TRANSFORMING

Image Recognition and Classification

(Using CIFAR 100 & Google Landmarks Dataset v2) Spring 2023 Term: W281 Computer Vision Final Project Wagas Ali | Pedro Melendez | Prakash Krishnan

Image Classification

- ☐ Essential Task in Computer Vision
- □ Considerable Research on Handcrafted Techniques with Traditional Classifiers (SVM, RF, Gradient Boost) and deep learning models (CNN and ViT)
- ☐ Use Cases Medical Imaging, Satellite Imaging, Self Driving Cars
- ☐ Emergence of Vision-Language Models

Our Inspiration

- An Image is Worth 16x16 Words Transformers for Image Recognition at Scale (Dosovitskiy et al., Google Research, 2021)
- Self-Attention based transformer architecture (Source: Attention Is All You Need, Ashish Vaswani et al., 2017) adapted for images
- Vision Transformer Steps
 - Break image into patches (fixed sizes)
 - Integrate positional embeddings
 - Feed the sequence to the transformer encoder
 - Pre-train the ViT model with image labels
 - Fine-tune the downstream dataset for image classification

Source: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Research Questions

- 1. How well does a Pre-Trained Vision Transformer Model (ViT) that is Fine Tuned compare to CNN models (ResNet 9 & ResNet 50) and models built on manual feature extraction techniques (HOG+SVM, SIFT+SVM, GLCM+SVM)?
- 2. How does the state-of-the-art ViT model generalize and scale?
- 3. What is the future of ViTs?

CIFAR-100, 50k Train, 10k Test, 20 Coarse Class and 100 Fine Class

Subset of GLDv2 dataset with only 20 classes and 16,633 images in total

CIFAR-100 Dataset EDA

- ❖ Dataset has 100 classes (fine labels) containing 600 images each.
- There are 500 training images and 100 testing images per class.
- The 100 classes in the CIFAR-100 are grouped into 20 superclasses (course labels).
- Each image (32x32) comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).

Fine	Label	Na

Coarse_Label_Name	
aquatic_mammals	[otter, seal, whale, beaver, dolph
fish	[aquarium_fish, shark, flatfish, ray, tro
flowers	[sunflower, rose, tulip, poppy, orch
food_containers	[cup, bottle, plate, bowl, ca
fruit_and_vegetables	[apple, mushroom, sweet_pepper, orange, pe
household_electrical_devices	[telephone, keyboard, television, clock, lan
household_furniture	[table, chair, wardrobe, couch, be
insects	[cockroach, butterfly, bee, caterpillar, beef
large_carnivores	[wolf, leopard, lion, tiger, be
large_man-made_outdoor_things	[castle, skyscraper, road, bridge, house
large_natural_outdoor_scenes	[cloud, sea, mountain, forest, pla
large_omnivores_and_herbivores	[cattle, elephant, chimpanzee, camel, kangard
medium_mammals	[possum, skunk, raccoon, fox, porcupir
non-insect_invertebrates	[lobster, snall, worm, cra, spid
people	[boy, woman, girl, man, ball
reptiles	[dinosaur, snake, crocodile, turtle, liza
small_mammals	[squirrel, shrew, rabbit, hamster, mous
trees	[willow_tree, pine_tree, oak_tree, maple_tree
vehicles_1	[train, bicycle, motorcycle, bus, pickup_true
vehicles_2	[streetcar, tractor, rocket, tank, lawn_mow

GLDv2 Dataset EDA

- ❖ Main dataset contains over 4 million images of landmarks across the word, we used Kaggle subset with:
 - 1,580,470 images and 81,313 Classes (105.52 GB)
 - Only 48 Classes had more than 500 images
 - We used the top 20 classes with less than 1,000 images to avoid outliers and unbalanced classes
 - Most images had 800x800 resolution so we blurred and downsized to 200x200

Methodology

Evaluation Metrics on Test Data

- Accuracy
- Precision
- Recall
- F1-Score
- Confusion Matrix
- Visual Inspection of Predicted Labels

Experimental Results on CIFAR-100

Key Takeaways

- 1. Vision Transformer outperforms CNN and Handcrafted Models on Test Accuracy
- 2. Vision Transformer scales well even when number of classes go from 20-100
- 3. Best CNN performance on ResNet 50 but still inferior to Vision Transformer Model
- 4. Best performance from handcrafted models is HOG + SVM. But performance is inferior to deep learning models
- 5. Handcrafted feature extraction techniques do not scale well when dealing with multiple features like edges, blobs, regions, textures, shapes.

