ISSN: 2303-1751

OPTIMISASI BIAYA TRANSPORTASI MENGGUNAKAN METODE STEPPING STONE DENGAN SOLUSI AWAL TOCM-SUM APPROACH DAN KSAM

Mikha Layasisa Tarigan^{1§}, Ni Ketut Tari Tastrawati², Ida Ayu Putu Ari Utari³

ABSTRACT

Transportation problem is one of the problems that can be solved by using linear programming. Transportation method allow businessmen to minimize distribution costs, increase profits, and also fulfill the consumer needs at the same times. The transportation method has two stages of completion, namely the initial basic solution and the optimum solution. The initial basic solution has many developments, two of which are the Total Opportunity Cost Matrix Sum (TOCM-SUM) Approach and the Karagun Sahin Approximation Method (KSAM). Moreover, the optimal solution has two methods of completion, namely modified distribution and stepping stone. This study will compare two method between TOCM-SUM Approach and KSAM which then optimized by using stepping stone method. On other case, the result of using this two method might produce a different number, where as in this study by using TOCM-SUM Approach method will produce 9 alocation routes, meanwhile using KSAM will produce 10 alocation routes. The results from this study shows that KSAM produced a minimum distribution cost with a difference of Rp114.770,00 from the TOCM-SUM Approach.

Keywords: Transportation Problem, TOCM-SUM Approach, KSAM, Stepping Stone Method

1. PENDAHULUAN

Beras merupakan kebutuhan sehari-hari masyarakat Indonesia. Pada tahun 2019 konsumsi beras di Indonesia mencapai 28.692.107 ton (BPS, 2021). Kebutuhan akan beras yang sangat tinggi mengakibatkan proses pemenuhan kebutuhan beras sebaiknya berjalan dengan efektif. Dalam proses pemenuhan kebutuhan diperlukan proses distribusi dengan rute yang tepat guna menghasilkan biaya distribusi yang minimum. Rute distribusi

dengan biaya minimum dapat diperoleh dengan metode transportasi.

Metode transportasi adalah salah satu penerapan program linear yang dapat menghasilkan proses transportasi yang optimal (Hillier & Liberman, 1995). Proses transportasi dari m sumber menuju n tujuan dapat dipresentasikan kedalam bentuk tabel seperti pada Tabel 1.

Tabel 1. Tabel Transportasi

Sumber		Т	ujuan		Kapasitas
Sumber	1	2	•••	n	Sumber
1	$\frac{c_{11}}{x_{11}}$	$c_{12} \ x_{12}$		$c_{1n} \\ x_{1n}$	a_1
2	c_{21} x_{21}	c_{22} x_{22}		$c_{2n} = x_{2n}$	a_2
:	:	:		:	:
m	$\frac{c_{m1}}{x_{m1}}$	$\frac{c_{m2}}{x_{m2}}$		$\frac{c_{mn}}{x_{mn}}$	a_m
Permintaan	b_1	b_2		b_n	

Sumber: (Siswanto, 2007)

¹Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: mikhalayisa@gmail.com]

²Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: tastrawati@unud.ac.id]

³Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: idaayuputuariutari@unud.ac.id] [§]Corresponding Author

Dengan demikian, model transportasi dapat dituliskan:

Meminimumkan

$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{1}$$

dengan batasan

$$\Sigma_{j=1}^{n} x_{ij} \le a_{i} \qquad i = 1, 2, ..., m$$

$$\Sigma_{i=1}^{m} x_{ij} \ge b_{j} \qquad j = 1, 2, ..., n$$

$$x_{ij} \ge 0$$
, untuk semua i dan j

Keterangan:

n: Jumlah sumber masalah transportasi. m: Jumlah tujuan masalah transportasi. a_m : Kuantitas yang ditawarkan sumber. b_n : Kuantitas permintaan pada tujuan. c_{mn} : Biaya distribusi dari m menuju n. x_{mn} : Jumlah barang uang dikirim dari sumber m ke tujuan n.

Metode transportasi memiliki dua jenis cara penyelesaian jenis, yaitu metode langsung dan tidak langsung. Metode transportasi dengan metode langsung dapat menemukan solusi optimum dengan menggunakan satu proses saja. Sedangkan metode transportasi dengan metode tidak langsung membutuhkan dua proses dalam menemukan solusi optimum. Dua proses tersebut adalah proses mendapatkan solusi awal dan proses penentuan nilai optimum.

Proses penentuan nilai optimum memiliki dua metode, yaitu metode stepping stone dan modified distribution. Metode stepping stone melakukan perbaikan secara bertingkat pada solusi awal dalam proses penyelesaiannya (Ratnasati et al., 2019). Proses mendapatkan solusi awal dapat diperoleh dengan beberapa metode, yaitu North-West Corner (NWC), Least Cost (LC), Vogel's Approximation (VAM), Total Opportunity Cost Matrix-Sum Approach (TOCM-SUM) dan Karagul-Sahin Approximation Method (KSAM).

Metode TOCM-SUM Approach pertama kali diperkenalkan oleh Khan, et al. (2015), metode ini melakukan perhitungan TOCM yang diperkenalkan oleh Kirca & Satir (1990) kemudian memberikan alokasi sesuai dengan nilai TOCM-SUM terbesar. Metode TOCM-SUM Approach kemudian diteliti kembali oleh Astuti, et al. (2016) dan Armawan (2020) yang mendapatkan kesimpulan yang sama yaitu metode TOCM-SUM Approach mendapat hasil yang optimal setelah dilakukan pengecekan menggunakan metode stepping stone.

