PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-244797

(43) Date of publication of application: 08.09.2000

(51)Int.Cl.

H04N 5/225 H04N 5/335

H04N 5/91

// G03B 37/00

(21)Application number : 11-045175

(71)Applicant : SONY CORP

(22)Date of filing:

23.02.1999

(72)Inventor: YAMASHITA NORIYUKI

(54) DEVICE AND METHOD FOR PROCESSING IMAGE SIGNAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a still image of high resolution from a plurality of image signals even when a dark object is photographed by a hand-held digital camera.

SOLUTION: The image of an object passing through a lens group 1 not provided with an optical axis variable element is supplied to a CCD image pickup element 2 while a shutter 10 is pressed. At this moment, the image is picked up at a shutter speed of 1/1000 sec. The picked up image is supplied to an image processing circuit 3. In the image processing circuit 3, cylinder conversion, conversion of optical axis direction and the aligning of 1/m pixel accuracy are executed to the image signals, the resultant images are stored in an image

memory 4 and a plurality of photographed image signals are successively added in real time while aligning reference image signals and present image signals. In a compression circuit 5, compression is executed to supplied synthetic image signals. Further, compressed image signals to which sub data are added are supplied to a recording medium 6.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-244797 (P2000-244797A)

(43)公開日 平成12年9月8日(2000.9.8)

(51) Int.Cl. ⁷		識別記号	FΙ		5	-7]-ド(参考)
H04N	5/225		H04N	5/225	Z	2H059
	5/335		•	5/335	Z	5 C 0 2 2
	5/91		G 0 3 B	37/00	Z	5 C 0 2 4
# G03B	37/00		H 0 4 N	5/91	J	5 C 0 5 3

審査請求 未請求 請求項の数14 OL (全 14 頁)

(21)出願番号	特願平11-45175
•	

(22)出願日 平成11年2月23日(1999.2.23)

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 山下 紀之

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 100082762

弁理士 杉浦 正知

最終頁に続く

(54) 【発明の名称】 画像信号処理装置および方法

(57) 【要約】

【課題】 手持ちのディジタルカメラで暗い被写体を撮 影しても複数の画像信号から高解像度の静止画を得る。

【解決手段】 光軸可変素子を含まないレンズ群1を介して入射された被写体の像がシャッタ10が押されている間、CCD撮像素子2へ供給される。このとき、1/1000sec のシャッタ速度で画像が取り込まれる。取り込まれた画像は、画像処理回路3へ供給される。画像処理回路3では、画像信号に対して、円筒変換/光軸方向の変換、および1/m画素精度の位置合わせが施され、画像メモリ4に記憶され、基準画像信号と現画像信号との位置合わせをしながら、撮影された複数の画像信号がリアルタイムで順次加算される。圧縮回路5では、供給された合成画像信号に対して圧縮が施される。さらに、サブデータが付加された圧縮画像信号は、記録媒体6に供給される。

【特許請求の範囲】

【請求項1】 シャッタを押している間、手振れの影響を受けない程度の短い露光時間で画像を順次撮像する撮像素子と、

撮像された上記画像を平面から円筒へ変換する円筒変換 手段と、

円筒変換された上記画像の明度補正と、円筒変換された 上記画像中、基準画像と、上記基準画像に対して所定の 範囲内の位置ずれを有する画像との間で、1/m画素の 精度で位置ずれを検出する位置ずれ検出手段と、

検出された上記位置ずれに応じて上記画像を補正する位 置ずれ補正手段と、

位置ずれが補正された上記画像を加算する加算手段と、 上記シャッタを離すと、上記加算された画像を加算した 枚数で除算し、平均化する平均化手段と、

平均化された上記画像を円筒から平面へ変換する逆変換 手段とからなることを特徴とする画像信号処理装置。

【請求項2】 請求項1において、

加算された上記画像の画角が第1の所定値より非常に小さい場合、上記円筒変換手段の処理および上記逆変換手段の処理を行わないようにしたことを特徴とする画像信号処理装置。

【請求項3】 請求項1において、

加算された上記画像の画角が第2の所定値より大きい場合、上記逆変換手段の処理を行わないようにしたことを 特徴とする画像信号処理装置。

【請求項4】 請求項3において、

上記円筒変換手段では、縦軸を緯度から高さへの変換を 行うようにしたことを特徴とする画像信号処理装置。

【請求項5】 シャッタを押している間、手振れの影響を受けない程度の短い露光時間で画像を順次撮像する撮像素子と、

複数の画像を撮影する時の画角が比較的小さい範囲の場合に、上記複数の画像の光軸方向の変換を行う光軸変換 手段と、

光軸変換された上記画像の明度補正と、光軸変換された 上記画像中、基準画像と、上記基準画像に対して所定の 範囲内の位置ずれを有する画像との間で、1/m画素の 精度で位置ずれを検出する位置ずれ検出手段と、

検出された上記位置ずれに応じて上記画像を補正する位 置ずれ補正手段と、

位置ずれが補正された上記画像を加算する加算手段と、 上記シャッタを離すと、上記加算された画像を加算した 枚数で除算し、平均化する平均化手段とからなることを 特徴とする画像信号処理装置。

【請求項6】 請求項1または5において、

さらに、上記画像に高域強調を施す高域強調手段を有す ることを特徴とする画像信号処理装置。

【請求項7】 請求項1または5において、 さらに、上記画像を圧縮する圧縮手段と、 圧縮された上記画像を記録する記録媒体と、

上記記録媒体から読み出した上記画像を伸張する伸張手 段とを有することを特徴とする画像信号処理装置。

【請求項8】 請求項7において、

上記撮像素子で撮像された上記画像および上記加算手段 で加算された上記画像を上記記録媒体に記録するように したことを特徴とする画像信号処理装置。

【請求項9】 請求項7において、

上記加算手段でリアルタイムに加算された上記画像のみを上記記録媒体に記録するようにしたことを特徴とする 画像信号処理装置。

【請求項10】 請求項1または5において、

上記mは、1以上の整数としたことを特徴とする画像信号処理装置。

【請求項11】 請求項1または5において、

さらに、上記撮像素子で撮像された上記画像を外部の画像処理装置へ転送する転送手段を有することを特徴とする画像信号処理装置。

【請求項12】 請求項1または5において、

上記所定の範囲となる画像が撮像された場合、撮像された上記画像を基準画像として記憶するようにしたこと特徴とする画像信号処理装置。

【請求項13】 シャッタを押している間、手振れの影響を受けない程度の短い露光時間で撮像素子を駆動させ、画像を順次撮像するステップと、

撮像された上記画像を平面から円筒へ変換するステップ レ

円筒変換された上記画像の明度補正と、円筒変換された 上記画像中、基準画像と、上記基準画像に対して所定の 範囲内の位置ずれを有する画像との間で、1/m画素の 精度で位置ずれを検出するステップと、

