Building a Robot Judge: Data Science for Decision-Making

9. Encoders and Explanations

Q&A Page

https://padlet.com/eash44/ji7ehio1eksrm9o0

- 1. Relevance
 - ► Always report the first stage (F-test above 10)

- 1. Relevance
 - ► Always report the first stage (F-test above 10)
- 2. Exogeneity
 - ► Conditional exogeneity requires "no *Z*-confounders"
 - equivalent to having no unobserved confounders in the reduced form (RF) $Y \sim Z$
 - more precise to say "no RF-confounders".

1. Relevance

Always report the first stage (F-test above 10)

2. Exogeneity

- Conditional exogeneity requires "no Z-confounders"
 - ightharpoonup equivalent to having no unobserved confounders in the reduced form (RF) $Y \sim Z$
 - more precise to say "no RF-confounders".
- is it plausible? could instrument be endogenous to outcome?
- Check if instrument is correlated with predetermined variables

Relevance

► Always report the first stage (F-test above 10)

2. Exogeneity

- Conditional exogeneity requires "no Z-confounders"
 - \triangleright equivalent to having no unobserved confounders in the reduced form (RF) $Y \sim Z$
 - more precise to say "no RF-confounders".
- is it plausible? could instrument be endogenous to outcome?
- Check if instrument is correlated with predetermined variables

3. Exclusion restriction

- ▶ instrument Z only affects Y through treatment D.
 - could be referred to as "single mediator condition"
 - ightharpoonup D is the only mediator between Z and Y

Relevance

Always report the first stage (F-test above 10)

2. Exogeneity

- Conditional exogeneity requires "no Z-confounders"
 - \triangleright equivalent to having no unobserved confounders in the reduced form (RF) $Y \sim Z$
 - more precise to say "no RF-confounders".
- is it plausible? could instrument be endogenous to outcome?
- Check if instrument is correlated with predetermined variables

3. Exclusion restriction

- ▶ instrument Z only affects Y through treatment D.
 - could be referred to as "single mediator condition"
 - ightharpoonup D is the only mediator between Z and Y
- ▶ is it plausible? what are other possible links between Z and Y?
- ► Specify group which is affected by the instrument (local average treatment effect)

Resume Group Activity on IV

- ▶ Rejoin the same breakout group as last time and finish group discussions of instrument validity from your custom causal graph.
- Link to posts (please add yours if it is not posted yet):

https://padlet.com/eash44/zautjkdu6vnzg8qs

Encoders and Explanations

This lecture is about:

- 1. encoding high-dimensional datasets down to lower dimensions (dimensionality reduction)
- 2. explaining the predictions of classifiers and regressors

Encoders and Explanations

This lecture is about:

- 1. encoding high-dimensional datasets down to lower dimensions (dimensionality reduction)
- 2. explaining the predictions of classifiers and regressors

We will see that these are highly overlapping tasks.

High-dimensional datasets and machine learning models are black boxes

High-Dimensional Datasets

Big ML Models

High-dimensional datasets and machine learning models are black boxes

High-Dimensional Datasets

Big ML Models

- dimensionality reduction helps us understand data.
- explanation/interpretability help us understand models.

High-dimensional datasets and machine learning models are black boxes

High-Dimensional Datasets

Big ML Models

- dimensionality reduction helps us understand data.
- explanation/interpretability help us understand models.
- further: models are themselves a compressed representation of the data they are trained on.

• e.g. a classifier: produces $\hat{y}_i = f(x_i; \hat{\theta})$, a vector of predicted probabilities across classes for each observation i.

- e.g. a classifier: produces $\hat{y}_i = f(x_i; \hat{\theta})$, a vector of predicted probabilities across classes for each observation i.
 - This vector of class probabilities is a <u>compressed</u> representation of the outcome-predictive features x_i

- e.g. a classifier: produces $\hat{y}_i = f(x_i; \hat{\theta})$, a vector of predicted probabilities across classes for each observation i.
 - This vector of class probabilities is a <u>compressed</u> representation of the outcome-predictive features x_i
 - ▶ the vector of features, x_i , is itself a compressed representation (measurement) of some real-world complex object (e.g. a document) \mathcal{D}_i .

