RFCEIVED

MAY 2 2 2002

TECH CENTER 1600/2900

Chumakov, Ilya

<120> Human Defensin Polypeptide Def-X, Genomic DNA and cDNA, Composition Containing Them and Applications to Diagnosis and to Therapeutic Treatment

<130> GEN-100D1

<140> US 10/045,180

<141> 2001-10-18

<150> US 09/486,580

<151> 2000-02-25

<150> PCT/FR98/01864

<151> 1998-08-28

<150> FR 97/10823

<151> 1997-08-29

<160> 12

<170> PatentIn version 3.1

<210> 1

<211> 4415

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(4415)

<223> Def-X genomic sequence

<220>

<221> misc feature

<222> (85)..(85)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (143)..(143)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (670)..(670)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (970)..(970)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (1111)..(1111)

<223> n = a, c, g, or t.

<220>

<221> misc feature

<222> (1150)..(1150)

<223> n = a, c, g, or t.

<220>

<221> CAAT_signal

<222> (1711) .. (1714)

<223>

<220>

<221> TATA signal

<222> (1758)..(1767)

<223>

<220>

<221> misc_feature

<222> (1780)..(1780)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (1836)..(1874)

<223> Exon 1

<220>

T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

- <221> misc_feature
- <222> (1875)..(1880)
- <223> splice donor site
- <220>
- <221> misc_feature
- <222> (1974)..(1974)
- <223> n = a, c, g, or t.
- <220>
- <221> misc_feature
- <222> (2117)..(2117)
- <223> n = a, c, g, or t.
- <220>
- <221> misc_feature
- <222> (2133)..(2133)
- <223> n = a, c, g, or t.
- <220>
- <221> misc_feature
- <222> (2155)..(2335)
- <223> Alu insertion
- <220>
- <221> misc_feature
- <222> (2186)..(2186)
- <223> n = a, c, g, or t.

```
<220>
<221> misc feature
<222> (2191)..(2191)
<223> n = a, c, g, or t.
<220>
<221> misc feature
<222> (2367)..(2367)
<223> n = a, c, g, or t.
<220>
<221> misc_feature
<222> (2710)..(2780)
<223> L1 fragment insertion
<220>
<221> misc_feature
<222> (3391)..(3393)
<223> splice acceptor site
<220>
<221> misc_feature
<222> (3394)..(3577)
<223> Exon 2
<220>
<221> misc_feature
<222> (3406)..(3408)
```

<223> Translation initiation codon (ATG)

T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

```
<220>
<221> misc_feature
<222> (3578)..(3583)
<223> splice donor site
<220>
<221> misc_feature
<222> (4123)..(4123)
<223> n = a, c, g, or t.
<220>
<221> misc feature
<222> (4161)..(4163)
<223> splice acceptor site
<220>
<221> misc feature
<222> (4164)..(4379)
<223> Exon 3
<220>
<221> misc_feature
```

<220>

<221> polyA_signal

<222> (4374)..(4379)

<222> (4274)..(4276)

T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

<223> Translation termination codon (TAA)

<400> 1 acaccattig tetteatgta accccattag etataccete tagtgcaagg aaaccatagg gcctaggtca caccatgagg ctgcncttac aagttatgca aaaactatgg acttgggaga 120 cctgtgcgta acaacatcac acnccaaatt taaccagete teeccataac agcaegetea 180 tgtgttactg aggaaatgcc tgtggattgg agtgtgttct gtgtgcagga ggctggtcca 240 ggtttcactt ctgcaggaca ctggacgttt cccaaaacca gcagactttc cccacgtgca 300 cacacacccc ttctcatttt gcctctacat ccatatccac tgggcccttc aggcacctac 360 taatgcccta gaacctaaaa ccatcatctg gggcccagtt ccctgaatgg ccctaatctc 420 ttcctctgct ggaatgagtc cagtgcccac ttcctccaac ggtgaaattg ctgggctgct 480 acagateagg aacteactge tteeteatag gggeageega etteactget etgeaacage - 540 gaccacccct agcgaggctt gagatgcctc ttgcctcctt aagactgagg gagacgcttc 600 ageteteact ecactgeece aagteeteea eagegeggtg eetgetgeet teacacagag 660 720 ctgcaggggn aggtcctgtg tatccggcct gctggaccag cgctgtgcac aaccetccca tggcaacagt ggctgcccgg cctgcacact gggcttggca acctcgctgt aggtatttat 780 tccctcagga gtgactgcat tcttttccca tttccagaaa actgatgcca tttacctcac 840 tatgaggagg aggaggagga ggagggtgga gagtggtaca ttttaaaatg tgcactattc 900 tecctaggae tecceteaa ataacceagg agggaecata ecageteatt cetgtgtate 960 ccaagcatan gagtaatcat cccactcatg ctgagtgtat ggtggccatt aagcctgccc 1020 tgaactggct ttagaacaag gtgtttgagc acacagcacc gtcttgctgc caccttggcc 1080 ccctcccttg tgagacctct gagacacatt naggtctcac ctaaaaatct caggatttct 1140 aggcccaaan cggtcctaaa aaattgttca gtctgaactc tctaaggtca agagaagagg 1200 tggttgctcc ctctaagaaa ccacatgttg catgtacatc cttaattccg gaaagtccaa 1260 caaacctgcc etgettagca acacaagccg aggtggtact cetetcacce gggcattete 1320 caacacacct gtttgtccaa acagctttga tttgttttta tagttggacc ccaggttccc 1380 aggaggetgg ttcaggecat attccaaatc ctcatctgtg tgtgagtggc attcttagcc 1440 tagecteett acagggtgga tactatgata cacagecagg etgteecagt ggettteaat 1500 attettttgg tecagatagt teageeteag caecagtgta ggeateacag ggteaattgt 1560 cttaggagtc atggagaatt catagttggt agctacctgg gcctggccag ggctgaccat 1620

agacaaggca tecetetgtg	aactcctatt	ttaatgccag	cttcccaaca	aatttctcaa	1680
ctgctcttac cagcaggtat	ttaaactact	caatagaaag	taaccctgaa	aattaggaca	1740
cctgttccca aaagaccctt	aaatagggga	agtcctttcn	ctgcttgtgc	acagetgetg	1800
atgtggcaac atgaggcctg	ggacagggga	ctgtcctctg	cccactctgg	tagcctcacg	1860
tagcttaaca atctgtcagt	aatacaatac	aaaacttaaa	ctttcatact	gcggttccac	1920
ccaggaagct gtgttcccaa	tctgacccgt	gattatgggg	ccacctcaga	gggnacccag	1980
tgagggaata ttttgccatc	tgggactgtt	ggttgctggg	ggcagtggct	atgagctcag	2040
ttaataaact caagcagttt	ccttccaaac	acacatgtcc	tacttaacgt	gtccaacaga	2100
gatgatcata ctcatangct	gctaaaacat	tanttttatt	ttgagaaaag	tctattcatg	2160
ttcttggccc atggagtttt	catttnatta	ntttatttat	tttgcagaga	tggagtctca	2220
ctatgttgct caagctggtc	tccaactcct	gggctcaagc	gatcttccta	ctttggcctt	2280
tgaaagcgct gagattgcct	gtgtgagcca	tcatgggggc	tcactggccc	actgattaat	2340
cagattaatt gttttttgct	attgaanttg	tttgacttcc	ttgtatattc	ggatatttac	2400
ccattctaac acgtagggtt	tgcaaatatt	ttctctcatg	ttctgtgttg	ccttttcact	2460
cagttgatgg tttcctttgc	tgtgcaggtg	ctttagtgtt	caacgcagcc	ccgcttgtct	2520
attttccatt ttattgcctg	tccctttgat	gtcatagcca	agaaataatt	gcccagatta	2580
atgtcaaaaa gctttatccc	tatatattct	tctagtagtt	tatggtttca	gatcttatgt	2640
ttaggtette aatceattga	gttgattttt	gtatgtggta	taagaaaaaa	gaccacatgt	2700
atacatatct caaattctaa	ggtagtatat	attagacaca	tacaatgtgt	ctatttacac	2760
acattgagct gaaaataata	aacatatttt	tatctttcaa	tcaactctat	ctctatctca	2820
ctgaacttgt ttcacctata	gcctgatgag	gttgctgtcc	tctctacccc	agctcctata	2880
ggagactgct catcccctaa	cctcaaaaac	cccttcatga	gggtgataat	gcccttgaat	2940
cctgcaatga attagttctc	tactacagtg	gaattcaggt	ctgttatgag	ggtctggatc	3000
tctgaagaga agagctctca	ttttcagaaa	ataagcagga	tttattccct	gaaattactg	3060
aattaaatca ctgtttcgat	tactttttgc	aatattaaaa	gtaaatattt	aaacaggtaa	3120
aaacagaaat aatggtaggg	tccttatcat	caccgtgaat	tccaagctag	catagacact	3180
aaacctagag attcacacta	gaatgaaagc	tgggagagca	gaggagtctc	agaaggatgt	3240
ggaggccaat ggacacctgc	aacctctcca	acgaaatgcc	tacctcctct	cactgcagca	3300
tecatetetg ageetteteg	cagcagagct	ataaattcag	cctggctcct	ccgttcccac	3360
T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms					

acatccactc	ctgctctccc	tcctctcctc	caggtgacta	cagttatgag	gaccctcacc	3420
ctcctctctg	cctttctcct	ggtggccctt	caggcctggg	cagageeget	ccaggcaaga	3480
gctcatgaga	tgccagccca	gaagcagcct	ccagcagatg	accaggatgt	ggtcatttac	3540
ttttcaggag	atgacagctg	ctctcttcag	gttccaggtg	agagatgcca	gcatgcagag	3600
ctacagacta	gacagaagga	caggagacag	gctctggaat	tggatctcag	tggcagatgt	3660
cacttaggtg	gctatactta	acatctctgg	tcctggattt	tctcatatct	aaatggaata	3720
gagaaccaaa	gaaatctaag	agatttttct	ttctccaaaa	acttgattcc	aagatatgac	3780
tgtgaaattc	actagattta	agatataagg	agatgctacc	tagttccttc	tggagccaga	3840
caaacaagct	taagtatata	ggaaaatatt	tcaccctgtc	tatataggag	gttttagaac	3900
ctggagagga (gcctaagaat	gtgttcaggt	gtgtgtgtga	tgggcaggaa	tgcagaaaag	3960
tgaagcaaag (gagaatgagt	ctcgaatcct	gtgtgaccag	cactgctctg	tgtatttatt	4020
cctattgact	gagattgttt	gtgctaccgg	ctgtaataca	gccaacatca	ctcatcagcc	4080
aacatgtgac	ttctccaaga	ttccctttac	cacccactgc	tgnaccccgt	actcagtttc	4140
tgatgctctc	tctgggtccc	caggctcaac	aaagggcttg	atctgccatt	gcagagtact	4200
atactgcatt	tttggagaac	atcttggtgg	gacctgcttc	atccttggtg	aacgctaccc	4260
aatctgctgc	tactaagctt	gcagactaga	gaaaaagagt	tcataatttt	ctttgagcat	4320
taaagggaat	tgttattctt	ataccttgtc	ctcgatttcc	tgtcctcatc	ccaaataaat	4380
acttggtaac	atgatttccg	ggttttttt	ttttt			4415

<210> 2

<211> 453

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (52)..(336)

<223> Def-X coding sequence

T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

<400> 2 ctctgcccac tctggtagcc tcacgtagct taacaatctg tgactacagt t atg Met 1	agg 57 Arg
acc ctc acc ctc ctc tct gcc ttt ctc ctg gtg gcc ctt cag gcc Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln Ala 5 10 15	
gca gag ccg ctc cag gca aga gct cat gag atg cca gcc cag aag Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys (20 25 30	
cct cca gca gat gac cag gat gtg gtc att tac ttt tca gga gat growing grows gat gat gtg gtc att tac ttt tca gga gat growing growing gat gat gat gat gat gat gat gat gat ga	
agc tgc tct ctt cag gtt cca ggc tca aca aag ggc ttg atc tgc c Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile Cys I 55 60 65	
tgc aga gta cta tac tgc att ttt gga gaa cat ctt ggt ggg acc t Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly Thr (70 75 80	
ttc atc ctt ggt gaa cgc tac cca atc tgc tgc tac taa gcttgcaga Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 85 90	ac 346
tagagaaaaa gagttcataa ttttctttga gcattaaagg gaattgttat tctta	tacct 406
tgtcctcgat ttcctgtcct catcccaaat aaatacttgg taacatg	453
<210> 3	
<211> 94	
<212> PRT	
<213> Homo sapiens	
<220>	
<221> MISC_FEATURE	
<222> (1)(94)	
<223> Def-X preproprotein sequence	

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-X signal peptide

<220>

<221> PROPEP

<222> (20)..(63)

<223> Def-X propeptide

<220>

<221> PEPTIDE

<222> (64)..(94)

<223> Def-X mature peptide

<400> 3

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln 1 $$ 5 $$ 10 $$ 15

Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln
20 25 30

Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly 35 40 45

Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile 50 $\,$ 60 $\,$

Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly 65 7075 75 80

Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr \$85\$

<210> 4

<211> 19

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-X signal peptide

<400> 4

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln 1 $$\rm 10^{\circ}$

Ala Trp Ala

<210> 5

<211> 44

<212> PRT

<213> Homo sapiens

<220>

<221> PROPEP

<222> (1)..(44)

<223> Def-X propeptide

<400> 5

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser 20 25 30

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu 35 40

<210> 6

<211> 31

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(31)

<223> Def-X mature peptide

<400> 6

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 20 25

<210> 7

<211> 4295

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(4295)

<223> Def-4 (HNP-4) genomic sequence

<220>

<221> CAAT_signal

<222> (1703)..(1706)

<223>

<220>

<221> TATA_signal

<222> (1752)..(1761)

<223>

<220>

<221> misc_feature

<222> (1824)..(1862)

<223> Exon 1

<220>

<221> misc_feature

<222> (1863)..(1868)

<223> splice donor site

<220>

<221> misc feature

<222> (3172)..(3174)

<223> splice acceptor site

<220>

<221> misc_feature

<222> (3175)..(3358)

<223> Exon 2

<220>

<221> misc_feature '

<222> (3187)..(3189)

<223> Translation initiation codon

60

120

180

240

300

360

420 480

<220>

<221> misc_feature

<222> (3359)..(3364)

<223> Splice donor site

<220>

<221> misc_feature

<222> (3942)..(3944)

<223> Splice acceptor site

<220>

<221> misc_feature

<222> (3945)..(4251)

<223> Exon 3

<220>

<400> 7

<221> misc_feature

<222> (4064)..(4066)

<223> Translation termination codon (TAA)

ggatcccat ttgtcttcag tgtaaccat tagttaaacc gcctactgca aggaaaccac aaggcttgga tcagatcatg agctgccct acaagttatg ccaaaaaata tggacttgga agacttgtct gttataatat cacacccaaa tctaaccagc tctgccaata acagctctct cctatgttac taggaaaatg cctatggatt ggagtgtgt ctgtgtgcag gaggctggtc caggttcac ttctgcagga cactggacat ccccacaacc accagacctt ccccacgtgc acacacaccc cttctcattt tgcctctaca tccatatcca ctgggccctt caggcaccta ctcatgccct agaacctaaa accatcatct ggggcccagt tccccaaata gccctaattt cttctcttgc tggaatgagt ccagtgccca cttcctcaa aggtgaaatt gctgggcctg T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

caacagatca ggaactcact gcttctcata ggggcagccg acttcactgc tctggaacag 540 cgaccacccc tagcgagget tgagatgeet etteceteet taagaetgag agegeegetg 600 ccccagtcc tccatagccc agtgcctggc tgccttcagc cagagctgca ggggaggccc 660 tgagcaccca agtcctgctg gaccagegct gtgcacggcc ctcccatggc ggcagggct 720 gcctggactg catactgggt tcagcaacct cactataggt attcattccc tcaggaacaa 780 ctgcattctt ttctcatttc cagaaacctc atcccgttta cctcactaca aggaggagga 840 tggtggagag tggtacattt taaaatgtgc actagtctcc ctgggactcc ccttcaaata 900 acccaggagg gaccacacaa gggaaagctt atgcatcccc cccacccagt gaccatcttc 960 ctaactctgg gtgtagggag actcgtaagc ctacgggatt ggtttgggaa cagggtattt 1020 gagetcacaa cacaaggtga tgcaagctaa caccaatete getgcagett tggccaccat 1080 cctaagggac ttctgacaga cattaggtgt cacgcaatca tttgatgagt ccttggcctg 1140 1200 gatgacctag acagtcattt aggcttgaac tatctaaggc caagcaaaaa ggtgactgtc 1260 ccctctagga accacatgct atatgcacat cctttactcg ggagcctgca acctgcccta tecageaaca caageecagg egtatteagt etcatecagg tattetecaa cettacttgt 1320 ctgaatggct tggatttgtt tttatggtta gaccccaggg cctgggaggt cagttcagac 1380 cacattccaa atcctcatct gtgtgtgggt ggcattttga tcctagtctc ctcgcaaggt 1440 gtatacaaca atatgcaggc caggctctcc tggtggcttt aaatattccc tcggtccagg 1500 1560 tagttcagcc tcagccacca gcataggtat catggggtca attgtcttag gagtcatgag gaatccacag ttgattgctg cctgggcctg gccagggctg accaaagtag acgaggggtc 1620 ggtacctccg tggactcctg cttgaactcc agctttctgc caaatttctc aactgccctt 1680 gttaacagtt atttaaagta cccaatagaa agtaacgctg aaaaattagg acacctgata 1740 1800 ccaaaagacc cttaaataag gaagtcctct cctctgtgtg catggctgct cttgctacat aagacetgga acacaggact getgtetgee etetetgete geeetgeeta gettgaggat 1860 ctgtaagtaa cacaaaactt aaactttcac attgaggttt caatattgaa gctgtgtccc 1920 cagtetgace teteactgtg gggecacece agaggaceca gegtgaagee eetgetgtga 1980 acttctatct gggtgtctgg cggctgctgg gggtaatggc tactagctaa gtcaatagag 2040 aaactcaaaa agtttccttc caaacacacg tgtcctactt gacatgtcca ataaagacga 2100 tcacagcttc ttaaaacatt attttattgt gagagaagcc tctgcaggtc ctaggtctgt 2160 ttttcaatca ggttgtttgt tttttgctat tgagttgttt gacttcctta tgtattcaga 2220

tatttacccc ttctaccacg taggetttgc aaacattttc tetcattttc tgggttgccg 2280 tttccctcag ttgattgttt cctttgctat gaagatgctt tagcgttcaa tgcagccccg 2340 cttgtctatt ttcccatttg tttattgcct gtgcctttgg tgtcatagcc aagaaatcat 2400 tactcacgtc aatgtccaaa gctttatctt tgtatgtgct tctcgtagtt gtatggtttc 2460 aggtetttte aagtetatgt tgagtettea atceatgttg agetgatttt ttacatgttg 2520 tgagagaaag gaccacgtgt atgcacctag caactcatga accttacaca actctttatc 2580 teteteactg ageteattte acetgtacce tgataaggte attgteetet teactetgge 2640 ccctacagga gactactcac cccattacct cagtcgcccc ttcatgaggg tataatgacc 2700 tagaagcctg caatgagtta ctctctactc caccggaatt caggtctggc accagtgttt 2760 agacctgaag agaatagtag ggcccattat caggaaataa gaggcatttg ctctcttaaa 2820 ttattgaatg aaagcactgt ttccattctt tttagaatat taaagattta accaggaaat 2880 attaggtatt teetgaaaac aggaaaaaat gecagggtee teateateac cateaactte 2940 aacctaggca cagacactaa acatagagct tcctgtgaag aaagctggga gagcagagga 3000 ggcattccag ggatgtcaag gccaatagga gtcggcatcc tctctaacaa aatgcacacc 3060 tecteteact cagaaggeca aaggtttett atetetgtge etteteecag aaagetataa 3120 atccaagetg getteteeet eeceacacag etgeteetge teteceteet eeaggteace 3180 ccagccatga ggattatege ceteeteget getattetet tggtageeet ecaggteegg 3240 gcaggcccac tccaggcaag aggtgatgag gctccaggcc aggagcagcg tgggccagaa 3300 gaccaggaca tatctatttc ctttgcatgg gataaaagct ctgctcttca ggtttcaggt 3360 gagagaggcc agcataaaaa agctaccgag tctagagaga cggatgggag atgggctctg 3420 gaatcacatc tcaatggtgg atgtcactta ggtggcttta cttaccatct ctgggcctcg 3480 attttcttat ctcgaaactg aatagagaga caaacaaatg taagtagtct tctttctcca 3540 aagacttgat tccaaggtat gtctataaaa ttcgctaggg ttaagatatg gagagacaga 3600 ttgaccagtt ctttctggat ctaaacaagt agatattata gggaaaatat ttcattctgc 3660 3720 caacaaagga aattttaaaa actggagatg ggcttaagag tatgttcagg tgtgtgtctg atggggcaaa agcacacaaa tCagagCaaa agagaatgag tctcaaatcc tqtatqaqca 3780 gcattgctct gtgtatttat tcctattgac taaggttgtt tgtgctaccg gcactaatgc 3840 agccagcatc accggtcagc cagcatgtgc attctccaag attcccttta ccacccaccq 3900 ctgaccttgg tgcttaattt ctcagtcttc ctctgtgttc ccaggctcaa caaggggcat 3960 T:\Sequences\GEN\100D1\GEN-100D1seqlisting.doc/ms

17

18 GEN-100D1

18	GEN-100
ggtctgctct tgcagattag tattctgccg gcgaacagaa cttcgtgttg ggaactgcct	4020
cattggtggt gtgagtttca catactgctg cacgcgtgtc gattaacatt ctgctgtcca	4080
agagaatgtc atgctgggaa cgccatcatc ggtggtgtta gcttcacatg cttctgcagc	4140
tgagcttgca gaatagagaa aaatgagctc ataatttgct ttgagagcta caggaaatgg	4200
ttgtttctcc tatactttgt ccttaacatc tttcttgatc ctaaatatat atctcgtaac	4260
aagatgtott tgtttacacc totttgaaat ttgat	4295
<210> 8	
<211> 542	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (52)(345)	
<223> Def-4 (HNP-4) coding sequence	
<400> 8 gtctgccctc tctgctcgcc ctgcctagct tgaggatctg tcaccccage c atg agg $$\operatorname{\textsc{Met}}$$ Arg 1	57
att atc gcc ctc ctc gct gct att ctc ttg gta gcc ctc cag gtc cgg Ile Ile Ala Leu Leu Ala Ala Ile Leu Leu Val Ala Leu Gln Val Arg 5 10 15	105
gca ggc cca ctc cag gca aga ggt gat gag gct cca ggc cag gag cag Ala Gly Pro Leu Gln Ala Arg Gly Asp Glu Ala Pro Gly Gln Glu Gln 20 25 30	153
cgt ggg cca gaa gac cag gac ata tct att tcc ttt gca tgg gat aaa Arg Gly Pro Glu Asp Gln Asp Ile Ser Ile Ser Phe Ala Trp Asp Lys 40 45 50	201
agc tct gct ctt cag gtt tca ggc tca aca agg ggc atg gtc tgc tct Ser Ser Ala Leu Gln Val Ser Gly Ser Thr Arg Gly Met Val Cys Ser 55 60 65	249
tgc aga tta gta ttc tgc cgg cga aca gaa ctt cgt gtt ggg aac tgc Cys Arg Leu Val Phe Cys Arg Arg Thr Glu Leu Arg Val Gly Asn Cys 70 75 80	297

GEN-100D1

ctc att ggt ggt gtg agt ttc aca tac tgc tgc acg cgt gtc gat taa Leu Ile Gly Gly Val Ser Phe Thr Tyr Cys Cys Thr Arg Val Asp 85 90 95	345
cgttctgctg tccaagagaa tgtcatgctg ggaacgccat catcggtggt gttagcttca	405
catgettetg cagetgaget tgcagaatag agaaaaatga geteataatt tgetttgaga	465
gctacaggaa atggttgttt ctcctatact ttgtccttaa catctttctt gatcctaaat	525
atatatctcg taacaag	542
<210> 9	
<211> 97	
<212> PRT	
<213> Homo sapiens	
<220>	
<221> MISC_FEATURE	
<222> (1)(97)	
<223> Def-4 preproprotein sequence	
<220>	
<221> SIGNAL	
<222> (1)(19)	
<223> Def-4 signal peptide	
<220>	
<221> PROPEP	
<222> (20)(63)	
<223> Def-4 propeptide	
<220>	
<221> PEPTIDE	
<222> (64)(97)	

<223> Def-4 mature peptide

<400> 9

Glu Gln Arg Gly Pro Glu Asp Gln Asp Ile Ser Ile Ser Phe Ala Trp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Lys Ser Ser Ala Leu Gln Val Ser Gly Ser Thr Arg Gly Met Val 50 60

Cys Ser Cys Arg Leu Val Phe Cys Arg Arg Thr Glu Leu Arg Val Gly 65 707075 Rouge R

Asn Cys Leu Ile Gly Gly Val Ser Phe Thr Tyr Cys Cys Thr Arg Val 85 90 95

Asp

<210> 10

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(94)

<223> Def-5 preproprotein sequence

<220>

<221> SIGNAL

- <222> (1)..(19)
- <223> Def-5 signal peptide
- <220>
- <221> PROPEP
- <222> (20)..(63)
- <223> Def-5 propeptide
- <220>
- <221> PEPTIDE
- <222> (64)..(94)
- <223> Def-5 mature peptide
- <400> 10
- Met Arg Thr Ile Ala Ile Leu Ala Ala Ile Leu Leu Val Ala Leu Gln 1 $$ 5 $$ 10 $$ 15
- Lys Gln Ser Gly Glu Asp Asn Gln Asp Leu Ala Ile Ser Phe Ala Gly 35 40
- Asn Gly Leu Ser Ala Leu Arg Thr Ser Gly Ser Gln Ala Arg Ala Thr 50 55 60
- Cys Tyr Cys Arg Thr Gly Arg Cys Ala Thr Arg Glu Ser Leu Ser Gly 65 70 75 80
- Val Cys Glu Ile Ser Gly Arg Leu Tyr Arg Leu Cys Cys Arg $85 \\ 90$
- <210> 11
- <211> 100
- <212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(100)

<223> Def-6 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-6 signal peptide

<220>

<221> PROPEP

<222> (20)..(70)

<223> Def-6 propeptide

<220>

<221> PEPTIDE

<222> (71)..(100)

<223> Def-6 mature peptide

<400> 11

Met Arg Thr Leu Thr Ile Leu Thr Ala Val Leu Leu Val Ala Leu Gln 1 5 10 15

Ala Tyr Glu Ala Asp Ala Gln Glu Gln Arg Gly Ala Asn Asp Gln Asp 35 40 45

Phe Ala Val Ser Phe Ala Glu Asp Ala Ser Ser Ser Leu Arg Ala Leu 50 $\,$ 60 $\,$

Gly Ser Thr Arg Ala Phe Thr Cys His Cys Arg Arg Ser Cys Tyr Ser 65 70 75 80

Thr Glu Tyr Ser Tyr Gly Thr Cys Thr Val Met Gly Ile Asn His Arg 85 90

Phe Cys Cys Leu 100

<210> 12

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(94)

<223> Def-1 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-1 signal peptide

<220>

<221> PROPEP

<222> (20)..(64)

<223> Def-1 propeptide

<220>

<221> PEPTIDE

<222> (65)..(94)

<223> Def-1 mature peptide

<400> 12

Met Arg Thr Leu Ala Ile Leu Ala Ala Ile Leu Leu Val Ala Leu Gln 1 $$ 5 $$ 10 $$ 15

Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu Val Ala Ala Ala 20 \$25\$

Pro Glu Gln Ile Ala Ala Asp Ile Pro Glu Val Val Val Ser Leu Ala $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Trp Asp Glu Ser Leu Ala Pro Lys His Pro Gly Ser Arg Lys Asn Met 50

Ala Cys Tyr Cys Arg Ile Pro Ala Cys Ile Ala Gly Glu Arg Arg Tyr 65 707575 80

Gly Thr Cys Ile Tyr Gln Gly Arg Leu Trp Ala Phe Cys Cys $85 \\ \hspace*{1.5cm} 90$