1

Simulation

In this web appendix, we present more details about the simulations in the main manuscript as well as more simulations related to our method. For each simulation, we use models introduced in 3.1. In our main manuscript, the Frobenius errors of different methods are presented in figures without exact numbers. In this section, all the errors are displayed in the table with their uncertainties, which is the difference of 75% quantile and 25% quantile of 200 replicates.

Clustering-based exemplar algorithm

In this part, we show the exact errors and uncertainties in 1. The result is as 1 shows.

[Table 1 about here.]

Comparison with corShrink

In this part, we did 4 simulations in order to compare the behavior of corShrink (?) with other covariance matrix estimators. The procedure is as the following 2 settings. In each setting, we generate true covariance matrices Σ as 6 models in 3.1. Sample size n is taken as 20 and 100.

In first setting, we compare the estimation of covariance matrix Σ . For corShrink, covariance matrix is estimated as $\widehat{\Sigma} = \operatorname{diag}(\widehat{SD})\widehat{R}\operatorname{diag}(\widehat{SD})$ where \widehat{SD} are sample standard deviations. The result is presented in 2 and ??.

[Table 2 about here.]

[Table 3 about here.]

In the second setting, we compare the estimation of correlation matrix R. For other covari-

 $Biometrics,\ 000\ 0000$

2

ance matrix estimators, $\widehat{\mathbf{R}} = \operatorname{diag}(1/\widehat{SD})\widehat{\boldsymbol{\Sigma}}\operatorname{diag}(1/\widehat{SD})$, where \widehat{SD} are standard deviations derived from $\widehat{\boldsymbol{\Sigma}}$. The result is presented in 4 and 5.

[Table 4 about here.]

[Table 5 about here.]

Misspecification

Our method is based on the assumption that data is generated from multivariate Gaussian distribution. We are also interested on its performance when the data is misspecified. To investigate such case, we generated \boldsymbol{Y} from two non-normal distributions with variance of 1 and let $\boldsymbol{X} = \boldsymbol{L}\boldsymbol{Y}$ where \boldsymbol{L} is Cholesky decomposition of covariance matrix $\boldsymbol{\Sigma}$. In first simulation, $\boldsymbol{Y} \sim U(0,1)/\sqrt{(1/12)}$. In the second simulation, \boldsymbol{Y} was generated from negative binomial distributions with size of 10 and mean of 4, and then was normalized to have variance of 1.

[Table 6 about here.]

[Table 7 about here.]

Large dimension

We are also interested in the case when p is 1000. The averaged error is presented in 8.

[Table 8 about here.]

The result shows that our estimator has substantially better performance even when p has large value.

Table 1: Simulations investigating Clustering-based exemplar algorithm, as described in Section 3.2.

Model	Method	p=30	p=100	p=200
	no cluster	3.51 (0.95)	6.96 (1.04)	11.27 (0.81)
	ratio=2	3.68(0.96)	7.21 (0.88)	$11.54 \ (0.74)$
Model1	ratio=1	3.98(0.9)	7.36 (0.99)	$11.61 \ (0.77)$
	ratio=0.5	4.26 (0.86)	7.84 (0.84)	11.9 (0.79)
	ratio=0.25	4.72 (0.96)	8.99 (1.22)	12.34 (0.97)
	no cluster	5.19(6.86)	$15.75 \ (19.95)$	32.23 (34.18)
	ratio=2	5.42 (7.2)	$15.51 \ (20.15)$	$32.61 \ (33.87)$
Model2	ratio=1	5.34(7.03)	15.25 (19.32)	32.06 (33.43)
	ratio=0.5	5.4 (6.75)	$15.48 \ (18.94)$	33.58 (34.96)
	ratio=0.25	5.22 (6.59)	16.31 (18.37)	33.03 (34.54)
	no cluster	4.18(2.96)	13.79(8.17)	26.66(16.73)
	ratio=2	4.12(3.06)	13.81(7.99)	16.64(16.51)
Model3	ratio=1	4.13(3.04)	13.83(8.13)	26.53(16.64)
	ratio=0.5	4.23(2.93)	13.95(8.44)	26.46(16.85)
	ratio=0.25	4.54(2.70)	13.74(8.35)	26.56(17.47)
	no cluster	4.87(3.54)	17.52(11.62)	38.63(32.05)
	ratio=2	4.89(3.51)	17.57(11.54)	38.62(31.94)
Model4	ratio=1	4.81(3.48)	17.40(11.66)	38.55(32.05)
	ratio=0.5	4.92(3.43)	17.19(11.99)	38.27(32.65)
	ratio=0.25	5.45(3.27)	16.90(12.01)	38.54(34.55)
	no cluster	5.72 (0.27)	13.02 (0.16)	20.23 (0.25)
	ratio=2	5.71(0.28)	$13.01 \ (0.16)$	$20.22 \ (0.26)$
Model5	ratio=1	5.71 (0.25)	$13.01 \ (0.18)$	$20.24 \ (0.26)$
	ratio=0.5	5.78(0.29)	$13.01 \ (0.16)$	20.25 (0.24)
	ratio=0.25	6.05 (0.39)	13.04 (0.16)	20.27 (0.26)
	no cluster	2.62(0.21)	3.71 (0.12)	4.76 (0.15)
	ratio=2	2.62 (0.2)	3.7(0.12)	4.74 (0.16)
Model6	ratio=1	2.63 (0.21)	3.71 (0.11)	4.75 (0.16)
	ratio=0.5	2.66(0.2)	3.71 (0.11)	4.77(0.16)
	ratio=0.25	2.77 (0.19)	3.77 (0.13)	4.77 (0.18)

Table 2: Simulations for covariance matrix estimation. n = 20.

