H2

[Ex 1.5, p45]

In Exercise below, sketch and find ranges of f, g, f + g, and $f \cdot g$.

$$0. \quad f(x) = x^2, \quad g(x) = x$$

B

In Exercise below, find the domains and ranges of f, g, f/g, and g/f.

3.
$$f(x) = 2$$
, $g(x) = x^2 + 1$

Graph the functions in Exercises below.

29.
$$y = \sqrt{x+4}$$

31.
$$y = |x - 2|$$

41.
$$y = \frac{1}{x-2}$$

45.
$$y = \frac{1}{(x-1)^2}$$

49. The accompanying figure shows the graph of a function f(x) with domain [0, 2] and range [0, 1]. Find the domains and ranges of the following functions, and sketch their graphs.

b.
$$f(x) - 1$$

d.
$$-f(x)$$

f.
$$f(x - 1)$$

h.
$$-f(x+1)+1$$

Complete the following table, using the side lengths of the triangles below. Show

you working.

 θ $-\pi/4$ $\pi/3$ $5\pi/6$ $\cos \theta$ $\cot \theta$

53. Apply the law of cosines to the triangle in the accompanying figure to derive the formula for $\cos(A - B)$.

54. a. Apply the formula for $\cos(A - B)$ to the identity $\sin \theta = \cos\left(\frac{\pi}{2} - \theta\right)$ to obtain the addition formula for $\sin(A + B)$.