

COMPLEMENTOS DE FORMACIÓN EN TÉCNICAS DE MINERÍA DE DATOS

CAIO FERNANDES MORENO

1. Los datos.

Los datos utilizados en este trabajo son datos datos de algunos paises.

Para importar los datos se ha utilizado el codigo sas abajo:

The SAS System

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE
1	Afganistán	27963	35.6	59.8	8.6	-4766	566	157.13532
2	Albania	2902	13.1	77.5	7.2	-2861	3786	577.685262
3	Alemania	80435	8.3	80.7	10.8	205408	41100	2659.28619
4	Angola	21220	46.2	51.7	14.2	29864	4221	19.5415273
5	Arabia Saudita	28091	20.8	74.1	3.4	144283	19327	10.288944
6	Argelia	36036	25.1	74.4	5.1	17558	4350	113.11257
7	Argentina	41223	17.8	76	7.6	12057	11508	310.531847
8	Armenia	2963	13.3	74.6	9	-2771	3125	191.307784
9	Australia	22163	13.5	82.1	6.7	10724	57593	82.6334118
10	Austria	8392	9.5	81.1	9.4	-5712	46377	1593.5443

2. Ejecución - Clusters

En el enunciado del ejercicio se pide para cargar el archivo y despues trabajar con una muestra de 100 países utilizando el procedimiento en SAS llamado **proc surveyselect**, el codigo abajo se ejecuta lo que se ha pedido:

```
/*
El archivo \DatosPaises.xlsx" (que podeis descargar del campus)
contiene informacion sobre 7 variables socioeconomicas de 133 paises.
Seleccionar aleatoriamente una muestra de 100 paises con el
procedimiento surveyselect de la siguiente forma:
```


* /

```
libname ucm
'C:\Users\win\Documents\GitHub\ucm\complementos\trabajocomplementos31e
nero16\';
data paises;
set ucm.paises;
run;
proc print data=paises (obs=100);
proc contents data=paises out=sa;
data; set sa; if n =1 then put 'LISTA DE VARIABLES CONTINUAS'; if type=1
then put name @@;run;
data; set sa; if _n_=1 then put 'LISTA DE VARIABLES CATEGÓRICAS'; if
type=2 then put name @@;run;
proc surveyselect data=paises method=srs n=100 out=sample paises;
run;
Tambien se pide para trabajar solo con las variables POBL, NATALIDA, ESPERANZ e
MORTALID.
/*
Para la muestra obtenida, realizar un Analisis Cluster incluyendo SOLO
las variables demograficas (Pobl Natalidad EsperanzaVida Mortalidad
), que debe incluir como minimo:
* /
proc print data=sample paises (obs=100);
var POBL NATALIDA ESPERANZ MORTALID;
run;
Por las variables no teneren la misma unidad de medida es necesario normalizar los
datos. Esto se hace en SAS utilizando el procedimiento proc stdize para normalizar las
variables POBL, NATALIDA, ESPERANZ e MORTALID.
Codigo SAS:
proc stdize data=sample paises out=sample paisesnorm;
var POBL NATALIDA ESPERANZ MORTALID;
run;
proc print data=sample paisesnorm;
var POBL NATALIDA ESPERANZ MORTALID;
run;
proc print data=sample paisesnorm;
run;
```


Otra etapa que se ha hecho ha sido estudiar las correlaciones entre las 4 variables (POBL, NATALIDA, ESPERANZ e MORTALID), pero en esta etapa se ha utilizado la herramienta R y SAS.

En el resultado del estudio se ha encontrado una correlacion muy alta entre EsperanzaVida y Natalidad de **-0.87063840**, se percibe que cuanto mayor es la Esperanza de Vida menos Natalidad hay en un pais. En R he utilizado las 133 observaciones, pero con SAS solo estudiamos las correlaciones de una amuestra de 100 observaciones.

Abajo la tabla de correlacion hecha en R y una figura para representar la correlacion:

```
## Pobl Natalidad EsperanzaVida Mortalidad

## Pobl 1.00000000 -0.03243038 -0.01445153 -0.03519014

## Natalidad -0.03243038 1.00000000 -0.87063840 1.00000000 -0.38664292

## Mortalidad -0.03519014 0.06833273 -0.38664292 1.00000000
```


En SAS para mirar la correlacion se hace con con el codigo abajo, con esto se analisa la correlacion y se puede ver tambien si hay datos atipicos o no.

```
proc corr data=sample_paises outp=sample_paisescorr;
var POBL NATALIDA ESPERANZ MORTALID;
run;
```


The CORR Procedure

4 Variables: POBL NATALIDA ESPERANZ MORTALID

	Simple Statistics											
Variable	N	Mean	Minimum	Maximum	Label							
POBL	100	27906	39987	2790573	622.00000	<mark>198615</mark>	POBL					
NATALIDA	100	22.21200	11.28550	2221	<mark>8.30000</mark>	<mark>49.80000</mark>	NATALIDAD					
ESPERANZ	100	70.68200	9.00345	7068	49.50000	83.30000	ESPERANZAVIDA					
MORTALID	100	8.50600	2.84679	850.60000	2.70000	15.30000	MORTALIDAD					

Se puede ver en las cuatro variables que hay datos atipicos en casos donde son muy altos y muy bajos.

Abajo se puede ver la correlacion hecha en SAS, el resultado es lo mismo con R con una pequena diferencia que con SAS tenemos una amuestra de 100 observaciones y con R he hecho con las 133 observaciones. Pero la correlacion es con Natalidad y Esperanza de Vida.

Pears	Pearson Correlation Coefficients, N = 100 Prob > r under H0: Rho=0									
	POBL	NATALIDA	ESPERANZ	MORTALID						
POBL	1.00000	-0.04365	0.00360	0.00055						
POBL		0.6663	0.9716	0.9957						
NATALIDA	-0.04365	1.00000	-0.88465	0.09054						
NATALIDAD	0.6663		<.0001	0.3703						
ESPERANZ	0.00360	-0.88465	1.00000	-0.37909						
ESPERANZAVIDA	0.9716	<.0001		0.0001						
MORTALID	0.00055	0.09054	-0.37909	1.00000						
MORTALIDAD	0.9957	0.3703	0.0001							

1. Analisis Cluster jerarquico con al menos dos metodos de agrupamiento. A partir de los procedimientos estudiados en clase, determinar el numero (o numeros) adecuado de grupos.

"El análisis cluster (o de conglomerados) tiene como objetivo formar grupos de individuos con características similares con respecto a determinadas variables."

"La idea básica es, a partir de un conjunto de individuos, crear grupos exluyentes y exhaustivos tales que:

- Los individuos de cada grupo deben ser lo más parecidos que sea posible (homogeneidad interna).
- Los grupos deben ser lo más diferentes que sea posible (heterogeneidad entre grupos)."

Para hacer una analisis de cluster es necesario tres fases:

- Normalizar las variables;
- Ver la correlación entre las variables;
- Corregir el problema de los atípicos ya que distorsionarían la generación de cluster;

Analisis de clusteres jerárquico

Importante: No hace falta hacer la analise factorial porque son pocas variables, he preguntado para la profesora Aida y ella me ha contestado que en este ejemplo no hace falta.

Se ha utilizado los codigos SAS abajo para probar 2 metodos de agrupamiento (centroid y ward) que son los 2 mas utilizados.

El procedimento SAS para analise de cluster jerarquico es el proc cluster, se ha anadido los parametros pseudo, RSQUARE para que en los resultados se muestre la pseudo-T2 y la pseudo-F y el R2.

Metodo de centroide.

```
proc cluster data=sample_paisesnorm method=centroid pseudo ccc RSQUARE
outtree=sample_paisesnormC
print=10 plots=den(VERTICAL);
var POBL NATALIDA ESPERANZ MORTALID;
run:
```

Resultados con el metodo centroide:

The CLUSTER Procedure Centroid Hierarchical Cluster Analysis

	Eigenvalues of the Covariance Matrix										
	Eigenvalue	Eigenvalue Difference Proportion Cumulative									
1	1.96555872	0.94160487	0.4914	0.4914							
2	1.02395385	0.08070507	0.2560	0.7474							
3	0.94324878	0.87601013	0.2358	0.9832							
4	0.06723865		0.0168	1.0000							

Root-Mean-Square Total-Sample Standard Deviation 1

Root-Mean-Square Distance Between Observations 2.828427

	Cluster History											
Numbe r of Clusters	Joined		Fre q	Semipartia I R-Square	R- Squar e	Approximat e Expected R-Square	Cubic Clusterin g Criterion	Pseudo F Statisti c	Pseudo t- Square d	Norm Centroi d Distanc e	Ti e	
10	CL2 1	OB5	3	0.0036	.824	.821	0.26	46.8	2.4	0.515		
9	CL1 0	CL54	6	0.0087	.815	.805	0.90	50.2	6.2	0.5347		
8	CL1 6	CL11	53	0.0754	.740	.785	-3.1	37.4	38.3	0.5386		
7	CL1 3	OB1 2	3	0.0039	<mark>.736</mark>	.761	-1.7	43.2	1.7	0.5409		
6	CL8	CL9	59	0.0479	.688	.731	-2.6	41.5	14.4	0.6635		
5	CL6	CL15	66	0.0934	.595	.691	-5.2	34.8	24.3	0.8594		
4	CL1 2	CL14	30	0.0418	.553	.636	-4.3	39.6	19.7	0.8751		
3	CL4	CL5	96	0.3815	.171	.529	-12	10.0	<mark>81.3</mark>	0.9568		
2	CL7	OB2 9	4	0.0163	.155	.379	-6.9	18.0	5.2	1.0385		
1	CL3	CL2	100	0.1551	.000	.000	0.00		18.0	1.4141		

Para determinar con cuantos clusters se debe quedar hay que mirar el máximo relativo de Pseudo F-Statistic, Pseudo t-Squared y el R-Squared mas grande que 70%.

Por mirar el Pseudo t-Squared se ve el valor 81,3 que es el máximo relativo, por esto me quedo con 4 clusters, pues el 81,3 es en el cluster 3 y es necesario añadir más 1, el resultado es 4.

En el método Pseudo F-Statistic donde se elige el cluster por el máximo relativo entonces nos quedamos con 4.

