А.Н.Колмогоров

ОСНОВНЫЕ НОНЯТНЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Книга, изданная в 1933 г. на немецком языке и в 1936 г. на русском, несколько раз переиздавалась в английском переводе. Хотя значительная часть со содержания включена в учебники, она сохраияет интерес для лиц, занимающихся обстоятельно теорией вероятностей. Основной текст переиздается лишь с небольшой редакционной правкой.

СОДЕРЖАНИЕ

Нредисловие к первому изданию	5
Нредисловие ко второму изданию	7
 Элементарная теория вероятностей 	
§ 1. Аксиомы	10
§ 2. Отношение к данным опыта	12
§ 3. Терминологические замечания	14
§ 4. Непосредственные следствия из аксиом, условные вероятности, теорема	15
Байеса	
§ 5. Независимость	17
§ 6. Условные вероятности как случайные величины; цепи Маркова	23
II. Бесконечные поля вероятностей	
§ 1. Аксиома непрерывности	26
§ 2. Борелевские поля вероятностей	29
§ 3. Нримеры бесконечных полей вероятностей	31
III. Случайные величины	
§ 1. Вероятностные функции	36
§ 2. Определение случайных величин, функции распределения	38
§ 3. Многомерные функции распределения	41
§ 4. Вероятности в бесконечномерных пространствах	44
§ 5. Эквивалентные случайные величины, разные виды сходимости	52
IV. Математические ожидания	
§ 1. Абстрактные интегралы Лебега	57
§ 2. Абсолютные и условные математические ожидания	60
§ 3. Неравенство Чебышева	63
§ 4. Некоторые признаки сходимости	65
§ 5. Дифференцирование и интегрпрование математических ожиданий по	66
параметру	
V. Условные вероятности и математические ожидания	
§ 1. Условные вероятности	70
§ 2. Объяснение одного парадокса Бореля	75
§ 3. Условные вероятности относительно случайной величины	76
§ 4. Условные математические ожидания	78
VI. Независимость. Закон больших чисел	
§ 1. Независимость	83
§ 2. Независимые случайные величины	85
§ 3. Закон больших чисел	88
§ 4. Замечания к поиятию математического ожидания	100
§ 5. Усиленный закон больших чисел, сходимость рядов	104
Дополнение. Одна замечательная теорема теории вероятностей	116
Литература	418

предисловие к первому изданию

Целью предлагаемой работы является аксиоматическое обоснование теории вероятностей. Ведущей мыслью автора было при этом естественное включение основ теории вероятностей, считавшихся еще недавно совершенно своеобразными, в ряд общих понятий современной математики. До возникновения лебеговой теории меры и интеграла эта задача была почти безнадежна. После исследований Лебега стала ясной аналогия мерой множества и вероятностью события, а также между интегралом от функции и математическим ожиданием случайной величины. Эта аналогия допускает и дальнейшее продолжение: так, например, многие свойства независимых случайных величин вполне аналогичны соответствующим свойствам ортогональных фупкций. Для того чтобы, исходя из этой аналогии, обосновать теорию вероятностей, следовало еще освободить теорию меры и теорию интегрирования от геометрических элементов, которые еще имелись у Лебега. Это освобождение было осуществлено Фреше.

Попытки построения основ теории вероятностей, исходящие из этой общей точки зрения, уже имеются, и весь круг идей, излагаемых здесь, уже успел приобрести известную популярность в узком кругу специалистов; однако отсутствовало полное и свободное от излишних усложпений изложение всей системы (подготовляется, впрочем, к печати книга Фреше, см. Fréchet [2]).

Я хотел бы еще указать здесь на те места в дальнейшем изложении, которые выходят за пределы упомянутого выше круга идей, уже достаточно знакомого в общих чертах специалистам. Эти места следующие: распределения вероятностей в бесконечномерных пространствах (глава третья, § 4), дифференцирование и интегрирование математических ожиданий по параметру (глава четвертая, § 5) и особенно теория условных вероятностей и математических ожиданий (глава пятая). Следуст при этом отметить, что все эти новые понятия и проблемы с необходимостью возникают при рассмотрении вполне конкретных физических задач 1).

Шестая глава содержит обзор отдельных результатов А. Я. Хинчина и автора, касающихся условий применимости простого и усилепного закона больших чисел. В списке литературы приведены некоторые новые работы, представляющие интерес с точки зрения

вопросов обоснования теории вероятностей.

Приношу свою сердечную благодарность А. Я. Хинчину, внимательно прочитавшему всю рукопись и

предложившему целый ряд улучшений.

Клязьма близ Москвы, 1 мая 1933 г. А. Колмогоров

¹⁾ Ср., например, цитированную в сноске 1) к стр. 69 работу М. А. Леонтовича и автора, а также М. L e o n t o w i t s c h, Zur Statistik der kontinuierlichen Systeme und des zeitlichen Verlaufes der physikalischen Vorgänge, Physik Zeitschr. d. Sowjetunion, т. 3, 1933, стр. 35—63.

ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

С первого немецкого издания этой книжки прошло сорок лет. Было решено, тем не менее, не подвергать ее существенной переработке. А. Н. Ширяевым и мною внесены небольшие усовершенствования изложения. Модернизированы некоторые обозначения. Для некоторых теорем § 3 — 5 главы VI даны доказательства, отредактированные А. Н. Ширяевым по моим работам 1925—1930 годов. В современных учебниках эти теоремы обычно доказываются с помощью аппарата характеристических функций. Мои первоначальные доказательства прямыми, элементарными средствами, может быть, сохраняют некоторый интерес.

Намеченные в § 2 первой главы взгляды на пути обоснования применимости аксиоматической теории вероятностей к реальным задачам были развиты мною подробно в [1]. Но и здесь оставались невыясненными причины того, почему мы так часто встречаемся на практике с устойчивостью частот. Новый подход к этому вопросу

был мною намечен в [2] и [3] (см. также [4]):

[1] Монография «Математика, ее содержание, методы и значение», изд. АН СССР 1956, глава XI.

[2] А. Н. Колмогоров, Три подхода к определению понятия «количество информации», Проблемы передачи информации, т. I, вып. 1 (1965).

[3] А. Н. Колмогоров, К логическим основам теории информации и теории вероятностей, Пробле-

мы передачи информации, т. V, вып. 3 (1969).

[4] А. К. Звонкин и Л. А. Левип, Сложность конечных объектов и обоснование теории информации

и случайности с помощью теории алгоритмов, Успехи математических наук, том 25, вып. 6 (1970).

Отмечу специально те вопросы, по которым читателю следует особенно настоятельно рекомендовать сопоставление изложения, данного в этой книжке, с более современным.

1. В § 1 главы V дано определение условной вероятности $P(A \mid \xi)$, где ξ — случайный элемент некоторого множества X, т. е. отображение Ω в X. С этим отображением можно связать алгебру $\mathcal{F}^{\xi} \subseteq \mathcal{F}$ всех принадлежащих \mathcal{F} полных прообразов подмножеств множества X. Теперь предпочитают сначала определять условные вероятности по отношению к любой \mathfrak{G} -нодалгебре $\mathcal{F}' \subseteq \mathcal{F}$ и затем считать, что

$$P(A \mid \xi) = P(A \mid \mathcal{F}^{\xi}).$$

2. Результаты § 4 главы III широко употребляются, по не дают непосредственно приемлемых распределений в имеющих реальный интерес функциональных пространствах (см. об этом на стр. 46).

І. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Мы называем элементарной теорией вероятностей ту часть теории вероятностей, в которой приходится иметь дело с вероятностями лишь конечного числа событий. Теоремы, которые здесь выводятся, естественно применяются также и к вопросам, связанным с бесконечным числом случайных событий, однако при изучении этих последних применяются также сущестенно новые принципы. Поэтому единственная аксиома математической теории вероятностей, относящаяся именно к случаю бесконечного числа случайных событий, вводится лишь в начале второй главы (аксиома V).

Теория вероятностей как математическая дисциплина может и должна быть аксиоматизирована совершенно в том же смысле, как геометрия или алгебра. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, все дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений.

Соответственно этому в § 1 определяется понятие поля вероятностей как системы множеств, удовлетворяющей онределенным условиям. Что представляют собой элементы этих множеств, совершенно безразлично для чисто математического развития теории вероятностей (ср. введение основных геометрических понятий в «Основах геометрии» Гильберта или определение групи, колец и тел в абстрактной алгебре).

Всякая аксиоматическая (абстрактная) теория допускает, как известно, бесконечное число конкретных

интерпретаций. Таким образом и математическая теория вероятностей допускает наряду с теми интерпретациями, из которых она возникла, также много других. Так, мы приходим к приложениям математической теории вероятностей к таким областям науки, которые не имеют отношения к понятиям случая и вероятности в собственном смысле этого слова.

Аксиоматизация теории вероятностей может быть проведена различными способами как в отношении выбора аксиом, так и выбора основных понятий и основных соотношений. Если преследовать цель возможной простоты как самой системы аксиом, так и построения из нее дальнейшей теории, то представляется наиболее целесообразным аксиоматизирование понятий случайного события и его вероятности. Существуют также другие системы аксиоматического построения теорин вероятностей, а именно такие, в которых понятие вероятности не относится к числу основных понятий, а само выражается через другие попятия 1). При этом стремятся, однако, к другой цели, а именно, по возможности к наиболее тесному смыканию математической теории с эмпирическим возпикновением попятия вероятности.

§ 1. Аксиомы 2)

Пусть Ω — множество элементов ω , которые мы будем называть элементарными событиями, а 🐔 — множество подмножеств из Ω . Элементы множества $\mathcal F$ будем пазывать случайными событиями (или просто - событиями), а Ω — пространством элементарных событий.

I. \mathcal{F} является алгеброй множеств 3).

¹⁾ Ср., например, R. von M i s e s [1] п [2] и С. Н. Б е р и штей н [1].
2) Читатель, желающий сразу же придать конкретный смысл

нижеследующим аксиомам, должен начать читать § 2. 3) Система $\mathcal F$ подмножеств множества Ω называется алгеброй, если $\Omega \in \mathcal{F}$, соединение, пересечение и разность двух множеств системы опять принадлежат этой системе. Мы обозначаем пересечение множеств A и B через $A \cap B$ или AB, их соединение

II. Каждому множеству A из $\mathcal F$ поставлено в соответствие неотрицательное действительное число $\mathsf P (A)$. Это число называется вероятностью события A.

III. $P(\Omega) = 1$.

IV. Если А и В не пересекаются, то

$$P(A + B) = P(A) + P(B).$$

Совокунность объектов $(\Omega, \mathcal{F}, \mathsf{P})$, удовлетворяющую аксиомам I—IV, будем называть **полем верояттю**-стей.

Наша система аксиом I—IV непротиворечива. Это показывает следующий пример: Ω состоит из единственного элемента ω , \mathcal{F} — из Ω и пустого множества \emptyset , ири этом положено $\mathsf{P}(\Omega)=1$, $\mathsf{P}(\emptyset)=0$.

Наша система аксиом, однако, не является полной: в разных вопросах теорип вероятностей рассматривают-

ся различные поля вероятностей.

Простейшие поля вероятностей строятся следующим образом. Берутся произвольное конечное множество $\Omega = \{\omega_1, \ldots, \omega_h\}$ и произвольное множество $\{p_1, \ldots, p_h\}$ неотрицательных чисел с суммою $p_1 + \ldots + p_h = 1$. За $\mathcal F$ принимается совокупность всех подмножеств A из Ω и для $A = \{\omega_i, \ldots, \omega_{i_\lambda}\}$ полагается $P(A) = p_{i_1} + \ldots + p_{i_\lambda}$. В этом случае говорят, что p_1, \ldots, p_h суть вероятности элементарных событий $\omega_1, \ldots, \omega_k$ или просто элементарные вероятностий. Так получаются все возможные конечные поля вероятностей, в которых $\mathcal F$ состоит из совокупности всех подмножеств из Ω (при этом поле вероятностей называют конечным, если множество Ω конечно). По поводу дальнейших примеров см. гл. II, § 3.

[—] через $A \cup B$, разность — через $A \setminus B$. Дополнительное множество $\Omega \setminus A$ к множеству A обозначаем \overline{A} . Через \varnothing обозначается пустое множество. Если множества A и B не пересекаются $(AB=\varnothing)$, то их соединение $A \cup B$ будет обозначаться также через A+B и называться суммой. Множества из $\mathscr F$ будем в дальнейшем обозначать большими латинскими буквами. Ср. A. Н. К о л м о г о р о в, С. В. Ф о м и н, Элементы теории функцый и функционального апализа, Изд-во «Наука», М., 1968.

§ 2. Отношение к данным опыта ¹)

Применение теории вероятностей к действительному миру опыта происходит по следующей схеме.

1. Предполагают данным некоторый комплекс © условий, допускающий неограниченное число повторений.

2. Изучают определенный круг событий, которые могут наступать в результате осуществления условий С. В отдельных случаях эти события могут наступать или не наступать в разных комбинациях. В множество (2 включаются все возможные варианты появлений или пепоявлений рассматриваемых событий.

3. Если после реализации условий © осуществившийся на практике вариант окажется принадлежащим к (определенному какими-либо условиями) множест-

ву A, то говорят, что наступило событие A.

Пример. Комплекс условий 8 заключается в том, что бросают два раза монету. Круг событий, о котором шла речь в п. 2, состоит в том, что при каждом бросании могут появиться решетка или герб. Отсюда следует, что всего возможно четыре различных варианта (элементарных события), именно: решетка — решетка, решетка — герб, герб — решетка, герб — герб. В качестве события А рассматривается «повторение». Это событие состоит из суммы первого и четвертого элементарных событий. Таким образом, можно каждое событие рассматривать как множество элементарных событий.

4. При известных условиях, в которые мы здесь не будем глубже вдаваться, можно предположить, что не-

¹⁾ Читатель, который интересустся лишь чисто математическим развитием теории, может этот параграф не читать — дальнейшее изложение основывается на аксиомах § 1 и не использует рассуждений этого параграфа. В нем мы ограничимся лишь простым указанием на эмпирическое возникновение аксиом теории вероятностей и сознательно оставляем в стороне глубокие философские изыскания о понятии вероятности в мире опыта. В изложении необходимых предпосылок для приложимости теории вероятностей к миру действительных событий автор в значительной мере следует выводам Мизеса, в частности ср. R. von M i s e s [1], стр. 21—27, параграф «Das Verhältnis der Theorie zur Erfahrungswelt».

которым событиям A, которые могут паступить или же не наступить после осуществления условий \mathfrak{S} , поставлены в соответствие определенные действительные числа $\mathsf{P}(A)$, обладающие следующими свойствами:

А. Можно практически быть уверенным, что если комплекс условий \mathfrak{S} будет повторен большое число n раз и если при этом через m обозначено число случаев, при которых событие A наступило, то отношение $\frac{m}{n}$ будет мало отличаться от $\mathsf{P}(A)$.

В. Если $\mathsf{P}(A)$ очень мало, то можно практически быть уверенным, что при однократной реализации ус-

ловий 8 событие А не будет иметь места.

Эмпирическая дедукция аксиом. Обычно можно предполагать, что система \mathcal{F} рассматриваемых событий A, B, C, \ldots , которым приписаны определенные вероятности, образует алгебру множеств, содержащую в качестве элемента множество Ω (аксиома I, а также первая часть аксиомы II — существование вероятностей). Далее ясно, что $0 \leqslant \frac{m}{n} \leqslant 1$, так что вторая часть аксиомы II оказывается вполне естественной. Для события Ω всегда m=n, благодаря чему естественно положить $P(\Omega)=1$ (аксиома III). Если, наконец, A и B не пересетны между собой (т. е. множества A и B не пересекаются), то $m=m_1+m_2$, где m, m_1 , m_2 обозначают соответственно число опытов, в которых происходят события A+B, A, B. Отсюда следует:

$$\frac{m}{n} = \frac{m_1}{n} + \frac{m_2}{n}.$$

Следовательно, является уместным положить

$$P(A + B) = P(A) + P(B)$$
 (archoma IV).

Примечание І. Из практической достоверности двух утверждений следует практическая достоверность утверждения об их одновременной правильности, хотя степень достоверности при этом несколько понижается. Если, однако, число утверждений очень велико,

то из практической достоверности каждого отдельного из этих утверждений вообще нельзя вывести инкаких заключений относительно одновременной правильности всех этих утверждений. Поэтому из принципа A никоим образом не следует, что при очень большом числе серий по n испытаний в $\kappa a \varkappa \partial o \ddot{u}$ серии отношение $\frac{m}{n}$ будет мало отличаться от P(A).

Примечание II. Невозможному событию (пустому множеству \varnothing) соответствует в силу наших аксиом вероятность $P(\varnothing) = 0$ 1), в то время как, наоборот, из P(A) = 0 не следует еще невозможность события A; согласно принципу B из обращения вероятности в нуль следует только, что при однократной реализации условий $\mathfrak S$ событие A практически невозможно. Это, однако, не означает, что при достаточно длинном ряде испытаний событие A также не наступит. Согласно принципу A можно лишь утверждать, что при P(A) = 0 и большом n отношение $\frac{m}{n}$ будет мало.

§ 3. Терминологические замечания

Мы определили объекты нашего дальнейшего изучения — случайные события — как множества. Многие теоретико-множественные понятия обозначаются, однако, в теории вероятностей другими именами. Мы приведем здесь краткий указатель таких понятий.

В теории множеств

- 1. A и B не пересекаются, т. е. $AB = \emptyset$.
 - 2. $AB \dots N = \emptyset$.
 - $3. AB \dots N = X.$

Для случайных событий

- 1. События A и B несовместны.
- 2. События A, B, ..., N несовместны.
- 3. Событие X заключается в одновременной реализации всех событий A, B, \ldots N.

¹⁾ Ср. § 4, формула (3).

- 4. $A | JB | J \dots \bigcup N = X$.
- 5. Дополнительное множество \bar{A} .

 - $\begin{array}{ll}
 6. & A = \varnothing \\
 7. & A = \Omega
 \end{array}$
- 8. Система Я множеств A_1, A_2, \ldots, A_n of pasyer разложение множества Ω , если $A_1 + A_2 + \dots$ $\ldots + A_n = \Omega$. (Это уже предполагает, что множества A_i попарно не пересекаются.)
- 9. B является подмножеством $A:B\subseteq A$.

- 4. Событие X заключается в наступлении по крайней мере одного из событий A, B, . . . , N.
- 5. Противоположное событие \overline{A} , состоящее в ненаступлении события А.
 - 6. A невозможно.
- 7. А должно необходимо паступить.
- 8. Испытание Я заключается в том, что устанавливают, какое из событий A_1, A_2, \ldots, A_n происхолит; $A_1, A_2, ..., A_n$ называются при этом возможными исходами испытания И.
- 9. Из осуществления события В с необхолимостью следует осуществление A.

§ 4. Непосредственные следствия из аксиом, условные вероятности, теорема Байеса

Из $A + \bar{A} = \Omega$ и аксиом III и IV следует, что

$$P(A) + P(\bar{A}) = 1, \tag{1}$$

$$P(\overline{A}) = 1 - P(A). \tag{2}$$

Так как $\overline{\Omega} = \mathbb{Z}$, то, в частности,

$$P(\emptyset) = 0. (3)$$

Если $A,\,B,\,\ldots,\,N$ несовместны, то из аксиомы IV следует формула

$$P(A + B + ... + N) = P(A) + P(B) + ... + P(N)$$
(4)

(тесрема сложения).

Если P(A) > 0, то частное

$$P(B \mid A) = \frac{P(AB)}{P(A)} \tag{5}$$

называют условной вероятностью события B при условии A.

Из (5) непосредственно следует, что

$$P(AB) = P(B \mid A) \cdot P(A). \tag{6}$$

Заключение по индукции дает общую формулу

$$P(A_1 A_2 ... A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) ...$$
...
$$P(A_n | A_1 ... A_{n-1})$$
 (7)

(теорема умножения).

Легко доказываются также следующие формулы:

$$\mathsf{P}\left(B\mid A\right)\geqslant0,\tag{8}$$

$$P(\Omega \mid A) = 1, \tag{9}$$

$$P(B + C | A) = P(B | A) + P(C | A).$$
 (10)

Сравнивая формулы (8) и (10) с аксиомами II-IV, получаем, что система множеств $\mathcal F$ вместе с функцией множеств $P(B\mid A)$ (при закрепленном множестве A) образует поле вероятностей. Следовательно, все доказанные для вероятностей P(B) общие теоремы справедливы для условных вероятностей $P(B\mid A)$ (при фиксированном событии A). Легко также заметить, что

$$P(A \mid A) = 1. \tag{11}$$

Из (6) и из апалогичной формулы

$$P(AB) = P(A \mid B) P(B)$$

получаем важную формулу

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}, \qquad (12)$$

содержащую, собственно, теорему Байеса.

T е о р е м а (о полной вероятности). Пусть $A_1+A_2+\ldots+A_n=\Omega$ и B — произвольное событие. T ог ∂a

$$P(B) = P(A_1) P(B \mid A_1) + P(A_2) \cdot P(B \mid A_2) + \dots \dots + P(A_n) P(B \mid A_n).$$
 (13)

Доказательство. Поскольку

$$B = A_1B + \ldots + A_nB_n$$

то, согласно (4),

$$P(B) = P(A_1B) + ... + P(A_nB)$$
:

согласно (6) при этом имеет место равенство

$$P(A_iB) = P(A_i) P(B \mid A_i).$$

T е о р е м а (Байеса). Пусть $A_1+A_2+\ldots+A_n=\Omega$, а B — произвольное событие, тогда

$$P(A_i | B) = \frac{P(A_i) P(B | A_i)}{P(A_1) P(B | A_1) + \ldots + P(A_n) P(B | A_n)}. \quad (14)$$

Доказательство. Согласно формуле (12)

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{P(B)}.$$

Для получения формулы (14) остается только заменить вероятность P(B) ее выражением (13) по теореме о полной вероятности.

(События A_1 , A_2 , , A_n часто называют «гипотезами» и говорят, что формула (14) дает вероятность $P\left(A_i\mid B\right)$ гипотезы A_i после наступления события B; $P\left(A_i\right)$ означает при этом априорную вероятность A_i .)

§ 5. Независимость

Понятие независимости двух или нескольких опытов занимает в известном смысле центральное место в теории вероятностей. В самом деле, мы уже видели, что теорию вероятностей с математической

точки зрения можно рассматривать как специальное применение общей теории аддитивных функций множеств. Естественно задать вопрос, каким же образом теория вероятностей развилась в большую, обладающую своими собственными методами самостоятельную науку?

Для ответа на этот вопрос следует указать на ту специализацию, которую получают в теории вероятностей общие проблемы, касающиеся аддитивных фулкний множеств

То обстоятельство, что наша аддитивная функция множеств $P = P(\cdot)$ пеотрицательна и удовлетворяет условию $P(\Omega) = 1$, не обусловливает еще собой возпикновения новых глубоких проблем. Случайные величины (ср. третью главу) с математической точки зрения представляют собой не что иное, как измеримые (относительно F) функции, а их математические ожидания являются абстрактными интегралами Лебега. Эта аналогия была впервые полностью разъяснена в работах Фреше ¹). Введение упомянутых понятий не может, следовательно, еще доставить никакого базиса для развития большой оригинальной теории.

Исторически независимость испытаний и случайных величин явилась тем математическим понятием, которое придало теории вероятностей своеобразный отпечаток. Классические работы Лапласа, Пуассона, Чебышева, Маркова, Ляпунова, Мизеса и Берпштейна действительно посвящены в основном изучению рядов независимых случайных величин. Если в новейших исследованиях (Марков, Бернштейн и др.) часто отка-зываются от предположения полной независимости, то оказываются принужденными для получения достаточно содержательных результатов ввести аналогичные ослабленные предположения (ср. в этой главе § 6, о ценях Маркова). Мы приходим, следовательно, к тому, чтобы в понятии независимости видеть по крайней мере первый зародыш своеобразной проблематики теории вероятностей — обстоятельство, которое в этой

¹⁾ Cp. Fréchet [1] n [2].

книге будет мало выделяться, так как в ней мы запимаемся главным образом только логической подготовкой к собственно теоретико-вероятностным исследованиям.

Соответственно этому одной из важнейших задач философии естественных наук, после разъяснения пресловутого вопроса о сущности самого понятия вероятности, являются выяснение и уточнение тех предносылок, при которых можно какие-либо данные действительные явления рассматривать как независимые. Этот вопрос выходит, однако, за пределы данной книги.

Перейдем к определению независимости.

Пусть даны n испытаний $\mathfrak{A}^{(1)}, \mathfrak{A}^{(2)}, \ldots, \mathfrak{A}^{(n)},$ т. е. n разложений

$$\Omega = A_1^{(i)} + A_2^{(i)} + \ldots + A_{r_i}^{(i)} \qquad (i = 1, 2, \ldots, n)$$

основного множества Ω на сумму (непересекающихся) событий. Тогда можно задать $r=r_1r_2\dots r_n$ вероятностей

$$p_{k_1k_2...k_n} = P(A_{k_1}^{(1)}A_{k_2}^{(2)}...A_{k_n}^{(n)}) \geqslant 0$$

вообще произвольно при единственном условии 1)

$$\sum_{(k_1, k_2, \dots, k_n)} p_{k_1 k_2 \dots k_n} = 1.$$
 (1)

О пределение 1. Испытания $\mathfrak{A}^{(1)}$, $\mathfrak{A}^{(2)}$, ..., $\mathfrak{A}^{(n)}$ будем называть *независимыми*, если для любых k_1, k_2, \ldots, k_n имеет место равенство

$$P(A_{k_1}^{(1)}A_{k_2}^{(2)}\dots A_{k_n}^{(n)}) = P(A_{k_1}^{(1)})P(A_{k_2}^{(2)})\dots P(A_{k_n}^{(n)}).$$
 (2)

для которых $k_i = k$.

¹) Поле вероятностей с произвольными вероятностями, удовлетворяющими только упомянутым условиям, можно построить следующим образом: множество Ω составляется из r элементов $\omega_{k_1k_2\ldots\,k_n}$, соответствующие элементарные вероятности пусть будут $p_{k_1k_2\ldots\,k_n}$ и $A_k^{(i)}$ определяется как множество всех $\omega_{k_1k_2\ldots\,k_n}$,

Среди r уравнений (2) имеется только $r-(r_1+\ldots+r_n)+(n-1)$ независимых $r-(r_1+\ldots+r_n)$

Теорема 1. Если испытания $\mathfrak{A}^{(1)}$, $\mathfrak{A}^{(2)}$, ..., $\mathfrak{A}^{(n)}$ независимы, то из них любые т (m < < n) испытаний $\mathfrak{A}^{(i_1)}$, $\mathfrak{A}^{(i_2)}$, ..., $\mathfrak{A}^{(i_m)}$ также независимы $\mathfrak{A}^{(i_m)}$).

В случае независимости имеют, следовательно, место равенства

$$P(A_{k_1}^{(i_1)}A_{k_2}^{(i_2)}\dots A_{k_m}^{(i_m)}) = P(A_{k_1}^{(i_1)})P(A_{k_2}^{(i_2)})\dots P(A_{k_m}^{(i_m)})$$
(3)

(предполагается, что i_l различны).

Определение II. События A_1, A_2, \ldots, A_n называются *независимыми*, если разложения (испытания)

$$\Omega = A_h + \bar{A}_h \quad (k = 1, 2, \ldots, n)$$

являются независимыми.

$$\sum_{k} p_k^{(i)} = 1.$$

Следовательно, в общем случае имеем r-1 степеней свободы, а в случае независимости только $r_1+\ldots+r_n-n$.

