Chapitre 1 - Approche énergétique

Sciences
Industrielles de
l'Ingénieur

Application

Application – Détermination de l'inertie équivalente de réducteurs

Savoirs et compétences :

Exercice 1 – Calcul de l'inertie équivalente d'un train simple

On donne un train d'engrenages simple avec Z_1, Z_{21}, Z_{23} et Z_3 le nombre de dents des roues dentées. On nomme k_1 le rapport du train de S_1 et S_2 avec $k_1 = \frac{\omega(2/0)}{\omega(1/0)}$ et k_2 le rapport de S_2 et S_3 avec $k_2 = \frac{\omega(3/0)}{\omega(2/0)}$.

On rappelle que pour les engrenages à denture droite d=mz avec d le diamètre primitif, m le module, z le nombre de dents du pignon. $\omega(1/0)$, $\omega(2/0)$ et $\omega(3/0)$ sont les vitesses de rotation de S_1 , S_2 et S_3 autour des axes $\left(O_1, \overrightarrow{x_g}\right)$, $\left(O_2, \overrightarrow{x_g}\right)$ et $\left(O_3, \overrightarrow{x_g}\right)$. Le repère galiléen \mathcal{R}_g est lié au solide S_0 . Les liaisons pivots sont supposées parfaites. Les matrices d'inertie sont définies aux centres de masse $G_1 = O_1$, $G_2 = O_2$ et $G_3 = O_3$ associées aux solides S_1 , S_2 et

$$S_3$$
 sont de la forme : $I_{O_i}(S_i) = \begin{pmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & C_i \end{pmatrix}_{O_i, R_i}$.

Le train d'engrenage est entrainé par un couple moteur C_m agissant sur la liaison pivot entre 1 et 0. Une charge résistante C_r s'exerce sur l'arbre 3.

Question 1 Déterminer le rapport de réduction du train d'engrenages.

Question 2 Déterminer l'inertie équivalente du réducteur ramené à l'axe moteur.

1

Question 3 Déterminer la relation entre le couple d'entrée et le couple de sortie du réducteur.

Exercice 2 – Calcul de l'inertie équivalente d'un train épicycloïdal

On considère le train épicycloïdal suivant à trois satellites. Chacune des pièces est axisymétrique. On donne leurs matrices d'inertie :

$$\overline{\overline{I_A}}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1} \qquad \overline{\overline{I_B}}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}$$

$$\overline{\overline{I_A}}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$$

Question 1 Déterminer le rapport de réduction du train épicycloïdal.

Question 2 Déterminer l'inertie équivalente du train épicycloïdal.

Question 3 Déterminer le couple moteur (à appliquer sur l'arbre 1) nécessaire à la mise en mouvement de la charge sur l'arbre de sortie 3 sur lequel est appliqué un couple résistant.