

Proba de Avaliación do Bacharelato para o Acceso á Universidade CONVOCATORIA EXTRAORDINARIA 2021

Código: 24

QUÍMICA

El examen consta de 8 preguntas de 2 puntos, de las que podrá responder un <u>MÁXIMO DE 5</u>, combinadas como quiera. Cada pregunta vale **2 puntos (1 punto por apartado)**. SI responde más preguntas de las permitidas, <u>solo se corregirán las 5 primeras respondidas.</u>

PREGUNTA 1.

Conteste a cada una de las siguientes cuestiones justificando la respuesta.

- 1.1. Indique si las moléculas CS₂ y NCl₃ tienen o no momento dipolar.
- 1.2. Explique por qué la molécula de cloro es covalente mientras que el CsCl es un compuesto iónico. Indique una propiedad de cada compuesto.

PREGUNTA 2.

- <u>2.1.</u> Para los elementos A, B y C de números atómicos 7, 9 y 37, respectivamente, ordénelos de mayor a menor radio atómico e indique cuál tendrá más tendencia a captar un electrón para formar un anión. Justifique la respuesta.
- <u>2.2.</u> Complete las siguientes reacciones químicas orgánicas empleando las fórmulas semidesarrolladas e indique el tipo de reacción a lo que pertenecen:

$CH_3-CH_2OH + HBr \rightarrow \underline{\hspace{1cm}} + H_2O CH_2=CH_2 + H_2O \rightarrow \underline{\hspace{1cm}} CH_3-CH_3-CH_3$	$-COOH + CH_3NH_2 \rightarrow \underline{\hspace{1cm}} + H_2O$
--	--

PREGUNTA 3.

- <u>3.1.</u> La ecuación de velocidad de una reacción es $v = k \cdot [A] \cdot [B]^2$. Razone si las unidades de la constante de velocidad son mol⁻¹·L·s.
- <u>3.2.</u> Se dispone de una disolución acuosa saturada de $CaCO_3$ en equilibrio con su sólido; indique como se verá modificada su solubilidad al añadirle En Na_2CO_3 , considerando esta sal totalmente disociada. Razone la respuesta indicando el equilibrio y la expresión de la constante del producto de solubilidad (K_{ps}).

PREGUNTA 4.

En un recipiente de 10 litros se introducen 2 moles de N_2O_4 gaseoso a 50 °C produciéndose el siguiente equilibrio de disociación: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Si la constante K_p a dicha temperatura es de 1,06; calcule:

- 4.1. Las concentraciones de los dos gases tras alcanzar el equilibrio y el porcentaje de disociación del N2O4.
- 4.2. Las presiones parciales de cada gas y la presión total en el equilibrio.

PREGUNTA 5.

Una disolución acuosa 0,03 M de un ácido monoprótico (HA) tiene un pH de 3,98. Calcule:

- 5.1. La concentración molar de A- en la disolución y el grado de disociación del ácido.
- 5.2. El valor de la constante del ácido (Ka) y el valor de la constante de su base conjugada (Kb).

PREGUNTA 6.

El dicromato de potasio (K₂Cr₂O₇) reacciona con sulfato de hierro(II), en medio ácido sulfúrico, dando sulfato de hierro(III), sulfato de cromo(III), sulfato de potasio y agua.

- 6.1. Ajuste las ecuaciones iónica y molecular por el método del ión-electrón.
- 6.2. Calcule los gramos de sulfato de cromo(III) que podrán obtenerse a partir de 5,0 g de K₂Cr₂O₇ si el rendimiento de la reacción es del 60 %.

PREGUNTA 7.

Se mezclan 20 mL de una disolución acuosa de BaCl₂ 0,5 M con 80 mL de una disolución acuosa de CaSO₄ 0,04 M.

- 7.1. Escriba la reacción química que tiene lugar, nombre y calcule la cantidad en gramos del precipitado obtenido.
- 7.2. Nombre y dibuje el material y describa el procedimiento que emplearía en el laboratorio para separar el precipitado.

PREGUNTA 8.

Al valorar 20,0 mL de una disolución de Ca(OH)₂ se gastan 18,1 mL de una disolución de HCl 0,250 M.

- 8.1. Escriba la reacción que tiene lugar y calcule la concentración molar de la disolución de la base.
- 8.2. Indique el material y reactivos necesarios, dibuje el montaje y explique el procedimiento realizado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa; $K_w = 1,0 \cdot 10^{-14}$.

Soluciones

- 1.1. Contesta a la siguiente cuestión justificando la respuesta:
 - a) Indica si las moléculas CS₂ y NCl₃ tienen o no momento dipolar.

