数字电路基础

一、逻辑代数定律和计算规则

定律/规则 名称	表达式	解释
恒等律	$A+0=A \ A\cdot 1=A$	任何变量与0相加或与1相乘等 于自身
零律	$A+1=1 \ A\cdot 0=0$	任何变量与1相加或与0相乘等 于1或0
幂等律	$A+A=A \ A\cdot A=A$	任何变量与自身相加或相乘等于 自身
互补律	$A + \overline{A} = 1$ $A \cdot \overline{A} = 0$	任何变量与其补码相加等于1, 相乘等于0
交换律		
加法交换 律	A+B=B+A	加法运算的交换律
乘法交换 律	$A\cdot B=B\cdot A$	乘法运算的交换律
结合律		
加法结合 律	(A+B)+C=A+(B+C)	加法运算的结合律
乘法结合 律	$(A\cdot B)\cdot C=A\cdot (B\cdot C)$	乘法运算的结合律
分配律		
乘法分配 律	$A\cdot (B+C)=A\cdot B+A\cdot C$	乘法对加法的分配律
加法分配 律	$A + (B \cdot C) = (A + B) \cdot (A + C)$	加法对乘法的分配律
吸收律		
吸收律1	$A + A \cdot B = A$	吸收律的第一种形式
吸收律2	$A\cdot (A+B)=A$	吸收律的第二种形式
德摩根定 律		
德摩根定 律1	$\overline{A+B}=\overline{A}\cdot\overline{B}$	逻辑加法的德摩根定律

定律/规则 名称	表达式	解释
德摩根定 律2	$\overline{A\cdot B}=\overline{A}+\overline{B}$	逻辑乘法的德摩根定律
简化定律		
简化定律1	$A + \overline{A} \cdot B = A + B$	简化逻辑表达式
简化定律2	$A\cdot (\overline{A}+B)=A\cdot B$	简化逻辑表达式
共识定律		
共识定律 (积之和形 式)	$AB + \overline{A}C + BC = AB + \overline{A}C$	较难,常用于逻辑化简。项 BC 是 AB 和 A C 的共识项, 是冗余的。
共识定律 (和之积形 式)	$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$	较难,常用于逻辑化简。项 (B+C) 是(A+B)和(A +C)的 共识项,是冗余的。
反演定律		
反演定律	$A=\overline{\overline{A}}$	变量的双重否定等于自身

推导过程

1. 基本定律

• **恒等律**: A + 0 = A 和 $A \cdot 1 = A$ 是逻辑代数的基本定义。

• **零律**: A+1=1 和 $A\cdot 0=0$ 也是逻辑代数的基本定义。

• **幂等律**: A + A = A 和 $A \cdot A = A$ 是因为逻辑加法和乘法运算的特性。

• **互补律**: $A + \overline{A} = 1$ 和 $A \cdot \overline{A} = 0$ 是逻辑变量和其补码的定义。

2. 交换律

• **加法交换律**: A + B = B + A 是逻辑加法的交换特性。

• **乘法交换律**: $A \cdot B = B \cdot A$ 是逻辑乘法的交换特性。

3. 结合律

• **加法结合律**: (A+B)+C=A+(B+C) 是逻辑加法的结合特性。

• **乘法结合律**: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ 是逻辑乘法的结合特性。

4. 分配律

• **乘法分配律**: $A \cdot (B + C) = A \cdot B + A \cdot C$ 是逻辑乘法对加法的分配特性。

• **加法分配律**: $A + (B \cdot C) = (A + B) \cdot (A + C)$ 是逻辑加法对乘法的分配特性。

5. 吸收律

• **吸收律1**: $A + A \cdot B = A$ 可以从 $A + A \cdot B = A \cdot (1 + B) = A \cdot 1 = A$ 推导得出。

• **吸收律2**: $A \cdot (A + B) = A$ 可以从 $A \cdot (A + B) = A \cdot A + A \cdot B = A + A \cdot B = A$ 推导得出。

6. 德摩根定律

• **德摩根定律1**: $\overline{A+B} = \overline{A} \cdot \overline{B}$ 是逻辑加法的德摩根定律。

• **德摩根定律2**: $\overline{A \cdot B} = \overline{A} + \overline{B}$ 是逻辑乘法的德摩根定律。

7. 简化定律

• 简化定律1: $A + \overline{A} \cdot B = A + B$ 可以从 $A + \overline{A} \cdot B = (A + \overline{A}) \cdot (A + B) = 1 \cdot (A + B) = A + B$ 推导得出。

