens a facility among those outside P (and passed through the filter of line 4) that minimises the amount of decrease in the objective value.

Algorithm 4. Open_facility

```
J, P and \alpha
Inputs:
Outputs:
            Updates P and returns absolute change in the objective value
1 Begin
2 df = \infty
    for j \in J \setminus P do
3
4
       if random() < \alpha then
5
         if \Delta_{open}(j) < df then
6
            j^* = j
            df = \Delta_{open}(j)
7
8
         end if
9
       end if
10
     end for
11
     if df = \infty then
        j^* = a random facility in J \setminus P
12
13
        df = \Delta_{open}(j^*)
14
     end if
     P = P \cup \{j^*\} //and update related data
15
16 return df
17 End
```

The randomness used in the Close_facility and Open_facility functions is a generalised variant of that used in the construction phase of GRASP proposed in Colmenar et al. (2016a). More specifically, Colmenar et al. (2016a) examined two different construction approaches, referred to as C1 and C2, which differ in the way the restricted candidate list (RCL) is generated and used. By C1, they meant the standard construction strategy used in the classic GRASP approach, where RCL is populated with the highest quality candidates from which one is selected randomly. In C2, the order of the greediness and randomness changes. There, RCL is populated randomly with a portion of the candidates and its best element is then selected (greedily). Colmenar et al. (2016a) showed that C2 would yield better results.

14753955, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

We also examined both approaches and observed the superiority of C2 in our early research. However, in contrast to Colmenar et al. (2016a) who use this mechanism for opening facilities only, we use it for facility closure as well. Furthermore, we use a variant of C2, in which the two steps of randomly populating RCL and finding its best element are performed simultaneously in a single loop (lines 3–10 of Algorithms 3 and 4).

4. Auxiliary data structures and facility opening and closure complexity

The proposed algorithm is built upon two unit operations of closing and opening a single facility, which are in turn based on two basic functions $\Delta_{close}(.)$ and $\Delta_{open}(.)$. Therefore, the efficiency of computing these functions is crucial to the overall running time of the algorithm. For this reason, we use auxiliary data structures to reduce their computational complexity as described in this section.

^{© 2023} The Authors.

4753959, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee

We use similar (but not identical) notations to those used in the literature of the *p*-center problem (Mladenović et al., 2003; Pullan, 2008; Mousavi, 2023). For each client i, i = 1, ..., n, we keep the list N_i of all facilities sorted ascendingly by their distance from i, with ties broken arbitrarily. We use $N_i[k], k = 1, ..., m$, to refer to the kth facility in this list. We keep another list denoted as N_i^{-1} to record the location of a facility j, j = 1, ..., m, in the list N_i . That is, $N_i^{-1}[j] = k$ if and only if $N_i[k] = j$. These two data structures are static, which means their data are fixed for a given problem instance. The other data structures described next are dynamic and their data change with P throughout a run of the algorithm. For a given P, we keep indicator variables $x_j, j = 1, ..., m$, to indicate the membership of j in P, that is,

$$x_j = \begin{cases} 1 & j \in P \\ 0 & otherwise. \end{cases}$$
 (3)

We also record for each client i a nearest facility F_i (to which i is assigned). If there is more than one nearest facility to i, we choose the one that appears first in the sorted list N_i . That is, $F_i = j$ if and only if $x_j = 1$ and $\forall j_1 : N_i^{-1}[j_1] < N_i^{-1}[j] \Rightarrow x_{j_1} = 0$. Finally, for each open facility j, we keep the set C_j of its assigned clients. That is, $C_j = \{i : F_i = j\}$. To the best of our knowledge, the data structures N_i^{-1} and C_i are novel in the literature of OpM and pM problems.

Proposition 1. $\Delta_{close}(j) = \sum_{i \in C_j} (d_{iF_i^{(2)}} - d_{ij})$, where $F_i^{(2)}$ is the second-nearest facility to i. The proof follows by noting the facts that the closure of a facility j would not affect clients outside C_i and that it would replace F_i with $F_i^{(2)}$ for each client i in C_i .

Proposition 2.
$$\Delta_{open}(j) = \sum_{i \in I: N_i^{-1}[j] < N_i^{-1}[F_i]} (d_{iF_i} - d_{ij})$$
.

The proof follows by noting that opening a facility j will affect a client i only if j replaces its currently assigned facility F_i , which is the case if and only if j appears prior to F_i in N_i .

4.2. Complexity analysis

Let $p_t = |P|$. The following propositions provide the time complexity of computing $\Delta_{close}(.)$ and $\Delta_{open}(.)$ using the auxiliary data structures N_i , N_i^{-1} , x_j , F_i and C_j , i = 1, ..., n, j = 1, ..., m.

Proposition 3. $\Delta_{close}(j)$ is computable in $O(nm/p_t^2)$ average time.

Proof. We use Proposition 1 to compute $\Delta_{close}(j)$. The average number of clients in C_j is n/p_t . To find $F_i^{(2)}$ for each client $i \in C_j$, we start from the location $N_i^{-1}[j]$ of facility j in N_i and proceed forward until we reach the location of another open facility. This takes $O(m/p_t)$ average time because p_t out of the m facilities in the list are open. Once $F_i^{(2)}$ is found, calculating $d_{iF_i^{(2)}} - d_{ij}$ takes O(1) time.

Proposition 4. $\Delta_{open}(j)$ is computable in O(n).

Proof. We use Proposition 2 to compute $\Delta_{open}(j)$. We go through each client $i \in I$ in O(n) time, check the condition $N_i^{-1}[j] < N_i^{-1}[F_i]$ in O(1) and, if the condition is met, calculate $d_{iF_i} - d_{ij}$ in O(1).

© 2023 The Authors.

Algorithm 5. Populate_static_data

```
Uses I, J and D as global variables
Inputs:
Outputs:
            Populates static auxiliary data structures as global variables
1 Begin
2 //N_i, i = 1, ..., n
3 for each client i \in I do
       N_i = \text{list of all facilities } j \in J \text{ sorted ascendingly by } d_{ij}
5 end for
  //N_i^{-1}, i = 1, ..., n
7
   for each client i \in I do
     for k = 1 to m do
8
        N_i^{-1}[N_i[k]] = k
9
10
     end for
11 end for
12 End
```

To benefit from the results of Propositions 3 and 4, we need to populate the static data structures N_i and N_i^{-1} before their first usage, initialise the dynamic data structures x_i , F_i , C_i , i = 1, ..., n, $j = 1, \dots, m$ after initialising P (line 2 of Algorithm 1) and update them whenever P changes by closing or opening a facility (lines 15 of Algorithms 3 and 4). The pseudocodes of these four operations are presented in Algorithms 5–8, respectively.

The following time complexity analyses assume that the set C_i of clients assigned to facility j, j = 1, ..., m, is implemented so that the operations $C_i = \{\}, C_i = C_i \cup \{i\}$, and $C_i = \{\}$ $C_i \setminus \{i\}, i = 1, \dots, n$, are performed in O(1). Otherwise, the complexity of these operations, which depend on the implementation, will need to be considered.

14753955, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

As can be seen in Algorithm 5, the time complexity of populating N_i^{-1} is dominated by that of N_i , $i = 1, \dots, n$, (lines 3–5), which is $O(nm \log m)$ using merge sort or a similar algorithm.

The time complexity of initialising the dynamic data structures (Algorithm 6) is dominated by that of the last for-loop (lines 13–21), whose average running time is O(nm/p) because it iterates n times and its inner while-loop (lines 16–18) takes O(m/p) average time to reach an open facility in the list N_i . Note that p out of m facilities in N_i are open.

The average time complexity of updating the dynamic data structures after closing a facility j is the same as that of calculating $\Delta_{close}(j)$, which is $O(nm/p_t^2)$ (Proposition 3), because the average number of the iterations of the for-loop (lines 4-13 of Algorithm 7) is n/p_t and the while-loop (lines 7–9) takes $O(m/p_t)$ average time. Similarly, as can be seen in Algorithm 8, the average time complexity of updating the dynamic data structures after opening a facility is the same, O(n), as that of computing $\Delta_{open}(.)$.

