1. G is a group. H is a normal subgroup of G. If there exists a homomorphism $f: G \longrightarrow H$ such that f(h) = h for any $h \in H$, and $N = \ker(f)$, prove $G = H \times N$.

Solution: It is given H is a normal subgroup of G. $N = \ker(f)$, so N is also a normal subgroup of G.

For any $h \in H$, f(h) = h, so if $h \in H \setminus \{1\}$, $f(h) = h \neq 1$, we see $H \cap N = H \cap \ker(f) = \{1\}$.

For any $g \in G$, $f(g) \in H$, so f(f(g)) = f(g), $f(f(g)^{-1}g) = f(f(g)^{-1})f(g) = f(f(g))^{-1}f(g) = 1$, we see $f(g)^{-1}g \in \ker(f) = N$, so there exists $n \in H$ such that $f(g)^{-1}g = n$, $g = f(g)n \in HN$. Thus G = HN.

We conclude $G = H \times N$.

2. Write $(1\ 3\ 7)(2\ 4\ 5\ 6) \in S_7$ as a product of 2-cycles.

Solution: $(1\ 3\ 7)(2\ 4\ 5\ 6) = (1\ 7)(1\ 3)(2\ 6)(2\ 5)(2\ 4)$

3. Compute the signature of the element $(1\ 2\ 3)(6\ 7)(4\ 5\ 9) \in S_9$.

Solution:

$$Sgn((1\ 2\ 3)(6\ 7)(4\ 5\ 9)) = Sgn((1\ 2\ 3)) Sgn((6\ 7)) Sgn((4\ 5\ 9))$$

$$= (+1) \times (-1) \times (+1)$$

$$= -1$$

4. $\tau, \sigma \in S_n$. Prove that $\tau \sigma$ and $\sigma \tau$ have the same cycle type.

Solution: $\sigma(\tau\sigma)\sigma^{-1} = \sigma\tau$, so $\tau\sigma$ and $\sigma\tau$ are conjugate, hence they have the same cycle type.

h	('omploto	the to	Howing	torm	a hout	S
	Complete	THE IO	110001112	101111	annu	116.
~ .	0 0 0 - 0 0 0					~ 0 .

Cycle Type	Representative	Signature	Number of Elements	Order of Each Element
1+1+1+1+1	id	+1	1	1
1+1+1+1+2	(12)	-1	15	2
1+1+1+3	(123)	+1	40	3
1+1+2+2	(12)(34)	+1	45	2
1+1+4	(1234)	-1	90	4
1+2+3	(12)(345)	-1	120	6
2+2+2	(12)(34)(56)	-1	15	2
1+5	(12345)	+1	144	5
24	(12)(3456)	+1	90	4
33	(123)(456)	+1	40	3
6	(123456)	-1	120	6

6. Find all the elements in S_5 that commute with $(1\ 2\ 3)$.

Solution:

 $\sigma(1\ 2\ 3)\sigma^{-1} = (\sigma(1)\ \sigma(2)\ \sigma(3))$, so σ commutes with $(1\ 2\ 3)$ if and only if $(1\ 2\ 3) = (\sigma(1)\ \sigma(2)\ \sigma(3))$.

Case 1: $\sigma(1) = 1, \sigma(2) = 2, \sigma(3) = 3.$

There are two possibilities: $\sigma = id$ or $\sigma = (4 5)$

Case 2: $\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 1.$

There are two possibilities: $\sigma = (1\ 2\ 3)$ or $\sigma = (1\ 2\ 3)(4\ 5)$

Case 3: $\sigma(1) = 3, \sigma(2) = 1, \sigma(3) = 2.$

There are two possibilities: $\sigma = (1\ 3\ 2)$ or $\sigma = (1\ 3\ 2)(4\ 5)$

7. H is a subgroup of S_n with |H| an odd number. Prove $H \subseteq A_n$.

(Hint: Consider $[H: H \cap A_n]$)

Solution: Consider the restriction of the signature function to the subgroup H:

 $f: H \longrightarrow \{\pm 1\}$ is defined by $f(\sigma) = \operatorname{Sgn}(\sigma)$.

By the definition of A_n , $\ker(f) = \{ \sigma \in H | \operatorname{Sgn}(\sigma) = +1 \} = H \cap A_n$.

Suppose $H \not\subseteq A_n$, then there exists $\sigma \in H$ with $sgn(\sigma) = -1$. It follows f is surjective, and then by First Isomorphism Theorem, $H/(H \cap A_n) \cong \{\pm 1\}$.

This means $[H: H \cap A_n] = |\{\pm 1\}| = 2$, so $[H: H \cap A_n]$ is even. By Lagrange Theorem, $|H| = [H: H \cap A_n] |H \cap A_n|$, contradict to |H| is odd.

8. If $n \geq 5$, prove the only proper normal subgroup of S_n is A_n .

Solution: Let N be a normal subgroup of S_n . Then $N \cap A_n$ is a normal subgroup of A_n . Because A_n is simple when $n \geq 5$, $N \cap A_n = \{id\}$ or $N \cap A_n = A_n$

Case (1). $N \cap A_n = \{id\}$. Consider the restriction of the signature function to N

$$sgn|_N: N \longrightarrow \{\pm 1\}$$

 $\sigma \mapsto \operatorname{Sgn}(\sigma)$

 $\ker(\operatorname{Sgn}|_N) = N \cap A_n = \{id\}, \text{ so } \operatorname{Sgn}|_N \text{ is injective, we see } |N| = |\operatorname{Im}(sgn|_N)|.$ If $\operatorname{Im}(\operatorname{Sgn}|_N) = \{+1\}, \text{ then } N = \{id\}.$

If $\operatorname{Im}(sgn|_N) = \{\pm 1\}$, then |N| = 2, so we can write $N = \{id, \sigma\}$ for some odd permutation σ . Then N cannot be normal since it is not hard to see that for non-identity $\sigma \in S_n$, its cycle type consists of more than just σ , but those elements who are conjugate to σ are not in N.

Case (2). $N \cap A_n = A_n$, then $A_n \subseteq N \subseteq S_n$, we get

$$2 = [S_n : A_n] = [S_n : N][N : A_n]$$

So $[N:A_n] = 1$ or $[N:A_n] = 2$.

If $[N:A_n]=1$, then $N=A_n$.

If $[N : A_n] = 2$, then $[S_n : N] = 1$, so $N = S_n$.

By Case (1) and (2), we conclude N can be $\{id\}$, A_n or S_n , so the only choice for a proper normal subgroup is A_n .