• 简化定律2: $A \cdot (\overline{A} + B) = A \cdot B$ 可以从 $A \cdot (\overline{A} + B) = A \cdot \overline{A} + A \cdot B = 0 + A \cdot B = A \cdot B$ 推导得出。

8. 共识定律

• 共识定律: $(A+B)\cdot(\overline{A}+C)=(A+B)\cdot(\overline{A}+C)\cdot(B+C)$ 可以从 $(A+B)\cdot(\overline{A}+C)=(A+B)\cdot(\overline{A}+C)\cdot(B+C)$ 推导得出,因为 $(A+B)\cdot(\overline{A}+C)\leq (B+C)_{\circ}$

9. 反演定律

• **反演定律**: $A = \overline{A}$ 是逻辑变量的双重否定特性。

二、基本门电路

1. 非门

$$Y=\overline{A}$$

2. 与门

$$Y = A \cdot B$$

真值表:

输入A	输入 B	输出 Y
0	0	0
0	1	0
1	0	0
1	1	1

3. 或门

$$Y = A + B$$

真值表:

输入 A	输入 B	输出 Y
0	0	0
0	1	1

输入 A	输入 B	输出 Y
1	0	1
1	1	1

4. 与非门

与非门是"与门"和"非门"的结合。

 $Y = \overline{A \cdot B}$

真值表:

输入 A	输入 B	输出 Y
0	0	1
0	1	1
1	0	1
1	1	0

5. 或非门

或非门是"或门"和"非门"的结合。

 $Y = \overline{A + B}$

真值表:

输入A	输入B	输出 Y
0	0	1
0	1	0
1	0	0
1	1	0

6. 异或门

当两个输入不相同时,输出为高电平(1);当两个输入相同时,输出为低电平(0)。这也被称为"半加器"的求和逻辑。

逻辑表达式:

$$Y = A \oplus B$$

真值表:

输入 A	输入 B	输出 Y
0	0	0
0	1	1
1	0	1
1	1	0

三、编码

1. 原码、反码和补码

为了在二进制系统中表示正负数,我们通常会使用最高位作为**符号位**。

- 符号位为 **0** 代表**正数**。
- 符号位为 1 代表负数。

原码

- 规则: 符号位 + 数值的绝对值的二进制表示。
- 正数: 符号位为0,其余位表示数值。
 - 例如,+12 的原码是 00001100。
- 负数: 符号位为1, 其余位表示数值。
 - 例如,-12 的原码是 10001100。
- 缺点:
 - 1. 零的表示不唯一: +0 是 00000000, −0 是 10000000。
 - 2. 进行加减法运算时,需要单独处理符号位,硬件实现复杂。

反码

反码的出现是为了简化减法运算。

- 规则:
 - 正数的反码与其原码相同。
 - 负数的反码是在其原码的基础上,符号位不变,其余各位按位取反。
- 示例:
 - +12 的原码是 00001100 , 其反码也是 00001100。
 - -12 的原码是 10001100 ,其反码是 **11110011** (符号位1不变,后面7位 0001100 按 位取反得到 1110011)。
- 缺点:
 - 仍然存在"双零"问题: +0 的反码是 **0000000**, -0 的反码是 **11111111**。

• 跨零运算会产生循环进位问题。

补码

补码是现代计算机系统中最常用的有符号数表示法,它解决了原码和反码的缺点。

• 规则:

- 正数的补码与其原码相同。
- **负数**的补码是其**反码加 1**。

• 求负数补码的方式:

• 从其原码的**最低位(最右边)**向左找,找到的**第一个 1** 保持不变,这个 1 **左边**的所有位(不含符号位)按位取反,符号位仍为1。

• 示例:

- +12 的补码是 **00001100**。
- -12 的补码求法:

1. 原码: 10001100 2. 反码: 11110011

3. 加 1: 11110011 + 1 = 11110100。

• 优点:

- 1. 零的表示唯一: 00000000。
- 2. **简化运算**: 可以将减法运算转换为加法运算。例如,计算 A = B 等同于计算 A + (-B) 的补码。
- 3. 对于一个 n 位的补码系统,其表示范围为 $[-2^{n-1}, 2^{n-1} 1]$ 。例如,8位补码的范围是 [-128, 127]。