Given these results, it is not hard to see that the average running times of the Close_facility and **Open_facility** functions (Algorithms 3 and 4) are $O(nm/p_t)$ and O((m-p)n), respectively. However, the time complexity analysis of IG1 and IG2 is non-trivial because the number of iterations of their while-loops (lines 3–20 of Algorithm 2), depends on the quality of the solutions found during the search. This makes hard the complexity analysis of the main algorithm. In addition, the number of iterations of the while-loop of the main algorithm (lines 4–15 of Algorithm 1) depends on

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/ior.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

```
P
Inputs:
            Uses I, J and static auxiliary data structures as global variables
            Updates dynamic auxiliary data structures as global variables
1 Begin
2 //x_i, j = 1, ..., m
   for each facility j \in J do
3
4
     x_i = 0
5
   end for
6
   for each facility j \in P do
7
      x_i = 1
8 end for
9
   //F_i and C_i, i = 1, ..., n, j = 1, ..., m
10 for each facility j \in J do
11
       C_i = \{\}
12 end for
13
    for each client i \in I do
14
       //find F_i
15
       k = 0
16
       while x_{N_i[k]} = 0 do
        k = k + 1
17
18
      end while
19
      F_i = N_i[k]
20
      C_{F_i} = C_{F_i} \cup \{i\}
21 end for
22 End
```

Algorithm 7. Update_dynamic_data_after_closure

```
Inputs:
             Facility j
            Uses auxiliary data structures as global variables
Outputs: Updates dynamic auxiliary data structures as global variables
1 Begin
2 //x_i
3
   x_i = 0
   for each client i \in C_j do
      //set new F_i to the current F_i^{(2)}
5
6
      k = 1 + N_i^{-1}[F_i]
7
      while x_{N_i[k]} = 0 do
         k = k + 1
8
9
       end while
10
        F_i = N_i[k]
        //add i to the new list
11
12
        C_{F_i} = C_{F_i} \cup \{i\}
13
     end for
14 End
```

Algorithm 8. Update_dynamic_data_after_opening

```
Inputs:
             Facility j
             Uses I and auxiliary data structures as global variables
            Updates dynamic auxiliary data structures as global variables
1 Begin
2 //x_i
3 x_i = 1
4 \tilde{C}_i = \{\}
   for each client i \in I do
     if N_i^{-1}[j] < N_i^{-1}[F_i] then
        //remove i from the old list
8
        C_{F_i} = C_{F_i} \setminus \{i\}
Q
        F_i = i
10
        //add i to the new list
11
        C_i = C_i \cup \{i\}
12
        end if
13
     end for
14 End
```

its termination condition, which could in turn be dependent on the solution quality (e.g., a fixed number of consecutive iterations without improvement).

14753955, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

5. Experimental results

To evaluate the performance of the proposed algorithm, it was implemented and compared with the current state-of-the-art metaheuristic techniques for the problem identified in Section 1.1. For simplicity, in the rest of this section, by TS and IG we mean the algorithms in Chang et al. (2021) and Gökalp (2020), respectively. We call our proposed algorithm IGV, standing for IG with variable reconstruction size.

We originally implemented IGV in Java. We obtained the original source code of TS and IG from the respective authors, which were written in Python and C++, respectively. In order to achieve a meaningful comparison free of the different programming language features, we then also implemented our algorithm IGV in Python and C++. This is especially important for a fair comparison of TS and IGV because a typical Python program can be significantly slower than its equivalent Java (or C++) version. The source code of IGV in these three languages is available at https://github.com/srm2022/opm.

Section 5.1 explains the datasets used in the benchmarking. In Section 5.2, the IGV parameters γ and τ are adjusted. The comparison of IGV with TS and IG is then presented in Sections 5.3 and 5.4, respectively. The parameter tuning experiments in Section 5.2 were performed using a laptop with Intel Core i5-6200 @ 2.3GHz CPU and 8 GB of RAM. The experiments in Sections 5.3 and 5.4 used the same desktop machine with an Intel Core i5-2400 CPU @ 3.10 GHz and 8 GB of RAM.

^{© 2023} The Authors.

Table 1 Impact of parameter values on the running time of IGV

$\tau \setminus \gamma$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	104	157	171	172	179	131	123	70	79
2	112	78	90	77	71	61	42	39	123
3	103	66	89	65	46	39	56	44	160
4	106	96	64	53	53	44	45	51	167
5	97	76	72	79	54	56	43	66	156
6	105	76	77	66	58	36	37	94	192
7	86	77	83	66	50	42	38	50	168
8	114	88	69	62	57	42	41	61	201
9	116	92	89	56	78	45	59	63	237

5.1. Benchmark datasets

Two datasets were used. The first dataset is available in Colmenar et al. (2016b). It consists of 144 OpM instances used in the recent literature (Gökalp, 2020; Herrán et al., 2020; Mladenović et al., 2020). Each instance has the same number n of clients and facilities, which varies from 200 to 450. For each value of n, there are six instances, two per for each value of $p = \lfloor n/8 \rfloor$, $\lfloor n/4 \rfloor$ and $\lfloor n/2 \rfloor$. The benchmark consists of two lists of 72 instances, labelled with 'A' and 'B', with a one to one correspondence. Each instance in the latter was obtained by transposing the distance matrix of its corresponding instance in the former. The former list was obtained by modifying 24 instances of the pM problem (Reese, 2006; Belotti et al., 2007; Mladenović et al., 2007) available in the OR-Library (Beasley, 1990a, 1990b). In the rest of the paper, we will refer to this dataset as the *small dataset*.

The number of clients n in the small dataset is at most 450. To compare the algorithms on larger instances, we produced a second dataset using the pmed benchmarks from the OR-Library (Beasley, 1990a, 1990b). These instances were originally created for the pM problem, but they can readily be used for the OpM problem by assuming I = J. We used instances pmed21 to pmed40, which all have $n \ge 500$ clients, and we also changed the original values of p to n/4 and n/3 to make a more challenging benchmark of 40 instances. Each data file contains a weighted graph (in addition to the values of p and p), which needs to be converted to a complete graph. We used the Floyd–Warshall algorithm for this purpose. We will refer to this dataset as the *large dataset* in the rest of the paper.

5.2. Tuning of IGV parameters

To adjust the parameters γ and τ , we randomly selected 14 instances (approximately 10%) of the small dataset. We evaluated every pair (γ_i, τ_j) such that $\gamma_i \in \{0.1, 0.2, \dots, 0.9\}$ and $\tau_j \in \{1, 2, \dots, 9\}$, by running IGV 10 times on each of the 14 instances and observing the total running time (for the 140 runs) needed to achieve the best-known objective values in the literature (Gökalp, 2020; Chang et al., 2021). The running times, rounded to the nearest second, are reported in Table 1. Table 1 suggests that the best pair is $(\gamma, \tau) = (0.6, 6)$, where the total running time is 36 sec-

onds. The parameters are fixed to these values in the following experiments.

5.3. Comparison with the prior state-of-the-art TS

We ran the source code of TS with its original settings on both the small and the large datasets. As in Chang et al. (2021), it was run 10 times per instance.

5.3.1. Comparison with TS on small instances

Let f_i t_i and t'_i be, respectively, the best objective value, the hit time (i.e., the time taken to find f_i) and the total time of the *i*th run of TS (i = 1,...,10) on a given instance. We adjusted the termination condition of IGV such that its *i*th run on that instance was terminated upon achieving a solution with a better or the same objective value as f_i .

The results are presented in Table 2. The first three columns describe the problem instance: First, we have the instance filename, which contains within it the number of facilities p. For brevity, the actual filename is shortened here. For example, instead of 'pmed17.txt.table.p100.A.txt', 'pmed17-p100.A' is used. Then the number of clients n (which equals the number of facilities) is presented, and finally the best-known objective value from the literature (Gökalp, 2020; Chang et al., 2021) is included. The next group of columns concerns the performance of TS: The first three columns report the average, the standard deviation and the best of the objective values obtained by TS over its 10 runs per instance; the subsequent two columns report the average and the standard deviation of the hit time t (in seconds); and the final two columns of that group report the average and the standard deviation of the total running time t of the algorithm. The remaining group of columns reports the respective results for IGV excluding the average and the standard deviation of its total running time because it terminates upon hitting (or exceeding) the target objective values. The last row shows the averages.

The results of Table 2 allow us to conclude that IGV is significantly faster than TS in obtaining the same (or better) objective values. IGV has a smaller average hit time for 138 out of the 144 instances. The average hit time of IGV over all 144 instances is 6.89 seconds, compared to 32.72 seconds for TS. Using a one-tailed paired *t*-test, the null hypothesis that the average hit time of IGV (over 10 runs for each instance) is not less than that of TS is rejected with an extremely low *p*-value $< 6.7 \times 10^{-28}$.

The average hit times of the algorithms are visualised in Fig. 2a, where the instances are numbered as ordered in Table 2. Their side-by-side box plots are shown in Fig. 2b, which indicates lower average hit time percentiles for IGV.

5.3.2. Comparison with TS on large instances

Table 3 shows the results of the comparison on the large instances. As above, TS was run 10 times per instance using its original settings. However, this time IGV was run for the same amount of running time as spent by TS to observe whether or not it could find better objective values within that same time. The definitions of the columns in Table 3 are the same as those in Table 2 except that the third column reports *p* instead of *Best*. The *Best* values are not known for this dataset because, to the best of our knowledge, this is its first use for OpM. Please note that the average and standard deviation of the total running time, t, of IGV are not included as they are by design equivalent to those of TS. The last two columns report the average and the standard deviation of the times when it achieves (or exceeds) the best objective values obtained by TS.