Pero utilizando el R-Squared, dado que es mayor que 70% nos quedaríamos con 7 clusters.

Para el criterio ccc (**Cubic Clustering Criterion**) se puede ver valores negativos, esto es un indicador que hay dados atípicos. Valores de CCC más grandes de 2 a 3 indican buenos clusters.

He encontrado en el enlace abajo más detalles de como se puede interpretar el CCC. https://support.sas.com/documentation/onlinedoc/v82/techreport_a108.pdf

En los tres gráficos arriba se puede ver que lo mejor es quedar con 4 clusters. Porque el Pseudo T-Squared tiene un pico en 3 clusters y se debe añadir más 1, entonces quedamos con 4.

Lo mismo con el Pseudo F que se puede concluir que se debe quedar con 4.

Dendograma del método de centroide.

Ahora probaremos con el Ward.

```
Metodo de ward.
```

```
proc cluster data=sample_paisesnorm method=ward pseudo ccc RSQUARE
outtree=sample_paisesnormW
print=10 plots=den(VERTICAL);
var POBL NATALIDA ESPERANZ MORTALID;
run;
```

Los resultados son:

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

	Eigenvalues of the Covariance Matrix										
	Eigenvalue Difference Proportion Cumulativ										
1	1.96555872	0.94160487	0.4914	0.4914							
2	1.02395385	0.08070507	0.2560	0.7474							
3	0.94324878	0.87601013	0.2358	0.9832							
4	0.06723865		0.0168	1.0000							

Root-Mean-Square Total-Sample Standard Deviation $\begin{tabular}{c} 1 \end{tabular}$

Root-Mean-Square Distance Between Observations 2.828427

	Cluster History											
Number of Clusters	Clusters Joined		Freq	Semipartial R-Square	R- Square	Approximate Expected R-Square	Cubic Clustering Criterion	Pseudo F Statistic	Pseudo t- Squared	Tie		
10	CL19 OB29		4	0.0163	.872	.821	5.22	68.2	5.2			
9	CL15	CL13	28	0.0194	.853	.805	4.50	65.9	19.2			

					Cluster H	listory				
Number of Clusters	Joined		Freq	Semipartial R-Square	R- Square	Approximate Expected R-Square	Cubic Clustering Criterion	Pseudo F Statistic	Pseudo t- Squared	Tie
8	CL22 CL20		18	0.0220	.831	.785	3.92	64.5	26.1	
7	CL14	CL24	19	0.0258	.805	.761	3.45	64.0	24.3	
6	CL8 CL18		25	0.0334	.772	.731	2.93	63.5	17.6	
5	CL10	CL12	11	0.0414	<mark>.730</mark>	.691	<mark>2.57</mark>	64.3	9.4	
4	CL7	CL11	36	0.0802	.650	.636	0.81	59.4	41.4	
3	CL9 CL6		53	0.1177	.532	.529	0.16	55.2	<mark>48.9</mark>	
2	CL3 CL5		64	0.1664	.366	.379	46	56.5	32.1	
1	CL4	CL2	100	0.3659	.000	.000	0.00		56.5	

Por el Pseudo t-Squared se debe quedar con 4 clusters. Por el R-Square con 5. Con el CCC quedo con 5 clusteres porque esta entre 2 y 3, el valor es 2.57.

Con el grafico arriba lo mismo 4 para el Pseudo T-Squared y 5 para el Pseudo F y CCC.

El dendograma con el metodo de Ward.

Dejo abajo el codigo para probar con el metodo average si se desea, pero no lo que utilizado.

```
proc cluster data=sample_paisesnorm method=average pseudo RSQUARE ccc
outtree=sample_paisesnormA
print=10 plots=den(VERTICAL);
var POBL NATALIDA ESPERANZ MORTALID;
run;
```

Analisis de clusteres no jerárquico

Abajo se puede ver los codigos SAS para analisis de clusters no jerárquico, donde se ha probado con grupos (clusters) de 4, 5 y 7, esto por que han sido las cantidades de grupos (clusters) que han salido mejor en la prueba de analisis de clusteres jerarquicos pero no se puede llegar a una conclusion exacta de la mejor cuantidad para se quedar.

Probando ambos jerárquico y no jerárquico la conclusión es que el número de grupos (clusters) que se debe quedar es 4.

Abajo se explicará como se ha llegado a esta conclusion, bien como los codigos y valores analisados.

Prueba con grupos (clusteres) no jerárquico para 4 grupos.

```
PROC FASTCLUS DATA=sample_paisesnorm MAXCLUSTERS=4 MEAN=MEDIAS2
DRIFT OUT=cluster4 maxiter=30;
var POBL NATALIDA ESPERANZ MORTALID;
run;
```

Resultados para la prueba con grupos (clusteres) no jerárquico para 4 grupos.

Se ha puesto en amarillo los valores de Pseudo F Statistic y Cubic Clustering Criterion por que con 4 grupos (clusters) se ha obtenido los mejores valores comparados con 5 y 7 grupos.

Prueba con grupos (clusteres) no jerárquico para 5 grupos.

```
PROC FASTCLUS DATA=sample_paisesnorm MAXCLUSTERS=5 MEAN=MEDIAS2
DRIFT OUT=cluster5 maxiter=30;
var POBL NATALIDA ESPERANZ MORTALID;
run;
```

Prueba con grupos (clusteres) no jerárquico para 5 grupos.

Prueba con grupos (clusteres) no jerárquico para 7 grupos.

```
PROC FASTCLUS DATA=sample_paisesnorm MAXCLUSTERS=7 MEAN=MEDIAS2
DRIFT OUT=cluster7 maxiter=30;
var POBL NATALIDA ESPERANZ MORTALID;
run;
```

Prueba con grupos (clusteres) no jerárquico para 7 grupos.

Hasta el momento la conclusion es quedar con 4 grupos (clusters) porque para comparar los grupos (clusteres) hay que comparar los resultados de los valores Pseudo F Statistic y también el Cubic Clustering Criterion. Se sabe que cuanto más grande son el Pseudo F Statistic y el CCC (Cubic Clustering Criterion) mejor es el cluster.

Entonces como se puede ver en los resultados arriba los mas altos son del cluster 4.

Ahora probaremos el teste de beale (contraste F de Beale):

El codigo SAS abajo se puede probar el test de beale con grupos (clusters) de 4, 5 y 7.

```
proc means data=cluster4 ; var distance; output out=sumacuad4 uss=w4 ;
run;
proc means data=cluster5 ; var distance; output out=sumacuad5 uss=w5 ;
```



```
run:
proc means data=cluster7 ; var distance; output out=sumacuad7 uss=w7 ;
run:
data beale;
    merge sumacuad4 sumacuad5 sumacuad7;
k1=( freq -4)*(4**(-2/8));
k2 = (freq -5) * (5**(-2/8));
k3 = (freq -7) * (7**(-2/8));
fbeale1=(w4-w5)*k2/(w5*(k1-k2));
pvalor=1-probf(fbeale1, (k1-k2), k2);
fbeale2=(w4-w7)*k3/(w7*(k1-k3));
pvalor2=1-probf(fbeale2,(k1-k3),k3);
fbeale3=(w5-w7)*k3/(w7*(k2-k3));
pvalor3=1-probf(fbeale3,(k2-k3),k3);
run;
proc print data=beale;run;
```

Resultados del teste de Beale (contraste F de Beale):

C	b s	_TYPE	_FREQ	w4	w5	w7	k1	k2	k3	fbeale 1	pvalor	fbeale 2	pvalor2	fbeale 3	pvalor3
	1	0	100	125.90 9	114.09 0	81.618 2	67.882 3	63.530 3	57.175 3	1.5123 1	0.2054 4	2.8978 1	.00454519 7	3.5793 8	.00380725 4

Ahora haremos la interpretacion del resultado del teste de beale (contraste F de Beale).

Comparativos de p-valores.

```
fbeale1=(w4-w5)*k2/(w5*(k1-k2));

pvalor=1-probf(fbeale1,(k1-k2),k2);

fbeale2=(w4-w7)*k3/(w7*(k1-k3));

pvalor2=1-probf(fbeale2,(k1-k3),k3);

fbeale3=(w5-w7)*k3/(w7*(k2-k3));

pvalor3=1-probf(fbeale3,(k2-k3),k3);
```

Valores de p-valores:

Pvalor1 = 0.20544 Pvalor2 = .004545197 Pvalor3 = .003807254

El p-valor 1 (comparación de 4 clusters con 5) es 0.20544 es alto, entonces la comparación de 4 clusters con 5 clusters se dice que es muy difícil que 4 clusters sea peor que 5 clusters.

El p-valor2 es bajo siendo .004545197 donde se hace la comparación de 4 frente a 7, se entiende que si 4 clusters son mejores que 7.

El p-valor3 es bajo donde se compara 5 frente a 7, donde si 5 clusters son mejores que 7.

Conclusión Final

La conclusión final de la cantidad de grupos (clusters) baseado en el resultado de todos las pruebas es quedar con 4 grupos (clusters).

Grupos (Clusters)

El código SAS abajo se puede utilizar para estudiar los grupos.

```
proc sort data=cluster4 out=cluster4s;
by cluster;

proc Freq data=cluster4s;
  by cluster; tables PAIS;
run;

proc sort data=cluster5 out=cluster5s;
  by cluster;

proc Freq data=cluster5s;
  by cluster; tables PAIS;
run;

proc sort data=cluster7 out=cluster7s;
  by cluster;

proc Freq data=cluster7;
  by cluster;
tables PAIS;
run;
```

Pruebas con R

He hecho algunas pruebas con R.

En el ejemplo abajo se utiliza el paquete NbClust para determinar el número correcto de grupos (clusters).

