SWE111: ENGINEERING MATHEMATICS I 08/02/20 FIRST SEMESTER

STUDY QUESTIONS

A-SEVERAL REAL VARIABLE FUNCTIONS

1. Let $f(x, y) = ln(x + y - y)$	- 1`	ν –	$+\nu$	\dot{x}	ln() =	ν	(x.	f	Let	1.
----------------------------------	------	------------	--------	-----------	-----	-----	-------	-----	---	-----	----

- i. Evaluate (a) f(1,1) (b) $f(e^3,1)$ 2mks
- ii. Find and sketch the domain of f.iii. Find the range of f1mk
- iii. Find the range of f2. Given the function: $h(x, y) = \sqrt{16 - x^2 - y^2}$
 - a) Evaluate the value of h at the point $(\sqrt{3}, 2)$ 1mk
 - b) Find and sketch the domain. 2mks
 - c) Find the range 1mk
- 3. Compute the given limits.
 - a) $\lim_{(x,y)\to(0,4)} \frac{\cosh(xy)}{x^2+y-1}$ b) $\lim_{(x,y,z)\to(1,1,2)} \frac{e^{x+y-z}}{x-z}$ 2mks
- 4. Find all the second partial derivatives of $f(x,y) = x^3y^5 + 2x^4y$ 6mks Hence, verify that the conclusion of Schwarz theorem holds, that is $f_{xy} = f_{yx}$. 1mk
- 5. Use implicit differentiation to show that if

$$x^{2} + y^{2} + z^{2} = 3xyz \text{ then } \frac{\partial z}{\partial x} = \frac{2x - 3yz}{3xy - 2z}$$
 2mks

- 6. Determine whether $u = e^{-x} cos y e^{-y} cos x$ is a solution of Laplace's equation $u_{xx} + u_{yy} = 0$ 2mks
- 7. Find the equation of the tangent plane to the surface

$$z = x^2 + xy + 3y^2$$
 at the point (1,1,5)

- 8. Find the linear approximation of the function $f(x, y) = \ln(x 3y)$ at (7,2) and use it to approximate f(6.9, 2.06) 3mks
- 9. If $z = 5x^2 + y^2$ and (x, y) changes from (1, 2) to (1.05, 2.1), compare the values of Δz and dz.
- 10. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10cm high and 4cm in diameter if the metal in the top and bottom is 0.1cm thick and the metal in the sides is 0.05cm thick.
- 11. Given the function $f(x, y) = x^2y^3 y^4$, the point P(2,1) and the vector

$$v = i + j$$

- a) Find the gradient of f. 2mks
- b) Evaluate the gradient of f at P. 1mk
- c) Find the directional derivative of f at or the rate of change of f at P in the direction of v 2mks
- 12. Find and classify the critical points of $f(x, y) = x^3 12xy + 8y^3$ 7mks

B-NUMERICAL FUNCTIONS OF A REAL VARIABLE

13. Find, without using a calculator, the exact value of:

(a)
$$Log_26 - Log_215 + Log_220$$
 (b) e^{-2ln5} (c) $\frac{Log_5125}{Log_9234}$ 2mks, 1mk, 2mks

14. Solve each of the following in \mathbb{R} for x

(a)
$$e^x = 5$$
 (b) $\ln x = 2$ (c) $\ln x + \ln(x - 3) = \ln(6x) - \ln(x - 2)$ 1mk,1mk, 2mks

- 15. Sketch the curve y = lnx. Hence, or otherwise solve 2 < lnx < 9.
- 16. i. Sketch the curve $y = e^{2x}$.
 - ii. Hence, or otherwise find the domain of the function $f(x) = \sqrt{3 e^{2x}}$. 1mk
- 17. i. Solve in \mathbb{R} the equation $x^2 5x + 6 = 0$
 - ii. Hence, or otherwise solve each of the following in \mathbb{R} :

