Machine Translation

Greedy Decoding

Simultaneous Neural Machine Translation

Ashkan Alinejad

Supervisor : Dr. Anoop Sarkar

Simon Fraser University

July 2017

2 Simultaneous Machine Translation

Neural SMT Greedy Decoding Trainable Agent

Machine Translation

Neural Machine Translation

Neural SMT Greedy Decoding Trainable Ager

RNN structure

Encoder

$$h_t = f(x_t, h_{t-1})$$

 $c = q(\{h_1, \dots, h_{T_x}\})$

Decoder

$$p(y) = \prod_{t=1}^{T} p(y_t | \{y_1, \dots, y_{t-1}\}, c)$$

With an RNN, each conditional probability is modeled as:

$$p(y_t|\{y_1,\ldots,y_{t-1}\},c)=g(y_{t-1},s_t,c)$$

RNN Encoder-Decoder

Simultaneous
Machine

Translation

Neural SMT

Greedy

Simultaneous Machine Translation

Simultaneous Machine Translation

Greedy Decoding Trainable Agen

- Simultaneous Machine Translation is a challenging task of reading from the source language and at the same time, producing the target translation.
- The objective of translation system is defined as a combination of quality and delay.

Simultaneous Machine Translation

Neural SMT
Greedy
Decoding
Trainable Age

Previous works

- Most of the works in this direction are done in the context of speech translation. incoming speech is transcribed and segmented into a translation unit largely based on acoustic and linguistic cues.
- Each of these segments is then translated largely independent from each other

Translation RNN Encoder Decoder

Simultaneou Machine Translation

Neural SMT

Greedy Decoding Trainable Agen

Neural SMT

Simultaneous Machine Translation

Neural SMT

Greedy Decoding Trainable Age

- Sequentially making two interleaved decisions:
 - READ
 - WRITE

•

Input sequence
$$X = \{x_1, \dots, x_{T_s}\}$$

Decoded Output $Y = \{y_1, \dots, y_{T_t}\}$
Action sequence $A = \{a_1, \dots, a_T\}$

$$T = T_s + T_t$$

Simultaneous
Machine
Translation

Neural SMT

Greedy Decoding Trainable Age The model structure is an attention-based neural network

Encoder :
$$h_{\eta} = \phi_{\text{UNI-ENC}}(h_{\eta-1}, x_{\eta})$$

Decoder :
$$c_{\tau}^{\eta} = \phi_{\mathsf{ATT}}(z_{\tau-1}, y_{\tau-1}, H^{\eta})$$

$$z_{\tau}^{\eta} = \phi_{\mathsf{DEC}}(z_{\tau-1}, y_{\tau-1}, c_{\tau}^{\eta})$$

Output :
$$p(y|y_{<\tau}, H^{\eta}) \propto \exp[\phi_{\mathsf{OUT}}(z^{\eta}_{\tau})]$$

$$y_{\tau}^{\eta} = \arg\max_{y} p(y|y_{<\tau}, H^{\eta})$$

Greedy Decoding

Algorithm 1 Simultaneous Greedy Decoding

```
Require: \delta, s_0, Input Pipe X, Output Pipe Y
  1: Initialize s \leftarrow s_0, C \leftarrow \text{READ}(X, s), C' \leftarrow \{\}
 2: Initialize the decoder's state \mathbf{z}_0 based on C
 3: while true do
         \hat{y}_t = \arg\max_{y_t} \log p(y_t|y_{< t}, C)
         if s > T_V then
 5:
             WRITE(Y, \hat{y}_t), t \leftarrow t + 1
 6:
         else
 7:
             C' \leftarrow \text{READ}(X, \delta) if |C'| = 0.
 8:
             if \Lambda(C, C \cup C') then
 9:
                C \leftarrow C \cup C', s \leftarrow s + \delta, C' \leftarrow \{\}
10:
                continue
11:
12:
             else
                WRITE(Y, \hat{y}_t), t \leftarrow t + 1
13:
             end if
14:
15:
         end if
         if \hat{y}_t = \langle \cos \rangle then
16:
             break
17:
18:
         end if
19: end while
```

