VECTORS

1 12^{th} Maths - EXERCISE-10.3

1. Find $|\overrightarrow{a}|$ and $|\overrightarrow{b}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 8$ and $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$.

Solution: Given points are

$$(\mathbf{a} + \mathbf{b})^{\top} (\mathbf{a} - \mathbf{b}) = 8 \tag{1}$$

$$|\mathbf{a}| = 8|\mathbf{b}|\tag{2}$$

$$(\mathbf{a} + \mathbf{b})^{\top} (\mathbf{a} - \mathbf{b}) = 8 \tag{3}$$

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{a} - \mathbf{a}^{\mathsf{T}}\mathbf{b} - \mathbf{b}^{\mathsf{T}}\mathbf{b} = 8 \tag{4}$$

$$\implies \|\mathbf{a}\|^2 - \|\mathbf{b}\|^2 = 8 \tag{5}$$

$$\implies \|8\mathbf{b}\|^2 - \|\mathbf{b}\|^2 = 8 \tag{6}$$

$$\implies 64\|\mathbf{b}\|^2 - \|\mathbf{b}\|^2 = 8 \tag{7}$$

$$\implies 63\|\mathbf{b}\|^2 = 8 \tag{8}$$

$$\implies \|\mathbf{b}\|^2 = \frac{8}{63} \tag{9}$$

$$\|\mathbf{b}\| = \sqrt{\frac{8}{63}} \tag{10}$$

$$\|\mathbf{b}\| = \frac{2\sqrt{2}}{3\sqrt{7}}\tag{11}$$

$$\|\mathbf{a}\| = 8 \|\mathbf{b}\| \tag{12}$$

$$\implies \|\mathbf{a}\| = \frac{16\sqrt{2}}{3\sqrt{7}} \tag{13}$$