Tema 2: Organización básica

- **1. Introducción:** Objetivos de diseño y factores que influyen en la organización
- 2. Organización básica: Organización Serial
- 3. Organización ordenada: Secuencial
- **4. Mantenimiento:** *reorganización* y *gestión de huecos*

Tema 2.1: Introducción

Objetivos en el Diseño Físico de Ficheros

- Tiempo de acceso
- Volumen y Ocupación

Factores que influyen en la organización del fichero

- Tipo de los procesos y Actividad (reg. procesados) y
- Volatilidad (cambios por unidad de tpo.)
- Crecimiento

Tema 2.1: Objetivos de diseño

Cálculo del tiempo de acceso a registro físico (bloque):

 $t_{bloque} = t_{localización} + t_{transferencia}$

- El tiempo de localización será el número de localizaciones por el tiempo empleado en cada una
- El tiempo de transferencia será el número de bloques transferidos por el tiempo empleado leer un bloque

Cálculo del tiempo de acceso a registro aleatorio:

 $t_{aleatorio} = n^o accesos \cdot t_{bloque}$

Tema 2.1: Objetivos de Diseño - Coste Global

Frecuencia Relativa de un Proceso:

Todo fichero estará sometido a un cito. de procesos $P = \{P_1...P_n\}$

Cada proceso tendrá una frecuencia f_i asociada, referida a...

- a una unidad de tiempo (por ejemplo, segundos u horas)
- frecuencia relativa: al conjunto P de todos los procesos, tal que $\sum_{i=1}^{n} f_i = 1$

Coste Global (referido a una organización del fichero):

- Una organización física de un fíchero (O_k) define su organización base y las organizaciones auxiliares con las que cuenta.
- Cada proceso P_i tendrá en O_k un coste C_i asociado (y expresado en nº accesos o en tiempo), que dependerá directamente de la organización.
- El coste global de la organización se define como: $C(O_k, P) = \sum_{i=1..n} C_i \cdot f_i$ (puede venir referida a una unidad de tiempo)

Tema 2.1: Objetivos de diseño

Volumen y Ocupación de un fichero

- volumen: número de bytes que contiene
- ocupación útil: bytes útiles del fichero

Se cumple que: volumen ≥ ocupación útil

$$\mathbf{densidad} \text{ (\%)} = \frac{\text{ocupación útil}}{\text{volumen real}} \cdot 100$$

mejora (%)=
$$\frac{\text{densidad}_{\text{final}}}{\text{densidad}_{\text{inicial}}} \cdot 100$$

Tema 2.1: Objetivos de diseño

Factores referidos a un dispositivo

Volumen y ocupación referidos a un fichero sobre un dispositivo cambian sensiblemente porque hay que tener en cuenta el bloque.

volumen fichero = bloques ocupados · tamaño bloque siendo n^o registros totales \leq bloques ocupados · factor de bloqueo

densidad (%) =
$$\frac{\text{Tamaño medio reg. * n° registros lógicos}}{\text{Tamaño reg. físico * n° reg. físicos}} \cdot 100$$

soporte ideal: el volumen del reg. físico coincide con el del reg. lógico y por lo tanto el número de registros es el mismo.

Tema 2.1: Tipos de diseño

Diseño Físico:

"Determinación de la organización física de un fichero"

Organización física: disposición de los registros en el soporte, relativa a su implementación, orden, direccionamiento, apuntamientos, etc.

Diseño Lógico:

"Descripción de la estructura lógica de los registros de un fichero"

<u>Estructura lógica</u> (de un registro): descripción y disposición de los elementos de un registro, que en conjunto definen un individuo.

Diseño Físico del registro Lógico:

"Implementación de un registro lógico en secuencias de bytes"

<u>Diseño Físico-Lógico</u> (registro): descripción de las cadenas de *bytes* utilizadas para almacenar registros, y de los convenios necesarios para su interpretación.

