Table of Contents

Empirical Method HW5	1
Q1 ¹	1
02	
Q3	
Q4	

Empirical Method HW5

```
data = load('C:\Users\padag\Documents\MATLAB\hw5.mat');
X = data.data.X;
Y = data.data.Y;
Z = data.data.Z;
N = data.data.N;
T = data.data.T;

F = @(x) ( 1 + exp( -x ) ).^(-1);
```

Q1

```
loglikelihood = 0;
for i = 1:100
    xi = X(:,i);
    yi = Y(:,i);
    f = @(b) prod( ( F(b*xi).^{(yi)} ).*( (1 - F(b*xi)).^{(1 - yi)} ) );
    [b,w] = qnwnorm(20,0.1,1);
    fmatrix = [];
    for t = 1:20
        bt = b(t,1);
        fmatrix = [fmatrix ; f(bt) ];
    end
    Ef = w'*fmatrix;
    loglikelihood = loglikelihood + log(Ef);
end
disp("Log-likelihood that is calculated by Gaussian Quadrature with 20
nodes is");
loglikelihood
Log-likelihood that is calculated by Gaussian Quadrature with 20 nodes
 is
loglikelihood =
  -1.2571e+03
```

Q2

```
loglikelihood2 = 0;
for i = 1:100
    xi = X(:,i);
    yi = Y(:,i);
    f = @(b) \operatorname{prod}((F(b*xi).^{(yi)}).*((1 - F(b*xi)).^{(1 - yi)}));
    rnd = normrnd(0.1, 1, [100, 1]);
    integral = arrayfun(f,rnd);
    integral = (1/100)*sum(integral);
    loglikelihood2 = loglikelihood2 + log(integral);
end
disp("Log-likelihood that is calculated by Monte Carlo method with 100
nodes is")
loglikelihood2
Log-likelihood that is calculated by Monte Carlo method with 100 nodes
 is
loglikelihood2 =
  -1.2595e+03
```

Q3

```
initial = [1;2;1];
likeli1 = @(A) - likeliGauss(A(1),A(2),A(3));
likeli2 = @(A) - likeliMC(A(1),A(2),A(3));
options = optimoptions(@fminunc, 'Display', 'iter', 'Algorithm', 'quasi-
newton');
estMC = fminunc(likeli2,initial,options);
estGauss = fminunc(likeli1,initial,options);
disp('starting value = ')
initial
disp('argmax for gamma, mu, var and log-likelihood from Gaussian = ')
estGauss
likeli1(estGauss)
disp('argmax for gamma, mu, var and log-likelihood from Montel Carlo
 = ' )
estMC
likeli2(estMC)
                                                         First-order
 Iteration Func-count
                             f(x)
                                          Step-size
                                                           optimality
                             11515.2
                                                           3.02e+08
     0
Local minimum possible.
```

fminunc stopped because it cannot decrease the objective function along the current search direction.

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	11512.5		1.07e+04
1	8	1348.91	9.3577e-05	5.6e+03
2	12	1045.67	1	1.3e+03
3	16	791.46	1	988
4	24	540.531	0.666901	55.3
5	28	540.067	1	31.8
6	32	539.891	1	18.5
7	36	539.783	1	18.9
8	40	539.082	1	36.6
9	44	538.181	1	54.8
10	48	537.212	1	45
11	5 <i>2</i>	536.909	1	17.9
12	56	536.851	1	4.87
13	60	536.841	1	4.59
14	64	536.834	1	4.4
15	68	536.808	1	7.04
16	72	536.753	1	11.1
17	76	536.632	1	15.3
18	80	536.443	1	15.5
19	84	536.284	1	9.2
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	88	536.243	1	3.07
21	92	536.238	1	0.692
22	96	536.238	1	0.0189
23	100	536.238	1	0.0115
24	104	536.238	1	0.000427

Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.

starting value =

initial =

1

2

1

argmax for gamma, mu, var and log-likelihood from Gaussian =

estGauss =

-0.5056

2.4832

1.4055

```
ans =
  536.2378
argmax for gamma, mu, var and log-likelihood from Montel Carlo =
estMC =
     1
     2
     1
ans =
   1.1521e+04
initial2 = [0.5; 0.1; 0; 1; 1; 0.5];
likeli3 = @(A) -likeliMC2(A(1),A(2),A(3),A(4),A(5),A(6));
estMC2 = fminunc(likeli3,initial2,options);
disp('starting value = ')
initial2
disp('argmax for gamma, mu_beta, mu_u, var_beta, var_u, var_betau and
 log-likelihood = ')
estMC2
likeli3(estMC2)
% I failed to find estimates from Monte Carlo method in O3 and O4. Its
loglikelihood is
% correct but its 'fminunc' fails to find minimum. The maximized value
% this process is not even global maximum (I can easily find neighbor
% points that have higher log-likelihood) but I don't get the reason
 why.
                                                         First-order
 Iteration Func-count
                             f(x)
                                                          optimality
                                          Step-size
     0
                            5662.72
                                                          6.25e+08
Local minimum possible.
fminunc stopped because it cannot decrease the objective function
along the current search direction.
starting value =
initial2 =
```

```
0.5000
    0.1000
    1.0000
    1.0000
    0.5000
argmax for gamma, mu_beta, mu_u, var_beta, var_u, var_betau and log-
likelihood =
estMC2 =
    0.5000
    0.1000
         0
    1.0000
    1.0000
    0.5000
ans =
  5.6591e+03
```

Published with MATLAB® R2019a