La teoría de repulsión de pares de electrones de la capa de valencia (TRPECV) supone que los electrones de valencia, junto con los de los átomos que forman enlace con él, rodean a un átomo formando parejas, en las que la repulsión entre los electrones de cada pareja es pequeña, debido la que tienen spin contrario, y solo hay que tener en cuenta a repulsión electrostática clásica entre los pares enlazantes (excepto $\log \pi$) y entre los pares enlazantes y los pares no enlazantes, de forma que se dispongan lo más lejos posible. Esta teoría es la que da una justificación más sencilla de los ángulos de enlace. La repulsión de dos pares da una disposición lineal con ángulos de 180° , tres pares dan una distribución triangular con ángulos de 120° y cuatro pares se dirigen hacia los vértices de un tetraedro con ángulos de $109,5^\circ$.

Molécula de disulfuro de carbono: CS₂.

El átomo central es el de carbono, que tiene 4 electrones en su capa de valencia.

La configuración electrónica del átomo de carbono (Z=6) en el estado fundamental es $1s^2$ $2s^2$ $2p_x^1$ $2p_y^1$, que solo tiene dos electrones desapareados y solo podría formar dos enlaces. Para poder formar cuatro enlaces, tiene que separar («desaparear») los dos electrones $2s^2$, elevando uno de ellos al orbital 2p vacío, siendo su configuración excitada: $1s^2$ $2s^1$ $2p_x^1$ $2p_y^1$.

El coste de energía de excitación se compensa con la energía de los enlaces que se van a formar. Dos de estos electrones forman enlaces covalentes σ con los dos átomos de azufre, mientras que los otros dos forman enlaces π con esos mismos átomos, como se ve en el diagrama electrón-punto de Lewis: $\S^*:C^*:S^*:$

Según la TRPECV, los enlaces π no se tienen en cuenta y la geometría electrónica de 2 pares de electrones es lineal. La molécula de CS_2 es lineal con un ángulo S-C-S de 180° .

La electronegatividad mide la tendencia que tiene un átomo a atraer hacia sí el par de electrones del enlace y la resistencia a dejarlos marchar.

Debido a que el azufre es más electronegativo que el carbono, existe un momento dipolar de enlace $C^{\delta +} \to S^{\delta -}$, que se representa mediante un vector. Pero como ambos enlaces están dirigidos en sentidos opuestos, $S^{\delta -} \leftarrow C^{\delta +} \to S^{\delta -}$, y el valor de cada momento dipolar es el mismo, el momento dipolar de la molécula, que es la resultante de los vectores, es cero. La molécula CS_2 no es polar.

Molécula de tricloruro de nitrógeno: NCl₃.

El átomo central es el de nitrógeno, que tiene 5 electrones en su capa de valencia. La configuración electrónica del átomo de nitrógeno (Z=7) en el estado fundamental es $2s^2 2p_x^1 2p_y^1 2p_z^1$. Tres de estos electrones forman enlaces covalentes con los tres átomos de cloro, mientras que los otros dos permanecen como un par solitario no enlazante, como se ve en el diagrama electrón-punto de Lewis:

Según la TRPECV, la geometría electrónica de 4 pares de electrones es tetraédrica.

La forma de la molécula se determina de la posición de los átomos (sin tener en cuenta los pares no enlazantes). El átomo de nitrógeno está en el centro del tetraedro y los tres átomos de cloro se disponen en tres vértices, pero en el cuarto vértice hay un par no enlazante que no «se ve»:

CI N. CI

la forma de la molécula del NCl₃ es piramidal achatada. Cl

Como el par no enlazante está más cerca del átomo de nitrógeno que los pares enlazantes, la repulsión entre el par no enlazante y los pares enlazantes es mayor que entre los pares enlazantes entre sí, y hará que los átomos de cloro se acerquen un poco. El ángulo de enlace Cl-N-Cl sería algo menor que La molécula de NCl₃ es polar. Las electronegatividades de los átomos de Cl y N son muy similares y los enlaces Cl–N tienen un momento dipolar nulo (o muy pequeño). Pero el par no enlazante del nitrógeno no se compensa. Como está muy próximo al átomo de nitrógeno, el momento dipolar será pequeño.

1.2.	b) Explica por qué la molécula de cloro es covalente mientras que el CsCl es un compuesto iónico. In
	dica una propiedad de cada compuesto.

(A.B.A.U. extr. 21)

Solución:

Cloro: Cl₂.

El enlace covalente se emplea para explicar la unión entre átomos de electronegatividad parecida. Los dos átomos de cloro tienen la misma electronegatividad. El enlace se produce por el hecho de compartir electrones desapareados para intentar que cada átomo quede rodeado por ocho electrones (regla del octete). El diagrama de Lewis sería:

El cloro es un gas a la temperatura ambiente, porque las fuerzas intermoleculares entre las moléculas son relativamente pequeñas.

