Fusion: Applying Equational Transforms to Simplify Programs

github.com/ryanorendorff/lc-2017-fusion

Ryan Orendorff¹ May 2017

¹Department of Bioengineering University of California, Berkeley University of California, San Francisco

Outline

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

Motivation: Simple Programs versus Performance

Common way to process a list: map and fold!

As an example, say we want to square all the elements in a list and then sum the result.

```
process :: [Int] \rightarrow Int

process \ xs = sum \circ map \ sq \ xs
```

Where we have defined the functions as follows.

```
map = [] = []

map f (x : xs) = f x : map f xs

sq x = x * x
```

Common way to process a list: map and fold!

As an example, say we want to square all the elements in a list and then sum the result.

```
process :: [Int] \rightarrow Int

process \ xs = sum \circ map \ sq \ \$ \ xs
```

Where we have defined the functions as follows.

$$\begin{aligned} ↦ \ _[] &= [] \\ ↦ \ f \ (x:xs) = f \ x: map \ f \ xs \\ &sq \ x = x*x \\ &foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\ &foldr \ _z \ [] &= z \\ &foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \\ ∑ = foldr \ (+) \ 0 \end{aligned}$$

How fast is *process*?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$

 $process \ xs = sum \circ map \ sq \ xs$

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

How fast is *process*?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$

 $process \ xs = sum \circ map \ sq \ xs$

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

Function	Time (ms)	Memory (MB)
process	41.86	265.26
process'	25.31	96.65

How fast is process?

So now that we have our process function, how fast does it run?

$$process :: [Int] \rightarrow Int$$

 $process \ xs = sum \circ map \ sq \ xs$

Let's try to process a million elements with our process and process', which uses the standard Prelude sum and map.

$$process [0..1,000,000]; process' [0..1,000,000]$$

Function	Time (ms)	Memory (MB)
process	41.86	265.26
process'	25.31	96.65

How does the Prelude do better with the same functions?

We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

```
process :: [Int] \rightarrow Int

process \ xs = sum \circ map \ sq \ xs
```

We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

```
process :: [Int] \rightarrow Int
process \ xs = sum \circ map \ sq \ xs
process_{hand} :: [Int] \rightarrow Int
process_{hand} \ [] = 0
process_{hand} \ (x : xs) = x * x + process_{hand} \ xs
```

We can get good performance with manual code

We can try to get better performance by writing our program as a recursive function.

```
process :: [Int] \rightarrow Int
process \ xs = sum \circ map \ sq \ xs
process_{hand} :: [Int] \rightarrow Int
process_{hand} \ [] = 0
process_{hand} \ (x : xs) = x * x + process_{hand} \ xs
```

function	time (ms)
process	41.86
process'	25.31
$process_{hand}$	26.8

It seems we have matched GHC's performance!

GHC generated the simplified version automatically

Our manual version $process_{hand}$.

```
process_{hand} :: [Int] \to Int process_{hand} [] = 0 process_{hand} (x : xs) = x * x + process_{hand} xs
```

and when we compile the Prelude defined process', GHC produces

```
\begin{aligned} &processGHC :: [Int] \rightarrow Int \\ &processGHC \ [] &= 0 \\ &processGHC \ (x:xs) = x*x + (processGHC \ xs) \end{aligned}
```

GHC generated the simplified version automatically

Our manual version $process_{hand}$.

```
process_{hand} :: [Int] \to Int
process_{hand} [] = 0
process_{hand} (x : xs) = x * x + process_{hand} xs
```

and when we compile the Prelude defined process', GHC produces

```
\begin{aligned} &processGHC :: [Int] \rightarrow Int \\ &processGHC \ [] &= 0 \\ &processGHC \ (x:xs) = x*x + (processGHC \ xs) \end{aligned}
```

How can we leverage the compiler to write simple code that is fast?

Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

The GHC Compilation Pipeline converts Haskell into an intermediate language and then bytecode

When GHC compiles a Haskell program, it converts the code into an intermediate language called "Core", which is then (eventually) turned into byte code.