KSAM pertama kali diperkenalkan oleh Karagul & Sahin (2020) dengan memberikan

perbedaan perhitungan, yaitu menghitung rasio dari *supply* dan *demand. KSAM* kemudian diteliti kembali oleh Nusantoro (2020) dengan hasil penelitian menyatakan bahwa *KSAM* dapat menemukan biaya distribusi yang lebih kecil dari biaya distribusi sebelumnya milik perusahaan.

Berdasarkan uraian diatas, penelitian ini akan membandingkan biaya distribusi minimum menggunakan metode *TOCM-SUM Approach* dan *KSAM* dalam menemukan solusi awal, kemudian menemukan solusi optimum dengan metode *stepping stone*. Penelitian ini menggunakan data yang diperoleh pada penelitian Istiqomah (2021).

2. METODE PENELITIAN

2.1 Jenis dan Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder, yang berupa data persediaan, data permintaan, dan biaya transportasi. Data diperoleh dari penelitian Istiqomah (2021).

2.2 Variabel Penelitian

Variabel dalam penelitian ini adalah

- 1. Jumlah persediaan pada masing-masing gudang (s_i) , i = 1,2,3.
- 2. Jumlah permintaan pada masing-masing tempat tujuan (d_i) , j = 1,2,3,...,8.
- 3. Biaya distribusi yang dikeluarkan dari gudang i ke tujuan j (c_{ij}).

2.3 Metode Analisis Data

Langkah-langkah dalam menganalisis data pada penelitian ini yaitu sebagai berikut:

- 1. Mengumpulkan data persediaan, data permintaan, biaya transportasi, dan jumlah Beras Putri Sejati 25 Kg yang didistribusikan dari 3 gudang ke 8 lokasi tujuan.
- 2. Membentuk fungsi tujuan menggunakan persamaan (1) serta membentuk fungsi batasannya.
- 3. Membentuk tabel transportasi sesuai dengan tabel 1.
- 4. Mencari solusi awal menggunakan metode *TOCM-SUM Approach*. Langkah-langkah dalam menentukan solusi awal menggunakan metode *TOCM-SUM Approach* adalah sebagai berikut:
 - a. Menentukan biaya distribusi minimum pada masing-masing baris dan biaya

ISSN: 2303-1751

- distribusi minimum pada masingmasing kolom,
- b. Melakukan reduksi baris (*ROCM*) dan reduksi kolom (*COCM*),
- c. Membentuk tabel *Total Opportunity Cost Matrix* (*TOCM*) dengan menjumlahkan nilai *ROCM* dan nilai *COCM*,
- d. Menjumlahkan nilai *TOCM* pada masing-masing baris dan tuliskan jumlah nilai *TOCM* setiap baris di bagian kanan tabel (*row pointer*). Lakukan hal yang sama pada masing-masing kolom dan tuliskan hasilnya pada bagian bawah tabel (*column pointer*),
- e. Pilih nilai *row pointer* atau *column pointer* dengan yang tertinggi, kemudian alokasikan secara maksimum pada sel yang memiliki nilai *TOCM* terkecil dari baris atau kolom tersebut,
- f. Lakukan langkah e dan f dengan mengabaikan baris atau kolom yang sudah terisi. Lakukan langkah ini hingga seluruh permintaan terpenuhi,
- g. Hitung biaya minimum dengan menjumlahkan hasil alokasi produk dengan biaya transportasi yang dialokasikan.
- Melakukan penghitungan solusi akhir menggunakan metode *Stepping Stone* pada kedua solusi awal permasalahan transportasi. Langkah-langkah metode *Stepping Stone* sebagai berikut:
 - a. Memastikan bahwa solusi awal memiliki jumlah alokasi sebanyak m+n-1, dimana m adalah jumlah baris tabel transportasi solusi awal dan n adalah jumlah kolom tabel transportasi solusi awal. Jika kondisi ini tidak terpenuhi, maka tambahkan nilai epsilon (ε) pada salah satu entri kosong,
 - b. Memilih entri alokasi yang belum terpakai,
 - Membuat sebuah jalur tertutup pada entri alokasi yang telah dipilih dengan cara melewati entri rute transportasi yang telah teralokasi,
 - d. Memberikan tanda (+) pada entri kosong yang telah dipilih, dilanjutkan dengan tanda (-) dan (+) secara bergantian pada setiap entri dalam jalur tertutup,

