```
Problem Set 1
                                                    Vidya Akavoor
9/22/16
       Part B - Book Problems
      1) A. !! X
        B. !! (~x)
      c. !! (x & Oxff)
       P. !! ~ (X& Ox FF)
  2) int leftmost_one (unsigned x) {
         X = X >> 8;
         X1= X77 4:
         X1= X772;
         x = x 771;
         X1 = X >71;
        return x;
     int lower_one_mask (intn) {
3)
         int x = 122(n-1);
         X = (x << 1) -1;
       return x;
    int saturating_add (int x, int y) &
4)
        int sum = x+y;
        int sum_ sign = sum 7731;
        int x_sign = x >>31;
        int y-sign = y >731;
        int pos_ overflow = ((x _ sign == 0) lk (y_sign == 0) lk (sum_sign ==
       int neg overflow=((x-sign==1)df(y-sign==1)df(sum-sign==
       Int test1 = (pos_ over flow == 1);
       int test2 = (reg - overflow == 1);
```

return (((test1<231)>>31 & TNT_MAX) |(((!test1&test2)<231)>>31) & INT_MIN) |(((!test1&!test2)<231)>>31) & som);

5) A. ~ ([<< (k) -+1] B. ((| << k) -1) << j

2) 2's Complement Respresentation

Fill in the below table assuming a 64 bit computer that uses 2's complement representation, INT_MAX and INT_MIN are defined as the computer's signed integer representation maximum and minimum value respectively, and:

int $x = INT_MIN$, y = 0xdecafbad, $z = INT_MAX$, i = (sizeof(char *) + sizeof(int *));

C Expression	Hexadecimal	
х	0x 80000000	
У	Oxdecafbad	
. Z	OK 7FFFFFF	
i	0x0000000	
z <<3	OX FFFFFFF8	
z<<((i>>1)-1)	Ox FFFFFF80	
$^{\sim}0 == (z + INT_MIN)$	0× 00000000 ×0	
y & Oxffff	0x0000fSad	
y >> 16	0xffffdeca	
(y >> 16) 0xffff	Ox fffffff	
$(\tilde{(0x10>>2)}+1) == -(i>>2)$	0x00000001	
$(^{\sim}z+1) + -1$	0 x 8 000 0000	
(~((~x) << 1)) & y	0×00000001	
((y<<3)+INT_MIN)^((y<<3)+INT_MIN)	Ox 00000000	

3) Misc

1. Complete the following diagram – write down, on the dashed lines, the signed integer base 10 equivalents for a 3 bit 2's complement system.

- 2. (101111)₂ to base 10 47
- 3. $(101010)_2$ to base 16 2A
- 4. (65)₁₀ to binary 100000
- 6. Find the decimal equivalent of the 13-bit two complement number: 111111111111
- 7. Show the results of adding the following pairs of 4-bit two complement numbers in decimal and indicate whether or not overflow occurs for each case.

(a)
$$1111 + 11119$$

(b) $1010 + 0111 \rightarrow -6 + 7 = 1 \rightarrow 0001$; no overflow

(c)
$$1110 + 0001 \rightarrow -2 + 1 = -1 \rightarrow 1111$$
; no overflow

8. Complete the following table for the 5-bit 2's complement representation. Show your answers as signed base 10 decimal integers and the 2's complement binary value.

value	decimal	binary
Largest Positive Number	15	OIIII
Most Negative Number	-16	10000
Number of distinct Numbers	31	11111