EA7

Határidő Nincs megadva határidő **Pont** 10 **Elérhető** nov 15, 08:30 - nov 15, 09:15 körülbelül 1 óra

Kérdések 10 **Időkorlát** 15 perc

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény	
LEGUTOLSÓ	1. próbálkozás	10 perc	9 az összesen elérhető 10 pontból	

(3) A helyes válaszok el vannak rejtve.

Ezen kvíz eredménye: 9 az összesen elérhető 10 pontból

Beadva ekkor: nov 15, 08:57

Ez a próbálkozás ennyi időt vett igénybe: 10 perc

Helytelen

Melyik állítás igaz a bridge-eknél (hidaknál) látott feszítőfa protokollra (STP)? A kialakított fa optimális továbbítást tesz lehetővé. A fa gyökere a legnagyobb kapacitású állomás, melyet a bridge-ek választanak meg. Az állomások az összes bridge-nek elküldik a konfigurációs üzenetük, mely alapján azok frissítik a gyökér csomópont és a hozzá vezető úthoz kapcsolódó információkat. Egy bridge a szomszéd bridge-eknek küldi el a konfigurációs üzenetét, mely alapján azok frissítik a gyökér csomópont és a hozzá vezető úthoz kapcsolódó információkat.

2. kérdés 1/1 pont

Egy távolságvektor routing protokollt használó hálózatban az A állomás routing táblája a következő:

host | költség | next hop

B | 7 | B

C | 10 | C

D | 1 | D

E | 14 | D

B szomszédtól a következő távolságvektort kapja:

C | 2

D | 3

E | 3

Mi lesz E költsége A állomás routing táblájában? 10

1. válasz:

10

3. kérdés 1 / 1 pont

Egy távolságvektor routing protokollt használó hálózatban az A állomás routing táblája a következő:

host | költség | next hop

B | 7 | B

C | 10 | C

D | 1 | D

E | 14 | D

B szomszédtól a következő távolságvektort kapja:

C | 2

D | 3

E | 3

Mi lesz D költsége A állomás routing táblájában? 1

1. válasz:

1

4. kérdés	1 / 1 pont
Melyik állítás igaz?	
Minden switch egyben bridge is.	
Bridge minden portja csak egyetlen egy hoszthoz kapcsolható, ami le másik bridge is.	het egy
Switchek esetén csak fél-duplex linkek megengedettek.	
Minden bridge egyben switch is.	

5. kérdés	1 / 1 pont
Melyik állítások igazak a kapcsolatállapot (link state) alapú routing protokollra?	g
☐ Bellman-Ford algoritmust alkalmaz	
Megméri a szomszédokhoz vezető költséget, majd ezt elküldi a szom routereknek (csak nekik).	szédos
☑ Dijkstra algoritmust alkalmaz	
✓ Megméri a szomszédokhoz vezető költséget, majd ezt elküldi minden routernek.	
A routing táblát egy központi vezérlő tölti fel.	

6. kérdés 1 / 1 pont

ENV.2017/2011 ANOSDZ II OGGOCGZINO GZammogepes majozac	
Melyik protokollhoz kapcsolódik a végtelenig számlálás probl	émája?
Kapcsolatállapot (link state) routing protokoll	
MAC címek tanulása switchekben	
Feszítőfa (spanning tree) protokoll	
Távolságvektor (distance vector) protokoll	
Border Gateway Protocol	
7 kárdás	1 / 1 pont

7. kérdés	1 / 1 pont
Mi igaz a bridge-eknél (hídaknál) látott MAC címek tanulása mód	szerre?
A beérkező keretben szereplú forrásállomás MAC címét és a beérkez portot betesszük a továbbítási táblába.	ési
A beérkező keretben szereplő célállomás MAC címét és a beérkezési betesszük a továbbítási táblába.	i portot
Ismeretlen cél esetén szétküldjük minden szomszédnak a keretet, ma figyeljük a választ és az alapján készítünk táblabejegyzést.	jd
Új cím csak akkor rakható be, ha egy régit kitörlünk.	

8. kérdés	1 / 1 pont
Melyik állítás igaz?	
Bride-ek egy porton csak egy állomást tudnak kezelni.	

	Minden bridge egyben switch is.
✓	Switchek esetén nincs szükség CSMA/CD-re.
✓	Switchek esetén full duplex linkek kötik be az állomásokat.

9. kérdés Mit nevezünk végtelenig számlálás problémájának? Távolságvektor protokoll esetén, ha egy él költsége csökken, akkor azt csak nagyon lassan tanulja meg a többi router. Egyesével kezd csökkenni az állomáshoz tartozó érték. Feszítőfa protokoll oldja meg a problémát, amít bridge-elt hálózatokban a hurkok okoznak. • Egyik sem helyes válasz Kapcsolatállapot (link state) routing protokoll esetén ha egy él törlődik a hálózatból, akkor az új információ csak lassan propagál szét a routerekhez. A routing táblák hibás bejegyzéseket tartalmaznak.

10. kérdés 1 / 1 pont

Egy távolságvektor routing protokollt használó hálózatban az A állomás routing táblája a következő:

host | költség | next hop

B | 7 | B

C | 10 | C

D | 1 | D

E | 14 | D

B szomszédtól a következő távolságvektort kapja:

C 2 D 3 E 3	
Mi lesz C költsége A állomás routing táblájában?	Э
1. válasz:	
9	

Kvízeredmény: 9 az összesen elérhető 10 pontból