Enlace para el tutorial:

http://www.inside-r.org/packages/cran/NbClust/docs/NbClust

Código R:

setwd("/Users/caiomsouza/git/Bitbucket/ucm/COMPLEMENTOS_DE_FORMACION_EN_T ECNICAS_DE_MINERIA_DE_DATOS/tareas-entregar/trabajo-31enero16")

```
paises <- read.csv(file="DatosPaises.csv",head=TRUE,sep=",")
#head(paises, 10)</pre>
```

#Dejar solo POBL NATALIDA ESPERANZ MORTALID


```
paises.valores <- paises
# Remove la columna Paises
paises.valores$Pais <- NULL
# Remove la columna BalanzaComercial
paises.valores$BalanzaComercial <- NULL
# Remove la columna PIB
paises.valores$PIB <- NULL
# Remove la columna ProdCereales
paises.valores$ProdCereales <- NULL
#head(paises.valores,10)
# Normaliza las variables
paises.valores.normalizar <- scale(paises.valores)</pre>
#head(paises.valores.normalizar, 10)
## Prueba el mejor cluster
data1 <- paises.valores
data2 <- paises.valores.normalizar
#data<-iris[,-c(5)]
#data <- data1
data <- data2
res<-NbClust(data, diss=NULL, distance = "euclidean", min.nc=2, max.nc=6,
       method = "ward.D2", index = "kl")
res$All.index
res$Best.nc
res$Best.partition
```


He probado los datos normalizados y no normalizados por curiosidad, pero si lo sé que por las unidades de medidas no tener las mismas es obligatorio normalizar los datos.

Con el método ward se recomienda 6 grupos/clusters, pero con kmeans y complete se recomienda 2 con los datos normalizados.

Cuando los datos no son normalizados se recomienda 5 grupos con ward y después con los otros métodos 2.

La conclusión es que el mejor número de grupos son 2.

Pero los valores son distintos cuando los valores están normalizados o no.

Con los datos normalizados tenemos las siguientes recomendaciones para el numero de clusters(grupos):

PseudoT2: 2

Test de Beale: 2

CCC: 2

Silhouette: 2

Conclusiones con R:

Se puede concluir que con R el número de grupos es de 2 a 6 grupos, pero se recomienda 2 grupos, lo que hemos visto con SAS que no es la mejor recomendación.

No se puede decir que R se equivoca porque no conozco este paquete **NbClust** o suficiente para quizás hacer un trabajo con la calidad exigida.

Quizás con más tiempo y conocimiento de R y del paquete **NbClust** se pudiera llegar a números y resultados más próximos de los conseguidos con SAS.

Pero si se puede decir que con R se recomienda de 2 a 6. Dejo esta análisis con R solo como un complemento al trabajo, pero tengo conocimiento que no ha sido pedido hacer nada con R, solo con SAS y con lo que hemos visto en clase.

Explicando los grupos (Clusters)

El código SAS abajo se imprime los grupos para que se pueda interpretar sus resultados y características de cada grupo.

Lo analizáremos solo los resultados con 4 grupos (clusters).

```
proc sort data=cluster4 out=cluster4s;
by cluster;

proc Freq data=cluster4s;
  by cluster; tables PAIS;
run;
proc print data=cluster4;run;
```

Abajo los países que pertenecen a cada grupo (cluster).

Grupo 1 (Cluster 1)

_		
()	uster=	- 1
	บอเฮเ=	- 1

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Afganistán	1	3.45	1	3.45
Benin	1	3.45	2	6.90
Burkina Faso	1	3.45	3	10.34
Camerún	1	3.45	4	13.79
Chad	1	3.45	5	17.24

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Congo	1	3.45	6	20.69
Etiopía	1	3.45	7	24.14
Gabón	1	3.45	8	27.59
Ghana	1	3.45	9	31.03
Guinea	1	3.45	10	34.48
Haití	1	3.45	11	37.93
Lesoto	1	3.45	12	41.38
Madagascar	1	3.45	13	44.83
Malawi	1	3.45	14	48.28
Malí	1	3.45	15	51.72
Mozambique	1	3.45	16	55.17
Namibia	1	3.45	17	58.62
Níger	1	3.45	18	62.07
Papúa Nueva Guinea	1	3.45	19	65.52
Republica Checa	1	3.45	20	68.97
República Democrática Popular de Corea	1	3.45	21	72.41
Rumania	1	3.45	22	75.86
Senegal	1	3.45	23	79.31
Serbia	1	3.45	24	82.76
Тодо	1	3.45	25	86.21
Uganda	1	3.45	26	89.66
Yemen	1	3.45	27	93.10
Zambia	1	3.45	28	96.55
Zimbabue	1	3.45	29	100.00

Grupo 2 (Cluster 2)

The FREQ Procedure Cluster=2

	PAIS												
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent									
Bangladesh	1	20.00	1	20.00									
Brasil	1	20.00	2	40.00									
Federación Rusa	1	20.00	3	60.00									

PAIS											
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent							
Filipinas	1	20.00	4	80.00							
Pakistán	1	20.00	5	100.00							

Grupo 3 (Cluster 3)

The FREQ Procedure Cluster=3

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Albania	1	2.56	1	2.56
Australia	1	2.56	2	5.13
Bolivia (Estado Plurinacional de)	1	2.56	3	7.69
Canadá	1	2.56	4	10.26
Chile	1	2.56	5	12.82
Colombia	1	2.56	6	15.38
Cuba	1	2.56	7	17.95
Ecuador	1	2.56	8	20.51
Fiji	1	2.56	9	23.08
Irak	1	2.56	10	25.64
Irlanda	1	2.56	11	28.21
Irán (República islámica de)	1	2.56	12	30.77
Israel	1	2.56	13	33.33
Jordania	1	2.56	14	35.90
Kazajstán	1	2.56	15	38.46
Libia	1	2.56	16	41.03
Líbano	1	2.56	17	43.59
Marruecos	1	2.56	18	46.15
Mongolia	1	2.56	19	48.72
Myanmar	1	2.56	20	51.28
Nepal	1	2.56	21	53.85
Nicaragua	1	2.56	22	56.41
Nueva Caledonia	1	2.56	23	58.97
Nueva Zelanda	1	2.56	24	61.54

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Omán	1	2.56	25	64.10
Panamá	1	2.56	26	66.67
Paraguay	1	2.56	27	69.23
Perú	1	2.56	28	71.79
República Dominicana	1	2.56	29	74.36
República Unida de Tanzanía	1	2.56	30	76.92
República de Moldova	1	2.56	31	79.49
Ruanda	1	2.56	32	82.05
Sri Lanka	1	2.56	33	84.62
Tailandia	1	2.56	34	87.18
Turquía	1	2.56	35	89.74
Túnez	1	2.56	36	92.31
Uzbekistán	1	2.56	37	94.87
Venezuela (República Bolivariana de)	1	2.56	38	97.44
Viet Nam	1	2.56	39	100.00

Grupo 4 (Cluster 4)

The FREQ Procedure Cluster=4

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Alemania	1	3.70	1	3.70
Armenia	1	3.70	2	7.41
Austria	1	3.70	3	11.11
Bielorrusia	1	3.70	4	14.81
Bosnia y Herzegovina	1	3.70	5	18.52
Bulgaria	1	3.70	6	22.22
Croacia	1	3.70	7	25.93
Dinamarca	1	3.70	8	29.63
Eslovaquia	1	3.70	9	33.33
Eslovenia	1	3.70	10	37.04
España	1	3.70	11	40.74
Finlandia	1	3.70	12	44.44

	PAIS			
PAIS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Francia	1	3.70	13	48.15
Georgia	1	3.70	14	51.85
Grecia	1	3.70	15	55.56
Hungría	1	3.70	16	59.26
Lituania	1	3.70	17	62.96
Noruega	1	3.70	18	66.67
Países Bajos	1	3.70	19	70.37
Polonia	1	3.70	20	74.07
Portugal	1	3.70	21	77.78
Reino Unido	1	3.70	22	81.48
República Democrática Popular Lao	1	3.70	23	85.19
República Democrática del Congo	1	3.70	24	88.89
República de Corea	1	3.70	25	92.59
Suecia	1	3.70	26	96.30
Ucrania	1	3.70	27	100.00

Conclusiones de los 4 grupos.

Es muy difícil agrupar países, interpretar los resultados es una tarea aún más difícil, llevando en consideración que la tentativa ha sido agrupar 100 países de una amuestra aleatoria de 133 países, por las variables: Población, Natalidad, Esperanza de Vida y Mortalidad.

Grupo 1:

Son 29% de la amuestra.

Países con natalidad alta, esperanza de vida muy baja y alta mortalidad.

Grupo 2:

Son 5% de la amuestra.

Es el grupo más pequeño solo con 5 países (Brasil, Federación Rusa, Pakistán, Filipinas y Bangladesh) siendo países con **gran población**.

Grupo 3:

Son 39% de la amuestra.

Creo que son los países **que no están ni el grupo 1, 2 y 4**. Quizás países que son parecidos, pero se puede ver países (marcados con color) con gran distancia del grupo.

Grupo 4:

Son 27% de la amuestra.

Es un grupo grande con países con esperanza de vida alta, natalidad baja.

