$$Y = 20 \cdot \log \frac{A_X}{A_{\text{max}}} [dB]$$
 (3.2)

hvor A_x er forstærkningen ved en given stopbåndsfrekvens x. Ved Butterhvor A_x er forstærkningen ved en given stopbåndsfrekvens x. Ved Butterhvorth-, Bessel- og Chebyshev lavpasfiltre med ulige polantal findes A_{max} ved DC som vist i fig. 3.8b, mens A_{max} for Chebyshevfiltre med lige polantal findes ved rippletoppene som vist i fig. 3.8a. Det er altså værd at have for øje, at grafernes 0 dB værdi kan have forskellig betydning.

Grafernes frekvensakse er normeret i forhold til de pågældende filterfunktioners definerede afskæringsfrekvenser ω_a , som de blev angivet i foregående afsnit. Det gælder derfor om x-akseinddelingen, at

$$X = \frac{\omega}{\omega_a} = \frac{f}{f_a}$$
 (3.3)

Den normerede afskæringsfrekvens har derfor altid værdien 1, uanset om der regnes i radianer/sekund eller i Hz. De normerede stopbåndsfrekvenser vil være >1. Er et lavpasfilters afskæringsfrekvens eksempelvis opgivet som $f_a=3$ kHz og en given stopbåndsfrekvens som 12 kHz, kan den normerede stopbåndsfrekvens beregnes som 12k/3k=4.

FIG. 3.9 Butterworth amplitudekarakteristikker.

FIG. 3.10 0,5 dB Chebyshev amplitudekarakteristikker.

FIG. 3.11 1 dB Chebyshev amplitudekarakteristikker.

FIG. 3.12 2 dB Chebyshev amplitudekarakteristikker.

1,5

FIG. 3.13 Bessel amplitudekarakteristikker.

n	Butterworth nævnerpolynomier
1	(s + 1)
2	$(s^2 + 1,41421s + 1)$
3	$(s^2 + s + 1) (s + 1)$
4	$(s^2 + 1,84776s + 1) (s^2 + 0,76537s + 1)$
5	$(s^2 + 1,61803s + 1) (s^2 + 0,61803s + 1) (s + 1)$
6	$(s^2 + 1,93185s + 1) (s^2 + 1,41421s + 1)$ $(s^2 + 0,51764s + 1)$
7	$(s^2 + 1,80194s + 1) (s^2 + 1,24698s + 1)$ $(s^2 + 0,44504s + 1) (s + 1)$
8	$(s^{2} + 0,44368)$ $(s^{2} + 1,96157s + 1)$ $(s^{2} + 1,66294s + 1)$ $(s^{2} + 1,11114s + 1)$ $(s^{2} + 0,39018s + 1)$
9	$(s^2 + 1,87939s + 1) (s^2 + 1,53209 + 1) (s + 1)$
10	$(s^2 + 1,00000s + 1)$ $(s^2 + 1,78201s + 1)$ $(s^2 + 1,78201s + 1)$ $(s^2 + 1,41421s + 1)$ $(s^2 + 0,90798s + 1)$ $(s^2 + 0,31287s + 1)$ $(s^2 + 0,31287s + 1)$

TABEL 3.1 Butterworth lavpasfilter nævner. polynomier. $\omega_a = 1$ radian/sekund.

n	0,5 dB Chebyshev nævnerpolynomier
1	(s + 2,86278)
2	(s ² + 1,42562s + 1,51620)
3	$(s^2 + 0,62646s + 1,14245)$ (s + 0,62646)
4	$(s^2 + 0.84668s + 0.35641) (s^2 + 0.35071s + 1.06352)$
5	$(s^2 + 0,58625s + 0,47677)$ $(s^2 + 0,22393s + 1,03578)$ $(s + 0,36232)$
6	$(s^2 + 0,57959s + 0,15700) (s^2 + 0,42429s + 0,59001)$ $(s^2 + 0,15530s + 1,02302)$
7	$(s^2 + 0,46160s + 0,25388)$ $(s^2 + 0,31944s + 0,67688)$ $(s^2 + 0,11401s + 1,01611)$ $(s + 0,25617)$
8	$(s^2 + 0.43859s + 0.088052)$ $(s^2 + 0.37182s + 0.35865)$ $(s^2 + 0.24844s + 0.74133)$ $(s^2 + 0.087240s + 1.01193)$
9	$(s^2 + 0.37288s + 0.15634)$ $(s^2 + 0.30397s + 0.45254)$ $(s^2 + 0.19841s + 0.78936)$ $(s^2 + 0.068910s + 1.00921)$ $(s + 0.19841)$
10	$(s^2 + 0.35230s + 0.05628)$ $(s^2 + 0.31781s + 0.23791)$ $(s^2 + 0.25222s + 0.53181)$ $(s^2 + 0.16193s + 0.82570)$ $(s^2 + 0.05580s + 1.00734)$

TABEL 3.2 0.5 dB Chebyshev lavpasfilter nævner-polynomier. $\omega_{\rm a}$ = 1 radian/sekund.

