Candidate's Name:	• • • • • • • • • • • • • • • • • • • •	***********************
	Random No.	Personal No.
Signature:		

(Do not write your School/Centre Name or Number anywhere on this booklet.)

P525/1 CHEMISTRY Paper 1 Nov./Dec. 2018 2³/₄ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in Section A and six questions in Section B.

All questions must be answered in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3- figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$.

Molar volume of gas at s.t.p. is 22.4 litres.

Standard temperature = 273 K.

Standard pressure = 101325 Nm^{-2}

							For l	Exan	niner	s' Us	e On	ly					
1	2	3	4	5	6	7	8	9	10	<u>į</u> 11	12	13	14	15	16	17	Total

©2018 Uganda National Examinations Board

Turn Over

SECTION A: (46 MARKS)

Answer all questions in this section.

Various concentrations of X and Y were reacted at a constant temperature. The 1. table below shows the initial concentrations of X and Y and their intitial rates for the reaction.

(a)

Experiment	[X] (mol dm ⁻³)	[Y] (mol dm ⁻³)	Initial rate (mol s ⁻¹)
1	0.2	0.2	3.5 × 10 ⁻⁴
2	0.4	0.4	1.4×10^{-3}
3	0.8	0.4	5.6×10^{-3}

	(a)	State the order of reaction with respect to X and Y.	
		(i) X	(½ mark)
		(ii) Y	(½ mark)
	(b) 	Give reasons for your answers in (a).	(02 marks)
		Determine d	
	(c)	Determine the overall order of the reaction.	(½ mark)
	(d)	Calculate the value for the rate constant for the reaction.	(1½ marks)
•			······································
2.	(a)	A solid Q contains 9.37% by mass of magnesium, 10.39% and 42.18% water.	nitrogen
		(i) Calculate the empirical formula of Q .	(02 marks)
	•••••		

	(1)	Option (RFM of $Q = 250$		a of Q .	(01 mark)
		••••••			
(b)	Solu sulph	tion of Q reacts with	n iron(II) supha	nte in the presence	
(c)	Write	e equation for the re	action that wo		Q was heated. (1½ marks)
Nam	e a reag	gent that can be used			
In ea	oounds. ch case the reag	, state what would be gent you have named	e observed if ea	ach member of the	e pair was treated
(a)	СН3 -	$-CHC \equiv CCH_3$	and CH ₃ C	CH ₂ CH C≡ CH	
		ĊH ₃		ĊH ₃	
Reag	ent				. (01 mark)
Obsei	rvation				(02 marks)
(b)		-CHO and	 СН ₃ СНО		······································
Reage	nt				(01 mark)
Obser	vation	••••		•••••••••••	(02 marks)

4. The temperature – composition diagram for a system containing two components X and Y is shown below.

(a)	State what the for		owing represents,	(½ mark)
	(i) Regions:	L		(/2 mark,

M	 (½ mark)
	$(\frac{1}{2} mark)$

$$(\frac{1}{2} mark)$$

(b) State what would happen when a mixture of composition R is heated.

($\frac{1}{2}$ mark)

.....

5. Write equation for the reaction between aqueous sodium hydroxide and

N

(ii) Points:

(a)	chromium(III) oxide.	(1½ marks)

•••••			
		• • • • • • • • • • • • • • • • • • • •	•••••
(c)	tin(II) oxide.		

(1½ marks)

reac	LIUA.	he following equations and in each case	(2½ marks)
(a)	(CH	$(C_3)_2 C = CHCH_3 \qquad \underline{HBr} \rightarrow$	(2/2 *** /
Med	chanisn		
•••••			
•••••			
	•••••	Q	
(b)		$ + CH_3CH_2 - C - Cl $	(2½ mark
		$\int + CH_3CH_2 - C - CI \qquad \frac{1}{50^{\circ}C}$	`
Mec	hanisn	1:	
•••••			
			•••••
			••••
When	n a cui	rrent of 0.65 A was passed through c	opper(II) sulphate solution u
When	n a cui	rrent of 0.65 A was passed through c ectrodes for 35 minutes, 0.0143 g of hy	opper(II) sulphate solution uydrogen and 0.113 g of oxy
platir	n a cui	ectrodes for 35 minutes, 0.0143 g of hy	opper(II) sulphate solution u ydrogen and 0.113 g of oxy
platir were	num ele evolve	ectrodes for 35 minutes, 0.0143 g of hyed.	ydrogen and 0.113 g of oxy
platir	num ele evolve Write	ectrodes for 35 minutes, 0.0143 g of hy	ydrogen and 0.113 g of oxy
platir were (a)	evolve Write (i)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla	ydrogen and 0.113 g of oxy ace at the (01 mag)
platir were (a)	evolve Write (i)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took plaanode.	ydrogen and 0.113 g of oxy ace at the (01 mag)
platir were (a)	write (i) (ii)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode.	ydrogen and 0.113 g of oxy
platir were (a)	write (i) (ii)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode.	ydrogen and 0.113 g of oxy
platir were (a)	write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode.	ydrogen and 0.113 g of oxy
platir were (a)	Write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. mine the quantity of electricity require	ydrogen and 0.113 g of oxy ace at the (01 minute) (01 minute) (01 minute) (02 minute) (03 minute) (04 minute) (05 minute) (1 mole of gas at
platir were (a)	write (i) (ii) Deter each (ii)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. cathode. mine the quantity of electricity require electrode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 m (01 m) (01 m) (02 ma)
platir were (a)	write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. cathode. mine the quantity of electricity require electrode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 minute) (01 minute) (02 mainute)
platir were (a)	write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. cathode. mine the quantity of electricity require electrode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 minute) (01 minute) (02 mainute)
platin were (a)	write (i) (ii) Detereach (ii)	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. mine the quantity of electricity require electrode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 m (01 m) ed to evolve 1 mole of gas at (02 ma
platin were (a) (b)	write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. cathode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 m (01 m (02 ma)
platin were (a) (b)	write (i) (ii) Deter	ectrodes for 35 minutes, 0.0143 g of hyed. e equation for the reaction that took pla anode. cathode. mine the quantity of electricity require electrode. At the anode.	ydrogen and 0.113 g of oxy ace at the (01 m (01 m (02 ma)