検出された上記位置ずれに応じて上記画像を補正するス テップと、

位置ずれが補正された上記画像を加算するステップと、 上記シャッタを離すと、上記加算された画像を加算した 枚数で除算し、平均化するステップと、

平均化された上記画像を円筒から平面へ変換するステップとからなることを特徴とする画像信号処理方法。

【請求項14】 シャッタを押している間、手振れの影響を受けない程度の短い露光時間で撮像素子を駆動させ、画像を順次撮像するステップと、

複数の画像を撮影する時の画角が比較的小さい範囲の場合に、上記複数の画像の光軸方向の変換を行うステップ レ

光軸変換された上記画像の明度補正と、光軸変換された 上記画像中、基準画像と、上記基準画像に対して所定の 範囲内の位置ずれを有する画像との間で、1/m画素の 精度で位置ずれを検出するステップと、

検出された上記位置ずれに応じて上記画像を補正するステップと、

位置ずれが補正された上記画像を加算するステップと、 上記シャッタを離すと、上記加算された画像を加算した 枚数で除算し、平均化するステップとからなることを特 徴とする画像信号処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、複数の画像信号 から1枚の静止画を生成することができる画像信号処理 装置および方法に関する。

[0002]

【従来の技術】現在、静止画モードを有するカメラ一体型ディジタルVTRおよびディジタルスチルカメラ(以下、これらを総称してディジタルカメラと略する)を用いて静止画の撮影を行う場合、動いている被写体の一瞬をフリーズして撮影し、記録するようにできている。

[0003]

【発明が解決しようとする課題】しかしながら、動画の被写体を撮影するときと同様に、静止した被写体を撮影するときにもほんの一瞬の光しか利用していない。そのため、ディジタルカメラで撮影された静止画は、S/Nも解像度も不十分であった。

【0004】さらに、複数の画像信号を合成するときに、ディジタルカメラと被写体との光路差がそれぞれの画像に生じる。その光路差によって、回転、伸縮および台形歪みなどの画像変形が生じる問題があった。

【0005】また、手持ちのディジタルカメラで夜景などの撮影を行うときに、鮮明な画像を得るためには、高価で重い光軸可変素子を使用する必要があった。もし、光軸可変素子を使用しなければ、手振れのため鮮明な画像が得られない問題があった。

【0006】さらにまた、最近はCCD撮像案子の画素数が数倍に増える傾向にあり、画素振れの問題も顕著になっている。例えば、 $1/100\sec$ のシャッタ速度が必要な明るさの被写体を水平画角5度(TELE端)の望遠で撮影することを考える。このときの露光時間は、10 msec である。画像の水平画素数を640 画素(VGA(Video Graphics Array)相当)とすれば、1 度当たりの画素数は、640/5=128 画素である。従って、10 msec の間に、0.1 度動いただけで $0.1 \times 128=12.8$ 画素の振れを生じてしまう問題があった

【0007】そこで、この発明の目的は、手持ちで暗い 被写体を撮影しても複数の画像信号から高解像度の静止 画を得ることができる画像信号処理装置および方法を提 供することにある。

[0008]

【課題を解決するための手段】請求項1に記載の発明 は、シャッタを押している間、手振れの影響を受けない 程度の短い露光時間で画像を順次撮像する撮像素子と、 撮像された画像を平面から円筒へ変換する円筒変換手段 と、円筒変換された画像の明度補正と、円筒変換された画像中、基準画像と、上記基準画像に対して所定の範囲内の位置ずれを有する画像との間で、1/m画素の精度で位置ずれを検出する位置ずれ検出手段と、検出された位置ずれに応じて画像を補正する位置ずれ補正手段と、位置ずれが補正された画像を加算する加算手段と、シャッタを離すと、加算された画像を加算した枚数で除算し、平均化する平均化手段と、平均化された画像を円筒から平面へ変換する逆変換手段とからなることを特徴とする画像信号処理装置である。

【0009】請求項5に記載の発明は、シャッタを押している間、手振れの影響を受けない程度の短い露光時間で画像を順次撮像する撮像素子と、複数の画像を撮影する時の画角が比較的小さい範囲の場合に、複数の画像の光軸方向の変換を行う光軸変換手段と、光軸変換された画像の明度補正と、光軸変換された画像中、基準画像と、上記基準画像に対して所定の範囲内の位置ずれを有する画像との間で、1/m画素の精度で位置ずれを検出する位置ずれ検出手段と、検出された位置ずれに応じて画像を補正する位置ずれ補正手段と、位置ずれが補正された画像を加算する加算手段と、シャッタを離すと、加算された画像を加算した枚数で除算し、平均化する平均化手段とからなることを特徴とする画像信号処理装置である。

【0010】請求項13に記載の発明は、シャッタを押している間、手振れの影響を受けない程度の短い露光時間で撮像素子を駆動させ、画像を順次撮像するステップと、撮像された画像を平面から円筒へ変換するステップと、円筒変換された画像の明度補正と、円筒変換された画像の明度補正と、円筒変換された画像中、基準画像と、上記基準画像に対して所定の範囲内の位置ずれを有する画像との間で、1/m画素の精度で位置ずれを検出するステップと、検出された位置ずれに応じて画像を補正するステップと、位置ずれが補正された画像を加算するステップと、シャッタを離すと、加算された画像を加算した枚数で除算し、平均化するステップと、平均化された画像を円筒から平面へ変換するステップとからなることを特徴とする画像信号処理方法である。

