INF2010 - ASD

Monceaux

Plan

- Définition de monceau et implémentation
- Insertion et retrait d'éléments
- Construction d'un monceux
- Tri par monceau

Plan

- Définition de monceau et implémentation
- Insertion et retrait d'éléments
- Construction d'un monceux
- Tri par monceau

Monceau - définition

- Un arbre complet tel que pour chaque noeud N dont le parent est P, la clé de P est plus petite que celle de N
- Normalement implémenté dans un tableau
- Insertion et retrait sont O(lg N) dans le pire cas
- Recherche du plus petit élément est O(1) dans le pire cas

Monceau – implémentation

- On utilise un tableau pour implémenter l'arbre
- On met la racine de l'arbre à la position 1, plutôt que la position 0, ce qui facilite les opérations
- Pour chaque nœud i, les indices sont donc 2*i pour le fils gauche et 2*i + 1 pour le fils droit

Monceau - exemple

0	1	2	3	4	5	6	7	8	9	10	11
	13	21	16	24	31	19	68	65	26	32	

Plan

- Définition de monceau et implémentation
- Insertion et retrait d'éléments
- Construction d'un monceux
- Tri par monceau

0	1	2	3	4	5	6	7	8	9	10	11
	13	21	16	24	31	19	68	65	26	32	

 1						<u>-</u>				
13	21	16	24	31	19	68	65	26	32	

0	1	2	3	4	5	6	7	8	9	10	11
	13	21	16	24		19	68	65	26	32	31

0	1	2	3	4	5	6	7	8	9	10	11
	13		16	24	21	19	68	65	26	32	31

0	1	2	3	4	5	6	7	8	9	10	11
	13	14	16	24	21	19	68	65	26	32	31

Insertion

```
/**
 * Insert into the priority queue, maintaining heap order.
 * Duplicates are allowed.
 * @param x the item to insert.
 */
public void insert( AnyType x )
{
   if( currentSize == array.length - 1 )
       enlargeArray( array.length * 2 + 1 );

   // Percolate up
   int hole = ++currentSize;
   for( ; hole > 1 && x.compareTo( array[ hole / 2 ] ) < 0; hole /= 2)
       array[ hole ] = array[ hole / 2 ];
   array[ hole ] = x;
}</pre>
```


0	1	2	3	4	5	6	7	8	9	10	11
	13	14	16	24	21	19	68	65	26	32	31

0	1	2	3	4	5	6	7	8	9	10	11
		14	16	24	21	19	68	65	26	32	31

31 ?

0 1 2 3 4 5 6 7 8 9 10 11

14 16 24 21 19 68 65 26 32

S. Kadoury, M. Gagnon, E. Merlo, © Copyright 2004-2006, École Polytechnique de Montréal

31 ?

2 3 4 5 6 7

S. Kadoury, M. Gagnon, E. Merlo, © Copyright 2004-2006, École Polytechnique de Montréal

•	•	_		-		•	-	•	•	10	
	14	21	16	24	31	19	68	65	26	32	

S. Kadoury, M. Gagnon, E. Merlo, © Copyright 2004-2006, École Polytechnique de Montréal

```
/**
  * Remove the smallest item from the priority queue.
  * @return the smallest item, or throw UnderflowException, if empty.
  */
public AnyType deleteMin()
{
   if( isEmpty())
      throw new UnderflowException();

   AnyType minItem = findMin();
   array[1] = array[ currentSize--];
   percolateDown(1);

  return minItem;
}
```

```
/**
 * Internal method to percolate down in the heap.
 * @param hole the index at which the percolate begins.
private void percolateDown( int hole )
     int child;
    AnyType tmp = array[ hole ];
    for( ; hole * 2 <= currentSize; hole = child )</pre>
         child = hole * 2; //Considérer fils de gauche
         if ( child != currentSize && // il y a deux fils
         array[ child + 1 ].compareTo( array[ child ] ) < 0 ) //et fils droit<fils gauche
             child++; //Considérer fils droit
         if( array[ child ].compareTo( tmp ) < 0 )//fils considéré< élément à percoler
             array[ hole ] = array[ child ];//Remonter le fils courrent de un niveau
         else
             break; //sortir de la boucle. L'élément à percoler sera inséré à position hole
     }
    array[ hole ] = tmp; // Insérer l'élément à percoler à la position hole
 }
```