(ii) 	At the cathode.	(01 mark)
State	what would be observed and write equation for the reaction tha	
take (excess concentrated hydrochloric acid was added to lead(II) ox	ide. (2½ marks)
	potassium iodide was added to copper(II) sulphate solution.	
	e equation in each case to show how the following conversions	
(a)	CH ₂ OH from benzene.	(2½ marks)
•••••		

SECTION B: (54 MARKS)

Answer any six questions from this section.

10. The figure below shows the variation of the first electron affinity of the elements in Period 3 of the Periodic Table.

Explain each of the following observations:

(1)	There is a general increase in the first electron affinity from sodium	n to
	argon. (1½	marks)
		••••
(ii)	The first electron affinity of magnesium is higher than that of alum	inium.
••••••		
		••••••
(iii)	The first electron affinity of phosphorous is less than that of sulphur	
	prosphorous is less than that of sulphur	
	(31/2)	narks)
	7	
	7	7.

1 A		Silver chloride dissolves in water according to the following ϵ	equation.
11.	(a)	10'/	
		Ag Cl(s) Ag (aq) Write the expression for the solubility product, Ksp of silve	er chloride (01 mark)
	(b)	The electrolytic conductivity of a saturated solution of silver Ω water at 25°C is $3.41 \times 10^{-6} \Omega^{-1} \text{ cm}^{-1}$ and that of pure water $1.6 \times 10^{-6} \Omega^{-1} \text{cm}^{-1}$. Calculate the solubility product of a saturate of silver chloride at 25°C.	chloride in er is arated solution tassium nitrate
		and potassium chloride are 133.4, 145.0 und 145.0	$(4\frac{1}{2} \text{ marks})$
•			
•			
•			
•••			
•••			
(c) A	Ammonia solution was added to a solution containing silver c	hloride.
	(i		(01 mark)
••••			
	(ii) Explain your answer in (c)(i) above.	(2½ marks)
	· · · · · · · · · · · · · · · · · · ·		

			••••••
	••••••		•••••

proci	n a yellow rs of T. marks)									
(a)	Write the names and the structural formulae of all possible isomers of T . (03 marks)									
(b)	T reac		(01 mark)							
(c)	Write	equation and indicate a mechanism for the reaction bet 2, 4- dinitrophenylhydrazine under acidic condition.	etween T (05 marks)							
Man	ganese	is a d -block element in the Periodic Table.								
		is a d-block element in the Periodic Table. The term d-block element.	(01 mark)							
(a) 	Defin	the term d-block element .	(½ mark anganese in (½ marks							

	(c)	A black oxide, Y of manganese was fused with a mixture of potassium hydroxide and potassium nitrate to give a compound which when treated with water gave a green solution.								
		The g	green solution turned purple when acidified with suify:							
		(i)	Υ	(01 mark)						
		(ii)	the ion that gives the green solution its colour.	(01 mark)						
		(iii)	the ion that gives the green solution its colour.	(01 ///						
	(d)	Write purple	ionic equation for the reaction leading to the fo	(1½ marks)						
				•••••						
14.	(a)	(i)	Sketch a graph to show the pH change when hyois titrated with ammonia solution.							

	(ii) Explain the shape of your sketch graph in (a)(i).	(3½ marks)
	Calculate the pH of a resultant solution formed when 10	cm ³ of a 0.1M
(b)	sodium hydroxide solution is added to 25 cm ⁻ of a 0.1M	Ellianoie des
	(Dissociation constant of ethanoic acid at 25 $^{\circ}C = 1.8 \times 10^{\circ}$	10 ⁻⁵ mol dm ⁻³). (04 marks)
••••••		
	•••••	
•••••		
(a)	Beryllium, magnesium, calcium and barium are some that belong to Group II of the Periodic Table.	
	State how the elements react with sulphuric acid and g for the reactions.	(U3 marks)
	······································	
		•••••••••••••••••••••••••••••••••••••••

15.