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1–32

Table 2 Comparison of TS and IGV (in Python) on small instances

Instance			LS							IGV (Python)	lon)			
Filename	и	Best	f_{avg}	f_{std}	f_{best}	t_{avg}	t_{std}	t'avg	t'std	f_{avg}	f_{std}	f_{best}	t_{avg}	tstd
pmed17-p100.A	200	4054	4054	0	4054	12.14	7.16	61.7	0.98	4054.00	0.00	4054	69.0	0.17
pmed17-p25.A	200	7317	7317	0	7317	1.835	0.63	39.7	3.52	7317.00	0.00	7317	1.75	1.23
pmed17-p50.A	200	5411	5409	3.77	5411	44.36	17.3	60.7	0.93	5409.10	3.51	5411	6.19	5.50
pmed18-p100.A	200	4220	4219.4	0.92	4220	38.13	17.9	61.2	1.4	4219.70	0.64	4220	2.18	1.15
pmed18-p25.A	200	7432	7432	0	7432	1.507	0.53	39.1	5.34	7432.00	0.00	7432	96.0	0.63
pmed18-p50.A	200	5746	5746	0	5746	5.673	3.25	60.1	4.41	5746.00	0.00	5746	2.42	2.02
pmed19-p100.A	200	4033	4033	0	4033	38	14.2	6.09	6.0	4033.00	0.00	4033	2.48	1.83
pmed19-p25.A	200	7020	7020	0	7020	1.524	0.36	37.7	5.49	7020.00	0.00	7020	0.49	0.10
pmed19-p50.A	200	5387	5386.9	0.3	5387	27.98	21.5	60.7	0.63	5387.00	0.00	5387	10.35	9:36
pmed20-p100.A	200	4063	4062.7	0.46	4063	34.31	14.8	61.5	1.35	4062.80	0.40	4063	1.36	0.43
pmed20-p25.A	200	7648	7648	0	7648	1.522	0.75	39	6.72	7648.00	0.00	7648	0.52	0.12
pmed20-p50.A	200	5872	5872	0	5872	10.77	4.97	61.8	1.09	5872.00	0.00	5872	1.30	0.55
pmed21-p125.A	250	4155	4151.1	2.84	4153	27.28	12	61.1	0.98	4151.50	3.11	4155	4.38	3.91
pmed21-p31.A	250	7304	7304	0	7304	3.617	2.15	60.5	2.99	7304.00	0.00	7304	3.73	3.16
pmed21-p62.A	250	5784	5774.1	9.13	5784	48.8	16.5	61	0.88	5775.80	8.57	5784	8.16	7.03
pmed22-p125.A	250	4358	4342.2	7.24	4351	50.04	12.1	61.6	1.24	4342.90	7.01	4351	4.02	2.68
pmed22-p31.A	250	7900	7900	0	7900	4.14	1.65	6.09	2.9	7900.00	0.00	7900	1.76	1.08
pmed22-p62.A	250	5665	5665	0	5665	25.96	12.3	60.7	99.0	5995.00	0.00	5665	4.30	2.28
pmed23-p125.A	250	4114	4096.9	10.8	4114	54.88	6.14	61.6	1.54	4097.80	10.61	4114	11.40	14.35
pmed23-p31.A	250	7841	7841	0	7841	2.09	8.0	61.8	1.47	7841.00	0.00	7841	1.77	1.17
pmed23-p62.A	250	5785	5784.1	2.7	5785	23.01	14.3	61.6	96.0	5784.10	2.70	5785	3.62	2.44
pmed24-p125.A	250	4091	4088.2	4.75	4091	42.92	15.1	62.3	1.73	4089.00	4.20	4091	7.60	3.72
pmed24-p31.A	250	7425	7425	0	7425	2.587	1.25	62.1	1.1	7425.00	0.00	7425	2.14	1.39
pmed24-p62.A	250	5528	5525.1	5.72	5528	33.16	19.4	61.6	_	5526.20	4.49	5528	4.59	2.35
pmed25-p125.A	250	4155	4149.3	10.9	4155	39.17	18.9	61.9	1.63	4150.00	9.56	4155	13.88	15.65
pmed25-p31.A	250	7552	7552	0	7552	2.119	0.39	56.3	6.64	7552.00	0.00	7552	1.08	0.44
pmed25-p62.A	250	2767	2167	0	2167	28.78	16.8	61.3	1:1	5767.00	0.00	2767	3.45	1.39
pmed26-p150.A	300	4341	4319.9	5.72	4325	46.36	14.7	61.8	1.39	4321.90	6.64	4329	2.86	1.13
pmed26-p37.A	300	8112	8112	0	8112	2.367	0.28	62.6	1.92	8112.00	0.00	8112	1.29	0.26
pmed26-p75.A	300	5789	5787	4	5789	47.85	12.4	9.19	1.42	5787.10	3.81	5789	11.34	9.19
pmed27-p150.A	300	4062	4036.3	13.7	4054	50.68	7.41	61.5	1.13	4039.10	11.50	4054	4.69	2.90
													C_{0}	Continued

13.64 0.62 6.76 2.19 12.95 0.83 3.58 4.65 1.32 12.01 3.43 19.75 6.00 8.90 6.49 17.28 8.49 4.49 4.60 3.13 7.01 5880 4385 6189 4130 7424 5905 4233 7794 5925 4101 7598 5790 4279 5849 5845 7155 0.00 0.00 5.35 0.00 11.60 7.20 9.24 0.00 12.70 23.12 0.00 24.83 10.79 0.00 1.92 20.72 IGV (Python) 7366.00 7404.00 5880.00 4380.00 4110.20 7424.00 5904.10 5906.70 4081.30 7598.00 5774.30 4239.90 7725.00 5838.40 5815.40 3958.50 7155.00 4265.00 5678.80 7704.00 6184.50 4200.70 7788.20 1534.90 2.05 2.44 1.88 1.36 .62 .84 Ξ: t'std 62.6 62.4 63.5 62.6 62.6 62.5 t'_{avg} 1.65 2.29 1.16 3.64 0.47 14.5 10 9.91 6.3 13.6 9.91 15.2 6.179 7.013 4.661 43.84 37.05 55.62 33.17 49.89 14.99 33.04 16.98 43.84 57.33 5.38 50.38 50.53 5880 7704 6189 4129 4278 5844 5845 7155 4135 7404 4385 7424 5905 4232 7794 5925 4100 7598 5790 3973 6461 5681 7.56 9.88 6.26 8.8 2.4 11.6 12.9 fstd 5456.6 5678.7 4116.8 4378.7 6183.3 5903.8 4198.5 7788.2 5905.2 4080.3 5835.8 5812.2 3956.7 3178.4 4106.1 4237.7 5880 7424 7598 5772.2 7725 7704 \mathbf{I} 7704 6189 5905 4242 7794 4105 5849 7404 5880 4385 4136 7424 5925 7598 5793 4287 5845 5681 4141 6461 4007 300 300 350 350 350 350 350 350 350 350 350 350 350 и pmed31-p175.A pmed32-p175.A omed34-p175.A omed35-p100.A omed36-p100.A omed36-p200.A omed37-p200.A pmed28-p150.A pmed29-p150.A pmed30-p150.A omed33-p175.A omed35-p200.A omed37-p100.A omed28-p75.A omed29-p75.A pmed30-p37.A pmed30-p75.A omed31-p43.A pmed31-p87.A omed32-p43.A pmed33-p43.A pmed34-p43.A omed35-p50.A omed36-p50.A omed27-p37.A omed27-p75.A pmed28-p37.A pmed29-p37.A pmed32-p87.A pmed33-p87.A omed34-p87.A Filename nstance

© 2023 The Authors.

Continued

Table 2

17

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See

Table 2 Continued

ı	I	ı								et								•			,		ĺ				_								7
	t _{std}	3.91	7.02	1.94	4.98	6.14	3.16	3.09	4.05	4.06	6.62	0.48	1.61	2.67	3.84	0.24	0.71	1.80	0.53	0.71	22.14	0.38	1.26	4.50	0.92	1.26	22.30	0.36	0.75	18.98	14.49	2.88	12.54	0.71	Continue
	t_{avg}	8.62	10.33	5.85	10.40	12.41	5.31	6.36	99.6	7.71	8.76	0.80	1.49	2.29	4.15	0.61	1.35	2.73	0.71	1.74	33.60	0.80	1.71	5.68	1.69	2.93	12.35	1.02	2.09	14.12	10.45	4.30	9.78	1.83	
	f_{best}	7830	9069	4388	7432	5935	4351	7712	6271	4539	8211	3992	6905	5563	4122	7662	5852	4016	9189	5423	4067	7349	2995	4032	7331	5870	4338	7695	6229	4095	7137	5724	4072	7190	
ou)	f_{std}	4.61	5.30	15.97	0.00	7.62	15.00	0.00	11.89	10.23	6.93	0.00	0.00	0.00	2.45	0.00	0.00	2.40	0.00	0.00	0.40	0.00	0.00	3.56	0.00	0.00	96.6	0.00	0.00	8.93	0.00	0.00	7.55	0.00	
IGV (Python)	favg	7827.70	5898.60	4368.60	7432.00	5924.40	4322.60	7712.00	6251.40	4524.50	8207.60	3992.00	6905.00	5563.00	4120.00	7662.00	5852.00	4014.80	6816.00	5423.00	4066.80	7349.00	5665.00	4026.10	7331.00	5870.00	4323.60	7695.00	6259.00	4085.30	7137.00	5724.00	4062.60	7190.00	
	t'std	1.76	1.61	5.38	2.71	1.55	6.97	2.66	2.11	5.39	1.67	1.32	3.54	0.79	0.89	3.64	0.91	0.98	4.02	1.04	98.0	5.77	1.03	1.49	2.91	1.34	1.08	8.61	92.0	1.34	1.14	0.47	0.62	8.48	
	t'avg	62.5	63.5	110	63.7	62.9	109	62.8	64.2	105	63	61.4	41	61.6	6.09	40.9	61.6	61.2	41.7	61.6	61.2	36.6	62.3	61.3	61.7	62.3	6.09	55.9	62.3	61.5	61.7	8.09	61	54.6	
	tstd	13.5	86.9	7.18	5.27	7.78	8.79	6.22	8.9	8.3	12.5	5.23	0.79	9.14	17.6	0.57	10	16.7	0.55	∞	21.1	0.42	5.95	18.1	0.94	6.12	9.54	1.18	2.7	6.94	7.02	15	9.59	0.44	
	tavg	34.5	48.36	106	20.72	54.43	105.7	22.63	56.77	102.3	29.36	8.594	1.731	15.02	35.09	1.651	10.19	27.36	1.522	908.6	38.05	1.36	7.925	42.25	2.491	11.91	48.02	2.654	5.085	51.44	8.734	29.53	52.15	2.434	
	f_{best}	7830	5905	4388	7432	5935	4349	7712	6270	4536	8211	3992	6905	5563	4122	7662	5852	4016	6816	5423	4067	7349	5995	4029	7331	5870	4338	7695	6229	4095	7137	5724	4072	7190	
	fstd	4.8	4.63	17.3	0	7.56	17.6	0	12	10.7	~	0	0	0	2.94	0	0	2.75	0	0	0.46	0	0	2.65	0	0	10.8	0	0	9.15	0	0	8.45	0	
LS	favg	7827.6	8685	4364.4	7432	5921.7	4317.2	7712	6249.8	4522.9	8207	3992	9069	5563	4119.5	7662	5852	4014.2	9189	5423	4066.7	7349	2995	4024.6	7331	5870	4322.2	2692	6229	4085	7137	5724	4061.6	7190	
	Best	7830	5915	4428	7432	5935	4369	7712	6272	4572	8211	3992	6905	5563	4122	7662	5852	4016	9189	5423	4067	7349	2995	4033	7331	5870	4338	7695	6229	4095	7137	5724	4072	7190	
	и	400	450	450	450	450	450	450	450	450	450	200	200	200	200	200	200	200	200	200	200	200	200	250	250	250	250	250	250	250	250	250	250	250	
Instance	Filename	pmed37-p50.A	pmed38-p112.A	pmed38-p225.A	pmed38-p56.A	pmed39-p112.A	pmed39-p225.A	pmed39-p56.A	pmed40-p112.A	pmed40-p225.A	pmed40-p56.A	pmed17-p100.B	pmed17-p25.B	pmed17-p50.B	pmed18-p100.B	pmed18-p25.B	pmed18-p50.B	pmed19-p100.B	pmed19-p25.B	pmed19-p50.B	pmed20-p100.B	pmed20-p25.B	pmed20-p50.B	pmed21-p125.B	pmed21-p31.B	pmed21-p62.B	pmed22-p125.B	pmed22-p31.B	pmed22-p62.B	pmed23-p125.B	pmed23-p31.B	pmed23-p62.B	pmed24-p125.B	pmed24-p31.B	

