COSC 290 Discrete Structures

Lecture 13: Weak induction

Prof. Michael Hay Monday, Feb. 25, 2018

Colgate University

Proof by weak induction

Plan for today

- 1. Proof by weak induction
- 2. Example: exact change theorem

Proof by weak induction

Suppose you want to prove that predicate P(n) holds for all $n \in \mathbb{Z}^{\geq 1}$. P(n) is some statement that is "parameterized" by an integer n. Examples: n could represent...

- · the size of an array
- · the nth iteration through a loop
- · the height of a binary tree
- · the number of variables in a proposition
- etc.

Claim:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

This mathematical identity can be expressed as a predicate on n. Define predicate P as

$$P(n) := \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

The claim can be formally stated as

$$\forall n \in \mathbb{Z}^{\geq 1} : P(n)$$

We can prove this using induction.

Intuition

(b) Inductive case: show this can't happen

Show that the first domino falls and if the $(n-1)^{th}$ domino falls, the n^{th} domino falls too.

Procedure for proof by induction

Claim:
$$\forall n \in \mathbb{Z}^{\geq 1} : P(n)$$

Process:

- 1. Base case: show that P(1) is true.
- 2. Inductive case: show that $\forall n \in \mathbb{Z}^{\geq 2} : P(n-1) \Longrightarrow P(n)$
 - · Typically shown using direct proof by assuming the antecedent.
 - Let n be arbitrary value from $\mathbb{Z}^{\geq 2}$.
 - Assume that P(n 1) is true, and
 - Show that P(n) must also be true.

Example continued...

Claim: Let $P(n):=\sum_{i=1}^n i=\frac{n(n+1)}{2}.$ The claim is that $\forall n\in \mathbb{Z}^{\geq 1}:P(n).$

Proof by induction: We will prove by induction on n.

Base case: n = 1.

In this case, the left hand side is $\sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1$.

The right hand side is $\frac{n(n+1)}{2} = \frac{1 \times (1+1)}{2} = 1$. Thus P(1) is true.

Proof continued...

(Proof shown on board. And on next slide.)

Example continued...

Inductive case:

- Given: Let n > 2. Assume the claim is true for P(n − 1).
- · Want to show: Claim is true for P(n).

Since P(n-1) is true, we have $\sum_{i=1}^{n-1} i = \frac{(n-1)((n-1)+1)}{2}$

We will use this fact to show P(n):

We will use this fact to show
$$P(n)$$
:
$$\sum_{i=1}^{n} i = \binom{\sum_{i=1}^{n-1} i}{i} + n \qquad \text{definition of summation}$$

$$= \frac{(n-1)((n-1)+1)}{2} + n \qquad \text{inductive hypothesis}$$

$$= \frac{(n-1)n+2n}{2} \qquad \text{rearranging/simplifying terms}$$

$$= \frac{n^2-n+2n}{2} = \frac{n^2+n}{2} = \frac{n(n+1)}{2} \qquad \text{algebra}$$

Proof by Induction Template

- · Claim: State the claim. One way: define P(n) and then the claim is something simple like " $\forall n \in \mathbb{Z}^{\geq 0}$: P(n)"
- · Proof by induction:
 - Base case (n = 0): Prove that P(0) is true
 - · Usually the base case is easy.
 - Inductive case (n > 1): Show that $P(n 1) \implies P(n)$
 - Assume: P(n − 1) is true. Write out what P(n − 1) is in full!
 - · Want to show: P(n) is true. Prove the inductive case... "Suppose that [P(n - 1) is true]..."

 - · ... body of proof for inductive case...
 - · "... therefore the inductive step holds."
 - Conclusion: "By induction, the claim has been shown."

Starting point

You don't necessarily have to start at one. The proper starting point depends on the claim you are trying to prove.

Suppose P(n) only holds for $n \ge 3$.

- Base case: show P(3) is true.
- Inductive case: Show ∀n > 4: P(n 1) ⇒ P(n) is true.

Proof by Induction (Alternative) Template

- · Claim: State the claim. One way: define P(n) and then the claim is something simple like " $\forall n \in \mathbb{Z}^{\geq 0}$: P(n)"
- · Proof by induction:
 - Base case (n = 0): Prove that P(0) is true
 - · Usually the base case is easy.
 - Inductive case (n > 0): Show that $P(n) \implies P(n+1)$
 - · Assume: P(n) is true. Write out what P(n) is in full!
 - Want to show: P(n + 1) is true.
 - Prove the inductive case... "Suppose that [P(n) is true]..."
 - · ... body of proof for inductive case... · "... therefore the inductive step holds."
 - Conclusion: "By induction, the claim has been shown."

