Statisztikus Fizika Gyakorlat

2016. február 11.

I. rész

Néhány hasznos matematikai formula

1. Gauss-integrál

Vezessük le a következő integrált:

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (1)

Célszerű a kifejezés négyzetét vizsgálni!

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} - y^{2}} dx dy.$$
 (2)

Az integrált írjuk át polárkoordinátákba!

$$x = r \cos \varphi,$$

$$y = r \sin \varphi,$$

$$dxdy = rd\varphi dr.$$
(3)

A keresett integrál a következő alakot ölti:

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}} r d\varphi dr = 2\pi \int_{0}^{\infty} e^{-r^{2}} r dr.$$
 (4)

Végezzünk el még egy változó cserét!

$$u = r^{2},$$

$$\frac{\mathrm{d}u}{\mathrm{d}r} = 2r \to \mathrm{d}u = 2r\mathrm{d}r.$$
(5)

Így már elemi integrációs szabályokkal kiértékelhető összefüggésre jutunk:

$$I^{2} = 2\pi \int_{0}^{\infty} \frac{e^{-u}}{2} du = \pi \left[-e^{-u} \right]_{0}^{\infty} = \pi.$$
 (6)

A keresett integrál tehát:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (7)

Egy egyszerű változó cserével lássuk be a Gauss-integrál egyszerű általánosítását:

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}.$$
 (8)

$$ax^2 = t^2, (9)$$

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \sqrt{a} \to \mathrm{d}t = \sqrt{a}\mathrm{d}x. \tag{10}$$

Kapjuk tehát hogy

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \int_{-\infty}^{\infty} e^{-t^2} \frac{dt}{\sqrt{a}} = \sqrt{\frac{\pi}{a}}.$$
(11)

HF-01: Lássuk be hogy ha a > 0 valós szám akkor:

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}$$
 (12)

Út mutatás:

- Alakítsuk teljes négyzetté a kitevőben szereplő polinomot!
- A Gauss-integrál invariáns az integrandus "eltolására"!
- A négyzetes tag együtthatójától egy alkalmas változó cserével szabadulhatunk meg.

2. A Gamma-függvény néhány tulajdonsága

1. ábra. A Gamma függvény

A Gamma-függvény:

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, \quad \text{Re}(z) > 0, \tag{13}$$

A fenti definíció segítségével lássuk be hogy

$$\Gamma(x+1) = x\Gamma(x). \tag{14}$$

$$\Gamma(x+1) = \int_0^\infty \underbrace{e^{-t}}_{v'} \underbrace{t^x}_u dt$$
 (15)

$$=\underbrace{[t^{x}(-e^{-t})]_{0}^{\infty}}_{0} - \int_{0}^{\infty} \underbrace{-e^{-t}}_{v} \underbrace{xt^{x-1}}_{u'} dt$$

$$= x \int_{0}^{\infty} e^{-t} t^{x-1} dt$$

$$(16)$$

$$= x \int_0^\infty e^{-t} t^{x-1} dt \tag{17}$$

$$= x\Gamma(x) \tag{18}$$

ahol kihasználtuk a parciális integrálás szabályát

$$\int u(t)v'(t)dt = u(t)v(t) - \int u'(t)v(t)dt$$
(19)

és az alábbi két ismert összefüggést

$$\int e^{\alpha t} dt = \frac{e^{\alpha t}}{\alpha},$$

$$\partial_t t^{\alpha} = \alpha t^{\alpha - 1}.$$
(20)

$$\partial_t t^{\alpha} = \alpha t^{\alpha - 1}. \tag{21}$$

Lássuk be a következő két összefüggést is!

