Домашняя работа к занятию 29.

- **1.1** Покажите, что любое решение уравнения $y'' + e^{-x}y = 0$ является колеблющимся на интервале $[0; +\infty)$. Покажите, что расстояние между последовательными нулями любого решения больше, чем π , и увеличивается с ростом x. Покажите, что при $x \to -\infty$ расстояние между последовательными нулями любого решения стремится к нулю.
- **1.2** Покажите, что расстояние между двумя последовательными нулями любого решения уравнения $x^2y''-2xy'+(3+4x^2)y=0$ меньше $\frac{\pi}{2}$ и при $x\to\pm\infty$ как угодно близко к $\frac{\pi}{2}$.
- **2.1** Покажите, что при условии $0 \leqslant \nu \leqslant \frac{1}{2}$ расстояние между соседними нулями функции Бесселя $J_{\nu}(x)$ меньше π и становится как угодно близким к π при достаточно больших значениях x. Покажите, что при условии $\nu > \frac{1}{2}$ расстояние между соседними нулями функции Бесселя $J_{\nu}(x)$,больше π и становится как угодно близким к π при достаточно больших значениях x.
- **3.1** Оценивая снизу число нулей уравнения $y'' 2e^x y' + e^{2x} y = 0$ на отрезке $[\varepsilon; 10]$, мы получаем функцию $N(\varepsilon)$. При каком значении ε эта оценка гарантирует наибольшее число нулей? Оцените число нулей данного уравнения на отрезке [0; 10].

Ответы и указания.

1.2 Указание: замена $y = x \cdot u$ приводит уравнение к виду $u'' + (\frac{3}{x^2} + 4)u = 0$. Сравниваем с уравнением u'' + 4u = 0, у которого расстояние между нулями решения равно $\frac{\pi}{2}$.

- **2.1** Указание: замена $u(x) = \frac{J_{\nu}(x)}{\sqrt{x}}$ приводит уравнение Бесселя к виду $u'' + (1 \frac{4\nu^2 1}{4x^2})u = 0$. Сравниваем с уравнением $u'' + (1 \pm \varepsilon)u = 0$, у которого расстояние между нулями решения близко к π при ε близких к нулю.
- **3.1** Указание: сравнивая с уравнением $y'' + e^{2x}y = 0$, получаем оценку снизу $N(\varepsilon) = \frac{10-\varepsilon}{\pi}e^{\varepsilon}$. При $\varepsilon=9$ получаем наибольшее значение функции $N(9) = \frac{e^9}{\pi} \approx 3570$