【0011】請求項14に記載の発明は、シャッタを押している間、手振れの影響を受けない程度の短い露光時間で撮像素子を駆動させ、画像を順次撮像するステップと、複数の画像を撮影する時の画角が比較的小さい範囲の場合に、複数の画像の光軸方向の変換を行うステップと、光軸変換された画像の明度補正と、光軸変換された画像中、基準画像と、上記基準画像に対して所定の範囲内の位置ずれを検出するステップと、検出された位置ずれに応じて画像を補正するステップと、位置ずれが補正された画像を加算するステップと、シャッタを離すと、加算された画像を加算した枚数で除算し、平均化するステップとれいる間で、1/m画素の精度

ップとからなることを特徴とする画像信号処理方法である。

【0012】積極的に手持ちのディジタルカメラの向きを上下左右に動かしながら静止した被写体を撮影するときに、シャッタ速度を1/1000secとして、複数枚の画像信号を撮影する。撮影された画像信号P1と、その次のフレームで撮影された画像信号P2とを1/m画素の精度で位置合わせするために、平面から円筒へ変換する円筒変換を施し、m倍に拡大し、位置検出回路によって、画像信号P1に対して画像信号P2の位置が検出される。その検出結果から画素ずらし補間、画像変形、円筒変換、さらにn枚の画像信号の画素単位の位置合わせが行われる。合成されたn枚の画像信号は、平均化のためnで割られた後、円筒から平面へ変換され、さらに高域強調フィルタが施される。これらの画像処理がリアルタイムで施される。

[0013]

【発明の実施の形態】以下、この発明の実施形態について図面を参照して説明する。図1は、この発明が適用された第1の実施形態の全体的構成を示す。1で示すレンズ群を介して入射された被写体の像がシャッタ10が押されている間、CCD撮像素子2へ供給される。レンズ群1は、シスコン(システムコントローラ)9によって、ズーム制御およびフォーカス制御が行われる。

【0014】CCD撮像素子2では、被写体からの入射光が電荷として蓄積される。CCD撮像素子2は、シスコン9によって、電子シャッタのオン/オフが制御される。これによって、CCD撮像素子2の電子シャッタが駆動され、供給された被写体の像が取り込まれる。取り込まれた被写体の像は、A/D変換器(図示せず)によりディジタル化され、ディジタル撮像信号(以下、画像信号と称する)として、画像処理回路3へ供給される。画像処理回路3へ供給される。画像処理回路3へ供給された画像信号は、一旦画像メモリ4に記憶される。

【0015】画像処理回路3では、後述するように、画像メモリ4に記憶された複数の画像信号が位置合わせをしながらリアルタイムで順次加算される。この画像処理回路3は、シスコン9によって制御される。画像処理回路3で合成された合成画像信号は、圧縮回路5へ供給される。圧縮回路5へ供給された合成画像信号は、一旦画像メモリ4へ供給される。

【0016】画像メモリ4に記憶された合成画像信号は、圧縮回路5によって圧縮処理が施される。一例として、静止画として記憶された合成画像信号に対してJPEG(Joint Photographic Experts Group)が施される。生成された圧縮画像信号に対して、シスコン9から供給されるサブデータが付加される。このサブデータは、例えば日付、時刻、フォーカス状態、シャッタ速度、絞りの状態、総枚数、何枚目、・・・等の画像信号が撮影されたときの情報である。

【0017】サブデータが付加された圧縮画像信号は、 記録媒体6に供給される。記録媒体6に供給された圧縮 画像信号とサブデータは、シスコン9の制御に従って記 録される。この記録媒体6の一例として、磁気テープ、 磁気ディスク、光磁気ディスクまたは半導体メモリなど の中から適宜選択された記録媒体が用いられる。

【0018】操作キー系からの指定に応じたシスコン9の制御によって、記録媒体6から圧縮画像信号が読み出される。読み出された圧縮画像信号は、伸張回路7を介して一旦画像メモリ4へ記憶され、伸張回路7によって、伸張処理が施される。すなわち、この伸張回路7では、JPEGの復号がなされる。さらに、圧縮画像信号から分離されたサブデータがシスコン9へ供給される。供給されたサブデータから日付、時刻、フォーカス状態、シャッタ速度、絞りの状態、総枚数、何枚目、・・等の情報が読み取られる。伸張された画像信号は、伸張回路7から表示回路8へ供給される。

【0019】上述した画像メモリ4は、複数の画像信号に対して画像処理を施す場合、合成画像信号に対して圧縮を施す場合、および圧縮画像信号を伸張する場合に用いられる。このとき、画像処理が施される領域と、圧縮が施される領域と、伸張が施される領域とをアドレスによって分けるようにしても良いし、記憶された信号に画像処理用のフラグ、圧縮用のフラグまたは伸張用のフラグを付けるようにしても良い。また、画像処理用のメモリ、圧縮用のメモリおよび伸張用のメモリを別々に設けるようにしても良い。

【0020】上述したレンズ群1には、光軸の方向を変えることができる光軸可変素子が含まれていない。さらに、この実施形態では、手振れ検出用の角速度センサも使用しない。

【0021】静止画における手振れの影響は、被写体が暗いときに顕著に現れ、明るいときはシャッタ速度が速いので、さほど問題にならない。例えば、1/100secのシャッタ速度が必要な明るさの被写体を撮影するときに、手振れを1/10に軽減したい場合、この実施形態では、まずシャッタ速度を10倍の1/1000secに設定してシャッタボタン29を2秒間押し続けてから離す。するとこの2秒間に、60枚の画像信号が撮影され、それぞれの画像信号は、シャッタ速度が速いため、手振れは1/10に抑えられている。しかしながら、撮影された画像信号の明るさはいくらか暗くなり、S/Nも悪い。そこで、60枚の各画像信号に対して明度補正を施し、1/1画素の精度~1/8画素の精度で位置合わせを行いながら平均化処理と高域増強を施すことによって、S/Nの良いシャープな画像信号が得られる。