- e. Menghitung nilai indeks perbaikan dengan tanda (+) dan mengurangkan biaya transportasi dengan tanda (-) yang ada pada setiap entri dalam jalur tertutup,
- f. Mengulang langkah a) sampai d) sampai semua entri kosong dihitung. Jika jumlah nilai jalur tertutup entri kosong lebih besar atau sama dengan nol maka solusi optimum telah diperoleh. Jika ada nilai negatif, maka proses dilanjutkan,
- g. Pilih nilai indeks perbaikan jalur tertutup yang paling negatif untuk dievaluasi. Evaluasi dilakukan dengan cara memilih alokasi dengan nilai negatif terkecil dalam jalur tertutup. Kemudian seluruh alokasi pada jalur tertutup dijumlahkan dengan nilai alokasi negatif terkecil sesuai dengan tanda (+) dan (-) yang telah diberikan sebelumnya,
- h. Melakukan langkah b), c), d), e), dan f) sampai tidak ada nilai indeks perbaikan yang bernilai negative,
- 6. Mencari solusi awal menggunakan *KSAM*. Langkah-langkah dalam menentukan solusi awal menggunakan *KSAM* sebagai berikut:
 - a. Menghitung rasio antara *demand* terhadap *supply* (*PDM*) dan rasio antara *supply* terhadap *demand* (*PSM*) pada setiap sel dalam tabel transportasi,
 - b. Membentuk matriks A menggunakan hasil perkalian antara *PDM* dengan biaya distribusi (*WCD*) dan membentuk matriks B menggunakan hasil perkalian antara *PSM* dengan biaya distribusi (*WCS*),
 - c. Mengalokasikan distribusi secara maksimal pada nilai *WCD* terkecil dalam matriks A dan nilai *WCS* terkecil dalam matriks B.
 - d. Menghitung nilai distribusi (z_{min}) matriks A dan matriks B,
 - e. Membandingan nilai distribusi kedua matriks dan memilih biaya distribusi terkecil sebagai solusi awal *KSAM*.
- 7. Mengulang langkah 4 menggunakan solusi awal *KSAM* untuk menghitung solusi optimum dengan metode *Stepping Stone*.
- 8. Membandingkan solusi optimum metode *Stepping Stone* dengan solusi awal metode *TOCM-SUM Approach* dan metode *KSAM*.

3. HASIL DAN PEMBAHASAN

3.1 Membentuk Model Transportasi

Penelitian ini menggunakan data penelitian sebelumnya yang dilakukan oleh Istigomah (2021).Data-data yang diperlukan dalam penelitian ini adalah data total permintaan masing-masing tujuan, data kapasitas masingmasing sumber, dan data biaya transportasi setiap karung beras dari masing-masing sumber menuju masing-masing tujuan. Dari data-data tersebut, dapat dibentuk tabel awal transportasi sebagai berikut

Tabel 2. Tabel Awal Transportasi

Sumber				Tuj	uan				Kapasitas
	T1	T2	Т3	T4	T5	T6	T7	Т8	Sumber
S1	530	398	300	260	634	200	150	333	4500
S2	800	214	267	225	338	225	192	300	3250
S3	600	176	240	322	405	500	128	64	3750
Permintaan	600	1250	500	1200	755	980	1115	850	

Sumber: (Istigomah, 2021)

Sehingga dapat dibentuk fungsi tujuan sebagai berikut,

Minimumkan:

$$z = 530x_{11} + 398x_{12} + 300x_{13} + 260x_{14} \\ + 634x_{15} + 200x_{16} + 150x_{17} \\ + 333x_{18} + 800x_{21} + 214x_{22} \\ + 267x_{23} + 225x_{24} + 338x_{25} \\ + 225x_{26} + 192x_{27} + 300x_{28} \\ + 600x_{31} + 176x_{32} + 240x_{33} \\ + 322x_{34} + 405x_{35} + 500x_{36} \\ + 128x_{37} + 64x_{38}$$

dengan kendala

engan kendala
$$x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{17} + x_{18} \le 4500$$

$$x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} + x_{28} \le 3250$$

$$x_{31} + x_{32} + x_{33} + x_{34} + x_{35} + x_{36} + x_{37} + x_{38} \le 3750$$

$$x_{11} + x_{21} + x_{31} = 600$$

$$x_{12} + x_{22} + x_{32} = 1250$$

$$x_{13} + x_{23} + x_{33} = 500$$

$$x_{14} + x_{24} + x_{34} = 1200$$

$$x_{15} + x_{25} + x_{35} = 755$$

$$x_{16} + x_{26} + x_{36} = 980$$

$$x_{17} + x_{27} + x_{37} = 1115$$

$$x_{18} + x_{28} + x_{38} = 850$$

$$x_{ij} \ge 0, i = 1, 2, 3 \ dan \ j = 1, 2, ..., 8.$$

3.2 Solusi Awal TOCM-SUM Approach

Masalah transportasi dengan solusi awal menggunakan metode TOCM-SUM Approach memiliki 6 langkah penyelesaian, yaitu:

1. Menentukan biaya distribusi minimum pada setiap baris dan setiap kolom

Tabel 3. Tabel Biaya Distribusi

Sumber		Tujuan									
Sumber	T1	T2	T3	T4	T5	T6	T7	T8	c_{ik}		
S1	530	398	300	260	634	200	150	333	150		
S2	800	214	267	225	338	225	192	300	192		
S3	600	176	240	322	405	500	128	64	64		
$C_{k,i}$	530	176	240	225	338	200	128	64			

Sumber: Data diolah (2022), dianalisis

2. Melakukan perhitungan Row Opportunity Cost Matrix (ROCM) dengan melakukan reduksi pada masing-masing sel dalam setiap baris.

Tabel 4. Tabel ROCM

Sumber	Tujuan										
Sumber	T1	T2	T3	T4	T5	T6	T7	T8			
S1	380	248	150	110	484	50	0	183			
S2	608	22	75	33	146	33	0	108			
S3	536	112	176	258	341	436	64	0			

Sumber: Data diolah (2022), dianalisis

Kemudian melakukan reduksi baris. dilakukan juga reduksi terhadap kolom atau Column Opportunity Cost Matrix (COCM).

