Niektóre zadania z kolokwiów i egzaminów ze starych lat. Mogły się zdarzyć (niestety) błędy przy przepisywaniu. ML

1 MSE, nieobciążoność, zgodność, efektywność

1.1

Niech X_1, \ldots, X_n próba prosta z rozkładu wykładniczego o wartości oczekiwanej $\mathbb{E}X = \mu$. Rozważmy rodzinę estymatorów parametru μ postaci $\hat{\mu} = A \sum_{i=1}^{n} X_i$.

- a) Wyznacz stałą A, dla której błąd średniokwadratowy estymatora μ jest najmniejszy.
- b) Zbadaj nieobciążoność oraz zgodność estymatora.

1.2

Niech X_1, \ldots, X_n próba prosta z rozkładu Weibulla

$$W\left(\frac{1}{\theta}, 2\right) \sim f_{\theta}(x) = \frac{2x}{\theta} \exp(-\frac{x^2}{\theta}) \mathbb{I}_{(0, \infty)}(x).$$

a) Wyznacz A tak, aby

$$\hat{\theta} = A \min\{X_1^2, \dots, X_n^2\}$$

był estymatorem nieobciążonym θ .

b) Sprawdź zgodność estymatora θ .

1.3

Niech X_1, \ldots, X_n i.i.d $\mathcal{N}(\mu, \sigma)$ z nieznaną wartością oczekiwaną oraz skończonym odchyleniem standardowym σ . Niech \overline{X} , \overline{s} są odpowiednio średnią i odchyleniem standardowym próby. Wyznacz stałą a tak, aby statystyka $T(X_1, \ldots, X_n) = a\frac{\overline{X}}{\overline{s}}$ było estymatorem nieobciążonym $\hat{\phi} = \frac{\mu}{\sigma}$.

1.4

Niech $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ będą niezależnymi próbami składającymi się z niezależnych obserwacji z rozkładu o wartości oczekiwanej μ i wariancji σ^2 . Który z poniższych estymatorów

$$\hat{\mu_1} = \frac{1}{2} (\overline{X} + \overline{Y}),$$

$$\hat{\mu_2} = \frac{n}{n+m}\overline{X} + \frac{m}{n+m}\overline{Y}$$

należy zastosować do oszacowania wartości oczekiwanej μ ?

Niech X_1, \ldots, X_n i.i.d o gęstości

$$f_{\theta}(x) = \frac{1}{\theta} x^{\frac{1}{\theta} - 1} \mathbb{I}_{(0,1)}(x).$$

- a) Znaleźć estymator największej wiarygodności parametru θ .
- b) Znaleźć błąd średniokwadratowy parametru θ .

1.6

Niech X_1, \ldots, X_n i.i.d o gęstości

$$f_{\theta}(x) = \theta \exp(-\theta x) \mathbb{I}_{(0,\infty)}(x), \ \theta > 0.$$

Obliczyć efektywność estymatora parametru θ

$$T(\mathbb{X}) = \frac{n-1}{\sum X_i}.$$

1.7

Obliczyć informację Fishera dla parametru p z rozkładu geometrycznego.

1.8

Załóżmy, że

- 1. $X_1,...,X_{10},X_{11},...,X_{20}$ są niezależnymi obserwacjami,
- 2. $\mathbb{E}X_i = \mu_1 \text{ dla i=1,...10},$
- 3. $\mathbb{E}X_i = \mu_2 \text{ dla i=11,...20},$
- 4. $Var X_i = \sigma^2 dla i = 1,...10,$
- 5. $Var X_i = 2\sigma^2 dla i=11,...20,$
- 6. $\overline{X}_1 = \frac{\sum_{i=1}^{10} X_i}{10}$,
- 7. $\overline{X}_2 = \frac{\sum_{i=11}^{20} X_i}{10}$,
- 8. $\overline{X} = \frac{\sum_{i=1}^{20} X_i}{20}$,
- 9. parametry μ_1, μ_2, σ są nieznane.

