Week 16

27.2-3

P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A. rows

2 let C be a new $n \times n$ matrix

3 parallel for i = 1 to n

- 4 parallel for j = 1 to n
- 5 $c_{ij} = P\text{-DOT-PRODUCT}(a_{i,:}, b_{:,j})$

6 return C

P-DOT-PRODUCT用于并行计算向量点乘,时间复杂度为 $\Theta(lgn)$

27-2

а

修改P-MATRIX-NULTIPLY_RECURSIVE(C,A,B)的3行为:

$$c_{11}+=a_{11}b_{11}$$

移除所有与T有关的描述

修改P-MATRIX-NULTIPLY_RECURSIVE(C,A,B)的6-14行为:

$$C=0_{n\times n}$$

- 6 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})
- 7 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})
- 8 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{21},A_{21},B_{11})
- 9 P-MATRIX -MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})

10 sync

- 11 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{11}, A_{12}, B_{21})
- 12 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{12}, A_{12}, B_{22})
- 13 spawn P-MATRIX -MULTIPLY-RECURSIVE (C_{21}, A_{22}, B_{21})
- 14 P-MATRIX -MULTIPLY-RECURSIVE (C_{22}, A_{22}, B_{22})

15 sync

移除P-MATRIX-NULTIPLY_RECURSIVE(C,A,B)的15-17行

b

$$M_{\infty}(n) = 2M_{\infty}(n/2) + \Theta(\lg n)$$

C

由(b)和主定理,可以得到并行算法复杂度为 $\Theta(n)$,所以并行度为 $\Theta(n^2)=1000000$,小于原来的并行度。