

Numerical Analysis

(ENME 602)

Spring 2021

Lecture 8

Dr. Hesham H. Ibrahim

Associate Professor, Mechatronics Department. hesham.hamed-ahmed@guc.edu.eg Office C7.04

Lecture 8

Numerical Differentiation

- 8.1 Introduction to Numerical Differentiation
- **8.2 General Derivative Approximation Formulas**
- 8.3 Three-point Formulas
- 8.4 Five-point Formulas
- 8.5Application of the 3-Point and 5-Point Formulas
- 8.6 Numerical Approximations to Higher Derivatives
- 8.7 Round-Off Error Instability

Reference Material

The Lagrange Polynomial: Theoretical Error Bound

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between $x_0, x_1, ..., x_n$, and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the interpolating polynomial given by

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

Approximating a Derivative

• The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

• This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$\frac{f(x_0+h)-f(x_0)}{h}$$

for small values of *h*. Although this may be obvious, it is not very successful, due to our old nemesis round-off error.

But it is certainly a place to start.

Approximating a Derivative (Cont'd)

- To approximate $f'(x_0)$, suppose first that $x_0 \in (a,b)$, where $f \in C^2[a,b]$, and that $x_1 = x_0 + h$ for some $h \neq 0$ that is sufficiently small to ensure that $x_1 \in [a,b]$.
- We construct the first Lagrange polynomial $P_{0,1}(x)$ for f determined by x_0 and x_1 , with its error term:

$$f(x) = P_{0,1}(x) + \frac{(x-x_0)(x-x_1)}{2!}f''(\xi(x))$$

$$=\frac{f(x_0)(x-x_0-h)}{-h}+\frac{f(x_0+h)(x-x_0)}{h}+\frac{(x-x_0)(x-x_0-h)}{2}f''(\xi(x))$$

for some $\xi(x)$ between x_0 and x_1 .

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2}f''(\xi(x))$$

Differentiating gives

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right]$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x))$$

$$+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x (f''(\xi(x)))$$

Deleting the terms involving $\xi(x)$ gives

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2} f''(\xi(x)) \right]$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x))$$

$$+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x (f''(\xi(x)))$$

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Approximating a Derivative (Cont'd)

- One difficulty with this formula is that we have no information about $D_X f''(\xi(x))$, so the truncation error cannot be estimated.
- When x is x_0 , however, the coefficient of $D_x f''(\xi(x))$ is 0, and the formula simplifies to

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Forward-Difference and Backward-Difference Formulae

For small values of h, the difference quotient

$$\frac{f(x_0+h)-f(x_0)}{h}$$

can be used to approximate $f'(x_0)$ with an error bounded by M|h|/2, where M is a bound on |f''(x)| for x between x_0 and $x_0 + h$.

• This formula is known as the forward-difference formula if h > 0 and the backward-difference formula if h < 0.

Example 1: $f(x) = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

$$\frac{f(1.8+h)-f(1.8)}{h}$$

with h = 0.1 gives

$$\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722$$

Solution (2/3)

Because $f''(x) = -1/x^2$ and 1.8 $< \xi <$ 1.9, a bound for this approximation error is

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321$$

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar manner and the results are shown in the following table.

Solution (3/3): Tabulated Results

h	f(1.8 + h)	$\frac{f(1.8+h)-f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Since f'(x) = 1/x The exact value of f'(1.8) is $0.55\overline{5}$, and in this case the error bounds are quite close to the true approximation error.

Method of Construction

- To obtain general derivative approximation formulas, suppose that $\{x_0, x_1, \ldots, x_n\}$ are (n + 1) distinct numbers in some interval I and that $f \in C^{n+1}(I)$.
- From the interpolation error theorem theorem we have

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

for some $\xi(x)$ in I, where $L_k(x)$ denotes the kth Lagrange coefficient polynomial for f at x_0, x_1, \ldots, x_n .