Simultaneous Machine Translation

Greedy
Decoding
Trainable Age

Wait-If-Worse

$$\Lambda(C, C \cup C') : (\log p(\hat{y}|\hat{y}_{< t}, C) > \log p(\hat{y}|\hat{y}_{< t}, C \cup C')),$$

where
$$\hat{y} = \arg \max_{y} p(y|\hat{y}_{< t}, C)$$

Wait-If-Diff

$$\Lambda(C, C \cup C') : (\hat{y} \neq \hat{y}'),$$

where
$$\hat{y}' = \arg \max_{y} \log p(y|\hat{y}_{< t}, C \cup C')$$
.

Simultaneous Machine Translation

Neural SMT Greedy Decoding Trainable Agen

Metrics

- Quality The metrics for evaluating quality of the translation is the BLEU score.
- **Delay** $s(t) = \text{In each time step for the decoded target symbol <math>\hat{y}_t$, how many source symbols were required. delay in translation (T):

$$0 < T(X, \hat{Y}) = \frac{1}{|X||\hat{Y}|} \sum_{t=1}^{|\hat{y}|} s(t) \le 1.$$

Greedy Decoding

Simultaneou Machine Translation

Greedy Decoding Trainable Agen

		Cs	De	Ru
$\mathrm{En} {\to}$	Ours	15.2 13.84	19.5 21.75	17.77 19.54
→En	Ours	20.47 20.32	23.96 24	22.27 22.44

Figure: BLEU scores on the test set (newstest-2015) obtained by the models used in the paper and (\star) from (Firat et al., 2016). Although our models use a unidirectional recurrent net as an encoder, the translation qualities are comparable.

Simultaneou Machine Translation

Neural SMT Greedy Decoding Trainable Ager

Discussion

- 1 They do not have good BLEU score compared to previous works.
- 2 the waiting criteria proposed in this paper are both manually designed and does not exploit rich information embedded in the hidden representation learned by the recurrent neural networks.
- 3 The objective of the network is to improve translation quality and do not consider delay during training.

Simultaneous Machine Translation

Greedy Decoding Trainable Agent

Trainable Agent

- The idea is to have a separate trainable agent
- The framework can be trained using reinforcement learning and it considers both Quality and Delay during training.

Simultaneou Machine Translation

Neural SMT
Greedy
Decoding
Trainable Agent

Algorithm 1 Simultaneous Greedy Decoding

Require: NMT system ϕ , policy π_{θ} , τ_{MAX} , input buffer X, output buffer Y, state buffer S.

1: Init
$$x_1 \Leftarrow X, h_1 \leftarrow \phi_{\text{ENC}}(x_1), H^1 \leftarrow \{h_1\}$$

2:
$$z_0 \leftarrow \phi_{\text{INIT}} \left(H^1 \right), y_0 \leftarrow \langle s \rangle$$

3:
$$\tau \leftarrow 0, \eta \leftarrow 1$$

4: while
$$\tau < \tau_{\text{MAX}}$$
 do

5:
$$t \leftarrow \tau + \eta$$

6:
$$y_{\tau}^{\eta}, z_{\tau}^{\eta}, o_{t} \leftarrow \phi(z_{\tau-1}, y_{\tau-1}, H^{\eta})$$

7:
$$a_t \sim \pi_\theta (a_t; a_{< t}, o_{< t}), S \Leftarrow (o_t, a_t)$$

8: **if**
$$a_t = \text{READ}$$
 and $x_n \neq \langle /s \rangle$ **then**

9:
$$x_{n+1} \leftarrow X, h_{n+1} \leftarrow \phi_{\text{ENC}}(h_n, x_{n+1})$$

10:
$$H^{\eta+1} \leftarrow H^{\eta} \cup \{h_{\eta+1}\}, \eta \leftarrow \eta + 1$$

