5. Gün 1. Ders: SARS-CoV-2 konusunda şu an ne yapıyoruz

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- SARS-CoV-2 ile ilgili ana epidemiyolojik parametrelere ait kanıtları kısaca gözden geçirmek
- Bir COVID-19 modeli tasarlamak için asgari şartların neler olduğunu anlamak
- Pandeminin geri kalanı için ileriye dönük zorlukları anlamak

SARS-CoV2: pandeminin başlangıcı

- Aralık 2019'da Çin CDC (Hastalık Önleme ve Kontrol Merkezi)
 Wuhan'da yeni bir solunum sendromu için salgın araştırması yapıldığını duyurdu
- Vakaların gıda pazarıyla ilgili olduğu belirlendi
- İnsandan insana bulaşma belirginleşti
- Sorumlunun koronavirüs olduğu tespit edildi
- Wuhan'da ilk kısıtlamalar Ocak 2020'nin ortasında uygulandı

SARS-CoV2: pandeminin başlangıcı

SARS-CoV2'nin bulaşması

- Hayvansal kökenli olduğu düşünüldü ve deniz ürünleri pazarıyla ilişkilendirildi ancak araştırmalar devam ediyor
- Bunun ardından belirgin boyutta insandan insana bulaşma gerçekleşti

 SARS ve diğer koronavirüslere ait önceki kanıtlar, aerosolların, damlacıkların ve enfekte kişilerle doğrudan temas etmenin ana bulaşma yolu olduğunu göstermiştir

SARS-CoV2'nin bulaşabilirliği

 SARS-CoV2 oldukça bulaşıcıdır ve ilk tahminlere göre R0 değeri 2,2'dir; aralık [1,4 - 3,9]

Li ve ark. NEJM 2020

- Aralığın sonundaki değerin yüksekliği bir hayli tartışılmıştır ve bu yüksekliğin belirli ortamlardan kaynaklandığı düşünülmüştür
- Diğer pandemilerle karşılaştırıldığında COVID-19 üst sırada yer almaktadır

	SARS-CoV-2	SARS-CoV	Pandemic influenza 1918	Pandemic influenza 2009	Interpretation
Transmissibility, R _o	2.5	2.4	2.0	1.7	SARS-CoV-2 has the highest average R _o

Petersen K ve ark. Lancet 2020

SARS-CoV2'nin bulaşabilirliği

The Royal Society: https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf

Table 1 Estimated Mean Values of ℛ₀ from Data.

Disease outbreak and location	ℛ 0	Reference	
Smallpox in Indian subcont. (1968-73)	4.5	Anderson and May (1991)	
Poliomyelitis in Europe (1955–60)	6	Anderson and May (1991)	
Measles in Ghana (1960-68)	14.5	14.5 Anderson and May (1991)	
SARS epidemic in (2002–03)	3.5	Gumel et al. (2004)	
1918 Spanish influenza in Geneva			
Spring wave	1.5	Chowell, Ammon, Hengartner, and Hyman (2006)	
Fall wave	3.8	Chowell et al. (2006)	
H2N2 influenza pandemic in US (1957)	1.68	Longini, Halloran, Nizam, and Yang (2004)	
H1N1 influenza in South Africa (2009)	1.33	White, Archer, and Pagano (2013)	
Ebola in Guinea (2014)	1.51	Althaus (2014)	
Zika in South America (2015-16)	2.06	Gao et al. (2016)	

van den Driessche *IDM* 2017

 Enfeksiyonu bulaşıcı olmayan "kuluçka" dönemi izler

~2,2'lik bir temel

değerine sahiptir

Kuluçka süresi ~5.1

gündür

bulaşabilirlik

- Bunlar ~5,1 gün sonra semptomatik hale gelirler
- Bir kısmı semptom geliştirmez. Bu oran 10-19 yaş grubunda ~ %79, 20 yaş üzerinde %31'dir

Davies ve ark. Nature medicine 2020

 Kanıtlar, virüs bulaşmasının 4 gün kadar kısa veya 15 gün kadar uzun olabileceğini gösteriyor

Wölfel R ve ark. Nature 2020

Liu W-D ve ark. *Journal of Infection* 2020

Enfeksiyon dönemi ~4 - 15 gün sürebilir

- Çin'den alınan veriler (Şubat 2020):
- ☐ Vaka fatalite hızı (Case fatality ratio—CFR) %1,4
- ☐ Enfeksiyon ölüm oranı (Infection fatality ratio-IFR) %0,7
- ☐ 50 yaştan itibaren dik yükseliş
- Diğer solunum hastalıkları için vaka ölüm oranları
- □ SARS ~%10
- ☐ H1N1 gribi (2009) ~%0,01
- ☐ İspanyol gribi (1918) ~ %2
- BK, AB ve ABD verileri benzer tahminler vermektedir – BK, IFR'yi %0,8-1,2 olarak bildirmiştir

İyileşme dönemi ~7 gün olabilir

Elimizde bir model var!