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

Method of Construction (Cont'd)

Differentiating this expression gives

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1!)} \right] f^{(n+1)}(\xi(x))$$

$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1!)} \right] f^{(n+1)}(\xi(x))$$

$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless x is one of the numbers x_j . In this case, the term multiplying $D_x[f^{(n+1)}(\xi(x))]$ is 0, and the formula becomes

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

which is called an (n + 1)-point formula to approximate $f'(x_i)$.

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

Comment on the (n + 1)-point formula

- In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
- The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.

Important Building Blocks

Since

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

we obtain

$$L_0'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}$$

In a similar way, we find that

$$L'_1(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$$

$$L'_2(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

Important Building Blocks (Cont'd)

Using these expressions for $L'_j(x)$, $1 \le j \le 2$, the n+1-point formula

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{\substack{k=0\\k\neq j}}^n (x_j - x_k)$$

becomes for n = 2:

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

for each j = 0, 1, 2, where $\xi_j = \xi_j(x)$.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Assumption

The 3-point formulas become especially useful if the nodes are equally spaced, that is, when

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$, for some $h \neq 0$

We will assume equally-spaced nodes throughout the remainder of this section.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (1/3)

With $x_j = x_0, x_1 = x_0 + h$, and $x_2 = x_0 + 2h$, the general 3-point formula becomes

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (2/3)

Doing the same for $x_j = x_1$ gives

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{\substack{k=0 \ k \neq j}}^{2} (x_j - x_k)$$

Three-Point Formulas (3/3)

... and for $x_i = x_2$, we obtain

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Three-Point Formulas: Further Simplification

Since $x_1 = x_0 + h$ and $x_2 = x_0 + 2h$, these formulas can also be expressed as

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

As a matter of convenience, the variable substitution x_0 for $x_0 + h$ is used in the middle equation to change this formula to an approximation for $f'(x_0)$. A similar change, x_0 for $x_0 + 2h$, is used in the last equation.

Three-Point Formulas: Further Simplification (Cont'd)

This gives three formulas for approximating $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h}[-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6}f^{(3)}(\xi_1), \text{ and}$$

$$f'(x_0) = \frac{1}{2h}[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)] + \frac{h^2}{3}f^{(3)}(\xi_2)$$

Finally, note that the last of these equations can be obtained from the first by simply replacing h with -h, so there are actually only two formulas.

Three-Point Endpoint Formula

$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

(1)
$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0)$$

(2)
$$f'(x_0) = \frac{1}{2h}[f(x_0+h)-f(x_0-h)]-\frac{h^2}{6}f^{(3)}(\xi_1)$$

Comments

- Although the errors in both Eq. (1) and Eq. (2) are O(h²), the error in Eq. (2) is approximately half the error in Eq. (1).
- This is because Eq. (2) uses data on both sides of x₀ and Eq. (1) uses data on only one side.
- Note also that f needs to be evaluated at only two points in Eq. (2), whereas in Eq. (1) three evaluations are needed.

Three-Point Midpoint Formula

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

8.4 Five-point Formulas

8.4 Five-point Formulas

Five-Point Midpoint Formula

$$f'(x_0) = \frac{1}{12h}[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30}f^{(5)}(\xi)$$

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Five-Point Endpoint Formula

$$f'(x_0) = \frac{1}{12h}[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5}f^{(5)}(\xi)$$

where ξ lies between x_0 and $x_0 + 4h$.

8.5Application of the z-Point and z-Point Formulae

8.5Application of the 3-Point and 5-Point Formulae

Example

Values for $f(x) = xe^x$ are given in the following table:

X	1.8	1.9	2.0	2.1	2.2
$\overline{f(x)}$	10.889365	12.703199	14.778112	17.148957	19.855030

Use all the applicable three-point and five-point formulas to approximate f'(2.0).

Solution (1/4)

- The data in the table permit us to find four different three-point approximations. ► See 3-Point Endpoint & Midpoint Formulae
- We can use the endpoint formula with h = 0.1 or with h = -0.1, and
- we can use the midpoint formula with h = 0.1 or with h = 0.2.