(b)	(i)	(01 mark)		
	(ii)	Explain your answer in (b)(i).	(02 marks)	
(c)		e equation for the reaction of:	(1½ marks)	
` ,	(i)	beryllium with sodium hydroxide solution.	(172 mar no)	
	(ii)	calcium carbide with water.	(1½ marks)	
	a manı	efacture of ammonia, nitrogen is catalytically hydrogenate	ed to	
In th	ammoi	Ifacture of ammonia, nitrogen is catalytically hydrogenation according to the following equation. $2NH_3(g) \Delta H = 92.5 \text{ kJ}$	ed to	
give (a)	ammor N ₂ (و (i)	Ifacture of ammonia, nitrogen is catalytically hydrogenation according to the following equation. $2NH_3(g) \Delta H = 92.5 \text{ kJ}$ Name the catalyst used in the reaction.	i	
give (a)	ammor N ₂ (و (i)	Ifacture of ammonia, nitrogen is catalytically hydrogenation according to the following equation. $2NH_3(g) \Delta H = 92.5 \text{ kJ}$	(½ mark	
give (a)	ammon	Ifacture of ammonia, nitrogen is catalytically hydrogenation according to the following equation. $(g) + 3H_2(g) = 2NH_3(g) \Delta H = 92.5 \text{ kJ}$ Name the catalyst used in the reaction. Write the expression for the equilibrium constant, Kp	(½ mark) for the (01 mark)	
(a) (b)	ammon N ₂ (g	Ifacture of ammonia, nitrogen is catalytically hydrogenation according to the following equation. $(g) + 3H_2(g) = 2NH_3(g) \Delta H = 92.5 \text{ kJ}$ Name the catalyst used in the reaction. Write the expression for the equilibrium constant, Kp reaction.	(½ mark) for the (01 mark)	

	(c)	allov mixt	en 3 moles wed to attain ture contain	of hydroge in equilibri ned 25% of	n and I i um at 100 fammoni	mole of file of atms and a by volum	400°C, the		ım
			ulate the:				,		
		(i)	number	of moles of	nitrogen	and hydro	gen at equilib	orium. (03 n	narks)
		••••••							
	******	(ii)		the equilib		stant, Kp a	t 400°C.	(21/2	
17.	(a)	Diff	erentiate b	etween ad	dition an	d condens	ation polym	ers. (02	marks)
									•••••
	(b)	The	structural	formulae o	of two po	lymers R	and T are sh	own belo	 ow.
			R					T	
		(0-	- <i>CH</i> 2 <i>CH</i>	0 ₂ -O-C_		$\begin{pmatrix} 0 \\ \parallel \\ -C \end{pmatrix}$	$+CH_2-$	CH ₃	+
		`				'n	(COOC	H_3)
			e the poly					14	-
		(i)	R						(01 mark)
		(ii)	T						(01 mark)

(c)			structural formula(e) of monomer(s) of the pro- espectively.	(03 marks)
	•••••	•••••••	•••••••••••••••••••••••••••••••••••••••	,
•••••				
(d)	Give		use of:	(01 mark)
	(i)	R		3
	(ii)	T		(01 mark)

THE PERIODIC TABLE

1	2											3	4	5	6	7 1.0 H	4.0 H	e
6.9 Li	9.0 Be											B	2.0 1 C 6	14.0 N 7	16.0 O 8	19.0 F	-	e
3 23.0 Na 11	24.3 Mg 12										2	\rightarrow	28.1 Si 14	31.0 P 15	32.1 S 16	35. (17	1 4	1
39.1 K 19		45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24				Ni	Cu	Zn	9.7 Ga 31	,	74.9 As 33	79.0 S 34	79. le 1 3!	3r 1	Kr
	87.6		91.2 Zr 40	92.9 Nb 41		98.9 Tc 43	101 Ru 44			108 Ag 47	12 Cd 48	115 In 49	119 Sn 50	122 St 51	128 T 52	e	I	31 Xe 54
			178 Hf 72	181 Ta 73	184 W 74	186 Re 75			195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 B 83	i 1	Po	At	22 Rn 6
223 Fr 87	226 Ra 88	227 Ac 89																
				140 Ce 58	141 Pr 59		147 Pm 61	150 Sm 62	152 Eu 63	Gd	Tb	162 D; 66	165 H 67	o I	Er '	Tm	73 Yb 70	175 L 71
			227 Ac 89	232 Th 90	231 Pa 91		237 Np 93			247 Cm 96	247 Bl 97	251 C 98	f E	s	Fm	Md	254 No 102	26 10

END.