$$ln2 x - 5lnx + 6 = 0
ex + 6e-x - 5 = 0
1mk$$

$$3^{2x+2} - 5(3^{x+1}) + 6 = 0$$
 1mk

19. (i) if $Acoshx - Bsinhx \equiv 4e^x - 3e^{-x}$, find the exact values of A and B . 2mks (ii) Prove that $2 \cosh^2 x - 1 = \cosh(2x)$ 2mks (iii) Show that a) $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = \cosh(nx) + \sinh(nx)$ 6mks (c) $\frac{1+tanhx}{1-tanhx} = \frac{e^{2x}}{e^x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$ 1mk (iv) Evaluate $\lim_{x\to\infty} \frac{sinhx}{e^x}$ 1mk (iv) Evaluate $\lim_{x\to\infty} \frac{sinhx}{e^x}$ 1mk 20. If $coshx = \frac{4}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express $sech^{-1}x$ in $\log arithmic form. 2mks ii. Find all values of x such that sin(2x) = sinx and 0 \le x \le 2\pi 3mks iii. If tanA = \frac{1}{3} and tanB = \frac{1}{7}, show that 2A + B = \frac{\pi}{4} 2mks 25. i. Prove the identities: (a) tan\thetasin\theta + cos\theta = sec\theta (b) \frac{ztan\theta}{1+tan^2\theta} = sin2\theta 3mks ii. If sinx = \frac{1}{3} and secy = \frac{5}{4}, where x and y lie between 0 and \frac{\pi}{2}, evaluate sin(x + y) 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y - 2z = -2} 2mks e^x = \frac{2x - y + z = 3}{x - y -$	19. (i) if $Acoshx' = Bsinhx \equiv 4e^x - 3e^{-x}$, find the exact values of A and B . 2mks (ii) Prove that $2 \cosh^2 x - 1 = \cosh(2x)$ 2mks (iii) Show that a) $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = \cosh(nx) + \sinh(nx)$ 6mks (c) $\frac{1+teanhx}{1-tanhx} = \frac{e^{2x}}{e^x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$ 1mk 20. If $coshx = \frac{5}{3}$ $and x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ $and y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1} \left(\frac{x}{a}\right)$ 2mks 23. Express $sech^{-1}x$ in logarithmic form. 2mks 24. i. Solve the equation $sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\thetasin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks $e^x = coshy + lnz = 3$ 2mks $e^x = coshy$	18.	Find, without using a calculator the exact value of: (a) $sec^{-1}(2)$ (b) $cosh(ln3)$ (c) $sinh^{-1}(3)$	1mk 1	mk, 1mk
(ii) Prove that $2 \cosh^2 x - 1 = \cosh(2x)$ 2mks (iii) Show that a $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = \cosh(nx) + \sinh(nx)$ 6mks (c) $\frac{1 + tanhx}{1 - tanhx} = e^{2x}$ (d) $tanh(lnx) = \frac{x^2 - 1}{x^2 + 1}$ 1mk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech $1 \times n$ in ogarithmic form. 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. If $tanh = \frac{1}{3}$ and $tanh = \frac{7}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tanhsinh + cosh = sech$ (b) $\frac{2tanh}{1 + tanh^2} = sin2\theta$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$ evaluate $sin(x + y)$ 2mks $(x - 2y + z = 3)$ 2mks ii. Hence, solve in \mathbb{R}^3 the system $(x - 2y + z = 3)$ 2mks $(x - 2y + z = $	(ii) Prove that $2 \cosh^2 x - 1 = \cosh(2x)$ 2mks (iii) Show that $a = \cosh(x) + \sinh(x) = e^x$ ($b = \cosh(x) + \sinh(x) = \cosh(nx) + \sinh(nx)$ 6mks ($c = \frac{1 + \tanh(x)}{1 + \tanh(x)} = e^{2x}$ ($d = \tanh(\ln x) = \frac{x^2 - 1}{x^2 + 1}$ 1mk 20. If $\cosh x = \frac{\pi}{2}$ and $x > 0$ find the exact values of ($a = \sinh(x) = \frac{\pi}{2}$ 3mks 21. Sketch $y = \tanh(x)$ and $y = \coth(x)$ as separate diagrams. Hence, deduce the range of $f(x) = \coth(x)$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}(\frac{x}{2})$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2 \theta + 5\tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks 25. i. Prove the identities: (a) $\tan \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ 3mks ii. If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{2}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{\pi}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks $2x - y - 2x = -2$ 2 2ex $-2 \cosh y + \ln x = 3$ 2 2mks $-2 \cosh y - 2\ln x = -2$ 27. Given that C_f is the curve of the function $f(x) = \frac{\tan x}{x}$ 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 2mks 2mks 2 2mks	19.			iiik, iiiik
a) $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = cosh(nx) + sinh (nx)$ (c) $\frac{1+tanhx}{1-tanhx} = e^{2x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$ 1mk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. If $tanha = \frac{1}{3}$ and $tanha = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tanha sinha + cosh = sech$ (b) $tanha sinha + cosh = sech$ (b) $tanha sinha + cosh = sech$ (b) $tanha sinha + cosh = sech$ (c) $tanha sinha + cosh = sech$ (c) $tanha sinha + cosh = sech$ (d) $tanha sinha + cosh = sech$ (e) $tanha sinha + cosh = sech$ (f) $tanha sinha + cosh = sech$ (g) $tanha sinha sinha$	a) $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = cosh(nx) + sinh (nx)$ 6mks (c) $\frac{1+tanhx}{1-tanhx} = e^{2x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$ 1mk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. If $tanha = \frac{1}{3}$ and $tanha = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tanha sinha + cosha = sech$ (b) $\frac{2tanh}{1+tan^2 \cdot \theta} = sin2\theta$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x)$. 1mk 28. The construct the variation of $f(x)$. 1mk 29. The function of $f(x)$. 1mk 29. The function of $f(x)$ 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y the interpretable construct the variation table of $f(x)$. 