Nos conduce la corriente eléctrica al no disponer de cargas libres.

Cloruro de cesio: CsCl.

El enlace iónico explica la unión entre átomos de diferente electronegatividad. El cloro es un elemento muy electronegativo, tanto que la captura de un electrón es un proceso exotérmico, favorecido por el hecho de que el ion cloruro consigue la configuración electrónica de un gas noble. El cesio es muy poco electronegativo, y la pérdida de un electrón para tener una configuración estable es un proceso que requiere una cantidad muy pequeña de energía. La energía de red, junto con la afinidad electrónica, compensa los aportes energéticos necesarios para su formación.

El cloruro de cesio es un sólido con un punto de fusión relativamente alto. No conduce la corriente eléctrica en el estado sólido pero sí disuelto en agua o fundido.

2.1. Para los elementos A, B y C de números atómicos 7, 9 y 37, respectivamente, ordénalos de mayor a menor radio atómico e indica cuál tendrá más tendencia a captar un electrón para formar un anión. Justifique la respuesta.

Solución:

El radio atómico de un elemento se define cómo la mitad de la distancia internuclear en la molécula diatómica (si formase moléculas diatómicas) o de la distancia entre dos átomos en la estructura cristalina. Las predicciones de la variación de radio atómico a lo largo de un período se basan en el efecto de la fuerza de atracción que ejerce la carga nuclear sobre los electrones externos haciendo que se aproximen al núcleo y den un tamaño menor.

Como regla sencilla, se dice que el radio atómico aumenta en un período de la tabla periódica hacia la izquierda.

Los elementos A (Z = 7) y B (Z = 9) se encuentran en el mismo 2.º periodo. El elemento A queda más a la izquierda y tendrá un radio mayor.

En un grupo, el radio atómico aumenta hacia abajo, porque los átomos tienen niveles de energía más externos y más alejados de núcleo.

El elemento C (Z = 37) se encuentra en el periodo 5. Queda mucho más abajo que los otros y tendrá un radio mayor.

La tendencia a captar un electrón para formar un anión se mide por la afinidad electrónica, que es la energía que se desprende cuando un mol de átomos en fase gaseosa y en estado fundamental captan un mol de electrones para dar iones mononegativos gaseosos. Es tanto mayor cuanto más próxima a la estructura electrónica de gas noble sea la estructura electrónica del átomo.

El elemento B (Z = 9) se encuentra justo a la izquierda de un gas noble. Tiene la mayor tendencia a coger un electrón para conseguir la estructura de gas noble. Es el que tiene la mayor afinidad electrónica.

2.2. Completa las siguientes reacciones químicas orgánicas empleando las fórmulas semidesarrolladas e indica el tipo de reacción al que pertenecen:

$$CH_3$$
- $CH_2OH + HBr \rightarrow ____ + H_2O$

$$\begin{array}{c} CH_2 = CH_2 + H_2O \longrightarrow \underline{\hspace{1cm}} \\ CH_3 - COOH + CH_3NH_2 \longrightarrow \underline{\hspace{1cm}} \\ + H_2O \end{array}$$

(A.B.A.U. extr. 21)

 CH_3 - $CH_2OH + HBr$ \rightarrow CH_3 - $CH_2Br + H_2O$ et anol bromuro de hidrógeno 2-bromoetano agua

Reacción de sustitución

 $CH_2=CH_2+H_2O \rightarrow CH_3-CH_2OH$ eteno agua etanol Reacción de adición.

 CH_3 - $COOH + CH_3NH_2 \rightarrow CH_3$ -CONH- $CH_3 + H_2O$ ácido etanoico metilamina N-metiletanamida agua Reacción de condensación.

- 3.1. La ecuación de velocidad de una reacción es $v = k \cdot [A] \cdot [B]^2$. Razona si las unidades de la constante de velocidad son mol⁻¹·L·s.
 - (A.B.A.U. extr. 21)

Solución:

La ecuación de velocidad es:

$$v = k \cdot [A] \cdot [B]^2$$

Como las unidades de la velocidad de reacción son [v] mol/dm³/s, las unidades de la constante de velocidad son

$$k = \frac{v}{[\mathbf{A}] \cdot [\mathbf{B}]^2} \frac{\text{mol} \cdot \text{dm}^{-3} \cdot \text{s}^{-1}}{(\text{mol} \cdot \text{dm}^{-3}) \cdot (\text{mol} \cdot \text{dm}^{-3})^2}$$
$$[k] = \text{dm}^6 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$$