Example: exact change theorem

Exact Change Theorem

• Claim: For any price $n \ge 8$, the price n can be paid using only 5-cent coins and 3-cent coins.

(a) A five cent piece (nickel)

(b) A three cent piece (circa 1865-1873)

Credit: Adapted from "Peer Instruction in Discrete Mathematics" by Cynthia Lee, licensed under CC BY-NC-SA 4.0

Poll: base case

- Claim: For any price n ≥ 8, the price n can be paid using only 5-cent coins and 3-cent coins.
- · Proof by induction:
 - Base case: Show the claim holds for n = ??
- A) o cents
- B) 1 cent
- C) 2 cents
- D) 3 cents
- E) None of the above / More than one

Poll: inductive case

- Claim: For any price n ≥ 8, the price n can be paid using only 5-cent coins and 3-cent coins.
- · Proof by induction:
 - Base case: Show the claim holds for n = 8
 - · Inductive case:
 - Assume: Assume that ... what goes here?
 Want to show: We will show that ... and here?
- A) ...the claim is true for n = 8... the claim holds for n = 9.
- B) ...the claim is true for any n > 8... the claim holds for n.
- C) ...the claim is true for any n > 8... the claim holds for n.
- D) ...the claim is true for any $n \ge 8$... the claim holds for n + 1. E) ...the claim is true for any n > 8... the claim holds for n + 1.

Inductive step

Assume that when price is n, we can make change using only three-cent and five-cent coins

Show that this implies you can make change for price n + 1.

Poll: a solution to the inductive case?

Suppose you used k five-cent coins and ℓ three-cent coins to pay the price of $n=5k+3\ell$. How can we modify the number of coins so that we can pay the price n+1?

You ask a student who took 290 last spring, they suggest the following approach: use k-1 five-cent coins and $\ell+2$ three-cent coins. Will this work?

- A) Yes, I think this always works.
- B) Hmm... I'm not convinced it always works but I don't see a specific problem.
- C) It won't always work and I know why.

Poll: making change

Suppose you used k=10 five-cent coins and $\ell=10$ three-cent coins to pay the price of n=\$0.80. What is the *smallest* amount by which we must change k and ℓ to pay the price n+1=\$0.81?

- A) k=0 five-cent coins and $\ell=27$ three-cent coins.
- B) k = 9 five-cent coins and $\ell = 12$ three-cent coins.
- C) m=12 five-cent coins and $\ell=7$ three-cent coins.
- D) None of the above / More than one

Poll: without a nickel to your name

Suppose you used k=0 five-cent coins and ℓ three-cent coins to pay the price of $n=5k+3\ell=0+3\ell$. How can we modify the number of coins so that we can pay the price n+1?

You ask a student who took 290 last spring, and they say you can't.

- A) The student is right. [Explain why during discussion.]
- B) Hmm... I'm not convinced either way.
- C) The student is wrong. [Explain why during discussion.]

Poll: three is the magic number?

If you used k=0 five-cent coins and ℓ three-cent coins to pay the price of $n=5k+3\ell$, you can pay price n+1 provided that $\ell\geq 3$. Student A asks: "What if we don't have that many three-cent coins?"

Student B says: "Don't worry about it, just pay with your 'Gate Card."

Choose the best answer:

- A) Darn... student A just ruined our proof.
- B) Student B is kinda right: we don't need to worry about it.
- C) Student A raises a good point, we need to add this case to our proof.
- D) None of the above / More than one

Final proof

Claim: For any price $n \ge 8$, the price n can be paid using only 5-cent coins and 3-cent coins. In other words, for any $n \ge 8$, there exists k and ℓ such that $n = 5k + 3\ell$.

Proof by induction:

- Base case: Show the claim holds for n = 8
 One five-cent coin (k = 1) and one three-cent coin (l = 1) works.
- One tive-cent coin (R = 1) and one three-cent coin (E = 1) works.
 Inductive case:
- Assume: Assume that for any n > 8, one can make change. That
 - is, there is some k and ℓ such that $n=5k+3\ell$.
 - Want to show: One can make change for n+1.
 - Cases:
 - k > 0: Then 5(k − 1) and 3(ℓ + 2) = n + 1
 k = 0 and ℓ > 3: Then 5(k + 2) and 3(ℓ − 3) = n + 1
 - R = 0 and ℓ ≥ 3: Inen 5(R + 2) and 3(ℓ − 3) = R + 1
 The case k = 0 and ℓ < 3 is not possible because then n = 3ℓ < 8.
 - which would violate our assumption that n > 8.
 - which would violate our assumption that n ≥ 8.

 Therefore, the inductive step holds.