Self Reference

PARADOX AND INFINITY Benjamin Brast-McKie February 26, 2024

From Cantor to Russell

Cantor's Theorem: Recall the proof that $|A| \neq |\wp(A)|$.

- Assume there is a bijection $f: A \to \wp(A)$.
- Let $D = \{a \in A : a \notin f(a)\}.$
- Since $D \subseteq A$, we know that $D \in \wp(A)$.
- Since f is surjective, f(d) = D for some $d \in A$.
- But $d \in f(d)$ iff $d \in D$ iff $d \notin f(d)$.
- This has the form $P \leftrightarrow \neg P$ which is equivalent to $P \land \neg P$.
- Thus there is no bijection $f: A \to \wp(A)$, and so $|A| \neq |\wp(A)|$.

Universal Set: There is no set of all sets.

- Suppose there were a set *U* of all sets.
- Consider the identity map $f: U \to U$.
- Let $R = \{a \in U : a \notin f(a)\}.$
- Since $R \in U$, we may ask whether $R \in R$.
- But $R \in R$ iff $R \notin f(R)$ iff $R \notin R$.
- Hence there is no set *U* of all sets.

Burali-Forti Paradox

Ordinals: There is no set of all ordinals.

- Suppose there were a set Ω of all ordinals.
- Ω is set-transitive: if $x \in \Omega$ and $y \in x$, then $y \in \Omega$.
- Ω is well-ordered: if $X \subseteq \Omega$, then some $y <_0 x$ for all $x \in X$.
 - If x and y are ordinals, then $x <_o y$ or $y <_o x$.
 - Ordinals contain all of their predecessors.
- So Ω is an ordinal, and hence $\Omega \in \Omega$, and so $\Omega <_{o} \Omega$.
- But $x \not<_o x$ for any ordinal x.
- Or, observe that $\Omega <_o \Omega'$ where $\Omega' = \Omega \cup \{\Omega\}$.
- Hence Ω does not include all ordinals.

Properties Paradox

Horse: The property *being a horse* is not a horse, i.e., does not instantiate itself.

Property: The property being a property is a property, i.e., instantiates itself.

Paradox: Let *P* be the property of not instantiate itself, i.e., $P(X) := \neg X(X)$.

- But then P(P) iff $\neg P(P)$.
- $\exists Y [\forall Z (Z = Y \leftrightarrow \forall X [Z(X) \leftrightarrow \neg X(X)]) \land Y = P].$

Universal Liar

Liar: The proposition that *Liar* expresses is false.

- If the *Liar* is true, then by its own lights it is false.
- If the *Liar* is false, then by its own lights it is true.

Analysis: $\exists \varphi (\forall \psi [\texttt{Expresses}(Liar, \psi) \leftrightarrow \varphi = \psi] \land \neg \varphi).$

Nonexistence?

Response: Isn't the most natural response to just deny that there is a set *R*, or property *P*, or proposition expressed by *Liar*.

Ad Hoc: Need to explain why there is no such set, property, or proposition.

Proposition: Why doesn't Liar express a proposition?

• Can't simply appeal to paradox to explain its nonexistence.

Properties: Why isn't there such a property as *P*?

• Seems like most properties have this property, e.g., being a horse.

Sets: Why isn't there a Russell set *R*?

• All sets do not belong to themselves, and there is no set of all sets.

Vicious Circle Principle

Diagnosis: "No totality can contain members defined in terms of itself."

• Want something that explains all of the "reflexive paradoxes."

Take Two: "Whatever contains an apparent variable must not be a possible value of that variable."

• $R := \{x : x \notin x\} \text{ i.e., } \exists X(R = Y \land \forall Y[Y = X \leftrightarrow \forall z(z \in Y \leftrightarrow z \notin z)]).$

Types: "Whatever contains an apparent variable must be of a different type from the possible values of that variable..."