1mk 21. The construct the variation of $f(x)$ 2mks 21. Solve the variation of $f(x)$ 3mk 3mks 22. The function $f(x) = \frac{1}{x}$ 3mks 22. The function $f(x) = \frac{1}{x}$ 3mks 23. The function $f(x) = \frac{1}{x}$ 3mks 24. The function $f(x) = \frac{1}{x}$ 3mks 25. The construct the variation of $f(x)$ 3mks 26. The function $f(x) = \frac{1}{x}$ 3mks 27. The function $f(x) = \frac{1}{x}$ 3mks 28. The function $f(x) = \frac{1}{x}$ 3mks 29. In $f(x) = \frac{1}{x}$ 3mks 20. The construct the variation of $f(x) = \frac{1}{x}$ 3mks 25. The function $f(x) = \frac{1}{x}$ 3mks 26. The function $f(x) = \frac{1}{x}$ 3mks 27. The function $f(x) = \frac{1}{x}$ 3mks 28. The function $f(x) = \frac{1}{x}$ 3mks 29. In $f(x) = \frac{1}{x}$ 3mks 20. The function $f(x) = \frac{1}{x}$ 3mks 20. The function $f($				
(c) $\frac{1+\tanh x}{1+\tanh x} = e^{2x}$ (d) $\tanh(\ln x) = \frac{x^2-1}{x^2+1}$ [lmk] (iv) Evaluate $\lim_{x\to a} \frac{\sinh x}{e^x}$ lmk 20. If $\cosh x = \frac{5}{3}$ and $x > 0$ find the exact values of $\frac{1}{(a)\sinh x}$ (b) $\tanh x$ 3mks 21. Sketch $y = \tanh x$ and $y = \coth x$ on separate diagrams. Hence, deduce the range of $f(x) = \coth x$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{d}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express $\sinh^{-1}\left(\frac{x}{d}\right)$ 2mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1+\tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}\tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ 2e^x - \cosh y + \ln z = 3 \\ e^x - \cosh y - 2\ln z = 2 \end{cases}$ 2mks Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Given that $f(x)$ is represented by the curve $f(x)$ 2mks Given that $f(x)$ is represented by the curve $f(x)$ 1mk Given that $f(x)$ is represented by the curve $f(x)$ 1mk Given that $f(x)$ is represented by the curve $f(x)$ 2mks 1. If $\sin x = \frac{1}{3}$ and $\cos y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, 2mks 27. Given that $f(x)$ is the curve of the function $f(x) = \frac{\ln x}{x}$ 2mks Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of $f(x)$ 2mks Construct the variation table of $f(x)$. 1mk Given that $f(x) = \frac{1}{1+x}$, deduce the curve $f(x)$ of $f(x)$ sketch it on a separate diagram. 1mk 1mk 1i. Investigate the variation of $f(x)$ 2mks Given that $f(x) = \frac{1}{1+x}$, deduce the curve $f(x)$ of $f(x)$ 3 sketch it on a separate diagram. 1mk 1ii. Deduce the intervals where $f(x)$ 3 increa	(c) $\frac{1+tanhx}{1-tanhx} = e^{2x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$ [mk] (iv) Evaluate $\lim_{x\to\infty} \frac{\sinh x}{e^x}$ Imk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of $\frac{1}{4a} \sinh x$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2\theta + 5\tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\thetasin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}tan^2x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{\sin x}{x}$ 2mks Determine the domain of f and the limits at its boundaries. 2mks Determine the domain of f and the limits at its boundaries. 2mks Determine the domain of f and the limits at its boundaries. 2mks Determine the domain of f and the limits at its boundaries. 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mks Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 1mk 1mk 1mk 1mk 1mk 1mk 1mk				
(iv) Evaluate $\lim_{x\to\infty} \frac{\sin x}{\sin x}$ Imk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 31. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 32. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 22. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 23. Express sech ⁻¹ x in logarithmic form. 24. i. Solve the equation $sec^2 \theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 36. 36. 37. 38. 38. 38. 39. 39. 39. 39. 39. 39. 39. 39. 39. 39	(iv) Evaluate $\lim_{x\to\infty} \frac{s_{max}}{s}$ Imk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express $sech^{-1}x$ in logarithmic form. 2mks 24. i. Solve the equation $sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{sin^2x}{1+cos(2x)} = \frac{1}{2}tan^2x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$ Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mks Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 1mk 1mk 1mk 1mk 1mk 1mk 1mk		a) $coshx + sinhx = e^x$ (b) $(coshx + sinhx)^n = cosh(nx) + sinh(nx)$)	6mks
(iv) Evaluate $\lim_{x\to\infty} \frac{\sin x}{\sin x}$ Imk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 31. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 32. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 22. a) Find the derivative of $y = sinh^{-1}(\frac{x}{a})$ 23. Express sech ⁻¹ x in logarithmic form. 24. i. Solve the equation $sec^2 \theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 36. 36. 37. 38. 38. 38. 39. 39. 39. 39. 39. 39. 39. 39. 39. 39	(iv) Evaluate $\lim_{x\to\infty} \frac{s_{max}}{s}$ Imk 20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of (a) $sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express $sech^{-1}x$ in logarithmic form. 2mks 24. i. Solve the equation $sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{sin^2x}{1+cos(2x)} = \frac{1}{2}tan^2x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$ Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mks Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 1mk 1mk 1mk 1mk 1mk 1mk 1mk		(c) $\frac{1+tanhx}{1-tanhx} = e^{2x}$ (d) $tanh(lnx) = \frac{x^2-1}{x^2+1}$		