Tema 2.1: Ejemplo

A) Calcular la densidad ideal y la densidad de fichero para un fichero con RLF con 1.000 registros en un soporte cuyo tamaño de bloque es 1Kb.

Campo	Compuesto	Tipo	Frecuencia %	Veces max.	Veces. media	Tamaño max.	Tamaño medio
Titulo		С	100			42	30
Año		N	100			4	4
Productora		С	100			20	9
Director			100				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
Actores		С	75	5	2,8		
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
BS			50				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
	Formato	С	100	3	3	3	3

@LABDA. Univ. Carlos III

Tema 2.1: Ejemplo

Ejemplo: densidad del fichero de películas en DVD

1º Partimos del diseño lógico

Título C(42) Año N(4) Productora C(20) Género C(9)

Director (nombre C(20); apellido C(20)) Actores (nombre C(20); apellido C(20))*

Banda Sonora

[Autor B.S. (nombre C(20); apellido C(20)); Formato $C(3)^+$]

Tema 2.1: Ejemplo

Ejemplo: densidad del fichero de películas en DVD

2º Realizamos el diseño físico – lógico para registros de longitud fija

Título b(42)Año b(4) Productora b(20)Género b(9) Director (nombre b(20), apellido b(20)) Actor/iz (nombre b(20), apellido b(20))⁵ BS ((nombre b(20), apellido b(20)) Formato $(b(3))^3$ ¿cómo mejorar ocupación útil iReduciendo la densidad? el volumen! QLABDA. Univ. Carlos III

Ejercicio de diseño lógico

Ejemplo 2: Diseño lógico y físico-lógico del registro "estudiante ITIG" para RLF y RLV. Densidad ideal y de fíchero sabiendo que tenemos 1500 registros y el T_{bq} = 1KB (fíchero no-consecutivo).

- Nombre completo (20 nombre + 20 apellidos)
- Teléfonos (+34 y número) si los tiene, como máximo 3
- Dirección (50 como máximo)
- Asignaturas aprobadas. Nombre de la asignatura (50 carac. como máximo), curso (1..3) y convocatoria (1..6). En total se sabe que un alumno como máximo tendrá 40 asignaturas aprobadas
- Si ha cursado las 40 asignaturas, también necesitamos saber si ha realizado el proyecto y si es así el título (70 carac.) y el año en que lo presentó.

Ejercicio de diseño lógico

Campo	Compuesto	Tipo	Frecuencia	Veces max.	Veces. media	Tamaño max.	Tamaño medio
Nombre-C			100	niux.	cuid	IIIQA.	inculo
	Nombre	С				20	10
	Apellidos	С				20	15
Telefonos			80	3	2		
	Prefijo	С				3	3
	Número	N				9	9
Dirección		С	100			50	40
Asig-Apro			90	40	20		
	Nombre	С				50	30
	Curso	N				1	1
	Convocatoria	N				1	1
Proyecto			20				
	Título	С				70	50
	Año	N				4	4

@LABDA. Univ. Carlos III

Ejercicio de diseño lógico

Diseño lógico

Proyecto

Nombre-C (nombre C(20), apellidos C(20)) Telefonos (prefijo C(3), número N(9))*

Dirección C(50)

Asig-Apro (nombre C(50),

curso N(1),

convocatoria N(1))* [(título C(70); año

N(4))]

• Diseño físico-lógico para RLF

Nombre-C (nombre B(20), apellidos B(20)) Telefonos (prefijo "+34", número B(9)) 3

Dirección B(50)

Asig-Apro (nombre B(50), curso B(1),

convocatoria B(1))⁴⁰

Proyecto (título B(70); año B(4))

Ejercicio de diseño lógico

Densidad del Fichero

```
T_{bq} = 1 \text{ KB} = 1024 \text{ B}
Número de Reg. = 1500
```

Tratamos con registros no-consecutivos, es decir, factor de bloqueo es entero.

```
f = (1024/\text{volumen Reg.}) = (1024/2280) = 0,45
= 3 (cada reg. lógico cabe 3 físicos) registros expandidos
```

```
Densidad = (671*1500)/(1500*3*1024) = 21,8\%
```


Tema 2.1: Optimización

¿Cómo podemos mejorar el volumen de un fichero?