$$\Gamma(1) = 1 \tag{22}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{23}$$

$$\Gamma(1) = \int_0^\infty e^{-t} t^{1-1} dt \tag{24}$$

$$= \int_0^\infty e^{-t} dt \tag{25}$$

$$= [-e^{-t}]_0^{\infty} = 1 \tag{26}$$

Felhasználva a (14) és (22) összefüggéseket a $\Gamma(x)$ függvényt tetszőleges pozitív egész számokra meghatározhatjuk:

$$\Gamma(2) = 1\Gamma(1) = 1 \tag{27}$$

$$\Gamma(3) = 2\Gamma(2) = 2 \cdot 1 \tag{28}$$

$$\Gamma(4) = 3\Gamma(3) = 3 \cdot 2 \cdot 1 \tag{29}$$

$$\Gamma(n) = (n-1)! \quad n \in \mathbb{N}$$
(30)

$$\Gamma(1/2) = \int_0^\infty e^{-t} t^{1/2-1} dt$$
 (31)

$$= \int_0^\infty \frac{\mathrm{e}^{-t}}{t^{1/2}} \mathrm{d}t \tag{32}$$

Hajtsuk végre a következő változó cserét:

$$u = t^{1/2}, (33)$$

$$u = t^{1/2}, (33)$$

$$\frac{du}{dt} = \frac{1}{2} \frac{1}{t^{1/2}}. (34)$$

Így kapjuk hogy

$$\int_0^\infty \frac{e^{-t}}{t^{1/2}} dt = \int_0^\infty e^{-u^2} 2du,$$
 (35)

$$= \int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}. \tag{36}$$

(b) A Stirling-formula és a Γ-függvény

2. ábra. Stirling közelítés

Termodinamikai határesetek vizsgálata során sokszor fogunk találkozni olyan esetekkel amikor a $\Gamma(n)$ függvényt a $n \gg 1$ értékekre kell kiértékelnünk.

Lássuk be a következő hasznos közelítő formulát:

Stirling-formula:

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right)$$
(37)

$$n! = \Gamma(n+1) = \int_0^\infty e^{-t} t^n dt$$

$$= \int_0^\infty e^{-t+n\ln t} dt$$

$$= \int_0^\infty e^{-f_n(t)} dt,$$

$$f_n(t) = t - n \ln t.$$
(38)

Fejtsük sorba az $f_n(t)$ függvényt a minimuma körül!

$$\partial_t f_n(t) = 1 - \frac{n}{t},\tag{40}$$

$$\partial_t f_n(t_0) = 0 \to t_0 = n. \tag{41}$$

Elegendő elvégezni a sorfejtést másod rendig. Azaz a következő közelítéssel élünk:

$$f_n(t) \approx f_n(t_0) + \partial_t f_n(t_0) (t - t_0) + \frac{1}{2} \partial_t^2 f_n(t_0) (t - t_0)^2,$$
 (42)

$$\partial_t^2 f_n(t) = \frac{n}{t^2} \to \partial_t^2 f_n(t_0) = \frac{n}{n^2} = \frac{1}{n},$$
 (43)

$$f_n(t) \approx n - n \ln n + \underbrace{\partial_t f_n(t_0) (t - t_0)}_{\text{by def} = 0} + \frac{1}{2} \left(\frac{1}{n}\right) (t - n)^2.$$
 (44)

Vissza írva ezt a (38) kifejezésbe:

$$n! = \int_0^\infty e^{-t} t^n dt$$

$$= \int_0^\infty e^{-f_n(t)} dt$$

$$\approx e^{-(n-n\ln n)} \int_0^\infty e^{-\frac{(t-n)^2}{2n}} dt.$$
(45)

A kifejezésben szereplő integrál alsó határát kiterjeszthetjük $-\infty$ -ig hiszen feltettük hogy $n \gg 1$:

$$n! \approx e^{-(n-n\ln n)} \int_{-\infty}^{\infty} e^{-\frac{(t-n)^2}{2n}} dt$$

$$= e^{-(n-n\ln n)} \sqrt{2\pi n}.$$
(46)

Ahol felhasználtuk a Gauss-integrálra vonatkozó (8) azonosságot. A kapott eredmény pedig nem más mint maga a (37) Stirling-formula. Sokszor fogunk találkozni a Stirling-formula logaritmusával:

$$\ln n! \approx n \ln n - n + \frac{1}{2} \ln \left(2\pi n \right) \tag{47}$$

$$\ln \Gamma(n) \approx n \ln n - n + \mathcal{O}(\ln n) \tag{48}$$

3. D-dimenziós gömb térfogata

Sokszor szükségünk lesz több dimenziós integrálok elvégzésére. Ezen integrálok elvégzésében rendszerint segítségünkre lesz az adott dimenzióbeli gömb térfogata. Vizsgáljuk meg hát hogy hogyan függ a térfogat kifejezése a dimenziótól:

dimenzió	$V_D(r)$	$S_D(r)$
1	2r	
2	πr^2	$2\pi r$
3	$\frac{4}{3}\pi r^3$	$4\pi r^2$
D	$C_D r^D$	$C_D D r^{D-1}$