- e.g. a classifier: produces $\hat{y}_i = f(x_i; \hat{\theta})$, a vector of predicted probabilities across classes for each observation i.
 - This vector of class probabilities is a <u>compressed</u> representation of the outcome-predictive features x_i
 - ▶ the vector of features, x_i , is itself a compressed representation (measurement) of some real-world complex object (e.g. a document) \mathcal{D}_i .
- ▶ Correspondingly: the learned parameters $\hat{\theta}$ can also be understood as a **learned** compressed representation of the whole dataset:
 - ▶ it contains information about the training dataset, and in particular how the features and outcomes are related.

Information in $\hat{\theta}$

Say we train a multinomial logistic regression to classify observations x_i to classes y_i :

$$\hat{y}_k(\boldsymbol{x}_i) = \frac{\exp(\theta_k \cdot \boldsymbol{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l \cdot \boldsymbol{x}_i)}$$

 \blacktriangleright Let θ be the learned matrix of parameters relating features to outcomes:

$$\left[\begin{array}{cccc} \theta_{11} & \cdots & \theta_{1n_y} \\ & \ddots & & \\ \vdots & \theta_{jk} & \vdots \\ & & \ddots & \\ \theta_{n_x 1} & \cdots & \theta_{n_x n_y} \end{array}\right]$$

It contains n_y columns, which are n_x -vectors representing the outcome classes.

Information in $\hat{\theta}$

Say we train a multinomial logistic regression to classify observations x_i to classes y_i :

$$\hat{y}_k(\mathbf{x}_i) = \frac{\exp(\theta_k \cdot \mathbf{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l \cdot \mathbf{x}_i)}$$

 \blacktriangleright Let θ be the learned matrix of parameters relating features to outcomes:

$$\left[egin{array}{ccccc} heta_{11} & & \cdots & & heta_{1n_y} \ & & \ddots & & & & \ dots & & heta_{jk} & & dots \ & & & \ddots & & \ heta_{n_{ imes}1} & & \cdots & & heta_{n_{ imes}n_y} \end{array}
ight]$$

- lt contains n_v columns, which are n_x -vectors representing the outcome classes.
- lt contains n_x rows, which are n_y -vectors representing each feature input.

Information in $\hat{\theta}$

Say we train a multinomial logistic regression to classify observations x_i to classes y_i :

$$\hat{y}_k(\mathbf{x}_i) = \frac{\exp(\theta_k \cdot \mathbf{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l \cdot \mathbf{x}_i)}$$

Let θ be the learned matrix of parameters relating features to outcomes:

$$\left[egin{array}{ccccc} heta_{11} & & \cdots & & heta_{1n_y} \ & & \ddots & & & & \ dots & & heta_{jk} & & dots \ & & & \ddots & & \ heta_{n_{ imes}1} & & \cdots & & heta_{n_{ imes}n_y} \end{array}
ight]$$

- lt contains n_v columns, which are n_x -vectors representing the outcome classes.
- lt contains n_x rows, which are n_y -vectors representing each feature input.
- The columns and rows of θ contain **interpretable** information about the task-relevant dimensions of the data.
- ▶ E.g., could compute cosine similarity between the vectors:
 - column vectors are informative about which outcomes are similar/related.
 - row vectors are informative about which features are similar/related.

Information in causal estimate $\hat{\rho}$

Correspondingly, say we estimate a differences-in-differences regression:

$$Y_{it} = \alpha_i + \alpha_t + \rho D_{it} + \epsilon_{it}$$

where we obtain an OLS estimate $\hat{\rho}$ with standard error $\hat{\sigma}_{\rho}$.

Information in causal estimate $\hat{\rho}$

Correspondingly, say we estimate a differences-in-differences regression:

$$Y_{it} = \alpha_i + \alpha_t + \rho D_{it} + \epsilon_{it}$$

where we obtain an OLS estimate $\hat{\rho}$ with standard error $\hat{\sigma}_{\rho}$.

