Feuille TD 2: Fonctions Réelles d'une variable réelle

Exercice 1. Simplifier (ou pas) les expressions suivantes.

a)
$$a(x) = (e^x + e^{-x})^2 - (e^x - e^{-x})^2$$
 b) $B = e^{-\ln(3)}$ c) $C = \ln(e^{-5})$

b)
$$B = e^{-\ln(3)}$$
 c) $C = \ln (3)$

d)
$$D = \frac{e^{\ln 7 - \ln 2}}{e^{\ln 7 + \ln 2}}$$
 e) $E = \ln \frac{3}{5} + \ln \frac{5}{3}$ f) $F = \ln(e+1)$ g) $G = \frac{\ln 3}{\ln 5}$.

e)
$$E = \ln \frac{3}{5} + \ln \frac{5}{3}$$

$$f) F = \ln(e+1)$$

Résoudre les équations suivantes.

h)
$$e^x = -2$$
 i) $e^{-x} = 2$ j) $\ln x = -2$ k) $\ln(-x) = 2$ l) $2^{x+3} = 3^{x-7}$ m) $e^{2x} = e^x + 6$ n) $e^{2x} = 5e^x - 6$ o) $(\ln x)^2 - \ln(x^2) = 3$

$$\lim_{x \to -2} x = -2$$

k)
$$\ln(-x) = 2$$
 1) $2^{x+3} = 3$

m)
$$e^{2x} = e^x + 6$$

$$e^{2x} = 5e^x - 6e^x$$

$$\mathbf{o})(\ln x)^2 - \ln \left(x^2\right) = 3$$

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Écrire les ensembles suivants en langage mathématique.

- (1) L'image de [0,1] par f.
- (2) L'ensemble des antécédents de 1 par f.
- (3) L'ensemble des entiers naturels pairs dont l'image par f est inférieure ou égale à 5.

Exercice 3. Formaliser avec des quantificateurs les assertions suivantes portant sur une application $f: \mathbb{R} \to \mathbb{R}$:

- (a) Il v a au moins un nombre réel qui a deux antécédents par f.
- (b) L'image de f contient au moins deux éléments distincts.
- (c) L'image réciproque de $[50, +\infty[$ par f n'est pas majorée.

Exercice 4. Déterminer le domaine de définition des fonctions suivantes.

a)
$$a(x) = \frac{1}{x-1}$$

b)
$$b(x) = \sqrt{x} + \frac{1}{x-1}$$

a)
$$a(x) = \frac{1}{x-1}$$
 b) $b(x) = \sqrt{x} + \frac{1}{x-1}$ **c)** $c(x) = \sqrt{\frac{x-5}{x^2-6x-7}}$

d)
$$d(x) = \sqrt{x - x^3}$$

$$e(x) = \frac{1}{4-x^2}$$

$$x$$
 6) $g(x) = \sqrt{\ln (x^2 - 1)}$

k)
$$k(x) = \sqrt{x^2 + 2x}$$

1)
$$l(x) = \frac{1}{\ln(x)}$$

d)
$$d(x) = \sqrt{x - x^3}$$
 e) $e(x) = \frac{1}{4 - x^2}$ f) $f(x) = \ln \frac{2 + x}{2 - x}$ g) $g(x) = \sqrt{\frac{\ln(x)^2 - 4}{\ln(x + 1)}}$
h) $h(x) = \frac{1}{x^2 + 1}$ i) $i(x) = \sqrt{1 - x^2}$ j) $j(x) = \sqrt{x^2 - 1}$
k) $k(x) = \sqrt{x^2 + 2x - 3}$ l) $l(x) = \frac{1}{\ln(x)}$ m) $m(x) = \sqrt{\ln(x^2 + 4)}$

Exercice 5. Déterminer $f \circ g$ et donner les ensembles de définition de f, g et $f \circ g$.

- a) $f(x) = \frac{\tan x}{x^2 + 4x + 4}$ et $g(x) = \cos x$
- **b)** $f(x) = 2 \ln x \text{ et } g(x) = \exp(\frac{1}{x})$
- c) $f(x) = \sqrt{x-1}$ et $q(x) = \frac{1}{x^2-1}$

Exercice 6. Soient f et q les fonctions numériques définies par $f(x) = x^2 - 3$ et $g(x) = \sqrt{x+3}$. Expliciter les domaines de définition de f et g, ainsi que les fonctions $f \circ g \text{ et } g \circ f$. A-t-on $f \circ g = g \circ f$?

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x^3 - 3x$. La fonction $f(x) = x^3 - 3x$. est-elle bijective de \mathbb{R} sur son image?

Exercice 8. Soit f la fonction définie par $f(x) = \frac{2x}{1+x^2}$, pour tout $x \in \mathbb{R}$.

- a) Montrer que f est impaire.
- b) Quels sont les antécédents de 0 par f?
- c) Si $y \neq 0$, trouver les antécédents de y par f.
- d) Déduire des questions précédentes l'image de f.
- e) Si 0 < y < 1, montrer que et en déduire que

$$0 < 1 - \sqrt{1 - y^2} < y < 1 + \sqrt{1 - y^2},$$

$$0 < \frac{1}{y} - \sqrt{\frac{1}{y^2} - 1} < 1 < \frac{1}{y} + \sqrt{\frac{1}{y^2} - 1}.$$

f) Si -1 < y < 0, déduire de e) que

$$\frac{1}{y} - \sqrt{\frac{1}{y^2} - 1} < -1 < \frac{1}{y} + \sqrt{\frac{1}{y^2} - 1} < 0.$$

g) Trouver un intervalle I tel que $f_{|I|}$ soit une bijection de I sur $f(\mathbb{R})$, et calculer la bijection réciproque.

