

UNIVERSITÄT BERN

Einführung in die Wirtschaftsinformatik

Dateien und Datenbanksysteme:

Theorie relationaler Datenstrukturen

Prof. Dr. Thomas Myrach Universität Bern Institut für Wirtschaftsinformatik Abteilung Informationsmanagement

Logischer Aufbau

Lernziele

- Sie wissen, was funktionale Abhängigkeiten sind.
- Sie können funktionale Abhängigkeiten ableiten.
- Sie kennen den zentralen Begriff des Schlüssels und können ihn für eine Relation bestimmen.
- Sie wissen, warum Daten nicht immer in einer Relation abgespeichert werden sollten.
- Sie kennen die Anforderungen der ersten, zweiten und dritten Normalformen.
- Sie k\u00f6nnen Datenstrukturen entsprechend den Anforderungen der Normalformen gestalten.
- Sie kennen den Begriff des Fremdschlüssels und der referentiellen Integrität.

Gliederung

Funktionale Abhängigkeiten

UNIVERSITÄ[.] BERN

- Funktionale Abhängigkeiten sind ein formales Konstrukt, um bestimmte
 Zusammenhänge zwischen Attributen auszudrücken.
- Der Zusammenhang wird geschrieben als $X \rightarrow Y$
 - Attribut X determiniert Attribut Y
 - Attribut Y ist funktional abhängig von Attribut X
- Funktionale Abhängigkeiten sind ein notwendiges Hilfsmittel
 - zur Bestimmung von Schlüsseln
 - zur Überprüfung der Zweckmässigkeit von Datenschemata
 - zur Ableitung zweckmässiger Datenschemata

Definition funktionale Abhängigkeiten

UNIVERSITÄT BERN

Eine funktionale Abhängigkeit X → Y besagt:

$$- \forall r_1, r_2 \in R: r_1(X) = r_2(X) \Rightarrow r_1(Y) = r_2(Y)$$
 bzw.

- Für alle Tupel $r_1, r_2 \in R$ gilt: wenn $r_1(X) = r_2(X)$ dann $r_1(Y) = r_2(Y)$
- Dies bedeutet:
 - Wenn bei zwei Tupeln der Relation R die Werte für das Attribut X gleich sind, so müssen die Werte für das Attribut Y ebenfalls gleich sein.
 - Für einen bestimmten Wert X darf es also nur einen Wert Y geben.

Bedeutung funktionale Abhängigkeiten

UNIVERSITÄT BERN

Funktionale Abhängigkeit $X \rightarrow Y$

	Х		Y	
	•••		•••	•••
***	blabla	•••	gaga	•••
			=	
	blabla	•••	gaga	

Wenn in zwei Tupeln für das Attribut X der Wert "blabla", dann in diesen Tupeln für das Attribut Y der gleiche Wert!

Aufgabe: Funktionale Abhängigkeiten

- Gegeben sei eine Relation R(A1,A2,A3,A4) mit $\{A1,A2 \rightarrow A4;\,A2 \rightarrow A3\}$
- Welche Tupel sind nicht zulässig?

A 1	A2	А3	A4
W300	4711	Α	5
W300	4711	В	5
W300	4711	А	3
W300	4712	Α	5
W301	4711	Α	3
W301	4712	А	3
W302	4712	С	3
W302	4713	Α	3

Aufgabe: Bedeutung der funktionalen Abhängigkeiten

- (1) Die Vorlesungsnummer und die Matrikelnummer zusammen bestimmen die Note.
- (2) Die Matrikelnummer bestimmt den Namen.

Vorlesung	Matrikelnr	Name	Note
W300	4711	Α	5
W300	4711	В	5
W300	4711	Α	3
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	Α	3

Redundanz und Inkonsistenz

- Redundanz liegt vor, wenn identische Daten über ein Realweltobjekt mehrfach abgespeichert werden.
- Funktionale Abhängigkeiten zeigen mögliche Redundanzen an:
 - Wenn X → Y und in zwei Tupeln der Relation sind die Werte für die Attribute X und Y gleich, dann ist die mehrfache Nennung des Wertes von Y redundant!
- Inkonsistenz liegt vor, wenn sich Daten über ein Realweltobjekt widersprechen.
- Funktionale Abhängigkeiten können bei Inkonsistenzen verletzt werden:
 - Wenn X → Y und in zwei Tupeln der Relation sind die Werte für das Attribut X gleich und für Y ungleich, dann sind die Werte von Y inkonsistent!

