

It's Electrifying!-Danny Zucco (Grease)

# Electrophoresis

- pH of buffer
  - **8.6**
  - Negative charged proteins
- Anode attracts anions! + Charged electrode
- Cathode attracts cations Charged electrode

- Ionic Strength of Buffer
  - High Concentration = Slow but Sharp

Low concentration = Fast but Fuzzy

- Support Medium
  - Paper

- Cellulose Acetate
  - Flammable
- Agarose gel
  - Most common
- Capillary Electrophoresis?
  - Up and coming





- Voltage
  - Provides the pulling force on proteins
  - High voltage = harder pulling
  - Also generates heat, which must be cooled
    - Protein will denature at high temperatures, designed to work at 37°C



Time

- Longer time running will give greater separation
  - Heat also builds up over time

Size and Shape of Proteins

- Agarose holds large proteins back
  - This slows the protein and may increase separation OR put it closer to another band of proteins



- Diffusion
  - Some diffusion is inevitable
    - Leads to lack of resolution, definition
    - Causes:
      - Increased thickness of medium
      - Increased time of separation
      - Increased temperatures

- Temperature
  - Mobility of proteins is increased with higher temperatures
  - At some point proteins will denature



- Electroendosmosis
  - Force-Counterforce
  - Especially in poor quality agars buffer will travel towards the cathode



#### Capillary Electrophoresis

- Force entirely generated by electro-osmotic flow
  - Result is movement towards cathode
  - Detection by UV, flourescence, laser, chemiluminescence, mass spec



# Electrophoresis Pattern



## Pathologies



## Pathologies





## **Pathologies**





## Mistakes Happen





#### Now Let's Try It





