Boat Safety-Sutow Brett

July 28, 2021

```
[3]: #Boat Safety#
      #Setup#
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      import squarify as sq
      import statsmodels.api as sm
 [4]: #Loads Data#
      VesselAccidents= pd.read_csv('/Users/Brett/Desktop/Vessel Type Accidents 2020.
       ⇔csv¹)
      Factors= pd.read_csv('/Users/Brett/Desktop/2020 Factors for Accident.csv')
      PersonalWaterCraft= pd.read_csv('/Users/Brett/Desktop/watercraft.csv')
      AccidentType= pd.read_csv('/Users/Brett/Desktop/Accident Type Boating Datam2020.
       ⇔csv')
      Accidents2001= pd.read_csv('/Users/Brett/Desktop/Data since 2001.csv')
[41]: #Prints Heads#
      print(VesselAccidents)
      print(Factors)
      print(PersonalWaterCraft)
      print(AccidentType)
      print(Accidents2001)
```

```
Type of Boat Drownings Other Deaths Total Deaths Total Injuries
0
        Open Motorboat
                               260
                                              116
                                                             376
                                                                             1520
  Personal Watercraft
                                19
                                               47
                                                              66
                                                                             896
1
2
       Cabin Motorboat
                                16
                                               17
                                                              33
                                                                              298
3
               Pontoon
                                53
                                               14
                                                              67
                                                                              232
4
           Canoe/Kayak
                               131
                                               23
                                                             154
                                                                              117
                             Crash Reason Accidents
                                                       Deaths
                                                               Injuries
0
                              Alcohol Use
                                                  296
                                                           115
                                                                     260
                                                            8
                                                                       2
1
                                 Drug Use
                                                   12
2
                          Excessive Speed
                                                  418
                                                            32
                                                                     345
3
                          Failure to Vent
                                                   54
                                                            5
                                                                      89
4
                         Improper Lookout
                                                  578
                                                            28
                                                                     409
5
    Inadqeuate Onboard Navigation Lights
                                                                      16
                                                   21
                                                            0
```

6	Navigation Rules Violation			on 3	316 26	220	
7	Operator Inattention			on 6	664 55	383	
8		Ope	rator Inexperienc	e 6	512 56	343	
9			Restricted Visi	on	67 2	47	
10			Sharp Tu	rn	67 7	66	
11			Starting in Ge		4 0	2	
	Year	Fatalities	Injured persons	Accidents	Sales	Number in use	
0	1987	5	156	376	29000.0	92756.0	
1	1988	20	254	650	48000.0	126881.0	
2	1989	20	402	844	64000.0	178510.0	
3	1990	28	532	1162	72000.0	241376.0	
4	1991	26	708	1513	68000.0	305915.0	
5	1992	34	730	1650	79000.0	372283.0	
6	1993	35	915	2236	107000.0	454545.0	
7	1994	56	1338	3002	142000.0	600000.0	
8	1995	68	1617	3986	200000.0	760000.0	
9	1996	57	1837	4099	191000.0	900000.0	
10	1997	84	1812	4070	176000.0	1000000.0	
11	1998	78	1743	3607	130000.0	1180000.0	
12	1999	66	1614	3374	106000.0	1200000.0	
13	2000	68	1580	3268	92000.0	1230000.0	
14	2001	50	1424	2562	80900.0	1220000.0	
15	2002	71	1362	2225	79300.0	1220000.0	
16	2003	57	1228	1994	80600.0	1170000.0	
17	2004	56	952	1664	79500.0	1250000.0	
18	2005	65	1007	1692	80200.0	1230000.0	
19	2006	68	919	1631	82200.0	1190000.0	
20	2007	67	982	1655	79900.0	1190000.0	
21	2008	45	920	1459	62600.0	1240000.0	
22	2009	42	878	1332	44500.0	1330000.0	
23	2010	38	776	1221	41600.0	1270000.0	
24	2011	44	764	1158	42900.0	1270000.0	
25	2012	58	721	1111	38500.0	1250000.0	
26	2013	36	601	954	39400.0	1270000.0	
27	2014	34	592	891	47900.0	1200000.0	
28	2015	33	623	1023	54900.0	NaN	
29	2016	46	675	1072	59000.0	NaN	
30	2017	46	624	1028	NaN	NaN	
31	2018	42	634	1055	69000.0	NaN	
32	2019	46	614	1062	73000.0	NaN	
			Accident Type	Number of	Accidents	Number of Deaths	\
0	Collis	ion with rec	reational vessel		1379	66	
1		F	looding/Swamping		589	84	
2		Collision w	ith fixed object		542	62	
3			Grounding		484	14	
4			Falls overboard		335	181	