 2) Для доказательства достаточно установить, что из независимости n разложений следует независимость первых n-1 из них. Примем, что уравнения (2) удовлетворены. Тогда

$$\begin{split} \mathsf{P} \; (A_{k_1}^{(1)} A_{k_2}^{(2)} \ldots A_{k_{n-1}}^{(n-1)}) &= \sum_{k_n} \mathsf{P} \, (A_{k_1}^{(1)} A_{k_2}^{(2)} \ldots A_{k_n}^{(n)}) = \\ &= \mathsf{P} \, (A_{k_1}^{(1)}) \, \mathsf{P} \, (A_{k_2}^{(2)}) \ldots \mathsf{P} \, (A_{k_{n-1}}^{(n-1)}) \, \sum_{k_n} \mathsf{P} \, (A_{k_n}^{(n)}) = \\ &= \mathsf{P} \, (A_{k_1}^{(1)}) \, \mathsf{P} \, (A_{k_2}^{(2)}) \ldots \mathsf{P} \, (A_{k_{n-1}}^{(n-1)}). \end{split}$$

 $^{^{1}}$) В самом деле, в случае независимости можно выбрать произвольно только $r_1+r_2+\ldots+r_n$ вероятностей $p_k^{(i)}=\mathsf{P}\;(A_k^{(i)}),$ притом так, чтобы соблюдались n условий

В этом случае $r_1=r_2=\ldots=r_n=2,\ r=2^n,$ следовательно, из 2^n уравнений (2) имеется независимых только 2^n-n-1 . Для независимости событий $A_1,$ $A_2,\ldots,$ A_n необходимы и достаточны следующие условия 1):

$$P(A_{i_1}A_{i_2}\dots A_{i_m}) = P(A_{i_1})P(A_{i_2})\dots P(A_{i_m}), \qquad (4)$$

$$m = 1, 2, ..., n; 1 \leq i_1 < i_2 < ... < i_m \leq n.$$

Все эти уравнения независимы между собой.

В случае n=2 получаем из (4) только одно (2 $^2-2-1=1$) условие для независимости двух событий A_1 и A_2 :

$$P(A_1A_2) = P(A_1) P(A_2).$$
 (5)

Система уравнений (2) состоит в этом случае, кроме (5), еще из трех уравнений:

$$P(A_1 \overline{A}_2) = P(A_1) P(\overline{A}_2),$$

 $P(\overline{A}_1 A_2) = P(\overline{A}_1) P(A_2),$
 $P(\overline{A}_1 \overline{A}_2) = P(\overline{A}_1) P(\overline{A}_2),$

которые, очевидно, следуют из (5)²).

Следует при этом еще заметить, что из nonaphoй независимости событий $A_1,\ A_2,\ \ldots,\ A_n,\ \mathsf{T.}$ е. из соотношений

$$P(A_iA_i) = P(A_i)P(A_i) \quad (i \neq i)$$

в случае n>2 отнюдь не следует независимость этих

¹⁾ Ср. С. Н. Бернштейн [1], стр. 47—57. Впрочем, читатель может это сам проверить без труда (заключение по индукции).

²⁾ $P(A_1\bar{A_2}) = P(A_1) - P(A_1A_2) = P(A_1) - P(A_1) P(A_2) =$ = $P(A_1)[1 - P(A_2)] = P(A_1)P(\bar{A_2})$

событий 1) (для нее необходимо выполнение всех равенств (4)).

При введении попятия независимости мы не пользовались условными вероятностями. Нашей целью было при этом возможно ясисе изложить чисто математически сущность этого понятия. Его приложения опираются, однако, главным образом на свойства некоторых условных вероятностей. Если мы предположим, что все вероятности положительны, то из уравнений (3) следует, что ²)

$$P(A_{k_m}^{(i_m)}|A_{k_1}^{(i_1)}A_{k_2}^{(i_2)}\dots A_{k_{m-1}}^{(i_{m-1})}) = P(A_{k_m}^{(i_m)}).$$
 (6)

Обратно, из формул (6) следуют по теореме умножения (формула (7), § 4) формулы (2). Мы имеем, следовательно, следующую теорему.

Теорема II. В случае положительных вероятностей всех $A_{k_1}^{(i)}$ для независимости испытаний $\mathfrak{A}^{(1)}$, $\mathfrak{A}^{(2)}$, ..., $\mathfrak{A}^{(n)}$ необходимо и достаточно следующее условие: условная вероятность исхода $A_{k_1}^{(i)}$ при тей гипотезе, что некоторые другие испытания $\mathfrak{A}^{(i)}$, $\mathfrak{A}^{(i_2)}$, ..., $\mathfrak{A}^{(i_1)}$ получили определенные исходы $A_{k_1}^{(i_1)}$, $A_{k_2}^{(i_2)}$, ..., $A_{k_l}^{(i_l)}$, равняется абсолютной вероятности $P(A_{k_l}^{(i)})$.

Легко тогда сосчитать, что

$$P(A) = P(B) = P(C) = \frac{1}{2},$$

$$P(AB) = P(BC) = P(AC) = \frac{1}{4} = \left(\frac{1}{2}\right)^{2},$$

$$P(ABC) = \frac{1}{4} \neq \left(\frac{1}{2}\right)^{3}.$$

¹⁾ Это доказывается следующим простым примером (С. Н. Берпштейн): множество Ω состоит из четырех элементов ω_1 , ω_2 , ω_3 , ω_4 , соответствующие элементарные вероятности p_1 , p_2 , p_3 , p_4 все полагаются равными 1/4 и $A = \{\omega_1, \omega_2\}$, $B = \{\omega_1, \omega_3\}$, $C = \{\omega_1, \omega_1\}$.

 $^{^2}$) Для доказательства следует вспомнить определение условной вероятности (формула (5), § 4) и заменить вероятности пересечений на произведения вероятностей по формуле (3).

На основе формул (4) аналогично доказывается следующая теорема.

Теорема III. Если все вероятности $P(A_h)$ положительны, то для независимости событий A_1, A_2, \ldots ..., A_n необходимо и достаточно, чтобы

$$P(A_k | A_{k_1}, A_{k_2}, ..., A_{k_l}) = P(A_k)$$
 (7)

для любых попарно различных k, k_1, k_2, \ldots, k_l .

В случае n=2 условия (7) сводятся к двум уравпениям:

$$P(A_2 | A_1) = P(A_2), P(A_1 | A_2) = P(A_1).$$
(8)

Легко усмотреть, что уже одно лишь первое уравнение (8) представляет необходимое и достаточное условие независимости A_1 и A_2 , если только $P(A_1) > 0$.

§ 6. Условные вероятности как случайные величины; цепи Маркова

Пусть $\mathfrak A$ является разложением основного множества Ω ,

$$\Omega = A_1 + A_2 + \ldots + A_m,$$

а $\xi = \xi$ (ω) — действительная функция элементарного события ω , которая на каждом множестве A_i принимает вначение x_i :

$$\xi(\omega) = \sum_{i=1}^{m} x_i I_{A_i}(\omega),$$

где I_{A_i} (ω) — индикатор множества A_i , т. е. I_{A_i} (ω) = 1, если ω \in A_i и I_{A_i} (ω) = 0, если ω \in \overline{A}_i .

В этом случае говорят, что ξ — случайная величина, принимающая конечное число значений x_1,\ldots,x_m , и

$$\mathsf{M}\xi = \sum_{i=1}^{m} x_i \mathsf{P}(A_i)$$

называют математическим ожиданием величины ξ. Теория случайных величин и их математических ожиданий будет развита в третьей и четвертой главах, не ограничиваясь при этом случайными величинами, которые могут принимать только конечное число различных значений.

Определение I. Случайную величину, которая на каждом множестве A_i принимает значение $P(B \mid A_i)$, мы назовем условной вероятностью события B после данного испытания $\mathfrak A$ и обозначим $P(B \mid \mathfrak A)$ (ω), или просто $P(B \mid \mathfrak A)$:

$$P(B \mid \mathfrak{A}) = \sum_{i=1}^{m} P(B \mid A_i) I_{A_i}(\omega).$$

Два испытания $\mathfrak{A}^{(1)}$ и $\mathfrak{A}^{(2)}$ тогда и только тогда независимы, когда

$$P(A_i^{(2)} | \mathfrak{A}^{(1)}) = P(A_i^{(2)}), \quad i = 1, 2, ..., m_2.$$

Если даны какие-либо иснытания $\mathfrak{A}^{(1)}$, $\mathfrak{A}^{(2)}$, . . . , $\mathfrak{A}^{(n)}$, то через

$$\mathfrak{A}^{(1)}\mathfrak{A}^{(2)}\ldots\mathfrak{A}^{(n)}$$

мы обозначим испытацие, соответствующее разложению множества Ω на произведения $A_{i_1}^{(1)}A_{i_2}^{(2)}\ldots A_{i_n}^{(n)}$. Испытания $\mathfrak{A}^{(1)}$, $\mathfrak{A}^{(2)}$, ..., $\mathfrak{A}^{(n)}$ тогда и только тогда независимы, когда

$$P(A_i^{(k)} | \mathfrak{A}^{(1)}\mathfrak{A}^{(2)} \dots \mathfrak{A}^{(k-1)}) = P(A_i^{(k)})$$

при любом выборе k и i^{-1}).

О пределение II. Последовательность испытаний

$$\mathfrak{A}^{(1)}, \mathfrak{A}^{(2)}, \ldots, \mathfrak{A}^{(n)}, \ldots$$

образует цепь Маркова, если при любых к и і

$$P(A_i^{(k)} | \mathfrak{A}^{(1)}\mathfrak{A}^{(2)} \dots \mathfrak{A}^{(k-1)}) = P(A_i^{(k)} | \mathfrak{A}^{(k-1)}).$$

Цепи Маркова образуют естественное обобщение последовательностей независимых испытаний. Если положить

$$p_{i_m i_n}(m, n) = P(A_{i_n}^{(n)} | A_{i_m}^{(m)}), \quad m < n,$$

то основная формула теории цепей Маркова будет иметь следующий вид:

$$p_{i_{k_{n}^{i}}}(k, n) = \sum_{i_{m}} p_{i_{k_{n}^{i}}}(k, m) p_{i_{m_{n}^{i}}}(m, n).$$

$$k < m < n$$
(1)

Обозначив матрицу $||p_{i_m i_n}(m, n)||$ через p(m,n), можно (1) записать в следующем виде ¹):

$$p(k, n) = p(k, m) p(m, n)$$

$$k < m < n.$$
(2)

¹⁾ Необходимость этих условий следует из теоремы II § 5, а что они также являются достаточными, можно заключить непосредственно из теоремы умножения (формула (7) § 4).

¹⁾ По поводу дальнейшего развития теории цепей Маркова см. R. von Mises [1], § 16 и В. Hostinsky, Méthodes générales du calcul des probabilités, Mém. Sci. Math. 52, Paris, 1931.

образует цепь Маркова, если при любых к и і

$$P(A_i^{(k)} | \mathfrak{A}^{(1)}\mathfrak{A}^{(2)} \dots \mathfrak{A}^{(k-1)}) = P(A_i^{(k)} | \mathfrak{A}^{(k-1)}).$$

Цепи Маркова образуют естественное обобщение последовательностей независимых испытаний. Если подожить

$$p_{i_m i_n}(m, n) = P(A_{i_n}^{(n)} | A_{i_m}^{(m)}), m < n,$$

то основная формула теории цепей Маркова будет иметь следующий вид:

$$p_{i_{k}i_{n}}(k, n) = \sum_{i_{m}} p_{i_{k}i_{m}}(k, m) p_{i_{m}i_{n}}(m, n).$$

$$k < m < n$$
(1)

Обозначив матрицу $||p_{i_m i_n}(m, n)||$ через p(m,n), можно (1) записать в следующем виде 1):

$$p(k, n) = p(k, m) p(m, n)$$

$$k < m < n.$$
(2)

¹⁾ По поводу дальнейшего развития теории цепей Маркова см. R. von M i s e s [1], § 16 и В. H o s t i n s k y, Méthodes générales du calcul des probabilités, Mém. Sci. Math. 52, Paris, 1931.

II. БЕСКОНЕЧНЫЕ ПОЛЯ ВЕРОЯТНОСТЕЙ

§ 1. Аксиома непрерывности

Мы обозначаем, как обычно, через $\bigcap_m A_m$ пересечение множеств A_m (в конечном или бесконечном числе) и через $\bigcup_m A_m$ их соединение. В случае непересекающихся множеств A_m соединение $\bigcup_m A_m$ называем суммой и обозначаем $\sum_m A_m$. Следовательно,

$$\bigcup_{m} A_{m} = A_{1} \bigcup A_{2} \bigcup A_{3} \bigcup \dots,$$

$$\sum_{m} A_{m} = A_{1} + A_{2} + A_{3} + \dots,$$

$$\bigcap_{m} A_{m} = A_{1} A_{2} A_{3} \dots$$

При всех дальнейших рассмотрениях мы предполагаем, что кроме аксиом I—IV (гл. I, § 1) выполняется еще следующая аксиома непрерывности:

V. Для убывающей последовательности

$$A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots \tag{1}$$

событий из У такой, что

$$\bigcap_{n} A_{n} = \emptyset, \tag{2}$$

имеет место равенство

$$\lim \mathsf{P}(A_n) = 0. \tag{3}$$

Во всем дальнейшем изложении мы называем полем вероятностей только такое поле вероятностей $(\Omega, \mathcal{F}, \mathsf{P})$ в смысле главы первой, которое, кроме того, удовлетворяет аксноме V. Поля вероятностей в смысле главы первой можно называть полями вероятностей в расширенном смысле.

Если система множеств $\mathcal F$ конечиа, аксиома V следует из аксиом I-IV. В самом деле, в этом случае существует только конечное число различных множеств в последовательности (1). Пусть A_k — наименьшее из них, тогда все множества A_{k+l} совпадают с A_k , и мы, следовательно, получаем

$$A_k = A_{k+l} = \bigcap_n A_n = \emptyset,$$

 $\lim_n P(A_n) = P(\emptyset) = 0.$

Все примеры с конечными полями вероятностей из первой главы удовлетворяют, следовательно, также аксиоме V. Спстема аксиом I—V является, таким образом, непротиворечивой и неполной.

Напротив, для бесконечных полей аксиома непрерывности V является независимой от аксиом I-IV. Так как новая аксиома существенна лишь для бесконечных полей вероятностей, то является почти невозможным разъяснить ее эмпирическое значение, например, так, как это было вкратце проделано для аксиом I—IV в § 2 главы первой. При описании какого-либо действительно наблюдаемого случайного можно получать только конечные поля вероятностей. Бесконечные поля вероятностей появляются только как идеализированные схемы действительных случайных явлений. Мы произвольно ограничиваемся при этом такими схемами, которые удовлетворяют аксиоме V. Это ограничение оказывается целесообразным в самых различных исследованиях.

T е о р е м а I (расширенная теорема сложения). Eсли A, A_1 , . . . , A_n , . . . nрина ∂ лежам $\mathcal F$ u

$$A = \sum_{n} A_n, \tag{4}$$

mo

$$P(A) = \sum_{n} P(A_n).$$
 (5)

Доказательство. Положим

$$R_n = \sum_{m>n} A_m.$$

Тогда, очевидно,

$$\bigcap_{n} R_n = \emptyset,$$

и, следовательно, по аксиоме V

$$\lim_{n \to \infty} \mathsf{P}(R_n) = 0. \tag{6}$$

С другой стороны, по теореме сложения

$$P(A) = P(A_1) + \dots + P(A_n) + P(R_n).$$
 (7)

Из (6) и (7) следует непосредственно (5).

Итак, мы доказали, что вероятность $P = P(\cdot)$ является на \mathcal{F} счетно-аддитивной функцией множеств. Обратно, аксиомы IV и V имеют место для всякой определенной на какой-либо алгебре множеств \mathcal{F} счетно-аддитивной функции множеств 1). Можно, следовательно, понятие поля вероятностей онределить следующим образом.

Пусть Ω — произвольное множество, \mathcal{F} — алгебра подмножеств Ω , а $P=P(\cdot)$ — неотрицательная счетно-аддитивная функция множеств, определенная на \mathcal{F} , подчиненная условию $P(\Omega)=1$. Тогда система (Ω,\mathcal{F},P) образует поле вероятностей.

T е о р е м а II (о покрытиях). Если A, A_1 , A_2 , . . .

 \ldots , A_n , \ldots принадлежат \mathcal{F} и

$$A \subseteq \bigcup_{n} A_{n}, \tag{8}$$

mo

$$\mathsf{P}(A) \leqslant \sum_{n} \mathsf{P}(A_n). \tag{9}$$

¹⁾ См., например, книгу А. Н. Колмогорова и С. В. Фомина, цитированную на стр. 11.

Доказательство. Поскольку

$$A = A (\bigcup A_n) = A (A_1 + A_2 \overline{A}_1 + A_3 \overline{A}_1 \overline{A}_2 + \ldots),$$

то

$$P(A) = P(AA_1) + P(AA_2\overline{A}_1) + \ldots \leqslant$$

$$\leqslant P(A_1) + P(A_2) + \ldots$$

§ 2. Борелевские поля вероятностей

Алгебра $\mathcal F$ подмножеств множества Ω называется борелевской алгеброй, если все счетные суммы $\sum_n A_n$ множеств A_n из $\mathcal F$ принадлежат $\mathcal F$. Борелевские алгебры называют также σ -алгебрами. Из формулы

$$\bigcup_{n} A_{n} = A_{1} + A_{2} \overline{A}_{1} + A_{3} \overline{A}_{1} \overline{A}_{2} + \dots$$
 (1)

можно заключить, что σ -алгебра содержит также все множества $\bigcup_{n} A_n$, составленные из счетного числа множеств A_n . Из формулы

$$\bigcap_n A_n = \Omega \setminus \bigcup_n \overline{A}_n$$

следует то же для пересечений множеств.

 \hat{H} оле вероятностей $(\Omega, \mathcal{F}, \mathbf{P})$ называется борелевским полем вероятностей, если соответствующая алгебра \mathcal{F} является борелевской.

При борелевских полях теория вероятностей получает полную свободу действия, не связанную с опасностью прийти к событиям, которые не имеют никакой вероятности. Мы теперь покажем, что можно ограничиться рассмотрением только борелевских полей вероятностей. Это будет следовать из так называемой теоремы о продолжении, к которой мы сейчас перейдем.

Пусть дано поле вероятностей (Ω , \mathcal{F}_0 , \mathcal{F}). Как известно \mathcal{F}_0 , существует наименьшая \mathcal{F}_0 -алгебра \mathcal{F}_0 = \mathcal{F}_0 , содержащая \mathcal{F}_0 .

Теорема (о продолжении). Определенную на (Ω, \mathcal{F}_0) неотрицательную счетно-аддитивную функцию множеств $P = P(\cdot)$ всегда можно продолжить с сохранением обоих свойств (неотрицательности и счетной аддитивности) на все множества из $\mathcal{F} = \sigma(\mathcal{F}_0)$ и притом единственным образом.

Борелевская алгебра $\mathcal{F} = \sigma \left(\mathcal{F}_0 \right)$ вместе с продолженной функцией множеств $P = P \left(\cdot \right)$ образует некоторое поле вероятностей (Ω, \mathcal{F}, P) . Это поле назовем борелевским расширением поля $(\Omega, \mathcal{F}_0, P)$.

Доказательство теоремы о продолжении, которая относится к теории аддитивных функций множеств и которая в основном должна быть известна в различных других трактовках, проводится по следующей схеме.

Пусть A — некоторое произвольное подмножество Ω . Определим P^* (A) как нижнюю границу сумм

$$\sum_{n} P(A_n)$$

для всех покрытий

$$A \subseteq \bigcup_n A_n$$

множества A конечным или счетным числом множеств A_n из \mathcal{F}_0 . Легко доказать, что $\mathsf{P}^*(A)$ является внешней мерой в смысле Каратеодори 2). Согласно теореме о покрытиях (§ 1), $\mathsf{P}^*(A)$ совпадает с $\mathsf{P}(A)$ для всех множеств из \mathcal{F}_0 . Далее доказывается, что все множества из \mathcal{F}_0 измеримы в смысле Каратеодори. Так как все из-

1968, стр. 44.

2) C. Carathéodory, Vorlesungen über reele Funktionen, Teubner, Berlin und Leipzig, 1918, стр. 237—258; А. Н. Колмогоров, С. В. Фомин (цит. выше), гл. V, § 3.

¹⁾ Ф. Хаусдорф, Теория множеств, Гостехиздат, М., 1937; А. Н. Колмогоров, С. Ф. Фомин, Элементы теории функций и функционального анализа, Изд-во «Наука», 1968. стр. 44.

меримые множества образуют σ -алгебру, то, следовательно, все множества из $\sigma(\mathcal{F}_0)$ являются измеримыми. Функция множеств $\mathsf{P}^*(A)$ является, следовательно, счетно-аддитивной на $\sigma(\mathcal{F}_0)$, и на $\sigma(\mathcal{F}_0)$ мы можем положить

$$P(A) = P^*(A).$$

Этим доказано существование продолжения. Единственность продолжения следует сразу же из минимальных свойств алгебры $\sigma(\mathcal{F}_0)$.

Замечание. Если множества (события) A из \mathcal{F}_0 могут иметь смысл в качестве действительных и наблюдавшихся (хотя бы приближению) событий, то отсюда еще не следует, что множества из расширенной алгебры $\sigma(\mathcal{F}_0)$ допускают такое же разумное истолкование в качестве действительно наблюдавшихся событий. Может случиться, что поле вероятностей $(\Omega, \mathcal{F}_0, \mathsf{P})$ рассматривается в качестве (хотя бы идеанизированного) образа реальных случайных событий, в то время как расширенное поле вероятностей $(\Omega, \sigma(\mathcal{F}_0), \mathsf{P})$ остается чисто математическим построением.

Множества из $\sigma(\mathcal{F}_0)$ мы рассматриваем только как «идеальные события», которым пичего не соответствует во внешнем мире. Если, однако, рассуждение, которое использует вероятности таких идеальных событий, приводит к определению вероятностей действительного события из \mathcal{F}_0 , то это определение, очевидно, автоматически будет непротиворечивым и с эмпирической точки зрения.

§ 3. Примеры бесконечных полей вероятностей

I. Еще в первой главе, § 1, мы строили различные копечные поля вероятностей. Пусть теперь

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

— счетное множество, а ${\mathcal F}$ совпадает с совокупностью всех подмножеств множества $\Omega.$

Все возможные поля вероятностей с таким множеством $\mathcal F$ получаются следующим образом: берется последовательность неотрицательных чисел $\{p_n\}$ при условии

$$p_1+p_2+\ldots=1$$

и для каждого множества A полагается

$$\mathsf{P}\left(A\right)=\sum_{n}^{'}p_{n},$$

причем суммирование \sum_n' распространяется на все те индексы n, для которых ω_n принадлежит A. Эти поля вероятностей, очевидно, являются борелевскими.

II. Теперь предположим, что Ω представляет собой действительную числовую прямую R. Сначала пусть \mathcal{F}_0 образовано из всевозможных конечных сумм полуоткрытых интервалов $[a, b] = \{\omega: a \leqslant \omega < b\}$ (при этом мы рассматриваем наряду с собственными интервалами с конечными a и b также и несобственные $[-\infty, b]$, $[a, +\infty)$ и $[-\infty, +\infty)$). Легко убедиться, что \mathcal{F}_0 является алгеброй. По теореме о продолжении можно, однако, каждое поле вероятностей $(\Omega, \mathcal{F}_0, P)$ расширить в подобное поле $(\Omega, \sigma(\mathcal{F}_0), P)$. Система множеств $\mathcal{F} = \sigma(\mathcal{F}_0)$ в нашем случае является ни чем иным, как системой всех борелевских множеств числовой прямой.

III. Пусть $\Omega=R$ — действительная числовая прямая, а \mathcal{F} состоит из всех борелевских множеств этой прямой. Для построения вероятностного пространства с данной борелевской алгеброй \mathcal{F} достаточно определить на множествах $A \subseteq \mathcal{F}$ любую неотрицательную счетно-аддитивную функцию множеств P(A), удовлетворяющую условию $P(\Omega) = 1$. Такая функция, как известно 1), однозначно определяется своими значениями

$$P\{[-\infty, x)\} = F(x) \tag{1}$$

для специальных интервалов $[-\infty,\ x)$.

¹⁾ См., А. Лебег, Интегрирование и отыскание примитивных функций, ГТТИ, 1934, стр. 127—132.

Функцию F = F(x) называют функцией распределения ω . Далее доказывается (третья глава, § 2), что F(x) не убывает, непрерывна слева и имеет следующие предельные значения:

$$\lim_{x \to -\infty} F(x) = F(-\infty) = 0,$$

$$\lim_{x \to -\infty} F(x) = F(+\infty) = 1.$$
(2)

Обратно, если дана функция F = F(x), удовлетворяющая этим условиям, то она всегда определяет неотрицательную счетно-аддитивную функцию множеств P(A) такую, что $P(\Omega) = 1$.

IV. Пусть теперь за основное множество Ω принимается n-мерное евклидово координатное пространство R^n , т. е. множество всех упорядоченных комплексов $\omega = \{x_1, x_2, \ldots, x_n\}$ из n действительных чисел. Система $\mathcal F$ пусть состоит при этом из всех борелевских множеств 2) пространства R^n . На основании рассуждений, аналогичных приведенным в примере II, мы можем отказаться от рассмотрения более узких систем множеств, например системы всех n-мерных интервалов.

За вероятностную функцию P(A) здесь, как всегда, можно принять любую неотрицательную п счетно-алдитивную функцию множеств, определенную на \mathcal{F} и удовлетворяющую условию $P(\Omega)=1$. Такая функция множеств однозначно определяется, если дапы ее значения

$$P(\Lambda_{a_1, a_2, ..., a_n}) = F(a_1, a_2, ..., a_n)$$
(3)

для специальных множеств $\Lambda_{a_1, a_2, ..., a_n}$, где $\Lambda_{a_1, a_2, ..., a_n}$ означает множество всех ω , для которых

$$x_i < a_i, i = 1, 2, \ldots, n.$$

¹⁾ См., например, цитированную выше книгу А. Н. Колмогорова и С. Ф. Фомина, стр. 262.

 $^{^2}$) Определение борелевских множеств в R^n см. Ф. X а у с- д о р ф. Теория множеств, Гостехиздат, М., 1937.

Нетрудно подсчитать, что для множества

$$\Lambda_{a_1,\ldots,a_n}^{b_1,\ldots,b_n} = \{\omega: a_1 \leqslant x_1 \leqslant b_1,\ldots,a_n \leqslant x_n \leqslant b_n\}$$

вероятность

$$P\left(\Lambda_{a_{1},...,a_{n}}^{b_{1},...,b_{n}}\right) =$$

$$= F\left(b_{1},...,b_{n}\right) - \sum_{i=1}^{n} F\left(b_{1},...,b_{i-1},a_{i},b_{i+1},...,b_{i}\right) +$$

$$+ \sum_{i < j} F\left(b_{1},...,b_{i-1},a_{i},b_{i+1},...,b_{j-1},a_{j},b_{j+1},...,b_{n}\right) - ...$$

$$... + (-1)^{n} F\left(a_{1},...,a_{n}\right). \tag{4}$$

За функцию $F(a_1,\ldots,a_n)$ можно при этом выбрать любую непрерывную слева, неубывающую по всем переменным функцию, для которой выражение в правой части (4) неотрицательно при любых $a_i \leqslant b_i$, $i=1,\ldots,n$, и которая удовлетворяет также следующим условиям:

$$\lim_{a_{i}\to -\infty} F(a_{1},...,a_{n}) = F(a_{1},...,a_{i-1},-\infty,a_{i+1},...,a_{n}) = 0,$$

$$i = 1, 2, ..., n,$$
(5)

$$\lim_{a_1\to+\infty,\ldots,a_n\to+\infty}F(a_1,\ldots,a_n)=F(+\infty,\ldots,+\infty)=1.$$

Функцию $F(a_1, \ldots, a_n)$ пазывают функцией распределения величин x_1, \ldots, x_n .

Рассмотрение полей вероятностей вышеопределенного типа достаточно для всех классических проблем теории вероятностей 1). В частности, вероятностная функция в R^n может быть определена следующим образом. Берется любая определенная в R^n неотрицательная

¹⁾ Ср., например, R. von M i s e s [1], стр. 13—19. Здесь требуется существование вероятностей для «всех практически возможных» множеств *п*-мерного пространства.

§ 3. ПРИМЕРЫ ВЕСКОНЕЧНЫХ ПОЛЕЙ ВЕРОЯТНОСТЕЙ 3.5

функция $f=f\left(x_{1},\;\ldots,\;x_{n}\right)$ такая, что

$$\int_{-\infty}^{\infty} \int f(x_1, \ldots, x_n) dx_1 \ldots dx_n = 1,$$

и полагается

$$\mathsf{P}(A) = \int \dots \int f(x_1, \dots, x_n) \, dx_1 \dots dx_n. \tag{6}$$

Функция $f(x_1, \ldots, x_n)$ является в этом случае плотностью вероятности в точке (x_1, x_2, \ldots, x_n) (ср. гл. III, § 2).