N. 1.1	3.6.7.3		100	202
Model	Method	p=30	p=100	p=200
Model1	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	13.52 (11.74) 13.38 (11.74) 49.06 (5.94) 17.97 (9.37) 16.44 (8.7) 17.25 (9.2) 17.23 (9.47) 17.16 (8.15) 11.42 (3.19) 4.42 (5.14)	37.46 (36.3) 37.31 (36.57) 169.58 (6.0) 51.27 (24.15) 61.8 (42.86) 55.19 (33.34) 49.85 (27.95) 54.59 (24.63) 37.61 (7.56) 14.64 (11.01)	79.16 (84.97) 78.69 (85.28) 340.46 (3.24) 111.08 (62.51) 124.46 (87.81) 109.63 (61.05) 105.53 (64.96) 110.25 (57.64) 76.69 (16.73) 30.1 (18.77)
Model2	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	5.9 (4.82) 5.84 (4.86) 5.46 (5.23) 5.56 (4.9) 5.44 (5.29) 5.31 (5.56) 5.26 (5.36) 5.32 (5.26) 2.03 (0.41) 3.95 (1.58)	16.68 (13.9) 16.37 (14.09) 15.19 (15.64) 15.35 (15.25) 15.06 (15.71) 15.71 (13.22) 14.62 (16.06) 14.97 (15.82) 6.78 (0.83) 11.43 (4.27)	32.96 (22.78) 32.48 (23.17) 29.23 (27.79) 28.44 (26.14) 27.28 (24.79) 27.71 (24.15) 27.72 (25.8) 28.48 (25.29) 13.65 (1.68) 22.62 (7.98)
Model3	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	9.81 (7.5) 9.81 (7.51) 34.48 (2.64) 12.25 (7.11) 11.16 (5.76) 11.98 (7.71) 9.91 (6.75) 11.53 (5.78) 7.52 (2.06) 5.86 (2.21)	28.47 (21.43) 28.47 (21.43) 110.59 (1.92) 35.9 (17.73) 35.97 (27.67) 34.05 (20.35) 29.74 (21.54) 35.19 (17.44) 23.98 (4.9) 17.53 (6.44)	58.51 (52.1) 58.51 (52.1) 222.71 (1.38) 73.51 (47.42) 81.57 (54.53) 75.18 (52.94) 60.75 (47.44) 70.63 (42.23) 45.88 (10.56) 34.77 (14.87)
Model4	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	11.21 (9.66) 11.17 (9.66) 41.24 (13.46) 11.18 (10.4) 10.71 (9.78) 12.34 (11.45) 10.46 (10.25) 10.69 (10.21) 4.96 (1.46) 7.17 (3.27)	38.2 (26.76) 38.18 (26.81) 141.77 (7.6) 37.04 (31.39) 37.12 (31.8) 39.17 (34.12) 34.86 (29.18) 35.87 (28.58) 15.76 (3.95) 24.3 (10.34)	69.4 (63.59) 69.36 (63.63) 286.09 (2.37) 66.57 (63.18) 70.91 (71.17) 73.0 (80.04) 64.61 (67.97) 65.04 (67.17) 30.91 (6.41) 44.98 (22.76)
Model5	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	7.86 (0.54) 7.86 (0.54) 13.4 (0.81) 7.84 (0.67) 11.85 (1.13) 7.65 (0.34) 8.67 (0.57) 17.64 (1.75) 7.07 (0.19) 7.49 (0.2)	16.42 (0.88) 16.42 (0.88) 27.43 (0.58) 16.56 (1.1) 53.22 (3.75) 14.7 (0.11) 16.85 (0.48) 57.45 (3.33) 14.35 (0.06) 14.57 (0.06)	26.81 (1.03) 26.81 (1.03) 39.85 (0.48) 26.5 (1.59) 114.43 (6.82) 21.26 (0.36) 24.23 (0.64) 114.9 (4.36) 20.74 (0.03) 20.9 (0.03)
Model6	msg_sgrid_km msg_km_cor adap.thrsd linear QIS NERCOME corShrink SCM oracle_nonlin oracle_gmleb	3.56 (0.28) 3.56 (0.28) 6.26 (0.44) 3.49 (0.26) 5.97 (0.65) 3.42 (0.16) 3.98 (0.27) 8.3 (0.98) 3.1 (0.27) 3.37 (0.18)	5.1 (0.4) 5.1 (0.4) 10.44 (0.23) 5.03 (0.69) 23.34 (1.67) 3.81 (0.16) 5.1 (0.28) 24.51 (1.48) 3.59 (0.08) 3.67 (0.05)	8.04 (0.58) 8.04 (0.59) 14.44 (0.19) 7.75 (0.75) 47.51 (2.17) 3.95 (0.4) 6.15 (0.37) 47.15 (1.59) 3.68 (0.02) 3.72 (0.02)

Table 3: Simulations for covariance matrix estimation. n = 100.

