Generalization Error Bounds for State Space Models with an application to economic forecasting

Daniel McDonald

Department of Statistics Carnegie Mellon University

http://www.stat.cmu.edu/~danielmc

Joint Statistical Meetings August 3, 2010

FORECASTING

■ Given some data

$$x_1,\ldots,x_T\in\mathcal{X}$$

Want to predict the next data point(s)

$$x_{T+1},\ldots,x_{T+k}$$

Source: Czech National Bank

METHODS OF ECONOMIC FORECASTING

- VAR, ARIMA, GARCH
- Dynamic Factor Models (Hamilton, Chib, Kim and Nelson, others)
- Systems of Equations models
- Dynamic Stochastic General Equilibrium (DSGE) models
- All have equivalent representations as a state space model

Source: Econbrowser Recession Probabilities

SIMPLICITY/COMPLEXITY

- Unclear if these models are "good"
- Lots of economic arguments Pro/Con
- What about statistical behavior?
- Overfit/Underfit
- How do predictions compare across different SS models?

Source: Brad DeLong's realization of Daniel Davies' DSGE model

RESULTS FROM STATISTICAL LEARNING

ROBUST COMPARISONS/EVALUATIONS

Develop probabilistic bounds on the prediction error of state space models.

FORECASTING FRAMEWORK

- Observe training data $D_n = \{(Y_1, X_1), (Y_2, X_2), \dots, (Y_n, X_n)\}$ from some stochastic process μ
- 2 Choose model class \mathcal{F} from which to construct predictors, e.g. AR(p), DSGE, regression, wavelets, Dynamic Factor models, etc.
- 3 Use a loss function $\ell(Y, f(X))$ to measure performance of candidate predictors $f \in \mathcal{F}$
- 4 Estimate the model using D_n , to produce \hat{f} , your proposed forecasting model

GENERALIZATION ERROR

■ Want to control the generalization error, or risk, of chosen predictor \hat{f}

$$R(\widehat{f}) = \mathbb{E}_{\mu}[\ell(Y_0, \widehat{f}(X_0)) \mid D_n]$$

- But the stochastic process μ is unknown
- Usually estimate $R(\widehat{f})$ with training error

$$R_n(\widehat{f}) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \widehat{f}(X_i))$$

■ Since $R(\widehat{f})$ is an expectation

$$R_n(\widehat{f}) = R(\widehat{f}) + \gamma_n(\widehat{f})$$

where $\gamma_n(\widehat{f})$ measures discrepancy between sample D_n and the true DGP

TRAINING ERROR

Usually select

$$\widehat{f} = \operatorname*{argmin}_{f \in \mathcal{F}} R_n(f)$$

$$= \operatorname*{argmin}_{f \in \mathcal{F}} [R(f) + \gamma_n(f)]$$

- Minimizing $R_n(f)$ conflates risk and in-sample noise
- So $\mathbb{E}_{\mu}[R_n(\widehat{f})] < R(\widehat{f})$
- Model comparisons using $R_n(\hat{f})$ lead to choosing overly complex \mathcal{F} —overfitting

Source: Hastie, Tibshirani, and Friedman The Elements of Statistical Learning

ERROR BOUNDS

RISK

$$R(\widehat{f}) = \mathbb{E}_{\mu}[\ell(Y_0, \widehat{f}(X_0)) \mid D_n]$$

- Estimation of $R(\widehat{f})$ is a hard problem since μ is unknown
- Instead, derive probabilistic upper bounds
- These bounds depend on \mathcal{F} one needs to characterize the complexity of different function classes

ERROR BOUNDS (CONT.)

Can derive upper bound

$$R(\widehat{f}) \leq R_n(\widehat{f}) + \max_{f \in \mathcal{F}} \gamma_n(f)$$

- We cannot calculate $\max_{f \in \mathcal{F}} \gamma_n(f)$, but we can bound it with high probability
- With probability at least 1η ,

$$\max_{f\in\mathcal{F}}\gamma_n(f)\leq\delta(C(\mathcal{F}),n,\eta).$$

- $lue{C}(\mathcal{F})$ characterizes the complexity of \mathcal{F}
- Many complexity measures VC Dimension, covering numbers, algorithmic stability, and Rademacher complexity

RADEMACHER COMPLEXITY

DEFINITION

Define the Rademacher complexity of a function class \mathcal{F} as

$$\mathfrak{R}(\mathcal{F}) = \mathbb{E}_X \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i f(x_i) \right| \right],$$

where σ_i are iid and $\mathbb{P}(\sigma_i = 1) = \mathbb{P}(\sigma_i = -1) = \frac{1}{2}$.