- 3.2. Se dispone de una disolución acuosa saturada de $CaCO_3$ en equilibrio con su sólido. Indique cómo se verá modificada su solubilidad al añadirle Na_2CO_3 , considerando esta sal totalmente disociada. Razona la respuesta indicando el equilibrio y la expresión de la constante del producto de solubilidad (K_{ps}).
 - (A.B.A.U. extr. 21)

Solución:

La solubilidad del CaCO₃ será menor que antes por efecto del ion común. El Na₂CO₃ soluble se disociará totalmente:

$$Na_2CO_3(s) \rightarrow 2 Na^+(aq) + CO_3^{2-}(aq)$$

lo que produce un aumento en la concentración del ion CO_3^{2-} en la disolución. Esto provocará un desplazamiento del equilibrio

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$

hacia la formación de la sal sólida, ya que en la expresión del producto de solubilidad,

$$K_{\rm s} = [{\rm Ca^{2+}}]_{\rm e} \cdot [{\rm CO_3^{2-}}]_{\rm e}$$

un aumento en la concentración del ion CO₃²⁻ tendrá que ser compensada con una disminución en la concentración del ion Ca²⁺ para mantener constante el valor del producto de solubilidad, que es una constante de equilibrio que solo cambia con la temperatura.

Es decir, la sal estará menos disociada y la solubilidad será menor.

- 4. En un recipiente de 10 litros se introducen 2 moles de N_2O_4 gaseoso a 50 °C produciéndose el siguiente equilibrio de disociación: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Si la constante K_p a dicha temperatura es de 1,06. Calcula:
 - a) Las concentraciones de los dos gases tras alcanzar el equilibrio y el porcentaje de disociación del N_2O_4 .
 - N₂O₄. b) Las presiones parciales de cada gas y la presión total en el equilibrio.

Datos: $R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 21)

Rta.: a) $[N_2O_4] = 0.160 \text{ mol/dm}^3$; $[NO_2] = 0.0800 \text{ mol/dm}^3$; $\alpha = 20.0 \%$;

b) $p(N_2O_4) = 4{,}24$ atm = 430 kP; $p(N_2O_4) = 2{,}12$ atm = 215 kPa; $p = 6{,}36$ atm = 645 kPa.

Datos Cifras significativas: 3

Gas: volumen $V = 10.0 \text{ dm}^3$

temperatura T = 50 °C = 323 K

Cantidad inicial de tetraóxido de dinitrógeno $n_0(N_2O_4) = 2,00 \text{ mol } N_2O_4$

Constante de equilibrio (en función de las presiones en atm) $K_c = 1,06$

Constante de los gases ideales $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Concentraciones de los dos gases en el equilibrio $[N_2O_4]_e$, $[NO_2]_e$

Presión parcial de cada gas y presión total en el equilibrio $p_e(N_2O_4)$, $p_e(NO_2)$, p_{et}

Ecuaciones

Ley de Dalton de las presiones parciales $p_{\rm t} = \sum p_i$

Concentración de la substancia X [X] = n(X) / V

Grado de disociación $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T$

Constante del equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{\left[C\right]_{c}^{c} \cdot \left[D\right]_{e}^{d}}{\left[A\right]_{e}^{c} \cdot \left[B\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

b) La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

La ecuación de la constante de equilibrio en función de las presiones (en atm) es:

$$K_p = \frac{p_e^2(NO_2)}{p_e(N_2O_4)}$$

Suponiendo comportamiento ideal para los gases, la presión viene dada por:

$$p = \frac{n \cdot R \cdot T}{V}$$

La presión inicial del tetraóxido de dinitrógeno es:

$$p(N_2O_4) = \frac{2,00 \text{ mol } N_2O_4 \cdot 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}}{10,0 \text{ dm}^3} = 5,30 \text{ atm}$$

Se llama x a la presión de tetraóxido de dinitrógeno que se transforma en dióxido de nitrógeno. Por la estequiometría de la reacción,

		N ₂ O ₄	1	2 NO ₂	
Presión inicial	p_0	5,30		0	atm
Presión que reacciona o se forma	$p_{ m r}$	x		2 x	atm
Presión en el equilibrio	p_{e}	5,30 - x		2 x	atm

