Задача. 1.1 Ответы в листах регрессионного дерева

Proof. Пусть в листе находятся равновероятные объекты со значениями целевого признака a_1, \ldots, a_n . Тогда, обозначив E_1 и E_2 матожидания ошибки в случае ответа средним значением \overline{a} и случайным значением a_r соответственно, имеем:

$$E_1=E(a-\overline{a})^2=Ea^2+\overline{a}^2-2\overline{a}Ea=Ea^2+\overline{a}^2-2\overline{a}^2=Ea^2-(Ea)^2\leq$$

$$(Ea^2-(Ea)^2)+(Ea^2-(Ea)^2)=Ea^2+Ea^2-2EaEa_r=Ea^2+Ea_r^2-2Eaa_r=E(a-a_r)^2=E_2$$
 Здесь мы пользуеся тем, что $Ea^2>(Ea)^2$. Окончательно получаем $E_1>E_2$, то есть лучше отвечать средним.

Задача. 1.2 Линейные модели в деревьях

Возможно проблема в том, что дерево разбивает пространство на маленькие области, так что регрессия будет давать большую погрешность. Идея: на каждом разбиении делать регрессию в половинках и выбрать такое, где ошибка наименьшая

Задача. 1.3 Unsupervised decision tree

Proof. Рассмотрим многомерное нормальное распределение

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)}$$

$$H(f) = \int f \ln f = \int f(\mathbf{x}) \left(\ln \left((2\pi)^{n/2} |\Sigma|^{1/2} \right) + \frac{1}{2} (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) \right) =$$

$$E \left(\ln \left((2\pi)^{n/2} |\Sigma|^{1/2} \right) + \frac{1}{2} (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) \right) =$$

$$E \left(\frac{1}{2} (\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) \right) + \ln \left((2\pi)^{n/2} |\Sigma|^{1/2} \right) =$$

$$\frac{1}{2} \left(E \left((\mathbf{x} - \mu)^{\top} \Sigma^{-1} (\mathbf{x} - \mu) \right) + \ln \left((2\pi)^{n} |\Sigma| \right) \right) =$$

$$\frac{1}{2} (n + \ln \left((2\pi)^{n} |\Sigma| \right)) =$$

$$\frac{1}{2} \ln \left((2\pi e)^{n} |\Sigma| \right) =$$