Utilizando registros de longitud variable con dos mecanismos:

- <u>Campos de control</u>: mejoran el manejo (ahorrando espacio)
- Codificación de campos: codifica el valor de un campo.

Tema 2.1: Optimización

<u>Campos de control</u>: mejoran el manejo (ahorrando espacio)

Elemento de Datos

- Existencia: en campos opcionales, indica si aparece o no
- Longitud: en campos variables, indica el número de caracteres
- Reiteración: en grupos repetitivos, indica el número de ocurrencias
- Fin de Campo: en campos indefinidos, indican que acaba

Registro

- Fin (inicio) de Registro: permite registros consecutivos en el soporte
- *Tipo*: indica el tipo de registro a continuación (f. heterogéneos)
- Mapa: indica los registros que se aplican (f. heterogéneos)

@LABDA. Univ. Carlos III

Tema 2.1: Optimización

Codificación de campos: codificar el contenido del campo

- Si se hace, debe ser completamente transparente a usuario.
- La compresión disminuye el tamaño, pero la densidad no es alterada significativamente

Algunos Tipos de Codificación:

- Codificación numérica: no almacenar dígitos, representar números Ejemplo:
 DNI C(9) → N(4)
- 2. <u>Enumerados</u>: equivalen a una codificación numérica natural (se puede establecer una codificación de ese tipo)

 $Ejemplo: \textbf{color} \in \{\textbf{blanco}, \textbf{amarillo}, \textbf{naranja}, \textbf{rojo}, \textbf{verde}, \textbf{azul}, \textbf{negro}\}$

color $C(8) \rightarrow N(1)$

Tema 2.1: Optimización

Codificación numérica:

• para un rango de números naturales [0..m]

¿cuántos bytes son necesarios para codificar el número?

- se halla la longitud (nº de dígitos) del número codificado en binario, l = log₂ (m) donde: m es el elemento mayor del dominio
- se halla el número de bytes c = l / 8

m	RESIDUO(m;2)	Peso	Decimal	
2007	1	2^0	1	
1003	1	2^1	2	
501	1	2^2	4	
250	0	2^3	0	
125	1	2^4	16	
62	0	2^5	0	
31	1	2^6	64	
15	1	2^7	128	
7	1	2^8	256	
3	1	2^9	512	
1	1	2^10	1024	
	SUM		2007	

- para un rango de números enteros [n..m] (m positivo) representación en exceso a n: para almacenar x, tomamos x-n el nuevo rango es [0..(m-n)] y procedemos como en el 1er caso
- para un rango de números enteros negativo [n..m] (n y m negativos) dado que el signo es un factor k constante no se almacena (tomamos x/k) el nuevo rango es positivo, y se procede como en los casos anteriores

Tema 2.1: Problema

B) Diseño físico-lógico con compresión de datos.

Calcular la densidad ideal y la densidad de fichero para un fichero con RLV con 1.000 regs. en un soporte cuyo tamaño de bloque es 1Kb. * Incluir Género C(9) con tres valores posibles {terror, drama, comedia}

Campo	Compuesto	Tipo	Frecuencia %	Veces max.	Veces. media	Tamaño max.	Tamaño medio
Titulo		С	100			42	30
Año		N	100			4	4
Productora		С	100			20	9
Genero		С	100			9	6
Director			100				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
Actores		С	75	5	2,8		
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
BS			50				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
	Formato	С	100	3	2	3	3

Tema 2.1: Ejemplo

Ejemplo: densidad del fichero de películas en DVD

1º Partimos del diseño lógico

Título C(42) Año N(4) Productora C(20) Género C(9)

Director (nombre C(20); apellido C(20)) Actores (nombre C(20); apellido C(20))*

Banda Sonora

[Autor B.S. (nombre C(20); apellido C(20));

Formato $C(3)^+$

Tema 2.1: Problema

B) Diseño físico-lógico con compresión de datos.

