

UNIVERSIDAD LAICA ELOY ALFARO DE MANABÍ EXTENSIÓN EL CARMEN

FUNDAMENTOS ELÉCTRICOS

"A man who asks is a fool for five minutes. A man who never asks is a fool for life." — Chinese Proverb

Contenido

- ☐ Fundamentos eléctricos.
 - ☐ Instalaciones eléctricas
 - ☐ Tipos de instalaciones eléctricas (distribución en baja tensión)
 - □AC y CC
 - ☐Tipo de corriente alterna: monofásica y trifásica
 - ☐ Red de transporte y distribución eléctrica
 - ☐El viaje de la electricidad

Las instalaciones eléctricas

Conjunto de circuitos eléctricos con el objetivo de conducir y distribuir la corriente eléctrica en una trayectoria cerrada.

Característica principal de llevar energía eléctrica desde los elementos productores hasta los elementos consumidores.

Tipos de instalaciones eléctricas

Por su tensión

- Alta y media tensión
- Baja tensión
- Muy baja tensión

Por su uso

- Generadoras
- Transporte
- Transformadoras
- Receptoras

Instalación de alta y media tensión

- Gran potencia, grandes perdidas de energía por el calentamiento de los conductores (efecto Joule).
- El potencial máximo entre dos conductores es superior a 1kV.

Instalación de baja tensión

- Instalaciones eléctricas mas comunes, uso domestico y comercial.
- El potencial máximo entre dos conductores es inferior a 1000V, pero superior a 24V

Instalación de muy baja tensión

- Poco empleadas
- Diferencia de potencial entre dos conductores debe ser inferior a 24V

Instalaciones generadoras

- Son aquellas que generan una fuerza electromotriz, energía eléctrica a partir de otras formas de energía.
- Se utilizan líneas de transmisión de alta tensión para transportar la corriente alterna a plantas industriales o ciudades enteras

Instalación de transporte

- Son líneas eléctricas que conectan las distintas instalaciones.
- Subterráneas o aéreas

Instalación transformadoras

- Reciben la energía eléctrica y modifican sus parámetros.
- Reducen o la amplían según si tiene que ser utilizada o transportada.

Instalación receptoras

- En la mayoría de las industrias y viviendas.
- Transforman la energía eléctrica a otros tipos

Instalaciones generadores

- Son aquellas que generan una fuerza electromotriz, energía eléctrica a partir de otras formas de energía.
- Se utilizan líneas de transmisión de alta tensión para transportar la corriente alterna a plantas industriales o ciudades enteras

Instalación de transporte

- Son líneas eléctricas que conectan las distintas instalaciones.
- Subterráneas o aéreas

Instalación transformadoras

- Reciben la energía eléctrica y modifican sus parámetros.
- Reducen o la amplían según si tiene que ser utilizada o transportada.

Corriente alterna y continua

Corriente continua

- Producida por pilas, baterías y dinamos.
- No cambia de valor ni de sentido a lo largo del tiempo
- Sigue la misma dirección, del polo positivo al polo negativo del generador

Corriente alterna

- Producida en las centrales eléctricas, y que llega a los enchufes de nuestros hogares.
- Cambia periódicamente de intensidad y sentido a lo largo del tiempo.
- Ventajas:
 - Mas eficiente, se puede transformar (elevar a tensiones muy altas mediante transformadores).
 - Transmitir a elevadas tensiones permite minimizar las perdidas de energía durante su transporte (la cc carece de esa cualidad).

Tipos de corriente alterna

Corriente alterna monofásica

- La corriente que llega a nuestros hogares es monofásica.
- El sistema monofásico usa un tensión de 120V
- Adecuada para una vivienda, ya que los aparatos eléctricos o electrodomésticos no necesitaran una potencia tan elevada como ocurre en aparatos de fabrica.

Corriente alterna trifásica

- Es un sistema de tres corrientes alternas acopladas.
- Cada corriente se transporta por un conductor de fase, y se añade un conductor para el retorno común de las tres fases, que sirve para cerrar los 3 circuitos (conductor neutro)
- Intensifica la capacidad de energía, se utiliza para grandes fabricas, así como para motores o equipamiento que requiere elevada potencia, superior a los 14,49kW

Red de transporte y distribución eléctrica

- La energía eléctrica se produce en las centrales eléctricas (térmicas, nucleares, eólicas, hidráulicas, etc.).
- La electricidad no se puede almacenar, por lo que una vez generada hay que transportarla a los núcleos de consumo.
- La electricidad se transporta mediante las redes de transporte y distribución eléctricas.

lleam

Centrales eléctricas

- Las centrales producen la energía eléctrica en forma de corriente alterna.
- La corriente generada presenta una intensidad de corriente altísima pero con un voltaje bajo (15 – 20KV).
- Las corrientes muy altas sufren de importantes perdidas en los cables conductores en forma de calor (efecto Joule) lo que supondría una gran perdida de energía en el transporte.

