SWEN430 - Compiler Engineering (2018)

Lecture 9 - Typing III : Formal Type Systems

Lindsay Groves & David J. Pearce

School of Engineering and Computer Science Victoria University of Wellington

What is Subtyping?

- Many programming languages support some notation of subtype.
 - E.g. In Java, all class types are subtypes on Object.
 - In Ada, a subrange of integers is a subtype.

But what does this mean?

- If we regard types as sets of values, then T <: T' is equivalent to $|[T]| \subseteq |[T']|$, where |[T]| is the set of values denoted by type T.
- But ... some argue that data types are not sets of values, but are distinguished by the operations that can be performed.
 - E.g. consider the difference between stacks and queues.
 - Better to define in terms of how values of a type can be used.
- If T is a subtype of T', written T <: T' (or $T \le T'$), then any term of type S can be safely used in a context where a term of type T is expected. (Paraphrased from Wikipedia.)

What is Subtyping?

- A stronger version is known as the Liskov substitution principle
 (aka behavioural subtyping):
 flf S is a subtype of T, then objects of type T may be replaced with
 objects of type S without altering any of the desirable properties of
 the program (correctness, task performed, etc.).
- This is a semantic/correctness property not enforced by programming language type systems.

Subtyping in OO Languages

Suppose we have the following declarations:

```
Integer i = new Integer(1);
Float f = new Float(1.0);
Number n;
Object o;
```

What can be assigned to what?

```
n=i; // valid (because of subtyping)
n=f; // valid (because of subtyping)
n=o; // invalid (without cast)
```

- The expression on the rhs must be a subtype of the variable on the left.
- In Object-Oriented Languages (e.g. Java), subtyping is everywhere!
- In Java, subtyping and subclassing are the same thing
 - But, not in e.g. C++ (due to private inheritance)

$\lambda_{\leq} = \lambda_{\rightarrow}$ with subtyping

- Want subtype hierarchy where real ≤ num and int ≤ num
- Want add operators:
 - $+: (real, real) \rightarrow real$
 - +: (int,int) → int (faster integer-only addition)
- Then, we could type "useful" functions such as:

let
$$f = (\lambda x : \text{num}, y : \text{num} \rightarrow \text{int.} 1 + (y x)))$$

in $f = (\lambda x : \text{num}, y : \text{num} \rightarrow \text{int.} 1 + (y x)))$

• Note: "let $x = e_1$ in e_2 " is syntactic sugar for $(\lambda x.e_2) e_1$

Syntax and Semantics for λ_{\leq}

$$\begin{array}{ccc} \text{V} ::= & \text{(Values)} \\ & | \ \lambda x : \text{T.t} & \text{(Function)} \\ & | \ \text{C} & \text{(Integer)} \\ & | \ \text{C.C} & \text{(Real)} \end{array}$$

$$\begin{array}{cccc} T ::= & & & & & \\ & \mid T \to T & & & & & \\ & \mid \text{int} & & & & & \\ & \mid \text{real} & & & & & \\ & \mid \text{num} & & & & & \\ & \mid \text{Num type}) \end{array}$$

$$\frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{t_1} \ \mathtt{t_2} \longrightarrow \mathtt{t_1'} \ \mathtt{t_2}} \tag{App1}$$

$$\frac{\mathsf{t_2} \longrightarrow \mathsf{t_2'}}{\mathsf{v_1} \; \mathsf{t_2} \longrightarrow \mathsf{v_1} \; \mathsf{t_2'}} \tag{App2}$$

$$(\lambda x : T.t_2) v_1 \longrightarrow t_2[x \mapsto v_1]$$
 (FunApp)

$$\frac{\mathsf{t}_1 \longrightarrow \mathsf{t}_1'}{\mathsf{t}_1 + \mathsf{t}_2 \longrightarrow \mathsf{t}_1' + \mathsf{t}_2} \tag{Add1}$$

$$\frac{\mathsf{t}_2 \longrightarrow \mathsf{t}_2'}{\mathsf{v}_1 + \mathsf{t}_2 \longrightarrow \mathsf{v}_1 + \mathsf{t}_2'} \tag{Add2}$$

$$\frac{v_1 + v_2 = v_3}{v_1 + v_2 \longrightarrow v_3}$$
 (Add3)

Note: The condition $v_1 + v_2 = v_3$ in rule (Add3) says that v_3 is the actual arithmetic sum of v_1 and v_2 , where as $v_1 + v_2$ on the bottom is a syntactic term.

