算法设计与分析

3. 动态规划 (Part 2)

3.5 凸多边形最优三角剖分

凸多边形最优三角剖分

- 凸多边形:用多边形顶点的逆时针序列表示凸多边形,即 $P=\{v_0,v_1,\cdots,v_{n-1}\}$ 表示具有n条边的凸多边形。
- •弦: 若 v_i 与 v_j 是多边形上不相邻的2个顶点,则线段 v_i v $_j$ 称为多边形的一条弦。弦将多边形分割成2个多边形{ v_i , v_{i+1} ,…, v_j }和{ v_j , v_{j+1} ,… v_i }。

概念

- **多边形的三角剖分**:将多边形分割成互不相交的三角形的弦的集合T。
- 凸多边形最优三角剖分:给定凸多边形P,以及 定义在由多边形的边和弦组成的三角形上的权函 数w。要求确定该凸多边形的三角剖分,使得该 三角剖分中诸三角形上权之和为最小。

凸多边形三角剖分举例

三角剖分的结构及其相关问题

- •一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积($(A_1(A_2A_3))(A_4(A_5A_6))$)所相应的语法树如图 (a)所示。
- •凸多边形 $\{v_0,v_1,\dots v_{n-1}\}$ 的三角剖分也可以用语法树表示。例如,图 (b)中凸多边形的三角剖分可用图 (a)所示的语法树表示。
- •矩阵连乘积中每个矩阵 A_i 对应于凸(n+1)边形中的一条边 $v_{i-1}v_i$ 。 三角剖分中的一条弦 v_iv_i ,i < j,对应于矩阵连乘积A[i+1:j]。

最优子结构性质

• 凸多边形的最优三角剖分结构性质。

- **理由**: 若凸(n+1)边形P={ $v_0, v_1, ..., v_n$ }的最优三角剖分T包含三角形 $v_0v_kv_n$,1 \leq k \leq n-1,则T的权为3个部分权的和: **三角形** $v_0v_kv_n$ 的权,子多边形 { $v_0, v_1, ..., v_k$ }和{ $v_k, v_{k+1}, ..., v_n$ }的权之和。
- 可以断言,由T所确定的这2个子多边形的三角剖分也是最优的。
- 因为若有 $\{v_0, v_1, ..., v_k\}$ 或 $\{v_k, v_{k+1}, ..., v_n\}$ 的更小权的三角剖分将导致T不是最优三角剖分的矛盾。

最优三角剖分的递归结构

- 定义t[i][j], $1 \le i < j \le n$ 为凸子多边形 $\{v_{i-1}, v_i, ..., v_j\}$ 的最优三角剖分所对应的权函数值,即其最优值。
- · 约定:两个顶点的退化多边形{v_{i-1},v_i}具有权值0。
- · 问题转化为: 计算的凸(n+1)边形P的最优权值为 t[1][n]。

递归关系

当j- $i \ge 1$ 时,凸子多边形 $\{v_{i-1}, v_i, \dots, v_j\}$ 至少有3个顶点。对 $i \le k \le j-1$ 。

t[i][j]的值可递归计算:

 $t[i][j]=t[i][k]+t[k+1][j]+(\Delta v_{i-1}v_kv_j$ 的权值)

k的确切位置待定,但k的所有可能位置只有j-i个,从中可选出使t[i][i]值达到最小的位置。

t[i][j]的递归定义

$$t[i][j] = \begin{cases} 0 & i = j\\ \min_{i \le k < j} \{t[i][k] + t[k+1][j] + w(v_{i-1}v_kv_j)\} & i < j \end{cases}$$

最优三角剖分最优值计算

- 仿矩阵连乘积问题
- 复杂性: 时间O(n³), 空间O(n²)

最优三角剖分构造:略

3.9 流水作业调度

流水作业调度

- 问题描述: n个作业{1,2,...,n}要在由2台机器M1和M2组成的流水线上完成加工。每个作业加工的顺序都是先在M1上加工,然后在M2上加工。M1和M2加工作业i所需的时间分别为a_i和b_i。
- 流水作业调度问题:要求确定这n个作业的最优加工顺序, 使得从第一个作业在机器M1上开始加工,到最后一个作 业在机器M2上加工完成所需的时间最少。
- 一般流水作业调度问题: n个作业{1,2,...,n}要在由m 台机器M1、M2、...、Mm组成的流水线上完成加工。要求确定这n个作业的最优加工顺序,使m台机器上作业所需的时间最少。