20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of a a a a a a b b a a a b b a a a b a b a a a a b a a a a a b a	20. If $coshx = \frac{5}{3}$ and $x > 0$ find the exact values of $\frac{a}{a}sinhx$ (b) $tanhx$ 3mks 21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2+a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\thetasin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ 3mks iii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2x - y + z = 7 \\ 2e^x - coshy + lnz = 7 \end{cases}$ 2mks $\begin{cases} 2x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z = 3 \\ 2x - 2x + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - 2x + z + 3 + 2x $		(iv) Evaluate $\lim_{x\to\infty} \frac{\sinh x}{e^x}$	1mk	
(a) $\sinh x$ (b) $\tanh x$ 21. Sketch $y = \tanh x$ and $y = \coth x$ on separate diagrams. Hence, deduce the range of $f(x) = \coth x$ 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 23. Express sech ⁻¹ x in logarithmic form. 24. i. Solve the equation $\sec^2\theta + 5\tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 35. ii. Find all values of x such that $\sin(2x) = \sin a$ od $0 \le x \le 2\pi$ 36. ii. Find $\tan x = \frac{1}{3}$ and $\tan x = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 27. ii. If $\tan A = \frac{1}{3}$ and $\tan x = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 28. ii. If $\tan x = \frac{1}{3}$ and $\tan x = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 29. i. If $\sin x = \frac{1}{3}$ and $\cos x = \frac{5}{4}$, where x and y lie between x and y lie between x and y lie between y and y lie lie between y lie	(a) $\sinh x$ (b) $\tanh x$ 21. Sketch $y = \tanh x$ and $y = \coth x$ on separate diagrams. Hence, deduce the range of $f(x) = \coth x$ 3 $\sinh x$ 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2 $\sinh^{-1}\left(\frac{x}{a}\right)$ 3 $\sinh x$ 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2 $\sinh x$ b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1 $\sinh x$ 23. Express sech ⁻¹ x in logarithmic form. 2 $\sinh x$ 24. i. Solve the equation $\sec^2 \theta + 5\tan \theta = 7$ in $0 < \theta < 360^{\circ}$ 3 $\sinh x$ ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3 $\sinh x$ iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 225. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1 + \cos^2 (2x)} = \frac{1}{2} \tan^2 x$ 3 $\sinh x$ ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2 $\sinh x$ 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$ 28. Determine the domain of f and the limits at its boundaries. 29. Determine the domain of f and the stationary points of C_f 20 $\sinh x$ 20. i. In h 3 h 3 h 3 h 3 h 3 h 3 h 4 h 4 h 4 h 5 h 6 h 6 h 6 h 6 h 6 h 6 h 7 h 8 h 9 h 1 h 1 h 1 h 1 h 1 h 2 h 2 h 2 h 2 h 3 h 4 h 1 h 2 h 3 h 4 h 4 h 4 h 4 h 5 h 6 h 6 h 6 h 6 h 6 h 7 h 8 h 9				
21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = \sinh^{-1} \left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 22. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2 \theta + 5 \tan \theta = 7 \text{ in } 0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2tan\theta}{1+\tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks (2 $x - y + z = 7$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ 2e^x - \cosh y + \ln z = 7 \\ e^x - 2\cosh y + \ln z = 3 \\ e^x - \cosh y - 2\ln z = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk 1mk 29. i. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equati	21. Sketch $y = tanhx$ and $y = cothx$ on separate diagrams. Hence, deduce the range of $f(x) = cothx$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2 \theta + 5 \tan \theta = 7$ in $0 < \theta < 360^\circ$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta \sin \theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks (2 $x - y + z = 7$ 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 3 \\ x - 2y + z = 3 \end{cases}$ 2mks (27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Determine the domain of f and the limits at its boundaries. Determine the domain of f and the limits at its boundaries. Determine the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $\sin x = \frac{1}{4}$ and $\cos x = \frac{1}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x) + \sin(x) = \frac{1}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$		J.	3mks	
