Trees

Kuan-Yu Chen (陳冠宇)

2018/10/08 @ TR-212, NTUST

Review

- Queue
 - FIFO
 - Array & Link List
 - Variations
 - Circular Queue
 - Deque
 - Priority Queue
 - Multiple Queue

Trees

- So far, we have discussed **linear** data structures
 - Arrays
 - Stacks
 - Queues
- A tree is a **non-linear** data structure, which is mainly used to store data that is **hierarchical** in nature
 - The tree is recursively defined as a set of one or more nodes

Basic Terminology.

- Root node
 - The root node *R* is the topmost node in the tree
 - If R = NULL, then it means the tree is empty
- Sub-trees
 - The trees T_1 , T_2 and T_3 are called the sub-trees of R
- Leaf node
 - A node that has no children is called the leaf node or the terminal node
 - \bullet E, F, J, K, H, I
- Path
 - A sequence of consecutive edges is called a path
 - The path from the node *A* to node *I* is *A*, *D*, *I*

Basic Terminology...

- Ancestor node
 - An ancestor of a node is any predecessor node on the path from root to that node
 - The root node does not have any ancestors
 - Nodes *A*, *C* and *G* are the ancestors of node *K*
- Descendant node
 - A descendant node is any successor node on any path from the node to a leaf node
 - Leaf nodes do not have any descendants
 - Nodes *E* and *F* are the descendants of node *B*

Basic Terminology...

- Level number
 - Every node in the tree is assigned a level number
 - The root node is at level 0
 - Children of the root node (i.e., *B*, *C* and *D*) are at level number 1

- Degree
 - Degree of a node is equal to the number of children that a node has
 - The degree of *J* is 0
 - The degree of *B* is 2

Types of Trees

- Trees can be classified into six classes
 - General Trees
 - Forests
 - Binary Trees
 - Binary Search Trees
 - Expression Trees
 - Tournament Trees

Forest

- A forest is a disjoint union of trees
 - A set of disjoint trees (or forests) is obtained by deleting the root and the edges connecting the root node to nodes at level 1
 - We can convert a forest into a tree by adding a single node as the root node of the tree

 While a general tree must have a root, a forest may be empty because by definition it is a set, and sets can be empty

Binary Trees.

- A binary tree is a data structure that is defined as a collection of elements called nodes
- In a binary tree, the topmost element is called the root node, and each node has 0, 1, or at the most 2 children

Binary Trees..

- Parent
 - Every node other than the root node has a parent
 - Node 2 is the parent of nodes 4 and 5
- Sibling
 - All nodes that are at the same level and share the same parent

are called (brothers)

- Nodes 4 and 5 are siblings
- Height of a Tree
 - It is the total number of nodes on the path from the root node to the deepest node in the tree
 - A binary tree of height h has at least h nodes and at most 2^h 1 nodes

Binary Trees...

- Similar Binary Trees
 - Two binary trees *T* and *T'* are said to be similar if both these trees have the same structure

- Copies
 - Two binary trees *T* and *T'* are said to be copies if they have similar structure and if they have same content at the corresponding nodes

Binary Trees.... – Complete Binary Tree

- Complete Binary Trees
 - A complete binary tree is a binary tree that satisfies two properties
 - 1. Every level, except possibly the last, is completely filled
 - 2. All nodes appear as far left as possible

Binary Trees.... – Extended Binary Tree

- A binary tree is said to be an extended binary tree (or a 2-tree) if each node in the tree has either no child or exactly two children
 - Nodes having two children are called internal nodes and nodes having no children are called external nodes

Binary Trees..... – LinkList Implementation

• In the linked representation of a binary tree, every node will have three parts: the data element, a pointer to the left node, and a pointer to the right node

```
struct node {
    struct node *left;
    int data;
    struct node *right;
};
```


Binary Trees..... – Array Implementation.

- For a binary tree, we can number all of the nodes ordered
 - If K is a parent node, then its left child can be calculated as $2 \times K$ and its right child can be calculated as $2 \times K + 1$
 - The children of the node 4 are 8 and 9
 - The parent of the node K can be calculated as $\left\lfloor \frac{K}{2} \right\rfloor$
 - The parent of the node 5 is 2

Binary Trees..... – Array Implementation...

- Sequential representation of trees is done using single or onedimensional arrays
 - Though it is the simplest technique for memory representation,
 it is inefficient as it requires a lot of memory space

Binary Search Trees

• A binary search tree, also known as an ordered binary tree, is a variant of binary tree in which the nodes are arranged in an order

Expression Trees

- Binary trees are widely used to store algebraic expressions
 - Given an algebraic expression $(a b) + (c \times d)$
 - Given an expression $a + b \div c \times d e$

Tournament Trees

- In a tournament tree (also called a **selection tree**), each external node represents a candidate and each internal node represents the selected candidate by its children nodes
 - These tournament trees are also called **winner trees** because they are being used to record the winner at each level
 - We can also have a **loser tree** that records the loser at each level

From a General Tree to a Binary Tree.

- The rules for converting a general tree to a binary tree are given below
 - Rule 1: Root of the binary tree = Root of the general tree
 - Rule 2: Left child of a node in the binary tree = Leftmost child of the node in the general tree

Rule 3: Right child of a node in the binary tree = Right sibling of the node in the general tree

From a General Tree to a Binary Tree..

Traversing Binary Tree

- Traversing a binary tree is the process of visiting each node in the tree exactly once in a systematic way
 - There are different algorithms for tree traversals
 - Pre-order Traversal
 - > ABDCEFGHI
 - Post-order Traversal
 - > DBHIGFECA
 - In-order Traversal
 - **▶** BDAEHGIFC
 - Level-order Traversal
 - > ABCDEFGHI

 Different algorithms differ in the order in which the nodes are visited

In-order

• In-order: BDAEHGIFC

Pre-order

• Pre-order: ABDCEFGHI

Post-order

• Post-order: DBHIGFECA

Constructing Binary Tree from Traversal.

- We can construct a binary tree if we are given at least two traversal results
 - In-order traversal
 - The in-order traversal result will be used to determine the left and the right child nodes
 - Either pre-order or post-order traversal
 - The pre-order/post-order can be used to determine the root node

Constructing Binary Tree from Traversal..

• Take in-order + pre-order for example

- In-order: D B E A F C G

- Pre-order: *A B D E C F G*

Constructing Binary Tree from Traversal...

- Take in-order + post-order for example
 - In-order: D B H E I A F J C G
 - Post-order: *D H I E B J F G C A*

DBHEIAFJCG

 $DB_{\underline{H}}EIAFJCG$

DHIEBJFGCA

DHIEBJFGCA

D B H E I A F J C G
D H I E B J F G CA

DBHEIAFJCG

 $DHIEBJ\overline{F}GCA$

DBHEIAFJCG DHIEBJFGCA

Constructing Binary Tree from Traversal....

- Steps for constructing a binary tree from traversal sequences
 - 1. Use the pre-order/post-order sequence to determine the root node of the tree
 - 2. Elements on the left side of the root node in the in-order traversal sequence form the left sub-tree of the root node
 - 3. Similarly, elements on the right side of the root node in the inorder traversal sequence form the right sub-tree of the root node
 - 4. Recursively select each element from pre-order/post-order traversal sequence and create its left and right sub-trees from the in-order traversal sequence

Questions?

kychen@mail.ntust.edu.tw