- ▶ the statistics $(\hat{\rho}, \hat{\sigma}_{\rho})$ are an extremely **compressed** representation of the task-relevant (i.e. *policy-relevant*) features of the dataset.
 - $\hat{\rho}$ is **interpretable** as a counterfactual prediction for the average treatment effect on Y_{it} of intervening on D_{it} .
 - $m{\hat{\sigma}}_{
 ho}$ is **interpretable** as the degree of uncertainty in that counterfactual prediction.

Outline

Dimensionality Reduction

Model Explanation

"The Swiss Roll"

- ► Datasets are not distributed uniformly across the feature space.
- ► They have a lower-dimensional latent structure – a manifold – that can be learned.

"The Swiss Roll"

- ► Datasets are not distributed uniformly across the feature space.
- They have a lower-dimensional latent structure – a manifold – that can be learned.

- improves computational tractability.
- can improve model performance.

Feature Importance / Selection

- ► For supervised learning tasks, doing feature selection to drop weak predictors has intuitive appeal.
 - Lasso models (with L1 penalty) do feature selection and produce sparse models.

Feature Importance / Selection

- For supervised learning tasks, doing feature selection to drop weak predictors has intuitive appeal.
 - Lasso models (with L1 penalty) do feature selection and produce sparse models.

Feature selection can be done as a pre-processing step:

```
from sklearn.feature_selection import SelectKBest, chi2
selector = SelectKBest(chi2, k=10)
X_train_filtered = selector.fit_transform(X_train,y_train)
```

 $ilde{\lambda}$ (used for classification) is fast but features must be non-negative. With negative predictors, can use F-statistics (f_classif for classification, f_regression for regression).

Feature Importance / Selection

- For supervised learning tasks, doing feature selection to drop weak predictors has intuitive appeal.
 - Lasso models (with L1 penalty) do feature selection and produce sparse models.

Feature selection can be done as a pre-processing step:

```
from sklearn.feature_selection import SelectKBest, chi2
selector = SelectKBest(chi2, k=10)
X_train_filtered = selector.fit_transform(X_train,y_train)
```

- $ilde{\chi}^2$ (used for classification) is fast but features must be non-negative. With negative predictors, can use F-statistics (f_classif for classification, f_regression for regression).
- chi2, f_classif, and f_regression measure linear correlations. Mutual information captures higher-order dependencies (mutual_info_classif, mutual_info_regression). Slower to compute.

PCA (principal component analysis) / SVD (singular value decomposition)

PCA (principal component analysis) / SVD (singular value decomposition)

► PCA computes the dimension in data explaining most variance.

```
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
X_train_pca = pca.fit_transform(X_train)
```

PCA (principal component analysis) / SVD (singular value decomposition)

► PCA computes the dimension in data explaining most variance.

```
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
X_train_pca = pca.fit_transform(X_train)
```


after the first component, subsequent components learn the (orthogonal) dimensions explaining most variance in dataset after projecting out first component.

- ▶ Data can be reduced by projecting down to first principal component dimensions.
 - can be used as predictors instead of the original matrix.
 - distance metrics between observations are approximately preserved.

- ▶ Data can be reduced by projecting down to first principal component dimensions.
 - can be used as predictors instead of the original matrix.
 - distance metrics between observations are approximately preserved.
- ► Can produce lossy "reconstruction" back in original space using pca.inverse_transform() method.

- Data can be reduced by projecting down to first principal component dimensions.
 - can be used as predictors instead of the original matrix.
 - distance metrics between observations are approximately preserved.
- ► Can produce lossy "reconstruction" back in original space using pca.inverse_transform() method.

Caveats:

- Standard PCA requires whole dataset in memory and is computationally costly.
 - use sklearn's IncrementalPCA to train in mini-batches.
 - MiniBatchSparsePCA learns regularized sparse components using an L1 penalty.