Hence, deduce the range of $f(x) = \coth x$ 3mks 222. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x+\sqrt{x^2+a^2}) + K$ 1mk 223. Express sech ⁻¹ x in logarithmic form. 2mks 4: i. Solve the equation sec ² $\theta + 5 \tan \theta = 7 \ln 0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1 + \cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 2mk Construct the variation table of $f(x)$. 2mk Construct the variation table of $f(x)$. 2mk The function $g(x) = \frac{x^2}{f(x)}$ deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 1mk 1minute $f(x) = \frac{x^2}{f(x)}$ 3md the intercepts and asymptotes if any 1mk 1mk 1mk 1mk 1mk 1mk 2mk 2mk 2mk 2mk 2mk 2mk 2mk 2mk 2mk 2	Hence, deduce the range of $f(x) = \coth x$ 3mks 22. a) Find the derivative of $y = \sinh^{-1}\left(\frac{x}{a}\right)$ 2mks b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation sec ² $\theta + 5 \tan \theta = 7 \text{ in } 0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1 + \cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$. evaluate $\sin(x + y)$ 2mks (2 $x - y + z = 7$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \end{cases}$ 2mks (2 $x - y - 2z = -2$ ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - \cosh y + \ln z = 7 \\ e^x - 2\cosh y + \ln z = 3 \\ e^x - \cosh y - 2\ln z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$ Determine the domain of f and the limits at its boundaries. 2mks Construct the variation table of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$ deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . 1. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk 1iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks 30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ 3mks 3 in $\cos(x^2 + 8) - \log(2x) = \log 3$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	21.		CIL	
b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$	b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2 \theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{tnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk 29 chosen for $f(x)$ 2mks 28. The function $f(x) = \frac{tnx}{f(x)}$ 2mks 28. The function $f(x) = \frac{tnx}{f(x)}$ 3mks 29. i. In september the variation table of $f(x)$. 2mks 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . 2mks 3. In limit C_f is the variation of C_f 2mks 3. The function C_f 3mks 3mks 3mks 3mks 3mks 3mks 3mks 3mks			3mks	
b) Hence, show that $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$	b) Hence, show that $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + K$ 1mk 23. Express sech ⁻¹ x in logarithmic form. 2mks 24. i. Solve the equation $\sec^2 \theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{tnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk 29 chosen for $f(x)$ 2mks 28. The function $f(x) = \frac{tnx}{f(x)}$ 2mks 28. The function $f(x) = \frac{tnx}{f(x)}$ 3mks 29. i. In september the variation table of $f(x)$. 2mks 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . 2mks 3. In limit C_f is the variation of C_f 2mks 3. The function C_f 3mks 3mks 3mks 3mks 3mks 3mks 3mks 3mks	22.	a) Find the derivative of $y = \sinh^{-1} \left(\frac{x}{-}\right)$	2mks	
23. Express $\operatorname{sech}^{-1} x$ in logarithmic form. 24. i. Solve the equation $\operatorname{sec}^2 \theta + \operatorname{Stan} \theta = 7$ in $0 < \theta < 360^\circ$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1 + \cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks (a) $\tan^3 \theta + \sin^3 \theta + \cos^3 \theta + \sin^3 \theta + $	23. Express sech ⁻¹ x in logarithmic form. 24. i. Solve the equation $\sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{tan}{x}$ 28. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Implication $f(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $f(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 2i. Investigate the variation of $g(x)$ and construct its variation table. iii. Sketch C_g showing clearly the intercepts and asymptotes if any. iiii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log(3x)$ b) $13e^{2x-1} = 7e^{x}$		(u)		
24. i. Solve the equation $\sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2tan\theta}{1+\tan^2\theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}\tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x+y)$ 2mks $ (2x-y+z=7) = (2x-y+z=3) $ 2mks $ (x-y-2z=-2) = (2e^x-\cosh y+\ln z=3) $ 2mks $ (2x-y+z) = (2e^x-\cosh y+\ln z=3) $ 2mks $ (2x-y+z) = (2e^x-\cosh y+\ln z=3) $ 2mks $ (2e^x-\cosh y+2\ln z=3) = (2e^x-\cosh y+\ln z=3) $ 2mks $ (2e^x-\cosh y+2\ln z=3) = (2e^x-\cosh y+\ln z=3) $ 2mks $ (2e^x-\cosh y+2\ln z=3) = (2e^x-\cosh y+\ln z=3$	24. i. Solve the equation $\sec^2\theta + 5tan\theta = 7$ in $0 < \theta < 360^{\circ}$ 3mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks $ (x - y) = 2x = -2 $ 2mks $ (x - y) = 2x = -2 $ 2mks $ (x - y) = 2x = -2 $ 3mks $ (x - y) = 2x = -2 $ 2nks $ (x - y) = 2x = -2 $ 2nmks $ (x - y) = 2x = -2 $ 3mks $ (x - y) = 2x = -2 $ 2nmks $ (x - y) = 2x = -2 $ 3mks $ (x - y) = 2x = -2 $ 2nmks $ (x - y) = 2x = -2 $ 3mks $ (x - y) = 2x = -2 $ 2nmk		vx i u		
ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \theta \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1 + \cos(2x)} = \frac{1}{2} \tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperseented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks iii. Polyone that its values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^{x}$	ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 3mks iii. If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $\tan \sin \theta + \cos \theta = \sec \theta$ (b) $\frac{2\tan \theta}{1+\tan^2 \theta} = \sin 2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}\tan^2 x$ 3mks ii. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_f of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x+y)$ 2mks iii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$				
iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+cos(2x)} = \frac{1}{2}tan^2x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deture the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	iii. If $tanA = \frac{1}{3}$ and $tanB = \frac{1}{7}$, show that $2A + B = \frac{\pi}{4}$ 2mks 25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+cos(2x)} = \frac{1}{2}tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{tnx}{x}$. Determine the domain of f and the limits at its boundaries. Determine the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$				
25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+cos(2x)} = \frac{1}{2}tan^2x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deture the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	25. i. Prove the identities: (a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{2tan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+cos(2x)} = \frac{1}{2}tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Determine the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks iii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks iii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$				
(a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{stan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2} tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x-y+z=7 \\ x-2y+z=3 \\ x-y-2z=-2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative $f'(x)$ and the stationary points of $f'(x)$ 2mks Construct the variation table of $f'(x)$. 1mk Setch $f'(x)$ showing clearing the extrema if any and the intercept. 2mk Given that $f'(x) = \frac{1}{f(x)}$, deduce the curve $f'(x)$ and construct its variation table. 1mk 1mk 1nk 2nk 2nk 2nks 2n	(a) $tan\theta sin\theta + cos\theta = sec\theta$ (b) $\frac{stan\theta}{1+tan^2\theta} = sin2\theta$ b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2} tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x-y+z=7 \\ x-2y+z=3 \\ x-y-2z=-2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative $f'(x)$ and the stationary points of $f'(x)$ 2mks Construct the variation table of $f'(x)$. 1mk Setch $f'(x)$ showing clearing the extrema if any and the intercept. 2mk Given that $f'(x) = \frac{1}{f(x)}$, deduce the curve $f'(x)$ 3m and construct its variation table. 6mks ii. Investigate the variation of $f'(x)$ 3md construct its variation table. 6mks iii. Sketch $f''(x)$ 3md construct its variation table. 6mks iii. Deduce the intervals where $f''(x)$ is increasing and the interval where it is decreasing. 2mks 29. i. If $f''(x) = \frac{1}{4}$, where $f''(x) = \frac{1}{4}$, where $f''(x) = \frac{1}{4}$, where $f''(x) = \frac{1}{4}$ and $f''(x$		5 / 4	ZIIIKS	
b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}\tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x-y+z=7\\ x-2y+z=3\\ x-y-2z=-2 \end{cases}$ 2mks $\begin{cases} 2e^x-\cosh y+\ln z=7\\ e^x-2\cosh y+\ln z=3\\ e^x-\cosh y-2\ln z=-2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x)=\frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Imk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x)=\frac{1}{f(x)}$, deduce the curve C_R of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x)=x^2e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx=\frac{1}{3}$ and $secy=\frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks iii. Find all values of x such that $sin(2x)=sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2+8)-log(2x)=log3$ b) $13e^{2x-1}=7e^x$	b) $\frac{\sin^2 x}{1+\cos(2x)} = \frac{1}{2}\tan^2 x$ 3mks ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x-y+z=7\\ x-2y+z=3\\ x-y-2z=-2 \end{cases}$ 2mks $\begin{cases} 2e^x-\cosh y+\ln z=7\\ e^x-2\cosh y+\ln z=3\\ e^x-\cosh y-2\ln z=-2 \end{cases}$ 2mks 27. Given that C_f is the curve of the function $f(x)=\frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Imk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x)=\frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x)=x^2e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks iii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx=\frac{1}{3}$ and $secy=\frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks iii. Find all values of x such that $sin(2x)=sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2+8)-log(2x)=log3$ b) $13e^{2x-1}=7e^x$	25.	_		
ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks 21. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases}$ 21. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. 22. Determine the domain of f and the limits at its boundaries. 23. Deduce the vertical asymptote of $f(x)$. 24. Imk 25. Find the derivative, $f'(x)$ and the stationary points of C_f 25. 26. Imk 26. Construct the variation table of $f(x)$. 26. In the derivative of the system of $f(x)$ is the curve of the stationary $f(x)$ is the curve $f(x)$ in the stationary $f(x)$ is the curve $f(x)$ in the stationary points of $f(x)$. 26. In the derivative of the system of the system of $f(x)$ in the system of $f(x)$ in the system of $f(x)$ in the stationary points of $f(x)$. 27. In the derivative of $f(x)$ is the system of $f(x)$ in the stationary points of $f(x)$ in the stationary points of $f(x)$ in the system of $f(x)$ in the system of $f(x)$ in the stationary points of $f(x)$ in the stationary points of $f(x)$ in the stationary points of $f(x)$ in the system of $f(x)$ in the stationary points of $f(x)$ in the stationa	ii. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ iii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Imk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $f(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing, 2mks 29. i. If $f(x) = \frac{1}{f(x)}$, where $f(x) = \frac{1}{f(x)}$ and $f(x) = \frac{1}{$				