8.5Application of the 3-Point and 5-Point Formulae

Solution (2/4)

Using the 3-point endpoint formula with h = 0.1 gives

$$\frac{1}{0.2}[-3f(2.0) + 4f(2.1) - f(2.2]$$
= $5[-3(14.778112) + 4(17.148957) - 19.855030)] = 22.032310$

and with h = -0.1 gives 22.054525.

Using the 3-point midpoint formula with h = 0.1 gives

$$\frac{1}{0.2}[f(2.1) - f(1.9)] = 5(17.148957 - 12.7703199) = 22.228790$$

and with h = 0.2 gives 22.414163.

8.5Application of the 3-Point and 5-Point Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is the midpoint formula \bigcirc See Formula with h = 0.1. This gives

$$\frac{1}{1.2}[f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)]$$

$$= \frac{1}{1.2}[10.889365 - 8(12.703199) + 8(17.148957) - 19.855030]$$

$$= 22.166999$$

If we had no other information, we would accept the five-point midpoint approximation using h = 0.1 as the most accurate, and expect the true value to be between that approximation and the three-point mid-point approximation, that is in the interval [22.166, 22.229].

8.5Application of the 3-Point and 5-Point Formulae

Solution (4/4)

The true value in this case is $f'(2.0) = (2+1)e^2 = 22.167168$, so the approximation errors are actually:

Method h		Approximation Error	
Three-point endpoint	0.1	1.35×10^{-1}	
Three-point endpoint	-0.1	1.13×10^{-1}	
Three-point midpoint	0.2	-2.47×10^{-1}	
Three-point midpoint	0.1	-6.16×10^{-2}	
Five-point midpoint	0.1	1.69×10^{-4}	

Illustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x_0 and evaluate at $x_0 + h$ and $x_0 - h$. Then

$$f(x_0+h)=f(x_0)+f'(x_0)h+\frac{1}{2}f''(x_0)h^2+\frac{1}{6}f'''(x_0)h^3+\frac{1}{24}f^{(4)}(\xi_1)h^4$$

and

$$f(x_0-h)=f(x_0)-f'(x_0)h+\frac{1}{2}f''(x_0)h^2-\frac{1}{6}f'''(x_0)h^3+\frac{1}{24}f^{(4)}(\xi_{-1})h^4$$

where $x_0 - h < \xi_{-1} < x_0 < \xi_1 < x_0 + h$.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_{-1})h^4$$

Illustrative Method of Construction (Cont'd)

If we add these equations, the terms involving $f'(x_0)$ and $-f'(x_0)$ cancel, so

$$f(x_0+h)+f(x_0-h)=2f(x_0)+f''(x_0)h^2+\frac{1}{24}[f^{(4)}(\xi_1)+f^{(4)}(\xi_{-1})]h^4$$

Solving this equation for $f''(x_0)$ gives

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{24} [f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1})]$$

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{24} [f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1})]$$

Second Derivative Midpoint Formula

$$f''(x_0) = \frac{1}{h^2}[f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12}f^{(4)}(\xi)$$

for some ξ , where $x_0 - h < \xi < x_0 + h$.

Note: If $f^{(4)}$ is continuous on $[x_0 - h, x_0 + h]$, then it is also bounded, and the approximation is $O(h^2)$.

Example (Second Derivative Midpoint Formula)

Values for $f(x) = xe^x$ are given in the following table:

Х	1.8	1.9	2.0	2.1	2.2
$\overline{f(x)}$	10.889365	12.703199	14.778112	17.148957	19.855030

Use the second derivative midpoint formula Formula approximate f'(2.0).

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for f''(2.0). Using the formula with h = 0.1 gives

$$\frac{1}{0.01}[f(1.9)-2f(2.0)+f(2.1)]$$

$$= 100[12.703199 - 2(14.778112) + 17.148957] = 29.593200$$

and using the formula with h = 0.2 gives

$$\frac{1}{0.04}[f(1.8)-2f(2.0)+f(2.2)]$$

$$= 25[10.889365 - 2(14.778112) + 19.855030] = 29.704275$$

The exact value is f''(2.0) = 29.556224. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1} , respectively.