【0022】画像信号を撮影する第1の方法として、撮 · 影する画像信号の枚数を設定せず、上述のようにシャッ タボタン29が押されている間、1/1000secのシャッタ速度で画像信号を撮影し続ける方法がある。第2 の方法として、シャッタボタン29が押されている間、 1/1000sec のシャッタ速度で画像信号を撮影し続け、撮影された画像信号に対して明度補正、円筒変換、位置合わせ、平均化処理および高域強調を施し、S/N が得られる枚数に達したら自動的に撮影を終了する方法がある。第3の方法として、シャッタボタン29が押されている間、1/1000sec のシャッタ速度で画像信号を撮影し続け、順次撮影された画像信号の途中で極端な画像の変化を検出したときは、その直前までの画像信号だけを使用するようにし、撮影を終了する方法がある。このとき、S/Nが十分でない場合、その旨を警告するようにする。この一例では、S/Nが得られる枚数を決めるために、各画像信号の輝度レベルを使用する。

【0023】ここで、上述した画像処理回路3を図2を用いて説明する。CCD撮像素子2から供給される画像信号は、入力端子21から入力される。入力された画像信号は、入力画像メモリ22へ供給される。入力画像メモリ22には、撮影された現画像信号が記憶される。そして、バッファメモリ23には、1フレームの基準となる画像信号(以下、基準画像信号と称する)が記憶される。一例として、入力画像メモリ22およびバッファメモリ23は、8ビットのVGA規格の容量である。

【0024】位置検出回路24では、1フレームの基準 画像信号に対して現画像信号はどのような位置にある か、さらにどのような幾何学的な変形を受けているかが 調べられる。この位置検出回路24は、拡大補間回路2 5、27、ブロック毎の位置検出回路26および処理演 算回路28から構成される。

【0025】この一例では、バッファメモリ23には、基準画像信号が記憶される。この基準画像信号として、まず1枚目の画像信号が選ばれる。そして、その基準画像信号と現画像信号とが比較される。基準画像信号と現画像信号との位置が30%ほど離れると、その30%ほど離れた現画像信号が基準画像信号として記憶される。すなわち、現画像信号が基準画像信号として記憶される。すなわち、現画像信号が基準画像信号は、位置検出のための基準画像信号として用いられ、現画像信号が基準画像信号かあ30%ほど離れると、その現画像信号が基準画像信号として位置検出に用いられる。このように、基準画像信号として位置検出に用いられる。このように、基準画像信号として記憶される。そして、その基準画像信号に対する現画像信号の位置が検出される。

【0026】現画像信号は、拡大補間回路25へ供給され、基準画像信号は、拡大補間回路27へ供給される。 拡大補間回路25および27では、供給された画像信号 に対して平面から円筒へ変換する円筒変換が施され、円 筒変換が施された画像信号が1倍~8倍へ拡大される。 また、小さいブロック毎に処理を行うので、拡大補間回 路27は、ブロックサイズだけあれば良く、拡大補間回 路25は、サーチ範囲を必要とするため拡大補間回路2 7より広いサイズが必要である。この拡大補間回路25 および27では、供給された画像信号を円筒変換した 後、拡大を行うようにしているが、画像信号を拡大した 後、円筒変換を行うようにしても良い。拡大された現画 像信号および基準画像信号は、ブロック毎の位置検出回 路26〜供給される。

【0027】ブロック毎の位置検出回路26では、1画素の1/1~1/8の精度でブロック毎の位置が検出される。このとき、あるブロック内の画像が平坦な場合、位置検出が不可能である。よって、ブロックのバリアンスVaを計算し、バリアンスが小さいときには、そのブロックを位置検出に使用しないようにする。バリアンスVaの計算は、

 $Va=\Sigma$ (yi 2) /K- (Σ (yi /K)) 2 但し、yi :輝度値、K: ブロック内の画素数とする。また、図2に示すように角速度センサ29がある場合、その角速度センサ29で検出される縦と横の光軸の方向の変化が位置検出回路26〜供給されると、さらに精度の良い位置検出が行われる。

【0028】処理演算回路28では、ブロック番号をiとし、ブロック毎に縦横の平行移動成分が求められる。求められた縦方向の平行移動成分をy〔i〕とし、横方向の平行移動成分をx〔i〕とする。多くのブロックについて、x〔i〕およびy〔i〕からそれぞれ同じ値を得た場合、画面全体が平行移動したものと見做される。この処理演算回路28で検出された位置データは、1画素を超える整数成分と、1画素未満の小数成分とを持っている。検出された位置データの整数成分は、出力画像メモリ33へ供給され、小数成分は、画素ずらし補間回路30へ供給される。【0029】画素ずらし補間回路30では、供給された

小数成分に応じてバッファメモリ23から順次撮影された画像信号が供給され、その画像信号に対して画素ずらし補間が施される。例えば、位置検出回路24で3.7 画素分水平方向にずれていると判断された場合、この画素ずらし補間回路30には、位置検出回路24から小数成分の0.7が供給される。そこで、画素ずらし補間回路30では、加重平均によって、画素Aから画素Bの方向へ0.7画素ずれた位置に画素Cが生成される。この一例では、

 $A \times (1-0.7) + B \times 0.7 = C$

から画素Cが生成される。このようにして、供給された 画像信号に対して0.7画素ずらしが施され、0.7画 素ずらされた画像信号が新たに生成される。新たに生成 された画像信号は、画素ずらし補間回路30から画像変 形回路31へ供給される。

【0030】画像変形回路31では、供給された画像変形係数に応じて、画素ずらし補間が施された画像信号に対して画像変形、例えば回転、伸縮および台形歪みなど

が施される。また、この画像変形回路31では、供給された画像信号に対して平面から円筒へ変換する円筒変換が行われる。このように画像変形が施された画像信号は、画像変形回路31から加算回路32へ供給される。画像信号に対して円筒変換を施さないと、仕上がり合成画像信号の画角が10度程度で小さいときは良いが、画角が大きいと位置合わせが困難になると同時に、加算した結果がぼける現象が起こる。

【0031】加算回路32では、出力画像メモリ33からの画像信号と、画像変形回路31からの画像信号との加算が行われる。加算された画像信号は、出力画像メモリ33に供給される。