Другой тип вероятностных функций в R^n получается следующим образом. Пусть $\{\omega_i\}$ — последовательность точек из R^n и $\{p_i\}$ — последовательность неотрицательных действительных чисел такая, что $\sum p_i = 1$.

Тогда, так же как и в примере I, полагаем

$$P(A) = \sum_{i}' p_{i},$$

причем суммирование \sum_i' распространяется на все те индексы i, для которых ω_i принадлежит A. Оба упомянутых здесь типа вероятностных функций в R^n не исчерпывают всех возможностей, хотя ими обычно довольствуются в приложениях теории вероятностей.

Можно, однако, себе представить, кроме этой классической области, также и другие, интересные для приложений задачи, в которых элементарные события определяются с помощью бесконечного числа координат. Соответствующие поля вероятностей мы исследуем ближе после введения некоторых необходимых для этого вспомогательных понятий (ср. гл. III, § 3).

III. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

§ 1. Вероятностные функции

Пусть дано отображение множества Ω в множество X, состоящее из каких-либо элементов, т. е. определенная на Ω однозначная функция $\xi = \xi$ (ω), значения которой принадлежат множеству X. Каждому подмножеству A из X мы ставим в соответствие в качестве его прообраза в Ω множество $\xi^{-1}(A)$ всех элементов из Ω , которые отображаются в один из элементов A. Пусть далее \mathcal{F}_{ξ} — система всех подмножеств A из X, прообразы которых принадлежат к алгебре множеств \mathcal{F} . Система \mathcal{F}_{ξ} тогда также является алгеброй. Если при этом \mathcal{F} — борелевская алгебра, то тоже имеет место и для \mathcal{F}_{ξ} .

Мы полагаем теперь

$$P_{\xi}(A) = P\{\xi^{-1}(A)\}.$$
 (1)

Эта определенная на \mathcal{F}_{ξ} функция множеств P_{ξ} удовлетворяет относительно алгебры \mathcal{F}_{ξ} всем нашим аксиомам $\mathbf{I} - \mathbf{V}$ и, следовательно, является вероятностной функцией на \mathcal{F}_{ξ} . Прежде чем перейти к доказательству всех только что указанных фактов, мы сформулируем уже теперь следующее

О п р е д е л е н и е. Пусть дана однозначная функция $\xi = \xi(\omega)$ случайного события ω . Тогда функция P_{ξ} , определенная формулой (1), называется вероятностной функцией ξ .

Примечание І. При исследовании поля вероятностей $(\Omega, \mathcal{F}, \mathsf{P})$ функцию P называют вероятностной функцией или просто вероятностью, а $P_{\,\xi}$ — вероятностной функцией ξ . В случае $\xi(\omega) = \omega P_{\xi}(A)$ совпадает с P(A).

Примечание II. Событие ξ^{-1} (A) состоит в том, что ξ (ω) принадлежит множеству A. Следовательно, $P_{\xi}(A)$ есть вероятность того, что ξ (ω) \rightleftharpoons A.

Нам осталось доказать вышеупомянутые свойства \mathcal{F}_{ξ} и P_{ξ} . Опи следуют, однако, из одного-единствен-

ного факта, а именно следующего.

Пемма. Сумма, пересечение и разность какихлибо прообразных множеств $\xi^{-1}(A)$ являются прообразами соответствующих сумм, пересечений и разностей множеств A.

Доказательство этой леммы предоставляется читателю.

Пусть теперь A и B — два мпожества из \mathcal{F}_{ξ} , их прообразы A' и B' принадлежат тогда \mathcal{F} . Так как \mathcal{F} — алгебра, то множества A'B', A'+B' и $A'\setminus B'$ также принадлежат \mathcal{F} . Но эти множества являются прообразами множества AB, A+B и $A\setminus B$, следовательно, последние множества принадлежат к \mathcal{F}_{ξ} . Итак, мы доказали, что \mathcal{F}_{ξ} — алгебра. Так же доказывается, что если \mathcal{F} является борелевской алгеброй, то то же справедливо и для \mathcal{F}_{ξ} .

Далее ясно, что

$$P_{\xi}(X) = P\{\xi^{-1}(X)\} = P(\Omega) = 1.$$

Что $P_{\,\xi}$ всегда неотрицательна, понятно само собой. Следовательно, остается доказать, что $P_{\,\xi}$ счетно-аддитивна (ср. конец § 1 гл. II).

Итак, пусть множества A_n , а следовательно, и их

прообразы $\xi^{-1}(A_n)$ не пересекаются. Тогда

$$\begin{split} P_{\xi} \Big(\sum_{n} A_{n} \Big) &= \mathsf{P} \left\{ \xi^{-1} \left(\sum_{n} A_{n} \right) \right\} = \\ &= \mathsf{P} \left\{ \sum_{n} \xi^{-1} \left(A_{n} \right) \right\} = \sum_{n} \mathsf{P} \left\{ \xi^{-1} \left(A_{n} \right) \right\} = \sum_{n} P_{\xi} \left(A_{n} \right), \end{split}$$

чем доказана счетная аддитивность $P_{\,\epsilon}$.

В заключение заметим еще следующее. Пусть $\xi_1 = \xi_1(\omega) - \phi$ ункция, отображающая Ω в X_1 , а $\xi_2 = \xi_2(x_1) -$ другая функция, отображающая X_1 в X_2 . Тогда сложная функция $\xi(\omega) = \xi_2[\xi_1(\omega)]$ отображает множество Ω в X_2 . Мы рассмотрим теперь вероятностные функции $P_{\xi_1}(A_1)$ и $P_{\xi_2}(A_2)$ для функций $\xi_1(\omega)$ и $\xi(\omega) = \xi_2[\xi_1(\omega)]$. Эти две вероятностные функции связаны, как легко подсчитать, следующим соотношением:

$$P_{\xi}(A_2) = P_{\xi_1}\{\xi_2^{-1}(A_2)\}. \tag{2}$$

§ 2. Определение случайных величин, функции распределения

О и ределение І. Однозначную действительную функцию $\xi = \xi(\omega)$, определенную на основном множестве Ω , называют случайной величиной, если при каждом выборе действительного числа x множество $\{\xi < x\}$ всех тех ω , для которых справедливо неравенство $\xi(\omega) < x$, принадлежит к системе множеств \mathcal{F} .

Эта функция ξ (ω) отображает основное множество Ω на множество R всех действительных чисел. Наше определение случайной величины можно теперь сформулировать так: действительная функция $\xi = \xi$ (ω) является случайной величиной тогда и только тогда, когда \mathcal{F}_{ξ} содержит каждый интервал вида ($-\infty$, a).

Так как \mathcal{F}_{ξ} — алгебра, то она содержит наряду с интервалами (— ∞ , a) также всевозможные конечные суммы полуоткрытых интервалов [a,b). Если наше поле вероятностей борелевское, то \mathcal{F} и \mathcal{F}_{ξ} являются борелевскими алгебрами; следовательно, в этом случае \mathcal{F}_{ξ} содержит все борелевские множества R. Вероятностная функция P_{ξ} случайной величины ξ определена для всех множеств A алгебры \mathcal{F}_{ξ} . В частности, в важнейшем случае борелевского поля вероятностей P_{ξ} определена для всех борелевских множеств R.

Определение П. Функция

$$F_{\xi}(x) = P_{\xi}(-\infty, x) = P\{\xi(\omega) < x\},\$$

где — ∞ и $+\infty$ допускаются в качестве значений x, называется функцией распределения случайной величины ξ .

Из определения непосредственно следует, что

$$F_{\xi}(-\infty) = 0, \ F_{\xi}(+\infty) = 1.$$
 (1)

Вероятность выполнения неравенств $a \leqslant \xi < b$, очевидно, задается формулой

$$P(a \leqslant \xi(\omega) < b) = F_{\xi}(b) - F_{\xi}(a). \tag{2}$$

Отсюда следует, что для a < b

$$F_{\xi}(a) \leqslant F_{\xi}(b)$$
.

Это означает, что $F_{\xi}(x)$ — неубывающая функция. Пусть далее $a_1 < a_2 < \ldots < a_n < \ldots \to b$, тогда

$$\bigcap_{n} \{\omega : \xi(\omega) \subseteq [a_n, b)\} = \emptyset.$$

Следовательно, согласно аксиоме непрерывности

$$F_{\xi}(b) - F_{\xi}(a_n) = P\{\omega : \xi(\omega) \subseteq [a_n, b)\}$$

стремится к нулю при $\eta \to \infty$. Отсюда видно, что функция $F_{\xi}(x)$ непрерывна слева.

Аналогично можно доказать, что

$$\lim_{x \to -\infty} F_{\xi}(x) = F_{\xi}(-\infty) = 0, \tag{3}$$

$$\lim_{x \to +\infty} F_{\xi}(x) = F_{\xi}(+\infty) = 1. \tag{4}$$

Если поле ероятностей (Ω, \mathcal{F}, P) — борелевское, то значения вероятностной функции $P_{\,\xi\,}(A)$ для всех борелевских множеств A из R однозначно определяются знанием функции распределения $F_{\,\xi\,}(x)$ (ср. гл. II, \S 3, III). Так как главным образом интересуются только этими значениями $P_{\,\xi\,}(A)$, то функци граспределения играют во всем дальнейшем изложении существенную роль.

Если функция распределения $F_{\xi}(x)$ дифференцируема, то ее производную по x

$$f_{\xi}(x) = \frac{dF_{\xi}(x)}{dx}$$

называют плотностью вероятности ξ в точке x. Если для каждого x

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy,$$

то для каждого борелевского множества A вероятностную функцию ξ можно выразить через $f_{\xi}(x)$ следующим образом:

$$P_{\xi}(A) = \int_{A} f_{\xi}(x) dx.$$
 (5)

В этом случае говорят, что распределение \$ абсолютно непрерыено. В общем случае по аналогии пишут:

$$P_{\xi}(A) = \int_{A} dF_{\xi}(x). \tag{6}$$

Все введенные понятия допускают обобщение на случай условных вероятностей. Функция множеств

$$P_{\xi}(A \mid B) = P \{ \xi \in A \mid B \}$$

является условной вероятностной функцией ξ при гипотезе B (предполагается, что $\mathsf{P}(B)>0$). Неубывающая функция

$$F_{\xi}(x \mid B) = P \{ \xi < x \mid B \}$$

есть соответствующая функция распределения, и, паконец (в случае дифференцируемости $F_{\,{\rm E}}\,(x\mid B)$),

$$f_{\xi}(x \mid B) = \frac{dF_{\xi}(x \mid B)}{dx}$$

— условная плотность вероятности ξ в точке x при гипотезе B.

§ 3. Многомерные функции распределения

Пусть теперь даны n случайных величин ξ_1, ξ_2, \ldots , ξ_n . Точка $\xi = (\xi_1, \ldots, \xi_n)$ n-мерного пространства R^n является функцией элементарного события ω . Следовательно, по общим правилам \S 1 получаем алгебру множеств $\mathcal{F}_{\xi} = \mathcal{F}_{\xi_1, \ldots, \xi_n}$, состоящую из подмножеств пространства R^n , и определенную на $\mathcal{F}_{\xi} = \mathcal{F}_{\xi_1, \ldots, \xi_n}$ вероятностную функцию $P_{\xi}(A) = P_{\xi_1, \ldots, \xi_n}(A)$. Эту вероятностную функцию называют n-мерной вероятностной функцией случайных величин $\xi = (\xi_1, \ldots, \xi_n)$.

Алгебра $\mathcal{F}_{\xi_1, \dots, \xi_n}$ содержит (как это прямо следует из определения случайной величины) при каждом выборе i и a_i , $i=1,2,\dots,n$, множество всех точек $x=(x_1,\dots,x_n) \in R^n$, для которых $x_i < a_i$. Следовательно, $\mathcal{F}_{\xi_1,\dots,\xi_n}$ содержит также и пересечение указанных множеств, т. е. множество $\Lambda_{a_1,a_2,\dots,a_n}$ всех точек $x=(x_1,\dots,x_n) \in R^n$, для которых выполняются все неравенства $x_i < a_i$, $i=1,2,\dots,n$).

Если назвать п-мерным полуоткрытым интервалом

$$[a_1, a_2, \ldots, a_n; b_1, b_2, \ldots, b_n)$$

множество всех точек R^n , для которых выполняются все неравенства $a_i \leqslant x_i < b_i$, то видно сразу, что каждый такой интервал также принадлежит алгебре $\mathcal{F}_{\xi_i,\,\ldots,\,\xi_n}$, поскольку

$$[a_1, a_2, \ldots, a_n; b_1, b_2, \ldots, b_n) =$$

$$= \Lambda_{b_1, b_2, \dots, b_n} - \Lambda_{a_1, b_2, \dots, b_n} - \Lambda_{a_1, a_2, b_3, \dots, b_n} - \Lambda_{b_1, \dots, b_{n-1}, a_n}.$$

Борелевское расширение системы всех n-мерных полуоткрытых интервалов состоит из всех борелевских множеств R^n . Отсюда следует, что алгебра $\mathcal{F}_{\xi_1,\ldots,\xi_n}$ в случае борелевского поля вероятностей содержит все борелевские множества пространства R^n .

 $^{^{1}}$) x_{i} могут принимать также бесконечные вначения $\pm \infty .$

Теорема. В случае борелевского поля вероятностей и борелевской функции $f(x_1, \ldots, x_n)$ функция $\eta(\omega) = f(\xi_1(\omega), \ldots, \xi_n(\omega))$ конечного числа случайных величин $\xi_1 = \xi_1(\omega), \ldots, \xi_n = \xi_n(\omega)$ тоже является случайной величиной.

Для доказательства достаточно заметить, что множество всех точек (x_1, x_2, \ldots, x_n) в R^n , для которых $f(x_1, x_2, \ldots, x_n) < a$, является борелевским. В частности, все конечные суммы и произведения случайных величин тоже являются случайными величинами.

Определение. Функцию

$$F_{\xi_1,\ldots,\,\xi_n}(x_1,\,\ldots,\,x_n)=P_{\xi_1,\ldots,\,\xi_n}(\Lambda_{x_1,\ldots,\,x_n})$$

называем *п-мерной функцией распределения* случайных величин $\xi_1, \ldots, \, \xi_n.$

Как и в одномерном случае доказывается, что *п*-мерная функция распределения $F_{\xi_1,\ldots,\xi_n}(x_1,\ldots,x_n)$ не убывает по всем переменным и непрерывна слева. Аналогично равенствам (3) и (4) из § 2

$$\lim_{x_{i} \to -\infty} F_{\xi_{1},...,\xi_{n}}(x_{1},...,x_{n}) =$$

$$= F_{\xi_{1},...,\xi_{n}}(x_{1},...,x_{i-1},\infty,x_{i},...,x_{n}) = 0, \quad (1)$$

$$\lim_{x_1 \to +\infty, \dots, x_n \to +\infty} F_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n) =$$

$$= F_{\xi_1, \dots, \xi_n}(+\infty, \dots, +\infty) = 1. \quad (2)$$

Функция распределения $F_{\xi_1,...,\xi_n}(x_1,\ldots,x_n)$ пепосредственно дает нам значения $P_{\xi_1,...,\xi_n}$ только для специальных множеств $\Lambda_{x_1,...,x_n}$. Если, однако, наше поле вероятностей — борелевское, то $P_{\xi_1,...,\xi_n}$ однозначно определяется для борелевских множеств через функцию распределения $F_{\xi_1,...,\xi_n}(x_1,\ldots,x_n)$ 1).

¹) Ср. гл. II, § 3, IV.

Если существует производная

$$f_{\xi_1,\ldots,\,\xi_n}(x_1,\ldots,\,x_n)=\frac{\partial^n}{\partial x_1\ldots\partial x_n}\,F_{\xi_1,\ldots,\,\xi_n}(x_1,\ldots,\,x_n),$$

то эту производную $f_{\xi_1,\ldots,\xi_n}\left(x_1,\ldots,x_n\right)$ называют *п-мерной плотностью вероятности* случайных величин ξ_1,\ldots,ξ_n в точке (x_1,\ldots,x_n) .

Если для каждой точки (x_1, \ldots, x_n)

$$F_{\xi_{1},...,\xi_{n}}(x_{1},...,x_{n}) = \int_{0}^{x_{1}}...\int_{0}^{x_{1}}f_{\xi_{1},...,\xi_{n}}(y_{1},...,y_{n}) dy_{1}...dy_{n},$$

то распределение $\xi = (\xi_1, \ldots, \xi_n)$ называют абсолютно иепрерывным. Для каждого борелевского множества $A \subseteq R^n$ имеет место равенство

$$P_{\xi_1,...,\xi_n}(A) = \int_{A} \dots \int_{A} f_{\xi_1,...,\xi_n}(y_1, ..., y_n) dy_1 \dots dy_n.$$
 (3)

В заключение этого параграфа сделаем еще одно замечание о соотношениях между различными вероятностными функциями и функциями распределения. Пусть дана подстановка

$$S = \begin{pmatrix} 1, & 2, \dots, n \\ i_1, & i_2, \dots, i_n \end{pmatrix},$$

и пусть оз означает преобразование

$$x'_{k} = x_{i_{k}}, \quad k = 1, 2, \ldots, n_{i_{k}}$$

пространства R^n в самого себя. Тогда ясно, что

$$P_{\xi_{i_1},...,\xi_{i_n}}(A) = P_{\xi_1,...,\xi_n} \{ \rho_S^{-1}(A) \}.$$
 (4)

Пусть теперь $x' = \pi_h(x)$ — «проекция» пространства R^n в пространство R^k , k < n, при которой точка

 $x = (x_1, ..., x_n)$ отображается в точку $x' = (x_1, ..., x_k)$. Тогда вследствие формулы (2) § 1

$$P_{\xi_1,...,\xi_k}(A) = P_{\xi_1,...,\xi_n} \{ \pi_k^{-1}(A) \}.$$
 (5)

Для соответствующих функций распределения из (4) и (5) следуют равенства

$$F_{\xi_{i_1}, \dots, \xi_{i_n}}(x_{i_1}, \dots, x_{i_n}) = F_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n),$$

$$F_{\xi_1, \dots, \xi_k}(x_1, \dots, x_k) = F_{\xi_1, \dots, \xi_n}(x_1, \dots, x_k, +\infty, \dots +\infty).$$

§ 4. Вероятности в бесконечномерных пространствах

В § 3 главы второй мы видели, как строятся различные применяющиеся в теории вероятностей поля вероятностей. Можно, однако, представить себе интересные также и для приложений проблемы, в которых элементарные события определяются с помощью бесконечного числа координат. Итак, пусть выбрано множество $\mathcal N$ индексов у любой мощности $\mathfrak A$. Совокупность всех систем

$$\omega = \{x_{\mathbf{v}}\}$$

действительных чисел $x_{\mathbf{v}}$, где \mathbf{v} пробегает все множество \mathcal{N} , назовем пространством $R^{\mathcal{A}^{\diamond}}$ (для определения элемента ω пространства $R^{\mathcal{A}^{\diamond}}$ следует каждому элементу \mathbf{v} множества \mathcal{N} поставить в соответствие действительное число $x_{\mathbf{v}}$ или, что то же самое, задать определенную на \mathcal{N} однозначную действительную функцию $x_{\mathbf{v}}$ элемента \mathbf{v}^{T}).

Если множество \mathcal{N} состоит из n первых натуральных чисел $1, 2, \ldots, n$, то $R^{\mathcal{A}^{\circ}}$ есть обычное n-мерное пространство R^n . Если выбрать в качестве множества \mathcal{N} множество всех действительных чисел R^1 , то соответствующее пространство $R^{\mathcal{A}^{\circ}} = R^{R^1}$ состоит из всех

 $^{^{-1})}$ Ср. Ф. X а у с д о р ф, $\,$ Теория множеств, Гостехнадат, М., 4937.

действительных функций

$$\omega = \{x_t\}$$

действительного переменного $t, -\infty < t < \infty$.

Мпожество $R^{(1)}$ при произвольном множестве \mathcal{N} мы примем сейчас за основное множество Ω . Пусть $\omega = \{x_v\}$ — элемент Ω . Через $\pi_{v_1, \ldots, v_n}(\omega)$ будем обозначать точку $(x_{v_1}, x_{v_2}, \ldots, x_{v_n})$ n-мерного пространства $R^{(1)}$. Подмножество A из Ω назовем уилин- ∂p ическим множеством, если оно представимо в форме

$$A = \pi_{\nu_1, \ldots, \nu_n}^{-1}(A'),$$

где A' есть подмножество R^a . Класс всех цилиндрических множеств совпадает, следовательно, с классом всех таких множеств, которые могут быть определены соотношениями вида

$$f(x_{\nu_1}, x_{\nu_2}, \ldots, x_{\nu_n}) = 0.$$
 (1)

Для того чтобы произвольное цилиндрическое множество $\pi_{\nu_1,\ \nu_2,\ \dots,\ \nu_n}^{-1}$ (A') определить таким соотношением, достаточно припять за f функцию, которая на A' равна нулю, а вне A' равна едипице.

Цилиндрическое множество является борелевским цилиндрическим множеством, если соответствующее множество A' — борелевское. Все борелевские цилиндрические множества 1) пространства $R^{\mathcal{N}}$ образуют алгебру, которая в дальнейшем будет обозначаться $\mathcal{F}^{\mathcal{N}}$.

$$f(x_{v_1}, ..., x_{v_n}) = 0, g(x_{\lambda_1}, ..., x_{\lambda_m}) = 0.$$

Тогда множества A+B, AB и $A \setminus B$ можно определить соответственно следующими соотношениями:

$$f \cdot g = 0$$
, $f^2 + g^2 = 0$, $f^2 + h(g) = 0$,

 $^{^{1}}$) Из вышеприведенных рассуждений следует, что борелевские цилиндрические множества — это те, которые могут быть определены борелевскими соотпошениями (1). Пусть теперь A и B — два цилиндрических мпожества, определенных соотпошениями

Борелевское расширение алгебры \mathcal{F}^{A° мы обозначим, как всегда, через $\sigma(\mathcal{F}^{A^\circ})$. Множества из системы $\sigma(\mathcal{F}^{A^\circ})$ мы называем борелевскими множествами пространства R^{A° .

Следовательно, всегда стоит добиваться, если это возможно, приведения всякой проблемы к такой форме, при которой пространство всех элементарных событий

ω имеет только счетное множество координат.

Пусть на $\mathcal{F}^{\mathcal{N}}$ определена вероятностная функция Р. Каждую координату $x_{\mathbf{v}}$ элементарного события ю можно рассматривать как случайную величину. Следовательно, всякая конечная групна $(x_{\mathbf{v}_1}, x_{\mathbf{v}_2}, \ldots, x_{\mathbf{v}_n})$ этих координат имеет n-мерную вероятностную функцию $P_{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n}(A)$ и соответствующую функцию распределения $F_{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n}(a_1, a_2, \ldots, a_n)$. Ясно, что для всякого борелевского цилиндрического множества

$$A = \pi_{\nu_1, \nu_2, ..., \nu_n}^{-1}(A')$$

где h(x) = 0 для $x \neq 0$ и h(0) = 1. Если f и g — борелевские функции, то таковыми же являются $f \cdot g$, $f^2 + g^2$ и $f^2 + h(g)$. Следовательно, A + B, AB и $A \setminus B$ являются борелевскими цилиндрическими множествами. Этим доказано, что система множеств $\mathcal{F}^{\mathcal{N}}$ является алгеброй,

имеет место равенство

$$P(A) = P_{\nu_1, \nu_2, \dots, \nu_n}(A'),$$

причем A' является борелевским множеством в R^n . Таким образом, вероятностная функция P однозначно определяется на алгебре \mathcal{F}^{A^n} всех цилиндрических множеств через значения всех конечномерных вероятностных функций $P_{\nu_1,\;\nu_2,\;\dots,\;\nu_n}$ для всех боролевских множеств соответствующего пространства R^n . Однако для борелевских множеств значения вероятностной функции $P_{\nu_1,\;\nu_2,\;\dots,\;\nu_n}$ однозначно определяются через соответствующие функции распределения. Следовательно, мы доказали следующую теорему.

T е о р е м а. Совокупность всех конечномерных функций распределения $F_{\nu_1, \ \nu_2, \ \dots, \ \nu_n}$ однозначно определяет вероятностную функцию P для всех множеств из $\mathcal{F}^{\mathcal{N}}$. Вероятностная функция P (по теореме о продолжении) определяется однозначно на σ ($\mathcal{F}^{\mathcal{N}}$) значениями функций распределения $F_{\nu_1, \ \nu_2, \ \dots, \ \nu_n}$.

Теперь можно поставить вопрос, при каких условиях а priori заданная система функций распределения $F_{\nu_1, \nu_2, ..., \nu_n}$ определяет вероятность на $\mathcal{F}^{\mathcal{N}}$ (и, следовательно, на $\sigma(\mathcal{F}^{\mathcal{N}})$).

Сперва отметим, что всякая функция распределения $F_{\nu_0, \nu_2, \dots, \nu_n}$ должна удовлетворять условиям, данным в главе второй (§ 3, III), что, конечно, содержится в самом понятии функции распределения. Кроме того, вследствие формул (13) и (14) из § 2 имеют место еще следующие соотношения:

$$F_{\nu_{i_1}, \nu_{i_2}, \dots, \nu_{i_n}}(x_{i_1}, x_{i_2}, \dots, x_{i_n}) = F_{\nu_{i_1}, \nu_{i_2}, \dots, \nu_{i_n}}(x_1, x_{i_2}, \dots, x_{i_n}), (2)$$

$$F_{\nu_{i_1}, \nu_{i_2}, \dots, \nu_{i_k}}(x_1, x_{i_2}, \dots, x_{i_n}) = F_{\nu_{i_1}, \nu_{i_2}, \dots, \nu_{i_n}}(x_1, x_{i_2}, \dots, x_{i_n}, +\infty, \dots, +\infty), (3)$$

где k < n и $\binom{1,\ 2,\ \dots,\ n}{i_1,\ i_2,\ \dots,\ i_n}$ — произвольная подста-

новка. Эти необходимые условия, однако, являются также и достаточными, как это явствует из следующей теоремы.

ОСНОВНАЯ ТЕОРЕМА. Всякая система функций распределения $F_{\nu_1, \nu_2, \dots, \nu_n}$, удовлетворяющих условиям (2) и (3), определяет вероятностную функцию P на $\mathcal{F}^{\mathcal{N}}$, которая удовлетворяет всем аксиомам 1-V. Эта вероятностная функция P может быть продолжена (по теореме о продолжении) также и на $\mathcal{F}^{\mathcal{N}}$).

Докавательство. Итак, пусть даны функции распределения $F_{\nu_1, \nu_2, \dots, \nu_n}$, удовлетворяющие общим условиям главы второй (§ 3, III) и условиям (2) и (3). Всякая функция распределения $F_{\nu_1, \nu_2, \dots, \nu_n}$ однозначно определяет соответствующую вероятностную функцию $P_{\nu_1, \nu_2, \dots, \nu_n}$ для всех борелевских множеств из R^n (ср. § 3). В дальнейшем мы будем рассматривать только борелевские множества R^n и борелевские цилиндрические множества в Ω .

Для всякого цилиндрического множества

$$A = \pi_{\nu_1, \nu_2, \dots, \nu_n}^{-1}(A')$$

полагаем

$$P(A) = P_{\nu_1, \nu_2, \dots, \nu_n}(A'). \tag{4}$$

Так как одно и то же цилиндрическое множество A может быть определено через различные множества A', то пужно сначала доказать, что формула (4) дает всегда одинаковое значение для P(A).