Sustituyendo en la ecuación de la constante obtenemos:

$$1,06 = \frac{(2x)^2}{5.30 - x}$$

$$5,62 - 1,06 x = 4 x^2$$

$$x = 1,06 \text{ atm}$$

Las presiones parciales serían:

$$p_{\rm e}({\rm NO_2}) = 2 \ x = 2{,}12 \ {\rm atm}$$

$$p_e(N_2O_4) = 5.30 - x = 5.30 - 1.06 = 4.24 \text{ atm}$$

Y la presión total se obtiene por la ley de Dalton:

$$p_{\text{et}} = p(\text{NO}_2) + p(\text{N}_2\text{O}_4) = 2.12 + 4.24 = 6.36 \text{ atm}$$

a) La concentración se obtiene de la ecuación de los gases ideales:

$$p = \frac{n \cdot R \cdot T}{V} \implies \frac{n}{V} = \frac{p}{R \cdot T}$$

$$[NO_{2}]_{e} = \frac{2,12 \text{ atm}}{0,082 \cdot \text{atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,080 \text{ 0mol/dm}^{3}$$

$$[N_2O_4]_e = \frac{4,24 \text{ atm}}{0.082 \cdot \text{atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 323 \text{ K}} = 0,160 \text{ mol/dm}^3$$

El grado de disociación es:

$$\alpha = \frac{n_{\rm d}}{n_0} = \frac{p_{\rm d}}{p_0} = \frac{1,06}{5,30} = 0,200 = 20 \%$$

- 5. Una disolución acuosa de concentración 0,03 mol/dm³ de un ácido monoprótico (HA) tiene un pH de 3,98. Calcula:
 - a) La concentración molar de A- en la disolución y el grado de disociación del ácido.
 - b) El valor de la constante del ácido (K_a) y el valor de la constante de su base conjugada (K_b).

(A.B.A.U. extr. 21)

Rta.: a) $[A^-] = 1,05 \cdot 10^{-4} \text{ mol/dm}^3$; $\alpha = 0,349 \%$; b) $K_a = 3,67 \cdot 10^{-7}$; $K_b = 2,73 \cdot 10^{-8}$.

Datos Cifras significativas: 3

Concentración de ácido monoprótico $[HA]_0 = 0,0300 \text{ mol/dm}^3$

pH de la disolución pH = 3,98

Incógnitas

Concentración del anión [A-]

Grado de disociación lpha

Constante de acidez del ácido K_a

Constante de basicidad da base conjugada K_b

Otros símbolos

Incógnitas

Concentración de la substancia X

[X]

Ecuaciones

Constante de acidez de un ácido monoprótico:

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

$$pH = -\log[H^+]$$

pН

 $pH = -log[H^+]$

 $K_{a} = \frac{\left[A^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[HA\right]_{a}}$

Producto iónico del agua

 $K_{\rm w} = [{\rm H}^{\scriptscriptstyle +}]_{\rm e} \cdot [{\rm OH}^{\scriptscriptstyle -}]_{\rm e} = 1,00 \cdot 10^{-14}$ $pK_{\rm w} = pH + pOH = 14,00$

Grado de disociación

$$\alpha = \frac{n_{\rm d}}{n_0} = \frac{[s]_{\rm d}}{[s]_0}$$

Relación entre las constantes de acidez y basicidad de la base conjugada

$$K_{\rm a} \cdot K_{\rm b} = K_{\rm w}$$

Solución:

a) Como pH = $-\log[H^+]$,

$$3.98 = -\log[H^+]$$

$$[H^{+}]_{e} = 10^{-3,98} = 1,05 \cdot 10^{-4} \text{ mol/dm}^{3}$$

De la estequiometría de la reacción de disociación

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

se deduce que la concentración de ácido disociado [HA]_d es la misma que la de los iones hidrógeno producidos $[H^+]_e$ y la de los aniones $[A^-]_e$

$$[HA]_d = [H^+]_e = [A^-]_e = 1,38 \cdot 10^{-4} \text{ mol/dm}^3$$

Escribiendo en una tabla las concentraciones de cada especie:

		HA	\rightleftharpoons	H ⁺	A-	
[X] ₀	Concentración inicial	0,0300		≈ 0	0	mol/dm³
$[X]_d$	Concentración disociada o formada	1,05·10 ⁻⁴	\rightarrow	1,05.10-4	1,05.10-4	mol/dm³
[X] _e	Concentración en el equilibrio	$0.0300 - 1.05 \cdot 10^{-4} = 0.0299$		1,05.10-4	1,05·10-4	mol/dm³

El grado de disociación es:

$$\alpha = \frac{[s]_d}{[s]_0} = \frac{1,05 \cdot 10^{-4} \text{ mol/dm}^3}{0.030 \text{ 0mol/dm}^3} = 0,00349 = 0,349 \%$$

b) La constante de equilibrio K_a es:

$$K_{a} = \frac{[A^{-}]_{e} \cdot [H^{+}]_{e}}{[HA]_{e}} = \frac{1,05 \cdot 10^{-4} \cdot 1,05 \cdot 10^{-4}}{0,00299} = 3,67 \cdot 10^{-7}$$