【0032】出力画像メモリ33では、位置検出回路2 4から供給される整数成分のずれを補正するように、画 像信号が書き込まれる。例えば、位置検出回路24で 3. 7 画素分水平方向にずれていると判断された場合、 この出力画像メモリ33には、位置検出回路24から整 数成分の3が供給される。その整数成分の3のずれを補 正するように、出力画像メモリ33では、水平方向へ3 画素ずれた位置となるように、画像信号が書き込まれ る。すなわち、画素ずらし補間回路30で0.7画素ず らされ、この出力画像メモリ33で3画素ずらされる。 これによって、水平方向に3.7画素ずれている次のフ レームの画像信号と、記憶している画像信号との位置合 わせが行われる。位置合わせが行われた記憶している画 像信号と、次のフレームの画像信号とは、上述したよう に加算回路32で加算される。また、この出力画像メモ リ33の縦横サイズは、CCD撮像素子2の画素数の数 倍から数十倍となる。

【0033】この一例では、2秒で60枚の画像信号の加算が可能であり、加算される枚数が64枚以下の場合、出力画像メモリ33は、14ビットのVGA規格に合った容量である。全ての画像信号が加算された合成画像信号は、出力画像メモリ33から加算回路32および除算回路34へ供給される。

【0034】除算回路34では、n枚加算された合成画像信号をnで割り、合成画像信号が平均化される。このとき、上下左右にディジタルカメラを動かしながら撮影しているので、出力画像メモリ33に加算される合成画像信号は、CCD撮像素子2の画像サイズを超える。手持ちで適当に動かしながら撮影するため、出力画像メモリ33の中で加算される枚数がそれぞれ異なる。このため、最後に全体を枚数で除算するとき、画素単位で異なる枚数で割ることになる。よって、nの値は、アドレスによってそれぞれ異なるので、画素毎にnの値を記憶するメモリが必要である。平均化された合成画像信号は、除算回路34から逆変換回路35およびスイッチ回路36の一方の入力端子へ供給される。

【0035】逆変換回路35では、供給された合成画像信号に対して円筒から平面へ変換する逆変換が施され

る。逆変換され、平面に変換された合成画像信号が逆変 換回路35からスイッチ回路36の他方の入力端子へ供 給される。スイッチ回路36では、円筒から平面へ変換 する逆変換を施した合成画像信号か、逆変換を施してい ない合成画像信号かが選択される。

【0036】この一実施形態では、仕上がり合成画像信号の画角が10度以下となり非常に小さいことが予め分かっているとき、上述の拡大補間回路25、27および画像変形回路31で施される円筒変換を施す必要がないので、逆変換回路35で逆変換も行う必要がない。よって、このような場合、スイッチ回路36では、除算回路34から供給される逆変換を施していない合成画像信号が選択される。

【0037】また、仕上がり合成画像信号の画角が約60度以下となり小さいことが予め分かっているとき、拡大補間回路25、27および画像変形回路31において、施される円筒変換と、逆変換回路35において、円筒から平面に変換する逆変換とを行う代わりに、拡大補間回路25、27および画像変形回路31において、供給される画像信号に対して直接後述する光軸方向の変換(以下、光軸変換と称する)を行うようにしても良い。よって、このような場合、スイッチ回路36では、除算回路34から供給される逆変換を施していない合成画像信号が選択される。

【0038】さらに、仕上がり合成画像信号の画角が約120度以上で、円筒から平面への逆変換ができないとき、拡大補間回路25、27および画像変形回路31において、円筒変換された状態のまま、高域強調フィルタ37へ供給される。ただし、縦軸、すなわち緯度(-90度~+90度)から高さへの変換だけは行う。これによってより見やすい画像に仕上げることができる。よって、このような場合、スイッチ回路36では、除算回路34から供給される逆変換を施していない合成画像信号が選択される。

【0039】このようにして、スイッチ回路36で選択された合成画像信号は、高域強調フィルタ37へ供給される。高域強調フィルタ37では、供給された合成画像信号がより鮮明な合成画像信号に仕上げられ、S/Nの良い静止画が得られる。一例として、高域強調フィルタ37は、HBF(ハイブーストフィルタ)から構成される。鮮明に仕上げられた合成画像信号は、出力端子38を介して圧縮回路5へ供給される。

【0040】このように、位置合わせを行う画像信号は、静止画であり互いに相関を有する。また、複数の画像信号のノイズは、ランダムであって相関がない。従って、複数の画像信号を加算し、平均化することによって、ノイズがキャンセルされるので、S/Nが向上する。画素ずらし補間を行うときに、さらに複数の画像信号を合成するときに、元の画像信号の画素と異なる位置の画素の情報を持つので、解像度が向上する。

【0041】この実施形態では、入力画像メモリ22に 現画像信号を記憶し、バッファメモリ23に基準画像信 号を記憶するようにしているが、入力画像メモリ22お よびバッファメモリ23に、時間的に隣り合う2枚の画 像信号を記憶するようにしても良い。その場合、時間的 に隣り合う2枚の画像信号を用いて位置検出が行われ る。ただし、このとき誤差が累積する。また、撮影され た全ての画像信号が1枚目に撮影された画像信号の範囲 (100%)を超えないことが予め分かっている場合、 その1枚目の画像信号を基準画像信号として、全ての画 像信号の位置検出を行うようにしても良い。

【0042】上述した入力画像メモリ22およびバッファメモリ23の画像サイズは、どちらも入力画像の1枚分+ α としても良い。例えば、 α =0.2の場合、水平画素が764となり、垂直画素が576となる。入力画像メモリ22およびバッファメモリ23の画像信号のビット数は、どちらも入力画像と同じで良い。例えば、8ビット×3色で良い。

【0043】また、出力画像メモリ33の画像サイズは、入力画像の1枚分としても良い。出力画像メモリ33の画像信号のビット数は、加算する画像信号の枚数に依存し、枚数が2倍になる毎に1ビット増加する。例えば、加算する画像信号の枚数が16枚なら12ビット×3色となり、64枚なら14ビット×3色となるので、16ビット×3色のビット数があれば、256枚の画像信号を加算することができる。

【0044】このとき、静止した被写体に向けて手持ちでディジタルカメラの向きを上下左右に動かしながら撮影する。一例として、12枚の画像信号が撮影されていた場合、図3に示すように、出力画像メモリ33に、1枚目の画像信号、2枚目の画像信号、3枚目の画像信号、・・・、および12枚目の画像信号が加算され、記憶される。図3Aは、出力画像メモリ33のサイズであり、図3Bは、CCD撮像素子2から出力されるサイズである。また、1、2、3、・・・、および12の数字は、順次撮影された画像信号の順番を示す。この図3から、上下左右にディジタルカメラを手持ちで動かしながら撮影したので、画像の位置が少しずつ異なっていることが分かる。