Resultado final de los 100 paises agrupados en 4 grupos (clusters), las variables estan normalizadas, los datos estan ordenados por la columna cluster.

```
proc sort data=cluster4 out=cluster4s;
  by cluster;

proc print data=cluster4s;
run;
```

Resultado de SAS:

The SAS System

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	CLUSTER	DISTANCE
1	Afganistán	0.0278959	1.22957146	-1.2669588576	0.0475754	-4766	566	157.13532	1	0.50611
2	Benin	-0.481223	1.31949186	-1.3361915821	0.4052853	-1057	690	393.304324	1	0.21309
3	Burkina Faso	-0.312298	1.69715751	-1.4631182436	0.5483693	-837	579	377.841176	1	0.41393
4	Camerún	-0.175514	1.40042021	-1.8323594407	1.2280182	-952	1145	287.733333	1	0.95192
5	Chad	-0.415342	2.15575152	-2.2708333623	2.158064	903	736	43.048546	1	2.13877
6	Congo	-0.631387	1.38243613	-1.082338259	0.1906594	5213	2987	2.35377358	1	0.49654
7	Etiopía	1.6721449	1.01376252	-0.8861788731	-0.238593	-6216	302	424.364723	1	2.12680
8	Gabón	-0.701021	0.79795357	-0.8169461486	0.1906594	5706	8278	7.90697674	1	0.87950
9	Ghana	-0.072664	1.04073864	-1.1284934087	0.2622014	-3077	1326	185.14121	1	0.43431
10	Guinea	-0.43973	1.40941225	-1.474657031	0.6914533	66	481	190.483333	1	0.35217
11	Haití	-0.467705	0.32137549	-0.9784891724	0.1548884	-2568	621	246.949153	1	1.11663
12	Lesoto	-0.688082	0.62710483	-2.4554539608	2.3011479	-1404	1083	75.6450766	1	2.33178
13	Madagascar	-0.161996	1.15763515	-0.7246358493	-0.560531	-1464	415	124.711605	1	1.17805
14	Malawi	-0.336107	1.58925304	-1.1284934087	0.0475754	-1044	464	629.517698	1	0.50912
15	Malí	-0.325127	2.02087093	-1.5669673303	0.9060792	-1434	672	154.096516	1	0.87357
16	Mozambique	-0.072582	1.6252212	-1.8669758029	1.1922472	-1600	424	50.1621622	1	1.00064
17	Namibia	-0.683061	0.74400134	-0.7477134242	-0.417447	-1276	5113	2.97611379	1	1.25097
18	Níger	-0.29409	2.50644105	-1.1631097709	0.4052853	-1537	360	116.190233	1	1.18714
19	Papúa Nueva Guinea	-0.554636	0.6450889	-0.9784891724	-0.274364	1792	1415	11.8907563	1	1.08138
20	Republica Checa	-0.453717	1.11267495	-2.4554539608	2.4084609	6420	19616	1629.30154	1	2.29393
21	República Democrática Popular de Corea	-0.067616	1.85901422	-1.4631182436	0.7987663	-1075	570	1727.26236	1	0.68851

al.	DAYS	noni		FCDED ANIZ	MODIALID	BALANIZAC	DVD.	ppoperne	CLUCTED	DICTANCE
Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	CLUSTER	DISTANCE
22	Rumania	-0.183543	0.9867864	-0.8861788731	-0.345905	-12528	7685	1216.98726	1	0.96139
23	Senegal	-0.386098	1.16662719	-0.5284764634	-0.488989	-2383	998	196.097837	1	1.23146
24	Serbia	-0.493638	1.52630876	-0.574631613	-0.667844	-6920	5412	1838.67445	1	1.36336
25	Togo	-0.567244	1.29251574	-1.3592691569	0.2979724	-356	503	68.0041558	1	0.33247
26	Uganda	0.17097	1.95792665	-1.5554285428	0.6199113	-1594	636	226.798485	1	0.82660
27	Yemen	-0.092694	1.01376252	-0.8400237234	-0.488989	-1249	1358	43.0289707	1	1.10351
28	Zambia	-0.359585	1.67917343	-1.3823467317	0.4410563	1888	1225	129.955571	1	0.36717
29	Zimbabue	-0.35804	1.27453166	-1.8438982281	0.9418502	-601	721	88.2230864	1	0.73819
30	Bangladesh	3.4393285	-0.1372185	0.0253853323	-1.061325	-11877	758	5684.91934	2	0.88451
31	Brasil	4.7359345	-0.6137966	0.38308774201	-0.846699	10378	10978	272.824753	2	1.61724
32	Federación Rusa	3.2059571	-0.8296056	-0.1130801166	1.943438	168013	10618	278.162132	2	2.25278
33	Filipinas	1.8232473	0.1864949	-0.32077829	-0.632073	-6992	2136	1786.91037	2	1.71051
34	Pakistán	3.9477025	0.70803318	-0.5630928256	-0.345905	-16373	1008	1287.39645	2	1.09780
35	Albania	-0.6635	-0.7936374	0.77540651394	-0.453218	-2861	3786	577.685262	3	0.90394
36	Australia	-0.132118	-0.7576692	1.30619073479	-0.632073	10724	57593	82.6334118	3	1.00514
37	Bolivia (Estado Plurinacional de)	-0.469939	0.22246305	-0.3553946522	-0.310135	998	1935	49.2931894	3	1.14646
38	Canadá	0.1979516	-0.9914623	1.27157437256	-0.417447	-4638	47297	694.911701	3	1.21972
39	Chile	-0.274143	-0.7576692	1.20234164811	-1.204409	11068	12685	225.751787	3	0.96594
40	Colombia	0.523248	-0.5148842	0.34847137978	-0.954012	-973	6180	95.7396875	3	0.71587
41	Cuba	-0.431591	-1.0274304	0.97156589991	-0.274364	-5975	5702	121.623946	3	1.12461
42	Ecuador	-0.331555	-0.0652822	0.54463076574	-1.168638	-3176	4637	363.654456	3	0.43166
43	Fiji	-0.719836	-0.1102424	-0.124618904	-0.596302	-975	3649	20.2988235	3	0.87932
44	Irak	0.1080406	1.18461127	-0.1823128411	-1.132867	8567	3783	563.086587	3	1.63235
45	Irán (República islámica de)	1.3049967	-0.3440354	0.49847561611	-1.347493	35912	5663	453.322342	3	1.52314
46	Irlanda	-0.616186	-0.5868205	1.13310892365	-0.739386	58265	48893	451.758218	3	0.89662
47	Israel	-0.538855	-0.0383061	1.30619073479	-1.132867	-2817	31222	456.133843	3	1.00890
48	Jordania	-0.56374	0.53718443	0.34847137978	-1.633661	-8062	4094	83.7485605	3	1.20547
49	Kazajstán	-0.293566	0.05161431	-0.1938516285	0.1548884	33220	9299	58.2563289	3	1.25579
50	Líbano	-0.623911	-0.6227886	0.93694953768	-1.383264	-13439	8850	242.71487	3	0.93278
51	Libia	-0.57072	-0.020322	0.08307926935	-1.132867	35510	13400	14.1908173	3	0.68401
52	Marruecos	0.1422503	-0.0562902	0.32539380496	-0.989783	-17620	2869	257.684768	3	0.39731
53	Mongolia	-0.668715	0.24044713	-0.2169292033	-0.810928	-379	2286	3.13064835	3	1.00113
54	Myanmar	0.6836753	-0.3350434	-0.5977091878	-0.095509	3901	799	2783.14937	3	1.53739
55	Nepal	-0.002093	-0.0832663	-0.2053904159	-0.703615	-4550	607	1883.68115	3	0.71671
56	Nicaragua	-0.585259	-0.0832663	0.42924289165	-1.311722	-2384	1535	191.232499	3	0.66748
57	Nueva Caledonia	-0.736776	-0.5598444	0.62540227761	-0.560531	-1820	36789	18.5054348	3	0.74975
58	Nueva Zelanda	-0.623028	-0.7396852	1.24849679774	-0.596302	466	33260	88.7674645	3	1.07428
59	Omán	-0.662342	-0.1012504	0.63694106502	-2.062913	16827	20923	39.7148676	3	1.33908
60	Panamá	-0.643664	-0.1911708	0.75232893912	-1.24018	-8313	7355	161.716998	3	0.70715
61	Paraguay	-0.572265	-0.020322	0.22154471827	-1.025554	-3524	3103	231.421674	3	0.58119
62	Perú	0.0668233	-0.1372185	0.39462652942	-1.025554	6747	5026	200.118104	3	0.30138

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	CLUSTER	DISTANCE
63	República de Moldova	-0.630863	-1.1443269	1.22541922293	-1.061325	-2314	1627	969.746341	3	1.28086
64	República Dominicana	-0.470491	0.47424016	-0.6092479752	-0.52476	-10349	5089	242.448138	3	1.38364
65	República Unida de Tanzanía	0.5158267	-0.0472981	0.27923865532	-0.88247	-4186	686	515.276753	3	0.71112
66	Ruanda	-0.459566	-0.5598444	1.00618226214	-1.061325	-1146	526	401.4965	3	0.73003
67	Sri Lanka	-0.186246	-0.4969001	0.44078167906	-0.667844	-5205	2388	1661.61338	3	0.29871
68	Tailandia	1.0963722	-0.9644861	0.38308774201	-0.274364	10252	5102	319.596523	3	1.52974
69	Túnez	-0.450048	-0.3170593	0.44078167906	-0.667844	-5791	4143	0.59529715	3	0.37095
70	Turquía	1.2513922	-0.4159717	0.46385925388	-0.989783	-71661	10135	28.8853594	3	1.39989
71	Uzbekistán	0.021716	0.12355062	-0.2861619278	-0.52476	3201	1423	277.871862	3	0.91760
72	Venezuela (República Bolivariana de)	0.0563948	-0.1731867	0.3715489546	-1.061325	31930	13559	179.166667	3	0.30808
73	Viet Nam	1.6941054	-0.4069797	0.55616955315	-0.954012	-12121	1302	4113.40159	3	1.83916
74	Alemania	1.4755215	-1.2252553	1.14464771106	0.8345373	205408	41100	2659.28619	4	1.67949
75	Armenia	-0.661817	-0.7756533	0.44078167906	0.1906594	-2771	3125	191.307784	4	0.89579
76	Austria	-0.512039	-1.1173508	1.1908028607	0.3337434	-5712	46377	1593.5443	4	0.73291
77	Bielorrusia	-0.481692	-0.9195259	0.03692411971	2.050751	-9601	5818	764.607435	4	1.49102
78	Bosnia y Herzegovina	-0.637733	-1.153319	0.63694106502	0.6556823	-4402	4380	511.767948	4	0.54853
79	Bulgaria	-0.539214	-1.1263429	0.3715489546	2.3726899	-4902	6587	1371.64747	4	1.67262
80	Croacia	-0.624463	-1.0903747	0.7292513643	1.4068731	-8244	13754	2265.72666	4	0.77617
81	Dinamarca	-0.590418	-1.0364225	1.06387619919	0.4410563	12589	57614	3342.91159	4	0.64090
82	Eslovaquia	-0.594391	-1.0274304	0.60232470279	0.4768273	-2098	16381	1366.35703	4	0.57839
83	Eslovenia	-0.686923	-1.0274304	1.0754149866	0.3337434	-1588	23352	1190.30417	4	0.77509
84	España	0.542091	-1.1353349	1.32926830961	0.1191174	-69274	30999	717.158754	4	1.12523
85	Finlandia	-0.595467	-1.0094463	1.12157013624	0.4052853	719	46165	1309.54048	4	0.69163
86	Francia	0.9934394	-0.8565817	1.28311315997	0.1548884	-91697	40617	2367.79351	4	1.41530
87	Georgia	-0.626311	-0.7396852	0.44078167906	1.0849342	-3580	2652	89.3115619	4	0.70186
88	Grecia	-0.435178	-1.171303	1.13310892365	0.7272243	-39337	26967	493.14951	4	0.49365
89	Hungría	-0.467263	-1.1353349	0.4869368287	1.6930411	7147	12939	2305.02979	4	0.99765
90	Lituania	-0.657403	-1.0544065	0.26769986791	2.4084609	-2658	12089	980.225194	4	1.76080
91	Noruega	-0.608627	-0.9195259	1.21388043552	-0.023967	53344	87611	1154.23387	4	1.04659
92	Países Bajos	-0.284737	-1.0184384	1.21388043552	-0.023967	52718	50339	978.908795	4	0.94545
93	Polonia	0.3206654	-1.0364225	0.7292513643	0.4768273	-18320	12479	1866.63914	4	0.57231
94	Portugal	-0.451538	-1.2072712	1.13310892365	0.6556823	-26838	22503	301.231573	4	0.53111
95	Reino Unido	0.9866802	-0.8385976	1.12157013624	0.2622014	-152487	38796	0.00232802	4	1.31444
96	República de Corea	0.6107588	-1.0544065	0.87925560063	0.5841403	41172	22588	3548.76957	4	0.79739
97	República Democrática del Congo	1.0755981	-0.9914623	0.06000169453	0.9776212	800	347	58.7388697	4	1.42737
98	República Democrática Popular Lao	-0.570858	-0.6767409	-0.1015413292	0.2622014	-314	1054	1657.15674	4	1.16019
99	Suecia	-0.484699	-0.8925498	1.28311315997	0.3337434	9616	52053	1421.08888	4	0.77797
100	Ucrania	0.5157991	-1.0004543	0.00230775748	2.4442319	-9337	3066	71.7391336	4	1.93243

