What happens to equilibrium after iterative elimination?

Theorem: Consider G and G are games before and after elimination of a streetegy [not necessarily dominated]. If st is a PSNE in G and survives in G, The st is a PSNE in G too.

Intuition: PSNE stretegy was the maxima, removing others will continue keeping this as maxima. Proof: exercise.

Can new equilibrium be generated?

Theorem: Gonsider NFG G. Let \hat{J}_j be a weakly dominated strategy of j of \hat{G}_j is stained from G_j eliminating \hat{J}_j , every PSNE of \hat{G}_j is a PSNE of G_j

No new PSNE if the eliminated strategy is dominated.

Proof:
$$\hat{G}: \hat{S}_{j} = S_{j} \setminus \{\hat{A}_{j}\}, \hat{S}_{i} = S_{i}, \forall i \neq j$$

TST: if $A^* = (A_j^*, A_j^*)$ is a PSNE in \hat{G} , it is a PSNE in G $U_i(S^*) >_i U_i(S_i, A_j^*)$, $\forall i \neq j$, $\forall x_i \in \hat{S}_i = S_i$ $U_j(S^*) >_i U_j(A_j, A_j^*)$, $\forall A_j \in \hat{S}_j$ - this has one less

need to show that there is no profitable deviation for any player in G for $i \neq j$, this is immediate — no strategies are removed for j, this is true for all strategies except \hat{J}_{ij}

Since \hat{S}_{j} is dominated, $\exists t_{j} \in \hat{S}_{j} = S_{j} \setminus \{\hat{S}_{j}\}$ s.t. $u_{j}(t_{j}, \underline{A}_{j}) > u_{j}(\hat{S}_{j}, \underline{A}_{j})$, $\forall \underline{A}_{j} \in S_{j}$ so, in particular, $u_{j}(t_{j}, \underline{A}_{j}^{*}) > u_{j}(\hat{S}_{j}, \underline{A}_{j}^{*})$ since s^{*} is a PSNE in \hat{G}_{j} and $t_{j} \in \hat{S}_{j}$, $u_{j}(\underline{S}_{j}^{*}, \underline{A}_{j}^{*}) > u_{j}(\hat{S}_{j}, \underline{A}_{j}^{*})$

Summary:

- · Elimination of structly dominated strategies have to effect on PSNE
- · Elimination of weakly dominated strategies may reduce The set of PSNEs, but never adds new.
- · The maxmin value is unaffected by The elimination of Structly on weakly dominated structures