Tabel 5. Tabel COCM

Cumhon	Tujuan										
Sumber	T1	T2	T3	T4	T5	T6	T7	T8			
S1	0	222	60	35	296	0	22	269			
S2	270	38	27	0	0	25	64	236			
S3	70	0	0	97	67	300	0	0			

Sumber: Data diolah (2022), dianalisis

3. Membentuk tabel TOCMdengan menjumlahkan nilai *ROCM* dan *COCM*.

1), Januari 2023, pp. 77-86 ISSN: 2303-1751

Tabel 6. Tabel TOCM

Cumbon		Tujuan										
Sumber	T1	T2	T3	T4	T5	T6	T7	T8				
S1	380	470	210	145	780	50	22	452				
S2	878	60	102	33	146	58	64	344				
S3	606	112	176	355	408	736	64	0				

Sumber: Data diolah (2022), dianalisis

- 4. Menjumlahkan nilai *TOCM* pada setiap baris dan kolom, tuliskan jumlahnya dibagian kanan tabel (*row pointer*) dan bawah tabel (*column pointer*)
- 5. Memilih nilai *row pointer* atau *column pointer* dengan yang tertinggi, kemudian

alokasikan secara maksimum pada sel yang memiliki nilai *TOCM* terkecil dari baris atau kolom tersebut

Tabel 7. Tabel TOCM-SUM

C				Tuj	uan				Row
Sumber	T1	T2	T3	T4	T5	T6	T7	T8	Pointer
S1	380	470	210	145	780	50	22	452	2509
S2	878	60	102	33	146	58	64	344	1685
S3	606	112	176	355	408	736	64	0	2457
Column Pointer	1864	642	488	533	1334	844	150	796	

Sumber: Data diolah (2022), dianalisis

Tabel 8. Solusi Awal TOCM-SUM Approach

					Tuju	an				Kapasitas				Rou	Poin	ter (Itera	si)		
Sum	ber	T1	T2	Т3	T4	T5	T6	T7	T8	impusitus	I	II	III	IV	V	VI	VII	VIII	IX
		380	470	210	145	780	50	22	452										
Si	1	600		500	1200		980	1115	105	4500	2509	2487	2437	2292	2082	1 702	•		,
		878	60	102	33	146	58	64	344										
S2	2		1250			755				3250	1685	1621	1563	1530	1428	1428	550	404	344
		606	112	176	355	408	736	64	0										
S	3	600							745	3750	2457	2393	1657	1302	1126	1126	520	112	408
Permi		600	1250	500	1200	755	980	1115	850										•
	I	1864	642	488	533	1334	844	150	796										
_	II	1864	642	488	533	1334	844	-	796										
Pointer	III	1864	642	488	533	1334	-	-	796										
oio_	IV	1864	642	488	-	1334	-	-	796										
m 1	V	1864	642	-	-	1334	-	-	796										
mm	VI	-	642	-	-	1334	-	-	796	1									

Sumber: Data diolah (2022), dianalisis

Iterasi I: Pada tahap ini *pointer* yang terbesar adalah 2509 dan nilai *TOCM* terkecil adalah 22 pada entri (1,7). Sehingga dialokasikan 1115 unit (minimum dari 1115 dan 4500) di entri (1,7). Kemudian menghitung ulang dengan mengabaikan kolom ke-7.

Iterasi II: Selanjutnya, *pointer* yang terbesar adalah 2487 dan nilai *TOCM* terkecil adalah 50 pada entri (1,6). Sehingga dialokasikan 980 unit (minimum dari 980 dan 3385) di entri (1,6). Kemudian menghitung ulang dengan mengabaikan kolom ke-6.

Iterasi III: Pada iterasi ini, *pointer* yang terbesar adalah 2437 dan nilai *TOCM* terkecil adalah 145 pada entri (1,4). Sehingga dialokasikan 1200 unit (minimum dari 1200 dan 2405) di entri (1,4). Kemudian menghitung ulang dengan mengabaikan kolom ke-4.

Iterasi IV: Pada tahap ini, *pointer* yang terbesar adalah 2292 dan nilai *TOCM* terkecil adalah 210 pada entri (1,3). Sehingga dialokasikan 500 unit (minimum dari 500 dan 1205) di entri (1,3). Kemudian menghitung ulang

dengan mengabaikan kolom ke-3.

Iterasi V: Selanjutnya, *pointer* yang terbesar adalah 2082 dan nilai *TOCM* terkecil adalah 380 pada entri (1,1). Sehingga dialokasikan 600 unit (minimum dari 600 dan 705) di entri (1,1). Kemudian menghitung ulang dengan mengabaikan kolom pertama.

Iterasi VI: Pada iterasi ini, *pointer* yang terbesar adalah 1702 dan nilai *TOCM* terkecil adalah 452 pada entri (1,8). Sehingga dialokasikan 105 unit (minimum dari 850 dan 105) di entri (1,8). Kemudian menghitung ulang dengan mengabaikan baris pertama.

Iterasi VII: Pada tahap ini, *pointer* yang terbesar adalah 554 dan nilai *TOCM* terkecil adalah 146 pada entri (2,5). Sehingga dialokasikan 755 unit (minimum dari 755 dan 3250) di entri (2,5). Kemudian menghitung ulang dengan mengabaikan kolom ke-5.

Iterasi VIII: Selanjutnya, *pointer* yang terbesar adalah 404 dan nilai *TOCM* terkecil adalah 60 pada entri (2,2). Sehingga dialokasikan 1250 unit (minimum dari 1250 dan 2495) di entri

(2,2). Kemudian menghitung ulang dengan mengabaikan kolom ke-2.