Experimental Results on CIFAR-100 - Continued

	Coarse Class	Accuracy	Coarse Class	Accuracy	Coarse Class	Accuracy
- 400	aquatic_mammal s	89.6%	insects	93.2%	people	98.2%
- 400	fish	93.8%	large_carnivores	92.0%	reptiles	89.6%
- 300	flowers	98.4%	large_man-made_outd oor_things	94.8%	small_mammals	91.2%
- 200	food_containers	94.0%	large_natural_outdoor _scenes	95.4%	trees	97.0%
- 100	fruit_and_vegeta bles	97.2%	large_omnivores_and_ herbivores	94.0%	vehicles_1	93.2%
- 0	household_electri cal_devices	93.6%	medium_mammal s	93.0%	vehicles_2	94.8%
	household_furnit ure	96.0%	non-insect_invertebrat es	93.6%		

Key Takeaways

- Classes that are distinct and have good features have higher accuracy rates.
- As an example flowers, people, trees, fruits and vegetables have the highest accuracy rates.
- Aquatic mammals and reptiles have the lowest accuracy rates.
- These classes are not distinctive and have other classes such as small mammals and medium mammals that are close.

Sample Test Images and Predictions from CIFAR- 100

Coarse Label Prediction True Label: flowers Pred Label: food_containers Pred Label: flowers Pred Label: household furniture Pred Label: large_natural_outdoo d Label: fish Pred Label: aquatic_mammals Pred Label: aquatic mammals Pred Label: large_carnivores Pred Label: large_man-made_outdoPred Label: non-insect_inverteb

Experimental Results on GLDv2

Key Takeaways

- 1. Extremely high accuracy (98%) with Vision Transformer
- 2. Vision Transformer accuracy 2x of Handcrafted Models
- Vision Transformer had better accuracy with GLDV2 compared to CIFAR due to better resolution on images
- 4. HOG+SVM had higher accuracy compared to HOG+LR and HOG+RF

Accuracy vs. Model

Model

Generalizability CIFAR-100

	Test Evaluation				
Models	Accuracy	Precision	Recall	F1-Score	
ViT - CIFAR-100 (20 Classes)	94.13	94.15	94.13	94.13	
ViT - CIFAR-100 (100 Classes)	89.93	90.11	89.30	89.95	
CNN-ResNet 9 (100 Classes)	73.32	73.56	73.32	73.32	
CNN-ResNet 50 (100 Classes)	73.86	74.1	73.86	73.85	

Key Takeaways

ViT on CIFAR-100 does remarkably well on Test Accuracy with 94.13% for 20 course labels and 89.93% on 100 fine labels.

CNN-ResNet 9 and 50 perform well but inferior to ViT (CNN is not pre-trained)

Generalizability GLDv2

- ViT model classified correctly even draw images of some of the landmarks
- Tested with low detailed sketches and with full colored drawings and still got the correct label

Conclusion

- ❖ Vision Transformers achieve outstanding classification accuracy across large, complex datasets (including GLDv2) even when the numbers of classes are large (100).
- ❖ Traditional techniques work well on datasets that have homogeneous features but underperform when images have non-homogeneous features.
- ❖ Future studies can include experiments to determine under what conditions a ViT may underperform CNN.
- Combining features extracted by a ViT with handcrafted techniques can address some of the intra-class variations and inter-class similarities especially with medical-imaging applications.
- Using multi-modal transformer models with NLP and CV can lead to interesting use cases.