Aufgabe: FA (1) Redundanz

Vorlesung, Matrikelnr	\rightarrow	Note	- 1
-----------------------	---------------	------	-----

Vorlesung	Matrikelnr	Name	Note
W300	4711	Α	5
W300	4711	В	5
W300	4711	Α	3
W300	4712	Α	5
W301	4711	Α	3
W301	4712	А	3
W302	4712	С	3
W302	4713	Α	3

Aufgabe: FA (1) Inkonsistenz

Vorles	sung, Matrikeln	<u>r</u> →	Note	
Widerspruch!				
Vorlesung	Matrikelnr	Name	Note	
W300	4711	Α	5	
W300	4711	В	5	
W300	4711	Α	3	
W300	4712	А	5	
W301	4711	Α	3	
W301	4712	Α	3	
W302	4712	С	3	
W302	4713	А	3	

Aufgabe: FA (2) Redundanz

UNIVERSITÄT BERN

$\mathsf{MatrikeInr} \to \mathsf{Name}$

Vorlesung	Matrikelnr	Name	Note
W300	4711	Α	5
W300	4711	В	5
W300	4711	Α	3
W300	4712	А	5
W301	4711	А	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	А	3

Aufgabe: FA (2) Inkonsistenz

Vorlesung	Matrikelnr	Name	Note
W300	4711	Α	5
W300	4711	В	5
W300	4711	Α	3
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	А	3

Fazit

- Durch funktionale Abhängigkeiten ist festgelegt, dass in einer Relation bezüglich der abhängigen Attribute Redundanzen auftreten können.
- Treten bei mehreren Tupeln mit gleichen Werten bei den Determinanten für die abhängigen Attribute keine gleichen Werte auf, so liegen Inkonsistenzen vor.
- In diesem Fall können die abhängigen Werte nicht (alle) gültig sein.
- Beim Vorliegen von Inkonsistenzen besteht eine Zweifel darüber, ob und welche Daten gültig sind.
- Inkonsistenzen mindern die Datenqualität.
- Ein gutes Datenbankdesign sollte die Gefahr von Inkonsistenzen nach Möglichkeit ausschalten.

Gliederung

Schlüssel und Schlüsselintegrität

- Auf die Tupel einer Relation kann nur über Attributwerte zugegriffen werden.
- Um auf ein bestimmtes Tupel zugreifen zu können, darf zumindest ein Attributwert bzw. eine Kombination von Attributwerten nur einmal in der Relation vorkommen.
- Diese Eigenschaft wird als Schlüsselintegrität bezeichnet
- Ein Schlüssel garantiert die Schlüsselintegrität und damit den gezielten Zugriff auf ein Tupel.
- Jede Relation muss (mindestens) einen Schlüssel haben.
- Einer der Schlüssel muss als Primärschlüssel definiert sein.
- Schlüssel werden typischerweise bei der Definition eines Datenschemas definiert.

Eigenschaften eines Schlüssels

UNIVERSITÄT BERN

Eindeutigkeit

- Eine Menge von Attributen ist eindeutig, wenn für sie eine bestimmte Kombination von Attributwerten höchstens einmal in einer Relation vorkommt.
- Sei R die Menge aller Attribute und S eine Untermenge der Relation mit $S \subseteq R$, dann muss für Eindeutigkeit die funktionale Abhängigkeit $S \to R$ gelten, d.h.
 - für alle $r_1, r_2 \in R$ gilt: wenn $r_1(S) = r_2(S)$ dann $r_1(R) = r_2(R)$
 - die Relation wird durch den Schlüssel determiniert.

Minimalität

- Minimalität ist gegeben, wenn von S kein Attribut entfallen kann, ohne dass die Eindeutigkeit verloren geht.
- Es existiert kein T mit T \subset S für das gilt T → R.

Ableiten eines Schlüssels

UNIVERSITÄT BERN

Vorlesung, Matrikelnr → Note

Matrikelnr → Name

Wie komme ich von den gegebenen funktionalen Abhängigkeiten auf den Schlüssel?