The GHC Compilation Pipeline converts Haskell into an intermediate language and then bytecode

When GHC compiles a Haskell program, it converts the code into an intermediate language called "Core", which is then (eventually) turned into byte code.

When GHC is given a Core program, it performs several types of transformations on the program.

Inlining functions

- Inlining functions
- Playing with lambda expressions

- Inlining functions
- Playing with lambda expressions
- Simplifying constant expressions ((x+8)-1)

- Inlining functions
- Playing with lambda expressions
- Simplifying constant expressions ((x+8)-1)
- Reordering case and let expressions

- Inlining functions
- Playing with lambda expressions
- Simplifying constant expressions ((x+8)-1)
- Reordering case and let expressions
- Applying rewrite rules

- Inlining functions
- Playing with lambda expressions
- Simplifying constant expressions ((x+8)-1)
- Reordering case and let expressions
- Applying rewrite rules
- . . .

```
{-# RULES "name" [#] forall x. id x = x \#-}
```

Rewrite rules allow us to replace terms in the program with equivalent terms.

```
{-# RULES "name" [#] forall x. id x = x \#-}
```

• "name" is just for us to read when debugging

```
{-# RULES "name" [#] forall x. id x = x \#-}
```

- "name" is just for us to read when debugging
- [#] represents what phase the rule is applied (phases 4-0)

```
{-# RULES "name" [#] forall x. id x = x \#-}
```

- "name" is just for us to read when debugging
- [#] represents what phase the rule is applied (phases 4-0)
- The forall brings a variable into scope

```
{-# RULES "name" [#] forall x. id x = x \#-}
```

- "name" is just for us to read when debugging
- [#] represents what phase the rule is applied (phases 4-0)
- The forall brings a variable into scope
- After the period is the what we are saying are equivalent statements.

Rewrite rules have some gotchas.

• Rules doesn't prevent you from doing something silly

```
\{-\# RULES "id5" forall x. id x = 5 \#-\}
```

Rewrite rules have some gotchas.

• Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-} x \Rightarrow idx
```

Rewrite rules have some gotchas.

Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-}  x \Rightarrow idx
```

You can make the compiler go into an infinite loop.

```
{-# RULES "fxy" forall x y. f x y = f y x #-}
```

Rewrite rules have some gotchas.

Rules doesn't prevent you from doing something silly

```
\{-\# \text{ RULES "id5" forall x. id x = 5 #-}\}
```

 The left hand side is only substituted for the right, not the other way around.

```
{-# RULES "id" forall x. id x = x #-} x \Rightarrow idx
```

You can make the compiler go into an infinite loop.

```
{-# RULES "fxy" forall x y. f x y = f y x #-}
```

• If multiple rules are possible, GHC will randomly choose one.

We can combine maps to traverse a list once

Let us introduce the following rule about maps.

We can combine maps to traverse a list once

Let us introduce the following rule about maps.

```
{-# RULES "map/map" forall f g xs.
  map_{fuse} f (map_{fuse} g xs) = map_{fuse} (f.g) xs #-}
    mapTest :: [Int] \rightarrow [Int]
    mapTest \ xs = map \ (+1) \ (map \ (*2) \ xs)
    map\,Test_{fuse}::[Int] \rightarrow [Int]
    mapTest_{fuse} xs = mapfuse (+1) (mapfuse (*2) xs)
```

Our map fusion performs (a bit) better!

We can test our functions on a million elements

$$map Test xs = map (+1) (map (*2) xs)$$

$$mapTest_{fuse} \ xs = mapfuse \ (+1) \ (mapfuse \ (*2) \ xs)$$

and find we get a bit better time and space performance.

Function	Time (ms)	Memory (MB)
map Test	26.4	256.00
$map Test_{fuse}$	17.6	184.00

Through rules, GHC performs fusion

Some of the rules work together to perform *fusion*: to combine terms in such a way as to pass over a data structure once.

