CLAIMS

We claim:

1. A regulatable gene expression construct comprising

a nucleic acid molecule encoding an RNA comprising a riboswitch operably linked to a coding region, wherein the riboswitch regulates expression of the RNA, wherein the riboswitch and coding region are heterologous.

- 2. The construct of claim 1 wherein the riboswitch comprises an aptamer domain and an expression platform domain, wherein the aptamer domain and the expression platform domain are heterologous.
- 3. The construct of claim 1 wherein the riboswitch comprises an aptamer domain and an expression platform domain, wherein the aptamer domain comprises a P1 stem, wherein the P1 stem comprises an aptamer strand and a control strand, wherein the expression platform domain comprises a regulated strand, wherein the regulated strand, the control strand, or both have been designed to form a stem structure.
- 4. A riboswitch, wherein the riboswitch is a non-natural derivative of a naturally-occurring riboswitch.
- 5. The riboswitch of claim 4 wherein the riboswitch comprises an aptamer domain and an expression platform domain, wherein the aptamer domain and the expression platform domain are heterologous.
- 6. The riboswitch of claim 4 wherein the riboswitch is derived from a naturally-occuring guanine-responsive riboswitch, adenine-responsive riboswitch, lysine-responsive riboswitch, thiamine pyrophosphate-responsive riboswitch, adenosylcobalamin-responsive riboswitch, flavin mononucleotide-responsive riboswitch, or a S-adenosylmethionine-responsive riboswitch.
- 7. The riboswitch of claim 4 wherein the riboswitch is activated by a trigger molecule, wherein the riboswitch produces a signal when activated by the trigger molecule.
- 8. A method of detecting a compound of interest, the method comprising bringing into contact a sample and a riboswitch, wherein the riboswitch is activated by the compound of interest, wherein the riboswitch produces a signal when activated by the compound of interest, wherein the riboswitch produces a signal when the sample contains the compound of interest.

- 9. The method of claim 8 wherein the riboswitch changes conformation when activated by the compound of interest, wherein the change in conformation produces a signal via a conformation dependent label.
- 10. The method of claim 8 wherein the riboswitch changes conformation when activated by the compound of interest, wherein the change in conformation causes a change in expression of an RNA linked to the riboswitch, wherein the change in expression produces a signal.
- 11. The method of claim 10 wherein the signal is produced by a reporter protein expressed from the RNA linked to the riboswitch.
 - 12. A method of inhibiting gene expression, the method comprising bringing into contact a compound and a cell, wherein the compound has the structure

$$R_{13}$$
 R_{13} R_{13} R_{12} R_{13} R_{14} R_{15} R_{15} R_{15} R_{10} R_{10} R_{12} R_{12}

wherein, when the compound is bound to a guanine-responsive riboswitch, R_7 serves as a hydrogen bond acceptor, R_{10} serves as a hydrogen bond donor, R_{11} serves as a hydrogen bond acceptor, R_{12} serves as a hydrogen bond donor,

wherein R₁₃ is H, H₂ or is not present,

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₈, and R₉ are each independently C, N, O, or S,

wherein ----- each independently represent a single or double bond,

wherein the compound is not guanine, hypoxanthine, or xanthine,

wherein the cell comprises a gene encoding an RNA comprising a guanine-responsive riboswitch, wherein the compound inhibits expression of the gene by binding to the guanine-responsive riboswitch.

13. A method of inhibiting gene expression, the method comprising bringing into contact a compound and a cell, wherein the compound has the structure

$$R_{12}$$
 R_{10}
 R_{11}

wherein, when the compound is bound to an adenine-responsive riboswitch, R_1 , R_3 and R_7 serve as hydrogen bond acceptors, and R_{10} and R_{11} serve as hydrogen bond donors,

wherein R₁₂ is H, H₂ or is not present,

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₈, and R₉ are each independently C, N, O, or S,

wherein ____ each independently represent a single or double bond,

wherein the compound is not adenine, 2,6-diaminopurine, or 2-amino purine,

wherein the cell comprises a gene encoding an RNA comprising an adenine-responsive riboswitch, wherein the compound inhibits expression of the gene by binding to the adenine-responsive riboswitch.

14. A method of inhibiting gene expression, the method comprising bringing into contact a compound and a cell, wherein the compound has the structure

wherein R₂ and R₃ are each positively charged,

wherein R₁ is negatively charged,

wherein R₄ is C, N, O, or S,

wherein ----- each independently represent a single or double bond,

wherein the compound is not lysine,

wherein the cell comprises a gene encoding an RNA comprising a lysine-responsive riboswitch, wherein the compound inhibits expression of the gene by binding to the lysine-responsive riboswitch.

- 15. The method of claim 14 wherein R₂ and R₃ are each NH₃⁺ and wherein R₁ is O.
- 16. A method of inhibiting gene expression, the method comprising bringing into contact a compound and a cell,

wherein the compound has the structure

$$R_{5}$$
 R_{6}
 R_{7}
 R_{1}
 R_{1}

wherein R₁ is positively charged,

wherein R₂ and R₃ are each independently C, O, or S,

wherein R₄ is CH₃, NH₂, OH, SH, H or not present,

wherein R₅ is CH₃, NH₂, OH, SH, or H,

wherein R₆ is C or N,

wherein ----- each independently represent a single or double bond,

wherein the compound is not TPP, TP or thiamine,

wherein the cell comprises a gene encoding an RNA comprising a thiamine pyrophosphate -responsive riboswitch, wherein the compound inhibits expression of the gene by binding to the thiamine pyrophosphate-responsive riboswitch.

- 17. The method of claim 16 wherein R₁ is phosphate, diphosphate or triphosphate.
- 18. A method comprising
- (a) testing a compound for inhibition of gene expression of a gene encoding an RNA comprising a riboswitch, wherein the inhibition is via the riboswitch,
- (b) inhibiting gene expression by bringing into contact a cell and a compound that inhibited gene expression in step (a),

wherein the cell comprises a gene encoding an RNA comprising a riboswitch, wherein the compound inhibits expression of the gene by binding to the riboswitch.

19. A method of identifying riboswitches, the method comprising

assess in-line spontaneous cleavage of an RNA molecule in the presence and absence of a compound, wherein the RNA molecule is encoded by a gene regulated by the compound, wherein a change in the pattern of in-line spontaneous cleavage of the RNA molecule indicates a riboswitch.