2009-2010

Epreuve Finale de Chimie du 1^{er} Semestre Durée : 1 heure 30 min

Exercice 1(6pts):

- 1- Donner les configurations électroniques des éléments suivants en précisant le groupe et la périoue de chacun: 7N, 8O, 9F et 31Ga.
- 2- Donner les quatre nombres quantiques de l'électron de plus haute énergie de 31Ga.
- 3- Classer ces éléments selon leur électronégativité décroissante.
- 4- Représenter selon Lewis les molécules suivantes : HNO2, NF3 et GaF3.
- 5- Donner pour chaque molécule le type AX_mE_n selon GILLESPIE, l'état d'hybridation de l'atome central et la géométrie.
- 6- Représenter le moment dipolaire de l'ion NO2.
- 7- Parmi les molécules ci-dessus, quelle est celle qui présente un moment dipolaire nul (apolaire) ?

Exercice 2 (2pts): L'isotope ³⁵S (Z=16) du soufre est radioactif et émetteur de particules β*.

- 1- Ecrire la réaction de désintégration de cet élément.
- 2- Calculer la masse désintégrée d'un échantillon initial de 1g de ³⁵S au bout d'un temps t égal à 4 fois sa période T.

- 1- Ecrire à l'état standard, la réaction de formation de CO_2 (g) et en déduire l'enthalpie de la liaison C=O. On donne en KJ. mol^{-1} : $\Delta H^{\circ}_{f}CO_{2}$ (g) = 395 ; ΔH° sublimation $C_{(s)}$ = 715 ; $\Delta H^{\circ}_{O=O(g)}$ = 498
- 2- Donner l'expression de Kp pour cet équilibre.
- 3- Compléter le tableau suivant:

	NH3(g)	CO2(g)	NH ₂ COONH _{4 (s)}	
$\Delta H_f^c KJ. mol^{-1}$	- 47,4	- 395	?	$\Delta H^{\circ}_{\text{réaction}} = -157,5$
S° J. K ⁻¹ mol ⁻¹	192,32	213,3	165,4	$\Delta S^{\circ}_{\text{réaction}} = ?$

- 4- Calculer ΔG° de la réaction, en déduire la valeur de Kp à 25°C.
- 5- Calculer Kc à 25°C. On donne : R = 0.082 l.atm. K^{-1} mol⁻¹ = 8.32 J. K^{-1} mol⁻¹
- 6- Comment évolue l'équilibre si :
 - a- On augmente la pression?
 - b- La température augmente ?
 - c- La concentration de NH₂COONH_{4(s)} diminue?

Exercice 4 (5.5pts):

- 1- Ecrire l'équation de dissociation de l'acide propanoïque CH₃CH₂-COOH (PKa =4,87)
- 2- Calculer le PH d'une solution (A) contenant 50ml de cet acide 10⁻³ M.
- 3- Calculer le coefficient de dissociation a.
- 4- On ajoute 150ml d'eau distillée à la solution (A), que devient son PH?
- 5- On neutralise la solution (A) de départ par un volume V_b de NaOH 10⁻² M. Calculer V_b ainsi que le PH de la solution obtenue.
- 6- On ajoute à la solution (A) 100 ml de CH₃CH₂-COONa 510⁻⁴ M. Quel est le PH de la solution (B) obtenue? Que devient le PH si on ajoute 400ml d'eau à la solution (B)? Justifier.