evaluate $sin(x + y)$ $2ch. i. Solve in \mathbb{R}^3 the system \begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \end{cases} 2mks 2ch. i. Solve in \mathbb{R}^3 the system \begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases} e^x - coshy - 2lnz = -2 \end{cases} 2ch. ii. Hence, solve in \mathbb{R}^3 the system \begin{cases} 2e^x - coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases} 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 \end{cases} 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -$	evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative $f(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_R of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$		1100 (2x) 2	3mks	
evaluate $sin(x + y)$ $2ch. i. Solve in \mathbb{R}^3 the system \begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \end{cases} 2mks 2ch. i. Solve in \mathbb{R}^3 the system \begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases} e^x - coshy - 2lnz = -2 \end{cases} 2ch. ii. Hence, solve in \mathbb{R}^3 the system \begin{cases} 2e^x - coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases} 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 \end{cases} 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -2 2ch. Coshy - 2lnz = -$	evaluate $sin(x + y)$ 2mks 26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \\ x - y - 2z = -2 \end{cases}$ ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \\ e^x - coshy - 2lnz = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative $f(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_R of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$		ii. If $sinx = \frac{1}{2}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$,		
26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \end{cases}$ 2mks $\begin{cases} x - y - 2z = -2 \\ 2e^x - \cosh y + \ln z = 7 \end{cases}$ ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - \cosh y + \ln z = 7 \\ e^x - 2\cosh y + \ln z = 3 \end{cases}$ 2mks $\begin{cases} e^x - \cosh y + \ln z = 3 \\ e^x - \cosh y - 2\ln z = -2 \end{cases}$ 2mks Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $\sin x = \frac{1}{3}$ and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $\sin(x + y)$ 2mks ii. Find all values of x such that $\sin(2x) = \sin x$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$	26. i. Solve in \mathbb{R}^3 the system $\begin{cases} 2x - y + z = 7 \\ x - 2y + z = 3 \end{cases}$ 2mks $\begin{cases} 2x - y + z = 3 \\ x - y - 2z = -2 \end{cases}$ 2mks $\begin{cases} 2e^x - \cosh y + \ln z = 7 \\ e^x - 2\cosh y + \ln z = 3 \\ e^x - \cosh y - 2\ln z = -2 \end{cases}$ 2mks $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks Determine the domain of f and the limits at its boundaries. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks Deduce the vertical asymptote of $f(x)$. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks Construct the variation table of $f(x)$. $\begin{cases} 2\pi - \cos hy - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 2mks Construct the variation table of $f(x)$. $\begin{cases} 2\pi - \cos hy - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch C_f showing clearing the extrema if any and the intercept. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch $f(x)$ 3md construct its variation table. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch $f(x)$ 3md construct its variation table. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch $f(x)$ 3md construct its variation table. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch $f(x)$ 3md construct its variation table. $\begin{cases} 2\pi - \cosh y - 2\ln z = -2 \\ 2\pi - \cosh y - 2\ln z = -2 \end{cases}$ 3mk Setch $f(x)$			2mks	
ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases}$ 2mks $e^x - coshy - 2lnz = -2$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases}$ 2mks $\begin{cases} e^x - coshy - 2lnz = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Imk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$				
ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases}$ 2mks $e^x - coshy - 2lnz = -2$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} 2e^x - coshy + lnz = 7 \\ e^x - 2coshy + lnz = 3 \end{cases}$ 2mks $\begin{cases} e^x - coshy - 2lnz = -2 \end{cases}$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Imk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	26.	i. Solve in \mathbb{R}^3 the system $\begin{cases} x - 2y + z = 3 \end{cases}$	2mks	
$(e^x - coshy - 2lnz = -2)$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	$(e^x - coshy - 2lnz = -2)$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1111. 1112. 1113. 1114. 1115. 1115. 1116. 1116. 1117. 1117. 1117. 1118. 1119. 1		(x-y-2z=-2		