Number of Injuries

0			831	
1			128	
2			389	
3			255	
4			161	
	Year	Deaths	Injuries	Accidents
0	2001	681	4274	6419
1	2002	750	4062	5705
2	2003	703	3888	5438
3	2004	676	3363	4904
4	2005	697	3451	4969
5	2006	710	3474	4967
6	2007	685	3673	5191
7	2008	709	3331	4789
8	2009	736	3358	4730
9	2010	672	3153	4604
10	2011	758	3081	4588
11	2012	651	3000	4515
12	2013	560	2620	4062
13	2014	610	2678	4064
14	2015	626	2613	4158
15	2016	701	2903	4463
16	2017	658	2629	4291
17	2018	633	2511	4145
18	2019	613	2559	4168
19	2020	767	3191	5265

[42]: #Looks at the detailed described information for each dataset# Accidents2001.describe()

```
[42]:
                                         Injuries
                    Year
                              Deaths
                                                       Accidents
               20.00000
                                         20.000000
                                                       20.000000
                           20.000000
      count
                                                     4771.750000
      mean
             2010.50000
                          679.800000
                                       3190.600000
      std
                 5.91608
                           53.818995
                                        518.517766
                                                      612.881449
      \min
             2001.00000
                          560.000000
                                       2511.000000
                                                     4062.000000
      25%
             2005.75000
                          646.500000
                                       2665.750000
                                                     4260.250000
      50%
             2010.50000
                          683.000000
                                       3172.000000
                                                     4667.000000
      75%
             2015.25000
                          709.250000
                                       3456.750000
                                                     5024.500000
             2020.00000
                          767.000000
                                       4274.000000
                                                     6419.000000
      max
```

[43]: VesselAccidents.describe()

[43]:		Drownings	Other Deaths	Total Deaths	Total Injuries
	count	5.00000	5.000000	5.000000	5.000000
	mean	95.80000	43.400000	139.200000	612.600000
	std	102.83336	42.606338	139.770168	590.156589
	min	16.00000	14.000000	33.000000	117.000000

```
50%
              53.00000
                             23.000000
                                           67.000000
                                                           298.000000
      75%
              131.00000
                            47.000000
                                          154.000000
                                                           896.000000
              260.00000
                           116.000000
                                          376.000000
                                                          1520.000000
      max
[44]:
      Factors.describe()
[44]:
              Accidents
                               Deaths
                                         Injuries
               12.000000
                           12.000000
                                        12.000000
      count
              259.083333
                           27.833333
                                       181.833333
      mean
              255.614219
                           33.999554
                                       160.859528
      std
      min
                4.000000
                            0.000000
                                         2.000000
      25%
              45.750000
                            4.250000
                                        39.250000
      50%
              181.500000
                           17.000000
                                       154.500000
      75%
             458.000000
                           37.750000
                                       343.500000
             664.000000
      max
                          115.000000
                                       409.000000
[45]: PersonalWaterCraft.dropna()
      PersonalWaterCraft.describe()
[45]:
                    Year
                          Fatalities
                                       Injured persons
                                                           Accidents
                                                                                Sales
                33.00000
                           33.000000
                                              33.000000
                                                           33.000000
                                                                            32.000000
      count
      mean
             2003.00000
                           48.151515
                                             955.575758
                                                         1837.151515
                                                                         82496.875000
      std
                 9.66954
                           18.313453
                                             455.549807
                                                          1064.888026
                                                                         43173.808401
      min
              1987.00000
                            5.000000
                                             156.000000
                                                          376.000000
                                                                         29000.000000
      25%
              1995.00000
                           35.000000
                                                          1062.000000
                                                                         53175.000000
                                             624.000000
      50%
             2003.00000
                           46.000000
                                             878.000000
                                                          1513.000000
                                                                         76000.000000
      75%
             2011.00000
                           65.000000
                                            1338.000000
                                                         2236.000000
                                                                         84650.000000
                                                         4099.000000
      max
             2019.00000
                           84.000000
                                            1837.000000
                                                                       200000.000000
             Number in use
              2.800000e+01
      count
              9.265095e+05
      mean
      std
              4.308375e+05
              9.275600e+04
      min
      25%
              5.636362e+05
      50%
              1.190000e+06
      75%
               1.232500e+06
              1.330000e+06
      max
[46]:
      AccidentType.describe()
[46]:
             Number of Accidents
                                    Number of Deaths
                                                       Number of Injuries
                         5.000000
                                              5.00000
                                                                  5.000000
      count
                                                                352.800000
      mean
                       665.800000
                                             81.40000
      std
                       409.987439
                                             61.40684
                                                                285.863954
      min
                       335.000000
                                             14.00000
                                                                128.000000
```

