Problem Statement:

Use the following Monte Carlo estimator to approximate the expected value, $I = E\left[\exp\left(\sqrt{U}\right)\right]$, where, $U \sim \mathcal{U}[0,1]$:

$$I_M = \frac{1}{M} \sum_{i=1}^{M} Y_i$$
, where $Y_i = \exp\left(\sqrt{U_i}\right)$, with $U_i \sim \mathcal{U}[0, 1]$.

Repeat the problem, using antithetic variates via the following estimator:

$$\widehat{I}_{M} = \frac{1}{M} \sum_{i=1}^{M} \widehat{Y}_{i}, \text{ where } \widehat{Y}_{i} = \frac{\exp\left(\sqrt{U_{i}}\right) + \exp\left(\sqrt{1 - U_{i}}\right)}{2}, \text{ with } U_{i} \sim \mathcal{U}[0, 1].$$

Taking the values of M to be $10^2, 10^3, 10^4$ and 10^5 , determine the 95% confidence interval for I_M and \widehat{I}_M , for all these four values of M, that you have taken, and present the results that you have obtained above in a tabular form. Your table must consist of the values of I_M , \widehat{I}_M , 95% confidence intervals for \widehat{I}_M , and the ratio of lengths of both the intervals.

Submission Deadline: 18th November 2020, 11:59 PM