- Data can be reduced by projecting down to first principal component dimensions.
 - can be used as predictors instead of the original matrix.
 - distance metrics between observations are approximately preserved.
- ► Can produce lossy "reconstruction" back in original space using pca.inverse_transform() method.

Caveats:

- Standard PCA requires whole dataset in memory and is computationally costly.
 - use sklearn's IncrementalPCA to train in mini-batches.
 - ▶ MiniBatchSparsePCA learns regularized sparse components using an L1 penalty.
- PCA might destroy (a lot of) predictive information in your dataset.
 - compromise: use feature selection to keep strong predictors, and take principal components of weak predictors.

- Data can be reduced by projecting down to first principal component dimensions.
 - can be used as predictors instead of the original matrix.
 - distance metrics between observations are approximately preserved.
- ► Can produce lossy "reconstruction" back in original space using pca.inverse_transform() method.

Caveats:

- Standard PCA requires whole dataset in memory and is computationally costly.
 - use sklearn's IncrementalPCA to train in mini-batches.
 - MiniBatchSparsePCA learns regularized sparse components using an L1 penalty.
- ▶ PCA might destroy (a lot of) predictive information in your dataset.
 - compromise: use feature selection to keep strong predictors, and take principal components of weak predictors.
- dimensions are not interpretable.
 - For non-negative data (e.g. counts or frequencies), **Non-negative Matrix Factorization (NMF)** provides more interpretable factors than PCA.

Dimension Reduction for Visualization: t-SNE and MDS

Dimension Reduction for Visualization: t-SNE and MDS

From: L. Van der Maaten & G. Hinton, Visualizing Data using t-SNE, Journal of Machine Learning Research 9 (2008) 2579-2605

- ▶ t-Distributed Stochastic Neighbor Embedding (t-SNE) tries to keep similar observations close and dissimilar observations apart.
 - Useful for visualizing clusters of observations in high-dimensional space
- ▶ Multidimensional Scaling (MDS) tries to preserve distances between observations .

- ▶ Matrix of predictors treated as a Euclidean space (should standardize all columns)
- ▶ algorithm: initialize cluster centroids randomly, then shift around to minimize sum of within-cluster squared distance

- ► Matrix of predictors treated as a Euclidean space (should standardize all columns)
- ▶ algorithm: initialize cluster centroids randomly, then shift around to minimize sum of within-cluster squared distance

K-Means decision boundaries (Voronoi tessellation)

```
from sklearn.cluster import Kmeans
kmeans = KMeans(n_clusters=10)
kmeans.fit(X)
assigned_cluster = kmeans.labels_
```

- ► Matrix of predictors treated as a Euclidean space (should standardize all columns)
- ▶ algorithm: initialize cluster centroids randomly, then shift around to minimize sum of within-cluster squared distance


```
from sklearn.cluster import Kmeans
kmeans = KMeans(n_clusters=10)
kmeans.fit(X)
assigned_cluster = kmeans.labels_
```

K-Means decision boundaries (Voronoi tessellation)

k (number of clusters) is the only hyperparameter, can select using:

Selecting the number of clusters k using the silhouette score

Other clustering algorithms

- "k-medoid" clustering use L1 distance rather than Euclidean distance; produces the "medoid" (median vector) for each cluster rather than "centroid" (mean vector).
 - less sensitive to outliers, and medoid can be used as representative data point.

Other clustering algorithms

- "k-medoid" clustering use L1 distance rather than Euclidean distance; produces the "medoid" (median vector) for each cluster rather than "centroid" (mean vector).
 - less sensitive to outliers, and medoid can be used as representative data point.

- DBSCAN defines clusters as continous regions of high density.
 - detects and excludes outliers automatically

Other clustering algorithms

- "k-medoid" clustering use L1 distance rather than Euclidean distance; produces the "medoid" (median vector) for each cluster rather than "centroid" (mean vector).
 - less sensitive to outliers, and medoid can be used as representative data point.

