ECSE-211 Design Principles and Methods

Lecture: Design 3 25 January 2019

Two Major Issues in Design

- 1. Solving the Problem and achieving a solution
 - Subject to:
 - What can be done physically &
 - What exists to solve the problem
 - How much time is allowed
 - What skill level the design team has
 - What the budget is
 - ..

Two Major Issues in Design

- 2. Controlling the Process
 - Identifying the phases to achieve a design ✓
 - Estimating the time and cost of each phase
 ✓
 - Allocating resources to each phase
 - Tracking the process
 - Adjusting the process to achieve the targets
 - _

in bugat. 7 on time.

The Engineering Design Process

The Design Problem

"Design an autonomous robot capable of collecting a ring from a tree and crossing a river to do it...."

The Starting Point

- Categorize what you have to perform the solution
- Make lists
- Generic information
- Start with the problem
 - What is it?
 - Any obvious sub-problems?

The Starting Point

- Back to the beginning...
- What do we have at the start point?
 - What are the inputs to the system (process)?

Design – Needs and Givens

 To solve a design problem, we have three (maybe more) major pieces of input:

Design – Needs and Givens

 To solve a design problem, we have three (maybe more) major pieces of input:

Design – Needs and Givens

 To solve a design problem, we have three (maybe more) major pieces of input:

Design – Needs and Givens

• But... there is a fourth box...

Design – Needs and Givens

But... there is a fourth box...

The Requirements Document

- The first piece of documentation in the system
- Defines the first box
- When completed, this should give a complete description of the needs of the client..
 - All questions should be answered before the real design can start..
 - It also provides a list of the unknowns... (real important!)

The Requirements Document

- This is a formal document and must have a structure...
- All Documents in the process must have:
 - A title 🗸
 - The author name / < person responsible
 - − Date ←
 - Version number
 - Edit history

The Requirements Document

- The goal is to understand what the user wants
 - What is the system meant to do?
 - List any performance data you have
 - What can you use to solve the design problem?
 - List any items that are explicitly specified
 - Are there tolerances on performance?
 - List them
 - Is there a deadline?
 - · List it
 - **—** ...

The Second Piece of Input

 Maybe the questions are based on the capabilities/resources you have...

The Second Piece of Input

- Maybe the questions are based on the capabilities/resources you have...
- What tools/components do you have access to for solving the problem?
 - Identify the solution environment...
 - Note this is not the environment the final device will operate in (that is given in the requirements)

The Solution Environment

- This is Box 2
- Determine what tools you have
 - Software? /
 - Hardware? /
- What building blocks/components you have
 - Capabilities of parts..
 - Software? /
 - Hardware? /

The Solution Environment

- Develop a set of questions
- Develop a set of answers /
- Complete a document

The System Document

- The second piece of documentation
- Fills in the second box
- When complete, everything about the system available for implementing the solution should be known.
- In trying to complete this document initially, there will be unknowns...
 - How do you resolve these? ← /eseach
 ∴ Lab

The System Document

- Completing the system document may identify issues with the requirements
- This is an iterative process...
 - Ask more questions
 - Return to the Requirements Document and revise it – in consultation with the user.

The Third Input

 Maybe the questions are based on the human capabilities/resources you have...

The Third Input

- Maybe the questions are based on the capabilities/resources you have...
- What is the team capable of? What is your knowledge/capability base?
 - Create an inventory of capabilities these may constrain your solution..
 - Document what you can do:
 - E.g. John has worked with Mindstorms before he knows how to program it
 - E.g. Mary has been involved in a robotics project before McGill

The Third Input

- Maybe the questions are based on the capabilities/resources you have...
- What is the team capable of?
 - Create an inventory of capabilities these may constrain your solution...
 - Document what you can do:
 - E.g. John has worked with Mindstorms before he knows how to program it
 - E.g. Mary has been involved in a robotics project before McGill Create a document – Write it down –

Create a document – Write it down – who has expertise in what?

Capabilities Document

- This is the third document
- Fills in the third box
- This is the knowledge/skill base of the team
 - Who can program?
 - Who understands mechanics?
 - Who understands systems?
 - Who can manage?
 - **—**

The Fourth (last and most important!) Input

- Maybe the questions are based on the budget you have...
 - The budget involves time
 - The budget involves available systems
 - The budget involves money!

The Constraints Document

- This is the fourth document
- It fills in box four
- Defines the constraints imposed by budget
 - Time available i.e. people times hours times salary
 - Systems available i.e. component provided, components which might be acquired
- This document may also affect the requirements document – it may need revising.