??? → Vorlesung, Matrikelnr, Name, Note

Schlüssel $S \rightarrow Relation R$

Armstrong-Axiome

UNIVERSITÄT BERN

– Reflexivität:

$$X \rightarrow V \text{ mit } V \subseteq X$$

– Erweiterung:

 $X \rightarrow Y$ impliziert $XZ \rightarrow YZ$

– Transitivität:

 $X \rightarrow Y$ und $Y \rightarrow Z$ impliziert $X \rightarrow Z$

– Additivität:

 $X \rightarrow Y \text{ und } X \rightarrow Z \text{ impliziert } X \rightarrow YZ$

– Projektivität:

 $X \rightarrow YZ$ impliziert $X \rightarrow Y$ und $X \rightarrow Z$

Pseudotransitivität:

 $X \rightarrow Y$ und $YZ \rightarrow W$ impliziert $XZ \rightarrow W$

Ableiten eines Schlüssels

UNIVERSITÄT BERN

Der Schlüssel setzt sich aus den beiden Attributen Vorlesung und Matrikelnr zusammen.

Schlüsseleindeutigkeit (1)

Vorlesung, Matrikelnr \rightarrow Name,	Note	
---	------	--

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4711	В	5
W300	4711	А	3
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	А	3

Schlüsseleindeutigkeit (2)

UNIVERSITÄ BERN

Die Schlüsseleindeutigkeit erlaubt theoretisch, dass Tupel mit gleichen Schlüsselwerte auftreten, wenn diese Tupel die gleichen Werte haben.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	А	5
W300	4711	Α	5
W300	4711	Α	5
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	А	3

Schlüsseleindeutigkeit (3)

UNIVERSITÄ BERN

Die Schlüsselintegrität führt in der Praxis dazu, dass pro Schlüsselwert nur ein Tupel auftritt, wodurch die Schlüsseleindeutigkeit gewahrt wird.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4712	А	5
W301	4711	А	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	А	3

Schlüssel und Redundanz (1)

 u^{b}

UNIVERSITÄT BERN

Wegen der Schlüsseleindeutigkeit kann kein Tupel eingefügt werden, wenn die Schlüsselwerte bereits vorhanden sind.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	Α	3

insert into R value ("W300","4711,"B",4)

Durch die Schlüsseleindeutigkeit werden gewisse Redundanzen und somit auch Inkonsistenzen ausgeschlossen.

Schlüssel und Redundanz (2)

UNIVERSITÄ BERN

Die Schlüsseleindeutigkeit schliesst nicht notwendigerweise alle Redundanzen und Inkonsistenzen aus.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4712	А	5
W301	4711	А	3
W301	4712	А	3
W302	4712	С	3
W302	4713	Α	3

insert into R values ("W303","4711,"B",4)

Fazit

- Mit einem Schlüssel kann jederzeit eindeutig auf ein bestimmtes Tupel einer Relation zugegriffen werden.
- Dies bedeutet:
 - Ein bestimmter Schlüsselwert tritt höchstens einmal in einer Relation auf
 - Würde ein Schlüsselwert mehrfach auftreten, so müsste es sich um identische Tupel handeln.
 - Mehrfach auftretende Tupel sind jedoch redundant und sollten entfallen.
- Für Schlüssel gilt üblicherweise die Eindeutigkeitsrestriktion.
 - Ist ein bestimmter Schlüsselwert in einer Relation bereits vorhanden, so kann dieser Wert nicht erneut eingegeben werden.

Gliederung

Eid der Datenmodellierer

UNIVERSITÄT BERN

Ich schwöre,
dass jedes Attribut meiner Relation
vom Schlüssel abhängt,
vom ganzen Schlüssel
und nichts als dem Schlüssel,
so wahr mir Codd helfe.

– ... vom Schlüssel abhängt ...:1. Normalform

– ... vom ganzen Schlüssel ...:2. Normalform

— ... nichts als dem Schlüssel ...:
3. Normalform

... vom Schlüssel abhängt ...

UNIVERSITÄT BERN

- Jedes Attribut einer Relation muss vom Schlüssel abhängen.
- Jedes Attribut kann pro Tupel nur je einen Wert haben.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	Α	3

Vorlesung, Matrikelnr → Vorlesung, Matrikelnr, Name, Note

... vom ganzen Schlüssel ...