Пусть $(x_{v_i}, x_{v_2}, \ldots, x_{v_n})$ — конечная система случайных величин x_v . Исходя из вероятностной функции $P_{v_i, v_2, \ldots, v_n}$ этих случайных величин, мы можем, согласно правилам § 2, определить вероятностную функцию $P_{v_{i_1}, v_{i_2}, \ldots, v_{i_k}}$ каждой подсистемы $(x_{v_{i_1}}, x_{v_{i_2}}, \ldots, x_{v_{i_k}})$. Равенства (2) и (3) имеют своим следствием, что эта определенная по § 2 вероятностная функция совпадает с а ргіогі заданной функцией $P_{v_{i_1}, v_{i_2}, \ldots, v_{i_k}}$. Мы теперь пред-

положим, что цилиндрическое множество A определяется через

$$A \, = \, \pi_{{\bf v}_{i_1}, \ {\bf v}_{i_2}, \ldots, {\bf v}_{i_k}}^{-1} \, (A')$$

и одновременно через

$$A=\,\pi_{{\bf v}_{j_1},\;{\bf v}_{j_2},...,\;{\bf v}_{j_m}}^{-1}\,(A''),$$

причем все случайные величины x_{ν_i} и x_{ν_j} принадлежат системе $(x_{\nu_i}, x_{\nu_2}, \ldots, x_{\nu_n})$, что, очевидно, не является существенным ограничением. Условия

$$(x_{\mathsf{v}_{i_1}}, x_{\mathsf{v}_{i_2}, \dots, x_{\mathsf{v}_{i_k}}}) \subset A'$$

И

$$(x_{\vee_{j_1}}, x_{\vee_{j_2}}, \ldots, x_{\vee_{j_m}}) \in A''$$

равнозначащи. Следовательно,

$$P_{v_{i_1}, v_{i_2}, \dots, v_{i_k}}(A') = P_{v_1, v_2, \dots, v_n} \{ (x_{v_{i_1}}, x_{v_{i_2}}, \dots, x_{v_{i_k}}) \in A' \} =$$

$$=P_{\mathbf{v}_{1},\;\mathbf{v}_{2},...,\;\mathbf{v}_{n}}\{(x_{\mathbf{v}_{j_{1}}},\;x_{\mathbf{v}_{j_{2}}},\;\ldots,\;x_{\mathbf{v}_{j_{m}}}) \in A''\}=P_{\mathbf{v}_{j_{1}},\;\mathbf{v}_{j_{2}},...,\;\mathbf{v}_{j_{m}}}(A''),$$

что доказывает наше утверждение относительно однозначности определения $\mathsf{P}\left(A\right)$.

Докажем теперь, что поле вероятностей $(\Omega, \mathcal{F}^{\mathcal{N}}, \mathsf{P})$ удовлетворяет всем аксиомам $\mathsf{I}\mathsf{-V}$. Аксиома I утверждает только, что $\mathcal{F}^{\mathcal{N}}$ должна быть алгеброй; это обстоятельство (за исключением требования $\Omega \subseteq \mathcal{F}^{\mathcal{N}}$) было уже доказано выше. Далее, при любом $\mathsf{v} \subseteq \mathcal{N}$

$$\Omega = \pi_{\nu}^{-1}(R^{1}),$$

$$P(\Omega) = P_{\nu}(R^{1}) = 1,$$

что доказывает применимость аксиом I и III. Наконец, из определения $\mathsf{P}(A)$ непосредственно следует, что $\mathsf{P}(A)$ неотрицательна (аксиома II).

Несколько сложнее доказывается применимость аксиомы IV. Для этой цели рассмотрим два цилиндрических множества

$$A = \pi_{\nu_{i_1}, \ \nu_{i_2}, \dots, \ \nu_{i_k}}^{-1}(A')$$

П

$$B = \pi_{{\bf v}_{j_1}, \; {\bf v}_{j_2}, \dots, \; {\bf v}_{j_m}}^{-1}(B').$$

При этом мы предположим, что все величины x_{ν_i} и x_{ν_j} принадлежат к объемлющей их конечной системе $(x_{\nu_i}, x_{\nu_i}, \ldots, x_{\nu_n})$. Если множества A и B пе пересекаются, то соотношения

$$(x_{\nu_{i_1}}, \ldots, x_{\nu_{i_k}}) \subseteq A',$$

 $(x_{\nu_{i_1}}, \ldots, x_{\nu_{i_m}}) \subseteq B'$

несовместны. Следовательно,

$$\begin{split} \mathbf{P}\,(A+B) &= \\ &= P_{\nu_1,\;\nu_2,\ldots,\;\nu_n} \, \{(x_{\nu_{i_1}},\,x_{\nu_{i_2}},\ldots,\,x_{\nu_{i_k}}) \in A' \quad \text{или} \\ &\qquad \qquad (x_{\nu_{j_1}},\,x_{\nu_{j_2}},\ldots,\,x_{\nu_{j_m}}) \in B'\} = \\ &= P_{\nu_1,\;\nu_2,\;\ldots,\;\nu_n} \, \{(x_{\nu_{i_1}},\,x_{\nu_{i_2}},\,\ldots,\,x_{\nu_{i_k}}) \in A'\} \, + \\ &+ P_{\nu_1,\;\nu_2,\;\ldots,\;\nu_n} \, \{(x_{\nu_{j_1}},\,x_{\nu_{i_2}},\ldots,\,x_{\nu_{j_m}}) \in B'\} = \mathbf{P}\,(A) + \mathbf{P}\,(B). \end{split}$$

Остается проверить аксиому V. Пусть

$$A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$$

 убывающая последовательность цилиндрических множеств, удовлетворяющая условию

$$\lim_{n} P(A_{n}) = L > 0.$$

Мы докажем, что пересечение всех множеств A_n не пусто. Можно без существенного ограничения постановки вопроса предположить, что в определение n

первых цилипдрических множеств A_k входят только n первых координат x_{v_k} последовательности

$$x_{v_1}, x_{v_2}, \ldots, x_{v_k}, \ldots,$$

т. е. что

$$A_n = \pi_{\nu_1, \nu_2, \dots, \nu_n}^{-1}(B_n).$$

Положим для краткости

$$P_n(B) = P_{\nu_1, \nu_2, ..., \nu_n}(B).$$

Тогда, очевидно,

$$P_n(B_n) = P(A_n) \geqslant L > 0.$$

В каждом множестве B_n можно найти замкнутое ограниченное множество U_n такое, что

$$P_n(B_n \setminus U_n) \leqslant \frac{\varepsilon}{2^n}$$
.

Из этого неравенства для множества

$$V_n = \pi_{\nu_1, \nu_2, \dots, \nu_n}^{-1}(U_n)$$

следует неравенство

$$\mathsf{P}(A_n \setminus V_n) \leqslant \frac{\varepsilon}{2^n} \ . \tag{5}$$

Пусть далее

$$W_n = V_1 V_2 \dots V_n.$$

Из (5) следует, что

$$P(A_n \setminus W_n) \leqslant \varepsilon$$
,

и так как

$$W_n \subseteq V_n \subseteq A_n$$
,

TO

$$P(W_n) \geqslant P(A_n) - \varepsilon \geqslant L - \varepsilon$$
.

Если є достаточно мало, то $P\left(W_{n}\right)>0$ и множество W_{n} не пусто. Мы выберем теперь в каждом множестве

 W_n точку $\omega^{(n)}$ с координатами $x_{\gamma}^{(n)}$. Всякая точка $\omega^{(n+p)},\ p=0,\ 1,\ 2,\ \ldots,$ принадлежит множеству $V_n,$ следовательно,

$$(x_{\nu_1}^{(n+p)}, x_{\nu_2}^{(n+p)}, ..., x_{\nu_n}^{(n+p)}) = \pi_{\nu_1, \nu_2, ..., \nu_n}^{-1}(\omega^{(n+p)}) \in U_n.$$

Так как множества U_n ограничены, то из последовательности $\{\mathfrak{D}^{(n)}\}$ можно (диагональный метод) выбрать иодноследовательность

$$\omega^{(n_1)}, \, \omega^{(n_2)}, \, ..., \, \omega^{(n_i)}, \, ...,$$

для которой соответствующие координаты $x_{\gamma_k}^{(n_i)}$ стренятся при любом k к определенному пределу x_k . Пусть, наконец, ω — точка множества Ω с координатами

$$x_{\nu_k} = x_k,$$

 $x_{\nu} = 0$ $(\nu \neq \nu_k, k = 1, 2, ...).$

Точка $(x_1,\ x_2,\ \dots,\ x_h)$ как предел последовательности $(x_1^{(n_i)},\ x_2^{(n_i)},\ \dots,\ x_k^{(n_i)}),\ i=1,\ 2,\ \dots,$ принадлежит множеству U_h . Следовательно, ω принадлежит множеству

$$A_k \subseteq V_k = \pi_{\nu_1, \nu_2, \dots, \nu_k}^{-1}(U_k)$$

при любом k, а следовательно, и к пересечению

$$A = \bigcap_{k} A_k$$
.

Теорема доказана.

§ 5. Эквивалентные случайные величины, разные виды сходимости

С этого параграфа мы рассматриваем исключительно борелевские поля вероятностей (Ω, \mathcal{F}, P) . Это не делает, как было уже разъяснено в § 2 главы второй, никакого существенного ограничения для наших исследований.

О пределение І. Две случайные величины ξ и η называются *эквивалентными*, если вероятность соотношения $\xi \neq \eta$ равна нулю.

Ясно, что две эквивалентные случайные величины имеют одну и ту же вероятностную функцию:

$$P_{\varepsilon}(A) = P_{\eta}(A).$$

Следовательно, функции распределения F_{ξ} и F_{η} также совпадают. Во многих вопросах теории вероятностей можно заменять какую-либо случайную величину любой эквивалентной ей величиной.

Пусть теперь

$$\xi_1, \ \xi_2, \ldots, \ \xi_n, \ldots$$
 (1)

— последовательность случайных величин. Рассмотрим множество A всех элементарных событий ω , для которых последовательность (1) сходится. Если через $A_{np}^{(m)}$ обозначить множество всех ω , для которых выполняются все перавенства

$$|\xi_{n+k} - \xi_n| < \frac{1}{m}, \ k = 1, 2, ..., p,$$

то непосредственно получаем, что

$$A = \bigcap_{m} \bigcup_{n} \bigcap_{p} A_{np}^{(n)}. \tag{2}$$

Согласно § 3 множества $A_{np}^{(m)}$ принадлежат всегда σ -алгебре множеств \mathcal{F} . Соотношение (2) показывает, что множество A также принадлежит \mathcal{F} . Следовательно, всегда имеет вполне определенный смысл говорить о вероятности сходимости последовательности случайных величин.

Пусть теперь вероятность P(A) множества A равна единице. Тогда мы утверждаем, что последовательность (1) сходится с вероятностью единица к некоторой случайной величине ξ , которая определяется однозначно с точностью до эквивалентности.

Для построения этой случайной величины полагаем

$$\xi = \lim_{n} \xi_n$$

на A и $\xi=0$ вне A. Нам надо доказать, что ξ — случайная величина, т. е. что множество A (x) элементов ω , для которых $\xi < x$, принадлежит алгебре \mathcal{F} . Но

$$A(x) = A \bigcup_{n} \bigcap_{p} \{\omega : \, \xi_{n+p} < x\}$$

в случае $x \leqslant 0$ и

$$A(x) = A \bigcup_{n} \bigcap_{p} \{\omega : \xi_{n+p} < x\} + \overline{A}$$

в противоположном случае, откуда непосредственно

следует наше утверждение.

О пределение II. Если вероятность сходимости последовательности ξ_1, ξ_2, \ldots к ξ равна единице, то мы говорим, что эта последовательность почти наверное сходится к ξ .

Однако для теории вероятностей, пожалуй, еще

важнее другой вид сходимости.

О пределение III. Последовательность случайных величин ξ_1, ξ_2, \ldots сходится по вероятности к случайной величине ξ , если для любого $\varepsilon > 0$ вероятность

$$P\{|\xi_n-\xi|>\epsilon\}\to 0,$$

при $n \to \infty^{-1}$).

І. Если последовательность (1) сходится по вероятности одновременно к ξ и к ξ', то ξ и ξ' эквивалептны.

В самом деле,

$$\begin{split} P\left\{ |\xi - \xi'| > \frac{1}{m} \right\} & \leq P\left\{ |\xi - \xi_n| > \frac{1}{2m} \right\} + \\ & + P\left\{ |\xi' - \xi_n| > \frac{1}{2m} \right\}. \end{split}$$

¹⁾ Это понятие восходит в основном еще к Бернулли, однако в полной общности было введено Е. Е. Слуцким (ср. Slutsky[4]).

Так как последние вероятности при достаточно большом n сколько угодно малы, то отсюда следует, что

$$P\left\{|\xi-\xi'|>\frac{1}{m}\right\}=0,$$

и, значит,

$$P\{\xi \neq \xi'\} \leqslant \sum_{m} P\{|\xi - \xi'| > \frac{1}{m}\} = 0.$$

II. Если последовательность (1) почти наверное сходится к ξ , то она сходится к ξ также и по вероятности.

Пусть A — множество сходимости последовательности (1). Тогда

$$\begin{split} 1 &= \mathsf{P}(A) \leqslant \lim_{n} \mathsf{P}\{|\xi_{n+p} - \xi| < \varepsilon, \ p = 0, 1, 2, \ldots\} \leqslant \\ &\leqslant \lim_{n} \mathsf{P}\{|\xi_{n} - \xi| < \varepsilon\}, \end{split}$$

откуда следует сходимость по вероятности.

III. Для сходимости по вероятности последовательности (1) необходимо и достаточно следующее условие: для любого $\varepsilon > 0$ существует такое n, что для каждого p > 0 имеет место неравенство

$$P\left\{\mid \xi_{n+p} - \xi_n\mid > \epsilon\right\} < \epsilon.$$

Пусть теперь F(x), $F_1(x)$, $F_2(x)$, ... — функции распределения случайных величин ξ , ξ_1 , ξ_2 , ... Если последовательность ξ_1 , ξ_2 , ... сходится по вероятности к ξ , то функция распределения F(x) однозначно определяется знанием функций $F_n(x)$, так как имеет место

Теорема. Если последовательность ξ_1 , ξ_2 , ... сходится по вероятности κ ξ , то последовательность соответствующих функций распределения F_n (x) сходится κ функции распределения F (x) случайной осличины ξ в каждой точке непрерывности F (x).

 \bot о казательство. Тот факт, что F(x) действительно определяется через $\{F_n(x)\}$, следует из того, что F(x) как непрерывная слева монотонная функция однозначно определяется ее значениями

в точках непрерывности 1). Для доказательства утверждения о сходимости мы предположим, что x является точкой непрерывности F(x). Пусть x' < x. Тогда в случае $\xi < x'$, $\xi_n \geqslant x$ необходимо $|\xi_n - \xi| > x - x'$. Следовательно,

$$\lim_{n} P\{\xi \leqslant x', \, \xi_{n} \geqslant x\} = 0,$$

$$F(x') = P\{\xi \leqslant x'\} \leqslant P\{\xi_{n} \leqslant x\} + P\{\xi \leqslant x', \, \xi_{n} \geqslant x\} = F_{n}(x) + P\{\xi \leqslant x', \, \xi_{n} \geqslant x\},$$

 $F(x') \leqslant \liminf_{n} F_n(x) + \lim_{n} P\left\{\xi \leqslant x', \, \xi_n \geqslant x\right\},$

$$F(x') \leqslant \liminf_{n} F_n(x). \tag{3}$$

Аналогично доказывается, что если x'' > x, то

$$F(x'') \geqslant \limsup_{n} F_n(x). \tag{4}$$

Так как F(x') и F(x'') при $x' \uparrow x$ и $x'' \downarrow x$ стремятся к F(x), то из (3) и (4) следует, что

$$\lim_{n} F_{n}(x) = F(x).$$

Теорема доказана.

 $^{^{1}}$) В самом деле, она имеет самое большее лишь счетное множество точек разрыва (ср. Л е б е г, Интегрирование и отыскание примитивных функций, 1934, стр. 70). Поэтому точки непрерывности лежат всюду плотно, и значение функции $F\left(x\right)$ в точке разрыва определяется как предел ее значений в лежащих слева точках непрерывности.

IV. МАТЕМАТИЧЕСКИЕ ОЖИДАНИЯ

§ 1. Абстрактные интегралы Лебега

Пусть ξ — случайная величина и A — множество из \mathcal{F}^{-1}). Образуем для положительного λ сумму

$$S_{\lambda} = \sum_{k=-\infty}^{+\infty} k \lambda P \left[\left\{ k \lambda \leqslant \xi < (k+1) \lambda \right\} \cap A \right]. \tag{1}$$

Если этот ряд абсолютно сходится при любом λ , то при $\lambda \to 0$ S_{λ} стремится к определенному пределу, который по определению есть интеграл

$$\int_{A} \xi(\omega) P(d\omega). \tag{2}$$

В этой абстрактной форме понятие интеграла было введено Фреше 2). В частности, оно оказывается необходимым для теории вероятностей. (В следующих параграфах читатель увидит, что обычное определение условного математического ожидания величины ξ при гипотезе A совпадает с точностью до постоянного множителя с определением интеграла (2).)

Мы дадим здесь краткий перечень важнейших свойств интегралов формы (2). Читатель найдет их доказательство в каждом учебнике по теории функций действительного переменного, хотя они большей

2) Fréchet, Sur l'integrale d'une fonctionnel étendue à un ensemble abstrait, Bull. Soc. Math. France, 7. 43 (1915), crp. 248.

¹⁾ Как было упомянуто в § 5 главы третьей, мы рассматриваем в этой и во всех последующих главах только борелевские поля вероятностей.

частью проведены для случая, когда ${\bf P}$ является лебеговой мерой множеств в ${\bf R}^n$. Перенесение этих доказательств на общий случай не представляет инкакой новой математической задачи; они остаются большей частью дословно теми же 1).

I. Если случайная величипа ξ интегрируема на A, то она интегрируема на каждом подмножестве A' из A,

принадлежащем У.

II. Если ξ интегрируема на A и A распадается на не более чем счетное число непересекающихся множеств A_n из \mathcal{F} , то

$$\int\limits_{A} \xi(\omega) P(d\omega) = \sum\limits_{n} \int\limits_{A_{n}} \xi(\omega) P(d\omega).$$

III. Вместе с **ξ** интегрируем всегда и | **ξ** |. При этом

$$\Big| \int_{A} \xi(\omega) P(d\omega) \Big| \leqslant \int_{A} |\xi(\omega)| P(d\omega).$$

IV. Если для каждого ω выполняются неравенства $0 \leqslant \eta$ (ω) $\leqslant \xi$ (ω), то вместе с ξ (ω) интегрируема также и величина η (ω) 2), и при этом

$$\int\limits_{A}\eta\left(\omega\right)\mathsf{P}\left(d\omega\right)\leqslant\int\limits_{A}\xi\left(\omega\right)\mathsf{P}\left(d\omega\right).$$

V. Если $m \leqslant \xi$ (ω) $\leqslant M$, причем и m и M — две постоянные, то

$$m \mathsf{P}\left(A\right) \leqslant \int\limits_{A} \mathsf{\xi}\left(\omega\right) \mathsf{P}\left(d\omega\right) \leqslant M \cdot \mathsf{P}\left(A\right).$$

VI. Если ξ (ω) и η (ω) интегрируемы, а K и L — две действительные постоянные, то случайная величина $K\xi$ (ω) + $L\eta$ (ω) также интегрируема, и при

1) См. цитированную па стр. 11 книгу А. Н. Колмогорова и С. В. Фомина.

 $^{^2}$) При этом предполагается, что η (ω) — случайная величина, т. е. в терминологии общей теории интегрирования она измерима по отношению к \mathcal{F} .

этом

$$\begin{split} \int\limits_{A}\left[K\xi\left(\omega\right)+L\eta\left(\omega\right)\right]\mathsf{P}\left(d\omega\right)&=K\int\limits_{A}\xi\left(\omega\right)\mathsf{P}\left(d\omega\right)+\\ &+L\int\limits_{A}\eta\left(\omega\right)\mathsf{P}\left(d\omega\right). \end{split}$$

VII. Если ряд

$$\sum_{n} \int_{A} |\xi_{n}(\omega)| P(d\omega)$$

сходится, то ряд

$$\sum_{n} \xi_{n}(\omega) = \xi(\omega)$$

сходится в каждой точке множества A с точностью до некоторого множества B такого, что $\mathsf{P}(B)=0$. Если вне множества $A \setminus B$ положить $\xi(\omega)=0$, то

$$\int_{A} \xi(\omega) P(d\omega) = \sum_{n} \int_{A} \xi_{n}(\omega) P(d\omega).$$

VIII. Если ξ (ω) и η (ω) эквивалентны, P (ξ (ω) \neq η (ω)} = 0, то для каждого множества A из $\mathcal F$

$$\int_{A} \xi(\omega) P(d\omega) = \int_{A} \eta(\omega) P(d\omega).$$
 (3)

IX. Если (3) имеет место для каждого множества A из \mathcal{F} , то ξ (ω) и η (ω) эквивалентны.

Из вышеупомянутого определения интеграла получается еще следующие свойство, которого нет в обычной теории Лебега.

Х. Пусть P_1 и P_2 — две вероятностные функции, определенные на одной и той же σ -алгебре \mathcal{F} , $P=P_1+P_2$ и $\xi=\xi$ (ω) интегрируема на множестве A относительно P_1 и P_2 . Тогда

$$\int_{A} \xi(\omega) P(d\omega) = \int_{A} \xi(\omega) P_{1}(d\omega) + \int_{A} \xi(\omega) P_{2}(d\omega).$$

XI. Всякая ограниченная случайная величина интегрируема.

§ 2. Абсолютные и условные математические ожидания

Пусть $\xi = \xi \, (\omega)$ — интегрируемая случайная величина. Интеграл

$$\mathsf{M}\xi = \int_{\mathcal{O}} \xi(\omega) \, \mathsf{P}(d\omega)$$

называют в теории вероятностей математическим ожиданием величины ξ.

Из свойств III, IV, V, VI, VII, VIII, IX следует,

I. $|M\xi| \leq M|\xi|$;

II. М $\eta \leqslant M\xi$, если $0 \leqslant \eta(\omega) \leqslant \xi(\omega)$;

III. $\inf \xi(\omega) \leqslant M\xi \leqslant \sup \xi(\omega);$

IV. $M(K\xi + L\eta) = KM\xi + LM\eta$;

V. M
$$\left(\sum_{n}\xi_{n}\right)=\sum_{n}\mathsf{M}\xi_{n}$$
, если ряд $\sum_{n}\mathsf{M}\left|\left.\xi_{n}\right|\right|$ сходится;

VI. Если & и η эквивалентны, то

$$M\xi = M\eta;$$

VII. Всякая ограниченная случайная величина имеет математическое ожидание.

По определению интеграла

$$\begin{split} \mathsf{M} \xi &= \lim_{\lambda \to 0} \sum_{k = -\infty}^{+\infty} k \lambda \mathsf{P} \left\{ k \lambda \leqslant \xi \left(\omega \right) < \left(k + 1 \right) \lambda \right\} = \\ &= \lim_{\lambda \to 0} \sum_{k = -\infty}^{+\infty} k \lambda \left[F_{\xi} \left(\left(k + 1 \right) \lambda \right) - F_{\xi} \left(k \lambda \right) \right]. \end{split}$$

Вторая строка есть не что иное, как обычное определение интеграла Стилтьеса $\int\limits_{-\infty}^{\infty}xF_{\xi}(dx)$. Поэтому

$$\mathsf{M}\xi = \int_{-\infty}^{\infty} x F_{\xi}(dx). \tag{1}$$

Формула (1) может, следовательно, также служить

определением математического ожидания МЕ.

теперь $\xi = \xi (\omega)$ — функция элементарного события ω, а η — случайная величина, определенная как однозначная функция от ξ : $\eta = \eta \, (\xi)$. Тогна

$$P \{k\lambda \leqslant \eta < (k+1)\lambda\} = P_{\xi} \{x : k \lambda \leqslant \eta (x) < (k+1) \lambda\},$$

где $P_{\, \xi}$ — вероятностная функция ξ. Отсюда следует определению интеграла, что

$$\int_{\Omega} \eta \left(\xi \left(\omega \right) \right) \mathsf{P} \left(d\omega \right) = \int_{X} \eta \left(x \right) P_{\xi} \left(dx \right)$$

и, следовательно,

$$\mathsf{M}\eta = \int\limits_{\mathcal{X}} \eta(x) \, P_{\xi}(dx), \tag{2}$$

где X означает множество всех возможных зпачений $\xi.$ В частности, когда ξ = ξ (ω) является случайной величиной, то

$$\mathsf{M}\eta = \int_{\Omega} \eta\left(\xi\left(\omega\right)\right) \mathsf{P}\left(d\omega\right) = \int_{R} \eta\left(x\right) P_{\xi}\left(dx\right) =$$

$$= \int_{-\infty}^{\infty} \eta\left(x\right) F_{\xi}\left(dx\right). \tag{3}$$

Последний интеграл в формуле (3) является в случае непрерывности функции $\eta = \eta(x)$ обыкновенным тегралом Стилтьеса. Однако отметим при этом, интеграл

$$\int_{-\infty}^{\infty} \eta(x) F_{\xi}(dx)$$

может существовать также и в случае отсутствия математического ожидания Мп. Для существования Мп пеобходима и достаточна копечность интеграла 1)

$$\int_{-\infty}^{\infty} |\eta(x)| F_{\xi}(dx).$$

Если $\xi = (\xi_1, \, \xi_2, \, \ldots, \, \xi_n)$ — случайная точка пространства R^n , то вследствие (2)

$$\mathsf{M}\eta = \int_{\mathbb{R}^n} \int \eta(x_1, x_2, ..., x_n) P_{\xi_1, \xi_2, ..., \xi_n}(dx_1, ..., dx_n). \tag{4}$$

Мы уже видели, что если P(B) > 0, то условная вероятность $P(\cdot | B)$ обладает всеми свойствами вероятностной функции (при закрепленном множестве B). Соответствующий интеграл

$$M(\xi \mid B) = \int_{\Omega} \xi(\omega) P(d\omega \mid B)$$
 (5)

мы называем условным математическим ожиданием случайной величины $\xi = \xi(\omega)$ относительно события B. Так как

$$P(\overline{B} \mid B) = 0,$$

$$\int_{\overline{B}} \xi(\omega) P(d\omega \mid B) = 0,$$

то из (5) следует равенство

$$\mathsf{M}(\xi \mid B) = \int_{\Omega} \xi(\omega) \, \mathsf{P}(d\omega \mid B) =$$

$$= \int_{B} \xi(\omega) \, \mathsf{P}(d\omega \mid B) + \int_{B} \xi(\omega) \, \mathsf{P}(d\omega \mid B) =$$

$$= \int_{B} \xi(\omega) \, \mathsf{P}(d\omega \mid B).$$

Вепомнив, что в случае $A \subseteq B$ и $\mathsf{P}\left(B
ight) > 0$

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)}{P(B)},$$

¹⁾ Cp. V. Glivenko, Sur les valeurs probables de fonctions, Rend. Accad. Lincei, r. 8 (1928), crp. 480-483.

мы получаем

$$\mathsf{M}(\xi \mid B) = \frac{1}{\mathsf{P}(B)} \int_{B} \xi(\omega) \, \mathsf{P}(d\omega), \tag{6}$$

$$P(B) \cdot M(\xi \mid B) = \int_{B} \xi(\omega) P(d\omega). \tag{7}$$

Из (6) и из равенства

$$\int_{A+B} \xi(\omega) P(d\omega) = \int_{A} \xi(\omega) P(d\omega) + \int_{B} \xi(\omega) P(d\omega)$$

следует, наконец, что

$$\mathsf{M}\left(\xi \mid A+B\right) = \frac{\mathsf{P}\left(A\right) \mathsf{M}\left(\xi \mid A\right) + \mathsf{P}\left(B\right) \mathsf{M}\left(\xi \mid B\right)}{\mathsf{P}\left(A+B\right)} \ . \tag{8}$$

 ${
m B}$ частности, если $0<{\sf P}$ (A) < 1, то имеет место формула

$$\mathsf{M}\xi = \mathsf{P}(A)\mathsf{M}(\xi \mid A) + \mathsf{P}(\bar{A})\mathsf{M}(\xi \mid \bar{A}). \tag{9}$$

§ 3. Нерабенство Чебышева

Пусть f = f(x) — неотрицательная функция действительного аргумента x, которая при $x \geqslant a$ остается пе меньше b > 0. Тогда для любой случайной величины $\xi = \xi(\omega)$

$$\mathsf{P}\left\{\xi\left(\omega\right)\geqslant a\right\}\leqslant\frac{\mathsf{M}f\left(\xi\right)}{b}\tag{1}$$

(предполагается, что математическое ожидание Mf (ξ) существует).

