

Semantic-Unit-Based Dilated Convolution for Multi-Label Text Classification

Junyang Lin^{1,2} Qi Su¹

Pengcheng Yang² Shuming Ma²

Xu Sun²

School of Foreign Languages, Peking University MOE Key Laboratory of Computational Linguistics, Peking University

{linjunyang, sukia, yang_pc, shumingma, xusun}@pku.edu.cn

Abstract

- A novel model for multi-label text classification based on Seq2Seq;
- Generate semantic unit representations with dilated convolution;
- Hybrid attention to integrate semantic unit and word information;
- Improved results on benchmark datasets
- Comparable to hierarchical models but with fewer costs.

Motivation

- Labels for text have internal correlation;
- The relation between label and text is complex;
- Semantic unit demonstrating event is more informative;
- Significant key words can make a difference.

Sequence-to-Sequence as Baseline

- Encoder: Bidirectional LSTM
- Decoder: LSTM for sequential decoding. Training is with teacher forcing.
- Attention mechanism: global attention for the relevant sourceside information

Dilated Convolution for Semantic Unit

 Multi-level dilated convolution over the outputs of the encoder tend to extract information of semantic units.

Hybrid Attention for Integration

 Hybrid Attention allows the integration of the attention to the semantic unit information and the word information.

Experiments

- Datasets: Reuters Corpus Volume I (RCV1-v2) and Ren-CECps;
- Metric: Hamming Loss and MicroF1 score

$$HL = \frac{1}{L} \sum_{j=1}^{L} \mathbb{I}(y \neq \hat{y})$$
$$microF_1 = \frac{\sum_{j=1}^{L} 2tp_j}{\sum_{j=1}^{L} 2tp_j + fp_j + fn_j}$$

Results

Models	HL(-)	P(+)	R (+)	F1(+)	•	Models	HL(-)
BR	0.0086	0.904	0.816	0.858		BR	0.1663
CC	0.0087	0.887	0.828	0.857		CC	0.1828
LP	0.0087	0.896	0.824	0.858		LP	0.1902
CNN	0.0089	0.922	0.798	0.855		CNN	0.1726
CNN-RNN	0.0085	0.889	0.825	0.856		CNN-RNN	0.1876
S2S	0.0082	0.883	0.849	0.866		S2S	0.1814
S2S+Attn	0.0081	0.889	0.848	0.868		S2S+Attn	0.1793
Our Model	0.0072	0.891	0.873	0.882		Our Model	0.1782

Table 2: Performance on the RCV1-V2 test set. HL, P, R, and F1 denote hamming loss, micro-precision, micro-recall and micro- F_1 , respectively (p < 0.05).

0.5510.5610.517 0.536 0.512 0.565 0.576 0.538 0.556 0.587 0.571 0.579 0.573 0.593 **0.585** 0.590

 $\mathbf{R}(+)$ $\mathbf{F1}(+)$

0.472 0.546

Table 3: Performance of the models on the Ren-CECps test set. HL, P, R, and F1 denote hamming loss, micro-precision, micro-recall and micro-F₁, respectively (p < 0.05).

Ablation tests and Comparison with Hierarchical Models

Models	HL(-)	P(+)	R (+)	F1(+)
w/o attention	0.0086			
attention	0.0087	0.887	0.828	0.869
MDC	0.0074	0.889	0.871	0.880
additive	0.0073	0.888	0.871	0.879
hybrid	0.0072	0.891	0.873	0.882

Table 4: Performance of the models with different attention mechanisms on the RCV1-V2 test set. HL, P, R, and F1 denote hamming loss, micro-precision, microrecall and micro- F_1 , respectively (p < 0.05).

Models	HL(-)	P (+)	$\mathbf{R}(+)$	F1 (+)
Hier-5	0.0075	0.887	0.869	0.878
Hier-10	0.0077			
Hier-15	0.0076	0.879	0.879	0.879
Hier-20	0.0076	0.876	0.881	0.878
Our model	0.0072	0.891	0.873	0.882

Table 5: Performance of the hierarchical model and our model on the RCV1-V2 test set. Hier refers to hierarchical model, and the subsequent number refers to the length of sentence (word) for sentence-level representations (p < 0.05).

Performance on labels of low frequency

- Remove the top 10, 20, 30, 40, 50 and 60 most frequent labels subsequently
- More robust to the classification of labels of low frequency

Conclusion

- A new model for multi-label text classification with the combination of Seq2Seq and dilated convolution;
- Classification based on semantic units and key words;
- Outperform the baselines and robust to labels of low frequency.