Model Method p=30 p=100 p=200 msg sgrid.km msg.km.cor adap.thrsd linear 4.13 (0.77) 7.64 (0.96) 12.19 (0.93) Model1 Rinear 4.88 (0.92) 1.35.7 (0.81) 24.67 (0.67) Model2 QIS 4.56 (0.98) 1.35.7 (0.81) 24.67 (0.67) Model3 QiS 4.56 (0.98) 13.01 (0.8) 23.97 (0.71) corShrink SCM 5.22 (0.92) 16.05 (0.78) 32.14 (1.13) oracle.nonlin oracle.gmleb 3.63 (0.76) 6.74 (0.78) 10.3 (0.85) msg.sgrid.km msg.km.cor adap.thrsd linear 7.45 (3.89) 23.91 (11.67) 50.65 (26.53) QIS 7.19 (4.36) 23.91 (11.67) 50.65 (26.53) NERCOME 7.29 (4.28) 23.01 (13.47) 48.57 (30.61) oracle.gmleb 7.65 (3.39) 22.26 (11.45) 46.82 (28.74) mag.sgrid.km agap.thrsd 4.31 (3.41) 13.89 (2.46) 4.57 (3.94) 25.41 (17.42) Model3 msg.sgrid.km agap.thrsd 4.31 (3.41) 13.83 (10.19) 25.41 (17.42) Model4 msg.sgrid.km agap.					
Modell	Model	Method	p=30	p=100	p=200
Model1 Machine					
Modell			· · · · · · · · · · · · · · · · · · ·		` · · · · ·
Modell			1 /		
NERCOME 4.67 (0.98) 13.01 (0.8) 23.97 (0.71)					
CorShrink 3.38 (1.07) 7.0 (1.25) 10.84 (1.31)	Model1				
Model6					1 1
Oracle_gmleb			` '		
Model2				` '	
Model2		$oracle_gmleb$	3.63 (0.76)	$6.74 \ (0.78)$	$10.3 \ (0.85)$
Model2 adap.thrsd linear (7.45 (3.89) (3.91 (11.67) (15.91) (11.63) 116.37 (15.91) (15.65) 116.37 (15.91) (15.65) Model2 QIS (7.19 (4.36) (23.1 (12.04) (69.21 (54.8) (26.53) (26.53) (27.44) (29.21 (54.8) (28.74) (29.22.6 (11.45) (46.82 (28.74) (28.47) (28			5.52(5.47)	16.59 (16.08)	
Model2 linear QIS (7.19 (4.36) (23.1 (12.04) (69.21 (54.8)) (8.20 (13.47) (48.57 (30.61) (30.6					
Model2 QIS					
Model2			1 /		
CorShrink SCM 7.45 (3.93) 22.26 (11.45) 46.82 (28.74) SCM 7.45 (3.93) 24.36 (11.11) 50.47 (28.47) oracle_nonlin oracle_gmleb 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0 (0.0) 0.0 (0.0)	Model2		1 /		
Model4 SCM			1 /		
Model4 Septidum					
Model4 msg_sgrid_km msg_sgrid_km msg_skm_cor 4.31 (3.41) 13.83 (10.19) 25.41 (17.42) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 13.79 (10.24) 25.3 (17.41) 14.79 (10.12) 20.14 (16.05) 15.60 (10.12) 30.14 (16.05) 15.60 (10.12) 30.14 (16.05) 30.68 (16.19) 30.68 (16.19) 30.68 (16.19) 30.68 (16.19) 30.68 (16.19) 30.68 (16.19) 30.69 (10.19) 30.69 (10.19) 30.68 (16.19) 30.69 (10.19) 30.69			` '		
Model3 msg_km_cor adap.thrsd 4.31 (3.41) 13.79 (10.24) 25.3 (17.41) Model3 linear linear and adap.thrsd 4.81 (3.38) 17.81 (10.68) 39.11 (21.77) Model3 QIS and 4.65 (3.23) 15.8 (8.85) 29.33 (15.16) 4.67 (28.32) MERCOME corshrink 4.21 (3.54) 13.58 (11.03) 26.01 (19.31) SCM and 4.76 (3.12) 15.61 (9.22) 30.68 (16.19) oracle_nonlin oracle_gmleb 3.09 (1.04) 9.32 (2.68) 17.89 (4.98) msg_sgrid_km msg_km_cor adap.thrsd 5.9 (4.82) 16.68 (13.9) 32.96 (22.78) Model4 QIS and 4.66 (5.23) 15.19 (15.64) 29.23 (27.79) MERCOME adap.thrsd 5.46 (5.29) 15.06 (15.71) 27.28 (24.79) MERCOME adap.thrsd 5.26 (4.9) 15.35 (15.25) 28.44 (26.14) SCM poracle_nonlin and poracle_nonlin and poracle_gmleb 3.95 (1.58) 11.497 (15.82) 27.71 (24.15) Model5 and poracle_molin and poracle_gmleb 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) Model5 and poracle_molin and poracle_gmleb 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Model3 msg_km_cor adap.thrsd 4.31 (3.41) 13.79 (10.24) 25.3 (17.41) Model3 linear linear and adap.thrsd 4.81 (3.38) 17.81 (10.68) 39.11 (21.77) Model3 QIS and 4.65 (3.23) 15.8 (8.85) 29.33 (15.16) 29.33 (15.16) MCRCOME and Ard (3.47) 14.92 (10.12) 30.14 (16.05) 30.14 (16.05) CorShrink and Ard (3.12) 15.61 (9.22) 30.68 (16.19) 30.68 (16.19) Oracle_nonlin oracle_gmleb and oracle_g		msg_sgrid_km	4.31 (3.41)	13.83 (10.19)	25.41 (17.42)
Model3 linear QIS 4.78 (3.05) (3.23) (15.8 (8.85) (9.41) (40.79 (28.32) (15.33 (9.41) (40.79 (28.32) (19.31)		msg_km_cor	$4.31\ (3.41)$	$13.79\ (10.24)$	$25.3\ (17.41)$
Model3			1 /		
NERCOME 4.74 (3.47) 14.92 (10.12) 30.14 (16.05) corShrink 4.21 (3.54) 13.58 (11.03) 26.01 (19.31) SCM 4.76 (3.12) 15.61 (9.22) 30.68 (16.19) oracle_nonlin 3.3 (0.74) 10.37 (1.37) 20.45 (2.22) oracle_gmleb 3.09 (1.04) 9.32 (2.68) 17.89 (4.98) msg_sgrid_km 5.9 (4.82) 16.68 (13.9) 32.96 (22.78) msg_km_cor 5.84 (4.86) 16.37 (14.09) 32.48 (23.17) adap.thrsd 5.46 (5.23) 15.19 (15.64) 29.23 (27.79) linear 5.56 (4.9) 15.35 (15.25) 28.44 (26.14) QIS 5.44 (5.29) 15.06 (15.71) 27.28 (24.79) NERCOME 5.31 (5.56) 15.71 (13.22) 27.71 (24.15) corShrink 5.26 (5.36) 14.62 (16.06) 27.72 (25.8) SCM 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_gmleb 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) Model5 Model5 NERCOME 4.84 (0.36) 12.93 (0.12) 19.61 (0.1) Model5 QIS 4.86 (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) corShrink 5.82 (0.26) 13.31 (0.14) 20.12 (0.1) SCM 7.64 (0.56) 25.29 (0.7) 50.46 (0.88) oracle_mollin 4.37 (0.34) 12.27 (0.14) 19.21 (0.07) oracle_gmleb 5.64 (0.19) 12.94 (0.12) 19.66 (0.07) Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) corShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)			1 /		
NERCOME 4.74 (3.47) 14.92 (10.12) 30.14 (16.05)	Model3		1 /		1 1
SCM			1 /		1 1
Model6 M			1 /		1 1
msg_sgrid_km					
Model4 msg_km_cor adap.thrsd 5.84 (4.86) 16.37 (14.09) 32.48 (23.17) Model4 linear plane 5.46 (5.23) 15.19 (15.64) 29.23 (27.79) Model4 QIS 5.56 (4.9) 15.35 (15.25) 28.44 (26.14) NERCOME plane 5.31 (5.56) 15.71 (13.22) 27.71 (24.15) corShrink plane 5.26 (5.36) 14.62 (16.06) 27.72 (25.8) SCM plane 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin plane 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_nonlin plane 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) msg_sgrid_km plane 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) msg_km_cor plane 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) adap.thrsd plane 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear plane 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) Model5 NERCOME plane 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) parael_nonlin 4.37 (0.34) 12.27 (0.14) 19.21 (0					
Model4 msg_km_cor adap.thrsd 5.84 (4.86) 16.37 (14.09) 32.48 (23.17) Model4 linear plane 5.46 (5.23) 15.19 (15.64) 29.23 (27.79) Model4 QIS 5.56 (4.9) 15.35 (15.25) 28.44 (26.14) NERCOME plane 5.31 (5.56) 15.71 (13.22) 27.71 (24.15) corShrink plane 5.26 (5.36) 14.62 (16.06) 27.72 (25.8) SCM plane 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin plane 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_nonlin plane 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) msg_sgrid_km plane 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) msg_km_cor plane 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) adap.thrsd plane 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear plane 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) Model5 NERCOME plane 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) parael_nonlin 4.37 (0.34) 12.27 (0.14) 19.21 (0		msg_sgrid_km	5.9 (4.82)	16.68 (13.9)	32.96 (22.78)
