Project(2): SPI Slave with Single Port RAM

Team Name: Silicon Maestro

Team Member(solo): Amr Ayman Mohamed Abdo

1. QuestaSim Snippets

i. First Communication Cycle (cs = WRITE, din[9:8] = 00): MOSI is converted from serial to parallel and after 10 clock cycles rx_data (din) gets the parallel data, rx_valid is asserted and din[7:0] (126) is held internally in the RAM as a write address.

ii. Second Communication Cycle (cs = WRITE, din[9:8] = 01): MOSI is converted from serial to parallel and after 10 clock cycles rx_data (din) gets the parallel data, rx_valid is asserted and din[7:0] (0xda) is written into the address previously held in the address bus.

0xda after being written in address 126

iii. Third Communication Cycle (cs = READ_ADD, din[9:8] = 10): MOSI is converted from serial to parallel and after 10 clock cycles rx_data (din) gets the parallel data, rx_valid is asserted and din[7:0] (209) is held internally in the RAM as a read address.

iii. Third Communication Cycle (cs = READ_DATA, din[9:8] = 11): MOSI is converted from serial to parallel and after 10 clock cycles rx_data (din) gets the parallel data, rx_valid is asserted and after another clock cycle the RAM sends the data read from address 209 held previously and tx_valid is asserted. Parallel to serial conversion takes place and MISO gets the tx_data in a serial manner throughout the 8 cycles of parallel to serial conversion process(1 1 1 0 0 1 0 0) (0xb4)

2. Elaboration

i. "Messages" tab

ii. Schematic snippets

3. Synthesis

i. "Messages" tab

ii. Utilization report

a. (*fsm_encoding = "gray"*)

b. (*fsm_encoding = "one_hot"*)

Tcl Console Messages Lo	g	Reports Design Runs Uti	lization	Package Pins	I/O Ports	3			? _ □
Q ₹ ♦	1	$Q \mid \frac{1}{2\pi} \mid \frac{1}{$							
Hierarchy Summary ✓ Slice Logic	Î	Name	1 Slice LI (2080			k RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)	
∨ Slice LUTs (<1%)		∨ N SPI_spr_ram		28	32	0.5	5	1	
LUT as Logic (<1%)		SPI (SPI_Slave)		24	22	0	0	0	
✓ Slice Registers (<1%) Register as Flip Flop (✓ →		spr_RAM (RAM)		3	9	0.5	0	0	
utilization_1									

c. (*fsm_encoding = "sequential "*)

iii. Timing report

a. (*fsm_encoding = "gray"*)

b. (*fsm_encoding = "one_hot"*)

c. (*fsm_encoding = "sequential "*)

All of them are almost the same. We will proceed with sequential encoding.

iv. Synthesis report showing the encoding used

a. (*fsm_encoding = "gray"*)

INFO: [Synth 8-5534] Detected attribute | fsm_encoding = "gray" | [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:15]
INFO: [Synth 8-6155] done synthesizing module 'SPI_Slave' (1\$1) [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:1]
INFO: [Synth 8-6157] synthesizing module 'RAM' [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/RAM.v:1]

State	New Encoding	Previous Encoding
IDLE	001	000000
CHK_CMD	000	000001
READ_DATA	011	000100
READ_ADD	010	000011
WRITE	111	000010

b. (*fsm_encoding = "one_hot"*)

INFO: [Synth 8-5534] Detected attribute (* fsm_encoding = "one_hot" *) [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:15] INFO: [Synth 8-6155] done synthesizing module 'SPI_Slave' (1#1) [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:1]

State	ı	New Encoding	ı	Previous Encoding
IDLE	I	00010	ī	000000
CHK_CMD	1	00001	1	000001
READ_DATA	I	00100	1	000100
READ_ADD	I	01000	1	000011
WRITE	I	10000	I	000010

C. (*fsm_encoding = "sequential "*)

INFO: [Synth 8-5534] Detected attribute (* fsm_encoding = "sequential" *) [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:15]
INFO: [Synth 8-6155] done synthesizing module 'SPI_Slave' (1*1) [C:/Digital_Electronics/Kareem_Waseem_Digital_Design_Diploma/Project2_SPI_Slave/SPI_Slave.v:1]

State	New Encoding	Previous Encoding
IDLE	I 001	000000
CHK_CMD	1 000	000001
READ_DATA	010	000100
READ_ADD	011	000011
WRITE	100	000010

v. Schematic snippets

vi. Critical path snippets

a. (*fsm_encoding = "gray"*)

ii. Utilization report

iii. Timing report

iv. Device snippets

5. Set Up Debug

6. Bitstream file