加工时间矩阵

- n个作业 $\{1, 2, ..., n\}$,m台机器M1、M2、...、Mm,设Mi加工作业Mm,设Mi加工作业Mm,设Mi加工作业Mm,以Mi加工作业Mi加工作。Mi加工作,
- 加工时间矩阵: T= (t_{ij}) _{m×n}。
- n个作业{1, 2, ..., n}, 2台机器M1、M2的时间矩阵

间矩阵

$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \end{pmatrix}$$

记为:
$$T = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

算法分析: m=2的情况

- 为叙述方便起见,以下设
- 作业集合为J={J₁, J₂, ..., J_n}
 又设 S⊆J, S₀=J

约定:为叙述方便。有时将作业集J仍用{1,2,3,...,n}表示

分析

- · 一个最优调度应使机器M1没有空闲时间,且 机器M2的空闲时间最少。
- · 在一般情况下,机器M2上会有机器空闲和作业积压2种情况

• 情况

开始时的情况

· 设π是所给n个流水作业的一个最优调度,即已排好作业调度:

 $\pi(1)$, $\pi(2)$, ..., $\pi(n)$, 其中 $\pi(k) \in \{1,2,...,n\}$, 记 $i=\pi(1)$

一般情况-在M1做作业i的情况

在M2上未完成前面作业时,M1上做作业i的情况

算法分析

- 一般情况
 - 设机器M1开始加工S中作业时,机器M2还 在加工其他作业,要等时间 t 后才可利用,完 成S中作业所需的最短时间记为T(S,t)。
- · 流水作业调度问题变为: 求最优值为T(J,0)。

最优子结构性质

• 设π是所给n个流水作业的一个最优调度,即已排好作业调度:

 $\pi(1)$, $\pi(2)$, ..., $\pi(n)$, 其中 $\pi(i) \in \{1,2,...,n\}$

- 设机器M1开始加工J中第一个作业 $J_{\pi(1)}$ 时,机器M2可能在等待,它所需的加工时间为 $a_{\pi(1)}$ +T',其中T'是在机器M2的等待时间为 $b_{\pi(1)}$ 时、安排作业 $J_{\pi(2)}$, ..., $J_{\pi(n)}$ 所需的时间,这是最好的时间。
- 记S=J-{J_{π(1)}},则可证明:

$$T'=T(S,b_{\pi(1)})$$

$T'=T(S,b_{\pi(1)})$ 的证明

- 注: T(S,b_{π(1)})是完成S中所有作业的最少时间
- 证明: 由T'的定义知T'≥T(S,b_{π(1)})。
- 若真T'>T(S,b_{$\pi(1)$}),设 π '是作业集S=J-{J_{$\pi(1)$}}在机器 M2的等待时间为b_{$\pi(1)$}情况下的一个最优调度。则 $\pi(1)$, π '(2), ..., π '(n)是J的一个调度 π ',且该 调度 π '所需的时间为 $a_{\pi(1)}$ +T(S,b_{$\pi(1)$})< $a_{\pi(1)}$ +T'。
- 这与π是J的最优调度矛盾。故T'≤T(S,b_{π(1)})。从而 T'=T(S,b_{π(1)})。
- 这就证明了流水作业调度问题具有最优子结构的性质。