El código SAS abajo ayuda a mirar los grupos de otra forma.

proc Freq data=cluster4 ;

tables cluster;run;
proc sort;by cluster;
proc print;
by cluster;
run;

The FREQ Procedure

		Cluste	r	
CLUSTER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	29	<mark>29.00</mark>	29	29.00
2	5	<mark>5.00</mark>	34	34.00
3	39	39.00	73	73.00
4	27	<mark>27.00</mark>	100	100.00

El grupo 3 es el mas grande grupo y el grupo 2 el mas pequeño.

The SAS System

Grupo 1: Natalidad Alta, esperanza de vida muy baja y alta mortalidad.

Cluster=1

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
1	Afganistán	0.0278959	1.22957146	-1.2669588576	0.0475754	-4766	566	157.13532	0.50611
2	Benin	-0.481223	1.31949186	-1.3361915821	0.4052853	-1057	690	393.304324	0.21309
3	Burkina Faso	-0.312298	1.69715751	-1.4631182436	0.5483693	-837	579	377.841176	0.41393
4	Camerún	-0.175514	1.40042021	-1.8323594407	1.2280182	-952	1145	287.733333	0.95192
5	Chad	-0.415342	2.15575152	-2.2708333623	2.158064	<mark>903</mark>	<mark>736</mark>	43.048546	2.13877
6	Congo	-0.631387	1.38243613	-1.082338259	0.1906594	5213	2987	2.35377358	0.49654
7	Etiopía	1.6721449	1.01376252	-0.8861788731	-0.238593	<mark>-6216</mark>	302	424.364723	2.12680
8	Gabón	-0.701021	0.79795357	-0.8169461486	0.1906594	5706	8278	7.90697674	0.87950
9	Ghana	-0.072664	1.04073864	-1.1284934087	0.2622014	-3077	1326	185.14121	0.43431
10	Guinea	-0.43973	1.40941225	-1.474657031	0.6914533	66	481	190.483333	0.35217
11	Haití	-0.467705	0.32137549	-0.9784891724	0.1548884	-2568	621	246.949153	1.11663
12	Lesoto	-0.688082	0.62710483	-2.4554539608	2.3011479	-1404	1083	75.6450766	2.33178
13	Madagascar	-0.161996	1.15763515	-0.7246358493	-0.560531	-1464	415	124.711605	1.17805
14	Malawi	-0.336107	1.58925304	-1.1284934087	0.0475754	-1044	464	629.517698	0.50912

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
15	Malí	-0.325127	2.02087093	-1.5669673303	0.9060792	-1434	672	154.096516	0.87357
16	Mozambique	-0.072582	1.6252212	-1.8669758029	1.1922472	-1600	424	50.1621622	1.00064
17	Namibia	-0.683061	0.74400134	-0.7477134242	-0.417447	-1276	5113	2.97611379	1.25097
18	Níger	-0.29409	2.50644105	-1.1631097709	0.4052853	-1537	360	116.190233	1.18714
19	Papúa Nueva Guinea	-0.554636	0.6450889	-0.9784891724	-0.274364	1792	1415	11.8907563	1.08138
20	Republica Checa	-0.453717	1.11267495	-2.4554539608	2.4084609	6420	19616	1629.30154	2.29393
21	República Democrática Popular de Corea	-0.067616	1.85901422	-1.4631182436	0.7987663	-1075	570	1727.26236	0.68851
22	Rumania	-0.183543	0.9867864	-0.8861788731	-0.345905	-12528	7685	1216.98726	0.96139
23	Senegal	-0.386098	1.16662719	-0.5284764634	-0.488989	-2383	998	196.097837	1.23146
24	Serbia	-0.493638	1.52630876	-0.574631613	-0.667844	-6920	5412	1838.67445	1.36336
25	Togo	-0.567244	1.29251574	-1.3592691569	0.2979724	-356	503	68.0041558	0.33247
26	Uganda	0.17097	1.95792665	-1.5554285428	0.6199113	-1594	636	226.798485	0.82660
27	Yemen	-0.092694	1.01376252	-0.8400237234	-0.488989	-1249	1358	43.0289707	1.10351
28	Zambia	-0.359585	1.67917343	-1.3823467317	0.4410563	1888	1225	129.955571	0.36717
29	Zimbabue	-0.35804	1.27453166	-1.8438982281	0.9418502	-601	721	88.2230864	0.73819

Grupo 2: Población muy grande.

	~ ^
uste	=2

				Ciacio					
Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
30	Bangladesh	3.4393285	-0.1372185	0.0253853323	-1.061325	-11877	758	5684.91934	0.88451
31	Brasil	4.7359345	-0.6137966	0.38308774201	-0.846699	10378	10978	272.824753	1.61724
32	Federación Rusa	3.2059571	-0.8296056	-0.1130801166	1.943438	168013	10618	278.162132	2.25278
33	Filipinas	1.8232473	0.1864949	-0.32077829	-0.632073	-6992	2136	1786.91037	1.71051
34	Pakistán	3.9477025	0.70803318	-0.5630928256	-0.345905	-16373	1008	1287.39645	1.09780

Grupo 3: Creo que son los países que no están ni el grupo 1, 2 y 4. Quizás países que son parecidos, pero se puede ver países (marcados con color) con gran distancia del grupo.

Cluster=3

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
35	Albania	-0.6635	-0.7936374	0.77540651394	-0.453218	-2861	3786	577.685262	0.90394
36	Australia	-0.132118	-0.7576692	1.30619073479	-0.632073	10724	57593	82.6334118	1.00514
37	Bolivia (Estado Plurinacional de)	-0.469939	0.22246305	-0.3553946522	-0.310135	998	1935	49.2931894	1.14646
38	Canadá	0.1979516	-0.9914623	1.27157437256	-0.417447	-4638	47297	694.911701	1.21972
39	Chile	-0.274143	-0.7576692	1.20234164811	-1.204409	11068	12685	225.751787	0.96594
40	Colombia	0.523248	-0.5148842	0.34847137978	-0.954012	-973	6180	95.7396875	0.71587

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
41	Cuba	-0.431591	-1.0274304	0.97156589991	-0.274364	-5975	5702	121.623946	1.12461
42	Ecuador	-0.331555	-0.0652822	0.54463076574	-1.168638	-3176	4637	363.654456	0.43166
43	Fiji	-0.719836	-0.1102424	-0.124618904	-0.596302	-975	3649	20.2988235	0.87932
44	Irak	0.1080406	1.18461127	-0.1823128411	-1.132867	8567	3783	563.086587	1.63235
45	Irán (República islámica de)	1.3049967	-0.3440354	0.49847561611	-1.347493	35912	5663	453.322342	1.52314
46	Irlanda	-0.616186	-0.5868205	1.13310892365	-0.739386	58265	48893	451.758218	0.89662
47	Israel	-0.538855	-0.0383061	1.30619073479	-1.132867	-2817	31222	456.133843	1.00890
48	Jordania	-0.56374	0.53718443	0.34847137978	-1.633661	-8062	4094	83.7485605	1.20547
49	Kazajstán	-0.293566	0.05161431	-0.1938516285	0.1548884	33220	9299	58.2563289	1.25579
50	Líbano	-0.623911	-0.6227886	0.93694953768	-1.383264	-13439	8850	242.71487	0.93278
51	Libia	-0.57072	-0.020322	0.08307926935	-1.132867	35510	13400	14.1908173	0.68401
52	Marruecos	0.1422503	-0.0562902	0.32539380496	-0.989783	-17620	2869	257.684768	0.39731
53	Mongolia	-0.668715	0.24044713	-0.2169292033	-0.810928	-379	2286	3.13064835	1.00113
54	Myanmar	0.6836753	-0.3350434	-0.5977091878	-0.095509	3901	799	2783.14937	1.53739
55	Nepal	-0.002093	-0.0832663	-0.2053904159	-0.703615	-4550	607	1883.68115	0.71671
56	Nicaragua	-0.585259	-0.0832663	0.42924289165	-1.311722	-2384	1535	191.232499	0.66748
57	Nueva Caledonia	-0.736776	-0.5598444	0.62540227761	-0.560531	-1820	36789	18.5054348	0.74975
58	Nueva Zelanda	-0.623028	-0.7396852	1.24849679774	-0.596302	466	33260	88.7674645	1.07428
59	Omán	-0.662342	-0.1012504	0.63694106502	-2.062913	16827	20923	39.7148676	1.33908
60	Panamá	-0.643664	-0.1911708	0.75232893912	-1.24018	-8313	7355	161.716998	0.70715
61	Paraguay	-0.572265	-0.020322	0.22154471827	-1.025554	-3524	3103	231.421674	0.58119
62	Perú	0.0668233	-0.1372185	0.39462652942	-1.025554	6747	5026	200.118104	0.30138
63	República de Moldova	-0.630863	-1.1443269	1.22541922293	-1.061325	-2314	1627	969.746341	1.28086
64	República Dominicana	-0.470491	0.47424016	-0.6092479752	-0.52476	-10349	5089	242.448138	1.38364
65	República Unida de Tanzanía	0.5158267	-0.0472981	0.27923865532	-0.88247	-4186	686	515.276753	0.71112
66	Ruanda	-0.459566	-0.5598444	1.00618226214	-1.061325	-1146	526	401.4965	0.73003
67	Sri Lanka	-0.186246	-0.4969001	0.44078167906	-0.667844	-5205	2388	1661.61338	0.29871
68	<u>Tailandia</u>	1.0963722	-0.9644861	0.38308774201	-0.274364	10252	5102	319.596523	1.52974
69	Túnez	-0.450048	-0.3170593	0.44078167906	-0.667844	-5791	4143	0.59529715	0.37095
70	Turquía	1.2513922	-0.4159717	0.46385925388	-0.989783	-71661	10135	28.8853594	1.39989
71	Uzbekistán	0.021716	0.12355062	-0.2861619278	-0.52476	3201	1423	277.871862	0.91760
72	Venezuela (República Bolivariana de)	0.0563948	-0.1731867	0.3715489546	-1.061325	31930	13559	179.166667	0.30808
73	Viet Nam	1.6941054	-0.4069797	0.55616955315	-0.954012	-12121	1302	4113.40159	1.83916