UNIVERSITÄT BERN

Kein Attribut sollte nur vom Teil eines Schlüssels identifiziert werden.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Name	Note
W300	4711	Α	5
W300	4712	Α	5
W301	4711	Α	3
W301	4712	Α	3
W302	4712	С	3
W302	4713	Α	3

Name hängt von einem Teil des Schlüssels ab! 2.Normalform ist verletzt.

... nichts als dem Schlüssel ...

UNIVERSITÄT BERN

Kein Attribut sollte transitiv vom Schlüssel abhängen.

WNR	FT	MS
W12	Corsa	135
W84	Mondeo	185
W85	Vectra	185
W33	Golf	160
W75	Mondeo	185

Mietsatz (MS) hängt vom Fahrzeugtyp (FT) ab! 3. Normalform ist verletzt.

Konsequenzen von Verletzungen der Normalformen

- Werden in einer Relation die Normalformen nicht eingehalten, so k\u00f6nnen
 Datenmanipulation problematische Ergebnisse haben.
- Redundanzen und Inkonsistenzen k\u00f6nnen nicht ausgeschlossen werden.
- Durch eine Zerlegung der Relation in Teilrelationen lässt sich dieses Problem beseitigen.
- Jede der Teilrelationen sollte die Normalformen einhalten.
- Dann kann über die Schlüsselintegrität ausgeschlossen werden, das Redundanzen und Inkonsistenzen auftreten.

Zerlegung der Relation Notenmeldung (1)

UNIVERSITÄT BERN

Die Schlüsseleindeutigkeit verbietet mehrere gleiche Schlüsselwerte in einer Relation.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3

<u>Matrikelnr</u>	Name
4711	А
4712	А
4712	А
4712	С
4713	A

Vorlesung, MatrikeInr → **Note**

MatrikeInr → **Name**

Die zerlegten Relationen erfüllen alle Normalformen!

Zerlegung der Relation Notenmeldung (2)

UNIVERSITÄ BERN

Durch eine geeignete Zerlegung der Relation können alle Redundanzen und Inkonsistenzen ausgeschlossen werden.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3

<u>Matrikelnr</u>	Name
4711	А
4712	С
4713	А

insert int 72 values ("472", "A")

Durch Zerlegung der Relation kann ausgeschlossen werden, dass für einen Studierenden unterschiedliche Namen erscheinen!

Zerlegung der Relation Mietsatz (1)

UNIVERSITÄT BERN

Die Schlüsseleindeutigkeit verbietet mehrere gleiche Schlüsselwerte in einer Relation.

<u>WNR</u>	FT
W12	Corsa
W84	Mondeo
W85	Vectra
W33	Golf
W75	Mondeo

WNR	\rightarrow FT

<u>FT</u>	MS
Corsa	135
Mondeo	185
Vectra	185
Golf	160
Mondeo	185

$$\mathsf{FT} \longrightarrow \mathsf{MS}$$

Zerlegung der Relation Mietsatz (2)

 u^{b}

UNIVERSITÄT BERN

Durch eine geeignete Zerlegung der Relation können alle Redundanzen und Inkonsistenzen ausgeschlossen werden.

<u>WNR</u>	FT
W12	Corsa
W84	Mondeo
W85	Vectra
W33	Golf
W75	Mondeo

<u>FT</u>	MS
Corsa	135
Mondeo	185
Vectra	185
Golf	160

insert into R2 values ("Mondeo", "170")

Durch Zerlegung der Relation kann ausgeschlossen werden, dass für einen Fahrzeugtyp unterschiedliche Mietsätze erscheinen!

Konsequenzen der Zerlegung von Relationen

- Durch eine zweckmässige Datenstrukturierung kann die Qualität von Daten begünstigt werden.
- Ein zentraler Punkt ist dabei die Vermeidung von Redundanzen und damit auch die Gefahr von Inkonsistenzen.
- Dabei spielt die Schlüsseleindeutigkeit eine wichtige Rolle.
- Durch Normalformen lässt sich die Zweckmässigkeit von Relationen prüfen.
- Die Einhaltung der Normalformen erfordert unter Umständen eine Zerlegung von Relationen.
- Die Information in den zerlegten Relationen muss bei Bedarf wieder zusammengeführt werden können.