n	1 dB Chebyshev nævnerpolynomier
1	(s + 1,96523)
2	(s ² + 1,09773s + 1,10251)
3	(s ² + 0,49417s + 0,99421) (s + 0,49417)
4	$(s^2 + 0,67374s + 0,27940) (s^2 + 0,27907s + 0,98650)$
5	$(s^2 + 0,46841s + 0,42930) (s^2 + 0,17892s + 0,98831)$ (s + 0,28949)
6	$(s^2 + 0.46413s + 0.12471) (s^2 + 0.33976s + 0.55772)$ $(s^2 + 0.12436s + 0.99073)$
7	$(s^2 + 0,37014s + 0,23045)$ $(s^2 + 0,25615s + 0,65346)$ $(s^2 + 0,091418s + 0,99268)$ $(s + 0,20541)$
8	$(s^2 + 0,35200s + 0,070261) (s^2 + 0,29841s + 0,34086)$ $(s^2 + 0,19939s + 0,72354) (s^2 + 0,070016s + 0,99414)$
9	$(s^2 + 0.29944s + 0.14236)$ $(s^2 + 0.24411s + 0.43856)$ $(s^2 + 0.15933s + 0.77539)$ $(s^2 + 0.055335s + 0.99523)$ $(s + 0.15933)$
10	$(s^2 + 0.28304s + 0.045002) (s^2 + 0.25533s + 0.22664)$ $(s^2 + 0.20263s + 0.52053) (s^2 + 0.13010s + 0.81442)$ $(s^2 + 0.044829s + 0.99606)$

TABEL 3.3 1 dB Chebyshev lavpasfilter nævnerpolynomier. ω_a = 1 radian/sekund.

n	2 dB Chebyshev nævnerpolynomier
1	(s + 1,30756)
2	$(s^2 + 0.80382s + 0.82306)$
3	$(s^2 + 0,36891s + 0,88610) (s + 0,36891)$
4	$(s^2 + 0,50644s + 0,22157) (s^2 + 0,20978s + 0,92868)$
5	$(s^2 + 0.35323s + 0.39315)$ $(s^2 + 0.13492s + 0.95217)$ $(s + 0.21831)$
6	$(s^2 + 0.35061s + 0.099926)$ $(s^2 + 0.25667s + 0.53294)$ $(s^2 + 0.093946s + 0.96595)$
7	$(s^2 + 0.27991s + 0.21239)$ $(s^2 + 0.19371s + 0.63539)$ $(s^2 + 0.069133s + 0.97461)$ $(s + 0.15534)$
8	$(s^2 + 0.26637s + 0.056501)$ $(s^2 + 0.22582s + 0.32710)$ $(s^2 + 0.15089s + 0.70978)$ $(s^2 + 0.052985s + 0.98038)$
9	$(s^2 + 0.22671s + 0.13153)$ $(s^2 + 0.18482s + 0.42773)$ $(s^2 + 0.12063s + 0.76455)$ $(s^2 + 0.041894s + 0.98440)$ $(s + 0.12063)$
10	$(s^2 + 0.21436s + 0.036248)$ $(s^2 + 0.19338s + 0.21788)$ $(s^2 + 0.15347s + 0.51178)$ $(s^2 + 0.098531s + 0.80567)$ $(s^2 + 0.033952s + 0.98730)$

TABEL 3.4 2 dB Chebyshev lavpasfilter nævnerpolynomier. ω_a = 1 radian/sekund.

n	Bessel nævnerpolynomier
1	(s + 1)
2	$(s^2 + 2,2034s + 1,6181)$
3	$(s^2 + 2,0947s + 2,0956) (s + 1,3228)$
4	$(s^2 + 2,7402s + 2,0454) (s^2 + 1,9905s + 2,5707)$
5	$(s^2 + 2,7621s + 2,4225) (s^2 + 1,9156s + 3,0817)$ (s + 1,5024)
6	$(s^2 + 3,1430s + 2,5727) (s^2 + 2,7635s + 2,8531)$ $(s^2 + 1,8618s + 3,6285)$
7	$(s^{2} + 3,2236s + 2,9455) (s^{2} + 2,7579s + 3,3212)$ $(s^{2} + 1,8194s + 4,1999) (s + 1,6844)$
8	$(s^2 + 3,5142s + 3,1626) (s^2 + 3,2743s + 3,3568)$ $(s^2 + 2,7478s + 3,8153) (s^2 + 1,7863s + 4,7916)$
9	$(s^2 + 3,6147s + 3,5286)$ $(s^2 + 3,3042s + 3,7936)$ $(s^2 + 2,7347s + 4,3271)$ $(s^2 + 1,7567s + 5,3937)$ $(s + 1,8567)$
10	$(s^2 + 3,8547s + 3,7736)$ $(s^2 + 3,6850s + 3,9231)$ $(s^2 + 3,3241s + 4,2535)$ $(s^2 + 2,7217s + 4,8567)$ $(s^2 + 1,7315s + 6,0060)$

TABEL 3.5 Bessel lavpasfilter nævnerpolynomier. $\omega_{\rm a}$ = 1 radian/sekund.