Exercice 9. Le radium se désintègre au cours du temps en obéissant à la loi suivante:

$$M(t) = M_0 e^{-0.000436t}$$

où M(t) est la masse présente au temps t (exprimé en années). Après t=0, combien de temps faut-il attendre pour que la masse présente se soit réduite de moitié ? Combien de temps supplémentaire doit-on attendre pour que cette masse soit à nouveau réduite de moitié?

Exercice 10. Déterminer f connaissant g et $f \circ g$.

a)
$$f \circ g(x) = \sin(x)$$
 et $g(x) = \tan \frac{x}{2}$ b) $f \circ g(x) = \cos(2x)$ et $g(x) = \sin^2(x)$

Exercice 11.

- a) Trouver tous les $x \in \mathbb{R}$ qui vérifient l'équation $\cos(5x) = \cos(2\pi/3 x)$.
- b) Trouver tous les $x \in \mathbb{R}$ qui vérifient l'inégalité $2\cos^2(x) 9\cos(x) + 4 > 0$.

Exercice 12. Déterminer le domaine et tracer le graphe des fonctions suivantes

- a) a(x) = Arcsin(sin(x)) b) b(x) = Arccos(cos(x)) c) c(x) = Arctan(tan(x))

- **d)** $d(x) = \sin(\operatorname{Arcsin}(x))$ **e)** $e(x) = \cos(\operatorname{Arccos}(x))$ **f)** $f(x) = \tan(\operatorname{Arctan}(x))$

Exercice 13. Déterminer le domaine des fonctions suivantes et simplifier leur expression:

$$\begin{array}{ll} \mathbf{a)} \ a(x) = \ln \left(\ln \left(e^{e^x} \right) \right) & \mathbf{b)} \ b(x) = x^{\frac{\ln (\ln (x))}{\ln x}} \\ \mathbf{c)} \ c(x) = \cos (3 \operatorname{Arccos}(x)) & \mathbf{d)} \ d(x) = \cos (\operatorname{Arctan}(x)) \end{array}$$

Simplifier les expressions suivantes:

e)
$$e(x,y) = \cos(\operatorname{Arcsin}(x) + \operatorname{Arcsin}(y))$$
 f) $f = \operatorname{Arcsin}(3/5) + \operatorname{Arcsin}(4/5)$

Exercice 14. Résoudre les équations suivantes:

a)
$$\exp(2\ln(x)) = 9$$
 b) $\ln\left(\frac{(y+6)(y+3)}{y+2}\right) = 0$ c) $\ln(y+6) - \ln(y+2) + \ln(y+3) = 0$

Exercice 15. Soit $f: \mathbb{R} \to \mathbb{R}$ une function, dont on note \mathcal{C}_f le graphe. Quelle(s) transformation(s) géométrique(s) appliquer à C_f pour obtenir le graphe de chacune des fonctions suivantes?

a)
$$a(x) = f(x+2)$$
 b) $b(x) = -f(x+2)$ c) $c(x) = -f(x)$ d) $d(x) = 2f(x)$ e) $e(x) = f(x/2)$ g) $g(x) = f(2x)$ Tracer les graphes de ces fonctions dans le cas où $f(x) = x^3$.

Exercice 16. La concentration d'un réactif d'une réaction chimique (dite ici du second ordre) est donnée au cours du temps par la loi

$$C(t) = \frac{C_0}{1 + kC_0 t},$$

où k>0 est une constante de cinétique chimique. Tracer l'allure du graphe de $t \mapsto C(t)$ et interpréter la constante C_0 .

Exercice 17. La quantité $\frac{x^2+|x-1|-1}{x-1}$ admet elle une limite à droite ou une limite à gauche quand $x \to 1$? La limite $\lim_{x \to 1, x \neq 1} \frac{x^2 + |x-1| - 1}{x - 1}$ existe-t-elle?

Exercice 18. Sachant que $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, calculer

a)
$$\lim_{x\to 0} \frac{\sin^2(x)}{x}$$
 b) $\lim_{x\to 0} \frac{\sin(4x)}{x}$ c) $\lim_{x\to 0} \frac{3\sin(x)+2x}{x}$ d) $\lim_{x\to 0} \frac{\tan(x)}{3x}$ e) $\lim_{x\to 0} \frac{\sin(2x)}{x\cos(x)}$ f) $\lim_{x\to 0} \frac{\sin(x^2)}{x}$

Exercice 19. Calculer les limites suivantes:
a)
$$\lim_{x \to +\infty} \frac{\ln(x^4)}{x^3}$$
 b) $\lim_{x \to +\infty} (x^2 - \ln(x))$ c) $\lim_{x \to 0^+} x^4 \ln x$ d) $\lim_{x \to 0^+} \frac{e^{x+3}}{x^3}$ e) $\lim_{x \to 0} \frac{1}{x^2} e^{-\frac{1}{x^2}}$ f) $\lim_{x \to 0} x^2 \sin(\frac{1}{x})$ g) $\lim_{x \to \infty} (x^2 - x + \cos(1/x))$ h) $\lim_{x \to \infty} \exp(\sin(1/\ln(x)))$ i) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$

f)
$$\lim_{x \to 0} x^2 \sin(\frac{1}{x})$$
 g) $\lim_{x \to \infty} (x^2 - x + \cos(1/x))$ **h**) $\lim_{x \to \infty} \exp(\sin(1/\ln(x)))$ **i**) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$