La base A⁻ conjugada del ácido, puede reaccionar con el agua hasta conseguir el equilibrio:

$$A^{-}(aq) + H_2O \rightleftharpoons OH^{-}(aq) + HA(aq)$$

La constante K_b de este equilibrio es:

$$K_{b} = \frac{[OH^{-}]_{e} \cdot [AH]_{e}}{[A^{-}]_{e}}$$

Multiplicando esta expresión por la de la constante de acidez, obtenemos la relación entre ambas.

$$K_{a} \cdot K_{b} = \frac{[A^{-}]_{e} \cdot [H^{+}]_{e}}{[HA]_{e}} \frac{[OH^{-}]_{e} \cdot [AH]_{e}}{[A^{-}]_{e}} = [H^{+}]_{e} \cdot [OH^{-}]_{e} = K_{w}$$

$$K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{1,00 \cdot 10^{-14}}{3.67 \cdot 10^{-7}} = 2,73 \cdot 10^{-8}$$

- El dicromato de potasio (K₂Cr₂O₇) reacciona con sulfato de hierro(II), en medio ácido sulfúrico, dando sulfato de hierro(III), sulfato de cromo(III), sulfato de potasio y agua.

- a) Ajusta las ecuaciones iónica y molecular por el método del ión-electrón.
- b) Calcula los gramos de sulfato de cromo(III) que podrán obtenerse a partir de 5,0 g de K₂Cr₂O₇ si el rendimiento de la reacción es del 60 %.

(A.B.A.U. extr. 21)

Rta.: a)
$$(Cr_2O_7)^{2-}$$
 + 6 Fe²⁺ + 14 H⁺ \rightarrow 2 Cr³⁺ + 6 Fe³⁺ + 7 H₂O;
 $K_2Cr_2O_7$ + 6 FeSO₄ + 7 H₂SO₄ \rightarrow Cr₂(SO₄)₃ + 3 Fe₂(SO₄)₃ + K₂SO₄ + 7 H₂O; b) $m = 4,00 \text{ g Cr}_2(SO_4)_3$

Datos Cifras significativas: 3

 $m(K_2Cr_2O_7) = 5.00 g$ Masa de dicromato de potasio

r = 60.0 %Rendimiento de la reacción

dicromato de potasio $M(K_2Cr_2O_7) = 294 \text{ g/mol}$ Masa molar:

> sulfato de cromo(III) $M(Cr_2(SO_4)_3) = 392 \text{ g/mol}$

Incógnitas

Masa de Cr₂(SO₄)₃ que se obtiene con un rendimiento del 60 % m

Otros símbolos

Cantidad de sustancia (número de moles) n

Solución:

a) Se escriben las semirreacciones iónicas:

Oxidación:

 $\begin{array}{ll} Fe^{2+} & \longrightarrow Fe^{3+} + e^{-} \\ Cr_{2}O_{7}^{2-} + 14 \ H^{+} + 6 \ e^{-} & \longrightarrow 2 \ Cr^{3+} + 7 \ H_{2}O \end{array}$ Reducción:

Se obtiene la ecuación iónica ajustada multiplicando la primera semirreacción por 6 y sumando:

$$Cr_2O_7^{2-} + 14 H^+ + 6 Fe^{2+} \longrightarrow 2 Cr^{3+} + 7 H_2O + 6 Fe^{3+}$$

Para obtener la ecuación global, se suma a cada lado 2 K⁺ y 7 SO₄²⁻ y se combinan los iones para formar los compuestos:

$$K_2Cr_2O_7(aq) + 6 \text{ FeSO}_4(aq) + 7 \text{ H}_2SO_4(aq) \rightarrow K_2SO_4(aq) + Cr_2(SO_4)_3(aq) + 3 \text{ Fe}_2(SO_4)_3(aq) + 7 \text{ H}_2O(1)$$

b) Se calcula la cantidad de dicromato de potasio que hay en 5,00 g:

$$n(K_2Cr_2O_7)=5,00 \text{ g } K_2Cr_2O_7 \frac{1 \text{ mol } K_2Cr_2O_7}{294 \text{ g } K_2Cr_2O_7}=0,017 \text{ 0mol } K_2Cr_2O_7$$

Se calcula la cantidad de sulfato de cromo(III), mirando la ecuación ajustada de la reacción. Cada mol de dicromato de potasio produciría un mol de sulfato de cromo(III) si el rendimiento fuese del 100 %. Pero como es del 60,0 %, la cantidad de sulfato de cromo(III) obtenida será:

$$n(\operatorname{Cr_2(SO_4)_3}) = 0,017 \ \text{Omol} \ \operatorname{K_2Cr_2O_7} \ \frac{1 \ \operatorname{mol} \ \operatorname{Cr_2(SO_4)_3}}{1 \ \operatorname{mol} \ \operatorname{K_2Cr_2O_7}} \\ \frac{60,0 \ \operatorname{mol} \ \operatorname{obtenidos}}{100 \ \operatorname{mol} \ \operatorname{esperados}} = 0,010 \ \operatorname{2mol} \ \operatorname{Cr_2(SO_4)_3} \ \operatorname{obt.}$$