- DBSCAN defines clusters as continous regions of high density.
 - detects and excludes outliers automatically

- ▶ Agglomerative (hierarchical) clustering makes nested clusters.
- can use assigned clusters, or distance to cluster centroids, as features in ML models.

Autoencoders: Optimal Compression Algorithms

► Autoencoders = neural nets that perform optimal domain-specific lossy compression:

► Learned encodings can be decoded back to a *reconstruction* – a (minimally) lossy representation of the original data.

Autoencoders: Optimal Compression Algorithms

► Autoencoders = neural nets that perform optimal domain-specific lossy compression:

- ► Learned encodings can be decoded back to a *reconstruction* a (minimally) lossy representation of the original data.
- ► AE's can memorize complex, unstructured data.

Autoencoder Architecture

- Stacked layers gradually decrease in dimensionality to create the compressed representation
- then gradually increase in dimensionality to try to reconstruct the input.
- can "tie weights" to make encoding layers and decoding layers symmetric.

Reconstruction from encoded vector

Figure~17--4.~Original~images~(top)~and~their~reconstructions~(bottom)

▶ autoencoder encodings can be used the same way as principal components — as dimension-reduced features, or for computing similarity metrics.

Autoencoders for Data Visualization

Figure 17-5. Fashion MNIST visualization using an autoencoder followed by t-SNE

- Decent baseline for visualizing the encodings:
 - use an autoencoder to compress your data to relatively low dimension (e.g. 32 dimensions)
 - then use t-SNE for mapping the compressed data to a 2D plane.

Variational Autoencoders

Encodings taken as parameters of a gaussian (means μ and variances σ^2)

Decoder draws from the distribution to produce first layer.

Variational Autoencoders

Encodings taken as parameters of a gaussian (means μ and variances σ^2)

➤ Can then sample from the normal distribution (or just choose numbers) and generate reconstructions.

Decoder draws from the distribution to produce first layer.

Variational Autoencoders

Encodings taken as parameters of a gaussian (means μ and variances σ^2)

- ➤ Can then sample from the normal distribution (or just choose numbers) and generate reconstructions.
- VAE's do semantic interpolation: picking an encoding vector between two encodings will produce a reconstruction that is "between" the associated images

Decoder draws from the distribution to produce first layer.

Recap: The ML Landscape

Outline

Dimensionality Reduction

Model Explanation

Explaining Model Predictions

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

- Machine learning models often make decisions for the wrong reasons.
- for example, classifying a dog image as a wolf because there is snow in the background (a correlated feature).

Explaining Model Predictions

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

- Machine learning models often make decisions for the wrong reasons.
- for example, classifying a dog image as a wolf because there is snow in the background (a correlated feature).

► These problems, along with the black box nature of ML models, is a major hurdle to making these technologies trustworthy enough to use to support high-stakes decisions, like those in courts.

Summary statistics / plotting data:

Scatter plots / regression plots:

Scatter plots / regression plots:

 $\label{thm:continuous} Event \ study \ plots \ "explain" \\ difference-in-difference \ regression \ estimates:$

Scatter plots / regression plots:

Event study plots "explain" difference-in-difference regression estimates:

- ► **Selective**: explanations should be short
 - i.e. low-dimensional.

- ▶ **Selective**: explanations should be short
 - i.e. low-dimensional.
- **Social**: explanations should be targeted to the relevant audience.
 - e.g., different explanation for data scientists vs for lawyers.

- ▶ **Selective**: explanations should be short
 - i.e. low-dimensional.
- ▶ **Social**: explanations should be targeted to the relevant audience.
 - e.g., different explanation for data scientists vs for lawyers.
- ► Contrastive: explains not just why a certain prediction was made, but why it was made instead of other predictions.

Perspective Published: 13 May 2019

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

```
Nature Machine Intelligence 1, 206−215 (2019) | Cite this article

45k Accesses | 750 Citations | 314 Altmetric | Metrics
```

https://www.nature.com/articles/s42256-019-0048-x

Linear Models

- ► Linear models (e.g. linear regression, logistic regression) are (relatively) interpretable:
 - coefficients (and t-statistics) provide some idea of the important features.

