

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

División de Ingeniería Eléctrica Departamento de Ingeniería en Computación

Instalación y configuración de la red de datos de la empresa "Armarios Azules"

Proyecto Final de Redes de Datos Seguras-Direccionamiento

Fecha de entrega:	
	12/06/23
Grupo:	
	06
Profesora:	
	MC. Jaquelina López Barrientos
Alumno:	
	Toledo Bedia Dilan Gerson

Pruebas y documentación del funcionamiento de red de la empresa "Armarios Azules"

Figura 1Topología árbol de la empresa "Armarios Azules"

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete	
	Successful	PC0(1	PC0	ICMP		0.000	N	0	(edit)		(dele
•	Successful	PC0(1	PC0(1)(1)(1)	ICMP		0.000	N	1	(edit)		(dele
	Successful	PC0(1	PC0(1)(1)	ICMP		0.000	N	2	(edit)		(dele
•	Successful	PC0	PC0(1)(1)(ICMP		0.000	N	3	(edit)		(dele

Figura 2Pruebas de envió de datos entre subredes

Esquema de direccionamiento utilizado en la anterior topología

Esquema de direccionamiento – 192.168.0.0/16								
SubRed y	Id SubRed	Dirección	Broadcast y					
Máscara		disponibles	Gateway					
Planta baja	00000000.0 0000000	00000000.0 0000001	00000000.0 1111111					
con 85 host's	0	-	192.168.0.127					
Msk:	192.168.0.0/25	00000000.0 11111110	00000000.0 111111					
255.255.255.12		192.168.0.1-	0					
8		192.168.2.126	192.168.0.126					
Piso 1 con 60	00000000.10 00000	00000000.10 000001	00000000.10 11111					
host's	0	-	1					
Msk:	192.168.0.128/26	00000000.10 111110	192.168.0.191					
255.255.255.19		192.168.0.129-	00000000.10 11111					
2		192.168.0.190	0					
			192.168.0.190					
Piso 2 con 60	00000000.11 00000	00000000.11 000001	00000000.11 111111					
host's	0	-	192.168.0.255					
Msk:	192.168.0.192/26	00000000.11 111110	00000000.11 11111					
255.255.255.19		192.168.0.193-	0					
2		192.168.0.254	192.168.0.254					
Piso 3 con 60	00000001.00 00000	00000001.00 000001	00000001.00 11111					
host's	0	-	102.160.1.62					
Msk:	192.168.1.0/26	00000001.00 111110	192.168.1.63					
255.255.255.19		192.168.1.1-	00000001.00 11111					
2		192.168.1.62	102.160.1.62					
D' 4 (0	00000001 01100000	00000001 011000001	192.168.1.62					
Piso 4 con 60	00000001.01 00000	00000001.01 000001	00000001.01 11111					
host's Msk:	192.168.1.64/26	- 00000001 01/111110	189.1.1.127					
255.255.255.19	192.108.1.04/20	00000001.01 111110 192.168.1.65-	00000001.01 11111					
255.255.255.19		192.168.1.126	00000001.01 11111					
Z		192.106.1.120	192.168.1.126					
Piso 5 con 60	00000001.10 00000	00000001.10 000001	00000001.10 11111					
host's	0	-	1					
Msk:	192.168.1.128/26	00000001.10 111110	192.168.1.191					
255.255.255.19	172.100.1.120/20	192.168.1.129 –	00000001.10 11111					
2		192.168.1.190	0					
_		192.100.11.190	192.168.1.190					
WAN SubRed	00000001.110000 0	00000001.110000 01	00000001.110000 1					
1-2 con 2 host's	0	-	1					
Msk:	192.168.1.192/30	00000001.110000 10	192.168.1.195					
255.255.255.25		192.168.1.193-						
2		192.168.1.194						
WAN SubRed	00000001.110001 0	00000001.110001 01	00000001.110001 1					
2-3 con 2 host's	0	-	1					
Msk:	192.168.1.196/30	00000001.110001 10	189.1.1.199					
255.255.255.25		192.168.1.197-						
2		192.168.1.198						

Uso de Show ip route con encaminamiento estático

```
User Access Verification

Password:

primerrouter>show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, LI - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 3 subnets, 2 masks

C 192.168.0.128/26 is directly connected, FastEthernet0/0

C 192.168.0.192/26 [1/0] via 192.168.1.194

192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks

S 192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks

S 192.168.1.0/26 [1/0] via 192.168.1.194

S 192.168.1.0/26 [1/0] via 192.168.1.194

S 192.168.1.128/26 [1/0] via 192.168.1.194

C 192.168.1.128/26 [1/0] via 192.168.1.194

C 192.168.1.196/30 [1/0] via 192.168.1.194

primerrouter>
```