Transformadores elevadores

- El transformador eleva el voltaje de la energía eléctrica de 20kV a 420kV
- P=I.V
- Mediante un transformador se puede elevar el voltaje hasta altos valores, disminuyendo en igual proporción la intensidad de corriente.

 Por lo tanto la misma potencia en el punto de origen puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas perdidas por causa del efecto Joule.

Red de transporte de alta tensión

- Es la red que transporta la corriente a 420kV desde las estaciones transformadoras de las centrales a las subestaciones en las zonas de consumo
- La red de transporte de alta tensión emplea líneas áreas.
 - Apoyos (torres de alta tensión)
 - Conductores (cables de cobre o aluminio)
 - Aisladores (elementos que aíslan eléctricamente los cables de los apoyos metálicos)

Transformadores reductores

- Reducir el voltaje de la electricidad para distribuir la energía a las zonas de consumo (ciudades, industrias, etc.)
- Subestación de transformación: Primera reducción de tensión de 420kV a 132kV
- Estaciones de transformación: Reducen la tensión de 132kV a 20KV para pasar a las redes de distribución de media tensión.
- Centros de transformación (transformador de distribución): operan la transformación final a baja tensión de 20kV a una tensión de 440 trifásica o 120V monofásica.

Redes de distribución

Redes de transporte una vez transformada en media o baja tensión

Red de distribución media tensión:

Redes que parten de las subestaciones a una tensión de 20KV

• Red de distribución de baja tensión:

Redes que parten de los centros de transformación hasta llegar al usuario domestico final con una tensión de 120V a 600V

Centros de consumo

Son los receptores donde se utiliza la energía eléctrica, punto final de la red de transporte y distribución.

Industria pesada 20kV-33kV

Industria ligera y comercios 440V trifásica

Uso domestico 120 V monofásica

Contenido

☐Diseño de instalaciones.			
☐ Definiciones			
■Marco normativo y referencias			
Instalación eléctrica de la vivienda			
☐Instalación de enlace			
☐Línea de acometida			
☐Caja general de protección			
☐Línea repartidora			
Centralización de contadores			
Cuadro general de mando y protección			
Instalación interior de la viviend	a		
□Cuadro general de m <mark>ando</mark> y protección (CGMP)			

Definiciones

L	Jenniciones
☐Cajas o cajetines	
Receptáculo en los cuales se conexiones como empalmes d continuación de circuitos, sali tomacorrientes, interruptores	de cables, derivaciones o
□Carga	
Es la potencia instalada o demanda	a en un circuito eléctrico.
□Demanda	
Es la potencia requerida por un si de tiempo determinado Diagrama unifilar	sistema eléctrico, o parte de el, promediada en un intervalo
Gráfico que suministra informació eléctrica.	ón rápida y concisa de como esta estructurada la instalación
□ Empotrar	
Hacer que algo quede encajad <mark>o y</mark>	fijo en <mark>el int<mark>erio</mark>r de una pared, losa o piso.</mark>
□Fase	
Punto en el cual la diferencia d <mark>e p</mark>	potencial con respecto a tierra es mayor que cero.

Definiciones

Demindones
□Interruptor termo-magnético
Elemento de maniobra y protección diseñado para abrir o cerrar un circuito de manera manual o para abrir un circuito automáticamente.
□Neutro
Conector que normalmente conduce corriente, intencionalmente conectado a tierra.
□Sistema de puesta a tierra
La puesta a tierra es una unión intencional de todos los elementos metálicos que, mediante cables de sección suficiente entre las partes de una instalación y un conjunto de electrodos, permite la desviación a tierra de corrientes de falla o descargas.
□Tomacorrientes
Dispositivos que tienen contacto hembras para la conexión de una clavija (enchufe) y terminales para la conexión a los circuitos de salida.
□Voltaje nominal
Un valor nominal asignado a u <mark>n sis</mark> tema <mark>o cir</mark> cu <mark>ito</mark> para designar su nivel de voltaje.