【0045】ここで、タイミングチャートを図4に示す。図4Aに示すように、シャッタ10が押されている間、図4Bに示すように、CCD撮像素子2から静止画となる画像信号が毎フレーム連続的に出力される。図4Cに示すように、出力された画像信号P1は、入力画像メモリ22に記憶される。そして、図4Dに示すように、次のフレームで画像信号P1は、バッファメモリ23に記憶される。

【0046】そして、入力画像メモリ22に画像信号P2が記憶され、バッファメモリ23に画像信号P1が記憶されているときに、位置検出回路24では、画像信号

P2に対して画像信号P1の位置が検出される。図4Eに示すように、位置検出の検出結果は、整数成分、小数成分および画像変形係数からなり、上述したように整数成分は出力画像メモリ33へ供給され、小数成分は画案ずらし補間回路30へ供給され、画像変形係数は画像変形回路31へ供給される。

【0047】図4Fに示すように、その検出結果に基づいて、画素ずらし補間回路30および画像変形回路31において、画像信号に処理が施される。そして、図4Gに示すように、出力画像メモリ33に、処理が施された画像が記憶される。このとき、上述したように位置検出の検出結果の整数成分に基づいて出力画像メモリ33への画像信号の書き込みを制御することによって、位置合わせが行われ、複数の画像信号が合成される。

【0048】シャッタ10を離すと、新しい画像を取り込むことを止め、出力画像メモリ33の値を加算された枚数で割り、円筒から平面へ変換する逆変換が施される。逆変換が施された画像信号は、図4Hに示すように、高域強調フィルタ37を通過し、S/Nの良く、画素数の多い合成画像信号が生成される。

【0049】ここで、この発明が適用された第2の実施 形態の全体的構成を図5に示す。この第2の実施形態 は、画像処理をソフトウェアで行う一例である。上述し た第1の実施形態と同様のブロックには、同じ符号を付 し、その説明を省略する。スイッチ回路41では、シス コン9に含まれる画像処理回路44から出力される合成 画像信号と、CCD撮像素子2からの画像信号とから何 れか1つが選択される。スイッチ回路41で選択された 合成画像信号または画像信号は、圧縮回路5およびスイ ッチ回路42へ供給される。

【0050】スイッチ回路42では、伸張回路7で再生される合成画像信号または画像信号と、スイッチ回路41を介して供給される合成画像信号または画像信号とから何れか1つが選択される。選択された合成画像信号または画像信号は、出力端子43を介して外部のモニタに出力されると共に、表示回路8に供給される。

【0051】また、伸張回路7から出力される複数の画像信号は、画像処理部44およびデータ変換回路45へ供給される。画像処理部44では、上述した画像処理回路3と同じような画像処理がソフトウェアにて施される。データ変換回路45では、出力端子46を介して外部のパソコン(パーソナルコンピュータ)へ出力して、パソコンで受け取れるように画像信号が変換される。

【0052】このように、n枚の画像信号が撮影と同時に全て記録媒体6に記録される。シスコン9で画像処理を行う場合、上述した図2の画像処理回路のブロック図に示すハードウェアの場合と同様の処理を行い、処理が終了した画像信号が再び記録媒体6の別の領域に記録される。外部のパソコンで画像処理を行う場合、全ての画像信号をパソコンに転送し、ハードウェアの場合と同様

の処理を行い、その結果がパソコンのハードディスクな どに記録される。

【0053】ここで、画像信号を平面から円筒へ変換す る円筒変換について説明する。例えば、三脚などで固定 されたディジタルカメラを回転させて大きな壁一面に描 かれている壁画を複数に分けて撮影する場合、ディジタ ルカメラの正面の被写体を円筒変換の基準とすると、正 面以外の被写体は、ディジタルカメラとの光路差が異な る。光路差が異なる被写体をディジタルカメラで撮影し た場合、撮影された画像に、その異なる光路差に応じた 回転、伸縮および/または台形歪などの変形が生じる。

【0054】そこで、上述した拡大補間回路25および 27において、円筒変換の基準となる画像と同一面とな るように、供給された画像信号に対して円筒変換が施さ れる。円筒変換を施すことによって、光路差により生じ る画像の回転、伸縮および/または台形歪などの変形が

$$x = (t - (tmax - 1) / 2) \cdot (2 \cdot \theta_H / tmax)$$

となる。

【0057】経度P1を図6Bのように決めると、

$$P1 = \pi/2 - x$$
 (3) となる。

【0058】緯度Q1は、

【0059】式(1)、式(2)、式(3)、式(4) は、任意の画素 (t, v) に対応する方向 (P1, Q 1)を求める方法を示している。一方、(P1, Q1)

の方向がh-v平面と交わる座標(h4, v4)は、

h4=L/tan(P1)

【0060】この座標(h4, v4)とCCD撮像素子 の画素(i, j)との関係は、

$$i = (h \cdot 4 \cdot t_{\text{max}} / L_{\text{H}} + t_{\text{max}} - 1) / 2$$

【0061】これらの式は、方向(P1, Q1)に対応 するCCD撮像素子上の座標を実数に拡張した点(i, j) を求める式である。整数(t, v) を与えて方向 (P1, Q1) を求め、さらに実数 (i, j) が求まっ たら、次はその点を囲む整数の何点かから補間演算を行 い、この値を円筒座標の点(t,v)のデータとする。 また、上述したように、仕上がった合成画像信号が広く て平面への逆変換ができないときも、円筒変換は必要で ある。しかしながら、それほど広くなく、必ず平面に戻 すことが分かっている場合、平面から円筒へ変換する円 筒変換と、その逆に円筒から平面へ変換する逆変換とい うように変換を2回行う必要は無く、1回の変換で行う ことができる。その一例として、光軸変換を説明する。

補正される。すなわち、光路差が等しくされた画像信号 が生成される。また、ディジタルカメラの正面の被写体 を撮影した基準となる画像でも、画像の中心とその画像 の四隅とを比較すると、光路差が生じるため、円筒変換 が施される。