Model4 adap.thrsd linear 5.46 (5.23) 15.19 (15.64) 29.23 (27.79) Model4 QIS 5.44 (5.29) 15.35 (15.25) 28.44 (26.14) NERCOME 5.31 (5.56) 15.06 (15.71) 27.28 (24.79) NERCOME 5.31 (5.56) 15.71 (13.22) 27.71 (24.15) corShrink 5.26 (5.36) 14.62 (16.06) 27.72 (25.8) SCM 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_gmleb 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) msg_sgrid_km 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) msg_km_cor 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) adap.thrsd 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) Model5 QIS 4.86 (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) corShrink 5.82 (0.26) 13.31		0 0	, ,		
Model4 QIS NERCOME corShrink 5.44 (5.29) 5.31 (5.56) 15.06 (15.71) 15.71 (13.22) 27.72 (24.15) 27.71 (24.15) SCM 5.32 (5.26) 14.62 (16.06) 27.72 (25.8) SCM 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_gmleb 3.95 (1.58) 11.43 (4.27) 22.62 (7.98) msg_sgrid_km 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) msg_km_cor 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) adap.thrsd 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) MCRCOME 4.84 (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) corShrink 5.82 (0.26) 13.31 (0.14) 20.12 (0.1) SCM 7.64 (0.56) 25.29 (0.7) 50.46 (0.88) oracle_mollin 4.37 (0.34) 12.27 (0.14) 19.21 (0.07) msg_sgrid_km 2.62 (0.19) 3.71 (0.1		adap.thrsd			
NERCOME 5.31 (5.56) 15.71 (13.22) 27.71 (24.15)			5.56(4.9)		
NERCOME 5.31 (5.56) 15.71 (13.22) 27.71 (24.15)	Model4		· · · · · · · · · · · · · · · · · · ·		1 1
SCM 5.32 (5.26) 14.97 (15.82) 28.48 (25.29) oracle_nonlin 2.03 (0.41) 6.78 (0.83) 13.65 (1.68) oracle_gmleb 3.95 (1.58) 11.43 (4.27) 22.62 (7.98)	1,10 4011				
oracle_nonlin oracle_gmleb 2.03 (0.41) (0.41) (0.78 (0.83) (0.83) (0.42) (0.24) (0.24) 13.65 (1.68) (1.68) (0.27) (0.28) msg_sgrid_km 5.72 (0.28) (0.28) (0.18) (0.18) (0.24 (0.24) (0.29) (0.27) (0.11) (0.29) (0.29) (0.27) (0.29) (0.29) (0.27) (0.29)					
msg_sgrid_km 5.72 (0.28) 11.43 (4.27) 22.62 (7.98) msg_sgrid_km 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) msg_km_cor 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) adap.thrsd 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) QIS 4.86 (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) corShrink 5.82 (0.26) 13.31 (0.14) 20.12 (0.1) SCM 7.64 (0.56) 25.29 (0.7) 50.46 (0.88) oracle_nonlin 4.37 (0.34) 12.27 (0.14) 19.21 (0.07) oracle_gmleb 5.64 (0.19) 12.94 (0.12) 19.66 (0.07) msg_sgrid_km 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) adap.thrsd 3.6 (0.07) 3.95 (0.07) 4.23 (0.08) linear 2.6 (0.2) 3.52 (0.06) 3.71 (0.06) NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) corShrink					
Model5 msg_sgrid_km 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) Model5 msg_km_cor 5.72 (0.28) 13.03 (0.18) 20.24 (0.24) Model5 adap.thrsd 8.2 (0.13) 15.31 (0.09) 21.7 (0.1) linear 5.63 (0.23) 12.93 (0.12) 19.61 (0.1) QIS 4.86 (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) 12.65 (0.17) 19.54 (0.07) corShrink 5.82 (0.26) 13.31 (0.14) 20.12 (0.1) SCM 7.64 (0.56) 25.29 (0.7) 50.46 (0.88) oracle_nonlin 4.37 (0.34) 12.27 (0.14) 19.21 (0.07) oracle_gmleb 5.64 (0.19) 12.94 (0.12) 19.66 (0.07) msg_sgrid_km 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) msg_km_cor 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) adap.thrsd 3.6 (0.07) 3.95 (0.07) 4.23 (0.08) linear 2.6 (0.2) 3.52 (0.06) 3.71 (0.06) NERCOME 2.28 (0.29) 3.24 (0.29)			1 /		
Model5 msg_km_cor adap.thrsd 5.72 (0.28) (0.28) (0.18) (0.18) (0.24) (0			. ,	. ,	<u> </u>
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$, ,		
Model5 linear QIS 5.63 (0.23) (0.23) 12.93 (0.12) 19.61 (0.1) Model5 QIS 4.86 (0.36) (0.36) 13.39 (0.29) 35.44 (0.51) NERCOME 4.84 (0.36) (0.26) (0.17) 19.54 (0.07) corShrink 5.82 (0.26) (0.26) (0.17) 19.54 (0.07) SCM 7.64 (0.56) (0.25) (0.7) (0.14) 20.12 (0.1) SCM 7.64 (0.56) (0.25) (0.27) (0.14) 19.21 (0.07) oracle_nonlin 4.37 (0.34) (0.34) (0.12) (0.12) (0.12) 19.66 (0.07) msg_sgrid_km 2.62 (0.19) (0.19) (0.11) (0.11) (0.11) (0.11) (0.27) 4.76 (0.2) (0.21) (0.21) msg_km_cor 2.62 (0.19) (0.19) (0.11) (0		_			
Model5 QIS NERCOME corShrink 4.86 (0.36) 4.84 (0.36) 13.39 (0.29) 12.65 (0.17) 35.44 (0.51) 19.54 (0.07) SCM oracle_nonlin oracle_gmleb 5.82 (0.26) 5.64 (0.19) 13.31 (0.14) 25.29 (0.7) 20.12 (0.1) 50.46 (0.88) Model6 3.64 (0.19) 12.27 (0.14) 12.94 (0.12) 19.21 (0.07) 19.66 (0.07) Model6 3.64 (0.19) 3.71 (0.11) 3.71 (0.11) 4.76 (0.2) 4.76 (0.2) 4.76 (0.2) 4.77 (0.21) Model6 QIS NERCOME CorShrink 2.29 (0.27) 2.28 (0.29) 4.07 (0.22) 3.24 (0.29) 15.19 (0.25) 3.66 (0.08) NERCOME CorShrink 2.72 (0.17) 3.68 (0.26) 3.79 (0.08) 4.2 (0.07) 3.60 (0.19) 4.2 (0.07) 3.4 (0.14)		_		` '	
NERCOME	3.6 1.15				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model5				
Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) CorShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)				1 1	
msg_sgrid_km 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) msg_sgrid_km 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) msg_km_cor 2.62 (0.19) 3.71 (0.11) 4.76 (0.2) adap.thrsd 3.6 (0.07) 3.95 (0.07) 4.23 (0.08) linear 2.6 (0.2) 3.52 (0.06) 3.71 (0.06) QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) corShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)		SCM	7.64(0.56)	25.29(0.7)	50.46 (0.88)
Model6 QIS 2.29 (0.27) 4.07 (0.22) 4.76 (0.2) Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) CorShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		oracle_gmleb	5.64 (0.19)	12.94 (0.12)	19.66 (0.07)
Model6 adap.thrsd linear 2.6 (0.2) 3.52 (0.06) 3.71 (0.06) Model6 QIS 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) NERCOME corShrink 2.72 (0.17) 3.79 (0.08) 5.00 3.66 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 3.4 (0.14) 20.77 (0.32) 3.0 (0.19) 3.4 (0.14)					
Model6 linear QIS QIS 2.29 (0.27) 2.28 (0.29) 3.52 (0.06) 3.71 (0.06) 4.07 (0.22) 4.07 (0.22) 4.07 (0.25) 3.24 (0.29) 3.66 (0.08) 5.07		_			
Model6 QIS NERCOME 2.29 (0.27) 4.07 (0.22) 15.19 (0.25) ocrShrink 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) corShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)		_			
NERCOME 2.28 (0.29) 3.24 (0.29) 3.66 (0.08) corShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)					
corShrink 2.72 (0.17) 3.79 (0.08) 4.2 (0.07) SCM 3.68 (0.26) 10.72 (0.29) 20.77 (0.32) oracle_nonlin 2.05 (0.25) 3.0 (0.19) 3.4 (0.14)	Model6	-	1 /	1 (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
oracle_nonlin $2.05 (0.25)$ $3.0 (0.19)$ $3.4 (0.14)$					
oracle_gmleb $2.56 (0.22)$ $3.5 (0.08)$ $3.68 (0.03)$			$2.05 \ (0.25)$	3.0 (0.19)	3.4 (0.14)
		$oracle_gmleb$	2.56 (0.22)	3.5 (0.08)	3.68 (0.03)