66.000000

232.000000

25%

19.00000

17.000000

```
25%
                484.000000
                                     62.00000
                                                        161.000000
50%
                542.000000
                                     66.00000
                                                        255.000000
75%
                589.000000
                                     84.00000
                                                        389.000000
                                                        831.000000
max
               1379.000000
                                    181.00000
```

[47]: #Creates Regression Analysis for deaths since 2001. Provides outlook for the

→dat we are working with#

Accidents2001['LogDeaths'] = np.log(Accidents2001).Deaths

X1 = Accidents2001.Year
X1 = sm.add_constant(X1)

y1 = Accidents2001.LogDeaths

mod = sm.OLS(y1,X1)
res = mod.fit()
print(res.summary())

OLS Regression Results

Dep. Variable:	${ t LogDeaths}$	R-squared:	0.125
Model:	OLS	Adj. R-squared:	0.076
Method:	Least Squares	F-statistic:	2.564
Date:	Tue, 27 Jul 2021	Prob (F-statistic):	0.127
Time:	17:54:47	Log-Likelihood:	23.816
No. Observations:	20	AIC:	-43.63
Df Residuals:	18	BIC:	-41.64
Df Model:	1		

Covariance Type: nonrobust

========	=========	:========	========		========	=======
	coef	std err	t	P> t	[0.025	0.975]
const Year	16.1978 -0.0048	6.045 0.003	2.680 -1.601	0.015 0.127	3.498 -0.011	28.898 0.002
=======			========		=======	=======
Omnibus:		1.7	733 Durbi	n-Watson:		1.552
Prob(Omnib	ous):	0.4	120 Jarque	e-Bera (JB):		0.418
Skew:		0.0)37 Prob(JB):		0.811
Kurtosis:		3.7	704 Cond.	No.		7.01e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.01e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- [48]: #Plots Histogram for above data#
 plt.hist(y1, bins = 10)

```
plt.title('Log Deaths Since 2001')
```

[48]: Text(0.5, 1.0, 'Log Deaths Since 2001')


```
[20]: #Shows graph of data over the years#
    x1= Accidents2001.Year
    y2= Accidents2001.Deaths
    y3=Accidents2001['Injuries ']
    plt.title('Deaths, Injuries, and Accidents Since 2001')
    plt.xlabel('Year')
    plt.ylabel('Number of People')
    plt.xticks(rotation=90)
    plt.plot(x1,y2, color= 'gold')
    plt.plot(x1,y3, color= 'green')
    plt.plot(x1,y4, color= 'purple')
    print("Legend: Green is Accidents, Purple is Injuries, Gold is Deaths")
```

Legend: Green is Accidents, Purple is Injuries, Gold is Deaths


```
[70]: x1= Accidents2001.Year
y2= Accidents2001.Deaths
plt.plot(x1,y2, color= 'gold')
```

[70]: [<matplotlib.lines.Line2D at 0x7f8582e14820>]


```
[64]: plt.scatter(x=Accidents2001['Year'], y=Accidents2001['Deaths'])
    plt.xlabel('Year')
    plt.ylabel('Deaths')
    plt.title('Deaths by Year Scatter')
```

[64]: Text(0.5, 1.0, 'Deaths by Year Scatter')


```
[66]: plt.scatter(x=Accidents2001['Year'], y=Accidents2001['Injuries '])
   plt.xlabel('Year')
   plt.ylabel('Injuries')
   plt.title('Injury by Year Scatter')
```

[66]: Text(0.5, 1.0, 'Injury by Year Scatter')


```
[71]: plt.scatter(x=Accidents2001['Year'], y=Accidents2001['Accidents'])
plt.xlabel('Year')
plt.ylabel('Accidents')
plt.title('Accidents by Year Scatter')
```

[71]: Text(0.5, 1.0, 'Accidents by Year Scatter')


```
[50]: #Personal Watercrafts#
PersonalWaterCraft['LogDeaths'] = np.log(PersonalWaterCraft).Fatalities
X1 = PersonalWaterCraft.Year
X1 = sm.add_constant(X1)
y1 = PersonalWaterCraft.LogDeaths
mod = sm.OLS(y1,X1)
res = mod.fit()
print(res.summary())
```

OLS Regression Results

Dep. Varia	able:	LogDeat	hs	R-squa	red:		0.112
Model:		0	LS	Adj. F	-squared:		0.083
Method:		Least Squar	es	F-stat	istic:		3.893
Date:		Tue, 27 Jul 20	21	Prob (F-statistic	:):	0.0574
Time:		17:54:	49	Log-Li	kelihood:		-23.742
No. Obser	vations:		33	AIC:			51.48
Df Residua	als:		31	BIC:			54.48
Df Model:			1				
Covarianc	e Type:	nonrobu	st				
========			====				=======
	coei	f std err		t	P> t	[0.025	0.975]
const	 -33.2673	 3 18.771	 1	.772	0.086	-71.551	5.017
	50.201		-		5.000		3.01

