Метод Квайна

Теорема Квайна. Для получения минимальной формы булевой функции необходимо в СДНФ произвести все возможные склеивания и поглощения так, чтобы в результате была получена сокращенная ДНФ. Сокращенная ДНФ в общем случае может содержать лишние простые импликанты, которые необходимо выявить и удалить из нее на втором этапе минимизации.

На первом этапе выполняется переход от функции, заданной в форме СДНФ, к сокращенной ДНФ. Это основано на использовании следующих соотношений:

- 1) операция неполного склеивания $Fx \vee F\overline{x} = Fx \vee F\overline{x} \vee F$, где Fx и $F\overline{x}$ две конъюнкции, а F – конъюнкция, полученная в результате их склеивания (обычного) по x;
 - 2) операция поглощения $F \lor F x = F$.

Суть метода заключается в последовательном выполнении всех возможных склеиваний и затем всех поглощений, что приводит к сокращенной ДНФ. Метод применим к совершенной ДНФ.

Пример минимизации БФ заданной в форме СДНФ.

Пример минимизации БФ заданной в форме СДНФ.
$$f_{\text{СДНФ}} = \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_$$

Вначале выполняются всевозможные склеивания (и поглощения) для получения сокращенной ДНФ (ДНФ состоящей из простых импликант).

1 этап	2 этап
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

В выделенных красным цветом строках импликанты, полученные на первом этапе, не склеиваются (не порождают новых) следовательно они – простые импликанты.

На втором этапе (шаге) ни одна импликанта не породила новой. Следовательно, обе – простые импликанты.

Из полученных выше простых импликант запишем сокращенную ДНФ:

$$f_{\text{сокрДН}\Phi} = \stackrel{-}{x_2} \stackrel{-}{x_3} \stackrel{-}{x_4} \vee x_1 \stackrel{-}{x_2} \stackrel{-}{x_4} \vee x_2 \stackrel{-}{x_3} x_4 \vee x_1 x_3 \stackrel{-}{x_4} \vee x_1 \stackrel{-}{x_2} x_3 \vee \stackrel{-}{x_2} x_3 \vee \stackrel{-}{x_2} x_3 \vee \stackrel{-}{x_1} \stackrel{-}{x_3} \vee \stackrel{-}{x_1} x_3 \stackrel{-}{x_4} \vee x_1 \stackrel{-}{x_2} \stackrel{-}{x_3} \stackrel{-}{x_4} \stackrel{-}{x_3} \stackrel{-}{x_4} \stackrel{-$$

Используя импликантную таблицу исключим из нее «лишние» простые импликанты

	1	2	3	4	5	6	7	8	9	10	11	
$\overline{x}_{2}\overline{x}_{3}\overline{x}_{4}$	V		V									1 ТФ
$x_1 \overline{x}_2 \overline{x}_4$			V					V				2 ТФ
$x_2 x_3 x_4$					V	V						обязат. простая импликанта
$\overline{x_1x_3x_4}$							V	V				обязат. простая импликанта
$x_1 x_2 x_3$								V			V	1 ТФ
$-\frac{1}{x_2x_3x_4}$									V		V	2 ТФ
$\frac{\overline{x}_2 x_3 x_4}{\overline{x}_1 \overline{x}_3}$	V	V		V	V							обязат. простая импликанта
$\overline{x}_1 x_4$				V	V				V	V		обязат. простая импликанта

$$f_{\minДН\Phi} = x_2 \overline{x}_3 x_4 \vee x_1 x_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_3 \vee \overline{x}_1 x_4 \vee \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee x_1 \overline{x}_2 x_3 \qquad -1 \text{ ТФ (первая тупиковая форма)}$$

$$f_{\minДН\Phi} = x_2 \overline{x}_3 x_4 \vee x_1 x_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_3 \vee \overline{x}_1 x_4 \vee x_1 \overline{x}_2 \overline{x}_4 \vee \overline{x}_2 x_3 x_4 \qquad -2 \text{ ТФ (первая тупиковая форма)}$$

Ниже приведена функциональная схема устройства, работающего согласно алгоритма задаваемого функцией $f_{\minДН\Phi}$ (первая тупиковая форма).

Задание

1. Выполните минимизацию БФ по ее аналитическому заданию.

$$f_{\text{СДНФ}} = x_1 x_2 x_3 x_4 \vee \overline{x}_1 x_2 x_3 \overline{x}_4 \vee x_1 x_2 \overline{x}_3 \overline{x}_4 \vee x_1 x_2 \overline{x}_3 x_4 \vee \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4$$

$$f_{\text{СДНФ}} = x_1 x_2 \overline{x}_3 x_4 \vee \overline{x}_1 x_2 x_3 \overline{x}_4 \vee \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4 \vee x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2$$

$$f_{\text{СЛН}\Phi} = \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee \overline{x_1} \overline{x_2} \overline{x_3}$$

для полученной $f_{minЛH\Phi}$ построить логическую схему в базисе:

- а) И-НЕ (элемент И с инверсным выходом)
- б) ИЛИ-НЕ (элемент ИЛИ с инверсным выходом)
- в) И, НЕ (элемент И и элемент НЕ)
- г) ИЛИ, НЕ (элемент ИЛИ и элемент НЕ)

выбрать для каждой полученной $f_{minДH\Phi}$ при реализации ее логической схемой один из указанных выше базисов