0.03 0.99 1.06 2.99 1.02 15.70 7.89 92.9 0.92 4. 5.60 2.80 2.47 4.62 1.61 5692 7448 7388 5642 7529 4269 8048 7320 7643 844 5621 6041 6.50 0.00 12.90 0.00 0.87 0.00 [GV (Python) 4128.80 4038.00 5628.60 5708.50 4108.80 7320.00 4200.90 7643.00 5839.00 7388.00 4138.30 7529.00 4248.00 8048.00 6039.70 4110.50 7552.00 5923.00 7448.00 5606.70 7899.00 5691.30 4148.20 96.0 .29 1.39 .58 .05 .63 2.9 61.79.93 9.62 13.1 2.917 7388 5709 4268 8048 4119 4144 7448 5844 4055 5642 4157 7529 6041 7320 899 5692 643 5625.9 4036.2 4136.2 5708.5 6039.5 4106.2 5605.9 4198.3 1245.1 5838 7388 8048 7320 4144 7448 5691 643 \mathbf{Z} 4069 7388 5709 7448 5844 5642 4157 529 4313 8048 5692 643 5923 4144 6041 5621 300 300 300 300 300 300 300 300 и pmed26-p150.B pmed27-p150.B omed30-p150.B omed31-p175.B omed32-p175.B pmed33-p175.B omed25-p125.B pmed28-p150.B pmed29-p150.B pmed25-p31.B omed25-p62.B pmed26-p37.B pmed26-p75.B pmed27-p37.B pmed27-p75.B pmed28-p37.B pmed28-p75.B pmed29-p37.B omed29-p75.B pmed30-p37.B pmed31-p43.B omed31-p87.B omed32-p43.B omed32-p87.B omed24-p62.B pmed30-p75.B Filename nstance

© 2023 The Authors.

Table 2

Continued

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1–32

Instance			LS							IGV (Python)	hon)			
Filename	и	Best	favg	f_{std}	f_{best}	t_{avg}	t_{std}	t'avg	t'std	favg	f_{std}	f_{best}	t_{avg}	tstd
pmed33-p43.B	350	7611	7611	0	7611	7.42	4.63	62.4	2.04	7611.00	0.00	7611	6.54	5.49
pmed33-p87.B	350	5840	5815.8	10.7	5827	41.46	15.7	61.7	0.88	5819.00	11.76	5830	66.6	7.32
pmed34-p175.B	350	4270	4245.2	14.9	4269	41.54	16.2	63.8	3.06	4248.80	13.13	4270	4.95	5.73
pmed34-p43.B	350	7514	7514	0	7514	5.875	3.46	63.5	1.29	7514.00	0.00	7514	3.53	2.65
pmed34-p87.B	350	5857	5849.4	5.66	5857	50.1	14.6	8.09	0.74	5850.70	5.98	5857	11.57	7.54
pmed35-p100.B	400	5639	5621.1	14.7	5639	40.99	16.4	63.4	2.38	5624.60	13.21	5639	21.17	23.41
pmed35-p200.B	400	4109	4048.6	18.1	4090	57.31	8.63	63.6	2.04	4053.70	16.35	4090	4.32	3.03
pmed35-p50.B	400	7570	7570	0	7570	10.97	4.68	62.7	1.91	7570.00	0.00	7570	6.11	7.19
pmed36-p100.B	400	6219	6186.4	24.5	6212	46.5	15.6	62	1.51	6190.30	21.26	6212	18.27	21.38
pmed36-p200.B	400	4321	4252.9	9.61	4284	53.56	8.63	62.5	1.67	4256.20	18.47	4285	3.94	1.19
pmed36-p50.B	400	8144	8144	0	8144	22.38	13.7	62	1.21	8144.00	0.00	8144	7.07	4.25
pmed37-p100.B	400	6212	6186.8	15	6210	49.9	11.9	62.1	0.91	6191.00	15.15	6211	16.62	11.44
pmed37-p200.B	400	4609	4530.3	25.2	4576	55.36	5.6	62.7	2.11	4539.90	25.78	4576	4.40	2.93
pmed37-p50.B	400	8379	8379	0	8379	20.67	5.52	62.2	1.4	8379.00	0.00	8379	96.9	3.57
pmed38-p112.B	450	5949	5918.8	27.9	5949	52.3	9.07	62.6	1.24	5921.70	26.85	5949	20.04	15.99
pmed38-p225.B	450	4446	4397.3	10.6	4413	95.89	7.59	101	5.9	4399.60	11.49	4419	6.62	4.56
pmed38-p56.B	450	7535	7535	0	7535	28.77	6.7	63.7	2.09	7535.00	0.00	7535	33.92	20.91
pmed39-p112.B	450	6198	6184.2	17	6198	51.11	11	62.6	1.99	6189.10	9.57	8619	13.15	12.32
pmed39-p225.B	450	4268	4218.5	11.1	4246	96.37	9.39	103	6.55	4220.30	11.71	4246	4.18	0.77
pmed39-p56.B	450	7625	7618.7	11	7625	38.11	12.1	62.3	1.46	7620.90	9.92	7625	12.59	7.57
pmed40-p112.B	450	6200	6165.4	17.1	6199	53.58	Π	67.9	1.48	6166.60	17.45	6199	11.00	4.30
pmed40-p225.B	450	4532	4488.7	13.7	4509	99.74	10.7	104	7.51	4490.80	12.96	4510	5.00	1.56
pmed40-p56.B	450	8022	8021.2	9.0	8022	33.1	14.9	62.1	1.09	8021.40	99.0	8022	11.99	7.96
Average	312.50	5884.20	5 5871.23	6.21	5879.74	32.72	9.59	62.46	2.07	5872.37	5.86	5880.31	68.9	5.32

Table 2 Continued

Continued

9.62 3.05 25.61 8.97 tstd 20.49 24.34 16.99 15.88 1.13 9.03 13.23 16.37 19.23 15.30 6318 7772 6280 7664 6175 7536 6039 6257 7932 8250 6543 7537 6244 7933 0992 6235 63.90 35.54 19.19 03.08 39.79 80.12 88.87 40.82 74.07 54.85 26.93 19.21 fstd IGV (Python) 6116.30 7436.00 6219.80 6109.20 5986.60 7534.10 7454.50 6182.70 7756.40 7574.80 7504.70 7334.90 6395.70 6105.60 favg 3.08 5.28 5.45 2.95 t'std 70.42 64.22 70.54 64.45 70.72 193.6 108.1 106.7 200.9 106.3 190.5 100.5 195.5 106.3 97 t'_{avg} 14.37 9.49 4.59 13.58 6.91 8.41 7.4 tstd 66.95 02.45 91.19 97.35 60.42 104.63 179.83 186.73 66.31 58.4 185.6 103.71 t_{avg} 5894 7105 5762 7236 5772 7298 5768 5768 5762 6951 5619 7194 5751 7553 7205 64.39 108 64.69 50.19 95.93 13.16 13.61 24.57 90.52 56.21 9.89 fstd 5673.9 5637.6 7109 6.6969 7004.4 5804.4 7019.7 7072.3 6984.7 5657.5 6796.4 5460.1 5931.7 5661 a 500 500 500 700 и pmed29 flename nstance pmed22 pmed22 pmed23 pmed23 pmed24 pmed24 pmed25 pmed25 pmed26 pmed26 pmed27 pmed27 pmed28 pmed28 omed29 pmed30 pmed30 pmed21 pmed21 pmed31

© 2023 The Authors.

