

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 29.11.2013

12.º Ano de Escolaridade

Na sua folha de respostas, indique de forma legível a versão do teste.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperimetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone: πrg (r - raio da base; g - geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3}\pi r^3 \ (r-raio)$$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$${}^{n}\sqrt{\rho\operatorname{cis}\theta} = {}^{n}\sqrt{\rho}\operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right) \ (k\in\{0,\ldots,n-1\} \ \mathbf{e} \ n\in\mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,6827$$

 $P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0,9545$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0,9343$$
$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0,9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma está correta.
- Escreva na sua folha de respostas apenas o número de cada item e a letra correspondente à opção que selecionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- 1. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte.

x_i	0	2	4
$P(X=x_i)$	а	b	0,3

Sabe-se que:

- *a* e *b* designam números reais positivos;
- o valor médio da variável X é igual a 2,2

Qual é o valor de a?

(A) 0.1

(B) 0,2

(C) 0.3

(D) 0.4

2. A soma de todos os elementos de uma certa linha do triângulo de Pascal é igual a 256

Qual é o terceiro elemento dessa linha?

(A) 28

(B) 36

(C) 56

(D) 84

3. Do desenvolvimento de $(x^2 + 2)^6$ resulta um polinómio reduzido.

Qual é o termo de grau 6 desse polinómio?

(A) $8x^6$

(B) $20x^6$

(C) $64x^6$

(D) $160x^6$

4. Seja Ω o espaço de resultados associado a uma experiência aleatória.

Sejam A e B dois acontecimentos ($A \subseteq \Omega$ e $B \subseteq \Omega$).

Sabe-se que $P(A \cap B) = \frac{1}{5}$

Qual é o valor de $P(\overline{A} \cup (A \cap \overline{B}))$?

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

(C) $\frac{3}{5}$

(D) $\frac{4}{5}$

5. Uma variável aleatória X tem distribuição normal.

Sabe-se que P(X > 40) é inferior a P(X < 30)

Qual dos números seguintes pode ser o valor médio da variável aleatória X?

(A) 32

(B) 35

(C) 38

(D) 41

GRUPO II

Nas respostas aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- 1. Numa caixa, estão cinco bolas, indistinguíveis ao tato, numeradas de 1 a 5
 - **1.1.** De quantas maneiras diferentes se podem colocar, lado a lado, as cinco bolas, de modo que as bolas com os números 3 e 4 figuem ao lado uma da outra?
 - **1.2.** Considere a experiência aleatória que consiste em retirar ao acaso e em simultâneo três bolas da caixa e observar os seus números.

Sejam X e Y as variáveis aleatórias seguintes.

X: «número de bolas retiradas com número ímpar»

Y: «soma dos números das bolas retiradas»

- **1.2.1.** Construa a tabela de distribuição de probabilidades da variável aleatória X Apresente as probabilidades na forma de fração irredutível.
- **1.2.2.** Determine $P(Y < 10 \mid X = 1)$, sem recorrer à fórmula da probabilidade condicionada.

A sua resposta deve incluir:

- o significado de $P(Y < 10 \mid X = 1)$, no contexto da situação descrita;
- a apresentação dos casos possíveis que considerou;
- a apresentação dos casos favoráveis;
- o valor da probabilidade pedida.

- 2. O João tem uma coleção de dados, uns com a forma de um cubo (dados cúbicos) e os outros com a forma de um octaedro (dados octaédricos).
 - 2.1. Os dados cúbicos são equilibrados e têm as faces numeradas de 1 a 6

O João lança oito vezes um dos dados cúbicos.

Qual é a probabilidade de a face com o número 1 sair pelo menos duas vezes?

Apresente o resultado na forma de dízima, arredondado às décimas.

Nota — Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

2.2. Alguns dados da coleção do João são verdes e os restantes são amarelos.

Sabe-se que:

- 10% dos dados da coleção são amarelos;
- o número de dados cúbicos é igual ao triplo do número de dados octaédricos;
- 20% dos dados amarelos são cúbicos.

O João seleciona ao acaso um dos dados da coleção e verifica que é verde.

Qual é a probabilidade de esse dado ser octaédrico?

Apresente o resultado na forma de fração irredutível.

3. Seja Ω o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subseteq \Omega$ e $B \subseteq \Omega$).

Sabe-se que:

- A e B são incompatíveis;
- $P(A) \neq 0$ e $P(B) \neq 0$

Mostre que as probabilidades P(A), $P(A \mid B)$ e $P(\overline{B} \mid A)$ são todas diferentes e escreva-as por ordem crescente.

- **4.** Na Figura 1, está representado, num referencial o.n. Oxyz, um octaedro regular [ABCDEF], cujos vértices pertencem aos eixos coordenados.
 - **4.1.** Escolhem-se ao acaso dois vértices distintos do octaedro.

Qual é a probabilidade de a reta definida por esses dois vértices ser paralela à reta definida por $x = 1 \land y = 2$?

Apresente o resultado na forma de fração.

Sejam X e Y os acontecimentos seguintes.

X: «o vértice escolhido pertence ao plano definido por y = 0»

Y: «a soma das coordenadas do vértice escolhido é positiva»

Averigue se os acontecimentos X e Y são independentes. Justifique.

Na sua justificação, deve indicar os vértices que pertencem a cada um dos acontecimentos $X,\ Y$ e $X\cap Y$

Pretende-se numerar as restantes faces do octaedro com os números de $\,2\,$ a $\,8\,$ (um número diferente em cada face).

Figura 2

De quantas maneiras diferentes se podem numerar as restantes sete faces, de modo que, depois de o octaedro ter todas as faces numeradas, pelo menos três das faces concorrentes no vértice A figuem numeradas com números ímpares?

Figura 1

COTAÇÕES

GRUPO I

1	10 pontos	
2	10 pontos	
3	10 pontos	
4	10 pontos	
5	10 pontos	
_		50 pontos
GRUPO II		
1.		
1.1	15 pontos	
1.2.1	20 pontos	
1.2.2.	15 pontos	
2.		
2.1.	20 pontos	
2.2.	20 pontos	
3	15 pontos	
4.		
4.1.	15 pontos	
4.2.	15 pontos	
4.3.	15 pontos	
_		150 pontos
TOTAL		200 pontos