Se calcula la masa obtenida:

$$m(Cr_2(SO_4)_3) = 0.010$$
 2mol $Cr_2(SO_4)_3 = \frac{392 \text{ g Cr}_2(SO_4)_3}{1 \text{ mol } Cr_2(SO_4)_3} = 4.00 \text{ g Cr}_2(SO_4)_3$

Se mezclan 20 cm³ de una disolución acuosa de BaCl2 de concentración 0,5 mol/dm³ con 80 cm³ de una disolución acuosa de CaSO4 de concentración 0.04 mol/dm3.

a) Escribe la reacción química que tiene lugar, nombra los compuestos y calcula la cantidad en gramos del precipitado obtenido.

b) Nombra y dibuja el material y describe el procedimiento que emplearía en el laboratorio para separar el precipitado.

a 《

(A.B.A.U. extr. 21)

Rta.: a) m = 0.75 g BaSO₄.

Solución:

a) Se escribe la ecuación de la reacción química ajustada:

$$BaCl_2(aq)$$
 + $CaSO_4(aq)$ \rightarrow $BaSO_4(s)$ + $CaCl_2(aq)$ cloruro de bario sulfato de calcio sulfato de bario

Se ionizan los compuestos solubles y se escribe la reacción iónica de precipitación del sulfato de bario:

$$Ba^{2+}(aq) + \frac{2 Cl^{-}(aq)}{2 Cl^{-}(aq)} + \frac{Ca^{2+}(aq)}{2 Cl^{-}(aq)} + SO_{4}^{2-}(aq) \rightarrow BaSO_{4}(s) + \frac{Ca^{2+}(aq)}{2 Cl^{-}(aq)} + \frac{2 Cl^{-}(aq)}{2 Cl^{-}(aq)}$$

$$Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$$

Cálculo de la cantidad de precipitado (suponiendo 2 cifras significativas).

Se calcula la masa de sulfato de bario que debería obtenerse a partir de los datos de las disoluciones de cloruro de bario y sulfato de calcio.

Para la determinación del reactivo limitante, se calculan las cantidades iniciales de los reactivos.

Se calcula la cantidad de uno de ellos necesaria para reaccionar completamente con el otro, mirando la ecuación ajustada de la reacción.

Se identifica al reactivo limitante, comprobando si la cantidad necesaria es mayor o menor que la que hay. Se calculan las cantidades iniciales de los reactivos:

$$n_0(\text{BaCl}_2) = 20 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} = \frac{0,50 \text{ mol}}{1 \text{ dm}^3} = 10 \cdot 10^{-3} \text{ mol BaCl}_2$$

$$n_0(\text{CaSO}_4) = 80 \text{ cm}^3 \text{ D} \frac{1 \text{ dm}^3}{10^3 \text{ cm}^3} \frac{0,040 \text{ mol}}{1 \text{ dm}^3} = 3,2 \cdot 10^{-3} \text{ mol CaSO}_4$$

Se calcula la cantidad de sulfato de calcio necesaria para reaccionar con el cloruro de bario, mirando la ecuación ajustada de la reacción:

$$n(\text{CaSO}_4) = 10 \cdot 10^{-3} \text{ mol BaCl}_2 \frac{1 \text{ mol CaSO}_4}{1 \text{ mol BaCl}_2} = 10 \cdot 10^{-3} \text{ mol CaSO}_4$$

Como la cantidad necesaria, $10\cdot10^{-3}$ mol, es mayor que la inicial, $10\cdot10^{-3}$ mol, el reactivo limitante es el sulfato de calcio.

Se calcula la masa de carbonato de estroncio que se obtiene, mirando la ecuación ajustada de la reacción:

$$m = 3.2 \cdot 10^{-3} \text{ mol CaSO}_4 \frac{1 \text{ mol BaSO}_4}{1 \text{ mol CaSO}_4} \frac{233 \text{ g BaSO}_4}{1 \text{ mol BaSO}_4} = 0,75 \text{ g BaSO}_4$$

Procedimiento

Para separar el precipitado, se coloca un papel de filtro circular en un embudo büchner, ajustándolo para no dejar orificios libres, y se humedece con agua para que quede adherido.

Se ajusta el embudo büchner sobre un matraz kitasato y se conecta la rama lateral del kitasato a una trompa de vacío.

