JIM McWHA

CHIEF ENGINEER - FLIGHT CONTROLS
BOEING COMMERCIAL AIRPLANE GROUP

52-08 p.37

INDUSTRY STATUS

DIGITAL AUTOPILOT SYSTEMS WERE FIRST CERTIFICATED FOR USE ON COMMERCIAL **AIRPLANES IN THE LATE 1970'S** THE A-320 AIRPLANE WAS THE FIRST COMMERCIAL AIR TRANSPORT AIRPLANE TO BE CERTIFICATED WITH A FLY BY WIRE PRIMARY FLIGHT CONTROL SYSTEM BOEING WILL HAVE ALL FLY BY WIRE FLIGHT CONTROLS ON THE 767-X (777) AIRPLANE

- o DEFINITION
- o SAFETY
- O INDUSTRY STATUS
- O PROGRAM PHASES

767-X PRIMARY FLIGHT CONTROL SURFACES

DEFINITION

HAS A FUNCTION WHICH IF NOT PERFORMED AS INTENDED IS LIFE THREATENING A CONTROL SYSTEM IMPLEMENTED IN DIGITAL COMPUTER TECHNOLOGY WHICH

AN AUTOPILOT USED FOR AUTOMATIC LANDING IN LOW **EXAMPLES:**

VISIBILITY CONDITIONS

AN AIRPLANE CONTROL SYSTEM IMPLEMENTED WITHOUT CONTROL CABLES:

FLY BY WIRE

FLY BY LIGHT

767-X PRIMARY FLIGHT CONTROL SYSTEM OVERVIEW

PRIMARY FLIGHT COMPUTER ARCHITECTURE

R 28 VDC Bus R FBW BUS 767-X ELECTRICAL POWER SYSTEM FLIGHT CRITICAL DC ETOPS (Generator PMGs . R Engine THI! C FBW BUS **PMGs** 5 min. battery (typical) APU GEN Ž L FBW BUS FBW Power L Supply Assy (typical) FBW PMG Converter (typical) ETOPS (Generator PMGs < L Engine Hot Battery Bus L 28 VDC Bus

767-X PRIMARY FLIGHT CONTROLS HYDRAULIC / ACE DISTRIBUTION

SAFETY

FEDERAL AVIATION ADMINISTRATION (FAA) REGULATIONS DEFINE THE BASIC SAFETY CRITERIA:

NO SINGLE FAILURE OR COMBINATION OF FAILURES WHICH ARE NOT CONTINUED SAFE FLIGHT AND LANDING OF THE AIRPLANE SHOWN TO BE EXTREMELY IMPROBABLE SHALL PREVENT FAR 25.1309

EXTREMELY IMPROBABLE - PROBABILITY OF 1 x 10⁻⁹ OR LESS PER FLIGHT HOUR OR EVENT

SAFETY

FEDERAL AVIATION ADMINISTRATION (FAA) REGULATIONS DEFINE THE BASIC SAFETY CRITERIA:

NO SINGLE FAILURE OR COMBINATION OF FAILURES WHICH ARE NOT CONTINUED SAFE FLIGHT AND LANDING OF THE AIRPLANE SHOWN TO BE EXTREMELY IMPROBABLE SHALL PREVENT FAR 25.1309

EXTREMELY IMPROBABLE - PROBABILITY OF 1 imes 10 $^{-9}$ or Less per FLIGHT Hour or **EVENT**

PROGRAM PHASES - REQUIREMENTS DEFINITION

TOP DOWN STRUCTURED PROCESS:

AIRPLANE LEVEL REQUIREMENTS TOP LEVEL DESIGN REQUIREMENTS AND

OBJECTIVES

SYSTEM REQUIREMENTS

CERTIFICATION REQUIREMENTS

FUNCTIONAL REQUIREMENTS INTEGRITY REQUIREMENTS

ARCHITECTURAL CONSIDERATIONS

SOFTWARE REQUIREMENTS

EXPANSION OF SYSTEM REQUIREMENTS TO A

LEVEL WHICH CAN BE IMPLEMENTED IN A TARGET

DIGITAL COMPUTER OR COMPUTERS

PROGRAM PHASES - REQUIREMENTS DEFINITION

TOP DOWN STRUCTURED PROCESS:

AIRPLANE LEVEL REQUIREMENTS TOP LEVEL DESIGN REQUIREMENTS AND

OBJECTIVES

SYSTEM REQUIREMENTS **CERTIFICATION REQUIREMENTS**

FUNCTIONAL REQUIREMENTS

INTEGRITY REQUIREMENTS

ARCHITECTURAL CONSIDERATIONS

SOFTWARE REQUIREMENTS **EXPANSION OF SYSTEM REQUIREMENTS TO A**

LEVEL WHICH CAN BE IMPLEMENTED IN A TARGET

DIGITAL COMPUTER OR COMPUTERS

PROGRAM PHASES - DESIGN AND DEVELOPMENT

HARDWARE SELECTION I/O REQUIREMENTS

PROCESSING SPEED

MEMORY SIZE

ETC

PROGRAMMING LANGUAGE INDUSTRY/COMPANY STANDARD

SUPPORT SOFTWARE AVAILABILITY AND MATURITY

LONG TERM MAINTENANCE

ETC

CODE GENERATION

TYPICALLY AN INCREMENTAL BUILD PROCESS

TESTING

HARDWARE - QUALIFICATION TESTING - RTCA DO-160

INCREMENTAL SOFTWARE LOADS - VENDOR AND AIRFRAME

SYSTEMS INTEGRATION / IRON BIRD

AIRPLANE - GROUND AND FLIGHT

PROGRAM PHASES - VERIFICATION

GUIDELINE DOCUMENT

RTCA DOCUMENT DO-178A

VERIFICATION PROCESSES ARE A FUNCTION OF SYSTEM CRITICALITY

CRITICAL SYSTEM

REQUIREMENTS HAVE BEEN IMPLEMENTED COMPLETELY A FORMAL PROCESS OF ASSURING THAT ALL SOFTWARE

AND EXCLUSIVELY

PROGRAM PHASES - VALIDATION

A PROCESS OF ASSURING THAT ALL SYSTEM REQUIREMENTS HAVE BEEN IMPLEMENTED CORRECTLY

O ANALYSES

HAZARD ASSESSMENT AND FAILURE SAFETY ANALYSIS

ANALYSIS TO ASSURE THAT REQUIREMENTS

OF FAR 25.1309 ARE SATISFIED

PERFORMANCE

ANALYSIS

ASSURANCE THAT SYSTEM PERFORMS

INTENDED FUNCTION WITHIN ACCEPTABLE

LIMITS UNDER ALL ALLOWABLE

ENVIRONMENTAL AND TOLERANCE

CONDITIONS

PROGRAM PHASES - VALIDATION

A PROCESS OF ASSURING THAT ALL SYSTEM REQUIREMENTS HAVE BEEN IMPLEMENTED CORRECTLY

O ANALYSES

HAZARD ASSESSMENT AND FAILURE SAFETY ANALYSIS

ANALYSIS TO ASSURE THAT REQUIREMENTS

OF FAR 25.1309 ARE SATISFIED

PERFORMANCE

ANALYSIS

ASSURANCE THAT SYSTEM PERFORMS

INTENDED FUNCTION WITHIN ACCEPTABLE

LIMITS UNDER ALL ALLOWABLE

ENVIRONMENTAL AND TOLERANCE

CONDITIONS

PROGRAM PHASES - CERTIFICATION

THE PROCESS OF DEMONSTRATING TO THE REGULATORY AUTHORITIES THAT ALL SAFETY AND PERFORMANCE REQUIREMENTS ARE SATISFIED

STARTS WITH A CERTIFICATION PLAN WHICH:

IDENTIFIES REGULATIONS AND ACCEPTABLE MEANS OF COMPLIANCE METHODS

DESCRIBES PROPOSED METHODS OF ESTABLISHING COMPLIANCE

DESCRIBES THE METHODS AND PROCESSES TO BE USED TO ASSURE AN ORDERLY AND CONTROLLED DESIGN AND DEVELOPMENT PROCESS

FOLLOW ON SPECIALIST MEETINGS

PERFORMANCE AND INTEGRITY DEMONSTRATIONS

PROGRAM PHASES - CERTIFICATION (CONT)

CERTIFICATION SUMMARY

CONFIRMS COMPLETE IMPLEMENTATION OF THE PROCESSES IDENTIFIED IN THE **CERTIFICATION PLAN**

PROVIDES A MEANS FOR ESTABLISHING VERIFICATION AND VALIDATION COVERAGE

767-X PFCS Schedule

1995	Type Cert.	Final Cert. Data			767-X FLIGHT TEST
1994	. Sollout	Fail/Safety, System Des.			lron Bird Test
1993	FAA Interim Type Board	Fail/ Syster	757 Flight Test	L.	Build 767-X Units
1992	FAA Interim Type Board	FAA Cert Plan Approval 11/29	Iron Bird Test	Production Design Validation	
1991	. Appl.	Cert Plan 4/1	NUCTION		
1990	Type Cert. Appl.		PRE-PRODUCTION DEVELOPMENT		
	X-797	Certification Documentation	757 PFCS Testing		767-X PFCS