Gliederung

Fremdschlüssel

- Ein Fremdschlüssel referenziert einen Primärschlüssel.
- Ein Fremdschlüssel darf nur Attributwerte aufweisen, die im referenzierten Primärschlüssel enthalten sind.
- Beim Fremdschlüssel handelt es sich quasi um einen Schlüssel einer anderen Relation.
- Ein Fremdschlüssel muss selbst kein Schlüssel sein.
- Fremdschlüssel und Primärschlüssel bildet Zusammenhänge zwischen Relationen ab.
- Diese Zusammenhänge entstehen dadurch, dass zusammengehörige Daten in mehrere Relationen aufgeteilt werden.

Zusammenhänge zwischen Relationen

UNIVERSITÄT BERN

Beziehungen zwischen Relationen werden durch Fremdschlüssel hergestellt.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3

<u>Matrikelnr</u>	Name
4711	Α
4712	С
4713	Α

Jede Matrikelnummer in der Notenmeldung (Fremdschlüssel) muss einer Matrikelnummer der Studierendenrelation (Primärschlüssel) entsprechen!

Zusammenhänge zwischen Relationen

UNIVERSITÄ BERN

Lassen sich die Zusammenhänge zwischen den Daten der Relationen nicht herstellen, so sind Informationen unvollständig.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3
W302	4714	6

<u>Matrikelnr</u>	Name
4711	Α
4712	С
4713	Α

Welche Namen hat der Student mit der Matrikelnummer 4714?

Referentielle Integrität

- Betrifft die Beziehungen zwischen Fremdschlüsseln und Primärschlüsseln.
- Alle Werte eines Fremdschlüssels müssen den Werten eines referenzierten Primärschlüssels entsprechen.
- Durch Datenbankmechanismen lässt sich die referentielle Integrität erzwingen.
- Die Auswirkungen sind zweiseitig:
 - (1) Kein Tupel kann in eine Relation eingefügt werden, wenn der Wert des Fremdschlüssels nicht dem eines referenzierten Primärschlüssels entspricht.
 - (2) Kein Tupel kann aus einer Relation gelöscht werden, wenn der Wert des Primärschlüssels durch Fremdschlüssel referenziert wird.

Referentielle Integrität (1)

UNIVERSITÄT BERN

Mechanismen der referentiellen Integrität verhindern, dass durch Einfügung eines Sekundärschlüsselwerts die Beziehungen gestört werden.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3

<u>Matrikelnr</u>	Name
4711	Α
4712	С
4713	А

insert into R1 values ("W 202", "4714", 6)

Referentielle Integrität (2)

UNIVERSITÄT BERN

Mechanismen der referentiellen Integrität verhindern, dass durch Löschung eines Primärschlüsselwerts die Beziehungen gestört werden.

<u>Vorlesung</u>	<u>Matrikelnr</u>	Note
W300	4711	5
W300	4712	5
W301	4711	3
W301	4712	3
W302	4712	3
W302	4713	3

<u>Matrikelnr</u>	Name
4711	А
4712	С
4713	А

delete from R2 where matrikelnr="4713"

Auswirkungen der referentiellen Integrität

- Durch die referentielle Integrität bleiben die Zusammenhänge zwischen Daten aus verschiedenen Relationen gewahrt.
- Datenbankoperationen, die zu Integritätsfehlern führen, werden abgewiesen.
- Diese Sicherung kann in der praktischen Arbeit auch störende Konsequenzen haben.
- Ohne die genaue Kenntnis der Datenabhängigkeiten kann die Durchführung von Datenoperationen mühsam sein.

Fazit

- Das Relationale Datenmodell bietet mit der Tabelle eine einfache Abstraktion für die Strukturierung von Daten an.
- Realistische Datenobjekte lassen sich jedoch nicht ohne weiteres mit einer einzigen Tabelle abbilden.
- Die Gestaltung von Relationen nach den Grundsätzen der Normalisierung führt schnell einmal zu einer ganzen Reihe von Tabellen.
- Diese hängen über Primär-/Fremdschlüsselbeziehungen untereinander zusammen.
- Auch wenn diese Zusammenhänge nicht direkt sichtbar sind, müssen sie für die Manipulation der abgelegten Daten genau beachtet werden.
- Dadurch entstehen trotz des einfachen Grundkonstrukts unter Umständen komplexe Datenschemata.