11: **if**
$$|Y| = 0$$
 then $z_0 \leftarrow \phi_{\text{INIT}}(H^{\eta})$

12: **else if**
$$a_t = \text{WRITE then}$$

13:
$$z_{\tau} \leftarrow z_{\tau}^{\eta}, y_{\tau} \leftarrow y_{\tau}^{\eta}$$

14:
$$Y \Leftarrow y_{\tau}, \tau \leftarrow \tau + 1$$

15: if
$$y_{\tau} = \langle /s \rangle$$
 then break

Agent

A trainable agent is designed to make decisions

$$A=\{a_1,\ldots,a_T\}$$
, $a_t\in\mathcal{A}$ sequentially based on observations $O=\{o_1,\ldots,o_T\}$, $o_t\in\mathcal{O}$.

- Observation: $o_{\tau+\eta} = [c_{\tau}^{\eta}; z_{\tau}^{\eta}; E(y_{\tau}^{\eta})]$
- Action:
 - READ: waits to encode the next word
 - WRITE: accepts the candidate and emits it as the prediction
- **Policy:** a stochastic policy π_{θ} parameterized by a recurrent neural network

$$s_t = f_{\theta}(s_{t-1}, o_t),$$

$$\pi_{\theta}(a_t | a_{< t}, o_{\leq t}) \propto g_{\theta}(s_t)$$

Simultaneous Machine Translation

Greedy Decoding Trainable Agent

Reward Function

At each step the agent will receive a reward signal r_t based on (o_t, a_t) .

- $\bullet \ \, \mathbf{Quality} \,\, r_t^Q = \mathsf{smoothed} \,\, \mathsf{BLEU} \\$
- Delay r_t^D
 - Average Proportion
 - **2** Consecutive Wait Length

The total reward will be computed as:

$$r_t = r_t^Q + r_t^D$$

Simultaneou Machine Translation

Greedy
Decoding
Trainable Agent

Algorithm 2 Learning with Policy Gradient

```
Require: NMT system \phi, agent \theta, baseline \varphi
  1: Pretrain the NMT system \phi using MLE;
 2: Initialize the agent \theta;
  3: while stopping criterion fails do
          Obtain a translation pairs: \{(X, Y^*)\};
 4:
          for (Y, S) \sim Simultaneous Decoding do
 5.
               for (o_t, a_t) in S do
                    Compute the quality: r_t^Q;
 7:
                    Compute the delay: r_t^D;
 8:
                    Compute the baseline: b_{\omega}(o_t);
 9:
          Collect the future rewards: \{R_t\};
10:
          Perform variance reduction: \{R_t\};
11:
          Update: \theta \leftarrow \theta + \lambda_1 \nabla_{\theta} \left[ J - \kappa \mathcal{H}(\pi_{\theta}) \right]
12:
          Update: \varphi \leftarrow \varphi - \lambda_2 \nabla_{\omega} L
13:
```

Simultaneous Machine Translation

Greedy Decoding Trainable Agent

Results

(\blacktriangleleft <: CW=8, \blacktriangle △: CW=5, \blacklozenge ◇: CW=2, \blacktriangleright ▷: AP=0.3, \blacktriangledown ∇ : AP=0.5, \blacksquare □: AP=0.7). For each target, we select the model

Machine Translation RNN Encoder-

Simultaneou Machine Translation

Neural SMT
Greedy
Decoding
Trainable Agent

Discussion

Simultaneous Machine Translation

Neural SMT Greedy Decoding Trainable Agen

- Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech recognition using deep rnn models and wfst-based decoding.
- Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up end-to-end speech recognition, 12 2014.
- Alex Graves.

 Supervised Sequence Labelling with Recurrent Neural Networks.
 - PhD thesis, Technische Universität München, July 2008.
- Vinod Nair and Geoffrey E. Hinton.

 Rectified linear units improve restricted boltzmann machines.

In Johannes Fürnkranz and Thorsten Joachims, editors

Translation RNN Encoder-Decoder Simultaneous

Franslation Neural SMT Greedy Decoding

Thank You!