main

Facundo Bautista Barbera

September 22, 2025

Actividad

Para esta actividad creamos una simulación para una cadena de Markov. Las probabilidades del clima de una situación hipotetica se muestran en la siguiente matriz:

$$p = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix}$$

Código de la simulación

A continuación se muestra el código en Python utilizado para la simulación de Monte Carlo.

```
1 from random import random
2 import matplotlib.pyplot as plt
_4 iterations = 70000
5 current_state = "dry"
  states = [current_state]
9
  for _ in range(1, iterations):
      random_num = random()
10
      if current_state == "dry":
12
          if random_num <= 0.8:</pre>
13
               current_state = "dry"
14
           else:
15
               current_state = "rain"
16
      else: # current_state == "rain"
17
          if random_num <= 0.6:</pre>
18
               current_state = "dry"
19
20
21
               current_state = "rain"
22
       states.append(current_state)
23
24
25
26 dry_counts = []
27 count_dry = 0
```

```
29 for i, state in enumerate(states, start=1):
       if state == "dry":
30
          count_dry += 1
31
       dry_counts.append(count_dry / i)
32
33
34
35 # Plot
general place plt.figure(figsize=(10, 5))
37 plt.plot(
38
      range(1, iterations + 1),
      dry_counts,
39
      label="Relative frequency of Dry",
40
41 )
42 plt.xlabel("iterations")
43 plt.ylabel("relative frequency")
44 plt.legend()
45 plt.grid(True)
46 plt.savefig("mc_simulation.png")
48 absolute_frequency = count_dry
49 relative_frequency = dry_counts[-1]
51 print(f"Frecuencia absoluta en la \'ultima iteraci\'on: {
      absolute_frequency}")
52 print(f"Frecuencia relativa en la \'ultima iteraci\'on: {
  relative_frequency}")
```

Resultados

Frecuencia absoluta en la última iteración: 52493 Frecuencia relativa en la última iteración: 0.7499