Linear Models

- ► Linear models (e.g. linear regression, logistic regression) are (relatively) interpretable:
 - coefficients (and t-statistics) provide some idea of the important features.
- Caveats:
 - ▶ have to scale features for coefficients to be comparable
 - only small models (few predictors) are interpretable

Linear Models

- ► Linear models (e.g. linear regression, logistic regression) are (relatively) interpretable:
 - coefficients (and t-statistics) provide some idea of the important features.
- Caveats:
 - ▶ have to scale features for coefficients to be comparable
 - only small models (few predictors) are interpretable
 - lacktriangle excludes interactions ightarrow often have bad ML performance

Feature Importance / Selection

- Previously, we used feature selection metrics to drop weak predictors and reduce dimensionality:
 - (e.g. χ^2 , F-statistic, mutual information)
- ▶ the metrics for feature selection are also an indication of feature **importance** to the model, and hence provide interpretability.

Visualizing Marginal Effects on Predictions: Partial Dependence Plots

Select feature(s) to analyze. Take averages of all other features, and then form predictions \hat{y} along the range of the analyzed feature. Tells you how model uses the feature.

Visualizing Marginal Effects on Predictions: Partial Dependence Plots

Select feature(s) to analyze. Take averages of all other features, and then form predictions \hat{y} along the range of the analyzed feature. Tells you how model uses the feature.

Visualizing Marginal Effects on Predictions: Partial Dependence Plots

Select feature(s) to analyze. Take averages of all other features, and then form predictions \hat{y} along the range of the analyzed feature. Tells you how model uses the feature.

- What features are most important for prediction?
 - sklearn.feature_selection metrics can be done before training a model, but they exclude any interaction effects between predictors.

- What features are most important for prediction?
 - sklearn.feature_selection metrics can be done before training a model, but they exclude any interaction effects between predictors.

Solution: **Permutation feature importance** (Fisher, Rudin, and Dominici 2018):

- What features are most important for prediction?
 - sklearn.feature_selection metrics can be done before training a model, but they exclude any interaction effects between predictors.

Solution: **Permutation feature importance** (Fisher, Rudin, and Dominici 2018):

- 1. Estimate any model, compute performance metric.
- 2. For each feature *j*:
 - generate new dataset where feature j is permuted (scrambled)
 - generate predictions and estimate new metric.
 - ightharpoonup feature importance of j is decrease in performance.

- What features are most important for prediction?
 - sklearn.feature_selection metrics can be done before training a model, but they exclude any interaction effects between predictors.

Solution: **Permutation feature importance** (Fisher, Rudin, and Dominici 2018):

- 1. Estimate any model, compute performance metric.
- 2. For each feature *j*:
 - generate new dataset where feature j is permuted (scrambled)
 - generate predictions and estimate new metric.
 - ightharpoonup feature importance of j is decrease in performance.

Apply to trained model using test set:

```
from eli5.sklearn import PermutationImportance
perm = PermutationImportance(model)
perm.fit(X_test, y_test)
eli5.show_weights(perm)
```

Out[20]:		
	Weight	Feature
	0.4700 ± 0.0614	OverallQual
	0.1439 ± 0.0156	GrLivArea
	0.0499 ± 0.0034	2ndFlrSF
	0.0363 ± 0.0091	TotalBsmtSF
	0.0294 ± 0.0032	1stFlrSF
	0.0271 ± 0.0102	BsmtFinSF1
	0.0166 ± 0.0028	Fireplaces
	0.0130 ± 0.0068	GarageArea
	0.0130 ± 0.0044	YearBuilt
	0.0115 ± 0.0071	LotArea
	0.0105 ± 0.0048	GarageCars
	0.0105 ± 0.0048	YearRemodAdd

could also check that model uses similar features in train/test set.

Trees and Tree Ensembles

Small decision trees have the advantage of being highly interpretable.

Trees and Tree Ensembles

Small decision trees have the advantage of being highly interpretable.