Calcular la densidad ideal y la densidad de fichero para un fichero con RLV con 1.000 regs. en un soporte cuyo tamaño de bloque es 1Kb. * Incluir Género C(9) con tres valores posibles {terror, drama, comedia}

Campo	Compuesto	Tipo	Frecuencia %	Veces max.	Veces. media	Tamaño max.	Tamaño medio
Titulo		С	100			42	30
Año		N	100			2	2
Productora		С	100			20	9
Genero		С	100			1	1
Director			100				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
Actores		С	75	5	2,8		
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
BS			50				
	Nombre	С	100			20	12,5
	Apellido	С	100			20	12,5
	Formato	С	100	1	1	1	1

@LABDA. Univ. Carlos III

Ejercicio de diseño físico-lógico

Ejemplo 2: Diseño físico-lógico del registro "estudiante ITIG" optimizado.

- Nombre completo (20 nombre + 20 apellido)
- Teléfonos (+34 y número) si los tiene, como máximo 3
- Dirección (50 como máximo)
- Asignaturas aprobadas. Nombre de la asignatura (50 carac. como máximo), curso (1..3) y convocatoria (1..6).
 En total se sabe que un alumno como máximo tendrá 40 asignaturas aprobadas
- Si ha cursado las 40 asignaturas, también necesitamos saber si ha realizado el proyecto y si es así el título (70 carac.) y el año en que lo presentó.

Ejercicio de diseño físico-lógico

Campo	Compuesto	Tipo	Frecuencia	Veces max.	Veces. media	Tamaño max.	Tamaño medio
Nombre-C			100	max.	media	max.	illedio
	Nombre	С				20	10
	Apellidos	С				20	15
Telefonos			80	3	2		
	Prefijo	С				3	3
	Número	N				9	9
Dirección		С	100			50	40
Asig-Apro			90	40	20		
	Nombre	С				50	30
	Curso	N				1	1
	Convocatoria	N				1	1
Proyecto			20				
	Título	С				70	50
	Año	N				4	4

@LABDA. Univ. Carlos III

Tema 2.1: Factores en un Fichero

<u>Tasa de crecimiento</u>: indica en qué proporción aumentan los registros del fichero por unidad de tiempo

$$T_C = T_I - T_B$$

- la *tasa de crecimiento esperada* permite reservar espacio vacío (para permitir la llegada de nueva información sin reorganizar)
- el espacio físico necesario para ese crecimiento dependerá de la **organización del fichero**.

Tema 2.1: Factores en un Fichero

• <u>Tasa de Actividad</u>: porcentaje de reg. tratados en un proceso

$$T_A = \frac{\text{registros procesados}}{\text{registros totales}} \cdot 100$$

 <u>Volatilidad</u>: porcentaje de cambios por unidad de tiempo (según cada operación, consideraremos tasas de inserción, borrado, y modificación)

@LAEDA. Univ. Carlos III

Tema 2.2: Organización Serial

Surge gracias a los soportes seriales:

Soporte Serial: proporciona registros físicos en serie, esto es, que se registran uno detrás de otro, siempre en el mismo orden

Ejemplo de soporte serial: la cinta magnética

Funcionamiento

Instrucciones: leer (bloque) y reset

- procesos selectivos: tiene que buscar uno o varios registros
 - antes de buscar, se apunta al principio del fichero (reset)
 - se van leyendo todos los registros hasta identificar el buscado
 - si se quiere localizar varios, se lee todo el fichero
- procesos a la totalidad: no precisan localización ni orden→ óptimos