В самом деле,

$$\mathsf{M}f(\xi) = \int_{\Omega} f(\xi(\omega)) \, \mathsf{P}(d\omega) \geqslant \int_{\{\omega: \xi(\omega) \geqslant a\}} f(\xi(\omega)) \, \mathsf{P}(d\omega) \geqslant \\ \geqslant b \mathsf{P} \{ \xi(\omega) \geqslant a \},$$

откуда непосредственно следует (1).

Например, для любого положительного с

$$\mathsf{P}\left\{\xi\left(\omega\right)\geqslant a\right\}\leqslant\frac{\mathsf{M}e^{c\xi}}{e^{ca}}\;.\tag{2}$$

Пусть теперь f = f(x) — неотрицательная, четная и при положительном x неубывающая функция. Тогда для каждой случайной величины $\xi = \xi(\omega)$ и при любом выборе постоянной a > 0 имеет место неравенство

$$\mathsf{P}\{|\xi(\omega)| \geqslant a\} \leqslant \frac{\mathsf{M}f(\xi)}{f(a)}. \tag{3}$$

В частности,

$$P\{|\xi - M\xi| \geqslant a\} \leqslant \frac{M/(\xi - M\xi)}{f(a)}. \tag{4}$$

Особо важным является случай $f(x) = x^2$. В этом случае из (3) получаем неравенство Чебышева

$$\mathsf{P}\{|\xi(\omega)| \geqslant a\} \leqslant \frac{\mathsf{M}\xi^2}{a^2} \ . \tag{5}$$

Из (4) находим также, что

$$P\{|\xi - M\xi| \geqslant a\} \leqslant \frac{M(\xi - M\xi)^2}{a^2} = \frac{D\xi}{a^2}.$$
 (6)

Величину

$$D\xi = M(\xi - M\xi)^2$$

называют дисперсией случайной величины ξ. Легко подсчитать, что

$$D\xi = M\xi^2 - (M\xi)^2.$$

Если функция f(x) ограничена,

$$|f(x)| \leqslant K$$

то $\mathsf{P} \{ \mid \xi (\omega) \mid \geqslant a \}$ можно оценить также и спизу. В самом деле,

$$\begin{aligned} \mathsf{M}f(\xi) &= \int_{\Omega} f(\xi(\omega)) \, \mathsf{P}(d\omega) = \\ &= \int_{\{\omega : |\xi(\omega)| < a\}} f(\xi(\omega)) \, \mathsf{P}(d\omega) + \int_{\{\omega : |\xi(\omega)| \geqslant a\}} f(\xi(\omega)) \mathsf{P}(d\omega) \leqslant \\ &\leqslant f(a) \, \mathsf{P}\{|\xi(\omega)| < a\} + K \mathsf{P}\{|\xi(\omega)| \geqslant a\} \leqslant \\ &\leqslant f(a) + K \cdot \mathsf{P}\{|\xi(\omega)| \geqslant a\} \end{aligned}$$

и, следовательно.

$$\mathsf{P}\{|\xi(\omega)| \geqslant a\} \geqslant \frac{\mathsf{M}f(\xi) - f(a)}{K}. \tag{7}$$

Если вместо ограниченности функции f(x) потребовать ограниченности самой случайной величины $\xi = \xi(\omega)$,

$$|\xi(\omega)| \leqslant M$$
,

то $f\left(\xi\left(\omega\right)\right)\leqslant f\left(M\right)$, и вместо (7) мы получаем формулу

$$\mathsf{P}\{|\xi(\omega)| \geqslant a\} \geqslant \frac{\mathsf{M}f(\xi) - f(a)}{f(M)}. \tag{8}$$

В случае $f(x) = x^2$ из (8) находим, что

$$\mathsf{P}\{|\xi(\omega)| \geqslant a\} \geqslant \frac{\mathsf{M}\xi^2 - a^2}{M^2} \ . \tag{9}$$

§ 4. Некоторые признаки сходимости

Пусть

$$\xi_1, \ \xi_2, \ \ldots, \ \xi_n, \ \ldots$$
 (1)

— последовательность случайных величин, и f = f(x) — неотрицательная четная и при положительном x монотонно возрастающая функция 1). Тогда справедливы следующие утверждения.

1. Для сходимости последовательности (1) по вероятности достаточно следующее условие: для каждого $\varepsilon > 0$ существует такое n, что для каждого p > 0 справедливо неравенство

$$\mathsf{M}f\left(\xi_{n+p}-\xi_{n}\right)<\varepsilon. \tag{2}$$

II. Для сходимости по вероятности последовательпости (1) к случайной величине § достаточно условие

$$\lim_{n \to +\infty} \mathsf{M}f(\xi_n - \xi) = 0. \tag{3}$$

¹⁾ Следовательно, f(x) > 0, если $x \neq 0$,

пчивикол

III. Если f(x) ограничена, непрерывна и f(0) = 0,

то условия I и II являются также и необходимыми. IV. Если f(x) непрерывна, f(0) = 0 и все случайные

ограничены в своей совокупности, то условия 1 и II паляются также и необходимыми.

Из II и IV следует, в частности,

V. Для сходимости по вероятности последовательности (1) к ξ достаточным является условие

$$\lim_{n \to \infty} M \left(\xi_n - \xi \right)^2 = 0. \tag{4}$$

Если при этом ξ, ξ1, ξ2, . . . ограничены в своей совокупности, то это условие является и необходимым.

Доказательство утверждений I—IV см. в работах Slutsky [1] и Fréchet [1]. Впрочем, эти теоремы следуют почти непосредственно из формул (3) и (8) предшествующего параграфа.

§ 5. Дифференцирование и интегрирование математических ожиданий по параметру

Пусть каждому элементарному событию ю поставлена в соответствие определенная вещественная функция $\xi_i(\omega)$ действительного переменного t.

Определение. Мы говорим, что $\xi = \{\xi_i(\omega),$ $-\infty < t < \infty$ есть случайная функция, если при каждом фиксированном t величина ξ_t (ω) является случайной величиной.

Возникает тогда вопрос, при каких условиях знак математического ожидания является переместительным со знаками интегрирования и дифференцирования. Две следующие теоремы могут, не исчерпывая всей проблемы, дать во многих простых случаях удовлетворительный ответ на этот вопрос.

Теорема І. Если для любого т математическое ожидание $M\xi_t(\omega)$ конечно, $\xi_t(\omega)$ дифференцируема (no t для всех ω) и производная $\xi_t'(\omega) = \frac{d\xi_t(\omega)}{dt}$ по абсолютному значению всегда меньше некоторой определенной постоянной, то

$$\frac{d}{dt} \mathsf{M} \xi_i(\omega) = \mathsf{M} \xi_i'(\omega).$$

T е о р е м а H. Eсли ξ_t (ω) по абсолютному значению всегда остается меньше некоторой постоянной K и интегрируема по t в смысле Pимана, то

$$\int_{a}^{b} \mathsf{M} \xi_{t}(\omega) dt = \mathsf{M} \left[\int_{a}^{b} \xi_{t}(\omega) dt \right],$$

если только $\mathsf{M}\xi_t$ (ω) интегрируемо в смысле Римана. Ξ оказательство теоремы І. Прежде всего заметим, что ξ_t' (ω) как предел случайных величин

$$\frac{\xi_{t+h}(\omega) - \xi_t(\omega)}{h}$$
, $h = 1, \frac{1}{2}, ..., \frac{1}{n}, ...$

является случайной величиной. Так как $\xi_i'(\omega)$ ограничена, то существует математическое ожидание М $\xi_i'(\omega)$ (свойство VII математических ожиданий из \S 2). Выберем теперь постоянное t и обозначим через A событие

$$\left\{\omega:\left|\frac{\xi_{l+h}\left(\omega\right)-\xi_{l}\left(\omega\right)}{h}-\xi_{l}^{'}\left(\omega\right)\right|>\epsilon\right\}.$$

Вероятность $\mathbf{P}\left(A\right)$ стремится к нулю при h o 0 для любого $\varepsilon > 0$. Так как всегда

$$\left|\frac{\xi_{t+h}(\omega) - \xi_{t}(\omega)}{h}\right| \leqslant M, |\xi'_{t}(\omega)| \leqslant M$$

и, кроме того, в случае $\omega \subset \overline{A}$

$$\left|\frac{\xi_{i+h}(\omega)-\xi_{i}(\omega)}{h}-\xi_{i}'(\omega)\right|\leqslant \varepsilon,$$

TO

$$\begin{split} \left| \frac{\mathsf{M} \xi_{t+h} \left(\omega \right) - \mathsf{M} \xi_{t} \left(\omega \right)}{h} - \mathsf{M} \xi_{t}^{'} \left(\omega \right) \right| \leqslant \\ & \leqslant \mathsf{M} \left| \frac{\xi_{t+h} \left(\omega \right) - \xi_{t} \left(\omega \right)}{h} - \xi_{t}^{'} \left(\omega \right) \right| = \\ & = \mathsf{P} \left(A \right) \mathsf{M} \left\{ \left| \frac{\xi_{t+h} \left(\omega \right) - \xi_{t} \left(\omega \right)}{h} - \xi_{t}^{'} \left(\omega \right) \right| \right| A \right\} + \\ & + \mathsf{P} \left(\overline{A} \right) \mathsf{M} \left\{ \left| \frac{\xi_{t+h} \left(\omega \right) - \xi_{t} \left(\omega \right)}{h} - \xi_{t}^{'} \left(\omega \right) \right| \right| \overline{A} \right\} \leqslant \\ & \leqslant 2M \cdot \mathsf{P} \left(A \right) + \varepsilon. \end{split}$$

Поскольку $\varepsilon > 0$ можно выбрать произвольно, а вероятность $\mathsf{P}\left(A\right)$ сколь угодно мала при достаточно малом h, то

$$\frac{d}{dt} \mathsf{M} \xi_{l}(\omega) = \lim_{h \to 0} \frac{\mathsf{M} \xi_{l+h}(\omega) - \mathsf{M} \xi_{l}(\omega)}{h} = \mathsf{M} \xi_{l}(\omega),$$

что и требовалось доказать.

Доказательство теоремы II. Пусть

$$S_n = \frac{1}{n} \sum_{k=1}^n \xi_{l+kh}(\omega), \quad h = \frac{b-a}{n}.$$

Так как S_n сходится к $S=\int\limits_a^b \xi_l\left(\omega\right)dt$, то можно для любого $\varepsilon>0$ выбрать такое N, что для всех $n\geqslant N$ $\mathbb{P}\left\{\mid S_n-S\mid>\varepsilon\right\}<\varepsilon$.

Если положить $A = \{ |S_n - S| > \epsilon \}$ и

$$S_n^* = \frac{1}{n} \sum_{k=1}^n \mathsf{M} \, \xi_{l+kh} (\omega) = \mathsf{M} S_n,$$

 $|S_n^* - MS| = |M(S_n - S)| \leq M|S_n - S| =$ $= P(A) M\{|S_n - S||A\} + P(\overline{A}) M\{|S_n - S||\overline{A}\} \leq$ $\leq 2KP(A) + \epsilon \leq (2K + 1) \epsilon.$

Следовательно, \boldsymbol{S}_{a}^{*} стремится к MS, откуда следует равенство

$$\int_{a}^{b} \mathsf{M} \xi_{t}(\omega) dt = \lim_{n} S_{n}^{t} = \mathsf{M} S.$$

Теорема II может быть без всяких новых затруднений обобщена для двойных и тройных интегралов. Мы дадим применение этой теоремы для одной задачи геометрической теории вероятностей.

Пусть $G = G(\omega)$ — квадрируемая область на плоскости, вид которой зависит от случая, т. е. пусть каждому элементарному событию $\omega \in \Omega$ поставлена в соответствие определенная квадрируемая область $G(\omega)$ на плоскости. Через S_G обозначим площадь области G, а через P(x, y) — вероятность того, что точка (x, y) принадлежит области G. Тогда

$$\mathsf{M}S_G = \iint \mathsf{P}(x, y) \, dx \, dy.$$

Для доказательства достаточно заметить, что

$$S_G = \iint f_G(x, y) dx dy,$$

$$P(x, y) = M f_G(x, y),$$

где $f_G(x, y)$ — характеристическая функция области G $|f_G(x, y)| = 1$ на G и $|f_G(x, y)| = 0$ вне $|G|^{-1}$).

¹⁾ Cp. A. Kolmogoroff und M. Leontowitsch, Zur Berechnung der mittleren Brownschen Fläche, Physik. Zeitschr. d. Sowjetunion, r. 4 (1933).

V. УСЛОВНЫЕ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКИЕ ОЖИЛАНИЯ

§ 1. Условиме вероятности

В главе первой, § 6 мы определили условную вероятность $P(B \mid \mathfrak{A})$ события B относительно испытания \mathfrak{A} . При этом там было предиоложено, что \mathfrak{A} допускает лишь конечное число различных возможных исходов. Можно, однако, определить $P(B \mid \mathfrak{A})$ также и для случая испытания \mathfrak{A} с бесконечным множеством возможных исходов, т. е. для разложения множества на бесконечное число непересекающихся подмножеств. В частности, такое разложение получается, если рассматривать произвольную функцию $\xi = \xi(\omega)$ от ω и определить в качестве элементов разложения $\mathfrak{A} = \mathfrak{A}_{\mathsf{E}}$ множества $\{\omega: \xi(\omega) = \mathrm{const}\}$.

Условная вероятность $P(B \mid \mathfrak{A}_{\xi})$ будет обозначаться также через $P(B \mid \mathfrak{F})$. Любое разложение \mathfrak{A}_{ξ} множества Ω можно определить как разложение \mathfrak{A}_{ξ} , которое «индуцируется» функцией $\xi = \xi(\omega)$ от ω , если каждому ω поставлено в соответствие в качестве $\xi(\omega)$ то множество из разложения \mathfrak{A} , которое содержит ω .

Две функции ξ и η от ω определяют тогда и только тогда одно и то же разложение ($\mathfrak{A}_{\xi}=\mathfrak{A}_{\eta}$) множества Ω , если существует такое взаимно однозначное соответствие y=f(x) между их значениями, при которых тождественно $\eta(\omega)=f(\xi(\omega))$. Читатель может легко показать, что определяемые пиже *случайные* величины $P(B\mid \xi)$ и $P(B\mid \eta)$ в этом случае совпадают; следовательно, в основном они определяются самим разложением $\mathfrak{A}_{\xi}=\mathfrak{A}_{\eta}$.

Для определения $P(B\mid \xi)$ можно применить следующее равенство:

$$P(B \mid \xi \in A) = M[P(B \mid \xi) \mid \xi \in A]. \tag{1}$$

Легко показать, что в случае конечности множества X возможных вначений ξ равенство (1) выполняется при любом выборе множества A (причем $P(B \mid \xi)$ определяется согласно \S 6 главы первой). В общем случае (для которого случайная величина $P(B \mid \xi)$ еще не определена) мы докажем, что всегда существует одна и, с точностью до эквивалентных величин, только одна случайная величина $P(B \mid \xi)$, определяемая как (борелевская) функция от ξ и удовлетворяющая при каждом A из \mathcal{F}_{ξ} , для которого $P_{\xi}(A) > 0$, уравнению (1). Определенную таким образом (с точностью до эквивалентности) функцию $P(B \mid \xi)$ от ξ мы называем условной вероятностью B относительно ξ (или при данном ξ). Значение $P(B \mid \xi)$ при $\xi = x$ мы будем обозначать $P(B \mid \xi = x)$.

Доказательство существования и единственности $P(B \mid \xi)$. Умножив (1) на $P(\xi \in A) = P_{\xi}(A)$, получаем слева

$$P \{ \xi \in A \} P(B \mid \xi \in A) = P(B \cap \{ \xi \in A \}) = P(B \cap \xi^{-1}(A)),$$

а справа

 $P \{ \xi \subseteq A \} M [P(B | \xi) | \xi \subseteq A] =$

$$= \int_{\{\omega: \xi \in A\}} \mathsf{P}(B \mid \xi) \, \mathsf{P}(d\omega) = \int_A \mathsf{P}(B \mid \xi = x) \, P_{\xi}(dx).$$

Следовательно,

$$P(B \cap \xi^{-1}(A)) = \int_{A} P(B \mid \xi = x) P_{\xi}(dx).$$
 (2)

Обратно, из (2) следует формула (1).

В случае $\hat{P}_{\xi}(A) = 0$, при котором (1) не имеет смысла, равенство (2) тривиально. Требование (2), следовательно, эквивалентно (1).

По свойству IX интеграла (глава четвертая, § 1) случайные величины $\eta = \eta(\omega)$ с точностью до эквивалентности однозначно определяются по интегралов

$$\int\limits_{B}\eta\left(\omega\right)\mathsf{P}\left(d\omega\right),\quad B \ensuremath{\ensuremath{\in}} \mathcal{F}.$$

Так как $P(B \mid \xi = x)$ — случайная величина, определениая на поле вероятностей $(X, \mathcal{F}_{\xi}, P_{\xi})$, то отсюда следует, что формула (2) однозначно (с точностью до эквивалентности) определяет эту величину.

Нам остается доказать существование $P(B \mid \xi)$. Для этой цели применим следующую теорему Радона —

Пикодима 1).

T е о р е м а. Пусть \mathcal{I} — борелевская алгебра множеств в \hat{Y} , P — определенная на (Y, \mathcal{I}) неотрицательная счетно-аддитивная функция множеств, а $\widetilde{\mathsf{P}}$ — вторая определенная также на (Y,\mathcal{I}) , счетно-аддитивная функция множеств, причем из P(A) = 0 следует равенство $\widetilde{P}(A) = 0$. Тогда существует измеримал (по отношению κ \mathcal{I}) функция $\varphi = \varphi$ (у) (в теоретиковероятностной терминологии— случайная величина), удовлетворяющая для каждого множества A из I равенству

 $\widetilde{\mathsf{P}}(A) = \int_{\mathcal{A}} \varphi(y) \, \mathsf{P}(dy).$

Для применения этой теоремы к нашему случаю остается доказать: 1° что $\widetilde{\mathsf{P}}\left(A\right) = \mathsf{P}\left(B \cap \xi^{-1}\left(A\right)\right)$ счетно-аддитивна на $(X, \mathcal{F}_{\xi}), 2^{\circ}$ что из $\widetilde{\mathsf{P}}(A) \neq 0$ следует неравенство $P_{\xi}(A) > 0$. Утверждение 2° следует из того, что

$$0 \leqslant \mathsf{P}\left(B \ \cap \ \xi^{-1}(A)\right) \leqslant \mathsf{P}\left(\xi^{-1}\left(A\right)\right) = P_{\ \xi}\left(A\right).$$

¹⁾ O. Nikodym, Sur une généralisation des integrales de M. J. Radon, Fund. Math., т. 15 (1930), 168 (théoreme III). См. также цит. выше книгу А. Н. Колмогорова и С. В. Фомина.

Для доказательства утверждения 1° положим

$$A = \sum_{n} A_{n}.$$

Тогда

$$\xi^{-1}(A) = \sum_{n} \xi^{-1}(A_n)$$

и

$$B \cap \xi^{-1}(A) = \sum_{n} B \cap \xi^{-1}(A_n).$$

Так как Р счетно-аддитивна, то

$$\mathsf{P}(B \cap \xi^{-1}(A)) = \sum_{n} \mathsf{P}(B \cap \xi^{-1}(A_n)),$$

что и требовалось доказать.

Из равенства (1) следует, в частности (если положить A = X), важная формула:

$$P(B) = M[P(B \mid \xi)]. \tag{3}$$

Теперь мы перейдем к доказательству двух следующих фундаментальных свойств условных вероятностей.

Теорема І. Почти наверное

$$0 \leqslant \mathsf{P}(B \mid \xi) \leqslant 1. \tag{4}$$

T е о р е м а II. $\mathit{Ecлu}$ события B, B_1, \ldots принадлежат \mathscr{F} и

$$B=\sum_{n}B_{n},$$

то почти наверное

$$P(B|\xi) = \sum P(B_n|\xi).$$
 (5)

Эти два свойства $P(B \mid \xi)$ соответствуют двум характеристическим свойствам вероятностной функции

Р (B): всегда $0 \ll P(B) \ll 1$ и P(B) счетно-аддитивна. Они позволяют перенести на условные вероятности $P(\cdot \mid \xi)$ многие дальнейшие существенные свойства абсолютных вероятностей $P(\cdot)$. Однако при этом не следует забывать, что $P(B \mid \xi)$ при фиксированном множестве B является величиной, определенной лишь с точностью до эквивалентности.

Доказательство теоремы І. Если мы предположим — в противоположность доказываемому утверждению, — что на множестве M с $P_{\xi}(M) > 0$ выполняется неравенство $P(B \mid \xi) \geqslant 1 + \epsilon$, то по формуле (1)

$$P(B \mid \xi \in M) = M[P(B \mid \xi) \mid \xi \in M] \geqslant 1 + \varepsilon,$$

что, очевидно, невозможно. Так же доказывается, что почти наверное $P(B \mid \xi) \gg 0$.

Доказательство теоремы II. Из сходимости ряда

$$\sum_{n} \mathsf{M} \left[\mathsf{P}(B_{n} \mid \xi) \right] = \sum_{n} \mathsf{M} \left[\mathsf{P}(B_{n} \mid \xi) \right] = \sum_{n} \mathsf{P}(B_{n}) = \mathsf{P}(B)$$

следует по свойству V математических ожиданий (гл. IV, § 2), что ряд

$$\sum_{n} \mathsf{P}\left(B_{n} \mid \xi\right)$$

сходится почти наверное. Так как ряд

$$\sum_n \mathsf{M}\left[\mathsf{P}(B_n \mid \xi) \mid \xi \in A\right] = \sum_n \mathsf{P}\left(B_n \mid \xi \in A\right) = \mathsf{P}(B \mid \xi \in A)$$

сходится при каждом выборе множества A такого, что $P_{\,\xi}(A)>0$, то из упомянутого свойства V математических ожиданий следует, что для каждого множества A указанного вида имеет место соотношение

$$\mathsf{M}\Big[\sum_{n}\mathsf{P}(B_{n}|\xi)|\xi \in A\Big] = \sum_{n}\mathsf{M}\left[\mathsf{P}(B_{n}|\xi)|\xi \in A\right] =$$

$$= \mathsf{P}(B|\xi \in A) = \mathsf{M}\left[\mathsf{P}(B|\xi)|\xi \in A\right],$$

из которого непосредственно следует равенство (5).

В заключение этого параграфа укажем на два частных случая. Пусть $\xi(\omega) \equiv C$ — постоянная, тогда почти наверное $P(A \mid C) = P(A)$. Если положить, напротив, $\xi(\omega) = \omega$, то получим сразу, что $P(A \mid \omega)$ ночти наверное равна единице на A и нулю на \overline{A} . Следовательно, $P(A \mid \omega)$ является характеристической функцией множества A.

§ 2. Объяснение одного парадокса Бореля

Пусть за основное мпожество Ω выбрано множество всех точек сферической поверхности. За $\mathcal F$ мы примем совокупность всех борелевских множеств сферических новерхностей. Наконец, пусть $\mathsf P(A)$ пропорциональна мере множества A. Выберем тенерь две днаметрально противоноложные точки в качестве полюсов. Тогда каждый меридиальный круг однозначно определяется соответствующей географической долготой $\psi(0\leqslant\psi<$ $<\pi$). Так как ψ изменяется только от 0 до π , π . е. мы рассматриваем полные меридианные круги (а не полуокружности), то и широта θ должна изменяться от $-\pi$ до π (а не от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$). Борелем поставлена следующая задача: определить «условное распределение вероятностей» для широты θ , $-\pi \leqslant \theta < \pi$, при заданной долготе ψ . Легко подсчитать, что

$$P(\theta_1 \leqslant \theta < \theta_2 | \psi) = \frac{1}{4} \int_{\theta_1}^{\theta_2} |\cos \theta| d\theta$$

и, значит, распределение вероятностей для θ при заданном ψ *нераеномерно*.

Если же теперь предположить, что условное распределение вероятностей для θ «при гипотезе, что ω лежит на меридианном круге», должно быть равномерным, то получается противоречие.

Это обстоятельство показывает, что понятие условной вероятности отпосительно изолированно заданной гинотезы, вероятность которой равна пулю, является недопустимым: только тогда мы получим на меридиан-

ном круге распределение вероятностей для θ , если будем рассматривать этот меридианный круг в качестве элемента разложения всей сферической поверхности на меридианные круги с заданными полюсами.

§ 3. Условные вероятности относительно случайной величины

Если $\xi = \xi (\omega)$ — случайная величина, то условную вероятность $P(B \mid \xi)$ можно определить также элементарным путем. В случае P(B) = 0 полагаем $P(B \mid \xi) = 0$. Пусть теперь P(B) > 0. Тогда формуле (2) из § 1 можно придать следующий вид:

$$P(B) P(\xi \in A \mid B) = \int_{A} P(B \mid \xi = x) P_{\xi}(dx)$$
 (1)

ини

$$\mathsf{P}(B)\,P_{\xi}(A\,|\,B) = \int_{A} \mathsf{P}\,(B\,|\,\xi = x)\,P_{\xi}(dx).$$

Отсюда получается непосредственно, что

$$P(B) F_{\xi}(a \mid B) = \int_{a}^{a} P(B \mid \xi = x) F_{\xi}(dx).$$
 (2)

Согласно одной теореме Лебега ¹) из (2) следует, что

$$P(B \mid \xi = x) = P(B) \cdot \lim_{h \to 0} \frac{F_{\xi}(x+h \mid B) - F_{\xi}(x \mid B)}{F_{\xi}(x+h) - F_{\xi}(h)}$$
(3)

с точностью до множества H точек x такого, что $\mathsf{P}_\xi\left(H\right)=0$. Если рассматривать теперь формулу (3) как определение $\mathsf{P}\left(B\mid \xi=x\right)$, причем в случае несуществования предела в правой части (3) положить $\mathsf{P}\left(B\mid \xi=x\right)=0$, то эта новая величина удовлетворяет всем требованиям § 1.

Лебег, Интегрирование и отыскание примитивных функций, 1934, стр. 245—246.

Если, кроме того, существуют плотности вероятпостей $f_{\xi}(x)$ и $f_{\xi}(x \mid B)$ и если $f_{\xi}(x) > 0$, то формула (3) превращается в следующую:

$$P(B \mid \xi = x) = P(B) \frac{f_{\xi}(x \mid B)}{f_{\xi}(x)}. \tag{4}$$

Из формулы (3) следует также, что существование предела (3) и плотности вероятности $f_{\xi}(x)$ имеет своим следствием существование $f_{\xi}(x \mid B)$. При этом

$$\mathsf{P}(B) f_{\mathsf{E}}(x \mid B) \leqslant f_{\mathsf{E}}(x). \tag{5}$$

Если P(B) > 0, то из (4) следует равенство:

$$f_{\xi}(x \mid B) = \frac{P(B \mid \xi = x) f_{\xi}(x)}{P(B)}$$
 (6)

В случае $f_{\xi}(x) = 0$, согласно (5), $f_{\xi}(x \mid B) = 0$ и, следовательно, (6) также верно. Если при этом распределение ξ абсолютно непрерывно, то

$$P(B) = M[P(B|\xi)] = \int_{\Omega} P(B|\xi) P(d\omega) =$$

$$= \int_{-\infty}^{\infty} P(B|\xi = x) F_{\xi}(dx) = \int_{-\infty}^{\infty} P(B|\xi = x) f_{\xi}(x) dx.$$
 (7)

Из (6) и (7) следует, что

$$f_{\xi}(x \mid B) = \frac{P(B \mid \xi = x) f_{\xi}(x)}{\int_{-\infty}^{\infty} P(B \mid \xi = x) f_{\xi}(x) dx}.$$
 (8)

Это равенство дает нам так называемую теорему Байеса для абсолютно непрерывных распределений. Предположения, при которых эта теорема справедлива, следующие: $P(B \mid \xi = x)$ измерима в смысле Бореля и определена по формуле (3), распределение ξ абсолютно непрерывно (в точке x существует плотность вероятности $f_{\xi}(x)$).