In our process function, we create an intermediate list

$$process :: [Int] \rightarrow Int$$
 $process \ xs = sum \circ map \ sq \ xs$

whereas our "fused" form did not make any intermediate structure, and used an accumulator instead.

$$process_{hand} :: [Int] \to Int$$

$$process_{hand} [] = 0$$

$$process_{hand} (x : xs) = x * x + process_{hand} xs$$

Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

$foldr\ /\ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

$foldr\ /\ build\$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

$foldr \ / \ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

$$foldr :: (a \to b \to b) \to b \to [a] \to b$$
$$foldr f z [] = z$$
$$foldr f z (x : xs) = f x (foldr f z xs)$$

while build builds up a list from a generating function.

$$build :: \forall a. (\forall b. (a \to b \to b) \to b \to b) \to [a]$$
$$build g = g (:) []$$

$foldr \ / \ build$ fusion is used to simplify list computations

GHC accomplishes fusion with two functions: foldr and build.

foldr combines the elements of a list

$$foldr :: (a \to b \to b) \to b \to [a] \to b$$
$$foldr f z [] = z$$
$$foldr f z (x : xs) = f x (foldr f z xs)$$

while build builds up a list from a generating function.

$$build :: \forall a. (\forall b. (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow b) \rightarrow [a]$$
 $build g = g (:) []$
 $build 1 l \equiv [1, 2, 3]$
where
 $l \ cons \ nil = 1 \ `cons` (2 \ `cons` (3 \ `cons` \ nil))$

The foldr/build rule removes intermediate fold/build pairs

To remove intermediate data structures (those created by build), we eliminate foldr/build pairs with a rule.

```
{-# RULES "foldr/build"  \forall \ f \ z \ (g :: \ \forall \ b. \ (a \ -> \ b \ -> \ b) \ -> \ b \ -> \ b).  foldr f z (build g) = g f z #-}  foldr \ (+) \ 0 \ (build \ l) \equiv l \ (+) \ 0 \equiv 1 + (2 + (3 + 0))  where  l \ cons \ nil = 1 \ `cons' \ (2 \ `cons' \ (3 \ `cons' \ nil))
```

We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFB :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$

$$mapFB \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$$

We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFB :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$

 $mapFB \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$

With that, we have all we need to convert map into build/fold.

```
{-# RULES "map" \forall f xs. map f xs = build (\c n -> foldr mapFB c f) n xs) #-}
```

We need a few extra rules to convert maps into fold/builds

To convert our definition of maps into a fold/build pair, we need the following helper function.

$$mapFB :: (elt \rightarrow lst \rightarrow lst) \rightarrow (a \rightarrow elt) \rightarrow a \rightarrow lst \rightarrow lst$$

 $mapFB \ c \ f = \lambda x \ ys \rightarrow c \ (f \ x) \ ys$

With that, we have all we need to convert map into build/fold.

```
{-# RULES "map" \forall f xs. map f xs = build (\c n -> foldr mapFB c f) n xs) #-}
```

Let's try applying the rewrite rules manually.