结论

• $T(J,0)=a_{\pi(1)}+T(J-\{J_{\pi(1)}\},b_{\pi(1)})$

如未知作业J_{π(1)}是否应该排在第一位,则应考虑 所有任务

• $T(J,0)=min_{\{1\leq i\leq n\}}\{a_i+T(J-\{J_i\},b_i)\}$

递归关系

- $T(J,0)=min_{\{1\leq i\leq n\}}\{a_i+T(J-\{J_i\},b_i)\}$
- 需要计算: T(J-{J_i},b_i)
- 一般情况:设S⊆J, S₀=J, 则可证

$$T(S,t) = \min_{J_i \in S} \{a_i + T(S - \{J_i\}, b_i + \max(t - a_i, 0))\}$$

$T(S,t) = min\{a_i+T(S-\{J_i\},b_i+max(t-a_i,0))\}$ 图例

• 情况1

• 情况2

Johnson不等式

对递归式的深入分析表明,算法可进一步得到简化。 设元是作业集S在机器M2的等待时间为t时的任一最优 调度。若 $\pi(1)=i$, $\pi(2)=j$ 。则由动态规划递归式可得: $T(S,t)=a_i+T(S-\{J_i\},b_i+max\{t-a_i,0\})=a_i+a_j+T(S-\{J_i,J_j\},t_{ij})$ 其中,

$$t_{ij} = b_j + \max\{b_i + \max\{t - a_i, 0\} - a_j, 0\}$$

$$= b_j + b_i - a_j + \max\{\max\{t - a_i, 0\}, a_j - b_i\}$$

$$= b_j + b_i - a_j + \max\{t - a_i, a_j - b_i, 0\}$$

$$= b_j + b_i - a_j - a_i + \max\{t, a_i + a_j - b_i, a_i\}$$

tij演算

$$t_{ij} = b_j + b_i - a_j - a_i + \max\{t, a_i + a_j - b_i, a_i\}$$

如果作业J_i和J_j满足min{a_j,b_i}≥min{a_i,b_j},则称作业J_i和J_i满足Johnson不等式。

当作业i和j满足Johnson不等式时

· 如交换作业 J_i 和作业 J_j 的加工顺序,得到作业集S的 另一调度,它所需的加工时间为

$$T'(S,t)=a_i+a_j+T(S-\{J_i,J_j\},t_{ji})$$

其中,

$$t_{ji} = b_j + b_i - a_j - a_i + \max\{t, a_i + a_j - b_j, a_j\}$$

当作业 J_i 和 J_j 满足Johnson不等式时,有

$$\begin{aligned} & \max\{-b_{i}, -a_{j}\} \leq \max\{-b_{j}, -a_{i}\} \\ & a_{i} + a_{j} + \max\{-b_{i}, -a_{j}\} \leq a_{i} + a_{j} + \max\{-b_{j}, -a_{i}\} \\ & \max\{a_{i} + a_{j} - b_{i}, a_{i}\} \leq \max\{a_{i} + a_{j} - b_{j}, a_{j}\} \\ & \max\{t, a_{i} + a_{j} - b_{i}, a_{i}\} \leq \max\{t, a_{i} + a_{j} - b_{j}, a_{j}\} \end{aligned}$$

当作业i和j满足Johnson不等式时

 $T(S,t) \leq T'(S,t)$

此时,作业J_i排在作业J_j的前面 即:当作业J_i和作业J_j不满足Johnson不等式时, 只要交换它们的加工顺序后,不增加加工时间。

流水作业调度的Johnson法则

· 结论:对于流水作业调度问题,必存在最优调度 π ,使得作业 $J_{\pi(i)}$ 和 $J_{\pi(i+1)}$ 满足Johnson不等式。

Johnson法则: 当调度π,对任何i,作业J_{π(i)}和J_{π(i+1)}满足Johnson不等式

$$\min\{b_{\pi(i)}, a_{\pi(i+1)}\} \ge \min\{b_{\pi(i+1)}, a_{\pi(i)}\}$$

称调度π满足Johnson法则

可证明:调度π满足Johnson法则,当且仅当,对任意 i<j有

$$\min\{b_{\pi(i)}, a_{\pi(j)}\} \ge \min\{b_{\pi(j)}, a_{\pi(i)}\}$$

结论: 所有满足Johnson法则的调度均为最优调度。

算法描述

流水作业调度问题的Johnson算法

- (1) $> N_1 = \{i \mid a_i < b_i\}, N_2 = \{i \mid a_i \ge b_i\};$
- (2)将 N_1 中作业依 a_i 的升序排序;将 N_2 中作业依 b_i 的降序排序;
- $(3)N_1$ 中作业接 N_2 中作业构成满足Johnson法则的最优调度。