- SARS-CoV2'nin temel epidemiyolojisini anlamak için basit bir SEIR modeli kullanılabilir
- Her parametre daha fazla yoruma ve karmaşıklığa tabidir
- Enfeksiyon kontrolünün temel mekanikleri bu başlangıç yaklaşımıyla kabaca simüle edilebilir

Şu ana kadar ne söyleyebiliriz?

- Oldukça bulaşıcı: R₀~2,5-4, kontrol önlemleri olmadan iki katına çıkma süresi 2-5 gündür
- Ölüm oranı yüksek (enfekte olanların ~%1'i)
- Yaş, şiddeti belirlemede önemli bir rol oynamaktadır
- Ocak 2020'de bulaşıcılık anlaşılması yeterli olmadı! Yeni varyantlar oyunu değiştirdi

Zorluklar

- Yalnızca CFR değilsağlık hizmeti talebi de yüksektir (vakaların %2-3'ünün hastaneye yatırılması gerekmiştir)
- Kontrol önlemleri olmadan sağlık sistemleri tıkanabilir, ölümler daha da artabilir
- Ancak mevcut kontrol önlemleri ya ekonomik açıdan maliyetli ya da ölçeklenmesi zordur
- Dört strateji:
 - ☐ Hafifletme yönetmek ancak salgını durduramamak
 - ☐ Bastırma salgını durdurmak (veya geciktirmek)
 - Aşılama
 - ☐ Gelişmiş tıbbi bakım

Hafifletme

- LMIC'ler salgınlarda yüksek gelirli ülkelere göre daha erken uygulandı - bu nedenle erken üstel artış daha etkili bir şekilde önlendi
- Bastırma, sürdürülmesi daha az kolay bir önlemdir
- Avrupa, Kuzey Amerika, Latin Amerika, Orta Doğu ve Güney Asya ülkelerinin tümü salgınla karşı karşıyadır
- İstisnalar (ör. Güney Afrika) hariç Afrika bugüne kadar daha az etkilenmiş gibi duruyor

Walker ve ark. Science 2020

Bastırma (aşılama öncesi)

- Çoğunlukla planlandığı gibi işe yaramıştır ancak aşırı maliyetlidir ve bu yüzden sürdürülebilir değildir
- Ancak önlemleri kaldırmak elde edilen tüm kazanımları riske atmaktadır
- Gevşeme en sonunda bizi R>1'e itecek
- Salgın nedeniyle kapanmaların tek alternatifi bireysel bulaşma zincirlerini bölgesel olarak kontrol etmektir
 - ☐ Test etme ve izleme
 - ☐ Erken küme tespiti
 - ☐ Yerel kapanmalar

Aşılama

- Bağışıklama programları küresel ölçekte benzeri görülmemiş bir şekilde büyütülmüştür
- Etki neredeyse hemen görülmüştür
- Aşıların çoğunda hastaneye yatışlar ~%60 oranında azalmıştır
- Aşıların çoğu mortaliteye karşı koruma sağlamıştır >%99

Financial Times Şubat 2021

Gelişmiş tıbbi bakım

- Yeni bakım algoritmalarıyla birlikte SARS-CoV2 YBÜ tedavisinin iyileştirilmesinin mortaliteyi azalttığı düşünülmektedir
- Antiviral ilaçların (Remdesivir) yeni formülasyonları şiddetli hastalık sonuçlarını iyileştirebilir

Özet

- Salgının başladığı günden itibaren COV1D-19'un epidemiyolojisini anlamak için faydalı bilgiler topladık
- SEIR modeli duruma uyuyor ancak hafif değişiklikler yapılmalı
- Bulaşmayı doğru bir şekilde üretmek için daha fazla karmaşıklık eklenmelidir
- SARS-CoV2 önceki pandemilerle karşılaştırıldığında oldukça bulaşıcıdır
- Yüksek ölümcüllük ve şiddet onu daha da zor hale getirmektedir