【0055】よって、基準画像信号と現画像信号との位 置検出を行う場合、画像信号に対して円筒変換を施す。 このディジタルカメラでは、図6Bに示すようにL(m m) の距離のh-v平面が $L_H \times L_V$ のサイズで撮れる ようになっている。この光線を半径L (mm) の円筒面 に投影し、この円筒面を単に平面状に拡げたものをxー y平面とする(図 6 A)。これを整数tmax×vmaxの網目 状の画素(t, v)に投影する(図6C)。

【0056】t、vを決めるとそれに対応するx、y

$$(2 \cdot \theta ... / tmax) \qquad (1)$$

$$y = (v - (vmax - 1) / 2) \cdot (2 \cdot L_v / vmax)$$
 (2)

【0062】図7に示すように、ディジタルカメラの視 点を原点Oにとり、x、y、zの座標系を図のように決 める。焦点距離 f [m] の位置に画像平面Gがある。画 像上の点Pは、被写体平面H上の点Qが投影される。被 写体平面H上の点Cは、被写体の中心であり、どこでも 良いがz軸上に配置する。

【0063】撮影された画像について、

dx:x方向の画素サイズ [m/pixel]

dy:y方向の画素サイズ [m/pixel]

ξ': x 方向の位置 [pixel]

η': y方向の位置 [pixel]

となる。

【0064】また、変換された画像について、

ex:x方向の画素サイズ [m/pixel]

e v: v方向の画素サイズ [m/pixel]

ξ': x 方向の位置 [pixel] η': y方向の位置 [pixel]

となる。

【0065】画像上の点Pは、次のように表すことがで きる。

[0066]

【数1】

$$P = \left[\begin{array}{c} \xi \cdot dx \\ \eta \cdot dy \\ -f \end{array} \right]$$

【0067】点Pに対応する被写体上の点Qを

[0068]

【数2】

$$Q = \begin{bmatrix} xq \\ yq \\ zq \end{bmatrix}$$

【0069】とすると、点Pおよび点Qは一直線上にあ

$$\begin{array}{ll} \overline{OP} & = & k \cdot \overline{OQ} \\ \begin{bmatrix} \xi & dx \\ \eta & dy \\ -f \end{bmatrix} & = & k & \begin{bmatrix} xq \\ yq \\ zq \end{bmatrix} \end{array}$$

【0071】 z座標から k = -f / z q ξ 、 η について解くと、

$$\left[\begin{array}{c}\xi\\\eta\end{array}\right] = \left[\begin{array}{c}\frac{-f}{dx},\frac{xq}{zq}\\\frac{-f}{dy},\frac{yq}{zq}\end{array}\right]$$

【0073】変換後の画像上の位置ξ'およびη'から 点Qを求めるには、

[0074]

【数5】

$$\begin{bmatrix} xq \\ yq \\ zq \end{bmatrix} = \overrightarrow{OQ} = \overrightarrow{OC} + \overrightarrow{OQ}$$
$$= \overrightarrow{OC} + R^{-1} \begin{bmatrix} \xi' & ex \\ \eta' & ey \end{bmatrix}$$

$$= \overline{OC} + \xi \cdot ex R^{-1} \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \eta \cdot ey R^{-1} \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 ラの姿勢を表すの行 $\begin{bmatrix} 0 & 0 & 7 & 6 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 7 & 6 \end{bmatrix}$

【0075】Rは、ディジタルカメラの姿勢を表すの行列であり、

$$R = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\rho & -\sin\rho & 0 \\ \sin\rho & \cos\rho & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(PAN) \qquad (TILT) \qquad (ROLL)$$

$$\theta \ \phi \ \rho はパン角、チルト角、 \qquad [0078]$$

【0077】ここで、 θ 、 ϕ 、 ρ はパン角、チルト角、ロール角である。そこで、逆行列を求めると、

独行列を求めると、 【数 7 】 $R^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos\theta & \cos\rho & -\sin\theta & \sin\phi & \sin\rho \\ -\cos\theta & \sin\rho & -\sin\theta & \sin\phi & \sin\rho \\ -\cos\phi & \sin\theta & \end{bmatrix}$

$$R^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ \cos \phi & \cos \phi \\ -\sin \theta \end{bmatrix}$$

【0079】となる。

【0080】以上の理論に基づいて作ったC言語による 光軸変換のプログラムの一例を図8および図9に示す。 この光軸変換のプログラムは、右へpa [deg] パン し、上へqa [deg] チルトし、反時計回りにra [de g] ロールして撮影した画像を、正面を向いて撮影した 画像信号と同一平面上に変換するものである。図10 は、正面で撮影したG1平面の画像信号と、右へpa [deg] パンして撮影したG2平面の画像信号とを同一 平面上に変換する一例を説明するための略線図である。 【0081】格子模様の壁面を持つ直方体の部屋の内部 を、一箇所からいろいろな方向にディジタルカメラを向 けて撮影した一例を図11に示す。またこのときの水平 画角は、52 [degpp] である。図11日 は、図11日に示す正面からディジタルカメラを左へ2 0度パンして撮影した画像信号である。図11Cは、図11Aに示す正面からディジタルカメラを上へ20度チルトして撮影した画像信号である。図11Dは、図11Aに示す正面からディジタルカメラを時計回りに20度ロールして撮影した画像信号である。図11Eは、図11Aに示す正面からディジタルカメラを左へ20度チルトして撮影した画像信号である。図11Fは、図11Aに示す正面からディジタルカメラを左へ20度パンし、上へ20度チルトし、時計回りに20度ロールして撮影した画像信号である。

【0082】上述した図8および図9に示す光軸変換のプログラムで図11Aに示す正面の画像信号と同一平面に変換した一例を図12に示す。図12Aは、図11Bに示す画像信号を光軸変換した画像信号である。図12Bは、図11Cに示す画像信号を光軸変換した画像信号である。図12Cは、図11Dに示す画像信号を光軸変

換した画像信号である。図12Dは、図11Eに示す画像信号を光軸変換した画像信号である。図12Eは、図11Fに示す画像信号を光軸変換した画像信号である。また、この図12に示す画像信号は、出力画像のサイズを120%に制限しているため、四角形になっていない。