§ 4. Условные математические ожидания

Пусть $\xi = \xi$ (ω) — произвольная функция от ω , а $\eta = \eta$ (ω) — случайная величина. Случайная величина M ($\eta \mid \xi$), представимая как функция от ξ и удовлетверяющая для любого множества A из \mathcal{F}_{ξ} с $P_{\xi}(A) > 0$ условню

$$M(\eta \mid \xi \subseteq A) = M[M(\eta \mid \xi) \mid \xi \subseteq A]$$
 (1)

называется (в случае, если она существует) условным математическим ожиданием случайной есличины п иги известном гначении §.

Умиожив (1) на $P_{\, \epsilon} \, (A)$, получаем

$$\int_{(\xi \in A)} \eta(\omega) P(d\omega) = \int_{(\xi' \in A)} M(\eta \mid \xi) P(d\omega). \tag{2}$$

Обратно, из (2) следует формула (4). В случае $P_{\,\xi}(A)=0$, при котором (4) не имеет смысла, (2) тривилльно. Так же как и в случае условных вероятностей (ср. \S 1), доказывается, что М (η | \S) определяется через (2) односначно (с точностью до эквивалентности).

Значение $M(\eta \mid \xi)$ при $\xi(\omega) = x$ мы обозначаем через $M(\eta \mid \xi = x)$. Заметим еще, что $M(\eta \mid \xi)$, так же как и $P(B \mid \xi)$, зависит только от разложения \mathfrak{A}_{ξ}

и может быть обозначено через М (η | 31).

При определении M (η | ξ) уже предположено существование $M\eta$ (если положить A=X, тогда M (η | ξ \in \in A) = $M\eta$). Мы теперь докажем, что существования $M\eta$ и достаточно для существования M (η | ξ). Для этого достаточно показать, что по теореме Радона — Никодима (ср. ξ 1) функция множеств

$$Q(A) = \int_{\{\xi \in A\}} \eta(\omega) P(d\omega)$$

счетно-аддитивна на \mathcal{F}_{ξ} и абсолютно непрерывна относительно $P_{\xi}(A)$. Первое обстоятельство доказывается дословно так же, как и в случае условных вероятностей (ср. § 1). Второе требование — абсолютной непрерывности — заключается в том, что из $Q(A) \neq 0$

должно следовать неравенство $P_{\,\xi}(A)>0$. Если мы предположим, что $P_{\,\xi}(A)=\mathsf{P}\,(\xi \in A)=0$, то ясно, что

$$Q(A) = \int_{\{\xi \in A\}} \eta(\omega) P(d\omega) = 0.$$

Таким образом, наше второе требование также выполнено.

Если в равенстве (1) положить A = X, то получается формула

$$M\eta = M [M (\eta \mid \xi)]. \tag{3}$$

Далее доказывается, что почти наверное

$$M[a\eta + b\zeta \mid \xi] = a M(\eta \mid \xi) + b M(\zeta \mid \xi), \quad (4)$$

где a и b — две произвольные постоянные, M | η | $< \infty$, M | ζ | $< \infty$. (Проведение доказательств предоставляется читателю.)

Если ξ и ζ — две функции элементарного события ω , то пара (ξ, ζ) может также рассматриваться как функция ω . Имеет место следующее важное равенство:

$$M[M(\eta \mid \xi, \zeta) \mid \xi] = M(\eta \mid \xi). \tag{5}$$

B самом деле, M (η | ξ) определяется через соотношение

$$M(\eta \mid \xi \in A) = M[M(\eta \mid \xi) \mid \xi \in A].$$

Следовательно, нужно доказать, что величина $M [M (\eta | \xi, \zeta) | \xi]$ удовлетворяет равенству

$$M(\eta \mid \xi \in A) = M\{M[M(\eta \mid \xi, \zeta) \mid \xi \mid | \xi \in A\}. (6)$$

Из определения M (η | ξ , ζ) следует, что

$$M (\eta \mid \xi \in A) = M [M (\eta \mid \xi, \zeta) \mid \xi \in A]. \tag{7}$$

Из определения M [M (η | ξ , ζ) | ξ] следует далее, что

$$M [M (\eta | \xi, \zeta) | \xi \in A] =$$

$$= M \{M [M (\eta | \xi, \zeta) | \xi] | \xi \in A\}. \quad (8)$$

Равенство (6) является следствием равенств (7) и (8), чем наше утверждение доказано.

Если положить η (ω) равным единице на B и нулю

вне B_{\bullet} то

$$M (\eta | \xi) = P(B | \xi),$$

 $M (\eta | \xi, \zeta) = P(B | \xi, \zeta).$

В этом случае из формулы (5) получается формула

$$M (P (B | \xi, \zeta) | \xi] = P (B | \xi).$$
 (9)

Условные математические ожидания можно определить также и непосредственно через соответствующие условные вероятности.

Для этой цели рассматриваются следующие суммы:

$$S_{\lambda}(\xi) = \sum_{k=-\infty}^{\infty} k \lambda P[k\lambda \leqslant \eta < (k+1)\lambda | \xi] \Big(= \sum_{k=-\infty}^{\infty} R_k \Big).$$
(10)

Если Му существует, то ряд (10) сходится почти наверное. В самом деле, по формуле (3), § 1

$$M \mid R_k \mid = k\lambda P \{k\lambda \leqslant \eta < (k+1) \lambda\},\$$

а сходимость ряда

$$\sum_{k=-\infty}^{\infty} |k\lambda| \, \mathsf{P} \{k\lambda \leqslant \eta < (k+1)\lambda\} = \sum_{k=-\infty}^{\infty} \mathsf{M} |R_k|$$

является необходимым условием существования М η (ср. главу четвертую, \S 1). Из этой сходимости следует, что ряд (10) сходится почти наверное (ср. главу четвертую, \S 2, V). Далее доказываем, так же как и в теории интеграла Лебега, что из сходимости (10) при какомлибо λ следует сходимость при всяком λ и что в случае сходимости ряда (10) S_{λ} (ξ) стремится к определенному пределу при $\lambda \to 0^1$). Можно тогда в порядке определе-

¹⁾ При этом мы рассматриваем только счетную последовательность значений λ : в этом случае все вероятности Р $\{k\lambda\leqslant\eta<<(k\dashv-1)\;\lambda\mid\xi\}$ определены почти наверное для всех этих значений.

ОЖИДАНИЯ

ния положить

$$\mathsf{M}(\eta \mid \xi) = \lim_{\lambda \to 0} S_{\lambda}(\xi). \tag{11}$$

81

Для того чтобы доказать, что определенное соотношением (11) условное ожидание М (η | ξ) удовлетворяет поставленным прежде требованиям, нужно только убедиться в том, что определенная, согласно (11), величина М (η | ξ) удовлетворяет равенству (1). Это доказательство протекает следующим образом:

$$M[M(\eta|\xi)|\xi \in A] = \lim_{\lambda \to 0} M[S_{\lambda}(\xi)|\xi \in A] =$$

$$\lim_{\lambda \to 0} \sum_{k} h[P(k) < m < (k+1) + (k+1) = 1$$

 $= \lim_{\lambda \to 0} \sum_{k=-\infty}^{\infty} k \lambda P[k\lambda \leqslant \eta < (k+1)\lambda | \xi \in A] = M[\eta | \xi \in A].$ Перестановка знаков математического ожидания

и предела допустима при этой выкладке, так как S_{λ} (§) сходится равномерно κ M (η | ξ) при $\lambda \to 0$ (простое свойства у математических ожиданий следствие из § 2). Перестановка знаков математического ния и суммирования также оправдана, так как ряд

$$\sum_{k=-\infty}^{\infty} M\{|k\lambda| P(k\lambda \leqslant \eta < (k+1)\lambda |\xi) |\xi \in A\} =$$

$$= \sum_{k=-\infty}^{\infty} |k\lambda| P\{k\lambda \leqslant \eta < (k+1)\lambda | \xi \in A\}$$

сходящийся (непосредственное применение свойства V математических ожиданий).

Вместо (11) можно написать

$$\mathsf{M}(\eta \mid \xi) = \int_{\mathsf{A}} \eta(\omega) \mathsf{P}(d\omega \mid \xi). \tag{12}$$

Не следует, однако, при этом забывать, что (12) не является интегралом в смысле § 1 главы четвертой, так что (12) — только символическое обозначение.

Если \$ — случайная величина, то функцию от \$ и у

$$F_{\eta}(y \mid \xi) = P(\eta < y \mid \xi)$$

мы называем условной функцией распределения η при известном ξ . Функция F_n $(y \mid \xi)$ определена почти наверное при всяком y. Если $y_1 \leqslant y_2$, то почти наверное

$$F_{\eta}(y_1 \mid \xi) \leqslant F_{\eta}(y_2 \mid \xi).$$

Из (11) и (10) следует, что почти наверное

82

$$\mathsf{M}(\eta \mid \xi) = \lim_{\lambda \to 0} \sum_{k=-\infty}^{\infty} k \lambda \left[F_{\eta}((k+1)\lambda \mid \xi) - F_{\eta}(k\lambda \mid \xi) \right]. \tag{13}$$

Это обстоятельство можно символически выразить формулой

$$\mathsf{M}(\eta \mid \xi) = \int_{-\infty}^{\infty} y F_{\eta}(dy \mid \xi). \tag{14}$$

С помощью нового онределения математического ожидания (10), (11) легко доказать, что для действительной функции $f(\xi)$ с M $|f(\xi)$ η $|<\infty$ справедливо (почти наверное) равенство

$$M [f(\xi) \eta | \xi] = f(\xi) M [\eta | \xi].$$

VI. НЕЗАВИСИМОСТЬ. ЗАКОН БОЛЬШИХ ЧИСЕЛ

§ 1. Независимость

Определение І. Две функции $\xi = \xi (\omega)$ и $\eta = \eta(\omega)$ называются независимыми, если для любых двух множеств A из \mathcal{F}_{ξ} и B из \mathcal{F}_{η} справедливо следующее равенство:

$$P(\xi \subseteq A, \eta \subseteq B) = P(\xi \subseteq A) P(\eta \subseteq B).$$
 (1)

Если множества X и Y состоят лишь из конечного числа элементов:

$$X = x_1 + ... + x_n,$$

 $Y = y_1 + ... + y_m,$

то 'наше определение независимости ξ и η совпадает, согласно \S 5 главы первой, с определением независимости разложений

$$\Omega = \sum_{k=1}^{n} \{\omega : \xi(\omega) = x_k\},$$

$$\Omega = \sum_{k=1}^{m} \{\omega : \eta(\omega) = y_k\}.$$

Для независимости ξ и η необходимо и достаточно следующее условие: при любом выборе множества A из \mathcal{F}_{ξ} почти наверное выполнено равенство

$$P(\xi \in A \mid \eta) = P(\xi \in A). \tag{2}$$

В самом деле, в случае, когда P_n (B) = 0, оба равенста (1) и (2) удовлетворяются. Следовательно, до-

статочно докавать их эквивалентность в случае $P_n(B) > 0$. В этом случае (1) эквивалентно соотношению

$$P(\xi \in A \mid \eta \in B) = P(\xi \in A)$$
 (3)

и, значит, соотношению

$$M [P (\xi \subseteq A \mid \eta) | \eta \subseteq B] = P (\xi \subseteq A).$$
 (4)

С другой стороны, видно, что из (2) следует равенство (4). Обратно, так как $P(\xi \subseteq A \mid \eta)$ одновначно определяется из (4) с точностью до множеств вероятности нуль, то из (4) почти наверное следует равенство (2).

О пределение II. Пусть Σ — множество функций $\xi_{\nu}(\omega)$, где $\nu \in N$. Эти функции называются независимыми в совокупности, если выполняется следующее условие: пусть Σ' и Σ'' — два непересекающихся подмножества из Σ , A' (соответственно A'') — множество из \mathcal{F} , определяемое соотношением между $\xi_{\nu}(\omega)$ из Σ' (соответственно Σ''); тогда

$$P(A' \cap A'') = P(A') P(A'')$$
.

Совокупность всех ξ_{ν} (ω) из Σ' (соответственно из Σ''), можно рассматривать как координаты некоторой функции ξ' (соответственно ξ''). Определение Π требует лишь независимости ξ' и ξ'' в смысле определения Π при каждом выборе непересекающихся множеств Σ' и Σ'' .

Если $\xi_1, \, \xi_2, \, \ldots, \, \xi_n$ независимы, то всегда

$$P(\xi_1 \in A_1, \xi_2 \in A_2, \dots, \xi_n \in A_n) =$$

$$= P(\xi_1 \in A_1) P(\xi_2 \in A_2) \dots P(\xi_n \in A_n), (5)$$

если только множества A_k принадлежат соответствующим \mathcal{F}_{ξ_k} (доказательство посредством индукции). Этого равенства, однако, в общем случае никоим образом недостаточно для независимости $\xi_1, \, \xi_2, \, \ldots, \, \xi_n$.

Равенство (5) без затруднений обобщается на слу-

чай счетного произведения.

Из независимости случайных величин ξ_{ν_k} в каждой конечной группе $(\xi_{\nu_1},\ \xi_{\nu_2},\ \dots,\ \xi_{\nu_k})$, вообще говоря, еще не следует, что все ξ_{ν_k} независимы.

Наконец, легко заметить, что независимость функций ξ_{ν} , собственно говоря, является свойством соответствующих разложений $\mathfrak{A}_{\xi_{\nu}}$. Если, далее, ξ_{ν} — однозначные функции соответствующих ξ_{ν} , то из независимости ξ_{ν} следует независимость ξ_{ν}' .

§ 2. Независимые случайные величины

Если ξ_1 , ξ_2 ,..., ξ_n — независимые случайные величины, то из равенства (2) предыдущего параграфа следует, в частности, формула

$$F_{\xi_1, \xi_2, \dots, \xi_n}(x_1, x_2, \dots, x_n) = F_{\xi_1}(x_1) F_{\xi_2}(x_2) \dots F_{\xi_n}(x_n).$$
 (1)

Теорема I. Если алгебра множеств $\mathcal{F}_{\xi_1,\xi_2,\dots,\xi_n}$ состоит только из борелевских множеств пространства \mathbb{R}^n , то условие (1) является также достаточным для независимости величин $\xi_1, \xi_2, \dots, \xi_n$.

независимости величин $\xi_1, \xi_2, \ldots, \xi_n$. Доказательство. Пусть $\xi' = (\xi_{i_1}, \xi_{i_2}, \ldots, \xi_{i_k})$ и $\xi'' = (\xi_{j_1}, \xi_{j_2}, \ldots, \xi_{j_m})$ — две непересекающиеся подсистемы величин $\xi_1, \xi_2, \ldots, \xi_n$. На основании формулы (1) следует доказать, что для любых двух бо релевских множеств A' и A'' соответственно из R^k и R^m выполняется равенство

$$P(\xi' \in A', \quad \xi'' \in A'') = P(\xi' \in A') P(\xi'' \in A''). \quad (2)$$

Для множеств вида

$$A' = \{(x_{i_1}, \ldots, x_{i_k}) : x_{i_1} < a_1, \ldots, x_{i_k} < a_k\},\$$

$$A'' = \{(x_{j_1}, \ldots, x_{j_m}) : x_{j_1} < b_1, \ldots, x_{j_m} < b_k\}$$

это следует непосредственно из (1).

Далее доказывается, что это свойство сохраняется для сумм и разностей множеств указанного вида, откуда равенство (2) следует и для всех борелевских множеств.

Теорема II. Пусть $\xi = \{\xi_{\mathbf{v}}\}$ — произвольная (вообще бесконечная) совокупность случайных величин. Если алгебра множеств \mathcal{F}_{ξ} совпадает с 5-алгеброй \mathfrak{F}_{ξ} ($\mathcal{F}^{\mathcal{N}}$) (\mathcal{N} есть множество всех \mathfrak{v}) 1), то совокупность равенств

$$F_{\xi_{\nu_1},\dots,\xi_{\nu_n}}(x_1,\dots,x_n) = F_{\xi_{\nu_1}}(x_1)\dots F_{\nu_{\nu_n}}(x_n)$$
 (3)

необходима и достаточна для независимости величин $\mathbf{E}_{\cdots} \ \mathbf{v} \in \mathcal{N}$.

Доказательство. Необходимость этого условия следует непосредственно из формулы (1). Мы

теперь докажем, что оно также и достаточно.

Пусть \mathcal{N}' и \mathcal{N}'' — два непересекающихся подмножества из множества \mathcal{N} всех индексов \mathbf{v} , A' (соответственно A'') — множество из $\sigma(\mathcal{F}^{\mathcal{N}})$, определенное соотношением между $\xi_{\mathbf{v}}$ с индексами \mathbf{v} из \mathcal{N}'' (соответственно из \mathcal{N}''). Следует доказать, что тогда выполнено равенство

 $P(A' \cap A'') = P(A') P(A''). \tag{4}$

Действительно, если A' и A'' — цилиндрические множества, то мы имеем дело с соотношениями между конечным числом величин ξ_v , и равенство (4) представляет в этом случае простое следствие предшествующих результатов (формула (2)). А так как соотношение (4) сохраняется для сумм и разностей множеств A' (соответственно A''), то (4) доказано для всех множеств из $\sigma(\mathcal{F}^{N^o})$.

Пусть теперь для каждого v из некоторого множества $\mathscr N$ задана а priori функция распределения $F_v = F_v$ (x).

T е о p е м a III. Существует поле вероятностей (Ω, \mathcal{F}, P) и определенные на нем случайные величины ξ_{v} , $v \in \mathcal{N}$, которые независимы в совокупности, а каждая из величин ξ_{v} имеет в качестве функции распределения a priori данную функцию $F_{v}(x)$.

Доказательство. Примем за основное множество Ω пространство $R^{\mathcal{N}}$ (множество всех систем $\omega = \{x_{\mathbf{v}}\}$ действительных чисел $x_{\mathbf{v}}$, $\mathbf{v} \in \mathcal{N}$), а в каче-

¹⁾ См. § 4 гл. 111.

стве $\mathcal F$ возьмем σ-алгебру 1) о ($\mathcal F^{\mathscr N}$). Положим далее $\xi_{\mathsf v}(\omega)=x_{\mathsf v}$ и определим функцию распределения $F_{\mathsf v_1},\ldots,\mathsf v_n$ равенством

$$F_{\nu_1,\ldots\nu_n}(x_1,\ldots,x_n)=F_{\nu_1}(x_1)\ldots F_{\nu_n}(x_n).$$

Тогда, согласно основной теореме (§ 4, гл. III), на (Ω, \mathcal{F}) однозначно определена вероятностная функция \mathbf{P} , причем \mathbf{P} $\{\xi_{\mathbf{v}} < x\} = F_{\mathbf{v}}(x)$ для любого $\mathbf{v} \subseteq \mathscr{N}$.

Заметим еще, что, как было видно выше, из независимости всякой конечной группы величин ξ_{ν} (равенство (3)) следует независимость всех ξ_{ν} на $\sigma(\mathcal{F}^{\mathcal{N}})$. В объемлющих полях вероятностей это свойство может утеряться.

В заключение этого параграфа дадим еще некоторые признаки независимости для двух случайных величин.

Если две случайные величины ξ и η независимы и если Мξ и Мη конечны, то почти наверное

$$M (\eta \mid \xi) = M\eta,$$

$$M (\xi \mid \eta) = M\xi.$$
(5)

Эти формулы представляют непосредственное следствие второго определения условных математических ожиданий (формулы (10) и (11) § 4 пятой главы). Следовательно, в случае независимости § и η величины

$$f^2 = \frac{\mathsf{M}\, [\eta - \mathsf{M}\, (\eta \mid \xi)]^2}{\mathsf{D}\eta} \;, \quad g^2 = \frac{\mathsf{M}\, [\xi - \mathsf{M}\, (\xi \mid \eta)]^2}{\mathsf{D}\xi}$$

равны нулю (предполагается, что $D\xi > 0$ и $D\eta > 0$). Число f^2 называется корреляционным отношением η по ξ , g^2 — корреляционным отношением ξ по η (Пирсон). Из (5) далее следует равенство

$$M \xi \eta = M \xi \cdot M \eta, \qquad (6)$$

для доказательства которого надо воспользоваться формулой (15) из § 4 пятой главы:

$$\begin{array}{lll} \mathsf{M}\xi\eta \,=\, \mathsf{M}\,\left[\mathsf{M}\,(\xi\eta)\mid\xi\right] \,=\, \mathsf{M}\,\left[\xi\mathsf{M}\,(\eta\mid\xi)\right] \,=\, \mathsf{M}\,\left[\xi\!\cdot\!\mathsf{M}\eta\right] \,=\, \\ &=\, \mathsf{M}\xi\!\cdot\!\mathsf{M}\eta. \end{array}$$

¹) См. § 4 гл. III.

Следовательно, в случае независимости **ξ** и η величина

$$\rho = \frac{M\xi\eta - M\xi \cdot M\eta}{\sqrt{D\xi \cdot D\eta}}$$

также равна нулю. Как известно, ρ — коэффициент корреляции между ξ и η .

Если две случайные величины **ξ** и η удовлетворяют равенству (6), то они называются некоррелированными. Для суммы

$$s = \xi_1 + \xi_2 + \ldots + \xi_n$$

попарно некоррелированных величин $\xi_1, \ \xi_2, \ldots, \ \xi_n$ легко сосчитать, что

$$\mathsf{D}s = \mathsf{D}\xi_1 + \mathsf{D}\xi_2 + \ldots + \mathsf{D}\xi_n. \tag{7}$$

В частности, равенство (7) справедливо для независимых величин $\xi_1, \xi_2, \ldots, \xi_n$.

§ 3. Закон больших чисел

О пределение. Случайные величины η_n последовательности

$$\eta_1, \eta_2, \ldots, \eta_n, \ldots$$

называются устойчивыми, если существует такая числовая последовательность

$$d_1, d_2, \ldots, d_n, \ldots$$

в отонатижокого положительного в

$$P\{ \mid \eta_n - d_n \mid \geqslant \varepsilon \} \to 0, \ n \to \infty.$$

Если существуют все $M\eta_n$ и если можно положить

$$d_n = M\eta_n$$

то говорят, что устойчивость нормальная.

Если все
$$\eta_n$$
 равномерно ограничены, то из $P\{|\eta_n-d_n|>\epsilon\}\to 0, n\to\infty,$ (1)

следует соотношение

$$| M \eta_n - d_n | \rightarrow 0, n \rightarrow \infty,$$

и, следовательно,

$$P\{\mid \eta_n - M\eta_n \mid \geqslant \epsilon\} \to 0, \quad n \to \infty.$$
 (2)

Таким образом, устойчивость ограниченной последовательности необходимо нормальна.

Пусть

$$\sigma_n^2 = D \eta_n (= M (\eta_n - M\eta_n)^2).$$

По неравенству Чебышева

$$\mathsf{P}\left\{\,\left|\,\eta_n-\mathsf{M}\eta_n\,\right|\geqslant \epsilon\right\}\leqslant \frac{\sigma_n^2}{\epsilon^2}\,.$$

Следовательно, условие Маркова:

$$\sigma_n^2 \to 0, \quad n \to \infty,$$
 (3)

достаточно для нормальной устойчивости.

Если $\eta_n - M\eta_n$ равномерно ограничены,

$$|\eta_n - M\eta_n| \leqslant C$$

то по неравенству (9) из § 3 четвертой главы

$$P\{ \mid \eta_n - M\eta_n \mid \geqslant \varepsilon \} \geqslant \frac{\sigma_n^2 - \varepsilon^2}{C^2}.$$

Следовательно, в этом случае условие Маркова (3) является также и *необходимым* для нормальной устойчивости η_n .

Если

$$\eta_n = \frac{\xi_1 + \xi_2 + \cdots + \xi_n}{n}$$

и величины ξ_n попарно некоррелированы, то

$$D\eta_n = \frac{1}{n^2} |D\xi_1 + D\xi_2 + \cdots + D\xi_n|.$$

Следовательно, в этом случае для нормальной устойчивости средних арифметических η_n , т. е. для того,

чтобы для всякого е > 0

$$\lim_{n} P\left\{ \left| \frac{\xi_{1} + \cdots + \xi_{n}}{n} - \frac{M\xi_{1} + \cdots + M\xi_{n}}{n} \right| \geqslant \epsilon \right\} = 0,$$

достаточно выполнения следующего условия:

$$\lim_{n} \frac{1}{n^{2}} \sum_{i=1}^{n} D_{\xi_{i}}^{z} = 0 \tag{4}$$

(теореми Чебышева). В частности, условие (4) выполнено, если все величины ξ_n равномерно ограничены.

1. Можно обобщить эту теорему на случай слабо коррелированных величин ξ_n . Если предположить, что коэффициент корреляции ρ_{mn}^{-1}) между ξ_m и ξ_n удовлетворяет неравенству

$$\rho_{mn} \leqslant c (|m-n|)$$

и что $c(k) \geqslant 0$, то для нормальной устойчивости средних арифметических, т. е. для того, чтобы для всякого $\varepsilon > 0$

$$\lim_{n} P\left\{ \left| \frac{\xi_{1} + \cdots + \xi_{n}}{n} - \frac{M\xi_{1} + \cdots + M\xi_{n}}{n} \right| \geqslant \epsilon \right\} = 0,$$

достаточно выполнения условия 2)

$$\lim_{n} \frac{C_{n}}{n^{2}} \cdot \sum_{i=1}^{n} \mathsf{D}\xi_{i} = 0, \tag{5}$$

где $C_n = \sum_{k=1}^{n-1} c(k)$.

2. В случае независимых слагаемых ξ_n можно дать также необходимое и достаточное условие для устойчивости средних арифметических п...

 $^{^{1}}$) Ясно, что всегда $\rho_{nn}=1$. 2) Ср. A. K h i n t c h i n e, Sur la loi forte des grandes nombres, C. R. de l'Acad. Sci., Paris, т. 186 (1928), 285.

Для каждого ξ_n существует константа m_n (медиана ξ_n), удовлетворяющая следующим условиям:

$$P(\xi_n \leqslant m_n) \leqslant \frac{1}{2}$$
,
 $P(\xi_n \geqslant m_n) \leqslant \frac{1}{2}$.

Положим

$$\begin{split} \xi_{nk} &= \left\{ \begin{aligned} \xi_k, & \textit{ecau} & |\xi_k - m_k| \leqslant n, \\ 0, & \textit{ecau} & |\xi_k - m_k| > n, \end{aligned} \right. \\ \eta_n^* &= \frac{\xi_{n1} + \dots + \xi_{nn}}{n}. \end{split}$$

T е о р е м а 1). Пусть ξ_1 , ξ_2 , . . . — последовательность взаимно независимых случайных величин. Тогда условия

$$\sum_{k=1}^{n} P\{|\xi_k - m_k| > n\} = \sum_{k=1}^{n} P\{\xi_{n_k} \neq \xi_k\} \to 0, \quad n \to \infty,$$
(6)

$$\frac{1}{n^2} \sum_{k=1}^{n} \mathsf{D}\xi_{nk} \to 0, \quad n \to \infty \tag{7}$$

необходимы и достаточны для устойчивости величин η_n , $n=1,2,\ldots$

При этом постоянные d_n , $n=1,2,\ldots$, можно принять равными $M\eta_n^*$, так что в случае

$$M\eta_n^* - M\eta_n \to 0, \quad n \to \infty$$

(и только в этом случае) устойчивость нормальная.

¹⁾ Cp. A. Kolmogorov, Über die Summen durch den Zufall bestimmter unabhängiger Grössen, Math. Ann., т. 99 (1928), стр. 309—319 (исправления и замечания к этой работе, т. 102 (1929), стр. 484—488), теорема VIII и добавление к ней на стр. 318.

Докавательство. Достаточность условий (6), (7) устанавливается просто. В самом деле, поскольку

$$P(\eta_n \neq \eta_n^*) \leqslant \sum_{k=1}^n P(\xi_{nk} \neq \xi_k) \to 0, \quad n \to \infty,$$

а согласно неравенству Чебышева

$$\mathsf{P}\{\mid \eta_n^* - \mathsf{M}\eta_n^* \mid \geqslant \varepsilon\} \leqslant \frac{1}{n^2 \varepsilon^2} \sum_{k=1}^n \mathsf{D}\xi_{nk} \to 0, \quad n \to \infty,$$

TO

$$P\{ |\eta_n - M\eta_n^*| \geqslant \varepsilon \} \rightarrow 0, \quad n \rightarrow \infty.$$

Для доказательства необходимости нам понадобится ряд вспомогательных предложений.