$(e^x - coshy - 2lnz = -2)$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	$(e^x - coshy - 2lnz = -2)$ 27. Given that C_f is the curve of the function $f(x) = \frac{lnx}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is repersented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1111. 1112. 1113. 1114. 1115. 1115. 1116. 1116. 1117. 1117. 1117. 1118. 1119. 1		$\left(2e^{x} - coshy + lnz = 7\right)$		
27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. Imk 28. The function $g(x) = x^2 e^x$ is reperseented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. ii. Sketch C_g showing clearly the intercepts and asymptotes if any. iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	27. Given that C_f is the curve of the function $f(x) = \frac{\ln x}{x}$. Determine the domain of f and the limits at its boundaries. Deduce the vertical asymptote of $f(x)$. Find the derivative, $f'(x)$ and the stationary points of C_f Construct the variation table of $f(x)$. Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$		ii. Hence, solve in \mathbb{R}^3 the system $\begin{cases} e^x - 2\cosh y + \ln z = 3 \end{cases}$	2mks	
Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$		<u> </u>		
Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	Determine the domain of f and the limits at its boundaries. 2mks Deduce the vertical asymptote of $f(x)$. 1mk Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	27.	Given that C_f is the curve of the function $f(x) = \frac{thx}{x}$.		
Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$	Find the derivative, $f'(x)$ and the stationary points of C_f 2mks Construct the variation table of $f(x)$. 1mk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$			2mks	
Construct the variation table of $f(x)$.	Construct the variation table of $f(x)$. Imk Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $log(x^2 + 8) - log(2x) = log3$				
Setch C_f showing clearing the extrema if any and the intercept. 2mk Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	Setch C_f showing clearing the extrema if any and the intercept. Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$				
Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagram. 1mk 28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$				
28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	28. The function $g(x) = x^2 e^x$ is reperesented by the curve C_g . i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$				
i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$		Given that $h(x) = \frac{1}{f(x)}$, deduce the curve C_h of $h(x)$ sketch it on a separate diagra	.m.	1mk
i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	i. Investigate the variation of $g(x)$ and construct its variation table. 6mks ii. Sketch C_g showing clearly the intercepts and asymptotes if any. 1mk iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	28.	The function $g(x) = x^2 e^x$ is reperesented by the curve C_q .		
iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	iii. Deduce the intervals where g is increasing and the interval where it is decreasing. 2mks 29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	i.	Investigate the variation of $g(x)$ and construct its variation table.	6mks	
29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x + y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	29. i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate $sin(x+y)$ 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	ii	. Sketch C_g showing clearly the intercepts and asymptotes if any.	1mk	
sin(x + y) 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	sin(x + y) 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$			g. 2mks	,
sin(x + y) 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	sin(x + y) 2mks ii. Find all values of x such that $sin(2x) = sinx$ and $0 \le x \le 2\pi$ 2mks 30. i. Solve the following equations: a) $log(x^2 + 8) - log(2x) = log3$ b) $13e^{2x-1} = 7e^x$	29.	i. If $sinx = \frac{1}{3}$ and $secy = \frac{5}{4}$, where x and y lie between 0 and $\frac{\pi}{3}$, evaluate		
30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$	30. i. Solve the following equations: a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$			2mks	
a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$	a) $\log(x^2 + 8) - \log(2x) = \log 3$ b) $13e^{2x-1} = 7e^x$			2mks	
b) $13e^{2x-1} = 7e^x$	b) $13e^{2x-1} = 7e^x$	30.			
a) $\ln(u+1)^2 = \ln(u+1) + \ln(u+2) + 2$	(1) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3			Carel	
c) $ln(x+1)^2 = ln(x+1) - ln(x+2) + 2$ 6mks	C) $m(x + 1)^2 = m(x + 1) - m(x + 2) + 2$ Office of the following functions with respect to x	21		OINKS	

1mks

32.

For the function g whose graph is given,

- i. state the value of each quantity, if it exists. If it does not exist, explain why.
- (a) $\lim_{t\to 0^{-}} g(t)$ (b) $\lim_{t\to 0^{+}} g(t)$ (g) g(2) (h) $\lim_{t\to 4} g(t)$ (b) $\lim_{t\to 0^+} g(t)$ (c) $\lim_{t\to 0} g(t)$ (d) $\lim_{t\to 2^-} g(t)$ (e) $\lim_{t\to 2^+} g(t)$ (f) $\lim_{t\to 2} g(t)$ 8mks
- ii. Identify the discontinuities of g
- 33. The electric scalar potential in a region of space is given by $\phi = x^2 + xy^2 + z^2$. Determine, at the point (-1, 2, -1)
 - a) grad ϕ 2mks
 - b) the directional derivative of ϕ in the direction of the vector $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ 2mks