Table 4: Simulations for correlation matrix estimation. n = 20.

Model	Method	p=30	p=100	p=200
	msg_sgrid_km	3.78 (0.74)	9.1 (0.92)	15.01 (0.98)
	msg_km_cor	3.73 (0.75)	9.06 (0.94)	14.84 (1.0)
	adap.thrsd	8.63 (1.0)	18.45 (0.44)	26.94 (0.23)
	$_{ m QIS}$	5.24 (0.68) 5.2 (0.69)	$13.59 (0.61) \\ 22.1 (1.61)$	21.61 (0.67) 46.66 (2.8)
Model1	NERCOME	5.25 (0.81)	13.56 (0.67)	21.28 (0.43)
	corShrink	3.83 (0.77)	8.84 (0.96)	$13.62 \ (0.93)$
	SCM	6.35 (0.64)	22.44 (0.91)	45.27 (1.08)
	$oracle_nonlin$	4.74(0.61)	$13.11\ (0.56)$	$20.74\ (0.39)$
	$oracle_gmleb$	$3.4\ (0.64)$	8.07 (0.95)	12.44 (0.83)
	msg_sgrid_km	2.5(1.32)	7.28(4.54)	13.13 (6.89)
	msg_km_cor	2.41 (1.4)	6.61 (4.72)	12.46 (8.64)
	adap.thrsd	15.14 (0.77)	50.57 (0.27)	100.65 (0.49)
	linear	4.5 (1.67)	15.76 (5.0)	32.09 (7.66)
Model2	QIS NERCOME	$4.51 (1.18) \\ 3.78 (1.65)$	23.83 (3.33) 12.97 (4.37)	51.21 (7.74) 25.99 (6.72)
	corShrink	4.16 (0.77)	13.89 (1.91)	27.58 (3.13)
	SCM	5.13 (0.91)	17.67 (2.53)	35.55 (3.62)
	oracle_nonlin	3.33(1.25)	11.85 (3.06)	24.26(5.75)
	$oracle_gmleb$	$1.19\ (1.35)$	5.19 (3.66)	$9.79\ (4.24)$
	msg_sgrid_km	1.53 (1.67)	5.33 (4.51)	10.25 (11.56)
	msg_km_cor	1.48(1.64)	5.24(4.28)	$10.25\ (11.52)$
	adap.thrsd	$20.54\ (1.36)$	69.91 (0.89)	$140.18 \ (0.55)$
	linear	4.14 (2.81)	13.9 (8.21)	26.88 (17.7)
Model3	QIS	2.6 (1.22)	16.23 (5.01)	34.33 (9.67)
	NERCOME corShrink	3.04 (2.66) $1.4 (1.68)$	9.77 (8.9) 4.58 (4.86)	19.18 (16.58) 9.34 (12.33)
	SCM	3.07 (1.12)	10.64 (2.81)	21.47 (7.61)
	oracle_nonlin	2.08 (0.65)	7.27 (1.92)	14.38 (3.98)
	$oracle_gmleb$	$0.89\ (0.38)$	$2.96\ (0.59)$	5.6 (1.05)
	msg_sgrid_km	1.23 (0.69)	3.51 (2.09)	6.54 (3.33)
	msg_km_cor	$1.23 \ (0.86)$	3.78(2.65)	7.51 (5.26)
	adap.thrsd	24.58 (10.24)	89.67 (4.15)	179.98 (3.18)
	linear	2.84 (1.77)	9.66 (6.37)	18.77 (10.64)
Model4	QIS NERCOME	0.93 (0.48)	$6.09 (1.72) \\ 3.32 (4.2)$	12.71 (2.78)
	corShrink	$\begin{array}{c} 0.98\ (1.17) \\ 0.67\ (0.73) \end{array}$	2.07 (2.11)	6.68 (6.68) 3.79 (4.44)
	SCM	1.09 (0.48)	3.59 (1.75)	7.36(2.8)
	oracle_nonlin	0.63 (0.16)	2.25 (0.4)	4.36 (0.73)
	$oracle_gmleb$	$1.38\ (0.9)^{'}$	$4.63\ (1.66)$	$8.45\ (3.45)$
	msg_sgrid_km	3.04 (0.16)	6.49 (0.24)	10.59 (0.42)
	msg_km_cor	3.04(0.16)	$6.49\ (0.24)$	10.59(0.42)
	adap.thrsd	5.24 (0.38)	10.94 (0.27)	$15.96 \ (0.21)$
	linear	3.04 (0.2)	6.56 (0.35)	10.44 (0.52)
Model5	QIS	4.76 (0.29)	21.29 (0.66)	45.37 (1.32)
	$ \begin{array}{c} \text{NERCOME} \\ \text{corShrink} \end{array} $	$\begin{array}{c} 2.96 \ (0.08) \\ 3.0 \ (0.12) \end{array}$	5.84 (0.03) 5.91 (0.15)	8.46 (0.11) 8.55 (0.19)
	SCM	6.72 (0.12)	5.91 (0.15) $22.76 (0.35)$	45.68 (0.36)
	oracle_nonlin	2.81 (0.08)	5.72 (0.03)	8.29 (0.01)
	oracle_gmleb	2.94 (0.07)	5.8 (0.03)	8.35 (0.01)
-	msg_sgrid_km	2.67 (0.21)	4.58 (0.33)	7.59 (0.53)
	msg_km_cor	2.67(0.21)	$4.58\ (0.33)$	7.59(0.54)
	adap.thrsd	4.93(0.41)	$9.69 \ (0.26)$	13.92(0.2)
	linear	2.63 (0.21)	4.58 (0.57)	7.29 (0.78)
Model6	QIS	4.92 (0.23)	21.79 (0.65)	45.85 (1.13)
	NERCOME	2.55 (0.13)	3.36 (0.13)	3.66 (0.41)
	$ \begin{array}{c} \operatorname{corShrink} \\ \operatorname{SCM} \end{array} $	$\begin{array}{c} 2.62 \ (0.15) \\ 6.7 \ (0.3) \end{array}$	3.4 (0.25) $22.76 (0.36)$	3.5 (0.56) 45.76 (0.3)
	oracle_nonlin	2.32 (0.19)	3.22 (0.07)	$3.45 \ (0.03)$
		2.02 (0.10)	0.22 (0.01)	0.10 (0.00)

Table 5: Simulations for correlation matrix estimation. n = 100.