Лемма 1. Пусть A_1, A_2, \ldots, A_n — независимые события, $P(A_i) > 0$, $i = 1, 2, \ldots, n$ и для некоторого $u \geqslant 0$ $P(\bigcup_{i=1}^n A_i) \geqslant u$. Если, кроме того, событие U таково, что для каждого $i = 1, 2, \ldots, n$

$$P(U|A_t) \geqslant u_t$$

то тогда

$$\mathsf{P}(U) \geqslant \frac{1}{9} u^2. \tag{8}$$

Докавательство. Если существует такое ι , что $\mathsf{P}\left(A_{i}\right)\geqslant\frac{1}{3}\;u$, то

$$\mathsf{P}(U) \geqslant \mathsf{P}(U \mid A_i) \, \mathsf{P}(A_i) \geqslant \frac{1}{3} u^2$$
.

Пусть теперь для всех i = 1, 2, ..., n $P(A_i) < \frac{1}{3}u.$

Тогда найдется такое к, что

$$\frac{1}{3} u \leqslant \mathsf{P}(A_1 \cup \ldots \cup A_k) \leqslant \frac{2}{3} u,$$

и, значит, для всех $i \leqslant k$

$$P(A_{2} \cup \ldots \cup A_{i-1} | A_{i}) = P(A_{1} \cup \ldots \cup A_{i-1}) \leqslant$$

$$\leqslant P(A_{1} \cup \ldots \cup A_{k}) \leqslant \frac{2}{3} u,$$

$$P(U \cap \overline{(A_{1} \cup \ldots \cup A_{i-1})} | A_{i}) \geqslant \frac{1}{3} u,$$

 $P(U \cap \overline{(A_1 \cup \ldots \cup A_{i-1})}) \cap A_i) \geqslant \frac{1}{3} u P(A_i).$

Отсюда

$$P(U) \geqslant \sum_{i=1}^{k} P(U \cap \overline{(A_1 \cup \ldots \cup A_{i-1})} \cap A_i) \geqslant$$

$$\geqslant \frac{1}{3} u \sum_{i=1}^{k} P(A_i) \geqslant \frac{1}{3} u P(A_1 \cup \ldots \cup A_k) \geqslant \frac{1}{9} u^2.$$

Лемма 2. Пусть ξ_1 , ξ_2 , . . . , ξ_n — независимые, ограниченные, $|\xi_i| \leqslant c$, $i=1,\ldots,$ п, случайные величины с нулевыми средними. Тогда для всякого $\alpha>0$ и целого т

$$\mathsf{P}\left\{\max_{k\leqslant n}|\xi_1+\cdots+\xi_k|\geqslant m\left(\alpha D+c\right)\right\}\leqslant \frac{1}{\alpha^{2m}},\qquad (9)$$

г∂е

$$D^2 = \sum_{i=1}^n \mathbf{D} \xi_i$$
.

Доказательство. Обозначим

$$R = \alpha D + c, \ s_0 = 0, \ s_k = \xi_1 + \ldots + \xi_k,$$
 $B_{ik} = \{\omega : |s_j| < iR, \ j < k; \ |s_k| \geqslant iR\},$
 $B_i = \sum_{k=1}^n B_{ik}.$

Замечая, что на множестве $B_{i\,h}$

$$|s_h| \leqslant iR + c$$

получаем

$$\begin{split} \mathsf{P}\left(B_{i+1} \,|\, B_{ik}\right) &= \mathsf{P}\left\{\max_{1 \leqslant k \leqslant n} |s_k| \geqslant (i+1)\,R\,|\, B_{ik}\right\} \leqslant \\ &\leqslant \mathsf{P}\left\{\max_{k+1 \leqslant p \leqslant n} \Big| \sum_{j=k+1}^p \xi_j \Big| \geqslant \alpha D\,|\, B_{ik}\right\} = \\ &= \mathsf{P}\left\{\max_{k+1 \leqslant p \leqslant n} \Big| \sum_{j=k+1}^p \xi_j \Big| \geqslant \alpha D\right\}. \end{split}$$

Из доказываемого далее неравенства (3) теоремы II § 5 следует, что

$$\mathsf{P}\left\{\max_{k+1\leqslant p\leqslant n}\Big|\sum_{j=k+1}^p \xi_j\Big| \geqslant \alpha D\right\} \leqslant \frac{\sum_{j=k+1}^p \mathsf{D}\xi_j}{\alpha^2 D^2} \leqslant \frac{D^2}{\alpha^2 D^2} = \frac{1}{\alpha^2}.$$

Поэтому $P(B_{i+1}|B_{ik}) \leqslant \frac{1}{\alpha^2}$ при любом $k=1,2,\ldots,n$. Значит,

$$P(B_{i+1} \mid B_i) \leqslant \frac{1}{\alpha^2}$$

И

$$P \{ \max_{1 \le k \le n} |s_k| \ge mR \} = P(B_m) =$$

$$= P(B_m | B_{m-1}) P(B_{m-1} | B_{m-2}) \dots P(B_1 | B_0) \le \frac{1}{1 - 2m}.$$

JI е м м а 3. Пусть $\xi_1, \xi_2, \ldots, \xi_n$ — независимые ограниченные случайные величины, причем $|\xi_i - M \xi_i| \leqslant C, i = 1, 2, \ldots, n$. Тогда

$$P\{|\xi_{1}+\dots+\xi_{n}| \geqslant a\} \geqslant \frac{1}{1600} \left[1 - \frac{4a^{2} + C^{2}}{\sum_{i=1}^{n} D\xi_{i}}\right]. \quad (10)$$

Докавательство. Обозначим $s=\xi_1+\dots+\xi_n,\ D^2=\sum_{i=1}^n \mathsf{D}\xi_i.$ Если C>D или 2a>D, то правая часть в (10) отрицательна и неравенство очевидно.

Пусть теперь одновременно $C\leqslant D$, $2a\leqslant D$. Тогда достаточно показать, что

$$P\left(|s| \gg \frac{D}{2}\right) \gg \frac{1}{1600}$$
,

поскольку, очевидно,

$$P(|s| \geqslant a) \geqslant P(|s| \geqslant \frac{D}{2}) \geqslant \frac{1}{1600} \geqslant \frac{1}{1600} \left[1 - \frac{4a^2 + C^2}{D^2}\right].$$

Обозначим $A=\{\mid s\mid \geqslant \frac{D}{2}\}$. Если $\mid \mathsf{M} s\mid \geqslant 2D$, го

$$\begin{split} D^2 \geqslant \mathsf{P}(\bar{A}) \, \mathsf{M} \, \{ (s - \mathsf{M} s)^2 \mid \bar{A} \} \geqslant & \left(2D - \frac{D}{2} \right)^2 \, \mathsf{P}(\bar{A}) = \\ & = \frac{9}{4} \, D^2 \mathsf{P} \, (\bar{A}) \end{split}$$

и, значит,

$$P(A) \geqslant \frac{1}{2}$$
.

Предположим, тенерь, что |М s | < 2D. Обозначая $A_m = \left\{ \omega : 3mD \leqslant |s - Ms| < 3 (m+1) D, |s| \geqslant \frac{D}{2} \right\}$

и применяя лемму 2, находим

$$\begin{split} \mathsf{P}(A_m) \leqslant \mathsf{P}\{|s - \mathsf{M}s| \geqslant 3mD\} &= \mathsf{P}\{|s - \mathsf{M}s| \geqslant \\ \geqslant m \left[2D + D\right]\} \leqslant \mathsf{P}\{|s - \mathsf{M}s| \geqslant m \left[2D + C\right]\} \leqslant \frac{1}{s^{2m}}. \end{split}$$

Отсюда

$$\begin{split} \mathsf{M}\,(s^2\,|\,A_m)\,\mathsf{P}\,(A_m) &= \mathsf{M}\,[(s-\mathsf{M} s)^2 + 2\,(s-\mathsf{M} s)\,\mathsf{M} s \,+\,\\ &+ (\mathsf{M} s)^2\,|\,A_m]\,\mathsf{P}\,(A_m) \leqslant 2s\,\frac{(m+1)^2}{9^{2m}}\cdot D^2. \end{split}$$

Hа множестве $A' = \sum_{m=0}^{5} A_m$

$$|s| \leqslant |s - Ms| + |Ms| \leqslant 20 \cdot D.$$

Поэтому

M (
$$s^2 \mid A'$$
) P (A') $\leqslant 400 \ D^2$ P (A).

Ясно также, что

$$\mathsf{M}\left(s^{2}\,|\,\bar{A}\right)\mathsf{P}\left(\bar{A}\right)\leqslant\frac{1}{4}\,D^{2}.$$

Следовательно,

$$\begin{split} D^2 \leqslant \mathsf{M} s^2 &= \mathsf{M} \left[s^2 \, | \, \bar{A} \, \right] \mathsf{P} (\bar{A}) + \mathsf{M} \left[s^2 \, | \, A' \, \right] \mathsf{P} (A') \, + \\ &+ \sum_{m=6}^{\infty} \mathsf{M} \left[s^2 \, | \, A_m \, \right] \mathsf{P} (A_m) \leqslant \\ \leqslant \frac{1}{4} \, D^2 + 400 D^2 \mathsf{P} (A) \, + \sum_{m=6}^{\infty} \frac{(m+1)^2}{2^{2m}} \cdot 25 \cdot D^2, \end{split}$$

и, значит,

$$P(A) \gg \frac{1}{1600}$$
.

Доказательство теоремы. Необходимость. Пусть последовательность d_n , $n=1,\,2,\,\ldots$, такова, что для любого $\varepsilon>0$ Р ($|\eta_n-d_n|\geqslant \varepsilon$) $\to 0$, $n\to\infty$. Покажем, что тогда

$$\sum_{k=1}^{n} P\{|\xi_k - m_k| \geqslant n\varepsilon\} \to 0, \quad n \to \infty.$$
 (11)

Обозначим для данного п

$$U = \left\{ |\eta_n - d_n| \geqslant \frac{\varepsilon}{2} \right\},$$
 $A_k = \{ |\xi_k - m_k| \geqslant n\varepsilon \},$

$$\begin{split} B_k &= \left\{ \left| \frac{\sum\limits_{i \neq k} \xi_i + m_k}{n} - d_n \right| \geqslant \frac{\varepsilon}{2} \right\} = \\ &= \left\{ \left| (\eta_n - d_n) + \frac{m_k - \xi_k}{n} \right| \geqslant \frac{\varepsilon}{2} \right\}. \end{split}$$

Поскольку m_k — медиана ξ_k , то

$$P(U|B_k) \geqslant \frac{1}{2}$$
.

Для достаточно больших п

$$P(U) \leqslant \frac{1}{4}$$

поэтому

$$\frac{1}{4} \geqslant \mathsf{P}(U) \geqslant \mathsf{P}(U \mid B_k) \mathsf{P}(B_k) \geqslant \frac{1}{2} \mathsf{P}(B_k),$$

т. е.

$$P(B_k) \leqslant \frac{1}{2}$$
.

Далее, если событие A_h выполняется, а B_h нет, то выполняется событие U и, значит,

 $P(B_h \mid A_h) + P(U \mid A_h) \geqslant 1.$

Ho

$$P(B_k | A_k) = P(B_k) \leqslant \frac{1}{2}$$
.

Следовательно,

$$P(U \mid A_k) \geqslant 1 - P(B_k \mid A_k) \geqslant \frac{1}{2} \geqslant \frac{1}{2} P(\bigcup_{k=1}^n A_k).$$

Применим лемму 1, взяв

$$u = \frac{1}{2} \mathsf{P} \left(\bigcup_{k=1}^{n} A_{k} \right).$$

Тогда

$$P(U) \geqslant \frac{1}{36} [P(\bigcup_{k=1}^{n} A_k)]^2.$$
 (12)

События A_1, \ldots, A_n независимы, поэтому

$$P(\bigcup_{k=1}^{n} A_k) = 1 - \prod_{k=1}^{n} (1 - P(A_k)).$$
 (13)

Поскольку по условию Р $(U) \to 0$, $n \to \infty$, то из (12) и (13) получаем искомое соотношение (11). Положим теперь

$$ar{\xi}_{nk} = egin{cases} \xi_k, & ext{если } |\xi_k - m_k| \leqslant n, \ m_k, & ext{если } |\xi_k - m_k| > n, \end{cases}$$

п

98

$$ar{\xi}_{nk}\left(arepsilon
ight) = egin{cases} \xi_k, & ext{если } |\xi_k - m_k| \leqslant arepsilon n, \ m_k, & ext{если } |\xi_k - m_k| > arepsilon n. \end{cases}$$

Из (11) следует, что если Р $\{|\eta_n - d_n| \geqslant \epsilon\} \to 0$, $n \to \infty$, то и

$$\mathsf{P}\left\{\left|\frac{1}{n}\sum_{k=1}^{n}\widehat{\xi}_{nk}-d_{n}\right|\geqslant\varepsilon\right\}\to0,$$

$$P\left\{\left|\frac{1}{n}\sum_{k=1}^{n}\bar{\xi}_{nk}\left(\varepsilon\right)-d_{n}\right|\geqslant\varepsilon\right\}\rightarrow0.$$

Обозначим $\overline{\zeta}_{nh}(\varepsilon) = \overline{\xi}_{nh}(\varepsilon) - M\overline{\xi}_{nh}(\varepsilon)$. Тогда $|\overline{\zeta}_{nh}(\varepsilon)| \leqslant 2$ $n\varepsilon$ и по лемме 3

$$\begin{split} \mathsf{P}\left\{\left|\frac{1}{n}\sum_{k=1}^{n}\bar{\xi}_{nk}\left(\varepsilon\right)-d_{n}\right|\geqslant\varepsilon\right\} = \\ &= \mathsf{P}\left\{\left|\sum_{k=1}^{n}\bar{\xi}_{nk}\left(\varepsilon\right)-nd_{n}\right|\geqslant\varepsilon\cdot n\right\} = \\ &= \mathsf{P}\left\{\left|\sum_{k=1}^{n}\left(\bar{\xi}_{nk}\left(\varepsilon\right)-d_{n}\right)\right|\geqslant\varepsilon n\right\}\geqslant\frac{1}{1600}\left[1-\frac{8\varepsilon^{2}n^{2}}{\sum_{n}\mathsf{D}\bar{\xi}_{nk}\left(\varepsilon\right)}\right], \end{split}$$

откуда

$$\limsup_{n} \frac{1}{n^2} \sum_{k=1}^{n} \mathsf{D}\bar{\xi}_{nk}(\varepsilon) \leqslant 8\varepsilon^2. \tag{14}$$

Для ε ≤ 1

$$|\mathsf{D}\bar{\xi}_{nk}(\epsilon) - \mathsf{D}\bar{\xi}_{nk}| \leqslant 8n^2\mathsf{P}\{|\xi_k - m_k| > n\epsilon\}.$$

Тогда из (11), (13) и (14) следует, что

$$\limsup_{n} \frac{1}{n^2} \sum_{k=1}^{n} \mathsf{D}\bar{\xi}_{nk} \leqslant 8\varepsilon^2,$$

а значит, в силу произвольности $\varepsilon \in (0, 1]$

$$\lim_n \frac{1}{n^2} \sum_{k=1}^n \mathsf{D} \xi_{nk} = \lim_n \frac{1}{n^2} \sum_{k=1}^n \mathsf{D} \tilde{\xi}_{nk} = 0.$$

3. Дальнейшее обобщение теоремы Чебышева получается, если предположить, что η_n каким-нибудь образом зависят от исходов каких-либо п испытаний

$$\mathfrak{A}_1, \, \mathfrak{A}_2, \, \ldots, \, \mathfrak{A}_n,$$

так что после каждого определенного исхода всех этих n испытаний \mathfrak{n}_n принимает определенное значение. Общая идея всех теорем, известных под названием закона больших чисел, состоит в том, что если вависимость величины \mathfrak{q}_n от каждого отдельного испытания $\mathfrak{A}_k,\ k=1,2,\ldots,\ n,$ очень мала при больших n, то величины η пустойчивы. Если рассматривать

$$eta_{nk}^2 = \mathsf{M} \left[\mathsf{M} \left(\eta_n \, \middle| \, \mathfrak{A}_1, \, \mathfrak{A}_2, \ldots, \, \mathfrak{A}_k \right) - \mathsf{M} \left(\eta_n \, \middle| \, \mathfrak{A}_1, \, \mathfrak{A}_2, \ldots, \, \mathfrak{A}_{k-1} \right) \right]^2$$

как разумную меру зависимости величины η_n от испытания Я,, то вышеупомянутая общая идея закона больших чисел может быть конкретизирована следующими рассуждениями 1).

Пусть

$$\zeta_{nk} = M \left[\eta_n \, \middle| \, \mathfrak{A}_1, \ldots, \, \mathfrak{A}_k \right] - M \left[\eta_n \, \middle| \, \mathfrak{A}_1, \ldots, \, \mathfrak{A}_{k-1} \right].$$

Тогла

$$\eta_n - M\eta_n = \zeta_{n_1} + \zeta_{n_2} + \ldots + \zeta_{n_n},$$

$$\begin{split} \mathsf{M}\zeta_{nk} &= \mathsf{MM}\left[\eta_n \,\middle|\, \mathfrak{A}_1, \ldots, \,\mathfrak{A}_k\right] - \mathsf{MM}\left[\eta_n \,\middle|\, \mathfrak{A}_1, \ldots, \,\mathfrak{A}_{k-1}\right] = \\ &= \mathsf{M}\eta_n - \mathsf{M}\eta_n = 0, \\ \mathsf{D}\zeta_{nk} &= \mathsf{M}\zeta_{nk}^2 = \beta_{nk}^2. \end{split}$$

$$\zeta_{nk} = M\zeta_{nk}^2 = \beta_{nk}^2.$$

Легко, далее, подсчитать, что случайные величины $\zeta_{n\,h}, \, k=1,2,\ldots,\, n$, некоррелированы. В самом деле,

¹⁾ Cp. A. Kolmogoroff, Sur la loi des grandes nombres, Rend. Acad. Lincei, v. 9 (1929), 470-474.

пусть i < k, тогда 1)

$$\begin{aligned} & M \left[\zeta_{ni} \zeta_{nk} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right] = \zeta_{ni} M \left[\zeta_{nk} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right] = \\ & = \zeta_{ni} M \left\{ M \left(\eta_{n} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k} \right) - \\ & - M \left(\eta_{n} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right) \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right\} = \\ & = \zeta_{ni} \left[M \left(\eta_{n} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right) - M \left(\eta_{n} \, | \, \mathfrak{A}_{1}, \, \ldots, \, \mathfrak{A}_{k-1} \right) \right] \end{aligned}$$

и, следовательно,

$$\mathsf{M}\zeta_{ni}\zeta_{nk} = 0, \quad i < k.$$

Итак,

$$\mathsf{D} \eta_n = \sum_{i=1}^n \mathsf{D} \zeta_{ni} = \sum_{i=1}^n \beta_{ni}^2.$$

Таким образом, условие

$$\sum_{i=1}^{n} \beta_{ni}^{2} \to 0, \quad n \to \infty$$

достаточно для нормальной устойчивости величин η_n .

§ 4. Замечания к понятию математического ожидания

Мы определили математическое ожидание величины § как

$$\mathsf{M}\xi = \int_{\Omega} \xi(\omega) \mathsf{P}(d\omega) = \int_{-\infty}^{\infty} x F_{\zeta}(dx).$$

При этом интеграл в правой части понимается в смысле

$$\mathsf{M}\xi = \int_{-\infty}^{\infty} x F_{\xi}(dx) = \lim_{\substack{a \to -\infty \\ a \to +\infty}} \int_{a}^{b} x F_{\xi}(dx). \tag{1}$$

Напрашивается мысль о том, чтобы рассматривать выражение

$$\widetilde{\mathsf{M}}\xi = \lim_{a \to +\infty} \int_{-a}^{a} x F_{\xi} (dx) \tag{2}$$

¹⁾ Применение формулы (15) § 4 гл. V.

в качестве обобщенного математического ожидания. Однако при этом теряются некоторые простые свойства математических ожиданий. Например, формула

$$\widetilde{M}[\xi + \eta] = \widetilde{M}\xi + \widetilde{M}\eta$$

пе всегда верна. Далее мы увидим, что при некоторых ограничивающих предположениях определение (2) является вполне естественным и пригодным.

Именно, можно поставить вопрос следующим обра-

вом. Пусть

$$\xi_1, \, \xi_2, \, \ldots, \, \xi_n, \, \ldots$$

— последовательность независимых величин, имеющих ту же функцию распределения $F_{\xi}(x) = F_{\xi_n}(x)$, $n=1,\ 2,\ldots$, что и ξ . Пусть далее

$$\eta_n = \frac{\xi_1 + \xi_2 + \ldots + \xi_n}{n}.$$

Спрашивается, существует ли постоянная $\mathsf{M}^\circ \xi$ такая, что при каждом $\varepsilon > 0$

$$\lim_{n} \mathbf{P} \{ | \eta_{n} - \mathsf{M}^{\circ} \xi | > \varepsilon \} = 0. \tag{3}$$

Ответ гласит: если такая постоянная $M^{\circ}\xi$ существует, то $M^{\circ}\xi = \widetilde{M}\xi$. Необходимое и достаточное условие для существования $M^{\circ}\xi$ заключается в существовании предела (2) и выполнении соотношения

$$P(|\xi| > n) = o\left(\frac{1}{n}\right). \tag{4}$$

Этот результат непосредственно вытекает из следующей теоремы.

T е о р е м а. Пусть ξ_1 , ξ_2 , . . . — последовательность независимых одинаково распределенных случайных величин с функцией распределения F(x). Для устойчивости средних арифметических

$$\eta_n = \frac{\xi_1 + \xi_2 + \ldots + \xi_n}{n}, \quad n = 1, 2, \ldots$$

необходимо и достаточно выполнение условия (4). При этом в случае устойчивости можно положить

$$d_n = \int_{-\infty}^n x F(dx).$$

Доказательство. Обозначим

$$\xi_{nk} =
 \begin{cases}
 \xi_k, & \text{если } |\xi_k - m| \leqslant n, \\
 0, & \text{если } |\xi_k - m| > n,
 \end{cases}$$

где *т* — медиана случэйной величины ξ₁. Из условпя (4) следует, что

$$\sum_{k=1}^{n} P(\xi_{nk} \neq \xi_k) = nP(|\xi_1 - m| > n) \to 0, \quad n \to \infty$$

14

$$\overline{\lim}_{n} \frac{1}{n} \int_{\{x: |x-m| \leq n\}} x^{2} F(dx) = \overline{\lim}_{n} \frac{1}{n} \int_{|x| \leq n} x^{2} F(dx).$$
 (5)

Ho

$$\frac{1}{n} \int_{|x| \le n} x^2 F(dx) = \frac{1}{n} \sum_{k=1}^{n} \int_{|x-1| \le |x| \le k} x^2 F(dx) \le$$

$$\le \frac{1}{n} \sum_{k=1}^{n} k^2 P(k-1 < |\xi_1| \le k) \le$$

$$\le \frac{2}{n} \sum_{k=1}^{n} \left[\sum_{l=1}^{k} l P(k-1 < |\xi_1| \le k) \right] \le$$

$$\leqslant \frac{2}{n} \sum_{l=1}^{n} l \mathsf{P}(l-1 < |\xi_1| \leqslant l) \leqslant \frac{2}{n} \sum_{l=1}^{n} l \mathsf{P}(|\xi_1| > l-1) \rightarrow 0,$$

поскольку
$$lP\{|\xi_1|>l-1\}\to 0,\ l\to\infty.$$

Поэтому

$$rac{1}{n^2} \sum_{k=1}^n \mathsf{D} \xi_{nk} \leqslant rac{1}{n^2} \sum_{k=1}^n \mathsf{M} \xi_{nk}^2 = = rac{1}{n^2} \int\limits_{\mathbb{R}^2} x^2 F\left(dx\right) o 0, \quad n o \infty.$$

Таким образом, условия (6), (7) теоремы из § 3 выполнены и для всякого $\varepsilon > 0$

$$P(|\eta_n - M\eta_n^*| \ge \varepsilon) \to 0, \quad n \to \infty,$$

где

$$\mathsf{M}\eta_n^{\star} = \mathsf{M} \frac{\xi_{n1} + \ldots + \xi_{nn}}{n} = \int\limits_{|x-m| \leqslant n} x F\left(dx\right).$$

Но в силу условия (4)

$$\int\limits_{|x-m|\leqslant n}xF\left(dx\right)-\int\limits_{|x|\leqslant n}xF\left(dx\right)\to 0,\quad n\to\infty,$$

поэтому

$$P(|\eta_n - d_n| \geqslant \varepsilon) \rightarrow 0, \quad n \rightarrow \infty,$$

где

$$d_n = \int_{-\infty}^{n} x F(dx).$$

Обратно, если последовательность η_n , $n=1, 2, \ldots$ устойчива, то в силу соотношения (11) из § 3

$$nP\{\mid \xi_1 - m\mid \geqslant n\} \rightarrow 0, n \rightarrow \infty,$$

откуда следует условие (4).

Если существует математическое ожидание в прежнем смысле (формула (1)), то условие (4) всегда выполнено 1) и $M \xi = M^{\circ} \xi$.

Таким образом, $M^{\circ}(\xi)$ является законным обобщением математического ожидания $M(\xi)$. Для него сохраняются свойства I—VII (глава четвертая, § 2), однако в общем случае из существования $M^{\circ}(\xi)$ не следует существование $M^{\circ}(\xi)$!

Для того чтобы доказать, что новое понятие математического ожидания является действительно более общим, чем предыдущее, достаточно следующего примера.

¹⁾ Cp. A. Kolmogoroff, Bemerkungen zu meiner Arbeit, Über die Summen zufälliger Grössen, Math. Ann., T. 102 (1930), crp. 484-488, теорема XII.

Возьмем илотность вероятности $f_{\, \epsilon} \left(x \right)$ равной

$$f_{\xi}(x) = \frac{C}{(|x|+2)^2 \ln(|x|+2)}$$
,

причем постояниая С определяется из условия

$$\int_{-\infty}^{\infty} f_{\xi}(x) dx = 1.$$

Легко далее подсчитать, что в этом случае выполнено условие (4). Формула (2) дает значение

$$M^{\circ}\xi = 0$$
,

однако интеграл

$$\int_{-\infty}^{\infty} |x| F_{\xi}(dx) = \int_{-\infty}^{\infty} |x| f_{\xi}(x) dx$$

расходится.

Если Ω есть отрезок [0,1] и P — лебеговская мера, то M° ξ есть не что иное, как A-интеграл 1)

$$(A)$$
 $\int_{0}^{1} \xi(\omega) P(d\omega).$

§ 5. Усиленный закон больших чисел, еходимость рядов

О пределение. Случайные величины η_n последовательности

$$\eta_1, \eta_2, \ldots, \eta_n, \ldots$$

сильно устойчивы, если существует такая числовая послеповательность

$$d_1, d_2, \ldots, d_n, \ldots,$$

¹⁾ См., например, Н. К. Б а р и, Тригономотрические ряды, Физматия, 1961.

что случайные величины

$$\eta_n - d_n$$

почти наверное стремятся к нулю при $n \to \infty$?

$$P\{\lim_{n} (\eta_{n} - d_{n}) = 0\} = 1.$$

Из сильной устойчивости следует, очевидно, обычная устойчивость. Если можно выбрать

$$d_n = M\eta_n$$

то говорят, что сильная устойчивость нормальна.

T е o p е m а I. Hусть ξ_1 , ξ_2 , . . . — последовательность независимых случайных величин. Для сильной нормальной устойчивости средних арифметических

$$\eta_n = \frac{\xi_1 + \ldots + \xi_n}{n}, \quad n = 1, 2, \ldots,$$
(1)

достаточно выполнения условия 1)

$$\sum_{n=1}^{\infty} \frac{\mathsf{D}\xi_n}{n^2} < \infty. \tag{2}$$

 ∂m о условие является наилучшим в том смысле, что ∂ ля любого ряда неотрицательных постоянных b_1 ,

$$b_2, \ldots$$
 таких, что $\sum_{n=1}^{\infty} \frac{b_n}{n^2} = \infty$, можно построить та-

кой ряд из независимых случайных величин $\xi_1, \xi_2, \ldots,$ что $D \xi_n = b_n$, а соответствующие средние арифметические $\eta_n, n = 1, 2, \ldots,$ не будут сильно устойчивы.