- Larger trees and ensembles (e.g. XGBoost) are not interpretable.
- Best-performing ML models are hard to interpret because they use lots of features and exploit non-linearities and interactions.

Interpreting Tree Ensembles

XGBoost's Feature Importance Metric:

- ► At each decision node, compute **information gain** for feature *j* **(change in predicted probability)**.
- Average across all nodes for each j.

Ranks predictors by their relative contributions.

```
from xgboost import plot_importance
plot_importance(xgb_reg, max_num_features=10)
```

Clusters Provide Prototypes

- \triangleright Clustering (e.g. k-means) can be used for description / explanation:
 - > show selected variable values from centroid (even better, medoid) data points
 - ▶ medoids for large clusters are representative "prototypes" for the whole dataset (Molnar ch. 6.3).

Clusters Provide Prototypes

- \triangleright Clustering (e.g. k-means) can be used for description / explanation:
 - > show selected variable values from centroid (even better, medoid) data points
 - medoids for large clusters are representative "prototypes" for the whole dataset (Molnar ch. 6.3).
- ► Conversely, data points that don't fit well into a cluster (far from any centroid, or dropped by dbscan) are outliers ("criticisms").

Approximate a black box model with an interpretable model

Approximate a black box model with an interpretable model

1. Get predictions \hat{y} of the black box model from the data X.

Approximate a black box model with an interpretable model

- 1. Get predictions \hat{y} of the black box model from the data X.
- 2. Train an interpretable model (lasso, decision tree, etc) on X with \hat{y} as the label.

Approximate a black box model with an interpretable model

- 1. Get predictions \hat{y} of the black box model from the data X.
- 2. Train an interpretable model (lasso, decision tree, etc) on X with \hat{y} as the label.
- Validate that the surrogate model replicates the predictions of the black box model
 - ightharpoonup e.g., compute R^2 between black box \hat{y} and surrogate $\hat{\hat{y}}$

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

1. Select data point to explain

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

- 1. Select data point to explain
- Get black box predictions for data point and for sample of randomly perturbed points in the neighborhood.

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

- 1. Select data point to explain
- Get black box predictions for data point and for sample of randomly perturbed points in the neighborhood.
- 3. Use perturbed dataset to train interpretable surrogate model to predict \hat{y} .
 - e.g., lasso with high L1 penalty.

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

- 1. Select data point to explain
- Get black box predictions for data point and for sample of randomly perturbed points in the neighborhood.
- 3. Use perturbed dataset to train interpretable surrogate model to predict \hat{y} .
 - e.g., lasso with high L1 penalty.

Shapley Values

Assigns importance to features by relative contribution to prediction (complicated formula based on solution concept in game theory)

Local Surrogate Model

(LIME = local interpretable model-agnostic explanations.)

- 1. Select data point to explain
- Get black box predictions for data point and for sample of randomly perturbed points in the neighborhood.
- 3. Use perturbed dataset to train interpretable surrogate model to predict \hat{y} .
 - e.g., lasso with high L1 penalty.

Shapley Values

Assigns importance to features by relative contribution to prediction (complicated formula based on solution concept in game theory)

- (sometimes) better than LIME because accounts for interactions
- slower to compute
- default local importance metric on Google Al Platform

Find the "closest" data point X' to the current one X that would change the outcome from $\hat{y}(X)$ to an alternative y^* :

Find the "closest" data point X' to the current one X that would change the outcome from $\hat{y}(X)$ to an alternative y^* :

▶ that is, for ML prediction function $\hat{y}(\cdot)$, find counterfactual X' that solves

$$\min_{X'} \lambda(\hat{y}(X') - y^*) + d(X, X')$$

where $d(\cdot)$ is a distance metric and $\lambda \ge 0$ calibrates the relative importance of label change and feature distance.