Figura 3Show ip route en primer router estático

```
Buen dia trabajador

User Access Verification

Password:

segundorouter>show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, 0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

192.168.0.0/24 is variably subnetted, 3 subnets, 2 masks

S 192.168.0.128/26 [1/0] via 192.168.1.193

C 192.168.0.192/26 is directly connected, FastEthernet1/0

192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks

C 192.168.1.0/26 is directly connected, FastEthernet0/0

S 192.168.1.0/26 is directly connected, FastEthernet0/0

S 192.168.1.192/26 [1/0] via 192.168.1.198

C 192.168.1.192/26 [1/0] via 192.168.1.198

C 192.168.1.192/30 is directly connected, Serial2/0

C 192.168.1.196/30 is directly connected, Serial3/0

segundorouter>
```

Figura 4Show ip route en segundo router estático

```
Buen dia trabajador
User Access Verification
Password:
 tercerrouter>show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
          - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is not set
      192.168.0.0/24 is variably subnetted, 3 subnets, 2 masks
         192.168.0.0/25 [1/0] via 192.168.1.197
         192.168.0.128/26 [1/0] via 192.168.1.197
s
         192.168.0.192/26 [1/0] via 192.168.1.197
      192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
s
         192.168.1.0/26 [1/0] via 192.168.1.197
         192.168.1.64/26 is directly connected, FastEthernet0/0
С
         192.168.1.128/26 is directly connected, FastEthernet1/0
s
         192.168.1.192/30 [1/0] via 192.168.1.197
         192.168.1.196/30 is directly connected, Serial2/0
tercerrouter>
```

Figura 5Show ip route en tercer router estático

Uso de Show ip route con encaminamiento dinámico

```
Buen dia trabajador
User Access Verification
Password:
primerrouter>show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.0.0/24 is variably subnetted, 3 subnets, 3 masks
        192.168.0.0/24 [120/1] via 192.168.1.194, 00:00:23, Serial2/0
        192.168.0.0/25 is directly connected, FastEthernet0/0
        192.168.0.128/26 is directly connected, FastEthernet1/0
     192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
R
        192.168.1.0/26 [120/1] via 192.168.1.194, 00:00:23, Serial2/0
        192.168.1.64/26 [120/2] via 192.168.1.194, 00:00:23, Serial2/0
R
R
        192.168.1.128/26 [120/2] via 192.168.1.194, 00:00:23, Serial2/0
C
        192.168.1.192/30 is directly connected, Serial2/0
        192.168.1.196/30 [120/1] via 192.168.1.194, 00:00:23, Serial2/0
primerrouter>
```

Figura 6Show ip route en primer router dinámico

```
Buen dia trabajador
User Access Verification
Password:
seguntorouter>show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.0.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.0.0/24 [120/1] via 192.168.1.193, 00:00:05, Serial2/0
        192.168.0.192/26 is directly connected, FastEthernet1/0
C
     192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
C
        192.168.1.0/26 is directly connected, FastEthernet0/0
         192.168.1.64/26 [120/1] via 192.168.1.198, 00:00:19, Serial3/0
        192.168.1.128/26 [120/1] via 192.168.1.198, 00:00:19, Serial3/0
R
        192.168.1.192/30 is directly connected, Serial2/0
        192.168.1.196/30 is directly connected, Serial3/0
seguntorouter>
```

Figura 7Show ip route en segundo router dinámico

```
Buen dia trabajador
User Access Verification
Password:
tercerrouter>show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.0.0/24 [120/1] via 192.168.1.197, 00:00:06, Serial2/0
R
     192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
        192.168.1.0/26 [120/1] via 192.168.1.197, 00:00:06, Serial2/0
R
С
        192.168.1.64/26 is directly connected, FastEthernet0/0
С
        192.168.1.128/26 is directly connected, FastEthernet1/0
R
        192.168.1.192/30 [120/1] via 192.168.1.197, 00:00:06, Serial2/0
C
        192.168.1.196/30 is directly connected, Serial2/0
tercerrouter>
```

Figura 8Show ip route en tercer router dinámico

Uso de Show ip interface brief con encaminamiento estático

_				_		
Interface	IP-Address	OK?	Method	Status		Protocol
FastEthernet0/0	192.168.0.126	YES	manual	up		up
FastEthernet1/0	192.168.0.190	YES	manual	up		up
Serial2/0	192.168.1.193	YES	manual	up		up
Serial3/0	unassigned	YES	unset	administratively	down	down
FastEthernet4/0	unassigned	YES	unset	administratively	down	down
FastEthernet5/0	unassigned	YES	unset	administratively	down	down
primerrouter>						

Figura 9Show ip interface brief de primer router estático

segundorouter>show i	p interface brief				
Interface	IP-Address	OK?	Method	Status	Protocol
FastEthernet0/0	192.168.1.62	YES	manual	up	up
FastEthernet1/0	192.168.0.254	YES	manual	up	up
Serial2/0	192.168.1.194	YES	manual	up	up
Serial3/0	192.168.1.197	YES	manual	up	up
FastEthernet4/0	unassigned	YES	unset	administratively dow	m down
FastEthernet5/0	unassigned	YES	unset	administratively dow	m down
segundorouter>					