Egy adott dimenzióban egy adott sugarú gömb térfogata $V_D(r)$ és a felülete között az alábbi általános összefüggés teremt kapcsolatot:

$$V_D(r) = \int_0^r S_D(\varrho) d\varrho, \tag{49}$$

$$C_D r^D = C_D D \int_0^r \varrho^{D-1} \mathrm{d}\varrho \tag{50}$$

Határozzuk meg C_D értékét! Induljunk ki D darab Gauss-integrál szorzatából:

$$\left[\int_{-\infty}^{\infty} e^{-x^2} dx \right]^D = \pi^{D/2} \tag{51}$$

Mivel az integrandus "gömb szimmetrikus" ezért elég csak a sugár irányú integrálra koncentrálnunk.

$$\pi^{D/2} = \int \underbrace{e^{-(x_1^2 + x_2^2 + \dots + x_D^2)}}_{e^{-r^2}} \underbrace{dx_1 dx_1 \dots dx_D}^{DC_D r^{D-1} dr}$$

$$= DC_D \int_0^\infty e^{-r^2} r^{D-1} dr$$
(52)

Alkalmazzunk egy változó cserét:

$$u = r^{2},$$

$$\frac{\mathrm{d}u}{\mathrm{d}r} = 2r \to \mathrm{d}u = 2r\mathrm{d}r.$$
(53)

$$\mathrm{d}r = u^{-\frac{1}{2}} \frac{\mathrm{d}u}{2} \tag{54}$$

$$\pi^{D/2} = DC_D \int_0^\infty e^{-u} u^{\frac{D}{2} - 1} \frac{\mathrm{d}u}{2} \tag{55}$$

$$\pi^{D/2} = C_D \frac{D}{2} \Gamma\left(\frac{D}{2}\right) = C_D \Gamma\left(\frac{D}{2} + 1\right). \tag{56}$$

A keresett együttható tehát:

$$C_D = \frac{\pi^{D/2}}{\Gamma\left(\frac{D}{2} + 1\right)}. (57)$$

Kiértékelve ezt az összefüggést vissza kapjuk a már ismert együtthatókat:

$$D = 1 \to C_1 = \frac{\pi^{1/2}}{\Gamma(3/2)} = \frac{\pi^{1/2}}{\frac{1}{2}\Gamma(1/2)} = 2$$
 (58)

$$D = 2 \to C_2 = \frac{\pi^{2/2}}{\Gamma(2)} = \pi \tag{59}$$

$$D = 3 \to C_3 = \frac{\pi^{3/2}}{\Gamma(\frac{3}{2} + 1)} = \frac{\pi^{3/2}}{\frac{3}{2}\Gamma(\frac{3}{2})} = \frac{\pi^{3/2}}{\frac{3}{2} \times \frac{1}{2}\Gamma(\frac{1}{2})} = \frac{\pi}{\frac{3}{2} \times \frac{1}{2}} = \frac{4}{3}\pi$$
 (60)

4. Pauli mátrixok és $\frac{1}{2}$ -spin algebra

4.1. A $\hat{\rho}$ sűrűségmátrix általános tulajdonságai

$$\hat{\rho} = \sum_{\alpha} w_{\alpha} |\alpha\rangle \langle \alpha| \tag{61}$$

Feltesszük hogy a bázis teljes ortonormált rendszert alkot:

$$\langle \beta \mid \alpha \rangle = \delta_{\alpha,\beta}. \tag{62}$$

és természetesen a $w_\alpha>0$ súlyok összege egységnyi:

$$\sum_{\alpha} w_{\alpha} = 1. \tag{63}$$

Ezekből

$$\hat{\rho} = \hat{\rho}^{\dagger},\tag{64}$$

$$Tr\hat{\rho} = 1, (65)$$

$$Tr\hat{\rho}^2 \le 1. \tag{66}$$

Az utolsó egyenlőség tiszta állapotokra áll fenn, azaz ha igaz, hogy

$$\hat{\rho} = |\varphi\rangle\langle\varphi|. \tag{67}$$

4.2. Két állapotú kvantum rendszerek

$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (68)

$$|\varphi\rangle = a |\uparrow\rangle + b |\downarrow\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \tag{69}$$

$$\langle \varphi | \varphi \rangle = 1, \rightarrow aa^* + bb^* = 1$$
 (70)