Dobrać stałe a, b, aby statystyka

$$T = a \sum_{i=1}^{20} (X_i - \overline{X})^2 + b(\overline{X}_1 - \overline{X}_2)^2$$

była estymatorem nieobciążonym parametru $\sigma^2.$

Niech $X_1, \ldots, X_n, X_{n+1}, \ldots, X_{n+m}$ $i.i.d. \sim \mathcal{N}(\mu, \sigma)$ z nieznaną wartością oczekiwaną i wariancją. Znam wartości tylko pierwszy n obserwacji oraz średniej $\overline{X_{m+n}}$. Wyznaczyć obciążenie następującego estymatora wariancji

$$T = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_{m+n})^2.$$

1.10

Niech $X_1,...X_n$ oznacza próbkę prostą rozkładu o gęstości $f_{\theta}(x) = \frac{1}{\theta} \exp\{-\frac{1}{\theta}x\}I_{(0,\infty)}(x)$ przy czym $\theta > 0$ jest nieznanym parametrem. Niech $\tilde{\theta}$ oznacza estymator parametru θ wyznaczony metodą momentów. Dobrać stałą a, dla której błąd średniokwadratowy estymatora parametru θ postaci $T(X_1,...,X_n) = a\tilde{\theta}$ jest najmniejszy. Zbadać czy estymator T, wyznaczony dla tak dobranej stałej, jest zgodny.

1.11

Zadanie 1 (5 punktów)

Niech X_1, \ldots, X_{15} oznaczają ciąg niezależnych zmiennych losowych będących wynikami pomiarów pewnej nieznanej wielkości μ , wykonanych dwoma przyrządami. Zakładamy, że każda ze zmiennych X_1, \ldots, X_{10} , ma rozkład $N(\mu, \sigma_1)$, natomiast każda ze zmiennych X_{11}, \ldots, X_{15} , ma rozkład $N(\mu, \sigma_2)$. Dobrać tak współczynniki c_i , aby estymator $\hat{\mu} = \sum_{i=1}^{15} c_i X_i$ był nieobciążony i efektywny. Podać postać tego estymatora dla $\sigma_1 = 0.1$ oraz $\sigma_2 = 0.2 \cdot \int_{0}^{\infty} V_{00} \times V_{00} = 0.0$

2 Generowanie zmiennych losowych, statystyki dostateczne, minimalne statystyki dostateczne

2.1

Dane U $\sim U([0,1])$. Wyznaczyć algorytm generowania zmiennych losowych o gęstości

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2}, X \sim C(1).$$

2.2

Dane U $\sim U([0,1])$. Wyznaczyć algorytm generowania zmiennych losowych o gęstości

$$f(x) = \frac{\alpha}{\pi} \frac{1}{\alpha^2 + (\theta - x)^2}, \ \alpha > 0, \theta \in \mathbb{R}.$$

3

Niech X_1,\dots,X_n próbka prosta z rozkładu Weibulla

$$W(\alpha,\beta) \sim f(x) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} \exp\{-(\frac{x}{\beta})^{\alpha}\} \mathbb{I}_{(0,\infty)}(x).$$

Znaleźć statystykę dostateczną dla tej rodziny rozkładów.

Niech X_1, \ldots, X_n i.i.d. $Beta(\alpha, \alpha)$. Wyznacz minimalną statystykę dostateczną.

$$f_{\alpha,\alpha}(x) = \frac{1}{\beta(\alpha,\alpha)} x^{\alpha-1} (1-x)^{\alpha-1} \mathbb{I}_{(0,1)}(x)$$

Niech X_1,\ldots,X_n i.i.d. z rozkładu o podanej gęstości $\frac{\alpha \left(\beta\right)^{\alpha-1}}{\alpha}$

$$f(x) = \frac{\alpha}{\beta} \left(\frac{\beta}{x}\right)^{\alpha-1} \mathbb{I}_{(\beta,\infty)}(x), \quad \alpha, \beta > 0$$

Wyznaczyć statystykę dostateczną.

2.6

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości

$$f(x) = \frac{a^3}{2}x^2 \exp(-ax)\mathbb{I}_{(0,\infty)}(x) \sim \Gamma(3,a).$$

- a) Znaleźć statystykę dostateczną.
- b) Znaleźć estymator największej wiarygodności i sprawdzić czy jest zgodny.

2.7

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości

$$f_{\theta}(x) = \frac{1}{\theta} \exp\{x - \frac{e^x}{\theta}\}\mathbb{I}_{(0,\infty)}(x).$$

Podać minimalną statystykę dostateczną dla tej rodziny rozkładów.

2.8

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości Rayleigha

$$f_{\theta}(x) = \frac{x}{\theta^2} \exp\{-\frac{x^2}{2\theta^2}\} \mathbb{I}_{(0,\infty)}(x).$$

Podać minimalną statystykę dostateczną dla tej rodziny rozkładów.