Comparison of TS and IGV (in Python) on large instances

 Fable 3

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [3]/10/2023]. See

Table 3
Continued
Instance
TS

Instance			TS							IGV (Python)	on)			
filename	и	р	favg	fstd	fbest	t_{wg}	tstd	t'avg	t'std	favg	f_{std}	f_{best}	t_{avg}	t_{std}
pmed31	700	233	5642.7	42.16	5714	658.69	27.31	642.4	21.3	6260.60	69.52	6372	15.63	99.9
pmed32	700	175	7276.4	58.37	7365	242.19	14.19	246.7	10.4	7912.00	71.99	8050	27.22	17.44
pmed32	200	233	2900	52.39	86038	596.66	48.5	612.9	29.7	6495.90	42.80	6553	20.23	66.6
pmed33	700	175	7217.4	89.05	7432	234.77	12.92	240.8	8.43	7755.50	83.04	7889	20.18	10.21
pmed33	700	233	5786.6	51.12	5872	595.28	41.17	614.7	22.3	6434.40	63.09	8959	26.81	16.20
pmed34	200	175	7100.5	88.78	7234	251.69	19.31	259.9	14.3	7677.50	174.07	7948	22.02	13.91
pmed34	200	233	5766.5	59.29	5879	635.94	43.28	653.8	24.9	6294.10	52.64	6382	20.06	12.49
pmed35	800	200	6923.6	65.48	7015	714.08	32.94	738	18.7	7557.70	75.98	7658	35.35	20.33
pmed35	800	766	5614.1	68.45	5728	1031.1	78.26	1051	49.7	6192.30	49.20	6247	32.23	15.96
pmed36	800	200	7542.3	120.99	7827	747.64	33.58	769.1	29.4	8186.90	47.04	8267	36.31	27.36
pmed36	800	566	6141.8	85.37	6323	1011.2	65.91	1040	37.3	6664.10	69.47	0229	32.90	21.11
pmed37	800	200	7645.2	74.42	7818	690.74	38.66	724.6	22.5	8294.40	63.56	8389	37.16	24.39
pmed37	800	598	6193.9	45.85	6260	1011.5	53.01	1039	25.2	6819.20	37.58	6892	20.81	7.92
pmed38	006	225	7210.7	104.62	7374	1175.4	54.86	1198	42.5	7833.60	59.26	7913	55.37	36.29
pmed38	006	300	5820.3	63.8	5907	1669.4	47.67	1682	42.3	6437.20	33.67	6501	35.63	11.46
pmed39	006	225	7236.1	81.57	7398	1168.6	52.8	1193	38.5	7887.20	63.09	8014	58.54	25.23
pmed39	006	300	5845.2	22	9985	1647.6	46.84	1664	42.4	6453.20	80.20	6564	48.20	16.51
pmed40	006	225	7831	85.51	7993	1184.5	51.09	1191	50.6	8451.70	54.83	8515	44.28	18.59
pmed40	006	300	6331	40.35	6403	1607.9	64.53	1642	40.7	06.0889	46.12	6950	42.32	16.80
Average	0/9	195	6499	74.4	6632.7	479.5	25.0	491.1	16.8	7042.14	83.47	7173.45	23.84	13.54

Fig. 2. (a) The average hit times of TS and IGV (Python) for small instances. (b) Their side-by-side box plots without outliers

Table 3 shows that, for all 40 of these larger instances, IGV achieves improved average (and best) objective values. Using a one-tailed paired t-test, the null hypothesis that IGV does not improve the average objective values (f_{avg}) for these instances is rejected with an extremely low p-value $< 3.5 \times 10^{-33}$.

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee

5.4. Comparison with the prior state-of-the-art IG

We now compare the implementation of our algorithms in C++ with the author's source code of IG. The comparison proceeds as in Section 5.3.

5.4.1. Comparison with IG on small instances

Table 4 presents the results for IG and IGV(C++) on the small problem instances, with the same columns as in Table 2.

Table 4 shows that, on average, IGV is significantly faster than IG in obtaining the same (or better) objective values. IGV has smaller average hit time for 141 out of 144 instances. Its average hit time over all 144 instances is 0.53 seconds, less than that of IG (26.29 seconds) by an order of magnitude. Using a one-tailed paired t-test, the null hypothesis that the average hit time of IGV (over 10 runs for each instance) is not less than that of IG is strongly rejected with a p-value $< 6.1 \times 10^{-8}$.

The average hit times of the algorithms are visualised in Fig. 3a. Their box plots are shown in Fig. 3b, which indicates significantly lower percentiles for IGV.

5.4.2. Comparison with IG on large instances

Table 5 shows the results for IG and IGV (C++) on the large instances, with the layout as in Table 3. Consistently with Section 5.3.2, IG was first run 10 times per instance using its original settings,

© 2023 The Authors.

23

1473995, 0, Downloaded from https://online.library.wiley.com/doi/10.1111/ior.1340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

Table 4 Comparison of IG and IGV (in C++) on small instances

Instance			IG							IGV (C++)	+			
Filename	и	Best	favg	f_{std}	f_{best}	t_{avg}	t_{std}	t'_{avg}	t'std	f_{avg}	f_{std}	f_{best}	t_{avg}	t_{std}
pmed17-p100.A	200	4054	4054	0	4054	0.27	0.20	17.90	0.11	4054.00	0.00	4054	0.05	0.09
pmed17-p25.A	200	7317	7317	0	7317	0.15	0.12	3.16	0.02	7317.00	0.00	7317	0.04	0.04
pmed17-p50.A	200	5411	5411	0	5411	0.88	0.40	7.44	0.07	5411.00	0.00	5411	0.16	0.14
pmed18-p100.A	200	4220	4220	0	4220	0.46	0.26	17.88	0.30	4220.00	0.00	4220	0.14	0.10
pmed18-p25.A	200	7432	7432	0	7432	90.0	90.0	2.90	0.02	7432.00	0.00	7432	0.02	0.01
pmed18-p50.A	200	5746	5746	0	5746	0.16	0.11	7.37	0.07	5746.00	0.00	5746	0.05	0.04
pmed19-p100.A	200	4033	4033	0	4033	1.12	0.91	19.25	90.0	4033.00	0.00	4033	0.04	0.02
pmed19-p25.A	200	7020	7020	0	7020	0.01	0.01	2.99	0.03	7020.00	0.00	7020	0.01	0.01
pmed19-p50.A	200	5387	5386.1	0.3	5387	0.82	0.80	7.37	90.0	5386.60	0.49	5387	0.07	0.07
pmed20-p100.A	200	4063	4063	0	4063	0.89	0.34	17.96	0.17	4063.00	0.00	4063	0.05	0.03
pmed20-p25.A	200	7648	7648	0	7648	0.02	0.02	2.91	0.02	7648.00	0.00	7648	0.01	0.01
pmed20-p50.A	200	5872	5872	0	5872	0.46	0.29	7.00	0.05	5872.00	0.00	5872	90.0	0.05
pmed21-p125.A	250	4155	4154.8	9.0	4155	5.65	4.29	47.79	0.24	4155.00	0.00	4155	0.53	0.42
pmed21-p31.A	250	7304	7304	0	7304	0.55	0.31	99.9	0.04	7304.00	0.00	7304	0.05	0.03
pmed21-p62.A	250	5784	5783.5	0.67	5784	7.53	3.93	19.57	0.28	5783.70	0.46	5784	0.24	0.25
pmed22-p125.A	250	4358	4354.4	4.45	4358	10.62	10.84	39.98	0.54	4354.70	4.20	4358	0.51	0.62
pmed22-p31.A	250	7900	7900	0	7900	0.20	0.13	6.46	0.03	7900.00	0.00	7900	0.05	0.03
pmed22-p62.A	250	5665	5665	0	5995	1.02	1.03	17.10	0.07	5995.00	0.00	5665	0.09	90.0
pmed23-p125.A	250	4114	4114	0	4114	8.13	7.57	44.58	0.13	4114.00	0.00	4114	1.35	1.07
pmed23-p31.A	250	7841	7841	0	7841	0.04	0.05	6.84	0.02	7841.00	0.00	7841	0.04	0.04
pmed23-p62.A	250	5785	5785	0	5785	2.99	2.09	17.95	0.07	5785.00	0.00	5785	0.07	0.04
pmed24-p125.A	250	4091	4091	0	4091	9.32	6.24	49.98	0.09	4091.00	0.00	4091	90.0	0.03
pmed24-p31.A	250	7425	7425	0	7425	0.12	0.12	6:39	0.04	7425.00	0.00	7425	0.03	0.02
pmed24-p62.A	250	5528	5528	0	5528	1.15	1.35	16.83	0.08	5528.00	0.00	5528	0.12	90.0
pmed25-p125.A	250	4155	4155	0	4155	10.91	11.12	49.96	0.16	4155.00	0.00	4155	0.24	0.19
pmed25-p31.A	250	7552	7552	0	7552	90.0	0.05	6.73	0.03	7552.00	0.00	7552	0.02	0.01
														Donnituo

