Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

Отчет по лабораторной работе №3 по дисциплине «Интервальный анализ»

Выполнил студент:

Рубанова Валерия Александровна группа: 5030102/00201

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

СОДЕРЖАНИЕ

\mathbf{C}_{1}	писок иллюстраций	. 3
1	Постановка задачи	. 4
2	Теория	. 4
	2.1 Мода интервальной выборки	. 4
	2.2 Медиана интервальной выборки	. 4
	2.3 Совместность интервальной выборки	. 5
3	Реализация	. 5
4	Результаты	. 5
	4.1 Графики	
	4.2 Числовые значения	. 7
5	Обсуждение	. 7
	Ссылка на репозиторий	. 8
	6.1 Кол программы	8

Список иллюстраций

1	График входных данных	
2	График входных интервальных данных	6
3	Гистограмма частот μ_i для интервалов z_i	6
4	График входных данных с изображенными на нём медианой и модой	7

1. Постановка задачи

Дан набор интервальных данных. Считая, что они задают постоянную величину требуется найти оценки данной постоянной величины.

2. Теория

2.1. Мода интервальной выборки

Мода - значение из выборки, которое встречается наиболее часто. Для подсчёта моды используется следующий алгоритм:

- 1. Если пересечение всех интервалов не пусто, тогда это пересечение и есть мода
- 2. Если пересечение всех интервалов пусто, тогда
 - (a) Соберём все концы интервалов в один массив Y и отсортируем его
 - (b) Построим интервалы $z_i = [y_i, y_{i+1}]$
 - (c) Для каждого z_i посчитаем μ_i число интервалов из исходной выборки, в которой содержится z_i .
 - (d) Найдем $\mu = max(\mu_i)$
 - (e) Объединим все z_i , для которых $\mu_i = \mu$
 - (f) Полученное объединение и есть мода

2.2. Медиана интервальной выборки

Интервальная медиана — это интервал z_m со средней (геометрически) накопленной частотой, т.е. сумма накопленных частот слева равна сумме накопленных частот справа:

$$\sum_{i=1}^{m-1} \mu_i = \sum_{i=m+1}^{n} \mu_i$$

где μ_i — частота интервала z_n — количество интервалов из заданного вариационного ряда, в которых содержится z_i . Если оказалось так что:

$$\sum_{i=1}^{m} \mu_i = \sum_{i=m+1}^{n} \mu_i$$

То за медиану берется

$$med(X) = \frac{z_m + z_{m+1}}{2}$$

2.3. Совместность интервальной выборки

Для посчёта совместности используется модификация индекса Жаккара для интервальных данных.

$$JK(x) = \frac{wid(\wedge x_i)}{wid(\vee x_i)}$$

3. Реализация

Лабораторная работа выполнена на языке программирования Python(3.7) с использованием следующих библиотек: Numpy, Scipy, Tabulate, Statsmodels, Matplotlib.

Отчет написан в онлайн редакторе LaTeX - Overleaf.

4. Результаты

4.1. Графики

Рис. 1. График входных данных

Рис. 2. График входных интервальных данных

Рис. 3. Гистограмма частот μ_i для интервалов z_i

Рис. 4. График входных данных с изображенными на нём медианой и модой

4.2. Числовые значения

$$JK(x) = -0.9623139250047104$$

$$med(x) = [0.03418\ 0.034183]$$

$$mod(x) = [0.036468\ 0.03647] \cup [0.036538\ 0.0365527] \cup [0.037365\ 0.037374]$$

5. Обсуждение

- Исходя из близости коэффициента Жаккара к -1 можно сказать, что данные не являются совместными. Что значит, что они не задают постоянную величину.
- Сильное различие в положениях медианы и моды также показывают что выходные данные не задают постоянную величину.
- Исходя из результатов графика 3, можно сказать, что у нас мультимодальное распределение.