Niech $(X_1, Y_1), ..., (X_n, Y_n)$ będzie próbą prostą z dwuwymiarowego rozkładu normalnego $N_2(\theta, V)$ gdzie θ jest wektorem zerowym, natomiast V jest macierzą kowariancji postaci:

$$V = \{1, \theta; \theta, 1\}.$$

Wyznaczyć minimalną statystykę dostateczną dla parametru θ .

2.10

Niech $X_1,...X_n$ oznacza próbkę prostą rozkładu o gęstości $f_{\theta}(x) = \frac{\theta 2^{\theta}}{(2+x)^{\theta+1}} I_{(0,\infty)}(x)$

- 1. Wyznaczyć statystykę dostateczną dla parametru θ
- 2. Wyznaczyć estymator największej wiarygodności parametru θ .

3 Estymatory: metoda momentów, metoda największej wiarygodności, bayesowski

3.1

Realizacja próby prostej z rozkładu $f(x) = \frac{1}{\sigma} \exp(-\frac{x-\xi}{\sigma}) \mathbb{I}_{(\xi,\infty)}(x)$ wygląda następująco:

Wyznacz wartości estymatorów par. ξ oraz σ korzystając z metody momentów.

3.2

Czas oczekiwania modelowany jest zmienną losową o gęstości $f(x) = \frac{1}{2\theta^3}x^2 \exp(-\frac{x}{\theta}), x, \theta > 0.$

a) Skonstruować estymator największej wiarygodności θ i wyznaczyć wartość tego estymatora dla próby:

b) Wyznaczyć statystykę dostateczną parametru $\theta.$

3.3

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości

$$f_{\theta}(x) = (\frac{1}{\theta} - |\frac{x}{\theta^2}|)\mathbb{I}_{(-\theta,\theta)}(x).$$

Metodą momentów skonstruować estymator parametru θ .

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości

$$f_{\theta}(x) = \frac{1}{\theta} x^{\frac{1}{\theta} - 1} \mathbb{I}_{(0,1)}(x).$$

Wyznacz estymator największej wiarygodności parametru θ oraz błąd średnio-kwadratowy tego estymatora.

3.5

Poniższe obserwacje:

$$1.22, 0.09, \dots, 3.12$$

to próba losowa z rozkładu o gęstości

$$f(x) = \theta x \exp(-\theta \cdot \frac{x^2}{2}), \ x, \theta > 0.$$

Oszacuj parametr θ korzystając z estymatora wyznaczonego z metody momentów.

3.6

Niech X_1, \ldots, X_n i.i.d. z rozkładu o podanej gęstości

$$f_{\theta}(x) = \exp\{-(x-\theta)\}\mathbb{I}_{(0,\infty)}(x),$$

przy czym θ jest nieznanym parametrem. Wyznaczyć estymator parametru θ korzystając z metody momentów. Zbadać zgodność uzyskanego estymatora.

3.7

Niech X_1, \ldots, X_n i.i.d. $\sim Exp(\lambda)$. Znaleźć ENW próby $\lceil X_1 \rceil, \ldots, \lceil X_n \rceil$.

3.8

Niech $X_1,...X_n$ oznacza próbkę prostą rozkładu o gęstości $f_{\theta}(x) = \theta x^{\theta-1} I_{(0,1)}(x)$, natomiast $Y_1,....Y_m$ próbkę prostą z rozkładu o gęstości $g_{\theta}(y) = 2\theta y^{2\theta-1} I_{(0,1)}(y)$, przy czym $\theta > 0$ jest nieznanym parametrem. Zakładamy, że próbki są niezależne. Wyznaczyć estymator największej wiarygodności $\tilde{\theta}(X_1,...X_n,Y_1,...Y_m)$ parametru θ .

4 Przedział ufności

4.1

 X_1,\ldots,X_n niezależne o rozkładzie normalnym z wartością oczekiwaną μ i wariancją $\frac{1}{i}$ dla każdego $i\in\{1,\ldots,n\}$. Wyznaczyć przedział ufności $(\hat{\mu}-d,\hat{\mu}+d)$, gdzie $\hat{\mu}$ jest ENW parametru μ .