Для доказательства нам понадобится неравенство (3) из следующей теоремы.

Теорема II. Пусть ξ_1 , ξ_2 , . . . , ξ_n — независимые случайные величины с нулевыми средними. Тогда

¹⁾ A. Kolmogoroff, Sur la loi forte des grandes nombers, C. R. Acad. Sci., Paris, v. 191 (1930), 910-911.

 ∂ ля любого a > 0

$$\mathsf{P}\{\max_{1\leqslant k\leqslant n}|\xi_1+\ldots+\xi_k|\geqslant a\}\leqslant \frac{\sum\limits_{k=1}^n\mathsf{D}\xi_k}{a^2}. \tag{3}$$

(4)

Если к тому же случайные величины ξ_1, \ldots, ξ_n ограничены, $|\xi_i| \leqslant c$, $i=1,\ldots,n$, то справедлива также оценка снизу

$$\mathsf{P}\{\max_{1\leqslant k\leqslant m}|\xi_1+\ldots+\xi_k|\geqslant a\}\geqslant 1-\frac{(c+a)^2}{\displaystyle\sum_{k=1}^n\mathsf{D}\xi_k}\,. \tag{4}$$
 Доказательство теоремы II. Поло-

 $\mathbf{x}_{\text{HM}} s_0 = 0, \ s_h = \xi_1 + \ldots + \xi_h,$

$$A=\{\max_{1\leqslant k\leqslant n}|s_k|\geqslant a\},\quad A_k=\{\max_{j\leqslant k\leqslant 1}|s_j|< a,\,|s_k|\geqslant a\},$$
где $k=1,2\ldots$, $n.$ Тогда $\sum_{j\leqslant k\leqslant 1}^n A_k=A$, и, обозначая I_B —

индикатор множества В, находим

$$\sum_{k=1}^{n} \mathsf{D}\xi_{k} = \mathsf{M}s_{n}^{2} \geqslant \mathsf{M} [s_{n}^{2}I_{A}] = \sum_{k=1}^{n} \mathsf{M} [s_{n}^{2}I_{A_{k}}] =$$

$$= \sum_{k=1}^{n} \mathsf{M} \{ [s_{k} + (s_{n} - s_{k})]^{2} I_{A_{k}} \} = \sum_{k=1}^{n} \mathsf{M} I_{A_{k}} s_{k}^{2} +$$

$$+ \sum_{k=1}^{n} \mathsf{M} I_{A_{k}} (s_{n} - s_{k})^{2} + 2 \sum_{k=1}^{n} \mathsf{M} [I_{A_{k}} s_{k} (s_{n} - s_{k})] \geqslant$$

$$\geqslant a^{2} \sum \mathsf{P} (A_{k}) = a^{2} \mathsf{P} (A), \quad (5)$$

где мы использовали то, что

$$M\left[I_{A_k}s_k\left(s_n-s_k\right)\right]=M\left[I_{A_k}s_kM\left(s_n-s_k\mid\xi_1,\ldots,\xi_k\right)\right]=0.$$

Из (5) следует требуемое неравенство (3).

Чтобы установить (4), заметим, что, с одной стороны,

$$\mathsf{M}\left[s_n^2I_A\right] = \mathsf{M}s_n^2 - \mathsf{M}s_n^2I_{\overline{A}} \geqslant$$

С другой стороны, воспользуемся тем, что на множествах $A_k \mid s_{k-1} \mid \leqslant a$, и, значит, $\mid s_k \mid \leqslant a+c$. Тогда

$$M[s_n^2 I_A] = \sum_{k=1}^n M[s_k^2 I_{A_k}] + \sum_{k=1}^n M[I_{A_k} (s_n - s_k)^2] \leqslant$$

$$\leqslant (a+c)^2 \sum_{k=1}^n P(A_k) + \sum_{k=1}^n P(A_k) \sum_{j=k+1}^n D\xi_j \leqslant$$

$$\leqslant \left[(a+c)^2 + \sum_{j=1}^n D\xi_j \right] P(A). \quad (7)$$

Из (6) и (7) получаем искомое неравенство

$$\begin{split} \mathsf{P}(A) \geqslant \frac{\sum\limits_{k=1}^{\sum} \mathsf{D}\xi_k - a^2}{(a+c)^2 + \sum\limits_{k=1}^{n} \mathsf{D}\xi_k - a^2} = \\ &= 1 - \frac{(a+c)^2}{(a+c)^2 + \sum\limits_{k=1}^{n} \mathsf{D}\xi_k - a^2} \geqslant 1 - \frac{(a+c)^3}{\sum\limits_{k=1}^{n} \mathsf{D}\xi_k} \,. \end{split}$$

Доказательство теоремы І. Не ограничивая общности, можно считать $\mathsf{M}\xi_n=0$, n=1, 2, . . . Тогда для доказательства того, что средние арифметические $\eta_n=\frac{s_n}{n}$ сходятся с вероятностью единица к нулю, достаточно доказать, что для любого $\varepsilon>0$ вероятность

$$P\left\{\lim_{n}\sup\left|\frac{s_{n}}{n}\right|\geqslant\varepsilon\right\}=0.$$

В силу неравенства (3)

$$\begin{split} P_m & \equiv \mathsf{P} \left\{ \max_{2^m \leqslant n < 2^{m+1}} \left| \frac{s_n}{n} \right| \geqslant \varepsilon \right\} \leqslant \\ & \leqslant \mathsf{P} \left\{ \max_{1 \leqslant n < 2^{m+1}} \left| s_n \right| \geqslant 2^m \varepsilon \right\} \leqslant \left(\frac{1}{2^m \varepsilon} \right)^2 \sum_{n=1}^{2^{m+1}} \mathsf{D} \xi_n. \end{split}$$

Поэтому

$$\begin{split} P & \equiv \mathsf{P} \Big\{ \limsup \left| \frac{s_n}{n} \right| \geqslant \varepsilon \Big\} \leqslant \sum_{m=0}^{\infty} P_m \leqslant \\ & \leqslant \frac{1}{\varepsilon^2} \sum_{m=0}^{\infty} \left(\frac{1}{2^m} \right)^2 \sum_{n=1}^{2^{m+1}} \mathsf{D} \xi_n \leqslant \frac{1}{\varepsilon^2} \sum_{i=0}^{\infty} \sum_{m=i}^{\infty} \left(\frac{1}{2^m} \right)^2 \sum_{n=2^i}^{2^{i+1}} \mathsf{D} \xi_n \leqslant \\ & \leqslant \frac{1}{\varepsilon^2} \sum_{i=0}^{\infty} \left(\frac{1}{2^{i-1}} \right)^2 \sum_{n=1}^{2^{i+1}} \mathsf{D} \xi_n \leqslant \frac{8}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{\mathsf{D} \xi_n}{n^2} \,. \end{split}$$

Заметим теперь, что вероятность P не изменится, если ваменить нулем любое конечное число первых членов последовательности $\xi_1,\ \xi_2,\ldots$ Значит, для любого N

$$P \leqslant \frac{8}{\varepsilon^2} \sum_{n=N}^{\infty} \frac{\mathsf{D}\xi_n}{n^2} \,,$$

что в силу сходимости ряда $\sum_{n=1}^{\infty} \frac{\mathsf{D} \xi_n}{n^2}$ доказывает, что

P=0.

Для доказательства заключительного утверждения теоремы построим последовательность независимых случайных величин $\xi_1,\ \xi_2,\ldots$ следующим образом.

Если
$$\frac{b_n}{n^2} \leqslant 1$$
, то возьмем $\xi_n = n, \; \xi_n = -n, \; \xi_n = 0$

с вероятностями

$$\frac{b_n}{2n^2}, \quad \frac{b_n}{2n^2}, \quad 1 - \frac{b_n}{n^2}$$

соответственно.

Если же $\frac{b_n}{n^2} \geqslant 1$, то положим

$$\xi_n = \sqrt{b_n}, \quad \xi_n = -\sqrt{b_n}$$

с вероятностями, равными $\frac{1}{2}$.

Тогда $\mathsf{M}\xi_n=0$, $\mathsf{M}\xi_n^2=b_n$. Если теперь предположить, что на множестве положительной вероятности $\frac{s_n}{n}\to 0$, $n\to\infty$, то тогда из равенства

$$\frac{\xi_n}{n} = \frac{s_n}{n} - \left(\frac{n-1}{n}\right) \frac{s_{n-1}}{n-1}$$

будет следовать, что с положительной вероятностью $\frac{\xi_n}{n} \to 0$, $n \to \infty$. Но в силу расходимости ряда $\sum_{n=1}^{\infty} \frac{b_n}{n^2}$ ряд

$$\sum_{n=1}^{\infty} P\left\{ \left| \frac{\xi_n}{n} \right| \geqslant 1 \right\} = \infty.$$

Отсюда в силу леммы Бореля — Каптелли 1) следует, что $\frac{\xi_n}{n}$ не может с положительной вероятностью сходиться к нулю.

В случае, когда независимые случайные величины ξ_1, ξ_2, \ldots имеют одну и ту же функцию распределения F = F(x), можно дать необходимое и достаточное условие для сильной устойчивости средних арифметических.

$$\sum_{n=1}^{\infty}I_{A_{n}}<\infty$$
 с вероятностью единица тогда и только тогда,

когда
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
.

 $^{^{1})}$ Здесь и далее используется следующий варпант леммы Бореля— Кантелли: если $A_1,\ A_2,\ldots$ — последовательность событий таких, что их индикаторы $I_{A_1},I_{A_2}\ldots$ незасисимы, то

Теорема III. Если $\xi_1,\ \xi_2,\ldots$ — последовательность независимых одинаково распределенных случайных величин, то условие $M\mid \xi_1\mid <\infty$ является необходимым и достаточным для сильной нормальной устойчивости средних арифметических $\eta_n=\frac{s_n}{n},\ n=1,2,\ldots$

Докавательство. Пусть М $|\xi_1| < \infty$; по-кажем, что тогда с вероятностью единица

$$\frac{s_n}{n} \to \mathsf{M}\xi_1, \quad n \to \infty. \tag{8}$$

Наряду с величинами ξ_n рассмотрим «урезанные» величины

$$\xi_n^* = \begin{cases} \xi_n, & \text{если } |\xi_n| \leqslant n, \\ 0, & \text{если } |\xi_n| > n. \end{cases}$$

Тогда

$$\sum_{n=1}^{\infty} P\{\xi_{n} \neq \xi_{n}^{*}\} = \sum_{n=1}^{\infty} P\{|\xi_{n}| > n\} = \sum_{n=1}^{\infty} P\{|\xi_{1}| > n\} =$$

$$= \sum_{n=1}^{\infty} \sum_{k \ge n} P\{k < |\xi_{1}| \le k+1\} =$$

$$= \sum_{n=1}^{\infty} nP\{n < |\xi_{1}| \le n+1\} \le$$

$$\leq \sum_{k=0}^{\infty} \int_{|x| \le |x| \le k+1} |x| F(dx) \le \int_{-\infty}^{\infty} |x| F(dx) = M|\xi_{1}| < \infty.$$

Поэтому по лемме Бореля — Кантелли с вероятностью единица произойдет лишь конечное число событий $A_n = \{\xi_n \neq \xi_n^*\}, n = 1, 2, \dots$ Отсюда вытекает, что достаточно доказать, что с вероятностью единица

$$\frac{\xi_1^* + \ldots + \xi_n^*}{n} \to \mathsf{M}\xi_1.$$

Поскольку

$$M\xi_n^* \rightarrow M\xi_1$$

то отсюда нетрудно заключить, что

$$\frac{\mathsf{M}\xi_1^* + \ldots + \mathsf{M}\xi_n^*}{n} \to \mathsf{M}\xi_1,$$

и, значит, надо установить, что с вероятностью единица

$$\frac{\tilde{\xi}_1 + \ldots + \tilde{\xi}_n}{n} \to 0,$$

гдо

$$\tilde{\xi}_n = \xi_n^* - M \xi_n^*.$$

Для доказательства этого достаточно лишь убедиться в том, что для последовательности $\tilde{\xi}_1$, $\tilde{\xi}_2$,... выполнено условие $\sum_{n=1}^{\infty} \frac{\mathsf{M} \tilde{\xi}_n^2}{n^2} < \infty$ теоремы I.

Имеем

$$\begin{split} \sum_{n=1}^{\infty} \frac{\mathsf{M}\tilde{\xi}_{n}^{2}}{n^{2}} &\leqslant \sum_{n=1}^{\infty} \frac{\mathsf{M} \; (\xi_{n}^{*})^{2}}{n^{2}} = \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{|x| \leqslant n} x^{2} F \, (dx) = \\ &= \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left\{ \sum_{k=1}^{\infty} \int_{\{k-1 < |x| \leqslant k\}} x^{2} F \, (dx) \right\} \leqslant \\ &\leqslant \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k \int_{\{k-1 < |x| \leqslant k\}} |x| F \, (dx) = \\ &= \sum_{k=1}^{\infty} k \int_{\{k-1 < |x| \leqslant k\}} |x| F \, (dx) \sum_{n \geqslant k} \frac{1}{n^{2}} \leqslant \\ &\leqslant 2 \sum_{k=1}^{\infty} \int_{\{k-1 < |x| \leqslant k\}} |x| F \, (dx) = 2 \mathsf{M} \, |\xi_{1}| < \infty. \end{split}$$

Итак, условие (2) теоремы I выполнено, и, следовательно, с вероятностью единица $\frac{\tilde{\xi}_1+\ldots+\tilde{\xi}_n}{n} \to 0, n \to \infty.$

Пусть теперь с вероятностью единица $\frac{s_n}{n} \to M\xi_1$, $n \to \infty$.

Тогда из равенства

112

$$\frac{\xi_n}{n} = \frac{s_n}{n} - \left(\frac{n-1}{n}\right) \frac{s_{n-1}}{n-1}$$

следует, что с вероятностью единица $\frac{\xi_n}{n} \to 0, n \to \infty$. Поэтому для всякого $\varepsilon > 0$

$$P\left\{\left|\frac{\xi_n}{n}\right| > \varepsilon \ \partial n \right\} = 0,$$

что эквивалентно по лемме Бореля — Кантелли неравенству

$$\sum_{n=1}^{\infty} P\left\{\left|\frac{\xi_n}{n}\right| > \varepsilon\right\} < \infty.$$

Но в случае одинаково распределенных величин это условие равносильно, как легко проверить, условию $M \mid \xi_1 \mid < \infty$.

Теорема III доказана.

Пусть теперь опять ξ_1 , ξ_2 , ... — последовательность независимых случайных величин. Тогда вероятность сходимости ряда $\sum_{n=1}^{\infty} \xi_n$ равна либо нулю, либо единице (ср. с теоремой Дополнения).

Теорема IV. Для сходимости с вероятностью единица ряда

$$\sum \xi_n$$

достаточно одновременной сходимости двух рядов

$$\sum_{n=1}^{\infty} \mathsf{M} \xi_n, \quad \sum_{n=1}^{\infty} \mathsf{D} \xi_n.$$

Если к тому же случайные величины $\xi_1, \quad \xi_2, \dots$ равномерно ограничены, $|\xi_n| \leqslant C, \quad n=1, \quad 2, \dots,$ то это условие является и необходимым.

Доказательство. Из сходимости ряда $\sum_{n=1}^{\infty} \mathsf{D}\xi_n$ и неравенства (3) следует, что с вероятностью единица сходится ряд $\sum_{n=1}^{\infty} (\xi_n - \mathsf{M}\xi_n)$. Вместе со сходимостью ряда $\sum_{n=1}^{\infty} \mathsf{M}\xi_n$ отсюда вытекает требуемое утверждение

о сходимости с вероятностью единица ряда $\sum_{n=1}^{\infty} \xi_n$.

Пусть теперь величины $\xi_1,\,\xi_2,\ldots$ равномерно ограничены и ряд $\sum_{n=1}^{\infty}\xi_n$ сходится с вероятностью единица. Построим последовательность независимых случайных величин $\tilde{\xi}_1,\,\tilde{\xi}_2,\ldots$, имеющих те же самые распределения, что и $\xi_1,\,\xi_2,\ldots$ Тогда с вероятностью единица сходятся также и каждый из рядов $\sum_{n=1}^{\infty}\tilde{\xi}_n,\,\sum_{n=1}^{\infty}(\xi_n-\tilde{\xi}_n)$. Поскольку М $(\xi_n-\tilde{\xi}_n)=0$, то из сходимости с вероятностью единица ряда $\sum_{n=1}^{\infty}(\xi_n-\tilde{\xi}_n)$ и неравенства (4)

следует, что $\sum_{n=1}^{\infty}\mathsf{D}\left(\xi_{n}-\widetilde{\xi}_{n}\right)<\infty$. А значит, и $\sum_{n=1}^{\infty}\mathsf{D}\xi_{n}=$

 $=rac{1}{2}\sum_{n=1}^{\infty}\mathsf{D}\left(\xi_{n}-\widetilde{\xi}_{n}
ight)<\infty.$ Тогда в силу первой части

теоремы с вероятностью единица сходится

$$\sum_{n=1}^{\infty} (\xi_n - \mathsf{M}\xi_n)$$
, что вместе со сходимостью ряда $\sum_{n=1}^{\infty} \xi_n$

обеспечивает сходимость ряда $\sum_{n=1}^{\infty} \mathsf{M} \xi_n$.

Теорема IV доказана.

Пусть

$$\xi_n^C = \begin{cases} \xi_n & \text{в случае } |\xi_n| \leqslant C, \\ 0 & \text{в случае } |\xi_n| > C. \end{cases}$$

Теорема V. Для сходимости ряда

$$\sum_{n=1}^{\infty} \xi_n,$$

из независимых случайных величин ξ_1, ξ_2, \ldots необходима и достаточна одновременная сходимость при некотором C > 0 каждого из трех рядов 1)

$$\sum_{n=1}^{\infty} \mathbf{P} \{ |\, \xi_n \,|\, > C \}, \quad \sum_{n=1}^{\infty} \mathbf{M} \xi_n^C, \quad \sum_{n=1}^{\infty} \mathbf{D} \xi_n^C.$$

Доказательство. Достаточность. Поскольку $\sum_{n=1}^{\infty} {\bf P}\{|\xi_n|>C\}<\infty$, то по лемме Бореля —

Кантелли почти наверное $\xi_n = \xi_n^C$ для всех n, за исключением, быть может, конечного числа. Тогда по теореме 4 с вероятностью единица сходится ряд

$$\sum_{n=1}^{\infty} \xi_n^C$$
, а значит, и ряд $\sum_{n=1}^{\infty} \xi_n$.

Необходимость. Если ряд $\sum_{n=1}^{\infty} \xi_n$ сходится с вероятностью единица, то $\xi_n \to 0$ почти наверное, $n \to \infty$.

¹⁾ Cp. A. Khintchine und A. Kolmogoroff, Über Konvergenz von Reihen, Marem. co., r. 32 (1925), 668-677.

Поэтому для всякого C > 0 может произойти самое большее конечное число событий $\{|\xi_n| > C\}$, а значит, по лемме Бореля — Кантелли $\sum_{n=0}^{\infty} P\{|\xi_n| > C\} < \infty$. Далее.

из сходимости ряда $\sum_{n=1}^{\infty} \xi_n$ следует, что сходится также

и ряд $\sum_{n=1}^{\infty} \xi_n^C$. Тогла схонимость рянов $\sum_{n=1}^{\infty} AA\xi_n^C$ и

и ряд $\sum_{n=1}^{\infty} \xi_n^C$. Тогда сходимость рядов $\sum_{n=1}^{\infty} \mathsf{M} \xi_n^C$ и

 $\sum_{n=1}^{\infty} \mathsf{D}\xi_n^C$ вытекает из теоремы IV.

ДОПОЛНЕНИЕ

ОДНА ЗАМЕЧАТЕЛЬНАЯ ТЕОРЕМА ТЕОРИИ ВЕРОЯТНОСТЕЙ

Наблюдались уже многие случаи, в которых известные предельные вероятности с необходимостью равны нулю или единице. Например, вероятность сходимости ряда из независимых случайных величин может принимать только эти два значения 1). Мы докажем теперь общую теорему, обнимающую много таких случаев.

T е о р е м а (закон «О или 1»). Пусть ξ_1, ξ_2, \ldots - какие-либо случайные величины, а $f(x) = f(x_1, x_2, \ldots)$ — бэровская функция f(x) переменных f(x) неременных f(x) та

кая, что условная вероятность

$$P \{ f(\xi_1, \xi_2, \ldots) = 0 \mid \xi_1, \xi_2, \ldots, \xi_n \}$$

соотношения

$$f(\xi_1,\,\xi_2,\,\ldots)=0$$

при известных п первых величинах $\xi_1, \xi_2, \ldots, \xi_n$ остается равной абсолютной вероятности

$$P\{f(\xi_1, \xi_2, \ldots) = 0\}$$
 (1)

 $P \{ \eta_n - d_n \to 0, \ n \to \infty \}$

в усиленном законе больших чисел, по крайней мере когда величины Е, взаимно независимы.

2) Под бэровской функцией понимается функция, которая может быть представлена, исходя из полиномов, через послецовательные итерированные предельные переходы.

¹⁾ Ср. главу шестую, § 5. То же имеет место и для вероятности

для каждого п. При этих условиях вероятность (1) равна нулю или единице.

В частности, предпосылки этой теоремы выполняются, если случайные величины $\xi_1,\ \xi_2,\ldots$ независимы и значение функции f(x) остается неизменным при изменении лишь конечного числа величин x_n .

Доказательство. Обозначим $\xi=\ddot(\xi_1,\,\xi_2,\,\ldots),$

и пусть

$$A = \{\omega : f(\xi) = 0\}.$$

Наряду с этим событием мы рассмотрим алгебру \mathfrak{N} всех событий, которые могут быть определены через какие-либо соотношения между конечным числом величин ξ_n . Если событие B принадлежит \mathfrak{N} , то по условиям теоремы

$$P(A \mid B) = P(A). \tag{2}$$

В случае P(A) = 0 наша теорема уже доказана. Пусть теперь P(A) > 0. Тогда из (2) следует формула

$$\mathsf{P}(B \mid A) = \frac{\mathsf{P}(A \mid B) \mathsf{P}(B)}{\mathsf{P}(A)} = \mathsf{P}(B). \tag{3}$$

Итак, P(B) и $P(B \mid A)$ — две счетно-аддитивные функции множеств, совпадающие на \mathfrak{R} , следовательно, они должны оставаться равпыми друг другу па каждом множестве борелевского расширения $\sigma(\mathfrak{R})$ алгебры \mathfrak{R} . Поэтому, в частности,

$$P(A) = P(A | A) = 1.$$

Теорема доказана.

Некоторые другие случаи, в которых можно утверждать об известных вероятностях, что они принимают только вначения нуль и единица, были открыты Π . Леви 1).

¹⁾ См. по этому поводу Р. Lévi, Sur un théorème de A. Khintchine, Bull. des Sci. Math., т. 55 (1931), 145—160, теорема II.

ЛИТЕРАТУРА

- [4] Бернштейн С. Н., Опыт аксиоматического обоснования теории вероятностей, Зап. Харьк. матем. об-ва, 1917, сгр. 209—274.
- [2] Теория вероятностей, 2-е изд., Москва, ГТТИ, 1934.
- [1] Borel E., Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. mat., Palermo, T. 27, 1909, crp. 247-271.
- [2] Principes et formules classiques, Fasc. 1 du tome I du Traité des Probabilités par E. Borel et divers auteurs, Paris, Canthier-Villars, 1925.
- [3] Applications à l'arithmétique et à la théorie des fonctions, Fasc. 1 du tome II du Traité des Probabilités par E. Borel et ldivers auteurs, Paris, Cauthier-Villars, 1926.
- [1] C a n t e l l i F. P., Una teoria astratta del Calcolo delle probabilita, Giorn. Ist. Itàl. Attuari, r. 3, 1932, crp. 257—265.
- [2] Sulla legge dei-grandi numeri, Mem. Acad. Lincei, r. 11, 1916.
- [3] Sulla probabilità come limite della frequenza, Rend. Accad. Lincei, т. 26, 1917, стр. 39—45.
- [1] C o p e l a n d H., The theory of probability from the point of view of admissible numbers, Ann. Math. Statist., T. 3, 1932, crp. 143-156.
- [1] D ö r g e K., Zu der von Mises gegebenen Begründung der Wahrscheinlichkeitsrechnung, Math. Z., T. 32, 1930, crp. 232—258.
- [1] Fréchet M., Sur la convergence en probabilité, Metron, T. 8, 1930, crp. 1-48.
- [2] Recherches théoriques modernes, sur théorie des probabilités, Fasc. 3 du tome I du Traité des probabilités par E. Borel et divers auteurs. Paris, Gauthier-Villars.
- divers auteurs, Paris, Gauthier-Villars.
 [1] Kolmogoroff A., Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math, Ann. T. 104, 1931, crp. 415-458.

- [2] К олмогоров А., Общая теория меры и теория вероятностей. Сборцик трудов секции точных наук Коммунистической академии, т. 1, 1929, стр. 8—21.
- Lévy P., Calcul des Probabilités, Paris, Gauthier-Villars, 1925.
- [1] Lomnicki A., Nouveaux fondements du calcul des probabilités, Fundam. Math., r. 4, 1923, crp. 34-71.
- [1] von Mises R., Wahrscheinlichkeitsrechnung, Leipzig u. Wien, Fr. Deuticke, 1931.
- [2] Grundlagen der Wahrscheinlichkeitsrechnung, Math. Z., r. 5, 1919, crp. 52—99.
- [3] Wahrscheinlichkeitsrechnung, Statistik und Wahrheit. Wien, Julius Springer, 1928.
- [1] Reichenbach H., Axiomatik der Wahrscheinlichkeitsrechnung, Math. Z., T. 34, 1932, crp. 568-619.
- [1] Slutsky E., Über stochastische Asymptoten und Grenzwerte, Metron, T. 5, 1925, crp. 3-89.
- [2] Слуцкий Е., К вопросу о логических основах теории вероятности, Вестник статистики, т. 12, 1922, стр. 13—21.
- [1] Steinhans H., Les probabilités dénombrablés et leur rapport à la theorie de la mesure, Fundam. Math., r. 4, 1923, crp. 286-310.
- [1] Tornier E., Wahrscheinlichkeitsrechnung und Zahlentheorie, J. reine angew. Math., r. 160, 1929, crp. 177-198.
- [2] Grundlagen der Wahrscheinlichkeitsrechnung, Acta math, r. 60, 1933, crp. 239—380.

СОДЕРЖАНИЕ

		дисловие к первому изданию	5 7
		I. Элементарная теория вероятностей	
	3. 4.	Отношение к данным опыта	10 12 14 15 17
		II. Бесконечные поля вероятностей	
8000	1. 2. 3.	Борелевские поля вероятностей	26 29 31
		III. Случайные величины	
000000000000000000000000000000000000000	3. 4.	Определение случайных величин, функции распределения	36 38 41 44 52
		IV. Математические ожидания	
തതതതത	2. 3.	Абсолютные и условные математические ожидания Неравенство Чебышева	57 60 63 65

70 75

76

78

83

85

88

100

104

116

118

V. Условные вероятности и математические ожидания

§ 1.	Условные	вероятности										
€ 2.	Объяснени	е одного пар		Famor	٠.	•	٠	•	٠	•	•	
K 2	Venoprize	Poposter in	ладокса	Борел	я.	٠	•	•				
, o.	асловные	вероятности	относи	тельно	сл	VЧ	ай	HC	ıй	B	·-	

§ 3. Условные вероятности относительно с § 4. Условные математические ожидания

2. Независимые случайные величины

4. Замечания к повятию математического ожидания

5. Усиленный закон больших чисел, сходимость рядов

Дополнение. Одна замечательная теорема теории вероят-

ностей

VI. Независимость. Закон больших чисел

Андрей Николаевич Колмогоров основные понятия

ТЕОРИИ ВЕРОЯТНОСТЕЙ

(Серия: «Теория вероятностей и математическая статистика»)

М., 1974 г., 120 стр.