המשך סיבוכיות

:אמרנו

- L-כל השפות בים אלגוריתם פולינומי לבדיקת האם קלט L נמצא ב- D-
 - L-כל השפות L כך שקיים אלגוריתם אימות A ל- NP
 - .("פתרון לבעיית חיפוש") אין wן ל-L קלט ל=x מקבל A
- מחזיר Aig(x,wig)-ט אם אזי קיים עד w בגודל פולינומי ב|x| כך ש $x\in L$ מחזיר מו".
 - "אט A(x,w) , w אז לכל עד $x \notin L$ אם $x \notin L$
 - |x|+|w| -רץ בזמן פולינומי ב A

 $-\ poly_2ig(| ext{input for }A|ig)$ ורץ בזמן $|w| \leq poly_1ig(|x|ig)$ באורך w באורך w באורך w בסה"כ w מקבל קלט w באורך w באורך w באורך w באורך w ביזמן w ביזמן

משפט P מוכל ב-NP

$$P \subset NP$$

<u>הוכחה:</u>

פשוט נתעלם מהעד, נפתור את הבעיה בעצמנו (הבעיה ב-P אז אפשר), ואז נחזיר תשובה [פשוט לתוצאה.]

 $L \in P$ תהי

 $x \in L$ קיים אלגוריתם A הבודק בזמן פולינומי האם

. נגדיר אלגוריתם A' שמתעלם מהעד w , מריץ את A' ומחזיר כן/לא בהתאם

- w=1 (למשל) אם "כן" יחזיר A' אזי $x \in L$ אם •
- . אפשרי). A' אפשרי) אם A' , $x \notin L$ אפשרי). A'

[] $\frac{\log C}{\log C}$: אנחנו מגדירים אלגוריתם שפותר את הבעיה עצמה (L) ו"עונה בהתאם". אם יש פתרון לבעיה, האלגוריתם שלנו **תמיד** מחזיר "כן," לא משנה מה נותנים לו ב-w. לכן קיים w (נתנו פה דוגמה של w , אבל כל דבר יעבוד) שעבורו האלגוריתם מחזיר "כן". אם אין פתרון לבעיה, האלגוריתם שלנו **תמיד** מחזיר "לא," לא משנה מה נותנים לו ב-w.

זה מתאים לדרישות שהגדרנו עבור אלגוריתם אימות (אם כי לא ממש מתאים לרעיון של "האלגוריתם זה מתאים לדרישות שהגדרנו, אז זה פחות בודק אם w הוא פתרון לבעיה x, אבל זו לא אחת מהדרישות הפורמליות שהגדרנו, אז זה פחות רלוונטי).]]

הרצאה 24

רדוקציות

<u>תכנית</u>:

תזכורת:

: B -ל ל-A

[הרדוקציה צריכה להיות יעילה (לעבוד בזמן פולינומי) ונכונה.]

הגדרה [רדוקציה פולינומית]

בדוקציה פולינומית משפה A לשפה B היא פונקציה f שמקיימת:

- יעילות: f ניתנת לחישוב בזמן פולינומי •
- $(x) \in B \Leftrightarrow x \in A$ (לכל + column) $f(x) \in B \Leftrightarrow x \in A$

$$(x \in A \leftarrow f(x) \in B \leftarrow x \in A \times f(x) \in B)$$
 (צ"ל:

 $A \leq_p B$ סימון: אם קיימת רדוקציה כנ"ל, נסמן

תזכורות

תזכורת לאינטואיציה מתחילת הקורס:

אז: A -א ל-B, אז:

- קלה $A \Leftarrow B$ קלה \bullet
- קשה $B \Leftarrow$ קשה $A \bullet$

 $A \in P$ אזי $B \in P$ ן. אם $A \leq_p B$ אזי אם למה (תזכורת):

<u>הוכחה:</u>

אפשר לבנות **אלגוריתם** תלוי-רדוקציה באופן הבא:

- A -ל x ל-x
- B-ל y לכן ונקבל קלט f על את f נפעיל את •
- נפעיל אלגוריתם פולינומי שפותר את B ונחזיר את התשובה •

זמן הריצה של האלגוריתם:

- |x| פולינומי ב f
- (אין לייצר y יותר ארוך) אין בגודל ב-|x| מכאן ש- f מייצר f מייצר f
 - |y| אם פולינומי של רץ בזמן פולינומי של B א האלגוריתם שפותר את

9.6.2014

מכיוון ש-
$$poly_2ig(ig|yig)\ge B$$
 וזמן הריצה של א וזמן $y\le poly_1ig(ig|xig)$ - קיבלנו ש- מכיוון פולינומי ב-
$$(poly_2\Big(poly_1ig(ig|xig)\Big)\ge) \ |x|$$
 פולינומי ב-

[את כל הנ"ל כבר ראינו בעבר, כשדיברנו על רדוקציה בתחילת הקורס וכשהראינו את העניין של פולינום.]