Niech $X_1,...X_n$ oraz $Y_1,...Y_n$ oznaczają dwie niezależne próbki proste z rozkładów normalnych, odpowiednio $N(\mu_1,\sigma_1)$ i $N(\mu_2,\sigma_2)$, o znanych odchyleniach standardowych σ_1 i σ_2 . Wyznaczyć minimalną liczność n każdej z próbek konieczną do oszacowania przedziałowego różnicy wartości oczekiwanych $\mu_1 - \mu_2$ na poziomie ufności $1 - \alpha$ z maksymalnym błędem d.

4.3

Niech X_1, \ldots, X_n oznacza próbkę prostą z rozkładu o gęstości $f_{\theta}(x) = 4\theta x^3 \exp(-\theta x^4) \mathbb{I}_{(0,\infty)}(x)$, przy czym $\theta > 0$. Skonstruować przedział ufności dla parametru θ na poziomie ufności $1 - \alpha$. Podać postać tego przedziału dla $1 - \alpha = 0.95$ oraz n = 10.

4.4

Niech X_1, X_2 będzie dwuelementową próbą prostą z rozkładu jednostajnego $[0, \theta]$ gdzie $\theta > 0$. Znaleźć stałą C, dla której przedział $(CX_{2:2}, \frac{1}{\sqrt{\alpha}}X_{2:2})$ jest przedziałem ufności dla parametru θ na poziomie ufności $1 - \alpha$ tzn.

$$P(CX_{2:2} < \theta < \frac{1}{\sqrt{\alpha}}X_{2:2}) = 1 - \alpha$$

4.5

Zadanie 3 (6 punktów)
Niech X_1, \dots, X_n oznacza próbkę prostą z rozkładu o gęstości $f_0(x) = 0x^{n-1}I_{(0,0)}(x)$, gdzie 0 > 0 jest nieznanym parametrem. Niech X_1, \dots, X_n oznacza próbkę prostą z rozkładu o gęstości $f_0(x) = 0x^{n-1}I_{(0,0)}(x)$, gdzie 0 > 0 jest nieznanym parametrem. Wyznaczyć przedziału ufności na poziomie ufności $1-\alpha$ dla parametru 0, postaci (a0,b0), gdzie 0 jest nieznanym parametrem. Wyznaczyć przedziału ufności na poziomie ufności $1-\alpha$ dla parametru 0, postaci (a0,b0), gdzie 0 jest nieznanym parametrem. Wyznaczyć przedziału ufności na poziomie ufności $1-\alpha$ dla parametru 0, postaci (a0,b0), gdzie 0 jest nieznanym parametrem. Wyznaczyć przedziału ufności na poziomie ufności $1-\alpha$ dla parametru 0, postaci (a0,b0), gdzie 0 jest nieznanym parametrem. Wyznaczyć przedziału ufności na poziomie ufności $1-\alpha$ dla parametru 0, postaci (a0,b0), gdzie 0 jest nieznanym parametrem.

5 Konstruowanie testu

5.1

Niech X_1, \ldots, X_n i.i.d. $\sim f_{\theta}(x) = \theta x^{\theta-1} \mathbb{I}_{(0,1)}(x)$. Rozważmy test jednostajnie najmocniejszy do weryfikacji hipotezy

$$\begin{cases} H: & \theta \leqslant 1 \\ K: & \theta > 1 \end{cases}$$

na poziomie istotności 0.01. Dla jakich wartości parametru θ test ten ma moc nie mniejszą niż 0.99?

Niech $X_1, ..., X_n$ będzie próbą prostą z rozkładu prawdopodobieństwa o gęstości

$$f_{\theta}(x) = \frac{2x}{\theta^2} I_{(0,\theta)}(x)$$

gdzie $\theta > 0$.

- 1. Skonstruować najmocniejszy test statystyczny na poziomie istotności α do weryfikacji hipotezy $H: \theta = \theta_0$ przy czym alternatywnie $K: \theta = \theta_1$, gdzie $\theta_1 > \theta_0$. Podać postać tego testu dla $n = 5, \theta_0 = 1, \theta_1 = 1, 4, \alpha = 0, 1$
- 2. Obliczyć moc tego testu.

5.3

Niech $X_1,...X_8$ oznacza próbkę prostą z rozkładu jednostajnego na przedziale $[0,\theta]$ gdzie $\theta > 0$ jest nieznanym parametrem. Hipotezę $H:\theta=2$ wobec alternatywy $K:\theta=4$ weryfikujemy najmocniejszym testem na poziomie istotności 0.1. Wyznaczyć prawdopodobieństwo popełnienia błędu drugiego rodzaju.