Grupo 4: Natalidad Baja, esperanza de vida Alta.

Cluster=4

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
74	Alemania	1.4755215	-1.2252553	1.14464771106	0.8345373	205408	41100	2659.28619	1.67949
75	Armenia	-0.661817	-0.7756533	0.44078167906	0.1906594	-2771	3125	191.307784	0.89579
76	Austria	-0.512039	-1.1173508	1.1908028607	0.3337434	-5712	46377	1593.5443	0.73291
77	Bielorrusia	-0.481692	-0.9195259	0.03692411971	2.050751	- <mark>9601</mark>	5818	764.607435	1.49102

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	DISTANCE
78	Bosnia y Herzegovina	-0.637733	-1.153319	0.63694106502	0.6556823	-4402	4380	511.767948	0.54853
79	Bulgaria	-0.539214	-1.1263429	0.3715489546	2.3726899	-4902	6587	1371.64747	1.67262
80	Croacia	-0.624463	-1.0903747	0.7292513643	1.4068731	-8244	13754	2265.72666	0.77617
81	Dinamarca	-0.590418	-1.0364225	1.06387619919	0.4410563	12589	57614	3342.91159	0.64090
82	Eslovaquia	-0.594391	-1.0274304	0.60232470279	0.4768273	-2098	16381	1366.35703	0.57839
83	Eslovenia	-0.686923	-1.0274304	1.0754149866	0.3337434	-1588	23352	1190.30417	0.77509
84	España	0.542091	-1.1353349	1.32926830961	0.1191174	-69274	30999	717.158754	1.12523
85	Finlandia	-0.595467	-1.0094463	1.12157013624	0.4052853	719	46165	1309.54048	0.69163
86	Francia	0.9934394	-0.8565817	1.28311315997	0.1548884	-91697	40617	2367.79351	1.41530
87	Georgia	-0.626311	-0.7396852	0.44078167906	1.0849342	-3580	2652	89.3115619	0.70186
88	Grecia	-0.435178	-1.171303	1.13310892365	0.7272243	-39337	26967	493.14951	0.49365
89	Hungría	-0.467263	-1.1353349	0.4869368287	1.6930411	7147	12939	2305.02979	0.99765
90	Lituania	-0.657403	-1.0544065	0.26769986791	2.4084609	-2658	12089	980.225194	1.76080
91	Noruega	-0.608627	-0.9195259	1.21388043552	-0.023967	53344	87611	1154.23387	1.04659
92	Países Bajos	-0.284737	-1.0184384	1.21388043552	-0.023967	52718	50339	978.908795	0.94545
93	Polonia	0.3206654	-1.0364225	0.7292513643	0.4768273	-18320	12479	1866.63914	0.57231
94	Portugal	-0.451538	-1.2072712	1.13310892365	0.6556823	-26838	22503	301.231573	0.53111
95	Reino Unido	0.9866802	-0.8385976	1.12157013624	0.2622014	-152487	38796	0.00232802	1.31444
96	República de Corea	0.6107588	-1.0544065	0.87925560063	0.5841403	41172	22588	3548.76957	0.79739
97	República Democrática del Congo	1.0755981	-0.9914623	0.06000169453	0.9776212	800	347	58.7388697	1.42737
98	República Democrática Popular Lao	-0.570858	-0.6767409	-0.1015413292	0.2622014	- 314	1054	1657.15674	1.16019
99	Suecia	-0.484699	-0.8925498	1.28311315997	0.3337434	9616	52053	1421.08888	0.77797
100	<u>Ucrania</u>	0.5157991	-1.0004543	0.00230775748	2.4442319	-9337	<mark>3066</mark>	71.7391336	1.93243

El código SAS abajo nos ayuda a estudiar un poco más los grupos.

```
proc means data=cluster4 noprint;
by cluster;
var POBL NATALIDA ESPERANZ MORTALID;
output out=centinic mean=POBL NATALIDA ESPERANZ MORTALID;
run;
proc print data=centinic;run;

PROC STANDARD DATA=cluster4 MEAN=0 STD=1 OUT=cluster4out;
var POBL NATALIDA ESPERANZ MORTALID;
RUN;
PROC PRINT DATA=cluster4out (OBS=7);
RUN;
```

The SAS System

Obs	CLUSTER	_TYPE_	_FREQ_	POBL	NATALIDA	ESPERANZ	MORTALID
1	1	0	1	0.0278959	1.22957146	-1.2669588576	0.0475754
2	3	0	1	-0.6635	-0.7936374	0.77540651394	-0.453218

The SAS System

Obs	PAIS	POBL	NATALIDA	ESPERANZ	MORTALID	BALANZAC	PIB	PRODCERE	CLUSTER	DISTANCE
1	Afganistán	0.0278959	1.22957146	-1.2669588576	0.0475754	-4766	566	157.13532	1	0.50611
2	Albania	-0.6635	-0.7936374	0.77540651394	-0.453218	-2861	3786	577.685262	3	0.90394
3	Alemania	1.4755215	-1.2252553	1.14464771106	0.8345373	205408	41100	2659.28619	4	1.67949
4	Armenia	-0.661817	-0.7756533	0.44078167906	0.1906594	-2771	3125	191.307784	4	0.89579
5	Australia	-0.132118	-0.7576692	1.30619073479	-0.632073	10724	57593	82.6334118	3	1.00514
6	Austria	-0.512039	-1.1173508	1.1908028607	0.3337434	-5712	46377	1593.5443	4	0.73291
7	Bangladesh	3.4393285	-0.1372185	0.0253853323	-1.061325	-11877	758	5684.91934	2	0.88451

Conclusiones:

Se puede mejorar la clasificación de los grupos. Pienso que se puede bajar para 2 grupos o subir para más grupos para poder clasificar los países de una forma mejor porque en los grupos se puede ver distancias altas entre los países.

3. Ejecución – Análisis Discriminante

En primer lugar hemos de comprobar si se cumple la hipótesis de normalidad. Para ello utilizamos el "proc univariate".

1) Hacemos el test de la hipótesis de la normalidad con todas las variables.

```
proc univariate data=cluster4 normal plot;
VAR POBL NATALIDA ESPERANZ MORTALID CLUSTER;
run:
```

La hipótesis es que la variable es normal.

Que es una variable normal?

https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_normal

Un p-valor de 0.01% significa que hay la confianza de 99% que se puede rechazar la hipótesis nula o sea se piensa que la variable es normal, pero no existe una certeza 100%.

Tabla para ayudar la interpretación

P-valor Bajo	Menor que 0.01%	No es normal
P-valor Alto	Más grande que 0.01%	Normal

Los resultados con las variables pobl natalida esperanz mortalid cluster

POBL	Bajo = No es normal
NATALIDA	Bajo = No es normal
ESPERANZ	Bajo = No es normal
MORTALID	Alto = Normal
CLUSTER	Bajo = No es normal

2) Comprobación de la existencia de datos atípicos

Los resultados con las variables pobl natalida esperanz mortalid cluster

POBL	Tiene datos atípicos
NATALIDA	No tiene datos atípicos
ESPERANZ	No tiene datos atípicos
MORTALID	Tiene datos atípicos
CLUSTER	No tiene datos atípicos

En el gráfico de distribución y probabilidad de la variable POBL se puede ver los datos atípicos, ha sido con el BOXPLOT que yo he mirado para cada variable la existencia de datos atípicos.

Quitar atípicos

Pienso que para la variable POBL hay que quitar todos los países donde POBL sea más grande que 1.2 (datos normalizados). Pero quizás lo correcto es quitar los que tienen 4.4 y 3.6, quizás quitando los países del grupo con muy grande población (grupo 3).

Otra cosa el grupo 3 tiene solo 5 observaciones y se pide como mínimo por lo menos 20 observaciones para cada grupo.

Hay países donde la mortalidad es de 2.4 y quizás lo mejor son quitar estos datos.

Quitado atípicos con SAS - Tentativa 1

No estoy haciendo bien el trabajo de quitar datos atípicos.