Year	0.0185	0.009	1.973	0.057	-0.001	0.038
Omnibus: Prob(Omnibus)	:	18.404 0.000	Jarqu	n-Watson: .e-Bera (JB):	======	0.422
Skew:		-1.345	Prob(JB):		6.52e-07
Kurtosis:		6.671	Cond.	No.		4.21e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.21e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
[51]: #Plots Histogram for above data#
plt.hist(y1, bins = 10)
plt.title('Log Deaths Since 1987')
```

[51]: Text(0.5, 1.0, 'Log Deaths Since 1987')


```
[52]: #Personal Watercraft Deaths#
x1= PersonalWaterCraft.Year
y2= PersonalWaterCraft.Fatalities
plt.title('Deaths From Personal Watercrafts')
plt.xlabel('Year')
```

```
plt.ylabel('Number of People')
plt.xticks(rotation=90)
plt.plot(x1,y2, color= 'red')
```

[52]: [<matplotlib.lines.Line2D at 0x7f8581ba3cd0>]


```
[53]: #Personal Watercraft Accidents#
    x1= PersonalWaterCraft.Year
    y2= PersonalWaterCraft.Accidents
    plt.title('Accidents From Personal Watercrafts')
    plt.xlabel('Year')
    plt.ylabel('Number of Accidents')
    plt.xticks(rotation=90)
    plt.plot(x1,y2, color= 'yellow')
```

[53]: [<matplotlib.lines.Line2D at 0x7f8581ccc340>]


```
[54]: #Sales Personal Watercraft#
    x1= PersonalWaterCraft.Year
    y2= PersonalWaterCraft['Sales']
    plt.title('Sales From Personal Watercrafts')
    plt.xlabel('Year')
    plt.ylabel('Number of Sales')
    plt.xticks(rotation=90)
    plt.plot(x1,y2, color= 'green')
```

[54]: [<matplotlib.lines.Line2D at 0x7f8581dc9b20>]


```
[55]: #In Use Personal Watercraft#
    x= PersonalWaterCraft.Year
    y= PersonalWaterCraft['Number in use']
    plt.title('Number In Use Personal Watercrafts')
    plt.xlabel('Year')
    plt.ylabel('Number of Used')
    plt.xticks(rotation=90)
    plt.plot(x,y)
```

[55]: [<matplotlib.lines.Line2D at 0x7f8581f0a370>]

	Crash Reason	Accidents	Deaths	Injuries
0	Alcohol Use	296	115	260
1	Drug Use	12	8	2
2	Excessive Speed	418	32	345
3	Failure to Vent	54	5	89
4	Improper Lookout	578	28	409
5	Inadqeuate Onboard Navigation Lights	21	0	16
6	Navigation Rules Violation	316	26	220
7	Operator Inattention	664	55	383
8	Operator Inexperience	612	56	343
9	Restricted Vision	67	2	47

plt.show()


```
[59]: #Type of Accidents that occurred in 2020#

print(AccidentType)

plt.bar(AccidentType['Accident Type'], AccidentType['Number of Deaths'], color

→='red',

width = 0.4)

plt.xlabel("Reason for Death")

plt.ylabel("Number of Deaths")

plt.title("2020 Accident Death Reasons")
```

```
plt.xticks(rotation=90)
plt.show()
```

	Accident Type	Number of Accidents	Number of Deaths	\
0	Collision with recreational vessel	1379	66	
1	Flooding/Swamping	589	84	
2	Collision with fixed object	542	62	
3	Grounding	484	14	
4	Falls overboard	335	181	

Number of Injuries
0 831
1 128
2 389
3 255
4 161


```
[61]: plt.bar(AccidentType['Accident Type'], AccidentType['Number of Injuries'],

→color ='purple',

width = 0.4)

plt.xlabel("Reason for Injury")

plt.ylabel("Number of Injuries")

plt.title("2020 Accident Injury")

plt.xticks(rotation=90)

plt.show()
```



```
plt.xticks(rotation=90)
plt.show()
```

	Type of Boat	Drownings	Other Deaths	Total Deaths	Total Injuries
0	Open Motorboat	260	116	376	1520
1	Personal Watercraft	19	47	66	896
2	Cabin Motorboat	16	17	33	298
3	Pontoon	53	14	67	232
4	Canoe/Kayak	131	23	154	117

[]: