Fonction exponentielle

Définition

On appelle <u>fonction exponentielle</u> l'unique fonction f dérivable sur \mathbb{R} telle que :

$$f' = f$$
 et $f(0) = 1$.

On note cette fonction e^x .

Conséquence:
$$(e^x)'=e^x$$
 et $e^0=1$.

Courbe représentative

- La fonction exponentielle est strictement croissante.
- L'ensemble de définition est \mathbb{R} .
- L'ensemble des images est $]0,+\infty[$ $(e^x>0)$.
- L'image de 0 est $e^0=1$.
- L'image de 1 est $e^1 = e$ avec $e \approx 2,71828$.
- Si $f(x)=e^x$ alors $f'(x)=e^x$.

Tableau de variations

x	- ∞	0		1	+ ∞
$f'(x) = e^x$			+		
$f(x) = e^x$	0	_1_		e	*+∞

Propriétés

•
$$e^0=1$$
 ; $e^1=e$; $e^x>0$; $(e^x)'=e^x$.

Pour *a* et *b* réels quelconques :

•
$$e^{a+b} = e^a e^b$$
 ; $e^{a-b} = \frac{e^a}{e^b}$; $e^{-a} = \frac{1}{e^a}$; $(e^a)^n = e^{an}$.

•
$$e^a = e^b \Leftrightarrow a = b$$
 ; $e^a < e^b \Leftrightarrow a < b$; $e^a > e^b \Leftrightarrow a > b$.