Jacob Miller - Homework 6

April 7, 2020

1 Problem 8.5

Import required packages:

```
[1]: import pandas as pd
import numpy as np
import patsy
import statsmodels.api as sm
```

Read in data, create X matrix and y vector:

```
[2]: df = pd.read_excel('Data/data-table-B3.xlsx')
y, X = patsy.dmatrices('y ~ x10 + x11', df)
```

1.1 8.5.a

Create linear regression model, print out results table:

```
[3]: model = sm.OLS(y, X)
results = model.fit()
results.model.data.design_info = X.design_info
print(results.summary())
```

OLS Regression Results

=======================================	=======================================		
Dep. Variable:	у	R-squared:	0.760
Model:	OLS	Adj. R-squared:	0.743
Method:	Least Squares	F-statistic:	45.91
Date:	Tue, 07 Apr 2020	Prob (F-statistic):	1.03e-09
Time:	15:13:41	Log-Likelihood:	-81.056
No. Observations:	32	AIC:	168.1
Df Residuals:	29	BIC:	172.5
Df Model:	2		
Covariance Type:	nonrobust		

=======	coef	std err	t	P> t	[0.025	0.975]
Intercept	39.1919	2.557	15.327	0.000	33.962	44.422
x10	-0.0047	0.001	-4.975	0.000	-0.007	-0.003

x11	-2.6958	1.981	-1.361	0.184	-6.747	1.355
Omnibus:		0.1	======== 25 Durbir	 n-Watson:		2.164
Prob(Omnibu	ıs):	0.9	40 Jarque	e-Bera (JB):		0.292
Skew:		0.1	20 Prob(3	ΙΒ):		0.864
Kurtosis:		2.5	98 Cond.	No.		1.85e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.85e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Linear regression model, transmission not significant:

```
y = 39.192 + (-0.005 * x10) + (-2.696 * x11)
No. High p-value [0.184], so transmission not significant
```

1.2 8.5.b

Add interaction term, create linear regression model, print out results:

```
[5]: y, X = patsy.dmatrices('y ~ x10 + x11 + x10 * x11', df)

# Create model with interaction
model = sm.OLS(y, X)
results = model.fit()
results.model.data.design_info = X.design_info
print(results.summary())
```

OLS Regression Results

Dep. Variable:	У	R-squared:	0.849			
Model:	OLS	Adj. R-squared:	0.833			
Method:	Least Squares	F-statistic:	52.63			
Date:	Tue, 07 Apr 2020	Prob (F-statistic):	1.24e-11			
Time:	15:13:41	Log-Likelihood:	-73.602			
No. Observations:	32	AIC:	155.2			
Df Residuals:	28	BIC:	161.1			
Df Model:	3					
Covariance Type:	nonrobust					

=======	coef	std err	t	P> t	[0.025	0.975]
Intercept x10 x11 x10:x11	58.1084 -0.0125 -26.7249 0.0090	5.078 0.002 6.107 0.002	11.443 -6.090 -4.376 4.076	0.000 0.000 0.000 0.000	47.707 -0.017 -39.235 0.004	68.510 -0.008 -14.215 0.014
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0.			:	2.549 0.291 0.865 8.33e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.33e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Separate regression models for automatic and manual transmissions:

```
y = 58.108 + (-0.013 * x10) + (-26.725 * x11) + (0.009 * x10 * x11)
For automatic transmission, x11 = 1, therefore:
y = 31.383 + (-0.004 * x10)
For manual transmission, x11 = 0, therefore:
y = 58.108 + (-0.013 * x10)
```

For manual transmission engines, gasoline mileage decreases more quickly.