He pensado quitar todo el grupo 3, pero en la variable POBL aún me sale unos datos atípicos, mismo quitando los países con una gran población.

```
Quitando datos atípicos - Tentativa 1
data cluster4id;
set cluster4;
id= N ;
run;
proc print data=cluster4id;run;
proc print data=cluster4id;
run;
data cluster4sinatipicos;
set cluster4id;
if cluster = 3 then delete;
run;
proc print data=cluster4sinatipicos;
run;
proc univariate data=cluster4sinatipicos normal plot;
VAR POBL NATALIDA ESPERANZ MORTALID CLUSTER;
id id;
```


Quitando atípicos tentativa 2

Ahora vamos probar otra forma para quitar los datos atípicos mirando la tabla de Extreme Observations de SAS y quitar de forma individual los datos.

```
/*
Quitando datos atipicos - Tentativa 2

*/

data cluster4id;
set cluster4;
id=_N_;
run;

proc discrim data=cluster4id method=normal pool=test wcov pcov list
crossvalidate crosslist outstat=salida;
class CLUSTER;
VAR POBL NATALIDA ESPERANZ MORTALID;
run;
```

MORTALID

Extreme Observations									
Low	est	Highest							
Value	id	Value	id	Obs					
-1.061325	7	5	2.30115	47	32				
-0.846699	12	9	<mark>2.37269</mark>	13	10				
-0.667844	86	54	2.40846	50	33				
-0.632073	31	22	2.40846	75	47				
-0.560531	51	34	2.44423	93	57				

Con el código SAS abajo se quita algunos países atípicos por la variable de Mortalidad.

```
data cluster4sinatipicos2;
set cluster4id;
if _N_ in (7,12,47,13) then delete;
run;

proc print data=cluster4sinatipicos2;
run;

proc discrim data=cluster4sinatipicos2 method=normal pool=test wcov
pcov list crossvalidate crosslist outstat=salida;
class CLUSTER;
VAR POBL NATALIDA ESPERANZ MORTALID;
run;
```

3) Transformaciones de las variables que no son normales

He intentado transformar las variables que no son normales utilizando el log pero me ha dado un error:

```
NOTE: Invalid argument to function LOG(-0.63138734) at line 639 column 11.
WARNING: Limit set by ERRORS= option reached. Further errors of this type will not be
printed.
PAIS=Congo POBL=-0.631387 NATALIDA=1.38243613 ESPERANZ=-1.082338259 MORTALID=0.1906594
BALANZAC=5213 PIB=2987 PRODCERE=2.35377358 CLUSTER=1 DISTANCE=0.4965423476 logESPERANZ=.
logNATALIDA=0.3238472567 logPOBL=. _ERROR_=1 _N_=20
NOTE: Mathematical operations could not be performed at the following places. The
results of
      the operations have been set to missing values.
      Each place is given by: (Number of times) at (Line):(Column).
      42 at 637:15 62 at 638:15 71 at 639:11
NOTE: There were 100 observations read from the data set WORK.CLUSTER4.
NOTE: The data set WORK.LOGCLUSTER has 100 observations and 13 variables.
NOTE: DATA statement used (Total process time):
                         0.03 seconds
      real time
                         0.03 seconds
      cpu time
```

He conseguido arreglar utilizando las variables originales, pero solo en el final de todo hay la parte que yo he hecho con variables logarítmicas. Donde se quita los atípicos utilizando las variables logarítmicas.

Código SAS:

```
data logcluster;
set cluster4;
logESPERANZ = log(ESPERANZ);
logNATALIDA = log(NATALIDA);
logPOBL = log(POBL);
```



```
run;
proc univariate data=logcluster4 normal plot;
var logESPERANZ logNATALIDA logNATALIDA logPOBL;
by CLUSTER;
run;
```

En el final he conseguido poner el logaritmo.

Creo que esto pasa porque las variables están normalizadas y por esto he tenido que hacer una transformación para agrupar los clusters con los valores originales de las variables.

```
data cluster pequeno;
set cluster4id;
DROP POBL NATALIDA ESPERANZ MORTALID;
run;
proc print data=cluster_pequeno;
data sample paises con clusters;
   merge sample paises cluster pequeno;
run:
proc print data=sample_paises_con_clusters;
run;
proc print data=sample paises;
run:
He hecho el Box-Cox
data sample_paises_con_clusterstransf;
set sample paises con clusters;
z=0;
run;
proc transreg data=sample paises con clusterstransf maxiter=0
nozeroconstant detail
plots=(transformation(dependent)scatter);
model boxcox(POBL) = identity(z);
output out=tdatos;
run;
```

Resultados Box-Cox:

	Мс	del Statement S	pecification Detail	s	
Туре	DF	Variable	Description	Value	
Dep	1	BoxCox(POBL)	Lambda Used	0	
			Lambda	0	
			Log Likelihood -971.4		
			Conv. Lambda 0		
			Conv. Lambda LL	-971.4	
			CI Limit	-973.3	
			Alpha	0.05	
			Label POBL		
Ind	0	Identity(z)	Options	All Zero	

proc print data=tdatos;
run;

The SAS System

Obs	_TYPE_	_NAME_	POBL	TPOBL	Intercept	z	TIntercept	Tz
1	SCORE	ROW1	27963	10.2386	1	0	1	0
2	SCORE	ROW2	2902	7.9732	1	0	1	0
3	SCORE	ROW3	80435	11.2952	1	0	1	0
4	SCORE	ROW4	2963	7.9940	1	0	1	0
5	SCORE	ROW5	22163	10.0062	1	0	1	0
6	SCORE	ROW6	8392	9.0350	1	0	1	0
7	SCORE	ROW7	151617	11.9291	1	0	1	0
8	SCORE	ROW8	9509	9.1600	1	0	1	0
9	SCORE	ROW9	9492	9.1582	1	0	1	0
10	SCORE	ROW10	9918	9.2021	1	0	1	0
11	SCORE	ROW11	3836	8.2522	1	0	1	0
12	SCORE	ROW12	198615	12.1991	1	0	1	0
13	SCORE	ROW13	7407	8.9102	1	0	1	0

Obs	_TYPE_	NAME	POBL	TPOBL	Intercept	z	TIntercept	Tz
14	SCORE	ROW14	15632	9.6571	1	0	1	0
15	SCORE	ROW15	20590	9.9326	1	0	1	0
16	SCORE	ROW16	34127	10.4378	1	0	1	0
17	SCORE	ROW17	11897	9.3840	1	0	1	0
18	SCORE	ROW18	17015	9.7419	1	0	1	0
19	SCORE	ROW19	45918	10.7346	1	0	1	0
20	SCORE	ROW20	4066	8.3104	1	0	1	0
21	SCORE	ROW21	4317	8.3703	1	0	1	0
22	SCORE	ROW22	11308	9.3333	1	0	1	0
23	SCORE	ROW23	5551	8.6217	1	0	1	0
24	SCORE	ROW24	14934	9.6114	1	0	1	0
25	SCORE	ROW25	5407	8.5954	1	0	1	0
26	SCORE	ROW26	2053	7.6271	1	0	1	0
27	SCORE	ROW27	46601	10.7494	1	0	1	0
28	SCORE	ROW28	87562	11.3801	1	0	1	0
29	SCORE	ROW29	143158	11.8717	1	0	1	0
30	SCORE	ROW30	860	6.7569	1	0	1	0
31	SCORE	ROW31	93039	11.4408	1	0	1	0
32	SCORE	ROW32	5368	8.5882	1	0	1	0
33	SCORE	ROW33	62961	11.0503	1	0	1	0
34	SCORE	ROW34	1542	7.3408	1	0	1	0
35	SCORE	ROW35	4250	8.3547	1	0	1	0
36	SCORE	ROW36	24318	10.0990	1	0	1	0
37	SCORE	ROW37	11178	9.3217	1	0	1	0
38	SCORE	ROW38	11013	9.3068	1	0	1	0
39	SCORE	ROW39	9999	9.2102	1	0	1	0
40	SCORE	ROW40	10015	9.2118	1	0	1	0
41	SCORE	ROW41	30868	10.3375	1	0	1	0
42	SCORE	ROW42	74254	11.2152	1	0	1	0
43	SCORE	ROW43	4617	8.4375	1	0	1	0
44	SCORE	ROW44	7420	8.9119	1	0	1	0
45	SCORE	ROW45	6518	8.7823	1	0	1	0
46	SCORE	ROW46	16311	9.6996	1	0	1	0
47	SCORE	ROW47	2011	7.6064	1	0	1	0
48	SCORE	ROW48	4337	8.3749	1	0	1	0
49	SCORE	ROW49	6265	8.7427	1	0	1	0

Obs	TYPE	NAME	POBL	TPOBL	Intercept	z	TIntercept	Tz
50	SCORE	ROW50	3123	8.0465	1	0	1	0
51	SCORE	ROW51	21080	9.9561	1	0	1	0
52	SCORE	ROW52	14769	9.6003	1	0	1	0
53	SCORE	ROW53	15167	9.6269	1	0	1	0
54	SCORE	ROW54	32108	10.3769	1	0	1	0
55	SCORE	ROW55	2713	7.9058	1	0	1	0
56	SCORE	ROW56	24321	10.0991	1	0	1	0
57	SCORE	ROW57	51733	10.8539	1	0	1	0
58	SCORE	ROW58	2193	7.6930	1	0	1	0
59	SCORE	ROW59	26876	10.1990	1	0	1	0
60	SCORE	ROW60	5738	8.6549	1	0	1	0
61	SCORE	ROW61	16292	9.6984	1	0	1	0
62	SCORE	ROW62	4891	8.4952	1	0	1	0
63	SCORE	ROW63	246	5.5053	1	0	1	0
64	SCORE	ROW64	4369	8.3823	1	0	1	0
65	SCORE	ROW65	2944	7.9875	1	0	1	0
66	SCORE	ROW66	16631	9.7190	1	0	1	0
67	SCORE	ROW67	170044	12.0438	1	0	1	0
68	SCORE	ROW68	3621	8.1945	1	0	1	0
69	SCORE	ROW69	6848	8.8317	1	0	1	0
70	SCORE	ROW70	6209	8.7338	1	0	1	0
71	SCORE	ROW71	29374	10.2879	1	0	1	0
72	SCORE	ROW72	38575	10.5604	1	0	1	0
73	SCORE	ROW73	10585	9.2672	1	0	1	0
74	SCORE	ROW74	62716	11.0464	1	0	1	0
75	SCORE	ROW75	10506	9.2597	1	0	1	0
76	SCORE	ROW76	49090	10.8014	1	0	1	0
77	SCORE	ROW77	4085	8.3151	1	0	1	0
78	SCORE	ROW78	65939	11.0965	1	0	1	0
79	SCORE	ROW79	24501	10.1065	1	0	1	0
80	SCORE	ROW80	6260	8.7419	1	0	1	0
81	SCORE	ROW81	9898	9.2001	1	0	1	0
82	SCORE	ROW82	45649	10.7287	1	0	1	0
83	SCORE	ROW83	10294	9.2393	1	0	1	0
84	SCORE	ROW84	20299	9.9183	1	0	1	0
85	SCORE	ROW85	12957	9.4694	1	0	1	0