Subtyping relation for λ_{\leq}

Subtyping relation is reflexive and transitive.

T-App is similar to λ_{\rightarrow} , but now supports subtyping.

Function Subtyping

$$\frac{T_1 \ge T_3 \quad T_2 \le T_4}{T_1 \longrightarrow T_2 \le T_3 \longrightarrow T_4} \quad \text{(S-Fun)}$$

- Subtyping of functions is contravariant in parameter position
 - Contravariant is when you can replace a type with a super type
 - Prevents this: $(\lambda x : \text{num} \rightarrow \text{int.} x 1.0) (\lambda y : \text{int.} y + y)$
- Subtyping of functions is covariant in result position
 - Covariant is when you can replace a type with a subtype
 - Prevents this: $(\lambda x : \text{num} \rightarrow \text{int.} (x 1.0) + 1) (\lambda y : \text{num. y})$

Subtyping for the While Language

- Subtyping in WHILE exists because of union types!
 - » int \vee string is a type whose values are either int or string
 - » values of type int ∨ null are either int or null; i.e. optional int.
 - » int V int is the same as int

 (Usually written int|string, etc.)

• Examples:

- \rightarrow int \leq int \vee null
- \rightarrow int \vee int \leq int
- » { (int ∨ int[]) f } ≤ { int f } ∨ { int[] f }
 f(Note: { T f } is the type of records with one field called f whose values are of type T.

Subtyping Relation (First Attempt)

So, how do we define subtyping for While?

$$\frac{}{\mathbb{T} \leq \mathbb{T}} \qquad \text{(S-Reflex)} \qquad \frac{\forall i \in \{0 \dots |n|\} : T_i \leq T_i'}{\{\overline{T} \ \overline{n}\} \leq \{\overline{T'} \ \overline{n}\}} \qquad \text{(S-Record-Depth)}$$

$$\frac{\mathbb{T}_1 \leq \mathbb{T}_3 \quad \mathbb{T}_2 \leq \mathbb{T}_3}{\mathbb{T}_1 \vee \mathbb{T}_2 < \mathbb{T}_3} \qquad \text{(S-Union1)} \qquad \frac{\mathbb{T}_1 \leq \mathbb{T}_2}{\mathbb{T}_1 < \mathbb{T}_2 \vee \mathbb{T}_3} \qquad \text{(S-Union2)}$$

(**NOTE:** this is the basic subtype algorithm you will implement)

• Examples:

- » int \leq int \vee null (by S-Union2, S-Reflex)
- » int \vee int \leq int (by S-Union1, S-Reflex)

Soundness & Completeness of Subtyping

Type Semantics

Subtyping Soundness

If $T_1 \leq T_2$ then $[T_1] \subseteq [T_2]$

Subtyping Completeness

If $[T_1] \subseteq [T_2]$ then $T_1 \leq T_2$

• Here, $T_1 \le T_2$ represents outcome of **subtype algorithm** whilst $T_1 \subseteq T_2$ represents **idealised solution**

Soundness & Completeness of Subtyping (in English)

- Again, in English:
 - » **Soundness**: if subtype algorithm says T_1 subtype of T_2 , then every value which could be in T_1 must be permitted in T_2
 - » **Completeness**: if every value which could be in T_1 is permitted in T_2 , then subtype algorithm should report that T_1 is subtype of T_2
- Question: is our subtype relation sound and complete?

(how do we even go about trying to answer this?)

Answer: it's sound, but not complete

Sound & Complete Subtyping Algorithm

• See: Sound and Complete Flow Typing with Unions, Intersections and Negations. In *Proc. VMCAI*, David J. Pearce, 2013.