In the Claims:

1. (Currently amended) An asymmetrical key cryptography method involving a keyholder having a number $m \ge 1$ of private keys $Q_1, Q_2, ..., Q_m$ and respective public keys $G_1, G_2, ..., G_m$, each pair of keys (Q_i, G_i) (where i = 1, ..., m) satisfying either the relationship $G_i = Q_i^{\nu} \mod n$ or the relationship $G_i \times Q_i^{\nu} = 1 \mod n$, where n is a public integer equal to the product of f (where f > 1) private prime factors $p_1, ..., p_f$, at least two of which are separate, and the exponent ν is a public integer equal to a power of 2, wherein the method comprises the steps of: which method is characterized in that

arranging exponent v to have the relationship $v = 2^{b+k}$, where k is a strictly positive integer and $b = \max(b_1,...,b_f)$, where b_j (where j = 1,...,f) is the highest integer such that $(p_j - 1)/2^{b_j - 1}$ is even; [[,]] and

arranging each public key G_i (where i = 1,...,m) is of to have the form $G_i = g_i^{2^{a_i}} \mod n$, where the base numbers g_i are integers strictly greater than 1 and the numbers a_i are integers such that $1 \le a_i \le b$ and at least one of them is strictly greater than 1.

2. (Currently amended) A method according to claim 1, eharacterized in that wherein at least one of said prime factors $p_1,...,p_f$ is congruent to 1 modulo 4 and the integers a_i (where i=1,...,m) are all equal to said number b.

3. (Currently amended) A method according to claim 1 or claim 2, characterized in that wherein said base numbers $g_1,...,g_m$ include at least one number g_s and said prime factors $p_1,...,p_f$ include at least two numbers p_t and p_t other than 2 such that, given said numbers $p_t,...,p_f$,

if
$$b_t = b_u$$
, then $(g_s | p_t) = -(g_s | p_u)$, and

if
$$b_t < b_u$$
, then $(g_s | p_u) = -1$,

where $(g_s | p_t)$ and $(g_s | p_u)$ denote the Legendre symbols of g_s relative to p_t and p_u .

- 4. (Currently amended) A method according to claim 1, wherein any one of the preceding claims, characterized in that the base numbers $g_1,...,g_m$ are prime numbers.
- 5. (Currently amended) A method according to <u>claim 1</u> any one of claims 1 to 4, involving a controller and said keyholder, here called the claimant, characterized in that it wherein the method comprises the following steps:

the claimant chooses at random an integer r, calculates the witness $R = r^{\nu} \mod n$ and sends the witness to the controller,

the controller chooses at random m challenges $d_1, d_2, ..., d_m$ where i = 1, ..., m and sends the challenges to the claimant,

the claimant calculates the response

$$D = r \times Q_1^{d_1} \times Q_2^{d_2} \times ... \times Q_m^{d_m} \mod n,$$

and sends the response to the controller, and

the controller calculates

$$D^{\nu} \times G_1^{\varepsilon_1 d_1} \times G_2^{\varepsilon_2 d_2} \times ... \times G_m^{\varepsilon_m d_m} \mod n$$

where, for i = 1,...,m, $\varepsilon_i = +1$ if $G_i \times Q_i^{\nu} = 1 \mod n$ and $\varepsilon_i = -1$ if $G_i = Q_i^{\nu} \mod n$, and verifies that the result is equal to the witness R.

6. (Currently amended) A method according to <u>claim 1</u> any one of claims 1 to 4, enabling a controller to verify that a message M that it has received was sent to it by said keyholder, here called the claimant, characterized in that it wherein the method comprises the following steps:

the claimant chooses at random an integer r and first calculates the witness $R = r^{\nu} \mod n$, then calculates the token T = h(M, R), where h is a hashing function, and finally sends the token T to the controller,

the controller chooses at random m challenges $d_1, d_2, ..., d_m$ where i = 1, ..., m, and sends the challenges to the claimant,

the claimant calculates the response

 $D = r \times Q_1^{d_1} \times Q_2^{d_2} \times ... \times Q_m^{d_m} \mod n$ and sends the response to the controller, and

the controller calculates $h(M, D^{\nu} \times G_1^{\varepsilon_1 d_1} \times G_2^{\varepsilon_2 d_2} \times ... \times G_m^{\varepsilon_m d_m} \mod n)$ where, for i = 1,...,m, $\varepsilon_i = +1$ if $G_i \times Q_i^{\nu} = 1 \mod n$ and $\varepsilon_i = -1$ if $G_i = Q_i^{\nu} \mod n$, and verifies that the result is equal to the token T.