Model	Method	p=30	p=100	p=200	
	msg_sgrid_km	2.06 (0.31)	4.4 (0.53)	6.93 (0.5)	
	msg_km_cor	2.02(0.35)	4.33(0.6)	6.78 (0.56)	
	adap.thrsd	1.96 (0.59)	5.92(0.74)	9.54 (0.75)	
	linear	2.64 (0.33)	8.54 (0.42)	$15.22 \ (0.33)$	
Model1	QIS	2.32(0.37)	7.83(0.41)	$16.23 \ (0.46)$	
Modell	NERCOME	2.36(0.4)	8.17(0.4)	15.14 (0.39)	
	$\operatorname{corShrink}$	1.41(0.45)	3.57(0.52)	5.42(0.53)	
	SCM	2.78(0.32)	9.77(0.43)	19.83 (0.41)	
	$oracle_nonlin$	2.19(0.37)	7.71(0.36)	14.76 (0.34)	
	$oracle_gmleb$	$1.9 \ (0.35)$	3.87(0.45)	$5.78\ (0.47)$	
	msg_sgrid_km	0.97 (0.62)	2.51 (2.0)	4.42 (3.85)	
	msg_km_cor	0.97(0.62)	2.47(1.99)	4.36(3.85)	
	adap.thrsd	6.37(1.21)	26.59(2.15)	56.3 (3.24)	
	linear	2.17(0.42)	$7.3 \; (\hat{1.21})^{'}$	14.79(1.97)	
M 1 10	QIS	1.69(0.52)	$5.6\ (1.46)$	$23.4\ (5.37)$	
Model2	NERCOME	1.66~(0.47)	5.45(1.32)	11.02(2.04)	
	corShrink	2.02(0.29)	6.65~(0.76)	$13.21\ (1.58)$	
	SCM	$2.3\ (0.38)$	7.62(0.81)	15.5 (1.52)	
	oracle_nonlin	1.5(0.44)	5.03(0.91)	10.28 (1.54)	
	$oracle_gmleb$	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	
	msg_sgrid_km	0.83 (0.53)	2.95 (1.66)	6.29 (3.23)	
	msg_km_cor	0.82 (0.5)	2.72 (1.47)	5.35 (3.03)	
	adap.thrsd	1.35 (0.4)	5.29(2.96)	14.69 (17.18)	
	linear	1.39 (0.4) $1.39 (0.69)$	4.74(2.0)	9.35 (4.54)	
	QIS	1.42 (0.95)	4.49 (2.35)	18.95 (6.43)	
Model3	NERCOME	$1.42 \ (0.93)$ $1.25 \ (0.62)$	4.46 (1.81)	8.65 (3.85)	
	corShrink	0.62 (0.02)	1.94 (2.24)	4.51 (4.99)	
	SCM	$1.34 \ (0.39)$			
	oracle_nonlin	1.34 (0.39) $1.12 (0.18)$	4.53 (1.08) 4.02 (0.36)	9.33 (2.31) 8.0 (0.62)	
	oracle_gmleb	0.86 (0.2)	2.98 (0.68)	6.07 (1.43)	
	msg_sgrid_km	1.09 (0.17)	3.79 (0.35)	7.57 (0.53)	
	msg_km_cor	1.13 (0.3)	6.25 (0.98)	17.17 (1.86)	
	adap.thrsd	0.5 (0.22)	1.69 (0.64)	3.34 (1.34)	
	linear	0.78 (0.54)	2.45 (1.75)	4.91 (2.99)	
	QIS	$0.61 \ (0.43)$	1.83 (1.17)	7.3 (2.19)	
Model4	NERCOME	0.55 (0.3)	1.77 (0.95)	3.71 (1.77)	
	corShrink	0.33 (0.3) 0.27 (0.37)	0.85 (0.94)	1.73 (2.18)	
	SCM	0.27 (0.37) $0.5 (0.22)$	1.67 (0.6)		
	oracle_nonlin	0.43 (0.22)	1.59 (0.08)	3.3 (1.18) $3.14 (0.12)$	
	oracle_gmleb	$1.51 \ (0.59)$	4.8 (1.7)	9.56 (3.4)	
	msg_sgrid_km	2.22 (0.1)	5.18 (0.08)	8.07 (0.1)	
	msg_km_cor	2.22 (0.1) $2.22 (0.1)$	5.18 (0.08)	8.07 (0.1)	
	adap.thrsd	3.23 (0.04)	5.99 (0.02)	8.47 (0.01)	
	linear	2.2 (0.04)	5.15 (0.05)	7.83 (0.03)	
	QIS	1.91 (0.17)	5.34 (0.12)	14.2 (0.14)	
Model5	NERCOME	1.91 (0.17) $1.93 (0.15)$	5.04 (0.12) $5.04 (0.07)$	7.8 (0.03)	
	corShrink	2.19 (0.09)	5.15 (0.04)	7.82 (0.03)	
	SCM	2.19 (0.09)	9.98 (0.04)	20.02 (0.17)	
	oracle_nonlin				
	oracle_gmleb	1.74 (0.13) 2.2 (0.09)	4.9 (0.05) 5.16 (0.05)	7.67 (0.03) 7.85 (0.04)	
				. ,	
	msg_sgrid_km	1.99 (0.14)	3.35 (0.09)	4.53 (0.18)	
	msg_km_cor	1.99 (0.14)	3.35 (0.09)	4.53 (0.18)	
	adap.thrsd	2.69 (0.03)	3.31 (0.0)	3.49 (0.0)	
	linear	1.97 (0.15)	3.15 (0.05)	3.49 (0.05)	
Model6	QIS	1.71 (0.19)	3.7 (0.18)	14.78 (0.1)	
	NERCOME	$ \begin{array}{c} 1.69 \ (0.2) \\ 2.0 \ (0.15) \end{array} $	2.89 (0.22)	$3.42 (0.08) \\ 3.47 (0.04)$	
	$\operatorname{corShrink}$	20 (0 15)	3.16 (0.05)	2 47 (0 04)	

Table 6: Simulations result for uniform distributed data.