算法举例

	J_1	J_2	J_3	J_4	J_5	J_6
印刷	3	12	5	2	9	12
装订	8	10	9	6	3	1

- $N_1 = \{1, 3, 4\}, N_2 = \{2, 5, 6\}$
- N₁按a_i升序: J₄, J₁, J₃,
- N₂按b_i降序: J₂, J₅, J₆
- 合并: J₄, J₁, J₃, J₂, J₅, J₆

算法复杂度分析

· 算法的主要计算时间花在对作业集的排序。因此,在最坏情况下算法所需的计算时间为O(nlogn)。所需的空间为O(n)。

3.10 0-1背包问题

0-1背包问题

- 假设给定n个物体和一个背包,物体i的重量为w_i,价值为v_i (i=1,2,.....,n),背包能容纳的物体重量为c,要从这n个物体中选出若干件放入背包,使得放入物体的总重量小于等于c,而总价值达到最大
- 如果用 x_i =1表示将第i件物体放入背包,用 x_i =0 表示未放入,则问题变为选择一组 x_i (i=0,1) 使得

$$w_{\mathbf{x}} = \sum_{i=1}^{n} w_{i} x_{i} \leq \mathbf{c}, \quad v_{\mathbf{x}} = \sum_{i=1}^{n} v_{i} x_{i},$$
并且达到最大

0-1背包问题的数学表示

$$\max \sum_{i=1}^{n} v_i x_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \leq C \\ x_i \in \{0,1\}, 1 \leq i \leq n \end{cases}$$

• 0-1背包问题是一个特殊的整数规划问题

0-1背包问题的最优子结构性质

• 设(y₁, y₂, ..., y_n)是所 给0-1背包问题的一个最 优解,满足:

$$\max \sum_{i=1}^{n} v_i x_i$$

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \leq C \\ x_i \in \{0,1\}, 1 \leq i \leq n \end{cases}$$

• 则(y₂, ..., y_n)是下面 相应子问题的一个最优 解:

$$\max \sum_{i=2}^{n} v_i x_i$$
 为什么 $\sum_{i=2}^{n} w_i x_i \leq c - w_1 y_1$ $x_i \in \{0,1\}, 2 \leq i \leq n$

递归关系

• 设所给0-1背包问题的子问题

$$\max \sum_{k=i}^{n} v_k x_k \qquad \begin{cases} \sum_{k=i}^{n} w_k x_k \le j \\ x_k \in \{0,1\}, i \le k \le n \end{cases}$$

的最优值为m(i, j),即m(i, j)是背包容量为j,可选择物品为i, i+1,...,n时0-1背包问题的最优值。

由0-1背包问题的最优子结构性质,有计算m(i,j)的递归式:

$$m(i,j) = \begin{cases} \max\{m(i+1,j), m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

$$m(n,j) = \begin{cases} v_n & j \ge w_n \\ 0 & 0 \le j < w_n \end{cases}$$

举例: 求0-1背包问题

Z=max
$$\{2x_1 + 3x_2 + 2x_3\}$$

 $x_1 + 2x_2 + 5x_3 \le 6$
 $x_i \in \{0, 1\}, 1 \le i \le 3$

• 答案: z=6, $x_1=1$, $x_2=0$, $x_3=1$

0-1背包问题的动态规划法

```
#define jmax 100
#define nmax 100
float m[nmax][jmax];
void Knapsack(float p[],int w[],int c,int n){
  int j=0, i=0;
  for(j=0; j < jmax; j++) m[n][j]=0;
  for(j=w[n];j<=c;j++) m[n][j]=v[n];
  for(i=n-1;i>1;i--){
      for(j=0;j<jmax;j++) m[i][j]=m[i+1][j];
      for(j=w[i];j<=c;j++)
       m[i][j]=max(m[i+1][j],(m[i+1][j-w[i]]+v[i]))
  m[1][c]=m[2][c];
  if(c)=w[1]
     m[1][c]=max(m[1][c],(m[2][c-w[1]]+v[1]));
3
```

