POLÍMEROS

AULA 1 – INTRODUÇÃO

Polímeros são macromoléculas formadas pela união de moléculas menores denominadas **monômeros**, num processo químico chamado de polimerização.

Origem das Palavras

- Polímero: do grego polys, muito e meros, parte;
- <u>Monômero</u>: do grego monos, único e meros, parte.

Tipos de polímeros sintéticos

Os polímeros sintéticos podem ser divididos da seguinte maneira:

- Polímeros de Adição
- Polímeros de Condensação

AULA 2 - POLÍMEROS DE ADIÇÃO

Os polímeros de adição são aqueles formados por <u>reações de adição</u>. É o caso mais simples, onde temos a adição ("soma") de moléculas pequenas – monômeros - todas idênticas entre si.

O grupo mais importante de polímeros de adição são os *polímeros etilênicos*, ou seja, polímeros resultantes da adição do etileno (eteno) e seus derivados.

Monômero	Polímero
H ₂ C=CH ₂	$ CH_2$ $ CH_2$ $ n$
Etileno	polietileno
F ₂ C=CF ₂	$-\left\{ -CF_{2}-CF_{2}\right\} _{n}$
Tetrafluoroetileno	teflon ou politetrafluoroetileno

Monômero	Polímero
H ₂ C=CH I CH ₃	$\begin{array}{c c} - CH_2 - CH & \\ \hline CH_3 & \\ \end{array}$
Propileno	Polipropileno
H ₂ C=CH	$-CH_2$ $-CH$ $ -$
Estireno	Poliestireno
H ₂ C=CH I Cl	CH ₂ —CH— CI Policloreto de vinila (PVC)
H ₂ C=CH CN Acrilonitrila	$ \begin{array}{c c} - & CH_2 - CH - \\ - & CN \\ \hline & CN \end{array} $ Poliacrilonitrila
H ₂ C=CH O C=O CH ₃	$ \begin{array}{c c} -CH_2 - C \\ -C \\ -C \\ -C \\ -C \\ -CH_3 \end{array} $
Acetato de Vinila	CH ₃ Poliacetato de vinila (PVA)

AULA 3 - POLÍMEROS DE CONDENSAÇÃO

Os polímeros de condensação são obtidos pela <u>reação de condensação</u>, ou seja, dois monômeros diferentes entre si reagem gerando como produtos o polímero e outra substâncias mais simples — como por exemplo, H_2O , HCI, NH_3 e etc.

1

Observe alguns exemplos:

POLÍMEROS

Síntese da baquelite a partir de fenol e metanal (formaldeído)

OH OH OH OH
$$CH_2$$
 $+ H_2O$

Baquelite

Síntese do PET - um poliéster de grande importância em nosso dia-a-dia

PET = Politereftalado de Etileno (Poliester)

Síntese do Nailon-66 - uma poliamida utilizada em fibras têxteis

AULA 4 - COPOLÍMEROS

Quando um polímero é sintetizado partindo-se de um único tipo de monômero, ele é denominado **polímero normal**. Quando utilizamos mais de um tipo de polímero, este é chamado de **copolímero**.