

Cloud Resource Allocation and Power Management using Deep Reinforcement Learning

May, 2019

Hongyi Guo, Shenglong Ye

Contents

- Background
- 2 Introduction
- Model
- 4 Experiments
- Future Work

Related work

- Machine Learning Applications for Data Center Optimization (DeepMind, 2016)
 - Using a system of neural networks trained on different operating scenarios and parameters within our data centres, they created a more efficient and adaptive framework to understand data centre dynamics and optimize efficiency.
 - We accomplished this by taking the historical data that had already been collected by thousands of sensors within the data centre -- data such as temperatures, power, pump speeds, setpoints, etc. -- and using it to train an ensemble of deep neural networks.

Related Work

 Machine Learning Applications for Data Center Optimization (DeepMind 2016)

Introduction

- We focus on both
 - saving the power energy of the cloud server
 - reducing the job latency
- Reference

A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

Ning Liu*, Zhe Li*, Jielong Xu*, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, Yanzhi Wang Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY 13244, USA
{nliu03, zli89, zxu105, jxu21, shlin, qiqiu, jtang02, ywang393}@syr.edu

Model

- A Hierarchical Framework of Cloud Resource Allocation and Power
 Management Using Deep Reinforcement Learning
 - The proposed hierarchical framework comprises:
 - a global tier for job allocation to the servers
 - a local tier for distributed power management of local servers.
- According to paper, the proposed framework can achieve the best trade-off between latency and power/energy consumption in a server cluster.

Model

Model

Deep Reinforcement Learning

Local Tier

- Local Tier is responsible for controlling the turning ON/OFF of local servers in order to simultaneously
 - Reduce the power consumption
 - Reduce the average job latency
- The local tier includes
 - the workload predictor using LSTM
 - the adaptive *power manager* based on the model-free, continuous-time Q-learning / Actor Critic.

Power manager

Deep RL based power manager

Decision epoch

 Whenever the machine enters the idle state (usage = 0) and there is no waiting job in the pending queue, power manager should decide how long to shut down this server for.

Action

How long we shut down the server for, or zero (keep the server on).

Power manager

- Deep RL based power manager
- State
 - Power consumption state
 - The estimated next job inter-arrival time from the work-load predictor

Reward:

- r(t) = -w*P(t) (1 w)*JQ(t)
- P(t): power consumption
- JQ(t): number of jobs buffered in the pending queue
- w: the weighting factor

Global Tier

- Decision epoch: Every time a new job arrives
- Use greedy method to allocate jobs to servers.
 - Allocate current job to the most idlest server.
 - Since CPU is the largest constrain for these servers, we define the idlest server to be the server with the lowest CPU usage percentage.
- The referenced paper used a DQN to select the server that our task is to be allocated to. But we thought it brings more troubles than benefits.
 And we will explain why next.

Deficiency

- Too many deep learning models in this architecture
 - Rather difficult to train
 - Interact
- If we dig a little bit deeper ...
 - Non-stationary environment
 -
- Multiple tasks coming at the same time are very possible to be dispatched to the same server.

Experiments last week

- We have implemented the framework introduced by the paper. Here we illustrate the **power usage** and the **job latency** compared with three baselines as following:
- Dataset: alibaba_clusterdata_v2018

Experiments this week

- We have implemented the framework introduced by the paper. Here we illustrate the **power usage** and the **job latency** compared with three baselines as following:
- Dataset: Alibaba_clusterdata_v2018

Future work

- Try different methods to enhance the global tier, not just rule-based ones.
 - Bi-LSTM
 -
- Use more advanced Reinforcement Learning models, such as DDPG, A2C, etc.
 - DDPG can handle continuous action space, while Q-Learning cannot

Thanks!

