Tour de Distributions!

ATL-DS-0624

Goals

- Understand the difference between PMF and PDF.
- CDF for discrete and continuous space.
- How to Calculate and Interpret Z-Score.

Statistical Distribution

The distribution of a variable is a description of the relative numbers of times each possible outcome will occur in a number of trials.

Probability Mass Function

 a function that gives the probability that a discrete random variable is exactly equal to some value.

Probability Density Function

- Specifies the probability that a continuous random variable falling within a particular range of values, as opposed to taking on any one value.
- This probability is given by the integral of this variable's PDF over that range.

Cumulative Distribution Function

- The probability that X will take a value less than or equal to x.
- In the case of a continuous distribution, it gives the area under the probability density function by integrating from minus infinity to x.

CDF Continuous Case

CDF Discrete Case

Example Of PMF: Sum of Two Dice

Example Distribution

Set of possible values: $X = \{2, 3...12\}$

Specific value of the random variable: $x \in X$

Probability of the value x: P(x)

х	2	3	4	5	6	7	8	9	10	11	12
<i>x P</i> (<i>x</i>)	1	2	3	4	5	6	5	4	3	2	1
P(X)	36	36	36	36	36	36	36	36	36	36	36

PMF

Probability Distribution for X

CDF

Gaussian Distribution (Normal Distribution)

Normal Distribution

The Normal Distribution: as mathematical function (pdf)

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Note constants:

 $\pi = 3.14159$

e = 2.71828

This is a bell shaped curve with different centers and spreads depending on μ and σ

Parameters

The Normal Distribution

Normal distribution is defined by its mean and standard dev.

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$

Standard Deviation(X)= σ

Useful Facts

- No matter what μ and σ are,
- The area between μ - σ and μ + σ is about 68%.
- The area between μ -2 σ and μ +2 σ is about 95%.
- The area between μ-3σ and μ+3σ is about 99.7%. Almost all values fall within 3 standard deviations.

Standard Normal Distribution (Z)

All normal distributions can be converted into the standard normal curve by subtracting the mean and dividing by the standard deviation:

$$z = \frac{x - \mu}{\sigma}$$

$$\mu = \text{Mean}$$

$$\sigma = \text{Standard Deviation}$$

Somebody calculated all the integrals for the standard normal and put them in a table! So we never have to integrate!

Even better, computers now do all the integration.

Standard Normal Distribution

A Standard Normal Distribution is a Normal Distribution with a mean of 0 and a standard deviation of 1

Comparing X and Z units

Why Standardizing?

- Gives us a good idea the relative location of raw values
- Allows us to compare different values in a more informative way
- Scaling for features if we conduct algorithms that rely on distance metrics

Example 1

Assume snowfall follows a normal distribution over time and the mean snowfall in New York City is 25 inches with a variance of 16 inches.

What is:

- 1) P(X < 25) = 0.5
- 2) P(17 < X < 32) = 0.93
- 3) P(X = 25) = Not possible!!!!


```
1 z_first = (17 - 25)/4
2 z_second = (32-25)/4
3 print('z score of 17 is : ',z_first)
4 print('z score of 33 is : ',z_second)
5 stats.norm.cdf(1.75) - stats.norm.cdf(-2)

z score of 17 is : -2.0
z score of 33 is : 1.75

0.9371907111880037
```