Se abre la llave y se vierte el contenido del vaso (precipitado y líquido) en el embudo. Se echa más agua sobre el precipitado que aún queda en el vaso para llevarlo al embudo.

Cuando ya no gotee más agua en el interior del kitasato, se desencaja el embudo y se cierra la llave. Se guita el papel de filtro y se deja a secar un día o dos.

8. Al valorar 20,0 cm³ de una disolución de Ca(OH)₂ se gastan 18,1 cm³ de una disolución de HCl de concentración 0,250 mol/dm³.

a) Escribe la reacción que tiene lugar y calcula la concentración molar de la disolución de la base.

Rta.: a) $[Ca(OH)_2] = 0.113 \text{ mol/dm}^3 (D)$.

Solución:

a) La reacción ajustada es

$$2 \text{ HCl(aq)} + \text{Ca(OH)}_2(\text{aq}) \rightarrow \text{CaCl}_2(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

Cálculos: Si se gastaron 18,1 cm³ de disolución de ácido clorhídrico de concentración 0,250 mol/dm³ la cantidad de ácido clorhídrico que reacciona es:

$$n(\text{HCl}) = 18.1 \text{ cm}^3 \text{ D HCl} \frac{0.250 \text{ mol HCl}}{1000 \text{ cm}^3 \text{ D NaOH}} = 4.53 \cdot 10^{-3} \text{ mol HCl}$$

La cantidad de hidróxido de calcio que reacciona es:

$$n(\text{Ca}(\text{OH})_2) = 4.53 \cdot 10^{-3} \text{ mol HCl} \frac{1 \text{ mol Ca}(\text{OH})_2}{2 \text{ mol HCl}} = 2.26 \cdot 10^{-3} \text{ mol Ca}(\text{OH})_2$$

Y la concentración de la disolución de HCl es

[HCl] =
$$\frac{2,26 \cdot 10^{-3} \text{ mol HCl}}{20,0 \text{ cm}^3 \text{ D HCl}} \frac{10^3 \text{ cm}^3}{1,00 \text{ dm}^3} = 0,113 \text{ mol HCl/dm}^3 \text{ D}$$

Procedimiento de valoración: Con una pipeta de 20 cm³ se miden 20,0 cm³ de disolución de Ca(OH)₂ y se vierten en un matraz erlenmeyer de 100 cm³. Se añaden dos gotas de fenolftaleína y la disolución se volverá de color rosa fucsia. Se llena una bureta de 25 cm³ con disolución de HCl de concentración 0,250 mol/dm³ por enzima del cero. Se abre la llave hasta que el pico de la bureta esté lleno y el nivel en cero. Se dejan caer 17 cm³ sobre lo erlenmeyer y se agita. Se abre la llave de la bureta para dejar caer la disolución de HCl en pequeños chorros mientras se imprime un movimiento circular al erlenmeyer hasta que el color del contenido del erlenmeyer desaparezca. Ŝe anota el volumen de HCl gastado (p. ej. 18,5 cm³) y se tira el contenido del erlenmeyer y se lava el matraz. Se vuelve a llenar la bureta con HCl hasta el cero. Se miden otros 20 cm³ de Ca(OH)₂ con la pipeta, se vierten en el erlenmeyer (lavado, pero no necesariamente seco) y se añaden dos gotas de fenolftaleína. Se coloca el erlenmeyer bajo a bureta y se abre la llave hasta dejar caer casi todo el volumen medido antes (p. ej. 18,0 cm³). Ahora se deja caer HCl gota a gota mientras se hace rotar al erlenmever, hasta que el indicador gire de color. Se anota este valor. Se repite otras dos veces y se toma cómo volumen correcto el valor medio de las medidas que más se aproximan.

Material: Bureta (1) de 25 cm³ (escalonada en 0,1 cm³), pipeta (1) de 20 cm³ con aspirador, matraz erlenmeyer (1) de 100 cm³, disolución de fenolftaleína.

La bureta es un tubo estrecho graduado con una boca superior algo más ancha para llenarlo y una llave de paso en la parte inferior para poder vaciarla.

La pipeta es también un tubo estrecho que puede ser escalonado o tener una marca de aforo. Se llena al aspirar con una especie de jeringa cuando la boca inferior más estrecha está sumergida en la disolución.

El matraz erlenmeyer es un recipiente con forma de tronco de cono, con la boca más estrecha que el fondo, para no salpicar al removerlo con un movimiento circular.

Cuestiones y problemas de las Pruebas de evaluación de Bachillerato para el acceso a la Universidad (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou. La traducción al/desde el gallego se realizó con la ayuda de traducindote, de Óscar Hermida López.

Se procuró seguir las recomendaciones del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 16/03/24