How to run and interpret assumptions for initial models

Montserrat Valdivia

1. How to run the assumptions for initial models

1.1 Download the Assumptions for original models.R file

Make sure to download the file to the same directory where you run Victoria's code.

1.2. Run Victoria's code

You can run the seismic_setup.R file, we will need the data and the models. Particularly we need the cleaned and filter data dat_new to run the assumptions function.

1.3. Copy and paste the following code to run the assumptions

```
# Make sure you have the same working directory
getwd()
# Call in the function and the model specification
source("Assumptions for original models.R")

# Run the function specifying your data and your model
# model_1 uses ethnicity_cat
# model_2 uses urm
# the cleaned data from Victoria's code
assumptions(clean_data = dat_new, model = model_1)
assumptions(clean_data = dat_new, model = model_2)
```

The code should generate two folders, one for assumptions of the first model and the second for assumptions on the second model.

2. Interpretation

Inside the folders with assumptions you will find the following graphs, an excel file, and an RData file. The RData file contains all residuals (i.e., level 1 and level 2 residuals and their standardized residuals) in case you want to use them and explore more in depth.

2.1. Normality

Use the "Level1_ResidualsvsFitted_" graphs. There are as many graphs as courses were analyzed. Residuals should overlap the diagonal line in the qq-plot.

In the excel file, there is a Shapiro-Wilk test for the residuals to test the null hypothesis that residuals distribute normally. We want to retain the null hypothesis, therefore, p>.05 to assume normality of the distribution of residuals.

2.2. Linearity

Scatterplot of standardized residuals vs fitted values OR scatterplots of residuals and predictors (i.e., female, ethnicity, etc.). We expect that the observations in these scatterplots do not show a pattern that deviates from a linear relationship, in other words, residuals are distributed randomly.

2.3. Homoscedasticity

Scatterplot of standardized residuals vs fitted values. We expect that for each fitted value in the X-axis, the residuals variability is similar. If the plot looks like a rombus or a funnel then equal variance cannot be assumed.