TP Architecture - En plus

M. Tellene

Les exercices concernant la construction de circuit ou de fonctions Python devront être sauvegardées dans le dossier «**TP_architecture**».

1 Changeur de monnaie - Sur SmartSim et sur feuille

On désire réaliser un circuit pilotant un changeur de monnaie. Le changeur devant fonctionner ainsi : on introduit **une et une seule** pièce parmi $5 \le$, $2 \le$, $1 \le$, $0.5 \le$ et il rend un nombre de pièces définit par le tableau suivant :

Pièce introduite	Pièces rendues	Nombre
5€	1€	3
	0.5€	2
	0.2€	3
	0.1€	4
2€	1€	1
	0.5€	1
	0.2€	1
	0.1€	3
1€	0.2€	2
	0.1€	6
0.5€	0.1€	5

Les variables d'entrées correspondant aux pièces introduites seront notées C, D, U, Q respectivement pour les pièces $5 \in$, $2 \in$, $1 \in$, $0.5 \in$

Les sorties du circuit correspondront aux nombres de pièces rendues codés en binaire de chacune des pièces. Les noms des sorties seront notés u_i , c_i , v_i , d_i respectivement pour les pièces $1 \in$, $0.5 \in$, $0.2 \in$, $0.1 \in$

Un peu d'aide à la compréhension : étant donné que les sorties correspondront aux nombres de pièces rendues codés en binaire, cela veut dire que si l'on donne une pièce de $5 \in$ alors, on doit rendre 3 pièces de 1, 2 pièces de 0.5, 3 pièces de 0.2 et 4 pièces de 0.1. Pour le cas de la pièces de 1, 1 machine nous rendra 3 pièces soit 1, 1 pièces de 1, 1 machine nous rendra 1, 1 pièces soit 1, 1 pièces soit 1, 1 pièces soit 1, 1 pièces soit 1, 1 pièces de 1, 1 pièces soit 1, 1 pièces soit 1, 1 pièces soit 1, 1 pièces de 1, 1 pièces soit 1, 1

Comment utiliser les sorties? Nous aurons une table de vérité de la forme (table à compléter) :

С	D	U	Q	u_1	u_0	
1	0	0	0	1	1	

- 1. Déterminer, pour chacune des pièces rendues, le nombre de sorties nécessaires
- 2. Écrire la table de vérité de toutes les fonctions correspondantes (afin de simplifier, nous considérerons que lorsqu'une entrée est à 1, les autres sont forcément à 0)
- 3. Dessiner le circuit

2 Un peu de Python

Vous sauvegarderez les réponses à cet exercice dans un fichier nommé **portes_logiques.py**Nous allons créer des fonctions permettant de représenter des tables de vérités. Soit la fonction porte_et():

```
def porte_et():
print("a", "b", "S")
for a in (False, True):
    for b in (False, True):
        print(int(a), int(b), int(a and b))
```

- 1. Recopier et exécuter cette fonction afin de comprendre ce qu'elle fait
- 2. Sur le modèle de la fonction porte_et(), écrire une fonction porte_ou()
- 3. Toujours en vous basant sur la fonction porte_et(), écrire une fonction porte_xor() (le mot-clé xor n'existe pas en Python)

3 Pour aller plus loin - Logique des prédicats - Sur feuille

Dans ce chapitre, nous avons vu les portes logiques et la logique combinatoire. Il existe bien d'autres logiques et cette partie s'intéressera à la logique des prédicats. Voici un exemple :

Nous avons une phrase de départ et le but est de donner à chaque fois l'interprétation des prédicats utilisés — par exemple A(x,y) = x aime y. Il est possible de lier plusieurs prédicats ensemble - par exemple A(x,y) AND A(x,z) = x aime y et z.

Pour chacune des phrases suivantes, les traduire en énoncé logique (la première est donnée à titre d'exemple) :

- 1. Jean est plus grand que Marie $\rightarrow G(j,m)$
- 2. Paul a vu Léa et elle ne l'a pas vu
- 3. Un chat est entré
- 4. Certains enfants ne sont pas malades
- 5. Yoann aime les glaces à la menthe et au chocolat mais pas celle a la vanille

Il sera possible d'utiliser les prédicats suivants :

Prédicat	Nombre d'arguments	Signification	
∃(x)	1	$\exists (x) = il \ existe \ un \ x$	
C(x)	1	C(x) = x est un chat	
Enf(x)	1	Enf(x) = x est un enfant	
Ent(x)	1	Ent(x) = x est entré	
GC(x)	1	GC(x) = x est une glace au chocolat	
GM(x)	1	GM(x) = x est une glace à la menthe	
GV(x)	1	GV(x) = x est une glace à la vanille	
M(x)	1	M(x) = x est malade	
A(x,y)	2	A(x,y) = x aime y	
G(x,y)	2	G(x,y) = x est plus grand que y	
V(x,y)	2	V(x,y) = x a vu y	