Monceau – insertion et retrait

- La complexité en pire cas d'un retrait et d'une insertion est O(log(n))
- La complexité en meilleur cas d'un retrait et d'une insertion est O(1)
- La complexité moyenne d'un retrait : O(log(n))
- La complexité moyenne d'une insertion est : O(1)

Plan

- Définition de monceau et implémentation
- Insertion et retrait d'éléments
- Construction d'un monceux
- Tri par monceau

0

Construction

```
/**
  * Establish heap order property from an arbitrary
  * arrangement of items. Runs in linear time.
  */
private void buildHeap()
{
  for( int i = currentSize / 2; i > 0; i-- )
     percolateDown( i );
}
```


0															
	92	47	21	20	12	25	63	61	17	55	37	45	64	83	73

0

0

0

Monceau - construction 12

0	1			<u>-</u>											
	12	92	21	17	37	25	63	61	20	55	47	45	64	83	73

Monceau - construction

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	12	17	21	92	37	25	63	61	20	55	47	45	64	83	73

Monceau - construction

0

Plan

- Définition de monceau et implémentation
- Insertion et retrait d'éléments
- Construction d'un monceux
- Tri par monceau

Tri par monceau - Principe

- On applique les modifications suivantes au monceau:
 - chaque nœud a une valeur plus grande ou égale à celle de tous ses descendants
 - dans le tableau qui implémente le monceau, la racine se trouve à l'index 0 (au lieu de 1)
 - pour chaque nœud i, les index sont donc 2*i +1 pour le fils gauche et 2*i+2 pour le fils droit

Tri par monceau - Principe

- La procédure est la suivante:
 - On met dans le tableau les valeurs à trier.
 - On crée le monceau initial
 - On retire la racine du monceau (qui est la plus grande valeur) et on la permute avec le dernier item du monceau
 - 4. On fait percoler la racine, s'il y a lieu
 - On répète les étapes 3 et 4 avec le monceau obtenu qui contient maintenant un élément de moins

Création du monceau

Retrait du 1er élément

Percoler

Percoler

Retrait du 2ème élément

Percoler

Percoler

Retrait du 3^{ème} élément

Percoler

Retrait du 4^{ème} élément

Percoler

Retrait du 5ème élément

Percoler

Retrait du 6^{ème} élément

2

Le tableau est maintenant trié

Tri par monceau

Tri par monceau (2)

```
/**
 * Internal method for heapsort that is used in deleteMax and buildHeap.
 * @param a: un tableau dont les éléments sont de type Comparable.
 * @int i: la position de l'élément à percoler.
 * @int n: la position du dernière élément du monceau.
 */
private static <AnyType extends Comparable<? super AnyType>>
void percDown( AnyType [ ] a, int i, int n ) {
     int child;
    AnyType tmp;
     for( tmp = a[ i ]; leftChild( i ) < n; i = child ) {</pre>
         child = leftChild( i );
         if (child != n - 1 \&\& a[ child ].compareTo(a[ child + 1 ]) < 0)
             child++;
         if( tmp.compareTo( a[ child ] ) < 0 )</pre>
             a[ i ] = a[ child ];
         else
             break;
    a[i] = tmp;
```

Tri par monceau (3)

```
/**
  * Internal method for heapsort.
  * @param i the index of an item in the heap.
  * @return the index of the left child.
  */
private static int leftChild( int i )
{
    return 2 * i + 1;
}
```

Tri partiel

- Supposons maintenant un monceau dont la racine est le plus petit élément (contrairement à l'exemple précédent)
- Supposons que le tableau contient n éléments, et une valeur m < n
- On remarquera que après m itérations, on obtient, à la fin du tableau, et en ordre inverse, les m plus petits éléments du tableau

Tri partiel (2)

- On peut donc, de manière efficace, trier les m plus petits éléments du tableau: O(m lg n)
- C'est le même principe que celui du tri par sélection, mais le tri par sélection est moins efficace: O(mn)

Création du monceau

Retrait du 1er élément

Percoler

Retrait du 2^{ème} élément

Percoler

Retrait du 3^{ème} élément

Percoler

Si on arrête ici, on voit qu'on a bien obtenu les 3 plus petits éléments, qui sont en ordre croissant si on parcourt le tableau à partir de la fin

S. Kadoury, M. Gagnon, E. Merlo, © Copyright 2004-2006, École Polytechnique de Montréal

Exercice

On veut ajouter une fonction **int findMax()** à la classe BinaryHeap. Donnez le code de la fonction **int findMax()** en assurant un temps d'exécution dans le pire cas qui ne doit pas dépasser currentSize/2.

Solution