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(71)

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{72}$$

$$\sigma_i \sigma_j = i\varepsilon_{ijk} \sigma_k + \delta_{ij} \sigma_0 \tag{73}$$

$$\vec{\sigma} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{pmatrix} \tag{74}$$

II. rész

Állapot számolás

Állapotok száma adott E energia alatt:

Klasszikus rendszer:
$$\Omega_0(E) = \frac{1}{h^N} \int_{H(\mathbf{p}, \mathbf{q}) \le E} (\mathrm{d}p \mathrm{d}q)^N$$
 (75)

Kvantumos rendszer:
$$\Omega_0(E) = \sum_{E_n < E} 1 = \sum_n \Theta(E - E_N)$$
 (76)

Weyl-szabály:

$$h = \mathrm{d}p\mathrm{d}q \tag{77}$$

5. Egy darab, dobozba zárt, egy dimenziós részecske

5.1. Klasszikus

$$\Omega_0(E) = \int_{\frac{p^2}{2m} < E} \frac{\mathrm{d}p \mathrm{d}q}{h} = \frac{2a}{h} \sqrt{2mE}$$

5.2. Kvantumos

$$-\frac{\hbar^2}{2m}\partial_x^2\psi = E\psi$$

$$\psi_k^{\infty}(x) = e^{ikx}$$

$$E = \frac{\hbar^2 k^2}{2m}$$

$$k = \frac{\sqrt{2mE}}{\hbar}$$

(81)

(83)

3. ábra. Klasszikus dobozba zárt ré-(82)szecske fázistere

a) Zárt peremfeltétel

$$\psi_{k}^{\infty}\left(x\right) - \psi_{k}^{\infty}\left(x\right) - \psi_{-k}^{\infty}\left(x\right) = \sin\left(kx\right)$$

$$\psi_k^{\text{zárt}}(x) = \frac{\psi_k^{\infty}(x) - \psi_{-k}^{\infty}(x)}{2i} = \sin(kx)$$

 $\psi(0) = \psi(a) = 0$

$$\psi(a) = 0 \to k = \frac{n\pi}{a}, \quad n = 1, 2, \dots n_{max}$$

$$k_{max} = \frac{n_{max}\pi}{a}$$

$$E_{max} = \frac{\hbar^2}{2m} \left(\frac{n_{max}\pi}{a}\right)^2$$

(84) a) zart peremfettetel
$$\pi/a$$
 (85) 0 k_{max}

(86)b) periodikus peremfeltétel

a) zárt peremfeltétel

(88)4. ábra. Kvantumos dobozba zárt részecske hullámszámtérben

b) Periodikus peremfeltétel

$$\psi_k^{\text{periodikus}}(x) = \psi_k^{\infty}(x) = e^{ikx}$$

 $\Omega_0\left(E\right) = \left\lfloor \frac{a}{\pi\hbar} \sqrt{2mE} \right\rfloor = \left\lfloor \frac{2a}{h} \sqrt{2mE} \right\rfloor$

$$\psi(x+a) = \psi(x), \tag{90}$$

$$\rightarrow e^{ikx} = e^{ikx + ika} \tag{91}$$

$$\to ka = 2n\pi \tag{92}$$

$$n = -n_{max} \dots 0 \dots n_{max} \tag{93}$$

$$\Omega_0(E) = 2 \left| \frac{a}{2\pi} \frac{\sqrt{2mE}}{\hbar} \right| + 1 = 2 \left| \frac{a}{\hbar} \sqrt{2mE} \right| + 1$$
(94)

5. ábra. Dobozba zárt részecske állapotainak száma

6. Rotátor

A rotátor egy egy térbeli tömegpont melynek r távolsága a koordináta rendszer középpontjától időben állandó.