sum (map sq xs)

```
sum (map \ sq \ xs)
\equiv \{ \text{ expand } map \ f \ xs \}
```

```
\begin{array}{ll} sum \; (map \; sq \; xs) \\ \\ \equiv & \{ \; expand \; map \; f \; xs \; \} \\ \\ sum \; (build \; (\lambda c \; n \rightarrow foldr \; (mapFB \; c \; sq) \; n \; xs)) \end{array}
```

```
\begin{array}{ll} sum \ (map \ sq \ xs) \\ & \equiv \quad \{ \ expand \ map \ f \ xs \ \} \\ sum \ (build \ (\lambda c \ n \rightarrow foldr \ (mapFB \ c \ sq) \ n \ xs)) \\ & \equiv \quad \{ \ expand \ sum \ \} \end{array}
```

```
\begin{array}{ll} sum \; (map \; sq \; xs) \\ & \equiv \quad \{ \; \operatorname{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldr \; (mapFB \; c \; sq) \; n \; xs)) \\ & \equiv \quad \{ \; \operatorname{expand} \; \operatorname{sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \rightarrow foldr \; (mapFB \; c \; sq) \; n \; xs)) \end{array}
```

```
\begin{array}{l} sum \; (map \; sq \; xs) \\ \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \to foldr \; (mapFB \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{expand} \; \text{sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \to foldr \; (mapFB \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{apply} \; foldr \; / \; build: \; foldr \; f \; z \; (build \; g) = g \; f \; z \; \} \end{array}
```

```
\begin{array}{l} sum \; (map \; sq \; xs) \\ \equiv \quad \{ \; \text{expand} \; map \; f \; xs \; \} \\ sum \; (build \; (\lambda c \; n \rightarrow foldr \; (mapFB \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{expand} \; \text{sum} \; \} \\ foldr \; (+) \; 0 \; (build \; (\lambda c \; n \rightarrow foldr \; (mapFB \; c \; sq) \; n \; xs)) \\ \equiv \quad \{ \; \text{apply} \; foldr \; / \; build: \; foldr \; f \; z \; (build \; g) = g \; f \; z \; \} \\ \lambda c \; n \rightarrow foldfuse \; (mapFB \; c \; sq) \; n \; xs) \; (+) \; 0 \end{array}
```

```
sum (map sq xs)
\equiv { expand map \ f \ xs }
sum (build (\lambda c \ n \rightarrow foldr (mapFB \ c \ sq) \ n \ xs))
\equiv { expand sum }
foldr(+) \ 0 \ (build(\lambda c \ n \rightarrow foldr(mapFB \ c \ sq) \ n \ xs))
\equiv { apply foldr / build: foldr f z (build q) = q f z }
\lambda c \ n \rightarrow foldfuse \ (mapFB \ c \ sq) \ n \ xs) \ (+) \ 0
≡ { apply lambda }
```

```
sum (map \ sq \ xs)
\equiv { expand map \ f \ xs }
sum (build (\lambda c \ n \rightarrow foldr (mapFB \ c \ sq) \ n \ xs))
\equiv { expand sum }
foldr(+) \ 0 \ (build(\lambda c \ n \rightarrow foldr(mapFB \ c \ sq) \ n \ xs))
\equiv { apply foldr / build: foldr f z (build q) = q f z }
\lambda c \ n \rightarrow foldfuse \ (mapFB \ c \ sq) \ n \ xs) \ (+) \ 0
≡ { apply lambda }
foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ xs
```

Applying foldr: the empty case

We now look at empty case

$$foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ []$$

Applying foldr: the empty case

We now look at empty case

$$foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ []$$

 \equiv {-expand foldr case: foldr f z [] = z -}

Applying foldr: the empty case

We now look at empty case

```
foldfuse\ (\lambda x\ ys 	o sq\ x + ys)\ 0\ []  \equiv \ \{ - {\sf expand}\ foldr\ {\sf case} \colon foldr\ f\ z\ [] = {\sf z}\ - \}  0
```

$$process\ (x:xs) = foldfuse\ (\lambda x\ ys \rightarrow sq\ x + ys)\ 0\ (x:xs)$$

```
\begin{array}{l} process\;(x:xs) = foldfuse\;(\lambda x\;ys \rightarrow sq\;x + ys)\;0\;(x:xs) \\ \\ \equiv \;\; \{-\text{expand}\;foldr\;\text{case}:\;foldr\;f\;z\;(x:xs) = f\;x\;(foldr\;f\;z\;xs)\;\text{-}\} \end{array}
```

process
$$(x:xs) = foldfuse \ (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)$$

$$\equiv \{ \text{-expand } foldr \ \text{case: } foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \}$$