Tema 2.2: Organización Serial

Interacción con Ficheros Seriales:

Recuperación:

• consulta: se recupera el contenido

Actualización:

- inserción: se añaden registros al final del fichero
- borrado físico: se *vacía* el registro \rightarrow se desplaza el resto borrado lógico: se *marca* el registro \rightarrow se genera un *hueco*
- modificación:
 - registros fijos: se altera el contenido
 - registros variables: se borra el antiguo y se reinserta modificado

Tema 2.2: Organización Serial

Cálculo del tiempo de acceso:

- $m\acute{a}ximo$: peor caso \rightarrow leer todos

$$t_{max} = n^o registros \cdot t_{acceso_registro}$$

- medio: se calcula como el acceso a la mediana (el de en medio)

$$t_{medio} = \frac{n^{o} registros + 1}{2} \cdot t_{acceso_registro}$$

¿De qué tipo de registro hablamos: físico o lógico?

Tema 2.3: Organización Secuencial

Surge a partir de la serial, introduciendo un orden de registros Se propicia gracias a una clave de ordenación física

Instrucciones: las seriales más desplazar (avanzar y retroceder)

- Se acceden los bloques aleatoriamente, y por ello se precisa un mecanismo para poder localizar el comienzo del primer registro
 - a nivel físico (por bloques): comienzo de bloque
 - a nivel físico-lógico (registros consecutivos): marca de inicio/fín

Procesos:

- procesos selectivos: puede aprovechar el que vayan ordenados
 - localizar un registro: búsqueda dicotómica
 - localizar varios registros: dicotómica + acceso serial
 - claves alternativas: búsqueda serial (leer todo el fichero)
- procesos a la totalidad: gran eficiencia en procesos ordenados

Tema 2.3: Organización Secuencial

Interacción con Ficheros Secuenciales

Consecutivos: El primer carácter de un bloque puede no corresponder al primer registro → se necesita una marca de inicio (o fin) de registro

Recuperación (consulta): recuperar el contenido de un registro o varios.

Actualización:

- inserción: se añaden registros al final del fichero \rightarrow altera el orden (*)
- borrado: igual que en serial, pero es más difícil reutilizar huecos.
- modificación:
 - registros fijos: se altera el contenido si no altera el orden (si no se modifica la clave de ordenación)
 - para modificar clave de ordenación, y en registros variables:
 se borra el antiguo y se reinserta modificado → altera el orden (*)

Nota(*): observar que se genera un *área desordenada* al final del fichero Actualización en no consecutivo puede que exista hueco en el bloque

Tema 2.3: Organización Secuencial

Consecutivos: El primer carácter de un bloque puede no corresponder al primer registro → se necesita una marca de inicio (o fin) de registro

¿cómo podemos interpretar la información contenida en el bloque 1 sin haber leído previamente el bloque 0?

El diseño lógico de registro se corresponde con

ISBN C(8),

Título C(72),

Editorial C (35)

@LABDA. Univ. Carlos III

Tema 2.3: Organización Secuencial

Localización en Ficheros Secuenciales:

Búsqueda dicotómica:

- mirar el de en medio: si coincide, fin
- si no coincide, escoger la mitad que contiene el elemento buscado
- volver a empezar (sobre la mitad escogida)

Para claves *no univocas*, se hará Búsqueda Dicotómica Extendida:

- Buscar primer elemento (por búsqueda dicotómica)
- Buscar hacia arriba hasta encontrar uno distinto (fallo)
- Buscar hacia abajo hasta encontrar uno distinto (fallo)
- Las entradas que coinciden, se incluyen en un 'conjunto resultado'

Tema 2.3: Organización Secuencial

Tiempo de acceso Búsqueda Dicotómica:

- consideramos sólo el máximo:

peor caso \rightarrow encontrarlo en la última vuelta media \rightarrow similar al tpo. máximo

$$n^{\circ}accesos_{max} = \lceil log_2(n+1) \rceil$$
 $t_{max} = \lceil log_2(n+1) \rceil$

$$t_{max} = n^{o}accesos_{max} \cdot t_{acceso_registro}$$

- El número de elementos en la búsqueda (n) depende de la relación físico-lógica:
 - en ficheros con registros expandidos, se trata del número de registros log.
 - en el resto (caso habitual) se trata del número de bloques del fichero
- En ficheros secuenciales, se usa búsqueda dicotómica con una salvedad:
 - búsqueda dicotómica sobre área ordenada
 - si no se encuentra, búsqueda serial sobre área desordenada

$$n^{\circ}accesos_{sec} = \lceil log_2(n+1) \rceil + n^{\circ}accesos_{serial}$$

@LABDA. Univ. Carlos III

Tema 2.3: Organización Secuencial

<u>Tiempo de acceso Búsqueda Dicotómica Extendida:</u>

- Se busca a través de una clave que presenta k coincidencias (de media), y que tiene v valores distintos (k * v = número total de registros).
- Para hallar el número de accesos, consideramos sólo el máximo:

peor caso \rightarrow - encontrar el primer elemento en la última vuelta

- el bloque anterior se leería sólo para encontrar un fallo
- se recuperarán k+1 registros (k coincidencias y un fallo)

$$n^{\circ}accesos_{max} = \lceil log_2(n+1) \rceil + \lceil \frac{(k+1)}{f_b} \rceil$$

- El número de elementos en la búsqueda (n) depende de la relación físico-lógica:
 - si los k registros caben en un bloque, se utilizará n=número de bloques
 - en el resto de casos, se debe utilizar el número de valores distintos (v)
- Se debe seguir considerando el área desordenada (siempre que exista).

Tema 2.4: Mantenimiento serial

Reutilización de huecos

Borrado Físico:

- en organización serial y registros fijos:
 - para borrar se lee el último registro y se escribe sobre el que se desea eliminar; el último se vacía.
- en organización serial y registros variables:
 - tamaños diversos → para borrar se desplazan todos los registros posteriores al eliminado → altamente ineficiente

Borrado Lógico:

- en organización serial (en general):
 - para borrar se introduce una marca de borrado lógico (1 acceso escritura), y al insertar se recorre el fichero buscando un hueco de tamaño adecuado. Si no hubiera un hueco suficientemente grande, se inserta al final.
 - Lista de Huecos: (tamaño+posición)

Reorganización = Compactación: se van desplazando registros para eliminar huecos

Tema 2.4: Mantenimiento secuencial

Reutilización de huecos

- 1.- Lista ordenada de huecos: (clave ant, clave post, tamaño)
 - al borrar actualiza la lista de huecos;
 - al insertar, comprueba si existe un hueco apropiado, lo usa y actualiza la lista; si no existe hueco, inserta el nuevo registro al final
- 2.- Espacio libre distribuido: (org. secuencial no consecutiva)
 - el fichero se divide en 'cubos' (bloque físico-lógico de registros)
 - cada cubo puede contener un bloque (o más; habitualmente uno)
 - cada cubo reserva un porcentaje de su espacio para registros que crecen, y un porcentaje para nuevos registros → (casi) todos los cubos tienen hueco
 - para insertar, se mira si cabe en su cubo; si no, se inserta al final

Tema 2.4: Mantenimiento secuencial

Reorganización:

reescribir todos los registros ordenados

- Problema: algoritmos sobre el propio fichero muy pesados (coste elevado)
- Habitualmente se usan algoritmos basados en almacenamiento auxiliar

¿Cómo afecta a la tasa de crecimiento la organización del fichero?

- en un <u>fichero serial con reutilización de huecos</u> coincidiría con la tasa de crecimiento
- <u>fichero sin reutilizar huecos</u> coincidiría con la tasa de inserción