6.1. Klasszikus

$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix}, \quad \dot{\vec{r}} = r \begin{pmatrix} \dot{\vartheta} \cos \vartheta \cos \varphi - \dot{\varphi} \sin \vartheta \sin \varphi \\ \dot{\vartheta} \cos \vartheta \sin \varphi + \dot{\varphi} \sin \vartheta \cos \varphi \\ -r \dot{\vartheta} \sin \vartheta \end{pmatrix}$$
(95)
$$\dot{x}^2 = r^2 \left(\dot{\vartheta}^2 \cos^2 \vartheta \cos^2 \varphi + \dot{\varphi}^2 \sin^2 \vartheta \sin^2 \varphi - \frac{\dot{\vartheta} \dot{\varphi} \sin (2\vartheta) \sin (2\varphi)}{2} \right)$$

$$\dot{y}^2 = r^2 \left(\dot{\vartheta}^2 \cos^2 \vartheta \sin^2 \varphi + \dot{\varphi}^2 \sin^2 \vartheta \cos^2 \varphi + \frac{\dot{\vartheta} \dot{\varphi} \sin (2\vartheta) \sin (2\varphi)}{2} \right)$$

$$\dot{z}^2 = r^2 \dot{\vartheta}^2 \sin^2 \vartheta$$
6. ábrag Botátor és a gömbi koordináta

$$(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = r^2 \left[\dot{\vartheta}^2 \underbrace{\left(\cos^2 \vartheta \cos^2 \varphi + \cos^2 \vartheta \sin^2 \varphi + \sin^2 \vartheta\right)}_{1} + \dot{\varphi}^2 \underbrace{\left(\sin^2 \vartheta \sin^2 \varphi + \sin^2 \vartheta \cos^2 \varphi\right)}_{1} \right]$$
(97)

$$E_{kin} = \frac{1}{2}m(\dot{x}^2 + y^2 + \dot{z}^2)$$

$$= \frac{1}{2}mr^2[\dot{\vartheta}^2 + \dot{\varphi}^2\sin^2\vartheta]$$
(98)

$$= \frac{1}{2}\Theta\left[\dot{\vartheta}^2 + \dot{\varphi}^2\sin^2\vartheta\right] \tag{100}$$

$$\mathcal{L} = E_{kin}, \rightarrow p_{\vartheta} = \frac{\partial \mathcal{L}}{\partial \dot{\vartheta}} = \Theta \dot{\vartheta}, \quad p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = \Theta \sin^2 \vartheta \dot{\varphi}$$
(101)

$$H = E_{kin} = \frac{1}{2\Theta} \left(p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta} \right) \tag{102}$$

$$\Omega_0(E) = \frac{1}{h} \int_{H < E} d\vartheta d\varphi dp_\vartheta dp_\varphi$$
(103)

$$= \frac{1}{h} \sqrt{2E\Theta} \sqrt{2E\Theta} \underbrace{\int_{0}^{2\pi} \int_{0}^{\pi} \sin \vartheta d\vartheta d\varphi}_{\text{"térszög"}=4\pi}$$
(104)

$$\Omega_0(E) = \frac{E\Theta}{\hbar} \tag{105}$$

6.2. Kvantumos

$$\hat{H} = \frac{\hat{L}^2}{2\Theta}$$

$$E_l = \frac{l(l+1)}{2\Theta}$$

$$(106)$$

$$\Omega_0(E) = \sum_{l=0}^{l_{max}} (2l+1) = (l_{max}+1)^2$$
(108)

7. Harmonikus oszcillátor

7.1. Klasszikus

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$$

$$\Omega_0(E) = \frac{1}{h} \int_{H < E} dp dq = \frac{1}{h} \sqrt{2mE} \sqrt{\frac{2E}{m\omega^2}} \pi$$
(110)

$$\Omega_0(E) = \frac{E}{\hbar \omega} \tag{111}$$

7.2. Kvantumos

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2 \dots$$
 (112)

$$n_{max} = \left| \frac{E}{\hbar\omega} - \frac{1}{2} \right| \tag{113}$$

$$\Omega_0 \quad (E) = \quad \left| \frac{E}{\hbar \omega} - \frac{1}{2} \right| + 1 \tag{114}$$