$$(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)$$

```
process (x:xs) = foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \text{-expand } foldr \ \text{case: } foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \text{-use definition of } processFuse: foldr \ f \ 0 \ xs = processFuse \ xs \ - \}
```

```
process (x:xs) = foldfuse \ (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} \}
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processFuse: \ foldr \ f \ 0 \ xs = processFuse \ xs \ - \} \}
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processFuse \ xs)
```

```
process (x:xs) = foldfuse \ (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processFuse: \ foldr \ f \ 0 \ xs = processFuse \ xs \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processFuse \ xs)
\equiv \{ \{ -apply \ lambda \ - \} \}
```

```
process (x:xs) = foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv \{ \{ -expand \ foldr \ case: \ foldr \ f \ z \ (x:xs) = f \ x \ (foldr \ f \ z \ xs) \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv \{ \{ -use \ definition \ of \ processFuse: \ foldr \ f \ 0 \ xs = processFuse \ xs \ - \} 
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processFuse \ xs)
\equiv \{ \{ -apply \ lambda \ - \} \}
sq \ x + process \ xs
```

Now let's do the (x:xs) case.

x * x + processFuse xs

```
process (x:xs) = foldfuse (\lambda x \ ys \rightarrow sq \ x + ys) \ 0 \ (x:xs)
\equiv {-expand foldr case: foldr f z (x : xs) = f x (foldr f z xs) -}
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (foldr \ (\lambda x \ ys \rightarrow sq \ x + ys) \ z \ xs)
\equiv {-use definition of processFuse: foldr f 0 xs = processFuse xs -
(\lambda x \ ys \rightarrow sq \ x + ys) \ x \ (processFuse \ xs)
\equiv {-apply lambda -}
sq x + process xs
\equiv {-inline sq -}
```

Bringing both cases back together

If we now combine our two cases, we have the following

$$process_{hand}$$
 [] = 0
 $process_{hand}$ (x:xs) = x * x + $process_{hand}$ xs

This is the same as what we had originally written manually!

We achieved list fusion using foldr / build with rewrite rules

We managed to fuse *process* using our rewrite rules. We can look at the output of the compiler and it confirms what we expected.

$$process_{hand}[] = 0$$

 $process_{hand}(x : xs) = x * x + process_{hand}xs$

We achieved list fusion using foldr / build with rewrite rules

We managed to fuse *process* using our rewrite rules. We can look at the output of the compiler and it confirms what we expected.

$$process_{hand}[] = 0$$

 $process_{hand}(x : xs) = x * x + process_{hand}xs$

Function	Time (ms)	Memory (MB)
process	41.86	265.26
process'	25.31	96.65
$process_{hand}$	25.31	96.65
processFuse	25.31	96.65

Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

Introduction to Stream

The Stream fusion system attempts to do something similar, by defining a list as a state machine.

data Stream a where

$$Stream :: (s \rightarrow Step \ a \ s) \rightarrow s \rightarrow Stream \ a$$

Introduction to Stream

The Stream fusion system attempts to do something similar, by defining a list as a state machine.

data
$$Stream\ a\ where$$

 $Stream: (s \to Step\ a\ s) \to s \to Stream\ a$

Streams have little helpers to make lists

To work on standard lists, we introduce the following two functions to convert between lists and streams.

$$\begin{array}{ll} steam & :: [\,a\,] \to Stream \ a \\ unstream :: Stream \ a \to [\,a\,] \end{array}$$

Note that these functions are inverses.

```
stream \circ unstream \equiv id_{stream}

unstream \circ stream \equiv id_{[a]}
```

Maps on Streams!

```
maps :: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b
maps \ f \ (Stream \ next0 \ s0) = Stream \ next \ s0
\mathbf{where}
next \ s = \mathbf{case} \ next0 \ s \ \mathbf{of}
Done \rightarrow Done
Skip \ s' \rightarrow Skip \ s'
Yield \ x \ s' \rightarrow Yield \ (f \ x) \ s'
```

Maps on Streams!

```
maps :: (a \rightarrow b) \rightarrow Stream \ a \rightarrow Stream \ b
maps \ f \ (Stream \ next0 \ s0) = Stream \ next \ s0
\mathbf{where}
next \ s = \mathbf{case} \ next0 \ s \ \mathbf{of}
Done \rightarrow Done
Skip \ s' \rightarrow Skip \ s'
Yield \ x \ s' \rightarrow Yield \ (f \ x) \ s'
```

$$mapl :: (a \to b) \to [a] \to [b]$$

 $mapl f = unstream \circ maps f \circ stream$

Stream Fusion!