5.4

Niech $X_1,...X_n$ oznacza próbkę prostą z rozkładu normalnego o wartości oczekiwanej $\mu=0$ i o nieznanej wariancji σ^2

- 1. Wyznaczyć test jednostajnie najmocniejszy do weryfikacji hipotezy $H:\sigma^2\leqslant 3$ przy hipotezie alternatywnej $K:\sigma^2>3$ na poziomie istotności $\alpha=0.05$. Przyjąć n=8.
- 2. Dla jakich wartości wariancji moc tego test jest nie mniejsza niż 0.95?

5.5

Niech $X_1,...X_n$ oznacza próbkę prostą z rozkładu o gęstości $f_{\theta}(x) = \frac{2x}{\theta^2}I_{(0,\theta)}(x)$ gdzie $\theta > 0$ jest nieznanym parametrem. Testujemy hipotezę $H: \theta = 1$ przy alternatywie $K: \theta = \frac{1}{2}$ testem jednostajnie najmocniejszym na poziomie istotności 0.05. Wyznaczyć najmniejszą liczność próbki, aby moc tego testu przy podanej alternatywie była nie mniejsza niż 0.95.

5.6

Niech $X_1,...X_n$ oznacza próbkę prostą z rozkładu o gęstości $f_{\theta}(x) = \theta x^{-(\theta+1)} I_{(1,\infty)}(x)$, gdzie $\theta > 0$ jest nieznanym parametrem. Wyznaczyć test jednostajnie najmocniejszy do weryfikacji hipotezy $H: \theta \leq \frac{1}{2}$ przy alternatywie $K: \theta > \frac{1}{2}$ na poziomie istotności α . Podać postać tego testu dla n = 5 oraz $\alpha = 0.01$.

Zadanie 4 (5 punktów)

Liczba roszczeń z tytułu pewnego ubezpieczenia jest zmienną losową X o rozkładzie Poissona. Skonstruować test jednostajnie najmocniejszy do weryfikacji hipotezy H: E(X) = 2500 wobec alternatywy K: E(X) > 2500, na poziomie istotności $\alpha = 0.05$.

- a) Podać postać tego testu stosując przybliżenie rozkładu Poissona rozkładem normalnym.
- b) Jaka jest moc tego testu w przypadku gdy E(X) = 2704?

5.7

6 Weryfikacja hipotez, testy niezależności

6.1

W pewnym towarzystwie ubezpieczeniowym wylosowano niezależnie 300 polis, z którym wypłacono odszkodowanie w ramach ubezpieczenia OC. Otrzymano następujące wyniki:

Wysokość odszkodowania (w tys. zł)	Liczba polis
0,0-2,0	190
2,0-4,0	38
4,0-6,0	26
6,0-8,0	34
8,0-10,0	12

- 1. Obliczyć medianę wysokości odszkodowania
- 2. Zweryfikować hipotezę, że średnia odszkodowania wynosi mniej niż 3 tys. zł. Przyjąć poziom istotności 0,05
- 3. Wyznaczyć przedział ufności dla odsetka odszkodowań nieprzekraczających 4 tys. złotych. Przyjąć poziom ufności 0,95.

6.2

Paní Kasia i Małgosia od lat dostają mniej więcej tyle samo kartek walentynkowych. Zaczęły się jednak spierać o to, która z nich otrzymuje więcej dowodów sympatii spośród grona, na którym im najbardziej zależy, tzn. od studentów i pracowników Wydziału. Aby rozstrzygnąć spór postanowiły udać się do znajomego statystyka, który wylosował niezależnie po 120 kartek otrzymanych przez każdą z pań i zrobił zestawienie ich nadawców. Dane te zawiera poniższa tabela:

Nadawcy kartek	Kasia	Małgosia
Studenci Wydziału	46	45
Pracownicy Wydziału	34	37
Osoby spoza Wydziału	40	38

Na poziomie istotności 0,01 stwierdzić czy występuje statystycznie istotna różnica między odsetkami kartek otrzymanych przez obie panie od osób związanych z Wydziałem. Wyznaczyć p-wartość dla przeprowadzonego testu.