נכונות:

 $x \in A \Leftrightarrow$ "כן" צ"ל שהאלגוריתם מחזיר

דרישת נכונות הרדוקציה

מחזיר "כן עבור $\Leftrightarrow y$ האלגוריתם תלוי-הרדוקציה $\Leftrightarrow y = f(x) \in B \Leftrightarrow x \in A$ מחזיר "כן".

מסקנה חשובה

 $A \not\in P$ אזי $A \subseteq_n B$ -ן $A \not\in P$ אם

הגדרה [NP-קשה, NP-שלמה]

 $A \leq_{_{p}} B$ מתקיים $A \in NP$ בעיה -NP בעיה B

:שלמה אם -NP בעיה B

- $B \in NP$
- .קשה P היא B

[ישנן בעיות שהן NP-קשות אך לא נמצאות ב-NP – למשל בעיית העצירה לא ניתנת לפתרון בזמן OP-קשות אר יש רדוקציה מכל שפה ב-NP אליה, לכן היא NP-קשה.]

משפט [מרכזי לשאלה הגדולה]

אם השפה B היא NP-שלמה אז:

$$B \in P \Leftrightarrow P = NP$$

[כלומר אם מוכיחים **שאחת** מאלפי הבעיות שידועות בתור NP-שלמות נמצא ב- P (כלומר ניתן לפתור אותה בזמן פולינומי) – אז זה פותר את השאלה הפתוחה המרכזית של מדעי המחשב ומוכיח כי P = NP

הוכחה:

:⇐ •

 $B \in NP = P$ נניח $B \in NP = NP$ שלמה ובפרט

9.6.2014

:⇒ •

נניח ש-P=NP מתקיים מ"ל - $NP\subseteq P$ צ"ל א"ל , $P\subseteq NP$ פ"ל (ראינו ש- $B\in P$ מתקיים (ניח ש- $A\in NP$

 $A \in NP$ ניקח שפה

 $A \leq_{_{\mathcal{D}}} B$ היא NP-קשה, לכן מתקיים - B

 $A \in P$ אז לפי הלמה, גם

:הערה

בשביל להראות ש-NP מספיק להוכיח $B\in P$ עבור בעיה B שהיא P=NP-**קשה**. $B\in NP$ ובשביל להראות ש- $P\neq NP$ מספיק להוכיח $B\notin P$ עבור בעיה $P\neq NP$ -קשה.]

טענה (הרכבת רדוקציות)

 $A \leq_{_{p}} C$ אם $A \leq_{_{p}} C$ וּ $A \leq_{_{p}} B$ אם

<u>:וכחה</u>

. C -ל מ- g ין g ל- A ל- f מ- f ל-

:C -ל אזי $g\circ f$ נותנת רדוקציה מ- $g\circ f$

<u>זמן ריצה:</u> •

-ן, |x| פולינומי בגודל הקלט |x|, ומייצרת פלט |x| פולינומי בגודל הקלט |x|, ו- |x| פולינומי גם ב-|x| ניתן לחשב בזמן פולינומי ב-|f(x)| שהוא פולינומי גם ב-|g(f(x))|

• <u>נכונות</u>:

$$g(f(x)) \in C \Leftrightarrow f(x) \in B \Leftrightarrow x \in A$$

מסקנה [רדוקציה פועלת גם על NP-קשה]

. אם R - אזי גם C אזי גם $B \leq_n C$ -קשה. אם B

<u>הסבר</u>:

.(מהגדרת NP -קשה) $A \leq_p B$ מתקיים $A \in NP$

 $A \leq_{_{p}} C$ נתון ש- $B \leq_{_{p}} C$ ולכן לפי הטענה

VC-1 IS

<u>תזכורת</u>:

:*IS* השפה

 $(u,v)\in E$ אם"ם קיימת קבוצה $U \subseteq V$ כך ש- $U \subseteq V$ אם"ם קיימת קבוצה $G = (V,E),k \in IS$ אם שייך ל- U שייך ל- U

. שלמה- NP היא היא (קבוצה בלתי תלויה) בעיית וראה בהמשר: בעיית

<u>שפה נוספת</u>:

אחד $\left(u,v\right)$ אם"ם קיימת קבוצה $C\subseteq V$ בגודל $\left|t\right|\geq V$ אם"ם קיימת קבוצה אחד $\left(G=\left(V,E\right),k\right)\in VC$ מבין u,v שייך ל- u,v

.VC - מתאים ל, $C=\overline{U}$ שמתאימה ל, IS המשלים שלה, מתאים ל, מתאים ל, עבור כל קבוצה U שמתאימה לכן יש רדוקציה פשוטה מהאחת לשנייה.]

9.6.2014