Model checking ATL with Imperfect Information

Natasha Alechina Brian Logan

Utrecht University
n.a.alechina@uu.nl b.s.logan@uu.nl

ATL_{ir}

- models of ATL_{ir} are called Concurrent Epistemic Game Structures (CEGS)
- a CEGS is a CGS with epistemic indistinguishability relations added, one for each agent
- $M = \langle Agt, St, \{\sim_i | i \in Agt\}, \mathcal{V}, Act, d, o \rangle$
- ATL_{ir} semantics:
- $\langle\!\langle a \rangle\!\rangle_{ir} \gamma$: agent a has a memoryless uniform strategy to enforce γ , and this strategy works from all the states a considers possible (the 2nd condition is called strong uniformity)
- $\langle\!\langle A \rangle\!\rangle_{ir} \gamma$: agents in A have a joint memoryless uniform strategy to enforce γ , and it works from all the states indistinguishable by $\sim_A^E = \bigcup_{a \in A} \sim_a$

Notation

- in lecture 8/1, coalition modalities \(\langle A \rangle \rangle_{ir}\) were subscripted with \(\textit{ir}\) to stress they have a different meaning from \(\langle A \rangle \rangle\) in the lectures in weeks 6 & 7
- however, it is more common to use the same ⟨⟨A⟩⟩ syntax whatever the semantics, and instead subscript the semantic relation: |=_{ir}

Semantics of ATL_{ir}

Definition (Semantics of ATL_{ir})

$$M, q \models_{ir} \langle \langle A \rangle \rangle X \varphi$$

 $M, q \models_{ir} \langle\langle A \rangle\rangle G \varphi$

 $M, q \models_{ir} \langle\!\langle A \rangle\!\rangle \varphi_1 U \varphi_2$

iff there is a collective uniform strategy s_A such that, for every path $\lambda \in \bigcup_{q' \sim \frac{F}{A}q} out(q', s_A)$, we have $M, \lambda[1] \models_{ir} \varphi$ iff there is a collective uniform strategy s_A such that, for every path $\lambda \in \bigcup_{q' \sim \frac{F}{A}q} out(q', s_A)$, we have $M, \lambda[i] \models_{ir} \varphi$ for all $i \geq 0$ iff there is a collective uniform strategy s_A such that, for every path $\lambda \in \mathcal{S}$

 $\bigcup_{q' \sim \frac{F}{A}q} out(q', s_A)$, we have $M, \lambda[i] \models_{ir} \varphi_2$ for some $i \geq 0$, and $M, \lambda[j] \models_{ir} \varphi_1$ forall $0 \leq j < i$;

Week 8/2

How to model check ATL_{ir}?

- fixpoint equivalences no longer hold
- we therefore need a different model checking algorithm
- basic idea: given a model M, generate all possible memoryless uniform strategies for the coalition A
- each strategy induces a new model M_i (where A just have a single joint action in each state, assigned by the strategy), and we check whether the property $\langle\!\langle A \rangle\!\rangle \varphi$ holds in at least one such model

Deterministic algorithm for checking $M, q \models_{ir} \langle \langle A \rangle \rangle \varphi$

In the initial model M

- $d: Agt \times St \rightarrow 2^{Act}$ defines actions available to an agent in a state
- e.g., $d(a_1, q_1) = \{\alpha_1^1, \dots, \alpha_{m_1}^1\}, d(a_2, q_1) = \{\alpha_1^2, \dots, \alpha_{m_2}^2\}, \text{ etc.}$

We generate new models M_1, \ldots, M_N , where $N = O(|Act|^{|St|k})$

- |Act| is the number of actions available
- |St| is the number of states in M, and
- k is the number of agents in A

Induced models

- in each M_i, each agent in A is restricted to a single action
- e.g., $d_1(a_1, q_1) = \{\alpha_1^1\}, d_1(a_2, q_1) = \{\alpha_1^2\}, \dots d_1(a_k, q_1) = \{\alpha_1^k\}$
- the d_i are such that, if two states q, q' are indistinguishable for an agent $a_j, q \sim_j q'$, then $d_i(a_j, q) = d_i(a_j, q')$, i.e., the agents' strategies are uniform
- the models M_1, \ldots, M_N therefore encode all possible uniform strategies for the coalition A

Model checking $M, q \models_{ir} \langle \langle A \rangle \rangle \varphi$

- for each induced model, M_i , we run the standard ATL model checking algorithm $MCHECK(M_i, \varphi)$ to label the states $[\langle\langle A \rangle\rangle\varphi]_{M_i}$ in which the uniform strategy encoded by M_i makes $\langle\langle A \rangle\rangle\varphi$ true
- we check whether $q \in [\langle\!\langle A \rangle\!\rangle arphi]_{M_i}$
- for strong uniformity, we check if $\forall q' \in St$ such that $q \sim_A^E q'$ it holds that $q' \in [\langle\!\langle A \rangle\!\rangle \varphi]_{M_i}$
- i.e., that the uniform strategy encoded by M_i enforces $\langle\!\langle A \rangle\!\rangle \varphi$ in all states indistinguishable from q
- if such M_i is found, $M, q \models_{ir} \langle \langle A \rangle \rangle \varphi$ holds

Non-deterministic algorithm for checking $M, q \models_{ir} \langle \langle A \rangle \rangle \varphi$

- idea: when dealing with a subformula ((A))φ, guess a uniform strategy s_A for A
- remove from M all A's actions not conforming to s_A
- check whether in the resulting model, all states $q' \sim_A^E q$ satisfy $\langle\!\langle A \rangle\!\rangle \varphi$ (in fact, can even use CTL model checking of $A\varphi$, since we are checking all paths generated by s_A)
- $\Delta_2^P = P^{NP}$ complexity: we need an NP oracle for guessing uniform strategies,the rest of the computation is polynomial
- ATL_{ir} model checking is Δ_2^P -complete, so there is no polynomial algorithm (unless $P = \Delta_2^P$ which is even more unlikely than P = NP).

Week 8/2

MCMAS

- unfortunately mcmas 1.1.0 does not yet have uniform strategies implemented
- from 1.2.1, there is a -uniform option
- it is implemented using the deterministic algorithm above, without the check for strong uniformity (but if the set of initial states includes all states connected by \sim_A^E , then strong uniformity holds too)