总结表格 (以 ±12 为例)

值	原码	反码	补码
+12	00001100	00001100	00001100
-12	10001100	11110011	11110100

2. BCD 码

BCD码是用**二进制**来表示**十进制**数的一种编码方式。它与直接将十进制数转换为二进制数不同。

- 规则: 用 4 位二进制数来表示一位十进制数(0-9)。最常用的是 8421 BCD 码,其中各位的权值从高到低分别是 8、4、2、1。
- 特点:
 - 它介于二进制和十进制之间,便于人机交互(如数码管显示、计算器)。
 - 运算比纯二进制复杂,但比直接处理十进制字符简单。

• 由于用4位二进制表示一位十进制数,所以 1010 到 1111 这 6 个码是无效或非法 的。

BCD 码对照表

十进制	BCD 码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

示例: 将十进制数 129 转换为 BCD 码。

- 1. 将每一位十进制数分开: 1、2、9。
- 2. 将每一位分别转换为对应的4位BCD码:
 - $1 \rightarrow 0001$
 - ullet 2
 ightarrow 0010
 - $9 \rightarrow 1001$
- 3. 将它们组合起来:

$$(129)_{10} = (0001\ 0010\ 1001)_{BCD}$$

对比: 如果将 (129)10 直接转换为纯二进制,结果是 **10000001**。这与它的 BCD 码是完全不同的。

四、加法器、编码器、译码器、选择器、比较器

五、触发器

1. RS 触发器

最基本的触发器,但存在一个不确定状态,在实际应用中较少直接使用。

• 输入: S (Set, 置位), R (Reset, 复位)

• **输出**: Q (状态输出), \overline{Q} (反向输出)

功能表

这张表描述了在不同输入下,下一个状态 Q_{n+1} 是什么。

S	R	Q_{n+1}	功能
0	0	Q_n	保持
0	1	0	复位/置0
1	0	1	置位/置1
1	1	?	禁止/不定

特性方程

$$Q_{n+1} = S + \overline{R}Q_n$$
 (约束条件: $S \cdot R = 0$)

激励表

这张表在电路设计时非常有用,它回答了"为了让状态从 Q_n 变为 Q_{n+1} ,输入 S 和 R 应该是什么?"。(X表示Don't Care,即0或1均可)

Q_n	Q_{n+1}	S	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	X	0

2. JK 触发器

JK 触发器是 RS 触发器的改进版,它解决了 RS 触发器的"禁止"状态问题,是最通用的触发器。

• **输入**: *J* (功能类似 *S*), *K* (功能类似 *R*)

• 输出: Q, Q

功能表

J	K	Q_{n+1}	功能
0	0	Q_n	保持
0	1	0	复0
1	0	1	置1
1	1	$\overline{Q_n}$	翻转

JK触发器将RS触发器的禁止状态(1,1输入)变成了一个非常有用的**翻转**功能。

特性方程

$$Q_{n+1} = J\overline{Q_n} + \overline{K}Q_n$$

激励表

Q_n	Q_{n+1}	J	K
0	0	0	X
0	1	1	Х
1	0	X	1
1	1	X	0

3. D 触发器

D 触发器的功能非常直接:在时钟脉冲到来时,将输入 D 的值传递给输出 Q。它常被用作数据锁存器或移位寄存器的基本单元。

• 输入: D (Data)

• 输出: Q, \overline{Q}

功能表

D	Q_{n+1}	功能
0	0	置0
1	1	置1

无论当前状态 Q_n 是什么,下一个状态 Q_{n+1} 都等于时钟边沿到来时的 D 输入值。

特性方程

$$Q_{n+1} = D$$

激励表

Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

4. T 触发器

T 触发器是一个翻转触发器。当输入 T=1 时,状态翻转;当 T=0 时,状态保持不变。它常用于构建计数器。

• 输入: T

• 输出: Q, \overline{Q}

功能表

T	Q_{n+1}	功能
0	Q_n	保持
1	$\overline{Q_n}$	翻转

特性方程

$$Q_{n+1} = T \oplus Q_n = T\overline{Q_n} + \overline{T}Q_n$$

激励表

Q_n	Q_{n+1}	T
0	0	0
0	1	1
1	0	1
1	1	0