- 7. (Currently amended) A method according to claim 5, wherein or claim 6, eharacterized in that the challenges satisfy the condition $0 \le d_i \le 2^k 1$ for i = 1,...,m.
- 8. (Currently amended) A method according to claim 1 any one of claims 1 to 4, enabling said keyholder, here called the signatory, to sign a message M that it sends to a controller, characterized in that it wherein the method comprises the following steps:

the signatory chooses at random m integers r_i , where i = 1,...,m, and first calculates the witnesses $R = r^v \mod n$, then calculates the token $T = h(M, R_1, R_2,..., R_m)$, where h is a hashing function producing a word of m bits, and finally sends the token T to the controller,

the signatory identifies the bits $d_1, d_2, ..., d_m$ of the token T,

the signatory calculates the responses $D_i = r_i \times Q_i^{d_i} \mod n$ and sends the responses to the controller, and

the controller calculates

$$h(M, D_1^{\nu} \times G_1^{\varepsilon_1 d_1} \mod n, D_2^{\nu} \times G_2^{\varepsilon_2 d_2} \mod n, ..., D_m^{\nu} \times G_m^{\varepsilon_m d_m} \mod n)$$

where, for i = 1,...,m, $\varepsilon_i = +1$ if $G_i \times Q_i^{\nu} = 1 \mod n$ and $\varepsilon_i = -1$ if $G_i = Q_i^{\nu} \mod n$, and verifies that the result is equal to the token T.

9. (Currently amended) An electronic circuit including a processor and memories, eharacterized in that it wherein the electronic circuit can be programmed to act as said keyholder in executing a method according to claim 1 any one of claims 1 to 8.

- 10. (Currently amended) A dedicated electronic circuit, characterized in that it includes including microcomponents enabling it the electronic circuit to process data in such manner as to act as said keyholder in executing a method according to claim 1 any one of claims 1 to 8.
- 11. (Currently amended) A portable object adapted to be connected to a terminal to exchange data with that terminal, characterized in that it wherein the portable object includes an electronic circuit according to claim 9 or claim 10 and is adapted to store identification data and private keys specific to said key holder.
- 12. (Currently amended) A terminal adapted to be connected to a portable object to exchange data with that portable object, characterized in that it wherein the terminal includes a data processing device programmed to act as said controller in executing a method according to claim 1 any one of claims 1 to 8.
 - 13. (Currently amended) A cryptography system comprising:

a portable object according to claim 11 adapted to be connected to a terminal to exchange data with that terminal, wherein the portable object includes an electronic circuit having a processor and memories, wherein the electronic circuit can be programmed to act as said keyholder in executing a method according to claim 1, and wherein the portable object is adapted to store identification data and private keys specific to said key holder; and

a terminal according to claim 12 adapted to be connected to the portable object to exchange data with that portable object, wherein the terminal includes a data processing device programmed to act as said controller in executing a method according to claim 1.

- 14. (Currently amended) Non-removable data storage means containing electronic data processing program code instructions for, as said keyholder, executing the steps of any of the methods of a method according to <u>claim 1</u> any one of claims 1 to 8.
- 15. (Currently amended) Partially or totally removable storage means containing electronic data processing program code instructions for, as said keyholder, executing the steps of a method according to <u>claim 1</u> any one of claims 1 to 8.
- 16. (Currently amended) A data processing device comprising storage means according to claim 14 or claim 15.
- 17. (Currently amended) Non-removable data storage means containing electronic data processing program code instructions for, as said controller, executing the steps of any of the methods of a method according to <u>claim 1</u> any one of claims 1 to 8.
- 18. (Currently amended) Partially or totally removable data storage means containing electronic data processing program code instructions for, as said controller, executing the steps of a method according to <u>claim 1</u> any one of claims 1 to 8.

- 19. (Currently amended) A data processing device, characterized in that wherein it comprises storage means according to claim 17 or claim 18.
 - 20. (Currently amended) A cryptography system comprising:
- a data processing device according to claim 16 including non-removable storage means containing electronic data processing program code instructions for, as said keyholder, executing the steps of any of the methods of a method according to claim 1; and
- a data processing device according to claim 19 including non-removable data storage means containing electronic data processing program code instructions for, as said controller, executing the steps of any of the methods of a method according to claim 1.
- 21. (Currently amended) A computer program containing instructions such that, when said program controls a programmable data processing device, said instructions cause said data processing device to execute a method according to <u>claim 1</u> any one of claims 1 to 8.
- 22. (New) A method according to claim 4, wherein the base numbers $g_1,...,g_m$ are chosen from the first 54 prime numbers.