Mendel wydedukował prawo niezależnego dziedziczenia cech krzyżując odmiany grochu o żółtych i gładkich nasionach (AABB) z odmianami o nasionach zielonych i pomarszczonych (aabb). Rozważania teoretyczne doprowadziły go do stwierdzenia, że rośliny o żółtych i gładkich nasionach, o żółtych i pomarszczonych nasionach, o zielonych i gładkich nasionach oraz o zielonych i pomarszczonych nasionach powinny wystąpić w II pokoleniu w stosunku liczbowym 9:3:3:1. W celu empirycznej weryfikacji prawa Mendla przeprowadzono doświadczenie i otrzymano następujące liczności poszczególnych rodzajów nasion:

Rodzaj nasienia	Żółte i gładkie	Żółte i pomarszczone	Zielone i gładkie	Zielone i pomarszczone
Liczba nasion	269	85	83	27

Czy otrzymane wyniki doświadczenia potwierdzają prawo Mendla? Zweryfikować odpowiednią hipotezę na poziomie istotności 0.05.

6.4

W poniższej tabeli zamieszczono wyniki badania wydatków na paliwo losowo wybranej grupy kierowców.

Opłata za tankowane paliwo	50-100	100-150	150-200	200-250
Liczba kierowców	20	36	56	32

- 1. Obliczyć górny kwartyl wydatków na paliwo
- 2. Obliczyć p-value test do weryfikacji hipotezy $H:\mu=150$ przeciwko $K:\mu>150$. Czy w świetle powyższych badań można stwierdzić, że średni wydatek na paliwo przekracza istotnie 150 złotych?

6.5

Mimo wielu odniesionych sukcesów Prezia wciąż dręczy fakt, że jego zwolennicy rekrutują się w większości spośród warstw mniej wykształconych niż sympatycy rebeliantów. owszem, na jego dworze można spotkać nawet kilku profesorów, ale są to często miernoty bądź lizusi, którymi w duchu sam Prezio gardzi. Kazek, Jurski, szef Radiokomitetu, chcąc pocieszyć Prezia (a przy okazji zarobić kilka punktów) zameldował się któregoś dnia w jego gabinecie. Gdy już ucałował dłoń Prezia i powstał z kolan, zameldował: Mam dobre wieści. Otóż nasi "niepokorni" reporterzy dokonali obliczeń podczas sobotniej manifestacji rebeliantów i okazało się, że na 200 losowo wybranych manifestantów 128 miało ukończone wyższe studia, 44 miało wykształcenie średnie, a pozostali rekrutowali się spośród osób małoletnich lub nieposiadających matury. Tymczasem podczas naszej ostatniej miesięcznicy - w tym miejscu Jurski ponownie cmoknął Prezia w mankiet niepokorni w losowo wziętej próbce 320 osób naliczyli także 128 osób z wyższym wykształceniem (dodam, że pozostałe 192 osoby jakkolwiek nie posiadały wyższego wykształcenia, były niewątpliwie szczerze oddane sprawie). W niczym więc nie ustępujemy rebeliantom!

Stwierdzić czy w świetle dostarczonych Preziowi danych jego obawy są zasadne, czy też może on podzielić optymizm pana Jurskiego? Zweryfikować odpowiednią hipotezą na poziomie istotności 0.05.

6.6

Henio i Zdzisio zamierzają oszacować przedziałowo wartość oczekiwaną na podstawie próbki prostej $X_1,...X_n$ z rozkładu normalnego $N(\mu,\sigma)$ posługując się klasycznymi przedziałami ufności na poziomie ufności 0.95. Obaj nie znają wartości oczekiwanej μ , ale Zdzisio w przeciwieństwie do Henia, zna wartość wariancji rozkładu σ^2 . Mimo to Henio mówi Chociaż dysponujesz większą ilością informacji to na 10% mój przedział ufności będzie przynajmniej x razy krótszy niż Twój.

Znaleźć wartość x.

6.7

i niskie (poniżej	o odpowiedniej grupy dochodowe 3000 zł). Otrzymane wyniki zaw poszczególnych grupach dochodow	j: zarobki wysokie (pow	wiondria any northlad ronall	dzy 3000 a 10000 ;
	Wysokość zarobków	Kobiety	Meżczyźni	1
	Wysokość zarobków wysokie	Kobiety 34	Mężczyźni 70	
ysoliels:	Wysokość zarobków		Mężczyźni 70 80	