Obs	_TYPE_	_NAME_	POBL	TPOBL	Intercept	z	TIntercept	Tz
86	SCORE	ROW86	9059	9.1115	1	0	1	0
87	SCORE	ROW87	20201	9.9135	1	0	1	0
88	SCORE	ROW88	9383	9.1467	1	0	1	0
89	SCORE	ROW89	66692	11.1078	1	0	1	0
90	SCORE	ROW90	6391	8.7626	1	0	1	0
91	SCORE	ROW91	10639	9.2723	1	0	1	0
92	SCORE	ROW92	72311	11.1887	1	0	1	0
93	SCORE	ROW93	45648	10.7287	1	0	1	0
94	SCORE	ROW94	33149	10.4088	1	0	1	0
95	SCORE	ROW95	27739	10.2306	1	0	1	0
96	SCORE	ROW96	28996	10.2749	1	0	1	0
97	SCORE	ROW97	88358	11.3892	1	0	1	0
98	SCORE	ROW98	23592	10.0687	1	0	1	0
99	SCORE	ROW99	13918	9.5409	1	0	1	0
100	SCORE	ROW100	13974	9.5450	1	0	1	0

No he conseguido utilizer el tdatos, me sale error.

```
proc discrim data=tdatos method=normal pool=test wcov pcov list
crossvalidate crosslist outstat=salida;
class _NAME_;
run;

proc discrim data=tdatos pool=test testlisterr crossvalidate;
class _NAME_;
run;
```

Observación importante:

En esta etapa lo correcto era crear las variables logarítmicas y quitar los datos atípicos.

No he conseguido hacer estas dos etapas entonces los próximos pasos voy hacer con las variables normalizadas y con los datos atípicos.

En el final intentare otra vez hacer con variables logarítmicas.

4) Test de igualdad de varianzas

Con el código SAS:

proc discrim data=cluster4 pool=test testlisterr crossvalidate;
class CLUSTER;
VAR POBL NATALIDA ESPERANZ MORTALID;
run;

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
142.449019	30	<.0001

Se hace el test de igualdad de varianzas y como el p-valor ha dado es < .0001 se rechaza la hipótesis de clasificación lineal. Es regla cuadrática.

The SAS System

The DISCRIM Procedure

Generalized Squared Distance to CLUSTER							
From CLUSTER	1	2	3	4			
1	-7.83137	14.08659	21.65840	299.00354			
2	150.04373	-9.63065	30.23784	64.24026			
3	66.85171	2381	-6.58306	20.30043			
4	384.58744	4097	12.03582	-7.92040			

Abajo la tabla de error:

The SAS System

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.CLUSTER4 Resubstitution Summary using Quadratic Discriminant Function

Number of Obse	rvations	and Perce	nt Classi	fied into	CLUSTER
From CLUSTER	1	2	3	4	Total
1	28	1	0	0	29
	96.55	3.45	0.00	0.00	100.00
2	0	5	0	0	5
	0.00	100.00	0.00	0.00	100.00
3	2	0	35	2	39
	5.13	0.00	89.74	5.13	100.00
4	0	0	1	26	27
	0.00	0.00	3.70	96.30	100.00
Total	30	6	36	28	100
	30.00	6.00	36.00	28.00	100.00
Priors	0.25	0.25	0.25	0.25	

Error Count Estimates for CLUSTER							
	1 2 3 4 Total						
Rate	0.0345	0.0000	0.1026	0.0370	0.0435		
Priors	0.2500	0.2500	0.2500	0.2500			

The SAS System

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.CLUSTER4 Cross-validation Summary using Quadratic Discriminant Function

Number of Obser	vations a	nd Perc	ent Class	ified into	CLUSTER
From CLUSTER	1	2	3	4	Total
1	28	1	0	0	29
	96.55	3.45	0.00	0.00	100.00
2	0	0	4	1	5
	0.00	0.00	80.00	20.00	100.00
3	2	0	35	2	39
	5.13	0.00	89.74	5.13	100.00
4	0	1	1	25	27
	0.00	3.70	3.70	92.59	100.00
Total	30	2	40	28	100
	30.00	2.00	40.00	28.00	100.00
Priors	0.25	0.25	0.25	0.25	

Error Count Estimates for CLUSTER							
	1 2 3 4 Total						
Rate	0.0345	1.0000	0.1026	0.0741	0.3028		
Priors	0.2500	0.2500	0.2500	0.2500			

1) Transformaciones de las variables con logaritmos

Después de mucho pensar y leer, he hecho el merge de los datos originales con los datos clasificados por clusters.

Teniendo las variables originales fue posible hacer el logaritmo.

He probado los dos datasets que he generado con y sin logaritmo y es muy interesante pensar que poner el logaritmo quita muchos de los datos atípicos.

Abajo una parte del código creados:

```
data cluster pequeno;
set cluster4id;
DROP POBL NATALIDA ESPERANZ MORTALID;
proc print data=cluster pequeno;
run;
data sample paises con clusters;
    merge sample paises cluster pequeno;
run:
proc print data=sample paises con clusters;
proc print data=sample paises;
run;
data logcluster;
set sample paises con clusters;
logESPERANZ = log(ESPERANZ);
logNATALIDA = log(NATALIDA);
logPOBL = log(POBL);
logMORTALID = log(MORTALID);
run:
proc print data=logcluster;
run;
proc univariate data=sample_paises_con_clusters normal plot;
VAR POBL NATALIDA ESPERANZ MORTALID;
run;
proc univariate data=logcluster normal plot;
var logESPERANZ logNATALIDA logMORTALID logPOBL;
run;
```


Se puede ver que las variables Mortalidad y población con logaritmo se quitan muhos de los datos atípicos.

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W 0.989007 Pr < W 0.58					
Kolmogorov-Smirnov	D	0.050504	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.029312	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq 0.221744 Pr > A-Sq >0.2					

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	w	0.981577	Pr < W	0.1761		
Kolmogorov-Smirnov	D	0.072183	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.060298	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.410063	Pr > A-Sq	>0.2500		

Hacemos el test de la hipótesis de la normalidad con todas las variables con logaritimos.

Tabla para ayudar la interpretación

P-valor Bajo	Menor que 0.01%	No es normal	
P-valor Alto	Más grande que 0.01%	Normal	

Los resultados con las variables POBL NATALIDA ESPERANZ MORTALID CLUSTER con logaritimo.

logPOBL	Alto = Normal
logNATALIDA	Bajo = No es normal
logESPERANZ	Bajo = No es normal
logMORTALID	Alto = Normal
logCLUSTER	Bajo = No es normal

1) Comprobación de la existencia de datos atípicos con logaritimo.

Los resultados con las variables pobl natalida esperanz mortalid cluster

logPOBL	Tiene datos atípicos muy pocos
logNATALIDA	No tiene datos atípicos
logESPERANZ	No tiene datos atípicos
logMORTALID	Tiene datos atípicos muy pocos
logCLUSTER	No tiene datos atípicos

Test de igualdad de varianzas

Con el código SAS:

proc discrim data=logcluster pool=test testlisterr crossvalidate;
var logESPERANZ logNATALIDA logMORTALID logPOBL;
class CLUSTER;
run;

Ahora:

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Chi-Square DF Pr > ChiSq

104.557467 30 <.0001

Se hace el test de igualdad de varianzas y como el p-valor ha dado es < .0001 se rechaza la hipótesis de clasificación lineal. Es regla cuadrática.

Anterior:

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
142.449019	30	<.0001

Se hace el test de igualdad de varianzas y como el p-valor ha dado es < .0001 se rechaza la hipótesis de clasificación lineal. Es regla cuadrática.

The SAS System

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.LOGCLUSTER
Resubstitution Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into CLUSTER						
From CLUSTER	1	2 3		4	Total	
1	29	0	0	0	29	
	100.00	0.00	0.00	0.00	100.00	
2	0	5	0	0	5	
	0.00	100.00	0.00	0.00	100.00	
3	1	0	36	2	39	
	2.56	0.00	92.31	5.13	100.00	
4	0	0	1	26	27	
	0.00	0.00	3.70	96.30	100.00	
Total	30	5	37	28	100	
	30.00	5.00	37.00	28.00	100.00	
Priors	0.25	0.25	0.25	0.25		

Error Count Estimates for CLUSTER							
	1 2 3 4 Total						
Rate	0.0000	0.0000	0.0769	0.0370	0.0285		
Priors	0.2500	0.2500	0.2500	0.2500			

The SAS System

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.LOGCLUSTER Cross-validation Summary using Quadratic Discriminant Function

Number of Observations and Percent Classified into CLUSTER						
From CLUSTER	1	2	3	4	Total	
1	27	0	2	0	29	
	93.10	0.00	6.90	0.00	100.00	
2	0	0	4	1	5	
	0.00	0.00	80.00	20.00	100.00	
3	2	1	34	2	39	
	5.13	2.56	87.18	5.13	100.00	
4	0	0	1	26	27	
	0.00	0.00	3.70	96.30	100.00	
Total	29	1	41	29	100	
	29.00	1.00	41.00	29.00	100.00	
Priors	0.25	0.25	0.25	0.25		

Error Count Estimates for CLUSTER							
	1 2 3 4 Total						
Rate	0.0690	1.0000	0.1282	0.0370	0.3086		
Priors 0.2500 0.2500 0.2500 0.2500							