Iterasi IX: Pada tahap ini, *pointer* yang terbesar adalah 344 dan nilai *TOCM* terkecil adalah 0 pada entri (3,8). Sehingga dialokasikan 745 unit (minimum dari 745 dan 3150) di entri (3,8). Kemudian iterasi dihentikan karena seluruh permintaan terpenuhi.

6. Menghitung biaya distribusi solusi awal *TOCM-SUM Approach*, perhitungan dilakukan seerti berikut

```
z = 530x_{11} + 398x_{12} + 300x_{13} + 260x_{14}
               +634x_{15} + 200x_{16} + 150x_{17}
               +333x_{18} + 800x_{21} + 214x_{22}
               +267x_{23} + 225x_{24} + 338x_{25}
               +225x_{26} + 192x_{27} + 300x_{28}
               +600x_{31} + 176x_{32} + 240x_{33}
               +322x_{34} + 405x_{35} + 500x_{36}
               +128x_{37}+64x_{38}
\Leftrightarrow z = 530(600) + 398(0) + 300(500)
               +260(1200)+634(0)
               +200(980) + 150(1115)
               +333(105) + 800(0)
               +214(1250) + 267(0)
               +225(0) + 338(775)
               +225(0) + 192(0) + 300(0)
               +600(0) + 176(0) + 240(0)
               +322(0) + 405(0) + 500(0)
               +128(0)+64(745)
               = Rp1.748.585,00
```

3.3 Solusi Optimal Metode Stepping Stone dengan Solusi Awal TOCM-SUM Approach

Langkah pertama yang dilakukan dalam menemukan solusi optimal metode *stepping stone* dengan solusi awal *TOCM-SUM Approach* adalah memastikan bahwa solusi awal memenuhi syarat dimana jumlah alokasi harus sama dengan m+n-1 dimana m adalah jumlah baris dan n adalah jumlah kolom. Pada solusi awal metode *TOCM-SUM Approach* jumlah alokasi tidak memenuhi syarat sebelumnya, sehingga perlu diberikan nilai epsilon pada salah satu entri kosong. Pada studi kasus ini, nilai epsilon diletakkan pada x_{12} .

Langkah selanjutnya yaitu membentuk jalur tertutup pada entri-entri kosong yang terdapat dalam tabel transportasi solusi awal *TOCM-SUM Approach* dan menghitung nilai indeks perbaikannya.

Tabel 9. Metode Stepping Stone dengan solusi awal TOCM-SUM Approach

Entri Kosong	Jalur Tertutup	Nilai indeks perbaikan
x ₁₅	$x_{15} \to x_{25} \to x_{22} \to x_{12} \to x_{15}$	112
x ₂₁	$x_{21} \to x_{11} \to x_{12} \to x_{22} \to x_{21}$	454
x ₂₃	$x_{23} \to x_{13} \to x_{12} \to x_{22} \to x_{23}$	151
x ₂₄	$x_{24} \to x_{14} \to x_{12} \to x_{22} \to x_{24}$	149
x ₂₆	$x_{26} \to x_{16} \to x_{12} \to x_{22} \to x_{26}$	209
x ₂₇	$x_{27} \to x_{17} \to x_{12} \to x_{22} \to x_{27}$	226
x ₂₈	$x_{28} \to x_{18} \to x_{12} \to x_{22} \to x_{28}$	151
x ₃₁	$x_{31} \to x_{11} \to x_{18} \to x_{38} \to x_{31}$	339
x ₃₂	$x_{32} \to x_{12} \to x_{18} \to x_{38} \to x_{32}$	47
x ₃₃	$x_{33} \to x_{13} \to x_{18} \to x_{38} \to x_{33}$	9
x ₃₄	$x_{34} \to x_{14} \to x_{18} \to x_{38} \to x_{34}$	331
x ₃₅	$x_{35} \rightarrow x_{25} \rightarrow x_{22} \rightarrow x_{12} \rightarrow x_{18} \rightarrow x_{38} \rightarrow x_{35}$	152
x ₃₆	$x_{36} \to x_{16} \to x_{18} \to x_{38} \to x_{36}$	569
x ₃₇	$x_{37} \to x_{17} \to x_{18} \to x_{64} \to x_{37}$	247

Sumber: Data diolah (2022), dianalisis

Terlihat bahwa seluruh nilai indeks perbaikan bersifat positif, sehingga solusi awal sudah mencapai nilai optimal

3.4 Solusi Awal KSAM

Masalah transportasi dengan solusi awal menggunakan *KSAM* memiliki 5 langkah penyelesaian, yaitu:

1. Menghitung rasio antara *demand* terhadap *supply* (*PDM*) dan rasio antara *supply* terhadap *demand* (*PSM*) pada setiap sel dalam tabel transportasi

Tabel 10. Tabel PDM

Sumber	Tujuan											
Sumber	T1	T2	T3	T4	T5	T6	T7	T8				
S1	1,33	2,78	1,11	2,67	1,68	2,18	2,48	1,89				
S2	0,18	0,38	0,15	0,37	0,23	0,3	0,34	0,26				
S3	0,16	0,33	0,13	0,32	0,20	0,26	0,3	0,23				

Sumber: Data diolah (2022), dianalisis

Tabel 11. Tabel PSM

Sumber	Tujuan											
Sumber	T1	T2	T3	T4	T5	T6	T7	T8				
S1	0,75	0,36	0,9	0,38	0,60	0,46	0,4	0,53				
S2	5,42	2,6	6,5	2,71	4,3	3,32	2,91	3,82				
S3	6,25	3	7,5	3,13	4,97	3,83	3,36	4,41				

Sumber: Data diolah (2022), dianalisis

2. Membentuk matriks A menggunakan hasil perkalian antara *PDM* dengan biaya

distribusi (WCD) dan membentuk matriks B menggunakan hasil perkalian antara PSM dengan biaya distribusi (WCS).