Figura 10Show ip interface brief de segundo router estático

Interface	IP-Address	OFF	Method	Chabus	Protocol
Interrace	IP-Address	OK	nethod	Status	Protocol
FastEthernet0/0	192.168.1.126	YES	manual	up	up
FastEthernet1/0	192.168.1.190	YES	manual	up	up
Serial2/0	192.168.1.198	YES	manual	up	up
Serial3/0	unassigned	YES	unset	administratively do	wn down
FastEthernet4/0	unassigned	YES	unset	administratively do	wn down
FastEthernet5/0	unassigned	YES	unset	administratively do	wn down
tercerrouter>					

Figura 11Show ip interface brief de tercer router estático

Uso de Show ip interface brief con encaminamiento dinámico

primerrouter>show ip	interface brief		
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	192.168.0.126	YES manual up	up
FastEthernet1/0	192.168.0.190	YES manual up	up
Serial2/0	192.168.1.193	YES manual up	up
Serial3/0	unassigned	YES unset administratively	down down
FastEthernet4/0	unassigned	YES unset administratively	down down
FastEthernet5/0	unassigned	YES unset administratively	down down
primerrouter>			

Figura 12Show ip interface brief de primer router dinámico

seguntorouter>show i	ip interface brief				
Interface	IP-Address	OK?	Method	Status	Protocol
FastEthernet0/0	192.168.1.62	YES	manual	up	up
FastEthernet1/0	192.168.0.254	YES	manual	up	up
Serial2/0	192.168.1.194	YES	manual	up	up
Serial3/0	192.168.1.197	YES	manual	up	up
FastEthernet4/0	unassigned	YES	unset	administratively do	vn down
FastEthernet5/0	unassigned	YES	unset	administratively do	vn down
seguntorouter>					

Figura 13Show ip interface brief de segundo router dinámico

tercerrouter>show ip	interface brief					
Interface	IP-Address	OK?	Method	Status		Protocol
FastEthernet0/0	192.168.1.126	YES	manual	up		up
FastEthernet1/0	192.168.1.190	YES	manual	up		up
Serial2/0	192.168.1.198	YES	manual	up		up
Serial3/0	unassigned	YES	unset	administratively do	wn	down
FastEthernet4/0	unassigned	YES	unset	administratively do	wn	down
FastEthernet5/0	unassigned	YES	unset	administratively do	wn	down
tercerrouter>						

Figura 14Show ip interface brief de tercer router dinámico

Análisis de Verificación de Funcionamiento de los Protocolos de Encaminamiento:

Para evaluar el funcionamiento de los protocolos de encaminamiento utilizados en el proyecto, se realizaron pruebas exhaustivas en el entorno de simulación en Cisco Packet Tracer. A continuación, se presentan los resultados obtenidos:

Protocolo de Encaminamiento Estático:

- Se configuraron las rutas estáticas en los routers para establecer la conectividad entre las diferentes subredes.
- Se verificó que las rutas estáticas estuvieran correctamente configuradas y que la comunicación entre las subredes se realizara de manera eficiente.
- Durante las pruebas, se observó que el protocolo de encaminamiento estático proporcionaba una conectividad confiable y predecible entre las subredes.

Protocolo de Encaminamiento Dinámico (RIPv2):

- Se configuró el protocolo de encaminamiento RIPv2 en los routers para permitir el intercambio de información de enrutamiento de manera dinámica.
- Se verificó que los routers intercambiarán las tablas de enrutamiento y que se actualizarán correctamente ante cambios en la topología de la red.
- Durante las pruebas, se comprobó que el protocolo RIPv2 facilitaba la adaptabilidad de la red ante cambios en la topología, asegurando una ruta óptima hacia los destinos.

Conclusiones:

• En conclusión, el análisis de verificación de funcionamiento de los protocolos de encaminamiento implementados ha demostrado que tanto el encaminamiento estático como el encaminamiento dinámico (RIPv2) son opciones válidas y eficientes para asegurar la conectividad y el enrutamiento en la red. El encaminamiento estático ha brindado una solución confiable y predecible, siendo especialmente adecuado para entornos de red estables con pocos cambios. Por otro lado, el encaminamiento dinámico (RIPv2) ha demostrado su capacidad para adaptarse a cambios en la topología de la red, facilitando la actualización automática de las rutas de enrutamiento y asegurando una comunicación efectiva entre las subredes. Ambos protocolos han contribuido a optimizar el rendimiento de la red y han garantizado una conectividad eficiente y segura para la empresa.

• Se puede afirmar que la implementación de los protocolos de encaminamiento estático y dinámico (RIPv2) ha demostrado ser exitosa y ha proporcionado una sólida base para la infraestructura de red en el proyecto. Estos protocolos han asegurado una comunicación efectiva entre las subredes, optimizando el rendimiento y la eficiencia de la red. Además, la combinación de ambos protocolos ha permitido la adaptabilidad y flexibilidad necesarias para responder a cambios en la topología de la red. En consecuencia, se puede concluir que la elección y configuración de los protocolos de encaminamiento ha sido fundamental para lograr una red confiable, escalable y apta para satisfacer las necesidades de comunicación de la empresa en el entorno simulado en Cisco Packet Tracer.