【0083】このように、上述した拡大補間回路25および27において、円筒変換または光軸変換を行うことによって、光路差による歪みを補正できるので、位置検出を正しく行うことができる。

[0084]

【発明の効果】この発明に依れば、1/1000secのシャッタ速度で順次撮影することによって、手振れによる画素振れを抑えることができる。円筒変換または光軸方向の変換によって、ディジタルカメラと被写体との間に生じる光路差が原因となる回転、伸縮または台形歪みなどの画像変形を抑えることができる。1/m画素精度の位置合わせを行い、複数枚の画像信号を加算し、平均化することによって、画像信号のノイズがキャンセルされ、S/Nが向上し、さらに元の画像信号の画素と異なる位置の画素の情報を持つので解像度を向上させることができる。

【0085】よって、アクティブプリズムまたはシフトレンズなどの光軸可変素子を用いなくても、手持ちのディジタルカメラで静止した被写体に向けて上下左右に動かしながら撮影するだけで広い画角、例えば天井や床も含む画角の静止画が高解像度でしかも手振れの影響もなく得ることができる。

【図面の簡単な説明】

【図1】この発明が適用されるカメラー体型ディジタル VTRの第1の実施形態を示すプロック図である。

【図2】この発明が適用される画像処理回路の一例のブロック図である。

【図3】この発明のディジタルカメラが撮影する画像信号を説明するための略線図である。

【図4】この発明を説明するためのタイミングチャートである。

【図5】この発明が適用されるカメラー体型ディジタル VTRの第2の実施形態を示すブロック図である。

【図6】この発明に適用される円筒変換の説明に用いられる略線図である。

【図7】この発明に適用される光軸変換の説明に用いられる略線図である。

【図8】この発明に適用される光軸変換のアルゴリズム の一例である。

【図9】この発明に適用される光軸変換のアルゴリズムの一例である。

【図10】この発明に適用される光軸変換の説明に用いられる略線図である。

【図11】この発明に適用される光軸変換の説明に用いられる略線図である。

【図12】この発明に適用される光軸変換の説明に用いられる略線図である。

【符号の説明】

1・・・レンズ群、2・・・CCD撮像素子、3・・・ 画像処理回路、4・・・画像メモリ、5・・・圧縮回 路、6・・・記録媒体、7・・・伸張回路、8・・・表 示回路、9・・・シスコン、10・・・シャッタ

【図1】

1₂ 3

【図3】

【図4】

【図5】


```
void heimen3t () {
〃 第1のメモリーを読み、平面直接変換した結果を第2のメモリーに入れる
# 入力データ
         水平画角
                                                 26.0
                        [deg p-0]
" thh
                        [deg]
                                                 20
// pa
         経度
         緯度
                        [deg]
                                                 -20
// qa
                        [deg]
         回転
                                                  20
// ra
         ピクセルサイズの倍増
                                                  1.0
#第1のメモリーの
                        先頭アドレス
              stl
              hsize
                        水平面素数
                                      [pixel]
                                                  640
              vsize
                        垂直画素数
                                      [pixel]
                                                  480
#第2のメモリーの
               st2
                        先頭アドレス
                        水平画素数
                                      [pixel]
                                                  768
              hwaku
                        垂直固素数
                                      [pixel]-
                                                  576
              vwaku
         double cp , sp , cq , cr , sr , l ;
         double x , y , z , k1 , k2 , k3 , k4 , k5 , k8 , k9 , i , j ;
         int h , v , h1 , v1 , h2 , v2 ;
# 国素平面 G1 までの距離 | [pixel] は [図9] より
         i = hsize / 2 / tan (thh*rad);
                                                  656.097
" 各角度の sin と cos を求めておく。rad は1[deg]当たりの角度[rad] (=π/360)
         cp = cos (pa'rad);
                                                  0.93969
                                                  -0.3420
         sp = -sin ( pa*rad );
                                                  0.93969
         cq = cos ( qa*rad );
         sq = -sin ( qa*rad ) ;
                                                  0.342020
         cr = cos ( ra*rad );
                                                  0.93969
         sr = sin ( ra*rad );
                                                  0.342020
```

```
"行列の中を計算しておく。
       k1 = cp*cr - sp*sq*sr;
                                       0.92303
                                       0.32139
       k2 = cp^*sr;
       k3 = op*sr - sp*sq*or;
                                        -0.21147
                                        0.88302
       k4 = cq^*cr;
       k5 = -sp*cq;
                                        0.32139
                                        -0.342020
       k6 = -sq ;
# G2平面の中心とG1平面までの距離の比で拡大するため、拡大率の逆数 k9 は次のようになる。
                                  · 0.88302
       k9 = cp*cq / ga ;
" ここで ga は通常 1.0 だがテスト用に設けた。ga = 0.2 とすると、仕上がり画像の面積を 1 / 25 に
" することができる。
" 仕上がり画像のサイズを hwaku, vwaku として、そのすべての画素値を求める。
        h2 = hwaku / 2 :
                                         288
        v2 = vwaku / 2 ;
        pt2 = st2 + ofs; # 出力画素の有効ラインの先頭
                                   " 出力画像の全ラインについて
        for (v = 0; v < vwaku; v + +)
                                   " 中央を原点とする。
             v1 = v - v2;
             for ( h = 0 ; h < hwaku ; h + + ) [ # 出力画像の1ラインの全画素について
                                   " 中央を原点とする。
                 x=k9*(h1*k1+v1*k2); # 行列のx,y,zを求める。
                 y = k9*(h1*k3 + v1*k4);
                 z = -1 + k9*(h1*k5 + v1*k6);
                 j = vsize / 2 - l^4y / z;
" 実数(i,j)を囲む整数の4点から比例配分でその座標の画素値を求める。
# 段時に出力画像メモリーに書く。
                 hirei2 ( st1 + ofs , i , j , hsize , vsize );
     }
```

フロントページの続き

```
F 夕一ム(参考) 2H059 AA02 AA18

5C022 AA13 AB01 AB68 AC32 AC42

AC69

5C024 AA01 CA11 CA12 DA04 FA01

GA11 HA08 HA17 HA19 HA24

5C053 FA08 FA27 GB36 KA04 KA22

LA01
```