1.82 0.87 tstd 0.45 0.10 0.42 90.0 0.20 0.07 0.19 69.0 0.44 0.45 1.67 0.21 5880 1385 6189 5905 5925 9999 4099 7366 5681 4141 7404 7704 7424 1242 7794 598 2.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.90 0.00 0.00 1.48 0.00 0.00 1.51 (GV (C++) 5905.00 4062.00 7556.00 4099.00 366.00 7404.00 5880.00 4385.00 704.00 6187.00 4135.30 794.00 5925.00 7598.00 1287.00 4139.90 7424.00 4103.00 5767.00 4340.30 5789.00 5668.00 5681.00 1241.30 tavg 0.10 0.10 0.09 0.26 0.26 0.65 0.42 0.04 0.72 96.0 0.09 0.31 0.21 t'std 38.03 13.96 38.58 98.44 37.55 88.78 12.95 38.62 86.97 23.26 68.25 60.43 23.08 66.53 64.30 23.27 38.11 12.91 82.21 avg 0.10 4.40 0.87 2.63 6.92 51.98 1.07 43.93 0.81 std 7.95 0.58 39.75 8.99 44.73 0.21 6189 5905 8999 4099 7366 5681 4141 7404 5880 4385 7704 4136 7424 4242 794 5925 4105 598 4062 fstd 4139.1 6186.5 4102.5 4241.2 4340.3 5905 7556 7404 5880 4385 7704 4135 7794 5925 2865 5789 4062 8999 4099 7366 7424 5681 5905 8999 7366 7404 5880 4385 6189 4136 4242 5681 4141 7704 7424 5925 4105 7598 Best 4062 4099 300 300 300 300 300 300 350 350 350 350 pmed26-p150.A pmed30-p150.A pmed31-p175.A pmed32-p175.A pmed27-p150.A pmed28-p150.A omed29-p150.A omed33-p175.A omed34-p175.A pmed26-p75.A omed27-p37.A pmed28-p37.A pmed28-p75.A pmed29-p37.A pmed30-p37.A pmed30-p75.A omed31-p87.A omed32-p43.A omed32-p87.A med33-p43.A omed33-p87.A omed25-p62.A med26-p37.A pmed27-p75.A pmed29-p75.A pmed31-p43.A omed34-p43.A Filename nstance

© 2023 The Authors.

Continued

 Table 4

Table 4 Continued

Instance			IG							IGV (C++)	1			
Filename	и	Best	favg	f_{std}	f_{best}	tavg	tstd	t'avg	t'std	favg	f_{std}	f_{best}	t_{avg}	tstd
pmed34-p87.A	350	5849	5846.5	2.5	5849	11.46	10.04	67.23	0.52	5847.30	2.24	5849	1.57	1.29
pmed35-p100.A	400	5845	5845	0	5845	24.75	12.17	122.41	0.33	5845.00	0.00	5845	0.34	0.20
pmed35-p200.A	400	4007	4005.5	1.5	4007	105.77	70.85	314.22	1.73	4005.80	1.54	4007	1.41	1.14
pmed35-p50.A	400	7155	7155	0	7155	1.06	0.40	40.17	0.19	7155.00	0.00	7155	0.16	0.10
pmed36-p100.A	400	6461	6461	0	6461	8.99	3.22	115.52	0.32	6461.00	0.00	6461	0.12	0.07
pmed36-p200.A	400	4319	4316.3	4.22	4319	124.90	68.36	292.75	1.80	4316.60	4.08	4319	6.28	7.36
pmed36-p50.A	400	8179	8179	0	8179	1.40	1.02	39.13	0.13	8179.00	0.00	8179	0.10	0.07
pmed37-p100.A	400	6203	6203	0	6203	42.76	34.37	114.78	0.29	6203.00	0.00	6203	0.92	0.58
pmed37-p200.A	400	4593	4591.4	2.33	4593	188.30	86.45	302.35	2.60	4591.40	2.33	4593	1.19	1.32
pmed37-p50.A	400	7830	7830	0	7830	3.78	2.31	38.64	0.20	7830.00	0.00	7830	0.23	0.11
pmed38-p112.A	450	5915	5914.2	1.33	5915	77.54	51.80	197.86	2.25	5914.20	1.33	5915	2.20	2.03
pmed38-p225.A	450	4428	4426.7	1.1	4428	228.99	170.09	513.18	2.82	4427.00	1.00	4428	0.90	0.72
pmed38-p56.A	450	7432	7432	0	7432	0.80	0.62	63.16	0.30	7432.00	0.00	7432	0.18	80.0
pmed39-p112.A	450	5935	5935	0	5935	14.59	8.56	194.75	0.53	5935.00	0.00	5935	0.29	0.19
pmed39-p225.A	450	4369	4368.6	0.49	4369	202.38	111.73	491.95	1.10	4368.70	0.46	4369	5.97	4.45
pmed39-p56.A	450	7712	7712	0	7712	1.56	1.12	65.71	0.31	7712.00	0.00	7712	0.13	80.0
pmed40-p112.A	450	6272	6271.9	0.3	6272	76.38	53.88	193.10	1.07	6271.90	0.30	6272	1.27	0.71
pmed40-p225.A	450	4572	4570.3	1.35	4572	176.95	108.69	480.60	1.91	4570.50	1.20	4572	1.33	1.01
pmed40-p56.A	450	8211	8211	0	8211	1.91	0.61	67.30	0.18	8211.00	0.00	8211	0.14	90.0
pmed17-p100.B	200	3992	3992	0	3992	0.24	0.27	20.43	0.07	3992.00	0.00	3992	0.02	0.03
pmed17-p25.B	200	6905	6905	0	9069	90.0	0.05	2.83	0.01	6905.00	0.00	6905	0.02	0.01
pmed17-p50.B	200	5563	5563	0	5563	0.57	0.37	7.98	0.04	5563.00	0.00	5563	0.04	0.04
pmed18-p100.B	200	4122	4121.7	6.0	4122	2.41	1.86	16.28	0.19	4121.70	06.0	4122	90.0	0.04
pmed18-p25.B	200	7662	7662	0	7662	0.10	0.07	2.83	0.02	7662.00	0.00	7662	0.01	0.01
pmed18-p50.B	200	5852	5852	0	5852	0.18	0.16	6.94	90.0	5852.00	0.00	5852	0.03	0.02
pmed19-p100.B	200	4016	4016	0	4016	0.33	0.30	17.39	0.05	4016.00	0.00	4016	0.12	0.12
pmed19-p25.B	200	6816	6816	0	6816	0.02	0.01	2.69	0.02	6816.00	0.00	6816	0.01	0.00
													0	Continued

0.05 0.03 0.03 tstd 0.08 0.16 0.04 0.20 0.08 0.20 0.25 0.08 0.42 0.05 0.33 0.21 4095 7190 7552 5692 7448 349 5995 7695 7137 4072 5752 1233 7643 5923 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (GV (C++) 4072.00 7552.00 4067.00 5665.00 4032.30 7331.00 4337.30 695.00 7137.00 5724.00 5752.00 4230.70 7643.00 5923.00 5844.00 00.690t 7349.00 5870.00 5259.00 4095.00 7190.00 5692.00 4173.00 4144.00 7448.00 tavg 0.08 0.25 0.10 0.18 90.0 0.04 0.04 0.22 t'std 7.96 43.68 6.49 99.81 42.35 47.13 5.95 7.35 43.17 6.85 19.09 99.55 38.50 6.57 6.63 6.11 t'_{avg} 0.89 12.61 2.85 5.43 15.63 2.67 0.484.51 12.01 0.21 tstd 0.0 99.0 6.42 6.79 6259 7190 5999 5870 4338 7695 4095 7137 5724 4072 5752 4233 7552 5692 4173 7643 5923 4144 448 4033 7331 fstd 4337.2 4230.2 7695 6229 7190 5995 4032 5870 4095 7137 5724 4072 5752 7552 5692 7331 7448 4067 7349 643 5923 G 5995 5870 6229 4095 7190 4233 5692 7349 7695 7137 4072 5752 7552 7643 5923 7448 Best 7331 4144 250 250 250 250 250 250 250 250 250 250 250 250 250 300 300 pmed20-p100.B omed24-p125.B pmed26-p150.B pmed26-p37.B pmed26-p75.B omed27-p150.B pmed28-p150.B pmed21-p125.B pmed22-p125.B pmed23-p125.B pmed25-p125.B omed19-p50.B omed20-p25.B pmed20-p50.B omed21-p31.B pmed21-p62.B pmed22-p31.B pmed22-p62.B pmed23-p31.B pmed23-p62.B pmed24-p31.B pmed24-p62.B pmed25-p31.B pmed25-p62.B omed27-p37.B omed27-p75.B omed28-p37.B Filename nstance

© 2023 The Authors.