Model	Method	p=30	p=100	p=200
	msg_sgrid_km	3.95(0.7)	7.44(0.84)	11.92 (0.83)
	msg_km_cor	3.76 (0.75)	7.11(0.86)	11.47 (0.9)
	adap.thrsd	3.75(1.04)	9.61 (0.99)	15.76(1.2)
	linear	4.77(0.74)	$13.64 \ (0.71)$	$24.54 \ (0.58)$
Model1	QIS	4.45 (0.74)	$12.93 \ (0.67)$	26.59 (0.86)
Modell	NERCOME	4.51 (0.89)	$13.01 \ (0.77)$	23.87 (0.68)
	$\operatorname{corShrink}$	3.07(1.09)	6.84 (0.98)	10.59 (1.17)
	SCM	5.01 (0.76)	15.93 (0.82)	32.12(1.21)
	$oracle_nonlin$	3.94 (0.58)	12.32 (0.6)	$23.24 \ (0.64)$
	oracle_gmleb	3.53 (0.68)	6.66 (0.74)	10.11 (0.76)
	msg_sgrid_km	4.4(3.96)	13.45 (16.37)	25.99 (27.39)
	msg_km_cor	4.4(3.96)	$13.45 \ (16.37)$	25.99(27.39)
	adap.thrsd	12.05 (2.19)	50.63 (5.79)	109.37 (6.96)
	linear	6.82(2.87)	$22.94\ (11.02)$	44.52 (15.97)
Model2	QIS	6.53 (3.04)	$21.83 \ (12.08)$	60.92 (37.96)
Wiodeiz	NERCOME	6.64(3.17)	21.99 (11.44)	$41.35 \ (16.54)$
	$\operatorname{corShrink}$	6.15 (2.87)	20.85 (11.67)	$39.44\ (17.6)$
	SCM	6.7(2.61)	$23.25 \ (10.58)$	$43.43 \ (15.48)$
	$oracle_nonlin$	4.84 (0.89)	$16.51\ (2.05)$	32.8(3.11)
	$oracle_gmleb$	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	msg_sgrid_km	4.06 (2.69)	12.59 (7.29)	24.83 (16.8)
	msg_km_cor	$4.06\ (2.69)$	$12.56\ (7.32)$	24.72(16.83)
	adap.thrsd	4.7(2.62)	14.78 (6.35)	29.68 (15.13)
	linear	4.73(2.62)	15.14(6.85)	28.62 (15.54)
Model3	QIS	4.58(2.76)	$14.66 \ (7.11)$	39.29(25.67)
Modela	NERCOME	4.56(2.72)	14.09(6.82)	$28.1\ (15.08)$
	corShrink	3.84(2.77)	12.28 (7.37)	24.85 (17.61)
	SCM	4.68(2.5)	$14.76 \ (6.07)$	$29.65 \ (14.87)$
	$oracle_nonlin$	3.29 (0.65)	$10.31\ (1.33)$	$20.51\ (2.33)$
	oracle_gmleb	2.86 (0.78)	8.47 (2.07)	16.48 (4.89)
	msg_sgrid_km	4.66 (3.04)	14.34 (8.2)	27.16 (17.92)
	msg_km_cor	4.6 (3.09)	$14.02 \ (8.38)$	$26.61 \ (18.29)$
	adap.thrsd	4.12(3.1)	12.34 (9.03)	22.78 (20.32)
	$_{ m linear}$	4.11 (3.27)	12.5 (9.02)	$23.24 \ (20.44)$
Model4	QIS	4.09(3.16)	12.4 (9.27)	24.4 (21.89)
1.10 4011	NERCOME	4.12(3.58)	$12.38 \ (10.43)$	22.83 (19.13)
	corShrink	3.95(3.46)	12.19 (9.64)	21.84 (20.96)
	SCM	4.09(3.31)	12.57 (9.39)	22.68 (20.14)
	oracle_nonlin	2.09 (0.39)	6.66 (0.75)	13.4 (1.5)
	oracle_gmleb	3.32 (1.18)	10.34 (2.7)	20.02 (6.09)
	msg_sgrid_km	5.64 (0.23)	12.95 (0.12)	19.9 (0.14)
	msg_km_cor	5.64 (0.23)	12.95 (0.12)	19.9 (0.14)
	adap.thrsd	8.12(0.11)	$15.15 \ (0.07)$	$21.48 \ (0.06)$
	linear	5.57 (0.22)	$12.91 \ (0.11)$	19.59 (0.08)
Model5	QIS	4.77 (0.36)	$13.34 \ (0.25)$	35.32 (0.44)
1,100010	NERCOME	4.8 (0.3)	$12.63 \ (0.17)$	19.54 (0.08)
	corShrink	5.67 (0.22)	13.11 (0.12)	$19.86 \ (0.08)$
	SCM	7.53 (0.52)	25.09(0.6)	50.22 (0.76)
	oracle_nonlin	4.34 (0.33)	12.27 (0.14)	19.2 (0.07)
	oracle_gmleb	5.58 (0.22)	12.93 (0.12)	19.63 (0.06)
	msg_sgrid_km	2.56 (0.2)	3.61 (0.07)	4.43(0.11)
	msg_km_cor	2.56 (0.2)	3.61 (0.07)	4.43 (0.11)
		3.54(0.06)	3.8(0.04)	3.94(0.04)
	adap.thrsd			/
	linear	2.55(0.21)	3.51 (0.06)	3.71 (0.05)
Model6	$_{ m QIS}^{ m linear}$		3.51 (0.06) 3.98 (0.17)	15.17(0.2)
Model6	linear QIS NERCOME	2.55 (0.21) 2.22 (0.28) 2.19 (0.28)	3.98 (0.17) 3.21 (0.25)	15.17 (0.2) 3.65 (0.08)
Model6	linear QIS NERCOME corShrink	2.55 (0.21) 2.22 (0.28) 2.19 (0.28) 2.58 (0.22)	3.98 (0.17) 3.21 (0.25) 3.62 (0.07)	15.17 (0.2) 3.65 (0.08) 3.91 (0.04)
Model6	linear QIS NERCOME	2.55 (0.21) 2.22 (0.28) 2.19 (0.28)	3.98 (0.17) 3.21 (0.25)	15.17 (0.2) 3.65 (0.08)

Table 7: Simulations result for negative binomial distributed data.

