

Interro n°2 - Mathématiques et Calcul 2 (MC2)

Aucun document n'est autorisé. Les exercices sont indépendants. Toutes les réponses doivent être soigneusement justifiées.

Exercice 1. (0.5 + 2 + 1.5) pts

1. Soient
$$u = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
 et $v = \begin{pmatrix} 6 \\ 3 \\ 1 \end{pmatrix}$.

- (a) Calculer $u \cdot v$. Que peut-on dire des vecteurs u et v?
- (b) Donner une équation cartésienne du plan \mathcal{P} engendré par les vecteurs u et v.
- 2. Donner une équation paramétrique de la droite \mathcal{D} orthogonale au vecteur $n = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Correction.

- 1. (a) $u \cdot v = 1 \times 6 + (-2) \times 3 + 0 \times 1 = 0$. u et v sont orthogonnaux.
 - (b) On a $\mathcal{P} = \{\lambda u + \mu v \in \mathbb{R}^3 : \lambda, \mu \in \mathbb{R}\}$. Pour obtenir une équation cartésienne de \mathcal{P} , cherchons un vecteur n orthogonal à \mathcal{P} . Par définition de \mathcal{P} , n doit être à la fois orthogonal à u et à v. On prend $n = u \wedge v = \begin{pmatrix} (-2) \times 1 0 \times 3 \\ 0 \times 6 1 \times 1 \\ 1 \times 3 (-2) \times 6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 15 \end{pmatrix}$ (on vérifie que $u \cdot n = v \cdot n = 0$), et on a donc $\mathcal{P} = \{w \in \mathbb{R}^3 : w \cdot n = 0\} = \left\{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : -2x y + 15z = 0\right\}.$
- 2. On a $\mathcal{D} = \{u \in \mathbb{R}^2 : u \cdot n = 0\}$. Pour obtenir une équation paramétrique de \mathcal{D} , cherchons un vecteur v directeur de \mathcal{D} . Par définition de \mathcal{D} , il suffit de trouver un vecteur non nul orthogonal à n. On prend $v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ car on a bien dans ce cas $v \cdot n = 2 \times 3 + 3 \times (-2) = 0$. On a alors $\mathcal{D} = \{\lambda v : \lambda \in \mathbb{R}\}$.

Exercice 2. 4 pts

Soit $n \in \mathbb{N}^*$. On considère la suite de terme général $S_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$. Montrer que $(S_n)_{n\geq 1}$ converge et calculer sa limite.

Correction.

Pour tout
$$n \in \mathbb{N}^*$$
, $S_n = \sum_{k=1}^n \frac{n(1+\frac{k}{n})}{n^2(1+(\frac{k}{n})^2)} = \frac{1}{n} \sum_{k=1}^n \frac{1+\frac{k}{n}}{1+(\frac{k}{n})^2} = \frac{1}{n} \sum_{k=1}^n g\left(\frac{k}{n}\right)$ en posant $g: x \in [0,1] \longmapsto \frac{1+x}{1+x^2}$.

La fonction g est continue sur [0,1] donc $\int_0^1 g(x) dx$ existe, et S_n est une somme de Riemann donc la suite

 $(S_n)_{n\geq 1}$ converge vers $\int_0^1 g(x) dx$. D'où,

$$\begin{split} \int_0^1 g(x) \mathrm{d}x &= \int_0^1 \frac{1+x}{1+x^2} \mathrm{d}x = \int_0^1 \frac{1}{1+x^2} \mathrm{d}x + \int_0^1 \frac{2x}{2(1+x^2)} \mathrm{d}x = \left[\arctan(x)\right]_0^1 + \frac{1}{2} \left[\ln(1+x^2)\right]_0^1 \\ &= \arctan(1) - \arctan(0) + \frac{1}{2} \left(\ln(2) - \ln(1)\right) \\ &= \frac{\pi}{4} + \frac{\ln(2)}{2} \end{split}$$

On a donc $S_n \xrightarrow[n \to \infty]{} \frac{\pi}{4} + \frac{\ln(2)}{2}$.

Exercice 3. (2 + (1.5)) pts

- 1. Donner une primitive de $f: t \mapsto \sin^2(2t) \cos^3(2t)$.
- 2. Donner une primitive de $f: t \longmapsto \sin^4(2t)$.

Correction.

1. La fonction f est continue sur \mathbb{R} donc admet des primitives sur \mathbb{R} . Pour tout $t \in \mathbb{R}$,

$$f(t) = \sin^2(2t)\cos(2t) \left(1 - \sin^2(2t)\right) = \sin^2(2t)\cos(2t) - \sin^4(2t)\cos(2t)$$
$$= \frac{1}{6} \left(2 \times 3\cos(2t)\sin^2(2t)\right) - \frac{1}{10} \left(2 \times 5\cos(2t)\sin^4(2t)\right)$$

donc la fonction $t \mapsto \frac{1}{6}\sin^3(2t) - \frac{1}{10}\sin^4(2t)$ est une primitive de f sur \mathbb{R} .

2. La fonction f est continue sur \mathbb{R} donc admet des primitives sur \mathbb{R} . Pour tout $t \in \mathbb{R}$, en utilisant les formules d'Euler,

$$f(t) = \frac{1}{2^4} \left(e^{2it} - e^{-2it} \right)^4$$

$$= \frac{1}{2^4} \left(e^{8it} - 4e^{6it}e^{-2it} + 6e^{4it}e^{-4it} - 4e^{2it}e^{-6it} + e^{-8it} \right)$$

$$= \frac{1}{2^4} \left(e^{8it} - 4e^{4it} + 6 - 4e^{-4it} + e^{-8it} \right)$$

$$= \frac{1}{2^4} \left(e^{8it} + e^{-8it} - 4(e^{4it} + e^{-4it}) + 6 \right)$$

$$= \frac{1}{2^4} \left(2\cos(8t) - 8\cos(4t) + 6 \right)$$

$$= \frac{1}{8} \left(\cos(8t) - 4\cos(4t) + 3 \right)$$

donc la fonction $t \mapsto \frac{1}{64}\sin(8t) - \frac{1}{8}\sin(4t) + \frac{3t}{8}$ est une primitive de f sur \mathbb{R} .