- Measures the maximum correlation between the predictions and random noise how closely can some $f \in \mathcal{F}$ fit garbage?
- Gives tight bounds
- Removing \mathbb{E}_X gives empirical Rademacher complexity

BOUNDS FOR STATIONARY AR(p) MODELS

■ Bound the Rademacher complexity of the class of models

$$\mathcal{F}_p = \left\{ \varphi_1, \dots, \varphi_p : X_t = \sum_{i=1}^p \varphi_i X_{t-i} + \epsilon_t \text{ and } X_t \text{ is stationary} \right\}$$

- Stationarity requires the roots of $p(z) = z^p + \varphi_1 z^{p-1} + \cdots + \varphi_p$ lie inside the complex unit disc.
- Can show that a sufficient condition is¹

$$||\varphi||_2^2 \le \sum_{i=1}^p {p \choose i}^2 = {2p \choose p} - 1$$

¹ Fam and Meditch 1978

BOUNDS FOR STATIONARY AR(p) MODELS (CONT.)

■ This result + Bartlett and Mendelson 2002 + Mohri and Rostamizadeh 2009 = risk bound for loss functions $\ell < M$.

BOUND FOR AR(p) MODELS

With probability at least $1 - \eta$,

$$R(\widehat{f}) < R_a(\widehat{f}) + 2\sqrt{\frac{p}{n}}\sqrt{\left(\binom{2p}{p} - 1\right)\mathbb{V}X_1} + M\sqrt{\frac{\log 2/\eta'}{2a}}$$

- \blacksquare a and η' depend on the serial dependence
- \blacksquare a is like an effective sample size
- As $n \longrightarrow \infty$, $\eta' \longrightarrow \eta$ and $a \longrightarrow \infty$ if the serial dependence decays quickly enough
- Thus $R(\widehat{f}) R_a(\widehat{f}) \xrightarrow{n \to \infty} 0$

WHO CARES?

- Bounds are good for policy makers
- Can communicate the likelihood of large forecasting mistakes
- Can use to robustly compare competing models, classes of models
- Can tell you how much data you need to fit that DSGE with 20 structural shocks and 100 parameters

THE END

Questions?

danielmc@stat.cmu.edu

TIME SERIES BOUNDS

THEOREM

Let \mathcal{H} be the space of losses bounded above by M. Then given a sample from a stationary β -mixing distribution, for all m, a > 0 with 2ma = n and $\eta > 2(a-1)\beta(m)$, then for all $f \in \mathcal{F}$, with probability at least $1 - \eta$,

$$R(f) < R_a(f) + \mathfrak{R}_a(\mathcal{H}) + M\sqrt{\frac{\log 2/\eta'}{2a}}$$

with
$$\eta' = \eta - 2(a-1)\beta(m)$$
.

Source: Mohri and Rostamizadeh 2009

IMPLICATIONS

THEOREM

$$R(f) < R_a(f) + \mathfrak{R}_a(\mathcal{H}) + M\sqrt{\frac{\log 2/\eta'}{2a}}$$

- \blacksquare The effective sample size is not *n* but *a*
- \blacksquare The empirical risk is based on a data points separated by a distance 2m
- Faster decay in $\beta(m)$ means more 'independent' samples, smaller third term
- Second term is Rademacher complexity of the loss space
- Can substitute empirical Rademacher complexity with slight modifications
- *M* is an upper bound for the loss

RADEMACHER COMPLEXITY FOR STATIONARY AR

Ordinary linear regressions can be written as kernel regressions. Let

$$\alpha_i = (\mathbf{X}(\mathbf{X}'\mathbf{X})^{-2}\mathbf{X}'\mathbf{Y})_i$$
$$k(\mathbf{X}_i, \mathbf{X}_j) = \mathbf{X}_i\mathbf{X}_j',$$

where **X** is the $n \times p$ design matrix, **Y** are the responses, and **X**_i is the i^{th} row of the design matrix.

- Requiring $\sum_{i,j} \alpha_i \alpha_j k(\mathbf{X}_i, \mathbf{X}_j) \leq \gamma^2$
- Corresponds $||\widehat{\beta}^{OLS}||_2^2 \le \gamma^2$, or ridge regression

RADEMACHER COMPLEXITY FOR STATIONARY AR

$$\mathcal{F}_p \subseteq \overline{\mathcal{F}_p} = \left\{ \varphi_1, \dots, \varphi_p : x_t = \sum_{i=1}^p \varphi_i x_{t-i} \text{ and } ||\varphi||_2^2 \le {2p \choose p} - 1 \right\}$$

Allows application of kernel regularized result¹

$$\Re(\mathcal{F}_p) \leq \Re(\overline{\mathcal{F}_p}) \leq \frac{2}{\sqrt{n}} \sqrt{\left(\binom{2p}{p} - 1\right) \mathbb{E} \mathbf{X_1 X_1}'}$$

$$\Re_n(\mathcal{F}_p) \leq \Re_n(\overline{\mathcal{F}_p}) \leq \frac{2}{\sqrt{n}} \sqrt{\left(\binom{2p}{p} - 1\right) \frac{1}{n} \sum_{t=i}^n \mathbf{X_i X_i}'}$$

¹ Bartlett and Mendelson 2002