Continued

 Table 4

able 4	ontinued
_	()

Instance			IG							IGV (C++)	(+			
Filename	и	Best	f_{avg}	f_{std}	f_{best}	t_{avg}	t_{std}	t ' $_{avg}$	t'std	f_{avg}	f_{std}	f_{best}	t_{avg}	t_{std}
pmed28-p75.B	300	5642	5640.1	3.81	5642	12.28	8.66	37.38	0.14	5640.10	3.81	5642	0.49	0.34
pmed29-p150.B	300	4157	4157	0	4157	5.73	2.38	103.64	1.94	4157.00	0.00	4157	0.22	0.15
pmed29-p37.B	300	7529	7529	0	7529	0.17	0.11	13.14	0.07	7529.00	0.00	7529	0.07	0.03
pmed29-p75.B	300	5709	5709	0	5709	10.37	8.41	36.98	0.18	5709.00	0.00	5709	0.26	0.18
pmed30-p150.B	300	4313	4313	0	4313	22.93	15.16	96'96	0.47	4313.00	0.00	4313	0.52	0.32
pmed30-p37.B	300	8048	8048	0	8048	0.38	0.39	13.31	0.17	8048.00	0.00	8048	0.03	0.02
pmed30-p75.B	300	6041	6041	0	6041	4.52	3.12	37.52	0.19	6041.00	0.00	6041	0.08	0.05
pmed31-p175.B	350	4138	4138	0	4138	28.67	17.28	180.12	0.58	4138.00	0.00	4138	1.25	0.59
pmed31-p43.B	350	7320	7320	0	7320	3.17	2.31	23.88	0.16	7320.00	0.00	7320	0.18	0.12
pmed31-p87.B	350	5621	5617.4	3.26	5621	30.30	15.45	70.01	0.23	5617.70	3.07	5621	0.54	0.53
pmed32-p175.B	350	4247	4243.7	6.0	4244	68.85	45.82	165.29	1.57	4244.70	1.79	4247	0.94	0.81
pmed32-p43.B	350	7899	7899	0	7899	3.26	5.88	23.60	0.17	7899.00	0.00	7899	0.22	0.22
pmed32-p87.B	350	5852	5845.2	3.52	5852	27.25	19.29	67.02	0.25	5847.70	3.66	5852	0.87	0.55
pmed33-p175.B	350	4156	4154.9	1.7	4156	65.87	41.12	173.18	1.21	4155.10	1.37	4156	0.63	0.28
pmed33-p43.B	350	7611	7611	0	7611	1.57	0.86	22.63	0.12	7611.00	0.00	7611	0.18	0.10
pmed33-p87.B	350	5840	5839.2	1.6	5840	27.54	20.27	67.73	0.31	5839.20	1.60	5840	0.51	0.43
pmed34-p175.B	350	4270	4270	0	4270	15.92	9.95	182.11	1.07	4270.00	0.00	4270	0.38	0.36
pmed34-p43.B	350	7514	7514	0	7514	0.39	0.28	24.21	0.10	7514.00	0.00	7514	90.0	0.04
pmed34-p87.B	350	5857	5855.7	1.35	5857	24.51	18.32	69.95	0.28	5856.20	1.25	5857	0.51	0.34
pmed35-p100.B	400	5639	5639	0	5639	26.37	23.00	115.73	0.71	5639.00	0.00	5639	0.79	0.45
pmed35-p200.B	400	4109	4108.3	1.19	4109	126.49	96.34	300.89	2.66	4108.30	1.19	4109	1.41	0.92
pmed35-p50.B	400	7570	7570	0	7570	0.89	0.37	42.20	0.27	7570.00	0.00	7570	0.15	0.10
pmed36-p100.B	400	6219	6214.3	3.00	6219	28.06	16.35	114.68	0.48	6214.70	3.03	6219	1.73	3.07
pmed36-p200.B	400	4321	4318.4	1.5	4321	113.80	67.75	264.96	5.36	4319.00	1.61	4321	1.33	1.15
pmed36-p50.B	400	8144	8144	0	8144	0.77	0.51	39.69	0.25	8144.00	0.00	8144	0.22	0.12
pmed37-p100.B	400	6212	6209.2	1.99	6212	26.99	30.43	113.50	0.95	6209.40	2.06	6212	1.36	1.07
pmed37-p200.B	400	4609	4608.6	8.0	4609	113.79	94.86	317.46	1.23	4608.60	08.0	4609	0.35	0.36
pmed37-p50.B	400	8379	8379	0	8379	0.60	0.51	39.19	0.18	8379.00	0.00	8379	0.43	66.0
pmed38-p112.B	450	5949	5949	0	5949	65.23	37.18	199.65	0.56	5949.00	0.00	5949	0.50	0.40
pmed38-p225.B	450	4446	4443.9	2.17	4446	311.32	184.21	566.25	4.40	4444.30	1.79	4446	0.95	0.57
pmed38-p56.B	450	7535	7535	0	7535	7.50	10.63	67.94	0.39	7535.00	0.00	7535	0.48	0.51
pmed39-p112.B	450	6198	6198	0	8619	55.33	55.61	198.66	0.64	6198.00	0.00	6198	0.39	0.33
pmed39-p225.B	450	4268	4264.1	2.34	4266	225.23	177.94	526.57	6.26	4264.30	2.24	4266	2.27	2.59
pmed39-p56.B	450	7625	7625	0	7625	3.95	2.51	65.29	0.25	7625.00	0.00	7625	0.28	0.13
pmed40-p112.B	450	6200	6199.6	0.92	6200	83.50	64.81	190.87	0.49	6199.60	0.92	6200	2.16	1.46
pmed40-p225.B	450	4532	4530.3	2.1	4532	329.04	118.57	497.58	1.72	4530.30	2.10	4532	8.00	88.9
pmed40-p56.B	450	8022	8022	0	8022	5.05	7.39	64.37	0.54	8022.00	0.00	8022	0.37	0.19
Average	312.50	5884.26	5883.77	0.48	5884.22	26.29	16.92	82.47	0.50	5883.86	0.46	5884.24	0.53	0.46

© 2023 The Authors.

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1–32

Continued

76.85 12.80 36.05 34.84 20.96 1.91 tstd. 26.68 62.46 16.09 7905 6367 7642 6399 7836 6344 7709 6240 6157 8099 8599 6889 7581 0.00 0.00 4.06 0.00 2.98 0.00 3.60 0.30 0.40 3.92 8.97 f_{std} (GV (C++) 7834.90 6342.40 7709.00 5232.00 7579.80 6156.90 7905.00 6366.20 3098.20 6644.30 7862.00 6281.30 8274.00 6628.00 7707.00 6312.00 7631.60 7934.00 6395.30 5281.90 f_{avg} 2.20 3.80 13.00 21.70 19.10 34.80 16.10 33.70 16.80 9.64 39.60 5.85 4.05 25.40 t'std 752.07 1108.70 760.73 1127.40 720.81 146.10 649.10 280.09 432.43 440.09 726.59 1114.70 752.89 624.00 09.609 277.84 417.37 303.51 t' avg 295.53 132.16 270.19 30.23 90.66 64.24 02.38 76.57 97.62 80.16 263.02 96.85 281.13 165.86 188.56 278.64 504.02 554.79 457.87 t_{std} 224.69 482.34 593.02 546.01 797.63 533.20 675.22 029.04 285.64 586.07 833.94 505.81 701.01 230.20 197.76 73.77 t_{avg} Comparison of IG and IGV (in C++) on large instances 6315 5329 8099 6300 7588 6276 7808 6298 7633 6175 7535 6098 8908 9009 7883 7642 7857 7801 76.35 57.54 83.66 65.42 54.29 61.33 58.14 39.14 54.62 35.97 81.48 38.76 72.37 17.80 36.31 f_{std} 7759.9 7557.9 7458.6 6468.4 7547.8 6219.2 7750.4 6179.7 6192.4 6110.7 6057.8 7801.6 6553.2 7621.6 6257.5 7968.1 7563.7 6247. f_{avg} G и filename pmed30 nstance pmed22 pmed22 pmed23 pmed24 pmed24 pmed25 pmed25 pmed26 pmed26 pmed27 pmed28 pmed28 pmed29 pmed29 pmed30 pmed32 pmed23 pmed27 pmed21 pmed31 pmed2] omed3] Spence 37

© 2023 The Authors.

