Universidade Federal de Juiz de Fora - UFJF Departamento de Ciência da Computação Nome: Thiago de Almeida

Nome: Renan Nunes

 5^a Lista DCC008 - Cálculo Numérico Entrega: 11 de Novembro de 2018

- 1. O arquivo "dados.txt" contém os dados históricos referentes a cotação diária das ações da empresa Petrobras (PETR4) nos últimos 2 anos, que são negociadas na bolsa de valores de São Paulo (BOVESPA).
 - a) Apresente gráficos comparando os dados do arquivo "dados.txt" com as curvas ajustadas pelo método de mínimos quadrados para diferentes ordens polinomiais $(P_n(x), n = 1, 3, 5, 10, 15, 20, 50, 100)$.
 - b) Definindo como x a primeira coluna e y a segunda coluna do arquivo "dados.txt", calcule, para todos as ordens polinomiais do item (a), o coeficiente de determinação r que pode ser calculado como:

$$r^{2} = 1 - \frac{\sum_{i=1}^{k} (y_{i} - P_{n}(x_{i}))^{2}}{\sum_{i=1}^{k} y_{i}^{2} - \frac{1}{k} \left(\sum_{i=1}^{k} y_{i}\right)^{2}}$$

onde k denota a quantidade de dados do arquivo "dados.txt". Monte uma tabela apresentando os resultados do coeficiente de determinação r em porcentagem (r*100).

c) A partir dos resultados da letra (b), utilize a curva que melhor se adapte aos dados fornecidos para projetar os preços da ação para os próximos 100 dias e apresente um gráfico com este resultado. O arquivo de dados sobre a cotação diária das ações da empresa Petrobras (PETR4) nos últimos 2 anos foi analisado e ajustado pelo método dos mínimos quadrados.

O metodo de Gauss utilizado neste trabalho é com pivoteamento parcial.

No Método de Gauss , com N=15, pode-se notar um gráfico fora do esperado. Os motivos para esse erro são: A ocorrência de erro de precisão de ponto flutuante no método de Gauss devido a natureza de modificação da matriz que o método tem. Requirementos basicos como o critério das linhas ou a diagonal dominante não são atendidos.

Para N > 50 o método de Gauss começou a oscilar em relação a curva ideal no inicio do intervalo. O que é mais um indicativo de erro de precisão de ponto flutuante. Assim, concluimos pelos dados analisados que o método de Gauss não atende as necessidades do método de mínimos quadrados.

• - Analise utilizando-se do método de Gauss.

$\bullet\,$ - Analise utilizando-se do método LU.

Para o método LU, os gráficos estão dentro do esperado.

Definindo as colunas x e y para o método polinomial do item (a), o coeficiente r que pode ser calculado e expresso em porcetagem é:

$Ordem\ n$	$\mid Coeficiente \ r$	Coeficiente r em porcetagem (%)
1	0.71092847081604467315	71.092
3	0.7910095119409314065	79.100
5	0.8750227594557078267	87.502
10	0.9132363941170467756	91.323
15	$\sqrt{-110898660834074.66367}$	Não Possui uma raiz real
20	0.9436191040476386921	94.361
50	0.8960730081149934023	89.607
100	0.8433231181608608121	84.332

Tabela 1: coeficiente r em porcetagem para o método de Gauss

$Ordem \ n$	$Coeficiente\ r$	Coeficiente r em porcetagem (%)
1	0.71092847081604467743	71.092
3	0.7910095119409314058	79.100
5	0.87502275945570782376	87.502
10	0.91323639411704699335	91.323
15	0.94150258009193910986	94.150
20	0.94373292342024341523	94.373
50	0.9656205483094383549	96.562
100	0.88523656133428724256	88.523

Tabela 2: coeficiente r em porcetagem para o método LU

Na tabela 1, onde são apresentados os coeficientes r
 para o método de Gauss, o resultado divergente com n=15 se confirma com a presença de um número negativo de
ntro da raiz da fórmula, indicando mais uma vez que o método de Gauss não é recomendado.

Todos os testes acima foram realizados em computador Mac mini (Late 2014). Com as seguintes configurações;

Processador: 1,4 GHz Intel Core i5
Memoria: 8 GB 1600 MHz DDR3
Sistema Operacional: OSX 10.14.1

• Ambiente: Spyder 3.3.1, usando Python 3.7.0 64bits

• Dados armazenados com precisão quádrupla (float128)

Analisando a partir dos resultados obtidos nos itens anteriores, as tentativas de previsão para os próximos 100 dias resultam em:

• Pelo Método de Gauss:

• Pelo Método LU:

Como os gráficos demonstram, as tentativas de previsão por ambos os métodos, Gauss e LU, não funcionam bem. Conseguindo uma projeção boa apenas para N=1. Essa falha na previsão se origina de uma caracteristica do Método dos Mínimos Quadrados, que faz que ele não funcione bem para casos em que a relação entre dados e parâmetros não é linear.