Find the "closest" data point X' to the current one X that would change the outcome from $\hat{y}(X)$ to an alternative y^* :

 \blacktriangleright that is, for ML prediction function $\hat{y}(\cdot)$, find counterfactual X' that solves

$$\min_{X'} \lambda(\hat{y}(X') - y^*) + d(X, X')$$

where $d(\cdot)$ is a distance metric and $\lambda \geq 0$ calibrates the relative importance of label change and feature distance.

- To improve simplicity/interpretability, Wacher et al (2017) suggest:
 - 1. defining $d(\cdot)$ as the simple sum of distances between X and X' in each dimension that is, the Manhattan (L1) distance $d(X,X') = \sum_{j=1}^{n_X} |x_j x_j'|$.

Find the "closest" data point X' to the current one X that would change the outcome from $\hat{y}(X)$ to an alternative y^* :

▶ that is, for ML prediction function $\hat{y}(\cdot)$, find counterfactual X' that solves

$$\min_{X'} \lambda(\hat{y}(X') - y^*) + d(X, X')$$

where $d(\cdot)$ is a distance metric and $\lambda \ge 0$ calibrates the relative importance of label change and feature distance.

- ► To improve simplicity/interpretability, Wacher et al (2017) suggest:
 - 1. defining $d(\cdot)$ as the simple sum of distances between X and X' in each dimension that is, the Manhattan (L1) distance $d(X,X') = \sum_{i=1}^{n_X} |x_i x_i'|$.
 - 2. Standardize all features by their respective *mean absolute deviation*, so dimensions are comparable in L1 space.

Find the "closest" data point X' to the current one X that would change the outcome from $\hat{y}(X)$ to an alternative y^* :

 \blacktriangleright that is, for ML prediction function $\hat{y}(\cdot)$, find counterfactual X' that solves

$$\min_{X'} \lambda(\hat{y}(X') - y^*) + d(X, X')$$

where $d(\cdot)$ is a distance metric and $\lambda \ge 0$ calibrates the relative importance of label change and feature distance.

- ▶ To improve simplicity/interpretability, Wacher et al (2017) suggest:
 - 1. defining $d(\cdot)$ as the simple sum of distances between X and X' in each dimension that is, the Manhattan (L1) distance $d(X,X') = \sum_{i=1}^{n_X} |x_i x_i'|$.
 - 2. Standardize all features by their respective *mean absolute deviation*, so dimensions are comparable in L1 space.
- The mlxtend package makes this easy to do:

Extensions to Counterfactual Explanations

- ▶ Dandl et al (2020) improve on the Wachter et al objective in three ways:
 - 1. use Gower distance, rather than L1 distance, to allow for categorical features.

Extensions to Counterfactual Explanations

- ▶ Dandl et al (2020) improve on the Wachter et al objective in three ways:
 - 1. use Gower distance, rather than L1 distance, to allow for categorical features.
 - 2. penalize the number of predictors that are changed, to encourage changes along relatively few dimensions.

Extensions to Counterfactual Explanations

- ▶ Dandl et al (2020) improve on the Wachter et al objective in three ways:
 - 1. use Gower distance, rather than L1 distance, to allow for categorical features.
 - 2. penalize the number of predictors that are changed, to encourage changes along relatively few dimensions.
 - 3. reward counterfactuals that are likely to be possible measured by how close they are to at least one observed data point.

Explanation Methods: Overview

	Non-Contrastive	Contrastive
Global	Feature Importance	Surrogate Model
Local	Shapley Values	Counterfactual

Pair Activity: Explanations for Decision Support

- We will now divide up into pairs in zoom breakout rooms.
- In each pair, two tasks (decide in your pair who does what):
 - 1. a judge making a decision on parole what differences should there be for an explanation for judges, vs an explanation for defendants?
 - 2. a doctor making a decision about treatment what differences should there be for an explanation for doctors, vs an explanation for patients?
- take 5 minutes to answer the question.
- ▶ take 2-3 minutes presenting answers to your partner
 - make modifications/extensions if they come up.
 - notate similarities and differences in answers between the settings, and think about why.
- Post your answers here:

https://padlet.com/eash44/6jza9w1yyrmbx90x