ISSN: 2303-1751

Tabel 12. Matriks A

Sum		Tujuan											
ber	T1	T2	T3	T4	T5	T6	T7	T8					
S1	706 ,67	1105 ,56	333 ,33	693 ,33	1063 ,71	735 ,56	371 ,67	62 9					
S2	147 ,69	82,3 1	41, 08	83, 08	78,5 2	67, 85	65, 87	78, 46					
S3	96	58,6 7	32	103 ,04	81,5 4	130 ,67	38, 06	14, 51					

Sumber: Data diolah (2022), dianalisis

Tabel 13. Matriks B

Su	Tujuan								
mbe r	T1	T2	Т3	T4	T5	T6	T7	Т8	
S1	397, 5	143 ,28	270	97,5	377, 88	91,8 4	60, 54	176, 29	
S2	433 3,33	556 ,4	173 5,5	609, 38	145 4,97	746, 17	559 ,64	114 7,06	
S3	375 0	528	180 0	100 6,25	201 1,59	191 3,27	430 ,49	282, 35	

Sumber: Data diolah (2022), dianalisis

3. Mengalokasikan distribusi secara maksimal pada nilai *WCD* terkecil dalam matriks A dan nilai *WCS* terkecil dalam matriks B.

Tabel 14. Alokasi Matriks A

G 1	Tujuan								Kapasitas
Sumber	T1	T2	T3	T4	T5	T6	T7	T8	Sumber
S1	706,7	1105,6	333,3	693,3	1063,7	735,6	371,7	629	4500
51	250								4300
S2	147,7	8231	41,1	83	78,5	67,8	65,9	78,5	3250
	315			1200	755	980			3230
S3	96	58,7	32	103,	81,5	130,7	38,1	14,5	3750
33	35	1250	500				1115	850	3730
Total Permintaan	600	1250	500	1200	755	980	1115	850	

Sumber: Data diolah (2022), dianalisis

Tabel 15. Alokasi Matriks B

Cumhan	Tujuan								
Sumber	T1	T2	T3	T4	T5	T6	T7	T8	Sumber
S1	397,5	143,3	270	97,5	377,9	91,8	60,5	176,3	4500
		1205		1200		980	1115		4300
S2	4333,3	556,4	1735,5	609,4	1455	746,2	559,6	1147,1	2250
	600		500	·	755	<u> </u>		<u>-</u>	3250
S3	3750	528	1800	006,2	2011,6	1913,3	430,5	282,4	3750
		45						850	3730
Total Permintaan	600	1250	500	1200	755	980	1115	850	

Sumber: Data diolah (2022), dianalisis

4. Menghitung nilai distribusi (z_{min}) matriks A dan matriks B. Biaya transportasi pada alokasi matriks A

```
z = 530x_{11} + 398x_{12} + 300x_{13} + 260x_{14}
                +634x_{15} + 200x_{16} + 150x_{17}
                +333x_{18} + 800x_{21} + 214x_{22}
                +267x_{23} + 225x_{24} + 338x_{25}
                +225x_{26} + 192x_{27} + 300x_{28}
                +600x_{31} + 176x_{32} + 240x_{33}
                +322x_{34} + 405x_{35} + 500x_{36}
                +128x_{37}+64x_{38}
\Leftrightarrow z = 530(250) + 398(0) + 300(0)
                +260(0)+634(0)
                +200(980) + 150(0)
                +333(0) + 800(315)
                +214(0) + 267(0)
                +225(1200) + 338(755)
                +225(0) + 192(0) + 300(0)
                +600(35) + 176(1250)
                +240(500) + 322(0)
                +405(0) + 500(0)
                +128(1115) + 64(850)
                = Rp1.688.310,00
Biaya transportasi pada alokasi mastriks B
z = 530x_{11} + 398x_{12} + 300x_{13} + 260x_{14}
```

$$+634x_{15} + 200x_{16} + 150x_{17} +333x_{18} + 800x_{21} + 214x_{22} +267x_{23} + 225x_{24} + 338x_{25} +225x_{26} + 192x_{27} + 300x_{28} +600x_{31} + 176x_{32} + 240x_{33} +322x_{34} + 405x_{35} + 500x_{36} +128x_{37} + 64x_{38} \Leftrightarrow z = 530(0) + 398(1205) + 300(0) +260(1200) + 634(0)$$

 $+322x_{34} + 405x_{35} + 500x_{36}$ $+128x_{37} + 64x_{38}$ $\Leftrightarrow z = 530(0) + 398(1205) + 300(0)$ +260(1200) + 634(0) +200(0) + 150(1115) +333(0) + 800(600) +214(0) + 267(500) +225(0) + 338(755) +225(0) + 192(0) + 300(0) +600(0) + 176(45) +240(0) + 322(0) + 405(0)