Concept of Total Error

- It is particularly important to pay attention to round-off error when approximating derivatives.
- To illustrate the situation, let us examine the three-point midpoint formula:

$$f'(x_0) = \frac{1}{2h}[f(x_0+h)-f(x_0-h)] - \frac{h^2}{6}f^{(3)}(\xi_1),$$

more closely.

• Suppose that in evaluating $f(x_0 + h)$ and $f(x_0 - h)$ we encounter round-off errors $e(x_0 + h)$ and $e(x_0 - h)$.

$$f'(x_0) = \frac{1}{2h}[f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

• Then our computations actually use the values $\tilde{f}(x_0 + h)$ and $\tilde{f}(x_0 - h)$, which are related to the true values $f(x_0 + h)$ and $f(x_0 - h)$ by

$$f(x_0+h) = \tilde{f}(x_0+h) + e(x_0+h)$$
 and $f(x_0-h) = \tilde{f}(x_0-h) + e(x_0-h)$

The total error in the approximation,

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

is due both to round-off error, the first part, and to truncation error.

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

If we assume that the round-off errors $e(x_0 \pm h)$ are bounded by some number $\varepsilon > 0$ and that the third derivative of f is bounded by a number M > 0, then

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

Concept of Total Error (Cont'd)

- To reduce the truncation error, $h^2M/6$, we need to reduce h.
- But as h is reduced, the round-off error ε/h grows.
- In practice, then, it is seldom advantageous to let h be too small because, in that case, the round-off error will dominate the calculations.

Example

Consider using the values in the following table

Χ	sin x	X	sin x
0.800	0.71736	0.901	0.78395
0.850	0.75128	0.902	0.78457
0.880	0.77074	0.905	0.78643
0.890	0.77707	0.910	0.78950
0.895	0.78021	0.920	0.79560
0.898	0.78208	0.950	0.81342
0.899	0.78270	1.000	0.84147

to approximate f'(0.900), where $f(x) = \sin x$. The true value is $\cos 0.900 = 0.62161$.

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \leq \frac{\varepsilon}{h} + \frac{h^2}{6}M$$

Solution (1/4)

The formula

$$f'(0.900) \approx \frac{f(0.900+h)-f(0.900-h)}{2h}$$

with different values of h, gives the approximations in the following table.

Solution (2/4)

h	Approximation to $f'(0.900)$	Error
0.001	0.62500	0.00339
0.002	0.62250	0.00089
0.005	0.62200	0.00039
0.010	0.62150	-0.00011
0.020	0.62150	-0.00011
0.050	0.62140	-0.00021
0.100	0.62055	-0.00106

The optimal choice for *h* appears to lie between 0.005 and 0.05.

Solution (3/4)

We can use calculus to verify that a minimum for

$$e(h) = \frac{\varepsilon}{h} + \frac{h^2}{6}M,$$

occurs at $h = \sqrt[3]{3\varepsilon/M}$, where

$$M = \max_{x \in [0.800, 1.00]} |f'''(x)| = \max_{x \in [0.800, 1.00]} |\cos x| = \cos 0.8 \approx 0.69671.$$

Because values of f are given to five decimal places, we will assume that the round-off error is bounded by $\varepsilon = 5 \times 10^{-6}$.

Solution (4/4)

Therefore, the optimal choice of *h* is approximately

$$h = \sqrt[3]{3\varepsilon/M} = \sqrt[3]{\frac{3(0.000005)}{0.69671}} \approx 0.028,$$

which is consistent with the results in the earlier table.

- In practice, we cannot compute an optimal h to use in approximating the derivative, since we have no knowledge of the third derivative of the function.
- But we must remain aware that reducing the step size will not always improve the approximation.

Thank You

"Numerical Integration"

