Práctico 2: Predicados aritméticos.

Ejercicio 1

Indique la respuesta que daría Prolog para los siguientes objetivos:

i) X is 10 + 5. ix) 10 + 5 =:= 10 + 5. ii) 10 + 5 is X. x) 20 - 5 =:= 10 + 5. iii) 10 + 5 is 10 + 5. xi) 20 - 5 = 10 + 5. iv) Y = 5, X is Y + 1. xii) X = 10.v) X = 5, X is X + 1.*xiii*) X = 5, X = 10. vi) X = 1, X > 0.xiv) X = 10.vii) X < X + 1.xv) X = 5, X = 10.*viii)* X > 0, X = 1. xvi) X = Y.

Ejercicio 2

a) Defina los siguientes predicados en Prolog sin utilizar acumuladores:

largo(+L,?N) N es el largo de la lista L maximo(+L,?M) M es el máximo elemento de la lista L

- b) Defina los predicados de la parte a) utilizando la técnica de acumuladores.
- c) Utilizando el predicado de sistema time/1, ejecute los predicados de las partes a) y b) para listas de diferentes largos. Compare la eficiencia de las dos versiones de los predicados en cuanto a cantidad de inferencias y tiempo de ejecución.

Ejercicio 3

Defina los siguientes predicados en Prolog:

S es la suma de los elementos de la lista L suma(+L,?S)P es una lista conteniendo solo los pares(+L,?P) elementos pares de la lista L mayores(+L,+X,?M)M es una lista con los elementos de L que son mayores que X merge(+L1,+L2,?L3)L3 es el resultado de combinar ordenadamente los elementos de las listas (ordenadas) L1 y L2

Ejercicio 4

a) Defina los siguientes predicados en Prolog:

<pre>insertionsort(+L,?S)</pre>	S es el resultado de ordenar la lista L
	utilizando el algoritmo <i>insertion sort</i>
mergesort(+L,?S)	S es el resultado de ordenar la lista L
	utilizando el algoritmo <i>merge sort</i>
<pre>quicksort(+L,?S)</pre>	S es el resultado de ordenar la lista L
	utilizando el algoritmo <i>quick sort</i>

b) Utilizando el predicado de sistema time/1, ejecute los predicados de la parte a) para listas de diferentes largos. Compare la performance de los tres algoritmos en cuanto a cantidad de inferencias y tiempo de ejecución.

Ejercicio 5

Considere la representación de vectores mediante listas de valores reales en Prolog. Implemente los siguientes predicados:

neg(+V,?W)	W es el vector opuesto a V
suma(+V,+W,?T)	T es la suma de los vectores V y W
dot(+V,+W,?P)	P es el producto punto entre V y W
dist (+V,+W,?D)	D es la distancia euclídea entre V y W

Ejercicio 6

Considere la representación de matrices mediante listas de listas de valores reales en Prolog. Por ejemplo, la siguiente matrix de tamaño 2x3:

1	2	3
4	5	6

se representa como: [[1, 2, 3], [4, 5, 6]]

Implemente los siguientes predicados:

columna(+M,?C,?R)	C es la primera columna de M en forma de lista, R es M sin la primera columna
- (14.07)	
transpuesta(+M,?T)	T es la transpuesta de la matriz T
simetrica(+M)	M es una matriz simétrica
suma(+M,+N,?S)	S es la suma de las matrices M y N
producto(+M,+N,?P)	P es el producto de las matrices M y N