

Enhanced Delta-Sigma Analog-to-Digital Converter (EDSADC)

33.7 Time-Stamp Support

Some applications need to determine the result value at certain points of time inbetween two regular output values. The interpolation algorithm needs to determine the position of the required point of time in relation to the regular results.

This interpolation is supported by providing a timestamp that marks the delay since the last regular output value. This timestamp is the number of modulator clock cycles that have passed since the last result value has been generated. Depending on the configured decimation/integration factors this defines the fraction of an output cycle and, therefore, enables the interpolation.

The timestamp information is generated by the timestamp counter. This 16-bit counter is clocked with the optionally prescaled modulator clock (see **TSCNTx** (**x=0-13**).TSCLK). It covers the following cycles:

- CIC filter decimation: up to 512
- FIR filter decimation: up to 4
- Integrator decimation: up to 64

The timestamp information is captured into the timestamp register upon a trigger event. For this purpose, the trigger signal is used, which is selected by bitfield TRSEL in register **DICFGx** (x=0-13). Bitfield TSTRMODE selects the edge(s) that capture(s) timestamp information.

A timestamp trigger can generate a service request if selected by bitfield SRGA in register **FCFGMx** (**x=0-13**).

The valid flag TSVAL is set when timestamp information is stored and is cleared when register TSTMP is read. This indicates to the application software if or not a timestamp trigger has occurred before the corresponding result value was generated.

When timestamp information is stored, a service request can optionally be generated. This allows application software to operate on all result data, even if multiple timestamp triggers occur before a regular result service request. The timestamp data is also available via the standard result register (see **Table 290** and **"Result Service Request Generation and Read Sequencing" on Page 76**).

Time-Stamp Register x

TSTMPx (x=0-13) Time-Stamp Register x $(0150_{H}+x*100_{H})$ Application Reset Value: 0000 0000_H 31 22 30 29 27 25 23 21 20 18 17 16 28 26 24 **TSVAL** 0 **AMX** rh rh 9 8 7 15 14 13 12 11 10 2 1 **TIMESTAMP** rh

Field	Bits	Туре	Description			
TIMESTAMP	15:0	rh	The Most Recent Captured Timestamp Value This value is copied from the timestamp counter TSCOUNT Note: If bit AMXCOPY in register TSCNTx is 1, bits TIMESTAMP[15:14] are replaced with a copy of bitfield AMX.			
АМХ	17:16	rh	Analog Multiplexer Setting This value is copied from bitfield INMUX in register MODCFGx			

Enhanced Delta-Sigma Analog-to-Digital Converter (EDSADC)

Field	Bits	Туре	Description
TSVAL	31	rh	Timestamp Valid
			Indicates valid timestamp information.
			0 _B No timestamp trigger occurred since last read access
			1 _B Timestamp information has been stored after a timestamp trigger
0	30:18	r	Reserved, write 0, read as 0

Time-Stamp Counter x

TSCNTx (x=0-13)

Time-Stamp Counter x						(0154 _H +x*100 _H)				Ap	application Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	ı	1	ı	0	ı	1	ı	1	•	AMXC OPY	TSCRU N	0	TS	CLK
	İ	1	ı	1	r	1	ı	İ	İ	1	rw	rw	r	r	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	ı	ı	ı	1		TSC	DUNT	ı	ı	!	1 1		ı	ı
	-	1	-	1	1	1	r	h	-	1	+	+		-	1

Field	Bits	Type	Description
TSCOUNT	15:0	rh	Timestamp Counter Value TSCOUNT is clocked with the modulator clock and is cleared when a new result value has been generated.
TSCLK	17:16	rw	Timestamp Counter Clock Selection $00_{\mathrm{B}} f_{\mathrm{TSTMP}} = f_{\mathrm{MOD}}$ $01_{\mathrm{B}} f_{\mathrm{TSTMP}} = f_{\mathrm{MOD}} / 2$ $10_{\mathrm{B}} f_{\mathrm{TSTMP}} = f_{\mathrm{MOD}} / 4$ $11_{\mathrm{B}} f_{\mathrm{TSTMP}} = f_{\mathrm{MOD}} / 8$
TSCRUN	19	rw	Timestamp Counter Run Control 0 _B Timestamp counter is off 1 _B Timestamp counter is counting at the rate selected by bitfield TSCLK
AMXCOPY	20	rw	Analog MUX Setting Copy Enable Allows copying of bitfield AMX into bitfield TIMESTAMP (in register TSTMPx). 0 _B Do not copy, timestamp uses all 16 bits 1 _B Copy AMX to bits TIMESTAMP[15:14], timestamp uses lower 14 bits
0	18, 31:21	r	Reserved, write 0, read as 0