+240(0) +322(0) +405(0)+500(0) +128(0)+64(850) = Rp2.085.850,00

5. Membandingan nilai distribusi kedua matriks dan memilih biaya distribusi terkecil sebagai solusi awal *KSAM*, sehingga solusi awal dari *KSAM* adalah alokasi matriks A dengan biaya distribusi Rp1.688.310,00

3.5 Solusi Optimal Metode *Stepping Stone* dengan Solusi Awal *KSAM*

Solusi awal *KSAM* memiliki 10 alokasi, sehingga solusi awal ini telah memenuhi syarat untuk

melakukan perhitungan solusi optimal metode *stepping stone*. Selanjutnya dibentuk jalur tertutup pada setiap entri kosong pada tabel solusi awal metode *KSAM* dan melakukan perhitungan nilai indeks perbaikannya.

Tabel 16. Iterasi I Metode Stepping Stone

Entri Kosong	Jalur Tertutup	Nilai Indeks Perbaikan
<i>x</i> ₁₂	$x_{12} \to x_{32} \to x_{31} \to x_{11} \to x_{12}$	292
<i>x</i> ₁₃	$x_{13} \to x_{33} \to x_{31} \to x_{11} \to x_{13}$	130
<i>x</i> ₁₄	$x_{14} \to x_{24} \to x_{21} \to x_{11} \to x_{14}$	305
<i>x</i> ₁₅	$x_{15} \rightarrow x_{25} \rightarrow x_{21} \rightarrow x_{11} \rightarrow x_{15}$	566
<i>x</i> ₁₆	$x_{16} \to x_{26} \to x_{21} \to x_{11} \to x_{16}$	245
<i>x</i> ₁₇	$x_{17} \to x_{37} \to x_{31} \to x_{11} \to x_{17}$	92
<i>x</i> ₁₈	$x_{18} \to x_{38} \to x_{31} \to x_{11} \to x_{18}$	339
x_{22}	$x_{22} \to x_{32} \to x_{31} \to x_{21} \to x_{22}$	-162
x_{23}	$x_{23} \to x_{33} \to x_{31} \to x_{21} \to x_{23}$	-173
<i>x</i> ₂₇	$x_{27} \to x_{37} \to x_{31} \to x_{21} \to x_{27}$	-136
<i>x</i> ₂₈	$x_{28} \to x_{38} \to x_{31} \to x_{21} \to x_{28}$	36
x ₃₄	$x_{34} \to x_{31} \to x_{21} \to x_{24} \to x_{34}$	297
<i>x</i> ₃₅	$x_{35} \to x_{31} \to x_{21} \to x_{25} \to x_{35}$	267
x ₃₆	$x_{36} \to x_{31} \to x_{21} \to x_{26} \to x_{36}$	475

Sumber: Data diolah (2022), dianalisis.

Nilai indeks perbaikan memiliki 3 nilai yang negatif, sehingga dipilih nilai yang paling negatif, yaitu (-173) yang terdapat pada jalur tertutup x_{23} . Alokasi dengan nilai negatif terbesar terdapat pada x_{21} , yaitu 315. Kemudian seluruh alokasi pada jalur tertutup x_{23} dijumlahkan dengan nilai 315 sesuai dengan tanda (+) dan (-) yang telah diberikan sebelumnya.

Selanjutnya dibentuk kembali jalur tertutup pada setiap entri kosong dan menghitung nilai indeks perbaikan pada setiap jalur tertutup sebelumnya.

Tabel 17. Iterasi II Metode Stepping Stone

Entri	Jalur Tertutup	Nilai Indeks
Kosong	r	Perbaikan
<i>x</i> ₁₂	$x_{12} \to x_{32} \to x_{31} \to x_{11} \to x_{12}$	292
<i>x</i> ₁₃	$x_{13} \to x_{33} \to x_{31} \to x_{11} \to x_{13}$	130
x ₁₄	$x_{14} \rightarrow x_{24} \rightarrow x_{23} \rightarrow x_{33} \rightarrow x_{31} \rightarrow x_{11} \rightarrow x_{14}$	132
x ₁₅	$x_{15} \rightarrow x_{25} \rightarrow x_{23} \rightarrow x_{33} \rightarrow x_{11} \rightarrow x_{15}$	393
<i>x</i> ₁₆	$x_{16} \to x_{26} \to x_{23} \to x_{33} \to x_{31} \to x_{11} \to x_{16}$	72
x ₁₇	$x_{17} \rightarrow x_{37} \rightarrow x_{31} \rightarrow x_{11} \rightarrow x_{17}$	92
<i>x</i> ₁₈	$x_{18} \to x_{38} \to x_{31} \to x_{11} \to x_{18}$	339
x ₂₁	$x_{21} \to x_{21} \to x_{33} \to x_{23} \to x_{21}$	173
x ₂₂	$x_{22} \to x_{32} \to x_{33} \to x_{23} \to x_{22}$	2
x ₂₇	$x_{27} \to x_{23} \to x_{33} \to x_{37} \to x_{27}$	37
x ₂₈	$x_{28} \to x_{38} \to x_{33} \to x_{23} \to x_{28}$	209
x ₃₄	$x_{34} \to x_{24} \to x_{23} \to x_{33} \to x_{34}$	124
x ₃₅	$x_{35} \to x_{25} \to x_{23} \to x_{33} \to x_{35}$	94
x ₃₆	$x_{36} \to x_{26} \to x_{23} \to x_{33} \to x_{36}$	302

Sumber: Data diolah (2022), dianalisis

Terlihat bahwa seluruh nilai indeks perbaikan tidak bernilai negatif, sehingga solusi sudah menjadi solusi optimal.