Fable 5

S. Mousavi et al. / Intl. Trans. in Op. Res. 0 (2023) 1–32

Instance			IG							IGV (C++	(-			
filename	и	b	favg	f_{std}	f_{best}	t_{avg}	tstd	t'avg	t'std	favg	fstd	f_{best}	tavg	tstd
pmed33	700	175	7820.4	33.66	7888	1023.92	331.69	1629.50	9.97	09.7967	0.80	8962	4.66	1.77
pmed33	700	233	6416.5	58.38	6480	1478.08	603.38	2536.60	78.20	6579.10	1.30	6582	66.9	4.08
pmed34	700	175	7707.4	74.53	7863	1162.92	508.27	1676.30	54.60	7950.00	0.00	7950	8.86	15.32
pmed34	700	233	6302.7	32.69	6377	1511.73	614.08	2446.60	54.40	6411.90	5.50	6416	11.03	5.19
pmed35	800	200	7519	42.37	7580	2946.42	539.47	4086.80	92.30	7675.80	1.83	1677	10.81	6.49
pmed35	800	266	6138.1	34.72	6203	3399.07	825.30	4626.90	103.00	6253.70	2.69	6257	14.36	17.25
pmed36	800	200	8196.6	79.35	8283	1778.23	802.97	3229.30	50.90	8325.90	1.30	8327	21.94	14.32
pmed36	800	266	6683.5	51.42	6745	2804.68	869.03	4758.40	62.30	6807.40	5.66	6817	24.63	12.45
pmed37	800	200	8330.1	47.83	8420	2210.35	651.29	2989.20	06.99	8440.60	2.73	8443	92.53	222.80
pmed37	800	266	8.97.29	55.08	6834	3075.17	1466.10	4615.70	175.00	6927.70	1.19	6369	28.17	20.73
pmed38	006	225	7794.2	66.24	7878	3420.46	1897.50	6239.10	115.00	7963.00	0.00	7963	16.04	9.46
pmed38	006	300	6325.6	90.59	6417	5284.34	2930.10	9478.50	119.00	6513.80	3.57	6520	15.23	12.08
pmed39	006	225	7902.1	105.00	8008	3410.52	1804.20	6255.10	78.50	8054.00	0.00	8054	24.41	18.91
pmed39	006	300	6378.3	67.62	6452	6903.65	1775.60	9327.20	226.00	6570.70	0.46	6571	17.61	89.6
pmed40	006	225	8452.3	67.29	8516	3814.37	1692.90	02.6009	61.10	8581.80	2.40	8584	27.86	15.09
pmed40	006	300	6858.7	31.92	6912	6452.64	1999.40	9336.10	224.00	6994.00	2.37	8669	16.36	12.76
Average	029	195	7087	62.4	7168.9	1610.5	8.709	2512.7	50.4	7224.37	2.53	7227.20	16.28	19.18

Fig. 3. (a) The average hit times of IG and IGV (C++) for small instances. (b) Their side-by-side box plots without outliers.

and then IGV was run for the same amount of running time as spent by IG on each run of each instance, allowing a fair comparison of the obtained objective values.

Table 5 reports that, for all 40 instances, IGV obtains improved average (and best) objective values, compared to those of IG. Using a one-tailed paired *t*-test, the null hypothesis that IGV does not improve the average objective values (f_{avg}) is rejected with a *p*-value < 1.3×10^{-22} .

14753959, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee (and the conditions) of the conditions of the condition of the conditio

6. Conclusions and future work

6.1. Conclusions

This paper proposed a new algorithm for the OpM problem. It hybridises techniques from the IG and VNS metaheuristics, which are among the effective metaheuristics for optimisation problems (Demir, 2022; Rocha et al., 2022). It generalises previous ideas in the literature such as the reduced local search (Herrán et al., 2020) and the replacement of the facility swap operation with two consecutive operations of closing and opening a facility (Lin and Guan, 2018; Herrán et al., 2020). The main structure is an improved hybrid of those used in the IG algorithm by Gökalp (2020) and the standard VNS as detailed in Section 3. The overall algorithm is still simpler than most existing metaheuristic algorithms for the problem, being centred on two unit operations of closing and opening a facility with no additional local search.

The proposed algorithm significantly outperformed the current state-of-the-art metaheuristic algorithms on existing benchmark instances, achieving better or the same objective values in far less time. We also introduced a new benchmark set of larger instances upon which the new algorithm was found to achieve better objective values than the current stateoftheart when allowed the same time. We thus conclude the proposed algorithm to be the new state-of-the-art metaheuristic algorithm for the OpM problem.

© 2023 The Authors.

14753995, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/itor.13340 by Test, Wiley Online Library on [31/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensee

There are several avenues for potential future work. First, we could seek to speed up the algorithm by using additional data structures to keep the second-nearest facility $F_i^{(2)}$ to client $i \in I$ and the set $C_i^{(2)}$ of clients whose second-nearest facility is $j \in J$.

Second, there is scope for more consideration of the algorithm parameters γ and τ . In the comparisons above these were fixed to 0.6 and 6. Because their values can significantly affect the performance of the algorithm, a valuable future work can be the investigation of various mechanisms to set these parameters. That is, we go beyond simply tuning them for a given dataset as in Section 5.2 and set them on a per-instance basis and even change them dynamically as the algorithm runs. Machine learning may be used for this purpose. Another approach is to view the problem of obtaining the best values of γ and τ as an optimisation problem on its own and apply a high-level metaheuristic algorithm to obtain suitable values. It could also be worth investigating alternative mechanisms to set the control variable α and the reconstruction size radius.

Because of the success of the proposed algorithm IGV, compared to the state of the art for OpM and the similarity of pM to OpM, another future work is to adapt the algorithm to address pM. The only difference between these problems is that the objective function is to be minimised for pM instead of maximised. Therefore, the IGV algorithm can be readily used for pM after making the following minor changes:

- 1. Replace '>' with '<' in lines 13 and 16 of **IG1** and **IG2** (Algorithm 2), and replace 'min' with 'max' in lines 20.
- 2. Change the direction of the comparison in line 5 of both the Close_facility and Open_facility functions (Algorithms 3 and 4). Change '-1' to ' ∞ ' in lines 2 and 11 in Close_facility and ' ∞ ' to '-1' in the same lines in Open facility.

This means that another potential contribution of this paper could be to bridge the gap between the literatures of these two problems, allowing to unify the research for them. Currently, there are different algorithms and even different benchmarks in the literature of these problems.

Finally, a natural avenue for future work is to adapt the proposed algorithm to address other facility location problems. Because of its significant results in this paper, the algorithm or its ideas may even be adapted for other NP-hard optimisation problems.

Acknowledgments

The authors would like to thank Dr. O. Gökalp and Dr. J. Chang for promptly replying to enquiries and providing their source codes. They also thank the anonymous reviewers of both this and the previous version of this manuscript for their useful suggestions.

References

Beasley, J.E., 1990a. OR-Library: distributing test problems by electronic mail. *Journal of the Operational Research Society* 41, 11, 1069–1072.

- Beasley, J. E., 1990b, OR-library, Available at http://people.brunel.ac.uk/~mastijb/jeb/orlib/pmedinfo.html (accessed 30 September 2020).
- Belotti, P., Labbé, M., Maffioli, F., Ndiaye, M.M., 2007. A branch-and-cut method for the obnoxious p-median problem. 4OR 5, 4, 299–314.
- Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys (CSUR) 35, 3, 268–308.
- Chang, J., Wang, L., Hao, J.K., Wang, Y., 2021. Parallel iterative solution-based tabu search for the obnoxious p-median problem. Computers & Operations Research 127, 105155.
- Church, R.L., Drezner, Z., 2022. Review of obnoxious facilities location problems. Computers & Operations Research 138, 105468.
- Church, R.L., Garfinkel, R.S., 1978. Locating an obnoxious facility on a network. Transportation Science 12, 2, 107–118. Colmenar, J.M., Greistorfer, P., Martí, R., Duarte, A., 2016a. Advanced greedy randomized adaptive search procedure for the obnoxious p-median problem. European Journal of Operational Research 252, 2, 432-442.
- Colmenar, J. M., Greistorfer, P., Martí, R., Duarte A., 2016b. Optsicom project, University of Valencia, Spain. Available at http://grafo.etsii.urjc.es/optsicom/opm/ (accessed 26 October 2020).
- Demir, Y., 2022. An iterated greedy algorithm for the planning of yarn-dyeing boilers. International Transactions in Operational Research, https://doi.org/10.1111/itor.13232
- Erkut, E., Neuman, S., 1989. Analytical models for locating undesirable facilities. European Journal of Operational Research 40, 3, 275-291.
- Gökalp, O., 2020. An iterated greedy algorithm for the obnoxious p-median problem. Engineering Applications of Artificial Intelligence 92, 103674.
- Herrán, A., Colmenar, J.M., Martí, R., Duarte, A., 2020. A parallel variable neighborhood search approach for the obnoxious p-median problem. International Transactions in Operational Research 27, 1, 336-360.
- Lin, G., Guan, J., 2018. A hybrid binary particle swarm optimization for the obnoxious p-median problem. *Information* Sciences 425, 1–17.
- Mladenović, N., Labbé, M., Hansen, P., 2003. Solving the p-center problem with tabu search and variable neighborhood search. Networks: An International Journal 42, 1, 48-64.
- Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A., 2007. The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research 179, 3, 927–939.
- Mladenović, N., Todosijević, R., Urošević, D., 2016. Less is more: basic variable neighborhood search for minimum differential dispersion problem. *Information Sciences* 326, 160–171.
- Mladenović, N., Alkandari, A., Pei, J., Todosijević, R., Pardalos, P.M., 2020. Less is more approach: basic variable neighborhood search for the obnoxious p-median problem. International Transactions in Operational Research 27, 1, 480-493.
- Mousavi, S.R., 2023. Exploiting flat subspaces in local search for p-Center problem and two fault-tolerant variants. Computers & Operations Research 149, P. 106023.
- Plastria, F., 1996. Optimal location of undesirable facilities: a selective overview. JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science 36, 2-3, 109-127.
- Pullan, W., 2008. A memetic genetic algorithm for the vertex p-center problem. Evolutionary Computation 16, 3, 417–436. Reese, J., 2006. Solution methods for the p-median problem: an annotated bibliography. NETWORKS: An International Journal 48, 3, 125-142.
- Rocha, C., Pessoa, B.J., Aloise, D., Cabral, L.A., 2022. An efficient implementation of a VNS heuristic for the weighted fair sequences problem. International Transactions in Operational Research. https://doi.org/10.1111/itor.13197
- Tamir, A., 1991. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics 4, 4, 550–567.