Model	Method	p=30	p=100	p=200	
Model1	msg_sgrid_km msg_km_cor adap.thrsd	4.26 (3.26) 4.26 (3.26) 5.03 (3.7)	15.5 (12.09) 15.49 (12.11) 22.77 (17.21)	29.23 (22.1) 29.14 (22.19) 55.57 (40.25)	
	linear QIS NERCOME corShrink	4.8 (2.72) 4.71 (2.97) 4.56 (3.2) 4.0 (3.55)	17.16 (10.75) 16.68 (11.61) 16.5 (11.43) 14.66 (12.46)	32.32 (18.78) 39.52 (33.2) 32.19 (21.33) 28.66 (22.84)	
	SCM oracle_nonlin oracle_gmleb	4.74 (3.15) 3.28 (0.69) 3.12 (0.99)	16.52 (10.73) 10.46 (1.46) 10.04 (3.31)	32.64 (20.51) 20.64 (2.49) 19.0 (5.2)	
	msg_sgrid_km	5.7 (5.13)	17.72 (14.5)	38.45 (32.1)	
	msg_km_cor	5.63 (5.18)	17.53 (14.69)	38.12 (32.58)	
	adap.thrsd	5.36 (5.74)	18.16 (18.15)	39.9 (40.12)	
Model2	linear	5.29 (5.37)	15.88 (14.64)	34.97 (38.41)	
	QIS	5.25 (5.67)	15.93 (16.04)	32.59 (37.67)	
	NERCOME	5.02 (6.18)	16.19 (16.14)	35.33 (37.56)	
	corShrink SCM oracle_nonlin	5.23 (5.86) 5.33 (5.66) 2.09 (0.38)	15.73 (16.92) 15.88 (16.58) 6.57 (0.96)	34.87 (36.67) 35.03 (36.6) 13.59 (1.76)	
	oracle_gmleb	4.06 (1.59)	11.84 (4.36)	24.66 (12.36)	
	msg_sgrid_km	4.16 (0.78)	7.75 (1.01)	12.4 (0.8)	
	msg_km_cor	4.0 (0.83)	7.46 (1.09)	11.89 (0.91)	
	adap.thrsd	4.36 (1.13)	10.58 (1.27)	17.68 (1.6)	
	linear	5.02 (0.98)	13.75 (0.98)	24.68 (0.74)	
Model3	QIS	4.69 (1.02)	13.05 (0.95)	26.73 (0.86)	
	NERCOME	4.8 (0.92)	13.06 (1.0)	23.98 (0.82)	
	corShrink	3.52 (1.08)	7.17 (1.18)	11.1 (0.93)	
	SCM	5.34 (0.77)	16.11 (0.96)	32.37 (1.18)	
	oracle_nonlin	4.12 (0.7)	12.42 (0.79)	23.36 (0.72)	
	oracle_gmleb	3.76 (0.73)	6.84 (0.85)	10.39 (0.7)	
	msg_sgrid_km	5.47 (5.91)	18.3 (23.07)	37.5 (46.38)	
	msg_km_cor	5.47 (5.91)	18.3 (23.07)	37.5 (46.38)	
	adap.thrsd	14.43 (3.16)	56.78 (11.33)	122.54 (26.37)	
	linear	7.65 (4.76)	26.2 (15.39)	51.14 (32.25)	
Model4	QIS	7.56 (5.19)	25.59 (16.34)	67.24 (51.77)	
	NERCOME	7.18 (5.4)	25.74 (17.11)	49.84 (38.45)	
	corShrink	6.91 (4.94)	23.99 (17.23)	48.59 (35.77)	
	SCM	7.45 (4.3)	25.64 (15.36)	52.07 (33.74)	
	oracle_nonlin	4.97 (1.08)	16.63 (2.3)	32.93 (3.86)	
	oracle_gmleb	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	
	msg_sgrid_km	5.77 (0.34)	13.11 (0.2)	20.5 (0.28)	
	msg_km_cor	5.77 (0.34)	13.11 (0.2)	20.5 (0.28)	
	adap.thrsd	8.25 (0.14)	15.64 (0.3)	22.54 (0.45)	
Model5	linear QIS NERCOME corShrink	5.68 (0.27) 4.95 (0.47) 4.91 (0.39) 5.9 (0.32)	12.94 (0.11) 13.46 (0.31) 12.65 (0.18) 13.44 (0.16)	19.61 (0.09) 35.4 (0.68) 19.54 (0.08)	
	SCM oracle_nonlin oracle_gmleb	5.9 (0.32) 7.74 (0.62) 4.45 (0.39) 5.65 (0.28)	15.44 (0.16) 25.41 (0.72) 12.28 (0.13) 12.95 (0.11)	20.27 (0.1) 50.53 (1.04) 19.21 (0.06) 19.64 (0.08)	
Model6	msg_sgrid_km msg_km_cor adap.thrsd	2.7 (0.23) 2.7 (0.23) 3.65 (0.1)	3.82 (0.12) 3.82 (0.12) 4.29 (0.29)	5.16 (0.21) 5.16 (0.21) 5.3 (0.34)	
	linear QIS NERCOME	2.64 (0.23) 2.36 (0.29) 2.31 (0.28)	3.53 (0.06) 4.08 (0.22) 3.25 (0.24)	3.72 (0.05) 15.19 (0.27) 3.66 (0.08)	
	corShrink SCM oracle_nonlin oracle_gmleb	2.78 (0.23) 3.72 (0.3) 2.08 (0.26) 2.64 (0.28)	3.91 (0.1) 10.75 (0.31) 3.01 (0.23) 3.53 (0.09)	4.4 (0.12) 20.81 (0.36) 3.4 (0.16) 3.71 (0.05)	

Table 8: Simulations investigating behavior when p = 1000.

Method	Model3	Model4	Model1	Model2	Model5	Model6
msg_sgrid_km	144.07(116.84)	159.32(123.43)	43.81(1.35)	158.29(195.58)	60.34(0.87)	16.82(0.42)
msg_km_cor	142.34(118.24)	156.24(126.42)	42.60 (1.46)	158.27(195.62)	60.34(0.87)	16.82(0.42)
adap.thrsd	421.48(308.18)	159.04(152.63)	46.68 (1.53)	637.30(103.61)	49.05(0.19)	6.35(0.26)
linear	148.95(104.53)	151.72(145.75)	75.12 (0.32)	225.10(118.93)	47.19(0.15)	4.78(0.17)
QIS	381.59(230.76)	220.16(183.11)	161.69 (5.49)	731.37(291.45)	239.71(2.94)	97.78(0.76)
NERCOME	147.99(107.34)	156.33(136.08)	75.34 (0.40)	228.94(121.97)	46.81(0.20)	3.83(0.01)
SCM	167.26(103.16)	140.31(136.63)	159.23 (2.23)	242.71(118.40)	251.22(1.80)	101.24(0.42)
oracle_nonlin	101.36(10.01)	66.23(6.27)	74.62 (0.41)	164.04(18.25)	46.54(0.01)	3.73(0.00)
oracle_gmleb	90.11(32.66)	111.13(42.20)	30.07(0.79)	0.0(0.0)	46.65(4.59)	3.74(0.00)