Marco normativo y referencias

- ☐NFPA 70 NATIONAL ELECTRICAL CODE 2011
- □ CPE INEN 019 CODIGO ELECTRICO ECUATORIANO
- □IEC 60617 GRAPHICAL SYMBOLS FOR DIAGRAMS
- ☐ INEN 2345 ALAMBRES Y CABLES CON AISLAMIENTO TERMOPLASTICO

Graphical symbols for diagrams. Guidance on design for standardization in IEC 60617

bsi.

...making excellence a habit."

Instalación eléctrica de la vivienda

Instalación de enlace

Se llama instalación de enlace a la que conecta la red de distribución de la empresa suministradora, que va enterrada bajo el suelo o colocada sobre las fachadas, con las instalaciones interiores de las viviendas.

Instalación de interior

La instalación interior está compuesta diferentes circuitos los por independientes de la vivienda (puntos de luz y tomas de corriente)

Línea de acometida

Es la línea que conecta la red de distribución de electricidad de la compañía eléctrica con la caja general de protección.

Forma aérea o subterránea

Caja general de protección

La CGP aloja los elementos de protección para la posterior línea repartidora.

En su interior hay tres fusibles que protegen contra posibles cortocircuitos.

La CGP tiende a colocarse en la fachada.

Línea repartidora

La línea repartidora o línea general de alimentación(LGA) conecta la CGP con el cuarto

Incluye los tres cables fases (trifásica) el cable neutro y el cable de protección (toma de tierra).

Centralización de contadores

El contador es un elemento encargado de medir y registrar el consumo de energía eléctrica del abonado.

Existe un contador por usuario o por vivienda.

En edificios todos los contadores están localizados en un espacio común denominado centralización de contadores.

Nota:

Para un solo usuario, la Caja General de Protección (CGP) y el equipo de medida de consumo eléctrico (contador) se integran en un elemento común llamado "Caja de Protección y Medida (CPM)", que engloba el contador y los fusibles de protección en un solo elemento.

Línea repartidora, que enlazaba el CGP y la centralización, desaparece.

Cuadro general de mando y protección

Se sitúan a la entrada de la vivienda.

De ahí parten los circuitos interiores para el consumo.

Alojar los dispositivos que protegen a la instalación y a los usuarios de la misma.

Permite desconectar la instalación o partes de ella.

Cuadro general de mando y protección (CGMP)

Inicio de la instalación eléctrica interior de la vivienda.

Parten los circuitos independientes (alumbrado, tomas de corriente, tomas de cocina, horno, tomas de lavadora y lavavajillas, y tomas de los cuartos de baño)

En este cuadro se instalan el interruptor de control de potencia (ICP), el interruptor general automático (IGA), interruptor diferencial (ID) y los pequeños interruptores automáticos (PIA)

Interruptor de control de potencia (ICP)

Es un interruptor que instala la compañía eléctrica.

Sirve para limitar el consumo de energía del cliente a la potencia que se ha contratado.

<u>Si</u> la potencia consumida por los aparatos eléctricos conectados en la vivienda es superior a la contratada, interrumpe el suministro.

El ICP suele ubicarse en el Cuadro General de Mando y Protección, ya en el interior de la vivienda, en un compartimento independiente

Interruptor general (IG)

Es un interruptor magnetotérmico, protección frente a sobrecargas o cortocircuitos.

Función, corta la corriente de forma automática cuando hay aumento en la intensidad de corriente circulante.

Permite la activación y desactivación de forma manual, para el caso de reparaciones.

Interruptor general (IG)

Es un interruptor magnetotérmico, protección frente a sobrecargas o cortocircuitos.

Función, corta la corriente de forma automática cuando hay aumento en la intensidad de corriente circulante.

Permite la activación y desactivación de forma manual, para el caso de reparaciones.

Interruptor diferencial (ID)

Abre el circuito cuando se deriva una corriente hacia tierra (bien a través de una persona o del cable de tierra)

La sensibilidad es por ley de 30mA, corriente superior a esta por el cuerpo humano puede ser mortal.

Tienen un botón pulsador para probar que funcionan correctamente.

Los pequeños interruptores automáticos (PIA)

Proteger cada uno de los circuitos independientes de la instalación interior de la vivienda frente a posibles fallos en la instalación.

Sobrecargas:

Exceso de consumo eléctrico en una vivienda puede provocar que la intensidad de corriente circulante se haga mayor que la intensidad de corriente máxima que soporta los conductores del circuito independiente.

Cortocircuitos:

Sobreintensidades provocadas por contacto directo accidental entre fase y neutro.

