Travaux dirigés d' Apprentissage Par renforcement

Université Paris-Saclay

Joon Kwon

mercredi 5 novembre 2024

EXERCICE 1 (Labyrinthe). — Soit $n \ge 1$. On considère un labyrinthe carré de $n \times n$ cases. Chaque case est désignée par un couple $(i, j) \in \{1, ..., n\}^2$ où i correspond à la ligne et j à la colonne. Les cases de départ et d'arrivée sont respectivement (1, 1) et (n, n). Certaines cases sont murées et ne peuvent pas être accédées : on note \mathcal{W} l'ensemble des cases murées. Le but du problème est de déterminer le chemin le plus court du départ à l'arrivée.

1) Modéliser le problème par un MDP.

2) Pour l'exemple donné en figure, et avec un taux d'escompte $\gamma=1/2$, donner sans preuve une politique optimale π_* et les valeurs de la fonction état-valeur associée v_{π_*} .

EXERCICE 2. — On considère un problème où le but de l'agent est de former un nombre à 5 chiffres, le plus grand possible. On considère 5 emplacements, initialement vides, correspondant aux chiffre des unités, des dizaines, des centaines, des milliers, et des dizaines de milliers. À chaque étape, un chiffre (entre 0 et 9) est tiré uniformément et présenté à l'agent. Celui-ci doit le placer dans l'un des emplacements disponibles. Le nombre est donc formé au bout de 5 étapes.

- 1) On cherche à modéliser le problème par un MDP dont
 - l'ensemble d'états est $\mathcal{S} = \{*, 0, ..., 9\}^5 \times \{0, ..., 9\}$, où les cinq premières composantes de l'état correspondent au nombre partiellement formé (* représentant un emplacement libre), et la sixième composante le chiffre qui vient d'être tiré et qui est à placer,
 - l'ensemble d'actions est $\mathcal{A} = \{1, ..., 5\}$, où 1 correspond au choix de l'emplacement des unités, 2 à celui des dizaines, etc.

Pour un état $s \in \mathcal{S}$, on note $s = (s^{(1)}, s^{(2)}, ..., s^{(6)})$ ses composantes.

- a) Quelle est la distribution de l'état initial?
- b) Donner une interprétation pour chacune des fonctions suivantes.

$$\begin{split} \alpha(s) &= \operatorname{Card}\left\{i \in \{1, \dots, 5\} \text{ , } s^{(i)} = *\right\}, \quad s \in \mathscr{S}, \\ \nu(s) &= \sum_{i=1}^5 10^{i-1} s^{(i)}, \quad \text{pour } s \in \mathscr{S} \text{ tel que } \alpha(s) = 0, \\ \sigma(s, a) &= (\mathbbm{1}_{\{i \neq a\}} s^{(i)} + \mathbbm{1}_{\{i = a\}} s^{(6)})_{1 \leqslant i \leqslant 5}, \quad (s, a) \in \mathscr{S} \times \mathscr{A}. \end{split}$$

- c) Pour tous $s \in \mathcal{S}$ et $a \in \mathcal{A}$ donnés, exprimer la distribution de transition $p(\cdot|s,a)$, qui est un élément de $\Delta(\mathcal{R} \times \mathcal{S})$. On pourra faire intervenir les fonctions α , ν et σ .
- La modélisation de la question précédente a l'inconvénient de comporter un très grand nombre d'états. On souhaite dorénavant modéliser le problème par un MDP dont
 - l'espace d'états est $\mathcal{S} = \{0,1\}^5 \times \{0,\dots,9\}$ où pour les cinq premières composantes, un 1 correspond à un emplacement libre;
 - l'ensemble d'actions est $\mathcal{A} = \{1, ..., 5\}$, et dont le paiement n'est pas escompté $(\gamma = 1)$.
 - a) Quelle est la distribution de l'état initial (qu'on notera μ)?
 - b) Exprimer la fonction de transition *p*.
- 3) Écrire formellement la politique π qui à chaque étape choisit uniformément un des emplacements disponibles.

a) Calculer théoriquement

$$\mathbb{E}_{\mu,\pi}\left[\sum_{t=1}^{+\infty} R_t\right].$$

- b) Estimer empiriquement cette quantité (voir notebook).
- 4) Proposer une meilleure politique π' que celle de la question précédente, l'implémenter, et l'évaluer empiriquement (*voir notebook*).

EXERCICE 3 (Différence de performance). — Soit $(\mathcal{S}, \mathcal{A}, \mathcal{R}, p)$ un MDP fini et $0 < \gamma < 1$ le taux d'escompte. Soit π, π' deux politiques stationnaires. Pour $s \in \mathcal{S}$, on définit $d_{s,\pi} \in \mathbb{R}^{\mathcal{S}}$ comme suit :

$$d_{s,\pi}(s') = (1-\gamma) \sum_{t=0}^{+\infty} \gamma^t \mathbb{P}_{s,\pi} \left[\mathbf{S}_t = s' \right], \quad s' \in \mathscr{S}.$$

- 1) Montrer que $d_{s,\pi} \in \Delta(\mathcal{S})$.
- 2) Soit une variable aléatoire S $\sim d_{s,\pi}$ et on définit $\alpha_{\pi} \in \mathbb{R}^{\mathscr{S} \times \mathscr{A}}$ par

$$\alpha_{\pi}(s',a) = q_{\pi}(s',a) - v_{\pi}(s'), \quad (s',a) \in \mathcal{S} \times \mathcal{A}.$$

Montrer que presque-sûrement :

$$v_{\pi}(s) - v_{\pi'}(s) = \frac{1}{1-\gamma} \mathbb{E}_{\mathrm{A} \sim \pi(\mathrm{S})} \left[\alpha_{\pi'}(\mathrm{S}, \mathrm{A}) \right].$$