得到解向量

```
void traceback(int w[],int c,int n,int x[])
 /*得到解向量x*/
{ int i=0;
  for(i=1;i<n;i++)
      if (m[i][c] = m[i+1][c]) x[i] = 0;
      else{
           x[i]=1; c-=w[i];
     x[n]=m[n][c]?1:0;
```

算法复杂度分析

- · 从m(i, j)的递归式容易看出,程序有两次循环,一次关于i(<=n),一次关于j(<=c)。算法需要O(nc)计算时间。
- · 当背包容量c很大时,算法需要的计算时间较 多。例如,当c>2ⁿ时,算法需要Ω(n2ⁿ)计算时 间

算法改进--自学

由m(i,j)的递归式,易证在一般情况下,对每一个确定的 i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。 跳跃点是这一类函数的描述特征。在一般情况下,函数 m(i,j)由其全部跳跃点惟一确定。如图所示。

对每一个确定的i(1≤i≤n),用一个表p[i]存储函数m(i, j)的全部 跳跃点。表p[i]可依计算m(i, j)的递归式递归地由表p[i+1]计算,初始时p[n+1]={(0,0)}。

旅行推销员问题--补充

问题描述:设有n个城市,已知任意两城市间之距离。现有一推销员想从某一城市出发巡回经过每一城市(且每城市只经过一次),最后又回到出发点,问如何找一条最短路径。

记号

- · 设城市v_i与v_j城市的代价为d_{ij}。用d_{ij}=max(或∞) 表示v_i与到v_j无通路。
- ·用D记代价矩阵,
- $V_0 = \{v_0, v_1, v_2, ..., v_n\}, V \subseteq V_0$

例:
$$\mathbf{D}$$
=
$$\begin{pmatrix} 0 & 8 & 5 & 6 \\ 6 & 0 & 8 & 5 \\ 7 & 9 & 0 & 5 \\ 9 & 7 & 8 & 0 \end{pmatrix}$$

算法分析

· 设T(v_i,V)表示从点v_i出发,经过V中点各一次,最后返回到起点v₀的最短路径长。

 $\bullet \quad \text{II} \qquad T(v_i, V) = \min_{v_j, \in V} \{d_{ij} + T(v_j, V \setminus \{v_i\}) \}$

旅行推销员问题求法

• 要求: $T(v_0, \{v_1, v_2, ..., v_n\})$

利用:

$$T(v_0, V) = \min_{\mathbf{v_i}, \in \mathbf{V}} \{d_{ij} + T(v_j, V \setminus \{v_i\})\}$$

可采用自顶向下记忆式求解方法,用数组pos记录商人的走向。

伪代码

```
Function T(k:integer; V:set of 1..n):real;
Var a,b:real; i,j:integer;
     next[1..n,set of [1..n]]:integr;
Begin if (V=[]) then a:=d[i,0]
       else begin a:=inf;
               for i:=1 to n do
                 if (i in V) then do
                  begin
                   b:=d[k,I]+T(i,V\setminus\{i\}));
                   if a>b then
                   begin a:=b; next[k,V]:=i; end;
                 end;
            end;
       return a;
End;
```

Pos的确定

```
Procedure route;
Begin V:=[1..n];
        pos[0]:=0; i:=0;
        while (V <> []) do
        begin
          V:=V\setminus[pos[i]];
          i:=i+1;
          pos[i]:=next[pos[i-1],V];
        end;
End;
```

复杂性

• 对i, 确定T(i,V)有多大?

• 第2层
$$T(i,V\setminus\{i\})$$
 nC_{n-1}^{n-1} 个

• 第3层
$$T(i,V\setminus\{i,j\})$$
 nC_{n-1}^{n-2} 个

• 第k层
$$T(i,V\setminus\{i,j\})$$
 nC_{n-1}^{n-k+1} 个

• 总数=1+n2ⁿ⁻¹

练习

1. 根据所给条件求0-1背包问题,要求写出完整求解过程(自底向上)。

F=max
$$\{3x_1 + 5x_2 + 4x\}$$

 $3x_1 + 2x_2 + 4x_3 \le 10$
 $x_i \in \{0, 1\}, 1 \le i \le 3$