Los pequeños interruptores automáticos (PIA)

Protección térmica:

Lámina bimetálica que se deforma ante una sobrecarga.

La deformación de la lámina actúa en el contacto del interruptor y desconecta el circuito.

Protección magnética:

Se basa en una bobina que, al ser atravesada por una corriente de cortocircuito, atrae una pieza metálica que produce la apertura de los contactos del interruptor, desconectando el circuito.

Gracias

Ing. César Sinchiguano, MSc cesar.sinchiguano@uleam.edu.ec

Bibliografía

• Instalaciones eléctricas en viviendas Link: https://blogsaverroes.juntadeandalucia.es/iesbellavista/files/2016/05/Instalacionesel%C3%A9ctricas-en-viviendas-15-16-apuntes.pdf

Ing. César Sinchiguano, MSc cesar.sinchiguano@uleam.edu.ec

Aplicaciones de la electricidad

Motor eléctrico

El motor eléctrico es un dispositivo que transforma la energía eléctrica en energía mecánica por medio de la acción de los campos magnéticos generados en sus bobinas.

Son maquinas rotatorias utilizadas en infinidad de sectores tales como instalaciones industriales, comerciales, particulares. Su uso esta generalizado en ventiladores, vibradores para teléfonos móviles, bombas, electroválvulas y medios de transporte eléctrico, etc.

Aplicaciones de la electricidad

Transformador Iluminacion Robótica Maquinas CNC Transporte Industria Medicina

Unidades eléctricas y equivalencias

Parámetro Eléctrico	Unidad de Medida	Símbolo	Descripción
Voltaje	Volt	VóE	Unidad de Tensión Eléctrica
Corriente	Amper I ó i		Unidad de Corriente Eléctrica
Resistencia	Ohm	RóΩ	Unidad de Resistencia en CD
Conductancia	Siemen	G	Recíproco de la Resistencia
Capacitancia	Faradios	С	Unidad de Capacitancia
Carga	Coulomb	Q	Unidad de Carga Eléctrica
Inductancia	Henrys	LóH	Unidad de Inductancia
Potencia	Watts	W	Unidad de Potencia Eléctrica
Impedancia	Ohm	Z	Unidad de Resistencia en CA
Frecuencia	Hertz	Hz	Unidad de Frecuencia

Unidades eléctricas y equivalencias

PREFIJO	SIMBOLO	EQUIVALENCIA DECIMAL
TERA	Т	1 000 000 000 000
GIGA	G	1 000 000 000
MEGA	М	1 000 000
KILO	К	1 000
UNIDAD	UNIDAD	1
MILI	m	0.001
MICRO	μ - u	0.000 001
NANO	n	0.000 000 001
PICO	р	0.000 000 000 001

		-	-	
Prefijos	del	sistema	internac	ional

	Factor	Nombre	Símbolo
	1024	yotta	Υ
	10 ²¹	zetta	Z
	10 ¹⁸	exa	E
	10 ¹⁵	peta	Р
MÚLTIPLOS	10 ¹²	tera	Т
MULTIPLUS	10°	giga	G
	10 ⁶	mega	M
	10³	kilo	k
	10 ²	hecto	h
	10¹	deca	da
	10-1	deci	d
	10-2	centi	С
	10-3	mili	m
	10-6	micro	μ
SUBMÚLTIPLOS	10 ⁻⁹	nano	n
SORMOLITICOS	10-12	pico	р
	10 ⁻¹⁵	femto	f
	10 ⁻¹⁸	atto	a
	10-21	zepto	z
	10-24	yocto	У

Circuito eléctrico

Conjunto de operadores unidos de tal forma que permitan el paso o circulación de la corriente eléctrica para conseguir algún efecto útil (luz, calor movimiento, etc.)

Un circuito eléctrico es un recorrido cerrado cuyo fin es llevar energía eléctrica desde unos elementos que la producen hasta otros elementos que la consumen.

Un circuito eléctrico es un conjunto de elementos conectados entre si por los que puede circular una corriente eléctrica (electrones).

Un circuito eléctrico es el conjunto de elementos eléctricos conectados entre sí que permiten generar, transportar y utilizar la energía eléctrica con la finalidad de transformarla en otro tipo de energía, por ejemplo, energía calorífica, energía lumínica o energía mecánica.

Símbolos eléctricos

Los símbolos representan los elementos del circuito de forma simplificada y fácil de dibujar

Gracias

Ing. César Sinchiguano, MSc cesar.sinchiguano@uleam.edu.ec