Fusion on streams only has one rewrite rule, and it is pretty simple.

```
{-# RULES "stream" \forall (s :: Stream a).
stream (unstream s) = s #-}
```

Stream Fusion!

Fusion on streams only has one rewrite rule, and it is pretty simple.

```
{-# RULES "stream" \forall (s :: Stream a). stream (unstream s) = s #-}  map \, TestStream :: [Int] \rightarrow [Int] \\ map \, TestStream \, xs = mapl \, (+1) \, (mapl \, (*2) \, xs)
```

Stream Fusion!

Fusion on streams only has one rewrite rule, and it is pretty simple.

```
\{-\# \text{ RULES "stream" } \forall \text{ (s :: Stream a).}
      stream (unstream s) = s #-}
    mapTestStream :: [Int] \rightarrow [Int]
    map TestStream \ xs = mapl \ (+1) \ (mapl \ (*2) \ xs)
    mapTestStreamCompiled :: [Int] \rightarrow [Int]
    mapTestStreamCompiled [] = []
    mapTestStreamCompiled (x:xs) =
       1 + (x * 2) : mapTestStreamCompiled xs
```

Table of Contents

Motivation: Simple Programs versus Performance

A brief introduction to GHC

List fusion with foldr/build

Stream Fusion

Applications of Fusion

We can make process even faster with Data. Vector

The *Data.Vector* package uses stream fusion and many other rewrite rules behind the scenes in order to optimize array based computations.

 $process \ xs = sum0 \circ map \ sq \ \$ \ xs$

We can make process even faster with Data. Vector

The $Data.\,Vector$ package uses stream fusion and many other rewrite rules behind the scenes in order to optimize array based computations.

$$process \ xs = sum \theta \circ map \ sq \ \$ \ xs$$

The vector version looks very similar.

 ${f import}$ qualified Data. Vector as V

 $processVec \ n = V.sum \ \ V.map \ sq \ \ V.enumFromTo \ 1 \ (n :: Int)$

We can make process even faster with Data. Vector

But has incredible performance!

Function	Time (ms)	Memory (MB)
process	41.86	265.26
process Fuse	25.31	96.65
process Vec	0.7	16×10^{-5}

What code does *Data. Vector* generate?

While we wrote this in our program

```
process \textit{Vec } n = \textit{V.sum} ~\$~\textit{V.map sq} ~\$~\textit{V.enumFromTo} ~1~(n :: \textit{Int})
```

GHC then generates the following code (simplified back to Haskell).

What code does Data. Vector generate?

While we wrote this in our program

```
process \textit{Vec } n = \textit{V.sum} ~\$~\textit{V.map sq} ~\$~\textit{V.enumFromTo} ~1~(n :: \textit{Int})
```

GHC then generates the following code (simplified back to Haskell).

```
process VecGHC n = loop \ 1 \ 0

where

loop \ count \ acc = \mathbf{case} \ count \leqslant n \ \mathbf{of}

False \to acc

True \to loop \ (count + 1) \ (acc + (count * count))
```

Repa: A numerical Haskell Library using Fusion

Repa also uses fusion in order to handle parallel array operations.

 $\mathbf{import}\ \mathit{qualified}\ \mathit{Data}.\mathit{Array}.\mathit{Repa}\ \mathit{as}\ \mathit{R}$

```
processRepa\ n = R.foldP\ (+)\ 0 \circ R.map\ sq\ \$\ array where array = R.fromListUnboxed\ (R.Z\ R.:.(n::Int))\ [1..n]
```