Perbandingan total biaya distribusi optimal dapat dilihat pada tabel 18.

Tabel 18. Perbandinga Metode *TOCM-SUM Approach* dan *KSAM*

Metode Solusi Awal	TOCM-SUM Approach	KSAM	
Jumlah Alokasi	9	10	
biaya distribusi awal	Rp1.748.858,00	Rp1.688.310,00	
Metode Solusi Optimal	Stepping Stone		
Jumlah Iterasi	-	1	
Biaya Distribusi Optimal	Rp1.748.585,00	Rp1.633.815,00	

Sumber: Data diolah (2022), dianalisis

4. KESIMPULAN DAN SARAN

4.1 Kesimpulan

Berdasarkan hasil dan pembahasan, dapat ditarik kesimpulan bahwa:

- 1. Metode *TOCM-SUM* Approach menghasilkan 9 rute alokasi dengan biaya distribusi *Rp*1.748.585,00, sedangkan *KSAM* menghasilkan 10 rute alokasi dengan biaya distribusi *Rp*1.688.310,00.
- 2. Solusi awal metode TOCM-SUM Approach tidak memenuhi syarat metode stepping stone sehingga perlu dilakukan penambahan nilai epsilon (ε) pada salah satu rute yang kosong, kemudian metode ini sudah mendapatkan nilai optimum sebesar Rp1.748.585,00 setelah dilakukan pemeriksaan dengan metode stepping stone. Sedangkan solusi awal KSAM belum mencapai nilai optimum setelah diperiksa dengan metode stepping stone, sehingga solusi awal metode KSAM perlu dioptimasi dengan metode stepping stone menghasilkan nilai optimum Rp1.633.815.
- 3. Metode *KSAM* mendapatkan nilai yang lebih optimum dengan selisih Rp114.770,00 dari metode *TOCM-SUM Approach*, sehingga metode *KSAM* merupakan metode yang lebih efisien dalam menentukan rute distribusi.

4.2 Saran

Penelitian ini tidak memperhatikan ketidakpastian pada biaya transportasi, jumlah permintaan, dan jumlah penawaran. Penelitian selanjutnya disarankan untuk memperhatikan ketidakpastian biaya transportasi, jumlah penawaran, dan jumlah permintaan (fuzzy transportation methods).

DAFTAR PUSTAKA

- Armawan, L. V. A. 2020. Optimasi Masalah Biaya Transportasi Beras Menggunakan Metode TOCM-SUM Approach (Studi Kasus: Perum Bulog Wilayah Sumatera Barat). *Skripsi*. Pekanbaru: Universitas Islam Negeri Sultan Syarif Kasim Riau.
- Astuti, N. D., Heri, R. S. U., dan Suryanto. 2016. Solusi Masalah Transportasi Menggunakan TOCM-SUM Approach dengan Indikator Distribusi. *Jurnal Matematika*, 19, 121–126.
- Badan Pusat Statistik. 2021. *Konsumsi Bahan Pokok* 2019. BPS. https://www.bps.go.id/publication/2021/1//25/68b1b04ce68c7d6a1c564165/konsmsi-bahan-pokok-2019.html. Diakses 8 Agustus 2022.
- Hillier, F. S., dan Liberman, G. J. 1995. Introduction to Operations Research (6th ed.). New York: The McGraw Companies.
- Istiqomah. 2021. Improved Exponential Approach Method dan Zero Suffix Method dalam Menentukan Solusi Optimal pada Masalah Transportasi. *Skripsi*. Bukit Jimbaran: Universitas Udayana.
- Karagul, K., dan Sahin, Y. 2020. A Novel Approximation Method to Obtain Initial Basic Feasible Solution of Transportation problem. *Journal of King Saud University*, 32(3),211–218. https://doi.org/10.1016/j.jksues.2019.03.003
- Khan, A. R., Vilcu, A., Sultana, N., dan Ahmed, S. S. 2015. Determination of Initial Basic Feasible Solution of A Transportation Problem: A TOCM-SUM Approach. *Buletinul Institutului Politehnic Din Lasi*, LXI(LXV), 41–49
- Kirca, O., dan Satir, A. 1990. A Heuristic for Obtaining an Initial Solution for the Transportation Problem. *Journal of the Operation Research Society*, 41(9), 865–871.
- Nusantoro, D. K. 2020. Implementasi Karagul-Sahin Approximation Method untuk Meminimalisasi Biaya Pendistribusian Air Pada Masalah Transportasi (Studi Kasus: Air Minum Mata Air Sikumbang Kampar). Skripsi. Pekanbaru: Universitas Islam Negeri Sultan Syarif Kasim Riau.

Ratnasati, Y., Yuniarti, D., dan Purnamasari, I. (019. Optimasi Pendistribusian Barang Dengan Menggunakan Vogel 's Approximation Method dan Stepping Stone Method (Studi Kasus: Pendistribusian Tabung Gas LPG 3 Kg Pada PT . Tri Pribumi Sejati). *Jurnal EKSPONENSIAL*, 10, 165–174.

Siswanto. 2007. *Operation Research Jilid I.* Jakarta: Penerbit Erlangga.