1 Limity

Zadání. Vyšetřete definiční obor funkce a její limity v hraničních bodech definičního oboru:

$$f(x) = \frac{\sin(\pi x)}{1 - e^{-x}}.$$

Řešení. Funkce f nabývá tvaru g/h, kde $g(x) = \sin(\pi x)$ a $h(x) = 1 - e^{-x}$. Definiční obory dílčích funkcí určíme jednoduše jako $D(g) = D(h) = \mathbb{R}$. Jako dalšího poznatku si můžeme povšimnout, že funkce h nabývá hodnoty $h(x_0) = 0$ v bodě $x_0 = 0$. Celkový definiční obor funkce f je tedy $D(f) = \mathbb{R} \setminus \{0\}$. Zbývá tedy vyšetřit limity v bodech $-\infty$, ∞ a 0.

(a)

$$\lim_{x \to \pm \infty} f(x) \in \emptyset,$$

neboť samotná dílčí funkce $g(x) = \sin(\pi x)$ osciluje a nemá tedy v $\pm \infty$ limitu.

(b)

$$\lim_{x \to 0} \frac{\sin(\pi x)}{1 - \mathrm{e}^{-x}} = \left| \frac{0}{0} \right| \stackrel{\mathcal{L}'\mathcal{H}}{==} \lim_{x \to 0} \frac{\pi \cos(\pi x)}{e^{-x}} = \pi.$$

Zadání. Vyšetřete definiční obor funkce a její limity v hraničních bodech definičního oboru:

$$f(x) = \frac{\ln(x-1)}{3x - x^2}.$$

Řešení. Budeme-li postupovat stejně jako v prvním příkladě (tentokrát $g(x) = \ln(x-1)$ a $h(x) = 3x - x^2$), dojdeme ihned k závěru, že $D(g) = (1, \infty)$ a $D(h) = \mathbb{R}$. Dále funkce $h(x) = 3x - x^2 = x(3-x)$ má nulové body $x_1 = 0$ a $x_2 = 3$. Celkově tedy opět průnikem dostáváme $D(f) = (1,3) \cup (3,\infty)$. Zbývá tedy vyšetřit limity v bodech 1, 3 a ∞ .

(a)

$$\lim_{x \to 1^+} \frac{\ln(x-1)}{3x - x^2} = \left| \frac{-\infty}{2} \right| = -\infty.$$

(b)

$$\lim_{x \to 3^{\pm}} \frac{\ln(x-1)}{x(3-x)} = \left| \frac{\ln(2)}{3 \cdot 0^{\mp}} \right| = \mp \infty,$$

neboli $\lim_{x\to 3^+} f(x) = -\infty$ a $\lim_{x\to 3^-} f(x) = \infty$. Limita v bodě x=3 tedy neexistuje.

(c)

$$\lim_{x \to \infty} \frac{\ln(x-1)}{3x - x^2} = \left| \frac{\infty}{-\infty} \right| \stackrel{\mathcal{L}'\mathcal{H}}{==} \lim_{x \to \infty} \frac{(x-1)^{-1}}{3 - 2x} = \left| \frac{0}{-\infty} \right| = 0.$$